# ML Model Optimization Strategies for Image Datasets

Alexander Peplowski | Azfar Khoja | Daniel Wang

# Objectives

#### Evaluate:

- 1. Network **Shape** vs Performance
- 2. Data Availability vs Performance
- 3. Network **Node Count** vs Performance
- 4. Target Algorithm vs Convergence Time
- 5. Regularization vs Performance

# Baseline Algorithms

#### Convolutional Neural Network

- Batch
- Normalization4 Convolutional Layers:
- (3x3) Kernel
- 32,32,64,64
   Feature Maps
- Max Pooling x2
- Two FC Layers

## Neural Network

- Batch Normalization
- 3 Layers
- 490 Nodes per hidden layer
  Faual number of
- Equal number of parameters as CNN baseline

# SVM

- Linear Kernel
- Regularization
- alpha = 0.01
- Gradient Descent Optimizer

# Data Sets

#### CIFAR-10

- 10 Classes
- 32x32 Image Size
- 3 Color Channels
- 60,000 images

#### **Fashion MNIST**

- 10 Classes
- 28x28 Image Size
- Grayscale (1-Channel)
- 70,000 Images

#### Procedure

#### 1. Network Shape vs Performance

| Step           | Description                                                                         |
|----------------|-------------------------------------------------------------------------------------|
| Define Models  | Generate models with <b>equal parameter count</b> for MLP and CNN depths from1 to 8 |
| Run Experiment | Evaluate validation loss, test accuracy using CIFAR-10 for CNN and F-MNIST for MLP  |

## Procedure

#### 2. Data Availability vs Performance

| Step               | <b>Description</b>                                                        |
|--------------------|---------------------------------------------------------------------------|
| Split Training Set | Generate <b>smaller stratified sets</b> sampled from CIFAR-10 and F-MNIST |
| Data Augmentation  | Reflect images horizontally to double data set size                       |
| Run Experiment     | Evaluate test set accuracy using above sets                               |

#### 3. Network Node Count vs Performance

| Step           | <b>Description</b>                                                 |
|----------------|--------------------------------------------------------------------|
| Define Models  | Generate models with equal depth and variable number of neurons    |
| Run Experiment | Evaluate validation loss, test accuracy using CIFAR-10 and F-MNIST |

#### 4. Target Algorithm vs Convergence Time

| Step           | <b>Description</b>                                                           |
|----------------|------------------------------------------------------------------------------|
| Define Models  | Compile <b>baseline models</b> with gradient descent optimizer               |
| Run Experiment | Evaluate validation loss, test accuracy using F-MNIST with fixed epoch count |

#### 5. Regularization vs Performance

| Step           | <b>Description</b>                                              |
|----------------|-----------------------------------------------------------------|
| Define Models  | Generate CNN, MLP models with variable I2 regularization values |
| Run Experiment | Evaluate validation loss using CIFAR-10 and F-MNIST             |

## Results

#### 1. Network Shape vs Performance





## Results

#### 2. Data Availability vs Performance



#### 3. Network Node Count vs Performance



# 

# 4. Target Algorithm vs Convergence Time



# 5. Regularization vs Performance



# Conclusions

- 1.1: When controlling for number of parameters, MLP network depth has little impact on performance for the f-MNIST dataset
- 1.2: When controlling for number of parameters, CNN network depth is best at depth 4 for the CIFAR-10 dataset
- 2: Increasing data availability has a significant impact on CNN, small impact on NN. Data augmentation helps in both cases.
- 3.1: When varying the node count, the **highest capacity** CNN model has the best performance and fastest training time on the CIFAR-10 dataset.
- 3.2: When varying the node count, the capacity of MLP models does not impact performance for the F-MNIST data set.
- 4: SVMs with linear kernels have fast convergence, but CNNs have the best performance on the F-MNIST dataset
- 5: Not clear how to select a general regularizer across datasets, use hyperparameter search!

