(Selected) Exercise Solutions From Guillemin's $\begin{array}{c} \textbf{Differential Topology} \\ \textit{Anmol Bhullar} \end{array}$

anmol.bhullar@mail.utoronto.ca

1. [1.1.4] Let B_a be the open ball $\{x:|x|^2< a\}$ in \mathbb{R}^k . Show that the map:

$$x \to \frac{ax}{\sqrt{a^2 - |x|^2}}$$

is a diffeomorphism of B_a onto \mathbb{R}^k .

For the second part of this problem, suppose that X is a k-dimensional manifold. Show that every point in X has a neighbourhood diffeomorphic to all of \mathbb{R}^k . Deduce that local parameterizations may be written with all of \mathbb{R}^k for their domains.

Solution:

It is sufficient to find an inverse of the mapping $f: \mathbb{R}^k \to B_a$ (with the element mapping given above). One may compute directly to find that:

$$f^{-1}(x) = \frac{ax}{\sqrt{a^2 + |x|^2}}$$

Therefore, f is a diffeomorphism.

(b) By definition, for any point $x \in X$, we have that there exists a diffeomorphism $\phi: V \to U$ where $U \subseteq \mathbb{R}^k$ is open and V is some neighbourhood around x. Restrict V so that $f(V) = B_a(f(x))$ for some a. Then, the mapping $f^{-1} \circ \phi: V \to \mathbb{R}^k$ is a diffeomorphism which maps a neighbourhood around x to all of \mathbb{R}^k . Furthermore, the inverse of the composition mapping is a diffeomorphism going from $\mathbb{R}^k \to V$. Thus, it is a local parameterization written with all of \mathbb{R}^k for its domain.

2. [1.1.5] Show that every k-dimensional vector subspace of \mathbb{R}^n is a manifold diffeomorphic to \mathbb{R}^k , and that all linear maps on V are smooth. If $\phi: \mathbb{R}^k \to V$ is a linear isomorphism, then the corresponding coordinate functions are linear functionals on V called *linear coordinates*.

Solution:

First, we will show V is isomorphic to \mathbb{R}^k . Let $\{e_1,e_2,\cdots,e_k\}$ be some basis of \mathbb{R}^k and $\{\varphi_1,\varphi_2,\cdots,\varphi_k\}$ be the basis of V. Then, there exists a linear map L such that $L(\varphi_1)=e_1,L(\varphi_2)=e_2,\cdots,L(\varphi_k)=e_k$. By a similar process, L^{-1} is defined. Thus, we obtain that L is an isomorphism which implies V and \mathbb{R}^k are isomorphic.

Next, we will show L is differentiable. Consider, for any $a \in \mathbb{R}^k$ and (let $A_{m \times n}$

be the matrix from L(x) = Ax). Then:

$$= \lim_{h \to 0} \frac{|L(a+h) - L(a) - Ah|}{|h|}$$

$$= \lim_{h \to 0} \frac{|L(a) + L(h) - L(a) - Ah|}{|h|}$$

$$= \lim_{h \to 0} \frac{|L(h) - Ah|}{|h|}$$

$$= \lim_{h \to 0} \frac{|Ah - Ah|}{|h|}$$

$$= 0$$

Since DL(a) := A is stil a linear map (it is composed of m linear maps), then via induction, we can obtain the result that L is a smooth function. Thus L is actually diffeomorphic implying that V and \mathbb{R}^k are diffeomorphic. Furthermore, since L is arbitrary, any linear map on V is smooth.

3. [1.1.8] Prove that the hyperboloid in \mathbb{R}^3 , defined by $x^2 + y^2 - z^2 = a$, is a manifold if a > 0. Why doesn't $x^2 + y^2 - z^2 = 0$ define a manifold?

Solution:

Suppose a > 0. Then we show that $x^2 + y^2 - z^2 = a$ defines a manifold. Case I: $y^2 - z^2 > a$ Then:

$$x^{2} + y^{2} - z^{2} = a \implies x^{2} + y^{2} - a = z \implies z = \pm \sqrt{x^{2} + y^{2} - a}$$

So we get the covers:

$$\phi(x,y) = (x, y, \pm \sqrt{x^2 + y^2 - a})$$

Case II: One can check that for the other two cases $x^2-z^2 > a$ and $x^2+y^2-z^2 > a$, we arrive at the same covers. Thus the diffeomorphisms:

$$\phi(x,y) = (x,y,\pm\sqrt{x^2+y^2-a})$$

cover the hyperboloid so it is a manifold.

Now suppose that a = 0. We show that $x^2 + y^2 = z^2$ does not define a manifold. Note that:

$$z = \pm \sqrt{x^2 + y^2}$$

Thus, if the hyperboloid is a manifold, then the maps

$$\phi(x,y) = (x,y,\pm\sqrt{x^2+y^2})$$

are smooth on their domains. However, we prove that $\phi'(0,0)$ does not exist. First note that:

$$\phi'(0,0) = \begin{pmatrix} 1 & 0 & \pm \frac{x}{\sqrt{x^2 + y^2}} \\ 0 & 1 & \pm \frac{y}{\sqrt{x^2 + y^2}} \end{pmatrix}$$

It suffices to show that $\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$ does not exist. So, take ||(x,y)|| < 1 and consider approaching the function at y = mx:

$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2 + y^2}}$$

$$= \lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2 + (mx)^2}}$$

$$= \lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2(1+m^2)}}$$

$$= \lim_{(x,y)\to(0,0)} \frac{1}{\sqrt{1+m^2}}$$

$$\neq (0,0)$$

so ϕ is not smooth at (0,0), thus $x^2 + y^2 = z^2$ does not define a manifold.

4. [1.1.9] Explicitly exhibit enough parameterizations to cover $S^1 \times S^1 \subset \mathbb{R}$. **Solution:**

Let $a, b \in \{x, -x, \sqrt{1-x^2}, -\sqrt{1-x^2}\}$ and $c, d \in \{y, -y, -\sqrt{1-y^2}, \sqrt{1-y^2}\}$. Then the set: $\{(a, b, c, d)\}$ holds the parameterizations which cover $S^1 \times S^1$.

- **5.** [1.1.10] The *torus* is the set of points in \mathbb{R}^3 at distance b from the circle of radius a in the xy plane where 0 < b < a. Prove that these tori are all diffeomorphic to $S^1 \times S^1$. Also, draw the cases b = a and b > a; why are these not manifolds?
- **6.** [1.1.11] Show that one cannot parameterize the k sphere S^k by a single parameterization.

Solution:

Suppose such a parameterization exists. Then let $\phi:U\subseteq\mathbb{R}^k\to S^n$ be the parameterization. We know that $\phi^{-1}:S^n\to U$ is continuous. Therefore, since S^k is compact, U must be as well. But note that by definition of ϕ , U must be open. Thus U is open and closed and the only non-empty set which is open and closed is \mathbb{R}^k so $U=\mathbb{R}^k$. But then U cannot be compact (Heine-Borel) even though the mapping ϕ^{-1} implies that it should be. Thus we have a contradiction, implying that there exists no single parameterization which can cover S^k .

7. [1.1.12] A stereographic projection is a map π from the punctured sphere $S^2 - \{N\}$ onto \mathbb{R}^2 , where N is the north pole. For any $p \in S^2 - \{N\}$, $\pi(p)$ is defined to be the point at which the line through N and p intersects the xy plane. Prove that $\pi: S^2 - \{N\} \to \mathbb{R}^2$ is a diffeomorphism. Note, that if p is near N, then $|\pi(p)|$ is large. Thus π allows us to think of S^2 as a copy of \mathbb{R}^2 compactified by the addition of one point infinity. Since we can define stereographic projection by using the south pole instead of the north, S^2 may be covered by two local parameterizations.

Solution:

Let (p_1, p_2, p_3) be a point in $S^2 - \{N\}$. Then the line starting from N going through (p_1, p_2, p_3) is given by:

$$t \mapsto (0,0,1) + t(p_1, p_2, p_3 - 1)$$

Let this function be reffered to as ϕ . We know $\phi(t) = 0$ when $t(p_3 - 1) + 1 = 0$ or when $t = \frac{-1}{p_3 - 1}$. So,

$$\pi(p) = \left(\frac{-p_1}{p_3 - 1}, \frac{-p_2}{p_3 - 1}\right) \tag{1}$$

Now, to find π^{-1} , take any $(x,y) \in \mathbb{R}^2$. Then, consider the line $t \mapsto (0,0,1) + t(x,y,-1)$ (furthermore, let us refer to this function as θ . To find when $\theta(t)$ intersects $S^2 - \{N\}$, consider:

$$\sqrt{(tx)^2 + (ty)^2 + (-t+1)^2} = 1$$

$$\Leftrightarrow (tx)^2 + (ty)^2 + t^2 - t = 0$$

which holds when t=0 or when $t=\frac{1}{1+x^2+y^2}$. This implies $\pi^{-1}(x,y)=(0,0,1)+t(x,y,-1)$ where $t=\frac{1}{1+x^2+y^2}$. Note that if $x^2+y^2=1$, then $\pi^{-1}(x,y)\coloneqq(x,y,0)$. It is easy to see that both π and π^{-1} are both smooth. Thus, $\pi:S^2-\{N\}\to\mathbb{R}^2$ is diffeomorphic.

8. [1.1.13] By generalizing stereographic projection define a diffeomorphism $S^k - \{N\} \to \mathbb{R}^k$.

Solution:

Define $\pi(p)$ to the point formed at the intersection between the line \overline{Np} (where N is the north pole) and the hyperplane. Specifically:

$$\pi(p) = (0, \cdots, 0, 1) + (\frac{p_1}{1 - p_{k+1}}, \frac{p_2}{1 - p_{k+1}}, \cdots, \frac{p_k}{1 - p_{k+1}})$$

and

$$\pi^{-1}(x) = (0, \dots, 0, 1) + (1 - p_1^2, -p_2^2, \dots, -p_k^2)(p_1, \dots, p_k, -1)$$

9. [1.1.17] The graph of a map $f: X \to Y$ is the subset of $X \times Y$ defined by

$$graph(f) = \{(x, f(x)) : x \in X\}$$

Define $F: X \to \operatorname{graph}(f)$ by F(x) = (x, f(x)). Show that if f is smooth, then F is a diffeomorphism; thus $\operatorname{graph}(f)$ is a manifold if X is.

Solution:

Note F'(x) = (1, f(x)). Since f(x) is smooth, f' exists and is continuous. Also note that F is then differentiable ($\in C^1$ to be more specific) since both of the

components of F are \mathbb{C}^1 . We can apply induction and use the same arguments to obtain that F is smooth.

Now suppose that F(x) = F(y). Then (x, f(x)) = (y, f(y)) which implies that in the first component, x = y. Thus F is injective. The fact that F is surjective follows from the definition of graph (f).

Smoothness of inverse is given by the fact that it is a projection mapping $(x, f(x)) \mapsto x$ and all such mappings are smooth.

Thus F is a diffeomorphism and F or F^{-1} would be the parameterization used to cover X or graph(f) if they were manifolds.

Problem[1.1.18(a)] An extermely useful function $f : \mathbb{R} \to \mathbb{R}$ is:

$$f(x) = \{e^{\frac{-1}{x^2}} \text{ if } x > 0, \\ 0 \text{ if } x \le 0\}$$