CE100 Algorithms and Programming II

Week-4 (Heap/Heap Sort)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

<iframe width=700, height=500 frameBorder=0 src="../ce100-week-4heap.md_slide.html"></iframe>

Heap/Heap Sort

Outline (1)

- Heaps
 - Max / Min Heap
- Heap Data Structure
 - Heapify
 - Iterative
 - Recursive

Outline (2)

- Extract-Max
- Build Heap

Outline (3)

- Heap Sort
- Priority Queues
- Linked Lists
- Radix Sort
- Counting Sort

Heapsort

- Worst-case runtime: O(nlgn)
- Sorts in-place
- Uses a special data structure (heap) to manage information during execution of the algorithm
 - Another design paradigm

Heap Data Structure (1)

- Nearly complete binary tree
 - Completely filled on all levels except possibly the lowest level

Heap Data Structure (2)

- Height of node i: Length of the longest simple downward path from i to a leaf
- Height of the tree: height of the root

Heap Data Structures (3)

• Depth of node i: Length of the simple downward path from the root to node i

Heap Property: Min-Heap

- The smallest element in any subtree is the root element in a min-heap
- Min heap: For every node i other than root, $A[parent(i)] \leq A[i]$
 - Parent node is always smaller than the child nodes

Heap Property: Max-Heap

- The largest element in any subtree is the root element in a max-heap
 - We will focus on max-heaps
- ullet Max heap: For every node ${f i}$ other than root, $A[parent(i)] \geq A[i]$
 - Parent node is always larger than the child nodes

Heap Data Structures (4)

Heap Data Structures (5)

- Computing left child, right child, and parent indices very fast
 - **left(i) = 2i** ⇒ binary left shift
 - \circ right(i) = 2i+1 \Longrightarrow binary left shift, then set the lowest bit to 1
 - o parent(i) = floor(i/2) => right shift in binary
- ullet A[1] is always the **root** element
- ullet Array A has two attributes:
 - \circ length(A): The number of elements in A
 - \circ **n** = **heap-size(A)**: The number elements in heap
 - $n \leq length(A)$

Heap Operations : EXTRACT-MAX (1)

```
EXTRACT-MAX(A, n)
  max = A[1]
  A[1] = A[n]
  n = n - 1
  HEAPIFY(A, 1,n)
  return max
```


Heap Operations : EXTRACT-MAX (2)

• Return the max element, and reorganize the heap to maintain heap property

```
EXTRACT-MAX (A, n)
        = A[1]
 max
 A[1] = A[n]
                                          6
 HEAPIFY (A, 1,n)
 return max
                                    10
 max=?
```


Heap Operations: HEAPIFY (1)

Heap Operations: HEAPIFY (2)

- Maintaining heap property:
 - \circ Subtrees rooted at left[i] and right[i] are already heaps.
 - \circ But, A[i] may violate the heap property (i.e., may be smaller than its children)
- Idea: Float down the value at A[i] in the heap so that subtree rooted at i becomes a heap.

Heap Operations: HEAPIFY (2)

```
HEAPIFY(A, i, n)
  largest = i
  if 2i <= n and A[2i] > A[i] then
   largest = 2i;
  endif
  if 2i+1 <= n and A[2i+1] > A[largest] then
   largest = 2i+1;
  endif
  if largest != i then
    exchange A[i] with A[largest];
    HEAPIFY(A, largest, n);
  endif
```

Heap Operations: HEAPIFY (3)

```
HEAPIFY (A, i, n)
                                                initialize largest
  largest=i
                                                to be the node i
                                                                        compute the
  if 2i<=n and A[2i]>A[i]...
                                                check the left
                                                                        largest of:
                                                child of node i
                                                                        1) node i
    then largest=2i;
                                                                        2) left child of node i
  if 2i+1<=n and A[2i+1]>A[largest]
                                                check the right
                                                                        3) right child of node i
                                                child of node i
     then largest=2i+1;
  if largest!=i then
                                                exchange the largest
     exchange A[i] with A[largest]; •
                                                of the 3 with node i
     HEAPIFY(A, largest, n);
  endif
                                                recursive call on the
                                                subtree
```


Heap Operations: HEAPIFY (4)

Heap Operations: HEAPIFY (5)

Heap Operations: HEAPIFY (6)

```
HEAPIFY(A, 4, 9)
HEAPIFY(A,i,n)
 largest=i
 if 2i<=n and A[2i]>A[i]
   then largest=2i;
 if 2i+1<=n and A[2i+1]>A[largest]
    then largest=2i+1;
 if largest!=i then
   exchange A[i] with A[largest];
   HEAPIFY(A,largest,n);
 endif
           Recursive Call
            (Base Case)
```


Heap Operations: HEAPIFY (7)

```
HEAPIFY(A,i,n)
  largest=i
  if 2i<=n and A[2i]>A[i]
   then largest=2i;
  if 2i+1<=n and A[2i+1]>A[largest]
    then largest=2i+1;
  if largest!=i then
    exchange A[i] with A[largest];
    HEAPIFY(A,largest,n);
  endif
```


Heap Operations: HEAPIFY (8)

Intuitive Analysis of HEAPIFY

- Consider HEAPIFY(A, i, n)
 - \circ let h(i) be the height of node i
 - \circ at most h(i) recursion levels
 - Constant work at each level: $\Theta(1)$
 - \circ Therefore T(i) = O(h(i))
- Heap is almost-complete binary tree
 - $\circ \ h(n) = O(lgn)$
- ullet Thus T(n)=O(lgn)

Formal Analysis of HEAPIFY

- What is the recurrence?
 - Depends on the size of the **subtree** on which recursive call is made
 - In the next, we try to compute an **upper bound** for this **subtree**.

CE100 Reminder: Binary trees

- For a complete binary tree:
 - $\circ~\#$ of nodes at depth d: 2^d
 - $\circ~\#$ of nodes with depths less than $d\!\!:\!2^d-1$

$$2^d = \text{node size at d}$$
 $2^2 = 4$

$$2^d - 1 = \text{node size less than d}$$
 $2^2 - 1 = 3 \Longrightarrow 2^0 + 2^1$

Formal Analysis of HEAPIFY (1)

- ullet Worst case occurs when last row of the subtree S_i rooted at node i is half full
- $T(n) \leq T(|S_{L(i)}|) + \Theta(1)$
- ullet $S_{L(i)}$ and $S_{R(i)}$ are complete binary trees of heights h(i)-1 and h(i)-2, respectively

Formal Analysis of HEAPIFY (2)

ullet Let m be the number of **leaf nodes** in $S_{L(i)}$

$$egin{aligned} egin{aligned} & |S_{L(i)}| = \overbrace{m}^{ext.} + \overbrace{(m-1)}^{int.} = 2m-1 \ & |S_{R(i)}| = \overbrace{\frac{m}{2}}^{ext.} + (rac{m}{2}-1) = m-1 \ & |S_{L(i)}| + |S_{R(i)}| + 1 = n \end{aligned}$$

Formal Analysis of HEAPIFY (2)

$$egin{aligned} (2m-1)+(m-1)+1&=n\ m&=(n+1)/3\ |S_{L(i)}|&=2m-1\ &=2(n+1)/3-1\ &=(2n/3+2/3)-1\ &=rac{2n}{3}-rac{1}{3}\leqrac{2n}{3}\ T(n)&\leq T(2n/3)+\Theta(1)\ T(n)&=O(lgn) \end{aligned}$$

ullet By CASE-2 of Master Theorem $\Longrightarrow T(n) = \Theta(n^{log^a_b} lgn)$

Formal Analysis of HEAPIFY (2)

- Recurrence: T(n) = aT(n/b) + f(n)
- Case 2: $rac{f(n)}{n^{log_b^a}} = \Theta(1)$
- ullet i.e., f(n) and $n^{log^a_b}$ grow at similar rates
- Solution: $T(n) = \Theta(n^{log^a_b} lgn)$
 - $\circ \ T(n) \leq T(2n/3) + \Theta(1)$ (drop constants.)
 - $\circ \ T(n) \leq \Theta(n^{log_3^1} lgn)$
 - $\circ \ T(n) \leq \Theta(n^0 lgn)$
 - $\circ \ T(n) = O(lgn)$

HEAPIFY: Efficiency Issues

- Recursion vs Iteration:
 - In the absence of tail recursion, **iterative version** is in general **more efficient** because of the **pop/push** operations **to/from** stack at each **level of recursion**.

Heap Operations: HEAPIFY (1)

Recursive

```
HEAPIFY(A, i, n)
largest = i
if 2i <= n and A[2i] > A[i] then
  largest = 2i
if 2i+1 <= n and A[2i+1] > A[largest] then
  largest = 2i+1
if largest != i then
  exchange A[i] with A[largest]
  HEAPIFY(A, largest, n)
```


Heap Operations: HEAPIFY (2)

Iterative

```
HEAPIFY(A, i, n)
  j = i
 while(true) do
    largest = j
  if 2j <= n and A[2j] > A[j] then
    largest = 2j
  if 2j+1 <= n and A[2j+1] > A[largest] then
    largest = 2j+1
  if largest != j then
    exchange A[j] with A[largest]
    j = largest
  else return
```

Heap Operations: HEAPIFY (3)

Recursive

```
\begin{aligned} & \underbrace{\textit{HEAPIFY}(A,i,n)} \\ & \text{largest} \leftarrow i \\ & \text{if } 2i \leq n \text{ and } A[2i] > A[i] \text{ then } \text{largest} \leftarrow 2i \\ & \text{if } 2i + 1 \leq n \text{ and } A[2i + 1] > A[\text{largest}] \text{ then } \text{largest} \leftarrow 2i + 1 \\ & \text{if } \text{largest} \neq i \text{ then} \\ & \text{exchange } A[i] \leftrightarrow A[\text{largest}] \\ & \underbrace{\textit{HEAPIFY}}(A, \text{largest}, n) \end{aligned}
```

Iterative

```
HEAPIFY(A,i, n)

j ← i

while (true) do

largest ← j

if 2j \le n and A[2j] > A[j] then largest ← 2j

if 2j + 1 \le n and A[2j+1] > A[largest] then largest ← 2j + 1

if largest ≠ j then

exchange A[j] \leftrightarrow A[largest]

j ← largest

else return
```


Heap Operations: Building Heap

- Given an arbitrary array, how to build a heap from scratch?
- ullet Basic idea: Call HEAPIFY on each node bottom up
 - Start from the leaves (which trivially satisfy the heap property)
 - Process nodes in bottom up order.
 - \circ When HEAPIFY is called on node i, the subtrees connected to the left and right subtrees already satisfy the heap property.

Storage of the leaves (Lemma)

• Lemma: The last $\lceil \frac{n}{2} \rceil$ nodes of a heap are all leaves.

Storage of the leaves (Proof of Lemma) (1)

- ullet Lemma: last $\lceil n/2
 ceil$ nodes of a heap are all leaves
- Proof :
 - $m=2^{d-1}$: # nodes at level d-1
 - $\circ f$: # nodes at level d (last level)
- ullet # of nodes with depth d-1 : m
- ullet # of nodes with depth < d-1 : m-1
- ullet # of nodes with depth d : f
- ullet Total # of nodes :n=f+2m-1

Storage of the leaves (Proof of Lemma) (2)

ullet Total # of nodes : f=n-2m+1

$$\#$$
 of leaves: $=f+m-\lceil f/2
ceil$
 $=m+\lfloor f/2
floor$
 $=m+\lfloor (n-2m+1)/2
floor$
 $=\lfloor (n+1)/2
floor$
 $=\lceil n/2
ceil$

Proof is Completed

Heap Operations: Building Heap

```
BUILD-HEAP (A, n)
  for i = ceil(n/2) downto 1 do
   HEAPIFY(A, i, n)
```

ullet Reminder: The last $\lceil n/2 \rceil$ nodes of a heap are all leaves, which trivially satisfy the heap property

Build-Heap Example (Step-1)

Build-Heap Example (Step-2)

Build-Heap Example (Step-3)

Build-Heap Example (Step-4)

Build-Heap Example (Step-5)

Build-Heap Example (Step-6)

Build-Heap Example (Step-7)

Build-Heap Example (Step-8)

Build-Heap Example (Step-9)

Build-Heap: Runtime Analysis

- Simple analysis:
 - $\circ~O(n)$ calls to HEAPIFY, each of which takes O(lgn) time
 - $\circ~O(nlgn) \Longrightarrow$ loose bound
- In general, a good approach:
 - Start by proving an easy bound
 - Then, try to tighten it
- Is there a tighter bound?

- ullet If the heap is complete binary tree then $h_\ell=d\!-\!\ell$
- Otherwise, nodes at a given level do not all have the same height, But we have $d\!\!-\!\!\ell\!\!-\!\!1 \leq h_\ell \leq d\!\!-\!\!\ell$

ullet Assume that all nodes at level $\ell=d\!-\!1$ are processed

$$T(n) = \sum_{\ell=0}^{d-1} n_\ell O(h_\ell) = O(\sum_{\ell=0}^{d-1} n_\ell h_\ell) egin{cases} n_\ell = 2^\ell = \# ext{ of nodes at level } \ell \ h_\ell = ext{height of nodes at level } \ell \end{cases}$$

$$\therefore T(n) = Oigg(\sum_{\ell=0}^{d-1} 2^\ell (d-\ell)igg)$$

Let $h = d - \ell \Longrightarrow \ell = d - h$ change of variables

$$T(n) = Oigg(\sum_{h=1}^d h 2^{d-h}igg) = Oigg(\sum_{h=1}^d h rac{2^d}{2^h}igg) = Oigg(2^d \sum_{h=1}^d h (1/2)^higg)$$

but
$$2^d = \Theta(n) \Longrightarrow O\bigg(n\sum_{h=1}^d h(1/2)^h\bigg)$$

RTEU CE10

$$\sum_{h=1}^d h(1/2)^h \leq \sum_{h=0}^d h(1/2)^h \leq \sum_{h=0}^\infty h(1/2)^h$$

recall infinite decreasing geometric series

$$\sum_{k=0}^{\infty} x^k = rac{1}{1-x} ext{ where } |x| < 1$$

differentiate both sides

$$\sum_{k=0}^{\infty} kx^{k-1} = rac{1}{(1-x)^2}$$

$$\sum_{k=0}^{\infty} kx^{k-1} = rac{1}{(1-x)^2}$$

ullet then, multiply both sides by x

$$\sum_{k=0}^{\infty} kx^k = rac{x}{(1-x)^2}$$

ullet in our case: x=1/2 and k=h

$$\therefore \sum_{h=0}^{\infty} h(1/2)^h = \frac{1/2}{(1-(1/2))^2} = 2 = O(1)$$

$$T(n) = O(n \sum_{h=1}^{d} h(1/2)^h) = O(n)$$

Heapsort Algorithm Steps

- ullet (1) Build a heap on array $A[1\dots n]$ by calling BUILD-HEAP(A,n)
- ullet (2) The largest element is stored at the root A[1]
 - \circ Put it into its correct final position A[n] by $A[1] \longleftrightarrow A[n]$
- (3) Discard node n from the heap
- (4) Subtrees (S2&S3) rooted at children of root remain as heaps, but the new root element may violate the heap property.
 - \circ Make $A[1\ldots n-1]$ a heap by calling HEAPIFY(A,1,n-1)
- (5) $n \leftarrow n-1$
- ullet (6) Repeat steps (2-4) until n=2

Heapsort Algorithm Example (Step-1)

Heapsort Algorithm Example (Step-2)

Heapsort Algorithm Example (Step-3)

Heapsort Algorithm Example (Step-4)

Heapsort Algorithm Example (Step-5)

Heapsort Algorithm Example (Step-6)

Heapsort Algorithm Example (Step-7)

Heapsort Algorithm Example (Step-8)

Heapsort Algorithm Example (Step-9)

Heapsort Algorithm Example (Step-10)

Heapsort Algorithm Example (Step-11)

Heapsort Algorithm Example (Step-12)

Heapsort Algorithm Example (Step-13)

Heapsort Algorithm Example (Step-14)

Heapsort Algorithm Example (Step-15)

Heapsort Algorithm Example (Step-16)

Heapsort Algorithm Example (Step-17)

Heapsort Algorithm Example (Step-18)

Heapsort Algorithm Example (Step-19)

Heapsort Algorithm: Runtime Analysis

```
HEAPSORT (A, n)BUILD-HEAP(A, n)\Theta(n)for i \leftarrow n downto 2 doexchange A[1] \leftrightarrow A[i]\Theta(1)HEAPIFY(A, 1, i-1)O(lg(i-1))
```

$$egin{aligned} T(n) &= \Theta(n) + \sum_{i=2}^n O(lgi) \ &= \Theta(n) + Oigg(\sum_{i=2}^n O(lgn)igg) \ &= O(nlgn) \end{aligned}$$

Heapsort - Notes

- Heapsort is a very good algorithm but, a good implementation of quicksort always beats heapsort in practice
- However, heap data structure has many popular applications, and it can be efficiently used for implementing priority queues

Data structures for Dynamic Sets

• Consider sets of records having key and satellite data

Operations on Dynamic Sets

- Queries: Simply return info;
 - $\circ \ MAX(S)/MIN(S)$: (Query) return $x \in S$ with the largest/smallest key
 - $\circ \; SEARCH(S,k)$: (Query) return $x \in S$ with key[x] = k
 - $\circ \ SUCCESSOR(S,x)/PREDECESSOR(S,x)$: (Query) return $y \in S$ which is the next larger/smaller element after x
- Modifying operations: Change the set
 - $\circ \ INSERT(S,x)$: (Modifying) $S \leftarrow S \cup \{x\}$
 - $\circ \ DELETE(S,x):$ (Modifying) $S \leftarrow S \{x\}$
 - \circ $\operatorname{EXTRACT-MAX}(S)/\operatorname{EXTRACT-MIN}(S):$ (Modifying) return and delete $x \in S$ with the largest/smallest key
- Different data structures support/optimize different operations

Priority Queues (PQ)

- Supports
 - \circ INSERT
 - $\circ MAX/MIN$
 - EXTRACT-MAX/EXTRACT-MIN

Priority Queues (PQ)

- One application: Schedule jobs on a shared resource
 - PQ keeps track of jobs and their relative priorities
 - \circ When a job is finished or interrupted, highest priority job is selected from those pending using $EXTRACT ext{-}MAX$
 - \circ A new job can be added at any time using INSERT

Priority Queues (PQ)

- Another application: Event-driven simulation
 - Events to be simulated are the items in the PQ
 - \circ Each event is associated with a time of occurrence which serves as a key
 - Simulation of an event can cause other events to be simulated in the future
 - Use EXTRACT-MIN at each step to choose the next event to simulate
 - \circ As new events are produced insert them into the PQ using INSERT

Implementation of Priority Queue

- Sorted linked list: Simplest implementation
 - \circ INSERT
 - lacksquare O(n) time
 - Scan the list to find place and splice in the new item
 - EXTRACT-MAX
 - O(1) time
 - Take the first element
 - Fast extraction but slow insertion.

Implementation of Priority Queue

- Unsorted linked list: Simplest implementation
 - \circ INSERT
 - O(1) time
 - Put the new item at front
 - EXTRACT-MAX
 - lacksquare O(n) time
 - Scan the whole list
 - Fast insertion but slow extraction.
- Sorted linked list is better on the average
 - \circ **Sorted list:** on the average, scans n/2 element per insertion
 - \circ Unsorted list: always scans n element at each extraction

Heap Implementation of PQ

- ullet INSERT and $EXTRACT ext{-MAX}$ are both O(lgn)
 - o good compromise between fast insertion but slow extraction and vice versa
- EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX
- INSERT: Insertion is like that of Insertion-Sort.

```
HEAP-INSERT(A, key, n)
  n = n+1
  i=n
  while i>1 and A[floor(i/2)] < key do
    A[i]=A[floor(i/2)]
  i= floor(i/2)
  A[i]=key</pre>
```

Heap Implementation of PQ

- ullet Traverses O(lgn) nodes, as HEAPIFY does but makes fewer comparisons and assignments
 - \circ HEAPIFY: compares parent with both children
 - $\circ \; HEAP-INSERT$: with only one

HEAP-INSERT Example (Step-1)

HEAP-INSERT Example (Step-2)

HEAP-INSERT Example (Step-3)

HEAP-INSERT Example (Step-4)

HEAP-INSERT Example (Step-5)

Heap Increase Key

ullet Key value of i^{th} element of heap is increased from A[i] to key

```
HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then
  return error

while i > 1 and A[floor(i/2)] < key do
  A[i] = A[floor(i/2)]
  i = floor(i/2)

A[i] = key</pre>
```


HEAP-INCREASE-KEY Example (Step-1)

HEAP-INCREASE-KEY Example (Step-2)

HEAP-INCREASE-KEY Example (Step-3)

HEAP-INCREASE-KEY Example (Step-4)

HEAP-INCREASE-KEY Example (Step-5)

Heap Implementat ion of Priority Queue (PQ)

Summary: Max Heap

- Heapify(A, i)
 - Works when both child subtrees of node i are heaps
 - "Floats down" node i to satisfy the heap property
 - \circ Runtime: O(lgn)
- Max(A, n)
 - Returns the max element of the heap (no modification)
 - \circ Runtime: O(1)
- Extract-Max(A, n)
 - Returns and removes the max element of the heap
 - \circ Fills the gap in A[1] with A[n], then calls **Heapify(A,1)**
 - \circ Runtime: O(lgn)

Summary: Max Heap

- Build-Heap(A, n)
 - Given an arbitrary array, builds a heap from scratch
 - \circ Runtime: O(n)
- Min(A, n)
 - Our How to return the min element in a max-heap?
 - \circ Worst case runtime: O(n)
 - because ~half of the heap elements are leaf nodes
 - Instead, use a min-heap for efficient min operations
- Search(A, x)
 - \circ For an arbitrary x value, the worst-case runtime: O(n)
 - Use a sorted array instead for efficient search operations

Summary: Max Heap

- Increase-Key(A, i, x)
 - \circ Increase the key of node i (from A[i] to x)
 - \circ "Float up" x until heap property is satisfied
 - \circ Runtime: O(lgn)
- Decrease-Key(A, i, x)
 - \circ Decrease the key of node i (from A[i] to x)
 - Call Heapify(A, i)
 - \circ Runtime: O(lgn)

Phone Operator Problem

- ullet A phone operator answering n phones
- Each phone i has x_i people waiting in line for their calls to be answered.
- Phone operator needs to answer the phone with the largest number of people waiting in line.
- New calls come continuously, and some people hang up after waiting.

Phone Operator Solution

- **Step 1**: Define the following array:
- A[i]: the ith element in heap
- A[i].id: the index of the corresponding phone
- A[i].key: # of people waiting in line for phone with index A[i].id

	/	
	/	ı
		ı
_	. 4	L

id

key

n

Phone Operator Solution

- Step 2: Build-Max-Heap(A, n)
 - Execution:
 - When the operator wants to answer a phone:
 - id = A[1].id
 - Decrease-Key(A, 1, A[1].key 1)
 - lacktriangle answer phone with index id
 - When a new call comes in to phone i:
 - Increase-Key(A, i, A[i].key + 1)
 - When a call drops from phone i:
 - Decrease-Key(A, i, A[i].key 1)

Linked Lists

- Like arrays, Linked List is a linear data structure.
- Unlike arrays, linked list elements are not stored at a contiguous location; the elements are linked using pointers.

Linked Lists - C Definition

• (

```
// A linked list node
struct Node {
  int data;
  struct Node* next;
};
```


Linked Lists - Cpp Definition

Cpp

```
class Node {
public:
   int data;
   Node* next;
};
```


Linked Lists - Java Definition

Java

```
class LinkedList {
 Node head; // head of the list
 /* Linked list Node*/
 class Node {
      int data;
      Node next;
      // Constructor to create a new node
      // Next is by default initialized
      // as null
      Node(int d) { data = d; }
```


Linked Lists - Csharp Definition

Csharp

```
class LinkedList {
 // The first node(head) of the linked list
 // Will be an object of type Node (null by default)
 Node head;
 class Node {
      int data;
      Node next;
      // Constructor to create a new node
      Node(int d) { data = d; }
```


Priority Queue using Linked List Methods

- Implement Priority Queue using Linked Lists.
 - o push(): This function is used to insert a new data into the queue.
 - o **pop():** This function removes the element with the highest priority from the queue.
 - peek()/top(): This function is used to get the highest priority element in the queue without removing it from the queue.

Priority Queue using Linked List Algorithm

```
PUSH(HEAD, DATA, PRIORITY)
  Create NEW.Data = DATA & NEW.Priority = PRIORITY
  If HEAD.priority < NEW.Priority</pre>
    NEW -> NEXT = HEAD
   HEAD = NEW
  Else
    Set TEMP to head of the list
  Endif
 WHILE TEMP -> NEXT != NULL and TEMP -> NEXT -> PRIORITY > PRIORITY THEN
    TEMP = TEMP -> NEXT
  ENDWHILE
  NEW -> NEXT = TEMP -> NEXT
  TEMP -> NEXT = NEW
```

Priority Queue using Linked List Algorithm

```
POP(HEAD)
//Set the head of the list to the next node in the list.
HEAD = HEAD -> NEXT.
Free the node at the head of the list
```

```
PEEK(HEAD):
Return HEAD -> DATA
```


Priority Queue using Linked List Notes

- LinkedList is already sorted.
- Time Complexities and Comparison with Binary Heap

	peek()	push()	pop()
Linked List	O(1)	O(n)	O(1)
Binary Heap	O(1)	O(lgn)	O(lgn)

Sorting in Linear Time

How Fast Can We Sort?

- The algorithms we have seen so far:
 - Based on comparison of elements
 - We only care about the relative ordering between the elements (not the actual values)
 - \circ The smallest worst-case runtime we have seen so far: O(nlgn)
 - \circ Is O(nlgn) the best we can do?
- Comparison sorts: Only use comparisons to determine the relative order of elements.

Decision Trees for Comparison Sorts

- Represent a sorting algorithm abstractly in terms of a decision tree
 - A binary tree that represents the comparisons between elements in the sorting algorithm
 - Control, data movement, and other aspects are ignored
- ullet One decision tree corresponds to one sorting algorithm and one value of n (input size)

Reminder: Insertion Sort Step-By-Step Description (1)

Reminder: Insertion Sort Step-By-Step Description (2)

>key

116

<key

Reminder: Insertion Sort Step-By-Step Description (3)

Different Outcomes for Insertion Sort and n=3

• Input : $< a_1, a_2, a_3 >$

Decision Tree for Insertion Sort and n=3

Decision Tree Model for Comparison Sorts

- ullet Internal node (i:j): Comparison between elements a_i and a_j
- Leaf node: An output of the sorting algorithm
- Path from root to a leaf: The execution of the sorting algorithm for a given input
- All possible executions are captured by the decision tree
- All possible outcomes (permutations) are in the leaf nodes

Decision Tree for Insertion Sort and n=3

• Input: <9,4,6>

Decision Tree Model

- A decision tree can model the execution of any comparison sort:
 - \circ One tree for each input size n
 - View the algorithm as splitting whenever it compares two elements
 - The tree contains the comparisons along all possible instruction traces
- The running time of the algorithm = the length of the path taken
- Worst case running time = height of the tree

Lower Bound for Comparison Sorts

- Let n be the number of elements in the input array.
- What is the min number of leaves in the decision tree?
 - \circ n! (because there are n! permutations of the input array, and all possible outputs must be captured in the leaves)
- ullet What is the max number of leaves in a binary tree of height $h?\Longrightarrow 2^h$
- So, we must have:

$$2^h \geq n!$$

Lower Bound for Decision Tree Sorting

- Theorem: Any comparison sort algorithm requires $\Omega(nlgn)$ comparisons in the worst case.
- ullet Proof: We'll prove that any decision tree corresponding to a comparison sort algorithm must have height $\Omega(nlgn)$

$$egin{aligned} 2^h &\geq n! \ h &\geq lg(n!) \ &\geq lg((n/e)^n)(StirlingApproximation) \ &= nlgn-nlge \ &= \Omega(nlgn) \end{aligned}$$

Lower Bound for Decision Tree Sorting

Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof: The O(nlgn) upper bounds on the runtimes for heapsort and merge sort

match the $\Omega(nlgn)$ worst-case lower bound from the previous theorem.

Sorting in Linear Time

• Counting sort: No comparisons between elements

 \circ Input: $A[1\dots n]$, where $A[j]\in\{1,2,\dots,k\}$

 \circ Output: $B[1\dots n]$, sorted

 \circ Auxiliary storage: $C[1\dots k]$

for
$$i \leftarrow 1$$
 to k do
$$C[i] \leftarrow 0$$
for $j \leftarrow 1$ to n do
$$C[A[j]] \leftarrow C[A[j]] + 1$$

$$// C[i] = |\{key = i\}|$$
for $i \leftarrow 2$ to k do
$$C[i] \leftarrow C[i] + C[i-1]$$

$$// C[i] = |\{key \le i\}|$$
for $j \leftarrow n$ downto 1 do
$$B[C[A[j]]] \leftarrow A[j]$$

$$C[A[j]] \leftarrow C[A[j]] - 1$$

• Step 1: Initialize all counts to 0

 Step 2: Count the number of occurrences of each value in the input array


```
for i \leftarrow 1 to k do
    C[i] \leftarrow 0
for j \leftarrow 1 to n do
   C[A[j]] \leftarrow C[A[j]] + 1
// C[i] = |\{key = i\}|
for i \leftarrow 2 to k do
  C[i] \leftarrow C[i] + C[i-1]
// C[i] = |\{ \text{key} \le i \}|
for j \leftarrow n downto 1 do
   B[C[A[j]]] \leftarrow A[j]
   C[A[j]] \leftarrow C[A[j]] - 1
```


$$C = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

B =

 Step 3: Compute the number of elements less than or equal to each value

 Step 4: Populate the output array

 \circ There are C[3]=3 elements that are ≤ 3

- **Step 4**: Populate the output array
 - \circ There are C[4]=5 elements that are <4

for $i \leftarrow 1$ to k do

There are C[4] = 5 elts that are ≤ 4

 Step 4: Populate the output array

 \circ There are C[3]=2 elements that are <3

- Step 4: Populate the output array
 - \circ There are C[1]=1 elements that are <1

 Step 4: Populate the output array

 \circ There are C[4]=4 elements that are <4

Counting Sort: Runtime Analysis

• Total Runtime:

$$\Theta(n+k)$$

- n : size of the input array
- k: the range of input values

Counting Sort: Runtime

- Runtime is $\Theta(n+k)$
 - \circ If k=O(n), then counting sort takes $\Theta(n)$
- Question: We proved a lower bound of $\Theta(nlgn)$ before! Where is the fallacy?
- Answer:
 - \circ $\Theta(nlgn)$ lower bound is for comparison-based sorting
 - Counting sort is not a comparison sort
 - o In fact, not a single comparison between elements occurs!

Stable Sorting

- Counting sort is a stable sort: It preserves the input order among equal elements.
 - i.e. The numbers with the same value appear in the output array in the same order as they do in the input array.
- Note: Which other sorting algorithms have this property?

Radix Sort

- Origin: Herman Hollerith's card-sorting machine for the 1890 US Census.
- Basic idea: Digit-by-digit sorting
- Two variations:
 - Sort from MSD to LSD (bad idea)
 - Sort from LSD to MSD (good idea)

(LSD/MSD: Least/most significant digit)

Herman Hollerith (1860-1929)

- The 1880 U.S. Census took almost 10 years to process.
- While a lecturer at MIT, Hollerith prototyped punched-card technology.
- His machines, including a **card sorter**, allowed the 1890 census total to be reported in **6 weeks**.
- He founded the **Tabulating Machine Company** in 1911, which merged with other companies in 1924 to form **International Business Machines(IBM)**.

Hollerith Punched Card

- **Punched card:** A piece of stiff paper that contains digital information represented by the presence or absence of holes.
 - 12 rows and 24 columns
 - o coded for age, state of residency, gender, etc.

Modern IBM card

- One character per column
 - So, that's why text windows have 80 columns!

for more samples visit https://en.wikipedia.org/wiki/Punched_card

143

Hollerith Tabulating Machine and Sorter

- Mechanically sorts the cards based on the hole locations.
- Sorting performed for one column at a time
- Human operator needed to load/retrieve/move cards at each stage

- Sort starting from the most significant digit (MSD)
- Then, sort each of the resulting bins recursively
- At the end, combine the decks in order

145

- To sort a subset of cards recursively:
 - All the other cards need to be removed from the machine, because the machine can handle only one sorting problem at a time.
 - The human operator needs to keep track of the intermediate card piles

- MSD-first sorting may require:
 - very large number of sorting passes
 - o very large number of intermediate card piles to maintain
- S(d):
 - # of passes needed to sort d-digit numbers (worst-case)
- Recurrence:
 - $\circ \ S(d)=10S(d-1)+1$ with S(1)=1
 - Reminder: Recursive call made to each subset with the same most significant digit(MSD)

• Recurrence: S(d) = 10S(d-1) + 1S(d) = 10S(d-1) + 1 $=10\Big(10S(d-2)+1\Big)+1$ $=10\Big(10\Big(10S(d-3)+1\Big)+1\Big)+1$ $= 10iS(d-i) + 10i - 1 + 10i - 2 + \cdots + 101 + 100$ $=\sum 10^i$

ullet Iteration terminates when i=d-1 with S(d-(d-1))=S(1)=1

• Recurrence: S(d) = 10S(d-1) + 1

$$egin{aligned} S(d) &= \sum_{i=0}^{d-1} 10^i \ &= rac{10^d-1}{10-1} \ &= rac{1}{9}(10^d-1) \ &\downarrow \ S(d) &= rac{1}{9}(10^d-1) \end{aligned}$$

- P(d): # of intermediate card piles maintained (worst-case)
- Reminder: Each routing pass generates 9 intermediate piles except the sorting passes on least significant digits (LSDs)
 - \circ There are 10^{d-1} sorting calls to LSDs

$$egin{aligned} P(d) &= 9(S(d) - 10^{d-1}) \ &= 9rac{(10^{d-1})}{9 - 10^{d-1}} \ &= (10^{d-1} - 9*10^{d-1}) \ &= 10^{d-1} - 1 \end{aligned}$$

$$P(d) = 10^{d-1} - 1$$

Alternative solution: Solve the recurrence

$$P(d) = 10P(d-1) + 9$$

$$P(1) = 0$$

• Example: To sort 3 digit numbers, in the worst case:

$$\circ \ S(d) = (1/9)(103-1) = 111$$
 sorting passes needed

$$\circ \ P(d) = 10d-1-1=99$$
 intermediate card piles generated

- MSD-first approach has more recursive calls and intermediate storage requirement
 - Expensive for a **tabulating machine** to sort punched cards
 - Overhead of recursive calls in a modern computer

LSD-First Radix Sort

- Least significant digit (LSD)-first radix sort seems to be a folk invention originated by machine operators.
- It is the counter-intuitive, but the better algorithm.
- Basic Algorithm:

```
Sort numbers on their LSD first (Stable Sorting Needed)
Combine the cards into a single deck in order
Continue this sorting process for the other digits
from the LSD to MSD
```

- ullet Requires only d sorting passes
- No intermediate card pile generated

LSD-first Radix Sort Example

Correctness of Radix Sort (LSD-first)

- Proof by induction:
 - \circ Base case: d=1 is correct (trivial)
 - \circ Inductive hyp: Assume the first d-1 digits are sorted correctly
- ullet Prove that all d digits are sorted correctly after sorting digit d
- Two numbers that differ in digit d are correctly sorted (e.g. 355 and 657)
- Two numbers equal in digit d are put in the same order as the input
 - (correct order)

Radix Sort Runtime

- Use counting-sort to sort each digit
- Reminder: Counting sort complexity: $\Theta(n+k)$
 - ∘ *n*: size of input array
 - \circ k: the range of the values
- Radix sort runtime: $\Theta(d(n+k))$
 - \circ d: # of digits

How to choose the d and k?

Radix Sort: Runtime – Example 1

- ullet We have flexibility in choosing d and k
- Assume we are trying to sort 32-bit words
 - We can define each digit to be 4 bits
 - \circ Then, the range for each digit $k=2^4=16$
 - So, counting sort will take $\Theta(n+16)$
 - \circ The number of digits d=32/4=8
 - \circ Radix sort runtime: $\Theta(8(n+16)) = \Theta(n)$

32-bits

 $\bullet \ \ [4bits|4bits|4bits|4bits|4bits|4bits|4bits|]$

Radix Sort: Runtime – Example 2

- ullet We have flexibility in choosing d and k
- Assume we are trying to sort 32-bit words
 - Or, we can define each digit to be 8 bits
 - \circ Then, the range for each digit $k=2^8=256$
 - So, counting sort will take $\Theta(n+256)$
 - \circ The number of digits d=32/8=4
 - \circ Radix sort runtime: $\Theta(4(n+256)) = \Theta(n)$

 $\bullet \ [8bits|8bits|8bits|8bits]$

Radix Sort: Runtime

- Assume we are trying to sort *b*-bit words
 - \circ Define each digit to be r bits
 - \circ Then, the range for each digit $k=2^r$
 - lacksquare So, counting sort will take $\Theta(n+2^r)$
 - \circ The number of digits d=b/r
 - Radix sort runtime:

$$T(n,b) = \Thetaigg(rac{b}{r}(n+2^r)igg)$$

b/r bits

 $\bullet \ [rbits|rbits|rbits|rbits]$

Radix Sort: Runtime Analysis

$$T(n,b) = \Thetaigg(rac{b}{r}(n+2^r)igg)$$

- ullet Minimize T(n,b) by differentiating and setting to 0
- Or, intuitively:
 - \circ We want to balance the terms (b/r) and $(n+2^r)$
 - \circ Choose rpprox lgn
 - lacktriangledown If we choose $r<< lgn \Longrightarrow (n+2^r)$ term doesn't improve
 - lacktriangledown If we choose $r>>lgn\Longrightarrow (n+2^r)$ increases **exponentially**

Radix Sort: Runtime Analysis

$$T(n,b) = \Thetaigg(rac{b}{r}(n+2^r)igg)$$

Choose $r = lgn \Longrightarrow T(n,b) = \Theta(bn/lgn)$

- For numbers in the range from 0 to n^d-1 , we have:
 - \circ The number of bits b=lg(nd)=dlgn
 - Radix sort runs in $\Theta(dn)$

Radix Sort: Conclusions

Choose
$$r = lgn \Longrightarrow T(n,b) = \Theta(bn/lgn)$$

- Example: Compare radix sort with merge sort/heapsort
 - $\circ~1$ million (2^{20}), 32-bit numbers $(n=2^{20},b=32)$
 - lacktriangleq Radix sort: $\lfloor 32/20 \rfloor = 2$ passes
 - lacktriangle Merge sort/heap sort: lgn=20 passes
- Downsides:
 - Radix sort has little locality of reference (more cache misses)
 - The version that uses counting sort is not in-place
- On modern processors, a well-tuned quicksort implementation typically runs faster.

References

- Introduction to Algorithms, Third Edition | The MIT Press
- Bilkent CS473 Course Notes (new)
- Bilkent CS473 Course Notes (old)
- Insertion Sort GeeksforGeeks
- Priority Queue Using Linked List GeeksforGeeks
- Priority Queue Using Linked List JavatPoint
- NIST Dictionary of Algorithms and Data Structures
- NIST Dictionary of Algorithms and Data Structures

$$-End-Of-Week-4-Course-Module-$$

