

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Análise I

24 de Março de 2018

- (1) Prove que $x^2 + x 1 = 0 \Rightarrow x^3 2x + 1 = 0$.
- (2) Mostre que:
 - (a) A soma de dois números pares quaisquer é sempre um número par.
 - (b) A soma de dois números ímpares quaisquer é sempre um número par.
- (3) Sejam X_1, X_2, Y_1, Y_2 subconjuntos do conjunto universo U. Suponha que $X_1 \cup X_2 = U$ e $Y_1 \cap Y_2 = \emptyset$, que $X_1 \subset Y_1$ e que $X_2 \subset Y_2$. Prove que $X_1 = Y_1$ e que $X_2 = Y_2$.
- (4) Um número natural \mathbf{n} é dito um **quadrado perfeito**, se, e somente se, existir um número natural \mathbf{a} tal que $n=a^2$. Prove que se um quadrado perfeito é par sua raiz quadrada é par e que se um quadrado perfeito é ímpar então sua raiz quadrada é ímpar.
- (5) O conjunto vazio \varnothing é definido pela seguinte propriedade: qualquer que seja o elemento x, tem-se sempre $x \notin \varnothing$. Mostre que $\varnothing \subset A$, qualquer que seja o conjunto A.
- (6) Prove, por contradição, que existem infinitos números primos. (Ver solução em "Análise Matemática para Licenciatura", Cap. 1 seção 1, ex 9.)