Term	Definition	Unique Attributes / Key Properties
Diagonal	$a_{ij} = 0 \text{ for } i \neq j$	 Determinant is product of diagonal entries Eigenvalues are diagonal entries A^k is diagonal with entries raised to k
Symmetric	$A = A^T$, i.e., $a_{ij} = a_{ji}$	 All eigenvalues are real Eigenvectors for distinct eigenvalues are orthogonal Diagonalizable via orthogonal matrices
Identity (I)	$I_{ij} = \delta_{ij}$	- $AI = IA = A$ - $I^{-1} = I$ - All eigenvalues are 1
Invertible (Non-singular)	Exists A^{-1} such that $AA^{-1} = A^{-1}A = I$	 - det(A) ≠ 0 - Linearly independent rows and columns - No zero eigenvalues
Singular	A square matrix with $det(A) = 0$	Not invertibleMay have linearly dependent rows or columnsAt least one zero eigenvalue
Orthogonal	$A^{-1} = A^T$, so $A^T A = I$	- Rows and columns form an orthonormal set - Preserves lengths and angles - $\det(A) = \pm 1$
Pseudoinverse (Moore– Penrose)	Generalized inverse A^{\dagger} satisfying the four Penrose conditions	- Always exists and is unique for any matrix - If $A \in \mathbb{R}^{m \times n}$ has full column rank $(m \geq n)$: $A^{\dagger} = (A^T A)^{-1} A^T$, and $A^{\dagger} A = I_n$ - If A has full row rank $(n \geq m)$: $A^{\dagger} = A^T (AA^T)^{-1}$, and $AA^{\dagger} = I_m$ - If A is square and invertible: $A^{\dagger} = A^{-1}$ - Used in least-squares solutions and underdetermined systems
Positive Definite	$\vec{x}^T A \vec{x} > 0$ for all non-zero \vec{x}	 All eigenvalues are positive det(A) > 0 Invertible
Triangular (Upper / Lower)	Upper: $a_{ij} = 0$ for $i > j$; Lower: $a_{ij} = 0$ for $i < j$	 Determinant is product of diagonal entries Eigenvalues are diagonal entries Solves systems efficiently via substitution
Skew-Symmetric	$A = -A^T$, so $a_{ii} = 0$	- Eigenvalues are 0 or purely imaginary - $\vec{x}^T A \vec{x} = 0$ for all \vec{x}
Idempotent	$A^2 = A$	- Used in projection operations - Eigenvalues are 0 or 1

Nilpotent	$A^k = 0$ for some $k \in \mathbb{N}$	- All eigenvalues are 0
Orthogonal Projection	Linear transformation P where $P^2 = P$ and $P = P^T$	 - Projects onto a subspace along its orthogonal complement - Minimizes distance to the subspace (best approximation) - Im(P) is a subspace; Ker(P) = Im(I-P)
Linear Map (Transforma- tion)	Function $T: V \to W$ satisfying $T(a\vec{x} + b\vec{y}) = aT(\vec{x}) + bT(\vec{y})$	 Represented by a matrix in finite dimensions Preserves linear structure Kernel and image define fundamental subspaces
Fundamental Subspaces	Column space, row space, null space, left null space	- Column space: span of columns (range of A) - Row space: span of rows = col space of A^T - Null space: solutions to $A\vec{x} = 0$ - Left null space: null space of A^T
Unitary	$U^{\dagger}=U^{-1},$ where U^{\dagger} is the conjugate transpose of U	- $U^{\dagger}U = UU^{\dagger} = I$ - Preserves inner products: $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ - All eigenvalues lie on the unit circle: $ \lambda = 1$ - Generalization of orthogonal matrices to complex space