VERİ SIKIŞTIRMA

İstatistiksel Yöntemler-5

Prof. Dr. Banu DİRİ

MNP5 - Microcom Network Protocol

- Microcom tarafından modemler için geliştirilmiş bir sıkıştırma yöntemidir.
- MNP5 ve MNP7 diye iki versiyonu mevcuttur. En çok tercih edilen MNP5'dir.
- İki aşamalı bir yöntemdir. Run Length Encoding Adaptive Frequency Encoding
- RLE (tekrar eden üç ve üçten fazla sembol varsa üçü arka arkaya yazılıp, dördüncü byte tekrar sayısı yazılır)

Byte	Freq.	Token	Byte	Freq.	Token	Byte	Freq.	Token	Byte	Freq.	Token
0	0	0000	9	0	011 001	26	0	111 1010	247	0	111 1110111
1	0	000 1	10	0	011 010	27	0	111 1011	248	0	111 1111000
2	0	001 0	11	0	011 011	28	0	111 1100	249	0	111 1111001
3	0	001 1	12	0	011 100	29	0	111 1101	250	0	111 1111010
4	0	010 00	13	0	011 101	30	0	111 1110	251	0	111 1111011
5	0	010 01	14	0	011 110	31	0	111 1111	252	0	111 1111100
6	0	010 10	15	0	011 111	32	0	101 00000	253	0	111 1111101
7	0	010 11	16	0	111 0000	33	0	101 00001	254	0	111 1111110
8	0	011 000	17	0	111 0001	34	0	101 00010	255	0	111 11111110
	18 to 25 and 35 to 246 continue in the same pattern.										

İkinci aşama, birinci aşamanın sonuçlarını kullanır ve Huffman kodunun bir versiyonu olarak anlattığımız yönteme benzer.

- 256 satır ve 2 sütunluk bir tablo ile başlar.
- Her bir satır 8 bitlik 0-255 arası sayıya karşılık gelir.
- Birinci kolon frekans değeridir ve başlangıç değeri O'dır.
- İkinci kolon «token» adı verilen değişken uzunluktaki koddan oluşur.
- Her bir «token» 3 bitlik header (başlık) bilgisi ile başlar ve bunları kod bilgisi izler.
- Üç farklı durum dışında, 2 tane 1 bitlik (0-1), 4 tane 2 bitlik (0-3), 8 tane 3 bitlik (0-7), 16 tane 4 bitlik (0-15), 32 tane 5 bitlik (0-31), 64 tane 6 bitlik (0-63) ve 128 tane 7 bitlik (0-127) adet koddan oluşur.

Byte	Freq.	Token	Byte	Freq.	Token	Byte	Freq.	Token	Byte	Freq.	Token
0	0	000 0	9	0	011 001	26	0	111 1010	247	0	111 1110111
1	0	000 1	10	0	011 010	27	0	111 1011	248	0	111 11111000
2	0	001 0	11	0	011 011	28	0	111 1100	249	0	111 1111001
3	0	001 1	12	0	011 100	29	0	111 1101	250	0	111 1111010
4	0	010 00	13	0	011 101	30	0	111 1110	251	0	111 1111011
5	0	010 01	14	0	011 110	31	0	111 1111	252	0	111 1111100
6	0	010 10	15	0	011 111	32	0	101 00000	253	0	111 1111101
7	0	010 11	16	0	111 0000	33	0	101 00001	254	0	111 1111110
8	0	011 000	17	0	111 0001	34	0	101 00010	255	0	111 11111110

18 to 25 and 35 to 246 continue in the same pattern.

Bahsedilen 3 farklı kodun, ilk iki kodu (000|0, 000|1) ve son kodu da (111|11111110) dır.

İkinci adım;

- Tablodaki frekans kolonu 0 ile başlar. Input stream'den okunan ilk byte karşılık gelen «token» tablodan çıkış stream yazılır ve frekans değeri bir artırılır.
- Frekans değeri büyük olan byte kendi üzerinde yer alan daha kısa token ile gösterilebilmesi için token'ların yeri değiştirilir (sadece token'lar).
- Frekans değeri 8 bitlik bir alanda tutulur ve her değişiklikte maksimum değere ulaşılıp ulaşılmadığı
 kontrol edilir. Eğer ulaşılmış ise tüm sıklık değerleri ikiye bölünür.

Örnek

«52 52 52 6»

- Tabloda 53.sıradaki token değeri stream'e yazılır
- Her byte okunduktan sonra tabloda yer değiştirme olabilir ve 52 değeri farklı token değerlerine sahip olabilir.
- 6 değeri için de, tabloda 7.sırada yer alan token değeri yazılır, fakat frekans değeri arttırılmaz.

- Çıkış değerinde yer alan «token» lar 4 ile 11 bit arasında değer alabilir. Bu çıktılar 8 bitlik paketler halinde çıkış stream yazılır.
- En sona 11 tane birden oluşan «flush token» adı verilen kod eklenir (gerekirse 8'e tamamlamak için 1 eklenir) ve output stream sonlandırılır.
- MNP5'in iyi sonuç vermesi tamamiyle orijinal verinin içeriğine bağlıdır.

Tablonun güncellenmesi iki şekilde yapılır.

- 1. Her sıklık değeri arttırıldığında, bütün tablo yeniden sıralanır
- 2. Tablo içerisinde pointer kullanılarak sıralama gerçekleştirilir

MNP7 - Microcom Network Protocol

- MNP5'den daha karışık bir algoritmaya sahiptir.
- İki boyutu dinamik Huffman kodlaması ile RLE'nin birleşimidir.
- İlk bölüm RLE ile başlar. (3 3 3 0 → 3 tane 3; 6 6 6 7 → 10 tane 6)
- İkinci bölüm iki boyutlu Huffman kodlamadır
- MNP7, first-order Markov modeline dayanır. Her sembol kendisinin önünde yer alan sembole göre işlenir.

		\mathbf{C}	urrent cl	haract	ter		
	0	1	2		254	255	
	0 0	0 0	0.0		0.0	0 0	
	1 0	1 0	1 0		1 0	1 0	
	2 0	2 0	2 0		2 0	2 0	\dots a b c d e \dots
	3 0	3 0	3 0		3 0	3 0	t l h o d
Preced.	:	:	:		:	:	h e o a r
Char.	$254 \ 0$	$254 \ 0$	$254 \ 0$		$254 \ 0$	$254\ 0$	c u r e s
	255.0	255.0	255.0		255.0	255.0	: : : : :

- 256 adet, 256 x 2 boyutunda tablodan oluşur.
- Her satır 0 ile 255 arasındaki karakteri temsil eder
- 256x2 boyutundaki her tablonun da ilk sütunu 0-255 arasındaki sayılardan ve ikinci sütunu da kullanım sıklıklarından oluşur ki başlangıç değeri 0'dır.
- Kodlar ayrı bir tabloda tutulur ve asla yer değiştirme yapılmaz.

Facsimile Compression - Faks Sıkıştırma

İletişim hattı üzerinden görüntü verisi gönderileceği zaman sıkıştırma önemli hale gelir Faks makineleri ile görüntünün cihazlar arasında gönderilmesi gündeme gelmiştir

ITU-T (International Telecomunications Union) tarafından bir veri sıkıştırma standardı geliştirildi. T2 (Grup 1) T3 (Grup 2)

Daha sonra bu standartların yerini T4 (Grup 3) ve T6 (Grup4) aldı

- Grup 3 (T4) PSTN (Public Switched Telephone Network 9600 baud)
- Grup 4 (T6) ISDN (Integrated Services Digital Network 64K baud)
- O Her iki yöntemde de sıkıştırma oranı 10:1 veya daha yüksektir
- Önceden bir sayfanın iletilme hızı ~1dak. sürüyor iken, kullanılan bu standartlar ile birkaç saniyeye düşmüştür.

□ Faks makineleri, dokümanı satır satır tarar ve satırları «pels» (picture elements) adı verilen küçük siyah beyaz noktalara çevirir

Yatay çözünürlük

- •Her zaman 8,05 pels/mm (205 pels / inch) (1" = 25,4 mm)
- •8,5" genişliğinde taranan her satır 1.738 pels çevrilir
- T4 standardında tarama için önerilen satır genişliği 8,2"

Dikey çözünürlük

- Standard mode → 3,85 scanline/mm
- Fine mode \rightarrow 7,7 scanline /mm
- Very fine Mode \rightarrow 15,4 scanline/mm

10" yüksekliğinde olan bir sayfada toplam pels sayısı sıkıştırma yapılmak ise 3 farklı moddaki gönderim süresi ne olur

	Scan lines	Pels per line	Pels per page	,	Time (min.)
254mm * 3,85mm \rightarrow standart mode	978	1664	1.670 M	170	2.82
254mm * 7,7mm \rightarrow fine mode	1956	1664	3.255M	339	5.65
254mm * 15,4 mm → very fine mode	3912	1664	6.510M	678	11.3

Sürelerdeki uzunluk, faks iletişimde veri sıkıştırmanın ne kadar önemli olduğunu göstermektedir.

Grup 3 kodu, birçok doküman üzerinde siyah ve beyaz pels'lerin run-length lerinin analiz edilmesi ile elde edilir
Her bir run uzunluğu için Huffman algoritması ile değişken uzunlukta kodlar atanır
En fazla kullanılan run uzunluklarının 2, 3 ve 4 siyah pels değerleri olduğu tespit edilmiş ve bu pels değerleri için kısa kodlar atanmıştır
2 ve 7 arasındaki run değerlerine sahip olan beyaz pels'lere de daha uzun kodlar atanmıştır
Grup 3, RLE ve Huffman kodlamanın bir bileşimidir
Run değerlerinin uzun olabileceği düşünüldüğünden Huffman algoritması üzerinde değişiklikler yapılmıştır. Bu sebeple Grup 3 standartı MH-Modified Huffman olarak adlandırılır
1 ile 63 run uzunluğundaki pels değerleri için Termination kodlar , bu pels değerlerinin 64 katı değeri içinde Make-up kodlar kullanılır

	White	Black		White	Black
Run	code-	code-	Run	code-	code-
length	word	word	length	word	word
0	00110101	0000110111	32	00011011	000001101010
1	000111	010	33	00010010	000001101011
2	0111	11	34	00010011	000011010010
3	1000	10	35	00010100	000011010011
4	1011	011	36	00010101	000011010100
5	1100	0011	37	00010110	000011010101
6	1110	0010	38	00010111	000011010110
7	1111	00011	39	00101000	000011010111
8	10011	000101	40	00101001	000001101100
9	10100	000100	41	00101010	000001101101
10	00111	0000100	42	00101011	000011011010
11	01000	0000101	43	00101100	000011011011
12	001000	0000111	44	00101101	000001010100
13	000011	00000100	45	00000100	000001010101
14	110100	00000111	46	00000101	000001010110
15	110101	000011000	47	00001010	000001010111
16	101010	0000010111	48	00001011	000001100100
17	101011	0000011000	49	01010010	000001100101
18	0100111	0000001000	50	01010011	000001010010
19	0001100	00001100111	51	01010100	000001010011
20	0001000	00001101000	52	01010101	000000100100
21	0010111	00001101100	53	00100100	000000110111
22	0000011	00000110111	54	00100101	000000111000
23	0000100	00000101000	55	01011000	000000100111
24	0101000	00000010111	56	01011001	000000101000
25	0101011	00000011000	57	01011010	000001011000
26	0010011	000011001010	58	01011011	000001011001
27	0100100	000011001011	59	01001010	000000101011
28	0011000	000011001100	60	01001011	000000101100
29	00000010	000011001101	61	00110010	000001011010
30	00000011	000001101000	62	00110011	000001100110
31	00011010	000001101001	63	00110100	000001100111

Make-Up Codes

	(White	Black
Run code- code	Run	code-	code-
length word word	length	word	word
64 11011 000000111	.1 1344	011011010	0000001010011
128 10010 000011001	.000 1408	011011011	0000001010100
192 010111 000011001	.001 1472	010011000	0000001010101
256 0110111 000001011	.011 1536	010011001	0000001011010
320 00110110 000000110	0011 1600	010011010	0000001011011
384 00110111 000000110	100 1664	011000	0000001100100
448 01100100 000000110	1728	010011011	0000001100101
512 01100101 000000110	1100 1792	00000001000	same as
576 01101000 000000110	1101 1856	00000001100	white
640 01100111 000000100	1010 1920	00000001101	from this
704 011001100 000000100	1011 1984	000000010010	point
768 011001101 000000100	1100 2048	000000010011	
832 011010010 000000100	1101 2112	000000010100	
896 011010011 000000111	.0010 2176	000000010101	
960 011010100 000000111	.0011 2240	000000010110	
1024 011010101 000000111	.0100 2304	000000010111	
1088 011010110 000000111	.0101 2368	000000011100	
1152 011010111 000000111	.0110 2432	000000011101	
1216 011011000 000000111	.0111 2496	000000011110	
1280 011011001 000000101	.0010 2560	000000011111	

31: Group 3 and 4 Fax Codes: (a) Termination Codes, (b) Make-Up Codes.

- Bir «run» kodu ya tek bir Termination kod veya bir veya daha fazla Make-up kod ve onu izleyen Termination koddan oluşur.
 - 1. A run length of 12 white pels is coded as 001000.
 - 2. A run length of 76 white pels (= 64 + 12) is coded as 11011|001000.
 - 3. A run length of 140 white pels (= 128 + 12) is coded as 10010|001000.
 - 4. A run length of 64 black pels (= 64 + 0) is coded as 0000001111|0000110111.
 - 5. A run length of 2561 black pels (2560 + 1) is coded as 000000011111|010.
 - Her bir tarama satırı ayrı ayrı kodlanır ve kodlar özel EOL kodu ile sonlandırılır (000000001)
 - Bir satır scan edildiğinde, her satırın soluna bir tane beyaz «pels» eklenir. Bu alıcı tarafından kod çözüldüğünde ortadan belirsizliği kaldırmak içindir

Örnek

14 pels oluşan bir satır 1w3b2w2b7wEOL 000111|10|0111|11|1111|000000001

Örnek

14 pels oluşan bir satır 3w5b5w2bEOL 1000|0011|1100|11|000000001

- Grup 3, kodda hata düzeltmeye sahip değildir fakat hataların çoğunu bulabilir
- Huffman kodun doğasından dolayı iletim anında tek bir hatalı bit gönderilirse bile alıcı senkronizasyonun dışına çıkar ve hatalı bit stringi oluşur
- Bu sebepten dolayı, her satır ayrı ayrı kodlanır. Alıcı, hatayı bulmuşsa EOL koduna kadar olan bitleri atlar, böylece bir hata oluştuğunda alıcı tarafında en fazla bir satır düzeltilmeden diğer bilgiler alınır
- Eğer alıcı, satır sayısı kadar EOL kodunu göremez ise yüksek bir hata oranı olduğunu kabul eder ve işlemi iptal ederek durumu göndericiye bildirir
- Kodlar 2 ile 12 bit arasında olduğundan dolayı, alıcı 12 biti okuduktan sonra halen geçerli bir kod bulamamış ise hatayı bulur
- Her sayfanın sonunda 6 tane EOL kodu mevcuttur
- Bu yöntem One-Dimensional Coding olarak adlandırılır
- Sıkıştırma oranı görüntüye bağlıdır. Text ve B&W görüntülerde sıkıştırma oranı yüksektir.
- Kısa «run» lardan oluşan görüntülerde ise özellikle gray scale görüntülerde başarı düşüktür

Facsimile Compression - 2 Dimensional Coding

- Tek boyutlu kodlama gray scale resimlerde iyi sonuç vermediğinden iki boyutlu kodlama geliştirilmiştir
- Grup 3'lü kodlama, faks makinelerinde seçimlik olarak bulunur
- Her EOL kodundan sonra fazladan bir bit kullanılır. Bu bit değeri 1 ise gelecek satırın 1D, 0 ise 2D ile kodlanacağı anlaşılır
- 2D kodlama MMR (Modified Modified Read) olarak adlandırılır. READ (Relative Element Address Designate)
- 2D kodlama yöntemi, mevcut scan line (coding line) ile bir önünde yer alan (reference line) satırı karşılaştırarak, aralarındaki farkları kayıt ederek çalışır
- Dokümanlarda bazen peş peşe gelen satırlar arasında çok küçük farklar olabilir. Örneğin, sayfanın başlangıcı sadece beyaz pels'lerden oluşmuş bir satır olabilir. Bu satır 1D ile kodlanır. İkinci satırda, bir üstte kodlanmış olan satır referans alınarak kodlanır ki bu da 2D kodlamadır

- 2D kodlama, 1D kodlamadan daha az güvenilirdir. Bir hata oluştuğunda bütün doküman etkilenir. Bu sebepten dolayı belli aralıklarla 2D kodlama kesilir ve bir sonraki satır 1D kodlama ile kodlanır
- T4 (Grup 3) bir satır 1D kodlama ile kodlandıktan sonra en fazla k-1 satır 2D kodlama ile kodlanır (standart çözünürlük k=2 ve yüksek çözünürlük k=4)
- T6 (Grup 4) kodlamada böyle bir zorunluluk yoktur

2D kodlamada, 3 farklı mod vardır. 2D kodlama, bu 3 farklı mod arasında değişimli kodlama yapar.

1 - Pass Mode

 b_2 , a_1' in sol tarafındadır a_1 ve b_1 aynı hizada olamaz Bu mod tanımlandığında Pass Mode (0001) + (b_1 b_2) uzunluğu yazılır

 a_0 , b_2 'nin altına taşınır b_1 ve b_2 güncellenir a_1 ve a_2 değişmez

Run length b_1b_2 coded. New a_0 becomes old b_2 .

2- Vertical Mode

 a_1 ile b_1 arasında sağa veya sola doğru 2'den fazla «pels» olmamalıdır. Yedi farklı durum için 7 farklı kod üretilir.

$$a_1, b_1 = 0$$
 $V(0) \rightarrow 1$
 $a_1, b_1 = -1$ $VR(1) \rightarrow 011$
 $a_1, b_1 = -2$ $VR(2) \rightarrow 000011$
 $a_1, b_1 = -3$ $VR(3) \rightarrow 0000011$
 $a_1, b_1 = 1$ $VL(1) \rightarrow 010$
 $a_1, b_1 = 2$ $VL(2) \rightarrow 000010$
 $a_1, b_1 = 3$ $VL(3) \rightarrow 0000010$

Vertical Mode bilgisi gönderildikten sonra

a₀, a₁'in yerine
a₁, a₂'in yerine
a₂ diğer «run» nın başına geçer

b₁, b₂'in yerine b₂ diğer «run» nın başına geçer

3- Horizontal Mode

 a_1 ile b_1 arasında sağa veya sola doğru 3'den fazla «pels» olmalıdır

Horizontal Modun kodu 001 ve $a_0a_1v_e$ a_1a_2 arası pels'in MH göre kod değeri gönderilir

 a_0 , a_2 'nin yerine geçer a_1 , a_2 , b_1 ve b_2 güncellenir

New a_0 becomes old a_2 .

Run lengths a_0a_1 (white) and a_1a_2 (black) coded.

	Run length to	Abbre-	
Mode	be encoded	viation	Codeword
Pass	$b_{1}b_{2}$	P	0001+coded length of b_1b_2
Horizontal	$a_0 a_1, a_1 a_2$	$_{ m H}$	001+coded length of a_0a_1 and a_1a_2
Vertical	$a_1b_1 = 0$	V(0)	1
	$a_1b_1 = -1$	VR(1)	011
	$a_1b_1 = -2$	VR(2)	000011
	$a_1b_1 = -3$	VR(3)	0000011
	$a_1b_1 = +1$	VL(1)	010
	$a_1b_1 = +2$	VL(2)	000010
	$a_1b_1 = +3$	VL(3)	0000010
Extension			000001000

2D Codes for the Group 4 Method.

Tarama işlemi başladığında

a_{0,} coding line'da ilk başlangıç beyaz «pels»i a₁, coding line'da ilk siyah «pels»in başlangıcını a₂, coding line'da ilk beyaz «pels»in başlangıcını gösterir

 b_1 ve b_2 ise referans line'daki birinci ve ikinci «run» ların başlangıcını gösterir (000001000) Extension kod olup, sayfanın sonuna gelmeden kodlama işlemini iptal etmek veya sayfanın geri kalan kısmını farklı kodla veya sıkıştırmadan iletmek için kullanılır

 $a_1 b_1 = 0$, Vertical Mode

010 1

010 1 001 1000 011 0001 0111

000011

010 1 001 1000 011 0001 0111 000011 000010

 $|a_1 b_1| > 3$, Horizontal Mode 4 White, 7 Black

 $010\ 1\ 001\ 1000\ 011\ 0001\ 0111\ 000011\ 000010\ 001\ \pm 1011\pm 00011$