(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-246020

(P2002-246020A)

(43)公開日 平成14年8月30日(2002.8.30)

(51) Int.Cl.7	識別記号	FΙ		รี	7J(参考)
H 0 1 M 4/58		H 0 1 M	4/58		5H029
4/02			4/02	В	5H050
4/04			4/04	Α	
4/62			4/62	Z	
10/40		1	0/40	Z	
	審査請求	未請求 請求功	頁の数13 OL	(全 14 頁)	最終頁に続く
(21)出願番号	特顧2001-35817(P2001-35817)	(71)出願人	000002185		
			ソニー株式会	社	
(22)出願日	平成13年2月13日(2001.2.13)		東京都品川区	北品川6丁目	7番35号
		(72)発明者	川瀬 賢一		
			東京都品川区	北品川6丁目	7番35号 ソニ
			一株式会社内		
	•	(74)代理人	100067736		

最終頁に続く

(54) 【発明の名称】 活物質およびこれを用いた非水電解質電池、ならびに電極の製造方法

(57) 【要約】

(修正有)

【課題】 初期効率、サイクル特性および大電流特性に 優れる非水電解質電池を提供する。

【解決手段】 正極3、負極2および非水電解質を備える非水電解質電池1において、上記正極3及び/又は負極2に、真密度が2.00g/cc以上であり、且つC軸方向の平均面間隔d(002)が3.39Å以下である、炭素粒子の表面が活物質あたり0.02重量%以上、10重量%以下の水溶性ポリマーで被覆されている活物質が含有される。

弁理士 小池 晃 (外2名)

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 炭素粒子の表面が水溶性ポリマーで被覆 されていることを特徴とする活物質。

【請求項2】 上記水溶性ポリマーの被覆量が、活物質 あたり0.02重量%以上、10重量%以下の範囲であ ることを特徴とする請求項1記載の活物質。

【請求項3】 上記炭素粒子の真密度が2.00g/c c以上であり、且つ、C軸方向の平均面間隔 d (00 2) が3.39 Å以下であることを特徴とする請求項1 記載の活物質。

【請求項4】 正極、負極および非水電解質を備える非 水電解質電池において、

上記正極及び/又は負極に、炭素粒子の表面が水溶性ポ リマーで被覆されている活物質が含有されることを特徴 とする非水電解質電池。

【請求項5】 上記水溶性ポリマーの被覆量が、活物質 あたり0.02 重量%以上、10 重量%以下の範囲であ ることを特徴とする請求項4記載の非水電解質電池。

【請求項6】 上記炭素粒子の真密度が2.00g/c c 以上であり、且つ、C軸方向の平均面間隔 d (O O 2) が3.39Å以下であることを特徴とする請求項4 記載の非水電解質電池。

【請求項7】 上記活物質が含有されている正極及び/ 又は負極に、炭素粒子が含有されていることを特徴とす る請求項4記載の非水電解質電池。

【請求項8】 上記炭素粒子は、気相成長炭素繊維やア セチレンブラック、片状天然黒鉛、片状人造黒鉛、繊維 状人造黒鉛のうち少なくとも1種以上であることを特徴 とする請求項7記載の非水電解質電池。

【請求項9】 上記活物質が含有されている正極及び/ 又は負極に、リチウムと合金を形成しない金属粒子が含 有されていることを特徴とする請求項4記載の非水電解 質電池。

【請求項10】 上記非水電解質に、γーブチロラクト ンが含有されていることを特徴とする請求項4記載の非 水電解質電池。

【請求項11】 上記非水電解質に、プロピレンカーボ ネートが含有されていることを特徴とする請求項4記載 の非水電解質電池。

【請求項12】 上記負極に、炭素粒子の表面が水溶性 40 ポリマーで被覆されている活物質が含有されることを特 徴とする請求項4記載の非水電解質電池。

【請求項13】 炭素粒子の表面を水溶性ポリマーで被 覆して活物質を調製し、

上記活物質およびバインダーを非水溶媒に分散して合剤 を調製し、

上記合剤を集電体上に塗布して合剤層を形成し、

上記合剤層を乾燥することを特徴とする電極の製造方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、活物質およびこれ を含有する非水電解質電池、ならびにこの活物質を含有 する電極の製造方法に関する。

[0002]

【従来の技術】低結晶炭素や黒鉛質炭素等の炭素粒子 は、様々な化合物やイオン、例えばリチウムイオンを吸 蔵、放出可能であるという性質を有している。そこで、 これら炭素粒子を活物質として用い、リチウムイオンを 10 電気化学的に吸蔵、放出可能であるという炭素粒子の性 質を利用してなる非水電解質電池、いわゆるリチウムイ オン電池が実現されている。

【0003】例えば、負極に炭素粒子が含有され、正極 にリチウム含有金属酸化物等が含有されているリチウム イオン電池では、初充電により、リチウムが負極の炭素 粒子に吸蔵され、放電により、リチウムが負極の炭素粒 子から放出され、電極間のリチウムイオンの移動により 充放電反応が進行している。

【0004】このようなリチウムイオン電池は、鉛電池 20 やニッケルカドミウム電池、ニッケル水素電池等の従来 の二次電池と比較して、高容量であり、サイクル特性に 優れるという利点を有している。このように、種々の利 点を有するリチウムイオン電池は、様々な分野における 各種電子機器の駆動用電源として期待されている。

【0005】たとえば、携帯電子機器の駆動用電源とし てリチウムイオン電池が使用されている。また、ピュア EV (Electric Vehicle) やロードレベリング用途等の 大型リチウムイオン電池、ハイブリッドEVや燃料電池 のアシスト用リチウムイオン電池、電気自転車や電動工 30 具等の電源用で、高出力であり小型あるいは中型リチウ ムイオン二次電池の本格的な商用も近い。

【0006】しかし、リチウムイオン電池には、(1) 更なる高容量化、 (2) 高温サイクル、高温保存等によ る劣化改善、(3) 高分解性電解液の使用による高性能 化、低コスト化、高安全化等、改善すべき点も多数あ

【0007】また、近年、携帯電子機器は多機能化して おり、その消費電力は増加している。このため、駆動用 電源として用いられるリチウムイオン電池に対しては、 負極活物質の主流である黒鉛質炭素等の初充電時におけ る容量ロスを更に低減し、更なる高容量化を実現するこ とが切望されている。また、リチウムイオン電池の使用 環境が多様化しているが、高温使用時の低容量化やイン ピーダンス上昇等の問題は未だ未解決である

[0008]

【発明が解決しようとする課題】ところで、リチウムイ オン電池の安全性や低温特性を改善するためには、非水 溶媒および電解質塩を含有する非水電解液組成の幅広い 選択性が重要となる。しかしながら、非水電解質電池の 50 活物質として炭素粒子を用いた場合、非水溶媒や電解質

30

40

2

塩を含有する非水電解質と炭素粒子との反応性が高いため、非水電解質が分解されるという問題がある。その結果、非水電解質電池では、サイクル特性や大電流特性等の電池特性が劣化してしまう。

【0009】負極に含有される活物質として炭素粒子を使用する場合、低温特性や安全性が良好な非水溶媒や電解質塩であっても、負極上での継続的な還元分解が懸念されるため、限られた非水溶媒や電解質塩を含有する非水電解質しか実使用に耐えられない。

【0010】そこで、リチウムイオン二次電池に携わる研究者により、非水電解質と炭素粒子との反応性を制御するために、添加剤や、非水電解質に含有される非水溶媒や電解質塩による初充電時における良質な被膜の形成や、炭素粒子自体の結晶性や表面異種カーボンコート等の手法を用いることが提案されている。

【0011】しかしながら、これらすべての手法では初 充電時における炭素と非水電解質との反応性を正確に予 測することは困難である。多数の炭素粒子を含んだ電極 合剤中では、各炭素のバインダー被覆量や電位分布、合 剤中の濃度勾配等のばらつきの影響により、炭素表面で 均一な反応が起こりにくいことが考えられる。

【0012】例えば、従来の非水電解液電池の負極では、水溶性ポリマーを増粘剤やバインダーとして負極合剤層中に添加することにより、活物質として含有されている炭素粒子の表面に水溶性ポリマーを被着させ、活物質と非水電解液との分解反応を抑制することが提案されている。しかしながら、水溶性ポリマーは、負極合剤層中に分散するものの、活物質炭素表面に必ずしも選択的に被着されない。

【0013】このため、多数の炭素粒子を活物質として 含有してなる負極合剤層中では、各炭素のバインダー被 着量や電位分布、負極合剤中の非水電解液の濃度勾配等 のばらつきが影響し、均一な酸化反応あるいは還元反応 が炭素粒子表面で進行し難かった。

【0014】また、リチウムイオン電池の負極活物質として広く用いられている高結晶性黒鉛質炭素活物質に対しては、添加剤や炭素表面の結晶性変化だけでは、γーブチロラクトンやプロピレンカーボネート等の分解性の高い溶媒を高温で長時間作動させる用途等の電池系では未だ改善の必要があると思われる。

【0015】つまり、リチウムイオン電池等の非水電解質電池に活物質として炭素材料を用いる場合、非水系溶媒や電解質塩を含有する非水電解質と、炭素材料との酸化、還元反応を回避できず、リチウムイオン電池の初期容量の低下、サイクル特性、大電流特性の劣化が生じていた。

【0016】本発明は、非水溶媒および非水電解質塩を 含有する非水電解質との反応性が抑制されている活物 質、および、この活物質を用いることにより、初期効 率、サイクル特性および大電流特性に優れる非水電解質 50

電池を提供することを目的に提案されたものである。

[0017]

【課題を解決するための手段】上述の目的を達成するために、本発明に係る活物質は、炭素粒子の表面が水溶性ポリマーで被覆されていることを特徴とする。

【0018】以上のように構成される本発明に係る活物質によれば、炭素粒子の表面が予め水溶性ポリマーで被覆されているので、非水電解質電池の活物質として用いられた場合においても、非水溶媒や電解質塩を含有する非水電解質等と活物質表面との反応性が抑制されている。したがって、この活物質によれば、非水電解質の分解反応が抑制されている非水電解質電池を実現できる。また、従来では、炭素材料によっては分解性が高いため使用困難であったプロピレンカーボネートやγーブチロラクトン等の非水溶媒を含有する非水電解質を用いてなる非水電解質電池を実現できる。

【0019】また、本発明に係る非水電解質電池は、正極、負極および非水電解質を備える非水電解質電池において、上記正極及び/又は負極に、炭素粒子の表面が水溶性ポリマーで被覆されている活物質が含有されることを特徴とする。

【0020】以上のように構成される本発明に係る非水電解質電池では、炭素粒子の表面が予め水溶性ポリマーで被覆されている活物質が、正極及び/又は負極に含有されているので、非水溶媒や電解質塩を含有する非水電解質等と活物質表面との反応性が抑制されている。したがって、この非水電解質電池では、非水電解液の分解反応が抑制されており、従来では、炭素材料によっては分解性が高いため使用困難であったプロピレンカーボネートやソーブチロラクトン等の非水溶媒を含有する非水電解質を用いることができる。

【0021】また、本発明に係る電極の製造方法は、炭素粒子の表面を水溶性ポリマーで被覆して活物質を調製し、上記活物質およびバインダーを非水溶媒に分散して合剤を調製し、上記合剤を集電体上に塗布して合剤層を形成し、上記合剤層を乾燥することを特徴とする。

【0022】以上のように構成される本発明にかかる電極の製造方法では、炭素粒子の表面を水溶性ポリマーで被覆しているので、非水溶媒や電解質塩を含有する非水電解質等と活物質表面との反応性が抑制されている電極を得ることができる。また、活物質を非水溶媒に分散しているので、炭素粒子の表面に被覆されている水溶性ポリマーが破壊されない。したがって、この電極の製造方法によれば、炭素粒子の表面に被覆されている水溶性ポリマーを破壊することなく、活物質を含有する合剤を集電体上に塗布し、合剤層を形成することが可能となる。

[0023]

【発明の実施の形態】以下、本発明に係る活物質および これを含有する非水電解質電池について詳細に説明す る。

【0024】本発明を適用した非水電解液電池は、基本的な構成要素として、正極、負極および非水電解液とを備えている。そして、この非水電解液電池には、炭素粒子の表面が水溶性ポリマーで被覆されている活物質(以下、ポリマー被覆炭素粒子と称する。)が、正極及び/又は負極に含有されている。

【0025】ところで、従来の非水電解液電池では、水溶性ポリマーを増粘剤やバインダーとして負極合剤層中に添加することにより、活物質として含有されている炭素粒子の表面に水溶性ポリマーを被着させていた。しか 10 しながら、水溶性ポリマーは、負極合剤層中に分散するものの、活物質炭素表面に必ずしも選択的に被着されず、活物質と非水電解液との分解反応を確実に抑制することができなかった。

【0026】これに対して、本発明を適用した非水電解 液電池では、ポリマー被覆炭素粒子、すなわち、水溶性 ポリマーが炭素粒子の表面に予め選択的に担持されてい る活物質が、正極及び/又は負極に含有されている。な お、このポリマー被覆炭素粒子とは、炭素粒子の表面の 一部に水溶性ポリマーが担持されていてもよく、炭素粒 子の表面全部を水溶性ポリマーで被覆されていてもよ

【0027】このポリマー被覆炭素粒子は、炭素粒子の 表面が予め水溶性ポリマーで被覆されているので、非水 溶媒や電解質塩を含有する非水電解液、バインダー等と 活物質表面との反応性が抑制されている。

【0028】したがって、この非水電解液電池は、非水電解液の分解反応が抑制されており、初期効率、サイクル特性および大電流特性に優れる。また、この非水電解液電池では、従来では、炭素材料によっては分解性が高 30いため使用困難であったプロピレンカーボネートやッーブチロラクトン等の非水溶媒を含有する非水電解液を用いることができる。

【0029】水溶性ポリマーに被覆される炭素粒子としては、特に限定されず、従来より公知である低結晶性炭素から黒鉛質炭素まで従来公知の炭素材料を使用できるが、特に、真密度が2.00g/cc以上であり、且つ、C軸方向の平均面間隔d(002)が3.39Å以下である炭素粒子を使用することが好ましい。

【0030】真密度が2.00g/cc以上であり、且つ、C軸方向の平均面間隔d(002)が3.39Å以下である炭素粒子は、黒鉛質の高結晶性であり、電解液の分解もより激しい。例えばリチウムイオン二次電池の負極活物質への応用を考慮した場合、密度や電位的に有利な黒鉛質炭素負極が現在商品化されている電池の主流である。これに本発明活物質を導入すれば、サイクル特性や大電流特性を大幅に改善できる。

【0031】水溶性ポリマーとしては、具体的には、ポリアクリル酸やメチルセルロース、エチルセルロース、 ヒドロキシエチルセルロース、カルボキシルメチルセル 50

ロース、ポリビニルアルコール、ポリエチレンオキシド 等、およびこれらの水溶性塩等を使用できる。

【0032】ここで、水溶性ポリマーの水に対する溶解性は、水100gに対し1g以上であることが好ましい。水に難溶性であると、一部の非水溶媒を電解液として用いた場合、電解液中へ水溶性ポリマーが溶解、拡散し、本発明の効果が十分に得られない。また、非水溶媒に不溶で、且つ、水にも難溶性である場合、活物質の製法自体が限定される。したがって、水に適度に溶解し、非水溶媒に不溶なポリマーであることが好ましい。

【0033】炭素粒子の表面を水溶性ポリマーが被覆する被覆量、すなわち水溶性ポリマーの被覆量は、活物質あたり0.02重量%以上、10重量%以下の範囲であることが好ましい。水溶性ポリマーの被覆量が活物質あたり0.02重量%未満である場合、本発明の効果を十分に得られない虞がある。一方、水溶性ポリマーの被覆量が活物質あたり10重量%を越え、被覆量が多すぎる場合、水溶性ポリマーは絶縁性であるので炭素粒子同士の電気的なコンタクトが阻害されて、電極の大電流特性が低下する虞がある。なお、水溶性ポリマーの被覆量は、活物質あたり0.1重量%以上、5重量%以下であることがより好ましい。

【0034】以上のように構成される活物質は、非水電解質電池の正極及び/負極に含有されることにより、初期効率、サイクル特性および大電流特性に優れる非水電解液電池を実現する。なお、本発明を適用した活物質は、非水電解液電池の正極のみに含有されてもよく、負極のみに含有されてもよく、両方の電極に含有されてもよい。

【0035】以下、炭素粒子の表面が水溶性ポリマーで被覆されてなる活物質、即ち、ポリマー被覆炭素粒子が 負極に含有される非水電解液電池について、図面を参照 して詳細に説明する。

【0036】本発明を適用してなる非水電解液電池1は、図1に示すように、負極2と、負極2を収容する負極缶3と、正極4と、正極4を収容する正極缶5と、負極2と正極4との間に配されたセパレータ6と、絶縁ガスケット7とを備え、負極缶3及び正極缶5に非水電解液が充填されてなる。

40 【0037】負極2は、負極集電体と、この負極集電体 上に、負極活物質を含有する負極合剤を塗布して形成さ れる負極合剤層とを備える。負極集電体としては、例え ば銅箔等を使用できる。

【0038】負極活物質としては、炭素粒子の表面が水溶性ポリマーで被覆されている活物質、すなわち、上述したポリマー被覆炭素粒子を含有する。ポリマー被覆炭素粒子は、炭素粒子の表面が予め水溶性ポリマーで被覆されているので、非水溶媒や電解質塩、バインダー等と活物質表面との反応性が抑制されている。

【0039】ポリマー被覆炭素粒子を負極活物質として

ጸ

用いると、負極合剤層中においてバインダーの不均一分 布、負極内電位や濃度勾配のばらつきが起きても、特定 電位で炭素材表面で起きる酸化又は還元反応の大部分の 基質は、炭素粒子表面を被覆している水溶性ポリマーと なる。すなわち、炭素粒子表面には、特定のポリマーが 局在化されていることが最も重要であり、これにより電 極中の電位が不均一であっても、微視的な非水電解組成 が不均一であっても、初充電持に炭素粒子表面に形成さ れる還元被膜は非常に均質なものと考えられる。

【0040】したがって、負極活物質としてポリマー被 10 覆炭素粒子を含有する非水電解液電池1は、非水電解液 の分解反応が防止されており、初期効率、サイクル特性 および大電流特性に優れる。

【0041】負極2には、ポリマー被覆炭素粒子と併せて、水溶性ポリマーで表面が被覆されていない炭素粒子(以下、単に炭素粒子と称する。)が含有されることが好ましい。ポリマー被覆炭素粒子は、その表面が絶縁性の水溶性ポリマーで被覆されている。このため、ポリマー被覆炭素粒子は、表面が水溶性ポリマーで被覆されていない炭素粒子と比較すると、表面の電子伝導性が低下している。そこで、ポリマー被覆炭素粒子を含有する負極2に炭素粒子を添加して、ポリマー被覆炭素粒子の電子伝導性の低下分を補うことにより、非水電解液電池1の大電流特性を高めることができる。

【0042】電極プレス時における活物質内部の炭素粒子同士の接触により、電極自体の電子伝導性が保たれることは、研究者等により確認されている。しかし、ポリマー被覆炭素粒子のみからなる負極を備える場合、電池系によっては、初期の負荷特性が低下する可能性がある。

【0043】そこで、表面が水溶性ポリマーで被覆されていない炭素粒子を含むことにより、負極2内の電子伝導性を高めることができる。つまり、表面が水溶性ポリマーで被覆されていない炭素粒子は、非水電解液電池1において、導電剤として機能している。

【0044】炭素粒子としては、気相成長炭素繊維やアセチレンブラック、片状天然黒鉛、片状人造黒鉛、繊維状人造黒鉛のうち少なくとも1種以上であることが好ましい。これらの炭素粒子は、それ自身の形状や粒径、導電性等が特徴的なものであり、導電剤として機能する効果が高い。

【0045】炭素粒子の含有量は、負極2において20 重量%以下の範囲であることが好ましい。負極2における炭素粒子の含有量が20重量%を越える場合、炭素粒子表面と非水電解液との反応を無視できず、非水電解液の分解反応が進行し、電池性能の低下を招く虞がある。したがって、炭素粒子の含有量を負極2において20重量%以下とすることにより、非水電解液電池1の大電流特性および電極内の電子伝導性を、確実に高めることができる。 【0046】さらにまた、ポリマー被覆炭素粒子を含有する負極2には、リチウムと合金を形成しない金属粒子を添加することが好ましい。リチウムと合金を形成しない金属粒子を添加することにより、導電性が向上し、負荷特性の低下を回避することが可能である。リチウムと合金化し、充放電反応の進行に伴い非水電解液の分解を生じる金属を用いると、本発明の効果が得られない虞がある。リチウムと合金を形成しない金属粒子としては、例えば、銅や鉄、Co、ステンレス鋼等を使用できる。

【0047】負極缶3は、負極2を収容するものであり、非水電解液電池1の外部端子(負極)となる。

【0048】正極4は、正極集電体と、この正極集電体上に、正極活物質を含有する正極合剤を塗布して形成される正極合剤層とを備える。正極集電体としては、例えばアルミニウム箔等を使用できる。

【0049】正極活物質としては、目的とする電池の種類に応じて、金属酸化物や金属硫化物、特定の高分子等を含有してなる。例えばリチウムイオン電池を構成する場合、従来公知の正極活物質、例えば、TiS2、Mo20 S2、NbSe2、V2O5、ポリピロール、ポリアニリン、ジスフィルド系化合物、LiCoO2やLiMn2O4等のリチウムイオンを吸蔵/放出可能なリチウムと遷移金属との複合酸化物等を使用できる。これら正極活物質のなかでも、特に、LiCoO2やLiMn2O4等のリチウムイオンを吸蔵/放出可能なリチウムと遷移金属との複合酸化物等を使用することが好ましい。

【0050】また、正極4を形成するに際して、従来公知の導電剤や結着剤等を添加することが可能である。

【0051】正極缶5は、正極4を収容するものであり、非水電解液電池1の外部端子(正極)となる。

【0052】セパレータ6は、負極2と正極4とを離間 させるものである。セパレータ6としては、例えば、ポ リエチレンやポリプロピレン等の多孔性フィルムや不職 布等、耐有機溶媒性の高いもを使用できる。

【0053】絶縁ガスケット7は、負極缶3に組み込まれ一体化されている。この絶縁ガスケット7は、負極缶3及び正極缶5内に充填された非水電解液の漏出を防止するためのものである。

【0054】非水電解液は、非水溶媒中に電解質塩を溶 40 解して調製されたものである。

【0055】電解質塩としては、例えば、LiClO4やLiBF4、LiPF6、LiAsF6、LiCF3SO3等を使用できる。

【0056】非水溶媒としては、例えば、エチレンカーボネートやプロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、γーブチロラクトン、ジメトキシエタン、テトラヒドロフラン、ジオキソラン等、従来公知の有機溶媒を何れも使用できる。これら非水溶 切を単独で用いてもよく、少なくとも2種以上を混合し

30

て使用してもよい。

【0057】ところで、従来のリチウムイオン二次電池 では、y -ブチロラクトンを非水電解液中に含有する場 合、負極活物質として炭素粒子を用いると、充放電反応 を繰り返すに伴い、非水電解液が継続的に分解され、可 逆リチウム量の低下や電極剥離等により、電池特性が急 激に劣化していた。また、プロピレンカーボネートを非 水電解液中に含有する場合、負極活物質として炭素粒子 を用いると、初回充電時における非水電解液の分解が激 しいため、初充電時に容量ロスが生じてしまい、その容 **量ロス分だけ電池容量が低下していた。さらに、充放電** 反応を繰り返すと非水電解液が継続的に分解され、電池 性能が低下していた。さらにまた、プロピレンカーボネ ートやy-ブチロラクトンは、誘電率が高く、水溶性ポ リマーの溶解性が高いことから、初充電時やその後の充 放電サイクル中に負極2で形成される表面被膜を溶解さ せている可能性もあった。

【0058】これに対し、本発明を適用した非水電解質電池では、プロピレンカーボネートやγーブチロラクトンを含有する非水電解液を用いた場合であっても、炭素粒子の表面が水溶性ポリマーで被覆されてなる活物質を負極活物質として用いているので、非水電解液の分解反応が抑制され、電池特性の劣化や電池容量の低下が防止されている。

【0059】以上のように構成される非水電解液電池1は、以下のようにして製造される。

【0060】はじめに、負極2を作製する。まず、炭素 粒子の表面を水溶性ポリマーで被覆して、ポリマー被覆 炭素粒子を調製する。

【0061】水溶性ポリマーを炭素粒子の表面に被覆す 30 る方法としては、例えば、水溶性ポリマーと炭素粒子とを適当な溶媒に分散させて噴霧状態で乾燥させる方法や、ポリマー融解溶液中に炭素粒子を分散させ、これを噴霧状態で乾燥させる方法、ポリマー融解溶液中に炭素粒子を分散させ、これを固化した後に粉砕する方法等を適用できる

【0062】ついで、ポリマー被覆炭素粒子およびバインダーを非水溶媒中に分散させて、スラリー状の負極合剤を調製する。

【0063】スラリー状の負極合剤を調製する際には、非水溶媒中にポリマー被覆炭素粒子を分散させる。水系にポリマー被覆炭素粒子を分散させた場合、被覆させた水溶性ポリマーが破壊されてしまい、本発明の効果を得ることができない。したがって、非水溶媒中にポリマー被覆炭素粒子を分散させ、スラリー状の負極合剤を調製することにより、被覆させた水溶性ポリマーを破壊することなく、負極2を作製できる。

【0064】非水溶媒としては、例えばN-メチル-2 -ピロリドンやジメチルスルホキシド、ジメチルスルホ アミド、ジクロロメタン、シクロヘキサン、トルエン、 キシレン等を使用できる。

【0065】ついで、この負極合剤を負極集電体上に均 ーに塗布して負極合剤層を形成する。

【0066】ついで、負極合剤層を乾燥させ、さらプレスすることにより、負極2を得る。

【0067】次に、正極4を作製する。まず、正極活物質とバインダーとを溶媒中に分散させて、スラリー状の正極合剤を調製する。ついで、この正極合剤を正極集電体上に均一に塗布後、プレス、乾燥することにより、正10極4を得る。

【0068】次に、電解質塩を非水溶媒中に溶解し、非水電解液を調製する。

【0069】次に、負極2を負極缶3に収容し、正極4を正極缶5に収容し、負極2と正極4との間に、ポリプロピレン製多孔質膜等からなるセパレータ6を配する。 負極缶3及び正極缶5内に非水電解液を注入し、絶縁ガスケット7を介して負極缶3と正極缶5とをかしめて固定することにより、コイン型の非水電解液電池1を得る。

20 【0070】なお、本発明を適用した非水電解質電池として、非水電解液を用いた非水電解液電池1を例に挙げて説明したが、本発明はこれに限定されるものではなく、非水電解質として、ゲル電解質を用いたゲル状電解質電池にも適用可能である。

【0071】ところで、ゲル状電解質電池において、ゲル電解質の安定性は、マトリックスポリマーと非水溶媒との相溶性に依存している。例えば、マトリックスポリマーとしてポリフッ化ビニリデンを用い、非水溶媒としてジメチルカーボネートやジエチルカーボネート等の低粘度溶媒を用いた場合、マトリックスポリマーと非水溶媒との相溶性が低いため、安定したゲル電解質を得られない。また、非水溶媒としてエチレンカーボネートやプロピレンカーボネート等の混合溶媒を用いた場合、負極活物質として炭素粒子を用いると、非水溶媒の分解反応が激しい。

【0072】そこで、非水電解質電池の活物質としてポリマー被覆炭素粒子を用いることにより、従来では、炭素材料によっては分解性が高いため使用困難であったプロピレンカーボネートやyーブチロラクトン等の非水溶媒系を用いてなるゲル状電解質電池を実現できる。

【0073】なお、その他のマトリックスポリマーにおいてもそれぞれ、最適な非水電解液系が存在し、本発明の活物質または電極または電池系を用いることにより、溶媒選択の自由度が増加する。

【0074】ゲル電解質の構成についても特に限定されるものではないが、マトリックスポリマーとしては、例えば、ポリエチレンオキサイド等のポリエーテル化合物や、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート等を使用できる。

50 【0075】これらのマトリックスポリマーによりゲル

化される非水溶媒としては、エチレンカーボネートやプ ロピレンカーボネート、プチレンカーボネート、ビニレ ンカーボネート、ジメチルカーボネート、ジエチルカー ボネート、エチルメチルカーボネート、γーブチロラク トン、ジメトキシエタン等を使用できる。

【0076】電解質塩としては、例えば、LiClO4 やLiBF4、LiPF6、LiAsF6、LiCF3 SO3, LiN (C2F6SO2) 2, LiN (CF3 SО2) 2 等を使用できる。

【0077】また、本発明を適用した非水電解質電池と して、ポリマー被覆炭素粒子が負極に含有されている非 水電解液電池1を例に挙げて説明したが、本発明はこれ に限定されるものではなく、ポリマー被覆炭素粒子が正 極に含有される非水電解質電池としてもよい。

【0078】ポリマー被覆炭素粒子が正極に含有される 非水電解質電池では、負極に含有される負極活物質とし て、従来公知の材料を何れも使用できる。例えば、難黒 鉛化炭素系材料や黒鉛系の炭素材料を使用することがで きる。具体的には、熱分解分解炭素類やコークス類(ピ ッチコークス、ニートルコークス、石油コークス)、黒 鉛類、ガラス上炭素類、有機高分子化合物焼成体(フェ ノール樹脂、フラン樹脂等を適当な温度で焼成し、炭素 化したもの)、炭素繊維、活性炭等の炭素材料を使用で きる。このほか、リチウムをドープ・脱ドープできる材 料としては、ポリアセチレン、ポリピロール等の高分子 や、SnO2等の酸化物等を使用できる。

[0079]

【実施例】以下、本発明について、具体的な実験結果に 基づいて詳細に説明する。

【0080】<実験1>負極活物質として炭素粒子を含 30 様にしてセルを作製した。 有してなる非水電解液電池と、負極活物質として表面が 水溶性ポリマーで被覆されている炭素粒子を含有してな る非水電解液電池を作製した。

【0081】サンプル1-1

〔負極活物質の調製〕まず、炭素粒子として平均粒径が 15μmである天然黒鉛粉末をアセトン中に分散させ、 これをカルボキシメチルセルロース(Na塩)が溶解し た水溶液中へ投入し、さらに70℃で攪拌したのち、1 30℃オーブン中へ噴霧、乾燥した。これにより、水溶 性ポリマーで表面を被覆されてなる天然黒鉛を負極活物 質として得た。なお、水溶性ポリマーの被覆量は、負極 活物質あたり1重量%とした。また、この負極活物質 は、真空中、100℃で24時間乾燥させた後に使用し

【0082】〔セルの作製〕上述のようにして調製した 負極活物質を95重量%と、バインダーとしてポリフッ 化ビニリデンを5重量%とを、Nーメチルー2ーピロリ ドン溶液中に分散させて、スラリー状の負極合剤を調製 した。ついで、スラリー状の負極合剤を、負極集電体と

にて3時間乾燥させてN-メチル-2-ピロリドンを蒸 発させ、さらに、真空中、100℃環境下において24 時間乾燥させた後、2016型コインセル用の大きさに 打ち抜いた。さらに、ハンドプレス装置でプレスするこ とで、負極合剤層の体積密度が1.6g/ccである負 極を得た。

【0083】ついで、金属リチウムを負極と略同型に打 ち抜いて、対極を得た。

【0084】ついで、エチレンカーボネートと、ジメチ 10 ルカーボネートと、エチルメチルカーボネートとを、重 量比で3:3:4の割合で混合した溶液に、電解質塩と してLiPF6を1mol/kgの濃度で溶解させるこ とにより非水電解液を調製した。

【0085】ついで、上述のようにして得た対極と負極 との間にセパレータが配されてなる電池素子を備え、非 水電解液が充填されてなる2016型のコイン型セルを 作製した。

【0086】サンプル1-2

負極活物質として、天然黒鉛を用いること以外はサンプ 20 ル1-1と同様にしてセルを作製した。

【0087】サンプル1-3

負極活物質として、メソフェーズピッチマイクロビーズ (以下、MCMBと称する。) を2800℃で焼成して なる黒鉛質炭素の表面が、水溶性ポリマーで被覆されて なる活物質を用いること以外は、サンプル1-1と同様 にしてセルを作製した。

【0088】サンプル1-4

負極活物質として、MCMBを2800℃で焼成してな る黒鉛質炭素を使用すること以外はサンプル1-1と同

【0089】<u>サンプル1-5</u>

負極活物質として、MCMBを1200℃で焼成してな る低結晶性炭素の表面が、水溶性ポリマーで被覆されて なる活物質を用いること以外は、サンプル1-1と同様 にしてセルを作製した。

【0090】サンプル1-6

負極活物質として、MCMBを1200℃で焼成してな る黒鉛質炭素を使用すること以外はサンプル1-1と同 様にしてセルを作製した。

【0091】サンプル1-7

負極活物質として、フルフリルアルコール樹脂を120 0℃で焼成した低結晶性炭素の表面が、水溶性ポリマー 被覆されてなる活物質を用いること以外は、サンプル1 1と同様にしてセルを作製した。

【0092】サンプル1-8

負極活物質として、フルフリルアルコール樹脂を120 0℃で焼成した低結晶性炭素を使用すること以外はサン プル1-1と同様にしてセルを作製した。

【0093】以上のようにして作製したサンプル1-1 なる厚み15μmである銅箔上に塗布し、70℃環境下 50 ~サンプル1-8のセルに対して、下記に示す充放電試

験を行い、初回の充放電効率(初期電池効率)を求め た。

【0094】まず、初期充電として、開放電圧から1m AでOVまで定電流充電し、ついで、OVで電流値が 0.01mAになるまで定電圧充電を行った。ついで、 初期放電として、O. 5mAの定電流で、セル電圧が

1. 5 V になるまで放電した。そして、初期充電容量に*

*対する初期放電容量の割合を求め、この割合を初期電池 効率(単位:%)とした。

【0095】以上の測定結果を、炭素粒子の親密度、X 線パラメータ d (002)、および、水溶性ポリマー被 覆量と併せて表1に示す。

[0096]

【表1】

	炭棄粒子	真密度 (g/cc)	X線パラメータ dQ02 (nm)	水溶性ホリマー 被覆量 (重量%)	初期 電池効率 (%)
サンブル1-1	天然黑鉛	2.23	0.3359	1	85
サンプル1-2				0	56
サンプル1-3	2800°C焼成	221	0.3361	1	89
サンプル1-4	MCMB			0	74
サンプル1-5	1200℃焼成	1.59	0.3820	1	83
サンプル1-6	MCMB			0	75
サンブル1ー7	1200°C燒成	1,55	0.3880	1	84
サンプル1-8	ルフリルアルコール樹脂			0	77

【0097】表1から明らかなように、サンプル1-1, 1-3, 1-5, 1-7のセルは、初期電池効率が 非常に高く、何れも80%を越えている。

【0098】これに対して、サンプル1-2, 1-4, 1-6.1-8のセルは、非水電解液の還元分解に使用 20 されるロス容量が多いため、初期電池効率が何れも80 %未満であり、実用上好ましくない。

【0099】したがって、表面が水溶性ポリマーで被覆 されている炭素粒子を負極活物質として用いることによ り、初期電池効率に優れる非水電解液電池を実現できる ことがわかる。

【0100】また、炭素粒子の親密度が2.0g/cc であるサンプル1-1,1-3のセルは、炭素粒子の親 密度が2.0g/cc未満であるサンプル1-5,1-7のセルと比較すると、初期電池効率の改善幅がより大 30 きい。したがって、結晶性の高い炭素粒子の表面を水溶 性ポリマーで被覆してなる負極活物質を用いることによ り、初期電池効率に非常に優れる非水電解質電池を実現 できることがわかる。

【0101】<実験2>負極活物質として水溶性ポリマ ーの被覆量を変えたポリマー被覆炭素粒子を調製し、こ れを含有する非水電解液電池を作製した。

【0102】サンプル2-1~2-9

※負極活物質を調製する際に、炭素粒子と水溶性ポリマー との混合条件を適宜調整することで、活物質あたりの水 溶性ポリマーの被覆量を下記表2に示すとおりにしたこ と以外はサンプル1-1と同様にしてセルを作製した。

【0103】以上のようにして作製したサンプル2-1 ~2-9のセルに対して、実験1にて行った充放電試験 を同様にして行い、初期電池効率を求めた。さらに、サ ンプル $2-1\sim2-9$ のセル、およびサンプル1-1, 1-2のセルに対して、下記に示す充放電試験を行い、 大電流特性を評価した。

【0104】まず、初期充電と同一条件で0Vまで充電 し、6mAの定電流で放電し、ついで、初期充電と同一 の条件で0Vまで充電し、12mAの定電流で放電し た。そそして、先に測定した0.5mA放電容量に対す る6mA放電容量、および、先に測定した0.5mA放 電容量に対する12mA放電容量の割合を求め、この割 合を6mA放電持容量維持率(単位:%)、12mA放 電持容量維持率(単位:%)とした。

【0105】以上の測定結果を、負極活物質における炭 素粒子の重量比、および水溶性ポリマーの被覆量とあわ せて表2に示す。

[0106]

【表2】

炭素粒子 水溶性ボリマー 初期 6mA放電時 12mA放電 12mAx 12mAx	
(重量%) (重量%) (%) (%) (%) サンプル1-2 100 0 56 85 66 サンプル2-1 99.99 0.01 57 84 67 サンプル2-2 99.98 0.02 62 85 66	-
サンプル2-1 99.99 0.01 57 84 67 サンプル2-2 99.98 0.02 62 85 66	
サンプル2-2 99.98 0.02 62 85 66	
1/2//2 = 00:00 0:00 00	
サンプル2ー3 88 RO 0.10 64 89 72	
サンプル2-4 99.50 0.50 80 88 72	
サンプル1-1 99.00 1.00 85 85 70	
サンプル2-5 98.00 2.00 88 86 64	i
サンプル2-6 95.00 5.00 77 79 59	
サンプル2-7 80.00 10.0 72 70 51	
サンプル2-8 85.00 15.0 67 59 29	
サンプル2-9 80.00 20.0 64 54 22	

【0107】負極活物質における水溶性ポリマーの被覆 量が0.02重量%であるサンプル2-2のセルは、負 50 量%未満であるサンプル2-1のセルと比較して、初期

極活物質における水溶性ポリマーの被覆量が0.02重

30

40

16

電池効率の改善幅が大きいことがわかる。

【0108】また、負極活物質における水溶性ポリマーの被覆量が10重量%であるサンプル2-7のセルは、 負極活物質における水溶性ポリマーの被覆量が10重量 %を越えるサンプル2-8のセルと比較して、初期電池 効率の改善幅には差がみられないが、6mA放電時容量 維持率および12mA放電時容量維持率が良好であることがわかる。

15

【0109】したがって、炭素粒子の表面を水溶性ポリマーで被覆する際、水溶性ポリマーの被覆量を、負極活物質あたり0.02重量%以上、10重量%以下の範囲として負極活物質を調製することにより、初期電池効率に優れ、且つ、大電流特性に優れる非水電解液電池を実現できることがわかる。

【0110】<実験3>負極合剤を調製する際に用いる 溶剤を変えて負極を作製し、この負極を備える非水電解 液電池を作製した。

【0111】サンプル3-1

負極を作製する際に、負極活物質を95重量%と、ポリビニルアルコールを3重量%と、スチレンーブタジエンゴムを2重量%とを、水中に分散させてスラリー状の負極合剤を調製した。そして、この負極合剤を負極集電体となる厚み15μmである銅箔上に塗布した後、乾燥してプレスし、2016型コインセル用の大きさに打ち抜いて負極を得ること以外はサンプル1−3と同様にして、セルを作製した。なお、負極活物質としては、サンプル1−3と同様に、MCMBを2800℃で焼成してなる黒鉛質炭素の表面を水溶性ポリマーで被覆してなり、水溶性ポリマーの被覆量が1重量%である活物質を使用した。

【0112】サンプル3-2

負極を作製する際に、負極活物質を95重量%と、カルボキシメチルセルロース(Na塩)を3重量%と、スチレンーブタジエンゴムを2重量%とを、水中に分散させてスラリー状の負極合剤を調製した。そして、この負極合剤を負極集電体となる厚み15μmである銅箔上に塗布した後、乾燥してプレスし、2016型コインセル用の大きさに打ち抜いて負極を得ること以外はサンプル1−3と同様にして、セルを作製した。なお、負極活物質としては、サンプル1−3と同様に、MCMBを280℃で焼成してなる黒鉛質炭素の表面を水溶性ポリマーで被覆してなり、水溶性ポリマーの被覆量が1重量%であるものを使用した。

【0113】以上のようにして作製したサンプル3-1,3-2のセル、およびサンプル1-3のセルに対し、下記に示す充放電試験を行い、サイクル特性を評価した。

【0114】まず、開放電圧から1mAで0Vまで定電 流充電し、ついで、0Vで電流値が0.01mAになる まで定電圧充電を行った。ついで、0.5mAの定電流 *50*

でセル電圧が1.5 Vになるまで放電した。このときの 充電容量に対する放電容量の割合を求め、これを初期電 池効率(単位:%)とした。ついで、同一条件で充放電 サイクルを行い、各サイクルにおける電池効率を求め た。

【0115】以上の、各サイクルにおける電池効率の測 定結果を、図2に示す。

【0116】図2から、非水溶媒であるNーメチルー2ーピロリドン中に負極活物質を分散してなる負極合剤を用いて作製された負極を備えるサンプル1ー3のセルでは、初期電池効率が非常に高く、電池の初期容量として高い値を与えることがわかる。また、サイクル中の電池効率の変化も100%に近い値を推移しており、サイクル性がよいことがわかる。

【0117】これに対して、水中に負極活物質を分散してなる負極合剤を用いて作製された負極を備えるサンプル3-1、3-2のセルでは、初期電池効率が低く、サイクル中の電池効率の変化も、サンプル1-3のセルの電池効率の変化を下回っている。この原因とし、サンプル3-1、3-2のセルでは、継続的な非水電解液の分解が生じていることが考えられる。これより、サンプル3-1、3-2の負極と、コバルト酸リチウム等のようなリチウム吸蔵放出型の正極と組み合わせたリチウムイオン二次電池を試作した場合、充放電サイクルに伴う容量低下がより激しいと考えられる。

【0118】したがって、水溶性ポリマーを炭素粒子の表面に選択的に担持し、この選択制が破壊されないように、ポリマー被覆炭素粒子を非水溶媒中に分散させて負極合剤を調製し、この負極合剤を用いてセルを作製することで、初期効率が高くて高容量であり、且つサイクル特性に優れる非水電解液電池を実現できることがわかる。

【0119】<実験4>ポリマー被覆炭素粒子を含有する負極を備える非水電解液電池と、ポリマー被覆炭素粒子および導電剤として機能する炭素粒子又は金属粒子を含有する負極を備える非水電解液電池とを作製した。

【0120】サンプル4-1

負極を作製する際に、負極活物質を94重量%と、ポリフッ化ビニリデンを5重量%と、黒鉛化気相成長炭素繊維を1重量%とを、Nーメチルー2ーピロリドン中に分散させてスラリー状の負極合剤を調製した。そして、この負極合剤を負極集電体となる厚み15μmである銅箔上に塗布した後、乾燥してプレスし、2016型コインセル用の大きさに打ち抜いて負極を得ること以外はサンプル1-3と同様にして、セルを作製した。なお、負極活物質としては、サンプル1-3と同様に、MCMBを2800℃で焼成してなる黒鉛質炭素の表面を水溶性ポリマーで被覆してなり、水溶性ポリマーの被覆量が1重量%である活物質を使用した。

 $0 \quad [0121] \frac{4}{4}$

負極を作製する際に、負極活物質を94重量%と、ポリフッ化ビニリデンを5重量%と、アセチレンブラックを1重量%とを、Nーメチルー2ーピロリドン中に分散させてスラリー状の負極合剤を調製した。そして、この負極合剤を負極集電体となる厚み15μmである銅箔上に塗布した後、乾燥してプレスし、2016型コインセル用の大きさに打ち抜いて負極を得ること以外はサンプル1−3と同様にして、セルを作製した。なお、負極活物質としては、サンプル1−3と同様に、MCMBを2800℃で焼成してなる黒鉛質炭素の表面を水溶性ポリマーで被覆してなり、水溶性ポリマーの被覆量が1重量%である活物質を使用した。

【0122】サンプル4-3

負極を作製する際に、負極活物質を94重量%と、ポリフッ化ビニリデンを5重量%と、ニッケル微粒子を1重量%とを、Nーメチルー2ーピロリドン中に分散させてスラリー状の負極合剤を調製した。そして、この負極合*

*剤を負極集電体となる厚み15μmである銅箔上に塗布した後、乾燥してプレスし、2016型コインセル用の大きさに打ち抜いて負極を得ること以外はサンプル1−3と同様にして、セルを作製した。なお、負極活物質としては、サンプル1−3と同様に、MCMBを2800℃で焼成してなる黒鉛質炭素の表面を水溶性ポリマーで被覆してなり、水溶性ポリマーの被覆量が1重量%である活物質を使用した。

【0123】以上のようにして作製したサンプル4-1
10 ~4-3のセル、およびサンプル1-3のセルに対して、上述した実験1および実験2において行った充放電試験を同様にして行い、初期電池効率、6mA放電時の容量維持率、および12mA放電時の容量維持率を求めた

【0124】以上の測定結果を表3に示す。

[0125]

【表3】

	添加材	初期 電池効率 (%)	6mA放電時	12mA放電時 容量維持率 (%)
サンブル1-3	なし	89	88	72
	気相成長炭素繊維	91	93	85
	アセチレンブラック		92	83
	ニッケル微粒子	88	90	82

【0126】導電剤を含有しない負極を備えるサンプル 1-3のセルと、導電剤として機能する炭素粒子又は金 属粒子を含有する負極を備えるサンプル4-1~4-3 のセルとを比較すると初期電池効率に大きな変化はみら れないが、サンプル4-1~4-3のセルでは、負荷特 性が大幅に向上していることがわかる。

【0127】ポリマー被覆炭素粒子は、表面を絶縁性の 30 水溶性ポリマーで広く被覆されているため、電極プレス 時等の負極活物質粒子間の微少な電気的接触では、大電 流放電用途の場合に負荷特性の低下が見られることがあ る。

【0128】したがって、負極に導電剤として機能する 炭素粒子又は金属粒子を添加することにより、活物質炭 素表面の安定性と活物質間の集電性を同時に満たす負極 となり、初期効率が高くて高容量であり、且つサイクル 特性及び大電流特性に非常に優れる非水電解液電池を実 現できることがわかる。

【0129】<実験5>負極活物質として炭素粒子またはポリマー被覆炭素粒子を含有し、且つ、分解性の高い 非水溶媒を含有する非水電解液を併用してなる非水電解 液電池を作製した。

【0130】サンプル5-1

非水電解液を調製する際に、エチレンカーボネートと、 γープチロラクトンとを、重量比で3:7の割合で混合 した溶液に、電解質塩としてLiPF6を1mol/k gの濃度で溶解させたこと以外はサンプル1-1と同様 にしてセルを作製した。

【0131】サンプル5-2

非水電解液を調製する際に、エチレンカーボネートと、 y ーブチロラクトンとを、重量比で3:7の割合で混合した溶液に、電解質塩としてLiPF6を1mol/kgの濃度で溶解させたこと以外はサンプル1-2と同様にしてセルを作製した。

【0132】以上のようにして作製したサンプル5-1,5-2のセルに対して、以下に示す充放電試験を行い、サイクル特性を評価した。

【0133】まず、開放電圧から1mAで0Vまで定電流充電し、ついで、0Vで電流値が0.01mAになるまで定電圧充電を行った。ついで、3mAの定電流でセル電圧が1.5Vになるまで放電した。この充放電サイクルをくり返し行い、初期放電容量に対する各サイクル時点での放電容量の割合を求め、この割合を容量維持率(%)とした。

40 【0134】以上の測定結果を、図3に示す。

【0135】図3から、ポリマー被覆炭素粒子を負極活物質として含有するサンプル5-1のセルでは、γーブチロラクトンの含有率が高い非水電解液を用いているにもかかわらず、容量維持率の急激な低下はみられず、安定したサイクル特性を示していることがわかる。

【0136】これに対し、表面を水溶性ポリマーで被覆されてない炭素粒子を負極活物質として含有するサンプル5-2のセルでは、急激に容量維持率が減少していることがわかる。

50 【0137】したがって、ポリマー被覆炭素粒子を負極

活物質として含有することにより、分解性の高い非水溶 媒を含有する非水電解液を用いた場合であっても、安定 したサイクル特性を有する非水電解液電池を実現できる ことがわかる。

【0138】〈実験6〉負極活物質として炭素粒子また はポリマー被覆炭素粒子を含有し、且つ、分解性の高い 非水溶媒を含有する非水電解液を併用してなる非水電解 液電池を作製した。

【0139】サンプル6-1

非水電解液を調製する際に、エチレンカーボネートと、 プロピレンカーボネートとを、重量比で3:7の割合で 混合した溶液に、電解質塩としてLiPF6を1mol /kgの濃度で溶解させたこと以外はサンプル1-1と 同様にしてセルを作製した。

【0140】サンプル6-2

非水電解液を調製する際に、エチレンカーボネートと、 プロピレンカーボネートとを、重量比で3:7の割合で 混合した溶液に、電解質塩としてLiPF6を1mol /kgの濃度で溶解させたこと以外はサンプル1-3と 同様にしてセルを作製した。

【0141】サンプル6-3

非水電解液を調製する際に、エチレンカーボネートと、 プロピレンカーボネートとを、重量比で3:7の割合で 混合した溶液に、電解質塩としてLiPF6を1mol /kgの濃度で溶解させたこと以外はサンプル1-2と 同様にしてセルを作製した。

【0142】サンプル6-4

非水電解液を調製する際に、エチレンカーボネートと、 プロピレンカーボネートとを、重量比で3:7の割合で 混合した溶液に、電解質塩としてLiPF6を1mol /kgの濃度で溶解させたこと以外はサンプル1-4と 同様にしてセルを作製した。

【0143】以上のようにして作製したサンプル6-1 ~6-4のセルに対して、実験1にて行った充放電試験 を同様にして行い、初期電池効率を求めた。

【0144】以上の測定結果を、表4に示す。

[0145]

【表4】

~ <i>1</i>			
	炭索粒子	水溶性ポリマー 被覆量 (重量%)	初期 電池効率 (%)
サンプル6-1	天然黒鉛	1	72
サンプル6-2		0	28
サンプル6-3	2800°C	1	79
サンブル6-4	焼成MCMB	0	52

【0146】ポリマー被覆炭素粒子を負極活物質として 含有するサンプル6-1,6-2のセルでは、プロピレ ンカーボネートの含有率が高い非水電解液を用いている にもかかわらず、初期電池効率が非常に高い。

【0147】これに対し、表面を水溶性ポリマーで被覆 されてない炭素粒子を負極活物質として含有するサンプ 50 とを張り合わせて圧着し、電池素子を作製した。そし

ル6-3,6-4のセルでは、非水電解液の分解に使用 されるロス容量が非常に大きいため、初期電池効率が低

【0148】したがって、ポリマー被覆炭素粒子を負極 活物質として含有することにより、分解性の高い非水溶 媒を含有する非水電解液を用いた場合であっても、初期 電池効率に優れた非水電解液電池を実現できることがわ

【0149】<実験7>ゲル状電解質を用いた電池を作 10 製した。

【0150】サンプル7-1

まず、正極を以下に示すようにして作製した。まず、正 極活物質としてコバルト酸リチウムを91重量%と、導 電剤として黒鉛を6重量%と、結着剤としてポリフッ化 ビニリデンを10重量%とを混合した後、Nーメチルー 2-ピロリドン中に分散させてスラリー状の正極合剤を 調製した。ついで、このスラリー状の正極合剤を、厚み 20μmのアルミ箔の片面に均一に塗布して乾燥し、ア ルミ箔上に正極合剤層を形成した。さらにロールプレス 20 機を用いて圧縮成形した後、セルの径に準じて円形に打 ち抜くことで、正極を得た。

【0151】ついで、負極を以下に示すようにして作製 した。まず、負極活物質として、MCMBを2800℃ で焼成してなる黒鉛質炭素の表面が、水溶性ポリマーで 被覆されてなり、水溶性ポリマーの被覆量が活物質あた り1重量%である活物質を調製した。ついで、この負極 活物質を90重量%と、結着剤としてポリフッ化ビニリ デンを10重量%とを混合した後、N-メチルー2-ピ ロリドン中に分散させてスラリー状の負極合剤を調製し た。ついで、このスラリー状の正極合剤を、厚み10μ mの銅箔の片面に均一に塗布して乾燥し、銅箔上に負極 合剤層を形成した。さらにロールプレス機を用いて圧縮 成形した後、セルの径に準じて円形に打ち抜くことで、 負極を得た。

【0152】ついで、電解質溶液を以下に示すようにし て調製した。まず、エチレンカーボネートを42.5重 量%とy-ブチロラクトンを42.5重量%とを混合し た混合溶媒に、LiPF6を15重量%として溶解して なる可塑剤を調製した。ついで、この可塑剤を30重量 40 %と、ブロック共重合ポリ(ビニリデンフルオロライ ド)を10重量%と、ジメチルカーボネートを60重量 %とを混合溶解させてなる電解質溶液を調製した。

【0153】ついで、上記電解質溶液を正極合剤層上お よび負極合剤層上に塗布して含浸させ、常温で8時間放 置し、ジメチルカーボネートを気化、除去した。このよ うにして、正極合剤層上および負極合剤層上に、ゲル状 電解質層を形成した。

【0154】ついで、正極合剤層上に形成されたゲル状 電解質層と、負極合剤層上に形成されたゲル状電解質層

30

て、この電池素子をラミネートフィルム中に収容し、縦幅2.5cm、横幅4.0cm、厚み0.3mmの平板型のゲル状電解質電池を作製した。

21

【0155】サンプル7-2

負極を作製する際、負極活物質としてMCMBを2800℃で焼成してなる黒鉛質炭素を89.1重量%と、結着剤としてポリフッ化ビニリデンを10.9重量%とを混合した後、Nーメチルー2ーピロリドン中に分散させてスラリー状の負極合剤を調製し、このスラリー状の負極合剤を銅箔の片面に均一に塗布して負極合剤層を形成する事以外はサンプル7-1と同様にして、ゲル状電解質電池を作製した。

【0156】以上のようにして作製されたサンプル7-1,7-2のゲル状電解質電池に対して、以下に示す充 放電試験を行い、サイクル特性を評価した。

【0157】まず、開放電圧から100mAで4.20 Vまで定電流充電し、ついで、4.20Vで電流値が2 mAになるまで定電圧充電を行った。ついで、500m Aの定電流で、セル電圧が3.0Vになるまで放電した。この充放電サイクルを繰り返し行い、初期放電容量 20 に対する各サイクル時点での放電容量の割合を求め、この割合を容量維持率(単位:%)とした。

【0158】以上の測定結果を、図4に示す。

【0159】図4から明らかなように、ポリマー被覆炭素粒子を負極活物質として含有するサンプル7-1のセルは、充放電サイクルを繰り返しても、安定した容量維持率を示している。これに対し、表面を水溶性ポリマーで被覆されてない炭素粒子を負極活物質として含有するサンプル7-2のセルは、充放電サイクルを繰り返すと、容量維持率が低下している。

【0160】したがって、ポリマー被覆炭素粒子を負極

活物質として含有することにより、安定したサイクル特性を有するゲル状電解質電池を実現できることがわかる。

[0161]

【発明の効果】以上の説明から明らかなように、本発明に係る活物質は、炭素粒子の表面が水溶性ポリマーで被覆されているので、非水溶媒や電解質塩を含有する非水電解質や、バインダー等との反応性が抑制されている。したがって、この活物質によれば、非水電解質の分解反応が抑制されており、初期効率、サイクル特性、および大電流特性に優れた非水電解質電池を実現できる。

【0162】また、本発明に係る非水電解質電池は、炭素粒子の表面が水溶性ポリマーで被覆されている活物質を含有するので、非水電解質の分解反応が抑制され、初期効率、サイクル特性、および大電流特性に優れる。

【0163】また、本発明に係る電極の製造方法によれば、炭素粒子の表面を被覆している水溶性ポリマーを破壊することなく、電極を製造することができる。

【図面の簡単な説明】

7 【図1】本発明を適用した非水電解液電池の一構成例を 示す断面図である。

【図2】充放電サイクル数と電池効率との関係を示す特 性図である。

【図3】充放電サイクル数と容量維持率との関係を示す 特性図である。

【図4】充放電サイクル数と容量維持率との関係を示す 特性図である。

【符号の説明】

1 非水電解液電池、2 負極、3 正極、4 負極 30 缶、5 正極缶、6 セパレータ、7 絶縁ガスケット

【図1】

【図2】

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

H01M 10/40

H 0 1 M 10/40

Α

Fターム(参考) 5H029 AJ03 AJ05 AJ07 AK03 AL07

AMOO AMO3 AMO5 AMO7 AM16

BJ03 BJ12 CJ02 CJ22 DJ08

DJ15 DJ17 EJ00 EJ12 HJ02

HJ08 HJ13

5H050 AA07 AA08 AA13 BA17 BA18

CA08 CB08 DA02 DA03 DA09

EA00 EA23 FA02 FA16 FA17

FA18 FA19 GA02 GA22 HA02

HA08 HA13

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.