Lista 1

- 1. Oblicz:
 - (a) $\frac{2^5}{2^5-1}$ i porównaj z $\left(1-\frac{1}{2^5}\right)^{-1}$
 - (b) $3\frac{\sqrt{5}-1}{(\sqrt{5}+1)^2}-1$. Pierwiastek kwadratowy \sqrt{x} można obliczyć poleceniem sqrt (x) lub
 - (c) powierzchnię = πr^2 przy $r=\pi^{\frac{1}{3}}-1$ (π zapisuje się jako pi).
 - (d) e^3 , $\sin(\pi/6)$, $\cos(\pi)$, $\tan(\pi/2)$, $\sin^2(\pi/6) + \cos^2(\pi/6)$
- 2. Równanie prostej ma postać y=mx+c, gdzie wartości m i c są stałe. Oblicz współrzędne y przy nachyleniu m=0.5 oraz c=-2 dla następujących współrzędnych x: x=0, 1.5, 3, 4, 5, 7, 9, 10.

Proszę narysować otrzymane wyniki poleceniem: plot (x, y).

- 3. Utwórz wektor t o 10 elementach 1,2,3...10. Oblicz:
 - (a) $x = t \sin(t)$
 - (b) $y = \frac{t-1}{t+1}$
 - $(c) z = \frac{\sin(t^2)}{t^2}$
- 4. Obejrzeć wynik działania funckji: zeros (4), eye (3) i ones (4). Co one robią?
- 5. Dana jest macierz A(10, 10, 10):
 - (a) Napisać jedną instrukcję postaci $B = \ldots$, która wybiera (wycina) z macierzy A:
 - i. trzeci element drugiego wiersza,
 - ii. ostatni element drugiego wiersza,
 - iii. ostatni element drugiej kolumny,
 - iv. ostatnią kolumnę,
 - v. wiersz trzeci od końca,
 - vi. kolumny od 3. do 5. włącznie,
 - vii. wiersze 2 i 4,
 - viii. podmacierz o wierzchołkach A(2,3) i A(4,7),
 - (b) Przekształcić macierz A (przy pomocy tylko \mathbf{jednej} instrukcji):
 - i. usunąć trzeci wiersz,
 - ii. usunąć z macierzy wiersze o parzystych numerach,
 - iii. zastąpić trzeci wiersz macierzy wierszem postaci: 1, 2, 3, ...,
 - iv. dopisać na dole macierzy wiersz samych jedynek,
 - v. zamienić miejscami wiersze 1 i 4,
 - vi. zamienić miejscami kolumnę drugą z kolumną ostatnią.
 - (c) Utworzyć a = [1 2 3; 4 5 6] i sprawdzić, co to jest a'.

- (d) i. Utworzyć wektory wierszowe: (1,3,5), (7,9,11), (13,15,17) i złożyć je w macierz 3×3 .
 - ii. Utworzyć wektory kolumnowe (1,7,13), (3,9,15), (5,11,17) i połączyć je w macierz 3×3 .
- 6. Wszystkie punkty o współrzędnych $x=r\cos\theta$ oraz $y=r\sin\theta$, gdzie r jest stałe leżą na okręgu o promieniu r i spełniają warunek $x^2+y^2=r^2$. Utwórz wektor kolumnowy dla θ o wartościach 0, $\pi/4$, $\pi/2$, $3\pi/4$, π oraz $5\pi/4$. Przyjmij r=2 i oblicz wektory kolumnowe x i y. Następnie sprawdź, czy x i y rzeczywiście spełniają równanie okręgu obliczając promień $r=\sqrt{x^2+y^2}$. (Aby obliczyć r, należy podnieść x i y do kwadratu za pomocą operatora potęgowania tablicowego . ^ lub mnożenia tablicowego . *). Jeśli tak, to wygeneruj wektor θ o większej liczbie wartości z zakresu $(0,2\pi)$, oblicz współrzędne x i y dla kilku wartości promieni r i narysuj tak otrzymane okręgi.