CC0288 - Inferência Estatística I

Lista Especial 2 - 26/04/2023.

Prof. Maurício

Vamos fazer uma lista com as questões de Inferência que caíram na prova de Seleção do Mestrado da UFMG

1. (Mestrado-UFMG-2019-2020-Questão 1.) Suponha uma amostra aleatória X_1, X_2, \ldots, X_{2n} , tal que $E(X_1) = \mu$ e $V(X_1) = \sigma^2$. Considere os seguintes estimadores para μ .

$$\hat{\mu}_1 = \frac{\sum_{i=1}^{2n} X_i}{2n}, \quad \hat{\mu}_2 = \frac{\sum_{i=1}^{n} X_i}{n}, \quad \hat{\mu}_3 = \frac{\sum_{i=1}^{n} X_i}{n-3}, \quad e \quad \hat{\mu}_4 = \frac{\sum_{i=1}^{2n} X_i}{(2n)^2},$$

Afirma-se:

I. Os estimadores $\hat{\mu_1}$ e $\hat{\mu_4}$ são não viciados e os estimadores $\hat{\mu_2}$ e $\hat{\mu_3}$ são viciados.

II. Todos os estimadores são assintoticamente não viciados.

III. Todos os estimadores são consistentes.

IV. Apenas os estimadores $\hat{\mu_1}$ e $\hat{\mu_2}$ são não viciados.

V. Apenas os estimadores $\hat{\mu_1}$, $\hat{\mu_2}$ e $\hat{\mu_3}$ são consistentes.

Estão corretas as seguintes afirmações:

a. II e III

b. I e III

c. IV e V

d. III e IV

2. (Mestrado-UFMG-2019-2020-Questão 2.) Seja uma função contínua $f:[0,1]\to\Re$, com $)\leq f(x)\leq B, \ \forall x\in[0,1].$ Sejam \mathbf{X} e \mathbf{Y} variáveis aleatórias independentes, tais que

 $\mathbf{X} \sim \text{Uniforme } [0,1] \text{ e } \mathbf{Y} \sim \text{Uniforme } [0,B].$ Considere os seguintes estimadores para estimar

$$\int_0^1 f(x) \ dx :$$

$$I = \left\{ \begin{array}{ll} B & \text{se } Y \le f(X) \\ 0 & , \text{ caso contrário} \end{array} \right.$$

е

$$J = f(X)$$
.

Pode-se afirmar que:

- a. $Var(I) \leq Var(J)$.
- **b.** $Var(J) \leq Var(I)$.
- c. Var(I) = Var(J).
- d. Dependendo da função f o estimador I pode ter variância maior ou menor do que o estimador J.
- 3. (Mestrado-UFMG-2019-2020-Questão 4.) Seja X_1, X_2, \ldots, X_n uma amostra aleatória simples de uma população com distribuição de probabilidade dada por:

$$P(X = x) = {x - 1 \choose k - 1} p^k (1 - p)^{x - k},$$

para $x = k, k + 1, k + 2, \dots, 0 1,$

onde

$$\binom{x-1}{k-1} = \frac{(x-1)!}{(k-1)! (x-k)!}.$$

Supondo k conhecido, o estimador de máxima verossimilhança de p é:

- $\mathbf{a.} \ \frac{k}{\sum_{i=1}^{n} X_i}$
- $\mathbf{b.} \ \frac{nk}{\sum_{i=1}^{n} X_i}$
- $\mathbf{c.} \quad \frac{n}{\sum_{i=1}^{n} X_i}$
- $\mathbf{d.} \ \frac{1}{\sum_{i=1}^{n} X_i}$
- 4. (Mestrado-UFMG-2019-2020-Questão 10) A duração de um tipo de equipamento é uma variável aleatória com distribuição Normal com média 3,0 anos e desvio-padrão 1,05 anos. Considerando uma amostra aleatória simples de 14 equipamentos, as probabilidades

$$P(\bar{X} < 3, 5)$$
 e $P(S < 1)$,

onde

$$\bar{X} = \frac{\sum_{i=1}^{14} X_i}{14} \quad e \quad S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{13},$$

são dadas, respectivamente, por:

- **a**. $\Phi(1,78)$ e 0,45
- **b**. $\Phi(1,78)$ e 0,50
- **c**. $\Phi(1,82)$ e 0,45
- **d**. $\Phi(1,82)$ e 0,50
- 5. (Mestrado-UFMG-2019-2020-Questão 7) Seja X_1, X_2, \ldots, X_{35} uma amostra aleatória simples de uma população com distribuição dada por:

$$f(x) = \begin{cases} 5x^4 & \text{se } 0 \le x \le 1 \\ 0 & , \text{ se } x < 0 \text{ ou } x > 1. \end{cases}$$

A probabilidade de que a média amostral seja maior que 0,78 é aproximadamente igual a:

- **a**. $\Phi(2, 10)$
- **b**. $\Phi(0,79)$
- c. $\Phi(-2, 10)$
- **d**. $\Phi(-0,79)$
- 6. (Mestrado-UFMG-2018-2019-Questão 1.) Sejam X e Y variáveis aleatórias independentes e identicamente distribuídas com distribuição normal com média 2 e variância 1. O valor de P(2X > Y) é.
 - a. 0,9772
 - b. 0,1867
 - c. 0,8749
 - d. 0,8133.
- 7. (Mestrado-UFMG-2018-2019-Questão 2.) Um pacote com 10 componentes eletrônicos contém 2 itens defeituosos e 8 itens não defeituosos. Se X é o número de componentes eletrônicos defeituosos em uma amostra escolhida aleatoriamente e sem reposição com 3 itens, a probabilidade de ter pelo menos um item defeituoso na amostra é
 - a. $\frac{7}{15}$
 - b. $\frac{4}{60}$
 - c. $\frac{14}{15}$
 - d. $\frac{16}{30}$.
- 8. (Mestrado-UFMG-2018-2019-Questão 3.) Denote por X o número de vezes em que uma pessoa contrai um resfriado em um dado ano. Assuma que X é uma variável aleatória Poisson com média 5. Suponha que com o uso de uma determinada droga (baseada em grande quantidade de vitamina C), tal número segue distribuição Poisson com média 3 para 75% da população e para os 25% restantes da população, a droga não faz efeito e, portanto, neste caso, o número de resfriados anual tem distribuição Poisson com média 5. Dado que uma pessoa escolhida aleatoriamente teve 1 resfriado em um determinado ano com a utilização da droga, qual é a

probabilidade de que a droga tenha surtido efeito? (Utilize arredondamento de quatro casas decimais).

- a. 0,9301
- b. 0,8886
- c. 0,7500
- d. 0,1680
- 9. (Mestrado-UFMG-2018-2019-Questão 4.) A função geradora de momentos da variável aleatória X é dada por $M_X(t) = E(e^{tX}) = \exp(2 e^t 2)$ e a da variável aleatória Y é dada por $M_Y(t) = E(e^{tY}) = (\frac{3}{4} e^t + \frac{1}{4})^3$. Se X e Y são independentes, o valor de E(X + Y) é:
 - a. $\frac{17}{4}$.
 - b. $\frac{11}{4}$
 - c. $\frac{5}{16}$
 - d. $\frac{13}{16}$
- 10. (Mestrado-UFMG-2018-2019-Questão 5.)

Sejam X e Y variáveis aleatórias conjuntamente contínuas com função de densidade conjunta dada por

$$f(x,y) = \frac{1}{2} (x+y) e^{-(x+y)} I_{(0,\infty)}(x) I_{(0,\infty)}(x).$$

A distribuição de Z = X + Y é

- a. $\Gamma(1,1)$.
- b. $\Gamma(1,2)$.
- c. $\Gamma(1,3)$.
- d. $\Gamma(1/2, 1/2)$

Obs: Uma variável aleatória W tem distribuição beta

se sua função densidade de probabilidade é dada

$$g(w) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \ w^{\alpha-1} \ e^{-\beta w} \ ; \ I_{(0,\infty)} \ (w), \ \ \alpha > 0, \beta > 0.$$

11. (Mestrado-UFMG-2018-2019-Questão 6) Assuma que X_1, X_2, \ldots, X_{20} são variáveis aleatórias independentes e identicamente distribuídas com função de densidade dada por

$$f(x) = 2 e^{-2x} I_{(0,\infty)}(x).$$

Seja N uma variável aleatória discreta e independente de X_1, X_2, \dots, X_{20} , com função de probabilidade

$$P(N=k) = \binom{20}{k} \frac{1}{2^{20}} I_{\{0,1,\dots,20\}} (k).$$

Defina
$$S_N = \sum_{i=1}^N \, X_i$$
 (em que $S_0 = 0$). A esperança $E(S_N)$ é igual a

- a. 1
- b. 5
- c. 10
- d. 20.
- 12. (Mestrado-UFMG-2018-2019-Questão 7) Sejam X e Y duas variáveis aleatórias independentes tais que $M_X(t) = E(e^{tX}) = \exp(\frac{t^2}{2} 0, 5t)$

e
$$M_Y(t) = E(e^{tY}) = \exp(\frac{t^2}{2} + 0, 5t)$$
. O valor de $P(X + Y < 0)$ é

- a. 0,8133
- b. 0,1867
- c. 0,5
- d. 0
- 13. (Mestrado-UFMG-2018-2019-Questão 8) Um programa de computador, ao somar números, arredonda cada número para o inteiro mais próximo, admita que todos os erros de arredondamento sejam independentes e uniformemente distribuídos em [-0,50,5]. Se 1500 números forem somados, a probabilidade aproximada de que o erro total absoluto ultrapasse 15 é igual a
 - a. 0,9044
 - b. 0,1798
 - c. $3,36 \times 10^{-6}$
 - d. 0,8202.
- 14. (Mestrado-UFMG-2018-2019-Questão 9) Considere as distribuições de probabilidade com função de densidade ou função de probabilidade abaixo.

(i)
$$f(x; \mu, \sigma^2) = \frac{1}{x \, \sigma \, \sqrt{2\pi}} \exp\left(-\frac{(\log x - \mu)^2}{2 \, \sigma^2}\right) \, I_{(0,\infty)} \ (x), \ \mu \in \mathbb{R} \, e \, \sigma^2 > 0,$$

ambos desconhecidos.

(ii)
$$f(x;\alpha) = \frac{\alpha^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\alpha x} I_{(0,\infty)}(x), \quad \alpha > 0,$$

 α desconhecido.

(iii)
$$P(X=x;\theta,r) = \frac{(r+x-1)!}{x!(r-1)!}; \theta^r (1-\theta)^x I_{\{0,1,2,\ldots\}}(x),$$

 θ e r desconhecidos tal que $0 < \theta < 1$ e $r = 1, 2, \dots$

(iv)
$$P(X=x;\lambda) = \frac{e^{-\lambda} \lambda^x}{x!}; I_{\{0,1,2,\ldots\}}(x),$$

com λ desconhecido.

Qual dessas distribuições NÃO pertencem a família exponencial?

- a. (ii) e (iii)
- b. Apenas (iii)
- c. (i) e (iv)
- d. Apenas (ii).
- 15. (Mestrado-UFMG-2018-2019-Questão 10) Sejam X_1, X_2, \ldots, X_n variáveis aleatórias independentes e identicamente distribuídas com função de densidade dada por

$$f(x) = e^{-(x-\theta)} I_{(\theta,\infty)}(x), \ \theta \in \mathbb{R}.$$

Defina $X_{(1)} = min(X_1, X_2, \dots, X_n)$, para $n \in \mathbb{N}$. Qual das afirmações abaixo é **Falsa**?

- a. $X_{(1)} \frac{1}{n}$ é um estimador não viesado de θ .
- b. A função de densidade de $X_{(1)}$ é dada por:

$$f_{X_{(1)}} = n e^{-n(x-\theta)} I_{(\theta,\infty)}(x).$$

- c. $X_{(1)}$ é um estimador consistente de θ .
- d. $Var(X_{(1)}) = \frac{1}{n}$.
- 16. (Mestrado-UFMG-2018-2019-Questão 11) Sejam X_1, X_2, \dots, X_n variáveis aleatórias independentes e identicamente distribuídas com função de densidade dada por

$$f(x \mu, \sigma) = \frac{1}{\sigma} e^{-\frac{(x-\mu)}{\sigma}} \quad I_{(\mu,\infty)}(x), \quad \mu \in \mathbb{R}, \sigma > 0.$$

Marque a opção que apresenta uma estatística suficiente bidimensional para (μ, σ) .

a.
$$\left(\max(X_1, X_2, \dots, X_n), \sum_{i=1}^n X_i \right)$$

b.
$$\left(\sum_{i=1}^{n} X_i^2, \sum_{i=1}^{n} X_i\right)$$

c.
$$\left(\min(X_1, X_2, \dots, X_n), \sum_{i=1}^n X_i\right)$$

d.
$$\left(n, \sum_{i=1}^{n} X_i\right)$$

17. (Mestrado-UFMG-2018-2019-Questão 12.) Considere X_1, X_2, \ldots, X_n uma sequência de variáveis aleatórias independentes e identicamente distribuídas com distribuição uniforme no intervalo $(0, \theta)$ com $\theta > 0$. O estimador de máxima verossimilhança para $h(\theta) = E(X_1)$ é

a.
$$\max(X_1, X_2, ..., X_n)$$

b.
$$\max(X_1, X_2, \dots, X_n)/2$$

c.
$$\frac{1}{n} \sum_{i=1}^{n} X_i$$

c.
$$\frac{1}{2n} \sum_{i=1}^{n} X_i$$

18. (Mestrado-UFMG-2018-2019-Questão 14) Seja X_1, X_2, \ldots, X_n uma amostra aleatória da distribuição com função densidade de probabilidade dada por

$$f(x) = \lambda^2 x e^{-\lambda x} I_{(0,\infty)}(x), \lambda \in \mathbb{R}.$$

denote por LI o limite inferior de Cramer-Rao para a variância de estimadores não viciados de λ e denote por $\hat{\lambda}$ o estimador de máxima verossimilhança de λ . Seja

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}.$$

Assinale a opção correta.

a.
$$LI = \frac{\lambda^2}{2n}$$
 e $\hat{\lambda} = 2\bar{X}^{-1}$.

b.
$$LI = \frac{\lambda^2}{2}$$
 e $\hat{\lambda} = 2\bar{X}^{-1}$.

c.
$$LI = \frac{\lambda^2}{2n}$$
 e $\hat{\lambda} = 2\bar{X}$.

d.
$$LI = \frac{\lambda^2}{2}$$
 e $\hat{\lambda} = \bar{X}/2$.

19. (Mestrado-UFMG-2016-2017-Questão 4) Sejam X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição com função densidade dada por

$$f(x|\theta) = \theta c^{\theta} x^{-(\theta+1)} \text{com } x \ge c > 0, \theta > 0$$

O estimador de Máxima verossimilhança de θ é dado por:

a.
$$\frac{n}{(\sum_{i=1}^{n} log(X_i)) - nlog(c)}$$
 b.
$$\frac{nc}{c(\sum_{i=1}^{n} log(X_i)) - n}$$

c.
$$\frac{n}{(log(\sum_{i=1}^{n} X_i) - nlog(c))}$$
 d. $\frac{nc}{c \log(\sum_{i=1}^{n} X_i) - n}$

- 20. (Mestrado-UFMG-2016-2017-Questão 6) Considere que $X|Y\sim$ Binomial (Y,θ) e que Y segue uma distribuição de Poisson com média λ . A variância da distribuição marginal de X é dada por:
 - a. $\lambda \theta^2$ b. $\lambda \theta (2 \theta)$ c. $\lambda \theta (1 \theta)$ d. $\lambda \theta$
- 21. (Mestrado-UFMG-2016-2017-Questão 8) Seja X_1, X_2, \dots, X_n uma amostra aleatória da Poisson com média θ e $Y = \sum_{i=1}^n X_i$. Qual deve ser o valor de k para que $exp\{-kY\}$ seja um estimador não viciado para $exp\{-\theta\}$?
 - a. $\frac{n}{n-1}$ b. $\frac{n-1}{n}$ c. $ln\left(\frac{n-1}{n}\right)$ d. $ln\left(\frac{n}{n-1}\right)$
- 22. (Mestrado-UFMG-2016-2017-Questão 9)

Sejam Y_1, Y_2, \dots, Y_n variáveis aleatórias independentes tal que

$$Y_i \sim Normal(\beta x_i, \sigma^2),$$

considere x_i , conhecido para $i = 1, 2, \dots, n$.

Qual das opções abaixo representa um estatística suficiente para β e σ^2 ?

a.
$$\left(\sum_{i=1}^n Y_i x_i, \sum_{i=1}^n Y_i^2\right).$$

b.
$$\left(\sum_{i=1}^{n} Y_i^2, \sum_{i=1}^{n} x_i^2\right)$$
.

c.
$$\left(\sum_{i=1}^n Y_i x_i, \sum_{i=1}^n Y_i\right)$$
.

d.
$$\left(\sum_{i=1}^{n} Y_i, \sum_{i=1}^{n} Y_i^2, \sum_{i=1}^{n} x_i^2\right)$$
.

23. (Mestrado-UFMG-2016-2017-Questão 13) Sejam X_1, X_2, \ldots, X_n e Y_1, Y_2, \ldots, Y_m amostras aleatórias independentes, ambas com distribuição Normal de média μ e variância σ^2 .

Seja

$$\bar{W} = \bar{X} + \bar{Y}.$$

A variância de W e a esperança de \bar{X}^2 são, respectivamente:

a.
$$\sigma^2 \left(\frac{n+m}{nm} \right)$$
 e $\sigma^2 + n\mu^2$.

b.
$$\sigma^2 \left(\frac{n+m}{nm} \right)$$
 e $\sigma^2/n + \mu^2$.

$$c.(n+m)\sigma^2 = \sigma^2 + n\mu^2$$
.

$$d.(n+m)\sigma^2$$
 e e $\sigma^2/n + \mu^2$.

- 24. (Mestrado-UFMG-2016-2017-Questão 14) Um dado com 6 faces igualmente prováveis é continuamente lançado até que a soma total de todas as jogadas exceda 300. A probabilidade de que sejam necessárias 80 jogadas é aproximadamente:
 - a. 0,0014 b. 0,336 c. 0,9049 d. 0,0951
- 25. (Mestrado-UFMG-2016-2017-Questão 12) Uma amostra aleatória de tamanho n=3 do número de chamadas a uma central do SAMU, em 3 dias seguidos, resultou nas observações: $k_1=5,\,k_2=7$ e $k_3=9$. Suponha que as chamadas em um dia podem ser modeladas por uma variável aleatória Poisson com média λ . Encontre a estimativa de máxima verossimilhança para a probabilidade de que ocorram , no máximo, 2 chamadas em um dia (arredondado na 4^a casa decimal).
 - a. 0,223 b. 0,0136 c. 0,0296 d. 0,0520