

BANA 6043-STATISTICAL COMPUTING

Project: Statistical Analysis to Reduce landing Overrun

Niharika Gupta- M13437287

Carl H Lindner School of Business: University of Cincinnati

Abstract: This report studies the factors that are involved in the landing distance of a commercial aircrafts with the inspiration to decrease the danger of flight landing overrun. The data analyzed is (isolated in two Excel records 'FAA-1.xls' and 'FAA-2.xls') containing landing information from 950 simulated commercial flights. Underneath it is an outline of the factors of each flight and the detailed report analyzes each factor in detail. This report is divided into five chapters covering various aspects to statistical analysis methods performed on our data sets such as: data exploration and data cleaning, descriptive study of variables, statistical modeling and model diagnostics, model validations, and remodeling. A portion of the procedures applied to the investigation are information cleaning systems, for example, consolidating records from various sources, performing legitimacy and fulfillment checks of the factors and end of copies and missing qualities. Other further developed methods that have been applied are the utilization of plots and correlation analysis of the variables, and linear regression modeling. The outcome of this report is to predict the factors involved and their degree of involvement in flight landing distance to come up with a mathematical equation that can be used by commercial in-flight software's which will warn pilots before landing if their flight has a risk of landing overrun and giving them ample time to make necessary adjustments.

Gupta2na

Niharika Gupta

M13437287

Summary

We were provided 2 datasets with 800 and 150 observation each and the combined dataset had a total of 1000 rows and 8 columns because the combined dataset had 50 rows that were completely null. However, I used only 831 observation to complete the study because I removed were abnormal values (outliers), null rows and duplicate values. There were 100 duplicate rows and 19 abnormal values. After cleaning the dataset, I decided to deal with the abnormal values. There were 638 missing values for speed air and 50 for durations. I checked the co-relation between different variables in order to make decision about imputation. Because of strong co-relation between speed ground and speed distance I decided to calculate missing speed air values using the available speed ground values. I did not proceed with the imputation for the missing duration values as I didn't see any association between duration and distance. I then performed the univariate analysis to study the distribution of my variables and then studied landing distance with different variables using the Proc Chart and Proc Plot method which showed an association between distance and speed air, speed ground both, consistent with our prior findings with co-relation coefficients. I also noticed that landing distance for 'Boeing' aircraft is generally higher than 'Airbus' and I confirmed these findings using Proc T-test.

I again did the co-relation analysis after imputation and observed an even higher co-relation between speed air and speed ground obviously because speed air values were calculated from speed ground values. Next, in order to come up with a perfect model for my study, I performed regression analysis of our dependent variable distance with the independent variables. Based on the P values and parameter estimates, I kept removing variables till my model seemed fit for the study. My final model consisted of speed ground, height and type of aircraft. Next, I proceeded with the validation of my model and kept validating and remodeling until I came up with a model with R square value as high as 0.9669. My final model had only three variable (speed ground, height and type of aircraft) and these variables have positive co-relation with landing distance. I concluded my study after deriving a formula for calculating Landing distance using the values of these 3 variables.

Variables

Data: Landing data (landing distance and other parameters) from 950 commercial flights (not real data set but simulated from statistical models). See two Excel files 'FAA-1.xls' (800 flights) and 'FAA-2.xls' (150 flights). Variable dictionary:

Aircraft: The make of an aircraft (Boeing or Airbus).

Duration (in minutes): Flight duration between taking off and landing. The duration of a normal flight should always be greater than 40min.

No pasg: The number of passengers in a flight.

Speed ground (in miles per hour): The ground speed of an aircraft when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal.

Speed_air (in miles per hour): The air speed of an aircraft when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal.

Height (in meters): The height of an aircraft when it is passing over the threshold of the runway. The landing aircraft is required to be at least 6 meters high at the threshold of the runway.

Pitch (in degrees): Pitch angle of an aircraft when it is passing over the threshold of the runway.

Distance (in feet): The landing distance of an aircraft. More specifically, it refers to the distance between the threshold of the runway and the point where the aircraft can be fully stopped. The length of the airport runway is typically less than 6000 feet.

Contents

Gupta2na

Niharika Gupta

M13437287

STEP 1: IMPORTING DATA FILES	2
STEP 2: COMBINING DATA SETS	4
1. CONCATENATING DATA SETS	4
2. INTERLEAVING DATA SETS BASED ON LANDING DISTANCE	4
STEP 3: VERIFYING NULL ROWS	5
STEP 4: HANDLING NULL ROWS	6
STEP 5 : CHECKING FOR DUPLICATES	6
STEP 6: REMOVAL OF DUPLICATES	7
STEP 7: CHECKING FOR ABNORMAL VALUES (OUTLIERS)	8
STEP 8: CHECKING FOR THE NUMBER OF OUTLIERS AND STORING THEM IN A SEPARATE DATASET	8
STEP 9: HANDLING OUTLIERS	9
Step 10 DROPPING THE COLUMNS CREATED FOR ABNORMAL AND NORMAL VALUES	9
STEP 11 CHECKING FOR OTHER MISSING VALUES AFTER REMOVING ROWS WITH NO AIRCRAFT NAME	10
STEP 12 DEALING WITH MISSING VALUES	10
STEP 12 SUBSTITUTING MISSING SPEED AIR VALUES USING IMPUTATION	11
Step 13 UNIVARIATE ANALYSIS TO SEE THE DISTRIBUTION OF DIFFERENT VARIABLES	13
CHAPTER 2: DESCRIPTIVE STUDY OF VARIABLES	14
STEP 1: STUDYING LANDING DISTANCE WITH OTHER VARIABLES	14
STEP 2: STUDYING CO-RELATION BETWEEN DIFFERENT VARIABLE AFTER IMPUTATION	16
CHAPTER 3: STATISTICAL MODELING	17
STEP 1: ASSIGNING AIRCRAFT TYPE A NUMERICAL VALUE IN ORDER TO PERFORM REGRESSION ANALYSIS	17
STEP 2: REGRESSION ANALYSIS OF EACH INDEPENDENT VARIABLE WITH DISTANCE	18
STEP 3: REGRESSION ANALYSIS OF SIGNIFICANT VARIABLES TOGETHER WITH DISTANCE	19
STEP 4: REGRESSION ANALYSIS AFTER REMOVING SPEED AIR AND PITCH	
CHAPTER 4: MODEL VALIDATION	21
CHAPTER 5: REMODELING AND MODEL VALIDATION	22
CONCLUSION:	23

CHAPTER 1: DATA EXPLORATION AND DATA CLEANING

Goal: Importing the given datasets, combining them and exploring to check for outliers, missing values and duplicates and finally acting upon them accordingly.

STEP 1: IMPORTING DATA FILES

Data sets were imported into SAS studio using the below code.

Observation:

Gupta2na

Niharika Gupta

M13437287

• First data set has 800 rows and 8 columns and the second one has 200 rows (150 observations, 50 null rows) and 7 columns.

Gupta2na

Niharika Gupta

M13437287

STEP 2: COMBINING DATA SETS

I have used both Concatenation and Interleaving but I will be working on dataset combined using Concatenating.

1. CONCATENATING DATA SETS

Observation: The resulting data set has 1000 rows and 8 columns.

2. INTERLEAVING DATA SETS BASED ON LANDING DISTANCE

Data sets are first sorted by distance and then interleaving is performed.

Observation:

• First 50 rows are blank which must be the 50 missing rows that we observed in the second dataset while importing. We will remove these rows before handling other missing values and abnormal data. First we need to verify these missing rows.

Gupta2na Niharika Gupta M13437287

STEP 3: VERIFYING NULL ROWS

Null rows are verified below.

Observation:

- The results confirm that there are 50 null rows.
- There are other missing values too, but these will be handled later.

Gupta2na

Niharika Gupta

M13437287

STEP 4: HANDLING NULL ROWS

Observation:

• A total of 950 rows remain after removing the null rows.

STEP 5: CHECKING FOR DUPLICATES

We need to check if there are any duplicate rows. In order to do that, dataset is first sorted and then duplicates are checked.

Observation:

There are around 100 duplicate rows as the output shows a total of 850 rows.

```
/* DATA SET IS FIRST SORTED*/
proc sort data=CLEAN OUT=CLEANSORTED;
BY aircraft descending duration distance height no_pasg pitch speed_air speed_ground;
RUN;

/*CHECKING FOR DUPLICATES*/

PROC FREQ data=CLEANSORTED;
    TABLES aircraft*height*no_pasg*pitch*speed_air* speed_ground*distance/ noprint out=keylist;
RUN;
PROC PRINT;
WHERE count ge 2;
RUN;
```

Gupta2na

Niharika Gupta

M13437287

STEP 6: REMOVAL OF DUPLICATES

Duplicates are removed using the below code.

Observation:

• A total of 850 rows and 8 columns remain after removal of duplicate values.

Gupta2na

Niharika Gupta

M13437287

STEP 7: CHECKING FOR ABNORMAL VALUES (OUTLIERS)

The criteria for normal and abnormal values is listed in the variable description of the data. We need to determine if there are any abnormal values as these will be the outliers for our study.

```
/*CHECKING FOR ABNORMAL VALUES*/

DATA ABNORMAL;
SET NO_DUP;
IF duration<= 40 and duration ^= . then DUR='ABNORMAL';else DUR='NORMAL';
IF speed_ground<30 OR speed_ground>140 then SPEED_G='ABNORMAL'; else SPEED_G='NORMAL';
IF (speed_air<30 OR speed_air>140) and speed_air ^= . then SPEED_A='ABNORMAL'; else SPEED_A='NORMAL';
IF height<6 then HGHT='ABNORMAL'; else HGHT='NORMAL';
IF distance>6000 then LD='ABNORMAL';ELSE LD='NORMAL';
RUN;

proc print data=abnormal;
run;
```

Obs	aircraft	duration	no_pasg	speed_ground	speed_air	height	pitch	distance	DUR	SPEED_G	SPEED_A	HGHT	LD
- 1	boeing	98.4790912	53	107.91568005	109.32837648	27.418924252	4.0435145715	3369.8363638	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
2	boeing	125.73329732	69	101.65558863	102.8514051	27.804716181	4.1174316991	2987.8039235	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
3	boeing	112.0170008	61	71.051960883		18.589385734	4.4340431286	1144.922426	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
4	boeing	196.82569105	56	85.813327679		30.744597235	3.8842361245	1664.2181584	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
5	boeing	90.095381357	70	59.888528183		32.397688062	4.0260964152	1050.2644976	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
6	boeing	137.59581722	55	75.014343744		41.21496259	4.203853398	1627.0681991	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
7	boeing	73.023794916	54	54.4298029		24.03532163	3.8376457299	805.30399317	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
8	boeing	52.903187872	57	57.101661737		19.388837508	4.6436717769	573.62178606	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
9	boeing	155.51861605	61	85.443624251		35.375389749	4.2287278648	1698.9927548	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
10	boeing	176.86203205	56	61.796710514		36.748816124	4.1843990127	1137.7457579	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
11	boeing	158.4618984	61	53.778126741		46.355832902	5.5563991716	1075.3717411	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
12	boeing	180.61655753	54	141.21863535	141.72493569	23.575935009	5.2168022511	6533.0476506	NORMAL	ABNORMAL	ABNORMAL	NORMAL	ABNORMA
13	boeing	72.289633216	54	93.391762435	92.869561214	32.223489271	3.8182761471	2128.708285	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
14	boeing	187.59954737	58	94.036412942	96.196460585	33.661226156	4.6361847249	2304.857574	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
15	boeing	154.36870049	63	63.540613553		26.402991875	3.8566584986	1089.9729531	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
16	boeing	165.54194536	69	48.774673273		31.228664837	3.9020460339	943.06840443	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
17	boeing	153.54633587	61	83.556493271		29.897473262	3.519783726	1793.5628232	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
18	boeing	107.11331938	78	86.807962025		25.477015381	4.4142187986	1910.8768699	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
19	boeing	233.80249791	69	104.80843448	103.86845794	43.882731896	3.2450978263	3213.985265	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
20	boeing	163.90650312	55	119.3804635	120.44470797	38.558536007	3.7014493887	4524.2788621	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
21	boeing	97.477623266	63	73.533976336		29.152465311	4.0140084257	1332.0387485	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
22	boeing	118.63054039	55	79.994815042		29.366866101	4.4071812572	1515.9652753	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
23	boeing	126.54028789	70	94.781230282	91.142068839	39.476298784	3.5949361476	2182.2207374	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
24	boeing	179.91591838	66	63.671165314		19.574699806	4.2867337712	873.4408921	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
25	boeing	112.90009528	53	98.180410862	99.135830727	28.152991316	3.9874712191	2586.6650864	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
26	boeing	56.64048966	66	72.953658239		36.154157217	4.3878559157	1205.1280251	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
27	boeing	86.828911312	62	91.714535792	92.874851912	28.773729478	3.3058880775	2313.3356963	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
28	boeing	157.35773231	57	72.327130778		26.223285332	4.2231807894	1105.3658522	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
29	boeing	186.68141397	49	66.417230464		44.692695788	4.1135438115	1176.0276765	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
30	boeing	140.23831155	65	118.74200471	119.40214631	19.856192215	4.6462659602	4217.1294518	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
31	boeing	130.46356358	52	116.71343434	117.65649967	36.195527446	3.8943524297	4240.0941825	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
32	boeing	142.15534911	48	39.769294325		39.655921061	4.5992872267	1030.457488	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
33	boeing	155.84557082	62	79.745315854		23.839448756	3.3959225955	1322.2129905	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
34	boeing	124.94457133	44	72.546668651		42.859879536	4.028501716	1321.1606709	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL

Observation:

- There are some abnormal values, but we need to determine their number in order to decide if we can remove them or not.
- The resulting data set has 13 columns now, with 5 new columns added to indicate normal and abnormal values.

STEP 8: CHECKING FOR THE NUMBER OF OUTLIERS AND STORING THEM IN A SEPARATE DATASET

Observation:

- The number of outliers is just 19 which is not too high thus we can remove them from the data set that we want to work on.
- We will however save them in a different dataset before deleting them from our main data set.

Gupta2na

Niharika Gupta

M13437287

```
/*CHECKING FOR THE COUNT OF ABNORMAL VALUES AND STORING THEM IN A NEW DATASET*/
DATA ABNORMAL VALUES:
SET ABNORMAL:
WHERE DUR="ABNORMAL"OR SPEED_G='ABNORMAL'OR SPEED_G='ABNORMAL' OR SPEED_A='ABNORMAL' OR HGHT='ABNORMAL'OR LD='ABNORMAL';
PROC PRINT DATA=ABNORMAL VALUES;
RUN:
              duration no_pasg speed_ground speed_air
             150.94674427
                                                         -2.915335901 3.1225583646 34.080783293 NORMAL
                                                                                                      NORMAL
                                                                                                                 NORMAL
   1 airbus
                                 66.421119468
                                                                                                                           ABNORMAL NORMAL
   2 airbus
             157.91497689
                             68
                                 56.497986661
                                                         -0.087758596 4.6928768405 380.36298195 NORMAL
                                                                                                      NORMAL
                                                                                                                 NORMAL
                                                                                                                           ABNORMAL NORMAL
                                                                                                                NORMAL
   3 airbus
             163.52364053
                             62 72.028024252
                                                         0.086105484 3.6220566648 537.91958189 NORMAL
                                                                                                      NORMAL
                                                                                                                           ABNORMAL NORMAL
               31.7018881
                                  76.354176433
                                                         30.991021813 2.8173798019 948.47376723 ABNORMAL
                              73 92.994942381
                                                         -3.332387973 4.8305592948 1567.6657219 NORMAL
   5 airbus
              103.09084673
                                                                                                                NORMAL
                                                                                                                           ABNORMAL NORMAL
                                                                                                              NORMAL
                                                                                                                        NORMAL
                             54 94.511052223 95.930926862 37.476967053 4.1733221259
   6 airbus
             16.893454896
                                                                                 2162.92737 ABNORMAL
                                                                                                      NORMAL
                                                                                                                                     NORMAL
              133 45085825
                              73 57 045200404
                                                         1.2538552558 4.7153842301 371.27728088 NORMAI
                                                                                                      NORMAL
                                                                                                                 NORMAL
                                                                                                                           ARNORMAL
   8 boeing
             283.76336844
                             62 58.889312381
                                                         4.2644634439 4.7721930401 425.85856098 NORMAL
                                                                                                                NORMAL
                                                                                                                          ABNORMAL NORMAL
                                                         -3.546252405 4.2132855404 581.38099947 NORMAL
             175.08462089
                                 52.493139102
                                                                                                                NORMAL
                                                                                                                           ABNORMAL NORMAL
   9 boeing
   10 boeing
             124.37864547
                                 60.367043725
                                                         3.7889195211 3.7060888319 641.59956822 NORMAL
                                                                                                      NORMAL
                                                                                                                NORMAL
                                                                                                                           ABNORMAL NORMAL
   11 boeing
             146 04337112
                             69 71.787305883
                                                         -1.528129182 4.1994604645 738.65436932 NORMAL
                                                                                                      NORMAL NORMAL ABNORMAL NORMAL
   12
      boeing
              119.64402906
                                  70.178463873
                                                         2.2051944554 3.7397748803 816.20664104 NORMAL
                                                                                                                 NORMAL
                             63 63.57042961
                                                        28.406673108 3.9378640453 1032.4646189 ABNORMAL NORMAL
                                                                                                                NORMAL
                                                                                                                           NORMAL
   13 boeing
             17.375513046
   14 boeing
             212.94303494
                             61 29.227656382
                                                         23.349901124 4.3961881217 1076.855217 NORMAL
                                                                                                      ABNORMAL NORMAL
                                                                                                                           NORMAL
                                                                                                                                     NORMAL
   15 boeing
                                                                                                                           NORMAL
              141.93411511
                              46
                                 27.735715303
                                                         24.400127629 4.3682093233 1323.7157777 NORMAL
                                                                                                      ABNORMAL NORMAL
                                                                                                                                      NORMAL
                             51 98.219800666 99.057514589 52.473140903 4.1623371208 2808.3151244 ABNORMAL NORMAL
   16 boeing 31.391008253
   17 boeing
            14.764207145
                             59 108.29169029 109.32758442 46.930873686 4.8096217396 3645.6110025 ABNORMAL NORMAL
                                                                                                                 NORMAL
```

54 141.21863535 141.72493569 23.575935009 5.2168022511 6533.0476506 NORMAL ABNORMAL ABNORMAL NORMAL

64 136.65915832 136.42342138 44.286109179 4.1694037368 6309.9459762 NORMAL

STEP 9: HANDLING OUTLIERS

18 boeing 119.92455279

19 boeing 180.61655753

I removed the abnormal values using the below code.

NORMAL

NORMAL

NORMAL

ABNORMAL

ABNORMAL

Observation:

A total of 831 observations remain after removing outliers.

Step 10 DROPPING THE COLUMNS CREATED FOR ABNORMAL AND NORMAL VALUES

Next, we will drop the new variables ('normal', 'abnormal) that we created since we don't need them.

Gupta2na

Niharika Gupta

M13437287

	Obs	aircraft	duration	no_pasg	speed_ground	speed_air	height	pitch	distance
	- 1	airbus	190.7394255	77	47.882117055		14.835964361	2.7322842838	41.722312733
	2	airbus	212.05403613	63	51.587044527		20.451285811	3.063686215	133.08690985
	3	airbus	128.37336566	64	55.481625107		14.65127605	3.9792117538	180.56522534
	4	airbus	237.40527671	48	53.774013118		28.260802216	3.1755295988	241.16096423
	5	airbus	142.5876457	66	51.158228388		8.559069177	3.9134477851	242.59588646
	6	airbus	172.04931209	36	47.486765029		13.984809941	4.2990197162	250.68976141
/*DROPPING COLUMNS CREATED FOR ABNORMAL VALUES SINCE WE DON'T NEED THEM ANYMORE*/	7	airbus	230.32398183	58	55.108631792		29.859498104	3.2599541617	270.83876243
	8	airbus	175.53311381	61	65.037084787		13.807590435	3.4948549953	280.80440304
	9	airbus	182.44776305	66	52.70784152		24.302641153	4.1859666088	317.81268659
DATA FLIGHTS_CLEAN;	10	airbus	214.78506113	59	56.285225619		19.097947487	3.9151278527	321.51632716
SET NO_OUTLIERS; DROP DUR SPEED_G SPEED_A HGHT LD;	- 11	airbus	183.61849925	69	53.539242523		31.739422907	3.5237749131	349.15851648
	12	airbus	261.38701422	68	57.08470944		15.761691561	3.8049960732	350.60240534
	13	airbus	149.20859096	66	63.817889502		11.238021337	3.6038718062	370.47074159
RUN:	14	airbus	208.87900668	56	53.888762395		23.498888191	4.0000159209	375.32596789
•	15	airbus	98.176296764	60	53.749134607		25.54578925	3.7142005991	378.82578267
	16	airbus	42.146226159	63	46.264718501		20.490711515	3.4819121545	383.55849778
PROC PRINT DATA=FLIGHTS_CLEAN;	17	airbus	179.99562817	88	57.243835228		35.325529113	3.0885057372	383.57772124
RUN;	18	airbus	198.42235144	58	64.305146799		17.456593278	3.8221946371	383.90578116
non,	19	airbus	207.69159848	61	54.542338048		19.610845089	3.9730540461	397.01200564
	20	-14	400 000 4000		04 407005500		22 5122110	0.4450005000	207 54202242

STEP 11 CHECKING FOR OTHER MISSING VALUES AFTER REMOVING ROWS WITH NO AIRCRAFT NAME

OBSERVATIONS:

- 1. There are 628 missing values for speed air which accounts for around 75.57 percent of the total observations.
- 2. There are 50 missing values for duration.

STEP 12 DEALING WITH MISSING VALUES

First, I need to check the co-relation between different variables to see how important a variable is for this study and how are the variable related to each other to determine the method of imputation.

I have used the CORR method to determine pairwise co-relation coefficient. Highlighted columns below indicate a strong co-relation between the 2 variables and the following can be concluded:

```
/*finding co-relation between different variables*/

proc corr data=FLIGHTS_CLEAN;

var distance duration height no_pasg pitch speed_air speed_ground;

title Pairwise correlation coefficients;

run;
```

Gupta2na

Niharika Gupta

M13437287

Observations:

- There is a strong co-relation between ground speed and landing distance (0.86624).
- There is a strong co-relation between air speed and landing distance, thus speed air is an important variable that we need to keep (0.94210).
- There is a strong-co relation between speed air and speed ground(0.98974).
- There is no direct co-relation between distance and duration as circled below. Thus the missing duration values can be left as such.

STEP 12 SUBSTITUTING MISSING SPEED AIR VALUES USING IMPUTATION

Since there are many missing speed_air values, this can cause a great amount of bias, thus I need to replace missing values using imputation method. There are two approaches. I can either substitute the missing values with the mean of the present speed air values. From the dataset, it can be observed that all the speed air values present are greater than 90. This means all the values below 90 are missing and it won't be accurate to use this method to calculate the missing values. Second method is to use regression method for imputation. Since there is a strong co-relation between air speed and ground speed, I can use the ground speed to calculate the missing speed air values.

1. I first created a new variable with a value equal to the difference between speed air and speed ground.

/*Difference Analysis of Speed air and ground to imputate missing values*/

data SPEEDAG_DIFF;
set FLIGHTS_CLEAN;
difference= speed_ground-speed_air;
run;
proc print data=SPEEDAG_DIFF;
run;

proc means data=SPEEDAG_DIFF;
var difference;

Gupta2na

Niharika Gupta

M13437287

2. I then applied the means procedure on the "difference" variable. The results show that the mean of the difference variable is - 0.0738829.

3. Next I added this mean value to the speed ground to impute missing speed air value

	Obs	aircraft	duration	no_pasg	speed_ground	speed_air	height	pitch	distance
	1	airbus	190.7394255	77	47.882117055	47.808234155	14.835964361	2.7322842836	41.722312733
	2	airbus	212.05403613	63	51.587044527	51.513161627	20.451285811	3.063686215	133.08690985
	3	airbus	128.37336566	64	55.481625107	55.387742207	14.65127605	3.9792117538	180.56522534
	4	airbus	237.40527671	48	53.774013118	53.700130218	28.260802216	3.1755295986	241.16098423
	5	airbus	142.5876457	66	51.158228388	51.084345488	8.559069177	3.9134477851	242.59588646
	6	airbus	172.04931209	36	47.486765029	47.412882129	13.984809941	4.2990197162	250.68976141
	7	airbus	230.32398183	58	55.108631792	55.034748892	29.859498104	3.2599541617	270.83676243
	8	airbus	175.53311361	61	65.037084787	64.963201887	13.807590435	3.4948549953	280.80440304
	9	airbus	182.44776305	66	52.70784152	52.63395862	24.302641153	4.1859666088	317.81268659
	10	airbus	214.78506113	59	56.285225619	56.211342719	19.097947487	3.9151278527	321.51632716
	11	airbus	183.61849925	69	53.539242523	53.465359623	31.739422907	3.5237749131	349.15851648
	12	airbus	261.38701422	68	57.08470944	57.01082654	15.761691561	3.8049960732	350.60240534
	13	airbus	149.20859096	66	63.817889502	63.744006602	11.238021337	3.6038718062	370.47074159
	14	airbus	208.87900668	56	53.888762395	53.814879495	23.496668191	4.0000159209	375.32598789
	15	airbus	98.176296764	60	53.749134607	53.675251707	25.54578925	3.7142005991	378.82578267
	16	airbus	42.148228159	63	46.264718501	46.190835601	20.490711515	3.4819121545	383.55849778
	17	airbus	179.99562817	66	57.243835228	57.169952328	35.325529113	3.0665057372	383.57772124
	18	airbus	198.42235144	58	64.305146799	64.231263899	17.456593278	3.8221946371	383.90578116
	19	airbus	207.69159848	61	54.542338048	54.468455148	19.610845089	3.9730540461	397.01200584
	20	airbus	198.8694626	58	61.127025526	61.053142626	22.51924496	3.4452935393	397.54283343
	21	airbus	138.23492748	59	64.813671941	64.739789041	14.780338473	4.2209516551	402.93130074
	22	airbus	117.7405601	59	47.679801523	47.605918623	28.606492697	3.7520465798	406.08928283
	23	airbus	156.4574255	59	72.591244009	72.517361109	14.082627958	3.7352438518	408.97922734
/* Imputing missing values of Speed air*/	24	airbus	134.685641	57	44.126135466	44.052252566	27.182379063	3.0128294313	417.54307285
, , , , , , , , , , , , , , , , , , , ,	25	airbus	199.43713308	69	58.10907688	58.03519398	24.20102213	3.6341657268	418.01948274
data FLIGHTS IMPUTE;	26	airbus	153.43737249	61	54.593475453	54.519592553	29.148613678	3.2715631978	424.16175773
_ ,	27	airbus	142.48940356	66	63.918959665	63.845076765	30.153465712	3.0650903012	428.99182821
set FLIGHTS_CLEAN;	28	airbus	199.50282008	72	58.512146812	58.438263912	38.590930739	3.5470466288	432.73222589
<pre>if speed_air='.' then speed_air=speed_ground-0.0738829;</pre>	29	airbus	162.52084082	62	74.91630489	74.84242199	14.399868335	3.1129303364	433.66000569
run;	30	airbus	117.25925859	61	66.079801141	66.005918241	14.565008188	3.7122960454	436.14783447
proc print data=FLIGHTS IMPUTE;	31	airbus	129.67260359	68	67.955731399	67.881848499	14.717433562	4.3023776071	436.67877934
run;	32	airbus	248.72910776	58	49.46213365	49.38825075	16.796177769	3.7616893064	452.13126383
i wii,									*** ******

Gupta2na

Niharika Gupta

M13437287

Step 13 UNIVARIATE ANALYSIS TO SEE THE DISTRIBUTION OF DIFFERENT VARIABLES

After dealing with both missing and abnormal values, I can start exploring the dataset to learn more about it. I will first apply the univariate analysis to study the distribution of different variables.

Observations:

• All the variables are normally distributed except distance which is exponentially distributed.

Univariate Analysis Result with graphs.pd

PROC UNIVARIATE DATA=FLIGHTS_IMPUTE PLOT; RUN;

Gupta2na

Niharika Gupta

M13437287

Conclusion

- 1. Initial dataset has 950 observations (plus 50 null rows).
- 2. There were 100 duplicate values, 628 missing speed air values and 50 duration values and around 19 outliers.
- 3. After removing the duplicates, and outliers and dealing with the missing values, the prepared dataset has 830 observations and 8 columns. Our dataset is now ready for descriptive analysis.

CHAPTER 2: DESCRIPTIVE STUDY OF VARIABLES

Goals: To study association of landing distance with different variables and try to find variables of significance.

STEP 1: STUDYING LANDING DISTANCE WITH OTHER VARIABLES

Since we are studying landing distance, I will study the effects of different variables on the landing distance.

LANDING DISTANCE AND AIRCRAFT TYPE

Observations:

Landing distance is exponentially distributed, and it appears to be higher for Boeing aircrafts in general. I will perform another test to confirm this observation.

```
/* Landing distance sorted by aircrafts*/
```

```
proc chart data=FLIGHTS_IMPUTE;
vbar distance / subgroup = aircraft;
run;
```


LANDING DISTANCE AND AIRCRAFT TYPE BY TTEST (TO CONFIRM ASSOCIATION BETWEEN AIRCRAFT TYPE AND DISTANCE)

Observations:

Gupta2na

Niharika Gupta

M13437287

It is consistent with the prior observation that Boeing aircraft require a higher landing distance than airbus.

```
/* TTEST */
proc ttest data=FLIGHTS_IMPUTE;
class aircraft;
var distance;
run;
```


LANDING DISTANCE AND OTHER VARIABLES

Observations:

- The distribution of all variables are random except speed air and ground speed.
- Speed air and speed ground show strong co-relation when plotted against the variable distance. This is consistent with prior findings of high co-relation co-efficient between speed air and distance, and speed ground and distance.

STEP 2: STUDYING CO-RELATION BETWEEN DIFFERENT VARIABLE AFTER IMPUTATION

I will again study the co-relation between different coefficients after substituting the missing speed air values.

Gupta2na

Niharika Gupta

M13437287

```
/*finding co-relation between different variables after imputation*/
proc corr data=FLIGHTS_IMPUTE;
var distance duration height no_pasg pitch speed_air speed_ground;
title Pairwise correlation coefficients;
run;
```

	Pearson Correlation Coefficients Prob > r under H0: Rho≕0 Number of Observations												
	distance	duration	height	no_pasg	pitch	speed_air	speed_ground						
distance distance	1.00000 831	-0.05138 0.1514 781	0.09941 0.0041 831	-0.01776 0.6093 831	0.08703 0.0121 831	0.86780 <.0001 831	0.86624 <.0001 831						
duration duration	-0.05138 0.1514 781	1.00000 781	0.01112 0.7564 781	-0.03639 0.3098 781	-0.04675 0.1918 781	-0.04645 0.1948 781	-0.04897 0.1716 781						
height height	0.09941 0.0041 831	0.01112 0.7564 781	1.00000	0.04699 0.1760 831	0.02298 0.5082 831	-0.05631 0.1048 831	-0.05761 0.0970 831						
no_pasg no_pasg	-0.01776 0.6093 831	-0.03639 0.3098 781	0.04699 0.1760 831	1.00000	-0.01793 0.6057 831	-0.00056 0.9871 831	-0.00013 0.9969 831						
pitch pitch	0.08703 0.0121 831	-0.04675 0.1918 781	0.02298 0.5082 831	-0.01793 0.6057 831	1.00000	-0.03616 0.2978 831	-0.03912 0.2599 831						
speed_air speed_air	0.86780 <.0001 831	-0.04645 0.1948 781	-0.05631 0.1048 831	-0.00056 0.9871 831	-0.03616 0.2978 831	1.00000 831	0.99918 <.0001 831						
speed_ground speed_ground	0.86624 <.0001 831	-0.04897 0.1716 781	-0.05761 0.0970 831	-0.00013 0.9969 831	-0.03912 0.2599 831	0.99918 <.0001 831	1.00000 831						

Observations:

- 1. High co-relation between speed air and distance.
- 2. High correlation between speed ground and distance.
- 3. Even higher co-relation between speed air and speed ground since the missing speed air values were calculated from speed ground.

CONCLUSION

- 1. There seems to be high co-relation of distance with speed air and speed ground both.
- 2. Imputation increased the co-relation coefficient for speed air and speed ground.

CHAPTER 3: STATISTICAL MODELING

Goals: To use a linear regression model and study the relationship of the dependent variable (distance) with independent variables (aircraft, duration, no. of passengers, speed air, speed ground, pitch and height).

STEP 1: ASSIGNING AIRCRAFT TYPE A NUMERICAL VALUE IN ORDER TO PERFORM REGRESSION ANALYSIS

Since aircraft is not a numerical value, I will assign both the types of aircraft a numerical value in order to perform the regression analysis. The generated table will thus have 831 rows and 9 columns.

Gupta2na

Niharika Gupta

M13437287

	Obs	aircraft	duration	no_pasg	speed_ground	speed_air	height	pitch	distance	Air_type
	1	airbus	190.7394255	77	47.882117055	47.808234155	14.835964361	2.7322842836	41.722312733	0
	2	airbus	212.05403613	63	51.587044527	51.513161627	20.451285811	3.063686215	133.08690985	0
	3	airbus	128.37336566	64	55.461625107	55.387742207	14.65127605	3.9792117538	180.56522534	0
	4	airbus	237.40527671	48	53.774013118	53.700130218	28.260802216	3.1755295986	241.16096423	0
/*accigning numerical value to sincesft tune*/	5	airbus	142.5876457	66	51.158228388	51.084345488	8.559069177	3.9134477851	242.59588646	0
/*assigning numerical value to aircraft type*/	6	airbus	172.04931209	36	47.486765029	47.412882129	13.984809941	4.2990197162	250.68976141	0
	7	airbus	230.32398183	58	55.108631792	55.034748892	29.859498104	3.2599541617	270.83676243	0
	8	airbus	175.53311361	61	65.037084787	64.963201887	13.807590435	3.4948549953	280.80440304	0
data flights impute2;	9	airbus	182.44776305	66	52.70784152	52.63395862	24.302641153	4.1859666088	317.81268659	0
set flights impute.	10	airbus	214.78506113	59	56.285225619	56.211342719	19.097947487	3.9151278527	321.51632716	0
<pre>set flights_impute;</pre>	11	airbus	183.61849925	69	53.539242523	53.465359623	31.739422907	3.5237749131	349.15851648	0
if aircraft="airbus"	12	airbus	261.38701422	68	57.08470944	57.01082654	15.761691561	3.8049960732	350.60240534	0
	13	airbus	149.20859096	66	63.817889502	63.744006602	11.238021337	3.6038718062	370.47074159	0
then Air_type ⊣0; else Air_type=1;	14	airbus	208.87900668	56	53.888762395	53.814879495	23.496668191	4.0000159209	375.32596789	0
nun :	15	airbus	98.176296764	60	53.749134607	53.675251707	25.54578925	3.7142005991	378.82578267	0
run;	16	airbus	42.146226159	63	46.264718501	46.190835601	20.490711515	3.4819121545	383.55849778	0
<pre>proc print data=flights impute2;</pre>	17	airbus	179.99562817	66	57.243835228	57.169952328	35.325529113	3.0665057372	383.57772124	0
	18	airbus	198.42235144	58	64.305146799	64.231263899	17.456593278	3.8221946371	383.90578116	0
run;	19	airbus	207.69159848	61	54.542338048	54.468455148	19.610845089	3.9730540461	397.01200564	0

STEP 2: REGRESSION ANALYSIS OF EACH INDEPENDENT VARIABLE WITH DISTANCE

Observations:

337 run;

• Considering a significance value of 0.05, 5 variables are significant i.e. Air_type, speed_ground, speed_air, pitch and height. I can drop duration and number of passengers from the model since they don't seem to have any impact on the distance variable.

Gupta2na Niharika Gupta M13437287

STEP 3: REGRESSION ANALYSIS OF SIGNIFICANT VARIABLES TOGETHER WITH DISTANCE

/*regression Anlaysis of significant variables with distance*/
proc reg data=flights_impute2;
model distance= speed_ground speed_air height pitch Air_type;
title regression analysis of the flights dataset;

Gupta2na

Niharika Gupta

M13437287

Observations:

• From the observations, I derieved the below formula:

```
Distance= -2634.18 + (-9.08733* Speed_ground) +(51.47616*speed_air) +(13.97350*height) +(34.23338*pitch) +(481.36930*Air type)
```

- Considering a significance level of 0.05 (i.e. 5%) or less I can say that only variables speed_air, height, and Air_type are significant.
- Although R_sq 0.8513 is a high value, that means that the model fits the data well. However, I will try to find a better model that fits the data in a more accurate way and has an even higher R_sq value.
- The significance value of the Pitch variable (1.078) suggests that it does not fit in my model and needs to be removed.
- Significance value for speed ground (0.5688) no longer fits in my previous already inferred correlation between speed_ground and speed_air. Since speed_air and speed_ground are dependent on each other thus in the regression model they might not coexist and only one of these two variables might fit the data better. I will drop speed ground as most of the values for speed air are missing and what I have are only predicted values, so not as reliable.

STEP 4: REGRESSION ANALYSIS AFTER REMOVING SPEED AIR AND PITCH

```
/*regression Anlaysis of significant variables with distance after removing speed_air and pitch*/
proc reg data=flights_impute2;
model distance= speed_ground height Air_type;
title Regression analysis of the flights dataset;
run;
```

Gupta2na

Niharika Gupta

M13437287

Observation:

- The model obtained using the above variables is the following:
 - Distance= -2512.24333+ (42.40242*speed_ground) + (14.14783*height) + (496.04524*Air_type)
- High value of R_square (0.8489) means that the model fits the data well even after removing the speed_air and pitch. However, I will stilltry to find a better model after model validation to see if there exists a model with even higher R_square value.

CONCLUSION:

- All the selected variables have a positive impact on the dependent variable distance. Thus, higher the values of the independent variables, the greater the landing distance and eventually greater the risk of landing overrun.
- Regression analysis of each independent variable with distance shows Air_type, speed_ground, speed_air, pitch and height are significant, and duration and pitch can be dropped.
- Regression analysis of remaining variables together with distance shows that pitch is no longer significant and speed air and speed ground cannot co-exist in the model as they are dependent on each other. Pitch and speed air are then dropped.
- Regression analysis done with remaining variables and a formula for calculating landing distance is derived.
- Current model has a high R square values (0.8489) indicating it fits our data well but I will try and find a better model.

CHAPTER 4: MODEL VALIDATION

Goals: To apply model validation and validate normal distribution and residual regression.

Gupta2na

Niharika Gupta

M13437287

```
/*regression Anlaysis of significant variables with distance model validation*/
proc reg data=flights_impute2;
model distance= speed_ground height Air_type;
title Regression analysis of the flights dataset;
output out=diagnostics r=residual;
run;
```


Observations: Also, two more inferences can be derived from the fit diagnostics model plots:

- The Quantile Residual plot demonstrates that the normal distribution of the residuals is not fairly met.
- The residual percent chart doesn't follow a normal distribution and is a little skewed to the right.

As seen in the residual regression chart above, the residuals for both height and Air_type don't look to follow any pattern and are scattered. However, speed_ground seems to follow a pattern.

CONCLUSION:

- 1. Residuals failed the normality test and I should study the model diagnostics of the individual variables in order to better meet the model diagnostics requirements.
- 2. The linear model generated does not pass our model diagnostic requirements and transformations are required on this data as residuals have a curved pattern.

CHAPTER 5: REMODELING AND MODEL VALIDATION

Goals: In the previous chapter I learnt that the residuals for both height and Air_type didn't follow any pattern and are scattered. But speed_ground seems to follow a pattern. So, in order to solve this problem, I can introduce a quadratic term in this variable which might probably fix this pattern and get a scattered chart.

Gupta2na

Niharika Gupta

M13437287

```
/*Modifying the speed_ground variable to adjust to quadratic equation*/

Data flights_impute3;
set flights_impute2;
Format speed_ground2;
speed_ground2 = speed_ground**3;
run;

/*regression Anlaysis of significant variables with distance after adding the quadratic equation*/
proc reg data=flights_impute3;
model distance= speed_ground2 height Air_type;
title Regression analysis of the flights dataset;
output out=diagnostics r=residual;
run;
```


Observations:

- After introducing the quadratic term to the equation, the new model looks like the following:
 Distance= -354.75055+ (0.00214*speed_ground^3) + (13.86544* height) + (425.35176*Air_type)
- As seen in the below image, this model fits in all our requirements as validated below:
 - 1. The model results in an extremely high R-Square value of (0.9669)
 - 2. All variables have a p value lower than 0.05 significance
 - 3. Parameter estimates for all three variables speed_ground, height and Air_type is positive
 - 4. Normality assumption is fulfilled where residuals are normally distributed around 0
 - 5. The quantile residual chart is not curved
 - 6. No patterns can be seen in the residual regression chart and are scattered

CONCLUSION:

Gupta2na

Niharika Gupta

M13437287

- I have found a better model as compared to all my previous models and it fulfills all my requirements of model diagnostic validation.
- This system can promptly alert pilots when during the landing procedure the 'distance' value is anticipated to be greater than 6000 according to the formula, and pilot can take appropriate actions to reduce the chances of landing overrun.