数字电路与逻辑设计笔记

陈鸿峥

2019.01 *

目录

1	概述		1
2	基本	·····································	1
	2.1	数字与模拟	1
	2.2	数的表示	1
	2.3	存储器	3
	2.4	信号处理	3
	2.5	其他	4
3	集成	电路	4
4	组合	·电路	4
	4.1	基本逻辑门	4
	4.2	布尔(Boolen)代数	4
	4.3	卡诺(Karnaugh)图	8
	4.4	功能器件	8
	4.5		12
5	时序	· · · · · · · · · · · · · · · · · · ·	12
	5.1	锁存器	12
	5.2	触发器	13
	5.3		14
	5.4		14
	5.5		16
	5.6	计数器	17
	0.0	月	Τ (

6	电路	设计															17
	6.1	电路分类	 	 												 	17
	6.2	设计步骤	 	 												 	17
	6.3	实例操作	 	 												 	19

1 概述

- 1. 目的: 系统掌握数字系统的基本概念、思维模式与设计方法,帮助深入理解计算机架构
- 2. 应用:
 - 人工智能+GPU/FPGA
 - 云计算+FPGA
 - 物联网+传感硬件系统
 - 软件定义网络系统

2 基本概念

2.1 数字与模拟

- 1. 数字(digital)量: 离散值, 01
- 2. 模拟(analog)量: 连续值

2.2 数的表示

2.2.1 进制(system)

- 二进制(binary)、八进制(octonary)、十进制(decimal)、十六进制(hexadecimal)
- 十进制转二进制:整数部分除以2取余,小数部分乘2取整
- 二进制转十六进制: 四位四位统计

2.2.2 符号数

- 符号数值(sign-magnitude)形式: 首位0为正数,1为负数,n位范围为 $-(2^{n-1}-1) \sim +2^{n-1}-1$
- 反码(1's complement): 除符号位不变,其他位取反,n位范围为 $-(2^{n-1}-1) \sim +2^{n-1}-1$
- 补码(2's complement): 反码+1,按照原来十进制转二进制方法即可得对应有符号十进制数,n位范围为 $-2^{n-1}\sim+2^{n-1}-1$ (由于没有正负0,故表示的数多了一位),补码的补码为原码

2.2.3 浮点数

单精度(float)32位,双精度(double)64位

指数加127相当于做了一个平移,科学记数法如下表示,

Number =
$$(-1)^S (1+F)2^{E-127}$$

例 1.

 $1\ 0110\ 1001\ 0001 = 1.0110\ 1001\ 0001 \times 2^{12}$

指数: $12 + 127 = 139 \rightarrow 1000\ 1011$

尾数: 011 0100 1000 1000 0000 0000 左对齐, 因为有小数点

符号S	指数E(exponent)	尾数F(mantissa)						
0 1000 1011		011 0100 1000 1000 0000 0000						
1位	8位	23位						

2.2.4 运算法则

用补码进行计算,操作跟原码相同,且不会出现两个0

2.2.5 其他表示

1. BCD码/8421码: 即四位的二进制表示

2. 格雷(Gray)码: 相邻只变一位

二进制码转格雷码:

Binary:

Gray:

格雷码转二进制码:

Gray:

Binary:

2.3 存储器

2.3.1 随机存取存储器(RAM)

• 静态(SRAM): 用锁存器作为存储单元,只要有电源就可以一直存,读快

• 动态(DRAM): 用电容器作为存储单元,需要不断刷新(refreshing),存储容量大

2.3.2 只读存储器(ROM)

永久或半永久存储数据

2.3.3 存储扩展

• 字长(word-length)扩展

图 1: 字长扩展

• 字容量(word-capacity)扩展

图 2: 字容量扩展

2.4 信号处理

- 1. 采样(sampling) 采样频率至少是原来最高频率的两倍
- 2. 滤波(filtering) 奈奎斯特(Nyquist)频率等于采样频率的一半

2.5 其他

占空比(duty cycle):
$$\frac{t_W}{T} \times 100\%$$

设计流

图 3: CMOS电路:n内高, p外低

图 4: CMOS或非门

图 5: TTL电路

图 6: TTL反相器

3 集成电路

由图3, Q_1 被 V_{CC} 上拉,始终导通. 若输入为高电平, Q_2 导通, Q_3 导通,输出被下拉为低电平. 同时, Q_2 在集电极处足够低的电压可以使 Q_4 截至.

图 7: 三态门

4 组合电路

4.1 基本逻辑门

4.2 布尔(Boolen)代数

满足交换律、结合律、分配律

$$A\overline{A} = 0$$
 $A + \overline{A} = 1$ $AB + \overline{A}B = A \oplus B$ $AB + \overline{A}B = A \odot B$
$$A + BC = A(1 + B + C) + BC \qquad A + \overline{A}B = A(1 + B) + \overline{A}B$$
$$= (A + B)(A + C) \qquad = A + B$$

4.3 卡诺(Karnaugh)图

4.4 功能器件

4.4.1 加法器

Carry generation:
$$C_g=AB$$

Carry propagation: $C_g=AB$
Output carry: $C_g=AB$

$$C_{in2}=C_{out1}=C_{g1}+C_{p1}C_{in1}$$

$$C_{in3}=C_{out2}=C_{q2}+C_{p2}C_{in2}=C_{q2}+C_{p2}(C_{q1}+C_{p1}C_{in1})$$

图 8: 基本逻辑门

图 9: 不同阶卡诺图

图 10: Sum of Product(SOP)化简

(a) Arrangement of two half-adders to form a full-adder

(b) Full-adder logic symbol

图 11: 半加法器与全加法器

(a) Arrangement of two half-adders to form a full-adder

(b) Full-adder logic symbol

图 12: 异步加法器改造为同步加法器

图 13: 比较器

4.4.2 比较器(Comparator)

4.4.3 译码器(Decoder)

BCD码转对应端口输出,注意输出是反的

图 14: 译码器

BCD转7段数码管

- 1. 共阴(cathode): 高电平亮
- 2. 共阳(anode): 低电平亮

4.4.4 编码器(Encoder)

输入转BCD码

4.4.5 选择器(Multiplexer)

通过BCD码选择对应路输出

4.4.6 多路分配器(Demultiplexer)

将对应输入分配到对应输出路

4.5 竞争与冒险

- 1. 竞争(race): 输入到输出途径不同,延时时间不同,到达输出的时间不同
- 2. 冒险(hazard): 竞争结果导致逻辑电路产生错误输出

图 15: 编码器

图 16: 选择器

如 $F = AB + \overline{A}C$,因为取非,导致两条道路时间不同,使得输出出现毛刺现象可加入冗余项以避免冒险,如改成 $F = AB + \overline{A}C + BC$

5 时序电路

5.1 锁存器

用于存储数据

图 17: SR锁存器(latch)

SR锁存器状态表

S	R	状态
0	0	不变
0	1	复位
1	0	置位
1	1	N/A

D锁存器状态: 0复位,1置位门(选通端):决定是否运作

5.2 触发器

5.2.1 SR/D触发器

触发器状态变化与锁存器相同 边缘触发其实通过竞争实现(如输入加一个与门后与非 \overline{AA})

图 18: 触发器

5.2.2 JK触发器

图 19: JK触发器

JK触发器状态表

J	K	状态
0	0	不变
0	1	复位
1	0	置位
1	1	转换

注意看有无bubble,看是上升沿还是下降沿

5.2.3 应用

- 1. 并行数据传输: 接同一时钟
- 2. 分频: JK均接高, 遇上升沿才触发, 故可实现
- 3. 计数器: 也相当于分频

图 20: 分频器

图 21: 计数器

图 22: 单稳态触发器 (不可重复触发)

5.3 单稳态触发器

5.4 555计时器

- 单稳态触发器(mono-stable one-shot)
- 非稳态多谐振荡器(astable multi-vibration oscillator)

图 23: 555计时器

$$f = \frac{1.44}{(R_1 + 2R_2)C_1}$$
$$DC = \frac{R_1 + R_2}{R_1 + 2R_2} \times 100\%$$

5.5 移位寄存器

5.5.1 约翰逊计数器

计数范围M=2N

图 24: 约翰逊(Johnson)计数器

计数	Q_0	Q_1	Q_2	Q_3
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

5.5.2 环计数器

计数范围M = N

图 25: 环计数器

初始置为1000000000

5.6 计数器

5.6.1 同步异步计数器

 $\mathrm{RO}(1)$ 与 $\mathrm{RO}(2)$ 同时为高时清零,CLK A控制二进制计数器 (Q_0) ,CLK B控制八进制计数器 $(Q_1\sim Q_3)$,故将 Q_0 输出与八进制计数器相连可得十六进制计数器

 \overline{LOAD} 为低时读取数据,ENT、ENP为使能端,同时高电平有效,RCO为进位端

图 26: 16进制计数器

图 27: 4位同步二进制计数器

5.6.2 应用

6 电路设计

6.1 电路分类

- 1. 摩尔(Moore)电路
- 2. 米勒(Mealy)电路

6.2 设计步骤

基于状态转移表格的方法

- 1. 状态图
- 2. 次态表
- 3. 触发器转移表

Q^n	Q^{n+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

4. 触发器JK卡诺图

图 28: 时钟

图 29: 触发器

图 30: 触发器

- 5. JK驱动方程
- 6. 时序电路 基于状态方程的方法
- 1. 状态表
- 2. 次态卡诺图
- 3. 状态方程 $Q^{n+1} = J \overline{Q^n} + \overline{K} Q^n$
- 4. 驱动方程
- 5. 时序电路

6.3 实例操作

目的:用JK触发器实现一个12进制同步计数器

1. 状态转换图

- 2. 确定电路所需触发器数目 由于 $2^4 = 16 > 12$,故需要 4^4 从触发器
- 3. 次态卡诺图

ackslash Q $_1$	Q_0					
Q_3Q_2	00	01	11	10		
00	X	0010	0100	0011		
01	0101	0110	1000	0111		
11	0001	X	X	X		
10	1001	1010	1100	1011		

4. 触发器状态方程,由卡诺图可得

$$\begin{split} Q_0^{n+1} &= \overline{Q_0} \\ Q_1^{n+1} &= Q_0 \overline{Q_1} + \overline{Q_0} Q_1 \\ Q_2^{n+1} &= Q_0 Q_1 \overline{Q_2} + \overline{Q_1} Q_2 \overline{Q_3} + \overline{Q_0} Q_2 \overline{Q_3} \\ Q_3^{n+1} &= \overline{Q_2} Q_3 + Q_0 Q_1 Q_2 \overline{Q_3} \end{split}$$

5. 触发器驱动方程,由

$$Q^{n+1} = J\,\overline{Q^n} + \overline{K}\,Q^n$$

将状态方程整理为上式形式, 可得

$$J_0 = 1$$
 $K_0 = 1$ $K_0 = Q_0$ $K_0 = Q_0$ $K_0 = Q_0$ $K_1 = Q_0$ $K_2 = \overline{Q_3} \overline{Q_1} + \overline{Q_3} \overline{Q_0} = \overline{Q_3} + Q_1 Q_0$ $Q_1 = \overline{Q_3} \overline{Q_1} + \overline{Q_3} \overline{Q_0} = \overline{Q_3} + Q_1 Q_0$ $Q_1 = \overline{Q_3} \overline{Q_1} + \overline{Q_3} \overline{Q_0} = \overline{Q_3} + Q_1 Q_0$

6. 检查自启动

当输入为1111和0000时,可自动跳转至0001;输入为1101时,跳转至0010;输入为1110时,跳转至0011

Proteus电路图连接如下

仿真结果如下

