Structures of vortices in underwater hill wakes

Jinyuan Liu¹, Pranav Puthan², Sutanu Sarkar^{1,2}

¹University of California San Diego

²Scripps Institution of Oceanography

Introduction and motivation

Underwater

Above water

Okeanos Explorer Seamount, 2016 (NOAA)

Guadalupe Island, 2017 (NASA)

Introduction and motivation

- Large spatial and temporal scales
 - impact on marine lives, weather system
- Many key factors come into play
 - stratification
 - rotation part I
 - tide part II
- Richness in vortex dymanics
- Unbalanced amount of literature in observation and in numerical simulation

Okeanos Explorer Seamount, 2016 (NOAA)

Physical modelling^{1,2} and numerical simulations

 $\Omega = 2\pi f_{\rm c}$

- Topography: conical hill
 - slope angle 30 deg

- Stratified, rotating, tidally modulated flow
- Governing equations: incompressible Navier-Stokes

$$\begin{split} \frac{\partial u_i}{\partial x_i} &= 0 \\ \frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} - 2\pi f_{\rm c} \epsilon_{ij3} (u_j - U_b(t) \delta_{i1}) = -\frac{1}{\rho_0} \frac{\partial p'}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} - \frac{\rho' g}{\rho_0} \delta_{i3} + F_{\rm b}(t) \delta_{i1} \\ \frac{\partial \rho}{\partial x_i} + \frac{\partial \rho u_i}{\partial x_i} &= \frac{\partial \phi_i}{\partial x_i} \end{split} \qquad \qquad \begin{aligned} & \text{Body force:} \\ F_{\rm b} &= 2\pi f_{\rm t} U_{\rm t} \cos(2\pi f_{\rm t} t) \end{aligned}$$

$$\tau_{ij} = (\nu + \nu_{\rm sgs}) (\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i}), \ \phi_i = (\kappa + \kappa_{\rm sgs}) \frac{\partial \rho}{\partial x_i} \end{split}$$

Physical modelling and <u>numerical simulations</u>^{1,2}

- Large Eddy Simulation (LES)
 - ³subgrid-scale model: WALE
 - Immersed Boundary Method⁴ (IBM) formulation for the topography
 - $Re_D = 20,000$
- Controlling nondimensional parameters

$$Fr = \frac{U}{Nh}, Ro = \frac{U}{2\pi f_{\rm i}D}, Bu = (\frac{Ro}{Fr})^2, Ex = \frac{U_{\rm t}}{2\pi f_{\rm t}D}$$

Froude number Rossby Number Burger number Excursion number (stratification level) (rotating rate) (geostrophy) (tidal stength)

Case	Bu	Ex	Ro	ΔT	Fr	(N_x, N_y, N_z)	N
Bu1 BuK BuInf	1300		0.15 5.5 ∞	$310D/U_{ m c}$	0.15	(1536, 1280, 322)	4000
Ex025 Ex050	1300 1300	$0.25 \\ 0.50$	5.5	$128T_{ m t}$			

Parameter table of simulations.

Lee vortices: a distinctive flow feature in stratified wakes

LES of an **unstratified** flow **over** a 3-D hill

Garcia-Villalba et al. JFM, 2009

Experiment of a **stratified** flow **around** a 3-D hill

side

Hunt & Snyder, JFM, 1980

top

Strong rotation

no rotation

Part-I: The effect of rotation

Fr = 0.15, Ro = 0.15, Bu = 1

$$Fr = 0.15, Ro = \infty, Bu = \infty$$

An overview of SPOD

- Motivations of doing SPOD on ω_z
 - Extract the features of the vortical motion in a statistical way
 - Identify characteristic length/time scales

SPOD problem formulation¹

$$\mathbf{C}(\mathbf{x}, \mathbf{x}', \tau) = \langle \mathbf{q}(\mathbf{x}, \mathbf{t}) \mathbf{q}^*(\mathbf{x}', \mathbf{t} + \tau) \rangle$$

$$\mathbf{S}(\mathbf{x}, \mathbf{x}', f) = \int_{-\infty}^{\infty} \mathbf{C}(\mathbf{x}, \mathbf{x}', \tau) \exp(i2\pi f \tau) d\tau$$

$$\int_{\Omega} \mathbf{S}(\mathbf{x}, \mathbf{x}', f) \boldsymbol{\psi}(\mathbf{x}', f) d\mathbf{x}' = \lambda(f') \boldsymbol{\psi}(\mathbf{x}, f')$$

$$\mathbf{S}(\mathbf{x}, \mathbf{x}', f) = \sum_{j=1}^{\infty} \lambda_j(f) \boldsymbol{\psi}(\mathbf{x}, f) \boldsymbol{\psi}^*(\mathbf{x}', f)$$

• Numerical implementation²

¹Towne et al, *JFM*, 2018; ²Schmidt & Colonius, *AIAA Journal*, 2020

SPOD eigenspectra, with a nearly global Strouhal number

Fr = 0.15, Ro = 0.15, Bu = 1

 $Fr = 0.15, Ro = \infty, Bu = \infty, 1000$

Leading SPOD eigenmodes (shedding frequency)

¹Gunes, Sirisup, and Karniadakis, *JCP*, 2016; ²Billant & Chomaz, *PoF*, 2001

2nd leading SPOD eigenmodes (twice the shedding frequency)

Part-II: The effect of tide

Near and far wake decomposition

Schematic of region division

SPOD eigenspectra, influence of tide

¹Puthan et al. Geophysical Research Letter, 2021.

Summary

- Part-I: the effect of rotation
 - alters the vertical structure of vortex shedding
 - the flow lost vertical alignment with weak rotation
 - preserves the vortex shedding frequency
- Part-II: the effect of tide
 - dominates the vortex shedding in the near wake
 - synchronizes the far wake into its subharmonic
- Future work
 - varying Fr number: vertical length scaling

Thank you!

jinyuanliu@ucsd.edu, https://liu-jinyuan.github.io/

Appendix

SPOD eigenspectra for case BuInf

slopes of vertical structures, for case BuInf

same slope as in BuK (Ro=5.5), and is not changing downstream

mode 1, case Bulnf

$$Fr = 0.15, Ro = \infty$$

$$z/h = 0.25$$

mode 1, case Bulnf

$$Fr = 0.15, Ro = \infty$$

$$z/h = 0.50$$

mode 1, case Bulnf

$$Fr = 0.15, Ro = \infty$$

$$z/h = 0.75$$

Phase-decomposition of the tidally modulated case

Instantaneous

Phase-coherent (phase-average flow)

$$z/h=0.12$$

Phase-decomposition of unsteady flows

• Statistically unsteady flow:

$$U_b = U_c + U_t \cos(2\pi f_t t)$$

• Phase-average¹: a realization of triple decomposition w.r.t. a certain phase (frequency) $\mathbf{u}(\mathbf{x},t) = \mathbf{u}_{\mathrm{B}}(\mathbf{x}) + \mathbf{u}_{\mathrm{pc}}(\mathbf{x},t) + \mathbf{u}_{\mathrm{res}}(\mathbf{x},t)$

base flow phase coherent residual

• a kind of conditional average: $(x,y,z,t) \to (x,y,z,\phi)$ $t \in [0,T_{\rm sim}], \ \phi \in [0,2\pi]$

SPOD modes for the full domain -- i0038 (z/h=0.25)

first SPOD mode for $f = f_t$

first SPOD mode for $f = 1/4 f_t$

