Experiment 5

Aim: Implementation of Multiple Linear Regression and Regularization.

Objectives: To learn about Multiple Linear Regression techniques. To learn about prediction using Multiple Linear Regression To apply regularization on model.

Course Outcomes CO3, CO5

import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

Read the data (Excel file "Exp-5 House Price.csv").

In [3]: df=pd.read_csv('Exp-5 House Price.csv')

In [4]: **df**

					•						
Per_Sqft	Туре	Transaction	Status	Price	Parking	Locality	Furnishing	Bathroom	внк	Area	
NaN	Builder_Floor	New_Property	Ready_to_move	6500000	1.0	Rohini Sector 25	Semi- Furnished	2.0	3	800.0	0
6667.0	Apartment	New_Property	Ready_to_move	5000000	1.0	J R Designers Floors, Rohini Sector 24	Semi- Furnished	2.0	2	750.0	1
6667.0	Apartment	Resale	Ready_to_move	15500000	1.0	Citizen Apartment, Rohini Sector 13	Furnished	2.0	2	950.0	2
6667.0	Builder_Floor	Resale	Ready_to_move	4200000	1.0	Rohini Sector 24	Semi- Furnished	2.0	2	600.0	3
6667.0	Builder_Floor	New_Property	Ready_to_move	6200000	1.0	Rohini Sector 24 carpet area 650 sqft status R	Semi- Furnished	2.0	2	650.0	4
											•••
12916.0	Builder_Floor	New_Property	Ready_to_move	55000000	3.0	Chittaranjan Park	Unfurnished	5.0	4	4118.0	1254
12916.0	Builder_Floor	Resale	Ready_to_move	12500000	3.0	Chittaranjan Park	Semi- Furnished	2.0	3	1050.0	1255
12916.0	Builder_Floor	New_Property	Ready_to_move	17500000	3.0	Chittaranjan Park	Semi- Furnished	3.0	3	875.0	1256
12916.0	Builder_Floor	Resale	Ready_to_move	11500000	1.0	Chittaranjan Park Block A	Unfurnished	2.0	2	990.0	1257
12916.0	Builder_Floor	New_Property	Ready_to_move	18500000	1.0	Chittaranjan Park	Unfurnished	3.0	3	11050.0	1258

1259 rows × 11 columns

Droping the values of Area which are greater than 3000 and plotting scatter plot between Area and Price.

```
In [8]: df.drop(df[df['Area'] > 3000].index, inplace = True)
    plt.figure(figsize=(14,7))
    plt.xlabel('Area')
    plt.ylabel('Price')
    plt.scatter(df.Area,df.Price)
```

Out[8]: <matplotlib.collections.PathCollection at 0x24b0f999438>

In [5]: df.corr()

Out[5]:		Area	внк	Bathroom	Parking	Price	Per_Sqft
	Area	1.000000	0.449438	0.535104	-0.009297	0.580836	0.162832
	внк	0.449438	1.000000	0.773267	-0.070707	0.571523	0.181540
	Bathroom	0.535104	0.773267	1.000000	-0.032796	0.728108	0.219169
	Parking	-0.009297	-0.070707	-0.032796	1.000000	-0.000448	0.001607
	Price	0.580836	0.571523	0.728108	-0.000448	1.000000	0.322859
	Per Saft	0.162832	0.181540	0.219169	0.001607	0.322859	1.000000

Importing the encoder and encoding the required fields.

```
In [6]: from sklearn.preprocessing import LabelEncoder
         label encoder = LabelEncoder()
In [7]: df['Furnishing'] = label_encoder.fit_transform(df['Furnishing'])
         df['Locality'] = label encoder.fit transform(df['Locality'])
         df['Status'] = label encoder.fit transform(df['Status'])
         df['Transaction'] = label encoder.fit transform(df['Transaction'])
         df['Type'] = label encoder.fit transform(df['Type'])
         df
In [8]:
                                                                      Price Status Transaction Type Per_Sqft
                 Area BHK Bathroom Furnishing Locality Parking
Out[8]:
                 800.0
                          3
                                  2.0
            0
                                                     283
                                                              1.0
                                                                   6500000
                                                                                1
                                                                                           0
                                                                                                        NaN
            1
                 750.0
                          2
                                   2.0
                                               1
                                                     139
                                                                   5000000
                                                                                1
                                                                                           0
                                                                                                 0
                                                                                                      6667.0
                                               0
            2
                 950.0
                          2
                                   2.0
                                                      49
                                                                  15500000
                                                                                1
                                                                                           1
                                                                                                      6667.0
                          2
            3
                 600.0
                                   2.0
                                               1
                                                                   4200000
                                                                                           1
                                                     281
                                                                                                      6667.0
                 650.0
                          2
                                  2.0
                                               1
                                                     282
                                                              1.0
                                                                   6200000
                                                                                1
                                                                                           0
                                                                                                      6667.0
                                               2
         1254
                4118.0
                                   5.0
                                                              3.0 55000000
                                                                                           0
                                                                                                     12916.0
                          4
                                                      44
                                                                                1
                1050.0
                                  2.0
         1255
                          3
                                                      44
                                                              3.0 12500000
                                                                                1
                                                                                           1
                                                                                                 1 12916.0
         1256
                 875.0
                          3
                                   3.0
                                               1
                                                              3.0 17500000
                                                                                           0
                                                                                                     12916.0
                                                      44
                                                                                1
         1257
                 990.0
                          2
                                   2.0
                                               2
                                                      45
                                                              1.0 11500000
                                                                                1
                                                                                           1
                                                                                                     12916.0
         1258 11050.0
                                                              1.0 18500000
                                                                                                    12916.0
                          3
                                   3.0
                                               2
                                                      44
                                                                                1
                                                                                           0
        1259 rows × 11 columns
         Droping the null values.
```

In [9]: df1 = df.dropna()

In [10]: df1

Out[10]:

	Area	внк	Bathroom	Furnishing	Locality	Parking	Price	Status	Transaction	Туре	Per_Sqft
1	750.0	2	2.0	1	139	1.0	5000000	1	0	0	6667.0
2	950.0	2	2.0	0	49	1.0	15500000	1	1	0	6667.0
3	600.0	2	2.0	1	281	1.0	4200000	1	1	1	6667.0
4	650.0	2	2.0	1	282	1.0	6200000	1	0	1	6667.0
5	1300.0	4	3.0	1	281	1.0	15500000	1	0	1	6667.0
•••	•••							•••			
1254	4118.0	4	5.0	2	44	3.0	55000000	1	0	1	12916.0
1255	1050.0	3	2.0	1	44	3.0	12500000	1	1	1	12916.0
1256	875.0	3	3.0	1	44	3.0	17500000	1	0	1	12916.0
1257	990.0	2	2.0	2	45	1.0	11500000	1	1	1	12916.0
1258	11050.0	3	3.0	2	44	1.0	18500000	1	0	1	12916.0

1005 rows × 11 columns

In [13]: df1.describe()

```
Out[13]:
                                      ВНК
                                             Bathroom
                                                                        Locality
                                                                                                    Price
                                                                                                                Status Transaction
                         Area
                                                         Furnishing
                                                                                    Parking
                                                                                                                                                     Per So
                                                                                                                                         Type
                  1005.000000 1005.000000
                                           1005.000000
                                                        1005.000000
                                                                    1005.000000 1005.000000
                                                                                            1.005000e+03
                                                                                                          1005.000000
                                                                                                                      1005.000000
                                                                                                                                   1005.000000
                                                                                                                                                  1005.0000
           count
                  1504.301968
                                  2.791045
                                              2.575124
                                                           1.159204
                                                                     190.655721
                                                                                   1.697512 2.224030e+07
                                                                                                             0.935323
                                                                                                                          0.600000
                                                                                                                                      0.547264
                                                                                                                                                15663.6308
           mean
                  1729.104830
                                  0.961469
                                              1.088503
                                                           0.644102
                                                                     103.791974
                                                                                   3.223118 2.771744e+07
                                                                                                             0.246077
                                                                                                                          0.490142
                                                                                                                                      0.498009
                                                                                                                                                21170.1604
             std
                     28.000000
                                  1.000000
                                              1.000000
                                                           0.000000
                                                                       0.000000
                                                                                   1.000000 1.000000e+06
                                                                                                             0.000000
                                                                                                                          0.000000
                                                                                                                                      0.000000
                                                                                                                                                  1259.0000
            min
            25%
                   770.000000
                                  2.000000
                                              2.000000
                                                           1.000000
                                                                     116.000000
                                                                                   1.000000 5.130000e+06
                                                                                                             1.000000
                                                                                                                          0.000000
                                                                                                                                      0.000000
                                                                                                                                                  6364.0000
                  1150.000000
                                  3.000000
                                              2.000000
                                                           1.000000
                                                                     179.000000
                                                                                            1.400000e+07
                                                                                                                          1.000000
                                                                                                                                      1.000000
                                                                                                                                                11363.0000
            50%
                                                                                   1.000000
                                                                                                             1.000000
            75%
                  1700.000000
                                  3.000000
                                              3.000000
                                                           2.000000
                                                                     281.000000
                                                                                   2.000000 2.700000e+07
                                                                                                             1.000000
                                                                                                                          1.000000
                                                                                                                                      1.000000
                                                                                                                                                18000.0000
            max 24300.000000
                                  7.000000
                                              7.000000
                                                                     364.000000
                                                                                   39.000000 2.400000e+08
                                                                                                             1.000000
                                                                                                                          1.000000
                                                                                                                                      1.000000
                                                                                                                                               183333.0000
                                                           2.000000
          df['Per Sqft'].isnull().sum()
          237
Out[30]:
In [24]: df['Parking'].fillna(int(df['Parking'].mode()), inplace=True)
In [18]: X= df1[['Area','BHK','Bathroom','Furnishing','Locality','Parking','Status','Transaction','Type']]
          y=df1['Price']
          Importing the model and traning and test module from sklearn library.
           import numpy as np
In [19]:
           from sklearn import model selection
           X train, X test, Y train, Y test = model selection.train test split(X, y, test size=0.2)
In [20]:
           linear=LinearRegression()
          Training the Regression model and Checking the accuracy of model.
           linear.fit(X train, Y train)
In [21]:
           Y pred = linear.predict(X test)
           print(f"Accuracy of Test Data is {round(linear.score(X_test, Y_test)*100,2)}%")
           print(f"Accuracy of Training Data is {round(linear.score(X train, Y train)*100,2)}%")
```

```
Accuracy of Test Data is 61.95%
Accuracy of Training Data is 58.4%
```

In [36]: from sklearn.metrics import mean_squared_error, mean_absolute_error

Checking the Error margin between the predicted and original values.

```
In [38]: print(np.sqrt(mean_squared_error(Y_test, Y_pred)))
    print(mean_absolute_error(Y_test, Y_pred))
```

9156056.395526567 6438574.635686093

Learning Outcomes

Learned Multiple Linear Regression techniques. Learned how to make prediction using Multiple Linear Regression.

Result/ Conclusion We have successfully trained the model and predicted the results.