10/593868

SEQUENCE LISTING

<110>	Nuevolution A/S	
<120>	Ligational encoding using building block oligonucleotides	
<130>	P914PC00	
<160>	26	
<170>	PatentIn version 3.3	
<210>	1	
<211>	12	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Synthetic construct	
<220>		
<221>	misc_feature	
	(5)(8)	
<223>	N denotes a random nucleobase, preferably selected from G, A, C	•
	T, or U	
<400>	1	
gcggnn	nncg cg	12
<210>	2	
<211>	12	
<212>	DNA	
<213>	Artificial Sequence	
-2205		
<220> <223>	Synthetic construct	
<400>		
gcggat	tacg cg	12
<210>		
	12	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic construct	
400		
<400>		3.0
gcggaa	ttcg cg	12
<210>	4	
<211>	12	

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (5)..(8)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
       T, or U
<400> 4
taatnnnntt aa
                                                                     12
<210> 5
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<400> 5
taatgccgtt aa
                                                                     12
<210> 6
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<400> 6
taatgggctt aa
                                                                     12
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (10)..(13)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
      T, or U
<400> 7
```

```
tttttggaan nnnagagttt tt
                                                                     22
<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<400> 8
tttttggaac cttagagttt tt
                                                                     22
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<400> 9
tttttggaac ttcagagttt tt
                                                                     22
<210> 10
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (5)..(8)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
      T, or U
<400> 10
ggttnnnngt tg
                                                                     12
<210> 11
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
```

<221> misc_feature

```
<222> (5)..(8)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
      T, or U
<400>
     11
                                                                     12
accannnncc aa
<210> 12
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (5)..(8)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
      T, or U
<400> 12
tetennnnee tt
                                                                     12
<210> 13
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (5)..(8)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
      T, or U
<220>
<221> misc_feature
<222> (22)..(25)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
      T, or U
<400> 13
cgcgnnnncc gcaaaaactc tnnnn
                                                                     25
<210> 14
<211> 25
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic construct
<400> 14
cgcgtaatcc gcaaaaactc taagg
                                                                      25
<210> 15
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (14)..(17)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
      T, or U
<220>
<221> misc_feature
<222> (26)..(29)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
      T, or U
<400> 15
ttccaaaaac aacnnnnaac cttggnnnnt ggt
                                                                      33
<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (14)..(17)
<223> N denotes a random nucleobase, preferably selected from G, A, C,
      T, or U
<400> 16
ttccaaaaac aacnnnnaac c
                                                                      21
<210> 17
<211> 10
<212> DNA
<213> Artificial Sequence
```

<220>

```
<223> Synthetic construct
<220>
<221> misc_feature
<222> (1)..(1)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (3)..(3)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (5)..(5)
<223> n represents inosine (I)
<400> 17
ntntntggtg
                                                                      10
<210> 18
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (1)..(1)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (3)..(3)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (5)..(5)
<223> n represents inosine (I)
<400> 18
ntntntgggt
                                                                     10
<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Synthetic construct

```
<220>
<221> misc_feature
<222> (1)..(1)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (3)..(3)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (5)..(5)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (13)..(13)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (15)..(15)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (18)..(18)
<223> n represents inosine (I)
<400> 19
ntntntggtt ttntnttntg
<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (1)..(1)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (3)..(3)
<223> n represents inosine (I)
```

<220>

<221> misc_feature

20

```
<222> (5)..(5)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (13)..(13)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (15)..(15)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (18)..(18)
<223> n represents inosine (I)
<400> 20
ntntntgggg ggntnttntg
<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (1)..(1)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (3)..(3)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (5)..(5)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (13)..(13)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (15)..(15)
<223> n represents inosine (I)
```

<220>

20

```
<221> misc_feature
<222> (18)..(18)
<223> n represents inosine (I)
<400> 21
ntntntggtg tgntnttntg
                                                                     20
<210> 22
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (3)..(3)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (5)..(5)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (8)..(8)
<223> n represents inosine (I)
<400> 22
gtntnttntg
                                                                     10
<210> 23
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (3)..(3)
<223> n represents inosine (I)
<220>
<221> misc_feature
<222> (5)..(5)
<223> n represents inosine (I)
<220>
```

<221> misc_feature

```
<222> (8)..(8)
<223> n represents inosine (I)
<400> 23
ttntnttntg
                                                                      10
<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (1)..(1)
<223> N denotes a random nucleobase
<220>
<221> misc_feature
<222> (2)..(2)
<223> N denotes a random nucleobase
<220>
<221> misc_feature
<222> (19)..(19)
<223> N denotes a random nucleobase
<220>
<221> misc_feature
<222> (20)..(20)
<223> N denotes a random nucleobase
<400> 24
nnccacacac cacaacacnn
                                                                      20
<210> 25
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (1)..(1)
<223> N denotes a random nucleobase
<220>
<221> misc_feature
<222> (2)..(2)
```

```
<223> N denotes a random nucleobase
<400> 25
nnccacacac
                                                                     10
<210> 26
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<220>
<221> misc_feature
<222> (1)..(2)
<223> N denotes a random nucleobase
<220>
<221> misc_feature
<222> (3)..(3)
<223> N denotes inosine (I)
<220>
<221> misc_feature
<222> (5)..(5)
<223> N denotes inosine (I)
<220>
<221> misc_feature
<222> (8)..(8)
<223> N denotes inosine (I)
<400> 26
nnntnttntg
                                                                     10
```