Alba Pont Pujol NIU:1632201

David Selas Fernández NIU: 1634270

PRÀCTICA G: CROMATOGRAFIA LÍQUIDA D'ALTA RESOLUCIÓ (HPLC) (I): SIMULACIÓ DE SEPARACIONS A L'ORDINADOR

Introducció

L'HPLC és una tècnica analítica que permet separar diferents anàlits d'una mostra problema en funció de la seva polaritat. Els anàlits són arrossegats a través d'una columna per una fase mòbil de composició variable i interaccionen de manera diferent amb una fase estacionària que pot ser polar o apolar.

L'HPLC simulator és una eina informàtica que permet variar els diferents paràmetres cromatogràfics d'una columna i veure com afecten la separació dels anàlits d'una mostra problema, tant en règim isocràtic com en gradient.

Objectius

Durant aquesta pràctica es pretén determinar com afecten les variacions de diferents paràmetres cromatogràfics (temperatura, composició de la fase mòbil, longitud de la columna,...) sobre la separació d'uns anàlits d'una mostra problema, treballant tant en isocràtic com en gradient. D'aquesta manera, s'establiran els paràmetres que proporcionin la millor separació possible.

Resultats

En primer lloc, s'han fet una sèrie de proves per veure l'efecte dels diferents paràmetres sobre el cromatograma final emprant una columna *waters* (apolar) i separant 9 compostos diferents. Els anàlisis dels efectes són els següents:

<u>Efecte de la composició de la fase mòbil:</u> si la fase mòbil és d'aigua/metanol i la composició d'aigua és major, els anàlits seran poc solubles en la fase mòbil i quedaran retinguts. S'ha de buscar una composició intermèdia, ja que si hi ha molt més de metanol, eluiran els anàlits molt ràpid. El mateix passarà amb l'acetonitril, però la composició que s'haurà d'agafar no és la mateixa, ja que la força dels dissolvents és diferent.

<u>Efecte de la temperatura:</u> a mesura que augmenta la temperatura s'observa una disminució dels temps de retenció i de la pressió. A més a més, també s'aprecia el canvi d'ordre d'elució de tres dels compostos: p-clorofenol, acetofenona i 3-fenilpropanol, a causa de la modificació de la constant d'equilibri (equilibri dels anàlits entre la fase mòbil i estacionària).

<u>Efecte de la mida de la partícula i del diàmetre intern:</u> Els dos paràmetres són inversament proporcionals a la pressió, per tant, una disminució provoca un augment de la pressió, tot i que en ambdós casos també millora la resolució.

<u>Efecte de la longitud:</u> la longitud és directament proporcional al temps de retenció. A més longitud, més temps passa l'anàlit a la columna.

<u>Efecte del volum d'injecció:</u> únicament s'ha observat un increment en l'amplada dels pics a mesura que augmenta el volum d'injecció i un augment de la relació senyal-soroll.

Alba Pont Pujol NIU:1632201

David Selas Fernández NIU: 1634270

<u>Efecte del cabal</u>: un cabal de fase mòbil més gran implica una disminució del temps de retenció, tot i que també augmenta la pressió considerablement.

L'objectiu és reunir les condicions necessàries per aconseguir una bona separació i resolució i temps de retenció relativament baixos per així no malgastar temps ni dissolvent. Tenint en compte els efectes observats, la columna per dur a terme la separació de 9 anàlits orgànics i de baixa polaritat reuneix les següents característiques:

fase mòbil	composició fase mòbil (%)	temperatura (°C)	mida partícula (μm)	longitud (mm)	d.i (mm)	cabal (ml/min)
metanol	43	40	5	50	4,6	1
acetonitril	31	40	5	50	4,6	2

Taula 1: paràmetres cromatogràfics

La resta de paràmetres es modifiquen en funció de la composició de la fase mòbil o si es treballa en isocràtic o gradient.

A continuació es mostren una sèrie de 4 separacions, en isocràtic utilitzant una barreja de aigua: metanol i aigua: acetonitril com a fase mòbil, i en gradient amb les mateixes fases mòbils.

HPLC en isocràtic

En isocràtic utilitzem tota l'estona la mateixa composició de fase mòbil i és útil quan es volen separar compostos de polaritat semblant.

H2O:MeOH 57:43.

En aquest cas s'ha emprat un cabal de fase mòbil de 1 mL/min i mantenint les condicions esmentades anteriorment. Aquests són els resultats obtinguts:

Figura 1: cromatograma isocratic H₂O/MeOH

Amb aquestes condicions s'ha aconseguit una bona separació dels 9 anàlits de la mostra en un temps de retenció que arriba aproximadament fins als 10 minuts. Per tal de comprovar que s'ha obtingut una bona resolució, aquesta s'ha calculat a partir dels dos pics més pròxims: el *ketoprofen* i el *propylparaben* amb els que s'ha obtingut una resolució de 1,98, un bon valor considerant que la mínima resolució necessària és de 1,5.

David Selas Fernández NIU: 1634270

H2O:ACN 69:31

L'única diferència en aquest cas és que el cabal utilitzat ha sigut de 2mL/min:

Figura 2: cromatograma isocratic H₂O/MeOH

En aquest cas han millorat tant la resolució com el temps de retenció (s'estalvia temps i dissolvent). La resolució entre els pics més pròxims (els mateixos que abans) ha estat de 2,28.

Pel que fa a les diferències observades, cal destacar que com es tracta d'una cromatografia de fase inversa (fase estacionària apolar) i els compostos són de polaritat baixa, aquests no són arrossegats amb tanta força amb la barreja H₂O/MeOH com amb H₂O/ACN. Això és degut a la seva major polaritat i, per tant, la seva menor interacció amb els anàlits, la qual cosa dona lloc a temps de retenció majors. A més la barreja d'acetonitril proporciona pressions menors, llavors permet incrementar el cabal per reduir els temps de retenció encara més.

Els resultats obtinguts, són els següents:

	k'	tr (s)	σ total (s)	W	R	Eficacia	Selectivitat
4-nitrofenol	1,4416	77,904	0,671	2,684	2,46998285	29,0718175	0,13057114
3-nitrofenol	1,6581	84,816	0,7282	2,9128	3,83918241	29,1739841	0,18420664
acetofenona	2,0325	96,762	0,8276	3,3104	12,1124115	29,3359672	0,436809
etilparabé	3,6089	147,06	1,2487	4,9948	7,04543048	29,4746383	0,25739742
propiofenona	4,8598	186,978	1,5842	6,3368	11,4383265	29,534469	0,36668578
ketoprofen	7,6736	276,762	2,3405	9,362	1,88632415	29,5649435	0,06932518
propilparaben	8,2452	295,002	2,4943	9,9772	17,7979438	29,5826879	0,49099933
benzofenona	16,1988	548,79	4,6354	18,5416	2,84986755	29,5986006	0,09698639
butilparabé	17,9386	604,302	5,104	20,416			

Taula 2: isocràtic H₂O/MeOH

	k'	tr (s)	σ total (s)	W	R	Eficacia	Selectivitat
4-nitrofenol	1,5463	40,626	0,3557	1,4228	2,50202429	28,6595299	0,13080382
3-nitrofenol	1,779	44,334	0,3853	1,5412	5,24714829	28,9468107	0,23723363
acetofenona	2,3323	53,166	0,4563	1,8252	3,97868197	29,2278173	0,17262053
etilparabé	2,8189	60,93	0,5194	2,0776	17,2477254	29,5563664	0,52669667
propiofenona	5,9558	110,976	0,9314	3,7256	2,25414707	29,8010481	0,08411761
propilparaben	6,5028	119,7	1,0037	4,0148	2,2875629	29,8276854	0,08425455
ketoprofen	7,1011	129,246	1,0828	4,3312	17,0958252	29,8936575	0,47726838
butilparabé	13,5846	232,686	1,9425	7,77	8,86433947	29,9572972	0,27156416
benzofenona	18,649	313,488	2,6152	10,4608		0	

Taula 3: isocràtic H₂O/ACN

Les fórmules utilitzades són:
$$R = \frac{tr2-tr1}{0.5(W2+W1)}$$
 $Eficàcia = \frac{\sqrt{N}}{4}$ $Selectivitat = \frac{(\alpha-1)}{\alpha}$

David Selas Fernández NIU: 1634270

HPLC en gradient

L'HPLC en gradient, és una tècnica la qual permet separar diferents compostos d'una polaritat diferent. Consisteix en començar l'elució amb un solvent més feble i anar augmentant el percentatge de solvent fort perquè vagi augmentat la seva força, provocant que els anàlits que estan més fortament retinguts disminueixin el seu temps de retenció.

Per realitzar aquest anàlisi, s'han utilitzat les condicions de la columna igual que en l'isocràtic, ja que s'ha comprovat que eren les més adients per obtenir una millor separació.

L'acetonitril és un dissolvent més fort, per tant, es poden obtenir uns temps de retenció menors, variant la fase mòbil. Es comença amb una concentració baixa i es va augmentant fins als 3 minuts per separar els primers compostos. Durant 1 minut es manté la mateixa proporció d'ACN, per finalment fer un canvi brusc per separar millor els últims anàlits.

temps (min)	%
0	10
3	30
4	30
5	95

Taula 3: composició fase mòbil H₂O/ACN

Figura 3: cromatograma gradient H₂O/ACN

En el cas del Metanol, s'ha fet la variació de la composició en un temps més llarg, ja que és un dissolvent menys fort i costarà que elueixin els compostos. Es comença amb una concentració de metanol més elevada, per disminuir el temps de retenció dels anàlits i s'augmenta progressivament, per separar els primers compostos i finalment els últims.

temps (min)	%
0	30
3	40
7	55

Taula 4: composició fase mòbil H₂O/MeOH

David Selas Fernández NIU: 1634270

Figura 4: cromatograma gradient H₂O/MeOH

Els resultats obtinguts són els següents:

	tr(s)	σ total (s)	W	R	Eficacia
4-nitrofenol	121,53	0,9426	3,7704	3,6293397	32,6802633
3-nitrofenol	135,81	1,0247	4,0988	7,93680382	34,6954748
acetofenona	170,724	1,1748	4,6992	16,1331019	40,3749928
etilparabé	254,358	1,4172	5,6688	5,85777299	45,7052892
propiofenona	289,152	1,5527	6,2108	12,2733363	51,8999944
ketoprofen	366,096	1,5819	6,3276	1,92270992	59,176094
propilparaben	378,186	1,5621	6,2484	16,2666948	64,7419129
benzofenona	486,096	1,7548	7,0192	1,99488707	69,2766792
butilparabé	500,298	1,8048	7,2192		0

Taula 5: gradient H₂O/MeOH

	tr(s)	σ total (s)	w	R	Eficacia
4-nitrofenol	113,67	0,6771	2,7084	3,81940428	42,9662208
3-nitrofenol	124,236	0,7061	2,8244	7,30040364	46,0291052
acetofenona	145,578	0,7556	3,0224	12,2412509	55,0675794
etilparabé	181,746	0,7217	2,8868	12,6172124	59,4346242
propiofenona	225,288	1,0038	4,0152	6,32903593	56,5331233
propilparaben	251,994	1,106	4,424	1,78314827	55,7870168
ketoprofen	260,184	1,1905	4,762	9,95551062	116,217768
butilparabé	289,722	0,293	1,172	6,10125261	255,100647
benzofenona	296,736	0,2818	1,1272		0

Taula 6: gradient H₂O/ACN

En el cas del gradient, no podem calcular la selectivitat, ja que el factor de retenció va variant, perquè la fase mòbil varia. El programa permet veure com varia k' amb el temps amb l'opció *plot*.

<u>Conclusió</u>

Com a conclusió, els paràmetres cromatogràfics són molt importants a l'hora de fer una columna, ja que una variació d'aquest, pot provocar que una separació no sigui eficient. L'HPLC *simulator*, permet analitzar els millors paràmetres, abans de fer la columna experimentalment.

De les dues columnes analitzades, la d'H₂O/ACN, produeix una millor separació, ja que és un dissolvent més fort i els temps de retenció seran menors.

Pel que fa a les diferències entre el mètode isocràtic i gradient, aquest últim presenta nombrosos avantatges. D'una banda, com que la proporció de dissolvent fort va augmentant progressivament, aconseguim una elució més ràpida. D'altra banda, aquest increment progressiu també permet fer una millor separació de tots els compostos, ja que els anàlits no són eluïts de manera tan simultània com en isocràtic. A més, el fet que passin menys temps a la columna també ofereix una sèrie de pics més estrets, sobretot al final que és quan es produeix el canvi més brusc.