Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC 140 - SISTEMAS OPERACIONAIS I

Aula 20 - Sistemas de Arquivos

Profa. Sarita Mazzini Bruschi

Slides de autoria de Luciana A. F. Martimiano baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

Sistema de Arquivos

- □ Parte do Sistema Operacional mais visível ao usuário
- Os arquivos de um sistema computacional são manipulados por meio de chamadas (system calls) ao Sistema Operacional;

2

Sistema de Arquivos

- Três importantes requisitos são considerados no armazenamento de informações:
 - Possibilidade de armazenar e recuperar uma grande quantidade de informação;
 - Informação gerada por um processo deve continuar a existir após a finalização desse processo:
 - □ Ex.: banco de dados;
 - Múltiplos processos podem acessar informações de forma concorrente:
 - Informações podem ser independentes de processos;

3

Sistema de Arquivos

- Para atender a esses requisitos, informações são armazenadas em discos (ou alguma outra mídia de armazenamento) em unidades chamadas arquivos;
- Processos podem ler ou escrever em arquivos, ou ainda criar novos arquivos;
- Informações armazenadas em arquivos devem ser persistentes, ou seja, não podem ser afetadas pela criação ou finalização de um processo;

Sistema de Arquivos

- Arquivos são manipulados pelo Sistema Operacional;
- Tarefas:
 - Estrutura de arquivos;
 - Nomes;
 - Acessos (uso);
 - Proteção;
 - Implementação;
- SISTEMA de ARQUIVOS: parte do SO responsável por manipular arquivos!!!

Sistema de Arquivos

- Usuário: Alto nível
 - Interface → como os arquivos aparecem;
 - Como arquivos são nomeados e protegidos;
 - Quais operações podem ser realizadas;
- SO: Baixo nível
 - Como arquivos são armazenados fisicamente;
 - Como arquivos são referenciados (links);

Sistema de Arquivos Arquivos

- Arquivos:
 - Nomes;
 - Estrutura;
 - Tipos:
 - Acessos;
 - Atributos;
 - Operações;

7

Sistema de Arquivos Nomes de arquivos

- Quando arquivos são criados, nomes são atribuídos a esses arquivos, os quais passam a são referenciados por meio desses nomes;
- □ Tamanho: até 255 caracteres;
 - Restrição: MS-DOS aceita de 1-8 caracteres;
- Letras, números, caracteres especiais podem compor nomes de arquivos:
 - Caracteres permitidos: A-Z, a-z, 0-9, \$, %, ~, @, {, },
 ~, ~, !, #, (,), &
 - Caracteres **não** permitidos: ?, *, /, \, ", |, <, >, :

8

Sistema de Arquivos Nomes de arquivos

- Alguns Sistemas Operacionais s\u00e3o sens\u00edveis a letras mai\u00edsculas e min\u00edsculas (case sensitive) e outros n\u00e3o;
 - UNIX é sensível :
 - □ Ex.: exemplo.c é diferente de Exemplo.c;
 - MS-DOS não é sensível:
 - Ex.: exemplo.c é o mesmo que Exemplo.c;
- □ Win95/Win98/WinNT/Win2000/WinXP/WinVista herdaram características do sistema de arquivos do MS-DOS;
 - No entanto, WinNT/Win2000/WinXP/WinVista possuem um sistema de arquivos próprio → NTFS (New Technology File System);

Sistema de Arquivos Nomes de arquivos

- Alguns sistemas suportam uma extensão relacionada ao nome do arquivo:
 - MS-DOS: 1-3 caracteres; suporta apenas uma extensão;
 - UNIX:
 - □ Extensão pode conter mais de 3 caracteres;
 - Suporta mais de uma extensão: Ex.: exemplo.c.Z (arquivo com compressão);
 - Permite que arquivos sejam criados sem extensão;

10

Sistema de Arquivos Nomes de arquivos

- Uma extensão, geralmente, associa o arquivo a algum aplicativo (associação feita pelo aplicativo):
 - .doc Microsoft Word;
 - .c Compilador C;
- SO pode ou não associar as extensões aos aplicativos:
 - Unix não associa;
 - Windows associa;

11

Sistema de Arquivos Estrutura de arquivos

- Arquivos podem ser estruturados de diferentes maneiras:
 - a) Sequência não estruturada de bytes
 - □ Para o SO arquivos são apenas conjuntos de bytes;
 - SO não se importa com o conteúdo do arquivo;
 - Significado deve ser atribuído pelos programas em nível de usuário (aplicativos);
 - Vantagem:
 - Flexibilidade: os usuários nomeiam seus arquivos como quiserem;
 - □ Ex.: UNIX e Windows;

Sistema de Arquivos Estrutura de arquivos

- b) Seqüência de registros de tamanho fixo, cada qual com uma estrutura interna -> leitura/escrita são realizadas em registros;
 - SOs mais antigos → mainframes e cartões perfurados (80 caracteres);
 - Nenhum sistema atual utiliza esse esquema;
- c) Árvores de registros (tamanho variado), cada qual com um campo <u>chave</u> em uma posição fixa:
 - SO decide onde colocar os arquivos;
 - Usado em mainframes atuais;

13

Sistema de Arquivos Tipos de arquivos

- Arquivos regulares → são aqueles que contêm informações dos usuários;
- □ Diretórios → são arquivos responsáveis por manter a estrutura do Sistema de Arquivos;
- Arquivos especiais de caracteres → são aqueles relacionados com E/S e utilizados para modelar dispositivos seriais de E/S;
 - Ex.: impressora, interface de rede, terminais;
- □ Arquivos especiais de bloco → s\u00e3o aqueles utilizados para modelar discos;

15

Sistema de Arquivos Tipos de arquivos

- □ Arquivos regulares podem ser de dois tipos:
 - ASCII:
 - Consistem de linhas de texto;
 - □ Facilitam integração de arquivos;
 - □ Podem ser exibidos e impressos como são;
 - □ Podem ser editados em qualquer Editor de Texto;
 - Ex.: arquivos texto;
 - Binário:
 - □ Todo arquivo não ASCII;
 - Possuem uma estrutura interna conhecida pelos aplicativos que os usam:
 - Ex.: programa executável;

16

Sistema de Arquivos Acessos em arquivos

- SOs mais antigos ofereciam apenas acesso seqüencial no disco → leitura em ordem byte a byte (registro a registro);
- SOs mais modernos fazem acesso randômico ou aleatório;
 - Acesso feito por <u>chave</u>;
 - Ex.: base de dados de uma empresa de aérea;
 - Métodos para especificar onde iniciar leitura:
 - Operação Read → posição do arquivo em que se inicia a leitura;
 - □ Operação Seek → marca posição corrente permitindo leitura seqüencial;

17

Sistema de Arquivos Atributos de arquivos

- Além do nome e dos dados, todo arquivo tem outras informações associadas a ele → atributos;
- □ A lista de atributos varia de SO para SO;

Sistema de Arquivos Atributos de arquivos

Atributo	Significado
Proteção	Quem acesso o arquivo e de que maneira
Senha	Chave para acesso ao arquivo
Criador	Identificador da pessoa que criou o arquivo
Dono	Dono corrente
Flag de leitura	0 para leitura/escrita; 1 somente para leitura
Flag de oculto	0 para normal; 1 para não aparecer
Flag de sistema	0 para arquivos normais; 1 para arquivos do sistema
Flag de repositório	0 para arquivos com <i>backup</i> ; 1 para arquivos sem <i>backup</i>

Sistema de Arquivos Atributos de arquivos

Atributo	Significado
Flag ASCII/Binary	0 para arquivo ASCII; 1 para arquivo binário
Flag de acesso aleatório	0 para arquivo de acesso seqüencial; 1 para arquivo de acesso randômico
Flag de temporário	0 para normal; 1 para temporário
Flag de impedido	O para arquivo desimpedido; diferente de O para arquivo impedido
Tamanho do registro	Número de bytes em um registro
Posição da chave	Deslocamento da chave em cada registro
Tamanho da chave	Número de bytes no campo chave (key)
	20

Sistema de Arquivos Atributos de arquivos

	Atributo	Significado	
	Momento da criação	Data e hora que o arquivo foi criado	
	Momento do último acesso	Data e hora do último acesso ao arquivo	
	Momento da última mudança	Data e hora da última modificação do arquivo	
	Tamanho	Número de bytes do arquivo	
	Tamanho Máximo	Número máximo de bytes que o arquivo pode ter	
			21

Sistema de Arquivos Operações em arquivos

- Diferentes sistemas provêm diferentes operações que permitem armazenar e recuperar arquivos;
- □ Operações mais comuns (system calls):
 - Create; Delete;
 - Open; Close;
 - Read; Write; Append;
 - Seek;
 - Get attributes; Set attributes;
 - Rename;

22

Sistema de Arquivos Arquivos mapeados em memória

- Alguns SOs permitem que arquivos sejam mapeados diretamente no espaço de endereçamento (virtual) de um processo em execução → acesso mais rápido;
- □ System Calls: Map e unmap;
- Funciona melhor em sistemas que suportam segmentação;

Sistema de Arquivos Arquivos mapeados em memória

■ Problemas:

- Difícil prever o tamanho de arquivos de saída;
- Compartilhamento de arquivos entre diferentes processos → SO n\u00e3o deve permitir acesso a arquivos com dados inconsistentes;
- Arquivo pode ser maior que um segmento ou maior que o espaço virtual utilizado → mapear pequenas partes do arquivo;

Sistema de Arquivos Diretórios

- □ Diretórios → são arquivos responsáveis por manter a estrutura do Sistema de Arquivos;
 - Organização;
 - Operações;

25

Sistema de Arquivos Diretórios

- Organização pode ser feita das seguintes maneiras:
 - Nível único (Single-level);
 - Dois níveis (Two-level);
 - Hierárquica;

26

Sistema de Arquivos Diretórios – Nível único

- Apenas um diretório contém todos os arquivos → diretório raiz (root directory);
- Computadores antigos utilizavam esse método, pois eram monousuários;
- Exceção: CDC 6600 → supercomputador que utilizava-se desse método, apesar de ser multiusuário;
- Vantagens:
 - Simplicidade;
 - Eficiência;

27

Sistema de Arquivos Diretórios – Nível único

- 04 arquivos;
- □ Três diferentes proprietários;
- Desvantagens:
 - Sistemas multiusuários:
 Diferentes usuários podem criar arquivos como mesmo nome;
 - Exemplo:
 - Usuários A e B criam, respectivamente, um arquivo mailbox;
 - Usuário B sobrescreve arquivo do usuário A

28

Sistema de Arquivos Diretórios – Dois níveis

- Cada usuário possui um diretório privado;
- Sem conflitos de nomes de arquivos;
- Procedimento de login: identificação;
- □ Compartilhamento de arquivos → programas executáveis do sistema;
- Desvantagem:
 - Usuário com muitos arquivos;

29

Sistema de Arquivos Diretórios – Hierárquico

- Hierarquia de diretórios → árvores de diretórios;
 - Usuários podem querer agrupar seus arquivos de maneira lógica, criando diversos diretórios que agrupam arquivos;
- Sistemas operacionais modernos utilizam esse método;
- Flexibilidade;

Sistema de Arquivos Diretórios – Caminho (path name)

- O método hierárquico requer métodos pelos quais os arquivos são acessados;
- Dois métodos diferentes:
 - Caminho absoluto (absolute path name);
 - Caminho relativo (relative path name);

32

Sistema de Arquivos Diretórios – Caminho (path name)

- Caminho absoluto: consiste de um caminho a partir do diretório raiz até o arquivo;
 - É ÚNICO;
 - Funciona independentemente de qual seja o diretório corrente;
 - Ex.:
 - UNIX: /usr/ast/mailbox;
 - □ Windows: \usr\ast\mailbox;

33

Sistema de Arquivos Diretórios – Caminho (path name)

- Diretório de Trabalho (working directory) ou diretório corrente (current directory);
- <u>Caminho relativo</u> é utilizado em conjunto com o diretório corrente;
- Usuário estabelece um diretório como sendo o diretório corrente; nesse caso caminhos não iniciados no diretório raiz são tido como relativos ao diretório corrente;
 - Exemplo:
 - cp /usr/ast/mailbox /usr/ast/mailbox.bak
 - □ Diretório corrente: /usr/ast → cp mailbox mailbox.bak

34

Sistema de Arquivos Diretórios – Caminho (path name)

- "." → diretório corrente;
- ".." → diretório pai (anterior ao corrente);
- Ex.: diretório corrente /usr/ast:
 - cp ../lib/dictionary .
 - cp /usr/lib/dictionary .
 - cp /usr/lib/dictionary dictionary
 - cp /usr/lib/dictionary /usr/ast/dictionary

Sistema de Arquivos Diretórios – Operações

- Create; Delete;
- Opendir; Closedir;
- Readdir;
- Rename;
- Link (um arquivo pode aparecer em mais de um diretório);
- Unlink;

Implementando o Sistema de arquivos

- □ Implementação do Sistema de Arquivos:
 - Como arquivos e diretórios são armazenados;
 - Como o espaço em disco é gerenciado;
 - Como tornar o sistema eficiente e confiável;

Sistema de arquivos - *Layout*Arquivos são armazenados em discos;

- Discos podem ser divididos em uma ou mais partições, com sistemas de arquivos independentes;
- Setor 0 do disco é destinado ao MBR Master Boot Record; que é responsável pela a tarefa de boot do computador;
 - MBR possui a tabela de partição, com o endereço inicial e final de cada partição;
 - BIOS lê e executa o MBR;

Implementando o

38

Implementando o Sistema de arquivos - *Layout*

- Tarefas básicas do MBR (pode variar dependendo do SO):
 - 1ª → localizar a partição ativa;
 - 2ª → ler o primeiro bloco dessa partição, chamado bloco de boot (boot block);
 - 3^a → executar o bloco de *boot* ;
- Layout de um Sistema de Arquivos pode variar; mas a idéia geral é a seguinte:

39

Implementando o Sistema de arquivos - Layout Disco Partições MBR Boot Super bloco Gerenc. de Espaço livre I-nodes Raiz Arquivos Diretórios Contém informações sobre os blocos livres do disco (mapa de bits ou lista encadeada)

Implementando o Sistema de arquivos - Arquivos

- □ Armazenamento de arquivos → como os arquivos são alocados no disco;
- □ Diferentes técnicas são implementas por diferentes Sistemas Operacionais;
 - Alocação contínua;
 - Alocação com lista encadeada;
 - Alocação com lista encadeada utilizando uma tabela na memória (FAT);
 - I-Nodes;

Implementando o Sistema de arquivos - Arquivos

- Alocação contínua:
 - Técnica mais simples:
 - Armazena arquivos de forma contínua no disco:
 - Ex.: em um disco com blocos de 1kb um arquivo com 50kb será alocado em 50 blocos consecutivos;

Implementando o Sistema de arquivos - Arquivos Alocação contínua: 37 Blocos Removendo os arquivos D e F... В Livre

Implementando o Sistema de arquivos - Arquivos

- Alocação contínua:
 - Vantagens:
 - Simplicidade: somente o endereço do primeiro bloco e número de blocos no arquivo são necessários;
 - □ Desempenho para o acesso ao arquivo: acesso seqüencial;
 - Desvantagens (discos rígidos):
 - Fragmentação externa:
 - , Compactação → alto custo;

 - Reuso de espaço → atualização da lista de espaços livres;
 Conhecimento prévio do tamanho do arquivo para alocar o espaço necessário;
 - CD-ROM e DVD-ROM (quando somente escrita);

Implementando o Sistema de arquivos - Arquivos

- □ Alocação com lista encadeada:
 - A primeira palavra de cada bloco é um ponteiro para o bloco seguinte;
 - O restante do bloco é destinado aos dados;
 - Apenas o endereço em disco do primeiro bloco do arquivo é armazenado;
 - Serviço de diretório é responsável por manter esse endereco;

49

Implementando o Sistema de arquivos - Arquivos

- □ Alocação com lista encadeada:
 - Desvantagens:
 - Acesso aos arquivos é feito aleatoriamente ->
 processo mais lento;
 - A informação armazenada em um bloco não é mais uma potência de dois, pois existe a necessidade de se armazenar o ponteiro para o próximo bloco;
 - Vantagem:
 - Não se perde espaço com a fragmentação externa;

50

Implementando o Sistema de arquivos - Arquivos

■ Alocação com lista encadeada:

Implementando o Sistema de arquivos - Arquivos

- Alocação com lista encadeada utilizando uma tabela na memória:
 - O ponteiro é colocado em uma tabela na memória ao invés de ser colocado no bloco:
 - FAT → Tabela de alocação de arquivos (File Allocation Table);
 - Assim, todo o bloco está disponível para alocação de dados;
 - Serviço de diretório é responsável por manter o início do arquivo (bloco inicial);
 - MS-DOS e família Windows 9x (exceto WinNT, Win2000 e WinXP - NTFS);

52

Implementando o Sistema de arquivos - Arquivos

- Acesso aleatório se torna mais fácil devido ao uso da memória;
- Desvantagem:
 - □ Toda a tabela deve estar na memória;
 - Exemplo:
 - Com um disco de 20Gb com blocos de 1kb, a tabela precisa de 20 milhões de entradas, cada qual com 3 bytes (para permitir um acesso mais rápido, cada entrada pode ter 4 bytes) ocupando 60 (80) Mb da memória;

Implementando o Sistema de arquivos - Arquivos

Alocação com lista encadeada utilizando FAT

Implementando o Sistema de arquivos - Arquivos

□ *I-nodes*:

- Cada arquivo possui uma estrutura de dados chamada inode (index-node) que lista os atributos e endereços em disco dos blocos do arquivo;
 - Assim, dado o i-node de um arquivo é possível encontrar todos os blocos desse arquivo;
- Se cada i-node ocupa n bytes e k arquivos podem estar aberto ao mesmo tempo → o total de memoria ocupada é kn bytes;
- UNIX e Linux;

55

Implementando o Sistema de arquivos - Arquivos

- Espaço de memória ocupado pelos i-nodes é proporcional ao número de arquivos abertos; enquanto o espaço de memória ocupado pela tabela de arquivo (FAT) é proporcional ao tamanho do disco;
- Vantagem:
 - O i-node somente é carregado na memória quando o seu respectivo arquivo está aberto (em uso);
- Desvantagem:
 - O tamanho do arquivo pode aumentar muito
 - Solução: reservar o último endereço para outros endereços de blocos;

