Chapter 1. 1st order ODE

- 1. Basic concepts: Modeling
- 2. Separable ODE
- 3. Integrating factors
- 4. Linear ODE
- 5. Orthogonal trajectories

공업수학-1. 1. 1st-order ODE

Introduction: Modeling

- Solving scientific problems
 - The typical steps in solving scientific problems:
 - Step 1. Modeling: set up a mathematical expression for a physical phenomenon
 - Step 2. Solving: solve the mathematical equations
 - Step 3. Physical interpretation of differential equations and their applications
- Types of equations
 - \vee Algebraic equation: $ax^2 + bx + c = 0$
 - \vee Differential equation: $\frac{dy}{dx} + ay = f(x)$
 - \vee Difference equation: $f_{n+2} = f_{n+1} + f_n$

Introduction: Modeling

- Falling stone, y''=g where y is the displacement and $g=9.8\,[^m/_{S^2}]$ is constant (중력 가속도).
- Parachute, $mv' = mg bv^2$ where v is the velocity.
- Vibrating mass on a spring, my'' + ky = 0where y is the displacement, m is mass, and k > 0 is the spring constant.
- RLC series circuit, $Li'' + Ri' + \frac{1}{c}i = v$ where i is the current and v is the source.
- Pendulum, $L\theta'' + g \cdot \sin \theta = 0$ v where θ is the angle.

공업수학-1. 1. 1st-order ODE 1-3

Types of Differential Eqns.

- Differential Equation : An equation containing derivatives of an unknown function
 - v Ordinary Differential Equation (ODE, 상미분 방정식): An equation that contains one or several derivatives (도함수) of an unknown function of one independent variable

$$+ \frac{dy}{dx} = \cos x, \frac{d^2y}{dx^2} + 9y = e^{-2x}, y'y^{(3)} - \frac{3}{2}(y')^2 = 0$$

v Partial Differential Equation (PDE, 편미분 방정식): An equation involving partial derivatives of an unknown function of two or more variables

†
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 (2D Laplace equation), $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ (1D wave equation)

Basic Notations

- Order, 계: The highest derivative of the unknown function
 - ① $\frac{dy}{dx} = \cos x$... 1st-order (1月)
 - ② $\frac{d^2y}{dx^2} + 9y = e^{-2x} \dots 2^{\text{nd}}$ -order
 - ③ $y'y^{(3)} \frac{3}{2}(y')^2 = 0$... 3rd-order
- First-order ODE (1계 상미분 방정식): Equation contain only the 1st derivative y' and may contain y and any given functions of x.
 - ① Explicit form: $\frac{dy}{dx} = f(x, y)$
 - ② Implicit (음함수) form: F(x, y, y') = 0

공업수학-1. 1. 1st_order ODE 1-5

Basic Notations

- Solution : Functions that make the equation hold true
 - v General solution (일반해): a solution containing an arbitrary constant
 - v Particular solution (특수해): a solution that we choose a specific constant
 - v Singular Solution(Problem 16, 특이해): an additional solution that cannot be obtained from the general solution
- Example: $(y')^2 xy' + y = 0$
 - \vee General solution: $y = cx c^2$, where c is a constant.
 - \vee Particular solution: y = 2x 4
 - \vee Singular solution: $y = \frac{x^2}{4}$

Initial value problem

• An ordinary differential equation together with specified value of the unknown function at a given point in the domain of the solution.

$$\forall y' = f(x, y), \ y(x_0) = y_0$$

- Example: $\frac{dy}{dx} = 3y$, y(0) = 5.7
 - 1. Find the general solution: $y(x) = ce^{3x}$, where c is a constant.
 - 2. Apply the initial condition: y(0) = c = 5.7, so that the particular solution is $y(x) = 5.7e^{3x}$

공업수학-1. 1. 1st-order ODE 1-7

Initial value problem

- Example Given an amount of a radioactive substance, say 0.5 g(gram), find the amount present at any later time
 - Physical information: Experiments show that at each instant a radioactive substance decomposes at a rate proportional to the amount present.
 - v Step 1: Setting up a mathematical model(a differential equation) of the physical process.
 - $\vee \frac{dy}{dt} = ky$, k constant, with y(0) = 0.5
 - v Step 2: Mathematical solution
 - † General solution: $y(t) = ce^{kt}$
 - † Particular solution: y(0) = c = 0.5, so that $y(t) = 0.5e^{kt}$, $t \ge 0$
 - † Check: $\frac{dy}{dt} = 0.5ke^{kt} = ky(t)$
 - \vee Step 3: Interpretation: $\lim_{t\to\infty} y(t) = 0$

공업수학-1. 1. 1st-order ODE 1-8

4

Direction Field

- Geometric meaning of y' = f(x, y)
- Direction field: The graph includes pairs of grid points and line segments that the line segment at grid point coincides with the tangent line to the solution.
 - v We can understand the solution without actually solving the ODE.
 - The method shows the whole family of solutions and their typical properties.

The direction (slope) field of $\frac{dy}{dx} = x^2 - x - 2$, with the blue, red, and turquoise lines being $\frac{x^3}{3} - \frac{x^2}{2} - 2x + 4$, $\frac{x^3}{3} - \frac{x^2}{2} - 2x$, and $\frac{x^3}{3} - \frac{x^2}{2} - 2x - 4$, respectively

공업수학-1. 1. 1st-order ODE

1-9

Separable ODE

- Separable ODE, 변수 분리형, 혹은 분리 상미방
 - ∨ A differential equation to be separable if the ODE has the following form:

$$\vee g(y) \frac{dy}{dx} = f(x)$$

† $g(y)dy = f(x)dx \Rightarrow \int g(y)dy = \int f(x)dx + c$, c constant

• Example 1.3.1 $y' = 1 + y^2$

$$\vee \frac{dy}{1+y^2} = dx \Rightarrow \int \frac{dy}{1+y^2} = \int dx + c$$

 $\vee \tan^{-1} y = x + c$ or $y = \tan(x + c)$

공업수학-1. 1. 1st-order ODE

1-10

Separable ODE

• Example 1.3.2
$$y' = (x+1)e^{-x}y^2$$

$$\frac{dy}{y^2} = (x+1)e^{-x}dx \Rightarrow \int \frac{dy}{y^2} = \int (x+1)e^{-x}dx + c$$

$$-\frac{1}{y} = -(x+2)e^{-x} + c$$

$$\frac{d}{dx}(x^n e^{ax}) = nx^{n-1}e^{ax} + ax^n e^{ax}$$

$$\int x^n e^{ax} dx = \frac{1}{a}x^n e^{ax} - \frac{n}{a}\int x^{n-1}e^{ax} dx$$

• Example 1.3.3 y' = -2xy, y(0) = 1.8 $\frac{dy}{y} = -2xdx \Rightarrow \ln y = -x^2 + c \Rightarrow y = e^{-x^2 + c} = ke^{-x^2}$ y(0) = k = 1.8 and $y = 1.8e^{-x^2}$

공업수학-1. 1. 1st-order ODE

1-11

Separable ODE

• Example 1.3.4 y' = ky, $y(0) = y_0$ (radiocarbon dating)

$$\vee \frac{dy}{y} = kdx \Rightarrow \ln y = kx + c \Rightarrow y = y_0 e^{kx}$$

 $\forall y' = ky$: 도함수와 원래의 함수 모습이 같다.

- † 이러한 특성을 갖는 유일한 함수는 지수함수이다.
- † Guess $y(x) = e^{ax}$: $ae^{ax} = ke^{ax} \Rightarrow a = k$, so that $y(x) = e^{ax}$ is a solution.

† If $y(x) = e^{ax}$ is a solution, $y(x) = be^{ax}$ is also a occurrence solution.

공업수학-1. 1. 1st-order ODE

1-12

Separable ODE

- Example 1.3.5 (Mixing problem: pollutants in lake and drugs in organs)
 - \lor A chemical tank contains 1000 [gal] of water in which initially 100 [lb] of salt is dissolved. Brine (全금물) runs in at a rate of 10 [gal/min], and each gallon contains 5 [lb] of dissolved salt. The mixture in the tank is kept uniform by stirring. Brine runs out at 10 [gal/min]. Find the amount of salt in the tank at any time t, say y(t).
 - v Balance law: Salt's time rate of change, $\frac{dy}{dt}$ = Salt inflow rate Salt outflow rate
 - † Salt inflow rate = 10 [gal/min] × 5 [lb/gal] = 50 [lb/min]
 - † Salt outflow rate = 10 [gal/min] $\times \frac{y}{1000}$ [lb/gal] = $\frac{y}{100}$ [lb/min]

$$y' = 50 - 0.01y = -0.01(y - 5000), y(0) = 100$$

$$\frac{dy}{y - 5000} = -0.01dt \Rightarrow y(t) = 5000 - 4900e^{-0.01t}, \ t \ge 0$$
 (1) $y(t)$ increases with time (2) $\lim_{t \to \infty} y(t) = 5000$

공업수학-1. 1. 1st-order ODE 1-13

Separable ODE

- Certain first order equations that are not separable can be made separable by a simple change of variables.
 - v A homogeneous ODE, $y' = f\left(\frac{y}{x}\right)$, can be reduced to separable form by the substitution of y = ux.

$$\vee \frac{dy}{dx} = \frac{du}{dx}x + u \Rightarrow u'x + u = f(u) \text{ or } \frac{du}{f(u) - u} = \frac{dx}{x} \text{ (assuming } f(u) - u \neq 0)$$

• Example 1.3.8 $2xyy' = y^2 - x^2$

 \vee Not separable: Given $y' = \frac{y}{2x} - \frac{x}{2y'}$ put y = ux or $u = \frac{y}{x}$ to get

$$u'x + u = \frac{u}{2} - \frac{1}{2u} \text{ or } \frac{2udu}{1+u^2} = -\frac{dx}{x}$$

$$\left(x - \frac{c}{2}\right)^2 + y^2 = \frac{c^2}{4}$$

Integrating Factors

• If a function u(x,y) has continuous partial derivatives, its differential is

$$\vee du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$

- † If u(x, y) = c, (c const.), then du = 0.
- † If $u(x,y) = x + x^2y^3 = c$, $du = (1 + 2xy^3)dx + 3x^2y^2dy = 0$ or $y' = -\frac{1+2xy^3}{3x^2y^2}$.
- The ODE, M(x,y)dx + N(x,y)dy = 0, is an exact (완전) DE, if the differential form M(x,y)dx + N(x,y)dy is exact, (i.e., $du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy$).

 \vee If exact, then the solution is u(x,y)=c (implicit form).

$$\vee \frac{\partial u}{\partial x} = M$$
 and $\frac{\partial u}{\partial y} = N$

imes Condition for exactness: $\frac{\partial M}{\partial y} = \frac{\partial^2 u}{\partial y \partial x} \equiv \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial N}{\partial x}$

1-15

Integrating Factors

• Exact ODE, M(x,y)dx + N(x,y)dy = 0, such that $\frac{\partial u}{\partial x} = M$ and $\frac{\partial u}{\partial y} = N$ with $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

$$\forall u(x,y) = \int Mdx + k(y) \text{ or } u(x,y) = \int Ndy + \ell(y)$$

• Example 1.4.1 $\cos(x + y) dx + (3y^2 + 2y + \cos(x + y)) dy = 0$

$$\vee$$
 Exact check: $\frac{\partial M}{\partial y} = -\sin(x+y)$ and $\frac{\partial N}{\partial x} = -\sin(x+y)$

$$u(x,y) = \int M dx + k(y) = \int \cos(x+y) dx + k(y) = \sin(x+y) + k(y)$$

$$\frac{\partial u}{\partial y} = \cos(x+y) + \frac{dk}{dy} = N(x,y) = 3y^2 + 2y + \cos(x+y) \Rightarrow \frac{dk}{dy} = 3y^2 + 2y$$

$$u(x,y) = \sin(x+y) + y^3 + y^2 = c$$
 Check: $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = 0$

공업수학-1. 1. 1st-order ODE 1-16

8

Integrating Factors

- Reduction to exact form, Integrating factors (적분인자)
 - v Some equations can be made exact by multiplication by some function, which is usually called the integrating factor.
 - v Given a non-exact ODE, P(x,y)dx + Q(x,y)dy = 0, $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x'}$ we want to find a function F, such that FPdx + FQdy = 0 is exact. Then the function F is an integrating factor.
- Example 1.4.4. -ydx + xdy = 0, not exact
 - v Choose $F = \frac{1}{x^2}$. Multiply F on both sides to get $-\frac{y}{x^2}dx + \frac{1}{x}dy = \frac{d}{dx}(\frac{y}{x}) = 0$ (exact).

$$\vee \frac{\partial}{\partial y} \left(-\frac{y}{x^2} \right) = -\frac{1}{x^2}$$
 and $\frac{\partial}{\partial x} \left(\frac{1}{x} \right) = -\frac{1}{x^2}$

공업수학-1. 1. 1st-order ODE 1-17

Integrating Factors: How to get?

- Given FPdx + FQdy = 0
 - \vee Exact condition: $\frac{\partial (FP)}{\partial y} = \frac{\partial (FQ)}{\partial x} \Rightarrow F_y P + F P_y = F_x + F Q_x$
 - † The integrating factor usually is a function of one variable.
 - † When F = F(x), $F_y = 0$ and $P + FP_y = F_x + FQ_x$.
 - † Divide both sides by FQ to get $\frac{1}{F} \cdot \frac{dF}{dx} = R$, where $R = \frac{1}{Q} \left(\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x} \right)$
- Integrating factor
 - \vee If R is a function of x only, $\exists F(x) = \exp(\int R(x)dx)$.
 - \vee If R is a function of y only, $\exists F(y) = \exp(\int R(y)dy)$, where $R = \frac{1}{P}(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y})$.

Integrating Factors

• Example. y' = ay or aydx - dy = 0

$$\vee P = ay$$
 and $Q = -1$. $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ (not exact)

$$\vee R = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = -a$$
 is constant and can be treated as a function of x only.

$$\vee$$
 Integrating factor, $F = \exp(\int R(x)dx) = \exp(\int -adx) = e^{-ax}$

$$\vee FPdx + FQdy = aye^{-ax}dx - e^{-ax}dy = \frac{d}{dx}(ye^{-ax}) = 0$$

† Given
$$M = aye^{-ax}$$
 and $N = -e^{-ax}$,

†
$$u = \int M dx + k(y) = \int aye^{-ax} dx + k(y) = -ye^{-ax} + k(y)$$

$$+\frac{\partial u}{\partial y} = -e^{-ax} + \frac{dk}{dy} = N \Rightarrow \frac{dk}{dy} = 0$$
 and $k(y) = c$ (const)

† Solution:
$$u(x, y) = 0$$
, $ye^{-ax} = c$ or $y = ce^{ax}$

공업수학-1. 1. 1st-order ODE

1-19

Integrating Factors

• Example 1.4.5. $(e^{x+y} + ye^y)dx + (xe^y - 1)dy = 0$, y(0) = -1

$$\vee P = e^{x+y} + ye^y$$
 and $Q = xe^y - 1$. $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ (not exact)

$$\vee R = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$
 is not a function of x only.

$$\vee R = \frac{1}{p} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) = \frac{1}{e^{x+y} + ye^y} (e^y - e^{x+y} - e^y - ye^y) = -1$$
 is a function of y only.

$$\vee$$
 Integrating factor: $F = \exp(\int R(y)dy) = \exp(\int (-1)dy) = e^{-y}$.

 \vee Multiply F on both sides to get $(e^x + y)dx + (x - e^{-y})dy = 0$ (exact).

$$u = \int Mdx + k(y) = e^x + xy + k(y)$$

$$\frac{\partial u}{\partial y} = x + \frac{dk}{dy} = N \Rightarrow \frac{dk}{dy} = -e^{-y}$$
 and $k(y) = e^{-y} + c$

$$\vee$$
 Solution: $u(x, y) = e^{x} + xy + e^{-y} + c = 0$

Linear ODEs

- Linear ODE vs. non-linear ODE (선형 vs. 비선형 미분방정식)
 - ∨ ODEs which is linear in both the unknown function and its derivatives.
 - † y' + p(x)y = r(x): Linear differential equation, r(x) ... input, y(x)
 - † $y' + p(x)y = r(x)y^2$: Non-linear differential equation
- Homogeneous vs. non-homogeneous ODE (제차 vs. 비제차 미분방정식)
 - \vee Homogeneous: y' + p(x)y = 0 (1계 제차 상미분 방정식)
 - † Solution: $\frac{dy}{y} = -p(x)$, $\ln y = -\int p(x)dx + c$, and $y(x) = a \cdot \exp(-\int p(x)dx)$
 - \vee Non-homogeneous: y' + p(x)y = r(x) or
 - † Integrating factor,

공업수학-1. 1. 1st-order ODE 1-21

Non-homogeneous Linear ODE

• y' + p(x)y = r(x)

$$\vee (py-r)dx + dy = 0$$
: $P = py - r$, $Q = 1$, and $\frac{\partial P}{\partial y} = p \neq 0 = \frac{\partial Q}{\partial x}$ (not exact)

$$\vee$$
 Integrating factor: $R = \frac{1}{\rho} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = p$ and $F(x) = \exp(\int R(x) dx) = e^{\int p dx} = e^{h(x)}$

 \vee Exact ODE: FPdx + FQdy = 0

† Choose an easier approach: $u = \int N dy + \ell(x) \Rightarrow u = y e^h + \ell(x)$

$$\frac{\partial u}{\partial x} = pe^h y + \frac{d\ell}{dx} = FP = e^h (py - r)$$

$$\frac{d}{dx} \left(e^{\int pdx} \right) = pe^{\int pdx} = pe^h$$

$$\frac{d\ell}{dx} = -re^h \text{ and } \ell(x) = -\int re^h dx + a$$

$$u = ye^h - \int re^h dx = c$$
, $\therefore y = e^{-h} \left(\int re^h dx + c \right)$, $h(x) = \int pdx$

공업수학-1. 1. 1st-order ODE 1-22

11

Non-homogeneous Linear ODE

• Example. $y' - y = e^{2x}$

$$\forall p(x) = -1 \text{ and } r(x) = e^{2x}$$

$$\vee h(x) = \int p dx = -x$$

$$\forall y(x) = e^{-h} (\int e^h r dx + c) = e^x (\int e^{-x} e^{2x} dx + c) = e^{2x} + ce^x$$

• Example 1.5.1. (RL series circuit) $i' + \frac{R}{L}i = \frac{v}{L'} v$... DC voltage

$$\forall p(t) = \frac{R}{L} \text{ and } r(t) = \frac{v}{L}$$

$$\vee h(t) = \frac{R}{L}t$$

$$\forall i(t) = e^{-Rt/L} \left(\frac{v}{L} \int e^{\frac{Rt}{L}} dt + c \right) = \frac{v}{R} + ce^{-Rt/L}$$

공업수학-1. 1. 1st-order ODE 1-23

Existence and Uniqueness of Solutions

• Theorem 1. Existence theorem

 \vee Given an ODE, y' = f(x, y), $y(x_0) = y_0$. Let f(x, y) be

- 1. continuous at all points (x, y) in the region, $R = \{(x, y): |x x_0| < a, |y y_0| < b\}$ and
- 2. bounded in R: i.e., $\exists K > 0$, such that $|f(x,y)| \le K$, $\forall (x,y) \in R$.

Then, the ODE has at least one solution.

• Theorem 2. Uniqueness theorem

Let f(x,y) and its partial derivative $\frac{\partial f}{\partial y}$ be continuous $\forall (x,y) \in R$ and bounded, say

(a)
$$|f(x,y)| \le K$$
, and (b) $\left| \frac{\partial f}{\partial y} \right| \le M$, $\forall (x,y) \in R$.

Then, the ODE has at most one solution.