A Probability - Refresher Training I

Exercise A.1 (easy)

In a communication channel, a zero or a one is transmitted. The probability that a zero is transmitted is 0.1. Due to the noise in the channel, a zero can be received as one with probability 0.01 and a one can be received as a zero with probability 0.05. If you receive a zero, what is the probability that a zero was transmitted? If you receive a one, what is the probability that a one was transmitted?

Exercise A.2 (easy)

Four suppliers provide 10%, 20%, 30% and 40% of the bolts sold by a hardware shop and the rate of defects in their products are 1%, 1.5%, 2% and 3% respectively. Calculate the probability of a given defective bolt coming from supplier 1.

Exercise A.3 (easy)

The two events A and B have $\Pr(A) = 1/2$, $\Pr(B) = 1/3$, $\Pr(A \cup B) = 2/3$. Are the events A and B independent? Are they mutually exclusive?

Exercise A.4 (easy)

What is the probability P of having at least six heads when tossing a coin ten times?

Exercise A.5 (easy)

A die is thrown six times. What is the probability of having at two 4s, two 5s and two 6s? Hints: think about the multinomial distribution.

Exercise A.6 (easy)

Two boxes containing marbles are placed on a table. The boxes are labeled B_1 and B_2 . Box B_1 contains 7 green marbles and 4 white marbles. Box B_2 contains 3 green marbles and 10 yellow marbles. The boxes are arranged so that the probability of selecting box B_1 is 1/3 and the probability of selecting box B_2 is 2/3. Kathy is blindfolded and asked to select a marble. She will win a color TV if she selects a green marble.

- 1. What is the probability that Kathy will win the TV (that is, she will select a green marble)?
- 2. If Kathy wins the color TV, what is the probability that the green marble was selected from the first box?

Exercise A.7 (easy)

Let the random variable X have the density function

$$f(x) = \begin{cases} kx & \text{for } 0 \le x \le \sqrt{\frac{2}{k}}, \\ 0 & \text{elsewhere,} \end{cases}$$

where k is a positive real value. If the mode is at $x = \frac{\sqrt{2}}{4}$, then what is the median of X?

Exercise A.8 (easy)

What is the probability density function of the random variable whose cumulative distribution function is

$$F(x) = \frac{1}{1 + e^{-x}}, -\infty < x < \infty$$
?

Exercise A.9 (easy)

The length of time required by students to complete a 1-hour exam is a random variable with a pdf given by

$$f(x) = \left\{ \begin{array}{cc} c \, x^2 + x & \text{if } \ 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{array} \right.$$

What the probability a student finishes in less than a half hour?

Exercise A.10 (easy)

Show that the variance of an exponential random variable with parameter λ is $\frac{1}{\lambda^2}$.

Exercise A.11 (easy)

Let X be a random variable with the cumulative distribution function

$$F(x) = \begin{cases} 1 - e^{-x} & \text{for } x > 0, \\ 0 & \text{elsewhere.} \end{cases}$$

What is $Pr(0 \le e^X \le 4)$?

Exercise A.12 (easy)

Let X be a random variable with the probability density function

$$f(x) = \begin{cases} 1 - |x| & \text{for } |x| < 1, \\ 0 & \text{elsewhere.} \end{cases}$$

Calculate $\mathbb{E}[X]$ and var[X].

Exercise A.13 (medium)

Let $W=e^X$ where $X\sim \mathcal{N}(\mu,\sigma^2)$. What is the probability density function of W for $w\in (0,+\infty)$?

Exercise A.14 (medium)

If the random variable X is normal with mean 1 and standard deviation 2, then what is

$$Pr(X^2 - 2X < 8)$$
?

B Probability - Refresher Training II

Exercise B.1 (medium)

Let X an univariate normal random variable with mean 0 and variance σ^2 . Let $Y = X^2$.

- 1. Calculate the cumulative distribution function $F_Y(y)$ of Y.
- 2. Calculate the probability density function $f_Y(y)$ of Y.
- 3. Calculate $\mathbb{E}[Y]$.

Exercise B.2 (easy)

Let us suppose that X is a continuous random variable with pdf $f_X(x)$. Let Y = aX + b where $a \neq 0$ and b are two real numbers. Show that

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right).$$

Exercise B.3 (easy)

Let X be normally distributed with mean μ and standard deviation σ . Determine $\Pr(|X - \mu| \ge 2\sigma)$. Compare with Chebyshev's inequality.

Exercise B.4 (medium)

Let X and Y be any two random variables and let a and b be any two real numbers. Then show that

$$var[aX + bY] = a^2 var[X] + b^2 var[Y] + 2ab cov(X, Y).$$

Exercise B.5 (difficult)

If the random variable $X \sim Exp(\theta)$ with $\theta > 0$, then what is the probability density function of the random variable $Y = X\sqrt{X}$?

Exercise B.6 (easy)

Let X and Y be discrete random variables with joint probability density function

$$f(x,y) = \begin{cases} \frac{1}{21}(x+y) & \text{for } x = 1, 2, 3; y = 1, 2, \\ 0 & \text{otherwise.} \end{cases}$$

What are the marginals of X and Y?

Exercise B.7 (difficult)

Let X and Y have the joint probability density function

$$f(x,y) = \left\{ \begin{array}{cc} \exp^{-(x+y)} & \text{for } 0 \leq x, y < +\infty, \\ 0 & \text{otherwise.} \end{array} \right.$$

What is $Pr(X \ge Y \ge 2)$?

Exercise B.8 (easy)

Suppose the random variables X and Y are independent and identically distributed. Let Z = aX + Y. If the correlation coefficient between X and Z is $\frac{1}{3}$, then what is the value of the constant a?

Exercise B.9 (difficult)

Let X and Y be two independent random variables. If $X \sim BIN(n, p)$ and $Y \sim BIN(m, p)$, then what is the distribution of X + Y?

Exercise B.10 (difficult)

Let X and Y be two independent random variables. If X and Y are both standard normal, then what is the distribution of the random variable $Z = \frac{1}{2}(X^2 + Y^2)$?

Exercise B.11 (easy)

Let X_1, X_2, \ldots, X_n be a random sample of size n from a Bernoulli distribution with probability of success $p = \frac{1}{2}$. What is the limiting distribution of the sample mean \bar{X} ?