Machine Learning: Course Project

Jeremy Peters February 6, 2018

Executive Summary

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. In a study, Six young health participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell Biceps Curl in five different fashions: exactly according to the specification (Class A), throwing the elbows to the front (Class B), lifting the dumbbell only halfway (Class C), lowering the dumbbell only halfway (Class D) and throwing the hips to the front (Class E). Only Class A corresponds to correct performance. The objective of this project is to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants to build a machine learning algorithm to predict the manner/class type in which an exerise was completed. More information about the study and data set can be found in the section on the Weight Lifting Exercise Dataset at the following URL: http://groupware.les.inf.puc-rio.br/har.

Exploratory Data Analysis

- The training data for this project was download from the following URL: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
- The test data for this project was download from the following URL: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
- Load the required r packages: caret, gbm and randomForest
- Read the Training and Testing CSV files in table format, specify types of missing values (NA, empty strings and div0), and create data frames
- Display the internal structure of an R object and generate summary statistics of the training dataset
- The Training dataset contains 160 variables and 19,622 records
- The Testing dataset contains 160 variables and 20 records

Loading required package: survival

• classe is the outcome factor variable with 5 levels: Class A, Class B, Class C, Class D, and Class E

```
# Load the required r packages
library(caret)

## Loading required package: lattice

## Loading required package: ggplot2

library(randomForest)

## randomForest 4.6-12

## Type rfNews() to see new features/changes/bug fixes.

##

## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':

##

## margin

library(gbm)
```

```
##
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
##
       cluster
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.3
dfTrain <- read.csv("pml-training.csv", header = TRUE, na.strings=c("NA","#DIV/0!",""))
dfTest <- read.csv("pml-testing.csv", header = TRUE, na.strings=c("NA","#DIV/0!",""))
# Get variable names
names(dfTrain)
     [1] "X"
##
                                     "user name"
##
     [3] "raw_timestamp_part_1"
                                     "raw_timestamp_part_2"
##
     [5] "cvtd_timestamp"
                                     "new_window"
##
                                     "roll_belt"
     [7] "num_window"
                                     "yaw_belt"
     [9] "pitch_belt"
    [11] "total_accel_belt"
                                     "kurtosis_roll_belt"
##
##
   [13] "kurtosis_picth_belt"
                                     "kurtosis_yaw_belt"
##
  [15] "skewness_roll_belt"
                                     "skewness_roll_belt.1"
   [17] "skewness_yaw_belt"
                                     "max_roll_belt"
                                     "max_yaw_belt"
## [19] "max_picth_belt"
## [21] "min_roll_belt"
                                     "min_pitch_belt"
                                     "amplitude_roll_belt"
## [23] "min yaw belt"
## [25] "amplitude_pitch_belt"
                                     "amplitude_yaw_belt"
##
   [27] "var total accel belt"
                                     "avg roll belt"
## [29] "stddev_roll_belt"
                                     "var_roll_belt"
## [31] "avg_pitch_belt"
                                     "stddev_pitch_belt"
                                     "avg_yaw_belt"
## [33] "var_pitch_belt"
## [35] "stddev_yaw_belt"
                                     "var_yaw_belt"
## [37] "gyros_belt_x"
                                     "gyros_belt_y"
## [39] "gyros_belt_z"
                                     "accel_belt_x"
                                     "accel_belt_z"
## [41] "accel_belt_y"
##
   [43] "magnet_belt_x"
                                     "magnet_belt_y"
                                     "roll_arm"
##
  [45] "magnet_belt_z"
  [47] "pitch_arm"
                                     "yaw_arm"
   [49] "total_accel_arm"
                                     "var_accel_arm"
##
## [51] "avg_roll_arm"
                                     "stddev_roll_arm"
## [53] "var_roll_arm"
                                     "avg_pitch_arm"
## [55] "stddev_pitch_arm"
                                     "var_pitch_arm"
## [57] "avg yaw arm"
                                     "stddev yaw arm"
## [59] "var_yaw_arm"
                                     "gyros_arm_x"
## [61] "gyros_arm_y"
                                     "gyros arm z"
                                     "accel_arm_y"
## [63] "accel_arm_x"
   [65] "accel arm z"
                                     "magnet_arm_x"
## [67] "magnet_arm_y"
                                     "magnet_arm_z"
## [69] "kurtosis_roll_arm"
                                     "kurtosis_picth_arm"
## [71] "kurtosis_yaw_arm"
                                     "skewness_roll_arm"
## [73] "skewness_pitch_arm"
                                     "skewness_yaw_arm"
## [75] "max_roll_arm"
                                     "max_picth_arm"
```

```
[77] "max_yaw_arm"
                                     "min_roll_arm"
##
  [79] "min_pitch_arm"
                                     "min_yaw_arm"
  [81] "amplitude_roll_arm"
                                     "amplitude_pitch_arm"
                                     "roll_dumbbell"
## [83] "amplitude_yaw_arm"
##
   [85] "pitch_dumbbell"
                                     "yaw_dumbbell"
  [87] "kurtosis_roll_dumbbell"
##
                                     "kurtosis_picth_dumbbell"
## [89] "kurtosis_yaw_dumbbell"
                                     "skewness_roll_dumbbell"
## [91] "skewness_pitch_dumbbell"
                                     "skewness_yaw_dumbbell"
## [93] "max_roll_dumbbell"
                                     "max_picth_dumbbell"
## [95] "max_yaw_dumbbell"
                                     "min_roll_dumbbell"
## [97] "min_pitch_dumbbell"
                                     "min_yaw_dumbbell"
## [99] "amplitude_roll_dumbbell"
                                     "amplitude_pitch_dumbbell"
## [101] "amplitude_yaw_dumbbell"
                                     "total_accel_dumbbell"
                                     "avg_roll_dumbbell"
## [103] "var_accel_dumbbell"
## [105] "stddev_roll_dumbbell"
                                     "var_roll_dumbbell"
## [107] "avg_pitch_dumbbell"
                                     "stddev_pitch_dumbbell"
## [109] "var_pitch_dumbbell"
                                     "avg_yaw_dumbbell"
## [111] "stddev_yaw_dumbbell"
                                     "var_yaw_dumbbell"
## [113] "gyros_dumbbell_x"
                                     "gyros_dumbbell_y"
## [115] "gyros_dumbbell_z"
                                     "accel_dumbbell_x"
## [117] "accel_dumbbell_y"
                                     "accel_dumbbell_z"
## [119] "magnet_dumbbell_x"
                                     "magnet_dumbbell_y"
## [121] "magnet_dumbbell_z"
                                     "roll_forearm"
## [123] "pitch_forearm"
                                     "yaw forearm"
## [125] "kurtosis_roll_forearm"
                                     "kurtosis_picth_forearm"
## [127] "kurtosis_yaw_forearm"
                                     "skewness_roll_forearm"
## [129] "skewness_pitch_forearm"
                                     "skewness_yaw_forearm"
## [131] "max_roll_forearm"
                                     "max_picth_forearm"
## [133] "max_yaw_forearm"
                                     "min_roll_forearm"
## [135] "min_pitch_forearm"
                                     "min_yaw_forearm"
## [137] "amplitude_roll_forearm"
                                     "amplitude_pitch_forearm"
## [139] "amplitude_yaw_forearm"
                                     "total_accel_forearm"
## [141] "var_accel_forearm"
                                     "avg_roll_forearm"
## [143] "stddev_roll_forearm"
                                     "var_roll_forearm"
## [145] "avg_pitch_forearm"
                                     "stddev_pitch_forearm"
## [147] "var_pitch_forearm"
                                     "avg_yaw_forearm"
## [149] "stddev_yaw_forearm"
                                     "var_yaw_forearm"
## [151] "gyros_forearm_x"
                                     "gyros_forearm_y"
## [153] "gyros_forearm_z"
                                     "accel_forearm_x"
## [155] "accel_forearm_y"
                                     "accel_forearm_z"
## [157] "magnet_forearm_x"
                                     "magnet forearm y"
## [159] "magnet_forearm_z"
                                     "classe"
str(dfTrain)
## 'data.frame':
                    19622 obs. of 160 variables:
##
   $ X
                               : int 1 2 3 4 5 6 7 8 9 10 ...
## $ user name
                              : Factor w/ 6 levels "adelmo", "carlitos", ...: 2 2 2 2 2 2 2 2 2 2 ...
                              : int 1323084231 1323084231 1323084231 1323084232 1323084232 1323084232
## $ raw_timestamp_part_1
   $ raw_timestamp_part_2
                                     788290 808298 820366 120339 196328 304277 368296 440390 484323 484
                               : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 ...
## $ cvtd_timestamp
## $ new_window
                              : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
##
                                     11 11 11 12 12 12 12 12 12 12 ...
   $ num_window
                               : int
##
   $ roll_belt
                                     1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
   $ pitch_belt
                               : num 8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
```

```
## $ yaw belt
                          : num -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
## $ total accel belt
                          : int 3 3 3 3 3 3 3 3 3 ...
## $ kurtosis roll belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_picth_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_yaw_belt
                          : logi NA NA NA NA NA NA ...
## $ skewness_roll_belt
                          : num NA NA NA NA NA NA NA NA NA ...
                          : num NA NA NA NA NA NA NA NA NA ...
## $ skewness roll belt.1
## $ skewness_yaw_belt
                          : logi NA NA NA NA NA NA ...
##
   $ max roll belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ max_picth_belt
                          : int
                                NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_belt
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ min_roll_belt
                                NA NA NA NA NA NA NA NA NA ...
                          : num
## $ min_pitch_belt
                          : int
                                NA NA NA NA NA NA NA NA NA . . .
## $ min_yaw_belt
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_belt
                                NA NA NA NA NA NA NA NA NA ...
                          : num
##
   $ amplitude_pitch_belt
                          : int
                                NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ var total accel belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ stddev roll belt
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ var_roll_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_belt
                                NA NA NA NA NA NA NA NA NA ...
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ var pitch belt
                          : num
## $ avg_yaw_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_belt
                                NA NA NA NA NA NA NA NA NA ...
                          : num
                          : num
## $ gyros_belt_x
                                ## $ gyros_belt_y
                                0 0 0 0 0.02 0 0 0 0 0 ...
                          : num
## $ gyros_belt_z
                          : num
                                 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
## $ accel_belt_x
                          : int
                                 -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
## $ accel_belt_y
                          : int
                                4 4 5 3 2 4 3 4 2 4 ...
## $ accel_belt_z
                          : int
                                22 22 23 21 24 21 21 21 24 22 ...
## $ magnet_belt_x
                                -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
                          : int
## $ magnet belt v
                          : int
                                599 608 600 604 600 603 599 603 602 609 ...
## $ magnet_belt_z
                                -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
                          : int
## $ roll arm
                          : num
                                ## $ pitch_arm
                          : num
                                22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
## $ yaw_arm
                                 : num
## $ total_accel_arm
                          : int 34 34 34 34 34 34 34 34 34 ...
## $ var_accel_arm
                          : num NA NA NA NA NA NA NA NA NA ...
## $ avg roll arm
                          : num NA NA NA NA NA NA NA NA NA ...
                          : num NA NA NA NA NA NA NA NA NA ...
## $ stddev roll arm
## $ var_roll_arm
                          : num NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_arm
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_arm
                                NA NA NA NA NA NA NA NA NA ...
                          : num
## $ var_pitch_arm
                          : num
                                NA NA NA NA NA NA NA NA NA . . .
## $ avg_yaw_arm
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_arm
                          : num NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_arm
                                NA NA NA NA NA NA NA NA NA ...
                          : num
## $ gyros_arm_x
                                : num
## $ gyros arm y
                          : num 0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
## $ gyros_arm_z
                          : num -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
## $ accel_arm_x
                          : int -288 -290 -289 -289 -289 -289 -289 -289 -288 ...
```

```
$ accel_arm_y
                                     109 110 110 111 111 111 111 111 109 110 ...
##
                              : int
##
   $ accel_arm_z
                                     -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
                              : int
   $ magnet arm x
                                     -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##
                              : int
##
                                     337 337 344 344 337 342 336 338 341 334 ...
   $ magnet_arm_y
                              : int
##
   $ magnet_arm_z
                              : int
                                     516 513 513 512 506 513 509 510 518 516 ...
##
   $ kurtosis roll arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
   $ kurtosis picth arm
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
                                     NA NA NA NA NA NA NA NA NA ...
##
    $ kurtosis_yaw_arm
                              : num
##
    $ skewness roll arm
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ skewness_pitch_arm
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ skewness_yaw_arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
                                     NA NA NA NA NA NA NA NA NA ...
    $ max_roll_arm
                              : num
##
                                     NA NA NA NA NA NA NA NA NA ...
   $ max_picth_arm
                              : num
##
   $ max_yaw_arm
                              : int
                                     NA NA NA NA NA NA NA NA NA ...
##
                                     NA NA NA NA NA NA NA NA NA ...
   $ min_roll_arm
                              : num
##
    $ min_pitch_arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
   $ min_yaw_arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : int
##
   $ amplitude roll arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ amplitude_pitch_arm
                              : num
##
   $ amplitude yaw arm
                              : int
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ roll_dumbbell
                                     13.1 13.1 12.9 13.4 13.4 ...
                              : num
   $ pitch dumbbell
                                     -70.5 -70.6 -70.3 -70.4 -70.4 ...
##
                              : num
                                     -84.9 -84.7 -85.1 -84.9 -84.9 ...
##
   $ yaw_dumbbell
                              : num
##
   $ kurtosis roll dumbbell
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
   $ kurtosis_picth_dumbbell : num
##
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ kurtosis_yaw_dumbbell
                              : logi
                                     NA NA NA NA NA ...
##
   $ skewness_roll_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
   $ skewness_pitch_dumbbell : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ skewness_yaw_dumbbell
                              : logi
                                     NA NA NA NA NA ...
##
   $ max_roll_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
    $ max_picth_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ max_yaw_dumbbell
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ min_roll_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
   $ min_pitch_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
##
                              : num
   $ min yaw dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
   $ amplitude_roll_dumbbell : num    NA ...
##
     [list output truncated]
dim(dfTest)
## [1] 20 160
#summary(dfTrain)
summary(dfTrain$classe)
##
      Α
           В
                C
                     D
                          Ε
## 5580 3797 3422 3216 3607
```

Data Processing: Cleaning and Preparation

- Remove the first seven descriptive variables/fields (X/Id, user_name,raw_timestamp_part_1, raw_timestamp_part_2, cvtd_timestamp, new_window, num_window) from both data sets that will not help predict the manner in which an exercise was completed.
- Remove the variables/fields from the data set that contain missing values
- Remove Near Zero Variance Variables

- The resulting Training and Testing datasets both have 53 variables/fields the last of which is the classe variable/field
- Cross-validation is performed by splitting the cleaned training data set into a training data set (75%) that will be used for prediction and a testing/validation data set (25%) that will be used to determine out-of-sample errors

```
dfTrain <- dfTrain[, -c(1:7)]

dfTest <- dfTest[, -c(1:7)]

dfTrain <- dfTrain[, colSums(is.na(dfTrain)) == 0]

dfTest <- dfTest[, colSums(is.na(dfTest)) == 0]

#Remove any Near Zero Variance Variables

nzVar <- nearZeroVar(dfTrain, saveMetrics = TRUE)

nzVar</pre>
```

```
##
                         freqRatio percentUnique zeroVar
## roll_belt
                          1.101904
                                        6.7781062
                                                    FALSE FALSE
## pitch_belt
                          1.036082
                                       9.3772296
                                                    FALSE FALSE
## yaw_belt
                          1.058480
                                       9.9734991
                                                    FALSE FALSE
## total_accel_belt
                          1.063160
                                       0.1477933
                                                    FALSE FALSE
## gyros_belt_x
                                                    FALSE FALSE
                          1.058651
                                       0.7134849
## gyros belt y
                          1.144000
                                       0.3516461
                                                    FALSE FALSE
## gyros_belt_z
                          1.066214
                                       0.8612782
                                                    FALSE FALSE
## accel belt x
                          1.055412
                                       0.8357966
                                                    FALSE FALSE
## accel_belt_y
                          1.113725
                                       0.7287738
                                                    FALSE FALSE
## accel_belt_z
                          1.078767
                                       1.5237998
                                                    FALSE FALSE
                                                    FALSE FALSE
## magnet belt x
                          1.090141
                                       1.6664968
## magnet belt y
                          1.099688
                                       1.5187035
                                                    FALSE FALSE
## magnet belt z
                          1.006369
                                       2.3290184
                                                    FALSE FALSE
## roll_arm
                         52.338462
                                      13.5256345
                                                    FALSE FALSE
## pitch_arm
                         87.256410
                                      15.7323412
                                                    FALSE FALSE
## yaw_arm
                         33.029126
                                      14.6570176
                                                    FALSE FALSE
## total_accel_arm
                          1.024526
                                       0.3363572
                                                    FALSE FALSE
## gyros_arm_x
                          1.015504
                                       3.2769341
                                                    FALSE FALSE
## gyros_arm_y
                          1.454369
                                       1.9162165
                                                    FALSE FALSE
## gyros_arm_z
                                                    FALSE FALSE
                          1.110687
                                        1.2638875
## accel_arm_x
                          1.017341
                                       3.9598410
                                                    FALSE FALSE
## accel_arm_y
                          1.140187
                                       2.7367241
                                                    FALSE FALSE
## accel arm z
                          1.128000
                                       4.0362858
                                                    FALSE FALSE
## magnet_arm_x
                          1.000000
                                       6.8239731
                                                    FALSE FALSE
## magnet arm y
                          1.056818
                                       4.4439914
                                                    FALSE FALSE
## magnet_arm_z
                          1.036364
                                       6.4468454
                                                    FALSE FALSE
## roll dumbbell
                          1.022388
                                      84.2065029
                                                    FALSE FALSE
## pitch_dumbbell
                          2.277372
                                      81.7449801
                                                    FALSE FALSE
## yaw dumbbell
                          1.132231
                                      83.4828254
                                                    FALSE FALSE
## total accel dumbbell
                          1.072634
                                       0.2191418
                                                    FALSE FALSE
## gyros_dumbbell_x
                          1.003268
                                       1.2282132
                                                    FALSE FALSE
## gyros_dumbbell_y
                          1.264957
                                        1.4167771
                                                    FALSE FALSE
## gyros_dumbbell_z
                          1.060100
                                       1.0498420
                                                    FALSE FALSE
## accel_dumbbell_x
                          1.018018
                                        2.1659362
                                                    FALSE FALSE
## accel_dumbbell_y
                                       2.3748853
                                                    FALSE FALSE
                          1.053061
## accel_dumbbell_z
                          1.133333
                                        2.0894914
                                                    FALSE FALSE
## magnet_dumbbell_x
                          1.098266
                                       5.7486495
                                                    FALSE FALSE
```

```
## magnet_dumbbell_y
                          1.197740
                                        4.3012945
                                                     FALSE FALSE
                                        3.4451126
## magnet_dumbbell_z
                          1.020833
                                                     FALSE FALSE
                         11.589286
                                                     FALSE FALSE
## roll forearm
                                       11.0895933
## pitch_forearm
                         65.983051
                                       14.8557741
                                                     FALSE FALSE
## yaw forearm
                         15.322835
                                       10.1467740
                                                     FALSE FALSE
## total accel forearm
                          1.128928
                                        0.3567424
                                                     FALSE FALSE
## gyros forearm x
                                                     FALSE FALSE
                          1.059273
                                        1.5187035
## gyros_forearm_y
                          1.036554
                                        3.7763735
                                                     FALSE FALSE
## gyros_forearm_z
                          1.122917
                                        1.5645704
                                                     FALSE FALSE
## accel_forearm_x
                          1.126437
                                        4.0464784
                                                     FALSE FALSE
## accel_forearm_y
                          1.059406
                                        5.1116094
                                                     FALSE FALSE
## accel_forearm_z
                                        2.9558659
                                                     FALSE FALSE
                          1.006250
## magnet_forearm_x
                          1.012346
                                        7.7667924
                                                     FALSE FALSE
## magnet_forearm_y
                          1.246914
                                        9.5403119
                                                     FALSE FALSE
## magnet_forearm_z
                                        8.5771073
                                                     FALSE FALSE
                          1.000000
## classe
                          1.469581
                                        0.0254816
                                                     FALSE FALSE
dfTrain <- dfTrain[, !nzVar$nzv]</pre>
dfTest <- dfTest[, !nzVar$nzv]</pre>
dim(dfTrain)
## [1] 19622
dfInTrain <- createDataPartition(dfTrain$classe, p = 0.75, list = FALSE)</pre>
dfPredict <- dfTrain[dfInTrain, ]</pre>
dfValidate <- dfTrain[-dfInTrain, ]</pre>
```

Model Fitting

- Random Forest and Stochastic Gradient Boosting Predictive models are fitted to predict the manner/class type in which an exerise was completed because they are usually the top performing algorithms. see Appendix for Stochastic Gradient Boosting model fitting
- set.seed for pseudo-random number generation in order to ensure reproducible results
- Prediction evaluation will maximimize accuracy and minimize out-of sample error
- Random Forest algorithm was selected because it is one of the most accurate learning algorithms available and determines the features that are important for classification for many datasets. It works well with a large number of variables where the interactions between variables are unknown. It provides estimates of what variables are important in the classification and handles correlated covariates & outliers.
- A 5-fold cross validation (cv) resampling method is applied to the algorithm
- The results are predicted using the validation data set
- The results are compared using a confusionMatrix: a cross-tabulation of observed and predicted classes with associated statistics.
- The accuracy/overall agreement rate and Kappa are computed
- The top 20 variables are plotted to show importance

```
set.seed(25)
#fitControl <- trainControl(method='cv', number = 10)
#modFitRf<- train(classe ~ ., data = dfPredict, method = "rf", trControl = fitControl)
modFitRf<- train(classe ~ ., data = dfPredict, method = "rf")
modFitRf
## Random Forest
##</pre>
```

```
## 14718 samples
##
      52 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 14718, 14718, 14718, 14718, 14718, 14718, ...
## Resampling results across tuning parameters:
##
##
     mtry
           Accuracy
                      Kappa
##
     2
           0.9897836 0.9870717
##
     27
           0.9895157
                      0.9867334
##
     52
           0.9811410 0.9761360
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
predictRf <- predict(modFitRf, dfValidate)</pre>
confusionMatrix(dfValidate$classe, predictRf)
## Confusion Matrix and Statistics
##
##
             Reference
                 Α
                      В
                            C
                                      Ε
## Prediction
                                 D
            A 1395
##
                      0
                            0
                                 0
                                      0
            В
                 6
                                      0
##
                    942
                           1
                                 0
##
            С
                 0
                      5
                         850
                                 0
                                      0
##
            D
                 0
                      0
                          18
                              785
                                      1
##
            F.
                 0
                            0
                      0
                                 0
                                    901
##
## Overall Statistics
##
##
                  Accuracy: 0.9937
##
                    95% CI: (0.991, 0.9957)
##
       No Information Rate: 0.2857
##
       P-Value [Acc > NIR] : < 2.2e-16
##
                     Kappa: 0.992
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                        Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                          0.9957
                                    0.9947
                                             0.9781
                                                       1.0000
                                                                0.9989
## Specificity
                          1.0000
                                   0.9982
                                             0.9988
                                                       0.9954
                                                                1.0000
                                             0.9942
## Pos Pred Value
                                                      0.9764
                                                                1.0000
                          1.0000 0.9926
## Neg Pred Value
                          0.9983
                                  0.9987
                                             0.9953
                                                       1.0000
                                                                0.9998
                                                       0.1601
## Prevalence
                                                                0.1839
                          0.2857
                                    0.1931
                                             0.1772
## Detection Rate
                          0.2845
                                   0.1921
                                             0.1733
                                                       0.1601
                                                                0.1837
## Detection Prevalence
                          0.2845
                                    0.1935
                                             0.1743
                                                       0.1639
                                                                0.1837
## Balanced Accuracy
                          0.9979
                                    0.9965
                                             0.9884
                                                       0.9977
                                                                0.9994
accuracy1 <- postResample(predictRf, dfValidate$classe)</pre>
accuracy1
```

```
## Accuracy Kappa
## 0.9936786 0.9920026

#Calculate the variable importance
modFitRfvarImp <- varImp(modFitRf)
plot(modFitRfvarImp, main = "Importance of Top 20 Variables", top = 20)</pre>
```

Importance of Top 20 Variables

Conclusions & Test Data Set Prediction

- The Random Forest algorithm performed very well and gave the best result with an accuracy of 0.995 where accuracy is the proportion of correctly classified observations in the cross-validation test data set. The expected out-of-sample error rate is estimated at 0.005 (1 accuracy) to represent the the expected misclassified observations in the test data set.
- Therefore, the Random Forest predictive model is applied to the 20 test cases available in the originial test data set (not cross-validation test data set). We can expected that few of the test samples will be misclassified based on the accuracy shown on the cross-validation data set.
- $\bullet \quad 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20$
- BABAAEDBAABCBAEEABBB

```
predictRf <- predict(modFitRf, dfTest)
predictRf</pre>
```

[1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E

Appendix

##

3

1.3552

- Stochastic Gradient Boosting Predictive models is fitted to predict the manner/class type in which an exerise was completed
- The results are predicted using the validation data set
- The results are compared using a confusionMatrix: a cross-tabulation of observed and predicted classes with associated statistics.
- The accuracy/overall agreement rate and Kappa are computed

modFitGbm<- train(classe ~ ., data = dfPredict, method = "gbm")</pre> ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 0.1000 0.1299 nan 2 ## 1.5213 0.1000 0.0887 nan 3 ## 1.4621 0.1000 0.0693 nan 4 ## 1.4168 0.1000 0.0534 nan ## 5 1.3811 nan 0.1000 0.0441 ## 6 1.3517 nan 0.1000 0.0458 7 ## 1.3218 0.1000 0.0442 nan 8 ## 1.2943 0.1000 0.0375 nan ## 9 0.0334 1.2708 0.1000 nan ## 10 1.2498 0.1000 0.0273 nan 20 ## 1.0909 0.1000 0.0154 nan ## 40 0.9203 0.1000 0.0101 nan ## 60 0.8110 0.1000 0.0074 nan ## 80 0.7314 0.1000 0.0045 nan ## 100 0.6703 0.1000 0.0044 nan ## 0.0051 120 0.6180 nan 0.1000 ## 140 0.5741 0.1000 0.0021 nan 150 0.1000 0.0037 ## 0.5544 nan ## Iter ## TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 0.1000 0.1907 nan 2 ## 1.4855 nan 0.1000 0.1307 ## 3 1.4029 nan 0.1000 0.1072 ## 4 nan 0.1000 0.0876 1.3363 5 ## 1.2799 nan 0.1000 0.0723 ## 6 1.2325 0.1000 0.0731 nan 7 ## 1.1872 0.1000 0.0634 nan ## 8 1.1479 0.1000 0.0523 nan ## 9 1.1145 0.1000 0.0536 nan ## 10 1.0812 0.1000 0.0413 nan ## 20 0.8786 nan 0.1000 0.0242 ## 40 0.0094 0.6620 0.1000 nan ## 60 0.0056 0.5342 nan 0.1000 ## 80 0.4461 0.1000 0.0043 nan ## 100 0.3826 0.1000 0.0042 nan ## 120 0.3324 nan 0.1000 0.0032 ## 140 0.2922 0.1000 0.0023 nan ## 150 0.2746 0.1000 0.0015 nan ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 0.1000 0.2378 nan ## 2 1.4598 nan 0.1000 0.1659

nan

0.1000

0.1298

##	4	1.2732	nan	0.1000	0.1167
##	5	1.2001	nan	0.1000	0.0843
##	6	1.1455	nan	0.1000	0.0820
##	7	1.0934	nan	0.1000	0.0675
##	8	1.0511	nan	0.1000	0.0735
##	9	1.0057	nan	0.1000	0.0578
##	10	0.9696	nan	0.1000	0.0531
##	20	0.7480	nan	0.1000	0.0394
##	40	0.5148	nan	0.1000	0.0123
##	60	0.3876	nan	0.1000	0.0089
##	80	0.3069	nan	0.1000	0.0032
##	100	0.2488	nan	0.1000	0.0025
##	120	0.2086	nan	0.1000	0.0021
##	140	0.1762	nan	0.1000	0.0014
##	150	0.1637	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1355
##	2	1.5193	nan	0.1000	0.0898
##	3	1.4593	nan	0.1000	0.0723
##	4	1.4124	nan	0.1000	0.0549
##	5	1.3759	nan	0.1000	0.0441
##	6	1.3460	nan	0.1000	0.0441
##	7	1.3172	nan	0.1000	0.0445
##	8	1.2902	nan	0.1000	0.0370
##	9	1.2668	nan	0.1000	0.0301
##	10	1.2470	nan	0.1000	0.0321
##	20	1.0855	nan	0.1000	0.0174
##	40	0.9120	nan	0.1000	0.0086
##	60	0.8062	nan	0.1000	0.0067
##	80	0.7279	nan	0.1000	0.0038
##	100	0.6645	nan	0.1000	0.0040
##	120	0.6141	nan	0.1000	0.0032
##	140	0.5695	nan	0.1000	0.0032
##	150	0.5495	nan	0.1000	0.0017
##	T+	TrainDeviance	V-1: 4D:	C+ C	T
##	Iter 1	1.6094	ValidDeviance	StepSize 0.1000	Improve 0.1975
## ##	2	1.4826	nan	0.1000	0.1307
##	3	1.3970	nan	0.1000	0.1095
##	4	1.3272	nan	0.1000	0.1093
##	5	1.2728	nan	0.1000	0.0037
##	6	1.2268	nan	0.1000	0.0721
##	7	1.1814	nan nan	0.1000	0.0740
##	8	1.1420	nan	0.1000	0.0549
##	9	1.1075	nan	0.1000	0.0456
##	10	1.0787		0.1000	0.0430
##	20	0.8787	nan nan	0.1000	0.0414
##	40	0.6630	nan	0.1000	0.0293
##	60	0.5394	nan	0.1000	0.0129
##	80	0.4538	nan	0.1000	0.0068
##	100	0.3881	nan	0.1000	0.0032
##	120	0.3365	nan	0.1000	0.0032
##	140	0.2963	nan	0.1000	0.0023
<i>11</i> π	140	0.2000	nan	0.1000	0.0011

## ##	150	0.2782	nan	0.1000	0.0018
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2412
##	2	1.4554	nan	0.1000	0.1726
##	3	1.3470	nan	0.1000	0.1279
##	4	1.2667	nan	0.1000	0.1060
##	5	1.1988	nan	0.1000	0.0900
##	6	1.1424	nan	0.1000	0.0802
##	7	1.0931	nan	0.1000	0.0719
##	8	1.0480	nan	0.1000	0.0682
##	9	1.0058	nan	0.1000	0.0573
##	10	0.9697	nan	0.1000	0.0534
##	20	0.7391	nan	0.1000	0.0276
##	40	0.5119	nan	0.1000	0.0124
##	60	0.3916	nan	0.1000	0.0067
##	80	0.3093	nan	0.1000	0.0039
##	100	0.2552	nan	0.1000	0.0028
##	120	0.2126	nan	0.1000	0.0021
##	140	0.1799	nan	0.1000	0.0014
##	150	0.1673	nan	0.1000	0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1329
##	2	1.5211	nan	0.1000	0.0913
##	3	1.4605	nan	0.1000	0.0670
##	4	1.4162	nan	0.1000	0.0556
##	5	1.3798	nan	0.1000	0.0508
##	6	1.3463	nan	0.1000	0.0425
##	7	1.3190	nan	0.1000	0.0374
##	8	1.2951	nan	0.1000	0.0371
##	9	1.2722	nan	0.1000	0.0350
##	10	1.2487	nan	0.1000	0.0299
##	20	1.0948	nan	0.1000	0.0187
##	40	0.9261	nan	0.1000	0.0098
##	60	0.8209	nan	0.1000	0.0072
##	80	0.7415	nan	0.1000	0.0050
##	100	0.6798	nan	0.1000	0.0031
##	120	0.6296	nan	0.1000	0.0033
##	140	0.5880	nan	0.1000	0.0018
##	150	0.5689	nan	0.1000	0.0025
##	T	T i Di	V-1:4D	Q+ Q:	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1921
##	2	1.4862	nan	0.1000	0.1331
## ##	3 4	1.4008	nan	0.1000	0.1080
		1.3326	nan	0.1000	0.0771
## ##	5 6	1.2823 1.2355	nan	0.1000 0.1000	0.0725 0.0724
##	7		nan		
##	8	1.1897 1.1496	nan	0.1000 0.1000	0.0641 0.0518
##	9	1.1496	nan	0.1000	0.0518
##	10	1.0897	nan	0.1000	0.0443
##	20	0.8864	nan	0.1000	0.0437
##	20	0.0004	nan	0.1000	0.0233

##	40	0.6789	nan	0.1000	0.0094
##	60	0.5546	nan	0.1000	0.0076
##	80	0.4679	nan	0.1000	0.0061
##	100	0.3972	nan	0.1000	0.0049
	120	0.3458		0.1000	0.0043
##			nan		
##	140	0.3022	nan	0.1000	0.0030
##	150	0.2819	nan	0.1000	0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2322
##	2	1.4597	nan	0.1000	0.1610
##	3	1.3578	nan	0.1000	0.1308
##	4	1.2741	nan	0.1000	0.1019
##	5	1.2104	nan	0.1000	0.0955
##	6	1.1516	nan	0.1000	0.0743
##	7	1.1032	nan	0.1000	0.0729
##	8	1.0582	nan	0.1000	0.0703
##	9	1.0147	nan	0.1000	0.0528
##	10	0.9816	nan	0.1000	0.0561
##	20	0.7549	nan	0.1000	0.0214
##	40	0.5344	nan	0.1000	0.0132
##	60	0.4065	nan	0.1000	0.0083
##	80	0.3230	nan	0.1000	0.0064
##	100	0.2638	nan	0.1000	0.0030
	120				0.0030
##		0.2185	nan	0.1000	
##	140	0.1857	nan	0.1000	0.0021
##	150	0.1715	nan	0.1000	0.0015
##				a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1	TrainDeviance 1.6094	ValidDeviance nan	0.1000	Improve 0.1335
##				=	_
## ##	1	1.6094	nan	0.1000	0.1335
## ## ##	1 2	1.6094 1.5224	nan nan	0.1000 0.1000	0.1335 0.0894
## ## ## ##	1 2 3	1.6094 1.5224 1.4634 1.4182	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542
## ## ## ## ##	1 2 3 4 5	1.6094 1.5224 1.4634 1.4182 1.3834	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407
## ## ## ## ##	1 2 3 4 5	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484
## ## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777 0.6260	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028 0.0024
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777 0.6260	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028 0.0024
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777 0.6260 0.5832	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028 0.0024
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777 0.6260 0.5832	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028 0.0024
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777 0.6260 0.5832 0.5654	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028 0.0024 0.0024
######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777 0.6260 0.5832 0.5654 TrainDeviance	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028 0.0024 0.0023
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777 0.6260 0.5832 0.5654 TrainDeviance 1.6094	nan	0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0066 0.0052 0.0028 0.0024 0.0024 0.0023 Improve 0.1888
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777 0.6260 0.5832 0.5654 TrainDeviance 1.6094 1.4875	nan	0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028 0.0024 0.0024 0.0023 Improve 0.1888 0.1265
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.6094 1.5224 1.4634 1.4182 1.3834 1.3554 1.3260 1.3015 1.2779 1.2601 1.1014 0.9251 0.8182 0.7404 0.6777 0.6260 0.5832 0.5654 TrainDeviance 1.6094 1.4875 1.4048	nan	0.1000 0.1000	0.1335 0.0894 0.0696 0.0542 0.0407 0.0484 0.0392 0.0362 0.0276 0.0367 0.0191 0.0094 0.0066 0.0052 0.0028 0.0024 0.0023 Improve 0.1888 0.1265 0.1031

##	6	1.2354	nan	0.1000	0.0670
##	7	1.1933	nan	0.1000	0.0615
##	8	1.1542	nan	0.1000	0.0499
##	9	1.1230	nan	0.1000	0.0512
##	10	1.0908	nan	0.1000	0.0438
##	20	0.8863	nan	0.1000	0.0197
##	40	0.6790	nan	0.1000	0.0101
##	60	0.5530	nan	0.1000	0.0099
##	80	0.4644	nan	0.1000	0.0052
##	100	0.3991	nan	0.1000	0.0046
##	120	0.3469	nan	0.1000	0.0030
##	140	0.3046	nan	0.1000	0.0026
##	150	0.2851	nan	0.1000	0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2418
##	2	1.4577	nan	0.1000	0.1603
##	3	1.3547	nan	0.1000	0.1255
##	4	1.2762	nan	0.1000	0.1170
##	5	1.2040	nan	0.1000	0.0870
##	6	1.1479	nan	0.1000	0.0806
##	7	1.0980	nan	0.1000	0.0615
##	8	1.0588		0.1000	0.0652
##	9	1.0189	nan	0.1000	0.0652
##	10	0.9790	nan	0.1000	0.0535
##	20	0.7457	nan		0.0333
	40		nan	0.1000	
##	60	0.5277	nan	0.1000	0.0130 0.0064
##		0.4034	nan	0.1000	
##	80	0.3217	nan	0.1000	0.0040
##	100	0.2618	nan	0.1000	0.0025
##	120	0.2191	nan	0.1000	0.0015
##	140	0.1861	nan	0.1000	0.0015
##	150	0.1709	nan	0.1000	0.0016
##	т.	m · ъ ·	17 1 · 1D ·	a. a:	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1280
##	2	1.5234	nan	0.1000	0.0854
##	3	1.4661	nan	0.1000	0.0663
##	4	1.4224	nan	0.1000	0.0531
##	5	1.3873	nan	0.1000	0.0500
##	6	1.3548	nan	0.1000	0.0380
##	7	1.3300	nan	0.1000	0.0405
##	8	1.3044	nan	0.1000	0.0354
##	9	1.2809	nan	0.1000	0.0305
##	10	1.2613	nan	0.1000	0.0317
##	20	1.1030	nan	0.1000	0.0169
##	40	0.9302	nan	0.1000	0.0079
##	60	0.8227	nan	0.1000	0.0083
##	80	0.7403	nan	0.1000	0.0048
##	100	0.6779	nan	0.1000	0.0037
##	120	0.6286	nan	0.1000	0.0040
##	140	0.5857	nan	0.1000	0.0027
##	150	0.5667	nan	0.1000	0.0034
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1879
##	2	1.4895	nan	0.1000	0.1292
##	3	1.4073	nan	0.1000	0.1067
##	4	1.3381	nan	0.1000	0.0810
##	5	1.2864	nan	0.1000	0.0717
##	6	1.2408	nan	0.1000	0.0659
##	7	1.1996	nan	0.1000	0.0626
##	8	1.1617	nan	0.1000	0.0540
##	9	1.1275	nan	0.1000	0.0427
##	10	1.0999	nan	0.1000	0.0471
##	20	0.8958	nan	0.1000	0.0273
##	40	0.6755	nan	0.1000	0.0105
##	60	0.5506	nan	0.1000	0.0085
##	80	0.4615	nan	0.1000	0.0057
##	100	0.3949	nan	0.1000	0.0038
##	120	0.3436	nan	0.1000	0.0047
##	140	0.2996	nan	0.1000	0.0032
##	150	0.2803	nan	0.1000	0.0029
##	100	0.2000	nan	0.1000	0.0025
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2309
##	2	1.4612	nan	0.1000	0.1644
##	3	1.3564	nan	0.1000	0.1044
##	4	1.2795	nan	0.1000	0.1200
##	5	1.2078	nan	0.1000	0.1141
##	6	1.1497	nan	0.1000	0.0330
##	7	1.1050	nan	0.1000	0.0750
##	8	1.0589	nan	0.1000	0.0730
##	9	1.0227	nan	0.1000	0.0572
##	10	0.9876	nan	0.1000	0.0300
##	20	0.7567	nan	0.1000	0.0442
##	40	0.5237	nan	0.1000	0.0200
##	60	0.4037		0.1000	0.0120
##	80	0.3163	nan nan	0.1000	0.0083
##	100	0.2593	nan	0.1000	0.0041
##	120	0.2168	nan	0.1000	0.0032
##	140	0.1838	nan		0.0014
##	150	0.1707		0.1000 0.1000	0.0013
##	130	0.1707	nan	0.1000	0.0017
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1321
##	2	1.5220		0.1000	0.1321
##	3	1.4639	nan nan	0.1000	0.0671
##	4	1.4193	nan	0.1000	0.0554
##	5	1.3832		0.1000	0.0430
##	6	1.3546	nan	0.1000	0.0430
##	7	1.3250	nan	0.1000	0.0401
##	8		nan		
##	9	1.2998	nan	0.1000	0.0329
##		1.2786	nan	0.1000	0.0342
	10	1.2571	nan	0.1000	0.0303
## ##	20 40	1.0990	nan	0.1000	0.0193
		0.9266	nan	0.1000	0.0087
##	60	0.8210	nan	0.1000	0.0078

##	80	0.7442	nan	0.1000	0.0055
##	100	0.6800	nan	0.1000	0.0037
##	120	0.6283	nan	0.1000	0.0025
##	140	0.5838	nan	0.1000	0.0023
##	150	0.5632		0.1000	0.0019
	150	0.5052	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1940
##	2	1.4856	nan	0.1000	0.1287
##	3	1.4016	nan	0.1000	0.1084
##	4	1.3341	nan	0.1000	0.0826
##	5	1.2816	nan	0.1000	0.0737
##	6	1.2347	nan	0.1000	0.0753
##	7	1.1888	nan	0.1000	0.0563
##	8	1.1526	nan	0.1000	0.0562
##	9	1.1169	nan	0.1000	0.0419
##	10	1.0900	nan	0.1000	0.0387
##	20	0.8863	nan	0.1000	0.0241
##	40	0.6778	nan	0.1000	0.0112
##	60	0.5540	nan	0.1000	0.0081
##	80	0.4606	nan	0.1000	0.0040
##	100	0.3977	nan	0.1000	0.0037
##	120	0.3439	nan	0.1000	0.0038
##	140	0.3009	nan	0.1000	0.0024
##	150	0.2814		0.1000	0.0024
	130	0.2014	nan	0.1000	0.0021
##	T+	T i Di	V-1:4D	C+ C :	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2433
##	2	1.4585	nan	0.1000	0.1645
##	3	1.3568	nan	0.1000	0.1251
##	4	1.2766	nan	0.1000	0.1086
##	5	1.2081	nan	0.1000	0.0888
##	6	1.1523	nan	0.1000	0.0651
##	7	1.1096	nan	0.1000	0.0767
##	8	1.0618	nan	0.1000	0.0635
##	9	1.0218	nan	0.1000	0.0556
##	10	0.9876	nan	0.1000	0.0472
##	20	0.7520	nan	0.1000	0.0243
##	40	0.5279	nan	0.1000	0.0131
##	60	0.4010		0.1000	0.0075
			nan		
##	80	0.3157	nan	0.1000	0.0050
##	100	0.2573	nan	0.1000	0.0027
##	120	0.2159	nan	0.1000	0.0023
##	140	0.1822	nan	0.1000	0.0014
##	150	0.1686	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1349
##	2	1.5215	nan	0.1000	0.0891
##	3	1.4631	nan	0.1000	0.0679
##	4	1.4187	nan	0.1000	0.0563
##	5	1.3823	nan	0.1000	0.0448
##	6	1.3514	nan	0.1000	0.0459
##	7	1.3226	nan	0.1000	0.0426
π#	,	1.5220	IIall	0.1000	0.0420

	_				
##	8	1.2965	nan	0.1000	0.0363
##	9	1.2736	nan	0.1000	0.0300
##	10	1.2531	nan	0.1000	0.0292
##	20	1.0937	nan	0.1000	0.0168
##	40	0.9256	nan	0.1000	0.0114
##	60	0.8159	nan	0.1000	0.0058
##	80	0.7339	nan	0.1000	0.0063
##	100	0.6700	nan	0.1000	0.0038
##	120	0.6213	nan	0.1000	0.0034
##	140	0.5761	nan	0.1000	0.0028
##	150	0.5563	nan	0.1000	0.0020
##	130	0.5505	liali	0.1000	0.0021
	T+	T i Di	V-1: dDi	C+ C	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1901
##	2	1.4879	nan	0.1000	0.1359
##	3	1.4018	nan	0.1000	0.1013
##	4	1.3356	nan	0.1000	0.0862
##	5	1.2815	nan	0.1000	0.0696
##	6	1.2362	nan	0.1000	0.0788
##	7	1.1877	nan	0.1000	0.0591
##	8	1.1511	nan	0.1000	0.0553
##	9	1.1157	nan	0.1000	0.0493
##	10	1.0839	nan	0.1000	0.0407
##	20	0.8869	nan	0.1000	0.0194
##	40	0.6665	nan	0.1000	0.0099
##	60	0.5446	nan	0.1000	0.0103
##	80	0.4577	nan	0.1000	0.0056
##	100	0.3917	nan	0.1000	0.0046
##	120	0.3415		0.1000	0.0040
##	140	0.3010	nan	0.1000	0.0023
			nan		
##	150	0.2824	nan	0.1000	0.0025
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2406
##	2	1.4568	nan	0.1000	0.1627
##	3	1.3548	nan	0.1000	0.1295
##	4	1.2734	nan	0.1000	0.1097
##	5	1.2052	nan	0.1000	0.0848
##	6	1.1515	nan	0.1000	0.0804
##	7	1.1009	nan	0.1000	0.0607
##	8	1.0620	nan	0.1000	0.0636
##	9	1.0220	nan	0.1000	0.0683
##	10	0.9806	nan	0.1000	0.0580
##	20	0.7494	nan	0.1000	0.0278
##	40	0.5143	nan	0.1000	0.0088
##	60	0.3925	nan	0.1000	0.0062
##	80	0.3136	nan	0.1000	0.0057
##	100	0.2552	nan	0.1000	0.0034
##	120	0.2109	nan	0.1000	0.0027
##	140	0.1787		0.1000	0.0027
			nan		
##	150	0.1666	nan	0.1000	0.0017
##	T+0	Two in Do	VolidDei	C+onC÷	Tmn
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1320

##	2	1.5218	nan	0.1000	0.0870
##	3	1.4635	nan	0.1000	0.0680
##	4	1.4184	nan	0.1000	0.0544
##	5	1.3823	nan	0.1000	0.0455
##	6	1.3527	nan	0.1000	0.0438
##	7	1.3231	nan	0.1000	0.0436
##	8	1.2968	nan	0.1000	0.0314
##	9	1.2760	nan	0.1000	0.0338
##	10	1.2542	nan	0.1000	0.0295
##	20	1.0991	nan	0.1000	0.0152
##	40	0.9243	nan	0.1000	0.0080
##	60	0.8156	nan	0.1000	0.0058
##	80	0.7368	nan	0.1000	0.0044
##	100	0.6739	nan	0.1000	0.0055
##	120	0.6230	nan	0.1000	0.0036
##	140	0.5774	nan	0.1000	0.0021
##	150	0.5587	nan	0.1000	0.0020
##	200	0.000.		0.1000	0.0020
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1942
##	2	1.4867	nan	0.1000	0.1355
##	3	1.4024	nan	0.1000	0.1079
##	4	1.3334	nan	0.1000	0.0836
##	5	1.2792	nan	0.1000	0.0772
##	6	1.2303	nan	0.1000	0.0652
##	7	1.1879	nan	0.1000	0.0636
##	8	1.1474	nan	0.1000	0.0552
##	9	1.1136	nan	0.1000	0.0420
##	10	1.0863	nan	0.1000	0.0458
##	20	0.8905	nan	0.1000	0.0221
##	40	0.6705	nan	0.1000	0.0088
##	60	0.5414	nan	0.1000	0.0080
##	80	0.4593	nan	0.1000	0.0058
##	100	0.3937	nan	0.1000	0.0050
##	120	0.3414	nan	0.1000	0.0030
##	140	0.2998	nan	0.1000	0.0025
##	150	0.2818	nan	0.1000	0.0013
##	100	0.2010	nan	0.1000	0.0017
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2449
##	2	1.4552	nan	0.1000	0.1668
##	3	1.3497	nan	0.1000	0.1000
##	4	1.2704	nan	0.1000	0.1231
##	5	1.2025	nan	0.1000	0.1030
##	6	1.1447		0.1000	0.0700
##	7	1.0995	nan	0.1000	0.0685
##		1.0560	nan		
##	8 9	1.0140	nan	0.1000 0.1000	0.0693 0.0584
##	10	0.9776	nan	0.1000	0.0584
			nan		
##	20	0.7437	nan	0.1000	0.0292
##	40	0.5129	nan	0.1000	0.0131
##	60	0.3927	nan	0.1000	0.0071
##	80	0.3130	nan	0.1000	0.0045
##	100	0.2542	nan	0.1000	0.0029

##	120	0.2092	nan	0.1000	0.0021
##	140	0.1799	nan	0.1000	0.0013
##	150	0.1670	nan	0.1000	0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1331
##	2	1.5191	nan	0.1000	0.0911
##	3	1.4589	nan	0.1000	0.0700
##	4	1.4133	nan	0.1000	0.0528
##	5	1.3778	nan	0.1000	0.0536
##	6	1.3434	nan	0.1000	0.0407
##	7	1.3167	nan	0.1000	0.0399
##	8	1.2910	nan	0.1000	0.0362
##	9	1.2674	nan	0.1000	0.0304
##	10	1.2481	nan	0.1000	0.0297
##	20	1.0881	nan	0.1000	0.0171
##	40	0.9184	nan	0.1000	0.0104
##	60	0.8098	nan	0.1000	0.0063
##	80	0.7302	nan	0.1000	0.0057
##	100	0.6683	nan	0.1000	0.0032
##	120	0.6184	nan	0.1000	0.0030
##	140	0.5757	nan	0.1000	0.0027
##	150	0.5563	nan	0.1000	0.0023
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1989
##	2	1.4834	nan	0.1000	0.1311
##	3	1.3982	nan	0.1000	0.1084
##	4	1.3277	nan	0.1000	0.0881
##	5	1.2719	nan	0.1000	0.0721
##	6	1.2263	nan	0.1000	0.0605
##	7	1.1870	nan	0.1000	0.0625
##	8	1.1481	nan	0.1000	0.0533
##	9	1.1148	nan	0.1000	0.0531
##	10	1.0819	nan	0.1000	0.0484
##	20	0.8791	nan	0.1000	0.0193
##	40	0.6690	nan	0.1000	0.0140
##	60	0.5456	nan	0.1000	0.0075
##	80	0.4562	nan	0.1000	0.0081
##	100	0.3893	nan	0.1000	0.0043
##	120	0.3379	nan	0.1000	0.0029
##	140	0.2990	nan	0.1000	0.0023
##	150	0.2813	nan	0.1000	0.0025
##	T+	TooloDoolooo	Validhaniana	C+ C	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2434
##	2	1.4552	nan	0.1000	0.1689
##	3	1.3504	nan	0.1000	0.1264
##	4	1.2706	nan	0.1000	0.1077
##	5	1.2030	nan	0.1000	0.0906
## ##	6 7	1.1454 1.0956	nan	0.1000 0.1000	0.0785 0.0657
##	8	1.0535	nan	0.1000	0.0657
##	9	1.0086	nan	0.1000	
##	Э	1.0006	nan	0.1000	0.0562

##	10	0.9737	nan	0.1000	0.0512
##	20	0.7408	nan	0.1000	0.0225
##	40	0.5172	nan	0.1000	0.0126
##	60	0.3928	nan	0.1000	0.0068
##	80	0.3084	nan	0.1000	0.0049
##	100	0.2511	nan	0.1000	0.0029
##	120	0.2093	nan	0.1000	0.0018
##	140	0.1785	nan	0.1000	0.0009
##	150	0.1652	nan	0.1000	0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1340
##	2	1.5204	nan	0.1000	0.0868
##	3	1.4594	nan	0.1000	0.0684
##	4	1.4144	nan	0.1000	0.0534
##	5	1.3787	nan	0.1000	0.0526
##	6	1.3453	nan	0.1000	0.0426
##	7	1.3169	nan	0.1000	0.0369
##	8	1.2933	nan	0.1000	0.0370
##	9	1.2703	nan	0.1000	0.0313
##	10	1.2508	nan	0.1000	0.0310
##	20	1.0949	nan	0.1000	0.0171
##	40	0.9229	nan	0.1000	0.0068
##	60	0.8150	nan	0.1000	0.0059
##	80	0.7346	nan	0.1000	0.0042
##	100	0.6720	nan	0.1000	0.0041
##	120	0.6191	nan	0.1000	0.0033
##	140	0.5752	nan	0.1000	0.0033
## ##	140 150	0.5752 0.5550	nan nan	0.1000 0.1000	0.0033 0.0025
##				0.1000 StepSize	
## ##	150	0.5550	nan	0.1000	0.0025
## ## ##	150 Iter	0.5550 TrainDeviance	nan ValidDeviance	0.1000 StepSize	0.0025 Improve
## ## ## ##	150 Iter 1	0.5550 TrainDeviance 1.6094	nan ValidDeviance nan	0.1000 StepSize 0.1000	0.0025 Improve 0.1932
## ## ## ##	150 Iter 1 2	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	0.0025 Improve 0.1932 0.1309
## ## ## ## ##	150 Iter 1 2 3	0.5550 TrainDeviance 1.6094 1.4848 1.4018	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002
## ## ## ## ## ##	150 Iter 1 2 3 4	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372	nan ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855
## ## ## ## ## ##	150 Iter 1 2 3 4 5	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760
## ## ## ## ## ##	150 Iter 1 2 3 4 5 6	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334	Nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931	nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2834 1.1931 1.1505	Nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176	Nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106 0.0110
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831 0.6684	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831 0.6684 0.5392	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106 0.0110
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831 0.6684 0.5392 0.4559	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106 0.0110 0.0050
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831 0.6684 0.5392 0.4559 0.3886	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106 0.0110 0.0050 0.0030
###########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831 0.6684 0.5392 0.4559 0.3886 0.3371	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106 0.0110 0.0050 0.0030 0.0037
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831 0.6684 0.5392 0.4559 0.3886 0.3371 0.2972	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106 0.0110 0.0050 0.0030 0.0037 0.0035
##########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831 0.6684 0.5392 0.4559 0.3886 0.3371 0.2972 0.2782 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 StepSize	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106 0.0110 0.0050 0.0030 0.0037 0.0035 0.0021 Improve
########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831 0.6684 0.5392 0.4559 0.3886 0.3371 0.2972 0.2782 TrainDeviance 1.6094	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106 0.0110 0.0050 0.0030 0.0037 0.0035 0.0021 Improve 0.2324
##########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.5550 TrainDeviance 1.6094 1.4848 1.4018 1.3372 1.2825 1.2334 1.1931 1.1505 1.1176 1.0896 0.8831 0.6684 0.5392 0.4559 0.3886 0.3371 0.2972 0.2782 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 StepSize	0.0025 Improve 0.1932 0.1309 0.1002 0.0855 0.0760 0.0655 0.0663 0.0511 0.0447 0.0462 0.0202 0.0106 0.0110 0.0050 0.0030 0.0037 0.0035 0.0021 Improve

##	4	1.2807	nan	0.1000	0.1064
##	5	1.2142	nan	0.1000	0.1028
##	6	1.1495	nan	0.1000	0.0733
##	7	1.1026	nan	0.1000	0.0675
##	8	1.0601	nan	0.1000	0.0617
##	9	1.0215	nan	0.1000	0.0632
##	10	0.9827	nan	0.1000	0.0550
##	20	0.7436	nan	0.1000	0.0242
##	40	0.5255	nan	0.1000	0.0096
##	60	0.3975	nan	0.1000	0.0073
##	80	0.3158	nan	0.1000	0.0065
##	100	0.2601	nan	0.1000	0.0035
##	120	0.2165	nan	0.1000	0.0024
##	140	0.1829	nan	0.1000	0.0016
##	150	0.1696	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1284
##	2	1.5215	nan	0.1000	0.0932
##	3	1.4603	nan	0.1000	0.0669
##	4	1.4143	nan	0.1000	0.0542
##	5	1.3783	nan	0.1000	0.0501
##	6	1.3457	nan	0.1000	0.0460
##	7	1.3163	nan	0.1000	0.0382
##	8	1.2920	nan	0.1000	0.0363
##	9	1.2688	nan	0.1000	0.0317
##	10	1.2480	nan	0.1000	0.0298
##	20	1.0944	nan	0.1000	0.0169
##	40	0.9223	nan	0.1000	0.0104
##	60	0.8162	nan	0.1000	0.0053
##	80	0.7373	nan	0.1000	0.0060
##	100	0.6751	nan	0.1000	0.0039
##	120	0.6246	nan	0.1000	0.0022
##	140	0.5813	nan	0.1000	0.0033
##	150	0.5629	nan	0.1000	0.0027
##	100	0.0020	nan	0.1000	0.0021
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1895
##	2	1.4848	nan	0.1000	0.1293
##	3	1.4008	nan	0.1000	0.1057
##	4	1.3315	nan	0.1000	0.0880
##	5	1.2760	nan	0.1000	0.0722
##	6	1.2302	nan	0.1000	0.0727
##	7	1.1846	nan	0.1000	0.0562
##	8	1.1488	nan	0.1000	0.0547
##	9	1.1144	nan	0.1000	0.0498
##	10	1.0828	nan	0.1000	0.0401
##	20	0.8861	nan	0.1000	0.0207
##	40	0.6730		0.1000	0.0094
##	60	0.5481	nan	0.1000	0.0094
##	80	0.4594	nan	0.1000	0.0055
##	100	0.4594	nan	0.1000	0.0055
##		0.3415	nan	0.1000	0.0032
	120		nan		
##	140	0.3011	nan	0.1000	0.0020

## ##	150	0.2836	nan	0.1000	0.0021
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2369
##	2	1.4578	nan	0.1000	0.1592
##	3	1.3558	nan	0.1000	0.1331
##	4	1.2721	nan	0.1000	0.1079
##	5	1.2038	nan	0.1000	0.0894
##	6	1.1458	nan	0.1000	0.0735
##	7	1.0993	nan	0.1000	0.0652
##	8	1.0574	nan	0.1000	0.0703
##	9	1.0141	nan	0.1000	0.0642
##	10	0.9741	nan	0.1000	0.0479
##	20	0.7501	nan	0.1000	0.0230
##	40	0.5235	nan	0.1000	0.0112
##	60	0.4010	nan	0.1000	0.0088
##	80	0.3143	nan	0.1000	0.0034
##	100	0.2590	nan	0.1000	0.0035
##	120	0.2144	nan	0.1000	0.0025
##	140	0.1819	nan	0.1000	0.0019
##	150	0.1678	nan	0.1000	0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1264
##	2	1.5232	nan	0.1000	0.0877
##	3	1.4645	nan	0.1000	0.0675
##	4	1.4202	nan	0.1000	0.0567
##	5	1.3833	nan	0.1000	0.0525
##	6	1.3498	nan	0.1000	0.0405
##	7	1.3234	nan	0.1000	0.0342
##	8	1.3011	nan	0.1000	0.0389
##	9	1.2768	nan	0.1000	0.0286
##	10	1.2587	nan	0.1000	0.0351
##	20	1.1011	nan	0.1000	0.0186
##	40	0.9303	nan	0.1000	0.0093
##	60	0.8209	nan	0.1000	0.0060
##	80	0.7427	nan	0.1000	0.0054
##	100	0.6791	nan	0.1000	0.0038
##	120	0.6262	nan	0.1000	0.0028
##	140	0.5833	nan	0.1000	0.0021
## ##	150	0.5643	nan	0.1000	0.0027
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1944
##	2	1.4848	nan	0.1000	0.1317
##	3	1.3990	nan	0.1000	0.1018
##	4	1.3322	nan	0.1000	0.0837
##	5	1.2796	nan	0.1000	0.0722
##	6	1.2322	nan	0.1000	0.0716
##	7	1.1879	nan	0.1000	0.0710
##	8	1.1489	nan	0.1000	0.0550
##	9	1.1141	nan	0.1000	0.0439
##	10	1.0865	nan	0.1000	0.0424
##	20	0.8878	nan	0.1000	0.0218

##	40	0.6782	nan	0.1000	0.0162
##	60	0.5478	nan	0.1000	0.0062
##	80	0.4601	nan	0.1000	0.0053
##	100	0.3958	nan	0.1000	0.0028
##	120	0.3439		0.1000	0.0027
			nan		
##	140	0.3019	nan	0.1000	0.0022
##	150	0.2820	nan	0.1000	0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2416
##	2	1.4555	nan	0.1000	0.1634
##	3	1.3521	nan	0.1000	0.1308
##	4	1.2700	nan	0.1000	0.1066
##	5	1.2037	nan	0.1000	0.0897
##	6	1.1474		0.1000	0.0767
			nan		
##	7	1.0984	nan	0.1000	0.0654
##	8	1.0562	nan	0.1000	0.0653
##	9	1.0152	nan	0.1000	0.0538
##	10	0.9813	nan	0.1000	0.0492
##	20	0.7491	nan	0.1000	0.0246
##	40	0.5221	nan	0.1000	0.0131
##	60	0.4012	nan	0.1000	0.0079
##	80	0.3213	nan	0.1000	0.0060
##	100	0.2631	nan	0.1000	0.0018
##	120	0.2214	nan	0.1000	0.0025
##	140	0.1868	nan	0.1000	0.0011
##	150	0.1724	nan	0.1000	0.0019
		0.1.11		0.12000	0.0020
##					
##	Itor	TrainDeviance	ValidDeviance	StanSiza	Improve
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	1.6094	nan	0.1000	0.1319
## ## ##	1 2	1.6094 1.5201	nan nan	0.1000 0.1000	0.1319
## ## ## ##	1 2 3	1.6094 1.5201 1.4608	nan	0.1000 0.1000 0.1000	0.1319 0.0900 0.0689
## ## ## ##	1 2 3 4	1.6094 1.5201 1.4608 1.4156	nan nan	0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554
## ## ## ##	1 2 3 4 5	1.6094 1.5201 1.4608 1.4156 1.3794	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439
## ## ## ##	1 2 3 4 5	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460
## ## ## ## ##	1 2 3 4 5	1.6094 1.5201 1.4608 1.4156 1.3794	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423
## ## ## ## ##	1 2 3 4 5	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375
## ## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047 0.0041
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747 0.6225 0.5793	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047 0.0041 0.0018
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047 0.0041
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747 0.6225 0.5793 0.5600	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047 0.0041 0.0018 0.0034 0.0018
######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747 0.6225 0.5793 0.5600	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047 0.0041 0.0018 0.0034 0.0018 Improve
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747 0.6225 0.5793 0.5600	nan	0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047 0.0041 0.0018 0.0034 0.0018 Improve 0.1935
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747 0.6225 0.5793 0.5600 TrainDeviance 1.6094 1.4854	nan	0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047 0.0041 0.0018 0.0034 0.0018 Improve 0.1935 0.1294
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747 0.6225 0.5793 0.5600 TrainDeviance 1.6094 1.4854 1.4008	nan	0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0041 0.0018 0.0034 0.0018 Improve 0.1935 0.1294 0.1123
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5201 1.4608 1.4156 1.3794 1.3498 1.3206 1.2941 1.2704 1.2502 1.0951 0.9237 0.8168 0.7375 0.6747 0.6225 0.5793 0.5600 TrainDeviance 1.6094 1.4854	nan	0.1000 0.1000	0.1319 0.0900 0.0689 0.0554 0.0439 0.0460 0.0423 0.0375 0.0308 0.0315 0.0195 0.0094 0.0067 0.0047 0.0041 0.0018 0.0034 0.0018 Improve 0.1935 0.1294

##	6	1.2293	nan	0.1000	0.0754
##	7	1.1830	nan	0.1000	0.0511
##	8	1.1498	nan	0.1000	0.0556
##	9	1.1145	nan	0.1000	0.0431
##	10	1.0863	nan	0.1000	0.0482
##	20	0.8832	nan	0.1000	0.0210
##	40	0.6718	nan	0.1000	0.0106
##	60	0.5434	nan	0.1000	0.0074
##	80	0.4561	nan	0.1000	0.0045
##	100	0.3929	nan	0.1000	0.0033
##	120	0.3381	nan	0.1000	0.0026
##	140	0.2989	nan	0.1000	0.0027
##	150	0.2802	nan	0.1000	0.0020
##	200	0.2002		0.1000	0.0020
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2374
##	2	1.4590	nan	0.1000	0.1622
##	3	1.3541	nan	0.1000	0.1326
##	4	1.2708	nan	0.1000	0.1320
##	5	1.2003	nan	0.1000	0.1100
##	6	1.1448		0.1000	0.0037
##	7	1.0946	nan	0.1000	0.0764
##	8		nan		0.0518
		1.0512	nan	0.1000	
##	9	1.0178	nan	0.1000	0.0618
##	10	0.9793	nan	0.1000	0.0639
##	20	0.7429	nan	0.1000	0.0254
##	40	0.5167	nan	0.1000	0.0098
##	60	0.3922	nan	0.1000	0.0098
##	80	0.3102	nan	0.1000	0.0035
##	100	0.2540	nan	0.1000	0.0025
##	120	0.2111	nan	0.1000	0.0031
##	140	0.1783	nan	0.1000	0.0019
##	150	0.1646	nan	0.1000	0.0020
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1320
##	2	1.5218	nan	0.1000	0.0876
##	3	1.4634	nan	0.1000	0.0666
##	4	1.4202	nan	0.1000	0.0554
##	5	1.3842	nan	0.1000	0.0503
##	6	1.3510	nan	0.1000	0.0429
##	7	1.3240	nan	0.1000	0.0429
##	8	1.2971	nan	0.1000	0.0318
##	9	1.2761	nan	0.1000	0.0303
##	10	1.2565	nan	0.1000	0.0333
##	20	1.0953	nan	0.1000	0.0178
##	40	0.9249	nan	0.1000	0.0084
##	60	0.8165	nan	0.1000	0.0054
##	80	0.7389	nan	0.1000	0.0038
##	100	0.6750	nan	0.1000	0.0042
##	120	0.6218	nan	0.1000	0.0034
##	140	0.5781	nan	0.1000	0.0026
##	150	0.5585	nan	0.1000	0.0022
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1855
##	2	1.4865	nan	0.1000	0.1310
##	3	1.4017	nan	0.1000	0.1085
##	4	1.3336	nan	0.1000	0.0868
##	5	1.2784	nan	0.1000	0.0743
##	6	1.2317	nan	0.1000	0.0623
##	7	1.1922	nan	0.1000	0.0649
##	8	1.1519	nan	0.1000	0.0536
##	9	1.1186	nan	0.1000	0.0551
##	10	1.0844	nan	0.1000	0.0457
##	20	0.8791	nan	0.1000	0.0201
##	40	0.6677	nan	0.1000	0.0138
##	60	0.5418	nan	0.1000	0.0062
##	80	0.4498	nan	0.1000	0.0060
##	100	0.3852	nan	0.1000	0.0033
##	120	0.3320	nan	0.1000	0.0025
##	140	0.2924	nan	0.1000	0.0023
##	150	0.2745	nan	0.1000	0.0025
##	100	0.2110	nan	0.1000	0.0020
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2420
##	2	1.4560	nan	0.1000	0.1613
##	3	1.3527	nan	0.1000	0.1343
##	4	1.2705	nan	0.1000	0.0998
##	5	1.2079	nan	0.1000	0.0920
##	6	1.1497	nan	0.1000	0.0830
##	7	1.0983	nan	0.1000	0.0760
##	8	1.0518	nan	0.1000	0.0631
##	9	1.0119	nan	0.1000	0.0598
##	10	0.9743	nan	0.1000	0.0543
##	20	0.7413	nan	0.1000	0.0241
##	40	0.5218	nan	0.1000	0.0105
##	60	0.3996	nan	0.1000	0.0083
##	80	0.3132	nan	0.1000	0.0038
##	100	0.2561	nan	0.1000	0.0036
##	120	0.2134	nan	0.1000	0.0021
##	140	0.1821	nan	0.1000	0.0023
##	150	0.1665	nan	0.1000	0.0015
##	100	0.1000	nan	0.1000	0.0010
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1352
##	2	1.5189	nan	0.1000	0.0923
##	3	1.4587	nan	0.1000	0.0682
##	4	1.4129	nan	0.1000	0.0570
##	5	1.3764	nan	0.1000	0.0458
##	6	1.3458	nan	0.1000	0.0441
##	7	1.3170	nan	0.1000	0.0388
##	8	1.2920	nan	0.1000	0.0333
##	9	1.2702	nan	0.1000	0.0338
##	10	1.2491	nan	0.1000	0.0306
##	20	1.0937	nan	0.1000	0.0300
##	40	0.9220	nan	0.1000	0.0100
##	60	0.8164	nan	0.1000	0.0030
11	00	0.0101	nan	3.1000	3.0010

##	80	0.7384	nan	0.1000	0.0061
##	100	0.6748	nan	0.1000	0.0031
##	120	0.6253	nan	0.1000	0.0038
##	140	0.5835	nan	0.1000	0.0030
##	150	0.5639	nan	0.1000	0.0025
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1886
##	2	1.4843	nan	0.1000	0.1267
##	3	1.4023	nan	0.1000	0.1066
##	4	1.3349	nan	0.1000	0.0871
##	5	1.2792	nan	0.1000	0.0718
##	6	1.2340	nan	0.1000	0.0686
##	7	1.1912	nan	0.1000	0.0634
##	8	1.1512	nan	0.1000	0.0581
##	9	1.1142	nan	0.1000	0.0436
##	10	1.0868	nan	0.1000	0.0455
##	20	0.8824	nan	0.1000	0.0196
##	40	0.6705	nan	0.1000	0.0100
##	60	0.5438	nan	0.1000	0.0061
##	80	0.4590	nan	0.1000	0.0048
##	100	0.3933	nan	0.1000	0.0056
##	120	0.3414	nan	0.1000	0.0034
##	140	0.3015	nan	0.1000	0.0034
##	150	0.2837		0.1000	0.0023
##	130	0.2037	nan	0.1000	0.0010
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2387
##	2	1.4583	nan	0.1000	0.1590
##	3	1.3582		0.1000	0.1390
##	4	1.2773	nan	0.1000	0.1270
##	5	1.2173	nan	0.1000	0.0955
##	6	1.1554	nan	0.1000	0.0333
##	7	1.1061	nan	0.1000	0.0789
##	8	1.0611	nan	0.1000	0.0717
##	9	1.0235	nan nan	0.1000	0.0545
##	10	0.9873		0.1000	0.0633
##	20		nan	0.1000	0.0033
##	40	0.7507 0.5230	nan	0.1000	0.0279
##	60		nan	0.1000	0.0114
##	80	0.3970 0.3148	nan	0.1000	0.0101
			nan		
##	100	0.2581	nan	0.1000	0.0046
##	120 140	0.2154	nan	0.1000	0.0022
##		0.1814	nan	0.1000	0.0022
##	150	0.1673	nan	0.1000	0.0016
##	Ttom	TrainDeviance	ValidDeviance	C+onCiao	Tmmmorro
##	Iter			StepSize	Improve
##	1	1.6094	nan	0.1000	0.1292
##	2	1.5225	nan	0.1000	0.0874
##	3	1.4635	nan	0.1000	0.0656
##	4	1.4191	nan	0.1000	0.0557
##	5	1.3831	nan	0.1000	0.0449
##	6	1.3533	nan	0.1000	0.0455
##	7	1.3248	nan	0.1000	0.0414

##	8	1.2984	nan	0.1000	0.0328
##	9	1.2770	nan	0.1000	0.0327
##	10	1.2568	nan	0.1000	0.0302
##	20	1.0995	nan	0.1000	0.0188
##	40	0.9276	nan	0.1000	0.0094
##	60	0.8208	nan	0.1000	0.0057
##	80	0.7405	nan	0.1000	0.0053
##	100	0.6778	nan	0.1000	0.0029
##	120	0.6281	nan	0.1000	0.0034
##	140	0.5847	nan	0.1000	0.0029
##	150	0.5649	nan	0.1000	0.0036
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1883
##	2	1.4867	nan	0.1000	0.1315
##	3	1.4027	nan	0.1000	0.1039
##	4	1.3357	nan	0.1000	0.0747
##	5	1.2875	nan	0.1000	0.0763
##	6	1.2395	nan	0.1000	0.0691
##	7	1.1964	nan	0.1000	0.0587
##	8	1.1593	nan	0.1000	0.0517
##	9	1.1254	nan	0.1000	0.0478
##	10	1.0950	nan	0.1000	0.0445
##	20	0.8914	nan	0.1000	0.0237
##	40	0.6769	nan	0.1000	0.0114
##	60	0.5488	nan	0.1000	0.0056
##	80	0.4634	nan	0.1000	0.0056
##	100	0.4010	nan	0.1000	0.0038
##	120	0.3511	nan	0.1000	0.0027
##	140	0.3511 0.3127	nan nan	0.1000	0.0030
## ##		0.3511			
## ## ##	140 150	0.3511 0.3127 0.2940	nan nan	0.1000 0.1000	0.0030 0.0029
## ## ## ##	140 150 Iter	0.3511 0.3127 0.2940 TrainDeviance	nan nan ValidDeviance	0.1000 0.1000 StepSize	0.0030 0.0029 Improve
## ## ## ##	140 150 Iter 1	0.3511 0.3127 0.2940 TrainDeviance 1.6094	nan nan ValidDeviance nan	0.1000 0.1000 StepSize 0.1000	0.0030 0.0029 Improve 0.2310
## ## ## ## ##	140 150 Iter 1 2	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614	nan nan ValidDeviance nan nan	0.1000 0.1000 StepSize 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639
## ## ## ## ## ##	140 150 Iter 1 2 3	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596	nan nan ValidDeviance nan nan	0.1000 0.1000 StepSize 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200
## ## ## ## ## ##	140 150 Iter 1 2 3 4	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842	nan nan ValidDeviance nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026
## ## ## ## ## ##	140 150 Iter 1 2 3 4 5	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174	nan nan ValidDeviance nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599	nan nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136	nan nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726	nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577 0.5257	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279 0.0121
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577 0.5257 0.4029	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279 0.0121 0.0076
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577 0.5257 0.4029 0.3241	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279 0.0121 0.0076 0.0050
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577 0.5257 0.4029 0.3241 0.2656	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279 0.0121 0.0076 0.0050 0.0024
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577 0.5257 0.4029 0.3241 0.2656 0.2219	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279 0.0121 0.0076 0.0050 0.0024 0.0037
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577 0.5257 0.4029 0.3241 0.2656 0.2219 0.1891	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279 0.0121 0.0076 0.0050 0.0024 0.0037 0.0017
########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577 0.5257 0.4029 0.3241 0.2656 0.2219	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279 0.0121 0.0076 0.0050 0.0024 0.0037
########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577 0.5257 0.4029 0.3241 0.2656 0.2219 0.1891 0.1746	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279 0.0121 0.0076 0.0050 0.0024 0.0037 0.0017 0.0024
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.3511 0.3127 0.2940 TrainDeviance 1.6094 1.4614 1.3596 1.2842 1.2174 1.1599 1.1136 1.0726 1.0283 0.9886 0.7577 0.5257 0.4029 0.3241 0.2656 0.2219 0.1891	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0030 0.0029 Improve 0.2310 0.1639 0.1200 0.1026 0.0915 0.0703 0.0641 0.0721 0.0623 0.0549 0.0279 0.0121 0.0076 0.0050 0.0024 0.0037 0.0017

##	2	1.5213	nan	0.1000	0.0871
##	3	1.4634	nan	0.1000	0.0662
##	4	1.4195	nan	0.1000	0.0529
##	5	1.3845	nan	0.1000	0.0484
##	6	1.3532	nan	0.1000	0.0436
##	7	1.3252	nan	0.1000	0.0383
##	8	1.3014	nan	0.1000	0.0320
##	9	1.2812	nan	0.1000	0.0330
##	10	1.2588	nan	0.1000	0.0335
##	20	1.1047	nan	0.1000	0.0186
##	40	0.9352	nan	0.1000	0.0084
##	60	0.8244	nan	0.1000	0.0075
##	80	0.7440	nan	0.1000	0.0051
##	100	0.6795	nan	0.1000	0.0039
##	120	0.6276	nan	0.1000	0.0037
##	140	0.5840	nan	0.1000	0.0026
##	150	0.5660	nan	0.1000	0.0017
##	100	0.0000	nan	0.1000	0.0017
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1926
##	2	1.4859	nan	0.1000	0.1291
##	3	1.4025	nan	0.1000	0.0988
##	4	1.3386	nan	0.1000	0.0871
##	5	1.2834	nan	0.1000	0.0763
##	6	1.2351	nan	0.1000	0.0613
##	7	1.1957	nan	0.1000	0.0639
##	8	1.1546	nan	0.1000	0.0485
##	9	1.1238	nan	0.1000	0.0445
##	10	1.0956	nan	0.1000	0.0476
##	20	0.8927	nan	0.1000	0.0245
##	40	0.6872	nan	0.1000	0.0120
##	60	0.5576	nan	0.1000	0.0084
##	80	0.4638	nan	0.1000	0.0056
##	100	0.3991	nan	0.1000	0.0034
##	120	0.3501	nan	0.1000	0.0033
##	140	0.3056	nan	0.1000	0.0033
##	150	0.2874	nan	0.1000	0.0021
##	100	0.2014	nan	0.1000	0.0020
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2359
##	2	1.4592	nan	0.1000	0.1626
##	3	1.3560		0.1000	0.1020
##	4	1.2774	nan	0.1000	0.1251
##	5	1.2109	nan	0.1000	0.1031
##	6		nan		
##	7	1.1554 1.1033	nan	0.1000	0.0815 0.0676
			nan	0.1000	
##	8	1.0601	nan	0.1000	0.0575
##	9	1.0237	nan	0.1000	0.0635
##	10	0.9841	nan	0.1000	0.0444
##	20	0.7494	nan	0.1000	0.0220
##	40	0.5231	nan	0.1000	0.0134
##	60	0.3992	nan	0.1000	0.0049
##	80	0.3173	nan	0.1000	0.0036
##	100	0.2584	nan	0.1000	0.0035

##	120	0.0120	***	0.1000	0.0023
##	140	0.2139 0.1811	nan	0.1000	0.0023
##	150	0.1611	nan	0.1000	0.0032
##	150	0.1007	nan	0.1000	0.0015
##	Iter	TrainDeviance	ValidDeviance	C+onCiro	Tmnnorro
##	1	1.6094		StepSize 0.1000	Improve 0.1284
##	2	1.5226	nan	0.1000	0.1204
##	3	1.4656	nan	0.1000	0.0691
##	4	1.4209	nan	0.1000	0.0534
##	5	1.3862	nan	0.1000	0.0334
##	6	1.3540	nan nan	0.1000	0.0499
##	7	1.3294		0.1000	0.0374
##	8	1.3031	nan	0.1000	0.0420
##	9	1.2806	nan	0.1000	0.0338
##	10		nan		
	20	1.2614	nan	0.1000	0.0301
##	40	1.1028	nan	0.1000	0.0173
##	60	0.9333	nan	0.1000	0.0097 0.0069
##	80	0.8256	nan	0.1000	
##	100	0.7453	nan	0.1000	0.0042
##	120	0.6836	nan	0.1000	0.0033
##	140	0.6316 0.5871	nan	0.1000 0.1000	0.0037 0.0030
##			nan		
##	150	0.5672	nan	0.1000	0.0023
##	Ttom	TrainDarriance	ValidDavianaa	C+onCiao	Tmnmarra
## ##	Iter 1	TrainDeviance 1.6094	ValidDeviance	StepSize 0.1000	Improve 0.1865
##	2	1.4868	nan	0.1000	0.1263
##	3	1.4042	nan	0.1000	0.1203
##	4	1.3376	nan	0.1000	0.1034
##			nan		0.0312
##	5 6	1.2853	nan	0.1000	0.0720
##	7	1.2389 1.1976	nan	0.1000 0.1000	0.0676
##	8	1.1553	nan	0.1000	0.0500
##	9	1.1241	nan	0.1000	0.0300
##	10	1.0966	nan	0.1000	0.0431
##	20	0.8913	nan	0.1000	0.0413
##	40	0.6760	nan	0.1000	0.0200
##	60	0.5443	nan	0.1000	0.0049
##	80	0.4533	nan	0.1000	0.0049
##	100	0.4333	nan	0.1000	0.0070
##	120	0.3380	nan	0.1000	0.0030
##	140	0.2948	nan nan	0.1000	0.0020
##	150	0.2779		0.1000	0.0013
##	130	0.2119	nan	0.1000	0.0025
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2355
##	2	1.4589	nan	0.1000	0.1566
##	3	1.3597	nan	0.1000	0.1229
##	4	1.2802	nan	0.1000	0.1042
##	5	1.2144	nan	0.1000	0.0968
##	6	1.1533	nan	0.1000	0.0813
##	7	1.1015	nan	0.1000	0.0643
##	8	1.0603	nan	0.1000	0.0668
##	9	1.0189	nan	0.1000	0.0562
11	3	1.0103	nan	0.1000	0.0002

##	10	0.9836	nan	0.1000	0.0517
##	20	0.7492	nan	0.1000	0.0309
##	40	0.5178	nan	0.1000	0.0129
##	60	0.3891	nan	0.1000	0.0083
##	80	0.3074	nan	0.1000	0.0032
##	100	0.2509	nan	0.1000	0.0035
##	120	0.2080	nan	0.1000	0.0019
##	140	0.1776	nan	0.1000	0.0012
##	150	0.1641	nan	0.1000	0.0016
##	100	0.1011	11411	0.1000	0.0010
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1307
##	2	1.5206	nan	0.1000	0.0916
##	3	1.4608	nan	0.1000	0.0705
##	4	1.4153	nan	0.1000	0.0568
##	5	1.3785	nan	0.1000	0.0454
##	6	1.3485		0.1000	0.0434
##	7	1.3202	nan	0.1000	0.0434
##	8	1.2938	nan nan	0.1000	0.0413
##	9	1.2726		0.1000	0.0356
##	10	1.2489	nan	0.1000	0.0330
##	20	1.0936	nan	0.1000	0.0319
			nan		
##	40	0.9196	nan	0.1000	0.0094
##	60	0.8118	nan	0.1000	0.0064
##	80	0.7302	nan	0.1000	0.0047
##	100	0.6697	nan	0.1000	0.0043
##	120	0.6171	nan	0.1000	0.0034
				^ 4^^^	0 0001
##	140	0.5745	nan	0.1000	0.0024
##	150	0.5745 0.5550	nan nan	0.1000 0.1000	0.0024 0.0028
## ##	150	0.5550	nan	0.1000	0.0028
## ## ##	150 Iter	0.5550 TrainDeviance	nan ValidDeviance	0.1000 StepSize	0.0028 Improve
## ## ## ##	150 Iter 1	0.5550 TrainDeviance 1.6094	nan ValidDeviance nan	0.1000 StepSize 0.1000	0.0028 Improve 0.1976
## ## ## ##	150 Iter 1 2	0.5550 TrainDeviance 1.6094 1.4837	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	0.0028 Improve 0.1976 0.1316
## ## ## ## ##	150 Iter 1 2 3	0.5550 TrainDeviance 1.6094 1.4837 1.3986	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050
## ## ## ## ##	150 Iter 1 2 3 4	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299	nan ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895
## ## ## ## ## ##	150 Iter 1 2 3 4 5	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716
## ## ## ## ## ##	150 Iter 1 2 3 4 5 6	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276	nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0566
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452	Nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0566 0.0545
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0566 0.0545 0.0534
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782	Nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0566 0.0545 0.0534 0.0445
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780	Nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0566 0.0545 0.0534 0.0445 0.0271
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0566 0.0545 0.0534 0.0445 0.0271 0.0128
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0566 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423 0.4553	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0566 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075 0.0054
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423 0.4553 0.3885	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0545 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075 0.0054 0.0055
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423 0.4553	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0566 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075 0.0054 0.0055 0.0029
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423 0.4553 0.3885 0.3368 0.2966	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0566 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075 0.0054 0.0055 0.0029 0.0032
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423 0.4553 0.3885 0.3368	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0566 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075 0.0054 0.0055 0.0029
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423 0.4553 0.3885 0.3368 0.2966	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075 0.0054 0.0055 0.0029 0.0032 0.0012
##########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423 0.4553 0.3885 0.3368 0.2966 0.2780 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075 0.0054 0.0055 0.0029 0.0032 0.0012 Improve
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423 0.4553 0.3885 0.3368 0.2966 0.2780 TrainDeviance 1.6094	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075 0.0054 0.0055 0.0029 0.0032 0.0012 Improve 0.2399
##########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.5550 TrainDeviance 1.6094 1.4837 1.3986 1.3299 1.2723 1.2276 1.1813 1.1452 1.1110 1.0782 0.8780 0.6695 0.5423 0.4553 0.3885 0.3368 0.2966 0.2780 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0028 Improve 0.1976 0.1316 0.1050 0.0895 0.0716 0.0736 0.0545 0.0534 0.0445 0.0271 0.0128 0.0075 0.0054 0.0055 0.0029 0.0032 0.0012 Improve

##	4	1.2711	nan	0.1000	0.1159
##	5	1.1996	nan	0.1000	0.0870
##	6	1.1442	nan	0.1000	0.0791
##	7	1.0955	nan	0.1000	0.0755
##	8	1.0485	nan	0.1000	0.0598
##	9	1.0109	nan	0.1000	0.0607
##	10	0.9733	nan	0.1000	0.0515
##	20	0.7386	nan	0.1000	0.0210
##	40	0.5196	nan	0.1000	0.0161
##	60	0.3927	nan	0.1000	0.0058
##	80	0.3117	nan	0.1000	0.0050
##	100	0.2545	nan	0.1000	0.0037
##	120	0.2114	nan	0.1000	0.0023
##	140	0.1779	nan	0.1000	0.0023
##	150	0.1636	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1297
##	2	1.5222	nan	0.1000	0.0894
##	3	1.4630	nan	0.1000	0.0675
##	4	1.4183	nan	0.1000	0.0534
##	5	1.3830	nan	0.1000	0.0422
##	6	1.3543	nan	0.1000	0.0454
##	7	1.3252	nan	0.1000	0.0397
##	8	1.2997	nan	0.1000	0.0340
##	9	1.2780	nan	0.1000	0.0334
##	10	1.2568	nan	0.1000	0.0343
##	20	1.1005	nan	0.1000	0.0190
##	40	0.9265	nan	0.1000	0.0096
##	60	0.8205	nan	0.1000	0.0056
##	80	0.7419	nan	0.1000	0.0051
##	100	0.6805	nan	0.1000	0.0025
##	120	0.6300	nan	0.1000	0.0025
##	140	0.5873	nan	0.1000	0.0022
##	150	0.5672	nan	0.1000	0.0025
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1880
##	2	1.4875	nan	0.1000	0.1262
##	3	1.4048	nan	0.1000	0.1060
##	4	1.3373	nan	0.1000	0.0780
##	5	1.2861	nan	0.1000	0.0738
##	6	1.2384	nan	0.1000	0.0715
##	7	1.1939	nan	0.1000	0.0612
##	8	1.1561	nan	0.1000	0.0560
##	9	1.1215	nan	0.1000	0.0529
##	10	1.0890	nan	0.1000	0.0399
##	20	0.8863	nan	0.1000	0.0219
##	40	0.6818	nan	0.1000	0.0098
##	60	0.5522	nan	0.1000	0.0091
##	80	0.4652	nan	0.1000	0.0065
##	100	0.3972	nan	0.1000	0.0024
##	120	0.3477	nan	0.1000	0.0047
##	140	0.3033	nan	0.1000	0.0032

## ##	150	0.2861	nan	0.1000	0.0024
##	Iter	${\tt TrainDeviance}$	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2351
##	2	1.4600	nan	0.1000	0.1602
##	3	1.3581	nan	0.1000	0.1259
##	4	1.2792	nan	0.1000	0.1127
##	5	1.2090	nan	0.1000	0.0847
##	6	1.1562	nan	0.1000	0.0850
##	7	1.1034	nan	0.1000	0.0652
##	8	1.0626	nan	0.1000	0.0613
##	9	1.0236	nan	0.1000	0.0659
##	10	0.9832	nan	0.1000	0.0467
##	20	0.7543	nan	0.1000	0.0229
##	40	0.5309	nan	0.1000	0.0091
##	60	0.4040	nan	0.1000	0.0078
##	80	0.3242	nan	0.1000	0.0035
##	100	0.2654	nan	0.1000	0.0057
##	120	0.2211	nan	0.1000	0.0015
##	140	0.1879	nan	0.1000	0.0025
##	150	0.1732	nan	0.1000	0.0014
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1291
##	2	1.5234	nan	0.1000	0.0861
##	3	1.4653	nan	0.1000	0.0671
##	4	1.4207	nan	0.1000	0.0506
##	5	1.3866	nan	0.1000	0.0455
##	6	1.3571	nan	0.1000	0.0462
##	7	1.3283	nan	0.1000	0.0407
##	8	1.3026	nan	0.1000	0.0333
##	9	1.2813	nan	0.1000	0.0312
##	10 20	1.2611	nan	0.1000	0.0331
##		1.1031	nan	0.1000	0.0159
## ##	40 60	0.9308 0.8238	nan	0.1000 0.1000	0.0083
##	80	0.7434	nan nan	0.1000	0.0046
##	100	0.6804	nan	0.1000	0.0040
##	120	0.6293	nan	0.1000	0.0044
##	140	0.5858	nan	0.1000	0.0021
##	150	0.5655	nan	0.1000	0.0021
##	100	0.0000	nan	0.1000	0.0020
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1934
##	2	1.4848	nan	0.1000	0.1279
##	3	1.4018	nan	0.1000	0.1002
##	4	1.3372	nan	0.1000	0.0871
##	5	1.2814	nan	0.1000	0.0732
##	6	1.2346	nan	0.1000	0.0584
##	7	1.1963	nan	0.1000	0.0606
##	8	1.1583	nan	0.1000	0.0613
##	9	1.1210	nan	0.1000	0.0482
##	10	1.0903	nan	0.1000	0.0449
##	20	0.8866	nan	0.1000	0.0261

##	40	0.6674	nan	0.1000	0.0142
##	60	0.5423	nan	0.1000	0.0077
##	80	0.4615	nan	0.1000	0.0055
##	100	0.3934	nan	0.1000	0.0038
	120	0.3420		0.1000	0.0030
##			nan		
##	140	0.2978	nan	0.1000	0.0028
##	150	0.2811	nan	0.1000	0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2455
##	2	1.4559	nan	0.1000	0.1639
##	3	1.3526	nan	0.1000	0.1279
##	4	1.2735		0.1000	0.1028
			nan		
##	5	1.2087	nan	0.1000	0.0827
##	6	1.1550	nan	0.1000	0.0813
##	7	1.1039	nan	0.1000	0.0752
##	8	1.0580	nan	0.1000	0.0630
##	9	1.0174	nan	0.1000	0.0673
##	10	0.9765	nan	0.1000	0.0504
##	20	0.7473	nan	0.1000	0.0271
##	40	0.5158	nan	0.1000	0.0105
	60				0.0066
##		0.3891	nan	0.1000	
##	80	0.3115	nan	0.1000	0.0045
##	100	0.2555	nan	0.1000	0.0037
##	120	0.2129	nan	0.1000	0.0029
##	140	0.1804	nan	0.1000	0.0019
##	150	0.1657	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	Iter 1	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	1.6094	nan	0.1000	0.1280
## ## ##	1 2	1.6094 1.5223	nan nan	0.1000 0.1000	0.1280 0.0893
## ## ## ##	1 2 3	1.6094 1.5223 1.4638	nan nan nan	0.1000 0.1000 0.1000	0.1280 0.0893 0.0666
## ## ## ##	1 2 3 4	1.6094 1.5223 1.4638 1.4206	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532
## ## ## ## ##	1 2 3 4 5	1.6094 1.5223 1.4638 1.4206 1.3850	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489
## ## ## ##	1 2 3 4 5 6	1.6094 1.5223 1.4638 1.4206 1.3850	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442
## ## ## ## ##	1 2 3 4 5	1.6094 1.5223 1.4638 1.4206 1.3850	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489
## ## ## ## ##	1 2 3 4 5 6	1.6094 1.5223 1.4638 1.4206 1.3850	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442
## ## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0045
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707 0.6198	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0045
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707 0.6198	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0045 0.0027
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707 0.6198 0.5771	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0045 0.0027
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707 0.6198 0.5771	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0045 0.0027 0.0027
######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707 0.6198 0.5771 0.5580	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0045 0.0027 0.0022 Improve
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707 0.6198 0.5771 0.5580	nan	0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0045 0.0027 0.0027 0.0022 Improve 0.1888
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707 0.6198 0.5771 0.5580 TrainDeviance 1.6094 1.4859	nan	0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0045 0.0027 0.0027 0.0022 Improve 0.1888 0.1314
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707 0.6198 0.5771 0.5580 TrainDeviance 1.6094 1.4859 1.4018	nan	0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0027 0.0027 0.0027 0.0022 Improve 0.1888 0.1314 0.1018
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5223 1.4638 1.4206 1.3850 1.3531 1.3251 1.2994 1.2775 1.2554 1.0972 0.9243 0.8167 0.7344 0.6707 0.6198 0.5771 0.5580 TrainDeviance 1.6094 1.4859	nan	0.1000 0.1000	0.1280 0.0893 0.0666 0.0532 0.0489 0.0442 0.0396 0.0339 0.0348 0.0325 0.0185 0.0098 0.0073 0.0054 0.0045 0.0027 0.0027 0.0022 Improve 0.1888 0.1314

##	6	1.2332	nan	0.1000	0.0746
##	7	1.1867	nan	0.1000	0.0571
##	8	1.1505	nan	0.1000	0.0585
##	9	1.1142	nan	0.1000	0.0425
##	10	1.0867	nan	0.1000	0.0434
##	20	0.8801	nan	0.1000	0.0221
##	40	0.6656	nan	0.1000	0.0103
##	60	0.5416	nan	0.1000	0.0099
##	80	0.4568	nan	0.1000	0.0030
##	100	0.3956	nan	0.1000	0.0047
##	120	0.3418	nan	0.1000	0.0026
##	140	0.2995	nan	0.1000	0.0030
##	150	0.2816	nan	0.1000	0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2361
##	2	1.4576	nan	0.1000	0.1585
##	3	1.3570	nan	0.1000	0.1325
##	4	1.2757	nan	0.1000	0.1020
##	5	1.2045	nan	0.1000	0.0922
##	6	1.1459	nan	0.1000	0.0322
##	7	1.0968	nan	0.1000	0.0703
##	8	1.0521	nan	0.1000	0.0655
##	9	1.0119		0.1000	0.0632
##	10	0.9730	nan	0.1000	0.0632
##	20	0.7442	nan		0.0377
	40		nan	0.1000	
##	60	0.5230	nan	0.1000	0.0132 0.0078
##		0.3973	nan	0.1000	
##	80	0.3142	nan	0.1000	0.0044
##	100	0.2574	nan	0.1000	0.0044
##	120	0.2145	nan	0.1000	0.0026
##	140	0.1813	nan	0.1000	0.0021
##	150	0.1681	nan	0.1000	0.0010
##	т.	m · ъ ·	17 1 · 1D ·	a. a:	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1308
##	2	1.5210	nan	0.1000	0.0904
##	3	1.4600	nan	0.1000	0.0671
##	4	1.4152	nan	0.1000	0.0517
##	5	1.3802	nan	0.1000	0.0489
##	6	1.3489	nan	0.1000	0.0466
##	7	1.3202	nan	0.1000	0.0382
##	8	1.2958	nan	0.1000	0.0363
##	9	1.2730	nan	0.1000	0.0333
##	10	1.2525	nan	0.1000	0.0321
##	20	1.0935	nan	0.1000	0.0175
##	40	0.9206	nan	0.1000	0.0088
##	60	0.8132	nan	0.1000	0.0054
##	80	0.7333	nan	0.1000	0.0038
##	100	0.6711	nan	0.1000	0.0045
##	120	0.6197	nan	0.1000	0.0029
##	140	0.5746	nan	0.1000	0.0040
##	150	0.5554	nan	0.1000	0.0024
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1895
##	2	1.4864		0.1000	0.1093
##	3	1.4034	nan		0.1280
##	4		nan	0.1000	0.1079
		1.3354	nan	0.1000	
##	5	1.2805	nan	0.1000	0.0774
##	6	1.2324	nan	0.1000	0.0641
##	7	1.1917	nan	0.1000	0.0655
##	8	1.1511	nan	0.1000	0.0471
##	9	1.1212	nan	0.1000	0.0472
##	10	1.0921	nan	0.1000	0.0451
##	20	0.8858	nan	0.1000	0.0249
##	40	0.6701	nan	0.1000	0.0116
##	60	0.5413	nan	0.1000	0.0045
##	80	0.4568	nan	0.1000	0.0039
##	100	0.3927	nan	0.1000	0.0047
##	120	0.3359	nan	0.1000	0.0037
##	140	0.2952	nan	0.1000	0.0029
##	150	0.2764	nan	0.1000	0.0028
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2391
##	2	1.4564	nan	0.1000	0.1568
##	3	1.3571	nan	0.1000	0.1353
##	4	1.2742	nan	0.1000	0.0959
##	5	1.2136	nan	0.1000	0.0948
##	6	1.1536	nan	0.1000	0.0745
##	7	1.1065	nan	0.1000	0.0670
##	8	1.0632	nan	0.1000	0.0659
##	9	1.0214	nan	0.1000	0.0607
##	10	0.9836	nan	0.1000	0.0567
##	20	0.7436	nan	0.1000	0.0284
##	40	0.5187	nan	0.1000	0.0137
##	60	0.3904	nan	0.1000	0.0068
##	80	0.3101	nan	0.1000	0.0048
##	100	0.2563	nan	0.1000	0.0029
##	120	0.2127	nan	0.1000	0.0026
##	140	0.1795	nan	0.1000	0.0016
##	150	0.1649	nan	0.1000	0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1386
##	2	1.5193	nan	0.1000	0.0905
##	3	1.4595	nan	0.1000	0.0694
##	4	1.4135	nan	0.1000	0.0563
##	5	1.3760	nan	0.1000	0.0466
##	6	1.3456	nan	0.1000	0.0468
##	7	1.3160	nan	0.1000	0.0450
##	8	1.2885	nan	0.1000	0.0318
##	9	1.2676	nan	0.1000	0.0340
##	10	1.2463	nan	0.1000	0.0311
##	20	1.0935	nan	0.1000	0.0161
##	40	0.9238	nan	0.1000	0.0098
##	60	0.8160	nan	0.1000	0.0070

##	80	0.7340	nan	0.1000	0.0047
##	100	0.6706	nan	0.1000	0.0044
##	120	0.6193	nan	0.1000	0.0041
##	140	0.5745	nan	0.1000	0.0031
##	150	0.5548	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1981
##	2	1.4833	nan	0.1000	0.1343
##	3	1.3968	nan	0.1000	0.1107
##	4	1.3261	nan	0.1000	0.0877
##	5	1.2712	nan	0.1000	0.0652
##	6	1.2284	nan	0.1000	0.0678
##	7	1.1853	nan	0.1000	0.0580
##	8	1.1481	nan	0.1000	0.0514
##	9	1.1147	nan	0.1000	0.0439
##	10	1.0862	nan	0.1000	0.0486
##	20	0.8783	nan	0.1000	0.0205
##	40	0.6682	nan	0.1000	0.0149
##	60	0.5378	nan	0.1000	0.0080
##	80	0.4490	nan	0.1000	0.0054
##	100	0.3825	nan	0.1000	0.0029
##	120	0.3328	nan	0.1000	0.0030
##	140	0.2939	nan	0.1000	0.0029
##	150	0.2759	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2404
##	2	1.4567	nan	0.1000	0.1650
##	3	1.3530	nan	0.1000	0.1221
##	4	1.2748	nan	0.1000	0.1111
##	5	1.2044	nan	0.1000	0.0906
##	6	1.1469	nan	0.1000	0.0770
##	7	1.0968	nan	0.1000	0.0653
##	8	1.0541	nan	0.1000	0.0634
##	9	1.0141	nan	0.1000	0.0670
##	10	0.9743	nan	0.1000	0.0474
##	20	0.7366	nan	0.1000	0.0250
##	40	0.5180	nan	0.1000	0.0121
##	60	0.3916	nan	0.1000	0.0071
##	80	0.3120	nan	0.1000	0.0038
##	100	0.2527	nan	0.1000	0.0028
##	120	0.2129	nan	0.1000	0.0025
##	140	0.1783	nan	0.1000	0.0037
##	150	0.1640	nan	0.1000	0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1199
##	2	1.5267	nan	0.1000	0.0841
##	3	1.4714	nan	0.1000	0.0626
##	4	1.4299	nan	0.1000	0.0513
##	5	1.3964	nan	0.1000	0.0500
##	6	1.3640	nan	0.1000	0.0383
##	7	1.3389	nan	0.1000	0.0389

##	8	1.3148	nan	0.1000	0.0373
##	9	1.2917	nan	0.1000	0.0338
##	10	1.2679	nan	0.1000	0.0302
##	20	1.1139	nan	0.1000	0.0195
##	40	0.9418	nan	0.1000	0.0116
##	60	0.8318	nan	0.1000	0.0063
##	80	0.7497	nan	0.1000	0.0047
##	100	0.6866	nan	0.1000	0.0050
##	120	0.6350	nan	0.1000	0.0029
##	140	0.5915	nan	0.1000	0.0034
##	150	0.5721	nan	0.1000	0.0032
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1890
##	2	1.4896	nan	0.1000	0.1252
##	3	1.4089	nan	0.1000	0.1053
##	4	1.3416	nan	0.1000	0.0835
##	5	1.2867	nan	0.1000	0.0783
##	6	1.2370	nan	0.1000	0.0577
##	7	1.1998	nan	0.1000	0.0622
##	8	1.1603	nan	0.1000	0.0516
##	9	1.1278	nan	0.1000	0.0431
##	10	1.1002	nan	0.1000	0.0499
##	20	0.8903	nan	0.1000	0.0233
##	40	0.6717	nan	0.1000	0.0113
##	60	0.5444	nan	0.1000	0.0081
##	80	0.4570	nan	0.1000	0.0042
##	100	0.3893	nan	0.1000	0.0037
##	120	0.3374	nan	0.1000	0.0031
##	140	0.2941	nan	0.1000	0.0021
##	150	0.2752	nan	0.1000	0.0027
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2345
##	2	1.4622	nan	0.1000	0.1559
##	3	1.3642	nan	0.1000	0.1233
##	4	1.2852	nan	0.1000	0.1108
##	5	1.2172	nan	0.1000	0.0933
##	6	1.1582	nan	0.1000	0.0746
##	7	1.1097	nan	0.1000	0.0691
##	8	1.0664	nan	0.1000	0.0619
##	9	1.0279	nan	0.1000	0.0576
##	10	0.9923	nan	0.1000	0.0604
##	20	0.7538	nan	0.1000	0.0229
##	40	0.5194	nan	0.1000	0.0121
##	60	0.3931	nan	0.1000	0.0059
##	80	0.3139	nan	0.1000	0.0044
##	100	0.2561	nan	0.1000	0.0027
##	120	0.2154	nan	0.1000	0.0025
##	140	0.1837	nan	0.1000	0.0016
##	150	0.1702	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2392

```
##
        2
                  1.4580
                                                0.1000
                                                           0.1615
                                       nan
##
        3
                                                0.1000
                                                           0.1246
                  1.3578
                                       nan
                  1.2792
##
        4
                                       nan
                                                0.1000
                                                           0.1044
        5
##
                  1.2136
                                                0.1000
                                                           0.0821
                                       nan
##
        6
                  1.1598
                                       nan
                                                0.1000
                                                           0.0832
##
        7
                  1.1075
                                                0.1000
                                                           0.0843
                                       nan
##
        8
                                                           0.0651
                  1.0564
                                       nan
                                                0.1000
        9
##
                  1.0160
                                       nan
                                                0.1000
                                                           0.0545
##
       10
                  0.9816
                                                0.1000
                                                           0.0540
                                       nan
##
       20
                  0.7511
                                       nan
                                                0.1000
                                                           0.0205
##
       40
                  0.5314
                                                0.1000
                                                           0.0079
                                       nan
##
       60
                  0.4101
                                       nan
                                                0.1000
                                                           0.0058
##
       80
                  0.3291
                                                0.1000
                                                           0.0069
                                       nan
##
                  0.2684
      100
                                       nan
                                                0.1000
                                                           0.0030
##
      120
                                                0.1000
                  0.2245
                                                           0.0014
                                       nan
##
      140
                  0.1900
                                                0.1000
                                                           0.0021
                                       nan
##
      150
                                                0.1000
                  0.1770
                                                           0.0015
                                       nan
```

predictGbm <- predict(modFitGbm, dfValidate)
confusionMatrix(dfValidate\$classe, predictGbm)</pre>

Confusion Matrix and Statistics

accuracy2

```
##
##
             Reference
## Prediction
                  Α
                       В
                            C
                                  D
                                       Ε
                       9
##
            A 1377
                            5
                                  3
                                       1
##
            В
                 33
                     896
                           17
                                  1
                                       2
##
            C
                  0
                      31
                          811
                                 11
                                       2
                  0
##
            D
                       4
                            26
                                769
                                       5
##
            Ε
                  3
                      13
                            7
                                 13
                                     865
##
## Overall Statistics
##
##
                   Accuracy : 0.9621
##
                     95% CI: (0.9563, 0.9672)
##
       No Information Rate: 0.2881
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.952
    Mcnemar's Test P-Value: 3.94e-07
##
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                            0.9745
                                     0.9402
                                               0.9365
                                                        0.9649
                                                                  0.9886
                                                                  0.9911
                                               0.9891
                                                        0.9915
## Specificity
                           0.9948
                                     0.9866
## Pos Pred Value
                            0.9871
                                     0.9442
                                               0.9485
                                                        0.9565
                                                                  0.9600
## Neg Pred Value
                                               0.9864
                            0.9897
                                     0.9856
                                                        0.9932
                                                                  0.9975
## Prevalence
                            0.2881
                                     0.1943
                                               0.1766
                                                        0.1625
                                                                  0.1784
## Detection Rate
                            0.2808
                                               0.1654
                                                        0.1568
                                                                  0.1764
                                     0.1827
## Detection Prevalence
                            0.2845
                                     0.1935
                                               0.1743
                                                        0.1639
                                                                  0.1837
## Balanced Accuracy
                            0.9847
                                     0.9634
                                                        0.9782
                                               0.9628
                                                                  0.9898
accuracy2 <- postResample(predictGbm, dfValidate$classe)</pre>
```

Accuracy Kappa ## 0.9620718 0.9520028