- 6.1 પ્રસ્તાવના
- 6.2 કાર્ય અને અચળ બળ દ્વારા થતું કાર્ય
- 6.3 ચલ બળ દ્વારા થતું કાર્ય
- 6.4 ગતિ-ઊર્જા
- 6.5 સ્થિતિ-ઊર્જા
- 6.6 સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જા
- 6.7 સંરક્ષણબળો માટે બળ અને સ્થિતિ-ઊર્જા વચ્ચેનો સંબંધ
- **6.8 પાવર**
- 6.9 સ્થિતિસ્થાપક અને અસ્થિતિસ્થાપક સંઘાતો
- 6.10 દ્વ-પરિમાણમાં સ્થિતિસ્થાપક સંઘાત
 - સારાંશ
 - સ્વાધ્યાય

6.1 પ્રસ્તાવના (Introduction)

વિદ્યાર્થીમિત્રો, કાર્ય, ઊર્જા અને પાવર શબ્દોથી આપશે સૌ પરિચિત છીએ. જ્યારે શિક્ષક તમને ભણાવતા હોય, તમે ભણતા હો અથવા કોઈ માણસ ટેબલને ધક્કો મારતો હોય, તો આ બધા કિસ્સામાં તેઓ કામ (કાર્ય) કરે છે તેમ કહેવાય. પરંતુ ભૌતિકશાસ્ત્રમાં 'કાર્ય'નો એકદમ ચોક્કસ અર્થ છે. 'કાર્ય' શબ્દ સાંભળતા આપણાં મગજમાં ઊભરતાં ચિત્ર કરતાં તેનો અર્થ, ભૌતિક વિજ્ઞાનમાં ઘણો જુદો પડે છે. રોજિંદા જીવનમાં કાર્ય કરવા માટે, આપણે ઊર્જા ખર્ચીએ છીએ. આપણે આ માટે બળ લગાડવું પડે છે અને ત્યારે કાર્ય થાય છે. ભૌતિક વિજ્ઞાનની દષ્ટિએ 'કાર્ય' થવા માટે બળની દિશામાં સ્થાનાંતર થવું જરૂરી છે. બેઠા બેઠા વાંચવું એ ભૌતિક વિજ્ઞાનની દષ્ટિએ કાર્ય નથી. તેને કદાચ 'માનસિક કાર્ય' ગણી શકાય. ઘણી વાર વધુ કાર્યક્ષમ વ્યક્તિ નક્કી કરવા માટે આપણે બે કે તેથી વધુ વ્યક્તિઓ દારા સમયના સમાન ગાળામાં થતું કાર્ય સરખાવીએ છીએ. તો હવે આપણે ભૌતિક વિજ્ઞાનની દષ્ટિએ કાર્યનો શું અર્થ છે તે સમજીએ.

6.2 કાર્ય અને અચળ બળ દ્વારા થતું કાર્ય (Work and Work done by a Constant Force)

આગળ જણાવ્યા મુજબ ભૌતિક વિજ્ઞાનની દેશિએ જો બળની દિશામાં સ્થાનાંતર થાય અથવા સ્થાનાંતરની દિશામાં બળનો કોઈ ઘટક હોય તો કાર્ય થયું કહેવાય છે. થયેલાં કાર્યના મૂલ્યનો અંદાજ પદાર્થના વેગના મૂલ્યમાં થતાં ફેરફાર પરથી જાણી શકાય છે.

આકૃતિ 6.1માં દર્શાવ્યા મુજબ કોઈ બ્લોક પર બળ \overrightarrow{F} લાગતાં બળની દિશામાં થતું સ્થાનાંતર \overrightarrow{d} છે. સ્પષ્ટ છે કે આ બળની અસર હેઠળ પદાર્થ વધુ અંતર કાપે, તો તેની ઝડપના મૂલ્યમાં થતો ફેરફાર વધુ હોય ($v^2-v_0^2=2ad$) વળી, જો બળનું મૂલ્ય વધુ હોય તોપણ ઝડપમાં થતો

ફેરફાર વધુ હોય. આમ, વેગના મૂલ્યમાં થતો ફેરફાર અને તેથી થતું કાર્ય સ્થાનાંતરના મૂલ્ય અને બળના મૂલ્ય પર આધારિત છે. જો બળ અને સ્થાનાંતર એક જ દિશામાં હોય તો કાર્યની વ્યાખ્યા નીચે મુજબ આપી શકાય.

બળના મૂલ્ય અને બળ લાગતું હોય તે સમયગાળા દરમિયાન થતાં સ્થાનાંતરના મૂલ્યના ગુણાકારને કાર્ય કહે છે. આમ, કાર્યનું મૂલ્ય

$$W = (F) \times (d)$$

સૂત્રથી મળે.

કાર્યનો એકમ N m અથવા જૂલ(joule) છે. તેનું પારિમાણિક સૂત્ર M^1 L^2 T^{-2} છે. (1 J કાર્ય ક્યારે થયું કહેવાય ? વિચારો.)

માત્ર જાણકારી માટે :

કાર્યનો એકમ 'જૂલ' બ્રિટિશ ભૌતિક વિજ્ઞાની જેમ્સ પ્રેસ્કોટ જૂલના નામ પરથી રાખવામાં આવેલ છે. તેઓનું મૂખ્ય પ્રદાન ઉષ્માના ક્ષેત્રમાં છે. તેઓએ કાર્ય અને ઉષ્મા વચ્ચે સમતુલ્યતા પ્રસ્થાપિત કરી. શ્રેણીબદ્ધ પ્રયોગોને અંતે તેમણે દર્શાવ્યું કે 1 કેલરી ઉષ્મા પેદા કરવા માટે 4.186 J કાર્ય કરવું પડે. એટલે કે 1 cal = 4.186 J આ અચળાંક ઉષ્માનો યાંત્રિક તુલ્યાંક અથવા જૂલના અચળાંક તરીકે ઓળખાય છે. અત્રે એ નોંધવું જરૂરી છે કે, ઉષ્માનું માપન જૂલ સિવાય કેલરીમાં પણ થાય છે. (1 g શુદ્ધ પાણીનું તાપમાન 14.5°C થી 15.5°C સુધી વધારવા માટે આપવી પડતી ઉષ્મા 1 કેલરી કહેવાય છે.)

આ તો થઈ સ્થાનાંતરની દિશામાં લાગતા બળ વડે થતા કાર્યની વાત. પણ દરેક કિસ્સામાં સ્થાનાંતર અને બળ એક દિશામાં હોય તેવું બનતું નથી. આકૃતિ 6.2.

તેથી વ્યાપક રીતે કાર્યની વ્યાખ્યા નીચે મુજબ આપવામાં આવે છે.

બળ વડે થતાં સ્થાનાંતરના મૂલ્ય અને સ્થાનાંતરની દિશામાં બળના ઘટકના મૂલ્યના ગુણાકારને કાર્ય કહે છે. આકૃતિ 6.2 માં થયેલા સ્થાનાંતરનું મૂલ્ય d છે. જ્યારે સ્થાનાંતરની દિશામાં બળના ઘટકનું મૂલ્ય F cosθ છે.

આમ, કાર્ય
$$W = F \cos\theta \times d \qquad (6.1.1)$$
$$= F d \cos\theta$$

અહીં \overrightarrow{F} અને \overrightarrow{d} અનુક્રમે બળ અને સ્થાનાંતરનાં મૂલ્ય છે. બળ \overrightarrow{F} અને સ્થાનાંતર \overrightarrow{d} સિદિશ હોવા છતાં કાર્ય \mathbf{W} અદિશ છે. તેથી સમીકરણ 6.1.1 નીચે મુજબ પણ લખી શકાય :

$$W = \overrightarrow{F} \cdot \overrightarrow{d} \tag{6.2.2}$$

હવે આપણે કાર્યના કેટલાક વિશિષ્ટ કિસ્સાઓ જોઈએ.

(i) જો $\theta = 0$ હોય, તો અગાઉ જણાવ્યા મુજબ બળ અને સ્થાનાંતરની દિશા સમાન છે, તેથી કાર્ય

$$W = Fd$$

ઉદાહરણ તરીકે મુક્ત પતન કરતો પદાર્થ. આ પદાર્થ પર ગુરુત્વાકર્ષણનું બળ અધોદિશામાં લાગે છે તથા સ્થાનાંતર પણ તે જ દિશામાં છે, તેથી થતું કાર્ય

$$W = Fd$$
$$= mg d$$

જ્યાં d સ્થાનાંતરનું મૂલ્ય, m પદાર્થનું દળ અને g ગુરુત્વપ્રવેગ છે.

(ii) જો $\theta = \pi/2$ હોય, તો બળ સ્થાનાંતરને લંબ બને અને તેથી કાર્ય

$$W = F\cos \pi/2 d$$
$$= F(0) d = 0$$

આમ, બળ અને સ્થાનાંતર પરસ્પર લંબ હોય, તો પદાર્થ પર બળ દ્વારા કોઈ કાર્ય થતું નથી. પ્રસ્તુત કિસ્સામાં બળ વળે ઉત્પન્ન થતો પ્રવેગ વેગને લંબ છે અને તેથી તે માત્ર વેગની દિશા બદલી શકે છે. પણ વેગના મૂલ્યમાં ફેરફાર કરી શકતો નથી. નિયમિત વર્તુળગતિમાં પણ કેન્દ્રગામી બળ પદાર્થના તત્કાલીન વેગને લંબ હોવાથી અને તેથી તત્કાલીન સ્થાનાંતરને લંબ હોવાથી કોઈ કાર્ય થતું નથી. પૃથ્વીની આસપાસ ભ્રમણ કરના ભૂસ્થીર ઉપગ્રહો પર પૃથ્વીના ગુરુત્વાકર્ષણના બળને કારણે કોઈ કાર્ય થતું નથી.

(iii) જો $\theta=\pi$, હોય તો $\overset{
ightharpoonup}{F}$ અને સ્થાનાંતર $\overset{
ightharpoonup}{d}$ પરસ્પર વિરોધી દિશામાં હોય આમ,

$$W = Fcos(\pi) d$$
$$= F (-1) d$$
$$= -Fd$$

આ હકીકત દર્શાવે છે કે બળ અને સ્થાનાંતર પરસ્પર વિરુદ્ધ દિશામાં હોય, તો થતું કાર્ય ઋણ છે અને પદાર્થ દ્વારા બળની વિરુદ્ધ કાર્ય થાય છે તેમ કહેવાય. પૂરઝડપથી જતી મોટરકારની ઝડપ ઘટાડવા બ્રેક લગાવવામાં આવે, ત્યારે બ્રેક દ્વારા ઉદ્ભવતું ઘર્ષણબળ સ્થાનાંતરની વિરુદ્ધ દિશામાં છે, તેથી મોટરકાર દ્વારા ઘર્ષણબળની વિરુદ્ધ કાર્ય થયું છે, તેમ કહેવાય.

વળી, જો $0 \le \theta < \pi/2$ તો $\cos\theta$ નું મૂલ્ય ધન થવાથી કાર્યનું મૂલ્ય ધન થાય તેમ કહેવાય. પણ જો $\pi/2 < \theta \le \pi$ તો $\cos\theta$ નું મૂલ્ય ઋણ થવાથી થતું કાર્ય ઋણ મળે.

અત્રે એક બાબત નોંધનીય છે કે જો બળ અને સ્થાનાંતર એક જ દિશા ન ધરાવતા હોય, તો તે અન્ય કોઈ બળની હાજરી સૂચવે છે અથવા પદાર્થ શરૂઆતમાં બળની દિશામાં ન હોય તેવો પ્રારંભિક વેગ ધરાવતો હોય છે.

ઉદાહરણ 1: એક પદાર્થ પર (3, 2, 1) N બળ લગાડતાં તે X—અક્ષની દિશામાં 5m સ્થાનાંતર કરે છે, તો પદાર્થ પર બળ વડે થતું કાર્ય ગણો.

ઉકેલ :

અહીં, સ્થાનાંતર $\overset{
ightarrow}{d}=5\,\hat{i}$

$$\therefore \quad \mathbf{W} = \overrightarrow{\mathbf{F}} \cdot \overrightarrow{d}$$

$$= (3\hat{i} + 2\hat{j} + \hat{k}) \cdot (5\hat{i})$$

$$= 15\mathbf{J}$$

[આટલું જ સ્થાનાંતર Y અને Z અક્ષની દિશામાં હોય તો કાર્ય કેટલું થાય ? જાતે ગણો.]

ઉદાહરણ 2: નટવરલાલની સાઇકલ રસ્તા પર 10 m સુધી ઘસડાઈને થોભે છે. આ ક્રિયા દરમિયાન રસ્તા વડે સાઇકલ પર તેની ગતિની વિરુદ્ધ દિશામાં 200 N જેટલું ઘર્ષણબળ લાગે છે. સાઇકલ વડે ઘર્ષણની વિરુદ્ધ થતું કાર્ય અને સાઇકલને કારણે રસ્તા પર લાગતા બળ વડે રસ્તા પર થતું કાર્ય શોધો.

ઉકેલ: અહીં ઘર્ષણબળ અને સાઇકલનું સ્થાનાંતર પરસ્પર વિરુદ્ધ દિશામાં હોવાથી, $\theta=\pi$. આમ, ઘર્ષણબળની વિરુદ્ધમાં સાઇકલ વડે થતું કાર્ય $W=Fdcos\theta=(200)\;(10)\;(-1)=-2000\;J.$ ન્યૂટનના ગતિના ત્રીજા નિયમ અનુસાર સાઇકલ પણ

રસ્તા પર વિરુદ્ધ દિશામાં તેટલું જ બળ લગાડે છે. પણ આ બળની અસર હેઠળ રસ્તાનું કોઈ સ્થાનાંતર થતું નથી. પરિણામે આ બળ વડે રસ્તા પર થતું કાર્ય શૂન્ય મળે છે. ઉપરના ઉદાહરણ પરથી આપણે એક અગત્યનું તારણ નીચે પ્રમાણે નોંધીશું:

પદાર્થ A વડે પદાર્થ B પર લાગતું બળ, તે હંમેશાં B પર A વડે લાગતા બળ જેટલું જ તથા વિરુદ્ધ દિશામાં હોય છે. પરંતુ B વડે A પર થતું કાર્ય તે A વડે B પર થતાં કાર્ય જેટલું જ હોવું જોઈએ, તે જરૂરી નથી.

ઉદાહરણ 3: આકૃતિ 6.3માં સમક્ષિતિજ રફ્ષ્સપાટી પર પડેલા M દળના બ્લૉકને સમક્ષિતિજ સાથે θ કોણ બનાવતી દિશામાં લાગતા બળ \overrightarrow{F} વડે ખસેડવામાં આવે છે. જો બ્લૉક \overrightarrow{d} જેટલું સ્થાનાંતર કરે, તો થતું કાર્ય શોધો. બ્લૉક અને સપાટી વચ્ચેનો ઘર્ષણાંક μ છે.

આકૃતિ 6.3

ઉકેલ : બ્લૉક FBD (free body diagrams) આકૃતિ 6.4માં દર્શાવેલ છે.

આકૃતિ 6.4

Y-દિશામાં કોઈ સ્થાનાંતર થતું ન હોવાથી $N + Fsin\theta = Mg$

$$\therefore N = Mg - Fsin\theta \tag{1}$$

અત્રે સ્થાનાંતર x દિશામાં થતું હોવાથી, આ સ્થાનાંતર માટે જવાબદાર પરિણામી બળ

=
$$Fcos\theta - \mu N = Fcos\theta - \mu (Mg - Fsin\theta)$$

(સમીકરણ (1) પરથી)

$$\therefore \mathfrak{sl}^{\ell} = [F\cos\theta - \mu(Mg - F\sin\theta)] d$$
$$= [F(\cos\theta + \mu\sin\theta) - \mu Mg] d$$

6.3 ચલ બળ દ્વારા થતું કાર્ય (Work done by Variable Force)

સામાન્ય રીતે વ્યવહારમાં થતાં કાર્ય માટે ચલ બળ જવાબદાર હોય છે. ઉદાહરણ તરીકે સમક્ષિતિજ સપાટી પર એક છેડેથી જડિત સ્પ્રિંગને બ્લૉક વડે દબાવતાં થતું કાર્ય એ ચલ બળની અસર હેઠળ થતું કાર્ય છે. જે આગળ આ પ્રકરણમાં આપણે જોઈશું.

આકૃતિ 6.5માં દર્શાવ્યા મુજબ ધારો કે કોઈ કણ બિંદુ Aથી બિંદુ B સુધી વક્રમાર્ગે ચલ બળની અસર હેઠળ ગતિ કરે છે.

આકૃતિ 6.5

ધારો કે આ વક્રમાર્ગ પરનાં જુદાં-જુદાં બિંદુઓએ બળનાં મૂલ્યો અને દિશા જુદાં-જુદાં છે. આ સ્થિતિમાં કાર્ય ગણવા માટે A થી B સુધીના સમગ્ર માર્ગને મોટી

સંખ્યાના સૂક્ષ્મ સદિશ રેખાખંડો $\Delta \vec{l_1}$, $\Delta \vec{l_2}$,...., $\Delta \vec{l_n}$. માં વિભાજિત થયેલો ગણો.

અત્રે દરેક ખંડ એટલો સૂક્ષ્મ છે કે તેને સુરેખ ગણી સદિશ તરીકે લઈ શકાય છે.

આ સૂક્ષ્મ સ્થાનાંતરો (ખંડો) પાસે લાગતાં બળો ધારો

કે અનુક્રમે $\overrightarrow{F_1}$, $\overrightarrow{F_2}$,..., $\overrightarrow{F_n}$ છે. અત્રે ખંડો સૂક્ષ્મ હોવાથી આ બળોને, જે-તે ખંડ માટે લગભગ અચળ ગણી શકાય.

તે દરમિયાન દરેક સૂક્ષ્મ સ્થાનાંતર માટે થતું કાયે તે સ્થાનાંતર અને લાગતા બળનો અદિશ (ડોટ) ગુણાકાર કરીને મેળવી શકાય. આવાં બધાં સ્થાનાંતરો માટેનાં કાર્યોનો સરવાળો, કણની A થી B સુધીની ગતિ દરમિયાન થતું કુલ કાર્ય દર્શાવે છે. એટલે કે,

કુલ કાર્ય,
$$W = \overrightarrow{F_1} \cdot \Delta \overrightarrow{l_1} + \overrightarrow{F_2} \cdot \Delta \overrightarrow{l_2} + ...$$

$$+ \overrightarrow{F_n} \cdot \Delta \overrightarrow{l_n}$$

$$\therefore W = \sum_{i=1}^{B} \overrightarrow{F_i} \cdot \Delta \overrightarrow{l_i} \qquad (6.3.1)$$

સમીકરણ (6.2.1)માં લક્ષ $\lim_{|\Delta| \overrightarrow{l}| \to 0}$ લેતાં આ સરવાળો સંકલનમાં પરિણમે છે અને નીચે મુજબ લખાય છે :

$$W = \int_{A}^{B} \overrightarrow{F} \cdot \overrightarrow{dl} = \int_{A}^{B} F \cos\theta dl \qquad (6.2.2)$$

અહીં $\int\limits_A^B$ એ A થી B સુધીનું વક્રમાર્ગ AB પર બળનું રેખા સંકલન (line integral) દર્શાવે છે.

જો કણની ગતિ એક જ પરિમાણમાં હોય અને બળ પણ કણની ગતિની દિશામાં જ લાગતું હોય તો, (ગતિની દિશા X-અક્ષ પર લેતાં),

$$W = \int_{A}^{B} F dx \cos 0 = \int_{A}^{B} F dx$$

જો બિંદુ A અને B ના x-યામો (આકૃતિ 6.6) અનુ $_{\$}$ મે $_{1}$ અને $_{2}$ હોય તો,

$$W = \int_{x_1}^{x_2} F dx$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

આકૃતિ 6.6 માં કોઈ એક ખાસ કિસ્સામાં બળ F એ x પર કેવી રીતે આધાર રાખે છે તે દર્શાવ્યું છે. અત્રે dx જેટલા એક નાના સ્થાનાંતર માટે થતું કાર્ય, Fdx એ આકૃતિમાં દર્શાવેલ પટ્ટીના ક્ષેત્રફળ જેટલું છે. આમ, x_1 થી x_2 સુધીની ગતિ દરમિયાન થતું કાર્ય x_1 અને x_2 વચ્ચેની આવી પટ્ટીઓના ક્ષેત્રફળના સરવાળા રૂપે મેળવી શકાય. બીજા શબ્દોમાં બળ $F \to x$ ના આલેખ વડે ઘેરાયેલ ક્ષેત્રફળ એ x_1 થી x_2 સુધીની ગતિ દરમિયાન કાર્યનું મૂલ્ય આપે છે.

પદાર્થ પર લાગતું બળ અચળ હોય તથા તેનો ગતિમાર્ગ વક્ર હોય, તેવા કિસ્સામાં કાર્યની ગણતરી સરળ હોય છે. ધારો કે આકૃતિ 6.7 દર્શાવ્યા અનુસાર એક પદાર્થ અચળ બળ \overrightarrow{F} ની અસર હેઠળ $\overrightarrow{r_1}$ થી $\overrightarrow{r_2}$ પર વક્રમાર્ગ ગતિ કરે છે. હવે,

કાર્ય
$$W_{12} = \int_{\overrightarrow{r_1}}^{\overrightarrow{r_2}} \overrightarrow{F} \cdot \overrightarrow{dr}$$

→ F બળ અચળ હોવાથી,

$$W_{12} = \overrightarrow{F} \cdot \int_{\overrightarrow{r_1}}^{\overrightarrow{r_2}} \overrightarrow{dr} = \overrightarrow{F} \cdot (\overrightarrow{r_2} - \overrightarrow{r_1})$$

આમ, અચળ બળની અસર હેઠળ વક્રમાર્ગે થતાં પદાર્થના સ્થાનાંતર દરમિયાન થતું કાર્ય એ અચળ બળ અને સ્થાનાંતર સદિશના ડોટ ગુણાકાર (અદિશ ગુણાકાર) જેટલું હોય છે.

ઉદાહરણ 4: બળ $\overrightarrow{F}(x) = (3x^2 - 2x + 7) \hat{i}$ N ની અસર હેઠળ એક કણનું સ્થાનાંતર X-અક્ષ પર x = 0 થી x = 10 m થાય છે, તો કાર્યની ગણતરી

કરો.
$$\left[\int x^n dx = \frac{x^{n+1}}{n+1} \right]$$

ઉકેલ :

$$W = \int_{0}^{10} F dx$$
 ((6.3.3) પરથી)

$$\therefore W = \int_{0}^{10} (3x^{2} - 2x + 7) dx$$

$$W = \left[\frac{3x^3}{3}\right]_0^{10} - \left[\frac{2x^2}{2}\right]_0^{10} + \left[7x\right]_0^{10}$$

W = 1000 - 100 + 70 = 970 J.

6.4 ગતિ-ઊર્જા (Kinetic Energy)

ઊર્જા એટલે કાર્ય કરવાની ક્ષમતા. પદાર્થની ગતિના કારણે તેમાં રહેલ કાર્ય કરવાની ક્ષમતાને પદાર્થની ગતિ-ઊર્જા કહે છે. તાર્કિક રીતે વિચારતાં કહી શકાય કે વધુ ઝડપથી ગતિ કરતાં પદાર્થની ગતિ-ઊર્જા, ઓછી ઝડપથી ગતિ કરતાં તે જ પદાર્થની ગતિ-ઊર્જા કરતાં વધુ હોવી જોઈએ.

પદાર્થ પર બળ લાગતાં તેમાં પ્રવેગ ઉત્પન્ન થાય છે. આમ, વેગમાં ફેરફાર થતાં પદાર્થની ગતિ-ઊર્જામાં પણ ફેરફાર થાય છે. વળી, પદાર્થ પર બળ લાગતાં તેનું સ્થાનાંતર પણ થાય છે. માટે પદાર્થ પર કાર્ય થયું તેમ કહેવાય. આ હકીકતો દર્શાવે છે કે પદાર્થ પર થયેલ કાર્ય અને તેની ગતિ-ઊર્જામાં થતાં ફેરફાર વચ્ચે કોઈ સંબંધ હોવો જોઈએ. તો હવે આપણે પદાર્થ પર બળ વડે થતા કાર્ય અને પરિણામે પદાર્થની ગતિ-ઊર્જામાં થતાં ફેરફાર વચ્ચે સંબંધ મેળવીશું.

બળ
$$\vec{F}$$
 વડે થતું કાર્ય,
$$W = \vec{F} \cdot \vec{d} \qquad (\text{જ્યાં, } \vec{d} = \text{સ્થાનાંતર})$$
 પણ $\vec{F} = m \vec{a} \qquad (m = \text{પદાર્થનું દળ, } \vec{a} = \text{પ્રવેગ})$
$$\overset{\rightarrow}{\cdots} W = m \vec{a} \cdot \vec{d} \qquad (6.4.1)$$
 પણ ગતિના સમીકરણ
$$v^2 - v_0^{\ 2} = 2 \vec{a} \cdot \vec{d} \qquad \text{અનુસાર}$$

$$W = m \left(\frac{v^2 - v_0^{\ 2}}{2} \right)$$

$$\therefore W = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2$$
 (6.4.2)

અહીં v_0 અને v અનુક્રમે બળ લાગ્યા અગાઉ અને બળ લાગ્યા પછીની પદાર્થની ઝડપો છે.

અત્રે જમણી બાજુ સમાન પ્રકારનાં, ઊર્જાનાં પરિમાણો ધરાવતાં, બે પદો વચ્ચેનો તફાવત છે, જે ગતિ સાથે સંકળાયેલ ઊર્જામાં થતો ફેરફાર દર્શાવે છે. પદાર્થના દળ અને તેના વેગના વર્ગના ગુણાકારના અર્ધા મૂલ્યને પદાર્થની ગતિ-ઊર્જા (K) કહે છે. તેથી,

ગતિ-ઊર્જા K =
$$\frac{1}{2}mv^2 = \frac{m^2v^2}{2m} = \frac{p^2}{2m}$$
 (6.4.3)

અત્રો, p તે પદાર્થનું રેખીય વેગમાન (linear momentum) છે. સમીકરણ (6.4.2) પરથી,

$$W = K - K_0 =$$
 ગતિ ઊર્જામાં થતો ફેરફાર $= \Delta K$ (6.4.4)

જયાં K₀ અને K અનુક્રમે પ્રારંભિક અને અંતિમ ગતિ-ઊર્જાઓ છે. પદાર્થ પર પરિણામી બળ વડે થતું કાર્ય, પદાર્થની ગતિ-ઊર્જાના ફેરફાર જેટલું હોય છે." આ કથનને કાર્ય-ઊર્જા પ્રમેય (Work energy theorem) કહે છે. સમીકરણ (6.3.4) પરથી સ્પષ્ટ છે કે ગતિ-ઊર્જાનો એકમ કાર્યનો જ એકમ છે. (SI પદ્ધતિમાં જૂલ).

જો પદાર્થની ઝડપ અચળ રહેતી હોય, તો તેની ગતિ-ઊર્જામાં થતો ફેરફાર ∆K શૂન્ય હોય છે. ઉદાહરણ તરીકે, નિયમિત વર્તુળમય ગતિ કરતા ક્શની ઝડપ અચળ હોય છે અને સમગ્ર વર્તુળમાર્ગ પર તેની ગતિ-ઊર્જા અચળ હોય છે.

ચલ બળ માટે એકપરિમાણીય ગતિ માટે કાર્ય ઊર્જા પ્રમેય :

ધારો કે, કોઈ પદાર્થ પર X-અક્ષની દિશામાં લાગતું બળ F(x) છે. [(F(x) દર્શાવે છે ને F, x - ij વિધેય છે, એટલે કે F-ij મૂલ્ય <math>x પર આધારિત છે.]

આ બળની અસર હેઠળ થતું કાર્ય

$$W = \int_{i}^{f} F(x) dx$$

$$= \int_{i}^{f} m \frac{dv}{dt} dx$$

$$= \int_{i}^{f} m dv \frac{dx}{dt}$$

$$= \int_{i}^{f} v dv (\because \frac{dx}{dt} = v)$$

જો x જેટલાં સ્થાનાંતર દરમિયાન પદાર્થનો વેગ v_1 થી v_2 થતો હોય તો,

$$\therefore W = m \int_{v_1}^{v_2} v dv$$

$$= m \left[\frac{v^2}{2} \right]_{v_1}^{v_2} = \frac{m}{2} [v_2^2 - v_1^2]$$

$$\therefore W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$
 (6.4.5)

$$\therefore W = \Delta K$$

ઉદાહરણ 5 : એક પ્રોટોન અને એક ઇલેક્ટ્રૉન 100 eV જેટલી ગતિ-ઊર્જા સાથે ગતિ કરે છે. આ બંને ક્શમાંથી કોની ઝડપ વધુ હશે ?

 $(m_e=9.1\times 10^{-31}~{
m kg},~m_p=1.67\times 10^{-27}~{
m kg})$ ૄ નોંધ : અહીં eV (ઇલેક્ટ્રૉન વૉલ્ટ) ઊર્જાનો વૈકલ્પિક એકમ છે. $[1eV=1.6\times 10^{-19}{
m J}]$

ઉકેલ : ઇલેક્ટ્રૉનની ગતિ-ઊર્જા

$$= 100 \text{ keV} = \frac{1}{2} m_e V_e^2$$

પ્રોટોનની ગતિ-ઊર્જા = 100 keV = $\frac{1}{2} m_p v_p^2$

$$\therefore m_e v_e^2 = m_p v_p^2$$

$$\therefore \frac{v_e}{v_p} = \sqrt{\frac{m_p}{m_e}}$$

$$= \sqrt{\frac{1.67 \times 10^{-27}}{9.1 \times 10^{-31}}}$$

$$= 42.824$$

આમ, ઇલેક્ટ્રૉન અને પ્રોટોનની ગતિ-ઊર્જા સમાન હોય તો ઇલેક્ટ્રૉનની ઝડપ પ્રોટોન કરતાં 42.84 ગણી હોય. (શા માટે ? વિચારો !)

ઉદાહરણ 6 : ઘર્ષણરહિત સમિક્ષિતિજ સપાટી પર 2 kg દળ ધરાવતો એક પદાર્થ સ્થિર સ્થિતિમાં રહેલો છે. આ પદાર્થ પર 0.5 N જેટલું બળ સમિક્ષિતિજ દિશામાં લાગતાં પદાર્થનું સ્થાનાંતર બળની દિશામાં થાય છે. આ બળ વડે પદાર્થ પર 8.0 s માં થતું કાર્ય શોધો તથા દર્શાવો કે આ કાર્ય પદાર્થની ગતિ-ઊર્જાના ફેરફાર જેટલું છે.

ઉકેલ : ન્યૂટનના ગતિના બીજા નિયમ મુજબ, પ્રવેગ

$$a = \frac{F}{m}$$

$$\therefore a = \frac{0.5}{2} = 0.25 \text{ m/s}^2$$

8 સેકન્ડના અંતે પદાર્થનો વેગ.

$$v = v_0 + at = 0 + 0.25 \times 8.0 = 2$$
 m/s

8 સેકન્ડમાં થતું સ્થાનાંતર,

$$d = \frac{1}{2}at^2 = \left(\frac{1}{2}\right)(0.25)(64) = 8.0$$
m

બળ વડે થતું કાર્ય $W=0.5\times 8.0=4J$ (1) પદાર્થની પ્રારંભિક ગતિ-ઊર્જા =0J

પદાર્થની અંતિમ ગતિ-ઊર્જા =
$$\frac{1}{2} mv^2 = \frac{1}{2} \times$$

$$2.0 \times [2.0]^2 = 4 \text{ J}$$

∴ પદાર્થની ગતિ-ઊર્જામાં ફેરફાર = (ΔK) = 4 J (2)

સમીકરણ (1) અને (2) પરથી, $\mathbf{W} = \Delta \mathbf{K}$

અત્રે, બળ વડે થતાં કાર્યનું સંપૂર્ણપણે ગતિ-ઊર્જામાં રૂપાંતરણ થયું.

6.5 સ્થિતિ-ઊર્જા (Potential Energy)

યંત્રશાસ્ત્રમાં ગતિ ઊર્જા ઉપરાંત ઊર્જાનું બીજું અગત્યનું સ્વરૂપ સ્થિતિઊર્જા છે. "કોઈ પણ બળક્ષેત્રમાં રહેલો પદાર્થ પોતાના સ્થાનને કારણે અને અથવા તંત્રની સંરચના (configuration) ને કારણે કાર્ય કરવાની જે ક્ષમતા ધરાવે છે, તેને પદાર્થ/તંત્રની સ્થિતિ-ઊર્જા કહે છે." પદાર્થ પર બળ લાગતાં તેના સ્થાનમાં કે તંત્રની સંરચનામાં ફેરફાર થાય છે. તેને કારણે તેની સ્થિતિ-ઊર્જામાં પણ ફેરફાર થાય છે.

ગુરુત્વાકર્ષી સ્થિતિ-ઊર્જા (Gravitational potential energy): પૃથ્વીના ગુરુત્વાકર્ષણના બળને કારણે પદાર્થમાં ઉદ્ભવતા પ્રવેગને ગુરુત્વ પ્રવેગ (g) કહે છે. પૃથ્વીની ત્રિજયાની સરખામણીમાં ઘણી ઓછી ઊંચાઈ માટે gનું

મૂલ્ય લગભગ અચળ ગણી શકાય. m દળના પદાર્થ પર પૃથ્વીના કેન્દ્ર તરફ mg જેટલું બળ લાગે છે, જેને પદાર્થનું વજન કહે છે.

આકૃતિ 6.8

આકૃતિમાં દર્શાવ્યા મુજબ કોઈ એક પદાર્થને y_1 થી y_2 ઊંચાઈએ લઈ જવામાં આવે છે. સરળતા ખાતર આપણી યામપદ્ધતિની Y—અક્ષ શિરોલંબ દિશામાં છે. તેમ વિચારો. આ યામપદ્ધતિ માટે પદાર્થના શરૂઆતના અને અંતિમ સ્થાન y_1 અને y_2 વિચારો.

પદાર્થને શરૂઆતના સ્થાનથી અંતિમ સ્થાન સુધી ઉર્ધ્વદિશામાં સ્થાનાંતર આપીને સીધો લઈ જઈ શકાય અથવા અન્ય કોઈ માર્ગે પણ લઈ જઈ શકાય. આકૃતિમાં આવા જ બે માર્ગ દર્શાવ્યા છે. આપણે વ્યાપક રીતે વક્રમાર્ગ માટે પદાર્થને શરૂઆતના સ્થાનથી અંતિમ સ્થાને લઈ જવા માટે કરવું પડતું કાર્ય વિચારીશું. આ માટે આકૃતિમાંનો માર્ગ અતિશય નાના સ્થાનાંતરખંડ dr નો બનેલો વિચારી શકાય. આ સ્થાનાંતર માટે ગુરુત્વક્ષેત્ર વડે લાગતા બળ વડે થતું કાર્ય.

$$dw = \overset{
ightharpoonup}{\mathrm{F}} \cdot \overset{
ightharpoonup}{dr}$$
અહીં ગુરત્વીય બળ અધોદિશામાં હોવાથી

$$\vec{F} = -mg \hat{j}$$
 થાય.

$$\therefore dW = -mg(\hat{j}) \cdot (dx\hat{i} + dy\hat{j} + dz\hat{k})$$
$$= -mgdy.$$

પ્રારંભિક સ્થાનથી અંતિમ સ્થાન સુધીની પદાર્થની યાત્રા દરમિયાન થતું કાર્ય,

$$W = \int_{r_1}^{r_2} dw$$

$$= -mg \int_{y_1}^{y_2} dy$$

$$= -mg [y]_{y_1}^{y_2}$$

$$= -mg(y_2 - y_1)$$

$$= -(mgy_2 - mgy_1)$$
 (6.5.1)

ઉપર્યુક્ત સમીકરણ સૂચવે છે કે એક સ્થાનથી બીજા સ્થાને પદાર્થને લઈ જવા માટે કરવું પડતું કાર્ય પદાર્થના અંતિમ સ્થાન અને શરૂઆતના સ્થાન પર જ આધારિત છે. તેમને જોડવા માર્ગ પર આધારિત નથી. પદાર્થ ગમે તે માર્ગ ગતિ કરી શકે. આવો ગુણધર્મ ધરાવતાં બળને સંરક્ષીબળ (Conservative force) અને બળક્ષેત્રને સંરક્ષી બળક્ષેત્ર (Conservative force field) કહે છે.

હવે, પદાર્થ y_1 અને y_2 સ્થાને હોય ત્યારે તેના વેગનાં મૂલ્યો અનુક્રમે v_1 અને v_2 હોય, તો સ્પષ્ટ છે કે y_1 ઊંચાઈથી y_2 ઊંચાઈએ જતાં પદાર્થની ગતિ-ઊર્જામાં થતો ફેરફાર $(\frac{1}{2}m{v_2}^2-\frac{1}{2}m{v_1}^2)$ જેટલો હશે. કાર્ય-ઊર્જા પ્રમેય મુજબ આ ફેરફાર પદાર્થ વડે થતાં કાર્ય જેટલો થાય.

$$\therefore W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$
 (6.5.2)

સમીકરણ (6.5.1) અને (6.5.2) ને સરખાવતાં,

$$(\frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2)$$

= $-(mgy_2 - mgy_1)$ (6.5.3)
અથવા

$$\left(\frac{1}{2}mv_1^2 - \frac{1}{2}mv_2^2\right) = mg(y_2 - y_1) \tag{6.5.4}$$

આ સમીકરણમાં ડાબી બાજુનાં પદો ગતિ-ઊર્જાનાં છે. આથી જમણી બાજુની રાશિઓ પણ કોઈ પ્રકારની ઊર્જાઓ જ હશે તેમ વિચારી શકાય. હકીકતમાં આ ઊર્જાઓએ પૃથ્વીના ગુરુત્વક્ષેત્રમાં, પૃથ્વીની સપાટીથી y_1 અને y_2 ઊંચાઈઓએ પદાર્થની સ્થિતિ-ઊર્જાઓ છે.

વજનબળ (mg) અને કોઈ સંદર્ભસપાટી (પ્રસ્તુત કિસ્સામાં પૃથ્વીની સપાટી)થી પદાર્થની ઊંચાઈ hના ગુજ્ઞાકારથી મળતી આ ભૌતિક રાશિને પૃથ્વીની સપાટીની સાપેક્ષમાં ગુરૂત્વીય સ્થિતિ-ઊર્જા U કહે છે.

આમ, પૃથ્વીની સપાટીથી h ઊંચાઈએ m દળની ગુર્ત્વીય સ્થિતિ-ઊર્જા

$$U = mgh ag{6.5.5}$$

સામાન્ય વ્યવહારમાં સંદર્ભ સપાટી પાસે સ્થિતિઊર્જા શૂન્ય લેવામાં આવે છે, કારણ કે સ્થિતિઊર્જામાં થતા ફેરફારો મહત્ત્વના છે, નહીં કે તેનું નિરપેક્ષ મૂલ્ય.

સમીકરશ (6.5.4) પરથી

$$\frac{1}{2}mv_1^2 + mgy_1 = \frac{1}{2}mv_2^2 + mgy_2$$
 (6.5.6)

આમ, સંરક્ષી બળક્ષેત્રમાં ગતિ દરમિયાન પદાર્થની

ગતિ-ઊર્જા (K = $\frac{1}{2}mv^2$) અને સ્થિતિ-ઊર્જા (U = mgh) નો સરવાળો અચળ રહે છે.

પદાર્થની ગતિ-ઊર્જા અને સ્થિતિ-ઊર્જાના સરવાળાને યાંત્રિક-ઊર્જા (Mechanical energy) (E) કહે છે.

$$\therefore E = K + U$$

સંરક્ષી બળક્ષેત્રમાં યાંત્રિક-ઊર્જાનું સંરક્ષણ થાય છે. પ્રસ્તુત ઉદાહરણમાં પૃથ્વીની સપાટીથી ઉપર તરફ જતાં પદાર્થની ગતિ-ઊર્જામાં જેટલો ઘટાડો થશે એટલો જ તેની સ્થિતિ-ઊર્જામાં વધારો થશે. (અહીં એ નોંધો કે પદાર્થની ગતિ દરમિયાન તેના પર લાગતું હવાનું અવરોધક બળ અવગણેલ છે.)

ઉપર્યુક્ત ચર્ચા પરથી સ્પષ્ટ છે કે "સંરક્ષીબળોની અસર હેઠળ યાંત્રિક રીતે અલગ કરેલા તંત્ર માટે યાંત્રિક-ઊર્જા અચળ રહે છે." આ વિધાનને યાંત્રિક-ઊર્જાના સંરક્ષણનો નિયમ કહે છે.

નોંધ : અહીં કરેલ ચર્ચામાં પદાર્થ અને પૃથ્વીનું બનેલું એક તંત્ર છે તેના, પર કોઈ બાહ્ય બળ લાગતું નથી. તેમ સ્વીકારી લીધું છે. એ સંદર્ભમાં આ તંત્ર યાંત્રિક રીતે અલગ કરેલું તંત્ર કહી શકાય. વળી, ઉપર્યુક્ત કુલ ઊર્જા એ પૃથ્વી અને પદાર્થના બનેલા તંત્રની ઊર્જા કહેવાય, પણ અહીં પૃથ્વીની સ્થિતિ કે ગતિ-ઊર્જામાં કશો ફેરફાર ન થતો હોવાથી આપણે રૂઢિગત રીતે માત્ર પદાર્થની સ્થિતિ-ઊર્જા કે ગતિ-ઊર્જાની ભાષામાં ચર્ચા કરેલ છે.

ઉદાહરણ 7: આકૃતિમાં દર્શાવ્યા મુજબ m દળનો એક પદાર્થ l લંબાઈની એક હલકી (દળરહિત !) દોરીનો છેડે લટકાવેલ છે. આ પદાર્થ તેના નિમ્નતમ સ્થાને હોય, ત્યારે તેને v જેટલા વેગથી ગતિ આપતાં તે વર્તુળાકાર માર્ગ ગતિ કરે છે અને દોરી ઢીલી પડતાં માંડ-માંડ ઊર્ધ્વતમ બિન્દુ C પર પહોંચે છે. તો સાબિત કરો કે $v = \sqrt{5gl}$ છે. બિન્દુ B પાસે તેનો વેગ કેટલો હશે ?

6કેલ : આકૃતિમાં દર્શાવ્યા મુજબ પદાર્થ તેના નિમ્નતમ સ્થાને હોય ત્યારે, પદાર્થ પર લાગતાં બળ દર્શાવ્યાં છે. આ

સ્થિતિમાં તેની સ્થિતિ ઊર્જા યાદચ્છિક રીતે શૂન્ય લેતાં તેની યાંત્રિક-ઊર્જા

$$E = \frac{1}{2}mv^{2} + 0$$

$$= \frac{1}{2}mv^{2}$$
 (1)

વળી, તેના પર લાગતું કેન્દ્રગામી બળ ન્યૂટનના ગતિના બીજા નિયમ અનુસાર $mv^2/l=T-mg$ થાય. સ્થિતિ C માં તણાવબળ, દોરી ઢીલી પડવાથી, શૂન્ય થાય. આ સ્થાન પર તેનો વેગ v' હોય તો,

યાંત્રિક-ઊર્જાના
$$E = \frac{1}{2}mv^2 + 2mgl$$
 (2)

(2mgl સ્થિતિ-ઊર્જા છે.)

અને
$$mg = mv^2 / l \ (\because T = 0)$$
 (3)
સમીકરણ (2) અને (3) પરથી

$$E = \frac{1}{2} mgl + 2mgl = 5/2 mgl \qquad (4)$$

યાંત્રિક-ઊર્જાના સંરક્ષણના નિયમ અનુસાર સમીકરણ (1) અને (4)

$$\frac{1}{2}mv^2 = \frac{5}{2}mgl$$

$$\therefore v = \sqrt{5gl}$$
(5)

[અહીં થોડું વિશેષ વિચારતાં બિન્દુ ${f B}$ પાસે તેના વેગ ${f v}''$ હોય, તો

$$E = \frac{1}{2} m v''^2 + mgl \tag{6}$$

યાંત્રિક-ઊર્જાના સંરક્ષણના નિયમ મુજબ સમીકરણ (1) અને (6) પરથી

$$\frac{1}{2}mv^2 = \frac{1}{2}mv^{"2} + mgl$$

સમીકરણ 5માંથી પનું મૂલ્ય મૂકતાં

$$\frac{1}{2}m (5gl) = \frac{1}{2}mv''^2 + mgl$$

$$\therefore v'' = \sqrt{3gl}$$

6.6 સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જા (Eleastic Potential Energy) (તંત્રની સંરચનાને કારણે તંત્રની સ્થિતિ-ઊર્જા)

આકૃતિ 6.10માં દર્શાવ્યા મુજબ ધારો કે એક અવગણ્ય દળવાળી, હૂકના નિયમને અનુસરતી, સ્થિતિસ્થાપક સ્પ્રિંગનો એક છેડો દીવાલ સાથે જડેલ છે. સ્પ્રિંગના બીજા છેડે m દળનો બ્લૉક બાંધેલો છે. આપણે સ્પ્રિંગની લંબાઈમાં થતા ફેરફાર અને બ્લૉકની ગતિ ફક્ત X-અક્ષ પૂરતી જ મર્યાદિત

રાખીશું. સ્પ્રિંગની સામાન્ય સ્થિતિ (ખેંચાણ કે દબાણ વિનાની સ્થિતિ) વખતે બ્લૉકના સ્થાનને x = 0 લઈશું. હવે બ્લૉકને ખેંચી સ્પ્રિંગની લંબાઈમાં વધારો કરવામાં આવે, ત્યારે સ્પ્રિંગના સ્થિતિસ્થાપકતાના ગુણધર્મને કારણે તેમાં પુનઃસ્થાપક બળ ઉદ્ભવે છે, જે સ્પ્રિંગને તેની સામાન્ય સ્થિતિમાં પાછી લઈ જવા પ્રયત્ન કરે છે. જો સ્પ્રિંગને દબાવીએ તોપણ તેમાં પુનઃસ્થાપક બળ ઉદ્ભવે છે.

પ્રસ્તુત કિસ્સામાં પુનઃસ્થાપક બળ (F) સ્પ્રિંગની લંબાઈમાં થતા ફેરફારના સમપ્રમાણમાં અને ફેરફારની વિરુદ્ધ દિશામાં હોય છે.

$$F \propto -x$$

$$F = -kx \tag{6.6.1}$$

અહીં સપ્રમાણતાના અચળાંક (k) ને સ્પ્રિંગનો બળ-અચળાંક (Force constant) કહે છે.

જો સ્પ્રિંગની લંબાઈમાં થતો વધારો x હોય તો, લગાડેલ બળ વડે થતું કાર્ય

$$W = \int_{0}^{x} kx dx = k \int_{0}^{x} x dx$$
$$= k \left[\frac{x^{2}}{2} \right]_{0}^{x}$$
$$\therefore W = \frac{1}{2} kx^{2}$$
 (6.6.2)

સ્પ્રિંગ પર થતું આ કાર્ય સ્પ્રિંગમાં ઊર્જાના સ્વરૂપમાં સંગ્રહાય છે. સ્પ્રિંગમાં સંગૃહીત આ ઊર્જાને સ્પ્રિંગની સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જા કહે છે.

સ્પ્રિંગની સામાન્ય સ્થિતિમાં (એટલે કે ખેંચાશ કે દબાશ વગરની સ્થિતિમાં), સ્પ્રિંગની સ્થિતિ-ઊર્જાને યાદચ્છિક રીતે શૂન્ય લેતાં, x જેટલા લંબાઈના ફેરફારની સ્થિતિમાં સ્પ્રિંગની સ્થિતિ-ઊર્જા

$$U = \frac{1}{2} kx^2 \text{ ur}. ag{6.6.3}$$

સ્થિતિ-ઊર્જાનું આ મૂલ્ય F-x આલેખ વડે ઘેરાયેલ ક્ષેત્રફળ પરથી પણ આકૃતિમાં દર્શાવ્યા મુજબ મેળવી શકાય.

અત્રે સ્પષ્ટ છે કે બાહ્યબળ દ્વારા થતું કાર્ય (સ્પ્રિંગના સંકોચન કે વિસ્તરણ માટે) તંત્રની સ્થિતિઊર્જા અને ગતિઊર્જાના સ્વરૂપમાં સંગ્રહિત થાય છે.

6.7 સંરક્ષીબળો માટે બળ અને સ્થિતિ-ઊર્જા વચ્ચેનો સંબંધ (Relation between Force and Potentian Energy for Conservative Field)

ધારો કે કોઈ પદાર્થ પર લાગતું સંરક્ષી બળ F છે. આ બળની અસર હેઠળ તે Δx જેટલું સૂક્ષ્મ સ્થાનાંતર કરે, ત્યારે તેના પર બળ વડે થતું કાર્ય,

$$\Delta W = F\Delta x$$

હવે, કાર્ય-ઊર્જા પ્રમેય અનુસાર, પદાર્થની ગતિ-ઊર્જામાં થતો ફેરફાર,

$$\Delta \mathbf{K} = \mathbf{W} = \mathbf{F} \Delta x$$
 યાંત્રિક-ઊર્જાના સંરક્ષણના નિયમ મુજબ $\Delta \mathbf{K} + \Delta \mathbf{U} = 0$ સમીકરણમાં $\Delta \mathbf{K}$ નું મૂલ્ય અવેજ કરતાં, $\mathbf{F} \Delta x + \Delta \mathbf{U} = 0$ ∴ $\mathbf{F} = -\frac{\Delta \mathbf{U}}{\Delta x}$

$$\lim_{\Delta x \, o \, 0}$$
 લેતાં આ સમીકરણ નીચે મુજબ લખી

શકાય :

$$\therefore F = -\frac{dU}{dx}$$
 (6.7.1)

આમ, સંરક્ષી બળોની બાબતમાં સ્થાનની સાપેક્ષે સ્થિતિ-ઊર્જાના વિકલિતનું ઋણ મૂલ્ય લેવાથી બળ મળે છે. સમીકરણ (6.7.1) નો ઉપયોગ કરી સ્પ્રિંગ માટે પુનઃસ્થાપક બળનું મૂલ્ય નીચે પ્રમાણે મેળવી શકાય :

સ્પ્રિંગની સ્થિતિ-ઊર્જા
$$U = \frac{1}{2}kx^2$$

$$\therefore \ -\frac{d\mathbf{U}}{dx} \ = -\frac{1}{2} \, k(2x) = -kx$$

$$\therefore F = -kx$$

ઉપર આપેલ ચર્ચા માત્ર સંરક્ષી બળોને જ લાગુ પડે છે.

અસંરક્ષી બળો વડે થતું કાર્ય તંત્રમાં સ્થિતિ-ઊર્જા સ્વરૂપે સંગ્રહિત થતું નથી. ઘર્ષણ જેવા અસંરક્ષી બળો વડે થતું કાર્ય 140 ભૌતિકવિશાન

ઉખ્મા-ઊર્જા સ્વરૂપે વ્યય પામે છે. અસંરક્ષી બળોના કિસ્સામાં યાંત્રિક-ઊર્જા સંરક્ષણનો નિયમ પણ જળવાતો નથી અને બળનું મૂલ્ય સ્થિતિ-ઊર્જાનું વિકલન કરી મેળવી શકાતું નથી.

ઉદાહરણ 8: 1 kg દળનો એક બ્લોક 20 cm જેટલી ઊંચાઈએથી એક સ્પ્રિંગ પર મુક્ત પતન કરે છે. (જુઓ આકૃતિ 6.13) જો સ્પ્રિંગનો બળ-અચળાંક 600 N/m હોય, તો સ્પ્રિંગ કેટલી દબાશે ? (g = 10.0 m/s²)

ઉકેલ: ધારો કે સ્પ્રિંગ x મીટર જેટલી દબાય છે, તેથી 1 kg દળનો બ્લૉક (x + 0.2)m ઊંચાઈએથી પડે છે તેમ કહેવાય. આ બ્લૉકને નીચે પડતા તેની સ્થિતિ-ઊર્જા સ્પ્રિંગને દબાવવા કરવા પડતા કાર્યમાં ખર્ચાય છે, અને આ કાર્ય સ્પ્રિંગમાં સ્થિતિ-ઊર્જાના રૂપમાં સંપ્રહાય છે.

બ્લૉકની ગુરૂત્વીય સ્થિતિ-ઊર્જા $= mg(h+x) = 1\times 10(0.2+x)$ સ્પ્રિંગને x મીટર દબાવવા થતું કાર્ય $=\frac{1}{2}kx^2$

$$\therefore \frac{1}{2}kx^2 = 1 \times 10 \ (0.2 + x)$$

 $300x^2 = 10x + 2.0$

$$\therefore 300x^2 - 10x - 2.0 = 0$$

$$\therefore 150x^2 - 5x - 1 = 0$$

$$\therefore x = \frac{5 \pm \sqrt{25 - 4(150)(-1)}}{300}$$

 $x = 0.0167 \pm 0.0833$

અત્રે 0.0167 m તે પદાર્થ વડે સ્પ્રિંગ દબાતાં પદાર્થનું સમતોલન સ્થાન દર્શાવે છે, જેને અનુલક્ષીને સ્પ્રિંગ પદાર્થ સાથે દોલનો કરે છે. આ દોલનો કંપવિસ્તાર 0.0833 m

છે. તથા મહત્તમ સંકોચન 0.1~m એટલે કે 10~cm થાય.

6.8 4142 (Power)

અત્યાર સુધીની ચર્ચામાં આપશે કાર્ય કરવામાં લાગેલા સમયનો તો વિચાર કર્યો જ નથી. એક પદાર્થને કોઈ એક સ્થાનેથી અમુક નિશ્ચિત ઊંચાઈએ લઈ જવામાં 1 સેકન્ડ કે 1 કલાક અથવા જુદો-જુદો સમય લગાડીએ તોપણ દરેક કિસ્સામાં એકસરખા મૂલ્યનું જ કાર્ય થાય છે. પરંતુ આ દરેક કિસ્સામાં કાર્ય કરવાનો દર જુદો-જુદો છે. ઘણા કિસ્સાઓમાં કાર્યના મૂલ્ય કરતાં કાર્ય કરવાનો દર આપણા માટે વધુ મહત્ત્વની બાબત હોય છે. આથી પાવર (કાર્યત્વરા) નામની રાશિને નીચે મુજબ વ્યાખ્યાયિત કરવામાં આવે છે.

"કાર્ય કરવાના સમયદરને પાવર કહે છે." અથવા "એકમસમયમાં થતા કાર્યને પાવર (P) કહે છે." જો Δt સમયમાં થતું કાર્ય ΔW હોય તો, Δt સમય દરમિયાન સરેરાશ પાવર < P > = $\frac{\Delta W}{\Delta t}$

$$\therefore$$
 t સમયે તાત્સણિક પાવર $ext{P} = rac{lim}{\Delta t
ightarrow 0} rac{\Delta ext{W}}{\Delta t}$

$$\therefore P = \frac{dW}{dt}$$
 (6.8.1)

ધારો કે $d\mathbf{W}$ એ $d\overset{
ightharpoonup}{r}$ સ્થાનાંતર માટે બળ $\overset{
ightharpoonup}{\mathbb{F}}$ વડે થતું કાર્ય છે.

$$dW = \overrightarrow{F} \cdot \overrightarrow{dr}$$

આ કિસ્સામાં અચળ બળ માટે તાત્ક્ષણિક પાવરને નીચે મુજબ દર્શાવી શકાય છે :

$$P = \frac{dW}{dt} = \stackrel{\rightarrow}{F} \cdot \frac{d\stackrel{\rightarrow}{r}}{dt} = \stackrel{\rightarrow}{F} \cdot \stackrel{\rightarrow}{v}$$

$$\therefore P = \stackrel{\rightarrow}{F} \cdot \stackrel{\rightarrow}{v}$$
 (6.8.2)

ભૌતિક રાશિઓ કાર્ય અને ઊર્જાની જેમ પાવર પણ અદિશ રાશિ છે. તેના પરિમાણ $\mathbf{M}^{1}\mathbf{L}^{2}\mathbf{T}^{-3}$ છે. \mathbf{SI} પદ્ધતિમાં પાવરનો એકમ \mathbf{J} \mathbf{s}^{-1} છે, જેને સ્ટીમ એન્જિનના શોધક જેમ્સ વૉટના માનમાં વૉટ (watt) કહે છે. $\mathbf{IW} = \mathbf{I}$ \mathbf{J} \mathbf{s}^{-1} .

વૉટ એ પાવરનો નાનો એકમ છે. વધારે મોટા પાવર માપવા માટે પાવરના વ્યાવહારિક એકમો જેવા કે કિલોવૉટ, તથા મેગાવૉટનો ઉપયોગ થાય છે.

 $1 \text{ kW} = 10^3 \text{W}$

 $1 \text{ MW} = 10^6 \text{W}$

વ્યવહારમાં બીજા એક મોટા એકમ-હૉર્સપાવર (horse power) જે મૂળ બ્રિટિશ પદ્ધતિનો એકમ છે, તેનો ઉપયોગ આપણાં વાહનો તથા વૉટરપમ્પના પાવર માટે વપરાય છે.

1 હૉર્સપાવર [hp] ~ 746 W

સમીકરણ (6.8.1) પરથી ફલિત થાય છે કે પાવરને સમય સાથે ગુણવાથી કાર્યનું મૂલ્ય પ્રાપ્ત થાય છે. આ રીતે કાર્યના એકમ કિલોવૉટ અવર (kWh)નો ઉદ્ભવ થયો.

"1 કિલોવૉટ જેટલા દરે 1 ક્લાક (hour)માં થયેલા કુલ કાર્યને 1 કિલોવૉટ અવર કહે છે."

આપણા ઘરમાં વપરાતી વિદ્યુત-ઊર્જાને કિલોવૉટ અવરના એકમમાં મપાય છે. તેને 'યુનિટ' કહે છે.

અહીં ખાસ ધ્યાન રાખશો કે kWh એ ઊર્જાનો એકમ છે, પાવરનો નહિ. 100 Wના બલ્બને 10 કલાક સુધી ચાલુ (on) રાખવામાં આવે, તો 1 યુનિટ જેટલી વિદ્યુત-ઊર્જા વપરાય છે.

ઉદાહરણ 9:m દળનો એક ક્ષ r ત્રિજ્યાના વર્તુળમાર્ગ ગતિ કરે છે, ત્યારે તેનો ત્રિજ્યાવર્તી (કેન્દ્રગામી) પ્રવેગ kt^2 જેટલો છે, જ્યાં k અચળાંક છે તથા t સમય છે, તો પાવરને tના વિધેય રૂપે દર્શાવો.

ઉકેલ : ત્રિજ્યાવર્તી પ્રવેગ $\frac{v^2}{r} = kt^2$

સમીકરણ (t)ની સાપેક્ષે વિકલન કરતાં,

$$2v\frac{dv}{dt} = 2ktr$$

$$mv\frac{dv}{dt} = mktr$$

 $\therefore Fv = ktmr \quad [\quad \because \quad F = m\frac{dv}{dt}, \quad \frac{dv}{dt} \quad એ$

સ્પર્શીય પ્રવેગ છે, તે નોંધો.]

 $\therefore P = ktmr$

6.9 સ્થિતિસ્થાપક અને અસ્થિતિસ્થાપક સંઘાતો (Elastic and Inelastic Collisions)

બે પદાર્થો વચ્ચે થતા સંઘાત દરમિયાન અથડાતા પદાર્થોની કુલ ઊર્જા અને કુલ રેખીય વેગમાનનું સંરક્ષણ થતું હોય છે. જો સંઘાત પામતા પદાર્થોની સંઘાત પહેલાંની કુલ ગતિ-ઊર્જા અને સંઘાત પામ્યા બાદની કુલ ગતિ-ઊર્જા સમાન હોય, એટલે કે કુલ ગતિ-ઊર્જાનું સંરક્ષણ થતું હોય, તો તેવા સંઘાતને સ્થિતિસ્થાપક સંઘાત કહે છે.

ઘણા સંઘાતો દરમિયાન ગતિ-ઊર્જાનું (આંશિક કે સંપૂર્ણપણે) પદાર્થોની આંતરિક ઊર્જામાં રૂપાંતરણ થતું હોય છે. આવા સંઘાતો દરમિયાન કુલ ગતિ-ઊર્જાનું સંરક્ષણ થતું નથી. આવા સંઘાતને અસ્થિતિસ્થાપક સંઘાત કહે છે. અત્રે એ નોંધવું અગત્યનું છે કે બંને પ્રકારના સંઘાતો દરમિયાન કુલ ઊર્જા અને વેગમાનનું સંરક્ષણ તો થતું જ હોય છે.

આકૃતિ 6.13

હવે આપણે એક પરિમાણમાં થતા સ્થિતિસ્થાપક સંઘાતની વાત કરીશું. આકૃતિ 6.13 (a)માં દર્શાવ્યા મુજબ ધારો કે m_1 દળવાળો પદાર્થ v_1 વેગથી X—અક્ષની દિશામાં ગતિ કરતાં m_2 દળવાળા v_2 વેગથી X—અક્ષની દિશામાં જ ગતિ કરતા બીજા પદાર્થ સાથે સ્થિતિસ્થાપક સંઘાત પામે છે. તેમના અંતિમ વેગ અનુક્રમે v_1 ' અને v_2 ' છે.

વેગમાનના સંરક્ષણના નિયમ મુજબ

$$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'$$
 (6.9.1)

$$\therefore m_1(v_1 - v_1') = m_2(v_2' - v_2) \quad (6.9.2)$$

વળી, સંઘાત સ્થિતિસ્થાપક હોવાથી

$$\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2$$

$$\therefore m_1(v_1^2 - v_1^{'2}) = m_2(v_2^{'2} - v_2^2)$$
 (6.9.3)

સમીકરણ (6.9.2) અને (6.9.3) પરથી

$$v_1 + v_1' = v_2 + v_2'$$
 (6.9.4)

સમીકરણ (6.9.4) ને m_1 વડે ગુણીને સમીકરણ (6.9.1)માં ઉમેરતાં,

$$m_1 v_1 + m_2 v_2 + m_1 v_1 + m_1 v_1' = m_1 v_1' + m_2 v_2' + m_1 v_2 + m_1 v_2'$$

$$\therefore 2m_1v_1 + (m_2 - m_1)v_2 = (m_1 + m_2)v_2'$$

$$\therefore v_2' = \left(\frac{2m_1}{m_1 + m_2}\right) v_1 + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_2 \qquad (6.9.5)$$

142 ભૌતિકવિશાન

$$\begin{split} & v_2' \cdot \text{-fl } \text{ [3 મત સમીકરણ (6.9.4)માં મૂકતાં,} \\ & v_1' = \left(\begin{array}{c} \frac{2m_1}{m_1 + m_2} - 1 \end{array} \right) v_1 + \left(\begin{array}{c} 1 + \frac{m_2 - m_1}{m_1 + m_2} \end{array} \right) v_2 \\ & \therefore v_1' = \left(\begin{array}{c} \frac{m_1 - m_2}{m_1 + m_2} \end{array} \right) v_1 + \left(\begin{array}{c} \frac{2m_2}{m_1 + m_2} \end{array} \right) v_2 \end{aligned} \tag{6.9.6}$$

સમીકરણો (6.9.5) અને (6.9.6) એક પરિમાણમાં સ્થિતિસ્થાપક સંઘાતનાં સમીકરણો છે.

વિશિષ્ટ કિસ્સા (i) જો $m_1 = m_2$ હોય તો, $m_1 = m_2$ માટે $v_1' = v_2$ અને $v_2' = v_1$ થાય એટલે બંને પદાર્થના વેગ અદલબદલ થઈ જાય છે.

(ii) $m_2 >> m_1$, આ કિસ્સામાં ગતિમાન હલકો પદાર્થ ભારે પદાર્થ સાથે અથડાય છે. હવે સમીકરણ (6.9.5) અને (6.9.6) માં m_2 ની સરખામણીમાં m_1 ને અવગણતાં,

$$v_1' = -v_1 + 2v_2$$

અને $v_2' \approx v_2$ મળે.

આ દર્શાવે છે કે ભારે પદાર્થના વેગમાં ખાસ ફર્ક પડતો નથી જ્યારે હલકા પદાર્થના વેગમાં ફેરફાર થાય છે. બીજા શબ્દોમાં ભારે પદાર્થ હલકા પદાર્થને મચક આપતો નથી.

ઉપર્યુક્ત સમીકરણો અને વિશિષ્ટ કિસ્સામાં $v_2 = 0$ લઈએ, તો શું થાય ? (વિચારો !)

સંઘાત પહેલાં અને સંઘાત બાદના સાપેક્ષ વેગનાં મૂલ્યો માટે શું કહી શકાય ? (સમીકરણ (6.9.4)ના સંદર્ભમાં વિચારો)

હવે આપણે અસ્થિતિસ્થાપક સંઘાત માટે એક વિશિષ્ટ કિસ્સો જોઈએ. ગનમાંથી બુલેટને પ્રમાણમાં મોટું કદ ધરાવતા લાકડાના બ્લૉક પર 'ફાયર' કરતાં બુલેટ બ્લૉકમાં ઘૂસી જાય છે અને બુલેટ અને બ્લૉક એક જ પદાર્થ તરીકે ગતિ કરે છે. આ પ્રકારનો સંઘાત સંપૂર્ણ અસ્થિતિસ્થાપક સંઘાત કહેવાય. ધારો કે m_1 દળનો એક પદાર્થ v_1 વેગથી ગતિ કરીને m_2 દળવાળા બીજા v_2 વેગથી v_1 ની દિશામાં જ ગતિ કરતા બીજા પદાર્થ સાથે અથડામણ અનુભવે છે. અથડામણ સંપૂર્ણ અસ્થિતિસ્થાપક હોવાથી બંને પદાર્થનો બનેલો સંયુક્ત પદાર્થ v વેગથી અથડામણ બાદ ગતિ કરે છે.

વેગમાનના સંરક્ષણના નિયમ મુજબ
$$m_{_{1}}v_{_{1}}+m_{_{2}}v_{_{2}}=(m_{_{1}}+m_{_{2}})v$$

$$\therefore \ v=\frac{m_{_{1}}v_{_{1}}+m_{_{2}}v_{_{2}}}{m_{_{1}}+m_{_{2}}} \eqno(6.8.7)$$

6.10 દ્વિ-પરિમાણમાં સ્થિતિસ્થાપક સંઘાત (Elastic Collision in Two Dimensions)

આકૃતિ 6.14માં દર્શાવ્યા મુજબ ધારો કે $\stackrel{
ightarrow}{v_1}$ જેટલા વેગથી x દિશામાં ગતિ કરતો $m_{_1}$ દળનો પદાર્થ સ્થિર પડેલા [$\overrightarrow{v_2} = 0$] m_2 દળના બીજા પદાર્થ સાથે સ્થિતિસ્થાપક સંઘાત અનુભવે છે. સંઘાત બાદ m_1 અને m_2 દળવાળા X-અક્ષ સાથે અનુક્રમે θ_1 અને θ_2 કોણ બનાવતી દિશામાં $\overrightarrow{v_1}$ ' અને $\overrightarrow{v_2}$ ' જેટલા વેગથી ગતિ કરે છે.

આકૃતિ 6.14

વેગમાન સંરક્ષણના નિયમ મુજબ,

$$m_1 \overset{\rightarrow}{v_1} = m_1 \overset{\rightarrow}{v_1}' + m_2 \overset{\rightarrow}{v_2}'$$
 (6.10.1)

વેગમાનોના x દિશામાંના ઘટકો લેતાં,

$$m_{1}v_{1} = m_{1}v_{1}'\cos\theta_{1} + m_{2}v_{2}'\cos\theta_{2}$$
 (6.10.2)

વેગમાનોના Y દિશામાંના ઘટકો લેતાં,

$$0 = m_1 v_1 ' sin \theta_1 - m_2 v_2 ' sin \theta_2$$
 (6.10.3)
સંઘાત સ્થિતિસ્થાપક હોવાથી

$$\frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 v_1^{'2} + \frac{1}{2} m_2 v_2^{'2}$$
 (6.10.4)

સામાન્ય રીતે m_1 , m_2 અને v_1 નાં મૂલ્યો જ્ઞાત હોય છે. સંઘાત બાદની ગતિમાં અજ્ઞાત રાશિઓ (v_1 ', v_2 ', θ_1 અને θ_2) ચાર છે અને સમીકરણો (6.9.2, 3, 4) ત્રણ સમીકરણોની મદદથી ત્રણ જ અજ્ઞાત રાશિઓનાં મૂલ્ય નક્કી કરી શકાય. માટે આ ચાર અજ્ઞાત રાશિઓમાંથી ઓછામાં ઓછી એક રાશિ જ્ઞાત હોવી જરૂરી છે.

ઉદાહરણ 10: 12 ms⁻¹ ના વેગથી ગતિ કરતો એક દડો તેના જેવા જ (Identical) બીજા એક સ્થિર દડા સાથે સંઘાત અનુભવે છે. સંઘાત બાદ બંને દડા આકૃતિ 6.15.માં દર્શાવ્યા પ્રમાણે ગતિ કરે છે. સંઘાત બાદ બંને દડાઓની ઝડપ શોધો તથા સંઘાત સ્થિતિસ્થાપક છે કે નહિ તે નક્કી કરો.

ધારો કે દડાનું દળ *m* છે. વેગમાનના સંરક્ષણના નિયમ મુજબ,

$$mv_1 = mv_1'cos30^{\circ} + mv_2'cos30^{\circ}$$
 (1)

અને
$$0 = mv_1 \sin 30^\circ - mv_2 \sin 30^\circ$$
 (2)

$$\therefore v_1' = v_2' \tag{3}$$

સમીકરણ (1) અને (2) પરથી,

$$12 = 2v_1' \times \frac{\sqrt{3}}{2}$$

$$v_1' = \frac{12}{\sqrt{3}} = 4\sqrt{3} \text{ m/s}$$

સંઘાત પહેલાંની કુલ ગતિ-ઊર્જા,

$$K_1 = \frac{1}{2} m v_1^2$$

$$\therefore K_1 = \frac{1}{2} m(12)^2 = 72 m J$$
 (4)

સંઘાત બાદની કુલ ગતિ-ઊર્જા,

$$K_{2} = \frac{1}{2} m v_{1}^{12} + \frac{1}{2} m v_{2}^{12}$$
$$= \frac{1}{2} m (48 + 48)$$

$$\therefore K_2 = (48 m)J \tag{5}$$

સમીકરણો (4) અને (5) પરથી સ્પષ્ટ થાય છે કે, $\mathbf{K}_1 > \mathbf{K}_2$. આમ, ગતિ-ઊર્જાનું સંરક્ષણ ન થતું હોવાથી સંઘાત સ્થિતિસ્થાપક નથી.

હવે અસરંક્ષી બળ દ્વારા થતા કાર્યનું ઉદાહરણ લઈને આપણે પ્રકરણનું સમાપન કરીએ. ઉદાહરણ 11: આકૃતિમાં શિરોલંબ સમતલમાં જડેલી એક ટ્યૂબ બતાવેલ છે. A આગળથી 0.314 kg દળવાળો એક ગોળો મુક્ત કરવામાં આવે છે. ગોળાને તેની ગતિ દરમિયાન અચળ અવરોધક બળ R નો સામનો કરવો પડે છે. ગોળો B પાસે પહોંચે ત્યારે તેનો વેગ શૂન્ય થાય છે, તો (i) અચળ અવરોધક બળ R અને (ii) આ અવરોધક બળ R અને ગોતાના મેરરાશ ત્રિજ્યા 1 m છે.)

આકૃતિ 6.16

ઉકેલ: ધારો કે D ગતિમાર્ગનું નિમ્નતમ બિંદુ છે અને D આગળ તેની સ્થિતિ-ઊર્જા શૂન્ય છે. આથી A આગળ ગોળાની સ્થિતિ-ઊર્જા,

$$\mathbf{U}_{\mathbf{A}} = mgr$$
 (1) B આગળ તેની સ્થિતિ-ઊર્જા
$$\therefore \ \mathbf{U}_{\mathbf{B}} = mg \ (\mathbf{B'D})$$

તથા OB' = OB
$$cos\frac{\pi}{3} = \frac{r}{2}$$

$$\therefore B'D = OB' = \frac{r}{2}$$

$$\therefore \ \ \mathbf{U}_{\mathrm{B}} = mg\frac{r}{2} \tag{2}$$

અવરોધક બળ અચળ છે, તેથી તેના દ્વારા થતું કાર્ય

$$W_R = R \times \frac{5\pi}{6} r \quad (\because ચાપ = \theta \times r)$$
 (3) સમીકરણ (1), (2) અને (3) પરથી,

 $mgr = \frac{mgr}{2} + R\frac{5\pi r}{6}$

$$\therefore \frac{mgr}{2} = \pi r R \left(\frac{5}{6} \right)$$

$$\therefore R = \frac{3mg}{5\pi} = \frac{3 \times 0.314 \times 10}{5 \times 3.14} = 0.6N$$

અવરોધક બળ દ્વારા થતું કાર્ય

$$W_{R} = R \times \frac{5\pi r}{6}$$

= 0.6 × $\frac{5 \times 3.14 \times 1}{6}$ = 1.57 J

144

માત્ર સ્પર્ધાત્મક પરીક્ષાઓ માટે માહિતી

ન્યુટનનો અથડામણનો નિયમ : જ્યારે બે પદાર્થ વચ્ચેની અથડામણ 'હેડ-ઓન' હોય એટલે કે અથડામણ સમયે બંને અથડાતા પદાર્થના સાપેક્ષ વેગ અથડામણ બાજુએ દોરેલા સામાન્ય લંબ પર આવેલ હોય તો અથડામણ પછીનો સાપેક્ષ વેગ અને અથડામણ પહેલાંના સાપેક્ષ વેગનો ગુણોત્તર અચળ હોય છે અને અથડામણ પછીનો સાપેક્ષ વેગ અથડામણ પહેલાના સાપેક્ષ વેગની વિરુદ્ધ દિશામાં હોય છે.

આ અચળ ગુણોત્તર રેસ્ટીટ્યુશન ગુણાંક (e) તરીકે ઓળખાય છે. ઉપર્યુક્ત વ્યાખ્યા પરથી પ્રવર્તમાન સંકેતોમાં

$${
m e}=rac{{{{v_2}'}-{{v_1}'}}}{{{v_1}-{v_2}}},\;{
m `e'}$$
નું મૂલ્ય અથડામણ પામતા પદાર્થીના દ્રવ્ય પર આધારિત છે.

સંપૂર્ણ સ્થિતિસ્થાપક સંઘાત માટે e=1 અને સંપૂર્ણ અસ્થિતિસ્થાપક સંઘાત માટે e=0.

વ્યાપકરૂપે રેસ્ટીટ્યુશન ગુશાંકનો ઉપયોગ કરીને બે અથડામણ પામતા પદાર્થોના અથડામણ પછીના વેગ માટે સૂત્રો નીચે મુજબ લખી શકાય :

$$v_1' = \frac{(m_1 - m_2 e)}{m_1 + m_2} v_1 + \frac{(1 + e)m_2}{m_1 + m_2} v_2 \text{ and } v_2' = \frac{(1 + e)m_1}{m_1 + m_2} v_1 - \frac{(m_1 e - m_2)}{m_1 + m_2} v_2$$

સારાંશ

- 1. કાર્ય અંગેના સામાન્ય ખ્યાલોથી ભૌતિક વિજ્ઞાનમાં કાર્ય અંગેના ખ્યાલો એકદમ જુદા પડે છે.
- 2. બળના મૂલ્ય અને બળ લાગતું હોય તે સમયગાળા દરમિયાન બળની દિશામાં થતા સ્થાનાંતરના મૂલ્યના ગુજ્ઞાકારને કાર્ય કહે છે. તેનો એકમ જૂલ છે અને પારિમાણિક સૂત્ર $\mathbf{M}^1\mathbf{L}^2\mathbf{T}^{-2}$ છે.
- 3. બળ અને સ્થાનાંતર વચ્ચેનો ખુશો θ હોય તો,
 - (i) $\theta = 0$
- $\therefore W = Fd$
- (ii) $\theta = \pi/2$
- W = 0
- (iii) $\theta = \pi$
- $\therefore W = -Fd$

જો θ લઘુકોણ હોય, તો કાર્ય ધન મળે છે, એટલે કે બળ દ્વારા પદાર્થ પર કાર્ય થાય છે. જો θ ગુરુકોણ હોય, તો કાર્ય ઋણ મળે. એટલે કે પદાર્થ દ્વારા બળ વિરુદ્ધ કાર્ય થાય છે.

4. ચલ બળ દ્વારા થતું કાર્ય નીચેના સૂત્રથી મળી શકે :

$$W = \int_{i}^{f} \vec{F} \cdot \vec{dl}$$

- 5. જો ચલ બળ અને સ્થાનાંતર એક જ દિશામાં હોય, તો F-x આલેખનો આલેખ નીચેનું ક્ષેત્રફળ કાર્ય આપે છે.
- 6. પદાર્થની ગતિને કારણે પદાર્થની કાર્ય કરવાની ક્ષમતાને ગતિ ઊર્જા કહે છે. m દળના પદાર્થનો વેગ v હોય, તો તેની ગતિ-ઊર્જા $K=\frac{1}{2}\,mv^2=p^2/2m$ થાય.
- 7. **કાર્ય-ઊર્જા પ્રમેય :** પદાર્થ પર પરિશામ બળ વડે થતું કાર્ય, પદાર્થની ગતિ-ઊર્જામાં થતાં ફેરફાર જેટલું હોય છે.
- 8. સ્થિતિ-ઊર્જા : કોઈ પણ બળક્ષેત્રમાં રહેલો પદાર્થ પોતાના સ્થાનને કારણે અને અથવા પદાર્થની સંરચનાને કારણે કાર્ય કરવાની જે ક્ષમતા ધરાવે છે, તેને પદાર્થની સ્થિતિ-ઊર્જા કહે છે.
- 9. સામાન્ય રીતે સ્થિતિ-ઊર્જા સાપેક્ષ ભૌતિક રાશિ છે. તેનું નિરપેક્ષ મૂલ્ય મળવું શક્ય નથી અને આમ પણ તેમાં થતાં ફેરફારની માહિતી જ મહત્ત્વની છે.

10. પૃથ્વીના ગુરુત્વક્ષેત્રમાં પૃથ્વીની સપાટી પર સ્થિતિ-ઊર્જા શૂન્ય લઈએ, તો h જેટલી ઊંચાઈ પર પદાર્થની સ્થિતિ-ઊર્જા mgh થાય, જ્યાં m પદાર્થનું દળ, g ગુરુત્વપ્રવેગ છે. h નું મૂલ્ય પૃથ્વીની ત્રિજ્યાની સરખામણીમાં અવગણી શકાય તેવું છે.

- 11. પદાર્થની સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જાના સરવાળાને પદાર્થની યાંત્રિક-ઊર્જા કહે છે.
- 12. સ્પ્રિંગની સામાન્ય સ્થિતિમાં સ્પ્રિંગની સ્થિતિ-ઊર્જાને શૂન્ય લેતાં x જેટલી લંબાઈના ફેરફાર માટે

સ્પ્રિંગની સ્થિતિ-ઊર્જા $U=\frac{1}{2}kx^2$ થાય, જ્યાં k સ્પ્રિંગનો બળ-અચળાંક છે. તેનો એકમ

N/m તથા પારિમાણિક સૂત્ર $M^1L^0T^{-2}$ છે.

- 13. સંરક્ષી બળો : જે બળો માટે થતું કાર્ય પદાર્થના માર્ગ પર આધારિત ન હોય પણ શરૂઆતના અને અંતિમ સ્થાન પર આધારિત હોય તેવાં બળોને સંરક્ષી બળો કહે છે. ગુરુત્વાકર્ષણનું બળ અને સ્પ્રિંગના સંકોચન કે વિસ્તરણ દરમિયાન ઉત્પન્ન થતું પુનઃસ્થાપક બળ સંરક્ષી બળો છે.
- 14. સંરક્ષી બળનું મૂલ્ય તેને આનુષંગિક સ્થિતિ-ઊર્જા પરથી નીચેના સૂત્રથી મેળવી શકાય :

$$F = -\frac{dU}{dx}$$

15. કાર્ય કરવાના સમયદરને પાવર (P) કહે છે. પાવરનો એકમ વૉટ (જૂલ-સેકન્ડ) અને પારિમાણિક સૂત્ર $\mathbf{M}^1\mathbf{L}^2\mathbf{T}^{-3}$ છે.

આમ, પાવર
$$P = W/t$$
 અથવા $P = \overrightarrow{F} \cdot \overrightarrow{v}$

1 હોર્સપાવર ≈ 746 વૉટ

ઘરવપરાશ માટે વિદ્યુત-ઊર્જાનો એકમ 1 યુનિટ = $1 \text{ kWh} = 3.6 \times 10^6 \text{J}$

- 16. બે પદાર્થ વચ્ચેના સંઘાત દરમિયાન ગતિ-ઊર્જાનું પણ સંરક્ષણ થતું હોય, તો તે સંઘાત સ્થિતિ-સ્થાપક સંઘાત કહેવાય છે.
- 17. m_1 દળવાળો પદાર્થ v_1 વેગથી ગતિ કરીને v_2 વેગથી તે જ દિશામાં ગતિ કરતાં m_2 દળવાળા બીજા પદાર્થ સાથે સ્થિતિસ્થાપક સંઘાત અનુભવે અને તેમના અંતિમ વેગ અનુક્રમે v_1 ' અને v_2 ' હોય, તો

$$v_1' = \frac{m_1 - m_2}{m_1 + m_2} v_1 + \frac{2m_2}{m_1 + m_2} v_2 \text{ and } v_2' = \frac{2m_1}{m_1 + m_2} v_1 + \frac{m_2 - m_1}{m_1 + m_2} v_2$$

18. જો બે પદાર્થ વચ્ચે થતો સંઘાત સંપૂર્ણ અસ્થિતિસ્થાપક હોય, તો સંઘાત બાદ બંને પદાર્થો એકબીજા સાથે ચોંટેલા રહે છે અને સમાન વેગ v થી ગતિ કરે છે. આ કિસ્સામાં,

$$v = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

19. m_1 દળવાળો એક પદાર્થ v_1 વેગથી ગતિ કરીને m_2 દળવાળા સ્થિર પદાર્થ સાથે સ્થિતિસ્થાપક સંઘાત અનુભવે છે. સંઘાત બાદ બંને પદાર્થ v_1 ' અને v_2 ' વેગથી v_1 ની દિશા સાથે θ_1 અને θ_2 ખૂણો બનાવીને ગતિ કરે તો,

$$m_1 v_1 = m_1 v_1' cos\theta_1 + m_2 v_2' cos\theta_2$$

 $0 = m_1 v_1' sin\theta_1 - m_2 v_1' sin\theta_2$
અને $m_1 v_1^2 = m_1 v_1'^2 + m_2 v_2'^2$

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

1.	જો દીવાલ પર 20N બ (A) 20 J (C) 10 J	ળ લગાડતાં દીવાલનું સ	યાનાંતર ન થતું હોય, તો (B) 0 J (D) કશું કહી શકાય ન	· ·
2.	જો પદાર્થના રેખીય વેગ વધારો હોય છે. (A) 10 %		કરવામાં આવે, તો તેની (C) 2 %	ગતિ-ઊર્જામાં થતો (D) 100 %
3.			.ઈએ કે જેથી તેની ગતિ-ઉ	_
٥.	(A) 10 m/s	•	(C) 20 m/s	(D) 2.5 m/s
4.		પ્રેંગ પર 3.92 N જેટલું બળ લગાડતાં તે તેની સામાન્ય સ્થિતિમાંથી 1 cm જેટલું . અનુભવે છે, તો સ્પ્રિંગનું સંકોચન 10 cm જેટલું હોય, ત્યારે તેની સ્થિતિ-ઊર્જા કેટલી		
	(A) 1.96 J	(B) 2.45 J	(C) 19.6 J	(D) 196.0 J
5.				
	(A) 100 W		(C) 98 W	(D) 1980 W
6.				
 એક પદાર્થ પર (-4, 2, 6) N બળ લગાડતાં તે Y-અક્ષની દિશામાં 2 કે છે, તો પદાર્થ પર થયેલું કાર્ય શોધો. 			1 000 00 00 00 00 2 77	30-3
	(A) 2 J		(C) 1 J	(D) 4.5 J
7.	→ F = (1, -3, 1) અને	$\overrightarrow{d} = (2, -3, -11) \ \vartheta$	તો તેમની વચ્ચેનો ખૂશો	rad થશે.
	(A) π	(B) 0	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{2}$
8.	. એક બસનું દળ 2000 kg છે. તેમાં 50 km/h નો વેગ ઉત્પન્ન કરવા માટે કેટલું કાર્ય પડશે ?			ાટે કેટલું કાર્ય કરવું
		(B) $1.6 \times 10^6 \text{ J}$	(C) $1.93 \times 10^5 \text{ J}$	(D) 193 J
9.	એક પ્રક્ષિપ્ત પદાર્થની તેની મહત્તમ ઊંચાઈએ સ્થિતિ-ઊર્જા તેની શરૂઆતની ગતિ-ઊર્જાની - ગણી થાય છે, તો પદાર્થનો પ્રક્ષિપ્તકોણ છે.			ો ગતિ-ઊર્જાની $\frac{3}{4}$
	(A) 30°	(B) 45°	(C) 60°	(D) 75°
10.	ત્રચળ પાવર ધરાવતા મશીન દ્વારા એક પદાર્થને ખસેડવામાં આવે છે. t સમયમાં પદાર્થને પ્રાપ્ત ાતો વેગ ના સમપ્રમાણમાં છે.			ાયમાં પદાર્થને પ્રાપ્ત
	(A) $t^{\frac{3}{4}}$	(B) $t^{\frac{3}{2}}$	(C) $t^{\frac{1}{4}}$	(D) $t^{\frac{1}{2}}$
11.		(B) t^2 (C) t^4 (D) t^2 ના સમપ્રમાણમાં હોય તેવા પ્રતિવેગની અસર હેઠળ ગતિ કરે છે. x જેટલા તેની ગતિ-ઊર્જામાં થતો ઘટાડો ના સમપ્રમાણમાં છે.		
	(A) x^2			
12.	એક m દળવાળા સ્થિર	(B) e^x (C) x (D) $loge^x$.ર પદાર્થને પ્રવેગ આપતાં તે T સમયમાં v જેટલો વેગ પ્રાપ્ત કરે છે. ને મળતો તત્કાલીન પાવર છે.		
		(B) $\frac{mv^2}{T^2}t^2$	•	(D) $\frac{mv^2t^2}{2T^2}$

9	$100~\mathrm{m}$ ઊંચાઈવાળી ટેકરી પર $20~\mathrm{kg}$ દળવાળો ક કરી જમીન પર આવી તે બીજી $30~\mathrm{m}$ મીટર ઉ જમીનથી $20~\mathrm{m}$ ઊંચાઈએ આવેલા સમક્ષિતિજ હશે. ($\mathrm{g}=10~\mathrm{m/s}$ લો.) (ઘર્ષણબળને ક	ોંચી ટેકરી પર ચઢે છે અને ફરીથી ગંબડીને આધાર પર આવે છે. આ સમયે તેનો વેગ			
14.	(A) 40 m/s (B) 20 m/s એક દળરહિત દોરીના છેડે M kg દળવાળાં પદાર્થ સાથે 45° નો ખૂણો બનાવે, તેટલું સ્થાનાંતર છે.				
($(A) Mg(\sqrt{2} + 1)$	(B) $Mg\sqrt{2}$			
15.	(C) Mg /√2 એક બાળકના હાથમાં 'ગૅસ' ભરેલ ફુગ્ગો છે. આ કરે છે, તો તેની સ્થિતિ-ઊર્જામાં થાય.	(D) $Mg(\sqrt{2} - 1)$ ફુગ્ગાને છોડી દેતાં તે ઉપરની દિશામાં ગતિ			
	(A) વધારો	(B) ઘટાડો			
((C) પહેલાં વધારો અને પછી ઘટાડો	(D) અચળ રહે.			
16. ₹	સંરક્ષી બળ $\overset{ ightarrow}{ ext{F}}$ માટે $\int\limits_{ ext{old}}\overset{ ightarrow}{ ext{F}}\cdot d\overset{ ightarrow}{l}$				
		(C) > 0 $(D) = 0$			
	નીચેનાં પૈકી કયું બળ સંરક્ષી બળ નથી ?	(D) Princip (store in a comment store			
	(A) ગુરુત્વાકર્ષણ બળ (C) ઘર્ષણબળ	(B) સ્પ્રિંગમાં ઉદ્ભવતું પુનઃસ્થાપક બળ (D) બધાં			
	0.8 kg દળવાળા પદાર્થનો વેગ $3\hat{i} + 4\hat{j} \text{ m/s}$, તો તેની ગતિ-ઊર્જા છે.				
	(A) 10 J (B) 40 J				
19. 2	X-અક્ષની દિશામાં ગતિ કરેવાં માટે મુક્ત એવા				
ı	$U(x) = \left(\frac{x^4}{4} - \frac{x^2}{2}\right)$ J. તેની યાંત્રિક ઊર્જા 2 J છે, તો તેની મહત્તમ ઝડપ				
1	m/s છે.	1			
((A) $3\sqrt{2}$ (B) $\sqrt{2}$	(C) $\frac{1}{\sqrt{2}}$ (D) 2			
	બેક મશીન દ્વારા ખસેડાતા પદાર્થની t સમયે ગતિ ઊર્જા સમયના સમપ્રમાણમાં છે. તો t સમયે ાદાર્થ દ્વારા કપાતું અંતર ના સમપ્રમાણમાં હશે.				
((A) $t^{\frac{3}{2}}$ (B) $t^{\frac{2}{3}}$	(C) $t^{\frac{1}{4}}$ (D) $t^{\frac{1}{2}}$			
જવાબો					
	1. (B) 2. (C) 3. (B) 4. (A	5. (B) 6. (B)			
	7. (D) 8. (C) 9. (C) 10. (I	O) 11. (A) 12. (A)			
1 1	13. (A) 14. (D) 15. (B) 16. (I 19. (A) 20. (A)	D) 17. (C) 18. (A)			
નીચેના પ્રશ્નોના ટૂંકમાં જવાબ આપો :					

- 1. નિયમિત વર્તુળગતિ કરતા પદાર્થ પર કેન્દ્રગામી બળ દ્વારા કેટલું કાર્ય થાય ?
- 2. F x આલેખ વડે ઘેરાતું ક્ષેત્રફળ શું દર્શાવે ?
- 3. 1 eV કેટલા જૂલ સમતૂલ્ય છે ?
- 4. અસમાન દળના બે પદાર્થનું વેગમાન સમાન છે, તો કોની ગતિ-ઊર્જા વધુ હશે ?
- 5. એક પદાર્થને 7 m/s ના શરૂઆતના વેગથી ઊર્ધ્વદિશામાં ફેંકવામાં આવે છે, તો કેટલી ઊંચાઈએ તેની ગતિ-ઊર્જા અડધી થશે ?

- ગતિ-ઊર્જા અને સ્થિતિ-ઊર્જાનો સરવાળને શું કહેવાય.
- સ્પ્રિંગના બળ-અચળાંકનું પારિમાણિક સૂત્ર આપો.
- 8. 1 W કેટલા હોર્સપાવરને સમતૂલ્ય છે ?
- 乳 એક પદાર્થનું વેગમાન બમણું થાય છે. તેની ગતિ-ઊર્જામાં કેટલા ટકા વધારો થાય ?
- 10. અસંરક્ષી બળ એટલે શું ?
- 11. સ્થિતિસ્થાપક સંઘાતની વ્યાખ્યા આપો.
- 12. પદાર્થ પર બળ લાગતું હોય ત્યારે કાર્ય થવા માટે શું જરૂરી છે ?
- 13. દળ અને ગતિ-ઊર્જાના પદમાં વેગમાનનું સમીકરણ આપો.
- 14. કયા સંજોગોમાં બળ અને સ્થાનાંતર એક દિશામાં નથી હોતાં ?
- 15. કાર્યઊર્જા પ્રમેય જણાવો.

નીચેના પ્રશ્નોના જવાબ આપો :

- 1. કાર્ય કઈ બાબતો પર આધાર રાખે છે, તેની ચર્ચા કરો અને તે પરથી કાર્યની વ્યાખ્યા આપો.
- પદાર્થ પર ચલ બળ દ્વારા થતું કાર્ય સમજાવો.
- કાર્યઊર્જા પ્રમેય લખો અને સમજાવો.
- 4. સ્થિતિ સ્થાપકીય સ્થિતિ-ઊર્જા એટલે શું ? સ્પ્રિંગનાં ઉદાહરણ અને જરૂરી સમીકરણોની મદદથી ચર્ચા કરો.
- **5.** સંરક્ષી બળ માટે સાબિત કરો કે $\mathbf{F} = -\frac{d\mathbf{U}}{dx}$
- X—અક્ષની દિશામાં ગતિ કરતા બે પદાર્થ માટે સ્થિતિ સ્થાપક સંઘાતની ચર્ચા યોગ્ય સમીકરણોની મદદથી કરો.
- દ્ધિ-પરિમાણમાં સ્થિતિસ્થાપક સંઘાતની ચર્ચા કરો.

નીચેના દાખલાઓ ગણો :

આકૃતિ 6.17માં દર્શાવ્યા પ્રમાણે જમીન પર રહેલા 1 kg દળ ધરાવતા પદાર્થને 2 kg દળ ધરાવતા પદાર્થ સાથે લીસી ગરગડી (pulley) પરથી પસાર થતી વજનરહિત અને અતન્ય (inextensible) દોરીના બીજા છેડે જોડવામાં આવે છે. પ્રારંભમાં તંત્ર સ્થિર સ્થિતિમાં રાખવામાં આવ્યું છે. હવે આ દળોને મુક્ત કરતાં 2 kg દળ ધરાવતો પદાર્થ જયારે જમીનને સ્પર્શ, ત્યારે બંને પદાર્થોની સામાન્ય ઝડપ શોધો. પ્રારંભિક સ્થિતિમાં 2 kg દળ ધરાવતો પદાર્થ જમીનથી 3 m ઊંચાઈએ છે. (g = 9.8 m/s²)

આકૃતિ 6.17

- 2. $\overrightarrow{v_1}$ જેટલા વેગથી ગતિ કરતો m દળનો એક ક્શ સ્થિર પડેલ m દળના બીજા ક્શ સાથે દ્વિપારિમાણિક સ્થિતિસ્થાપક સંઘાત અનુભવે છે. સંઘાત બાદ આ ક્શો $\overrightarrow{v_1}$ અને $\overrightarrow{v_2}$ વેગથી ગતિ કરતા હોય, તો સાબિત કરો કે તેમના વેગો વચ્ચેનો કોશ 90° હોય.
- 3. 12 m/s ના વેગથી X-અક્ષ પર ગિત કરતો 15 kg દળવાળો સ્ટીલનો એક ગોળો સ્થિર પડેલ 20 kg દળવાળા ગોળા સાથે સંઘાત અનુભવે છે. જો સંઘાત બાદ પ્રથમ ગોળાનો વેગ 8 m/s તથા તેનો વેગ X-અક્ષ સાથે 45° કોણ બનાવતો હોય, તો સંઘાત બાદ બીજા ગોળાના વેગના મૂલ્ય તથા દિશા શોધો. [જવાબ: 6.37 m s^{-1} , $41^{\circ}44^{\circ}$]
- **4.** એક પારિમાણિક ગતિ કરતા એક કણના સ્થાન x અને સમય t વચ્ચેનો સંબંધ નીચે મુજબ છે : $t=\sqrt{x}+3$

અહીં x મીટરમાં અને t સેકન્ડમાં છે.

- (1) જ્યારે કણનો વેગ શૂન્ય થાય, ત્યારે કણનું સ્થાનાંતર શોધો.
- (2) જો કણ પર અચળ બળ લાગતું હોય, તો પ્રથમ 6સેકન્ડમાં થતું કાર્ય શોધો.

[**જવાબ**: (1) -9 m, (2) 0 J]