Машинное обучение, ФКН ВШЭ Семинар №7

1 k ближайших соседей

Рассмотрим задачу классификации: $\mathbb{Y} = \{1, \dots, K\}$. Пусть дана обучающая выборка $X = (x_i, y_i)_{i=1}^\ell$ и функция расстояния $\rho: \mathbb{X} \times \mathbb{X} \to [0, \infty)$. Мы не будем требовать, чтобы функция расстояния являлась метрикой — достаточно, чтобы она была симметричной и неотрицательной. Не будем строить модель на этапе обучения, а вместо этого просто запомним обучающую выборку. Пусть теперь требуется классифицировать новый объект u. Расположим объекты обучающей выборки X в порядке неубывания расстояний до u:

$$\rho(u, x_u^{(1)}) \le \rho(u, x_u^{(2)}) \le \dots \le \rho(u, x_u^{(\ell)}),$$

где через $x_u^{(i)}$ обозначается i-й сосед объекта u. Алгоритм k ближайших соседей (k nearest neighbours, kNN) относит объект u к тому классу, представителей которого окажется больше всего среди k его ближайших соседей:

$$a(u) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_u^{(i)} = y]. \tag{1.1}$$

§1.1 Метод парзеновского окна

Проблема формулы (1.1) состоит в том, что она никак не учитывает расстояния до соседей. Действительно, если рассматривается 7 ближайших соседей, и для объекта u ближайшие два объекта находятся на расстоянии $\rho(u,x)\approx 2$, а остальные — на расстоянии $\rho(u,x)\geqslant 100$, то было бы логично обращать внимание только на первые два объекта. Чтобы добиться этого, можно ввести веса в модель:

$$a(u) = \underset{y \in \mathbb{Y}}{\arg\max} \sum_{i=1}^{k} w(i, u, x_u^{(i)}) [y_u^{(i)} = y].$$

Веса можно делать затухающими по мере роста номера соседа i (например, $w(i,u,x)=\frac{k+1-i}{k}$), но лучше использовать расстояния при их вычислении. Это делается в методе парзеновского окна:

$$a(u) = \underset{y \in \mathbb{Y}}{\arg\max} \sum_{i=1}^{k} K\left(\frac{\rho(u, x_u^{(i)})}{h}\right) [y_u^{(i)} = y],$$

где K — это ядро, h — ширина окна.

§1.2 Ядровая регрессия

В методе k ближайших соседей мы, по сути, максимизировали взвешенную долю правильных ответов среди соседей при предсказании константой y. Иными словами, мы старались в каждой точке пространства выбрать такое значение модели, которое было бы оптимально для некоторой окрестности этой точки.

Попробуем воспользоваться этим соображением, чтобы обобщить подход на задачу регрессии. Будем выбирать в каждой точке такой ответ, который лучшим образом приближает целевую переменную для k ближайших соседей:

$$a(u) = \underset{c \in \mathbb{R}}{\operatorname{arg \, min}} \sum_{i=1}^{k} K\left(\frac{\rho(u, x_u^{(i)})}{h}\right) (c - y_u^{(i)})^2.$$

Можно в явном виде выписать решение оптимизационной задачи:

$$a(u) = \frac{\sum_{i=1}^{k} K\left(\frac{\rho(u, x_u^{(i)})}{h}\right) y_u^{(i)}}{\sum_{i=1}^{k} K\left(\frac{\rho(u, x_u^{(i)})}{h}\right)}$$

Данную модель иногда называют формулой Надарая-Ватсона.

§1.3 Некоторые проблемы метода

Разберем особенности и проблемы метода k ближайших соседей, возникающие при использовании евклидовой метрики в качестве функции расстояния:

$$\rho(x,z) = \left(\sum_{j=1}^{d} |x_j - z_j|^2\right)^{1/2}.$$

1.3.1 Шумовые признаки

Задача 1.1. Рассмотрим задачу с одним признаком и двумя объектами обучающей выборки: $x_1 = 0.1$, $x_2 = 0.5$. Первый объект относится к первому классу, второй — ко второму. Добавим к объектам шумовой признак, распределенный равномерно на отрезке [0,1]. Пусть требуется классифицировать новый объект u = (0,0). Какова вероятность, что после добавления шума второй объект окажется к нему ближе, чем первый?

Решение. Задача сводится к вычислению вероятности $\mathbb{P}(0.5^2 + \xi_2^2 \leq 0.1^2 + \xi_1^2)$, где ξ_1 и ξ_2 — независимые случайные величины, распределенные равномерно на [0,1]. Вычислим ее:

$$\mathbb{P}(0.5^{2} + \xi_{2}^{2} \leq 0.1^{2} + \xi_{1}^{2}) = \mathbb{P}(\xi_{1}^{2} \geq 0.24 + \xi_{2}^{2}) =$$

$$= \int_{0}^{\sqrt{0.76}} \int_{\sqrt{x_{2}^{2} + 0.24}}^{1} dx_{1} dx_{2} = \int_{0}^{\sqrt{0.76}} \left(1 - \sqrt{x_{2}^{2} + 0.24}\right) dx_{2} \approx 0.275.$$

Таким образом, шумовые признаки могут оказать сильное влияние на метрику. Обнаружить шумовые признаки можно, удаляя поочередно все признаки и смотря на ошибку на тестовой выборке или ошибку кросс-валидации.

1.3.2 «Проклятие размерности»

Пусть объекты выборки — это точки, равномерно распределенные в d-мерном кубе $[0,1]^d$. Рассмотрим выборку, состоящую из 5000 объектов, и применим алгоритм пяти ближайших соседей для классификации объекта u, находящегося в начале координат. Выясним, на сколько нужно отступить от этого объекта, чтобы с большой вероятностью встретить пять объектов выборки. Для этого построим подкуб $[0;\varepsilon]^d\subset [0;1]^d, \varepsilon\in (0,1)$, и положим его объём равным $\delta=\varepsilon^d$. Найдем такое значение δ , при котором в этот подкуб попадет как минимум пять объектов выборки с вероятностью 0.95.

Задача 1.2. Запишите выражение для δ .

Решение.

$$\min \left\{ \delta \mid \sum_{k=5}^{5000} {5000 \choose k} \delta^k (1-\delta)^{5000-k} \geqslant 0.95 \right\} \approx 0.0018.$$

Таким образом, для того, чтобы найти пять соседей объекта u, нужно по каждой координате отступить на $0.0018^{1/d}$. Уже при d=10 получаем, что нужно отступить на 0.53, при d=100 — на 0.94. Таким образом, при больших размерностях объекты становятся сильно удалены друг от друга, из-за чего классификация на основе сходства объектов может потерять смысл. В то же время отметим, что в рассмотренном примере признаки объектов представляли собой равномерный шум, тогда как в реальных задачах объекты могут иметь осмысленные распределения, позволяющие построение модели классификации даже при больших размерностях.

§1.4 Примеры функций расстояния

1.4.1 Метрика Минковского

Метрика Минковского определяется как:

$$\rho_p(x,z) = \left(\sum_{j=1}^d |x_j - z_j|^p\right)^{1/p}$$

для $p \geqslant 1$. При $p \in (0,1)$ данная функция метрикой не является, но все равно может использоваться как мера расстояния.

Частными случаями данной метрики являются:

- \bullet Евклидова метрика (p=2). Задает расстояние как длину отрезка прямой, соединяющей заданные точки.
- Манхэттенское расстояние (p=1). Минимальная длина пути из x в z при условии, что можно двигаться только параллельно осям координат.
- Метрика Чебышева $(p=\infty)$, выбирающая наибольшее из расстояний между векторами по каждой координате:

$$\rho_{\infty}(x,z) = \max_{j=1,\dots,d} |x_j - z_j|.$$

• «Считающее» расстояние (p=0), равное числу координат, по которым векторы x и z различаются:

$$\rho_0(x,z) = \sum_{j=1}^d [x_j \neq z_j].$$

Отметим, что считающее расстояние не является метрикой.

Отметим, что по мере увеличения параметра p метрика слабее штрафует небольшие различия между векторами и сильнее штрафует значительные различия.

В случае, если признаки неравнозначны, используют взвешенное расстояние:

$$\rho_p(x, z; w) = \left(\sum_{j=1}^d w_j |x_j - z_j|^p\right)^{1/p}, \quad w_j \geqslant 0.$$

Задача 1.3. Рассмотрим функцию $f(x) = \rho_2(x,0;w)$. Что представляют из себя линии уровня такой функции?

Решение. Распишем квадрат функции f(x) (форма линий уровня от этого не изменится):

$$f^{2}(x) = \sum_{j=1}^{d} w_{j} x_{j}^{2}.$$

Сделаем замену $x_j = \frac{x_j'}{\sqrt{w_j}}$:

$$f^2(x') = \sum_{j=1}^d x_j'^2.$$

В новых координатах линии уровня функции расстояния представляют собой окружности с центром в нуле. Сама же замена представляет собой растяжение вдоль каждой из координат, поэтому в исходных координатах линия уровня являются эллипсами, длины полуосей которых пропорциональны $\sqrt{w_j}$.

Вывод: благодаря весам линии уровня можно сделать эллипсами с осями, параллельными осям координат. Это может быть полезно, если признаки имеют разные масштабы — благодаря весам автоматически будет сделана нормировка.

Веса можно брать, например, равными корреляции между признаком и целевым вектором:

$$w_j = \left| \frac{\sum_{i=1}^{\ell} x_{ij} y_i}{\left(\sum_{i=1}^{\ell} x_{ij}^2\right)^{1/2} \left(\sum_{i=1}^{\ell} y_i^2\right)^{1/2}} \right|.$$

Однако, лучше всего настраивать веса под обучающую выборку с помощью покоординатного спуска или другого метода оптимизации.

1.4.2 Расстояние Махалонобиса

(данный материал является опциональным)

Расстояние Махалонобиса определяется следующим образом:

$$\rho(x,z) = \sqrt{(x-z)^T S^{-1}(x-z)},$$

где S — симметричная положительно определенная матрица.

Задача 1.4. Что представляют из себя линии уровня функции $f(x) = \rho(x,0)$?

Решение. Поскольку матрица S—симметричная, то из её собственных векторов можно составить ортонормированный базис. Рассмотрим матрицу Q, столбцами которой являются элементы данного базиса. Заметим, что она является ортогональной (в силу ортонормированности базиса), т.е. $Q^TQ = I, \ Q^{-1} = Q^T$, а потому выполняются следующие соотношения:

$$SQ = Q\Lambda \Rightarrow \Lambda = Q^{-1}SQ,$$

где Λ — диагональная матрица, в которой записаны соответствующие собственные значения матрицы S.

Распишем квадрат функции f(x), сделав замену $x' = Q^T x$:

$$\begin{split} f^2(x) &= \rho^2(x,0) = x^T S^{-1} x = {x'}^T Q^T S^{-1} Q x' = {x'}^T \left(Q^{-1} S Q \right)^{-1} x' = \\ &= {x'}^T \Lambda^{-1} x' = \sum_{i=1}^d \frac{{x'}^2}{\lambda_i}. \end{split}$$

Получаем, что линии уровня в новых координатах представляют собой эллипсы с осями, параллельными осям координат, причем длины полуосей равны корням из собственных значений матрицы S. При этом замена $x' = Q^T x$ соответствует такому повороту осей координат, что координатные оси совпадают со столбцами матрицы Q. Таким образом, расстояние Махалонобиса позволяет получить линии уровня в виде произвольно ориентированных эллипсов.

Матрицу S можно настраивать либо по кросс-валидации, либо брать равной выборочной ковариационной матрице: $\hat{S} = \frac{1}{n-1} X^T X$.

1.4.3 Расстояния между текстами

Пусть заданы векторы x и z. Известно, что их скалярное произведение и косинус угла θ между ними связаны следующим соотношением:

$$\langle x, z \rangle = ||x|| ||z|| \cos \theta.$$

Соответственно, косинусное расстояние определяется как

$$\rho_{\cos}(x,z) = \arccos\left(\frac{\langle x,z\rangle}{\|x\|\|z\|}\right) = \arccos\left(\frac{\sum_{j=1}^{d} x_j z_j}{\left(\sum_{j=1}^{d} x_j^2\right)^{1/2} \left(\sum_{j=1}^{d} z_j^2\right)^{1/2}}\right).$$

Косинусная мера часто используется для измерения схожести между текстами. Каждый документ описывается вектором, каждая компонента которого соответствует слову из словаря. Компонента равна единице, если соответствующее слово встречается в тексте, и нулю в противном случае. Тогда косинус между двумя векторами будет тем больше, чем больше слов встречаются в этих двух документах одновременно.

Один из плюсов косинусной меры состоит в том, что в ней производится нормировка на длины векторов. Благодаря этому она не зависит, например, от размеров сравниваемых текстов, измеряя лишь объем их схожести.

1.4.4 Расстояние Джаккарда

Выше мы рассматривали различные функции расстояния для случая, когда объекты обучающей выборки являются вещественными векторами. Если же объектами являются множества (например, каждый объект — это текст, представленный множеством слов), то их сходство можно измерять с помощью расстояния Джак- $\kappa ap \partial a$:

$$\rho_J(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|}.$$

Задача 1.5. Пусть все множества являются подмножествами некоторого конечного упорядоченного множества $U = \{u_1, \ldots, u_N\}$. Тогда любое множество A можно представить в виде бинарного вектора длины N, в котором единица в i-й позиции стоит тогда и только тогда, когда $u_i \in A$. Запишите формулу для расстояния Джаккарда, исходя из таких обозначений, и сравните ее c формулой для косинусной меры.

Решение. Пусть X и Y — два множества, $(x_j)_{j=1}^N$ и $(y_j)_{j=1}^N$ — их векторные представления. Тогда мощность их пересечения можно записать следующим образом:

$$|X \cap Y| = \sum_{j=1}^{N} x_j y_j = \langle X, Y \rangle,$$

а мощность их объединения как

$$|X \cup Y| = \sum_{j=1}^{N} x_j + \sum_{j=1}^{N} y_j - \sum_{j=1}^{N} x_j y_j =$$

$$= \sum_{j=1}^{N} x_j^2 + \sum_{j=1}^{N} y_j^2 - \sum_{j=1}^{N} x_j y_j =$$

$$= ||X||^2 + ||Y||^2 - \langle X, Y \rangle.$$

Тогда:

$$\rho_J(X,Y) = 1 - \frac{\langle X,Y \rangle}{\|X\|^2 + \|Y\|^2 - \langle X,Y \rangle}.$$

1.4.5 Редакторское расстояние

Для измерения сходства между двумя строками (например, последовательностями ДНК) можно использовать *редакторское расстояние*, которое равно минимальному числу вставок и удалений символов, с помощью которых можно преобразовать первую строку ко второй. В зависимости от специфики задачи можно также разрешать замены, перестановки соседних символов и прочие операции.

1.4.6 Функции расстояния на категориальных признаках

Категориальные признаки не имеют никакой явной структуры, и поэтому достаточно сложно ввести на них разумное расстояние. Как правило, ограничиваются сравнением их значений: если у двух объектов одинаковые значения категориального признака, то расстояние равно нулю, если разные — единице. Тем не менее, существуют определенные соображения по поводу того, как измерять сходство для таких признаков.

Будем считать, что метрика записывается как взвешенная сумма расстояний по отдельным признакам с некоторыми весами:

$$\rho(x,z) = \sum_{j=1}^{d} w_j \rho_j(x_j, z_j).$$

Способы измерения расстояния для вещественных признаков обсуждались выше. Обсудим некоторые варианты для категориальных признаков. Введем следующие обозначения:

- 1. $f_j(m) = \sum_{i=1}^{\ell} [x_{ij} = m]$ количество раз, которое j-й признак принимает значение m на обучающей выборке;
- 2. $p_j(m) = \frac{f_j(m)}{\ell}$ частота категории m на обучающей выборке;
- 3. $p_j^{(2)}(m) = \frac{f_j(m)(f_j(m)-1)}{\ell(\ell-1)}$ оценка вероятности того, что у двух случайно выбранных различных объектов из обучающей выборки значения признака будут равны m.

Тогда расстояние на категориальных признаках можно задавать, например, одним из следующих способов:

1. Индикатор совпадения:

$$\rho_j(x_j, z_j) = [x_j \neq z_j]$$

2. Сглаженный индикатор совпадения. Чем выше частота у значения признака, тем больше расстояние (если оба человека живут в Москве, то эта информация не очень важна, поскольку вероятность такого совпадения высока; если оба человека живут в Снежинске, то это важная информация, так событие является достаточно редким):

$$\rho_j(x_j, z_j) = [x_j \neq z_j] + [x_j = z_j] \sum_{q: p_j(q) \leq p_j(x_j)} p_j^{(2)}(q)$$

3. Чем более частые значения оказались при несовпадении, тем больше расстояние (если оба человека из разных, но очень маленьких городов, то можно считать их похожими; если один человек из Москвы, а второй — из Питера, то они сильно отличаются):

$$\rho_j(x_j, z_j) = [x_j \neq z_j] \log f_j(x_j) \log f_j(z_j)$$

(обратите внимание, что для борьбы с численными проблемами имеет смысл добавлять единицу под логарифмом: $\log(f_j(x_j)+1)$, $\log(f_j(z_j)+1)$)

2 Методы поиска ближайших соседей

(данный материал является опциональным)

§2.1 Точные методы

Разберем методы поиска ближайших соседей для евклидовой метрики. Будем рассматривать задачу поиска одного ближайшего соседа, все методы несложно обобщаются на случай с k>1.

Если просто перебирать все объекты обучающей выборки, выбирая наиболее близкий к новому объекту, то получаем сложность $O(\ell d)$.

Можно выбрать подмножество признаков, и сначала вычислить расстояние только по этим координатам. Оно является нижней оценкой на полноценное расстояние, и если оно уже больше, чем текущий наилучший результат, то данный объект можно больше не рассматривать в качестве кандидата в ближайшего соседа. Такой подход является чисто эвристическим и не гарантирует сублинейной сложности по размеру обучения.

кd-деревья. Одной из структур данных, позволяющих эффективно искать ближайших соседей к заданной точке, является kd-дерево. Оно разбивает пространство на области (каждая вершина производит разбиение по определенной координате), и каждый лист соответствует одному объекту из обучающей выборки. Обходя это дерево определенным образом, можно найти точку из обучения, ближайшую к заданной. Если размерность пространства небольшая (10-20), то данный подход позволяет находить ближайшего соседа за время порядка $O(\log \ell)$.

Экспериментально было установлено, что в пространствах большой размерности сложность поиска ближайшего соседа в kd-дереве сильно ухудшается и приобретает линейный порядок сложности [?].

§2.2 Приближенные методы

Есть два способа борьбы с высокой сложностью поиска ближайших соседей при большом числе признаков:

1. Запоминать не всю обучающую выборку, а лишь ее представительное подмножество. Существует большое число эвристических алгоритмов для отбора эталонных объектов (например, STOLP).

2. Искать k ближайших соседей приближенно, то есть есть разрешать результату поиска быть чуть дальше от нового объекта, чем k его истинных соседей. Ниже мы подробно разберем этот подход.

Опишем метод приближенного поиска ближайших соседей LSH (locality-sensitive hashing). Его идея заключается в построении такой хэш-функции для объектов выборки, которая с большой вероятностью присваивает одинаковые значения близким объектам и разные значения отдаленным объектам. Дадим формальное определение.

Опр. 2.1. Семейство функций \mathcal{F} называется (d_1, d_2, p_1, p_2) -чувствительным, если для всех $x, y \in \mathbb{X}$ выполнено:

- Если $\rho(x,y) \leqslant d_1$, то $\mathbb{P}_{f \in \mathcal{F}}[f(x) = f(y)] \geqslant p_1$.
- Если $\rho(x,y) \geqslant d_2$, то $\mathbb{P}_{f \in \mathcal{F}}[f(x) = f(y)] \leqslant p_2$.

Здесь под вероятностью $\mathbb{P}_{f \in \mathcal{F}}$ понимается равномерное распределение на всех функциях семейства \mathcal{F} .

Отметим, что определение имеет смысл лишь если $d_1 \leqslant d_2$ и $p_1 \geqslant p_2$.

Пример. Рассмотрим пример семейства хэш-функций для меры Джаккарда, которое носит название MinHash. Пусть объекты представляют собой множества, являющиеся подмножествами универсального упорядоченного множества $U = \{u_1, \ldots, u_n\}$. Выберем перестановку π на элементах этого множества, и определим хэш-функцию $f_{\pi}(A)$ так, чтобы она возвращала номер первого элемента в данной перестановке, входящего в A:

$$f_{\pi}(A) = \min\{\pi(i) \mid u_i \in A\}.$$

Это преобразование можно интерпретировать следующим образом. Будем считать, что элементы наших множеств — это слова. Перестановка π задает *степени важностии* слов (чем меньше $\pi(i)$, тем важнее i-е слово). Например, если мы решаем задачу классификации текстов на научные и ненаучные, то предлоги и союзы должны иметь малый уровень важности, а слова «аннотация», «бустинг», «переобучение» — высокий уровень важности, поскольку их наличие свидетельствует о научности текста. Описанная хэш-функция возвращает для документа уровень важности самого важного слова в нем — в нашем примере это означает, что мы находим самое «научное» слово в тексте, и характеризуем документ именно этим словом.

Покажем, что множество всех MinHash-функций $\mathcal{F} = \{f_{\pi} \mid \pi \in \text{Sym}(U)\}$ является (d_1, d_2, p_1, p_2) -чувствительным.

Сначала докажем следующее утверждение: вероятность того, что случайно выбранная функция $f_{\pi} \in \mathcal{F}$ будет принимать одинаковые значения на двух заданных множествах A и B, равна коэффициенту Джаккарда $\frac{|A \cap B|}{|A \cup B|} = 1 - \rho_J(A, B)$ этих двух множеств. Разобьем элементы u универсального множества U на три типа:

- 1. $u \in A, u \in B$.
- 2. $u \in A$, $u \notin B$ или $u \notin A$, $u \in B$.

3. $u \notin A$, $u \notin B$.

Обозначим число объектов первого типа через p, а число объектов второго типа — через q. Заметим, что через p и q можно выразить коэффициент Джаккарда для множеств A и B: $1 - \rho_J(A, B) = \frac{p}{p+q}$.

Вероятность того, что значения случайно выбранной хэш-функции будут одинаковыми на множествах A и B, равна вероятности того, что в случайно выбранной перестановке множества U элемент первого типа встретится раньше элемента второго типа; элементы третьего типа на значение хэш-функции никак не влияют. Последняя же вероятность равна $\frac{p}{p+q}$. Утверждение доказано.

Пусть расстояние Джаккарда между двумя множествами $\rho_J(A,B)$ не превосходит d_1 . Тогда для коэффициента Джаккарда выполнено $1-\rho_J(A,B)\geqslant 1-d_1$, а значит, для вероятности p_1 того, что случайно выбранная функция из $\mathcal F$ даст одинаковые хэши для этих множеств, выполнено $p_1\geqslant 1-d_1$. Отсюда получаем, что $\mathcal F$ является $(d_1,d_2,1-d_1,1-d_2)$ -чувствительным семейством.