

Hashemite University Prince Al-Hussein bin Abdullah II Faculty for Information Technology Department of Computer Information Systems

For Instructor Use			
Course Name	Data Mining		
Course ID	151002351		
Academic Year	2022/2023		
Semester	2 nd Semester		
Assignment	1 and 2		
Due Date	May-2023		

For Student Use					
Student Name	Student Id	Section Id	Seat Number		
Rand Bassam Mohammad Wahdan	2034877	2	19		
Ahmad Rawhi Mohammad Al-Qranawy	2042497	1	59		

Instructor Name: Dr. Subhieh Elsalhi

Part 1

QA • A1-

Number	Attribute Name	Attribute Type
1	Age	Numeric (ratio)
2	Workclass	Nominal (symmetric)
3	Education	Nominal (ordinal)
4	Education-num	Numeric (ratio)
5	Marital_Status	Nominal
6	Occupation	Nominal (symmetric)
7	Relationship	Nominal (symmetric)
8	Race	Nominal (symmetric)
9	Gender	Nominal (symmetric)
10	Capital-gain	Numeric (ratio)
11	Capital-loss	Numeric (ratio)
12	Hours-per-week	Numeric (interval)
13	Native-country	Nominal
14	Fnlwgt	Nominal

A2-

Attribute Name	Location	Median	Mean	Variance	Mode
Age	First	37	38.58163	186.067	36
Workclass	Second	-	-	-	Private
Education	Third	-	-	-	HS-grade
Education-num	Fourth	10	10.08059	6.6188	36
Marital_Status	Fifth	-	-	-	Married-civ-
					spouse
Occupation	Sixth	-	-	-	Prof-specialty
Relationship	Seventh	-	-	-	Husband
Race	Eighth	-	-	-	White
Gender	Nineth	-	-	-	Male
Capital-gain	Tenth	0	1077.615	54544177.472	0
Capital-loss	Eleventh	0	87.30651	162381.6777	0
Hours-per-week	Twelfth	40	40.43747	152.4637	40
Native-country	Thirteenth	-	-	-	United-States
Fnlwgt	Fourteenth	-	-	-	<=50k

Attribute Name	Max	Min	Range
Age	90	17	90-17=73
Workclass	-	-	8
Education	-	-	16
Education-num	16	1	16-1=15
Marital_Status	-	-	7
Occupation	-	-	14
Relationship	-	-	6
Race	-	-	5
Gender	-	-	2
Capital-gain	99999	0	99999
Capital-loss	4356	0	4356
Hours-per-week	99	1	99-1=98
Native-country	-	-	41
Fnlwgt	-	-	2

frequency of values

(supervised→attribute→discretize)

Attribute Name	frequency of values		
Age	$-\infty$ -21.5:3130/21.5-23.5:1642/23.5-27.5:3259/27.5-29.5:1680/29.5-35.5:5214/35.5-43.5:6551/43.5-54.5:6577/54.5-61.5:2476/61.5- ∞ :2032		
Workclass	Self-emp-not-inc:2541/Private:22696/State-gov:1297/federal-gov:960/Local-gov:2093/Self-emp-not-inc:1116/Without-pay:14/Never-worked:7		
Education	Bachelors:5354/HS:grade:10501/11 th :1175/Masters:1723/9 th :514/Some-colleage:7291/Ass acdm:1067/Assoc-voc:1382/7 th -8 th :646/Doctorate:413/Prof-school:576/5 th -6 th :333/10 th :933 4 th :168/Preschool:51/12 th : 433		
Education- num	$-\infty$ -8.5:4253/8.5-9.5:10501/9.5-10.5:7291/10.5-12.5:2449/12.5-13.5:5355/13.5-14.5:1723/14.5- ∞ :989		
Marital_Status	Maried-civ-supouse:14976/Divorced:4443/Married-spouse-absent:418/Never- married:10682/Separated:1025/Married-AF-spouse:23/Widowed:993		
Occupation	Exec-managerial:4066/Handlers-cleaners:1370/Prof-specialty:4140/Other-service:3295/Adm-clerical:3769/Sales:3650/Craft-repair:4099/Transport-moving:1597/Farming-fishing:994/Machine-op-inspct:2002/Tech-support:928/Protective-serv:649/Armed-Forces:9/Priv-house-serv:149		
Relationship	Husband:13193/Not-in-family:8304/wife:1568/own-child:5068/Unmarried:3446/Other-relative:981		
Race	White:27815/Black:3124/Asian-pac-Islander:1039/Amer-Indian-Eskimo:311/Other:271		
Gender	Male:21789/Female:10771		
Capital-gain	$-\infty-57:29849/57-3048:472/3048-3120:97/3120-4243.5:309/4243.5-4401:70/4410-4668.5:65/4668.5-4826:26/48226-4973.5:18/4932.5-4973.5:7/4973.5-5119:70/5119-5316.5:97/5316.5-5505.5:11/5505.5-6618.5:37/6618.5-7073.5:34/7073.5-\infty:1399$		
Capital-loss	$-\infty -1551.5:31197/1551.5-15685:25/1568.5-1820.5:348/1820.5-1862:56/1862-1881.5:39/1881.5-1923:361/1923-1975.5:19/1975.5-1978.5:168/1978.5-2168.5:111/2168.5-2176.5:7/2176.5-2218.5:31/2218.5-2384.5:79/2384.5-2450.5:70/2450.5-3726.5:43/3726.5-\infty:7$		
Hours-per- week	$-\infty - 34.5:5583/34.5 - 39.5:2180/39.5 - 41.5:15253/41.5 - 49.5:3083/49.5 - 65.5:5640/65.5 - \infty:822$		
Native-country	United_States:29169/Cuba:95/Jamaica:81/India:100/Mexico:643/South:80/Puerto-Rico:114/Honduras:13/England:90/Canada:121/Germany:137/Iran:43/Philippiens:198/Italy:43/Poland:60/Calumbia:59/Thailand:18/Ecuador:28/Laos:18/Taiwan:51/Haiti:44/Portugal:37/Dominican-Republic:70/El-Salvador:106/France:29/Guatemala:64/China:75/Japan:62/Yugoslavia:16/Peru:31/Outlying-US(Guam-USVI-etc):14/Scotland:12/Trinadad&Tobago:19/Greece:29/Nicaragua:34/Vietnam:67/Hong:20/Ireland:24/Hungary:13/Holand-Netherlands:1		
Fnlwgt	<=50k:24719/>=50k:7841		

A3- Distributions of each Attributes:

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers .
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane.

By choose visualize

positively correlated.

uncorrelated.

Step 1:(filters→unsupervised→ordinal to numeric→apply)

Step2:(filters→unsupervised→intterquartilerang→apply)

Outlier

ExtremeValue

- Cluster(From "Weka"):We have get cluster from weka by:
- (a) From cluster tab.
- (b) Choose simple EM (Expectation Maximization) class.
- (c) Finally Hit "Apply".

QB - B1.

- Equi-width binning (3 bins).
 - (a) From "Pre-process" Tab.
 - (b) Click Filter->Unsupervised->Attribute->Discretize.
 - (c) Open Discretize editor.
 - (d) Change number of bins to (3).
 - (e) Change attribute indices to (3).
 - (f) Make sure that useEqualFrequency must be false.
 - (g) Hit Apply.

• Equi-depth binning (3 bins).

- (a) From "Pre-process" Tab.
- (b) Click Filter->Unsupervised->Attribute->Discretize.
- (c) Open Discretize editor.
- (d) Change number of bins to (3).
- (e) Change attribute indices to (3).
- (f) Make sure that useEqualFrequency must be true.
- (g) Hit Apply.

B2

- min-max normalization to transform the values onto the range [0.0,1.0].(Normalization)
- (a) From "Preprocess" Tab.
- (b) Click Filter->Unsupervised->Attribute->Normalize.
- (c) Open Normalize editor.
- (d) Make sure that translation = 0.0, which is the minimum value in the range.
- (e) Make sure that scale = 1.0, which is the maximum value in the range.
- (f) Hit Apply.

• z-score normalization to transform the values. (Standardize)

(unsupervised→attribute→Standardize)

B3- Discretize the Age attribute into the following categories:

• Teenager = $1-16 \square$ ifelse(A>=1, ifelse(A<=16,1,2),2)

After discretizing the values will be like this:

And it means there is no age between \rightarrow [1,16].

• Young = 17-35 \square ifelse(A>=17,ifelse(A<=35,1,2),2)

14925 of them is between [17,35]

• Mid_Age = 36-55 [] ifelse(A>=36, ifelse(A<=55,1,2),2)

elected at Name: a Missing: (age	Distinct: 2	Type: Nomina Unique: 0 (0%)	al
No.	Label		Count	Weight
1	'(-inf-1.5]'	13547	13547	
2	'(1.5-inf)'	19014	19014	

13546 of them is between [36,55]

• Mature = 56-70 \square ifelse(A>=56, ifelse(A<=70,1,2),2)

D	istinct: 2			
Label		Count		Weight
	3549		3549	
	29012		29012	
		3549	Distinct: 2 Unic	Label Count 3549 3549

3549 of them is between [56,70]

• Old = $71 + \square$ ifelse(A>=71,1,2)

Name: age Missing: 0 (0%)		Distinct: 2		Type: Nominal Unique: 0 (0%)	
No.	Label		Count	Weight	
1 '(-inf	-1.5]'	540		540	
2 '(1.5-	·inf)'	32021		32021	

540 of them is between $[71, \infty]$

B4 - **Convert the "Gender" variable into binary variables** with values ["0" or "1"]. (**NominaltoBinary**)

→RenameNominalvalue →selectedAttribute→9→replacments(Male:0,Female:1)

→unsupervised→attribute→NominalToBinary→AttributeIndices→10→Apply.

2 Part 2

1. Data Set Information: 10 Attributes as shown in (Figure 1)

In Pre-processing →

We convert numeric data to nominal by discretize attribute with 3-bins

After that we rename all nominal value by (unsupervised → attribute → RenameNominal Values).

Then, we replace missing value by(unsupervised→attribute→ReplaceMissingValues) and merge missing value with most frequent value

By these steps we cope-with missing value (No missing values in our set).

Then we sortLabels by(unsupervised→attribute→ sortLabels)

Nearest Neighbour Learning and Decision Trees KNN classification algorithm 'IBk'

- 1. KNN=1
- (a) From "classify" Tab.
- (b) loaded the dataset and ran the classifier with default options.
- (c) Click choose->lazy->IBK
- (d) keep all options at their default values.
- (e) run the classifier to obtain the initial results.

2. KNN=10

3. KNN=20

4.Our summery

K=	Time taken to build model	Accuracy	Error rate
1	0.01 seconds	82.3961%	17.6039%
10	0.04 seconds	83.3727%	16.6273%
20	0.02 seconds	83.3543%	16.6457%

Best K we will use is K=10 because the accuracy =83.3727%

- 4. J48
- (a) From "classify" Tab.
- (b) loaded the dataset and ran the classifier with default options.
- (c) Click choose->trees->J48
- (d) keep all options at their default values.
- (e) hit start

1. Identify the decision tree model that was obtained in terms of the number of nodes, branches, and levels in the tree:

Number of nodes	Number of branches	Number of levels
533	533-1=532	533-452=81

2. Visualize the decision tree.

3. Determine the accuracy of the model in terms of contingency matrix:

Correctly classified instances 27136

Total number of instances 32561

Accuracy=(classified instances/total instances)*100

Accuracy=(27136/32561)*100=83.3389

5. As shown in (figure 4) the confusion matrix for Decision tree is:

=== Confusion Matrix ===

a b <-- classified as

22970 1750 | a = <=50K

3675 4166 | b = >50K

For more explanation:

- 22970 instances correctly classified as <=50k
- 1750 instances incorrectly classified as >=50k
- 3675 instances incorrectly classified as <=50k
- 4166 instances correctly classified as >50k
 - →That's why Error rate =16.661%
 - →accuracy explained in previous question

Confusion Matrix:

A\P	C	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	Ρ'	N'	All

→ Final summery :

chosen technique	Accuracy	Error rate
Lazy classifier – IBK with k=1	82.3961%	17.6039%
Lazy classifier – IBK with k=10	83.3727%	16.6273%
Lazy classifier – IBK with k=20	83.3543%	16.6457%
Decision tree classifier	83.339%	16.661%

Best technique is Lazy classifier – IBK with k=10 because the accuracy =83.3727%