

Multi-headed Self Attention Block

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting \mathbb{Z} matrices, then multiply with weight matrix \mathbb{W}^0 to produce the output of the layer

402

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Encoder Block

Transformer with encoders and decoders

Figure: Jay Alammar

How is the decoder different?

Figure: Jay Alammar

Masked Self-attention

In the **decoder**, the self-attention layer is only allowed to attend to **earlier positions** in the output sequence. Otherwise, we'd be cheating!

This is done by **masking future positions** (setting the dot product score for **future positions to -inf)** before the Softmax step in the self-attention calculation.

https://rycolab.io/classes/llm-s24/

Masked Self-attention for decoder (to avoid seeing the future tokens)

https://web.stanford.edu/~jurafsky/slp3/

decode

Jash de coder

Encoder-Decoder Attention

The output of the top encoder is transformed into a set of attention vectors K and V.

These are to be used by each decoder in its "encoder-decoder attention" layer which helps the decoder focus on appropriate places in the input sequence:

Figure: Jay Alammar

Decoding

the

Converting decoder stack output to words

Transformers as Language models (Decodor)

Transformers as Language models

Unembedding layer: linear layer projects from h_N^L (shape $[1 \times d]$) to logit vector

 W_N

Why "unembedding"? Tied to ET

Weight tying, we use the same weights for two different matrices

Unembedding layer maps from an embedding to a 1x|V| vector of logits

Language modeling head

Langtonnez Tu

Logits, the score vector u

One score for each of the |V| possible words in the vocabulary V. Shape $1 \times |V|$.

Softmax turns the logits into probabilities over vocabulary. Shape $1 \times |V|$.

$$\mathbf{u} = \mathbf{h}_{\mathbf{N}}^{\mathbf{L}} \mathbf{E}^{\mathsf{T}}$$

 $\mathbf{y} = \operatorname{softmax}(\mathbf{u})$

Transformers LM

Number of parameters in encoder-decoder?

Number of parameters in encoder-decoder?

assumes a default conf Dewder Self-att": 4dt
feed-forward: 8de encoder-decoder: 4d2 18m + 24m + (20m) emm

Number of parameters in the decoder only Transformer?

Same as encoder (18m)

+

embeddy / umenteddy,

$$d = 12288$$
; $d = 96$

Tay this one

Decoding: Greedy and Beam Search are deterministic!

- Greedy decoding as well as Beam Search decoding will give a "deterministic" output
- Other common decoding algorithms involve "sampling", and bring in some degree of "randomness"

```
x \sim p(x) \rightarrow choose x by sampling from the distribution p(x)
```

Random Sampling

```
i \leftarrow 1
w_i \sim p(w)
while w_i != EOS
i \leftarrow i + 1
w_i \sim p(w_i \mid w_{< i})
```

Quality vs Diversity trade-off

Various sampling methods enable trading off two important factors in generation: *quality* and *diversity*.

Quality vs Diversity trade-off

- Methods that emphasize the most probable words tend to produce more coherent and accurate generations but also tend to be repetitive and boring
- Methods that give bit more weight to the middle probability words tend to be more creative and diverse, but likely to be incoherent and less factual

Random Sampling with Temperature

Intuition from thermodynamics

A system at a *high temperature* is flexible and can explore various states, while a system at a *low temperature* is likely to explore a subset of lower energy (better) states

How is this implemented

Divide the logits by a temperature parameter $\tau \in (0,1]$ before passing it through softmax

Random sampling:
$$y = softmax(u)$$
Random sampling with temperature: $y = softmax(u/\tau)$
 $\tau = 0.2$

https://utah-cs6340-nlp.notion.site/Natural-Language-Processing-bd1a2ca290fc44f69556908ad8d25c70