# Topology and Analysis

**MATH 202A** 

Instructor: Marc Rieffel
Kelvin Lee

UC BERKELEY

# **Contents**

| 1 | Metric Spaces |                  |                 |                      |    |  |  |  |  |  |  |   |  |   | 3 |   |      |  |  |  |  |  |  |    |
|---|---------------|------------------|-----------------|----------------------|----|--|--|--|--|--|--|---|--|---|---|---|------|--|--|--|--|--|--|----|
|   | 1.1           | 1.1 Fundamentals |                 |                      |    |  |  |  |  |  |  |   |  | 3 |   |   |      |  |  |  |  |  |  |    |
|   | 1.2           | Comp             | letion of a Met | ric Space            | э. |  |  |  |  |  |  |   |  |   |   |   | <br> |  |  |  |  |  |  | 5  |
|   |               | _                | iess            | _                    |    |  |  |  |  |  |  |   |  |   |   |   |      |  |  |  |  |  |  |    |
|   |               |                  | Open sets       |                      |    |  |  |  |  |  |  |   |  |   |   |   |      |  |  |  |  |  |  |    |
| 2 | Top           | Topology         |                 |                      |    |  |  |  |  |  |  |   |  |   |   | 9 |      |  |  |  |  |  |  |    |
|   | 2.1           | Topolo           | ogical Spaces . |                      |    |  |  |  |  |  |  |   |  |   |   |   | <br> |  |  |  |  |  |  | 9  |
|   |               |                  | uous Maps       |                      |    |  |  |  |  |  |  |   |  |   |   |   |      |  |  |  |  |  |  |    |
|   |               | 2.2.1            | Bases and Sul   | b-bases              |    |  |  |  |  |  |  |   |  |   |   |   | <br> |  |  |  |  |  |  | 9  |
|   |               | 2.2.2            | Homeomorphi     | $\operatorname{ism}$ |    |  |  |  |  |  |  |   |  |   |   |   | <br> |  |  |  |  |  |  | 10 |
|   | 2.3           | Quotie           | ent Topologies  |                      |    |  |  |  |  |  |  | • |  |   |   | • | <br> |  |  |  |  |  |  | 11 |
| 3 |               |                  |                 |                      |    |  |  |  |  |  |  |   |  |   |   |   |      |  |  |  |  |  |  | 12 |
|   | 3.1           |                  |                 |                      |    |  |  |  |  |  |  |   |  |   |   |   | <br> |  |  |  |  |  |  | 12 |

## Chapter 1

## **Metric Spaces**

### 1.1 Fundamentals

**Definition 1.1.1.** Let X be a set. A **metric** on X is a function  $d: X \times X \to [0, \infty)$  that satisfies:

(i) 
$$d(x,y) = d(y,x) \ \forall \ x,y \in X$$

(ii) 
$$d(x, y) \le d(x, z) + d(z, y) \ \forall \ x, y, z \in X$$

(iii) 
$$d(x,y) = 0 \iff x = y$$

If a function d satisfies (i), (ii) above, and d(x,x) = 0 for all  $x \in X$ , then d is a **semi-metric**.

**Example 1.1.2.** On  $\mathbb{C}^n$ , the following are common metrics:

• 
$$d_p(x,y) = \left(\sum_{j=1}^n |x_j - y_j|^p\right)^{1/p}$$
 for  $p \ge 1$ 

• 
$$d_{\infty}(x,y) = \sup\{|x_j - y_j| : 1 \le j \le n\}$$

(Verify that these are metrics.)

**Fact.** If  $S \subseteq X$ , and d is a metric on X, then d is a metric on S.

**Definition 1.1.3.** (X, d) where d is a metric of X is called a **metric space**.

**Remark.** If  $Y \subseteq X$ , restrict d to  $Y \times Y \subseteq X \times X$ , denoted  $d|_Y$ , then  $(Y, d|_Y)$  is a metric space.

**Definition 1.1.4.** Let V be a vector space over  $\mathbb{R}$  or  $\mathbb{C}$ . A norm on V is a function  $\|\cdot\|:V\to[0,\infty)$  such that:

(i) 
$$||cv|| = |c| \cdot ||v||$$
 for  $c \in \text{ or and } v \in V$ 

(ii) 
$$||v+w|| \le ||v|| + ||w||$$
 for  $v, w \in V$ 

(iii) 
$$||v|| = 0$$
 implies  $v = 0$ 

A function that satisfies only (i) and (ii) above is called a **seminorm**.

**Remark.** Any norm  $\|\cdot\|$  on X induces the metric  $d(x,y) := \|x-y\|$ .

**Example 1.1.5.** Let V be the space of continuous functions on [0,1]. Then  $||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}$  is a norm on V.

It can also be shown that  $||f||_p := \left( \int_0^1 |f(x)|^p dx \right)^{1/p}$  is a norm on V.

**Definition 1.1.6.** Let  $(X, d_x)$  and  $(Y, d_y)$  be metric spaces. A function  $f: X \to Y$  is **isometric** if  $d_y(f(x_1), f(x_2)) = d_x(x_1, x_2)$  for all  $x_1, x_2 \in X$ .

Remark. All isometries are injective.

**Example 1.1.7.** If  $S \subseteq X$ , and  $f: S \to X$  is definited by f(x) = x (inclusion), then f is an isometry. If f is also onto, then f is viewed as an isometric isomorphism between  $(X, d_x)$  and  $(Y, d_y)$ .  $f^{-1}$  is also an isomorphism.

**Definition 1.1.8.** A function  $f: X \to Y$  is **Lipschitz** if there is a constant  $k \ge 0$  such that  $d_y(f(x_1), f(x_2)) \le k \cdot d_x(x_1, x_2)$ . The smallest such constant is the **Lipschitz constant** for f.

**Definition 1.1.9.**  $f: X \to Y$  is uniformly continuous if  $\forall \epsilon > 0, \exists \delta > 0$  such that  $d_y(f(x_1), f(x_2)) < \epsilon$  whenever  $d_x(x_1, x_2) < \delta$ .

**Remark.** It is easy to see that if f is Lipschitz, then it is uniformly continuous.

**Definition 1.1.10.**  $f: X \to Y$  is **continuous at**  $x_0$  if  $\forall \epsilon > 0, \exists \delta(x_0) > 0$  such that  $d_y(f(x), f(x_0)) < \epsilon$  whenever  $d_x(x, x_0) < \delta(x_0)$ . We say f is **continuous** if it is continuous at every  $x \in X$ .

**Definition 1.1.11.** A sequence  $\{x_n\}$  in X converges to  $x^* \in X$  if  $\forall \epsilon > 0, \exists N \in \mathbb{N}$  such that for all  $n \geq N$ , we have  $d(x_n, x^*) < \epsilon$ .

**Proposition 1.1.12.** If a function  $f: X \to Y$  is continuous and  $\{x_n\} \to x^*$ , then  $f(x_n) \to f(x^*)$ .

*Proof.* Let  $\epsilon > 0$ . Since f is continuous at  $x^*$ , there exists a  $\delta > 0$  such that

$$\forall x, d_X(x, x^*) < \delta \implies d_Y(f(x), f(x^*)) < \epsilon$$

Since  $\{x_n\} \to x^*$ , there is some N such that for all  $n \ge N$ ,  $d_X(x_n, x^*) < \delta$ . Then, we can see that  $d_Y(f(x_n) - f(x^*)) < \epsilon$  for all  $n \ge N$ . Thus  $\{f(x_n)\} \to f(x^*)$ .

**Definition 1.1.13.**  $S \subseteq X$  is **dense** in X if  $\forall x \in X$  and  $\epsilon > 0$ ,  $\exists s \in S$  such that  $d(x, s) < \epsilon$ . That is, for any point  $x \in X$ , there is a point  $s \in S$  which is arbitrarily close to x.

**Proposition 1.1.14.** Let S be dense in X, and let  $f: X \to Y$  and  $g: X \to Y$  be continuous functions such that f(s) = g(s) for all  $s \in S$ . Then f = g on X.

*Proof.* Because S is dense in X, for any  $x \in X$ , there exists a sequence  $\{s_n\} \subseteq S$  which converges to x (choose any point  $s_n$  in S such that  $d(s_n, x) < \epsilon$ ). By the previous proposition, we can conclude that  $\{f(s_n) = g(s_n)\} \to f(x) = g(x)$ .

**Definition 1.1.15.** A sequence  $\{x_n\}$  is Cauchy if  $\forall \epsilon > 0, \exists N \in \mathbb{N}$  such that  $n, m \geq N$  implies  $d(x_n, x_m) < \epsilon$ . A metric space is **complete** if every Cauchy sequence in it converges.

**Example 1.1.16.** Consider  $(\mathbb{Q}, |\cdot|)$ . We know there exists a Cauchy sequence converging to  $\sqrt{2} \in \mathbb{R}$ , but in this metric space,  $\sqrt{2}$  is not an element, so this sequence does not converge, hence this metric space is not complete.

### 1.2 Completion of a Metric Space

**Proposition 1.2.1.** If  $f: X \to Y$  is uniformly continuous, and  $\{x_n\}$  is Cauchy in X, then  $\{f(x_n)\}$  is Cauchy in Y.

*Proof.* Let  $\epsilon > 0$ . By uniform continuity, there exists  $\delta > 0$  such that if  $x, x' \in X$  and  $d_X(x, x') < \delta$ , then  $d_Y(f(x), f(x')) < \epsilon$ . Since  $\{x_n\}$  is Cauchy, there is an N such that if  $m, n \geq N$  then  $d(x_m, x_n) < \delta$ . Thus

$$d(f(x_m), f(x_n)) < \epsilon \quad \forall m, n \ge N.$$

This proves that  $\{f(x_n)\}\$  is Cauchy.

**Definition 1.2.2.** Let (X,d) be a metric space. A complete metric space  $(\widetilde{X},\widetilde{d})$ , together with an isometric function  $f:X\to\widetilde{X}$  with dense range is a **completion** of (X,d).

Remark. Completions are unique up to isomorphism.

**Proposition 1.2.3.** If  $((Y_1, d_1), f_1)$  and  $((Y_2, d_2), f_2)$  are completions of (X, d), then  $\exists$  an onto isometry (metric space isomorphism)  $g: Y_1 \to Y_2$  with  $f_2 = g \circ f_1$ .

This can be visualized by the following commutative diagram:



Every metric space has a completion, and the proof will be constructive. The completion will be definined using equivalence classes of Cauchy sequences. We will need the following lemmas to support the construction.

**Lemma 1.2.4.** If  $\{s_n\}$  and  $\{t_n\}$  are Cauchy sequences in X, then the sequence  $\{d(s_n,t_n)\}$  in  $\mathbb{R}$  converges.

*Proof.* Let  $\epsilon > 0$ , and let N such that for every  $m, n > N, d(s_m, s_n), d(t_m, t_n) < \epsilon/2$ . It follows that

$$\left|d\left(s_{m},t_{m}\right)-d\left(s_{n},t_{n}\right)\right|\leq d\left(s_{m},s_{n}\right)+d\left(t_{m},t_{n}\right)<\epsilon$$

and the sequence is Cauchy. Since  $\mathbb{R}$  is complete, the sequence converges.

**Lemma 1.2.5.** Let CS(X) denote the set of all Cauchy sequences in X. Then the relation  $\{s_n\} \sim \{t_n\} \iff d(s_n, t_n) \to 0$  is an equivalence relation.

*Proof.* Reflexivity and symmetry are trivial. Suppose  $d(s_n, r_n) \to 0$  and  $d(r_n, t_n) \to 0$ . Then  $d(s_n, t_n) \leq d(s_n, r_n) + d(r_n, t_n)$  for all  $n \in \mathbb{N}$ . The result follows immediately.

**Lemma 1.2.6.** Let  $\overline{X}$  be the set of all equivalence classes of CS(X) under the equivalence relation above. Then  $\overline{d}: \overline{X} \to [0, \infty)$  defined by  $\overline{d}(\{s_n\}, \{t_n\}) := \lim_{n \to \infty} d(s_n, t_n)$  is a metric on X.

Proof. First, note that by Lemma 1.2.4,  $\overline{d}$  is always defined. Since we are dealing with equivalence classes, we must show that  $\overline{d}$  is also well-definined. Let  $\xi, \eta \in X$ , and let  $\{x_n\}, \{s_n\} \in \xi$ , and  $\{y_n\}, \{t_n\} \in \eta$ . We have  $\lim d(x_n, s_n) = \lim d(y_n, t_n) = 0$ . Thus,  $d(s_n, t_n) \leq d(s_n, x_n) + d(x_n, y_n) + d(y_n, t_n)$ .  $\forall \epsilon > 0$ , we can find  $N \in \mathbb{N}$  such that both  $d(s_n, x_n) < \epsilon/2$  and  $d(y_n, t_n) < \epsilon/2$  for  $n \geq N$ . Then  $|d(s_n, t_n) - d(x_n, y_n)| < \epsilon$ . It follows that  $d(\xi, \eta) = \lim d(x_n, y_n) = \lim d(s_n, t_n)$ , so that d is indeed well-definined.

Symmetry is trivial. The triangle inequality follows from the proof to Lemma 1.2.5. If  $d(\xi, \eta) = 0$ , then  $\forall \{x_n\} \in \xi, \{y_n\} \in \eta$ , we have  $\lim d(x_n, y_n) = 0$ , so in particular,  $\{y_n\} \in \xi$ , hence  $\xi = \eta$ .

**Theorem 1.2.7.** Let  $(X, d_x)$  and  $(Y, d_y)$  be metric spaces with Y complete. If  $S \subseteq X$  is dense, and  $f: S \to Y$  is uniformly continuous, then  $\exists$  a unique continuous extension  $\overline{f}: X \to Y$  of f. In fact,  $\overline{f}$  is uniformly continuous.

Proof. (Existence only) For  $x \in X$ , choose a Cauchy sequence  $\{s_n\}$  in S converging to x. Then  $\{f(s_n)\}$  is Cauchy in Y, so it converges to a point  $p \in Y$ . Set  $\overline{f}(x) := p$ . We show that  $\overline{f}$  is well-definited. Indeed, if  $\{t_n\} \in \mathrm{CS}(S)$  and converges to x, then we have  $\lim d_x(s_n, t_n) = 0$ , implying that  $\lim d_y(f(s_n), f(t_n)) = 0$ . Therefore  $\lim d_y(f(t_n), p) = 0$ , so  $\{f(t_n)\}$  converges to p also. It remains to show continuity, which is left as an exercise.

**Theorem 1.2.8.** Every metric space (X, d) has a completion.

*Proof.* As in Lemma 3, (X,d) is a completion of (X,d). We embed X in X by the isometry  $\iota:X\to X$  definined by  $\iota(x):=[\{x,x,x,\ldots\}]$ , where  $[\cdot]$  denotes the corresponding equivalence class. Note that  $d\Big|_X=d$ , i.e.,  $d(\iota(x),\iota(y))=d(x,y)$ .

It remains to show that d has dense range, and that (X, d) is complete.

- Let  $\xi \in X$ ,  $\epsilon > 0$ ,  $\{x_n\} \in \xi$ .  $\exists N \in \mathbb{N}$  such that  $n, m \geq N$  implies  $d(x_n, x_m) < \epsilon$ . Then  $d(\iota(x_N), \xi) = \lim_{n \to \infty} d(x_N, x_n) < \epsilon$ . Therefore d has dense range by considering  $\iota(x_N)$ .
- Let  $\{\xi_n\}$  be a Cauchy sequence in X. For each  $m \in \mathbb{N}$ , pick  $x_m \in X$  such that  $d(\iota(x_m), \xi_m) < 1/m$ . Then  $\{x_m\}$  is a Cauchy sequence, and it follows that  $\{\xi_m\}$  converges to the equivalence class of  $\{x_m\}$ .

**Remark.** Denote C([0,1]) the space of continuous functions on [0,1]. Consider the metric space C([0,1]) induced by the norms  $\|\cdot\|_{\infty}$  or  $\|\cdot\|_{p}$ . This space is not complete. It is easy to come up with a sequence of continuous functions converging under these norms to a function that is not continuous.

**Remark.** Let V be a vector space with norm  $\|\cdot\|$ . Consider  $V^{\infty}$ , the space of all sequences of elements in V. This is also a vector space. It can be shown that CS(V) is a subspace of  $V^{\infty}$ . Now let  $\mathcal{N}(V)$  denote the set of all Cauchy sequences in V converging to 0. Then  $\mathcal{N}(V)$  is a subspace of CS(V). If  $\{v_n\}$  and  $\{w_n\}$  are equivalent Cauchy sequences, then  $||v_n - w_m|| \to 0$ , so  $\{v_n - w_n\} \in \mathcal{N}(V)$ . Thus V is in fact the quotient space  $CS(V)/\mathcal{N}(V)$ .

**Fact.** Any two norms  $\|\cdot\|_1, \|\cdot\|_2$  on a finite dimensional vector space are **equivalent**, meaning that there are constants c, C > 0 such that  $c||x||_1 \le ||x||_2 \le C||x||_1$  for all x. If a function is continuous with respect to a particular norm, then it is easily seen that it is continuous with respect to any equivalent norm.

#### 1.3 **Openness**

Let  $(X, d_X), (Y, d_Y)$  be metric spaces and  $f: X \to Y$  be a map between the two metric spaces. Recall that f is continuous at  $x_0 \in X$  if  $\forall \epsilon > 0$ ,  $\exists \delta > 0$  such that  $d_X(x,x_0) < \delta$  implies  $d_Y(f(x), f(x_0)) < \epsilon.$ 

**Definition 1.3.1** (Open ball). Let  $(X, d_X)$  be a metric space. The open ball around  $x_0 \in X$  with radius r > 0 is defined as

$$\mathcal{B}_r(x_0) = \{ x \in X \mid d_X(x, x_0) < r \}.$$

**Remark.** For any open ball U in Y, there exists an open ball O in X such that if  $x \in O$ , then  $f(x) \in U$ .

Now we can rephrase continuity using the notion of open balls:

**Definition 1.3.2** (Continuity).  $f: X \to Y$  is continuous at  $x_0$  if  $\forall \epsilon > 0, \exists \delta > 0$  such that  $f(\mathcal{B}_{\delta}(x_0)) \subseteq \mathcal{B}_{\epsilon}(f(x_0)).$ 

If  $y \in \mathcal{B}_{\epsilon}(f(x_0))$  and y = f(x) for some  $x \in X$ , let  $\epsilon' = \epsilon - d(y, f(x_0)) > 0$ . Then  $\mathcal{B}_{\epsilon'}(y) \subseteq$  $\mathcal{B}_{\epsilon}(f(x_0))$ , so there exists  $\delta' > 0$  such that  $f(\mathcal{B}_{\delta'}(x)) \subseteq \mathcal{B}_{\epsilon}(f(x_0))$  If  $x_1 \in f^{-1}(\mathcal{B}_{\epsilon}(f(x)))$ , there is an open ball  $\mathcal{B}_{\delta'}(x)$  such that  $\mathcal{B}_{\delta'}(x_1) \subseteq f^{-1}(\mathcal{B}_{\epsilon}(f(x)))$  Thus  $f^{-1}(\mathcal{B}_{\epsilon}(f(x)))$  is a union of open balls in X. Similarly,  $f^{-1}(\mathcal{B}_{\epsilon}(y))$  is a union of open balls in X. This leads to the definition of open sets.

#### 1.3.1 Open sets

**Definition 1.3.3** (Open set). A subset A of X is open if A is a union of open balls it contains, i.e.  $\forall x \in A, \exists r > 0 \text{ such that } \mathcal{B}_r(x) \subset A.$ 

**Theorem 1.3.4.** Let (X,d) be a metric space, and  $\mathcal{T}$  be the collection of all open sets. Then

- (i) If {O<sub>α</sub>} is an arbitrary collection of subsets in T, then ∪<sub>α</sub> O<sub>α</sub> is open.
  (ii) If O<sub>1</sub>,..., O<sub>n</sub> is a finite collection of subsets in T, then ∩<sub>i=1</sub><sup>n</sup> O<sub>i</sub> is open.

(iii)  $X \in \mathcal{T}$  (X is open).

Proof of (iii). If  $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_n$  are open, and  $x \in \mathcal{O}_1 \cap \mathcal{O}_2$ , then there exist open balls  $\mathcal{B}_{r_1}(x) \subseteq \mathcal{O}_1$ ,  $\mathcal{B}_{r_2}(x) \subseteq \mathcal{O}_2, \ldots, \mathcal{B}_{r_n}(x) \subseteq \mathcal{O}_n$ . Let  $r = \min_{1 \le i \le n} \{r_i\}$ . Then  $\mathcal{B}_r(x) \subseteq \bigcap_{i=1}^n \mathcal{O}_i$ .

## Chapter 2

## Topology

### 2.1 Topological Spaces

**Definition 2.1.1** (Topology). Let X be a set. The **topology** on X is a collection  $\mathcal{T} \subseteq \mathcal{P}(X)$  satisfying:

- (i)  $X, \emptyset \in \mathcal{T}$ .
- (ii) If any arbitrary family  $\{\mathcal{O}_{\alpha}\}\subseteq\mathcal{T}$ , then  $\bigcup_{\alpha}\mathcal{O}_{\alpha}\in\mathcal{T}$ .
- (iii) If  $\mathcal{O}_1, \ldots, \mathcal{O}_n \in \mathcal{T}$ , then  $\bigcap_{i=1}^n \mathcal{O}_i \in \mathcal{T}$ .

**Definition 2.1.2** (Topological space). Let  $\mathcal{T}$  be a topology on X. Then  $(X, \mathcal{T})$  is a **topological** space. The sets in  $\mathcal{T}$  are called **open sets** and the complements of the sets in  $\mathcal{T}$  are closed sets.

**Example 2.1.3.** Let X be any nonempty set. Then  $\mathcal{P}(X)$  and  $\{\emptyset, X\}$  are topologies on X. They are called the **discrete topology** and **indiscrete topology** respectively.

**Example 2.1.4.** Let X be a metric space. The collection of all open sets with respect to the metric is a topology on X.

**Definition 2.1.5** (Interior). If  $A \subseteq X$ , the union of all open sets contained in A is called the **interior** of A, denoted by  $A^{\circ}$ . This is the biggest open set contained in A.

**Definition 2.1.6** (Closure). If  $A \subseteq X$ , the intersection of all closed sets containing A is called a closure of A, denoted by  $\overline{A}$ . This is the smallest closed set containing A.

**Definition 2.1.7** (Dense). If  $\overline{A} = X$ , A is called **dense** in X.

**Definition 2.1.8** (Strong/Weak topology). Let  $\mathcal{T}_1, \mathcal{T}_2$  be topologies on a set X such that  $\mathcal{T}_1 \subset \mathcal{T}_2$ . We say that  $\mathcal{T}_1$  is weaker than  $\mathcal{T}_2$ , or equivalently  $\mathcal{T}_2$  is stronger than  $\mathcal{T}_1$ .

### 2.2 Continuous Maps

**Definition 2.2.1** (Continuity). Let  $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$  be topological spaces. A function  $f: X \to Y$  is **continuous** if  $\forall U \in \mathcal{T}_Y$ , we have  $f^{-1}(U) \in \mathcal{T}_X$ .

#### 2.2.1 Bases and Sub-bases

**Proposition 2.2.2.** Let X be a set and let  $\mathcal{C}$  be a collection of topologies on X. Then  $\bigcap_{\mathcal{T} \in \mathcal{C}} \mathcal{T}$  is a topology on X.

Then it follows that for any collection S of subsets of X, there is a unique weakest/smallest topology  $\mathcal{T}$  on X containing S described as follows.

**Definition 2.2.3** (Sub-base). Let  $\mathcal{T}(S) = \bigcap_{S \subseteq \mathcal{T}} \mathcal{T}$ , the intersection of all topologies on X containing S. It is called the topology **generated** by S and S is the **sub-base** for  $\mathcal{T}$ .

**Definition 2.2.4** (Base). A collection  $\mathcal{B} \subseteq \mathcal{T}$  of subsets of a set X is called a base for  $\mathcal{T}$  if every element of  $\mathcal{T}$  is a union of elements of  $\mathcal{B}$ .

**Example 2.2.5.** Let (X, d) be a metric space. The open balls form a base for the metric topology.

**Remark.** The intersections of two balls is usually not a ball. If  $\mathcal{B}$  is a base, then the intersection of any two elements of  $\mathcal{B}$  must be a union of elements of  $\mathcal{B}$ .

**Proposition 2.2.6.** If  $S \subseteq \mathcal{P}(X)$ , the topology  $\mathcal{T}(S)$  generated by S consists of  $\emptyset, X$ , and all unions of finite intersections of members of S.

**Proposition 2.2.7.** Let  $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$  be topological spaces. It  $\mathcal{T}_Y$  is generated by  $\mathcal{B}$  (i.e.  $\mathcal{B}$  is a sub-base for  $\mathcal{T}_Y$ ), then  $f: X \to Y$  is continuous  $\iff f^{-1}(U) \in \mathcal{T}_X$  for every  $U \in \mathcal{B}$ .

*Proof.* Note that  $f^{-1}$  preserves the Boolean operations for any collection of subsets of Y:

- $f^{-1} \bigcap_{\alpha} A_{\alpha} = \bigcap_{\alpha} f^{-1}(A_{\alpha})$
- $f^{-1} \bigcup_{\alpha} A_{\alpha} = \bigcup_{\alpha} f^{-1}(A_{\alpha})$
- If  $A, B \subseteq Y$ , then  $f^{-1}(A \backslash B) = f^{-1}(A) \backslash f^{-1}(B)$

Then suppose  $\{U_n\}\subseteq \mathcal{B}$  is some finite collection of open sets in  $\mathcal{B}$ , then

$$f^{-1}\left(\bigcap_{i=1}^{n} U_{i}\right) = \bigcap_{i=1}^{n} f^{-1}\left(U_{i}\right) \in \mathcal{T}_{X}.$$

Then any finite intersection of elements of  $\mathcal{B}$  satisfies the condition as well, i.e. is a base. If  $\{U_{\alpha}\}\subseteq\mathcal{B}$  is a collection (possibly infinite) of open sets in  $\mathcal{B}$ , then

$$f^{-1}\left(\bigcup_{\alpha}U_{\alpha}\right)=\bigcup_{\alpha}f^{-1}\left(U_{\alpha}\right)\in\mathcal{T}_{X},$$

so  $\bigcup_{\alpha} U_{\alpha}$  also satisfies the condition. Therefore, all open set U in  $\mathcal{T}_{Y}$  satisfies  $f^{-1}(U) \in \mathcal{T}_{X}$  so f is continuous.

#### 2.2.2 Homeomorphism

**Definition 2.2.8** (Homeomorphism). If  $f: X \to Y$  is bijective and f and  $f^{-1}$  are both continuous, f is called a **homeomorphism**, and X and Y are said to be homeomorphic.

### 2.3 Quotient Topologies

Let X be a set and let  $(Y_{\alpha}, \mathcal{T}_{\alpha})$  be a collection of topological spaces. Let  $f_{\alpha}: X \to Y$  be any function. Then there is a smallest topology on X for which each  $f_{\alpha}$  is continuous, namely, the smallest topology having as sub-base all sets  $f_{\alpha}^{-1}(U)$ , where  $U \in \mathcal{T}_{\alpha}$  for each  $\alpha$ .

**Definition 2.3.1.** Let  $(X, \mathcal{T}_X)$  be a topological space. Let Y be a set and  $f: X \to Y$  be any function. Then there is a strongest topology on Y for which f is continuous. Namely,

$$\mathcal{T}_Y := \{ A \subseteq Y : f^{-1}(A) \in \mathcal{T}_X \},$$

which is called the **quotient topology** on Y for f.

**Remark.** Note that if  $y \notin f(X)$ , then  $f^{-1}(\{y\}) = \emptyset$ , so  $\{y\}$  is open. Also,  $f^{-1}(\{y\}^c) = X$ , so  $\{y\}$  is also closed. Therefore, on  $f(X)^c$ , the quotient topology is the discrete topology. Thus, we usually require  $f: X \to Y$  to be onto.

Let  $f: X \to Y$  be onto, and define the equivalence relation on X by  $x_1 \sim x_2 \iff f(x_1) = f(x_2)$ . f defines a partition, a collection of equivalence classes. Conversely, let  $\sim$  be an equivalence relation on X. Let  $Y = X/\sim$  be the set of equivalence classes,  $x \to [x]$ , call it f. Given a topology on X, we call  $X/\sim$  with the quotient topology on the projection  $X \to X/\sim$  a quotient space.

**Definition 2.3.2.** Let Y be a set, and  $(X_{\alpha}, \mathcal{T}_{\alpha})$  be a collection of topological spaces and function  $f_{\alpha}: X_{\alpha} \to Y$  be any function, then there is a strongest topology on Y where all  $f_{\alpha}$  is continuous. Namely

$$\bigcap_{\alpha} \mathcal{T}_{Y_{\alpha}}, \text{ where } \mathcal{T}_{Y_{\alpha}} \coloneqq \{A_{\alpha} \subseteq Y_{\alpha} : f^{-1}(A_{\alpha}) \in \mathcal{T}_{\alpha}\}$$

which is the intersection of all quotient topologies for each  $f_{\alpha}$ ,  $\cap \mathcal{T}_{Y_{\alpha}}$ . This is called a **final** topology.

# Chapter 3

**3.1**