basic structures of analysis

... her mind is a very thin soil, laid an inch or two upon very barren rock.

— virginia wooli

What's the deal with those function spaces, what with their sometimes non-commuting and absent limits? Those spaces are infinite-dimensional seas with capacity to swallow and disappear whole ships, whether in the infrared (as with $L^{\infty} - L^{1}$) or the ultraviolet (as with $L^{1} - L^{\infty}$). What tools can tame this charybdis? Aiming to see familiar ground in new ways, we approach freshman level content at senior level mathematical sophistication. We assume point-set topology and a facility with the language of categories.

Notions of Size

the reals

We take the view that the topological space of reals serves two roles: one covariant and algebraic, as a codomain for metrics and measures; another contravariant and spatial, as a domain for paths. These notes focus on the covariant, algebraic view.

Analysis abstracts physical notions of *size*. For example, the next two definitions abstract distance and density. A **generalized metric space** over M is a category C and a map $\delta : \text{Mor}_C \to M$ that satisfies the nullary and binary **triangle inequalities**:

$$\delta(\mathrm{id}_x) \le 0$$
 $\delta(h \circ g) \le \delta(h) + \delta(g)$

The latter is the key compositional principle in analysis, just as equality's transitivity is in algebra. Likewise, a **generalized measure space** over M is a lattice P and a non-decreasing map $\mu: P \to M$ that satisfies nullary and binary **additivity**:

$$\mu(\bot) = 0$$
 $\mu(A \lor B) = \mu(A) + \mu(B)$ whenever $A \land B = \bot$

In either case, M sets the scale by which we measure size. But what is M? Well, to make sense of the mentioned operations, M ought to be a **costoid**: a total order and an abelian monoid compatible in that:

$$0 \le a$$
 $a+c \le b+d$ whenever $a \le b$ and $c \le d$

A map $\phi: M \to M'$ of costoids is a non-decreasing function that is also laxly additive:

$$\phi(0) \le 0$$
 $\phi(m+n) \le \phi(m) + \phi(n)$

As mass has grams and temperature has kelvins, we consider only costoids marked with a distinguished nonzero element and only maps that preserve that element. The punchline? There is a terminal marked costoid: the real interval $[0, \infty]$ marked at 1! This is our universal choice of codomain for metrics and measures.

structures of analysis

A **metric space** is a generalized metric space (X^2, δ) over \mathbb{R} where X^2 is the category with object class X and morphism class $X \times X$ and where δ vanishes only on the diagonal and is symmetric:

$$\delta(x,y) = \delta(y,x)$$

A **measure space** is a generalized measure space (P, μ) over \mathbb{R} where P is a sub-lattice of a powerset $\mathcal{P}(X)$ closed under complement and countable union and where μ enjoys this continuity property:

$$\mu\left(\sup_{N:\mathbb{N}}\bigcup_{n< N}A_n\right) = \sup_{N:\mathbb{N}}\mu\left(\bigcup_{n< N}A_n\right)$$

Perhaps the most celebrated wedding of these two notions is the concept of the **Bourbaki** spaces $L^p(X)$. For $1 \le p \le \infty$ and (X, μ) a measure space, $\tilde{L}^p(X)$ is the generalized metric space of measurable real functions on X defined by

$$\delta(f,g)^p = \int d\mu \, |f - g|^p$$

We define $L^p(X)$ as the vector subspace of elements finitely far from 0, mod the vector subspace of elements zero far from 0. This makes $L^p(X)$ a metric space with every distance finite.

Convergence

Write $\gamma_X: (X \sqcup 1) \to X^*$ for X's one-point compactification. We say that a map $s: X \to Z$ **converges** to a point $z: X \to Z$ when $(s, z): (X \sqcup 1) \to Z$ factors through γ_X . We're especially interested in the case where $X = \mathbb{N}$ is the countable discrete space; then we say z is a **limit** of s.

Observe that any inclusion $\iota_O:O\hookrightarrow X$ induces inclusions $\iota_{O\sqcup 1},\iota_{O^*}$ with the obvious types. When X-O is compact, these inclusions commute with compactification:

$$\gamma_X \circ \iota_{O \sqcup 1} = \iota_{O^*} \circ \gamma_{O \sqcup 1}$$

So $s: O \to Z$ converges to z if and only if $s \circ \iota_O: X \to Z$ converges to z. Intuitively, convergence of depends only on tail behavior, not on any finite (compact) prefix.

pathologies of measure

metric pathologies

Continuity Theorems: Commuting Limits

fatou-lesbegue

fubini

levy

moore-osgood

Existence Theorems: Convergent Lineages

ascoli

How does the compact-open topology on $(Y \to Z)$ depend on Y's topology? For instance, how does it differ from the product topology $(|Y| \to Z)$? (Here, $|\cdot|$ discretifies.) For one thing, the canonical map $\iota: (Y \to Z) \to (|Y| \to Z)$ (continuous because points (in Y) are compact) has tiny image. Indeed, most elements of the codomain are, as functions from Y to Z, discontinuous. Moreover, ι isn't even typically open: when Y is infinite, a typical compact-open generator isn't much smaller than any cylinder cut out by finitely many pointwise constraints.

Both differences lead us to expect convergence to be rarer in $(Y \to Z)$ than in ι 's image. Still, when Z is a metric space, we have a positive result: any "equicontinuous" subspace $X \subseteq (Y \to Z)$ whose every restriction to a y:Y has compact closure itself has compact closure!

What does **equicontinuous** mean? It means that the metric induced on Y by uniform norm over X is continuous.

CONNECT TO TYCHONOFF!

baire

A **countideal** on a poset P is a downward-closed subset closed under countable joins. Each countideal on a powerset $\mathcal{P}(X)$ gives a notion of *negligible subset*. For example, each infinite cardinal κ determines a countideal consisting of subsets of cardinality at most κ . More interestingly, each measure on X determines a countideal consisting of subsets-of-sets-of-zero-measure (**null sets**). Likewise, each topology on X determines a countideal consisting of countable unions of sets-whose-closures-have-empty-interiors (**meager sets**).

banach

riesz

Fourier Theory

To illustrate the above ideas "in the wild", we develop some fourier theory. The classical fourier transform $\mathcal{F}: L^1(S^1) \to L^\infty(\mathbb{Z})$ is celebrated because it diagonalizes both differentiation and translation on the Lie group S^1 . The differentiation story generalizes to the harmonic theory of riemannian manifolds; the translation story generalizes to the representation theory of compact groups.