EMC-Report

No. 240e.1218

Company: Clear Systems GmbH

Schweinthal 25 D-91349 Egloffstein

Device under Test: ANDINO RS485 USB CAN

Serial number: EMC-sample

S-Team internal number: 20181118-1

Attending the test:

Clear Systems GmbH : Mr. Leufgen S-TEAM Elektronik GmbH : Mr Melkuhn

<u>Test date:</u> 18-11-2018 and 12-12-2018 to 13-12-2018

The examinations were made according to the Generic Standard

DIN EN 61000-6-2: 2005 (according to **VDE 0839 part 6-2** / March 2006)

DIN EN 61000-6-3: 2007+ A1: 2011 (according to **VDE 0839 part 6-3** / September 2011)

<u>Results:</u> See results of individual measurements on pages 52 to 54.

Responsible Official V. Melkuhn

la Mu

Lab Supervisor M. Hartmann

Untereisesheim, 2018-13-12

THE TEST RESULTS IN THIS REPORT RELATE EXCLUSIVELY TO THE PRODUCT PRESENTED FOR THE TEST. THERE CANNOT BE TAKEN ANY RESPONSIBILITY FOR CONCLUSIONS AND GENERALIZATIONS BASED ON THE TEST RESULTS FOR OTHER SPECIMEN OR SAMPLES REPRESENTING THE SAME TYPE AS THE TESTED PRODUCT. THIS TEST REPORT MUST NOT BE COPIED OR PUBLISHED PARTLY WITHOUT AUTHORIZATION OF S-TEAM ELEKTRONIK GMBH.

EMC- Report

No. 240e.1218

Index

Cover sheet Contents

1.	Env	Environment				
2.	Mea	Measurement uncertainty				
3.	Des	Description and name of examinee				
4.	Indi	Indication of test specification5				
5.	Cha	Changes, additions and confinements other than the test specification6				
6.	Ord	ler of measurements	6			
7.	Emi	issions	7			
	7.1	Radiated emissions field strength	7			
	7.2	Conducted emissions to power supply ports				
8.	Imn	nunity	31			
	8.1	Immunity to radiated electromagnetic fields	31			
	8.2	Immunity to fast transient disturbances (Burst)				
	8.3	Immunity to high frequent uncoupled emissions				
	8.4	Immunity to surge	46			
	8.5	Immunity to electrostatic discharge (ESD)	49			
9.	Sun	nmary of test results	52			
	9.1	Immunity / test criteria	52			
	9.2	Emissions	54			
10). L	ist of test equipment	55			

EMC-Report

No. 240e.1218

1. Environment

Vicinity temperature : $(23 \pm 5)^{\circ}$ C

Atmospheric humidity : 30 - 60 %

Atmospheric pressure : 860 - 1060 mbar

The exact values are recorded continuously and can be delivered if requested.

2. Measurement uncertainty

All measurement results are subordinated to uncertainty components. All measurement uncertainties are defined as the range which is assumed to contain the real value with a quoted probability. This probability lies at 95% in usually quoted measurement uncertainty (so called measurement uncertainty with k=2)

Case A	Case B	Case C	Case D
			Ţ
	Τ.	Į.	1
Ţ	1		
The measured result is within the limits, even when extended by the uncertainty interval.	The measured result is below the upper limit, but by a margin less than half of the uncertainty interval; it is therefore not possible to state compliance based on the	The measured result is above the upper limit, but by a margin less than half of the uncertainty interval; it is therefore not possible to state non-compliance based on	The measured result is beyond the upper limit, even when extended downwards by half of the uncertainty interval.
The product therefore complies with the specification.	95% level of confidence.	the 95% level of confidence.	The product therefore does not comply with the specification.
•	However, the result indicates that compliance is more probable than non-compliance.	However, the result indicates that non- compliance is more probable than compliance.	

• = Measured results

T = Uncertainty interval

Test location	Measurement uncertainty	
Electrostatic discharge (ESD)	± 10 % of test level	
Radiated electromagnetic field	\pm 13 % of test level	
Fast transient disturbances (BURST)	± 10 % of test level	
SURGE	± 10 % of test level	
High frequent uncoupled emissions	± 25 % of test level	
Magnetic field	± 10 % of test level	
Voltage variations	± 5 % of test level	
Voltage dips, short interruptions	± 5 % of test level	
Conducted emissions 9 kHz to 150 kHz 150kHz to 30 MHz	4,3 dB 3,9 dB	
Radiated emissions field strength 9 kHz to 1000 MHz at 3m distance	6 dB	

EMC- Report

No. 240e.1218

3. Description and name of examinee

Indication of device under test : ANDINO RS485 USB CAN

Type : ANDINO USV

S-Team internal number : 20181118-1 Status of device under test : EMC-sample

Supply voltage : 24 VDC Highest internal switching frequency : > 9 kHz Reaction time of device under test : <1 sec.

Dimensions : width 250 mm; height 60mm; depth 90mm

Modifications : none

Picture of device under test:

EMC-Report

No. 240e.1218

4. Indication of test specification

Emission measurements according to

DIN EN 61000-6-3 part 6-3: 2007+ A1: 2011 *Emission standard for residential, commercial and light-industrial environments* according to VDE 0839 part 6-3 / September 2011

Used partly-standards

Radiated field strength / conducted emissions

DIN EN 55022: 2010 according to **VDE 0878 part 22** of 12.2011

Immunity measurements according to

EN 61000-6-2: 2005 part 6-2:2005

Generic standards emission standard for industrial environments (IEC 61000-6-2: 2011) according to VDE 0839 part 6-2 / June 2011

<u>Used partly-standards</u>

Immunity ESD

DIN EN 61000-4-2: 2009 according to **VDE 0847 part 4-2** of 12.2009

Immunity radiated electromagnetic fields

DIN EN 61000-4-3: 2006+A1:2008+ A2: 2010 according to **VDE 0847 part 4-3** of 04.2011

Immunity Burst

DIN EN 61000-4-4: 2012 according to **VDE 0847 part 4-4** of 04.2013

Immunity Surge

DIN EN 61000-4-5: 2014 according to **VDE 0847 part 4-5** of 03.2015

Immunity high frequent uncoupled emission

DIN EN 61000-4-6: 2014 according to **VDE 0847 part 4-6** of 08.2014

EMC-Report

No. 240e.1218

5. Changes, additions and confinements other than the test specification

radiated emissions

field strength: measurement location: absorber chamber

measurement distance: 3 m to phase center of the antenna

antenna high: fixed at 1,5 m

Magnetic: Device under test has no magnetic sensitive components

harmonic waves: Power input < 75 W

6. Order of measurements

- 1. Radiated emissions field strength
- 2. Conducted emission to power supply ports
- 3. Immunity to radiated electromagnetic fields
- 4. Immunity to conducted emissions
- 5. Immunity to fast transient disturbances (Burst)
- 6. Immunity to high frequent uncoupled emissions
- 7. Immunity to surge
- 9. Immunity to electrostatic discharge (ESD)

S-TEAM Elektronik GmbH

Schleifweg 2

74257 Untereisesheim

EMC- Report

No. 240e.1218

7. Emissions

7.1 Radiated emissions field strength

Test specification : **DIN EN 55022**: 2010 according to

VDE 0878 part 22 of 12.2011

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Frequency range : 30 MHz ó 3000 MHz

Bandwidth : ZF: 120 kHz

Work status : - Power supply 24VDC

RS484 communication runsCAN communication runs

- Ethernet cable connected (ca. 2m), 2x USB (ca. 1m resp. 2m)

cable connected

Measurement setup : desktop device

Modification : see page 4

EMC- Report

No. 240e.1218

Measurement setup:

orientation 0°

EMC- Report

No. 240e.1218

EMC- Report

No. 240e.1218

orientation 90°

EMC- Report

No. 240e.1218

orientation 180°

EMC- Report

No. 240e.1218

orientation 270°

EMC-Report

No. 240e.1218

Radiated emissions ó horizontal

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 7

Test pattern : radiated field strength in $dB\mu V/m$

Frequency range : 30 ó 1000 MHz

Detector : peak

Polarization : horizontal 0°

Prüfmittel: Logper horizontal 30.00MHz - 1000.00MHz Frequenzband: Schrittweite: 13.12.2018 50,0E+3 Datum: Verweildauer: 5 Uhrzeit: 10:01 ms Peak Prüfer: V. Melkuhn Detektor:

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181213\FSStrahlung001\30,00MHz-1000,

Test result:

EMC-Report

No. 240e.1218

Radiated emissions ó vertical

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 7

Test pattern : radiated field strength in $dB\mu V/m$

Frequency : 30 ó 1000 MHz

Detector : peak

Polarization : vertical 0°

Prüfmittel: Logper vertikal 30.00MHz - 1000.00MHz Frequenzband: Schrittweite: 50,0E+3 13.12.2018 Datum: Verweildauer: 5 Uhrzeit: 10:22 ms Peak Prüfer: Detektor: V. Melkuhn

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181213\FSStrahlung001\30,00MHz-1000,

Test result:

EMC-Report

No. 240e.1218

Radiated emissions ó horizontal

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 7

Test pattern : radiated field strength in $dB\mu V/m$

Frequency range : 30 ó 1000 MHz

Detector : peak

Polarization : horizontal 90°

Prüfmittel: Logper horizontal 30.00MHz - 1000.00MHz Frequenzband: Schrittweite: 50,0E+3 Datum: 13.12.2018 Verweildauer: 5 Uhrzeit: 10:18 ms Detektor: Peak Prüfer: V. Melkuhn

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181213\FSStrahlung001\30,00MHz-1000,

Test result:

EMC-Report

No. 240e.1218

Radiated emissions ó vertical

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 7

Test pattern : radiated field strength in $dB\mu V/m$

Frequency : 30 ó 1000 MHz

Detector : peak

Polarization : vertical 90°

Prüfmittel: Logper vertikal 30.00MHz - 1000.00MHz Frequenzband: Schrittweite: 50,0E+3 Datum: 13.12.2018 Verweildauer: 5 ms Uhrzeit: 10:12 Detektor: Peak Prüfer: V. Melkuhn

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181213\FSStrahlung001\30,00MHz-1000,

Test result:

EMC-Report

No. 240e.1218

Radiated emissions ó horizontal

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 7

Test pattern : radiated field strength in $dB\mu V/m$

Frequency range : 30 ó 1000 MHz

Detector : peak

Polarization : horizontal 180°

Prüfmittel: Logper horizontal 30.00MHz - 1000.00MHz Frequenzband: Schrittweite: 50,0E+3 Datum: 13.12.2018 Verweildauer: 5 Uhrzeit: 10:29 ms Detektor: Peak Prüfer: V. Melkuhn

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181213\FSStrahlung001\30,00MHz-1000,

Test result:

EMC-Report

No. 240e.1218

Radiated emissions ó vertical

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 7

Test pattern : radiated field strength in $dB\mu V/m$

Frequency : 30 ó 1000 MHz

Detector : peak

Polarization : vertical 180°

Frequenzband:30.00MHz - 1000.00MHzPrüfmittel:Logper vertikalSchrittweite:50,0E+3HzDatum:13.12.2018Verweildauer:5msUhrzeit:10:26Detektor:PeakPrüfer:V. Melkuhn

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181213\FSStrahlung001\30,00MHz-1000,

Test result:

EMC-Report

No. 240e.1218

Radiated emissions ó horizontal

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 7

Test pattern : radiated field strength in $dB\mu V/m$

Frequency range : 30 ó 1000 MHz

Detector : peak

Polarization : horizontal 270°

Prüfmittel: Logper horizontal 30.00MHz - 1000.00MHz Frequenzband: Schrittweite: 50,0E+3 Datum: 13.12.2018 Verweildauer: 5 Uhrzeit: 10:35 ms Detektor: Peak Prüfer: V. Melkuhn

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181213\FSStrahlung001\30,00MHz-1000,

Test result:

EMC-Report

No. 240e.1218

Radiated emissions ó vertical

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 7

Test pattern : radiated field strength in $dB\mu V/m$

Frequency : 30 ó 1000 MHz

Detector : peak

Polarization : vertical 270°

Frequenzband:30.00MHz - 1000.00MHzPrüfmittel:Logper vertikalSchrittweite:50,0E+3HzDatum:13.12.2018Verweildauer:5msUhrzeit:10:38Detektor:PeakPrüfer:V. Melkuhn

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181213\FSStrahlung001\30,00MHz-1000,

Test result:

S-TEAM Elektronik GmbH Schleifweg 2

74257 Untereisesheim

EMC-Report

No. 240e.1218

7.2 Conducted emissions to power supply ports

Test specification : **DIN EN 55022**: 2010 according to

VDE 0878 part 22 of 12.2011

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Frequency range : 150 kHz ó 30 MHz

Bandwidth : ZF: 9 kHz / Video: 30 kHz

Work status 1 : - Power supply 24VDC

- Ethernet connection to external laptop

- Inputs and outputs are monitored with external Laptop

3G antenna connected CAN communication runs RS484 communication runs

Work status 2 : - Power supply 24VDC

CAN communication runsRS484 communication runs

Measurement setup : desktop device

Modification : see page 4

EMC- Report

No. 240e.1218

Measurement setup:

work status 1:

work status 2:

EMC-Report

No. 240e.1218

Conducted emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 21; work status 1

Test pattern : conducted emissions (+Ub) in dBµV

Frequency range : 150 kHz ó 30 MHz

Detector : peak

Prüfmittel: BNN_Ind Frequenzband: 0.15MHz - 30.00MHz 5,0E+3 18.09.2018 Schrittweite: Hz Datum: Verweildauer 50 Uhrzeit: 11:49 ms Prüfer: Detektor: Peak V. Melkuhn

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\180918\FSSpannung004\0,15MHz-30,

Test result:

EMC-Report

No. 240e.1218

Conducted emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 21; work status 1

Test pattern : conducted emissions (+Ub) in dBµV

Frequency range : 150 kHz ó 30 MHz

Detector : average

Prüfmittel: BNN_Ind Frequenzband: 0.15MHz - 30.00MHz 18.09.2018 Schrittweite: 5,0E+3 Datum: Hz Verweildauer 50 Uhrzeit: 11:49 ms Prüfer: V. Melkuhn Detektor: Average

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\180918\FSSpannung004\0,15MHz-30,

Test result:

EMC-Report

No. 240e.1218

Conducted emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 21; work status 1

Test pattern : conducted emissions (**GND**) in dBµV

Frequency range : 150 kHz ó 30 MHz

Detector : peak

Prüfmittel: BNN_Ind Frequenzband: 0.15MHz - 30.00MHz 18.09.2018 Schrittweite: 5,0E+3 Hz Datum: Verweildauer 50 Uhrzeit: 11:55 ms Prüfer: V. Melkuhn Detektor: Peak

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\180918\FSSpannung004\0,15MHz-30,

Test result:

EMC-Report

No. 240e.1218

Conducted emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 21; work status 1

Test pattern : conducted emissions (GND) in $dB\mu V$

Frequency range : 150 kHz ó 30 MHz

Detector : average

Prüfmittel: BNN_Ind Frequenzband: 0.15MHz - 30.00MHz 18.09.2018 Schrittweite: 5,0E+3 Datum: Hz Verweildauer 50 Uhrzeit: 11:55 ms Prüfer: V. Melkuhn Detektor: Average

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\180918\FSSpannung004\0,15MHz-30,

Test result:

EMC-Report

No. 240e.1218

Conducted emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 21; work status 2

Test pattern : conducted emissions (+Ub) in dBµV

Frequency range : 150 kHz ó 30 MHz

Detector : peak

Prüfmittel: BNN_Ind 0.15MHz - 30.00MHz Frequenzband: 12.12.2018 Schrittweite: 5,0E+3 Datum: Hz Verweildauer: 50 Uhrzeit: 15:48 Detektor: Peak Prüfer: V. Melkuhn

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181212\FSSpannung001\0,15MHz-30,00MHz_004.PEAK

Test result:

EMC-Report

No. 240e.1218

Conducted emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 21; work status 2

Test pattern : conducted emissions (+Ub) in dBµV

Frequency range : 150 kHz ó 30 MHz

Detector : average

Prüfmittel: BNN_Ind Frequenzband: 0.15MHz - 30.00MHz 12.12.2018 Schrittweite: 5,0E+3 Hz Datum: Verweildauer: 50 Uhrzeit: 15:48 ms Detektor: Prüfer: V. Melkuhn Average

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181212\FSSpannung001\0,15MHz-30,00MHz_004.AVG

Test result:

EMC-Report

No. 240e.1218

Conducted emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 21; work status 2

Test pattern : conducted emissions (**GND**) in dBµV

Frequency range : 150 kHz ó 30 MHz

Detector : peak

Prüfmittel: BNN_Ind 0.15MHz - 30.00MHz Frequenzband: 12.12.2018 Schrittweite: 5,0E+3 Hz Datum: Verweildauer: 50 Uhrzeit: 15:40 Detektor: Peak Prüfer: V. Melkuhn

 $Messdate i: \quad E: \end{tabular} E: \end{tabular} Lend{tabular} A SYSTEMS \end{tabular} 181212 \end{tabular} FSS pannung 001 \end{tabular} 0.015 MHz - 30,00 MHz - 203. PEAK \end{tabular} A SYSTEMS \$

Test result:

EMC-Report

No. 240e.1218

Conducted emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 21; work status 2

Test pattern : conducted emissions (**GND**) in dBµV

Frequency range : 150 kHz ó 30 MHz

Detector : average

Prüfmittel: BNN_Ind 0.15MHz - 30.00MHz Frequenzband: 12.12.2018 Schrittweite: 5,0E+3 Hz Datum: Verweildauer: 50 Uhrzeit: 15:40 ms Detektor: Prüfer: V. Melkuhn Average

Messdatei: E:\EMVTEST\CLEAR SYSTEMS\181212\FSSpannung001\0,15MHz-30,00MHz_003.AVG

Test result:

S-TEAM Elektronik GmbH

Schleifweg 2

74257 Untereisesheim

EMC-Report

No. 240e.1218

8. Immunity

8.1 <u>Immunity to radiated electromagnetic fields</u>

Test specification : **DIN EN 61000-4-3**: 2006+A1:2008+ A2: 2010 according to

VDE 0847 part 4-3 of 04.2011

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Frequency range : 80 MHz ó 2700 MHz

Measurement site : anechoic chamber

Frequency step : <1 % of actual value

Work status : - Power supply 24VDC

- Ethernet connection to external laptop

- Inputs and outputs are monitored with external Laptop

3G antenna connected CAN communication runs RS484 communication runs

- OLED display monitored with video camera

Test criteria : - Ethernet communication

- OLED display at the DUT

Tolerance : - none

Measurement setup : desktop device, see pictures on pages 32 and 33

Modifications : see page 4

low impedance connection between display ground

and case ground

EMC- Report

No. 240e.1218

Measurement setup:

EMC- Report

No. 240e.1218

Measurement setup:

S-TEAM Elektronik GmbH

Schleifweg 2

74257 Untereisesheim

EMC-Report

No. 240e.1218

Immunity to radiated emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 31

Holding time : 2 sec

Radiated emissions

directed to : õsee measurement setupö

Remark : Pre-measurements in March 2018 shows, that the most

interference be occurred if the display is orientated towards the

antenna. Because of this the System will be tested in this

orientation.

Test range:

Frequency : 80 MHz ó 1000 MHz

Modulation : Modulation type: AM

Modulation frequency: 1 kHz Modulation grade: 80 %

Field strength : 10 V/m (continuous wave, effective value)

Polarization : *Horizontal / Vertical*

Test result:

The DUT does not show any deviations outside the specified limits during the test. No brightness differences at the OLED

The standards for **Test criteria A are passed**.

S-TEAM Elektronik GmbH

Schleifweg 2

74257 Untereisesheim

EMC-Report

No. 240e.1218

Immunity to radiated emissions

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 31

Holding time : 2 sec

Radiated emissions

directed to : õsee measurement setupö

Remark : Pre-measurements in March 2018 shows, that the most

interference be occurred if the display is orientated towards the

antenna. Because of this the System will be tested in this

orientation.

Test range:

Frequency : 1400 MHz ó 2700 MHz

Modulation : Modulation type: AM

Modulation frequency: 1 kHz Modulation grade: 80 %

Field strength : **3 V/m** (continuous wave, effective value)

Polarization : Horizontal / Vertical

Test result:

The DUT does not show any deviations outside the specified limits during the test. No brightness differences at the OLED

The standards for **Test criteria A are passed**.

S-TEAM Elektronik GmbH Schleifweg 2

74257 Untereisesheim

EMC-Report

No. 240e.1218

8.2 Immunity to fast transient disturbances (Burst)

Test specification : **DIN EN 61000-4-4**: 2012 according to

VDE 0847 part 4-4 of 04.2013

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : - Power supply 24VDC

- Ethernet connection to external laptop

- Inputs and outputs are monitored with external Laptop

3G antenna connected CAN communication runs RS484 communication runs

Test criteria : - Ethernet communication

- OLED display at the DUT

Tolerance : - none

Placement of

Device under test : placed upon styrofoam (thickness: 10 cm)

Measurement setup : desktop device

Modifications : see page 4

EMC- Report

No. 240e.1218

Measurement setup:

EMC- Report

No. 240e.1218

Immunity to fast transient disturbances on DC power supply ports

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 36

Test criteria : see page 36

Holding time : >1 minute

Uncoupling between (+Ub) and reference line				
Polarity	0.5 kV	1 kV	2 kV	
positive	OK	OK	OK	
negative	OK	OK	OK	

Uncoupling between (GND) and reference line			
Polarity	0.5 kV	1 kV	2 kV
positive	OK	OK	OK
negative	OK	OK	OK

J	Uncoupling between (+Ub), (GND) and reference line				
Polarity	0.5 kV	1 kV	2 kV		
positive	OK	OK	OK		
negative	OK	OK	OK		

Test result:

The DUT does not show any deviations outside the specified limits during the test. No brightness differences at the OLED

The standards for **Test criteria B are passed**.

EMC- Report

No. 240e.1218

Measurement setup:

Uncoupling towards the Ethernet-lines

EMC- Report

No. 240e.1218

Immunity to fast transient disturbances on Ethernet

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 36

Test criteria : see page 36

Holding time : >1 minute

Uncoupling with capacitive clamp on					
(Ethernet line)					
Polarity	0.5 kV	1 kV	2 kV		
positive OK OK OK					
negative	OK	OK	OK		

Test result:

The DUT does not show any deviations outside the specified limits during the test. No brightness differences at the =LED

The standards for **Test criteria B are passed**.

S-TEAM Elektronik GmbH

Schleifweg 2 74257 Untereisesheim

EMC- Report

No. 240e.1218

8.3 Immunity to high frequent uncoupled emissions

Test specification : **DIN EN 61000-4-6**: 2014 according to

VDE 0847 part 4-6 of 08.2014

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Frequency range : 150 kHz ó 80 MHz

Frequency step : <1 % of actual value

Work status : - Power supply 24VDC

- Ethernet connection to external laptop

- Inputs and outputs are monitored with external Laptop

3G antenna connected CAN communication runs RS484 communication runs

Test criteria : - Ethernet communication

- OLED display at the DUT

Tolerance : - none

Measurement setup : - placed upon styrofoam (thickness: 10 cm)

- desktop device, see pictures page 42

Modifications : see page 4

EMC- Report

No. 240e.1218

Measurement setup:

general setup:

HF-decoupling to the DC-power lines:

EMC- Report

No. 240e.1218

HF-decoupling to the Ethernet lines:

S-TEAM Elektronik GmbH Schleifweg 2

74257 Untereisesheim

EMC-Report

No. 240e.1218

Conducted immunity

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Holding time per

Frequency step : 2 s

Work status : see page 41

Test criteria : see page 41

Tested cable : **DC-power supply line (DC)** CDN: **M2**

Remarks :

Test range:

Frequency: 150 kHz ó 80 MHz

Modulation : Modulation type: AM

Modulation frequency: 1 kHz Modulation grade: 80 %

Testing voltage : 10 V (EMK)

Test result:

The DUT does not show any deviations outside the specified limits during the test. No brightness differences at the OLED

The standards for **Test criteria A are passed**.

S-TEAM Elektronik GmbH Schleifweg 2

74257 Untereisesheim

EMC-Report

No. 240e.1218

Conducted immunity

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Holding time per

Frequency step : 2 s

Work status : see page 41

Test criteria : see page 41

Tested cable : **Ethernet-line** CDN: **RJ45**

Remarks : DC-power supply decoupling with CDN: M2

Test range:

Frequency : 150 kHz ó 80 MHz

Modulation : Modulation type: AM

Modulation frequency: 1 kHz Modulation grade: 80 %

Testing voltage : 10 V (EMK)

Test result:

The DUT does not show any deviations outside the specified limits during the test. No brightness differences at the OLED

The standards for **Test criteria A are passed**.

S-TEAM Elektronik GmbH

Schleifweg 2

74257 Untereisesheim

EMC-Report

No. 240e.1218

8.4 <u>Immunity to surge</u>

Test specification : **DIN EN 61000-4-5**: 2014 according to

VDE 0847 part 4-5 of 03.2015

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Test voltages : Line - Line: 1 kV, generator- source-impedance 2 Ohm

Line - PE: 2 kV, generator- source-impedance 12 Ohm I/O Line ó PE: 2 kV, generator- source-impedance 42 Ohm

Triggering : 0° (DC power lines)

Pulse repeat

frequency : 1 impulse per 1 minute

Work status : - Power supply 24VDC

- Ethernet connection to external laptop

- Inputs and outputs are monitored with external Laptop

3G antenna connected CAN communication runs

- RS484 communication runs

Test criteria : - Ethernet communication

- OLED display at the DUT

Tolerance : - none

Measurement setup : desktop device

Test setup : power supply cable: 40 cm bundled

Modifications : see page 4

EMC- Report

No. 240e.1218

Measurement setup:

DC-power line

S-TEAM Elektronik GmbH

Schleifweg 2

74257 Untereisesheim

EMC- Report

No. 240e.1218

Immunity to surge to DC - power supply lines

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 46

5 uncouplings between the power supply lines (+Ub(24VDC)) and (GND) $R_i = 2~\Omega~/~C_k = 18~\mu F$				
Polarity	Triggering	0.5 kV	1 kV	
Positive	0°	OK	OK	
Negative	0°	OK	OK	

Test result:

The DUT does not show any deviations outside the specified limits during the test. No brightness differences at the OLED

Therefore the standards for **Test criteria B are passed**.

EMC-Report

No. 240e.1218

8.5 Immunity to electrostatic discharge (ESD)

Test specification : **DIN EN 61000-4-2**: 2009 according to

VDE 0847 part 4-2 of 12.2009

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : - Power supply 24VDC

- Ethernet connection to external laptop

- Inputs and outputs are monitored with external Laptop

3G antenna connected CAN communication runs RS484 communication runs

Test criteria : - Ethernet communication

- OLED display at the DUT

Tolerance : - none

Measurement setup : placed upon foil, 1 mm thick

Modifications : see page 4

EMC- Report

No. 240e.1218

Immunity to ESD Direct discharge

Date : 18-11-2018 and 12-12-2018 to 13-12-2018

Company : Clear Systems GmbH

Device under test : ANDINO RS485 USB CAN

Work status : see page 49

Test criteria : see page 49

Measurement points:

Measurement point contact discharge

Measurement point air discharge

EMC-Report

No. 240e.1218

Immunity to ESD
Direct discharge

Contact discharge to touchable metal parts / connector:

+2 kV	-2 kV	+4 kV	-4 kV
OK	OK	OK	OK

The DUT does not show any deviations outside the specified limits during the test.

After ending of test series electronic functioning accordingly.

Therefore the standards for **test criteria B are passed**.

air discharge to touchable insulated parts of the case:

+2 kV	-2 kV	+4 kV	-4 kV	+8 kV	-8 kV
OK	OK	OK	OK	OK	OK

The DUT does not show any deviations outside the specified limits during the test.

After ending of test series electronic functioning accordingly.

Therefore the standards for Test criteria B are passed

Indirect discharge

Contact discharge to horizontal and vertical coupling plate:

+2 kV	-2 kV	+4 kV	-4 kV
OK	OK	OK	OK

The DUT does not show any deviations outside the specified limits during the test.

After ending of test series electronic functioning accordingly.

Therefore the standards for Test criteria B are passed

o:\clear systems gmbh\2018.11.18 24v system \andino rs485 usb can test report.doc

EMC-Report

No. 240e.1218

9. Summary of test results

This record is a documentation of the measurements, which have been taken to investigate the behavior of the device under test Device under test: **ANDINO RS485 USB CAN** from **Clear Systems GmbH** in an electromagnetic environment. Subsequent the results of the individual measurements are listed.

Limitations:

The following listed standards are only effective with the modifications listed on page 4.

9.1 Immunity / test criteria

Environmental Phenomena	Test Specification and Units	Reference Documents	Performance Criteria	Test results
radio-frequency electromagnetic field (case)	80 - 1000 MHz 20 V/m (continuous wave, effective value) 80 % AM	EN 61000-4-3	A	passed
radio-frequency electromagnetic field (case)	1400 ó 2700MHz 10 V/m (continuous wave, effective value) 80 % AM	EN 61000-4-3	A	passed
High frequency asymmetric amplitude modulated (power supply lines DC)	0,15 to 80 MHz 10 V (continuous wave, effective value) 80 % AM	EN 61000-4-6	A	passed
High frequency asymmetric amplitude modulated (Ethernet)	0,15 to 80 MHz 10 V (continuous wave, effective value) 80 % AM	EN 61000-4-6	A	passed
Electrostatic discharge (indirect discharge)	± 4 kV horizontal coupling plate ± 4 kV vertical coupling plate	EN 61000-4-2	В	passed
Electrostatic discharge (case)	± 8 kV air discharge ± 4 kV contact discharge	EN 61000-4-2	В	passed
Surge to DC - power supply lines	1,2/50 (8/20) tr/th μs ±0,5 kV symmetric	EN 61000-4-5	В	passed

EMC- Report

No. 240e.1218

Environmental Phenomena	Test Specification and Units	Reference Documents	Performance Criteria	Test results
Fast transient disturbances (to DC power supply lines)	± 2 kV (peak) 5/50 ns tr/ th 5 kHz repeat frequency	EN 61000-4-4	В	passed
Fast transient disturbances (Ethernet)	± 2 kV (peak) 5/50 ns tr/ th 5 kHz repeat frequency	EN 61000-4-4	В	passed

The remark "ok" on the results of the individual tests signifies that there were no interferences noticeable

remark:

The decision for the requirements passed/not passed occurred about the tolerance specifications from the producer.

The conformity with the declaration šhighõ can only declared, if the measurement uncertainty is inside the tolerances of the generic standards.

Test criteria:

Criteria	Valuation (according to standard specification, short form)
A	All functions of a device/system perform as designed during and after exposure to disturbance.
В	All functions of a device/system perform as designed after exposure, without operating any panels.
	Variations in mode or loss of data are not permitted.
C	A intermittent functional deficiency is allowed. The function has to return by itself or it must return to
	normal function by operating the panel.

	Page 53 of 57	
--	---------------	--

EMC- Report

No. 240e.1218

9.2 Emissions

Measurement	Frequency range	Limit	Refernece document	Demands
DC Power supply input	150 to 500 kHz	79 dBμV Q [*] 66 dBμV M [*]	EN 55022 A	passed
	0,5 to 30 MHz	73 dBμV Q [*] 60 dBμV M [*]		
Housing	30 to 230 MHz 230 to 1000 MHz	30 dBμV/m 37 dBμV/m	EN 55022 B	passed
Housing	30 to 230 MHz 230 to 1000 MHz	40 dBμV/m 47 dBμV/m	EN 55022 A	passed

*) Q = measured with quasi-peak-rectifier M = measured with average-rectifier

remark:

The decision for the requirements passed/not passed occurred about the limit lines of the standards respectively the requirements of the producer, unless the generic standards are conform.

The conformity is approved, if the measurement values are inside the defined limit values and the generic standard guidelines for the conformity must be adhered.

EMC- Report

No. 240e.1218

10. <u>List of test equipment</u>

Used device	Test equip.	Device	Manufacturer	Model	Last calibr.	Next calibr.
			EMC - Test equipment			•
X	3000	anechoic chamber	Frankonia	7 x 4,5 x 3 m		
X	3001	Bilog. antennae	Chase	CBL 6111		
	3002	Monopole antennae	Schwarzbeck	VAMP 9243	05/2018	05/2023
	3005	Transient Limitter	HP	11947 A	03/2019	03/2021
X	3007	HF ópower amplifier	ar	100W 1000M1		
X	3008	HF - power amplifier	ar	75A220	-	
	3011	Electrical power divider	S-TEAM	SLT 150	03/2019	03/2021
	3012	CDN 3 x 16 A	Schaffner	CDN 300		
	3013	CDN / Surge	S-TEAM	SK 1,2 /50		
	3014	LISN	S-TEAM	STVN / 4 / 16	03/2019	03/2021
	3015	LISN	Schwarzbeck	NNLA 8119	03/2019	03/2021
	3016	LISN 5μH 50 Ω	S-TEAM	NN- KFZ01	03/2019	03/2021
	3017	LISN 5μH 50 Ω	S-TEAM	NN- KFZ02	03/2019	03/2021
	3018	LISN 5μH 50 Ω	S-TEAM	NN- KFZ03	03/2019	03/2021
X	3019	Interference generator	EMC Partner	Transient 2000	01/2017	01/2020
	3020	Measurement transformer - clamp	Rohde & Schwarz	MDS 20	07/1997	
	3021	current clamp	Schaffner	SMZ 11	06/2003	
	3023	directional coupler	ar	DC 6180	03/2019	03/2021
X	3025	100 mm strip line	S-TEAM	SST-100		
	3026	directional coupler	Werlatone	C6145-10	03/2019	03/2021
	3027	micro wave power meter	Rohde& Schwarz	URV 5	03/2019	03/2021
	3028	measuring head	Rohde& Schwarz	URY-Z4	03/2019	03/2021
X	3029	measuring head	Rohde& Schwarz	URY-Z4	03/2019	03/2021
X	3030	micro wave power meter	Rohde& Schwarz	URV 5	03/2019	03/2021
	3031	measuring head	Rohde& Schwarz	URY-Z4	03/2019	03/2021
X	3032	HF ópower amplifier	Milmega	ASO 104-30/17		
X	3033	EMI Receiver	Rohde& Schwarz	ESCI	06/2018	06/2019
X	3034	bilog. antenna	Schwarzbeck	STLP9128 E special		
X	3036	power meter	HP	437B	07/2018	07/2019
X	3037	power sensor	HP	8485A	07/2018	07/2019
X	3038	HF óamplifier	TESEQ	CBA 1G-1000		
X	3039	HF óamplifier	TESEQ	CBA 3G 300		
X	3040	horn antenna	ar	ATH800M5G		
X	3041	directional coupler	Bonn	BDC 0810-50/2500	03/2019	03/2021
X	3042	directional coupler	Bonn	BDC 1040-40/500	03/2019	03/2021
	3043	amplifier	Spitzenberger+Spies	EM 1500/B		
	3044	horn antenna	EMCO	3115		
	3045	ISN	TESEQ	ISN ST08	03/2015	03/2020
	3047	artificial mains network LISN 5μH 50 Ω	Schwarzbeck	NNBM 8124-200A	03/2019	03/2021
	3048	artificial mains network LISN $5\mu H \parallel 50 \Omega$	Schwarzbeck	NNBM 8124-200A	03/2019	03/2021
	3049	HF ópower amplifier	ar	100W 1000M1		
	3050	Loop antenna	Rohde & Schwarz	HFH2-Z2		

EMC- Report

No. 240e.1218

Jsed device	Test equip. Nr.	Device	Manufacturer	Model	Last calibr.	Next calibr
			ESD - Test equipment			
X	0109	ESD generator	TESEQ	NSG 438	05/2020	05/2022
	0110	ESD uncoupling link	TESEQ	$330 \Omega/150 pF$	05/2020	05/2022
X	0111	ESD uncoupling link	TESEQ	2 KΩ/150 pF	05/2020	05/2022
X	0112	ESD uncoupling link	TESEQ	330 Ω/330 pF	05/2020	05/2022
	0113	ESD uncoupling link	TESEQ	2 KΩ/330 pF	05/2020	05/2022
	,		lk current injection (B		•	1
	0401	Einkoppelzange	FCC	HHS1		
	0402	Kalibrierhalter	FCC	PG-HHS1		
	0405	Messzange	FCC	F-65		
	<u> </u>		Signal generators	_	<u> </u>	1
X	8501	HF generator	HP	HP 8648B	07/2018	07/2020
	8502	HF generator	Rohde & Schwarz	SMX	07/2018	07/2020
	8503	HF generator	HP	8116 A		
	8504	Sweep - generator	HC	HC 6 G205		
	8505	HF generator	Wavetek	Model 270		
X	8507	signal generator	Rohde & Schwarz	SMC100A	07/2018	07/2020
	8508	signal generator	Rohde & Schwarz	SMB100A	10/2019	10/2022
	0200		uncoupled emission (p.		10/2019	10/2022
	0501	EM Injection Clamp	FCC	F- 2031	03/2019	03/2021
	0502	CDN	MEB	S9	03/2019	03/2021
	0503	CDN	MEB	S25	03/2019	03/2021
	0504	CDN	FCC	AF9	03/2019	03/2021
	0505	CDN	S-TEAM	M1	03/2019	03/2021
	0506	CDN	S-TEAM	M2	03/2019	03/2021
	0507	CDN	MEB	M3	03/2019	03/2021
	0508	CDN	S-TEAM	M5	03/2019	03/2021
	0509	CDN	S-TEAM	T2	03/2019	03/2021
	0510	CDN	S-TEAM	RJ45	03/2019	03/2021
	0510	CDN	MEB	T4	03/2019	03/2021
	0512	CDN	S-TEAM	USB	03/2019	03/2021
		ransient disturbances (Bur				03/2021
X	0301	Capacitive Clamp	Schaffner	SL 400- 071D	12/2016	10/2018
	0301	Capacitive Clamp	Harmonic waves	SL 400- 071D	12/2010	10/2018
		Harmonic / Flicker test	Tarmonic waves			
	0401	system	HP	6842A	09/2016	09/2021
			 Aagnetic field immunit	N7		
X	0601	Helmholtz-Inductor	S-TEAM	HHS1	T	T
Λ	0602	Measurement generator	S-TEAM S-TEAM	PG-HHS1		T
X	0603	Magnetic field coil	S-TEAM S-TEAM	RL-KFZ		
Λ	0003		C-Test equipment car-			
	2201	Generator pulse 1,2,3	Schaffner	NSG 500 C	T	T
	2201		Schaffner	CDN 500		T
	2202	Coupling clamp	Schaimer	CDN 300	-	
X	2204	Generator pulse 1,2,3,5,6,7	Schaffner	NSG 5500		
X	2205	Generator pulse 2b, 4	Schaffner	NSG 5600		
X	2206	Battery simulationl	Schaffner	PA5740		
			Oscilloscopes			
	7002	Storage oscilloscope	HP	54201A		
	7003	Oscilloscope / 100 MHz	Hitachi	V ó 1065		
	7004	Oscilloscope	Tektronix	485		
	7005	Storage oscilloscope	Tektronix	TDS 7404B	10/2016	10/2019
X	7006	Oscilloscope	Gw Instek	GDS-2104		

EMC- Report

No. 240e.1218

Used device	Test equip. Nr.	Device	Manufacturer	Model	Last calibr.	Next calibr.
			Multimeter			•
	6501	Digital multimeter	Fluke	8840A	09/2018	09/2020
X	6502	Digital multimeter	Fluke	77 II	09/2018	09/2020
	6503	Digital multimeter	Fluke	77 II	09/2018	09/2020
	6504	Multimeter	Gossen Metrawatt	Metra Hit One	09/2018	09/2020
	6505	Multimeter	Gossen Metrawatt	Metra Hit One	09/2018	09/2020
	6510	Multimeter	PREMA	5017	09/2018	09/2020
X	6511	Digital multimeter	Fluke	77 IV	09/2018	09/2020
	6512	Digital multimeter	Fluke	77 IV	09/2018	09/2020
	6513	Digital multimeter	Keithley	2000	09/2018	09/2020
			Power supply			
X	9001	Power supply	S- TEAM	SNT 24V-8A		
	9002	Power supply	Gossen	24 K 160 R 0,8		
X	9003	Power supply	EA	EA 3025		
	9004	Power supply	EA	EA 3045		
	9005	Power supply	CYE	D 1532		
	9006	Power supply	CYE	D 3022		
	9007	Power supply	Zentro Elektrik	L 7,5/5		
	9008	Power supply	Mc Voice	DF 1731 SB		
	9009	Power supply	Voltcraft	PS 602 Pro		
	9010	Power supply	EA	EA 3045		
	9011	Power supply	S-Team	BRSQ		
	9012	Power supply	Zentro	LD7,5/5-2x30		
			Software			
X	1001	test location A0200	S-Team	Eeektromagn. HF- field		
	1002	test location A0500	S-Team	HF coupling		
X	1003	test location A0800/A0900	S-Team	Funkstörfeldstärke/ Funkstörspannung		
	1004	test location A2300	S-Team	Stripline		
X	1005	Störimpulsgenerator	EMC Partner	Burst / Surge / Netzvariation		
	1006	test location A2000/A2001	S-Team	Kfz Funkstörfeldstärke/ Funkstörspannung		
	1007	test location A2200	Schaffner	Kfz - Pulse		
	1008	test location z A2400	S-Team	BCI		
	1009	test location A1000	HP	Oberschwingungen/ Flicker		