

## Deep Learning

Session 10 and 11

# Convolutional Neural Networks (CNNs)

Applied Data Science 2024/2025

### **Spatial Data**



• **Definition:** Spatial data refers to data where the arrangement or location of elements is important.



### Why Spatial Structure Matters?



- Local Patterns: In spatial data, nearby elements (e.g., pixels) often have strong relationships.
  - Example: Edges, textures, and objects in an image are defined by neighboring pixel values.
- Context Preservation: Spatial arrangement helps capture context.
  - Example: In an image, nearby pixels form features like eyes, while distant pixels represent unrelated parts (e.g., background).





### **Motivation: How Vision Systems Work**





de-Wit, L. H., Kubilius, J., de Beeck, H. P. O., & Wagemans, J. (2013). Configural Gestalts Remain Nothing More Than the Sum of Their Parts in Visual Agnosia. In i-Perception (Vol. 4, Issue 8, pp. 493–497). SAGE Publications. <a href="https://doi.org/10.1068/i0613rep">https://doi.org/10.1068/i0613rep</a>

### **Motivation: How Vision Systems Work**



 Key Idea: cells are organized as a hierarchy of feature detectors, with higher level features responding to patterns of activation in lower level cells



### What computers "see"?



Images are Numbers





| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

**Binary Images** 

### What computers "see"?



Images are Numbers





| 157 | 153 | 174 | 168 | 150 | 162 | 129 | 151 | 172 | 161 | 155 | 156 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 155 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 | 180 | 154 |
| 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 48  | 106 | 159 | 181 |
| 206 | 109 | 6   | 124 | 131 | 111 | 120 | 204 | 166 | 15  | 54  | 180 |
| 194 | 68  | 137 | 251 | 237 | 239 | 235 | 228 | 227 | 87  | n   | 201 |
| 172 | 106 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 98  | 74  | 206 |
| 188 | 88  | 179 | 209 | 185 | 215 | 211 | 158 | 139 | 75  | 20  | 169 |
| 189 | 97  | 166 | 84  | 10  | 168 | 134 | 11  | 31  | 62  | 22  | 148 |
| 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 106 | 36  | 190 |
| 206 | 174 | 155 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 95  | 234 |
| 190 | 216 | 116 | 149 | 236 | 187 | 86  | 150 | 79  | 38  | 218 | 241 |
| 190 | 224 | 147 | 100 | 227 | 210 | 127 | 102 | 36  | 101 | 255 | 224 |
| 190 | 214 | 173 | 66  | 103 | 143 | 96  | 50  | 2   | 109 | 249 | 215 |
| 187 | 196 | 236 | 76  | 1   | 81  | 47  | 0   |     | 217 | 255 | 211 |
| 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 138 | 243 | 236 |
| 196 | 206 | 122 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 96  | 218 |

**Greyscale Images** 

### What computers "see"?



[90, 0, 53] • Images are Numbers [249, 215, 203] [213, 60, 67] **Color Images** 





"In this paper, we discuss how to synthesize a neural network model in order to endow it an ability of pattern recognition like a human being... the network acquires a similar structure to the hierarchy model of the visual nervous system proposed by Hubel and Wiesel."

- Fukushima, Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biological Cybernetics, 1980.



Cascade of simple and complex cells:



Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron



Fig. 2. Schematic diagram illustrating the interconnections between layers in the neocognitron

Fukushima, 1980.



Simple cells extract local features using a sliding filter:





Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron



Fig. 2. Schematic diagram illustrating the interconnections between layers in the neocognitron

Fukushima, 1980.



Complex cells fire when any part of the local region is the desired pattern



Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron



Fig. 2. Schematic diagram illustrating the interconnections between layers in the neocognitron

Fukushima, 1980.



#### 1. ~ Convolutional layers

---> modifiable synapses

--> unmodifiable synapses

2. ~ Pooling Layers



Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron



Fig. 2. Schematic diagram illustrating the interconnections between layers in the neocognitron

Fukushima, 1980.



Fully-Connected Layers are Limited



- Each node provides input to each node in the next layer.
- No spatial information!





- Assume 2 layer model with 100 nodes per layer
  - e.g., how many weights are in a colored 640x480 image?





- Assume 2 layer model with 100 nodes per layer
  - e.g., how many weights are in a colored 640x480 image?
    - 640x480x3x100 + 100x100 + 100x1 = 92,170,100
  - e.g., how many weights are in a 2048X1536 image (3.1 Megapixel image)?

 $\blacksquare$  2048x1536x3x100 + 100x100 + 100x1 = 943,728,500



• Issue: many model parameters in fully connected networks

- Many model parameters and so...
  - Greater chance to overfit
  - Increased training time
  - Needs more training data

### **Convolutional Layers**



• Idea: each node receives input only from a small neighborhood in previous layer and parameter sharing

#### Neocognitron



Fukushima, 1980.

### Convolution



• Applies a linear **filter** (e.g., 2D)





- Compute a function of local neighborhood for each location in matrix
- A filter specifies the function for how to combine neighbors' values



Slides filter over the matrix and computes dot products





Slides filter over the matrix and computes dot products





Slides filter over the matrix and computes dot products





Slides filter over the matrix and computes dot products



|     |   |   |   | 1 |
|-----|---|---|---|---|
| - 1 | n | n |   | Τ |
|     |   | μ | ч | ١ |

 1
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 0
 1
 1
 1

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

#### **Filter**



#### Feature Map

| ? | ?  | ? |
|---|----|---|
| ? | ٠. | ? |
| ? |    | ? |

Dot Product = 1\*1 + 1\*0 + 1\*1 + 0\*0 + 1\*1 + 1\*0 + 0\*1 + 0\*1 + 0\*0 + 0\*0 + 1\*1

Dot Product = 4



|   | _ | _  |   |   |
|---|---|----|---|---|
|   | n | n  |   | т |
|   | n | IJ | u | ш |
| • |   | _  | • | • |

 1
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 0
 1
 1
 1

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

#### **Filter**



#### Feature Map

| 4 | ٠. | ٠. |
|---|----|----|
| ? |    | ٠٠ |
| ? | ?  | ?  |



| _     | _  |      |
|-------|----|------|
| <br>n | n  | 1 11 |
| <br>  | IJ | u    |
|       | Г  | -    |

 1
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 0
 1
 1
 1

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

#### Filter

 1
 0
 1

 0
 1
 0

 1
 0
 1

#### Feature Map

| 4  | 3  | ? |
|----|----|---|
| ٠. | ٠. | ? |
| ?  | ?  | ? |



| Input |   |   |   |   |  |
|-------|---|---|---|---|--|
| 1     | 1 | 1 | 0 | 0 |  |
| 0     | 1 | 1 | 1 | 0 |  |
| 0     | 0 | 1 | 1 | 1 |  |
| 0     | 0 | 1 | 1 | 0 |  |
| 0     | 1 | 1 | 0 | 0 |  |

101010101

Filter

Feature Map

| 4 | 3  | 4 |
|---|----|---|
| ? | ٠. | ? |
|   | ٠. | ? |



Input

 1
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 0
 1
 1
 1

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

**Filter** 

 1
 0
 1

 0
 1
 0

 1
 0
 1

Feature Map

| 4 | 3  | 4 |
|---|----|---|
| 2 | ٠. | ? |
| ? | ?  | ? |



| lr | 1 | 0 | u | t |
|----|---|---|---|---|
|    |   |   |   | _ |

 1
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 0
 1
 1
 1

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

#### Filter

 1
 0
 1

 0
 1
 0

 1
 0
 1

#### Feature Map

| 4 | თ | 4 |
|---|---|---|
| 2 | 4 | ? |
| ? | ? | ? |



| lr | 1 | p | u | t |
|----|---|---|---|---|
|    | • | ۲ |   |   |

 1
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 0
 1
 1
 1

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

#### Filter

 1
 0
 1

 0
 1
 0

 1
 0
 1

#### Feature Map

| 4 | 3 | 4 |
|---|---|---|
| 2 | 4 | 3 |
| ? | ? | ? |



| In   | n |   | ł |
|------|---|---|---|
| 1111 | μ | u | ι |

 1
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 0
 1
 1
 1

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

#### Filter



#### Feature Map

| 4 | 3 | 4 |
|---|---|---|
| 2 | 4 | 3 |
| 2 | ? | ? |



| ı | n | n | п | t |
|---|---|---|---|---|
| ı | ı | ν | u | ι |

 1
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 0
 1
 1
 1

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

 0
 1
 1
 0
 0

#### Filter

 1
 0
 1

 0
 1
 0

 1
 0
 1

#### Feature Map

| 4 | 3 | 4 |
|---|---|---|
| 2 | 4 | 3 |
| 2 | 3 | ? |



|   | _ | _ |   |    |
|---|---|---|---|----|
| ı | n | n | ш | IT |
| ı |   | ı | u | ı  |
| _ |   | _ |   |    |

 1
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 0
 1
 1
 1

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

#### Filter

 1
 0
 1

 0
 1
 0

 1
 0
 1

#### Feature Map

| 4 | 3 | 4 |
|---|---|---|
| 2 | 4 | 3 |
| 2 | 3 | 4 |

#### Convolution

Source pixel

 $(4 \times 0)$  $(0 \times 0)$ 

UNIVERSIDADE CATÓLICA PORTUGUESA

BRAGA

 $(0 \times 0)$ 

 $(0 \times 0)$ 

 $(0 \times 1)$ 

 $(0 \times 1)$ 

 $(0 \times 0)$ 

(-4 x 2)

Center element of the kernel is placed over the

source pixel. The source pixel is then replaced

with a weighted sum of itself and nearby pixels.

Convolution

New pixel value (destination pixel)

https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411

Session 10 Convolutional Neural Networks

### Convolutional Layer: Parameters to Learn





https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

### Convolutional Layer: Parameters to Learn



• For the shown example, how many weights must be learned?





- For the shown example, how many weights must be learned?
  - 4 (red, blue, yellow, and green values)
- If we instead used a fully connected layer, how many weights would need to be learned?





- For the shown example, how many weights must be learned?
  - 4 (red, blue, yellow, and green values)
- If we instead used a fully connected layer, how many weights would need to be learned?
  - 36 (9 turquoise nodes x 4 magenta nodes)
- For shown example, how many parameters must be learned?





- For the shown example, how many weights must be learned?
  - 4 (red, blue, yellow, and green values)
- If we instead used a fully connected layer, how many weights would need to be learned?
  - 36 (9 turquoise nodes x 4 magenta nodes)
- For the shown example, how many parameters must be learned?
  - 5 (4 weights + 1 bias)

Ily connected layer how m

 If we instead used a fully connected layer, how many parameters would need to be learned?





- For the shown example, how many weights must be learned?
  - 4 (red, blue, yellow, and green values)
- If we instead used a fully connected layer, how many weights would need to be learned?
  - 36 (9 turquoise nodes x 4 magenta nodes)
- For the shown example, how many parameters must be learned?
  - 5 (4 weights + 1 bias)
- If we instead used a fully connected layer, how many parameters would need to be learned?
  - 40 (36 weights + 4 bias)



UNIVERSIDADE CATOLICA PORTUGUESA

• Parameter sharing significantly reduces number of parameters to learn and so storage requirements

 Sparse connectivity (rather than full) also significantly reduces the number of computational operations required





BRAGA

 Neocognitron has hard-coded filter values... we will cover models that learn the filter values





BRAGA



Way to Interpret Neural Network













Way to Interpret Neural Network



Filter







• e.g.,

Filter



#### Visualization of Filter



https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



e.g.,

#### Filter Overlaid on Image



**Image** 





Filter

| 0 | 0 | 0 | 0  | 0  | 30 | 0 |
|---|---|---|----|----|----|---|
| 0 | 0 | 0 | 0  | 30 | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 0  | 0  | 0  | 0 |

Weighted Sum = ?

Weighted Sum = (50x30) + (20x30) + (50x30) + (50x30) + (50x30)

Weighted Sum = 6600 (Large Number!!)

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



e.g.,

#### Filter Overlaid on Image



**Image** 

| 0  | 0  | 0  | 0  | 0 | 0 | 0 |
|----|----|----|----|---|---|---|
| 0  | 40 | 0  | 0  | 0 | 0 | 0 |
| 40 | 0  | 40 | 0  | 0 | 0 | 0 |
| 40 | 20 | 0  | 0  | 0 | 0 | 0 |
| 0  | 50 | 0  | 0  | 0 | 0 | 0 |
| 0  | 0  | 50 | 0  | 0 | 0 | 0 |
| 25 | 25 | 0  | 50 | 0 | 0 | 0 |

**Filter** 

| 0 | 0 | 0 | 0  | 0  | 30 | 0 |
|---|---|---|----|----|----|---|
| 0 | 0 | 0 | 0  | 30 | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 0  | 0  | 0  | 0 |

Weighted Sum = ?

Weighted Sum = 0 (Small Number!!)

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



• e.g.,

#### This Filter is a Curve Detector!

| 0 | 0 | 0 | 0  | 0  | 30 | 0 |
|---|---|---|----|----|----|---|
| 0 | 0 | 0 | 0  | 30 | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 30 | 0  | 0  | 0 |
| 0 | 0 | 0 | 0  | 0  | 0  | 0 |



Filter Overlaid on Image (Big Response!)

Filter Overlaid on Image (Small Response!)





https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

#### **Filters Detect Different Features**



| Operation      | Filter                                                                      | Convolved<br>Image | Operation                     | Filter                                                                           | Convolved<br>Image |
|----------------|-----------------------------------------------------------------------------|--------------------|-------------------------------|----------------------------------------------------------------------------------|--------------------|
| Identity       | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$         |                    | Sharpen                       | $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$          |                    |
|                | $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$       |                    | Box blur<br>(normalized)      | $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$  |                    |
| Edge detection | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$        |                    | Gaussian blur (approximation) | $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ |                    |
|                | $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ |                    |                               | []                                                                               |                    |

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

#### **Different Filters Detect Different Features**







DEMO: <a href="https://beej.us/blog/data/convolution-image-processing/">https://beej.us/blog/data/convolution-image-processing/</a>

#### **Group Discussion**



1. How would you design a filter to "brighten" an image?



2. How would you design a filter to remove wrinkles/blemishes?







After applying the filter, introduce non-linearity





Slide filter across input



#### activation map





• Slide filter across input

Consider a second, green filter.



#### activation maps





if we had 6 5x5 filters, we'll get 6 separate activation maps:

# 32 Convolution Layer

28

activation maps

We stack these up to get a "new image" of size 28x28x6!



Parameters: bank of filters and biases used to create the activation maps (aka – feature maps)

## activation maps 28 Convolution Layer

#### **Convolutional Layers Stacked**



Can then stack a sequence of convolution layers, interspersed with activation functions:



#### **Convolutional Layers Stacked**



Can then stack a sequence of convolution layers, interspersed with activation functions:



#### **Convolutional Layers Stacked**



Can then stack a sequence of convolution layers, interspersed with activation functions:

Stacking many convolutional layers leads to identifying patterns in increasingly larger regions of the input (e.g., pixel) space.



#### **Convolution: Implementation Details**



• Padding: add values at the boundaries to control output size



#### **Convolution: Implementation Details**



- Stride: how many steps taken spatially before applying a filter
  - e.g., 2x2





Feature Map

| 4 | 4 |
|---|---|
| 2 | 4 |

## Parameters vs Hyperparameters in Convolutional Layers



- Hyperparameters:
  - **?**
  - **?**
  - **•** ?

- Parameters:
  - **?**
  - ?

### Parameters vs Hyperparameters in Convolutional Layers



- Hyperparameters:
  - Number of filters and their dimensions (height and width)
  - Stride
  - Padding type

- Parameters:
  - Weights
  - Biases

#### **Pooling Layer**



Makes the representations smaller and more manageable

 Helps retain important information while discarding unnecessary details.

- Introduces some invariance to small translations or distortions (e.g., slight shifts in the image).
- Operates over each activation map independently:





• Max-pooling: partitions input into a set of non-overlapping (generaly) rectangles and outputs the maximum value for each chunk

| 12  | 20  | 30 | 0  |                       |
|-----|-----|----|----|-----------------------|
| 8   | 12  | 2  | 0  | $2 \times 2$ Max-Pool |
| 34  | 70  | 37 | 4  |                       |
| 112 | 100 | 25 | 12 |                       |



Max-pooling: partitions input into a set of non-overlapping (generaly)
rectangles and outputs the maximum value for each chunk

| 12  | 20  | 30 | 0  |                       |     |    |
|-----|-----|----|----|-----------------------|-----|----|
| 8   | 12  | 2  | 0  | $2 \times 2$ Max-Pool | 20  | 30 |
| 34  | 70  | 37 | 4  | ,                     | 112 | 37 |
| 112 | 100 | 25 | 12 |                       |     |    |



• Average-pooling: partitions input into a set of non-overlapping (generaly) rectangles and outputs the average value for each chunk





• Average-pooling: partitions input into a set of non-overlapping (generaly) rectangles and outputs the average value for each chunk



#### **Pooling Layer**



Resilient to small translations

- e.g.,
  - Input: all values change (shift right)
  - Output: only half the values change





DETECTOR STAGE

#### **Pooling Layer: Benefits**



- How many parameters must be learned?
  - None
- Benefits?
  - Builds in invariance to translations of the input
  - Reduces memory requirements
  - Reduces computational requirements





- 1. Convolution: apply filters to generate feature maps;
- 2. Non-linearity: Often ReLU;
- 3. Pooling: Downsampling operation on each feature map.

Train model with image data.

Learn weights of filters in convolutional layers.



- For a neuron in hidden layer:
  - Take inputs from patch
  - Compute weighted sum
  - Apply bias

- Applying a window of weights
- Computing linear combinations
- Activating with non-linear function









- Introducing non-linearity.
  - Apply after each convolutional layer
  - ReLU: pixel-by-pixel operation that replaces all negative values by zero.
    - Non-linear operation!





$$g(z) = \max(0, z)$$

#### Representation Learning in Deep CNNs







Edges, dark spots

Conv Layer I

Mid level features



Eyes, ears, nose

Conv Layer 2

High level features



Facial structure

Conv Layer 3

#### **CNNs for Classification: Feature Learning**





- 1. Learn features in input image through convolution
- Introduce non-linearity through activation function (real worl data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with pooling

#### **CNNs for Classification: Predictions**





- CONV and POOL layers output high-level features of input
- Fully connected layers uses these features for classifying input image
- Express output as probability of image belonging to a particular class