-241-

What is claimed is:

1. A compound having the structure:

5

$$\begin{array}{c|c} R_1 & A & O \\ \hline R_2 & N & N \\ \hline R_3 & H \end{array}$$

R₃

10

R₃

20

15

25

wherein A is

5

10

25

30

35

$$Y_1 = \frac{Y_2}{U_{-S}}$$

or
$$Y_1 = Y_3 \times Y_3 \times Y_4 \times Y_4 \times Y_5 \times Y_5 \times Y_6 \times Y$$

wherein each of Y_1 , Y_2 , Y_3 , Y_4 and Y_5 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -F, -C1, -Br, or -I; -NO₂; -N₃; -CN; -OR₃, -OCOR₃, -COR₃, -CON(R₃)₂, or -COOR₃; or any two of Y_1 , Y_2 , Y_3 , Y_4 and Y_5 present on adjacent carbon atoms can constitute a methylenedioxy group;

wherein each X is independently S; O; or NR_3 ;

wherein R_1 is -H; -NO $_2$; -CN; straight chained or

branched C_1-C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2-C_7 alkenyl or alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; -C

wherein R₂ is -H; straight chained or branched C₂-C₇ alkyl, hydroxyalkyl, alkoxyalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; C₃-C₁₀ cycloalkyl-C₁-C₁₀-alkyl, C₂-C₁₀ cycloalkyl-C₁-C₁₀-monofluoroalkyl or C₃-C₁₀ cycloalkyl-C₁-C₁₀-polyfluoroalkyl; -CN; -CH₂XR₃, -CH₂X(CH₂)_pNHR₃, -(CH₂)_nNHR₃, -CH₂X(CH₂)_pN(R₃)₂, -CH₂X(CH₂)_pN₃, or -CH₂X(CH₂)_pNHCXR₇; -OR₃; or wherein R₁ and R₂ together form a lactone ring;

wherein each R_3 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R_4 is

$$(i)$$

$$R$$

$$R_{1}$$

$$R_{5}$$

$$R_{6}$$

5

10

15

20

25

(ii) $\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$ 5 $\begin{array}{c|c}
R & \text{lm} & \\
R & \text{lm} & \\
R & \text{lm} & \\
\end{array}$ (iii) 10 $\begin{array}{c|c}
R & \text{Im} \\
R & \text{Im} \\
R_5
\end{array}$ 15 (iv) 20 (v) $\begin{array}{c|c}
R & \text{lm} & R \\
R_5 & R_5
\end{array}$ 25 (vi) $\begin{bmatrix} 1_{m} & V & R \\ 1_{r} & V & R \end{bmatrix}$ 30

(ix) $R \longrightarrow R$ $R \longrightarrow R_5$; or

5

10

30

 (\times)

wherein the dashed line represents a single bond or a double bond;

wherein each R is independently -H; -F; straight chained or branched C_1 -C- alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_1 -C- alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR₃; or -CON(R₃)₂;

wherein each V is independently aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I;

COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7 alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein each R_5 is -H; -NO₂; -N₃; -CN; straight chained branched C_1-C_7 alkyl, monofluoroalkyl polyfluoroalkyl; straight chained or branched C_-Ccycloalkyl, alkynyl; $C_3 - C_7$ or polyfluorocycloalkyl monofluorocycloalkyl, cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; $-CO_2R_3$; -CON(R_3)₂; aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more F; C1; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched $C_{\underline{i}}$ - $C_{\underline{i}}$ alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 C3-C7 cycloalkyl, monofluorocycloalkyl, alkynyl; polyfluorocycloalkyl or cycloalkenyl;

wherein R_6 is -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; $-CO_2R_3$; $-CON(R_3)_2$; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl,

polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;

35

30

5

10

15

20

straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7 -alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R_7 is H; F; Cl; Br; I; $-NO_2$; $-N_3$; -CN; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_1 - C_2 -alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; $-COR_3$; or $-CON(R_3)_2$;

5

10

15

20

25

30

35

wherein R_8 is independently straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein Z is naphthyl, quinolinyl, isoquinolinyl, quinazolinyl, phthalazinyl, quinoxalinyl, indolyl, benzo[b] furanyl, or benzo[b] thiophenyl; wherein the naphthyl, quinolinyl, isoquinolinyl, quinazolinyl, phthalazinyl, quinoxalinyl, indolyl, benzo[b]furanyl, or benzo[b]thiophenyl may be substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; - $N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched monofluoroalkyl, polyfluoroalkyl, $C_1 - C_7$ alkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl cycloalkenyl;

wherein each m is independently an integer from 0 to

3 inclusive;

wherein each n is independently an integer from 0 to 5 inclusive;

5

wherein each \dot{p} is independently an integer from \dot{l} to 7 inclusive;

10

wherein q is an integer from 1 to 3 inclusive;

wherein r is an integer from 0 to 3 inclusive;

wherein t is an integer from 2 to 6 inclusive;

15

or a pharmaceutically acceptable salt thereof.

- 2. A (+) enantiomer of the compound of claim 1.
- 3. A (-) enantiomer of the compound of claim 1.

2.0

4. The compound of claim 1 having the structure:

, 0

30

$$\begin{array}{c|c} R_1 & A & O \\ R_2 & N & X \\ R_3 & X & C \end{array}$$

5. The compound of claim 4 having the structure:

5

15

6. The compound of claim 5, having the structure:

7. The compound of claim 6, wherein A is

$$Y_2$$
 Y_3
 Y_4
 Y_5

or
 Y_2
 Y_3
 Y_4
 Y_5

 \S . The compound of claim 7, wherein the compound is

30

5

15

-251-

15
$$\begin{array}{c} F \\ O \\ N \\ O \end{array}$$

The compound of claim 1, wherein the compound has the structure:

10. The compound of claim 9, wherein the compound has the structure:

35

11. The compound of claim 10, wherein the compound has the structure:

15 12. The compound of claim 11, wherein A is

25 13. The compound of claim 12 having the structure:

35

The compound of claim 1, having the structure: 14.

The compound of claim 14, having the structure:

$$\begin{array}{c} A & O \\ R_1 & R_5 & R \end{array}$$

Ξ

10

20

25

15.

The compound of claim 15 having the structure: 16.

17. The compound of claim 16 wherein A is

5
$$Y_1 = \begin{pmatrix} Y_2 & Y_3 \\ Y_1 & 1 \end{pmatrix} Y_4$$
 or $Y_1 = \begin{pmatrix} Y_2 & Y_3 \\ Y_5 & Y_5 \end{pmatrix}$

10

25

18. The compound of claim 17 having the structure:

19. The compound of claim 1 having the structure:

20. The compound of claim 19 having the structure:

:10

15

2,5

21. The compound of claim 20 having the structure:

22. The compound of claim 21 wherein A is

23. The compound of claim 22 having the structure

15 24. The compound of claim 1 having the structure:

25. The compound of claim 24 having the structure:

26. The compound of claim 25 having the structure:

5

10

27. The compound of claim 26 wherein A is

15

$$Y_1 \longrightarrow Y_3$$
 or $Y_2 \longrightarrow Y_3$ $Y_5 \longrightarrow Y_5$

20

28. The compound of claim 27 having the structure:

25

30

29. The compound of claim 1, wherein the compound is (+)-1,2,3,6-tetrahydro-1-{n-[4-(3,-acetamido)-phenyl-piperidin-1-yl]propyl}carboxamido-4-methoxymethyl-6-(3,4-difluoro-phenyl)-2-oxopyrimidine-5-carboxylic acid methyl ester.

30. The compound of claim 4 having the structure:

10

5

31. The compound of claim 30 having the structure:

$$\begin{array}{c|c} R_1 & A & O \\ \hline R_2 & N & X \\ \hline R_3 & X \\ \end{array}$$

20

32. The compound of claim 31 having the structure:

33. A compound having the structure:

5

10

15

20

25

30

35

34. A compound having the structure:

wherein each R is independently -H; -F; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -SR₃; -CO₂R₃; or -OR₃;

wherein each R_1 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -(CH₂) $_{\text{p}}$ OR₃; -COR₃; -CO₂R₃; or -CON(R₃) $_{\text{2}}$;

wherein each R_2 is -H; -NO₂; -N₃; -CN; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7

alkenyl or alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; $-CO_2R_2$; or $-CON(R_3)_2$; or aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_2 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_4OR_2$; $(CH_2)_4SR_3$; straight chained or branched C_2-C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl, polyfluorocycloalkyl, or cycloalkyl, polyfluorocycloalkyl, polyfluorocycloalkyl

wherein each R_3 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein M is aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein X is $(CH_2)_n$, O, S or NR_3 ;

wherein W is

5

10

15

20

25

30

35

(a) C₃-C₇ cycloalkyl, monofluorocycloalkyl,

polyfluorocycloalkyl or cycloalkenyl . " optionally substituted with one or more COR3; CO2R3; $-CON(R_3)_2$; $CN; -NO_2; -N(R_3)_2; -OR_3; -SR_3;$ $(CH_2)_{q}OR_3$; $(CH_2)_{q}SR_3$; straight chained or 5 branched C₁-C₇ alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, carboxamidoalkyl; straight chained branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇ cycloalkyl; or 10 aryl or heteroaryl optionally substituted (b) with one or more F; Cl; Br; I; COR3; CO2R3; $-CON(R_3)_2$; $CN; -NO_2; -N(R_3)_2; -OR_3; -SR_3;$ (CH₂)_cOR₃; (CH₂)_cSR₃; straight chained or 15 branched C₁-C₇ alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, carboxamidoalkyl; straight chained branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇ cycloalkyl; 20 wherein m is an integer from 0 to 4 inclusive; wherein n is an integer from 0 to 6 inclusive; 25 wherein p is an integer from 1 to 4 inclusive; wherein q is an integer from 1 to 3 inclusive; or a pharmaceutically acceptable salt thereof. 30 35. A (+) enantiomer of the compound of claim 34. 36. A (-) enantiomer of the compound of claim 34.

37. The compound of claim 34 having the structure:

$$M = \begin{pmatrix} O \\ M \end{pmatrix} \begin{pmatrix} W \\ R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} R_1 \end{pmatrix} \end{pmatrix}$$

39. The compound of claim 38 having the structure

35

5

15

40. A compound having the structure:

wherein each R is independently -H; -F; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR₃; or -CON(R₃)₂;

wherein each R_1 is independently -H; F; Cl; Br; I; -NO₂; -N₃; -CN; straight chained or branched C₂-C-alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C-alkenyl or alkynyl; C₃-C-cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R_3)₂; -OR₂;

 $-(CH_2)_pOR_3$; $-COR_3$; $-CO_2R_3$; $-CON(R_3)_2$; aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl,

wherein each R_3 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 -

polyfluorocycloalkyl or cycloalkenyl;

_ 5

5

20

25

30

alkenyl or alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

Ę, wherein R₅ is -H; -NO₂; -N₃; -CN; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C.-Calkenyl or alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; $-COR_3$; 10 -CON(R_3)₂; aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more F; Cl; Br; I; COR2; CO2R3; -CON(R3)2; CN; -NO2; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight 15 chained or branched C₁-C₇ alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C3-C7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein V is H; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched C_2 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7 alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein W is

(a) C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl optionally substituted with one or more

30

20

25

5	COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN ; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7 alkyl; C_3 - C_7
10	<pre>(b) aryl or heteroaryl optionally substituted with one or more F; Cl; Br; I; COR3; CO2R;; -CON(R3)2; CN; -NO2; -N(R3)2; -OR3; -SR3; (CH2)qOR3; (CH2)qSR3; straight chained or</pre>
15	branched C_1 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7 alkynyl; C_3 - C_7 cycloalkyl;
20	wherein each m is independently an integer from 0 to 3 inclusive; wherein n is an integer from 0 to 2 inclusive;
25	wherein p is an integer from 1 to 7 inclusive; wherein q is an integer from 1 to 3 inclusive;
30	wherein t is an integer from 2 to 6 inclusive; or a pharmaceutically acceptable salt thereof.
35	A (+) enantiomer of the compound of claim 40. A (-) enantiomer of the compound of claim 40.

43. The compound of claim 40 having the structure:

$$R_1$$
 R_1
 R_2
 R_3
 R_3

44. The compound of claim 43 having the structure

5

- 45. A compound of claim 43 wherein W is phenyl optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; or straight chained or branched C_1-C_7 alkyl groups.
- 46. A compound of claim 45 having the structure

5

47. A method of modifying feeding behavior of a subject which comprises administering to the subject an amount of a compound effective to decrease the consumption of food by the subject wherein the compound has the structure:having the structure:

$$R_3$$
 N
 R_2
 N
 R_4
 R_4

wherein A is

 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3

 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_3 Y_1 Y_2 Y_3 Y_3 Y_4 Y_4

or $Y_1 = \begin{bmatrix} Y_2 & Y_3 \\ & 1 \end{bmatrix}$

wherein each of Y_1 , Y_2 , Y_3 , Y_4 and Y_5 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -F, -Cl, -Br, or -I; -NO₂; -N₃; -CN; -OR₃, -OCOR₃, -COR₃, -CON(R₃)₂, or -COOR₃; or any two of Y_1 , Y_2 , Y_3 , Y_4 and Y_5 present on adjacent carbon atoms can constitute a methylenedioxy group;

wherein each X is independently S; O; or NR3;

35

5

10

15

20

25

wherein R_1 is -H; $-NO_2$; -CN; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2-C_7 alkenyl or alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; -CO

wherein R_2 is -H; straight chained or branched C_1 -C-alkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; C_3 - C_{10} cycloalkyl- C_1 - C_{10} -alkyl, C_2 - C_{10} cycloalkyl- C_1 - C_{10} -monofluoroalkyl or C_3 - C_{10} cycloalkyl- C_1 - C_{10} -polyfluoroalkyl; -CN; -CH₂XR₃, -CH₂X(CH₂)_pNHR₃, -(CH₂)_nNHR₃, -CH₂X(CH₂)_pN(R₃)₂, -CH₂X(CH₂)_pN₃, or -CH₂X(CH₂)_pNHCXR₅; -OR; or wherein R_1 and R_2 together form a lactone ring;

wherein each R_3 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R4 is

(i) $\begin{array}{c}
R \\
\downarrow \downarrow_{m} \\
R \\
\downarrow \downarrow_{m}
\end{array}$ $\begin{array}{c}
R_{5} \\
R_{6}
\end{array}$ $\begin{array}{c}
R_{7}
\end{array}$

35

5

10

15

20

$$\begin{array}{c}
R \\
\downarrow t \\
R \\
\downarrow T \\
R \\
\downarrow T \\
R_6 \\
Y_3
\end{array}$$

. (ix)

(x)

wherein each R is independently -H; -F; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR; or -CN(R₃)₂;

wherein B is N or CY4;

5

10

15

20

25

30

35

wherein each D is independently $C(R_3)_2$; O; S; NR_2 ; CO; or CS;

wherein each U is independently aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein V is $C(R_5)_2$; CR_5R_6 ; NR_5 or NR_6 ;

wherein W is CR_5 ; CR_6 or N;

wherein Z is S; O; $C(R_2)_2$; or NR_3 ;

wherein each R_5 is -H; $-NO_2$; $-N_3$; -CN; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; $-CO_2R_3$; or $-CON(R_3)_2$; $-XCOR_8$; or aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted

with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_2)$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_2$; $-XCOR_8$; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, or aminoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

5

10

15

20

25

30

35

wherein each R_6 is independently -H; straight chained or branched C_1 - C_7 alkyl, hydroxyalkyl, aminoalkyl, alkoxyalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R_3)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R_3)₂;

wherein R_7 is -H; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR₃; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; $-XCOR_8$; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, or aminoalkyl; straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7 alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R_8 is -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-N(R_3)_2$; $-OR_7$; $-(CH_2)_pOR_3$; $-COR_3$; $-CO_2R_3$; or $-CON(R_3)_2$; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight

chained or branched C_1 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7 alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein b is 1 or 2;

5

10

15

25

30

wherein d is an integer from 0 to 2 inclusive;

wherein each m is independently an integer from 0 to 3 inclusive;

wherein each n is independently an integer from 0 to 5 inclusive;

wherein each p is independently an integer from 1 to 7 inclusive;

wherein q is an integer from 1 to 3 inclusive;

wherein t is an integer from 2 to 6 inclusive;

or a pharmaceutically acceptable salt thereof.

48. The method of claim 47, wherein the compound has the structure

49. The method of claim 48, wherein the compound has the structure

15

5

50. The method of claim 49, wherein the compound has the structure

5

$$R_1$$
 R_2
 R_1
 R_2
 R_3
 R_5
 R_5
 R_5

10

$$R_1$$
 R_2
 R_3
 R_5
 R_5

15

51. The method of claim 50, wherein at least one R_5 group is an aryl or heteroaryl group optionally substituted with one or more F; Cl; Br; I; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-XCOR_8$; or straight chained or branched C_1-C_7 alkyl.

25

20

52. The method of claim 51, wherein A is:

$$Y_1 \xrightarrow{Y_2} Y_3$$
 $Y_4 \qquad or \qquad Y_1 \xrightarrow{Y_3}$

53. The method of claim 52, wherein the compound is selected from the group consisting of:

5 (a)

10 (b)

15

(c)

(d)

30

25

(e)

5

; and

(f)

15

10

20

54. The method of claim 47, wherein the compound has the structure

25

55. The method of claim 54, wherein the compound has the structure

$$R_1$$
 N
 N
 R_5
 R_6

10 56. The method of claim 55, wherein A is

5

15

20

$$Y_1$$
 Y_2
 Y_3
 Y_4
 Y_5

Or
 Y_1
 Y_2
 Y_3
 Y_4

and R_7 is phenyl, optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; $-XCOR_8$; or straight chained or branched C_1-C_7 alkyl.

57. The method of claim 56, wherein the compound has the structure

58. The method of claim 47, wherein the compound has the structure

$$\begin{array}{c|c} R_1 & A & O \\ \hline R_2 & N & X \\ \hline R_3 & X & R_6 \end{array}$$

59. The method of claim 58, wherein the compound has the structure

$$\begin{array}{c|c} R_1 & A & O \\ \hline \\ R_2 & N & O \\ \hline \\ N & O \\ \end{array}$$

60. The method of claim 59, wherein A is

30 and Z is O or CH_2 .

5

10

15

61. The method of claim 60, wherein the compound is selected from the group consisting of

62. The method of claim 47, wherein the compound has the structure

$$\begin{array}{c|c}
 & Y_2 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_3 \\
 & Y_1 \\
 & Y_2 \\
 & Y_1 \\
 & Y_1 \\
 & Y_2 \\
 & Y_1 \\
 & Y_1 \\
 & Y_2 \\
 & Y_1 \\
 & Y_1 \\
 & Y_1 \\
 & Y_2 \\
 & Y_1 \\
 & Y_1 \\
 & Y_2 \\
 & Y_1 \\
 & Y_2 \\
 & Y_1 \\
 & Y_1 \\
 & Y_2 \\
 & Y_1 \\
 & Y_2 \\
 & Y_1 \\
 & Y_1 \\
 & Y_2 \\
 & Y_1 \\
 &$$

5

10

15

25

63. The method of claim 62, wherein the compound has the structure

64. The method of claim 63, wherein A is

30
$$Y_1 = Y_3 = Y_4$$
 or $Y_1 = Y_3 = Y_4$

65. The method of claim 64, wherein the compound is

66. The method of claim 47, wherein the compound has the structure

67. The method of claim 66, wherein the compound has the structure

35

20

25

68. The method of claim 67, wherein the compound has the structure

69. The method of claim 47, wherein the compound has the structure

70. The method of claim 69, wherein the compound has the structure

30

5

10

15

20

71. The method of claim 70, wherein the compound has the structure

5

10

15

20

72. A method of reducing the body mass of a subject which comprises administering to the subject an amount of a compound effective to reduce the body mass of the subject wherein the compound has the structure:

$$\begin{array}{c} R_1 \\ R_2 \\ \end{array} \begin{array}{c} A \\ N \\ \end{array} \begin{array}{c} N \\ R_4 \\ \end{array} \begin{array}{c} R_4 \\ \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c} R_4 \\ \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c} R_4 \\ \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c} R_4 \\ \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c}$$

wherein A is

 Y_1 Y_2 Y_3 Y_3

 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_3 Y_1 Y_2 Y_3 Y_3 Y_4 Y_4

or $Y_1 \longrightarrow Y_3 \times Y_3 \times Y_4 \times Y_4 \times Y_5 \times Y$

wherein each of Y_1 , Y_2 , Y_3 , Y_4 and Y_5 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -F, -C1, -Br, or -I; -NO₂; -N₃; -CN; -OR₃, -OCOR₃, -COR₃, -CON(R₃)₂, or -COOR₃; or any two of Y_1 , Y_2 , Y_3 , Y_4 and Y_5 present on adjacent carbon atoms can constitute a methylenedioxy group;

wherein each X is independently S; O; or NR3;

30

5

10

15

20

25

wherein R_1 is -H; -NO₂; -CN; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 -alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R_3)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; -CON(R_3)₂; or -CO₂(CH₂)_pV;

wherein R_2 is -H; straight chained or branched C_1 -C-alkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; C_3 - C_{10} cycloalkyl- C_1 - C_{10} -alkyl, C_3 - C_{10} cycloalkyl- C_1 - C_{10} -monofluoroalkyl or C_3 - C_{10} cycloalkyl- C_1 - C_{10} -polyfluoroalkyl; -CN; -CH₂XR₃, -CH₂X(CH₂)_pNHR₃, -(CH₂)_nNHR₃, -CH₂X(CH₂)_pN(R₃)₂, -CH₂X(CH₂)_pN₃, or -CH₂X(CH₂)_pNHCXR₅; -OR; or wherein R_1 and R_2 together form a lactone ring;

wherein each R_3 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R_4 is

 $\begin{array}{c}
R \\
\downarrow \downarrow m \\
R
\end{array}$ $\begin{array}{c}
R_5 \\
\downarrow R
\end{array}$

5

10

15

20

(iii) $\begin{array}{c}
R \\
\downarrow \\
R
\end{array}$ $\begin{array}{c}
R_{7}
\end{array}$

5

$$\begin{array}{c} & & \\$$

15 (iv)
$$\begin{array}{c} R \\ R \\ \end{array}$$

-290-

(vii) 5 $\begin{array}{c|c} R & & \\ \hline \\ R & & \\ \hline \\ R & & \\ \hline \end{array}$ 10 15 (viii) $\begin{array}{c|c} R & R_6 \\ \hline \\ R_5 \\ \hline \\ R_6 \\ \hline \\ R_6 \\ \end{array}$ 20 (ix)25 (x)

35

wherein each R is independently -H; -F; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR₅; or -CN(R₃)₂;

wherein B is N or CY4;

wherein each D is independently $C(R_3)_2$; O; S; NR_3 ; CO; or CS;

wherein each U is independently aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein V is $C(R_5)_2$; CR_5R_6 ; NR_5 or NR_6 ;

wherein W is CR5; CR6 or N;

wherein Z is S; O; $C(R_3)_2$; or NR_3 ;

wherein each R_5 is -H; $-NO_2$; $-N_3$; -CN; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2-C_7 alkenyl or alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; $-COR_3$; or $-CON(R_3)_2$; $-XCOR_8$; or aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted

10

5

15

20

25

30

with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_2)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; $-XCOR_8$; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, or aminoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkyl, C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein each R_6 is independently -H; straight chained or branched C_1 - C_7 alkyl, hydroxyalkyl, aminoalkyl, alkoxyalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R_3)₂; -O R_3 ; -(CH₂)_pO R_3 ; -CO R_3 ; -CO₂ R_3 ; or -CON(R_3)₂;

wherein R_7 is -H; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR₃; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; $-XCOR_8$; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, or aminoalkyl; straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7 alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R_8 is -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R_3)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R_3)₂; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR₃; CO_2R_3 ; -CON(R_3)₂; CN; -NO₂; -N(R_3)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight

10

5

15

20

25

30

	chained or branched C ₁ -C ₇ alkyl, monofluoroalkyl,
	polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;
	straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7
	alkynyl; C ₃ -C ₇ cycloalkyl, monofluorocycloalkyl,
5	polyfluorocycloalkyl or cycloalkenyl;
	wherein b is 1 or 2;
10	wherein d is an integer from 0 to 2 inclusive;
10	wherein each m is independently an integer from 0 to
	3 inclusive;
	wherein each n is independently an integer from 0 to
15	5 inclusive;
	wherein each p is independently an integer from 1 to
	7 inclusive;
20	wherein q is an integer from 1 to 3 inclusive;
	wherein t is an integer from 2 to 6 inclusive;
2.5	or a pharmaceutically acceptable salt thereof.

73. A method of treating a subject suffering from depression and/or anxiety which comprises administering to the subject an amount of a compound effective to treat the subject's depression and/or anxiety wherein the compound has the structure:

$$R_3$$
 N
 R_4
 R_2
 R_4

wherein A is

wherein each of Y_1 , Y_2 , Y_3 , Y_4 and Y_5 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -F, -Cl, -Br, or -I; -NO₂; -N₃; -CN; -OR₃, -OCOR₃, -COR₃, -CON(R₃)₂, or -COOR₃; or any two of Y_1 , Y_2 , Y_3 , Y_4 and Y_5 present on adjacent carbon atoms can constitute a methylenedioxy group;

wherein each X is independently S; O; or NR3;

35

30

wherein R_1 is -H; -NO₂; -CN; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 -alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R_3)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; -CON(R_3)₂; or -CO₂(CH₂)_pV;

wherein R_2 is -H; straight chained or branched C_1 -C-alkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; C_3 - C_{10} cycloalkyl- C_1 - C_{10} -alkyl, C_3 - C_{10} cycloalkyl- C_1 - C_{10} -monofluoroalkyl or C_3 - C_{10} cycloalkyl- C_1 - C_{10} -polyfluoroalkyl; -CN; -CH₂XR₃, -CH₂X(CH₂)_pNHR₃, -(CH₂)_nNHR₃, -CH₂X(CH₂)_pN(R₃)₂, -CH₂X(CH₂)_pN₃, or -CH₂X(CH₂)_pNHCXR₅; -OR; or wherein R₁ and R₂ together form a lactone ring;

wherein each R_3 is independently -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R4 is

(:

$$\begin{array}{c}
R \\
\downarrow \downarrow m \\
R
\end{array}$$

$$\begin{array}{c}
R_{5} \\
\downarrow \downarrow m \\
R_{6}
\end{array}$$

35

5

10

15

20

25

$$\begin{array}{c}
R \\
\downarrow \downarrow \downarrow m \\
R \\
\downarrow \downarrow \downarrow m \\
R_6
\end{array}$$

$$\begin{array}{c}
Y_1 \\
Y_2 \\
Y_3
\end{array}$$

·-298-

wherein each R is independently -H; -F; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR₃; or -CN(R₃)₂;

wherein B is N or CY4;

5

10

15

20

25

30

35

wherein each D is independently $C(R_3)_2$; O; S; NR_3 ; CO; or CS;

wherein each U is independently aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein V is $C(R_5)_2$; CR_5R_6 ; NR_5 or NR_6 ;

wherein W is CR5; CR6 or N;

wherein Z is S; O; $C(R_3)_2$; or NR_3 ;

wherein each R_5 is -H; -NO₂; -N₃; -CN; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R_3)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R_3)₂; -XCOR₈; or aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted

with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; $-XCOR_8$; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, or aminoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein each R_6 is independently -H; straight chained or branched C_1 - C_7 alkyl, hydroxyalkyl, aminoalkyl, alkoxyalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R_3)₂; -OR₂; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R_3)₂;

wherein R_7 is -H; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR₃; CO_2R_3 ; $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$; $(CH_2)_qSR_3$; $-XCOR_8$; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl, or aminoalkyl; straight chained or branched C_2 - C_7 alkenyl, C_2 - C_7 alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R_8 is -H; straight chained or branched C_1 - C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2 - C_7 alkenyl or alkynyl; C_3 - C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R_3)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R_3)₂; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR₃; CO_2R_3 ; -CON(R_3)₂; CN; -NO₂; -N(R_3)₂; -OR₃; -SR₃; (CH₂)_gOR₃; (CH₂)_gSR₃; straight

35

30

5

10

15

20

chained or branched C:-C7 alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C_2-C_7 alkenyl, C_2-C_7 alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; 5 wherein b is 1 or 2; wherein d is an integer from 0 to 2 inclusive; 10 wherein each m is independently an integer from 0 to 3 inclusive; wherein each n is independently an integer from 0 to 15 5 inclusive; wherein each p is independently an integer from 1 to 7 inclusive; 20 wherein q is an integer from 1 to 3 inclusive; wherein t is an integer from 2 to 6 inclusive; or a pharmaceutically acceptable salt thereof.

74. A method of modifying feeding behavior of a subject which comprises administering to the subject an amount of a compound effective to decrease the consumption of food by the subject wherein the compound is selected from the group consisting of:

5

-303-

d) S

$$g$$
) O N O ; and

- 75. A method of modifying feeding behavior of a subject which comprises administering to the subject an amount of a compound of claim 34 or 38 effective to decrease the consumption of food by the subject.
- 76. A method of treating a feeding disorder in a subject which comprises administering to the subject an amount of a compound of claim 1, 34 or 38 effective to decrease the consumption of food by the subject.
- 77. The method of claim 76, wherein the feeding disorder is bulimia, obesity or bulimia nervosa.
 - 78. A method of reducing the body mass of a subject which comprises administering to the subject an amount of a compound of claim 34 or 38 effective to reduce the body mass of the subject.
 - 79. A method of treating a subject suffering from depression and/or anxiety which comprises administering to the subject an amount of a compound of claim 34 or 38 effective to treat the subject's depression and/or anxiety.
 - 80. The method of claim 47, 74, 75 or 76, wherein the subject is a vertebrate, a mammal, a human or a canine.

E .

25

35

-305-The method of claim 47, 74, 75 or 76, wherein the 81. compound is administered in combination with food. A pharmaceutical composition comprising a 82. therapeutically effective amount of the compound of 5 claim 1, 34 or 38 and a pharmaceutically acceptable carrier. The pharmaceutical composition of claim 82 wherein 83. the amount of the compound is from about 0.01 mg to 10 about 500 mg. The pharmaceutical composition of claim 83 wherein 84. the amount of the compound is from about 0.1 mg to 15 about 60 mg. The pharmaceutical composition of claim 84 wherein the amount of the compound is from about 1 mg to about 20 mg. 20 The pharmaceutical composition of claim 82, wherein 86. the carrier is a liquid and the composition is a solution. The pharmaceutical composition of claim 82, wherein 25 87. the carrier is a solid and the composition is a tablet. The pharmaceutical composition of claim 82, wherein 88. the carrier is a gel and the composition is a 30 suppository. A pharmaceutical composition made by combining a 89. therapeutically effective amount of the compound of claim 1, 34 or 38 and a pharmaceutically acceptable 35 carrier.

90. A process for making a pharmaceutical composition comprising combining a therapeutically effective amount of the compound of claim 1, 34 or 38 and a pharmaceutically acceptable carrier.