Decision trees Bagging

Vladislav Goncharneko

ITMO, fall 2024

Recap

Lecture 4: SVM, PCA kNN indexes

- 1. Support Vector Machine (SVM)
 - Hinge loss
 - Kernel trick
- 2. Dimensionality reduction and PCA
 - Problem statement
 - Singular Value Decomposition
 - Eckart–Young theorem
 - Equivalent definitions
 - Data normalization
- 3. k Nearest Neighbors
 - o kNN indexes
 - > HNSW

Outline

- 1. Intuition
- 2. Construction procedure
- 3. Information criteria
- 4. Special highlights
 - Dealing with missing data
 - Binarization
 - Decision tree as linear model
 - Standards
 - Hyperparameters
- 5. Bootstrap and Bagging
- 6. Random Forest

Intuition

girafe ai

Decision tree for Iris data set

setosa
$$r_1(x) = [PL \leqslant 2.5]$$
virginica $r_2(x) = [PL > 2.5] \land [PW > 1.68]$ virginica $r_3(x) = [PL > 5] \land [PW \leqslant 1.68]$ versicolor $r_4(x) = [PL > 2.5] \land [PL \leqslant 5] \land [PW < 1.68]$

Decision tree in regression

Green - decision tree of depth 2

Red - decision tree of depth 5

Every leaf corresponds to some constant.

Construction procedure

girafe

1. Make a split

- 1. Make a split
- 2. Repeat

threshold value

i feature

WHAT IF I TOLD YOU TO TELL ME THAT I SHOULD TELL YOU WHAT IF I TOLD YOU

True

Greedy algorithm

A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage.

In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.

How to answer in leaf?

Classification:

- most popular
- sample with frequencies of classes

Regression:

Depends on loss function!

- for MSE
 - o average in node
- for MAE
 - o median in node

How to split data properly?

We can not use gradient this time because solution set is discrete.

So let's apply discrete optimization!

How to split data properly?

$$\frac{|L|}{|Q|}H(L) + \frac{|R|}{|Q|}H(R) \longrightarrow \min_{j,t}$$

How to choose concrete split?

Brute force algorithm will take too much time.

Random splits are chosen and compared.

How to split data properly?

girafe ai

H(R) is measure of "heterogeneity" of our data.

Consider binary classification problem:

H(R) is measure of "heterogeneity" of our data.

Consider binary classification problem:

H(R) is measure of "heterogeneity" of our data.

Consider binary classification problem:

Obvious way:

Misclassification criteria:

$$H(R) = 1 - \max\{p_0, p_1\}$$

1. Entropy criteria:
$$H(R) = -p_0 \log p_0 - p_1 \log p_1$$

2. Gini impurity:
$$H(R) = 1 - p_0^2 - p_1^2 = 2p_0p_1$$

H(R) is measure of "heterogeneity" of our data.

Consider multiclass classification problem:

Obvious way:

Misclassification criteria:

$$H(R) = 1 - \max_{k} \{p_k\}$$

$$H(R) = -\sum_{k=0}^{\infty} p_k \log p_k$$

$$H(R) = 1 - \sum_{k} (p_k)^2$$

H(R) is measure of "heterogeneity" of our data.

Consider binary classification problem:

H(R) is measure of "heterogeneity" of our data.

Consider binary classification problem:

Information criteria: Entropy

In binary case N = 2

$$S = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-} = -p_{+} \log_{2} p_{+} - (1 - p_{+}) \log_{2} (1 - p_{+})$$

Information criteria: Gini impurity

$$G = 1 - \sum_{k} (p_k)^2$$

In binary case N = 2

$$G = 1 - p_+^2 - p_-^2 = 1 - p_+^2 - (1 - p_+)^2 = 2p_+(1 - p_+)$$

H(R) is measure of "heterogeneity" of our data.

Consider multiclass classification problem:

Obvious way: Misclassification criteria:

$$H(R) = 1 - \max_{k} \{p_k\}$$

1. Entropy criteria:
$$H(R) = -\sum_k p_k \log_2 p_k$$

2. Gini impurity:
$$H(R) = 1 - \sum_k (p_k)^2$$

H(R) is measure of "heterogeneity" of our data.

Consider regression problem:

1. Mean squared error

$$H(R) = \min_{c} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - c)^2$$

What is the constant?

$$c^* = \frac{1}{|R|} \sum_{y_i \in R} y_i$$

Hyperparameters

- max_depth: min 1
- min_samples_split: min 2
- min_samples_leaf: min 1
- min_impurity_decrease

Minor

- criterion:
 - o gini, entropy, log_loss for classification
 - MSE or MAE for regression
- splitter: best, random
- max_features: sqrt, log2

As of sklearn implementation

Standards

- <u>ID-3</u>
 - Entropy criteria; Stops when no more gain available
- C4.5
 - Normalised entropy criteria; Stops depending on leaf size; Incorporates pruning
- C5.0
 - Some updates on C4.5
- CART
 - Gini criteria; Cost-complexity Pruning; Surrogate predicates for missing data;
- etc.

Read more

Special highlights

girafe ai

Missing values in Decision Trees

If the value is missing, one might use both sub-trees and average their predictions.

But this will negatively affect model computational performance.

Missing value

$$\hat{y} = \frac{|L|}{|Q|} \hat{y}_L + \frac{|R|}{|Q|} \hat{y}_R$$

Missing values in Catboost

Forbidden: Missing values are not supported, their presence is interpreted as an error

Min: Missing values are processed as the minimum value (less than all other values) for the feature. It is guaranteed that a split that separates missing values from all other values is considered when selecting trees.

Max: Missing values are processed as the maximum value (greater than all other values) for the feature. It is guaranteed that a split that separates missing values from all other values is considered when selecting trees.

The **default** processing mode **is Min**

Documentation

Binarization

Idea: instead selecting one threshold define several for one feature.

e.g. <u>Border count hyperparameter</u> in Catboost (defaults to 254)

Decision Trees as Linear models

Let J be the subspace of the original feature space, corresponding to the leaf of the tree.

Prediction takes form

$$\hat{y} = \sum_{j} w_j [x \in J_j]$$

Bootstrap and Bagging

girafe ai

Bootstrap

Consider dataset X containing m objects.

Pick m objects with return from X and repeat in N times to get N datasets.

Error of model trained on Xj:
$$\varepsilon_j(x) = b_j(x) - y(x), \qquad j = 1, \ldots, N,$$

Then
$$\mathbb{E}_x(b_j(x)-y(x))^2=\mathbb{E}_x\varepsilon_j^2(x)$$
.

The mean error of N models:
$$E_1=rac{1}{N}\sum_{j=1}^N \mathbb{E}_x arepsilon_j^2(x).$$

Bootstrap

Consider the errors unbiased and uncorrelated:

$$\mathbb{E}_x \varepsilon_j(x) = 0;$$

$$\mathbb{E}_x \varepsilon_i(x) \varepsilon_j(x) = 0, \quad i \neq j.$$

$$E_N = \mathbb{E}_x \left(\frac{1}{N} \sum_{j=1}^n b_j(x) - y(x) \right)^2 =$$

The final model averages all predictions:

$$a(x) = \frac{1}{N} \sum_{i=1}^{N} b_j(x).$$

$$= \mathbb{E}_{x} \left(\frac{1}{N} \sum_{j=1}^{N} \varepsilon_{j}(x) \right)^{2} =$$

$$= \frac{1}{N^{2}} \mathbb{E}_{x} \left(\sum_{j=1}^{N} \varepsilon_{j}^{2}(x) + \sum_{i \neq j} \varepsilon_{i}(x) \varepsilon_{j}(x) \right) =$$

$$= 0$$

Bootstrap

Consider the errors unbiased and unco

$$\mathbb{E}_x \varepsilon_j(x) = 0;$$

 $\mathbb{E}_x \varepsilon_i(x) \varepsilon_j(x) = 0, \quad i \neq j.$

$$E_N = \mathbb{E}_x \left(\frac{1}{N} \sum_{j=1}^n b_j(x) - y(x) \right)^2 =$$

The final model averages all predictions:

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x).$$

Error decreased by N times!

$$= \mathbb{E}_{x} \left(\frac{1}{N} \sum_{j=1}^{N} \varepsilon_{j}(x) \right)^{2} =$$

$$= \frac{1}{N^{2}} \mathbb{E}_{x} \left(\sum_{j=1}^{N} \varepsilon_{j}^{2}(x) + \underbrace{\sum_{i \neq j} \varepsilon_{i}(x) \varepsilon_{j}(x)}_{=0} \right) =$$

Bagging = Bootstrap aggregating

Decreases the variance if the basic algorithms are not correlated

Bagging overfitting

Random Forest

girafe

RSM - Random Subspace Method

Same approach, but with features.

Just subsample of features for each bootstraped dataset

Random Forest

Bagging + RSM = Random Forest

Random Forest

- One of the greatest "universal" models
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc

Random Forest Classifier

3-Nearest Neighbors

Isolation forest

girafe

Method to search for anomalies

Method to search for anomalies

Isolation Forest 'isolates' observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of the selected feature.

This path length, averaged over a forest of such random trees, is a measure of normality and our decision function.

Random partitioning produces noticeably shorter paths for anomalies. Hence, when a forest of random trees collectively produce shorter path lengths for particular samples, they are highly likely to be anomalies.

https://scikit-learn.org/stable/modules/outlier_detection.html#isolation-forest

https://alexanderdyakonov.wordpress.com/2017/04/19/%D0%BF%D0%BE%D0%B8%D0%BA-%D0%B0%D0%BD%D0%BE%D0%BC%D0%B0%D0%BB%D0%B8%D0%B9-anomaly-detection/

Revise

- 1. Intuition
- 2. Construction procedure
- 3. Information criteria
- 4. Decision trees special highlights
 - o Decision tree as linear model
 - Dealing with missing data
 - Categorical features
- 5. Bootstrap and Bagging
- 6. Random Forest

Thanks for attention!

Questions?

Classification problem with 3 classes and 2 features.