

Sintesi di Reti Combinatorie

Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Quine-McCluskey

Metodo di Quine-McCluskey per più funzioni

- Nel caso di funzioni a più uscite una prima soluzione consiste nel minimizzare le funzioni singolarmente.
- Il risultato ottenuto potrebbe risultare non ottimale se si considera che le funzioni potrebbero condividere degli implicanti riducendo il costo.
- Gli implicanti che possono essere condivisi non sono necessariamente primi per le funzioni prese singolarmente
 - Se prese singolarmente, le forme ottenute per le funzioni possono non essere minime
- Gli implicanti che possono essere condivisi sono implicanti primi ma di più funzioni.
- Come si ottengono gli implicanti primi di più funzioni?

Quine-McCluskey: Multi-Uscita

Esempio (cifra di merito=cardinalità):

Forma sub-ottima con condivisione: cardinalità copertura=6

- 3 -

Quine-McCluskey: Multi-Uscita

Esempio (cifra di merito=cardinalità):

Forma sub-ottima con condivisione

Forma ottima con condivisione: cardinalità copertura =5

- 4 -

Quine-McCluskey: Multi-Uscita

□ Esempio (cont.) (cifra di merito=cardinalità):

Giustificazione del risultato Con condivisione Senza condivisione a,b c,d c,d 00 00 Gli 01 01 implicanti 11 condivisi non 10 sono tutti primi per f, e f, prese a,b singolarmente c,d 01 11

- 5 -

10

Quine-McCluskey: Multi-Uscita

- □ Esempio (cont.) (cifra di merito=cardinalità):
 - Giustificazione del risultato

10 0

0

Quine-McCluskey: Multi-Uscita

- In generale, oltre agli implicanti primi delle singole funzioni è necessario considerare anche tutti gli implicanti ottenuti combinando in tutti i modi possibile le funzioni da minimizzare.
 - Il numero delle combinazioni possibili con N funzioni è 2^N-1.
 - Ad esempio, con tre funzioni le combinazioni possibili sono: f1, f2, f3, f1*f2, f1*f3, f2*f3, f1*f2*f3
- Si osservi che il metodo analizzato potrebbe essere applicato anche alle mappe di Karnaugh. Comunque, tale metodo è limitato sia dal numero delle variabili sia dalla quantità di tabelle da realizzare
 - Ad esempio, 10 funzioni implicherebbero la realizzazione di 1023 tabelle.
- Il metodo di Quine-McCluskey collassa tutte le informazioni in una unica tabella.
 - Il numero degli implicanti primi estratti mantiene il problema di copertura della stessa complessità di quello delle due funzioni.

Quine-McCluskey: Multi-Uscita - Implicanti primi

- L'applicazione del metodo a più funzioni completamente specificate richiede estensioni alla costruzione della tabella degli implicanti ed alla soluzione della tabella di copertura
 - Costruzione della tabella degli implicanti
 - si procede come per il caso scalare con la differenza che si associa ad ogni mintermine un ulteriore "identificatore" (maschera di appartenenza) costituito da tanti bit quante sono le funzioni considerate
 - l'identificatore consente di individuare a quale funzione/i appartiene il mintermine. Quindi, un bit dell'identificatore assume valore 1 se e solo se la funzione che ad esso corrisponde contiene nell' ONset tale mintermine; 0 in caso contrario (mintermine dell' OFFset).

- 7 -

- 8 -

- Nel caso di funzioni non completamente specificate il problema richiede un'ulteriore trasformazione che riporta al caso multi-uscita completamente specificato:
 - I mintermini della funzione contenuti nel DCset sono aggiunti all' ONset
 - Le condizioni di indifferenza aumentano i gradi di libertà nella generazione degli implicanti primi

Quine-McCluskey:

Multi-Uscita - Implicanti primi

- 9 -

- 10 -

Quine-McCluskey: Multi-Uscita - Implicanti primi

- $\blacksquare \quad \text{Esempio1 (cont.):} \quad F = |f_1 \ f_2| = |ON_1(0,2,12,13)DC_1(4,5) \ ON_2(1,4,13)DC_2(11,5) |$
 - Costruzione identificatore senza DCset:

0000	0	10
0001 0010 0100	1 2 4	01 10 01
1100	12	10
1101	13	11

- 11 -

Quine-McCluskey: Multi-Uscita - Implicanti primi

- $\blacksquare \quad \text{Esempio1 (cont.):} \ F \ = \ \left| f_1 \ f_2 \right| \ = \ \left| ON_1 (0.2,12,13) DC_1 (4.5) \ ON_2 (1.4,13) DC_2 (11.5) \right|$
 - Aggiunta mintermini del DCset all'ONset:

0000	0	10
0001	1	01
0010	2	10
0100	4	11
0101	5	11
1100	12	10
1011	11	01
1101	13	11

- 12 -

Quine-McCluskey: Multi-Uscita - Implicanti primi

Generazione di implicanti primi

- La generazione dell'implicante segue le stesse modalità viste per il caso scalare.
- L'identificatore delle funzioni di ogni nuovo implicante viene ottenuto come AND bit a bit dei due indicatori.
 - Nota: se l'indicatore ottenuto è 00..0 il nuovo implicante non è una espansione valida (cioè non appartiene a nessuna funzione) e non viene riportato.
- Viene marcata, ossia coperta da un implicante di livello superiore, quella configurazione il cui indicatore è uguale al risultato dell'AND eseguito (l'implicante di livello superiore copre quello di livello inferiore per le stesse funzioni).

Ad esempio, se consideriamo i due mintermini

- 011 3 101 e 001 1 011 si ottiene l'implicante 0-1 1,3 001
- e nessun mintermine viene marcato come coperto.

- 13 -

Quine-McCluskey: Multi-Uscita - Implicanti primi

- Quattro casi possibili esempi:
 - 1. L'identificatore di appartenenza risultante è 000...000
 - La configurazione ottenuta non corrisponde a nessuna espansione valida poiché non appartiene a nessuna delle funzioni.

- 2. L'identificatore di appartenenza risultante non coincide con nessun identificatore di partenza
 - La configurazione ottenuta corrisponde ad una espansione valida ma non coinvolge tutte le funzioni ne del primo ne del secondo implicante coinvolto.

- 14 -

Quine-McCluskey: Multi-Uscita - Implicanti primi

- Quattro casi possibili:
 - 3. L'identificatore di appartenenza risultante coincide con un solo identificatore di partenza
 - La configurazione ottenuta corrisponde ad una espansione valida che coinvolge tutte le funzioni di un solo implicante coinvolto.

- 4. L'identificatore di appartenenza risultante coincide con entrambi gli identificatore di partenza.
 - La configurazione ottenuta corrisponde ad una espansione valida e coinvolge tutte le funzioni del primo e del secondo implicante coinvolto.

Quine-McCluskey: Multi-Uscita - Implicanti primi

- □ Esempio1 (cont.): $F = |f_1| f_2 = |ON_1(0,2,12,13)DC_1(4,5)| ON_2(1,4,13)DC_2(11,5)$
 - alcune espansioni:

- 15 -

- 17 -

- Nel caso di funzioni completamente specificate gli implicanti non marcati sono implicanti primi
- Nel caso di funzioni non completamente specificate l'elenco degli implicanti ottenuti subisce un'ulteriore trasformazione:
 - Tutti gli implicanti che coprono solo mintermini del DCset non sono implicanti primi e vanno rimossi dall'insieme degli implicati non marcati
 - Es 1 (cont.)
 - L'implicante 1011 che copre solo il mintermine 11 della funzione f₂ non è implicante primo perché copre solo mintermini del DCset di f₂
 - Tutti gli implicanti rimasti sono implicanti primi

- 18 -

Quine-McCluskey: Multi-Uscita - Tabella di copertura

Tabella di Copertura

 la tabella di copertura è ottenuta includendo gli implicanti primi e la giustapposizione dei mintermini del ONset di tutte le funzioni.

Esempio1 (Cont.): $F = |f_1 f_2| = |ON_1(0,2,12,13)DC_1(4,5) ON_2(1,4,13)DC_2(11,5)|$

Quine-McCluskey: Multi-Uscita - Tabella di copertura

 Identificazione della copertura ottima: simile al caso di singola uscita con alcune differenze.

Costi

- è necessario inserire la colonna costo anche se questo viene considerato identico per ogni implicante (cifra di merito=cardinalità)
- quando un termine prodotto viene scelto per la prima volta e inserito nella copertura di una o più funzioni, il suo costo viene modificato
 - portato a 0 nel caso in cui la cifra di merito sia la cardinalità degli implicanti
 - portato a +1 nel caso in cui la cifra di merito sia il numero dei letterali
- La modifica del costo serve a tener conto delle possibili condivisioni degli implicanti

- 19 -

- 20 -

Quine-McCluskey: Multi-Uscita - Tabella di copertura - Costo

In questo esempio la soluzione è ottenuta per essenzialità e per dominanza di riga ed è identica sia minimizzando la cardinalità sia i letterali

$$f_1 = \underline{bc'd'} + \underline{a'b'd} + \underline{a+cd}$$

$$f_2 = \underline{bc'd'} + \underline{a'b'd} + \underline{a'b}$$

Cardinalità = 5

Numero porte ANDOR = n° tot. impl. - n° impl. con un solo letterale + n° uscite Numero porte ANDOR = 5 - 1 + 2 = 6

Mettere 0 il costo quando un implicante viene preso significa considerare che il costo sia indipendente dal numero degli ingressi delle porte

- 21 -

Quine-McCluskey: Multi-Uscita - Tabella di copertura - Costo

P₀ = bc'd' P₁ = a'b'd P₂ = a P₃ = cd P₄ = a'b

Espressioni che descrivono la soluzione

$$f_1=P_0+P_1+P_2+P_3=P_0+P_1+a+cd$$

$$f_2=P_0+P_1+P_4=P_0+P_1+a'b$$

$$P_0=bc'd'$$

$$p_1=a'b'd$$
Implicanti condivisi

Numero totale letterali della soluzione = 15

Numero totale porte ANDOR(2in) = Letterali soluzione - n° implicanti condivisi - n° uscite Numero totale porte ANDOR(2in) = 15 - 2 - 2 = 11

Mettere +1 il costo quando un implicante viene preso significa tener conto della condivisione

- 22 -

Quine-McCluskey: Multi-Uscita - Tabella di copertura

- Identificazione della copertura ottima: simile al caso di singola uscita con alcune differenze.
 - Essenzialità:
 - se l'implicante in oggetto è essenziale per tutte le funzioni coinvolte la riga viene eliminata (scelta dell'implicante) così come tutte le colonne coperte
 - se l'implicante in oggetto non è essenziale per tutte le funzioni coinvolte (una o più funzioni hanno tale l'implicante non essenziale), la riga viene mantenuta e viene scelto tale implicante per le funzioni per cui è essenziale; in queste ultime vengono eliminate le colonne coperte
 - · viene aggiornato il costo dell'implicante

Quine-McCluskey: Multi-Uscita - Tabella di copertura

- Identificazione della copertura ottima: simile al caso di singola uscita con alcune differenze.
 - Dominanza di riga
 - Si guarda l'intera riga. Come per il caso di funzioni ad una sola uscita.
 - Dominanza di colonna
 - La dominanza di colonna ha validità solo all'interno di una funzione. Una colonna della funzione \mathfrak{f}_i non può coprire ne essere coperta da una colonna presente nella funzione \mathfrak{f}_k .

- 23 -

Esempio 1 (cont.):

Nota: nella scelta di P5 a causa della sua essenzialità in f2 per 13, la riga eliminata è solo quella in corrispondenza di f2 poiché P5 non è essenziale per f1.

Le espressioni Booleane sono

f1=P1+P6

f2=P3+P4+P5

Si osservi che non ci sono termini comuni.

- 25 -

Quine-McCluskey: Multi-Uscita - Tabella di copertura - Cardinalità

Esempio di copertura completo con cifra di merito=cardinalità:

Identificazione ed estrazione degli essenziali

f1: {P5}

f2: {P6}

f3: {P9;P10}

- 26 -

Quine-McCluskey:

Multi-Uscita - Tabella di copertura - Cardinalità

 Esempio di copertura completo con costo identico per tutti gli implicanti (a)

dominanza di riga

Soluzione parziale

f1: {P5}

f2: {P6}

f3: {P9;P10}

Quine-McCluskey:

Multi-Uscita - Tabella di copertura - Cardinalità

□ (b)

dominanza di colonna

Soluzione parziale f1: {P5}

f1: {P5} f2: {P6}

f3: {P9;P10}

Quine-McCluskey:

Multi-Uscita - Tabella di copertura - Cardinalità

(c)

				f	1			f2	f3	
	С		5	8	13	15	2	6	13	
*	-1	₽0			x-	x				-
	1	P1	x		х	x				
	1	P3					x	х		
	1	P4				x				
	0	P5					x			
	0	P6	x							
	1	P7			X	х			x	
	-1-	- P 8			X -				x	
	0	P9		x						
	0	P10						x		
									l	

righe essenziali secondarie e dominanza di riga

Soluzione parziale
f1: {P5, P9}
f2: {P6}
f3: {P9;P10}

- 29 -

Quine-McCluskey:

Multi-Uscita - Tabella di copertura - Cardinalità

□ (d)

				f:	L	f	2	_f3
	C		5	13	15	2	6	13
	1	P1	х	х	х			
(1	P3				x	x	
*	·1-	-P4			ж-	ļ		ļ
	0	P5				x		
	0	P6	x					
	01	P7		x	x			x
	0	P10					x	

Righe essenziali secondarie e dominanza di riga

Soluzione parziale f1: {P5, P9} f2: {P6} f3: {P9,P10,P7}

- 30 -

Quine-McCluskey:

Multi-Uscita - Tabella di copertura - Cardinalità

□ (e)

			£1	4	f	2	
C		5	13	15	2	6	
1	P1	x	x	×			
1	P3			- 1	x	x	
0	P5			- 1	x		
0	Р6	x					
0	P7		x	×			
0	P10					x	
				- }			

dominanza di colonna

Soluzione parziale
f1: {P5, P9}
f2: {P6}
f3: {P9,P10,P7}

Quine-McCluskey:

Multi-Uscita - Tabella di copertura - Cardinalità

□ (f)

P10= ...

			f1		f2	
С		5	13	2	6	
1	P1	х	х			
1	Р3			x	x	
0	P5			x		
0	P6	x				
0	P7		х			
0	P10				x	
	1					1

Tabella ciclica

scelta dei rimanenti implicanti per completare la copertura

- f1: per coprire 5 e 13 posso scegliere P1 (costo 1) oppure P6 e P7 (costo 0). Si sceglie P6 e P7
- f2: per coprire 2 e 6 posso scegliere P3 (costo 1) oppure P5 e P10 (costo 0). Si sceglie P5 e P10

Espressioni Booleane che descrivono la soluzione

```
Espressioni Booleane che descrivono la sol f1=P5+P9+P6+P7 f2=P6+P5+P10 f3=P9+P10+P7 P5= ... P9= .. Implicanti condivisi
```

Soluzione finale

f1: {P5, P9, P6, P7} f2: {P6, P5, P10} f3: {P9,P10,P7}

Cardinalità della copertura = 5

(Letterali della soluzione = 24)

Esempio di copertura completo con cifra di merito= Letterali:

				f	1									f2								f:	3				
	2	3	5	7	8	9	10	11	13	15	2	3	5	6	7	10	11	14	15	6	7	8	9	13	14	15	C
P0						х		x	x	х																	2
P1			x	x					x	х																	2
P2					x	х	x	x																			2
P3											x	x		x	х	x	x	x	x								1
P4		х		x				x		х		х			х		x		х								2
P5	x	x					х	x			x	x				x	x										2
P6			x	x									x		х												3
P7									x	х														х		x	3
P8						х			x														х	х			3
P9					x	х																x	x				3
P10														x	х			x	x	x	x				x	х	2
P11				x						x					x				x		x					х	3

Identificazione ed estrazione degli essenziali

f1: {P5} f2: {P6}

f3: {P9;P10}

- 33 -

GUTTE NO.

Quine-McCluskey:

Multi-Uscita - Tabella di copertura - Letterali

Esempio cont.

Identificazione delle dominanze di colonna:

F1: 7 domina 5; 9 domina 8;

F2: 3 domina 2; 11 domina 10; 14 domina 15;

- 34 -

Quine-McCluskey:

Multi-Uscita - Tabella di copertura - Letterali

Esempio cont.

Identificazione delle dominanze di riga:

P1 domina P0; P9 domina P2; P7 domina P8; P3 domina P5; P3 domina P10;

P1 domina P4; P1 domina P11;

From

Quine-McCluskey:

Multi-Uscita - Tabella di copertura - Letterali

Esempio cont.

			f1	L			£2		f3	
	5	8	13	15	2	6	10	14	13	C
P1	x		х	х						2
P1 P3 P6					x	x	×	x		1
Р6	x									1
P7			x	x					x	3
Р9		x								1
	l				I					

Identificazione e scelta delle essenzialità:

f1: {P5, P9}

f2: {P6, P3}

f3: {P9, P10, P7}

- 35 -

- 36 -

Esempio cont

		f1				
	5	13	15	С		
P1	х	х	х	2		
P1 P6 P7	х			1		
P7		x	х	3	->	1

Identificazione delle dominanze di colonna:

F1: 13 domina 15;

		f1	
	5	13	C
P1	х	х	2
P6	x		1
P7		x	1
			I

Non sono più applicabili le riduzioni per essenzialità e per dominanza. Va risolta la tabella ciclica ad esempio con un *B&B*

- 37 -

Quine-McCluskey: Multi-Uscita - Tabella di copertura - Letterali

Soluzione 2

	5	f1	ر
P1	x	x	2
P6	х		1
P7		x	1

Le due soluzioni possibili per il completamento della copertura di f1 sono l'utilizzo di P1 oppure l'utilizzo di P6 e P7. Calcoliamo il costo delle due soluzioni per scegliere l'ottimo.

Soluzione 1

f1=P5+P9+ <mark>P1</mark>	f1=P5+P9+ P6+P
f2=P6+P3	f2=P6+P3
f3=P9+P10+P7	f3=P9+P10+P7

Implicanti condivisi P9= ...

P9= .. P6= .. in letterali = 18 P7= ..

Costo in letterali = 20 (cardinalità = 6)

Implicanti condivisi

- 38 -

- É possibile applicare il *B&B* con alcuni accorgimenti.
 - Un implicante può essere usato per coprire mintermini di funzioni differenti.
 - L'aumento della complessità è notevole a causa dell'aumento dei gradi di libertà
 - lo stesso implicante può comparire più volte nell'albero di copertura di *B&B*.

Quine-McCluskey: Multi-Uscita - Tabelle Cicliche

Esempio

	f1				f2					
	ΑI	3 C	D	E	F	G	Н	Ι	L	
P0	x z	ĸ				х	х			
P1	2	ΧХ		х			х	х		
P2		x	х		х			х	х	
P3	x		x	х		х			х	
P4	х	x		х	x		х			

- 39 -

- 40 -

- Differenti criteri di costo implicano
 - Differenti complessità di elaborazione
 - · Usare come costo i letterali comporta una soluzione più complessa
 - Differenti stime del costo del circuito
 - Considerare solo la cardinalità non tiene in conto il costo reale delle porte logiche
- Aumentare la complessità algoritmica per una stima migliore potrebbe essere assolutamente inutile se si considera che il collegamento alla libreria tecnologica (*library binding*) cambia la struttura del circuito e, come conseguenza, il costo della realizzazione.
 - In media, due soluzioni che differiscono nel costo stimato del 10%-20% sono da considerarsi equivalenti.

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Espresso-Exact*

Espresso-Exact

- Algoritmo implementato in *Espresso* per la minimizzazione esatta.
- I principi su cui si basa sono gli stessi della procedura di Quine-McCluskey (algoritmi utilizzati sono un po' diversi).
- In Espresso-exact gli implicanti sono partizionati in tre insiemi:
 - Essenziali.
 - Totalmente ridondanti: sono quelli coperti da implicanti essenziali e dal DCset.
 - Parzialmente ridondanti: i rimanenti. Questo ultimo insieme è l'unico ad essere coinvolto nella fase di copertura.
- Una tabella di copertura ridotta è ottenuta ponendo come indici di riga i soli implicanti parzialmente ridondanti. Gli indici di colonna sono in corrispondenza uno a uno con l'insieme dei mintermini.
- La tabella è più compatta rispetto a quella ottenuta con Quine-McCluskey e non ha colonne essenziali.

- 41 -

- 42 -