Conditional Beliefs in Action

Christoph Schwering

What's in the box? — <u>Thesis objective</u>

Involved concepts:

- Conditional beliefs
 - Believe the box is empty
 - But if it's not empty, it most likely contains a gift
- Actions and perception
 - ▶ Drop box → fragile objects breaks
 - lackbox Clink ightarrow presumably something broke

What's in the box? — <u>Thesis objective</u>

Involved concepts:

- Conditional beliefs
 - Believe the box is empty
 - ▶ But if it's *not* empty, it most likely contains a gift
- Actions and perception
 - ▶ Drop box → fragile objects breaks
 - ightharpoonup Clink ightharpoonup presumably something broke

Thesis **objective**:

- <u>Formalize</u> these concepts
- Reason about them effectively

Key questions:

- What is a conditional knowledge base?
- How are beliefs affected by actions and perception?
- When is reasoning computationally feasible?

What does "believe that if α , then also β " mean?

Believing a **material implication** is insufficient:

- **Semantics**: $\neg \alpha \lor \beta$ is believed
- Vacuously true when $\neg \alpha$ is believed
- Often counterintuitive
 - If the box is not empty, there's peace on Earth

Conditional belief is more intuitive:

- Rank possible worlds by plausibility
- **Semantics**: β holds in the most-plausible α-worlds
- Meaningful even when $\neg \alpha$ is believed

Logic of conditional belief

First-order logic with two modal operators:

- $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\} \triangleq \textit{all}$ we believe is $\{\alpha_i \Rightarrow \beta_i\}$ a.k.a. only-believing
- Here: no nested beliefs

Logic of conditional belief

First-order logic with two modal operators:

- $\mathbf{B}(\alpha \Rightarrow \beta)$ $\hat{=}$ we believe that if α , then β
- $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$ $\hat{=}$ *all* we believe is $\{\alpha_i \Rightarrow \beta_i\}$ a.k.a. only-believing
- Here: no nested beliefs

Belief implication

Does
$$\mathbf{O}\{\alpha_1 \Rightarrow \beta_1, ..., \alpha_m \Rightarrow \beta_m\}$$
 entail $\mathbf{B}(\alpha \Rightarrow \beta)$?

- Generalizes Levesque's *logic of only-knowing* to conditional belief
- Next: semantics and properties

Worlds and systems of spheres

■ A world is a truth assignment

Worlds and systems of spheres

- A **world** is a truth assignment
- \blacksquare A **system of spheres** \vec{s} ranks possible worlds by plausibility

Conditional believing

Semantics

 \vec{s} satisfies $\mathbf{B}(\alpha \Rightarrow \beta)$ *iff* the first sphere of \vec{s} consistent with α satisfies $\alpha \supset \beta$

$$\mathbf{B}(\mathsf{True} \Rightarrow \forall x \neg \mathsf{InBox}(x))$$
$$\mathbf{B}(\exists y \mathsf{InBox}(y) \Rightarrow \exists x (\mathsf{InBox}(x) \land \mathsf{Gift}(x)))$$

Conditional believing

Semantics

 \vec{s} satisfies ${\bf B}(\alpha\Rightarrow\beta)$ iff the first sphere of \vec{s} consistent with α satisfies $\alpha\supset\beta$

$$\mathbf{B}(\mathsf{True} \Rightarrow \forall x \neg \mathsf{InBox}(x))$$
$$\mathbf{B}(\exists y \, \mathsf{InBox}(y) \Rightarrow \exists x \, (\mathsf{InBox}(x) \land \mathsf{Gift}(x)))$$

Some properties

- Believing $\alpha \triangleq \mathbf{B}(\text{True} \Rightarrow \alpha)$
- Knowing $\alpha \triangleq \mathbf{B}(\neg \alpha \Rightarrow \text{False})$
- Quantifying-in $\neg \exists x \mathbf{B} (\exists y \operatorname{InBox}(y) \Rightarrow \operatorname{InBox}(x))$
- Non-monotonic

Semantics

 \vec{s} satisfies $\mathbf{O}\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$ iff \vec{s} is maximal such that \vec{s} satisfies all $\mathbf{B}(\alpha_i\Rightarrow\beta_i)$

- \vec{s} is maximal $\hat{=}$ no worlds can be added to any sphere without removing worlds from some sphere
- $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$ $\hat{=}$ all we believe is $\{\alpha_i \Rightarrow \beta_i\}$

Unique-model property

A unique \vec{s} satisfies $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1, ..., \alpha_m \Rightarrow \beta_m\}$

Semantics

 $ec{s}$ satisfies $\mathbf{O}\{lpha_1 \Rightarrow eta_1,...,lpha_m \Rightarrow eta_m\}$ iff $ec{s}$ is maximal such that $ec{s}$ satisfies all $\mathbf{B}(lpha_i \Rightarrow eta_i)$

- Suppose \vec{s} and \vec{s}' satisfy $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1, ..., \alpha_m \Rightarrow \beta_m\}$
- $C_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is first sphere consistent with } \alpha_i \}$ $I_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is inconsistent with } \alpha_i \}$

Semantics

 $ec{s}$ satisfies $\mathbf{O}\{lpha_1 \Rightarrow eta_1, ..., lpha_m \Rightarrow eta_m\}$ iff $ec{s}$ is maximal such that $ec{s}$ satisfies all $\mathbf{B}(lpha_i \Rightarrow eta_i)$

- Suppose \vec{s} and \vec{s}' satisfy $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1, ..., \alpha_m \Rightarrow \beta_m\}$
- $C_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is first sphere consistent with } \alpha_i \}$ $I_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is inconsistent with } \alpha_i \}$
- Lemma 1: $s_p = \{w \mid w \text{ satisfies } C_p \cup I_p\}$
- Lemma 2: $C_{p+1} \cup I_{p+1} = I_p$
- Lemma 3: $s_p = s_p'$ implies $I_p = I_p'$

Semantics

$$ec{s}$$
 satisfies $\mathbf{O}\{lpha_1 \Rightarrow eta_1,...,lpha_m \Rightarrow eta_m\}$ iff $ec{s}$ is maximal such that $ec{s}$ satisfies all $\mathbf{B}(lpha_i \Rightarrow eta_i)$

- Suppose \vec{s} and \vec{s}' satisfy $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$
- $C_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is first sphere consistent with } \alpha_i \}$ $I_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is inconsistent with } \alpha_i \}$
- Lemma 1: $s_p = \{w \mid w \text{ satisfies } C_p \cup I_p\}$
- Lemma 2: $C_{p+1} \cup I_{p+1} = I_p$
- Lemma 3: $s_p = s_p'$ implies $I_p = I_p'$
- Induction: $s_p = s_p'$ for $p \in \{1, 2, 3, ...\}$ $s_{p+1} = \{w \mid w \text{ satisfies } C_{p+1} \cup I_{p+1}\} = \{w \mid w \text{ satisfies } I_p\}$

Semantics

$$ec{s}$$
 satisfies $\mathbf{O}\{lpha_1 \Rightarrow eta_1,...,lpha_m \Rightarrow eta_m\}$ iff $ec{s}$ is maximal such that $ec{s}$ satisfies all $\mathbf{B}(lpha_i \Rightarrow eta_i)$

- Suppose \vec{s} and \vec{s}' satisfy $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$
- $C_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is first sphere consistent with } \alpha_i \}$ $I_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is inconsistent with } \alpha_i \}$
- Lemma 1: $s_p = \{w \mid w \text{ satisfies } C_p \cup I_p\}$
- Lemma 2: $C_{p+1} \cup I_{p+1} = I_p$
- Lemma 3: $s_p = s_p'$ implies $I_p = I_p'$
- Induction: $s_p = s_p'$ for $p \in \{1, 2, 3, ...\}$ $s_{p+1} = \{w \mid w \text{ satisfies } C_{p+1} \cup I_{p+1}\} = \{w \mid w \text{ satisfies } I_p\}$

$$s'_{p+1} = \{w \mid w \text{ satisfies } C'_{p+1} \cup I'_{p+1}\} = \{w \mid w \text{ satisfies } I'_p\}$$

Semantics

 $ec{s}$ satisfies $\mathbf{O}\{lpha_1 \Rightarrow eta_1,...,lpha_m \Rightarrow eta_m\}$ iff $ec{s}$ is maximal such that $ec{s}$ satisfies all $\mathbf{B}(lpha_i \Rightarrow eta_i)$

- Suppose \vec{s} and \vec{s}' satisfy $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$
- $C_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is first sphere consistent with } \alpha_i \}$ $I_p := \{ \alpha_i \supset \beta_i \mid s_p \text{ is inconsistent with } \alpha_i \}$
- Lemma 1: $s_p = \{w \mid w \text{ satisfies } C_p \cup I_p\}$
- Lemma 2: $C_{p+1} \cup I_{p+1} = I_p$
- Lemma 3: $s_p = s_p'$ implies $I_p = I_p'$
- Induction: $s_p = s_p'$ for $p \in \{1, 2, 3, ...\}$ $s_{p+1} = \{w \mid w \text{ satisfies } C_{p+1} \cup I_{p+1}\} = \{w \mid w \text{ satisfies } I_p\}$

$$s'_{p+1} = \{w \mid w \text{ satisfies } C'_{p+1} \cup I'_{p+1}\} = \{w \mid w \text{ satisfies } I'_p\}$$

Semantics

 $ec{s}$ satisfies $\mathbf{O}\{lpha_1 \Rightarrow eta_1,...,lpha_m \Rightarrow eta_m\}$ iff $ec{s}$ is maximal such that $ec{s}$ satisfies all $\mathbf{B}(lpha_i \Rightarrow eta_i)$

$$\mathbf{O}\{\mathsf{True} \Rightarrow \forall x \neg \mathsf{InBox}(x), \\ \exists y \, \mathsf{InBox}(y) \Rightarrow \forall x \, (\mathsf{InBox}(x) \supset \mathsf{Gift}(x)), \\ \exists y \, \mathsf{InBox}(y) \Rightarrow \forall x \, (\mathsf{InBox}(x) \supset \neg \mathsf{Broken}(x))\}$$

Semantics

 $ec{s}$ satisfies $\mathbf{O}\{lpha_1\Rightarroweta_1,...,lpha_m\Rightarroweta_m\}$ iff $ec{s}$ is maximal such that $ec{s}$ satisfies all $\mathbf{B}(lpha_i\Rightarroweta_i)$

$$\begin{aligned} \mathbf{O} \{ & \exists y \, \mathsf{InBox}(y) \Rightarrow \forall x \neg \mathsf{InBox}(x), \\ & \exists y \, \mathsf{InBox}(y) \Rightarrow \forall x \, (\mathsf{InBox}(x) \supset \mathsf{Gift}(x)), \\ & \exists y \, \mathsf{InBox}(y) \Rightarrow \forall x \, (\mathsf{InBox}(x) \supset \neg \mathsf{Broken}(x)) \} \end{aligned}$$

Semantics

 \vec{s} satisfies $\mathbf{O}\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$ iff \vec{s} is maximal such that \vec{s} satisfies all $\mathbf{B}(\alpha_i\Rightarrow\beta_i)$

 $\begin{aligned} \mathbf{O} \{ & \text{True} - \cdots \Rightarrow \forall x \neg \text{InBox}(x), \\ & \exists y \, \text{InBox}(y) \Rightarrow \forall x \, (\text{InBox}(x) \supset \text{Gift}(x)), \\ & \exists y \, \text{InBox}(y) \Rightarrow \forall x \, (\text{InBox}(x) \supset \neg \text{Broken}(x)) \} \end{aligned}$

Semantics

 \vec{s} satisfies $\mathbf{O}\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$ iff \vec{s} is maximal such that \vec{s} satisfies all $\mathbf{B}(\alpha_i\Rightarrow\beta_i)$

Semantics

 $ec{s}$ satisfies $\mathbf{O}\{lpha_1\Rightarroweta_1,...,lpha_m\Rightarroweta_m\}$ iff $ec{s}$ is maximal such that $ec{s}$ satisfies all $\mathbf{B}(lpha_i\Rightarroweta_i)$

O{True

Semantics

 $ec{s}$ satisfies $\mathbf{O}\{lpha_1\Rightarroweta_1,...,lpha_m\Rightarroweta_m\}$ iff $ec{s}$ is maximal such that $ec{s}$ satisfies all $\mathbf{B}(lpha_i\Rightarroweta_i)$

 $\Rightarrow \forall x \neg InBox(x),$

$$\exists y \operatorname{InBox}(y) \Rightarrow \forall x (\operatorname{InBox}(x) \supset \operatorname{Gift}(x)),$$

$$\exists y \operatorname{InBox}(y) \Rightarrow \forall x (\operatorname{InBox}(x) \supset \neg \operatorname{Broken}(x))\}$$

<u>Contribution</u>: conditional belief and knowledge bases

- Conditional belief → more and less plausible beliefs
- Only-believing captures idea of conditional KB
- Generalized Levesque's *logic of only-knowing* to conditional belief
 - Our logic subsumes Levesque's
 - Unique-model property of only-believing
 - Levesque's representation theorem extends nicely: decide belief implication with non-modal reasoning
- Related to Pearl's System Z
 - ► System Z is a meta-logical framework
 - Our logic subsumes Pearl's 1-entailment

Action effects: physical and/or epistemic

Physical effect:

- \blacksquare Drop box \rightarrow fragile objects breaks
- <u>Semantics</u>: update every single world

Action effects: physical and/or epistemic

Physical effect:

- \blacksquare Drop box \rightarrow fragile objects breaks
- <u>Semantics</u>: update every single world

Action effects: physical and/or epistemic

Epistemic effect:

- \blacksquare Clink \rightarrow presumably something broke
- Semantics: revise the system of spheres

Original system of spheres

Strong revision by $\boldsymbol{\alpha}$

Action effects: physical and/or epistemic

Epistemic effect:

- Clink → presumably something broke
- Semantics: revise the system of spheres

Actions **inform** the agent:

- **Action** A tells that φ_A is presumably true
- lacktriangledown ϕ_A is incorporated by weak or strong revision
- Contradicting information is no problem

Situation calculus with conditional belief

Two new modal operators:

- $[A] \alpha = \alpha \text{ holds after action } A$
- $\blacksquare \square \alpha \triangleq \alpha \text{ holds always}$

Action theory $\mathbf{O}(\Sigma_{bel} \cup \Sigma_{dyn})$:

- $\Sigma_{\text{bel}} \triangleq \text{initial beliefs}$
- lacksquare Σ_{dyn} $\stackrel{.}{=}$ knowledge about dynamics

 $\Box \forall x ([dropbox]Broken(x) \equiv Broken(x) \lor (Fragile(x) \land InBox(x)))$

Situation calculus with conditional belief

Two new modal operators:

- $[A] \alpha = \alpha$ holds after action A
- $\blacksquare \square \alpha \triangleq \alpha \text{ holds always}$

Action theory $\mathbf{O}(\Sigma_{bel} \cup \Sigma_{dyn})$:

- $\Sigma_{bel} \triangleq initial beliefs$
- lacksquare Σ_{dyn} $\hat{=}$ knowledge about dynamics

$$\Box \forall x ([\mathsf{dropbox}]\mathsf{Broken}(x) \equiv \mathsf{Broken}(x) \lor (\mathsf{Fragile}(x) \land \mathsf{InBox}(x)))$$

Belief projection

Does
$$\mathbf{O}(\Sigma_{\mathrm{bel}} \cup \Sigma_{\mathrm{dyn}})$$
 entail $[A_1] \dots [A_k] \mathbf{B}(\alpha \Rightarrow \beta)$?

- Based on Lakemeyer and Levesque's epistemic situation calculus
- Solution: reduce belief projection to belief implication

Situation calculus with conditional belief

Two new modal operators:

- \blacksquare $[A]\alpha = \alpha$ holds after action A
- $\blacksquare \square \alpha \triangleq \alpha \text{ holds always}$

Action theory $\mathbf{O}(\Sigma_{bel} \cup \Sigma_{dyn})$:

- $\Sigma_{bel} \triangleq initial beliefs$
- lacksquare Σ_{dyn} $\hat{=}$ knowledge about dynamics

 $\Box \forall x ([\mathsf{dropbox}]\mathsf{Broken}(x) \equiv \mathsf{Broken}(x) \lor (\mathsf{Fragile}(x) \land \mathsf{InBox}(x)))$

Belief projection

Does
$$\mathbf{O}(\Sigma_{bel} \cup \Sigma_{dyn})$$
 entail $[A_1] \dots [A_k] \mathbf{B}(\alpha \Rightarrow \beta)$?

- Based on Lakemeyer and Levesque's epistemic situation calculus
- Solution: reduce belief projection to belief implication
 - ▶ Regression: roll back actions $A_k,...,A_1$ in query
 - **Progression:** apply effects of $A_1,...,A_k$ to initial beliefs Σ_{bel}

Projection by regression

Correctness of regression

$$\mathbf{O}(\Sigma_{bel} \cup \Sigma_{dyn})$$
 entails $lpha$ iff $\mathbf{O}\Sigma_{bel}$ entails $\mathcal{R}[lpha]$

 $\mathcal{R}[\alpha]$ obtained by repeating until no [A] operator is left:

- 1. Push [A] operators inwards
- 2. **Predicates**: axioms Σ_{dyn} relate truth after and before A [dropbox]Broken(x) \mapsto Broken(x) \vee (Fragile(x) \wedge InBox(x))
- 3. **Beliefs**: theorems relate belief after and $\frac{1}{2}$

$$[A]\mathbf{B}(\alpha \Rightarrow \beta) \mapsto \mathbf{B}(\varphi_A \wedge [A]\alpha \Rightarrow [A]\beta) \wedge \neg \mathbf{B}(\varphi_A \Rightarrow \neg [A]\alpha) \vee \mathbf{B}(\qquad [A]\alpha \Rightarrow [A]\beta) \wedge \mathbf{B}(\varphi_A \Rightarrow \neg [A]\alpha) \vee \mathbf{B}(\varphi_A \Rightarrow \text{False})$$

Projection by regression

Correctness of regression

$$\mathbf{O}(\Sigma_{bel} \cup \Sigma_{dyn})$$
 entails $lpha$ iff $\mathbf{O}\Sigma_{bel}$ entails $\mathcal{R}[lpha]$

 $\mathcal{R}[\alpha]$ obtained by repeating until no [A] operator is left:

- 1. Push [A] operators inwards
- 2. **Predicates**: axioms Σ_{dyn} relate truth after and before A [dropbox]Broken(x) \mapsto Broken(x) \vee (Fragile(x) \wedge InBox(x))
- 3. **Beliefs**: theorems relate belief after and before A $[A]\mathbf{B}(\alpha \Rightarrow \beta) \mapsto \mathbf{B}(\phi_A \wedge [A]\alpha \Rightarrow [A]\beta) \wedge \neg \mathbf{B}(\phi_A \wedge [A]\alpha \Rightarrow \text{False}) \vee \mathbf{B}(\qquad [A]\alpha \Rightarrow [A]\beta) \wedge \mathbf{B}(\phi_A \wedge [A]\alpha \Rightarrow \text{False}) \vee \mathbf{B}(\phi_A \Rightarrow \text{False})$

Contribution: actions and perception

- Conditional belief + situation calculus
- Physical and/or epistemic (informing) effect
- Projection by regression and progression
- Based on Lakemeyer and Levesque's epistemic sitcalc
 - We handle contradicting information
 - Extended regression, progression for conditional belief
- Goes beyond Shapiro et al.'s sitcalc with belief change
 - Our logic supports proper revision
 - We address belief projection

Why decidable reasoning?

Our logic is too powerful:

- Omniscient
- Undecidable (first-order) / intractable (propositional)

Possible approaches:

- Restrict expressivity (classical approach)
- Restrict inferences

Limited reasoning:

Set of worlds \rightarrow <u>setup</u>: set of ground clauses closed under subsumption and unit propagation

Add literals \rightarrow new inferences $A \lor B \text{ subsumes } A \lor B \lor C$ $A \lor B \text{ subsumes } A \lor B \lor C$ $A \lor B \text{ subsumes } A \lor B \lor C \text{ yield } B \lor C$

```
\mathbf{O}\{\text{True} \Rightarrow \forall x \neg \text{InBox}(x), \\ \exists y \text{InBox}(y) \Rightarrow \forall x (\text{InBox}(x) \supset \text{Gift}(x)), \\ \exists y \text{InBox}(y) \Rightarrow \forall x (\text{InBox}(x) \supset \neg \text{Broken}(x))\}
```



```
\begin{aligned} \mathbf{O}\{ \text{True} & \Rightarrow \forall x \neg \text{InBox}(x), \\ & \exists y \, \text{InBox}(y) \Rightarrow \forall x \, (\text{InBox}(x) \supset \text{Gift}(x)), \\ & \exists y \, \text{InBox}(y) \Rightarrow \forall x \, (\text{InBox}(x) \supset \neg \text{Broken}(x)) \} \\ s_1 &= \{ \neg \text{InBox}(n) \mid n \in N \} \\ s_2 &= \{ \neg \text{InBox}(n) \vee \text{Gift}(n), \, \neg \text{InBox}(n) \vee \neg \text{Broken}(n) \mid n \in N \} \\ s_3 &= \{ \} \end{aligned}
```



```
\begin{split} s_1 &= \{\neg \text{InBox}(n) \mid n \in N\} \\ s_2 &= \{\neg \text{InBox}(n) \vee \text{Gift}(n), \ \neg \text{InBox}(n) \vee \neg \text{Broken}(n) \mid n \in N\} \\ s_3 &= \{\} \end{split}
```

Does \vec{s} satisfy $\mathbf{B}(\underline{\mathsf{InBox}}(n) \Rightarrow \mathsf{Gift}(n) \land \neg \mathsf{Broken}(n))$?

```
\begin{split} s_1 &= \{\neg \text{InBox}(n) \mid n \in N\} \\ s_2 &= \{\neg \text{InBox}(n) \vee \text{Gift}(n), \ \neg \text{InBox}(n) \vee \neg \text{Broken}(n) \mid n \in N\} \\ s_3 &= \{\} \end{split}
```

Does \vec{s} satisfy $\mathbf{B}(\operatorname{InBox}(n) \Rightarrow \operatorname{Gift}(n) \land \neg \operatorname{Broken}(n))$?

- \blacksquare s_1 is <u>not consistent</u> with $\underline{InBox}(n)$
 - $ightharpoonup s_1$ contains $\neg \operatorname{InBox}(n)$

```
\begin{split} s_1 &= \{\neg \text{InBox}(n) \mid n \in N\} \\ s_2 &= \{\neg \text{InBox}(n) \vee \text{Gift}(n), \ \neg \text{InBox}(n) \vee \neg \text{Broken}(n) \mid n \in N\} \\ s_3 &= \{\} \end{split}
```

Does \vec{s} satisfy $\mathbf{B}(\underline{\mathsf{InBox}}(n) \Rightarrow \mathsf{Gift}(n) \land \neg \mathsf{Broken}(n))$?

- \blacksquare s_2 is <u>consistent</u> with $\underline{InBox}(n)$
 - ▶ $s_2 \cup \{\operatorname{InBox}(n)\}$ is consistent
 - ▶ $s_2 \cup \{\operatorname{InBox}(n)\}\$ contains $\operatorname{InBox}(n)$

```
\begin{split} s_1 &= \{\neg \mathsf{InBox}(n) \mid n \in N\} \\ s_2 &= \{\neg \mathsf{InBox}(n) \lor \mathsf{Gift}(n), \ \neg \mathsf{InBox}(n) \lor \neg \mathsf{Broken}(n) \mid n \in N\} \\ s_3 &= \{\} \end{split}
```

Does \vec{s} satisfy $\mathbf{B}(\operatorname{InBox}(n) \Rightarrow \operatorname{Gift}(n) \land \neg \operatorname{Broken}(n))$?

- \blacksquare s_2 is <u>consistent</u> with $\underline{InBox}(n)$
 - ▶ $s_2 \cup \{\operatorname{InBox}(n)\}$ is consistent
 - ▶ $s_2 \cup \{\operatorname{InBox}(n)\}\$ contains $\operatorname{InBox}(n)$
- s_2 satisfies $InBox(n) \supset (Gift(n) \land \neg Broken(n))$
 - ▶ $s_2 \cup \{\neg InBox(n)\}\$ contains $\neg InBox(n)$
 - ▶ $s_2 \cup \{\operatorname{InBox}(n)\}\$ contains $\operatorname{Gift}(n)$ and $\neg \operatorname{Broken}(n)$

```
s_1 = {\neg InBox(n) \mid n \in N}
   s_2 = \{\neg InBox(n) \lor Gift(n), \neg InBox(n) \lor \neg Broken(n) \mid n \in N\}
   s_3 = \{\}
                                          level \(\hat{=}\) added literals
Does \vec{s} satisfy \mathbf{B}_1(\text{In} \cancel{\mathsf{B}} \text{ox}(n) \Rightarrow \text{Gift}(n) \land \neg \text{Broken}(n))? \checkmark
    \blacksquare s_2 is consistent with \underline{\operatorname{InBox}(n)}

ightharpoonup s_2 \cup \{\operatorname{InBox}(n)\} is consistent

ightharpoonup s_2 \cup \{\operatorname{InBox}(n)\}\ \text{contains } \operatorname{InBox}(n)
    \blacksquare s_2 satisfies \underline{InBox(n)} \supset (Gift(n) \land \neg Broken(n))

ightharpoonup s_2 \cup \{\neg \operatorname{InBox}(n)\}\ \text{contains } \neg \operatorname{InBox}(n)

ightharpoonup s_2 \cup \{\operatorname{InBox}(n)\}\ \text{contains Gift}(n)\ \text{and}\ \neg \operatorname{Broken}(n)
```

```
s_1 = {\neg InBox(n) \mid n \in N}
  s_2 = \{\neg InBox(n) \lor Gift(n), \neg InBox(n) \lor \neg Broken(n) \mid n \in N\}
  s_3 = \{\}
                              Does \vec{s} satisfy \mathbf{B}_0^{\flat}(\operatorname{InBox}(n) \Rightarrow \operatorname{Gift}(n) \wedge \neg \operatorname{Broken}(n))?
Does \vec{s} satisfy \mathbf{B}_1(\underline{\mathsf{InBox}}(n) \Rightarrow \mathsf{Gift}(n) \land \neg \mathsf{Broken}(n))?
   \blacksquare s_2 is consistent with InBox(n)

ightharpoonup s_2 \cup \{\operatorname{InBox}(n)\} is consistent

ightharpoonup s_2 \cup \{\operatorname{InBox}(n)\}\ \text{contains } \operatorname{InBox}(n)
```

- s_2 satisfies $InBox(n) \supset (Gift(n) \land \neg Broken(n))$
 - ▶ $s_2 \cup \{\neg InBox(n)\}\$ contains $\neg InBox(n)$
 - ▶ $s_2 \cup \{\text{InBox}(n)\}\ \text{contains Gift}(n)\ \text{and } \neg \text{Broken}(n)$

Logic of <u>limited</u> conditional belief

Belief operators with effort $k \in \{0, 1, 2, ...\}$

- $\mathbf{O}_k\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$ $\hat{}=$ only-belief at level k α_i only mentions \land , \exists , literals β_i only mentions \lor , \forall , literals β_i only mentions \lor , \forall , literals

Logic of <u>limited</u> conditional belief

Belief operators with effort $k \in \{0,1,2,...\}$

- $\mathbf{B}_k(\alpha \Rightarrow \beta)$ $\hat{=}$ belief at level k
- $\mathbf{O}_k\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$ $\hat{}=$ only-belief at level k α_i only mentions \land , \exists , literals β_i only mentions \lor , \forall , literals β_i only mentions \lor , \forall , literals

Limited belief implication

Does
$$\mathbf{O}_k\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$$
 entail $\mathbf{B}_{k'}(\alpha \Rightarrow \beta)$?

- Based on Liu, Lakemeyer, Levesque's limited knowledge
- Semantics for \mathbf{B}_k and \mathbf{O}_k mostly as for \mathbf{B} and \mathbf{O} except:
 - ightharpoonup Sets of possible worlds \mapsto setups
 - Sound but incomplete consistency and satisfaction
- Next: soundness and decidability

Limited belief implication: <u>soundness</u> and decidability

Soundness

If
$$\mathbf{O}_k\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$$
 entails $\mathbf{B}_{k'}(\alpha\Rightarrow\beta)$, then $\mathbf{O}\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$ entails $\mathbf{B}(\alpha\Rightarrow\beta)$

Limited belief implication: <u>soundness</u> and decidability

Soundness

If
$$\mathbf{O}_k\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$$
 entails $\mathbf{B}_{k'}(\alpha\Rightarrow\beta)$, then $\mathbf{O}\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$ entails $\mathbf{B}(\alpha\Rightarrow\beta)$

Why?

- $lackbox{0}_{k}$'s first spheres are faithful to O's spheres
- $lackbox{0}_{k}$'s last sphere believes less than $lackbox{0}$'s sphere
- lacksquare **B**_k doesn't select a too-narrow sphere

Limited belief implication: soundness and <u>decidability</u>

Complexity

Whether $\mathbf{O}_k\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$ entails $\mathbf{B}_{k'}(\alpha \Rightarrow \beta)$ is

- First-order case: decidable
- Propositional case: tractable for fixed effort k, k'

Limited belief implication: soundness and <u>decidability</u>

Complexity

Whether $\mathbf{O}_k\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$ entails $\mathbf{B}_{k'}(\alpha \Rightarrow \beta)$ is

- First-order case: decidable
- Propositional case: tractable for fixed effort k, k'

Why?

- Unique system of spheres since $\alpha_i \supset \beta_i$ are clauses
- Only finitely many individuals can be distinguished by formulas
- Only finitely many literals are relevant for adding

Contribution: limited conditional belief

- Effort bounds possible inferences
- Limited belief implication is decidable, sound
- Sacrificed completeness, preserved expressivity
- Based on Liu, Lakemeyer, Levesque's limited knowledge
 - Added sound consistency test
 - Approximative system of spheres

Conditional Beliefs in Action

■ What is a conditional knowledge base?

■ How are beliefs affected by actions and perception?

■ When is reasoning computationally feasible?

Conditional Beliefs in Action

- What is a conditional knowledge base?
 - Logic of conditional only-believing
 - Generalizes Levesque's logic, subsumes Pearl's 1-entailment
- How are beliefs affected by actions and perception?

■ When is reasoning computationally feasible?

Conditional Beliefs in Action

- What is a conditional knowledge base?
 - Logic of conditional only-believing
 - ▶ Generalizes Levesque's logic, subsumes Pearl's 1-entailment
- How are beliefs affected by actions and perception?
 - Sitcalc-style actions with belief revision
 - Projection by regression and progression
- When is reasoning computationally feasible?

Conditional Beliefs in Action

- What is a conditional knowledge base?
 - Logic of conditional only-believing
 - Generalizes Levesque's logic, subsumes Pearl's 1-entailment
- How are beliefs affected by actions and perception?
 - Sitcalc-style actions with belief revision
 - Projection by regression and progression
- When is reasoning computationally feasible?
 - Sound, decidable, sometimes tractable belief implications
 - Sacrificed completeness, preserved expressivity

Summary and <u>future work</u>

Conditional Beliefs in Action

- What is a conditional knowledge base?
 - Logic of conditional only-believing
 - ▶ Generalizes Levesque's logic, subsumes Pearl's 1-entailment
 - Next: Probabilities?
- How are beliefs affected by actions and perception?
 - ▷ Sitcalc-style actions with belief revision
 - Projection by regression and progression
 - <u>Next</u>: More revision operators?
- When is reasoning computationally feasible?
 - Sound, decidable, sometimes tractable belief implications
 - Sacrificed completeness, preserved expressivity
 - <u>Next</u>: Tractable revision by limited reasoning?