Duffing Oscillator

PH235 SPRING 2019
PROFESSOR A. RAJA
ANDY JEONG

Equation and Parameters

- Nonlinear 2nd order ODE used to model systems with damping and driving forc

$$\ddot{x} + \delta \dot{x} + \alpha x + \beta x^3 = \Upsilon \cos(\omega t)$$

where $\ddot{x}=2nd$ time derivative, $\dot{x}=1st$ time derivative, x=displacement at time t, $\delta=damping$ coefficient, $\alpha=linear$ stiffness coefficient

 β = nonlinearity in the restoring force; (if =0, simple harmonic oscillator)

 Υ = amplitude of the periodic driving force; (if =0, no driving force present)

 ω = angular frequency of the periodic driving force

Approximation for Solution

- Fourier Series
- Treat the cubic term (Duffing term) as a perturbed simple harmonic oscillator
- complex: Frobenius method
- Numerical methods: Euler's / Runge-Kutta (4th order)
- Homotopy analysis method (HAM) for strong nonlinear systems

Frequency Response

- β = 0: linear oscillator; else: nonlinear

Substitute
$$z^2 = a^2 + b^2$$
 and $tan\Phi = \frac{b}{a}$ into $x = a\cos(\omega t) + b\sin(\omega t) = z\cos(\omega t - \Phi)$

$$(-\omega^2 a + \omega \delta b + \alpha a + \frac{3}{4} \beta a^3 + \frac{3}{4} \beta a b^2 - \Upsilon) \cos(\omega t) + (-\omega^2 b + \omega \delta a + \frac{3}{4} \beta b^3 + \alpha b + \frac{3}{4} \beta b a^2) \sin(\omega t) + (\frac{1}{4} \beta a^3 - \frac{3}{4} \beta a b^2) \cos(3\omega t) + (\frac{3}{4} \beta b a^2 - \frac{1}{4} \beta b^3) \sin(3\omega t) = 0.$$

Neglecting superharmonics at 3ω , and considering $\cos(\omega t)$ and $\sin(\omega t)$ terms need to be zero,

$$(-\omega^{2}a + \omega\delta b + \alpha a + \frac{3}{4}\beta a^{3} + \frac{3}{4}\beta a b^{2} - \Upsilon) = -\omega^{2}b + \omega\delta a + \frac{3}{4}\beta b^{3} + \alpha b + \frac{3}{4}\beta b a^{2} = 0$$

Square both sides and isolate for Υ :

$$\rightarrow \Upsilon^2 = [(\omega^2 - \alpha - \frac{3}{4} \beta z^2)^2 + (\delta \omega^2)^2] z^2$$

Frequency Response

Periodic change of the chaotic attractor

Velocity vs. displacement

Forced System

For $\beta > 0 \rightarrow$ a forced oscillator model with a spring whose restoring force is written as $F = -\beta x - \alpha x_3$

For β <0 \rightarrow a model of a periodically forced steel beam which is deflected toward the two magnets. (Moon and Holmes, 1979; Guckenheimer and Holmes, 1983; Ott, 2002)

Image source: Wikipedia: Duffing Equation

Unforced System (γ =0)

Unforced system (γ =0)

- (i) No damping $(\delta=0) \rightarrow E(t) = 0.5\dot{x}^2 + 0.5\beta x^2 + 0.25\alpha x^4 = constant$
- (ii) $\delta > 0$, $E(t) dE(t)/dt = -\delta \dot{x}^2 \le 0$
- E(t) for α >0 (no storing force), δ = 0 (no damping) \rightarrow

$$\beta$$
>o \rightarrow single-well potential

$$\beta$$
<0 \rightarrow double-well potential

* trajectory (x, x) moves on the surface of E(t) keeping E(t) constant.

E(t) for $\alpha>0$ (no storing force), $\delta>0$

$$\alpha > 0$$
, $\beta > 0$, and $\delta > 0 \rightarrow 1$ equilibrium : $(x,v) = (0,0)$

 $\alpha>0$, $\beta<0$, and $\delta>0 \rightarrow 3$ equilibria: 1 top, 2 bottom

α>0	δ=0	δ>0
β>0		
β<0		

Deliverables

- Initial conditions
- identify stable/unstable fixed points
- examine transient/long-term behavior
 - (i) undamped, undriven (γ =0, δ =0)
 - (ii) damped, undriven(γ =0, δ >0)
 - (iii) damped, driven(γ =0, δ >0) with α >=0, β >=0
- phase-space projections (x, \dot{x})
- time-series trajectories
- energy / power spectrum
- Poincaré sections
- RK4 error estimate (table of data from varying step sizes)