河海大学 2019-2020 学年第一学期

《概率论与数理统计》试卷(A)

(供 2018 级理工类各专业使用, 2019 年 11 月)

一、填空与选择题(每小题3分,本题满分21分)

1.在三次独立重复是	射击中,	若至少有-	一次击中目	标的概率为	$\frac{37}{64}$,	则每次射击击中目	沶
的概率为	0						

2.设 r.v.
$$X$$
 与 Y 相互独立,且 $\frac{X \mid -1 \quad 1}{p \mid 0.5 \quad 0.5}$, $\frac{Y \mid -1 \quad 1}{p \mid 0.5 \quad 0.5}$, 则 $P\{X=Y\}=($)。

- (A) 0.25 (B) 0.75
- (C) 0.5

3.设连续型随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} 0, & x < 0, \\ kx^2, & 0 \le x \le 1, 则 \ k = \underline{\hspace{1cm}} \\ 1, & x > 1, \end{cases}$

- 4.设随机变量 $X \sim B(n, p)$,且 E(X) = 2.4,D(X) = 1.44,则 n = , p = 。
- 5.下列结论中,**不是**随机变量 X 与 Y 不相关的充要条件的是(
- (A) E(XY) = E(X)E(Y)

(B) D(X+Y) = D(X) + D(Y)

(C) Cov(X,Y) = 0

(D) X与 Y相互独立

6.设
$$X_1, X_2, \dots, X_{12}$$
来自正态总体 $N(0,1)$, $Y = \left(\sum_{i=1}^4 X_i\right)^2 + \left(\sum_{i=5}^8 X_i\right)^2 + \left(\sum_{i=9}^{12} X_i\right)^2$, 当常数 $k =$ 时, kY 服从 χ^2 分布。

7. 设两独立样本 X_1, X_2, \dots, X_{n_1} 和 Y_1, Y_2, \dots, Y_{n_2} 分别来自总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$, 其中 μ_1 、 μ_2 未知, σ_1^2 、 σ_2^2 已知, $\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$, $\overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_j$,则 $\mu_1 - \mu_2$ 的置信度为 $1 - \alpha$ 的

双侧置信区间为_____

二、(本题满分 10 分) 设随机变量 X 的密度函数为 $f(x) = \begin{cases} x, & 0 \le x \le 1, \\ A - x, & 1 < x < 2, & (1) 求常 0. 其他. \end{cases}$

数 A; (2) 求 P{0.2< X<1.2}; (3) 求 X 的分布函数。

三、(本题满分 9 分) 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} e^{-x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$ 求随机变量 $Y = X^2$ 的概率密度函数 $f_v(y)$ 。

四、(本题满分14分)设(X,Y)的概率密度函数为 $f(x,y) = \begin{cases} A(x+y), & 0 \le x \le 2, 0 \le y \le 2, \\ 0, & \text{其他,} \end{cases}$

其中 A 为常数。(1) 求 A; (2) 求 D(X+Y); (3) 求 Z=X+Y 的概率密度函数。

五、(本题满分 10 分) 设随机变量 X 与 Y 满足: D(X) = 2 , D(Y) = 4 , Cov(X,Y) = 1 。 令 U = 2X - 3Y , V = 3X - 2Y 。 求 U 与 V 的相关系数 ρ_{UV} 。

六、试解下列各题(本题满分28分,每小题7分)

(1) 若总体 $X\sim P(\lambda)$,其分布律为 $P\{X=k\}=\frac{\lambda^k \mathrm{e}^{-\lambda}}{k!}$, $k=0,1,2,\cdots$, $\lambda>0$ 为未知参数, X_1,X_2,\cdots,X_n 为来自总体 X 的一个简单随机样本。求参数 λ 的矩估计量 $\hat{\lambda}_M$,并判断 $\hat{\lambda}_M$ 是否为 λ 的无偏估计。

是未知参数,利用总体 X 的样本值 3,1,3,0,3,1,3,2,求 θ 的极大似然估计值 $\hat{\theta}_{MLE}$ 。

(3) 随机地选取某种炮弹 9 发做试验,测得炮口速度的样本标准差 s=11 (m/s)。设炮口速度服从正态分布,求炮口速度的方差 σ^2 的置信度为 95%的置信区间。

【参考数值: $\chi^2_{0.025}(8) = 17.534$, $\chi^2_{0.975}(8) = 2.180$, $\chi^2_{0.025}(9) = 19.023$, $\chi^2_{0.975}(9) = 2.700$, $\chi^2_{0.05}(8) = 15.507$, $\chi^2_{0.95}(8) = 2.733$, $\chi^2_{0.05}(9) = 16.919$, $\chi^2_{0.95}(9) = 3.325$ 】

(4)设某种产品的某项指标服从正态分布,已知它的标准差 $\sigma=150$ 。现从一批产品中随机抽取 26 个,测得该项指标的平均值为 1637,问能否认为这批产品的该项指标值为 1600($\alpha=0.05$)。【参考数值: $z_{0.025}=1.96$, $z_{0.05}=1.645$, $t_{0.025}(25)=2.060$,

 $t_{0.05}(25) = 1.708$, $t_{0.025}(26) = 2.056$, $t_{0.05}(26) = 1.706$, $\sqrt{26} = 5.1$

七、(本题满分 8 分)设二维随机变量(X,Y)服从区域 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$ 上的

均匀分布。令 $U = \begin{cases} 0, & X \le Y, \\ 1, & X > Y, \end{cases}$ $V = \begin{cases} 0, & X \le 2Y, \\ 1, & X > 2Y. \end{cases}$ 问 U 与 V 是否独立? 为什么?