

PRV

PATENT- OCH REGISTRERINGSVERKET
Patentavdelningen

CT/SE 03 / 01881

15 JULI 2003

Intyg
Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

(71) Sökande SmartTrust AB, Stockholm SE
Applicant (s)

(21) Patentansökningsnummer 0300129-4
Patent application number

(86) Ingivningsdatum 2003-01-17
Date of filing

Stockholm, 2003-12-09

För Patent- och registreringsverket
For the Patent- and Registration Office

Sonia André

Sonia André

Avgift
Fee

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

PATENT- OCH
REGISTRERINGSVERKET
SWEDEN

Postadress/Adress
Box 5055
S-102 42 STOCKHOLM

Telefon/Phone
+46 8 782 25 00
Vx 08-782 25 00

Telex
17978
PATOREG S

Telefax
+46 8 666 02 86
08-666 02 86

ROAMING METHOD

TECHNICAL FIELD

5

The invention is concerned with a method for the management of roaming of mobile subscribers between the home network and foreign networks.

10 BACKGROUND ART

Mobile terminals using The Global System for Mobile Communication (GSM) as standard for digital wireless communications are called GSM phones. GSM has many more services than just voice telephony. Additional services nowadays allow a great 15 flexibility in where and when GSM phones are used. Today's second-generation GSM networks deliver high quality and secure mobile voice and data services (such as SMS/Text Messaging) with full roaming capabilities across the world.

20 The Subscriber Identity Module (SIM) inside GSM phones is a smart chip that was originally designed as a secure way to connect individual subscribers to the network. There is an on-going evolution of the SIM into a standardized and secure application platform for GSM and next generation networks.

25 ETSI (the European Telecommunications Standards Institute) is a not-for-profit organization whose mission is to produce the telecommunications standards for use throughout Europe and beyond. ETSI is also a member in 3GPP which drafts the standards for the third generation networks.

30 The ETSI standard specification TS 100 977 V8.2.0 (2000-05) describes the interface in mobile terminals between the SIM and the Mobile Equipment (ME) within the digital cellular telecommunications system. The 3GPP specification 31.111 specifies USIM Application Toolkit (USAT) which defines an interface between the Universal ICC (UICC) and the Mobile Equipment (ME), and mandatory ME procedures. USAT

2 2003 07 17

is a set of commands and procedures for use during the network operation phase of 3G, in addition to those defined in the 3GPP specification TS 31.101 [13]. The 3GPP specification 51.011 defines the interface between the Subscriber Identity Module (SIM) - Mobile Equipment (ME). It defines usage of this interface during the network operation phase of GSM as well as those aspects of the internal organization of the SIM which are related to the network operation phase. Thus the 3GPP specification 51.011 takes in principle over after GSM 11.11.

The logical structure of files in SIM is hierarchical and there are three types of files,
10 i.e. Elementary Files (EF), Dedicated Files (DF) and Master Files (MF), the last mentioned ones being highest in the hierarchy.

Roaming management covers the tools and processes used to control the roaming behavior for the subscribers in a mobile telecommunications network. When a
15 subscriber leaves his home network and receives service from another network, he is said to be roaming.

A subscriber can roam to networks with which the operator of the subscriber's home network has a roaming agreement. Operators tend to have roaming agreements with
20 as many other network operators as possible. However, the case is often that in any given roaming situation, there is one network that is preferred. This could be a network with which the operator has a better agreement and thus pays a lower price for its usage. It could also be a network that belongs to the same operator group as the home operator. The earnings for the subscribers' network usage would thus stay
25 in the same company group if the subscriber could use the preferred networks as much as possible. If the roaming behavior could be efficiently controlled and the subscribers be made to roam into the most preferred network at any given time, large savings could be achieved for the operator. It shall, however, be noted that the opinion on which is the most preferred network may change over time.

30 Roaming management is thus an important area for the operators to improve the revenue stream. Roaming management gives the operator improved control of what networks its subscribers roam into when the home network can not be reached.

3 2003-01-17

Controlling this behavior becomes increasingly important as alliances are formed and the operator needs to manage this behavior on a continuous basis.

Roaming behavior is defined in the telecom standards and is controlled by data that
5 is stored on the SIM (Subscriber Identity Module) card. The handset will modify its roaming behavior based on the contents of the roaming control files on the SIM card.

One such standard, in which the mechanisms that control roaming behavior in the
10 GSM/3G network are defined is TS 23.122 in release 99 version. According to that standard, the roaming behavior is to a large extent controlled by two network selector files on the SIM card of the mobile phone. One of the files is the so-called subscriber-defined PLMN (Public Land Mobile Network) list and the other one is the operator-defined PLMN-list. Older versions of the standard define only one list list of preferred networks.

15 When the phone shall select a network, it first looks for networks defined in the subscriber-defined list. Each network indicated by the subscriber-defined network selector file on the SIM is tried according to the priority order given in that file. If none of the networks listed in that file are possible to select, the phone tries the networks
20 that are listed in the operator controlled network selector file. If still none of these are possible to select, the phone shall randomly choose a network whose signal strength exceeds a threshold value. In reality, this random selection often selects the strongest network. If none of the above methods have succeeded, the phone tries all other networks in order of decreasing signal strength. If the phone receives the
25 information that a network is not allowed for roaming, the phone adds the network to the list of forbidden networks and will not access this network while the phone remains in automatic network selection mode.

However, once the phone is roamed into a network, it will stay on that network.
30 According to the above standard, another file on the SIM shall control how often the phone searches for a higher preference network.

The phone will periodically search for the home network as well as a higher preference non-home network to roam into. Since this periodic network re-selection

attempts only consider network of the same country as the network to which the phone is currently registered, the home network will only be attempted when the subscriber is nationally roamed.

- 5 The network selection functionality described above is the one defined in TS 23.122 in release 99 version. The functionality is, however, not yet fully implemented in most of the existing phones. This pertains especially to the periodic network re-selection attempts. It is anticipated that future phones will start to support these periodically performed attempts to find a higher preference network.

10

The fact that most phones do not yet support the periodic network re-selection means that once a phone registers to a non-preferred network, it has a tendency to remain there until something extra-ordinary, like coverage loss, takes place.

- 15 | Even if the phone is turned off and on, the phone will remember the last network it was roamed onto and will try to go back to that network again by reading the information from the (Location Information) LOCI file on the SIM card. Thus the subscriber remains even longer than needed on the wrong network.

- 20 | Only if coverage is lost, the phone will search for and switch to another network, which might be a preferred network if that network has coverage.

- If no network has coverage, the phone will not be able to register to any network. If the coverage then returns, at the same time, for the previous network and a preferred network, the phone will still tend to register back onto the previous network.

- 25 There are a number of mechanisms that are employed today in order to control the roaming behavior as described above. Some of these are described in the following and the weaknesses or short-comings of these are touched upon. All descriptions given assume that the phone performs network selection without user interaction. When network takes places without user interaction, the phone is said to be operating in automatic network selection mode. If network selection is performed by the user, the phone is said to be operating in manual network selection mode. In

Mk t Patent- och reg.verket

2003-01-17

Huvudfakten Kassan

manual network selection mode, it is in fact the subscriber that manually controls the roaming behavior.

5 The most basic form of Roaming Management is to define the contents of the roaming control files, i.e. the PLMN list or lists and the network search period, on the SIM cards at the time of issuance. This becomes a static definition of preferred roaming networks.

10 An improvement to the static model is defined in the GSM 03.48 standard, in which the roaming control files are made updatable over the air. This enables remote update of the roaming control files when price models, agreements and operator constellations change. It is also possible to update the whole subscriber base in this manner. If the operator so chooses, it is possible to limit the group to subscribers that are likely to be roamer.

15 Due to the reasons described above, the handling of roaming control files as described above is referred to as statistical roaming management since the statistical chance that a subscriber will register with a preferred network is greatly improved if the roaming control files are kept updated. The statistical roaming management thus 20 controls roaming by updating the roaming control files on the SIM. Correctly used, the files can greatly improve the ratio of subscribers that roam into the preferred networks. However, there is never any guarantee that a subscriber will roam onto the preferred network.

25 The behavior of the statistical roaming management is non-intrusive for the subscriber. The effects are only that a preferred network is chosen initially at network selection or after the defined time period as described above. If no preferred network is present, the subscriber stays on the current network.

30 If the update of the roaming control files is made before the subscriber enters a roaming area, the phone will select the preferred network if it is present in the area. If the files are updated after the subscriber enters the roaming area, and the subscriber is in the wrong network, the subscriber is connected onto a preferred network only if

a loss of coverage of the current network takes place and the preferred network is present.

- Due to the above limitations, to the statistical roaming management, solutions for so-called dynamic roaming management exist. In some of these solutions, Dynamic Roaming Management uses active knowledge regarding a subscriber's roaming state and tries to achieve a change in the current roaming situation. In dynamic roaming management, the operator of a subscriber's home network knows when the subscriber roams into a new network. If that is an undesired network, a trigger is generated to a roaming server. The roaming server takes update measures towards the subscriber's SIM to make the phone select a better network. The dynamic roaming management is intrusive to the extent that it attempts to perform an active task of moving the subscriber from one network to another.
- In the dynamic roaming management scenario, a special roaming management application (RMA) monitors roaming events in the network, for example by interfacing to the HLR (Home Location Register). When the subscriber roams into a foreign network, the RMA is notified. If the subscriber roamed into a non-preferred network, attempts are made to dynamically move him to a preferred network. This behavior tends to lower the perceived quality of service for the subscriber and might therefore be undesirable from that aspect. Since the operator has a possibility of making money, a dynamic roaming management solution might be employed anyway.

- Finally, it shall also be noted that the size of the roaming control file is always going to be limited. That means that it will never be possible to list all the preferred networks in this file.

- Operators want to have a more direct control of what network the subscribers roam into even with phones that do no support the periodic network re-selection. Therefore dynamic roaming management is applied.

In the case of dynamic roaming management, the RMA attempts to update the roaming control PLMN-list on the SIM. However, as described above, this in itself does not make the phone switch networks. When the phone does not support the

Lit. t. Patent- och reg.verket

2003 -01- 17

Muvudaxen Kassan

periodic network re-selection, the measure of only updating the PLMN-list is therefore insufficient. In addition to the PLMN-list update, some other conditions need to be met. As discussed above, such a sufficient condition for switching to the correct network includes losing coverage for the non-preferred network while a preferred network is present. The phone would then switch to the preferred network.

5 However, this behavior is too non-deterministic for operators that really want to make sure that the phone selects a preferred network.

10 Therefore, the operators attempt to apply more drastic measures to force the phone to a new network. Such methods include different levels of the refresh command specified in GSM 11.14 possibly in conjunction with the Remote File Management (RFM) application in GSM 03.48. For both of these standard specifications newer versions of the specification with the same basic contents exist.

15

Such a refresh command can be triggered either as part of the 03.48 RFM or as an instruction to a SIM-based application that in turn triggers the refresh command as specified in GSM 11.14 to the phone. The refresh command has different levels ranging from information to the phone that a specific file on the SIM has been

20 updated to a more or less hard reset of the SIM. The intention of issuing the refresh command is to make the phone search for a preferred network as defined in the roaming control PLMN-lists. This does, however, not work as well as one would hope due to the reasons explained below.

25 The files on the SIM card and their usage are specified in GSM 11.11. This includes the roaming control files referred to above. In addition to the actual roaming control files, a couple of other files on the SIM affect the network selection behavior. The ones that are subject to usage for dynamic roaming solutions would typically be EF_{Loc} and EF_{FPLMN}. These Elementary Files (EF) specify LOcation Information and

30 Forbidden Public Land Mobile Networks respectively.

The EF_{Loc} is used by the phone to remember the Location Area it is registered to. The file contains the network identity and the location area in this network that the phone was last registered to. When the phone starts up, or re-initializes the GSM session, it uses the information in EF_{Loc} to see where it was last registered. The

Ink t Patent- och reg.verket

2003 -01- 17

Huvudfaxen Kassan

usage of EF_{Loc}i enables the phone to speed up network selection when starting up.

From the information in EF_{Loc}i the phone knows which network it was on before it was turned off. When re-establishing network connection, the phone first attempts to register to the network whose identity is found in EF_{Loc}i. If this fails, the phone starts

- 5 the rest of the automatic network selection process. This is the fact that causes the tendency for the network selection to behave in the somewhat sticky way described above.

- 10 The area of dynamic roaming management is thus troubled by the case that even if the user turns the phone on and off again after updating the roaming control file, EF_{Loc}i will tend to make the phone go back to the non-preferred network.

- 15 To overcome this problem, dynamic roaming solutions attempt to update EF_{Loc}i by remote means. The contents of EF_{Loc}i are then replaced by padding data to indicate that the file is empty or actual network data that does not identify the network the phone is registered to.

- 20 When EF_{Loc}i has been updated in the above manner, a refresh is issued to make the phone perform a new network selection. The level of refresh can be attempted at different levels to achieve the network search.

- 25 The solution described above has shown less successful than desired. The reason is that the phone restores the correct value of the EF_{Loc}i that indicates the current network rather than the value that was remotely written to the file. This re-write of EF_{Loc}i may take place either as a consequence of receiving the remote command to perform the refresh or from the actual execution of the refresh command by the phone. In any case, that nullifies the attempt to clear the EF_{Loc}i and the phone will once again go back to the non-preferred network.

- 30 The EF_{FPLMN} specifies networks that are explicitly forbidden for the subscriber to roam into. In applying dynamic roaming management solutions, it is possible to use the EF_{FPLMN} to improve the chances of getting the subscriber to move into the preferred network. The usage also has some severe drawbacks.

Int'l Patent- och reg.verket

2003 -01- 17

Muvudaxen Kassan

A possible usage of EF_{FPLMN} in dynamic roaming is to take the network identity of the non-preferred network that the subscriber is currently roamed into and write that network identity into the EF_{FPLMN} using remote update. When the roaming control PLMN-list is correct and contains the preferred network or networks, the dynamic 5 roaming management solution can issue a refresh action of some severity that has been judged necessary, possibly a hard reset. When the phone re-initializes (i.e. selects a network again), it will find the information in EF_{Loc} regarding most recent network. However, since that network is also listed in the EF_{FPLMN}, the phone is not allowed to select that network. Therefore, the phone is forced to select another 10 network and will thus attempt the networks listed in the roaming control PLMN-list. Therefore, if a preferred network is available, the phone will select it.

When the RMA detects that the subscriber has roamed onto a preferred network, it 15 can do another remote update and remove the non-preferred network from the EF_{FPLMN}.

Obviously, the handling described concerning the EF_{FPLMN} can cause severe service disruptions to the subscriber. In addition to losing network connection while forced to search for another network, there is a risk that the non-preferred network that the 20 subscriber was roamed to was the only one with coverage in the area. This means that the subscriber will be without service until another network becomes present.

Regardless of the disadvantages of using the EF_{FPLMN}, some operators have still chosen to mechanism since the value of correct roaming has been judged as higher 25 than the negative effects of subjecting the subscriber to service loss. This is clearly not a generally acceptable behavior.

THE OBJECT OF THE INVENTION

30

The object of the invention is therefore to develop a dynamic roaming method with improved functionality.

Lit. t. Patent- och reg.verket

2003 -01- 17

Muvudaxan Kasseen

SUMMARY OF THE INVENTION

The method of the invention is concerned with management of roaming of mobile subscribers between a home network and foreign networks. In the method, the 5 roaming behavior of a mobile terminal is based on roaming settings in the form of contents of different control files saved in the mobile terminal of the subscribers. A first file contains a list of networks to be used in a priority order in a roaming situation and a second file contains information about the last network the subscriber was registered in. It is the second file that primarily is used as information in the roaming 10 situation. The method starts with roaming of the subscriber from one network to another network, and checking the current roaming setting for the subscriber. If the network that the subscriber roamed into does not correspond to the highest priority network, the subscriber is moved to a preferred network corresponding to the priority order of said list. The moving takes place by saving changed second file information 15 to be used in the moving and sending the information about said change to the mobile terminal. The network connection is then re-established by the mobile terminal by selecting the preferred network from said changed information.

20 The saving is performed either by updating said second file or by saving the new second file information in a place other than the second place. The choice of where to temporarily save such information in another place than in the file depends on the chosen embodiment: The information could be stored in a file that is under the exclusive control of the embodiment of the DRC or in any other place judged suitable for the embodiment.

25

The preferable embodiments of the invention are presented by the subclaims.

30 Preferably, said checking is either performed by a roaming management application (RMA), which detects if the subscriber is not on the preferred network and decides to use dynamic roaming to actively move the subscriber to a preferred network or this is done by a separate dynamic roaming client (DRC). The updating of the second file is performed by DRC either directly or after having received a command sent by the RMA.

Ink t Patent- och reg.verket

2003 -01- 17

Muvudanen Kassen

Said files can be elementary files (EF) of SIM cards specified in GSM 11.11, whereby said first file is EF_{PLMN} and said second file is EF_{Loc}. The mobile terminal can be a mobile phone.

- 5 Information about said updating to the mobile terminal is forwarded by sending a proactive refresh command to the mobile terminal according to GSM 11.14 or TS 31.111.

A possible embodiment of the invention is to place the dynamic roaming client as a 10 plug-in to a SIM or Smart Card based interpreter. Examples of such Smart Card based interpreters can be the SmartTrust WIB™, the USAT Interpreter specified as part of the 3GPP in specifications TS 31.113, 31.113 and 31.114 or any other similar specification. These interpreters have the ability to dynamically interpret byte-code 15 command sequences and execute accordingly. These interpreters thus implement program execution environments where the byte-code command sequences form the programs that are executed. The solution can also be embodied as a separate application on the SIM card or a USIM card.

The invention makes the file update operations and the refresh operation be as close 20 to each other as possible. In the embodiment of a plug-in, this means that there shall be a client that has the right to update EF_{Loc}. The byte code script that is executed by the interpreter would then cause the interpreter to update EF_{Loc} and thereafter issue a refresh command as specified in GSM 11.14 to the terminal.

25 Any alternate embodiments can be achieved in a similar way. The intention is to make sure that the remote command is delivered to the SIM in a whole that is executed together. The intention is to avoid a scenario where the EF_{Loc} is first updated remotely and when this update is ready, another remote command is issued to initiate the refresh. The second command delivery risks triggering a new location 30 update and a possible update of EF_{Loc}. This would mean that the previous update of EF_{Loc} became undone and the refresh serves no purpose. By making sure that these operations are contained in the same data sequence, the intermediate rollback of EF_{Loc} can be avoided.

Ink t Patent- och reg.verket

2003 -01- 17

Huvudfaxen Kassan

In the case where the EF_{Loc}i change that is made gets rolled back by the phone as an integral part or a side effect of executing the refresh command, the invention provides an optional extension to the above functionality. Depending on embodiment and operating possibilities a couple of alternate extensions exist.

- 5 In the first possible extension, the embodiment of the invention on the SIM card shall detect re-initialization of the SIM card after performing the dynamic roaming management operations described previously. When such a first re-initialization of the SIM (re-establishing of network) after dynamic roaming management operations 10 is performed, the embodiment shall detect this and alter the contents of the EF_{Loc}i before the phone reads it. The data to be stored in EF_{Loc}i can be either padding data or true data of a preferred network. In the cases where correct network identifying data can be put into EF_{Loc}i, the advantages of quick network selection as described in the previous chapter can be maintained.
- 15 If possible, the embodiment may also choose to alter value that is returned to the mobile terminal when it issues a read command for EF_{Loc}i in the first SIM re-initialization following a dynamic roaming management operation. This would imply that rather than attempting to write alternate data to the file, the embodiment 20 intercepts the EF_{Loc}i read operation and sends either padding data or correct network identifying data that identifies a preferred network.

Also note that the above descriptions of remote triggering of the action can be replaced by a local trigger on the SIM card or a locally stored control sequence. One 25 embodiment of such a control sequence would be in a SIM card Interpreter but the logic could also be coded into a separate application on the SIM card. It could be envisioned that any embodiment could exist.

Furthermore the names of the files might be different than the ones used in this 30 document.

In the following, the invention is described by means of some advantageous embodiments by means of figures. The invention is not restricted to the details of the embodiments.

Ink. t. Patent- och reg.verket

2003-01-17

Huvudfaxon Kassan

FIGURES

Figure 1 is a view of the environment, wherein the invention can be used.

5 Figure 2 presents a flow scheme of a first embodiment of the method of the invention

Figure 3 presents a flow scheme of a second embodiment of the method of the invention

10 Figure 4 presents a flow scheme of a third embodiment of the method of the invention

Figure 5 presents a flow scheme of a fourth embodiment of the method of the invention

15

Figure 6 presents a flow scheme of a fifth embodiment of the method of the invention

DETAILED DESCRIPTION

20

Figure 1 presents a scenario, wherein a mobile subscriber with the mobile terminal ME moves from a first network GSM1 to another GSM2. In this embodiment, GSM1 is assumed to be the home network even if the invention equally well can be applied in a situation wherein the subscriber moves from one foreign network to another.

25

HLR is the home location register of subscribers belonging to network GSM1. The method of the invention is applied in a situation, wherein roaming of the ME from GSM1 to GSM 2 takes place, which is indicated with an arrow in figure 1.

30

The HLR is always aware of in which network the subscribers are. The roaming is managed by a roaming management application in a roaming server, which gets the information about the roaming situations of subscribers from e.g. the HLR.

When the ME has entered a new, foreign network GSM2, the subscriber is registered in the Visitor Location Register (VLR) of the foreign network and the HLR of the

Ink. t Patent- och reg.verket

2003 -01- 17

Muvuetaxen Kassen

network GSM1 is updated. The HLR can now send the roaming trigger to the RMA. The roaming trigger could also be generated from another origin.

In the method of the invention, it is checked if the subscriber roamed into the 5 preferred network. Preferably, said checking is either performed by the roaming management application (RMA), which detects if the subscriber is not on the preferred network and decides to use dynamic roaming to actively move the subscriber to a preferred network or this is done by a separate dynamic roaming client (DRC).

10

Figure 2 presents an overall flow scheme of an embodiment of the method of the invention. The method of the invention is concerned with management of roaming of mobile subscribers between a home network and foreign networks. In the method, the roaming behavior of a mobile terminal is based on roaming settings in the form of 15 contents of different control files saved in the mobile terminal of the subscribers. A first file contains a list of networks to be used in a priority order in a roaming situation and a second file contains information about the network the phone was most recently registered to. Said files are elementary files (EF) specified in GSM 11.11, whereby said first file is EF_{PLMN} and said second file is EF_{Loc}.

20

When the subscriber roams from one network to another (step 1 of figure 2) he is connected to a network with the highest possible preference in said list. This means that the network with the highest priority is tried first and if that network is not available, the next network in the list is tried and so on until a connection is achieved. 25 Thus, the selected network is in practice not always the highest priority network according to the list. Furthermore, most phones, once a phone registers to a non-preferred network, has a tendency to remain there until something extra-ordinary, like coverage loss, takes place. So even if the phone is turned off and on, the phone will remember the last network it was roamed onto and will try to go back to that network again by reading the information from the (Location Information) LOCI file on the SIM card. Thus, in the practice, the network is often primarily selected on the basis of the 30 information in the LOCI file and not from the list. Without the invention, the subscriber would therefore remain even longer than needed on the wrong network.

Int. t. Patent- och reg.verket

2003 -01- 17

Mjuudfæwan Kessen

As a result of the roaming of the subscriber in step 1, The Home Location Register (HLR) immediately gets information of the roaming after which a trigger is sent to a Roaming Management Application (RMA) situated in the roaming server (Step 2 of figure 2) about the roaming. The RMA now checks the current roaming setting (the priority list of networks) for the subscriber and compares it to the location that the subscriber roamed into (in step 3 of figure 2).

- 5 In step 4, RMA detects that the subscriber is not on the desired network and therefore decides to use dynamic roaming to actively move the subscriber to a preferred network.

10

In step 5, RMA prepares a command packet to instruct the DRC to perform dynamic roaming actions for moving the subscriber to the preferred network. This command packet contains specific instructions for updating the LOCI file on the SIM card (EF_{Loc}). The command packets carry the logical protocol between the RMA and

- 15 DRC. The exact form and content of the command packet will depend on the actual embodiment of the DRC. These dynamic roaming management command packages and sent over-the-air to a dynamic roaming client (DRC). One possible embodiment of placing the DRC is as a plug-in to a SIM based or Smart Card based interpreter. Another possible embodiment is as a separate application on the SIM card or a USIM card.

20

In step 6, DRC updates EF_{Loc} according to data in the command packet.

- 25 In step 7, information about said updating is sent to the mobile terminal, which is performed by sending a proactive refresh command to the mobile terminal according to GSM 11.14 or TS 31.111.

- 30 As a consequence of the refresh command, the mobile terminal re-establishes the network connection. The network selection will be controlled by the contents of the file on the SIM or USIM card. Most notably, the mobile terminal will be reading and selecting from EF_{Loc} the preferred network in step 8 (re-initializes the SIM).

In step 9, the phone connects to the preferred network.

Ink. t. Patent- och reg.verket

2003 -01- 17

Huvudfakten Kassan

RMA receives notification that the phone is on the preferred network and can adjust any operations accordingly, if so desired as a consequence of the change of the network.

- Figure 3 presents an overall flow scheme of another embodiment of the method of the invention. As in figure 2, the subscriber roams from one network to another in step 1. In this embodiment the trigger about the roaming is directly sent to the Dynamic Roaming Client in step 2. The DRC checks the current roaming setting (the priority list of networks) for the subscriber DRC detects that the subscriber is not on the desired network and therefore decides to use dynamic roaming to actively move the subscriber to a preferred network. Thereafter, the method proceeds as in steps 6 – 9 of figure 2, being steps 5 – 8 in figure 3.

Figure 4 presents a flow scheme of a third embodiment of the method of the invention. Steps 1 – 5 corresponds to the steps presented in connection with figure 2.

- In step 6, DRC saves the desired value of EF_{Loci} in some other place than in EF_{Loci} and set an indication that dynamic roaming is ongoing. Thus, DRC stores information that a dynamic roaming management operation is being performed but is implemented NOT to explicitly write the contents of the EF_{Loci} on the SIM card in this step. This is relevant in a situation, wherein the mobile terminal updates the EF_{Loci} as a direct consequence of executing the refresh command in step 7. If this is the case, as is assumed in figure 4, DRC can choose only to store information that dynamic roaming is ongoing and which is the preferred network.

- Said files with which the roaming behavior is managed is the list of preferred networks as well as EF_{Loci}, which remembers the last location, including the network in which the mobile terminal was. These files are read by the mobile terminal, which understands their content. In addition to these files, DRC can have specific files for the function of DRC. DRC might have an additional file of its own file, in which extra information is saved or DRC can have several files for saving specific information. Information can e.g. be saved in a file on the SIM card, in another memory on the SIM card, in the same file in the SIM card or in different files on the SIM card.

Int. t. Patent- och reg.verket

2003 -01- 17

Muvudfaxen Kassan

For example, DRC could have a file named EF_{RoamingManagementStatus}, with the values "ongoing" or "finished", or "0", or "1". DRC could have another file, EF_{DRCLocValue} containing the value to be written in EF_{Loc} or to be returned as a response to a read request according to given embodiments. Other implementations are of course also
5 possible.

In step 7, DRC indicates changed situation for the mobile terminal, which is performed by sending a proactive refresh command to the mobile terminal according to GSM 11.14 or TS 31.111 and then updates EF_{Loc}. Naturally, DRC will perform the
10 update of EF_{Loc} at a later point in time than any update of EF_{Loc} by the mobile terminal would take place as discussed in the foregoing paragraph.

As a consequence of the refresh command, the mobile terminal re-establishes the network connection. The network selection will be controlled by the contents of the
15 file on the SIM or USIM card. Most notably, the mobile terminal will be reading and selecting from the preferred network in step 8 (re-initializes the SIM).

In step 9, the phone connects the preferred network.

RMA receives notification that the phone is on the preferred network and can adjust any operations accordingly, if so desired as a consequence of the change of the
20 network.

Figure 5 presents a flow scheme of a fourth embodiment of the method of the invention. Steps 1 – 6 correspond to the steps presented in connection with figure 4.

In step 7, DRC indicates the changed situation for the mobile terminal, which is performed by sending a proactive refresh command to the mobile terminal according to GSM 11.14 or TS 31.111.
25

In step 8, the mobile terminal requests to read EF_{Loc}.

30 In step 9 DRC gives the saved desired EF_{Loc} value as a reply to the request, i.e. intercepts the mobile terminal attempt to read EF_{Loc} and answers with the value saved in step 6 rather than the physical value of EF_{Loc}.

In step 10, the mobile terminal selects the preferred network given by DRC and connecting to the preferred network takes place in step 11.

- Figure 6 presents a flow scheme of a fifth embodiment of the method of the invention.
5 Steps 1 – 7 in figure 6 corresponds to the same steps 1 – 7 as in figure 2.

In step 8, DRC hinders the mobile terminal to update the EF_{LocI} to contain information about the current network. Thus, also in the embodiment of figure 6, it is taken into consideration that the mobile terminal might update the EF_{LocI} to the 10 network the mobile terminal was in as a direct consequence of executing the refresh command in step 7 by intercepting any attempt from the mobile terminal to write a new value to EF_{LocI} until the network is changed to the preferred one.

In step 9, the mobile terminal then reads EF_{LocI} and selects the preferred network,
15 and connects to it in step 10.

Many combinations of the above embodiments are possible and the invention is of course not restricted to the above embodiments, which are meant to be presented as examples. Thus, the combinations are non-exhaustive and other possible 20 combinations may exist. The important goal is to make the result of the read operation of EF_{LocI} be the value of EF_{LocI} that DRC wishes the mobile terminal to see.

E.g. in cases where the DRC does not perform a direct write operation of the EF_{LocI}
25 as in figures 4 and 5, the DRC looks for the information that a dynamic roaming action is ongoing. In figure 4, the DRC looks for the information about whether dynamic roaming is ongoing in step 7 after the mobile has received the refresh command and is acting on it. The presence of this information causes DRC to update EF_{LocI} with the desired value. In figure 5, the DRC uses this information when executing step 9. This information was possibly stored in step 6. If that information is found DRC changes the contents of the EF_{LocI} or prepares to intercept the next read operation of EF_{LocI} from the phone. The goal is to ensure that the first time the mobile terminal attempts to read the value of EF_{LocI} during re-initialization, it shall 30 see the value that DRC desires that it shall see.

Ink. t Patent- och reg.verket

2003 -01- 17

Muvudlauren Kassan

Generally, the purpose of step 7 (the refresh command) is to inform the mobile terminal that changes of importance has taken place. The goal of the action is to make the mobile terminal re-initialize its network selection and again register to the network. The network shall be the one DRC has decided.

5

The purpose of step 6 is to perform any action necessary or possible to perform before step 7 to assist in achieving the goal of changing networks.

10 The purpose of step 8 is to perform any action necessary or possible to perform after step 7 to assist in achieving the goal of changing networks.

In step 8 (step 7 in figure 3) the mobile terminal acts in accordance with the refresh command, which may vary, since it can mean that the mobile terminal restarts its communication with SIM and reads all data again. In some levels of refresh this can 15 even mean that the user has to input the PIN again, depending on which level is used. According to TS 31.111, a REFRESH requests the ME to carry out an initialization, and/or advises the ME that the contents or structure of EFs on the SIM have been changed. The command also makes it possible to restart a card session by resetting the SIM. The different levels are standardized. All levels are not useful in 20 the invention. The levels most useful are indicated after the following list. There are seven levels according to TS 31.111 version 5.3.0.

USIM Initialization

This mode tells the mobile terminal to perform USIM Initialization as defined in TS 25 31.102 [14] starting after the PIN verification procedure.

USIM File Change Notification

This mode informs the mobile terminal of the EFs that have been changed so the mobile terminal can re-read these files if necessary.

30

USIM Initialization and File Change Notification

This is a combination of the two above modes above.

35 USIM Initialization and Full File Change Notification

Ink. t Patent- och reg.verket

2003 -01- 17

Muvudfakten Kassan

This mode causes the mobile terminal to perform the USIM initialization procedure as in the first mode above and informs the ME that several EFs have been changed.

UICC Reset

- 5 This mode causes the mobile terminal to run the UICC (VAD ÅR?) session termination procedure in accordance with TS 31.101 [13], perform a reset of the UICC and start a new application session

USIM Application Reset.

- 10 This mode causes the mobile terminal to run the 3G session termination and the USIM application closure procedures in accordance with TS 31.102 [14] and thereafter perform the USIM initialization procedure;

3G Session Reset.

- 15 This mode is equivalent to "USIM Initialization and File Change Notification" but also requires the mobile terminal to perform the MM Restart procedure defined in 3G 23.122 [7].

- 20 The most useful levels for the invention are USIM Initialization, USIM Initialization and File Change Notification, SIM Initialization and Full File Change Notification, UICC Reset, USIM Application Reset, and 3G Session Reset.

- 25 Future versions of the standard might contain more levels, the use of which belongs to the scope of the claims. The invention shall therefore not be limited to the levels indicated above.

30

33
34
35
36
37
38
39

Ink t Patent- och reg.verket
2003 -01- 17
Huvudfaxon Kassan

CLAIMS

1. Method for the management of roaming of mobile subscribers between a home network and foreign networks, in which method the roaming behavior of a mobile terminal is based on roaming settings in the form of contents of different control files saved in the mobile terminal of the subscribers, one file containing a list of networks to be used in a priority order in a roaming situation and a second file containing information about the last network the subscriber was registered in, the second file being the primarily used information in the roaming situation, the method comprising the following steps
 - a) the subscriber roaming from one network to another network,
 - b) checking the current roaming setting for the subscriber and,
 - c) if the network that the subscriber roamed into does not correspond to the highest priority network, moving the subscriber to a preferred network corresponding to said priority order,
characterized in that, the subscriber is moved to the preferred network by
 - d) saving changed second file information to be used in the moving,
 - e) sending information about said change to the mobile terminal, as a consequence of which,
 - f) the network connection is re-established by the mobile terminal by selecting the preferred network from said changed information.
2. Method of claim 1, characterized in that the changed second file information saved in step d) is performed by updating said second file to be in accordance with said list.
3. Method of claim 2, characterized in that in step e) information about said updating is sent to the mobile terminal as a consequence of which the network connection is re-established by the mobile terminal by reading and selecting from said second file the preferred network.
4. Method of any of claims 1 - 3, characterized in that any attempt from the mobile terminal to write a new value to the second file until the preferred network is roamed into is intercepted.

6. Method of claim 1, characterized in that the changed second file information saved in step d) is performed by saving the desired value of the second file in some other place than the second file and by setting set an indication that dynamic roaming is ongoing.
5
6. Method of claim 5, characterized in that the second file is updated after step e) after which the network connection is re-established by the mobile terminal by reading and selecting from said second file the preferred network.
- 10 7. Method of claim 5, characterized in that the mobile terminal attempt to read the second file is intercepted by answering with the value saved in said other place than the second file, after which the network connection is re-established by the mobile terminal by using said saved value.
- 15 8. Method of any of claims 1 - 7, characterized in that step b) is performed by a roaming management application, which detects if the subscriber is not on the preferred network and decides to use dynamic roaming to actively move the subscriber to a preferred network.
- 20 9. Method of claim 8, characterized in that in order to actively move the subscriber to a preferred network, the roaming management application sends a command to a dynamic roaming client for performing step d).
- 25 10. Method of any of claims 1 - 7, characterized in that step b) is performed by a dynamic roaming client, which detects if the subscriber is not on the preferred network and decides to use dynamic roaming to actively move the subscriber to a preferred network.
- 30 11. Method of any of claims 1 - 10, characterized in that step d) is performed by a dynamic roaming server.
12. Method of any of claims 1 - 11, characterized in that said files are elementary files (EF) in the SIM card of the mobile terminal, which are specified in GSM 11.11, whereby said first file is EFPLMN and said second file is EFLoci.

13. Method of any of claims 1 - 12, characterized in that step e) is performed by sending a proactive refresh command to the mobile terminal according to GSM 11.14 or TS 31.111.

5 14. Method of claim 13, characterized in that the refresh command to the mobile terminal according to GSM 11.14 or TS 31.111 is some of the level commands USIM Initialization, USIM Initialization and File Change Notification, SIM Initialization and Full File Change Notification, UICC Reset, USIM Application Reset and 3G Session Reset.

10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
335100
335101
335102
335103
335104
335105
335106
335107
335108
335109
335110
335111
335112
335113
335114
335115
335116
335117
335118
335119
335120
335121
335122
335123
335124
335125
335126
335127
335128
335129
335130
335131
335132
335133
335134
335135
335136
335137
335138
335139
335140
335141
335142
335143
335144
335145
335146
335147
335148
335149
335150
335151
335152
335153
335154
335155
335156
335157
335158
335159
335160
335161
335162
335163
335164
335165
335166
335167
335168
335169
335170
335171
335172
335173
335174
335175
335176
335177
335178
335179
335180
335181
335182
335183
335184
335185
335186
335187
335188
335189
335190
335191
335192
335193
335194
335195
335196
335197
335198
335199
335200
335201
335202
335203
335204
335205
335206
335207
335208
335209
335210
335211
335212
335213
335214
335215
335216
335217
335218
335219
335220
335221
335222
335223
335224
335225
335226
335227
335228
335229
335230
335231
335232
335233
335234
335235
335236
335237
335238
335239
335240
335241
335242
335243
335244
335245
335246
335247
335248
335249
335250
335251
335252
335253
335254
335255
335256
335257
335258
335259
335260
335261
335262
335263
335264
335265
335266
335267
335268
335269
335270
335271
335272
335273
335274
335275
335276
335277
335278
335279
335280
335281
335282
335283
335284
335285
335286
335287
335288
335289
335290
335291
335292
335293
335294
335295
335296
335297
335298
335299
335300
335301
335302
335303
335304
335305
335306
335307
335308
335309
335310
335311
335312
335313
335314
335315
335316
335317
335318
335319
335320
335321
335322
335323
335324
335325
335326
335327
335328
335329
335330
335331
335332
335333
335334
335335
335336
335337
335338
335339
335340
335341
335342
335343
335344
335345
335346
335347
335348
335349
335350
335351
335352
335353
335354
335355
335356
335357
335358
335359
335360
335361
335362
335363
335364
335365
335366
335367
335368
335369
335370
335371
335372
335373
335374
335375
335376
335377
335378
335379
335380
335381
335382
335383
335384
335385
335386
335387
335388
335389
335390
335391
335392
335393
335394
335395
335396
335397
335398
335399
335400
335401
335402
335403
335404
335405
335406
335407
335408
335409
335410
335411
335412
335413
335414
335415
335416
335417
335418
335419
335420
335421
335422
335423
335424
335425
335426
335427
335428
335429
335430
335431
335432
335433
335434
335435
335436
335437
335438
335439
335440
335441
335442
335443
335444
335445
335446
335447
335448
335449
335450
335451
335452
335453
335454
335455
335456
335457
335458
335459
335460
335461
335462
335463
335464
335465
335466
335467
335468
335469
335470
335471
335472
335473
335474
335475
335476
335477
335478
335479
335480
335481
335482
335483
335484
335485
335486
335487
335488
335489
335490
335491
335492
335493
335494
335495
335496
335497
335498
335499
335500
335501
335502
335503
335504
335505
335506
335507
335508
335509
335510
335511
335512
335513
335514
335515
335516
335517
335518
335519
335520
335521
335522
335523
335524
335525
335526
335527
335528
335529
335530
335531
335532
335533
335534
335535
335536
335537
335538
335539
335540
335541
335542
335543
335544
335545
335546
335547
335548
335549
335550
335551
335552
335553
335554
335555
335556
335557
335558
335559
335560
335561
335562
335563
335564
335565
335566
335567
335568
335569
335570
335571
335572
335573
335574
335575
335576
335577
335578
335579
335580
335581
335582
335583
335584
335585
335586
335587
335588
335589
335590
335591
335592
335593
335594
335595
335596
335597
335598
335599
3355100
3355101
3355102
3355103
3355104
3355105
3355106
3355107
3355108
3355109
3355110
3355111
3355112
3355113
3355114
3355115
3355116
3355117
3355118
3355119
3355120
3355121
3355122
3355123
3355124
3355125
3355126
3355127
3355128
3355129
3355130
3355131
3355132
3355133
3355134
3355135
3355136
3355137
3355138
3355139
3355140
3355141
3355142
3355143
3355144
3355145
3355146
3355147
3355148
3355149
3355150
3355151
3355152
3355153
3355154
3355155
3355156
3355157
3355158
3355159
3355160
3355161
3355162
3355163
3355164
3355165
3355166
3355167
3355168
3355169
3355170
3355171
3355172
3355173
3355174
3355175
3355176
3355177
3355178
3355179
3355180
3355181
3355182
3355183
3355184
3355185
3355186
3355187
3355188
3355189
3355190
3355191
3355192
3355193
3355194
3355195
3355196
3355197
3355198
3355199
3355200
3355201
3355202
3355203
3355204
3355205
3355206
3355207
3355208
3355209
3355210
3355211
3355212
3355213
3355214
3355215
3355216
3355217
3355218
3355219
3355220
3355221
3355222
3355223
3355224
3355225
3355226
3355227
3355228
3355229
3355230
3355231
3355232
3355233
3355234
3355235
3355236
3355237
3355238
3355239
3355240
3355241
3355242
3355243
3355244
3355245
3355246
3355247
3355248
3355249
3355250
3355251
3355252
3355253
3355254
3355255
3355256
3355257
3355258
3355259
3355260
3355261
3355262
3355263
3355264
3355265
3355266
3355267
3355268
3355269
3355270
3355271
3355272
3355273
3355274
3355275
3355276
3355277
3355278
3355279
3355280
3355281
3355282
3355283
3355284
3355285
3355286
3355287
3355288
3355289
3355290
3355291
3355292
3355293
3355294
3355295
3355296
3355297
3355298
3355299
3355300
3355301
3355302
3355303
3355304
3355305
3355306
3355307
3355308
3355309
3355310
3355311
3355312
3355313
3355314
3355315
3355316
3355317
3355318
3355319
3355320
3355321
3355322
3355323
3355324
3355325
3355326
3355327
3355328
3355329
3355330
3355331
3355332
3355333
3355334
3355335
3355336
3355337
3355338
3355339
3355340
3355341
3355342
3355343
3355344
3355345
3355346
3355347
3355348
3355349
3355350
3355351
3355352
3355353
3355354
3355355
3355356
3355357
3355358
3355359
3355360
3355361
3355362
3355363
3355364
3355365
3355366
3355367
3355368
3355369
3355370
3355371
3355372
3355373
3355374
3355375
3355376
3355377
3355378
3355379
3355380
3355381
3355382
3355383
3355384
3355385
3355386
3355387
3355388
3355389
3355390
3355391
3355392
3355393
3355394
3355395
3355396
3355397
3355398
3355399
3355400
3355401
3355402
3355403
3355404
3355405
3355406
3355407
3355408
3355409
3355410
3355411
3355412
3355413
3355414
3355415
3355416
3355417
3355418
3355419
3355420
3355421
3355422
3355423
3355424
3355425
3355426
3355427
3355428
3355429
3355430
3355431
3355432
3355433
3355434
3355435
3355436
3355437
3355438
3355439
3355440
3355441
3355442
3355443
3355444
3355445
3355446
3355447
3355448
3355449
3355450
3355451
3355452
3355453
3355454
3355455
3355456
3355457
3355458
3355459
3355460
3355461
3355462
3355463
3355464
3355465
3355466
3355467
3355468
3355469
3355470
3355471
3355472
3355473
3355474
3355475
3355476
3355477
3355478
3355479
3355480
3355481
3355482
3355483
3355484
3355485
3355486
3355487
3355488
3355489
3355490
3355491
3355492
3355493
3355494
3355495
3355496
3355497
3355498
3355499
3355500
3355501
3355502
3355503
3355504
3355505
3355506
3355507
3355508
3355509
3355510
3355511
3355512
3355513
3355514
3355515
3355516
3355517
3355518
3355519
3355520
3355521
3355522
3355523
3355524
3355525
3355526
3355527
3355528
3355529
3355530
3355531
3355532
3355533
3355534
3355535
3355536
3355537
3355538
3355539
3355540
3355541
3355542
3355543
3355544
3355545
3355546
3355547
3355548
3355549
3355550
3355551
3355552
3355553
3355554
3355555
3355556
3355557
3355558
3355559
3355560
3355561
3355562
3355563
3355564
3355565
3355566
3355567
3355568
3355569
3355570
3355571
3355572
3355573
3355574
3355575
3355576
3355577
3355578
3355579
3355580
3355581
3355582
3355583
3355584
3355585
3355586
3355587
3355588
3355589
3355590
3355591
33555

SUMMARY

The method of the invention is concerned with management of roaming of mobile subscribers between a home network and foreign networks. In the method, the 5 roaming behavior of a mobile terminal is based on roaming settings in the form of contents of different control files saved in the mobile terminal of the subscribers. A first file contains a list of networks to be used in a priority order in a roaming situation and a second file contains information about the last network the subscriber was registered in. It is the second file that primarily is used as information in the roaming 10 situation. The method starts with roaming of the subscriber from one network to another network, and checking the current roaming setting for the subscriber. If the network that the subscriber roamed into does not correspond to the highest priority network, the subscriber is moved to a preferred network corresponding to the priority order of said list. The moving takes place by saving changed second file information 15 to be used in the moving and sending the information about said change to the mobile terminal. The network connection is then re-established by the mobile terminal by selecting the preferred network from said changed information.

FIG. 1

20

25

Ink. t. Patent- och reg.verket

2003 -01- 17

Huvudfaxon Kassan

1/6

FIG.1

Ink t Patent- och reg.verke

2003 -01- 17

Huvudfaxes Kasse.

2/6

FIG. 2

Ink. t. Patent- och reg.verket

2003 -01- 17

Huvudforsen Kassan

3/6

FIG. 3

Ink. t. Patent- och reg.verket
2003 -01- 17
Huvudfaxon Kassan

4/6

FIG. 4

Ink. t Patent- och reg.verket

2003-01-17

Huvudfaxen Kesson

5/6

FIG. 5

Ink. t. Patent- och reg.verket

2003 -01- 17

Huvudfaxen Kassan

FIG. 6

Ink. t. Patent- och reg.verket

2003-01-17

Huvudfaxen Kassan

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.