Quantum Information Theory: Sheet 2

Otto Pyper

Exercise 1.

- 1. For any v we have $\langle v|Av\rangle \geq 0$, and in particular real. So $\langle v|Av\rangle = (\langle v|Av\rangle)^* = \langle Av|v\rangle = \langle v|A^\dagger v\rangle$. Hence for all v we have $\langle v|(A-A^\dagger)v\rangle = 0$. $(A-A^\dagger)$ is skew-Hermitian and hence normal, hence diagonalisable. So in some basis it is diagonal, and using the above relation we see that all the elements on the diagonal are zero. So $(A-A^\dagger)$ is zero in this basis and hence every basis. Thus $A=A^\dagger$.
- 2. $\mathbb{F}|ij\rangle = |ji\rangle$, which defines its action on an orthonormal basis for $\mathcal{H}_A \otimes \mathcal{H}_B$. Hence we can represent \mathbb{F} as:

$$\mathbb{F} = \sum_{i,j} |ji\rangle\langle ij|$$

Let $v = \sum_{i,j} a_{ij} |ij\rangle$ be an eigenvector with eigenvalue λ . Then $\mathbb{F}v = \lambda v = \sum_{i,j} a_{ij} |ji\rangle = \sum_{i,j} a_{ij} |ij\rangle = \sum_{i,j} \lambda a_{ij} |ij\rangle$. So we must have $a_{ji} = \lambda a_{ij}$ for each i,j, and so $a_{ji} = \lambda^2 a_{ji}$. Since v is non-zero, there must be some non-zero a_{ij} . Hence $\lambda^2 = 1$, and $\lambda = \pm 1$.

To calculate their multiplicities we can consier the degrees of freedom of the vector elements. Let $\lambda = 1$, and consider the matrix given by $A_{ij} = a_{ij}$. Since $a_{ij} = a_{ji}$, this must be symmetric, and the diagonal is unconstratined. So there are d + (d-1)d/2 = d(d+1)/2 degrees of freedom, hence this is the multiplicity.

So the multiplicity of $\lambda = -1$ is d(d-1)/2, which we can also see by remarking that in this case the diagonal elements a_{ii} must all be zero, and then the upper right of the matrix is determined entirely by the lower left, which has d(d-1)/2 free elements.

Slightly more rigorously, the 'degrees of freedom' correspond to basis vectors in the eigenspace.

We form the operator $\Omega=|\Omega\rangle\langle\Omega|=\sum_{i,j}|j\rangle\langle i|\otimes|j\rangle\langle i|,$ and what we want is $\mathbb{F}=\sum_{i,j}|j\rangle\langle i|$