Limbaje Formale, Automate și Compilatoare

Curs 1

Limbaje Formale, Automate și Compilatoare

Curs:

O.Captarencu: otto@infoiasi.ro, http://www.infoiasi.ro/~otto/lfac.html

• Gh. Grigoraş: grigoras@info.uaic.ro

Laboratoare:

- O.Captarencu
- A. Moruz: mmoruz@info.uaic.ro
- C. Liţă: clita@bitdefender.com

Pagina cursului:

http://www.infoiasi.ro/~otto/lfac.html

Evaluare

- 7 seminarii, 6 laboratoare;
- AS = activitatea la seminar (max 10 puncte);
- AL = activitatea la laborator (max 10 puncte);
- T1,T2 teste scrise în săptămânile 8, respectiv în sesiune;
- Punctajul final se obţine astfel:

$$P = 3 * AS + 3 * AL + 2 * T1 + 2 * T2$$

- Condiţii miminale de promovare: AS ≥ 5, AL ≥ 5;
- Punctaj minim pentru promovare: P ≥ 50;
- Nota finală se va stabili conform criteriilor ECTS;

Evaluare

- AS = activitatea la seminar (max 10 puncte)
 - 8 puncte din 2 teste scrise
 - 2 puncte activitatea la seminar
- AL = activitatea la laborator (max 10 puncte)
 - 1 test scris, 2 teme laborator (note de la 0 la 10)
 - AL = media celor 3 note

Tematica cursului I

- Limbaje şi gramatici
- Limbaje regulate; gramatici, automate, expresii regulate
- Limbaje independente de context; gramatici, automate pushdown
- Maşini Turing

Tematica cursului II

- Limbaje de programare: proiectare şi implementare
- Analiza lexicală
- Analiza sintactică
- Traducere în cod intermediar

Tematica seminarului

- Exemple de limbaje şi gramatici
- Automate finite deterministe, nedeterministe, cu epsilon-tranziţii -Exemple
- Expresii regulate
- Gramatici independente de context, arbori de derivare, eliminarea simbolurilor inutile, eliminarea regulilor de ştergere, a redenumirilor
- Forma normală Chomsky, algoritmul CYK
- Automate pushdown exemple

Tematica laboratorului

- Analiza lexicală folosind instrumente de tip LEX
- Analiza sintactică folosind instrumente de tip YACC
- Interpretor construit cu LEX si YACC

Bibliografie

- Grigoras, Gh. Constructia compilatoarelor Algoritmi fundamentali, Ed. Universitatii Al. I. "Cuza Iasi", ISBN 973-703-084-2, 274 pg., 2005
- Jucan Toader Limbaje formale si automate, Editura Matrix Rom, Bucuresti, 1999, 162 p.
- Jucan Toader, Stefan Andrei Limbaje formale si teoria automatelor. Teorie si practica, Editura Universitatii Al. I. Cuza, Iasi, 2002, 327p.
- Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2006).Introduction to Automata Theory, Languages, and Computation(3rd ed.). Addison-Wesley
- Stoughton Alley, Formal Language Theory, Kansas State University, Draft of Fall 2007.
- Manual LEX, Manual FLEX, Manual YACC, Manual Bison, Compiler Construction using Flex and Bison

Curs 1

- Limbaje formale
- 2 Gramatici
- Ierarhia lui Chomsky
- Gramatici şi limbaje de tip 3 (regulate)
 - Proprietăți de închidere

Alfabet, cuvânt, mulțime de cuvinte

- Alfabet: V o mulţime finită (elemente lui V = simboluri)
 - Simbolurile le vom nota a, b, etc.

Alfabet, cuvânt, mulţime de cuvinte

- Alfabet: V o mulţime finită (elemente lui V = simboluri)
 - Simbolurile le vom nota a, b, etc.
- Cuvânt: şir finit de simboluri
 - cuvintele le vom nota u, v, w...
 - cuvântul nul notat ε sau λ

Alfabet, cuvânt, mulțime de cuvinte

- Alfabet: V o mulţime finită (elemente lui V = simboluri)
 - Simbolurile le vom nota a, b, etc.
- Cuvânt: şir finit de simboluri
 - cuvintele le vom nota u, v, w...
 - cuvântul nul notat ϵ sau λ
- Lungimea unui cuvânt u: numarul simbolurilor sale. Notaţie: |u| $|\epsilon|=0$

Alfabet, cuvânt, mulțime de cuvinte

- Alfabet: V o mulţime finită (elemente lui V = simboluri)
 - Simbolurile le vom nota a, b, etc.
- Cuvânt: şir finit de simboluri
 - cuvintele le vom nota u, v, w...
 - cuvântul nul notat ϵ sau λ
- Lungimea unui cuvânt u: numarul simbolurilor sale. Notație: |u| $|\epsilon|=0$
- V^* multimea tuturor cuvintelor peste alfabetul V, inclusiv ϵ
 - $\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,001,...\}$

Alfabet, cuvânt, mulţime de cuvinte

- Alfabet: V o mulţime finită (elemente lui V = simboluri)
 - Simbolurile le vom nota a, b, etc.
- Cuvânt: şir finit de simboluri
 - cuvintele le vom nota u, v, w...
 - cuvântul nul notat ϵ sau λ
- Lungimea unui cuvânt u: numarul simbolurilor sale. Notație: |u| $|\epsilon|=0$
- V^* multimea tuturor cuvintelor peste alfabetul V, inclusiv ϵ
 - $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, ...\}$
- V⁺ mulţimea tuturor cuvintelor nenule peste alfabetul V
 - $\{0,1\}^+ = \{0,1,00,01,10,11,000,001,...\}$

•
$$x = 0100, y = 100, x \cdot y = 0100100$$

•
$$x = 000, y = \epsilon, x \cdot y = 000$$

•
$$x = 0100, y = 100, x \cdot y = 0100100$$

- $x = 000, y = \epsilon, x \cdot y = 000$
- Concatenarea este asociativă
- este element neutru

•
$$x = 0100, y = 100, x \cdot y = 0100100$$

- $x = 000, y = \epsilon, x \cdot y = 000$
- Concatenarea este asociativă
- este element neutru
- (V^*, \cdot) este monoid, se numeşte monoidul liber generat de V

•
$$x = 0100, y = 100, x \cdot y = 0100100$$

- $x = 000, y = \epsilon, x \cdot y = 000$
- Concatenarea este asociativă
- este element neutru
- (V^*, \cdot) este monoid, se numeşte monoidul liber generat de V
- Cuvântul v este un prefix al cuvântului u dacă $\exists w \in V^*, u = vw$; dacă $w \in V^+$, atunci v este un prefix propriu

•
$$x = 0100, y = 100, x \cdot y = 0100100$$

- $x = 000, y = \epsilon, x \cdot y = 000$
- Concatenarea este asociativă
- este element neutru
- (V^*, \cdot) este monoid, se numeşte monoidul liber generat de V
- Cuvântul v este un prefix al cuvântului u dacă $\exists w \in V^*, u = vw$; dacă $w \in V^+$, atunci v este un prefix propriu
- Cuvântul v este un sufix al cuvântului u dacă $\exists w \in V^*, u = wv$; dacă $w \in V^+$, atunci v este un sufix propriu

Limbaj formal

- Fie V un alfabet. O submulţime $L \subseteq V^*$ este un limbaj (formal) peste alfabetul V (sau V-limbaj) dacă L are o descriere finită.
- O descriere poate fi:

Limbaj formal

- Fie V un alfabet. O submulţime $L \subseteq V^*$ este un limbaj (formal) peste alfabetul V (sau V-limbaj) dacă L are o descriere finită.
- O descriere poate fi:
 - neformală (în limbaj natural):
 - mulţimea cuvintelor peste alfabetul {0,1} care conţin un număr par de 0.
 - $L = \{x \in V^+ : |x| \text{ este par}\}.$
 - $\{a^nb^n|n\in N\}.$
 - $\{w \in \{0,1\}^* | w \text{ se termină in } 00\}.$

Limbaj formal

- Fie V un alfabet. O submulţime $L \subseteq V^*$ este un limbaj (formal) peste alfabetul V (sau V-limbaj) dacă L are o descriere finită.
- O descriere poate fi:
 - neformală (în limbaj natural):
 - mulţimea cuvintelor peste alfabetul {0, 1} care conţin un număr par de 0.
 - $L = \{x \in V^+ : |x| \text{ este par}\}.$
 - $\{a^nb^n|n\in N\}.$
 - $\{w \in \{0,1\}^* | w \text{ se termină in } 00\}.$
 - formală (descriere matematică):
 - o descriere inductivă a cuvintelor
 - o descriere generativă a cuvintelor (gramatică generativă)
 - o descriere a unei metode de recunoaştere a cuvintelor din limbaj (automat finit, automat pushdown, etc.)

Operații cu limbaje

- Operaţiile cu mulţimi (reuniune, interseţie etc)
- Produs de limbaje: $L_1 \cdot L_2 = \{uv | u \in L_1, v \in L_2\}$
- Iteraţia (produsul Kleene): $L^* = \bigcup_{n>0} L^n$, unde:
 - $L^0 = \{\epsilon\}$
 - $L^{n+1} = L^n L$
- $L^R = \{w^R | w \in L\}$; dacă $w = a_1 a_2 \dots a_n$, atunci $w^R = a_n \dots a_2 a_1$

Curs 1

- Limbaje formale
- Gramatici
- Ierarhia lui Chomsky
- Gramatici şi limbaje de tip 3 (regulate)
 - Proprietăți de închidere

Gramatici

Definiție 1

O gramatică este un sistem G = (N, T, S, P), unde:

- N şi T sunt două alfabete disjuncte
 - N este mulţimea neterminalilor
 - T este mulţimea terminalilor
- $S \in N$ este simbolul de start (neterminalul iniţial)
- **3** P este o mulține finită de reguli (producții) de forma $x \to y$, unde $x, y \in (N \cup T)^*$ și x conține cel puțin un neterminal.

Derivare

Fie G=(N,T,S,P) o gramatică şi $u,v\in(N\cup T)^*$. Spunem că v este derivat direct (într-un pas) de la u prin aplicarea regulii $x\to y$, şi notăm $u\Rightarrow v$, dacă $\exists p,q\in(N\cup T)^*$ astfel încât u=pxq și v=pyq

Derivare

Fie G = (N, T, S, P) o gramatică şi $u, v \in (N \cup T)^*$. Spunem că v este derivat direct (într-un pas) de la u prin aplicarea regulii $x \to y$, şi notăm $u \Rightarrow v$, dacă $\exists p, q \in (N \cup T)^*$ astfel încât u = pxq şi v = pyq

• Dacă $u_1 \Rightarrow u_2 \dots \Rightarrow u_n$, n > 1, spunem că u_n este derivat din u_1 în G si notăm $u_1 \Rightarrow^+ u_n$.

Derivare

Fie G=(N,T,S,P) o gramatică şi $u,v\in(N\cup T)^*$. Spunem că v este derivat direct (într-un pas) de la u prin aplicarea regulii $x\to y$, şi notăm $u\Rightarrow v$, dacă $\exists p,q\in(N\cup T)^*$ astfel încât u=pxq şi v=pyq

- Dacă $u_1 \Rightarrow u_2 \dots \Rightarrow u_n$, n > 1, spunem că u_n este derivat din u_1 în G şi notăm $u_1 \Rightarrow^+ u_n$.
- Scriem $u \Rightarrow^* v$ dacă $u \Rightarrow^+ v$ sau u = v.

Limbaj generat

Definiție 2

Limbajul generat de gramatica G este:

$$L(G) = \{ w \in T^* | S \Rightarrow^+ w \}$$

Limbaj generat

Definiție 2

Limbajul generat de gramatica G este:

$$L(G) = \{ w \in T^* | S \Rightarrow^+ w \}$$

Definiție 3

Două gramatici G_1 și G_2 sunt echivalente dacă $L(G_1) = L(G_2)$

Exemplu

- $L = \{a^n b^n | n \ge 1\}$
- Definiţia inductivă:
 - ab ∈ L
 - Daca $X \in L$, atunci $aXb \in L$
 - Nici un alt cuvânt nu face parte din L

Exemplu

- $L = \{a^n b^n | n \ge 1\}$
- Definiţia inductivă:
 - ab ∈ L
 - Daca $X \in L$, atunci $aXb \in L$
 - Nici un alt cuvânt nu face parte din L
- Definiţia generativă:
 - $G = ({X}, {a,b}, X, P)$, unde $P = {X → aXb, X → ab}$
 - Derivarea cuvântului a3b3:

$$X \Rightarrow aXb \Rightarrow aaXbb \Rightarrow aaabbb$$

Exemplu

- $L = \{a^n b^n c^n | n \ge 1\}$
- $G = (N, T, S, P), N = \{S, X\}, T = \{a, b, c\}, P \text{ constă din: }$
 - (1) $S \rightarrow abc$
 - (2) S → aSXc
 - (3) $cX \rightarrow Xc$
 - (4) $bX \rightarrow bb$
- Derivarea cuvântului $a^3b^3c^3$: $S \Rightarrow^{(2)} a\underline{S}Xc \Rightarrow^{(2)} aa\underline{S}XcXc \Rightarrow^{(1)}$ $aaab\underline{c}XcXc \Rightarrow^{(3)} aaa\underline{b}XccXc \Rightarrow^{(4)} aaabbc\underline{c}Xc \Rightarrow^{(3)}$ $aaabbcXcc \Rightarrow^{(3)} aaabbXccc \Rightarrow^{(4)} aaabbbccc = a^3b^3c^3$

Curs 1

- Limbaje formale
- 2 Gramatici
- Ierarhia lui Chomsky
- Gramatici şi limbaje de tip 3 (regulate)
 - Proprietăți de închidere

Clasificarea gramaticilor

Gramatici de tip 0 (generale)

Nu există restricții asupra regulilor

Clasificarea gramaticilor

Gramatici de tip 0 (generale)

Nu există restricții asupra regulilor

Gramatici de tip 1 (dependente de context)

reguli de forma $pxq \to pyq$ unde $x \in N, y \neq \epsilon, p, q \in (N \cup T)^*$ $S \to \epsilon$, caz în care S nu apare în dreapta producțiilor

Clasificarea gramaticilor

Gramatici de tip 0 (generale)

Nu există restricții asupra regulilor

Gramatici de tip 1 (dependente de context)

```
reguli de forma pxq \to pyq unde x \in N, y \neq \epsilon, p, q \in (N \cup T)^*
S \to \epsilon, caz în care S nu apare în dreapta producțiilor
```

Gramatici de tip 2 (independente de context)

```
reguli de forma A \rightarrow y unde A \in N şi y \in (N \cup T)^*
```

Clasificarea gramaticilor

- Gramatici de tip 0 (generale)
 Nu există restricții asupra regulilor
- ② Gramatici de tip 1 (dependente de context)
 reguli de forma pxq → pyq unde x ∈ N, y ≠ ε, p, q ∈ (N ∪ T)*
 S → ε, caz în care S nu apare în dreapta producțiilor
- **3** Gramatici de tip 2 (independente de context) reguli de forma $A \rightarrow y$ unde $A \in N$ şi $y \in (N \cup T)^*$
- Gramatici de tip 3 (regulate)

 $A \rightarrow u$ sau $A \rightarrow uB$ unde $A, B \in N$ şi $u \in T^*$.

Ce tip au urmatoarele gramatici?

- $G = (N, T, S, P), N = \{S, A, B\}, T = \{a, b, c\}, P$:
 - $(1)S \rightarrow aaAc$
 - (2)aAc → aAbBc
 - $(3)bB \rightarrow bBc$
 - $(4)Bc \rightarrow Abc$
 - $(5)A \rightarrow a$
- $G = (N, T, S, P), N = \{S, X\}, T = \{a, b, c\}, P$:
 - $(1)S \rightarrow abc$
 - (2) $S \rightarrow aSXc$
 - $(3)cX \rightarrow Xc$
 - $(4)bX \rightarrow bb$

Fie

$$G = (\{E\}, \{a, +, -, (,)\}, E, \{E \rightarrow a, E \rightarrow (E + E), E \rightarrow (E - E)\}).$$

- Ce tip are gramatica G?
- Construiți derivări din E pentru cuvintele (a + a) și ((a + a) a)
- Cuvântul (a + a a) poate fi derivat din E?
- Descrieţi limbajul L(G)
- Fie $G = (\{A, B\}, \{a, b\}, A, \{A \to aA, A \to B, B \to bB, B \to \epsilon\})$
 - Ce tip are gramatica G?
 - Descrieţi limbajul L(G)

Ierarhia lui Chomsky

- Un limbaj L este de tipul j dacă există o gramatică G de tipul j astfel încât L(G) = L, unde $j \in \{0, 1, 2, 3\}$.
- Vom nota cu \mathcal{L}_j clasa limbajelor de tipul j, unde $j \in \{0, 1, 2, 3\}$.
- ullet lerarhia lui Chomsky: $\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$
- Incluziunile sunt stricte:
 - orice limbaj de tip j + 1 este şi de tip $j \in \{0, 1, 2\}$
 - există limbaje de tip j care nu sunt de tip j + 1, $j \in \{0, 1, 2\}$

Proprietăți

- Fiecare din familiile \mathcal{L}_j cu $0 \le j \le 3$ conţine toate limbajele finite.
- Fiecare din familiile \mathcal{L}_j cu $0 \le j \le 3$ este închisă la operația de reuniune:

$$L_1, L_2 \in \mathcal{L}_j \Longrightarrow L_1 \cup L_2 \in \mathcal{L}_j,$$

$$\forall j : 0 \le j \le 3$$

Curs 1

- Limbaje formale
- 2 Gramatici
- Ierarhia lui Chomsky
- Gramatici şi limbaje de tip 3 (regulate)
 - Proprietăți de închidere

Gramatici de tip 3

- O gramatică G = (N, T, S, P) este de tip 3, dacă regulile sale sunt de forma $A \to u$ sau $A \to uB$ unde $A, B \in N$ şi $u \in T^*$.
- Exemplu: $G = (\{D\}, \{0, 1, \dots, 9\}, D, P)$ Unde P este: $D \rightarrow 0D|1D|2D|\dots|9D$ $D \rightarrow 0|1|\dots|9$

Fie gramatica G = ({A, B}, {I, d}, A, P)unde P este:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ (I = literă, d = cifră)

Fie gramatica G = ({A, B}, {I, d}, A, P)
 unde P este:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ (I = literă, d = cifră) L(G): mulțimea identificatorilor

Fie gramatica G = ({A, B}, {I, d}, A, P)
 unde P este:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ (I = literă, d = cifră) L(G): mulțimea identificatorilor

Fie gramatica G = ({A, B}, {+, -, d}, A, P) unde P este:

$$A \rightarrow +dB|-dB|dB$$
, $B \rightarrow dB|\epsilon$ (d = cifră)

Fie gramatica G = ({A, B}, {I, d}, A, P)
 unde P este:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ (I = literă, d = cifră) L(G): mulțimea identificatorilor

• Fie gramatica $G = (\{A, B\}, \{+, -, d\}, A, P)$ unde P este:

$$A \rightarrow +dB|-dB|dB$$
, $B \rightarrow dB|\epsilon$ (d = cifră)

L(G): mulţimea constantelor întregi

Forma normală

- O gramatică de tip 3 este în formă normală dacă regulile sale sunt de forma A → a sau A → aB, unde a ∈ T, şi eventual S → ε (caz în care S nu apare în dreapta regulilor).
- Pentru orice gramtică de tip 3 există o gramatică echivalentă în formă normală
 - Se poate arăta că pot fi eliminate regulile de forma A → B (redenumiri) şi cele de forma A → ε (reguli de ştergere), cu excepţia, eventual a regulii S → ε
 - Orice regulă de forma $A \to a_1 a_2 \dots a_n$ se înlocuiește cu $A \to a_1 B_1$, $B_1 \to a_2 B_2$,..., $B_{n-2} \to a_{n-1} B_{n-1}$, $B_{n-1} \to a_n \ n > 1$, B_1, \dots, B_{n-1} fiind neterminali noi
 - Orice regulă de forma $A \to a_1 a_2 \dots a_n B$ se înlocuiește cu $A \to a_1 B_1$, $B_1 \to a_2 B_2, \dots, B_{n-2} \to a_{n-1} B_{n-1}, B_{n-1} \to a_n B, n > 1, B_1, \dots, B_{n-1}$ fiind neterminali noi
 - Transformarile care se fac nu modifică limbajul generat de gramatică

Fie L, L_1, L_2 limbaje regulate: există gramaticile G, G_1, G_2 de tip 3 astfel ca $L = L(G), L_1 = L(G_1)$ şi $L_2 = L(G_2)$.

Atunci, următoarele limbaje sunt de asemenea regulate:

- \bigcirc $L_1 \cup L_2$
- $2 L_1 \cdot L_2$
- 3 L*
- $^{\textcircled{4}}$ L^{R}
- $L_1 \cap L_2$
- $L_1 \setminus L_2$

Închiderea la reuniune

Fie $G_1=(N_1,T_1,S_1,P_1)$ şi $G_2=(N_2,T_2,S_2,P_2)$ gramatici de tip 3 cu $L_1=L(G_1),\, L_2=L(G_2).$

Presupunem $N_1 \cap N_2 = \emptyset$ și gramaticile în forma normală

Închiderea la reuniune: se arată că $L_1 \cup L_2 \in \mathcal{L}_3$:

Gramatica $G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$ este de tip 3 și generează limbajul $L_1 \cup L_2$

LFAC (2013-14) Curs 1 32 / 34

Închiderea la produs

Gramatica $G = (N_1 \cup N_2, T_1 \cup T_2, S_1, P)$ unde P constă din:

- regulile de forma A → aB din P₁
- reguli $A o aS_2$ pentru orice regulă A o a din P_1
- toate regulile din P₂

este de tip 3 şi generează limbajul L_1L_2

Închiderea la iterație

Fie G = (N, T, S, P) de tip 3 care generează L(L = L(G)). Presupunem că simbolul de start S nu apare în partea dreaptă a

Presupunem că simbolul de start S nu apare în partea dreaptă a vreunei reguli.

Gramatica G' = (N, T, S, P') unde P' constă din

- reguli A → aB din P
- reguli $A \rightarrow aS$, pentru orice regulă $A \rightarrow a$ din P
- ullet regula $S
 ightarrow \epsilon$

este de tip 3 și generează L*