

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal- 500 043, Hyderabad, Telengana

ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

Course Title	COMPLEX ANALYSIS AND SPECIAL FUNCTIONS					
Course Code	AHSD12	AHSD12				
Program	B.Tech					
Semester	III	ECE				
Course Type	Foundation					
Regulation	IARE - BT 2	23				
		Theory		Prac	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator	Dr. A. Paran	dhama, Associ	ate Professor			

COURSE OBJECTIVES:

The students will try to learn:

I	The applications of complex variable in two dimensional complex potential theories.
II	The fundamental calculus theorems and criteria for the independent path on contour integral used in problems of engineering.
III	The concepts of special functions and its application for solving the partial differential equations in physics and engineering.
IV	The Mathematics of combinatorial enumeration by using generating functions and complex analysis for understanding the numerical growth rates.

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify the fundamental concepts of analyticity and differentiability for finding complex conjugates of complex transformations.	Understand
CO 2	Apply integral theorems of complex analysis and its consequences for the analytic function with derivatives of all orders in the simple connected region.	Apply

CO 3	Extend the Taylor and Laurent series for expressing the	Apply
	function in terms of complex power series.	
CO 4	Apply Residue theorem for computing definite integrals by using the singularities and poles of real and complex analytic functions over closed curves.	Apply
CO 5	Determine the characteristics of special functions for obtaining the proper and improper integrals for obtaining the proper and improper integrals.	Apply
CO 6	Apply the role of Bessel functions in the process of obtaining the series solutions for second order differential equation	Apply

QUESTION BANK:

Q.No	QUESTION	Taxonomy	How does this subsume the level	CO's
		MODULE	I	
	COMPLEX ANALY	SIS AND S	PECIAL FUNCTIONS	
PAI	RT A-PROBLEM SOLVING	G AND CRI	FICAL THINKING QUEST	ΓIONS
1	Construct the analytic function $f(z)$ in terms of z if $f(z)$ is an analytic function of z such $u + v = \frac{\sin 2x}{\cos h^2 v - \cos 2x}$	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions	CO1
2	$u + v = \frac{\sin 2x}{\cos h2y - \cos 2x}$ Show that if $u = x^2 - y^2$, $v = -\frac{y}{x^2 + y^2}$, both u and v satisfy Laplace's equation, but $u + iv$ is not a regular (analytic) function of z .	Understand	Learner to recall condition for function to be Laplace equations and understand the concept of regular functions.	CO1
3	Construct the analytic function $f(z)$ given $u - v = \frac{(\cos x + \sin x - e^{(-y)})}{2\cos x - e^y - e^{-y}}$ and $f(z)$ is subjected to the condition $f(\frac{\pi}{2}) = 0$	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions.	CO1
4	Construct the analytic function f (z) whose real part of it is $u = e^x[(x^2 - y^2)cosy - 2xysiny)].$	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions.	CO1
5	Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log f(z) = 0$ where $w = f(z)$ is an analytic function.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions.	CO1

6	Show that the function defined by $\begin{cases} \frac{xy^2(x+iy)}{x^2+y^4}, z \neq 0 \\ 0, z = 0 \end{cases}$ is not analytic even though Cauchy Riemann equations are satisfied at origin.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of regular functions through Cauchy-Riemann equations.	CO1
7	Show that the function defined by $\begin{cases} \frac{2xy(x+iy)}{x^2+y^2}, z \neq 0 \\ 0, z = 0 \end{cases}$ is $0, z = 0$ continuous at origin, CR equations also satisfied at origin, yet derivative does not exist at origin.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of regular functions through Cauchy-Riemann equations.	CO1
8	Show that the function $f(z) = \sqrt{ xy }$ is not analytic at the origin although Cauchy–Riemann equations are satisfied at the origin.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions.	CO1
9	Utilize the complex potential for an electric field $\omega = \phi + i\varphi$ where $\varphi = x^2 - y^2 + \frac{x}{x^2 + y^2}$ and determine the function \emptyset .	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions.	CO1
10	In a two-dimensional flow of a fluid, the velocity potential $\phi = x^2 - y^2$. Find the stream function ψ .	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions.	CO1
	PART-B LO	NG ANSWE	R QUESTIONS	
1	Find constants a , b such that the following function is analytic, Where $f(z) = 3x-y+5+i(ax+by-3)$	Understand	Learner to recall cartesian form of complex function and understand Cauchy's Riemann equations in Cartesian form and apply them to find Cauchy Riemann conditions	CO1
2	Show that the real part of an analytic function $f(z)$ where $u = log z ^2$ is a harmonic function. If so find the analytic function by Milne Thompson method.	Understand	Learners recall Cauchy-Riemann equations and understand Milne Thompson's method of finding analytic functions.	CO1

3	Use Milne Thompson's method to find the imaginary part of an analytic function $f(z)$ whose real part of an analytic function is $e^{2x}(x\cos 2y - y\sin 2y)$	Understand	Learners recall the Cauchy-Riemann equations and understanding the method to find imaginary part.	CO 1
4	Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) Realf(z) ^2 = 2 f'(z) ^2$ where $w = f(z)$ is an analytic function.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions	CO 1
5	Find an analytic function $f(z)$ whose real part of an analytic function is $u = \frac{\sin 2x}{\cos h2y - \cos 2x}$ by Milne-Thompson method.	Remember	-	CO1
6	Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$ If $f(z)$ is a regular function of z	Understand $ z ^2$	Learner to recall Cauchy-Riemann equations and understand Milne Thompson's method.	CO1
7	Show that the function defined by $\begin{cases} \frac{x^2y}{x^4+y^2}, z \neq 0 \\ 0, z = 0 \end{cases}$ is not conrinuous at origin.	Understand	Learner to recall limits and continuous concept of regular functions through at origin.	CO1
8	Show that real part $u = x^3 - 3xy^2$ of an analytic function $f(z)$ is harmonic. Hence find the conjugate harmonic function and the analytic function.	Understand	Learner to recall the concept of a harmonic function and understand the concept of finding harmonic conjugate.	CO1
9	Find whether the following function is analytic or not, Where $f(z) = Sinx Coshy + i Cosx Sinhy$.	Understand	Learner to recall cartesian form of complex function and understand Cauchy's Riemann equations in Cartesian form and apply them to find Cauchy Riemann conditions	CO1
10	Show that an analytic function $f(z)$ with constant imaginary part is always constant.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions.	CO1

11	Find the analytic function $f(z)$ whose imaginary part of the analytic function is $v = e^x(xsiny + ycosy)$.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of regular functions through Cauchy-Riemann equations.	CO1
12	Show that the real part of an analytic function $f(z)$ where $u = 2log(x^2 + y^2)$ is harmonic.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of regular functions through Cauchy-Riemann equations.	CO1
13	Show that the function $f(z) = exp(z)$ is continuous at all points of z. Find $f'(z)$.	Understand	Learner to recall the concept of continuous function and understand the prove for differentiability	CO 1
14	List all the values of k such that $f(z) = e^x(\cos ky + i\sin ky)$ is an analytic function	Remember	Learner to recall Cauchy-Riemann equations and understand the concept of regular functions through Cauchy-Riemann equations.	CO1
15	Show that an analytic function $f(z)$ with constant real part is always constant.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions.	CO1
16	Show that an analytic function $f(z)$ with constant modulus is always constant.	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of regular functions through Cauchy-Riemann equations.	CO1
17	Show that u and v are harmonic functions if u and v is conjugate harmonic functions.	Understand	Learner to recall the concept of a harmonic function and understand the concept of finding harmonic conjugate.	CO 1
18	If $w = \phi + i \psi$ represents the complex potential for an electric field and $\psi = 3x^2y - y^3$. Find ϕ	Understand	Learner to recall Cauchy-Riemann equations and understand the concept of analytic functions.	CO 1
19	Find the analytic function $f(z)$ whose imaginary part of the analytic function is $v = e^x(xcosy - ysiny)$ by Milne - Thomson method	Understand	Learner to recall Cauchy-Riemann equations and understanding Milne Thompson's method.	CO 1

20	If $u - v =$ $(x - y) (x^2 + 4xy + y^2) \text{ and }$ $f(z) = u + iv \text{ is an analytic}$ function of $z = x + iy$, find $f(z) \text{ in terms of } z \text{ by Milne}$ - Thomson method	Understand	Learner to recall Cauchy-Riemann equations and understanding Milne Thompson's method.	CO 1
	PART-C SHO	ORT ANSWI	ER QUESTIONS	
1	Define the term Analyticity of a complex variable function $f(z)$.	Remember	-	CO1
2	Define the term Continuity of a complex variable function $f(z)$.	Remember	-	CO1
3	Define the term Differentiability of a complex variable function $f(z)$.	Remember	-	CO1
4	Show that complex variable function $f(z) = z^3$ to analyticity for all values of z in Cartesian form.	Understand	Learner to recall the concept of a harmonic function and Understand how to prove that it is part of analytic function	CO1
5	Show that the function $v = x^3y - xy^3 + xy + x + y$ can be imaginary part of an analytic function $f(z)$ where $z = x + iy$.	Understand	Learner to recall the concept of a harmonic function and Understand how to prove that it is part of analytic function	CO1
6	Show that the function $f(z) = z ^2$ does not satisfy Cauchy-Riemann equations in Cartesian form.	Understand	Learner to recall the Cauchy-Riemann equations and understand how to prove the analytic nature	CO1
7	Show that the complex variable function $f(z) = \frac{x-iy}{x^2+y^2}$ for analyticity in Cartesian form.	Understand	Learner to recall the Cauchy-Riemann equations and understand how to prove the analytic nature	CO1
8	Show that the function $f(z) = sinxsiny-icosxcosy$ is not analytic function.	Understand	Learner to recall the Cauchy-Riemann equations and understand how to prove the analytic nature	CO1
9	Find the value of k such that $f(x,y) = x^3 + 3kxy^2$ may be harmonic function.	Remember	-	CO1

10	Find the analytic function $f(z)$ whose real part of the analytic function is $u = x^2 - y^2 - x$	Remember	-	CO1
11	Find the analytic function $f(z)$ whose imaginary part of the analytic function is $v = e^x(xsiny + ycosy)$.	Remember	-	CO1
12	Show that the real part of an analytic function $f(z)$ where $u = 2log(x^2 + y^2)$ is harmonic.	Remember	-	CO1
13	Show that the function $f(z) = z ^2$ is continuous at all points of z but not differentiable at any .	Understand	Learner to recall the concept of continuous function and understand the prove for differentiability	CO 1
14	Show that the real part of an anlaytic function $f(z)$ where $f(z) = e^x(cosy - isiny)$ is harmonic function.	Remember	-	CO1
15	Find the values of a, b, c such that f(z) = x + ay - i(ax + by) is differentiable function at every point.	Apply	Learner to recall the concept of continuous function and understand the prove for differentiability	CO 1
16	Show that every differentiable function is continuous or not. Give a valid example.	Understand	Learner to recall the concept of continuous function and understand the concept of differentiability with illustration.	CO1
17	State whether $sin(x - iy)$ is analytic or not?.	Remember	-	CO 1
18	Show that $w = f(z) = \log z$ is analytic everywhere in the complex plane except at the origin and that its derivative is $1/z$	Remember	Learner to recall the concept of differentiability and continuous function and understand the prove for differentiability	CO 1
19	Show that the function $u = \frac{1}{2} \log (x^2 + y^2)$ is harmonic and determine its conjugate.	Apply	Learner to recall the concept of continuous function and understand the prove for differentiability	CO 1

20	Find the analytic function whose real part is $\frac{x}{x^2+y^2}$	Understand	Learner to recall the C-R equations and solve the problem for differentiability.	CO 1
		MODULE	II	
	COMP	LEX INTEG	GRATION	
PAI	RT A-PROBLEM SOLVING	G AND CRI	FICAL THINKING QUES	TIONS
1	Solve the value of line integral to $\int_{c} \frac{z}{(z-1)(z-2)^2} dz$ where C is the circle $ z-2 =1/2$ using Cauchy's integral formula.	Apply	Learner to recall the method of finding line integral in real analysis understand the variable value along the line and apply integral concepts.	CO 2
2	Solve the value of line integral to $\int_{c}^{c} \frac{z^4}{(z+1)(z-i)^2} dz$ where C is the ellipse $9x^2 + 4y^2 = 36$ using Cauchy's integral formula.	Apply	Learner to recall the method of finding line integral in real analysis understand the variable value along the line and apply integral concepts.	CO 2
3	Compare Cauchy's integral formula with line integral to $\int_{c} \frac{z^4 - 3z^2 + 6}{(z+i)^3} dz$ where C is the circle $ z = 2$ and find the integral.	Apply	Learner to recall Cauchy general integral formula and understand how to find solutions by comparison.	CO 2
4	Compare Cauchy's integral formula with line integral to $\int_{c} \frac{z^2 - 2z - 2}{(z^2 + 1)^2} dz$ where C is the circle $ z - i = 1/2$ and find integral.	Apply	Learner to recall Cauchy general integral formula and understand how to find solutions by comparison.	CO 2
5	Solve the value of line integral to $\int_c \frac{e^z}{(z^2+\pi^2)^2} dz$ where C is $ z =4$ using Cauchy's integral formula.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 2
6	Solve the value of line integral to $\int_{c} \frac{\cos \pi z}{(z-1)(z-2)^3} dz$ where C is the circle $ z =3$ using Cauchy's integral formula.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 2

7	Solve the value of line integral to $1+i$ $\int_0^{1+i} (x-y+ix^2)dz$ i) Along the straight line from $z=0$ to $z=1+i$. ii) Along the real axis from $z=0$ to $z=1$ and then along a line parallel to imaginary axis from $z=1$ to $z=1+i$ iii) Along the imaginary axis from $z=0$ to $z=i$ and then along a line parallel to real axis $z=i$ to $z=1+i$	Apply	Learner to recall the method of finding line integral in real analysis understand the variable value along the line and apply integral concepts.	CO2
8	Make use of the vertices $-1+i, -1-i, 1+i, 1-i$ and verify Cauchy's theorem for the integral of $3z^2+iz-4$ taken over the boundary of the square.	Apply	Learner to recall the method of finding line integral in real analysis understand the variable value along the line and apply integral concepts.	CO2
9	Solve the value of line integral to $\int_{0}^{1+i} (y-x+i3x^2)dz \text{ along}$ the imaginary axis from $z=0$ to $z=i$ and then along a line parallel to real axis $z=i$ to $z=1+i$	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts	CO 2
10	Solve the value of line integral to $\int_C (y^2 + 2xy) dx + (y^2 - 2xy) dx$ where C is the boundary of the region $y = x^2 and x = y^2$.		Learner to recall Cauchy's general integral formula and understand how to find solutions by comparison.	CO 2
	PART-B LOI	NG ANSWE	R QUESTIONS	
1	Utilize Cauchy's integral formula and find the value of $\int_{c} \frac{z^3 - \sin 3z}{(z - \pi/2)^3} dz$ where c is the circle $ z = 2$.	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2

2	Make use of vertices $-1, 1, 1+i, -1+i$ and verify Cauchy's theorem for the integral of z^3 taken over the boundary of the rectangle formed.	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2
3	Solve the value of line integral to $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz$ where c is the circle $ z =3$ using Cauchy's integral formula.	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2
4	Compare Cauchy's integral formula with line integral to $\int_{c} \frac{z^{3}e^{-z}}{(z-1)^{3}} dz \text{ where c is}$ $ z-1 = \frac{1}{2} \text{ and find the}$ value of integral.	Understand	Learner to recall the Cauchy integral formula and understand how to find solutions by comparison.	CO 2
5	Solve the value of line integral to $\int\limits_{c} \frac{5z^2-3z+2}{\left(z-1\right)^3}dz$ where c is any simple closed curve enclosing $ z =1$ using Cauchy's integral formula.	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2
6	Solve the value of line integral to $ \sum_{z=1+i}^{z=1+i} [x^2+2xy+i\left(y^2-x\right)]dz $ along the curve $y=x^2$.	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2
7	Solve the integral $\int_{c} (3z^2 + 2z - 4)dz$ around the square with vertices at $(0,0), (1,0), (1,1)$ and $(0,1)$.	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2

8	Utilize the function $f(z) = 5 \sin 2z$ and verify Cauchy's theorem for c is the square with vertices at $1+i, 1-i$ and $-1+i, -1-i$.	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2
9	Compare Cauchy's integral formula with line integral to $\int_C \frac{(sin^2z)}{\left(z-\frac{\pi}{6}\right)^3} dz$ around the unit circle and find the integral.	Apply	Learner to recall Cauchy's integral formula and understand how to find a solution by comparison.	CO 2
10	Solve the value of to $\int_{c}^{c} \frac{e^{2z}}{(z+1)^4} dz$ where c is $ z-1 = 3$ using Cauchy's general integral formulae.	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2
11	Make use of Cauchy's integral formula and evaluate $\int_{c} \frac{z+1}{z^2+2z+4} dz$ Where $c: z+1+i =2$.	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2
12	Solve the value of line integral to $\int_C (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz$ from $(0,0,0)$ to $(1,1,1)$ where C is the curve $x = t, y = t^2, z = t^3$ in the	Apply	Learner to recall Cauchy integral formula and understand how to find solutions by comparison by applying integral concepts.	CO 2
13	parametric form. Compare Cauchy general integral formula with $\int \frac{e^z}{z^2(z+1)^3} dz \text{ and estimate}$ the value of integral with $C: z = 2$.	Understand	Learner to recall the Cauchy integral formula and understand how to find solutions by comparison.	CO 2
14	Find the value of the line integral to $\int_{0}^{3+i} z^2 dz$ along the straight line $y = x/3$	Understand	Learner to recall the Cauchy integral formula and understand how to find solutions by comparison.	CO 2

15	Solve the value of line integral to $\int_{0}^{3+i} z^{2}dz$ along the	Apply	Learner to recall Cauchy integral formula and	CO 2
	integral to $\int_0^{\infty} z dz$ along the		understand how to find	
	parabola $x = 3y^2$.		solution by comparison by	
			applying integral concepts.	
16	Compare Cauchy general	Apply	learner to recall Cauchy	CO 2
	integral formula with		general integral formula and	
	$\int_{C} \frac{1}{e^{z}(z-1)^{3}} dz$ and estimate		understand how to find a solution by comparison.	
	the value of integral with C:		solution by companion.	
	z =2.			
17	Compare Cauchy general	Apply	Learner to recall Cauchy	CO 2
	integral formula with		integral formula and	
	$\int_C \frac{e^z \sin 2z - 1}{z^2(z+2)^2} dz$ and estimate		understand how to find	
	the value of integral with		solutions by comparison by applying integral concepts.	
	$C: z = \frac{1}{2}$. Solve the value		applying integral concepts.	
	of where $C: z = 1/2$ using			
	Cauchy integral formulae.			
18	Compare Cauchy's integral	Apply	learner to recall Cauchy	CO 2
	formula with line integral to		general integral formula and	
	$\int_{0}^{\infty} \left[\frac{e^{z}}{z^{3}} + \frac{z^{4}}{(z-i)^{2}} \right] dz ,$		understand how to find a	
	C: z = 2 and find the		solution by comparison.	
	integral.			
19	Find the value of the line	Remember	-	CO 2
	integral to $\int_C (z^2 + 3z)dz$			
	along the straight line from			
	(2,0)to(2,2) and then from			
20	(2,2)to(0,2).			GO 0
20	Solve the value of line	Apply	Learner to recall Cauchy	CO 2
	integral to $\int_{C} \frac{\cos hz}{z^4} dz$ if C		integral formula and understand how to find	
	denote the boundary of a		solutions by comparison by	
	square whose sides lie along		applying integral concepts.	
	the lines $x = \pm 2$ and $y = \pm$		applying investor concepts.	
	2 where C is described in			
	positive sense.	 		
		I	ER QUESTIONS	CO
1	Define the Cauchy's integral	Remember	-	CO 2
	formula.	D 1		00.0
2	Define the Cauchy's General	Remember		CO 2
	integral formula.			

3	Define the term Radius of convergence.	Remember	-	CO 5
4	Define the term Power series expansions of complex functions.	Remember	-	CO 2
5	Define the term Line Integral of complex variable function $w = f(z)$.	Remember	-	CO 2
6	Define the term Contour Integration of a given curve in complex function.	Remember	-	CO 2
7	Define Cauchy's integral theorem for multiple connected regions.	Remember		CO 2
8	Find the value of $\int_{0}^{1+i} z^2 dz$.	Remember	-	CO 2
9	Find the value of $\int_{C} \frac{3z^2+7z+1}{(z+1)} dz$ with $C : z+i = 1$ by Cauchy integral formulae.	Remember	-	CO 2
10	Find the value of the line integral to $\int_{0}^{2+i} z^2 dz$ along the real axis to 2 and then vertically to $(2+i)$.	Remember	-	CO 2
11	Find the value of the line integral to $\int_0^{3+i} z^2 dz$ along the straight line $y = x/3$	Remember	-	CO 2
12	Compare Cauchy's integral formula with $\int_C e^{-z} dz$ and find the integral $C: z-1 = 1$	Understand	Learner to recall Cauchy's integral formula and understand how to find a solution by comparison.	CO 2
13	Solve line integral to $\int_{0}^{2+i} (x-y^2+ix^3)dz \text{ along}$ the real axis from $z=0$ to $z=1$.	Remember	Learner to recall the method of finding line integral in real analysis, understand the variable value along the line, and apply integral concepts.	CO 2

14	Solve the line integral $\int_C \overline{z} dz$ from $z = 0$ to $2i$ and then from $2i$ to $z = 4 + 2i$.	Remember	Learner to recall the method of finding line integral in real analysis understand the variable value along the line and apply integral concepts.	CO 2
15	Find the radius of convergence of an infinite series $f(z) = sinz$.	Remember	-	CO 2
16	Find the radius of convergence of an infinite series $f(z) = \frac{1}{1-z}$	Remember	-	CO 2
17	Find the radius of convergence of an infinite series $1 + 2^2z + 3^2z^2 + 4^2z^3 + \dots$	Remember	-	CO 2
18	Solve the value of line integral $\int_{0}^{1+i} (x^2 - iy)dz$ along the path $y = x$.	Remember	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 2
19	Solve the value of $\int_C \frac{1}{z-2} dz$ around the circle $ z-1 =5$ by Cauchy's integral formulae.	Remember	Learner to recall the method of finding line integral in real analysis, understand the variable value along the line, and apply integral concepts.	CO 2
20	Solve the value of $\int_C \frac{1}{(z-a)} dz = 2\pi i \text{ around the } $ circle $ z-a =r$ by Cauchy's integral formulae. Show that by using line integral, where c is the curve.	Understand	Learner to recall the method of finding line integral in real analysis understand the variable value along the line and apply integral concepts.	C O 2
		MODULE 1	Ш	
	POWER SERIES EXP	ANSION OF	COMPLEX FUNCTION	
PAI		I	TICAL THINKING QUES	
1	Extend the Laurent expansion of $f(z) = \frac{1}{z^2 - 4z + 3}$ for $1 < z < 3$ (ii) $ z < 1$ (iii) $ z > 3$.	Apply	Learner to recall Laurent's expansion formula and understand how to residues of given analytic function.	CO3

2	Extend the Laurent expansion $f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region where (i) $ z < 1$ (ii) $1 < z < 4$.	Apply	Learner to recall Laurent's expansion formula and understand how to residues of given analytic function.	CO3
3	$\begin{array}{ c c c }\hline (i) z <1 \ (ii)1< z <4.\\ \hline \text{Extend } \frac{1}{z^2(z-3)^2} \text{ as Laurent's}\\ \text{series in the region } (i) z <1\\ (ii) z >3.\\ \hline \end{array}$	Apply	Learner to recall Laurent's expansion formula and understand how to residues of given analytic function.	CO3
4	Extend $f(z) = \frac{2}{(2z+1)^3}$ in Taylor's series about z=0 and z=2.	Apply	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 3
5	Extend $f(z) = \frac{e^z}{z(z+1)}$ in Taylor's series about z=0 and z=2.	Apply	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 3
6	Solve the integral	CIE-II	Learner to recall Cauchy's	CO 4
	$\oint_{c} \frac{z-3}{(z^{2}+2z+5)} dz$ where c is circle $ z = 1$.	Apply	Residue theorem and understand where the integrand is valid over the given region and apply the formula to find integral.	004
7	Solve the integral $\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta}$ using Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO 4
8	Solve the integral $\int_{0}^{2\pi} \frac{1}{\frac{5}{4} + \sin \theta} d\theta = \frac{8\pi}{3} \text{ using}$ Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO 4
9	Solve the integral $\int_{0}^{2\pi} \frac{1}{(5-3\sin\theta)^2} d\theta = \frac{5\pi}{32} \text{ using}$ Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO 4

10	Solve the integral $\int_{0}^{2\pi} \frac{\cos 2\theta d\theta}{5+4\cos \theta}$ using Residue theorem	Apply ANSWE	Learner to recall Cauchy's Residue theorem and understand where the integrand is valid over the given region and apply the formula to find integral. R QUESTIONS	CO 4
1	Extend $f(z) = \frac{z-1}{z+1}$ in	Apply	Learner to recall the Taylor	CO 3
	Taylor's series about the point $z = 1$.	Арріу	series expansion formula and understand how to expand the given function about the given point.	003
2	Extend $f(z) = \frac{z-1}{z^2}$ in Taylor's series in powers of $z-1$. Also, determine the region of convergence about the point $z=1$.	Apply	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 3
3	Extend Laurent's series expansion to the function $f(z) = \frac{z^2 - 4}{z^2 + 5z + 4}$ about $1 < z < 4$	Apply	Learner to recall the Laurent's expansion formula and understanding how to residues of given analytic function	CO 3
4	Extend $f(z) = \frac{e^{2z}}{(z-1)^3}$ about $z = 1$ as Laurent's series. Also, find the region of convergence about $z = 1$.	Apply	Learner to recall Laurent's expansion formula and understand how to residues of given analytic function	CO 3
5	Extend $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ about $z = -1$ in the region $1 < z+1 < 3$ as Laurent's series.	Apply	Learner to recall Laurent's expansion formula and understand how to residues of given analytic function	CO 3
6	Extend $f(z) = \frac{2z^3+1}{z(z+1)}$ in Taylor's series about the point $z=1$	Apply	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 4
7	Find Taylor's expansion of $f(z) = \frac{z+1}{(z-3)(z-4)}$ about the point $z=2$.Determine the region of convergence.	Apply	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 4

9	Extend $f(z) = \cos z$ in Taylor's series about $z = \pi i$. Extend the Laurent's series expansion of $(z) = \frac{e^z}{z(1-z)}$	Apply	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point. Learner to recall Laurent's expansion formula and understand how to residue.	CO 4
10	about $z = 1$. Develop $f(z) = \frac{1+2z}{z^2+z^3}$ in a series of positive and negative powers of z .	Apply	understand how to residues of given analytic function Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 4
		CIE-II		
11	Solve the value of $\int_{C} \frac{2z-1}{z(2z+1)(z+2)} dz$ where C is the circle $ z =1$.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO 4
12	Solve the integral $\oint_C \tan z dz$ where C is circle $ z = 2$.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO 4
13	Solve the integral $\oint_C \frac{dz}{(z^2+4)^2}$ where C is $ z-i =2$.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO 4
14	Solve the integral $\oint_C \frac{\coth z}{z-i} dz$ where C is $ z = 2$.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO4

15	Solve the integral $\int_C \frac{z^2 dz}{(z^2+1)(z^2+4)}$ where C is circle $ z =4$ using Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the	CO 4
			given region and apply the formula to find the integral.	
16	Solve the integral $\int_{0}^{\pi} \frac{d\theta}{(a+b\cos\theta)}$ using Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO 4
17	Solve the integral of $\oint \frac{\sin z}{z \cos z} dz \text{ where } C \text{ is circle } C$ $ z = \pi .$	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO 4
18	Find the value of $\oint_C \frac{1}{\sinh z} dz$ where C is circle $ z = 4$ using Residue theorem.	Apply	-	CO 4
19	Find the value of $\oint_C \frac{2e^z}{z(z-3)} dz$ where C is circle $ z = 2$ using Residue theorem.	Apply	-	CO 4
20	Solve the integral $\int_{0}^{\pi} \frac{dz}{z^2 + a^2}$ using Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem understand where the integrand is valid over the given region and apply the formula to find the integral.	CO 4
	PART-C SHO	ORT ANSWI	ER QUESTIONS	
1	What is Taylor's theorem of complex power series?	Remember	_	CO 3
2	What is Laurent's theorem of complex power series?	Remember	_	CO 3
3	Define the term pole of order m of an analytic function $f(z)$.	Remember	_	CO 3
4	Define the terms Essential and Removable singularity of an analytic function $f(z)$.	Remember		CO 3

5	Extend $f(z) = \frac{1}{z^2}$ in powers of $z + 1$ as a Taylor's series.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 3
6	Extend $f(z) = e^z$ as Taylor's series about $z = 1$.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 3
7	Find the Poles of $\frac{1}{z^2-1}$	Remember	_	CO 3
8	Extend the Taylor series expansion of $f(z) = e^z$ about $z = 1$.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 3
9	Find the Poles of the function $f(z) = \frac{ze^z}{(z+2)^4(z-1)}$.	Remember	_	CO 3
10	Define the Isolated singularity of an analytic function $f(z)$.	Remember	_	CO 3
11	Define Cauchy's Residue theorem of an analytic function $f(z)$ within and on the closed curve.	Remember	-	CO 3
12	Find the Residue by Laurent's expansion to $f(z) = \frac{e^z}{(z-1)^2}$ about $z = 1$.	Remember	-	CO 3
13	Compare Laurent's expansion and find the Residues of the function $f(z) = \frac{1}{(z-\sin z)}$ about $z = 0$.	Understand	Learner to recall Laurent's expansion formula and understand how to residues of given analytic function.	CO 3
14	Find the Residues of the function $f(z) = \frac{z}{(z+1)(z+2)}$ as a Laurent's series about $z = -2$.	Remember	-	CO 3
15	Solve the value of $\oint_C \frac{1-2z}{z(z-1)(z-2)} dz \text{ where } C \text{ is } $ circle $ z = \frac{1}{2}$ by Cauchy's Residue theorem.	Understand	Learner to recall Cauchy's Residue theorem and apply those formulas to find integral.	CO 4

16	State Residue formulae for simple pole	Remember	-	CO 4
17	Explain the types of evaluation of integrals by Cauchy's Residue theorem.	Remember	Learner to recall Cauchy's Residue theorem and classify the types to find integral.	CO 4
18	Find the Residues of the function $f(z) = \frac{z}{(z-1)(z-2)}$ as a Laurent's series about $z = -1$.	Remember		CO 4
19	Define the radius and region of convergence of a power series.	Remember	_	CO 4
20	Define the residue of a function by Laurent series expansion	Remember	_	CO 3
		MODULE 1		
		CIAL FUNC		
	RT A-PROBLEM SOLVING	1		
1	Show that $\beta(m,n) = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$	Understand	Leaner to recall the beta-gamma relation and understand the concept to find different relation between them	CO 5
2	Find the value of $\int_{0}^{1} \frac{dx}{\sqrt{1-x^n}}$ in terms of gamma function	Apply	-	CO 5
3	Find the value of i) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^n}}$ ii) $\int_{a}^{b} (a-x)^m (x-b)^n dx, b > a$ using Beta-Gamma functions	Apply	-	CO 5
4	Find the value of $\int_{0}^{\infty} \frac{dx}{1+x^4}$ using Beta-Gamma functions.	Apply	Leaner to recall the beta-gamma relation and understand the concept to find different relation between them	CO 5
5	Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ where $m > 0, n > 0$	Apply	Leaner to recall the beta-gamma relation and understand the concept to find different relation between them.	CO 5

6	Prove that	Understand	Leaner to recall the	CO 5
	$4 \int_0^\infty \frac{x^2}{\sqrt{1+x^4}} dx = \sqrt{2\pi} \text{ using}$		beta-gamma relation and	
	Beta function		understand the concept to find different relation	
			between them	
7	Prove that $\Gamma(n)\Gamma(1-n)$	Apply	Leaner to recall the	CO 5
	$=\frac{\pi}{\sin n\pi}$	FF-J	beta-gamma relation and	
	Seleten		understand the concept to	
			find different relation	
0	Cl. 41	TT 1 / 1	between them	00.5
8	Show that $\beta (m + 1, m + 1) =$	Understand	Leaner to recall the beta-gamma relation and	CO 5
	$\beta\left(m + \frac{1}{2}, m + \frac{1}{2}\right) = \frac{\pi}{m \cdot 2^{4m-1}} \cdot \frac{1}{\beta(m,m)}$		understand the concept to	
	$m.2^{4m-1}$ $\beta(m,m)$		find different relation	
			between them.	
9	Show that	Understand	Leaner to recall the	CO 5
	$\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{m} n!}{(m+1)^{n+1}}$		beta-gamma relation and	
	where n is a positive integer		understand the concept to find different relation	
			between them	
10	Show that	Understand	Leaner to recall the	CO 5
	$\int_{0}^{1} y^{q-1} \left(\log \frac{1}{y}\right)^{p-1} dx = \frac{\gamma(p)}{(q)^p}$		beta-gamma relation and	
	where p,q are positive $(q)^{r}$		understand the concept to	
	integers		find different relation between them	
	_	NG ANSWE	R QUESTIONS	
1	Show that $\frac{\beta(m+1,n)}{m} =$	Apply	This would require the	CO 5
1	$\frac{\beta(m.n+1)}{n} = \frac{\beta(m,n)}{m+n}$	прріу	leaner to recall the beta	000
	n $ m+n$		function and understand the	
			different standard form of	
			beta function.	
2	Show that $\beta(m,n) = \beta(m+1,n) + \beta$	Understand	This would require the	CO 5
	$\beta (m+1.n) + \beta (m, n+1)$		leaner to recall the beta function and understand the	
			different standard form of	
			beta function	
3	Prove that $_{\pi}$	Apply	This would require the	CO 5
	$\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin\theta}} d\theta \int_{0}^{\frac{\pi}{2}} \sqrt{\sin\theta} \ d\theta = \pi$		leaner to recall the	
	$0 \sqrt{\sin\theta} 0$		beta-gamma relation and understand how to find	
			improper integrals by	
			applying beta-gamma	
			relation	

4	Solve the integral $\int\limits_0^a x^4 \sqrt{a^2-x^2} dx \text{ using}$ Beta-Gamma functions	Apply	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
5	Solve the integral $\int_{0}^{1} (x \log x)^{4} dx$ using Gamma function	Apply	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
6	Solve the integral $\int_{0}^{\infty} x^{-3/2} (1 - e^{-x}) dx$	Apply	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation	CO 5
7	Solve the integral $\int_{0}^{\infty} \sqrt{x} e^{-x/3} dx \text{ using}$ Gamma function	Apply	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
8	Show that $\Gamma(n) = \int_{0}^{1} (\log \frac{1}{x})^{n-1} dx$	Understand	This would require the leaner to recall the beta-gamma relation and apply them for solving improper integrals	CO5
9	Show that $\beta(n,n) = \frac{\sqrt{\pi}\gamma(n)}{2^{2n-1}\gamma(n+\frac{1}{2})}$	Understand	This would require the leaner to recall the beta-gamma relation and apply them for solving improper integrals	CO 5
10	Solve the integral $\int_{0}^{1} \frac{x^{8}(1-x^{6})}{(1+x)^{24}} dx \text{ using Beta -}$ Gamma functions	Apply	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5

11	Show that $\int_{0}^{\infty} x^{m} e^{-ax^{n}} dx = \frac{1}{na^{\frac{m+1}{n}}} \Gamma\left(\frac{1+m}{n}\right)$ where m and n are positive constants	Understand	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
12	Prove that $\Gamma\left(\frac{1}{n}\right).\Gamma\left(\frac{2}{n}\right)\Gamma\left(\frac{3}{n}\right)\Gamma\left(\frac{n-1}{n}\right)$ $\frac{(2\pi)^{\frac{n-1}{2}}}{n^{\frac{1}{2}}} \text{ where n are positive constant}$	Understand) =	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
13	Solve the integral $\int\limits_{0}^{\frac{\pi}{2}} (\sqrt{Tan\theta} + \sqrt{Sec\theta}) d\theta \text{ using }$ Beta-Gamma functions	Apply	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
14	Solve the integral $\int_{0}^{\infty} 3^{-4x^2} dx$	Apply	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
15	Solve the integral $\int_{0}^{1} \frac{1}{\sqrt{(-logx)}} dx \text{ using Gamma}$ function	Understand	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
16	Show that $\int_{0}^{\infty} e^{-y^{1/m}} dy = m\gamma(m)$	Understand	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5

17	Solve the integral $\int_{0}^{2} (8-x^{3})^{1/3} dx$ using Beta-Gamma functions	Understand	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
18	Solve the integral $\int_{0}^{1} (1-x^{3})^{1/3} dx$ using Beta-Gamma functions	Apply	This would require the leaner to recall the beta-gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 5
19	State and prove the symmetry property of Beta function	Apply	-	CO 5
20	State and prove any two other forms of Beta function	Apply	-	CO 5
	PART-C SHO	ORT ANSWI	ER QUESTIONS	
1	Show that the value of $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	Understand	This would require the leaner to recall the gamma function and understand the concept of solving improper integrals.	CO 5
2	State the value of $\Gamma\left(\frac{-7}{2}\right)$, $\Gamma\left(\frac{11}{2}\right)$	Understand	This would require the leaner to recall the gamma function and understand the concept of solving improper integrals.	CO 5
3	Find the value of Γ $\binom{11}{2}$	Remember	_	CO 5
4	Define Gamma function	Remember		CO 5
5	Define Beta function.	Remember	_	CO 5
6	State relation between Beta and Gamma function	Remember	_	CO 5
7	Find the value of $\int_0^\infty e^{x^2} dx$ using gamma function	Remember	_	CO 5
8	Find the value of $\int_{0}^{\infty} x^{6}e^{-2x}dx$ using Gamma function	Remember	_	CO 5

9	Find the value of	Remember	_	CO 5
	$\int_{0}^{\pi} \sqrt{x}e^{-x^2}dx$ using Gamma			
	function			
10	Solve the integral $= x^2 + x^2 + \cdots = x^2$	Remember	This would require the	CO 5
	$\int_0^\infty x^2 e^{-x^2} dx \text{ using Gamma}$ function		leaner to recall the gamma function and understand the	
	runction		concept of solving improper	
			integrals to apply for given	
			integral.	
11	What kind of Eulerian integral is Gamma function?	Remember	_	CO 5
12	What kind of Eulerian	Remember	_	CO 5
	integral of Beta function?			
13	What are the convergent values of Gamma function?	Remember	_	CO 5
14	Find the value of integral	Remember	_	CO 5
	$\int_0^\infty \frac{x^2}{\sqrt{1-x^5}} dx \text{ in terms of}$ Beta function			
15	Find the value of integral	Remember	_	CO 5
	$\int_0^\infty x^4 e^{-x^2} dx \text{ in terms of}$ Beta function			
16	Find the value of integral	Remember		CO 5
	$\int_0^\infty x^4 \left(\log \frac{1}{x}\right)^3 dx \text{ in terms of}$	remember		
	Beta function			
17	Find the value of integral π	Remember	_	CO 5
	$\int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} d\theta \text{ in terms of}$ Beta function			
18	Find the value of integral	Remember		CO 5
	$\int_0^{\frac{\pi}{2}} \sqrt{\sec \theta} d\theta \text{ in terms of}$	remember		
	Beta function			
19	State any three properties	Remember	_	CO 5
	of Beta function			
20	Show that $(2, 1)$	Remember		CO 5
	$\int_0^1 \frac{x}{\sqrt{1-x^2}} dx = \beta\left(\frac{2}{5}, \frac{1}{2}\right)$	MODILLE	37	
	QDF(MODULE SIAL FUNCT		
PAI			TICAL THINKING QUEST	FIONS
1	Show that	Apply	This would require the	CO 6
			learner to recall the Bessel	
	$J_{-n}(x) = (-1)^n J_n(x)$		recurrence relation and	
	where n is a positive integer.		apply them to prove different relation	
	<u> </u>		different relation	

2	Show that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$ where $J_n(x)$ is Bessel's function, n being a integer.	Apply	This would require the leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
3	Show that $ \int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = $ $ \begin{cases} 0, if \alpha = \beta \\ \frac{1}{2} [J_{n+1}(\alpha)]^{2}, if \alpha \neq \beta \end{cases} $	Analyse	This would require the leaner to recall the Bessel recurrence relation and apply recurrence relations analyse them in different cases for finding orthogonal function to Bessel	CO 6
4	State and prove Generating function of Bessel's functions	Analyse	This would require the leaner to recall the Bessel recurrence relation and apply recurrence relations analyse them in different cases for finding orthogonal function to Bessel	CO 6
5	Show that $\frac{d}{dx} \left[x^n J_n \left(x \right) \right] = x^n J_{n-1} \left(x \right)$	Apply	This would require the leaner to recall the Bessel recurrence relation and apply recurrence relations analyse them in different cases that generates Bessel function.	CO 6
6	Show that $\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$	Apply	This would require the leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
7	Show that $\int J_3(x) + J_2(x) + \frac{2}{x} J_1(x) = 0$	Apply	This would require the leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
8	Show that $cosx = J_0 - 2J_2 + 2J_4 - \dots$	Apply	This would require the leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6

9	Show that $sin x = 2(J_1 - J_3 + J_5 - \dots)$	Apply	This would require the leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
10	Show that $J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3-x^2}{x^2} \sin x - \frac{3}{x} \cos x \right)$	Apply	This would require the leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
	PART - B: LO	NG ANSW	ER QUESTIONS	
1	Show that $\int_0^x x^n J_{n-1}(x) dx = x^n J_n(x)$ where $J_n(x)$ is Bessel's function.	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
2	Show that $\int_0^x x^{n+1} J_n(x) dx = x^{n+1} J_{n+1}(x) \text{ where } J_n(x) \text{ is Bessel's function.}$	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
3	Show that $\frac{d}{dx} \left[J_n^2 + J_{n+1}^2 \right] = \frac{2}{x} \left[n J_n^2 - (n+1) J_{n+1}^2 \right]$ where $J_n(x)$ is Bessel's function.	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
4	Show that $\frac{d}{dx} \left[x J_n(x) J_{n+1}(x) \right] = x \left[J_n^2(x) - J_{n+1}^2(x) \right]$	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
5	Show that $J_n(x)$ is an even function when n is even and an odd function when n is odd function	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
6	Show that $\int J_3(x) dx =$ $-J_2(x) - \frac{2}{x}J_1(x) \text{ using}$ Bessel's Recurrence relation.	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6

7	Make use of the generating function to show that $\cos(x\sin\theta) = J_0 + 2(J_2\cos 2\theta + J_4\cos 4\theta + \dots)$	Analyse	This would require the learner to recall the Bessel recurrence relation and apply them finding trigonometric relations in term of Bessel functions	CO 6
8	Make use of generating function to show that $\sin(x\sin\theta) = 2(J_1\sin\theta + J_3\sin 3\theta + J_5\sin 5\theta)$	Analyse	This would require the learner to recall the Bessel recurrence relation and apply them finding trigonometric relations in term of Bessel functions	CO 6
9	Show that $J_n(-x) = (-1)^n J_n(x)$ where n is a positive or negative integer.	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
10	Show the Bessel's recurrence relation $xJ_n'(x) = nJ_n(x) - xJ_{(n+1)}(x)$.	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
11	Show the Bessel's recurrence relation $xJ_n(x) = -nJ_n(x) + xJ_{(n-1)}(x)$.	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
12	Show that $J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{1}{x} \sin x - \cos x\right)$	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
13	Relate $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$	Understand	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
14	Show that $\int J_0^2(x) dx = \frac{1}{2}x^2 \left[J_0^2(x) + J_1^2(x) \right]$	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6

15	Show that $\frac{n}{x}J_n(x) + J_n'(x) = J_{n-1}(x)$	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
16	Show that $J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 + \dots) = 1$	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
17	Show that $J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 + \dots) = 1$	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
18	Show the Bessel's recurrence relation $J_n(x) = 1/2[J_{(n-1)}(x) - J_{(n+1)}(x)]$	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
19	Show the Bessel's recurrence relation $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
20	Show the Bessel's recurrence relation $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$	Apply	This would require the learner to recall the Bessel recurrence relation and apply them to prove different relation	CO 6
	PART-C SHO	ORT ANSWI	ER QUESTIONS	
1	State the expansion of $J_n(x)$.	Remember	_	CO 6
2	State the expansion of $J_n(-x)$	Remember	_	CO 6
3	State Bessel differential equation.	Remember	_	CO 6
4	State the most general solution of Bessel differential equation	Remember	_	CO 6
5	State the expansion of $J_0(x)$.	Remember	_	CO 6

c	Doloto I () : t-	II. d4	This would are it	00.0
6	Relate $J_2(x)$ in terms of $J_0(x)$ and $J_1(x)$	Understand	This would require the learner to recall the Bessel recurrence relation and understand them to prove different relation.	CO 6
7	Relate $J_3(x)$ in terms of $J_0(x)$ and $J_1(x)$	Understand	This would require the learner to recall the Bessel recurrence relation and understand them to prove different relation.	CO 6
8	Relate $J_4(x)$ in terms of $J_0(x)$ and $J_1(x)$	Understand	This would require the learner to recall the Bessel recurrence relation and understand them to prove different relation.	CO 6
9	State the relationship between $J_n(x), J_{n-1}(x) $ and $J_{n+1}(x)$	Remember	_	CO 6
10	State the relationship between $J_{n}'(x), J_{n-1}(x)$ and $J_{n+1}(x)$	Remember	_	CO 6
11	Show that $ \left[J_{\frac{1}{2}}\right]^2 + \left[J_{-\frac{1}{2}}\right]^2 = \frac{2}{\pi x} $	Understand	This would require the learner to recall the Bessel recurrence relation and understand them to prove different relation.	CO 6
12	Show that $J_n(x) = 0$ has no repeated roots except at $x = 0$.	Understand	This would require the learner to recall the Bessel recurrence relation and understand them to prove different relations.	CO 6
13	Show that $\frac{d}{dx}(J_1(x)) = -J_1(x)$. where $J_n(x)$ is the Bessel's function.	Understand	This would require the learner to recall the Bessel recurrence relation and understand them to prove different relations.	CO 6
14	State the trigonometric expansion of $\cos(x\sin\theta)$	Remember	_	CO 6
15	State the trigonometric expansion of $\sin(x\sin\theta)$	Remember	_	CO 6
16	State Orthogonality Property of Bessel's functions	Remember	_	CO 6

17	State the property of	Remember	_	CO 6
	Generating function of			
	Bessel's functions			
18	Relate $J_{3/2}(x)$ in terms of	Understand	This would require the	CO 6
	sine and cosine		learner to recall the Bessel	
	trigonometric ratios		recurrence relation and	
			understand them to prove	
			different relation.	
19	Relate $J_{5/2}(x)$ in terms of	Understand	This would require the	CO 6
	sine and cosine		learner to recall the Bessel	
	trigonometric ratios		recurrence relation and	
			understand them to prove	
			different relation.	
20	Show that	Apply	_	CO 6
	$J_{-1/2}(x) = J_{1/2}(x) . cot x$			

Course Coordinator: Dr. A. Parandhama HOD ECE