$C(^{36}Mg,^{35}Na\gamma)$ 2014Do05

2014Do05: A 345-MeV/nucleon 48 Ca primary beam was accelerated by the superconducting ring cyclotron (SRC) at RIKEN. A-236-MeV/nucleon 36 Mg secondary beam was produced by the fragmentation of 48 Ca on a Be target and separated by the BigRIPS separator using the B ρ - Δ E-B ρ method. The secondary reaction targets were 2.54 g/cm² thick carbon and 2.13 g/cm² thick CH₂ polyethylene. The secondary reaction products were identified by the magnetic spectrometer ZeroDegree using the B ρ - Δ E-B ρ method. γ rays in coincidence with 35 Na were detected using the DALI2 array of 186 large NaI(Tl) detectors. Measured E γ with Doppler correction, I γ , and $\gamma\gamma$ -coin. Deduced levels, J, π , and bands. Compared with shell-model calculations using the SPDF-M effective interaction.

35Na Levels

E(level) [†]	$J^{\pi \ddagger}$
0#	(3/2+)
373 [#] 5	$(5/2^+)$
1014 [#] <i>17</i>	$(7/2^+)$

[†] From a least-squares fit to γ -ray energies.

‡ From shell-model calculations.

Band(A): $K^{\pi}=(3/2^+)$ rotational band predicted by the shell model.

$$\gamma$$
(35Na)

$$\frac{\text{E}_{\gamma}}{373.5}$$
 $\frac{\text{E}_{i}(\text{level})}{373.5}$ $\frac{\text{J}_{i}^{n}}{(5/2^{+})}$ $\frac{\text{E}_{f}}{0}$ $\frac{\text{J}_{f}^{n}}{(3/2^{+})}$ $\frac{\text{G}_{f}}{373.5}$ $\frac{\text{G}_{f}}{(5/2^{+})}$ $\frac{\text{G}_{f}}{373.5}$ $\frac{\text{G}_{f}}{(5/2^{+})}$

C(³⁶Mg,³⁵Naγ) 2014Do05

Level Scheme

C(³⁶Mg,³⁵Naγ) 2014Do05

Band(A): K^{π} =(3/2⁺) rotational band predicted by the shell model

