DNA-Sequenz und rekombinante Herstellung von Gruppe-4 Majorallergenen aus Getreiden

5

10

15

Hintergrund der Erfindung

Die vorliegende Erfindung betrifft die Bereitstellung von DNA-Sequenzen von Gruppe-4 Majorallergenen aus Getreiden (*Triticeae*). Die Erfindung schließt auch Fragmente, Neukombinationen von Teilsequenzen und Punktmutanten mit hypoallergener Wirkung ein. Die rekombinanten DNA-Moleküle und die abgeleiteten Polypeptide, Fragmente, Neukombinationen von Teilsequenzen und Varianten können zur Therapie von pollenallergischen Krankheiten genutzt werden. Die rekombinant hergestellten Proteine können zur *In-vitro-* und *In-vivo-*Diagnostik von Pollenallergien eingesetzt werden.

20

25

Allergien vom Typ 1 haben weltweite Bedeutung. Bis zu 20 % der Bevölkerung in industrialisierten Ländern leiden unter Beschwerden wie allergischer Rhinitis, Konjunktivitis oder Bronchialasthma. Diese Allergien werden durch in der Luft befindliche Allergene (Aeroallergene), die von Quellen unterschiedlicher Herkunft wie Pflanzenpollen, Milben, Katzen oder Hunden freigesetzt werden, hervorgerufen. Bis zu 40 % dieser Typ 1-Allergiker wiederum zeigen spezifische IgE-Reaktivität mit Gräserpollenallergenen, unter anderem Getreidepollenallergenen (Freidhoff et al., 1986, J. Allergy Clin. Immunol. 78, 1190-2001). Eine besondere Bedeutung unter den Getreidepollenallergenen besitzen die Allergene von Roggen.

30

35

Bei den Typ 1-Allergie auslösenden Substanzen handelt es sich um Proteine, Glykoproteine oder Polypeptide. Diese Allergene reagieren nach Aufnahme über die Schleimhäute mit den bei sensibilisierten Personen an der

Oberfläche von Mastzellen gebundenen IgE-Molekülen. Werden zwei IgE-Moleküle durch ein Allergen miteinander vernetzt, führt dies zur Ausschüttung von Mediatoren (z. B. Histamin, Prostaglandine) und Zytokinen durch die Effektorzelle und damit zu den entsprechenden klinischen Symptomen.

5

In Abhängigkeit von der relativen Häufigkeit mit der die einzelnen Allergenmoleküle mit den IgE-Antikörpern von Allergikern reagieren, wird zwischen Major- und Minorallergenen unterschieden.

10

Die Allergene aus den Pollen von verschiedenen Spezies aus der Familie er Gräser (*Poaceae*) werden in Grupppen eingeteilt, die untereinander homolog sind.

15

Insbesondere die Moleküle der Majorallergengruppe 4 weisen untereinander eine hohe immunologische Kreuzreaktivität sowohl mit monoklonalen Mausantikörpern als auch mit humanen IgE-Antikörpern auf (Fahlbusch et al., 1993 Clin. Exp. Allergy 23:51-60; Leduc-Brodard et al., 1996, J. Allergy Clin. Immunol. 98:1065-1072; Su et al., 1996, J. Allergy Clin. Immunol.

20

97:210; Fahlbusch et al., 1998, Clin. Exp. Allergy 28:799-807; Gavrovic-Jankulovic et al., 2000, Invest. Allergol. Clin. Immunol. 10 (6):361-367; Stumvoll et al. 2002, Biol. Chem. 383:1383-1396; Grote et al., 2002, Biol. Chem. 383:1441-1445; Andersson und Lidholm, 2003, Int. Arch. Allergy Immunol. 130:87-107; Mari, 2003, Clin. Exp. Allergy, 33 (1):43-51).

25

Von keinem der Gruppe-4-Majorallergene ist bisher eine vollständige DNA-Sequenz bekannt.

30

Von dem Gruppe-4 Allergen aus *Dactylus glomerata* sind bisher lediglich Peptide durch enzymatischen Abbau gewonnen und sequenziert worden: DIYNYMEPYVSK (SEQ ID NO 13), VDPTDYFGNEQ (SEQ ID NO 14),

35

ARTAWVDSGAQLGELSY (SEQ ID NO 15)

und GVLFNIQYVNYWFAP (SEQ ID NO 16, Leduc-Brodard et al., 1996, J. Allergy Clin. Immunol. 98: 1065-1072).

Auch vom Gruppe-4 Allergen des subtropischen Bermuda-Grases (*Cynodon dactylon*) sind durch Proteolyse Peptide erhalten und sequenziert worden:

KTVKPLYIITP (SEQ ID NO 17),

KQVERDFLTSLTKDIPQLYLKS (SEQ ID NO 18),

TVKPLYIITPITAAMI (SEQ ID NO 19),

- 10 LRKYGTAADNVIDAKVVDAQGRLL (SEQ ID NO 20),
 KWQTVAPALPDPNM (SEQ ID NO 21),
 VTWIESVPYIPMGDK (SEQ ID NO 22),
 GTVRDLLXRTSNIKAFGKY (SEQ ID NO 23),
- TSNIKAFGKYKSDYVLEPIPKKS (SEQ ID NO 24),
 YRDLDLGVNQVVG (SEQ ID NO 25),
 SATPPTHRSGVLFNI (SEQ ID NO 26),
 und AAAALPTQVTRDIYAFMTPYVSKNPRQAYVNYRDLD (SEQ ID NO 27,
 Liaw et al., 2001, Biochem. Biophys. Research Communication 280: 738743).

Für Lolium perenne wurden für das basische Gruppe-4 Allergen Peptidfragmente mit den folgenden Sequenzen beschrieben: FLEPVLGLIFPAGV (SEQ ID NO 28) und GLIEFPAGV (SEQ ID NO 29, Jaggi et al., 1989, Int. Arch. Allergy Appl. Immunol. 89: 342-348).

- Als erste Sequenz eines Allergens der Gruppe 4 wurde von den Erfindern der vorliegenden Patentanmeldung die noch unveröffentlichte Sequenz des Phl p 4 aus *Phleum pratense* aufgeklärt (SEQ ID NO 11) und in der internationalen Anmeldung WO 04/000881 beschrieben.
- 35 Über die Sequenzen der Gruppe-4-Majorallergene aus Getreiden (*Triceae*) ist bisher nichts bekannt.

Die der vorliegenden Erfindung zugrunde liegende Aufgabe bestand daher in der Bereitstellung von DNA-Sequenzen von Gruppe-4 Majorallergenen aus Getreiden, insbesondere des Allergens Sec c 4 aus Roggen (Secale cerale) (SEQ ID NO 1, 3), Hor v 4 aus Gerste (Hordeum vulgare) (SEQ ID NO 5) und Tri a 4 aus Weizen (Triticum aestivum) (SEQ ID NO 7, 9) sowie von entsprechenden rekombinanten DNA-Molekülen, auf deren Grundlage die Allergene als Protein exprimiert und einer pharmakologisch bedeutsamen Verwertung als solches oder in veränderter Form zugänglich gemacht werden kann. Die Sequenz des Phl p 4 (SEQ ID NO 11) war Ausgangspunkt für die vorliegende Erfindung.

15

30

35

10

5

Verzeichnis der erfindungsgemäßen Sequenzen

Den DNA- und Protein-Sequenzen der reifen Allergene gemäß SEQ ID NO

1-10 geht eine Signalsequenz voraus. Mit den TGA oder TAG Stopcodons
in den DNA-Sequenzen endet der kodierende Bereich.

- DNA-Sequenz des Sec c 4. (a) Isoform Sec c 4.01 (SEQ ID NO 1), (b) Isoform Sec c 4.02 (SEQ ID NO 3).
- Von den DNA-Sequenzen gemäß SEQ ID NO 1 und 3 abgeleitete Protein-Sequenzen (SEQ ID NO 2, 4).
 - DNA-Sequenz des Hor v 4 (SEQ ID NO 5).
 - Von der DNA-Sequenz gemäß SEQ ID NO 5 abgeleitete Protein-Sequenz (SEQ ID NO 6).
 - DNA-Sequenz des Tri a 4. (a) Isoform Tri a 4.01 (SEQ ID NO 7), (b) Isoform Tri a 4.02 (SEQ ID NO 9).
 - Von den DNA-Sequenzen gemäß SEQ ID NO 7 und 9 abgeleitete Protein-Sequenzen (SEQ ID NO 8, 10).

WO 2005/059136 PCT/EP2004/013664

- 5 -

- DNA-Sequenz des Phl p 4 (SEQ ID NO 11), gemäß SEQ ID NO 5 aus der WO 04/000881.

- Proteinsequenz des Phl p 4 (SEQ ID NO 12), gemäß SEQ ID NO 6 aus der WO 04/000881.

5

15

20

25

Beschreibung der Erfindung

Mit der vorliegenden Erfindung werden nun erstmals DNA-Sequenzen der 10 Getreidepollenhauptallergene Sec c 4, Hor v 4 und Tri a 4, gemäß SEQ ID NO 1, 3, 5, 7, und 9, bereit gestellt.

Gegenstand der vorliegenden Erfindung sind daher DNA-Moleküle ausgewählt aus den Nukleotidsequenzen gemäß SEQ ID NO 1, 3, 5, 7, und 9.

Die Erfindung betrifft weiterhin zu den erfindungsgemäßen DNA-Sequenzen homologe Sequenzen bzw. entsprechende DNA-Moleküle von Gruppe-4-Allergenen aus anderen Poaceae wie beispielsweise Lolium perenne, Dactylis glomerata, Poa pratensis, Cynodon dactylon und Holcus lanatus, die aufgrund der bestehenden Sequenzhomologie mit den erfindungsgemäßen DNA-Sequenzen unter stringenten Bedingungen hybridisieren, bzw. bezüglich der erfindungsgemäßen Allergene eine immunologische Kreuzraktivität aufweisen.

Die Erfindung schließt dabei auch Fragmente, Neukombinationen von Teilsequenzen und Punktmutanten mit hypoallergener Wirkung ein.

30

Gegenstand der Erfindung sind daher weiterhin entsprechende Teilsequenzen, einer Kombination von Teilsequenzen bzw. Austausch-, Eliminierungs- oder Additionsmutanten, welche für ein immunmodulatorisches, T-Zell-reaktives Fragment eines Gruppe-4-Allergens der Poaceae kodieren.

35

WO 2005/059136 PCT/EP2004/013664 - 6 -

Mit der Kenntnis der DNA-Sequenz der natürlich vorkommenden Allergene ist es nun möglich, diese Allergene als rekombinante Proteine herzustellen, die in der Diagnostik und Therapie von allergischen Erkrankungen Verwendung finden können (Scheiner and Kraft, 1995, Allergy 50: 384-391).

5

10

Ein klassischer Ansatz zur wirksamen therapeutischen Behandlung von Allergien stellt die Spezifische Immuntherapie oder Hyposensibilisierung dar (Fiebig, 1995, Allergo J. 4 (6): 336-339, Bousquet et al., 1998, J. Allergy Clin. Immunol. 102(4): 558-562). Dabei werden dem Patienten natürliche Allergenextrakte in steigenden Dosen subkutan injiziert. Allerdings besteht bei dieser Methode die Gefahr von allergischen Reaktionen oder sogar eines anaphylaktischen Schocks. Um diese Risiken zu minimieren, werden innovative Präparate in Form von Allergoiden eingesetzt. Dabei handelt es sich um chemisch modifizierte Allergenextrakte, die deutlich reduzierte IgE-Reaktivität, jedoch identische T-Zell-Reaktivität im Vergleich zum nicht behandelten Extrakt aufweisen (Fiebig, 1995, Allergo J. 4 (7): 377-382).

20

15

Eine noch weitergehende Therapieoptimierung wäre mit rekombinant hergestellten Allergenen möglich. Definierte, ggfs. auf die individuellen Sensibilisierungsmuster der Patienten abgestimmte Cocktails von hochreinen, rekombinant hergestellten Allergenen könnten Extrakte aus natürlichen Allergenquellen ablösen, da diese außer den verschiedenen Allergenen eine größere Zahl von immunogenen, aber nicht allergenen Begleitproteinen enthalten.

25

Realistische Perspektiven, die zu einer sicheren Hyposensibilisierung mit Expressionsprodukten führen können, bieten gezielt mutierte rekombinante Allergene, bei denen IgE-Epitope spezifisch deletiert werden, ohne die für die Therapie essentiellen T-Zell Epitope zu beeinträchtigen (Schramm et al., 1999, J. Immunol. 162: 2406-2414).

35

30

Eine weitere Möglichkeit zur therapeutischen Beeinflussung des gestörten TH-Zell-Gleichgewichtes bei Allergikern ist die immuntherapeutische DNA-Vakzinierung. Dabei handelt es sich um eine Behandlung mit expressions-

fähiger DNA, die für die relevanten Allergene kodiert. Erste experimentelle Belege für die allergenspezifische Beeinflussung der Immunantwort konnte an Nagern durch Injektion von Allergen-kodierender DNA erbracht werden (Hsu et al., 1996, Nature Medicine 2 (5): 540-544).

5

WO 2005/059136

Gegenstand der vorliegenden Erfindung ist daher auch ein vor- oder nachstehend beschriebenes DNA-Molekül bzw. ein entsprechender rekombinanter Expressionsvektor als Arzneimittel.

10

Die entsprechenden rekombinant hergestellten Proteine können zur Therapie sowie zur *in vitro*- und *in vivo*-Diagnostik von Pollenallergien eingesetzt werden.

15

Zur Herstellung des rekombinanten Allergens wird die klonierte Nukleinsäure in einen Expressionsvektor ligiert und dieses Konstrukt in einem geeigneten Wirtsorganismus exprimiert. Nach biochemischer Reinigung steht dieses rekombinante Allergen zur Detektion von IgE-Antikörpern in etablierten Verfahren zur Verfügung.

20

Gegenstand der vorliegenden Erfindung ist daher weiterhin ein rekombinanter Expressionsvektor, enthaltend ein vor- oder nachstehend beschriebenes DNA-Molekül, funktionell verbunden mit einer Expressionskontrollsequenz und ein Wirtsorganismus, transformiert mit besagtem DNA-Molekül oder besagtem Expressionsvektor.

30

35

25

Ebenfalls erfindungsgegenständlich ist die Verwendung mindestens eines zuvor beschriebenen DNA-Moleküls oder mindestens eines zuvor beschriebenen Expressionsvektors zur Herstellung eines Arzneimittels zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae*, vorzugsweise *Triticeae*, insbesondere Sec c 4, Hor v 4, Tri a 4, beteiligt sind und/oder zur Prävention solcher Allergien.

WO 2005/059136 PCT/EP2004/013664

-8-

Wie bereits ausgeführt kann die Erfindung als eine essentielle Komponente in einem rekombinanten allergen- oder nukleinsäurehaltigen Präparat zur spezifischen Immuntherapie angewendet werden. Hierbei bieten sich mehrere Möglichkeiten. Zum einen kann das in der Primärstruktur unveränderte Protein Bestandteil des Präparates sein. Zum anderen kann durch gezielte Deletion von IgE-Epitopen des Gesamtmoleküls oder der Herstellung von einzelnen Fragmenten, die für T-Zell Epitope kodieren, erfindungsgemäß eine hypoallergene (allergoide) Form zur Therapie verwendet werden, um unerwünschte Nebenwirkungen zu vermeiden. Schließlich wird durch die Nukleinsäure an sich, wenn sie mit einem eukaryontischen Expressions-

vektor ligiert wird, ein Präparat geschaffen, das direkt appliziert den allergi-

5

10

20

25

30

35

Desweiteren handelt es sich bei der vorliegenden Erfindung um die von einem oder mehreren der zuvor beschriebenen DNA-Moleküle kodierten Polypeptide, vorzugsweise in ihrer Eigenschaft als Arzneimittel.

schen Immunzustand im therapeutischen Sinne verändert.

Dabei handelt es sich um Proteine entsprechend einer Aminosäuresequenz gemäß SEQ ID NO 2, 4, 6, 8, oder 10. Insbesondere handelt es sich um die reifen Proteine (ohne Signalsequenzanteil), beginnend mit der Aminosäure 23 (SEQ ID NO 2, 4 und 6) und mit der Aminosäure 22 (SEQ ID NO 8, 10). Weiterhin betrifft die Erfindung Proteine, welche diese Aminosäuresequenzen oder Teile dieser Sequenzen enthalten,

Die Erfindung betrifft demgemäß auch ein Verfahren zur Herstellung solcher Polypeptide durch Kultivieren eines Wirtsorganismus und Gewinnung des entsprechenden Polypeptids aus der Kultur.

Ebenfalls erfindungsgegenständlich ist die Verwendung mindestens eines zuvor beschriebenen Polypeptides zur Herstellung eines Arzneimittels zur Diagnose und/oder Behandlung von Allergien, an deren Auslösung Gruppe-4-Allergene der Poaceae, vorzugsweise Triticeae, insbesondere

Sec c 4, Hor v 4, Tri a 4, beteiligt sind sowie zur Prävention solcher Allergien.

5 Bei der Ermittlung der erfindungsgemäßen Protein- und DNA-Sequenzen wurde wie folgt vorgegangen:

Sec c 4 aus Roggen

10

15

- 1. Ausgehend von der DNA-Sequenz des Phl p 4 (SEQ ID NO 12, WO 04/000881) wurden spezifische Primer (Tab. 1) generiert, die von der Phl p 4 Sequenz abgeleitet wurden. Durch PCR mit den Primern #87 und #83 konnten fünf Klone aus Roggenpollen DNA gewonnen werden. Das diesen Klonen entsprechende, amplifizierte Sec c 4-Genfragment-1 kodiert für ein den Aminosäuren 68-401 des Phl p 4 (SEQ ID NO 12) entsprechendes Polypeptid.
- 20 2. Mit der partiellen Sec c 4-Sequenz wurde eine EST-Datenbankrecherche durchgeführt. Es konnten jedoch keine homologen Sequenzen in auf Roggen spezialisierte EST-Datenbanken gefunden werden. Statt dessen wurden einzelne, homologe, nicht überlappende EST-Fragmente in auf Gerste und Weizen spezialisierten EST-Datenbanken gefunden. Einzelne EST-25 Fragmente reichen in den 5'-UTR, andere in den 3'-UTR Bereich (UTR = nicht-translatierter Bereich) der entsprechenden Gene hinein.
- 3. Aus den in den Datenbanken gefundenen EST-Sequenzen lässt sich je-30 doch kein komplettes Gruppe-4-Gen aus Weizen oder Gerste konstruieren, da diese Sequenzen nicht überlappen und kein homologes Gruppe-4-Gen bekannt ist. Anhand der Phl p 4-Sequenz (SEQ ID NO 11) und des in Schritt 1 erhaltenen Sec c 4-Fragmentes konnten diese EST-Sequenzen 35 jedoch zugeordnet werden und dienten als Vorlage für die Herstellung von .PCR-Primern.

15

20

4. Mit Hilfe der so hergestellten Primer #195 und #189 konnten drei Klone durch PCR erhalten werden. Der Primer #195 wurde aus einer Gerste-EST-Sequenz abgeleitet, der Primer #189 ist ein Phl p 4-spezifischer Primer und überlappt das Phl p 4-Stoppcodon sowie die Codons der 10.C-terminalen Phl p 4-Aminosäuren. Das so amplifizierte Sec c 4-Genfragment-2 kodiert für ein Polypeptid, beginnend innerhalb der Signalsequenz und endend mit der Position, die der Position 490 des Phl p 4 entspricht. Dieses Polypeptid deckt den N-Terminus von Sec c 4 ab.

5a. Drei weitere Klone wurden durch PCR mit den Primern #195 und #202 erhalten. Beide Primer wurden aus Gerste EST-Sequenzen abgeleitet. Das amplifizierte Sec c 4-Gen-3 kodiert für die korrespondierenden Aminosäuren beginnend innerhalb der Signalsequenz und endend am C-Terminus von Sec c 4.

Die komplette Sequenz des reifen Sec c 4 ist somit in der bestimmten Sequenz enthalten.

Die beiden nächsten Schritte 5b und 5c dienen der Absicherung des im Schritt 5a erhaltenen Ergebnisses:

5b. Ein weiterer Klon wurde durch PCR mit den Primern #195 und #203 erhalten. Primer #195 wurde von einer Gerste EST-Sequenz abgeleitet, Primer #203 von einer Weizen EST Sequenz. Das amplifizierte Sec c 4 Gen kodiert für die korrespondierenden Aminosäuren beginnend innerhalb der Signalsequenz und endend am C-Terminus von Sec c 4. Die komplette Sequenz des reifen Sec c 4 ist daher in der bestimmten Sequenz enthalten.

5c. Ein weiterer Klon wurde durch PCR mit den Primern #195 und #198 erhalten. Auch Primer #198 Das amplifizierte Sec c 4 Gen kodiert für die korrespondierenden Aminosäuren beginnend innerhalb der Signalsequenz

und endend am C-Terminus von Sec c 4. Die komplette Sequenz des reifen Sec c 4 ist daher in der bestimmten Sequenz enthalten.

Es wurden zwei Isoformen Sec c 4.01 und 4.02 aufgefunden. Die reifen Allergene beginnen mit der Aminosäure 23 der Sequenzen gemäß SEQ ID NO 2, 4, und 6.

Hor v 4 aus Gerste

10

Mit Hilfe der wie zuvor beschrieben erhaltenen Sec c 4-Sequenzen konnten in EST-Datenbanken von *Hordeum vulgare* homologe EST-Fragmente gefunden wurde. Diese Fragmente überlappen jedoch nicht zu einem kompletten Gen. Anhand der gefundenen EST-Sequenzen konnten jedoch Hor v 4-spezifische Primer generiert werden, die für eine Amplifikation des Hor v 4-Gens aus genomischer DNA verwendet wurden.

Insgesamt wurden 15 Klone analysiert.

20

15

- 4 Klone wurden durch PCR mit den Primern #195 und #198 erhalten.
- 4 Klone wurden durch PCR mit den Primern #195 und #202 erhalten.
- 3 Klone wurden durch PCR mit den Primern #194 und #198 erhalten.
- 4 Klone wurden durch PCR mit den Primern #194 und #202 erhalten.

25

Die abgeleitete Proteinsequenz beginnt innerhalb der Signalsequenz von Hor v 4 und reicht bis zum C-terminalen Ende des Proteins (ab Aminosäure 23 von SEQ ID NO 6).

30

35

Tri a 4 aus Weizen

Mit Hilfe der wie zuvor beschrieben erhaltenen Sec c 4-Sequenz konnten in EST-Datenbanken von *Triticum aestivum* homologe EST-Fragmente gefunden wurde. Diese Fragmente überlappen jedoch nicht zu einem kompletten Gen. Anhand der gefundenen EST-Sequenzen konnten jedoch die

25

Tri a 4-spezifische Primer #199, #203, #204 und #206 generiert werden, die für eine Amplifikation des Tri a 4 Gens aus genomischer DNA verwendet wurden.

- 5 Insgesamt wurden 13 Klone analysiert.
 - 4 Klone wurden durch PCR mit den Primern #204 und #203 erhalten.
 - 4 Klone wurden durch PCR mit den Primern #204 und #199 erhalten.
 - 3 Klone wurden durch PCR mit den Primern #206 und #203 erhalten.
- 10 4 Klone wurden durch PCR mit den Primern #206 und #199 erhalten.
 - Die abgeleiteten Proteinsequenzen beginnen innerhalb der Signalsequenz von Tri a 4 und reichen bis zum C-terminalen Ende des Proteins.
- Es wurden zwei Varianten Tri a 4.01 (ab Aminosäure 22 von SEQ ID NO 8) und Tri a 4.02 (ab Aminosäure 22 von SEQ ID NO 10) aufgefunden.
- Zur Herstellung der rekombinanten erfindungsgemäßen Allergene wurden die DNA-Sequenzen gemäß SEQ ID NO 1, 3, 5, 7 und 9 in Expressionsvektoren (z.B. pProEx, pSE 380) eingebaut. Für die aus der Proteinsequenzierung bekannten N-terminalen Aminosäuren wurden *E. coli* optimierte Codons verwendet.

Nach der Transformation in *E. coli*, der Expression und der Reinigung des rekombinanten erfindungsgemäßen Allergene durch verschiedene Trenntechniken wurde die erhaltenen Proteine einem Refoldingprozess unterworfen.

Beide Allergene können zur hochspezifischen Diagnostik von Graspollenallergien eingesetzt werden. Diese Diagnostik kann *in vitro* durch die Detektion von spezifischen Antikörpern (IgE, IgG1 - 4, IgA) und die Reaktion mit
IgE-beladenen Effektorzellen (z. B. Basophile aus dem Blut) oder *in vivo*durch Hauttest-Reaktionen und Provokation am Reaktionsorgan erfolgen.

WO 2005/059136 PCT/EP2

5

25

30

35

Die Reaktion der erfindungsgemäßen Allergene mit T-Lymphozyten von Graspollenallergikern können durch die allergenspezifische Stimulierung der T-Lymphozyten zur Proliferation und Zytokinsynthese sowohl mit T-Zellen in frisch präparierten Blutlymphozyten als auch an etablierten nSec c 4, nHor v 4 bzw. nTri a 4-reaktiven T-Zell-Linien und -Klonen nachgewiesen werden.

- 13 -

- Durch ortsgerichte Mutagenese wurden die für die Cysteine kodierenden Tripletts so verändert, dass sie für andere Aminosäuren, bevorzugt Serin, kodieren. Es wurden sowohl Varianten hergestellt, bei denen einzelne Cysteine ausgetauscht wurden, als auch solche, bei denen verschiedene Kombinationen von 2 Cysteinresten bzw. alle Cysteine verändert wurden. Die exprimierten Proteine dieser Cysteinpunktmutanten weisen eine stark reduzierte bzw. fehlende Reaktivität mit IgE-Antikörpern von Allergikern auf, reagieren jedoch mit den T-Lymphozythen dieser Patienten.
- Gegenstand der vorliegenden Erfindung ist daher weiterhin ein vor- oder nachstehend beschriebenes DNA-Molekül, bei dem durch ortsgerichtete Mutagenese einer, mehrere oder alle der Cystein-Reste des entsprechenden Polypeptids gegen eine andere Aminosäure ausgetauscht wurden.

Die immunmodulatorische Aktivität von hypoallergenen Fragmenten, die Polypeptiden mit T-Zell-Epitopen entsprechen, sowie die der hypoallergenen Punktmutanten (z.B. Cystein-Austausche) kann durch ihre Reaktion mit T-Zellen von Graspollenallergikern nachgewiesen werden.

Solche hypoallergenen Fragmente bzw. Punktmutanten der Cysteine können als Präparate zur Hyposensibilisierung von Allergikern eingesetzt werden, da sie mit gleicher Effektivität mit den T-Zellen reagieren, jedoch aufgrund der verminderten oder ganz fehlenden IgE-Reaktivität zu geringeren IgE-vermittelten Nebenwirkungen führen.

WO 2005/059136 PCT/EP2004/013664

Werden die für die erfindungsgemäßen hypoallergenen Allergen-Varianten kodierenden Nukleinsäuren oder die unveränderten erfindungsgemäßen DNA-Moleküle mit einem humanen Expressionsvektor ligiert, können diese Konstrukte ebenfalls als Präparate für eine Immuntherapie (DNA-Vakzinierung) angewendet werden.

5

- 14 -

Schließlich sind Gegenstand der vorliegenden Erfindung pharmazeutische

Zubereitungen, enthaltend mindestens ein zuvor beschriebenes DNAMolekül oder mindestens einen zuvor beschriebenen Expressionsvektor
und gegebenenfalls weitere Wirk- und/oder Hilfsstoffe zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung

Gruppe-4-Allergene der *Poaceae*, vorzugsweise *Triticeae*, insbesondere
Sec c 4, Hor v 4, Tri a 4, beteiligt sind und/oder zur Prävention solcher Allergien.

- Eine weitere Gruppe von erfindungsgemäßen pharmazeutischen Zubereitungen enthält anstelle der DNA mindestens ein zuvor beschriebenes Polypeptid und eignet sich zur Diagnose und/oder Behandlung besagter Allergien.
- Pharmazeutische Zubereitungen im Sinne der vorliegenden Erfindung enthaltend als Wirkstoffe ein erfindungsgemäßes Polypeptid oder einen Expressionsvektor und/oder deren jeweilige pharmazeutisch verwendbaren Derivate, einschließlich deren Mischungen in allen Verhältnissen. Hierbei können die erfindungsgemäßen Wirkstoffe zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.
 Als Hilfsstoffe sind immunstimulierende DNA oder Oligonukleotide mit
- Als Hilfsstoffe sind immunstimulierende DNA oder Oligonukleotide mit 35

 CpG-Motiven besonders geeignet.

5

10

15

Diese Zubereitungen können als Therapeutika oder Diagnostika in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die parenterale Applikation eignen und die Wirkung des erfindungsgemäßen Wirkstoffs nicht negativ beeinflussen. Zur parenteralen Anwendung dienen insbesondere Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate. Der erfindungsgemäße Wirkstoff kann auch lyophilisiert und die erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen und/oder mehrere weitere Wirkstoffe enthalten.

Weiterhin können durch entsprechende Formulierung des erfindungsgemäßen Wirkstoffs Depotpräparate - zum Beispiel durch Adsorption an Alu-

Weiterhin konnen durch entsprechende Formulierung des erindungsgemäßen Wirkstoffs Depotpräparate - zum Beispiel durch Adsorption an Aluminiumhydroxid - erhalten werden.

Die Erfindung dient somit auch zur Verbesserung der *in vitro* Diagnostik im Rahmen einer Allergen-Komponenten auflösenden Identifizierung des patientenspezifischen Sensibilisierungsspektrums. Die Erfindung dient ebenfalls zur Herstellung von deutlich verbesserten Präparaten zur spezifischen Immuntherapie von Gräserpollenallergien.

Tabelle 1 Verwendete Primer

a) Sec c 4

_	
• .	•
•	•
_	_

35

Primer num- mer	SEQ ID NO	Sequenz
#0083	30	GGCTCCCGGGGCGAACCAGTAG
#0087	31	ACCAACGCCTCCCACATCCAGTC
#0189	32	GATAAGCTTCTCGAGTGATTAGTACTTTTTGATC AGCGGCGGGATGCTC

#0195	33	GCTCTCGATCGGCTACAATGGCG
#0198	34	CACGCACTACAAATCTCCATGCAAG
#0202	35	CATGCTTGATCCTTATTCTACTAGTTGGGC
	36	TACGCACGATCCTTATTCTACTAGTTGGGC

5

a) Hor v 4

10

Primer num- mer	SEQ ID NO	Sequenz
#0194	37	GCCTTGTCCTGCCACCACGCCGCCGCCACC
#0195	38	GCTCTCGATCGGCTACAATGGCG
#0198	39	CACGCACTACAAATCTCCATGCAAG
#0202	40	CATGCTTGATCCTTATTCTACTAGTTGGGC

15

c) Tri a 4

Primer

#0199 41 CACGCACTAAATCTCCATGCAAG
#0203 42 TACGCACGATCCTTATTCTACTAGTTGGGC
#0204 43 AAGCTCTATCGCCTACAATGGCG
#0206 44 GGTGCTCCTCTTCTGCGCCTTGTCC

SEQ ID NO

Sequenz

20

25

30

5

10

15

Patentansprüche

- 1. Ein DNA-Molekül entsprechend einer Nukleotidsequenz eines Getreidepollenhauptallergens, ausgewählt aus einer der Sequenzen gemäß SEQ ID NO 1, 3, 5, 7, und 9.
- 2. Ein DNA-Molekül, das mit einem DNA-Molekül gemäß Anspruch 1 unter stringenten Bedingungen hybridisiert und von DNA-Sequenzen von *Poaceae*-Spezies abstammt.
- 3. Ein DNA-Molekül, kodierend für ein Polypeptid, welches mit den Majorallergenen Sec c 4, Hor v 4 oder Tri a 4 aus Secale cerale, Hordeum vulgare beziehungsweise Triticum aestivum immunologisch kreuzreagiert, und von DNA-Sequenzen von Poaceae-Spezies abstammt.
- 4. Ein DNA-Molekül, entsprechend einer Teilsequenz oder einer Kombination von Teilsequenzen nach einem oder mehreren der Ansprüche 1 bis 3, welches für ein immunmodulatorisches, T-Zell-reaktives Fragment eines Gruppe-4-Poaceae-Allergens kodiert.
- 5. Ein DNA-Molekül, entsprechend einer Nukleotidsequenz gemäß einem oder mehreren der Ansprüche 1 bis 4, kodierend für ein immunmodulatorisches T-Zell reaktives Fragment, dadurch gekennzeichnet, daß besagte Nukleotidsequenz durch gezielte Mutation einzelner Codons, Eliminierung oder Addition gezielt verändert wurde.
- 6. Ein DNA-Molekül gemäß Anspruch 5, dadurch gekennzeichnet, daß die besagte Mutation zum Austausch eines, mehrerer oder aller Cysteine des entsprechenden Polypeptids gegen eine andere Aminosäure führt.

7. Ein rekombinanter DNA-Expressionsvektor oder ein Klonierungssystem, enthaltend ein DNA-Molekül gemäß einem oder mehreren der Ansprüche 1 bis 6, funktionell verbunden mit einer Expressionskontrollsequenz.

5

8. Ein Wirtsorganismus, transformiert mit einem DNA-Molekül gemäß einem oder mehreren der Ansprüche 1 bis 6 oder einem Expressionsvektor gemäß Anspruch 7.

10

9. Ein Verfahren zur Herstellung eines Polypeptids, kodiert durch eine DNA-Sequenz gemäß einem oder mehreren der Ansprüche 1 bis 6, durch Kultivieren eines Wirtsorganismus gemäß Anspruch 8 und Gewinnung des entsprechenden Polypeptids aus der Kultur.

15

10. Ein Polypeptid entsprechend einer der Aminosäuresequenzen gemäß SEQ ID NO 2, 4, 6, 8, und 10, welches von einer DNA-Sequenz gemäß einem oder mehreren der Ansprüche 1 bis 6 kodiert wird.

20

11. Ein Polypeptid entsprechend dem reifen Allergen der Aminosäuresequenzen gemäß Anspruch 10, ausgewählt aus der folgenden Gruppe von Aminosäuresequenzen

25

- eine der Aminosäuresequenzen gemäß SEQ ID NO 2, 4, oder 6, beginnend mit der Aminosäure 23,
- eine der Aminosäuresequenzen gemäß SEQ ID NO 8 oder 10, beginnend mit der Aminosäure 22.

30

12. Ein Polypeptid gemäß Anspruch 10 oder 11 als Arzneimittel.

35

13. Eine pharmazeutische Zubereitung, enthaltend mindestens ein Polypeptid gemäß Anspruch 12 und gegebenenfalls weitere Wirk- und/oder Hilfsstoffe zur Diagnose und/oder Behandlung von Allergien, an deren

WO 2005/059136 PCT/EP2004/013664

- 19 -

Auslösung Gruppe-4-Allergene der Poaceae beteiligt sind.

5

15

20

30

35

- 14. Verwendung mindestens eines Polypeptids gemäß Anspruch 12 zur Herstellung eines Arzneimittels zur Diagnose und/oder Behandlung von Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind und/oder zur Prävention solcher Allergien.
- 15. Ein DNA-Molekül gemäß einem oder mehreren der Ansprüche 1 bis 6 als Arzneimittel.
 - 16. Ein rekombinanter Expressionsvektor gemäß Anspruch 7 als Arzneimittel.
 - 17. Eine pharmazeutische Zubereitung, enthaltend mindestens ein DNA-Molekül gemäß Anspruch 15 oder mindestens einen Expressionsvektor gemäß Anspruch 16 und gegebenenfalls weitere Wirk- und/oder Hilfsstoffe zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind und/oder zur Prävention solcher Allergien.
- 18. Verwendung mindestens eines DNA-Moleküls gemäß Anspruch 15 oder mindestens eines Expressionsvektors gemäß Anspruch 16 zur Herstellung eines Arzneimittels zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind und/oder zur Prävention solcher Allergien.

Sequenz-Protokoll

<110> Merck Patent GmbH <120> DNA-Sequenz und rekombinante Herstellung von Gruppe-4 Majorallergenen aus Getreiden <130> P 03/239 <140> DE 10359351.9 <141> 2003-12-16 <160> 44 <170> PatentIn version 3.1 <210> 1 <211> 1603 <212> DNA · <213> Sec c 4 <220> <221> stop_codon <222> (1555)..(1557) <223> <220> <221> signal_sequence_DNA <222> (1)..(66)

<223>

<220>					
<221> signal_	_sequence_PROT				
<222> (1)(2	22)				
<223>					
<220>					
<221> CDS					
<222> (1)(3	.557)				
<223>					
<400> 1 aac tat agg gg	c ttc gcg ctg	gcg ctc ctc	ttc tgc gcc	ttg tcc tgc	: 48
Asn Tyr Arg Al	a Phe Ala Leu 5	Ala Leu Leu 10	Phe Cys Ala	Leu Ser Cys 15	3
caa gcc gcc g	eg gee gee tae	gcg ccc gtg	cct gcc aag	gcg gac tto	96
Gln Ala Ala Al 20	la Ala Ala Tyr	Ala Pro Val 25	Pro Ala Lys	Ala Asp Phe 30	
ctc gga tgc c	c atg aag gag	ata ccg gcc	cgc ctc ctc	tac gcc aag	144
Leu Gly Cys Le 35	eu Met Lys Glu	11e Pro Ala 40	Arg Leu Leu 45	Tyr Ala Lys	;
agc tcg cct ga	ac tac ccc acc	gtg ctg gcg	cag acc atc	agg aac tcg	192
Ser Ser Pro As	sp Tyr Pro Thr 55	vai Leu Aia	60	AIG ASII SEI	•
cgg tgg tcg to	eg ccg cag aac er Pro Gln Asn	gtg aag ccg	atc tac atc	atc acc ccc	240
65	70 70	Var bys 110	75	80	
acc aac gcc to	eg cac atc cag er His Ile Gln	tcc gcg gtg Ser Ala Val	gtg tgc ggc Val Cvs Glv	cgc cgg cac	288
	85	90		95	
ggc atc cgc c	c cgc gtg cgg eu Arg Val Arg	agc ggc ggc Ser Gly Gly	cac gac tac His Asp Tyr	gag ggc cto	336
_	00	105		110	
tcg tac cgg to Ser Tvr Arg So	ct gag aaa ccc er Glu Lys Pro	gag acg ttc Glu Thr Phe	gcc gtc gtc Ala Val Val	gac ctc aad Asp Leu Asr	384
115	-	120	125		
aag atg cgg g Lys Met Arg A	ca gtg tcg gtc la Val Ser Val	gac ggc tac Asp Gly Tyr	gcc cgc acg Ala Arg Thr	gcg tgg gto Ala Trp Val	2 432 L
130	135		140		
Glu Ser Gly A	eg cag ctc ggc La Gln Leu Gly	gag ctc tac Glu Leu Tyr	Tyr Ala Ile	Ala Lys Ası	า
145	150		155	160	J

	agc Ser	ccc Pro	gtg Val	ctc Leu	gcg Ala 165	ttc Phe	ccg Pro	gct Ala	ggc Gly	gtc Val 170	tgc Cys	ccg Pro	tcc Ser	atc Ile	ggc Gly 175	gtc Val	528	
	ggc Gly	ggc Gly	aac Asn	ttc Phe 180	gca Ala	ggc Gly	ggc Gly	ggc Gly	ttt Phe 185	ggc Gly	atg Met	ctg Leu	ctg Leu	cgc Arg 190	aag Lys	tac Tyr	576	
	ggc Gly	atc Ile	gcc Ala 195	gct Ala	gag Glu	aac Asn	gtc Val	atc Ile 200	gac Asp	gtc Val	aag Lys	gtg Val	gtc Val 205	gac Asp	ccc Pro	aac Asn	624	
	ggc Gly	aag Lys 210	ctg Leu	ctc Leu	gac Asp	aag Lys	agc Ser 215	tcc Ser	atg Met	agc Ser	gcg Ala	gac Asp 220	cac His	ttc Phe	tgg Trp	gcc Ala	672	
	gtt Val 225	agg Arg	ggc Gly	ggc Gly	ggc Gly	gga Gly 230	gag Glu	agc Ser	ttt Phe	ggc Gly	atc Ile 235	gtc Val	gtc Val	tcg Ser	tgg Trp	cag Gln 240	720	
	gtg Val	aag Lys	ctc Leu	ctg Leu	ccg Pro 245	gtg Val	cct Pro	ccc Pro	acc Thr	gtg Val 250	acc Thr	gtg Val	ctc Leu	aag Lys	atc Ile 255	ccc Pro	768	
	aag Lys	acg Thr	gtg Val	caa Gln 260	gaa Glu	ggc Gly	gcc Ala	ata Ile	gac Asp 265	ctc Leu	gtc Val	aac Asn	aag Lys	tgg Trp 270	cag Gln	ctg Leu	816	
	gtc Val	ggg Gly	ccg Pro 275	gca Ala	ctt Leu	ccc Pro	ggc Gly	gac Asp 280	ctc Leu	atg Met	atc Ile	cgc Arg	atc Ile 285	atc Ile	ctt Leu	gcc Ala	864	
	ggg Gly	aac Asn 290	agc Ser	gcg Ala	acg Thr	ttc Phe	gag Glu 295	gcc Ala	atg Met	tac Tyr	ctg Leu	ggc Gly 300	acc Thr	tgc Cys	agt Ser	acc Thr	912	
	ctg Leu 305	acg Thr	ccg Pro	ctg Leu	atg Met	agc Ser 310	agc Ser	aaa Lys	ttc Phe	ccc Pro	gag Glu 315	ctt Leu	ggc Gly	atg Met	aac Asn	ccc Pro 320	960	
	tcg Ser	cac His	tgc Cys	aac Asn	gag Glu 325	atg Met	tcc Ser	tgg Trp	atc Ile	aag Lys 330	tcc Ser	atc Ile	ccc Pro	ttc Phe	atc Ile 335	cac His	1008	
	ctc Leu	ggc Gly	aag Lys	cag Gln 340	aac Asn	ctc Leu	gac Asp	gac Asp	ctc Leu 345	ctc Leu	aac Asn	cgg Arg	aac Asn	aac Asn 350	acc Thr	ttc Phe	1056	
-	aaa Lys	cca Pro	ttc Phe 355	gcc Ala	gaa Glu	tac Tyr	aag Lys	tcg Ser 360	Asp	tac Tyr	gtg Val	tac Tyr	cag Gln 365	ccc Pro	ttc Phe	ccc Pro	1104	
	aag Lys	ccc Pro 370	gtg Val	tgg Trp	gag Glu	cag Gln	atc Ile 375	ttc Phe	ggc Gly	tgg Trp	ctt Leu	gtg Val 380	aag Lys	ccc Pro	ggc Gly	gcg Ala	1152	
	ggg Gly 385	atc Ile	atg Met	atc Ile	atg Met	gac Asp 390	Pro	tat Tyr	ggc Gly	gcc Ala	acc Thr 395	atc Ile	agc Ser	gct Ala	acc Thr	ccc Pro 400	1200	l
	gaa	gcg	gcg	acg	ccg	ttc	cct	cac	cgc	cag	ggc	gtc	ctc	ttc	aac	atc	. 1248	}

Glu Ala Ala Thr Pro Phe Pro His Arg Gln Gly Val Leu Phe Asn Ile 405 410 415	
cag tac gtc aac tac tgg ttc gct gag tca gcc ggc gcg gcg ccg ctg Gln Tyr Val Asn Tyr Trp Phe Ala Glu Ser Ala Gly Ala Ala Pro Leu 420 425 430	1296
cag tgg agc aag gac ata tac aag ttc atg gag ccg tac gtg agc aaa Gln Trp Ser Lys Asp Ile Tyr Lys Phe Met Glu Pro Tyr Val Ser Lys 435 440 445	1344
aat ccc agg cag gcg tat gcc aac tac agg gac atc gac ctt ggc agg Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg 450 455 460	1392
aat gag gtg gtg aac gac atc tcc acc tac agc agc ggc aaa gtg tgg Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val Trp 465 470 475 480	1440
ggt gag aag tac ttc aag ggc aac ttc caa agg ctc gcc att acc aag Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala Ile Thr Lys 485 490 495	1488
ggc aag gtg gat cct cag gac tac ttc agg aac gag cag agc atc ccg Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro 500 505 510	1536
cca ctg gtc gag aag tac tga tcgaggacct tgcatggaaa tttagtgcgt Pro Leu Val Glu Lys Tyr 515	1587
ggttggcgtt tcacat	1603
<pre>ggttggcgtt tcacat <210> 2</pre>	1603
	1603
<210> 2	1603
<210> 2 <211> 518	1603
<210> 2 <211> 518 <212> PRT	1603
<210> 2 <211> 518 <212> PRT <213> Sec c 4	1603
<pre><210> 2 <211> 518 <212> PRT <213> Sec c 4 <400> 2 Asn Tyr Arg Ala Phe Ala Leu Ala Leu Leu Phe Cys Ala Leu Ser Cys</pre>	1603
<pre><210> 2 <211> 518 <212> PRT <213> Sec c 4 <400> 2 Asn Tyr Arg Ala Phe Ala Leu Ala Leu Leu Phe Cys Ala Leu Ser Cys 1</pre>	1603

Arg Trp Ser Ser Pro Gln Asn Val Lys Pro Ile Tyr Ile Ile Thr Pro Thr Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Gly Ile Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Glu Lys Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys Met Arg Ala Val Ser Val Asp Gly Tyr Ala Arg Thr Ala Trp Val Glu Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala Lys Asn Ser Pro Val Leu Ala Phe Pro Ala Gly Val Cys Pro Ser Ile Gly Val Gly Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr Gly Ile Ala Ala Glu Asn Val Ile Asp Val Lys Val Val Asp Pro Asn Gly Lys Leu Leu Asp Lys Ser Ser Met Ser Ala Asp His Phe Trp Ala Val Arg Gly Gly Gly Glu Ser Phe Gly Ile Val Val Ser Trp Gln Val Lys Leu Pro Val Pro Pro Thr Val Thr Val Leu Lys Ile Pro Lys Thr Val Gln Glu Gly Ala Ile Asp Leu Val Asn Lys Trp Gln Leu Val Gly Pro Ala Leu Pro Gly Asp Leu Met Ile Arg Ile Ile Leu Ala Gly Asn Ser Ala Thr Phe Glu Ala Met Tyr Leu Gly Thr Cys Ser Thr Leu Thr Pro Leu Met Ser Ser Lys Phe Pro Glu Leu Gly Met Asn Pro

Ser His Cys Asn Glu Met Ser Trp Ile Lys Ser Ile Pro Phe Ile His 325 330 335

Leu Gly Lys Gln Asn Leu Asp Asp Leu Leu Asn Arg Asn Asn Thr Phe 340 345 350

Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln Pro Phe Pro 355 360 365

Lys Pro Val Trp Glu Gln Ile Phe Gly Trp Leu Val Lys Pro Gly Ala 370 380

Gly Ile Met Ile Met Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro 385 390 395

Glu Ala Ala Thr Pro Phe Pro His Arg Gln Gly Val Leu Phe Asn Ile 405 410 415

Gln Tyr Val Asn Tyr Trp Phe Ala Glu Ser Ala Gly Ala Ala Pro Leu 420 425 430

Gln Trp Ser Lys Asp Ile Tyr Lys Phe Met Glu Pro Tyr Val Ser Lys 435 440 445

Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg 450 460

Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val Trp 465 470 475 480

Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala Ile Thr Lys 485 490 495

Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro 500 505 510

Pro Leu Val Glu Lys Tyr 515

<210> 3

<211> 1644

<212> DNA

<213> Sec c 4

```
<220>
<221>
      stop_codon
      (1561)..(1563)
<222>
<223>
<220>
      signal_sequence_DNA
      (1)..(66)
<222>
<223>
<220>.
      signal_sequence_PROT
<222> (1)..(22)
<223>
<220>
<221>
      CDS
<222> (1)..(1563)
<223>
<400> 3
aac tog agg goo ttt got otg gtg ooc otc otc atc tgc gtc ttg toc
                                                                       48
Asn Ser Arg Ala Phe Ala Leu Val Pro Leu Leu Ile Cys Val Leu Ser
                                                         15
tgc cac gcc gcc gtc tcc tac gcg gcg gcg ccg gtg ccg gcc aag gag
                                                                       96
Cys His Ala Ala Val Ser Tyr Ala Ala Pro Val Pro Ala Lys Glu
                                25
            20
gac ttc ttc gga tgc ctg gtg aag gag ata ccg gcc cgc ctc ctc tac
                                                                      144
Asp Phe Phe Gly Cys Leu Val Lys Glu Ile Pro Ala Arg Leu Leu Tyr
        35
                                                                      192
gcc aag agc tcg cct gcc ttc ccc acc gtc ctg gcg cag acc atc agg
Ala Lys Ser Ser Pro Ala Phe Pro Thr Val Leu Ala Gln Thr Ile Arg
                        55
    50
aac tcg cgg tgg tcg tcg ccg cag agc gtg aag ccg ctc tac atc
                                                                      240
Asn Ser Arg Trp Ser Ser Pro Gln Ser Val Lys Pro Leu Tyr Ile Ile
                                                             80
                                        75
                    70
65
```

WO 2005/059136 PCT/EP2004/013664

acc Thr	ccc Pro	acc Thr	aac Asn	gcc Ala 85	tcc Ser	cac His	atc Ile	cag Gln	tcc Ser 90	gcg Ala	gtg Val	gtg Val	tgc Cys	ggc Gly 95	cgc Arg	288
cgg	cac	ggc Gly	gtc Val 100	cgc Arg	atc Ile	cgc Arg	gtg Val	cgg Arg 105	agc Ser	ggc Gly	ggc Gly	cac His	gac Asp 110	tac Tyr	gag Glu	336
ggc	ctg Leu	tcg Ser 115	tac Tyr	cgg Arg	tcc Ser	gag Glu	cgc Arg 120	ccc Pro	gag Glu	gcg Ala	ttc Phe	gcc Ala 125	gtc Val	gtc Val	gac Asp	384
cto	aac Asn 130	aag Lys	atg Met	cgg Arg	gcc Ala	gtg Val 135	gtg Val	gtc Val	gac Asp	ggc Gly	aag Lys 140	gct Ala	cgc Arg	acg Thr	gcg Ala	432
tgg Trp	gtg Val	gac Asp	tcc Ser	ggt Gly	gcg Ala 150	cag Gln	ctc Leu	ggc Gly	gag Glu	ctc Leu 155	tac Tyr	tac Tyr	gcc Ala	atc Ile	gcc Ala 160	480
aag Lys	aac Asn	agc Ser	ccc Pro	gtg Val 165	ctc Leu	gcg Ala	ttc Phe	ccg Pro	gcc Ala 170	ggc Gly	gtt Val	tgc Cys	ccg Pro	acc Thr 175	att Ile	528
ggt Gl	gta Val	ggc Gly	ggc Gly 180	aac Asn	ttc Phe	gct Ala	ggc Gly	ggc Gly 185	ggc Gly	ttc Phe	ggc Gly	atg Met	ctg Leu 190	ctg Leu	cgc Arg	576
aaç Lys	tac Tyr	ggc Gly 195	Ile	gcc Ala	gcc Ala	Glu	aac Asn 200	gtc Val	atc Ile	gac Asp	gtg Val	aag Lys 205	gtg Val	gtc Val	gac Asp	624
gco Ala	aac Asn 210	Gly	aca Thr	ctg Leu	ctc Leu	gac Asp 215	aag Lys	agc Ser	tcc Ser	atg Met	agc Ser 220	gcg Ala	gat Asp	cac His	ttc Phe	672
tgg Trg 225	g gcc Ala	gtc Val	agg Arg	ggc Gly	ggc Gly 230	ggc Gly	gga Gly	gag Glu	agc Ser	ttc Phe 235	ggc	atc Ile	gtc Val	gtg Val	tcg Ser 240	720
tg:	g cag Gln	gtg Val	aag Lys	ctc Leu 245	ctc Leu	ccg Pro	gtg Val	cct Pro	ccc Pro 250	acc Thr	gtg Val	acc Thr	gtg Val	ttc Phe 255	aag Lys	768
ato Ile	ccc Pro	aag Lys	acg Thr 260	Val	caa Gln	gaa Glu	ggc Gly	gcc Ala 265	gta Val	gag Glu	ctc Leu	atc Ile	aac Asn 270	aag Lys	tgg Trp	816
ca Gl:	g cta n Leu	gtc Val 275	Ala	ccg Pro	gcc Ala	ctc Leu	ccc Pro 280	Asp	gac Asp	ctg Leu	atg Met	atc Ile 285	Arg	atc Ile	atc Ile	864
gc [*] Ala	ttc Phe 290	Gly	ggc	acc Thr	gcc Ala	aag Lys 295	Phe	gag Glu	gcc Ala	atg Met	tac Tyr 300	Leu	ggc	acc Thr	tgc Cys	912
aa Ly: 30	a gcc s Ala	ctg Leu	aca Thr	ccg Pro	ctg Leu 310	Met	agc Ser	agc Ser	aga Arg	ttc Phe 315	Pro	gag Glu	ctc Leu	ggc Gly	atg Met 320	960
aa	c gcc	tcg	cac	tgc	aac	gag	atg	ccc	tgg	atc	aag	tcc	gtc	cca	ttc	1008

Asn	Ala	Ser	His	Cys 325	Asn	Glu	Met	Pro	Trp 330	Ile	Lys	Ser	Val	Pro 335	Phe	
atc Ile	cac His	ctt Leu	ggc Gly 340	aag Lys	cag Gln	gcc Ala	acc Thr	ctc Leu 345	tcc Ser	gac Asp	ctc Leu	ctc Leu	aac Asn 350	cgg Arg	aac Asn	1056
aac Asn	acc Thr	ttc Phe 355	aaa Lys	ccc Pro	ttc Phe	gcc Ala	gag Glu 360	tac Tyr	aag Lys	tcg Ser	gac Asp	tac Tyr 365	gtc Val	tac Tyr	cag Gln	1104
ccc Pro	gtc Val 370	ccc Pro	aag Lys	ccc Pro	gtc Val	tgg Trp 375	gcg Ala	cag Gln	atc Ile	ttc Phe	gtc Val 380	tgg Trp	ctc Leu	gtc Val	aaa Lys	1152
ccc Pro 385	ggc Gly	gcc Ala	ggg Gly	atc Ile	atg Met 390	gtc Val	atg Met	gac Asp	ccc Pro	tac Tyr 395	ggc Gly	gcc Ala	gcc Ala	atc Ile	agc Ser 400	1200
gcc Ala	acc Thr	ccc Pro	gaa Glu	gcc Ala 405	gcc Ala	acg Thr	ccg Pro	ttc Phe	cct Pro 410	cac His	cgc Arg	aag Lys	gac Asp	gtc Val 415	ctc Leu	1248
ttc Phe	aac Asn	atc Ile	cag Gln 420	tac Tyr	gtc Val	aac Asn	tac Tyr	tgg Trp 425	ttc Phe	gac Asp	gag Glu	gca Ala	ggc Gly 430	ggc Gly	gcc Ala	1296
gcg Ala	ccg Pro	ctg Leu 435	cag Gln	tgg Trp	agc Ser	aag Lys	gac Asp 440	atg Met	tac Tyr	agg Arg	ttc Phe	atg Met 445	gag Glu	ccg Pro	tac Tyr	1344
gtc Val	agc Ser 450	aag Lys	aac Asn	ccc Pro	aga Arg	cag Gln 455	gcc Ala	tac Tyr	gcc Ala	aac Asn	tac Tyr 460	agg Arg	gac Asp	atc Ile	gac Asp	1392
ctc Leu 465	ggc Gly	agg Arg	aac Asn	gag Glu	gtg Val 470	gtc Val	aac Asn	gac Asp	atc Ile	tcc Ser 475	acc Thr	tat Tyr	gcc Ala	agc Ser	ggc Gly 480	1440
aag Lys	gtc Val	tgg Trp	ggc Gly	gag Glu 485	aag Lys	tac Tyr	ttc Phe	aag Lys	ggc Gly 490	aac Asn	ttc Phe	caa Gln	agg Arg	ctc Leu 495	gcc Ala	1488
att Ile	acc Thr	aag Lys	ggc Gly 500	aag Lys	gtg Val	gat Asp	cct Pro	cag Gln 505	gac Asp	tac Tyr	ttc Phe	agg Arg	aac Asn 510	gag Glu	cag Gln	1536
agc Ser	atc Ile	ccg Pro 515	ccg Pro	ctg Leu	cta Leu	ggg Gly	aag Lys 520	tag	tag	tact	ctt	gctt	gcat	gg		1583
aga	tttg	tag	tgcg	tctt	tc g	cgtt	tcaa	a tg	ccca	acta	gta	gaat	aag	gatc	gtgcgt	1643
a																1644

<210> 4

<211> 520

<212> PRT

<213> Sec c 4

<	4	0	0	>	4
-	-	\sim	$\mathbf{}$	-	-

Asn Ser Arg Ala Phe Ala Leu Val Pro Leu Leu Ile Cys Val Leu Ser 1 5 10 15

Cys His Ala Ala Val Ser Tyr Ala Ala Ala Pro Val Pro Ala Lys Glu 20 25 30

Asp Phe Phe Gly Cys Leu Val Lys Glu Ile Pro Ala Arg Leu Leu Tyr 35

Ala Lys Ser Ser Pro Ala Phe Pro Thr Val Leu Ala Gln Thr Ile Arg 50 55 60

Asn Ser Arg Trp Ser Ser Pro Gln Ser Val Lys Pro Leu Tyr Ile Ile 65 70 75 80

Thr Pro Thr Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg 85 90 95

Arg His Gly Val Arg Ile Arg Val Arg Ser Gly Gly His Asp Tyr Glu
100 105 110

Gly Leu Ser Tyr Arg Ser Glu Arg Pro Glu Ala Phe Ala Val Val Asp 115 120 125

Leu Asn Lys Met Arg Ala Val Val Val Asp Gly Lys Ala Arg Thr Ala 130 135 140

Trp Val Asp Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala 145 150 155 160

Lys Asn Ser Pro Val Leu Ala Phe Pro Ala Gly Val Cys Pro Thr Ile 165 170 175

Gly Val Gly Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu Arg 180 185 190

Lys Tyr Gly Ile Ala Ala Glu Asn Val Ile Asp Val Lys Val Val Asp 195 200 205

Ala Asn Gly Thr Leu Leu Asp Lys Ser Ser Met Ser Ala Asp His Phe 210 225 220

Trp 225	Ala	Val	Arg	Gly	Gly 230	Gly	Gly	Glu	Ser	Phe 235	Gly	Ile	Val	Val	Ser 240
Trp	Gln	Val	Lys	Leu 245	Leu	Pro	Val	Pro	Pro 250	Thr	Val	Thr	Val	Phe 255	Lys
Ile	Pro	Lys	Thr 260	Val	Gln	Glu	Gly	Ala 265	Val	Glu	Leu	Ile	Asn 270	Lys	Trp
Gln	Leu	Val 275	Ala	Pro	Ala	Leu	Pro 280	Asp	Asp	Leu	Met	Ile 285	Arg	Ile	Ile
Ala	Phe 290	Gly	Gly	Thr	Ala	Lys 295		Glu	Ala	Met	Tyr 300	Leu	Gly	Thr	Cys
Lys 305		Leu	Thr	Pro	Leu 310	Met	Ser	Ser	Arg	Phe 315	Pro	Glu	Leu	Gly	Met 320
Asn	Ala	Ser	His	Cys 325	Asn	Glu	Met	Pro	Trp 330	Ile	Lys	Ser	Val	Pro 335	Phe
Ile	His	Leu	Gly 340	Lys	Gln	Ala	Thr	Leu 345	Ser	Asp	Leu	Leu	Asn 350	Arg	Asn
Asn	Thr	Phe 355	Lys	Pro	Phe	Ala	Glu 360		Lys	Ser	Asp	Tyr 365	Val	Tyr	Gln
Pro	Val 370	Pro	Lys	Pro	Val	Trp 375	Ala	Gln	Ile	Phe	Val 380	Trp	Leu	Val	Lys
Pro 385	Gly	Ala	Gly	Ile	Met 390	Val	Met	Asp	Pro	Tyr 395	Gly	Ala	Ala	Ile	Ser 400
Ala	Thr	Pro	Glu	Ala 405	Ala	Thr	Pro	Phe	Pro 410	His	Arg	Lys	Asp	Val 415	Leu
Phe	Asn	Ile	Gln 420	Tyr	Val	Asn	Tyr	Trp 425	Phe	Asp	Glu	Ala	Gly 430	Gly	Ala
Ala	Pro	Leu 435	Gln	Trp	Ser	Lys	Asp 440	Met	Tyr	Arg	Phe	Met 445	Glu	Pro	Tyr
Val	Ser 450	Lys	Asn	Pro	Arg	Gln 455	Ala	Tyr	Ala	Asn	Tyr 460	Arg	Asp	Ile	Asp
Leu 465	Gly	Arg	Asn	Glu	Val 470	Val	Asn	Asp	Ile	Ser 475	Thr	Tyr	Ala	Ser	Gly 480

495

510

490

```
Lys Val Trp Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala
                485
Ile Thr Lys Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln
                                505
            500
Ser Ile Pro Pro Leu Leu Gly Lys
                            520
        515
<210>
<211> 1608
<212> DNA
<213> Hor v 4
<220>
      stop_codon
<221>
       (1555)..(1557)
<222>
<223>
<220>
<221> signal_sequence_DNA
<222> (1)..(66)
<223>
<220>
<221> signal_sequence_PROT
<222> (1)..(22)
<223>
<220>
```

<221> CDS

<222> (1)..(1557)

<223>

<400> agc t Ser S	ca	agg	gcc Ala	ttc Phe 5	gct Ala	ctg Leu	gtg Val	ctc Leu	ctc Leu 10	ctc Leu	tgc Cys	gcc Ala	ttg Leu	tcc Ser 15	tgc Cys	48
cac c His H	cac	gct Ala	gcc Ala 20	gtc Val	tcc Ser	tcc Ser	gcg Ala	cag Gln 25	gtg Val	ccg Pro	gcc Ala	aag Lys	gac Asp 30	gac Asp	ttc Phe	96
ctg g Leu G	gga Gly	tgc Cys 35	ctc Leu	gtg Val	aag Lys	gag Glu	ata Ile 40	ccg Pro	gcc Ala	cgc Arg	ctc Leu	ctc Leu 45	ttc Phe	gcc Ala	aag Lys	144
agc t Ser S	ccg Ser 50	cct Pro	gcc Ala	ttc Phe	ccc Pro	gcc Ala 55	gtc Val	ctg Leu	gag Glu	cag Gln	acc Thr 60	atc Ile	agg Arg	aac Asn	tcg Ser	192
cgg t Arg I 65	gg Trp	tcg Ser	tcg Ser	ccg Pro	cag Gln 70	aac Asn	gtg Val	aag Lys	ccg Pro	ctc Leu 75	tac Tyr	atc Ile	atc Ile	acc Thr	ccc Pro 80	240
acc a	aac Asn	acc Thr	tcc Ser	cac His 85	atc Ile	cag Gln	tct Ser	gct Ala	gtg Val 90	gtg Val	tgc Cys	ggc Gly	cgc Arg	cgg Arg 95	cac His	288
ggc g Gly V	gtc Val	cgc Arg	ctc Leu 100	cgc Arg	gtg Val	cgg Arg	agc Ser	ggc Gly 105	ggc Gly	cac His	gac Asp	tac Tyr	gag Glu 110	ggc Gly	ctg Leu	. 336
tcg t Ser 1	tac Tyr	cgg Ārg 115	tcc Ser	gag Glu	cgc Arg	ccc Pro	gag Glu 120	gcg Ala	ttc Phe	gcc Ala	g <u>t</u> c Val	gta Val 125	gac Asp	ctc Leu	aac Asn	.384
aag a Lys N	atg Met 130	cgg Arg	acc Thr	gtg Val	ttg Leu	gtc Val 135	aac Asn	gaa Glu	aag Lys	gcc Ala	cgc Arg 140	acg Thr	gcg Ala	tgg Trp	gtg Val	4321
gac t Asp 3 145	tcc Ser	ggc Gly	gcg Ala	cag Gln	ctc Leu 150	ggc Gly	gag Glu	ctc Leu	tac Tyr	tac Tyr 155	gcc Ala	atc Ile	gcc Ala	aag Lys	aac Asn 160	480
agc (Ser l	ccc Pro	gtg Val	ctc Leu	gcg Ala 165	ttc Phe	cca Pro	gcc Ala	ggc Gly	gtt Val 170	tgc Cys	ccg Pro	tcc Ser	att Ile	ggt Gly 175	gta Val	528
ggt (ggc Gly	aac Asn	ttc Phe 180	gct Ala	ggc Gly	ggc	ggc	ttc Phe 185	ggc	atg Met	ctg Leu	ctg Leu	cgc Arg 190	aag Lys	tac	576
ggc a	atc Ile	gcc Ala 195	gcc Ala	gag Glu	aac Asn	gtc Val	atc Ile 200	Asp	gtc Val	aag Lys	ctg Leu	gtc Val 205	gac Asp	gcc Ala	aac Asn	624
ggc a	aag Lys 210	ctg Leu	ctc Leu	gac Asp	aag Lys	agc Ser 215	tcc Ser	atg Met	agc Ser	ccg Pro	gac Asp 220	His	ttc Phe	tgg Trp	gcc Ala	.672
gtc a Val a 225	agg Arg	ggc Gly	Gly	ggc Gly	gga Gly 230	Glu	agc Ser	ttc Phe	ggc	atc Ile 235	Val	gtc Val	tcg Ser	tgg Trp	cag Gln 240	720

gtg Val	aag Lys	ctt Leu	ctc Leu	ccg Pro 245	gtg Val	cct Pro	ccc Pro	acc Thr	gtg Val 250	act Thr	gtg Val	ttt Phe	cag Gln	atc Ile 255	ccc Pro	768
aag Lys	aca Thr	gtg Val	caa Gln 260	gaa Glu	ggc Gly	gcc Ala	gta Val	gac Asp 265	ctc Leu	atc Ile	aac Asn	aag Lys	tgg Trp 270	cag Gln	ctg Leu	816
gtc Val	gcg Ala	ccg Pro 275	gcc Ala	ctt Leu	ccc Pro	Gly	gac Asp 280	atc Ile	atg Met	atc Ile	cgc Arg	atc Ile 285	atc Ile	gcc Ala	atg Met	864
ggg Gly	gac Asp 290	aaa Lys	gcg Ala	acg Thr	ttc Phe	gag Glu 295	gcc Ala	atg Met	tac Tyr	ctg Leu	ggc Gly 300	acc Thr	tgc Cys	aaa Lys	acc Thr	912
ctg Leu 305	acg Thr	ccg Pro	ctg Leu	atg Met	agc Ser 310	agc Ser	aaa Lys	ttc Phe	ccg Pro	gag Glu 315	ctt Leu	ggc Gly	atg Met	aac Asn	ccc Pro 320	960
tcg Ser	cac His	tgc Cys	aac Asn	gag Glu 325	atg Met	ccc Pro	tgg Trp	atc Ile	aag Lys 330	tcc Ser	atc Ile	ccc Pro	ttc Phe	atc Ile 335	cac His	1008
ctt Leu	ggc Gly	aag Lys	cag Gln 340	gcc Ala	acc Thr	ctg Leu	gcc Ala	gac Asp 345	ctc Leu	ctc Leu	aac Asn	cgg Arg	aac Asn 350	aac Asn	acc Thr	1056
ttc Phe	aaa Lys	ccc Pro 355	ttc Phe	gcc Ala	gaa Glu	tac Tyr	aag Lys 360	tcg Ser	gac Asp	tac Tyr	gtc Val	tac Tyr 365	cag Gln	ccc Pro	gtc Val	1104
ccc Pro	aag Lys 370	ccc Pro	gtg Val	tgg Trp	gag Glu	cag Gln 375	ctc Leu	ttc Phe	ggc Gly	tgg Trp	ctc Leu 380	acg Thr	aaa Lys	ccc	ggc Gly	1152
gcg Ala 385	Gly	atc Ile	atg Met	gtc Val	atg Met 390	gac Asp	cca Pro	tac Tyr	ggc Gly	gcc Ala 395	acc Thr	atc Ile	agc Ser	gcc Ala	acc Thr 400	1200
ccc Pro	gaa Glu	gcg Ala	gcg Ala	acg Thr 405	ccg Pro	ttc Phe	cct Pro	cac His	cgc Arg 410	aag Lys	ggc Gly	gtc Val	ctc Leu	ttc Phe 415	aac Asn	1248
atc Ile	cag Gln	tac Tyr	gtc Val 420	aac Asn	tac Tyr	tgg Trp	ttc Phe	gcc Ala 425	gag Glu	gca Ala	gcc Ala	ggc Gly	gcc Ala 430	gcg Ala	ccg Pro	1296
ctg Leu	cag Gln	tgg Trp 435	agc Ser	aag Lys	gac Asp	att Ile	tac Tyr 440	aaa Lys	ttc Phe	atg Met	gag Glu	ccg Pro 445	ttc	gtg Val	agc Ser	1344
aag Lys	aac Asn 450	ccc Pro	agg Arg	cag Gln	gcg Ala	tac Tyr 455	gcc Ala	aac Asn	tac Tyr	agg Arg	gac Asp 460	atc Ile	gac Asp	ctc	ggc	1392
agg Arg 465	aac Asn	gag Glu	gtg Val	gtg Val	aac Asn 470	gac Asp	atc Ile	tca Ser	acc Thr	tac Tyr 475	agc Ser	agc Ser	ggc	aag Lys	gtg Val 480	1440
tgg	ggc	gag	aag	tac	ttc	aag	ggc	aac	ttc	caa	agg	ctc	gcc	atc	acc	1488

WO 2005/059136 PCT/EP2004/013664

Trp G	ly Glu	Lys	Tyr 485	Phe	Lys	Gly	Asn	Phe 490	Gln	Arg	Leu	Ala	Ile 495	Thr	
aag go Lys G	gc aag ly Lys	gtg Val 500	gat Asp	ccc Pro	cag Gln	gac Asp	tac Tyr 505	ttc Phe	agg Arg	aac Asn	gag Glu	cag Gln 510	agc Ser	atc Ile	1536
	cg ctg ro Leu 515				tag	tgad	ccgaç	gag t	ctto	gcato	gg aç	gattt	gtag	3	1587
tgcgtgcttg gcgtttctga t													1608		
<210> 6															
<211>	518														
<212>	PRT														
<213>	Hor v	, 4													
				•											
<400>	6														
Ser Se	er Arg	Ala	Phe 5	Ala	Leu	Val	Leu	Leu 10	Leu	Cys	Ala	Leu	Ser 15	Cys	
His Hi	is Ala	Ala 20	Val	Ser	Ser	Ala	Gln 25	Val	Pro	Ala	Lys	Asp 30	Asp	Phe	-
Leu G	ly Cys 35	Leu	Val	Lys	Glu	Ile 40	Pro	Ala	Arg	Leu	Leu 45	Phe	Ala	Lys	
Ser Se	er Pro O	Ala	Phe	Pro	Ala 55	Val	Leu	Glu	Gln	Thr 60	Ile	Arg	Asn	Ser	
Arg Tr	rp Ser	Ser	Pro	Gln 70	Asn	Val	Lys	Pro	Leu 75	Tyr	Ile	Ile	Thr	Pro 80	
Thr As	sn Thr	Ser	His 85	Ile	Gln	Ser	Ala	Val 90	Val	Cys	Gly	Arg	Arg 95	His	
Gly Va	al Arg	Leu 100	Arg	Val	Arg	Ser	Gly 105	Gly	His	Asp	Tyr	Glu 110	Gly	Leu	
Ser T	yr Arg 115	Ser	Glu	Arg	Pro	Glu 120	Ala	Phe	Ala	Val	Val 125	Asp	Leu	Asn	
-	et Arg 30	Thr	Val	Leu	Val 135	Asn	Glu	Lys	Ala	Arg 140	Thr	Ala	Trp	Val	

Asp 145	Ser	Gly	Ala	Gln	Leu 150	Gly	Glu	Leu	Tyr	Tyr 155	Ala	Ile	Ala	Lys	Asn 160
Ser	Pro	Val	Leu	Ala 165	Phe	Pro	Ala	Gly	Val 170	Cys	Pro	Ser	Ile	Gly 175	Val
Gly	Gly	Asn	Phe 180		Gly	Gly	Gly	Phe 185	Gly	Met	Leu	Leu	Arg 190	Lys	Tyr
Gly	Ile	Ala 195	Ala	Glu	Asn	Val	Ile 200	Asp	Val	Lys	Leu	Val 205	Asp	Ala	Asn
Gly	Lys 210	Leu	Leu	Asp	Lys	Ser 215	Ser	Met	Ser	Pro	Asp 220	His	Phe	Trp	Ala
Val 225	Arg	Gly	Gly	Gly	Gly 230	Glu	Ser	Phe	Gly	Ile 235	Val	Val	Ser	Trp	Gln 240
Val	Lys	Leu	Leu	Pro 245	Val	Pro	Pro	Thr	Val 250	Thr	Val	Phe	Gln	Ile 255	Pro
Lys	Thr	Val	Gln 260	Glu	Gly	Ala	Val	Asp 265	Leu	Ile	Asn	Lys	Trp 270	Gln	Leu
Val	Ala	Pro 275	Ala	Leu	Pro	Gly	Asp 280	Ile	Met	Ile	Arg	Ile 285	Ile	Ala	Met
Gly	Asp 290		Ala	Thr	Phe	Glu 295		Met	Tyr	Leu	Gly 300	Thr	Cys	Lys	Thr
Leu 305	Thr	Pro	Leu	Met	Ser 310	Ser	Lys	Phe	Pro	Glu 315	Leu	Gly	Met	Asn	Pro 320
Ser	His	Cys	Asn	Glu 325	Met	Pro	Trp	Ile	Lys 330	Ser	Ile	Pro	Phe	Ile 335	His
Leu	Gly	Lys	Gln 340	Ala	Thr	Leu	Ala	Asp 345	Leu	Leu	Asn	Arg	Asn 350	Asn	Thr
Phe	Lys	Pro 355	Phe	Ala	Glu	Tyr	Lys 360	Ser	Asp	Tyr	Val	Tyr 365	Gln	Pro	Val
Pro	Lys 370	Pro	Val	Trp	Glu	Gln 375	Leu	Phe	Gly	Trp	Leu 380	Thr	Lys	Pro	Gly
Ala	_	Ile	Met	Val	Met 390	Asp	Pro	Tyr	Gly	Ala 395	Thr	Ile	Ser	Ala	Thr

Pro Glu Ala Ala Thr Pro Phe Pro His Arg Lys Gly Val Leu Phe Asn 405 410 415

Ile Gln Tyr Val Asn Tyr Trp Phe Ala Glu Ala Ala Gly Ala Ala Pro 420 425 430

Leu Gln Trp Ser Lys Asp Ile Tyr Lys Phe Met Glu Pro Phe Val Ser 435 440 445

Lys Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly 450 455 460

Arg Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val 465 470 475 480

Trp Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala Ile Thr · 485 490 495

Lys Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile 500 505 510

Pro Pro Leu Leu Gly Lys 515

<210> 7

<211> 1603

<212> DNA

<213> Tri a 4

<220>

<221> stop_codon

<222> (1555)..(1557)

<223>

<220>

<221> signal_sequence_DNA

<222> (1)..(63)

<223>

- 18 -

```
<220>
<221> signal_sequence_PROT
      (1)..(21)
<222>
<223>
<220>
<221> CDS
      (1)..(1557)
<222>
<223>
<400> 7
aac tat agg gcc ttc acg ctg gtg ctc ctc ttc tgc gcc ttg tcc tgt
                                                                       48
Asn Tyr Arg Ala Phe Thr Leu Val Leu Leu Phe Cys Ala Leu Ser Cys
                                                         15
                                     10
1
caa gcc gcc gcc acc tac gcg ccg gtg cct gcc aag gag gac ttc ctc
                                                                       96
Gln Ala Ala Ala Thr Tyr Ala Pro Val Pro Ala Lys Glu Asp Phe Leu
                                                     30
                                25
            20
gga tgc ctc atg aag gag ata ccg gca cgc ctc ctc tac gcc aag agc
                                                                      144
Gly Cys Leu Met Lys Glu Ile Pro Ala Arg Leu Leu Tyr Ala Lys Ser
                                                 45
                            40
        35
tcg cct gac ttc ccc acc gtc ctg gcg cag acc atc agg aac tcg cgg
                                                                      192
Ser Pro Asp Phe Pro Thr Val Leu Ala Gln Thr Ile Arg Asn Ser Arg
                                             60
                        55
    50
                                                                      240
tgg ttg tcg ccg cag aac gtg aag ccg ctc tac atc acc ccc acc
Trp Leu Ser Pro Gln Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr
                                                             80
65
                                                                      288
aac gcc tcg cac atc cag tcc gcg gtg gtg tgc gga cgc cgg cac agc
Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Ser
                85
gtc cgc ctc cgc gtc cgg agc ggc cac gac tac gag ggc ctg tcg
                                                                      336
Val Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser
                                                     110
                                 105
            100
                                                                      384
tac egg tee gag aaa eee gag aeg tte gee gte gte gae ete aac aag
Tyr Arg Ser Glu Lys Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys
                                                 125
                             120
        115
atg cgg gca gtg ttg atc gac ggc tac gcc cgc acg gcg tgg gtc gaa
                                                                      432
Met Arg Ala Val Leu Ile Asp Gly Tyr Ala Arg Thr Ala Trp Val Glu
                                             140
                         135
    130
tcc ggc gcg cag ctc ggc gag ctc tac tac gcc atc gcg aaa aac agc
                                                                       480
Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala Lys Asn Ser
                                                             160
                                         155
145
                     150
```

ccc Pro	gtg Val	ctc Leu	gcg Ala	ttc Phe 165	ccg Pro	gcc Ala	ggc Gly	gtc Val	tgc Cys 170	ccg Pro	acc Thr	atc Ile	ggc Gly	gtc Val 175	ggc Gly	528
ggc Gly	aac Asn	ttc Phe	gca Ala 180	ggc Gly	ggc Gly	ggc Gly	ttt Phe	ggc Gly 185	atg Met	ctg Leu	ctg Leu	cgg Arg	aag Lys 190	tac Tyr	ggc Gly	576
				aac Asn												624
aag Lys	ctt Leu 210	ctc Leu	gac Asp	aag Lys	agc Ser	tcc Ser 215	atg Met	agc Ser	ccg Pro	gac Asp	cac His 220	ttc Phe	tgg Trp	gcc Ala	gtc Val	672
agg Arg 225	ggc Gly	ggc Gly	ggc Gly	gga Gly	gag Glu 230	agc Ser	ttt Phe	ggc Gly	atc Ile	gtc Val 235	gtg Val	tcg Ser	tgg Trp	caa Gln	gtg Val 240	720
aag Lys	ctc Leu	ctg Leu	ccg Pro	gtg Val 245	cct Pro	ccc Pro	acc Thr	gtg Val	acc Thr 250	gtg Val	ttc Phe	aag Lys	atc Ile	ccc Pro 255	aag Lys	768
aca Thr	gtg Val	caa Gln	gaa Glu 260	ggc Gly	gcc Ala	gta Val	gac Asp	ctc Leu 265	gtc Val	aac Asn	aag Lys	tgg Trp	caa Gln 270	ctg Leu	gtc Val	816
ggg Gly	ccg Pro	gcc Ala 275	Leu	ccc Pro	Gly	Asp	Leu	atg Met	atc Ile	cgc Arg	gtc Val	atc Ile 285	Ala	gcg Ala	ggg Gly	864
aac Asn	acc Thr 290	gcg Ala	aca Thr	ttc Phe	gag Glu	ggc Gly 295	atg Met	tac Tyr	ctg Leu	ggc Gly	acc Thr 300	tgc Cys	caa Gln	acc Thr	ctg Leu	912
acg Thr 305	ccg Pro	ttg Leu	atg Met	agc Ser	agc Ser 310	caa Gln	ttc Phe	ccc Pro	gag Glu	ctt Leu 315	ggc Gly	atg Met	aac Asn	ccc Pro	tat Tyr 320	960
cac His	tgc Cys	aac Asn	gag Glu	atg Met 325	ccc Pro	tgg Trp	atc Ile	aag Lys	tcc Ser 330	atc Ile	ccc Pro	ttc Phe	atc Ile	cac His 335	ctc Leu	1008
ggc Gly	aaa Lys	gag Glu	gcc Ala 340	agc Ser	ctg Leu	gtc Val	gac Asp	ctc Leu 345	ctc Leu	aac Asn	cgg Arg	aac Asn	aac Asn 350	acc Thr	ttc Phe	1056
aag Lys	ccc Pro	ttc Phe 355	gcc Ala	gaa Glu	tac Tyr	aag Lys	tcg Ser 360	gac Asp	tac Tyr	gtg Val	tac Tyr	cag Gln 365	ccc Pro	ttc Phe	ccc Pro	1104
aag Lys	ccc Pro 370	gtg Val	tgg Trp	gag Glu	cag Gln	atc Ile 375	ttc Phe	ggc Gly	tgg Trp	ctc Leu	acg Thr 380	aag Lys	ccc Pro	ggt Gly	ggg Gly	1152
ggg Gly 385	atg Met	atg Met	atc Ile	atg Met	gac Asp 390	cca Pro	tac Tyr	ggc Gly	gcc Ala	acc Thr 395	atc Ile	agc Ser	gcc Ala	acc Thr	CCC Pro 400	1200
gaa	gcg	gcg	acg	ccg	ttc	cct	cac	cgc	cag	ggc	gtt	ctc	ttc	aac	atc	1248

Glu Ala Ala Thr Pro Phe Pro His Arg Gln Gly Val Leu Phe Asn Ile 405 410 415)
cag tac gtc aac tac tgg ttc gcc gag gca gcc gcc gcc gcg ccg ctg Gln Tyr Val Asn Tyr Trp Phe Ala Glu Ala Ala Ala Ala Ala Pro Lei 420 425 430	1296
cag tgg agc aag gac atg tac aat ttc atg gag ccg tac gtg agc aag Gln Trp Ser Lys Asp Met Tyr Asn Phe Met Glu Pro Tyr Val Ser Lys 435 . 440 445	1344
aac ccc agg cag gcg tac gcc aac tac agg gac att gac ctc ggc agg Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg 450 455 460	, 1392 J
aac gag gtg gtg aac gac atc tca acc tat agc agc ggc aag gtt tgg Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val Trg 465 470 475 480	
ggc gag aag tac ttc aag ggc aac ttc caa agg ctc gct att acc aag Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala Ile Thr Lys 485 490 495	g 1488
ggc aag gtg gat cct cag gac tac ttc agg aac gag cag agc atc ccg Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro 500 505 510	g 1536
ccg ctg ctc gag aag tac tga tcgaggacct tgcatggaga tttagtgcgt Pro Leu Leu Glu Lys Tyr 515	1587
ggttgccgtt tcacat	1603
ggttgccgtt tcacat <210> 8	1603
	1603
<210> 8	1603
<210> 8 <211> 518	1603
<210> 8 <211> 518 <212> PRT	1603
<210> 8 <211> 518 <212> PRT	1603
<210> 8 <211> 518 <212> PRT <213> Tri a 4	
<pre><210> 8 <211> 518 <212> PRT <213> Tri a 4 <400> 8 Asn Tyr Arg Ala Phe Thr Leu Val Leu Leu Phe Cys Ala Leu Ser Cys 15</pre>	
<pre><210> 8 <211> 518 <212> PRT <213> Tri a 4 <400> 8 Asn Tyr Arg Ala Phe Thr Leu Val Leu Phe Cys Ala Leu Ser Cys 1</pre>	

Trp Leu Ser Pro Gln Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Ser Val Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Glu Lys Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys Met Arg Ala Val Leu Ile Asp Gly Tyr Ala Arg Thr Ala Trp Val Glu Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala Lys Asn Ser Pro Val Leu Ala Phe Pro Ala Gly Val Cys Pro Thr Ile Gly Val Gly Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr Gly Ile Ala Ala Glu Asn Val Ile Asp Val Lys Val Val Asp Pro Asn Gly Lys Leu Leu Asp Lys Ser Ser Met Ser Pro Asp His Phe Trp Ala Val Arg Gly Gly Gly Glu Ser Phe Gly Ile Val Val Ser Trp Gln Val Lys Leu Leu Pro Val Pro Pro Thr Val Thr Val Phe Lys Ile Pro Lys Thr Val Gln Glu Gly Ala Val Asp Leu Val Asn Lys Trp Gln Leu Val Gly Pro Ala Leu Pro Gly Asp Leu Met Ile Arg Val Ile Ala Ala Gly Asn Thr Ala Thr Phe Glu Gly Met Tyr Leu Gly Thr Cys Gln Thr Leu Thr Pro Leu Met Ser Ser Gln Phe Pro Glu Leu Gly Met Asn Pro Tyr

His Cys Asn Glu Met Pro Trp Ile Lys Ser Ile Pro Phe Ile His Leu 325 330 335

Gly Lys Glu Ala Ser Leu Val Asp Leu Leu Asn Arg Asn Asn Thr Phe 340 345 350

Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln Pro Phe Pro 355 360 365

Lys Pro Val Trp Glu Gln Ile Phe Gly Trp Leu Thr Lys Pro Gly Gly 370 375 380

Gly Met Met Ile Met Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro 385 390 395 400

Glu Ala Ala Thr Pro Phe Pro His Arg Gln Gly Val Leu Phe Asn Ile 405 410 415

Gln Tyr Val Asn Tyr Trp Phe Ala Glu Ala Ala Ala Ala Ala Pro Leu 420 425 430

Gln Trp Ser Lys Asp Met Tyr Asn Phe Met Glu Pro Tyr Val Ser Lys
435
440
445

Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg 450 460

Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val Trp 465 470 475 480

Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala Ile Thr Lys 485 490 495

Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro 500 505 510

Pro Leu Leu Glu Lys Tyr 515

<210> 9

<211> 1603

<212> DNA

<213> Tri a 4

```
<220>
       stop_codon
<221>
<222>
     (1555)..(1557)
<223>
<220>
<221> CDS
<222> (1)..(1557)
<223>
<220>
      signal_sequence_DNA
<221>
<222> (1)..(63)
<223>
<220>
<221> signal_sequence_PROT
<222>
     (1)..(21)
<223>
<400> 9
aac tgt agg gcc ttc gcg cag gtg ctc ctc ttc ttc gcc ttg tcc tgc
                                                                       48
Asn Cys Arg Ala Phe Ala Gln Val Leu Leu Phe Phe Ala Leu Ser Cys
                                    10
                                                                       96
caa gcc gcc gcc acc tac gcg ccg gtg cct gcc aag gag gac ttc ctc
Gln Ala Ala Ala Thr Tyr Ala Pro Val Pro Ala Lys Glu Asp Phe Leu
                                                    30
            20
                                25
gga tgc ctc atg aag gag ata ccg gcc cgc ctc ctc tac gcc aag agc
                                                                      144
Gly Cys Leu Met Lys Glu Ile Pro Ala Arg Leu Leu Tyr Ala Lys Ser
        35
tcg cct gac tac ccc acc gtg ctg gcg cag acc atc agg aac tcg cgg
                                                                      192
Ser Pro Asp Tyr Pro Thr Val Leu Ala Gln Thr Ile Arg Asn Ser Arg
    50
                                            60
                        55
                                                                      240
tgg tcg acg cag cag aac gtg aag ccg ctg tac atc acc ccc acc
Trp Ser Thr Gln Gln Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr
                                                            80
                                        75
                    70
65
```

	_				caa Gln											288
					cgg Arg											336
					ccc Pro											384
					gtc Val											432
					ggc Gly 150											480
	_				ccg Pro							_	_	_		528
ggc Gly	aac Asn	ttc Phe	gca Ala 180	ggc Gly	ggc Gly	ggc Gly	ttc Phe	ggc Gly 185	atg Met	ctg Leu	ctg Leu	cgc Arg	aag Lys 190	tac Tyr	ggc Gly	. 576
					gtc Val											624
aag Lys	ctg Leu 210	ctc Leu	gac Asp	aag Lys	agc Ser	tcc Ser 215	atg Met	agc Ser	gcg Ala	gac Asp	cac His 220	ttc Phe	tgg Trp	gcc Ala	gtc Val	672
agg Arg 225	ggc	ggc Gly	ggc Gly	gga Gly	gag Glu 230	agc Ser	ttc Phe	ggc Gly	atc Ile	gtc Val 235	gtc Val	tcg Ser	tgg Trp	cag Gln	gtg Val 240	720
aag Lys	ctc Leu	atg Met	cca Pro	gtg Val 245	cct Pro	ccc Pro	acc Thr	gtc Val	acc Thr 250	gtg Val	ttt Phe	aag Lys	atc Ile	ccc Pro 255	aag Lys	768
					gcc Ala											816
Gly	ccg Pro	gca Ala 275	çtt Leu	ccc Pro	ggc Gly	gac Asp	ctc Leu 280	atg Met	atc Ile	cgc Arg	gtc Val	atc Ile 285	gct Ala	gcc Ala	Gly	864
					gag Glu											912
					agc Ser 310											960
cac	tgc	aac	gag	atg	ccc	tgg	atc	aag	tcc	gtc	ccc	ttc	atc	cac	ctc	1008

<213> Tri a 4

His	Cys	Asn	Glu	Met 325	Pro	Trp	Ile	Lys	Ser 330	Val	Pro	Phe	Ile	His 335	Leu	
ggc Gly	aaa Lys	cag Gln	gct Ala 340	ggc Gly	ctg Leu	gac Asp	gac Asp	ctc Leu 345	ctc Leu	aac Asn	cgg Arg	aac Asn	aac Asn 350	acc Thr	ttc Phe	1056
aag Lys	ccc Pro	ttc Phe 355	gcc Ala	gaa Glu	tac Tyr	aag Lys	tcg Ser 360	gac Asp	tac Tyr	gtg Val	tac Tyr	cag Gln 365	ccc Pro	ttc Phe	ccc Pro	1104
aag Lys	ccc Pro 370	gtg Val	tgg Trp	gag Glu	cag Gln	atc Ile 375	ttc Phe	ggc Gly	tgg Trp	ctc Leu	gcg Ala 380	aag Lys	ccc Pro	ggc Gly	gcg Ala	1152
ggg Gly 385	atc Ile	atg Met	atc Ile	atg Met	gac Asp 390	ccc Pro	tac Tyr	ggc	gcc Ala	acc Thr 395	atc Ile	agc Ser	gcc Ala	acc Thr	CCC Pro 400	· 1200
gaa Glu	gcg Ala	gcg Ala	acg Thr	Pro	Phe	Pro	His	cgc Arg	Gln	Gly	Val	Leu	Phe	aac Asn 415	atc Ile	1248
cag Gln	tat Tyr	gtc Val	aac Asn 420	tac Tyr	tgg Trp	ttc Phe	gcc Ala	gag Glu 425	cca Pro	gcc Ala	ggc Gly	gcc Ala	gcg Ala 430	ccg Pro	ctg Leu	1296
cag Gln	tgg Trp	agc Ser 435	aag Lys	gac Asp	att Ile	tac Tyr	aat Asn 440	ttc Phe	atg Met	gag Glu	ccg Pro	tac Tyr 445	gtg Val	agc Ser	aag Lys	1344
aac Asn	ccc Pro 450	agg Arg	cag. Gln	gcg Ala	tac Tyr	gcc Ala 455	aac Asn	tac Tyr	agg Arg	gac Asp	atc Ile 460	gac Asp	ctc Leu	ggc	agg Arg	1392
aat Asn 465	gag Glu	gtg Val	gtg Val	aac Asn	gac Asp 470	atc Ile	tca Ser	acc Thr	tac Tyr	agc Ser 475	agc Ser	ggc Gly	aag Lys	gtg Val	tgg Trp 480	1440
ggc Gly	gag Glu	aag Lys	tac Tyr	ttc Phe 485	aag Lys	agc Ser	aac Asn	ttc Phe	caa Gln 490	agg Arg	ctc Leu	gcc Ala	att Ile	acc Thr 495	aag Lys	1488
ggc Gly	aag Lys	gta Val	gat Asp 500	cct Pro	cag Gln	gac Asp	tac Tyr	ttc Phe 505	agg Arg	aat Asn	gag Glu	caa Gln	agc Ser 510	atc Ile	ccg Pro	1536
_	_			aag Lys		tga	tcga	agga	cct (tgcat	tgga	ga t	ttag	tgcgl	t	1587
ggtt	ggc	gtt 1	tcaca	at												1603
<210)>	10														
<211	L> !	518														
<212	2>	PRT														

<400> 10

Asn Cys Arg Ala Phe Ala Gln Val Leu Leu Phe Phe Ala Leu Ser Cys
1 10 15

Gln Ala Ala Ala Thr Tyr Ala Pro Val Pro Ala Lys Glu Asp Phe Leu 20 25 30

Gly Cys Leu Met Lys Glu Ile Pro Ala Arg Leu Leu Tyr Ala Lys Ser 35 40 45

Ser Pro Asp Tyr Pro Thr Val Leu Ala Gln Thr Ile Arg Asn Ser Arg 50 55 60

Trp Ser Thr Gln Gln Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr 65 70 75 80

Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Gly 85 90 95

Val Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser 100 105 110

Tyr Arg Ser Glu Lys Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys 115 120 125

Met Arg Ala Val Val Asp Gly Tyr Ala Arg Thr Ala Trp Val Glu 130 135 140

Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala Lys Asn Ser 145 150 155 160

Pro Val Leu Ala Phe Pro Ala Gly Val Cys Pro Ser Ile Gly Val Gly 165 170 175

Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr Gly 180 185 190

Ile Ala Ala Glu Asn Val Ile Asp Val Lys Val Val Asp Pro Asp Gly 195 200 205

Lys Leu Leu Asp Lys Ser Ser Met Ser Ala Asp His Phe Trp Ala Val 210 215 220

Arg Gly Gly Gly Glu Ser Phe Gly Ile Val Val Ser Trp Gln Val 225 230 235 240

Lys Leu Met Pro Val Pro Pro Thr Val Thr Val Phe Lys Ile Pro Lys
245 250 255

Thr Val Glu Glu Glu Ala Val Asp Leu Val Asp Lys Tro Glo Leu Val

Thr Val Glu Glu Ala Val Asp Leu Val Asn Lys Trp Gln Leu Val 260 265 270

Gly Pro Ala Leu Pro Gly Asp Leu Met Ile Arg Val Ile Ala Ala Gly 275 280 285

Asn Thr Ala Thr Phe Glu Ala Leu Tyr Leu Gly Thr Cys Lys Thr Leu 290 295 300

Thr Pro Leu Met Ser Ser Gln Phe Pro Glu Leu Gly Met Asn Pro Tyr 305 310 315 320

His Cys Asn Glu Met Pro Trp Ile Lys Ser Val Pro Phe Ile His Leu 325 330 335

Gly Lys Gln Ala Gly Leu Asp Asp Leu Leu Asn Arg Asn Asn Thr Phe 340 345 350

Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln Pro Phe Pro 355 360 365

Lys Pro Val Trp Glu Gln Ile Phe Gly Trp Leu Ala Lys Pro Gly Ala 370 380

Gly Ile Met Ile Met Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro 385 390 395

Glu Ala Ala Thr Pro Phe Pro His Arg Gln Gly Val Leu Phe Asn Ile 405 410 415

Gln Tyr Val Asn Tyr Trp Phe Ala Glu Pro Ala Gly Ala Ala Pro Leu 420 425 430

Gln Trp Ser Lys Asp Ile Tyr Asn Phe Met Glu Pro Tyr Val Ser Lys 435 440 445

Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg 450 460

Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val Trp 465 470 475 480

384

Gly Glu Lys Tyr Phe Lys Ser Asn Phe Gln Arg Leu Ala Ile Thr Lys 495 490 485 Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro 510 505 500 Pro Leu Ile Glu Lys Tyr 515 <210> 11 <211> 1503 <212> DNA <213> Phl p 4 <220> <221> CDS <222> (1)..(1503) <223> <400> 11 48 tac ttc ccg ccg ccg gct gct aaa gaa gac ttc ctg ggt tgc ctg gtt Tyr Phe Pro Pro Pro Ala Ala Lys Glu Asp Phe Leu Gly Cys Leu Val aaa gaa atc ccg ccg cgt ctg ttg tac gcg aaa tcg tcg ccg gcg tat 96 Lys Glu Ile Pro Pro Arg Leu Leu Tyr Ala Lys Ser Ser Pro Ala Tyr 30 20 ccc tca gtc ctg ggg cag acc atc cgg aac tcg agg tgg tcg tcg ccg 144 Pro Ser Val Leu Gly Gln Thr Ile Arg Asn Ser Arg Trp Ser Ser Pro 40 35 gac aac gtg aag ccg ctc tac atc atc acc ccc acc aac gtc tcc cac 192 Asp Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr Asn Val Ser His 60 55 50 atc cag tcc gcc gtg gtg tgc ggc cgc cgc cac agc gtc cgc atc cgc 240 Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Ser Val Arg Ile Arg 80 75 65 70 gtg cgc agc ggc ggg cac gac tac gag ggc ctc tcg tac cgg tct ttg 288 Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Leu 95 90 85 cag ccc gag acg ttc gcc gtc gtc gac ctc aac aag atg cgg gcg gtg 336 Gln Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys Met Arg Ala Val 110 100 105

tgg gtg gac ggc aag gcc cgc acg gcg tgg gtg gac tcc ggc gcg cag

Trp	Val	Asp 115	Gly	Lys	Ala	Arg	Thr 120	Ala	Trp	Val	Asp	Ser 125	Gly	Ala	Gln	
					tac Tyr					_	_	-				432
ttc Phe 145	ccg Pro	gcc Ala	ggc Gly	gtg Val	tgc Cys 150	ccg Pro	acg Thr	atc Ile	gga Gly	gtg Val 155	ggc Gly	ggc Gly	aac Asn	ttc Phe	gcg Ala 160	480
					atg Met											. 528
					aag Lys											576
aag Lys	aag Lys	tcc Ser 195	atg Met	ggc Gly	gac Asp	gac Asp	cat His 200	ttc Phe	tgg Trp	gcc Ala	gtc Val	agg Arg 205	ggc Gly	ggc Gly	ggg	624
					atc Ile											672
					aca Thr 230											720
					atc Ile										ctt_ Leu	₋ 768
					atc Ile											816
					ctc Leu											864
agc Ser	agc Ser 290	aag Lys	ttc Phe	ccg Pro	gag Glu	ctc Leu 295	ggc Gly	atg Met	aac Asn	ccc Pro	tcc Ser 300	cac His	tgc Cys	aac Asn	gag Glu	912
					tcc Ser 310											960
gcc Ala	ctc Leu	gag Glu	gac Asp	gac Asp 325	ctc Leu	ctc Leu	aac Asn	cgg Arg	aac Asn 330	aac Asn	tcc Ser	ttc Phe	aag Lys	ccc Pro 335	ttc Phe	1008
gcc Ala	gaa Glu	tac Tyr	aag Lys 340	tcc Ser	gac Asp	tac Tyr	gtc Val	tac Tyr 345	cag Gln	ccc Pro	ttc Phe	ccc Pro	aag Lys 350	acc Thr	gtc Val	1056
					aac Asn											1104

atg atc ttc gac ccc tac ggc gcc acc atc agc gcc acc ccg gag tcc Met Ile Phe Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro Glu Ser 370 375 380	1152
gcc acg ccc ttc cct cac cgc aag ggc gtc ctc ttc aac atc cag tac Ala Thr Pro Phe Pro His Arg Lys Gly Val Leu Phe Asn Ile Gln Tyr 385 390 395 400	1200
gtc aac tac tgg ttc gcc ccg gga gcc gcc gcg ccc ctc tcg tgg Val Asn Tyr Trp Phe Ala Pro Gly Ala Ala Ala Ala Pro Leu Ser Trp 405 410 415	1248
agc aag gac atc tac aac tac atg gag ccc tac gtg agc aag aac ccc Ser Lys Asp Ile Tyr Asn Tyr Met Glu Pro Tyr Val Ser Lys Asn Pro 420 425 430	1296
agg cag gcg tac gca aac tac agg gac atc gac ctc ggc agg aac gag Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg Asn Glu 435 440 445	1344
gtg gtc aac gac gtc tcc acc tac gcc agc ggc aag gtc tgg ggc cag Val Val Asn Asp Val Ser Thr Tyr Ala Ser Gly Lys Val Trp Gly Gln 450 455 460	1392
aaa tac ttc aag ggc aac ttc gag agg ctc gcc att acc aag ggc aag Lys Tyr Phe Lys Gly Asn Phe Glu Arg Leu Ala Ile Thr Lys Gly Lys 465 470 475 480	1440
gtc gat cct acc gac tac ttc agg aac gag cag agc atc ccg ccg ctc Val Asp Pro Thr Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro Pro Leu 485 490 495	1488
atc aaa aag tac tga Ile Lys Lys Tyr 500	1503
-210× 12	
<210> 12	
<211> 500	
<212> PRT	
<213> Phl p 4	
<400> 12	
Tyr Phe Pro Pro Pro Ala Ala Lys Glu Asp Phe Leu Gly Cys Leu Val 1 5 10 15	
Lys Glu Ile Pro Pro Arg Leu Leu Tyr Ala Lys Ser Ser Pro Ala Tyr 20 25 30	

Pro Ser Val Leu Gly Gln Thr Ile Arg Asn Ser Arg Trp Ser Ser Pro 35 40 45

Asp Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr Asn Val Ser His Ilé Gln Ser Ala Val Val Cys Gly Arg Arg His Ser Val Arg Ile Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Leu Gln Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys Met Arg Ala Val Trp Val Asp Gly Lys Ala Arg Thr Ala Trp Val Asp Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Tyr Lys Ala Ser Pro Thr Leu Ala Phe Pro Ala Gly Val Cys Pro Thr Ile Gly Val Gly Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr Gly Ile Ala Ala Glu Asn Val Ile Asp Val Lys Leu Val Asp Ala Asn Gly Lys Leu His Asp Lys Lys Ser Met Gly Asp Asp His Phe Trp Ala Val Arg Gly Gly Gly Gly Glu Ser Phe Gly Ile Val Val Ala Trp Gln Val Lys Leu Leu Pro Val Pro Pro Thr Val Thr Ile Phe Lys Ile Ser Lys Thr Val Ser Glu Gly Ala Val Asp Ile Ile Asn Lys Trp Gln Val Val Ala Pro Gln Leu Pro Ala Asp Leu Met Ile Arg Ile Ile Ala Gln Gly Pro Lys Ala Thr Phe Glu Ala Met Tyr Leu Gly Thr Cys Lys Thr Leu Thr Pro Leu Met Ser Ser Lys Phe Pro Glu Leu Gly Met Asn Pro Ser His Cys Asn Glu

Met Ser Trp Ile Gln Ser Ile Pro Phe Val His Leu Gly His Arg Asp

Ala Leu Glu Asp Asp Leu Leu Asn Arg Asn Asn Ser Phe Lys Pro Phe

Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln Pro Phe Pro Lys Thr Val

Trp Glu Gln Ile Leu Asn Thr Trp Leu Val Lys Pro Gly Ala Gly Ile

Met Ile Phe Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro Glu Ser

Ala Thr Pro Phe Pro His Arg Lys Gly Val Leu Phe Asn Ile Gln Tyr

Val Asn Tyr Trp Phe Ala Pro Gly Ala Ala Ala Ala Pro Leu Ser Trp

Ser Lys Asp Ile Tyr Asn Tyr Met Glu Pro Tyr Val Ser Lys Asn Pro

Arg Gln Ala Tyr. Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg Asn Glu

Val Val Asn Asp Val Ser Thr Tyr Ala Ser Gly Lys Val Trp Gly Gln

Lys Tyr Phe Lys Gly Asn Phe Glu Arg Leu Ala Ile Thr Lys Gly Lys · 465

Val Asp Pro Thr Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro Pro Leu

Ile Lys Lys Tyr

<210> 13

<211>

<212> PRT

<213> Dactylus glomerata

<400> 13

Asp Ile Tyr Asn Tyr Met Glu Pro Tyr Val Ser Lys 1

<210> 14

<211> 11

<212> PRT

<213> Dactylus glomerata

<400> 14

Val Asp Pro Thr Asp Tyr Phe Gly Asn Glu Gln 1 5 10

<210> 15

<211> 17

<212> PRT

<213> Dactylus glomerata

<400> 15

Ala Arg Thr Ala Trp Val Asp Ser Gly Ala Gln Leu Gly Glu Leu Ser 1 5 10 15

Tyr

<210> 16

<211> 15

<212> PRT

<213> Dactylus glomerata

<400> 16

Gly Val Leu Phe Asn Ile Gln Tyr Val Asn Tyr Trp Phe Ala Pro 1 5

<210> 17

```
<211> 11
<212> PRT
<213> Cynodon dactylon
```

<400> 17

Lys Thr Val Lys Pro Leu Tyr Ile Ile Thr Pro 1 5 10

<210> 18 <211> 22

<212> PRT

<213> Cynodon dactylon

<400> 18

Lys Gln Val Glu Arg Asp Phe Leu Thr Ser Leu Thr Lys Asp Ile Pro 1 5 10 15

Gln Leu Tyr Leu Lys Ser 20

<210> 19

<211> 16 ·

<212> PRT

<213> Cynodon dactylon

<400> 19

Thr Val Lys Pro Leu Tyr Ile Ile Thr Pro Ile Thr Ala Ala Met Ile 1 5 10 15

<210> 20

<211> 24

<212> PRT

<213> Cynodon dactylon

<400> 20

Leu Arg Lys Tyr Gly Thr Ala Ala Asp Asn Val Ile Asp Ala Lys Val 1 5 10 15

Val Asp Ala Gln Gly Arg Leu Leu 20

<210> 21

<211> 14

<212> PRT

<213> Cynodon dactylon

<400> 21

Lys Trp Gln Thr Val Ala Pro Ala Leu Pro Asp Pro Asn Met 1 5

<210> 22

<211> 15

<212> PRT

<213> Cynodon dactylon

<400> 22

Val Thr Trp Ile Glu Ser Val Pro Tyr Ile Pro Met Gly Asp Lys
1 5 10 15

<210> 23

<211> 19

<212> PRT

<213> Cynodon dactylon

<220>

<221> MISC_FEATURE

<222> (8)..(8)

<223> undetermined amino acid

<400> 23

Gly Thr Val Arg Asp Leu Leu Xaa Arg Thr Ser Asn Ile Lys Ala Phe 1 5 10 15

Gly Lys Tyr

<210> 24

<211> 23

<212> PRT

<213> Cynodon dactylon

<400> 24

Thr Ser Asn Ile Lys Ala Phe Gly Lys Tyr Lys Ser Asp Tyr Val Leu 1 5 10 15

Glu Pro Ile Pro Lys Lys Ser 20

<210> 25

<211> 13

<212> PRT

<213> Cynodon dactylon

<400> 25 .

Tyr Arg Asp Leu Asp Leu Gly Val Asn Gln Val Val Gly
1 5 10

<210> 26

<211> 15

<212> PRT

<213> Cynodon dactylon

<400> 26

Ser Ala Thr Pro Pro Thr His Arg Ser Gly Val Leu Phe Asn Ile 1 5 10

<210> 27

```
<211> 36
```

<212> PRT

<213> Cynodon dactylon

<400> 27

Ala Ala Ala Leu Pro Thr Gln Val Thr Arg Asp Ile Tyr Ala Phe 1 5 10 15

Met Thr Pro Tyr Val Ser Lys Asn Pro Arg Gln Ala Tyr Val Asn Tyr 20 25 30

Arg Asp Leu Asp 35

<210> 28

<211> 14

<212> PRT

<213> Lolium perenne

<400> 28

Phe Leu Glu Pro Val Leu Gly Leu Ile Phe Pro Ala Gly Val 1 5

<210> 29

<211> 9

<212> PRT

<213> Lolium perenne

<400> 29

Gly Leu Ile Glu Phe Pro Ala Gly Val

<210> 30

<211> 22

<212> DNA

<213> Sec c 4

ggctcccggg	gcgaaccagt a	ag 2	22
<210> 31			
<211> 23			
<212> DNA			
<213> Sec	c 4		
<400> 31 accaacgcct	cccacatcca (gtc · 2	23
<210> 32			
<211> 49			
<212> DNA			
<213> Sec	c 4		
<400> 32 gataagette	tcgagtgatt	agtacttttt gatcagegge gggatgete	19
<210> 33			
<211> 23			
<212> DNA			
<213> Sec	c 4		
<400> 33 gctctcgatc	ggctacaatg	gcg	23
<210> 34			
<211> 25			
<212> DNA	•		
<213> Sec	: C 4		
-400- 24			
<400> 34 cacgcactac	: aaatctccat	gcaag	25

- 39 -

<212> DNA

<210>	35			
<211>	30			
<212>	DNA			
<213>	Sec	c 4		
<400>		ccttattcta	ctagttgggc	30
catgue	gut			
<210>	36			
<211>	30	•		
<212>	DNA		•	
<213>	Sec	c 4		
<400>		ccttattcta	ctagttgggc	30
cacycac	gat			
<210>	37			
<211>	30			
<212>	DNA	-		
<213>	Hor	v · 4		
<400>		gccaccacgc	caccaccacc	30
900009		3		
<210>	38			
<211>	23	-		
<212>	DNA			
<213>	Hor	v 4		
<400> gctctcc		ggctacaatg	gcg	23
	_			
<210>	39			
<211>	25			

<213>	Hor	v 4		
<400> cacgca		aaatctccat	gcaag	25
<210>	40			
<211>	30			
<212>	DNA			
<213>	Hor	v 4		
c400>	40			
<400> catgct		ccttattcta	ctagttgggc	30
<210>	41			
<211>	23		•	
<212>	DNA			
<213>	Tri	a · 4		
			•	•
<400>		atctccatgc	aag	23
<210>	42			•
<211>	30			
<212>	DNA		•	
<213>	Tri	a 4		
			•	
<400> tacgcad		ccttattcta	ctagttgggc	30
<210>	43	•		
<211>	23			
<212>	DNA			
<213>	Tri	a 4		
		•	•	
<400> aagctct		gcctacaatg	gcg	23

- 41 -

<210> 44

<211> 25

<212> DNA

<213> Tri a 4

<400> 44
ggtgctcctc ttctgcgcct tgtcc

25