Hamming Code

Alle 4 Tetraden Codes lassen in ihrer Grundform keine Fehlererkennung zu. Jede Bitänderung führt zu einem neuen definierten Bitmuster.

Fehlererkennende Codes haben die Eigenschaft, sich in möglichst vielen Bitstellen zu unterscheiden. Wird ein einzelnes Codewort bei einer Übertragung verfälscht, so entsteht ein nicht verwendetes Bitmuster.

m - aus - n - Codes

n: Länge des Codeworts

m: Anzahl der mit 1 belegten Stellen

Zeilen	Dezimal	7	4	2	1	0
Α	0	1	1	0	0	0
В	1	0	0	0	1	1
С	2	0	0	1	0	1
D	3	0	0	1	1	0
Е	4	0	1	0	0	1
F	5	0	1	0	1	0
G	6	0	1	1	0	0
Н	7	1	0	0	0	1
ı	8	1	0	0	1	0
J	9	1	0	1	0	0

Hamming-Distanz ist die Anzahl der unterschiedlichen Bits zweier Codewörter

Bsp.:

0101

0011

Unterschied an 2 Bitstellen

=> h=2 (Hamming-Distanz)

Vergleich von Codewörtern

- 1. Jedes Codewort mit jedem Vergleichen
- 2. Jeweils die Hamming Distanz bestimmen
- 3. Die niedrigste Hamming Distanz h_{min} raussuchen
- 4. Es kann ein Fehler k weniger bestimmt werden als h_{min}