2.1. ЭМПИРИЧЕСКАЯ ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ

Методы обработки экспериментальных данных (ЭД) опираются на базовые понятия теории вероятностей и математической статистики. К их числу относятся понятия генеральной совокупности, выборки, эмпирической функции распределения.

Под <u>генеральной совокупностью</u> понимают все возможные значения параметра, которые могут быть зарегистрированы в ходе неограниченного по времени наблюдения за объектом. Такая совокупность может состоять из бесконечного или конечного множества элементов.

В результате наблюдения за объектом формируется ограниченная по объему совокупность значений параметра $x_1, x_2, ..., x_n$. С формальной точки зрения такие данные представляют собой <u>выборку</u> из генеральной совокупности.

Наблюдаемые значения x_i называют <u>вариантами</u>, а их количество – объемом выборки n.

Для того чтобы по результатам наблюдения можно было делать какиелибо выводы, выборка должна быть *репрезенташивной* (представительной), т. е. правильно представлять пропорции генеральной совокупности. Это требование выполняется, если объем выборки достаточно велик, а каждый элемент генеральной совокупности имеет одинаковую вероятность попасть в выборку.

Пусть в полученной выборке значение x_1 параметра наблюдалось n_1 раз, значение $x_2 - n_2$ раз, значение $x_k - n_k$ раз, $n_1 + n_2 + ... + n_k = n$. Совокупность значений, записанных в порядке их возрастания, называют <u>вариационным рядом</u>, величины n_i — частотами, а их отношения к объему выборки $n_i = n_i / n - \frac{omносительными \ частотами}{manner}$ (частостями). Очевидно, что сумма относительных частот равна единице. Другой формой вариационного ряда является ряд накопленных частот, называемый <u>кумулятивным рядом</u>.

Под распределением понимают соответствие между наблюдаемыми вариантами и их частотами или частостями. Пусть n_x — количество наблюдений, при которых случайные значения параметра X меньше x. Частость события X < x равна n_x / n . Это отношение является функцией от x и от объема выборки: $F_n^*(x) = n_x / n$. Величина $F_n^*(x)$ обладает всеми свойствами функции распределения:

- $F_n^*(x)$ неубывающая функция, ее значения принадлежат отрезку [0-1];
- если x_I наименьшее значение параметра, а x_k наибольшее, то $F_n^*(x)=0$, когда $x<=x_I$, и $F_n^*(x)=1$, когда $x>x_k$.

Функция $F_n^*(x)$ определяется по экспериментальным данным, поэтому ее называют эмпирической функцией распределения. В отличие от эмпирической функции $F_n^*(x)$ функцию распределения F(x) генеральной совокупности называют теоретической функцией распределения, она характеризует не частость, а вероятность события X < x. Из теоремы Бернулли вытекает, что частость $F_n^*(x)$ стремится по вероятности к вероятности F(x) при

неограниченном увеличении n. Следовательно, при большом объеме наблюдений теоретическую функцию распределения F(x) можно заменить эмпирической функцией $F_n^*(x)$.

Основные свойства функции $F_n^*(x)$.

- 1. $0 \le F_n^*(x) \le 1$.
- $2. F_n^*(x)$ неубывающая ступенчатая функция.
- 3. $F_n^*(x) = 0$, $x \le x_1$.
- 4. $F_n^*(x) = 1, x > x_n$.

Пример 2.1 Задана выборка случайной величины X: {4 3 3 5 2 4 3 4 4 5}. Построить график эмпирической функции распределения $F_n^*(x)$.

Решение. Вариационный ряд случайной величины имеет вид {2 3 3 3 4 4 4 4 5 5}. Затем выделяем полуинтервалы (- ∞ ,2], (2,3], (3,4], (4,5], (5,+ ∞). На полуинтервале (- ∞ ,2] $F_n(x)$ =0/10=0. При 2<x≤3 $F_n(x)$ =1/10=0,1.

Аналогично определяем значения $F_n^*(x)$ на остальных полуинтервалах:

$$F_n(x) = \begin{cases} 0.4.3 < x \le 4 \\ 0.8.4 < x \le 5 \\ 1.x > 5 \end{cases}.$$

График функции $F_n(x)$ приведен на рис. 2.1.

Замечание. В каждой точке оси x, соответствующим значениям x_i функция $F_n^*(x)$ имеет скачок. В точке разрыва $F_n^*(x)$ непрерывна слева и принимает значение, выделенное знаком \circ .

2.2. ГИСТОГРАММА

При большом объеме выборки (понятие «большой объем» зависит от целей и методов обработки, в данном случае будем считать n большим, если n>40) в целях удобства обработки и хранения сведений прибегают к группированию экспериментальных данных в интервалы. Количество интервалов следует выбрать так, чтобы в необходимой мере отразилось разнообразие значений параметра в совокупности и в то же время

закономерность распределения не искажалась случайными колебаниями частот по отдельным разрядам. Существуют нестрогие рекомендации по выбору количества M и размера h таких интервалов, в частности параметр M рекомендуется выбирать с помощью следующих соотношений:

$$M \approx \operatorname{int}(\sqrt{n}), n \le 100,$$

 $M \approx \operatorname{int}((2 ... 4) \cdot \lg(n)), n > 100.$

где int(x) - целая часть числа x.

Желательно, чтобы n без остатка делилось на M.

Графически статистический ряд отображают в виде гистограммы, полигона и ступенчатой линии.

<u>Гистограмму</u> представляют как фигуру, состоящую из прямоугольников, основаниями которых служат интервалы длиною h, а высоты равны $m_i/(nh)$. Такую гистограмму можно интерпретировать как графическое представление эмпирической функции плотности распределения $f_n^*(x)$, в ней суммарная площадь всех прямоугольников составит единицу. Гистограмма помогает подобрать вид теоретической функции распределения для аппроксимации экспериментальных данных.

<u>Полигоном</u> называют ломаную линию, отрезки которой соединяют точки с координатами по оси абсцисс, равными серединам интервалов, а по оси ординат – соответствующим частостям.

Порядок построения гистограммы следующий.

- 1. Построить вариационный ряд, т.е. расположить выборочные значения в порядке возрастания: $\hat{\mathbf{x}}_1 \leq \hat{\mathbf{x}}_2 \leq \ldots \leq \hat{\mathbf{x}}_n$.
- 2. Вся область возможных значений $[\hat{x}_1, \hat{x}_n]$ разбивается на M непересекающихся и примыкающих друг к другу интервалов.

 A_i , B_i - соответственно левая и правая границы i-го интервала $(A_{i+1} = B_i)$; $h_i = B_i$ - A_i - длина i-го интервала;

 m_{i} - количество чисел в выборке, попадающих в i-тый интервал.

При использовании *равноинтервального* метода построения гистограммы параметры A_i , B_i , h_i вычисляются следующим образом:

$$h_i = h = (\hat{x}_n - \hat{x}_1)/M; A_i = \hat{x}_1 + (i-1)h; B_i = A_{i+1}; i = 1, 2, ..., M.$$

Если при подсчете значений какое-то число в выборке точно совпадает с границей между интервалами, то необходимо в счетчик обоих интервалов прибавить по 0,5.

В случае применения *равновероятностного* метода границы A_i , B_i выбираются таким образом, чтобы в каждый интервал попадало одинаковое количество выборочных значений:

$$m_i = m = n / M$$
.

В этом случае

$$A_1 = \hat{x}_1; \ B_1 = \frac{\hat{x}_m + \hat{x}_{m+1}}{2};$$

$$A_2 = B_1$$
; $A_i = (\hat{x}_{(i-1)m} + \hat{x}_{(i-1)m+1})/2$; $i = 2,3,...,M$.

3. Вычисляется средняя плотность вероятности для каждого интервала по формуле

$$f_i^* = \frac{m_i}{n \cdot h_i}$$

- 4. На графике провести две оси: x и $f^*(x)$.
- 5. На оси х отмечаются границы всех интервалов.
- 6. На каждом интервале строится прямоугольник с основанием h_i и высотой f_i^* Полученная при этом ступенчатая линия называется гистограммой, график которой приблизительно выглядит так, как показано на рис. 2.2.

Замечания.

- 1. Суммарная площадь всех прямоугольников равна единице.
- 2. В равновероятностной гистограмме площади всех прямоугольников одинаковы. По виду гистограммы можно судить о законе распределения случайной величины.

Достоинства использования гистограммы: простота применения, наглядность.

Пример 2.2. Вариационный ряд случайной величины х имеет вид: -6,237 -6,229 -5,779 -5,139 -4,950 -4,919 -4,636 -4,560 -4,530 -4,526 -4,523 -4,511 -4,409 -4,336 -4,259 -4,055 -4,044 -4,006 -3,972 -3,944 -3,829 -3,794 -3,716 -3,542 -3,541 -3,431 -3,406 -3,384 -3,307 -3,181 -3,148 -3,124 -3,116 -2,892 -2,785 -2,734 -2,711 -2,637 -2,633 -2,428 -2,381 -2,339 -2,276 -2,222 -2,167 -2,111 -2,034 -1,958 -1,854 -1,803 -1,774 -1,755 -1,745 -1,713 -1,709 -1,566 -1,548 -1,480 -1,448 -1,353 -1,266 -1,229 -1,179 -1,130 -1,102 -1,060 -1,046 -1,035 -0,969 -0,960 -0,903 -0,885 -0,866 -0,865 -0,774 -0,721 -0,688 -0,673 -0,662 -0,626 -0,543 -0,445 -0,241 -0,174 -0,131 0,115 0,205 0,355 0,577 0,591 0,795 0,986 1,068 1,099 1,195 1,540 2,008 2,160 2,534 2,848

Построить гистограмму равноинтервальным и равновероятностным методами.

Решение. Объем выборки равен 100. Количество интервалов определяем так:

$$M \approx \sqrt{n} = \sqrt{100} = 10$$

Для равноинтервального метода построения параметры A_i , B_i , v_i , h_i , f^* приведены в табл. 2.1.

Таблица 2.1.

					1 аолица 2.1.
i	A_{i}	B_i	v_i	h_{i}	f_i^*
1	-6,237	-5,3345	3	0,9085	0,033
2	-5,3345	-4,426	9	0,9085	0,099
3	-4,426	-3,5175	13	0,9085	0,143
4	-3,5175	-2,609	14	0,9085	0,154
5	-2,609	-1,7005	16	0,9085	0,176
6	1,7005	-0,792	19	0.9085	0,209
7	-0,792	0,1165	12	0,9085	0,132
8	0,1165	1,025	6	0,9085	0,066
9	1,025	1,9335	4	0,9085	0.044
10	1,9335	2,848	4	0,9085	0,044

Ниже приведены интервальная таблица и график гистограммы для равновероятностного метода.

Таблица 2.2

i	A_i	B_i	v_i	h_i	f_i^*
1	-6,2370	-4,5245	10	1,7125	0.0584
2	-4,5245	-3,8865	10	0,6380	0,1567
3	-3,8865	-3,1645	10	0,7220	0,1385
4	-3,1645	-2,4045	10	0,7600	0,1316
5	-2,4045	-1,7885	10	0,6160	0,1623
6	-1,7885	-1,3095	10	0,4790	0,2086
7	-1,3085	-0,9319	10	0,3766	0,2655
8	-0,9319	-0,5843	10	0,3476	0,2877

9	-0,5843	0,6932	10	1,2775	0,0783
10	0,6932	2,8480	10	2,1548	0,0464

Рассмотренные представления ЭД являются исходными для последующей обработки и вычисления различных параметров.