AAE 637 Lab 5: Intermediate MATLAB programming*

2/25/2015

Advanced control flow

- switch generalization of if so more than two choices can be specified
- continue start back at the top of the loop without executing any instructions remaining in the loop
- break exit the loop
- return Similar to break, but used within a function. Stops the function from making more computations and then yields the current values of the output
- && and | vs. & and | the double symbol means only evaluate a statement in the "chain" if it is needed to assess the truth value of the whole statement. Don't use the double symbol in matrix subsetting.

Error handling

- assert produce an error if a specified condition is false
- error produce an error
- try & catch redirect your program when an error is encountered rather than halting the program

Understanding the call stack

	Call Stack			
	Function name	Purpose	Arguments	Global variables
	NR	Estimate a nonlinear least squares model	various	various
	hessian_bwg	Compute the hessian of the SSE function	function name; betas	none
	sse_fn	Compute the SSE of the desired model	betas	<pre>lhsvar; func_name</pre>
-	cobb_douglas	Compute the predicted values for the model	betas	rhsvar

^{*}prepared by Travis McArthur, UW-Madison (http://www.aae.wisc.edu/tdmcarthur/teaching.asp)

Strategies for restricting parameter values during estimation

You will want to use a monotonic transformation that maps the domain \mathbb{R} into a restricted range that is a subset of \mathbb{R} .

- Say your restriction has this form: $a < \beta < \infty$. Let $\dot{\beta}$ be the value that you input into your estimation function.
 - One solution: $\beta = h(\dot{\beta}) = \exp\left\{\dot{\beta}\right\} + a$
 - And $-\infty < \beta < b$ works similarly: $\beta = h(\dot{\beta}) = -\exp\left\{\dot{\beta}\right\} + b$
- Your restriction has this form: $a < \beta < b$
 - Use the inverse tangent function

$$-\ \beta = h(\dot{\beta}) = \arctan(\dot{\beta}) \cdot \frac{(b-a)}{\pi} + \frac{(b+a)}{2}$$

Warning: your usual estimation procedure will yield a table with an estimate of $\dot{\beta}$, not β . You will have to fix this somehow.

This is not the same as testing a restriction, since that involves restriction of a parameter or functions of parameters to a single value. The technique above is used for avoiding invalid parameter values.

Miscellaneous

- Use rng to set the "seed" for the random number generator so that a random sequence is reproducible
- Use strcmp and/or pull_data to select matrix columns by name
- Use wolframalpha.com to double-check your analytical derivatives

Adjustments to reach convergence

- Selecting good starting values is important: use OLS, restricted model, randomized starting values, or grid search
- Alter or remove second condition here:
 while (ss1 < ss2) && (s >= .2); % ** Loop to determine step length
- Scale down variables
- \bullet Set dh lower, say to 10^{-10} . This affects the precision of numerical calculus of Grad, but not hessian_bwg
- Try Gauss-Newton when Newton-Raphson fails, and vice versa.
- Make sure you are feeding a column beta vector to your optimization function