

پروژه وریلاگ مدارمنطقی

مهلت تحويل: 1401/04/03

بهار 1401

- پیادهسازی پروژه به صورت انفرادی یا تیمهای 2 نفری خواهد بود.
- پوشه پروژه را فشرده(zip. یا rar.) کرده و در بخشی که در سامانه vu ایجاد شده بارگذاری کنید. اسم فایل باید به فرمت StuNumber_VP (درصورت گروهی زدن پروژه) و یا StuNumber_VP باشد. هردو عضو یک گروه باید فایل پروژه را بارگذاری کنند.
 - دریافت فایلهای پروژه از طریق روشهایی مانند تلگرام، واتساپ و ... امکان پذیر نیست.
- درصورت مشاهده هرگونه تقلب چه در بخش اصلی و چه دربخش امتیازی، نمره کل پروژه تمام نفراتی که تقلب آنها اثبات شده، منفی صد (100-) لحاظ می شود.
 - زمان ارائه پروژه پس از اتمام زمان ارسال فایلها اعلام خواهد شد.

مقدمه: واحد محاسبه و منطق (Arithmetic Logic Unit) یا ALU، بخش مهمی از یک پردازنده را تشکیل میدهد که اعمال پایه منطقی و حسابی را بر روی داده ها(عملوندها) به انجام میرساند. در این پروژه میخواهیم یک ALU ساده طراحی کنیم.

فاز اول: یک تمام جمع کننده به صورت ساختاری (gate-level) و یک مالتیپلکسر 4 به 1 (دارای دو خط انتخاب) به صورت رفتاری(Behavioral) در وریلاگ طراحی کنید.

فاز دوم: یک ALU ساده تک بیتی به شکل زیر و با نمونه گیری از قطعات و ماژولهای طراحی شده قبل و به شکل ساختاری طراحی کنید.

ورودىها: [3:0] A,B,Cin,S

خروجیها: f,Cout

خطوط انتخاب S[0:3] را به صورت vector تعریف نمایید. این خطوط طبق جدول زیر خروجی ALU را تعیین می کنند.

"جدول عملكرد ALU"

S3	S2	S1	S0	Cin	f	Explanation
0	0	0	0	Χ	A.B	AND
0	0	0	1	Χ	A+B	OR
0	0	1	0	Χ	A XOR B	XOR
0	0	1	1	0	Α	transfer input A
0	0	1	1	1	A+1	increment A
0	1	1	1	0	A-1	Decrement A
0	1	1	1	1	Α	transfer input A
1	0	1	1	0	A+B	ADD
1	0	1	1	1	A+B+1	ADD plus 1
1	1	1	1	0	A+B'	ADD to 1's Complement of B
1	1	1	1	1	A+B'+1	ADD to 2's Complement of B (A-B)

فاز سوم: با نمونه گیری از چهار ALU طراحی شده در فاز دوم، و یک گیت NOR چهار ورودی و یک XOR دو ورودی، یک ALU چهاربیتی به شکل زیر طراحی کنید. (به صورت ساختاری طراحی شود.)

ورودیها: دو vector چهاربیتی A و B، یک بیت Cin، یک vector چهاربیتی [3:0] که به خطوط [3:0] از هر برش تک بیتی ALU متصل میشود، و برای بقیه برشها، Cin متصل میشود، و برای بقیه برشها، Cin به Cout مرحله قبل وصل میشود.

خروجیها: یک بردار(vector) چهاربیتی F، یک خروجی Zero (که در صورت صفر بودن F، مقدار Zero برابر 1 میشود.) و خروجی overflow و خروجی Cout.

- ورودی Cin و خروجی Cout درشکل بالا رسم نشده است.
- 💠 نمره اضافه: پیاده سازی فاز سوم به صورت رفتاری، دارای نمره اضافه است.
- ❖ نمره اضافه: نوشتن تست بنچ (test bench) برای نمایش کارهای مختلف ALU دارای نمره اضافه است.

				٥
				ئى پروژ
				بم طراح
				سيد – تب
				موفق باث
				•
منفحه 4				
a				