Algorithms

Chapter 6
Algorithms Involving Sequences & Sets
Part 1
(pp. 119~127)

Sequences & Sets

- Sequence
 - ☐ the order of the given elements is important
- **Set**
 - □order isn't important
 - □an element does not appear more than once

Pure Binary Search

■ Problem
Given a sorted sequence of *n* real numbers

a real number z

Find whether z appears in the sequence if it does, find the position of z

- Solution
 - \square sequential (linear) search: O(n)
 - \square binary search: $O(\log n)$

```
Algorithm Binary Search(X, n, z);
Input: X (sorted array), z (search key)
Output: Position
begin
  Position:=Find(z, 1, n);
end
Function Find(z, Left, Right):integer;
begin
  if Left = Right then
    if X[Left] = z then Find:=Left
    else Find:=0
  else
    Middle:= Left+(Right-Left)/2;
    if z < X[Middle] then
       Find:=Find(z, Left, Middle-1)
    else
       Find:=Find(z, Middle, Right)
end
```

M. K. Shan, CS, NCCU

Binary Search in Cyclic Sequence

Binary Search in Cyclic Sequence

Cyclic sorted list

1	2	3	4	5	6	7	8	9	<i>10</i>	<i>11</i>	<i>12</i>
58	82	90	95	4	15	17	26	30	46	48	56

■ Problem

Given a cyclic sorted sequence of *n* real numbers Find the position of the minimal element in the list

Solution

- \square sequential (linear) search: O(n)
- □ binary search?

請設計O(logn)演算法由Cyclic Sorted Sequence中找到Minimal Element

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

 58
 82
 90
 95
 4
 15
 17
 26
 30
 46
 48
 56

Solution of Binary Search in Cyclic Sequence

- Take any two numbers $x_k \& x_m, k < m$
- If $x_k < x_m$ then *i* cannot be in the range [k, m]else *i* must be in the range [k, m]

Binary Search in Cyclic Sequence


```
Algorithm Cyclic Binary Search(X, n, z);
Input: X (cyclic sorted array)
Output: Position (of the smallest element)
begin
  Position:=Find(1, n);
end
Function Cyclic Find(Left, Right):integer;
begin
 if Left = Right then Cyclic find:=Left
 else
    Middle:= 1/2(Left+Right);
    if X[Left] > X[Middle] then
       Cyclic Find:=Cyclic Find(Left, Middle)
    else
       Cyclic Find:=Cyclic Find(Middle+1, Right)
end
```

Special Binary Search

Special Binary Search

■ Problem

Given a sorted sequence of n distinct integers $a_1, a_2, ..., a_n$ Find the element $a_i = i$

- Solution
 - \square sequential (linear) search: O(n)
 - □ binary search?

請設計O(logn)演算法由Sorted Sequence $a_1, a_2, ..., a_n$ 中找到 $a_i = i$

Solution of Special Binary Search

- \blacksquare Consider the value of $a_{n/2}$
 - \square if $a_{n/2} = n/2$, done
 - \Box if $a_{n/2} < n/2$, no number in the left half satisfy
 - \square if $a_{n/2} > n/2$, no number in the right half satisfy


```
Algorithm Special Binary Search(A, n);
Input: A (sorted array)
Output: Position
begin
  Position:=Special Find(1, n);
end
Function Special Find(Left, Right):integer;
begin
  if Left = Right then
    if A[Left] = Left then Special Find:=Left
    else Special Find:=0
  else
    Middle:= 1/2(Left+Right);
    if A [Middle] < Middle then
       Special Find:=Special Find(Middle+1, Right)
    else
       Special Find:=Special_Find(Left, Middle)
M. K. Shan, CS, NCCU
end
```

Binary Search of Unknown Size

Binary Search of Unknown Size

Problem
 Given a sorted sequence of real numbers
 a real number z
 Find whether z appears in the sequence

if it does, find the position of z

Solution of Binary Search of Unknown Size

```
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12

    4
    15
    17
    26
    30
    46
    48
    56
    58
    82
    90
    95
```

Where is 46?

請設計O(logn)演算法由Unknown-Sized Sorted Sequence $a_1, a_2, ..., a_n$ 中找到 $a_i = x$

Solution of Binary Search of Unknown Size

- Find j such that $x_j < z <= x_{2j}$ O(logj)
- Binary search in the range between x_j and x_{2j} O(logj)
- \blacksquare Total O(2*logj)

Stutter-Subsequence Problem

Stuttering-Subsequence Problem

- Subsequence
- Given two sequences of characters $A=a_1a_2...a_n$, $B=b_1b_2...b_m$
- B is a subsequence of A
- if there exists indices i₁<i₂...<im, such that ∀ 1≤ j≤ m, bj=aij
- B is a subsequence of A if
 - ☐ B can be embedded inside A in the same order
 - □ but with possible holes
- B='euec' is a subsequence of A='sequence'
- Time Complexity of Subsequence Matching?

Given two sequence of characters $A=a_1a_2...a_n$, $B=b_1b_2...b_m$, give the time complexity to test if B is a subsequence of A

Stuttering-Subsequence Problem (cont.)

- Stuttering
 - \square B=xyzzx
 - \square B³=xxxyyyzzzzzzxxx
- **■** Stutter-Subsequence Problem
 - Given two sequences A & B
 - Find the maximal value of i so that
 - B^i is a subsequence of A
- Given A=axbcxdyxyacyxzyxzzyzzzxyzyxzxyx

 B=xyzzx
 - Find the maximal value of i

如何利用binary search的精神,縮小stutter-subsequence problem中 i的搜尋範圍?

Solution of Stuttering-Subsequence

- Observation
 - $\square \forall i$, we can construct & test subsequence of B^i easily
 - \square if B^j is a subsequence of A,
 - then Bⁱ is a subsequence of A, $\forall 1 \le i \le j$
- Solution
 - \square Check whether B^i is a subsequence of A, i=(n/m)/2
 - ☐ if yes, eliminating the lower range
 - □ otherwise, eliminating the upper range
 - \square time complexity: O((n+m)log(n/m))

Summary of Idea

- Whenever looking for the maximal *i* that satisfy some property
 - \Box it may be sufficient to find an algorithm that determines whether a given i satisfy
 - \Box we can do the rest by binary search if we have an upper bound for i
 - □ if do not know the upper bound, use doubling scheme

Solving Equations

Solving Equations

- To find the root x, such that f(x)=0
- To find the root of $f(x) = x^3-3x^2+3x-1$
 - $\Box f(x) = x^3 3x^2 + 3x 1 = (x 1)^3$
 - \square x = root of f(x)=1
- To find the root of $f(x) = x^3-x-2$
 - ☐ Exhaustive approach: try all possible x
 - □ Better approach to reduce search space?

如何利用binary search的精神, 縮小equation root finding的搜尋範圍?

M. K. Shan, CS, NCCU

```
INPUT: Function f, endpoint values a, b, tolerance TOL, maximum iterations NMAX CONDITIONS: a < b, either f(a) < 0 and f(b) > 0 or f(a) > 0 and f(b) < 0
OUTPUT: value which differs from a root of f(x)=0 by less than TOL

N \leftarrow 1
While N \le NMAX \# limit iterations to prevent infinite loop c \leftarrow (a+b)/2 \# new \ midpoint
If f(c) = 0 or (b-a)/2 < TOL then \# solution found Output(c)
Stop
EndIf
N \leftarrow N + 1 \# increment step counter
If sign(f(c)) = sign(f(a)) then a \leftarrow c else b \leftarrow c \# new interval
EndWhile
Output("Method failed.") \# max \ number of steps exceeded
```


$f(x)=x^3-x-2$

Iteration	a_n	b_n	c_n	$f(c_n)$
1	1	2	1.5	-0.125
2	1.5	2	1.75	1.6093750
3	1.5	1.75	1.625	0.6660156
4	1.5	1.625	1.5625	0.2521973
5	1.5	1.5625	1.5312500	0.0591125
6	1.5	1.5312500	1.5156250	-0.0340538
7	1.5156250	1.5312500	1.5234375	0.0122504
8	1.5156250	1.5234375	1.5195313	-0.0109712
9	1.5195313	1.5234375	1.5214844	0.0006222
10	1.5195313	1.5214844	1.5205078	-0.0051789
11	1.5205078	1.5214844	1.5209961	-0.0022794
12	1.5209961	1.5214844	1.5212402	-0.0008289
13	1.5212402	1.5214844	1.5213623	-0.0001034
14	1.5213623	1.5214844	1.5214233	0.0002594
15	1.5213623	1.5214233	1.5213928	0.0000780

 $f(a_n)$ $f(b_n)$ -2 4 -0.125 4 -0.125 1.6093750

Interpolation Search

Interpolation Search

Observation of binary search if during the search we find a value close to the search number z, it seems more reasonable to continue search in that neighbor, instead of going to the next half point

M. K. Shan, CS, NCCU

有可能搜尋範圍縮小比例不只1/2嗎?

Interpolation Search (cont.)

- Basic idea of interpolation search
 - ☐ Instead of cutting the search space by a fixed half, cut it by an amount that seems the most likely to succeed.
 - ☐ Amount is determined by interpolation

Interpolation Search (cont.)

Search 30

1+[(30-10)/(80-10)]*(8-1)=1+(20/70)*7

Interpolation Search (cont.)

Search 30

 $1+[(30-5)/(80-5)]*(8-1)=1+(25/75)*7=10/3 \sim 4$

 $4+[(30-20)/(80-20)]*(8-4)=4+(10/60)*4=28/6 \sim 5$

M. K. Shan, CS, NCCU

```
Algorithm Interpolation Search(X, n, z);
Input: X (cyclic sorted array), z
Output: Position (of the smallest element)
begin
  if z < X[1] or Z > X[n] then Position:=0
  else Position := Int Find(z, 1, n)
end
Function Int Find(z, Left, Right):integer;
begin
  if X[Left] = z then Int Find:=Left
  else if Left = Right or X[Left] = X[Right] then
  Int_Find:=0 else Next Guess:=  \left[ Left + \frac{(z-X[Left])}{X[Right]-X[Left]} (Right - Left) \right] 
        if X[Middle] < X[Right] then
          Int Find:=Int Find(z, Left, Next Guess-1)
        else
          Int Find:=Int_Find(z, Next-Guess, Right)
M. K. Shan, CS, NCCU
end
```