Ciencias de la Computación I

Autómatas de Pila y Lenguajes Libres del Contexto

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA – 2012

Motivación

```
-¿Es posible diseñar un AF que reconozca el lenguaje L_1?
```

$$L_1 = \{ a^n b^n / n > 0 \}$$

-¿Es posible diseñar un AF que reconozca el lenguaje L2?

 $L_2 = \{ x / x \in \{ (,) \}^* y x \text{ es una cadena con paréntesis balanceados } \}$

Autómatas de Pila

Es necesario agregar algo a los AF para incrementar su poder computacional

Memoria auxiliar que funciona como una Pila

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas de Pila

Dado un lenguaje L, libre del contexto, definido sobre un alfabeto A y una cadena x arbitraria, determinar si $x \in L$ o $x \notin L$.

- Dos puntos de vista:
 - ➤ Como dispositivo **reconocedor** de la pertenencia de una cadena a un lenguaje libre del contexto.
 - > Como traductor de una cadena en otra.

Autómatas de Pila Reconocedores

Formalmente, un AP reconocedor determinístico (APD) se define como una 7-upla

APD =
$$\langle E, A, P, \delta, e_i, F, Z_0 \rangle$$

- ✓ E es un conjunto finito de estados; $E \neq \emptyset$
- √ A es el alfabeto de entrada

$$A \cap P = \emptyset$$

- √ P es el alfabeto de la pila
- √ δ es la función de transición de estados

$$δ$$
: E x (A ∪ {ε}) x P → E x P^{*}

- √ e_i es el estado inicial; e_i ∈ E
- √ F es el conjunto de estados finales o de aceptación; F ⊆ E
- \checkmark Z₀ símbolo distinguido de la Pila Z₀ ∈ P

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas de Pila Reconocedores

√ δ es la función de transición de estados

$$δ$$
: E x (A ∪ {ε}) x P → E x P^{*}

1)
$$\delta(\mathbf{e}_{i}, \mathbf{a}, X) = (\mathbf{e}_{k}, \alpha)$$

2)
$$\delta(e_i, \varepsilon, X) = (e_k, \alpha)$$

$$e_j$$
 $\varepsilon, X/\alpha$ e_k

donde $a \in A$; $X \in P$; $\alpha \in P^*$; e_i , $e_k \in E$

Importante

Si existe transición de tipo (2), sólo se garantiza que AP es determinístico si

 \forall s: s \in A, δ (e_i , s, X) no está definida

Autómatas de Pila Reconocedores

Transiciones de tipo (1)
$$\delta(e_j , a, X) = (e_k, \alpha)$$

$$Acción sobre la Pila Nuevo estado$$

$$Tope de la Pila Símbolo por leer en cinta de entrada Estado actual
$$Si \alpha = ZYX \qquad deja \ X, \ apila \ Y, \ apila \ Z \qquad (Nuevo tope \ Z)$$

$$Si \alpha = XX \qquad deja \ X, \ apila \ X \qquad (Nuevo tope \ X)$$

$$Si \alpha = X \qquad deja \ X \qquad (No altera la Pila)$$

$$Si \alpha = \varepsilon \qquad elimina \ X \qquad (Desapila)$$

$$Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012$$$$

Autómatas de Pila Reconocedores

Cadena aceptada por AP

Una cadena $\omega \in A^*$ es aceptada por AP = <E, A , P, δ , e_0 , Z_0 , F> sí y sólo sí

$$<$$
 \mathbf{e}_{0} , ω , \mathbf{Z}_{0} $>$ $|-* <$ \mathbf{e}_{f} , ϵ , α

Si comienza en el estado e₀, con pila vacía Z₀, $<\mathbf{e}_0,\,\omega,\,Z_0>|\overset{\star}{-\!\!\!\!-}<\mathbf{e}_{\mathrm{f}}\,,\,\epsilon,\alpha> \begin{tabular}{ll} Si comienza en el estado <math>\mathbf{e}_0,\,$ con pila vacia $\mathbf{z}_0,\,$ y luego de varias transiciones, se leen todos los símbolos de la cadena, y en estado $\mathbf{e}_{\mathrm{f}}\in\mathsf{F},\,$ la cadena es aceptada. En la pila puede quedar cualquier cadena $\alpha\in\mathsf{P}^*$

Luego, el lenguaje aceptado por el autómata de pila AP es:

$$L(\mathsf{AP}) = \{\ \omega \ / < e_0, \ \omega, \ \mathsf{Z}_0 > | \overset{\star}{-\!\!\!\!-} < e_\mathsf{f} \ , \ \epsilon, \alpha > \mathsf{y} \ \omega \in \mathit{A}^\star \ \ \mathsf{y} \ e_\mathsf{f} \in \mathsf{F} \ \mathsf{y} \ \alpha \in \mathit{P}^\star \}$$

Los lenguajes aceptados por los Autómatas de Pila se denominan Lenguajes Libres (Independientes) del Contexto o de Tipo 2.

Ejemplos

$$L_1 = \{ a^n b^n / n > 0 \}$$

$$APD = <\{e_0, e_1, e_2, e_3\}, \{a, b\}, \{A, Z_0\}, \delta, e_0, Z_0, \{e_3\} >$$

$$L_{2} = \{ a^{n} b^{2n} / n > 0 \}$$

$$a,A/AA$$

$$e_{0}$$

$$b,A/A$$

$$b,A/E$$

$$\epsilon, Z_{0}/Z_{0}$$

$$e_{1}$$

$$b,A/A$$

Otra forma

$$a,A/AAA$$
 $b,A/\epsilon$
 $a,Z_0/AAZ_0$
 $b,A/\epsilon$
 $\epsilon,Z_0/Z_0$
 ϵ_0

 $APD \!\! = \!\! <\!\! \{e_0,\!e_1,\!e_2,\!e_3\},\! \{a,\!b\},\! \{A,\!Z_0\},\! \delta,\!e_0,\!Z_0,\! \{e_3\} \!\! >$

 $APD \!\! = \!\! <\!\! \{e_0,\!e_1,\!e_2,\!e_3,\!e_4\},\!\{a,\!b\},\!\{A,\!Z_0\},\!\delta,\!e_0,\!Z_0,\!\{e_4\} \!\! > \!\!$

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas de pila determinísticos y no determinísticos

Teorema:

Los APND tienen mayor poder de reconocimiento que los APD. Es decir, hay lenguajes libres del contexto que pueden ser reconocidos por un APND pero no por un APD.

Autómata de Pila de No Determinístico

APND= <E, A, P, δ , e₀, Z₀, F>, siendo δ no determinística definida como:

δ: E x (A ∪ {ε}) x P → P_f(E x P*) P_f denota los subconjuntos finitos de E x P* CASOS DE NO DETERMINISMO

1)
$$\delta(e_i, a, X) = \{(e_j, \alpha_1), (e_k, \alpha_2), \dots \}$$

Si lee a, con tope X dos caminos

2)
$$\delta(e_i, \varepsilon, X) = \{(e_n, \beta_1), (e_m, \beta_2), \dots\}$$

Si no lee cinta con tope X dos caminos

3) Combinadas (1) y (2) e_i

Si lee a, y tope X un camino Si no lee a, y tope X otro camino

donde $a \in A, X \in P, \ \alpha_1, \alpha_2, \beta_1, \beta_2 \in P^* \ y \ e_i, e_j, e_k, e_n, e_m \in E$

Ejemplo Lenguaje Libre del contexto determinístico

$$L_3 = \{ \text{ w c w}^{\mathbb{R}} / \text{ w } \in \{a,b\}^* \}$$
 Ejemplos Cadenas c abcba abcba a,A/BA a,B/AB a,A/AA b,B/ ϵ b,Z₀/BZ₀ c,B/B c,A/A ϵ c,A/A ϵ c,Z₀/Z₀

 $APD = \langle \{e_0, e_1, e_2, e_3\}, \{a, b, c\}, \{A, B, Z_0\}, \delta, e_0, Z_0, \{e_3\} \rangle$

 $c,Z_0/Z_0$

Ejemplo Lenguaje libre del contexto no determinístico

 $APND = <\{e_0, e_1, e_2, e_3\}, \{a, b\}, \{A, B, Z_0\}, \delta, e_0, Z_0, \{e_0, e_3\}>$ Para este lenguaje no existe una solución con AP determinístico

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

IDENTIFICAR EL LENGUAJE

- Si el lenguaje es libre del contexto No determinístico hacer APND
- Si el lenguaje es libre del contexto determinístico hacer APD (fijarse si agregaron transiciones que generan no determinismo y corregirlas)

Autómatas de Pila Traductores

Formalmente, un AP traductor (APT) se define como una 9-tupla

$$AP_T = \langle E, A, P, \delta, e_i, F, Z_0, \gamma, S \rangle$$

donde E, A, P, δ , e₀, Z₀, F se definen como antes y se agregan dos componentes

√ S es el alfabeto de salida

✓ γ es la función de traducción; γ : E x (A \cup { ϵ }) x P \rightarrow S*

 γ está definida siempre que δ está definida.

Si existe $\delta(e_j, a, X) = (e_k, \alpha)$ y además $\gamma(e_j, a, X) = t$ donde $e_i, e_k \in E$; $a \in A$; $X \in P$; $\alpha \in P^*$; $t \in S^*$

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas de Pila Traductores

Función de traducción para cadenas

El autómata sólo define la traducción, si el autómata AP subyacente "acepta" la cadena.

Es decir, la traducción $T(\omega)$: $A^* \to S^*$ asociada a AP_T está definida como:

 $T(\omega) \ \text{es v\'alida} \ \Leftrightarrow \ < e_0, \, \omega, \, Z_0 > | \underline{\hspace{0.5cm}^*} \ < e_f \,, \, \epsilon, \alpha \, > \, donde \, \omega \in A^*$

Ejemplo Autómata de pila traductor

 $L_1 = \{\ a^n\ b^n\ /\ n > 0\ \}$

Supongamos traducir las cadenas $a^n \ b^n \ como \ 1^{3n}$

$$APT = <\{e_0, e_1, e_2, e_3\}, \{a, b\}, \{A, Z_0\}, \delta, e_0, Z_0, \{e_3\}, \gamma, \{1\}>$$