Activité III.2 Valeurs remarquables

Équations

△ Exercice 1.

On considère un repère (O; I, J) et le cercle trigonométrique \mathscr{U} . On place le point M sur \mathscr{U} tel que $\widehat{IOM} = \frac{\pi}{3}$ rad.

On veut démontrer que $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$ et $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$.

- 1°) Faire une figure.
- 2°) Démontrer que le triangle MIO est un triangle équilatéral.
- 3°) On appelle H le projeté orthogonal de M sur l'axe des abscisse.
 - (a) Quel lien existe-t-il entre le point H et $\cos\left(\frac{\pi}{3}\right)$?
 - (b) Que représente la droite (MH) pour le triangle OMI (plusieurs réponses attendues) ? Justifier.
 - (c) En déduire la valeur de $\cos\left(\frac{\pi}{3}\right)$.
- 4°) On appelle K le projeté orthogonal de M sur l'axe des ordonnées.
 - (a) Quel lien existe-t-il entre le point K et $\sin\left(\frac{\pi}{3}\right)$?
 - **(b)** Expliquer pourquoi OK = MH.
 - (c) Dans le triangle OHM rectangle en H, calculer la valeur exacte de la longueur MH.
 - (d) En déduire la valeur de $\sin\left(\frac{\pi}{3}\right)$.

*

△ Exercice 2.

En s'appuyant sur une représentation dans le cercle trigonométrique, résoudre les équations suivantes **dans l'intervalle donné** :

1°)
$$\cos(x) = \frac{\sqrt{3}}{2} \operatorname{avec} x \in]-\pi;\pi].$$

2°)
$$\cos(x) = \cos\left(\frac{\pi}{8}\right)$$
 avec $x \in \mathbb{R}$.

3°)
$$\sin(x) = -\frac{\sqrt{2}}{2} \operatorname{avec} x \in]-\pi;\pi].$$

4°)
$$\sin(x) = \sin\left(-\frac{2\pi}{5}\right)$$
 avec $x \in \mathbb{R}$.

*

- 1°) Résoudre dans $]-\pi;\pi]$ l'équation $\cos(x) = \frac{1}{2}$.
- **2°**) Dans un repère orthonormal $(O; \overrightarrow{i}, \overrightarrow{j})$, tracer le cercle trigonométrique \mathscr{U} . Placer les points M et M' de \mathscr{U} repérés par les solutions de l'équation de la question précédente.
- 3°) En rouge, repasser la partie de \mathscr{U} dont les points ont une abscisse supérieure à $\frac{1}{2}$.
- **4°)** En déduire les solutions de l'inéquation $cos(x) > \frac{1}{2} dans]-\pi;\pi].$