জৈব রসায়ন Organic Chemistry

দ্বৈব যৌগ

নিম্নলিখিত বেশ কিছু শ্রেণির যৌগের কার্যকরী মূলকের সংকেত ও গাঠনিক সংকেত দেওয়া হলো। এটি মূলকের সক্রিয়তা উচ্চ হতে নিম্নক্রম অনুযায়ী ঃ

ক্রমিক	সমগ্রোত্রীয় শ্রেণি	কার্যকরী মূলকের নাম	মূলকের সংকেত	মূলকের গাঠনিক
সংখ্যা	সম্প্রোতার লোগ	स्वित्रं मृण्ट्यन्त्रं साम		সংকেত
۵	কার্বক্সিলিক এসিড	কার্ব ক্সিলিক এসিড মূলক বা ফ্যাটি এসিড মূলক	-СООН	0 -C - OH
ર	সালফোনিক এসিড	সালফোনিলিক এসিড মূলক	−SO ₃ H	0 -S - 0 - H 0
9	এসিড হ্যালাইড	এসিড হ্যালাইড মূলক	-COX	0 -C - X 0
8	এসিড অ্যামাইড	অ্যামাইডো মূলক	-CONH ₂	0 -C - N\H
¢	সায়ানাইড	সায়ানাইড বা নাইট্রাইল মূলক	-CN	$-C \equiv N$
৬	অ্যালডিহাইড	অ্যালডিহাইড মূলক	-СНО	0 ∥ −C − H
٩	কিটোন	কাৰ্বোনিল মূলক বা কিটো মূলক	=CO	\rangle C = O
ъ	অ্যালকোহল	1^0 - অ্যালকোহল বা প্রাইমারি অ্যালকোহল	−CH ₂ OH	H√ — C — OH H′
৯	অ্যালকোহল	2^0 - অ্যালকোহল মূলক বা সেকেন্ডারি অ্যালকোহল মূলক	= СНОН	\ - C − OH H/
70	অ্যালকোহল	3 ⁰ - অ্যালকোহল বা টারসিয়ারি অ্যালকোহল মূলক	≡СОН	≡С-ОН
77	থায়ো যৌথ	থায়ল	R – SH	-S -H
১২	অ্যালকাইল অ্যামিন	অ্যামিনো মূলক	-NH ₂	-N /H \ H
১৩	অ্যালকিন	অ্যালকিন বা অলিফিন মূলক	c = c	$\rangle C = C /$
78	অ্যালকাইন	অ্যালকাইন বা অ্যাসিটিলিন মূলক	-C ≡ C-	-C ≡ C-
১৫	ইথার	ইথার মূলক	R - 0 - R	C - O - C
১৬	নাইট্রো যৌগ	নাইট্রো মূলক	-NO ₂	$-N_{0}^{0}$

১ ٩	এস্টার	এস্টার মূলক	-COOR	0 -C - 0 - R
\$ b	অ্যানহাইড্রাইড	অ্যানহাইড্রাইড মূলক	-COOCO-	0 0 -C - O - C -
১৯	আইসো সায়ানেট	আইসো সায়ানেট	-NC	-N = C
২০	আইসো থায়োসায়ানেট	আইসো থায়োসায়ানেট মূলক	-NCS	-N = C = S
২১	নাইট্রোসো যৌগ	নাইট্রোসো মূলক	-NO	-N = O
રર	ফেনল	ফেনলিক মূলক	Ar – OH	0 = C – OH

<u>িনিজে চেষ্টা কর</u>ঃ আণবিক সংকেত থেকে যৌগের সম্ভাব্য গাঠনিক এবং অণুতে বর্তমান কার্যকরী মূলকের গাঠনিক সংকেত লেখ ঃ

(4)
$$C_2H_4O_1$$
, (4) $C_2H_6O_1$, (7) $C_3H_6O_2$, (8) $C_3H_6O_2$, (8) $C_4H_6O_3$

<u>জৈব যোগের নামকরণ</u> ঃ

আন্তর্জাতিক পদ্ধতি বা IUPAC পদ্ধতিতে জৈব যৌগের নামকরণ নিচে উল্লেখ করা হলো:

অ্যালিফেটিক যৌগের নামকরণ (Nomenclature of Aliphatic compounds):

- ☑ প্রতিটি যৌগের নামের শেষে 'এন' লেখা হয়।
- 🗹 সর্ববৃহৎ শিকলটিকে প্রধান শিকল হিসেবে নির্বাচন করা হয়।
- ☑ প্রধান শিকলটিকে এমনভাবে নির্বাচন করা হয় য়েন সবগুলো শাখা শিকল সরাসরি প্রধান শিকলের সাথে য়ুক্ত থাকে। অর্থাৎ

 শাখা শিকলের কোনো উপশাখা থাকবে না।
- 🗹 প্রধান শিকলের প্রতিটি কার্বনকে পর্যায়ক্রমে সংখ্যায়িত করা হয়। যেমন ঃ

প্রধান শিকলের একই কার্বনের সাথে অথাব ভিন্ন ভিন্ন কার্বনের সাথে এক২ জাতীয় একাধিক গ্রুপ যুক্ত থাকলে প্রধান শিকলের সংযুক্ত কার্বনের সংখ্যা উল্লেখপূর্বক একই জাতীয় গ্রুপগুলোকে একত্রিত করে গ্রুপের সংখ্যানুযায়ী উচ্চারণ করা হয়। যেমনঃ

প্রধান শিকলের সাথে শাখা শিকল হিসেবে ভিন্ন ভিন্ন গ্রুপ যুঁক্ত থাকলে গ্রুপগুলোকে ইংরেজি বর্ণমালার ক্রমানুসারে পর্যায়ক্রমে লেখা হয়। এক্ষেত্রে একই জাতীয় গ্রুপের শেষে ও দুটি ভিন্ন ভিন্ন গ্রুপের মাঝে হাইফেন (-) চিহ্ন ব্যবহার করা হয়। যেমন \circ

CH₃ CH₂ − CH₃ (3,5- ডাইইথাইল- 2,6- ডাইমিথাইলহেপ্টেন)
7 6 | 5 | 4 3

7 6 | 5 | 4 3
$$CH_3 - CH - C - CH_2 - CH - CH_2 - CH_3$$
 | 2 | $CH_3 CH_3 - C - CH_3$ | $CH_3 CH_3 - C - CH_3$

(3,5- ডাইইথাইল- 2,2,5,6-টেট্রামিথাইলহেপ্টেন)

অ্যালকিন (Alkene):

- প্রতিটি যৌগের নামের শেষে 'ইন' লেখা হয়।
- ৩. প্রধান শিকলটি এমনভাবে নির্বাচন করা হয় যেন সবগুলো শাখা শিকল সরাসরি প্রধান শিকলের সাথে সংযুক্ত থাকে। অর্থাৎ শাখা শিকলের কোনো উপশাখা শিকল থাকবে না।
- 8. প্রধান শিকলে অন্তর্ভূক্ত প্রতিটি কার্বনকে সংখ্যায়িত করা হয়। এক্ষেত্রে যেদিক থেকে কার্বন-কার্বন দ্বি-বন্ধন $\binom{C}{C} = C\binom{C}{C}$ কাছাকাছি হয় সেদিক থেকে প্রধান শিকলের প্রতিটি কার্বনকে পর্যায়ক্রমে সংখ্যায়িত করা হয়। যেমন

$${
m CH_3} \ 1 \ 2 | \ 3 \ 4 \ {
m CH_3} - {
m C} - {
m CH} = {
m CH_2} \ ($$
ভূল চিহ্নিতকরণ $) \ | \ {
m CH_3}$

$$CH_3 CH_2 - CH_3$$
 $CH_3 CH_2$
 $6 5 \mid 4 \mid 3$
 $2 1$
 $(3) CH_3 - CH - CH - CH = CH - CH_3$
 $(3) CH_3 - CH - C - CH_2 - CH_3$

$$\begin{array}{ccc} & & 1 \\ & & \text{CH}_3 & \text{CH}_2 \\ & 4 & 3 | & 2 | | \\ \textbf{(গ)} & \text{CH}_3 - & \text{CH} & - & \text{C} & - & \text{CH}_2 & - & \text{CH}_3 \\ \end{array}$$

৫. যদি প্রধান শিকলের উভয় দিক থেকে কার্বন-কার্বন দ্বিবন্ধন একই দূরত্বে হয় তবে সেক্ষেত্রে যেদিক থেকে শাখা শিকল কাছাকাছি ও অপেক্ষাকৃত বেশি, সেদিক থেকে প্রধান শিকলের প্রতিটি কার্বনকে পর্যায়ক্রমে সংখ্যায়িত করা হয়। যেমন

৬. প্রধান শিকলের সাথে সংযুক্ত শাখা শিকলগুলোকে অ্যালকেন এর রীতি অনুযায়ী উল্লেখ করা হয়। যেমনঃ

$$CH_3 \ CH_2 - CH_3$$
 $CH_3 \ CH_2 - CH_3$ $6 \ 5 \mid 4 \mid 2 \ 1$ $5 \ 4 \mid 3 \mid 2 \ 1$ $(ক) \ CH_3 - C - CH - CH = CH - CH_3$ $(র-ইথাইল -4- মিথাইলপেন্ট- 2 -ইন)$

(4- ইথাইল -5, 5- ডাইমিথাইলহেক্স- 2 -ইন)

অ্যালকাইন (Alkyne):

 CH_3

- ১. প্রতিটি যৌগের নামের শেষে 'আইন' লেখা হয়।
- ২. কার্বন কার্বন ত্রিবন্ধন $(-C \equiv C-)$) কে অন্তর্ভূক্ত রেখে বৃহত্তর শিকলটিকে প্রধান শিকল হিসেবে নির্বাচন করা হয়।
- ৩. বাকি সব অ্যালকিনের অনুরূপ শুধু 'ইন' এর স্থলে 'আইন' পরিবর্তন করে লিখতে হবে এবং 1984 ও 1993 সালের IUPAC সুপারিশকে অবশ্যই অনুসরণ করতে হবে।

 CH_3

উদাহরণম্বরূপ ঃ

(3.6- ডাইইথাইল-2.2.6.7-টেট্রামিথাইল অক্ট-4-আইন)

পৃথকভাবে একাধিক দ্বিন্ধন ও ত্রিবন্ধন যুক্ত যৌগের নামকরণ: হাইড্রোকার্বনের অণুতে দুটি বা তিনটি কার্বন-কার্বন একইভাবে যদি হাইড্রোকার্বনের অণুতে দুটি বা তিনটি কার্বন-কার্বন ত্রিবন্ধন বর্তমান থাকে তবে সেক্ষেত্রে এদেরকে অ্যালকা-ডাইআইন (Alka-diene) ও অ্যালকা-ট্রাইআইন (Alak-trinene) বলা হয়ে থাকে ।

উদাহরণম্বরূপ:

$$CH_3$$

1 2 | 3 4
 $OCH_2 = C - CH = CH_2$

(2- মিথাইলবিউট-1, 3-ডাইইন)

$$CH_3$$
 CH_3
6 5 4 3 2 1
 $CH_3 - C = CH - CH - CH = CH_2$
(3, 5-ডাইমিথাইলহেক্স-1, 4-ডাইইন)

$$\begin{array}{cccc} & & \text{CH}_3 \\ 6 & 5 & 4 & 3 \mid & 2 & 1 \\ \text{9. CH}_3 - \text{C} \equiv \text{C} - \text{CH} - \text{C} \equiv \text{CH} \end{array}$$

(3 মিথাইলহেক্স-1, 4-ডাইআইন)

$$_{6}\text{CH}_{3}$$
 $CH_{3} - \text{CH}_{2} \text{ CH}_{3}$
 $7 \quad | \quad 5 \quad 4 \quad 3 | \quad 2 | \quad 1$
 $\Rightarrow . \text{CH}_{3} - \text{C} = \text{CH} - \text{CH}_{2} - \text{C} = \text{C} - \text{CH}_{3}$

(3-ইথাইল-2, 6-ডাইমিথাইলহেপ্ট-2, 5-

$$CH_3$$
 1 2 3 4 5 6 ২. $CH_2 = C - CH_2 - CH = CH - CH_3$ (2- মিথাইলহেক্স-1, 4-ডাইইন)

$$m CH_3 \qquad CH_2-CH_3 \ CH_3 \ 1 \qquad 2 \ | \qquad 3 \qquad 4 \ | \qquad 5 \qquad 6 \ | \qquad 7 \ 8. \ CH_2-C=CH-CH-CH=C-CH_3 \ (4-ইথাইল -2, 6-ডাইমিথাইলহেন্ট-2, 5-$$

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 6 $5 \mid 4$ $3 \mid 2$ 1 1 $2 \mid 3$ $4 \mid 5$ 6 7 $\phi. $CH_3 - C = CH - CH = CH_2$ $\phi. $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_2 - CH_3$ $CH_3 - C = CH - CH_3$ $CH_3 - C = CH_3$ $CH_3 -$$$

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 6 5 4 3 2 1 8 7 6 5 4 3 2 1 $9. $CH_3 - C \equiv C - CH - C \equiv CH$ $> CH_3 - CH - C \equiv C - C = C - CH_2$ $> CH_3 - CH - C \equiv C - C = C - C - CH_2$ $> CH_3 - CH - C \equiv C - C - CH_2$ $> CH_3 - CH - C \equiv C - C - CH_2$ $> CH_3 - CH_3 -$$

অ্যালকোহল (Alcohols) ঃ

- ১. এ সমগোত্রীয় শ্রেণির যৌগের নামের শেষে 'নল' বা 'অল' লেখা হয়। হাইড্রোকার্বন যৌগের শ্রেণীপ্রত্যয় 'এন' এর পরির্বতে 'আনল' (আন + অ্যালকোহলের শ্রেণি প্রত্যায় 'অল') শব্দ বসানো হয় থাকে।
- ২. OH মূলক সংযুক্ত কার্বনকে অন্তর্ভুক্ত রেখে বৃহত্তম শিকলটিকে প্রধান শিকল হিসেবে গণ্য করা হয়।

- ৩. প্রধান শিকলটিকে এমনভাবে ধরা হয় যেন সবগুলো শাখা শিকল সরাসরি প্রধান শিকলের সাথে যুক্ত থাকে। অর্থাৎ শাখা শিকলের কোনো উপশাখা শিকল থাকবে না।
- 8. প্রধান শিকলের প্রতিটি কার্বনকে পর্যায়ক্রমে সংখ্যায়িত করা হয়। এক্ষেত্রে যেদিক থেকে OH সংযুক্ত কার্বনটি কাছাকাছি হয় সেদিক হতে প্রধান শিকলের প্রতিটি কার্বনকে পর্যায়ক্রমে সংখ্যায়িত করা হয়।

যেমন:

CH
$$_3$$
 CH $_3$ CH $_3$ CH $_4$ CH $_3$ CH $_5$ CH $_5$

 ϵ . প্রধান শিকলের $-\mathrm{OH}$ মূলক সংযুক্ত কার্বনের গাণিতিক সংখ্যাকে নল বা অল এর পূর্বে হাইফেন(-) চিহ্ন ব্যবহার করে উল্লেখ করা

৬. প্রধান শিকলের সাথে যুক্ত শাখা শিকলগুলোকে অ্যালকেন এর রীতি অনুযায়ী উল্লেখ করা হয়। উদাহরণ:

$${
m CH_3CH_2-CH_3OH}$$
5 4 $|$ 3 $|$ 2 $|$ 1
8 । ${
m CH_3-C-CH-CH_3-CH_3}$
 $|$ (4, 4- ডাইমিথাইল- 3-ইথাইল -2-অল)
 ${
m CH_3}$

$${
m CH_3} {
m CH_2-CH_3OH}$$
 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 1 $m CH_3-CH=CH-CH_2-CH_2-OH$ ৬ $m CH_3-CH-CH=C$ — $m CH-CH_3$ (পেন্ট-3-ইন-1-অল) (3-ইথাইল-5-মিথাইল হেক্স -3- ইন - 2-অল)

অ্যালডিহাইড (Aldehdes)

- ১. এ সমগোত্রীয় যৌগের নামের শেষে 'ন্যাল' বা 'অ্যাল' লেখা হয়।
- ২. CHO মূলকের কার্বনকে ১নং কার্বন ধরে বৃহত্তম শিকলটিকে প্রধান শিকল হিসেবে নির্বাচন করা হয়।

- ৩. প্রধান শিকলটিকে এমনভাবে নির্বাচন করা হয় যেন সবগুলো শাখা সরাসরি প্রধান শিকলের সাথে যুক্ত থাকে।
- 8. প্রধান শিকলের কার্বনের সংখ্যানুযায়ী মূল যৌগের নামকরণ করা হয়ে থাকে।
- ৫. শাখা শিকলগুলোকে অ্যালকেনের রীতি অনুযায়ী উল্লেখ করা হয়।
- ৬. অ্যালিডিহাইড এর ক্ষেত্রে কার্যকরী মূলকের কার্বন পরমাণু শিকলের এক প্রান্তে থাকে। তাই এর অবস্থান নির্দেশক সংখ্যা 'I' কে নামকরণ উল্লেখ করার প্রয়োজন পড়ে না।

উদাহরণঃ

কিটোন (Ketiones):

- ১. এ সমগোত্রীয় শ্রেণীর যৌগের নামের শেষে 'নোন' বা 'ওন' লেখা হয়
- ২. কার্বনিল মূলক ($\ \ C=0$) কার্বনকে অন্তভূক্ত রেখে বৃহত্তর শিকলটিকে প্রধান শিকল হিসেবে নির্বাচন করা হয়।
- ৩. প্রধান শিকলের প্রতিটি কার্বনকে পর্যায়ক্রমে সংখ্যায়িত করা হয়। এক্ষেত্রে যেদিক থেকে কার্বনিল মূলক কার্বনটি কাছাকাছি হয় সেদিক হতে প্রধান শিকলের প্রতিটি কার্বনকে পর্যায়ক্রমে সংখ্যায়িত করা হয়।
- 8. প্রধান শিকলের উভয় দিক হতে কার্বনিল মূলকের কার্বন পরমাণু একই দূরত্বে হলে সেক্ষেত্রে যেদিক হতে শাখা শিকল কাছাকাছি ও অপেক্ষাকৃত বেশি হয় সেদিক থেকে কার্বনকে সংখ্যায়িত করা হয়।
- ৫. প্রধান শিকলের কার্বনিক মূলক * এর কার্বন পরমাণুর গাণিতিক মানকে 1979 সালের IUPAC এর সুপারিশ অনুযায়ী নোন ও ওন এর পূর্বে বা পরে বা মাঝে হাইফেন (-) চিহ্নটি ব্যবহার করে উল্লেখ করা হলেও আধুনিককালে 1984 সালের সংশোধিত সুপারিশ অনুসরণ করে নোন বা ওন এর পূর্বে (-) হাইফেন চিহ্নটি ব্যবহার করা হয়।
- ৬. প্রধান শিকলের সাথে যুক্ত শাখা শিকলগুলোকে অ্যালকেনের রীতি অনুযায়ী উল্লেখ করা হয়।

ইথার ঃ

ইথার এর নামকরণঃ ইথার হলো অ্যালকক্সি গ্রুপ (R-O-) দ্বারা প্রতিস্থাপিত অ্যালকেন। এ কারণে IUPAC পদ্ধতিতে ইথারসমূহকে অ্যালকক্সিঅ্যালকেন বলা হয় । নামকরণে ক্ষেত্রে প্রধান শিকলের অক্সিজেনের সাথে যুক্ত বড় অ্যালকাইল গ্রুপটি থেকে অ্যালকেনের নাম নেওয়া হয়। আর অক্সিজেনের সাথে যুক্ত ছোট অ্যালকাইল গ্রুপটি অ্যালকক্সি গ্রুপ হিসেবে প্রতিস্থাপকের ভূমিকা রাখে। যে প্রান্ত থেকে অ্যালকক্সি গ্রুপ (R-O-) অ্যালকাইল গ্রুপের কাছাকাছি হয় সে প্রান্ত থেকে অ্যালকাইল গ্রুপের কার্বনকে সংখ্যায়িত করা হয়। প্রতিস্থাপক গ্রুপ ও মূল অ্যালকেন নামের মধ্যে কোনো হাইফেন বা ক্ষেস থাকবে না।

উদাহরণম্বরূপঃ

 $CH_3-CH_2-O-CH_3$ (১-মিথোক্সিপ্রোপেন) এর ক্ষেত্রে দুটি অ্যালকাইন গ্রুপের মধ্যে $-CH_2-CH_2-CH_3$ হলো বড় গ্রুপ এ গ্রুপের অ্যালকেনের নাম প্রোপেন। ছোট অ্যালকাইল গ্রুপ অ্যালকক্সি গ্রুপটি হলো CH_3-O- এটি মিথোক্সি গ্রুপ যৌগের মূল নাম।

১।
$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{O} - \mathrm{CH_2} - \mathrm{CH_3}$$
 (১-ইথোক্সিপ্রোপেন)
$$3 \qquad 2 \qquad 1$$
 ২। $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{S} - \mathrm{CH_2} - \mathrm{CH_3}$ (১-থায়োইথোক্সিপ্রোপেন)
$$4 \qquad 3 \qquad 2 \qquad 1$$
 ৩। $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_3}$ (১-মিথোক্সিবিউটেন)

কার্বক্সিলিক এসিড ঃ

- এ জাতীয় সমগোত্রীয় শ্রেণীর নামের শেষে 'অয়িক এসিড' লেখা হয়।
- ২. COOH মূলকের কার্বন পরমাণুকে ১নং কার্বন ধরে বৃহত্তর শিকলটিকে প্রধান শিকল হিসেবে নির্বাচন করা হয়।
- ৩. প্রধান শিকলটিকে এমনভাবে নির্বাচন করা হয় যেন সবগুলো শাখা শিকল প্রধান শিকলের সাথে যুক্ত থাকে।
- 8. প্রধান শিকলের কার্বনের সংখ্যানুযায়ী মূল যৌগের নামকরণ করা হয়।
- ৫. শাখা শিকলগুলোতে অ্যালকেনের রীতি উল্লেখ করা হয়।
- ৬. কার্বক্সিলিক এসিড এর ক্ষেত্রে কার্যকরী মূলকের কার্বন পরমাণু শিকলের এক প্রান্তে থাকে। তাই এর অবস্থান নির্দেশক সংখ্যা 1, নামকরণে এ সংখ্যাকে উল্লেখ করা হয় না।

উদাহরণ:

১. H-COOH (মিথানোয়িক এসিড)

২.
$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{COOH}$$
 (প্রোপানোয়িক এসিড) $\mathrm{CH_3}$ 4 2 | 2 1

৩.
$$\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{COOH}$$
 (2– মিথাইল বিউটানোয়িক এসিড)

$$CH_3$$
 $CH_2 - CH_3$
4 3 2

8.
$${
m CH_3-CH-CH-CH_2} - {
m COOH} \, (3$$
-ইথাইল 4 - মিথাইলপেন্টানোয়িক এসিড $)$

CH₃

5 43 | 2 1

৬. $\mathrm{CH} \equiv \mathrm{C} - \mathrm{CH} - \mathrm{CH}_2 - \mathrm{COOH}$ (3-মিথাইল-পেন্ট-4- আইন-ওয়িক এসিড)

4 3 2 1

৭. ${
m CH_3-CH=CH-COOH}$ (বিউটিন-অয়িক এসিড)

 $CI \quad CH_2 - CH_3 \quad NH_2$

6 5 4 3 2 1

৮. $CH_3 - CH - CH_2 - CH - COOH$ (2-অ্যামিনো 5-ক্লোরো -4- ইথাইলহেক্সানোয়িক এসিড)

৯. HOOC-COOH (ইথেন ডাইঅয়িক এসিড)

১০. $\langle \mathbf{o} \rangle$ — COOH (ফিনাইল মিথানোয়িক এসিড)

১১. $\left\langle \mathbf{O} \right\rangle$ — $\left\langle \mathbf{CH}_2 - \mathbf{COOH} \right\rangle$ (ফিনাইল ইথানোয়িক এসিড)

দুটি কার্বোক্সিলিক এসিড মূলকের উপস্থিতি থাকলে ডাইওয়িক এসিড উচ্চারণ করা হয়। যেমন-

১. HOOC – COOH (ইথেন ডাইওয়িক এসিড)

২. HOOC - CH_2-COOH (প্রোপেন ডাইওয়িক এসিড)

1 2 3 4

৩. $HOOC-CH_2-CH_2-COOH$ (বিউটেন ডাইওয়িক এসিড)

কার্বোক্সিলিক এসিড মূলক (—COOH) সহ ভিন্ন অপর কোনো কার্যকরী মূলকের উপস্থিতি থাকলে-

 NH_2

2| 1

১. $CH_3 - CH - COOH$ (২-অ্যামিনোপ্রোপানোয়িক এসিড)

2 1

২. H_2N-CH_2-COOH (২-অ্যামিনোইথানোয়িক এসিড)

OH

4 3 2 1

৩. $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{COOH}$ (২-হাইড্রোক্সিবিউটানোয়িক এসিড)

0

Ш

8. H — C — COOH (অক্সোইথানোয়িক এসিড)

0

3 2 || 1

৫. $CH_3 - C - COOH$ (২- অক্সোপ্রোপানোয়িক এসিড/প্রোপেন-2-ওন -1ওয়িক এসিড)

```
3
           CHO
         2
                 1
৬. {
m CH_3-CH-COOH} (2-মিথাইল 3 - ফর্মাইল প্রোপোনোয়িক এসিড
             OH
            2
                   3
৭. HOOC – CH –CH<sub>2</sub> –COOH (২-হাইড্রোক্সিবিউটেন ডাইওয়িক এসিড)
৮. \mathrm{CH_3} - \mathrm{CH} = \mathrm{CH} - \mathrm{COOH} (বিউট 2- ইনোয়িক এসিড/ বিউট 2-ইন -1- ওয়িক এসিড )
  6
          5
                 4
                       3
                             2
\delta. CH_3 - CH = CH - CH = CH - COOH
( হেক্সা 2,4 ডাই-ইনোয়িক এসিড/হেক্সা-2,4ডাই ইন -1- ওয়িক এসিড)
          4|| 3
১০. CH_3 - C - CH_2 - CH_2 - COOH (পেন্টেন -4-ওন -1-ওয়িক এসিড/4-অক্সোপেন্টানোয়িক এসিড)
      5
১১. . CH_3 - C - O - OH (পারইথানোয়িক এসিড)
           CH_3
         3|
             2
১২. \mathrm{CH_3} - \mathrm{C} = \mathrm{CH} - \mathrm{COOH} (3- মিথাইলবিউটি -2- ইন-1- ওয়িক এসিড)
```

অ্যামিন (Amines):

অ্যামিন হলো অ্যালকাইল বা অ্যারাইল প্রতিস্থাপিত অ্যামোনিয়া । অ্যামোনিয়া হাইড্রোজেন পরমাণু যদি অ্যালকাইল মূলক দ্বারাপ প্রতিস্থাপিত হয়, তবে তা অ্যালিফেটিক অ্যামিন । এ জাতীয় অ্যামিনের ক্ষেত্রে অ্যালকাইল মূলক সাথে অ্যামিন অথবা অ্যামিনো অ্যালকেন হিসেবে লেখা হয় । যেমন :

১।
$$CH_3-NH_2$$
 (মিথাইল অ্যামিন বা অ্যামিনো মিথেন),
$$2 \qquad 1$$
২। $CH_3-CH_2-NH_2$ (ইথাইল অ্যামিন বা 1- অ্যামিনো ইথেন)
$$3 \qquad 2 \qquad 1$$
৩। $CH_3-CH_2-CH_2-NH_2$ (প্রোপাইলঅ্যামিন বা , 1- অ্যামিনোপ্রোপেন)

8। ${
m CH_3-NH}$ (ডাইমিথাইলঅ্যামিন) বা 1- (${
m N-}$ ডাই মিথাইলঅ্যামিনো) মিথেন ।

CH₃

৫। । $\mathrm{CH_3} - \mathrm{NH} - \mathrm{CH_3}$ (ট্রাইমিথাইল অ্যামিন) বা 1- (N, N ডাই মিথাইল অ্যামিনো) মিথেন।

2 1 ৬। $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{NH} - \mathrm{CH_3}$ (ইথাইল মিথাইল অ্যামিন) বা, 1- (N - মিথাইলঅ্যামিনো) ইথেন ।

3 2 1 ৭। $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{NH} - \mathrm{CH_3}$ (প্রোপাইল মিথাইল অ্যামিন) বা, 1- (N- মিথাইলঅ্যামিনো) প্রোপেন

1
CH₃ CH₃
| 2| 3 4 5

b | CH₃ - NH - CH - CH₂ - CH₂ - CH₅ (N, N - ডাই মিথাইল-২- অ্যামিনোপেন্টেন)

অ্যামোনিয়ার হাইড্রোজেন পরমাণু অ্যারাইল মূলক (C_6H_5-) দ্বারা প্রতিস্থাপিত হলে অ্যারাইল অ্যামিন হয় । এ জাতীয় অ্যামিনের ক্ষেত্রে অ্যারাইল মূলক সাথে অ্যামিন উচ্চারিত হয়। যেমন :

\(\overline{O}\)—\(\text{NH}_2\) (অ্যারাইল অ্যামিন বা ফিনাইল অ্যামিন)

২। $\langle O \rangle$ — NH — $\langle O \rangle$ (ডাইফিনাইলঅ্যামিন)

৩। 〈O〉— NH—〈O〉 (ট্রাইফিনাইল অ্যামিন)

অ্যামোনিয়ার হাইড্রোজেন প্রমাণুর অ্যালকাইল ও অ্যারাইল উভয় মূলক দ্বারা প্রতিস্থাপিত হলে, N- অ্যালকাইল মূলক বা মূলকের সংখ্যার সাথে ফিনাইল অ্যামিন যোগ করে উচ্চারণ করা হয়ে থাকে। যেমন:

১। $\langle O \rangle$ — NH - CH $_3$ (N-মিথাইল ফিনাইলঅ্যামিন),

২। \bigcirc - N < $^{CH_3}_{CH_3}$ (N, N- ডাই মিথাইল ফিনাইলঅ্যামিন)

৩। \bigcirc NH - CH $_2$ - CH $_3$ (N- ইথাইল ফিনাইলঅ্যামিন) ,

8। $\langle O \rangle$ — N < $\stackrel{CH_2-CH_3}{\subset}$ $\stackrel{CH_2-CH_3}{\subset}$ $\stackrel{CH_2-CH_3}{\subset}$ $\stackrel{CH_3-CH_3}{\subset}$ $\stackrel{CH_3-CH_3}{\subset}$ $\stackrel{CH_3-CH_3}{\subset}$ $\stackrel{CH_3-CH_3}{\subset}$

অ্যামাইডের ক্ষেত্রে ঃ অ্যামাইড শ্রেণী যৌগকে IUPAC পদ্ধতি অ্যুলকানামাইড (Alkanamide) বলা হয়। সর্ববৃহৎ শিকলের কার্বনের সংখ্যানুযায়ী অ্যালকেনের নামের 'এন' এর পরিবর্তে "অ্যানামাইড" শব্দ বসিয়ে অথবা কার্বন সংখ্যা অনুযায়ী সংশ্লিষ্ট এসিডের IUPAC নামের শেষে "ওয়িক এসিড" এর পরিবর্তে অ্যামাইড লেখা হয়। উদাহরণস্বরূপ দুই কার্বন বিশিষ্ট এসিড ইথানোয়িক এসিডের "ওয়িক এাসিড" এর পরিবর্তে "অ্যামাইড বসালে প্রকৃত নামটি হয় ইথান +অ্যামাইড = ইথান্যামাইড। সেকেন্ডারি ও টারসিয়ারি অ্যামাইডকে যথাক্রমে N- প্রতিস্থাপিত এবং N, N- দ্বিপ্রতিস্থাপিত অ্যামাইড রূপে নামকরণ করা হয়। যেমন:

<u>নিজে চেষ্টা কর</u> ঃ

ত্র আানহাইড্রাইডের নাম করণ ঃ IUPAC পদ্ধতি অনুযায়ী, অ্যানহাইড্রাইডটি যে এসিডের তার নামের শেষে এসিডের পরিবর্তে অ্যানহাইড্রাইড লেখা হয়। যেমনঃ

সায়নাইডের নামকরণঃ এক্ষেত্রে - CN গ্রুপের কার্বনকে ১নং কার্বন ধরে বৃহত্তর শিকলটি নির্ধারণ করা হয়। কার্বনের সংখ্যানুযায়ী মূল হাইডড্রোকার্বনটির নাম ঠিক করা হয়। এবার মূল হাইড্রোকা সম্পূর্ন নামের শেষে "নাইট্রাইল" শব্দ যোগ করে নাম করণ শেষ করা হল।

2 1
(i)
$$CH_3 - CN$$
(ইথেননাইট্রাইল)

$$\begin{array}{ccc} 3 & 2 & 1 \\ \text{(ii) } \text{CH}_3 - \text{CH}_2 - \text{CN} \end{array}$$

$$\begin{array}{ccc} & \text{CH}_3 \\ 3 & 2 | & 1 \\ \text{(iii) CH}_3 - \text{CH} & - \text{CN} \end{array}$$

(2- মিথাইল প্রোপেননাইট্রাইল)

(3- অক্সোবিউটেন নাইট্রাইল)

3 |

'অ্যালকেন''

উর্টজ বিক্রিয়া 🖇

$$2R-X+2Na$$
 ত্র্ম $R-R+2NaX$ ত্রম ত্রম $R-R+2NaX$ ত্রম ত্রম $R-R+2NaX$ ত্রম $R-R+2NaX$ ত্রম $R-R+2NaX$

🕽 ডিকার্বক্সিলেশন ঃ

্ব অ্যালকোহল হতে নিরুদন ঃ

$$CH_3 CH_2 OH + H_2SO_4 \xrightarrow{100^0C} CH_3 CH_2 SO_4H + H_2O$$
 $CH_3 CH_2 SO_4H \xrightarrow{165^0C} CH_2 = CH_2 + H_2SO_4$

ু অ্যালকাইল হ্যালাইড হতে ঃ

$$CH_3 CH_2 CH_2 I +$$
 \longrightarrow $CH_2 = CH_2 + H_2 O + KI$ আ্যালকোহলীয়

ত্র আনকাইন হতে :
$$R-C\equiv C-H+H_2 \qquad \xrightarrow{\frac{\mathrm{Pd-CaCO}_3}{\frac{1}{\sqrt{2}}}} \qquad R-CH=CH_2$$
 আনকিন

অ্যালকাইন

🔵 ভিসিনাল ডাই হ্যালাইড হতে 🛭 ।

$$R - CH - CH_{2} \xrightarrow{KOH (Alc)} RC = CH \xrightarrow{-HX} RC \equiv CH$$

$$X X X \xrightarrow{\text{saynish}} H X$$

🔾 জেমিনাল ডাই হ্যালাইড হতে ঃ

$$R - CH_2 - \frac{KOH}{CH} + KOH \xrightarrow{\text{(alc)-HX}} R - CH = CH \xrightarrow{\text{KOH}} RC \equiv CH$$

ক্যালসিয়াম কার্বাইড হতে ঃ

ক্যালসিয়াম কার্বাইড হতে ঃ ক্যালসিয়াম কার্বাইড হতে ঃ ক্যালসিয়াম কার্বাইড হতে ঃ ক্যালসিয়াম কার্বাইড হতে ঃ
$$Ca$$
 ক্যালসিয়াম কার্বাইড হতে Ca ক্যালসিয়াম কার্বাইড Ca ক্যালসিয়াম কার

[&]quot;একে রোজেনমুন্ড বিজারন বলা হয় "

ইথার

ইথানল হতে ঃ

$$CH_3 - CH_2 - OH + H - SO_4H \rightarrow CH_3 - CH_2 - SO_4H + H_2O$$

$$CH_3 - CH_2 - SO_4H + H - O - CH_2 - CH_3 + 140^{\circ} C$$

$$H_2SO_4 + CH_3 - CH_2 - O - CH_2 - CH_3$$

🔾 উইলিয়ামসন ইথার সংশ্লেষণ ঃ

i)
$$CH_3 - CH_2 - OH + Na \rightarrow CH_3 - CH_2 - ONa + \frac{1}{2}H_2 \uparrow$$

$$CH_3 - CH_2 - O Na + Br - CH_2 - CH_3 \downarrow$$

$$NaBr + CH_3 - CH_2 - O - CH_2 - CH_3$$

অ্যালকোহল

্ৰ আলকাইল হ্যালাইড হতে ঃ

$$RX + NaOH \longrightarrow ROH + NaX [R = CH_3 -]$$

🔾 এস্টার হতে ঃ

$$CH_3 - C - O - CH_3 + NaOH \rightarrow CH_3COONa + CH_3OH$$
 0

্ৰ অ্যালকিন হতে ঃ

$$CH_2 = CH_2 + H_2SO_4 \rightarrow CH_3 - CH_2 - OSO_3H$$

 $CH_3 - CH_2 - OSO_3H + H_2O \rightarrow CH_3 - CH_2OH + H_2SO_4$

🔾 কার্বনিল যৌগ হতে ঃ

$$CH_3 - CHO + H_2 \xrightarrow{Pt} CH_3 - CH_2 - OH$$

$$CH_3 - OC - CH_3 + H_2 \xrightarrow{Pt} CH_3 - CH - CH_3$$

অ্যালকাইল হ্যালাইড

্র আলকেন থেকেঃ
$$CH_4 + Cl_2 \xrightarrow{400^{0} \text{ C}} HCl + CH_3 - Cl$$

$$CH_4 + Br_2 \xrightarrow{400^{0} C} HBr + CH_3 - Br$$

🔾 অ্যালকিন হতে ঃ

$$CH_3 - CH = CH_2 + HBr$$
 $\longrightarrow CH_3 - CH_2 - CH_2Br$

$$CH_3 - CH = CH_2 + HBr$$
 $CH_3 - CH_2 - CH_2$ Br বেনজয়েল পারঅক্সাইড

্ব অ্যালকোহল হতে ঃ

a.
$$CH_3CH_2 - OH + HCl \xrightarrow{\text{Sinch}} CH_3 - CH_2 - Cl + H_2O$$
ZnCl₂

b.
$$CH_3CH_2 - OH + HCl \xrightarrow{300^0 \text{ C}} CH_3 - CH_2 - Cl + H_2O$$

$$ZnCl_2$$

c.
$$CH_3 - CH_2OH \triangle$$
PCl₃

$$CH_3 - CH_2 - Cl + H_3PO_3$$
PCl₅

$$CH_3 - CH_2 - Cl + POCl_3 + HCl$$

অ্যারাইল হ্যালাইড

হালোজেনেশন দ্বারা ঃ

ভায়াজোনিয়াম লবনের বিয়োজন দ্বারা ঃ

অ্যালডিহাইড

$$CH_3-CH_2-OH+[O] \rightarrow CH_3 CHO+H_2O$$
 $K_2Cr_2O_7+4H_2SO_4 \rightarrow K_2SO_4+Cr_2(SO_4)_3+H_2O+[O]$

হাইড্রোজেন অপসারণ (অ্যালকোহল হতে) ঃ

$$CH_3CH_2OH \xrightarrow{Cu} CH_3 - CHO + H_2 \uparrow$$

250° C

🔾 অ্যালকাইন হতে ঃ

$$CH \equiv CH + H_2O \xrightarrow{2\% \text{ Hg SO}_4} CH_2 = CHOH \xrightarrow{80^0 \text{ C}} CH_3 - CHO$$
 (ইথানল)

igtharpoonup জৈব এসিডের ক্যালসিয়াম লবণ হতে eta (CH_3COO) $_2$ Ca \longrightarrow $CH_3CH_2CHO + CaCO_3$

<u>কিটোন</u>

সেকেভারী অ্যালকোহলের জারন ঃ

<u>হাইড্রোজেন অপসারন</u> ঃ (অ্যালকোহল হতে)

$$CH_3CH(OH) - CH_3 \xrightarrow{Cu} CH_3 - CO - CH_3 + H_2$$

্ব<u>টজব এসিডের ক্যালসিয়াম লবণ হতে</u> ঃ

$$(R - COO)_2 Ca \xrightarrow{\Delta} R - CO - R + CaCO_3$$

$$(CH_3 - COO)_2 Ca \xrightarrow{\Delta} CH_3 - CO - CH_3 + CaCO_3$$

কার্বক্সিলিক এসিড

্ৰ অ্যালকোহল হতে ঃ

$$CH_3 - CH_2 - OH + [O] \rightarrow CH_3 - CHO + H_2O$$

$$CH_3 - CHO + [O] \rightarrow CH_3 - COOH$$

🔾 সায়ানাইডের আর্দ্র বিশ্লেষণ ঃ

$$CH_{3} - \square\square\square C \equiv N + H_{2} \longrightarrow CH_{3} - CO - NH_{2}$$

$$CH_{3} - CO - NH_{2} \xrightarrow{[H_{2}O]} CH_{3} - COOH + NH_{3}$$

🔾 অ্যালকিন থেকে ঃ

$$CH_2 = CH_2 + CO + H_2O$$
 $\xrightarrow{H_3PO_4}$ $CH_3 - CH_2 - COOH$ (স্টীম)

🔵 অ্যালডিহাইড অথবা কিটোন এর জারণ ঃ

$$CH_3 - CHO + [O] \rightarrow CH_3COOH$$
,

$$CH_3 - C - CH_3 + 4[0] \rightarrow CH_3COOH + CO_2 + H_2O$$

$$0$$

এস্টার

কার্বক্সিলিক এসিড এবং অ্যালকোহল এর বিক্রিয়ায় ঃ

$$CH_3COOH + CH_3CH_2OH \xrightarrow{\text{aligned}} CH_3COOC_2H_5 + H_2O$$

ইথার ও CO এর বিক্রিয়া ঃ

$$CH_3 - O - CH_3 + CO$$
 $\xrightarrow{BF_3, H_2O}$ $CH_3 - COO CH_3$ $\xrightarrow{BF_3, H_2O}$ $CH_3 - COO CH_3$ $\xrightarrow{BF_3, H_2O}$ $CH_3 - COO CH_3$ $\xrightarrow{BF_3, H_2O}$ $CH_3 - COO CH_3$

<u>অ্যামিন</u>

🔵 অ্যালকাইল হ্যালাইড ও অ্যামোনিয়া হতে ঃ

$$CH_3 - Cl + NH_3 \rightarrow CH_3NH_2 + HCl$$

$$\mathrm{CH_3NH_2} + \mathrm{CH_3Cl} \rightarrow \mathrm{CH_3} - \mathrm{N} - \mathrm{H} + \mathrm{HCl}; \ (\mathrm{CH_3})_2\mathrm{NH} + \mathrm{CH_3Cl} \rightarrow (\mathrm{CH_3})_3\mathrm{N} + \mathrm{HCl}$$

 $\mathrm{CH_3}$

া নাইট্রো <u>অ্যালকেন হতে</u> ঃ

$$CH_3 - NO_2 + 6[H] \xrightarrow{Sn, HCl} CH_3 - NH_2 + 2H_2O$$

হফম্যান পদ্ধতি ঃ

্ৰ আলকোহল হতে ঃ

$$CH_3 - OH + NH_3 \xrightarrow{Al_2O_3} CH_3 - NH_2 + H_2O$$

$$CH_3 - NH_2 + CH_3 - OH \xrightarrow{\text{ВБББРР}} (CH_3)_2 NH + H_2 O$$

$$(CH_3)_2NH + CH_3OH \xrightarrow{\text{$\overline{\S}$BDD}$} (CH_3)_3N + H_2O$$

অ্যামাইড

ু জৈব এসিডের অ্যামোনিয়াম লবণ হতে ঃ

্ব<u>স্ট্রাটি এসিডের জাতকের সাথে NH4OH বিক্রিয়া</u> ঃ

$$\begin{array}{c} \text{O} \\ \parallel \\ \text{CH}_3 - \text{C} - \text{Cl} + 2\text{NH}_4\text{OH} \xrightarrow{\Delta} \text{CH}_3 - \text{C} - \text{NH}_2 + \text{NH}_4\text{Cl} + 2\text{H}_2\text{O} \end{array}$$

্ব অ্যালকাইল সায়ানাইড থেকে ঃ

$$CH_3 - C \equiv N + H_2O \xrightarrow{[H]} R - C - NH_2$$

🔾 কার্বক্সিলিক এসিড ও ইউরিয়ার মিশ্রণকে উত্তপ্ত করলে ঃ

$$\begin{array}{c} & 0 \\ \parallel \\ \mathrm{CH_3} - \mathit{COOH} + \mathrm{NH_2} - \mathrm{CO} - \mathrm{NH_2} & \Delta \\ & \end{array}$$
 $\begin{array}{c} \mathrm{CH_3} - \mathrm{C} - \mathrm{NH_2} + \mathrm{NH_3} + \mathrm{CO_2} \\ \end{array}$

ञताङकतुप १

■ অ্যালকিন

১. ব্রোমিন দ্রবণ দ্বারা পরীক্ষা:

$$R - CH = CH_2 + Br_2 \qquad \xrightarrow{CCl_4} \kappa R - CH - Br - CH_2 - Br$$

[2% ব্রোমিন ও কার্বন টেট্রাক্লোরাইডের দ্রবণের লালচে বাদামি বর্ণ দ্রবীভূত হলে তা অ্যালকিন]

উদাহরণ :
$$CH_2 = CH_2 + Br_2 \xrightarrow{CCl_4} CH_2 Br - CH_2 Br$$

২. বেয়ার পরীক্ষা:

$$2KMnO_4 + 2KOH \xrightarrow{CCl_4} 2K_2MnO_4 + H_2O + [O]$$

$$R - CH = CH_2 + H_2O + [O] \qquad \frac{KMnQ_4}{KOH}R - CH - CH_2$$

ফলাফল: ক্ষারকীয় 2% KMnO4 এর লালচে বেগুনী বর্ণ দূরীভূত।

বি: দ্র: এই পরীক্ষা দুটি জৈব যৌগের অসম্পৃক্ততার শনাক্তকারী পরীক্ষা হিসাবে পরিচিত।

■ আলকাইন

১. ডাই অ্যামিন সিলভার (l) নাইট্রেট দ্রবণ পরীক্ষা ঃ

$$R - C \equiv CH + [Ag (NH_3)] NO_3 \longrightarrow R - C \equiv CNa \downarrow$$

$$NH_4NO_3 + NH_3$$

ফলাফল: R – C = C Na এর সাদা অধ্যক্ষেপ

উদাহরণ :
$$CH = CH + 2 [Ag (NH_3)_2] NO_3 \longrightarrow Age = CAg \downarrow$$

+

$$2NH_4NO_3 + 2NH_3$$

২. ডাই অ্যামিন কপার ক্লোরাইড দ্রবণ পরীক্ষা:

$$R - C \equiv CH + [Cu (NH_3)_2] Cl \longrightarrow + R - C \equiv CCU + NH_4Cl + NH_3$$

ফলাফল : $R-C\equiv CCu$ এর সাদা অধ:ক্ষেপ

উদাহরণ :
$$CH = CH + 2 [Cu (NH_3)_2] Cl \longrightarrow CuC = CCu + 2NH_4Cl + 2NH_3$$

বি: দ্র : এই বিক্রিয়াটি কেবলমাত্র অ্যালকাইন - 1এর ক্ষেত্রে প্রযোজ্য।

■ অ্যালকাইল হ্যালাইডঃ

১. কার্বিল অ্যামিন পরীক্ষা:

$$R-X+Ag\;CN \xrightarrow{\quad \Delta \quad} R-NC+AgX$$

ফলাফল : সুগন্ধযুক্ত $\mathbf{R} - \mathbf{NC}$ উৎপন্ন হবে।

■ অ্যালকোহল:

১. আয়ো ডোফর্ম পরীক্ষা:

$$CH_3 - CH_2OH + 4I_2 + 6NaOH \xrightarrow{\Delta} CHI_3 \downarrow + 5NAI + HCOONa + 5H_2O$$
(হলুদ)

ফলাফল: হলুদ বর্নের মিষ্টি গন্ধযুক্ত আয়োভোফর্ম উৎপন্ন হবে।

২. কঠিন PCI5 পরীক্ষা:

$$R - OH + PCl_5 \xrightarrow{\Delta} R - Cl + POCl_3 + HCl$$

ফলাফল: R – Cl [R = NH4] এর সাদা ধোয়া

$$NH_4OH + PCl_5 \xrightarrow{\Delta} N H_4 Cl + POCl_3 + HCl$$

$$NH_4OH + HCl \longrightarrow NH_4Cl + H_2O$$

■ ইথার:

3.
$$R_2 \ddot{O} + H^+ - OS_3 H^-$$
 [R_2OH] + $OSO_3 H^-$

ফলাফল: অক্সোনিয়াম লবণ উৎপন্ন হয়।

■ অ্যালডিহাইড:

১ টলেন বিকারক পরীক্ষা:

R – CHO + 2 [Ag (NH₃)₂] OH
$$\stackrel{60^{\circ}\text{C}}{\longrightarrow}$$
 2Ag \downarrow + RCOONH₄ + 3NH₃ + H₂O ফলাফল : Ag এর অধ:ক্ষেপ।

২. ফেলিনং দ্রবণ পরীক্ষা:

$$R-CHO+2Cu (OH)_2+NaOH \xrightarrow{70^{\circ}C} R-COONa+Cu_2O\downarrow + H_2O$$

ফলাফল: Cu2O এর লালচে বাদামী বর্ণের অধ:ক্ষেপ।

[বি: দ্র: টলেন বিকারক ও ফেলিং দ্রবণের জন্য টীকা অংশ দেখ]

■ কিটোন:

ফলাফল : আয়োডোফর্ম এর হলুদ অধ:ক্ষেপ।

$$\begin{array}{c} R \\ R \\ C = O + H_2N - NH \\ \hline O \\ \end{array} \begin{array}{c} NO_2 \\ NO_2 \\ \end{array}$$

$$\begin{array}{c} R \\ C = N \\ \end{array} - NH \begin{array}{c} NO_2 \\ \hline O \\ \end{array} NO_2 + H_2O \end{array}$$

ফলাফল: হলুদ বর্ণের দানাদার অধ:ক্ষেপ সৃষ্টি।

■ কার্বক্সিল মূলক:

১. চুনের পানির পরীক্ষা:

$$R - COOH + NaHCO_3 \xrightarrow{\Delta} R - COONa + H_2O + CO_2$$

 $Ca (OH) + CO_2 \longrightarrow CaCO_3 + H_2O$

ফলাফল: চুনের পানি ঘোলা।

২. ফেনফথ্যালিন দ্রবণ পরীক্ষা:

পরীক্ষানলে 3.4 ফোটা জৈব নমুনা নিয়ে তাতে 5-7 ফোটা পানি যোগ কর। এ দ্রবণে 2 ফোটা ফেনফথ্যালিন যোগ কর। এখন এর মধ্যে $0.1~\mathrm{M}$ NaOH কে ফোটায় ফোটায় যোগ কর।

ফলাফল: দ্রবণের বর্ণ স্থায়ীভাবে গোলাপী ধারণ করেছে।

এষ্টার

হাইদ্রক্সাসিড পরীক্ষা :

$$\begin{array}{ccc}
O & OH \\
\parallel & & \mid \\
R - C - NOH & \longrightarrow R - C = NOH
\end{array}$$

$$\begin{array}{c} O \\ 3R - C - NHOH + FeCl_3 \\ \hline \\ R - C \\ \hline \\ N \\ H \end{array} \qquad \begin{array}{c} O \\ Fe + 3Hel \\ \\ H \end{array}$$

ফলাফল: উজ্জ্বল লাল বাদামী বর্ণ।

■ অ্যামিন:

১. কার্বিল অ্যামিন:

$$R-NH_2+CHCl_3+3KOH$$
 $\xrightarrow{70^{\circ}C}$ $RNC+3KCl+3H_2O$ ফলাফল: সেকেন্ডারী ও টারশিযারী অ্যামিন এ পরীক্ষা প্রদর্শন করে না।

■ অ্যামাইড:

১. NH3 গ্যামের পরীক্ষা

$$R-CONH_2-NaOH$$
 তাপ $R-COONa+NH_3$ $NH_3+HCl\longrightarrow NH_4Cl$ ফলাফল : NH_3 গ্যাস নির্গত হয় যা HCl সিক্ত কাচ দন্ডের ওপর সাদা ধোয়ার সৃষ্টি করে।

টীকা

■ মার্কিনভ নীতি : অপ্রতিসম অ্যালকিনের সাথে অপ্রতিসম বিকারের যুথ বিক্রিয়ায় বিকারক অণুর ঋণাত্মক অংশ অ্যালকিনের দ্বিবন্ধনযুক্ত কার্বন প্রমাণুদ্বয়ের যে কার্বনে কম সংখ্যক হাইড্রোজেন প্রমাণু থাকে সেই কার্বন প্রমাণুতে যুক্ত হবে।

খারাসের নীতি : জৈব পারঅক্সাইডের উপাি

রকের যুথ বিক্রিয়ায় বিকারক অণুর

ঋণাত্মক অংশে দ্বিবন্ধন যুক্ত কার্বন পরমাণুদ্বয়ের যে অংশে H বেশী অছে সেই C<u>এর</u> সাথে যুক্ত হবে।

Br

 \rightarrow CH₃ – CH – CH₃ – Bv 1%

সেট্যেফ নীতি : অ্যালকাইল হ্যালাইড
 শাখাযুক্ত অ্যালকিন প্রধান উৎপাদ হবে ।

একটি অ্যালকিন উৎপন্ন হলে অধিক

$$CH_3-CH_2-CH-CH_3-KOH \cdot \cdot \cdot \\ \mid \\ Br$$

$$CH_3 - CH = CH - CH + CH_3 - CH_2 - CH = CH_2 + KBr + H_2O \uparrow 20\%$$
 $\downarrow \qquad | CH_3$

■ উর্টজ বিক্রিয়া : অ্যালকাইল হ্যালাইডের শুষ্ক ইথারীয় দ্রবণে ধাতব সোডিয়াম যোগ করে উত্তপ্ত করলে অ্যালকেন উৎপন্ন হয়। যেমন,

$$R-X+2 Na+R-x$$
 শুদ্ধ ইথার $R-R+2NaX$

উদাহরণ :
$$CH_3-CH_2-Br+2Na+CH_3\ CH_2\ Br$$
 ্রত্তম্ভ ইথার
$$CH_3-CH_2-CH_2-CH_3+NaBr$$

$$n- বিউটেন$$

■ উর্টজ ফিটিগ বিক্রিয়া : শুষ্ক ইথারে দ্রবীভূত হ্যালোজেনো মিথেন যেমন মিথাইল ব্রোমাইড ও হ্যালোজেনো বেনজিন যেমন, ব্রোমো বেনজিন এর মিশ্রণে Na ধাতু যোগ করলে বিক্রিয়া শুরু হয়। ফলে টলুইন উৎপন্ন হয়ে বাষ্পীভূত হয়। টলুইনের বাষ্পকে শীতল করে তরল টলুইন সংগ্রহণ করা হয়। এই বিক্রিয়াকে উর্টজ ফিটিগ বিক্রিয়া বলে।

যেমন:

■ উইলিয়ামসন ইথার সংশ্লেষন: অ্যালকোহলে দ্রবীভূত সোডিয়াম বা পটাসিয়াম অ্যালকক্সাইডের সাথে অ্যালকাইল হ্যালোইডকে উত্তপ্ত করলে ইথার উৎপন্ন হয়। এ প্রক্রিয়ায় সরল ও মিশ্র উভয় প্রকার ইথার উৎপন্ন করা যায়। এই প্রক্রিয়াকে উইলিয়ামসন ইথার সংশ্লেষন বলে।

$$RONa + RX \longrightarrow R - O - R + NaX$$

■ TNT (ট্রাইনাট্রো টলুইন):

 $30^{\circ}\mathrm{C}$ তাপমাত্রায় টলুইনকে ($N\mathrm{O}_3 + H_2\mathrm{SO}_4$) এর সাথে উত্তপ্ত করণ :

র্থনাইট্রোটলুইন ও প্যারানাইট্রোটলুইন মিশ্রণ

মনোট্রাইনাইট্রোটলুইন পৃথকীকরণ

60°c তাপমাত্রার নাইট্রেশন

৺ ডাইনাইট্রোটলুইন

110°C তাপমাত্রায় নাইট্রেশন

TNT উৎপন্ন

- বিক্ষোরক দ্রব্য হিসেবে ব্যবহৃত হয়।
- ২. বিষাক্ত দ্রব্য হিসেবে ব্যবহৃত হয়।
- ডেটল:

প্রস্তুতি: ডেটল একটি মিশ্রণ। মিশ্রণের সংযুক্তি নিমুরূপ:

(i) ক্লোরোডাইলিনল (ii) আইসোপ্রোপানল (10%) (iii) পাইনতেল $(10-15\ \%)$ (iv) সাবান পানি $(70-75\)$

ব্যবহার :

- ১. পচন নিবারক ও জীবানুনাষক হিসেবে ব্যবহৃত হয়
- ২. তবে এর বিষাক্ততা মৃত্যুও ঘটাতে পারে।
- প্যারাসিটামল :

ফেনলকে লঘু HNO3 দারা কক্ষ তাপমাত্রায় নাইট্রেশন

2 - নাইট্রোফেনল ও 4 - নাইট্রোফেনল

টিন ও গাঢ় HCl দ্বারা বিজারন

↓ 4 - অ্যামিনোফেনল

গ্লোসিয়াল ইথানোয়িক এসিডের উপস্থিতিতে ইথানোয়িক অ্যান্হাইড্রাইড দ্বারা অ্যাসিটাইলেশন

↓ প্যারাসিটামল

$$\begin{array}{c|c} OH & OH & OH \\ \hline O & [H] & \hline O & (CH_3CO)_2 O, \Delta & \hline O \\ NH_2 & NH - CO - CH_3 \\ \hline NH_3 & NH - CO - CH_3 \\ \hline \end{array}$$
 প্যারাসিটামল