Ecole Nationale Supérieure de Techniques Avancées Paris PRB202 - Martingales et Algorithmes Stochastiques PC4 - 9 décembre 2019

Exercice 1:

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi telles que :

$$\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = -1) = \frac{1}{2}.$$

Posons
$$\mathcal{F}_0 = \{\emptyset, \Omega\}$$
, $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ et $S_0 = 0$, $S_n = X_1 + \dots + X_n$, pour tout $n \ge 1$.

Pour un entier naturel $a \in \mathbb{N}^*$, on introduit $\tau_a = \inf\{n \in \mathbb{N}^*; S_n = a\}$, le premier temps de passage par a de la marche aléatoire au plus proche voisin symétrique $(X_n)_{n \geq 1}$.

- 1. Montrer que $(S_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.
- 2. Démontrer que pour tout $\lambda \in \mathbb{R}$ fixé, le processus $(Z_n^{\lambda} = \exp(\lambda S_n n \log(\cosh(\lambda))))_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ martingale.
- 3. Montrer que τ_a est un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -temps d'arrêt.
- 4. Démontrer que pour tout $n \in \mathbb{N}$, $\mathbb{E}[Z_{\tau_n \wedge n}^{\lambda}] = 1$, quel que soit $\lambda \in \mathbb{R}$.
- 5. On suppose $\lambda > 0$. Montrer que $\mathbb{E}[\exp(\lambda a \tau_a \log(\cosh(\lambda))) \mathbf{1}_{\{\tau_a < +\infty\}}] = 1$.
- 6. En-déduire que $\mathbb{P}(\tau_a < +\infty) = 1$.
- 7. Montrer que pour tout y > 0, $\mathbb{E}[\exp(-y\tau_a)] = \exp(-a \operatorname{argcosh}(e^y))$. On rappelle que pour $x \in [1, +\infty[$, $\operatorname{argcosh}(x) = \log(x + \sqrt{x^2 - 1})$.
- 8. Démontrer que τ_a n'est pas intégrable.

Exercice 2:

Soit $(M_n)_{n \in \mathbb{N}}$ une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale de carré intégrable telle que $M_0 = 0$ et $(\langle M \rangle_n)_{n \in \mathbb{N}}$ son crochet.

On note
$$< M >_{\infty} = \lim_{n \to +\infty} < M >_n$$
.

Considérons le processus $(X_n)_{n\in\mathbb{N}}$ défini par $X_0=M_0=0$ et pour tout $n\geq 1$:

$$X_n = \sum_{k=1}^n \frac{M_k - M_{k-1}}{1 + \langle M \rangle_k}.$$

- 1. Montrer que $(X_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ martingale de carré intégrable.
- 2. Démontrer que l'inégalité suivante est vérifiée, quel que soit $n \ge 1$:

$$\mathbb{E}[(X_n - X_{n-1})^2 | \mathcal{F}_{n-1}] \le \frac{1}{1 + \langle M \rangle_{n-1}} - \frac{1}{1 + \langle M \rangle_n}.$$

- 3. En-déduire que $\langle X \rangle_n \leq 1$, pour tout $n \in \mathbb{N}$ et que $(X_n)_{n \in \mathbb{N}}$ converge \mathbb{P} -presque-sûrement.
- 4. Montrer que sur l'évènement $\{ \langle M \rangle_{\infty} = +\infty \}$,

$$\frac{M_n}{\langle M \rangle_n} \xrightarrow[n \to +\infty]{\mathbb{P}-\text{p.s.}} 0.$$

On pourra utiliser le lemme de Kronecker dont l'énoncé est rappelé ci-dessous :

Soient $(a_n)_{n\in\mathbb{N}}$ une suite croissante de nombres strictement positifs vérifiant $\lim_{n\to+\infty}a_n=+\infty$ et $(x_n)_{n\in\mathbb{N}}$ une

suite de nombres réels. Si la série de terme général $\frac{x_n}{a_n}$, $n \in \mathbb{N}$ est convergente, alors $\lim_{n \to +\infty} \frac{\sum_{k=1}^n x_k}{a_n} = 0$.

Exercice 3:

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes, intégrables et de même loi définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$.

On pose $S_0 = 0$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et pour tout $n \ge 1$, $S_n = X_1 + \cdots + X_n$, $\mathcal{F}_n = \sigma(X_1, \cdots, X_n)$.

- 1. Démontrer que le processus $(M_n)_{n\in\mathbb{N}}$ défini par $M_n=S_n-n\mathbb{E}[X_1]$, pour tout $n\in\mathbb{N}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.
- 2. Soit T un $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -temps d'arrêt intégrable. En appliquant convenablement le théorème d'arrêt de Doob, montrer que, pour tout $n\in\mathbb{N}$, $\mathbb{E}[S_{T\wedge n}]=\mathbb{E}[X_1]\mathbb{E}[T\wedge n]$.
- 3. En-déduire que S_T est intégrable et :

$$\mathbb{E}[S_T] = \mathbb{E}[X_1] \, \mathbb{E}[T] \, .$$

Exercice 4:

Le processus $(S_n)_{n\in\mathbb{N}}$ d'évolution temporelle d'un actif risqué sur un marché financier peut être modélisé par la donnée d'un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ sur lequel la suite de variables aléatoires $(S_n)_{n\in\mathbb{N}}$ est définie par $S_0 = s_0 > 0$ et pour tout $n \geq 1$:

$$S_n = (1+\mu)S_{n-1} + \sigma S_{n-1}\epsilon_n ,$$

où $(\epsilon_n)_{n\geq 1}$ est une suite de variables aléatoires indépendantes de Bernoulli prenant les valeurs 1 et -1 avec même probabilité $\frac{1}{2}$ et μ et σ sont deux paramètres vérifiant $|\sigma|<1+\mu$. On note $\lambda=\sqrt{(1+\mu)^2-\sigma^2}$ et $(\mathcal{F}_n)_{n\in\mathbb{N}}$ désigne la filtration naturelle du processus $(S_n)_{n\in\mathbb{N}}$.

- 1. Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y)=(1+\mu)x+\sigma xy$. Montrer que pour tout $x\geq 0$, $f(x,1)\geq 0$ et $f(x,-1)\geq 0$. Que peut-on en-déduire pour la suite $(S_n)_{n\in\mathbb{N}}$?
- 2. Pour tout $n \ge 1$, on pose $\Delta S_n = S_n S_{n-1}$.
 - (a) Montrer que : $\mathcal{F}_n = \sigma(\epsilon_1, \dots, \epsilon_n)$, quel que soit $n \ge 1$.
 - (b) Calculer pour tout $n \geq 1$, $\mathbb{E}[\Delta S_n | \mathcal{F}_{n-1}]$. En-déduire la nature du processus $(S_n)_{n \in \mathbb{N}}$ en fonction de μ .
 - (c) On se place dans le cas où $\mu < 0$. Montrer que $(S_n)_{n \in \mathbb{N}}$ converge \mathbb{P} presque-sûrement vers une limite que l'on déterminera.
- 3. Vérifier que pour tout $n \in \mathbb{N}$, S_n est de carré intégrable et calculer $\mathbb{E}[S_n^2]$.
- 4. On définit le processus $(Z_n)_{n\in\mathbb{N}}$ par, pour tout $n\in\mathbb{N}$, $Z_n=\log(S_n)$.
 - (a) Démontrer que $(Z_n)_{n\in\mathbb{N}}$ est suivant les valeurs de λ , une martingale, une sous- ou sur-martingale.
 - (b) Ecrire Z_n , pour tout $n \geq 1$ sous forme d'une suite de variables aléatoires indépendantes.
 - (c) En-déduire suivant les valeurs de λ la convergence presque-sûre de la suite $(Z_n)_{n\in\mathbb{N}}$ vers une limite à préciser.
 - (d) Comment se traduisent ces résultats pour la suite $(S_n)_{n\in\mathbb{N}}$?
- 5. On se place dans le cas particulier où $|\sigma| < \frac{1}{\sqrt{2}}$ et $(1+\mu)^2 + \sigma^2 < 1$.
 - (a) Montrer que $(-S_n)_{n\in\mathbb{N}}$ est une sous-martingale.
 - (b) Ecrire sa décomposition de Doob $-S_n = M_n + A_n$, pour tout $n \in \mathbb{N}$, où $(M_n)_{n \in \mathbb{N}}$ est une martingale et $(A_n)_{n \in \mathbb{N}}$ un processus croissant prévisible nul en 0.
 - (c) Vérifier que $(M_n)_{n\in\mathbb{N}}$ est une martingale de carré intégrable et calculer son crochet.
 - (d) Démontrer que $(M_n)_{n\in\mathbb{N}}$ converge presque-sûrement.
- 6. Considérons le processus $(W_n)_{n\in\mathbb{N}}$ défini pour tout $n\in\mathbb{N}$, par $W_n=\log\left(\frac{S_n}{\lambda^n}\right)$.
 - (a) Démontrer que $(W_n)_{n\in\mathbb{N}}$ est une martingale de carré intégrable et déterminer son crochet en fonction de $\delta = -[\log(\frac{1+\mu+\sigma}{\lambda})][\log(\frac{1+\mu-\sigma}{\lambda})]$; vérifier que ce nombre est strictement positif.
 - (b) En-déduire la convergence presque-sûre du processus $\left(S_n^{\frac{1}{n}}\right)_{n\in\mathbb{N}}$ vers une limite à préciser.
- 7. On définit le processus $(R_n)_{n\geq 1}$ par pour tout $n\geq 1$, $R_n=\lambda^{-\sqrt{n}}\,S_n^{\frac{1}{\sqrt{n}}}$.
 - (a) Montrer, à l'aide du théorème central limite, que la suite $(\log(R_n))_{n\geq 1}$ converge en loi et identifier sa limite.
 - (b) Que peut-on en-déduire pour la suite $(R_n)_{n\geq 1}$?