Port 1.2: Matrix Inverses and Infinite Series

(hand): Find under which conditions the series $I + C + C^2 + ... + C^k$ converge to $(I - C)^{-1}$ and provide a simple example where the matrix does not converge.

Soln: det define spectral radrus of motrix CECn defined as

 $p(C):=\max\{1a1, a essentine of C\}$ * Het C be a square metrix and CECn(Cnxn) therefore $C^k = 0$ (3) p(C) < 1

and moreover, the geometric series \mathbb{E}_{c}^{k} circonvergent iff p(c) < 1Therefore; $\mathbb{E}_{c}^{k} = (T_{c}^{k})^{-1}$

Proof: Let p(C) < 1, then $\exists E > 0$ such that p(C) < 1 - E and thus, \exists an induced matrix normal $|I \cdot I|$ such that $|I \cdot C| \le p(C) + E < 1$. From the fact that; $|I \cdot C^k| \le |I \cdot C| \le |I \cdot$

Then $C^k.x = \partial^k.x (x \neq 0)$ on eigenvecton assocrated with a so that $lim \partial^k = 0$. As a consequence, lal < 1 and become kape

this is true for seneric eigenvalue are gets $p(C) \ge 1$ The eigenvalues of I_C are given by $I_A(C)$, a(C)being generic eigenvalue of C. On the other hand, since $p(C) \le 1$, we deduced that I_C is non-singular

Then; $CI_{-}C)(I_{+}C_{+}\cdots_{+}C_{-})=(I_{-}C_{+}^{k+1})$ and teking $l_{-}m_{+}$ for $k\to\infty$ then the theris follows since $(I_{-}C)\stackrel{?}{\sim} c^{k}=I_{-})\stackrel{?}{\sim} c^{k}=(I_{-}C)^{-1}$

St. Take C=[5 2] expanded al=7

2=1

smee p(c)=mex {12,1, 121} => p(c)=731

espervectors: [-2 2][xi] = [0]

x1=x2 soy v1= [] for a1=7

 $\begin{bmatrix} h & 2 \\ h & 2 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{aligned} hx_1 &= -2x_2 \\ 2x_1 &= -x_2 \end{aligned} \quad \text{Soy } \forall 2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad \text{for } \\ 2x_1 &= -x_2 \end{aligned}$

 $\Delta = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 5 & 2 \\ 0 & 3 \end{bmatrix}$

 $\Rightarrow C^2 = P[x^2]P^7, C^3 = P[x^3]P^7 - ...$

CK = P[]K 0] P-1 as E-300

Is $C^k \cong \infty$ because of that $\mathcal{E} C^k \cong \infty$ not convergent $k = \infty$ since $p(C) = + \lambda l$.

Z