Logistic Regression (Binary classification)

Datent	Panfrail		
Study hours	0/p {Bi	neny (ategories)	Da., 1
2	Foil	Shidy of	OJP PASSJFAEL
3	Fail	hours	
4	Fail		
5	Pass		Logistic Regranion
6	Pass	0 to 1	1/01/21/2 1/2010/10/10
٦	Pass		
12 A Pare	Pans	New Milwer Regreen	
1 Pass			0.5 => 0] 0.5 => 1 {
0 fair 2 3 4	* * * \$ (>	Shedy { 71 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	andl

Why we cannot use Lincer Regression for Clemification?

- 1) Outlier {But fit line Change}
- (2) >1 and <0 {Squess h ling}

$$J(\theta_0,\theta_1) = \frac{1}{2\pi} \sum_{i=1}^{m} \left(\frac{h_0(n)^{(i)} - y^{(i)}}{2} \right)^2 \frac{h_0(n)^{(i)}}{1 + \epsilon^{-2}} = \frac{1}{1 + \epsilon^{-2}} = \frac{1}{2\pi} \theta_0 + \theta_0 + \theta_0$$

$$\int_{0}^{\infty} \frac{h_0(n)^{(i)} - y^{(i)}}{2\pi} \int_{0}^{\infty} \frac{h_0(n)^{(i)} - y^{(i)}}{2\pi} dx$$

$$\int_{0}^{\infty} \frac{h_0(n)^{(i)} - y^{(i)}}{2\pi} \int_{0}^{\infty} \frac{h_0(n)^{(i)} - y^{(i)}}{2\pi} dx$$

$$\int_{0}^{\infty} \frac{h_0(n)^{(i)} - y^{(i)}}{2\pi} \int_{0}^{\infty} \frac{h_0(n)^{(i)} - y^{(i)}}{2\pi} \int_{0}^{$$

$$J(\theta_0, \theta_1) = -1 \sum_{\substack{i=1 \\ \text{dm } i=1}}^{m} \left(y^{(i)} \log \left(h_{\theta}(\mathbf{x})^{(i)}\right) - \left(1-y^{(i)}\right) \log \left(1-h_{\theta}(\mathbf{x})^{(i)}\right)$$

Minimize (08+ function $J(\theta_0,\theta_1)$ by changing $\theta_0 \ \theta_1$

Convergence Algoritum

Report
$$\begin{cases}
0; 0; -d \frac{\partial}{\partial j} J(\theta_0, \theta_1) \\
\frac{\partial}{\partial j} \frac{\partial}{\partial j}
\end{cases}$$