

COMP 6630 Matthew Freestone, Will Humphlett, Matthew Shiplett

Problem Description

- Sentiment Classification:
 - Classify a body of text as one of a set of sentiments
 - Classify text from Amazon reviews into their overall star rating
- Possible Applications:
 - Allow for analysis of large corpus of text quickly

- Dataset Problems:
 - IMDb movie dataset did not have neutral reviews
 - Twitter dataset claimed to have neutral tweets but did not
 - Amazon reviews skew heavily towards 5 star reviews.

Dataset Change

- No Neutral Reviews

https://nijianmo.github.io/amazon/index.html

- Unbalanced Dataset

Multilayer Perceptron Outline

Core Mathematical Ideas

Partial Derivatives

Sigmoid Function

$$\frac{\partial C}{\partial w^{[3]}} = \frac{\partial C}{\partial a^{[3]}} \cdot \frac{\partial a^{[3]}}{\partial z^{[3]}} \cdot \frac{\partial z^{[3]}}{\partial w^{[3]}}$$

$$\frac{\partial C}{\partial b^{[3]}} = \frac{\partial C}{\partial a^{[3]}} \cdot \frac{\partial a^{[3]}}{\partial z^{[3]}} \cdot \frac{\partial z^{[3]}}{\partial b^{[3]}}$$

Forward Pass Theory and Implementation

```
def _fast_forward_pass(self, X: np.ndarray) -> np.ndarray:
    curr = X
    for i in range(self._num_layers - 1):
        curr = curr @ self._weights[i]
        curr += self._biases[i].T
        curr = self.activation(curr) if i < self._num_layers - 2 else self._output_activation(curr)
    return curr</pre>
```

```
X: (n_example, n_features)

At least layer, W is (prev_layer_size, next_layer_size)

So curr is (n_examples, next_layer_size)

At last step, apply activation (softmax)
```

Backpropagation and Gradient Descent Math

Each layer receives a 'delta' from the one after it. We first use y_true to determine how different our prediction is from the actual value

After the change is computed, It is applied proportional to learning rate

- 1. receive new observation $\mathbf{x} = [x_1...x_d]$ and target y^*
- 2. **feed forward:** for each unit g_j in each layer 1...L compute g_j based on units f_k from previous layer: $g_j = \sigma \left(u_{j0} + \sum_k u_{jk} f_k \right)$
- 3. get prediction y and error $(y-y^*)$
- **4.** back-propagate error: for each unit g_i in each layer L...1

(a) compute error on
$$g_j$$

$$\frac{\partial E}{\partial g_j} = \sum_{i} \sigma'(h_i) v_{ij} \frac{\partial E}{\partial h_i}$$
should g_j how h_i will was h_i too be higher or lower? g_j changes too low?

- (b) for each u_{ik} that affects g_i
 - (i) compute error on u_{jk} (ii) update the weight $\frac{\partial E}{\partial u_{jk}} = \frac{\partial E}{\partial g_{j}} \sigma'(g_{j}) f_{k} \qquad u_{jk} \leftarrow u_{jk} \eta \frac{\partial E}{\partial u_{jk}}$

do we want g_j to how g_j will change be higher/lower if u_{jk} is higher/lower

Backpropagation Implementation

```
def backprop(self, X: np.ndarray, y: np.ndarray) -> tuple[list[np.ndarray], list[np.ndarray]]:
    dBias = [np.zeros(b.shape) for b in self. biases]
    dWeights = [np.zeros(w.shape) for w in self. weights]
   n samples = X.shape[0]
    # do forward pass, store all activations and net values
    layer raw = []
   layer activations = []
    a = X
    for i, (b, W) in enumerate(zip(self. biases, self. weights)):
        z = a @ W + b.T
       \# z = self. safe sparse dot(a,W) + b.T
        a = self.activation(z) if i < self. num layers - 2 else self. output activation(z)
        layer raw.append(z)
        layer activations.append(a)
```

Backpropagation Implementation

(0, 0, 0, 0, 1)

(.2, .1, .2, .1, .4)

```
delta = (layer_activations[last_hidden] - y) * self.dActivation(layer_raw[last_hidden])
dBias[last hidden] = np.mean(delta, axis=0)
dWeights[last hidden] = layer activations[last hidden-1].T @ delta
# For all hidden layers, compare to layer after it
for L in range(last hidden-1, 0, -1):
    delta = (delta @ self._weights[L+1].T) * self.dActivation(layer_raw[L])
    dBias[L] = np.mean(delta, axis=0)
    dWeights[L] = layer activations[L-1].T @ delta
# For input layer, update W according to input, not previous layer
delta = (delta @ self._weights[1].T) * self.dActivation(layer_raw[0])
dBias[0] = np.mean(delta, axis=0)
dWeights[0] = X.T @ delta
```

Regularization, L1 and L2


```
# add a second dimension to the bias gradient to make it compatible with the bias shape
dBias = [db[:,np.newaxis] for db in dBias]
# divide by number of samples to get the average gradient
dWeights = [dw/n_samples for dw in dWeights]
if self.regularization:
    dWeights = [dw + self.reg_const * r for dw, r in zip(dWeights, self._grad_reg(self._weights))]
return (dBias, dWeights, loss)
```

Representing Multiple Classes

```
def _format_labels(self, y: np.ndarray) -> np.ndarray:
    if len(y.shape) == 2 and y.shape[1] == 1:
        y = y.ravel()
    elif len(y.shape) == 2 and y.shape[1] > 1 or len(y.shape) > 2:
        raise ValueError("Invalid shape for y")
        Self._yencoder.fit(y)
        if len(self._yencoder.classes_) == 2:
            self._output_activation = sigmoid
        else:
            self._output_activation = softmax
        return self._yencoder.transform(y)
1.3
```


MLP Fit

```
for epoch num, lr in tqdm(self.epochs(), total=self.num_epochs):
   train loss = 0
   for i in range(0, X.shape[0], batch size):
       X batch = X[i:i+batch size]
       y batch = y[i:i+batch size]
       dJdB, dJdW, c loss = self. backprop(X batch, y batch)
       train loss += c loss
        self. biases = [b - lr * db for b, db in zip(self. biases, dJdB)]
        self._weights = [w - lr * dw for w, dw in zip(self._weights, dJdW)]
   num batches = X.shape[0] // batch size
   self.train loss curve.append(train loss / num batches)
   if use val:
       val loss = self. calc loss(y val, self. fast forward pass(X val))
       self.val loss curve.append(val loss)
```

Proving Functionality

```
p = TwoDimProblem(value_range=5)
X, y = p.createData(soln_rank=2, noise_frac=0, samples=500)
```

Custom class to create a visualizable problem

Useful to ensuring that fit actually occurs

Non-linear planes (quadratic)

Proving Functionality

```
from mlp import MultiLayerPerceptron
   mlp = MultiLayerPerceptron(
       epochs=150,
      lr=0.1.
       activation='sigmoid',
       hidden_layers=[5],
   mlp.fit(X, y, batch_size=10)
   print(p.plotPred(mlp.predict(X)))
 ✓ 0.9s
               150/150 [00:00<00:00, 231.84it/s]
100%
Accuracy = 0.98
```


Using the code

Live Demo

Preprocessing

Count Vectorizer - Bag of Words

Results - Our implementation on Unbalanced Dataset

Training accuracy: 0.43961161273790045
Testing accuracy: 0.44094984506992474

support	
95	
86	
19	
61	
93	
54	
54	
54	

Benchmarking

Tensorflow, Dense Layers with Vectorization built in - 66.54

Sklearn, Random Forest -

Sklearn, MLPClassifier - 67.37

Training accuracy: 0.7097509979091428						
Testing accuracy: 0.6737895158063225						
	precision	recall	f1-score	support		
1	0.53	0.51	0.52	699		
2	0.40	0.00	0.01	570		
3	0.44	0.41	0.43	1310		
4	0.46	0.28	0.35	2456		
5	0.75	0.92	0.83	7460		
accuracy			0.67	12495		
macro avg	0.52	0.42	0.43	12495		
weighted avg	0.63	0.67	0.63	12495		

Running Challenges

Non-gpu optimized, can't train on 1 million point dataset due to time constraints

Numpy arrays do not work on data this big, but scipy sparse does

MemoryError: Unable to allocate 429. GiB for an array with shape (3410019,) and data type <U33759

Dataset is unbalanced, more than 50% 5 stars

Making interfaces intuitive and useable between developers

Future Work

Numba, a JIT compiler for python. Allows CUDA GPU runs

Variable Learning Rate

Pulling data into memory incrementally

Embedding using Glove, Bert, Word2vec etc

Finishing SkLearn API to make our models usable in all their functions

Manually Balancing the dataset

Tests on performance for non-movie entries

Lessons Learned

Batching backprop calc leads to much better performance at little effect to how well it works

Variable Learning Rates and optimizers, like Adam, greatly improve performance

Imbalanced datasets are difficult to use

Use tensorflow - Open source good

Don't reinvent the wheel