Here is an implemented algorithm:

```
#include <iostream>
int count;
void do_something_costly() {
    count++;
}
void f(int n) {
    for (int i=0; i<n*100; i++) do_something_costly();</pre>
    for (int i=0; i<n; i++)
        for (int j=0; j<=i; j++)
             do_something_costly();
}
int main() {
    int sizes[] = {1, 10, 20, 30, 40, 50, 60, 70, 80, 90,
                          100, 200, 300, 400, 500, 600, 700, 800, 900,
                          1000, 2000, 3000, 4000, 5000, 6000, 7000,
                          8000, 9000, -1};
    int i=0;
    while (true) {
        int n = sizes[i++];
        if (n == -1) break;
        count = 0;
        f(n);
        std::cout << n << "," << count << "\n";
    }
}
Run this program on the console, and redirect the output to a file:
example.exe > cost.csv
note the .csv ending. MS Excel recognizes these files. The output is:
1,101
10,1055
20,2210
30,3465
40,4820
50,6275
60,7830
70,9485
80,11240
90,13095
100,15050
200,40100
300,75150
400,120200
500,175250
600,240300
700,315350
800,400400
900,495450
1000,600500
```

2000,2201000 3000,4801500 4000,8402000 5000,13002500 6000,18603000 7000,25203500 8000,32804000 9000,41404500

Let's double-click on this file to open it with Excel:

	UΖ	¥	
	Α	В	
1	1	101	
2	10	1055	
3	20	2210	
4	30	3465	
5	40	4820	
6	50	6275	
7	60	7830	
8	70	9485	
9	80	11240	
10	90	13095	
11	100	15050	
12	200	40100	
13	300	75150	
14	400	120200	
15	500	175250	
16	600	240300	
17	700	315350	
18	800	400400	
19	900	495450	
20	1000	600500	
21	2000	2201000	
22	3000	4801500	
23	4000	8402000	
24	5000	13002500	
25	6000	18603000	
26	7000	25203500	
27	8000	32804000	
28	9000	41404500	
20			

Column A has n, and B has C(n), the cost of running the function with input size n.

Now, we suspect this is a quadratic function:

 $C(n) = An^2$

If we take logs of both sides, we get:

 $\log(C(n)) = \log(A) + 2\log(n)$

Thus we expect that a plot of $\log(C(n))$ versus $\log(n)$ should be a line with slope 2. Let's verify this. First, compute the logs in columns C and D:

Move the cursor to cell C1, and type =log(A1). Then go to cell D1, and type =log(B1).

Then, select cells C1 and D1, and copy them into rows 2 through 28:

	UΖ	\blacksquare	<i>j</i> w -L0	الام)	
	Α	В	С	D	
1	1	101	0	2.004321	
2	10	1055	1	3.023252	
3	20	2210	1.30103	3.344392	
4	30	3465	1.477121	3.539703	
5	40	4820	1.60206	3.683047	
6	50	6275	1.69897	3.797614	
7	60	7830	1.778151	3.893762	
8	70	9485	1.845098	3.977037	
9	80	11240	1.90309	4.050766	
10	90	13095	1.954243	4.117106	
11	100	15050	2	4.177536	
12	200	40100	2.30103	4.603144	
13	300	75150	2.477121	4.875929	
14	400	120200	2.60206	5.079904	
15	500	175250	2.69897	5.243658	
16	600	240300	2.778151	5.380754	
17	700	315350	2.845098	5.498793	
18	800	400400	2.90309	5.602494	
19	900	495450	2.954243	5.695	
20	1000	600500	3	5.778513	
21	2000	2201000	3.30103	6.34262	
22	3000	4801500	3.477121	6.681377	
23	4000	8402000	3.60206	6.924383	
24	5000	13002500	3.69897	7.114027	
25	6000	18603000	3.778151	7.269583	
26	7000	25203500	3.845098	7.401461	
27	8000	32804000	3.90309	7.515927	
28	9000	41404500	3.954243	7.617048	
29					Ğ

We can verify this visually with a plot of C vs D. Select C and D, rows 1 through 28:

ï					, , ,	
		Α	В	С	D	
	1	1	101	0	2.004321	
	2	10	1055	1	3.023252	L
	3	20	2210	1.30103	3.344392	
	4	30	3465	1.477121	3.539703	
	5	40	4820	1.60206	3.683047	
	6	50	6275	1.69897	3.797614	
	7	60	7830	1.778151	3.893762	
	8	70	9485	1.845098	3.977037	
	9	80	11240	1.90309	4.050766	
	10	90	13095	1.954243	4.117106	
	11	100	15050	2	4.177536	
	12	200	40100	2.30103	4.603144	
	13	300	75150	2.477121	4.875929	
	14	400	120200	2.60206	5.079904	L
	15	500	175250	2.69897	5.243658	
	16	600	240300	2.778151	5.380754	
	17	700	315350	2.845098	5.498793	
	18	800	400400	2.90309	5.602494	L
	19	900	495450	2.954243	5.695	L
	20	1000	600500	3	5.778513	L
	21	2000	2201000	3.30103	6.34262	L
	22	3000	4801500	3.477121	6.681377	L
	23	4000	8402000	3.60206	6.924383	L
	24	5000	13002500	3.69897	7.114027	L
	25	6000	18603000	3.778151	7.269583	L
	26	7000	25203500	3.845098	7.401461	L
	27	8000	32804000	3.90309	7.515927	L
	28	9000	41404500	3.954243	7.617048	
П	20				Ī	

Then choose Insert \to Scatter graph and get this plot, which looks straight at first, then shifts to a different straight line on the right side. This right side is the high values of n, and that's the behavior we're interested in:

It occurs when column C is 3 or more. So, let's ask Excel to give us the parameters of a straight line for that part of the data. In cell F20 (could be in any cell, actually), I'll type =slope(D20:D28,C20:C28).

(The D's are the y coords, and the C's are the x coords). And, in cell next to it, G20, I'll type =intercept(D20:D28,C20:C28).

Excel is telling us that, if we were to fit a least-squares straight line to the data in rows 20 to 28 of columns C and D, we would get

 $\log(C(n)) = m\log(n) + b$

with m = 1.93105176 and b = -0.025516668. But $b = \log(A)$, and if we compute = 10^{G20} we'll get A, which is 0.942938422.

Thus our empirical fit to the function C(n) is $C(n) \approx 0.9429 \times n^{1.931}$.

Does this work for n=9000? Pluggin in, we get 40769021, which is close to 41404500, the true value.