PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT

(51) International Patent Classification 7:		(11) International Publication Number:	WO 00/12678
C12N	A2	(43) International Publication Date:	9 March 2000 (09.03.00)
(21) International Application Number: PCT/US	99/197:	1 , , , , , , , , , , , , , , , , , , ,	AU, AZ, BA, BB, BG, BR,
(22) International Filing Date: 31 August 1999 (3	31.08.9		IS, JP, KE, KG, KP, KR,
(30) Priority Data: : : : : : : : : : : : : : : : : : :) ι	KZ, LC, LK, LR, LS, LT, LU, MW, MX, NO, NZ, PL, PT, RO SL, TJ, TM, TR, TT, UA, UG, U ARIPO patent (GH, GM, KE, L ZW), Eurasian patent (AM, AZ,	, RU, SD, SE, SG, SI, SK, JS, UZ, VN, YU, ZA, ZW, S, MW, SD, SL, SZ, UG,
(71) Applicant (for all designated States except US): I GENOME SCIENCES, INC. [US/US]; 9410 Ko Avenue, Rockville, MD 20850 (US).		TM), European patent (AT, BE, N FR, GB, GR, IE, IT, LU, MC,	CH, CY, DE, DK, ES, FI, NL, PT, SE), OAPI patent
(72) Inventors; and (75) Inventors/Applicants (for US only): BAILEY, Can [US/US]; 1753 Kilbourne Place NW, Washingt 20010 (US). CHOI, Gil, H. [CN/US]; 11429 Potom Drive, Rockville, MD 20850 (US).	ton, D	C Without international search rep	port and to be republished
(74) Agents: HOOVER, Kenley, K. et al.; Human Genome S Inc., 9410 Key West Avenue, Rockville, MD 2085			

(54) Title: STAPHYLOCOCCUS AUREUS GENES AND POLYPEPTIDES

(57) Abstract

The present invention relates to novel genes from S. aureus and the polypeptides they encode. Also provided are vectors, host cells, antibodies and recombinant methods for producing the same. The invention further relates to screening methods for identifying agonists and antagonists of S. aureus polypetide activity. The invention additionally relates to diagnostic methods for detecting Staphylococcus nucleic acids, polypeptides and antibodies in a biological sample. The present invention further relates to novel vaccines for the prevention or attenuation of infection by Staphylococcus.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	· LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB.	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		•
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	·RO	Romania		
CŻ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan	•	
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	ŠG	Singapore		
							•
	•		• • •	*	•		

10

15

20

25

30

35

Staphylococcus aureus genes and polypeptides.

Field of the Inventi n

The present invention relates to novel Staphylococcus aureus genes (S. aureus) nucleic acids and polypeptides. Also provided are vectors, host cells and recombinant methods for producing the same. Further provided are diagnostic methods for detecting S. aureus using probes, primers, and antibodies to the S. aureus nucleic acids and polypeptides of the present invention. The invention further relates to screening methods for identifying agonists and antagonists of S. aureus polypeptide activity and to vaccines using S. aureus nucleic acids and polypeptides.

Background of the Invention

The genus *Staphylococcus* includes at least 20 distinct species. (For a review see Novick, R. P., The *Staphylococcus* as a Molecular Genetic System in MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, 1-37 (R. Novick, Ed., VCH Publishers, New York (1990)). Species differ from one another by 80% or more, by hybridization kinetics, whereas strains within a species are at least 90% identical by the same measure.

The species S. aureus, a gram-positive, facultatively aerobic, clump-forming cocci, is among the most important etiological agents of bacterial infection in humans, as discussed briefly below.

Human Health and S. aureus

Staphylococcus aureus is a ubiquitous pathogen. See, e.g., Mims et al., MEDICAL MICROBIOLOGY (Mosby-Year Book Europe Limited, London, UK 1993). It is an etiological agent of a variety of conditions, ranging in severity from mild to fatal. A few of the more common conditions caused by S. aureus infection are burns, cellulitis, eyelid infections, food poisoning, joint infections, neonatal conjunctivitis, osteomyelitis, skin infections, surgical wound infection, scalded skin syndrome and toxic shock syndrome, some of which are described further below.

Burns: Burn wounds generally are sterile initially. However, they generally compromise physical and immune barriers to infection, cause loss of fluid and electrolytes and result in local or general physiological dysfunction. After cooling, contact with viable bacteria results in mixed colonization at the injury site. Infection may be restricted to the non-viable debris on the burn surface ("eschar"), it may progress into full skin infection and invade viable tissue below the eschar and it may reach below the skin, enter the lymphatic and blood circulation and develop into septicemia. S. aureus is among the most important pathogens typically found in burn wound infections. It can destroy granulation tissue and produce severe

septicemia.

10

15

20

25

30

35

Cellulitis: Cellulitis, an acute infection of the skin that expands from a typically superficial origin to spread below the cutaneous layer, most commonly is caused by S. aureus in conjunction with S. pyrogenes. Cellulitis can lead to systemic infection. In fact, cellulitis can be one aspect of synergistic bacterial gangrene. This condition typically is caused by a mixture of S. aureus and microaerophilic Streptococci. It causes necrosis and treatment is limited to excision of the necrotic tissue. The condition often is fatal.

Eyelid infections: S. aureus is the cause of styes and of "sticky eye" in neonates, among other eye infections. Typically such infections are limited to the surface of the eye, and may occasionally penetrate the surface with more severe consequences.

Food poisoning: Some strains of S. aureus produce one or more of five serologically distinct, heat and acid stable enterotoxins that are not destroyed by digestive process of the stomach and small intestine (enterotoxins A-E). Ingestion of the toxin, in sufficient quantities, typically results in severe vomiting, but not diarrhea. The effect does not require viable bacteria. Although the toxins are known, their mechanism of action is not understood.

Joint infections: S. aureus infects bone joints causing diseases such osteomyelitis. See, e.g., R. Cunningham et al., (1996) J. Med. Microbiol. 44:157-164.

Osteomyelitis: S. aureus is the most common causative agent of haematogenous osteomyelitis. The disease tends to occur in children and adolescents more than adults and it is associated with non-penetrating injuries to bones. Infection typically occurs in the long end of growing bone, hence its occurrence in physically immature populations. Most often, infection is localized in the vicinity of sprouting capillary loops adjacent to epiphysis growth plates in the end of long, growing bones.

Skin infections: S. aureus is the most common pathogen of such minor skin infections as abscesses and boils. Such infections often are resolved by normal host response mechanisms, but they also can develop into severe internal infections. Recurrent infections of the nasal passages plague nasal carriers of S. aureus.

Surgical Wound Infections: Surgical wounds often penetrate far into the body. Infection of such wound thus poses a grave risk to the patient. S. aureus is the most important causative agent of infections in surgical wounds. S. aureus is unusually adept at invading surgical wounds; sutured wounds can be infected by far fewer S. aureus cells then are necessary to cause infection in normal skin. Invasion of surgical wound can lead to severe S. aureus septicemia. Invasion of the blood stream by S. aureus can lead to seeding and infection of internal organs, particularly heart valves and bone, causing systemic diseases, such as endocarditis and osteomyelitis.

Scalded Skin Syndrome: S. aureus is responsible for "scalded skin syndrome" (also called toxic epidermal necrosis, Ritter's disease and Lyell's disease). This diseases occurs in older children, typically in outbreaks caused by flowering of S. aureus strains produce exfoliation(also called scalded skin syndrome toxin). Although the bacteria initially may infect

only a minor lesion, the toxin destroys intercellular connections, spreads epidermal layers and allows the infection to penetrate the outer layer of the skin, producing the desquamation that typifies the diseases. Shedding of the outer layer of skin generally reveals normal skin below, but fluid lost in the process can produce severe injury in young children if it is not treated properly.

Toxic Shock Syndrome: Toxic shock syndrome is caused by strains of S. aureus that produce the so-called toxic shock syndrome toxin. The disease can be caused by S. aureus infection at any site, but it is too often erroneously viewed exclusively as a disease solely of women who use tampons. The disease involves toxemia and septicemia, and can be fatal.

Nocosomial Infections: In the 1984 National Nocosomial Infection Surveillance Study ("NNIS") S. aureus was the most prevalent agent of surgical wound infections in many hospital services, including medicine, surgery, obstetrics, pediatrics and newborns.

Other Infections: Other types of infections, risk factors, etc. involving S. aureus are discussed in: A. Trilla (1995) J. Chemotherapy 3:37-43; F. Espersen (1995) J. Chemotherapy 3:11-17; D.E. Craven (1995) J. Chemotherapy 3:19-28; J.D. Breen et al. (1995) Infect. Dis. Clin. North Am. 9(1):11-24 (each incorporated herein in their entireties).

Resistance to drugs of S. aureus strains

5

10

15

20

25

30

35

Prior to the introduction of penicillin the prognosis for patients seriously infected with S. aureus was unfavorable. Following the introduction of penicillin in the early 1940s even the worst S. aureus infections generally could be treated successfully. The emergence of penicillin-resistant strains of S. aureus did not take long, however. Most strains of S. aureus encountered in hospital infections today do not respond to penicillin; although, fortunately, this is not the case for S. aureus encountered in community infections.

It is well known now that penicillin-resistant strains of *S. aureus* produce a lactamase which converts penicillin to pencillinoic acid, and thereby destroys antibiotic activity. Furthermore, the lactamase gene often is propagated episomally, typically on a plasmid, and often is only one of several genes on an episomal element that, together, confer multidrug resistance.

Methicillins, introduced in the 1960s, largely overcame the problem of penicillin resistance in *S. aureus*. These compounds conserve the portions of penicillin responsible for antibiotic activity and modify or alter other portions that make penicillin a good substrate for inactivating lactamases. However, methicillin resistance has emerged in *S. aureus*, along with resistance to many other antibiotics effective against this organism, including aminoglycosides, tetracycline, chloramphenicol, macrolides and lincosamides. In fact, methicillin-resistant strains of *S. aureus* generally are multiply drug resistant.

Methicillian-resistant S. aureus (MRSA) has become one of the most important nosocomial pathogens worldwide and poses serious infection control problems. Today, many strains are multiresistant against virtually all antibiotics with the exception of vancomycin-type

glycopeptide antibiotics.

10

15

20

25

30

35

Recent reports that transfer of vancomycin resistance genes from enterococci to S. aureus has been observed in the laboratory sustain the fear that MRSA might become resistant against vancomycin, too, a situation generally considered to result in a public health disaster. MRSA owe their resistance against virtually all β -lactam antibiotics to the expression of an extra penicillin binding protein (PBP) 2a, encoded by the mecA gene. This additional very low affinity pbp, which is found exclusively in resistant strains, appears to be the only pbp still functioning in cell wall peptidoglycan synthesis at β -lactam concentrations high enough to saturate the normal set of S. aureus pbp 1-4. In 1983 it was shown by insertion mutagenesis using transposon Tn551 that several additional genes independent of mecA are needed to sustain the high level of methicillin resistance of MRSA. Interruption of these genes did not influence the resistance level by interfering with PBP2a expression, and were therefore called fem (factor essential for expression of methicillin resistance) or aux (auxiliary genes).

In the meantime six *fem* genes (femA-through F) have been described and the minimal number of additional *aux* genes has been estimated to be more than 10. Interference with *femA* and *femB* results in a strong reduction of methicillin resistance, back to sensitivity of strains without PBP2a. The *fem* genes are involved in specific steps of cell wall synthesis.

Consequently, inactivation of *fem* encoded factors induce β-lactam hypersensitivity in already sensitive strains. Both *femA* and *femB* have been shown to be involved in peptidoglycan pentaglycine interpeptide bridge formation. FemA is responsible for the formation of glycines 2 and 3, and FemB is responsible for formation of glycines 4 and 5: *S. aureus* may be involved in the formation of a monoglycine muropeptide precursors. FemC-F influence amidation of the iso-D-glutamic acid residue of the peptidoglycan stem peptide, formation of a minor muropeptide with L-alanine instead of glycine at position 1 of the interpeptide bridge, perform a yet unknown function, or are involved in an early step of peptidoglycan precursors biosynthesis (addition of L-lysine), respectively.

Summary of the Invention

The present invention provides isolated *S. aureus* polynucleotides and polypeptides shown in Table 1 and SEQ ID NO:1 through SEQ ID NO:61. One aspect of the invention provides isolated nucleic acid molecules comprising or alternatively consisting of polynucleotides having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence shown in Table 1; (b) a nucleotide sequence encoding any of the amino acid sequences of the polypeptides shown in Table 1; and (c) a nucleotide sequence complementary to any of the nucleotide sequences in (a) or (b). The invention further provides for fragments of the nucleic acid molecules of (a), (b) & (c) above.

Further embodiments of the invention include isolated nucleic acid molecules that comprise, or alternatively consist of, a polynucleotide having a nucleotide sequence at least

5

90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to any of the nucleotide sequences in (a), (b) or (c) above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a), (b) or (c) above. Additional nucleic acid embodiments of the invention relate to isolated nucleic acid molecules comprising polynucleotides which encode the amino acid sequences of epitope-bearing portions of a *S. aureus* polypeptide having an amino acid sequence in (a) above.

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells. The present invention further relates to the use of these vectors in the production of *S. aureus* polypeptides or peptides by recombinant techniques.

10

15

20

25

30

35

The invention further provides isolated *S. aureus* polypeptides having an amino acid sequence selected from the group consisting of an amino acid sequence of any of the polypeptides described in Table 1 or fragments thereof.

The polypeptides of the present invention also include polypeptides having an amino acid sequence with at least 70% similarity, and more preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% similarity to those described in Table 1, as well as polypeptides having an amino acid sequence at least 70% identical, more preferably at least 75% identical, and still more preferably 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to those above; as well as isolated nucleic acid molecules encoding such polypeptides.

The present invention further provides a vaccine, preferably a multi-component vaccine comprising one or more of the S. aureus polynucleotides or polypeptides described in Table 1, or fragments thereof, together with a pharmaceutically acceptable diluent, carrier, or excipient, wherein the S. aureus polypeptide(s) are present in an amount effective to elicit an immune response to members of the Staphylococcus genus, or at least S. aureus, in an animal. The S. aureus polypeptides of the present invention may further be combined with one or more immunogens of one or more other staphylococcal or non-staphylococcal organisms to produce a multi-component vaccine intended to elicit an immunological response against members of the Staphylococcus genus and, optionally, one or more non-staphylococcal organisms.

The vaccines of the present invention can be administered in a DNA form, e.g., "naked" DNA, wherein the DNA encodes one or more staphylococcal polypeptides and, optionally, one or more polypeptides of a non-staphylococcal organism. The DNA encoding one or more polypeptides may be constructed such that these polypeptides are expressed as fusion proteins.

The vaccines of the present invention may also be administered as a component of a genetically engineered organism or host cell. Thus, a genetically engineered organism or host cell which expresses one or more *S. aureus* polypeptides may be administered to an animal. For example, such a genetically engineered organism or host cell may contain one or more *S. aureus* polypeptides of the present invention intracellularly, on its cell surface, or in its

6

periplasmic space. Further, such a genetically engineered organism or host cell may secrete one or more *S. aureus* polypeptides. The vaccines of the present invention may also be coadministered to an animal with an immune system modulator (e.g., CD86 and GM-CSF).

The invention also provides a method of inducing an immunological response in an animal to one or more members of the *Staphylococcus* genus, preferably one or more isolates of the *S. aureus* species, comprising administering to the animal a vaccine as described above.

The invention further provides a method of inducing a protective immune response in an animal, sufficient to prevent, attenuate, or control an infection by members of the *Staphylococcus* genus, preferably at least *S. aureus* species, comprising administering to the animal a composition comprising one or more of the polynucleotides or polypeptides described in Table 1, or fragments thereof. Further, these polypeptides, or fragments thereof, may be conjugated to another immunogen and/or administered in admixture with an adjuvant.

The invention further relates to antibodies elicited in an animal by the administration of one or more *S. aureus* polypeptides of the present invention and to methods for producing such antibodies and fragments thereof. The invention further relates to recombinant antibodies and fragments thereof and to methods for producing such antibodies and fragments thereof.

The invention also provides diagnostic methods for detecting the expression of the polynucleotides and polypeptides of Table 1 by members of the *Staphylococcus* genus in a biological or environmental sample. One such method involves assaying for the expression of a polynucleotide encoding *S. aureus* polypeptides in a sample from an animal. This expression may be assayed either directly (*e.g.*, by assaying polypeptide levels using antibodies elicited in response to amino acid sequences described in Table 1) or indirectly (*e.g.*, by assaying for antibodies having specificity for amino acid sequences described in Table 1). The expression of polynucleotides can also be assayed by detecting the nucleic acids of Table 1. An example of such a method involves the use of the polymerase chain reaction (PCR) to amplify and detect *Staphylococcus* nucleic acid sequences.

The present invention also relates to nucleic acid probes having all or part of a nucleotide sequence described in Table 1 which are capable of hybridizing under stringent conditions to *Staphylococcus* nucleic acids. The invention further relates to a method of detecting one or more *Staphylococcus* nucleic acids in a biological sample obtained from an animal, said one or more nucleic acids encoding *Staphylococcus* polypeptides, comprising: (a) contacting the sample with one or more of the above-described nucleic acid probes, under conditions such that hybridization occurs, and (b) detecting hybridization of said one or more probes to the *Staphylococcus* nucleic acid present in the biological sample.

Detailed Description

10

15

20

25

30

35

The present invention relates to recombinant antigenic *S. aureus* polypeptides and fragments thereof. The invention also relates to methods for using these polypeptides to produce immunological responses and to confer immunological protection to disease caused by

members of the genus *Staphylococcus*. The invention further relates to nucleic acid sequences which encode antigenic *S. aureus* polypeptides and to methods for detecting *Staphylococcus* nucleic acids and polypeptides in biological samples. The invention also relates to *Staphylococcus* specific antibodies and methods for detecting such antibodies produced in a host animal.

Definitions

5

10

15

20

25

30

35

The following definitions are provided to clarify the subject matter which the inventors consider to be the present invention.

As used herein, the phrase "pathogenic agent" means an agent which causes a disease state or affliction in an animal. Included within this definition, for examples, are bacteria, protozoans, fungi, viruses and metazoan parasites which either produce a disease state or render an animal infected with such an organism susceptible to a disease state (e.g., a secondary infection). Further included are species and strains of the genus Staphylococcus which produce disease states in animals.

As used herein, the term "organism" means any living biological system, including viruses, regardless of whether it is a pathogenic agent.

As used herein, the term "Staphylococcus" means any species or strain of bacteria which is members of the genus Staphylococcus regardless of whether they are known pathogenic agents.

As used herein, the phrase "one or more *S. aureus* polypeptides of the present invention" means the amino acid sequence of one or more of the *S. aureus* polypeptides disclosed in Table 1. These polypeptides may be expressed as fusion proteins wherein the *S. aureus* polypeptides of the present invention are linked to additional amino acid sequences which may be of Staphylococcal or non-Staphylococcal origin. This phrase further includes fragments of the *S. aureus* polypeptides of the present invention.

As used herein, the phrase "full-length amino acid sequence" and "full-length polypeptide" refer to an amino acid sequence or polypeptide encoded by a full-length open reading frame (ORF). For purposes of the present invention, polynucleotide ORFs in Table 1 are defined by the corresponding polypeptide sequences of Table 1 encoded by said polynucleotide. Therefore, a polynucleotide ORF is defined at the 5' end by the first base coding for the initiation codon of the corresponding polypeptide sequence of Table 1 and is defined at the 3' end by the last base of the last codon of said polypeptide sequence. As discussed below for polynucleotide fragments, the ORFs of the present invention may be claimed by a 5' and 3' position of a polynucleotide sequence of the present invention wherein the first base of said sequence is position 1.

As used herein, the phrase "truncated amino acid sequence" and "truncated polypeptide" refer to a sub-sequence of a full-length amino acid sequence or polypeptide. Several criteria may also be used to define the truncated amino acid sequence or polypeptide.

R

For example, a truncated polypeptide may be defined as a mature polypeptide (e.g., a polypeptide which lacks a leader sequence). A truncated polypeptide may also be defined as an amino acid sequence which is a portion of a longer sequence that has been selected for ease of expression in a heterologous system but retains regions which render the polypeptide useful for use in vaccines (e.g., antigenic regions which are expected to elicit a protective immune response).

Additional definitions are provided throughout the specification.

Explanation of Table 1

10

15

20

25

30

35

Table 1 lists the full length *S. aureus* polynucleotide and polypeptide sequences of the present invention. Each polynucleotide and polypeptide sequence is proceeded by a gene identifier. Each polynucleotide sequence is followed by at least one polypeptide sequence encoded by said polynucleotide. For some of the sequences of Table 1, a known biological activity and the name of the homolog with similar activity is listed after the gene sequence identifier.

Explanation of Table 2

Table 2 lists accession numbers for the closest matching sequences between the polypeptides of the present invention and those available through GenBank and GeneSeq databases. These reference numbers are the database entry numbers commonly used by those of skill in the art, who will be familiar with their denominations. The descriptions of the nomenclature for GenBank are available from the National Center for Biotechnology Information. Column 1 lists the polynucleotide sequence of the present invention. Column 2 lists the accession number of a "match" gene sequence in GenBank or GeneSeq databases. Column 3 lists the description of the "match" gene sequence. Columns 4 and 5 are the high score and smallest sum probability, respectively, calculated by BLAST. Polypeptides of the present invention that do not share significant identity/similarity with any polypeptide sequences of GenBank and GeneSeq are not represented in Table 2. Polypeptides of the present invention that share significant identity/similarity with more than one of the polypeptides of GenBank and GeneSeq may be represented more than once.

Explanation of Table 3.

The *S. aureus* polypeptides of the present invention may include one or more conservative amino acid substitutions from natural mutations or human manipulation as indicated in Table 3. Changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein. Residues from the following groups, as indicated in Table 3, may be substituted for one another: Aromatic, Hydrophobic, Polar, Basic, Acidic, and Small,

Explanation of Table 4

Table 4 lists residues comprising antigenic epitopes of antigenic epitope-bearing fragments present in each of the full length *S. aureus* polypeptides described in Table 1 as predicted by the inventors using the algorithm of Jameson and Wolf, (1988) Comp. Appl. Biosci. 4:181-186. The Jameson-Wolf antigenic analysis was performed using the computer program PROTEAN (Version 3.11 for the Power MacIntosh, DNASTAR, Inc., 1228 South Park Street Madison, WI). *S. aureus* polypeptides shown in Table 1 may possess one or more antigenic epitopes comprising residues described in Table 4. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly. The residues and locations shown described in Table 4 correspond to the amino acid sequences for each full length polypeptide sequence shown in Table 1 and in the Sequence Listing. Polypeptides of the present invention that do not have antigenic epitopes recognized by the Jameson-Wolf algorithm are not represented in Table 2.

15 Nucleic Acid Molecules

10

20

25

30

35

Sequenced S. aureus genomic DNA was obtained from the S. aureus strain ISP3. S. aureus strain ISP3, has been deposited at the American Type Culture Collection, as a convenience to those of skill in the art. The S. aureus strain ISP3 was deposited on 7 April 1998 at the ATCC, 10801 University Blvd. Manassas, VA 20110-2209, and given accession number 202108. As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. A wide variety of S. aureus strains can be used to prepare S. aureus genomic DNA for cloning and for obtaining polynucleotides and polypeptides of the present invention. A wide variety of S. aureus strains are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). It is recognized that minor variations is the nucleic acid and amino acid sequence may be expected from S. aureus strain to strain. The present invention provides for genes, including both polynucleotides and polypeptides, of the present invention from all the S. aureus strains.

Unless otherwise indicated, all nucleotide sequences determined by sequencing a DNA molecule herein were determined using an automated DNA sequencer (such as the Model 373 from Applied Biosystems, Inc., Foster City, CA), and all amino acid sequences of polypeptides encoded by DNA molecules determined herein were predicted by translation of a DNA sequence determined as above. Therefore, as is known in the art for any DNA sequence determined by this automated approach, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by automation are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. The actual sequence can be more precisely determined by other approaches including manual DNA sequencing methods well known in the art. By "nucleotide sequence" of a nucleic acid molecule or polynucleotide is

intended to mean either a DNA or RNA sequence. Using the information provided herein, such as the nucleotide sequence in Table 1, a nucleic acid molecule of the present invention encoding a *S. aureus* polypeptide may be obtained using standard cloning and screening procedures, such as those for cloning DNAs using genomic DNA as starting material. *See*, e.g., Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989). Illustrative of the invention, the nucleic acid molecule described in Table 1 was discovered in a DNA library derived from a *S. aureus* ISP3 genomic DNA.

10

15

20

25

35

40

45

TABLE 1. Nucleotide and Amino Acid Sequences of S. aureus Genes.

>HGS001, Fabh, 3-oxoacyl-acyl-carrier protein synthase
30 MNVGIKGFGAYAPEKIIDNAYFEQFLDTSDEWISKMIGIKERHWADDDQDTSDLAYEASLKAIADAGIQPEDIDMIIVAT
ATGDMPFPIVANMLQERLGTGKVASMDQLAACSGFMYSMITAKQYVQSGDYHNILVVGADKLSKITDLITDRSTAVLFGDG
AGAVIIGEVSDGRGIISYEMGSDGTGGKHLYLDKDIGKLKMNGREVFKFAVRIMGDASTRVVEKANLTSDDIDLFIPHQA
NIRIMESARERLGISKDKMSVSVNKYGNTSAASIPLSIDQELKNGKIKDDDTIVLVGFGGGLTWGAMTIKWGK

50

55

>HGS002, Murb, UDP-N-acetylenolpyruvoylglucosamine reductase
VINKDIYQALQQLIPNEKIKVDEPLKRYTYTKTGGNADFYITPTKNEEVQAVVKYAYQNEIPVTYLGNGSNIIIREGGIR
GIVISLLSLDHIEVSDDAIIAGSGAAIIDVSRVARDYALTGLEFACGIPGSIGGAVYMNAGAYGGEVKDCIDYALCVNEQ
GSLIKLTTKELELDYRNSIIQKEHLVVLEAAFTLAPGKMTEIQAKMDDLTERRESKQPLEYPSCGSVFQRPPGHFAGKLI
QDSNLQGHRIGGVEVSTKHAGFMVNVDNGTATDYENLIHYVQKTVKEKFGIELNREVRIIGEHPKES

15

10

5

>HGS003, FabI, enoyl- acyl-carrier protein reductase
MLNLENKTYVIMGIANKRSIAFGVAKVLDQLGAKLVFTYRKERSRKELEKLLEQLNQPEAHLYQIDVQSDEEVINGFEQI
GKDVGNIDGVYHSIAFANMEDLRGRFSETSREGFLLAQDISSYSLTIVAHEAKKLMPEGGSIVATTYLGGEFAVQNYNVM
GVAKASLEANVKYLALDLGPDNIRVNAISASPIRTLSAKGVGGFNTILKEIEERAPLKRNVDQVEVGKTAAYLLSDLSSG
VTGENIHVDSGFHAIK

20

25

30

>HGS004, murA, UDP-N-acetylglucosamine 1-carboxyvinyltransferase TAAAATAATTTTAAAATAGGGAAATGTAAAGTAATAGGAGTTCTAAGTGGAGGATTTACGATGGATAAAATAGTAATCAA AGGTGGAAATAAATTAACGGGTGAAGTTAAAGTAGAAGGTGCTAAAAATGCAGTATTACCAATATTGACAGCATCTTTAT TTAAATGCTGACGTTACATACAAAAAGGACGAAAATGCTGTTGTCGTTGATGCAACAAAGACTCTAAATGAAGAGGCACC ATATGAATATGTTAGTAAAATGCGTGCAAGTATTTTAGTTATGGGACCTCTTTTAGCAAGACTAGGACATGCTATTGTTG CATTGCCTGGTGGTTGTGCAATTGGAAGTAGACCGATTGAGCAACACATTAAAGGTTTTGAAGCTTTAGGCGCAGAAATT CATCTTGAAAATGGTAATATTTATGCTAATGCTAAAGATGGATTAAAAGGTACATCAATTCATTTAGATTTTCCAAGTGT AGGAGCAACACAAAATATTATTATGGCAGCATCATTAGCTAAGGGTAAGACTTTAATTGAAAAATGCAGCTAAAGAACCTG GGTGTAGAATCATTACATGGTGTAGAACATGCTATCATTCCAGATAGAATTGAAGCAGGCACATTACTAATCGCTGCTGC TATAACGCGTGGTGATATTTTTGTACGTGGTGCAATCAAAGAACATATGGCGAGTTTAGTCTATAAACTAGAAGAAATGG GCGTTGAATTGGACTATCAAGAAGATGGTATTCGTGTACGTGCTGAAGGGGAATTACAACCTGTAGACATCAAAACTCTA CCACATCCTGGATTCCCGACTGATATGCAATCACAAATGATGGCATTGTTATTAACGGCAAATGGTCATAAAGTCGTAAC CGAAACTGTTTTTGAAAACCGTTTTATGCATGTTGCAGAGTTCAAACGTATGAATGCTAATATCAATGTAGAAGGTCGTA GTGCTAAACTTGAAGGTAAAAGTCAATTGCAAGGTGCACAAGTTAAAGCGACTGATTTAAGAGCAGCAGCCGCCTTAATT

35

40

45

TGGAAACAATTTTTGA

>HGS004, Mura, UDP-N-acetylglucosamine 1-carboxyvinyltransferase
MDKIVIKGGNKLTGEVKVEGAKNAVLPILTASLLASDKPSKLVNVPALSDVETINNVLTTLNADVTYKKDENAVVVDATK
TLNEEAPYEYVSKMRASILVMGPLLARLGHAIVALPGGCAIGSRPIEQHIKGFEALGAEIHLENGNIYANAKDGLKGTSI
HLDPPSVGATQNIIMAASLAKGKTLIENAAKEPEIVDLANYINEMGGRITGAGTDTITINGVESLHGVEHAIIPDRIEAG
TLLIAGAITRGDIFVRGAIKEHMASLVYKLEEMSVELDYQEDGIRVRAÐGELQPVDIKTLPHPGFPTDMQSQMMALLLTA
NGHKVVTETVFENRFMHVAEFKRMNANINVÐGRSAKLÐGKSQLQGAQVKATDLRAAAALILAGLVADGKTSVTELTHLDR
GYVDLHGKLKQLGADIERIND

50

55

60

20

25

30

35

40

45

50

55

60.

AGCATTCTTCGGTGCAGCGAGAAATATTGAAGCGGGTGGAAGTTTAACAATACTTGCAACTGCATTAGTTGATACGGGTT
CACGTATGGACGATATGATTTACGAAGAATTTAAAGGAACAGGTAACATGGAGTTACATTTAGATCGTAAATTGTCTGAA
CGTCGTATCTTCCCTGCAATTGATATTGGCAGAAGTTCAACGCGTAAAGAAGAATTGTTGATAAGTAAATCTGAATTAGA
CACATTATGGCAATTAAGAAATCTATTCACTGACTCAACTGACTTTACTGAAAGATTTATTCGCAAACTTAAAAGGTCTA
AGAATAATGAAGATTTCTTCAAGCAGCTACAAAAAGTCTGCAGAAGAAAGTACTAAAACGGGTCGACCTATAATTTAATAA
ACATTATATAGGGGCTTGCGTTTTGAATTAATTACCTTTATAATTACACAGTATTGGGTAAAAACTCACAAATAACTCTG
TTCCAGATGGTTCAGGG

>HGS005, Rho, transcriptional terminator Rho

MPERETSPQYESFHELYKNYTTKELTQKAKTLKLTNHSKLNKKELVLAIMEAQMEKDGNYYMEGILDDIQPGGYGFLRT
VNYSKGEKDIYISASQIRRFEIKRGDKVTGKVRKPKDNEKYYGLLQVDFVNDHNAEEVKKRPHFQALTPLYPDERIKLET
EIQNYSTRIMDLVTPIGLGQRGLIVAPPKAGKTSLLKEIANAISTNKPDAKLFILLVGERPEEVTDLERSVEAAEVVHST
FDEPPEHHVKVAELLLERAKRLVEIGEDVIILMDSITRLARAYNLVIPPSGRTLSGGLDPASLHKPKAFFGAARNIEAGG
SLTILATALVDTGSRMDDMIYEEFKGTGNMELHLDRKLSERRIFPAIDIGRSSTRKEELLISKSELDTLWQLRNLFTDST
DFTERFIRKLKRSKNNEDFFKOLOKSAEESTKTGRPII

>HGS006, RnpA, ribonuclease P protein component MILEKAYRIKKNADFQRIYKKGHSVANRQFVVYTCNNKEIDHFRLGISVSKKLGNAVLRNKIKRAIRENFKVHKSHILAK DIIVIARQPAKDMTTLQIQNSLEHVLKIAKVFNKKIK

>HGS007M, dnaB, replicative DNA helicase AGATAAAGAAGTTGAAGGTACAATTCGCGTACACAGTTGAACAATAAAGTTGGATTGAAATAAGAGGTGTAACCATTC TCCAGAATTGATTAATACTACTCAGGAAGTTTTGCTTCCTGAGTCGTTTTATAGGGGTGCCCATCAACATATTTTCCGTG CAATGATGCACTTAAATGAAGATAATAAAGAAATTGATGTTGATAACATTGATGGATCAATTATCGACGGAAGGTACGTTG AATGAAGCGGGTGGCCCGCAATATCTTGCAGAGTTATCTACAAATGTACCAACGACGCGAAATGTTCAGTATTATACTGA TATCGTTTCTAAGCATGCATTAAAACGTAGATTGATTCAAACTGCAGATAGTATTGCCAATGATGGATATAATGATGAAC TTGAACTAGATGCGATTTTAAGTGATGCAGAACGTCGAATTTTAGAGCTATCATCTTCTCGTGAAAGCGATGGCTTTAAA GACATTCGAGACGTCTTAGGACAAGTGTATGAAACAGCTGAAGAGCTTGATCAAAATAGTGGTCAAACACCAGGTATACC TACAGGATATCGAGATITAGACTATRAGACAGATGACAGCTGGGGAGATGATTAAGTTAGCAGAGACTAGAGAGATTAGAGGGGCGTCCATCTG TAGGTAAGACTGCGTTCGCACTTAATATTGCACAAAAAGTTGCAACGCATGAAGATATGTATACAGTTGGTATTTTCTCG CTAGAGATGGGTGCTGATCAGTTAGCCACACGTATGATTTTGTAGTTCTGGAAATGTTGACTCAAACCGCTTAAGAACGGG CACCOGGTATTCGAATTAATGATTTACGTTCTAAATGTCGTCGATTAAAGCAAGAACATGGCTTAGACATGATTGTGATT GACTACTTACAGTTGATTCAAGGTAGTGGTTCACGTGCGTCCGATAACAGACAACAGGAAGTTTCTGAAATCTCTCGTAC ATTAAAAGCATTAGCCCGTGAATTAAAATGTCCAGTTATCGCATTAAGTCAGTTATCTCGTGGTGTTGAACAACGACAAG ATAAACGTCCAATGAGAGAGATATTCGTGAATCTGGTTCGATTGAGCAAGATGCCGATATCGTTGCATTCTTATACCGT GATGATTACTATAACCGTGGCGGCGATGAAGATGATGACGATGATGGTGGTTTCGAGCCACAAACGAATGATGAAAAACGG TGAAATTGAAATTATCATTGCTAAGCAACGTAACGGTCCAACAGGCACAGTTAAGTTACATTTTATGAAACAATATAATA AATTTACCGATATCGATTATGCACATGCAGATATGATGTAAAAAAGTTTTTCCGTACAATAATCATTAAGATGATAAAAT TGTACGGTTTTTATTTTGTTCTGAACGGGTTG

>HGS007M, DnaB, replicative DNA helicase
MDRMYEQNQMPHNNEAEQSVLGSIIIDPELINTTQEVLLPESFYRGAHQHIFRAMMHLNEDNKEIDVVTLMDQLSTEGTL
NEAGGPQYLAELSTNVPTTRNVQYYTDIVSKHALKRRLIQTADSIANDGYNDELELDAILSDAERRILELSSSRESDGFK
DIRDVLGQVYETAEELDQNSGQTPGIPTGYRDLDQMTAGFNRNDLIILAARPSVGKTAFALNIAQKVATHEDMYTVGIFS
LEMGADQLATRMICSSGNVDSNRLRTGIMTEEDWSRFTIAVGKLSRTKIFIDDTPGIRINDLRSKCRRLKQEHGLDMIVI
DYLQLIQGSGSRASDNRQQEVSEISRTLKALARELKCPVIALSQLSRGVEQRQDKRPMMSDIRESGSIEQDADIVAFLYR
DDYYNRGGDEDDDDDGGFEPOTNDENGEIEIIIAKORNGPTGTVKLHFMKOYNKFTDIDYAHADMM

>HGS008, fabD, malonyl CoA-acyl carrier protein transacylase
GTGGTTCCGTATTATTAGGATTGGAAGGTACTGTAGTTAAAGCACACGGTAGTTCAAATGCTAAAGCTTTTTATTCTGCA

CAGCAATTATTTTCCGGGACAAGGTGCCCAAAAAGTTGGTATGGCGCAAGATTTGTTTAACAACAATGATCAAGCAACT GAAATTTTAACTTCAGCAGCGAACACATTAGACTTTGATATTTTAGAGACAATGTTTACTGATGAAGAAGGTAAATTGGG TGAAACTGAAAACACACCAGCTTTATTGACGCATAGTTCGGCATTATTAGCAGCGCTAAAAAATTTGAATCCTGATT TTACTATGGGGCATAGTTTAGGTGAATATTCAAGTTTAGTTGCAGCTGACGTATTATCATTTGAAGATGCAGTTAAAATT GTTAGAAAACGTGGTCAATTAATGGCGCAAGCATTTCCTACTGGTGTAGGAAGCATGGCTGCAGTATTGGGATTAGATTT TGATAAAGTCGATGAAATTTGTAAGTCATTATCATCTGATGACAAAATAATTGAACCAGCAAACATTAATTGCCCAGGTC AAATTGTTGTTTCAGGTCACAAAGCTTTAATTGATGAGCTAGTAGAAAAAGGTAAATCATTAGGTGCAAAACGTGTCATG CCTTTAGCAGTATCTGGACCATTCCATTCATCGCTAATGAAAGTGATTGAAGAAGATTTTTCAAGTTACATTAATCAATT TGAATGCCTGATGCTAAGTTTCCTGTAGTTCAAAATGTAAATGCGCAAGGTGAAACTGACAAAGAAGTAATTAAATCTA ATATGGTCAAGCAATTATATTCACCAGTACAATTCATTAACTCAACAGAATGGCTAATAGACCAAGGTGTTGATCATTTT TTTAGAAGATGTGAAAGGATGGAATGAAAATGACTAAGAGTGCTTTAGTAACAGGTGCATCAAGAGGAATTGGACGTAGT ATTGCGTTACAATTAGCAGAAGAAGGATATAATGTAGCAGTAAACTATGC

15

10

5

>HGS008, FabD, malonyl CoA-acyl carrier protein transacylase MSKTAIIFPGQGAQKVGMAQDLFNNNDQATEILTSAANTLDFDILETMFTDEEGKLGETENTQPALLTHSSALLAALKNL NPDFTMGHSLGEYSSLVAADVLSFEDAVKIVRKRGQLMAQAFPTGVGSMAAVLGLDFDKVDEICKSLSSDDKIIEPANIN CPGQIVVSGHKALIDELVEKGKSLGAKRVMPLAVSGPFHSSLMKVIEEDFSSYINQFEWRDAKFPVVQNVNAQGETDKEV IKSNMVKQLYSPVQFINSTEWLIDQGVDHFIEIGPGKVLSGLIKKINRDVKLTSIQTLEDVKGWNEND

20

25

>HGS009, alf1, fructose-bisphosphate aldolase AAATACACATTTAATCTGCAGTATTTCAATGCATTGACGCTATTTTTTTGATATAATTACTTTGAAAAATACGTGCGTAA GGICAATACAATATTAATAACCTAGAATTCACTCAAGCAATTTTAGAAGCGTCACAAGAAGAAAATGCACCTGTAATTTT AGGTGTTTCTGAAGGTGCTGCTCGTTACATGAGCGGTTTCTACACAATTGTTAAAATGGTTGAAGGGTTAATGCATGACT TAAACATCACTATTCCTGTAGCAATCCATTTAGACCATGGTTCAAGCTTTGAAAAATGTAAAGAAGCTATCGATGCTGGT TTCACATCAGTAATGATCGATGCTTCACACACCCCATTCGAAGAAAACGTAGCAACAACTAAAAAAGTTGTTGAATAGGC TCATGAAAAAGGTGTTTCTGTAGAAGCTGAATTAGGTACTGTTGGTGGACAAGAAGATGATGTTGTAGCAGACGGCATCA TTTATGCTGATCCTAAAGAATGTCAAGAACTAGTTGAAAAAACTGGTATTGATGCATTAGCGCCAGCATTAGGTTCAGTT CATGGTCCATACAAAGGTGAACCAAAATTAGGATTTAAAGAAATGGAAGAAATCGGTTTATCTACAGGTTTACCATTAGT ATTACACGGTGGTACTGGTATCCCGACTAAAGATATCCAAAAAGCAATTCCATTTGGTACAGCTAAAATTAACGTAAACA CTGAAAACCAAATCGCTTCAGCAAAAGCAGTTCGTGACGTTTTAAATAACGACAAAGAAGTTTACGATCCTCGTAAATAC

30

35

TTAGGACCTGCACGTGAAGCCATCAAAGAAACAGTTAAAGGTAAAATTAAAGAGTTCGGTACTTCTAACCGCGCTAAATA ATTAATATTTAGTCTTTAAGTTATTAATAACGTAGGGATATTAATTTTAAAAGAAGCAGACAAAATGGTGTTTGCTTCTT TTTTATGTCGTATAAGTAATAAATAAAACAGTTTGATTTT

>HGS009, Alf1, fructose-bisphosphate aldolase MPLVSMKEMLIDAKENGYAVGQYNINNLEFTQAILEASQEENAPVILGVSEGAARYMSGFYTIVKMVEGLMHDLNITIPV AIHLDHGSSFEKCKEAIDAGFTSVMIDASHSPFEENVATTKKVVEYAHEKGVSVEAELGTVGGQEDDVVADGIIYADPKE CQELVEKTGIDALAPALGSVHGPYKGEPKLGFKEMEEIGLSTGLPLVLHGGTGIPTKDIQKAIPFGTAKINVNTENQIAS AKAVRDVLNNDKEVYDPRKYLGPAREAIKETVKGKIKEFGTSNRAK

40

45

50

55

60

TAATTTATTTTGAAAGCTTTCATGGTAAACAATACAGCGACAACCCCAAAGCATTATATGAATACTTAACTGAACATAGC GATGCCCAÄTTAATATGGGGTGTGAAAAAAGGATATGAACACATATTCCAACAGCACAATGTACCATATGTTACAAAGTT TTCAATGAAATGGTTTTTAGCGATGCCAAGAGCGAAAGCGTGGATGATTAACACACGTACACCAGATTGGTTATAAAAT CACCGCGAACGACGTACTTACAAACATGGCATGGCACGCCATTAAAAAAGATTGGTTTGGATATTAGTAACGTTAAAATG ATATTCGACATCGATATTTCAAAATGCATTTCATGTTAGTCGAGATAAGATTTTGGAAACAGGTTATCCAAGAAATGATA AATTATCACATAAACGCAATGATACTGAATATATTAATGGTATTAAGACAAGATTAAATATTCCATTAGATAAAAAAGTG ATTATGTACGCGCCAACTTGGCGTGACGATGAAGCGATTCGAGAAGGTTCATATCAATTTAATGTTAACTTTGATATAGA TACTCATCTGTCATGTTCGACTTCGGTGTATTAAAGCGTCCGCAAATTTTCTATGCATATGACTTAGATAAATATGGCGA TGAGCTTAGAGGTTTTTACATGGATTATAAAAAAGAGTTGCCAGGTCCAATTGTTGAAAAATCAAACAGCACTCATTGATG CATTAAAACAAATCGATGAGACTGCAAATGAGTATATTGAAGCACGGAACGGTATTTTATCAAAAATTCTGTTCATTAGAA GTTAAGTGATATAAATAATAAACGAAATGTTTGCTTGTATGTTATTATTTGTGTATGAAA

>HGS014

10

15

20

25

30

35

40

45

50

55

60

MIKNTIKKLIEHSIYTTFKLLSKLPNKNLIYFESFHGKQYSDNPKALYEYLTEHSDAQLIWGVKKGYEHIFQQHNVPYVT
KFSMKWFLAMPRAKAWMINTRTPDWLYKSPRTTYLQTWHGTPLKKIGLDISNVKMLGTNTQNYQDGFKKESQRWDYLVSP
NPYSTSIFQNAFHVSRDKILETGYPRNDKLSHKRNDTEYINGIKTRLNIPLDKKVIMYAPTWRDDEAIREGSYQFNVNFD
IEALRQALDDDYVILLRMHYLVVTRIDEHDDFVKDVSDYEDISDLYLISDALVTDYSSVMFDFGVLKRPQIFYAYDLDKY
GDELRGFYMDYKKELPGPIVENQTALIDALKQIDETANEYIEARTVFYQKFCSLEDGQASQRICQTIFK

>HGS016,-murA,-UDP-N-acetylglucosamine-1-carboxyvinyltransferase TGATTTGTAATCAAAACTAGATATAATTAAATAATGACTTAAAATAATTTTAAAATAGGGAAATGTAAAGTAATAGGAGT CTAAAAATGCAGTATTACCAATATTGACAGCATCTTTATTAGCTTCTGATAAACCGAGCAAATTAGTTAATGTTCCAGCT TCTCCTTGATGCAACAAGACTCTAAATGAAGAGGCACCATATGAATATCTTAGTAAAATGCCTGCAAGTATTTTAGTTA TGGGACCTCTTTTAGCAAGACTAGGACATGCTATTGTTGCATTGCCTGGTGGTTGTCCAATTGGAAGTAGACCGATTGAG CAACACATTAAAGGTTTTGAAGCTTTAGGCGCAGAAATTCATCTTGAAAATCGTAATATTTATGCTAATGCTAAAGATGG ATTAAAAGGTACATCAATTCATTTAGATTTTCCAAGTGTAGGAGCAACACAAAATATTATTATGGCAGCATCATTAGCTA AGGGTÄAGACTTTAATTGAAAATGCAGCTAAAGAACCTGAAATTGTCGATTTAGCAAACTACATTAATGAAAATGGGTGGT AGAATTACTGGTGCTGGTACAGACACAATTACAATCAATGGTGTAGAATCATTACATGGTGTAGAACATGCTATCATTCC AGATAGAATTGAAGCAGGCACATTACTAATCGCTGGTGCTATAACGCGTGGTGATATTTTTGTACGTGGTGCAATCAAAG AACATATGGCGAGTTTAGTCTATAAACTAGAAGAAATGGGCGTTGAATTGGACTATCAAGAAGATGGTATTCGTGTACGT GCTGAAGGGGAATTACAACCTGTAGACATCAAAACTCTACCACATCCTGGATTCCCGACTGATATCCAATCACAAATGAT GGCATTGTTATTAACGGCAAATGGTCATAAAGTCGTAACCGAAACTGTTTTTGAAAACCGTTTTATGCATGTTGCAGAGT TCAAACGTATGAATGCTAATATCAATGTAGAAGGTCGTAGTGCTAAACTTGAAGGTAAAAGTCAATTGCAAGGTGCACAA ATTAACGCACCTAGATAGAGGCTATGTTGACTTACACGGTAAATTGAAGCAATTAGGTGCAGACATTGAACGTATTAACG ATTAATTCAGTAAATTAATATAATCGAGGATTTCAACCATGGAAACAATTTTTGATTATAACCAAATTAA

>HGS016, Mura, UDP-N-acetylglucosamine 1-carboxyvinyltransferase
MDKIVIKGGNKLTGEVKVEGAKNAVLPILTASLLASDKPSKLVNVPALSDVETINNVLTTLNADVTYKKDENAVVVDATK
TLNEEAPYEYVSKMRASILVMGPLLARLGHAIVALPGGCAIGSRPIEQHIKGFEALGAEIHLENGNIYANAKDGLKGTSI
HLDFPSVGATQNIIMAASLAKGKTLIENAAKEPEIVDLANYINEMGGRITGAGTDTITINGVESLHGVEHAIIPDRIEAG
TLLIAGAITRGDIFVRGAIKEHMASLVYKLEEMGVELDYQEDGIRVRAEGELQPVDIKTLPHPGFPTDMQSQMMALLLTA
NGHKVVTETVFENRFMHVAEFKRMNANINVEGRSAKLEGKSQLQGAQVKATDLRAAAALILAGLVADGKTSVTELTHLDR
GYVDLHGKLKQLGADIERIND

>HGS018, dnaJ, DNA ligase AGAAAAATGGCTCAATCGAACTAGATATTATCTTTAAATCACAAGGGCCAAAACGTTTGTTAGCGCAATTTGCACCAATT GAAAAAAGGAGGATTAAGGGATGGCTGATTTATCGTCTCGTGTGAACGAGTTACATGATTTTATAAATCAATACAGTTAT GAATACTATGTAGAGGATAATCCATCTGTACCAGATAGTGAATATGACAAATTACTTCATGAACTGATTAAAATAGAAGA GGAGCATCCTGAGTATAAGACTGTAGATTCTCCAACAGTTAGAGTTGGCGGTGAAGCCCAAGCCTCTTTCAATAAAGTCA ACCATGACACGCCAATGTTAAGTTTAGGGAATGCATTTAATGAGGATGATTTGAGAAAAATTCGACCAACGCATACGTGAA CAAATTGGCAACGTTGAATATATGTGCGAATTAAAAATTGATGGCTTAGCAGTATCATTGAAATATGTTGATGGATACTT CGTTCAAGGTTTAACACGTGGTGATGGAACAACAGGTGAAGATATTACCGAAAATTTAAAAACAATTCATGCGATACCTT TGAAAATGAAAGAACCATTAAATGTAGAAGTTCGTGGTGAAGCATATATGCCGAGACGTTCATTTTTACGATTAAATGAA GAAAAAGAAAAAATGATGAGCAGTTATTTGCAAATCCAAGAAACGCTGCTGCGGGATCATTAAGACAGTTAGATTCTAA ATTAACGCAAAACGAAAGCTAAGCCTATTTATATATAGTGTCAATGATTTCACTGATTTCAATGCGCGTTCGCAAAGTG AAGCATTAGATGAGTTAGATAAATTAGGTTTTACAACGAATAAAAATAGAGCGCGTGTAAATAATAATAGCGTGTTTTA GAGTATATTGAAAAATGGACAAGCCAAAGAGAGTCATTACCTTATGATATTGATGAGATAGTTATTAAGGTTAATGATTA AGATCAACAGGATGAGATGGGATTCACACAAAAATCTCCTAGATGGGCCATTGCTTATAAATTTCCAGCTGAGGAAGTAG TAACTAAATTATTAGATATTGAATTAAGTATTGGACGAACAGGTGTAGTCACACCTACTGCTATTTTAGAACCAGTAAAA GTRGCTGGTACAACTGTATCAAGAGCATCTTTGCACAATGAGGATTTAATTCATGACAGAGATATTCGAATTGGTGATAG CATATCATATGCCÀACCCATTGTCCAAGTTGTGGACATGAATTAGTACGTATTGAAGGCGAAGTAGCACTTCGTTGCATT AATCCAAAATGCCAAGCACAACTTGTTGAAGGATTGATTCACTTTGTATCAAGACAAGCCATGAATATTGATGGTTTAGG TATTACCTITAGACAGAATGGGGCAGAAAAAAGTTGATAATTTATTAGCTGCCATTCAACAAGCTAAGGACAACTCTTTA GAAAATTTATTATTTGGTCTAGGTATTAGGCATTTAGGTGTTAAAGCGAGCCAAGTGTTAGCAGAAAAATATGAAACGAT AGATCGATTACTAACGGTAACTGAAGCGGAATTAGTAGAAATTCATGATATAGGTGATAAAGTAGCACAATCTGTAGTTA CTTATTTAGAAAATGAAGATATTCGTGCTTTAATTCAAAAATTAAAAGATAAACATGTTAATATGATTTATAAAGGTATC CAATGAAGCATCTAAATGGCTTGCATCACAAGGTGCTAAAGTTACAAGTAGCGTTACTAAAAATACAGATGTCGTTATTG CTGGTGAAGATGCAGGTTCAAAATTAACAAAAGCACAAAGTTTAGGTATTGAAATTTGGACAGAGCAACAATTTGTAGAT AAGCAAAATGAATTAAATAGTTAGAGGGGTATGTCGATGAAGCGTACATTAGTATTATTGATTACAGCTATCTTTATACT CGCTGCTTGTGGTAACCATAAGGATGACCAGGCTGGAAAAGATA

10

30

35

40

45

50

55

60

>HGS018, DnaJ, DNA ligase

MADLSSRVNELHDLLNQYSYEYYVEDNPSVPDSEYDKILHELIKIEEEHPEYKTVDSPTVRVGGEAQASFNKVNHDTPML
SLGNAFNEDDLRKFDQRIREQIGNVEYMCELKIDGLAVSLKYVDGYFVQGLTRGDGTTGEDITENLKTIHAIPLKMKEPL
NVEVRGEAYMPRRSFLRLNEEKEKNDEQLFANPRNAAAGSLRQLDSKLTAKRKLSVFIYSVNDFTDFNARSQSEALDELD
KLGFTTNKNRARVNNIDGVLEYIEKWTSQRESLPYDIDGIVIKVNDLDQQDEMGFTQKSPRWALAYKFPAEEVVTKLLDI
ELSIGRTGVVTPTAILEPVKVAGTTVSRASLHNEDLIHDRDIRIGDSVVVKKAGDIIPEVVRSIPERRPEDAVTYHMPTH
CPSCGHELVRIEGEVALRCINPKCQAQLVEGLIHFVSRQAMNIDGLGTKIIQQLYQSELIKDVADIFYLTEEDLLPLDRM
GQKKVDNLLAAIQQAKDNSLENLLFGLGIRHLGVKASQVLAEKYETIDRLLTVTEAELVEIHDIGDKVAQSVVTYLENED
IRALIQKLKDKHVNMIYKGIKTSDIEGHPEFSGKTIVLTGKLHQMTRNEASKWLASQGAKVTSSVTKNTDVVIAGEDAGS
KLTKAQSLGIEIWTEQOFVDKONELNS

>HGS019, mapM, methionine aminopeptidase

>HGS019, MapM, methionine aminopeptidase
MIVKTEEELQALKEIGYICAKVRNTMQAATKPGITTKELDNIAKELFEEYGAISAPIHDENFPGQTCISVNEEVAHGIPS
KRVIREGDLVNIDVSALKNGYYADTGISFVVGESDDPMKQKVCDVATMAFENAIAKVKPGTKLSNIGKAVHNTARQNDLK
VIKNLTGHGVGLSLHEAPAHVLNYFDPKDKTLLTEGMVLAIEPFISSNASFVTEGKNEWAFETSDKSFVAQIEHTVIVTK
DGPILTTKIEFE

>HGS022-23-24, adt, glutamyl-tRNA amidotransferase subunit a, b, and c (operon comprising three CRFs listed below)

TATACAGITTATATGAAATTAAAGTAGCACCTCATAAATACTTAGATTTTAATTGGAAATTTGATACAATTTAGTGATG AATGACTTAAAGGAGGCTTTTATTAATGACAAAAGTAACACGTGAAGAAGTTGAGCATATCGCGAATCTTGCAAGACTTC AAATTTCTCCTGAAGAAACGGAAGAAATGGCCAACACATTAGAAAGCATTTTAGATTTTGCAAAACAAAATGATAGCGCT GATACAGAAGGCGTTGAACCTACATATCACGTTTTAGATTTACAAAACGTTTTACGTGAAGATAAAGCAATTAAAGGTAT TGTTGTTAAAGATATATATGATGCAATTGAAGAGACTGATCCAACAATTAAGTCTTTTCTAGCGCTGGATAAAGAAAATG ATAAAAGATAACATTATTACAAACGGATTAGAAACAACATGTGCAAGTAAAATGTTAGAAGGTTTTGTGCCAATTTACGA ATCTACTGTAATGGAAAACTACATAATGAAAATGCCGTTTTAATCGGTAAATTAAATATGGATGAGTTTGCAATGGGTG GTTCAACAGAAACATCTTATTTCAAAAAAACAGTTAACCCATTTGACCATAAAGCAGTGCCAGGTGGTTCATCAGGTGGA TCTGCAGCAGCAGTTGCAGCTGGCTTAGTACCATTTAGCTTAGGTTCAGACACAGGTGGTTCAATTAGACAACCGGCTGC ATATTGTGGCGTTGTCGGTATGAAACCAACATACGGTCGTGTATCTCGATTTGGATTAGTTGCTTTTGCATCTTCATTAG ACCAAATTGGTCCATTGACTCGAAATGTAAAAGATAATGCAATCGTATTAGAAGCTATTTCTGGTGCAGATGTTAATGAC TCTACAAGTGCACCAGTTGATGATGTAGACTTTACATCTGAAATTGGTAAAGATATTAAAGGATTAAAAGTTGCATTACC TAAAGAATACTTAGGTGAAGGTGTAGCTGATGACGTAAAAGAAGCAGTTCAAAACGCTGTAGAAACTTTAAAATCTPTAG GTGCTGTCGTTGAGGAAGTATCATTGCCAAATACTAAATTTGGTATTCCATCATATTACGTGATTGCATCATCAGAAGCT AATGTCAAGATCTGAAGGTTTCGGTAAAGAAGTAAAACGTCGTATTTTCTTAGGTACATTTGCATTAAGTTCAGGTTACT ATGATGCTTACTATAAAAAATCTCAAAAAGTTAGAACATTGATTAAAAATGACTTTGATAAAGTATTCGAAAAATTATGAT GTAGTAGTTGGTCCAACAGCGCCTACAACTGCGTTTAATTTAGGTGAAGAAATTGATGATCCATTAACAATGTATGCCAA TGATTTATTAACAACACCAGTAAACTTAGCTGGATTACCTGGTATTTCTGTTCCTTGTGGACAATCAAATGGCCGACCAA TCGGTTTACAGTTCATTGGTAAACCATTCGATGAAAAAACGTTATATCGTGTCGCTTATCAATATGAAACACAATACAAT TTACATGACGTTTATGAAAAATTATAAGGAGTGGAAATCATGCATTTTGAAACAGTTATAGGACTTGAAGTTCACGTAGA GTTAAAAACGGACTCAAAAATGTTTTCTCCATCACCAGCGCATTTTGGAGCAGAACCTAACTCAAATACAAATGTTATCG ACTTAGCATATCCAGGTGTCTTACCAGTTGTTAATAAGCGTGCAGTAGACTGGGCAATGCGTGCTGCAATGGCACTAAAT ATGGAAATCGCAACAGAATCTAAGTTTGACCGTAAGAACTATTTCTATCCAGATAATCCAAAAGCATATCAAATTTCTCA ATTIGATCAACCAATTGGTGAAAATGGATATATCGATATCGAAGTCGACGGTGAAACAAAACGAATCGGTATTACTCGTC TTCACATGGAAGAAGATGCTGGTAAGTCAACACATAAAGGTGAGTATTCATTAGTTGACTTGAACCGTCAAGGTACACCG

15

10

5

>HGS022, Adt, glutamyl-trna amidotransferase subunit a
MSIRYESVENLLTLIKDKKIKPSDVVKDIYDAIEETDPTIKSFLALDKENAIKKAQELDELQAKDQMDGKLFGIPMGIKD
NIITMGLETTCASKMLEGFVPIYESTVMEKLHNENAVLIGKLNMDEFAMGGSTETSYFKKTVNPFDHKAVPGGSSGGSAA
AVAAGLVPFSLGSDTGGSIRQPAAYCGVVCMKPTYGRVSRFGLVAFASSLDQIGPLTRNVKDNAIVLEAISGADVNDSTS
APVDDVDFTSEIGKDIKGLKVALPKEYLGBGVADDVKEAVQNAVETLKSLGAVVEEVSLPNTKFGIPSYYVIASSEASSN
LSRFDGIRYGYHSKEAHSLEELYKMSRSEGFGKEVKRRIFLGTFALSSGYYDAYYKKSQKVRTLIKNDFDKVFENYDVVV
GPTAPTTAFNLGEEIDDPLTMYANDLLTTPVNLAGLPGISVPCGQSNGRPIGLQFIGKPFDEKTLYRVAYQYETQYNLHD

25

20

>HGS023, Adt; glutamyl-trna amidotransferase subunit b
MHFETVIGLEVHVELKIDSKMFSPSPAHFGAEPNSNTNVIDLAYPGVLPVVNKRAVDWAMRAAMALNMEIATESKFDRKN
YFYPDNPKAYQISQFDQPIGENGYIDIEVDGETKRIGITRLHMEEDAGKSTHKGEYSLVDLNRQGTPLIEIVSEPDIRSP
KEAYAYLEKLRSIIQYTGVSDVKMEEGSLRCDANISLRPYGQEKFGTKAELKNLNSFNYVRKGLEYEEKRQEEELLNGGE
IGQETRRFDESTGKTILMRVKEGSDDYRYFPEPDIVPLYIDDAWKERVRQTIPELPDERKAKYVNELGLPAYDAHVLTLT
KEMSDFFESTIEHGADVKLTSNWLMGGVNEYLNKNQVELLDTKLTPENLAGMIKLIEDGTMSSKIAKKVFPELAAKGGNA
KOIMEDNGLVOISDEATLLKFVNEALDNNEQSVEDYKNGKGKAMGFLVGQIMKASKGQANPQLVNQLLKQELDKR

30

>HGS024, Adt, glutamyl-tRNA amidotransferase subunit c
MTKVTREEVEHIANLARLQISPEETEEMANILESILDFAKQNDSADTEGVEPTYHVLDLQNVLREDKAIKGIPQELALKN
AKETEDGOFKVPTIMNEEDA

35

40

>HGS025, pth, peptidyl-trna hydrolase
CTTACTAAGCTAAAGAATAATGATAATTGATGGCAATGGCGAAAATGGATGTTGTCATTATAATAATAAATGAAACAAT
TATGTTGGAGGTAAACACGCATGAAATGTATTGTAGGTCTAGGTAAATATAAGGTAAACGTTTTGAACTTACAAGACATAAT
ATCGGCTTTGAAGTCGTTGATTATATTTTTAGAGAAAAATTATTTTCATTAGGTAAACAAAAGTTTAAAGGTGCATATAC
AATTGAACGAATGAACGGCGATAAAGTGTTATTTATCGAACCAATGACAATGATGAATTTTGCAGGTCAAGCAGTTGCAC
CGATTATGGATTATTACAATGTTAATCCAGAAGATTTAATTGTCTTATATGATGATTTAGATTTAGAACAAAGGACAAGTT
CGCTTAAGACAAAAAGGAAGTCCGGCCGGTCACAATGGTATGAAATCAATTATTAAAATGCTTGGTACAGACCAATTTAA
ACGTATTCGTATTGGTGTGGGAAGACCAACGAATGGTATGACCGTACCTGATTATGTTTTACAACGCTTTTCAAATGATG
AAATGGTAACGATGGAAAAAGTTATCGAACACGCAGCACCCCCAATTGAAAAGTTTTTTAAAAACATCACGATTTGACCAT
GTTATGAATGAATTTAATGGTGAAAATGAATAATGACAATTATTTACAAACGATTATAAAAAGAACATCACGATTTTCAAAGAC
CTTAATCAGGTATTTGGACAACCAAACAACACTAGTAACTGGTCTTTCCCCGT

45

>HGS025, Pth, peptidyl-trna hydrolase MKCIVGLGNIGKRFELTRHNIGFEVVDYILEKNNFSLDKQKFKGAYTIERMNGDKVLFIEPMTMMNLSGEAVAPIMDYYN VNPEDLIVLYDDLDLÐQGQVRLRQKGSAGGHNGMKSIIKMLGTDQFKRIRIGVGRPTNGMTVPDYVLQRFSNDEMVTMEK VIEHAARAIEKFVETSRFDHVMNEFNGEVK

50

55

60

>HGS026

AGTTGAAGATGTAGAAATTGAAATTAGAAATTGAAGATTTAAAAATCGACACGTATCGTTCAAGTGGTGCAGGTCAGC
ACGTAAACACAACTGACTCTGCAGTACGTATTACCCATTTTACCAACTGGTGTCATTGCAACACTTTCTGAGAAGTCTCAA
ATTCAAAACCGTGAAAAAAGCAATGAAAGTGTTAAAAGCACGTTTATACGATATGAAAGTTCAAGAAGAACAACAAAAGTT
TGCGTCACAACGTAAATCAGCAGTCGGTACTGGTGATCGTTCAGAACGTATTCGAACTTATAATTATCCACAAAGCCGTG
TAACAGACCATCGTATAGGGTCTAACGCTTCAAAAATTAGGGCCAAATTATGGAAGGCCATTTAGAAGAAATTATAGATGCA
CTGACTTTATCAGAGCAGACAGATAAATTGAAAGAACTTAATAATGGTGAATTATAAAGAAAAAGTTAGATGAAGCAATTC
ATTTAACACAACAAAAAAAGGGTTTGAACAAACACGAGCTGAATGGTTAATGGTTGATTATTTCAATGGACGCCGTACG

>HGS026

5

20

25

30

40

45

50

10 VFDQLDIVEERYEQLNELLSDPDVVNDSDKLRKYSKEQADLQKTVDVYRNYKAKKEELADIEEMLSETDDKEEVEMLKEE SNGIKAELPNLEEELKILLIPKDPNDDKDVIVEIRAAAGGDEAAIFAGDLMRMYSKYAESQGFKTEIVEASESDHGGYKE ISFSVSGNGAYSKLKFENGAHRVQRVPETESGGRIHTSTATVAVLPEVEDVEIEIRNEDLKIDTYRSSGAGGQHVNTTDS AVRITHLPTGVIATSSEKSQIQNREKAMKVLKARLYDMKVQEEQQKYASQRKSAVGTGDRSERIRTYNYPQSRVTDHRIG LTLQKLGQIMEGHLEEIIDALTLSEQTDKLKELNNGEL

>HGS028

ATTTCTTAACATTGTTATTTAACAAAATTATGTTAAAATTTAGCATTATAAAAGATGCAAATCAATGACTTGAATTGAAA TATAAATAGGAGCGAATGCTATGGAATTATCAGAAATCAAACGAAATATAGATAAGTATAATCAAGATTTAACACAAATT AGGGGGTCTCTTGACTTAGAGAACAAAGAAACTAATATTCAAGAATATGAAGAAATGATGGCAGAACCTAATTTTTGGGA TAACCAAACGAAAGCGCAAGATATTATAGATAAAAATAATGCGTTAAAAGCAATAGTTAATGGTTATAAAACACTACAAG CAGAAGTAGATGACATGGATGCTACTTGGGATTTATTACAAGAAGAATTTGATGAAGAAATGAAAGAAGACTTAGAGCAA GAGGTCATTAATTTTAAGGCTAAAGTGGATGAATACGAATTGCAATTATTATTAGATGGGCCTCACGATGCCAATAACGC AATTCTAGAGTTACATCCTGGTGCAGGTGGCACGGAGTCTCAAGATTGGGCTAATATGCTATTTAGAATGTATCAACGTT ATTGTGAGAAAAGGCCTTTAAAGTTGAAACTGTTGATTATCTACCTGGGGATGAAGGCGGGGATTAAAAGTGTAACATTG CTCATCAAAGGGCATAATGCTTATGGTTATTTAAAAGCTGAAAAAGGTGTACACCGACTAGTACGAATTTCTCCATTTGA TTCATCAGGACGTCGTCATACATCATTTGCATCATGCGACGTTATTCCAGATTTTAATAATGATGAAAATAGAGATTGAAA TCAATCCGGATGATATTACAGTTGATACATTCAGAGCTTCTGGTGCAGGTGGTCAGCATATTAACAAAACTGAATCGGCA ATACGAATTACCCACCACCCTCAGGTATAGTTGTTAATAACCAAAATGAACGTTCTCAAAATTAAAAAACCGTGAAGCAGC TATGAAAATGTTAAAGTCTAAATTATATCAATTAAAATTGGAAGAGCAGCACGTGAAATGGCTGAAATTCGTGGCGAAC GTAAATTAGATTTTGGAATATGATTTGTTTATGAA

35 >HGS028

MELSEIKRNIDKYNQDLTQIRGSLDLENKETNIQEYEEMMAEPNFWDNQTKAQDIIDKNNALKAIVNGYKTLQAEVDDMD ATWDLLQEEFDEEMKEDLEQEVINFKAKVDEYELQLLLDGPHDANNAILELHPGAGGTESQDWANMLFRMYQRYCEKKGF KVETVDYLPGDEAGIKSVTLLIKGHNAYGYLKAEKGVHRLVRISPFDSSGRRHTSFASCDVIPDFNNDEIEIEINPDDIT VDTFRASGAGGQHINKTESAIRITHHPSGIVVNNQNERSQIKNREAAMKMLKSKLYQLKLEEQAREMAEIRGEQKEIGWG SQIRSYVFHPYSMVKDHRTNEETGKVDAVMDGDIGPFIESYLROTMSHD

>HGS030, Tmk, thymidylate kinase

- 55 >HGS030, tmk, thymidylate kinase
 MSAFITFEGPEGSGKTTVINEVYHRLVKDYDVIMTREPGGVPTGEEIRKIVLEGNDMDIRTEAMLFAASRREHLVLKVIP
 ALKEGKVVLCDRYIDSSLAYQGYARGIGVEEVRALNEFAINGLYPDLTIYLNVSAEVGRERIIKNSRDQNRLDQEDLKFH
 EKVIEGYQEIIHNESQRFKSVNADQPLENVVEDTYQTIIKYLEKI
- 50 >HGS031, PyrH, uridylate kinase
 AATGTTGCTTTATTAAAATGTAAATCATTCTAATAAAACGACAACTGTGTCTTCTTTACTTGTATATGTTACATATATTC
 ACGATAGAGAGATAAGAAAATGCCTCAAATTTCTAAATATAAACGTGTAGTTTTGAAACTAAGTGGTGAAGCGTTAGCT
 GGAGAAAAAGGATTTGCCATAAATCCAGTAATTATTAAAAGTGTTCCTGAGCAAGTGCCTGAAGTTGCTAAAATCGACTG

TGAAATCGCAGTAATCGTTGGTGGCGGAAACATTTGGAGAGGTAAAACAGGTAGTGACTTAGGTATGGACCGTGGAACTG
CTGATTACATCGGTATGCTTGCAACTGTAATGAATGCCTTAGCATTACAAGATAGTTTAGAACAATTGGATTGTGATACA
CGAGTATTAACATCTATTGAAATGAAGCAAGTGGCTGAACCTTATATTCGTCGTCGTGCAATTAGACACTTAGAAAAGAA
ACGCGTAGTTATTTTTGCTGCAGGTATTGGAAACCCATACTTCTCTACAGATACTACAGCGGCATTACGTGCTGCAGAAG
TTGAAGCAGATGTTATTTTAATGGGCAAAAATAATGTAGATGGTGTATATTCTGCAGATCCTAAAGTAAACAAAGATGCG
GTAAAATATGAACATTTAACGCATATTCAAATGCTTCAAGAAGGTTTACAAGTAATGGATTCAACACGCATCCTCATTCTG
TATGGATAATAACATTCCGTTAACTGTTTTTCTCTATTATGGAAGAAGAAATATTAAACGTGCTGTTATGGGTGAAAAGA
TAGGTACGTTAATTACAAAATAAATTTAGAGGTGTAAAAATAATGAGTGACATTATTAATGAAACTAAATCAAGAATGCAA
AAATCAATCGAAAGCTTATCACGTGAATTAGCTAACATCAGTG

10

5

>HGS031, pyrH, uridylate kinase

MAQISKYKRVVLKLSGEALAGEKGFGINPVIIKSVAEQVAEVAKMDCEIAVIVGGGNIWRGKTGSDLGMDRGTADYMGML ATVMNALALQDSLEQLDCDTRVLTSIEMKQVAEPYIRRRAIRHLEKKRVVIFAAGIGNPYFSTDTTAALRAAEVEADVIL MGKNNVDGVYSADPKVNKDAVKYEHLTHIQMLQEGLQVMDSTASSFCMDNNIPLTVFSIMEEGNIKRAVMGEKIGTLITK

15

20

>HGS032

30

35

40

45

25

>HGS032

MSAIGTVFKEHVKNFYLIQRLAQFQVKIINHSNYLGVAWELINPVMQIMVYWMVFGLGIRSNAPIHGVPFVYWLLVGISM WFFINQGILEGTKAITQKFNQVSKMNFPLSIIPTYIVTSRFYGHLGLLLLVIIACMFTGIYPSIHIIQLLIYVPFCFFLT ASVTLLTSTLGVLVRDTQMLMQAILRILFYFSPILWLPKNHGISGLIHEMMKYNPVYFIAESYRAAILYHEWYFMDHWKL MLYNFGIVAIFFAIGAYLHMKYRDQFADFL

>HGS033

50

55

60

>HGS033

TCGCCTTTTTTATTTTTCTTTTTGCTTTGGCTATT

MNVSVNIKNVTKEYRIYRTNKERMKDALIPKHKNKTFFALDDISLKAYBGDVIGLVGINGSGKSTLSNIIGGSLSPTVGK VDRNGEVSVIAISAGLSGQLTGIENIEFKMLCNGFKRKEIKAMTPKIIEFSELGEFIYQFVKKYSSGMRAKLGFSINITV NPDILVIDEALSVGDQTFAQKCLDKIYEFKEQNKTIFFVSHNLGQVRQFCTKIAWIBGGKLKDYGELDDVLPKYEAFLND FKKKSKABQKEFRNKLDESRFVIK

>HGS034

ATAAGGTGAAGACACATAAAACAATATATCTTAGTAAGCATGCAACACTCTTTTTTTGTTTATTCATAACAACAAAAAAGA
ATTAAAGGAGGAGTCTTATTATGGCTCGATTCAGAGGGTCAAACTGGAAAAAATCTCGTCGTTTAGGTATCTCTTTAAGC
GGTACTGGTAAAGAATTAGGAAAAACGTCCTTACGCACCAGGACAACATGGTCCAAACCAACGTAAAAAATTATCAGAATA
TGGTTTACAATTACGTGAAAAAACAAAAATTACGTTACTTATATGGAATGACTGAAAGACAATTCCGTAACACATTTGACA
TCCCTGGTAAAAAAATTCGGTGTACACGGTGAAAACTTCATGATCTTATTAGCAAGTCGTTTAGACGCTCTTTGTTTATTCA

TTAGGTTTAGCTCGTACTCGTCAAGCACGTCAATTAGTTAACCACGGTCATATCTTAGTAGATGGTAAACGTGTTGA
TATTCCATCTTATTCTGTTAAACCTGGTCAAACAATTTCAGTTCGTGAAAAATCTCAAAAAATTAAACATCATCGTTGAAT
CAGTTGAAATCAACAATTTCGTACCTGAGTACTTAAACTTTGATGCTGACAGCTTAACTGGTACTTTCGTACGTTTACCA
GAACGTAGCGAATTACCTGCTGAAATTAACGAACAATTAATCCGTTGAGTACTACTCAAGATAATACGGTCAATACCAAC
ACCCACAATTGTGGGTGT

>HGS034

5

10

15

20

25

35

40

50

MARFRGSNWKKSRRLGISLSGTGKELEKRPYAPGQHGPNQRKKLSEYGLQLREKQKLRYLYGMTERQFRNTFDIAGKKFG VHGENFMILLASRLDAVVYSLGLARTRRQARQLVNHGHILVDGKRVDIPSYSVKPGQTISVREKSQKLNIIVESVEINNF VPEYLNFDADSLTGTFVRLPERSELPAEINEQLIR

>HGS036

>HGS036

MMSLIDIQNLTIKNTSEKSLIKGIDLKIFSQQINALIGESGAGKSLIAKALLEYLPFDLSCTYDSYQFDGENVSRLSQYY
GHTIGYISQNYAESFNDHTKLGKQLTAIYRKHYKGSKEEALSKVDKALSWVNLQSKDILNKYSFQLSGGQLERVYIASVL
MLEPKLIIADEPVASLDALNGNQVMDLLQHIVLEHGQTLFIITHNLSHVLKYCQYIYVLKBGQIIERGNINHFKYEHLHP
YTERLIKYRTQLKRDYYD

>HGS040

- 45 >HGS040
 MISVNDFKTGLTISVDNAIWKVIDFQHVKPGKGSAFVRSKLRNLRTGAIQEKTFRAGEKVEPAMIENRRMQYLYADGDNH
 VFMDNESFEQTELSSDYLKEELNYLKEGMEVQIQTYEGETIGVELFKTVELTVTETEPGIKGDTATGATKSATVETGYTL
 NVPLFVNEGDVLIINTGDGSYISRG
 - >168153/168339, (operon comprising ORFs for five polypeptides listed below)

15

20

25

30

35

40

45

AATCGACAGACGAAAATGAAAAAGTTGATATTGAAAGTACAGAGAATCAATTTGAATCTAAAGATAAAAATCACTAAAGAATAAAGAAATAAAGAAATAAAGAAATAAAGAA GGTAGCAGACCTGATTATTTAATAGTAACAATAGTTATATCGGCAATAATTTCTATATTTGTAATTATACTTCAATCGTACCTGTCATC GTATTGCCATCTGACTTATTTAAAGAAAGGATTTCAAAAGGTGTCATATTAATTGTATTGCCTATTATCGCTTTAGTATTATGCAACTTT GTATCTGCAATACTCTGGTTTGTTTCAGCCATATCTATTTTAGGTAGAAAAAATTAGTAGCTGCAGCAGATACTACCACCATTTCAAAAA AGTAAAGGGAACGCAAATCAAGCATCACATAAAGACACGTGTAAAAAAGGAACTTGATAGTCAAGACATGATGGAACATCCTGAGGTTAAA AATCCCACGACTAAAAACCTTGAAGGATTTAACGAAGAAATACATAAAGATGAAGCTACAACTAAAGTTGTCAGTGATAACACGGAACCG TAAAACGACATTTAAACGCATTGCCAATCACTAATGGTAGTGCGTTTAACTATACCTTAAATATCTGAATATTTTGTTAAATGGAGCTAC ATTAGTAACTGGCGGAGCACAAGGGATTGGTTTTAAAATTGCAGAACGTTTAGTGGAAGATGGTTTCAAAGTAGCAGTTGTTGATTTCAA TGAAGAAGCGCAAAAGCAGCTGCACTTAAATTATCAAGTGATGGTACAAAAGCTATTGCTATCAAAGCAGATGTATCAAACCGTGATGA TGTATTTAACGCATAAGACAAACTGCCGCGCAATTTGGCGATTTCCATGTCATGGTTAACAATGCCGGCCTTGGACCAACAACAACAACCAATC GATACAATTACTGAAGAACAGTTTAAAACAGTATATGGCGTGAACGTTGCAGGTGTGCTATGGGGTATTCAAGCCGCACATGAACAATTT AAAAAATTCAATCATGGCGGTÁAAATTATCAATGCAACATCTCAAGCAGGCGTTGAGGGGTAACCCAGGCTTGTCTTTATATTGCAGTACA AAATTCGCAGTGCGAGGTTTAACACAAGTAGCCGCACAAGATTTAGCGTCTGAAGGTATTACTGTGAATGCATTCGCACCTGGTATCGTT CAAACACCAATGATGGAAAGTATCGCAGTGCCAACAGCCGAAGAAGCAGGTAAACCTGAAGCATGGGGTTGGGAACAATTTACAAGTCAG ATTGCTTTGGGCAGAGTTTCTCAACCAGAAGATGTTTCAAATGTAGTGAGCTTCTTAGCTGGTAAAGACTCTGATTACATTACTGGACAA GTAAGGATTTTTTAGTGCACTTAGAAGGGAGTGTATTGGTAGAAAATTAATAAGCGAAGTTCTTAAGTGAGTTATGATGTCACAGTCTAA TGCATCAGTTGAAAGCATTATTAGTATTAACACACCCAAGATATTATAAAACACCACAAAAACACCACTATCTAATTTATCTCAATAAAA ATTCACAAAGTTATCTCATTTTATTTTTATAAATAAAAAATATCGATAAAAAAGCTTACAATACTTTATGTTTTTATGATATATTTTTAAA GTATAAATGAGGTGGAAGATTTGGAAAGAGTTTTGATAACTGGTGGGGCTGGTTTTATTGGGTCGCATTTAGTAGATGATTTACAACAAG ATTATGATGTTTATGTTCTAGATAACTATAGAACAGGTAAACGAGAAAATATTAAAAGTTTGGCTGACGATCATGTGTTTGAATTAGATA CGGTTGAGAAACCTATCTTATCTCAAGAAATAAACGTCGTAGCAACATTAAGATTGTTAGAAATCATTAAAAAATATAATAATCATATAA ATGTATTTCGGCCAAGACAGGATCCTAAGTCACAATATTCAGGTGTGATTTCAAAGATGTTCGATTCATTTGAGCATAACAAGCCATTTA CATTTTTTGGTGACGGACTGCAAACTAGAGATTTTGTATATGTATATGATGTTGTTCAATCTGTACGCTTAATTATGGAACACAAAGATG CAATTGGACACGGTTATAACATTGGTACAGGCACTTTTACTAATTTATTAGAGGTTTATCGTATTATTGGTGAATTATAGGAAAAATCAG TCGAGCATGAATTTAAAGAAGCACGAAAAGGAGATATTAAGCATTCTTATGCAGATATTTCTAACTTAAAGGCATTAGGATTTGTTCCTA AATATACAGTAGAAACAGGTTTAAAGGATTACTTTAATTTTGAGGTAGATAATATTGAAGAAGTTACAGCTAAAGAAGTGGAAATGTCGT GAAAATGACATTGAAGCTGTCCATAATAATAAGGGTTATGCCTATCAAAGAAAATTAGACAAACTAGAAGAAGTGAGAAAAAAGCTATTAC CCAATTAAACGTGCGATTGACTTAATTTTAAGCATTGTTTTATTATTTTTAACTTTACCGATTATGGTTATATTTCGCCATTGCTATCGTC <u>AAAAACGCAGAGAAAAACGGTGCGCAATGGGCTGATAAAGATGATGATCGTATAACAAATGTCGGGAAGTTTATTCGTAAAACACCCATT</u> GATGAATTACCACAACTAATTAATGTTGTTAAAGGGGAAATGAGTTTTATTGGACCACGCCCGGAACGTCCGGAATTTGTAGAATTATTT AGTTCAGAAGTGATAGGTTTCGAGCAAAGATGTCTTGTTACACCAGGGTTAACAGGACTTGCGCAAATTCAAGGTGGATATGACTTAACA GTTATTACAGGGGAAGGCTCAAGGTAGTCTTAATTTACTTAATAAGGTCAAATAAAAGTTATATTTTAAAGATTGTGACCAATTGTTACA GTATAACGAGGAATCCCTTGAGACAGTATCAAATGGCATTAAGAAATATGTGCCATCATTGATTTGCATGGCTATAAATACTATTCATCT GATGAGATAGCCATGTTAAGAAATTGAAAGTATAGCATTAAAGGGGTTTGTAACAGTTGAAAATTATATATTTGTATTACTAAAAGCAGACA ATGGTGGTGCACAAACACATCTCATTCAACTCGCCAACCATTTTTGCGTACACAATGATGTTTATGTCATTGTAGGCAATCATGGACCA TGATTGAACAACTAGATGCAAGAGTTAATGTAATTATTATCGAACATTTAGTAGGTCCAATTGACTTTAAACAAGATATTTTAGCTGTCA AAGTGTTAGCACAGTTATTCTCGAAAATTAAACCTGATGTTATCCATTTACATTCTTCCAAAGCTGGAACGGTCGGACGAATTGCGAAGT 50 ATTTAGTTATCGAAAAATTAATGTCACTTATTACAGATAGCATTATTTGTGTTTCAGATTTCGATAAACAGTTAGCGTTAAAATATCGAT TTAATCGATTGAAATTAACCACAATACATAATGGTATTGCAGATGTTCCCGCTGTTAAGCAAAACGCTAAAAAAGCCAATCACATAACAATA TTGGCGAAGTAGTTGGAATGTTGCCTAATAAACAAGATTTACAGATTAATGCCCCGACAAAGCATCAATTTGTTATGATTGCAAGATTTG CTTATCCAAAATTGCCACAAAATCTAATCGCGGCAATAGAGATATTGAAATTACATAACAGTAATCATGCGCATTTTACATTTATAGGCG ATGGACCTACATTAAATGATTGTCAGCAACAAGTTGTACAAGCTGGGTTAGAAAATGATGTCACATTTTTGGGCAATGTCATTAATGCGA 55 AGAAAATGATTAAAGAAGTGGAAGACGTTTATAATGGAAAATCAACACAATAGTAAATTACTAACATTGTTACTTATCGGTTTAGCGGTT GCTAACCATTTATTAAAGGCAAATCATTTTTTACAGTTTTTCATTATTTTGTATACATATCGTATGATTATTACGCTTTGCTTTGCTATTT 60 ATCATCTTTAAGTTAGGTAATAGCAAAAAAGTGATCGTTACCTCTTATATTATAAGCAGTGTGACTATAGGTCTATTTTGTATTATAGCT

ATGACACAGATTATTACATTGGTACTTGCTACAAGTATATTCATAATTACATATTCAAGGTCCTTGCATGTGGTATTTTGCTATGGTCT ${\tt TTAACTACAACGGGGTCTAAGACTGCGTTTATCATATTAATCGTCTTAGCCATTTATTCTTTATTAAAAAGTTATTTAGTAGAAATGCG}$ CTTGATGCCTTACCGTCATTAGATCGAATGGCGTCTATTTTTGAAGAGGGCTTTGCATCATTAAATGATAGTGGGTCTGAGCGAAGTGTT 5 -GTATGGATAAATGCCATTTCAGTAATTAAATATACACTAGGTTTTGGTGTCGGATTAGTGGATTATGTACATATTGGCTCGCAAATTAAT TATTTACTGTTTGAATTATTTAGATTTAACATTTCTGGGAAAAATGTAACAGCAATTGTTGTAATGTTGACGATGCTGATTTACTTTTTA ACAGTATCATTTAATAACTCAAGATATGTCGCTTTTATTTTAGGAATTATCGTCTTTATTGTTCAATATGAAAAGATGGAAAGGGATCGT AATGAAGAGTGATTCACTAAAAGAAAATATTTATTTATCAAGGGCTATACCAATTGATTAGAACGATGACACCACTGATTACAATACCCAT CGTTCAGTTATATTTTAATAGAGTTATCGCGAAGTCCGTTAACGACAAACGGCAATTGTCACAGCAGTTTTGGGATATCTTTGTCAGTAA AATCTATATTATAGGTGCAGCACTCGATATTTCATGGTTTTATGCTGGAACTGAAAAGTTTAAAATTCCTAGCCTCAGTAATATTGTTGC ATTAAACCAATTACCTTTGTTTATCTATTTAAAACGATACATTAGCTTTGTTTCGGTTAATTGGATACACGTCTGGCAATTGTTTCGTTC GTCATTAGCATACTTATTACCAAATGGACAGCTCAACTTATATACTAGTATTTCTTGCGTTGTTTCTTGGTTTAGTAGGTACATACCAACA AGTTGGTATCTTTTCTAACGCATTTAATATTTTAACGGTCGCAATCATAATGATTAATACATTTGATCTTGTAATGATTCCGCGTATTAC CAAAATGTCTATCCAGCAATCACATAGTTTAACTAAAACGTTAGCTAATAATATGAATATTCAATTGATATTAACAATACCTATGGTCTT TGGTTTAATTGCAATTATGCCATCATTTTATTTATGGTTCTTTGGTGAGGAATTCGCATCAACTGTCCCATTGATGACCATTTTAGCGAT TATTGGTGCAGTGATAAACCTAGTATTATGTATTATTTTGATATATTTTTATGGAATTTACGGTGCTGCTATTGCGCGTTTAATTACAGA GTTTTTCTTGCTCATTTGGCGATTTATTGATATTACTAAAATCAATGTGAAGTTGAATATTGTAAGTACGATTCAATGTGTCATTGCTGC TGTTATGATGTTTATTGTGCTTGGTGTGTCAATCATTATTTGCCCCCTACAATGTACGCTACGCTACTATTAATTGCGATTGGTATAGT AGTTTATCTTTTATTAATGATGACTATGAAAAATCAATACGTATGGCAAATATTGAGGCATCTTCGACATAAAACAATTTAAGTACCGGT AATGCTATACTTTAGAAAATTAAGATTAAGAAGAAAAGGCAATTTCTTATTGAAAAATGGAAGTTGTCTTTTTAATTCTCTTTAAAAGC GGGAAACAAAAGCAGTTAAATGCCTTTTTGCATTCAATATTAAATATTATCAATTTCGAATATTTAAATTTTAAATTTTATAATTGGATATAA ATTACCAAATTTACCATATGCATATGATGCATTGGAACCATATATAGATCAAAGAACAATGGAGTTTCATCACGACAAACATCACAATAC GGAAGCGATGGGGTACCGAGCTCGAATTCGTAATCATGTCATAGCTGTTTCCTGTG

>168153_3

10

15

20

25

30

35

40

50

55

GTGGAAGATTTGGAAAGAGTTTTGATAACTGGTGGGGCTGGTTTTATTGGGTCGCATTTAGTAGATGATTTACAACAAGATTATGATGTT TATGTTCTAGATAACTATAGAACAGGTAAACGAGAAAATATTAAAAGTTTGGCTGACGATCATGTGTTTGAATTAGATATTCGTGAATAT CCTATCTTATCTCAAGAAATAAACGTCGTAGCAACATTAAGATTGTTAGAAATCATTAAAAAATATAATAATAATCATATAAAACGTTTTATC GATAAATATTACGGCGAACGGACGACATTAAATTATTGTTCGTTATATAACATACCAACAGCGGTTGTTAAATTTTTTAATGTATTTGGG CCAAGACAGGATCCTAAGTCACAATATTCAGGTGATTTCAAAGATGTTCGATTCAATTTGAGCATAACAAGCCATTTACATTTTTTCGT GACGGACTGCAAACTAGAGATTTTGTATATGTATATGATGTTGTTCAATCTGTACGCTTAATTATGGAACACAAAGATGCAATTGGACAC GGTTATAACATTGGTACAGGCACTTTTACTAATTTATTAGAGGTTTATCGTATTATTGGTGAATTATTATGGAAAATCAGTGAGCATGAA TTTAAAGAAGCACGAAAAGGAGATATTAAGCATTCTTATGCAGATATTTCTAACTTAAAGGCATTAGGATTTGTTCCTAAATATACAGTA GAAACAGGTTTAAAGGATTACTTTAATTTTGAGGTAGATAATATTGAAGAAGTTACAGCTAAAGAAGTGGAAATGTCGTGA

45 >168153_3

VEDLERVLITGGAGFIGSHLVDDLQQDYDVYVLDNYRTGKRENIKSLADDHVFELDIREYDAVEQIMKTYQFDYVIHLAALVSVAESVEK PILSQEINVVATLRLLEIIKKYNNHIKRFIFASSAAVYGDLPDLPKSDQSLILPLSPYAIDKYYGERTTLNYCSLYNIPTAVVKFFNVFG PRQDPKSQYSGVISKMFDSFEHNKPFTFFGDGLQTRDFVYVYDVVQSVRLIMEHKDAIGHGYNIGTGTFTNLLEVYRIIGELYGKSVEHE FKEARKGDIKHSYADISNLKALGFVPKYTVETGLKDYFNFEVDNIEEVTAKEVEMS

>168153 2

AAAATATACAAATTACGTTCGATGTGCAAAAACGCAGAGAAAAACGGTGCGCAATGGGCTGATAAAGATGATGATGATAACAAATGTC GAACGTCCGGAATTTGTAGAATTATTTAGTTCAGAAGTGATAGGTTTCGAGCAAAGATGTCTTGTTACACCAGGGTTAACAGGACTTGCG CAAATTCAAGGIGGATATGACTTAACACCGCAACAAAAACTGAAATATGACATGAAATATATACATAAAGGTAGTTTAATGATGGAACTA TATATATCAATTAGAACATTGATGGTTGTTATTACAGGGGAAGGCTCAAGGTAG

>168153 2

60 LDKLEEVRKSYYPIKRAIDLILSIVLLFLTLPIMVIFAIAIVIDSPGNPIYSQVRVGKMGKLIKIYKLRSMCKNAEKNGA QWADKDDDRITNVGKFIRKTRIDELPQLINVVKGEMSFIGPRPERPEFVELFSSEVIGFEQRCLVTPGLTGLAQIQGGYDLTPQQKLKYDMKYIHKGSLMMELYISIRTLMVVITGEGSR

>168153_1

15 >168153_1

5

10

20

25

30

35

40

45

50

55

60

LKIIYCITKADNGGAQTHLIQLANHFCVHNDVYVIVGNHGPMIEQLDARVNVIIIEHLVGPIDFKQDILAVKVLAQLFSK
IKPDVIHLHSSKAGTVGRIAKFISKSKDTRIVFTAHGWAFTEGVKPAKKFLYLVIEKLMSLITDSIICVSDFDKQLALKY
RFNRLKLTTIHNGIADVPAVKQTLKSQSHNNIGEVVGMLPNKQDLQINAPTKHQFVMIARFAYPKLPQNLIAAIEILKLH
NSNHAHFTFIGDGPTLNDCQQQVVQAGLENDVTFLGNVINASHLLSQYDTFILISKHEGLPISIIEAMATGLPVIASHVG
GISELVADNGICMMNNQPETIAKVLEKYLIDSDYIKMSNQSRKRYLECFTEEKMIKEVEDVYNGKSTQ

>168339_1 (ORF overlaps the 3' end of 168153_1 by 20 nucleotides)

TTTATTTTAGGAATTATCGTCTTTATTGTTCAATATGAAAAGATGGAAAGGGATCGTAATGAAGAGTGA

>168339_1

MENOHNSKILITLILIGLAVFIQQSSVIAGVNVSIADFITLLILVYLLFFANHLLKANHFLQFFIILYTYRMIITLCLLFFDDLIFITVKE VLASTVKYAFVVIYFYLGMIIFKLGNSKKVIVTSYIISSVTIGLFCIIAGLNKSPLLMKLLYFDBIRSKGLMNDPNYFAMIQIITLVLAY KYIHNYIFKVLACGILLWSLTTTGSKTAFIILIVLAIYFFIKKLFSRNAVSVVSMSVIMLILLCFTFYNINYYLFQLSDLDALPSLDRMA SIFEEGFASLNDSGSERSVVWINAISVIKYTLGFGVGLVDYVHIGSQINGILLVAHNTYLQIFAEWGILFGALFIIFMLYLLFELFRFNI SCKNYTAIVVMLTMLIYFLTVSFNNSRYVAFILGIIVFIVQYEKMERDRNEE

>168339_2 (ORF overlaps the 3' end of 168339_1 by 35 nucleotides) TTTTGATGATTGCAAGTGTTGGCGTTCAGTTATATTTTAATAGAGTTATCGCGAAGTCCGTTAACGACAAACGGCAATTGTCACAGCAG TATCTTATTTTCCTACTACAAGGAATCTATATTATAGGTGCAGCACTCGATATTTCATGGTTTTATGCTGGAACTGAAAAGTTTAAAATT TTTACTATTGCTATTGTGACGGTATTAAACCAATTACCTTTGTTTATCTATTTAAAACGATACATTAGCTTTGTTTCGGTTAATTGGATA CACGTCTGGCAATTGTTTCGTTCGTCATTAGCATACTTATTACCAAATGGACAGCTCAACTTATATACTAGTATTTCTTTGCGTTGTTCTT GGTTTAGTAGGTACATACCAACAAGTTGGTATCTTTTCTAACGCATTTAATATTTTAACGGTCGCAATCATAATGATTAATACATTTGAT CTTGTAATGATTCCGCGTATTACCAAAATGTCTATCCAGCAATCACATAGTTTAACTAAAACGTTAGCTAATAATATGAATATTCAATTG AGATTATATAATGCGTCAATTACTATTGGTGCAGTGATAAACCTAGTATTATGTATTATTTTGATATATTTTATGGAATTTACGGTGCT GCTATTGCCCGTTTAATTACAGAGTTTTTCTTCCTCATTTGCCGATTTATTGATATTACTAAAATCAATGTGAAGTTGAATATTGTAAGT ACGATTCAATCTCATTCCTCCTGTTATGATCTTTATTCTCCTTGGTCTCAATCATTATTTCCCCCCTACAATCTACCCTACCCT CTATTAATTGCGATTGGTATAGTAGTTTATCTTTTTATTAATGATGACTATGAAAAATCAATACGTATGGCAAATATTGAGGCATCTTCGA CATAAAACAATTTAA

>168339_2

10

15

20

25

30

35

40

MKSDSLKENIIYQGLYQLIRTMTPLITIPIISRAFGPSGVGIVSFSFNIVQYFLMIASVGVQLYFNRVIAKSVNDKRQLS QQFWDIFVSKLFLALTVFAMYMVVITIFIDDYYLIFLLQGIYIIGAALDISWFYAGTEKFKIPSLSNIVASGIVLSVVVI FVKDQSDLSLYVFTIAIVTVLNQLPLFIYLKRYISFVSVNWIHVWQLFRSSLAYLLPNGQLNLYTSISCVVLGLVGTYQQ VGIFSNAFNILTVAIIMINTFDLVMIPRITKMSIQQSHSLTKTLANNMNIQLILTIPMVFGLIAIMPSFYLWFFGEEFAS TVPLMTILAILVLIIPLNMLISRQYLLIVNKIRLYNASITIGAVINLVLCIILIYFYGIYGAAIARLITEFFLLIWRFID ITKINVKLNIVSTIQCVIAAVMMFIVLGVVNHYLPPTMYATLLLIAIGIVVYLLLMMTMKNOYVWOILRHLRHKTI

Nucleic acid molecules of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, DNA and genomic DNA obtained by cloning or produced synthetically. The DNA may be double-stranded or single-stranded. Single-stranded DNA or RNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.

By "isolated" polynucleotide sequence is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. This includes segments of DNA comprising the S. aureus polynucleotides of the present invention isolated from the native chromosome. These fragments include both isolated fragments consisting only of S. aureus DNA and fragments comprising heterologous sequences such as vector sequences or other foreign DNA. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention which may be partially or substantially purified. Further examples of isolated DNA molecules include recombinant DNA molecules introduced and maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically which may be partially or substantially purified the excluded RNA or heterologous DNA. Isolated nucleic acid molecules e at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 96%, 98%, 99%, or 100% pure relative to herelogous (Staphylococcus or other) (DNA or RNA) or relative to all materials and compounds other than the carrier solution. The term "isolated" does not refer to genomic or cDNA libraries, whole cell mRNA preparations, genomic DNA digests (including those gel separated by electrophoresis), whole chromosome or sheared whole cell genomic DNA preparations or other compositions where the art demonstrates no distinguishing features of the polynucleotides sequences of the present invention.

In addition, isolated nucleic acid molecules of the invention include DNA molecules which comprise a sequence substantially different from those described above but which, due to the degeneracy of the genetic code, still encode a *S. aureus* polypeptides and peptides of the present invention (e.g. polypeptides of Table 1). That is, all possible DNA sequences that encode the *S. aureus* polypeptides of the present invention. This includes the genetic code and species-specific codon preferences known in the art. Thus, it would be routine for one skilled

24

in the art to generate the degenerate variants described above, for instance, to optimize codon expression for a particular host (e.g., change codons in the bacteria mRNA to those preferred by a mammalian or other bacterial host such as *E. coli*).

The invention further provides isolated nucleic acid molecules having the nucleotide sequence shown in Table 1 or a nucleic acid molecule having a sequence complementary to one of the above sequences. Such isolated molecules, particularly DNA molecules, are useful as probes for gene mapping and for identifying *S. aureus* in a biological sample, for instance, by PCR or Northern blot analysis. In specific embodiments, the polynucleotides of the present invention are less than 300kb, 200kb, 100kb, 50kb, 10,kb, 7.5kb, 5kb, 2.5kb, and 1kb. In another embodiment, the polynucleotides comprising the coding sequence for polypeptides of the present invention do not contain genomic flanking gene sequences or contain only genomic flanking gene sequences having regulatory control sequences for the said polynucleotides.

The present invention is further directed to nucleic acid molecules encoding portions or fragments of the nucleotide sequences described herein. Uses for the polynucleotide fragments of the present invention include probes, primers, molecular weight, markers and for expressing the polypeptide fragments of the present invention. Fragments include portions of the nucleotide sequences of Table 1, at least 10 contiguous nucleotides in length selected from any two integers, one of which representing a 5' nucleotide position and a second of which representing a 3' nucleotide position, where the first nucleotide for each nucleotide sequence in Table 1 is position 1. That is, every combination of a 5' and 3' nucleotide position that a fragment at least 10 contiguous nucleotides in length could occupy is included in the invention as an individual species. "At least" means a fragment may be 10 contiguous nucleotide bases in length or any integer between 10 and the length of an entire nucleotide sequence minus 1. Therefore, included in the invention are contiguous fragments specified by any 5' and 3' nucleotide base positions of a nucleotide sequences of Table 1 wherein the contiguous fragment is any integer between 10 and the length of an entire nucleotide sequence minus 1.

15

20 -

25

30

35

The polynucleotide fragment specified by 5' and 3' positions can be immediately envisaged using the clone description and are therefore not individually listed solely for the purpose of not unnecessarily lengthening the specifications.

Although it is particularly pointed out that each of the above described species may be included in or excluded from the present invention. The above species of polynucleotides fragments of the present invention may alternatively be described by the formula "a to b"; where "a" equals the 5" nucleotide position and "b" equals 3" nucleotide position of the polynucleotide fragment, where "a" equals an integer between 1 and the number of nucleotides of the polynucleotide sequence of the present invention minus 10, where "b" equals an integer between 10 and the number of nucleotides of the polynucleotide sequence of the present invention; and where 'a" is an integer smaller then "b" by at least 10.

25

Again, it is particularly pointed out that each species of the above formula may be specifically included in, or excluded from, the present invention. Further, the invention includes polynucleotides comprising sub-genuses of fragments specified by size, in nucleotides, rather than by nucleotide positions. The invention includes any fragment size, in contiguous nucleotides, selected from integers between 10 and the length of an entire nucleotide sequence minus 1. Preferred size of contiguous nucleotide fragments include 20 nucleotides, 30 nucleotides, 40 nucleotides, 50 nucleotides, 60 nucleotides, 70 nucleotides, 80 nucleotides, 90 nucleotides, 100 nucleotides, 125 nucleotides, 150 nucleotides, 175 nucleotides, 200 nucleotides. 250 nucleotides, 300 nucleotides, 350 nucleotides, 400 nucleotides, 450 nucleotides, 500 nucleotides, 550 nucleotides, 600 nucleotides, 650 nucleotides, 700 nucleotides, 750 nucleotides, 800 nucleotides, 850 nucleotides, 900 nucleotides, 950 nucleotides, 1000 nucleotides, 1050 nucleotides, 1100 nucleotides, and 1150 nucleotides. Other preferred sizes of contiguous polynucleotide fragments, which may be useful as diagnostic probes and primers, include fragment sizes representing each integer between 50-300. Larger fragments are also useful according to the present invention corresponding to most, if not all, of the polynucleotide sequences of the sequence listing or deposited clones. The preferred sizes are, of course, meant to exemplify not limit to present invention as all size fragments, representing any integer between 10 and the length of an entire nucleotide sequence minus 1 of the sequence listing or deposited clones, may be specifically included from the invention. Additional preferred nucleic acid fragment of the present invention include nucleic acid molecules encoding epitope-bearing portions of the polynucleotides (e.g., including but not limited to, nucleic acid molecules encoding epitopebearing portions of the polynucleotides which are shown in Table 4).

10

15

20

25

30

35

In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide which hybridizes under stringent hybridization conditions to a portion of a polynucleotide in a nucleic acid molecules of the invention described above, for instance, nucleotide sequences of Table 1. By "stringent hybridization conditions" is intended overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C. Hybridizing polynucleotides are useful as diagnostic probes and primers as discussed above. Portions of a polynucleotide which hybridize to a nucleotide sequence in Table 1, which can be used as probes and primers, may be precisely specified by 5' and 3' base positions or by size in nucleotide bases as described above or precisely excluded in the same manner. Preferred hybridizing polynucleotidies of the present invention are those that, when labeled and used in a hybridization assay known in the art (e.g. Southern and Northern blot analysis), display the greatest signal strength with the polynucleotides of Table 1

PCT/US99/19726

10

15

20

25

30

35

regardless of other heterologous sequences present in equamolar amounts

The nucleic acid molecules of the present invention, which encode a *S. aureus* polypeptide, may include, but are not limited to, nucleic acid molecules encoding the full length *S. aureus* polypeptides of Table 1. Also included in the present invention are nucleic acids encoding the above full length sequences and further comprise additional sequences, such as those encoding an added secretory leader sequence, such as a pre-, or pro- or prepro- protein sequence. Further included in the present invention are nucleic acids encoding the above full length sequences and portions thereof and further comprise additional heterologous amino acid sequences encoded by nucleic acid sequences from a different source.

Also included in the present invention are nucleic acids encoding the above protein sequences together with additional, non-coding sequences, including for example, but not limited to non-coding 5' and 3' sequences. These sequences include transcribed, non-translated sequences that may play a role in transcription, and mRNA processing, for example, ribosome binding and stability of mRNA. Also included in the present invention are additional coding sequences which provide additional functionalities.

Thus, a nucleotide sequence encoding a polypeptide may be fused to a marker sequence, such as a sequence encoding a peptide which facilitates purification of the fused polypeptide. In certain preferred embodiments of this aspect of the invention, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. For instance, hexa-histidine provides for convenient purification of the fusion protein. See Gentz et al. (1989) Proc. Natl. Acad. Sci. 86:821-24. The "HA" tag is another peptide useful for purification which corresponds to an epitope derived from the influenza hemagglutinin protein. See Wilson et al. (1984) Cell 37:767. As discussed below, other such fusion proteins include the *S. aureus* fused to Fc at the N- or C-terminus.

Variant and Mutant Polynucleotides

The present invention further relates to variants of the nucleic acid molecules which encode portions, analogs or derivatives of a *S. aureus* polypeptides of Table 1, and variant polypeptides thereof including portions, analogs, and derivatives of the *S. aureus* polypeptides. Variants may occur naturally, such as a natural allelic variant. By an "allelic variant" is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. See, *e.g.*, B. Lewin, Genes IV (1990). Non-naturally occurring variants may be produced using art-known mutagenesis techniques.

Such nucleic acid variants include those produced by nucleotide substitutions, deletions, or additions. The substitutions, deletions, or additions may involve one or more nucleotides. The variants may be altered in coding regions, non-coding regions, or both.

27

Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of a *S. aureus* protein of the present invention or portions thereof. Also preferred in this regard are conservative substitutions.

5

10

15

20

25

30

35

Such polypeptide variants include those produced by amino acid substitutions, deletions or additions. The substitutions, deletions, or additions may involve one or more residues. Alterations may produce conservative or non-conservative amino acid substitutions, deletions, or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of a *S. aureus* protein of the present invention or portions thereof. Also especially preferred in this regard are conservative substitutions.

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such vectors and host cells and for using them for production of *S. aureus* polypeptides or peptides by recombinant techniques.

The present application is directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence shown in Table 1. The above nucleic acid sequences are included irrespective of whether they encode a polypeptide having *S. aureus* activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having *S. aureus* activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe or primer. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having *S. aureus* activity include, *inter alia*, isolating an *S. aureus* gene or allelic variants thereof from a DNA library, and detecting *S. aureus* mRNA expression in biological or environmental samples, suspected of containing *S. aureus* by Northern Blot analysis or PCR.

The present invention is further directed to nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in Table 1, which do, in fact, encode a polypeptide having *S. aureus* protein activity. By "a polypeptide having *S. aureus* activity" is intended polypeptides exhibiting activity similar, but not necessarily identical, to an activity of the *S. aureus* protein of the invention, as measured in a particular biological assay suitable for measuring activity of the specified protein. The biological activity of some of the polypeptides of the presents invention are listed in Table 1, after the name of the closest homolog with similar activity. The biological activities were determined using methods known in the art for the particular biological activity listed. For the remaining polypeptides of Table 1, the assays known in the art to measure the activity of the polypeptides of Table 2, sharing a high degree of identity, may be used to measure the activity

of the corresponding polypeptides of Table 1.

5

10

15

20

25

30

35

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequences shown in Table 1 will encode a polypeptide having biological activity. In fact, since degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having biological activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the *S. aureus* polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted, inserted, or substituted with another nucleotide. The query sequence may be an entire sequence shown in Table 1, the ORF (open reading frame), or any fragment specified as described herein.

Other methods of determining and defining whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be done by using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. See Brutlag et al. (1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by first converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

TABLE 2. Closest matching sequence between the polypeptides of the present invention an sequences in GenSeq and GenBank databases

Sequence	Antigen Accession No.	Match Gene Name	High Score	Smallest Sum Probability P
		GenSeg		(NI)
HGS001	W34207	Streptomyces fabH homologue (frenolicin gene I pro	285	3.50E-65
HGS001	W55808	Streptomyces roseofulvus frenolicin gene cluster p	285	
HGS002	W20949	H. pylori cytoplasmic protein, 29zp10241orf7.	81	5.10E-12
HGS003	W48300	Staphylococcus aureus Fab I enoyl-ACP reductase.	1271	1.90E-170
HGS003	W40806	M. bovis InhA protein.	95	1.00E-29
HGS003	R23793	Stearoyl-ACP-desaturase (from clone pDES7).	157	1.60E-28
HGS003	R66290	M. tuberculosis inhA gene.	94	7.40E-28
HGS003	R66901	M. tuberculosis InhA.	8	7.40E-28
HGS003	R66292	Mycobacterium bovis InhA.	92	4.70E-19
HGS003	R63900	M. bovis InhA.	92	4.70E-19
HGS003	W16684	Lawsonia intracellularis enoyl-(acyl carrier prote	114	1.80E-09
HGS003	W40805	M. tuberculosis InhA protein.	96	2.60E-09
HGS003	W40807	M. smegmatis InhA protein, mc2155 inhA-1.	101	9.70E-09
HGS004	W32287	Streptococcus pneumoniae MurA protein.	643	4.00E-89
HGS004	W26786	Streptococcus pneumoniae Mur A-1.	643	4.10E-89
HGS004	W27782	UDP-N-acetylglucosamine 1-carboxyvinyltransferase.	163	1.80E-15
HGS004	W27783	UDP-N-acetylglucosamine 1-carboxyvinyltransferase.	120	1.90E-12
HGS006	W36168	Staphylococcus aureus SP protein.	584	4.30E-78
HGS006	W37468	Staphylococcus aureus RNase P.	581	1.10E-77
HGS007M	W27798	Amino acid sequence of a replicative DNA heli case	5524	6e-83.2
HGS007M	R29636	pCTD ORF 1.	241.	7e-34.3
HGS008	W27814	A malonyl coenzymeA-acyl carrier protein transacyl	365	4.70E-46
HGS008	W19629	Streptomyces venezuelae polyketide synthase.	96	2.30E-19
HGS008	W22602	Tylactone synthase ORF2 protein.	83	2.90E-18
HGS008	W22605	Tylactone synthase ORF5 protein.	95	8.90E-17

		Off The First Control of the F	100	2 30E-1A
HGS008	R44431	eryA region polypeptide module #2.	00	4.30E-14
HGS008	R42452	Enzyme involved in eicosapentaenoic acid (EPA) syn	94	5.30E-14
HGS008	R99462	Biosynthetic enzyme of icosapentaenoic acid synthase.	94	4.60E-13
HGS008	W37050	S. putrefaciens EPO biosynthesis gene cluster ORF6	94	4.60E-13
HGS008	R44432	eryA region polypeptide module #3.	83	6.20E-13
HGS008	W22607	Platenolide synthase ORF2 protein.	80	2.20E-12
HGS014	W34454	Racillus subtilis teichoic acid polymerase.	297	2.70E-87
HGS014	W34455	Racillus subtilis teichoic acid polymerase.	297	3.10E-87
HGS014	W27744	Amino acid sequence of techoic acid biosynthesis p	425	2.50E-53
HGS016	W32287	Streptococcus pneumoniae MurA protein.	643	4.00E-89
HGS016	W26786	Streptococcus pneumoniae Mur A-1.	643	4.10E-89
HGS016	W27782	UDP-N-acetylglucosamine 1-carboxyvinyltransferase.	163	1.80E-15
HGS016	W27783	UDP-N-acetylglucosamine 1-carboxyvinyltransferase.	120	1.90E-12
HGS018	R95648	Thermostable DNA-ligase.	833	3.00E-205
HGS018	R81473	Thermus aquaticus DNA ligase protein.	428	2.00E-201
HGS018	R15299	Thermostable T. aquaticus ligase (I).	428	7.40E-199
HGS018	R15694	Thermostable T. aquaticus ligase (II).	428	4.80E-196
HGS019	P70096	Met-aminopeptidase.	143	2.90E-35
HGS019	R90027	Methionine aminopeptidase sequence.	138	1.60E-20
HGS022	R12401	Enantioselective amidase of Rhodococcus.	405	4.70E-102
HGS022	R25320	Enantioselective amidase.	405	4.70E-102
HGS022	W14159	Rhodococcus rhodochrous amidase.	352	6.10E-63
HGS022	W17820	Pseudomonas putida amidase.	208	1.20E-62
HGS022	R12400	Enantioselective amidase of Brevibacterium.	353	2.90E-62
HGS022	R24529	Enantioselective amidase.	353	2.90E-62
HGS022	W10882	Comamonas acidovorans derived amidase enzyme.	261	4.00E-61
HGS022	R60155	Comamonas testosteroni NI 1 amidase.	306	5.30E-47
HGS022	R42839	Urea amidolyase.	243	1.40E-31
HGS022	R44504	Urea amide lyase.	224	8.60E-30
HGS026	W29380	S. pneumoniae peptide releasing factor RF-1.	593	3.30E-142
HGS028	W29380	S. pneumoniae peptide releasing factor RF-1.	218	I./0E-49
HGS031	W20646	H. pylori cytoplasmic protein, 02cp11822orf26.	291	5./0E-4/
				_

HGS031	W20147	H. pylori cytoplasmic protein, 14574201.aa.	75	1.50E-08
HGS033	W20861	H. pylori cell envelope transporter protein, 12ge1	100	2.30E-18
HGS033	W20101		100	6.10E-17
HGS033	W25671	hABC3 protein.	111	4.20E-15
HGS033	W46761	Amino acid sequence of human ATP binding cassette	111	4.20E-15
HGS033	W46771	Amino acid sequence of human ATP binding cassette	111	4.30E-15
HGS033	W42393	Bacillus thermoleovorans phosphatase (68FY5).	96	1.90E-13
HGS033	W34202	Streptomyces efflux pump protein (frenolicin gene	92	5.50E-12
HGS033	W55803	Streptomyces roseofulvus frenolicin gene cluster p	26	5.50E-12
HGS033	W20224	H. pylori transporter protein, 22265691.aa.	88	7.40E-12
HGS033	W20668	H. pylori transporter protein O3ee11215orf29.	88	8.90E-12
HGS036	W20640	H. pylori transporter protein, 02ce11022orf8.	264	2.20E-33
HGS036	W34202	Streptomyces efflux pump protein (frenolicin gene	184	1.30E-29
HGS036	W55803	Streptomyces roseofulvus frenolicin gene cluster p	184	1.30E-29
HGS036	W20289	H. pylori transporter protein, 24218968.aa.	201	5.50E-21
HGS036	W20711	H. pylori transporter protein, 05cp11911orf41.	148	2.10E-19
HGS036	W20101	H. pylori transporter protein 11132778.aa.	164	3.50E-19
HGS036	W20861	H. pylori cell envelope transporter protein, 12ge1	164	4.20E-19
HGS036	W20492	H. pylori cell envelope transporter protein 433843	148	1.60E-18
HGS036	W21019	H. pylori cell envelope transporter protein, hp5e1	144	8.30E-16
HGS036	R71091	C. jejuni PEB1A antigen from ORF3.	136	7.90E-14
168153_3	W01619	Human uridine diphosphate galactose-4-epimerase.	128	9.80E-29
168153_3	W40383	S. glaucescens acbD protein.	105	1.10E-15
168153_3	R98529	dTDP-glucose dehydratase encoded by the acbB gene.	108	4.50E-15
168153_3	R80287	galE gene of S. lividans gal operon.	88	2.60E-13
168153_3	P70275	Sequence encoded by S.lividans gal operon galE gene.	98	5.10E-13
168153_3	R41529	S.lividans UDP-4-epimerase.	98	5.10E-13
- 11	R32195	ADP-L-glycero-D-mannoheptose-6-epimerase protein.	82	3.40E-10
- 18	W03997	Glucosyl IP-transferase (SpsB protein).	168	8.30E-36
	W32794	Sphingomonas genus microbe isolated SpsB protein.	168	8.30E-36
168153_2	W22173	S.thermophilus exopolysaccharide synthesis operon	141	2.20E-31
- 18	W14074	S.thermophilus exopolysaccharide biosynthesis enzy	141	2.20E-31
168153_2	P70458	Sequence of gpD encoded by segment of Xanthomonas	183	2.30E-30

120162 1	111001175	S thermonbility examplysaccharide synthesis oneron	141	6.40E-35
168153	W14076	S. thermophilus exopolysaccharide biosynthesis enzy	141	9.50E-35
168153 1	W22174	S.thermophilus exopolysaccharide synthesis operon	162	9.50E-30
168153 1	W14075	S.thermophilus exopolysaccharide biosynthesis enzy	162	9.50E-30
168339 2	W27736	Putative O-antigen transporter protein.	820	5.70E-11.5
		GenBank	,	
HGS001	gnllPID e1183136	similar to 3-oxoacyl- acyl-carrier protein	269	2.20E-129
HGS001	gil151943	ORF3; putative [Rhodobacter capsulatus]	404	1.40E-92
HGS001	gil2983572	(AE000723) 3-oxoacyl-[acyl-carrier-protein	31.1	5.10E-92
HGS001	gil1276662	beta-ketoacyl-acyl carrier protein synthase	292	3.90E-90
HGS001	gi 2313291	(AE000540) beta-ketoacyl-acyl carrier protein	269	3.50E-89
HGS001	gnllPIDle1183019	similar to 3-oxoacyl- acyl-carrier protein	373	2.00E-86
HGS001	gil1143069	3-ketoacyl carrier protein synthase III	287	3.60E-86
HGS001	gil22744	beta-ketoacyl-acyl carrier protein synthase	292	1.20E-85
HGS001	gil311686	3-ketoacyl-acyl carrier protein synthase	.322	3.40E-85
HGS001	gil145898	beta-ketoacyl-acyl carrier protein synthase	366	7.30E-84
HGS002	gi 142833	ORF2 [Bacillus subtilis] >gnllPIDle11851	215	2.50E-70
HGS002	enllPIDId1019368	hypothetical protein [Synechocystis sp.]	235	8.50E-67
HGS002	gil2983165	(AE000694) UDP-N-acetylenolpyruvoylgluco	207	1.10E-58
HGS002	gil404010	ORF2 [Bacillus licheniformis] >pirlI4022	251	1.10E-50
HGS002	gi 2688520	(AE001161) UDP-N-acetylmuramate dehydrog	197	1.80E-42
HGS002	gil1841789	UDP-N-acetylenolpyruvylglucosamine reduc	249	7.10E-40
HGS002	gil2983149	(AE000693) UDP-N-acetoenolpyruvoylglucos	212	3.80E-36
HGS002	gil431730	UDP-N-acetylenolpyruvoylglucosamine redu	119	4.50E-22
HGS002	gil1573234	UDP-N-acetylenolpyruvoylglucosamine redu	139	6.20E-22
HGS002	gil290456	UDP-N-acetylpyruvoylglucosamine reductas	123	2.90E-20
HGS003	gnllPIDle1183192	similar to enoyl- acyl-carrier protein r	743	1.80E-97
HGS003	gil142010	Shows 70.2% similarity and 48.6% identit	519	8.90E-80
HGS003	gnllPIDId1017769	enoyl-[acyl-carrier-protein] reductase [482	2.10E-73
HGS003	gil2313282	(AE000539) enoyl-(acyl-carrier-protein)	449	1.70E-71
HGS003	gi 145851	envM [Escherichia coli] >gil587106 enoyl	388	3.70E-71
HGS003	gi1153955	envM protein [Salmonella typhimurium] >p	386	2.10E-69

	, 02, 02, 11.			
HGS003	gil15/4591	short chain alcohol dehydrogenase homolo	362	3.10E-68
HGS003	gil2983915	[(AE000745) enoyl-[acyl-carrier-protein]	268	1.10E-64
HGS003	gil1053075	orf!; similar to E.coli EnvM [Proteus mi	259	2.60E-29
HGS003	gnllPIDle1188732	(AJ003124) enoyl-ACP reductase [Petunia	154	2.20E-28
HGS004	gnllPIDle276830	UDP-N-acetylglucosamine 1-carboxyvinyltr	1251	2.50E-195
HGS004	gil415662	UDP-N-acetylglucosamine 1-carboxyvinyl t	534	1.40E-139
HGS004	gnllPIDld1010850	UDP-N-acetylglucosamine 1-carboxyvinyltr	732	7.50E-138
HGS004	gil41344	UDP-N-acetylglucosamine 1-carboxyvinyltr	537	2.90E-137
HGS004	gil1574635	UDP-N-acetylglucosamine enolpyruvyl tran	536	4.70E-136
HGS004	gil146902	UDP-N-acetylglucosamine enolpyruvyl tran	509	5.10E-134
HGS004	gil2983705	(AE000732) UDP-N-acetylglucosamine 1-car	492	6.20E-121
HGS004	gnllPIDle229797	UDP-N-acetylglucosamine enolpyruvyl tran	909	3.00E-119
HGS004	gil699337	UDP-N-acetyglucosamine 1-carboxyvinyl tr	509	1.10E-118
HGS004	gil2313767	(AE000578) UDP-N-acetylglucosamine enolp	440	1.90E-117
HGS005	gil143434	Rho Factor (Bacillus subtilis)	755	1.10E-190
HGS005	gil853769	transcriptional terminator Rho [Bacillus	746	1.80E-189
HGS005	gil2983405	(AE000711) transcriptional terminator Rho	580	2.10E-154
HGS005	gil454859	The first ATG in the open reading frame	543	7.90E-150
HGS005	gil147607	transcription termination factor [Escheri	592	9.40E-149
HGS005	gil49363	ho Factor [Salmonella typhimurium] >pirl	592	1.70E-148
HGS005	gnllPIDle220353	Rho gene product [Streptomyces lividans]	575	4.90E-148
HGS005	gil1573263	transcription termination factor rho (rho	575	5.40E-147
HGS005	gil49365	Rho factor [Neisseria gonorrhoeae] >pirl	290	1.40E-146
HGS005	gil2313666	(AE000569) transcription termination fact	547	8.10E-146
HGS006	gil580904	homologous to E.coli rnpA [Bacillus subt	295	8.10E-37
HGS006	gnllPIDld1005777	protein component of ribonuclease P [Bac	293	1.60E-36
HGS006	gn11P1Dld1004132	RNaseP C5 subunit [Mycoplasma capricolum	66	3.60E-22
HGS006	gil144147	rnpA [Buchnera aphidicola] >gil2827012 (16	3.90E-10
HGS006	gil511457	RNase P protein component [Coxiella burn	117	2.30E-09
HGS007M	gnllPIDId1005718	replicative DNA helicase [Bacillus subti	579	6.20E-169
HGS007M	gil3282821	(AF045058) DnaC replicative helicase [Ba	536	3.60E-156
HGS007M	gnllPIDle321938	helicase [Rhodothermus marinus]	433	1.50E-123

A COORDIA	1.:10236167	I/AE006675) DNA helicase [Rhodothermus ma	271	2.90E-109
HGS007M	81(233)10/	1	395	1.60E-108
HGS00/M	gillir IDI621 1007	(AI 022118) replicative DNA helicase DnaB	235	3.20E-103
HGS007M	onIIPTDle244747	gene 40 [Bacteriophage SPP1] >gil529650	477	4.40E-103
HGS007M	gil2983861	(AE000742) replicative DNA helicase [Aqu	242	1.10E-102
HGS007M	gi 2314528	(AE000636) replicative DNA helicase (dna	246	7.70E-101
HGS007M	gnllPDld1011167	replicative DNA helicase [Synechocystis	500	1.50E-100
HGS008	gnllPIDle1185181	malonyl CoA-acyl carrier protein transac	260	4.30E-90
HGS008	gil1502420	malonyl-CoA: Acyl carrier protein transac	391	1.40E-86
HGS008	gi 3282803	(AF044668) malonyl CoA-acyl carrier prot	308	2.50E-75
HGS008	gil2738154	malonyl-CoA:acyl carrier protein transac	283	3.40E-75
HGS008	gil145887	malonyl coenzyme A-acyl carrier protein	304	6.30E-75
HGS008	gil1573113	malonyl coenzyme A-acyl carrier protein	270	7.60E-74
HGS008	gi 2983416	(AE000712) malonyl-CoA:Acyl carrier prot	213	2.70E-73
HGS008	gil840626	transacylase [Bacillus subtilis]	221	1.20E-66
HGS008	gil3150402	(AC004165) putative malonyl-CoA: Acyl car	235	1.60E-57
HGS008	gnllPIDle1185300	pksC [Bacillus subtilis] >gnllPIDle11833	145	4.40E-38
HGS009	gil460911	fructose-bisphosphate aldolase [Bacillus	1169	2.10E-154
HGS009	gn1lPIDle1251871	fructose-1,6-bisphosphate aldolase type	1121	6.70E-148
HGS009	gn[IPIDId1003809	hypothetical protein [Bacillus subtilis]	467	1.50E-110
HGS009	gil2313265	(AE000538) fructose-bisphosphate aldolas	252	6.40E-91
HGS009	gil1673788	(AE000015) Mycoplasma pneumoniae, fructo	238	4.60E-81
HGS009	gil1045692	fructose-bisphosphate aldolase [Mycoplas	226	6.40E-77
HGS009	gnllPIDId1016691	Tagatose-bisphosphate aldolase GatY (EC	279	2.30E-75
HGS009	gil599738	unknown function [Escherichia coli] >pir	274	2.00E-74
HGS009	gil1732204	putative aldolase [Vibrio furnissii]	277	5.00E-74
HGS009	gil606077	ORF_0286 [Escherichia coli] >gil1789526	264	1.30E-73
HGS014	gil40100	rodC (tag3) polypeptide (AA 1-746) [Baci	597	1.70E-86
HGS014	gnllPIDle1169895	tasA [Streptococcus pneumoniae]	108	4.90E-27
HGS014	gil2621425	(AE000822) teichoic acid biosynthesis pr	. 142	2.00E-23
HGS014	gi12621421	(AE000822) teichoic acid biosynthesis pr	147	5.90E-22
HGS014	gil143725	putative [Bacillus subtilis] >gnllPIDle1	114	4.60E-19

HGS014	gi 547513	orf3 [Haemophilus influenzae] >pirlS4924	106	5.60E-14
HGS014	gnllPIDld1027517	(AB009477) 395aa long hypothetical prote	79	4.20E-12
HGS014	gil2072447	EpsJ [Lactococcus lactis cremoris]	106	5.20E-10
HGS014	gil915199	ggaB [Bacillus subtilis] >gnllPIDle11844	88	8.10E-08
HGS016	gnllPIDle276830	UDP-N-acetylglucosamine 1-carboxyvinyltr	1251	2.50E-195
HGS016	gil415662	UDP-N-acetylglucosamine 1-carboxyvinyl t	534	1.40E-139
HGS016	gnllPIDid1010850	UDP-N-acetylglucosamine 1-carboxyvinyltr	732	7.50E-138
HGS016	gil41344	UDP-N-acetylglucosamine 1-carboxyvinyltr	537	2.90E-137
HGS016	gil1574635	UDP-N-acetylglucosamine enolpyruvyl tran	536	4.70E-136
HGS016	gil146902	UDP-N-acetylglucosamine enolpyruvyl tran	209	5.10E-134
HGS016	gil2983705	(AE000732) UDP-N-acetylglucosamine 1-car	492	.6.20E-121
HGS016	gnllPIDle229797	UDP-N-acetylglucosamine enolpyruvyl tran	909	3.00E-119
HGS016	gil699337	UDP-N-acetyglucosamine 1-carboxyvinyl tr	909	1.10E-118
HGS016	gil2313767	(AE000578) UDP-N-acetylglucosamine enolp	440	1.90E-117
HGS018	gnllPIDle1182642	similar to DNA ligase [Bacillus subtilis	1574	9.60E-287
HGS018	gnllPIDId1017321	DNA ligase [Synechocystis sp.] >pirlS744	830	5.70E-209
HGS018	gil1574651	DNA ligase (lig) [Haemophilus influenzae	484	1.30E-204
HGS018	gil607820	DNA ligase [Rhodothermus marinus] >splP4	833	1.60E-204
HGS018	gil155088	DNA ligase [Thermus aquaticus thermophil	428	3.10E-201
HGS018	gil609276	DNA ligase [Thermus scotoductus] >pirlS5	436	1.10E-200
HGS018	gil2983242	(AE000699) DNA ligase (NAD dependent) [A	724	1.00E-179
HGS018	gil49284	DNA ligase [Zymomonas mobilis] >pirlS206	523	1.60E-170
HGS018	gnllPIDle1237759	(AL021287) DNA ligase [Mycobacterium tub	529	1.80E-161
HGS018	gnllPIDle349403	DNA ligase [Mycobacterium leprae]	527	7.30E-160
HGS019	dbjllD86417_12	YflG [Bacillus subtilis] >gnllPIDle11827	559	8.00E-72
HGS019	gil1044986	methionine aminopeptidase [Bacillus subt	254	4.50E-58
HGS019	gil1574578	methionine aminopeptidase (map) [Haemoph	185	5.10E-56
HGS019	gnllPIDle1172953	(AL008883) methionine aminopeptidase [My	214	1.10E-51
HGS019	gil2982825	(AE000672) methionyl aminopeptidase [Aqu	192	3.70E-48
HGS019	gnllPIDle1253272	(AL021958) methionine aminopeptidase [My	130	5.20E-48
HGS019	gil2687996	(AE001123) methionine aminopeptidase (ma	195	9.00E-48
HGS019	gnllPIDle1254451	methionine aminopeptidase [Streptomyces	151	2.10E-43

gil/19723 methionine aminopeptidase Iyacotatomyc gil/19723 Actorox/387 puttive methionine aminopept gil/1971248 Aletranae gene name; yedB; similar to am gil/289195 AF008553 Gil-tRNAGin amidotransferase gil/289195 AF0008533 Gil-tRNAGin amidotransferase gil/2892954 amidase [Synechocystis sp.] >pit/877264 gil/292954 amidase [Moraxella catarrhalis] >spl(490 gil/2948182 AE000435 Gil-tRNA amidotransferase, su gil/2948182 AE000435 Gil-tRNA amidotransferase, su gil/2948182 AE000945 Gil-tRNA amidotransferase, su gil/29411 PET112-like protein [Bezilus subtilis] gil/29511 PET112-like protein [Bezilus subtilis] gil/295125 AE000959 Gil-tRNAGin amidotransferase gil/295125 AE000959 Gil-tRNAGin amidotransferase gil/295125 AE000959 Gil-tRNAGin amidotransferase gil/295125 AE000959 ET112-like protein [Bacillus subtilis] gil/295125 AE000959 ET112-like protein [Bacillus gil/295127 AE000959 ET112-like protein [Bacillus gil/295127 AE000959 ET112-like protein [Bacillus gil/295127 AE000959 ET112-like protein [Bacillus gil/2951375 AE000140 gil-tRNA amidotransferase gil/295357 AE000140 gil-tRNA amidotransferase gil/295357 AE000943 Gil-tRNA amidotransferase gil/295357 AE000943 Gil-tRNA amidotransferase gil/296313 AE000943 Gil-tRNA amidotransferase gil/296314 Appothetical protein [Bacillus subtilis] gil/296315 AE000943 Gil-tRNA amidotransferase gil/296316 AE000943 Gil-tRNA amidotransferase gil/296317 AE000943 Gil-tRNA amidotransferase gil/296314 Ae000943 Gil-tRNA amidotransferase gil/296315 AE000943 Gil-tRNA amidotransferase gil/296316 AE000943 Gil-tRNA amidotransferase gil/296317 AE000943 Gil-tRNA amidotransferase gil/296317 AE000943 Gil-tRNA amidotransferase gil/296318 AE00043 Gil-tRNA amidotransferas				VOC.	3 KNF-43
gil2583129	HGS019	gil975723	methionine aminopeptidase 1 [Saccharomyc	167	3.00L-43
BailPDle 182648 alternate gene name: yedB; similar to ann. 11. gill2889195 (A-F008553) Glu-tRNAGIn amidotransferase 19. gill282954 amidase [Nynechcoystis sp.] -ppirS77264 19. gill292954 amidase [Mycobacterium leprae] 19. gill292954 amidase [Mycobacterium leprae] 19. gill22405 (A-E000943) Glu-tRNA amidotransferase, su 19. gill262513 (A-E000943) amidase [Melanobacterium the 22. gill262513 (A-E000943) amidase [Melanobacterium the 23. gill26351756 (A-E000594) amidase [Melanobacterium the 24. gill2635175 (A-E0008594) amidase [Melanobacterium the 24. gill263517 (A-E000594) gluamyl-tRNA Gln amidotransferase 11. gill263517 (A-E000691) gluamyl-tRNA Gln amidotransferase [millatoraterase] 11. gill263517 (A-E000691) gluamyl-tRNA Gln amidotransferase, su 11. gill263517 (A-E000691) gluamyl-tRNA Gln amidotransferase, su 11. gill263517 (A-E000691) gluamyl-tRNA Gln amidotran 11. gill263517 (A-E000943) Glu-tRNA amidotransferase, su 11. gill264813 (A-E000943) Glu-tRNA amidotransferase, fAqui 11. gill264813 (A-E000943)	HGS019	gil2583129	(AC002387) putative methionine aminopept	7117	2.10E-41
AF008553 Glu-tRNAGln amidotransferase 1-2	HGS022	gnllPIDle1182648	alternate gene name: yedB; similar to am	1586	2.80E-212
amidase [Synechocystis sp.] >pitlS77264 gil1982954	HGS022	gil2589195	(AF008553) Glu-tRNAGIn amidotransferase	1436	1.70E-198
gil1295254 (AE000680) glutamyl-tRNA (Gln) amidotran. gil1295254 amidase [Moraxella catarrhalis] >splQ490 gil1224069 amidase [Moraxella catarrhalis] >splQ490 gil1224069 gil2648182 grobable amidase [Mycobacterium leprae] gil2648182 grobable amidase [Micobacterium leprae] gil2622613 gil222613 (AE000594) amidase [Helicobacter pylori] gil2622613 (AE000594) amidase [Helicobacter pylori] gil2622613 GEO069910 amidase [Methanobacterium the gil263657 (AE0009910) amidase [Methanobacterium the gil263657 (AE000691) glutamyl-tRNA (Gln) amidotransferase 1 gil263123 (AE000691) glutamyl-tRNA (Gln) amidotran gil263123 (AE000691) glutamyl-tRNA (Gln) amidotran gil2638123 (AE000691) glutamyl-tRNA (Gln) amidotran gil2638237 (AE000691) glutamyl-tRNA (Gln) amidotran gil2638237 (AE000693) Glu-tRNA amidotransferase, su gil2648183 (AE000779) glutamyl-tRNA (Gln) amidotran gil2648183 (AE000775) glutamyl-tRNA (Gln) amidotran gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2648183 (AE000775) glutamyl-tRNA (Gln) amidotran gil2648183 (AE000775) glutamyl-tRNA diln amidotran gil1961010124 (AE000775) glutamyl-tRNA foll amidotran gil1961010124 (AE000775) glutamyl-tRNA foll amidotran gil1961010124 (AE000775) glutamyl-tRNA foll amidotran gil1961010124 (AE000943) Glu-tRNA bydrolase [Aqui gil1961010124 peptidyl-tRNA hydrolase [Aqui gil1961010101010101010101010101010101010101	HGS022	gnilPIDid1018331	amidase [Synechocystis sp.] >pirlS772641	867	2.30E-178
gil1224069 annidase [Moraxella catarrhalis] >splQ490 gil2648182 (AE000943) Glu-tRNA amidotransferase, su gil2648182 probable amidase [Mycobacterium leprae] gil2622613 (AE000594) amidase [Helicobacter pylori] gil2622613 (AE000594) amidase [Helicobacter pylori] gil2622613 (AE000910) amidase [Helicobacter pylori] gil254211 Bacillus subtilis PET112-like protein [B gil254311 Bacillus subtilis PET112-like protein [B gil254916 similar to pet112-like protein [B gil2589196 (AE000691) glutamyl-tRNA Gln) amidotran gil2638123 (AE000691) glutamyl-tRNA (Gln) amidotran gil2683123 (AE000691) glutamyl-tRNA (Gln) amidotran gil268237 (AE000140) glu-tRNA amidotransferase, su gil2648183 (AE001140) glu-tRNA amidotransferase, su gil2648183 (AE001440) glu-tRNA amidotransferase, su gil2648183 (AE00144) glutamyl-tRNA (Gln) amidotran gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2648183 (AE000943) Glu-tRNA bydrolase [Synechocystis s gil2648183 (AE000943) Glu-tRNA bydrolase [Aqui gil2648183 (AE000943) EPI112	HGS022	gil2982954	(AE000680) glutamyl-tRNA (Gln) amidotran	1247	6.50E-176
gil2648182 (AE000943) Glu-tRNA amidotransferase, su probable amidase [Mycobacterium leprae] gallPDie349405 probable amidase [Mycobacterium leprae] gallPDie1237756 (AL021287) putative Glu-tRNA-Gln amidott gil2313964 (AE000594) amidase [Methanobacterium the gil2622613 (AE000594) amidase [Methanobacterium the gil26226357 (AE000594) amidase [Methanobacterium the gil2632657 Bacillus subtilis PET112-like protein [Bacillus subtilis] 2 gil2631936 (AF00053) Glu-tRNA din amidotransferase 1 gil263123783 (AF000691) giutamyl-tRNA (Gln) amidotran gil263123783 (AE000691) giutamyl-tRNA (Gln) amidotran gil26313783 (AE000691) giutamyl-tRNA (Gln) amidotran gil26313783 (AE000599) PET112-like protein [Helicoba gil1590917 (AE001140) glu-tRNA amidotransferase, su gil2648183 (AE00043) Glu-tRNA amidotransferase, su gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2648183 (AE000643) Glu-tRNA amidotransferase, su gil2648183 (AE000643) Glu-tRNA amidotransferase, su gil2648183 (AE000643) Glu-tRNA amidotransferase, su gil298335 (AE000685) peptidyl-tRNA hydrolase [Synechocystis s gil3983032 (AE000685) peptidyl-tRNA hydrolase [Squechocystis s gil3983032 (AE000685) peptidyl-tRNA hydrolase [Squelis] gillPDie101124 Pht [Mycobacterium tuberculosis] > gnllPDie10237757 Pht [Mycobacterium tuberculosis] > gnllPDie10237655 Pht [Mycobacteri	HGS022	gil1224069	amidase [Moraxella catarrhalis] >splQ490	522	4.40E-158
gnllPIDle349405 probable amidase [Mycobacterium leprae] gnllPIDle1237756 (AL021287) putative Glu-tRNA-Gln amidotr gil2313964 (AE000594) amidase [Helicobacter pylori] gil2313964 (AE000594) amidase [Methanobacterium the gil2622613 (AE0005910) amidase [Methanobacterium the gil2623657 (AE000559) amidase [Methanobacterium the gil2636367 (AE000553) Glu-tRNAGIn amidotransferase gil2789161 (AE000553) Glu-tRNAGIn amidotransferase gil2789162 (AE000691) glutamyl-tRNA (Gln) amidotransferase. gil2789173 (AE000691) glutamyl-tRNA (Gln) amidotransferase, su gil278071 (AE000679) PET112-like protein [Helicoba gil278073 (AE00140) glu-tRNA amidotransferase, su gil278373 (AE00140) glu-tRNA amidotransferase, su gil288237 (AE00140) glu-tRNA amidotransferase, su gil288237 (AE000943) Glu-tRNA amidotransferase, su gil2845557 (AE001287) putative Glu-tRNA-Gln amidotransferase, su gil298434 (AE000943) Glu-tRNA amidotransferase, su gil2984354 (AE000745) glutamyl-tRNA (Gln) amidotransferase, su gil1910103404 hypothetica	HGS022	gil2648182	(AE000943) Glu-tRNA amidotransferase, su	548	1.30E-145
AL021287) putative Glu-tRNA-Gln amidotr Gall213964 (AE000594) amidase [Helicobacter pylori] Gall213964 (AE000594) amidase [Helicobacter pylori] Gall213964 (AE000910) amidase [Methanobacterium the Gall222613 (AE000910) amidase [Methanobacterium the Gall23211 PET112-like protein [Bacillus subtilis] Gall2589196 Gall1012-like protein [Bacillus Gall2589196 Similar to pet112-like protein [Bacillus Gall2589196 Similar to pet112-like protein [Bacillus Gall2289196 Gall00691) glutamyl-tRNA (Gln) amidotrans Gall2289197 Gall00691) glutamyl-tRNA (Gln) amidotrans Gall213783 Gall00691) glutamyl-tRNA amidotransferase, su Gall213783 Gall0170 G	HGS022	gnllPIDle349405	probable amidase [Mycobacterium leprae]	465	6.30E-143
GI2313964 (AE000910) amidase [Helicobacter pylor1] gil234211 PET112-like protein [Bacillus subtilis] 2 gil2589196 AE000910) amidase [Methanobacterium the 2 gil2589196 AE0008553 Glu-tRNAGIn amidotransferase 1 gil2589196 AE0008533 Glu-tRNAGIn amidotransferase 1 gil2283123 GAE000691) glutamyl-tRNA (Gln) amidotran gil224071 Unknown [Moraxella catarrhalis] >splQ490 gil224071 Unknown [Moraxella catarrhalis] >splQ490 gil224071 Glu-tRNA amidotransferase, su gil2688237 (AE00140) glu-tRNA amidotransferase, su gil2648183 (AE011545) YedA [Bacillus subtilis] >gl gil2648183 (AL021287) putative Glu-tRNA-Gln amidotran gil2084354 (AE00043) Glu-tRNA amidotransferase, su gil2084354 (AE00043) Glu-tRNA amidotransferase, su gil2084354 (AE00043) Glu-tRNA follo amidotran gil1011041005830 stage V sporulation [Bacillus subtilis] gil208303 stage V sporulation [Bacillus subtilis] gil208303 (AE000685) peptidyl-tRNA hydrolase [Aqui gil2083032 (AE000685) peptidyl-tRNA hydrolase [Aqui gil2083032 (AE000685) peptidyl-tRNA hydrolase [Aqui gil2083032 Pth [Mycobacterium tuberculosis] >gnllPIDie304565 Pt	HGS022	gnllPIDle1237756	(AL021287) putative Glu-tRNA-Gln amidotr	470	1.90E-141
GI2622613 (AE000910) amidase [Methanobacterium the 22 231354211 PET112-like protein [Bacillus subtilis] 22 231535357 Bacillus subtilis PET112-like protein [B 1 23 2315389196 (AF008553) Glu-tRNAGIn amidotransferase 1 2312383123 (AE000691) glutamyl-tRNA (Gin) amidotran 23 231224071 231224071 231224071 231224071 231224071 231233733 (AE000579) PET112-like protein [Bacillus unknown [Moraxella catarrhalis] >splQ490 231234071 (AE001140) glu-tRNA amidotransferase, su 231246557 (AE001140) glu-tRNA amidotransferase (gatB) [Methan 231246557 (AE000943) Glu-tRNA amidotransferase, su 2312648183 (AE000775) glutamyl-tRNA (Gin) amidotran 2312984354 (AE000775) glutamyl-tRNA (Gin) amidotran 2312984354 (AE000775) glutamyl-tRNA (Gin) amidotran 2312984354 (AE000775) glutamyl-tRNA (Gin) amidotran 2312983032 (AE000685) peptidyl-tRNA hydrolase [Synechocystis s 2312983032 (AE000685) peptidyl-tRNA hydrolase [Synechocystis s 2312983032 (AE000685) peptidyl-tRNA hydrolase [Aqui 2312983032 (AE000685) peptidyl-tRNA hydrolase [Aqui 2312983032 (AE000685) peptidyl-tRNA hydrolase [Aqui 2312983032 231191Dic304565 231141011124 2311411124 2311411124 2311411124 2311411124 2311414141414141414141414141414141414141	HGS022	gil2313964	(AE000594) amidase [Helicobacter pylori]	550	7.30E-123
gil1354211 PET112-like protein [Bacillus subtilis] 22 gil2633657 Bacillus subtilis PET112-like protein [B 1] gil2589196 (AF008553) Glu-tRNAGIn amidotransferase 1] gil2589196 similar to pet112-like protein [Bacillus 1] gil2983123 (AE000691) glutamyl-tRNA (Gln) amidotran gil2983123 PET112 [Synechocystis sp.] >pit875850lS gil22983123 (AE000691) glutamyl-tRNA (Gln) amidotran gil238337 (AE00140) glu-tRNA amidotransferase, su gil2688237 (AE001140) glu-tRNA amidotransferase, su gil268237 (AE001140) glu-tRNA amidotransferase, su gil268237 (AE011545) YedA [Bacillus subtilis] >gil gil268337 (AE000943) Glu-tRNA amidotransferase, su gil268183 (AE000775) glutamyl-tRNA (Gln) amidotra Glu-tRNA glil26837.12 [Mycobac AE000775] glutamyl-tRNA (Gln) amidotra gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotra gil2984354 (AE000775) glutamyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gil2983032 Pth [Mycobacterium tuberculosis] >gnllPIDi-204565 Pth [Mycobacterium tuberculosis] >gnll	HGS022	gi 2622613	(AE000910) amidase [Methanobacterium the	524	5.80E-116
gil2653657 Bacillus subtilis PET112-like protein [B gil2589196 (AF008553) Glu-tRNAGln amidotransferase gil2589196 similar to pet112-like protein [Bacillus gil2983123 (AE000691) glutamyl-tRNA (Gln) amidotran gil2983123 PET112 [Synechocystis sp.] >pirlS75850lS gil1224071 unknown [Moraxella catarrhalis] >splQ490 gil1224071 (AE000579) PET112-like protein [Helicoba gil12688237 (AE0001140) glu-tRNA amidotransferase, su gil1590917 (AF011545) YedA [Bacillus subtilis] >gli gil1650917 (AF011545) YedA [Bacillus subtilis] >gli gil166537 (AE000775) glutamyl-tRNA Gln amidotran gil2648183 (AE000775) glutamyl-tRNA (Gln) amidotran gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPDid1010124, hypothetical protein MLCB637.12 [Mycobac gnllPDid10101124, peptidyl-tRNA hydrolase [Synechocystis s gil2983032 peptidyl-tRNA hydrolase [Synechocystis s gnllPDie304565 Pth [Mycobacterium tuberculosis] >gnllPLI	HGS023	gil1354211	PET112-like protein [Bacillus subtilis]	2291	2.90E-30/
gil2589196 (AF008553) Glu-tRNAGIn amidotransferase 1 gil2983123 (AE000691) glutamyl-tRNA (Gln) amidotran 1 gil2983123 (AE000691) glutamyl-tRNA (Gln) amidotran 1 gil1224071 (AE000579) PET112-like protein [Helicoba 1 gil1224071 (AE000579) PET112-like protein [Helicoba 1 gil2688237 (AE001140) glu-tRNA amidotransferase, su 1 gil2688237 (AE001140) glu-tRNA amidotransferase, su 1 gil2688237 (AE011545) YedA [Bacillus subtilis] >gli 1 gil2648183 (AE00140) glu-tRNA amidotransferase, su 1 gil2648183 (AE000943) Glu-tRNA amidotransferase, su 1 gil2648183 (AE000943) Glu-tRNA amidotransferase, su 1 gil298434 (AE000775) glutamyl-tRNA-Gln amidotran 1 gil19Dic349616 hypothetical protein MLCB637.12 [Mycobac 1 gnllPDic349616 hypothetical protein Macillus subtilis] 1 gnllPDid1011124 peptidyl-tRNA hydrolase [Synechocystis s 1 gil2983032 peptidyl-tRNA hydrolase [Synechocystis] >glutamyl-tRNA hydrolase [Aqui	HGS023	gil2653657	Bacillus subtilis PET112-like protein [B	1313	1:20E-250
gillPIDIe1182649 similar to pet112-like protein [Bacillus gil2983123 (AE000691) glutamyl-tRNA (Gln) amidotran gil1294071 PET112 [Synechocystis sp.] >pirl875850lS gil1224071 unknown [Moraxella catarrhalis] >splQ490 gil2313783 (AE000140) glu-tRNA amidotransferase, su gil2688237 (AE001140) glu-tRNA amidotransferase, su gil2465557 (AF011545) YedA [Bacillus subtilis] >gli gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2648183 (AE000943) Glu-tRNA Glin amidotran gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPIDie134616 hypothetical protein MLCB637.12 [Mycobac gnllPIDia05830 stage V sporulation [Bacillus subtilis] gnllPIDia011124 peptidyl-tRNA hydrolase [Synechocystis s gnllPIDia06830 (AE000685) peptidyl-tRNA hydrolase [Aqui gnllPIDia0665 Pth [Mycobacterium tuberculosis] >gnllPI	HGS023	gil2589196	(AF008553) Glu-tRNAGln amidotransferase	1315	4.20E-250
gil2983123 (AE000691) glutamyl-tRNA (Gln) amidotran gnllPtDld1019042 PET112 [Synechocystis sp.] >pirlS75850lS gil1224071 unknown [Moraxella catarrhalis] >splQ490 gil1224071 unknown [Moraxella catarrhalis] >splQ490 gil2688237 (AE001140) glu-tRNA amidotransferase, su gil2688237 Glu-tRNA amidotransferase (gatB) [Methan gil2645557 (AF011545) YedA [Bacillus subtilis] >gil gnllPtDld1011444 hypothetical protein [Synechocystis sp.] gnllPtDld1011444 (AE000943) Glu-tRNA amidotransferase, su gnllPtDle1237757 (AE000943) Glu-tRNA amidotransferase, su gnllPtDle1237757 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPtDle1043056 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPtDld1005830 stage V sporulation [Bacillus subtilis] gnllPtDld10011124 peptidyl-tRNA hydrolase [Synechocystis s gnllPtDld1011124 peptidyl-tRNA hydrolase [Synechocystis s gnllPtDle304565 Pth [Mycobacterium tuberculosis] >gnllPtl	HGS023	gn PID e1182649	similar to pet 112-like protein [Bacillus	1346	7.10E-224
gillPtDld1019042 PET112 [Synechocystis sp.] >pirlS75850lS gil1224071 unknown [Moraxella catarrhalis] >splQ490 gil2313783 (AE000579) PET112-like protein [Helicoba gil2688237 (AE001140) glu-tRNA amidotransferase, su gil2465557 (AF011545) YedA [Bacillus subtilis] >gll gil2465557 (AF011545) YedA [Bacillus subtilis] >gll gil246557 (AF000943) Glu-tRNA amidotransferase, su gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gillPIDld1005830 stage V sporulation [Bacillus subtilis] gillPIDld1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gil2983032 Pth [Mycobacterium tuberculosis] >gnllPIDle304565 Pth [Mycobacterium tuberculosis] >gnllPIDle304561 Pth [Mycobacterium tuberculosis] >gnllPIDle304561 Pth [Mycobacterium tuberculosis] >gnllPIDle304561 Pth [Mycobacterium tuberc	HGS023	gil2983123	(AE000691) glutamyl-tRNA (Gln) amidotran	931	2.30E-165
gil1224071 unknown [Moraxella catarrhalis] >splQ490 gil2313783 (AE000579) PET112-like protein [Helicoba gil2688237 (AE001140) glu-tRNA amidotransferase, su gil2688237 Glu-tRNA amidotransferase (gatB) [Methan gil246557 (AF011545) YedA [Bacillus subtilis] >gil gil246557 (AE000943) Glu-tRNA amidotransferase, su gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2984354 (AL021287) putative Glu-tRNA-Gln amidotr gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gil19IDId1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gil2983032 Pth [Mycobacterium tuberculosis] >gnllPLI	HGS023	gnllPIDId1019042	PET112 [Synechocystis sp.] >pirlS75850lS	859	4.10E-161
gil2588237 (AE001140) glu-tRNA amidotransferase, su gil2688237 (AE001140) glu-tRNA amidotransferase, su gil2688237 Glu-tRNA amidotransferase (gatB) [Methan gil2645557 (AF011545) YedA [Bacillus subtilis] >gil gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2984354 (AL021287) putative Glu-tRNA-Gln amidotran gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPIDIc1016830 stage V sporulation [Bacillus subtilis] gnllPIDId1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gnllPIDIc304565 Pth [Mycobacterium tuberculosis] >gnllPI	HGS023	gil1224071	unknown [Moraxella catarrhalis] >splQ490	323	3.90E-132
gil2688237 (AE001140) glu-tRNA amidotransferase, su gil1590917 Glu-tRNA amidotransferase (gatB) [Methan gil1590917 Glu-tRNA amidotransferase (gatB) [Methan gil2465557 (AF011545) YedA [Bacillus subtilis] >gil gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2648183 (AL021287) putative Glu-tRNA-Gln amidotr gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPIDIe1237757 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPIDIe10101124 hypothetical protein MLCB637.12 [Mycobac gnllPIDIe1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gnllPIDIe304565 Pth [Mycobacterium tuberculosis] >gnllPI	HGS023	gil2313783	(AE000579) PET112-like protein [Helicoba	664	6.80E-132
gil1590917 Glu-tRNA amidotransferase (gatB) [Methan gil2465557 (AF011545) YedA [Bacillus subtilis] >gil gil246557 (AF001545) YedA [Bacillus subtilis] >gil gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2648183 (AL021287) putative Glu-tRNA-Gln amidotr gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gilPIDIe349616 hypothetical protein MLCB637.12 [Mycobac gnllPIDIe101549 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gilPIDIe304565 Pth [Mycobacterium tuberculosis] >gnllPL	HGS023	gi 2688237	(AE001140) glu-tRNA amidotransferase, su	318	4.00E-131
gil2465557 (AF011545) YedA [Bacillus subtilis] >gil gnllPIDId1011444 hypothetical protein [Synechocystis sp.] gil2648183 (AE000943) Glu-tRNA amidotransferase, su gnllPIDIe1237757 (AL021287) putative Glu-tRNA-Gln amidotran gnllPIDIe237757 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPIDIe349616 hypothetical protein MLCB637.12 [Mycobac gnllPIDId1005830 stage V sporulation [Bacillus subtilis] gnllPIDId1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gnllPIDIe304565 Pth [Mycobacterium tuberculosis] >gnllPL	HGS023	gil1590917	Glu-tRNA amidotransferase (gatB) [Methan	263	8.60E-125
gallPIDId1011444 hypothetical protein [Synechocystis sp.] gil2648183 (AE000943) Glu-tRNA amidotransferase, su gil2948183 (AL021287) putative Glu-tRNA-Gln amidotr gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPIDIe349616 hypothetical protein MLCB637.12 [Mycobac gnllPIDId1005830 stage V sporulation [Bacillus subtilis] gnllPIDId1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gnllPIDIe304565 Pth [Mycobacterium tuberculosis] >gnllPL	HGS024	gi 2465557	(AF011545) YedA [Bacillus subtilis] >gil	237	6.30E-27
gil2648183 (AE000943) Glu-tRNA amidotransferase, su gnllPIDle1237757 (AL021287) putative Glu-tRNA-Gln amidotr gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPIDle349616 hypothetical protein MLCB637.12 [Mycobac gnllPIDle1005830 stage V sporulation [Bacillus subtilis] gnllPIDld1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gnllPIDle304565 Pth [Mycobacterium tuberculosis] >gnllPI	HGS024	E	hypothetical protein [Synechocystis sp.]	153	8.60E-22
gallPIDIe1237757 (AL021287) putative Glu-tRNA-Gln amidotr gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gallPIDIe349616 hypothetical protein MLCB637.12 [Mycobac gallPIDId1005830 stage V sporulation [Bacillus subtilis] gallPIDId1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gallPIDIe304565 Pth [Mycobacterium tuberculosis] >gallPL	HGS024	gil2648183	(AE000943) Glu-tRNA amidotransferase, su	126	1.80E-21
gil2984354 (AE000775) glutamyl-tRNA (Gln) amidotran gnllPIDle349616 hypothetical protein MLCB637.12 [Mycobac gnllPIDld1005830 stage V sporulation [Bacillus subtilis] gnllPIDld1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gnllPIDle304565 Pth [Mycobacterium tuberculosis] >gnllPI	HGS024	gnllPIDle1237757	(AL021287) putative Glu-tRNA-Gln amidotr	166	1.80E-17
gnllPIDle349616 hypothetical protein MLCB637.12 [Mycobac gnllPIDld1005830 stage V sporulation [Bacillus subtilis] gnllPIDld1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui	HGS024	gil2984354	(AE000775) glutamyl-tRNA (Gln) amidotran	102	2.70E-17
gnllPIDid1005830 stage V sporulation [Bacillus subtilis] gnllPIDid1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui	HGS024	gn]]PIDle349616	hypothetical protein MLCB637.12 [Mycobac	154	7.10E-16
gallPIDId1011124 peptidyl-tRNA hydrolase [Synechocystis s gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui gil2983035 (AE000685) peptidyl-tRNA hydrolase [Aqui	HGS025	gnllPIDId1005830	stage V sporulation [Bacillus subtilis]	496	4.90E-69
gil2983032 (AE000685) peptidyl-tRNA hydrolase [Aqui	HGS025		peptidyl-tRNA hydrolase [Synechocystis s	307	2.10E-49
gnilpDie304565 Pth [Mycobacterium tuberculosis] >gnllPI	HGS025	gil2983032	(AE000685) peptidyl-tRNA hydrolase [Aqui	386	2.20E-49
	HGS025	gnilPIDle304565	Pth [Mycobacterium tuberculosis] >gnllPI	700	2.60E-43

HGS025	gil1045760	peptidyl-tRNA hydrolase homolog [Mycopla	211	1.40E-39
HGS025	gil2314676	(AE000648) peptidyl-tRNA hydrolase (pth)	102	3.30E-39
HGS025	[gil1674312	(AE000058) Mycoplasma pneumoniae, peptid	208	9.50E-39
HGS025	gil1127571	peptidyl-tRNA hydrolase [Chlamydia trach	187	7.00E-37
HGS025	gil1573366	peptidyl-tRNA hydrolase (pth) [Haemophil	201	8.50E-34
HGS025	gil581202	peptidyl-tRNA hydrolase [Escherichia col	186	2.50E-27
HGS026	gil853776	peptide chain release factor 1 [Bacillus	688	6.10E-160
HGS026	gnllPIDId1009421	Peptide Termination Factor [Mycoplasma c	715	1.10E-126
HGS026	gn1PIDId1019559	peptide chain release factor [Synechocys	539	2.70E-121
HGS026	gil2688096	(AE001130) peptide chain release factor	627	1.80E-115
HGS026	gnllPIDId1015453	Peptide chain release factor 1 (RF-1) [E	467	3.90E-113
HGS026	gil968930	peptide chain release factor 1 [Escheric	463	1.30E-112
HGS026	gil147567	peptide chain release factor 1 [Escheric	467	3.40E-112
HGS026	[gil154104	release factor 1 [Salmonella typhimurium	460	2.90E-111
HGS026	gil1574404	polypeptide chain release factor 1 (prfA	449	1.50E-109
HGS026	gil2313158	(AE000529) peptide chain release factor	576	1.20E-104
HGS028		(AF013188) release factor 2 [Bacillus	691	2.50E-173
HGS028	splP28367IRF2_BACSU	PEPTIDE CHAIN RELEASE FACTOR 2 (RF-2)	742	3.00E-157
HGS028	gil2984119	(AE000758) peptide chain release fact	442	2.20E-128
HGS028	4636	peptide release factor 2 [Bacillus fi	718	2.90E-125
HGS028	pirlS76448IS76448	translation releasing factor RF-2 - S	883	3.30E-116
HGS028	pirlA64190 A64190	translation releasing factor RF-2 - H	444	1.70E-110
HGS028	gil154276	peptide chain release factor 2 [Salmo	444	1.80E-108
HGS028	gi 2687953	(AE001120) peptide chain release fact	408	3.90E-108
HGS028	gil2367172	(AE000372) peptide chain release fact	437	1.60E-107
HGS028	gil147569	peptide chain release factor 2 [Esche	434	4.00E-107
HGS030	gnllPIDld1005806	unknown [Bacillus subtilis] >gnllPIDle11	283	2.60E-64
HGS030	gil3176887	(AF065312) thymidylate kinase [Yersinia	124	3.00E-43
HGS030	gil2983484	(AE000716) thymidylate kinase [Aquifex a	272	2.40E-37
HGS030	gil1244710	thymidylate kinase [Escherichia coli] >g	136	7.20E-34
HGS030	gil2650584	(AE001102) thymidylate kinase (tmk) [Arc	71	2.60E-30
HGS030	gil1045674	thymidylate kinase [Mycoplasma genitaliu	173	8.20E-28

			11711	1 70E-27
HGS030	gil1673808	(AE000016) Mycoplasma pneumoniae, mymid	1/1	1.70L-27
HGS030	gil1246364	thymidylate:zeocin resistance protein:ND	136	2.20E-2/
HGS030	gil1246361	thymidine:thymidylate kinase:zeocin resi	136	4.30E-27
HGS030	gil950071	ATP-bind. pyrimidine kinase [Mycoplasma	80	8.70E-21
HGS031	gnllPIDle1185242	uridylate kinase [Bacillus subtilis] >pi	920	8.40E-123
HGS031	gn PID d1019291	uridine monophosphate kinase [Synechocys	530	1.70E-96
HGS031	gn PID e1296663	(AL023797) uridylate kinase [Streptomyce	829	2.10E-89
HGS031	en PID e248883	hypothetical protein MTCY274.14c [Mycoba	416	6.00E-89
HGS031	gnllPIDle327783	uridylate kinase [Mycobacterium leprae]	403	7.90E-86
HGS031	gil473234	uridine 5'-monophosphate (UMP) kinase [E	384	2.10E-72
HGS031	gil1552748	uridine 5'-monophosphate (UMP) kinase [E	375	3.60E-71
HGS031	gil1574616	mukB suppressor protein (smbA) [Haemophi	409	3.70E-71
HGS031	gi 2983290	(AE000703) UMP kinase [Aquifex aeolicus]	452	3.70E-58
HGS031	gil1518662	UMP kinase [Chlamydia trachomatis] >splP	323	9.10E-55
HGS032	gil755152	highly hydrophobic integral membrane pro	297	2.40E-81
HGS032	gil1235660	RfbA [Myxococcus xanthus] >splQ50862lRFB	173	4.90E-24
HGS032	gnllPIDId1017629	ABC transporter [Synechocystis sp.] >pir	149	1.50E-19
HGS032	gnllPIDId1029275	(AB010294) integral membrane component o	126	6.40E-19
HGS032	gnllPIDId1008332	putative integral membrane component of	125	9.10E-19
HGS032	gnllPIDid1029271	(AB010293) integral membrane component o	125	9.10E-19
HGS032	gnllPIDId1029279	(AB010295) integral membrane component o	125	9.10E-19
HGS032	gnllPIDId1029264	(AB010150) integral membrane component o	109	3.00E-15
HGS032	gil2983575	(AE000723) ABC transporter (ABC-2 subfam	7.1	9.60E-13
HGS032	gil609595	homologous to kpsM (E.coli), bexB (H.inf	78	2.60E-12
HGS033	gil755153	ATP-binding protein [Bacillus subtilis]	655	9.30E-94
HGS033	gil609596	ATP-binding protein [Serratia marcescens]	387	3.70E-69
HGS033	gil765059	ABC-transporter protein [Klebsiella pneu	371	3.70E-69
HGS033	gil567183	ATP-binding protein [Klebsiella pneumoni	367	1.20E-67
HGS033	gil304013	abcA [Aeromonas salmonicida] >pirlA36918	294	7.20E-59
HGS033	gnllPIDId1020415	(AB002668) ABC transport protein [Actino	323	4.00E-57
HGS033	gil1123030	CpxA [Actinobacillus pleuropneumoniae]	061	2.40E-56
HGS033	gil3135679	(AF064070) putative ABC-2 transporter hy	219	2.10E-53

	gil2983576 gil1235661	(AE000723) ABC transporter [Aquifex aeol	294	2.10E-53
	11235661	עק ע ער יין יין אין אין אין אין אין אין אין אין	700	45 E C
		KIDB [MJX0coccus xanthus] >spiQ30863lKrB	330	6.70E-53
	gil143467	ribosomal protein S4 [Bacillus subtilis]	798	4.50E-106
	gil2314460	(AE000633) ribosomal protein S4 (rps4) [322	1.50E-62
	gil2982819	(AE000672) ribosomal protein S04 [Aquife	253	2.00E-62
	gil606231	30S ribosomal subunit protein S4 [Escher	292	2.40E-58
	gnllPIDle1234848	(AJ223236) ribosomal protein S4 [Salmone	292	6.10E-58
	gil1573812	ribosomal protein S4 (rpS4) [Haemophilus	292	1.60E-57
	gil639791	ribosomal protein S4 [Mycoplasma pneumon	260	1.90E-56
	gil1046011	ribosomal protein S4 [Mycoplasma genital	245	2.10E-54
	gnllPIDle316061	RpsD [Mycobacterium tuberculosis] >gnllP	270	1.40E-52
	gil144143	ribosomal protein S4 [Buchnera aphidicol	255	2.00E-51
	gil2648781	(AE000980) dipeptide ABC transporter, AT	136	1.90E-40
	gnllPIDle1264523	(AL022121) putative peptide ABC transpor	185	5.50E-35
	gil143607	sporulation protein [Bacillus subtilis]	191	7.70E-34
	gnllPIDie1183166	oligopeptide ABC transporter (ATP-bindin	161	7.70E-34
	gnliPIDle1253461	oligopeptide transport ATP-binding prote	213	5.50E-33
	gi 2313342	(AE000544) oligopeptide ABC transporter,	258	7.60E-32
	gnllPIDId1015858	Dipeptide transport ATP-binding protein	205	1.10E-31
	gil47346	AmiE protein [Streptococcus pneumoniae]	202	7.40E-31
	gil972897	DppD [Haemophilus influenzae] >gil157411	204	1.40E-30
	gil677943	AppD [Bacillus subtilis] >gnllPIDle11831	205	9.70E-30
	gnilPIDle1185713	elongation factor P [Bacillus subtilis]	702	7.00E-91
	gil1399829	elongation factor P [Synechococcus PCC79	541	4.90E-69
	gnilPIDid1010902	elongation factor P [Synechocystis sp.]	535	3.20E-68
	gil951349	ORF1; putative [Anabaena sp.] >splQ44247	505	3.80E-64
	gnllPIDle290977	unknown [Mycobacterium tuberculosis] >gn	480	9.20E-61
	gnllPIDle1169516	elongation factor P [Corynebacterium glu	460	4.80E-58
		(AE000736) elongation factor P [Aquifex	435	1.10E-54
		elongation factor P homologue; EF-P [Bac	203	7.20E-52
	16	(AE000538) translation elongation factor	409	4.00E-51
HGS040 gi	gil536991	elongation factor P [Escherichia coli] >	362	9.40E-45

- 1	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	737	5 80E-72
168153_3	gnllPIDId1028815	2	1,500	1.80E-12
168153 3	gil47961	wcdB; ORF3 in citation [1] [Salmonella	1 57	1.90E-/1
168153 3	gil1590951	UDP-glucose 4-epimerase (galE) [Methano	148	3.20E-60
168153 3	pirIC69149IC69149	conserved hypothetical protein MTH380	151	1.90E-50
168153 3		ORF2: Method: conceptual translation s	227	4.50E-47
168153 3	gn PID =316552	unknown [Mycobacterium tuberculosis] >g	109	4.70E-45
168153 3	onliPIDe1185960		155	1.80E-39
ш	on PIDe1289548	(AL023093) putative sugar dehyratase [M	98	1.80E-36
168153 3	gn PID e288124	glucose epimerase [Bacillus thuringiensis]	95	2.70E-35
168153 3	gi1591707	capsular polysaccharide biosynthesis pr	85	1.60E-34
168153 2	gnllPIDle1184467	alternate gene name: yvhA [Bacillus subt	354	4.90E-45
168153 2	911657652	Cap8M [Staphylococcus aureus]	138	9.00E-42
168153 2	911773352		138	9.00E-42
168153 2	snllPIDle238668	hypothetical protein [Bacillus subtilis]	139	6.10E-39
168153 2	gil1199573	spsB [Sphingomonas sp.] >gil1314578 gluc	168	4.40E-35
18	10531		260	5.50E-33
11	on[[PITDId1020425	(AB002668) galactosyltransferase [Actino	155	5.60E-33
168153 2		(AB010415) glycosyltransferase [Actinoba	155	2.00E-32
168153 2	en PID d1019174	galactosyl-1-phosphate transferase [Syne	139	2.30E-32
168153 2	gnllPIDle220381	structural gene [Agrobacterium radiobacter]	138	2.40E-32
168153 1	gi11276880	EpsG [Streptococcus thermophilus]	141	3.40E-34
168153 1	gil1276879	Streptococcus thermophi	162	1.70E-29
168153 1	gi 633699	WbcQ [Yersinia enterocolitica] >pirlS512	134	9.10E-26
168153 1	gnllPIDle238704	hypothetical protein [Bacillus subtilis]	131	1.90E-18
168153 1	gil2983976	(AE000749) capsular polysaccharide biosy	134	1.50E-15
168153 1	gnllPIDId1005311	ORF7 [Klebsiella pneumoniae] >splQ48453l	46	2.10E-12
168153 1	gi 633696	WbcN [Yersinia enterocolitica] >pirlS512	123	2.50E-12
168153 1	gil755606	unknown [Bacillus subtilis]	144	5.40E-12
168153 1	gil1146237	21.4% of identity to trans-acting transc	144	6.00E-12
168153 1	gn PID e238664	hypothetical protein [Bacillus subtilis]	141	3.20E-11
168339 2	gnllPIDIe1169894	putative repeating unit transporter	234	5.70E-57
168339 2	gil2209215	(AF004325) putative oligosaccharide	139	4.90E-3/
168339 2	gi 633692	Wzx [Yersinia enterocolitica] >pirlS	141	3.00E-31
168339 2	gil2621404	(AE000819) O-antigen transporter [Me	129	8.90E-29
ш				

108339_2	gil20/2448	Epsk [Lactococcus lactis cremoris]	199	4.00E-27
168339_2	spiP37746IRFBX_ECOLI	PUTATIVE O-ANTIGEN TRANSPORTER.	140	2.10E-23
168339_2	gnllPIDId1016603	Putative O-antigen transporter. [Esc	140	2.90E-23
168339_2	gil510252	membrane protein [Escherichia coli]	140	8.10E-23
168339_2	gil2621427	(AE000822) O-antigen transporter [Me	122	3.10E-20
168339_2	gil152778	RFBX [Shigella dysenteriae] >pirlS34	114	8.50E-19

15

20

25

30

35

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only nucleotides outside the 5' and 3' nucleotides of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 nucleotide subject sequence is aligned to a 100 nucleotide query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 nucleotides at 5' end. The 10 unpaired nucleotides represent 10% of the sequence (number of nucleotides at the 5' and 3' ends not matched/total number of nucleotides in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 nucleotides were perfectly matched the final percent identity would be 90%. In another example, a 90 nucleotide subject sequence is compared with a 100 nucleotide query sequence. This time the deletions are internal deletions so that there are no nucleotides on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only nucleotides 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are made for the purposes of the present invention.

Vectors and Host Cell

The present invention also relates to vectors which include the isolated DNA molecules of the present invention, host cells comprising the recombinant vectors, and the production of *S. aureus* polypeptides and peptides of the present invention expressed by the host cells.

Recombinant constructs may be introduced into host cells using well known techniques such as infection, transduction, transfection, transvection, electroporation and transformation. The vector may be, for example, a phage, plasmid, viral or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for

10

15

20

25

30

35

propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged *in vitro* using an appropriate packaging cell line and then transduced into host cells.

Preferred are vectors comprising *cis*-acting control regions to the polynucleotide of interest. Appropriate *trans*-acting factors may be supplied by the host, supplied by a complementing vector or supplied by the vector itself upon introduction into the host.

In certain preferred embodiments in this regard, the vectors provide for specific expression, which may be inducible and/or cell type-specific. Particularly preferred among such vectors are those inducible by environmental factors that are easy to manipulate, such as temperature and nutrient additives.

Expression vectors useful in the present invention include chromosomal-, episomaland virus-derived vectors, e.g., vectors derived from bacterial plasmids, bacteriophage, yeast episomes, yeast chromosomal elements, viruses such as baculoviruses, papova viruses, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as cosmids and phagemids.

The DNA insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the *E. coli lac, trp* and *tac* promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome binding site for translation. The coding portion of the mature transcripts expressed by the constructs will preferably include a translation initiating site at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin, or ampicillin resistance genes for culturing in *E. coli* and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as *E. coli*, *Streptomyces* and *Salmonella typhimurium* cells; fungal cells, such as yeast cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE9, pQE10 available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH16a, pNH18A, pNH46A available from Stratagene; pET series of vectors available from Novagen; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

15

20

25

30

35

Among known bacterial promoters suitable for use in the present invention include the *E. coli lac*I and *lac*Z promoters, the T3, T5 and T7 promoters, the *gpt* promoter, the lambda PR and PL promoters and the *trp* promoter. Suitable eukaryotic promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous sarcoma virus (RSV), and metallothionein promoters, such as the mouse metallothionein-I promoter.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals (for example, Davis, et al., Basic Methods In Molecular Biology (1986)).

Transcription of DNA encoding the polypeptides of the present invention by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are *cis*-acting elements of DNA, usually about from 10 to 300 nucleotides that act to increase transcriptional activity of a promoter in a given host cell-type. Examples of enhancers include the SV40 enhancer, which is located on the late side of the replication origin at nucleotides 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

For secretion of the translated polypeptide into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide, for example, the amino acid sequence KDEL. The signals may be endogenous to the polypeptide or they may be heterologous signals.

The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art. A preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to solubilize proteins. For example, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is thoroughly advantageous for use in therapy and diagnosis and thus results, for example, in improved pharmacokinetic properties (EP-A 0232 262). On the other hand, for some uses it would be desirable to be able to delete the Fc part after the fusion protein has been expressed, detected and purified in the

10

15

20

25

30

advantageous manner described. This is the case when Fc portion proves to be a hindrance to use in therapy and diagnosis, for example when the fusion protein is to be used as antigen for immunizations. In drug discovery, for example, human proteins, such as, hIL5-receptor has been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. See Bennett, D. et al. (1995) J. Molec. Recogn. 8:52-58 and Johanson, K. et al. (1995) J. Biol. Chem. 270 (16):9459-9471.

The *S. aureus* polypeptides can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydroxylapatite chromatography, lectin chromatography and high performance liquid chromatography ("HPLC") is employed for purification. Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells.

In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses host cells that have been engineered to delete or replace endogenous genetic material (e.g. coding sequences for the polypeptides of the present invention), and/or to include genetic material (e.g. heterologous polynucleotide sequences) that is operably associated with polynucleotides of the present invention, and which activates, alters, and/or amplifies endogenous polynucleotides of the present invention. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g. promoter and/or enhancer) and endogenous polynucleotide sequences via homologous recombination (see, e.g. U.S. Patent No. 5,641,670, issued June 24, 1997; Internation Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra, et al., Nature 342:435-438 (1989), the disclosures of each of which are hereby incorporated by reference in their entireties).

Polypeptides and Fragments

The invention further provides an isolated *S. aureus* polypeptide having an amino acid sequence in Table 1, or a peptide or polypeptide comprising a portion of the above polypeptides.

35 Variant and Mutant Polypeptides

To improve or alter the characteristics of *S. aureus* polypeptides of the present invention, protein engineering may be employed. Recombinant DNA technology known to those skilled in the art can be used to create novel mutant proteins or muteins including single or multiple amino acid substitutions, deletions, additions, or fusion proteins. Such modified

polypeptides can show, e.g., increased/decreased activity or increased/decreased stability. In addition, they may be purified in higher yields and show better solubility than the corresponding natural polypeptide, at least under certain purification and storage conditions. Further, the polypeptides of the present invention may be produced as multimers including dimers, trimers and tetramers. Multimerization may be facilitated by linkers or recombinantly though heterologous polypeptides such as Fc regions.

46

N-Terminal and C-Terminal Deletion Mutants

15

20

25

30

35

It is known in the art that one or more amino acids may be deleted from the N-terminus or C-terminus without substantial loss of biological function. For instance, Ron et al. J. Biol. Chem., 268:2984-2988 (1993), reported modified KGF proteins that had heparin binding activity even if 3, 8, or 27 N-terminal amino acid residues were missing. Accordingly, the present invention provides polypeptides having one or more residues deleted from the amino terminus of the polypeptides shown in Table 1.

Similarly, many examples of biologically functional C-terminal deletion mutants are known. For instance, Interferon gamma shows up to ten times higher activities by deleting 8-10 amino acid residues from the carboxy terminus of the protein See, e.g., Dobeli, et al. (1988) J. Biotechnology 7:199-216. Accordingly, the present invention provides polypeptides having one or more residues from the carboxy terminus of the polypeptides shown in Table 1. The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini as described below.

The present invention is further directed to polynucleotide encoding portions or fragments of the amino acid sequences described herein as well as to portions or fragments of the isolated amino acid sequences described herein. Fragments include portions of the amino acid sequences of Table 1, at least 7 contiguous amino acid in length, selected from any two integers, one of which representing a N-terminal position. The first codon of the polypeptides of Table 1 is position 1. Every combination of a N-terminal and C-terminal position that a fragment at least 7 contiguous amino acid residues in length could occupy, on any given amino acid sequence of Table 1 is included in the invention. At least means a fragment may be 7 contiguous amino acid residues in length or any integer between 7 and the number of residues in a full length amino acid sequence minus 1. Therefore, included in the invention are contiguous fragments specified by any N-terminal and C-terminal positions of amino acid sequence set forth in Table 1 wherein the contiguous fragment is any integer between 7 and the number of residues in a full length sequence minus 1.

Further, the invention includes polypeptides comprising fragments specified by size, in amino acid residues, rather than by N-terminal and C-terminal positions. The invention includes any fragment size, in contiguous amino acid residues, selected from integers between 7 and the number of residues in a full length sequence minus 1. Preferred sizes of contiguous polypeptide fragments include about 7 amino acid residues, about 10 amino acid residues,

WO 00/12678

5

10 .

15

20

25

30

35

about 20 amino acid residues, about 30 amino acid residues, about 40 amino acid residues, about 50 amino acid residues, about 100 amino acid residues, about 200 amino acid residues, about 300 amino acid residues, and about 400 amino acid residues. The preferred sizes are, of course, meant to exemplify, not limit, the present invention as all size fragments representing any integer between 7 and the number of residues in a full length sequence minus 1 are included in the invention. The present invention also provides for the exclusion of any fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above. Any number of fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above may be excluded.

The polypeptide fragments of the present invention can be immediately envisaged using the above description and are therefore not individually listed solely for the purpose of not unnecessarily lengthening the specification.

The above fragments need not be active since they would be useful, for example, in immunoassays, in epitope mapping, epitope tagging, to generate antibodies to a particular portion of the polypeptide, as vaccines, and as molecular weight markers.

Other Mutants

In addition to N- and C-terminal deletion forms of the protein discussed above, it also will be recognized by one of ordinary skill in the art that some amino acid sequences of the S. aureus polypeptides of the present invention can be varied without significant effect of the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity.

Thus, the invention further includes variations of the *S. aureus* polypeptides which show substantial *S. aureus* polypeptide activity or which include regions of *S. aureus* protein such as the protein portions discussed below. Such mutants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as to have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided. There are two main approaches for studying the tolerance of an amino acid sequence to change. *See*, Bowie, J. U. *et al.* (1990), Science 247:1306-1310. The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality.

These studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The studies indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described by Bowie et al. (*supra*) and the references cited therein. Typically seen as conservative substitutions are the replacements, one for another,

15

20

among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asp and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.

Thus, the fragment, derivative, analog, or homolog of the polypeptide of Table 1 may be, for example: (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code: or (ii) one in which one or more of the amino acid residues includes a substituent group: or (iii) one in which the *S. aureus* polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol): or (iv) one in which the additional amino acids are fused to the above form of the polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the above form of the polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

Thus, the *S. aureus* polypeptides of the present invention may include one or more amino acid substitutions, deletions, or additions, either from natural mutations or human manipulation. As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 3).

TABLE 3. Conservative Amino Acid Substitutions.

Aromatic	Phenylalanine
	Tryptophan
	Tyrosine
Hydrophobic	Leucine
y cropinoese	
•	Isoleucine
to the second of	Valine
Polar	Glutamine
·	Asparagine
	/ Sparagine
Basic	
Dasic	Arginine
	Lysine
· ·	Histidine
, and the second se	
Acidic	Aspartic Acid
	Glutamic Acid
	Glutainic Acid
l 	
Small	Alanine
	Serine
	Threonine
	Methionine
"	
	Glycine

10

15

20

25

30

35

Amino acids in the *S. aureus* proteins of the present invention that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis. *See, e.g.*, Cunningham et al. (1989) Science 244:1081-1085. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity using assays appropriate for measuring the function of the particular protein.

Of special interest are substitutions of charged amino acids with other charged or neutral amino acids which may produce proteins with highly desirable improved characteristics, such as less aggregation. Aggregation may not only reduce activity but also be problematic when preparing pharmaceutical formulations, because aggregates can be immunogenic. *See, e.g.*, Pinckard et al., (1967) Clin. Exp. Immunol. 2:331-340; Robbins, et al., (1987) Diabetes 36:838-845; Cleland, et al., (1993) Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377.

The polypeptides of the present invention are preferably provided in an isolated form, and may partially or substantially purified. A recombinantly produced version of the *S. aureus* polypeptide can be substantially purified by the one-step method described by Smith et al. (1988) Gene 67:31-40. Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies directed against the polypeptides of the invention in methods which are well known in the art of protein purification. The purity of the polypeptide of the present invention may also specified in percent purity as relative to heterologous containing polypeptides. Preferred purities include at least 25%, 50%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.75%, and 100% pure, as relative to heretologous containing polypeptides.

The invention provides for isolated *S. aureus* polypeptides comprising an the amino acid sequence of a full-length *S. aureus* polypeptide having the complete amino acid sequence shown in Table 1 and the amino acid sequence of a full-length *S. aureus* polypeptide having the complete amino acid sequence shown in Table 1 excepting the N-terminal methionine. The polypeptides of the present invention also include polypeptides having an amino acid sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%, 96%, 97%, 98% or 99% identical to those described in (a), (b), (c), and (d) above. Further polypeptides of the present invention include polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to those described above.

A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a *S. aureus* polypeptide having an amino acid sequence which contains at least one conservative amino acid substitution, but not more than 50 conservative amino acid substitutions, not more than 40 conservative amino acid substitutions, not more than 30 conservative amino acid substitutions, and not more than 20 conservative amino acid

15

20

25

30

35

substitutions. Also provided are polypeptides which comprise the amino acid sequence of a S. aureus polypeptide, having at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% (5 of 100) of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al., (1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are:

Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, the results, in percent identity, must be manually corrected. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-

WO 00/12678 PCT/US99/19726

termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query amino acid residues outside the farthest N- and C-terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not match/align with the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C-termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected. No other manual corrections are to made for the purposes of the present invention.

The above polypeptide sequences are included irrespective of whether they have their normal biological activity. This is because even where a particular polypeptide molecule does not have biological activity, one of skill in the art would still know how to use the polypeptide, for instance, as a vaccine or to generate antibodies. Other uses of the polypeptides of the present invention that do not have *S. aureus* activity include, *inter alia*, as epitope tags, in epitope mapping, and as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods known to those of skill in the art.

As described below, the polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting *S. aureus* protein expression or as agonists and antagonists capable of enhancing or inhibiting *S. aureus* protein function. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" *S. aureus* protein binding proteins which are also candidate agonists and antagonists according to the present invention. *See, e.g.*, Fields et al. (1989) Nature 340:245-246.

Epitope-Bearing Portions

5

10

15

20

25

30

35

In another aspect, the invention provides peptides and polypeptides comprising epitope-bearing portions of the polypeptides of the present invention. These epitopes are immunogenic or antigenic epitopes of the polypeptides of the present invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein or polypeptide is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic determinant" or "antigenic

15

epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, e.g., Geysen, et al. (1983) Proc. Natl. Acad. Sci. USA 81:3998-4002. Predicted antigenic epitopes are shown in Table 4, below. It is pointed out that Table 4 only lists amino acid residues comprising epitopes predicted to have the highest degree of antigenicity by particular algorithm. The polypeptides not listed in Table 4 and portions of polypeptides not listed in Table 4 are not considered non-antigenic. This is because they may still be antigenic in vivo but merely not recognized as such by the particular algorithm used. Thus, Table 4 lists the amino acid residues comprising only preferred antigenic epitopes, not a complete list. In fact, all fragments of the polypeptide sequence of Table 1, at least 7 amino acids residues in length, are included in the present invention as being useful in epitope mapping and in making antibodies to particular portions of the polypeptides. Moreover, Table 4 lists only the critical residues of the epitopes determined by the Jameson-Wolf analysis. Thus, additional flanking residues on either the N-terminal, C-terminal, or both N- and Cterminal ends may be added to the sequences of Table 4 to generate a epitope-bearing portion at least 7 residues in length. Amino acid residues comprising other anigenic epitopes may be determined by algorithms similar to the Jameson-Wolf analysis or by in vivo testing for an antigenic response using the methods described herein or those known in the art.

TABLE 4. Residues Comprising Antigenic Epitoes

HGS001	from about Asp-47 to about Asp-50, from about Ser-128 to about Asp-130, from about Lys-265 to about Gly-267.
HGS005	from about Arg-104 to about Asp-106, from about Lys-116 to about Lys-120.
HGS007m	from about Glu-155 to about Gly-158, from about Gln-178 to about Gly-181, from about Ser-304 to about Cys-306, from about Asp-401 to about Tyr-403, from about Asn-405 to about Gly-408, from about Asp-411 to about Gly-416.
HGS009	from about Pro-257 to about Lys-259.
HGS014	from about Arg-186 to about Asp-188.
HGS019	from about Lys-98 to about Gly-100, from about Pro-187 to about Asp-189.
HGS023	from about Ser-251 to about Gly-253, from about Lys-437 to about Lys-440.
HGS025	-from about Met-51-to about Gly-53.
HGS026	from about Asn-105 to about Lys-108, from about Glu-190 to about Gly-193, from about Arg-226 to about Ala-230.
HGS028	from about Ile-10 to about Tyr-13.
HGS030	from about Glu-11 to about Gly-14, from about Arg-147 to about Gln-149.
HGS033	from about Lys-143 to about Ser-145.
HGS034	from about Pro-33 to about Gln-35.
HGS036	from about Asp-64 to about Tyr-66, from about Asp-255 to about Tyr-257.
HGS040	from about Pro-30 to about Lys-32, from about Asp-76 to about Asp-78.
168153_3	from about Asn-35 to about Arg-37, from about Pro-135 to about Asp-138, from about Pro-185 to about Gln-188.
168153_2	from about Asp-54 to about Arg-56.
168153_1	from about Lys-64 to about Asp-67, from about Gln-319 to about Lys-322, from about Asn-342 to about Lys-344.
168339_2	from about Asn-82 to about Arg-85.

10

15

20

25

30

35

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, e.g., Sutcliffe, et al., (1983) Science 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. See, Sutcliffe, et al., supra, p. 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. See Sutcliffe, et al., supra, p. 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids) can bind and displace the larger peptides in immunoprecipitation assays. See, e.g., Wilson, et al., (1984) Cell 37:767-778. The anti-peptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 10 to about 50 amino acids (i.e. any integer between 7 and 50) contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 50 to about 100 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are

15

20

25

30

35

useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (*i.e.*, the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

Non-limiting examples of antigenic polypeptides or peptides that can be used to generate an Staphylococcal-specific immune response or antibodies include fragments of the amino acid sequences of Table 1 as discussed above. Table 4 discloses a list of non-limiting residues that are involved in the antigenicity of the epitope-bearing fragments of the present invention. Therefore, also included in the present inventions are isolated and purified antigenic epitope-bearing fragments of the polypeptides of the present invention comprising a peptide sequences of Table 4. The antigenic epitope-bearing fragments comprising a peptide sequence of Table 4 preferably contain between 7 to 50 amino acids (i.e. any integer between 7 and 50) of a polypeptide of the present invention. Also, included in the present invention are antigenic polypeptides between the integers of 7 and the full length sequence of a polypeptide of Table 1 comprising 1 or more amino acid sequences of Table 4. Therefore, in most cases, the polypeptides of Table 4 make up only a portion of the antigenic polypeptide. All combinations of sequences between the integers of 7 and the full sequence of a polypeptide sequence of Table 1 are included. The antigenic epitope-bearing fragments may be specified by either the number of contiguous amino acid residues or by specific N-terminal and C-terminal positions as described above for the polypeptide fragments of the present invention, wherein the first codon of each polypeptide sequence of Table 1 is position 1. Any number of the described antigenic epitope-bearing fragments of the present invention may also be excluded from the present invention in the same manner.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, an epitope-bearing amino acid sequence of the present invention may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks (Houghten, R. A. Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985)). This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten and coworkers (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods.

10

15

20

25

30

35 '

A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously (Houghten et al. (1985) Proc. Natl. Acad. Sci. 82:5131-5135 at 5134.

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, e.g., Sutcliffe, et al., supra; Wilson, et al., supra;; and Bittle, et al. (1985) J. Gen. Virol. 66:2347-2354. Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen, et al., supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an ELISA. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen et al. supra with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

Further still, U.S. Patent No. 5,194,392, to Geysen (1990), describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is

WO 00/12678 PCT/US99/19726
56

complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092, also to Geysen (1989), describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) discloses linear C_1 - C_7 -alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods. The entire disclosure of each document cited in this section on "Polypeptides and Fragments" is hereby incorporated herein by reference.

As one of skill in the art will appreciate, the polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been shown, *e.g.*, for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EPA 0,394,827; Traunecker et al. (1988) Nature 331:84-86. Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than a monomeric *S. aureus* polypeptide or fragment thereof alone. *See* Fountoulakis et al. (1995) J. Biochem. 270:3958-3964. Nucleic acids encoding the above epitopes of *S. aureus* polypeptides can also be recombined with a gene of interest as an epitope tag to aid in detection and purification of the expressed polypeptide.

Antibodies

10

15

20

25

30

35

S. aureus polypeptide-specific antibodies for use in the present invention can be raised against the intact polypeptides of the present invention or an antigenic polypeptide fragment thereof, which may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough, without a carrier.

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules, single chain whole antibodies, and antibody fragments. Antibody fragments of the present invention include Fab and F(ab')2 and other fragments including single-chain Fvs (scFv) and disulfide-linked Fvs (sdFv). Also included in the present invention are chimeric and humanized monoclonal antibodies and polyclonal antibodies specific for the polypeptides of the present invention. The antibodies of the present invention may be prepared by any of a variety of methods. For example, cells expressing a polypeptide of the present invention or an antigenic fragment thereof can be administered to an animal in order to induce the production of sera containing polyclonal antibodies. For example, a preparation of a

WO 00/12678 PCT/US99/19726

polypeptide of the present invention or fragment thereof is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In a preferred method, the antibodies of the present invention are monoclonal antibodies or binding fragments thereof. Such monoclonal antibodies can be prepared using hybridoma technology. See, e.g., Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS 563-681 (Elsevier, N.Y., 1981). Fab and F(ab')2 fragments may be produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, S. aureus polypeptide-binding fragments, chimeric, and humanized antibodies can be produced through the application of recombinant DNA technology or through synthetic chemistry using methods known in the art.

10

15

20

25

30

35

Alternatively, additional antibodies capable of binding to the polypeptide antigen of the present invention may be produced in a two-step procedure through the use of anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and that, therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, *S. aureus* polypeptide-specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the *S. aureus* polypeptide-specific antibody can be blocked by the *S. aureus* polypeptide antigen. Such antibodies comprise anti-idiotypic antibodies to the *S. aureus* polypeptide-specific antibody and can be used to immunize an animal to induce formation of further *S. aureus* polypeptide-specific antibodies.

Antibodies and fragments thereof of the present invention may be described by the portion of a polypeptide of the present invention recognized or specifically bound by the antibody. Antibody binding fragments of a polypeptide of the present invention may be described or specified in the same manner as for polypeptide fragments discussed above., i.e., by N-terminal and C-terminal positions or by size in contiguous amino acid residues. Any number of antibody binding fragments, of a polypeptide of the present invention, specified by N-terminal and C-terminal positions or by size in amino acid residues, as described above, may also be excluded from the present invention. Therefore, the present invention includes antibodies that specifically bind a particularly described fragment of a polypeptide of the present invention and allows for the exclusion of the same.

Antibodies and fragments thereof of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies and fragments that do not bind polypeptides of any other species of *Staphylococcus* other than *S. aureus* or that only bind a particular strain of *S. aureus* are included in the present invention. Likewise, antibodies and fragments that bind only species of *Staphylococcus*, i.e. antibodies and fragments that do not

·

bind bacteria from any genus other than *Staphylococcus*, are included in the present invention.

Antibodies and fragments thereof of the present invention may also be described or specified in terms of their binding affinity. Preferred binding affinities include 10⁻⁷M, 10⁻⁸M, 10⁻¹⁰M, 10⁻¹¹M, 10⁻¹²M and 10⁻¹³M.

Diagnostic Assays

10

15

20

25

30

35

The present invention further relates to methods for assaying staphylococcal infection in an animal by detecting the expression of genes encoding staphylococcal polypeptides of the present invention. The methods comprise analyzing tissue or body fluid from the animal for *Staphylococcus*-specific antibodies, nucleic acids, or proteins. Analysis of nucleic acid specific to *Staphylococcus* is assayed by PCR or hybridization techniques using nucleic acid sequences of the present invention as either hybridization probes or primers. *See, e.g.*, Sambrook et al. Molecular cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed., 1989, page 54 reference); Eremeeva et al. (1994) J. Clin. Microbiol. 32:803-810 (describing differentiation among spotted fever group *Rickettsiae* species by analysis of restriction fragment length polymorphism of PCR-amplified DNA) and Chen et al. 1994 J. Clin. Microbiol. 32:589-595 (detecting bacterial nucleic acids *via* PCR).

Where diagnosis of a disease state related to infection with *Staphylococcus* has already been made, the present invention is useful for monitoring progression or regression of the disease state by measuring the amount of *Staphylococcus* cells present in a patient or whereby patients exhibiting enhanced *Staphylococcus* gene expression will experience a worse clinical outcome relative to patients expressing these gene(s) at a lower level.

By "biological sample" is intended any biological sample obtained from an animal, cell line, tissue culture, or other source which contains *Staphylococcus* polypeptide, mRNA, or DNA. Biological samples include body fluids (such as saliva, blood, plasma, urine, mucus, synovial fluid, etc.) tissues (such as muscle, skin, and cartilage) and any other biological source suspected of containing *Staphylococcus* polypeptides or nucleic acids. Methods for obtaining biological samples such as tissue are well known in the art.

The present invention is useful for detecting diseases related to *Staphylococcus* infections in animals. Preferred animals include monkeys, apes, cats, dogs, birds, cows, pigs, mice, horses, rabbits and humans. Particularly preferred are humans.

Total RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski et al. (1987) Anal. Biochem. 162:156-159. mRNA encoding *Staphylococcus* polypeptides having sufficient homology to the nucleic acid sequences identified in Table 1 to allow for hybridization between complementary sequences are then assayed using any appropriate method. These include Northern blot analysis, S1 nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain

reaction (RT-LCR).

10

15

Northern blot analysis can be performed as described in Harada et al. (1990) Cell 63:303-312. Briefly, total RNA is prepared from a biological sample as described above. For the Northern blot, the RNA is denatured in an appropriate buffer (such as glyoxal/dimethyl sulfoxide/sodium phosphate buffer), subjected to agarose gel electrophoresis, and transferred onto a nitrocellulose filter. After the RNAs have been linked to the filter by a UV linker, the filter is prehybridized in a solution containing formamide, SSC, Denhardt's solution, denatured salmon sperm, SDS, and sodium phosphate buffer. A S. aureus polynucleotide sequence shown in Table 1 labeled according to any appropriate method (such as the ³²P-multiprimed DNA labeling system (Amersham)) is used as probe. After hybridization overnight, the filter is washed and exposed to x-ray film. DNA for use as probe according to the present invention is described in the sections above and will preferably at least 15 nucleotides in length.

S1 mapping can be performed as described in Fujita et al. (1987) Cell 49:357-367. To prepare probe DNA for use in S1 mapping, the sense strand of an above-described *S. aureus* DNA sequence of the present invention is used as a template to synthesize labeled antisense DNA. The antisense DNA can then be digested using an appropriate restriction endonuclease to generate further DNA probes of a desired length. Such antisense probes are useful for visualizing protected bands corresponding to the target mRNA (*i.e.*, mRNA encoding polypeptides of the present invention).

Levels of mRNA encoding Staphylococcus polypeptides are assayed, for e.g., using 20 the RT-PCR method described in Makino et al. (1990) Technique 2:295-301. By this method, the radioactivities of the "amplicons" in the polyacrylamide gel bands are linearly related to the initial concentration of the target mRNA. Briefly, this method involves adding total RNA isolated from a biological sample in a reaction mixture containing a RT primer and appropriate buffer. After incubating for primer annealing, the mixture can be supplemented with a RT buffer, dNTPs, DTT, RNase inhibitor and reverse transcriptase. After incubation to achieve reverse transcription of the RNA, the RT products are then subject to PCR using labeled primers. Alternatively, rather than labeling the primers, a labeled dNTP can be included in the PCR reaction mixture. PCR amplification can be performed in a DNA thermal cycler according to conventional techniques. After a suitable number of rounds to achieve amplification, the 30 PCR reaction mixture is electrophoresed on a polyacrylamide gel. After drying the gel, the radioactivity of the appropriate bands (corresponding to the mRNA encoding the Staphylococcus polypeptides of the present invention) are quantified using an imaging analyzer. RT and PCR reaction ingredients and conditions, reagent and gel concentrations, and labeling methods are well known in the art. Variations on the RT-PCR method will be 35 apparent to the skilled artisan. Other PCR methods that can detect the nucleic acid of the present invention can be found in PCR PRIMER: A LABORATORY MANUAL (C.W. Dieffenbach et al. eds., Cold Spring Harbor Lab Press, 1995).

The polynucleotides of the present invention, including both DNA and RNA, may be

15

20

25

30

35

used to detect polynucleotides of the present invention or Staphylococcus species including S. aureus using bio chip technology. The present invention includes both high density chip arrays (>1000 oligonucleotides per cm²) and low density chip arrays (<1000 oligonucleotides per cm²). Bio chips comprising arrays of polynucleotides of the present invention may be used to detect Staphylococcus species, including S. aureus, in biological and environmental samples and to diagnose an animal, including humans, with an S. aureus or other Staphylococcus infection. The bio chips of the present invention may comprise polynucleotide sequences of other pathogens including bacteria, viral, parasitic, and fungal polynucleotide sequences, in addition to the polynucleotide sequences of the present invention, for use in rapid differential pathogenic detection and diagnosis. The bio chips can also be used to monitor an S. aureus or other Staphylococcus infections and to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. The bio chip technology comprising arrays of polynucleotides of the present invention may also be used to simultaneously monitor the expression of a multiplicity of genes, including those of the present invention. The polynucleotides used to comprise a selected array may be specified in the same manner as for the fragments, i.e, by their 5' and 3' positions or length in contigious base pairs and include from. Methods and particular uses of the polynucleotides of the present invention to detect Staphylococcus species, including S. aureus, using bio chip technology include those known in the art and those of: U.S. Patent Nos. 5510270, 5545531, 5445934, 5677195, 5532128, 5556752, 5527681, 5451683, 5424186, 5607646, 5658732 and World Patent Nos. WO/9710365, WO/9511995, WO/9743447, WO/9535505, each incorporated herein in their entireties.

Biosensors using the polynucleotides of the present invention may also be used to detect, diagnose, and monitor *S. aureus* or other *Staphylococcus* species and infections thereof. Biosensors using the polynucleotides of the present invention may also be used to detect particular polynucleotides of the present invention. Biosensors using the polynucleotides of the present invention may also be used to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug-therapy in the clinic and drug development in the laboratory. Methods and particular uses of the polynucleotides of the present invention to detect *Staphylococcus* species, including *S. aureus*, using biosenors include those known in the art and those of: U.S. Patent Nos 5721102, 5658732, 5631170, and World Patent Nos. WO97/35011, WO/9720203, each incorporated herein in their entireties.

Thus, the present invention includes both bio chips and biosensors comprising polynucleotides of the present invention and methods of their use.

Assaying *Staphylococcus* polypeptide levels in a biological sample can occur using any art-known method, such as antibody-based techniques. For example, *Staphylococcus* polypeptide expression in tissues can be studied with classical immunohistological methods. In these, the specific recognition is provided by the primary antibody (polyclonal or

15

20

25

30

35

monoclonal) but the secondary detection system can utilize fluorescent, enzyme, or other conjugated secondary antibodies. As a result, an immunohistological staining of tissue section for pathological examination is obtained. Tissues can also be extracted, e.g., with urea and neutral detergent, for the liberation of Staphylococcus polypeptides for Western-blot or dot/slot assay. See, e.g., Jalkanen, M. et al. (1985) J. Cell. Biol. 101:976-985; Jalkanen, M. et al. (1987) J. Cell . Biol. 105:3087-3096. In this technique, which is based on the use of cationic solid phases, quantitation of a Staphylococcus polypeptide can be accomplished using an isolated Staphylococcus polypeptide as a standard. This technique can also be applied to body fluids.

Other antibody-based methods useful for detecting *Staphylococcus* polypeptide gene expression include immunoassays, such as the ELISA and the radioimmunoassay (RIA). For example, a *Staphylococcus* polypeptide-specific monoclonal antibodies can be used both as an immunoabsorbent and as an enzyme-labeled probe to detect and quantify a *Staphylococcus* polypeptide. The amount of a *Staphylococcus* polypeptide present in the sample can be calculated by reference to the amount present in a standard preparation using a linear regression computer algorithm. Such an ELISA is described in Iacobelli et al. (1988) Breast Cancer Research and Treatment 11:19-30. In another ELISA assay, two distinct specific monoclonal antibodies can be used to detect *Staphylococcus* polypeptides in a body fluid. In this assay, one of the antibodies is used as the immunoabsorbent and the other as the enzyme-labeled probe.

The above techniques may be conducted essentially as a "one-step" or "two-step" assay. The "one-step" assay involves contacting the *Staphylococcus* polypeptide with immobilized antibody and, without washing, contacting the mixture with the labeled antibody. The "two-step" assay involves washing before contacting the mixture with the labeled antibody. Other conventional methods may also be employed as suitable. It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed from the sample. Variations of the above and other immunological methods included in the present invention can also be found in Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988).

Suitable enzyme labels include, for example, those from the oxidase group, which catalyze the production of hydrogen peroxide by reacting with substrate. Glucose oxidase is particularly preferred as it has good stability and its substrate (glucose) is readily available. Activity of an oxidase label may be assayed by measuring the concentration of hydrogen peroxide formed by the enzyme-labeled antibody/substrate reaction. Besides enzymes, other suitable labels include radioisotopes, such as iodine (¹²⁵I, ¹²¹I), carbon (¹⁴C), sulphur (³⁵S), tritium (³H), indium (¹¹²In), and technetium (^{99m}Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

Further suitable labels for the Staphylococcus polypeptide-specific antibodies of the

present invention are provided below. Examples of suitable enzyme labels include malate dehydrogenase, Staphylococcus nuclease, delta-5-steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterase.

Examples of suitable radioisotopic labels include ³H, ¹¹¹In, ¹²⁵I, ¹³¹I, ³²P, ³⁵S, ¹⁴C, ⁵¹Cr, ⁵⁷To, ⁵⁸Co, ⁵⁹Fe, ⁷⁵Se, ¹⁵²Eu, ⁹⁰Y, ⁶⁷Cu, ²¹⁷Ci, ²¹¹At, ²¹²Pb, ⁴⁷Sc, ¹⁰⁹Pd, etc. ¹¹¹In is a preferred isotope where *in vivo* imaging is used since its avoids the problem of dehalogenation of the ¹²⁵I or ¹³¹I-labeled monoclonal antibody by the liver. In addition, this radionucleotide has a more favorable gamma emission energy for imaging. *See, e.g.*, Perkins et al. (1985) Eur. J. Nucl. Med. 10:296-301; Carasquillo et al. (1987) J. Nucl. Med. 28:281-287. For example, ¹¹¹In coupled to monoclonal antibodies with 1-(P-isothiocyanatobenzyl)-DPTA has shown little uptake in non-tumors tissues, particularly the liver, and therefore enhances specificity of tumor localization. See, Esteban et al. (1987) J. Nucl. Med. 28:861-870.

10

15

20

25

30

35

Examples of suitable non-radioactive isotopic labels include ¹⁵⁷Gd, ⁵⁵Mn, ¹⁶²Dy, ⁵²Tr, and ⁵⁶Fe.

Examples of suitable fluorescent labels include an ¹⁵²Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycocrythrin label, a phycocyanin label, an allophycocyanin label, an o-phthaldehyde label, and a fluorescamine label.

Examples of suitable toxin labels include, *Pseudomonas* toxin, diphtheria toxin, ricin, and cholera toxin.

Examples of chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.

Examples of nuclear magnetic resonance contrasting agents include heavy metal nuclei such as Gd, Mn, and iron.

Typical techniques for binding the above-described labels to antibodies are provided by Kennedy et al. (1976) Clin. Chim. Acta 70:1-31, and Schurs et al. (1977) Clin. Chim. Acta 81:1-40. Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incorporated by reference herein.

In a related aspect, the invention includes a diagnostic kit for use in screening serum containing antibodies specific against *S. aureus* infection. Such a kit may include an isolated *S. aureus* antigen comprising an epitope which is specifically immunoreactive with at least one anti-*S. aureus* antibody. Such a kit also includes means for detecting the binding of said antibody to the antigen. In specific embodiments, the kit may include a recombinantly produced or chemically synthesized peptide or polypeptide antigen. The peptide or polypeptide antigen may be attached to a solid support.

WO 00/12678 PCT/US99/19726

In a more specific embodiment, the detecting means of the above-described kit includes a solid support to which said peptide or polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to the *S. aureus* antigen can be detected by binding of the reporter labeled antibody to the anti-*S. aureus* polypeptide antibody.

In a related aspect, the invention includes a method of detecting *S. aureus* infection in a subject. This detection method includes reacting a body fluid, preferably serum, from the subject with an isolated *S. aureus* antigen, and examining the antigen for the presence of bound antibody. In a specific embodiment, the method includes a polypeptide antigen attached to a solid support, and serum is reacted with the support. Subsequently, the support is reacted with a reporter-labeled anti-human antibody. The support is then examined for the presence of reporter-labeled antibody.

10

15

20

25

30

35

The solid surface reagent employed in the above assays and kits is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plates or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).

The polypeptides and antibodies of the present invention, including fragments thereof, may be used to detect Staphylococcus species including *S. aureus* using bio chip and biosensor technology. Bio chip and biosensors of the present invention may comprise the polypeptides of the present invention to detect antibodies, which specifically recognize Staphylococcus species, including *S. aureus*. Bio chip and biosensors of the present invention may also comprise antibodies which specifically recognize the polypeptides of the present invention to detect Staphylococcus species, including *S. aureus* or specific polypeptides of the present invention. Bio chips or biosensors comprising polypeptides or antibodies of the present invention may be used to detect Staphylococcus species, including *S. aureus*, in biological and environmental samples and to diagnose an animal, including humans, with an *S. aureus* or other Staphylococcus infection. Thus, the present invention includes both bio chips and biosensors comprising polypeptides or antibodies of the present invention and methods of their use.

The bio chips of the present invention may further comprise polypeptide sequences of other pathogens including bacteria, viral, parasitic, and fungal polypeptide sequences, in addition to the polypeptide sequences of the present invention, for use in rapid differential pathogenic detection and diagnosis. The bio chips of the present invention may further comprise antibodies or fragements thereof specific for other pathogens including bacteria, viral, parasitic, and fungal polypeptide sequences, in addition to the antibodies or fragements thereof of the present invention, for use in rapid differential pathogenic detection and diagnosis. The

bio chips and biosensors of the present invention may also be used to monitor an *S. aureus* or other Staphylococcus infection and to monitor the genetic changes (amio acid deletions, insertions, substitutions, etc.) in response to drug therapy in the clinic and drug development in the laboratory. The bio chip and biosensors comprising polypeptides or antibodies of the present invention may also be used to simultaneously monitor the expression of a multiplicity of polypeptides, including those of the present invention. The polypeptides used to comprise a bio chip or biosensor of the present invention may be specified in the same manner as for the fragements, i.e, by their N-terminal and C-terminal positions or length in contigious amino acid residue. Methods and particular uses of the polypeptides and antibodies of the present invention to detect Staphylococcus species, including *S. aureus*, or specific polypeptides using bio chip and biosensor technology include those known in the art, those of the U.S. Patent Nos. and World Patent Nos. listed above for bio chips and biosensors using polynucleotides of the present invention, and those of: U.S. Patent Nos. 5658732, 5135852, 5567301, 5677196, 5690894 and World Patent Nos. WO9729366, WO9612957, each incorporated herein in their entireties.

Treatment

10

15

20

25

30

35

Agonists and Antagonists - Assays and Molecules

The invention also provides a method of screening compounds to identify those which enhance or block the biological activity of the *S. aureus* polypeptides of the present invention. The present invention further provides where the compounds kill or slow the growth of *S. aureus*. The ability of *S. aureus* antagonists, including *S. aureus* ligands, to prophylactically or therapeutically block antibiotic resistance may be easily tested by the skilled artisan. *See*, *e.g.*, Straden et al. (1997) J Bacteriol. 179(1):9-16.

An agonist is a compound which increases the natural biological function or which functions in a manner similar to the polypeptides of the present invention, while antagonists decrease or eliminate such functions. Potential antagonists include small organic molecules, peptides, polypeptides, and antibodies that bind to a polypeptide of the invention and thereby inhibit or extinguish its activity.

The antagonists may be employed for instance to inhibit peptidoglycan cross bridge formation. Antibodies against *S. aureus* may be employed to bind to and inhibit *S. aureus* activity to treat antibiotic resistance. Any of the above antagonists may be employed in a composition with a pharmaceutically acceptable carrier.

Vaccines

The present invention also provides vaccines comprising one or more polypeptides of the present invention. Heterogeneity in the composition of a vaccine may be provided by combining *S. aureus* polypeptides of the present invention. Multi-component vaccines of this type are desirable because they are likely to be more effective in eliciting protective immune

15

20

25

30

35

responses against multiple species and strains of the *Staphylococcus* genus than single polypeptide vaccines.

Multi-component vaccines are known in the art to elicit antibody production to numerous immunogenic components. See, e.g., Decker et al. (1996) J. Infect. Dis. 174:S270-275. In addition, a hepatitis B, diphtheria, tetanus, pertussis tetravalent vaccine has recently been demonstrated to elicit protective levels of antibodies in human infants against all four pathogenic agents. See, e.g., Aristegui, J. et al. (1997) Vaccine 15:7-9.

The present invention in addition to single-component vaccines includes multi-component vaccines. These vaccines comprise more than one polypeptide, immunogen or antigen. Thus, a multi-component vaccine would be a vaccine comprising more than one of the *S. aureus* polypeptides of the present invention.

Further within the scope of the invention are whole cell and whole viral vaccines. Such vaccines may be produced recombinantly and involve the expression of one or more of the *S. aureus* polypeptides described in Table 1. For example, the *S. aureus* polypeptides of the present invention may be either secreted or localized intracellular, on the cell surface, or in the periplasmic space. Further, when a recombinant virus is used, the *S. aureus* polypeptides of the present invention may, for example, be localized in the viral envelope, on the surface of the capsid, or internally within the capsid. Whole cells vaccines which employ cells expressing heterologous proteins are known in the art. *See, e.g.*, Robinson, K. et al. (1997) Nature Biotech. 15:653-657; Sirard, J. et al. (1997) Infect. Immun. 65:2029-2033; Chabalgoity, J. et al. (1997) Infect. Immun. 65:2402-2412. These cells may be administered live or may be killed prior to administration. Chabalgoity, J. et al., *supra*, for example, report the successful use in mice of a live attenuated *Salmonella* vaccine strain which expresses a portion of a platyhelminth fatty acid-binding protein as a fusion protein on its cells surface.

A multi-component vaccine can also be prepared using techniques known in the art by combining one or more *S. aureus* polypeptides of the present invention, or fragments thereof, with additional non-staphylococcal components (*e.g.*, diphtheria toxin or tetanus toxin, and/or other compounds known to elicit an immune response). Such vaccines are useful for eliciting protective immune responses to both members of the *Staphylococcus* genus and non-staphylococcal pathogenic agents.

The vaccines of the present invention also include DNA vaccines. DNA vaccines are currently being developed for a number of infectious diseases. See, et al., Boyer, et al. (1997) Nat. Med. 3:526-532; reviewed in Spier, R. (1996) Vaccine 14:1285-1288. Such DNA vaccines contain a nucleotide sequence encoding one or more S. aureus polypeptides of the present invention oriented in a manner that allows for expression of the subject polypeptide. For example, the direct administration of plasmid DNA encoding B. burgdorgeri OspA has been shown to elicit protective immunity in mice against borrelial challenge. See, Luke et al. (1997) J. Infect. Dis. 175:91-97.

The present invention also relates to the administration of a vaccine which is

WO 00/12678 PCT/US99/19726

co-administered with a molecule capable of modulating immune responses. Kim et al. (1997) Nature Biotech. 15:641-646, for example, report the enhancement of immune responses produced by DNA immunizations when DNA sequences encoding molecules which stimulate the immune response are co-administered. In a similar fashion, the vaccines of the present invention may be co-administered with either nucleic acids encoding immune modulators or the immune modulators themselves. These immune modulators include granulocyte macrophage colony stimulating factor (GM-CSF) and CD86.

The vaccines of the present invention may be used to confer resistance to staphylococcal infection by either passive or active immunization. When the vaccines of the present invention are used to confer resistance to staphylococcal infection through active immunization, a vaccine of the present invention is administered to an animal to elicit a protective immune response which either prevents or attenuates a staphylococcal infection. When the vaccines of the present invention are used to confer resistance to staphylococcal infection through passive immunization, the vaccine is provided to a host animal (e.g., human, dog, or mouse), and the antisera elicited by this antisera is recovered and directly provided to a recipient suspected of having an infection caused by a member of the Staphylococcus genus.

The ability to label antibodies, or fragments of antibodies, with toxin molecules provides an additional method for treating staphylococcal infections when passive immunization is conducted. In this embodiment, antibodies, or fragments of antibodies, capable of recognizing the *S. aureus* polypeptides disclosed herein, or fragments thereof, as well as other *Staphylococcus* proteins, are labeled with toxin molecules prior to their administration to the patient. When such toxin derivatized antibodies bind to *Staphylococcus* cells, toxin moieties will be localized to these cells and will cause their death.

20

25

30

35

The present invention thus concerns and provides a means for preventing or attenuating a staphylococcal infection resulting from organisms which have antigens that are recognized and bound by antisera produced in response to the polypeptides of the present invention. As used herein, a vaccine is said to prevent or attenuate a disease if its administration to an animal results either in the total or partial attenuation (i.e., suppression) of a symptom or condition of the disease, or in the total or partial immunity of the animal to the disease.

The administration of the vaccine (or the antisera which it elicits) may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the compound(s) are provided in advance of any symptoms of staphylococcal infection. The prophylactic administration of the compound(s) serves to prevent or attenuate any subsequent infection. When provided therapeutically, the compound(s) is provided upon or after the detection of symptoms which indicate that an animal may be infected with a member of the *Staphylococcus* genus. The therapeutic administration of the compound(s) serves to attenuate any actual infection. Thus, the *S. aureus* polypeptides, and fragments thereof, of the present invention may be provided either prior to the onset of infection (so as to prevent or attenuate an anticipated infection) or after the initiation of an actual infection.

WO 00/12678

The polypeptides of the invention, whether encoding a portion of a native protein or a functional derivative thereof, may be administered in pure form or may be coupled to a macromolecular carrier. Example of such carriers are proteins and carbohydrates. Suitable proteins which may act as macromolecular carrier for enhancing the immunogenicity of the polypeptides of the present invention include keyhole limpet hemacyanin (KLH) tetanus

67

PCT/US99/19726

toxoid, pertussis toxin, bovine serum albumin, and ovalbumin. Methods for coupling the polypeptides of the present invention to such macromolecular carriers are disclosed in Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press,

2nd ed. 1988).

5

10

15

20

25

30

35

A composition is said to be "pharmacologically or physiologically acceptable" if its administration can be tolerated by a recipient animal and is otherwise suitable for administration to that animal. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

While in all instances the vaccine of the present invention is administered as a pharmacologically acceptable compound, one skilled in the art would recognize that the composition of a pharmacologically acceptable compound varies with the animal to which it is administered. For example, a vaccine intended for human use will generally not be co-administered with Freund's adjuvant. Further, the level of purity of the *S. aureus* polypeptides of the present invention will normally be higher when administered to a human than when administered to a non-human animal.

As would be understood by one of ordinary skill in the art, when the vaccine of the present invention is provided to an animal, it may be in a composition which may contain salts, buffers, adjuvants, or other substances which are desirable for improving the efficacy of the composition. Adjuvants are substances that can be used to specifically augment a specific immune response. These substances generally perform two functions: (1) they protect the antigen(s) from being rapidly catabolized after administration and (2) they nonspecifically stimulate immune responses.

Normally, the adjuvant and the composition are mixed prior to presentation to the immune system, or presented separately, but into the same site of the animal being immunized. Adjuvants can be loosely divided into several groups based upon their composition. These groups include oil adjuvants (for example, Freund's complete and incomplete), mineral salts (for example, AlK(SO₄)₂, AlNa(SO₄)₂, AlNH₄(SO₄), silica, kaolin, and carbon), polynucleotides (for example, poly IC and poly AU acids), and certain natural substances (for example, wax D from *Mycobacterium tuberculosis*, as well as substances found in *Corynebacterium parvum*, or *Bordetella pertussis*, and members of the genus *Brucella*. Other substances useful as adjuvants are the saponins such as, for example, Quil A. (Superfos A/S, Denmark). Preferred adjuvants for use in the present invention include aluminum salts, such as AlK(SO₄)₂, AlNa(SO₄)₂, and AlNH₄(SO₄). Examples of materials suitable for use in

15

20

25

30

35

vaccine compositions are provided in REMINGTON'S PHARMACEUTICAL SCIENCES 1324-1341 (A. Osol, ed, Mack Publishing Co, Easton, PA, (1980) (incorporated herein by reference).

The therapeutic compositions of the present invention can be administered parenterally by injection, rapid infusion, nasopharyngeal absorption (intranasopharangeally), dermoabsorption, or orally. The compositions may alternatively be administered intramuscularly, or intravenously. Compositions for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Carriers or occlusive dressings can be used to increase skin permeability and enhance antigen absorption. Liquid dosage forms for oral administration may generally comprise a liposome solution containing the liquid dosage form. Suitable forms for suspending liposomes include emulsions, suspensions, solutions, syrups, and elixirs containing inert diluents commonly used in the art, such as purified water. Besides the inert diluents, such compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, or sweetening, flavoring, or perfuming agents.

Therapeutic compositions of the present invention can also be administered in encapsulated form. For example, intranasal immunization using vaccines encapsulated in biodegradable microsphere composed of poly(DL-lactide-co-glycolide). See, Shahin, R. et al. (1995) Infect. Immun. 63:1195-1200. Similarly, orally administered encapsulated Salmonella typhimurium antigens can also be used. Allaoui-Attarki, K. et al. (1997) Infect. Immun. 65:853-857. Encapsulated vaccines of the present invention can be administered by a variety of routes including those involving contacting the vaccine with mucous membranes (e.g., intranasally, intracolonicly, intraduodenally).

Many different techniques exist for the timing of the immunizations when a multiple administration regimen is utilized. It is possible to use the compositions of the invention more than once to increase the levels and diversities of expression of the immunoglobulin repertoire expressed by the immunized animal. Typically, if multiple immunizations are given, they will be given one to two months apart.

According to the present invention, an "effective amount" of a therapeutic composition is one which is sufficient to achieve a desired biological effect. Generally, the dosage needed to provide an effective amount of the composition will vary depending upon such factors as the animal's or human's age, condition, sex, and extent of disease, if any, and other variables which can be adjusted by one of ordinary skill in the art.

The antigenic preparations of the invention can be administered by either single or multiple dosages of an effective amount. Effective amounts of the compositions of the invention can vary from 0.01-1,000 μ g/ml per dose, more preferably 0.1-500 μ g/ml per dose, and most preferably 10-300 μ g/ml per dose.

Examples

5

10

15

20

25

30

35

Example 1: Isolation of a Selected DNA Clone From the Deposited Sample

Three approaches can be used to isolate a S. aureus clone comprising a polynucleotide of the present invention from any S. aureus genomic DNA library. The S. aureus strain ISP3 has been deposited as a convienent source for obtaining a S. aureus strain although a wide varity of strains S. aureus strains can be used which are known in the art.

S. aureus genomic DNA is prepared using the following method. A 20ml overnight bacterial culture grown in a rich medium (e.g., Trypticase Soy Broth, Brain Heart Infusion broth or Super broth), pelleted, washed two times with TES (30mM Tris-pH 8.0, 25mM EDTA, 50mM NaCl), and resuspended in 5ml high salt TES (2.5M NaCl). Lysostaphin is added to final concentration of approx 50ug/ml and the mixture is rotated slowly 1 hour at 37C to make protoplast cells. The solution is then placed in incubator (or place in a shaking water bath) and warmed to 55C. Five hundred micro liter of 20% sarcosyl in TES (final concentration 2%) is then added to lyse the cells. Next, guanidine HCl is added to a final concentration of 7M (3.69g in 5.5 ml). The mixture is swirled slowly at 55C for 60-90 min (solution should clear). A CsCl gradient is then set up in SW41 ultra clear tubes using 2.0ml 5.7M CsCl and overlaying with 2.85M CsCl. The gradient is carefully overlayed with the DNA-containing GuHCl solution. The gradient is spun at 30,000 rpm, 20C for 24 hr and the lower DNA band is collected. The volume is increased to 5 ml with TE buffer. The DNA is then treated with protease K (10 ug/ml) overnight at 37 C, and precipitated with ethanol. The precipitated DNA is resuspended in a desired buffer.

In the first method, a plasmid is directly isolated by screening a plasmid S. aureus genomic DNA library using a polynucleotide probe corresponding to a polynucleotide of the present invention. Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with 32P-Y-ATP using T4 polynucleotide kinase and purified according to routine methods. (See, e.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The library is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art. See, e.g., Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989). The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening. See, e.g., Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al.,

10

15

20

25

30

35

CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989) or other techniques known to those of skill in the art.

Alternatively, two primers of 15-25 nucleotides derived from the 5' and 3' ends of a polynucleotide of Table 1 are synthesized and used to amplify the desired DNA by PCR using a S. aureus genomic DNA prep (e.g., the deposited S. aureus ISP3) as a template. PCR is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above DNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C

for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Finally, overlapping oligos of the DNA sequences of Table 1 can be synthesized and used to generate a nucleotide sequence of desired length using PCR methods known in the art.

Example 2(a): Expression and Purification staphylococcal polypeptides in E. coli

The bacterial expression vector pQE60 is used for bacterial expression in this example. (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). pQE60 encodes ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori"), an IPTG inducible promoter, a ribosome binding site ("RBS"), six codons encoding histidine residues that allow affinity purification using nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin (QIAGEN, Inc., supra) and suitable single restriction enzyme cleavage sites. These elements are arranged such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the carboxyl terminus of that polypeptide.

The DNA sequence encoding the desired portion of a *S. aureus* protein of the present invention is amplified from *S.* aureus genomic DNA or from the deposited DNA clone using PCR oligonucleotide primers which anneal to the 5' and 3' sequences coding for the portion of the *S. aureus* polynucleotide. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' sequences, respectively.

For cloning the mature protein, the 5' primer has a sequence containing an appropriate restriction site followed by nucleotides of the amino terminal coding sequence of the desired S. aureus polynucleotide sequence in Table 1. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of the complete protein shorter or longer than the mature form. The 3' primer has a sequence containing an appropriate

10

15

20

25

30

35

restriction site followed by nucleotides complementary to the 3' end of the desired coding sequence of Table 1, excluding a stop codon, with the coding sequence aligned with the restriction site so as to maintain its reading frame with that of the six His codons in the pQE60 vector.

The amplified S. aureus DNA fragment and the vector pQE60 are digested with restriction enzymes which recognize the sites in the primers and the digested DNAs are then ligated together. The S. aureus DNA is inserted into the restricted pQE60 vector in a manner which places the S. aureus protein coding region downstream from the IPTG-inducible promoter and in-frame with an initiating AUG and the six histidine codons.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described by Sambrook et al., *supra*. *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing a *S. aureus* polypeptide, is available commercially (QIAGEN, Inc., *supra*). Transformants are identified by their ability to grow on LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 μ g/ml) and kanamycin (25 μ g/ml). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. Isopropyl- β -D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the lacI repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

The cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell debris is removed by centrifugation, and the supernatant containing the *S. aureus* polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist, 1995, QIAGEN, Inc., *supra*). Briefly the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl, pH 6, and finally the *S. aureus* polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions

15

35

are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins can be eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4° C or frozen at -80° C.

Alternatively, the polypeptides of the present invention can be produced by a non-denaturing method. In this method, after the cells are harvested by centrifugation, the cell pellet from each liter of culture is resuspended in 25 ml of Lysis Buffer A at 4°C (Lysis Buffer A = 50 mM Na-phosphate, 300 mM NaCl, 10 mM 2-mercaptoethanol, 10% Glycerol, pH 7.5 with 1 tablet of Complete EDTA-free protease inhibitor cocktail (Boehringer Mannheim #1873580) per 50 ml of buffer). Absorbance at 550 nm is approximately 10-20 O.D./ml. The suspension is then put through three freeze/thaw cycles from -70°C (using a ethanol-dry ice bath) up to room temperature. The cells are lysed via sonication in short 10 sec bursts over 3 minutes at approximately 80W while kept on ice. The sonicated sample is then centrifuged at 15,000 RPM for 30 minutes at 4°C. The supernatant is passed through a column containing 1.0 ml of CL-4B resin to pre-clear the sample of any proteins that may bind to agarose non-specifically, and the flow-through fraction is collected.

The pre-cleared flow-through is applied to a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (Quiagen, Inc., supra). Proteins with a 6 X His tag bind to the Ni-NTA 20 resin with high affinity and can be purified in a simple one-step procedure. Briefly, the supernatant is loaded onto the column in Lysis Buffer A at 4°C, the column is first washed with 10 volumes of Lysis Buffer A until the A280 of the eluate returns to the baseline. Then, the column is washed with 5 volumes of 40 mM Imidazole (92% Lysis Buffer A / 8% Buffer B) (Buffer B = 50 mM Na-Phosphate, 300 mM NaCl, 10% Glycerol, 10 mM 2-25 mercaptoethanol, 500 mM Imidazole, pH of the final buffer should be 7.5). The protein is eluted off of the column with a series of increasing Imidazole solutions made by adjusting the ratios of Lysis Buffer A to Buffer B. Three different concentrations are used: 3 volumes of 75 mM Imidazole, 3 volumes of 150 mM Imidazole, 5 volumes of 500 mM Imidazole. The fractions containing the purified protein are analyzed using 8 %, 10 % or 14% SDS-PAGE 30 depending on the protein size. The purified protein is then dialyzed 2X against phosphatebuffered saline (PBS) in order to place it into an easily workable buffer. The purified protein is stored at 4°C or frozen at -80°

The following is another alternative method may be used to purify *S. aureus* expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm

10

15

20

25

30

35

(Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the S. aureus polypeptide-containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 x g) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded *S. aureus* polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the *S. aureus* polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the *S. aureus* polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant S. aureus polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie

WO 00/12678 PCT/US99/19726

blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 2(b): Expression and Purification staphylococcal polypeptides in E. coli

Alternatively, the vector pQE10 can be used to clone and express polypeptides of the present invention. The difference being such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the amino terminus of that polypeptide. The bacterial expression vector pQE10 (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311) is used in this example. The components of the pQE10 plasmid are arranged such that the inserted DNA sequence encoding a polypeptide of the present invention expresses the polypeptide with the six His residues (i.e., a "6 X His tag")) covalently linked to the amino terminus.

The DNA sequences encoding the desired portions of a polypeptide of Table 1 are amplified using PCR oligonucleotide primers from either genomic *S. aureus* DNA or DNA from the plasmid clones listed in Table 1 clones of the present invention. The PCR primers anneal to the nucleotide sequences encoding the desired amino acid sequence of a polypeptide of the present invention. Additional nucleotides containing restriction sites to facilitate cloning in the pQE10 vector are added to the 5' and 3' primer sequences, respectively.

15

20

25

30

35.

For cloning a polypeptide of the present invention, the 5' and 3' primers are selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begins may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 5' primer is designed so the coding sequence of the 6 X His tag is aligned with the restriction site so as to maintain its reading frame with that of *S. aureus* polypeptide. The 3' is designed to include an stop codon. The amplified DNA fragment is then cloned, and the protein expressed, as described above for the pQE60 plasmid.

The DNA sequences encoding the amino acid sequences of Table 1 may also be cloned and expressed as fusion proteins by a protocol similar to that described directly above, wherein the pET-32b(+) vector (Novagen, 601 Science Drive, Madison, WI 53711) is preferentially used in place of pQE10.

Example 2(c): Expression and Purification of Stahphlococcust polypeptides in E. coli

The bacterial expression vector pQE60 is used for bacterial expression in this example (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). However, in this example, the polypeptide coding sequence is inserted such that translation of the six His codons is prevented

15

20

25

30

35

and, therefore, the polypeptide is produced with no 6 X His tag.

The DNA sequence encoding the desired portion of the *S. aureus* amino acid sequence is amplified from a *S. aureus* genomic DNA prep using PCR oligonucleotide primers which anneal to the 5' and 3' nucleotide sequences corresponding to the desired portion of the *S. aureus* polypeptides. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' primer sequences.

For cloning a *S. aureus* polypeptides of the present invention, 5' and 3' primers are selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 3' and 5' primers contain appropriate restriction sites followed by nucleotides complementary to the 5' and 3' ends of the coding sequence respectively. The 3' primer is additionally designed to include an in-frame stop codon.

The amplified *S. aureus* DNA fragments and the vector pQE60 are digested with restriction enzymes recognizing the sites in the primers and the digested DNAs are then ligated together. Insertion of the *S. aureus* DNA into the restricted pQE60 vector places the *S. aureus* protein coding region including its associated stop codon downstream from the IPTG-inducible promoter and in-frame with an initiating AUG. The associated stop codon prevents translation of the six histidine codons downstream of the insertion point.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described by Sambrook et al. *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing *S. aureus* polypeptide, is available commercially (QIAGEN, Inc., *supra*). Transformants are identified by their ability to grow on LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin ($100 \,\mu g/ml$) and kanamycin ($25 \,\mu g/ml$). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. isopropyl-b-D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the *lac* repressor sensitive promoter, by inactivating the lacI repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

To purify the S. aureus polypeptide, the cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell debris is removed by centrifugation, and the supernatant

15

20

25

30

35

containing the *S. aureus* polypeptide is dialyzed against 50 mM Na-acetate buffer pH 6, supplemented with 200 mM NaCl. Alternatively, the protein can be successfully refolded by dialyzing it against 500 mM NaCl, 20% glycerol, 25 mM Tris/HCl pH 7.4, containing protease inhibitors. After renaturation the protein can be purified by ion exchange, hydrophobic interaction and size exclusion chromatography. Alternatively, an affinity chromatography step such as an antibody column can be used to obtain pure *S. aureus* polypeptide. The purified protein is stored at 4°C or frozen at -80°C.

The following alternative method may be used to purify *S. aureus* polypeptides expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells ware then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the S. aureus polypeptide-containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 x g) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded *S. aureus* polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-

PAGE.

10

15

20

30

Fractions containing the *S. aureus* polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the *S. aureus* polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant *S. aureus* polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 2(d): Cloning and Expression of S. aureus in Other Bacteria

S. aureus polypeptides can also be produced in: S. aureus using the methods of S. Skinner et al., (1988) Mol. Microbiol. 2:289-297 or J. I. Moreno (1996) Protein Expr. Purif. 8(3):332-340; Lactobacillus using the methods of C. Rush et al., 1997 Appl. Microbiol. Biotechnol. 47(5):537-542; or in Bacillus subtilis using the methods Chang et al., U.S. Patent No. 4,952,508.

25 Example 3: Cloning and Expression in COS Cells

A S. aureus expression plasmid is made by cloning a portion of the DNA encoding a S. aureus polypeptide into the expression vector pDNAI/Amp or pDNAIII (which can be obtained from Invitrogen, Inc.). The expression vector pDNAI/amp contains: (1) an E. coli origin of replication effective for propagation in E. coli and other prokaryotic cells; (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron; (5) several codons encoding a hemagglutinin fragment (i.e., an "HA" tag to facilitate purification) followed by a termination codon and polyadenylation signal arranged so that a DNA can be conveniently placed under expression control of the CMV promoter and operably linked to the SV40 intron and the polyadenylation signal by means of restriction sites in the polylinker. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson et al. 1984 Cell 37:767. The fusion of the HA tag to the target protein allows easy detection and recovery of the recombinant protein with an

15

20

25

30

35

antibody that recognizes the HA epitope. pDNAIII contains, in addition, the selectable neomycin marker.

A DNA fragment encoding a S. aureus polypeptide is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter. The plasmid construction strategy is as follows. The DNA from a S. aureus genomic DNA prep is amplified using primers that contain convenient restriction sites, much as described above for construction of vectors for expression of S. aureus in E. coli. The 5' primer contains a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the S. aureus polypeptide. The 3' primer, contains nucleotides complementary to the 3' coding sequence of the S. aureus DNA, a stop codon, and a convenient restriction site.

The PCR amplified DNA fragment and the vector, pDNAI/Amp, are digested with appropriate restriction enzymes and then ligated. The ligation mixture is transformed into an appropriate *E. coli* strain such as SURETM (Stratagene Cloning Systems, La Jolla, CA 92037), and the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis or other means for the presence of the fragment encoding the *S. aureus* polypeptide

For expression of a recombinant *S. aureus* polypeptide, COS cells are transfected with an expression vector, as described above, using DEAE-dextran, as described, for instance, by Sambrook et al. (*supra*). Cells are incubated under conditions for expression of *S. aureus* by the vector.

Expression of the *S. aureus*-HA fusion protein is detected by radiolabeling and immunoprecipitation, using methods described in, for example Harlow et al., *supra*.. To this end, two days after transfection, the cells are labeled by incubation in media containing ³⁵S-cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson et al. (*supra*). Proteins are precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.

Example 4: Cloning and Expression in CHO Cells

The vector pC4 is used for the expression of *S. aureus* polypeptide in this example. Plasmid pC4 is a derivative of the plasmid pSV2-dhfr (ATCC Accession No. 37146). The plasmid contains the mouse DHFR gene under control of the SV40 early promoter. Chinese hamster ovary cells or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life

15

20

25

30

35

Technologies) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented. See, e.g., Alt et al., 1978, J. Biol. Chem. 253:1357-1370; Hamlin et al., 1990, Biochem. et Biophys. Acta, 1097:107-143; Page et al., 1991, Biotechnology 9:64-68. Cells grown in increasing concentrations of MTX develop resistance to the drug by overproducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene, it is usually co-amplified and over-expressed. It is known in the art that this approach may be used to develop cell lines carrying more than 1,000 copies of the amplified gene(s). Subsequently, when the methotrexate is withdrawn, cell lines are obtained which contain the amplified gene integrated into one or more chromosome(s) of the host cell.

Plasmid pC4 contains the strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus, for expressing a polypeptide of interest, Cullen, et al. (1985) Mol. Cell. Biol. 5:438-447; plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV), Boshart, et al., 1985, Cell 41:521-530. Downstream of the promoter are the following single restriction enzyme cleavage sites that allow the integration of the genes: Bam HI, Xba I, and Asp 718. Behind these cloning sites the plasmid contains the 3' intron and polyadenylation site of the rat preproinsulin gene. Other high efficiency promoters can also be used for the expression, e.g., the human \(\beta\)-actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI. Clontech's Tet-Off and Tet-On gene expression systems and similar systems can be used to express the S. aureus polypeptide in a regulated way in mammalian cells (Gossen et al., 1992, Proc. Natl. Acad. Sci. USA 89:5547-5551. For the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well. Stable cell lines carrying a gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.

The plasmid pC4 is digested with the restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel. The DNA sequence encoding the S. aureus polypeptide is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the desired portion of the gene. A 5' primer containing a restriction site, a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the S. aureus polypeptide is synthesized and used. A 3' primer, containing a restriction site, stop codon, and nucleotides complementary to the 3' coding sequence of the S. aureus polypeptides is synthesized and used. The amplified fragment is digested with the restriction endonucleases and then purified again on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. E. coli HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC4 using, for instance, restriction enzyme analysis.

15

20

25

30

35

Chinese hamster ovary cells lacking an active DHFR gene are used for transfection. Five µg of the expression plasmid pC4 is cotransfected with 0.5 µg of the plasmid pSVneo using a lipid-mediated transfection agent such as Lipofectin™ or LipofectAMINE.™ (LifeTechnologies Gaithersburg, MD). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μ M, 2 μ M, 5 μ M, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100-200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 5: Quantitative Murine Soft Tissue Infection Model for S. aureus

Compositions of the present invention, including polypeptides and peptides, are assayed for their ability to function as vaccines or to enhance/stimulate an immune response to a bacterial species (e.g., *S. aureus*) using the following quantitative murine soft tissue infection model. Mice (e.g., NIH Swiss female mice, approximately 7 weeks old) are first treated with a biologically protective effective amount, or immune enhancing/stimulating effective amount of a composition of the present invention using methods known in the art, such as those discussed above. *See*, *e.g.*, Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988). An example of an appropriate starting dose is 20ug per animal.

The desired bacterial species used to challenge the mice, such as *S. aureus*, is grown as an overnight culture. The culture is diluted to a concentration of 5 X 10⁸ cfu/ml, in an appropriate media, mixed well, serially diluted, and titered. The desired doses are further diluted 1:2 with sterilized Cytodex 3 microcarrier beads preswollen in sterile PBS (3g/100ml). Mice are anesthetize briefly until docile, but still mobile and injected with 0.2 ml of the Cytodex 3 bead/bacterial mixture into each animal subcutaneously in the inguinal region. After four days, counting the day of injection as day one, mice are sacrificed and the contents of the abscess is excised and placed in a 15 ml conical tube containing 1.0ml of sterile PBS. The contents of the abscess is then enzymatically treated and plated as follows.

The abscess is first disrupted by vortexing with sterilized glass beads placed in the tubes. 3.0mls of prepared enzyme mixture (1.0ml Collagenase D (4.0 mg/ml), 1.0ml Trypsin (6.0

15

20

30

35

mg/ml) and 8.0 ml PBS) is then added to each tube followed by a 20 min. incubation at 37C. The solution is then centrifuged and the supernatant drawn off. 0.5 ml dH20 is then added and the tubes are vortexed and then incubated for 10 min. at room temperature. 0.5 ml media is then added and samples are serially diluted and plated onto agar plates, and grown overnight at 37C. Plates with distinct and separate colonies are then counted, compared to positive and negative control samples, and quantified. The method can be used to identify composition and determine appropriate and effective doses for humans and other animals by comparing the effective doses of compositions of the present invention with compositions known in the art to be effective in both mice and humans. Doses for the effective treatment of humans and other animals, using compositions of the present invention, are extrapolated using the data from the above experiments of mice. It is appreciated that further studies in humans and other animals may be needed to determine the most effective doses using methods of clinical practice known in the art.

Example 6: Murine Systemic Neutropenic Model for S. aureus Infection

Compositions of the present invention, including polypeptides and peptides, are assayed for their ability to function as vaccines or to enhance/stimulate an immune response to a bacterial species (e.g., S. aureus) using the following qualitative murine systemic neutropenic model. Mice (e.g., NIH Swiss female mice, approximately 7 weeks old) are first treated with a biologically protective effective amount, or immune enhancing/stimulating effective amount of a composition of the present invention using methods known in the art, such as those discussed above. See, e.g., Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988). An example of an appropriate starting dose is 20ug per animal.

Mice are then injected with 250 - 300 mg/kg cyclophosphamide intraperitonially. Counting the day of C.P. injection as day one, the mice are left untreated for 5 days to begin recovery of PMNL'S.

The desired bacterial species used to challenge the mice, such as *S. aureus*, is grown as an overnight culture. The culture is diluted to a concentration of 5 X 10⁸ cfu/ml, in an appropriate media, mixed well, serially diluted, and titered. The desired doses are further diluted 1:2 in 4% Brewer's yeast in media.

Mice are injected with the bacteria/brewer's yeast challenge intraperitonially. The Brewer's yeast solution alone is used as a control. The mice are then monitored twice daily for the first week following challenge, and once a day for the next week to ascertain morbidity and mortality. Mice remaining at the end of the experiment are sacrificed. The method can be used to identify compositions and determine appropriate and effective doses for humans and other animals by comparing the effective doses of compositions of the present invention with compositions known in the art to be effective in both mice and humans. Doses for the effective treatment of humans and other animals, using compositions of the present invention, are

extrapolated using the data from the above experiments of mice. It is appreciated that further studies in humans and other animals may be needed to determine the most effective doses using methods of clinical practice known in the art.

The disclosure of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein and the sequence listings are hereby incorporated by reference in their entireties.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention. Functionally equivalent methods and components are within the scope of the invention, in addition to those shown and described herein and will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

B. IDENTIFICATIONOFDEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection
Address of depositary institution (including postal code and cou	ntryl
10801 University Boulevard	····
Manassas, Virginia 20110-2209 United States of America	•
Office States of Afficiaca	
•	
Date of deposit	Accession Number
7 April 1998	202108
C. ADDITIONAL INDICATIONS (leave blank if not applical	the) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	NC A DE MADE COLLET
	NO ARE MADE (y the indications are not for all designated States)
Europe	Debaut to the second se
In respect to those designations in which a European F microorganism will be made available until the publicat	ion of the mention of the great of the Eugeneen material
or drive the date on which application has been refused	ivii vi uic michiloli oli me mani di me enmaan natant
	Of Withdrawn or is deemed to be withdrawn, ask, by
he issue of such a sample to an expert nominated by t	Of Withdrawn or is deemed to be withdrawn, only by
he issue of such a sample to an expert nominated by t	or withdrawn or is deemed to be withdrawn, only by he person requesting the sample (Rule 28 (4) EPC).
no issue of such a sample to an expert nominated by t	or withdrawn or is deemed to be withdrawn, only by the person requesting the sample (Rule 28 (4) EPC).
F. SEPARATE FURNISHING OF INDICATIONS (leave	he person requesting the sample (Rule 28 (4) EPC). blank if not applicable)
F. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation	or withdrawn or is deemed to be withdrawn, only by the person requesting the sample (Rule 28 (4) EPC).
F. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation	he person requesting the sample (Rule 28 (4) EPC). blank if not applicable)
F. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation	he person requesting the sample (Rule 28 (4) EPC). blank if not applicable)
F. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation	he person requesting the sample (Rule 28 (4) EPC). blank if not applicable)
F. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation	he person requesting the sample (Rule 28 (4) EPC). blank if not applicable)
F. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation Number of Deposit")	the person requesting the sample (Rule 28 (4) EPC). blank if not applicable) nal Bureau later (specify the general nature of the indications e.g., "Accession
For receiving Office use only	he person requesting the sample (Rule 28 (4) EPC). blank if not applicable)
F. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation Number of Deposit")	the person requesting the sample (Rule 28 (4) EPC). blank if not applicable) nal Bureau later (specify the general nature of the indications e.g., "Accession
E. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation Number of Deposit") For receiving Office use only	the person requesting the sample (Rule 28 (4) EPC). blank if not applicable) mal Bureau later (specify the general nature of the indications e.g., "Accession For International Bureau use only
E. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation Number of Deposit") For receiving Office use only	the person requesting the sample (Rule 28 (4) EPC). blank if not applicable) mal Bureau later (specify the general nature of the indications e.g., "Accession For International Bureau use only
E. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the Internation Number of Deposit*) For receiving Office use only This sheet was received with the international application	he person requesting the sample (Rule 28 (4) EPC). blank if not applicable) nal Bureau later (specify the general nature of the indications e.g., "Accession For International Bureau use only This sheet was received by the International Bureau on:

ATCC Deposit No. 202108

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

ATCC Deposit No. 202108

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

What Is Claimed Is:

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence encoding any one of the amino acid sequences of the polypeptides shown in Table 1;
 - (b) a nucleotide sequence complementary to any one of the nucleotide sequences in (a)
 - (c) a nucleotide sequence at least 95% identical to any one of the nucleotide sequences shown in Table 1; and
 - (d) a nucleotide sequence at least 95% identical to a nucleotide sequence complementary to any one of the nucleotide sequences shown in Table 1.
- 2. An isolated nucleic acid molecule of claim 1 comprising a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide having a nucleotide sequence identical to a nucleotide sequence in (a) or (b) of claim 1.
- 3. An isolated nucleic acid molecule of claim 1 comprising a polynucleotide which encodes an epitope-bearing portion of a polypeptide in (a) of claim 1.
- 4. The isolated nucleic acid molecule of claim 3, wherein said epitope-bearing portion of a polypeptide comprises an amino acid sequence listed in Table 4.
- 5. A method for making a recombinant vector comprising inserting an isolated nucleic acid molecule of claim 1 into a vector.
- 6. A recombinant vector produced by the method of claim 5.
- 7. A host cell comprising the vector of claim 6.
- 8. A method of producing a polypeptide comprising:
 - (a) growing the host cell of claim 7 such that the protein is expressed by the cell; and
 - (b) recovering the expressed polypeptide.
- 9. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
 - (a) a complete amino acid sequences of Table 1;
 - (b) a complete amino acid sequence of Table 1 except the N-terminal residue; and
 - (c) a fragment of a polypeptide of Table 1 having biological activity; and

- (d) a fragment of a polypeptide of Table 1 which binds to an antibody specific for a S. aureus polypeptide.
- 10. An isolated polypeptide comprising an amino acid sequence at least 95% identical to an amino acid sequence of Table 1.
- 11. An isolated epitope-bearing polypeptide comprising an amino acid sequence of Table 4.
- 12. An isolated antibody specific for the polypeptide of claim 9.
- 13. A host cell which produces an antibody of claim 12.
- 16. A vaccine, comprising:
 - (1) one or more S. aureus polypeptides selected from the group consisting of a polypeptide of claim 9; and
 - (2) a pharmaceutically acceptable diluent, carrier, or excipient; wherein said polypeptide is present, in an amount effective to elicit protective antibodies in an animal to a member of the *Staphylococcus* genus.
- 17. A method of preventing or attenuating an infection caused by a member of the *Staphylococcus* genus in an animal, comprising administering to said animal a polypeptide of claim 9, wherein said polypeptide is administered in an amount effective to prevent or attenuate said infection.
- 18. A method of detecting Staphylococcus nucleic acids in a biological sample comprising:
 - (a) contacting the sample with one or more nucleic acids of claim 1, under conditions such that hybridization occurs; and
 - (b) detecting hybridization of said nucleic acids to the one or more *Staphylococcus* nucleic acid sequences present in the biological sample.
- 19. A method of detecting *Staphylococcus* antibodies in a biological sample obtained from an animal, comprising
 - (a) contacting the sample with a polypeptide of claim 9; and
 - (b) detecting antibody-antigen complexes.
- 20. A method of detecting a polypeptide of claim 9 comprising:
 - (a) obtaining a biological sample suspected of containing said polypeptide;
 - (c) contacting said sample with antibody which specifically binds said polypeptide; and
 - (c) determining the presence or absence of said polypeptide in said biological sample.

SEQUENCE LISTING

```
<110> Human Genome Sciences, Inc. et al.
<120> Staphylococcus aureus genes and polypeptides
<130> PB484
<140> Unassigned
<141> 1999-08-31
<150> 60/098,964
<151> 1998-09-01
<160> 61
<170> PatentIn Ver. 2.0
<210> 1
<211> 1092
<212> DNA
<213> Staphylococcus aureus
<400> 1
attaactagt caatatteet acctetgaet tgagtttaaa aagtaateta tgttaaatta 60
atacctggta ttaaaaattt tattaagaag gtgttcaact atgaacgtgg gtattaaagg 120
ttttggtgca tatgcgccag aaaagattat tgacaatgcc tattttgagc aatttttaga 180
tacatctgat gaatggattt ctaagatgac tggaattaaa gaaagacatt gggcagatga 240
tgatcaagat acttcagatt tagcatatga agcaagttta aaagcaatcg ctgacgctgg 300
tattcagccc gaagatatag atatgataat tgttgccaca gcaactggag atatgccatt 360
tccaactqtc gcaaatatgt tgcaagaacg tttagggacg ggcaaagttg cctctatgga 420
tcaacttgca gcatgttctg gatttatgta ttcaatgatt acagctaaac aatatgttca 480
atctggagat tatcataaca ttttagttgt cggtgcagat aaattatcta aaataacaga 540
tttaactgac cgttctactg cagttctatt tggagatggt gcaggtgcgg ttatcatcgg 600
tgaagtttca gatggcagag gtattataag ttatgaaatg ggttctgatg gcacaggtgg 660
taaacattta tatttagata aagatactgg taaactgaaa atgaatggtc gagaagtatt 720
taaatttgct gttagaatta tgggtgatgc atcaacacgt gtagttgaaa aagcgaattt 780
aacatcagat gatatagatt tatttattcc tcatcaagct aatattagaa ttatggaatc 840
agctagagaa cgcttaggta tttcaaaaga caaaatgagt gtttctgtaa ataaatatgg 900
aaatacttca gctgcgtcaa tacctttaag tatcgatcaa gaattaaaaa atggtaaaat 960
caaagatgat gatacaattg ttcttgtcgg attcggtggc ggcctaactt ggggcgcaat 1020
gacaataaaa tggggaaaat aggaggataa cgaatgagtc aaaataaaag agtagttatt 1080
                                                                   1092
acaggtatgg ga
<210> 2
 <211> 313
 <212> PRT
 <213> Staphylococcus aureus
 Met Asn Val Gly Ile Lys Gly Phe Gly Ala Tyr Ala Pro Glu Lys Ile
 Ile Asp Asn Ala Tyr Phe Glu Gln Phe Leu Asp Thr Ser Asp Glu Trp
 Ile Ser Lys Met Thr Gly Ile Lys Glu Arg His Trp Ala Asp Asp Asp
                              40
         3.5
 Gln Asp Thr Ser Asp Leu Ala Tyr Glu Ala Ser Leu Lys Ala Ile Ala
                          55
                                       60
```

Asp 65	Ala	Gly	Ile	Gln	Pro 70	Glu	Asp	Ile	Asp	Met 75	Ile	Ile	Val	Ala	Thr 80
Ala	Thr	Gly	Asp	Met 85	Pro	Phe	Pro	Thr	Val 90	Ala	Asn	Met	Leu	Gln 95	Glu
Arg	Leu	Gly	Thr 100	Gly	Lys	Val	Ala	Ser 105	Met	Asp	Gln	Leu	Ala 110	Ala	Суѕ
Ser	Gly	Phe 115	Met	Tyr	Ser	Met	Ile 120	Thr	Ala	Lys	Gln	Туг 125	Val	Gln	Ser
Gly	Asp 130	Tyr	His	Asn	Ile	Leu 135	Val	Val	Gly	Ala	Asp 140	Lys	Leu	Ser	Lys
Ile 145	Thr	Asp	Leu	Thr	Asp 150	Arg	Ser	Thr	Äla	Val 155	Leu	Phe	Gly	Asp	Gly 160
Ala	Gly	Ala	Val	Ile 165	Ile	Gly	G1u	Val	Ser 170	Asp	Gly	Arg	Gly	Ile 175	Ile
Ser	Tyr	Glu	Met 180	Gly	Ser	Asp	Gly	Thr 185	Gly	Gly	Lys	His	Leu 190	Tyr	Leu
Asp	Lys	Asp 195	Thr	Gly	Ĺys	Leu	Lys 200	Met	Asn	Gly	Arg	Glu 205	Val	Phe	Lys
Phe	Ala 210	Val	Arg	Ile	Met	Gly 215	Asp	Ala	Ser	Thr	Arg 220	Val	Val	Glu	Lys
Ala 225	Asn	Leu	Thr	Ser	Asp 230	Asp	Ile	Asp	Leu	Phe 235	Ile	Pro	His	Gln	Ala 240
Asn	Ile	Arg	Ile	Met 245	Glu	Ser	Ala	Arg	Glu 250	Arg	Leu	Ğly	Ile	Ser 255	Lys
Asp	Lys	Met	Ser 260	Val	Ser	Val	Asn	Lys 265	Tyr	Gly	Asn	Thr	Ser 270	Ala	Ala
Ser	Ile	Pro 275	Leu	Ser	Ile	Asp	Gln 280	Glu	Leu	Lys	Asn	Gly 285	Lys	Ile	Lys
Asp	Asp 290	Asp	Thr	Ile	Val	Leu 295	Val	Gly	Phe	Gly	Gly 300	Gly	Leu	Thr	Trp
Gly 305	Ala	Met	Thr		Lys 310	Trp	Gly	Lys							
<212	> 10 > DN		loco	ccus	aur	eus									
-400															

atactaatte taatacttte titteaatti tegeaaatga attitaaaat tggtataata 60

ctatatgata ttaaagacat gagaaaggat gtactgagaa gtgataaata aagacatcta 120 tcaagcttta caacaactta tcccaaatga aaaaattaaa gttgatgaac ctttaaaacg 180 atacacttat actaaaacag gtggtaatgc cgacttttac attaccccta ctaaaaatga 240 agaagtacaa gcagttgtta aatatgccta tcaaaatgag attcctgtta catatttagg 300

```
aaatggctca aatattatta teegtgaagg tggtattege ggtattgtaa ttagtttatt 360
atcactagat catatcgaag tatctgatga tgcgataata gccggtagcg gcgctgcaat 420
tattgatgtc tcacgtgttg ctcgtgatta cgcacttact ggccttgaat ttgcatgtgg 480
tattccaggt tcaattggtg gtgcagtgta tatgaatgct ggcgcttatg gtggcgaagt 540
taaagattgt atagactatg cgctttgcgt aaacgaacaa ggctcgttaa ttaaacttac 600
aacaaaagaa ttagagttag attatcgtaa-tagcattatt-caaaaagaac acttagttgt 660
attagaagct gcatttactt tagctcctgg taaaatgact gaaatacaag ctaaaatgga 720
tgatttaaca gaacgtagag aatctaaaca acctttagag tatccttcat gtggtagtgt 780
attccaaaga ccgcctggtc attttgcagg taaattgata caagattcta atttgcaagg 840
tcaccgtatt ggcggcgttg aagtttcaac caaacacgct ggttttatgg taaatgtaga 900
caatggaact gctacagatt atgaaaacct tattcattat gtacaaaaga ccgtcaaaga 960
aaaatttggc attgaattaa atcgtgaagt tcgcattatt ggtgaacatc caaaggaatc 1020
gtaagttaag gagetttgte tatgeetaaa gtttatggtt cattaatega tact
<210> 4
<211> 307
<212> PRT
<213> Staphylococcus aureus
<400> 4.
Val Ile Asn Lys Asp Ile Tyr Gln Ala Leu Gln Gln Leu Île Pro Asn
                                     10
Glu Lys Ile Lys Val Asp Glu Pro Leu Lys Arg Tyr Thr Tyr Thr Lys
                                25
Thr Gly Gly Asn Ala Asp Phe Tyr Ile Thr Pro Thr Lys Asn Glu Glu
                             40
Val Gln Ala Val Val Lys Tyr Ala Tyr Gln Asn Glu Ile Pro Val Thr
Tyr Leu Gly Asn Gly Ser Asn Ile Ile Ile Arg Glu Gly Gly Ile Arg
Gly Ile Val Ile Ser Leu Leu Ser Leu Asp His Ile Glu Val Ser Asp
 Asp Ala Ile Ile Ala Gly Ser Gly Ala Ala Ile Ile Asp Val Ser Arg
 Val Ala Arg Asp Tyr Ala Leu Thr Gly Leu Glu Phe Ala Cys Gly Ile
            120
                                     125
 Pro Gly Ser Ile Gly Gly Ala Val Tyr Met Asn Ala Gly Ala Tyr Gly
 Gly Glu Val Lys Asp Cys Ile Asp Tyr Ala Leu Cys Val Asn Glu Gln
 Gly Ser Leu Ile Lys Leu Thr Thr Lys Glu Leu Glu Leu Asp Tyr Arg
                 165
                                     170
 Asn Ser Ile Ile Gln Lys Glu His Leu Val Val Leu Glu Ala Ala Phe
 Thr Leu Ala Pro Gly Lys Met Thr Glu Ile Gln Ala Lys Met Asp Asp
                         . .200.
 Leu Thr Glu Arg Arg Glu Ser Lys Gln Pro Leu Glu Tyr Pro Ser Cys
                         215
                                             220
     210
```

```
Gly Ser Val Phe Gln Arg Pro Pro Gly His Phe Ala Gly Lys Leu Ile
225
                                         235
Gln Asp Ser Asn Leu Gln Gly His Arg Ile Gly Gly Val Glu Val Ser
               ~ 245
                                     250
Thr Lys His Ala Gly Phe Met Val Asn Val Asp Asn Gly Thr Ala Thr
                                 265
                                                     270
Asp Tyr Glu Asn Leu Ile His Tyr Val Gln Lys Thr Val Lys Glu Lys
        275
                             280
Phe Gly Ile Glu Leu Asn Arg Glu Val Arg Ile Ile Gly Glu His Pro
                        295
Lys Glu Ser
305
<210> 5
<211> 916
<212> DNA
<213> Staphylococcus aureus
<400> 5
aatagtgtta aaatgtattg acgaataaaa agttagttaa aactgggatt agatattcta 60
tccgttaaat taattattat aaggagttat cttacatgtt aaatcttgaa aacaaacat 120
atgtcatcat gggaatcgct aataagcgta gtattgcttt tggtgtcgct aaagttttag 180
atcaattagg tgctaaatta gtatttactt accgtaaaga acgtagccgt aaagagcttg 240
aaaaattatt agaacaatta aatcaaccag aagcgcactt atatcaaatt gatgttcaaa 300
gcgatgaaga ggttattaat ggttttgagc aaattggtaa agatgttggc aatattgatg 360
gtgtatatca ttcaatcgca tttgctaata tggaagactt acgcggacgc ttttctgaaa 420
cttcacgtga aggettettg ttageteaag acattagtte ttaeteatta acaattgtgg 480
ctcatgaagc taaaaaatta atgccagaag gtggtagcat tgttgcaaca acatatttag 540
gtggcgaatt cgcagttcaa aactataatg tgatgggtgt tgctaaagcg agcttagaag 600
caaatgttaa atatttagca ttagacttag gtccagataa tattcgcgtt aatgcaattt 660
cagctagtcc aatccgtaca ttaagtgcaa aaggtgtggg tggtttcaat acaattctta 720
aagaaatcga agagcgtgca cctttaaaac gtaatgttga tcaagtagaa gtaggtaaaa 780
ctgcggctta cttattaagt gatttatcaa gtggcgttac aggtgaaaat attcatgtag 840
atageggatt ceaegeaatt aaataatate atteaacage tttgtteaeg ttattatata 900
tgtgagcaaa gctttt
<210> 6
<211> 256
<212> PRT
<213> Staphylococcus aureus
Met Leu Asn Leu Glu Asn Lys Thr Tyr Val Ile Met Gly Ile Ala Asn
Lys Arg Ser Ile Ala Phe Gly Val Ala Lys Val Leu Asp Gln Leu Gly
             20
Ala Lys Leu Val Phe Thr Tyr Arg Lys Glu Arg Ser Arg Lys Glu Leu
Glu Lys Leu Leu Glu Gln Leu Asn Gln Pro Glu Ala His Leu Tyr Gln
```

55

Ile Asp Val Gln Ser Asp Glu Glu Val Ile Asn Gly Phe Glu Gln Ile 75 70 Gly Lys Asp Val Gly Asn Ile Asp Gly Val Tyr His Ser Ile Ala Phe . 85 90 ----Ala Asn Met Glu Asp Leu Arg Gly Arg Phe Ser Glu Thr Ser Arg Glu 105 100 Gly Phe Leu Leu Ala Gln Asp Ile Ser Ser Tyr Ser Leu Thr Ile Val Ala His Glu Ala Lys Lys Leu Met Pro Glu Gly Gly Ser Ile Val Ala 135 Thr Thr Tyr Leu Gly Gly Glu Phe Ala Val Gln Asn Tyr Asn Val Met 150 155 Gly Val Ala Lys Ala Ser Leu Glu Ala Asn Val Lys Tyr Leu Ala Leu 165 170 Asp Leu Gly Pro Asp Asn Ile Arg Val Asn Ala Ile Ser Ala Ser Pro 185 Ile Arg Thr Leu Ser Ala Lys Gly Val Gly Gly Phe Asn Thr Ile Leu 200 Lys Glu Ile Glu Glu Arg Ala Pro Leu Lys Arg Asn Val Asp Gln Val 215 220 Glu Val Gly Lys Thr Ala Ala Tyr Leu Leu Ser Asp Leu Ser Ser Gly 230 Val Thr Gly Glu Asn Ile His Val Asp Ser Gly Phe His Ala Ile Lys

<210> 7 <211> 1376 <212> DNA <213> Staphylococcus aureus

<400> 7

taaaataatt ttaaaatagg gaaatgtaaa gtaataggag ttctaagtgg aggatttacg 60 atggataaaa tagtaatca aggtggaaat aaattaacgg gtgaagttaa agtagaaggt 120 gctaaaaatgg cagtattacc aatattgaca gcatctttat tagcttctga taaaccgagc 180 aaattagtta atgttccagc tttaagtgat gtagaaacaa taaataatgt attaacaact 240 ttaaatggacgacc atatggaatat gtagaaata tgcgtgcaag tattttagtt 360 atgggacctc ttttagcaag actaggacat gctattgttg cattgcctgg tggttgtgca 420 attggaagta aggagcaaca caaaatatta taaggttttg aggagcaatt 480 catcttgaaa atggtaatat ttatgctaat gctaaagatg gattaaaagg tacatcaatt 540 catttagatt ttccaagtgt aggagcaaca caaaatatta ttatggcagc atcattagct 600 aagggtaaga ctttaattga aaatggagc gagtgaacca caaaatatta ttatggcagc atcattagct 600 aagggtaaga cattacatgg tggagacaca cagaacactt cagaacaaat tacaatcaat 720 ggtgtagaat cattacatgg tgtagaacat ggtgatattt tggaggacat tggaagcagg 780 aacattactaa cgagtttagt cgagtttagt ccataaacta gaagaaatgg ggcgttgaatt ggactacaa 900

250

```
gaagatggta ttcgtgtacg tgctgaaggg gaattacaac ctgtagacat caaaactcta 960
 ccacatectg gattecegae tgatatgeaa teacaaatga tggeattgtt attaaeggea 1020
 aatggtcata aagtcgtaac cgaaactgtt tttgaaaacc gttttatgca tgttgcagag 1080
 ttcaaacgta tgaatgctaa tatcaatgta gaaggtcgta gtgctaaact tgaaggtaaa 1140
 agtcaattgc aaggtgcaca agttaaagcg actgatttaa gagcagcagc cgccttaatt 1200
 ttagctggat tagttgctga tggtaaaaca agcgttactg aattaacgca cctagataga 1260
 ggctatgttg acttacacgg taaattgaag caattaggtg cagacattga acgtattaac 1320
 gattaattca gtaaattaat ataatggagg atttcaacca tggaaacaat ttttga
 <210> 8
 <211> 421
 <212> PRT
 <213> Staphylococcus aureus
 <400> 8
 Met Asp Lys Ile Val Ile Lys Gly Gly Asn Lys Leu Thr Gly Glu Val
 Lys Val Glu Gly Ala Lys Asn Ala Val Leu Pro Ile Leu Thr Ala Ser
                                  25
 Leu Leu Ala Ser Asp Lys Pro Ser Lys Leu Val Asn Val Pro Ala Leu
                              40
 Ser Asp Val Glu Thr Ile Asn Asn Val Leu Thr Thr Leu Asn Ala Asp
 Val Thr Tyr Lys Lys Asp Glu Asn Ala Val Val Asp Ala Thr Lys
                      70
 Thr Leu Asn Glu Glu Ala Pro Tyr Glu Tyr Val Ser Lys Met Arg Ala
 Ser Ile Leu Val Met Gly Pro Leu Leu Ala Arg Leu Gly His Ala Ile
             100
 Val Ala Leu Pro Gly Gly Cys Ala Ile Gly Ser Arg Pro Ile Glu Gln
                             120
 His Ile Lys Gly Phe Glu Ala Leu Gly Ala Glu Ile His Leu Glu Asn
 Gly Asn Ile Tyr Ala Asn Ala Lys Asp Gly Leu Lys Gly Thr Ser Ile
                     150
                                         155
 His Leu Asp Phe Pro Ser Val Gly Ala Thr Gln Asn Ile Ile Met Ala
                 165
 Ala Ser Leu Ala Lys Gly Lys Thr Leu Ile Glu Asn Ala Ala Lys Glu
             180
                                 185
 Pro Glu Ile Val Asp Leu Ala Asn Tyr Ile Asn Glu Met Gly Gly Arg
                             200
· Ile Thr Gly Ala Gly Thr Asp Thr Ile Thr Ile Asn Gly Val Glu Ser
     210
Leu His Gly Val Glu His Ala Ile Ile Pro Asp Arg Ile Glu Ala Gly
                     230
                                         235
 Thr Leu Leu Ile Ala Gly Ala Ile Thr Arg Gly Asp Ile Phe Val Arg
```

: -- 250

255

Gly Ala Ile Lys Glu His Met Ala Ser Leu Val Tyr Lys Leu Glu Glu 260 265 270

Met Gly Val Glu Leu Asp Tyr Gln Glu Asp Gly Ile Arg Val Arg Ala 275 280 285

Glu Gly Glu Leu Gln Pro Val Asp Ile Lys Thr Leu Pro His Pro Gly 290 295 300

Phe Pro Thr Asp Met Gln Ser Gln Met Met Ala Leu Leu Leu Thr Ala 305 310 315 320

Asn Gly His Lys Val Val Thr Glu Thr Val Phe Glu Asn Arg Phe Met 325 330 335

His Val Ala Glu Phe Lys Arg Met Asn Ala Asn Ile Asn Val Glu Gly 340 345 350

Arg Ser Ala Lys Leu Glu Gly Lys Ser Gln Leu Gln Gly Ala Gln Val 355 360 365

Lys Ala Thr Asp Leu Arg Ala Ala Ala Ala Leu Ile Leu Ala Gly Leu 370 380

Val Ala Asp Gly Lys Thr Ser Val Thr Glu Leu Thr His Leu Asp Arg 385 390 395 400

Gly Tyr Val Asp Leu His Gly Lys Leu Lys Gln Leu Gly Ala Asp Ile
405 410 415

Glu Arg Ile Asn Asp 420

<210> 9

<211> 1537

<212> DNA

<213> Staphylococcus aureus

<400> 9

ttcatgtatt taaaaggttg gggattagca taatgggatt gtgctagcac agttatttat 60 gcattgtcat gcctatctat tacttactaa ctaaaaaata atgaaatggg tgtaaactat 120 atgcctgaaa gagaacgtac atctcctcag tatgaatcat tccacgaatt gtacaagaac 180 tatactacca aggaactcac tcaaaaagct aaaactctta agttgacgaa ccatagtaaa 240 ttaaataaaa aagaacttgt tctagctatt atggaagcac aaatggaaaa agatggtaac 300 tattatatgg aaggtatctt agatgatata caaccaggtg gttatggttt tttaagaaca 360 gtgaactatt ctaaagggga aaaagatatt tatatatctg ctagccaaat tcgtcgtttt 420 gaaattaaac gtggggataa agtaactggg aaagttagaa aacctaaaga taacgaaaaa 480 tattatggct tattacaagt tgactttgtc aatgaccata acgcagaaga agtgaagaaa 540 cgtccgcatt tccaagcttt gacaccactt tatccagatg agcgtattaa attagagaca 600 gaaatacaaa attattcaac gcgcatcatg gatttagtaa caccgattgg tttaggtcaa 660 cgtggtttaa tagtggcgcc acctaaagca ggtaaaacat cgttattaaa agaaatagcg 720 aatgcaatca gtacgaacaa accagatgca aagctattta ttttgttagt tggcgagcgt 780 cetgaagagg taacagattt agaacgetca gtagaagetg etgaagtegt teatteaacg 840 tttgacgaac caccagaaca ccatgttaaa gtagctgaat tattacttga acgtgcaaag 900 cgtttagtag aaattgggga agatgtcatt attttaatgg attctataac gagattagca 960 cgcgcttata acttagttat tccaccaagt ggtcgtacat tatcaggtgg tttagatcct 1020 gcatctttac acáaaccaaa agcattcttc ggtgcagcga gaaatattga agcgggtgga 1080 agtttaacaa tacttgcaac tgcattagtt gatacgggtt cacgtatgga cgatatgatt 1140

tacgaagaat ttaaaggaac aggtaacatg gagttacatt tagatcgtaa attgtctgaa 1200 cgtcgtatct tccctgcaat tgatattggc agaagttcaa cgcgtaaaga agaattgttg 1260 ataagtaaat ctgaattaga cacattatgg caattaagaa atctattcac tgactcaact 1320 gactttactg aaagatttat tcgcaaactt aaaaggtcta agaataatga agatttcttc 1380 aagcagctac aaaagtctgc agaagaaagt actaaaacgg gtcgacctat aatttaataa 1440 acattatata ggggcttgcg ttttgaatta attaccttta taattacaca gtattgggta 1500 aaaactcaca aataactctg ttccagatgg ttcaggg <210> 10 <211> 438 <212> PRT <213> Staphylococcus aureus Met Pro Glu Arg Glu Arg Thr Ser Pro Gln Tyr Glu Ser Phe His Glu 10 Leu Tyr Lys Asn Tyr Thr Thr Lys Glu Leu Thr Gln Lys Ala Lys Thr Leu Lys Leu Thr Asn His Ser Lys Leu Asn Lys Lys Glu Leu Val Leu Ala Ile Met Glu Ala Gln Met Glu Lys Asp Gly Asn Tyr Tyr Met Glu Gly Ile Leu Asp Asp Ile Gln Pro Gly Gly Tyr Gly Phe Leu Arg Thr Val Asn Tyr Ser Lys Gly Glu Lys Asp Ile Tyr Ile Ser Alá Ser Gln Ile Arg Arg Phe Glu Ile Lys Arg Gly Asp Lys Val Thr Gly Lys Val 105 Arg Lys Pro Lys Asp Asn Glu Lys Tyr Tyr Gly Leu Leu Gln Val Asp 115 Phe Val Asn Asp His Asn Ala Glu Glu Val Lys Lys Arg Pro His Phe 135 Gln Ala Leu Thr Pro Leu Tyr Pro Asp Glu Arg Ile Lys Leu Glu Thr 150 155 Glu Ile Gln Asn Tyr Ser Thr Arg Ile Met Asp Leu Val Thr Pro Ile 165 170 Gly Leu Gly Gln Arg Gly Leu Ile Val Ala Pro Pro Lys Ala Gly Lys 185 Thr Ser Leu Leu Lys Glu Ile Ala Asn Ala Ile Ser Thr Asn Lys Pro 200 Asp Ala Lys Leu Phe Ile Leu Leu Val Gly Glu Arg Pro Glu Glu Val Thr Asp Leu Glu Arg Ser Val Glu Ala Ala Glu Val Val His Ser Thr 225 230 Phe Asp Glu Pro Pro Glu His His Val Lys Val Ala Glu Leu Leu Leu

250

245

Glu Arg Ala Lys Arg Leu Val Glu Ile Gly Glu Asp Val Ile Ile Leu 265 Met Asp Ser Ile Thr Arg Leu Ala Arg Ala Tyr Asn Leu Val Ile Pro Pro Ser Gly Arg Thr Leu Ser Gly Gly Leu Asp Pro Ala Ser Leu His 295 Lys Pro Lys Ala Phe Phe Gly Ala Ala Arg Asn Ile Glu Ala Gly Gly 315 310 Ser Leu Thr Ile Leu Ala Thr Ala Leu Val Asp Thr Gly Ser Arg Met 330 Asp Asp Met Ile Tyr Glu Glu Phe Lys Gly Thr Gly Asn Met Glu Leu His Leu Asp Arg Lys Leu Ser Glu Arg Arg Ile Phe Pro Ala Ile Asp 360 Ile Gly Arg Ser Ser Thr Arg Lys Glu Glu Leu Leu Ile Ser Lys Ser Glu Leu Asp Thr Leu Trp Gln Leu Arg Asn Leu Phe Thr Asp Ser Thr -390Asp Phe Thr Glu Arg Phe Ile Arg Lys Leu Lys Arg Ser Lys Asn Asn Glu Asp Phe Phe Lys Gln Leu Gln Lys Ser Ala Glu Glu Ser Thr Lys 425 420 Thr Gly Arg Pro Ile Ile 435 <210> 11 <211> 554 <212> DNA <213> Staphylococcus aureus <400> 11 gatettitti tiegtitaaa tiaagaataa atagaaatti atgitataag eteaatagaa 60 gtttaaatat agcttcaata aaaacgataa taagcgagtg atgttattgg aaaaagctta 120 ccgaattaaa aagaatgcag attttcagag aatatataaa aaaggtcatt ctgtagccaa 180 cagacaattt gttgtataca cttgtaataa taaagaaata gaccattttc gcttaggtat 240 tagtgtttct aaaaaactag gtaatgcagt gttaagaaac aagattaaaa gagcaatacg 300 tgaaaatttc aaagtacata agtcgcatat attggccaaa gatattattg taatagcaag 360 acagccagct aaagatatga cgactttaca aatacagaat agtcttgagc acgtacttaa 420 aattgccaaa gtttttaata aaaagattaa gtaaggatag ggtaggggaa ggaaaacatt 480 aaccactcaa cacatcccga agtcttacct cagacaaacg taagactgac cttagggtta 540 taataactta cttt <210> 12 <211> 117 <212> PRT ...

<400> 12

<213> Staphylococcus aureus

WO 00/12678 PCT/US99/19726

10

Met Leu Leu Glu Lys Ala Tyr Arg Ile Lys Lys Asn Ala Asp Phe Gln 1 5 10

Arg Ile Tyr Lys Lys Gly His Ser Val Ala Asn Arg Gln Phe Val Val 20 25 30

Tyr Thr Cys Asn Asn Lys Glu Ile Asp His Phe Arg Leu Gly Ile Ser 35 40 45

Val Ser Lys Leu Gly Asn Ala Val Leu Arg Asn Lys Ile Lys Arg 50 55 60

Ala Ile Arg Glu Asn Phe Lys Val His Lys Ser His Ile Leu Ala Lys 65 70 75 80

Asp Ile Ile Val Ile Ala Arg Gln Pro Ala Lys Asp Met Thr Thr Leu 85 90 95

Gln Ile Gln Asn Ser Leu Glu His Val Leu Lys Ile Ala Lys Val Phe 100 105 110

Asn Lys Lys Ile Lys 115

<210> 13

<211> 1712

<212> DNA

<213> Staphylococcus aureus

<400> 13

cagcaaaaac tggtgaaggt ggtaaattgt ttgggtcagt aagtacaaaa caaattgccg 60 aagcactaaa agcacaacat gatattaaaa ttgataaacg taaaatggat ttaccaaatg 120 gaattcattc cctaggatat acgaatgtac ctgttaaatt agataaagaa gttgaaggta 180 caattcgcgt acacacagtt gaacaataaa gttggattga aataagaggt gtaaccattc 240 atggatagaa tgtatgagca aaatcaaatg ccgcataaca atgaagctga acagtctgtc 300 ttaggttcaa ttattataga tccagaattg attaatacta ctcaggaagt tttgcttcct 360 gagtcgtttt ataggggtgc ccatcaacat attttccgtg caatgatgca cttaaatgaa 420 gataataaag aaattgatgt tgtaacattg atggatcaat tatcgacgga aggtacgttg 480 aatgaagogg gtggcccgca atatettgca gagttateta caaatgtace aacgacgcga 540 aatgttcagt attatactga tatcgtttct aagcatgcat taaaacgtag attgattcaa 600 actgcagata gtattgccaa tgatggatat aatgatgaac ttgaactaga tgcgatttta 660 agtgatgcag aacgtcgaat tttagagcta tcatcttctc gtgaaagcga tggctttaaa 720 gacattcgag acgtcttagg acaagtgtat gaaacagctg aagagcttga tcaaaatagt 780 ggtcaaacac caggtatacc tacaggatat cgagatttag accaaatgac agcagggttc 840 aaccgaaatg atttaattat ccttgcagcg cgtccatctg taggtaagac tgcgttcgca 900 cttaatattg cacaaaaagt tgcaacgcat gaagatatgt atacagttgg tattttctcg 960 ctagagatgg gtgctgatca gttagccaca cgtatgattt gtagttctgg aaatgttgac 1020 tcaaaccgct taagaacggg tactatgact gaggaagatt ggagtcgttt tactatagcg 1080 gtaggtaaat tatcacgtac gaagattttt attgatgata caccgggtat tcgaattaat 1140 gatttacgtt ctaaatgtcg tcgattaaag caagaacatg gcttagacat gattgtgatt 1200 gactacttac agttgattca aggtagtggt tcacgtgcgt ccgataacag acaacaggaa 1260 gtttctgaaa tctctcgtac attaaaagca ttagcccgtg aattaaaatg tccagttatc 1320 gcattaagtc agttatctcg tggtgttgaa caacgacaag ataaacgtcc aatgatgagt 1380 gatattcgtg aatctggttc gattgagcaa gatgccgata tcgttgcatt cttataccgt 1440 gatgattact ataaccgtgg cggcgatgaa gatgatgacg atgatggtgg tttcgagcca 1500 caaacgaatg atgaaaacgg tgaaattgaa attatcattg ctaagcaacg taacggtcca 1560 acaggcacag ttaagttaca ttttatgaaa caatataata aatttaccga tatcgattat 1620 gcacatgcag atatgatgta aaaaagtttt tccgtacaat aatcattaag atgataaaat 1680 tgtacggttt ttattttgtt ctgaacgggt tg

WO 00/12678 PCT/US99/19726

<210> 14

<211> 466

<212> PRT

<213> Staphylococcus aureus

<400>...14

Met Asp Arg Met Tyr Glu Gln Asn Gln Met Pro His Asn Asn Glu Ala 1 5 10 15

Glu Gln Ser Val Leu Gly Ser Ile Ile Ile Asp Pro Glu Leu Ile Asn 20 25 30

Thr Thr Gln Glu Val Leu Leu Pro Glu Ser Phe Tyr Arg Gly Ala His
35 40 45

Gln His Ile Phe Arg Ala Met Met His Leu Asn Glu Asp Asn Lys Glu
50 55 60

Ile Asp Val Val Thr Leu Met Asp Gln Leu Ser Thr Glu Gly Thr Leu 65 70 75 80

Asn Glu Ala Gly Gly Pro Gln Tyr Leu Ala Glu Leu Ser Thr Asn Val 85 90 95

Pro Thr Thr Arg Asn Val Gln Tyr Tyr Thr Asp Ile Val Ser Lys His
100 105 110

Ala Leu Lys Arg Arg Leu Ile Gln Thr Ala Asp Ser Ile Ala Asn Asp 115 120 125

Gly Tyr Asn Asp Glu Leu Glu Leu Asp Ala Ile Leu Ser Asp Ala Glu 130 135 140

Arg Arg Ile Leu Glu Leu Ser Ser Ser Arg Glu Ser Asp Gly Phe Lys 145 150 155 160

Asp Ile Arg Asp Val Leu Gly Gln Val Tyr Glu Thr Ala Glu Glu Leu 165 170 175

Asp Gln Asn Ser Gly Gln Thr Pro Gly Ile Pro Thr Gly Tyr Arg Asp 180 185 190

Ala Ala Arg Pro Ser Val Gly Lys Thr Ala Phe Ala Leu Asn Ile Ala 210 215 220

Gln Lys Val Ala Thr His Glu Asp Met Tyr Thr Val Gly Ile Phe Ser 225 230 235 240

Leu Glu Met Gly Ala Asp Gln Leu Ala Thr Arg Met Ile Cys Ser Ser 245 250 255

Gly Asn Val Asp Ser Asn Arg Leu Arg Thr Gly Thr Met Thr Glu Glu 260 265 270

Asp Trp Ser Arg Phe Thr Ile Ala Val Gly Lys Leu Ser Arg Thr Lys 275 280 285

Ile Phe Ile Asp Asp Thr Pro Gly Ile Arg Ile Asn Asp Leu Arg Ser

295

300

Lys Cys Arg Arg Leu Lys Gln Glu His Gly Leu Asp Met Ile Val Ile 305 310 315 320

Asp Tyr Leu Gln Leu Ile Gln Gly Ser Gly Ser Arg Ala Ser Asp Asn 325 330 335

Arg Gln Gln Glu Val Ser Glu Ile Ser Arg Thr Leu Lys Ala Leu Ala 340 345 350

Arg Glu Leu Lys Cys Pro Val Ile Ala Leu Ser Gln Leu Ser Arg Gly 355 360 365

Val Glu Gln Arg Gln Asp Lys Arg Pro Met Met Ser Asp Ile Arg Glu 370 375 380

Ser Gly Ser Ile Glu Gln Asp Ala Asp Ile Val Ala Phe Leu Tyr Arg 385 390 395 400

Asp Asp Tyr Tyr Asn Arg Gly Gly Asp Glu Asp Asp Asp Asp Gly 405 410 415

Gly Phe Glu Pro Gln Thr Asn Asp Glu Asn Gly Glu Ile Glu Ile Ile 420 425 430

Ile Ala Lys Gln Arg Asn Gly Pro Thr Gly Thr Val Lys Leu His Phe
435 440 445

Met Lys Gln Tyr Asn Lys Phe Thr Asp Ile Asp Tyr Ala His Ala Asp 450 455 460

Met Met 465

<210> 15

<211> 1170

<212> DNA

<213> Staphylococcus aureus

<400> 15

gtggttccgt attattagga ttggaaggta ctgtagttaa agcacacggt agttcaaatg 60 ctaaagcttt ttattctgca attagacaag cgaaaatcgc aggagaacaa aatattgtac 120 aaacaatgaa agagactgta ggtgaatcaa atgagtaaaa cagcaattat ttttccggga 180 caaggtgccc aaaaagttgg tatggcgcaa gatttgttta acaacaatga tcaagcaact 240 gaaattttaa cttcagcagc gaacacatta gactttgata ttttagagac aatgtttact 300 gatgaagaag gtaaattggg tgaaactgaa aacacacaac cagctttatt gacgcatagt 360 teggeattat tageageget aaaaaatttg aateetgatt ttaetatggg geatagttta 420 ggtgaatatt caagtttagt tgcagctgac gtattatcat ttgaagatgc agttaaaatt 480 gttagaaaac gtggtcaatt aatggcgcaa gcatttccta ctggtgtagg aagcatggct 540 gcagtattgg gattagattt tgataaagtc gatgaaattt gtaagtcatt atcatctgat 600 gacaaaataa ttgaaccagc aaacattaat tgcccaggtc aaattgttgt ttcaggtcac 660 aaagctttaa ttgatgagct agtagaaaaa ggtaaatcat taggtgcaaa acgtgtcatg 720 cctttagcag tatctggacc attccattca tcgctaatga aagtgattga agaagatttt 780 tcaagttaca ttaatcaatt tgaatggcgt gatgctaagt ttcctgtagt tcaaaatgta 840 aatgcgcaag gtgaaactga caaagaagta attaaatcta atatggtcaa gcaattatat 900 tcaccagtac aattcattaa ctcaacagaa tggctaatag accaaggtgt tgatcatttt 960 attgaaattg gtcctggaaa agttttatct ggcttaatta aaaaaataaa tagagatgtt 1020 aagttaacat caattcaaac tttagaagat gtgaaaggat ggaatgaaaa tgactaagag 1080 tgctttagta acaggtgcat caagaggaat tggacgtagt attgcgttac aattagcaga 1140

agaaggatat aatgtagcag taaactatgc

1170

<210> 16

<211> 308

<212> PRT

<213> Staphylococcus aureus

<400> 16

Met Ser Lys Thr Ala Ile Ile Phe Pro Gly Gln Gly Ala Gln Lys Val 1 5 10 15

Gly Met Ala Gln Asp Leu Phe Asn Asn Asn Asp Gln Ala Thr Glu Ile 20 25 30

Leu Thr Ser Ala Ala Asn Thr Leu Asp Phe Asp Ile Leu Glu Thr Met 35 40 45

Phe Thr Asp Glu Gly Lys Leu Gly Glu Thr Glu Asn Thr Gln Pro
50 55 60

Ala Leu Leu Thr His Ser Ser Ala Leu Leu Ala Ala Leu Lys Asn Leu 65 70 75 80

Asn Pro Asp Phe Thr Met Gly His Ser Leu Gly Glu Tyr Ser Ser Leu 85 90 95

Val Ala Ala Asp Val Leu Ser Phe Glu Asp Ala Val Lys Ile Val Arg
100 105 110

Lys Arg Gly Gln Leu Met Ala Gln Ala Phe Pro Thr Gly Val Gly Ser 115 120 125

Met Ala Ala Val Leu Gly Leu Asp Phe Asp Lys Val Asp Glu Ile Cys 130 135 140

Lys Ser Leu Ser Ser Asp Asp Lys Ile Ile Glu Pro Ala Asn Ile Asn 145 150 155 160

Cys Pro Gly Gln Ile Val Val Ser Gly His Lys Ala Leu Ile Asp Glu 165 170 175

Leu Val Glu Lys Gly Lys Ser Leu Gly Ala Lys Arg Val Met Pro Leu 180 185 190

Ala Val Ser Gly Pro Phe His Ser Ser Leu Met Lys Val Ile Glu Glu 195 200 205

Asp Phe Ser Ser Tyr Ile Asn Gln Phe Glu Trp Arg Asp Ala Lys Phe 210 215 220

Pro Val Val Gln Asn Val Asn Ala Gln Gly Glu Thr Asp Lys Glu Val 225 230 235 240

Ile Lys Ser Asn Met Val Lys Gln Leu Tyr Ser Pro Val Gln Phe Ile 245 250 255

Asn Ser Thr Glu Trp Leu Ile Asp Gln Gly Val Asp His Phe Ile Glu 260 270

Ile Gly Pro Gly Lys Val Leu Ser Gly Leu Ile Lys Lys Ile Asn Arg 275 280 285

```
Asp Val Lys Leu Thr Ser Ile Gln Thr Leu Glu Asp Val Lys Gly Trp
                        295
Asn Glu Asn Asp
305
<210> 17
<211> 1080
<212> DNA
<213> Staphylococcus aureus
<400> 17
aaatacacat ttaatctgca gtatttcaat gcattgacgc tatttttttg atataattac 60
tttgaaaaat acgtgcgtaa gcactcaagg aggaactttc atgcctttag tttcaatgaa 120
agaaatgtta attgatgcaa aagaaaatgg ttatgcggta ggtcaataca atattaataa 180
cctagaattc actcaagcaa ttttagaagc gtcacaagaa gaaaatgcac ctgtaatttt 240
aggtgtttct gaaggtgctg ctcgttacat gagcggtttc tacacaattg ttaaaatggt 300
tgaagggtta atgcatgact taaacatcac tattcctgta gcaatccatt tagaccatgg 360
ttcaagcttt gaaaaatgta aagaagctat cgatgctggt ttcacatcag taatgatcga 420
tgcttcacac agcccattcg aagaaaacgt agcaacaact aaaaaagttg ttgaatacgc 480
tcatgaaaaa ggtgtttctg tagaagctga attaggtact gttggtggac aagaagatga 540
tgttgtagca gacggcatca tttatgctga tcctaaagaa tgtcaagaac tagttgaaaa 600
aactggtatt gatgcattag cgccagcatt aggttcagtt catggtccat acaaaggtga 660
accaaaatta ggatttaaag aaatggaaga aatcggttta tctacaggtt taccattagt 720
attacacggt ggtactggta tcccgactaa agatatccaa aaagcaattc catttggtac 780
agctaaaatt aacgtaaaca ctgaaaacca aatcgcttca gcaaaagcag ttcgtgacgt 840
tttaaataac gacaaagaag tttacgatcc tcgtaaatac ttaggacctg cacgtgaagc 900
catcaaagaa acagttaaag gtaaaattaa agagttcggt acttctaacc gcgctaaata 960
attaatattt agtctttaag ttattaataa cgtagggata ttaattttaa aagaagcaga 1020
caaaatggtg tttgcttctt ttttatgtcg tataagtaat aaataaaaca gtttgatttt 1080
<210> 18
<211> 286
<212> PRT
<213> Staphylococcus aureus
<400> 18
Met Pro Leu Val Ser Met Lys Glu Met Leu Ile Asp Ala Lys Glu Asn
Gly Tyr Ala Val Gly Gln Tyr Asn Ile Asn Asn Leu Glu Phe Thr Gln
                                 25
Ala Ile Leu Glu Ala Ser Gln Glu Glu Asn Ala Pro Val Ile Leu Gly
Val Ser Glu Gly Ala Ala Arg Tyr Met Ser Gly Phe Tyr Thr Ile Val
                         55
Lys Met Val Glu Gly Leu Met His Asp Leu Asn Ile Thr Ile Pro Val
                     70
Ala Ile His Leu Asp His Gly Ser Ser Phe Glu Lys Cys Lys Glu Ala
                                     90
Ile Asp Ala Gly Phe Thr Ser Val Met Ile Asp Ala Ser His Ser Pro
                                105
Phe Glu Glu Asn Val Ala Thr Thr Lys Lys Val Val Glu Tyr Ala His
```

115 120 125 Glu Lys Gly Val Ser Val Glu Ala Glu Leu Gly Thr Val Gly Gln 135 Glu Asp Asp Val Val Ala Asp Gly Ile Ile Tyr Ala Asp Pro Lys Glu 150 Cys Gln Glu Leu Val Glu Lys Thr Gly Ile Asp Ala Leu Ala Pro Ala 165 170 Leu Gly Ser Val His Gly Pro Tyr Lys Gly Glu Pro Lys Leu Gly Phe 185 Lys Glu Met Glu Glu Ile Gly Leu Ser Thr Gly Leu Pro Leu Val Leu 200 . His Gly Gly Thr Gly Ile Pro Thr Lys Asp Ile Gln Lys Ala Ile Pro . Phe Gly Thr Ala Lys Ile Asn Val Asn Thr Glu Asn Gln Ile Ala Ser 230 235 Ala Lys Ala Val Arg Asp Val Leu Asn Asn Asp Lys Glu Val Tyr Asp Pro Arg Lys Tyr Leu Gly Pro Ala Arg Glu Ala Ile Lys Glu Thr Val

265 Lys Gly Lys Ile Lys Glu Phe Gly Thr Ser Asn Arg Ala Lys

275 280

<210> 19

<211> 1340

<212> DNA

<213> Staphylococcus aureus

<400> 19

gctataatag gcatggttac aatgagcttg ctcatacata ttaatataat tacaaaaaca 60 cgtcggaggt acgacatgat taaaaataca attaaaaaat tgatagaaca tagtatatat 120 acqactttta aattactatc aaaattgcca aacaagaatc taatttattt tgaaagcttt 180 catggtaaac aatacagcga caaccccaaa gcattatatg aatacttaac tgaacatagc 240 gatgcccaat taatatgggg-tgtgaaaaaa ggatatgaac acatattcca acagcacaat 300 gtaccatatg ttacaaagtt ttcaatgaaa tggtttttag cgatgccaag agcgaaagcg 360 tggatgatta acacacgtac accagattgg ttatataaat caccgcgaac gacgtactta 420 caaacatggc atggcacgcc attaaaaaag attggtttgg atattagtaa cgttaaaatg 480 ctaggaacaa atactcaaaa ttaccaagat ggctttaaaa aagaaagcca acggtgggat 540 tatctagtgt cacctaatcc atattcgaca tcgatatttc aaaatgcatt tcatgttagt 600 cgagataaga ttttggaaac aggttatcca agaaatgata aattatcaca taaacgcaat 660 gatactgaat atattaatgg tattaagaca agattaaata ttccattaga taaaaaagtg 720 attatgtacg cgccaacttg gcgtgacgat gaagcgattc gagaaggttc atatcaattt 780 aatgttaact ttgatataga agctttgcgt caagcgctgg atgatgatta tgttatttta 840 ttacgcatgc attatttagt tgtgacacgt attgatgaac atgatgattt tgtgaaagac 900 gtttcagatt atgaagacat ttcggattta tacttaatca gcgatgcgtt agttaccgac 960 tactcatctg tcatgttcga cttcggtgta ttaaagcgtc cgcaaatttt ctatgcatat 1020 gacttagata aatatggcga tgagcttaga ggtttttaca tggattataa aaaagagttg 1080 ccaggtccaa ttgttgaaaa tcaaacagca ctcattgatg cattaaaaca aatcgatgag 1140 actgcaaatg agtatattga agcacgaacg gtattttatc aaaaattctg ttcattagaa 1200 gatggacaag cgtcacaacg aatttgccaa acgattttta agtgataact taaaaacaat 1260 · 16

gttattattt gtgtatgaaa

1340

<210> 20

<211> 389

<212> PRT

<213> Staphylococcus aureus

<400> 20

Met Ile Lys Asn Thr Ile Lys Lys Leu Ile Glu His Ser Ile Tyr Thr 1 5 10 15

Thr Phe Lys Leu Leu Ser Lys Leu Pro Asn Lys Asn Leu Ile Tyr Phe 20 25 30

Glu Ser Phe His Gly Lys Gln Tyr Ser Asp Asn Pro Lys Ala Leu Tyr 35 40 45

Glu Tyr Leu Thr Glu His Ser Asp Ala Gln Leu Ile Trp Gly Val Lys
50 55 60

Lys Gly Tyr Glu His Ile Phe Gln Gln His Asn Val Pro Tyr Val Thr
65 70 75 80

Lys Phe Ser Met Lys Trp Phe Leu Ala Met Pro Arg Ala Lys Ala Trp 85 90 95

Met Ile Asn Thr Arg Thr Pro Asp Trp Leu Tyr Lys Ser Pro Arg Thr 100 105 110

Thr Tyr Leu Gln Thr Trp His Gly Thr Pro Leu Lys Lys Ile Gly Leu 115 120 125

Asp Ile Ser Asn Val Lys Met Leu Gly Thr Asn Thr Gln Asn Tyr Gln, 130 135 140

Asp Gly Phe Lys Lys Glu Ser Gln Arg Trp Asp Tyr Leu Val Ser Pro 145 150 155 160

Asn Pro Tyr Ser Thr Ser Ile Phe Gln Asn Ala Phe His Val Ser Arg 165 170 175

Asp Lys Ile Leu Glu Thr Gly Tyr Pro Arg Asn Asp Lys Leu Ser His 180 185 190

Lys Arg Asn Asp Thr Glu Tyr Ile Asn Gly Ile Lys Thr Arg Leu Asn 195 200 205

Ile Pro Leu Asp Lys Lys Val Ile Met Tyr Ala Pro Thr Trp Arg Asp 210 215 220

Asp Glu Ala Ile Arg Glu Gly Ser Tyr Gln Phe Asn Val Asn Phe Asp 225 230 235 240

Ile Glu Ala Leu Arg Gln Ala Leu Asp Asp Asp Tyr Val Ile Leu Leu 245 250 255

Arg Met His Tyr Leu Val Val Thr Arg Ile Asp Glu His Asp Asp Phe 260 265 270

Val Lys Asp Val Ser Asp Tyr Glu Asp Ile Ser Asp Leu Tyr Leu Ile 275 280 285 . 17

```
Ser Asp Ala Leu Val Thr Asp Tyr Ser Ser Val Met Phe Asp Phe Gly
                       295
Val Leu Lys Arg Pro Gln Ile Phe Tyr Ala Tyr Asp Leu Asp Lys Tyr
Gly Asp Glu Leu Arg Gly Phe Tyr Met Asp Tyr Lys Lys Glu Leu Pro
               325
                               :
                                   330
Gly Pro Ile Val Glu Asn Gln Thr Ala Leu Ile Asp Ala Leu Lys Gln
           340
                               345
Ile Asp Glu Thr Ala Asn Glu Tyr Ile Glu Ala Arg Thr Val Phe Tyr
                           360
Gln Lys Phe Cys Ser Leu Glu Asp Gly Gln Ala Ser Gln Arg Ile Cys
                       375
                                           380
Gln Thr Ile Phe Lys
385
<210> 21
<211> 1430
<212> DNA
<213> Staphylococcus aureus
<400> 21
tgatttgtaa tcaaaactag atataattaa ataatgactt aaaataattt taaaataggg 60
aaatgtaaag taataggagt totaagtgga ggatttacga tggataaaat agtaatcaaa 120
ggtggaaata aattaacggg tgaagttaaa gtagaaggtg ctaaaaatgc agtattacca 180
atattgacag catctttatt agcttctgat aaaccgagca aattagttaa tgttccagct 240
ttaagtgatg tagaaacaat aaataatgta ttaacaactt taaatgctga cgttacatac 300
aaaaaggacg aaaatgctgt tgtcgttgat gcaacaaaga ctctaaatga agaggcacca 360
tatgaatatg ttagtaaaat gcgtgcaagt attttagtta tgggacctct tttagcaaga 420
ctaggacatg ctattgttgc attgcctggt ggttgtgcaa ttggaagtag accgattgag 480
caacacatta aaggttttga agctttaggc gcagaaattc atcttgaaaa tggtaatatt 540
tatgctaatg ctaaagatgg attaaaaggt acatcaattc atttagattt tccaagtgta 600
ggagcaacac aaaatattat tatggcagca tcattagcta agggtaagac tttaattgaa 660
aatgcagcta aagaacctga aattgtcgat ttagcaaact acattaatga aatgggtggt 720
agaattactg gtgctggtac agacacaatt acaatcaatg gtgtagaatc attacatggt 780
gtagaacatg ctatcattcc agatagaatt gaagcaggca cattactaat cgctggtgct 840
ataacgegtg gtgatatttt tgtacgtggt gcaatcaaag aacatatggc gagtttagtc 900
tataaactag aagaaatggg cgttgaattg gactatcaag aagatggtat tcgtgtacgt 960
gctgaagggg aattacaacc tgtagacatc aaaactctac cacatcctgg attcccgact 1020
gatatgcaat cacaaatgat ggcattgtta ttaacggcaa atggtcataa agtcgtaacc 1080
gaaactgttt ttgaaaaccg ttttatgcat gttgcagagt tcaaacgtat gaatgctaat 1140
atcaatgtag aaggtegtag tgctaaactt gaaggtaaaa gtcaattgca aggtgcacaa 1200
gttaaagcga ctgatttaag agcagcagcc gccttaattt tagctggatt agttgctgat 1260
ggtaaaacaa gcgttactga attaacgcac ctagatagag gctatgttga cttacacggt 1320
aaattgaagc aattaggtgc agacattgaa cgtattaacg attaattcag taaattaata 1380
taatggagga tttcaaccat ggaaacaatt tttgattata accaaattaa
<210> 22
<211> 421
<212> PRT
<213> Staphylococcus aureus
```

Met Asp Lys Ile Val Ile Lys Gly Gly Asn Lys Leu Thr Gly Glu Val

															10
1				5					18 10					15	
		Glu				Asn	Ala	Val	٠.		Ile	Léu	Thr		
Leu	Leu	Ala	20 Ser	Asn	[_i vs	Pro	Ser	25 Lys		V⇒l	Aen	Va 1	30	λĺά	Tov
	•	35					40					. 45			
Ser	Asp 50	Val	Glu	Thr	Ile	Asn 55		Val	Leu	Thr	Thr 60	Leu	Asn	Ala	Asp
Val 65	Thr	Tyr	Lys	Lys	Asp 70	Glu	Asn	Ala	Val	Val 75	Val	Asp	Ala	Thr	Lys 80
Thr	Leu	Asn	Glu	G1u 85	Ala	Pro	Tyr	Glu	Tyr 90	Val	Ser	Lys	Met	Arg 95	Ala
Ser	Ile	Leu	Val 100	Met	Gly	Pro	Leu	Leu 105		Arg	Leu	Gly	His 110	Ala	Ile
Val	Ala	Leu 115	Pro	Gly	Gly	Cys	Ala 120	Ile	Gly	Ser	Arg	Pro 125	Ile	Glu	Gln
His	Ile 130	Lys	Gly	Phe	Glu	Ala 135	Leu	Gly	Ala	Glu	Ile 140		Leu	Glu	Àsn
Gly 145	Asn	Ile	Tyr	Ala	Asn 150	Ala	Lys	qaA	Gly	Leu 155	Ĺys	Gly	Thr	Ser	Ile 160
His	Leu	Asp	Phe	Pro 165	Ser	Val	Gly	Ala	Thr 170	Gln	Asn	Ile	Ile	Met 175	Ala
Ala	Ser	Leu	Ala 180	Lys	GŢĀ	Lys	Thr	Leu 185	Ile	Glu	Asn	Ala	Ala 190	Lys	Glu
Pro	Glu	Ile 195	Val	Asp	Leu	Ala	Asn 200	Tyr	Ile	Asn	Glu	Met 205	Gly	Gly	Arg
Île	Thr 210	Gly	Ala	Gly	Thr	Asp 215	Thr	Ile	Thr	Ile	Asn 220	Gly	Val	Ģlu	Ser
Leu 225	His	Gly	Val	Glu	His 230	Ala	Ile	Ile	Pro	Asp 235	Arg	Ile	Glu	Ala	Gly 240
Thr	Leu	Leu	Ile	Ala 245	Gly	Ala	Ile	Thr	Arg 250	Gly	Asp	Ile	Phe	Val 255	Arg
Gly	Ala	Ile	Lys 260	Glu	His	Met	Ala	Ser 265	Leu	Val	Tyr	Lys	Leu 270	Glu	Glu
Met	Ğly	Val 275	Glu	Leu	Asp	Tyr	Gln 280	Glu	Asp ·	Gly	Ile	Arg 285	Val	Arg	Ala
Glu	Gly 290	Glu	Ļeu	Gln	Pro	Val 295	Asp	Ile	Lys	Thr	Leu 300	Pro	His	Pro	Gly
Phe	Pro	Thr	Asp	Met	Gln	Ser	Gln	Met	Met	Ala	Leu	Leu	Leu	Thr	Ala

```
His Val Ala Glu Phe Lys Arg Met Asn Ala Asn Ile Asn Val Glu Gly 340 345 350
```

Arg Ser Ala Lys Leu Glu Gly Lys Ser Gln Leu Gln Gly Ala Gln Val

Lys Ala Thr Asp Leu Arg Ala Ala Ala Ala Leu Ile Leu Ala Gly Leu 370 375 380

Val Ala Asp Gly Lys Thr Ser Val Thr Glu Leu Thr His Leu Asp Arg 385 390 395 400

Gly Tyr Val Asp Leu His Gly Lys Leu Lys Gln Leu Gly Ala Asp Ile 405 410 415

Glu Arg Ile Asn Asp 420

<210> 23

<211> 2204

<212> DNA

<213> Staphylococcus aureus

<400> 23

agaaaaatgg ctcaatcgaa ctagatatta tctttaaatc acaagggcca aaacgtttgt 60 tagcgcaatt tgcaccaatt gaaaaaagga ggattaaggg atggctgatt tatcgtctcg 120 tgtgaacgag ttacatgatt tattaaatca atacagttat gaatactatg tagaggataa 180 tccatctgta ccagatagtg aatatgacaa attacttcat gaactgatta aaatagaaga 240 ggagcatcct gagtataaga ctgtagattc tccaacagtt agagttggcg gtgaagccca 300 agcctctttc aataaagtca accatgacac gccaatgtta agtttaggga atgcatttaa 360 tgaggatgat ttgagaaaat tcgaccaacg catacgtgaa caaattggca acgttgaata 420 tatgtgcgaa ttaaaaattg atggcttagc agtatcattg aaatatgttg atggatactt 480 cyttcaagyt ttaacacyty ytgatygaac aacagytyaa yatattaccy aaaatttaaa 540 aacaattcat gcgatacctt tgaaaatgaa agaaccatta aatgtagaag ttcgtggtga 600 agcatatatg ccgagacgtt catttttacg attaaatgaa gaaaaagaaa aaaatgatga 660 gcagttattt gcaaatccaa gaaacgctgc tgcgggatca ttaagacagt tagattctaa 720 attaacggca aaacgaaagc taagcgtatt tatatatagt gtcaatgatt tcactgattt 780 caatgegegt tegeaaagtg aageattaga tgagttagat aaattaggtt ttacaacgaa 840 taaaaataga gcgcgtgtaa ataatatcga tggtgtttta gagtatattg aaaaatggac 900 aagccaaaga gagtcattac cttatgatat tgatgggatt gttattaagg ttaatgattt 960 agatcaacag gatgagatgg gattcacaca aaaatctcct agatgggcca ttgcttataa 1020 atttccagct gaggaagtag taactaaatt attagatatt gaattaagta ttggacgaac 1080 aggtgtagtc acacctactg ctattttaga accagtaaaa gtrgctggta caactgtatc 1140 aagagcatct ttgcacaatg aggatttaat tcatgacaga gatattcgaa ttggtgatag 1200 tgttgtagtg aaaaaagcag gtgacatcat acctgaagtt gtacgtagta ttccagaacg 1260 tagacctgag gatgctgtca catatcatat gccaacccat tgtccaagtt gtggacatga 1320 attagtacgt attgaaggeg aagtageact tegttgeatt aatecaaaat gecaageaca 1380 acttgttgaa ggattgattc actttgtatc aagacaagcc atgaatattg atggtttagg 1440 cactaaaatt attcaacagc tttatcaaag cgaattaatt aaagatgttg ctgatatttt 1500 ctatttaaca gaagaagatt tattaccttt agacagaatg gggcagaaaa aagttgataa 1560 tttattagct gccattcaac aagctaagga caactcttta gaaaatttat tatttggtct 1620 aggtattagg catttaggtg ttaaagcgag ccaagtgtta gcagaaaaat atgaaacgat 1680 agatcgatta ctaacggtaa ctgaagcgga attagtagaa attcatgata taggtgataa 1740 agtagcacaa tctgtagtta cttatttaga aaatgaagat attcgtgctt taattcaaaa 1800 attaaaagat aaacatgtta atatgattta taaaggtatc aaaacatcag atattgaagg 1860 acatcctgaa tttagtggta aaacgatagt actgactggt aagytacatc aaatgacacg 1920 caatgaagca totaaatggo ttgcatcaca aggtgotaaa gttacaagta gogttactaa 1980 aaatacagat gtcgttattg ctggtgaaga tgcaggttca aaattaacaa aagcacaaag 2040 tttaggtatt gaaatttgga cagagcaaca atttgtagat aagcaaaatg aattaaatag 2100 WO 00/12678 PCT/US99/19726

20

ttagaggggt atgtcgatga agcgtacatt agtattattg attacagcta tctttatact 2160 cgctgcttgt ggtaaccata aggatgacca ggctggaaaa gata 2204

<210> 24 /

<211> 667

<212> PRT

<213> Staphylococcus aureus

<400> 24

Met Ala Asp Leu Ser Ser Arg Val Asn Glu Leu His Asp Leu Leu Asn 1 5 10 15

Gln Tyr Ser Tyr Glu Tyr Tyr Val Glu Asp Asn Pro Ser Val Pro Asp 20 25 30

Ser Glu Tyr Asp Lys Leu Leu His Glu Leu Ile Lys Ile Glu Glu Glu 35 40 45

His Pro Glu Tyr Lys Thr Val Asp Ser Pro Thr Val Arg Val Gly Gly 50 55 60

Glu Ala Gln Ala Ser Phe Asn Lys Val Asn His Asp Thr Pro Met Leu 65 70 75 80

Ser Leu Gly Asn Ala Phe Asn Glu Asp Asp Leu Arg Lys Phe Asp Gln
85 90 95

Arg Ile Arg Glu Gln Ile Gly Asn Val Glu Tyr Met Cys Glu Leu Lys 100 105 110

Ile Asp Gly Leu Ala Val Ser Leu Lys Tyr Val Asp Gly Tyr Phe Val 115 120 125

Gln Gly Leu Thr Arg Gly Asp Gly Thr Thr Gly Glu Asp Ile Thr Glu 130 135 140

Asn Leu Lys Thr Ile His Ala Ile Pro Leu Lys Met Lys Glu Pro Leu 145 150 155 160

Asn Val Glu Val Arg Gly Glu Ala Tyr Met Pro Arg Arg Ser Phe Leu 165 170 175

Arg Leu Asn Glu Glu Lys Glu Lys Asn Asp Glu Gln Leu Phe Ala Asn 180 185 190

Pro Arg Asn Ala Ala Gly Ser Leu Arg Gln Leu Asp Ser Lys Leu 195 200 205

Thr Ala Lys Arg Lys Leu Ser Val Phe Ile Tyr Ser Val Asn Asp Phe 210 215 220

Thr Asp Phe Asn Ala Arg Ser Gln Ser Glu Ala Leu Asp Glu Leu Asp 225 230 235 240

Lys Leu Gly Phe Thr Thr Asn Lys Asn Arg Ala Arg Val Asn Asn Ile 245 250 255

Asp Gly Val Leu Glu Tyr Ile Glu Lys Trp Thr Ser Gln Arg Glu Ser 260 265 270

Leu Pro Tyr Asp Ile Asp Gly Ile Val Ile Lys Val Asn Asp Leu Asp

WO 00/12678 PCT/US99/19726

									21						
		275		·			280		•			285			
Gln	Gln 290	Asp	Glu	Met	Gly	Phe 295	Thr	Gln	Lys	Ser	Pro 300	Arg	Trp	Ala	Ile
Ala 305	Tyr	Lys-	Phe-		Ala 310	Glu	Glu	Val.	-Val-	Thr 315	Lys	Leu	Leu	Asp	11e 320
Glu	Leu	Ser	Ile	Gly 325	Arg	Thr	Gly	Val	Val 330		Pro	Thr	Ala	11e 335	Leu
Glu	Pro	Val	Lys 340	Val	Ala	Gly	Thr	Thr 345	Val	Ser	Arg	Ala	Ser 350	Leu	His
Asn	G1u	Asp 355	Leu	Ile	His	Asp	Arg 360	Asp	Ile	Arg	Ile	Gly 365	Asp	Ser	Val
Val	Val 370	Lys	Lys	Ala	Gly	Asp 375	Ile	Ile	Pro	Glu	Val 380		Arg	Ser	Ile
Pro 385	Glu	Arg	Arg	Pro	Glu 390	Asp	Ala	Va1	Thr	Tyr 395	His	Met	Pro	Thr	His 400
Сув	Pro	Ser	Cys	Gly 405	His	Glu	Leu	Val	Arg 410	Ile	Glu	Gly	Glu	Val 415	Ala
Leu	Arg	Сув	11e 420	Asn	Pro	rys	CÀa	Gln 425	Ala	Gln	Leu	Val	Glu 430	Gly	Leu
Ile	His	Phe 435	Val	Ser	Arg	Gln	Ala 440	Met	Asn	Ile	Asp	Gly 445	Leu	Gly	Thr
Lys	Ile 450	Ile	Gln	Gln	Leu	Tyr 455	Gln	Ser	Glu	Leu	Ile 460	Lys	Asp	Val	Ala
Asp 465	Ile	Phe	Tyr	Leu	Thr 470	Glu	Glu	Asp	Leu	Leu 475	Pro	Leu	Asp	Arg	Met 480
Gly	Gln	Lys	Lys	Val 485	Asp	Asn	Leu	Leu	Ala 490	Ala	Ile	Gln	Gln	Ala 495	Lys
Asp	Asn	Ser	Leu 500	Glu	Asn	Leu	Leu	Phe 505	Gly	Leu	Gly	Ile	Arg 510	His	Leu
Gly	Val	Lys 515	Ala	Ser	Gln	Val	Leu 520	Ala	Glu	Lys	Tyr	Glu 525	Thr	Ile	Asp
Arg	Leu 530	Leu	Thr	Va1	Thr	Glu 535		Glu	Leu	Val	Glu 540		His	Asp	Ile
Gly 5 4 5	Asp	Lys	Val	Ala	Gln 550	Ser	Val	Val	Thr	Туг 555		Glu	Asn	Glu	Asp 560
Ile	Arg	Ala	Leu	Ile 565		Lys	Leu	Lys	Asp 570	_	His	Val	Asn	Met 575	
Tyr	Lys	Gly	Ile 580		Thr	Ser	Asp	11e 585		Gly	His	Pro	Glu 590		Ser
Gly	Lys	Thr		Val	Leu	Thr	Gly		Leu	His	Gln	Met 605		Arg	Asr

```
WO 00/12678
                                     22
Glu Ala Ser Lys Trp Leu Ala Ser Gln Gly Ala Lys Val Thr Ser Ser
                        615
Val Thr Lys Asn Thr Asp Val Val Ile Ala Gly Glu Asp Ala Gly Ser
                    630
                                         635
Lys Leu Thr Lys Ala Gln Ser Leu Gly Ile Glu Ile Trp Thr Glu Gln
Gln Phe Val Asp Lys Gln Asn Glu Leu Asn Ser
            660
<210> 25
<211> 959
<212> DNA
<213> Staphylococcus aureus
<400> 25
tgtctcactc actttccaaa atactaaagt aacatcttta gtatatcaaa gaatttttgc 60
tataataagt tataattata taaaaaagga acgggataaa atgattgtaa aaacagaaga 120
agaattacaa gcgttaaaag aaattggata catatgcgct aaagtgcgca atacaatgca 180
agctgcaacc aaaccaggta tcactacgaa agagcttgat aatattgcga aagagttatt 240
tgaagaatac ggtgctattt ctgcgccaat tcatgatgaa aattttcctg gtcaaacgtg 300
tattagtgtc aatgaagagg tggcacatgg gattccaagt aagcgtgtca ttcgtgaagg 360
agatttagta aatattgatg tatcggcttt gaagaatggc tattatgcag atacaggcat 420
ttcatttgtc gttggagaat cagatgatcc aatgaaacaa aaagtatgtg acgtagcaac 480
gatggcattt gagaatgcaa ttgcaaaagt aaaaccgggt actaagttaa gtaacattgg 540
taaagoggtg cataatacag ctagacaaaa tgatttgaaa gtcattaaaa acttaacagg 600
teatggtgtt ggtttateat tacatgaage accageacat gtaettaatt actttgatee 660
aaaagacaaa acattattaa ctgaaggtat ggtattagct attgaaccgt ttatctcatc 720
aaatgcatca tttgttacag aaggtaaaaa tgaatgggct tttgaaacga gcgataaaag 780
ttttgttgct caaattgagc atacggttat cgtgactaag gatggtccga ttttaacgac 840
aaagattgaa gaagaatagt tcaacatata ctaagactaa agtatgaaca tcatttagtt 900
ccggagccta ttcatattgg tttcggaact gttttataat aattaagaac acaatcaat 959
<210> 26
<211> 252
```

<212> PRT

<213> Staphylococcus aureus

<400> 26

Met Ile Val Lys Thr Glu Glu Glu Leu Gln Ala Leu Lys Glu Ile Gly

Tyr Ile Cys Ala Lys Val Arg Asn Thr Met Gln Ala Ala Thr Lys Pro

Gly Ile Thr Thr Lys Glu Leu Asp Asn Ile Ala Lys Glu Leu Phe Glu

Glu Tyr Gly Ala Ile Ser Ala Pro Ile His Asp Glu Asn Phe Pro Gly

Gln Thr Cys Ile Ser Val Asn Glu Glu Val Ala His Gly Ile Pro Ser

Lys Arg Val Ile Arg Glu Gly Asp Leu Val Asn Ile Asp Val Ser Ala 90

WO 00/12678 PCT/US99/19726

23

Leu Lys Asn Gly Tyr Tyr Ala Asp Thr Gly Ile Ser Phe Val Val Gly 100 105 110

Glu Ser Asp Asp Pro Met Lys Gln Lys Val Cys Asp Val Ala Thr Met 115 120 125

Ala Phe Glu Asn Ala Ile Ala Lys Val Lys Pro Gly Thr Lys Leu Ser 130 135 140

Asn Ile Gly Lys Ala Val His Asn Thr Ala Arg Gln Asn Asp Leu Lys 145 150 155 160

Val Ile Lys Asn Leu Thr Gly His Gly Val Gly Leu Ser Leu His Glu 165 170 175

Ala Pro Ala His Val Leu Asn Tyr Phe Asp Pro Lys Asp Lys Thr Leu 180 185 190

Leu Thr Glu Gly Met Val Leu Ala Ile Glu Pro Phe Ile Ser Ser Asn 195 200 205

Ala Ser Phe Val Thr Glu Gly Lys Asn Glu Trp Ala Phe Glu Thr Ser 210 215 220

Asp Lys Ser Phe Val Ala Gln Ile Glu His Thr Val Ile Val Thr Lys 225 230 235 240

Asp Gly Pro Ile Leu Thr Thr Lys Ile Glu Glu Glu 245 250

<210> 27

<211> 3400

<212> DNA

<213> Staphylococcus aureus

<400> 27

tatacagttt atatgaaatt aaagtagcac ctcataaata cttagatttt taattggaaa 60 tttgatacaa tttagtgatg aatgacttaa aggaggcttt tattaatgac aaaagtaaca 120 cgtgaagaag ttgagcatat cgcgaatctt gcaagacttc aaatttctcc tgaagaaacg 180 gatacagaag gcgttgaacc tacatatcac gttttagatt tacaaaacgt tttacgtgaa 300 gataaagcaa ttaaaggtat tccacaagaa ttagctttga aaaatgccaa agaaacagaa 360 gatggacaat ttaaagtgcc tacaatcatg aatgaggagg acgcgtaaga tgagcattcg 420 ctacgaatcg gttgagaatt tattaacttt aataaaagac aaaaaaatca aaccatctga 480 tgttgttaaa gatatatatg atgcaattga agagactgat ccaacaatta agtcttttct 540 agcgctggat aaagaaaatg caatcaaaaa agcgcaagaa ttggatgaat tacaagcaaa 600 agatcaaatg gatggcaaat tatttggtat tccaatgggt ataaaagata acattattac 660 aaacggatta gaaacaacat gtgcaagtaa aatgttagaa ggttttgtgc caatttacga 720 atctactgta atggaaaaac tacataatga aaatgccgtt ttaatcggta aattaaatat 780 ggatgagttt gcaatgggtg gttcaacaga aacatcttat ttcaaaaaaa cagttaaccc 840 atttgaccat aaagcagtgc caggtggttc atcaggtgga tctgcagcag cagttgcagc 900 tggcttagta ccatttagct taggttcaga cacaggtggt tcaattagac aaccggctgc 960 atattqtqqc gttgtcggta tgaaaccaac atacggtcgt gtatctcgat ttggattagt 1020 tgcttttgca tcttcattag accaaattgg tccattgact cgaaatgtaa aagataatgc 1080 aatcgtatta gaagctattt ctggtgcaga tgttaatgac tctacaagtg caccagttga 1140 tgatgtagac tttacatctg aaattggtaa agatattaaa ggattaaaag ttgcattacc 1200 taaagaatac ttaggtgaag gtgtagctga tgacgtaaaa gaagcagttc aaaacgctgt 1260 agaaacttta aaatctttag gtgctgtcgt tgaggaagta tcattgccaa atactaaatt 1320 togtattcca tcatattacg tgattgcatc atcagaagct tcgtcaaacc tttctcgttt 1380 tgacggaatt cgttatggtt atcattctaa agaagctcat tcattagaag aattatataa 1440

```
aatgtcaaga totgaaggtt toggtaaaga agtaaaacgt ogtattttot taggtacatt 1500
tgcattaagt tcaggttact atgatgctta ctataaaaaa tctcaaaaag ttagaacatt 1560
gattaaaaat gactttgata aagtattcga aaattatgat gtagtagttg gtccaacagc 1620
gcctacaact gcgtttaatt taggtgaaga aattgatgat ccattaacaa tgtatgccaa 1680
tgatttatta acaacaccag taaacttagc tggattacct ggtatttctg ttccttgtgg 1740
acaatcaaat ggccgaccaa tcggtttaca gttcattggt aaaccattcg atgaaaaaac 1800
attataagga gtggaaatca tgcattttga aacagttata ggacttgaag ttcacgtaga 1920
gttaaaaacg gactcaaaaa tgttttctcc atcaccagcg cattttggag cagaacctaa 1980
ctcaaataca aatgttateg acttageata tecaggtgte ttaccagttg ttaataageg 2040
tgcagtagac tgggcaatgc gtgctgcaat ggcactaaat atggaaatcg caacagaatc 2100
taagtttgac cgtaagaact atttctatcc agataatcca aaagcatatc aaatttctca 2160
atttgatcaa ccaattggtg aaaatggata tatcgatatc gaagtcgacg gtgaaacaaa 2220
acgaatcggt attactcgtc ttcacatgga agaagatgct ggtaagtcaa cacataaagg 2280
tgagtattca ttagttgact tgaaccgtca aggtacaccg ctaattgaaa tcgtatctga 2340
accagatatt cgttcaccta aagaagcata tgcatattta gaaaaattgc gttcaattat 2400
tcaatacact ggtgtatcag acgttaagat ggaagaggga tctttacgtt gtgatgctaa 2460
catctcttta cgtccatatg gtcaagaaaa atttggtact aaagccgaat tgaaaaactt 2520
aaactcattt aactatgtac gtaaaggttt agaatatgaa gaaaaacgcc aagaagaaga 2580
attgttaaat ggtggagaaa tcggacaaga aacacgtcga tttgatgaat ctacaggtaa 2640
aacaatttta atgcgtgtta aagaaggttc tgatgattac cgttacttcc cagagcctga 2700
cattgtacct ttatatattg atgatgcttg gaaagagcgt gttcgtcaga caattcctga 2760
attaccagat gaacgtaaag ctaagtatgt aaatgaatta ggtttacctg catacgatgc 2820
acacgtatta acattgacta aagaaatgtc agatttcttt gaatcaacaa ttgaacacgg 2880
tgcagatgtt aaattaacat ctaactggtt aatgggtggc gtaaacgaat atttaaataa 2940
aaatcaagta gaattattag atactaaatt aacaccagaa aatttagcag gtatgattaa 3000
acttatcgaa gacggaacaa tgagcagtaa aattgcgaag aaagtcttcc cagagttagc 3060
agctaaaggt ggtaatgcta aacagattat ggaagataat ggcttagttc aaatttctga 3120
tgaagcaaca cttctaaaat ttgtaaatga agcattagac aataacgaac aatcagttga 3180
agattacaaa aatggtaaag gcaaagctat gggcttctta gttggtcaaa ttatgaaagc 3240
gtctaaaggt caagctaatc cacaattagt aaatcaacta ttaaaacaag aattagataa 3300
aagataattt aaatcatcaa actatgaaga tttaaaaaaat aaacccttga ttgctgactt 3360
agatgcaatc gagggtttat ttatatctat agaagtcaaa
<210> 28
<211> 485
<212> PRT
<213> Staphylococcus aureus
<400> 28
Met Ser Ile Arg Tyr Glu Ser Val Glu Asn Leu Leu Thr Leu Ile Lys
Asp Lys Lys Ile Lys Pro Ser Asp Val Val Lys Asp Ile Tyr Asp Ala
Île Glu Glu Thr Asp Pro Thr Ile Lys Ser Phe Leu Ala Leu Asp Lys
        35
Glu Asn Ala Ile Lys Lys Ala Gln Glu Leu Asp Glu Leu Gln Ala Lys
Asp Gln Met Asp Gly Lys Leu Phe Gly Ile Pro Met Gly Ile Lys Asp
 65
Asn Ile Ile Thr Asn Gly Leu Glu Thr Thr Cys Ala Ser Lys Met Leu
                                    90
Glu Gly Phe Val Pro Ile Tyr Glu Ser Thr Val Met Glu Lys Leu His
           100
                               105
                                                   110
```

Asn Glu Asn Ala Val Leu Ile Gly Lys Leu Asn Met Asp Glu Phe Ala 120 Met Gly Gly Ser Thr Glu Thr Ser Tyr Phe Lys Lys Thr Val Asn Pro 135 140 Phe Asp His Lys Ala Val Pro Gly Gly Ser Ser Gly Gly Ser Ala Ala 150 155 Ala Val Ala Ala Gly Leu Val Pro Phe Ser Leu Gly Ser Asp Thr Gly 165 170 Gly Ser Ile Arg Gln Pro Ala Ala Tyr Cys Gly Val Val Gly Met Lys Pro Thr Tyr Gly Arg Val Ser Arg Phe Gly Leu Val Ala Phe Ala Ser Ser Leu Asp Gln Ile Gly Pro Leu Thr Arg Asn Val Lys Asp Asn Ala Ile Val Leu Glu Ala Ile Ser Gly Ala Asp Val Asn Asp Ser Thr Ser 225 ... 230 Ala Pro Val Asp Asp Val Asp Phe Thr Ser Glu Ile Gly Lys Asp Ile 250 -Lys Gly Leu Lys Val Ala Leu Pro Lys Glu Tyr Leu Gly Glu Gly Val Ala Asp Asp Val Lys Glu Ala Val Gln Asn Ala Val Glu Thr Leu Lys Ser Leu Gly Ala Val Val Glu Glu Val Ser Leu Pro Asn Thr Lys Phe Gly Ile Pro Ser Tyr Tyr Val Ile Ala Ser Ser Glu Ala Ser Ser Asn 315 Leu Ser Arg Phe Asp Gly Ile Arg Tyr Gly Tyr His Ser Lys Glu Ala His Ser Leu Glu Glu Leu Tyr Lys Met Ser Arg Ser Glu Gly Phe Gly 345 Lys Glu Val Lys Arg Arg Ile Phe Leu Gly Thr Phe Ala Leu Ser Ser Gly Tyr Tyr Asp Ala Tyr Tyr Lys Lys Ser Gln Lys Val Arg Thr Leu Ile Lys Asn Asp Phe Asp Lys Val Phe Glu Asn Tyr Asp Val Val 390 Gly Pro Thr Ala Pro Thr Thr Ala Phe Asn Leu Gly Glu Glu Ile Asp Asp Pro Leu Thr Met Tyr Ala Asn Asp Leu Leu Thr Thr Pro Val Asn 425 Leu Ala Gly Leu Pro Gly Ile Ser Val. Pro Cys Gly Gln Ser Asn Gly

440

445

Arg Pro Ile Gly Leu Gln Phe Ile Gly Lys Pro Phe Asp Glu Lys Thr 450 455 460

Leu Tyr Arg Val Ala Tyr Gln Tyr Glu Thr Gln Tyr Asn Leu His Asp 465 470 475 480

Val Tyr Glu Lys Leu 485

<210> 29

<211> 475

<212> PRT

<213> Staphylococcus aureus

<400> 29

Met His Phe Glu Thr Val Ile Gly Leu Glu Val His Val Glu Leu Lys

1 5 10 15

Thr Asp Ser Lys Met Phe Ser Pro Ser Pro Ala His Phe Gly Ala Glu 20 25 30

Pro Asn Ser Asn Thr Asn Val Ile Asp Leu Ala Tyr Pro Gly Val Leu 35 40 45

Pro Val Val Asn Lys Arg Ala Val Asp Trp Ala Met Arg Ala Ala Met 50 55

Ala Leu Asn Met Glu Ile Ala Thr Glu Ser Lys Phe Asp Arg Lys Asn 65 70 75

Tyr Phe Tyr Pro Asp Asn Pro Lys Ala Tyr Gln Ile Ser Gln Phe Asp 85 90 95

Gln Pro Ile Gly Glu Asn Gly Tyr Ile Asp Ile Glu Val Asp Gly Glu 100 105 110

Thr Lys Arg Ile Gly Ile Thr Arg Leu His Met Glu Glu Asp Ala Gly 115 120 125

Lys Ser Thr His Lys Gly Glu Tyr Ser Leu Val Asp Leu Asn Arg Gln 130 135 140

Gly Thr Pro Leu Ile Glu Ile Val Ser Glu Pro Asp Ile Arg Ser Pro 145 150 155

Lys Glu Ala Tyr Ala Tyr Leu Glu Lys Leu Arg Ser Ile Ile Gln Tyr 165 170 175

Thr Gly Val Ser Asp Val Lys Met Glu Glu Gly Ser Leu Arg Cys Asp 180 185

Ala Asn Ile Ser Leu Arg Pro Tyr Gly Gln Glu Lys Phe Gly Thr Lys 195 200 205

Ala Glu Leu Lys Asn Leu Asn Ser Phe Asn Tyr Val Arg Lys Gly Leu 210 215 220

Glu Tyr Glu Glu Lys Arg Gln Glu Glu Glu Leu Leu Asn Gly Gly Glu

PCT/US99/19726

230 · 235 225 Ile Gly Gln Glu Thr Arg Arg Phe Asp Glu Ser Thr Gly Lys Thr Ile 250 Leu-Met Arg Val Lys Glu-Gly-Ser Asp Asp Tyr-Arg Tyr Phe Pro Glu-Pro Asp Ile Val Pro Leu Tyr Ile Asp Asp Ala Trp Lys Glu Arg Val 280 Arg Gln Thr Ile Pro Glu Leu Pro Asp Glu Arg Lys Ala Lys Tyr Val 295 Asn Glu Leu Gly Leu Pro Ala Tyr Asp Ala His Val Leu Thr Leu Thr Lys Glu Met Ser Asp Phe Phe Glu Ser Thr Ile Glu His Gly Ala Asp 330 Val Lys Leu Thr Ser Asn Trp Leu Met Gly Gly Val Asn Glu Tyr Leu 345 Asn Lys Asn Gln Val Glu Leu Leu Asp Thr Lys Leu Thr Pro Glu Asn Leu Ala Gly Met Ile Lys Leu Ile Glu Asp Gly Thr Met Ser Ser Lys 375 Ile Ala Lys Lys Val Phe Pro Glu Leu Ala Ala Lys Gly Asn Ala Lys Gln Ile Met Glu Asp Asn Gly Leu Val Gln Ile Ser Asp Glu Ala 405 410 Thr Leu Leu Lys Phe Val Asn Glu Ala Leu Asp Asn Asn Glu Gln Ser Val Glu Asp Tyr Lys Asn Gly Lys Gly Lys Ala Met Gly Phe Leu Val Gly Gln Ile Met Lys Ala Ser Lys Gly Gln Ala Asn Pro Gln Leu Val Asn Gln Leu Leu Lys Gln Glu Leu Asp Lys Arg 465 <210> 30 <211> 100 <212> PRT <213> Staphylococcus aureus <400> 30 Met Thr Lys Val Thr Arg Glu Glu Val Glu His Ile Ala Asn Leu Ala 10

Arg Leu Gln Ile Ser Pro Glu Glu Thr Glu Glu Met Ala Asn Thr Leu 20 25 30

Glu Ser Ile Leu Asp Phe Ala Lys Gln Asn Asp Ser Ala Asp Thr Glu

45

35 40

Gly Val Glu Pro Thr Tyr His Val Leu Asp Leu Gln Asn Val Leu Arg 50 55 60

Glu Asp Lys Ala Ile Lys Gly Ile Pro Gln Glu Leu Ala Leu Lys Asn 65 70 75 80

Ala Lys Glu Thr Glu Asp Gly Gln Phe Lys Val Pro Thr Ile Met Asn 85 90 95

Glu Glu Asp Ala 100

<210> 31

<211> 772

<212> DNA

<213> Staphylococcus aureus

<400> 31

cttactaagc taaagaataa tgataattga tggcaatggc ggaaaatgga tgttgcatt 60 ataataataa atgaaacaat tatgttggag gtaaacagc atgaaatgta ttgtaggtct 120 aggtaatata ggtaaacagt ttgaacttac aagacataat atcggctttg aagtcgttga 180 ttatatttta gagaaaaata attttcatt agataaacaa aagtttaaag gtgcatatac 240 aattgaacga atgaacggcg ataaagtgt atttatcgaa ccaatgacaa tgatgaattt 300 gtcaggtgaa gcagttgcac cgattatgga ttattacaat gttaatccag aagatttaat 360 tgtcttatat gatgatttag atttagaaca aggacaagtt cgcttaagac aaaaaggaag 420 tgcggggggt cacaatggta tgaaatcaat tattaaaatg cttggtacag accaatttaa 480 acgtattcgt attggtggg gaagaccaac gaatggtatg acggtacctg attatgttt 540 acaacgcttt tcaaatgatg aaatggtaac gatggaaaaa gttatcgaac acgcagcacg 600 cgcaattgaa aagtttgttg aaacatcacg attgaccat gttatgaatg aatttaatgg 660 tgaagtgaaaa tattggaaa acgaaacac ctagtaacg gtcttccc gt 772

<210> 32

<211> 190

<212> PRT

<213> Staphylococcus aureus

<400> 32

Met Lys Cys Ile Val Gly Leu Gly Asn Ile Gly Lys Arg Phe Glu Leu
1 5 15

Thr Arg His Asn Ile Gly Phe Glu Val Val Asp Tyr Ile Leu Glu Lys 20 25 30

Asn Asn Phe Ser Leu Asp Lys Gln Lys Phe Lys Gly Ala Tyr Thr Ile 35 40 45

Glu Arg Met Asn Gly Asp Lys Val Leu Phe Ile Glu Pro Met Thr Met 50 55 60

Met Asn Leu Ser Gly Glu Ala Val Ala Pro Ile Met Asp Tyr Tyr Asn 65 70 75 80

Val Asn Pro Glu Asp Leu Ile Val Leu Tyr Asp Asp Leu Asp Leu Glu 85 90 95

Gln Gly Gln Val Arg Leu Arg Gln Lys Gly Ser Ala Gly Gly His Asn 100 105 110 Gly Met Lys Ser Ile Ile Lys Met Leu Gly Thr Asp Gln Phe Lys Arg 115 120 125

Ile Arg Ile Gly Val Gly Arg Pro Thr Asn Gly Met Thr Val Pro Asp

Tyr Val Leu Gln Arg Phe Ser Asn Asp Glu Met Val Thr Met Glu Lys
145 ,150 155 160

Val Ile Glu His Ala Ala Arg Ala Ile Glu Lys Phe Val Glu Thr Ser 165 170 175

Arg Phe Asp His Val Met Asn Glu Phe Asn Gly Glu Val Lys 180 185 190

<210> 33

<211> 1277

<212> PRT

<213> Staphylococcus aureus

<400> 33

Thr Gly Ala Thr Cys Cys Gly Ala Thr Thr Ala Thr Cys Thr Thr Ala
1 5 10 15

Gly Thr Ala Gly Gly Thr Gly Cys Cys Ala Ala Thr Gly Ala Ala Ala 20 25 30

Gly Thr Thr Ala Thr Gly Ala Gly Cys Cys Ala Cys Gly Thr Thr Gly 35 40 45

Thr Cys Gly Cys Gly Cys Gly Cys Ala Cys Cys Ala Thr Ala Thr Cys
50 55 60

Gly Thr Ala Gly Cys Ala Cys Cys Thr Ala Gly Thr Gly Ala Thr Ala 65 70 75 80

Ala Thr Ala Ala Gly Gly Ala Gly Gly Ala Ala Thr Thr 85 90 95

Ala Thr Ala Ala Gly Thr Gly Thr Thr Thr Gly Ala Thr Cys Ala Ala 100 105 110

....

Thr Thr Ala Gly Ala Thr Ala Thr Thr Gly Thr Ala Gly Ala Ala Gly 115 120 125

Ala Ala Ala Gly Ala Thr Ala Cys Gly Ala Ala Cys Ala Gly Thr Thr 130 135 140

Ala Ala Ala Thr Gly Ala Ala Cys Thr Gly Thr Thr Ala Ala Gly Thr 145 150 155 160

Gly Ala Cys Cys Cys Ala Gly Ala Thr Gly Thr Thr Gly Thr Ala Ala 165 170 175

Ala Cys Gly Thr Ala Ala Ala Thr Ala Thr Thr Cys Thr Ala Ala Ala 195 200 205

- Gly Ala Gly Cys Ala Ala Gly Cys Thr Gly Ala Thr Thr Thr Ala Cys 210 220
- Ala Ala Ala Ala Ala Cys Thr Gly Thr Ala Gly Ala Thr Gly Thr 225 230 235 240
- Thr Thr Ala Thr Cys Gly Thr Ala Ala Cys Thr Ala Thr Ala Ala Ala 245 250 255
- Gly Cys Thr Ala Ala Ala Ala Ala Gly Ala Ala Gly Ala Ala Thr 260 265 270
- Thr Ala Gly Cys Thr Gly Ala Thr Ala Thr Thr Gly Ala Ala Gly Ala 275 280 285
- Ala Ala Thr Gly Thr Thr Ala Ala Gly Thr Gly Ala Gly Ala Cys Thr 290 295 300
- Gly Ala Thr Gly Ala Thr Ala Ala Gly Ala Ala Gly Ala Ala Gly 305 310 315 320
- Thr Ala Gly Ala Ala Ala Thr Gly Thr Thr Ala Ala Ala Ala Gly Ala
 325 330 335
- Gly Gly Ala Gly Ala Gly Thr Ala Ala Thr Gly Gly Thr Ala Thr Thr 340 345 350
- Ala Ala Gly Cys Thr Gly Ala Ala Cys Thr Thr Cys Cys Ala Ala 355 360 365
- Ala Thr Cys Thr Thr Gly Ala Ala Gly Ala Gly Ala Gly Cys Thr 370 375 380
- Thr Ala Ala Ala Ala Thr Ala Thr Thr Ala Thr Thr Gly Ala Thr Thr 385 390 395 400
- Cys Cys Thr Ala Ala Ala Gly Ala Thr Cys Cys Thr Ala Ala Thr Gly
 405 410 415
- Ala Thr Gly Ala Cys Ala Ala Ala Gly Ala Cys Gly Thr Thr Ala Thr 420 425 430
- Thr Gly Thr Ala Gly Ala Ala Ala Thr Ala Ala Gly Ala Gly Cys Ala
 435 440 445
- Gly Cys Ala Gly Cys Ala Gly Gly Thr Gly Gly Thr Gly Ala Thr Gly
 450 455 460
- Ala Gly Gly Cys Thr Gly Cys Gly Ala Thr Thr Thr Thr Thr Gly Cys 465 470 475 480
- Thr Gly Gly Thr Gly Ala Thr Thr Ala Ala Thr Gly Cys Gly Thr
 485 490 495
- Ala Thr Gly Thr Ala Thr Thr Cys Ala Ala Ala Gly Thr Ala Thr Gly 500 505 510
- Cys Thr Gly Ala Ala Thr Cys Ala Cys Ala Ala Gly Gly Ala Thr Thr 515 520 525

- Cys Ala Ala Ala Cys Thr Gly Ala Ala Ala Thr Ala Gly Thr Ala 530 535 540
- Gly Ala Ala Gly Cys Gly Thr Cys Thr Gly Ala Ala Ala Gly Thr Gly 545 550 555 560
- Ala Cys Cys Ala Thr Gly Gly Thr Gly Gly Thr Thr Ala Cys Ala Ala 565 570 575
- Ala Gly Ala Ala Ala Thr Thr Ala Gly Thr Thr Thr Cys Thr Cys Ala 580 585 590
- Gly Thr Thr Cys Thr Gly Gly Thr Ala Ala Thr Gly Gly Cys Gly
 595 600 605
- Cys Gly Thr Ala Thr Ala Gly Thr Ala Ala Ala Thr Thr Gly Ala Ala 610 620
- Ala Thr Thr Gly Ala Ala Ala Thr Gly Gly Thr Gly Cys Gly 625 630 635
- Cys Ala Cys Cys Gly Cys Gly Thr Thr Cys Ala Ala Cys Gly Thr Gly 645 650 655
- Thr Gly Cys Cys Thr Gly Ala Ala Cys Ala Gly Ala Ala Thr Cys 660 665 670
- Ala Gly Gly Thr Gly Gly Ala Cys Gly Thr Ala Thr Thr Cys Ala Thr 675 680 685
- Ala Cys Thr Thr Cys Ala Ala Cys Ala Gly Cys Thr Ala Cys Ala Gly 690 695 700
- Thr Gly Gly Cys Ala Gly Thr Thr Thr Thr Ala Cys Cys Ala Gly Ala 705 710 715 720
- Ala Gly Thr Thr Gly Ala Ala Gly Ala Thr Gly Thr Ala Gly Ala Ala 725 730 735
- Ala Thr Thr Gly Ala Ala Ala Thr Thr Ala Gly Ala Ala Ala Thr Gly 740 745 750
- Ala Ala Gly Ala Thr Thr Thr Ala Ala Ala Ala Ala Thr Cys Gly Ala 755 760 765
- Cys Ala Cys Gly Thr Ala Thr Cys Gly Thr Thr Cys Ala Ala Gly Thr 770 775 780
- Gly Gly Thr Gly Cys Ala Gly Gly Thr Gly Gly Thr Cys Ala Gly Cys 785 790 795 800
- Ala Cys Gly Thr Ala Ala Cys Ala Cys Ala Ala Cys Thr Gly Ala 805 810 815
- Cys Thr Cys Thr Gly Cys Ala Gly Thr Ala Cys Gly Thr Ala Thr Thr 820 825 830
- Ala Cys Cys Cys Ala Thr Thr Ala Cys Cys Ala Ala Cys Thr Gly 835 840 845
- Gly Thr Gly Thr Cys Ala Thr Thr Gly Cys Ala Ala Cys Ala Thr Cys

855

860

Thr Thr Cys Thr Gly Ala Gly Ala Gly Thr Cys Thr Cys Ala Ala 865 870 875 880

Ala Thr Thr Cys Ala Ala Ala Ala Cys Cys Gly Thr Gly Ala Ala Ala 885 890 895

Ala Ala Gly Cys Ala Ala Thr Gly Ala Ala Ala Gly Thr Gly Thr Thr 900 905 910

Ala Ala Ala Gly Cys Ala Cys Gly Thr Thr Thr Ala Thr Ala Cys 915 920 925

Gly Ala Thr Ala Thr Gly Ala Ala Gly Thr Thr Cys Ala Ala Gly 930 935 940

Ala Ala Gly Ala Ala Cys Ala Ala Cys Ala Ala Ala Ala Gly Thr Ala 945 950 955 960

Thr Gly Cys Gly Thr Cys Ala Cys Ala Ala Cys Gly Thr Ala Ala Ala 965 970 975

Thr Cys Ala Gly Cys Ala Gly Thr Cys Gly Gly Thr Ala Cys Thr Gly 980 985 990

Gly Thr Gly Ala Thr Cys Gly Thr Thr Cys Ala Gly Ala Ala Cys Gly 995 1000 1005

Thr Ala Thr Thr Cys Gly Ala Ala Cys Thr Thr Ala Thr Ala Ala Thr 1010 1015 1020

Thr Ala Thr Cys Cys Ala Cys Ala Ala Ala Gly Cys Cys Gly Thr Gly 1025 1030 1035 1040

Thr Ala Ala Cys Ala Gly Ala Cys Cys Ala Thr Cys Gly Thr Ala Thr 1045 1050 1055

Ala Gly Gly Thr Cys Thr Ala Ala Cys Gly Cys Thr Thr Cys Ala Ala 1060 1065 1070

Ala Ala Ala Thr Thr Ala Gly Gly Gly Cys Ala Ala Ala Thr Thr Ala 1075 1080 1085

Thr Gly Gly Ala Ala Gly Gly Cys Cys Ala Thr Thr Thr Ala Gly Ala 1090 1095 1100

Ala Gly Ala Ala Ala Thr Thr Ala Thr Ala Gly Ala Thr Gly Cys Ala 1105 1110 1115 1120

Cys Thr Gly Ala Cys Thr Thr Thr Ala Thr Cys Ala Gly Ala Gly Cys 1125 1130 1135

Ala Gly Ala Cys Ala Gly Ala Thr Ala Ala Ala Thr Thr Gly Ala Ala 1140 1145 1150

Ala Gly Ala Ala Cys Thr Thr Ala Ala Thr Ala Ala Thr Gly Gly Thr 1155 1160 1165

Gly Ala Ala Thr Thr Ala Thr Ala Ala Ala Gly Ala Ala Ala Gly 1170 1175 1180 Thr Thr Ala Gly Ala Thr Gly Ala Ala Gly Cys Ala Ala Thr Thr Cys 1185 1190 1195 1200

Ala Thr Thr Thr Ala Ala Cys Ala Cys Ala Ala Cys Ala Ala Ala Ala Ala 1205 1210 1215

Ala Gly Gly Gly Thr Thr Gly Ala Ala Cys Ala Ala Ala Cys Ala 1220 1225 1230

Cys Gly Ala Gly Cys Thr Gly Ala Ala Thr Gly Gly Thr Thr Ala Ala 1235 1240 1245

Thr Gly Thr Thr Ala Gly Ala Thr Gly Thr Ala Thr Thr Cys Ala 1250 1255 1260

Ala Thr Gly Gly Ala Cys Gly Cys Gly Thr Ala Cys Gly 1265 1270 1275

<210> 34

<211> 358

<212> PRT

<213> Staphylococcus aureus

<400> 34

Val Phe Asp Gln Leu Asp Ile Val Glu Glu Arg Tyr Glu Gln Leu Asn 1 5 10 15

Glu Leu Leu Ser Asp Pro Asp Val Val Asn Asp Ser Asp Lys Leu Arg 20 25 30

Lys Tyr Ser Lys Glu Gln Ala Asp Leu Gln Lys Thr Val Asp Val Tyr 35 40 45

Arg Asn Tyr Lys Ala Lys Lys Glu Glu Leu Ala Asp Ile Glu Glu Met 50 60

Leu Ser Glu Thr Asp Asp Lys Glu Glu Val Glu Met Leu Lys Glu Glu 65 70 75 80

Ser Asn Gly Ile Lys Ala Glu Leu Pro Asn Leu Glu Glu Glu Leu Lys 85 90. 95

Ile Leu Leu Ile Pro Lys Asp Pro Asn Asp Asp Lys Asp Val Ile Val 100 105 110

Glu Ile Arg Ala Ala Ala Gly Gly Asp Glu Ala Ala Ile Phe Ala Gly 115 120 125

Asp Leu Met Arg Met Tyr Ser Lys Tyr Ala Glu Ser Gln Gly Phe Lys 130 135 140

Thr Glu Ile Val Glu Ala Ser Glu Ser Asp His Gly Gly Tyr Lys Glu 145 150 155 160

Ile Ser Phe Ser Val Ser Gly Asn Gly Ala Tyr Ser Lys Leu Lys Phe
165 170 175

Glu Asn Gly Ala His Arg Val Gln Arg Val Pro Glu Thr Glu Ser Gly
180 185 190

```
GlyArgIle His 195ThrSerThr 200Thr 200ValAla ValLeu 205Pro Glu ValGluAsp 210ValGluIle GluIle 215Arg Asp GluAsp GluLeu Lys Ile Asp ThrTyr ArgSerSer GlyAla Gly GlyGln His 235Asp Thr Thr Asp Ser 240Ala ValArg Ile Thr 245His Leu Pro Thr 255Val Ile Ala Thr Ser Ser 255GluLys Ser Gln Ile Gln Asp Asp Arg 265Lys Ala Met Lys 265Val Ile Gly 270Leu Lys 270Ala Arg Leu Tyr Asp Met Lys 280Gln Glu Glu Glu Glu Glu Glu Gln 285Yarg Asp Arg 300Ser Glu Arg Ile 320Ser Gln Arg Lys Ser Ala 295Gly Thr Gly Asp Asp Arg 300Ser Glu Arg Ile 320Arg Thr Tyr Asp Tyr Asp Tyr Asp Sho Glu Ser Arg Val Thr Sho Asp His Arg Ile 320
```

Leu Thr Leu Gln Lys Leu Gly Gln Ile Met Glu Gly His Leu Glu Glu 325 330 335

Ile Ile Asp Ala Leu Thr Leu Ser Glu Gln Thr Asp Lys Leu Lys Glu 340 345 350

Leu Asn Asn Gly Glu Leu 355

<210> 35 <211> 1315 <212> DNA <213> Staphylococcus aureus

<400> 35

atttcttaac attgttattt aacaaaatta tgttaaaatt tagcattata aaagatgcaa 60 atcaatgact tgaattgaaa tataaatagg agcgaatgct atggaattat cagaaatcaa 120 acgaaatata gataagtata atcaagattt aacacaaatt agggggtctc ttgacttaga 180 gaacaaagaa actaatatto aagaatatga agaaatgatg goagaacota atttttggga 240 taaccaaacg aaagcgcaag atattataga taaaaataat gcgttaaaag caatagttaa 300 tggttataaa acactacaag cagaagtaga tgacatggat gctacttggg atttattaca 360 agaagaattt gatgaagaaa tgaaagaaga cttagagcaa gaggtcatta attttaaggc 420 taaagtggat gaatacgaat tgcaattatt attagatggg cctcacgatg ccaataacgc 480 aattotagag ttacatootg gtgcaggtgg cacggagtot caagattggg ctaatatgot 540 atttagaatg tatcaacgtt attgtgagaa gaaaggcttt aaagttgaaa ctgttgatta 600 tctacctggg gatgaagcgg ggattaaaag tgtaacattg ctcatcaaag ggcataatgc 660 ttatggttat ttaaaagctg aaaaaggtgt acaccgacta gtacgaattt ctccatttga 720 ttcatcagga cgtcgtcata catcatttgc atcatgcgac gttattccag attttaataa 780 tgatgaaata gagattgaaa tcaatccgga tgatattaca gttgatacat tcagagcttc 840 tggtgcaggt ggtcagcata ttaacaaaac tgaatcggca atacgaatta cccaccaccc 900 ctcaggtata gttgttaata accaaaatga acgttctcaa attaaaaacc gtgaagcagc 960 tatgaaaatg ttaaagtota aattatatoa attaaaattg gaagagoagg caogtgaaat 1020 ggctgaaatt cgtggcgaac aaaaagaaat cggctgggga agccaaatta gatcatatgt 1080 tttccatcca tactcaatgg tgaaagatca tcgtacgaac gaagaaacag gtaaggttga 1140 tgcagtgatg gatggagaca ttggaccatt tatcgaatca tatttaagac agacaatgtc 1200

gcac taaa	ga'tt ggta	aa t gc t	atat aaat	attt aaat	t aa t gt	aacc aaat	gagg taga	ctc ttt	taaa tgga	agg ata	gcgt tgat	cggt ttgt	tt t tt a	tggt tgaa	tttt
<211 <212	> 36 > 36 > PF	i9 RT	men wer to makely		n to a rest of the contract of the			ton sura qui denor	, .	To considerate contact	THE STATE OF THE STATE OF		and the second of species from		
<213	> St	aphy	rloco	ccus	aur	eus									
)> 36 Glu		Ser	Glu 5	Ile	Lys	Arg	Asn	Ile 10	Asp	ŗ	Туг	Asn	Gln 15	Asp
Leu	Thr	Gln	Ile 20	Arg	Gly	Ser	Leu	Asp 25	Leu	Glu	Asn	Lys	Glu 30	Thr	Asn
Ile	Gln	Glu 35	Tyr	Glu	Glu	Met	Met 40	Ala	Glu	Pro	Asn	Phe 45	Trp	Asp	Asn
Gln	Thr 50	Lys	Ala	Gln	Asp	Ile 55	Ile	Asp	Lys	Asn	Asn 60	Ala	Leu	Lys	Ala
Ile 65	Val	Asn	Gly	Tyr	Lys 70	Thr	Leu	Gln	Ala	Glu 75	Val	Asp	Asp	Met	Asp 80
Ala	Thr	Trp	Asp	Leu 85	Leu	Gln	Glu	Glu	Phe 90	Asp	G1u	Glu	Met	Lys 95	Glu
Asp	Leu	Glu	Gln 100	Glu	Val	Ile	Asn	Phe 105		Ala	Lys	Val	Asp 110	Glu	Tyr
Glu	Leu	Gln 115	Ļeu	Leu	Leu	Asp	Gly 120	Pro	His	Asp	Ala	Asn 125	Asn	Ala	Ile
Leu	Glu 130		His	Pro	Gly	Ala 135	Gly	Gly	Thr	Glu	Ser 140	Gln	Asp	Trp	Ala
Asn 145		Leu	Phe	Arg	Met 150	Tyr	Gln	Arg	Tyr	Cys 155	Glu	Lys	Lys	Gly	Phe 160
Lys	Val	Glu	Thr	Val .165		Tyr	Leu	Pro	Gly 170		Glu	Ala	Gly	11e 175	Lys
Ser	Val	Thr	Leu 180		Ile					Ala		Gly	400		Lys
Ala	Glu	Lys 195		Val	His	Arg	Leu 200	Val	Arg	Ile	Ser	Pro 205		Asp	Ser
Ser	Gly 210		Arg	His	Thr	Ser 215		Ala	Ser	Cys	Asp 220		Ile	Pro	Asp
Phe 225		Asr	Asp	Glu	11e 230		Ile	Glu	Ile	235		Asp	Asp	Ile	Thr 240
Va]	Asp	Thr	Phe	245		Ser	Gly	Ala	Gly 250		Gln	His	Ile	255	Lys
Thi	Glu	ı Seı	260		e Arg	Ile	Thr	His 265		Pro	Ser	Gly	7 I:le 270		Val
n	. 7	- 01-	. h	. di.	, A~~		Cl ∽	· T1-		· > > >	. Arc	, G1:	. Δ1=	A1=	Met

275 280 285

Lys Met Leu Lys Ser Lys Leu Tyr Gln Leu Lys Leu Glu Gln Ala 290 295 300

Arg Glu Met Ala Glu İle Arg Gly Glu Gln Lys Glu Ile Gly Trp Gly 305 310 315 320

Ser Gln Ile Arg Ser Tyr Val Phe His Pro Tyr Ser Met Val Lys Asp 325 330 335

His Arg Thr Asn Glu Glu Thr Gly Lys Val Asp Ala Val Met Asp Gly 340 345 350

Asp Ile Gly Pro Phe Ile Glu Ser Tyr Leu Arg Gln Thr Met Ser His 355 360 365

Asp

<210> 37

<211> 840

<212> DNA

<213> Staphylococcus aureus

<400> 37

<210> 38

<211> 205

<212> PRT

<213> Staphylococcus aureus

<400> 38

Met Ser Ala Phe Ile Thr Phe Glu Gly Pro Glu Gly Ser Gly Lys Thr 1 5 10 15

Thr Val Ile Asn Glu Val Tyr His Arg Leu Val Lys Asp Tyr Asp Val 20 25 30

Ile Met Thr Arg Glu Pro Gly Gly Val Pro Thr Gly Glu Glu İle Arg 35 40 45

Lys Ile Val Leu Glu Gly Asn Asp Met Asp Ile Arg Thr Glu Ala Met 50 55 60

Leu Phe Ala Ala Ser Arg Arg Glu His Leu Val Leu Lys Val Ile Pro

37 75 ·70 65 Ala Leu Lys Glu Gly Lys Val Val Leu Cys Asp Arg Tyr Ile Asp Ser 90 Ser Leu Ala Tyr Gln Gly Tyr Ala Arg Gly Ile Gly Val Glu Glu Val 105 Arg Ala Leu Asn Glu Phe Ala Ile Asn Gly Leu Tyr Pro Asp Leu Thr Ile Tyr Leu Asn Val Ser Ala Glu Val Gly Arg Glu Arg Ile Ile Lys 135 Asn Ser Arg Asp Gln Asn Arg Leu Asp Gln Glu Asp Leu Lys Phe His 155 150 Glu Lys Val Ile Glu Gly Tyr Gln Glu Ile Ile His Asn Glu Ser Gln 170 Arg Phe Lys Ser Val Asn Ala Asp Gln Pro Leu Glu Asn Val Val Glu 185 Asp Thr Tyr Gln Thr Ile Ile Lys Tyr Leu Glu Lys Ile 200 195 <210> 39 <211> 923 <212> DNA <213> Staphylococcus aureus <400> 39 aatgttgctt tattaaaatg taaatcattc taataaaacg acaactgtgt cttctttact 60 tgtatatgtt acatatattc acgatagaga ggataagaaa atggctcaaa tttctaaata 120 taaacgtgta gttttgaaac taagtggtga agcgttagct ggagaaaaag gatttggcat 180 aaatccagta attattaaaa gtgttgctga gcaagtggct gaagttgcta aaatggactg 240 tgaaatcgca gtaatcgttg gtggcggaaa catttggaga ggtaaaacag gtagtgactt 300 aggtatggac cgtggaactg ctgattacat gggtatgctt gcaactgtaa tgaatgcctt 360 agcattacaa gatagtttag aacaattgga ttgtgataca cgagtattaa catctattga 420 aatgaagcaa gtggctgaac cttatattcg tcgtcgtgca attagacact tagaaaagaa 480 acgcgtagtt attittgctg caggtattgg aaacccatac tictctacag atactacagc 540 ggcattacgt gctgcagaag ttgaagcaga tgttatttta atgggcaaaa ataatgtaga 600 tggtgtatat tctgcagatc ctaaagtaaa caaagatgcg gtaaaatatg aacatttaac 660gcatattcaa atgcttcaag aaggtttaca agtaatggat tcaacagcat cctcattctg 720 tatggataat aacattccgt taactgtttt ctctattatg gaagaaggaa atattaaacg 780 tgctgttatg ggtgaaaaga taggtacgtt aattacaaaa taaatttaga ggtgtaaaat 840 aatgagtgac attattaatg aaactaaatc aagaatgcaa aaatcaatcg aaagcttatc 900 acgtgaatta gctaacatca gtg <210> 40 <211> 240 <212> PRT <213> Staphylococcus aureus <400> 40 Met Ala Gln Ile Ser Lys Tyr Lys Arg Val Val Leu Lys Leu Ser Gly

10

30

Glu Ala Leu Ala Gly Glu Lys Gly Phe Gly Ile Asn Pro Val Ile Ile ..25

Lys Ser Val Ala Glu Gln Val Ala Glu Val Ala Lys Met Asp Cys Glu 35 40 45

Ile Ala Val Ile Val Gly Gly Asn Ile Trp Arg Gly Lys Thr Gly 50 55 60

Ser Asp Leu Gly Met Asp Arg Gly Thr Ala Asp Tyr Met Gly Met Leu 65 70 75 80

Ala Thr Val Met Asn Ala Leu Ala Leu Gln Asp Ser Leu Glu Gln Leu 85 90 95

Asp Cys Asp Thr Arg Val Leu Thr Ser Ile Glu Met Lys Gln Val Ala
100 105 110

Glu Pro Tyr Ile Arg Arg Arg Ala Ile Arg His Leu Glu Lys Lys Arg 115 120 125

Val Val Ile Phe Ala Ala Gly Ile Gly Asn Pro Tyr Phe Ser Thr Asp 130 135 140

Thr Thr Ala Ala Leu Arg Ala Ala Glu Val Glu Ala Asp Val Ile Leu 145 150 155 160

Met Gly Lys Asn Asn Val Asp Gly Val Tyr Ser Ala Asp Pro Lys Val 165 170 175

Asn Lys Asp Ala Val Lys Tyr Glu His Leu Thr His Ile Gln Met Leu 180 185 190

Gln Glu Gly Leu Gln Val Met Asp Ser Thr Ala Ser Ser Phe Cys Met 195 200 205

Asp Asn Asn Ile Pro Leu Thr Val Phe Ser Ile Met Glu Glu Gly Asn 210 215 .220

Ile Lys Arg Ala Val Met Gly Glu Lys Ile Gly Thr Leu Ile Thr Lys 225 230 235 240

<210> 41

<211> 1013

<212> DNA

<213> Staphylococcus aureus

<400> 41

gatagcatcc atgtatagtg atagtattta caacaattat tataatacta tttagttaag 60 tagagaaata gttaaacatt tgaaagtgtg gtttaatgga atgtcagcaa taggaacagt 120 tttaaagaa catgtaaaga acttttattt aattcaaaga ctggctcagt ttcaagttaa 180 aattatcaat catagtaact atttaggtgt ggcttgggaa ttaattaacc ctgttatgca 240 aattatggtt tactggatgg tttttggatt aggaataaga agtaatgcac caattcatgg 300 tgtacctttt gtttattggt tattggttgg tatcagtatg tggttctca tcaaccaagg 360 tattttagaa ggtactaaag caattacaca aaagtttaat caagtatcga aaatgaactt 420 cccgttatcg ataataccga catatattgt gacaagtaga ttttatggac atttaggctt 480 acttttactt gtgataattg catgtatgtt tactggtatt tatccatcaa tacatacat 540 tcaattattg atatatgtac cgttttgttt tttcttaact gcctcggtga cgttattaac 600 atcaacactc ggtgtgttag ttagagatac acaaatgtta atgcaagcaa tattaagaat 660

attattttac ttttcaccaa ttttgtggct accaaagaac catggtatca gtggtttaat 720 tcatgaaatg atgaaatata atccagttta ctttattgct gaatcatacc gtgcagcaat 780 tttatatcac gaatggtatt tcatggatca ttggaaatta atgttataca atttcggtat 840 tgttgccatt ttctttgcaa ttggtgcgta cttacacatg aaatatagag atcaatttgc 900 agacttettg taatatattt atatgacgaa acceegetaa ceattaataa atggaagtgg 960 ggttcatttt tgtttataat ttaagtaaat aacatattaa gttggtgtat tat <210> 42 <211> 270 <212> PRT <213> Staphylococcus aureus <400> 42 Met Ser Ala Ile Gly Thr Val Phe Lys Glu His Val Lys Asn Phe Tyr Leu Ile Gln Arg Leu Ala Gln Phe Gln Val Lys Ile Ile Asn His Ser Asn Tyr Leu Gly Val Ala Trp Glu Leu Ile Asn Pro Val Met Gln Ile Met Val Tyr Trp Met Val Phe Gly Leu Gly Ile Arg Ser Asn Ala Pro Ile His Gly Val Pro Phe Val Tyr Trp Leu Leu Val Gly Ile Ser Met Trp Phe Phe Ile Asn Gln Gly Ile Leu Glu Gly Thr Lys Ala Ile Thr 90 Gln Lys Phe Asn Gln Val Ser Lys Met Asn Phe Pro Leu Ser Ile Ile 105 Pro Thr Tyr Ile Val Thr Ser Arg Phe Tyr Gly His Leu Gly Leu Leu Leu Leu Val Ile Ile Ala Cys Met Phe Thr Gly Ile Tyr Pro Ser Ile 135 · His Ile Ile Gln Leu Leu Ile Tyr Val Pro Phe Cys Phe Phe Leu Thr 155 150 Ala Ser Val Thr Leu Leu Thr Ser Thr Leu Gly Val Leu Val Arg Asp 165 Thr Gln Met Leu Met Gln Ala Ile Leu Arg Ile Leu Phe Tyr Phe Ser 185 Pro Ile Leu Trp Leu Pro Lys Asn His Gly Ile Ser Gly Leu Ile His 200 Glu Met Met Lys Tyr Asn Pro Val Tyr Phe Ile Ala Glu Ser Tyr Arg 215 Ala Ala Ile Leu Tyr His Glu Trp Tyr Phe Met Asp His Trp Lys Leu 235 Met Leu Tyr Asn Phe Gly Ile Val Ala Ile Phe Phe Ala Ile Gly Ala 250 245

```
WO 00/12678
                                    40
Tyr Leu His Met Lys Tyr Arg Asp Gln Phe Ala Asp Phe Leu
            260
<210> 43
<211> 995
<212> DNA
<213> Staphylococcus aureus
<400> 43
taacaaaatc ttctatacac tttacaacag gttttaaaaat ttaacaactg ttgagtagta 60
tattataatc tagataaatg tgaataagga aggtctacaa atgaacgttt cggtaaacat 120
taaaaatgta acaaaagaat atcgtattta tcgtacaaat aaagaacgta tgaaagatgc 180
geteattece aaacataaaa acaaaacatt ttiegettta gatgacatta gtttaaaage 240
atatgaaggt gacgtcatag ggcttgttgg catcaatggt tccggcaaat caacgttgag 300
caatatcatt ggcggttctt tgtcgcctac tgttggcaaa gtggatcgta atggtgaagt 360
cagcgttatc gcaattagtg ctggcttgag tggacaactt acagggattg aaaatatcga 420
atttaaaatg ttatgtatgg getttaageg aaaagaaatt aaagegatga cacctaagat 480
tattgaattt agtgaacttg gtgagtttat ttatcaacca gttaaaaagt attcaagtgg 540
tatgcgtgca aaacttggtt tttcaattaa tatcacagtt aatccagata tcttagtcat 600
tgacgaagct ttatctgtag gtgaccaaac ttttgcacaa aaatgtttag ataaaattta 660
cgagtttaaa gagcaaaaca aaaccatctt tttcgttagt cataacttag gacaagtgag 720
acaattttgt actaagattg cttggattga aggcggaaag ttaaaagatt acggtgaact 780
tgatgatgta ttacctaaat atgaagcttt ccttaacgat tttaaaaaga aatccaaagc 840
cgaacaaaaa gaatttagaa acaaactcga tgagtcccgc ttcgttatta aataaaccga 900
aaaaaccgag aatctccatt taaggattte eteggtttta tttttgtcat catgattatt 960
tcgccttttt tatttttctt tttgctttgg ctatt
<210> 44
<211> 264
<212> PRT
```

<213> Staphylococcus aureus

<400> 44

Met Asn Val Ser Val Asn Ile Lys Asn Val Thr Lys Glu Tyr Arg Ile

Tyr Arg Thr Asn Lys Glu Arg Met Lys Asp Ala Leu Ile Pro Lys His

Lys Asn Lys Thr Phe Phe Ala Leu Asp Asp Ile Ser Leu Lys Ala Tyr 35

Glu Gly Asp Val Ile Gly Leu Val Gly Ile Asn Gly Ser Gly Lys Ser

Thr Leu Ser Asn Ile Ile Gly Gly Ser Leu Ser Pro Thr Val Gly Lys

Val Asp Arg Asn Gly Glu Val Ser Val Ile Ala Ile Ser Ala Gly Leu

Ser Gly Gln Leu Thr Gly Ile Glu Asn Ile Glu Phe Lys Met Leu Cys 100

Met Gly Phe Lys Arg Lys Glu Ile Lys Ala Met Thr Pro Lys Ile Ile 120

Glu Phe Ser Glu Leu Gly Glu Phe Ile Tyr Gln Pro Val Lys Lys Tyr 135

41 Ser Ser Gly Met Arg Ala Lys Leu Gly Phe Ser Ile Asn Ile Thr Val 150 Asn Pro Asp Ile Leu Val Ile Asp Glu Ala Leu Ser Val Gly Asp Gln 170 Thr Phe Ala Gln Lys Cys Leu Asp Lys Ile Tyr Glu Phe Lys Glu Gln 180 185 Asn Lys Thr Ile Phe Phe Val Ser His Asn Leu Gly Gln Val Arg Gln 200 205 Phe Cys Thr Lys Ile Ala Trp Ile Glu Gly Gly Lys Leu Lys Asp Tyr 220 215 Gly Glu Leu Asp Asp Val Leu Pro Lys Tyr Glu Ala Phe Leu Asn Asp 235 230 Phe Lys Lys Ser Lys Ala Glu Gln Lys Glu Phe Arg Asn Lys Leu 250 Asp Glu Ser Arg Phe Val Ile Lys 260 <210> 45 <211> 738 <212> DNA <213> Staphylococcus aureus <400> 45 ataaggtgaa gacacataaa acaatatatc ttagtaagca tgcaacactc ttttttgttt 60 attcataaca acaaaaaaga attaaaggag gagtcttatt atggctcgat tcagaggttc 120 aaactggaaa aaatctcgtc gtttaggtat ctctttaagc ggtactggta aagaattaga 180 aaaacgtcct tacgcaccag gacaacatgg tccaaaccaa cgtaaaaaat tatcagaata 240 tggtttacaa ttacgtgaaa aacaaaaatt acgttactta tatggaatga ctgaaagaca 300 attccgtaac acatttgaca tcgctggtaa aaaattcggt gtacacggtg aaaacttcat 360 gatettatta geaagtegtt tagaegetgt tgtttattea ttaggtttag etegtaeteg 420 tcgtcaagca cgtcaattag ttaaccacgg tcatatctta gtagatggta aacgtgttga 480 tattccatct tattctgtta aacctggtca aacaatttca gttcgtgaaa aatctcaaaa 540 attaaacatc atcgttgaat cagttgaaat caacaatttc gtacctgagt acttaaactt 600 tgatgctgac agcttaactg gtactttcgt acgtttacca gaacgtagcg aattacctgc 660 tgaaattaac gaacaattaa teegttgagt actaeteaag ataataeggt caataecaac 720 acccacaatt gtgggtgt. <210> 46 <211> 195 <212> PRT <213> Staphylococcus aureus <400> 46 Met Ala Arg Phe Arg Gly Ser Asn Trp Lys Lys Ser Arg Arg Leu Gly Ile Ser Leu Ser Gly Thr Gly Lys Glu Leu Glu Lys Arg Pro Tyr Ala Pro Gly Gln His Gly Pro Asn Gln Arg Lys Lys Leu Ser Glu Tyr Gly

Leu Gln Leu Arg Glu Lys Gln Lys Leu Arg Tyr Leu Tyr Gly Met Thr

50 55 60

Glu Arg Gln Phe Arg Asn Thr Phe Asp Ile Ala Gly Lys Lys Phe Gly 65 70 75 80

Val His Gly Glu Asn Phe Met Ile Leu Leu Ala Ser Arg Leu Asp Ala 85 90 95

Val Val Tyr Ser Leu Gly Leu Ala Arg Thr Arg Arg Gln Ala Arg Gln
100 105 110

Leu Val Asn His Gly His Ile Leu Val Asp Gly Lys Arg Val Asp Ile 115 120 125

Pro Ser Tyr Ser Val Lys Pro Gly Gln Thr Ile Ser Val Arg Glu Lys 130 135 140

Ser Gln Lys Leu Asn Ile Ile Val Glu Ser Val Glu Ile Asn Asn Phe 145 150 155 160

Val Pro Glu Tyr Leu Asn Phe Asp Ala Asp Ser Leu Thr Gly Thr Phe
165 170 175

Val Arg Leu Pro Glu Arg Ser Glu Leu Pro Ala Glu Ile Asn Glu Gln
180 185 190

Leu Ile Arg 195

<210> 47

<211> 980

<212> DNA

<213> Staphylococcus aureus

<400> 47

tgttgattgc acctgcttca gtcattgcta taactatttt aatttttaat ttaaccggtg 60 atgcactaag agatagattg ctgaaacaac ggggtgaata tgatgagtct cattgatata 120 caaaatttaa caataaagaa tactagtgag aaatctctta ttaaagggat tgatttgaaa 180 atttttagtc aacagattaa tgccttgatt ggagagagcg gcgctggaaa aagtttgatt 240 gctaaagett taettgaata tttaccattt gatttaaget geaegtatga ttegtaccaa 300 tttgatgggg aaaatgttag tagattgagt caatattatg gtcatacaat tggctatatt 360 tctcaaaatt atgcagaaag ttttaacgac catactaaat taggtaaaca gttaactgcg 420 atttatcgta agcattataa aggtagtaaa gaagaggett tgtccaaagt tgataagget 480 ttgtcgtggg ttaatttaca aagcaaagat atattaaata aatatagttt ccaactttct 540 gggggccaac ttgaacgcgt atacatagca agcgttctca tgttggagcc taaattaatc 600 attgcagacg aaccagttgc atcattggat gctttgaacg gtaatcaagt gatggattta 660 ttacagcata ttgtattaga acatggtcaa acattattta ttatcacaca taacttaagt 720 catgtattga aatattgtca gtacatttat gttttaaaag aaggtcaaat cattgaacga 780 ggtaatatta atcatttcaa gtatgagcat ttgcatccgt atactgaacg tctaattaaa 840 tatagaacac aattaaagag ggattactat gattgagtta aaacatgtga cttttggtta 900 taataaaaag cagatggtgc tacaagatat caatattact atacctgatg gagaaaatgt 960 tggtatttta ggcgaaagtg 980

<210> 48

<211> 258

<212> PRT

<213> Staphylococcus aureus

<400> 48

Met Met Ser Leu Ile Asp Ile Gln Asn Leu Thr Ile Lys Asn Thr Ser

0 .

Glu Lys Ser Leu Ile Lys Gly Ile Asp Leu Lys Ile Phe Ser Gln Gln
20 25 30

Ile Asn Ala Leu Ile Gly Glu Ser Gly Ala Gly Lys Ser Leu Ile Ala
35. 40 45

Lys Ala Leu Leu Glu Tyr Leu Pro Phe Asp Leu Ser Cys Thr Tyr Asp
50 60

Ser Tyr Gln Phe Asp Gly Glu Asn Val Ser Arg Leu Ser Gln Tyr Tyr
65 70 75 80

Gly His Thr Ile Gly Tyr Ile Ser Gln Asn Tyr Ala Glu Ser Phe Asn 85 90 95

Asp His Thr Lys Leu Gly Lys Gln Leu Thr Ala Ile Tyr Arg Lys His 100 105 110

Tyr Lys Gly Ser Lys Glu Glu Ala Leu Ser Lys Val Asp Lys Ala Leu 115 120 125

Ser Trp Val Asn Leu Gln Ser Lys Asp Ile Leu Asn Lys Tyr Ser Phe 130 135 140

Gln Leu Ser Gly Gly Gln Leu Glu Arg Val Tyr Ile Ala Ser Val Leu 145 150 155 160

Met Leu Glu Pro Lys Leu Ile Ile Ala Asp Glu Pro Val Ala Ser Leu 165 170 175

Asp Ala Leu Asn Gly Asn Gln Val Met Asp Leu Leu Gln His Ile Val 180 185 190

Leu Glu His Gly Gln Thr Leu Phe Ile Ile Thr His Asn Leu Ser His 195 200 205

Val Leu Lys Tyr Cys Gln Tyr Ile Tyr Val Leu Lys Glu Gly Gln Ile 210 215 220

Ile Glu Arg Gly Asn Ile Asn His Phe Lys Tyr Glu His Leu His Pro 225 230 235 240

Tyr Thr Glu Arg Leu Ile Lys Tyr Arg Thr Gln Leu Lys Arg Asp Tyr 245 250 255

Tyr Asp

<210> 49

<211> 760

<212> DNA

<213> Staphylococcus aureus

<400> 49

gatgatattt taattacaga aaatggttgt caagtettta etaaatgeae aaaagaeett 60 atagttttaa cataagegtg taaaatgagg aggaaaetga atgatttegg ttaatgattt 120 taaaacaggt ttaacaattt etgttgataa egetatttgg aaagttatag aetteeaaca 180 tgtaaageet ggtaaaggtt cageattegt tegtteaaaa ttaegtaatt taagaaetgg 240

```
tgcaattcaa gagaaaacgt ttagagctgg tgaaaaagtt gaaccagcaa tgattgaaaa 300
togtogcatg caatatttat atgotgacgg rgataatcat gtatttatgg ataatgaaag 360
aggtatggaa gtacaaatte aaacatacga aggtgaaact atcggtgttg aattacctaa 480
aactgttgaa ttaacagtaa ctgaaacaga acctggtatt aaaggtgata ctgcaactgg 540
tgccactaaa tcggcaactg ttgaaactgg ttatacatta aatgtacctt tatttgtaaa 600
cgaaggtgac gttttaatta tcaacactgg tgatggaagc tacatttcaa gaggataatc 660
tctaatttgt taacaaatag cttgtattca ctatactgat ttaacgtaag anattctaaa 720
taagtctcat aaagctattg cctaaaatga ttataggtta
<210> 50
<211> 185
<212> PRT
<213> Staphylococcus aureus
Met Ile Ser Val Asn Asp Phe Lys Thr Gly Leu Thr Ile Ser Val Asp
                                    10
Asn Ala Ile Trp Lys Val Ile Asp Phe Gln His Val Lys Pro Gly Lys
Gly Ser Ala Phe Val Arg Ser Lys Leu Arg Asn Leu Arg Thr Gly Ala
                            40
Ile Gln Glu Lys Thr Phe Arg Ala Gly Glu Lys Val Glu Pro Ala Met
Ile Glu Asn Arg Arg Met Gln Tyr Leu Tyr Ala Asp Gly Asp Asn His
Val Phe Met Asp Asn Glu Ser Phe Glu Gln Thr Glu Leu Ser Ser Asp
Tyr Leu Lys Glu Glu Leu Asn Tyr Leu Lys Glu Gly Met Glu Val Gln
                               105
Ile Gln Thr Tyr Glu Gly Glu Thr Ile Gly Val Glu Leu Pro Lys Thr
Val Glu Leu Thr Val Thr Glu Thr Glu Pro Gly Ile Lys Gly Asp Thr
  130
                       135
Ala Thr Gly Ala Thr Lys Ser Ala Thr Val Glu Thr Gly Tyr Thr Leu
Asn Val Pro Leu Phe Val Asn Glu Gly Asp Val Leu Ile Ile Asn Thr
               165
Gly Asp Gly Ser Tyr Ile Ser Arg Gly
           180
<210> 51
<211> 9326
<212> DNA
<213> Staphylococcus aureus
```

<400> 51

ttaggatgta agaaagttcc agtgcaagaa atccatgaaa cacaatattc aattagtaca 60 tggcaacata aagttccatt tggtgtgtgg tgggaaacgt tacaacaaga acatcgcttg 120

ccatggacta ctgagacaag acaagaagcg ccatttatta caatgtgtca tggtgataca 180 gaacaatatt tgtatacaaa agatttaggc gaagcacatt ttcaagtatg ggaaaaggtt 240 gtcgcaagtt atagtggttg ttgttctgta gagagaattg cacaaggtac atatccttgt 300 ctttctcaac aagatgtact catgaagtat cagccattga gttataagga aattgaagcg 360 gttgttcata aaggggaaac tgtgccagca ggtgtgacac gctttaatat ttcaggacga 420;tgtcttaatc ttcaagtacc actggcatta cttaaacaag atgatgatgt tgaacaatgc 480 gcaattggaa gcagttttta gcagataagt ttgccaatat gagatgctat actgaaaaag 540 tatacttggt ggagcaatag ttttactgtg atgttgaggg aaatatgatg atttagcgta 600 ttgatagcga aaatataata aaacaatata gtgtggagaa cttttgatat tttataaata 660 ttgaagttct ccatttttgt attttgcata taaaaattaa ataaaataag gtatattaag 720 gtaaagtata aattttaaat aaatggggaa tgagtatgag ctcaattata ggaaaaatag 780 caatttggat aggcatcgta gctcaaatat attttagtgt cgtttttgtt aggatgatat 840 ctattaatat tgctggagga tctgattacg aaacaatttt tttattagga ttaatattgg 900ctcttttcac tgttttacca accatcttta ctgcgattta tatggaaagt tactctgtaa 960 teggaggtge acttttatt gtttatgcta ttattgcact gtgtttatat aattteettt 1020 cqtcaatttt atggctgatt ggtggtattt tgctgatttg gaataaatac tcaaaagatg 1080 aatcgacaga cgaaaatgaa aaagttgata ttgaaagtac agagaatcaa tttgaatcta 1140 tggggaatag acatggaaaa aaatgtagaa aaatcattca taaagatagg tttatatttt 1260 caaatagett atatagtaet catggetata aetttatgtg ggtttgtaat ttgetatgga 1320 ctaattttcg gccttttcta tttattatca ggtagcagag ctgattattt aatagtaaca 1380 atagttatat eggeaataat tietatatit giaattatae titeaategi acetgicate 1440 gtattggcat ctgacttatt taaagaaagg atttcaaaag gtgtcatatt aattgtattg 1500 gctattatcg ctttagtatt atgcaacttt gtatctgcaa tactctggtt tgtttcagcc 1560 atatctattt taggtagaaa aaaattagta gctgcagcag atactaccac tattcaaaaa 1620 agtaaaggga acgcaaatca agcatcacat aaagacacgt gtaaaaaagga acttgatagt 1680 caagacatga tggaacatcc tgaggttaaa aatcccacga ctaaaaacct tgaaggattt 1740 aacgaagaaa tacataaaga tgaagctaca actaaagttg tcagtgataa cacggaaccg 1800 cctattgaat caaaagacca tgtctcgaaa aaagattgat gacaaactaa tcgagagact 1860 taaaaaaata atattcaaca taagaacttt taaaacgaca tttaaacgca ttgccaatca 1920 ctaatggtag tgcgtttaac tataccttaa atatctgaat attttgttaa atggagctac 1980 ctttgttgta ctattcaaat gaagaggagt aaaatgtaat taaaggaaag aaatttgagg 2040 agtgatettt atgacaaaca acaaagtage attagtaact ggeggageac aagggattgg 2100 ttttaaaatt gcagaacgtt tagtggaaga tggtttcaaa gtagcagttg ttgatttcaa 2160 tgaagaaggg gcaaaagcag ctgcacttaa attatcaagt gatggtacaa aagctattgc 2220 tatcaaagca gatgtatcaa accgtgatga tgtatttaac gcataagaca aactgccgcg 2280 caatttggcg atttccatgt catggttaac aatgccggcc ttggaccaac aacaccaatc 2340 gatacaatta ctgaagaaca gtttaaaaca gtatatggcg tgaacgttgc aggtgtgcta 2400 tggggtattc aagccgcaca tgaacaattt aaaaaattca atcatggcgg taaaattatc 2460aatgcaacat ctcaagcagg cgttgagggt aacccagget tgtctttata ttgcagtaca 2520 aaattcgcag tgcgaggttt aacacaagta gccgcacaag atttagcgtc tgaaggtatt 2580 actgtgaatg cattcgcacc tggtatcgtt caaacaccaa tgatggaaag tatcgcagtg 2640 qcaacaqccq aagaagcagg taaacctgaa gcatggggtt gggaacaatt tacaagtcag 2700 attgctttgg gcagagtttc tcaaccagaa gatgtttcaa atgtagtgag cttcttagct 2760 ggtaaagact ctgattacat tactggacaa acaattattg tagatggtgg tatgagattc 2820 cgttaataat catccactaa tgataaataa atccttattg ttaagtttaa tcacttagca 2880 gtaaggattt tttagtgcac ttagaaggga gtgtattggt agaaaattaa taagcgaagt 2940 tcttaagtga gttatgatgt cacagtctaa tgcatcagtt gaaagcatta ttagtattaa 3000 cacacccaag atattataaa acatcacaaa aacaccacta totaatttat otcaataaaa 3060 attcacaaag ttatctcatt ttattttat aaataaaaaa tatcgataaa aagcttacaa 3120 tactttatgt ttttatgata tatttttaat gtataaatga ggtggaagat ttggaaagag 3180 ttttgataac tggtggggct ggttttattg ggtcgcattt agtagatgat ttacaacaag 3240 attatgatgt ttatgttcta gataactata gaacaggtaa acgagaaaat attaaaagtt 3300 tggctgacga tcatgtgttt gaattagata ttcgtgaata tgatgcagtt gaacaaatca 3360 tgaagacata tcaatttgat tatgttattc atttagcagc attagttagt gttgctgagt 3420 cggttgagaa acctatctta tctcaagaaa taaacgtcgt agcaacatta agattgttag 3480 aaatcattaa aaaatataat aatcatataa aacgttttat ctttgcttcg tcagcagctg 3540 tttatggtga tcttcctgat ttgcctaaaa gtgatcaatc attaatctta ccattatcac 3600 catatgcaat agataaatat tacggcgaac ggacgacatt aaattattgt tcgttatata 3660 acataccaac agcggttgtt aaatttttta atgtatttgg gccaagacag gatcctaagt 3720 cacaatattc aggtgtgatt tcaaagatgt tcgattcatt tgagcataac aagccattta 3780

cattttttgg tgacggactg caaactagag attttgtata tgtatatgat gttgttcaat 3840 ctgtacgctt aattatggaa cacaaagatg caattggaca cggttataac attggtacag 3900 gcacttttac taatttatta gaggtttatc gtattattgg tgaattatat ggaaaatcag 3960 tcgagcatga atttaaagaa gcacgaaaag gagatattaa gcattcttat gcagatattt 4020 ctaacttaaa ggcattagga tttgttccta aatatacagt agaaacaggt ttaaaggatt 4080 actttaattt tgaggtagat aatattgaag aagttacagc taaagaagtg gaaatgtcgt 4140 gaaaatgaca tigaagcigt ccataataat aagggttatg cctatcaaag aaaattagac 4200 aaactagaag aagtgagaaa aagctattac ccaattaaac gtgcgattga cttaatttta 4260 agcattgttt tattattttt aactttaccg attatggtta tattcgccat tgctatcgtc 4320 atagattege caggaaacee tatttatagi caggttagag ttgggaagat gggtaaatta 4380 attaaaatat acaaattacg ttcgatgtgc aaaaacgcag agaaaaacgg tgcgcaatgg 4440 getgataaag atgatgateg tataacaaat gtegggaagt ttattegtaa aacaegeatt 4500 gatgaattac cacaactaat taatgttgtt aaaggggaaa tgagttttat tggaccacgc 4560 ccggaacgtc cggaatttgt agaattattt agttcagaag tgataggttt cgagcaaaga 4620 tgtettgtta caccagggtt aacaggactt gegeaaatte aaggtggata tgacttaaca 4680 ccgcaacaaa aactgaaata tgacatgaaa tatatacata aaggtagttt aatgatggaa 4740 ctatatatat caattagaac attgatggtt gttattacag gggaaggctc aaggtagtct 4800 taatttactt aataagttca aataaaagtt atattttaaa gattgtgacc aattgttaca 4860 gtataacgag gaatcccttg agacagtatc aaatggcatt aagaaatatg tgccatcatt 4920 gatttgcatg gctataaata ctattcatct gatgagatag ccatgttaag aaattgaaag 4980 tatagcatta aaggggtttg taacagttga aaattatata ttgtattact aaagcagaca 5040 atggtggtgc acaaacacat ctcattcaac tcgccaacca tttttgcgta cacaatgatg 5100 tttatgtcat tgtaggcaat catggaccaa tgattgaaca actagatgca agagttaatg 5160 taattattat cgaacattta gtaggtccaa ttgactttaa acaagatatt ttagctgtca 5220 aagtgttagc acagttattc tcgaaaatta aacctgatgt tatccattta cattcttcca 5280 aagctggaac ggtcggacga attgcgaagt tcatttcgaa atcgaaagac acacgtatag 5340 tttttactgc acatggatgg gcttttacag agggtgttaa accagctaaa aaatttctat 5400 atttagttat cgaaaaatta atgtcactta ttacagatag cattatttgt gtttcagatt 5460 togataaaca gttagogtta aaatatogat ttaatogatt gaaattaacc acaatacata 5520 atggtattgc agatgttccc gctgttaagc aaacgctaaa aagccaatca cataacaata 5580 ttggcgaagt agttggaatg ttgcctaata aacaagattt acagattaat gccccgacaa 5640 agcatcaatt tgttatgatt gcaagatttg cttatccaaa attgccacaa aatctaatcg 5700 cggcaataga gatattgaaa ttacataaca gtaatcatgc gcattttaca tttataggcg 5760 atggacctac attaaatgat tgtcagcaac aagttgtaca agctgggtta gaaaatgatg 5820 tcacattttt gggcaatgtc attaatgcga gtcatttatt atcacaatac gatacgttta 5880 ttttaataag taagcatgaa ggtttgccaa ttagcattat agaagctatg gctacaggtt 5940 tgcctgttat agccagtcat gttggcggta tttcagaatt agtagctgat aatggtatat 6000 gtatgatgaa caaccaaccc gaaactattg ctaaagtcct ggaaaaatat ttaatagaca 6060 gtgattacat caaaatgagt aatcaatcta gaaaacgtta tttagaatgt tttactgagg 6120 agaaaatgat taaagaagtg gaagacgttt ataatggaaa atcaacacaa tagtaaatta 6180 ctaacattgt tacttatcgg tttagcggtt tttattcagc aatcttcggt tattgccggt 6240 gtgaatgttt ctatagctga ctttatcaca ttactaatat tagtttattt actgtttttc 6300 gctaaccatt tattaaaggc aaatcatttt ttacagtttt tcattatttt gtatacatat 6360 cgtatgatta tracgettig trigetatti trigatgatt tgatattiat taeggitaag 6420 gaagttettg catetacagt taaatatgca tttgtagtca tttattteta tttagggatg 6480 atcatcttta agttaggtaa tagcaaaaaa gtgatcgtta cctcttatat tataagcagt 6540 gtgactatag gtctattttg tattatagct ggtttgaaca agtccccttt actaatgaaa 6600 ttgttatatt ttgatgaaat acgttcaaaa ggattaatga atgaccctaa ctatttcgcg 6660 atgacacaga ttattacatt ggtacttgct tacaagtata ttcataatta catattcaag 6720 gtccttgcat gtggtatttt gctatggtct ttaactacaa cggggtctaa gactgcgttt 6780 atcatattaa tcgtcttagc catttatttc tttattaaaa agttatttag tagaaatgcg 6840 gtaagtgttg tgagtatgtc agtgattatg ctgatattac tttgttttac cttttataat 6900 atcaactact atttattcca attaagcgac cttgatgcct taccgtcatt agatcgaatg 6960 gcgtctattt ttgaagaggg ctttgcatca ttaaatgata gtgggtctga gcgaagtgtt 7020 gtatggataa atgccatttc agtaattaaa tatacactag gttttggtgt cggattagtg 7080 gattatgtac atattggctc gcaaattaat ggtattttac ttgttgccca taatacatat 7140 ttgcagatct ttgcggaatg gggcatttta ttcggtgcat tatttatcat atttatgctt 7200 tatttactgt ttgaattatt tagatttaac atttctggga aaaatgtaac agcaattgtt 7260 gtaatgttga cgatgctgat ttacttttta acagtatcat ttaataactc aagatatgtc 7320 gcttttattt taggaattat cgtctttatt gttcaatatg aaaagatgga aagggatcgt 7380 aatgaagagt gattcactaa aagaaaatat tatttatcaa gggctatacc aattgattag 7440

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: WO 00/12678 (11) International Publication Number: C12N 15/31, 15/66, 15/63, **A3** 1/21, C07K 14/31 (43) International Publication Date: 9 March 2000 (09.03.00) PCT/US99/19726 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, (21) International Application Number: BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, (22) International Filing Date: 31 August 1999 (31.08.99) GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, (30) Priority Data: ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, 1 September 1998 (01.09.98) US 60/098,964 ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Avenue, Rockville, MD 20850 (US). (72) Inventors; and Published (75) Inventors/Applicants (for US only): BAILEY, Camella, C. [US/US]; 1753 Kilbourne Place NW, Washington, DC 20010 (US). CHOI, Gil, H. [CN/US]; 11429 Potomac Oaks With international search report. (88) Date of publication of the international search report: Drive, Rockville, MD 20850 (US). 15 June 2000 (15.06.00) (74) Agents: HOOVER, Kenley, K. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(54) Title: STAPHYLOCOCCUS AUREUS GENES AND POLYPEPTIDES

(57) Abstract

The present invention relates to novel genes from S. aureus and the polypeptides they encode. Also provided are vectors, host cells, antibodies and recombinant methods for producing the same. The invention further relates to screening methods for identifying agonists and antagonists of S. aureus polypetide activity. The invention additionally relates to diagnostic methods for detecting Staphylococcus nucleic acids, polypeptides and antibodies in a biological sample. The present invention further relates to novel vaccines for the prevention or attenuation of infection by Staphylococcus.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV .	Latvia	SZ -	Swaziland -
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	ΙL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		•
CN	China	KR	Republic of Korca	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein*	SD	Sudan		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/19726

USC. 1. 356/23.7: 435/91.41, 320.1, 252.9, 69.1; 330/350 According to International Patent Chassification system followed by classification symbols) U.S.: 336/23.7: 435/91.41, 320.1, 252.9, 69.1; 330/350 Documentation searched (classification system followed by classification symbols) U.S.: 336/23.7: 435/91.41, 320.1, 252.9, 69.1; 330/350 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched (Cabank, Swiagnore, PIR66, SPTREMBL9 search terms: sequences corresponding to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X										
US CL :336723-7; 43591.41, 320.1, 252.3, 69.1; 530/350 According to Infernational Patter Classification (PC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentations searched (classification system followed by classification symbols) U.S.: 536/23-7; 43591.41, 320.1, 252.3, 69.1; 530/350 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Geobank, Swiagpree, PIR60, SPTREMBL9 search terms: sequences corresponding to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 May 1998, page 23 (relevant to instant SEQ ID NO: 16). X EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 December 1997, page 8 (relevant to instant SEQ ID NO: 12). X EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). Bright comment and the publication date of mother citation or other to the spiking of the service of comment of the international filing date and the precipit certification are other subtime of the service of comment published prior to the combination or other subtime of the service of comment of the internation and the precipit date characted by the published on the international filing date in the combination of the international filing date in the published prior to the combination or other subtime of the service of comment subtime store of the sexual completion of the international search Comment matched to the published of the combination or other subtime of the sexual completion of the international search To Comment subtime of the state published of the combination of the precipit date into the combination and the precipit date into	A. CLA	SSIFICATION OF SUBJECT MATTER								
According to International Patent Classification (PC) or to both national classification and IPC B FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S.: 386/23.7; 435/91.41, 320.1, 252.3, 69.1; 530/350 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Genbank, Swissprot, PIR60, SPTREMBL9 search terms: sequences corresponding to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 C DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. May 1998, page 23 (relevant to instant SEQ ID NO: 16). X EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 In 11 December 1997, page 8 (relevant to instant SEQ ID NO: 12). EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 December 1997, page 8 (relevant to instant SEQ ID NO: 12). X EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). In 11 In 11 In 12 In 14 In 15 In 16 In 16 In 17 Special engagers of cited documents observed the sequence of the standard content to the sequence of the second										
Purther documents are listed in the continuation of Box C. See patent family annex.	US CL	:536/23.7; 435/91.41, 320.1, 252.3, 69.1; 530/350	•	·						
Minimum documentation searched (classification system followed by classification symbols) U.S.: 336/23.7; 435/91.41, 320.1, 232.3, 69.1; 530/350 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched flectronic data base consulted during the international search (name of data base and, where practicable, search terms used) Genbank, Swiasprox, PIRGO, SPTEMBL9 search terms: sequences corresponding to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 1-11 May 1998, page 23 (relevant to instant SEQ ID NO: 16). X EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 10-11 December 1997, page 8 (relevant to instant SEQ ID NO: 12). X EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 1-11 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). **A document defining the sweets international fling date on the continuation to be of protection relevance to the international fling date or privately date determined to be of protection relevance to the international fling date or privately date determined to be of protection relevance to the international fling date or special research to the international fling date or special research to the international fling date or special research to the international fling date or special research to the international fling date or special research to the international fling date or special research to the international fling date or special research to protective relevance, the chistonic relates to confidence or date to the protection of the international search To document published prive to be international fling date to the private relates the confidence or other management of particular relevance, the chistonic date to understant decument is taken in societies and private to a private the pre	According	to International Patent Classification (IPC) or to both	national classification and IPC							
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Genbank, Swiasprox, PIRGO, SPTREMBL9 search terms: sequences corresponding to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 May 1998, page 23 (relevant to instant SEQ ID NO: 16). X EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 Doccember 1997, page 8 (relevant to instant SEQ ID NO: 6). X EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). Special categories of clad documents A to substitute the patients are stated in the continuation of Box C. See patent family annex. Special categories of clad documents are included and the substitute of the continuation of Box C. See patent family annex. 1-11 A to substitute the patients of class of counter to instant SEQ ID NO: 6). See patent family annex. 1-12 Special categories of clad documents are included and the substitute of the state of the substitute of patients and the substitute of the patients are included and the substitute of the patients are included and the patients and the patients are included and the patients and the substitute of the patients and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the patients and the patients are invalided	B. FIEL	DS SEARCHED								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Genbank, Swiasprox, PIRGO, SPTREMBL9 search terms: sequences corresponding to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 May 1998, page 23 (relevant to instant SEQ ID NO: 16). X EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 Doccember 1997, page 8 (relevant to instant SEQ ID NO: 6). X EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). Special categories of clad documents A to substitute the patients are stated in the continuation of Box C. See patent family annex. Special categories of clad documents are included and the substitute of the continuation of Box C. See patent family annex. 1-11 A to substitute the patients of class of counter to instant SEQ ID NO: 6). See patent family annex. 1-12 Special categories of clad documents are included and the substitute of the state of the substitute of patients and the substitute of the patients are included and the substitute of the patients are included and the patients and the patients are included and the patients and the substitute of the patients and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the substitute of the patients are invalided and the patients and the patients are invalided	Minimum d	ocumentation searched (classification system follow	ed by classification symbols)							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Genbank, Swissprot, PIR60, SPTREMBL9 search terms: sequences corresponding to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 May 1998, page 23 (relevant to instant SEQ ID NO: 16). EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 December 1997, page 8 (relevant to instant SEQ ID NO: 12). X EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). See patent family annex. 72 Adocument offening the spential state of the art which is not considered to be of patientar relevance. 83 84 85 85 86 87 88 88 88 88 88 88 88 88 88 88 88 88		·								
Genbank, Swisaprot, PIRGO, SPTREMBL9 search terms: sequences corresponding to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X	Documental	tion scarched other than minimum documentation to th	e extent that such documents are included	in the fields searched						
Genbank, Swisaprot, PIRGO, SPTREMBL9 search terms: sequences corresponding to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X										
C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 May 1998, page 23 (relevant to instant SEQ ID NO: 16). X EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 December 1997, page 8 (relevant to instant SEQ ID NO: 12). X EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). See patent family annex. 7 And document defining the gowest state of the srt which is not considered to be of periodical relevance. 8 Special categories of cited documents: 4 And document defining the gowest state of the srt which is not considered to be of periodical relevance. 8 See patent family annex. 7 Inter document defining the gowest state of the srt which is not considered to be of periodical relevance of the srt which is not considered to be of periodical relevance of the state of the srt which is not considered to be of periodical relevance. 8 See patent family annex. 7 Inter document affining this published after the international filing data or priority data and not in conflict with the application but did to understand to be of periodical relevance. 8 See patent family annex. 7 Inter document affining this published on or after the international filing data or priority data and not in conflict with the application but did to understand to be of periodical relevance. 7 And document referring to an oral disclosure, use, subhistion or other speed reason (as specified to involve an inventive step which the published prior to the international filing date but later than the priority date chimal specified prior to the international filing date but later than the priority date chimal or priority date chimal specified prior to the international search the priority date chimal or patents and trademarks P document member of the same petent family Date of the actual completion of the international search	Electronic o	iata base consulted during the international search (n	name of data base and, where practicable	e, search terms used)						
C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 May 1998, page 23 (relevant to instant SEQ ID NO:16). EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 December 1997, page 8 (relevant to instant SEQ ID NO: 12). X EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). Further documents are listed in the continuation of Box C. Special categories of cited documents: As document defining the general state of the art which is not considered to be of perturbate relevance; described to be present assets of the art which is not considered to be of perturbate relevance; described to assibilish the publication due of mother citation or other special reason (as specifies) claim (of the section of the s			,							
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 1-11 May 1998, page 23 (relevant to instant SEQ ID NO:16). EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 December 1997, page 8 (relevant to instant SEQ ID NO: 12). EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited document: A document defining the general rate of the art which is not considered to be of particular relevance B' series document published on or after the international filing date of the series document published for the priority claim(s) or which is document of predicular relevance to document published from the priority claim (s) or which is the priority date claimed to the organization of other considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention as provided to the priority date claimed. Date of the actual competition of the international scarch 10 FEBRUARY 2000 Authorizony officer. John S. BRUSCA SALVANCE ACMITTATION 10 1-11 Later document published prior to the international filing date but later than the priority date claimed. To document published prior to the international scarch 10 FEBRUARY 2000 Authorizony officer. John S. BRUSCA SALVANCE ACMITTATION 10 1-11 Later document published prior to the international scarch 10 FEBRUARY 2000	search ter	ms: sequences corresponding to SEQ ID NO: 2, 4,	6, 8, 10, 12, 14, 16, 18, and 20							
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 1-11 May 1998, page 23 (relevant to instant SEQ ID NO:16). EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 December 1997, page 8 (relevant to instant SEQ ID NO: 12). EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited document: A document defining the general rate of the art which is not considered to be of particular relevance B' series document published on or after the international filing date of the series document published for the priority claim(s) or which is document of predicular relevance to document published from the priority claim (s) or which is the priority date claimed to the organization of other considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention as provided to the priority date claimed. Date of the actual competition of the international scarch 10 FEBRUARY 2000 Authorizony officer. John S. BRUSCA SALVANCE ACMITTATION 10 1-11 Later document published prior to the international filing date but later than the priority date claimed. To document published prior to the international scarch 10 FEBRUARY 2000 Authorizony officer. John S. BRUSCA SALVANCE ACMITTATION 10 1-11 Later document published prior to the international scarch 10 FEBRUARY 2000			·	·						
EP 0 843 016 A2 (SMITHKLINE BEECHAM CORPORATION) 20 May 1998, page 23 (relevant to instant SEQ ID NO:16). EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 December 1997, page 8 (relevant to instant SEQ ID NO: 12). EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). See patent family annex. The special categories of cited documents: A document defaining the a search state of the art which is not considered to be of particular relevance. B earlier document which may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is riced to stabilith, may throw doubts on priority claim(s) or which is repetial reason (as specified) Or document referring to an oral disclosure, use, subhibition or other means Pr document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is universe to rice to involve an inventive step when the document is universe to reperse thicked in the riced to involve an inventive step when the document is universe to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is consi				• .						
May 1998, page 23 (relevant to instant SEQ ID NO:16). EP 0 811 696 A2 (SMITHKINE BEECHAM CORPORATION) 10 December 1997, page 8 (relevant to instant SEQ ID NO: 12). EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). See patent family annex. Special categories of cited documents: At document defining the general state of the art which is not considered to be of puricular relevance to be of puricular relevance. See artise document published on or after the international filing date or priority date and not in conflict with the application but cited to another citation or other the international filing date or priority claument of puricular relevance the claimed invention cannot be considered to enter of the art which is not considered to document which may throw doubs on priority claim(i) or which is cited to antibility the publication due to general relevance the claimed invention cannot be considered to involve an inventive step when the document is already of the comment of the international filing date but later than the priority date claimed. To document optibilished prior to the international filing date but later than the priority date claimed. To document optibilished prior to the international filing date but later than the priority date claimed. To document optibilished prior to the international filing date but later than the priority date claimed. To document optibilished prior to the international filing date but later than the priority date claimed. To document optibilished prior to the international search To FEBRUARY 2000 Name and mailing addireas of the ISA/US Commissioner of Patents and Trademarks Washington, D.C. 2021	Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.						
December 1997, page 8 (relevant to instant SEQ ID NO: 12). EP 0 826 774 A2 (SMITHKINE BEECHAM CORPORATION) 14 March 1998, Figure 1 (relevant to instant SEQ ID NO: 6). 1-11 Purther documents are listed in the continuation of Box C. Special categories of cited documents: As document defining the general state of the art which is not considered to be of purticular relevance to be of purticular relevance. Be earlier document published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered to be ordered and an advantage of another citation or other special reason (as specified) Or document published prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published and prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published prior to the international filing date but later than the priority date chained Or document published for the international filing date but later than the prior	X	EP 0 843 016 A2 (SMITHKLINE BEE May 1998, page 23 (relevant to instan	CHAM CORPORATION) 20 at SEQ ID NO:16).	1-11						
Further documents are listed in the continuation of Box C. Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance to the application but cited to understand the principle or these published on or after the international filing date or priority date from the publication date of another citation or other special reason (as specified) To document referring to an oral disclosure, use, exhibition or other means document referring to an oral disclosure, use, exhibition or other the priority date scienced to involve an inventive step when the document is combined with one prority date claimed invention cannot be considered to involve an inventive step when the document is combined with one are more other such document or involve an inventive step when the document is combined with one are more other such document in combined with one are more other such document member of the same patent family Date of the actual completion of the international scarch 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks DOX PCT Washington, D.C. 20231	X			1-11						
Special categories of cited documents: A** document defining the general state of the art which is not considered to be of particular relevance B** earlier document published on or after the international filing date C** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 *T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is twen alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is uncombined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2000 Authorized officer Washington, D.C. 20231	X	EP 0 826 774 A2 (SMITHKINE BEE March 1998, Figure 1 (relevant to ins	CHAM CORPORATION) 14 tant SEQ ID NO: 6).	1-11						
Special categories of cited documents: A** document defining the general state of the art which is not considered to be of particular relevance B** earlier document published on or after the international filing date C** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 *T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is twen alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is uncombined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2000 Authorized officer Washington, D.C. 20231										
Special categories of cited documents: A** document defining the general state of the art which is not considered to be of particular relevance B** earlier document published on or after the international filing date C** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 *T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is twen alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is uncombined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2000 Authorized officer Washington, D.C. 20231			}							
Special categories of cited documents: A** document defining the general state of the art which is not considered to be of particular relevance B** earlier document published on or after the international filing date C** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 *T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is twen alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is uncombined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2000 Authorized officer Washington, D.C. 20231										
Special categories of cited documents: A** document defining the general state of the art which is not considered to be of particular relevance B** earlier document published on or after the international filing date C** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 *T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is twen alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is uncombined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2000 Authorized officer Washington, D.C. 20231										
Special categories of cited documents: A** document defining the general state of the art which is not considered to be of particular relevance B** earlier document published on or after the international filing date C** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 *T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is twen alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is uncombined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2000 Authorized officer Washington, D.C. 20231			i							
Special categories of cited documents: A** document defining the general state of the art which is not considered to be of particular relevance B** earlier document published on or after the international filing date C** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 *T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is twen alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is uncombined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2000 Authorized officer Washington, D.C. 20231										
Special categories of cited documents: A** document defining the general state of the art which is not considered to be of particular relevance B** earlier document published on or after the international filing date C** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 *T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is twen alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is uncombined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2000 Authorized officer Washington, D.C. 20231										
Special categories of cited documents: A** document defining the general state of the art which is not considered to be of particular relevance B** earlier document published on or after the international filing date C** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 *T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is twen alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is uncombined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2000 Authorized officer Washington, D.C. 20231		· .		,						
document defining the general state of the art which is not considered to be of particular relevance artiser document published on or after the international filing date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same petent family Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Authorized officer JOHN S. BRUSCA Authorized officer JOH		er documents are listed in the continuation of Box (C. See patent family annex.							
to be of particular relevance the claimed or after the international filing date considered to earlier document published on or after the international filing date considered to earlier document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) To document referring to an oral disclosure, use, exhibition or other means To document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search To FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 We arrier document published on or after the international filing date on their international filing date of the international filing date but later than the priority date claimed Authorized officer JOHN S. BRUSCA Washington, D.C. 20231				mational filing date or priority						
document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means O' document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washingten, D.C. 20231 Considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is taken alone considered novel or cannot be considered to involve an inventive step when the document is accombined to involve an inventive step when the document is accombined to involve an inventive step when the document is accombined to involve an inventive step when the document is accombined to involve an inventive step when the document is accombined to involve an inventive step when the document is accombined to involve an inventive step when the considered to involve an in	"A" doc to !	nument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	invention						
document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means O' document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washingten, D.C. 20231 when the document is taken alone "Y" when the document is taken alone "Y" document of perticular relevance; the claimed invention cannot be combined with one or more other such documents; such combination being obvious to a person skilled in the art document member of the same petent family Date of mailing of the international search report Of APR 2006 Authorized officer JOHN S. BRUSCA Authorized officer JOHN S. BRUSCA Authorized officer	"B" car	lier document published on or after the international filing date		claimed invention cannot be						
document of perticular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document means Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Value of comment of perticular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents is combined with one or more other such documents is combined with one or more other such documents in the person skilled in the art document member of the same petent family Date of mailing of the international search report 06 APR 2000 Authorized officer JOHN S. BRUSCA Authorized officer JOHN S. BRUSCA JOHN S. BRUSCA	cite	d to establish the publication date of enother citation or other	when the document is taken alone	ed to involve an inventive steb						
document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Commissioner of Co	spo	cial reason (as specified)								
document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Authorized officer JOHN S. BRUSCA Authorized officer JOHN S. BRUSCA			combined with one or more other such	documents, such combination						
10 FEBRUARY 2000 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 JOHN S. BRUSCA Authorized officer JOHN S. BRUSCA	°P° doc	nument published prior to the international filing date but later than priority date claimed								
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Authorized officer JOHN S. BRUSCA Authorized officer JOHN S. BRUSCA	Date of the	actual completion of the international search	Date of mailing of the international sea	rch report						
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 JOHN S. BRUSCA										
Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 JOHN S. BRUSCA JOHN S. BRUSCA	Name and n									
C	Commission Box PCT	ner of Patents and Trademarks	JOHN'S BROSER FAUNTERCE FOR							
	Facsimile N		Telephone No. (703) 308-0196							

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/19726

Box I Observations where certain claims	were found unsearchable (Continuation of item 1 of first sheet)
his international report has not been established	d in respect of certain claims under Article 17(2)(a) for the following reasons:
. Claims Nos.:	
1 I	er not required to be searched by this Authority, namely:
·	
Claims Nos.:	and the state of t
•	ternational application that do not comply with the prescribed requirements to such ational search can be carried out, specifically:
•	
Claima Non .	
Claims Nos.: because they are dependent claims an	nd are not drafted in accordance with the second and third sentences of Rule 6.4(a).
ox II Observations where unity of inven	tion is lacking (Continuation of item 2 of first sheet)
his International Searching Authority found	multiple inventions in this international application, as follows:
Picase See Extra Sheet.	
Ficase See Extra Succe.	
	es were timely paid by the applicant, this international search report covers all searchab
claims.	
	earched without effort justifying an additional fee, this Authority did not invite payme
of any additional fee.	
. As only some of the required addition	onal search fees were timely paid by the applicant, this international search report cove
only those claims for which fees w	were paid, specifically claims Nos.:
• •	
•	
11	s were timely paid by the applicant. Consequently, this international search report
restricted to the invention first me	entioned in the claims; it is covered by claims Nos.:
Remark on Protest The addi	itional search fees were accompanied by the applicant's protect
	itional search fees were accompanied by the applicant's protest.
No prote	est accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/19726

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-11, drawn to Staphylococcal nucleic acids, proteins encoded by the nucleic acids, vectors comprising the nucleic acids, methods of making the vectors, cells comprising the vectors, and methods of expressing the nucleic acids in transformed cells.

Group II, claim(s) 12 and 13, drawn to an antibody and a cell producing an antibody, both antibodies being specific for the protein encoded by the nucleic acids of Group I.

Group III, claim(s) 16, drawn to a vaccine comprising a protein encoded by the nucleic acids of Group I.

Group IV, claim(a)17, drawn to a method of preventing an infection by administration of a protein encoded by the nucleic acids of Group I.

Group V, claim(s) 18, drawn to a Staphylococcal nucleic acid assay using the nucleic acids of Group I as probes. Group VI, claim(s) 19, drawn to an assay of antibodies specific for Staphylococcal proteins using proteins encoded by the nucleic acids of Group I.

Group VII, claim 20, drawn to an assay of the Staphylococcal proteins of Group I using antibodies specific for the proteins of Group I.

The inventions listed as Groups I-VII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Groups II-VII constitute the third product, and the second through fifth methods of use of the products of Group I. PCT Rule 13.1 and Annex B do not show that unity of invention exists between a first and second product or method of use.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be searched, the appropriate additional search fees must be paid. The species are as follows:

The amino acid sequences of the polypeptides shown in Table 1.

The claims are deemed to correspond to the species listed above in the following manner:

All claims of each Group discussed above are drawn to the species indicated above.

The following claims are generic: Claims 1-20

The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: Each species is drawn to a different amino acid sequence, and to nucleic acids encoding different amino acid sequences. There is no disclosed relationship between the sequences of each individual species disclosed in Table 1.

Restriction to a single species has been waived sua sponte and the Applicants are permitted to have ten species examined without payment of additional fees. The Applicant's representative Kenley Hoover elected telephonically on 1/27/00 to have the sequences corresponding to SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 examined.

