ECE 350
Real-time
Operating
Systems

Lecture 7: Address Translation

Prof. Seyed Majid Zahedi

https://ece.uwaterloo.ca/~smzahedi

Outline

- Virtual to physical address translation
 - Base and bound
 - Segmentation
 - Page table
 - Multi-level table
 - Inverted page table

Recall: OS as Illusionist and Referee

- Illusion: each process has its own processor with (almost) infinite memory capacity
- Physical reality: there are only few processes, memory capacity is limited
- Scheduling: need to multiplex processors (done)
- Memory management: need to multiplex memory (now!)

Memory Management Goals

- Protection: prevent processes/threads from accessing others' private data
 - Protect kernel data from user programs
 - Protect programs from themselves
 - Give special access permissions to different data
 - Allow processes to share data (controlled overlap)
 - E.g., Shared binary file between multiple processes (e.g., fork())
 - E.g., Shared memory used for inter-process communication
 - E.g., Memory-mapped file shared by multiple processes
 - E.g., User-level system libraries
- Allocation: divide available physical memory among processes/threads
 - Manage memory capacity efficiently
 - Avoid memory fragmentation
 - Evict memory blocks to persistent storage if needed

Background: Some Basics

- What is 2¹⁰ bytes (where one byte is abbreviated as "B")?
 - 2^{10} B = 1024B = 1KiB (for memory, 1KiB = 1024B, not 1000B)
- How many bits to address each byte of 4KiB memory?
 - 4KiB = 4×1 KiB = 4×2^{10} = $2^{12} \Rightarrow 12$ bits
- How much memory can be addressed with 20 bits? 32 bits? 64 bits?
 - $2^{20}B = 2^{10}KiB = 1MiB$ (mebibyte)
 - $2^{32}B = 2^{12}MiB = 2^{2}GiB$ (gibibyte)
 - $2^{64}B = 2^{34}GiB = 2^{24}TiB$ (tebibyte) = $2^{14}PiB$ (pebibyte) = $2^{4}EiB$ (exbibyte)

Recall: Some Terminologies

- Address space: set of accessible addresses and their state
- Physical memory: data storage medium
- Physical addresses: addresses available on physical memory
 - For 4GiB of memory: $2^{32}B \sim 4$ billion addresses
- Virtual addresses: addresses generated by program
 - For 64-bit processor: $2^{64} > 18$ quintillion (10^{18}) addresses

Multi-step Processing of Programs

- Compiler: generate object file for each source code
 - Has incomplete information when compiling each source code
 - Doesn't know addresses of external objects (e.g., printf routine)
 - Doesn't know where in memory compiled code will go
- Linkage editor: combines objects to single relocatable, executable image
 - Arranges objects in program's virtual address space
 - Reorganizes code and data by changing addresses
- Loader: loads image from disk into memory for execution
 - Allocates memory space to executable image
 - Transfers control to the beginning instruction of the program
- Dynamic linker: defers linkage of shared libraries until run time
 - Brings shared libraries if it's not already in memory,
 - Binds regions of program's virtual address to shared library

Recall: Virtual Address Space Layout of C Programs

Recall: What Happens During Program Execution?

- Execution sequence
 - Fetch instruction at PC
 - Decode
 - Execute (possibly using registers)
 - Write results to registers/memory
 - PC ← Next(PC)
 - Repeat

E.g., function calls, return, branches, etc.

Instruction references:

Memory access on every instruction

Uni-programming Without Protection and Translation

- There is always only one program running at a time
- Program always runs at same place in physical memory
 - Virtual address space = physical address space
- Program can access any physical address

Operating System

0xFFFFFFF

Valid 32-bit Addresses

User Process

0x00000000

Program is given illusion of dedicated machine by literally giving it one

Multi-programming Without Protection and Translation

- To prevent address overlap between processes, loader/linker adjust addresses while programs are loaded into memory (loads, stores, jumps)
 - Virtual address = physical address

Operating
System

User Process 2

Ox00020000

User Process I

Ox00000000

Bugs in any program can cause other programs (including OS) to crash

Multiprogramming With Protection but Without Translation

- Can we protect programs from each other <u>without translation</u>?
 - Yes: use two special registers base and limit
 - Prevent application from straying outside designated area
 - If application tries to access an illegal address, raise exception

- During switch, kernel loads new base/limit from PCB
 - User is not allowed to change base/limit registers

Recall: Protection With Address Translation

Protection With Address Translation: Discussion

- Upsides
 - Code can be written, compiled, linked, and loaded independently
 - Threads think they have unrestricted access to their entire virtual memory range
 - Threads do not need to worry about memory usage of others
 - OS can provide protection
 - Threads cannot affect each other if they cannot see each other's memory
 - OS can allow memory sharing
 - Threads' virtual memory regions can be mapped to same physical regions
- Downsides
 - Address translation adds performance overhead
 - Address translation needs extra hardware support
 - Extra hardware consumes area and power

Base and Bound (B&B) Address Translation

B&B Address Translation: Discussion

- Process is given illusion of running on its own dedicated memory starting at 0x00000000
- Program are mapped to continuous region of memory
- Virtual addresses do not change if program is relocated to different physical memory region

B&B Address Translation: Discussion (cont.)

- Upsides
 - OS protection and program isolation
 - Low overhead address translation
- Downsides
 - Expandable heap?
 - Expandable stack?
 - Memory sharing between processes?
 - Non-relative addresses hard to move memory around
 - Memory fragmentation

Issues with B&B Address Translation

- Missing support for inter-process memory sharing
 - E.g., it's not possible to share code segments in two processes
- Fragmentation: wasted space
 - External: free gaps between allocated chunks
 - Internal: don't need all memory within allocated chunks

Multi-segment Address Translation

- Segment map resides in processor
 - Base is added to offset to generate physical address
- For each contiguous segment of physical memory there is one entry
 - Segment addressed by portion of virtual address
 - However, could be included in instruction instead
 - E.g., mov ax, es:[bx]

Example: Multi-segment Address Translation

Seg ID #	Base	Limit
0 (code)	0×4000	0×0800
1 (data)	0×4800	0×1400
2 (shared)	0xF000	0×1000
3 (stack)	0×0000	0x3000

Example: Multi-segment Address Translation (cont.)

Seg ID #	Base	Limit
0 (code)	0×4000	0x0800
1 (data)	0x4800	0×1400
2 (shared)	0xF000	0×1000
3 (stack)	0×0000	0x3000

Example: Multi-segment Address Translation (cont.)

Seg ID #	Base	Limit
0 (code)	0×4000	0x0800
1 (data)	0x4800	0×1400
2 (shared)	0xF000	0×1000
3 (stack)	0×0000	0x3000

Example: Multi-segment Address Translation (cont.)

2000	<u> </u>	
0x0240	main:	la \$a0, varx
0x0244		jal strlen
•••		•••
0x0360	strlen:	li \$v0,0;count
0x0364	loop:	lb \$t0, (\$a0)
0x0368		beq \$r0,\$t0, done
0×4050	varx	dw 0x314159

Seg ID #	Base	Limit
0 (code)	0×4000	0×0800
1 (data)	0x4800	0×1400
2 (shared)	0xF000	0×1000
3 (stack)	0×0000	0×3000

- Fetch 0x0240
 - Virtual segment number? 0, offset? 0x240
 - Physical address? Base: 0x4000, so physical address: 0x4240
 - Fetch instruction at **0x4240**, get "la \$a0, varx"
 - Move **0x4050** to **\$a0**, move **PC+4** to **PC**
- Fetch 0x244, translated to physical address: 0x4244, get "jal strlen"
 - Move 0x0248 to \$ra (return address!), move 0x0360 to PC
- Fetch 0x360, translated to physical address: 0x4360, get "li \$v0, 0"
 - Move 0x0000 to \$v0, move PC+4 to PC
- Fetch 0x0364, translated to physical address 0x4364, get "lb \$t0, (\$a0)"
 - Since \$a0 is 0x4050, try to load byte from 0x4050
 - Translate 0x4050 (0100 0000 0101 0000): virtual segment #? I, offset? 0x50
 - Physical address? Base: 0x4800, physical address; 0x4850
 - Load byte from 0x4850 to \$t0, move PC+4 to PC

Multi-segment Address Translation: Discussion

- Virtual address space has holes
 - It's efficient for sparse address spaces (avoids internal fragmentation)
 - If program tries to access gaps, trap to kernel (segmentation fault)
- When is it OK to address outside valid range?
 - This is how stack and heap grow
 - E.g., stack takes segmentation fault, kernel automatically increases size of stack
- What must be saved/restored on context switch?
 - Segment table stored in CPU, not in memory (small)
 - Might store all of processes memory in disk when switched (called swapping)
- What are downsides?
 - Must fit variable-sized chunks into physical memory (external fragmentation)
 - Limited options for swapping to disk

Paged Memory

- Allocate physical memory in fixed-size chunks called pages
 - Can use simple bit map to handle allocation

```
00110001110001101 ... 110010
```

• Each bit represents page of physical memory

```
1 \Rightarrow \text{allocated}, 0 \Rightarrow \text{free}
```

- Should pages be as big as our previous segments?
 - No, big pages could lead to internal fragmentation
 - Typically, pages are small (1-16Kib)
 - Consequently, each segment needs multiple pages

Page-table Address Translation

- Page resides in physical memory
- Contains physical page and permission for each virtual page
- Offset from virtual address gets copied to physical address
 - E.g.,10-bit offset ⇒ 1024-byte = 4KiB pages
- Virtual page number is all remaining bits
- Physical page number is copied from table into physical address

Example: Page-table Address Translation with 4-byte Pages

Page-table Entry

- What is in each page-table entry (or PTE)?
 - Pointer to actual page
 - Permission bits: valid, read-only, read-write, write-only

Read	Write	Execute	Use Case
×	×	×	Code or data; was common, but now generally deprecated/discouraged due to security risks
X	X	-	Read-write data; very common
X	-	X	Executable code; very common
X	-	-	Read-only data; very common
-	X	X	N/A
-	×	-	Interaction with devices
-	-	×	To protect code from inspection; uncommon
-	-	ı	Guard; security feature used to trap buffer overflows or other illegal accesses

Permissions in Action

- Demand paging (more on this later)
 - Keep only active pages in memory
 - Place others on disk and mark their PTFs invalid
- Copy-on-write
 - UNIX fork gives copy of parent address space to child
 - How to do this cheaply?
 - Make copy of parent's page tables
 - Mark entries in both sets of page tables as read-only
 - On write, page fault happens, OS creates two copies

Zero-fill-on-demand

- New data pages must carry no information (say be zeroed)
- Mark PTEs as invalid; page fault on use gets zeroed page
- Often, OS creates zeroed pages in background

Memory Sharing

Example: Updating Page Table

Example: Updating Page Table (cont.)

Example: Updating Page Table (cont.)

Page-table Address Translation: Discussion

- What needs to be switched on context switch?
 - Page-table pointer and page-table size
- How big is page table?
 - 32-bits and 4KiB pages \Rightarrow 2²⁰ entries \times 4B each \Rightarrow 4MiB
 - 64-bits and 4KiB pages \Rightarrow 2⁵² entries \times 8B each \Rightarrow 32PiB
- Upsides
 - + Simple memory allocation
 - + Easy to share
- Downsides
 - - Inefficient for sparse address spaces
 - There are too many unused page-table entries
 - What if page size is very small?
 - With 1KiB pages, we need 2²² (~4 million) table entries!
 - What if page size is too big?
 - Wastes space inside of page (internal fragmentation)

Two-level Page-table Address Translation

Example: Two-level Page-table Address Translation

Example: Two-level Page-table Address Translation (cont.)

In best case, total size of page tables ≈ number of pages used by program virtual memory. Requires two additional memory access!

0000

Multi-level Address Translation: Segments and Pages

- What must be saved/restored on context switch?
 - Contents of top-level segment registers

Example: Multi-level Paged Segmentation (x86)

- Global descriptor table (segment table)
 - Pointer to page table for each segment
 - Segment length
 - Segment access permissions
- What should be saved on context switch?
 - Change global descriptor table register (GDTR, pointer to global descriptor table)
- Multi-level page table
 - 32-bit: two-level page table (per segment)
 - 64-bit: four-level page table (per segment)

x86 32-bit Virtual Address

• 4KiB pages; each level of page table fits in one page

x86 64-bit Virtual Address

- Fourth-level table maps 2MiB, and third level table maps 1GiB of data
- If physical memory covered by fourth level table is contiguous, then one third-level entry can directly point to this region instead of pointing to fourth-level page table

Example: x86 64-bit PTE

XN	SW	Reserved	P-Page Number	U	Р	CM	GL	L	D	Α	CD	WT	0	W	V
63	62-52	51-40	39-12	11	10	9	8	7	6	5	4	3	2	1	0

- V: Valid
- W: Read/write
- O: Owner (user/kernel)
- WT: Write-through (more on this soon)
- CD: Cache-disabled (page cannot be cached)
- A: Accessed: page has been accessed recently
- D: Dirty bit (page has been modified recently)
- L: Large page
- G: Global
- CP: Copy-on-write
- P: Prototype PTE
- U: Reserved
- SW: Software (working set index)
- NX: No-execute

Multi-level Address Translation: Sharing Entire Segment

Aside: Shared Library Address Space

- Shared library's global and static variables are private to each process
 - Each process has read and write permissions on its own copy of variables
- Shared library's code is shared between different processes
 - Each process only has read and execute permissions on shared code
- Shared library code must be position-independent code (PIC)
 - Same library code could be mapped to different virtual address regions in different processes
 - Code must execute properly regardless of its absolute virtual address
 - Code cannot contain absolute virtual addresses for data and instruction references
- Data references are made indirectly through global-offset tables (GOT)
 - GOT is located at fixed offset from code and can be accessed using PC-relative offset
 - GOT has one entry per variable which contains absolute address of that variable
 - GOT is private to each process, and processes have read and write permissions to their GOT
- Similarly, instruction references are made indirectly through procedure-linkage table (PLT)

Multi-level Address Translation: Discussion

- + Allocate only as many page-table entries as needed for application
 - In other words, sparse address spaces are easy
- + Easy memory allocation
 - Bit-map memory allocation
- + Easy sharing
 - Share at segment or page level (need additional reference counting)
- - One extra pointer per page
 - One pointer per 4 I 6KiB pages
- Page tables need to be contiguous
 - However, we can make each table to fit exactly into one page
- Two (or more, if > 2 levels) lookups per reference
 - Seems very expensive!

Inverted Page Table

- In all previous methods (forward page tables), size of page table is at least as large as amount of virtual memory allocated to processes
 - Physical memory may be much smaller
- Inverted page table fixes this problem by using hash table
 - Size of hash table is related to size of physical memory not virtual address space
 - Very attractive option for 64-bit address spaces (e.g., PowerPC, UltraSPARC, IA64)

- Notice any downsides?
 - Complexity of managing hash chains: often in hardware!
 - Poor cache locality of page table

Inverted Paging Example (cont.)

HW vs. SW Address Translation

- Does kernel require HW support for translation?
 - No! Almost anything that can be done in HW can also be done in SW (might end up being too expensive, but possible!)
- Implement page tables in HW
 - All memory reference pass through memory management unit (MMU)
 - MMU generates page fault if it encounters invalid PTE
 - Fault handler will decide what to do (more on this later)
 - + Relatively fast (but still many memory accesses!)
 - - Inflexible, complex hardware
- Implement page tables in SW
 - + Very flexible
 - Every translation must invoke fault!
- In fact, we need a way to <u>cache</u> translations for either case

Address Translation Comparison

Method	Advantages	Disadvantages					
Segmentation	Fast context switching: Segment mapping maintained by CPU	External fragmentation					
Page-table translation	No external fragmentation, fast easy allocation	Large table size ~ virtual memory					
Multi-level translation	Table size ~ # of pages in virtual memory, fast easy allocation	Multiple memory references per page access					
Inverted table	Table size ~ # of pages in physical memory	Hash function more complex					

Summary

- Segmentation
 - Segment ID associated with each access
 - Each segment contains base and limit information
- Page tables
 - Memory divided into fixed-sized chunks of memory
 - Virtual page # from virtual address mapped through page table to physical page #
- Multi-level tables
 - Virtual address mapped to series of tables
 - Permit sparse population of address space
- Inverted page table
 - Use of hash-table to hold translation entries
 - Size of page table ~ size of physical memory rather than size of virtual memory

Questions?

Acknowledgment

Slides by courtesy of Anderson, Ousterhout, Culler,
 Stoica, Silberschatz, Joseph, and Canny