Logical Relations in Coq

Elliot Bobrow

UPenn REPL

July 29, 2024

Theorem

Normalization of STLC: For all terms e, if $\vdash e : \tau$, then there exists a value v s.t. $e \rightarrow^* v$.

Proof.

By induction on the typing derivation?

$$\frac{\vdash e1: \tau_2 \to \tau \quad \vdash e2: \tau_2}{\vdash e1 \, e2: \tau} \, \text{T-App}$$

By IH,

$$e1 \ e2 \rightarrow^* (\lambda x : \tau_2.e') \ e2 \rightarrow^* e'[v2/x]$$

$$\frac{\vdash e1:\tau_2 \rightarrow \tau \quad \vdash e2:\tau_2}{\vdash e1\:e2:\tau}\:\texttt{T-App}$$

By IH,

$$e1\ e2\rightarrow^* \left(\lambda x:\tau_2.e'\right)e2\rightarrow^* e'[v2/x]$$

IH is too weak!

Define a relation N_{τ} :

Define a relation N_{τ} :

$$egin{aligned} & extstyle N_{\mathsf{bool}}(e) \equiv \vdash e : \mathsf{bool} \land \exists v.e
ightarrow^* v \ & extstyle N_{ au_1
ightarrow au_2}(e) \equiv \vdash e : au_1
ightarrow au_2 \land \exists v.e
ightarrow^* v \ & \land orall e'. extstyle N_{ au_1}(e') \Rightarrow extstyle N_{ au_2}(e\,e') \end{aligned}$$

Now prove:

- 1. If $\vdash e : \tau$, then $N_{\tau}(e)$.
- 2. If $N_{\tau}(e)$, then $\exists v.e \rightarrow^* v$.

Now prove:

- 1. If $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $N_{\tau}(\gamma(e))$.
- 2. If $N_{\tau}(e)$, then $\exists v.e \rightarrow^* v$.

where

$$\gamma = \{x_1 \mapsto v1, \dots, x_n \mapsto v_n\} \vDash \Gamma := \mathsf{dom}(\Gamma) = \mathsf{dom}(\gamma)$$
$$\land (\forall x \in \mathsf{dom}(\Gamma).N_{\Gamma(x)}(\gamma(e))$$

Formalization in Coq

```
Fixpoint N (T : ty) (e : tm) : Prop :=
match T with
| bool => has_type nil e T
    /\ exists e', step e e'
| arr T1 T2 => has_type nil e T
    /\ exists e', step e e'
    /\ forall e',
        N T1 e' -> N T2 (app e e')
end.
```