Relazione di Laboratorio 2 Esperienza A5 A.A. 2023/2024

Luciano Leotta Matricola 556372

09/01/2024

1 Cenni teorici

Lo scopo dell'esperienza è determinare le funzioni di trasferimento di filtro RC passa-banda e frequenze di taglio del filtro. Un filtro è un particolare circuito che attenua il segnale a partire da una certa frequenza. Se attenua i segnali sotto una determinata frequenza si denota come filtro passa-alto se attenua sopra una determinata frequenza si denota come filtro passa-basso. La combinazione di un filtro passa-basso e passa-alto è denominato filtro passa-banda, ed è possibile costruirlo come nella seguente figura:

Figure 1: Circuito filtro passa-banda

Risolvendo il circuito si ha, per la prima legge di Kirchoff:

$$I_{C_1} = I_{R_1} + I_{R_2} (1.1)$$

Figure 2: Correnti presenti nel circuito

Posto $s = j\omega$:

$$I_{C_1} = \frac{V_i - V_1}{\frac{1}{sC_1}} = sC_1(V_i - V_1)$$
(1.2)

$$I_{R_1} = \frac{V_1}{R_1} \tag{1.3}$$

$$IR_2 = \frac{V_1}{R_2 + \frac{1}{sC_2}} \tag{1.4}$$

Inserendo 1.2, 1.3 e 1.4 nella 1.1, si ottiene:

$$sC_1(V_i - V_1) = \frac{V_1}{R_1} + \frac{V_1}{R_2 + \frac{1}{sC_2}}$$
(1.5)

Da cui:

$$V_{1} = \frac{sC_{1}V_{i}}{\frac{1}{R_{1}} + \frac{1}{R_{2} + \frac{1}{sC_{2}}} + sC_{1}} = \frac{V_{i}}{\frac{1}{sR_{1}C_{1}} + \frac{1}{sC_{1}\left(R_{2} + \frac{1}{sC_{2}}\right)} + 1} = \frac{V_{i}}{1 + \frac{1}{sR_{1}C_{1}} + \frac{C_{2}}{C_{1}(1 + sR_{2}C_{2})}}$$
(1.6)

Dunque sostituendo ad $s = j\omega$:

$$A = \frac{V_o}{V_i} = \frac{1}{(1 + j\omega R_2 C_2) \left(1 + \frac{1}{j\omega R_1 C_1} + \frac{C_2}{C_1(1 + j\omega R_2 C_2)}\right)}$$
(1.7)

Per $C_1 >> C_2$ è possibile usare il modello approssimato:

$$\frac{1}{(1+j\omega R_2 C_2)\left(1+\frac{1}{j\omega R_1 C_1}\right)} \tag{1.8}$$

Calcolandone il modulo:

$$|A(\omega)| = \frac{\omega R_1 C_1}{\sqrt{1 + \omega^2 R_1^2 C_1^2} \sqrt{1 + \omega^2 R_2^2 C_2^2}}$$
(1.9)

2 Strumenti e metodo di misura

Per eseguire l'esperimento sono stati utilizzati i seguenti strumenti:

- Oscilloscopio Rigol DS1102e
- Tester Proster BM4070
- Breadbord
- Resistenze dal valore nominale di 5600Ω e 560Ω
- Condensatori da capacità nominale di 22nF e $0.6\mu F$
- Sonda compensata
- Generatore di segnali Rigol DG1022
- Cavo BNC-BNC e BNC-Coccodrillo
- T-BNC

Per eseguire l'esperimento è stato costruito il circuito come in figura 1. Le resistenze e le capacità utilizzate per la costruzione del circuito sono state misurate utilizzando il tester Proster. É stato sdoppiato un segnale sinusoidale inviato da un generatore di segnali Rigol tramite un T-BNC. Uno dei segnali è stato inviato direttamente ad un canale dell'oscilloscopio Rigol tramite un cavo BNC-BNC, il secondo inviato in ingresso al circuito. É stato prelevato il segnale di uscita ai capi del condensatore C_2 con una sonda compensata al fine di ottenere una misura precisa della tensione in uscita. La sonda è stata dunque collegata al secondo canale dell'oscilloscopio per visualizzare tale segnale. Utilizzando le funzioni di misura dell'oscilloscopio sono stati determinati i potenziali di ingresso ed uscita del segnale inviato al circuito e la sua differenza di fase con il segnale originale.

3 Analisi dati

I valori misurati dei componenti del circuito sono:

- $R_1 = (5550 \pm 49)\Omega$
- $R_2 = (548 \pm 5)\Omega$
- $C_1 = (550 \pm 15)nF$
- $C_2 = (20.9 \pm 0.7)nF$

Tali valori sono stati misurati utilizzando il tester Proster e le incertezze sono, dunque, state determinate seguendo le indicazioni fornite dal manuale dello strumento di misura. I dati raccolti sono:

Dati								
$V_{pp1}(V)$	$\Delta V_{pp1}(V)$	$V_{pp2}(V)$	$\Delta V_{pp2}(V)$	$\nu(Hz)$	$\Delta\nu(Hz)$			
5.12	0.18	0.134	0.005	1.00000	0.00005			
5.12	0.18	0.256	0.009	2.00000	0.00010			
5.12	0.18	0.64	0.03	5.00000	0.00025			
5.12	0.18	1.22	0.04	10.00000	0.00050			
5.12	0.18	2.24	0.08	20.00000	0.00100			
5.12	0.18	2.96	0.13	30.00000	0.00150			
5.12	0.18	3.52	0.15	42.00000	0.00210			
5.12	0.18	3.60	0.15	43.00000	0.00215			
5.12	0.18	3.60	0.15	44.00000	0.00220			
5.12	0.18	3.60	0.15	45.00000	0.00225			
5.12	0.18	3.68	0.15	46.00000	0.00230			
5.12	0.18	3.68	0.15	47.00000	0.00235			
5.12	0.18	3.68	0.15	48.00000	0.00240			
5.12	0.18	3.76	0.15	49.00000	0.00245			
5.12	0.18	3.84	0.13	50.00000	0.00250			
5.12	0.18	3.84	0.15	51.00000	0.00255			
5.12	0.18	3.92	0.15	52.00000	0.00260			
5.12	0.18	3.92	0.15	53.00000	0.00265			
5.12	0.18	4.56	0.17	100.000	0.005			
5.12	0.18	4.88	0.18	200.000	0.010			
5.12	0.18	4.96	0.18	500.000	0.025			
5.12	0.18	4.96	0.18	1000.00	0.05			
5.12	0.18	4.88	0.18	2000.00	0.10			
5.12	0.18	4.64	0.17	5000.00	0.25			
4.96	0.18	3.84	0.15	10000.00	0.50			
4.96	0.18	3.76	0.15	11000.00	0.55			
4.88	0.18	3.60	0.15	12000.00	0.60			
4.88	0.18	3.52	0.15	13000.00	0.65			
4.88	0.18	3.36	0.14	14000.00	0.70			
4.88	0.18	3.12	0.14	16000.00	0.80			
4.88	0.18	2.96	0.13	17000.00	0.85			
4.88	0.18	2.96	0.13	18000.00	0.90			
4.88	0.18	2.80	0.13	19000.00	0.95			
4.88	0.18	2.80	0.13	20000	1			
4.72	0.17	1.28	0.06	50000	3			
4.72	0.17	0.68	0.03	100000	5			
4.72	0.17	0.36	0.03	200000	10			
4.72	0.17	0.132	0.006	500000	25			
4.72	0.17	0.066	0.003	1000000	50			
4.72	0.17	0.033	0.001	2000000	100			

D.C.	1.	C
Differenza	dı	tase

1 (0)	A //(0)	(11	A / TT)
φ(°)	$\Delta\phi(^{\circ})$	$\nu(Hz)$	$\Delta\nu(Hz)$
-89	2	1.00000	0.00005
-86	2	2.00000	0.00010
-79	2	5.00000	0.00025
-72	2	10.00000	0.00050
-69	2	20.00000	0.00100
-52	2	30.00000	0.00150
-48	2	42.00000	0.00210
-45	2	43.00000	0.00215
-44	2	44.00000	0.00220
-43	2	45.00000	0.00225
-43	2	46.00000	0.00230
-41	2	47.00000	0.00235
-41	2	48.00000	0.00240
-38	2	49.00000	0.00245
-37	2	50.00000	0.00250
-38	2	51.00000	0.00255
-37	2	52.00000	0.00260
-37	2	53.00000	0.00265
-28	2	100.000	0.005
-14	2	200.000	0.010
0	2	500.000	0.025
0	2	1000.00	0.05
0	2	2000.00	0.10
14	2	5000.00	0.25
30	2	10000.00	0.50
32	2	11000.00	0.55
35	2	12000.00	0.60
39	2	13000.00	0.65
42	2	14000.00	0.70
46	2	16000.00	0.80
49	2	17000.00	0.85
51	2	18000.00	0.90
53	2	19000.00	0.95
60	2	20000	1
72	2	50000	3
80	2	100000	5
86	2	200000	10
86	2	500000	25
90	2	1000000	50
90	2	2000000	100
			I

- Le incertezze su V_{pp1} e su V_{pp2} sono state valutate utilizzando le indicazioni fornite dal manuale dell'oscilloscopio Rigol.
- Le incertezze su ν sono state valutate secondo le indicazioni fornite dal costruttore del generatore di segnali Rigol.
- Le incertezze sulla fase sono state valutate osservando che la misura di fase effettuata dall'oscilloscopio "oscillava" di $\pm 2^{\circ}$.

Figure 3: Diagramma di Bode per la differenza di fase in funzione delle frequenza

Poiché $A = \frac{V_{pp2}}{V_{pp1}}$ si ha:

Attenuazione						
A	ΔA	$\nu(Hz)$	$\Delta \nu(Hz)$			
0.026	0.001	1.00000	0.00005			
0.050	0.003	2.00000	0.00010			
0.125	0.008	5.00000	0.00025			
0.24	0.01	10.00000	0.00050			
0.44	0.02	20.00000	0.00100			
0.58	0.03	30.00000	0.00150			
0.69	0.04	42.00000	0.00210			
0.70	0.04	43.00000	0.00215			
0.70	0.04	44.00000	0.00220			
0.70	0.04	45.00000	0.00225			
0.72	0.04	46.00000	0.00230			
0.72	0.04	47.00000	0.00235			
0.72	0.04	48.00000	0.00240			
0.73	0.04	49.00000	0.00245			
0.75	0.04	50.00000	0.00250			
0.75	0.04	51.00000	0.00255			
0.77	0.04	52.00000	0.00260			
0.77	0.04	53.00000	0.00265			
0.89	0.05	100.000	0.005			
0.95	0.05	200.000	0.010			
0.97	0.05	500.000	0.025			
0.97	0.05	1000.00	0.05			
0.95	0.05	2000.00	0.10			
0.91	0.05	5000.00	0.25			
0.77	0.04	10000.00	0.50			
0.76	0.04	11000.00	0.55			
0.74	0.04	12000.00	0.60			
0.72	0.04	13000.00	0.65			
0.69	0.04	14000.00	0.70			
0.64	0.04	16000.00	0.80			
0.61	0.04	17000.00	0.85			
0.61	0.04	18000.00	0.90			
0.57	0.03	19000.00	0.95			
0.57	0.03	20000	1			
0.27	0.02	50000	3			
0.144	0.009	100000	5			
0.076	0.006	200000	10			
0.028	0.002	500000	25			
0.014	0.001	1000000	50			

0.0069 0.0004

Le incertezze sull'attenuazione sono state determinate secondo la formula:

$$\Delta A = \sqrt{\left(\frac{\partial A}{\partial V_{pp1}} \Delta V_{pp1}\right)^2 + \left(\frac{\partial A}{\partial V_{pp2}} \Delta V_{pp2}\right)^2}$$
(3.1)

Per verificare che i dati sperimentali siano compatibili con il modello 1.9 è stato eseguito il calcolo del χ^2 così definito:

$$\chi^2 = \sum_{i=1}^{N} \frac{(y_i - F(x_i))^2}{\sigma_{y_i}^2}$$
 (3.2)

dove gli y_i sono i valori della variabile dipendente misurata, gli $F(x_i)$ sono i valori previsti dal modello, gli x_i sono i valori misurati della variabile indipendente, i σ_{y_i} sono gli errori associati alla variabile dipendente ed N il numero di valori misurati.

Tale calcolo ha prodotto un $\chi^2 = 155$. Introducendo il chi quadro ridotto:

$$\chi_r^2 = \frac{\chi^2}{n} \tag{3.3}$$

con n il numero di gradi di libertà del χ^2 , si ha: $\chi^2_r=4.2$, in quanto nel caso analizzato si hanno 37 gradi di libertà.

Grafico

Figure 4: Confronto dati sperimentali e modello

4 Conclusioni

Poiché si è ottenuto un $\chi_r^2 = 4.2$ possiamo concludere che i dati sperimentali ottenuti sono compatibili con il modello 1.9. Dunque è possibile determinare graficamente le frequenze di taglio del filtro (valutate a -3db) per i dati sperimentali:

- $\nu_1 = (46 \pm 3) Hz$
- $\nu_2 = (13000 \pm 1000) Hz$

Le frequenze previste dal modello sono (vedasi appendice A):

- $\nu_1 = 51.75 Hz$
- $\nu_2 = 14000 Hz$

Grafico

Figure 5: Frequenze di taglio

Si noti come ν_2 sia in accordo con il valore teorico previsto, al contrario di ν_1 , il quale valore teorico non rientra nel range dell'incertezza sulla misura, sebbene i due valori siano

paragonabili. Tale discordanza potrebbe essere dovuta all'impedenza di uscita del generatore di funzioni Rigol, non presa in considerazione nell'analisi circuitale, oppure a delle resistenze spurie introdotte dai cavi di collegamento o a dei collegamenti non ottimali dei componenti con la breadboard.

5 Bibliografia

- Slide A.A. 2023/2024, Professore F. Neri, Università degli Studi di Messina
- Mazzoldi; Nigro; Voci, Fisica 2, EdiSES
- Documentazione root: https://root.cern/doc/v628/

Appendix A Calcolo frequenze di taglio con Maple

$$Ap := \frac{1}{\left(1 \text{ K } \frac{327.6003276 \text{ I}}{w^{\sim}}\right) \left(1 + 0.00001145320000 \text{ I } w^{\sim}\right)}$$

$$wpcut := 325.1692643, 87964.61257$$

$$fpcut := \frac{325.1692643, 87964.61257}{2 \pi}$$

$$51.7525, 14000.0$$