

Emma Soufir Naïma Ammiche Thanina Chabane Noura Nouali

Introduction

- → Développement de médicaments
- → Prédiction des réactions bio-moléculaires
- → Apprentissage automatique

Comment développer un modèle de prédiction de réponse biologique des molécules efficaces ?

Matériel et méthodes

Présentation des données

1776 descripteurs

3751 molécules

Prétraitement :

- Variables avec peu de variabilité
- Variables fortement corrélées
- MinMax Scaling

1533 descripteurs conservés

Modèles

- → Random Forest
- → MLP
- → CNN
- → Gradient Boosting
- → Autres Modèles (régression logistique, RNN, MLP Adam, MINN, XGB)

Partin A, et al. 2023

Résultats et Discussion

Modèle: Random Forest

Modèle: Multi Layer Perceptron (MLP) avec SGD

Modèle: Réseaux de Neurones Convolutifs (CNN)

Modèle: Multi-Input Neural Network

Modèle: Gradient Boosting

Accuracy	0.80
Sensibility	0.85
Specificity	0.74
F1 score	0.82

Comparaison des modèles

Modèle Final : Performance

Soumission Kaggle

$$-\frac{1}{N}\sum_{i=1}^{N}\mathbf{y}_{i}\cdot\log(p(\mathbf{y}_{i}))+(1-\mathbf{y}_{i})\cdot\log(1-p(\mathbf{y}_{i}))$$

RI	Ada		CNN	RNN	MINN	Régression logistique	Gradient boosting	XGBoost	Modèle final
Notes à la 0.40 compétition	58 0.50	0 0.440	0.490	0.598	0.529	0.538	0.472	0.466	0.435

Conclusion

- Modèle final avec le meilleur score
- Manque d'information sur les descripteurs
- Classes déséquilibrées
- Random Forest et Gradient Boosting sont les modèles les plus performants

Perspectives

- Choix du nombre de variables
- Autres architectures
- Plus grand spectre de paramètres

Modèle: Multi-Input Neural Network

Modèle: CNN

