ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

动机:

过去的Visual Embedding Schema,如Region Feature和Grid Feature,在**1**) Efficiency、**2**) Speed和**3**) Expressive Power上有限制,**1**) 和**2**) 限制了推理(Inference)的速度,**3**) 是由于未能充分使用多模态的潜力,而过多关注在Visual Embedding上——既然要做多模态,那么应当重视Modality Interaction,而不是关注单个模态的Representation多么地好。

ViLT能使得推理(Inference)加快,同时更加注重的是Modality Interaction,同时具有Competitive Performance。

Approach:

完全舍弃了**Region Feature**(如RPNs、RoI Align、NMS和RoI Heads)和**Grid Feature**(CNN Architecture)。只使用**Transformer**结构,文本转变为Tokens,图像也要转变为类似的Tokens,以便丢给Transformer,本文借鉴了ViT的思想,将一张图片打成许多Patches,经过Linear Projection Layer,将每个Patch都映射为一个Token,再丢给Transformer。

Pre-training: 训练数据,Image-Caption Pairs; 训练数据集,MSCOCO、VG、GCC、SBU; 训练**Objectives**,Image-Text Matching、Masked Language Modeling

Dataset	# Images	# Captions	Caption Length
MSCOCO	113K	567K	11.81 ± 2.81
VG	108K	5.41M	5.53 ± 1.76
GCC†	3.01M	3.01M	10.66 ± 4.93
SBU†	867K	867K	15.0 ± 7.74

Downstream Tasks: 方式, Fine-tuning or Zero-shot; 任务, Classification Task (VQAv2、NLVR2)、Retrieval Task(Flickr30k、MSCOCO)

Related Works:

VLP(Vision-Language Pre-training)Models的分类: **(a)** 如VSE; **(b)** 如CLIP; **(c)** 如ViLBERT、UNITER; **(d)** 如ViLT;

Modality Interaction Schema: 1) Single-Stream Approaches, Concatenate; 2) Dual-Stream Approaches

Architecture:

图示:为Single-Stream Approaches; Transformer Encoder输入Tensor为[(N+1)+(L+1),H]; Pooler学习矩阵为[H,H],它的输入Tensor为[1,H],通过FC实现Image Text Matching Objective训练(二元分类),即Image-Text匹配或不匹配; Masked Language Modeling Objective训练与BERT的完全一致,即做完形填空,又有特殊的地方,使用了Whole Word Masking(15%的占比),这要求要完全依赖于图像的信息来做文本的完形填空; Word Patch Alignment Objective训练,利用最优运输理论,通过降低文本分布和图像分布间的距离来训练;图像数据增强,Rand Augmentation,RA有很多的Policy,但有两个不用,Color Inversion、Cutout。

Future Works:

Scalability: Parameters Datasets

图像的完形填空:

Image Augmentation Strategies: