

PEP 111D Mechanics

SPRING 2023

Meeting Times: Monday-Friday 10:00-10:50AM

Classroom: Gateway South 122
Instructor: Dr. Rupak Chatterjee

Contact Info: Burchard 709, rchatte1@stevens.edu

Office Hours: Monday 3:00-5:00

COURSE DESCRIPTION

This is a calculus-based introduction to the basic notions of classical mechanics. Topics will include kinematics and dynamics, Newton's laws of motion, work and kinetic/potential energy, conservative and dissipative forces, linear and angular momentum, elastic and inelastic collisions, rigid body kinematics and dynamics, Newton's law of gravity, Kepler's laws of planetary motion, and linear and rotational conservation laws.

Course Learning Outcomes

Program Outcome 1 (Scientific foundations)

- 1.1: Develop improved conceptual understanding of the nature of force and acceleration.
- 1.2: Be able to distinguish between acceleration and velocity.
- 1.3: Become familiar with the concept of conservation laws and be able to apply the conservation of momentum and the conservation of energy to the analysis of simple mechanical systems.
- 1.4: Become familiar with the quantitative description of rotational motion

Program Outcome 2: (Engineering foundations)

- 2.1: Be able to use free body diagrams to analyze simple mechanical systems.
- 2.2: Be able to apply Newton's Laws of Motion to analyze simple mechanical systems.
- 2.3: Be able to manipulate vector quantities, including vector addition, resolution of vectors into components and dot product.

COURSE MATERIALS

Textbook:

University Physics Volume 1, William Moebs, Openstax, 2019 (LEGALLY FREE ONLINE)

GRADING PROCEDURES

Homework (20%)

Three Quizzes	(30%)
Recitation	(10%)
Final Exam	(40%)

Tentative Weekly Schedule

Week	Topics	Quiz
Week One	Chapter 1: Units and Measurement, Chapter 2: Vectors	
Week Two	Chapter 3: Motion Along a Straight Line	
Week Three	Chapter 3: Motion Along a Straight Line	
Week Four	Chapter 4: Motion in Two and Three Dimensions	THUR Feb 16th
Week Five	Chapter 4: Motion in Two and Three Dimensions	
	Chapter 5: Newton's Laws of Motion	
Week Six	Chapter 5: Newton's Laws of Motion	
Week Seven	Chapter 6: More Newton's Laws	THUR Mar 9th
Week Eight	Chapter 7: Work and Kinetic Energy	
Week Nine	Chapter 8: Potential Energy and Conservation of Energy	
Week Ten	Chapter 8: Potential Energy and Conservation of Energy	
Week Eleven	Chapter 9: Linear Momentum and Collisions	
Week Twelve	Chapter 9: Linear Momentum and Collisions,	THUR Apr 20th
	Chapter 10:10.1-10.3: Moons of Jupiter	
Week Thirteen	Chapter 10: Fixed Axis Rotation	
Week Fourteen	Chapter 10: Fixed Axis Rotation	
FINAL	TBD	