XS3310 Teoría Estadística I Semestre 2021

Escuela de Estadística

2021-05-17

class: center, middle

¿Qué hemos visto hasta ahora?

Todo sobre estimadores puntuales + pivotes e intervalos de confianza.

¿Qué vamos a discutir hoy?

Bootstrap			

Bootstrap

- La inferencia frecuentista se basa en modelos y supuestos. En muchos casos, las expresiones acerca de la exactitud (tales como el error estándar) están basadas en teoría asintótica, y por lo tanto no deberían usarse con muestras pequeñas.
- En otros casos, no estamos usando teoría asintótica, pero no sabemos cómo hacer una suposición acerca de la distribución poblacional, debido a que la muestra no se parece a ninguna forma conocida.
- Una alternativa "moderna" es el método de bootstrap, introducida por Efron así casi 40 años (1979). Bootstrap es un método de remuestreo que es computacionalmente intensivo, y que es aplicable a una gran variedad de casos, incluyendo aquellos en los que los supuestos son más realistas.

Visualmente:	e: https://seeing-theory.brown.edu/frequentist-inference/es.html				

Bootstrap

¿De dónde viene la expresión?

https://www.huffpost.com/entry/pull-yourself-up-by-your-bootstraps-nonsense n 5b1ed024e4b0bbb7a0e037d4

Dr.	Bradley	Efron
-----	---------	-------

https://www.youtube.com/embed/Cx5pgZCdDGM

Principios de Bootstrap

- Si no existe información acerca de la distribución, en la muestra observada podemos encontrar información acerca de la distribución subyacente. Por lo tanto, re-muestrear la muestra es la mejor forma de acercarnos a lo que obtendríamos si se pudiera la oportunidad de re-muestrear de la distribución poblacional.
- Suponga que una muestra $X = (X_1, \dots, X_n)^T$ es utilizada para estimar un parámetro θ . Sea $\hat{\theta} = s(X)$ un estadístico para estimar el parámetro θ . Para hacer inferencia acerca de θ , nos interesa la distribución muestral de $\hat{\theta}$, o ciertos aspectos acerca de esa distribución: la exactitud de nuestra estimación, el intervalo de confianza, etc. En muchas aplicaciones, la distribución muestral de $\hat{\theta}$ no se puede encontrar.
- Si conociéramos la distribución poblacional P, podríamos sacar muestras $X^{(b)}, b = 1, ..., B$ de P usando métodos de Monte Carlo para estimar la distribución muestral del estimado. Sin embargo, si F es desconocido, entonces bootstrap sugiere que podemos aproximar ese muestreo re-muestreando nuestra muestra original. Así, podemos encontrar la distribución empírica del estimador.

https://seeing-theory.brown.edu/frequentist-inference/es.html

Distribución Empírica

Para una muestra X_1, \ldots, X_n de variables aleatorias con valores reales, independientes con distribución P, definimos la distribución \hat{P} como:

$$\hat{P}(A) = \frac{1}{n} \sum_{i=1}^{n} 1_A(X_i)$$
 para $A \subseteq \mathbb{R}$.

 \hat{P} es la distribución empírica de la muestra X. \hat{P} puede pensarse como una distribución que pone masa 1/n en cada observación X_i (para valores que ocurren más de una vez la masa será un múltiplo de 1/n). Entonces, \hat{P} es una distribución de probabilidad discreta con un espacio efectivo de muestreo X_1, \ldots, X_n .

Puede demostrarse que \hat{P} es el estimador máximo verosimil no paramétrico de P, lo cual justifica que podamos estimar P con \hat{P} sin tener otra información acerca de P (como por ejemplo si P pertenece a una familia paramétrica).

Distribución Empírica

Resultados teóricos

Sea $A \subseteq \mathbb{R}$ (tal que P(A) está definido), entonces tenemos: $\hat{P}(A) \xrightarrow{d} P(A)$ cuando $n \to \infty$.

De forma alternativa, podemos ver este resultado como una consecuencia directa de La Ley de los Grandes Números, ya que:

$$n\hat{P}(A) = \sum_{i=0}^{n} 1_A(X_i) \sim Bin(n, P(A))$$

por lo que $\hat{P}(A)$ tiende a su valor esperado P(A) cuando $n \to \infty$.

El teorema de Glivenko-Cantelli formaliza este resultado:

$$\sup_{A \in I} |\hat{P}(A) - P(A)| \to 0 \quad \text{si} \quad n \to \infty$$

donde I es el conjunto de intervalos en \mathbb{R} . En otras palabras, la distribución P(A) puede ser aproximada por $\hat{P}(A)$ igual de bien para toda $A \in I$.

Distribución Empírica

Muestras de una distribución empírica \hat{P}

Suponga que queremos una muestra iid de \hat{P} : $X^* = (X_1^*, \dots, X_n^*)^T$. Como mencionamos antes, \hat{P} pone masa 1/n en cada observación X_i . Entonces, cuando muestreamos de \hat{P} , la observación i-ésima X_i en la muestra original puede ser seleccionada con probabilidad 1/n. Esto nos lleva al siguiente proceso:

- Seleccione i_1, \ldots, i_n independientemente de una distribución uniforme en $1, \ldots, n$.
- Ahora haga $X_i^* = X_{i_i}$ y $X^* = (X_1^*, \dots, X_n^*)^T$.

En otras palabras, saque una muestra aleatoria con reemplazo de la muestra original X_1, \ldots, X_n .

El Principio de Bootstrap

- $X = (X_1, \dots, X_n)^T$ es una muestra aleatoria de una distribución P.
- $\theta = t(P)$ es algún parámetro de la distribución.
- $\hat{\theta} = s(X)$ es un estimador para θ .

La distribución muestral de $\hat{\theta}$ es entonces estimada por su equivalente de bootstrap:

$$\hat{P}(\hat{\theta} \in A) = P^*(\hat{\theta} \in A)$$

El Principio de Bootstrap

Figure 1: Diagrama

Ejemplo concreto

CommuteAtlanta <- read.csv2("data/CommuteAtlanta.csv")</pre>

City	Age	Distance	Time	Sex
Atlanta	19	10	15	M
Atlanta	55	45	60	\mathbf{M}
Atlanta	48	12	45	Μ
Atlanta	45	4	10	\mathbf{F}
Atlanta	48	15	30	\mathbf{F}
Atlanta	43	33	60	Μ

La aproximación de Monte Carlo

- En algunas ocasiones la forma de la distribución poblacional es conocida, pero la evaluación de la distribución exacta de la distribución muestral no es calculable.
- El procedimiento consiste en:
 - Escoja B muestras bootstrap independientes $X^{*(1)}, \ldots, X^{*(B)}$ de $\hat{P}: X_1^{*(b)}, \ldots, X_n^{*(b)} \sim_{iid} \hat{P}$ para $b = 1, \ldots, B$.
 - Evalúe las repeticiones de bootstrap: $\hat{\theta}^{*(b)} = s(X^{*(b)})$.
 - Estime la distribución muestral de θ con la distribución empírica de las repeticiones bootstrap: $\hat{\theta}^{*(1)}, \dots, \hat{\theta}^{*(B)}$:

$$\hat{P}(\hat{\theta}(A)) = \frac{1}{B} \sum_{b=1}^{B} 1_A(\hat{\theta}^{*(b)})$$

para conjuntos apropiados de $A \subseteq \mathbb{R}^p$ (si $\hat{\theta} \in \mathbb{R}^p$).

Pero, ¿y si solo queremos una cantidad de esa distribución muestral? pues hay fórmulas para calcularlas directamente.

Bootstrap para calcular errores estándar

Sea $\hat{\theta}$ un estimador de θ y suponga que queremos conocer el error estándar de $\hat{\theta}$. Un error estándar estimado de bootstrap se puede obtener con el siguiente algoritmo:

- Escoja B muestras bootstrap independientes $X^{*(1)},\dots,X^{*(B)}$ de \hat{P} : $X_1^{*(b)},\dots,X_n^{*(b)}\sim_{iid}\hat{P}$ para $b=1,\dots,B$.
- Evalúe las repeticiones de bootstrap: $\hat{\theta}^{*(b)} = s(X^{*(b)})$.
- Estime los errores estándar con la desviación estándar de las B repeticiones:

$$\hat{s}_{boot} = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} \left(\hat{\theta}^{*(b)} - \hat{\theta}^{*(.)} \right)^{2}}$$

donde $\hat{\theta}^{*(\cdot)} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{*(b)}$.

Estimadores usuales

```
x <- CommuteAtlanta$Time
(n <- length(x))

## [1] 500

(Tn <- var(x))

## [1] 429.2484</pre>
```

Muestra bootstrap

```
B <- 1000
Tboot_b <- NULL
for(b in 1:B) {
   xb <- sample(x, size = n, replace = TRUE)
   Tboot_b[b] <- var(xb)
}
Tboot_b[1:10]

## [1] 429.0391 492.5339 332.8533 438.5389 474.3159 387.1645 354.5111 551.7446
## [9] 436.7800 399.9257</pre>
```

Distribución \hat{P}

```
hist(Tboot_b, main= "Distribución de var(X)*")
```

Distribución de var(X)*

Bootstrap para calcular el sesgo

Suponga que queremos estimar un parámetro $\theta=t(P)$ con el estadístico $\hat{\theta}=s(X)$. El sesgo de un estimador $\hat{\theta}$ está definido como:

$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

Si sustituimos P por la distribución empírica \hat{P} , entonces obtenemos el estimado bootstrap del sesgo:

$$\widehat{bias(\hat{\theta})} = bias^*(\hat{\theta}^*) = E(\hat{\theta}^*) - \hat{\theta}$$

donde $\hat{\theta}$ es el estimador empírico de la muestra.

Cálculo de estadísticos bootstrap

[1] 432.196

```
(Vboot <- var(Tboot_b))

## [1] 5408.924

(sdboot <- sqrt(Vboot))

## [1] 73.54539

El sesgo bootstrap es

mean(Tboot_b) - Tn

## [1] 2.947608</pre>
```

Bootstrap para calcular el intervalo de confianza

Si tenemos las repeticiones bootstrap $\hat{\theta}^{*(1)}, \dots, \hat{\theta}^{*(B)}$, podemos estimar la distribución muestral de $\hat{\theta}$. A partir de esto, podemos construir intervalos de confianza para θ . Hay cuatro opciones: IC estándar, IC bootstrap t, IC percentiles, IC percentiles corregido por sesgo.

• IC normal: Utilizamos el resultado del TLC para decir que $\hat{\theta}$ es distribuido aproximadamente normal con media θ y variancia $s(\hat{\theta})^2$. Entonces, un IC $(1-\alpha)$ aproximado para θ está dado por:

$$\hat{ heta} \pm z_{lpha/2} \hat{s}_{boot}(\hat{ heta})$$

Cálculo de IC normal

```
(z <- qnorm(1 - 0.05 / 2))

## [1] 1.959964

c(Tn - z * sdboot, Tn + z * sdboot)

## [1] 285.1021 573.3947
```

Bootstrap para calcular el intervalo de confianza

• IC bootstrap studentizado: Utilizando el mismo resultado anterior, pero ahora usando $\hat{s}_X(\hat{\theta})$ como estimador de $s(\hat{\theta})$ basado en la muestra X. De las muestras bootstrap $X^{*(b)}$ se calcula:

$$Z^{*(b)} = \frac{\hat{\theta}^{*(b)} - \hat{\theta}}{\hat{s}_{X^*}(\hat{\theta})}$$

De los valores $Z^{*(b)}$, podemos estimar el valor crítico $z_{\alpha/2}$ como $\hat{z}_{\alpha/2}$ tal que:

$$\frac{1}{B} \sum_{b=1}^{B} 1_{[Z^{*(b)} \le \hat{z}_{\alpha}]} \approx \alpha$$

Entonces:

$$\left[\hat{\theta} - \hat{z}_{1-\alpha/2}s(\hat{\theta}), \hat{\theta} - \hat{z}_{\alpha/2}s(\hat{\theta})\right]$$

Cálculo de IC bootstrap studentizado

```
B <- 1000
Tboot_b <- NULL
Tboot_bm <- NULL
sdboot_b <- NULL
for (b in 1:B) {
    xb <- sample(x, size = n, replace = TRUE)
    Tboot_b[b] <- var(xb)
    for (m in 1:B) {
        xbm <- sample(xb, size = n, replace = TRUE)
        Tboot_bm[m] <- var(xbm)
    }
    sdboot_b[b] <- sd(Tboot_bm)
}
z_star <- (Tboot_b - Tn) / sdboot_b</pre>
```

hist(z_star)

Histogram of z_star

97.5% 2.5% ## 311.7205 719.2377

Bootstrap para calcular el intervalo de confianza pivotales

El intervalo de confianza pivotal de tamaño 1 — α es

$$\left(2\widehat{\theta}_n - \widehat{\theta}_L, 2\widehat{\theta}_n - \widehat{\theta}_U^*\right)$$

donde

$$\hat{P}^*(\hat{\theta}^* \le \hat{\theta}_L) = \frac{1}{B} \sum_{b=1}^{B} 1[\hat{\theta}^{*(b)} \le \hat{\theta}_L] \approx 1 - \alpha/2$$

$$\hat{P}^*(\hat{\theta}^* \le \hat{\theta}_U) = \frac{1}{B} \sum_{b=1}^B 1[\hat{\theta}^{*(b)} \le \hat{\theta}_U] \approx \alpha/2$$

El $2\hat{\theta}$ corrige el error por sesgo.

La prueba de este resultado está en All of nonparametric statistics de Larry Wassermann, p.32.

IC pivotal

```
c(2 * Tn - quantile(Tboot_b, 1 - 0.05 / 2),
   2 * Tn - quantile(Tboot_b, 0.05 / 2))

## 97.5% 2.5%
## 263.6263 551.5090
```

Referencias:

- UC3M español
- Chicago inglés
- Efron, B.; Tibshirani, R. (1993). An Introduction to the Bootstrap. Boca Raton, FL: Chapman & Hall/CRC. ISBN 0-412-04231-2.

Práctica de Intervalos de Confianza

1. La vida útil de cierto aparato de aire acondicionado sigue una distribución de Rayleigh, cuya función de densidad viene dada por la fórmula:

$$f(x|\theta) = \frac{x}{\theta^2} \exp\left(\frac{-x^2}{2\theta^2}\right) 1_{(x>0)}$$

Suponga que X_1, X_2, \dots, X_n es una muestra aleatoria correspondiente a la vida útil de n aparatos de aire acondicionado:

- a) Determine un estadístico suficiente para θ .
- b) Considere el pivote $\frac{1}{\theta^2} \sum_{j=1}^n X_j^2$ para construir un intervalo de confianza para θ con una confianza del $(1-\alpha)\%$.
- c) ¿Cuál es la relación entre el estimador de máxima verosimilitud obtenido en b) con la estimación por intervalo obtenido en c).
- d) Considere la muestra aleatoria de n=15 datos de una distribución U(0,1) que se ofrece, para simular una muestra aleatoria de 15 datos de una distribución de Rayleigh con $\theta=10$. Encuentre un intervalo de confianza del 95% para estimar θ .

Práctica de Intervalos de Confianza

```
data <- c(0.466, 0.589, 0.097, 0.809, 0.214, 0.315, 0.971, 0.298, 0.005, 0.126, 0.019, 0.553, 0.385, 0.232, 0.989)
```

- 2. Sea X_1, X_2, \ldots, X_n una muestra aleatoria de una población de Poisson con parámetro λ .
- a) Utilice la Desigualdad de Cramer-Rao, y la información de Fisher para demostrar que \bar{X} , es un estimador de variancia mínima para estimar λ .
- b) Demuestre que la variable $U = \frac{\bar{X} \lambda}{\sqrt{\bar{X}/n}}$ tiene distribución que converge a una normal estándar.
- c) Utilice la variable U del inciso anterior, como pivote para construir un intervalo de confianza para λ con probabilidad del 95%.

Práctica de Intervalos de Confianza

- 3. Si Y_1, Y_2, \ldots, Y_n corresponden a una muestra aleatoria de una distribución gamma con parámetros α desconocido y β desconocido.
- a) Demuestre que la variable $U = \frac{2\sum_{j=1}^{n} Y_j}{\beta}$ puede ser utilizada como pivote para estimar el valor de β y construya un intervalo de confianza de 1α para estimar el valor β .
- b) Por teorema del límite central, la variable aleatoria $Z=\frac{\bar{X}-E(\bar{X})}{\sqrt{Var(\bar{Y})}}$ tiene distribución que converge a una N(0,1). Supongamos que n es suficientemente grande, determine la variable aleatoria Z vinculada con este problema, que puede ser utilizada como pivote para estimar el valor de β . Construya un intervalo de confianza de para estimar el valor β .

Práctica de Intervalos de Confianza

c) Considere la siguiente muestra aleatoria que pertenece a una distribución gamma con $\alpha = 3$:

```
data <- c(66.8, 26.6, 8.7, 25.9, 17.0, 17.4, 9.2, 19.6, 27.8, 33.3)
```

Utilice los resultados obtenidos en a) y b) para determinar dos intervalos de confianza del 95% para estimar β , uno para cada método. Compare los resultados. ¿A qué atribuye las diferencias?

class: center, middle

¿Qué discutimos hoy?

Bootstrap: concepto, ejemplos y definiciones. IC utilizando bootstrap