

The Unruh effect and it's generalization to curved spacetimes

Carlos H. Correr, André G. S. Landulfo

Institute of Physics, University of São Paulo

Unruh effect in Minkowski

In the formulation of quantum field theory in curved spacetimes, the particle concept is observer-dependent. For stationary spacetimes, it can be built with the aid of timelike Killing vector fields. The high degree of symmetry in Minkowski spacetime time, described by the metric

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + dz^{2},$$
(1)

allows many possible Killing fields, consider the following two

$$\xi^a = (\partial_t)^a$$
 and $\chi^a = a \left[x \left(\partial_t \right)^a + t \left(\partial_x \right)^a \right].$ (2)

Observers that follows the orbits of χ^a can be interpreted as being uniformly accelerated. The second Killing field separates the spacetime in four regions, with the boundaries being the surfaces where it is null, \mathfrak{h}_A and \mathfrak{h}_B :

Region
$$I = I^{-}(\mathfrak{h}_{A}) \cap I^{+}(\mathfrak{h}_{B})$$
 Region $II = I^{+}(\mathfrak{h}_{A}) \cap I^{-}(\mathfrak{h}_{B})$. Region $III = J^{-}(S)$ Region $IV = J^{+}(S)$ (3)

On \mathfrak{h}_A (\mathfrak{h}_B), modes are positive-frequency with respect to retarded (advanced) time V (U) if, and only if, they are positive-frequency with respect to the inertial one t. Moreover, the Killing time v (u) induced by χ^a are related to the inertial ones on \mathfrak{h}_A (\mathfrak{h}_B) by

$$v = \frac{1}{a} \ln |V| \quad \text{and} \quad u = -\frac{1}{a} \ln |U|. \tag{4}$$

Analyzing pure positive frequencies on the horizon, allows us to find a Bogoliubov transformation S that relate the two possible constructions. If $|0\rangle_M$ represents the Minkowski inertial vacuum, we have

$$S |0\rangle_M = \prod_j \left(\sum_{n=0}^{\infty} e^{-\frac{\pi n \omega_j}{a}} |n_j\rangle_I \otimes |n_j\rangle_{II} \right), \tag{5}$$

where $|n_j\rangle_I$ represents a state with n particles in the basis mode $\{\psi_j^I\}$ of region I, the same stands for region II. The density matrix restricted to region I is

$$\rho^{I} = \prod_{j} \left(\sum_{n=0}^{\infty} e^{-\frac{2n\omega_{j}}{a}} |n_{j}\rangle_{I} \langle n_{j}|_{I} \right). \tag{6}$$

This result is compatible with the statement that uniformly accelerated observers interpret the Minskowski vacuum as a thermal bath of particles at a temperature

$$T = \frac{a}{2\pi} \cong \frac{a}{10^{19} \text{m/s}^2} \text{K}. \tag{7}$$

Contact information

carloscorrer@usp.br

Unruh effect in curved spacetimes

The main feature used to derive the Unruh effect is the existence of the surfaces \mathfrak{h}_A and \mathfrak{h}_B . Such a structure can be generalized by bifurcate Killing horizon, associated with a Killing field ξ^a , that induce a spacetime separation as in the previous description. In this case, the surface gravity of the horizon, κ , plays a key role. It is given by

$$\kappa = \lim_{h} (a\xi), \tag{8}$$

where a is the norm of the 4-acceleration of a observer whose worldline is one orbit of ξ^a . Moreover, we can use it, together with the induced Killing time v (u), to obtain an affine parameter V (U) for the null geodesics that generate the horizons. The expressions obtained are

$$v = \frac{1}{\kappa} \ln |V| \quad \text{and} \quad u = -\frac{1}{\kappa} \ln |U|. \tag{9}$$

Henceforth, we pick a pure, quasifree state that is non-singular and invariant under the isometries generated by ξ^a to be the vacuum state. Then, due to the same procedure done in Minkowski, we find that observers that follows the orbits of the Killing field perceive this vacuum state as a particles thermal bath at a temperature

$$T = \frac{\kappa}{2\pi}.\tag{10}$$

For example, consider the extended Schwarschild spacetime whose metric is

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}.$$
 (11)

We pick the Killing field $\xi^a=(\partial_t)^a$ that leads to an acceleration $a^\mu=M/r^2\,(\partial_r)^\mu$. Therefore, we find

$$a\xi = \frac{M}{m^2},\tag{12}$$

then, the surface gravity of the event horizon is

$$\kappa = \lim_{r \to 2M} \frac{M}{r^2} = \frac{1}{4M}.$$
 (13)

Thus, if the field state is in the Hartle-Hawking vacuum (a state that satisfies all the required conditions), observers in the orbits of ξ^a ought to see a particle thermal bath at temperature

$$T = \frac{1}{8\pi M} \cong \frac{6 \times 10^{-8} M_{\odot}}{M} \text{K}.$$
 (14)

References

[1] R. M. Wald. Quantum field theory in curved spacetimes and black hole thermodynamics. 1994.

