

Tensor in the Sky with CloudML

Sylvain Lequeux

@slequeux

Romain Sagean

@scauglog

WHY?

Deep Learning

| Classic Machine Learning

Deep Learning

| Neural Networks

| Artificial Neural Networks

| Artificial Neural Networks

WHY?

Cloud

| Google CloudML

Machine Learning Managed Service

- ▼ ML Frameworks (beta) : scikit-learn, XGBoost
- ▼ DL Frameworks : Tensorflow, Keras

What you can do

- Train
- Predict

| Google CloudML

WHY?

Use Case

Local Mode

At least, it'll work

There are pre-trained models

▼ Save time for training

Param count approximation

▼ InceptionV3 : 23M

▼ VGG16 : 138M

Included into Tensorflow & Keras

Adapted architecture

- ▼ Convolutional
- ▼ MaxPooling
- **▼** Recurrent
- **V** ...

Export modelOr How to Reuse

Weight stored in-memory

- ▼ Need to retrain each time you start
- ▼ Non-deterministic behaviour

Use Protobuf format to store model

- Google's data exchange format
- Stores weights and architecture

Export model

Serving In the Cloud

No diamonds, sorry

Serving

Google functions

Proxify HTTP requests

Perform controls:

- Authentication
- Bandwidth controls
- ▼ ..

Transform data

- Input preprocessing
- Output formatting

Google functions

A/B test your models

Implements A/B testing logic inside this function

Learning In the Cloud

How about Magritte?

Transfer learning [...] is a research problem in machine learning that focuses on storing knowledge gained while solving one problem and applying it to a different but related problem.

Transfer learning

Retraining without retraining

First layers learn basic features

- **▼** Lines
- **▼** Colors
- **V** ..

End layers learn complex features

- Objects
- Complex shapes
- **V** ...

Transfer learning is 2-steps:

- Freeze first layers
- ▼ Train new end layers

Online training Infinite power

- ▼ Define a setup.py file
- ▼ Define a config.yml file
 - ▼ This could be done directly in step 3 by passing args
 - □ Defines CPU/GPU/TPU usage
 - □ Defines runtime version
 - ▽ ...
- ▼ Run it
 - ∪ Using gcloud command line
 - ∪ Use -- to separate gcloud args from your job's args

So, what?

Conclusions: 2 for 1

Thank you

https://github.com/slequeux/xke-cloudml