RETENTION OPREDICTION FOR F2P GAME

Mahrukh

Introduction and Data Overviewo

User retention is a crucial metric for mobile game success and monetization. By accurately modeling retention, game companies can target interventions and offers to improve sticky-ness. They can also better align business plans to expected player lifespans.

Project Goal

Build a model and accurately predict whether a player will retain after 14 days

Data Overview

The dataset provided includes usage telemetry and attributes for the first 14 days after install for recently acquired players. Features capture profile information like country and device type, as well as key engagement metrics like playtime, sessions, spend, and churn risk.

Prepping Data

Handled missing values and ensuring a proper train-test split strategy with stratification based on retention columns.

Feature Engineering

This includes target encoding, creating new game-related features, introducing binary retention and conversion features, computing percentage changes and rate changes, and evaluating progress in game chapters.

RETENTION RATE

Although model accuracy improves with time, the trade off is missing the opportunity to retain more players who have already dropped off. There is more value in taking earlier action, even if based on less data

DX Retention Rate

Waiting longer means having more data points so can predict 14 day retention more accurately However, there are fewer players still active later on. Less players to impact by taking action closer to day 14.

DX Quitted Players Return Rate

Very few players (about 2%) who quit before day 14 eventually come back on day 14. This indicates it may not be efficient to focus retention efforts on re-engaging quitters. Retaining existing players is likely a better use of resources than trying to win back players who already quit

Algorithm Selection

Testing different complex and simple models helps determine the best approach for this dataset and business problem. We have chosen Logistic Regression, Random Forest, and XCBoost as the algorithms

Logistic Regression

A good baseline model for binary classification problems like this. It is interpretable and fast to train.

Useful benchmark.

Random Forest

An ensemble method suited for tabular data that can capture nonlinear relationships and handle many input variables. Helps avoid overfitting.

Gradient Boosting

A powerful gradient boosted decision tree algorithm known for high predictive accuracy. Handles imbalanced data well.

PREDICTING WHICH PLAYERS WILL PLAY OUR GAME

Player Data **Training** Day-14 Retention: Data D0, **Individual Players Models** D1, D3, D7 Predict Input Retained **Logistic Regression** Churn **Example: Random Forest** - Win Rate **Gradient Boosting** - Total Playtime Churn - In-game Chapter - Location **Validation Evaluation** and (F1 Score) Testing Data

How classifying works in detail

Algorithm was used to predict retention_14 for each player

42 % likely to retain
14 % likely to retain
3 % likely to retain

Top 6% of training population was used to determine the retained players

Predicted
Retention
Cutoff >=
22.6%

The model is measured by Precision and Recall

% of correct retention predicted

Recall:

% of all retention covered

Using day-7 player data might be too late

Model Performance (F1) - D7 data

Logistic Regression

Random Forest

Gradient Boosting

The model will perform better as we collect more player's data.

However, most players will leave after the first day of installation.

Feature Importance

0.33

0.24

+ +

0.31

CITY

0.08

Prediction with New Data

Day 14 Retention
Likelihood 5.9 %

Testing Data F1_Score 0.62

Key Takeaways and Findings

- For the industry as a whole (or a game of this genre),
 European is not a market to be neglected.
- Making players retain until day 7 is more important than trying to retain them for day 1, as day 1 total playtime is even less important than most of the other features
- Side Mission Game Percentage seems to be more important than PVP and Campaign. However, PVP win rate is the most important among all the game modes

Recommendati ons

01

Marketing

Marketing in the European Region for games of this kind

Side Mission

Focusing on the development of side missions to attract players to retain until day 14

02

Day 7 retention

Develop continuous operation strategy and make the early game experience abundant. Avoid click baiting

Game Balance

Focus on the balance of the PVP mode so players **** don't get discouraged because of their upset win rates

APPENDIX - ALL ALGORITHM DECLUTE

Day 3

Day 7

Larger F1 score indicates better precision and recall of a model, meaning the prediction of a model is better when F1 score is higher. Below are the F1 score

	Day 0	Day 1	Day 5	Day /
Logistic Regression	30.0%	38.4%	47.5%	59.3%
Random Forest	34.8%	41.0%	50.1%	61.9%
Gradient Boosting	33.2%	39.8%	51.3%	61.6%

Day 1

Day 0

^{*} The number shows how day 7 is always better because people have already been retained for 7 days and less noise or uncertainty (a.k.a more data).

APPENDIX - RANDOM FOREST FEATURE IMPORTANCE

BOOSTING FEATURE IMPORTANCE

APPENDIX - CITY & COUNTRY FEATURE

	IMPORTANCE				
	size	mean			
COUNTRY					
FI	1778	0.091114			
MY	185	0.086486			
DK	1985	0.084131			
NO	1263	0.079968			
SE	3452	0.072422			
NL	6076	0.058920			

size CITY **Tampere** 137 0.131387 Frederiksberg 180 0.094444 Helsinki 1244 0.088424 Oslo 362 0.082873 Gothenburg 223 0.076233 **Jurong West** 133 0.075188 Malmo 146 0.068493 Rotterdam 510 0.066667 Utrecht 182 0.065934 The Hague 213 0.065728 Copenhagen 294 0.064626 **Brisbane** 866 0.063510 Perth 470 0.055319 Sydney 1081 0.054579

mean