Преобразование НФ с СНФ

КНФ в СКНФ:

 $F(a, b, c) = (a+b)\cdot(b+c) = {}^{+}$

$$f_{1} = a + b = a + b + 0 = (a + b) + c \cdot \bar{c} = (a + b + c) \cdot (a + b + \bar{c})$$

$$f_{2} = b + c = b + c + 0 = b + c + a \cdot \bar{a} = (a + b + c) \cdot (\bar{a} + b + c)$$

$$F = f_{1} \cdot f_{2} = (a + b + c)(a + b + \bar{c})(\bar{a} + b + c)$$

$$y(a,b,c,d) = \bigwedge_{0} (1^{*},2^{*},3,4^{*},5,7^{*},9^{*},10^{*},11,12^{*},13,14)$$

$$y(a,b,c,d) = \bigvee_{0} (1^{*},3,2^{*},4^{*},5,7^{*},9^{*},10^{*},11,12^{*},14)$$

$$y_1(0011) = 0$$
 $y_1(1111) = 1$
 $y_1(0001) = ? y_1(0001) = ? -$

$$y_2(0101) = 1$$
 $y_2(0000) = 0$
 $y_2(1001) = ?$

Геометрическое представление ПФ

$$\frac{1}{2c_2\cdot 2c_3} + x_2\cdot x_3 = 2c_3$$

Функциональный базис

ФБ – система функций АЛ, с помощью которой любая функция может быть представлена суперпозицией исходных функций.

Функционально полный базис

$$B = \{ \Lambda, V, \neg \}$$
 and $B = \overline{\alpha + \beta}$

Минимальный базис

$$a \cdot b = \overline{a} + \overline{b}$$

$$a \cdot b = \overline{a + b} \Rightarrow B_2 = \{v, 7\}, B_3 = \{1, 7\}$$
 $a + b = \overline{a} \cdot \overline{B}$

Избыточный базис

Теорема Поста.

Чтобы система функций была функционально полной, необходимо и достаточно, чтобы эта система содержала:

- а) функцию, не сохраняющую 0; —
- б) функцию, не сохраняющую 1; в) несамодвойственную функцию;
- г) немонотонную функцию;
- д) нелинейную функцию. 🕂

Пример. Является ли базис $\{\rightarrow, \neg\}$ функционально полным?

	X	у	$x \rightarrow y$	$x\overline{y}$
ſ	0	0	1	0
-	0	1	1	1
V	1	0	0	0
	1	1	1	0

(a) Если f(0,0,...,0) = 0, то она «сохраняет ноль»

 $x \rightarrow y$ и \bar{x} не сохраняют ноль:

б) Если f(1,1,...,1) = 1, то она «сохраняет единицу»

 \bar{x} не сохраняет 1

в) ПФ называют самодвойственной, если на каждой паре противоположных наборов она принимает противоположные значения, то есть

$$f(x_1, x_2, ..., x_n) = \overline{f(\overline{x_1}, \overline{x_2}, ..., \overline{x_n})}$$

f1=x-у не является самодвойственной

 $f'(x - y) = \overline{x} - \overline{y} = \overline{x} + \overline{y} = \overline{x} \cdot y \neq \overline{x} + y$

(r)) ПФ называют монотонной, если при любом возрастании набора значения этой функции не убывают.

 $x \rightarrow y$ и \bar{x} не монотонные функции

д) Функция линейна, если многочлен Жегалкина для неё имеет линейных относительно переменных вид

 $x \rightarrow y$ или \bar{x} не линейная функция?

Полные системы функций

Ī	Функция	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	0									*			*		*			
	ab					*							*	*			*	
	$a\bar{b}$			*	*			*	*									
•	$a \oplus b$										*			*		*	*	*
	$a \lor b$						*								*	*		*
	\overline{ab}	*																
	$ab + \overline{ab}$			*								_	*	*	*	*		
1	\overline{a}				*	*	*					*						
>	$\overline{a} + b$							*		*	*	*						
	$\overline{a} + \overline{b}$		*					_										
	1				}				*								*	*

 $A. \{7,7\}$ $B_1-uuM.$ $B=\{7,7\}$

Полином Жегалкина

PPP	7:	n1	> N	2,	n4			