What is a Leslie Matrix?
Solving the Leslie Equation
An Approximation for N_k
Net Production Rate
An Example
References

The Leslie Matrix and Population Change

Anahita Hedayatifard Melika Hassani Barsari Nazila Zarei

Department of Mathematics, College of Sciences, University Of Tehran

July, 2023

Table of Contents

- What is a Leslie Matrix?
 - What is a Leslie Model?
 - Population Growth Factors
 - Leslie Matrix
- Solving the Leslie Equation
- \bigcirc An Approximation for N_k
 - The Dominant Eigenvalue and Eigenvector
 - ullet Diagonalization of ${\mathbb L}$
 - Limiting Behavior
- Met Production Rate
- 6 An Example
- 6 References

• A model for the growth of female portion of a population

- A model for the growth of *female* portion of a population
- Age classes of equal duration

- A model for the growth of female portion of a population
- Age classes of equal duration
- Developed in 1941

L = Maximum age attained by any female,
 m = number of age classes:

Age Class	Age Interval
1	[0, L/m)
2	[L/m, 2L/m)
3	[2L/m, 3L/m)
m-1	[(m-2)L/m, (m-1)L/m)
m	[(m-1)L/m, L)

Table: Labeling of The Age Classes

Table of Contents

- What is a Leslie Matrix?
 - What is a Leslie Model?
 - Population Growth Factors
 - Leslie Matrix
- Solving the Leslie Equation
- $\ensuremath{ \ \ \, }$ An Approximation for $\ensuremath{ \ \, N_k}$
 - The Dominant Eigenvalue and Eigenvector
 - ullet Diagonalization of ${\mathbb L}$
 - Limiting Behavior
- Met Production Rate
- 6 An Example
- 6 References

• s_i = the survival rate from the *ith* to the (i+1)th age category

- s_i = the survival rate from the *ith* to the (i+1)th age category
- b_i = the average number of daughters born to each female in the *ith age category*

- s_i = the survival rate from the *ith* to the (i+1)th age category
- b_i = the average number of daughters born to each female in the *ith age category*
- $n_{i,k-1}$ = the number of individuals in the *ith age category at time k* 1

- s_i = the survival rate from the *ith* to the (*i*+1)th age category
- b_i = the average number of daughters born to each female in the *ith age category*
- $n_{i,k-1}$ = the number of individuals in the *ith age category at time k* 1

Remark

- s_i = the survival rate from the *ith* to the (*i*+1)th age category
- b_i = the average number of daughters born to each female in the *ith age category*
- $n_{i,k-1}$ = the number of individuals in the *ith age category at time k* 1

Remark

• Obtained from a life table or experimental data

- Obtained from a life table or experimental data
- $s_i = \frac{L_{i+1}}{L_i}$; $L_i =$ the number alive in the age group i to i+1 in the stationary or life table age

- Obtained from a life table or experimental data
- $s_i = \frac{L_{i+1}}{L_i}$; $L_i =$ the number alive in the age group i to i+1 in the stationary or life table age
- Constant over a unit of time

- Obtained from a life table or experimental data
- $s_i = \frac{L_{i+1}}{L_i}$; $L_i =$ the number alive in the age group i to i+1 in the stationary or life table age
- Constant over a unit of time
- Not dependent on the total number of the population

• M_i = average number of female offspring per female in category i born between t and t+1

- M_i = average number of female offspring per female in category i born between t and t+1
- U_0 = the offspring survival rate between birth and the time when they are counted as part of the population

- M_i = average number of female offspring per female in category i born between t and t+1
- U_0 = the offspring survival rate between birth and the time when they are counted as part of the population
- $b_i = U_0 M_i$, i = 1, 2, ..., m

- M_i = average number of female offspring per female in category i born between t and t+1
- U_0 = the offspring survival rate between birth and the time when they are counted as part of the population
- $b_i = U_0 M_i$, i = 1, 2, ..., m
- Constant over a unit of time

- M_i = average number of female offspring per female in category i born between t and t+1
- U_0 = the offspring survival rate between birth and the time when they are counted as part of the population
- $b_i = U_0 M_i$, i = 1, 2, ..., m
- Constant over a unit of time
- Not dependent on the total number of the population

Age Class 1
$$\longrightarrow$$
 Age Class 2

Table of Contents

- What is a Leslie Matrix?
 - What is a Leslie Model?
 - Population Growth Factors
 - Leslie Matrix
- Solving the Leslie Equation
- \bigcirc An Approximation for N_k
 - The Dominant Eigenvalue and Eigenvector
 - ullet Diagonalization of ${\mathbb L}$
 - Limiting Behavior
- Met Production Rate
- 6 An Example
- 6 References

Leslie Matrix

$$\mathbf{N_k} = \begin{bmatrix} n_{1,k} \\ n_{2,k} \\ n_{3,k} \\ \vdots \\ n_{m,k} \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & b_3 & \cdots & b_{m-1} & b_m \\ s_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & s_{m-1} & 0 \end{bmatrix} \begin{bmatrix} n_{1,k-1} \\ n_{2,k-1} \\ n_{3,k-1} \\ \vdots \\ n_{m,k-1} \end{bmatrix} = \mathbb{L}\mathbf{N_{k-1}}$$

Leslie Matrix

Definition

 \mathbb{L} is the **Leslie Matrix** and summarizes the information necessary to describe the growth of the population.

$$\mathbb{L} = \begin{bmatrix} b_1 & b_2 & b_3 & \cdots & b_{m-1} & b_m \\ s_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & s_{m-1} & 0 \end{bmatrix}$$

Dependence on Initial Conditions

•
$$k = 1$$
:

$$N_1 = \mathbb{L}N_0$$

Dependence on Initial Conditions

•
$$k = 1$$
:

$$N_1 = \mathbb{L}N_0$$

•
$$k = 2$$
:

$$\mathbf{N_2} = \mathbb{L}\mathbf{N_1} = \mathbb{L}^2\mathbf{N_0}$$

Dependence on Initial Conditions

• k = 1:

$$N_1 = \mathbb{L}N_0$$

• k = 2:

$$\mathbf{N_2} = \mathbb{L}\mathbf{N_1} = \mathbb{L}^2\mathbf{N_0}$$

Leslie Equation

$$N_{\mathbf{k}} = \mathbb{L}N_{\mathbf{k}-1} = \mathbb{L}^k N_0$$

What is a Leslie Matrix?

Solving the Leslie Equation

An Approximation for N_k

Net Production Rate

An Example

References

Challenges of Computing N_k

ullet High computational cost of computing \mathbb{L}^k

What is a Leslie Matrix?

Solving the Leslie Equation

An Approximation for N_k

Net Production Rate

An Example

References

Challenges of Computing N_k

- High computational cost of computing \mathbb{L}^k
- Exact description of the population at a given time instead of the general trend of the population

Table of Contents

- What is a Leslie Matrix?
 - What is a Leslie Model?
 - Population Growth Factors
 - Leslie Matrix
- Solving the Leslie Equation
- \bigcirc An Approximation for N_k
 - The Dominant Eigenvalue and Eigenvector
 - Diagonalization of L
 - Limiting Behavior
- Met Production Rate
- 6 An Example
- 6 References

Definition

Eigenvalues are the values λ for which $\mathbb{L}x = \lambda x$ for some vector $x \neq 0$.

Definition

Eigenvalues are the values λ for which $\mathbb{L}x = \lambda x$ for some vector $x \neq 0$.

Eigenvalues of the Leslie Matrix:

$$\det(\mathbb{L} - \lambda \mathbb{I}) = \lambda^{m} - b_{1}\lambda^{m-1} - b_{2}s_{1}\lambda^{m-2} - b_{3}s_{1}s_{2}\lambda^{m-3} - \cdots - b_{m}s_{1}\dots s_{m-1} = 0$$

With $\lambda \neq 0$:

$$q(\lambda) = \frac{b_1}{\lambda} + \frac{b_2 s_1}{\lambda^2} + \cdots + \frac{b_m s_1 \dots s_{m-1}}{\lambda^m} = 1$$

With $\lambda \neq 0$:

$$q(\lambda) = \frac{b_1}{\lambda} + \frac{b_2 s_1}{\lambda^2} + \cdots + \frac{b_m s_1 \dots s_{m-1}}{\lambda^m} = 1$$

Figure: The only positive solution is λ_1 .

Theorem

Perron Frobenius: If all enteries of a $n \times n$ matrix A are positive, then it has a unique maximal eigenvalue. Its eigenvector has positive entries.

Theorem

Perron Frobenius: If all enteries of a $n \times n$ matrix A are positive, then it has a unique maximal eigenvalue. Its eigenvector has positive entries.

 \mathbb{L} is an irreducible nonnegative matrix.

Theorem

Perron Frobenius: If all enteries of a $n \times n$ matrix A are positive, then it has a unique maximal eigenvalue. Its eigenvector has positive entries.

 \mathbb{L} is an irreducible nonnegative matrix.

 λ_1 is a simple root of $q(\lambda) = 1$.

Theorem

Perron Frobenius: If all enteries of a $n \times n$ matrix A are positive, then it has a unique maximal eigenvalue. Its eigenvector has positive entries.

 \mathbb{L} is an irreducible nonnegative matrix.

 \downarrow

 λ_1 is a simple root of $q(\lambda) = 1$.

 λ_1 is the dominant eigenvalue.

The Dominant Eigenvector

$$(\mathbb{L} - \lambda_1 \mathbb{I}) x_1 = egin{bmatrix} b_1 - \lambda_1 & b_2 & b_3 & \cdots & b_{m-1} & b_m \ s_1 & -\lambda_1 & 0 & \cdots & 0 & 0 \ 0 & s_2 & -\lambda_1 & \cdots & 0 & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & s_{m-1} & -\lambda_1 \end{bmatrix} x_1 = 0$$

The Dominant Eigenvector

$$x_1 = \begin{bmatrix} \frac{1}{\frac{s_1}{\lambda_1}} \\ \frac{s_1 s_2}{\lambda_1^2} \\ \vdots \\ \frac{s_1 s_2 \dots s_{m-1}}{\lambda_1^{m-1}} \end{bmatrix}$$

Table of Contents

- What is a Leslie Matrix?
 - What is a Leslie Model?
 - Population Growth Factors
 - Leslie Matrix
- Solving the Leslie Equation
- \bigcirc An Approximation for N_k
 - The Dominant Eigenvalue and Eigenvector
 - ullet Diagonalization of ${\mathbb L}$
 - Limiting Behavior
- Met Production Rate
- 6 An Example
- 6 References

Diagonalization of $\mathbb L$

For the matrix \mathbb{L} with m distinct eigenvectors, we have:

$$\mathbb{L}=\mathbb{S} A \mathbb{S}^{-1}$$

Diagonalization of $\mathbb L$

For the matrix $\mathbb L$ with m distinct eigenvectors, we have:

$$\mathbb{L} = \mathbb{S}A\mathbb{S}^{-1}$$

• A: an $m \times m$ diagonal matrix with the eigenvalues of L on the diagonal

Diagonalization of $\mathbb L$

For the matrix \mathbb{L} with m distinct eigenvectors, we have:

$$\mathbb{L} = \mathbb{S}A\mathbb{S}^{-1}$$

- A: an $m \times m$ diagonal matrix with the eigenvalues of L on the diagonal
- ullet S : the matrix with the eigenvectors of ${\mathbb L}$ as its columns

Computation of \mathbb{L}^k

An easy method for computing \mathbb{L}^k with the help of diagonalization:

$$\mathbb{L}^2 = \mathbb{S}A\mathbb{S}^{-1}\mathbb{S}A\mathbb{S}^{-1} = \mathbb{S}A^2\mathbb{S}^{-1}$$

$$\mathbb{L}^k = \mathbb{S}A^k\mathbb{S}^{-1}$$

Computation of \mathbb{L}^k

An easy method for computing \mathbb{L}^k with the help of diagonalization:

$$\mathbb{L}^2 = \mathbb{S}A\mathbb{S}^{-1}\mathbb{S}A\mathbb{S}^{-1} = \mathbb{S}A^2\mathbb{S}^{-1}$$

$$\mathbb{L}^k = \mathbb{S}A^k\mathbb{S}^{-1}$$

Remark

Substituting \mathbb{L}^k in $\mathbf{N_k} = \mathbb{L}^k \mathbf{N_0}$:

$$\mathbf{N_k} = \mathbb{S}A^k\mathbb{S}^{-1}\mathbf{N_0}$$

Dividing $\mathbf{N_k} = \mathbb{S}A^k\mathbb{S}^{-1}\mathbf{N_0}$ by λ_1^k :

$$\frac{1}{\lambda_1^k}(\mathbf{N_k}) = \mathbb{S} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & \frac{\lambda_2^k}{\lambda_1^k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{\lambda_m^k}{\lambda_k^k} \end{bmatrix} \mathbb{S}^{-1} \mathbf{N_0}$$

Table of Contents

- What is a Leslie Matrix?
 - What is a Leslie Model?
 - Population Growth Factors
 - Leslie Matrix
- Solving the Leslie Equation
- \bigcirc An Approximation for N_k
 - The Dominant Eigenvalue and Eigenvector
 - ullet Diagonalization of ${\mathbb L}$
 - Limiting Behavior
- Met Production Rate
- 6 An Example
- 6 References

By strict dominance of λ_1 :

$$\lim_{k\to\infty}\frac{\lambda_i^k}{\lambda_1^k}=0; i=2,\ldots,m$$

$$\lim_{k \to \infty} \left(\frac{\mathbf{N_k}}{\lambda_1^k}\right) = \lim_{k \to \infty} \mathbb{S} \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{vmatrix} \mathbb{S}^{-1} \mathbf{N_0}$$

$$\lim_{k \to \infty} \left(\frac{\mathbf{N_k}}{\lambda_1^k}\right) = \lim_{k \to \infty} \mathbb{S} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \mathbb{S}^{-1} \mathbf{N_0}$$

• $S^{-1}N_0$: the only entry of importance is the first component which we call c.

$$\lim_{k \to \infty} \left(\frac{\mathbf{N_k}}{\lambda_1^k}\right) = \lim_{k \to \infty} \mathbb{S} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \mathbb{S}^{-1} \mathbf{N_0}$$

- S⁻¹N₀: the only entry of importance is the first component which we call c.
- The product of the matrix \mathbb{S} with the matrix next to it: the first column of \mathbb{S} , the eigenvector x_1 .

A good approximation of the population distribution for large values of k:

$$\lim_{k\to\infty}\mathbf{N_k}=\lim_{k\to\infty}\lambda_1^kcx_1$$

A good approximation of the population distribution for large values of k:

$$\lim_{k\to\infty}\mathbf{N_k}=\lim_{k\to\infty}\lambda_1^kcx_1$$

• $\lambda_1 > 1$: The population vector will grow without bound.

A good approximation of the population distribution for large values of k:

$$\lim_{k\to\infty}\mathbf{N_k}=\lim_{k\to\infty}\lambda_1^kcx_1$$

- $\lambda_1 > 1$: The population vector will grow without bound.
- $\lambda_1 < 1$: The population is dying out.

A good approximation of the population distribution for large values of k:

$$\lim_{k\to\infty}\mathbf{N_k}=\lim_{k\to\infty}\lambda_1^kcx_1$$

- $\lambda_1 > 1$: The population vector will grow without bound.
- $\lambda_1 < 1$: The population is dying out.
- $\lambda_1 = 1$: The population is stable. (The popular term Zero Population Growth)

Definition

Net Production Rate:

The average number of daughters born to each female during her lifetime.

$$R := b_1 + b_2 s_1 + b_3 s_1 s_2 + \cdots + b_m s_1 \dots s_{m-1}$$

Definition

Net Production Rate:

The average number of daughters born to each female during her lifetime.

$$R := b_1 + b_2 s_1 + b_3 s_1 s_2 + \cdots + b_m s_1 \ldots s_{m-1}$$

• R > 1: The population is growing.

Definition

Net Production Rate:

The average number of daughters born to each female during her lifetime.

$$R := b_1 + b_2 s_1 + b_3 s_1 s_2 + \cdots + b_m s_1 \dots s_{m-1}$$

- R > 1: The population is growing.
- R < 1: The population is dying out.

Definition

Net Production Rate:

The average number of daughters born to each female during her lifetime.

$$R := b_1 + b_2 s_1 + b_3 s_1 s_2 + \cdots + b_m s_1 \dots s_{m-1}$$

- R > 1: The population is growing.
- R < 1: The population is dying out.
- R = 1: The population is stable.

Example

① Construct the Leslie matrix for a population of fish which live three age periods with $\frac{1}{2}$ surviving from the first to second period and $\frac{1}{3}$ from the second to the third. The 3 year-old females each produce 6 daughters.

Example

① Construct the Leslie matrix for a population of fish which live three age periods with $\frac{1}{2}$ surviving from the first to second period and $\frac{1}{3}$ from the second to the third. The 3 year-old females each produce 6 daughters.

$$\mathbb{L} = \begin{bmatrix} 0 & 0 & 6 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \end{bmatrix}$$

What is a Leslie Matrix?
Solving the Leslie Equation
An Approximation for N_k
Net Production Rate
An Example
References

An Example

Example

Find the eigenvalues and the dominant eigenvector of this matrix. What is the modulus of each eigenvalue?

Example

Find the eigenvalues and the dominant eigenvector of this matrix. What is the modulus of each eigenvalue?

$$\det(\mathbb{L} - \lambda \mathbb{I}) = -\lambda^3 + 1 = 0$$

$$\lambda_1 = 1, \lambda_2 = \frac{-1 + i\sqrt{3}}{2}, \lambda_3 = \frac{-1 - i\sqrt{3}}{2}$$

$$x_1 = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{6} \end{bmatrix}^{\mathsf{T}}, |\lambda_i| = 1, i = 1, 2, 3.$$

Example

Suppose the population has the initial distribution $\mathbf{N_0} = \begin{bmatrix} 100 & 100 & 100 \end{bmatrix}^\mathsf{T}$. Find the population distributions $\mathbf{N_1}$ through $\mathbf{N_6}$. What do you notice? Can you draw any conclusions?

Example

3 Suppose the population has the initial distribution $\mathbf{N_0} = \begin{bmatrix} 100 & 100 & 100 \end{bmatrix}^\mathsf{T}$. Find the population distributions $\mathbf{N_1}$ through $\mathbf{N_6}$. What do you notice? Can you draw any conclusions?

$$N_0 = \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix} = N_3 = N_6,$$

Example

③ Suppose the population has the initial distribution $\mathbf{N_0} = \begin{bmatrix} 100 & 100 & 100 \end{bmatrix}^\mathsf{T}$. Find the population distributions $\mathbf{N_1}$ through $\mathbf{N_6}$. What do you notice? Can you draw any conclusions?

$$\mathbf{N_1} = \begin{bmatrix} 600 \\ 50 \\ 33.3 \end{bmatrix} = \mathbf{N_4},$$

Example

③ Suppose the population has the initial distribution $\mathbf{N_0} = \begin{bmatrix} 100 & 100 & 100 \end{bmatrix}^\mathsf{T}$. Find the population distributions $\mathbf{N_1}$ through $\mathbf{N_6}$. What do you notice? Can you draw any conclusions?

$$\mathbf{N_2} = \begin{bmatrix} 200 \\ 300 \\ 16.7 \end{bmatrix} = \mathbf{N_5}.$$

Example

3 Suppose the population has the initial distribution $\mathbf{N_0} = \begin{bmatrix} 100 & 100 & 100 \end{bmatrix}^\mathsf{T}$. Find the population distributions $\mathbf{N_1}$ through $\mathbf{N_6}$. What do you notice? Can you draw any conclusions?

Solution

$$\mathbf{N_2} = \begin{bmatrix} 200 \\ 300 \\ 16.7 \end{bmatrix} = \mathbf{N_5}.$$

The population is oscillating every third time period.

References

- [1] P. H. Leslie, On the use of matrices in certain population mathematics, Biometrika 35, 213-245, 1968.
- [2] H. Anton, C. Rorres, *Elementary linear algebra with applications*, 11th ed., 673 (2014)
- [3] Perron-Frobenius theorem

