Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego

Laboratorium Architektury i organizacji komputerów I

> Prowadzący mgr inż. Artur Miktus Sprawozdanie z ćwiczenia laboratoryjnego nr 3

Temat ćwiczenia: Mikroprogramy rozkazów przesłań i arytmetycznych

Wykonał: Arkadiusz Ostrzyżek

Grupa: WCY22KY2S1

Data wykonania ćwiczenia: 2023-11-22

Treść polecenia:

Lab3 22KY2S1 zima 2023

Dana jest zawartość początkowa rejestrów i pamięci operacyjnej PAO jak w poniższej tabeli:

Dairetan	
Rejestry	
Α	1000
LR	100+nr
RI	200
PAO	
Adres	Zawartość
0	220+nr
nr	2023
LR	ADD 001 255
LR+1	CMA 100+nr
LR+2	INX 100+nr
LR+3	STA 000 255
LR+4	LDA 111 nr
LR+5	LAI nr+100
200+nr	nr
220+nr	100
255	32000+nr
233	32000+111

Pozostałe komórki PAO są wyzerowane.

Pozostałe komórki PAO są wyzerowane.

- Na dostatecznie poprawnie pobrać i wykonać pierwsze 3 rozkazy.
- Na dobrze poprawnie pobrać i wykonać pierwsze 4 rozkazy.

Pozostałe komórki PAO sa wyzerowane.

W Pamięci Mikroprogramów mają być wpisane do wytworzenia sprawozdania (najlepiej przed zajęciami, ale niekoniecznie) mikroprogramy, realizujące wszystkie rozkazy z grup, objętych tematyką dzisiejszych zajęć (bez mnożenia i dzielenia oraz pozostałych z zestawu: MUL, DIV, SIO, LIO, BDN, CND, ENI, LDS), dzielenia oraz pozostałych z zestawu: MUC, DIV, SIO, LIO, BUN, CND, ENI, LDS), np. mimo że w treści przykładowych zadań nie ma odejmowania, to zarówno - pod adresem 2 w PM ma się znajdować odpowiedni skok do 54, - jak i pod adresem 54, 55 ma znajdować się mikroprogram odejmowania.

Brak kompletnej PM dla bieżących grup rozkazów w sprawozdaniu oznacza pół oceny w dół - nie dotyczy: MUL, DIV, SIO, LIO, BDN, CND, ENI, LDS.

Wydruk PM:

0	Test NA	TINT 48	Brak przerwania
1	Test NA	UNB 52	Zawsze pozytywny
2	Test NA	UNB 54	Zawsze pozytywny
5	Test NA	UNB 56	Zawsze pozytywny
6	Test NA	UNB 58	Zawsze pozytywny
7	Test NA	UNB 60	Zawsze pozytywny
8	Test NA	UNB 62	Zawsze pozytywny
9	Test NA	UNB 64	Zawsze pozytywny
10	Test NA	UNB 66	Zawsze pozytywny
11		UNB 68	Zawsze pozytywny
12		UNB 69	Zawsze pozytywny
13		UNB 70	Zawsze pozytywny
16		UNB 72	Zawsze pozytywny
17	Test	UNB	Zawsze pozytywny

	NA	74	
18		UNB 76	Zawsze pozytywny
19		UNB 78	Zawsze pozytywny
20		UNB 80	Zawsze pozytywny
21		UNB 82	Zawsze pozytywny
22		UNB 86	Zawsze pozytywny
23		UNB 88	Zawsze pozytywny
24		UNB 90	Zawsze pozytywny
25		UNB 94	Zawsze pozytywny
26		UNB 96	Zawsze pozytywny
27		UNB 100	Zawsze pozytywny
28		UNB 102	Zawsze pozytywny
29		UNB 104	Zawsze pozytywny
31		UNB 48	Zawsze pozytywny
32	Test	UNB	Zawsze pozytywny

	NA	98	
33		UNB 106	Zawsze pozytywny
34		UNB 108	Zawsze pozytywny
35		UNB 112	Zawsze pozytywny
36		UNB 114	Zawsze pozytywny
37		UNB 116	Zawsze pozytywny
38		UNB 118	Zawsze pozytywny
39		UNB 120	Zawsze pozytywny
40		UNB 122	Zawsze pozytywny
41		UNB 124	Zawsze pozytywny
42		UNB 125	Zawsze pozytywny
43		UNB 126	Zawsze pozytywny
44		UNB 128	Zawsze pozytywny
48	D1	IRAP ORBP	LR -> BUS BUS -> RAP RBP -> BUS BUS -> RR

	C1	RRC Rozpoczęcie RRC
49	S1 D1 S2 D2 C2 Test NA	ORR RR -> BUSILK BUS -> LKIRAE SUMA -> RAENSI LR+1 -> LRCEA Oblicz adres efektywnyTIND Adresowanie pośrednie50
50	S1 D1 S3 D3 C1	ORAE RAE -> BUSIRAP BUS -> RAP _ORBP RBP -> BUS _IX BUS -> X _RRC Rozpoczęcie RRC
51	S2 D2 C2	OX X -> BUS IBI BUS -> RAE OPC OP albo AOP+32 -> RAPS
52	S1 D1 S3 D3 C1	ORAE RAE -> BUSIRAP BUS -> RAPORBP RBP -> BUSIX BUS -> XRRC Rozpoczęcie RRC
53	S1 D1 S2 D2 C1 ALU	IALU A -> LALUOXE X -> RALUOBE ALU -> BUSIA BUS -> AEND Koniec mikroprogramuADD ALU = LALU + RALU
54	S1 D1 S3 D3 C1	ORAE RAE -> BUSIRAP BUS -> RAPORBP RBP -> BUSIX BUS -> XRRC Rozpoczęcie RRC
55	S1 D1 S2	IALU A -> LALU OXE X -> RALU OBE ALU -> BUS

	D2 C1 ALU	IA BUS -> AEND Koniec mikroprogramuSUB ALU = LALU - RALU
56	S1 D1 S3 D3 C1	ORAE RAE -> BUSIRAP BUS -> RAPOMQ MQ -> BUSIRBP BUS -> RBPCWC Rozpoczęcie CWC
57	C1	END Koniec mikroprogramu
58	S1 D1 S3 D3 C1	ORAE RAE -> BUSIRAP BUS -> RAPOA A -> BUSIRBP BUS -> RBPCWC Rozpoczęcie CWC
59	C1	END Koniec mikroprogramu
60	S1 D1 S3 D3 C1	ORAE RAE -> BUSIRAP BUS -> RAPORI RI -> BUSIRBP BUS -> RBPCWC Rozpoczęcie CWC
61	C1	END Koniec mikroprogramu
62	D1 S3	ORAE RAE -> BUSIRAP BUS -> RAPORBP RBP -> BUSIA BUS -> ARRC Rozpoczęcie RRC
63	C1	END Koniec mikroprogramu
64		ORAE RAE -> BUSIRAP BUS -> RAPORBP RBP -> BUSIRI BUS -> RIRRC Rozpoczęcie RRC

65	C1	END Koniec mikroprogramu
66	S1 D1 S3 D3 C1	ORAE RAE -> BUSIRAP BUS -> RAPOLR LR -> BUSIRBP BUS -> RBPCWC Rozpoczęcie CWC
67	C1	END Koniec mikroprogramu
68	S2 D2 C1	ORI RI -> BUS IA BUS -> A END Koniec mikroprogramu
69	S2 D2 C1	OMQ MQ -> BUS IA BUS -> A END Koniec mikroprogramu
70	S1 D1 S3 D3 C1	ORAE RAE -> BUSIRAP BUS -> RAPORBP RBP -> BUSIX BUS -> XRRC Rozpoczęcie RRC
71	S1 D1 S2 D2 C1 ALU	IXRE RI -> LALUOXE X -> RALUOBE ALU -> BUSIRI BUS -> RIEND Koniec mikroprogramuADD ALU = LALU + RALU
72	S3 D3 C1	ORAE RAE -> BUSILR BUS -> LREND Koniec mikroprogramu
74		TAO OFF = 0 110
75		UNB Zawsze pozytywny 16
76	Test	TXP RI <= 0

NA 110 77 **Test** Zawsze pozytywny ___UNB NA 16 ___TXZ 78 BXZ i RI $!= 0 \parallel TLD$ i RI = 0**Test** NA 16 END 79 C1 Koniec mikroprogramu 80 Test TXS RI >= 0NA 110 81 Test UNB Zawsze pozytywny NA 16 82 $RI \leq 0$ ___TXP Test NA 110 83 C2DRI RI = RI-1UNB Zawsze pozytywny Test ___16 NA 86 Test TAP $A \le 0$ NA 110 87 **Test** UNB Zawsze pozytywny NA 16 ___TAZ 88 A = 0Test NA 16 89 C1 END Koniec mikroprogramu TAS 90 **Test** A >= 0NA 110 ___UNB 91 Zawsze pozytywny Test NA 16 **S**1 94 RAE -> BUS ORAE IRAP BUS -> RAP D1

```
S3
             ORBP RBP -> BUS
                   BUS -> X
    D3
             IX
    C1
             RRC
                    Rozpoczęcie RRC
95
     S1
              IALU
                     A \rightarrow LALU
                    X -> RALU
    D1
             OXE
    S2
             OBE
                    ALU -> BUS
    D2
             IA
                  BUS \rightarrow A
    C1
             END
                    Koniec mikroprogramu
    ALU
              OR
                    ALU = LALU OR RALU
96
     S1
              ORAE
                      RAE -> BUS
                    BUS -> RAP
             IRAP
    D1
    S3
             ORBP
                    RBP -> BUS
             IX
                   BUS \rightarrow X
    D3
             RRC
                    Rozpoczęcie RRC
    C1
97
     S1
              IALU
                     A -> LALU
             OXE
                    X -> RALU
    D1
    S2
             OBE
                    ALU -> BUS
                  BUS \rightarrow A
    D2
             IA
                    Koniec mikroprogramu
    C1
             END
            AND
                     ALU = LALU AND RALU
    ALU
     S3
98
                     LR -> BUS
              OLR
    D3
             IX
                   BUS \rightarrow X
99
     S1
              OXE
                     X -> RALU
    S2
             OBE
                    ALU -> BUS
                   BUS -> LR
    D2
             ILR
                    Koniec mikroprogramu
    C1
             END
              DECR
                      ALU = RALU - 1
    ALU
100
      S1
              IALU A -> LALU
             OBE
                    ALU -> BUS
    S2
             IA
                  BUS \rightarrow A
    D2
             END
                    Koniec mikroprogramu
    C1
    ALU
              NOTL
                      ALU = NOT LALU
102
      S1
                      RAE -> BUS
              ORAE
                    BUS -> RAP
    D1
             IRAP
    S3
             ORBP
                    RBP -> BUS
```

	D3	IX BUS -> X
	C1	RRC Rozpoczęcie RRC
103		IALU A -> LALUOXE X -> RALU _OBE ALU -> BUS _IA BUS -> A _END Koniec mikroprogramu _EOR ALU = LALU XOR RALU
104	S1 D1 S3 D3 C1	ORAE RAE -> BUS IRAP BUS -> RAP OLR LR -> BUS IRBP BUS -> RBP CWC Rozpoczęcie CWC
105		ORAE RAE -> BUS ILR BUS -> LR NSI LR+1 -> LR END Koniec mikroprogramu
106	D2	IALU A -> LALUOBE ALU -> BUSIA BUS -> AEND Koniec mikroprogramuCMA ALU = (NOT LALU)+1
108	D2 C1 C2 Test NA	ALA arytmetyczne A w lewo SHT Operacja przesunięcia DLK LK = [LK]-1 TLK SHT, LK=0 !SHT, LK!=0 110
109		UNB Zawsze pozytywny 108
110	C1	END Koniec mikroprogramu
112	D2 C1 C2 Test	ARA arytmetyczne A w prawo SHT Operacja przesunięcia DLK LK = [LK]-1 TLK SHT, LK=0 !SHT, LK!=0

	NA	110	
113		UNB 112	Zawsze pozytywny
114	C1 C2	LRQ SHT DLK TLK 110	logiczne A i MQ w prawo Operacja przesunięcia LK = [LK]-1 SHT, LK=0 !SHT, LK!=0
115		UNB 114	Zawsze pozytywny
116	C1 C2	LLQ SHT DLK TLK 110	Operacja przesunięcia
117		UNB 116	Zawsze pozytywny
118	C1 C2 Test	SHT DLK	logiczne A w lewo Operacja przesunięcia LK = [LK]-1 SHT, LK=0 !SHT, LK!=0
119		UNB 118	Zawsze pozytywny
120	C1 C2 Test	SHT DLK	logiczne A w prawo Operacja przesunięcia LK = [LK]-1 SHT, LK=0 !SHT, LK!=0
121		UNB 120	Zawsze pozytywny
122	D2	LCA	cykliczne A w lewo

	C1	SHT Operacja przesunięcia
	C2	DLK
	Test	TLK SHT, LK=0 !SHT, LK!=0
	NA	110
123		UNB Zawsze pozytywny
	NA	122
124	S 2	IRAE SUMA -> RAE
		ORAE RAE -> BUS
	-	IA BUS -> A
		END Koniec mikroprogramu
	01	
125		IRAE SUMA -> RAE
		ORAE RAE -> BUS
		IRI BUS -> RI
	C1	END Koniec mikroprogramu
126	S2	IRAE SUMA -> RAE
		ORAE RAE -> BUS
	_	IX BUS -> X
127	S1	IXRE RI -> LALU
	D1	OXE X -> RALU
	S2	OBE ALU -> BUS
	D2	IRI BUS -> RI
	C1	END Koniec mikroprogramu
	ALU	$\underline{\hspace{1cm}}$ ADD ALU = LALU + RALU
128	S2	IRAE SUMA -> RAE
	S3 .	ORAE RAE -> BUS
	D3	IX BUS -> X
129	S1	IXRE RI -> LALU
	D1	OXE X -> RALU
	S2 .	OBE ALU -> BUS
	D2	IRI BUS -> RI
	C1	END Koniec mikroprogramu
	ALU	$__SUB$ ALU = LALU – RALU

Wydruk PAO:

0	0000000011100011b	00E3h	227		
7	0000011111100111b	07E7h	2023		
107	0000100111111111b	09FFh	OP=1	XSI=001	DA=255
108	0000000011101011b	00EBh	AOP=1	N	I=107
109	0000010111101011b	05EBh	AOP=11	ľ	N=107
110	0011000011111111b	30FFh	OP=6	XSI=000	DA=255
111	0100011100000111b	4707h	OP=8	XSI=111	DA=7
112	0000010011101011b	04EBh	AOP=9	N	I=107
207	0000000000000111b	0007h	7		
227	0000000000000111b	0007h	7		
255	1111010000110001b	F431h	32007		

192.168.13.1

Zawartość pliku log:

```
Start symulatora 22.11.2023 08:54:35
Stacja "LABITC"
Zalogowano jako: "Student"
Wersja aplikacji: 1.2.3.0
Dostępne interfejsy sieciowe: 10.6.120.15
192.168.56.1
192.168.47.1
```

=====Start symulacji====== 09:04.58

```
=====Zawartość rejestrów=====
```

```
LK
       = 0h
              0
       = 3E8h
Α
                  1000
MQ
       = 0h
              0
Χ
       = 0h
              0
RAP
       = 0h
              0
       = 0h
LALU
              0
RALU
       = 0h
              0
RBP
       = 0h
              0
ALU
       = 0h
              0
BUS
       = 0h
              0
       = 0h
RR
              0
       = 6Bh 107
LR
       = C8h 200
RI
RAPS
       = 0h
             0
       = 0h
RAE
              0
       = 0h
              0
L
```

```
R = 0h \quad 0
SUMA = 0h 0
 MAV = 1, IA = 0, INT = 0
ZNAK = 0, XRO = 0, OFF = 0
MAKRO
Takt0: RBPS=000000020030h
Takt7:
           INT = 0
   TEST | TINT : Brak przerwania(INT ?= 0)
          RAPS = 48 / 30h
MAKRO
=========48===========
Takt0: RBPS=5006C4000000h
Takt1:
     S1 | OLR : LR -> BUS
           BUS = 107 / 6Bh
     D1 | IRAP : BUS -> RAP
          RAP = 107 / 6Bh
     C1 | RRC : Rozpoczęcie RRC
          RBP = 2559 / 9FFh
Takt7:
     S3 | ORBP : RBP -> BUS
           BUS = 2559 / 9FFh
     D3 |
          IRR: BUS -> RR
           RR = 2559 / 9FFh
          RAPS = 49 / 31h
MAKRO
Takt0: RBPS=68C801830032h
Takt1:
          ORR: RR -> BUS
     S1 |
           BUS = 2559 / 9FFh
          ILK : BUS -> LK
         B_{4}d(1): LK = 255 / FFh (Poprawna LK = 127 /
7Fh)
     C2 | CEA : Oblicz adres efektywny
         B_{4}(2): L = 127 / 7Fh (Poprawna L = 255 / FFh)
            R = 0 / 0h
```

```
SUMA = 255 / FFh
          XRO = 0
Takt6:
     S2 | IRAE : SUMA -> RAE
          RAE = 255 / FFh
     D2 | NSI : LR+1 -> LR
           LR = 108 / 6Ch
Takt7:
   TEST | TIND : Adresowanie pośrednie
          RAPS = 50 / 32h
MAKRO
Takt0: RBPS=900624000000h
Takt1:
     S1 | ORAE : RAE -> BUS
          BUS = 255 / FFh
     D1 | IRAP : BUS -> RAP
          RAP = 255 / FFh
     C1 | RRC : Rozpoczęcie RRC
          RBP = 32007 / 7D07h
Takt7:
     S3 | ORBP : RBP -> BUS
          BUS = 32007 / 7D07h
     D3 |
          IX : BUS -> X
            X = 32007 / 7D07h
          RAPS = 51 / 33h
MAKR0
=========51===========
Takt0: RBPS=03A801600000h
Takt6:
     S2 | 0X : X -> BUS
           BUS = 32007 / 7D07h
     D2 | IBI : BUS -> RAE
          RAE = 32007 / 7D07h
Takt7:
     C2 | OPC : OP albo AOP+32 -> RAPS
          RAPS = 1 / 1h
MAKR0
```

Takt0: RBPS=000000010034h

Takt7:

TEST | UNB : Zawsze pozytywny

```
RAPS = 52 / 34h
MAKRO
========52============
Takt0: RBPS=900624000000h
Takt1:
     S1 | ORAE : RAE -> BUS
           BUS = 32007 / 7D07h
     D1 | IRAP : BUS -> RAP
           RAP = 7 / 7h
     C1 | RRC : Rozpoczęcie RRC
           RBP = 2023 / 7E7h
Takt7:
     S3 | ORBP : RBP -> BUS
           BUS = 2023 / 7E7h
            IX : BUS -> X
     D3 |
            X = 2023 / 7E7h
          RAPS = 53 / 35h
MAKRO
Takt0: RBPS=BC300E000100h
Takt1:
     S1 | IALU : A -> LALU
          LALU = 1000 / 3E8h
     D1 | OXE : X -> RALU
          RALU = 2023 / 7E7h
Takt2:
    ALU \mid ADD : ALU = LALU + RALU
           ALU = 3023 / BCFh
       ZNAK = 0, OFF = 0
Takt6:
          OBE : ALU -> BUS
     S2 |
           BUS = 3023 / BCFh
           IA : BUS -> A
     D2 |
            A = 3023 / BCFh
Takt7:
     C1 |
           END: (Cykl 8) Koniec mikroprogramu
(09:14.12)
          RAPS = 0 / 0h
MAKRO
```

Takt0: RBPS=000000020030h

Takt7:

```
INT = 0
   TEST | TINT : Brak przerwania(INT ?= 0)
          RAPS = 48 / 30h
MAKRO
=========48===========
Takt0: RBPS=5006C4000000h
Takt1:
     S1 | OLR : LR -> BUS
           BUS = 108 / 6Ch
     D1 | IRAP : BUS -> RAP
           RAP = 108 / 6Ch
     C1 | RRC : Rozpoczęcie RRC
           RBP = 235 / EBh
Takt7:
     S3 | ORBP : RBP -> BUS
           BUS = 235 / EBh
           IRR : BUS -> RR
     D3 |
            RR = 235 / EBh
          RAPS = 49 / 31h
MAKRO
Takt0: RBPS=68C801830032h
Takt1:
     S1 |
           ORR: RR -> BUS
           BUS = 235 / EBh
     D1 |
           ILK : BUS -> LK
           LK = 107 / 6Bh
     C2 |
           CEA: Oblicz adres efektywny
            L = 107 / 6Bh
             R = 0 / 0h
          SUMA = 107 / 6Bh
Takt6:
     S2 | IRAE : SUMA -> RAE
           RAE = 107 / 6Bh
     D2 | NSI : LR+1 -> LR
           LR = 109 / 6Dh
Takt7:
   TEST | TIND : Adresowanie pośrednie
          RAPS = 50 / 32h
MAKRO
Takt0: RBPS=900624000000h
```

```
Takt1:
     S1 | ORAE : RAE -> BUS
           BUS = 107 / 6Bh
     D1 | IRAP : BUS -> RAP
           RAP = 107 / 6Bh
     C1 | RRC : Rozpoczęcie RRC
           RBP = 2559 / 9FFh
Takt7:
     S3 | ORBP : RBP -> BUS
           BUS = 2559 / 9FFh
           IX : BUS -> X
     D3 |
            X = 2559 / 9FFh
          RAPS = 51 / 33h
MAKR0
=========51============
Takt0: RBPS=03A801600000h
Takt6:
     S2 |
           0X : X -> BUS
           BUS = 2559 / 9FFh
           IBI : BUS -> RAE
     D2 |
           RAE = 2559 / 9FFh
Takt7:
     C2 | OPC : OP albo AOP+32 -> RAPS
          RAPS = 33 / 21h
MAKRO
=======33==========
Takt0: RBPS=00000001006Ah
Takt7:
   TEST | UNB : Zawsze pozytywny
          RAPS = 106 / 6Ah
MAKRO
Takt0: RBPS=A4300E000400h
Takt1:
     S1 | IALU : A -> LALU
          LALU = 3023 / BCFh
Takt2:
    ALU \mid CMA : ALU = (NOT LALU)+1
         B_{4}(3): ALU = 3023 / BCFh (Poprawna ALU = -
3023 / F431h)
        ZNAK = 1, OFF = 0
```

```
Takt6:
     S2 | OBE : ALU -> BUS
          BUS = -3023 / F431h
          IA : BUS -> A
     D2 |
           A = -3023 / F431h
Takt7:
     C1 |
          END: (Cykl 15) Koniec mikroprogramu
(09:21.18)
         RAPS = 0 / 0h
MAKR0
Takt0: RBPS=000000020030h
Takt7:
          INT = 0
   TEST | TINT : Brak przerwania(INT ?= 0)
         RAPS = 48 / 30h
MAKRO
Takt0: RBPS=5006C4000000h
Takt1:
     S1 | OLR : LR -> BUS
          BUS = 109 / 6Dh
     D1 | IRAP : BUS -> RAP
          RAP = 109 / 6Dh
     C1 | RRC : Rozpoczęcie RRC
          RBP = 1515 / 5EBh
Takt7:
     S3 | ORBP : RBP -> BUS
          BUS = 1515 / 5EBh
          IRR : BUS -> RR
     D3 |
           RR = 1515 / 5EBh
         RAPS = 49 / 31h
MAKRO
Takt0: RBPS=68C801830032h
Takt1:
          ORR: RR -> BUS
     S1 |
          BUS = 1515 / 5EBh
          ILK : BUS -> LK
     D1 |
           LK = 107 / 6Bh
     C2 |
          CEA: Oblicz adres efektywny
            L = 107 / 6Bh
```

```
R = 0 / 0h
          SUMA = 107 / 6Bh
Takt6:
     S2 | IRAE : SUMA -> RAE
           RAE = 107 / 6Bh
     D2 | NSI : LR+1 -> LR
            LR = 110 / 6Eh
Takt7:
    TEST | TIND : Adresowanie pośrednie
          RAPS = 50 / 32h
MAKRO
Takt0: RBPS=900624000000h
Takt1:
     S1 | ORAE : RAE -> BUS
         B_{4}d(4): BUS = 1515 / 5EBh (Poprawna BUS =
107 / 6Bh)
     D1 | IRAP : BUS -> RAP
           RAP = 107 / 6Bh
     C1 | RRC : Rozpoczęcie RRC
         B_{4}(5): RBP = 12543 / 30FFh (Poprawna RBP =
2559 / 9FFh)
Takt7:
     S3 | ORBP : RBP -> BUS
           BUS = 2559 / 9FFh
            IX : BUS -> X
     D3 |
             X = 2559 / 9FFh
          RAPS = 51 / 33h
MAKRO
========51==========
Takt0: RBPS=03A801600000h
Takt6:
     S2 |
           OX : X -> BUS
           BUS = 2559 / 9FFh
           IBI : BUS -> RAE
     D2 |
           RAE = 2559 / 9FFh
Takt7:
      C2 | OPC : OP albo AOP+32 -> RAPS
         B_{4d}(6): RAPS = 255 / FFh (Poprawna RAPS = 43 /
2Bh)
```

```
MAKRO
Takt0: RBPS=00000001007Eh
Takt7:
   TEST | UNB : Zawsze pozytywny
         RAPS = 126 / 7Eh
MAKRO
Takt0: RBPS=008420000000h
Takt6:
     S2 | IRAE : SUMA -> RAE
          RAE = 107 / 6Bh
Takt7:
     S3 | ORAE : RAE -> BUS
          BUS = 107 / 6Bh
     D3 |
           IX : BUS -> X
            X = 107 / 6Bh
         RAPS = 127 / 7Fh
MAKRO
Takt0: RBPS=3C200E000100h
Takt1:
     S1 | IXRE : RI -> LALU
         LALU = 200 / C8h
     D1 | OXE : X -> RALU
         RALU = 107 / 6Bh
Takt2:
    ALU \mid ADD : ALU = LALU + RALU
          ALU = 307 / 133h
       ZNAK = 0, OFF = 0
Takt6:
          OBE: ALU -> BUS
     S2 |
          BUS = 307 / 133h
          IRI : BUS -> RI
     D2 |
           RI = 307 / 133h
Takt7:
     C1 | END : (Cykl 23) Koniec mikroprogramu
(09:28.19)
         RAPS = 0 / 0h
```

MAKRO

```
Takt0: RBPS=000000020030h
Takt7:
           INT = 0
   TEST | TINT : Brak przerwania(INT ?= 0)
          RAPS = 48 / 30h
MAKRO
Takt0: RBPS=5006C4000000h
Takt1:
           OLR : LR -> BUS
     S1 |
           BUS = 110 / 6Eh
     D1 | IRAP : BUS -> RAP
           RAP = 110 / 6Eh
           RRC : Rozpoczęcie RRC
           RBP = 12543 / 30FFh
Takt7:
     S3 | ORBP : RBP -> BUS
           BUS = 12543 / 30FFh
           IRR : BUS -> RR
     D3 |
            RR = 12543 / 30FFh
          RAPS = 49 / 31h
MAKR0
Takt0: RBPS=68C801830032h
Takt1:
     S1 |
           ORR: RR -> BUS
           BUS = 12543 / 30FFh
           ILK : BUS -> LK
     D1 |
            LK = 127 / 7Fh
           CEA: Oblicz adres efektywny
             L = 255 / FFh
             R = 0 / 0h
          SUMA = 255 / FFh
           XRO = 0
Takt6:
     S2 | IRAE : SUMA -> RAE
           RAE = 255 / FFh
           NSI: LR+1 -> LR
     D2 |
            LR = 111 / 6Fh
Takt7:
   TEST | TIND : Adresowanie pośrednie
```

RAPS = 6 / 6h

```
Takt0: RBPS=00000001003Ah
Takt7:
   TEST | UNB : Zawsze pozytywny
         RAPS = 58 / 3Ah
MAKRO
Takt0: RBPS=9003D2000000h
Takt1:
     S1 | ORAE : RAE -> BUS
          BUS = 255 / FFh
     D1 | IRAP : BUS -> RAP
          RAP = 255 / FFh
Takt7:
     S3 | OA : A -> BUS
          BUS = -3023 / F431h
     D3 | IRBP : BUS -> RBP
        Blad(7): RBP = 12543 / 30FFh (Poprawna RBP = -
3023 / F431h)
     C1 | CWC : Rozpoczęcie CWC
       PAO[255] = 0x7D07 - zmiana -> PAO[255] = 0xF431
         RAPS = 59 / 3Bh
MAKRO
========59===========
Takt0: RBPS=00000E000000h
Takt7:
          END : (Cykl 29) Koniec mikroprogramu
     C1 |
(09:31.56)
         RAPS = 0 / 0h
MAKRO
Takt0: RBPS=000000020030h
Takt7:
          INT = 0
   TEST | TINT : Brak przerwania(INT ?= 0)
         RAPS = 48 / 30h
MAKRO
=========48===========
Takt0: RBPS=5006C4000000h
```

MAKRO

```
S1 | OLR : LR -> BUS
           BUS = 111 / 6Fh
     D1 | IRAP : BUS -> RAP
           RAP = 111 / 6Fh
     C1 | RRC : Rozpoczęcie RRC
           RBP = 18183 / 4707h
Takt7:
     S3 | ORBP : RBP -> BUS
           BUS = 18183 / 4707h
           IRR : BUS -> RR
     D3 |
            RR = 18183 / 4707h
          RAPS = 49 / 31h
MAKRO
==========49============
Takt0: RBPS=68C801830032h
Takt1:
     S1 |
           ORR: RR -> BUS
           BUS = 18183 / 4707h
           ILK : BUS -> LK
     D1 |
            LK = 7 / 7h
     C2 | CEA : Oblicz adres efektywny
         B_{4}d(8): L = 7 / 7h (Poprawna L = 0 / 0h)
             R = 0 / 0h
          SUMA = 0 / 0h
           XR0 = 1
Takt6:
     S2 | IRAE : SUMA -> RAE
           RAE = 0 / 0h
           NSI : LR+1 -> LR
     D2 |
            LR = 112 / 70h
Takt7:
   TEST | TIND : Adresowanie pośrednie
          RAPS = 50 / 32h
MAKR0
Takt0: RBPS=900624000000h
Takt1:
     S1 | ORAE : RAE -> BUS
           BUS = 0 / 0h
     D1 | IRAP : BUS -> RAP
           RAP = 0 / 0h
```

Takt1:

```
C1 | RRC : Rozpoczęcie RRC
           RBP = 227 / E3h
Takt7:
     S3 | ORBP : RBP -> BUS
           BUS = 227 / E3h
           IX : BUS -> X
     D3 |
             X = 227 / E3h
          RAPS = 51 / 33h
MAKRO
========51===========
Takt0: RBPS=03A801600000h
Takt6:
     S2 |
           OX : X -> BUS
           BUS = 227 / E3h
           IBI : BUS -> RAE
     D2 |
           RAE = 227 / E3h
Takt7:
     C2 | OPC : OP albo AOP+32 -> RAPS
         B_{4}(9): RAPS = 41 / 29h (Poprawna RAPS = 8 /
8h)
MAKR0
Takt0: RBPS=00000001003Eh
Takt7:
   TEST | UNB : Zawsze pozytywny
          RAPS = 62 / 3Eh
MAKR0
=========62===========
Takt0: RBPS=900664000000h
Takt1:
     S1 | ORAE : RAE -> BUS
           BUS = 227 / E3h
     D1 | IRAP : BUS -> RAP
           RAP = 227 / E3h
     C1 |
           RRC: Rozpoczęcie RRC
           RBP = 7 / 7h
Takt7:
     S3 | ORBP : RBP -> BUS
           BUS = 7 / 7h
            IA: BUS -> A
     D3 |
             A = 7 / 7h
```

RAPS = 63 / 3Fh

MAKRO

=======63=========

Takt0: RBPS=00000E000000h

Takt7:

C1 | END : (Cykl 37) Koniec mikroprogramu

(09:37.18)

RAPS = 0 / 0h

09:51.08

=====Stop symulacji=====

Ocena: 3 Błędy: 9

翠 뱴

Zrzut ekranu:

Uzasadnienie końcowej zawartości LR, RAPS, RAE na koniec mikroprogramu pobrania rozkazu dla każdego wykoannego rozkazu:

1. Rozkaz ADD

0:

TINT nie wykazuje przerwania, RAPS ustawiany jest na 48.

48:

Wartość LR przenoszona jest do RAP (107).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (2559).

Wartość RBP przenoszona jest do RR (2559).

RAPS zwiększany jest o jednen. (49).

49:

Wartość rozkazu z RR przenoszona jest do LK (255). Informacja z DA mieści się na 8 bitach, a LK rozpatruje tylko 7 ostatnich bitów. Z wiąztu z tym jego wartość ustawiana jest na 1111111b (127).

Wykonujemy CEA, a więc DA z RR jest przenoszone do L (255). Jest to rozkaz zwykły z flagą I=1 oznaczającą, że zachodzi adresowanie pośrendnie, a więc R=0.

Suma L (255) oraz R (0) wpisywana jest do RAE (255).

NSI zwiększa LR o 1 (108).

Test TIND wykrywa adresowanie pośrednie, a więc RAPS jest ustawiany na wartość NA (50).

50:

Wartość RAE przenoszona jest do RAP (255).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (32007).

Wartość RBP przenoszona jest do X (255).

RAPS zwiększany jest o 1 (51).

51:

Wartość X przenoszona jest do RAE (32007).

OPC ustawia wartość RAPS na wartość równą OP code aktualnie wykonywanego rozkazu (1).

1:

UNB jest zawsze pozytywny, RAPS ustawiany jest na wartość NA (52).

52:

Do RAP przenoszone jest 7 najmniej znaczących bitów z RAE (7).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (2023).

Wartość RBP przenoszona jest do X (2023).

RAPS zwiększany jest o 1 (52).

53:

Wartość A przenoszona jest do LALU (1000).

Wartość X przenoszona jest do RALU (2023).

Wykonywany jest rozkaz ADD, a więc ALU ustawiamy na LALU + RALU (3023).

Wartość ALU przenoszona jest do A (3023).

END ustawia RAPS na 0.

2. Rozkaz CMA

0:

TINT nie wykazuje przerwania, RAPS ustawiany jest na 48.

48:

Wartość LR przenoszona jest do RAP (108).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (235).

Wartość RBP przenoszona jest do RR (235).

RAPS zwiększany jest o jednen. (49).

49:

Wartość rozkazu z RR przenoszona jest do LK (235). Całość DA mieści się w LK (107).

Wykonujemy CEA, a więc DA z RR jest przenoszone do L (107). Jest to rozkaz rozszerzony, a więc R = 0.

Suma L (107) oraz R (0) wpisywana jest do RAE (107).

NSI zwiększa LR o 1 (108).

Test TIND wykrywa adresowanie pośrednie, a więc RAPS jest ustawiany na wartość NA (50).

50:

Wartość RAE przenoszona jest do RAP (107).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (2559).

Wartość RBP przenoszona jest do X (2559).

RAPS zwiększany jest o 1 (51).

51:

Wartość X przenoszona jest do RAE (2559).

OPC ustawia wartość RAPS na wartość równą OP code aktualnie wykonywanego rozkazu (33).

33:

UNB jest zawsze pozytywny, RAPS ustawiany jest na wartość NA (106).

106:

Wartość A przenoszona jest do LALU (3023).

RALU ustawiany jest na 0, ze względu na rozkaz CMA.

Wykonywany jest rozkaz CMA, a więc ALU ustawiamy na odwrotność RALU (-3023).

Wartość ALU przenoszona jest do A (-3023).

END ustawia RAPS na 0.

3. INX

0:

TINT nie wykazuje przerwania, RAPS ustawiany jest na 48.

48:

Wartość LR przenoszona jest do RAP (109).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (1515).

Wartość RBP przenoszona jest do RR (1515).

RAPS zwiększany jest o jednen. (49).

49:

Wartość rozkazu z RR przenoszona jest do LK (255) . Całość DA mieści się w LK (107).

Wykonujemy CEA, a więc DA z RR jest przenoszone do L (107). Jest to rozkaz rozszerzony, a więc R = 0.

Suma L (255) oraz R (0) wpisywana jest do RAE (107).

NSI zwiększa LR o 1 (110).

Test TIND wykrywa adresowanie pośrednie, a więc RAPS jest ustawiany na wartość NA (50).

50:

Wartość RAE przenoszona jest do RAP (107).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (2559).

Wartość RBP przenoszona jest do X (2559).

RAPS zwiększany jest o 1 (51).

51:

Wartość X przenoszona jest do RAE (2559).

OPC ustawia wartość RAPS na wartość równą OP code aktualnie wykonywanego rozkazu (43).

43:

UNB jest zawsze pozytywny, RAPS ustawiany jest na wartość NA (126).

126:

Wartość SUMY przenoszona jest do RAE (107).

Wartość RAE przenoszona jest do X (107).

RAPS zwiększany jest o 1 (127).

Wartość RI przenoszona jest do LALU (200).

Wartość X przenoszona jest do RALU (107).

127:

ALU wynosi RALU + LALU (307).

Wartość ALU przenoszona jest do RI (307).

END ustawia RAPS na 0.

4. STA

0:

TINT nie wykazuje przerwania, RAPS ustawiany jest na 48.

48:

Wartość LR przenoszona jest do RAP (110).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (12543).

Wartość RBP przenoszona jest do RR (12543).

RAPS zwiększany jest o jednen. (49).

49:

Wartość rozkazu z RR przenoszona jest do LK (12543). Informacja z DA mieści się na 8 bitach, a LK rozpatruje tylko 7 ostatnich bitów. Z wiąztu z tym jego wartość ustawiana jest na 1111111b (127).

Wykonujemy CEA, a więc DA z RR jest przenoszone do L (255). Jest to rozkaz rozszerzony, a więc R = 0.

Suma L (255) oraz R (0) wpisywana jest do RAE (255).

NSI zwiększa LR o 1 (111).

Test TIND jest pozytywny, a więc RAPS jest ustawiany na wartość rozkazu (6).

6:

UNB jest zawsze pozytywny, RAPS ustawiany jest na wartość NA (58).

58:

Wartość RAE przenoszona jest do RAP (255).

Wartość A przenoszona jest do RBP (255).

CWC zapisuje wartość RBP (-3023) w komórce o numerze z RAP (255). RAPS zwiększany jest o 1 (59).

END ustawia RAPS na 0.

5. LDA

0:

TINT nie wykazuje przerwania, RAPS ustawiany jest na 48.

48:

Wartość LR przenoszona jest do RAP (111).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (18183).

Wartość RBP przenoszona jest do RR (18183).

RAPS zwiększany jest o jednen. (49).

49:

Wartość rozkazu z RR przenoszona jest do LK (18183). Całość DA mieści się w LK (7).

Wykonujemy CEA. Flagi XSI są równe I. Oznacza to, że ktoś popełnił błąd w trakcie programowania procesora. Oznacza to, że błąd zostanie wykazany poprzez ustawienie L, R na 0 oraz XRO na 1.

Suma L (0) oraz R (0) wpisywana jest do RAE (0).

NSI zwiększa LR o 1 (112).

Test TIND wykrywa adresowanie pośrednie, a więc RAPS jest ustawiany na wartość NA (50).

50:

Wartość RAE przenoszona jest do RAP (0).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (227).

Wartość RBP przenoszona jest do X (227).

RAPS zwiększany jest o 1 (51).

51:

Wartość X przenoszona jest do RAE (227).

OPC ustawia wartość RAPS na wartość równą OP code aktualnie wykonywanego rozkazu (8).

8:

UNB jest zawsze pozytywny, RAPS ustawiany jest na wartość NA (62).

62:

Wartość RAE przenoszona jest do RAP (227).

RRC ustawia RBP na wartość rozkazu z wiersza PAO równego wartości RAP (7).

Wartość RBP przenoszona jest do A (7).

RAPS zwiększany jest o 1. (63)

63:

END ustawia RAPS na 0.

Schematy blokowe:

1. ADD

