Lojik Tasarım

Ders 7

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

KOMBİNEZONAL LOJİK DEVRELERİ (Bileşik Mantık Devreleri)

- Sayısal devreler kombinezonal (bileşik) yada ardışıl olabilir.
- Bir bileşik devrede çıkışlar, o anki giriş değerlerine bağlı olan lojik kapılardan oluşmuştur.
- Ardışıl devrelerde ise bellek elemanları kullanılır ve çıkış, giriş değerleri ve bellek elemanlarında tutulan bilgilerin bir fonksiyonu olarak tanımlanır.

Bileşik Mantık Devreleri

- Bileşik mantık deverleri üç kısımdan oluşur
 - 1- Giriş değişkenleri
 - 2- İşlem yapan lojik kapılar
 - 3- Çıkış değişkenleri

FIGURE 4.1

Block diagram of combinational circuit

Tasarım Yöntemi

- 1. Problem sözel olarak ifade edilir
- 2. Giriş ve çıkış değişkenlerinin sayısı belirlenir
- 3. Giriş ve çıkış değişkenlerine harf sembolleri atanır
- 4. Giriş ile çıkış arasındaki ilişkileri tanımlayan doğruluk tablosu oluşturulur
- 5. Her çıkış için basitleştirilmiş Boole fonksiyonu elde edilir
- 6. Lojik devre çizilir

BCD kodundan Üç Fazlalık koduna dönüştüren lojik devreyi tasarlayınız.

	Gİ	RİŞ			ÇI	KIŞ	
Α	В	С	D	W	Χ	Υ	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

$$W = A + BC + BD$$

$$X = B'C + B'D + BC'D'$$

BCD kodundan Üç Fazlalık koduna dönüştüren lojik devreyi tasarlayınız.

	Gi	RİŞ			ÇI	KIŞ	
Α	В	С	D	W	Χ	Υ	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

$$Y = CD + C'D'$$

$$Z = D'$$

1-Yarı Toplayıcı

- Soru:
 - Bir bitlik iki sayıyı toplayacak devreyi tasarlayınız

Half Adder

X	y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = x'y + xy'$$
$$C = xy$$

1- Tam Toplayıcı

- Soru:
 - Elde bitini de işleme katarak Bir bitlik iki sayıyı toplayacak devreyi tasarlayınız

Full Adder

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

2- Tam Toplayıcı

Tam Toplayıcı

$$S = z \oplus (x \oplus y)$$

$$= z'(xy' + x'y) + z(xy' + x'y)'$$

$$= z'(xy' + x'y) + z(xy + x'y')$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$

4 Bitlik Toplayıcı

Yarı Çıkarıcı

X-Y işlemi yapacak olursak;

X	Υ	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

$$B = X'Y$$

$$D = X'Y + XY'$$

$$D = X \oplus Y$$

Tam Çıkarıcı

X-Y-Z işlemi yapacak olursak;

Х	у	Z	В	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$D = x \oplus y \oplus z$$

$$B = x'y + x'z + yz$$

İkinin Tümleyenine Göre Çıkarma Devresi

KARŞILAŞTIRICILAR

- Yarı karşılaştırıcı
- Tam karşılaştırıcı

Yarı Karşılaştırıcı

Α	В	A=B	A≠B
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	0

$$A = B$$
 çıkışı $\Rightarrow = \overline{(A \oplus B)}$

$$A \neq B$$
 çıkışı $\Rightarrow = (A \oplus B)$

Tam Karşılaştırıcı

Α	В	A <b< th=""><th>A>B</th></b<>	A>B
0	0	0	0
0	1	1	0
1	0	0	1
1	1	0	0

Soru:

4 bitlik iki tane ikili sayının karşılaştırılmasını yapacak lojik devreyi tasarlayınız

Kodlayıcı (Encoder)

4 Tuşlu yapı

	Giri	Çıkı	şlar					
К3	K2	K1	KO	Y1	YO			
0	0	0	1	0	0			
0	0	1	0	0	1			
0	1	0	0	1	0			
1	0	0	0	1	1			

$$Y0 = K1 + K3$$

$$Y1 = K2 + K3$$

K0

8x3 Kodlayıcı

TABLO 5-3 Sekizliden İkiliye Kodlayıcının Doğruluk Tablosu

	Girişler									Çıkışlaı	
	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	x	y	z
Ī	1	0	0	0	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	0	1
	0	0	1	0	0	0	0	0	0	1	0
	0	0	0	1	0	0	0	0	0	1	1
	0	0	0	0	1	0	0	0	1	0	0
	0	0	0	0	0	1	0	0	1	0	1
	0	0	0	0	0	0	1	0	1	1	0
	0	0	0	0	0	0	0	1	1	1	1

$$z = D_1 + D_3 + D_5 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$x = D_4 + D_5 + D_6 + D_7$$

8x3 kodlayıcı

$$z = D_1 + D_3 + D_5 + D_7$$
$$y = D_2 + D_3 + D_6 + D_7$$
$$x = D_4 + D_5 + D_6 + D_7$$

8x3 kodlayıcı

- Böyle bir sistemde birden çok tuşa basıldığında yada birden fazla giriş 1 olduğunda (Örneğin: D6-D7) çıkış ne olacaktır? (Birine öncelik vermek gerekebilir)
- D0 tuşuna basıldığını nereden bileceğiz? (Sisteme değer girildiğini bildiren ayrı bir çıkış eklenebilir)

Öncelik (Priority) Kodlayıcı

Bir Öncelik Kodlayıcısının Doğruluk Tablosu

	Girişler			Çıkışlar		r
D_0	D_1	D_2	D_3	X	У	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

Öncelik (Priority) Kodlayıcı

ŞEKİL 5-14

Bir öncelik kodlayıcısı için diyagramlar

Öncelik (Priority) Kodlayıcı

