## МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Інститут **КНІТ** Кафедра **ПЗ** 

#### **3BIT**

до лабораторної роботи № 1

**На тему:** "Моделювання базових логічних елементів в середовищі Proteus. Синтез та моделювання простих комбінаційних схем."

3 дисципліни: "Архітектура комп'ютера"

| Лектор:        |          |
|----------------|----------|
| Доц. каф. ПЗ   |          |
| Крук О.Г.      |          |
| Виконав:       |          |
| ст. гр. ПЗ-22  |          |
| Солтисюк Д. А. |          |
| Прийняв:       |          |
| Доц. каф. ПЗ   |          |
| Крук О.Г.      |          |
|                |          |
| → 2022 p.      | <b>«</b> |
|                |          |
| - <u>-</u>     | Σ=_      |
|                |          |

**Тема роботи**: Моделювання базових логічних елементів в середовищі Proteus. Синтез та моделювання простих комбінаційних схем.

**Мета роботи**: Набути практичних навиків роботи з системою програм Proteus; опанувати синтез простих комбінаційних схем за логічними функціями; закріпити вміння мінімізації логічних функцій за допомогою карт Карно.

### Індивідуальне завдання

- 1. Виконати завдання для ознайомлення із середовищем Proteus.
- 2. Виконати завдання з функцією зі свого варіанту і синтезувати схеми відповідно до завдання.

## Теоретичні відомості

Виділяють три основних логічних елементи: НЕ (NOT), АБО (OR), I (AND).

1. НЕ – логічне заперечення ( $y = \underline{x}$ ). Позначення інвертор, **NOT** ( ANSI): — Позначення ДСТУ:  $\frac{1}{x^2} \underbrace{y = \neg x}$ 2. І – множення(кон'юнкція) ( $y = x_1 * x_2$ ). Позначення **AND** (ANSI): Позначення ДСТУ:  $\frac{x_1}{x_2} \underbrace{x_2} \underbrace{x_3} \underbrace{x_4} \underbrace{x_4} \underbrace{x_5} \underbrace{$ 

Також  $\epsilon$  дві функції: Штрих Шеффера (NAND) та Стрілка Пірса (NOR).

4. І-НЕ – таке ж, як і І, але результат інвертується (у =  $x_1 * x_2$ ). Позначення **NAND**(ANSI): Позначення ДСТУ:  $x_2 = x_1 * x_2$ 

5. АБО-НЕ – заперечення диз'юнкції (у = 
$$\underline{x_1 + x_2}$$
). Позначення **NOR**(ANSI): Позначення ДСТУ:

# Хід роботи

Спочатку, створю схему, зображену в методичних матеріалах до лабораторної роботи №1. Знизу прикріплюю зображення схеми та графіка із завдання.





Тепер, створю графік для вимірювання напруги з обох генераторів G1 і G2, з диз'юнктора E2, зі схем диз'юнктора з елементів Пірса та Шеффера, з елемента Пірса та з елемента виняткове AБO (XOR). Дам йому заголовок "Dyzjunktory".  $T\kappa = 1/118000\Gamma \mu * 2 = \sim 0,00001694$ :



Тепер, створю графік для вимірювання напруги з обох генераторів G1 і G2, з кон'юнктора E3, зі схем кон'юнктора з елементів Пірса та Шеффера, з елемента Шеффера. Дам йому заголовок "Konjunktory". Тк = 1/118000Гц \*  $2 = \sim 0,00001694$ :



Тепер, створю новий проект. Визначу ДДНФ для функції, заданої таблицею згідно мого варіанту (22):

| $\mathbf{x}_2$ | x <sub>1</sub> | x <sub>0</sub> | $f(x_2,x_1,x_0)$ |
|----------------|----------------|----------------|------------------|
| 0              | 0              | 0              | 0                |
| 0              | 0              | 1              | 1                |
| 0              | 1              | 0              | 0                |
| 0              | 1              | 1              | 1                |
| 1              | 0              | 0              | 1                |
| 1              | 0              | 1              | 1                |
| 1              | 1              | 0              | 0                |
| 1              | 1              | 1              | 1                |

Знайдена ДДНФ (F1):  $\bar{\mathbf{x}}_2\bar{\mathbf{x}}_1\mathbf{x}_0+\bar{\mathbf{x}}_2\mathbf{x}_1\mathbf{x}_0+\mathbf{x}_2\bar{\mathbf{x}}_1\bar{\mathbf{x}}_0+\mathbf{x}_2\bar{\mathbf{x}}_1\mathbf{x}_0+\mathbf{x}_2\mathbf{x}_1\mathbf{x}_0$ 

Знайдена ДКНФ (F2):  $(\mathbf{x}_2 + \mathbf{x}_1 + \mathbf{x}_0)(\mathbf{x}_2 + \overline{\mathbf{x}}_1 + \mathbf{x}_0)(\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1 + \mathbf{x}_0)$ 

Побудую схему відповідно до знайдених ДДНФ, ДКНФ (див. наст. сторінку)



Створю графік для відображення значень генераторів  $G1(x_2)$ ,  $G2(x_1)$ ,  $G3(x_0)$  і значень на контактах F1, F2. Кінцевий момент часу = 0.0000444. Назву графік "Syntez":



#### Висновок

На даній лабораторній роботі я навчився користуватися середовищем Proteus для проектування логічних схем. Ознайомився з роботою таких елементів, як кон'юнктор, диз'юнктор, генератор, XOR, NOR (стрілка Пірса), NAND (Штрих Шеффера), інвертор. Також навчився працювати з такими інструментами, як графік напруги/струму, пробою напруги, генераторами. Збудував схему зі знайдених ДДНФ та ДКНФ до моєї функції, а також побудував цифровий графік та змоделював криві для цих схем.