Lista 14

Zadanie 1. Wyznacz największy wspólny dzielnik par wielomianów (o ile nie jest napisane inaczej: w $\mathbb{R}[x]$)

- $x^4 2x^3 19x^2 + 8x + 60$ oraz $x^4 + 5x^3 + 5x^2 5x 6$;
- $x^4 + x^3 + 2x^2 + 2x$ oraz $x^4 + 2x^3 + 2x^2 + x$ (w $\mathbb{Z}_3[x]$)
- $f = x^p + 1$, g = x + 1 (w $\mathbb{Z}_p[X]$ dla p—pierwszego).

W którymś z przykładów wyraź nwd jako kombinację podanych wielomianów.

Wskazówka: Do ostatniego: policz, ile wynosi $(x+1)^p$ w \mathbb{Z}_p .

Zadanie 2. Udowodnij uogólnienia twierdzenia z wykładu:

Niech f będzie wielomianem nierozkładalnym a $p_1p_2 \dots p_\ell$ wielomianami w $\mathbb{F}[x]$ oraz $f^k|p_1p_2 \dots p_\ell$. Wtedy istnieją liczby n_1, n_2, \dots, n_ℓ , takie że $\sum_i n_i \geq k$ oraz dla każdego i zachodzi $f^{n_i}|p_i$.

Zadanie 3. Pokaż, że w $\mathbb{F}[x]$ zachodzi prawo skreśleń: jeśli $f, g, h \in \mathbb{F}[x]$ spełniają

$$f \neq 0$$
, $fg = fh \implies g = h$.

Zadanie 4. Korzystając z tw. Bezout rozłóż poniższe wielomiany z $\mathbb{Z}_2[x]$ na czynniki nierozkładalne

$$x^5 + x^3 + x + 1$$
, $x^4 + x^3 + x^2 + 1$, $x^5 + x^2 + x$, $x^4 + x^2 + 1$, $x^4 + x^2 + x$.

Potraktuj powyższe wielomiany jako wielomiany z $\mathbb{Z}_3[x]$ i również rozłóż je na czynniki nierozkładalne.

nierozkładalne.

Wskazówka: Być może konieczne też będzie osobne zastanowienie się, które wielomiany drugiego stopnia są

Zadanie 5. Wielomian f ma resztę z dzielenia przez $x - c_1$ równą r_1 oraz resztę z dzielenia przez $x - c_2$ równą r_2 . Ile wynosi reszta z dzielenia f przez $(x - c_1)(x - c_2)$?

Wystarczy, że zapiszesz zależność na współczynniki tego wielomianu, nie musisz jej rozwiązywać.

Wskazówka: Skorzystaj z tw. Bezout.

Zadanie 6. Niech f, g, f', g', a będą niezerowymi wielomianami z pierścienia wielomianów $\mathbb{F}[x]$. Załóżmy, że f = af' oraz g = ag'.

- Jeśli h' = nwd(f', g'), to ile wynosi nwd(f, g)?
- Jeśli h', r' są ilorazem oraz resztą z dzielenia f' przez g', to ile wynosi iloraz, a ile reszta z dzielenia f przez g?

Zadanie 7. Dane są dwa niezerowe wielomiany $f,g\in\mathbb{F}[x]$ o współczynnikach z ciała \mathbb{F} . Załóżmy, że f=f'f'' oraz nwd(f',g)=1. Celem zadania jest pokazanie, jak odtworzyć reprezentację nwd(f,g) jako kombinacji wielomianów f,g z analogicznych reprezentacji dla f'',g oraz f',g.

- Pokaż, że nwd(f, g) = nwd(f'', g).
- Niech $\operatorname{nwd}(f'',g) = af'' + bg$ oraz $1 = \operatorname{nwd}(f',g) = cf' + dg$ dla odpowiednich wielomianów $a,b,c,d \in \mathbb{F}[x]$. Wyraź $\operatorname{nwd}(f,g)$ jako kombinację wielomianów f,g; kombinacja ta zapewne będzie używać wielomianów a,b,c,d,f'.

Zadanie 8. Podaj wszystkie nierozkładalne wielomiany stopnia 2 oraz 3 w $\mathbb{Z}_2[x]$ oraz wszystkie nierozkładalne wielomiany stopnia 2 nad \mathbb{Z}_3 .

Zadanie 9. Celem tego zadania jest pokazanie, że wielomiany nierozkładalne w $\mathbb{R}[x]$ są stopnia najwyżej 2. Możesz korzystać z (nie tak prostego) twierdzenia, że wielomiany nierozkładalne nad $\mathbb{C}[x]$ są stopnia najwyżej 1. W tym zadaniu utożsamiamy wielomian z jego wartościowaniem a \overline{x} będzie oznaczać sprzężenie (w \mathbb{C}) liczby zespolonej x.

Ustalmy wielomian $f \in \mathbb{R}[x]$.

- Pokaż, że dla liczby zespolonej c zachodzi $f(\bar{c}) = \overline{f(c)}$.
- Wywnioskuj z tego, że jeśli $c \in \mathbb{C}$ jest miejscem zerowym wielomianu f, to jest nim też \bar{c} .
- Pokaż, że wielomian $(x-c)(x-\overline{c})$ ma współczynniki rzeczywiste.
- Wywnioskuj z tego, że jeśli f jest nierozkładalny (w $\mathbb{R}[x]$), to jest stopnia najwyżej 2.

Zadanie 11. Niech \mathbb{F} będzie ciałem zaś $\mathbb{F}[x]$ pierścieniem wielomianów o współczynnikach z tego ciała. Udowodnij, że każdy wielomian $f \in \mathbb{F}[x]$ da się przedstawić jednoznacznie (z dokładnością do kolejności czynników) w postaci $f = c \cdot f_1 \cdot f_2 \cdots f_k$, gdzie $c \in \mathbb{F}$ jest stałą, a każde $f_i \in \mathbb{F}[x]$ jest wielomianem nierozkładalnym o wiodącym współczynniku równym 1.

Wskazówka: Założenie o współczynniku równym l jest tylko po to, by uniknąć arbitralności w wyborze współczynnika wiodącego, co prowadzi do "różnych" rozkładów.

Zadanie 12. Niech \mathbb{F} będzie ciałem skończonym o n elementach. Pokaż, że w $\mathbb{F}[x]$ prawdziwa jest zależność:

$$x^n - x = \prod_{a \in \mathbb{F}} (x - a)$$

Wskazówka: Porównaj pierwiastki obydwu wielomianów oraz ich wiodące współczynniki.