

M.Inf.2801 Research Lab Rotation

Meh-Tricks: Towards Reproducible Results in NLP

Christopher L. Lübbers

Supervisor: Dr. Terry Lima Ruas

2024-03-15

Agenda

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Conclusion

The Importance of Accurate Evaluation in NLP

- Progress in NLP is often measured in improvement of performance metrics
- Scores and leaderboards influence both academic research and practical applications
- Key metrics in NLP: ROUGE, METEOR, BLEU

Many ROUGE configuration differences are bigger than leaderboard model differences.

Common ROUGE	Change in ROUGE Scores (Compared to Baseline Config.)			
Configurations	± R1	± R2	± RL	
Preprocessing Apply Stemming Remove Stopwords	+1.68	+0.54	+1.31	
	-2.21	-0.58	-0.99	
Tokenization No Sent. Splits Period Sent. Splits NLTK Sent. Splits NLTK Tokenize	Sent. spling effect on I	Sent. splits have no effect on ROUGE-N <0.01 <0.01		
Truncation (Recall) Truncate to 75 Bytes Truncate to 100 Words	-27.92	-12.93	-33.44	
	-0.07	-0.05	-0.07	
Misreported Scores Report F _{1.2} Score Report Recall Score	+1.33	+0.61	+1.21	
	+10.88	+5.00	+9.92	

Helpful Comparison
The average ROUGE score
difference between the current

±0.50 ±0.18

Rogue Scores (Grusky, ACL 2023) top five CNN / Daily Mail models.

±0.53

Challenges in Current NLP Evaluation Practices

- ROUGE scores are hard to reproduce.
 - Machine learning model evaluations using ROUGE are less reproducible than other scientific fields.
- ROUGE scores are difficult to compare.
- (B) Model evaluations omit critical details that affect scoring, affecting the comparability of results.
- ROUGE scores are often incorrect.
- (C) Model evaluations are frequently performed using untested, incorrect ROUGE software packages.

Percentage of ROUGE package citations that reference software with scoring errors 76% papers

Release code — including incomplete and nonfunctional
33% papers

Release code with ROUGE evaluation
12% papers

Perform ROUGE significance testing / bootstrapping
6% papers

List ROUGE configuration parameters
5% papers

Cite ROUGE software package — including unofficial
35% papers

ACL Anthology + DBLP = 110,689 papers by January 2023

Rogue Scores (Grusky, ACL 2023)

Objective

- RQ: To what extent do variations in methodologies and libraries of METEOR lead to inconsistencies in reported results?
- Tasks
 - Literature Review
 - Analysis of Metric
 - Baseline Evaluation

Methodology

Systematic Literature Review

ACL Anthology Dataset

(September 2022)

METEOR identification

Logos: https://github.com/jupyter/jupyter.github.io/blob/main/assets/logos/logomark-orangebody-greyplanets.svg https://github.com/acl-org/acl-anthology/blob/master/hugo/static/images/acl-logo.svg https://github.com/logos

Details of Review

- Iteratively choosing packages
- Manual Code review
- Limitations
 - No manual paper review
 - 1 venue, peer-reviewed papers, current versions, no external material
 - Automated annotation, preliminary search, only English, no author clarification, non-evaluation metrics, assumed wrapper correctness
 - Codebase linking, multiple packages
 - only GitHub repositories

Software Validation Testing

Docker image

Package implementation

Task: CNN /Daily Mail dataset

- Model: evaluate Lead-3
- Mean of 13k METEOR scores

Logos: https://www.docker.com/company/newsroom/media-resources/https://huggingface.co/brand

Package implementation

- Dependencies
- different input formats
- METEOR only part of a bigger suite
- Limitations
 - Only packages compatible with Python3 tested
 - Single task, only English evaluation, no multiple references, package versions

Results

Gipp Lab Scientific Infomation Analytics

Reproducibility of 1613 papers

Correctness

Github	METEOR score		% of citations	
salaniz/pycocoevalcap	0.218336			
WebNLG/GenerationEval	0.217303		CO 0/	
Maluuba/nlg-eval	0.221483		60 %	
Yale-LILY/SummEval	0.221483	33 +75 %		
nltk/nltk	0.382306	V		
huggingface/evaluate	0.382306		40 %	
facebookresearch/vizseq	0.332000			

Influence of Parameters on Scores

	METEOR	Alpha	Beta	Gamma	Delta	Weights	Score
Official	1.0	0.8	2.5	0.4	False	False	-
NLTK default	1.0	0.9	3.0	0.5	False	False	0.382306
Official	1.5	0.85	0.2	0.6	0.75	True	0.218336
NLTK	1.0	0.85	0.2	0.6	False	False	0.218184

$$Pen = \gamma \cdot \left(\frac{ch}{m}\right)^{\beta}$$

Summary of Results

- To what extent do variations in methodologies and libraries of METEOR lead to inconsistencies in reported results?
 - Low reproducibility of papers (34 %)
 - Primary issue: wrapper vs reimplementation (difference of 75 %)
 - 40 % of reported scores are wrong

Conclusion

Outlook / Future Work

- Manual paper reviews
- Improve NLTK
- Review of BLEU scores

Conclusion

Reproducibility

- Aim for reproducibility
- Reference used software

Correctness

- Know your metrics!
- If you are building on another paper, make sure the metrics are comparable.

METEOR

- Strength: tuned default parameters
- Weakness: popular packages use old parameters
- Use: salaniz/pycocoevalcap
- o NLTK: ???

References

	[1]
Satanjeev Banerjee and Alon Lavie. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments.	
	[2]
Michael Denkowski and Alon Lavie. 2014. Meteor Universal: Language Specific Translation Evaluation for Any Target Language. In <i>Proceedings of the Ninth Workshop on Statistical Machine Translation</i> , 2014. Association for Computational Linguistics, Baltimore, Maryland, USA, 376–380. https://doi.org/10.3115/v1/W14-3348	
	[3]
Michael Denkowski and Alon Lavie. Extending the METEOR Machine Translation Evaluation Metric to the Phrase Level.	
	[4]
Michael Denkowski and Alon Lavie. Meteor 1.3: Automatic Metric for Reliable Optimization and Evaluation of Machine Translation Systems.	
	[5]
Max Grusky. 2023. Rogue Scores. In <i>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , July 2023. Association for Computational Linguistics, Toronto, Canada, 1914–1934. https://doi.org/10.18653/v1/2023.acl-long.107	
	[6]
Alon Lavie and Abhaya Agarwal. 2007. Meteor: an automatic metric for MT evaluation with high levels of correlation with human judgments. In	
Proceedings of the Second Workshop on Statistical Machine Translation - StatMT'07, 2007. Association for Computational Linguistics, Prague, Czech	
Republic, 228–231. https://doi.org/10.3115/1626355.1626389	

METEOR calculation

$$P = \frac{\sum_{i} w_{i} \cdot (\delta \cdot m_{i}(h_{c}) + (1 - \delta) \cdot m_{i}(h_{f}))}{\delta \cdot |h_{c}| + (1 - \delta) \cdot |h_{f}|}$$

$$R = \frac{\sum_{i} w_{i} \cdot (\delta \cdot m_{i}(r_{c}) + (1 - \delta) \cdot m_{i}(r_{f}))}{\delta \cdot |r_{c}| + (1 - \delta) \cdot |r_{f}|}$$

$$F_{mean} = \frac{P \cdot R}{\alpha \cdot P + (1 - \alpha) \cdot R}$$

$$Pen = \gamma \cdot \left(\frac{ch}{m}\right)^{\beta}$$

$$Score = (1 - Pen) \cdot F_{mean}$$

NLTK meteor_score.py

```
288
            alpha: float = 0.9,
289
            beta: float = 3.0,
290
            gamma: float = 0.5,
291
        ) -> float:
292
293
            Calculates METEOR score for single hypothesis and reference as per
            "Meteor: An Automatic Metric for MT Evaluation with HighLevels of
294
295
            Correlation with Human Judgments" by Alon Lavie and Abhaya Agarwal,
            in Proceedings of ACL.
296
            https://www.cs.cmu.edu/~alavie/METEOR/pdf/Lavie-Agarwal-2007-METEOR.pdf
297
```

https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py