CPR 101

File Compression

Agenda

Quiz

News

Discussion

- What is file compression
- · Why it is used
- How compression works
- Types of Compression formats
- Loss-less and lossy compression

Quiz

News of the Week

What is File Compression?

What is File Compression?

File compression is the process of using an algorithm to reorganize the data structure in a file to reduce the amount of disk space that a file uses.

Why do we use file compression?

Why did we use file compression?

- Historically, data desired exceeds available storage space
- Today, this is not as much of an issue as storage drive space is readily available and considerably cheaper than it used to be

What about data transfer?

Why is file compression relevant with data transfer?

Case Study

- Let's say you are working on a web application for 30,000 users
- Your total data size is
 12,320,982 bytes.
- You decide to add some new content and data, and subsequently, your data size increases to 12,825,603 bytes.

Starting Size:	12,320,982 bytes	
Current Size:	12,825,603 bytes	
Difference:	504,621 bytes	

Case Study, part 2

 Your application's size is now approximately
 1/2 MB larger

Starting Size:	12,320,982 bytes
Current Size:	12,825,603 bytes
Difference:	504,621 bytes

Is this a big deal?

 On your computer, not really, but...

Case Study, part 3

- On your website your application will be delivered to 30,000 users.
- That means, that the total amount of data sent through your network connection could be as much as 15 Terabytes!

Starting Size:	12,320,982 bytes	
Current Size:	12,825,603 bytes	
Difference:	504,621 bytes	
# of Users:	30,000	
Total data difference:	15,138,630,000 bytes	

Case Study, part 4

• If we applied some compression to our update and reduced the data to 80% of it's initial size, that would translate in to a savings of 3 Terabytes in network traffic!

Starting Size:	12,320,982 bytes	
Current Size:	12,825,603 bytes	
Difference:	504,621 bytes	
80% Compressed:	403,697 bytes	
# of Users:	30,000	
Original data difference:	15,138,630,000 bytes	
Compressed data difference:	12,110,910,000 bytes	
Savings through compression	3,027,720,000 bytes	

How does compression work?

• Here's a paragraph:

Data compression is particularly useful in communications because it enables devices to transmit or store the same amount of data in fewer bits. There are a variety of data compression techniques, but only a few have been standardized. The CCITT has defined a standard data compression technique for transmitting and a compression standard for data communications through modems. In addition, there are file compression formats, such as ARC and ZIP.

This quote contains 449 characters.

How Compression Works (cont'd)

- Replace "compression" with ♠. Now, the quote becomes:

 Data ♠ is particularly useful in communications because it enables devices to transmit or store the same amount of data in fewer bits. There are a variety of data ♠ techniques, but only a few have been standardized. The CCITT has defined a standard data ♠ technique for transmitting and a ♠ standard for data communications through modems. In addition, there are file ♠ formats, such as ARC and ZIP.
- Including the dictionary "♠=compression", the total size is now 411 characters.
- Compression algorithms build a token/string dictionary

How Compression Works (cont'd)

- With more pattern matching and a bigger dictionary, our quote becomes (♠=compression, ♣=here are, ♦=communications,
 ♥=data, ⊙=standard, ⇔=transmit, •>=technique)
 - **V**♠is particularly useful in ♦because it enables devices to ☼ or store the same amount of **V**in fewer bits. T♣ a variety of **V**♠**©**s, but only a few have been ⓒ ized. The CCITT has defined a ⓒ **V**♠**©** for ☼ting faxes and a ♠ⓒ for **V**♦through modems. In addition, t♣ file ♠formats, such as ARC and ZIP.
- Including the dictionary, the total size is now 361 characters or 80% of original size. The compression advantage increases with the length of the text, i.e. more pattern matches.

Do you know any compression file formats?

ZIP

- The most popular general-purpose compression file format
- Compresses a file or set of files and places them inside another file, with a .zip extension
- Included with all modern versions of Windows
- Includes features such as password-protection,

RAR, 7z, TAR, Stufflt

- There are many other general-purpose compression file formats
- These use different algorithms, with various benefits and uses
- Some are designed for different operating systems (StuffIt for Mac, TAR for *nix)

JPG, PNG, GIF, TIF, TGA

- Compression formats used by the graphics industry
- Most of these are lossy formats (TIF offers a ZIP compression option), can not actually be uncompressed to exact source data
- Windows Paint can open and save to some of these formats

MP3, WMA, MP4, FLAC

- Compression formats used by the sound engineering and music industry
- Most of these are lossy formats (although FLAC stands for Fully Lossless Audio Codec), can not actually be uncompressed to exact source data
- Windows Media Player can open many of these formats

MPG, MP4, DIVX, XVID, MOV, AVI

- Compression formats used by the video industry
- Most of these are lossy formats
- Will often mix compression algorithms from audio and image technologies
- Windows Media Player can open many of these formats

Loss of data?

Can we lose data when compressing a file?

There are two basic types of compression:

- Lossy
- Loss-less

Loss-less Compression

- ZIP, TIF, FLAC, and other general file compression routines are considered *lossless* compression.
- The data is always complete; after decompression, no one would be able to determine that the data was compressed, it's all there and useable.

Lossy Compression

- JPG, MPG, MP3, GIF, and many other specific end-user formats are all considered lossy compression.
- These formats, in order to achieve compression, actually remove data from the source file.
 - GIF images reduce the number of colours in an
 - JPG images effectively delete colour information to achieve compression
 - MP3s simplify the sound waves of audio
- This means that once an image is compressed it can never be returned to a full data uncompressed format
- The amount of loss can usually be adjusted, so a developer can decide how much compression is necessary and what quality of the content is still required.

Lossy vs. Loss-less Compression

Loss-less

Lossy (GIF/JPG)

Lossy vs. Loss-less Compression

Loss-less

Lossy (GIF/JPG)

Backups – Why and What

What is a Backup?

What is a Backup?

A backup is a copy of content, created as a contingency, in case something should happen to your initial content

What can happen to your work?

What do we mean by "created as a contingency"?

- Hardware failure
 - What happens if you hard drive fails, or your motherboard experiences a power surge?

- Bus-Raptor incident
 - If a team member gets eaten by a raptor, will you still be able to access their work?

- Missing employee
 - Angry employees might damage equipment or delete data.
 - Employee might be unavailable, how do you get access to the files you need?

- Theft
 - This is a reality in business
 internal and external theft
 are common ways to lose
 data

Events that can occur:

- Loss
 - What if you lose your laptop?

Events that can occur:

- Hacking/Cracking
 - High-profile or valuable data is a common target for a hacker – they may delete your data, change it, or hold it for ransom!

A Simple Solution - Backups!

- Having a backup will allow you to recover from lost, broken or stolen hardware or software, and help you get your system running quickly and effectively.
 - Get it the habit of storing only "Work in Progress" on your laptop, or PC.
 - Once your work is completed: favourite playlist, pictures, school assignment, letters/reports/programs, then copy them to a backup device.
 - This creates Redundancy

Automatic Backup

- Backups are created automatically, by a program running on the computer. You will essentially be saving twice; every time you save, a backup will be made.
- Mirrored RAID system is also a common option here.
- Useful for incremental changes

Scheduled Backup

- A system operator or software tool performs backups at specific times, such as every night.
- Preferred method when there is a lot of data to backup, that could take many hours

Manual Backup

- A user performs backups at their own convenience
- Least effective method if you forget to do it, it doesn't happen!
- Better than no backup at all though!

Backup Media

What backup media can we use?

What can we store our backups on?

Backup Media – Local

- Stored on a hard drive in use by the system
- RAID Drive
- Fastest method
- Convenient
- If computer is lost, so is the data!

Backup Media - External

- External Drive / USB Stick
- DVD
- Tape Drive
- Useful if computer stops working
- Can be stored off-site
- More expensive!

Backup Media – Network

- FTP server
- Google Drive / Carbonite / Dropbox / iCloud / others
- Which country is the data stored in?
- Price for service
- Encrypted?
- Slower

Which method is the best?

 Which of these three methods (Local, External, Network) should you use?

Use all three methods!

- Depends on the type of work you're doing
- Using all three methods together is best
 - One local copy that you're working on
 - One external copy on a USB stick or something similar
 - One copy off-site, in case of disaster

3-2-1 Backup Checklist

- 3 copies (actions on active file do not change copies)
 - 1 active file on your machine, 1 local backup, 1 remote backup
- 2 different formats/platforms (platform independence)
 - External drive using File History / Time Machine *
 - One-way backup to cloud (not two-way sync)
- 1 off-site backup (geographically separate location)
 - Cloud storage different from your cloud laaS, PaaS, SaaS provider
 - rotating external drives from home to office
 - * File History/Time Machine are not completely platform independent