

Peer Review Project 2022-2023

Jenny Lee, Albert Leung, Daniel Chang

Progress

Biorxiv Query Duration: 2022/12/01 ~ 2022/12/31

Step 1. Identify prepublished literatures with Biorxiv API 2

Journal	Category	Institution	Corresponding_Authors	Authors	Title	pub_DOI	DOI	
Cell Reports	immunology	St. Jude Children's Research Hospital	Yongqiang Feng	Li, J.; Xu, B.; Zong, X.; He, M.; Fan, Y.; Cro	DNA demethylation switches the drivers of Foxp	10.1016/j.celrep.2021.110124	10.1101/2020.12.16.423137	0
Cell	cancer biology	Vanderbilt University	Ken Lau	Chen, B.; McKinley, E. T.; Simmons, A. J.; Ram	Human colorectal pre-cancer atlas identifies d	10.1016/j.cell.2021.11.031	10.1101/2021.01.11.426044	1
Nature Communications	systems biology	University of Massachusetts Chan Medical School	Hyun Youk	Laman Trip, D. S.; Maire, T.; Youk, H.	Fundamental limits to progression of cellular	10.1038/s41467-022-35151-2	10.1101/2022.06.10.495632	2
Molecular Therapy - Nucleic Acids	bioengineering	The Institute for Advanced Materials and Nanot	Ayal Hendel	lancu, O.; Allen, D.; Knop, O.; Zehavi, Y.; Br	Multiplex HDR for Disease and Correction Model	10.1016/j.omtn.2022.12.006	10.1101/2022.10.07.511272	3
Biochimica et Biophysica Acta (BBA) - Proteins	molecular biology	Petersburg Nuclear Physics Institute	Vladimir V Egorov	Garmay, Y. P.; Rubel, A. A.; Egorov, V.	Peptide from NSP7 is able to form amyloid-like	10.1016/j.bbapap.2022.140884	10.1101/2022.06.28.497929	4

n: 175

Step 1. Identify prepublished literatures with Biorxiv API 2

Retrievable Information

- DOI
- Published DOI
- Prepublished Title
- Authors
- Corresponding Authors
- Institution
- Date
- Version
- Type
- Category
- XML link

Retrieved Information

- DOI
- Published DOI
- Published Title
- Journal
- Institution
- Number of authors
- Category
- PDF Link

Step 2. Identify published literatures with PubMed & MetapubAPI &

	Title	Pub_DOI	Num_of_Authors
0	Control of Foxp3 induction and maintenance by	10.1016/j.celrep.2021.110124	10
1	Differential pre-malignant programs and microe	10.1016/j.cell.2021.11.031	52
2	Slowest possible replicative life at frigid te	10.1038/s41467-022-35151-2	3
3	Multiplex HDR for disease and correction model	10.1016/j.omtn.2022.12.006	10
4	Peptide from NSP7 is able to form amyloid-like	10.1016/j.bbapap.2022.140884	3
		944	1110
169	Purification, full-length sequencing and genom	10.1038/s41596-022-00783-7	3
170	Midgut Bacterial Microbiota of 12 Fish Species	10.1007/s00248-022-02154-x	4
171	The Male Mouse Meiotic Cilium Emanates from th	10.3390/cells12010142	4
173	miR-17-92 exerts stage-specific effects in adu	10.1016/j.celrep.2022.111773	4
174	Cdk1-mediated threonine phosphorylation of Sam	10.1093/nar/gkac1181	10

n: 170 (-5)

Step 2. Identify published literatures with PubMed & MetapubAPI 🖉

Retrieved Information from PubMed

- Published DOI
- Published Title
 - But is **unstable**, therefore not used.
- Number of authors
- Category

Retrieved Information from MetaPub

- Published DOI
- Published Title
- PDF Link

Step 3. Merge the outcomes from step 1 and 2

	DOI	Pub_DOI	Institution	Category	Journal	Prepub_NA	Pub_NA	Prepub_Title	Pub_Title
	0 10.1101/2020.12.16.423137	10.1016/j.celrep.2021.110124	St. Jude Children's Research Hospital	immunology	Cell Reports	8	10	dna demethylation switches the drivers of foxp	control of foxp3 induction and maintenance by
	1 10.1101/2021.01.11.426044	10.1016/j.cell.2021.11.031	Vanderbilt University	cancer biology	Cell	28	52	human colorectal pre-cancer atlas identifies d	differential pre- malignant programs and microe
	2 10.1101/2022.06.10.495632	10.1038/s41467-022-35151-2	University of Massachusetts Chan Medical School	systems biology	Nature Communications	3	3	fundamental limits to progression of cellular	slowest possible replicative life at frigid te
,	3 10.1101/2022.10.07.511272	10.1016/j.omtn.2022.12.006	The Institute for Advanced Materials and Nanot	bioengineering	Molecular Therapy - Nucleic Acids	12	10	multiplex hdr for disease and correction model	multiplex hdr for disease and correction model
	4 10.1101/2022.06.28.497929	10.1016/j.bbapap.2022.140884	Petersburg Nuclear Physics Institute	molecular biology	Biochimica et Biophysica Acta (BBA) - Proteins	3	3	peptide from nsp7 is able to form amyloid-like	peptide from nsp7 is able to form amyloid- like

n: 170 (-5)

Step 4. Retrieve PDF link for published article using Metapub API

Pub_PDF	Prepub_PDF	Pub_Title	Prepub_Title	Pub_NA	Prepub_NA	Journal
http://europepmc.org/backend/ptpmcrender.fcgi?	https://www.biorxiv.org/content/10.1101/2020.1	control of foxp3 induction and maintenance by	dna demethylation switches the drivers of foxp	10	8	Cell Reports
http://europepmc.org/backend/ptpmcrender.fcgi?	https://www.biorxiv.org/content/10.1101/2021.0	differential pre- malignant programs and microe	human colorectal pre-cancer atlas identifies d	52	28	Cell
http://europepmc.org/backend/ptpmcrender.fcgi?	https://www.biorxiv.org/content/10.1101/2022.0	slowest possible replicative life at frigid te	fundamental limits to progression of cellular	3	3	Nature Communications
http://europepmc.org/backend/ptpmcrender.fcgi?	https://www.biorxiv.org/content/10.1101/2022.0	peptide from nsp7 is able to form amyloid- like	peptide from nsp7 is able to form amyloid-like	3	3	Biochimica et Biophysica Acta (BBA) - Proteins
http://europepmc.org/backend/ptpmcrender.fcgi?	https://www.biorxiv.org/content/10.1101/2021.1	one-carbon pathway metabolites are altered in	folate pathway metabolites are altered in the	16	15	Frontiers in Medicine

n: 83 (-87)

Step 4: Retrieve PDF link for published article using web browsing

Suggested idea:

https://www.biorxiv.org/content/10.1101/2022.12.29.522204v1 https://www.biorxiv.org/content/10.1101/2022.12.29.522204v2

- No success in finding the link to the published article through web browsing
- Use API which is more reliable

Step 5. Analyze PDF

- Number of Figures & Texts & Pages:
 - Using PDF parsing (fitz & PyPDF)
 - Reads all PDF into <u>text strings</u>

Prepub_Figures	Pub_Figures	Prepub_Texts	Pub_Texts	Prepub_Pages	Pub_Pages
11	13	118894	94183	58	39
30	14	163788	176266	51	59
39	47	275640	88322	103	16
4	4	18306	15751	7	4
3	3	70916	66753	26	14

Step 5. Concerns with PDF Parsing

Abstract

11

12

Synaptic changes underlie learning and memory formation in the brain. But synaptic plasticity of excitatory synapses on its own is unstable, leading to unlimited growth of synaptic strengths without additional homeostatic mechanisms. To control excitatory synaptic strengths we propose a novel form of synaptic plasticity at inhibitory synapses. We identify two key features of inhibitory plasticity, dominance of inhibition over excitation and a nonlinear dependence on the firing rate of postsynaptic excitatory neurons whereby inhibitory synaptic strengths change in the same direction as excitatory synaptic strengths. We demonstrate that the stable synaptic strengths realized by this novel inhibitory plasticity achieve a fixed excitatory/inhibitory set-point in agreement with experimental results. Applying a disinhibitory signal can gate plasticity and lead to the generation of receptive fields and strong bidirectional connectivity in a recurrent network. Hence, a novel form of nonlinear inhibitory plasticity can simultaneously stabilize excitatory synaptic strengths and enable learning upon disinhibition.

Step 5. Available Features

- Change in article title
- Change in number of authors
- Change in **number of figures**
- Change in total number of characters
- Change in number of pages

Of 175 queried Biorvix articles, 73 articles have been fully analyzed.

Comparison to the Previous Version

Old Version (Daniel's Codes)

- Used <u>selenium.webdriver</u> to extract article information from the U of C database.
- Did not filter out unpublished articles first.
- PDF files were downloaded for further analysis.
- PDF analysis was done in R.
 - Number of figures in the article were counted by <u>pdf_extractlmages</u> built-in function in metagear package.
 - This built-in function is **not accurate**.

Current Version (2022)

- Uses <u>PyMed</u> and <u>Metapub API</u> to retrieve article information.
- Filters out published articles at the beginning of the workflow.
- PDF files are viewed in URL format; no need to download the files.
- PDF analysis was done with <u>fitz</u> and <u>PyPDF2</u> packages in Python.
 - Number of figures in the article are found with NLP (regex).
 - Also not 100% accurate, but more accurate than before.

Current Concerns

- Not all literatures are in PubMed database.
 - Among the first 175 literatures in the sample dataset, 5 literatures were missing from the database.
- Not all literatures have open PDF access.
 - Out of 170 literatures, 87 literatures did not have open PDF access.
- Takes long time to run through the process.
 - The entire process took about 3200 seconds (53.3 minutes) to run.

Possible solution

- Use **web scraping** (from Daniel's codes) to retrieve data from UBC / U of C engine.
 - However, this would require us to download all PDF files.
- Use **multi-processing** to reduce run time.

Discussions

- Decide on what features to be used for further processes.
 - What are we going to compare between published and prepublished articles?
 - Number of authors, number of figures, words.
- Decide on sample sizes.
 - O How many articles are we going to sample?
 - If sample size is small (< 200), we could consider downloading all PDF files for analysis.
- Decide on the field of studies to focus on.
 - Currently, we are only using prepublished information from the Biorxiv API. Are we planning to look at any other field of studies? (*E.g.*, sociology)
 - Countries, mathematics vs. biology (e.g. **STEM fields**).
- Decide on methods of machine learning for exploratory & descriptive analysis.

Future Actions

 Albert: Redesign some parts of the code to speed up the process. Verify codes to see if they work well without errors.

 Daniel: Help with analysing PDF files. We would potentially like to look at the number of characters by each section of an article (*E.g.*, Introduction, Methods...)

Future Actions: PDF Text Analysis

- PDF to text
 - OCR with Tesseract-OCR (https://github.com/tesseract-ocr/tesseract)
- Text Analysis: some suggested methods
 - Word frequencies
 - Sequence matching (dynamic programming)
 - Sentence similarity with SBERT

Thank you for listening!

GitHub Workflow