Programación lineal: casos particulares en método SIMPLEX

Rodrigo Maranzana

Repaso de casos particulares

Los casos particulares en LP:

- Soluciones alternativas
- Puntos degenerados
- Problema incompatible
- Problema no acotado

 $Max Z = 3X_1 + 3X_2$ sujeto a:

 Y_1 : $6X_1 + 16X_2 \le 48$

 Y_2 : $12X_1 + 6X_2 \le 42$

 Y_3 : $9X_1 + 9X_2 \le 36$

$$X_1, X_2 \ge 0$$

 RP_i : restricciones de positividad

$$Max Z = 3X_1 + 3X_2$$

 $sujeto a$:

 Y_1 : $6X_1 + 16X_2 \le 48$

 Y_2 : $12X_1 + 6X_2 \le 42$

 Y_3 : $9X_1 + 9X_2 \le 36$

$$Max Z = 3X_1 + 3X_2$$

 $sujeto a$:

$$Y_1$$
: $6X_1 + 16X_2 + X_3 = 48$
 Y_2 : $12X_1 + 6X_2 + X_4 = 42$
 Y_3 : $9X_1 + 9X_2 + X_5 = 36$

$$X_1,X_2\geq 0$$

$$Max Z = 3X_1 + 3X_2$$

sujeto a:

$$Y_1$$
: $6X_1 + 16X_2 + X_3 = 48$
 Y_2 : $12X_1 + 6X_2 + X_4 = 42$
 Y_3 : $9X_1 + 9X_2 + X_5 = 36$

$$X_1, X_2 \geq 0$$

Modelo Extendido Matricial

$$Max Z = C^{T}X$$
 $sujeto a$:
 $AX = b$
 $X \ge 0$

Valores de matrices:

$$A = \begin{bmatrix} 6 & 16 & 1 & 0 & 0 \\ 12 & 6 & 0 & 1 & 0 \\ 9 & 9 & 0 & 0 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix}$$

$$b = \begin{bmatrix} 48 \\ 42 \\ 26 \end{bmatrix}$$

 $Max Z = 3X_1 + 3X_2$ sujeto a:

$$Y_1$$
: $6X_1 + 16X_2 + X_3 = 48$
 Y_2 : $12X_1 + 6X_2 + X_4 = 42$

$$Y_3$$
: $9X_1 + 9X_2 + X_5 = 36$

$$X_1, X_2 \geq 0$$

$$AX = b$$

$$Max Z = C^T X$$

$$A = \begin{bmatrix} 6 & 16 & 1 & 0 & 0 \\ 12 & 6 & 0 & 1 & 0 \\ 9 & 9 & 0 & 0 & 1 \end{bmatrix}$$

$$X \ge \mathbf{0}$$

$$b = \begin{bmatrix} 48 \\ 42 \\ 36 \end{bmatrix} \quad C = \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix}$$

	C_{j}			3	0	0	0	B_k
C _j Base	X_j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	X_5	$/A_{ij}$
0	X_3	48	6	16	1	0	0	
0	X_4	42	12	6	0	1	0	
0	X_5	36	9	9	0	0	1	
Z	$Z_j - C_j$							

	C_{j}			3	0	0	0	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	$/A_{ij}$
0	X_3	48	6	16	1	0	0	
0	X_4	42	12	6	0	1	0	
0	X_5	36	9	9	0	0	1	
0	$Z_j - C_j$		-3	-3	0	0	0	

Resolvemos $Z_j - C_j$ y valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

 X_1 y X_2 igual $Z_j - C_j$, elegimos X_1 arbitrariamente para entrar a la base

	C_{j}			3	0	0	0	B_k
C _j Base	X_j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	X_5	$/A_{ij}$
0	X_3	48	6	16	1	0	0	8
0	X_4	42	12	6	0	1	0	3,5
0	X_5	36	9	9	0	0	1	4
0	$Z_j - C_j$		-3	-3	0	0	0	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en X_4

Sale X_4 , entra X_1

Tabla #0

C_{j}		3	3	0	0	0	D /A	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	B_k/A_{ij}
0	X_3	48	6	16	1	0	0	8
0	X_4	42	12	6	0	1	0	3,5
0	X_5	36	9	9	0	0	1	4
0	$Z_j - C_j$		-3	-3	0	0	0	

Tabla #1

	C_{j}		3	3	0	0	0	D /A
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	B_k/A_{ij}
0	X_3	27,0	0	13	1	-0,5	0	
3	X_1	3,5	1	0,5	0	0,08	0	
0	X_5	4,5	0	4,5	0	-0,75	1	
	$Z_j - C_j$		0	-1,5	0	0,25	0	

	C_{j}			3	0	0	0	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	$/A_{ij}^{\kappa}$
0	X_3	27,0	0	13	1	-0,5	0	
3	X_1	3,5	1	0,5	0	0,08	0	
0	X_5	4,5	0	4,5	0	-0,75	1	
10,5	10,5 Z_j-C_j		0	-1,5	0	0,25	0	

Resolvemos el valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

 X_2 debe entrar a la base

	c_{j}		3	3	0	0	0	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	X_1	<i>X</i> ₂	X_3	X_4	<i>X</i> ₅	$/A_{ij}^{\kappa}$
0	X_3	27,0	0	13	1	-0,5	0	2,076
3	X_1	3,5	1	0,5	0	0,08	0	7,000
0	<i>X</i> ₅	4,5	0	4,5	0	-0,75	1	1,000
10,5	$10,5 \qquad \qquad Z_j - C_j$		0	-1,5	0	0,25	0	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en X_5

Sale X_5 , entra X_2

Tabla #1

C_{j}		3	3	0	0	0	D //	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	B_k / A_{ij}
0	X_3	27,0	0	13	1	-0,5	0	2,076
3	X_1	3,5	1	0,5	0	0,08	0	7,000
0	X_5	4,5	0	4,5	0	-0,75	1	1,000
10,5	$10,5 \qquad \qquad Z_j - C_j$		0	-1,5	0	0,25	0	

Tabla #2

C_{j}		3	3	0	0	0	D /A	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	B_k / A_{ij}
0	X_3	14,0	0	0	1	1,67	-2,88	
3	X_1	3,0	1	0	0	0.16	-0,11	
3	X_2	1,0	0	1	0	-0,16	0,23	
	$Z_j - C_j$		0	0	0	0	0,33	

	C_{j}		3	3	0	0	0	B_{k}
C_j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	$/A_{ij}$
0	X_3	14,0	0	0	1	1,67	-2,88	
3	X_1	3,0	1	0	0	0,16	-0,11	
3	X_2	1,0	0	1	0	-0,16	0,23	
12	$ Z_j - C_j $		0	0	0	0	0,33	

Resolvemos el valor del funcional Z

No existen variables no básicas con $Z_j - C_j$ negativo, ¡pero sí con 0 alternativo (0*)!

Encontramos caso particular de soluciones alternativas

	C_{j}			3	0	0	0	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	$/A_{ij}$
0	X_3	14,0	0	0	1	1,67	-2,88	8,383
3	<i>X</i> ₁	3,0	1	0	0	0,16	-0,11	18,750
3	X_2	1,0	0	1	0	-0,16	0,23	-6,250
12	$ 2_j - C_j $		0	0	0	0	0,33	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en X_5

Sale X_3 , entra X_4 (por el 0*). Las dos son variables Slack.

Tabla #2

C_{j}		3	3	0	0	0	. D /A	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	X_5	B_k/A_{ij}
0	<i>X</i> ₃	14,0	0	0	1	1,67	-2,88	8,383
3	X_1	3,0	1	0	0	0,16	-0,11	18,750
3	X_2	1,0	0	1	0	-0,16	0,23	-6,250
12			0	0	0	0	0,33	

Tabla #3

C_{j}		3	3	0	0	0	D //	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	B_k/A_{ij}
0	X_4	8,38	0	0	0,6	1	-1,72	
3	X_1	1,66	1	0	-0,096	0	0,17	
3	X_2	2,34	0	1	0,096	0	-0,05	
	$Z_j - C_j$		0	0	0	0	0,33	

C_{j}		3	3	0	0	0	B_k	
C _j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	$/A_{ij}$
0	X_4	8,38	0	0	0,6	1	-1,72	
3	X_1	1,66	1	0	-0,096	0	-2,6	
3	X_2	2,34	0	1	0,096	0	-0,05	
12	$Z_j - C_j$		0	0	0	0	0,33	

Resolvemos el valor del funcional Z

 X_3 con 0 alternativo (0*), la solución de la iteración anterior

La solución se mantiene igual Z=12

Soluciones alternativas: solución

¿Cómo se escribe la solución?

$$Z^* = 12$$

Combinación lineal de las soluciones en los vértices:

$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix} = \alpha \begin{bmatrix} 3,00 \\ 1,00 \\ 14,00 \\ 0,00 \\ 0,00 \end{bmatrix} + (1-\alpha) \begin{bmatrix} 1,66 \\ 2,34 \\ 0,00 \\ 8,38 \\ 0.00 \end{bmatrix} \qquad 0 \le \alpha \le 1$$

Ej:
$$\alpha = 0.5$$

$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix} = \begin{bmatrix} 2,33 \\ 1,67 \\ 7,00 \\ 4,19 \\ 0.00 \end{bmatrix}$$

Check con Python PuLP

```
import pulp
lp01 = pulp.LpProblem("soluciones-alternativas", pulp.LpMaximize)
x = pulp.LpVariable('x', lowBound=0, cat='Continuous')
y = pulp.LpVariable('y', lowBound=0, cat='Continuous')
lp01 += 3*x + 3*y, "Z"
lp01 += 6*x + 16*y \leq 48
lp01 += 12*x + 6*y \leq 42
lp01 += 9*x + 9*y \leq 36
lp01.solve()
```

```
print(pulp.LpStatus[lp01.status])
for variable in lp01.variables():
    print("%s = %.2f" % (variable.name,
variable.varValue))
print(pulp.value(lp01.objective))
                       1 solo valor de la solución
```

```
>> Optimal
>> x = 1.60
>> y = 2.40
>> 12.0
```


$$Max Z = 12X_1 + 4X_2$$

 $sujeto a$:
 $10X_1 + 4X_2 \le 35$
 $12X_1 + 6X_2 \le 42$
 $9X_1 + 9X_2 \le 36$

 $X_1, X_2 \ge 0$

$$Max Z = 12X_1 + 4X_2$$

 $sujeto a$:
 $10X_1 + 4X_2 \le 35$
 $12X_1 + 6X_2 \le 42$
 $9X_1 + 9X_2 \le 36$

$$X_1, X_2 \geq 0$$

$$Max Z = 12X_1 + 4X_2$$

 $sujeto a$:
 $Y_1: 10X_1 + 4X_2 + X_3 = 35$
 $Y_2: 12X_1 + 6X_2 + X_4 = 42$
 $Y_3: 9X_1 + 9X_2 + X_5 = 36$

 $X_1, X_2 \geq 0$

$$Max Z = 12X_1 + 4X_2$$

sujeto a:

$$X_1: 10X_1 + 4X_2 + X_3 = 35$$
 $Y_2: 12X_1 + 6X_2 + X_4 = 42$

$$Y_3$$
: $9X_1 + 9X_2 + X_5 = 36$

$$X_1, X_2 \geq 0$$

Modelo Extendido Matricial

$$Max Z = C^T X$$

 $sujeto a$:

$$AX = b$$
$$X \ge 0$$

Valores de matrices:

$$A = \begin{bmatrix} 10 & 4 & 1 & 0 & 0 \\ 12 & 6 & 0 & 1 & 0 \\ 9 & 9 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 35 \\ 42 \\ 36 \end{bmatrix}$$

$$A = \begin{bmatrix} 10 & 4 & 1 & 0 & 0 \\ 12 & 6 & 0 & 1 & 0 \\ 9 & 9 & 0 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 12 \\ 4 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix}$$

$$b = \begin{bmatrix} 35 \\ 42 \\ 36 \end{bmatrix}$$

$$Max Z = 12X_1 + 4X_2$$
 $sujeto a:$
 $Y_1: 10X_1 + 4X_2 + X_3 = 35$
 $Y_2: 12X_1 + 6X_2 + X_4 = 42$
 $Y_3: 9X_1 + 9X_2 + X_5 = 36$
 $X_1, X_2 \ge 0$

$$Max Z = C^T X$$
 $A = \begin{bmatrix} 10 & 4 & 1 & 0 & 0 \\ 12 & 6 & 0 & 1 & 0 \\ 9 & 9 & 0 & 0 & 1 \end{bmatrix}$
 $AX = b$
 $X \ge 0$
 $AX = \begin{bmatrix} 35 \\ 42 \\ 36 \end{bmatrix}$
 $AX = \begin{bmatrix} 12 \\ 4 \\ 0 \\ 0 \end{bmatrix}$
 $AX = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$

	C_{j}			4	0	0	0	B_k
C _j Base	X _j Base	B_k	<i>X</i> ₁	X_2	X_3	X_4	X_5	$/A_{ij}$
0	X_3	35	10	4	1	0	0	
0	X_4	42	12	6	0	1	0	
0	X_5	36	9	9	0	0	1	
Z	Z_j -	- <i>C_j</i>						

Puntos degenerados: iteración #0

	C_{j}			4	0	0	0	B_k
C_j Base	X_j Base	B_k	X_1	X_2	X_3	X_4	X_5	$/A_{ij}$
0	X_3	35	10	4	1	0	0	
0	X_4	42	12	6	0	1	0	
0	X_5	36	9	9	0	0	1	
0	Z_j -	- <i>C_j</i>	-12	-4	0	0	0	

Resolvemos $Z_j - C_j$ y valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

 X_1 con menor $Z_j - C_j$, para entrar a la base

Puntos degenerados: iteración #0

	c_{j}			4	0	0	0	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	X_5	$/A_{ij}$
0	X_3	35	10	4	1	0	0	3,5
0	X_4	42	12	6	0	1	0	3,5
0	X_5	36	9	9	0	0	1	4
0	Z_j –	- <i>C_j</i>	-12	-4	0	0	0	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en X_3 y X_4 , elegimos arbitrariamente X_3 .

Sale X_3 , entra X_1

Puntos degenerados: iteración #0 a #1

Puntos degenerados: iteración #0 a #1

Tabla #0

	C_{j}			4	0	0	0	D //
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	X_5	B_k/A_{ij}
0	X_3	35	10	4	1	0	0	3,5
0	X_4	42	12	6	0	1	0	3,5
0	X_5	36	9	9	0	0	1	4
0	Z_j -	- <i>C_j</i>	-12	-4	0	0	0	

Tabla #1

	C_{j}			4	0	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	B_k / A_{ij}
12	X_1	3,5	1	0,4	0,1	0	0	
0	X_4	0	0	1,2	-1,2	1	0	
0	X_5	4,5	0	5,4	-0,9	0	1	
	$Z_j - C_j$		0	0,8	1,2	0	0	

Puntos degenerados: iteración #1

	C_{j}			4	0	0	0	B_{k}
C_j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	$/A_{ij}$
12	X_1	3,5	1	0,4	0,1	0	0	
0	X_4	0	0	1,2	-1,2	1	0	
0	X_5	4,5	0	5,4	-0,9	0	1	
42	Z_j –	- <i>C_j</i>	0	0,8	1,2	0	0	

Resolvemos $Z_j - C_j$ y valor del funcional Z

Es el óptimo.

 X_4 es básica y tiene valor 0, solución degenerada.

Puntos degenerados: riesgo de ciclo

Puntos degenerados: heurística

Volvemos al punto donde teníamos dos B_k / A_{ij} iguales:

	c_{j}			4	0	0	0	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	X_5	$/A_{ij}$
0	<i>X</i> ₃	35	10	4	1	0	0	3,5
0	X_4	42	12	6	0	1	0	3,5
0	X_5	36	9	9	0	0	1	4
0	Z_j –	- <i>C_j</i>	-12	-4	0	0	0	

Computacionalmente aplicamos un algoritmo heurístico para evitar el ciclo:

- 1. Aislamos las filas de los candidatos a salir.
- 2. Dividimos la fila por el pivote de cada candidato
- 3. De izquierda a derecha, ante la primera desigualdad entre los dos conservamos el mínimo.

Puntos degenerados: heurística

1- Aislamos las filas de los candidatos a salir.

C _j Base	X _j Base	B_k	<i>X</i> ₁	X_2	X_3	X_4	<i>X</i> ₅	
0	X_3	35	10	4	1	0	0	3,5
0	X_4	42	12	6	0	1	0	3,5

2- Dividimos la fila por el pivote de cada candidato

C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	<i>X</i> ₅	
0	X_3	3,5	1	0,4	0,1	0	0	
0	X_4	3,5	1	0,5	0	0,08	0	

3- De izquierda a derecha, ante la primera desigualdad entre los dos conservamos el mínimo.

C_j B	Base	X _j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	<i>X</i> ₅	
(0	X_3	3,5	1	0,4	0,1	0	0	
(0	X_4	3,5	1	0,5	0	0,08	0	

-> Debe salir X_3

Check con Python PuLP

```
import pulp
lp01 = pulp.LpProblem("solución-degenerada", pulp.LpMaximize)
x = pulp.LpVariable('x', lowBound=0, cat='Continuous')
y = pulp.LpVariable('y', lowBound=0, cat='Continuous')
lp01 += 12*x + 4*v. "Z"
lp01 += 10*x + 4*y \leq 35
lp01 += 12*x + 6*y \leq 42
lp01 += 9*x + 9*y \leq 36
lp01.solve()
```

```
# Imprimimos el status del problema:
print(pulp.LpStatus[lp01.status])

# Imprimimos las variables en su valor óptimo:
for variable in lp01.variables():
    print("%s = %.2f" % (variable.name, variable.varValue))

# Imprimimos el funcional óptimo:
print(pulp.value(lp01.objective))
```

```
- □ ×

>> Optimal
>> x = 3.50
>> y = 0.00
>> 42.0
```

Detección interna, no informa

$$Max Z = 4X_1 + 3X_2$$

 $sujeto a$:

$$Y_1$$
: $6X_1 + 16X_2 \ge 48$

$$Y_2$$
: $12X_1 + 6X_2 \ge 42$

$$Y_3$$
: $9X_1 + 9X_2 \le 36$

$$X_1, X_2 \ge 0$$

$$Max Z = 4X_1 + 3X_2$$

 $sujeto a$:

$$Y_1$$
: $6X_1 + 16X_2 \ge 48$

$$Y_2$$
: $12X_1 + 6X_2 \ge 42$

$$Y_3$$
: $9X_1 + 9X_2 \le 36$

$$X_1, X_2 \geq 0$$

Modelo Extendido

$$Max Z = 4X_1 + 3X_2 - Mu_1 - Mu_2$$

sujeto a:

$$Y_1$$
: $6X_1 + 16X_2 - X_3$ $+ u_1 = 48$
 Y_2 : $12X_1 + 6X_2 - X_4$ $+ u_2 = 42$
 Y_3 : $9X_1 + 9X_2$ $+ X_5$ $= 36$

$$X_1, X_2 \geq 0$$

M: un número muy grande.

 u_i : variable ficticia.

 $Max Z = 4 + 3X_2$ sujeto a:

$$Y_1$$
: $6X_1 + 16X_2 - X_3 + u_1 = 48$
 Y_2 : $12X_1 + 6X_2 - X_4 + u_2 = 42$
 Y_3 : $9X_1 + 9X_2 + X_5 = 36$

$$X_1, X_2 \geq 0$$

Modelo Extendido Matricial

$$Max Z = C^{T}X$$
 $sujeto a$:
 $AX = b$
 $X \ge 0$

Valores de matrices:

$$A = \begin{bmatrix} 6 & 16 & -1 & 0 & 0 & 1 & 0 \\ 12 & 6 & 0 & -1 & 0 & 0 & 1 \\ 9 & 9 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$b = \begin{bmatrix} 48 \\ 42 \\ 36 \end{bmatrix} \qquad C = \begin{bmatrix} 4 \\ 3 \\ 0 \\ 0 \\ -M \\ -M \end{bmatrix} \qquad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ u_1 \\ u_2 \end{bmatrix}$$

 $Max Z = 4 + 3X_2$ sujeto a:

$$Y_1$$
: $6X_1 + 16X_2$ $-X_3$ $+u_1$ = 48
 Y_2 : $12X_1 + 6X_2$ $-X_4$ $+u_2$ = 42
 Y_3 : $9X_1 + 9X_2$ $+X_5$ = 36
 $X_1, X_2 \ge 0$

 $Max Z = C^T X$ sujeto a: AX = b

$$X \geq 0$$

$$A = \begin{bmatrix} 6 & 16 & -1 & 0 & 0 & 1 & 0 \\ 12 & 6 & 0 & -1 & 0 & 0 & 1 \\ 9 & 9 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$b = \begin{bmatrix} 48 \\ 42 \\ 36 \end{bmatrix} \qquad C = \begin{bmatrix} 4 \\ 3 \\ 0 \\ 0 \\ 0 \\ -M \\ -M \end{bmatrix} \qquad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ u_1 \\ u_2 \end{bmatrix}$$

		C_{j}		4	3	0	0	0	-M	-M	B_k
(C _j Bas	X _j Bas	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	u_1	u_2	$/A_{ij}$
	-M	u_1	48	6	16	-1	0	0	1	0	
	-M	u_2	42	12	6	0	-1	0	0	1	
	0	X_5	36	9	9	0	0	1	0	0	
	Z	Z_j —	C_j								

Problema incompatible: iteración #0

	C_{j}		4	3	0	0	0	-M	-M	D //
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	<i>X</i> ₅	u_1	u_2	B_k / A_{ij}
-M	u_1	48	6	16	-1	0	0	1	0	
-M	u_2	42	12	6	0	-1	0	0	1	
0	X_5	36	9	9	0	0	1	0	0	
-90 <i>M</i>	Z_j –	- <i>C_j</i>	-18M - 4	-22M - 3	M	M	0	0	0	

Resolvemos $Z_j - C_j$ y valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, jZ puede mejorar!

Seleccionamos X_2 para entrar a la base

Problema incompatible: iteración #0

		C_{j}		4	3	0	0	0	-M	-M	. D //
C_j	Base	X _j Base	B_k	X_1	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	u_1	u_2	B_k / A_{ij}
	-M	u_1	48	6	16	-1	0	0	1	0	3
	-M	u_2	42	12	6	0	-1	0	0	1	7
	0	X_5	36	9	9	0	0	1	0	0	4
	90 <i>M</i>	Z_j -	- <i>C_j</i>	-18M - 4	-22M - 3	М	М	0	0	0	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k $/A_{ij}$ en $oldsymbol{u_2}$

Sale u_1 , entra X_2

De ahora en más: $-M-c \approx -M$... ya que "-c" es despreciable

Problema incompatible: iteración #0 a #1

Tabla #0

	C_{j}		4	3	0	0	0	-M	-M	D /4
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	u_1	u_2	B_k / A_{ij}
-M	u_1	48	6	16	-1	0	0	1	0	3
-M	u_2	42	12	6	0	-1	0	0	1	7
0	X_5	36	9	9	0	0	1	0	0	4
0	Z_j -	- <i>C_j</i>	-18M	-22M	М	М	0	0	0	

Tabla #1

	C_{j}		4	3	0	0	0	-M	-M	D //
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	X_5	u_1	u_2	B_k / A_{ij}
3	X_2	3	0,37	1	-0,06	0	0	0,06	0	
-M	u_2	24	9,75	0	0,37	-1	0	-0,37	1	
0	X_5	9	5,62	0	0,56	0	1	-0,56	0	
	Z_j -	- <i>C_j</i>	-9,75M	0	-0,37M	M	0	1,37M	0	

Problema incompatible: iteración #1

	C_{j}		4	3	0	0	0	-M	-M	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	X_5	u_1	u_2	$/A_{ij}$
3	X_2	3	0,37	1	-0,06	0	0	0,06	0	
-M	u_2	24	9,75	0	0,37	-1	0	-0,37	1	
0	X_5	9	5,62	0	0,56	0	1	-0,56	0	
−24 <i>M</i>	Z_j –	· <i>C_j</i>	-9,75M	0	-0,37M	М	0	1,37M	0	

Resolvemos el valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

 X_1 debe entrar a la base

Problema incompatible: iteración #1

	C_{j}		4	3	0	0	0	-M	-M	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	X_5	u_1	u_2	$/A_{ij}$
3	X_2	3	0,37	1	-0,06	0	0	0,06	0	8,1
-M	u_2	24	9,75	0	0,37	-1	0	-0,37	1	2,4
0	<i>X</i> ₅	9	5,62	0	0,56	0	1	-0,56	0	1,6
−24 <i>M</i>	Z_j –	- <i>C_j</i>	-9,75M	0	-0,37M	М	0	1,37M	0	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en X_5

Sale X_5 , entra X_1

Problema incompatible: iteración #1 a #2

Tabla #1

	C_{j}		4	3	0	0	0	-M	-M	D / 4
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	u_1	u_2	B_k/A_{ij}
3	X_2	3	0,37	1	-0,06	0	0	0,06	0	8,1
-M	u_2	24	9,75	0	0,37	-1	0	-0,37	1	2,4
0	X_5	9	5,62	0	0,56	0	1	-0,56	0	1,6
−24 <i>M</i>	Z_j –	- <i>C_j</i>	-9,75M	0	-0,37M	М	0	1,37M	0	

Tabla #2

		c_j		4	3	U	U	U	-IVI	-IVI	D /4
	C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	u_1	u_2	B_k / A_{ij}
2	3	X_2	2,41	0	1	-0,096	0	-0,06	0,097	0	
	-M	u_2	8,39	0	0	-0,60	-1	-1,73	0,60	1	
	4	X_1	1,60	1	0	0,10	0	0,18	-0,10	0	
		Z_j –	- <i>C_j</i>	0	0	0,6M	M	1,73M	0,4M	0	

Problema incompatible: sin solución

	C_{j}		4	3	0	0	0	-M	-M	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	u_1	u_2	$/A_{ij}$
3	X_2	2,41	0	1	-0,096	0	-0,06	0,097	0	
-M	u_2	8,39	0	0	-0,60	-1	-1,73	0,60	1	
4	X_1	1,60	1	0	0,10	0	0,18	-0,10	0	
	Z_j –	· <i>C_j</i>	0	0	0,6M	М	1,73M	0,4M	0	

Resolvemos el valor del funcional Z

No existen variables no básicas con $Z_j-\mathcal{C}_j$ negativo, la variable ficticia $oldsymbol{u_2}$ sigue en la base

Encontramos caso particular de problema incompatible

Check con Python PuLP

```
import pulp
lp01 = pulp.LpProblem("problema-incompatible", pulp.LpMaximize)
x = pulp.LpVariable('x', lowBound=0, cat='Continuous')
y = pulp.LpVariable('y', lowBound=0, cat='Continuous')
lp01 += 4*x + 3*v. "Z"
lp01 += 6*x + 16*y \ge 48
lp01 += 12*x + 6*y \ge 42
lp01 += 9*x + 9*y \leq 36
lp01.solve()
```

```
# Imprimimos el status del problema:
print(pulp.LpStatus[lp01.status])

# Imprimimos las variables en su valor óptimo:
for variable in lp01.variables():
    print("%s = %.2f" % (variable.name, variable.varValue))

# Imprimimos el funcional óptimo:
print(pulp.value(lp01.objective))
```

```
>> Infeasible
>> x = 1.60
>> y = 2.40
>> 13.6
```

Status: *Infeasible*

$$Max \ Z = X_1 + X_2$$

 $sujeto \ a$:
 $Y_1: -X_1 + X_2 \le 2$
 $Y_2: X_1 - X_2 \ge 2$
 $X_1, X_2 \ge 0$

$$Max Z = X_1 + X_2$$

 $sujeto a:$
 $Y_1: -X_1 + X_2 \le 2$
 $Y_2: X_1 - X_2 \ge 2$

 $X_1, X_2 \ge 0$

$$Max Z = X_1 + X_2 - Mu_1$$

sujeto a:

$$Y_1: -X_1 + X_2 + X_3 = 2$$
 $Y_2: X_1 - X_2 - X_4 + u_1 = 2$
 $X_1, X_2 \ge 0$

M: un número muy grande.

 u_i : variable ficticia.

 $Max Z = X_1 + X_2 - Mu_1$ sujeto a:

$$Y_1: -X_1 + X_2 + X_3 = 2$$
 $Y_2: X_1 - X_2 - X_4 + u_1 = 2$
 $X_1, X_2 \ge 0$

Modelo Extendido Matricial

$$Max Z = C^T X$$

 $sujeto a$:

$$AX = b$$
$$X \ge 0$$

Valores de matrices:

$$A = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & -1 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ -M \end{bmatrix}$$

$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ u_1 \end{bmatrix}$$

$$Max Z = X_1 + X_2 - Mu_1$$

sujeto a:

$$Y_1: -X_1 + X_2 + X_3 = 2$$
 $Y_2: X_1 - X_2 - X_4 + u_1 = 2$
 $X_1, X_2 \ge 0$

$$Max Z = C^T X$$

 $sujeto a$:

$$AX = b$$
$$X \ge 0$$

$$A = \begin{bmatrix} -1 & 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & -1 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ -M \end{bmatrix}$$

$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ u_1 \end{bmatrix}$$

	C_{j}		1	1	0	0	-M	B_k
C _j Bas	X _j Bas	\boldsymbol{B}_{k}	X_1	X_2	X_3	<i>X</i> ₄	u_1	$/A_{ij}$
0	X_3	2	-1	1	1	0	0	
-M	u_1	2	1	-1	0	-1	1	
Z	Z_j –	- <i>C_j</i>						

Problema no acotado: iteración #0

	C_{j}		1	1	0	0	-M	D //
C_j Base	X_j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	u_1	B_k / A_{ij}
0	X_3	2	-1	1	1	0	0	
-M	u_1	2	1	-1	0	-1	1	
-2M	Z_j –	- <i>C_j</i>	-M	M	0	М	0	

Resolvemos $Z_j - C_j$ y valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

Seleccionamos X_1 para entrar a la base

Problema no acotado: iteración #0

C_{j}			1	1	0	0	-M	D //
C_j Base	X_j Base	B_k	X_1	X_2	X_3	X_4	u_1	B_k/A_{ij}
0	X_3	2	-1	1	1	0	0	-2
-M	u_1	2	1	-1	0	-1	1	2
-2 <i>M</i>	$Z_j - C_j$		-M	М	0	М	0	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en $\boldsymbol{u_1}$

Sale u_1 , entra X_1

Problema no acotado: iteración #0 a #1

Tabla #0

Tabla #1

C_{j}			1	1	0	0	-M	5 //
C _j Base	X _j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	u_1	B_k / A_{ij}
0	X_3	2	-1	1	1	0	0	-2
-M	u_1	2	1	-1	0	-1	1	2
-2 <i>M</i>	$Z_j - C_j$		-M	M	0	M	0	

C_{j}			1	1	0	0	-M	D /4
C _j Base	X _j Base	B_k	<i>X</i> ₁	X_2	X_3	X_4	u_1	B_k/A_{ij}
0	X_3	4	0	0	1	-1	1	
1	X_1	2	1	-1	0	-1	1	
	$Z_j - C_j$		0	~0	0	~0	М	

Problema no acotado: iteración #1

C_{j}			1	1	0	0	-M	B_k
C _j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	u_1	$/A_{ij}$
0	X_3	4	0	0	1	-1	1	
1	X_1	2	1	-1	0	-1	1	
2	$Z_j - C_j$		0	~0	0	~0	M	

Resolvemos el valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

 X_2 podría entrar a la base

Problema no acotado: sin solución

C_{j}			1	1	0	0	-M	B_{k}
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	<i>X</i> ₂	X_3	X_4	u_1	$/A_{ij}$
0	X_3	4	0	0	1	-1	1	00
-M	X_1	2	1	-1	0	-1	1	-2
	$Z_j - C_j$		0	~0	0	~0	M	

Resolvemos B_k / A_{ij}

No existe mínimo positivo B_k / A_{ij} , problema no acotado.

Check con Python PuLP

```
- □ X
import pulp
lp01 = pulp.LpProblem("problema-no-acotado", pulp.LpMaximize)
x = pulp.LpVariable('x', lowBound=0, cat='Continuous')
v = pulp.LpVariable('y', lowBound=0, cat='Continuous')
lp01 += x + y, "Z"
lp01 += -x + y \leq 2
lp01 += x - y \geqslant 2
lp01.solve()
```

```
# Imprimimos el status del problema:
print(pulp.LpStatus[lp01.status])

# Imprimimos las variables en su valor óptimo:
for variable in lp01.variables():
    print("%s = %.2f" % (variable.name, variable.varValue))

# Imprimimos el funcional óptimo:
print(pulp.value(lp01.objective))
```


Status: *Unbounded*

