MODELLO RELAZIONALE

AA 2006/2007

MODELLO DEI DATI

- insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica
- componente fondamentale: meccanismi di strutturazione (o costruttori di tipo)
- come nei linguaggi di programmazione esistono meccanismi che permettono di definire nuovi tipi, così ogni modello dei dati prevede alcuni costruttori

AA 2006/07

Modello relazionale

2

IL MODELLO RELAZIONALE

Permette di definire tipi per mezzo del costruttore <u>relazione</u> che permette di organizzare i dati in insiemi di record a struttura fissa.

Una relazione è spesso rappresentata da una tabella ove le righe rappresentano specifici record e le colonne corrispondono ai campi dei record, l'ordine di righe e colonne è sostanzialmente irrilevante.

In una base di dati relazionale ci sono in generale più relazioni.

I modelli logici dei dati

- · Tre modelli logici tradizionali
 - gerarchico (organizzazione ad albero)
 - reticolare (organizzazione a grafo)
 - relazionale (organizzazione a tabella)
- Più recente (e poco diffuso)
 - a oggetti (organizzazione a oggetti)

Si chiamano modelli logici perchè pur basandosi su strutture astratte queste riflettono una particolare organizzazione

AA 2006/07 Modello relazionale

Modelli logici, caratteristiche

- · Gerarchico e reticolare
 - utilizzano riferimenti espliciti (puntatori) fra record (riferimenti espliciti dal livello logico a quello fisico)
- Relazionale "è basato su valori"
 - anche i riferimenti fra dati in strutture (relazioni) diverse sono rappresentati per mezzo dei valori stessi.

AA 2006/07 Modello relazionale 5

Il modello relazionale · Proposto da E. F. Codd nel 1970 per favorire utente l'indipendenza dei dati Disponibilein DBMS reali nel 1981 (non è facile implementare l'indipendenza con efficienza e Schema logico affidabilità!) Basato: · sul concetto matematico di relazione (con Schema interno una variante) -concetto formale-· tabelle -concetto intuitivo -Definisce come sono organizzati i dati e non come sono poi memorizzati e gestiti dal sistema BD informatico AA 2006/07 Modello relazionale

Relazione: tre accezioni

- relazione matematica: come nella teoria degli insiemi
- relazione (dall'inglese relationship) che rappresenta una classe di fatti, nel modello Entity-Relationship; tradotto anche con associazione o correlazione
- relazione secondo il modello relazionale dei dati

AA 2006/07 Modello relazionale

Relazione matematica

- D₁, ..., D_n (n insiemi anche non distinti)
- prodotto cartesiano D₁×...×D_n:
 - l'insieme di tutte le n-uple ordinate $(d_1, ..., d_n)$ tali che $d_1 \in D_1, ..., d_n \in D_n$
- relazione matematica su D₁, ..., D_n:
 - un sottoinsieme di D₁x...xD_n.
- D₁, ..., D_n sono i domini della relazione

Il numero delle componenti del prodotto (n) è detto grado della relazione; il numero di n- uple della relazione è la cardinalità della relazione.

AA 2006/07 Modello relazionale 8

Relazione matematica, esempio

- D₁={a,b}
- $D_2 = \{x, y, z\}$
- prodotto cartesiano D₁ × D₂

а	Х
а	У
а	Z
b	Х
b	У
b	Z

7

• una relazione

$$r \subseteq D_1 \times D_2$$

а	Х
а	Z
b	٧

AA 2006/07 Modello relazionale

Relazione matematica, esempio

 Consideriamo l'insieme dei Nomi e dei numeri di telefono dei dipendenti di una ditta

Mario Rossi	2345 2367
Luca Verdi Anna Bianchi	2378 2356
D_1	D_2

 \Re II prodotto cartesiano D_1xD_2 è l'insieme di tutte le coppie ordinate (NOME,TELEFONO)

AA 2006/07 Modello relazionale 10

Relazione matematica, esempio

Mar	io Rossi	2345
Mar	io Rossi	2367
Mar	io Rossi	2378
Mar	io Rossi	2356
Luca	a Verdi	2345
Luca	a Verdi	2367
Luca	a Verdi	2378
Luca	a Verdi	2356
Ann	a Bianchi	2345
Ann	a Bianchi	2367
Ann	a Bianchi	2378
Ann	a Bianchi	2356

 \Re II prodotto cartesiano contiene tutte le possibili associazioni fra gli elementi degli insiemi

ℜ La rubrica dei numeri telefonici contiene solo alcune di tutte le possibili coppie

AA 2006/07 Modello relazionale 11

Relazione matematica, esempio

- Una relazione matematica sugli insiemi D₁ e D₂ (domini) è un sottoinsieme del prodotto cartesiano D₁ x D₂
- Le relazioni si possono visualizzare efficacemente con una tabella in cui ogni colonna corrisponde ad un dominio e ogni riga a un elemento della relazione

La relazione RUBRICA

Mario F	Rossi	234	5
Luca V	erdi	236	7
Luca V	erdi	237	8
Anna R	ianchi	235	6

La rubrica contiene solo le coppie (NOME, TELEFONO) che esistono

Relazione matematica, proprietà

- una relazione matematica è un insieme di n-uple ordinate:
 - $(d_1, ..., d_n)$ tali che $d_1 \in D_1, ..., d_n \in D_n$
- una relazione è un insieme; quindi:
 - non c'è ordinamento fra le n-uple;
 - le n-uple sono distinte
 - ciascuna n-upla è ordinata: l' i-esimo valore proviene dall' i-esimo dominio

AA 2006/07 Modello relazionale 13

Relazione matematica, proprietà

 ciascuna n-upla è ordinata: l' i-esimo valore proviene dall' i-esimo dominio

> Juve Lazio 3 1 Lazio Milan 2 0 Juve Roma 0 2 Roma Milan 0 1

Lazio Juve 3 1 Milan Lazio 2 0 Roma Juve 0 2 Milan Roma 0 1

14

Relazione matematica, esempio

Partite ⊆ string × string × int × int

Juve Lazio 3 1 Lazio Milan 2 0 Juve Roma 0 2 Roma Milan 0 1

- Ciascuno dei domini ha due ruoli diversi, distinguibili attraverso la posizione:
 - La struttura è posizionale

AA 2006/07 Modello relazionale

15

Relazioni nel modello relazionale

- A ciascun dominio si associa un nome (attributo), che ne descrive il "ruolo"
- Gli attributi possono essere usati come intestazione
- Struttura non posizionale

AA 2006/07

Casa	Fuori	RetiCasa	RetiFuor
Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	0	2
Roma	Milan	0	1

AA 2006/07 Modello relazionale 16

Tabelle e relazioni

- Una tabella rappresenta una relazione se
 - i valori di ogni colonna sono fra loro omogenei
 - · le righe sono diverse fra loro
 - le intestazioni delle colonne sono diverse tra loro
- In una tabella che rappresenta una relazione
 - · l'ordinamento tra le righe è irrilevante
 - l'ordinamento tra le colonne è irrilevante

	Insegnamento	Docente	Aula	Ora
1	Basi di dati	Piero Rossi	N2	9:45
	Chimica	Nicola Mori	N1	9:45
	Fisica I	Mario Bruni	N1	11:45
	Fisica II	Mario Bruni	N3	9:45
	Sistemi inform.	Piero Rossi	N3	8:00

AA 2006/07 Modello relazionale 17

Il modello è basato su valori

- Una base di dati è in genere costituita da più relazioni
- Si possono creare corrispondenze fra le tuple di relazioni distinte per mezzo di valori degli attributi che compaiono nelle ennuple

studenti	Matricola	Cognome	Nome	Data di na	ascita
	6554	Rossi	Mario	05/12/1	978
	8765	Neri	Paolo	03/11/1	976
	9283	Verdi	Luisa	12/11/1	979
	3456	Rossi	Maria	01/02/1	978
		0111-	V-1-	0	
	esami	Studente	Voto	Corso	
		3456	30	04	
		3456	24	02	
		9283	28	01	
		6554	26	01	
	corsi	Codice	Titolo	Docente	
		01	Analisi	Mario	
		02	Chimica	Bruni	
		04	Chimica	Verdi	
AA 2006/07		Modello rel	azionale		19

Vantaggi della struttura basata su valori

- indipendenza dalle strutture fisiche (si potrebbe avere anche con puntatori di alto livello) che possono cambiare dinamicamente
- si rappresenta solo ciò che è rilevante dal punto di vista dell'applicazione
- l'utente finale vede gli stessi dati dei programmatori
- i dati sono portabili piu' facilmente da un sistema ad un altro
- per accedere ai dati non serve sapere come sono memorizzati fisicamente

AA 2006/07 Modello relazionale 20

Definizioni

 Schema di relazione: un nome R con un insieme di attributi X={A₁, ..., A_n}: R(A₁,..., A_n)=R(X)

STUDENTI (Matricola, Cognome, Nome, Data di Nascita)

studenti	Matricola	Cognome	Nome	Data di nascita
	6554	Rossi	Mario	05/12/1978
	8765	Neri	Paolo	03/11/1976
	9283	Verdi	Luisa	12/11/1979
	3456	Rossi	Maria	01/02/1978

AA 2006/07 Modello relazionale 22

Definizioni

 Schema di base di dati: insieme di schemi di relazione con nomi diversi:

 $R = \{R_1(X_1), ..., R_k(X_k)\}$

R = {STUDENTI(Matricola,Cognome,Nome,Data di Nascita), ESAMI (Studente,Voto,Corso),CORSI (Codice,Titolo,Docente) }

	studenti	Matricola	Cognome	Nome	Data di r	nascita	
		6554	Rossi	Mario	05/12/	1978	
		8765	Neri	Paolo	03/11/	1976	
		9283	Verdi	Luisa	12/11/	1979	
		3456	Rossi	Maria	01/02/	1978	
esami	Studente	Voto	Corso				
Godin.	3456	30	04	corsi	Codice	Titolo	Docent
	3456	24	02		01	Analisi	Mario
	9283	28	01		02	Chimica	Bruni
	6554	26	01		04	Chimica	Verdi

Definizioni, 2

- Una tupla su un insieme di attributi X è una funzione t che associa a ciascun attributo A in X un valore del dominio di A
- t[A] (o t.A) denota il valore della tupla t sull'attributo A
- Per una relazione R con attributi A1, A2 e A3, e corrispondenti domini D1, D2 e D3 si può denotare anche come R(A1 : D1, A2 : D2, A3 : D3)

Definizioni, 3

- (Istanza di) relazione su uno schema **R**(X): insieme r dituple su X
- (Istanza di) base di dati su uno schema R= $\{\mathbf{R}_1(X_1), ..., \mathbf{R}_n(X_n)\}:$ insieme di relazioni $r = \{r_1, ..., r_n\}$ (con r_i relazione su R_i)

AA 2006/07 Modello relazionale 25

Schema della relazione studenti

STUDENTI(Matricola, Cognome, Nome, Data di Nascita)

Istanza della relazione studenti

studenti	Matricola	Cognome	Nome	Data di nascita
	6554	Rossi	Mario	05/12/1978
	8765	Neri	Paolo	03/11/1976
	9283	Verdi	Luisa	12/11/1979
tupla <i>i</i> →	3456	Rossi	Maria	01/02/1978

Da una tupla possiamo estrarre

il valore degli attributi t_i [matricola]=3456

AA 2006/07 Modello relazionale

Schema della relazione partite

PARTITE (Casa, Fuori, RetiCasa, RetiFuori)

Istanza della relazione partite

Partita	Casa	Fuori	RetiCasa	RetiFuori
t1	Juve	Lazio	3	1
t2	Lazio	Milan	2	0
t3	Juve	Roma	0	2
44	Roma	Milan	0	1

t1[casa]= Juve t2[Fuori]= Milan t4[casa]= Roma t4[Fuori]= Milan t1[RetiCasa]=3 t3[RetiFuori]=2

AA 2006/07 Modello relazionale 27

Notazione

attributi: lettere iniziali dell'alfabeto, maiuscole:

A, B, C, A', A1, ...

insiemi di attributi: lettere finali dell'alfabeto, maiuscole: X, Y, Z, X^{\prime} , X1, ...

giustapposizione dei nomi degli attributi: X=ABC (anziché $X=\{A,B,C\}$)

unioni di insiemi: XY anziché X ∪ Y

nomi di relazione: R e lettere circostanti, maiuscole, anche con indici e pedici: R₁ , S, S', ...

relazione: come il nome della relazione, ma in minuscolo schema di base di dati: lettera maiuscola in grassetto R, S, ... base di dati: stesso simbolo dello schema, ma in minuscolo

AA 2006/07 Modello relazionale

Riassunto delle definizioni

Termini informali		<u>Termini formali</u>
tabella	Į.	relazione
colonna		Attributo/dominio
riga	ŀ	Tupla
Valori nella colonna		dominio
Definizione della tabella		Schema della relazione
Tabella popolata		Istanza della relazione

AA 2006/07 Modello relazionale

Relazioni su singoli attributi

studenti

Matricola	Cognome	Nome	Data di nascita
6554	Rossi	Mario	05/12/1978
8765	Neri	Paolo	03/11/1976
9283	Verdi	Luisa	12/11/1979
3456	Rossi	Maria	01/02/1978

studenti lavoratori Matricola 6554 3456

Possono esistere relazioni su solo attributo

Esempio di istanza della relazione Studenti

sid	nome	login	età	media
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

- E' formalmente corretta ?
- E' stata progettata correttamente ?

AA 2006/07 Modello relazionale 31

Strutture nidificate

Il modello relazionale non permette di usare domini arbitrari per la definizione delle relazioni; in particolare non è in generale possibile usare domini strutturati (array, set, liste, ...)

Concisamente, una relazione in cui ogni dominio è "atomico" (non ulteriormente decomponibile) si dice che è in Prima Forma Normale, o 1NF (1st Normal Form)

In molti casi è pertanto richiesta un'attività di normalizzazione dei dati che dia luogo a relazioni in 1NF e che preservi l'informazione originale

AA 2006/07 Modello relazionale

Rappresentazione di Strutture nidificate per mezzo di relazioni

	mamoato _l	PO
	Da Filippo Via Roma 2, Ro	
	Ricevuta Fisc 1235 del 12/10/2	
3	Coperti	3,00
2	Antipasti	6,20
3	Primi	12,00
2	Bistecche	18,00
	Totale	39,20

AA 2006/07

33

	-							
na		Da Filippo Via Roma 2, Roma						
e 00		Ricevuta Fiscale 1240 del 13/10/2000						
3,00	2	2 Coperti 2,00						
6,20	2	2	Antipasti	7,00				
2,00	2	2	Primi	8,00				
8,00	2	2	Orate	20,00				
	2	2	Caffè	2,00				
9,20		Totale 39,00						
Modello relazionale 34								

Relazioni che rappresentano strutture nidificate

Ricevute

Numero	Data	Totale
1235	12/10/2000	39,20
1240	13/10/2000	39,00

Dettaglio

AA 2006/07

Numero	Qta	piatto	costo			
1235	3	Coperti	3,00			
1235	2	Antipasti	6,20			
1235	3	Primi	12,00			
1235	2	Bistecche	18,00			
1240	2	Coperti	2,00			
Modello relazionale						

Strutture nidificate, riflessione

- Abbiamo rappresentato veramente tutti gli aspetti delle ricevute?
- Dipende da che cosa ci interessa!
 - l'ordine delle righe e' rilevante?
 - possono esistere linee ripetute in una ricevuta?
- Sono possibili rappresentazioni diverse

Rappresentazione alternativa per strutture nidificate

Ricevu	te	Nume	ro	Da	ta	Totale	
		1235	i	12/10/	2000	39,20	
		1240)	13/10/	2000	39,00	
Dettaglio	N	umero	Riga	Qtà	Des	crizione	Importo
		1235	1	3	С	operti	3,00
		1235	2	2	Ar	ntipasti	6,20
		1235	3	3		Primi	12,00

2

Bistecche

18,00

1235

Informazione incompleta

- Il modello relazionale impone ai dati una struttura rigida:
 - le informazioni sono rappresentate per mezzo di tuple
 - solo alcuni formati di tuple sono ammessi: quelli che corrispondono agli schemi di relazione
- I dati disponibili possono non corrispondere al formato previsto

AA 2006/07 Modello relazionale 38

Informazione incompleta: motivazioni

Nome	SecondoNome	Cognome
Franklin	Delano	Roosevelt
Winston	sconosciuto	Churchill
Charles	Inesistente	De Gaulle
Josip	senza informazione	Stalin

AA 2006/07 Modello relazionale 39

Tipi di valore nullo

- (almeno) tre casi differenti
 - · valore sconosciuto
 - · valore inesistente
 - valore senza informazione
- I DBMS non distinguono i tipi di valore nullo

AA 2006/07 Modello relazionale 40

Informazione incompleta: soluzioni?

- non conviene (anche se spesso si fa) usare valori del dominio (0, stringa nulla, "99", ...):
 - potrebbero non esistere valori "non utilizzati"
 - valori "non utilizzati" potrebbero diventare significativi
 - in fase di utilizzo (nei programmi) sarebbe necessario ogni volta tener conto del "significato" di questi valori

AA 2006/07 Modello relazionale 41

Informazione incompleta nel modello relazionale

- Si adotta una tecnica rudimentale ma efficace:
 - valore nullo: denota l'assenza di un valore del dominio (e non è un valore del dominio)
- t[A], per ogni attributo A, è un valore del dominio dom(A) oppure il valore nullo NULL
- Si possono (e debbono) imporre restrizioni sulla presenza di valori nulli

Troppi valori nulli studenti Matricola Cognome Nome Data di nascita 6554 Rossi Mario NULL 9283 Verdi Luisa 12/11/1979 NULL Rossi Maria 01/02/1978 Voto esami Studente Corso NULL 30 NULL NULL 02 24 9283 28 01 corsi Codice Titolo Docente 01 **Analisi** Mario 02 Chimica NULL Verdi NULL Chimica AA 2006/07 43

Vincoli di integrità

- E' evidente che solo alcune configurazioni di valori nulli sono ammissibili.
- Esistono istanze di basi di dati che, pur sintatticamente corrette, non rappresentano informazioni possibili per <u>l'applicazione di</u> interesse.

AA 2006/07 Modello relazionale 44

Una base di dati "scorretta"

Esami Studente Voto Lode Corso 276545 32 01 276545 30 e lode 02 787643 27 e lode 03 739430 24 04

AA 2006/07 Modello relazionale 45

Vincoli di integrità

Non tutte le tuple rappresentano informazione corretta per un'applicazione:

- valori nulli
- valori fuori del dominiodi un attributo Es: Voto = 32 in relazione Esami
- tupleinconsistenti (valori di più attributi non simultaneamente assegnabili) Es: Voto = 27-lode in relazione Esami
- tuplecon valori uguali per attributi identificanti Es: tuple con stessa matricola in relazione Studenti
- valori inesistenti in attributi usati per corrispondenze tra relazioni Es: Studentein relazione Esami

A 2006/07 Modello relazionale 46

Vincoli di integrità

- Proprietà che deve essere soddisfatta dalle istanze che rappresentano informazioni corrette per l'applicazione
- Un vincolo è una funzione booleana (un predicato): associa ad ogni istanza il valore vero o falso
- vero: istanza corretta (ammissibile, lecita)
- · falso: istanza inconsistente

AA 2006/07 Modello relazionale 47

Vincoli di integrità, perché?

- · descrizione più accurata della realtà
- contributo alla "qualità dei dati"
- utili nella progettazione (vedremo)
- usati dai DBMS nella esecuzione delle interrogazioni
- Non tutte le proprieta di interesse sono rappresentabili per mezzo di vincoli di integrità esprimibili direttamente.

Tipi di vincoli

- · vincoli intrarelazionali
 - vincoli su valori (o di dominio)
 - · vincoli di tupla
 - vincoli di chiave (valuta le tuple nel complesso. es. non possono esistere due tuple con uno stesso valore per un particolare attributo A chiave)
- vincoli interrelazionali (coinvolge più relazioni)
 - · vincoli di integrità referenziale

AA 2006/07 Modello relazionale

Esami	Studente			Corso
	276545	32		01
	276545	30	e lode	02
	787643	27	e lode	03
	739430	24		04

Studenti	Matricola	Cognome	Nome
	276545	Rossi	Mario
	787643	Neri	Piero
	787643	Bianchi	Luca

AA 2006/07 Modello relazionale 50

Vincoli di tupla

- Esprimono condizioni sui valori di ciascuna tupla, indipendentemente dalle altre tuple.
- · Caso particolare:
 - Vincoli di dominio: coinvolgono un solo attributo

AA 2006/07 Modello relazionale 51

Sintassi ed esempi

- Possibile sintassi: espressione booleana che confronta valori di attributo o espressioni aritmetiche su di essi
- Vincolo di dominio. Es.:
 (Voto ≥ 18) AND (Voto ≤ 30)
- Vincolo di tupla. Es.:

(Voto = 30) OR NOT (Lode = "e lode")

AA 2006/07 Modello relazionale 52

Vincoli di tupla, esempio

 Stipendi
 Impiegato
 Lordo
 Ritenute
 Netto

 Rossi
 55.000
 12.500
 42.500

 Neri
 45.000
 10.000
 35.000

 Bruni
 47.000
 11.000
 36.000

Lordo = (Ritenute + Netto)

AA 2006/07 Modello relazionale 53

Identificazione delle tuple

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- non ci sono due tuple con lo stesso valore sull'attributo Matricola
- non ci sono due tuple uguali su tutti e tre gli attributi Cognome, Nome e Data di Nascita

Chiave

 insieme di attributi che identificano le tuple di una relazione

Formalmente:

- un insieme K di attributi è superchiave per r se r non contiene due tuple distinte t₁ e t₂ con t₁[K] = t₂[K]
- K è chiave per r se è una superchiave minimale per r (cioè non contiene un'altra superchiave)

AA 2006/07 Modello relazionale

55

Una chiave

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- Matricola è una chiave:
 - è superchiave
 - contiene un solo attributo e quindi è minimale

AA 2006/07 Modello relazionale 56

Un'altra chiave

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- Cognome, Nome, Nascita è un'altra chiave:
 - è superchiave
 - minimale

AA 2006/07 Modello relazionale 57

Un'altra chiave??

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- Non ci sono tuple uquali su Cognome e Corso:
 - Cognome e Corso formano una chiave
- Ma è sempre vero?
- <u>E' una chiave per caso</u>! a noi però ineressano le chiavi corrispondenti a vincoli di integrità soddisfatti da tutte le relazioni lecite dello schema.

AA 2006/07 Modello relazionale 58

Vincoli, schemi e istanze

- i vincoli corrispondono a proprietà del mondo reale modellato dalla base di dati
- interessano a livello di schema (con riferimento cioè a tutte le istanze)
- ad uno schema associamo un insieme di vincoli e consideriamo corrette (valide, ammissibili) le istanze che soddisfano tutti i vincoli
- un'istanza può soddisfare altri vincoli ("per caso")

AA 2006/07 Modello relazionale 5

Vincoli sullo schema

Studenti

Matricola Cognome Nome Corso Nascita

· chiavi:

Matricola Cognome, Nome, Nascita

Vincoli su una istanza dello schema

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- È corretta: soddisfa i vincoli
- Ne soddisfa anche altri ("per caso"):
 - · Cognome, Corso è chiave

AA 2006/07 Modello relazionale 61

Esistenza delle chiavi

- Una relazione non può contenere tuple distinte ma uguali
- Il numero degli attributi e' finito seque che
- Ogni relazione ha come superchiave l'insieme degli attributi su cui è definita
- e quindi ha (almeno) una chiave

AA 2006/07 Modello relazionale 62

Importanza delle chiavi

- l'esistenza delle chiavi garantisce l'accessibilità a ciascun dato della base di dati
- le chiavi permettono di correlare i dati in relazioni diverse:
 - il modello relazionale è basato su valori

AA 2006/07 Modello relazionale 63

		Chia	avi		
Studenti	Matricola	CodiceFiscale	Cognome	Nome	DataNascita
	29323	BNCGRG78F21A	Bianchi	Giorgio	21/06/1978
	35467	RSSNNA78013A	Rossi	Anna	13/04/1978
	39654	VRDMRC79/20A	Vendi	Marco	20/09/1979
3	42132	VRDMRC79/208	Vendi	Marco	20/09/1979

Il valore di Matricola identifica univocamente uno studente

Lo stesso vale per CodiceFiscale

...e per ogni insieme di attributi che includa Matricola o CodiceFiscale

 $\{Matricola, Cognome\}, \ \{CodiceFiscale, Nome\}, \dots$

Viceversa, possono esistere due tuple uguali su {Cognome,Nome,DataNascita}

AA 2006/07 Modello relazionale 64

Chiavi

Studenti	Matricola	CodiceFiscale	Cognome	Nome	DataNascita
	29323	BNCGRG78F21A	Blanchi	Giorgio	21/06/1978
	35467	RSSNNA78D13A	Rossi	Anna	13/04/1978
	39654	VRDMRC79I20A	Verdi	Marco	20/09/1979
	42132	VRDMRC79I20B	Verdi	Marco	20/09/1979

Nella relazione Studenti:

{Matricola} e {CodiceFiscale} sono due chiavi

{Matricola,Cognome} e {CodiceFiscale,Nome} sono solo superchiavi

{Cognome,Nome,DataNascita} non è superchiave

AA 2006/07 Modello relazionale 65

Chiavi e valori nulli

- In presenza di valori nulli, i valori della chiave non permettono più
 - di identificare univocamente le tuple
 - di realizzare facilmente i riferimenti con altre relazioni

Matricola (Cognome	Nome	Corso	Nascita
NULL	NULL	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	NULL
NULL	Neri	Mario	NULL	5/12/78

- questo schema di relazione ha come chiavi {Matricola} e {Cognome,Nome,DataNascita}
- La presenza di valori nulli nelle chiavi deve essere limitata

67

AA 2006/07 Modello relazionale

Chiave primaria

- Chiave su cui non sono ammessi nulli
- Notazione: sottolineatura

<u>Matricola</u>	Cognom	e Nome	Corso	Nascita
86765	NULL	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	NULL
43289	Neri	Mario	NULL	5/12/78

AA 2006/07 Modello relazionale 68

Chiave primaria

- Usata per stabilire corrispondenze tra le tabelle
- se nessun attributo della relazione può giocare il ruolo di chiave primaria se ne definisce uno aggiuntivo allo scopo

AA 2006/07 Modello relazionale 69

Chiave: esercizio

Tab1	Matricola	Cognome	Nome	Nascita	Corso
	4328	Rossi	Luigi	29/04/59	Informatica
	6328	Rossi	Dario	29/04/59	Informatica
	4766	Rossi	Luca	01/05/61	Fisica
	4856	Neri	Luca	01/05/61	Economia
	5536	Neri	Luca	05/03/58	Economia

{Matricola} è chiave {Cognome, Nome, Nascita} è chiave {Matricola, Corso} è superchiave, ma non chiave

{Nome, Corso} non è superchiave

6/07 Modello relazionale 70

Chiave: esercizio

Matricola Cognome Nome Nascita Corso Tab2 6328 29/04/59 Rossi Dario Informatica 4766 01/05/61 Rossi Luca Fisica 4856 Neri Luca 01/05/61 Economia Neri Luca 05/03/58 Informatica

{Nome, Corso} è "chiave per caso"

AA 2006/07 Modello relazionale

71

Integrità referenziale

- informazioni in relazioni diverse sono correlate attraverso valori comuni
- in particolare, valori delle chiavi (primarie)
- le correlazioni debbono essere "coerenti"

Vincolo di integrità referenziale

 Un vincolo di integrità referenziale ("foreign key") fra gli attributi X di una relazione R₁ e un'altra relazione R₂ impone ai valori su X in R₁ di comparire come valori della chiave primaria di R₂

Vincoli di integrità referenziale: commenti

- Giocano un ruolo fondamentale nel concetto di "modello basato su valori."
- In presenza di valori nulli i vincoli possono essere resi meno restrittivi
- Sono possibili meccanismi per il supporto alla loro gestione ("azioni" compensative a seguito di violazioni)
- Attenzione ai vincoli su più attributi

AA 2006/07 Modello relazionale 85

Integrità referenziale e valori nulli Impiegati Matricola Cognome Progetto IDEA 34321 Rossi 53524 Neri XYZ 64521 Verdi NULL 73032 Bianchi **IDEA** Progetti Codice Costo Inizio **Durata IDEA** 01/2000 36 200 XYZ 07/2001 24 120 **BOH** 09/2001 24 150

Modello relazionale

AA 2006/07

Azioni compensative

- Esempio:
 - Viene eliminata una tupla causando cosi' una violazione
- Azioni
 - Rifiuto dell'operazione
 - Eliminazione in cascata
 - Introduzione di valori nulli

AA 2006/07 Modello relazionale 87

E	Elimina	zior	ne in	cascat	a
Impiegati <u>Matricola</u> Cognome Progetto					
	34	321	Ros	si I	DEA
	53	524	Ne	ri :	XYZ
	64	521	Ver	di ı	NULL
	73	032	Bian	chi I	DEA
Progetti	Codice	<u> </u>	nizio	Durata	Costo
_	IDEA	01	/2000	36	200
	XYZ				
	вон	09	/2001	24	150
AA 2006/07		Modello	relazionale		88

Introduzione di valori nulli Impiegati Matricola Cognome Progetto 34321 Rossi **IDEA** 53524 Neri NULL 64521 Verdi NULL 73032 Bianchi **IDEA Progetti** Codice Inizio **Durata** Costo **IDEA** 01/2000 200 36 BOH 09/2001 24 150 AA 2006/07 Modello relazionale

- · vincoli di integrità referenziale fra:
 - gli attributi ProvA e NumeroA di INCIDENTI e la relazione AUTO
 - gli attributi ProvB e NumeroB di INCIDENTI e la relazione AUTO
- · L'ordine degli attributi è significativo

Ciascuno degli attributo in X deve corrispondere ad un preciso attributo della chiave primaria K di R₂.

E' necessario introdurre un ordinamento.

Indicando con $X=A_1A_2...A_p$ e $K=B_1B_2...B_p$

Il vincolo di integrità referenziale è soddisfatto se, per ognitupla t₁ in R₁ senza nulli su X, esiste una tupla t₂ in R₂ tale che t₁[A_i]=t₂[B_i] per ogni i compreso tra 1 e p.

AA 2006/07 Modello relazionale 91

Riassunto modello relazionale

Il modello relazionale è basato sul concetto di relazione, che estende quello di relazione matematica tra n domini associando a ciascun a occorrenza di dominio un nome, detto attributo

Lo schema di una relazione consiste di un nome e di un insieme di attributi; l'istanza di una relazione è un insieme di tuple, ovvero funzioni che associano a ogni attributo dello schema un valore del corrispondente dominio

In assenza di informazioni si fa uso di un particolare valore, detto valore nullo (NULL), che non appartiene a nessun dominio

Per garantire l'integrità dei dati si possono specificare diversi tipi di vincoli, che definiscono quali sono le istanze legali (ammissibili) I vincoli intra-relazionali includono quelli sui domini, sulle tuple e i vincoli di chiave; i vincoli inter-relazionali quelli di integrità referenziale. Questi ultimi permettono di stabilire le principali correlazioni tra i dati di diverse relazioni