

Факультет программной инженерии и компьютерной техники

Домашнее задание №1 по дисциплине «Системы автоматизированного проектирования» Вариант – 29

Выполнил:

Студент:

Терновский И.Е.

Преподаватель:

Поляков Владимир Иванович

Санкт-Петербург

Проектирование тонкопленочных гибридных интегральных микросхем

29

Вариант 29 (1)

Исходные данные

Рисунок 2. Схема

Параметры элементов:

• R1: 20 KOM ±10% 0,01 BT

R2: 47 кОм ±20% 0,02 Вт

• R3: 4.7 KOM ±10% 0,02 BT

• R4: 2 κOм ±10% 0,02 Bτ

C1: 1000 пФ

C2: 330 пФ

С3: 1000 пФ

Расчет параметров ГИС

1. Расчет размеров пленочных резисторов

Определим оптимальное удельное поверхностное сопротивление:

$$ho_{\square}=\sqrt{rac{\sum\!R}{\sum\!R^{-1}}}=9695{
m Om}pprox10000{
m Om}$$

Материал с ближайшим значением ρ_{\square} , удовлетворяющий необходимому диапазону значений сопротивления — $Kepmem\ K-50C$ с удельной мощностью рассеивания $W_0=2$ BT/cm^2.

Определим ширину резисторов b_w , обеспечивающую необходимую мощность рассеивания:

$$b_w = \sqrt{\frac{\rho_\square \cdot W}{R \cdot W_0}}$$

(Значения округляются в большую сторону до шага сетки $H=0.1\,{\rm MM}$)

$$b_{w1}=0.05$$
см $pprox 0.6$ мм, $b_{w2}=0.046$ см $pprox 0.5$ мм, $b_{w3}=0.146$ см $pprox 1.5$ мм, $b_{w4}=0.224$ см $pprox 2.3$ мм

Определим ширину резисторов b с поправкой на точность изготовления:

$$b_1 = 0.6$$
 mm, $b_2 = 0.5$ mm, $b_3 = 1.5$ mm, $b_4 = 2.3$ mm

Определим длины резисторов:

$$l = \frac{R}{\rho_{\Box}} \cdot b = k_{\Phi} \cdot b$$

(Значения округляются до ближайшего, кратного шагу сетки $H=0.1\,{\rm mm}$)

$$k_{\phi 1}=2$$
, $k_{\phi 2}=4.7$, $k_{\phi 3}=0.47$, $k_{\phi 4}=0.2l_1=1.2$ мм, $l_2=2.35\approx 2.4$ мм, $l_3=0.705\approx 0.7$ мм, $l_4=0.46\approx 0.5$ мм

Оценим погрешность, вызванную округлением:

$$\Delta R' = \frac{\parallel R - R' \parallel}{R} \cdot 100\%, \ R' = \frac{l \cdot \rho_{\square}}{b}$$

$$\Delta R'_{1} = 0\%, \Delta R'_{2} = 2\%, \Delta R'_{3} = 1\%, \Delta R'_{4} = 9\%$$

Для каждого из резисторов погрешность удовлетворяет условию $\Delta R' \leq \Delta R$.

2. Расчет размеров пленочных конденсаторов

Расчет сводится к определению активной площади конденсаторов:

$$S = \frac{C}{C_0}$$

Для минимизации размеров найдем C_{min} , взяв $S_0=0.25$ мм^2 (минимально возможную площадь):

$$C_{min} = min\left(\frac{C_i}{S_0}\right)$$

 $\mathcal{C}_{min_1} = 40$ пФ/см^2 * 10^3, $\mathcal{C}_{min_2} = 12$ пФ/см^2 * 10^3, $\mathcal{C}_{min_3} = 40$ пФ/см^2 * 10^3

Наиболее подходящим материалом диэлектрика является моноокись германия, поскольку оно обладает высокой удельной емкостью $C_0 = 15*10^3$ пФ/см^2.

Рассчитаем площадь конденсаторов с выбранным материалом:

$$S_1 = 6.666666666666666667$$
mm², $S_2 = 2$ mm², $S_3 = 6.6666666666666667$ mm²

3. Конструирование пленочных межсоединений и контактных площадок

Контактные площадки изготавливаются из алюминия А99.

4. Проектирование защитного слоя

Защитный слой может быть изготовлен из любой диэлектрической пленки, за исключением пятиокиси тантала.

Итоговая схема

Рисунок 2. Итоговая схема