Álgebra de compresión

 $A = USV^T$

 $\sigma_1 \geq \sigma_2 \geq \dots$

 $\mathbf{A} = \Sigma \sigma_{\mathbf{i}} \mathbf{u}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}}^{\mathsf{T}}$

imagen color

Una matriz de n x m x 3 números

- · A cada pixel se le asigna un vector de R³
- · El vector indica la composición RGB (redgreen-blue).
- Por ejemplo, un pixel marcado con el vector (1, 0, 0) se verá así:

imagen blanco y negro

Es una matriz de n x m números

- · A cada pixel se le asigna un número
- · El número sólo puede ser 0 o 1
- · Por ejemplo, un pixel marcado con el número 1 se verá así:

imagen en tonos de gris

Es una matriz de n x m números

- · A cada pixel se le asigna un número
- · El número es un natural entre 0 y 63
- · Por ejemplo, un pixel marcado con el número 30 se verá así:

 34
 60
 17
 1
 18

 28
 33
 16
 56
 30

 44
 55
 55
 13
 4

 39
 11
 46
 19
 62

Un poco de álgebra lineal

Descomponer una matriz es escribirla como el producto de otras.

Algunas descomposiciones famosas son la LU, LDU, la QR, la diagonalización

$$A = LU$$
 $A = LDU$ $A = QR$

lu, Idu, qr, pdp⁻¹

LU y LDU se aplican intensivamente en la resolución de sistemas lineales.

QR toda vez sea necesario mantener controlado el número de condición.

PDP⁻¹ y su descomposición espectral para desacoplar problemas (p.ej. EDOs)

limitación de pdp^T

A = PDP⁻¹ puede reescribirse PDP^T sii A es simétrica

... y en tal caso los autovalores de D son reales (positivos, nulos o negativos)

ipuede hacerse algo similar con una matriz A rectangular cualquiera?

la descomposición svd

La respuesta es sí, la descomposición svd, iii válida para TODA matriz A !!!

 $A = U S V^T$

Siendo U, V ortogonales y S con elementos no negativos en la diagonal, nulos fuera de ella.

la matriz S de n x r

r es el rango de A

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > 0$$

la descomposición U S V^T

$$A = \{ u_1 \mid u_2 \mid \dots \mid u_r \} \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \sigma_r \end{bmatrix} \underbrace{\begin{bmatrix} v_1^T \\ v_2^T \\ \hline v_r^T \end{bmatrix}}_{\underline{v_r}}$$

$$\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$$

la suma U S VT

$$\mathbf{A} = \left(\sigma_{1} \left[\mathbf{u}_{1}\right] \left\{\mathbf{v}_{1}^{\mathsf{T}}\right\}\right) + \dots + \left(\sigma_{r} \left[\mathbf{u}_{r}\right] \left\{\mathbf{v}_{r}^{\mathsf{T}}\right\}\right)$$

$A = U S V^T$

$$\mathbf{A} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\mathsf{T}} + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^{\mathsf{T}}$$

$$+ \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^{\mathsf{T}}$$

... y como $A_i = \sigma_i u_i v_i^T$ es ...

 $A = A_1 + A_2 + ... A_r$

$$\sigma_1$$

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A = U S V^T$$

$A = \sigma_1 \ U_1 \ V_1^T + \sigma_2 \ U_2 \ V_2^T$

$$A = A_1 + A_2$$

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & -3 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

 $rg(A) = 2 ; rg(A_1) = rg(A_2) = 1$

la aproximación A_k*

$$A_k^* = A_1 + A_2 + ... A_k$$

y el error al aproximar A por A_k^* está dado por $\hat{e} = \|A - A_k^*\|$, y es el mínimo de todos los que se obtienen aproximando A por una matriz de rango k

la mejor aproximación

luego, en el sentido de los mínimos cuadrados A_k* es la mejor aproximación para un dado k

$$S_k = gen \{ A_1, A_2, ..., A_k \}$$

en imágenes

error-imagen

La matriz de error $E = A - A_k^*$ tiene una imagen que es :

Completamente negra si $A = A_k^*$, pues en tal caso es E = 0

El error-imagen es tanto más negro cuanto mejor la aproximación

el fondo oscuro

σi	%
128,6	71,1
25,8	14,3
9,6	5,3
7,6	4,2
3,9	2,2
1,9	1,1
1,5	0,8
1,1	0,6
0,5	0,3
0,2	0,1
0,1	0,1

el fondo oscuro

Los valores singulares σ_1 y σ_2

concentran
el 85 % de la
información

el fondo oscuro

Los valores sigulares σ_1 a σ_5

concentran

el 97 % de la

información

la falda blanca

si se considera sólo el primer valor singular

se recogerá

el 99 %

de la

información

js & ep k = 5

js & ep k = 10

js & ep k = 15

js & ep k = 20

los vengadores

John Steed

Emma Peel

el tamaño original

Para almacenar una imagen la matriz A exige conocer n x m enteros.

Una imagen de 480 x 640 pixels requiere almacenar 921600 elementos

Esto es, aproximadamente, 0.95 Mbytes.

el tamaño comprimido

Para almacenar A_k^* se necesita el espacio:

 $n \times k$ para U, $k \times m V^T$, k para S

En total, $(n + m + 1) \times k$

la compresión

la relación de compresión es r = (n+m+1) / nm

para Borges, n=480, m=640 tenemos con k = 50 que la imagen comprimida sólo requiere un

18 %

de la información original

el código matlab

function compresor(p,k)

```
p=imread(p);p=double(p); image(p);
axis off;colormap(gray);
[u,s,v] = svd(p);
suma=u(:,1:k)*s(1:k,1:k)*v(:,1:k)';
image(suma)
```


compresor ('germán.jpg',1)

algunas mejoras

No toda imagen requiere un mismo k para ser satisfactoria

entonces se la divide en bloques

cada bloque i con un ki

es claro que, p.ej., $k_1 < k_2$

luego se aplica la sdv a cada bloque

rgb, hsv, ntsc

Además de red-green-blue (rgb), se tiene huesaturation-value (hsv) y ntsc television system

Cada pixel es un vector de R^3 y se pasa de un sistema a otro mediante un cambio de base $S_1 = P S_2$, siendo P la matriz de pasaje.

rgb → ntsc

Por ejemplo, para pasar de rgb a nstc se tiene:

$$\begin{pmatrix} y \\ i \\ q \end{pmatrix} = \begin{pmatrix} 0.3 & 0.6 & 0.1 \\ 0.6 & -0.3 & -0.3 \\ 0.2 & -0.5 & 0.3 \end{pmatrix} \begin{pmatrix} r \\ g \\ b \end{pmatrix}$$

Rgb es semejante a un sistema cartesiano, en tanto que nstc procede como coordenadas cilíndricas

color → grises

La compresión color es idéntica a la que ya hemos visto, basta redimensionar la matriz C de n \times m \times 3 (el 3 es el vector aludido) a una matriz A

A es sólo C 'aplanada', esto es, A es una matriz de $n \times (3m)$

grises → color

A partir de A se obtiene A_k^* como antes y retornando a 3D resulta C_k^{*} lo que completa la compresión

jpeg

Joint Experts Photographic Group es otra técnica de compresión que procesa la señal de salida de la transformada discreta coseno (Fourier).

svd y textos

Con m documentos d_1 , d_2 , ... d_m y n términos t_1 , t_2 , ..., t_n se forma la matriz de datos D de n x m tal que D(i,j) es el número de veces que el término i está presente en el documento j.

Luego se normaliza la matriz D (le llamaremos también D) dividiendo en el número de ocurrencias del término en todos los documentos

un ejemplo D(i,j)

Documento 1: 'Algebra lineal y compresión de textos'

Documento 2: 'Algebra y compresión de información'

Documento 3: 'Algebra lineal e imágenes'

Término 1: 'textos'

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Término 2: 'lineal'

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0.5 & 0 & 0.5 \end{pmatrix}$$

un ejemplo

Ante una consulta en la base de documentos tal como ¿textos?, que el sistema traduce en el espacio de términos como $p = (1 \ 0)^T$, la pertinencia está dada (como es evidente) por :

$$R = D^T p$$
, esto es:

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0.5 & 0 & 0.5 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

un ejemplo

Haciendo una descomposición svd $D = U S V^T y$ como $D^T = V S U^T$ se tiene que $R = V (S U^T p)$

S U^T p es la proyección de la pregunta sobre el subespacio de los vectores singulares

R entonces resulta el mejor ordenamiento, habida cuenta de la información disponible

bibliografía

·Arnold, Ben, An investigation into using singular value decomposition as a method of image compression. University of Canterbury. 2002

·Lax, Peter, Linear algebra. Springer Verlag. 2001

