IST - 1° Semestre de 2016/17

EXERCÍCIOS DE ÁLGEBRA LINEAR

FICHA 2 - Espaços Vectoriais

1 Combinações lineares de vectores de \mathbb{R}^n

Por \mathbb{R}^n entenderemos o conjunto de todas as sequências ordenadas de n números reais

$$\mathbf{x} = (x_1, ..., x_n),$$

às quais chamaremos de **vectores**. Os valores reais $x_1, ..., x_n$, tomam o nome de componentes do vector \mathbf{x} .

Dois vectores $\mathbf{x} = (x_1, ..., x_n)$ e $\mathbf{y} = (y_1, ..., y_n)$ dizem-se iguais se as suas componentes homólogas forem iguais. Isto é $\mathbf{x} = \mathbf{y} \Leftrightarrow x_1 = y_1, ..., x_n = y_n$.

Em \mathbb{R}^n introduzimos duas operações. Uma de **soma** de vectores e outra de multiplicação ou **produto** de um **escalar** por um vector. Para isso sejam $\mathbf{u} = (u_1, ..., u_n)$, $\mathbf{v} = (v_1, ..., v_n)$ e $\mathbf{w} = (w_1, ..., w_n)$ vectores de \mathbb{R}^n e α, β números reais.

• Soma em \mathbb{R}^n :

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, ..., u_n + v_n).$$

• Produto escalar em \mathbb{R}^n :

$$\alpha \mathbf{u} = (\alpha u_1, ..., \alpha u_n)$$
.

- Estas operações gozam das seguintes propriedades, características da estrutura algébrica de \mathbb{R}^n :
- i) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (associatividade).
- ii) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (comutatividade).
- iii) $\mathbf{u} + \mathbf{0} = \mathbf{u}$, onde $\mathbf{0} = (0, ..., 0)$ é o vector nulo (existência de elemento neutro).
- iv) $\mathbf{u} + (-\mathbf{u}) = 0$, onde $-\mathbf{u} = (-u_1, ..., -u_n)$ (existência de elemento simétrico).
- v) $\alpha (\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$ (distributividade).
- vi) $(\alpha + \beta) \mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$ (distributividade).
- vii) $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$ (associatividade).
- viii) $1\mathbf{u} = \mathbf{u}$.

¹Coligidos por: João Ferreira Alves, Ricardo Coutinho e José M. Ferreira.

Sejam $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, vectores de \mathbb{R}^m . Um vector $\mathbf{v} \in \mathbb{R}^m$ diz-se uma **combinação linear** de $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, se existirem números reais $x_1, ..., x_n$, tais que

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n = \mathbf{v}.$$

Os valores $x_1, x_2, ..., x_n$, tomam o nome de coeficientes da combinação linear.

O conjunto de todas as combinações lineares de $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, designa-se por

$$\mathcal{L}\left(\left\{\mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{n}\right\}\right),$$

e é chamado de **conjunto gerado** por $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$, o qual toma o nome de **conjunto** gerador.

Se $\mathcal{L}(\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}) = \mathbb{R}^m$, diremos que $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ é um conjunto gerador de \mathbb{R}^m .

Em termos de componentes, $\mathbf{v}_1 = (v_{11}, v_{21}, ..., v_{m1})$, $\mathbf{v}_2 = (v_{12}, v_{22}, ..., v_{m2})$, ..., $\mathbf{v}_n = (v_{1n}, v_{2n}, ..., v_{mn})$ formam um conjunto gerador de \mathbb{R}^m se e só se a matriz

$$\begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \dots & \dots & \dots & \dots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{bmatrix},$$

pode ser transformada por operações elementares de linhas numa matriz em escada de linhas com um pivô em cada linha (i.e., sem linhas nulas).

1.1 Exercícios

Exercício 1 Considere em \mathbb{R}^2 o conjunto $G = \{(1,1), (2,2)\}$.

- a) Mostre que o vector (-5, -5) é combinação linear dos vectores de G.
- b) É também o vector (1,0) combinação linear dos vectores de G?
- c) O conjunto G gera \mathbb{R}^2 ?
- d) Determine a forma geral dos vectores $(a, b) \in \mathcal{L}(G)$.

Exercício 2 Considere em \mathbb{R}^3 o conjunto $G = \{(1,1,1), (0,1,1), (1,2,2)\}$.

- a) Mostre que o vector (2,3,3) é combinação linear dos vectores de G.
- b) Mostre que o vector (0,0,1) não é combinação linear dos vectores de G.
- c) O conjunto G gera \mathbb{R}^3 ?
- d) Determine a forma geral dos vectores $(a, b, c) \in \mathcal{L}(G)$.

Exercício 3 Considere em \mathbb{R}^4 o conjunto

$$G = \{(1, 2, 3, 4), (1, 3, 3, 4), (1, 2, 4, 4), (1, 2, 1, 4)\}.$$

- a) Mostre que o vector (4, 3, 2, 1) não é combinação linear dos vectores de G.
- b) Mostre que o vector (2, 2, 7, 8) é combinação linear dos vectores de G.
- c) De forma mais geral possível determine (2,2,7,8) como combinação linear dos vectores de G.

Exercício 4 Indique quais dos seguintes conjuntos de vectores geram \mathbb{R}^3 :

- a) $\{(1,3,3), (4,6,4), (-2,0,2), (3,3,1)\}$.
- b) $\{(1,0,0),(1,1,0),(1,1,1)\}$.
- c) $\{(1,4,2),(0,0,0),(-1,-3,-1),(0,1,1)\}$.
- $d) \{(26, 47, 29), (123, 0, 498)\}.$

Exercício 5 Quais dos conjuntos indicados a seguir geram \mathbb{R}^4 ?

- a) $\{(1,1,0,0),(0,0,1,1),(1,0,0,1),(0,1,1,0),(0,1,1,-1)\}$.
- b) $\{(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)\}$.
- c) $\{(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,1,0,1)\}$.
- d) $\{(11, -12, 1, 1), (45, 17, 1, 20), (21, 3, 41, 122)\}$.

Exercício 6 Determine o único valor de a que faz com que

$$G = \{(1, 1, 1), (1, 0, 1), (0, 2, 0), (3, 2, a)\}$$

 $n\tilde{a}o$ seja um conjunto gerador de \mathbb{R}^3 .

Exercício 7 Considere em \mathbb{R}^3 o conjunto $G = \{(1,0,1), (0,1,a), (1,1,b), (1,1,1)\}$. Qual o único par $(a,b) \in \mathbb{R}^2$ que faz com que G não gere \mathbb{R}^3 ?

Exercício 8 Considere em \mathbb{R}^4 o conjunto $G = \{(1,0,1,0), (0,1,0,1), (1,1,0,0), (1,1,1,a)\}$. Calcule o único valor de a que faz com que G não qere \mathbb{R}^4 .

Exercício 9 Considere em \mathbb{R}^3 o conjunto

$$G = \{(1, 2, 1), (2, \alpha, 2), (2, 5, 3), (\beta, -7, \alpha)\}.$$

Determine os únicos valores de α e β para os quais o conjunto G não gera \mathbb{R}^3 .

2 Dependência e independência linear

Os vectores de \mathbb{R}^m , \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n , dizem-se **linearmente dependentes** sempre que um deles é combinação linear dos restantes. Ou seja, os vectores \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n , são linearmente dependentes se existir $j \in \{1, ..., n\}$ tal que

$$\mathbf{v}_{j} \in \mathcal{L}\left(\left\{\mathbf{v}_{1},...,\mathbf{v}_{j-1},\mathbf{v}_{j+1},...,\mathbf{v}_{n}\right\}\right),$$

o que sucede se e só se existirem números reais $c_1,...,c_{j-1},c_{j+1},...,c_n$, tais que

$$\mathbf{v}_j = c_1 \mathbf{v}_1 + \dots + c_{i-1} \mathbf{v}_{j-1} + c_{j+1} \mathbf{v}_{i+1} + \dots + c_n \mathbf{v}_n.$$

Em caso contrário diremos que os vectores $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, são linearmente independentes.

São válidos os seguintes critérios para aferir se um conjunto de n vectores é linearmente dependente ou independente:

- i) No caso $n=2, \mathbf{v}_1, \mathbf{v}_2,$ são vectores linearmente dependentes se e só se um deles é múltiplo do outro.
- ii) Se existe $j \in \{1, ..., n\}$ tal que $\mathbf{v}_j = 0$, então $\mathbf{v}_1, ..., \mathbf{v}_j, ..., \mathbf{v}_n$, são vectores linearmente dependentes.
- iii) $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, são linearmente independentes se e só se o sistema homogéneo na forma vectorial

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n = 0$$

nas variáveis $x_1, x_2, ..., x_n$, só tem a solução nula.

Em termos de componentes, $\mathbf{v}_1 = (v_{11}, v_{21}, ..., v_{m1})$, $\mathbf{v}_2 = (v_{12}, v_{22}, ..., v_{m2})$, ..., $\mathbf{v}_n = (v_{1n}, v_{2n}, ..., v_{mn})$, são linearmente independentes se e só se o sistema homogéneo

$$\begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \dots & \dots & \dots & \dots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \end{bmatrix},$$

nas variáveis $x_1, x_2, ..., x_n$, só tem a solução nula.

iv) $\mathbf{v}_1 = (v_{11}, v_{21}, ..., v_{m1}), \ \mathbf{v}_2 = (v_{12}, v_{22}, ..., v_{m2}), ..., \ \mathbf{v}_n = (v_{1n}, v_{2n}, ..., v_{mn}),$ são linearmente independentes se e só se a matriz

$$\begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \dots & \dots & \dots & \dots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{bmatrix}$$

pode ser transformada através de operações elementares de linhas numa matriz em escada de linhas com n pivôs.

vi) Se n > m, \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n , são vectores linearmente dependentes.

2.1 Exercícios

Exercício 10 Em cada um dos seguintes casos, mostre que os vectores indicados são linearmente dependentes:

- a) $Em \mathbb{R}^3$, $\mathbf{v}_1 = (1, 1, 2)$, $\mathbf{v}_2 = (2, 2, 4)$.
- b) $Em \mathbb{R}^3$, $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (3, 3, 3)$, $\mathbf{v}_3 = (0, 1, 1)$.
- c) $Em \mathbb{R}^4$, $\mathbf{v}_1 = (0, 1, 0, 1)$, $\mathbf{v}_2 = (1, 0, 1, 0)$, $\mathbf{v}_3 = (2, 3, 2, 3)$.
- d) $Em \mathbb{R}^4$, $\mathbf{v}_1 = (0, 1, 0, 1)$, $\mathbf{v}_2 = (1, 0, 1, 0)$, $\mathbf{v}_3 = (2, 0, 1, 3)$, $\mathbf{v}_4 = (0, 0, 0, 0)$.

Exercício 11 Em cada um dos seguintes casos, analise se vectores indicados são linearmente independentes:

a)
$$Em \mathbb{R}^4$$
, $\mathbf{v}_1 = (1, 1, 0, 0)$, $\mathbf{v}_2 = (1, 0, 1, 0)$, $\mathbf{v}_3 = (0, 0, 1, 1)$, $\mathbf{v}_4 = (0, 1, 0, 1)$.

b)
$$Em \mathbb{R}^3$$
, $\mathbf{v}_1 = (1, 1, 2)$, $\mathbf{v}_2 = (1, 2, 1)$, $\mathbf{v}_3 = (3, 1, 1)$.

Exercício 12 Quais dos seguintes conjuntos são constituídos por vectores linearmente independentes?

- a) $\{(1,1,1),(1,2,1)\}\subset \mathbb{R}^3$.
- b) $\{(1,1,1),(0,1,1),(0,0,1)\}\subset \mathbb{R}^3$.
- c) $\{(1,1,1),(2,2,0),(0,0,1)\}\subset \mathbb{R}^3$.
- d) $\{(2,46,6),(23,2,-123),(1,23,1),(1,10,1)\}\subset\mathbb{R}^3$.
- e) $\{(1,0,-1,0),(4,0,-3,1),(2,0,-1,1)\}\subset \mathbb{R}^4$.
- f) $\{(1,0,-1,0),(4,0,-3,1),(2,1,-1,1)\}\subset \mathbb{R}^4$.
- g) $\{(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)\}\subset \mathbb{R}^4$.
- h) $\{(1,23,1,14),(1,12,1,0),(24,-1,0,0),(11,19,17,-123),(101,119,1,1)\}\subset \mathbb{R}^4$.

Exercício 13 Calcule o único valor de a que faz com que os vectores de \mathbb{R}^4

$$\mathbf{v}_1 = (1, 0, 0, 2), \ \mathbf{v}_2 = (1, 0, 1, 0), \ \mathbf{v}_3 = (2, 0, 1, a)$$

sejam linearmente dependentes.

Exercício 14 Determine os únicos valores de α e β que fazem com que os vectores de \mathbb{R}^4

$$\overrightarrow{v_1} = (1,7,3,\beta), \quad \overrightarrow{v_2} = (1,7,4,7\beta) \quad e \quad \overrightarrow{v_3} = (1,\alpha,6,1)$$

sejam linearmente dependentes.

3 Bases de \mathbb{R}^n

 $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ diz-se uma base de \mathbb{R}^m se $\mathcal{L}(\mathcal{B}) = \mathbb{R}^m$ e se $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ forem vectores linearmente independentes.

As bases de \mathbb{R}^m possuem as seguintes características:

- Se $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ é uma base de \mathbb{R}^m então n = m. Isto é, todas as bases de \mathbb{R}^m possuem m vectores.
- Se $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, são vectores linearmente independentes então $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ é uma base de \mathbb{R}^n .
- Se $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ é um conjunto gerador de \mathbb{R}^n então $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ é uma base de \mathbb{R}^n .

3.1 Mudanças de base

Se $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ é uma base ordenada de \mathbb{R}^n , qualquer vector $\mathbf{x} \in \mathbb{R}^n$ pode ser escrito de um único modo como combinação linear dos vectores $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$. Isto é, existem escalares únicos $\alpha_1, \alpha_2, ..., \alpha_m$ tais que

$$\mathbf{x} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n.$$

Dizemos então que $(\alpha_1, \alpha_2, ..., \alpha_n)$ são as coordenadas de **x** na base ordenada \mathcal{B} :

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{bmatrix}.$$

Designando por $\mathcal{E}_n = (\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n)$ a base canónica de \mathbb{R}^n e considerando as habituais coordenadas do vector \mathbf{x} na base \mathcal{E}_n ,

$$[\mathbf{x}]_{\mathcal{E}_n} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix},$$

passamos de $[\mathbf{x}]_{\mathcal{B}}$ para $[\mathbf{x}]_{\mathcal{E}_n}$ através da multiplicação de uma matriz que representamos por $M_{\mathcal{E}_n \leftarrow \mathcal{B}}$ e a que chamamos **matriz de mudança de base**:

$$[\mathbf{x}]_{\mathcal{E}_n} = \mathbf{M}_{\mathcal{E}_n \leftarrow \mathcal{B}} [\mathbf{x}]_{\mathcal{B}}$$
.

Concretamente, se $\mathbf{v}_1 = (v_{11}, v_{21}, ..., v_{n1}), \mathbf{v}_2 = (v_{12}, v_{22}, ..., v_{n2}), ..., \mathbf{v}_n = (v_{1n}, v_{2n}, ..., v_{nn}),$ então

$$\mathbf{M}_{\mathcal{E}_n \leftarrow \mathcal{B}} = \begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \dots & \dots & \dots & \dots \\ v_{n1} & v_{n2} & \dots & v_{nn} \end{bmatrix}.$$

A passagem da base \mathcal{E}_n para a base \mathcal{B} será feita mediante a matriz

$$\mathbf{M}_{\mathcal{B}\leftarrow\mathcal{E}_n}=\mathbf{M}_{\mathcal{E}_n\leftarrow\mathcal{B}}^{-1}.$$

Dadas duas bases arbitrárias de \mathbb{R}^n , \mathcal{B}_1 e \mathcal{B}_2 a matriz de mudança de base de \mathcal{B}_1 para \mathcal{B}_2 , $\mathbf{M}_{\mathcal{B}_2 \leftarrow \mathcal{B}_1}$, pode ser obtida por intermédio da base canónica, \mathcal{E}_n , através do diagrama

$$\begin{array}{ccc} \mathcal{B}_1 \stackrel{M_{\mathcal{E}_n \leftarrow \mathcal{B}_1}}{\longrightarrow} \mathcal{E}_n \\ M_{\mathcal{B}_2 \leftarrow \mathcal{B}_1} \downarrow & \swarrow_{M_{\mathcal{B}_2 \leftarrow \mathcal{E}_n}} \\ \mathcal{B}_2 & \end{array},$$

a partir do qual facilmente se conclui que

$$\mathbf{M}_{\mathcal{B}_2 \leftarrow \mathcal{B}_1} = \mathbf{M}_{\mathcal{B}_2 \leftarrow \mathcal{E}_n} \mathbf{M}_{\mathcal{E}_n \leftarrow \mathcal{B}_1}.$$

3.2 Exercícios

Exercício 15 Mostre que qualquer base de \mathbb{R}^n tem n vectores.

Exercício 16 Determine quais dos seguintes conjuntos são bases de \mathbb{R}^2 :

- a) $\{(1,0),(0,1)\}$.
- b) $\{(1,1),(0,3)\}$.
- c) $\{(1,0),(0,3),(2,5)\}$.
- d) $\{(1,2)\}$.
- e) $\{(1,1),(0,0)\}.$

Exercício 17 Quais dos conjuntos indicados a seguir constituem bases de \mathbb{R}^3 ?

- a) $\{(1,1,1),(1,0,1),(1,1,0)\}$.
- b) $\{(1,1,1),(1,0,1),(1,2,1)\}$.
- c) $\{(3,0,0),(1,1,0),(2,2,2),(1,3,5)\}$.
- d) $\{(1,1,1),(2,2,0)\}$.

Exercício 18 Indique quais dos conjuntos seguintes são bases de \mathbb{R}^4 :

- a) $\{(1,0,1,0),(1,1,0,0),(0,0,1,0),(2,1,-1,0)\}$.
- b) $\{(1,3,0,0),(1,1,3,1),(2,2,3,2),(2,3,3,2),(2,4,1,2)\}$.
- c) $\{(2,0,0,2),(1,1,0,0),(0,0,2,3),(1,2,1,2)\}$.
- $d) \ \left\{ \left(2,0,0,2\right), \left(1,1,0,0\right), \left(1,2,1,2\right) \right\}.$

Exercício 19 Seja $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$ a base de \mathbb{R}^2 constituída pelos vectores

$$\mathbf{v}_1 = (1,0) \quad e \quad \mathbf{v}_2 = (1,1).$$

- a) Qual é o vector de \mathbb{R}^2 que na base \mathcal{B} tem coordenadas (2,2)?
- b) Calcule as coordenadas do vector (3,5) na base \mathcal{B} .
- c) Mediante uma matriz de mudança de base apropriada, calcule as coordenadas de um vector $(a,b) \in \mathbb{R}^2$ nesta base.

Exercício 20 Seja $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ a base de \mathbb{R}^3 constituída pelos vectores

$$\mathbf{v}_1 = (2, 0, 0), \quad \mathbf{v}_2 = (1, 1, 0) \quad e \quad \mathbf{v}_3 = (1, 1, 1).$$

- a) Qual é o vector de \mathbb{R}^3 que na base \mathcal{B} tem coordenadas (0,3,5)?
- b) Calcule as coordenadas do vector (2,0,1) na base \mathcal{B} .
- c) Mediante uma matriz de mudança de base apropriada, calcule as coordenadas de um vector $(a,b,c) \in \mathbb{R}^3$ nesta base.

Exercício 21 A é matriz de mudança de base se e só se A é invertível. Justifique.

Exercício 22 Quais das matrizes indicadas a seguir podem ser matrizes de mudança da base canónica, \mathcal{E}_2 , para uma outra base \mathcal{B} de \mathbb{R}^2 ? Nos casos afirmativos indique a respectiva base \mathcal{B} .

$$\mathbf{A} = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}. \quad \mathbf{B} = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}. \quad \mathbf{C} = \begin{bmatrix} -1 & 4 \\ 2 & -8 \end{bmatrix}. \quad \mathbf{D} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Exercício 23 Os vectores $\mathbf{u} = (-1, 2)$ e $\mathbf{v} = (2, 3)$ constituem uma base de \mathbb{R}^2 .

- a) Qual a matriz, $\mathbf{M}_{\mathcal{B}_1 \leftarrow \mathcal{E}_2}$, de mudança da base canónica, \mathcal{E}_2 , para $\mathcal{B}_1 = (\mathbf{u}, \mathbf{v})$?
- b) Se $\mathcal{B}_2 = (\mathbf{x}, \mathbf{y})$ for uma outra base de \mathbb{R}^2 cuja matriz de mudança da base canónica, \mathcal{E}_2 , para \mathcal{B}_2 é

$$\mathbf{M}_{\mathcal{B}_2 \leftarrow \mathcal{E}_2} = \begin{bmatrix} -2 & 4 \\ -5 & 1 \end{bmatrix},$$

 $determine \mathbf{x} \ e \mathbf{y}.$

c) Qual a matriz, $\mathbf{M}_{\mathcal{B}_2 \leftarrow \mathcal{B}_1}$, de mudança da base \mathcal{B}_1 para \mathcal{B}_2 ?

Exercício 24 Dois vectores \mathbf{u} e \mathbf{v} de \mathbb{R}^2 têm nas bases \mathcal{B}_1 e \mathcal{B}_2 , respectivamente, as seguintes coordenadas:

$$[\mathbf{u}]_{\mathcal{B}_1} = (1, -1), \ [\mathbf{u}]_{\mathcal{B}_2} = (0, 2), \ [\mathbf{v}]_{\mathcal{B}_1} = (1, 2), \ [\mathbf{v}]_{\mathcal{B}_2} = (3, 6).$$

Quais as matrizes de mudança de base: $\mathbf{M}_{\mathcal{B}_2 \leftarrow \mathcal{B}_1}$ e $\mathbf{M}_{\mathcal{B}_1 \leftarrow \mathcal{B}_2}$?

Exercício 25 Considere a base ordenada de \mathbb{R}^3 definida por $\mathcal{B}_U = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ onde

$$\mathbf{u}_1 = (0, 1, 1)$$
, $\mathbf{u}_2 = (1, 7, 7)$, $\mathbf{u}_3 = (0, 3, 4)$.

- a) Quais as coordenadas do vector (3, 1, -7) na base \mathcal{B}_U .
- b) Calcule $\mathbf{w} \in \mathbb{R}^3$ tal que as coordenadas de \mathbf{w} na base \mathcal{B}_U sejam dadas por $[\mathbf{w}]_{\mathcal{B}_U} = \begin{bmatrix} 0 \\ 3 \\ -7 \end{bmatrix}$.
- c) Quais as coordenadas do vector (3, 1, -7) na base $\mathcal{B}_V = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ formada pelos vectores $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ que satisfazem as igualdades

$$\mathbf{u}_1 = \mathbf{v}_2 + \mathbf{v}_3 \; , \qquad \mathbf{u}_2 = \mathbf{v}_1 - \mathbf{v}_3 \; , \qquad \mathbf{u}_3 = \mathbf{v}_1 - \mathbf{v}_2 .$$

4 Subespaços de \mathbb{R}^n

Um subconjunto não vazio $S \subset \mathbb{R}^n$ é dito um **subespaço** de \mathbb{R}^n se satisfizer as seguintes condições:

- 1) $\mathbf{x} + \mathbf{y} \in S$, $\forall \mathbf{x} \in S$, $\forall \mathbf{y} \in S$.
- 2) $\alpha \mathbf{x} \in S, \forall \mathbf{x} \in S, \forall \alpha \in \mathbb{R}.$

4.1 Bases e dimensão de subespaços

À semelhança do que sucede com \mathbb{R}^n , relativamente a um qualquer subespaço S de \mathbb{R}^n , podemos analogamente formular o conceito de base de S. Assim, $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_p\} \subset S$ diz-se uma **base de** S, se $\mathbf{b}_1, ..., \mathbf{b}_p$ forem vectores linearmente independentes e $\mathcal{L}(\mathcal{B}) = S$.

Mantêm-se as seguintes características das bases de \mathbb{R}^n :

- Todas as bases de S possuem o mesmo número de elementos. Esse número é chamado de **dimensão de** S e representado por dim S.
- Se $\dim S = p$, qualquer conjunto de p vectores de S que sejam linearmente independentes constitui uma base de S.
- Se dim S = p, qualquer conjunto de p vectores de S que sejam geradores de S, constitui uma base de S.

4.2 Exemplos

- 1. $S = \{0\}$ constitui um subespaço de \mathbb{R}^n , chamado **subespaço trivial**. Adoptaremos a convenção de que este subespaço é gerado pelo conjunto vazio. Isto é, convenciona-se que $\mathcal{L}(\emptyset) = \{0\}$. Assim, como o vector nulo é linearmente dependente, a única base do subespaço nulo é o conjunto \emptyset e por conseguinte, a sua dimensão é zero.
- 2. Se \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_p , são vectores de \mathbb{R}^n , $\mathcal{L}(\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\})$ é um subespaço de \mathbb{R}^n , dito agora **subespaço gerado** por $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$.
- 3. Se U e V são dois subespaços de \mathbb{R}^n , o conjunto $U \cap V$ também é um subespaço de \mathbb{R}^n , dito subespaço intersecção de U com V. O conjunto $U \cup V$ pode não ser um subespaço de \mathbb{R}^n . Por essa razão, considera-se o conjunto

$$U + V = \{ \mathbf{x} + \mathbf{y} : \mathbf{x} \in U \text{ e } \mathbf{y} \in V \},$$

o qual constitui um subespaço de \mathbb{R}^n , dito subespaço soma de U com V. É ele o menor subespaço de \mathbb{R}^n que contém $U \cup V$. As dimensões destes espaços relacionam-se através da fórmula

$$\dim (U+V) + \dim (U \cap V) = \dim U + \dim V.$$

4. Associados a uma matriz $m \times n$,

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

são considerados os seguintes subespaços:

(a) Se

$$\mathbf{a}_1 = (a_{11}, a_{21}, ..., a_{m1}), \ \mathbf{a}_2 = (a_{12}, a_{22}, ..., a_{m2}), ..., \mathbf{a}_n = (a_{1n}, a_{2n}, ..., a_{mn}),$$

são as colunas de \mathbf{A} , $\mathcal{L}(\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\})$ é um subespaço de \mathbb{R}^m , chamado de **subespaço das colunas da matriz** \mathbf{A} e representado por Col \mathbf{A} . Observemos que $\mathbf{y} \in \text{Col}\mathbf{A}$ se e só se existe $\mathbf{x} \in \mathbb{R}^n$ tal que $\mathbf{A}\mathbf{x} = \mathbf{y}$.

(b) Nul $\mathbf{A} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0}\}$ é um subespaço de \mathbb{R}^n , designado por **subespaço** nulo da matriz \mathbf{A} .

4.3 Característica e nulidade de uma matriz

Dada uma matriz \mathbf{A} $(m \times n)$, à dimensão do subespaço Col \mathbf{A} chama-se **característica de** \mathbf{A} , que designaremos por c (\mathbf{A}) :

$$c(\mathbf{A}) = \dim(\mathrm{Col}\mathbf{A}).$$

A dimensão do espaço nulo de A toma o nome de **nulidade de** A e será designada por n(A):

$$n(\mathbf{A}) = \dim(\mathrm{Nul}\mathbf{A}).$$

Característica e nulidade satisfazem as seguinte relação fundamental:

$$c(\mathbf{A}) + n(\mathbf{A}) = n.$$

4.4 Teorema da matriz inversa

Estes novos conceitos permitem-nos acrescentar ao teorema da matriz inversa o seguinte: Seja \mathbf{A} uma matriz $n \times n$. Então são equivalentes as seguintes afirmações:

- (1) A é invertível.
- (2) $\operatorname{Col} \mathbf{A} = \mathbb{R}^n$.
- (3) c(A) = n.
- (4) $NulA = \{0\}$.
- (5) n(A) = 0.

4.5 Exercícios

Exercício 26 Represente graficamente cada um dos seguintes subconjuntos do plano, identificando os que são subespaços de \mathbb{R}^2 :

a)
$$S = \{(x, y) \in \mathbb{R}^2 : x = 0\}$$
.

b)
$$S = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$$
.

c)
$$S = \{(x, y) \in \mathbb{R}^2 : x + y = 0 \ e \ x - y = 0\}$$
.

d)
$$S = \{(x, y) \in \mathbb{R}^2 : x + y = 1\}$$
.

e)
$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

Exercício 27 Represente graficamente cada um dos seguintes subconjuntos do espaço, identificando os que são subespaços de \mathbb{R}^3 :

a)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$$
.

b)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$$
.

c)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0 \ e \ x - y + 2z = 0 \}$$
.

d)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y = 1 \ e \ x - y + 2z = 0\}$$
.

e)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$
.

f)
$$S = \{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}$$
.

Exercício 28 Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad e \quad \mathbf{B} = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 4 \\ 1 & -3 & -3 \end{bmatrix}.$$

- a) $(1,3) \in \operatorname{Col} \mathbf{A}$?
- b) $(1,0,0) \in \text{Col} \mathbf{B}$?
- c) Qual a nulidade de A? E de B?
- d) Represente geometricamente ColA.

Exercício 29 Determine a característica de cada uma das matrizes indicadas a seguir. Que conclui sobre a sua invertibilidade?

a)
$$\begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$
. b) $\begin{bmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ -2 & 2 & 4 \end{bmatrix}$. c) $\begin{bmatrix} 1 & 3 & 2 \\ 5 & 1 & 1 \\ 6 & 4 & 3 \end{bmatrix}$.

Exercício 30 Para cada uma das matrizes indicadas a seguir, determine bases para o espaço das colunas e para o espaço nulo. Indique ainda a característica e a nulidade de cada uma delas.

a)
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
. b) $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. c) $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$.
d) $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}$. e) $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. f) $\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$.
g) $\mathbf{A} = \begin{bmatrix} 1 & 4 & -2 & 3 \\ 3 & 6 & 0 & 3 \\ 3 & 4 & 2 & 1 \end{bmatrix}$. h) $\mathbf{A} = \begin{bmatrix} 1 & 4 & 2 \\ 0 & 0 & 0 \\ -1 & -3 & -1 \\ 0 & 1 & 1 \end{bmatrix}$. i) $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 3 & 2 & 1 & 2 \\ 4 & 3 & 0 & 1 \end{bmatrix}$.

Exercício 31 Para $a, b, c \in \mathbb{R} \setminus \{0\}$ quaisquer, que valores deve assumir d para que a matriz

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]$$

tenha característica 1?

Exercício 32 $Com h \in \mathbb{R}$ seja

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -2 & 1 \\ -1 & 1 & 2 & 3 \\ 2 & -1 & -4 & h \end{bmatrix}$$

- a) Para que valores de h tem A característica máxima?
- b) Se h = -5 qual a nulidade de **A**?

Exercício 33 Seja A uma matriz 5×5 . É verdadeiro ou falso que:

- a) Se Nul $\mathbf{A} = \{0\}$, então $\mathbf{A} \mathbf{x} = \mathbf{b}$ tem uma e uma só solução, qualquer que seja $\mathbf{b} \in \mathbb{R}^5$.
- b) Se dim(Col**A**) = **4**, então $\mathbf{A} \mathbf{x} = \mathbf{b}$ é um sistema possível, qualquer que seja $\mathbf{b} \in \mathbb{R}^5$.
- c) Se $c(\mathbf{A}) = 3$, então $\mathbf{A} \mathbf{x} = \mathbf{0}$ é um sistema possível com 3 variáveis livres.
- d) Se $c(\mathbf{A}) = 3$, então $c(\mathbf{A}^T) = 2$.
- e) $Se\ c(\mathbf{A}) = 5$, então a matriz \mathbf{A} não é invertível.

Exercício 34 Para cada um dos seguintes subespaços S determine matrizes A e B tais que S = Nul A = Col B.

a)
$$S = \{(x, y) \in \mathbb{R}^2 : x + 2y = 0\}$$
.

b)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0 \ e \ y + 2z = 0 \}$$
.

c)
$$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y = 0 \ e \ y + 2z + 3w = 0 \}$$
.

d)
$$S = \mathcal{L}\{(3,1),(2,1)\}$$
.

e)
$$S = \mathcal{L}\{(3,1)\}$$

f)
$$S = \mathcal{L}\{(1,2,3),(0,1,4)\}.$$

g)
$$S = \mathcal{L}\{(1, 1, 2, 3), (1, 1, 3, 4)\}.$$

Exercício 35 Determine uma base e a dimensão de cada um dos seguintes subespaços:

a)
$$S = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$$
.

b)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + 2z = 0 \}.$$

c)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \ e \ x + y + 2z = 0 \}$$
.

d)
$$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0 \ e \ x + y + 2z = 0 \}$$
.

e)
$$S = \mathcal{L}\{(1,1),(2,1),(1,2)\}.$$

f)
$$S = \mathcal{L}\left\{ (1, -1, 1), (1, 1, 3), (0, 1, 1) \right\}$$
.

g)
$$S = \mathcal{L}\left\{ (1, 4, -2, 3), (3, 6, 0, 3), (3, 4, 2, 1) \right\}.$$

Exercício 36 $Em \mathbb{R}^4$ considere o subespaço

$$S = \mathcal{L}\left\{ \left(1, 2, 3, 4\right), \left(2, 5, 6, 8\right), \left(1, 4, 3, 4\right), \left(1, 2, 4, 5\right) \right\}.$$

- a) Determine duas bases distintas de S.
- b) Mostre que $(0, -2, 3, 3) \in S$.
- c) Calcule as coordenadas de (0, -2, 3, 3) em cada uma das bases determinadas na alínea a).

Exercício 37 Relativamente aos subespaços de \mathbb{R}^3 descritos a seguir, determine uma base e a sua dimensão.

a)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \} \cap \{(x, y, z) \in \mathbb{R}^3 : x + y - 3z = 0 \}$$
.

b)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \} \cap \mathcal{L}(\{(1, 1, 1), (0, 1, 1)\}).$$

c)
$$S = \mathcal{L}(\{(1,0,0),(0,0,1)\}) \cap \mathcal{L}(\{(1,1,1),(0,1,1)\})$$
.

d)
$$S = \mathcal{L}(\{(1,0,0),(0,0,1)\}) + \mathcal{L}(\{(1,1,1),(0,1,1)\}).$$

e)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\} + \mathcal{L}(\{(1, 1, 1), (0, 1, 1)\}).$$

f)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \} + \{(x, y, z) \in \mathbb{R}^3 : x + y - 3z = 0 \}.$$

Exercício 38 Considere os seguintes subespaços U e V de \mathbb{R}^3 e determine uma base do subespaço soma U+V e uma base do subespaço intersecção $U\cap V$.

a)
$$U = \{(0,0,0)\}\ e\ V = \{(0,0,0)\}\ .$$

b)
$$U = \{(0,0,0)\}\ e\ V = \mathcal{L}\{(1,1,1)\}.$$

c)
$$U = \mathcal{L}\{(1,0,0)\}\ e\ V = \mathcal{L}\{(0,1,0)\}.$$

d)
$$U = \mathcal{L}\{(1,0,0)\}\ e\ V = \mathcal{L}\{(1,0,0)\}.$$

e)
$$U = \mathcal{L}\{(1,0,0)\}\ e\ V = \mathcal{L}\{(0,1,0),(0,0,1)\}.$$

f)
$$U = \mathcal{L}\{(1,0,0)\}\ e\ V = \mathcal{L}\{(0,1,0),(1,1,0)\}.$$

Exercício 39 Considere os seguintes subespaços U e V de \mathbb{R}^4 e determine uma base do subespaço soma U+V e uma base do subespaço intersecção $U\cap V$.

a)
$$U = \mathcal{L}\left\{\left(0, 1, -1, 1\right), \left(1, 0, 1, 0\right), \left(1, 1, 0, 1\right)\right\} \ e \ V = \mathcal{L}\left\{\left(0, 1, 0, 0\right), \left(1, 0, 0, 0\right), \left(1, 1, 0, 0\right)\right\}.$$

b)
$$U = \mathcal{L}\left\{\left(0, 1, -1, 1\right), \left(1, 0, 1, 0\right), \left(1, 1, 0, 1\right)\right\} \ e \ V = \mathcal{L}\left\{\left(0, 1, 0, 0\right), \left(1, 0, 0, 0\right), \left(1, 2, -1, 1\right)\right\}.$$

c)
$$U = \mathcal{L}\left\{\left(1,0,0,0\right),\left(0,1,0,0\right),\left(1,1,0,1\right)\right\} \ e \ V = \mathcal{L}\left\{\left(1,1,1,0\right),\left(1,1,-1,0\right),\left(0,0,0,1\right)\right\}.$$

$$\mathrm{d})\ U = \mathcal{L}\left\{\left(1,1,0,0\right),\left(0,1,1,0\right),\left(0,0,1,1\right)\right\}\ e\ V = \mathcal{L}\left\{\left(1,0,-1,0\right),\left(0,1,0,-1\right),\left(1,1,1,1\right)\right\}.$$

e)
$$U = \mathcal{L}\{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)\}\ e\ V = \mathcal{L}\{(1, 0, -1, 0), (0, 1, 0, -1)\}.$$

f)
$$U = \mathcal{L}\{(1,1,0,0),(0,1,1,0),(0,0,1,1)\}\ e\ V = \mathcal{L}\{(1,0,-1,1),(0,1,0,-2)\}.$$

g)
$$U = \mathcal{L}\left\{(1, 1, 0, 0), (1, 1, 1, 1), (0, 0, 1, 1)\right\} \ e \ V = \mathcal{L}\left\{(1, 0, 1, 0), (2, 1, 2, 1)\right\}.$$

5 Espaços e subespaços vectoriais

Um conjunto $E \neq \emptyset$ diz-se um **espaço vectorial** sobre $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , se estiver munido de duas operações, uma entre elementos de E a que chamaremos soma e outra entre elementos de E e elementos de \mathbb{K} a que chamaremos produto escalar,

$$+: \mathbf{u}, \mathbf{v} \in E \to \mathbf{u} + \mathbf{v}, \quad : \alpha \in \mathbb{K}, \mathbf{v} \in E \to \alpha.\mathbf{v},$$

verificando os seguintes axiomas:

- i) Associatividade da soma: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}), \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in E$.
- ii) Comutatividade da soma: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}, \forall \mathbf{u}, \mathbf{v} \in E$.
- iii) Existência de elemento neutro ou zero: $\mathbf{u} + \mathbf{0} = \mathbf{u}$, $\forall \mathbf{u} \in E$.
- iv) Existência de elemento simétrico : $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}, \forall \mathbf{u} \in E$.
- v) Distributividade do produto por escalares em relação à soma em $E: \alpha.(\mathbf{u} + \mathbf{v}) = \alpha.\mathbf{u} + \alpha.\mathbf{v}, \forall \mathbf{u}, \mathbf{v} \in E, \forall \alpha \in \mathbb{K}.$
- vi) Distributividade do produto por escalar em relação à adição em \mathbb{K} : $(\alpha + \beta) \cdot \mathbf{u} = \alpha \cdot \mathbf{u} + \beta \cdot \mathbf{u}, \forall \mathbf{u} \in E, \forall \alpha, \beta \in \mathbb{K}$.
- vii) Associatividade entre o produto por escalar e a multiplicação em \mathbb{K} : α . $(\beta . \mathbf{u}) = (\alpha \beta) . \mathbf{u}$, $\forall \mathbf{u} \in E, \forall \alpha, \beta \in \mathbb{K}$.
- viii) A unidade de \mathbb{K} como elemento neutro do produto por escalares: $1.\mathbf{u} = \mathbf{u}, \forall \mathbf{u} \in E$.

O primeiro exemplo de espaço vectorial (sobre \mathbb{R}) que nos pode ocorrer é o de \mathbb{R}^n . Podemos mesmo observar ser um espaço vectorial algo com uma estrutura algébrica idêntica à de \mathbb{R}^n . Daí que os diversos conceitos apresentados relativamente a \mathbb{R}^n possam analogamente ser formulados num qualquer espaço vectorial E sobre \mathbb{K} . Muito brevemente recordamo-los seguidamente:

- Um subconjunto não vazio $S \subset E$ é dito um subespaço de E se satisfizer as seguintes condições:
 - 1) $\mathbf{x} + \mathbf{y} \in S$, $\forall \mathbf{x} \in S$, $\forall \mathbf{y} \in S$.
 - 2) $\alpha \mathbf{x} \in S, \forall \mathbf{x} \in S, \forall \alpha \in \mathbb{K}.$

Nestas condições, S verifica todos os axiomas i)-viii), constituindo ele próprio um espaço vectorial sobre \mathbb{K} e em particular $\mathbf{0} \in S$.

• Dados $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, elementos de $E, \mathbf{v} \in E$ diz-se uma combinação linear de $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, se existirem escalares $x_1, ..., x_n \in \mathbb{K}$ tais que

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n = \mathbf{v}.$$

O conjunto de todas as combinações lineares de $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ designa-se por $\mathcal{L}(\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\})$ e forma o subespaço de E gerado por $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$.

• Os elementos de E, \mathbf{v}_1 , \mathbf{v}_2 ,..., \mathbf{v}_n , dizem-se linearmente dependentes sempre que um deles é combinação linear dos restantes. Em caso contrário diremos que \mathbf{v}_1 , \mathbf{v}_2 ,..., \mathbf{v}_n , são linearmente independentes; \mathbf{v}_1 , \mathbf{v}_2 ,..., \mathbf{v}_n são linearmente independentes se e só se

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n = \mathbf{0} \Leftrightarrow x_1 = x_2 = \dots = x_n = 0.$$

• $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ diz-se uma base de E se $\mathcal{L}(\mathcal{B}) = E$ e se $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ forem vectores linearmente independentes.

- Teorema de Steinitz. Dado um espaço vectorial E sobre \mathbb{K} :
 - a) Se $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ é uma base de E, então todas as bases de E possuem n elementos; n diz-se a dimensão de E (dim E = n).
 - b) Se dim = n e $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, são vectores linearmente independentes então $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ é uma base de E.
 - c) Se dim S=n, e $\mathcal{L}(\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n\})=E$ então $\mathcal{B}=\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n\}$ é uma base de E.

5.1 Exemplos

Vejamos alguns exemplos significativos de espaços vectoriais.

1. $\mathbb{C}^n = \{(z_1, ..., z_n) : z_1, ..., z_n \in \mathbb{C}\}$ munido de soma e de produto escalar análogos aos definidos para \mathbb{R}^n , constitui um espaço vectorial sobre \mathbb{R} . Facilmente se verifica que

$$\mathcal{B} = \{(1, 0, ..., 0), ..., (0, ..., 0, 1), (i, 0, ..., 0), ..., (0, ..., 0, i)\}$$

é uma base de \mathbb{C}^n enquanto espaço vectorial real. A sua dimensão será pois 2n.

2. Mas do mesmo modo \mathbb{C}^n também constitui um espaço vectorial sobre \mathbb{C} , tendo como base

$$\mathcal{B} = \{(1, 0, ..., 0), ..., (0, ..., 0, 1)\}.$$

A sua dimensão será pois igual a n.

3. Designemos por $\mathbb{M}_{m\times n}(\mathbb{R})$ o conjunto de todas as matrizes reais $m\times n$. Munido da soma de matrizes e do produto de um escalar real por uma matriz, obtemos um espaço vectorial sobre \mathbb{R} de dimensão mn: dim $\mathbb{M}_{m\times n}(\mathbb{R}) = mn$. Por exemplo $\mathbb{M}_{2\times 2}(\mathbb{R})$ tem como base

$$\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\}$$

 $e \dim \mathbb{M}_{2\times 2}(\mathbb{R}) = 4.$

- 4. $\mathbb{M}_{m\times n}(\mathbb{C})$, conjunto das matrizes complexas $m\times n$, munido das mesmas operações de soma de matrizes e de produto de um escalar complexo por uma matriz, forma um espaço vectorial sobre \mathbb{C} , cuja dimensão é igualmente mn.
- 5. Seja $\mathbb{F}(\mathbb{R})$ o conjunto de todas as funções reais tendo como domínio \mathbb{R} . Consideremos a soma de duas funções f_1 e f_2 como sendo a função $f_1 + f_2$ dada por

$$(f_1 + f_2)(t) = f_1(t) + f_2(t), \quad \forall t \in \mathbb{R},$$

e o produto de um escalar real α por uma função f como sendo a função αf tal que

$$(\alpha f)(t) = \alpha f(t), \quad \forall t \in \mathbb{R}.$$

Munido destas operações $\mathbb{F}(\mathbb{R})$ constitui um espaço vectorial sobre \mathbb{R} . Contudo, $\mathbb{F}(\mathbb{R})$ não admite nenhuma base finita, dizendo-se por isso de um **espaço de dimensão infinita**.

6. Facilmente se observa que o conjunto dos polinómios de coeficientes reais com grau não superior a n,

$$\mathbb{P}_n(\mathbb{R}) = \{ a_0 + a_1 t + ... + a_n t^n : a_0, a_1, ..., a_n \in \mathbb{R} \}$$

é um subespaço vectorial de $\mathbb{F}(\mathbb{R})$. Ao contrário de $\mathbb{F}(\mathbb{R})$, $\mathbb{P}_n(\mathbb{R})$ tem dimensão finita, pois

$$\mathcal{P}_n = \{1, t, ..., t^n\}$$

constitui uma base de $\mathbb{P}_n(\mathbb{R})$, sendo portanto dim $\mathbb{P}_n(\mathbb{R}) = n + 1$.

7. Também o conjunto de todos os polinómios de coeficientes reais, independentemente do seu grau,

$$\mathbb{P}(\mathbb{R}) = \{a_0 + a_1 t + ... + a_n t^n : n \in \mathbb{N}, \ a_0, a_1, ..., a_n \in \mathbb{R}\},\$$

constitui um subespaço vectorial de $\mathbb{F}(\mathbb{R})$, igualmente de dimensão infinita.

5.2 Exercícios

Exercício 40 Indique se os seguintes subconjuntos do espaço vectorial \mathbb{P}_3 (polinómios com grau menor ou igual a 3) constituem subespaços de \mathbb{P}_3 :

$$U = \{p(t) \in \mathbb{P}_3 : p(0) = p(1)\}.$$

$$V = \{p(t) \in \mathbb{P}_3 : p(-1) = p(0) = p(1) = 0\}.$$

$$W = \{a + bt + ct^2 + dt^3 : a, b, c, d \in \mathbb{Z}\}.$$

Exercício 41 O subconjunto do espaço vectorial \mathbb{P}_2 (dos polinómios com grau ≤ 2),

$$U = \left\{ p\left(t\right) \in \mathbb{P}_2 : p\left(0\right) = a \right\},\,$$

é um subespaço de \mathbb{P}_2 para qualquer valor de $a \in \mathbb{R}$?

Exercício 42 Relativamente ao espaço vectorial, \mathbb{F} , das funções $f : \mathbb{R} \to \mathbb{R}$, indique quais dos seguintes conjuntos são subespaços de \mathbb{F} :

$$U = \{ f \in \mathbb{F} : f(t) + f(-t) = 0, \ \forall t \in \mathbb{R} \}.$$

$$V = \{ f \in \mathbb{F} : f(t) = \cos(\pi t), \ \forall t \in \mathbb{Z} \}.$$

$$W = \{ f \in \mathbb{F} : f(t) = \sin(\pi t), \ \forall t \in \mathbb{Z} \}.$$

$$X = \{ f \in \mathbb{F} : f \ \acute{e} \ differenciável \ e \ f'(t) = f(t), \ \forall t \in \mathbb{R} \}.$$

Exercício 43 Seja $\mathbb{M}_{n\times n}(\mathbb{R})$ o espaço vectorial das matrizes reais $n\times n$. Quais dos seguintes subconjuntos de $\mathbb{M}_{n\times n}(\mathbb{R})$ são subespaços de $\mathbb{M}_{n\times n}(\mathbb{R})$?

$$U = \{ \mathbf{A} \in \mathbb{M}_{n \times n} (\mathbb{R}) : \mathbf{A} \text{ \'e invert\'ivel} \}.$$

$$V = \{ \mathbf{A} \in \mathbb{M}_{n \times n} (\mathbb{R}) : \mathbf{A} \text{ \~n\~ao \'e invert\'ivel} \}.$$

$$W = \{ \mathbf{A} \in \mathbb{M}_{n \times n} (\mathbb{R}) : \text{tr } \mathbf{A} = 0 \}.$$

$$X = \{ \mathbf{A} \in \mathbb{M}_{n \times n} (\mathbb{R}) : \mathbf{A} \text{ \'e sim\'etrica} \}.$$

$$Y = \{ \mathbf{A} \in \mathbb{M}_{n \times n} (\mathbb{R}) : \mathbf{A} \text{ \'e de Markov} \}.$$

Exercício 44 Considere em \mathbb{P}_2 o conjunto de polinómios $G = \{1 + t, 1 - t^2\}$.

- a) Mostre que o polinómio $t + t^2$ é combinação linear dos elementos de G.
- b) Mostre que o polinómio t não é combinação linear dos elementos de G.
- c) G gera \mathbb{P}_2 ?
- d) Determine a forma geral dos polinómios $p(t) \in \mathcal{L}(G)$.

Exercício 45 Mostre que os polinómios

$$p_1(t) = 1 + 2t - t^2$$
, $p_2(t) = 3 + t^2$, $p_3(t) = 5 + 4t - t^2$, $p_4(t) = -2 + 2t - t^2$
geram \mathbb{P}_2 .

Exercício 46 Mostre que no espaço vectorial, \mathbb{F} , das funções reais de variável real, cada um dos seguintes conjuntos é constituído por funções linearmente dependentes.

a)
$$\{2, \sin^2(t), \cos^2(t)\}$$
 b) $\{\cos(2t), \sin^2(t), \cos^2(t)\}$

c)
$$\{e^t, e^{-t}, \cosh(t)\}$$
 d) $\{1, t, t^2, (t+1)^2\}$.

Exercício 47 Dadas n funções $f_1 : \mathbb{R} \to \mathbb{R}$, $f_2 : \mathbb{R} \to \mathbb{R}$, ..., $f_n : \mathbb{R} \to \mathbb{R}$, do espaço vectorial, \mathbb{F} , das funções reais de variável real, mostre que se existirem números $t_1, t_2, ..., t_n \in \mathbb{R}$ tais que a matriz

$$\begin{bmatrix} f_{1}(t_{1}) & f_{2}(t_{1}) & \dots & f_{n}(t_{1}) \\ f_{1}(t_{2}) & f_{2}(t_{2}) & \dots & f_{n}(t_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}(t_{n}) & f_{2}(t_{n}) & \dots & f_{n}(t_{n}) \end{bmatrix}$$

é invertível, então $f_1, f_2,..., f_n$ são linearmente independentes.

Exercício 48 Aplicando o exercício anterior, mostre que os conjuntos

$$\{1, t, e^t\} \ e \ \{\sin(t), \cos(t), t\cos(t)\}$$

são constituídos por funções linearmente independentes. (Sugestão: no primeiro caso faça $t_1=0,\,t_2=1,\,t_3=-1;$ no segundo faça $t_1=0,\,t_2=\pi/2,\,t_3=\pi$).

Exercício 49 Seja $\mathcal{B} = (p_1, p_2, p_3)$ o subconjunto de \mathbb{P}_2 constituído pelos polinómios

$$p_1(t) = 1 + t$$
, $p_2(t) = 1 + 2t \ e \ p_3(t) = t^2$.

- a) Mostre que \mathcal{B} é uma base de \mathbb{P}_2 .
- b) Qual é o polinómio que nesta base tem coordenadas (1, 3, -2)?
- c) Determine as coordenadas do polinómio $2 + 2t t^2$ na base \mathcal{B} .
- d) Mediante uma matriz de mudança de base apropriada, calcule as coordenadas de um polinómio $a + bt + ct^2$ na base \mathcal{B} .

Exercício 50 Considere o espaço vectorial \mathbb{P}_3 e a sua base canónica $\mathcal{P}_3 = (1, t, t^2, t^3)$.

- a) Mostre que $\mathcal{B} = (1 + t, 1 t t^2, t^2, t^3)$ é também uma base de \mathbb{P}_3 .
- b) Qual a matriz de mudança de base de \mathcal{P}_3 para \mathcal{B} ?
- c) Quais as coordenadas do polinómio $1 2t + t^3$ na base \mathcal{B} ?

Exercício 51 Sejam U e V subespaços de um mesmo espaço vectorial E.

- a) Mostre que intersecção $U \cap V$ é um subespaço de E.
- b) Dê exemplos em que:
 - i) A união $U \cup V$ \acute{e} um subespaço de E.
 - $\ddot{\mathbf{n}}$) A união $U \cup V$ não $\acute{\mathbf{e}}$ um subespaço de E.

Exercício 52 Sejam U e V subespaços de um espaço vectorial E e considere-se o subconjunto soma

$$U + V \stackrel{def}{=} \{ \mathbf{u} + \mathbf{v} : \mathbf{u} \in U \ e \ \mathbf{v} \in V \}.$$

Mostre que:

- a) O conjunto $U \cup V$ está contido no conjunto U + V.
- b) $A soma U + V \acute{e} um subespaço de E$.
- c) Se W for um subespaço de E que contém $U \cup V$, então W também contém U + V.
- d) A soma U + V é o menor subespaço de E que contém $U \cup V$.

Exercício 53 Determine uma base para cada um dos sequintes subespaços de \mathbb{P}_3 :

- a) $S = \{p(t) \in \mathbb{P}_3 : p(0) = 0\}$.
- b) $S = \{p(t) \in \mathbb{P}_3 : p(1) = 0\}$.
- c) $S = \{p(t) \in \mathbb{P}_3 : p(1) = p(0)\}$.

Exercício 54 Considere o espaço vectorial $\mathbb{M}_{m \times n}(\mathbb{R})$, das matrizes reais $m \times n$.

- a) Mostre que $S = \{ \mathbf{A} \in \mathbb{M}_{2\times 3}(\mathbb{R}) : [1 \ 1] \mathbf{A} = 0 \}$ é um subespaço de $\mathbb{M}_{2\times 3}(\mathbb{R})$. Determine uma base deste subespaço.
- b) Mostre que o conjunto $S = \{ \mathbf{A} \in \mathbb{M}_{2\times 2}(\mathbb{R}) : \mathbf{A} = \mathbf{A}^T \}$ (das matrizes que são simétricas) é um subespaço de $\mathbb{M}_{2\times 2}(\mathbb{R})$ e determine uma sua base.
- c) Mostre que o conjunto $S = \{ \mathbf{A} = [a_{ij}] \in \mathbb{M}_{3\times 3}(\mathbb{R}) : a_{ij} = 0 \text{ se } i+j \text{ \'e par} \} \text{ \'e um subespaço de } \mathbb{M}_{3\times 3}(\mathbb{R}) \text{ . Encontre uma base para este subespaço.}$

Exercício 55 No espaço vectorial $C^2(\mathbb{R})$ das funções reais de variável real que são duas vezes diferenciáveis, considere o subconjunto

$$S = \{ f \in C^2(\mathbb{R}) : f'' - 2f' + f = 0 \}.$$

- a) Mostre que S é um subespaço de $C^{2}\left(\mathbb{R}\right) .$
- b) Mostre que o conjunto $\{e^t, te^t\}$ é uma base de S. (Sugestão: mostre que se $f \in S$, então $f(t)e^{-t}$ é um polinómio com grau ≤ 1).
- c) Tendo em conta a alínea anterior mostre que, dados a e $b \in \mathbb{R}$, existe uma e uma só função $f \in S$ tal que f(0) = a e f'(0) = b.

6 Soluções

- 1) b) Não. c) Não. d) $\mathcal{L}(G) = \{(a, b) \in \mathbb{R}^2 : a = b\}$.
- 2) c) G não gera \mathbb{R}^3 . d) $L(G) = \{(a, b, c) \in \mathbb{R}^3 : b = c\}$.
- 3) c) (2,2,7,8) = (3-3w)(1,2,3,4) 2(1,3,3,4) + (1+2w)(1,2,4,4) + w(1,2,1,4).
- 4) a) Não. b) Sim c) Não. d) Não.
- 5) a) Sim. b) Sim. c) Não. d) Não.
- 6) a = 3.
- 7) (a, b) = (0, 1).
- 8) a = 1.
- 9) $\alpha = 4 \text{ e } \beta = -11.$
- 11) a) L.D. b) L.I.
- 12)a) L.I. b) L.I. c) L.D. d) L.D. e) L.D. f) L.I. g) L.I. h) L.D.
- 13) a = 2.
- $14)\alpha = 7 e \beta = 1/19.$
- 16) a) Sim. b) Sim. c) Não. d) Não. e) Não.
- 17) a) É base de \mathbb{R}^3 . b) Não é base de \mathbb{R}^3 . c) Não é base de \mathbb{R}^3 . d) Não é base de \mathbb{R}^3 .
- 18) a) Não é base de \mathbb{R}^4 . b) Não é base de \mathbb{R}^4 . c) É base de \mathbb{R}^4 . d) Não é base de \mathbb{R}^4 .
- 19) a) (4,2). b) (-2,5). c) (a-b,b).
- 20) a) (8, 8, 5). b) (1, -1, 1). c) $(\frac{1}{2}a \frac{1}{2}b, b c, c)$.
- 22) $\mathbf{A}, \mathcal{B} = \{(1/5,0), (0,1/4)\}$. $\mathbf{B}, \mathcal{B} = \{(-1,3), (1,-2)\}$. $\mathbf{D}, \mathcal{B} = \{(1/2,-1/2), (1/2,1/2)\}$. \mathbf{C} não é matriz de mudança de base.

23) a)
$$\mathbf{M}_{\mathcal{B}_1 \leftarrow \mathcal{E}_2} = \begin{bmatrix} -3/7 & 2/7 \\ 2/7 & 1/7 \end{bmatrix}$$
.

b)
$$\mathbf{x} = (1/18, 5/18), \mathbf{y} = (-2/9, -1/9).$$

c)
$$\mathbf{M}_{\mathcal{B}_2 \leftarrow \mathcal{B}_1} = \begin{bmatrix} 10 & 8 \\ 7 & -7 \end{bmatrix}$$
.

24)
$$\mathbf{M}_{\mathcal{B}_2 \leftarrow \mathcal{B}_1} = \begin{bmatrix} 1 & 1 \\ 10/3 & 4/3 \end{bmatrix} e \mathbf{M}_{\mathcal{B}_1 \leftarrow \mathcal{B}_2} = \begin{bmatrix} -2/3 & 1/2 \\ 5/3 & -1/2 \end{bmatrix}.$$

25 a)
$$[(3,1,-7)]_{\mathcal{B}_U} = \begin{bmatrix} 4 \\ 3 \\ -8 \end{bmatrix}$$
 b) $\mathbf{w} = (3,0,-7)$ c) $[(3,1,-7)]_{\mathcal{B}_V} = \begin{bmatrix} -5 \\ 12 \\ 1 \end{bmatrix}$.

- 26) a) É subespaço de \mathbb{R}^2 . b) É subespaço de \mathbb{R}^2 . c) É subespaço de \mathbb{R}^2 .
 - d) Não é subespaço de \mathbb{R}^2 . e) Não é subespaço de \mathbb{R}^2 .
- 27) a) É subespaço de \mathbb{R}^3 . b) Não é subespaço de \mathbb{R}^3 . c) É subespaço de \mathbb{R}^3 .
 - d) Não é subespaço de \mathbb{R}^3 . e) Não é subespaço de \mathbb{R}^3 . f) Não é subespaço de \mathbb{R}^3 .

- 28) a) Não. b) Sim. c) 1 e 0. d) Recta y = x.
- 29) a) 3; invertível. b) 2; não invertível. c) 2; não invertível.
- 30) a) $\{1\}$ é base de Col**A**, c(**A**) = 1, $\{(0,1)\}$ é base de Nul**A**, n(**A**) = 1.
 - b) $\{(1,1)\}$ é base de Col \mathbf{A} , c $(\mathbf{A})=1$, $\{(-1,1)\}$ é base de Nul \mathbf{A} , n $(\mathbf{A})=1$.
 - c) $\{(1,1),(2,1)\}$ é base de Col \mathbf{A} , c $(\mathbf{A})=2$, $\{(-3,1,1)\}$ é base de Nul \mathbf{A} , n $(\mathbf{A})=1$.
 - d) $\{(1,2,1),(1,1,2)\}$ é base de $Col\mathbf{A}=$, $c(\mathbf{A})=2$, \varnothing é base de $Nul\mathbf{A}$, $n(\mathbf{A})=0$.
 - e) $\{(1,1,1),(0,1,1),(0,0,1)\}$ é base de Col \mathbf{A} , c $(\mathbf{A})=3$, \varnothing é base de NulA, n $(\mathbf{A})=0$.
 - f) $\{(1,1,0),(-1,1,1)\}$ é base de Col $\mathbf{A}=$, c $(\mathbf{A})=2$, $\{(-2,-1,1)\}$ é base de Nul \mathbf{A} , n $(\mathbf{A})=1$.
 - g) $\{(1,3,3),(4,6,4)\}$ é base de $Col\mathbf{A}=$, $c(\mathbf{A})=2$, $\{(-2,1,1,0),(1,-1,0,1)\}$ é base de $Nul\mathbf{A},$ $n(\mathbf{A})=2$.
 - h) $\{(1,0,-1,0),(4,0,-3,1)\}$ é base de Col**A**, c (**A**) = 2, $\{(2,-1,1)\}$ é base de NulA, n (A) = 1.
 - i) $\{(1,2,3,4),(2,1,2,3),(3,2,1,0)\}$ é base de Col ${\bf A}$, c $({\bf A})=3$, $\{(-1,0,-5,4)\}$ é base de Nul ${\bf A}=$, n $({\bf A})=1$.
- 31) d = bc/a.
- 32) a) $h \neq -5$. b) $n(\mathbf{A}) = 2$.
- 33) a) V. b) F. c) F. d) F. e) F.

34 a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, b) $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$,

c)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 2 & 3 \\ -2 & -3 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ d) $\mathbf{A} = \begin{bmatrix} 0 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, e) $\mathbf{A} = \begin{bmatrix} 1 & -3 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$,

f)
$$\mathbf{A} = \begin{bmatrix} 5 & -4 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 4 \end{bmatrix}$, g) $\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & 1 & -1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$.

- 35) a) $\{(-1,1)\}$ é uma base de S, dim S=1.
 - b) $\{(-1,1,0),(-2,0,1)\}$ é uma base de S, dim S=2.
 - c) $\{(-1,1,0)\}$ é uma base de $S,\,\dim S=1.$

- d) $\{(-1,1,0,0),(-1,-1,1,1)\}$ é uma base de S, dim S=2.
- e) $\{(1,1),(1,2)\}$ é uma base de S, dim S=2.
- f) $\{(1,-1,1),(1,1,3)\}$ é uma base de S, dim S=2.
- g) $\{(1,4,-2,3),(3,6,0,3)\}$ é uma base de S, dim S=2.
- 36) a) Por exemplo $\{(1,2,3,4),(2,5,6,8),(1,2,4,5)\}$ e $\{(1,0,0,1),(0,1,0,0),(0,0,1,1)\}$. c)

Na base ((1,2,3,4),(2,5,6,8),(1,2,4,5)) o vector (0,-2,3,3) tem coordenadas (1,-2,3).

Na base ((1,0,0,1),(0,1,0,0),(0,0,1,1)) o vector (0,-2,3,3) tem coordenadas (0,-2,3).

- 37) a) $\{(-1,1,0)\}$ é uma base de S, dim S=1.
 - b) $\{(-2,1,1)\}$ é uma base de S, dim S=1.
 - c) $\{(1,0,0)\}$ é uma base de S, dim S=1.
 - d) $\{(1,0,0),(0,0,1),(1,1,1)\}$ é uma base de S, dim(S)=3.
 - e) $\{(1,1,1),(0,1,1),(-1,1,0)\}$ é uma base de S, dim S=3.
 - f) $\{(-1,1,0),(-1,0,1),(3,0,1)\}$ é uma base de S, dim S=3.
- 38) a) A base de $U \cap V$ e de U + V é o conjunto vazio.
 - b) A base de $U \cap V$ é o conjunto vazio. Uma base de U + V é $\{(1,1,1)\}$.
 - c) A base de $U \cap V$ é o conjunto vazio. Uma base de U + V é $\{(1,0,0), (0,1,0)\}$.
 - d) Uma base de $U \cap V$ e de U + V é $\{(1,0,0)\}.$
 - e) A base de $U \cap V$ é o conjunto vazio. Uma base de U + V é $\{(1,0,0), (0,1,0), (0,0,1)\}$.
 - f) A base de $U \cap V$ é $\{(1,0,0)\}$. Uma base de U + V é $\{(1,0,0), (0,1,0)\}$.
- 39) a) A base de $U \cap V$ é o conjunto vazio.

Uma base de $U + V \in \{(0, 1, -1, 1), (1, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)\}.$

b) Uma base de $U \cap V$ é $\{(0, -1, 1, -1)\}$.

Uma base de U+V é $\{(0,1,-1,1),(1,0,1,0),(0,1,0,0),(1,0,0,0)\}.$

c) Uma base de $U \cap V$ é $\{(1,1,0,0),(0,0,0,1)\}.$

Uma base de U+V é $\{(1,0,0,0),(0,1,0,0),(1,1,0,1),(1,1,1,0)\}.$

d) Uma base de $U \cap V$ é $\{(1,0,-1,0),(0,1,0,-1),(1,1,1,1)\}.$

Uma base de U+V é $\{(1,1,0,0),(0,1,1,0),(0,0,1,1)\}.$

e) Uma base de $U \cap V$ é $\{(1,0,-1,0),(0,1,0,-1)\}.$

Uma base de U + V é $\{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)\}.$

f) Uma base de $U \cap V$ é $\{(1,1,-1,-1)\}.$

Uma base de U + V é $\{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 0, -1, 1)\}.$

g) Uma base de $U \cap V$ é $\{(1,1,1,1)\}$.

Uma base de U + V é $\{(1, 1, 0, 0), (1, 1, 1, 1), (1, 0, 1, 0)\}.$

- 40) U e V são subespaços de \mathbb{P}_3 . W não.
- 41) U é subespaço de \mathbb{P}_3 se e só se a=0.
- 42) U, W e X são subespaços de $\mathbb{F}. V$ não.

43)
$$W$$
 e X são subespaços de $\mathbb{M}_{n\times n}(\mathbb{R})$. U, V e Y não.

44) c)
$$G$$
 não gera \mathbb{P}_2 . d) $\mathcal{L}(G) = \{b - c + bt + ct^2 : b, c \in \mathbb{R}\}$.

49) b)
$$4 + 7t - 2t^2$$
; c) $(2, 0, -1)$; d) $(2a - b, b - a, c)$.

50) b)
$$\mathbf{M}_{\mathcal{P}_3 \to \mathcal{B}} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & 0 & 0 \\ 1/2 & -1/2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
.

c)
$$(-1/2, 3/2, 3/2, 1)$$
.

53) a)
$$\{t, t^2, t^3\}$$
 é uma base de S . b) $\{t-1, t^2-1, t^3-1\}$ é uma base de S .

c)
$$\{1, t^2 - t, t^3 - t\}$$
 é uma base de S .

54) a)
$$\left\{ \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \right\}$$
.

b)
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$
.

c)
$$\left\{ \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \right\}.$$