Introduction to Text Mining with R

Introduction

```
technologies
source sources
quality indexmarginnote text
ref web part collection one
xml the chapter html use example
information isontechniques
documents can book general
```

Simon Munzert | IPSDS

Why quantitative analysis of social media text?

Why quantitative analysis of social media text?

Justin Grimmer's haystack metaphor: automated text analysis improves reading

- Analyzing a straw of hay: understanding meaning
 - Humans are great! But computer struggle
- Organizing the haystack: describing, classifying, scaling texts
 - Humans struggle. But computers are great!
 - (What this course is about)

Why quantitative analysis of social media text?

Justin Grimmer's haystack metaphor: automated text analysis improves reading

- Analyzing a straw of hay: understanding meaning
 - Humans are great! But computer struggle
- Organizing the haystack: describing, classifying, scaling texts
 - · Humans struggle. But computers are great!
 - (What this course is about)

Principles of automated text analysis (Grimmer & Stewart, 2013)

- 1. All quantitative models are wrong but some are useful
- 2. Quantitative methods for text amplify resources and augment humans
- 3. There is no globally best method for text analysis
- 4. Validate, validate, validate

Quantitative text analysis requires assumptions

- 1. Texts represent an observable implication of some underlying characteristic of interest
 - An attribute of the author of the post
 - A sentiment or emotion
 - Salience of a political issue

Quantitative text analysis requires assumptions

- 1. Texts represent an observable implication of some underlying characteristic of interest
 - An attribute of the author of the post
 - A sentiment or emotion
 - Salience of a political issue
- 2. Texts can be represented through extracting their *features*
 - most common is the bag of words assumption
 - many other possible definitions of "features" (e.g. n-grams)

Quantitative text analysis requires assumptions

- 1. Texts represent an observable implication of some underlying characteristic of interest
 - An attribute of the author of the post
 - A sentiment or emotion
 - Salience of a political issue
- 2. Texts can be represented through extracting their features
 - most common is the bag of words assumption
 - many other possible definitions of "features" (e.g. n-grams)
- 3. A **document-feature matrix** can be analyzed using quantitative methods to produce meaningful and valid estimates of the underlying characteristic of interest

Key concepts

(text) corpus a large and structured set of texts for analysis

Example:

A corpus is a set of documents. This is the 2nd document in the corpus.

 \rightarrow A corpus with 2 documents, where each document is a sentence. The first document has 6 types and 7 tokens. The second has 7 types and 8 tokens. (We ignore punctuation for now.)

(text) corpus a large and structured set of texts for analysis document each of the units of the corpus (e.g. a Facebook post)

Example:

A corpus is a set of documents. This is the 2nd document in the corpus.

 \rightarrow A corpus with 2 documents, where each document is a sentence. The first document has 6 types and 7 tokens. The second has 7 types and 8 tokens. (We ignore punctuation for now.)

```
(text) corpus a large and structured set of texts for analysis
document each of the units of the corpus (e.g. a Facebook post)
types for our purposes, a unique word
```

Example:

A corpus is a set of documents. This is the 2nd document in the corpus.

 \rightarrow A corpus with 2 documents, where each document is a sentence. The first document has 6 types and 7 tokens. The second has 7 types and 8 tokens. (We ignore punctuation for now.)

```
(text) corpus a large and structured set of texts for analysis
document each of the units of the corpus (e.g. a Facebook post)
types for our purposes, a unique word
tokens any word – so token count is total words
```

Example:

A corpus is a set of documents. This is the 2nd document in the corpus.

 \rightarrow A corpus with 2 documents, where each document is a sentence. The first document has 6 types and 7 tokens. The second has 7 types and 8 tokens. (We ignore punctuation for now.)

stems words with suffixes removed (using set of rules)

lemmas canonical word form (the base form of a word that has the same meaning even when different suffixes or prefixes are attached)

word	win	winning	wins	won	winner
stem	win	win	win	won	winner
lemma	win	win	win	win	win

stop words Words that are designated for exclusion from any analysis of a text

From words to numbers

Bag-of-words approach: workflow

1. Preprocess text:

"A corpus is a set of documents."

"This is the second document in the corpus."

1. Preprocess text: lowercase,

```
"a corpus is a set of documents."
```

"this is the second document in the corpus."

1. Preprocess text: lowercase, remove stop words and punctuation,

```
"a corpus is a set of documents."
```

[&]quot;this is the second document in the corpus."

1. Preprocess text: lowercase, remove stop words and punctuation, stem,

"corpus set documents"

"second document corpus"

1. **Preprocess text:** lowercase, remove stop words and punctuation, stem, tokenize into unigrams and bigrams (bag-of-words assumption)

```
[corpus, set, document, corpus set, set document]
[second, document, corpus, second document, document corpus]
```

1. **Preprocess text:** lowercase, remove stop words and punctuation, stem, tokenize into unigrams and bigrams (bag-of-words assumption)

```
[corpus, set, document, corpus set, set document]
[second, document, corpus, second document, document corpus]
```

2. Document-feature matrix:

- ▶ **W**: matrix of *N* documents by *M* unique n-grams
- w_{im} = number of times m-th n-gram appears in i-th document.

```
Document 1 1 1 1 1 ...

Document 2 1 0 1 0 ...

\mathcal{W}
```

Bag-of-words approach disregards grammar and word order and uses word frequencies as features. Why?

Bag-of-words approach disregards grammar and word order and uses word frequencies as features. Why?

• Context is often uninformative, conditional on presence of words:

Bag-of-words approach disregards grammar and word order and uses word frequencies as features. Why?

- Context is often uninformative, conditional on presence of words:
 - Individual word usage tends to be associated with a particular degree of affect, position, etc. without regard to context of word usage

Bag-of-words approach disregards grammar and word order and uses word frequencies as features. Why?

- Context is often uninformative, conditional on presence of words:
 - Individual word usage tends to be associated with a particular degree of affect, position, etc. without regard to context of word usage
- Single words tend to be the most informative, as co-occurrences of multiple words (*n*-grams) are rare

Bag-of-words approach disregards grammar and word order and uses word frequencies as features. Why?

- Context is often uninformative, conditional on presence of words:
 - Individual word usage tends to be associated with a particular degree of affect, position, etc. without regard to context of word usage
- Single words tend to be the most informative, as co-occurrences of multiple words (*n*-grams) are rare
- Some approaches focus on occurrence of a word as a binary variable, irrespective of frequency: a binary outcome

Bag-of-words approach disregards grammar and word order and uses word frequencies as features. Why?

- Context is often uninformative, conditional on presence of words:
 - Individual word usage tends to be associated with a particular degree of affect, position, etc. without regard to context of word usage
- Single words tend to be the most informative, as co-occurrences of multiple words (*n*-grams) are rare
- Some approaches focus on occurrence of a word as a binary variable, irrespective of frequency: a binary outcome
- Other approaches use frequencies: Poisson, multinomial, and related distributions