

PCT/JP 00/02891

02.05.00

RECD 26 JUN 2000

JAPPO

PCT

日本国特許庁

PATENT OFFICE

JAPANESE GOVERNMENT

JP00/02891

別紙添付の書類に記載されている事項は下記の出願書類に記載されて  
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

1999年 9月16日

E4

出願番号

Application Number:

平成11年特許願第261952号

出願人

Applicant(s):

工業技術院長  
財団法人 化学技術戦略推進機構



PRIORITY  
DOCUMENT  
SUBMITTED OR TRANSMITTED IN  
COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 6月 9日

特許庁長官  
Commissioner  
Patent Office

近藤 隆彦



出証番号 出証特2000-3042471

【書類名】 特許願  
【整理番号】 KEN-3849  
【提出日】 平成11年 9月16日  
【あて先】 特許庁長官 近藤 隆彦 殿  
【国際特許分類】 C08F 4/64  
C08F 10/00  
C08F297/00

【発明者】  
【住所又は居所】 茨城県つくば市東1-1 工業技術院物質工学工業技術  
研究所内  
【氏名】 曾我 和雄

【発明者】  
【住所又は居所】 茨城県つくば市東1-1 工業技術院物質工学工業技術  
研究所内  
【氏名】 浅井 道彦

【発明者】  
【住所又は居所】 茨城県つくば市東1-1 工業技術院物質工学工業技術  
研究所内  
【氏名】 鈴木 靖三

【発明者】  
【住所又は居所】 茨城県つくば市東1-1 工業技術院物質工学工業技術  
研究所内  
【氏名】 宮沢 哲

【発明者】  
【住所又は居所】 茨城県つくば市東1-1 工業技術院物質工学工業技術  
研究所内  
【氏名】 土原 健治

【発明者】  
【住所又は居所】 東京都文京区水道二丁目3番15-504号

【氏名】 村田 昌英

【発明者】

【住所又は居所】 茨城県つくば市小野川四丁目6-202号

【氏名】 尾崎 裕之

【発明者】

【住所又は居所】 茨城県つくば市竹園二丁目6番2-203号

【氏名】 川辺 正直

【発明者】

【住所又は居所】 茨城県つくば市松代五丁目2-2号

【氏名】 加瀬 俊男

【発明者】

【住所又は居所】 石川県金沢市小立野2-2-7

【氏名】 ジン ジジュ

【発明者】

【住所又は居所】 茨城県つくば市天久保2-6-14 桜井ハイツ203

【氏名】 萩原 英昭

【発明者】

【住所又は居所】 茨城県つくば市二の宮四丁目6番3-507号

【氏名】 福井 祥文

【特許出願人】

【識別番号】 000001144

【氏名又は名称】 工業技術院長 梶村 皓司

【特許出願人】

【識別番号】 597071652

【氏名又は名称】 財団法人 化学技術戦略推進機構

【指定代理人】

【識別番号】 220000390

【氏名又は名称】 工業技術院 物質工学工業技術研究所長 久保田 正明

【代理関係の特記事項】 特許出願人 工業技術院長の指定代理人

【代理人】

【識別番号】 100065226

【弁理士】

【氏名又は名称】 朝日奈 宗太

【電話番号】 06-6943-8922

【代理関係の特記事項】 特許出願人 財団法人 化学技術戦略推進機構の  
代理人

【復代理人】

【識別番号】 100065226

【弁理士】

【氏名又は名称】 朝日奈 宗太

【電話番号】 06-6943-8922

【代理関係の特記事項】 特許出願人 工業技術院長の復代理人

【選任した代理人】

【識別番号】 100098257

【弁理士】

【氏名又は名称】 佐木 啓二

【代理関係の特記事項】 特許出願人 財団法人 化学技術戦略推進機構  
の代理人

【選任した復代理人】

【識別番号】 100098257

【弁理士】

【氏名又は名称】 佐木 啓二

【代理関係の特記事項】 特許出願人 工業技術院長の復代理人

【先の出願に基づく優先権主張】

【出願番号】 平成11年特許願第128732号

【出願日】 平成11年 5月10日

【手数料の表示】

【予納台帳番号】 001627

【納付金額】 13,860円

【その他】 国以外のすべての者の持分の割合 66／100

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 オレフィン系リビング重合体の製法

【特許請求の範囲】

【請求項1】 (A-1) 1個または2個のシクロペンタジエニル骨格を有するハフニウム含有化合物および

(B) (B-1) 一般式(I) :



(式中、P hは置換されていてもよいフェニル基)で表わされるボラン化合物または

(B-2) 一般式(II) :



(式中、P hは前記と同じ、X<sup>+</sup>は陽イオン基)で表わされるボレート化合物からなる触媒を用いて重合温度-20~-100℃で炭素数2~20のオレフィン系モノマーを重合させて分子量分布(Mw/Mn)が1~1.3の重合体を得ることを特徴とするオレフィン系リビング重合体の製法。

【請求項2】 (A-1) 1個または2個のシクロペンタジエニル骨格を有するハフニウム含有化合物、

(B) (B-1) 一般式(I) :



(式中、P hは置換されていてもよいフェニル基)で表わされるボラン化合物または

(B-2) 一般式(II) :



(式中、P hは前記と同じ、X<sup>+</sup>は陽イオン基)で表わされるボレート化合物および

(C) 一般式(III) :



(式中、Rは炭素数4~20の炭化水素基、Yはハロゲン原子、アルコキシ基、トリアルキルシロキシ基、ジ(トリアルキルシリル)アミノ基またはトリアルキ

ルシリル基、nは0、1または2)で表わされるアルミニウム化合物からなる触媒を用いて重合温度-20~-100°Cで炭素数2~20のオレフィン系モノマーを重合させて分子量分布(Mw/Mn)が1~1.3の重合体を得ることを特徴とするオレフィン系リビング重合体の製法。

【請求項3】 重合温度が-30~-80°Cである請求項1または2記載の製法。

【請求項4】 重合温度が-40~-80°Cである請求項1または2記載の製法。

【請求項5】 (A-2) 1個または2個のシクロペンタジエニル骨格を有するジルコニウム含有化合物および

(B) (B-1) 一般式(I) :



(式中、Phは置換されていてもよいフェニル基)で表わされるボラン化合物または

(B-2) 一般式(II) :



(式中、Phは前記と同じ、X<sup>+</sup>は陽イオン基)で表わされるボレート化合物からなる触媒を用いて重合温度-60~-100°Cで炭素数2~20のオレフィン系モノマーを重合させて分子量分布(Mw/Mn)が1~1.3の重合体を得ることを特徴とするオレフィン系リビング重合体の製法。

【請求項6】 (A-2) 1個または2個のシクロペンタジエニル骨格を有するジルコニウム含有化合物、

(B) (B-1) 一般式(I) :



(式中、Phは置換されていてもよいフェニル基)で表わされるボラン化合物または

(B-2) 一般式(II) :



(式中、Phは前記と同じ、X<sup>+</sup>は陽イオン基)で表わされるボレート化合物お

より

(C) 一般式 (III) :



(式中、Rは炭素数4～20の炭化水素基、Yはハロゲン原子、アルコキシ基、トリアルキルシロキシ基、ジ(トリアルキルシリル)アミノ基またはトリアルキルシリル基、nは0、1または2)で表わされるアルミニウム化合物からなる触媒を用いて重合温度-60～-100℃で炭素数2～20のオレフィン系モノマーを重合させて分子量分布( $M_w/M_n$ )が1～1.3の重合体を得ることを特徴とするオレフィン系リビング重合体の製法。

【請求項7】 重合温度が-60～-80℃である請求項5または6記載の製法。

【請求項8】 一般式(I)または(II)中のPh基が、1～5個のフッ素原子で置換されている基である請求項1、2、3、4、5、6または7記載の製法。

【請求項9】 一般式(I)または(II)中のPh基が、5個のフッ素原子で置換されている基である請求項1、2、3、4、5、6または7記載の製法。

【請求項10】 一般式(III)中のnが0である請求項2、3、4、6、7、8または9記載の製法。

【請求項11】 一般式(III)中のnが0であり、Rが炭素数4～8のアルキル基である請求項2、3、4、6、7、8または9記載の製法。

【請求項12】 オレフィン系モノマーが炭素数2～20のα-オレフィンである請求項1、2、3、4、5、6、7、8、9、10または11記載の製法。

【請求項13】 オレフィン系モノマーが炭素数2～10のα-オレフィンである請求項1、2、3、4、5、6、7、8、9、10または11記載の製法。

【請求項14】 オレフィン系モノマーが炭素数3～6のα-オレフィンである請求項1、2、3、4、5、6、7、8、9、10または11記載の製法。

【請求項15】 重合体が析出しない範囲で重合を行なうことを特徴とする

請求項1、2、3、4、5、6、7、8、9、10、11、12、13または14記載の製法。

【請求項16】 分子量分布が1～1.2である請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14または15記載の製法。

#### 【発明の詳細な説明】

##### 【0001】

##### 【発明の属する技術分野】

本発明は、オレフィン系リビング重合体の製法に関する。さらに詳しくは、分子量分布のせまい末端官能化ポリマーやブロックコポリマーに変換し得るオレフィン系リビング重合体の製法に関する。

##### 【0002】

##### 【従来の技術】

オレフィンのリビング重合に関し、 $V(a\text{c}\text{a}\text{c})_3/R_2\text{AlX}$ 触媒 ( $a\text{c}\text{a}$  cはアセチルアセトナト、Rはエチル基、イソブチル基、XはC1、Brを示す) を用い、分子量分布 ( $M_w/M_n$ ) が1.05～1.4のシンジオタクチックポリプロピレン (PP) ( $[r] \sim 0.8$ ) を製造した例 (マクロモレキュルス (Macromolecules), 12 814 (1979))、 $\text{Me}_2\text{Si}(2-\text{SiMe}_3-4-t\text{Bu}-\text{C}_5\text{H}_2)_2\text{Sm}$  (THF)<sub>2</sub>触媒 (Meはメチル基、tBuはt-ブチル基、THFはテトラヒドロフラン) を助触媒なしで用い、エチレンや1-ヘキセンのリビング重合体を製造した例 (触媒, 37 205 (1995))、 $[(2,6-i\text{Pr}_2\text{C}_6\text{H}_3)\text{N}(\text{CH}_2)_3\text{N}(2,6-i\text{Pr}_2\text{C}_6\text{H}_3)]\text{TiMe}_2/B(\text{C}_6\text{F}_5)_3$ 触媒 ( $i\text{Pr}$ はi-プロピル基、Meはメチル基) を用い、室温で  $M_w/M_n$  が1.1以下の炭素数6～10の $\alpha$ -オレフィンのリビング重合体を製造した例 (ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイアティ (J. Am. Chem. Soc.), 118 10008 (1996))、Niの嵩高いアリール基含有ジイミニ錯体

##### 【0003】

## 【化1】

( [ArN = C - C = NAr] NiBr<sub>2</sub> ) / メチルアルミノキサン触媒

(Arは2,6-ジイソプロピルフェニル基)

## 【0004】

を用い、0°C以下で低濃度の炭素数3~18のα-オレフィンをリビング重合させた例（ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイアティ, 118 11664 (1996)）、Zrの3配位型ジアミド錯体（[NON] ZrMe<sub>2</sub>錯体）/B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>触媒を用い、0°CでMw/Mnが1.1以下のアタクチックな1-ヘキセンのリビング重合体を製造した例（ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイアティ, 119 3830 (1997)）。

[NON] ZrMe<sub>2</sub>錯体：

## 【0005】

## 【化2】



## 【0006】

[tBuNSiMe<sub>2</sub>F1u] TiMe<sub>2</sub>/B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>触媒 (tBuはt-ブチル基、Meはメチル基、F1uは

## 【0007】

## 【化3】



## 【0008】

を用い、低温で  $[r] = 0.65$  程度のシンジオリッチなプロピレンリビング重合体を製造した例（ポリマー・プレプリント・ジャパン（polym·Prepr., Japan., ）46 1601 (1997)）などが報告されている（たとえば高分子、47卷、2月号、74~77頁（1998年）参照）。

## 【0009】

また、チタン、ジルコニウムおよびハフニウムのビス（シクロペニタジエニル）誘導体などのメタロセン成分（第1成分）とプロトン供与性カチオンおよび混和性非配位性アニオンを有する第2成分との反応生成物である触媒に、-5~+10°Cで第1のオレフィン成分を接触させて第1のリビングポリマーを製造し、ついで第2のモノマーを逐次添加して第1のポリマーと共に重合させて分子量分布1.4~1.8のマルチブロックコポリマーを製造した例が報告されている（特表平5-503546号公報）。

## 【0010】

さらに、シクロペニタジエニルIVB族金属／アルモキサンまたは相溶性の非配位アニオンの反応生成物である触媒を用い、-5~+10°Cで1種以上のオレフィン性モノマーを重合させ、分子量分布1.35~4.1のブロックコポリマーまたはテーパー状コポリマーを製造した例が報告されており、前記シクロペニタジエニルIVB族金属を形成する金属の例として、Ti、Zr、Hfなどが記載されている（特表平9-500150号公報）。

## 【0011】

## 【発明が解決しようとする課題】

しかしながら、たとえば前記 [(2,6-iPr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)N(CH<sub>2</sub>)<sub>3</sub>N(2,6-iPr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)] TiMe<sub>2</sub>/B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>触媒や前記Niの嵩高いアリール基含有ジイミン錯体／メチルアルミニノキサン触媒を用いる場合にはとも

に、触媒が複雑で製造しにくく、規則性が低いという問題がある。また、前記 [tBuNSiMe<sub>2</sub>F1u] TiMe<sub>2</sub>/B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>触媒を用い、低温でシンジオリッチなリビング重合体を製造する場合も、立体規則性が低く、さらに触媒の構造が複雑で製造しにくいという問題がある。

## 【0012】

また、メタロセン成分／プロトン供与性カチオンおよび混和性非配位性アニオンを有する第2成分の反応生成物である触媒を使用する場合、およびシクロペンタジエニルIVB族金属／アルモキサンまたは相溶性の非配位アニオンの反応生成物である触媒を用いる場合、いずれも分子量分布を必ずしもせまくすることができなかったり、また、必ずしも高度なリビング重合体を得ることができず、末端官能化ポリマー、ブロックコポリマーなどを用いる分野においては、さらに分子量分布のせまい重合体または高度なリビング重合体が望まれている。

## 【0013】

## 【課題を解決するための手段】

本発明者らは、前記従来技術の問題を解決するために銳意研究を重ねた結果、1個または2個のシクロペンタジエニル骨格を有するハフニウムまたはジルコニウム含有化合物、置換されていてもよいフェニル基を有するボラン化合物またはボレート化合物および場合により特定のアルキルアルミニウム化合物からなる触媒を用いて、低温でオレフィン系モノマーを重合させた場合、分子量分布が1.3以下のオレフィン系リビング重合体を製造し得ることを見出し、本発明を完成するに至った。

## 【0014】

すなわち、本発明は、

(A-1) 1個または2個のシクロペンタジエニル骨格を有するハフニウム含有化合物および

(B) (B-1) 一般式(I) :



(式中、Phは置換されていてもよいフェニル基)で表わされるボラン化合物または

(B-2) 一般式 (II) :



(式中、Phは前記と同じ、X<sup>+</sup>は陽イオン基) で表わされるボレート化合物からなる触媒を用いて重合温度-20~-100℃で炭素数2~20のオレフィン系モノマーを重合させて分子量分布(Mw/Mn)が1~1.3の重合体を得ることを特徴とするオレフィン系リビング重合体の製法(請求項1)、

(A-1) 1個または2個のシクロペンタジエニル骨格を有するハフニウム含有化合物、

(B) (B-1) 一般式 (I) :



(式中、Phは置換されていてもよいフェニル基) で表わされるボラン化合物または

(B-2) 一般式 (II) :



(式中、Phは前記と同じ、X<sup>+</sup>は陽イオン基) で表わされるボレート化合物および

(C) 一般式 (III) :



(式中、Rは炭素数4~20の炭化水素基、Yはハロゲン原子、アルコキシ基、トリアルキルシロキシ基、ジ(トリアルキルシリル)アミノ基またはトリアルキルシリル基、nは0、1または2) で表わされるアルミニウム化合物からなる触媒を用いて重合温度-20~-100℃で炭素数2~20のオレフィン系モノマーを重合させて分子量分布(Mw/Mn)が1~1.3の重合体を得ることを特徴とするオレフィン系リビング重合体の製法(請求項2)、

重合温度が-30~-80℃である請求項1または2記載の製法(請求項3)、

重合温度が-40~-80℃である請求項1または2記載の製法(請求項4)、

(A-2) 1個または2個のシクロペンタジエニル骨格を有するジルコニウム含有化合物および

(B) (B-1) 一般式 (I) :



(式中、Phは置換されていてもよいフェニル基)で表わされるボラン化合物または

(B-2) 一般式 (II) :



(式中、Phは前記と同じ、X<sup>+</sup>は陽イオン基)で表わされるボレート化合物からなる触媒を用いて重合温度-60~-100℃で炭素数2~20のオレフィン系モノマーを重合させて分子量分布(Mw/Mn)が1~1.3の重合体を得ることを特徴とするオレフィン系リビング重合体の製法(請求項5)。

(A-2) 1個または2個のシクロペンタジエニル骨格を有するジルコニウム含有化合物、

(B) (B-1) 一般式 (I) :



(式中、Phは置換されていてもよいフェニル基)で表わされるボラン化合物または

(B-2) 一般式 (II) :



(式中、Phは前記と同じ、X<sup>+</sup>は陽イオン基)で表わされるボレート化合物および

(C) 一般式 (III) :



(式中、Rは炭素数4~20の炭化水素基、Yはハロゲン原子、アルコキシ基、トリアルキルシリキシ基、ジ(トリアルキルシリル)アミノ基またはトリアルキルシリル基、nは0、1または2)で表わされるアルミニウム化合物からなる触媒を用いて重合温度-60~-100℃で炭素数2~20のオレフィン系モノマーを重合させて分子量分布(Mw/Mn)が1~1.3の重合体を得ることを特徴とするオレフィン系リビング重合体の製法(請求項6)。

重合温度が-60~-80℃である請求項5または6記載の製法(請求項7)、一般式(I)または(II)中のPh基が、1~5個のフッ素原子で置換されてい

る基である請求項1、2、3、4、5、6または7記載の製法（請求項8）、  
 一般式（I）または（II）中のPh基が、5個のフッ素原子で置換されている基  
 である請求項1、2、3、4、5、6または7記載の製法（請求項9）、  
 一般式（III）中のnが0である請求項2、3、4、6、7、8または9記載の  
 製法（請求項10）、  
 一般式（III）中のnが0であり、Rが炭素数4～8のアルキル基である請求項  
 2、3、4、6、7、8または9記載の製法（請求項11）、  
 オレフィン系モノマーが炭素数2～20のα-オレフィンである請求項1、2、  
 3、4、5、6、7、8、9、10または11記載の製法（請求項12）、  
 オレフィン系モノマーが炭素数2～10のα-オレフィンである請求項1、2、  
 3、4、5、6、7、8、9、10または11記載の製法（請求項13）、  
 オレフィン系モノマーが炭素数3～6のα-オレフィンである請求項1、2、3  
 、4、5、6、7、8、9、10または11記載の製法（請求項14）、  
 重合体が析出しない範囲で重合を行なうことを特徴とする請求項1、2、3、4  
 、5、6、7、8、9、10、11、12、13または14記載の製法（請求項  
 15）、および  
 分子量分布が1～1.2である請求項1、2、3、4、5、6、7、8、9、1  
 0、11、12、13、14または15記載の製法（請求項16）  
 に関する。

## 【0015】

なお、オレフィン系モノマーの重合には単独重合だけではなく、オレフィン系  
 モノマー同士の共重合も含める。

## 【0016】

## 【発明の実施の形態】

本発明では、

(A) (A-1) 1個または2個のシクロペントジエニル骨格を有するハフニウム含有化合物または(A-2) 1個または2個のシクロペントジエニル骨格を有するジルコニウム含有化合物、

(B) (B-1) 一般式(I)：

B (Ph)<sub>3</sub> (I)

(式中、Phは置換されていてもよいフェニル基)で表わされるボラン化合物または

(B-2) 一般式 (II) :

B<sup>-</sup> (Ph)<sub>4</sub>X<sup>+</sup> (II)

(式中、Phは前記と同じ、X<sup>+</sup>は陽イオン基)で表わされるボレート化合物および場合により

(C) 一般式 (III) :

A<sub>1</sub>R<sub>3-n</sub>Y<sub>n</sub> (III)

(式中、Rは炭素数4~20の炭化水素基、Yはハロゲン原子、アルコキシ基、トリアルキルシロキシ基、ジ(トリアルキルシリル)アミノ基またはトリアルキルシリル基、nは0、1または2)で表わされるアルミニウム化合物からなる触媒を用いてオレフィン系モノマーを重合させてオレフィン系リビング重合体が製造される。

## 【0017】

前記オレフィン系モノマーとしては、炭素数2~20、さらには2~10、とくには3~6のものが使用され、α-オレフィンが好ましい。

## 【0018】

前記オレフィン系モノマーの具体例としては、エチレン、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3-エチル-1-ペンテン、4, 4-ジメチル-1-ペンテン、1-ヘキセン、4-メチル-1-ヘキセン、3-エチル-1-ヘキセン、4-エチル-1-ヘキセン、4, 4-ジメチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの鎖状α-オレフィン、1, 4-ペンタジエン、1, 4-ヘキサジエン、1, 5-ヘキサジエン、1, 7-オクタジエン、1, 8-ノナジエン、1, 9-デカジエンなどの鎖状ジエン、シクロプロパン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロドデセン、シクロテトラデセン、シクロエイコセン、3

一メチルシクロペンテン、3-メチルシクロヘキセン、ビニルシクロヘキサン、1, 2-ジヒドロジシクロペンタジエン、ジシクロペンタジエン、ノルボルネン、1-メチルノルボルネン、5-メチルノルボルネン、7-メチルノルボルネン、5-エチルノルボルネン、5-プロピルノルボルネン、5-フェニルノルボルネン、5-ベンジルノルボルネン、5-エチリデンノルボルネン、5-ビニルノルボルネン、ノルボルナジエン、5, 6-ジメチルノルボルネン、5, 5, 6-トリメチルノルボルネンなどの環状オレフィンまたは環状ジエンなどがあげられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合には、各モノマーはランダム重合していくてもよくブロック重合していくてもよい。前記モノマーのうちでは、エチレン、プロピレン、ブテン、ヘキセン、オクтен、シクロペンテン、ノルボルネンが工業的に入手しやすく安価である点から好ましい。 $\alpha$ -オレフィンという点からは、エチレン、プロピレン、ブテン、ヘキセン、オクтенが好ましく、とくにプロピレン、ブテン、ヘキセンが好ましい。

## 【0019】

前記(A)～(B)成分および場合により(C)成分からなる触媒は、容易に製造することができる比較的安定な触媒であり、炭素数2～20のオレフィン系モノマー、とくにプロピレンのリビング重合、場合により立体規則性リビング重合の触媒となる。

## 【0020】

前記1個または2個のシクロペンタジエニル骨格を有するハフニウム含有化合物(A-1)または1個または2個のシクロペンタジエニル骨格を有するジルコニウム含有化合物(A-2)(以下、IVB族化合物(A)ともいう)としては、一般式(IV)：



一般式(V)：



一般式(VI)：



(式 (IV)、(V)、(VI) 中、 $M^1$ はZrまたはHf原子、Cpは置換されていてもよいシクロペンタジエニル骨格、 $R^1$ 、 $R^2$ および $R^3$ はそれぞれの結合性の配位子、キレート性の配位子、Aは共有結合性の2価の基、eは1～3の整数、 $R^1$ 、 $R^2$ および $R^3$ はそれらの2つ以上が互いに結合して環を形成していてもよい、一般式 (V) および (VI) において、2つのCpは同一であってもよく、互いに異っていてもよい)

で示される化合物またはこれらの誘導体が好適に使用される。これらは単独で用いてもよく、2種以上を組み合わせて使用してもよい。これらのうちでは、2個のシクロペンタジエニル骨格を有する、一般式 (V)、(VI) で示される化合物が好ましい。

#### 【0021】

前記置換されていてもよいシクロペンタジエニル骨格としては、シクロペンタジエニル基、置換シクロペンタジエニル基の他に、インデニル基、置換インデニル基、テトラヒドロインデニル基、置換テトラヒドロインデニル基、フルオレニル基、オクタヒドロフルオレニル基、置換フルオレニル基があげられる。前記置換されていてもよいシクロペンタジエニル骨格が置換基を有する場合の置換基としては、炭素数1～20の炭化水素基、たとえばアルキル基が好ましい。

#### 【0022】

前記置換シクロペンタジエニル基としては、たとえばメチルシクロペンタジエニル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、ジメチルシクロペンタジエニル基、トリメチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基、トリメチルシリルシクロペンタジエニル基、エチルメチルシクロペンタジエニル基、テトラエチルシクロペンタジエニル基、プロピルシクロペンタジエニル基、プロピルメチルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ブチルメチルシクロペンタジエニル基、t-ブチルシクロペンタジエニル基、ヘキシルシクロペンタジエニル基、シクロヘキシルシクロペンタジエニル基、シクロヘキシルメチルシクロペンタジエニル基、ベンジルシクロペンタジエニル基、ジフェニルシクロペンタジエニル基、ペンタ(トリメチルシリル)シクロペンタジエニル

基、トリメチルゲルミルシクロペンタジエニル基、トリメチルスタンニルシクロペンタジエニル基、トリフルオロメチルシクロペンタジエニル基などがあげられる。

## 【0023】

前記の結合性の配位子としては、水素原子；フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子；メチル基、エチル基、n-プロピル基、i s o-プロピル基、n-ブチル基、ネオペンチル基、シクロヘキシリル基、オクチル基、2-エチルヘキシリル基、ノルボルニル基などの炭素数1～20の炭化水素基；メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、フェノキシ基などの炭素数1～20のアルコキシ基；フェニル基、トリル基、キシリル基、ベンジル基、ジフェニルメチル基などの炭素数6～20のアリール基、アルキルアリール基もしくはアリールアルキル基；アリル基、置換アリル基；トリメチルシリル基、フェニルジメチルシリル基、トリフェニルシリル基、トリ(ジメチルシリル)シリル基、(トリメチルシリル)メチル基などのケイ素原子を含む置換基などがあげられる。後述するアルミニウム化合物(C)を用いない場合には、前記水素原子、炭素数1～20の炭化水素基、炭素数6～20のアリール基、アルキルアリール基もしくはアリールアルキル基、アリル基、置換アリル基、ケイ素原子を含む置換基のうちの少なくとも1つを含む必要がある。

## 【0024】

前記キレート性の配位子としては、アセチルアセトナト基、置換アセチルアセトナト基などがあげられる。

## 【0025】

また、一般式(VI)中のAで示される共有結合性の2価の基としては、たとえばメチレン基、ジメチルメチレン基、エチレン基、イソプロピリデン基、シクロブチリデン基、シクロペンチリデン基、シクロヘキシリデン基、ジメチルシリレン基、ジメチルゲルミレン基、ジメチルスタニレン基、フェニル(メチル)メチレン基、フェニル(メチル)シリレン基、ジフェニルメチレン基、ジフェニルシリレン基などがあげられる。たとえばeが2の場合、2個のAにより2カ所で2つのCpが結合している。Aは同じでなくてよい。

## 【0026】

前記一般式(VI)で示される架橋ジシクロペントジエニル化合物が、 $C_1$ 対称性、 $C_2$ 対称性または $C_s$ 対称性を有する化合物の場合には、立体規則性の高いリピング重合体を得ることができる。

## 【0027】

一般式(IV)～(VI)で表わされるIVB族化合物(A)の具体例としては、たとえば下記のものがあげられる。これらのうちでは、2個のシクロペントジエニル骨格を有する一般式(V)、(VI)で表わされるIVB族化合物が好ましい。

## 【0028】

一般式(IV)で表わされる化合物としては、たとえば(シクロペントジエニル)トリメチルジルコニウム、(シクロペントジエニル)トリフェニルジルコニウム、(シクロペントジエニル)トリベンジルジルコニウム、(シクロペントジエニル)トリクロロジルコニウム、(シクロペントジエニル)トリメトキシジルコニウム、(シクロペントジエニル)ジメチル(メトキシ)ジルコニウム、シクロペントジエニルメチルジクロロジルコニウム、(メチルシクロペントジエニル)トリメチルジルコニウム、(メチルシクロペントジエニル)トリフェニルジルコニウム、(メチルシクロペントジエニル)トリベンジルジルコニウム、(メチルシクロペントジエニル)トリクロロジルコニウム、(メチルシクロペントジエニル)トリメチルジルコニウム、(トリメチルシクロペントジエニル)トリメチルジルコニウム、(テトラメチルシクロペントジエニル)トリメチルジルコニウム、(ペンタメチルシクロペントジエニル)トリメチルジルコニウム、(ペンタメチルシクロペントジエニル)トリフェニルジルコニウム、(ペンタメチルシクロペントジエニル)トリベンジルジルコニウム、(ペンタメチルシクロペントジエニル)トリクロロジルコニウム、(ペンタメチルシクロペントジエニル)トリメトキシジルコニウム、(ペンタメチルシクロペントジエニル)ジメチル(メトキシ)ジルコニウム、(シクロペントジエニル)トリエチルジルコニウム、(シクロペントジエニル)トリプロピルジルコニウム、(シクロペントジエニル)トリネオペンチルジ

ルコニウム、(シクロペントジエニル)トリ(ジフェニルメチル)ジルコニウム、(シクロペントジエニル)ジメチルヒドリドジルコニウム、(シクロペントジエニル)トリエトキシジルコニウム、(シクロペントジエニル)トリイソプロポキシジルコニウム、(シクロペントジエニル)トリフェノキシジルコニウム、(シクロペントジエニル)ジメチルイソプロポキシジルコニウム、(シクロペントジエニル)ジフェニルイソプロポキシジルコニウム、(シクロペントジエニル)ジメトキシクロロジルコニウム、(シクロペントジエニル)メトキシジクロロジルコニウム、(シクロペントジエニル)ジフェノキシクロロジルコニウム、(シクロペントジエニル)トリ(フェニルジメチルシリル)ジルコニウム、(n-ブチルシクロペントジエニル)ジメチルn-ブトキシジルコニウム、(ベンジルシクロペントジエニル)ジエトトリルメチルジルコニウム、(トリフルオロメチルシクロペントジエニル)トリベンジルジルコニウム、(ジフェニルシクロペントジエニル)ジノルボルニルメチルジルコニウム、(テトラエチルシクロペントジエニル)トリベンジルジルコニウム、(ペンタトリメチルシリルシクロペントジエニル)トリベンジルジルコニウム、(ペンタメチルシクロペントジエニル)トリネオペンチルジルコニウム、(ペンタメチルシクロペントジエニル)メチルジクロロジルコニウム、(ペンタメチルシクロペントジエニル)トリエトキシジルコニウム、(ペンタメチルシクロペントジエニル)トリフェノキシジルコニウム、(ペンタメチルシクロペントジエニル)メトキシジクロロジルコニウム、(ペンタメチルシクロペントジエニル)ジフェノキシクロロジルコニウム、(ペンタメチルシクロペントジエニル)フェノキシジクロロジルコニウム、(インデニル)トリメチルジルコニウム、(インデニル)トリベンジルジルコニウム、(インデニル)トリクロロジルコニウム、(インデニル)トリメトキシジルコニウム、(インデニル)トリエトキシジルコニウムおよびこれら化合物のジルコニウムをハフニウムで置換した化合物、たとえばシクロペントジエニルトリメチルハフニウムなどがあげられる。これらのうちでは、シクロペントジエニル基、エチルシクロペントジエニル基、プロピルシクロペントジエニル基、ブチルシクロペントジエニル基、テトラメチルシクロペントジエニル基、ペンタメチルシクロペントジエニル基、イン

デニル基、メチルインデニル基、テトラヒドロインデニル基、フルオレニル基から選ばれた1個の配位子と、塩素原子、メチル基から選ばれた3個の配位子とともに有するものが、工業的に入手しやすいという点から好ましい。

## 【0029】

一般式(V)で表わされる化合物としては、たとえばビス(シクロペンタジエニル)ジメチルジルコニウム、ビス(シクロペンタジエニル)ジフェニルジルコニウム、ビス(シクロペンタジエニル)ジエチルジルコニウム、ビス(シクロペンタジエニル)ジベンジルジルコニウム、ビス(シクロペンタジエニル)ジメトキシジルコニウム、ビス(シクロペンタジエニル)ジクロロジルコニウム、ビス(シクロペンタジエニル)ジヒドリドジルコニウム、ビス(シクロペンタジエニル)クロロヒドリドジルコニウム、ビス(メチルシクロペンタジエニル)ジメチルジルコニウム、ビス(メチルシクロペンタジエニル)ジベンジルジルコニウム、ビス(メチルシクロペンタジエニル)ジクロロジルコニウム、ビス(ペンタメチルシクロペンタジエニル)ジメチルジルコニウム、ビス(ペンタメチルシクロペンタジエニル)ジベンジルジルコニウム、ビス(ペンタメチルシクロペンタジエニル)ジクロロジルコニウム、ビス(ペンタメチルシクロペンタジエニル)ヒドリドメチルジルコニウム、(シクロペンタジエニル)(ペンタメチルシクロペンタジエニル)ジメチルジルコニウム、ビス(シクロペンタジエニル)ジネオペンチルジルコニウム、ビス(シクロペンタジエニル)ジm-トリルジルコニウム、ビス(シクロペンタジエニル)ジp-トリルジルコニウム、ビス(シクロペンタジエニル)ビス(ジフェニルメチル)ジルコニウム、ビス(シクロペンタジエニル)ジブロモジルコニウム、ビス(シクロペンタジエニル)メチルクロロジルコニウム、ビス(シクロペンタジエニル)エチルクロロジルコニウム、ビス(シクロペンタジエニル)シクロヘキシルクロロジルコニウム、ビス(シクロペンタジエニル)フェニルクロロジルコニウム、ビス(シクロペンタジエニル)ベンジルクロロジルコニウム、ビス(シクロペンタジエニル)ヒドリドメチルジルコニウム、ビス(シクロペンタジエニル)メトキシクロロジルコニウム、ビス(シクロペンタジエニル)エトキシクロロジルコニウム、ビス(シクロペンタジエニル)(ト

リメチルシリル) メチルジルコニウム、ビス(シクロペンタジエニル) ビス(トリメチルシリル) ジルコニウム、ビス(シクロペンタジエニル)(トリフェニルシリル) メチルジルコニウム、ビス(シクロペンタジエニル)(トリス(ジメチルシリル)シリル) メチルジルコニウム、ビス(シクロペンタジエニル)(トリメチルシリル)(トリメチルシリルメチル) ジルコニウム、ビス(メチルシクロペンタジエニル)ジフェニルジルコニウム、ビス(エチルシクロペンタジエニル)ジメチルジルコニウム、ビス(エチルシクロペンタジエニル)ジクロロジルコニウム、ビス(プロピルシクロペンタジエニル)ジメチルジルコニウム、ビス(プロピルシクロペンタジエニル)ジクロロジルコニウム、ビス(n-ブチルシクロペンタジエニル)ジクロロジルコニウム、ビス(t-ブチルシクロペンタジエニル)ビス(トリメチルシリル)ジルコニウム、ビス(ヘキシルシクロペンタジエニル)ジクロロジルコニウム、ビス(シクロヘキシルシクロペンタジエニル)ジメチルジルコニウム、ビス(ジメチルシクロペンタジエニル)ジメチルジルコニウム、ビス(ジメチルシクロペンタジエニル)エトキシクロロジルコニウム、ビス(エチルメチルシクロペンタジエニル)ジクロロジルコニウム、ビス(プロピルメチルシクロペンタジエニル)ジクロロジルコニウム、ビス(ブチルメチルシクロペンタジエニル)ジクロロジルコニウム、ビス(トリメチルシクロペンタジエニル)ジクロロジルコニウム、ビス(テトラメチルシクロペンタジエニル)ジクロロジルコニウム、ビス(シクロヘキシルメチルシクロペンタジエニル)ジベンジルジルコニウム、ビス(トリメチルシリルシクロペンタジエニル)ジメチルジルコニウム、ビス(トリメチルゲルミルシクロペンタジエニル)ジフェニルジルコニウム、ビス(トリメチルスタンニルシクロペンタジエニル)ジメチルジルコニウム、ビス(トリメチルスタンニルシクロペンタジエニル)ジベンジルジルコニウム、ビス(トリフルオロメチルシクロペンタジエニル)ジメチルジルコニウム、ビス(トリフルオロメチルシクロペンタジエニル)ジノルボルニルジルコニウム、ビス(インデニル)ジベンジルジルコニウム、ビス(インデニル)ジクロロジルコニウム、ビス

(インデニル) ジブロモジルコニウム、ビス(テトラヒドロインデニル) ジクロロジルコニウム、ビス(フルオレニル) ジクロロジルコニウム、(プロピルシクロペンタジエニル) (シクロペンタジエニル) ジメチルジルコニウム、(シクロヘキシルメチルシクロペンタジエニル) (シクロペンタジエニル) ジベンジルジルコニウム、(ペントトリメチルシリルシクロペンタジエニル) (シクロペンタジエニル) ジメチルジルコニウム、(トリフルオロメチルシクロペンタジエニル) (シクロペンタジエニル) ジメチルジルコニウムおよびこれら化合物のジルコニウムをハフニウムで置換した化合物、たとえばビス(シクロペンタジエニル基、エチルシクロペンタジエニル基、プロピルシクロペンタジエニル基、ブチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、ペントメチルシクロペンタジエニル基、インデニル基、メチルインデニル基、テトラヒドロインデニル基、フルオレニル基から選ばれた2個の配位子と、塩素原子、メチル基から選ばれた2個の配位子とともに有するものが、工業的に入手しやすいという点から好ましい。

## 【0030】

一般式(VI)で表わされる化合物としては、たとえばエチレンビス(インデニル)ジメチルジルコニウム、エチレンビス(インデニル)ジクロロジルコニウム、エチレンビス(テトラヒドロインデニル)ジメチルジルコニウム、エチレンビス(テトラヒドロインデニル)ジクロロジルコニウム、ジメチルシリレンビス(シクロペンタジエニル)ジメチルジルコニウム、ジメチルシリレンビス(シクロペンタジエニル)ジクロロジルコニウム、イソプロピリデン(シクロペンタジエニル)(9-フルオレニル)ジメチルジルコニウム、イソプロピリデン(シクロペンタジエニル)(9-フルオレニル)ジクロロジルコニウム、[フェニル(メチル)メチレン](9-フルオレニル)(シクロペンタジエニル)ジメチルジルコニウム、ジフェニルメチレン(シクロペンタジエニル)(9-フルオレニル)ジメチルジルコニウム、エチレン(9-フルオレニル)(シクロペンタジエニル)ジメチルジルコニウム、ジメチルジルコニウム、シクロヘキシリデン(9-フルオレニル)(シクロペンタジエニル)ジメチルジルコニウム、シクロペンチリデン(9-フルオレニル)

) (シクロペンタジエニル) ジメチルジルコニウム、シクロブチリデン(9-フルオレニル) (シクロペンタジエニル) ジメチルジルコニウム、ジメチルシリレン(9-フルオレニル) (シクロペンタジエニル) ジメチルジルコニウム、ジメチルシリレンビス(2, 3, 5-トリメチルシクロペンタジエニル) ジメチルジルコニウム、ジメチルシリレンビス(2, 3, 5-トリメチルシクロペンタジエニル) ジクロロジルコニウム、ジメチルシリレンビス(インデニル) ジクロロジルコニウム、メチレンビス(シクロペンタジエニル) ジメチルジルコニウム、メチレン(シクロペンタジエニル) (テトラメチルシクロペンタジエニル) ジメチルジルコニウム、メチレン(シクロペンタジエニル) (フルオレニル) ジメチルジルコニウム、エチレンビス(シクロペンタジエニル) ジメチルジルコニウム、エチレンビス(シクロペンタジエニル) ジベンジルジルコニウム、エチレンビス(シクロペンタジエニル) ジヒドリドジルコニウム、エチレンビス(インデニル) ジフェニルジルコニウム、エチレンビス(インデニル) メチルクロロジルコニウム、エチレンビス(テトラヒドロインデニル) ジベンジルジルコニウム、イソプロピリデン(シクロペンタジエニル) (メチルシクロペンタジエニル) ジクロロジルコニウム、イソプロピリデン(シクロペンタジエニル) (オクタヒドロフルオレニル) ジヒドリドジルコニウム、ジメチルシリレンビス(シクロペンタジエニル) ジネオペンチルジルコニウム、ジメチルシリレンビス(シクロペンタジエニル) ジヒドリドジルコニウム、ジメチルシリレンビス(メチルシクロペンタジエニル) ジクロロジルコニウム、ジメチルシリレンビス(ジメチルシクロペンタジエニル) ジクロロジルコニウム、ジメチルシリレンビス(テトラヒドロインデニル) ジクロロジルコニウム、ジメチルシリレン(シクロペンタジエニル) (フルオレニル) ジクロロジルコニウム、ジメチルシリレン(シクロペンタジエニル) (フルオレニル) ジヒドリドジルコニウム、ジメチルシリレン(メチルシクロペンタジエニル) (フルオレニル) ジヒドリドジルコニウム、ジメチルシリレンビス(3-トリメチルシリルシクロペンタジエニル) ジヒドリドジルコニウム、ジメチルシリレンビス(インデニル) ジメチルジルコニウム、ジフェニルシリレンビス(インデニル) ジクロロジルコニウム、フェニルメチルシリレンビス(

インデニル) ジクロロジルコニウムおよびこれら化合物のジルコニウムをハフニウムで置換した化合物などがあげられる。これらの中でも  $C_1$  対称、  $C_2$  対称、  $C_s$  対称のものからは、立体規則性リビング重合体を得ることができる。これらのうちでは、シクロペンタジエニル基、エチルシクロペンタジエニル基、プロピルシクロペンタジエニル基、ブチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、ペントメチルシクロペンタジエニル基、インデニル基、メチルインデニル基、テトラヒドロインデニル基、フルオレニル基から選ばれた 2 個の配位子と、塩素原子、メチル基から選ばれた 2 個の配位子とともに有するものが、工業的に入手しやすいという点から好ましい。

## 【0031】

IVB 族化合物 (A) および場合により使用される後述するアルミニウム化合物 (C) とともに本発明に用いる触媒を構成する (B) 成分のうちのボラン化合物 (B-1) は、前述のごとく、一般式 (I) :



(式中、  $P\text{h}$  は置換されていてもよいフェニル基) で表わされるボラン化合物であり、ボレート化合物 (B-2) は、一般式 (II) :



(式中、  $P\text{h}$  は前記と同じ、  $X^+$  は陽イオン基) で表わされるボレート化合物である。これらは組み合わせて用いてもよい。

## 【0032】

一般式 (I) 中の置換されていてもよいフェニル基としては、たとえばフェニル基、フェニル基に含まれる 5 個の水素原子のうちの 1 ~ 5 個が他の基、たとえばフッ素原子、炭素数 1 ~ 20 のアルキル基、フッ素原子で置換された炭素数 1 ~ 20 のアルキル基などで置換された基、具体的には、モノフルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、テトラフルオロフェニル基、ペントフルオロフェニル基、フルオロメチルフェニル基、ジ(トリフルオロメチル)フェニル基、トリル基、ジメチルフェニル基などがあげられる。これらのうちでは、フェニル基に含まれる 5 個の水素原子のうちの 1 ~ 5 個がフッ素原子に置換された基、とくに 5 個の水素原子がいずれもフッ素原子に置換された基で

あるのが、工業的に入手しやすい点から好ましい。

### 【0033】

一般式（I）に含まれる3個の置換されていてもよいフェニル基は同じ基であってもよく、異なる基であってもよいが、3個の基にフッ素原子が合計3個以上、とくには15個含まれているのが、工業的に入手しやすい点から好ましい。

### 【0034】

ボラン化合物（B-1）の具体例としては、たとえばトリフェニルホウ素、トリス（2-フルオロフェニル）ホウ素、トリス（3-フルオロフェニル）ホウ素、トリス（4-フルオロフェニル）ホウ素、トリス（2, 3-ジフルオロフェニル）ホウ素、トリス（3, 5-ジフルオロフェニル）ホウ素、トリス（2, 3, 5-トリフルオロフェニル）ホウ素、トリス（2, 3, 4, 6-テトラフルオロフェニル）ホウ素、トリス（ペンタフルオロフェニル）ホウ素、トリス（4-フルオロメチルフェニル）ホウ素、トリ（3, 5-ジ（トリフルオロメチル）フェニル）ホウ素、トリス（p-トリル）ホウ素、トリス（o-トリル）ホウ素、トリス（3, 5-ジメチルフェニル）ホウ素などがあげられる。これらのうちでは、とくにトリス（ペンタフルオロフェニル）ホウ素が好ましい。

### 【0035】

一般式（II）中の置換されていてもよいフェニル基は、一般式（I）中のものと同じであるので、説明は省略する。

### 【0036】

一般式（II）に含まれる4個の置換されていてもよいフェニル基は同じ基であってもよく、異なる基であってもよいが、4個の基にフッ素原子が合計4個以上、とくには20個含まれているのが、工業的に入手しやすい点から好ましい。

### 【0037】

一方、一般式（II）中に含まれる陽イオン基である $X^+$ としては、たとえばトリエチルアンモニウム、トリ（n-ブチル）アンモニウム、トリメチルアンモニウム、テトラエチルアンモニウム、メチルトリ（n-ブチル）アンモニウム、ベンジルトリ（n-ブチル）アンモニウム、ジメチルジフェニルアンモニウム、メチルトリフェニルアンモニウム、トリメチルアニリニウム、メチルピリジニウム

、ベンジルピリジニウム、メチル(2-シアノピリジニウム)、トリメチルスルホニウム、ベンジルジメチルスルホニウム、トリフェニルアンモニウム、テトラブチルアンモニウム、メチルジフェニルアンモニウム、アニリニウム、メチルアニリニウム、ジメチルアニリニウム、ジメチル(m-ニトロアニリニウム)、ジメチル(p-ブロモアニリニウム)、ピリジニウム、p-シアノピリジニウム、N-メチルピリジニウム、N-ベンジルピリジニウム、o-シアノ-N-メチルピリジニウム、p-シアノ-N-メチルピリジニウム、p-シアノ-N-ベンジルピリジニウム、テトラフェニルホスホニウム、トリフェニルホスホニウム、トリチルなどがあげられる。

### 【0038】

一般式(II)で表わされるボレート化合物(B-2)の具体例としては、たとえばテトラフェニルボレートトリエチルアンモニウム、テトラフェニルボレートトリ(n-ブチル)アンモニウム、テトラフェニルボレートトリメチルアンモニウム、テトラフェニルボレートテトラエチルアンモニウム、テトラフェニルボレートメチルトリ(n-ブチル)アンモニウム、テトラフェニルボレートベンジルトリ(n-ブチル)アンモニウム、テトラフェニルボレートジメチルジフェニルアンモニウム、テトラフェニルボレートメチルトリフェニルアンモニウム、テトラフェニルボレートトリメチルアニリニウム、テトラフェニルボレートメチルピリジニウム、テトラフェニルボレートベンジルピリジニウム、テトラフェニルボレートメチル(2-シアノピリジニウム)、テトラフェニルボレートトリメチルスルホニウム、テトラフェニルボレートベンジルジメチルスルホニウム、テトラフェニルボレートトリチルなどのテトラフェニルボレトイオンを有する化合物、テトラキス(ペンタフルオロフェニル)ボレートトリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)ボレートトリ(n-ブチル)アンモニウム、テトラキス(ペンタフルオロフェニル)ボレートトリフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)ボレートテトラブチルアンモニウム、テトラキス(ペンタフルオロフェニル)ボレート(テトラエチルアンモニウム)、テトラキス(ペンタフルオロフェニル)ボレート(メチルトリ(n-ブチル)アンモニウム)、テトラキス(ペンタフルオロフェニル)ボレート(ベンジルトリ

(n-ブチル) アンモニウム)、テトラキス(ペンタフルオロフェニル)ボレートメチルジフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)ボレートメチルトリフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)ボレートジメチルジフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)ボレートアニリニウム、テトラキス(ペンタフルオロフェニル)ボレートメチルアニリニウム、テトラキス(ペンタフルオロフェニル)ボレートジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)ボレートトリメチルアニリニウム、テトラキス(ペンタフルオロフェニル)ボレートジメチル(m-ニトロアニリニウム)、テトラキス(ペンタフルオロフェニル)ボレートジメチル(p-ブロモアニリニウム)、テトラキス(ペンタフルオロフェニル)ボレートピリジニウム、テトラキス(ペンタフルオロフェニル)ボレート(p-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)ボレート(N-メチルピリジニウム)、テトラキス(ペンタフルオロフェニル)ボレート(N-ベンジルピリジニウム)、テトラキス(ペンタフルオロフェニル)ボレート(o-シアノ-N-メチルピリジニウム)、テトラキス(ペンタフルオロフェニル)ボレート(p-シアノ-N-メチルピリジニウム)、テトラキス(ペンタフルオロフェニル)ボレートトリメチルスルホニウム、テトラキス(ペンタフルオロフェニル)ボレートベンジルジメチルスルホニウム、テトラキス(ペンタフルオロフェニル)ボレートテトラフェニルホスホニウム、テトラキス(ペンタフルオロフェニル)ボレートトリチル、テトラキス(3, 5-ジトリフルオロメチルフェニル)ボレートジメチルアニリニウムなどのテトラキス(フッ素原子含有フェニル)ボレートイオンを有する化合物などがあげられる。これらのうちでは、とくにテトラキス(ペンタフルオロフェニル)ボレートトリチルが好ましい。

## 【0039】

IVB族化合物(A)および一般式(I)または(II)で表わされるホウ素含有化合物(B)とともに、場合により本発明に用いられる触媒を構成するアルミニウム化合物(C)は、前述のごとく、一般式(III)：



(式中、Rは炭素数4～20の炭化水素基、Yはハロゲン原子、アルコキシ基、トリアルキルシリコキシ基、ジ(トリアルキルシリル)アミノ基またはトリアルキルシリル基など、nは0、1または2)で表わされるアルミニウム化合物である。アルミニウム化合物(C)は、いわゆるスカベンジャー(不純物捕捉剤)であり、系に不純物が含まれない場合には用いなくてもよいが、通常、用いることにより、用いない場合と比較して安定にリビング重合体を得ることができる。

## 【0040】

一般式(III)に含まれるRである炭素数4～20の炭化水素基の具体例としては、たとえばn-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、イソヘキシル基、オクチル基、2-エチルヘキシル基、デシル基、シクロヘキシル基、シクロオクチル基、フェニル基などがあげられる。

## 【0041】

一般式(III)に含まれるRの数は1～3個であり、炭素数4～20の場合には、連鎖移動をうけにくく、リビング重合体が得られやすくなる。また、Rの数が3個であるのが好ましい。一般式(III)に含まれるRの数が2個以上の場合、それらは同じ基であってもよく、異なる基であってもよい。

## 【0042】

なお、Yの数は0～2個であり、Yの具体例としては、塩素、臭素、ヨウ素などのハロゲン原子、メトキシ基、エトキシ基、フェノキシ基などの炭素数1～20のアルコキシ基、トリアルキルシリコキシ基(アルキル基の炭素数1～20)、ジ(トリアルキルシリル)アミノ基(アルキル基の炭素数1～20)、トリアルキルシリル基(アルキル基の炭素数1～20)などがあげられる。一般式(III)に含まれるYの数が2個の場合、それらは同じ基であってもよく、異なる基であってもよい。

## 【0043】

アルミニウム化合物(C)の具体例としては、たとえばトリ(n-ブチル)アルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリ(t-ブチル)アルミニウム、トリペンチルアルミニウム、トリイソペンチ

ルアルミニウム、トリネオペンチルアルミニウム、トリ(4-メチルペンチル)アルミニウム、トリ(3-メチルペンチル)アルミニウム、トリヘキシルアルミニウム、トリイソヘキシルアルミニウム、トリ(n-オクチル)アルミニウム、トリ2-エチルヘキシルアルミニウム、トリデシルアルミニウムなどのトリアルキルアルミニウム；トリシクロペンチルアルミニウム、トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリ環状アルキルアルミニウム；トリフェニルアルミニウム、トリ<sub>p</sub>-トリルアルミニウム、トリ<sub>m</sub>-トリルアルミニウム、トリ<sub>p</sub>-エチルフェニルアルミニウム、トリベンジルアルミニウムなどのトリ芳香族アルミニウム；ジ(n-ブチル)アルミニウムクロリド、ジイソブチルアルミニウムクロリド、ジ(t-ブチル)アルミニウムクロリド、ジオクチルアルミニウムアイオダイドなどのジアルキルアルミニウムハライド；ジイソブチルアルミニウムメトキシド、ジイソブチルアルミニウムエトキシド、ジオクチルアルミニウムメトキシド、ジオクチルアルミニウムエトキシド、ジn-ブチルアルミニウムフェノキシドなどのジアルキルアルミニウムアルコキシド；n-ブチルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、オクチルアルミニウムジクロライドなどのアルキルアルミニウムジハライド；ジイソブチルアルミニウムトリメチルシリルオキシド((isobu)<sub>2</sub>AlOSiMe<sub>3</sub>)、ジイソブチルアルミニウムトリエチルシリルオキシド((isobu)<sub>2</sub>AlOSiEt<sub>3</sub>)、ジイソブチルアルミニウムジ(トリメチルシリル)アミン((isobu)<sub>2</sub>AlN(SiMe<sub>3</sub>)<sub>2</sub>)、ジイソブチルトリメチルシリルアルミニウム((isobu)<sub>2</sub>AlSiMe<sub>3</sub>)などがあげられる。これらのうちではトリオクチルアルミニウム、トリイソブチルアルミニウムが工業的に入手しやすく安価である点から好ましい。

## 【0044】

本発明に用いられるIVB族化合物(A)(以下、化合物(A)ともいう)、ホウ素含有化合物(B)(以下、化合物(B)ともいう)および場合により使用されるアルミニウム化合物(C)(以下、化合物(C)ともいう)からなる触媒は、化合物(A)、化合物(B)および場合により化合物(C)を所定の割合で混

合し、反応させることにより得ることができる。

## 【0045】

得られた触媒はそのまま使用してもよく、分離、洗浄して使用してもよい。重合系内で触媒を製造し、そのまま使用するのが簡便である点から好ましい。

## 【0046】

前記触媒を製造する際の化合物（A）と化合物（B）の使用割合としては、化合物（A）／化合物（B）がモル比で $1/0.1 \sim 1/100$ 、さらには $1/1 \sim 1/5$ であるのが、目的とする触媒が効率よく得られる点から好ましい。前記割合が大きすぎると、触媒の生成率が低くなる傾向が生じ、逆に小さすぎると余分に化合物（B）が含まれることになり、不経済となる。

## 【0047】

また、化合物（A）と化合物（C）の使用割合としては、化合物（A）／化合物（C）がモル比で $1/0 \sim 1/1000$ 、さらには $1/10 \sim 1/500$ であるのが、系に不純物が存在する場合に捕捉する点から好ましい。化合物（A）に対する化合物（C）の割合が少なすぎると、系に不純物が存在する場合には捕捉しにくくなり、多くなりすぎると、化合物（C）由来物を重合体から除去しにくくなる。

## 【0048】

化合物（A）、化合物（B）および場合により化合物（C）を混合し、反応させる際の条件としては、 $-100^{\circ}\text{C} \sim \text{室温}$ 、さらには $-100 \sim -20^{\circ}\text{C}$ 、不活性気体雰囲気下、後述する重合溶媒などの溶媒中で反応させることにより行なうのが、反応プロセスから重合プロセスに移行しやすい点から好ましい。

## 【0049】

本発明に用いられる好ましい触媒の具体例としては、たとえば後述する実施例に記載の触媒などがあげられる。

## 【0050】

このようにして調製された触媒の存在下、ハフニウム含有化合物（A-1）を使用する場合には、 $-20 \sim -100^{\circ}\text{C}$ 、さらには $-30 \sim -80^{\circ}\text{C}$ 、とくには $-40 \sim -80^{\circ}\text{C}$ 、ジルコニウム含有化合物（A-2）を使用する場合には、-

60～-100℃、さらには-60～-80℃でオレフィン系モノマーを重合させることにより、分子量分布( $M_w/M_n$ )が1～1.3、さらには1～1.2のオレフィン系リビング重合体を製造することができる。前記温度が高すぎると、連鎖移動反応が無視できなくなり、リビング重合体が得られにくくなる。前記温度が低すぎると、リビング重合速度が遅くなる傾向が生じる。

## 【0051】

前記触媒の使用量としては、オレフィン系モノマー／触媒(化合物(A)または化合物(B)のうち少ない方の量になる)がモル比で $10 \sim 10^9$ 、さらには $100 \sim 10^7$ 、とくには $1000 \sim 10^5$ とするのが好ましい。前記モル比率が小さすぎると、分子量の小さい重合体しか得られなくなり、大きすぎると、モノマーに対するポリマーの収率が低くなる傾向が生ずる。

## 【0052】

前記触媒は重合溶媒を用いる場合、重合溶媒に予め加えておいてもよく、重合系内にあとから加えてもよい。

## 【0053】

前記重合溶媒としては、たとえばベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素；シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素；ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素；クロロホルム、ジクロロメタンなどのハロゲン化炭化水素などを用いることができる。これらの溶媒は単独で用いてもよく、2種以上を組み合せて用いてもよい。また、 $\alpha$ -オレフィンなどのモノマー、2置換オレフィン、3置換オレフィン、4置換オレフィンなどを溶媒として用いてもよい。

## 【0054】

他の重合条件には、とくに限定はなく、当業者であれば適宜好ましい条件を選択することができるが、重合時間は通常10分～100時間、反応圧力は常圧～ $100\text{ kg/cm}^2\text{G}$ である。

## 【0055】

このようにして、GPCによる数平均分子量 $100 \sim 2000000$ 、さらには $500 \sim 2000000$ 、ことには $1000 \sim 1000000$ 、とくには20

00～500000、分子量分布1.3以下、さらには1.2以下、とくには1.1以下のオレフィン系リビング重合体が製造される。なお、前記数平均分子量および分子量分布は、リビング重合体を後処理して重合触媒をはずしたものについての値である。

#### 【0056】

なお、通常、重合中に重合体は析出せず、この場合の分子量は500～200000、さらには1000～1000000、ことには2000～500000が好ましいが、エチレンやプロピレン（立体規則性重合時）や環状オレフィンなどの単独重合では、重合体が結晶化しやすい場合があり、そのような場合には重合中に重合体が析出し、分子量分布が広がる傾向がある。重合中に重合体が析出しにくく、分子量分布が狭い分子量としては、3000以下、好ましくは2000以下、さらに好ましくは1000以下、最も好ましくは500以下である。重合体であるため、分子量は通常100以上である。重合中に結晶化や析出をしにくくするために、これらのモノマーを共重合させることも好ましい。

#### 【0057】

製造されたリビング重合体の評価は、一般に（a）生成する重合体の分子量分布が極めて狭い（单分散に近い）こと、（b）時間の増加に伴い、重合体収量数平均分子量（ $M_n$ ）が比例的に増加し、しかも分子量分布が広がらないことなどに基づき行なわれる。

#### 【0058】

前記のリビング重合体は、一酸化炭素などの適当な反応性を有する試薬と接触させることにより、分子末端にIVB族遷移金属をもたないいわゆる末端官能化重合体にすることができる。また、ブロックコポリマーに変換する場合には、適当な異種モノマーと接触させて多段階重合を行なうことにより、高収率でブロックコポリマーを得ることができる。

#### 【0059】

##### 【実施例】

つぎに、本発明の製法を実施例および比較例に基づいてより具体的に示すが、本発明は下記実施例に限定されるものではない。

## 【0060】

## 実施例1～2

充分乾燥させた100mlのオートクレーブに、乾燥トルエン14.4ml、トリ(n-オクチル)アルミニウム0.8mmolを添加し、-78℃に冷却した。ビスシクロペンタジエニルジルコニウムジメチル0.04mmol、トリス(ペンタフルオロフェニル)ホウ素0.04mmol、プロピレン83mmolを加え、実施例1の場合は3時間、実施例2の場合は12時間重合させた。その後、塩酸性メタノール1000mlに注いで重合を停止させ、重合体を析出させた。析出物を濾別、真空乾燥して、ポリマーを得た。

## 【0061】

ポリマーの収量(Yield)は、実施例1の場合89mg、実施例2の場合291mgであった。GPCにより測定した数平均分子量(Mn)および分子量分布(Mw(重量平均分子量)/Mn)は、実施例1の場合9400および1.06、実施例2の場合27300および1.15であった。

## 【0062】

以上のように分子量分布の狭いポリマーが得られた。

## 【0063】

また、時間と数平均分子量との関係および時間と収量との関係を図1に示す。

## 【0064】

図1から、時間と数平均分子量とが比例的であることがわかる。また、時間と収量とも比例的であることがわかる。これらの結果からも、前記重合がリビング重合であることがわかる。

## 【0065】

## 比較例1

充分乾燥させた100mlのオートクレーブに、乾燥トルエン14.4ml、トリ(n-オクチル)アルミニウム0.8mmolを添加し、-50℃に冷却した。ビスシクロペンタジエニルジルコニウムジメチル0.04mmol、トリス(ペンタフルオロフェニル)ホウ素0.04mmol、プロピレン83mmolを加え、比較例1の場合は6時間重合させた。その後、塩酸性メタノール10

00mlに注いで重合を停止させ、重合体を析出させた。析出物を濾別、真空乾燥して、ポリマーを得た。

## 【0066】

ポリマーの収量 (Yield) は 1110mg であった。GPCにより測定した数平均分子量 ( $M_n$ ) および分子量分布 ( $M_w/M_n$ ) は、46300 および 1.55 であった。

## 【0067】

以上のように分子量分布の広いポリマーしか得られなかつたことから、重合が必ずしもリビング的に進行していないことがわかる。

## 【0068】

## 実施例3～5

充分乾燥させた 100ml のオートクレーブに、乾燥トルエン 14.4ml、トリ (n-オクチル) アルミニウム 0.8mmol を添加し、-50℃に冷却した。ビスシクロペンタジエニルハフニウムジメチル 0.04mmol、トリス (ペンタフルオロフェニル) ホウ素 0.04mmol、プロピレン 83mmol を加え、実施例3の場合は 3 時間、実施例4の場合は 15 時間、実施例5の場合は 24 時間重合させた。その後、塩酸性メタノール 1000ml に注いで重合を停止させ、重合体を析出させた。析出物を濾別、真空乾燥して、ポリマーを得た。

## 【0069】

ポリマーの収量 (Yield) は、実施例3の場合 88mg、実施例4の場合 460mg、実施例5の場合 650mg であった。GPCにより測定した数平均分子量 ( $M_n$ ) および分子量分布 ( $M_w/M_n$ ) は、実施例3の場合 6000 および 1.08、実施例4の場合 23200 および 1.04、実施例5の場合 34300 および 1.05 であった。

## 【0070】

以上のように分子量分布の狭いポリマーが得られた。

## 【0071】

また、時間と数平均分子量の関係および時間と収量の関係を図2に示す。

## 【0072】

図2から、時間と数平均分子量とが比例的であることがわかる。また、時間と収量とも比例的であることがわかる。これらの結果からも、前記重合がリビング重合であることがわかる。

## 【0073】

## 実施例6～7

充分乾燥させた100mlのオートクレーブに、乾燥トルエン14.4ml、トリ(n-オクチル)アルミニウム0.8mmolを添加し、-78℃に冷却した。ビスシクロペンタジエニルジルコニウムジクロライド0.04mmol、トリス(ペンタフルオロフェニル)ホウ素0.04mmol、プロピレン83mmolを加え、実施例6の場合は6時間、実施例7の場合は12時間重合させた。その後、塩酸性メタノール1000mlに注いで重合を停止させ、重合体を析出させた。析出物を濾別、真空乾燥して、ポリマーを得た。

## 【0074】

ポリマーの収量(Yield)は、実施例6の場合2.0mg、実施例7の場合10mgであった。GPCにより測定した数平均分子量( $M_n$ )および分子量分布( $M_w/M_n$ )は、実施例6の場合1100および1.20、実施例7の場合3900および1.23であった。

## 【0075】

以上のように分子量分布の狭いポリマーが得られた。

## 【0076】

また、時間と数平均分子量の関係および時間と収量の関係を図3に示す。図3から、誘導期が存在するものの時間と数平均分子量とが比例的であることがわかる。また、時間と収量とも比例的であることがわかる。これらの結果からも、前記重合がリビング重合であることがわかる。

## 【0077】

## 実施例8～10

充分乾燥させた100mlのオートクレーブに、乾燥トルエン11.0ml、トリ(n-オクチル)アルミニウム0.8mmolを添加し、-78℃に冷却し

た。rac-エチレンビスインデニルジルコニウムジメチル0.04mmol、トリス(ペンタフルオロフェニル)ホウ素0.04mmol、1-ヘキセン83mmolを加え、実施例8の場合は5時間、実施例9の場合は12時間、実施例10の場合は14時間重合させた。そのち、塩酸性メタノール1000mlに注いで重合を停止させ、重合体を析出させた。析出物を濾別、真空乾燥して、ポリマーを得た。

## 【0078】

ポリマーの収量(Yield)は、実施例8の場合10mg、実施例9の場合21mg、実施例10の場合28mgであった。GPCにより測定した数平均分子量( $M_n$ )および分子量分布( $M_w/M_n$ )は、実施例8の場合2300および1.27、実施例9の場合4300および1.22、実施例10の場合5400および1.29であった。

## 【0079】

以上のように分子量分布の狭いポリマーが得られた。

## 【0080】

また、時間と数平均分子量の関係および時間と収量の関係を図4に示す。

## 【0081】

図4から、時間と数平均分子量とが比例的であることがわかる。また、時間と収量とも比例的であることがわかる。これらの結果からも、前記重合がリビング重合であることがわかる。

## 【0082】

また、図5に実施例10で得られた重合体の $^{13}\text{C}$ -NMRシグナルを示す。図5に示されるように、各炭素のシグナルは、ほぼ单一であり、立体規則性の高い重合体であることもわかる。

## 【0083】

## 実施例11~12

充分乾燥させた100mlのオートクレーブに、乾燥トルエン14.4ml、トリ(イソブチル)アルミニウム0.8mmolを添加し、-78℃に冷却した。ビスシクロペンタジエニルジルコニウムジメチル0.04mmol、トリス(

（ペンタフルオロフェニル）ホウ素0.04mmol、プロピレン83mmolを加え、実施例11の場合は3時間、実施例12の場合は12時間重合させた。塩酸性メタノール1000mlに注いで重合を停止させ、重合体を析出させた。析出物を濾別、真空乾燥して、ポリマーを得た。

## 【0084】

ポリマーの収量（Yield）は、実施例11の場合30mg、実施例12の場合150mgであった。GPCにより測定した数平均分子量（Mn）および分子量分布（Mw/Mn）は、実施例11の場合2700および1.23、実施例12の場合10300および1.04であった。

## 【0085】

以上のように分子量分布の狭いポリマーが得られた。

## 【0086】

また、時間と数平均分子量の関係および時間と収量の関係を図6に示す。

## 【0087】

図6から、時間と数平均分子量とが比例的であることがわかる。また、時間と収量とも比例的であることがわかる。これらの結果からも、前記重合が、リビング重合であることがわかる。

## 【0088】

## 実施例13～14

充分乾燥させた100mlのオートクレーブに、乾燥トルエン14.4ml、トリス（ペンタフルオロフェニル）ホウ素0.4mmolを添加し、-78℃に冷却した。ビスシクロペンタジエニルジルコニウムジメチル0.04mmol、プロピレン83mmolを加え、実施例13の場合は6時間、実施例14の場合は24時間重合させた。塩酸性メタノール1000mlに注いで重合を停止させ、析出物を濾別、真空乾燥して、ポリマーを得た。

## 【0089】

ポリマーの収量（Yield）は、実施例13の場合24.0mg、実施例14の場合110mgであった。GPCによると、数平均分子量（Mn）および分子量分布（Mw/Mn）は、実施例13の場合1900、1.16、実施例14

の場合9200、1.11であった。

#### 【0090】

時間と数平均分子量の関係および時間と収量の関係を図7に示す。

#### 【0091】

図7から、時間と数平均分子量とが比例的であることがわかる。また、時間と収量とも比例的であることがわかる。これらの結果からも、前記重合が、リビング重合であることがわかる。

#### 【0092】

##### 実施例15～16

充分乾燥させた100mlのオートクレーブに、乾燥トルエン14.4ml、トリ(n-オクチル)アルミニウム0.8mmolを添加し、-78℃に冷却した。ビスペンタメチルシクロペンタジエニルハフニウムジメチル0.04mmol、トリス(ペンタフルオロフェニル)ホウ素0.04mmol、プロピレン83mmolを加え、実施例15の場合は6時間、実施例16の場合は11時間重合させた。その後、塩酸性メタノール1000mlに注いで重合を停止させ、重合体を析出させた。析出物を濾別、真空乾燥して、ポリマーを得た。

#### 【0093】

ポリマーの収量(Yield)は、実施例15の場合1600mg、実施例16の場合2920mgであった。GPCにより測定した数平均分子量(Mn)および分子量分布( $M_w$ (重量平均分子量)/Mn)は、実施例15の場合60000および1.10、実施例16の場合104000および1.10であった。

#### 【0094】

以上のように分子量分布の狭いポリマーが得られた。

#### 【0095】

また、時間と数平均分子量との関係および時間と収量との関係を図8に示す。

#### 【0096】

図8から、時間と数平均分子量とが比例的であることがわかる。また、時間と収量とも比例的であることがわかる。これらの結果からも、前記重合がリビング重合であることがわかる。

【0097】

【発明の効果】

本発明によれば、化合物(A)、化合物(B)および場合により化合物(C)からなる触媒を用いて低温で炭素数2～20のオレフィン系モノマーを重合させることにより、分子量分布が1.3以下のポリオレフィン系リビング重合体を製造することができる。

【図面の簡単な説明】

【図1】

実施例1～2で製造したリビング重合体の収量および数平均分子量と反応時間との関係を示すグラフである。

【図2】

実施例3～5で製造したリビング重合体の収量および数平均分子量と反応時間との関係を示すグラフである。

【図3】

実施例6～7で製造したリビング重合体の収量および数平均分子量と反応時間との関係を示すグラフである。

【図4】

実施例8～10で製造したリビング重合体の収量および数平均分子量と反応時間との関係を示すグラフである。

【図5】

実施例10で得られた重合体の<sup>13</sup>C-NMRシグナルを示す図である。

【図6】

実施例11～12で製造したリビング重合体の収量および数平均分子量と反応時間との関係を示すグラフである。

【図7】

実施例13～14で製造したリビング重合体の収量および数平均分子量と反応時間との関係を示すグラフである。

【図8】

実施例15～16で製造したリビング重合体の収量および数平均分子量と反応

特平11-261952

時間との関係を示すグラフである。

【書類名】

図面

【図 1】



【図2】



【図3】



【図4】



特平11-2619

【図5】



【図 6】



【図 7】



【図8】



【書類名】 要約書

【要約】

【課題】 末端官能化ポリマーやブロックコポリマーに変換し得るオレフィン系リビング重合体を製造する。

【解決手段】 (A) 1個または2個のシクロペンタジエニル骨格を有するハフニウムまたはジルコニウム含有化合物、(B) トリフェニルホウ素系化合物またはテトラフェニルホウ素塩系化合物および場合により特定のモノ、ジまたはトリアルキルアルミニウム系化合物からなる触媒を用いて低温で炭素数2～20のオレフィン系モノマーを重合させて分子量分布( $M_w/M_n$ )が1～1.3のオレフィン系リビング重合体を製造する。

【選択図】 なし

## 認定・付加情報

|         |                    |
|---------|--------------------|
| 特許出願の番号 | 平成11年 特許願 第261952号 |
| 受付番号    | 59900900016        |
| 書類名     | 特許願                |
| 担当官     | 清水 スズ子 1350        |
| 作成日     | 平成11年12月13日        |

## &lt;認定情報・付加情報&gt;

## 【特許出願人】

|          |                   |
|----------|-------------------|
| 【識別番号】   | 000001144         |
| 【住所又は居所】 | 東京都千代田区霞が関1丁目3番1号 |
| 【氏名又は名称】 | 工業技術院長            |

## 【特許出願人】

|          |                   |
|----------|-------------------|
| 【識別番号】   | 597071652         |
| 【住所又は居所】 | 東京都台東区柳橋2丁目22番13号 |
| 【氏名又は名称】 | 財団法人 化学技術戦略推進機構   |

## 【指定代理人】

|          |                   |
|----------|-------------------|
| 【識別番号】   | 220000390         |
| 【住所又は居所】 | 茨城県つくば市東1-1       |
| 【氏名又は名称】 | 工業技術院物質工学工業技術研究所長 |

## 【代理人】

|          |                                   |
|----------|-----------------------------------|
| 【識別番号】   | 100065226                         |
| 【住所又は居所】 | 大阪府大阪市中央区谷町2丁目2番22号 NSビル 朝日奈特許事務所 |

【氏名又は名称】 朝日奈 宗太

## 【復代理人】

|          |                                   |
|----------|-----------------------------------|
| 【識別番号】   | 100065226                         |
| 【住所又は居所】 | 大阪府大阪市中央区谷町2丁目2番22号 NSビル 朝日奈特許事務所 |

【氏名又は名称】 朝日奈 宗太

## 【選任した代理人】

|          |                                    |
|----------|------------------------------------|
| 【識別番号】   | 100098257                          |
| 【住所又は居所】 | 大阪府大阪市中央区谷町2-2-22 NSビル 7階 朝日奈特許事務所 |

【氏名又は名称】 佐木 啓二

## 【選任した復代理人】

次頁有

認定・付加情報（続巻）

【識別番号】 100098257  
【住所又は居所】 大阪府大阪市中央区谷町2-2-22 NSビル  
7階 朝日奈特許事務所  
【氏名又は名称】 佐木 啓二

次頁無

【書類名】 手続補正書  
 【整理番号】 KEN-3849  
 【提出日】 平成11年11月 2日  
 【あて先】 特許庁長官 近藤 隆彦 殿  
 【事件の表示】  
   【出願番号】 平成11年特許願第261952号  
 【補正をする者】  
   【識別番号】 000001144  
   【氏名又は名称】 工業技術院長  
 【補正をする者】  
   【識別番号】 597071652  
   【氏名又は名称】 財団法人化学技術戦略推進機構  
 【復代理人】  
   【識別番号】 100065226  
 【弁理士】  
   【氏名又は名称】 朝日奈 宗太  
   【電話番号】 06-6943-8922  
 【代理関係の特記事項】 特許出願人 工業技術院長の復代理人  
 【代理人】  
   【識別番号】 100065226  
 【弁理士】  
   【氏名又は名称】 朝日奈 宗太  
   【電話番号】 06-6943-8922  
 【代理関係の特記事項】 特許出願人 財団法人 化学技術戦略推進機構の  
                             代理人  
 【手続補正 1】  
   【補正対象書類名】 特許願  
   【補正対象項目名】 持分契約書  
   【補正方法】 追加

特平11-2619

【補正の内容】

【提出物件の目録】

【物件名】 持分契約書 1

2992C800091



持 分 契 約 書

平成11年10月1日

事件の表示 平成11年9月16日付特許願 特願平11-261952  
整理番号 KEN-3849  
(発明の名称: オレフィン系リビング重合体の製法)  
(特願平11-128732に基づく国内優先権主張)

上記発明の特許を受ける権利の持分を甲34%、乙66%と定めたことに  
相違ありません。

(甲) 東京都千代田区霞が関一丁目3番1号  
通商産業省工業技術院長 梶村 啓二

指定代理人  
茨城県つくば市東一丁目1番  
通商産業省工業技術院 物質工学工業技術院  
久保田 正明



(乙) 東京都台東区柳橋二丁目各々番13号  
財団法人 産業技術研究開発機構  
理事長 佐野和也



工業技術院職務発明規程・工業技術院共同研究規程等により、持分の決定  
は工業技術院長に代わり指定代理人である各研究所長が行う旨規程している。

## 認定・付加情報

特許出願の番号 平成11年 特許願 第261952号  
受付番号 29920800091  
書類名 手続補正書  
担当官 清水 スズ子 1350  
作成日 平成11年12月13日

## &lt;認定情報・付加情報&gt;

## 【補正をする者】

【識別番号】 000001144  
【住所又は居所】 東京都千代田区霞が関1丁目3番1号  
【氏名又は名称】 工業技術院長

## 【補正をする者】

【識別番号】 597071652  
【住所又は居所】 東京都台東区柳橋2丁目22番13号  
【氏名又は名称】 財団法人 化学技術戦略推進機構

## 【復代理人】

【識別番号】 100065226  
【住所又は居所】 大阪府大阪市中央区谷町2丁目2番22号 NS  
ビル 朝日奈特許事務所

【氏名又は名称】 朝日奈 宗太

## 【代理人】

【識別番号】 100065226  
【住所又は居所】 大阪府大阪市中央区谷町2丁目2番22号 NS  
ビル 朝日奈特許事務所

【氏名又は名称】 朝日奈 宗太

## 【提出された物件の記事】

【提出物件名】 持分契約書 1

次頁無

出願人履歴情報

識別番号 [000001144]

1. 変更年月日 1990年 9月20日

[変更理由] 新規登録

住 所 東京都千代田区霞が関1丁目3番1号

氏 名 工業技術院長

出願人履歴情報

識別番号 [597071652]

1. 変更年月日 1998年 3月26日

[変更理由] 名称変更

住 所 東京都台東区柳橋2丁目22番13号

氏 名 財団法人 化学技術戦略推進機構

