Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОННИКИ

Факультет компьютерных систем и сетей Кафедра электронных вычислительных машин Дисциплина: Базы данных

Тема «Грузоперевозки» Лабораторная работа №1 Создание ER-диаграммы

Студент: Е.О. Лукьянов Преподаватель: Д.В. Куприянова

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 Создание ER-диаграммы	
1.1 Предметная область	
1.2 Типы объектов	
1.3 Атрибуты объектов	
1.4 Типы связей	
2 Установка PostgreSQL	
2.1 Начало установки	7
2.2 Настройка установки	7
2.3 Результат установки	
ЗАКЛЮЧЕНИЕ	

ВВЕДЕНИЕ

В данной работе выполняется концептуальное проектирование базы данных для предметной области «Грузоперевозки». Грузоперевозки играют важную роль в экономике, обеспечивая транспортировку товаров и материалов между различными регионами и странами. С развитием глобальной торговли и увеличением объемов перевозок возрастает потребность в эффективной системе управления процессами доставки, учёте грузов, транспортных средств, водителей, а также в мониторинге маршрутов и операционных данных.

Создание ER-диаграммы является важным этапом в проектировании базы данных, поскольку она позволяет визуально отобразить ключевые сущности и их взаимосвязи, которые будут использованы для управления грузоперевозками. ER-модель помогает определить, как взаимодействуют различные компоненты системы, такие как грузы, транспортные средства, водители, клиенты, операции, маршруты и оплаты. Эта модель служит основой для дальнейшего проектирования структуры базы данных, обеспечивая надежную и гибкую платформу для учета всех этапов транспортировки и взаимодействия между участниками процесса.

1 Создание ER-диаграммы

Исходное задание: создать концептуальную модель организации «Грузоперевозки» и представить сущности и связи в виде ER-диаграммы. Концептуальная ER-диаграмма представлена на рисунке 1.

Рисунок 1 – ER-диаграмма

1.1 Предметная область

Предметная область «Грузоперевозки» охватывает различные аспекты, связанные с организацией и управлением процессом транспортировки грузов, а также учётом заказов, клиентов и транспорта. В рамках работы моделируются следующие аспекты:

- транспортные компании;
- грузовые автомобили;
- грузы;
- клиенты;
- водители;
- оплаты.

1.2 Типы объектов

Для модели «Грузоперевозки» выделено 7 типов объектов, которые описывают основные элементы системы управления перевозками и взаимодействие с клиентами.

Груз — это товар или материал, который подлежит транспортировке.

Транспортное средство — это средство, предназначенное для перевозки груза.

Водитель — это человек, который управляет транспортным средством во время перевозки груза. Важно учитывать опыт водителя, квалификацию, а также наличие водительских прав.

Маршрут — это путь, который транспортное средство преодолевает, чтобы доставить груз от места отправления до места назначения.

Клиент — это лицо или организация, заказывающая услуги по перевозке грузов. Клиенты могут быть частными лицами или компаниями, которые нуждаются в транспортировке товаров.

Транспортная операция — это процесс, включающий в себя все этапы перевозки, от момента оформления заказа до завершения транспортировки. Каждая операция имеет статус, дату отправления, дату прибытия, а также связанную с ней информацию о грузе, транспортном средстве и водителе.

Оплата — это процесс расчета и выполнения платежа за транспортировку.

1.3 Атрибуты объектов

Для всех типов объектов модели «Грузоперевозки» были выделены атрибуты, которые описывают ключевые характеристики каждого объекта.

Груз включает такие атрибуты, как название, вес, объем, тип и дата погрузки.

Транспортное средство характеризуется такими атрибутами, как производитель, марка, грузоподъемность, номер кузова.

Водитель имеет следующие атрибуты: ФИО, стаж вождения, номер водительского удостоверения, возраст.

Маршрут описывается через атрибуты: точка отправления, точка прибытия, расстояние, время в пути.

Клиент включает атрибуты: название организации, телефон, адрес электронной почты, адрес.

Транспортная операция характеризуется такими атрибутами, как статус, дата отправления, дата прибытия, ожидаемое время доставки.

Оплата включает атрибуты: сумма, дата оплаты, способ оплаты, статус оплаты.

1.4 Типы связей

Для описания взаимосвязей между объектами модели «Грузоперевозки» были выделены следующие связи:

1. Связь «Груз — Транспортная операция» (один-ко-многим): каждый груз может быть перевезен в рамках нескольких транспортных операций, но каждая транспортная операция относится только к одному грузу.

- 2. Связь «Транспортное средство Транспортная операция» (один-комногим): каждое транспортное средство может быть использовано для выполнения нескольких транспортных операций, но каждая операция выполняется с использованием только одного транспортного средства.
- 3. Связь «Водитель Транспортная операция» (один-ко-многим): каждый водитель может выполнять несколько транспортных операций, но каждая транспортная операция привязана только к одному водителю.
- 4. Связь «Маршрут Транспортная операция» (один-ко-многим): каждый маршрут может быть использован для выполнения нескольких транспортных операций, но каждая транспортная операция имеет только один маршрут.
- 5. Связь «Клиент Транспортная операция» (многие-ко-многим): один клиент может заказать несколько транспортных операций, и одна операция может быть заказана несколькими клиентами.
- 6. Связь «Транспортное средство Груз» (многие-ко-многим): одно транспортное средство может перевозить несколько грузов, и один груз может быть перевезен разными транспортными средствами.
- 7. Связь «Транспортная операция Оплата» (один-к-одному): каждая транспортная операция имеет одну оплату, но одна оплата относится только к одной транспортной операции.
- 8. Связь «Клиент Оплата» (один-ко-многим): один клиент может сделать несколько оплат, но каждая оплата связана только с одним клиентом.

2 Установка PostgreSQL

2.1 Начало установки

На рисунке 2.1 приведена начальная страница установщика.

Рисунок 2.1 – Начальная страница установщика

2.2 Настройка установки

На рисунке 2.2 приведена страница выбора компонентов.

Рисунок 2.2 – Страница выбора компонентов

На рисунке 2.3 приведена страница, информирующая об уже установленной версии PostgreSQL и о том, что она будет обновлена.

Рисунок 2.3 – Страница обновления уже установленной версии

На рисунке 2.4 приведена страница с информацией о ранее выбранном месте хранения и порте, которые будут использованы при установке.

Рисунок 2.4 – Место хранения данных и порт

На рисунке 2.5 приведена страница процесса установки.

Рисунок 2.5 – Процесс установки

2.3 Результат установки

Результат установки PostgreSQL представлен на рисунке 2.6.

Рисунок 2.6 – Успешная установка PostgreSQL

ЗАКЛЮЧЕНИЕ

В процессе работы была разработана ER-диаграмма для предметной области «Грузоперевозки», которая отражает основные объекты и их взаимосвязи в системе. Были выделены ключевые сущности, такие как грузы, транспортные средства, водители, клиенты, маршруты, а также определены их атрибуты и типы связей. Это позволяет более четко понять структуру и логику функционирования системы грузоперевозок, а также выявить важные аспекты, которые необходимо учитывать при проектировании базы данных.

Успешная реализация концептуальной модели является важным этапом, который позволяет перейти к созданию физической базы данных. Это откроет возможности для эффективного управления процессами перевозки, улучшения планирования маршрутов и повышения качества обслуживания клиентов. Для реализации базы данных была успешно настроена система управления PostgreSQL, что позволит в дальнейшем реализовать модель на практике и интегрировать ее с другими системами.