1. Цель лабораторной работы:

Изучение разработки рекомендательных моделей

2. Задание:

- 1.Выбрать произвольный набор данных (датасет), предназначенный для построения рекомендательных моделей.
- 2.Опираясь на материалы лекции, сформировать рекомендации для одного пользователя (объекта) двумя произвольными способами.
- 3. Сравнить полученные рекомендации (если это возможно, то с применением метрик).

3. Ход выполнения работы

Импорт библиотек

```
In [111]: import numpy as np import pandas as pd from typing import Dict from sklearn. feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances, manhattan_distances from surprise import SVD, Dataset, Reader import seaborn as sns import matplotlib.pyplot as plt from matplotlib_venn import venn2 %matplotlib inline sns.set(style="ticks")
```

Чтение данных

```
In [112]: df_movies_all=pd.read_csv('movies.csv') df_movies_all.head()
```

Out[112]:

genres	title	movield	
Adventure Animation Children Comedy Fantasy	Toy Story (1995)	1	0
Adventure Children Fantasy	Jumanji (1995)	2	1
Comedy Romance	Grumpier Old Men (1995)	3	2
Comedy Drama Romance	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4

```
In [113]: df_movies_all.shape
```

Out[113]: (9742, 3)

```
In [114]: df_ratings=pd.read_csv('ratings.csv') df_ratings.head()
```

Out[114]:

	userld	movield	rating	timestamp
0	1	1	4.0	964982703
1	1	3	4.0	964981247
2	1	6	4.0	964982224
3	1	47	5.0	964983815
4	1	50	5.0	964982931

```
In [115]: df_ratings.shape
```

Out[115]: (100836, 4)

```
In [116]: # Оставляем только аниме, которые есть в df_rating movie_ids = df_ratings[df_ratings['movieId']. notnull()]['movieId'] df_movie = df_movies_all[df_movies_all['movieId']. isin(movie_ids)]
```

```
In [117]: df_movies_all.shape, df_movie.shape
```

```
Out[117]: ((9742, 3), (9724, 3))
```

Выбор идентификаторов для связи таблиц

```
In [119]: venn2([set(df_ratings['movieId'].unique()), set(df_movie['movieId'].unique())])
```

Out[119]: <matplotlib venn. common. VennDiagram at 0x276824ac0d0>

Векторизация описания фильмов

```
In [120]: df_movie_with_genre = df_movie[df_movie['genres'].notnull()]
    df_movie_with_genre = df_movie_with_genre[~df_movie_with_genre['genres'].str.isspace()]
```

```
[121]: movieId=df movie with genre['movieId'].values
           movieId[0:5]
Out[121]: array([1, 2, 3, 4, 5], dtype=int64)
In [122]: moviename=df movie with genre['title']. values
           moviename[0:5]
Out[122]: array(['Toy Story (1995)', 'Jumanji (1995)', 'Grumpier Old Men (1995)',
                  'Waiting to Exhale (1995)', 'Father of the Bride Part II (1995)'],
                 dtype=object)
   [123]: genre=df movie with genre['genres'].values
           genre[0:5]
Out[123]: array(['Adventure|Animation|Children|Comedy|Fantasy',
                   'Adventure | Children | Fantasy', 'Comedy | Romance',
                  'Comedy | Drama | Romance', 'Comedy'], dtype=object)
   [124]: | %%time
           tfidfy = TfidfVectorizer()
           genre matrix = tfidfv.fit transform(genre)
           genre matrix
           Wall time: 71 ms
Out[124]: <9724x24 sparse matrix of type '<class 'numpy.float64' >'
                   with 23179 stored elements in Compressed Sparse Row format>
```

3.1 Фильтрация на основе содержания

Рекомендации в зависимости от жанров аниме

```
In [125]: class SimpleKNNRecommender:
           def init (self, X matrix, X ids, X name, X genre):
           #Входные параметры:
           #X matrix - обучающая выборка (матрица объект-признак)
           # X ids - массив идентификаторов
           # Х пате - массив названий
           # Х депте - массив жанров
              self. X matrix = X matrix
              self.df = pd.DataFrame(
                 {'id': pd. Series(X ids, dtype='int'),
                 'name': pd. Series(X name, dtype='str'),
                 'genre': pd. Series (X genre, dtype='str'),
                 'dist': pd. Series([], dtype='float')})
           def recommend for single object (self, K: int, \
                    X matrix object, cos flag = True, manh flag = False):
           # Метод формирования рекомендаций для одного объекта.
           #Входные параметры:
           #К-количество рекомендуемых соседей
           #X matrix object - строка матрицы объект-признак, соответствующая объекту
           # cos flag - флаг вычисления косинусного расстояния
           # manh flag - флаг вычисления манхэттэнского расстояния
           # Возвращаемое значение: К найденных соседей
              scale = 1000000
              #Вычисляем косинусную близость
              if cos flag:
                 dist = cosine similarity(self. X matrix, X matrix object)
                 self.df['dist'] = dist * scale
                 res = self. df. sort values (by='dist', ascending=False)
                 # Не учитываем рекомендации с единичным расстоянием,
                 # так как это искомый объект
                 res = res[res['dist'] < scale]
              else:
                 if manh flag:
                    dist = manhattan distances(self. X matrix, X matrix object)
                 else:
```

dist = euclidean distances(self. X matrix, X matrix object)

[129]: skr1 = SimpleKNNRecommender(genre matrix, movieId, moviename, genre)

```
self.df['dist'] = dist * scale
                    res = self.df.sort values(by='dist', ascending=True)
                    # Не учитываем рекомендации с единичным расстоянием,
                    # так как это искомый объект
                    res = res[res['dist'] > 0.0]
                #Оставляем К первых рекомендаций
                res = res. head(K)
                return res
In [126]: Toy Story = 0
         moviename[Toy Story]
Out[126]: 'Toy Story (1995)'
In [127]: genre[Toy_Story]
Out[127]: 'Adventure | Animation | Children | Comedy | Fantasy'
In [128]: Toy_Story_matrix=genre_matrix[Toy_Story]
         Toy Story matrix
Out[128]: <1x24 sparse matrix of type '<class 'numpy.float64'>'
                with 5 stored elements in Compressed Sparse Row format>
```

In [130]: rec1 = skrl.recommend_for_single_object(15, Toy_Story_matrix)
rec1

Out[130]:

	id	name	genre	dist
8882	134853	Inside Out (2015)	Adventure Animation Children Comedy Drama Fantasy	970751.211229
4418	6536	Sinbad: Legend of the Seven Seas (2003)	Adventure Animation Children Fantasy	963553.054623
5673	27731	Cat Returns, The (Neko no ongaeshi) (2002)	Adventure Animation Children Fantasy	963553.054623
1576	2116	Lord of the Rings, The (1978)	Adventure Animation Children Fantasy	963553.054623
9351	162578	Kubo and the Two Strings (2016)	Adventure Animation Children Fantasy	963553.054623
1504	2033	Black Cauldron, The (1985)	Adventure Animation Children Fantasy	963553.054623
6927	65261	Ponyo (Gake no ue no Ponyo) (2008)	Adventure Animation Children Fantasy	963553.054623
4009	5672	Pokemon 4 Ever (a.k.a. Pokémon 4: The Movie) (Adventure Animation Children Fantasy	963553.054623
3225	4366	Atlantis: The Lost Empire (2001)	Adventure Animation Children Fantasy	963553.054623
2536	3400	We're Back! A Dinosaur's Story (1993)	Adventure Animation Children Fantasy	963553.054623
5077	8015	Phantom Tollbooth, The (1970)	Adventure Animation Children Fantasy	963553.054623
3331	4519	Land Before Time, The (1988)	Adventure Animation Children Fantasy	963553.054623
9526	172793	Vovka in the Kingdom of Far Far Away (1965)	Adventure Animation Children Fantasy	963553.054623
5611	27186	Kirikou and the Sorceress (Kirikou et la sorci	Adventure Animation Children Fantasy	963553.054623
6431	51939	TMNT (Teenage Mutant Ninja Turtles) (2007)	Action Adventure Animation Children Comedy Fan	939057.875775

In [131]: rec2 = skr1.recommend_for_single_object(15, Toy_Story_matrix, cos_flag = False) rec2

Out[131]:

	id	name	genre	dist
8882	134853	Inside Out (2015)	Adventure Animation Children Comedy Drama Fantasy	241862.724582
1576	2116	Lord of the Rings, The (1978)	Adventure Animation Children Fantasy	269988.686345
5611	27186	Kirikou and the Sorceress (Kirikou et la sorci	Adventure Animation Children Fantasy	269988.686345
5077	8015	Phantom Tollbooth, The (1970)	Adventure Animation Children Fantasy	269988.686345
9526	172793	Vovka in the Kingdom of Far Far Away (1965)	Adventure Animation Children Fantasy	269988.686345
1504	2033	Black Cauldron, The (1985)	Adventure Animation Children Fantasy	269988.686345
9351	162578	Kubo and the Two Strings (2016)	Adventure Animation Children Fantasy	269988.686345
4009	5672	Pokemon 4 Ever (a.k.a. Pokémon 4: The Movie) (Adventure Animation Children Fantasy	269988.686345
3331	4519	Land Before Time, The (1988)	Adventure Animation Children Fantasy	269988.686345
3225	4366	Atlantis: The Lost Empire (2001)	Adventure Animation Children Fantasy	269988.686345
5673	27731	Cat Returns, The (Neko no ongaeshi) (2002)	Adventure Animation Children Fantasy	269988.686345
2536	3400	We're Back! A Dinosaur's Story (1993)	Adventure Animation Children Fantasy	269988.686345
4418	6536	Sinbad: Legend of the Seven Seas (2003)	Adventure Animation Children Fantasy	269988.686345
6927	65261	Ponyo (Gake no ue no Ponyo) (2008)	Adventure Animation Children Fantasy	269988.686345
6431	51939	TMNT (Teenage Mutant Ninja Turtles) (2007)	Action Adventure Animation Children Comedy Fan	349119.246747

Out[132]:

	id	name	genre	dist
8882	134853	Inside Out (2015)	Adventure Animation Children Comedy Drama Fantasy	304097.339211
9526	172793	Vovka in the Kingdom of Far Far Away (1965)	Adventure Animation Children Fantasy	340177.899954
5077	8015	Phantom Tollbooth, The (1970)	Adventure Animation Children Fantasy	340177.899954
2536	3400	We're Back! A Dinosaur's Story (1993)	Adventure Animation Children Fantasy	340177.899954
1504	2033	Black Cauldron, The (1985)	Adventure Animation Children Fantasy	340177.899954
3331	4519	Land Before Time, The (1988)	Adventure Animation Children Fantasy	340177.899954
4418	6536	Sinbad: Legend of the Seven Seas (2003)	Adventure Animation Children Fantasy	340177.899954
9351	162578	Kubo and the Two Strings (2016)	Adventure Animation Children Fantasy	340177.899954
5611	27186	Kirikou and the Sorceress (Kirikou et la sorci	Adventure Animation Children Fantasy	340177.899954
3225	4366	Atlantis: The Lost Empire (2001)	Adventure Animation Children Fantasy	340177.899954
5673	27731	Cat Returns, The (Neko no ongaeshi) (2002)	Adventure Animation Children Fantasy	340177.899954
4009	5672	Pokemon 4 Ever (a.k.a. Pokémon 4: The Movie) (Adventure Animation Children Fantasy	340177.899954
6927	65261	Ponyo (Gake no ue no Ponyo) (2008)	Adventure Animation Children Fantasy	340177.899954
1576	2116	Lord of the Rings, The (1978)	Adventure Animation Children Fantasy	340177.899954
5477	26340	Twelve Tasks of Asterix, The (Les douze travau	Action Adventure Animation Children Comedy Fan	477128.215724

Как видите, все три метода вычисления расстояний дают правильные результаты. Рекомендуемые фильмы содержат ключевое слово того же типа.

3.2 Коллаборативная фильтрация

```
[133]: len(df ratings['userId'].unique()) # Количество уникальных пользователей
Out[133]: 610
   [134]: len(df ratings['movieId'].unique()) # Количество уникальных аниме
Out[134]: 9724
In [135]: def create utility matrix(data):
              itemField = 'movieId'
              userField = 'userId'
              valueField = 'rating'
              userList = data[userField].tolist()
              itemList = data[itemField].tolist()
              valueList = data[valueField].tolist()
              users = list(set(userList))
              items = list(set(itemList))
              users index = {users[i]: i for i in range(len(users))}
              pd dict = {item: [0.0 for i in range(len(users))] for item in items}
              for i in range (0, data. shape [0]):
                  item = itemList[i]
                  user = userList[i]
                  value = valueList[i]
                  pd dict[item][users index[user]] = value
              X = pd. DataFrame(pd dict)
              X. index = users
              itemcols = list(X. columns)
              items index = {itemcols[i]: i for i in range(len(itemcols))}
              return X, users index, items index
```

Wall time: 1.02 s

In [137]: user_item_matrix

Out[137]:

	1	2	3	4	5	6	7	8	9	10	 98239	98243	131013	131023	32728	163809	98279	32743	65514	98296
1	4.0	0.0	4.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
606	2.5	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.0	0.0	 0.0	3.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0
607	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
608	2.5	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
609	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
610	5.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	 2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0

610 rows × 9724 columns

Посмотрите, как пользователи оценили фильм 《Toy_Story》

```
In [138]: print(df_ratings.loc[df_ratings['movieId']==1,['userId','rating']])
```

	userId	rating
0	1	4.0
516	5	4.0
874	7	4.5
1434	15	2. 5
1667	17	4.5
97364	606	2.5
98479	607	4.0
98666	608	2.5
99497	609	3.0
99534	610	5.0

[215 rows x 2 columns]

Выбрать пользователей, которые дали 5 баллов для «Toy_Story», в качестве тестовых объектов для рекомендательной системы. Выбрать user_id = 610

```
In [139]: user_item_matrix__test = user_item_matrix.loc[[610]] user_item_matrix__test
```

Out[139]:

	1	2	3	4	5	6	7	8	9	10	•••	98239	98243	131013	131023	32728	163809	98279	32743	65514	98296
610	5.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0		2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0

1 rows × 9724 columns

```
In [140]: user_item_matrix__train = user_item_matrix.loc[:609] user_item_matrix__train
```

Out[140]:

	1	2	3	4	5	6	7	8	9	10	 98239	98243	131013	131023	32728	163809	98279	32743	65514	98296
1	4.0	0.0	4.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
605	4.0	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
606	2.5	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.0	0.0	 0.0	3.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0
607	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
608	2.5	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
609	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

609 rows × 9724 columns

Построение модели на основе SVD

```
In [141]:  %%time
U, S, VT = np.linalg.svd(user_item_matrix_train.T)
V = VT.T

Wall time: 3.82 s

In [142]: U. shape# 用户和潜在因素之间的关系矩阵
```

Out[142]: (9724, 9724)

```
[143]: V. shape# 对象和潜在因素之间的关系矩阵
Out[143]: (609, 609)
In [144]: S. shape
Out[144]: (609,)
In [145]: Sigma = np. diag(S) # 对角奇异值矩阵
           Sigma. shape
Out[145]: (609, 609)
   [146]: Sigma
Out[146]: array([[529.4937201 ,
                                   0.
                                                0.
                     0.
                                   0.
                  0.
                               , 227. 50885376,
                                                0.
                                   0.
                     0.
                  [ 0.
                                   0.
                                               190. 53715518, ...,
                                   0.
                     0.
                  \lceil 0.
                                   0.
                                                0.
                                                                   3.87425933,
                     0.
                  [ 0.
                                   0.
                                                0.
                     3. 11412817,
                  [ 0.
                                   0.
                                                0.
                     0.
                                   2. 9480028 ]])
   [147]: r=3
           Ur = U[:, :r]
           Sr = Sigma[:r, :r]
           Vr = V[:, :r]
```

localhost:8888/notebooks/MMO лар4.ipynb#

```
[148]: #新用户和潜在因素之间的关系矩阵
           test user = np. mat(user item matrix test. values)
           test user. shape, test user
Out[148]: ((1, 9724), matrix([[5., 0., 0., ..., 0., 4., 0.]]))
In [149]: tmp = test_user * Ur * np. linalg. inv(Sr)
Out[149]: matrix([[-0.13331135, 0.15981166, -0.0692074]])
   [150]: | \text{test user result} = \text{np.array}([\text{tmp}[0, 0], \text{tmp}[0, 1], \text{tmp}[0, 2]]) |
           test user result
Out[150]: array([-0.13331135, 0.15981166, -0.0692074])
In [151]: cos_sim = cosine_similarity(Vr, test_user_result.reshape(1, -1))
           cos sim[:10]
Out[151]: array([[-0.15984579],
                   [0.81159541],
                   [-0.14714827],
                   [-0.13610433],
                   [-0.44311623],
                   [-0.47390031],
                   [0.48528426],
                   [-0.41232427],
                   [ 0.78471551],
                   [ 0.8713775 ]])
   [152]: cos sim list = cos sim.reshape(-1, cos sim.shape[0])[0]
           cos sim list[:10]
Out[152]: array([-0.15984579, 0.81159541, -0.14714827, -0.13610433, -0.44311623,
                   -0. 47390031, 0. 48528426, -0. 41232427, 0. 78471551, 0. 8713775 ])
```

localhost:8888/notebooks/MMO лар4.ipynb#

```
In [153]: recommended_user_id = np.argsort(-cos_sim_list)[0] recommended_user_id
```

Out[153]: 317

In [154]: df_movie

Out[154]:

	movield	title	genres
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
1	2	Jumanji (1995)	Adventure Children Fantasy
2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama Romance
4	5	Father of the Bride Part II (1995)	Comedy
9737	193581	Black Butler: Book of the Atlantic (2017)	Action Animation Comedy Fantasy
9738	193583	No Game No Life: Zero (2017)	Animation Comedy Fantasy
9739	193585	Flint (2017)	Drama
9740	193587	Bungo Stray Dogs: Dead Apple (2018)	Action Animation
9741	193609	Andrew Dice Clay: Dice Rules (1991)	Comedy

9724 rows × 3 columns

```
In [155]: movie_list = list(user_item_matrix.columns)
def movie_recommend(ind):
    try:
        movie_id = movie_list[ind]
        flt_rating = df_ratings[df_ratings['movieId'] == movie_id]
        rating = flt_rating['movieId'].values[0]
        moive_rating = df_movie[df_movie['movieId'] == rating]
        res = moive_rating['title'].values[0]
        return res
    except:
        return ''
```

```
In [156]: | # Аниме, которые оценивал текущий пользователь user id=152:
          i=1
          for idx, item in enumerate(np. ndarray. flatten(np. array(test user))):
              if item > 0:
                  movie name = movie recommend(idx)
                  print('{} - {} - {}'.format(idx, movie name, item))
                  if i==20:
                      break
                  else:
                      i+=1
          0 - Toy Story (1995) - 5.0
          5 - Heat (1995) - 5.0
          15 - Casino (1995) - 4.5
          31 - Twelve Monkeys (a. k. a. 12 Monkeys) (1995) - 4.5
          46 - Seven (a. k. a. Se7en) (1995) - 5.0
          49 - Usual Suspects, The (1995) - 4.0
          69 - From Dusk Till Dawn (1996) - 4.0
          92 - Broken Arrow (1996) - 3.5
          107 - Braveheart (1995) - 4.5
          108 - Taxi Driver (1976) - 5.0
          109 - Rumble in the Bronx (Hont faan kui) (1995) - 4.0
          132 - 31 (2016) - 3.5
          142 - Batman Forever (1995) - 3.0
          148 - Clockers (1995) - 3.5
          182 - Smoke (1995) - 5.0
          185 - Fearless Hyena, The (Xiao quan guai zhao) (1979) - 3.0
          203 - Before Sunrise (1995) - 5.0
          218 - Dumb & Dumber (Dumb and Dumber) (1994) - 4.0
          225 - Hitchhiker's Guide to the Galaxy, The (2005) - 3.5
          247 - Star Wars: Episode IV - A New Hope (1977) - 5.0
```

```
In [157]: | # Аниме, которые оценивал наиболее схожий пользователь;
          recommended user item matrix = user item matrix.loc[[recommended user id+1]]
          for idx, item in enumerate(np. ndarray. flatten(np. array(recommended user item matrix))):
              if item > 0:
                  movie name = movie recommend(idx)
                  print('{} - {} - {}'.format(idx, movie name, item))
                  if i==20:
                      break
                  else:
                      i+=1
          1 - Jumanji (1995) - 3.5
          5 - Heat (1995) - 4.0
          17 - Four Rooms (1995) - 3.0
          18 - Ace Ventura: When Nature Calls (1995) - 3.5
          28 - City of Lost Children, The (Cité des enfants perdus, La) (1995) - 3.5
          31 - Twelve Monkeys (a. k. a. 12 Monkeys) (1995) - 4.5
          46 - Seven (a. k. a. Se7en) (1995) - 4.0
          47 - Pocahontas (1995) - 3.5
          71 - Kicking and Screaming (1995) - 4.5
          93 - Battle in Seattle (2007) - 4.0
          94 - Hate (Haine, La) (1995) - 4.5
          106 - Timecrimes (Cronocrímenes, Los) (2007) - 3.5
          119 - Chungking Express (Chung Hing sam lam) (1994) - 4.5
          125 - Trip to the Moon, A (Voyage dans la lune, Le) (1902) - 3.0
          129 - Ascent, The (Voskhozhdeniye) (1977) - 3.5
          134 - Bad Boys (1995) - 3.5
          142 - Batman Forever (1995) - 3.0
          143 - Beauty of the Day (Belle de jour) (1967) - 3.0
          148 - Clockers (1995) - 4.0
          151 - Crumb (1994) - 3.5
```