Pokok Bahasan Bab 8:

Distribusi Sampel: Sampel acak, Statistik yang penting, Distribusi Sampel Rataan, Distribusi Sampel Variansi, Distribusi-t, Distribusi-F

Probabilitas & Statistika

Materi yang Dibahas:

- 1. Distribusi Sampel: Sampel acak, Statistik yang penting
- 2. Distribusi Sampel Rataan
- 3. Distribusi Sampel Variansi
- 4. Distibusi-t dan Distribusi-F

Tim Penyusun

Judhi Santoso Harlili Dwi H. Widyantoro

Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Sampel Acak

- Populasi variable random X : keseluruhan pengamatan yang menjadi perhatian.
- Sampel : suatu himpunan bagian dari populasi.
- n= banyak data sampel/ data set
- Biased: prosedur sampling yang menghasilkan inferensi overestimate/underestimate secara konsisten

Sampel Acak [2]

- Definisi statistik dari variabel random : Suatu fungsi (besaran/ukuran) dari suatu sampel acak.
- Secara umum ukuran statistik ada 2.
- 1. Ukuran lokasi tengah (center) : rata2, median, modus, dan lainnya.
- Ukuran variansi sampel: Jangkauan, variansi sampel, simpangan baku, dan lainnya

Statistik yang Penting

Bila X₁, X₂, ..., X_n sampel acak ukuran n,
 rataan sampel dinyatakan oleh statistic

$$\overline{X} = \sum_{i=1}^{n} X_i$$

• Modus = nilai X_i yang paling banyak muncul.

■ Median
$$X_{\text{med}} = \begin{cases} X_{(n+1)/2} & bila \ n \ ganjil \\ \frac{X_{n/2} + X_{(n/2)+1}}{2} & bila \ n \ genap \end{cases}$$
 dimana $X_1, X_2, ..., X_n$ diurut membesar

Statistik yang Penting (2)

- **Jangkauan** dari sampel acak X_1 , X_2 , ..., X_n didefinisikan sebagai statistik $J = X_{(n)} X_{(1)}$, bila $X_{(n)}$ dan $X_{(1)}$ menyatakan masing-masing nilai terbesar dan terkecil dari sampel.
- Variansi sampel dinyatakan oleh

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

Simpangan baku = $S = \sqrt{S^2}$

Statistik yang Penting (2)

- Persentil rank, $P_{10} = nilai X_i$ di posisi persentil 10 % dari semua data $X_1, X_2, ..., X_n$ diurut membesar.
- Kuartil, Q_1 , Q_2 , Q_3 = nilai X_i di posisi 25 %,50 %, 75 % dari semua data X_1 , X_2 , ..., X_n diurut membesar. Q_2 = median.
- Interquartile range, $IQR = Q_3 Q_1$

Statistik yang Penting (3)

 Nilai Z = posisi nilai X_i thd rata, μ dan simpanganan baku,σ

$$Z = \frac{(X - \mu)}{\sigma}$$

 Jika nilai X_i > μ maka nilai Z positif dan jika nilai X_i < μ maka nilai Z negative.

Statistik yang Penting (4)

 Skewness (Kemiringan)= ukuran simetri dari fungsi distribusi peluang (fdp), dinyatakan Sk.

$$Sk = \frac{\{\sum_{i=1}^{n} (X_i - \bar{X})^3\}/n}{(S^2)^{3/2}}$$

Data berdistribusi normal, Skewness = o Kurtosis(Keruncingan) = ukuran lancip dari fdp

$$Kur = \frac{(\frac{1}{n}\sum(X_i - \bar{X})^4)}{S^4}$$

Data berdistribusi normal, Kur = 3

Distribusi Sampel (1)

- Definisi distribusi sampel : distribusi peluang suatu statistik.
- Definisi distribusi sampel dari rataan , banyak observasi=n, diambil dari populasi normal dengan mean = μ dan variansi = σ^2 adalah berdistribusi normal dengan

Distribusi Sampel dari Rata-Rata (2)

$$\overline{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

$$\mu_x = \mu_{populasi}$$

$$\sigma_x^2 = \frac{\sigma_{populasi}^2}{n}$$

Contoh Distribusi Sampel Rataan

- 1. Diketahui data: 3,2,3,2,3,4,4,2,3,4
 - a) Periksa apakah data berdistribusi normal?
 - b) Hitung distribusi sampel rataan dari 2 observasi berturutan.

Jawab:

$$Modus = 3$$

Jadi data berdistribusi Normal karena rataan=median=modus

Jawab lanjutan

- Variansi = $s^2 = (10(96)-900)/10(9) = 0,66$
- Data berdistribusi normal dengan μ = 3 dan $σ^2$ =0,66

$$S^{2} = \frac{n\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}{n(n-1)}$$

Jawab Lanjutan (2)

b) Sampel rataan dari 2 observasi berturutan.

No	Nilai
1	(3+2)/2 = 2.5
2	(2+3)/2 = 2.5
3	(3+2)/2 = 2.5
4	(2+3)/2 = 2.5
8	(2+3)/2=2.5
9	(3+4)/2=3.5

Jawab Lanjutan (3)

- Rataan sampel = (2.5+2.5+2.5+2.5+3.5+4+3+2.5+3.5)/9 = 2,95
- Variansi $S^2 = 9(80.75) (26.5)^2 / (9(8)) = 0.34$
- Jadi menurut teori, distribusi sampel 2
 observasi = berdistribusi normal dengan
- $\mu = \mu$ awal = 3 , dan $\sigma^2 = (\sigma^2$ awal)/n= 0.66/2=0,33

Distribusi Sampel

• Teorema Limit Pusat : Bila \bar{X} rataan sampel acak ukuran n yang diambil dari populasi dengan rataan μ dan variansi σ^2 yang berhingga, maka bentuk limit dari distribusi

SI
$$z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$
,

bila n $\rightarrow \infty$, ialah distribusi normal baku n(z; o, 1)

Distribusi Sampel [2]

Figure 8.1: Illustration of the Central Limit Theorem (distribution of \bar{X} for n=1, moderate n, and large n).

Distribusi Sampel: Example 8.4

Contoh soal menghitung peluang sampel random:

Suatu perusahaan memproduksi bola lampu yang umurnya berdistribusi hampir normal dengan rataan 800 jam dan simpangan baku 40 jam. Hitunglah peluangnya bahwa suatu sampel acak dengan 16 bola lampu akan mempunyai umur rata-rata kurang dari 775 jam.

Distribusi Sampel (2)

Penyelesaian contoh soal menghitung peluang sampel random : Secara hampiran, distribusi sampel \overline{X} akan normal dengan $\mu_{\overline{X}} = 800$ dan $\sigma_{\overline{X}} = 40/\sqrt{16} = 10$. Peluang yang dicari diberikan oleh luas daerah yang dihitami pada gambar. Nilai z yang berpadanan dengan $\overline{X} = 775$ adalah $z = \frac{775 - 800}{10} = -2,5$

$$P(X < 775) = P(z < -2,5)$$

= 0,0062

Distribusi Sampel Selisih 2 Rataan

Bila sampel random ukuran n_1 dan n_2 diambil secara acak dari dua populasi, diskret maupun kontinu, masing-masing dengan rataan μ_1 dan μ_2 dan variansi σ_1^2 dan σ_2^2 , maka distribusi sampel dari selisih rataan, $\bar{X}_1 - \bar{X}_2$, berdistribusi hampir normal rataan dan variansi diberikan oleh denga σ_2

dan variansi diberikan oleh dengan₂
$$\mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2 \operatorname{dan} \sigma^2_{x_1 - x_2} = \frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}$$
 sehingga
$$z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{\sigma^2_1}{n_1}\right) + \left(\frac{\sigma^2_2}{n_2}\right)}}$$

Secara hampiran merupakan peubah normal baku.

Distribusi Sampel Selisih 2 Mean

Contoh soal menghitung peluang selisih dua rataan dari eksperimen sederhana :

- Suatu sampel berukuran $n_1=5$ diambil secara random dari populasi yang berdistribusi normal dengan rataan $\mu_1=5$ 0 dan variansi $\sigma_1^2=9$, dan rataan sampel \bar{X}_1 dihitung. Sampel random kedua berukuran $n_2=4$
 - diambil, bebas dari yang pertama, dari populasi lain yang juga berdistribusi normal, dengan rataan $\mu_2 = 40$ dan variansi $\sigma_2^2 = 4$, dan rataan sampel \overline{X}_2 dihitung. Cari P($\overline{X}_1 \overline{X}_2 < 8$,2).

Distribusi Sampel Selisih 2 Mean (2)

- Penyelesaian contoh soal menghitung peluang selisih dua rataan dari eksperimen sederhana lebih besar dari nilai tertentu :
- Dari distribusi sampel $\bar{X}_1 \bar{X}_2$ kita ketahui bahwa distribusinya normal dengan rataan $\mu_{\bar{X}_1 \bar{X}_2} = \mu_1 \mu_2$ = 50 40 = 10 dan variansi $\sigma^2_{x_1 x_2} = \frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2} = \frac{9}{5} + \frac{4}{4} = 2,8$

Peluang yang dicari dinyatakan oleh luas daerah yang dihitami dalam gambar. Berpadanan dengan nilai $\bar{X}_1 - \bar{X}_2 = 8,2$

diperoleh
$$z = \frac{8,2-10}{\sqrt{2,8}} = -1,08$$

sehingga

$$P(\bar{X}_1 - \bar{X}_2 < 8,2) = P(Z < -1,08)$$

= 0,1401

Latihan

- Perusahaan P memproduksi komponen printer dengan rata-rata usia 6,5 tahun dan standar deviasi o,9 tahun. Perusahaan Q memproduksi komponen tsb dengan rata-rata usia 6,0 tahun dan standar deviasi o,8 tahun.
- Berapa probabilitas sampel acak berukuran 36 unit komponen dari perusahaan P akan memiliki ratarata usia minimal 1 tahun lebih panjang daripada rata-rata usia 49 unit komponen dari perusahaan Q?

Distribusi Sampel Variansi

Bila S^2 variansi sampel acak ukuran n diambil dari populasi normal dengan variansi σ^2 , maka statistik

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

berdistribusi khi-kuadrat dengan derajat kebebasan v = n - 1.

Distribusi Chi-kuadrat (Tabel A.5) digunakan untuk menghitung peluang variansi sampel.

Distribusi Sampel: Example 8.7

Contoh soal distribusi sampel dari S²: Suatu pabrik baterai mobil menjamin bahwa baterainya akan tahan rata-rata 3 tahun dengan simpangan baku 1 tahun. Bila 5 baterainya tahan 1,9, 2,4, 3,0, 3,5, dan 4,2 tahun, apakah pembuatnya masih yakin bahwa simpangan baku baterai tersebut 1 tahun?

Jawab Example 8.7

- Penyelesaian contoh soal distribusi sampel dari S²:
- Mula-mula dihitung variansi sampel :

$$S^2 = \frac{(5)(48,26) - (15)^2}{(5)(4)} = 0,815$$
 dan $X^2 = \frac{(4)(0,815)}{1} = 3,26$

merupakan suatu nilai distribusi khi-kuadrat dengan derajat kebebasan 4. Karena 95 % nilai X^2 dengan derajat kebebasan 4 terletak antara 0,484 dan 11,143, nilai perhitungan dengan menggunakan $\sigma^2 = 1$ masih wajar, sehingga tidak ada alasan bagi pembuatnya untuk mencurigai bahwa simpangan baku baterainya bukan 1 tahun.

Distribusi-t (1)

Distribusi suatu statistik dinamakan T, dengan

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

 Distribusi T untuk menghitung peluang rataz untuk banyak sampel sedikit, kecil.

Distribusi-t (2)

• Misalkan Z peubah random normal baku dan V peubah random khi-kuadrat dengan derajat kebebasan v. Bila Z dan V bebas, maka distribusi peubah random T, bila $T = \frac{Z}{\sqrt{V/V}}$ diberikan oleh

$$h(t) = \frac{\Gamma\left[\frac{(v+1)}{2}\right]}{\Gamma\left(\frac{v}{2}\right)\sqrt{\pi v}} \left(1 + \frac{t^2}{v}\right)^{-(v+1)/2}, -\infty < t < \infty,$$

ini dikenal dengan nama distribusi – t dengan derajat kebebasan v.

Distribusi-t (3)

Figure 8.8: The *t*-distribution curves for v = 2, 5, and ∞ .

Figure 8.9: Symmetry property (about 0) of the t-distribution.

Distribusi-t (4)

Contoh soal distribusi – t
 Cari P(-t_{0,025}<T<t_{0,05}).
 Jawab :
 Karena luas di sebelah kanan t_{0,05} adalah 0,05 dan luas di sebelah kiri -t_{0,025} adalah 0,025,

adalah 1-0,05-0,025 = 0,925

jadi P(
$$-t_{0,025}$$
t_{0,05}) = 0,925

maka jumlah luas antara $-t_{0,025}$ dan $t_{0,05}$

Distribusi-F(1)

- Distribusi F didefinisikan sebagai nisbah dua peubah random khi-kuadrat yang bebas, masing-masing dibagi dengan derajat kebebasannya.
- Jadi dapat ditulis $F = \frac{U/v_1}{V/v_2}$

U dan V : peubah random bebas.

v₁ dan v₂: derajat kebebasan.

Distribusi-F(2)

• Misalkan U dan V dua peubah random bebas masing-masing berdistribusi khi-kuadrat dengan derajat kebebasan v_1 dan v_2 . Maka distribusi peluang acak v_3 diberikan oleh

$$h(f) = \begin{cases} \frac{\Gamma\left[\frac{(v_1 + v_2)}{2}\right] \left(\frac{v1}{v2}\right)^{\frac{v_1}{2}}}{\Gamma\left(\frac{v_1}{2}\right) \Gamma\left(\frac{v_2}{2}\right)} & f^{v_1/2} - 1\\ \frac{\Gamma\left(\frac{v_1}{2}\right) \Gamma\left(\frac{v_2}{2}\right)}{\int \frac{(1 + v_1 f/v_2)^{((v_1 + v_2)/2)}}{\int \frac{v_1 f/v_2}{2}}} & 0 < f < \infty \end{cases}$$
Ini dikenal dengan nama distribusi – F dengan

Ini dikenal dengan nama distribusi – F dengan derajat kebebasan v₁ dan v₂.

Distribusi-F(3)

Figure 8.12: Illustration of the f_{α} for the F-distribution.

Distribusi-F(4)

Teorema 8.7:
$$f_{1-\alpha}(v1, v2) = \frac{1}{f_{\alpha}(v2, v1)}$$

- Contoh soal : Untuk suatu distribusi – F hitunglah $f_{0,95}$ bila $v_1 = 6 \text{ dan } v_2 = 10$
- Jawaban : $f_{0,05}$ (10,6)= 4,06.
 - Maka $f_{0.95}$ (6,10)= 1/4,06 = 0,246.

Distribusi-F (5)

• Bila S_1^2 dan S_2^2 variansi sampel random yang bebas ukuran n_1 dan n_2 yang diambil dari dua populasi

$$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} = \frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2}$$

berdistribusi–F dengan derajat kebebasan

$$v_1 = n_1 - 1 \, \text{dan} \, v_2 = n_2 - 1$$

Distribusi F digunakan untuk menghitung peluang rasio 2 variansi sampel.

Latihan

- Seorang insinyur mengatakan bahwa suatu proses menggunakan rata-rata 500 gram/ml bahan. Untuk mengujinya, ia menggunakan 25 batch sampel tiap bulan. Jika nilai-t yang dihitung antara –to,05 dan to.05, ia akan puas.
- a) Jika diambil sebuah sampel dengan rata-rata x = 518 gram/ml dan standar deviasi sampel s = 40 gram, hitung nilai t dan probabilitas mendapatkan minimal nilai t tsb.
- b) Apakah insinyur tsb layak menyimpulkan prosedur proses tsb baik? Alasannya?

PR

Bab 8 : #23, 41, 53