Advanced Problems of Lateral-Directional Dynamics

Robert Stengel, Aircraft Flight Dynamics MAE 331, 2014

- Fourth-order dynamics
 - Steady-state response to control
 - Transfer functions
 - Frequency response
 - Root locus analysis of parameter variations

- Residualization
- · Roll-spiral oscillation

Flight Dynamics 595-627

Copyright 2014 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html

Stability-Axis Lateral-Directional

Equations

• With idealized aileron and rudder effects (i.e., $N_{\delta A} = L_{\delta R} = 0$)

$$\begin{bmatrix} \Delta \dot{r}(t) \\ \Delta \dot{\beta}(t) \\ \Delta \dot{p}(t) \\ \Delta \dot{\phi}(t) \end{bmatrix} = \begin{bmatrix} N_r & N_\beta & N_p & 0 \\ -1 & \frac{Y_\beta}{V_N} & 0 & \frac{g}{V_N} \\ \frac{1}{V_N} & 0 & \frac{V_N}{V_N} \end{bmatrix} \begin{bmatrix} \Delta r(t) \\ \Delta \dot{\beta}(t) \\ \Delta \dot{p}(t) \\ \frac{1}{\Delta \phi(t)} \end{bmatrix} + \begin{bmatrix} \sim 0 & N_{\delta R} \\ 0 & 0 \\ \frac{1}{V_{\delta A}} & \sim 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \delta A \\ \Delta \delta R \end{bmatrix}$$

$$\begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \Delta x_4 \end{bmatrix} = \begin{bmatrix} \Delta r \\ \Delta \beta \\ \Delta p \\ \Delta \phi \end{bmatrix} = \begin{bmatrix} Yaw\ Rate\ Perturbation \\ Sideslip\ Angle\ Perturbation \\ Roll\ Rate\ Perturbation \\ Roll\ Angle\ Perturbation \end{bmatrix}$$

$$\begin{bmatrix} \Delta u_1 \\ \Delta u_2 \end{bmatrix} = \begin{bmatrix} \Delta \delta A \\ \Delta \delta R \end{bmatrix} = \begin{bmatrix} Aileron \ Perturbation \\ Rudder \ Perturbation \end{bmatrix}$$

Lateral-Directional Characteristic Equation

$$\Delta_{LD}(s) = s^{4} + \left(L_{p} + N_{r} + \frac{Y_{\beta}}{V_{N}}\right) s^{3}$$

$$+ \left[N_{\beta} - L_{r}N_{p} + L_{p} \frac{Y_{\beta}}{V_{N}} + N_{r} \left(\frac{Y_{\beta}}{V_{N}} + L_{p}\right)\right] s^{2}$$

$$+ \left[\frac{Y_{\beta}}{V_{N}} \left(L_{r}N_{p} - L_{p}N_{r}\right) + L_{\beta} \left(N_{p} - \frac{g}{V_{N}}\right)\right] s$$

$$+ \frac{g}{V_{N}} \left(L_{\beta}N_{r} - L_{r}N_{\beta}\right)$$

$$= s^{4} + a_{3}s^{3} + a_{2}s^{2} + a_{1}s + a_{0} = 0$$

Typically factors into real spiral and roll roots and an oscillatory pair of Dutch roll roots

$$\Delta_{LD}(s) = (s - \lambda_s)(s - \lambda_R)(s^2 + 2\xi\omega_n s + \omega_n^2)_{DR}$$

Business Jet Example of Lateral-Directional Characteristic Equation

$$\Delta_{LD}(s) = (s - 0.00883)(s + 1.2)[s^2 + 2(0.08)(1.39)s + 1.39^2]$$

Slightly unstable Spiral Stable

Lightly damped Dutch roll

Steady-State Response

$$\Delta \mathbf{x}_S = -\mathbf{F}^{-1} \mathbf{G} \Delta \mathbf{u}_S$$

5

Equilibrium Response of 2nd-Order Dutch Roll Model

· Equilibrium response to constant rudder

$$\begin{bmatrix} \Delta r_{SS} \\ \Delta \beta_{SS} \end{bmatrix} = -\frac{\begin{bmatrix} Y_{\beta} \\ V_{N} \\ \end{bmatrix}}{\begin{bmatrix} Y_{\beta} \\ V_{N} \\ \end{bmatrix}} \begin{bmatrix} N_{\delta R} \\ 0 \end{bmatrix} \Delta \delta R_{SS}$$

$$\Delta r_{S} = -\frac{\left(\frac{Y_{\beta}}{V_{N}}N_{\delta R}\right)}{\left(\frac{Y_{\beta}}{V_{N}}N_{r} + N_{\beta}\right)}\Delta\delta R_{S}$$
$$\Delta\beta_{S} = -\frac{N_{\delta R}}{\left(\frac{Y_{\beta}}{V_{N}}N_{r} + N_{\beta}\right)}\Delta\delta R_{S}$$

Steady yaw rate and sideslip angle are not zero

Equilibrium Response of Roll-Spiral Model

· Equilibrium state with constant aileron

- Steady roll rate proportional to aileron
- Roll angle, integral of roll rate, continually increases

7

Equilibrium Response of 4th-Order Model

Equilibrium state with constant aileron and rudder deflection

$$\begin{bmatrix} \Delta r_{S} \\ \Delta \beta_{S} \\ \Delta p_{S} \\ \Delta \phi_{S} \end{bmatrix} = -\begin{bmatrix} N_{r} & N_{\beta} & N_{p} & 0 \\ -1 & \frac{Y_{\beta}}{V_{N}} & 0 & \frac{g}{V_{N}} \\ \hline L_{r} & L_{\beta} & L_{p} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \sim 0 & N_{\delta R} \\ 0 & 0 \\ L_{\delta A} & \sim 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \delta A_{S} \\ \Delta \delta R_{S} \end{bmatrix}$$

Equilibrium Response of the 4th-Order Lateral-Directional Model

$$\Delta \mathbf{y}_{S} = \mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}_{S} = -\mathbf{H}_{\mathbf{x}} \mathbf{F}^{-1} \mathbf{G} \Delta \mathbf{u}_{S}$$

$$\begin{bmatrix}
\frac{g}{V_{N}} L_{\delta A} N_{\beta} & -\frac{g}{V_{N}} L_{\beta} N_{\delta R} \\
\frac{g}{V_{N}} L_{\delta A} N_{r} & \frac{g}{V_{N}} L_{r} N_{\delta R} \\
0 & 0 \\
\left(N_{\beta} + N_{r} \frac{Y_{\beta}}{V_{N}}\right) L_{\delta A} & -\left(L_{\beta} + L_{r} \frac{Y_{\beta}}{V_{N}}\right) N_{\delta R} \\
\frac{g}{V_{N}} \left(L_{\beta} N_{r} - L_{r} N_{\beta}\right)
\end{bmatrix} \begin{bmatrix} \Delta \delta A_{S} \\ \Delta \delta R_{S} \end{bmatrix}$$

Steady-state roll rate is zero

Aileron and rudder commands produce steady-state yaw rate, sideslip angle, and roll angle

g

Stability and Transient Response

4th-Order Initial-Condition Responses of Business Jet

- Initial roll angle and rate have little effect on yaw rate and sideslip angle responses
- Initial yaw rate and sideslip angle have large effect on roll rate and roll angle responses

11

Effects of Variation in Primary Stability Derivatives

N_{β} Effect on 4th-Order Roots

- Group $\Delta(s)$ terms multiplied by N_{β} to form numerator
- Denominator formed from remaining terms of Δ(s)

Root Locus Gain = Directional Stability

$$k \frac{n(s)}{d(s)} = -1 = \frac{N_{\beta}(s - z_1)(s - z_2)}{(s - \lambda_1)(s - \lambda_2)(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

- Positive N_β
 - Increases Dutch roll natural frequency
 - Damping ratio decreases but remains stable
 - Spiral mode drawn toward origin
 - Roll mode unchanged
- Negative N₈ destabilizes Dutch roll mode

13

3

Root Locus Gain = Yaw Damping

$$\Delta_{LD}(s) = d(s) + N_r n(s) = 0$$

$$k \frac{n(s)}{d(s)} = -1 = \frac{N_r (s - z_1) (s^2 + 2\mu v_n s + v_n^2)}{(s - \lambda_1) (s - \lambda_2) (s^2 + 2\zeta \omega_n s + \omega_n^2)}$$

- Negative N_r
 - Increases Dutch roll damping
 - Draws spiral and roll modes together drawn toward origin
- Positive N_r destabilizes Dutch roll mode

 N_r Effect on 4th-

Order Roots

L_p Effect on 4th-Order Roots

Root Locus Gain = Roll Damping

$$\Delta_{LD}(s) = d(s) + \frac{L_p n(s)}{n(s)} = 0$$

$$k \frac{n(s)}{d(s)} = -1 = \frac{\frac{L_p s(s^2 + 2\mu v_n s + v_n^2)}{(s - \lambda_1)(s - \lambda_2)(s^2 + 2\zeta \omega_n s + \omega_n^2)}$$

- Negative L_p
 - Decreases roll mode time constant
 - Draws spiral and roll modes together drawn toward origin
- Positive L_p destabilizes roll mode
- L_p has negligible effect on spiral mode
- Normally <u>negative</u>; however, can become positive at high angle of attack

15

Coupling Stability Derivatives and Their Effects

L_{β} Effect on 4th-Order Roots

Root Locus Gain = Dihedral Effect

$$\Delta_{LD}(s) = d(s) + L_{\beta} \left(\frac{g}{V_N} - N_p \right) n(s) = 0$$

$$k \frac{n(s)}{d(s)} = -1 = \frac{L_{\beta} \left(\frac{g}{V_N} - N_p \right) (s - z_1)}{\left(s - \lambda_S \right) \left(s - \lambda_R \right) \left(s^2 + 2\zeta \omega_{n_{DR}} s + \omega_{n_{DR}}^2 \right)}$$

$$\Delta_{LD}(s) = (s - 0.00883)(s + 1.2) [s^2 + 2(0.08)(1.39)s + 1.39^2]$$

- Negative L_B
 - Stabilizes spiral and roll modes but ...
 - Destabilizes Dutch roll mode
- Positive L_{β} does the opposite

17

Stabilizing Lateral- Directional Motions

- Provide sufficient L_{β} (–) to stabilize the spiral mode
- Provide sufficient N_r (–) to damp the Dutch roll mode

How can L_{β} and N_r be adjusted "artificially", i.e., by closed-loop control?

Fourth-Order Frequency Response

19

Yaw Rate and Sideslip Angle Frequency **Responses of Business Jet**

2nd-Order Response to Rudder

Yawing response to aileron is not negligible Yaw rate response is poorly characterized by the 2nd-order model below the **Dutch roll natural frequency**

Roll Rate and Roll Angle Frequency Responses of Business Jet

Roll response to rudder is not negligible
Roll rate response is marginally well characterized by the 2nd-order model
Roll angle response is poorly characterized at low frequency by the 2nd-order model

Frequency and Step Responses to Aileron Input

Yaw/sideslip sensitivity in the vicinity of the Dutch roll natural frequency

Roll rate response is relatively benign Ratio of roll angle to sideslip response is important to the pilot 22

Frequency and Step Responses to Rudder Input

Yaw response variability near and below the Dutch roll natural frequency Significant roll rate response near the Dutch roll natural frequency

Lightly damped yaw/sideslip response would be hard to control precisely

23

Reduction of Model Order by Residualization

Approximate Low-Order Response

- Dynamic model order can be reduced when
 - One mode is stable and well-damped, and it and is faster than the other
 - The two modes are coupled

$$\begin{bmatrix} \Delta \dot{\mathbf{x}}_{fast} \\ \Delta \dot{\mathbf{x}}_{slow} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{fast} & \mathbf{F}_{slow}^{fast} \\ \mathbf{F}_{fast}^{slow} & \mathbf{F}_{slow} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}_{fast} \\ \Delta \mathbf{x}_{slow} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_{fast} \\ \mathbf{G}_{slow} \end{bmatrix} \Delta \mathbf{u}$$

Express as 2 separate equations

$$\Delta \dot{\mathbf{x}}_f = \mathbf{F}_f \Delta \mathbf{x}_f + \mathbf{F}_s^f \Delta \mathbf{x}_s + \mathbf{G}_f \Delta \mathbf{u}$$
$$\Delta \dot{\mathbf{x}}_s = \mathbf{F}_f^s \Delta \mathbf{x}_f + \mathbf{F}_s \Delta \mathbf{x}_s + \mathbf{G}_s \Delta \mathbf{u}$$

25

Approximation for Fast-Mode Response

Assume that <u>fast mode reaches steady state very quickly</u> compared to slow-mode response

$$\begin{vmatrix} \Delta \dot{\mathbf{x}}_f \approx \mathbf{0} \approx \mathbf{F}_f \Delta \mathbf{x}_f + \mathbf{F}_s^f \Delta \mathbf{x}_s + \mathbf{G}_f \Delta \mathbf{u} \\ \Delta \dot{\mathbf{x}}_s = \mathbf{F}_f^s \Delta \mathbf{x}_f + \mathbf{F}_s \Delta \mathbf{x}_s + \mathbf{G}_s \Delta \mathbf{u} \end{vmatrix}$$

Steady-state solution for Δx_{fast}

$$\mathbf{0} \approx \mathbf{F}_f \Delta \mathbf{x}_f + \mathbf{F}_s^f \Delta \mathbf{x}_s + \mathbf{G}_f \Delta \mathbf{u}$$
$$\mathbf{F}_f \Delta \mathbf{x}_f = -\mathbf{F}_s^f \Delta \mathbf{x}_s - \mathbf{G}_f \Delta \mathbf{u}$$

$$\Delta \mathbf{x}_f = -\mathbf{F}_f^{-1} \left(\mathbf{F}_s^f \Delta \mathbf{x}_s + \mathbf{G}_f \Delta \mathbf{u} \right)$$

Adjust Slow-Mode Equation for Fast-Mode Steady State

Substitute quasi-steady Δx_{fast} in differential equation for Δx_{slow}

$$\Delta \dot{\mathbf{x}}_{s} = -\mathbf{F}_{f}^{s} \left[\mathbf{F}_{f}^{-1} \left(\mathbf{F}_{s}^{f} \Delta \mathbf{x}_{s} + \mathbf{G}_{f} \Delta \mathbf{u} \right) \right] + \mathbf{F}_{s} \Delta \mathbf{x}_{s} + \mathbf{G}_{s} \Delta \mathbf{u}$$
$$= \left[\mathbf{F}_{s} - \mathbf{F}_{f}^{s} \mathbf{F}_{f}^{-1} \mathbf{F}_{s}^{f} \right] \Delta \mathbf{x}_{s} + \left[\mathbf{G}_{s} - \mathbf{F}_{f}^{s} \mathbf{F}_{f}^{-1-1} \mathbf{G}_{f} \right] \Delta \mathbf{u}$$

Residualized differential equation for Δx_{slow}

$$\Delta \dot{\mathbf{x}}_s = \mathbf{F}'_s \, \Delta \mathbf{x}_s + \mathbf{G}'_s \, \Delta \mathbf{u}$$

where

$$\mathbf{F'}_{s} = \left[\mathbf{F}_{s} - \mathbf{F}_{f}^{s} \mathbf{F}_{f}^{-1} \mathbf{F}_{s}^{f}\right]$$
$$\mathbf{G'}_{s} = \left[\mathbf{G}_{s} - \mathbf{F}_{f}^{s} \mathbf{F}_{f}^{-1} \mathbf{G}_{f}\right]$$

27

Model of the Residualized Roll-Spiral Mode

Yawing motion is assumed to be instantaneous compared to rolling motions

Residualized roll/spiral equation

$$\begin{bmatrix} \Delta \dot{p} \\ \Delta \dot{\phi} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} L_p - \frac{N_p \left(L_r \frac{Y_\beta}{V_N} + L_\beta \right)}{\left(N_\beta + N_r \frac{Y_\beta}{V_N} \right)} \end{bmatrix} \begin{bmatrix} \frac{g}{V_N} \left(L_r N_\beta - L_\beta N_r \right) \\ \left(N_\beta + N_r \frac{Y_\beta}{V_N} \right) \end{bmatrix} \begin{bmatrix} \Delta p \\ \Delta \phi \end{bmatrix} + \cdots$$

$$= \begin{bmatrix} f_{11} & f_{12} \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \Delta p \\ \Delta \phi \end{bmatrix} + \cdots$$

Roots of the Residualized Roll-Spiral Mode

$$\begin{vmatrix} s\mathbf{I} - \mathbf{F'}_{RS} | = s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} f_{11} & f_{12} \\ 1 & 0 \end{bmatrix} = \Delta_{RS_{res}}$$

$$= s^2 - \left[L_p - N_p \left(\frac{L_\beta + L_r Y_\beta / V_N}{N_\beta + N_r Y_\beta / V_N} \right) \right] s + \frac{g}{V_N} \left(\frac{L_\beta N_r - L_r N_\beta}{N_\beta + N_r Y_\beta / V_N} \right)$$

$$= (s - \lambda_s)(s - \lambda_R) \quad or \quad (s^2 + 2\zeta\omega_n s + \omega_n^2)_{RS} = 0$$

For the business jet model

$$\Delta_{RS_{res}} = s^2 + 1.0894s - 0.0108 = 0$$

$$= (s - 0.0098)(s + 1.1) = (s - \lambda_s)(s - \lambda_R)$$

Slightly unstable spiral mode
Similar to **h-order roll-spiral results

$$\Delta_{LD}(s) = (s - 0.00883)(s + 1.2)[s^2 + 2(0.08)(1.39)s + 1.39^2]$$

Oscillatory Roll-Spiral Mode

$$\Delta_{RS_{res}} = (s - \lambda_S)(s - \lambda_R)$$
 or $(s^2 + 2\zeta\omega_n s + \omega_n^2)_{RS}$

The characteristic equation factors into real or complex roots

Real roots are roll mode and spiral mode when

$$L_{\beta}N_{r} < L_{r}N_{\beta}$$

Complex roots produce <u>roll-spiral oscillation</u> or "lateral phugoid mode" when

$$\left| \frac{L_{\beta}N_{r} > L_{r}N_{\beta} \quad \text{and}}{N_{p} \left[\left(L_{\beta} + L_{r}Y_{\beta} / V_{N} \right) \middle/ 2\sqrt{\frac{g}{V_{N}} \left(L_{\beta}N_{r} - L_{r}N_{\beta} \right)} \right] < 1 \right|$$

Roll-Spiral Oscillation of the M2-F2 Lifting Body Test Vehicle

31

Return to Flying Qualities Criteria

Flight Dynamics 624-629

Supplemental Material

33

Equilibrium Response of4th-Order Model

 Equilibrium state with constant aileron and spiral wind perturbations

$$\begin{bmatrix} \Delta r_{SS} \\ \Delta \beta_{SS} \\ \Delta p_{SS} \\ \Delta \phi_{SS} \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \\ 0 & 0 \\ e & f \end{bmatrix} \begin{bmatrix} \Delta \delta A_{SS} \\ \Delta \delta R_{SS} \end{bmatrix}$$

- Observations
 - Aileron command
 - Rudder command
 - Steady-state roll rate is zero
 - Steady-state roll angle is bounded

Effects of Variation in Secondary Stability Derivatives

35

Roll Acceleration Due to Yaw Rate, L_r

$$\begin{split} \hline L_r &\approx C_{l_r} \left(\frac{\rho V_N^2}{2I_{xx}} \right) Sb \\ &= C_{l_r} \left(\frac{b}{2V_N} \right) \left(\frac{\rho V_N^2}{2I_{xx}} \right) Sb = C_{l_r} \left(\frac{\rho V_N}{4I_{xx}} \right) Sb^2 \end{split}$$

- Wing is the principal contributor
 - Differential lift induced by yaw rate

$$\left(C_{l_{\hat{r}}}\right)_{Wing} = \frac{\partial \left(\Delta C_{l}\right)_{Wing}}{\partial \hat{r}} = -\frac{C_{L_{\alpha}}}{12} \left(\frac{1+3\lambda}{1+\lambda}\right) \left(\frac{M^{2}\cos^{2}\Lambda - 2}{M^{2}\cos^{2}\Lambda - 1}\right)$$

Thin triangular wing

Vertical tail

$$\left(C_{l_{\hat{r}}}\right)_{Wing} = \frac{\pi \,\alpha_N}{9AR}$$

$$\left(C_{l_{\hat{r}}}\right)_{Vertical\ Tail} = \frac{z_{vt}}{l_{vt}} \left(C_{n_{\hat{r}}}\right)_{Vertical\ Tail}$$

L_r Effect on 4th-Order Roots

Root Locus Gain = Roll Due to Yaw Rate

$$\frac{\Delta_{LD}(s) = d(s) + \mathbf{L}_r N_p n(s) = 0}{\frac{kn(s)}{d(s)}} = -1 = \frac{\mathbf{L}_r N_p (s - z_1)(s - z_2)}{(s - \lambda_1)(s - \lambda_2)(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

- Effect depends on the sign of N_p (negative here)
- Similar to N_{β} effect on the Dutch roll, but opposite to its effect on the spiral mode

37

Yaw Acceleration Due to Roll Rate, N_p

$$\begin{split} N_{p} &\approx C_{n_{p}} \left(\frac{\rho V_{N}^{2}}{2I_{zz}} \right) Sb \\ &= C_{n_{\hat{p}}} \left(\frac{b}{2V_{N}} \right) \left(\frac{\rho V_{N}^{2}}{2I_{zz}} \right) Sb = C_{n_{\hat{p}}} \left(\frac{\rho V_{N}}{4I_{xx}} \right) Sb^{2} \end{split}$$

Wing is the principal contributor Differential yaw moment induced by roll rate

$$\left(C_{n_{\hat{p}}} \right)_{Wing} = \frac{\partial \left(\Delta C_{n} \right)_{Wing}}{\partial \hat{p}} = \frac{1}{12} \left(\frac{1+3\lambda}{1+\lambda} \right) \left(\frac{\partial C_{D_{Parasite,Wing}}}{\partial \alpha} \pm C_{L} \right)$$
 (-): Subsonic (+): Supersonic

Thin triangular wing

$\left(C_{n_{\hat{p}}}\right)_{Wing} = -\frac{\pi \alpha_{N}}{9AR}$

Vertical tail

$$\left(C_{n_{\hat{p}}}\right)_{Vertical\ Tail} = -2\alpha_{N} \left(\frac{l_{vt}}{b}\right) \left(C_{n_{\beta}}\right)_{Vertical\ Tail}$$

N_p Effect on 4th-Order Roots

Root Locus Gain = Yaw due to Roll Rate

$$\Delta_{LD}(s) = d(s) + N_p n(s) = 0$$

$$\frac{kn(s)}{d(s)} = -1 = \frac{N_p s(s - z_1)}{(s - \lambda_1)(s - \lambda_2)(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

- Tends to have opposite signs in sub- and supersonic flight
- Effect is analogous to L_{β} effect

39

Approximate Roll and Spiral Modes

- Roll rate is damped by L_p
- Roll angle is a pure integral of roll rate

$$\begin{bmatrix} \Delta \dot{p} \\ \Delta \dot{\phi} \end{bmatrix} = \begin{bmatrix} L_p & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \Delta p \\ \Delta \phi \end{bmatrix} + \begin{bmatrix} L_{\delta A} \\ 0 \end{bmatrix} \Delta \delta A$$

Characteristic polynomial has real roots

$$\begin{split} & \Delta_{RS}(s) = s \Big(s - L_p \Big) \\ & \lambda_S = 0 \quad \text{Neutral stability} \\ & \lambda_R = L_p \quad \text{Generally < 0} \end{split}$$

Initial condition response

Approximate Dutch Roll Mode

$$\begin{bmatrix} \Delta \dot{r} \\ \Delta \dot{\beta} \end{bmatrix} = \begin{bmatrix} N_r & N_{\beta} \\ \left(\frac{Y_r}{V_N} - 1\right) & \frac{Y_{\beta}}{V_N} \end{bmatrix} \begin{bmatrix} \Delta r \\ \Delta \beta \end{bmatrix} + \begin{bmatrix} N_{\delta R} \\ \frac{Y_{\delta R}}{V_N} \end{bmatrix} \Delta \delta R$$

- Characteristic polynomial, natural frequency, and damping ratio
- $\Delta_{DR}(s) = s^{2} \left(N_{r} + \frac{Y_{\beta}}{V_{N}}\right) s + \left[N_{\beta}\left(1 \frac{Y_{r}}{V_{N}}\right) + N_{r} \frac{Y_{\beta}}{V_{N}}\right]$ $\omega_{n_{DR}} = \sqrt{N_{\beta}\left(1 \frac{Y_{r}}{V_{N}}\right) + N_{r} \frac{Y_{\beta}}{V_{N}}}$ $\xi_{DR} = -\left(N_{r} + \frac{Y_{\beta}}{V_{N}}\right) / 2\sqrt{N_{\beta}\left(1 \frac{Y_{r}}{V_{N}}\right) + N_{r} \frac{Y_{\beta}}{V_{N}}}$
- With negligible side-force sensitivity to yaw rate, Y_r

$$\omega_{n_{DR}} = \sqrt{N_{\beta} + N_r \frac{Y_{\beta}}{V_N}}$$

$$\zeta_{DR} = -\left(N_r + \frac{Y_{\beta}}{V_N}\right) / 2\sqrt{N_{\beta} + N_r \frac{Y_{\beta}}{V_N}}$$
41

Bizjet Fourth- and Second-Order Models and Eigenvalues

Fourth-Order Model F =	G =	Eigenvalue	Damping Freq. (rad/s)
-0.1079 1.9011 0.0566 0 -1 -0.1567 0 0.0958 0.2501 -2.408 -1.1616 0 0 0 1 0	0 -1.1196 0 0 2.3106 0 0 0	0.00883 <i>Unstable</i> -1.2 -1.16e-01 + 1.39e+00j -1.16e-01 - 1.39e+00j	8.32E-02 1.39E+00 8.32E-02 1.39E+00
Dutch Roll Approximation F =	G =	Eigenvalue	Damping Freq. (rad/s)
-0.1079 1.9011 -1 -0.1567	-1.1196 0	-1.32e-01 + 1.38e+00j -1.32e-01 - 1.38e+00j	9.55E-02 1.38E+00 9.55E-02 1.38E+00
Roll-Spiral Approximation F =	G =	Eigenvalue	Damping Freq. (rad/s)
-1.1616 0 1 0	2.3106 0	0 -1.16	

- 2nd-order-model eigenvalues are close to those of the 4th-order model
- Eigenvalue magnitudes of Dutch roll and roll roots are similar

Residualized Roll-Spiral Mode

- Assume that the Dutch roll mode is stable and faster than the roll mode
- Calculate effect of the quasi-steady Dutch roll on the roll and spiral modes

$$\begin{bmatrix} \Delta \dot{\mathbf{x}}_{DR} \\ \Delta \dot{\mathbf{x}}_{RS} \end{bmatrix} \approx \begin{bmatrix} \mathbf{0} \\ \Delta \dot{\mathbf{x}}_{RS} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{DR} & \mathbf{F}_{RS}^{DR} \\ \mathbf{F}_{DR}^{RS} & \mathbf{F}_{RS} \end{bmatrix} \begin{bmatrix} \Delta x_{DR} \\ \Delta x_{RS} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_{DR} \\ \mathbf{G}_{RS} \end{bmatrix} \begin{bmatrix} \Delta \delta A \\ \Delta \delta R \end{bmatrix}$$

43

Residualized Roll-Spiral Mode

- Assume that the Dutch roll mode is stable and faster than the roll mode
- Calculate effect of the quasi-steady Dutch roll on the roll and spiral modes

$$\Delta \mathbf{x}_{DR} = -\mathbf{F}_{DR}^{-1} \left\{ \mathbf{F}_{RS}^{DR} \Delta \mathbf{x}_{RS} + \mathbf{G}_{DR} \begin{bmatrix} \Delta \delta A \\ \Delta \delta R \end{bmatrix} \right\}$$

$$\Delta \dot{\mathbf{x}}_{RS} = \mathbf{F}_{RS} \Delta \mathbf{x}_{RS} - \mathbf{F}_{DR}^{RS} \mathbf{F}_{DR}^{-1} \left\{ \mathbf{F}_{RS}^{DR} \Delta \mathbf{x}_{RS} + \mathbf{G}_{DR} \begin{bmatrix} \Delta \delta A \\ \Delta \delta R \end{bmatrix} \right\} + \mathbf{G}_{RS} \begin{bmatrix} \Delta \delta A \\ \Delta \delta R \end{bmatrix}$$

$$= \mathbf{F'}_{RS} \Delta \mathbf{x}_{RS} + \mathbf{G'}_{RS} \begin{bmatrix} \Delta \delta A \\ \Delta \delta R \end{bmatrix}$$

"Dihedral Effect": Roll Acceleration Sensitivity to Sideslip Angle, L_{β}

$$\left| L_{\beta} \approx C_{l_{\beta}} \left(\frac{\rho V^2}{2I_{xx}} \right) Sb \right|$$

Typically < 0 for stability

Wing, wing-fuselage interference, and vertical tail are principal contributors

$$\boxed{C_{l_{\beta}} \approx \left(C_{l_{\beta}}\right)_{Wing} + \left(C_{l_{\beta}}\right)_{Wing-Fuselage} + \left(C_{l_{\beta}}\right)_{Vertical\ Tail}}$$

45

"Dihedral Effect": Roll Acceleration Sensitivity to Sideslip Angle, L_{β}

$$L_{\beta} \approx C_{l_{\beta}} \left(\frac{\rho V^2}{2I_{xx}} \right) Sb$$

Dihedral and sweep effect

· Tapered, trapezoidal, swept wing

$$\left(C_{l_{\beta}}\right)_{Wing} = \frac{1+2\lambda}{6(1+\lambda)} \left(\Gamma C_{L_{\alpha_{wing}}} + \frac{C_{L} \tan \Lambda}{1-M^{2} \cos^{2} \Lambda}\right)$$

Wing and Tail Location Effects on L_{eta}

High/low wing effect

Vertical tail effect

$$\left({{{\left({{C_{{I_\beta }}} \right)}_{Vertical\;Tail}}} \approx \frac{{{z_{vt}}}}{b}{\left({{C_{{Y_\beta }}}} \right)_{Vertical\;Tail}}$$

