

## METODY PROGRAMOWANIA 2018/2019 "TOMEK I PRZYJACIELE"

P 04

### **Opis**

Na Wyspie Sodor trwał gorący i słoneczny dzień. Do stacji przyjechały pociągi, by pożegnać swojego przyjaciela Tomka, który po długoletniej pracy odchodzi na emeryturę. Z tej okazji Gruby Zawiadowca zorganizował zabawę, w której brały udział wszystkie pociągi. W czasie zabawy Gruby Zawiadowca podawał polecenia, które mieli wykonywać zaproszeni goście.

Twoim zadaniem jest przeprowadzić symulacje zabawy używając ściśle określonych struktur danych do reprezentacji obiektów:

- Listy podwójnej bez głowy do reprezentacji wagonów pojedynczego pociągu,
- Listy pojedynczej bez głowy do reprezentacji zbioru pociągów.

Każdy pociąg składa się z lokomotywy i co najmniej jednego wagonu. Możemy przyjąć, że nazwą pociągu jest nazwa lokomotywy.

Gruby Zawiadowca przygotował poniższą listę poleceń dotyczącą imprezy:

- **a.** New T1 W tworzy nowy pociąg zawierający lokomotywę o nazwie T1 z jednym wagonem o nazwie W i wstawia go do listy pociągów.
- **b.** InsertFirst T1 W wstawia wagon o nazwie W na początek pociągu o nazwie T1
- **c.** InsertLast T1 W wstawia wagon o nazwie W na koniec pociągu o nazwie T1
- **d.** Display T1 wypisuje opis pociągu o nazwie T1
- e. Reverse T1 odwraca kolejność wagonów w pociągu o nazwie T1
- f. Union T1 T2 dołącza pociąg o nazwie o nazwie T2 na koniec pociągu o nazwie
   T1 i usuwa pociąg T2 z listy pociągów
- g. DelFirst T1 T2 usuwa pierwszy wagon z pociągu o nazwie T1 i tworzy z niego nowy pociąg o nazwie T2 i jeśli to był jedyny wagon w T1 to T1 przestaje istnieć (jest usuwany z listy pociągów).
- h. DelLast T1 T2 usuwa ostatni wagon z pociągu o nazwie T1 i tworzy z niego nowy pociągu o nazwie T2, przy czym, jeśli to był jedyny wagon w T1 to T1 przestaje istnieć (jest usuwany z listy pociągów).

### Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z – liczbę zestawów danych, których opisy występują kolejno po sobie.

Pierwsza linia każdego zestawu zawiera liczbę całkowitą n (1 <=n <=10 $^6$ ) będącą liczbą poleceń, zaś każde polecenie umieszczone jest w osobnej linii i zawiera od jednego do trzech słów.

Pierwsze słowo jest nazwą polecenia i jest zawsze zakończone spacją, zaś pozostałe słowa, jeśli występują są jego parametrami, oddzielonymi pojedynczą spacją.

Nazwy pociągów i wagonów spełniają wymogi identyfikatorów stosowanych w programowaniu w języku Java, zaś nazwy poleceń są traktowane jako słowa zastrzeżone.

JROSEK



# METODY PROGRAMOWANIA 2018/2019 "TOMEK I PRZYJACIELE"

P\_04

Przykładową listę czterech pociągów ilustruje poniższy rysunek:



## Wyjście

- W reakcji na polecenia: Display nazwa\_pociągu wypisz aktualną listę wagonów pociągu o
  zadanej nazwie. Opis listy rozpoczyna się nazwą pociągu, zakończoną znakiem ':' i spacją, po
  której występują nazwy wagonów rozdzielanych znakiem spacji w kolejności od pierwszego
  do ostatniego wagonu na liście.
- Na końcu każdej z list znajduje znak nowej linii.

JROSEK 2



## METODY PROGRAMOWANIA 2018/2019 "TOMEK I PRZYJACIELE"

P\_04

### Wymagania implementacyjne

- 1. Jedynym możliwym importem jest java.util.Scanner.
- 2. W szczególności zabronione są zarówno w całości jak i w jakiejkolwiek części importy java.util.AbstractList oraz java.awt.List.
- 3. Wszystkie wymienione polecenia, poza *Display* muszą działać w czasie *O*(1) i używać jak najmniej pamięci.
- 4. Wszystkie pomocnicze operacje jak np. wstawianie nowego pociągu, wyszukiwanie zadanego pociągu lub usuwanie pociągu zaimplementuj tak, aby zawierały minimalną liczbę przeglądów list.
- 5. Możesz założyć, ze wszystkie polecenia są sensowne, to znaczy nie utworzą drugiego pociągu o tej samej nazwie, ani też nie zostaną użyte do łączenia czy odwracania nieistniejącego pociągu.

### Przykład danych

| test.in:          | test.out        |
|-------------------|-----------------|
| 1                 | T1: W1 W2       |
| 21                | T1: W0 W1 W2    |
| New T1 W1         | T1: W1 W2       |
| InsertLast T1 W2  | T2: W0          |
| Display T1        | T1: W1          |
| InsertFirst T1 W0 | T3: W2          |
| Display T1        | T4: Z2 Z1       |
| DelFirst T1 T2    | T3: W2 Z2 Z1    |
| Display T1        | T3: W2 Z2 Z1 W0 |
| Display T2        | T3: W0 Z1 Z2 W2 |
| DelLast T1 T3     |                 |
| Display T1        |                 |
| Display T3        |                 |
| New T4 Z1         |                 |
| InsertLast T4 Z2  |                 |
| Reverse T4        |                 |
| Display T4        |                 |
| Union T3 T4       |                 |
| Display T3        |                 |
| Union T3 T2       |                 |
| Display T3        |                 |
| Reverse T3        |                 |
| Display T3        |                 |

JROSEK 3