

## Hierarchical Fuzzy Systems

COMP4660/8420 - Neural Networks, Deep Learning and Bio-inspired Computing





#### Overview

- How do fuzzy systems work?
  - Dense fuzzy rule bases
- Problem definition
  - $-|R| = O(T^k)$
- Sketch of solution
- Sparse rules fuzzy interpolation
  - Interpolation overview
  - Conservation of fuzziness
- Hierarchical dense rule bases
  - Input contributions
- Hierarchical (sparse) rule bases
  - Case study





### Dense fuzzy rule bases

- Rules: age & experience to salary
  - IF Age=Young & Exp=LittleTHEN \$=Low
  - IF Age=Young & Exp=Moderate THEN \$=Low
  - IF Age=Young & Exp=Good THEN \$=Ave
  - **—** ...
  - IF Age=Older & Exp=Moderate THEN \$=Ave

IN:

OUT:

- IF Age=Older & Exp=Good THEN \$=High
- Three terms, two inputs  $\Rightarrow$  9 rules







# Fuzzy reasoning

- For Age=Middle, & Exp near border:
  - IF Age=Middle & Exp=Mod.THEN \$=Ave
  - IF Age=Middle & Exp=GoodTHEN \$=High

#### **FUZZY**:





#### CRISP:





• Fuzzy value experience is Moderate = 0.6, Good = 0.4

IN:

OUT:

- Result will share properties of both Ave. and High salary range
- Crisp version not very good!



#### **Problem Definition**

- Problem number of rules:
  - We use T terms
  - For each of k input variables
- $|\mathbf{R}| = \mathbf{O}(\mathbf{T}^k)$ 
  - To solve real problems⇒ many rules required!
  - E.g. 5 terms, 5 inputs  $\Rightarrow$  3,125 rules





#### Sketch of Solution

- Only 3 possible solutions:
  - decrease T, decrease k, or decrease both.
- Decrease T
  - allow sparse fuzzy rule bases
  - require reasoning technique for cases where no rule holds
    - use nearby rules fuzzy interpolation
- Decrease k:
  - hierarchical fuzzy rule bases
    - often full cover in bordering domains so complexity is not reduced
- Decrease T and k:
  - hierarchical sparse fuzzy rule bases
    - interpolate between different branches of hierarchical rule tree
    - can omit bordering domains and just interpolate from nearby rules





#### Interpolation overview

- Tomato colours:
  - IF colour = RedTHEN its Ripe
  - IF colour = GreenTHEN its Unripe
- What about a yellow tomato?

• This is an obvious solution <u>now!</u>







## Fuzzy Distance

• Fuzzy distance of comparable fuzzy sets:

for all  $\alpha \in [0,1]$  is the pairwise distances between the two extrema of these fuzzy sets ("lower" and "upper fuzzy distance" of the two  $\alpha$ -cuts)

DISTANCE OF COMPARABLE FUZZY SETS: A < B



LOWER AND UPPER DISTANCE OR CENTRAL (MEAN) DISTANCE AND WIDHT (FOR BOTH SETS)



THE FUZZY DISTANCE IS A FUZZY SET OF DISTANCES.



# Fundamental equation of linear interpolation and its solution for B\*

- We assume  $A_1 \prec A^* \prec A_2$  and  $B_1 \prec B_2$
- Distances:

$$D(A^*, A_1): D(A^*, A_2) = D(B^*, B_1): D(B^*, B_2)$$

where: 
$$\inf\{B_{\alpha}^{*}\} = \frac{\inf\{B_{1\alpha}\}}{\frac{d_{\alpha L}(A_{1\alpha}, A_{\alpha}^{*})}{1} + \frac{\inf\{B_{2\alpha}\}}{\frac{d_{\alpha L}(A_{2\alpha}, A_{\alpha}^{*})}{1}}}{\frac{1}{d_{\alpha L}(A_{1\alpha}, A_{\alpha}^{*})} + \frac{1}{d_{\alpha L}(A_{2\alpha}, A_{\alpha}^{*})}}$$

$$\sup\{B_{\alpha}^{*}\} = \frac{\sup\{B_{1\alpha}\}}{\frac{d_{\alpha U}(A_{1\alpha}, A_{\alpha}^{*})}{1} + \frac{\sup\{B_{2\alpha}\}}{\frac{d_{\alpha U}(A_{2\alpha}, A_{\alpha}^{*})}{1}}}{\frac{1}{d_{\alpha U}(A_{1\alpha}, A_{\alpha}^{*})} + \frac{1}{d_{\alpha U}(A_{2\alpha}, A_{\alpha}^{*})}}$$



# Example





#### Result for the linear interpolation method

- Exact method is expensive to calculate and expensive to use
- Generally just use the 'core' points
  - the four points
    which define the
    trapezoid or
    triangle (2 pts are
    same for triangle)





### Fuzzy interpolation

- Sparse rule bases because ...
  - Information is not available
  - Availability cost or natural gaps
  - Deliberate reduction for efficiency
- All methods are descendants of Kóczy & Hirota (1990, 1993) linear interpolation
  - Reduced computational cost
  - But can lead to distorted / abnormal fuzzy rules
- Conservation of fuzziness
  - Only near points of rules used
  - Fuzziness can only increase
  - Core of B\* by linear interpolation of near core points





#### Interpolation overview 2

- Fuzzy rule based systems
  - used in applications where approximate reasoning is required
  - sparse rule bases
    - information is not available, availability costs or natural gaps
- Fuzzy rule interpolation
  - provide conclusions where
    - no overlap with even the supports of existing rules in the rule base
    - descendants of Kóczy & Hirota (1990, 1993) linear interpolation
  - advantages / disadvantages
    - reduced computation cost / can lead to abnormal fuzzy rules
  - conservation of fuzziness method
    - always acceptably formed rules
    - (additively) conservative use degree of local fuzziness
    - use the nearby sides of rules, no handedness of rules





#### Conservation of fuzziness

- Assume little homogeneity in the rule base:
  - only nearest core points are visible
  - i.e. A\* is in a valley between A1 and A2
  - core of B\* from simple linear interpolation between the nearest core points of A1, A2 and B1, B2





A1: 0, 5, 25, 30 A\*: 35, 55, 55, 60

A2: 70, 75, 95,100 B\*: 37, 59, 59, 66

B1: 0, 15, 20, 30

B2: 70, 85, 90,100



#### Conservation of fuzziness 2

- Spread represents fuzziness of
  - s, s' rule antecedent, consequent
  - r, r' observation, conclusion
  - u, u' A\*, A2 distance, B\*, B2 distance
- Intuition
  - B2 is more fuzzy than A2.
- Calculating r'
  - Increase in relative local fuzziness

$$r' = r \cdot \frac{u'}{u} \cdot \left(1 + \frac{s' - s''}{z}\right)$$





(where z is s' or s")

$$s'' = s \cdot \frac{u'}{u}$$



## Conservation of Fuzziness Additive strategy

- Restrict notion of local fuzziness
  - only increase only from rule antecedent to consequent
  - i.e., where consequent is less fuzzy (steeper slope) than the antecedent, this is not propagated
    - otherwise would imply that knowledge in (sparse) rule base was sufficient to take a highly fuzzy observation and return a less fuzzy conclusion
    - this would be counter-intuitive
- Additive  $r' = r \cdot \left(1 + pos \left(\frac{s'}{u'} \frac{s}{u}\right)\right)$ 
  - r' is not dependent on the ratio of the different metrics
    - crisp s or s' no longer a problem
  - s, s' normalised with respect to u, u'



### Results and comparisons

- Example p2
- k & h
  - abnormal conclusion
- g+
  - well formed conclusion
  - note similarity
    of the left flank
    results with
    k & h results
    (37 versus 35)



A1: 0, 5, 25, 30

A2: 70, 75, 95,100

B1: 0, 15, 20, 30

B2: 70, 85, 90,100

A\*: 35, 55, 55, 60

B\*: 35, 65, 50, 60 k&h

B\*: 37, 59, 59, 66 g+



#### Results & comparisons – 2

- Example p5
- k & h
  - abnormal conclusion
- g+
  - well formed conclusion
  - note similarity
    of right flank
    results with
    k & h results
    (52 versus 54)



A1: 0, 20, 20, 30

A2: 60, 90, 90,100

B1: 0, 10, 10, 20

B2: 80, 85, 85,100

A\*: 40, 50, 50, 60

B\*: 53, 42, 42, 54 k&h

B\*: 32, 42, 42, 52 g+



### Hierarchical dense rule bases – salary dataset

Rules in a tree (Con/Age/Exp)



• Prune tree:



- Worst results (reversed order by input contribs)
- With 3 errors → 7 rules:
   (Or 4 errors → 5 rules)





#### Hierarchical dense rule bases

Rules in tree (Age/Exp/Con) – different hier. seq.!



Prune tree:



- Middling results, ignored input contributions
- With 3 errors
  - → 8 rules:





#### Hierarchical dense rule bases

Rules in a tree (Exp/Age/Con)



• Prune: Exp:

Age:
Con:
Sal: B B F B \* H B F F H H

- Best results, uses decreasing input contributions
- Accept 3 errors → 6 rules:
  - Interpolate between branches!
  - Performance now 89%





#### Hier. dense rule bases

- How different are these really?
- Rules: Exp/Age/Con 6 errors:
  - Performance is now 78%,
     only 2 rules, and using Exp only.



- Rules: Age only 13 errors:
  - Result 52%, with 2 rules



- Rules using Con only 15 errors
  - Result 44%, with 2 rules





#### Other hier. FZ models

- Advantage: Effective complexity reduction
- Disadvantage: Loss of interpretability
- Input passes through multiple levels of fuzzy system, each level modifies result based on some fuzzy rules.
- Transformation of input to output becomes hard to

trace







#### Hierarchical rule bases

• Decompose multi-dimensional input state space

```
R0: If z0 is D1 then use R1
If z0 is D2 then use R2
!
If z0 is Dn then use Rn
```

R1: If z1 is A11 then y is B11

If z1 is A12 then y is B12

!

If z1 is  $A1m_1$  then y is  $B1m_1$ 

Interpolate between branches





- Real world Petroleum Data
- The objective is to develop an estimator to predict porosity (PHI) from well logs.
- 8 Dimensional Inputs GR, RDEV, RMEV, RXO, RHOB, NPHI, PEF and DT
- 633 rows of data, same data used for training / testing
- Aim to construct a hierarchical fuzzy system with reasonable accuracy + good interpretability from real world data
- Lack of rule extraction techniques designed for hierarchical fuzzy rule base generation





- Convenient approach: Develop a conventional ('flat') fuzzy system, and then convert it to a hierarchical system.
- Brief description of Rule Extraction:
- Fuzzy cluster output space.
- For each output fuzzy cluster B<sub>i</sub>
  - a cluster in the input space A<sub>i</sub> is induced.
- The input cluster is projected onto the various input dimensions to produce rules of the form:

If  $x_1$  is  $A_{i1}$  and  $x_2$  is  $A_{i2}$  and ...  $x_n$  is  $A_{in}$  then y is  $B_i$ 



- Conversion to Hier. Fuzzy Sys.:
  - Two or more fuzzy rules are merged to form hierarchical fuzzy rules. E.g., the two rules:

If 
$$x_1$$
 is  $A_{11}$  and  $x_2$  is  $A_{12}$  then y is  $B_1$   
If  $x_1$  is  $A_{21}$  and  $x_2$  is  $A_{22}$  then y is  $B_2$ 

can be merged to form:

If  $x_1$  is  $(A_{11} A_{21})$  then use  $R_1$   $R_1$ : if  $x_2$  is  $A_{12}$  then y is  $B_1$ if  $x_2$  is  $A_{22}$  then y is  $B_2$ 



- Hier. version has more rules:
  - (1 meta rule + 2 rules) vs (2 rules)
- Inference more efficient in hierarchical version:
  - Number of terms in rule antecedents for the hierarchical version (3 terms) is less than the original version (4 terms).
  - For accuracy:  $A_{11}$  and  $A_{21}$  must coincide as much as possible (by subjective evaluation).



## Hier. Fuzzy Modeling

Perform parameter tuning to improve the performance of the hierarchical fuzzy system generated.



• Performance index:

$$PI = \mathop{\stackrel{m}{\circ}}_{i=1}^{m} (y^i - \hat{y}^i)^2 / m$$



• Sample rules from original 'flat' fuzzy system



Sample meta rule and its corresponding sub-rule base



