Lectures 01

P. Gutierrez

Department of Physics & Astronomy University of Oklahoma

Absorption Emission Spectra

Two ways of showing the same spectra: on the **left** are pictures of the dispersed light and on the **right** are plots of the intensity vs. wavelength. Notice that the pattern of spectral lines in the absorption and emission line spectra are the **same** since the gas is the same.

Black-Body Radiation

Photoelectric Effect

Electron Diffraction

Davisson and Germer

Franck Hertz Experiment

Light Polarization

Stern Gerlach Experiment

Apparatus

Result

Apparatus

Stern Gerlach Experiment Apparatus

Stern-Gerlach States

$$|S_z; +\rangle$$

$$|S_z; -\rangle$$

$$|S_x; +\rangle = \frac{1}{\sqrt{2}} [|S_z; -\rangle + |S_z; +\rangle]$$

$$|S_x; -\rangle = \frac{1}{\sqrt{2}} [|S_z; -\rangle - |S_z; +\rangle]$$

$$|S_y; +\rangle = \frac{1}{\sqrt{2}} [|S_z; +\rangle + i |S_z; -\rangle]$$

$$|S_y; -\rangle = \frac{1}{\sqrt{2}} [|S_z; +\rangle - i |S_z; -\rangle]$$

Stern-Gerlach States

$$\begin{split} |S_z;+\rangle \\ |S_z;-\rangle \\ \\ |S_x;+\rangle &= \frac{1}{\sqrt{2}} \left[|S_z;-\rangle + |S_z;+\rangle \right] \\ |S_x;-\rangle &= \frac{1}{\sqrt{2}} \left[|S_z;-\rangle - |S_z;+\rangle \right] \\ |S_y;+\rangle &= \frac{1}{\sqrt{2}} \left[|S_z;+\rangle + i |S_z;-\rangle \right] \\ |S_y;-\rangle &= \frac{1}{\sqrt{2}} \left[|S_z;+\rangle - i |S_z;-\rangle \right] \end{split}$$

Stern-Gerlach States

$$\begin{split} |S_z;+\rangle \\ |S_z;-\rangle \\ \\ |S_x;+\rangle &= \frac{1}{\sqrt{2}} \left[|S_z;-\rangle + |S_z;+\rangle \right] \\ |S_x;-\rangle &= \frac{1}{\sqrt{2}} \left[|S_z;-\rangle - |S_z;+\rangle \right] \\ |S_y;+\rangle &= \frac{1}{\sqrt{2}} \left[|S_z;+\rangle + i \; |S_z;-\rangle \right] \\ |S_y;-\rangle &= \frac{1}{\sqrt{2}} \left[|S_z;+\rangle - i \; |S_z;-\rangle \right] \end{split}$$

Linear Vector Space

Definition 1: A linear vector space $\mathbb V$ is a collection of objects of the form $|V\rangle$, called vectors, for which there exists:

- $\textbf{ A definite rule for forming the vector sum, denoted } |V\rangle + |W\rangle$
- 2 A definite rule for multiplication by scalars a denoted $a \mid V \rangle$ with the following features:
 - The results of these operations is another element of the space, a feature called closure:
 |V⟩ + |W⟩ ∈ V and a |V⟩ ∈ V.
 - Scalar multiplication is distributive in the vectors: $a(|V\rangle + |W\rangle) = a|V\rangle + a|W\rangle$.
 - Addition is commutative: $|V\rangle + |W\rangle = |W\rangle + |V\rangle$.
 - Addition is associative: $|V\rangle + (|W\rangle + |Z\rangle) = (|V\rangle + |W\rangle) + |Z\rangle$
 - There exits a null vector $|0\rangle$ obeying $|V\rangle + |0\rangle = |V\rangle$
 - For every vector $|V\rangle$ there exists an inverse under addition, $|-V\rangle$, such that $|V\rangle+|-V\rangle=|0\rangle$

Linear Vector Space

Definition 2: The numbers a are called the field over which the vector space is defined.

If the field consists of all real numbers, we have a real vector space, if they are complex, we have a complex vector space. Note, the vectors are neither real nor complex, the adjective applies only to the scalars.

Dual Vector Space

- $\langle \alpha | \stackrel{\mathsf{DC}}{\Longleftrightarrow} | \alpha \rangle$
- $c^* \langle \alpha | \stackrel{\mathsf{DC}}{\Longleftrightarrow} c | \alpha \rangle$
- Inner product $\langle \alpha | \beta \rangle =$ Complex Number
- Orthognal $\langle \alpha | \beta \rangle = 0$
- Normalization $\langle \alpha | \alpha \rangle = 1$
- Postulates:

 - $\langle \alpha | \alpha \rangle \geq 0$
- Operators (in general) $\tilde{\mathbf{X}} \mid \alpha \rangle \neq \langle \alpha \mid \tilde{\mathbf{X}}$
 - $\tilde{\mathbf{X}} |\alpha\rangle = |\beta\rangle$
 - $\langle \alpha | \tilde{\mathbf{X}} = \langle \gamma |$
 - $\langle \alpha | \tilde{\mathbf{X}}^{\dagger} \stackrel{\mathsf{DC}}{\Longleftrightarrow} \tilde{\mathbf{X}} | \alpha \rangle$
 - In general $\tilde{\mathbf{X}}\tilde{\mathbf{Y}} \neq \tilde{\mathbf{Y}}\tilde{\mathbf{X}}$
 - $\mathbf{X} = |\alpha\rangle\langle\beta|$

Dual Vector Space

- $\langle \alpha | \stackrel{\mathsf{DC}}{\Longleftrightarrow} | \alpha \rangle$
- $c^* \langle \alpha | \stackrel{\mathsf{DC}}{\Longleftrightarrow} c | \alpha \rangle$
- Inner product $\langle \alpha | \beta \rangle =$ Complex Number
- Orthognal $\langle \alpha | \beta \rangle = 0$
- Normalization $\langle \alpha | \alpha \rangle = 1$
- Postulates:
 - $\langle \alpha | \beta \rangle = \langle \beta | \alpha \rangle^*$
 - $\langle \alpha | \alpha \rangle \geq 0$
- Operators (in general) $\tilde{\mathbf{X}} \mid \alpha \rangle \neq \langle \alpha \mid \tilde{\mathbf{X}}$
 - $\tilde{\mathbf{X}} |\alpha\rangle = |\beta\rangle$
 - $\langle \alpha | \tilde{\mathbf{X}} = \langle \gamma |$
 - $\langle \alpha | \tilde{\mathbf{X}}^{\dagger} \stackrel{\mathsf{DC}}{\Longleftrightarrow} \tilde{\mathbf{X}} | \alpha \rangle$
 - In general $\tilde{X}\tilde{Y} \neq \tilde{Y}\tilde{X}$
 - $\mathbf{X} = |\alpha\rangle\langle\beta|$

Dual Vector Space

- $\langle \alpha | \stackrel{\mathsf{DC}}{\Longleftrightarrow} | \alpha \rangle$
- $c^* \langle \alpha | \stackrel{\mathsf{DC}}{\Longleftrightarrow} c | \alpha \rangle$
- Inner product $\langle \alpha | \beta \rangle =$ Complex Number
- Orthognal $\langle \alpha | \beta \rangle = 0$
- Normalization $\langle \alpha | \alpha \rangle = 1$
- Postulates:
 - $\langle \alpha | \beta \rangle = \langle \beta | \alpha \rangle^*$
 - $\langle \alpha | \alpha \rangle \geq 0$
- Operators (in general) $\tilde{\mathbf{X}} \mid \alpha \rangle \neq \langle \alpha \mid \tilde{\mathbf{X}}$
 - $\tilde{\mathbf{X}} |\alpha\rangle = |\beta\rangle$
 - $\langle \alpha | \tilde{\mathbf{X}} = \langle \gamma |$
 - $\langle \alpha | \tilde{\mathbf{X}}^{\dagger} \stackrel{\mathsf{DC}}{\Longleftrightarrow} \tilde{\mathbf{X}} | \alpha \rangle$
 - In general $\tilde{\mathbf{X}}\tilde{\mathbf{Y}} \neq \tilde{\mathbf{Y}}\tilde{\mathbf{X}}$
 - $\tilde{\mathbf{X}} = |\alpha\rangle\langle\beta|$

Matrix Representation

•
$$\tilde{\mathbf{A}} = \sum_{ij} |a_i\rangle\langle a_i| \tilde{\mathbf{A}} |a_j\rangle\langle a_j| = \sum_{ij} \langle a_i |\tilde{\mathbf{A}} |a_j\rangle |a_i\rangle\langle a_j|$$

- Matrix elements $\left\langle a_i \left| \tilde{\mathbf{A}} \right| a_j \right\rangle = \left\langle \mathsf{row} \left| \tilde{\mathbf{A}} \right| \mathsf{column} \right\rangle$
 - ullet In it's own basis matrix is diagonal $\left\langle a_i \left| ilde{\mathbf{A}} \right| a_j
 ight
 angle = a_j \delta_{ij}$
- State can be expressed as a column vector; $|\alpha\rangle = \sum_i |a_i\rangle\langle a_i| \ |\alpha\rangle$
- Matrix elements $\langle a_i | \alpha \rangle$
- Matrix multiplication

$$\tilde{\mathbf{A}} |\alpha\rangle = \sum_{ij} |a_i\rangle\langle a_i| \tilde{\mathbf{A}} |a_j\rangle\langle a_j| |\alpha\rangle$$
$$= \sum_{ij} |a_i\rangle\langle a_i| \tilde{\mathbf{A}} |a_j\rangle\langle a_j|\alpha\rangle$$

- Incompatible observable $\left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \right] \neq 0$
 - Measure $\tilde{\mathbf{A}}$ in the state $|a_2\rangle$
 - Measure $\tilde{\mathbf{B}}$ in the state $|a_2\rangle = \sum_j |b_j\rangle \langle b_j |a_2\rangle$; only the probability of the value is known.
- Uncertainty principle
 - Schwartz inequality $\langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \ge \left| \langle \alpha | \beta \rangle \right|^2$
 - Dispersion $\Delta \tilde{\mathbf{A}} = \tilde{\mathbf{A}} \left\langle \tilde{\mathbf{A}} \right\rangle \tilde{\mathbf{1}}$

 - \bullet Hermitian operator $\left\{ \tilde{\mathbf{A}},\tilde{\mathbf{B}}\right\}$ has real eigenvalues.
 - \bullet Anti-Hermitian operator $\left[\tilde{\mathbf{A}},\tilde{\mathbf{B}}\right]$ has imaginary eigenvalues.

- Incompatible observable $\left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \right] \neq 0$
 - ullet Measure $ilde{\mathbf{A}}$ in the state $|a_2
 angle$
 - Measure $\tilde{\mathbf{B}}$ in the state $|a_2\rangle = \sum_j |b_j\rangle \langle b_j |a_2\rangle$; only the probability of the value is known.
- Uncertainty principle
 - Schwartz inequality $\langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \ge \left| \langle \alpha | \beta \rangle \right|^2$
 - Dispersion $\Delta \tilde{\mathbf{A}} = \tilde{\mathbf{A}} \left\langle \tilde{\mathbf{A}} \right\rangle \tilde{\mathbf{1}}$
 - $\left\langle \left(\Delta \tilde{\mathbf{A}} \right)^2 \right\rangle = \left\langle \tilde{\mathbf{A}}^2 2\tilde{\mathbf{A}} \left\langle \tilde{\mathbf{A}} \right\rangle + \left\langle \tilde{\mathbf{A}} \right\rangle^2 \right\rangle = \left\langle \tilde{\mathbf{A}}^2 \right\rangle \left\langle \tilde{\mathbf{A}} \right\rangle^2$
 - \bullet Hermitian operator $\left\{ \tilde{\mathbf{A}},\tilde{\mathbf{B}}\right\}$ has real eigenvalues.
 - \bullet Anti-Hermitian operator $\left[\tilde{\mathbf{A}},\tilde{\mathbf{B}}\right]$ has imaginary eigenvalues.

- Incompatible observable $\left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \right] \neq 0$
 - ullet Measure $ilde{\mathbf{A}}$ in the state $|a_2
 angle$
 - Measure $\tilde{\mathbf{B}}$ in the state $|a_2\rangle=\sum_j|b_j\rangle\,\langle b_j\,|a_2\rangle$; only the probability of the value is known.
- Uncertainty principle
 - Schwartz inequality $\langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \ge \left| \langle \alpha | \beta \rangle \right|^2$
 - Dispersion $\Delta \tilde{\mathbf{A}} = \tilde{\mathbf{A}} \left\langle \tilde{\mathbf{A}} \right\rangle \tilde{\mathbf{1}}$

•
$$\left\langle \left(\Delta \tilde{\mathbf{A}} \right)^2 \right\rangle = \left\langle \tilde{\mathbf{A}}^2 - 2\tilde{\mathbf{A}} \left\langle \tilde{\mathbf{A}} \right\rangle + \left\langle \tilde{\mathbf{A}} \right\rangle^2 \right\rangle = \left\langle \tilde{\mathbf{A}}^2 \right\rangle - \left\langle \tilde{\mathbf{A}} \right\rangle^2$$

- \bullet Hermitian operator $\left\{ \tilde{A},\tilde{B}\right\}$ has real eigenvalues.
- \bullet Anti-Hermitian operator $\left[\tilde{\mathbf{A}},\tilde{\mathbf{B}}\right]$ has imaginary eigenvalues.

- Incompatible observable $\left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \right] \neq 0$
 - ullet Measure $ilde{\mathbf{A}}$ in the state $|a_2
 angle$
 - Measure $\tilde{\mathbf{B}}$ in the state $|a_2\rangle=\sum_j|b_j\rangle\,\langle b_j\,|a_2\rangle$; only the probability of the value is known.
- Uncertainty principle
 - Schwartz inequality $\langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \ge \left| \langle \alpha | \beta \rangle \right|^2$
 - $oldsymbol{\bullet}$ Dispersion $\Delta ilde{\mathbf{A}} = ilde{\mathbf{A}} \left\langle ilde{\mathbf{A}}
 ight
 angle ilde{\mathbf{1}}$
 - $\left\langle \left(\Delta \tilde{\mathbf{A}} \right)^2 \right\rangle = \left\langle \tilde{\mathbf{A}}^2 2\tilde{\mathbf{A}} \left\langle \tilde{\mathbf{A}} \right\rangle + \left\langle \tilde{\mathbf{A}} \right\rangle^2 \right\rangle = \left\langle \tilde{\mathbf{A}}^2 \right\rangle \left\langle \tilde{\mathbf{A}} \right\rangle^2$
 - \bullet Hermitian operator $\left\{ \tilde{\mathbf{A}},\tilde{\mathbf{B}}\right\}$ has real eigenvalues.
 - \bullet Anti-Hermitian operator $\left[\tilde{\mathbf{A}},\tilde{\mathbf{B}}\right]$ has imaginary eigenvalues.

Schwartz inequality

$$\bullet \ \left\langle \left(\Delta \tilde{\mathbf{A}}\right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}}\right)^2 \right\rangle \geq \left| \left\langle \left(\Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}}\right) \right\rangle \right|^2$$

•
$$\Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}} = \frac{1}{2} \left[\Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right] + \frac{1}{2} \left\{ \Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right\}$$

•
$$\Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}} = \frac{1}{2} \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \right] + \frac{1}{2} \left\{ \Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right\}$$

$$\bullet \ \left\langle \left(\Delta \tilde{\mathbf{A}}\right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}}\right)^2 \right\rangle \geq \tfrac{1}{4} \left\langle \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}}\right] \right\rangle^2$$

- Schwartz inequality
 - $\bullet \ \left\langle \left(\Delta \tilde{\mathbf{A}}\right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}}\right)^2 \right\rangle \geq \left| \left\langle \left(\Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}}\right) \right\rangle \right|^2$
 - $\bullet \ \Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}} = \frac{1}{2} \left[\Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right] + \frac{1}{2} \left\{ \Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right\}$
 - $\bullet \ \Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}} = \frac{1}{2} \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \right] + \frac{1}{2} \left\{ \Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right\}$
 - $\left\langle \left(\Delta \tilde{\mathbf{A}} \right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}} \right)^2 \right\rangle \ge \frac{1}{4} \left\langle \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \right] \right\rangle^2 + \frac{1}{4} \left\langle \left\{ \Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right\} \right\rangle$
 - $\bullet \ \left\langle \left(\Delta \tilde{\mathbf{A}}\right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}}\right)^2 \right\rangle \geq \tfrac{1}{4} \left\langle \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}}\right] \right\rangle^2$

- Schwartz inequality
 - $\bullet \ \left\langle \left(\Delta \tilde{\mathbf{A}}\right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}}\right)^2 \right\rangle \geq \left| \left\langle \left(\Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}}\right) \right\rangle \right|^2$
 - $\bullet \ \Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}} = \frac{1}{2} \left[\Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right] + \frac{1}{2} \left\{ \Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right\}$
 - $\bullet \ \Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}} = \tfrac{1}{2} \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \right] + \tfrac{1}{2} \left\{ \Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right\}$
 - $\bullet \left\langle \left(\Delta \tilde{\mathbf{A}}\right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}}\right)^2 \right\rangle \geq \tfrac{1}{4} \left\langle \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}}\right] \right\rangle^2 + \tfrac{1}{4} \left\langle \left\{\Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}}\right\} \right\rangle$
 - $\bullet \ \left\langle \left(\Delta \tilde{\mathbf{A}}\right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}}\right)^2 \right\rangle \geq \tfrac{1}{4} \left\langle \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}}\right] \right\rangle^2$

Schwartz inequality

$$\bullet \left\langle \left(\Delta \tilde{\mathbf{A}} \right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}} \right)^2 \right\rangle \ge \left| \left\langle \left(\Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}} \right) \right\rangle \right|^2$$

- $\Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}} = \frac{1}{2} \left[\Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right] + \frac{1}{2} \left\{ \Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right\}$
- $\bullet \ \Delta \tilde{\mathbf{A}} \Delta \tilde{\mathbf{B}} = \tfrac{1}{2} \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \right] + \tfrac{1}{2} \left\{ \Delta \tilde{\mathbf{A}}, \Delta \tilde{\mathbf{B}} \right\}$
- $\bullet \ \left\langle \left(\Delta \tilde{\mathbf{A}}\right)^2 \right\rangle \left\langle \left(\Delta \tilde{\mathbf{B}}\right)^2 \right\rangle \geq \tfrac{1}{4} \left\langle \left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}}\right] \right\rangle^2$

Apparatus

Lectures 02

P. Gutierrez

Department of Physics & Astronomy University of Oklahoma

$$f(x) = \frac{2\sin(px)}{x}$$
 \Rightarrow
$$\begin{cases} \lim_{x \to \infty} f(x) \to 0\\ \lim_{x \to 0} f(x) \to 2p \end{cases}$$

- Propose $\mathcal{J}(d\vec{\mathbf{x}}) = 1 i\tilde{\mathbf{K}} \cdot d\vec{\mathbf{x}}$
- Unitary operator (maintain normalization)

$$\langle \alpha | \alpha \rangle = \left\langle \alpha \left| \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') \right| \alpha \right\rangle \quad \Rightarrow \quad \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') = 1$$

$$\Rightarrow \quad \tilde{\mathbf{K}} = \tilde{\mathbf{K}}^{\dagger}$$

Successive translations:

$$\mathcal{J}(d\vec{\mathbf{x}}'')\mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(dx'' + dx').$$

Inverse translation:

$$\mathcal{J}(-d\vec{\mathbf{x}}') = \mathcal{J}^{-1}(d\vec{\mathbf{x}}').$$

No translation:

$$\lim_{d\vec{\mathbf{x}}' \to 0} \mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(0) = 1$$

- Propose $\mathcal{J}(d\vec{\mathbf{x}}) = 1 i\tilde{\mathbf{K}} \cdot d\vec{\mathbf{x}}$
- Unitary operator (maintain normalization)

$$\langle \alpha | \alpha \rangle = \left\langle \alpha \left| \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') \right| \alpha \right\rangle \quad \Rightarrow \quad \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') = 1$$

$$\Rightarrow \quad \tilde{\mathbf{K}} = \tilde{\mathbf{K}}^{\dagger}$$

Successive translations:

$$\mathcal{J}(d\vec{\mathbf{x}}'')\mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(dx'' + dx').$$

Inverse translation:

$$\mathcal{J}(-d\vec{\mathbf{x}}') = \mathcal{J}^{-1}(d\vec{\mathbf{x}}').$$

No translation

$$\lim_{d\vec{\mathbf{x}}' \to 0} \mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(0) = 1$$

3/3

- Propose $\mathcal{J}(d\vec{\mathbf{x}}) = 1 i\tilde{\mathbf{K}} \cdot d\vec{\mathbf{x}}$
- Unitary operator (maintain normalization):

$$\langle \alpha | \alpha \rangle = \left\langle \alpha \left| \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') \right| \alpha \right\rangle \quad \Rightarrow \quad \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') = 1$$
$$\Rightarrow \quad \tilde{\mathbf{K}} = \tilde{\mathbf{K}}^{\dagger}$$

Successive translations:

$$\mathcal{J}(d\vec{\mathbf{x}}'')\mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(dx'' + dx').$$

Inverse translation:

$$\mathcal{J}(-d\vec{\mathbf{x}}') = \mathcal{J}^{-1}(d\vec{\mathbf{x}}').$$

No translation

$$\lim_{d\vec{\mathbf{x}}'\to 0} \mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(0) = 1$$

- Propose $\mathcal{J}(d\vec{\mathbf{x}}) = 1 i\tilde{\mathbf{K}} \cdot d\vec{\mathbf{x}}$
- Unitary operator (maintain normalization):

$$\langle \alpha | \alpha \rangle = \left\langle \alpha \left| \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') \right| \alpha \right\rangle \quad \Rightarrow \quad \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') = 1$$
$$\Rightarrow \quad \tilde{\mathbf{K}} = \tilde{\mathbf{K}}^{\dagger}$$

Successive translations:

$$\mathcal{J}(d\vec{\mathbf{x}}'')\mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(dx'' + dx').$$

Inverse translation:

$$\mathcal{J}(-d\vec{\mathbf{x}}') = \mathcal{J}^{-1}(d\vec{\mathbf{x}}').$$

No translation

$$\lim_{d\vec{\mathbf{x}}' \to 0} \mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(0) = 1$$

- Propose $\mathcal{J}(d\vec{\mathbf{x}}) = 1 i\tilde{\mathbf{K}} \cdot d\vec{\mathbf{x}}$
- Unitary operator (maintain normalization):

$$\langle \alpha | \alpha \rangle = \left\langle \alpha \left| \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') \right| \alpha \right\rangle \quad \Rightarrow \quad \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') = 1$$
$$\Rightarrow \quad \tilde{\mathbf{K}} = \tilde{\mathbf{K}}^{\dagger}$$

Successive translations:

$$\mathcal{J}(d\vec{\mathbf{x}}'')\mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(dx'' + dx').$$

Inverse translation:

$$\mathcal{J}(-d\vec{\mathbf{x}}') = \mathcal{J}^{-1}(d\vec{\mathbf{x}}').$$

No translation:

$$\lim_{d\vec{\mathbf{x}}'\to 0} \mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(0) = 1$$

- Propose $\mathcal{J}(d\vec{\mathbf{x}}) = 1 i\tilde{\mathbf{K}} \cdot d\vec{\mathbf{x}}$
- Unitary operator (maintain normalization):

$$\langle \alpha | \alpha \rangle = \left\langle \alpha \left| \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') \right| \alpha \right\rangle \quad \Rightarrow \quad \mathcal{J}^{\dagger}(d\vec{\mathbf{x}}') \mathcal{J}(d\vec{\mathbf{x}}') = 1$$
$$\Rightarrow \quad \tilde{\mathbf{K}} = \tilde{\mathbf{K}}^{\dagger}$$

Successive translations:

$$\mathcal{J}(d\vec{\mathbf{x}}'')\mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(dx'' + dx').$$

Inverse translation:

$$\mathcal{J}(-d\vec{\mathbf{x}}') = \mathcal{J}^{-1}(d\vec{\mathbf{x}}').$$

No translation:

$$\lim_{d\vec{\mathbf{x}}'\to 0} \mathcal{J}(d\vec{\mathbf{x}}') = \mathcal{J}(0) = 1.$$

