31

Déterminer un développement en série entière en utilisant une équation différentielle

Quand on ne sait pas!

Pour déterminer un développement en série entière en utilisant une équation différentielle, sont nécessaires les résultats du cours suivants (détaillés aux *fiches 28* et *30*):

- l'unicité au problème de Cauchy,
- l'unicité du développement en série entière,
- les développements en série entière de référence.

Oue faire?

Soit f une fonction dont on souhaite déterminer le développement en série entière.

- **Méthode 1 :** si ON NE SAIT PAS au préalable que f est développable en série entière, alors :
 - ightharpoonup on commence par justifier ou établir que la fonction f est solution d'un certain problème de Cauchy,
 - ensuite, à l'aide d'un raisonnement par analyse ET synthèse (cf *fiche 30*), on montre (en la déterminant) que ce même problème de Cauchy admet une unique solution *g* développable en série entière,
 - \triangleright enfin, par unicité au problème de Cauchy, on peut conclure que f=g.
- **Méthode 2 :** si ON SAIT déjà que f est développable en série entière, alors :
 - \triangleright on commence par justifier ou établir que la fonction f est solution d'un certain problème de Cauchy,
 - ensuite, à l'aide d'un raisonnement par analyse $\boxed{\text{SANS}}$ synthèse (cf *fiche 30*), on cherche la fonction f sous la forme d'une série entière.

Conseils

■ Il y a de nombreuses similitudes avec la *fiche 30* qu'il est conseillé de faire en amont. Les justifications théoriques et les techniques calculatoires utilisées sont identiques.

Exemple traité

On considère la fonction f définie sur I =]-1,1[par :

$$f(x) = (\operatorname{Arcsin} x)^2$$

et on pose q = f'.

1 Montrer que g est solution sur I de l'équation différentielle (E) suivante :

$$(1 - x^2)y' - xy = 2$$

- Déterminer les solutions de (E) développables en série entière et s'annulant en 0.
- En déduire que g est développable en série entière, puis donner son développement.
- Justifier que f est développable en série entière, puis donner son développement.
 - SOLUTION
- Montrons que g est solution de (E) i.e. $\begin{cases} g \text{ est de classe } \mathcal{C}^1 \text{ sur } I \\ \forall x \in I, \ (1-x^2)g'(x)-xg(x)=2 \end{cases} (i)$
 - La fonction Arcsin est de classe C^1 sur I, donc la fonction g l'est aussi par produit.
 - \blacksquare Calculons pour tout $x \in I$:

$$g(x) = f'(x) = \frac{2Arc\sin x}{\sqrt{1 - x^2}}$$
$$g'(x) = \frac{2}{1 - x^2} + \frac{2xArc\sin x}{(1 - x^2)\sqrt{1 - x^2}}$$

Un simple calcul permet alors de vérifier que : $\forall x \in I, (1-x^2)g'(x) - xg(x) = 2.$ Ainsi, la fonction g est bien solution de l'équation différentielle (E) sur]-1,1[.

- Cherchons les éventuelles solutions développables en série entière et s'annulant en 0 de l'équation différentielle (E).
 - \blacksquare Analyse. Supposons que l'équation (E) admette une solution h développable en série entière sur un certain intervalle, c'est-à-dire qu'il existe $R \in \overline{\mathbb{R}}_+^*$ et une suite $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ tels que la fonction h définie sur]-R,R[par :

$$h(x) = \sum_{n=0}^{+\infty} a_n x^n$$

soit solution de l'équation différentielle (E).

Cherchons alors des conditions nécessaires sur la suite des coefficients $(a_n)_{n\in\mathbb{N}}$. Sachant que h est solution de (E) sur]-R,R[, on peut écrire les équivalences suivantes:

$$\forall x \in]-R, R[, \qquad (1-x^2)h'(x) - xh(x) = 2$$

$$\iff \forall x \in]-R, R[, \qquad \sum_{n=1}^{+\infty} na_n x^{n-1} - \sum_{n=1}^{+\infty} na_n x^{n+1} - \sum_{n=0}^{+\infty} a_n x^{n+1} = 2$$

$$\iff \forall x \in]-R, R[, \qquad \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n - \sum_{n=2}^{+\infty} (n-1)a_{n-1}x^n - \sum_{n=1}^{+\infty} a_{n-1}x^n = 2$$

$$\iff \forall x \in]-R, R[, \qquad \underbrace{a_1 + (2a_2 - a_0)x}_{n=1} + \sum_{n=2}^{+\infty} [(n+1)a_{n+1} - na_{n-1}]x^n = 2$$

$$\iff \forall x \in]-R, R[, \qquad a_1 + \sum_{n=0}^{+\infty} [(n+1)a_{n+1} - na_{n-1}]x^n = 2$$

Par unicité du développement en série entière de la fonction constante égale à 2, on en déduit alors :

$$\begin{cases} a_1 = 2 \\ \forall n \ge 1, \ (n+1)a_{n+1} - na_{n-1} = 0 \end{cases} \iff \begin{cases} a_1 = 2 \\ \forall n \ge 1, \ a_{n+1} = \frac{n}{(\star \star)} \\ \forall n \ge 1, \ a_{n+1} = \frac{n}{(\star \star)} \times a_{n-1} \end{cases}$$

Or la fonction h doit vérifier la condition initiale h(0)=0 i.e. $a_0=0$, donc par applications itérées de $(\star\star)$, il vient que : $\forall p\geq 0,\ a_{2p}=0$.

Toujours par applications itérées de $(\star\star)$, on en déduit que pour tout $p\geq 1$:

$$a_{2p+1} = \frac{2p}{2p+1} \times a_{2p-1} = \frac{2p(2p-2)}{(2p+1)(2p-1)} \times a_{2p-3}$$
$$= \cdots = \frac{2p(2p-2) \times \cdots \times 2}{(2p+1)(2p-1) \times \cdots \times 3} \times a_1 = \frac{2^{2p+1}(p!)^2}{(2p+1)!}$$

La formule établie ci-dessus reste encore vraie pour p = 0.

Si l'équation (E) admet une solution h développable en série entière sur un certain intervalle et s'annulant en 0, alors elle est unique et il existe $R \in \overline{\mathbb{R}}_+^*$ tel que :

$$\forall x \in]-R, R[, \quad h(x) = \sum_{n=0}^{+\infty} \frac{2^{2n+1}(n!)^2}{(2n+1)!} x^{2n+1}$$

- Synthèse. Vérifions que la fonction h précédemment trouvée est bien une solution de (E) développable en série entière et s'annulant en 0:
 - la fonction h est développable en série entière, vérifie bien l'équation (E) et s'annule en 0 : on a tout fait pour !
 - -l'application de la règle de d'Alembert permet de trouver que le rayon de convergence R vaut 1. En effet, calculons pour tout $x \neq 0$:

$$\left| \frac{\frac{2^{2n+3}((n+1)!)^2}{(2n+3)!} x^{2n+3}}{\frac{2^{2n+1}(n!)^2}{(2n+1)!} x^{2n+1}} \right| = \frac{2^2(n+1)^2}{(2n+3)(2n+2)} \times |x|^2 \underset{n \to +\infty}{\longrightarrow} |x|^2$$

▶ Si |x| < 1, alors $|x|^2 < 1$ et $\sum \frac{2^{2n+1}(n!)^2}{(2n+1)!} x^{2n+1}$ converge absolument. Donc R > 1.

▶ Si
$$|x| > 1$$
, alors $|x|^2 > 1$ et $\sum \frac{2^{2n+1}(n!)^2}{(2n+1)!}x^{2n+1}$ diverge grossièrement. Donc $R < 1$.

Ainsi, le rayon de convergence vaut bien R = 1, et il est strictement positif.

 \blacksquare Conclusion. L'équation différentielle (E) admet une unique solution h développable en série entière et s'annulant en 0, et elle est donnée par :

$$\forall x \in]-1,1[, h(x) = \sum_{n=0}^{+\infty} \frac{2^{2n+1}(n!)^2}{(2n+1)!} x^{2n+1}$$

3 Considérons le problème de Cauchy suivant sur I:

$$\begin{cases} y' - \frac{x}{1 - x^2}y &= \frac{2}{1 - x^2} \\ y(0) &= 0 \end{cases}$$

Les questions 1 et 2 permettent d'établir que les fonctions g et h sont toutes deux solutions de ce même problème de Cauchy.

Ainsi, par unicité au problème de Cauchy, il vient que g = h, ce qui permet de conclure que la fonction g est développable en série entière, et :

$$\forall x \in]-1,1[, \quad g(x) = \sum_{n=0}^{+\infty} \frac{2^{2n+1}(n!)^2}{(2n+1)!} x^{2n+1}$$

Sachant que f' = g et f(0) = 0, il vient par théorème d'intégration terme à terme que la fonction f est aussi développable en série entière, et pour tout $x \in I$:

$$f(x) = \int_0^x f'(t)dt = \int_0^x \sum_{n=0}^{+\infty} \frac{2^{2n+1}(n!)^2}{(2n+1)!} t^{2n+1}dt = \sum_{n=0}^{+\infty} \frac{2^{2n+1}(n!)^2}{(2n+1)!} \int_0^x t^{2n+1}dt$$

Ainsi,

$$\forall x \in]-1,1[, \quad (\operatorname{Arcsin} x)^2 = \sum_{n=0}^{+\infty} \frac{2^{2n+1}(n!)^2}{(2n+2)!} x^{2n+2}$$

Exercices

EXERCICE 31.1

On considère la fonction F définie sur \mathbb{R} par :

$$F(x) = e^{-x^2} \int_0^x e^{t^2} dt$$

- a. Justifier que F est développable en série entière sur \mathbb{R} .
 - **b.** Déterminer son développement en série entière.
- **a.** Montrer que F est solution sur \mathbb{R} de l'équation différentielle (E) suivante :

$$y'(x) = -2xy(x) + 1$$

- **b.** À l'aide de l'équation (E), déterminer le développement en série entière de F.
- En déduire que pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k} = \frac{4^n}{(2n+1)\binom{2n}{n}}$$

⊃ Source : d'après écrit Banque PT 2017

Pour vous aider à démarrer

EXERCICE 31.1

- b. Reconnaître un produit de Cauchy.
- Invoquer l'unicité du développement en série entière de F.

Solutions des exercices

EXERCICE 31.1

Sachant que la fonction $x \mapsto e^x$ est développable en série entière sur \mathbb{R} , il vient que

les fonctions $x\mapsto \mathrm{e}^{x^2}$ et $x\mapsto \mathrm{e}^{-x^2}$ le sont aussi. Ensuite, par théorème d'intégration terme à terme, la fonction $x\mapsto \int_0^x \mathrm{e}^{t^2}\mathrm{d}t$ est développable en série entière sur \mathbb{R} .

Ainsi, la fonction F est développable en série entière sur \mathbb{R} , en tant que produit de fonctions qui le sont.

b. Calculons pour tout $x \in \mathbb{R}$:

$$\begin{split} F(x) &= \mathrm{e}^{-x^2} \int_0^x \mathrm{e}^{t^2} \mathrm{d}t \\ &= \left(\sum_{n=0}^{+\infty} \frac{(-x^2)^n}{n!} \right) \times \int_0^x \left(\sum_{n=0}^{+\infty} \frac{t^{2n}}{n!} \right) \mathrm{d}t \\ &= \left(\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{n!} \right) \left(\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{n!(2n+1)} \right) \\ &= x \left(\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} (x^2)^n \right) \left(\sum_{n=0}^{+\infty} \frac{1}{n!(2n+1)} (x^2)^n \right) \\ &= x \times \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n \frac{1}{k!(2k+1)} \underbrace{(-1)^{n-k}}_{b_{n-k}} \right) (x^2)^n \\ &= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n \frac{(-1)^{n-k}}{(2k+1)n!} \times \frac{n!}{k!(n-k)!} \right) x^{2n+1} \end{split}$$

Ainsi, le développement en série entière de F est donné par :

$$\forall x \in \mathbb{R}, \quad F(x) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{(-1)^{n-k}}{(2k+1)n!} \binom{n}{k} \right) x^{2n+1}$$

2 a. La fonction F est dérivable sur \mathbb{R} en tant que produit de fonctions qui le sont. De plus,

$$\forall x \in \mathbb{R}, \quad F'(x) = -2xe^{-x^2} \int_0^x e^{t^2} dt + e^{-x^2} e^{x^2} = -2xF(x) + 1$$

Ainsi, la fonction F est solution sur \mathbb{R} de l'équation différentielle (E).

b. Comme F est développable en série entière sur \mathbb{R} , il existe une suite $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ telle que pour tout $x\in\mathbb{R}$:

$$F(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Sachant que F est solution de (E) sur \mathbb{R} , on a alors les équivalences suivantes :

$$\forall x \in \mathbb{R}, \qquad F'(x) = -2xF(x) + 1$$

$$\iff \forall x \in \mathbb{R}, \qquad \sum_{n=1}^{+\infty} na_n x^{n-1} = -2\sum_{n=0}^{+\infty} a_n x^{n+1} + 1$$

$$\iff \forall x \in \mathbb{R}, \qquad \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n = -2\sum_{n=1}^{+\infty} a_{n-1}x^n + 1$$

$$\iff \forall x \in \mathbb{R}, \qquad \underbrace{a_1 + \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n}_{n=0} = 1 + \sum_{n=1}^{+\infty} (-2a_{n-1})x^n$$

Par unicité du développement en série entière, il vient alors :

$$\begin{cases} a_1 = 1 \\ \forall n \ge 1, (n+1)a_{n+1} = -2a_{n-1} \end{cases} \iff \begin{cases} a_1 = 1 \\ \forall n \ge 2, a_n = -\frac{2}{n} \times a_{n-2} \end{cases}$$

Or la fonction F vérifie la condition initiale F(0)=0 i.e. $a_0=0$, donc par applications itérées de $(\star\star)$, il vient que : $\forall p\geq 0,\ a_{2p}=0$.

Toujours par applications itérées de $(\star\star)$, on en déduit que pour tout $p\geq 1$:

$$a_{2p+1} = \frac{(-2)^1}{2p+1} \times a_{2p-1} = \frac{(-2)^2}{(2p+1)(2p-1)} \times a_{2p-3}$$
$$= \cdots = \frac{(-2)^p}{(2p+1)(2p-1) \times \cdots \times 3} \times a_1 = \frac{(-1)^p 4^p p!}{(2p+1)!}$$

La formule établie ci-dessus reste encore vraie pour p=0. Ainsi, le développement en série entière de F est donné par :

$$\forall x \in \mathbb{R}, \quad F(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n 4^n n!}{(2n+1)!} x^{2n+1}$$

3 Par unicité du développement en série entière de la fonction F, il vient alors :

$$\forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} \frac{(-1)^{n-k}}{(2k+1)n!} \binom{n}{k} = \frac{(-1)^n 4^n n!}{(2n+1)!}$$

Sachant que $(-1)^{-k} = (-1)^k$ pour tout $k \in \mathbb{N}$, il vient alors :

$$\forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k} = \frac{4^n}{2n+1} \times \frac{(n!)^2}{(2n)!} = \frac{4^n}{(2n+1)\binom{2n}{n}}$$