Általános fák gyakorlati anyag¹

Jegyzetbeli anyag:

A fa jellemzői:

van egy kitüntetett csúcsa, a gyökér, a csúcsoknak tetszőleges sok leszármazottja lehet.

Ábrázolás:

két pointerrel, egyik az első leszármazottra mutat, a másik a testvérre. Esetleg kiegészíthetjük szülő pointerrel is: a testvérek mindegyike a szülőjére mutat vissza.

Másféle ábrázolás is létezhet, például a gráfok ábrázolásához használatos éllistás módszert is használhatjuk.

A fa egy csúcsának típusa:

Node	
+ $child1, sibling:$ Node* // $child1:$ első gyerek; $sibling:$ következő testvér	
+ key : T $//$ T ismert típus	
$+ \text{Node}() \{ \text{child} 1 := \text{sibling} := \emptyset \} // \text{egycsúcsú fát képez belőle}$	
+ Node(x:T) { $child1 := sibling := \emptyset ; key := x }$	

A fa zárójelezett alakja

A fa szöveges leírása. egy nemüres fa általános alakja (G $t_1 ... t_n$), ahol G a gyökércsúcs tartalma, $t_1 ... t_n$ pedig a részfák. Így pl. a fenti fa zárójelezett leírása a következő: { 1 [2 (5)] (3) [4 (6) (7)] }

Bejárások

Itt a tavalyi bejáró algoritmusok ciklusos alakját érdemes használni, hatékonyság miatt (testvéreken érdemesebb ciklussal végig iterálni).

A postorder látszólag a tavalyi "inorder"-re hajaz, hogy miért ezt definiáljuk postorderként, azt később egy példán bemutatom.

Példák:

Könyvtár rendszer, függvény kifejezések.

¹ Készítette: Veszprémi Anna, felhasználva Ásványi Tibor jegyzete

Feladatok:

Adott az alábbi általános fa:

Rajzoljuk le két pointeres ábrázolásban:

Adjuk meg zárójeles alakban:

Adjuk meg a preorder bejárás algoritmusát teljesen rekurzívan:

A gyakorlatban nem ezt használjuk, hatékonyság miatt, de itt jobban látszik a rokonság a bináris fák preorder bejáró algoritmusával.

Járjuk be a fenti fát preorder bejárással, írjuk ki a kulcsokat:

a b f g c d h l m n e i j p k

Adjuk meg a postorder bejárás algoritmusát teljesen rekurzívan:

Azzal, hogy a feldolgozás a t->child1 után történik, ez alakját tekintve inkább a bináris fáknál definiált inorder bejárás rokona. Viszont a függvény kifejezések bejárásánál ezzel fogjuk a lengyel formát megkapni, ahogy azt kicsit alább egy példa szemlélteti.

Járjuk be a fenti fát postorder bejárással, írjuk ki a kulcsokat:

A következő példával szemléltethetjük, miért ezt hívjuk postorder bejárásnak?

Ez adja a ugyanis függvény kifejezések lengyel formáját.

Példa: legyen min3 egy három paraméteres függvény, y = min3(a+1, 2*b, x) * z egy függvény kifejezés.

A kifejezés általános fa alakban:

A kifejezés lengyel formáját a fent megadott postorder bejárással kapjuk meg.

Postorder: y a 1 + 2 b * x min3 z * =

Algoritmus készítős feladatok

Az algoritmusokat készíthetjük teljesen rekurzívan, vagy rekurzívan a child1 irányban, és iteratívan a testvérek listájának irányában. (OEP-ből tanulták a felsorolós programozási tételeket, itt látható az alkalmazásuk: a bejáró algoritmusokat, mint a fa csúcsait felsoroló algoritmust használjuk.)

Készítsük el a fa magasságát megadó algoritmust.

Teljesen rekurzív megoldás

Testvér irányban ciklust használó megoldás

Magasság(t:Node*): Z

Magasság(t:Node*): Z

Készítsünk algoritmust, mely kiírja a fa zárójelezett alakját

Teljesen rekurzív megoldás

zárójelez(t:Node*)

Testvér irányban ciklust használó megoldás

zárójelez(t:Node*)

t ≠ 0	
	Write('('); Write(t->key)
	Zárójelez(t->child1)
	Write(')')
	t:=t->sibling

Érdemes a hallgatókkal közösen azt a változatot elkészíteni, mely három féle zárójelt használ :{}, [], () Ötlet: egy paramétert beteszünk még az algoritmusba, mely azt adja meg, milyen szinten járunk a fában, és a szinttől függően választjuk a megfelelő zárójelt.

Készítsük el a szintfolytonos bejárást a két pointerrel ábrázolt általános fára.

Szintfolytonos(t_Node*)

Szorgalmi házi feladat:

1. Adott egy két pointerrel, láncoltan ábrázolt általános fa. Egy csúcsban az első gyerekre és a testvérre mutató pointerek vannak. A kulcsok egész számok. Készítsen rekurzív algoritmust, mely kiírja minden testvér csoportból az egyik legnagyobb kulcsot.