Векторы и операторы

Собственные векторы и собственные числа

Определение

Если для действия $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ найдётся такой вектор v, что $\mathsf{L}\,v=\lambda\cdot v$, где $\lambda\in\mathbb{R}$, то:

- вектор v называется собственным;
- число λ называется собственным.

Собственные вектора: растягивание осей

• Оператор

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Собственные вектора: растягивание осей

• Оператор

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

• Собственные векторы с $\lambda=2$

$$v = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

Собственные вектора: растягивание осей

• Оператор

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

• Собственные векторы с $\lambda=2$

$$v = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

• Собственные векторы с $\lambda = -3$

$$v = \begin{pmatrix} 0 \\ x \end{pmatrix}$$

Собственные вектора: перестановка a_i

• Оператор L — перестановка компонент вектора:

$$\mathbf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} \rightarrow \begin{pmatrix} a_1 \\ a_4 \\ a_3 \\ a_2 \end{pmatrix}$$

Собственные вектора: перестановка a_i

• Оператор L — перестановка компонент вектора:

$$\mathbf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} \rightarrow \begin{pmatrix} a_1 \\ a_4 \\ a_3 \\ a_2 \end{pmatrix}$$

• Собственные векторы с $\lambda=1$

Одинаковые числа на переставляемых местах:

$$\begin{pmatrix} a_1 \\ x \\ a_3 \\ x \end{pmatrix}$$

• Не у каждого линейного оператора есть собственные векторы!

- Не у каждого линейного оператора есть собственные векторы!
- Исходный оператор $R: \mathbb{R}^2 \to \mathbb{R}^2$, поворот на 30° против часовой стрелки.

- Не у каждого линейного оператора есть собственные векторы!
- Исходный оператор $R: \mathbb{R}^2 \to \mathbb{R}^2$, поворот на 30° против часовой стрелки.
- Ни собственных векторов, ни чисел нет!

- Не у каждого линейного оператора есть собственные векторы!
- Исходный оператор $R: \mathbb{R}^2 \to \mathbb{R}^2$, поворот на 30° против часовой стрелки.
- Ни собственных векторов, ни чисел нет!

- Не у каждого линейного оператора есть собственные векторы!
- Исходный оператор $R: \mathbb{R}^2 \to \mathbb{R}^2$, поворот на 30° против часовой стрелки.
- Ни собственных векторов, ни чисел нет!

$$R \mathbf{v} = \mathbf{b}$$

Собственные вектора: проекция

• Оператор L — проекция на прямую $\ell: x_1 + 2x_2 = 0$.

Собственные вектора: проекция

- Оператор L проекция на прямую $\ell: x_1 + 2x_2 = 0$.
- Собственные векторы с $\lambda = 1$ Любой вектор на прямой ℓ .

Собственные вектора: проекция

- Оператор L проекция на прямую $\ell: x_1 + 2x_2 = 0$.
- Собственные векторы с $\lambda = 1$ Любой вектор на прямой ℓ .
- Собственные векторы с $\lambda = 0$ Любой вектор ортогональный прямой ℓ .

• Вектор — столбец чисел.

- Вектор столбец чисел.
- Скалярное произведение «знает» о длине и угле.

- Вектор столбец чисел.
- Скалярное произведение «знает» о длине и угле.
- Линейный оператор «уважает» сложение векторов.

- Вектор столбец чисел.
- Скалярное произведение «знает» о длине и угле.
- Линейный оператор «уважает» сложение векторов.
- Примеры: поворот, проекция, перестановка компонент, растягивание осей.

- Вектор столбец чисел.
- Скалярное произведение «знает» о длине и угле.
- Линейный оператор «уважает» сложение векторов.
- Примеры: поворот, проекция, перестановка компонент, растягивание осей.
- Обращение и транспонирование.

- Вектор столбец чисел.
- Скалярное произведение «знает» о длине и угле.
- Линейный оператор «уважает» сложение векторов.
- Примеры: поворот, проекция, перестановка компонент, растягивание осей.
- Обращение и транспонирование.
- Собственные векторы растягиваются в собственное число раз.

- Вектор столбец чисел.
- Скалярное произведение «знает» о длине и угле.
- Линейный оператор «уважает» сложение векторов.
- Примеры: поворот, проекция, перестановка компонент, растягивание осей.
- Обращение и транспонирование.
- Собственные векторы растягиваются в собственное число раз.
- Бонусное видео: как выиграть в Ним?