Optimisation Non linèaire

Par

Professeur Abdellatif El Afia

Chapitre 5

Optimisation avec contraintes Conditions d'optimalité

- 1. Multiplicateur de Lagrange
- 2. Conditions de Karush-Kuhn-Tucker
- 3. Condition K-K-T suffisantes
- 4. Condition K-K-T nécessaires
- 5. Problème de programmation convexe

Considérons le problème de programmation mathématique suivant:

$$(P_1) \begin{cases} Min & f(x) \\ s.t & f_i(x) = 0 \ i = 1, ..., m \\ & x \in \mathbb{R}^n \end{cases}$$

les fonctions $f: \mathbb{R}^n \to \mathbb{R}$, $f_i: \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m

Le lagrangien associé au problème (P_1) est obtenu comme suit en associant un multiplicateur de Lagrange λ_i à chaque fonction de contrainte $f_i: L(\lambda, x) = f(x) + \sum_{i=1}^m \lambda_i f_i(x)$

• Sans faire d'hypothèse particulière sur X ou sur les fonctions f et f_i , nous pouvons obtenir des conditions suffisantes très générales pour qu'un point x^* soit une solution optimale globale problème (P_1)

Théorème 1 : Supposons que le lagrangien, $L(\lambda, x)$, associé au problème (P_1) possède un minimum global x^* sur X lorsque $\lambda = \lambda^*$. Si $\forall i \in \{1, ..., m\} : f_i(x^*) = 0$, alors x^* est une solution optimale globale de (P_1)

Preuve: la preuve se fait par contradiction en supposant que x^* n'est pas une solution optimale de (P_1) .

• Alors $\exists \bar{x}$ tel que $\forall i \in \{1, ..., m\}$ $f_i(x^*) = 0$, et $f(\bar{x}) < f(x^*)$,

• Par conséquent, $\forall \lambda$ $\sum_{i=1}^{m} \lambda_i f_i(\bar{x}) = \sum_{i=1}^{m} \lambda_i f_i(x^*) = 0$ et ainsi $f(\bar{x}) + \sum_{i=1}^{m} \lambda_i f_i(\bar{x}) < f(x^*) + \sum_{i=1}^{m} \lambda_i f_i(\bar{x}) < f(x^*)$

 $\sum_{i=1}^{m} \lambda_i f_i(\bar{x}^*)$.
• En prennent $\lambda = \lambda^*$ la relation précédente contredit le fait que x^* est un minimum global du lagrangien sur X lorsque $\lambda = \lambda^*$ Optimisation non lineaire-Abdellatif El Afia

Exemple

$$\begin{pmatrix}
\mathbf{P_1} \\
\mathbf{f_1} \\
s. t \\
f_1(x, y) = x^2 + 2y^2 \\
s. t \\
f_1(x, y) = x + y - b = 0 \\
(x, y) \in \mathbb{R}^2
\end{pmatrix}$$

Lagrangien correspondant $L(\lambda, x, y) = (x^2 + 2y^2) + \lambda(x + y - b)$ L convexe en (x, y). Donc minimum atteint lorsque $\nabla_{x,y} L(\lambda, x, y) = 0$, Cherchons (x, y)

•
$$\nabla_{x,y}L(\lambda,x,y) = \begin{pmatrix} 2x+\lambda\\4y+\lambda \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix} \Leftrightarrow \begin{cases} \lambda = -2x\\\lambda = -4y \end{cases} \Leftrightarrow x = 2y$$

•
$$f_1(x,y) = x + y - b = 2y + y - b = 3y - b = 0 \Leftrightarrow y = \frac{b}{3}$$

Donc:

•
$$(x,y) = \left(\frac{2}{3}b, \frac{1}{3}b\right)$$

•
$$\lambda = -2x = -\frac{4}{3}b$$

Considérons maintenant le problème de programmation mathématique suivant

$$(P_2) \begin{cases} Min & f(x) \\ s.t & f_i(x) \le 0 \ i = 1, ..., m \\ & x \in \mathbb{R}^n \end{cases}$$

Théorème 2 : Supposons que le lagrangien associé au problème (P_2) : $L(\lambda, x) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

Possède un minimum global x^* sur X lorsque le vecteur de multiplicateurs $\lambda = \lambda^*$.

Si $\forall i = 1, ..., m$, $f_i(x^*) \le 0$, $\lambda_i^* \ge 0$ et $\lambda_i^* f_i(x^*) = 0$ alors x^* est une solution optimale globale (P_2)

Preuve: La preuve se fait par contradiction,

Supposons que x^* n'est pas une solution optimale de (P_2) . Alors il existe un \bar{x} tel que $f_i(\bar{x}) \le 0$ pour tout i = 1, ..., m et $f(\bar{x}) < f(x^*)$

Par conséquent, pour $\lambda = \lambda^* \ge 0$, $\sum_{i=1}^m \lambda_i^* f_i(\bar{x}) \le 0$ et $\sum_{i=1}^m \lambda_i^* f_i(x^*) = 0$

Et ainsi $f(\bar{x}) + \sum_{i=1}^{m} \lambda_i' f_i(\bar{x}) < f(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*)$

La relation précédente contredit le fait que x^* est un minimum global du lagrangien sur X lorsque $\lambda = \lambda^*$.

Exemple: Si $f_i(x^*) \le 0$, $\lambda_i^* \ge 0$ et $\lambda_i^* f_i(x^*) = 0$

$$(P_2)\begin{cases} Min & f(x) = x^2\\ s. t & f_1(x) = 2x + 5 \le 0\\ & x \in \mathbb{R} \end{cases}$$

Lagrangien correspondant $L(\lambda, x) = x^2 + \lambda(2x + 5)$

L convexe en x. Donc minimum atteint lorsque $\nabla_x L(\lambda, x) = 0$, Cherchons x

•
$$\nabla_x L(\lambda, x) = 2x + 2\lambda = 0 \Leftrightarrow x = -\lambda$$

•
$$\lambda_1^* f_1(x^*) = \lambda(2x+5) = 0$$

•
$$Si \lambda \neq 0 \implies 2x + 5 = 0 \implies -2\lambda + 5 = 0 \Leftrightarrow \lambda = \frac{5}{2}$$

• Si
$$\lambda = 0 \Rightarrow x = -\lambda = 0 \Rightarrow 2x + 5 = 5 > 0$$
 n'est pas une solution réalisable

Donc
$$x = -\lambda = -\frac{5}{2}$$

on note, $\lambda = \frac{5}{2} \ge 0$
 $2x + 5 = 0 \Rightarrow (2x + 5)\lambda = 0$

Optimisation non lineaire-Abdellatif El Afia

Conditions d'optimalité:Conditions de Karush-Kuhn-Tucker (KKT)

Pour obtenir des conditions plus facilement vérifiables, il faut poser des hypothèses sur X et sur les fonctions f et f_i

Si f et f_i sont différentiables et convexes dans le problème (P_2)

$$(\mathbf{P_2}) \begin{cases} Min & f(x) \\ s.t & f_i(x) \le 0 \ i = 1, ..., m \\ & x \in \mathbb{R}^n \end{cases}$$

alors le lagrangien $L(\lambda, x) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$ est aussi une fonction convexe si $\lambda \ge 0$ puisque:

- $\lambda_i \ge 0$ et $f_i(x)$ convexe $\Rightarrow \lambda_i f_i(x)$ convexe
- $f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$ somme de fonctions convexes.

et il s'ensuit qu'il possède un minimum global en x^* lorsque $\lambda = \lambda^* \ge 0$ si $\nabla_x L(\lambda^*, x) = \nabla f(x) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x) = 0$

Conditions d'optimalité : Conditions de Karush-Kuhn-Tucker (KKT)

Alors le théorème 2 peut s'écrire de la forme suivant: Si les conditions de (K-K-T) est vérifier :

$$(K-K-T) \begin{cases} \nabla_{x}L(\lambda^{*},x^{*}) = \nabla f(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}(x^{*}) = 0 \\ f_{i}(x^{*}) \leq 0, i = 1, ..., m \\ \lambda_{i}^{*} \geq 0, i = 1, ..., m \\ \lambda_{i}^{*} f_{i}(x^{*}) = 0, i = 1, ..., m \end{cases}$$

alors x^* est une solution optimal globale

Définition: Une contrainte $f_i(x)$ est dite active au point x^* si $f_i(x^*) = 0$

Remarque: $\lambda_i^* f_i(x^*) = 0$

- Si $\lambda_i^* > 0$ alors la contrainte associée $f_i(x)$ est active au point x^*
- Si $f_i(x) < 0$ alors $\lambda_i^* = 0$

Conditions d'optimalité : Conditions de Karush-Kuhn-Tucker (KKT)

Exemple:

$$\begin{cases} Min & f(x) = 2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2 \\ s.t & x_1^2 + x_2^2 \le 5 \\ & 3x_1 + x_2 \le 6 \\ & x = (x_1, x_2) \in \mathbb{R}^2 \end{cases}$$

•
$$L(\lambda, x) = 2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2 + \lambda_1(x_1^2 + x_2^2 - 5) + \lambda_2(3x_1 + x_2 - 6)$$

•
$$\nabla_x L(\lambda, x) = \begin{pmatrix} 4x_1 + 2x_2 - 10 \\ 2x_1 + 2x_2 - 10 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 0 \Longrightarrow \begin{pmatrix} 4x_1 + 2x_2 - 10 + 2\lambda_1 x_1 = 0 \\ 2x_1 + 2x_2 - 10 + 2\lambda_1 x_2 = 0 \end{pmatrix}$$

•
$$\begin{cases} \lambda_1(x_1^2 + x_2^2 - 5) = 0 \\ \lambda_2(3x_1 + x_2 - 6) = 0 \end{cases} \Rightarrow Cas: \begin{cases} x_1^2 + x_2^2 - 5 = 0 \\ 3x_1 + x_2 - 6 < 0 \Rightarrow \lambda_2 = 0 \end{cases}$$

•
$$\lambda_1,\lambda_2\geq 0 \Longrightarrow \lambda_1\geq 0,\lambda_2=0$$
 Optimisation non lineaire-Abdellatif El Afia

Conditions d'optimalité : Conditions de Karush-Kuhn-Tucker (KKT)

Exemple:

Nous pouvons faire différentes hypothèses sur quelle contrainte est active dans le but d'identifier des valeurs de $x_1, x_2, \lambda_1, \lambda_2$ satisfaisant les conditions KKT.

Supposons que la première est active et que la seconde ne l'est pas :

$$x_1^2 + x_2^2 - 5 = 0$$

$$3x_1 + x_2 - 6 < 0 \Rightarrow \lambda_2 = 0$$

Nous retrouvons alors le système avec 3 équations et 3 inconnus suivant :

$$4x_1 + 2x_2 - 10 + 2\lambda_1 x_1 = 0$$

$$2x_1 + 2x_2 - 10 + 2\lambda_1 x_2 = 0$$

$$x_1^2 + x_2^2 = 5$$

Nous pouvons vérifier que $x_1 = 1$, $x_2 = 2$, $\lambda_1 = 1$ satisfont le système précédent.

Donc $x_1 = 1$, $x_2 = 2$, $\lambda_1 = 1$, $\lambda_2 = 0$ Satisfont les conditions KKT

Conditions d'optimalité : Condition K-K-T suffisantes

Théorème 3:

Supposons que les fonctions f et f_i sont différentiables et convexes.

Si les conditions de KKT sont vérifiées à x^* , alors x^* est un minimum global du problème (P_2)

Preuve:

Le lagrangien étant <u>convexe</u> si $\lambda^* \ge 0$ (démontrer précédemment) alors par **l'inégalité du** gradient il s'ensuit que $\forall x \in \mathbb{R}^n$

$$f(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) \ge f(x^*) + \underbrace{\sum_{i=1}^{m} \lambda_i^* f_i(x^*)}_{0} + \underbrace{\left[\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla f_i(x^*)\right]^T}_{0} (x - x^*)$$

Alors $\forall x \in \mathbb{R}^n$:

$$f(x^*) - f(x) \le \sum_{i=1}^m \lambda_i^* f_i(x) \le 0 \Longrightarrow f(x^*) \le f(x)$$

Pour l'analyse de la nécessité des conditions KKT nous allons exploiter le théorème d'alternative Supposons que x^* est une solution locale du problème (P_2)

$$(\mathbf{P_2}) \begin{cases} Min & f(x) \\ s.t & f_i(x) \le 0 \ i = 1, ..., m \\ & x \in \mathbb{R}^n \end{cases}$$

Notation: Dénotons l'ensemble des contraintes actives

$$A(x^*) = \{i: f_i(x^*) = 0\} = \{i_1, ..., i_k\} \subset \{1, ..., m\}$$

Hypothèse à vérifier : Supposons que nous pouvons démontrer que $\nexists d \in \mathbb{R}^n$ tel que

$$\begin{cases} \nabla f(x^*)^T d < 0 \\ \nabla f_i(x^*)^T d \leq 0, \forall i \in A(x^*) \end{cases} \Leftrightarrow (S_1) \begin{cases} \nabla f(x^*)^T d < 0 \\ \left[\nabla f_{i_1}(x^*), \dots, \nabla f_{i_k}(x^*) \right]^T d \leq 0 \end{cases}$$

Ainsi le système (S_1) ne possède pas de solution. Appliquons maintenant le théorème d'alternative en prenons $A^T = [\nabla f_{i_1}(x^*), ..., \nabla f_{i_k}(x^*)]^T$ et $b = \nabla f(x^*)$, On a

•
$$(S_1)$$
 $\begin{cases} b^T d < 0 \\ -A^T d \ge 0 \end{cases}$ ne possède pas une solution

•
$$(S_2)$$

$$\begin{cases} -A\lambda^* = b \\ \lambda^* = [\lambda_{i_1}^*, \dots, \lambda_{i_k}^*] \ge 0 \end{cases} \Leftrightarrow \begin{cases} -\sum_{i \in A(x^*)} \lambda_i^* \nabla f_i(x^*) = \nabla f(x^*) \\ \lambda^* = [\lambda_{i_1}^*, \dots, \lambda_{i_k}^*] \ge 0 \end{cases}$$

 (S_2) s'écrit également sous la forme:

•
$$\nabla f(x^*) + \sum_{i \in A(x^*)} \lambda_i^* \nabla f_i(x^*) = 0$$

•
$$\lambda_i^* f_i(x^*) = \mathbf{0}, \ \forall i \in A(x^*)$$

•
$$f_i(x^*) \leq 0$$
, $i = 1, ..., n$

•
$$\lambda^* = \left[\lambda_{i_1}^*, \dots, \lambda_{i_k}^*\right] \geq 0$$

Posons $\lambda_i^* = 0$ pour tout $i \notin A(x^*)$. Alors :

• $\sum_{i \notin A(x^*)} \lambda_i^* \nabla f_i(x^*) = 0$, $\lambda_i^* f_i(x^*) = 0$, pour tout $i \notin A(x^*)$

Par conséquent nous retrouvons les conditions KKT

•
$$\nabla_x L(\lambda^*, x^*) = \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) = 0$$

•
$$\lambda_i^* f_i(x^*) = 0$$
, $i = 1, ..., n$

•
$$f_i(x^*) \le 0$$
, $i = 1, ..., n$

•
$$\lambda_i^* \geq 0$$
, $i = 1, ...$,

Malheureusement, notre hypothèse que nous pouvons démontrer que $\nexists d \in \mathbb{R}^n$ tel que

$$\nabla f_i(x^*)^T d \le 0, \qquad i \in A(x^*)$$

 $\nabla f(x^*)^T d < 0$

Ne l'est pas nécessairement pour toute solution locale x^* de tout problème tel que l'illustre l'exemple suivant.

$$\begin{cases} Min & f(x_1, x_2) = -x_1 \\ s.t & f_1(x_1, x_2) = (x_1 - 1)^3 + x_2 \le 0 \\ & f_2(x_1, x_2) = -x_1 \le 0 \\ & f_3(x_1, x_2) = -x_2 \le 0 \end{cases}$$

L'ensemble des solutions réalisables de ce problème est représenté par la région en-dessous de la courbe de $f_1(x_1, x_2)$ au-dessus de l'axe des x_1 et à droite de l'axe des x_2

Il est facile de vérifier que $x^* = [1,0]^T$ est une solution optimale globale de ce problème.

De plus
$$A(x^*) = \{1,3\}$$

$$\begin{cases} Min & f(x_1, x_2) = -x_1 \\ s. t & f_1(x_1, x_2) = (x_1 - 1)^3 + x_2 \le 0 \\ & f_2(x_1, x_2) = -x_1 \le 0 \\ & f_3(x_1, x_2) = -x_2 \le 0 \end{cases}$$

Or
$$\nabla f(x^*) = [-1,0]^T$$

 $\nabla f_1(x) = [3(x_1 - 1)^2, 1]^T$ et $\nabla f_3(x^*) = [0,1]^T$

Le système :

$$\nabla f(x^*)^T d = -d_1 < 0$$

 $\nabla f_1(x^*)^T d = d_2 \le 0$
 $\nabla f_3(x^*)^T d = -d_2 \le 0$

Possède une solution d = [1,0]

Notons qu'au point x^* la direction d = [1,0] pointe directement à l'extérieur du domaine réalisable.

Nous allons donc imposer certaines restrictions sur les contraintes des problèmes considérés pour éliminer de telles situations.

Restrictions sur les fonctions de contraintes

Notation: D_R dénote le domaine réalisable du problème (P_2) $\delta D_R = \{x \in D_R : \exists i, 1 \le i \le m, \text{ tel que } f_i(x) = 0\}$

Conditions d'optimalité : Restrictions sur les fonctions de contraintes

Interprétation:

Se référant à la notion de direction de descente, lorsque

$$\nabla f_i(\overline{x})^T d < 0$$

alors pour un faible déplacement $\tau > 0$ dans la direction d,

$$f_i(\overline{x} + \tau d) < f_i(\overline{x}) = 0$$

Ainsi, ce déplacement nous garde dans le domaine réalisable par rapport à cette contrainte. Les restrictions sur les fonctions de contraintes prolongent en quelque sorte cette propriété même si $\nabla f_i(\bar{x})^T d = 0$ puisque la fonction α prend ses valeurs dans le domaine réalisable D_R .

Interprétation géométrique :

Théorème 8 : (Nécessité des conditions K-K-T) : Soit $x^* \in \overline{X}$ une solution optimale locale du problème (P_2) où \overline{X} est ouvert. Supposons de plus que si $x^* \in \delta D_R$, alors $f_1, ..., f_m$ satisfont les restrictions sur les fonctions de contraintes au point x^* .

Alors il existe un vecteur de multiplicateurs $\lambda^* = [\lambda_1^*, ..., \lambda_m^*] \ge 0$ tel que :

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) = 0$$
$$\lambda_i^* f_i(x^*) = 0 \quad i = 1, \dots, m$$

Preuve:

Si x^* est un point intérieur du domaine réalisable D_R (i.e., $f_i(x^*) < 0$) pour tout i), il suffit de prendre $\lambda_i^* = 0$ pour tout i = 1, ..., m.

En effet dans ce cas si $\nabla f(x^*)$ prenait une valeur différente de 0, il suffirait de considérer la direction $d = -\nabla f(x^*)$ qui serait une direction de descente de f à x^* .

Ainsi, il existerait un $\tau > 0$ suffisamment petit pour que

$$(x^* + \tau d) \in B_{\tau}(x^*) \cap D_R$$
 avec $f(x^* + \tau d) < f(x^*)$, une contradiction.

Soit $x^* \in \delta D_R$, démontrons que l'hypothèse que nous pouvons démontrer qu'il n'existe pas de vecteur $d \in \mathbb{R}^n$ tel que

$$\nabla f_i(x^*)^T d \le 0, \qquad i \in A(x^*)$$

 $\nabla f(x^*)^T d < 0$

est effectivement vérifiée sous les hypothèses du théorème.

En effet, pour fin de contradiction, Supposons qu'un tel vecteur \tilde{d} existerait, puisque $f_1, ..., f_m$ satisfont les restrictions sur les fonctions de contraintes au point x^* , alors il existe une fonction différentiable

$$\alpha: [0,1] \to D_R$$
 telle que $\alpha(0) = x^*$ et $\alpha'(0) = \sigma \tilde{d}, \sigma > 0$

Mais ainsi,

$$\lim_{\theta \to 0} \frac{f(\alpha(\theta)) - f(x^*)}{\theta} = \nabla f(x^*)^T \alpha'(0) = \sigma \nabla f(x^*)^T \tilde{d} < 0$$

Ce qui implique l'existence d'un $\hat{\theta} \in [0,1]$ assez petit pour que $\alpha(\hat{\theta}) \in B_{\varepsilon}(x^*)$

tel que
$$f(\alpha(\widehat{\theta})) < f(x^*)$$
 une contradiction puisque $\alpha(\widehat{\theta}) \in D_R$.

Le reste de la preuve se fait comme précédemment lorsque nous supposions que l'hypothèse était vérifiée.

Théorème 8 : (Nécessité des conditions K-K-T) : Soit $x^* \in \overline{X}$ une solution optimale locale du problème (P_2) où \overline{X} est ouvert. Supposons de plus que si $\nabla f_i(x^*)$, $i \in A(x^*)$ sont linéairement indépendante

Alors il existe un vecteur de multiplicateurs $\lambda^* = [\lambda_1^*, ..., \lambda_m^*] \ge 0$ tel que :

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) = 0$$
$$\lambda_i^* f_i(x^*) = 0 \quad i = 1, ..., m$$

Problème de programmation convexe

Considérons le problème de programmation convexe

Primal (P)
$$\begin{cases} Min & f_0(x) \\ s.t & f_i(x) \le 0 \ i \in I_1 \\ h_i(x) = a_i^T x + b_i = 0 \ i \in I_2 \\ x \in \mathbb{R}^n \end{cases}$$

où $f_0(x) \in \mathcal{C}^2$, $\forall i \in I_1 f_i(x) \in \mathcal{C}^2$ et convexe dans \mathbb{R}^d ,

On part de l'estimation de sa valeur optimale

$$p^* = \inf\{f_0(x) | x \in D_F\} = \inf_{x \in D_F} f_0(x)$$

où $D_F = \{x \in \mathbb{R}^d \, \big| f_i(x) \le 0 \mid i \in I_1, h_i(x) = 0 \mid i \in I_2 \}$

Introduisons la fonction lagrangienne

$$L(x,\lambda,\mu) = f_0(x) + \sum_{i \in I_1} \lambda_i f_i(x) + \sum_{i \in I_2} \mu_i h_i(x)$$

où $\lambda = (\lambda_1, ..., \lambda_m)^T$ et $\mu = (\mu_1, ..., \mu_p)^T$ sont des multiplers lagrangiens.

Problème de programmation convexe: : Conditions d'optimalité

Définition(Conditions de Karush-Kuhn-Tuker (KKT))

Considérons le problème principal de programmation convexe (P). x^* est dit satisfaire les conditions KKT s'il existe les multiplicateurs $\lambda^* = (\lambda_1^*, ..., \lambda_m^*)^T$ et $\mu^* = (\mu_1^*, ..., \mu_n^*)^T$ correspondant respectivement aux contraintes du problème primal (P), telles que la fonction lagrangienne (P)

$$L(x,\lambda,\mu) = f_0(x) + \sum_{i \in I_1} \lambda_i f_i(x) + \sum_{i \in I_2} \mu_i h_i(x) \Longrightarrow \nabla_x L(x,\lambda,\mu) = \nabla f_0(x) + \sum_{i \in I_1} \lambda_i \nabla f_i(x) + \sum_{i \in I_2} \mu_i \nabla h_i(x)$$

Satisfait

 $\text{KKT Conditions:} \begin{cases} \nabla_{x}L(x^{*},\lambda^{*},\mu^{*}) = \nabla f_{0}(x^{*}) + \sum_{i \in I_{1}} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{i \in I_{2}} \mu_{i}^{*} \nabla h_{i}(x^{*}) = 0 \\ f_{i}(x^{*}) \leq 0 \quad i \in I_{1} : |I_{1}| = m \\ h_{i}(x^{*}) = a_{i}^{T}x^{*} + b_{i} = 0 \quad i \in I_{2} : |I_{2}| = p \\ \lambda_{i}^{*}f_{i}(x^{*}) = 0 \quad i \in I_{1} \\ \lambda_{i}^{*} \geq 0 \quad i \in I_{1} \end{cases}$

Problème de programmation convexe: Conditions d'optimalité

Définition (Condition de Slater)

On dit que le problème primal de programmation convexe (P) satisfait la condition de Slater s'il existe une solution réalisable x telle que:

$$\begin{cases} f_i(x) < 0 & i \in I_1 \\ h_i(x) = a_i^T x + b_i = 0 & i \in I_2 \end{cases}$$

Ou lorsque les premières contraintes d'inégalité de k sont des contraintes linéaires, il existe une solution réalisable x telle que :

$$\begin{cases} f_i(x) = a_i^T x + b_i \le 0 & i \in I_1^k \\ f_i(x) < 0 & i \in I_1^{m-k} \\ h_i(x) = a_i^T x + b_i = 0 & i \in I_2 \end{cases}$$

Théorème:

Considérons le problème primal de programmation convexe (P) satisfaisant la condition de Slater. Si x^* est une solution alors x^* satisfait aux conditions KKT.

Théorème:

Considérons le problème primal de programmation convexe (P) satisfaisant la condition de Slater. Alors pour sa solution x^* , c'est une condition néssecaire et suffissante que x^* satisfait aux conditions KKT