Name:	• (Key	\geq

Show all work clearly and in order. Please box your answers. 10 minutes

1. Compute
$$\sum_{i=1}^{100} (3i+1) = \sum_{i=1}^{100} 3i + \sum_{i=1}^{100} 1$$

$$= 3 \sum_{i=1}^{100} i + 100$$

$$= 3 \cdot \frac{100 \cdot 101}{2} + 100$$

$$= 15250$$

2. Show:
$$\forall n \ge 1$$
, $\sum_{j=1}^{n} (2j-1) = n^2$.

proof. (by induction)

Base case:
$$(n=1)$$
: $\sum_{j=1}^{1} (2j-1) = 2(1)-1 = 1$

Induction Skp: Suppose for some $k \ge 1$, $\sum_{j=1}^{k} (2j-1) = k^2$ induction hypothesis. (Show: $\sum_{j=1}^{k+1} (2j-1) = (k+1)^2$)

Observe,
$$\sum_{j=1}^{k+1} (2j-1) = \sum_{j=1}^{k} (2j-1) + (2(k+1)-1)$$

= $k^2 + (2k+2-1)$ by the induction by pothes (5)

 $= k^{2} + 2k + 1$ $= (k+1)^{2}$

3. Show: $\forall n \geq 4, n! > 2^n$.

Base case: (n=4): 4!=4.3.2.1 = 24 > 24 = 16 V

Induction Step: suppose for some K34, K!>2K 3 induction hypothesis.

Observe $(k+1)! = (k+1)k! > (k+1) \cdot 2^k$

Notice that since k = 34, k+1 > 5 > 2Hence $(k+1) \cdot 2^k > 2 \cdot 2^k = 2^{k+1}$

Therefore (K+1)! > 2K+1