REMARKS

The following preliminary amendments have been made.

- 1. A new paragraph has been added to the first page of the specification, immediately following the title of the invention, with the subheading: "Related Applications". This new paragraph indicates that this application is a 371 of PCT/EP00/01496. Also, a new subheading ("Description of the Invention") has been added immediately after this new paragraph, to indicate the beginning of the description of the invention.
- 2. The specification has been amended at page 55, by deletion of the entirety of line 11, which reads:

"particularly the compounds characterized in claims 5 to 17,"

As it is impermissible for the description to incorporate matter by reference to the claims (which of course are expected to change during prosecution), the matter contained in claims 5-17 has been copied into the description by amendment. The insertion of this matter begins on page 55, at line 14. The insertion takes a form of a series of paragraphs that each begin "Subgeneric aspect (X) of the invention is ...", where X is the number of the respective claim, 5-17. Each inserted paragraph is derived from the respective claim, as it appears in the international application.

3. Claims 1-20 have been amended so as to comply with U.S. practice. Claims 21 and 22 have been canceled. It should be noted that claims 9, 10 and 11 as they appeared in the international application were mutilple dependent claims which depended from four other claims in an unusual way, such a way that each of claims 9-11 actually covered 16 possible combinations. (Put another way, claims 9-11 could each have been rendered in the form of 16 regular dependent claims.) Because claims 18, 19 and 20 depend from, inter alia, claims 9-11 and are themselves multiple dependent in nature, a problem was posed. It is not permitted in U.S. practice for a multiple dependent claim to depend from another multiple dependent claim. Accordingly, claims 9-11 have been amended so as to make them regular dependent claims. As amended, each of claims 9-11 now covers only 1 of the 16 combinations that were covered by the claims as originally filed. The applicants reserve the right to add claims directed to the combinations that are not covered by claims 9-11 as amended. No dedication of this subject matter is intended.

Respectfully submitted,

Alan Stempel

Attorney for Applicant(s)

Reg. No. 28,991

Patent Department Boehringer Ingelheim Corp. 900 Ridgebury Road P.O. Box 368 Ridgefield, CT. 06877 Tel.: (203) 798-4868 I hereby certify that this correspondence is being deposited with the U.S. Postal Service as Express Mail, Airbill No. EL717900974US in an envelope addressed to:

Box PCT

Assistant Commissioner for Patents Washington, DC 20231

on August 24, 2001

By: Alan R. Stempel Reg. No. 28,991

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of:

Himmelsbach et al.

International Application No.:

PCT/EP00/01496

International Filing Date:

24 February 2000 (24.02.00)

Title:

4-AMINO-QUINAZOLINE AND QUINOLINE

DERIVATIVES HAVING AN INHIBITORY EFFECT

ON SIGNAL TRANSDUCTION MEDIATED BY

TYROSINE KINASES

Docket No.:

5/1252

Box PCT Commissioner of Patents Washington, D.C. 20231

CLAIM MARK-UP

(enclosure to Preliminary Amendment)

1. (amended) Bicyclic heterocycles of general A compound of the formula

$$R_a$$
 R_b
 R_c
 $A - B - C - D - E$
 R_d
 R_d
 R_d

wherein

 R_a denotes a hydrogen atom or a C_{1-4} -alkyl group,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , whilst

11

 R_1 and R_2 , which may be identical or different, in each case denote a hydrogen, fluorine, chlorine, bromine or iodine atom,

a C_{1-4} -alkyl, hydroxy, C_{1-4} -alkoxy, C_{3-6} -cycloalkyl, C_{4-6} -cycloalkoxy, C_{2-5} -alkenyl or C_{2-5} -alkynyl group,

an aryl, aryloxy, arylmethyl or arylmethoxy group,

a C_{3-5} -alkenyloxy or C_{3-5} -alkynyloxy group, wherein the unsaturated moiety may not be linked to the oxygen atom,

a C_{1-4} -alkylsulphenyl, C_{1-4} -alkylsulphinyl, C_{1-4} -alkylsulphonyl, trifluoromethylsulphenyl, trifluoromethylsulphinyl or trifluoromethylsulphonyl group,

a methyl or methoxy group substituted by 1 to 3 fluorine atoms,

an ethyl or ethoxy group substituted by 1 to 5 fluorine atoms,

a cyano or nitro group or an amino group optionally substituted by one or two C_{1-4} -alkyl groups, wherein the substituents may be identical or different, or

R₁ together with R₂, if they are bound to adjacent carbon atoms, denote a - CH=CH-CH=CH, -CH=CH-NH or -CH=N-NH group and

R₃ denotes a hydrogen, fluorine, chlorine or bromine atom,

a C₁₋₄-alkyl, trifluoromethyl or C₁₋₄-alkoxy group,

R_c and R_d, which may be identical or different, in each case denote a hydrogen, fluorine or chlorine atom, a methoxy group, or a methyl group optionally substituted by a methoxy, dimethylamino, diethylamino, pyrrolidino, piperidino or morpholino group,

X denotes a methine group substituted by a cyano group or a nitrogen atom,

A denotes an oxygen atom or an imino group optionally substituted by a C₁₋₄-alkyl group,

B denotes a carbonyl or sulphonyl group,

C denotes a 1,3-allenylene, 1,1 or 1,2-vinylene group which may be substituted in each case by one or two methyl groups or by a trifluoromethyl group,

an ethynylene group or

a 1,3-butadien-1,4-ylene group optionally substituted by 1 to 4 methyl groups or by a trifluoromethyl group,

D denotes an alkylene, -CO-alkylene or -SO₂-alkylene group wherein the alkylene moiety in each case contains 1 to 8 carbon atoms and additionally 1 to 4 hydrogen atoms in the alkylene moiety may be replaced by fluorine atoms, while the linking of the -CO-alkylene and -SO₂-alkylene group to the adjacent group C in each case must take place via the carbonyl or sulphonyl group,

a -CO-O-alkylene, -CO-NR₄-alkylene or -SO₂-NR₄-alkylene group wherein the alkylene moiety in each case contains 1 to 8 carbon atoms, whilst the linking to the adjacent group C in each case must take place via the carbonyl or sulphonyl group, wherein

R₄ denotes a hydrogen atom or a C₁₋₄-alkyl group,

or, if D is bound to a carbon atom of the group E, it may also denote a bond,

or, if D is bound to a nitrogen atom of the group E, it may also denote a carbonyl or sulphonyl group,

E denotes an R_6O -CO-alkylene-N R_5 , (R_7O -PO-OR $_8$)-alkylene-N R_5 or (R_7O -PO-R $_9$)-alkylene-N R_5 -group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 6 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, wherein

R₅ denotes a hydrogen atom,

a C_{1-4} -alkyl group, which may be substituted by an R_6O -CO, (R_7O -PO- OR_8) or (R_7O -PO- R_9) group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups, which may be terminally substituted in each case by a C_{1-6} -alkylcarbonylsulphenyl, C_{3-7} -cycloalkylcarbonylsulphenyl, C_{3-7} -cycloalkylcarbonylsulphenyl, arylcarbonylsulphenyl or aryl- C_{1-3} -alkylcarbonylsulphenyl group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups which is terminally substituted in each case by a C_{1-6} -alkylcarbonyloxy, C_{3-7} -cycloalkylcarbonyloxy, C_{3-7} -cycloalkyl- C_{1-3} -alkylcarbonyloxy, arylcarbonyloxy or aryl- C_{1-3} -alkylcarbonyloxy group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups, each of which may be terminally substituted by a hydroxy, C_{1-4} -alkoxy, amino, C_{1-4} -alkylamino or di-(C_{1-4} -alkyl)-amino group or by a 4- to 7-membered alkyleneimino group, whilst in the abovementioned 6- to 7-membered

alkyleneimino groups a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, by a sulphinyl, sulphonyl, imino or N-(C_{1-4} -alkyl)-imino group,

a C₃₋₇-cycloalkyl or C₃₋₇-cycloalkyl-C₁₋₃-alkyl group,

R₆, R₇ and R₈, which may be identical or different, in each case denote a hydrogen atom,

a C_{1-8} -alkyl group, which may be substituted by a hydroxy, C_{1-4} -alkoxy, amino, C_{1-4} -alkylamino or di- $(C_{1-4}$ -alkyl)-amino group or by a 4- to 7-membered alkyleneimino group, whilst in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen or sulphur atom or by a sulphinyl, sulphonyl, imino or N- $(C_{1-4}$ -alkyl)-imino group,

a C₄₋₇-cycloalkyl group optionally substituted by 1 or 2 methyl groups,

a C_{3-5} -alkenyl or C_{3-5} -alkynyl group, wherein the unsaturated moiety may not be linked to the oxygen atom,

a C_{3-7} -cycloalkyl- C_{1-4} -alkyl, aryl, aryl- C_{1-4} -alkyl or R_gCO -O- (R_eCR_f) -group, whilst

 R_e and R_f , which may be identical or different, each denote a hydrogen atom or a C_{1-4} -alkyl group and

 R_g denotes a C_{1-4} -alkyl, C_{3-7} -cycloalkyl, C_{1-4} -alkoxy or C_{5-7} -cycloalkoxy group,

and R₉ denotes a C₁₋₄-alkyl, aryl or aryl-C₁₋₄-alkyl group,

a 4- to 7-membered alkyleneimino group which may be substituted by an R_6O-CO , $(R_7O-PO-OR_8)$, $(R_7O-PO-R_9)$, $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a 4- to 7-membered alkyleneimino group which is substituted by two R_6OCO or R_6OCO - C_{1-4} -alkyl groups or by an R_6OCO -group and an R_6OCO - C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and additionally at a cyclic carbon atom by an R_6O -CO, $(R_7O$ -PO-OR₈), $(R_7O$ -PO-R₉), R_6O -CO-C₁₋₄-alkyl, bis- $(R_6O$ -CO)-C₁₋₄-alkyl, $(R_7O$ -PO-OR₈)-C₁₋₄-alkyl or $(R_7O$ -PO-R₉)-C₁₋₄-alkyl group wherein R_6 to R_9 are as hereinbefore defined and

 R_{10} denotes a hydrogen atom, a C_{1-4} -alkyl, formyl, C_{1-4} -alkylcarbonyl or C_{1-4} -alkylsulphonyl group,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and additionally at cyclic carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 and R_{10} are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in each case in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group and additionally at cyclic carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups or by an R_6O-CO -group and an $R_6O-CO-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a morpholino or homomorpholino group which is substituted in each case by an R_6O-CO , $(R_7O-PO-OR_8)$, $(R_7O-PO-R_9)$, $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a morpholino or homomorpholino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R₁₀, while the abovementioned 5- to 7-membered rings are additionally substituted in each case at a carbon atom by an R₆O-CO, (R₇O-PO-OR₈), (R₇O-PO-R₉), R₆O-CO-C₁₋₄-alkyl, bis-(R₆O-CO)-C₁₋₄-alkyl, (R₇O-PO-OR₈)-C₁₋₄-alkyl or (R₇O-PO-R₉)-C₁₋₄-alkyl group wherein R₆ to R₁₀ are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , while the abovementioned 5- to 7-membered rings are in each case additionally substituted at carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 and R_{10} are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group, while the abovementioned 5- to 7-membered rings are in each case additionally substituted at carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups or by an R_6O-CO -group and an $R_6O-CO-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

- a 2-oxo-morpholino group which may be substituted by 1 to 4 C₁₋₂-alkyl groups,
- a 2-oxo-thiomorpholino group which may be substituted by 1 to 4 C₁₋₂-alkyl groups,
- a morpholino or thiomorpholino group which is substituted in the 2 position by a C_{1-4} -alkoxy group,
- a morpholino or thiomorpholino group which is substituted in the 2 and 6 position in each case by a C_{1-4} -alkoxy group,
- a C_{1-4} -alkyl-NR₅-group wherein the C_{1-4} -alkyl moiety, which is straight-chained and may additionally be substituted by one or two methyl groups, is in each case terminally substituted by a di-(C_{1-4} -alkoxy)-methyl or tri-(C_{1-4} -alkoxy)-methyl group, while R_5 is as hereinbefore defined,
- a C₁₋₄-alkyl-NR₅ group wherein the C₁₋₄-alkyl moiety, which is straight-chained and may additionally be substituted by one or two methyl groups, is in each case terminally substituted by a 1,3-dioxolan-2-yl or 1,3-dioxan-2-yl group optionally substituted by one or two methyl groups, while R₅ is as hereinbefore defined,

an R₁₁NR₅ group wherein R₅ is as hereinbefore defined and

R₁₁ denotes a 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl, 2-oxo-tetrahydropyran-4-yl, 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiophen-4-yl, 2-oxo-tetrahydrothiopyran-3-yl, 2-oxo-tetrahydrothiopyran-4-yl or 2-oxo-tetrahydrothiopyran-5-yl group optionally substituted by one or two methyl groups,

an amino group or an amino group optionally substituted by 1 or 2 C₁₋₄-alkyl groups wherein the alkyl groups may be identical or different and each alkyl moiety may be substituted from position 2 onward by a hydroxy, C₁₋₄-alkoxy, amino, C₁₋₄-alkylamino or di-(C₁₋₄-alkyl)-amino group or by a 4- to 7-membered alkyleneimino group, whilst in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, or by a sulphinyl, sulphonyl, imino or N-(C₁₋₄-alkyl)-imino group,

a 4- to 7-membered alkyleneimino group optionally substituted by 1 to 4 methyl groups,

a 6- to 7-membered alkyleneimino group optionally substituted by 1 or 2 methyl groups wherein in each case a methylene group in the 4 position is replaced by an oxygen or sulphur atom, by an imino group substituted by the group R_{10} , by a sulphinyl or sulphonyl group, whilst R_{10} is as hereinbefore defined,

an imidazolyl group optionally substituted by 1 to 3 methyl groups,

a C_{5-7} -cycloalkyl group wherein a methylene group is replaced by an oxygen or sulphur atom, by an imino group substituted by the group R_{10} , by a sulphinyl or sulphonyl group, wherein R_{10} is as hereinbefore defined,

or D together with E denotes a hydrogen, fluorine or chlorine atom,

a C₁₋₄-alkyl group optionally substituted by 1 to 5 fluorine atoms,

a C₃₋₆-cycloalkyl group,

an aryl, heteroaryl, C_{1-4} -alkylcarbonyl, arylcarbonyl, carboxy, C_{1-4} -alkoxycarbonyl, $R_gCO-O-(R_eCR_f)-O-CO$, $(R_7O-PO-OR_8)$ or $(R_7O-PO-R_9)$ -group wherein R_e to R_g and R_7 to R_9 are as hereinbefore defined,

an aminocarbonyl, C₁₋₄-alkylaminocarbonyl or di-(C₁₋₄-alkyl)-aminocarbonyl group or

a carbonyl group, which is substituted by a 4- to 7-membered alkyleneimino group, whilst in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, by an imino group substituted by the group R_{10} , by a sulphinyl or sulphonyl group, while R_{10} is as hereinbefore defined,

F denotes a C_{1-6} -alkylene group, an -O- C_{1-6} -alkylene group, whilst the alkylene moiety is linked to the group G, or an oxygen atom, whilst the latter may not be linked to a nitrogen atom of the group G, and

G denotes an R_6O -CO-alkylene-NR₅, (R_7O -PO-OR₈)-alkylene-NR₅ or (R_7O -PO-R₉)-alkylene-NR₅-group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 6 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, wherein R_5 to R_9 are as hereinbefore defined,

a 4- to 7-membered alkyleneimino group which is substituted by an R_6O-CO , $(R_7O-PO-OR_8)$, $(R_7O-PO-R_9)$, $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a 4- to 7-membered alkyleneimino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R₁₀ and is additionally substituted at a cyclic carbon atom by an R₆O-CO, (R₇O-PO-OR₈), (R₇O-PO-R₉), R₆O-CO-C₁₋₄-alkyl, bis-(R₆O-CO)-C₁₋₄-alkyl, (R₇O-PO-OR₈)-C₁₋₄-alkyl or (R₇O-PO-R₉)-C₁₋₄-alkyl group wherein R₆ to R₁₀ are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at cyclic carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 and R_{10} are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in each case in the 4 position by an R₆O-CO-C₁₋₄-alkyl, bis-(R₆O-CO)-C₁₋₄-alkyl, (R₇O-PO-OR₈)-C₁₋₄-alkyl or (R₇O-PO-R₉)-C₁₋₄-alkyl group wherein R₆ to R₉ are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group and is additionally substituted at cyclic carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups or by an R_6O-CO -group and an $R_6O-CO-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a morpholino or homomorpholino group which is substituted in each case by an R₆O-CO, (R₇O-PO-OR₈), (R₇O-PO-R₉), R₆O-CO-C₁₋₄-alkyl, bis-(R₆O-CO)-C₁₋₄-alkyl, (R₇O-PO-OR₈)-C₁₋₄-alkyl or (R₇O-PO-R₉)-C₁₋₄-alkyl group wherein R₆ to R₉ are as hereinbefore defined,

a morpholino or homomorpholino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R₁₀, while the abovementioned 5- to 7-membered rings are in each case additionally substituted at a carbon atom by an R₆O-CO, (R₇O-PO-OR₈), (R₇O-PO-R₉), R₆O-CO-C₁₋₄-alkyl, bis-(R₆O-CO)-C₁₋₄-alkyl, (R₇O-PO-OR₈)-C₁₋₄-alkyl or (R₇O-PO-R₉)-C₁₋₄-alkyl group wherein R₆ to R₁₀ are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , whilst the abovementioned 5- to 7-membered rings are in each case additionally substituted at carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 and R_{10} are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group, while the abovementioned 5- to 7-membered rings are in each case additionally substituted at carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups or by an R_6O-CO -group and an $R_6O-CO-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a 2-oxo-morpholino group which may be substituted by 1 or 2 methyl groups,

a 2-oxo-morpholinyl group which is substituted in the 4 position by a hydrogen atom, by a C_{1-4} -alkyl, R_6O -CO- C_{1-4} -alkyl, $(R_7O$ -PO- $OR_8)$ - C_{1-4} -alkyl or $(R_7O$ -PO- $R_9)$ - C_{1-4} -alkyl group, wherein R_6 to R_9 are as hereinbefore defined and the abovementioned 2-oxo-morpholinyl groups are each linked to a carbon atom of the group F_7

a morpholino or thiomorpholino group which is substituted in the 2 position by a C_{1-4} -alkoxy group,

a morpholino or thiomorpholino group which is substituted in the 2 and 6 positions by a C_{1-4} -alkoxy group,

a C_{1-4} -alkyl-NR₅-group wherein the C_{1-4} -alkyl moiety, which is straight-chained and may additionally be substituted by one or two methyl groups, is in each case terminally substituted by a di-(C_{1-4} -alkoxy)-methyl or tri-(C_{1-4} -alkoxy)-methyl group, wherein R_5 is as hereinbefore defined,

a C_{1-4} -alkyl-NR₅ group wherein the C_{1-4} -alkyl moiety, which is straight-chained and may additionally be substituted by one or two methyl groups, is in each case terminally substituted by a 1,3-dioxolan-2-yl or 1,3-dioxan-2-yl group optionally substituted by one or two methyl groups, wherein R₅ is as hereinbefore defined,

a R_hNR_5 -group wherein R_5 is as hereinbefore defined and R_h denotes a 2-oxotetrahydrofuran-3-yl, 2-oxotetrahydrofuran-4-yl, 2-oxotetrahydropyran-3-yl, 2-oxotetrahydropyran-5-yl group optionally substituted by one or two methyl groups,

an amino group or an amino group optionally substituted by 1 or 2 C_{1-4} -alkyl groups wherein the alkyl groups may be identical or different and each alkyl moiety may be substituted from position 2 onward by a hydroxy, C_{1-4} -alkoxy, amino, C_{1-4} -alkylamino or di- $(C_{1-4}$ -alkyl)-amino group or by a 4- to 7-membered alkyleneimino group,

wherein in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, by a sulphinyl, sulphonyl, imino or N- $(C_{1-4}$ -alkyl)-imino group,

a 4- to 7-membered alkyleneimino group optionally substituted by 1 to 4 methyl groups,

a 6- to 7-membered alkyleneimino group optionally substituted by 1 or 2 methyl groups wherein in each case a methylene group in the 4 position is replaced by an oxygen or sulphur atom, by an imino group substituted by the group R_{10} , or by a sulphinyl or sulphonyl group, wherein R_{10} is as hereinbefore defined,

an imidazolyl group optionally substituted by 1 to 3 methyl groups,

a C_{5-7} -cycloalkyl group wherein a methylene group is replaced by an oxygen or sulphur atom, by an imino group substituted by the group R_{10} , or by a sulphinyl or sulphonyl group, wherein R_{10} is as hereinbefore defined, or

F and G together denote a hydrogen, fluorine or chlorine atom,

a C_{1-6} -alkoxy group optionally substituted from position 2 onwards by a hydroxy or C_{1-4} -alkoxy group,

a C_{1-6} -alkoxy group which is substituted by an R_6 O-CO, $(R_7$ O-PO-OR₈) or $(R_7$ O-PO-R₉)-group, while R_6 to R_9 are as hereinbefore defined,

a C_{3-7} -cycloalkoxy or C_{3-7} -cycloalkyl- C_{1-4} -alkoxy group, an amino group optionally substituted by 1 or 2 C_{1-4} -alkyl groups,

a 5- to 7-membered alkyleneimino group, wherein in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, by an imino group substituted by the group R_{10} , or by a sulphinyl or sulphonyl group, while R_{10} is as hereinbefore defined,

with the proviso that at least one of the groups E, G or F together with G denotes an R_6O-CO , $(R_7O-PO-OR_8)$ or $(R_7O-PO-R_9)$ -group or

D together with E contains an R_gCO-O-(R_eCR_f)-O-CO, (R₇O-PO-OR₈) or (R₇O-PO-R₉)-group or

E or G contains an optionally substituted 2-oxo-morpholinyl group,

a morpholino or thiomorpholino group substituted in the 2 position or in the 2 and 6 position by a C_{1-4} -alkoxy group,

a di-(C₁₋₄-alkoxy)-methyl or tri-(C₁₋₄-alkoxy)-methyl group or

an optionally substituted 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl, 2-oxo-tetrahydropyran-4-yl or 2-oxo-tetrahydropyran-5-yl-group or

E contains an optionally substituted 2-oxo-thiomorpholino group or an optionally substituted 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiophen-4-yl, 2-oxo-tetrahydrothiopyran-3-yl, 2-oxo-tetrahydrothiopyran-4-yl or 2-oxo-tetrahydrothiopyran-5-yl-group,

whilst by the aryl moieties mentioned in the definitions of the abovementioned groups is meant a phenyl group which may in each case be monosubstituted by R_{12} , mono, di or trisubstituted by R_{13} or monosubstituted by R_{12} and additionally mono or disubstituted by R_{13} , wherein the substituents may be identical or different and

 R_{12} denotes a cyano, carboxy, $C_{1.4}$ -alkoxycarbonyl, aminocarbonyl, $C_{1.4}$ -alkylaminocarbonyl, di- $(C_{1.4}$ -alkyl)-aminocarbonyl, $C_{1.4}$ -alkylsulphenyl, $C_{1.4}$ -alkylsulphonyl, hydroxy, $C_{1.4}$ -alkylsulphonyloxy, trifluoromethyloxy, nitro, amino, $C_{1.4}$ -alkylamino, di- $(C_{1.4}$ -alkyl)-amino, $C_{1.4}$ -alkyl-carbonylamino, $C_{1.4}$ -alkyl- $C_{1.4}$ -alkyl- $C_{1.4}$ -alkylsulphonylamino, $C_{1.4}$ -alkylsulphonylamino, aminosulphonyl, $C_{1.4}$ -alkylaminosulphonyl or di- $(C_{1.4}$ -alkyl)-aminosulphonyl group or a carbonyl group, which is substituted by a 5- to 7-membered alkyleneimino group, wherein in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, by a sulphinyl, sulphonyl, imino or N- $(C_{1.4}$ -alkyl)-imino-group, and

 R_{13} denotes a fluorine, chlorine, bromine or iodine atom, a C_{1-4} -alkyl, trifluoromethyl or C_{1-4} -alkoxy group or

two groups R_{13} , if they are bound to adjacent carbon atoms, together denote a C_{3-5} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

and moreover by the heteroaryl groups mentioned in the definitions of the abovementioned groups is meant a 5-membered heteroaromatic group which contains an imino group, an oxygen or sulphur atom or an imino group, an oxygen or sulphur atom and one or two nitrogen atoms, or

a 6-membered heteroaromatic group, which contains one, two or three nitrogen atoms,

whilst the abovementioned 5-membered heteroaromatic groups may be substituted in each case by 1 or 2 methyl or ethyl groups and the abovementioned 6-membered heteroaromatic groups may be substituted in each case by 1 or 2 methyl or ethyl groups or by a fluorine, chlorine, bromine or iodine atom, or by a trifluoromethyl, hydroxy, methoxy or ethoxy group,

the or a tautomers, the stereoisomers and the or salts thereof.

2. (amended) Bicyclic heterocycles of general A compound of the formula I according to claim 1, wherein

R_a denotes a hydrogen atom,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , while

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine, bromine or iodine atom,

a methyl, ethyl, hydroxy, methoxy, ethoxy, amino, cyano, vinyl or ethynyl group,

an aryl, aryloxy, arylmethyl or arylmethoxy group,

a methyl or methoxy group substituted by 1 to 3 fluorine atoms or

R₁ together with R₂, if they are bound to adjacent carbon atoms, denote a -CH=CH-CH=CH, -CH=CH-NH or -CH=N-NH group and

R₃ denotes a hydrogen, fluorine, chlorine or bromine atom,

R_c and R_d in each case denote a hydrogen atom,

X denotes a methine group substituted by a cyano group or a nitrogen atom,

A denotes an imino group optionally substituted by a methyl or ethyl group,

B denotes a carbonyl group,

C denotes a 1,1- or 1,2-vinylene group which is substituted in each case by one or two methyl groups or may be substituted by a trifluoromethyl group,

an ethynylene group or

a 1,3-butadien-1,4-ylene group optionally substituted by a methyl or trifluoromethyl group,

D denotes an alkylene or -CO-alkylene group wherein the alkylene moiety in each case contains 1 to 4 carbon atoms, while the linking of the -CO-alkylene group to the adjacent group C in each case must take place via the carbonyl group,

a -CO-O-alkylene or -CO-NR₄-alkylene- group wherein the alkylene moiety in each case contains 1 to 4 carbon atoms, while the linking to the adjacent group C in each case must take place via the carbonyl group wherein

R₄ denotes a hydrogen atom or a methyl or ethyl group,

or, if D is bound to a carbon atom of the group E, it may also denote a bond

or, if D is bound to a nitrogen atom of the group E, it may also denote a carbonyl or sulphonyl group,

E denotes an R_6O -CO-alkylene-N R_5 , (R_7O -PO-OR $_8$)-alkylene-N R_5 or (R_7O -PO-R $_9$)-alkylene-N R_5 group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 4 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, while

R₅ denotes a hydrogen atom,

a C₁₋₄-alkyl group which may be substituted by an R₆O-CO group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups which is terminally substituted in each case by a hydroxy, C_{1-4} -alkoxy, di-(C_{1-4} -alkyl)amino, C_{1-6} -alkylcarbonylsulphenyl, C_{3-6} -cycloalkylcarbonylsulphenyl, C_{3-6} -cycloalkyl- C_{1-3} -alkylcarbonylsulphenyl, arylcarbonylsulphenyl or aryl- C_{1-3} -alkylcarbonylsulphenyl group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups which is terminally substituted in each case by a C_{1-6} -alkylcarbonyloxy, C_{3-6} -cycloalkylcarbonyloxy, C_{3-6} -cycloalkyl- C_{1-3} -alkylcarbonyloxy, arylcarbonyloxy or aryl- C_{1-3} -alkylcarbonyloxy group,

a C₃₋₆-cycloalkyl or C₃₋₆-cycloalkyl-C₁₋₃-alkyl group,

R₆, R₇ and R₈, which may be identical or different, in each case denote a hydrogen atom,

a C_{1-8} -alkyl group which may be substituted by a hydroxy, C_{1-4} -alkoxy, or di- $(C_{1-4}$ -alkyl)-amino group or by a 4- to 7-membered alkyleneimino group, while in the abovementioned 6- to 7-membered alkyleneimino groups, in each case a methylene group in the 4 position may be replaced by an oxygen atom or by an N- $(C_{1-2}$ -alkyl)-imino group,

a C₄₋₆-cycloalkyl group,

a C_{3-5} -alkenyl or C_{3-5} -alkynyl group, while the unsaturated moiety may not be linked to the oxygen atom,

a C₃₋₆-cycloalkyl-C₁₋₄-alkyl, aryl, aryl-C₁₋₄-alkyl or R_gCO-O-(R_eCR_f) group, wherein

 R_e and R_f , which may be identical or different, in each case denote a hydrogen atom or a C_{1-4} -alkyl group and

 R_g denotes a C_{1-4} -alkyl, C_{3-6} -cycloalkyl, C_{1-4} -alkoxy or C_{5-6} -cycloalkoxy group,

and R₉ denotes a C₁₋₄-alkyl group,

a 4- to 7-membered alkyleneimino group which is substituted by an R₆O-CO, R₆O-CO-C₁₋₄-alkyl or bis-(R₆O-CO)-C₁₋₄-alkyl group wherein R₆ is as hereinbefore defined,

a 4- to 7-membered alkyleneimino group which is substituted by two R_6O-CO or $R_6O-CO-C_{1.4}$ -alkyl groups wherein R_6 is as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and additionally at a cyclic carbon atom by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined and

 R_{10} denotes a hydrogen atom, a methyl or ethyl group,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at cyclic carbon atoms by two R_6 O-CO or R_6 O-CO- C_{1-4} -alkyl groups wherein R_6 and R_{10} are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in each case in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl or bis- $(R_6O-CO)-C_{1-4}$ -alkyl group and is additionally substituted at cyclic carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups wherein R_6 is as hereinbefore defined,

a morpholino or homomorpholino group which is substituted in each case by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined,

a morpholino or homomorpholino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 is as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R₁₀, while the abovementioned 5- to 7-membered rings in each case are additionally substituted at a carbon atom by an R₆O-CO, R₆O-CO-C₁₋₄-alkyl or bis-(R₆O-CO)-C₁₋₄-alkyl group wherein R₆ and R₁₀ are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , while the abovementioned 5- to 7-membered rings in each case are additionally substituted at carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 and R_{10} are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an R_6O -CO- C_{1-4} -alkyl or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group, while the abovementioned 5-to 7-membered rings in each case are additionally substituted at carbon atoms by one or two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 is as hereinbefore defined,

- a 2-oxo-morpholino group which may be substituted by 1 to 4 C_{1-2} -alkyl groups,
- a 2-oxo-thiomorpholino group which may be substituted by 1 to 4 C_{1-2} -alkyl groups,
- a morpholino group which is substituted in the 2 position by a C₁₋₄-alkoxy group,
- a morpholino group which is substituted in the 2 and 6 positions in each case by a $C_{1.4}$ -alkoxy group,
- a C_{1-4} -alkyl-NR₅ group wherein the C_{1-4} -alkyl moiety, which is straight-chained, is terminally substituted by a di-(C_{1-4} -alkoxy)-methyl group, while R₅ is as hereinbefore defined,
- a C_{1-4} -alkyl-NR₅ group wherein the C_{1-4} -alkyl moiety, which is straight-chained, is terminally substituted by a 1,3-dioxolan-2-yl or 1,3-dioxan-2-yl group, while R₅ is as hereinbefore defined,
- a R₁₁NR₅ group wherein R₅ is as hereinbefore defined and

R₁₁ denotes a 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl, 2-oxo-tetrahydropyran-4-yl, 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiophen-4-yl, 2-oxo-tetrahydrothiopyran-3-yl, 2-oxo-tetrahydrothiopyran-4-yl or 2-oxo-

tetrahydrothiopyran-5-yl group optionally substituted by one or two methyl groups,

or D together with E denotes a hydrogen atom,

a methyl, trifluoromethyl, aryl, $R_gCO-O-(R_eCR_f)-O-CO$ or $(R_7O-PO-OR_8)$ group wherein R_e to R_g and R_7 and R_8 are as hereinbefore defined,

F denotes an -O-C₁₋₄-alkylene group, wherein the alkylene moiety is linked to the group G, or an oxygen atom, while this may not be linked to a nitrogen atom of the group G, and

G denotes an R_6O -CO-alkylene-NR₅, (R_7O -PO-OR₈)-alkylene-NR₅ or (R_7O -PO-R₉)-alkylene-NR₅ group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 4 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO-C₁₋₂-alkyl group, while R_5 to R_9 are as hereinbefore defined,

a 4- to 7-membered alkyleneimino group which is substituted by an R₆O-CO, R₆O-CO-C₁₋₄-alkyl or bis-(R₆O-CO)-C₁₋₄-alkyl group wherein R₆ is as hereinbefore defined,

a 4- to 7-membered alkyleneimino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 is as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at a cyclic carbon atom by an R_6 O-CO, R_6 O-CO- C_{1-4} -alkyl or bis- $(R_6$ O-CO)- C_{1-4} -alkyl group wherein R_6 and R_{10} are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at cyclic carbon atoms by two R_6 O-CO or R_6 O-CO-C₁₋₄-alkyl groups wherein R_6 and R_{10} are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in each case in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl or bis- $(R_6O-CO)-C_{1-4}$ -alkyl group and additionally at cyclic carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups wherein R_6 is as hereinbefore defined,

a morpholino or homomorpholino group which is substituted in each case by an R₆O-CO, R₆O-CO-C₁₋₄-alkyl or bis-(R₆O-CO)-C₁₋₄-alkyl group wherein R₆ is as hereinbefore defined,

a morpholino or homomorpholino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 is as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R₁₀, while the abovementioned 5- to 7-membered rings in each case are additionally substituted at a carbon atom by an R₆O-CO, R₆O-CO-C₁₋₄-alkyl or bis-(R₆O-CO)-C₁₋₄-alkyl group wherein R₆ and R₁₀ are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , while the abovementioned 5- to 7-membered rings in each case are additionally substituted at carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 and R_{10} are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an R₆O-CO-C₁₋₄-alkyl, bis-(R₆O-CO)-C₁₋₄-alkyl, (R₇O-PO-OR₈)-C₁₋₄-alkyl or (R₇O-PO-R₉)-C₁₋₄-alkyl group wherein R₆ to R₉ are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an R_6O -CO- C_{1-4} -alkyl or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group, while the abovementioned 5-to 7-membered rings in each case are additionally substituted at carbon atoms by one or two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 is as hereinbefore defined,

a 2-oxo-morpholino group which may be substituted by 1 or 2 methyl groups,

a 2-oxo-morpholinyl group which is substituted in the 4 position by a C_{1-4} -alkyl or R_6 O-CO- C_{1-4} -alkyl group, while R_6 is as hereinbefore defined and the abovementioned 2-oxo-morpholinyl groups in each case are linked to a carbon atom of the group F,

a morpholino group which is substituted in the 2 position by a C₁₋₄-alkoxy group,

a morpholino group which is substituted in the 2 and 6 positions in each case by a $C_{1.4}$ -alkoxy group,

a C_{1-4} -alkyl-NR₅ group wherein the C_{1-4} -alkyl moiety, which is straight-chained, is terminally substituted by a di-(C_{1-4} -alkoxy)-methyl group, while R₅ is as hereinbefore defined,

a C_{1-4} -alkyl-NR₅ group wherein the C_{1-4} -alkyl moiety, which is straight-chained, is terminally substituted by a 1,3-dioxolan-2-yl or 1,3-dioxan-2-yl group, while R₅ is as hereinbefore defined,

a R_hNR₅ group wherein R₅ is as hereinbefore defined and R_h denotes a substituted 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl,

2-oxo-tetrahydropyran-4-yl or 2-oxo-tetrahydropyran-5-yl group optionally by one or two methyl groups, or

F and G together denote a hydrogen atom,

a C_{1-4} -alkoxy group optionally substituted from position 2 onwards by a hydroxy or C_{1-4} -alkoxy group,

a C₁₋₄-alkoxy group which is substituted by an R₆O-CO group, where R₆ is as hereinbefore defined, or

a C₄₋₇-cycloalkoxy or C₃₋₇-cycloalkyl-C₁₋₄-alkoxy group

with the proviso that at least one of the groups E, G or F together with G denotes an R₆O-CO, (R₇O-PO-OR₈) or (R₇O-PO-R₉) group or

D together with E denotes an R_gCO-O-(R_eCR_f)-O-CO or (R₇O-PO-OR₈) group or

E or G denotes an optionally substituted 2-oxo-morpholinyl group,

a morpholino group substituted in the 2 position or in the 2 and 6 positions in each case by a C_{1-4} -alkoxy group,

a di-(C₁₋₄-alkoxy)-methyl group or

an optionally substituted 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl, 2-oxo-tetrahydropyran-4-yl or 2-oxo-tetrahydropyran-5-yl group or

E contains an optionally substituted 2-oxo-thiomorpholino group or an optionally substituted 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiophen-4-yl, 2-oxo-tetrahydrothiopyran-3-yl, 2-oxo-tetrahydrothiopyran-4-yl or 2-oxo-tetrahydrothiopyran-5-yl group,

while the aryl moieties mentioned in the definition of the abovementioned groups denote a phenyl group which may in each case be monosubstituted by R_{12} , mono- or disubstituted by R_{13} or monosubstituted by R_{12} and additionally mono- or disubstituted by R_{13} , wherein the substituents may be identical or different and

 R_{12} denotes a cyano, C_{1-2} -alkoxycarbonyl, aminocarbonyl, C_{1-2} -alkylaminocarbonyl, di- $(C_{1-2}$ -alkyl)-aminocarbonyl, C_{1-2} -alkylsulphenyl, C_{1-2} -alkylsulphinyl, C_{1-2} -alkylsulphonyl, hydroxy, nitro, amino, C_{1-2} -alkylamino or di- $(C_{1-2}$ -alkyl)-amino group and

 R_{13} denotes a fluorine, chlorine, bromine or iodine atom, a C_{1-2} -alkyl, trifluoromethyl or C_{1-2} -alkoxy group or

two groups R_{13} , if they are bound to adjacent carbon atoms, together denote a C_{3-5} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

the or a tautomers, the stereoisomers and the or salts thereof.

3. (amended) Bicyclic heterocycles of general A compound of the formula I according to claim 1, wherein

R_a denotes a hydrogen atom,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , while

R₁ and R₂, which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom, or a methyl, trifluoromethyl, methoxy, ethynyl or cyano group,

R₃ denotes a hydrogen atom,

R_c and R_d in each case denote a hydrogen atom,

X denotes a methine group substituted by a cyano group, or a nitrogen atom,

A denotes an imino group,

B denotes a carbonyl group,

C denotes a 1,1- or 1,2-vinylene group,

an ethynylene group or

a 1,3-butadien-1,4-ylene group,

D denotes a C₁₋₄-alkylene group,

a -CO-NR₄-alkylene group wherein the alkylene moiety contains 2 to 4 carbon atoms, while the linking to the adjacent group C in each case must take place via the carbonyl group, wherein

R₄ denotes a hydrogen atom,

or, if D is bound to a carbon atom of the group E, it may also denote a bond

or, if D is bound to a nitrogen atom of the group E, it may also denote a carbonyl group,

E denotes an R_6O -CO-alkylene-NR₅, (R_7O -PO-OR₈)-alkylene-NR₅ or (R_7O -PO-R₉)-alkylene-NR₅ group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 4 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, while

R₅ denotes a hydrogen atom,

a C₁₋₄-alkyl group which may be substituted by an R₆O-CO group,

an ethyl group optionally substituted by one or two methyl or ethyl groups which is terminally substituted by a C_{1-4} -alkylcarbonylsulphenyl, arylcarbonylsulphenyl or arylmethylcarbonylsulphenyl group,

an ethyl group optionally substituted by one or two methyl or ethyl groups which is terminally substituted by a hydroxy, C_{1-4} -alkylcarbonyloxy, arylcarbonyloxy or arylmethylcarbonyloxy group,

a 2,2-dimethoxyethyl or 2,2-diethoxyethyl group,

a C₃₋₆-cycloalkyl or C₃₋₆-cycloalkyl-methyl group,

R₆, R₇ and R₈, which may be identical or different, in each case denote a hydrogen atom,

a C₁₋₈-alkyl group,

a cyclopentyl, cyclopentylmethyl, cyclohexyl or cyclohexylmethyl group,

an aryl, arylmethyl or R_g CO-O- $(R_e$ CR $_f)$ group, while

 R_e denotes a hydrogen atom or a C_{1-4} -alkyl group,

R_f denotes a hydrogen atom and

 R_g denotes a $C_{1\!-\!4}$ -alkyl, cyclopentyl, cyclohexyl, $C_{1\!-\!4}$ -alkoxy, cyclopentyloxy or cyclohexyloxy group,

and R₉ denotes a methyl or ethyl group,

a pyrrolidino or piperidino group which is substituted by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group wherein R_6 is as hereinbefore defined,

a pyrrolidino or piperidino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-2} -alkyl groups wherein R_6 is as hereinbefore defined,

a piperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at a cyclic carbon atom by an R_6 O-CO or R_6 O-CO-C₁₋₂-alkyl group, wherein R_6 is as hereinbefore defined and

R₁₀ denotes a hydrogen atom, a methyl or ethyl group,

a piperazino group which is substituted in the 4 position by an R₆O-CO-C₁₋₄-alkyl, bis-(R₆O-CO)-C₁₋₄-alkyl or (R₇O-PO-OR₈)-C₁₋₂-alkyl group wherein R₆ to R₈ are as hereinbefore defined,

a piperazino group which is substituted in the 4 position by an R_6O -CO- C_{1-2} -alkyl group and is additionally substituted at a cyclic carbon atom by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group wherein R_6 is as hereinbefore defined,

a morpholino group which is substituted by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, while R_6 is as hereinbefore defined,

a piperidinyl group substituted in the 1 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl or $(R_7O$ -PO- $OR_8)$ - C_{1-2} -alkyl group wherein R_6 to R_8 are as hereinbefore defined,

- a 2-oxo-morpholino group which may be substituted by 1 or 2 C_{1-2} -alkyl groups,
- a 2-oxo-thiomorpholino group which may be substituted by 1 or 2 C_{1-2} -alkyl groups,
- a morpholino group which is substituted in the 2 position by a methoxy or ethoxy group,
- a morpholino group which is substituted in the 2 and 6 positions in each case by a methoxy or ethoxy group,
- a 2,2-dimethoxyethyl-NR₅, 2,2-diethoxyethyl-NR₅, 1,3-dioxolan-2-yl-methyl-NR₅ or 1,3-dioxan-2-yl-methyl-NR₅ group wherein R₅ is as hereinbefore defined,
- a N-methyl-R₁₁N or N-ethyl-R₁₁N group wherein

R₁₁ denotes a 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl, 2-oxo-tetrahydropyran-4-yl, 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiophen-4-yl, 2-oxo-tetrahydrothiopyran-3-yl, 2-oxo-tetrahydrothiopyran-4-yl or 2-oxo-tetrahydrothiopyran-5-yl group optionally substituted by one or two methyl groups,

or D together with E denotes a hydrogen atom,

a methyl, trifluoromethyl, aryl, R_g CO-O- $(R_e$ CR $_f$)-O-CO or $(R_7$ O-PO-OR $_8$) group wherein R_e to R_g and R_7 and R_8 are as hereinbefore defined,

F denotes an -O-C₁₋₄-alkylene group, while the alkylene moiety is linked to the group G, or an oxygen atom, which may not be linked to a nitrogen atom of the group G, and

G denotes an R_6O -CO-alkylene-NR₅ group wherein the alkylene moiety, which is straight-chained and contains 1 to 4 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, while R_5 and R_6 are as hereinbefore defined,

a pyrrolidino or piperidino group which is substituted by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group wherein R_6 is as hereinbefore defined,

a pyrrolidino or piperidino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-2} -alkyl groups wherein R_6 is as hereinbefore defined,

a piperazino group which is substituted in the 4 position by the group R_{10} and additionally at a cyclic carbon atom by an R_6 O-CO, or R_6 O-CO- C_{1-2} -alkyl group, while R_6 and R_{10} are as hereinbefore defined,

a piperazino group which is substituted in the 4 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl or $(R_7O$ -PO- $OR_8)$ - C_{1-2} -alkyl group wherein R_6 to R_8 are as hereinbefore defined,

a piperazino group which is substituted in the 4 position by an R_6O -CO- C_{1-2} -alkyl group and additionally at a cyclic carbon atom by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group wherein R_6 is as hereinbefore defined,

a morpholino group which is substituted by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, while R_6 is as hereinbefore defined,

a piperidinyl group substituted in the 1 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl or $(R_7O$ -PO- $OR_8)$ - C_{1-2} -alkyl group wherein R_6 to R_8 are as hereinbefore defined,

a 2-oxo-morpholino group which may be substituted by 1 or 2 methyl groups,

a 2-oxo-morpholinyl group which is substituted in the 4 position by a methyl, ethyl or $R_6O-CO-C_{1-2}$ -alkyl group, while R_6 is as hereinbefore defined and the abovementioned 2-oxo-morpholinyl groups are each linked to a carbon atom of the group F,

a morpholino group which is substituted in the 2 position by a methoxy or ethoxy group,

a morpholino group which is substituted in the 2 and 6 positions in each case by a methoxy or ethoxy group,

a 2,2-dimethoxyethyl-NR $_5$, 2,2-diethoxyethyl-NR $_5$, 1,3-dioxolan-2-yl-methyl-NR $_5$ or 1,3-dioxan-2-yl-methyl-NR $_5$ - group or

F and G together denote a hydrogen atom,

a methoxy or ethoxy group,

a C₁₋₃-alkoxy group which is substituted by an R₆O-CO group, while R₆ is as hereinbefore defined,

a C_{4-6} -cycloalkoxy or C_{3-6} -cycloalkyl- C_{1-3} -alkoxy group

with the proviso that at least one of the groups E, G or F together with G denotes an R₆O-CO, (R₇O-PO-OR₈) or (R₇O-PO-R₉) group or

D together with E denotes an R_gCO-O-(R_eCR_f)-O-CO or (R₇O-PO-OR₈) group or

E or G denote an optionally substituted 2-oxo-morpholinyl group,

a morpholino group substituted in the 2 position or in the 2 and 6 positions in each case by a methoxy or ethoxy group,

a 2,2-dimethoxymethyl or 2,2-diethoxymethyl group or

an optionally substituted 1,3-dioxolan-2-yl or 1,3-dioxan-2-yl- group or

E contains an optionally substituted 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl, 2-oxo-tetrahydropyran-4-yl, 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiopyran-3-yl, 2-oxo-tetrahydrothiopyran-4-yl or 2-oxo-tetrahydrothiopyran-5-yl group,

while the aryl moieties mentioned in the definition of the abovementioned groups denote a phenyl group which may be mono- or disubstituted by R_{13} , while the substituents may be identical or different and

 R_{13} denotes a fluorine, chlorine, bromine or iodine atom, a C_{1-2} -alkyl, trifluoromethyl or C_{1-2} -alkoxy group or

two groups R_{13} , if they are bound to adjacent carbon atoms, together denote a C_{3-4} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

the or a tautomers, the stereoisomers and the or salts thereof.

4. (amended) Bieyelic heterocycles of general A compound of the formula I according to claim 1, wherein

R_a denotes a hydrogen atom,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , wherein

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom or a methyl group and

R₃ denotes a hydrogen atom,

R_c and R_d each denote a hydrogen atom,

X denotes a methine group substituted by a cyano group, or a nitrogen atom,

A denotes an imino group,

B denotes a carbonyl group,

C denotes a 1,2-vinylene or an ethynylene group,

D denotes a C₁₋₄-alkylene group,

a -CO-NR₄-alkylene group wherein the alkylene moiety contains 2 or 3 carbon atoms, while the linking to the adjacent group C must take place via the carbonyl group wherein

R₄ denotes a hydrogen atom,

or, if D is bound to a nitrogen atom of the group E, it may also denote a carbonyl group,

E denotes an R_6O -CO-alkylene- NR_5 or $(R_7O$ -PO- $OR_8)$ -alkylene- NR_5 group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 2 carbon atoms, may additionally be substituted by a methyl group or by an R_6O -CO or R_6O -CO-methyl group, while

R₅ denotes a hydrogen atom,

a C₁₋₂-alkyl group which may be substituted by an R₆O-CO group,

an ethyl group optionally substituted by one or two methyl groups, which is terminally substituted by a hydroxy, C_{1-2} -alkylcarbonylsulphenyl or C_{1-2} -alkylcarbonyloxy group,

a 2,2-dimethoxyethyl or 2,2-diethoxyethyl group,

R₆ denotes a hydrogen atom,

- a C₁₋₈-alkyl group,
- a cyclopentyl, cyclopentylmethyl, cyclohexyl or cyclohexylmethyl group,
- a phenyl group optionally substituted by one or two methyl groups, a phenylmethyl group which may be substituted in the phenyl moiety by one or two methyl groups, a 5-indanyl group or an R_gCO-O-(R_eCR_f) group, while

R_e denotes a hydrogen atom or a methyl group,

R_f denotes a hydrogen atom and

 R_g denotes a C_{1-4} -alkyl or C_{1-2} -alkoxy group,

R₇ and R₈, which may be identical or different, each denote a hydrogen atom, a methyl, ethyl or phenyl group,

a pyrrolidino or piperidino group which is substituted by an R_6O -CO or R_6O -CO methyl group, wherein R_6 is as hereinbefore defined,

a pyrrolidino or piperidino group which is substituted by two R_6 O-CO or R_6 O-CO-methyl groups wherein R_6 is as hereinbefore defined,

a piperazino group which is substituted in the 4 position by the group R_{10} and additionally at a cyclic carbon atom by an R_6 O-CO group, while R_6 is as hereinbefore defined and

R₁₀ denotes a hydrogen atom, a methyl or ethyl group,

a piperazino group which is substituted in the 4 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl or $(R_7O$ -PO- $OR_8)$ - C_{1-2} -alkyl group wherein R_6 to R_8 are as hereinbefore defined,

a piperazino group which is substituted in the 4 position by an R_6 O-CO-methyl group and additionally at a cyclic carbon atom by an R_6 O-CO group wherein R_6 is as hereinbefore defined.

a morpholino group which is substituted by an R₆O-CO- group, while R₆ is as hereinbefore defined,

a 2-oxo-morpholino group which may be substituted by 1 to 2 C₁₋₂-alkyl groups,

a 2-oxo-thiomorpholino group which may be substituted by 1 to 2 C₁₋₂-alkyl groups,

a morpholino group which is substituted in the 2 position by a methoxy or ethoxy group,

a morpholino group which is substituted in the 2 and 6 positions in each case by a methoxy or ethoxy group,

a 2,2-dimethoxyethyl-NR₅, 2,2-diethoxyethyl-NR₅ or 1,3-dioxolan-2-yl-methyl-NR₅-group wherein R_5 is as hereinbefore defined,

an N-methyl-R₁₁N or N-ethyl-R₁₁N group wherein

R₁₁ denotes a 2-oxo-tetrahydrofuran-3-yl or 2-oxo-tetrahydrofuran-4-yl group,

or D together with E denotes a hydrogen atom,

a methyl group or an R_gCO-O-(R_cCR_f)-O-CO group wherein R_e to R_g are as hereinbefore defined,

F denotes a -O-C₁₋₄-alkylene group, while the alkylene moiety is linked to the group G, or an oxygen atom, which may not be linked to a nitrogen atom of the group G, and

G denotes an R_6O -CO-alkylene-NR₅ group wherein the alkylene moiety, which is straight-chained and contains 1 or 2 carbon atoms, may additionally be substituted by a methyl group or by an R_6O -CO or R_6O -CO-methyl group, while R_5 and R_6 are as hereinbefore defined,

a pyrrolidino or piperidino group which is substituted by an R_6O -CO or R_6O -CO methyl group wherein R_6 is as hereinbefore defined,

a pyrrolidino or piperidino group which is substituted by two R_6O -CO or R_6O -CO-methyl groups wherein R_6 is as hereinbefore defined,

a piperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl or $(R_7O-PO-OR_8)-C_{1-2}$ -alkyl group wherein R_6 to R_8 are as hereinbefore defined,

a piperidinyl group substituted in the 1 position by an R_6O -CO- C_{1-2} -alkyl group wherein R_6 is as hereinbefore defined, or

F and G together denote a hydrogen atom,

a methoxy or ethoxy group,

a C₄₋₆-cycloalkoxy or C₃₋₆-cycloalkyl-C₁₋₃-alkoxy group,

with the proviso that at least one of the groups E or G denotes an R₆O-CO or (R₇O-PO-OR₈) group or

D together with E denotes an R_gCO-O-(R_eCR_f)-O-CO group or

E contains an optionally substituted 2-oxo-morpholinyl group,

a morpholino group substituted in the 2 position or in the 2 and 6 positions in each case-by a methoxy-or-ethoxy group,

a 2,2-dimethoxymethyl or 2,2-diethoxymethyl group or

a 1,3-dioxolan-2-yl, 2-oxo-tetrahydrofuran-3-yl or 2-oxo-tetrahydrofuran-4-yl group or

an optionally substituted 2-oxo-thiomorpholino group,

the or a tautomers, the stereoisomers and the or salts thereof.

5. (amended) Bicyclic heterocycles A compound of the of general formula

$$R_a$$
 R_b
 R_c
 $A - B - C - D - E$
 R_d
 R_d
 R_c
 $R_$

wherein

R_a denotes a hydrogen atom or a C₁₋₄-alkyl group.

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , whilst

 R_1 and R_2 , which may be identical or different, in each case denote a hydrogen, fluorine, chlorine, bromine or iodine atom,

a C_{1-4} -alkyl, hydroxy, C_{1-4} -alkoxy, C_{3-6} -cycloalkyl, C_{4-6} -cycloalkoxy, C_{2-5} -alkenyl or C_{2-5} -alkynyl group,

an aryl, aryloxy, arylmethyl or arylmethoxy group,

a C₃₋₅-alkenyloxy or C₃₋₅-alkynyloxy group, wherein the unsaturated moiety may not be linked to the oxygen atom,

a C_{1-4} -alkylsulphenyl, C_{1-4} -alkylsulphinyl, C_{1-4} -alkylsulphonyl, C_{1-4} -alkylsulphonyloxy, trifluoromethylsulphenyl, trifluoromethylsulphinyl or trifluoromethylsulphonyl group,

a methyl or methoxy group substituted by 1 to 3 fluorine atoms.

an ethyl or ethoxy group substituted by 1 to 5 fluorine atoms.

a cyano or nitro group or an amino group optionally substituted by one or two C_{1-4} -alkyl groups, wherein the substituents may be identical or different, or

R₁ together with R₂, if they are bound to adjacent carbon atoms, denote a - CH=CH-CH=CH, -CH=CH-NH or -CH=N-NH group and

R₃ denotes a hydrogen, fluorine, chlorine or bromine atom,

a C₁₋₄-alkyl, trifluoromethyl or C₁₋₄-alkoxy group,

 R_c and R_d , which may be identical or different, in each case denote a hydrogen, fluorine or chlorine atom, a methoxy group, or a methyl group optionally substituted by a methoxy, dimethylamino, diethylamino, pyrrolidino, piperidino or morpholino group,

X denotes a methine group substituted by a cyano group or a nitrogen atom,

A denotes an oxygen atom or an imino group optionally substituted by a C_{1-4} -alkyl group.

B denotes a carbonyl or sulphonyl group,

C denotes a 1,3-allenylene, 1,1 or 1,2-vinylene group which may be substituted in each case by one or two methyl groups or by a trifluoromethyl group,

an ethynylene group or

a 1,3-butadien-1,4-ylene group optionally substituted by 1 to 4 methyl groups or by a trifluoromethyl group,

R_a to R_d, A to C and X are defined as in claim 1,

D denotes an alkylene, -CO-alkylene or -SO₂-alkylene group wherein the alkylene moiety in each case contains 1 to 8 carbon atoms and additionally 1 to 4 hydrogen atoms in the alkylene moiety may be replaced by fluorine atoms, whilst the linking of the -CO-alkylene and -SO₂-alkylene group to the adjacent group C in each case must take place via the carbonyl or sulphonyl group,

a -CO-O-alkylene, -CO-NR₄-alkylene or -SO₂-NR₄-alkylene group wherein the alkylene moiety in each case contains 1 to 8 carbon atoms, whilst the linking to the adjacent group C in each case must take place via the carbonyl or sulphonyl group wherein

 R_4 denotes a hydrogen atom or a C_{1-4} -alkyl group,

or, if D is bound to a carbon atom of the group E, it may also denote a bond

or, if D is bound to a nitrogen atom of the group E, it may also denote a carbonyl or sulphonyl group,

E denotes an R_6O -CO-alkylene-NR₅, (R_7O -PO-OR₈)-alkylene-NR₅ or (R_7O -PO-R₉)-alkylene-NR₅-group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 6 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, wherein

R₅ denotes a hydrogen atom,

a C_{1-4} -alkyl group, which may be substituted by an R_6O -CO, $(R_7O$ -PO- $OR_8)$ or $(R_7O$ -PO- $R_9)$ group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups, which may be terminally substituted in each case by a C_{1-6} -alkylcarbonylsulphenyl, C_{3-7} -cycloalkylcarbonylsulphenyl, C_{3-7} -cycloalkylcarbonylsulphenyl, arylcarbonylsulphenyl or aryl- C_{1-3} -alkylcarbonylsulphenyl group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups which may be terminally substituted in each case by a C_{1-6} -alkylcarbonyloxy, C_{3-7} -cycloalkylcarbonyloxy, C_{3-7} -cycloalkyl- C_{1-3} -alkylcarbonyloxy, arylcarbonyloxy or aryl- C_{1-3} -alkylcarbonyloxy group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups, each of which may be terminally substituted by a hydroxy, C_{1-4} -alkoxy, amino, C_{1-4} -alkylamino or di- $(C_{1-4}$ -alkyl)-amino group or by a 4- to 7-membered alkyleneimino group, whilst in the abovementioned 6- to 7-membered alkyleneimino groups a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, by a sulphinyl, sulphonyl, imino or N- $(C_{1-4}$ -alkyl)-imino group,

a C₃₋₇-cycloalkyl or C₃₋₇-cycloalkyl-C₁₋₃-alkyl group,

R₆, R₇ and R₈, which may be identical or different, in each case denote a hydrogen atom,

a C_{1-8} -alkyl group, which may be substituted by a hydroxy, C_{1-4} -alkoxy, amino, C_{1-4} -alkylamino or di- $(C_{1-4}$ -alkyl)-amino group or by a 4- to 7-membered alkyleneimino group, whilst in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen or sulphur atom or by a sulphinyl, sulphonyl, imino or N- $(C_{1-4}$ -alkyl)-imino group,

a C₄₋₇-cycloalkyl group optionally substituted by 1 or 2 methyl groups,

a C_{3-5} -alkenyl or C_{3-5} -alkynyl group, wherein the unsaturated part may not be linked to the oxygen atom,

a C_{3-7} -cycloalkyl- C_{1-4} -alkyl, aryl, aryl- C_{1-4} -alkyl or R_gCO -O- (R_eCR_f) -group, whilst

 $R_{\rm e}$ and $R_{\rm f}$, which may be identical or different, in each case denote a hydrogen atom or a C_{1-4} -alkyl group and

 R_g denotes a C_{1-4} -alkyl, C_{3-7} -cycloalkyl, C_{1-4} -alkoxy or C_{5-7} -cycloalkoxy group,

and R₉ denotes a C₁₋₄-alkyl, aryl or aryl-C₁₋₄-alkyl group,

a 4- to 7-membered alkyleneimino group which may be substituted by an R_6O-CO , $(R_7O-PO-OR_8)$, $(R_7O-PO-R_9)$, $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a 4- to 7-membered alkyleneimino group which is substituted by two R_6OCO or R_6OCO - C_{1-4} -alkyl groups or by an R_6OCO -group and an R_6OCO - C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at a cyclic carbon atom by an R_6O-CO , $(R_7O-PO-OR_8)$, $(R_7O-PO-R_9)$, $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined and

 R_{10} denotes a hydrogen atom, a C_{1-4} -alkyl, formyl, C_{1-4} -alkylcarbonyl or C_{1-4} -alkylsulphonyl group,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and additionally at cyclic carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 and R_{10} are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in each case in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group and is additionally substituted at cyclic carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups or by an R_6O-CO -group and an $R_6O-CO-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a morpholino or homomorpholino group which is substituted in each case by an R_6O-CO , $(R_7O-PO-OR_8)$, $(R_7O-PO-R_9)$, $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a morpholino or homomorpholino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R₁₀, whilst the abovementioned 5- to 7-membered rings are additionally substituted in each case at a carbon atom by an R₆O-CO, (R₇O-PO-OR₈), (R₇O-PO-R₉), R₆O-CO-C₁₋₄-alkyl, bis-(R₆O-CO)-C₁₋₄-alkyl, (R₇O-PO-OR₈)-C₁₋₄-alkyl or (R₇O-PO-R₉)-C₁₋₄-alkyl group wherein R₆ to R₁₀ are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , while the abovementioned 5- to 7-membered rings are in each case additionally substituted at carbon atoms by two $R_6O\text{-}CO$ or $R_6O\text{-}CO\text{-}C_{1\text{-}4}$ -alkyl groups

or by an R₆O-CO-group and an R₆O-CO-C₁₋₄-alkyl group wherein R₆ and R₁₀ are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl, $(R_7O$ -PO- $OR_8)$ - C_{1-4} -alkyl or $(R_7O$ -PO- $R_9)$ - C_{1-4} -alkyl group, while the abovementioned 5- to 7-membered rings are in each case additionally substituted at carbon atoms by one or two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

- a 2-oxo-morpholino group which may be substituted by 1 to 4 C₁₋₂-alkyl groups,
- a 2-oxo-thiomorpholino group which may be substituted by 1 to 4 C₁₋₂-alkyl groups,
- a morpholino or thiomorpholino group which is substituted in the 2 position by a $C_{1.4}$ -alkoxy group,
- a morpholino or thiomorpholino group which is substituted in the 2 and 6 positions by a C_{1-4} -alkoxy group,
- a C_{1-4} -alkyl-NR₅-group wherein the C_{1-4} -alkyl moiety, which is straight-chained and may additionally be substituted by one or two methyl groups, is in each case terminally substituted by a di-(C_{1-4} -alkoxy)-methyl or tri-(C_{1-4} -alkoxy)-methyl group, whilst R_5 is as hereinbefore defined,
- a C_{1-4} -alkyl-NR₅-group wherein the C_{1-4} -alkyl moiety, which is straight-chained and may additionally be substituted by one or two methyl groups, is in each case terminally substituted by a 1,3-dioxolan-2-yl or 1,3-dioxan-2-yl group optionally substituted by one or two methyl groups, while R_5 is as hereinbefore defined,

an R₁₁NR₅-group wherein R₅ is as hereinbefore defined and

R₁₁ denotes a 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl, 2-oxo-tetrahydropyran-4-yl, 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiophen-4-yl, 2-oxo-tetrahydrothiopyran-3-yl, 2-oxo-tetrahydrothiopyran-4-yl or 2-oxo-tetrahydrothiopyran-5-yl group optionally substituted by one or two methyl groups,

or D together with E denotes an $R_gCO-O-(R_eCR_f)-O-CO$, $(R_7O-PO-OR_8)$ or $(R_7O-PO-R_9)$ -group wherein R_e to R_g and R_7 to R_9 are as hereinbefore defined,

F and G together denote a hydrogen atom,

a C_{1-6} -alkoxy group optionally substituted from position 2 onwards by a hydroxy or C_{1-4} -alkoxy group,

a C₃₋₇-cycloalkoxy or C₃₋₇-cycloalkyl-C₁₋₄-alkoxy group,

whilst by the aryl moieties mentioned in the definitions of the abovementioned groups is meant a phenyl group which in each case may be monosubstituted by R_{12} , mono-, di- or trisubstituted by R_{13} or monosubstituted by R_{12} and additionally mono- or disubstituted by R_{13} , whilst the substituents may be identical or different and

 R_{12} denotes a cyano, carboxy, $C_{1.4}$ -alkoxycarbonyl, aminocarbonyl, $C_{1.4}$ -alkylaminocarbonyl, di- $(C_{1.4}$ -alkyl)-aminocarbonyl, $C_{1.4}$ -alkylsulphenyl, $C_{1.4}$ -alkylsulphinyl, $C_{1.4}$ -alkylsulphonyl, hydroxy, $C_{1.4}$ -alkylsulphonyloxy, trifluoromethyloxy, nitro, amino, $C_{1.4}$ -alkylamino, di- $(C_{1.4}$ -alkyl)-amino, $C_{1.4}$ -alkylcarbonylamino, $C_{1.4}$ -alkylsulphonylamino, $C_{1.4}$ -alkylsulphonylamino, $C_{1.4}$ -alkylsulphonylamino, aminosulphonyl, $C_{1.4}$ -alkylaminosulphonyl or di- $(C_{1.4}$ -alkyl)-aminosulphonyl group or a carbonyl group, which is substituted by a 5- to 7-membered alkyleneimino group, wherein in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, by a sulphinyl, sulphonyl, imino or N- $(C_{1.4}$ -alkyl)-imino-group, and

 R_{13} denotes a fluorine, chlorine, bromine or iodine atom, a C_{1-4} -alkyl, trifluoromethyl or C_{1-4} -alkoxy group or

two groups R_{13} , if they are bound to adjacent carbon atoms, together denote a C_{3-5} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

the-or a tautomers, the stereoisomers and or the salts thereof.

6. (amended) Bieyelie heterocycles of general A compound of the formula I according to claim 5, wherein R_0 to R_d , A to C and X are defined as in claim 2,

Ra denotes a hydrogen atom,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , while

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine, bromine or iodine atom,

a methyl, ethyl, hydroxy, methoxy, ethoxy, amino, cyano, vinyl or ethynyl group,

an aryl, aryloxy, arylmethyl or arylmethoxy group,

a methyl or methoxy group substituted by 1 to 3 fluorine atoms or

R₁ together with R₂, if they are bound to adjacent carbon atoms, denote a -CH=CH-CH=CH, -CH=CH-NH or -CH=N-NH group and

R₃ denotes a hydrogen, fluorine, chlorine or bromine atom,

 R_c and R_d in each case denote a hydrogen atom, \checkmark

X denotes a methine group substituted by a cyano group or a nitrogen atom,

A denotes an imino group optionally substituted by a methyl or ethyl group.

B denotes a carbonyl group,

C denotes a 1,1- or 1,2-vinylene group which is substituted in each case by one or two methyl groups or may be substituted by a trifluoromethyl group,

an ethynylene group or /

a 1,3-butadien-1,4-ylene group optionally substituted by a methyl or trifluoromethyl group,

D denotes an alkylene or -CO-alkylene group wherein the alkylene moiety in each case contains 1 to 4 carbon atoms, while the linking of the -CO-alkylene group to the adjacent group C in each case must take place via the carbonyl group,

a -CO-O-alkylene or -CO-NR₄-alkylene- group wherein the alkylene moiety in each case contains 1 to 4 carbon atoms, while the linking to the adjacent group C in each case must take place via the carbonyl group wherein

R₄ denotes a hydrogen atom or a methyl or ethyl group,

or, if D is bound to a carbon atom of the group E, it may also denote a bond

or, if D is bound to a nitrogen atom of the group E, it may also denote a carbonyl or sulphonyl group,

E denotes an R_6O -CO-alkylene-NR₅, (R_7O -PO-OR₈)-alkylene-NR₅ or (R_7O -PO-R₉)-alkylene-NR₅ group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 4 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO-C₁₋₂-alkyl group, while

R₅ denotes a hydrogen atom,

a C₁₋₄-alkyl group which may be substituted by an R₆O-CO group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups which is terminally substituted in each case by a hydroxy, C_{1-4} -alkoxy, di- $(C_{1-4}$ -alkyl)amino, C_{1-6} -alkylcarbonylsulphenyl, C_{3-6} -cycloalkyl- C_{1-3} -alkylcarbonylsulphenyl, arylcarbonylsulphenyl or aryl- C_{1-3} -alkylcarbonylsulphenyl group,

an ethyl or propyl group optionally substituted by one or two methyl or ethyl groups which is terminally substituted in each case by a C_{1-6} -alkylcarbonyloxy, C_{3-6} -cycloalkyl- C_{1-3} -alkylcarbonyloxy, arylcarbonyloxy or aryl- C_{1-3} -alkylcarbonyloxy group,

a C₃₋₆-cycloalkyl or C₃₋₆-cycloalkyl-C₁₋₃-alkyl group,

R₆, R₇ and R₈, which may be identical or different, in each case denote a hydrogen atom,

a C_{1-8} -alkyl group which may be substituted by a hydroxy, C_{1-4} -alkoxy, or di- $(C_{1-4}$ -alkyl)-amino group or by a 4- to 7-membered alkyleneimino group, while in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen atom or by an N- $(C_{1-2}$ -alkyl)-imino group,

a C₄₋₆-cycloalkyl group,

a C_{3-5} -alkenyl or C_{3-5} -alkynyl group, while the unsaturated moiety may not be linked to the oxygen atom,

a C_{3-6} -cycloalkyl- C_{1-4} -alkyl, aryl, aryl- C_{1-4} -alkyl or R_gCO -O- (R_eCR_f) group, while

 R_e and R_f , which may be identical or different, in each case denote a hydrogen atom or a C_{1-4} -alkyl group and

 R_g denotes a C_{1-4} -alkyl, C_{3-6} -cycloalkyl, C_{1-4} -alkoxy or C_{5-6} -cycloalkoxy group,

and R_9 denotes a C_{1-4} -alkyl group,

a 4- to 7-membered alkyleneimino group which is substituted by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined,

a 4- to 7-membered alkyleneimino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 is as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and additionally at a cyclic carbon atom by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined and

R₁₀ denotes a hydrogen atom, a methyl or ethyl group,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at cyclic carbon atoms by two R_6 O-CO or R_6 O-CO- C_{1-4} -alkyl groups wherein R_6 and R_{10} are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in each case in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a piperazino or homopiperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl or bis- $(R_6O-CO)-C_{1-4}$ -alkyl group and is additionally substituted at cyclic carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups wherein R_6 is as hereinbefore defined,

a morpholino or homomorpholino group which is substituted in each case by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl, or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group wherein R_6 is as hereinbefore defined,

a morpholino or homomorpholino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 is as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , while the abovementioned 5- to 7-membered rings in each case are additionally substituted at a carbon atom by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl or bis-(R_6O -CO)- C_{1-4} -alkyl group wherein R_6 and R_{10} are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , while the abovementioned 5- to 7-membered rings in each case are additionally substituted at carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 and R_{10} are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are as hereinbefore defined,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl or bis- $(R_6O-CO)-C_{1-4}$ -alkyl group, while the abovementioned 5-to 7-membered rings in each case are additionally substituted at carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups wherein R_6 is as hereinbefore defined,

- a 2-oxo-morpholino group which may be substituted by 1 to 4 C₁₋₂-alkyl groups,
- a 2-oxo-thiomorpholino group which may be substituted by 1 to 4 C₁₋₂-alkyl groups,
- a morpholino group which is substituted in the 2 position by a C₁₋₄-alkoxy group,
- a morpholino group which is substituted in the 2 and 6 positions in each case by a $C_{1.4}$ -alkoxy group,
- a C_{1-4} -alkyl-NR₅ group wherein the C_{1-4} -alkyl moiety, which is straight-chained, is terminally substituted by a di-(C_{1-4} -alkoxy)-methyl group, while R₅ is as hereinbefore defined,
- a C_{1-4} -alkyl-NR₅ group wherein the C_{1-4} -alkyl moiety, which is straight-chained, is terminally substituted by a 1,3-dioxolan-2-yl or 1,3-dioxan-2-yl group, while R₅ is as hereinbefore defined,
- a R₁₁NR₅ group wherein R₅ is as hereinbefore defined and

R₁₁ denotes a 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl, 2-oxo-tetrahydropyran-4-yl, 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiophen-4-yl, 2-oxo-tetrahydrothiopyran-3-yl, 2-oxo-tetrahydrothiopyran-4-yl or 2-oxo-tetrahydrothiopyran-5-yl group optionally substituted by one or two methyl groups,

or D together with E denotes an R_g CO-O-(R_e CR $_f$)-O-CO or (R_7 O-PO-OR $_8$) group wherein R_e to R_g and R_7 to R_9 are as hereinbefore defined,

F and G together denote a hydrogen atom,

- a C_{1-6} -alkoxy group optionally substituted from position 2 by a hydroxy or C_{1-4} -alkoxy group,
- a C₄₋₇-cycloalkoxy or C₃₋₇-cycloalkyl-C₁₋₄-alkoxy group,

whilst by the aryl moieties mentioned in the definitions of the abovementioned groups is meant a phenyl group which in each case may be monosubstituted by R_{12} , mono- or disubstituted by R_{13} or monosubstituted by R_{12} and additionally mono- or disubstituted by R_{13} , whilst the substituents may be identical or different and

 R_{12} denotes a cyano, C_{1-2} -alkoxycarbonyl, aminocarbonyl, C_{1-2} -alkylaminocarbonyl, di- $(C_{1-2}$ -alkylaminocarbonyl, C_{1-2} -alkylsulphenyl, C_{1-2} -alkylsulphinyl, C_{1-2} -alkylsulphonyl, hydroxy, nitro, amino, C_{1-2} -alkylamino or di- $(C_{1-2}$ -alkyl)-amino, and

 R_{13} denotes a fluorine, chlorine, bromine or iodine atom, a C_{1-2} -alkyl, trifluoromethyl or C_{1-2} -alkoxy group or

two groups R_{13} , if they are bound to adjacent carbon atoms, together denote a C_{3-5} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

the or a tautomers, the stereoisomers and the or salts thereof.

7. (amended) Bieyelic heterocycles of general A compound of the formula I according to claim 5, wherein

R_n to R_d, A to C and X are defined as in claim 3,

Ra denotes a hydrogen atom.

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , while

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom, or a methyl, trifluoromethyl, methoxy, ethynyl or cyano group,

R₃ denotes a hydrogen atom,

R_c and R_d in each case denote a hydrogen atom,

X denotes a methine group substituted by a cyano group, or a nitrogen atom,

A denotes an imino group,

B denotes a carbonyl group,

C denotes a 1,1- or 1,2-vinylene group,

an ethynylene group or

a 1,3-butadien-1,4-ylene group, /

D denotes a C₁₋₄-alkylene group, i

a -CO-NR₄-alkylene group wherein the alkylene moiety contains 2 to 4 carbon atoms, while the linking to the adjacent group C in each case must take place via the carbonyl group, wherein

R₄ denotes a hydrogen atom,

or, if D is bound to a carbon atom of the group E, it may also denote a bond

or, if D is bound to a nitrogen atom of the group E, it may also denote a carbonyl group,

E denotes an R_6O -CO-alkylene-NR₅, (R_7O -PO-OR₈)-alkylene-NR₅ or (R_7O -PO-R₉)-alkylene-NR₅ group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 4 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, while

R₅ denotes a hydrogen atom,

a C₁₋₄-alkyl group which may be substituted by an R₆O-CO group,

an ethyl group optionally substituted by one or two methyl or ethyl groups which is terminally substituted by a C_{1-4} -alkylcarbonylsulphenyl, arylcarbonylsulphenyl or arylmethylcarbonylsulphenyl group,

an ethyl group optionally substituted by one or two methyl or ethyl groups which is terminally substituted by a hydroxy, C_{1-4} -alkylcarbonyloxy, arylcarbonyloxy or arylmethylcarbonyloxy group,

- a 2,2-dimethoxyethyl or 2,2-diethoxyethyl group,
- a C_{3-6} -cycloalkyl or C_{3-6} -cycloalkyl-methyl group,

R₆, R₇ and R₈, which may be identical or different, in each case denote a hydrogen atom,

- a C₁₋₈-alkyl group,
- a cyclopentyl, cyclopentylmethyl, cyclohexyl or cyclohexylmethyl group,

an aryl, arylmethyl or R_gCO -O- (R_eCR_f) group, wherein

Re denotes a hydrogen atom or a C₁₋₄-alkyl group,

R_f denotes a hydrogen atom and

 R_g denotes a C_{1-4} -alkyl, cyclopentyl, cyclohexyl, C_{1-4} -alkoxy, cyclopentyloxy or cyclohexyloxy group,

and R₉ denotes a methyl or ethyl group,

a pyrrolidino or piperidino group which is substituted by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group wherein R_6 is as hereinbefore defined,

a pyrrolidino or piperidino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-2} -alkyl groups wherein R_6 is as hereinbefore defined,

a piperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at a cyclic carbon atom by an R_6 O-CO or R_6 O-CO- C_{1-2} -alkyl group, while R_6 is as hereinbefore defined and

R₁₀ denotes a hydrogen atom, a methyl or ethyl group,

a piperazino group which is substituted in the 4 position by an R_6O -CO- C_{1-4} -alkyl or $(R_7O$ -PO- $OR_8)$ - C_{1-2} -alkyl group wherein R_6 to R_8 are as hereinbefore defined,

a piperazino group which is substituted in the 4 position by an R_6O -CO- C_{1-2} -alkyl group and is additionally substituted at a cyclic carbon atom by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group wherein R_6 is as hereinbefore defined,

a morpholino group which is substituted by an R₆O-CO or R₆O-CO-C₁₋₂-alkyl group, while R₆ is as hereinbefore defined,

- a piperidinyl group substituted in the 1 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl or $(R_7O$ -PO- $OR_8)$ - C_{1-2} -alkyl group wherein R_6 to R_8 are as hereinbefore defined,
- a 2-oxo-morpholino group which may be substituted by 1 to 2 C₁₋₂-alkyl groups,
- a 2-oxo-thiomorpholino group which may be substituted by 1 to 2 C₁₋₂-alkyl groups,
- a morpholino group which is substituted in the 2 position by a methoxy or ethoxy group,
- a morpholino group which is substituted in the 2 and 6 positions in each case by a methoxy or ethoxy group,
- a 2,2-dimethoxyethyl-NR₅, 2,2-diethoxyethyl-NR₅, 1,3-dioxolan-2-yl-methyl-NR₅ or 1,3-dioxan-2-yl-methyl-NR₅ group wherein R_5 is as hereinbefore defined,
- a N-methyl-R₁₁N or N-ethyl-R₁₁N group wherein

R₁₁ denotes a 2-oxo-tetrahydrofuran-3-yl, 2-oxo-tetrahydrofuran-4-yl, 2-oxo-tetrahydropyran-3-yl, 2-oxo-tetrahydropyran-4-yl, 2-oxo-tetrahydrothiophen-3-yl, 2-oxo-tetrahydrothiophen-4-yl, 2-oxo-tetrahydrothiopyran-3-yl, 2-oxo-tetrahydrothiopyran-4-yl or 2-oxo-tetrahydrothiopyran-5-yl group optionally substituted by one or two methyl groups,

or D together with E denotes an R_g CO-O- $(R_e$ CR $_f$)-O-CO or $(R_7$ O-PO-OR $_8$) group wherein R_e to R_g and R_7 and R_8 are as hereinbefore defined,

F and G together denote a hydrogen atom, a methoxy, ethoxy, C_{4-6} -cycloalkoxy or C_{3-6} -cycloalkyl- C_{1-3} -alkoxy group,

while the aryl moieties mentioned in the definition of the abovementioned groups denote a phenyl group which may be mono- or disubstituted by R_{13} , while the substituents may be identical or different and

 R_{13} denotes a fluorine, chlorine, bromine or iodine atom, a C_{1-2} -alkyl, trifluoromethyl or C_{1-2} -alkoxy group or

two groups R_{13} , if they are bound to adjacent carbon atoms, together denote a C_{3-4} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

the or a tautomers, the stereoisomers and the or salts thereof.

8. (amended) Bicyclic heterocycles of general A compound of the formula I according to claim 5, wherein

R_e to R_d, A to C and X are defined as in claim 4,

R_a denotes a hydrogen atom,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , wherein

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom or a methyl group and

R₃ denotes a hydrogen atom./

R_c and R_d each denote a hydrogen atom,

X denotes a methine group substituted by a cyano group, or a nitrogen atom

A denotes an imino group,

B denotes a carbonyl group,

C denotes a 1,2-vinylene or an ethynylene group,

D denotes a C₁₋₄-alkylene group,

a -CO-NR₄-alkylene group wherein the alkylene moiety contains 2 or 3 carbon atoms, while the linking to the adjacent group C must take place via the carbonyl group wherein

R₄ denotes a hydrogen atom,

or, if D is bound to a nitrogen atom of the group E, it may also denote a carbonyl group,

E denotes an R_6O -CO-alkylene- NR_5 or $(R_7O$ -PO-OR₈)-alkylene- NR_5 group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 2 carbon atoms, may additionally be substituted by a methyl group or by an R_6O -CO or R_6O -CO-methyl group, while

R₅ denotes a hydrogen atom,

a C₁₋₂-alkyl group which may be substituted by an R₆O-CO group,

an ethyl group optionally substituted by one or two methyl groups, which is terminally substituted by a hydroxy, C_{1-2} -alkylcarbonylsulphenyl or C_{1-2} -alkylcarbonyloxy group,

a 2,2-dimethoxyethyl or 2,2-diethoxyethyl group,

R₆ denotes a hydrogen atom,

a C₁₋₈-alkyl group,

a cyclopentyl, cyclopentylmethyl, cyclohexyl or cyclohexylmethyl group,

a phenyl group optionally substituted by one or two methyl groups, a phenylmethyl group which may be substituted in the phenyl moiety by one or two methyl groups, a 5-indanyl group or an R_gCO-O-(R_eCR_f) group, while

R_e denotes a hydrogen atom or a methyl group,

R_f denotes a hydrogen atom and

 R_g denotes a C_{1-4} -alkyl or C_{1-2} -alkoxy group,

R₇ and R₈, which may be identical or different, in each case denote a hydrogen atom, a methyl, ethyl or phenyl group,

a pyrrolidino or piperidino group which is substituted by an R₆O-CO or R₆O-CO methyl group, wherein R₆ is as hereinbefore defined,

a pyrrolidino or piperidino group which is substituted by two R_6 O-CO or R_6 O-CO-methyl groups wherein R_6 is as hereinbefore defined,

a piperazino group which is substituted in the 4 position by the group R_{10} and additionally at a cyclic carbon atom by an R_6 O-CO group, while R_6 is as hereinbefore defined and

 R_{10} denotes a hydrogen atom, a methyl or ethyl group,

a piperazino group which is substituted in the 4 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl or $(R_7O$ -PO- $OR_8)$ - C_{1-2} -alkyl group wherein R_6 to R_8 are as hereinbefore defined,

a piperazino group which is substituted in the 4 position by an R_6O -CO-methyl group and additionally at a cyclic carbon atom by an R_6O -CO group wherein R_6 is as hereinbefore defined,

a morpholino group which is substituted by an R₆O-CO- group, wherein R₆ is as hereinbefore defined,

- a 2-oxo-morpholino group which may be substituted by 1 to 2 C₁₋₂-alkyl groups,
- a 2-oxo-thiomorpholino group which may be substituted by 1 to 2 C_{1-2} -alkyl groups,
- a morpholino group which is substituted in the 2 position by a methoxy or ethoxy group,
- a morpholino group which is substituted in the 2 and 6 positions in each case by a methoxy or ethoxy group,
- a 2,2-dimethoxyethyl-NR $_5$, 2,2-diethoxyethyl-NR $_5$ or 1,3-dioxolan-2-yl-methyl-NR $_5$ -group wherein R $_5$ is as hereinbefore defined,

an N-methyl-R₁₁N or N-ethyl-R₁₁N group wherein

R₁₁ denotes a 2-oxo-tetrahydrofuran-3-yl or 2-oxo-tetrahydrofuran-4-yl group,

or D together with E denotes an R_gCO-O-(R_eCR_f)-O-CO group wherein R_e to R_g are as hereinbefore defined,

F and G together denote a hydrogen atom,

a methoxy, ethoxy, C₄₋₆-cycloalkoxy or C₃₋₆-cycloalkyl-C₁₋₃-alkoxy group,

the or a tautomers, the stereoisomers and the or salts thereof.

9. (amended) Bicyclic heterocycles of general A compound of the formula I according to at least one of claims 5 to claim 8, characterised in that wherein R_b denotes one of the optionally substituted 1 phenyl ethyl groups mentioned in the respective claim 5, 6, 7 or 8 a 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , wherein

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom or a methyl group and

R₃ denotes a hydrogen atom,

the or a tautomers, the stereoisomers and the or salts thereof.

10. (amended) Bieyelie heterocycles of general A compound of the formula I according to at least one of claims 5 toclaim 8, characterised in that wherein F and G together denote one of the cycloalkoxy or cycloalkyl-alkoxy groups mentioned in the respective claim 5, 6, 7 or 8 a C₄₋₆-cycloalkoxy or C₃₋₆-cycloalkyl-C₁₋₃-alkoxy group,

the or a tautomers, the stereoisomers and the or salts thereof.

- 11. (amended) Bicyclic heterocycles of general A compound of the formula I according to at least one of claims 5 to claim 8, characterised in that wherein E denotes one of the optionally substituted 2-oxo-morpholino groups mentioned in the respective claim 5, 6, 7 or 8 a 2-oxo-morpholino group which may be substituted by 1 to 2 C_{1-2} -alkyl groups, or a 2-oxo-thiomorpholino group which may be substituted by 1 to $2 C_{1-2}$ -alkyl groups.
- 12. (amended) Bieyelic heterocycles of general A compound of the formula

$$R_a$$
 R_b
 R_c
 $A - B - C - D - E$
 R_d
 R_d
 R_c
 $R_$

wherein

R_e to R_d, A to C and X are defined as in claim 1,

R_a denotes a hydrogen atom or a C₁₋₄-alkyl group,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , whilst

 R_1 and R_2 , which may be identical or different, in each case denote a hydrogen, fluorine, chlorine, bromine or iodine atom,

a C_{1-4} -alkyl, hydroxy, C_{1-4} -alkoxy, C_{3-6} -cycloalkyl, C_{4-6} -cycloalkoxy, C_{2-5} -alkenyl or C_{2-5} -alkynyl group,

an aryl, aryloxy, arylmethyl or arylmethoxy group,

a C_{3-5} -alkenyloxy or C_{3-5} -alkynyloxy group, wherein the unsaturated moiety may not be linked to the oxygen atom,

a C_{1-4} -alkylsulphenyl, C_{1-4} -alkylsulphinyl, C_{1-4} -alkylsulphonyl, C_{1-4} -alkylsulphonyloxy, trifluoromethylsulphenyl, trifluoromethylsulphinyl or trifluoromethylsulphonyl group,

a methyl or methoxy group substituted by 1 to 3 fluorine atoms.

an ethyl or ethoxy group substituted by 1 to 5 fluorine atoms,

a cyano or nitro group or an amino group optionally substituted by one or two C_{1-4} -alkyl groups, wherein the substituents may be identical or different, or

 R_1 together with R_2 , if they are bound to adjacent carbon atoms, denote a - CH=CH-CH=CH, -CH=CH-NH or -CH=N-NH group and /

R₃ denotes a hydrogen, fluorine, chlorine or bromine atom,

a C₁₋₄-alkyl, trifluoromethyl or C₁₋₄-alkoxy group,

 R_c and R_d , which may be identical or different, in each case denote a hydrogen, fluorine or chlorine atom, a methoxy group, or a methyl group optionally substituted by a methoxy, dimethylamino, diethylamino, pyrrolidino, piperidino or morpholino group,

X denotes a methine group substituted by a cyano group or a nitrogen atom.

A denotes an oxygen atom or an imino group optionally substituted by a C_{1-4} -alkyl group,

B denotes a carbonyl or sulphonyl group,

C denotes a 1,3-allenylene, 1,1 or 1,2-vinylene group which may be substituted in each case by one or two methyl groups or by a trifluoromethyl group,

an ethynylene group or

a 1,3-butadien-1,4-ylene group optionally substituted by 1 to 4 methyl groups or by a trifluoromethyl group,

D together with E denotes a hydrogen atom,

a C₁₋₄-alkyl group optionally substituted by 1 to 5 fluorine atoms,

a C₃₋₆-cycloalkyl group,

an aryl, heteroaryl, C₁₋₄-alkylcarbonyl, arylcarbonyl or C₁₋₄-alkoxycarbonyl group,

an aminocarbonyl, C₁₋₄-alkylaminocarbonyl or di-(C₁₋₄-alkyl)-aminocarbonyl group or

a carbonyl group, which is substituted by a 4- to 7-membered alkyleneimino group, whilst in the abovementioned 6- to 7-membered alkyleneimino groups, a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, by an imino group substituted by the group R_{10} , by a sulphinyl or sulphonyl group, wherein R_{10} is defined as in claim 1,

F denotes a C_{1-6} -alkylene group, a -O- C_{1-6} -alkylene group, wherein the alkylene moiety is linked to the group G, or an oxygen atom, whilst the latter may not be linked to a nitrogen atom of the group G, and

G denotes an R_6O -CO-alkylene-N R_5 , (R_7O -PO-O R_8)-alkylene-N R_5 or (R_7O -PO- R_9)-alkylene-N R_5 -group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 6 carbon atoms, may additionally be substituted by one or

two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, wherein R_5 to R_9 are defined as in claim 1,

a 4- to 7-membered alkyleneimino group which is substituted by an R_6O -CO, (R_7O -PO- OR_8), (R_7O -PO- R_9), R_6O -CO- C_{1-4} -alkyl, bis-(R_6O -CO)- C_{1-4} -alkyl, (R_7O -PO- OR_8)- C_{1-4} -alkyl or (R_7O -PO- R_9)- C_{1-4} -alkyl group wherein R_6 to R_9 are defined as in claim 1,

a 4- to 7-membered alkyleneimino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 is defined as in claim 1,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at a cyclic carbon atom by an R_6O -CO, (R_7O -PO-OR₈), (R_7O -PO-R₉), R_6O -CO-C₁₋₄-alkyl, bis-(R_6O -CO)-C₁₋₄-alkyl, (R_7O -PO-OR₈)-C₁₋₄-alkyl or (R_7O -PO-R₉)-C₁₋₄-alkyl group wherein R_6 to R_{10} are defined as in claim 1,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at cyclic carbon atoms by two R_6 O-CO or R_6 O-CO- C_{1-4} -alkyl groups or by an R_6 O-CO group and an R_6 O-CO- C_{1-4} -alkyl group wherein R_6 and R_{10} are defined as in claim 1,

a piperazino or homopiperazino group which is substituted in each case in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are defined as in claim 1,

a piperazino or homopiperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group and is additionally substituted at cyclic carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups or by an R_6O-CO -group and an $R_6O-CO-C_{1-4}$ -alkyl group wherein R_6 to R_9 are defined as in claim 1,

a morpholino or homomorpholino group which is substituted in each case by an R_6O-CO , $(R_7O-PO-OR_8)$, $(R_7O-PO-R_9)$, $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are defined as in claim 1,

a morpholino or homomorpholino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 is defined as in claim 1,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , whilst the abovementioned 5- to 7-membered rings are in each case additionally substituted at a carbon atom by an R_6 O-CO, $(R_7$ O-PO-OR₈), $(R_7$ O-PO-

 R_9), R_6 O-CO- C_{1-4} -alkyl, bis- $(R_6$ O-CO)- C_{1-4} -alkyl, $(R_7$ O-PO-OR₈)- C_{1-4} -alkyl or $(R_7$ O-PO-R₉)- C_{1-4} -alkyl group wherein R_6 to R_{10} are defined as in claim 1,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , while the abovementioned 5- to 7-membered rings are in each case additionally substituted at carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 and R_{10} are defined as in claim 1,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are defined as in claim 1,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl, $(R_7O$ -PO- $OR_8)$ - C_{1-4} -alkyl or $(R_7O$ -PO- $R_9)$ - C_{1-4} -alkyl group, while the abovementioned 5- to 7-membered rings are in each case additionally substituted at carbon atoms by one or two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups or by an R_6O -CO-group and an R_6O -CO- C_{1-4} -alkyl group wherein R_6 to R_9 are defined as in claim 1,

a 2-oxo-morpholino group which may be substituted by 1 or 2 methyl groups,

a 2-oxo-morpholinyl group which is substituted in the 4 position by a hydrogen atom, by a C_{1-4} -alkyl, $R_6O-CO-C_{1-4}$ -alkyl, $R_7O-PO-OR_8$ - C_{1-4} -alkyl or $R_7O-PO-R_9$ - C_{1-4} -alkyl group, while R_6 to R_9 are defined as in claim 1 and the abovementioned 2-oxo-morpholinyl groups are in each case linked to a carbon atom of the group R_7 -

a morpholino or thiomorpholino group which is substituted in the 2 position by a C_{1-4} -alkoxy group,

a morpholino or thiomorpholino group which is substituted in the 2 and 6 position by a C_{1-4} -alkoxy group,

a C_{1-4} -alkyl-NR₅-group wherein the C_{1-4} -alkyl moiety, which is straight-chained and may additionally be substituted by one or two methyl groups, is in each case terminally substituted by a di-(C_{1-4} -alkoxy)-methyl or tri-(C_{1-4} -alkoxy)-methyl group, whilst R_5 is defined as in claim 1,

a C_{1-4} -alkyl-NR₅-group wherein the C_{1-4} -alkyl moiety, which is straight-chained and may additionally be substituted by one or two methyl groups, is terminally substituted in each case by a 1,3-dioxolan-2-yl or 1,3-dioxan-2-yl-group optionally substituted by one or two methyl groups, while R_5 is defined as in claim 1,

an R_hNR₅-group wherein R₅ is as hereinbefore defined and R_h denotes a 2-oxotetrahydrofuran-3-yl, 2-oxotetrahydrofuran-4-yl, 2-oxotetrahydropyran-3-yl, 2-oxotetrahydropyran-3-y

tetrahydropyran-4-yl or 2-oxo-tetrahydropyran-5-yl group optionally substituted by one or two methyl groups,

whilst by the aryl moieties mentioned in the definitions of the abovementioned groups is meant a phenyl group which in each case may be monosubstituted by R_{12} , mono-, di- or trisubstituted by R_{13} or monosubstituted by R_{12} and additionally mono- or disubstituted by R_{13} , whilst the substituents may be identical or different and

 R_{12} denotes a cyano, carboxy, C_{1-4} -alkoxycarbonyl, aminocarbonyl, C_{1-4} -alkylaminocarbonyl, di- $(C_{1-4}$ -alkyl)-aminocarbonyl, C_{1-4} -alkylsulphenyl, C_{1-4} -alkylsulphinyl, C_{1-4} -alkylsulphonyl, hydroxy, C_{1-4} -alkylsulphonyloxy, trifluoromethyloxy, nitro, amino, C_{1-4} -alkylamino, di- $(C_{1-4}$ -alkyl)-amino, C_{1-4} -alkylcarbonylamino, C_{1-4} -alkylsulphonylamino, C_{1-4} -alkylsulphonylamino, aminosulphonyl, C_{1-4} -alkylaminosulphonyl or di- $(C_{1-4}$ -alkyl)-aminosulphonyl group or a carbonyl group, which is substituted by a 5- to 7-membered alkyleneimino group, wherein in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group in the 4 position may be replaced by an oxygen or sulphur atom, by a sulphinyl, sulphonyl, imino or N- $(C_{1-4}$ -alkyl)-imino group, and

 R_{13} denotes a fluorine, chlorine, bromine or iodine atom, a C_{1-4} -alkyl, trifluoromethyl or C_{1-4} -alkoxy group or

two groups R_{13} , if they are bound to adjacent carbon atoms, together denote a C_{3-5} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

and moreover, the heteroaryl groups mentioned in the definitions of the abovementioned groups also include a 5-membered heteroaromatic group which contains an imino group, an oxygen or sulphur atom or an imino group, an oxygen or sulphur atom and one or two nitrogen atoms, or

a 6-membered heteroaromatic group which contains one, two or three nitrogen atoms,

whilst the abovementioned 5-membered heteroaromatic groups may be substituted in each case by 1 or 2 methyl or ethyl groups and the abovementioned 6-membered heteroaromatic groups may be substituted in each case by 1 or 2 methyl or ethyl groups or by a fluorine, chlorine, bromine or iodine atom, or by a trifluoromethyl, hydroxy, methoxy or ethoxy group,

the <u>or a tautomers</u>, the stereoisomers and the <u>or</u> salts thereof.

13. (amended) Bieyelie heterocycles of general A compound of the formula I according to claim 12, wherein

 R_n to R_d , A to C and X are defined as in claim 2, R_n denotes a hydrogen atom,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , while

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine, bromine or iodine atom,

a methyl, ethyl, hydroxy, methoxy, ethoxy, amino, cyano, vinyl or ethynyl group,

an aryl, aryloxy, arylmethyl or arylmethoxy group,

a methyl or methoxy group substituted by 1 to 3 fluorine atoms or

R₁ together with R₂, if they are bound to adjacent carbon atoms, denote a -CH=CH-CH=CH, -CH=CH-NH or -CH=N-NH group and

R₃ denotes a hydrogen, fluorine, chlorine or bromine atom,

R_c and R_d in each case denote a hydrogen atom,

X denotes a methine group substituted by a cyano group or a nitrogen atom,

A denotes an imino group optionally substituted by a methyl or ethyl group,

B denotes a carbonyl group,

C denotes a 1,1- or 1,2-vinylene group which is substituted in each case by one or two methyl groups or may be substituted by a trifluoromethyl group,

an ethynylene group or

a 1,3-butadien-1,4-ylene group optionally substituted by a methyl or trifluoromethyl group,

D together with E denotes a hydrogen atom,

a methyl, trifluoromethyl or aryl group,

F denotes an -O-C₁₋₄-alkylene group, wherein the alkylene moiety is linked to the group G, or an oxygen atom, while this may not be linked to a nitrogen atom of the group G, and

G denotes an R_6O -CO-alkylene-NR₅, (R_7O -PO-OR₈)-alkylene-NR₅ or (R_7O -PO-R₉)-alkylene-NR₅ group wherein in each case the alkylene moiety, which is straight-chained and contains 1 to 4 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, while R_5 to R_9 are defined as in claim 2,

a 4- to 7-membered alkyleneimino group which is substituted by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group wherein R_6 is defined as in claim 2,

a 4- to 7-membered alkyleneimino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 is defined as in claim 2,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at a cyclic carbon atom by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group wherein R_6 and R_{10} are defined as in claim 2,

a piperazino or homopiperazino group which is substituted in the 4 position by the group R_{10} and is additionally substituted at cyclic carbon atoms by two R_6 O-CO or R_6 O-CO-C₁₋₄-alkyl groups wherein R_6 and R_{10} are defined as in claim 2,

a piperazino or homopiperazino group which is substituted in each case in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are defined as in claim 2,

a piperazino or homopiperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl or bis- $(R_6O-CO)-C_{1-4}$ -alkyl group and additionally at cyclic carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups wherein R_6 is defined as in claim 2,

a morpholino or homomorpholino group which is substituted in each case by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl or bis- $(R_6O$ -CO)- C_{1-4} -alkyl group wherein R_6 is defined as in claim 2,

a morpholino or homomorpholino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 is defined as in claim 2,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , while the abovementioned 5- to 7-membered rings in each case are additionally substituted at a carbon atom by an R_6O -CO, R_6O -CO- C_{1-4} -alkyl group wherein R_6 and R_{10} are defined as in claim 2,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by the group R_{10} , while the abovementioned 5- to 7-membered rings in each case are additionally substituted at carbon atoms by two R_6O -CO or R_6O -CO- C_{1-4} -alkyl groups wherein R_6 and R_{10} are defined as in claim 2,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl, $(R_7O-PO-OR_8)-C_{1-4}$ -alkyl or $(R_7O-PO-R_9)-C_{1-4}$ -alkyl group wherein R_6 to R_9 are defined as in claim 2,

a pyrrolidinyl, piperidinyl or hexahydroazepinyl group substituted in the 1 position by an $R_6O-CO-C_{1-4}$ -alkyl or bis- $(R_6O-CO)-C_{1-4}$ -alkyl group, while the abovementioned 5-to 7-membered rings in each case are additionally substituted at carbon atoms by one or two R_6O-CO or $R_6O-CO-C_{1-4}$ -alkyl groups wherein R_6 is defined as in claim 2,

a 2-oxo-morpholino group which may be substituted by 1 or 2 methyl groups,

a 2-oxo-morpholinyl group which is substituted in the 4 position by a C_{1-4} -alkyl or R_6O -CO- C_{1-4} -alkyl group, while R_6 is defined as in claim 2 and the abovementioned 2-oxo-morpholinyl groups are each are linked to a carbon atom of the group F,

a morpholino group which is substituted in the 2 position by a C₁₋₄-alkoxy group,

a morpholino group which is substituted in the 2 and 6 positions in each case by a C_{1-4} -alkoxy group,

a C_{1-4} -alkyl-NR₅ group wherein the C_{1-4} -alkyl moiety, which is straight-chained, is terminally substituted by a di-(C_{1-4} -alkoxy)-methyl group, while R₅ is defined as in claim 2,

a C_{1-4} -alkyl-NR₅ group wherein the C_{1-4} -alkyl moiety, which is straight-chained, is terminally substituted by a 1,3-dioxolan-2-yl or 1,3-dioxan-2-yl group, while R₅ is defined as in claim 2,

a R_hNR_5 group wherein R_5 is defined as in claim 2 and R_h denotes a substituted 2-oxotetrahydrofuran-3-yl, 2-oxotetrahydrofuran-4-yl, 2-oxotetrahydropyran-3-yl, 2-oxotetrahydropyran-5-yl group optionally by one or two methyl groups,

while the aryl moieties mentioned in the definition of the abovementioned groups denote a phenyl group which may in each case be monosubstituted by R_{12} , mono- or disubstituted by R_{13} or monosubstituted by R_{12} and additionally mono or disubstituted by R_{13} , while the substituents may be identical or different and

 R_{12} denotes a cyano, C_{1-2} -alkoxycarbonyl, aminocarbonyl, C_{1-2} -alkylaminocarbonyl, di- $(C_{1-2}$ -alkyl)-aminocarbonyl, C_{1-2} -alkylsulphenyl, C_{1-2} -alkylsulphinyl, C_{1-2} -alkylsulphonyl, hydroxy, nitro, amino, C_{1-2} -alkylamino or di- $(C_{1-2}$ -alkyl)-amino group and

 R_{13} denotes a fluorine, chlorine, bromine or iodine atom, a C_{1-2} -alkyl, trifluoromethyl or C_{1-2} -alkoxy group or

two groups R_{13} , if they are bound to adjacent carbon atoms, together denote a C_{3-5} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

the or a tautomers, the stereoisomers and the or salts thereof.

14. (amended) Bieyelie heterocycles of general A compound of the formula I according to claim 12, wherein

 R_a to R_d , A to C and X are defined as in claim 3, R_a denotes a hydrogen atom,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , while

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom, or a methyl, trifluoromethyl, methoxy, ethynyl or cyano group,

R₃ denotes a hydrogen atom,

R_c and R_d in each case denote a hydrogen atom,

X denotes a methine group substituted by a cyano group, or a nitrogen atom,

A denotes an imino group,

B denotes a carbonyl group,

C denotes a 1,1- or 1,2-vinylene group,

an ethynylene group or

a 1,3-butadien-1,4-ylene group,

D together with E denotes a hydrogen atom,

a methyl, trifluoromethyl or aryl group,

F denotes an -O-C₁₋₄-alkylene group, wherein the alkylene moiety is linked to the group G, or an oxygen atom, while this may not be linked to a nitrogen atom of the group G, and

G denotes an R_6O -CO-alkylene-NR₅ group wherein the alkylene moiety, which is straight-chained and contains 1 to 4 carbon atoms, may additionally be substituted by one or two C_{1-2} -alkyl groups or by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, while R_5 and R_6 are defined as in claim 3,

a pyrrolidino or piperidino group which is substituted by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group wherein R_6 is defined as in claim 3,

a pyrrolidino or piperidino group which is substituted by two R_6O -CO or R_6O -CO- C_{1-2} -alkyl groups wherein R_6 is defined as in claim 3,

a piperazino group which is substituted in the 4 position by the group R_{10} and additionally at a cyclic carbon atom by an R_6 O-CO, or R_6 O-CO-C₁₋₂-alkyl group, while R_6 and R_{10} are defined as in claim 3,

a piperazino group which is substituted in the 4 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl or $(R_7O$ -PO- $OR_8)$ - C_{1-2} -alkyl group wherein R_6 to R_8 are defined as in claim 3,

a piperazino group which is substituted in the 4 position by an R_6O -CO- C_{1-2} -alkyl group and additionally at a cyclic carbon atom by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group wherein R_6 is defined as in claim 3,

a morpholino group which is substituted by an R_6O -CO or R_6O -CO- C_{1-2} -alkyl group, while R_6 is defined as in claim 3,

a piperidinyl group substituted in the 1 position by an R_6O -CO- C_{1-4} -alkyl, bis- $(R_6O$ -CO)- C_{1-4} -alkyl or $(R_7O$ -PO- $OR_8)$ - C_{1-2} -alkyl group wherein R_6 to R_8 are defined as in claim 3,

a 2-oxo-morpholino group which may be substituted by 1 or 2 methyl groups,

a 2-oxo-morpholinyl group which is substituted in the 4 position by a methyl, ethyl or $R_6O-CO-C_{1-2}$ -alkyl group, while R_6 is defined as in claim 3 and the abovementioned 2-oxo-morpholinyl groups in each case are linked to a carbon atom of the group F,

a morpholino group which is substituted in the 2 position by a methoxy or ethoxy group,

a morpholino group which is substituted in the 2 and 6 positions in each case by a methoxy or ethoxy group,

a 2,2-dimethoxyethyl-NR $_5$, 2,2-diethoxyethyl-NR $_5$, 1,3-dioxolan-2-yl-methyl-NR $_5$ or 1,3-dioxan-2-yl-methyl-NR $_5$ group wherein R $_5$ is defined as in claim 3,

while the aryl moieties mentioned in the definition of the abovementioned groups denote a phenyl group which may be mono- or disubstituted by R_{13} , while the substituents may be identical or different and

 R_{13} denotes a fluorine, chlorine, bromine or iodine atom, a C_{1-2} -alkyl, trifluoromethyl or C_{1-2} -alkoxy group or

two groups R_{13} , if they are bound to adjacent carbon atoms, together denote a C_{3-4} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

the or a tautomers, the stereoisomers and the or salts thereof.

15. (amended) Bicyclic heterocycles of general A compound of the formula I according to claim 12, wherein

 R_a to R_d , A to C and X are defined as in claim 4, R_a denotes a hydrogen atom,

 R_b denotes a phenyl, benzyl or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , wherein

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom or a methyl group and

R₃ denotes a hydrogen atom,

R_c and R_d each denote a hydrogen atom,

X denotes a methine group substituted by a cyano group, or a nitrogen atom,

A denotes an imino group,

B denotes a carbonyl group,

C denotes a 1,2-vinylene or an ethynylene group,

D together with E denotes a hydrogen atom or a methyl group,

F denotes an -O-C₁₋₄-alkylene group, while the alkylene moiety is linked to the group G, or an oxygen atom, which may not be linked to a nitrogen atom of the group G, and

G denotes an R₆O-CO-alkylene-NR₅ group wherein the alkylene moiety, which is straight-chained and contains 1 or 2 carbon atoms, may additionally be substituted by a methyl group or by an R₆O-CO or R₆O-CO-methyl group, while R₅ and R₆ are defined as in claim 4,

a pyrrolidino or piperidino group which is substituted by an R_6O-CO or R_6O-CO methyl group wherein R_6 is defined as in claim 4,

a pyrrolidino or piperidino group which is substituted by two R_6O -CO or R_6O -CO-methyl groups wherein R_6 is defined as in claim 4,

a piperazino group which is substituted in the 4 position by an $R_6O-CO-C_{1-4}$ -alkyl, bis- $(R_6O-CO)-C_{1-4}$ -alkyl or $(R_7O-PO-OR_8)-C_{1-2}$ -alkyl group wherein R_6 to R_8 are defined as in claim 4,

a piperidinyl group substituted in the 1 position by an R₆O-CO-C₁₋₂-alkyl group wherein R₆ is defined as in claim 4,

the or a tautomers, the stereoisomers and the or salts thereof.

16. (amended) Bicyclic heterocycles of general A compound of the formula I according to at least one of claims 12 to claim 15, characterised wherein in that R_b denotes one of the optionally substituted 1-phenyl-ethyl groups mentioned in the respective claim 12, 13, 14 or 15, a 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R₁ to R₃, wherein

 R_1 and R_2 , which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom or a methyl group and

R₃ denotes a hydrogen atom,

the or a tautomers, the stereoisomers and the or salts thereof.

- 17. (amended) The following compounds of general formula I according to claim 1A compound selected from the group consisting of:
- (a) 4-[(3-bromophenyl)amino]-7-(3-{4-[(ethoxycarbonyl)methyl]-piperazin-1-yl}propyloxy)-6-[(vinylcarbonyl)amino]-quinazoline,
- (b) 4-[(3-bromophenyl)amino]-7-(3-{4-[3-(ethoxycarbonyl)propyl]-piperazin-1-yl}propyloxy)-6-[(vinylcarbonyl)amino]-quinazoline,
- (c) 4-[(3-bromophenyl)amino]-7-({1-[(ethoxycarbonyl)methyl]-piperidin-4-yl}oxy)-6-[(vinylcarbonyl)amino]-quinazoline,
- (d) 4-[(3-bromophenyl)amino]-7-(3-{4-[(diethoxyphosphoryl)methyl]-piperazin-1-yl}propyloxy)-6-[(vinylcarbonyl)amino]-quinazoline,
- (e) 4-[(3-bromophenyl)amino]-7-(3-{N-[(ethoxycarbonyl)methyl]-N-methylamino}propyloxy)-6-[(vinylcarbonyl)amino]-quinazoline,

- (f) 4-[(3-bromophenyl)amino]-6-[(4-{N-[(ethoxycarbonyl)methyl]-N-methylamino}-1-oxo-2-buten-1-yl)amino]-quinazoline,
- (g) 4-[(3-bromophenyl)amino]-6-[(4-{N-[(diethoxyphosphoryl)methyl]-N-methylamino}-1-oxo-2-buten-1-yl)amino]-7-methoxy-quinazoline,
- (h) (R)-4-[(1-phenylethyl)amino]-6-[(4-{N-[(ethoxycarbonyl)methyl]-N-methylamino}-1-oxo-2-buten-1-yl)amino]-7-methoxy-quinazoline,
- (i) 4-[(3-bromophenyl)amino]-6-({4-[N-(2,2-dimethoxyethyl)-N-methylamino]-1-oxo-2-buten-1-yl}amino)-7-methoxy-quinazoline,
- (j) 4-[(3-bromophenyl)amino]-6-{[4-(2-ethoxy-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-quinazoline,
- (k) 4-[(3-bromophenyl)amino]-3-cyano-6-[(4-{N-[(ethoxycarbonyl)methyl]-N-methylamino}-1-oxo-2-buten-1-yl)amino]-quinoline,
- (l) 4-[(3-chloro-4-fluorophenyl)amino]-6-[(4-{4-[(ethoxycarbonyl)methyl]-piperazin-1-yl}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-quinazoline,
 - (m) 4-[(3-chloro-4-fluorophenyl)amino]-6-[(4-{N-[2-(ethoxycarbonyl)-ethyl]-N-[(ethoxycarbonyl)methyl]amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-quinazoline,
 - (n) 4-[(3-chloro-4-fluorophenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-quinazoline,
 - (o) 4-[(3-chloro-4-fluorophenyl)amino]-6-[(4-{4-[(ethoxycarbonyl)methyl]-piperazin-1-yl}-1-oxo-2-buten-1-yl)amino]-7-cyclobutyloxy-quinazoline,
 - (p) 4-[(3-chloro-4-fluorophenyl)amino]-6-[(4-{4-[(ethoxycarbonyl)methyl]-piperazin-1-yl}-1-oxo-2-buten-1-yl)amino]-7-(2-cyclopropylethoxy)-quinazoline,
 - (q) (S)-4-[(3-chloro-4-fluorophenyl)amino]-6-({4-[2-(methoxycarbonyl)-pyrrolidin-1-yl]-1-oxo-2-buten-1-yl}amino)-7-cyclopropylmethoxy-quinazoline,
 - (r) 4-[(3-chloro-4-fluorophenyl)amino]-6-[(4-{N-[(ethoxycarbonyl)methyl]-N-[2-(acetylsulphanyl)ethyl]amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-quinazoline, undand
 - (s) 4-[(3-chloro-4-fluorophenyl)amino]-6-[(4-{N-[(ethoxycarbonyl)-methyl]-N-[2-(methylcarbonyloxy)ethyl]amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-quinazoline,

and or a the salts thereof.

- 18. (amended) A pPhysiologically acceptable salts of the compounds according to at least one of a compound according to claims 1 to 17 with inorganic or organic acids or bases.
- 19. (amended) A pPharmaceutical compositions containing comprising a compound according to at least one of claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or to 17 or a physiologically acceptable salt thereofaceording to claim 18 optionally together with one or more inertthereof and a pharmaceutically acceptable carriers and/or diluents.
- 20. (amended) A Use of a compound according to at least one of claims 1 to 18 for preparing a pharmaceutical composition which is suitable method for treating a benign or malignant tumours, for preventing and treating diseases of the airways and or lungs, and for treating polyps, a diseases of the gastrointestinal tract, the bile duct and or the gall bladder, and also the kidneys and or skin, which method comprises administering a therapeutically effective amount of a compound according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 or a physiologically acceptable salt thereof.