Traffic Analysis Report

N Alafaya Trail

From Waterford Lakes Town Center To State Road 408 (West)

Orange County

Prepared For:

TTE 6256 - Traffic Operations

October 2020

Revised and Final Traffic Analysis Report

N Alafaya Trail

From Waterford Lakes Town Center to State Road 408 (West) **Orange County**

Prepared For:

University of Central Florida TTE 6256 - Traffic Operations

Prepared By:

Team 4

Jorge Ugan, Md Rakibul Alam, Johnathan Nagoda

University of Central Florida

4000 Central Florida Blvd Orlando, FL 32816

TABLE OF CONTENTS

Section	Title	Page
Executive Summary (Johnathan	n, Rakibul, Jorge)	5
1. Introduction (Johnathan, Rak	sibul, Jorge)	6
1.1 Background		6
1.2 Objectives		6
1.3 Existing condition		7
2. Data Collection Methodology	y (Johnathan, Jorge, Rakibul)	9
2.1 Signal timing		9
2.2 Back of queue		9
2.3 Vehicle counts		9
3. Data Analysis & Results (Rad	kibul, Jorge, Johnathan)	10
3.1 Input data analysis		10
3.2 Results		11
3.3 Signal Coordination Ana	lysis	14
4. Alternative Solutions (Jorge,	Rakibul, Johnathan)	15
4.1 Alternative 1: Adjusted S	Signal Timings for Intersection 2	15
4.2 Alternative 2: Geometry	Change for Intersection 2	18
4.3 Alternative 3: Combinati	ons of Adjustments for Intersection 2	18
4.4 Evaluations of Alternativ	res	19
5. Conclusions (Jorge, Rakibul,	Johnathan)	20
6. Limitations and Recommend	lations (Rakibul, Jorge, Johnathan)	20
7. References (Rakibul, Jorge, Jo	ohnathan)	21
8. Appendix (Rakibul, Johnatha	n, Jorge)	22

LIST OF TABLES

Table 3.1.1	Estimation of PHF	10
Table 3.1.2	Lane Width and Storage Length	11
Table 4.1.1	LOS and Approach Delay for Intersection 2	16
Table 4.1.2	Percentage Reduction in Control Delay for Intersection 2	17
Table 4.2.1	Performance of Alternative 2	18
Table 7.1	Summary of the control delay for Intersection 1	22
Table 7.2	Summary of the control delay for Intersection 2	23
	LIST OF FIGURES	
	DIST OF FIGURES	
Figure 1.3.1	The two red boxes show the signalized intersections of interest be	ing
	N Alafaya Trail & Waterford Lakes Town Center (Intersection 1)	l
	and N Alafaya Trail & State Road 408 West (Intersection 2)	8
Figure 3.2.1	Bottleneck in the lane with westbound traffic passes beyond	
C	the storage length	13
Figure 3.3.1	Time-Space Diagram 1 – NB Forward Direction	14
Figure 3.3.2	Time-Space Diagram 2 – NB Backward Direction	14
Figure 4.1.1	The relationship between the signal timing and control delay	
C	for Alternative 1	17
Figure 4.3.1	The relationship between the signal timing and control delay	
	for Alternative 3	19
Figure 7.1	Summary of HCS input data sheet for Intersection 1	24
Figure 7.2	Result Summary from HCS for Intersection 1	25
Figure 7.3	Summary of HCS input data sheet for Intersection 2	26
Figure 7.4	Result Summary from HCS for Intersection 2	27

Executive Summary (Johnathan, Rakibul, Jorge)

The purpose of the signalized intersection study was to identify bottlenecks and issues with traffic congestions by experiencing a field traffic event. The data was collected in between two intersections: Alafaya Trail (SR434) and Waterford Lakes Town Center (intersection 1), and Alafaya Trail (SR434) and On-Ramp to SR408 Westbound (intersection 2). The location was a traffic facility outside of UCF due to the COVID-19 pandemic not only enforcing restrictions to UCF's main campus but also providing uncommon traffic patterns. The analysis was performed utilizing HCS (Highway Capacity Software) 7.9 for the results from our data collection. Everyone that had participated in the field observation were prepared for safety and gathered the data without any interruptions. Throughout the event, the bottlenecks occurred on the turning lanes moving inbound and outbound from the Waterford Lake Town Center. The westbound left turn at intersection 2 had the most critical condition with LOS F. In order to resolve the bottleneck issue, we suggest three alternatives: adjusting the left signal timings, adding another left lane, and the combination of additional left lane and increasing left turn phase split time. Among these, the first alternative is both economic and efficient.

1. Introduction (Johnathan, Rakibul, Jorge)

1.1 Background

The study of traffic volume, signal timing and control delay for roads and intersections are crucial part to understand the efficiency of the roads and intersections. Additionally, left turn at an intersection is risky maneuver. Therefore, transportation engineers and planners pay attention for the safety and mobility of such areas. As an important part of TTE 6256 (Traffic Operations Course), we conducted this project which focuses on the existing 870 ft segment of N Alafaya Trail from Waterford Lakes Town Center to State Road 408 (West). This project analyzes the signal timing, queue delay, and vehicle counts using highway capacity software (HCS) 7.9 with the data collected at the two intersections on N Alafaya Trail - N Alafaya Trail & Waterford Lakes Town Center (Intersection 1) and N Alafaya Trail & State Road 408 West (Intersection 2) on October 6, 2020 during the afternoon peak hours (4:00 pm - 7:00 pm). At intersection 1 all the four directions (N, E, S, W) were examined, and only 3 directions (N, E, S) were selected at intersection 2, since the westbound segment led to State Road 408 West, as shown in Figure 1.3.1.

1.2 Objectives

There are three objectives for which this project is undertaken. The objectives of this project are as follows:

- To identify traffic flows from the bottlenecks of the two intersections.
- To analyze the traffic condition of these intersections using the latest version of HCS.
- To propose alternatives for improving bottleneck condition.

1.3 Existing condition

Both intersections are signalized four-way intersections in Orange County; however, excluding the west ramp converted Intersection 2 into a three-way intersection. N Alafaya Trail runs in a north-south direction with Waterford Lakes Town Center running in the east-west direction. The intersections have dotted line extensions through the intersections, painted crosswalks and pedestrian signals, and painted directional arrows on all lanes for the eastbound and westbound intersection approaches; however, the north and south bound intersection approaches only have painted directional arrows for left and right turning lanes. All the intersections' approach directions have painted stop lines, as well as solid white lines for each lane.

At Intersection 1, the eastbound intersection approach contains one protected left turn lane and one shared through and right turn lane; the tire marks wear off the painted directional arrows near the stop line. The west bound intersection approach has three lanes: a protected left turn lane, a thru lane, and a right turn lane. The northbound intersection approach had two protected left turn lanes, three thru lanes, and one right turn lane. The southbound intersection approach has 6 lanes: two protected left turn lanes, three thru lanes, and one right turn lane.

Figure 1.3.1 The two red boxes show the signalized intersections of interest being N Alafaya Trail & Waterford Lakes Town Center (Intersection 1) and N Alafaya Trail & State Road 408 West (Intersection 2). Courtesy of Google Maps, accessed October 20, 2020.

At Intersection 2, the west bound intersection approach contains one protected left turn lane, one shared through and left turn lane, and one right turn lane. The northbound intersection approach has two protected left turn lanes which were excluded from the data collection, three thru lanes, and one right turn lane. In the southbound intersection approach, there was a single protected left turn lane and three thru lanes.

2. Data Collection Methodology (Johnathan, Jorge, Rakibul)

2.1 Signal timing

The signal timing durations were recorded from 4:00 PM to 5:00 PM and 6:00 PM to 7:00 PM for each time interval in 30 minutes. Every observer had a traffic signal for every intersection approach to watch the intersection signals cycling from green, red, and yellow time.

2.2 Back of queue

The control delay was measured through the queue-count technique which required two observers: one was to keep track of vehicles in the count interval, and the other counted the approach volumes that stopped and didn't stop during the observation for every cycle. The control device at the subject intersection was the traffic signal. All the vehicles in the queue at the left movements passed through the green light without issues, and there was no overflow queue at these intersections during the PM peak hour.

2.3 Vehicle counts

The traffic vehicle volume was counted on Tuesday, October 6, 2020 to represent both typical traffic intersection studies on a weekday, and the traffic flow patterns on Intersection 1 during the PM peak hour are lesser than the traffic flow patterns on Intersection 2 due to vehicles exiting out of the Waterford Town Center during the evening.

3. Data Analysis & Results (Rakibul, Jorge, Johnathan)

The collected data was properly formatted and input to HCS 7.9. After the reports were generated from HCS 7.9, an analysis was done to compare the report and the observations collected. The sections below describe in detail the calculations done to conduct a comprehensive analysis.

3.1 Input data analysis

Based on the hourly traffic volume as shown in Table 3.1.1, the peak hour was selected. For intersection 1, 5:30-6:30 was the peak hour which contained the highest total volume 4415. For intersection 2, the peak hour is 4:30-5:30 with the highest total volume 4463. From the peak hour, one of the 15-minute periods which has peak volume was measured. For intersection 1, the peak 15 minute is 6:00-6:15 with traffic volume 1223, and for intersection 2, the peak 15 minute is 4:45-5:00 with traffic volume 1234. Using Equation 3.1 peak hour factor (PHF) for intersection 1 and 2 are 0.90 each.

$$PHF = \frac{V_{hr}}{V_{15 \, min} \times 4}$$
 [Eqn 3.1]

Table 3.1.1: Estimation of PHF

Intersection 1		Intersection 2					
Time	15 minutes traffic volume	Time	Hourly traffic volume	Time	15 minutes traffic volume	Time	Hourly traffic volume
4:30-4:45	754	4:30-5:30	3752	4:30-4:45	997	4:30-5:30	4463
4:45-5:00	1016	4:45-5:45	4109	4:45-5:00	1234	4:45-5:45	4460
5:00-5:15	984	5:00-6:00	4124	5:00-5:15	1162	5:00-6:00	4265
5:15-5:30	998	5:15-6:15	4363	5:15-5:30	1070	5:15-6:15	4095
5:30-5:45	1111	5:30-6:30	4415	5:30-5:45	994	5:30-6:30	4194
5:45-6:00	1031			5:45-6:00	1039		
6:00-6:15	1223			6:00-6:15	992		
6:15-6:30	1050			6:15-6:30	1169		

After identifying the geometric configuration in the software, we input average traffic volume per hour. As this project deals with coordination of two intersection signal timing, uncoordinated intersection box blank was unchecked. Additionally, a field-measured phase-times box was checked. Based on the collected traffic signal field data, we input phase split and yellow change values. See the appendix for the details of these inputs.

Table 3.1.2: Lane width and storage length information

	Lane direction	Lane width (ft)	Storage length (ft)
	Eastbound left	12	212
Intersection	Westbound left	12	117.56
1	Northbound left	12	256
	Southbound left	12	343.72
	Eastbound left	N/A	N/A
Intersection 2	Westbound left	12	74.92
	Northbound left	12	225
	Southbound left	12	360.53

Lane width and storage length were collected from the Google map web tool as shown in Table 3.1.2. In our field survey, the number of vehicle arrivals at red time was not observed. It is assumed that a random number of vehicles arrive during red time. Therefore, arrival Type 3 was used.

3.2 Results

In this section, the level of service (LOS) of the roadway lanes and lane groups are discussed based on HCS 7.9 results summary. Additionally, control delay, which was estimated from HCS, was compared with field study. Moreover, the bottleneck condition in the turning lane for both inbound and outbound from the town center is also discussed.

HCS 7.9 has provided the LOS based on signalized intersection input data as shown in Figure 7.1 (see appendix). The software provided the Levels of Service (LOS) for each intersection based on the control delay per vehicle. This intersection has an average vehicle delay of 33.5 s/veh which resulted in a LOS "E". All the lanes of major roads (E-W) have a LOS "E" which controlled the overall intersection LOS.

The lane with southbound left and westbound left traffic has control delay 77.1s/veh and 61.7 s/veh respectively. These lanes are inbound and outbound from the town center respectively. They both have LOS "E". Westbound left vehicles are coming out from the town center. From intersection control delay data sheet of field observation, the values of control delay of the lanes with southbound left and westbound left traffic are 68.5 and 60.7 s/veh, respectively, which are fairly close to the HCS 7.9 results. This intersection 2 has an average vehicle delay of 31.2 s/veh which resulted in a LOS "C". Here, both lane groups of major roads (N-S) had a LOS "B". However, the westbound lane group had a LOS "F" with approach delay 125.1 s/veh. In this lane group, the lane with westbound left traffic has queue storage ratio more than 1 and control delay 162.8 s/veh which is a fairly large. The lane with southbound left traffic has control delay 10.5 s/veh which is close to the value (12.46 s/veh) from intersection control delay data sheet of field observation.

From intersection control delay data sheet of field observation, the values of control delay of the lane westbound left traffic are 6.06 s/veh which shows a large disparity with the value (162.8 s/veh) from HCS 7.9. The reason for such disparity resulted from the field survey issues. We came to know from the surveyor, who measured the number of vehicles from the queue of that lane, that it was hard to count the number of queue lengths properly because the queue was very long beyond

the storage length. That is why, it was confusing to mark the vehicle if that vehicle is going through or left. The Google map's aerial photo (Figure 3.2.1) also verifies their statement.

Figure 3.2.1: Bottleneck in the lane with westbound traffic passes beyond the storage length. Courtesy of Google Maps, accessed October 20, 2020.

3.3 Signal Coordination Analysis

Figure 3.3.1 - Time-Space Diagram 1 – NB Forward Direction

Figure 3.3.2 - Time-Space Diagram 2 – NB Backward Direction

From the Northbound (NB) forward and backward direction time-space diagram, it is found that the efficiency of intersection coordination is poor (38%). HCS suggests 69% major changes for forward direction efficiency and 83% fine tuning for backward direction.

4. Alternative Solutions (Jorge, Rakibul, Johnathan)

The alternative solutions were proposed to the intersections that did not meet regional level of service (LOS) standards. For two-hour p.m. peak, the regional level of service standards are: LOS E or better in urban centers and corridors, LOS D or better elsewhere in the remainder of the cities and unincorporated urban growth areas, and LOS C or better in rural areas (outside of the urban areas and Tribal Reservations) (Thurston Regional Planning Council, 2016). Since both intersections were with an urban center, we should suggest solutions for any lanes with LOS F. Intersection 1 did not have any lanes with LOS F, so no solutions were needed. Intersection 2 had a LOS F for the westbound left, therefore the solutions proposed below are intended for Intersection 2 westbound left.

4.1 Alternative 1: Adjusted Signal Timings for Intersection 2

An alternative to improve the control delay was to change the signal timing, meaning the LOS would also improve for the given approach. Since the Westbound left approach for intersection 2 had a large control delay, the signal timing was adjusted for this approach. It is important to note that the Westbound left, through, and right signals all had the same signal timings. Therefore, it would be unreasonable to decrease the timings for the through and right signal timings, if in real-life they are equal. Since the signal timings did not propose a problem for the other approaches in intersection 2 (i.e. Northbound and Southbound), it was best not to adjust these timings. In order to visualize the effect that signal timing has on the control delay, a graph was developed showing the increase to the signal timing, and the corresponding control delay as shown in Figure 4.1.1. The figure shows a nonlinear relationship between the control delay and the signal timing for

intersection 2. A trendline was also developed using westbound control delay in vertical axis and signal timing in horizontal axis for intersection 2 as shown in Equation 4.1.1. The minimum control delay can be achieved by simply adjusting the signal timing from Equation 4.1.1. It was found that the optimal signal timing increase was 53.25%, which corresponds to a control delay of 60.63 s/veh.

$$y=0.0354x^2-3.77x+161$$
 [Eqn 4.1.1]
Here, $x=$ westbound phase split signal timing increase (%) and $y=$ control delay (s/veh) $y'=0.0708x-3.77$
For maximum y , $y'=0$ $x=53.24\%$, $y=60.62$ s/veh

Table 4.1.1: LOS and Approach Delay for Intersection 2

Intersection 2 LOS and control delay (s/veh)				
	Northboun d	Southbound	Westboun d	
Existing	LOS B (15.4)	LOS B (17.5)	LOS F (125.1)	
Alternative 1	LOS B (19.4)	LOS C (26.5)	LOS D (51.1)	

Intersection 2				
Westbound phase split Signal Timing Increase (%)	Westboun d phase split Signal Timing (s)	Control Delay (s/veh)		
0	24.5	162.8		
15	28.2	108.2		
30	31.9	79.2		
45	35.5	66.8		
60	39.2	59.6		

Figure 4.1.1: The relationship between the signal timing and control delay for Alternative 1

Table 4.1.2: Percentage Reduction in Control Delay for Intersection 2

Percentage Reduction in Control Delay (Westbound left)			
Existing Control	Predicted Optimal	Percent	
Delay (s/veh)	Control Delay (s/veh)	Reduced (%)	
162.80	60.2	63.02%	

4.2 Alternative 2: Geometry Change for Intersection 2

An alternative to improve the control delay was to modify the existing geometry of the intersections. To understand the effect that the intersection geometry has on the control delay, HCS was utilized. Since, the control delay was the highest for the westbound left lane in intersection 2, it was reasonable to add an additional left turn lane. This also worked well, since no adjustments would have to be made for the other approaches. Table 4.2.1 shows the change in the control delay with just an additional left turn lane. The percentage change due to the additional left lane was 59.83% decrease in the control delay.

Table 4.2.1: Performance of alternative 2

Intersection 2				
Existing		Adjusted		
Control Delay (s/veh) LOS		Control Delay (s/veh)	LOS	
162.8	F	65.4	Е	

4.3 Alternative 3: Combinations of Adjustments for Intersection 2

An alternative to improve the control delay was to modify both the signal timings and the existing geometry of the intersections. In other words, this alternative is a combination of Alternative 1 and Alternative 2. After applying this alternative, there is a linear relationship between the control delay and signal timing, as shown in Figure 4.3.1.

Intersection 2			
Westbound Phase Split Signal Timing Increase (%)	Signal Timing	Control Delay (s/veh)	
0	(s)	65.4	
15	24.5	61.4	
30	28.2	58.0	
45	31.9	54.8	
60	35.5	51.6	

Figure 4.3.1: The relationship between the signal timing and control delay for Alternative 3

4.4 Evaluations of Alternatives

Each of the proposed alternatives (i.e. Alternative 1, Alternative 2, and Alternative 3) has a different cost associated with the adjustments that would be made in terms for signal timing and/or intersection geometry. For Alternative 1, there would be no cost associated with the adjustments, since the only change would be increasing the signal timing. Alternative 2, would have to bear the cost of an additional lane, which was found to be around \$1-2 million per mile (Feigenbaum, 2011). Alternative 3 would have the same cost as Alternative 2, since it is the combination of Alternative 1 and Alternative 2. Considering the cost for each of the alternatives, it was decided that Alternative 1 be the alternative that should be implemented currently. If future volumes increase to the point that Alternative 1 does not reduce the control delay, one might consider Alternative 2 or Alternative 3.

5. Conclusions (*Jorge*, *Rakibul*, *Johnathan*)

In conclusion, both methods of obtaining the control delay proved to be accurate. The only disparity between the calculating the control delay and the calculated control delay through HCS 7.9 was the westbound left on intersection 2. The disparity was due to the difficulty of known which vehicles would turn left by the short storage length and the shared through and left lane. Besides this instance the percent error among the other calculated control delay was below 23%. To improve the control delay, 3 alternatives were proposed. Alternative 1 suggests to increase 53.25% westbound phase split timing which results in minimum control delay 60.63 s/veh. Alternative 2 focused on the addition of a left turn lane, and Alternative 3 focused on the combination of adjusting the signal timing and adding a left turn lane. As expected, each of these alternatives reduced the control delay, but the degree of reduction differs among each alternative. Alternative 1 is the most economical alternative with the satisfactory control delay. Alternative 3 is the most expensive one although the control delay is the lowest.

6. Limitations and Recommendations (Rakibul, Jorge, Johnathan)

Generally, there are limitations due to some reasons in each study. In our study, because
of time constraint only afternoon peak hour time was chosen. If the data for morning peak
hour time could be collected that will make our project report more informative. Besides
working with both the weekend and weekdays data would make the project more
comprehensive.

- The data was collected in the pandemic of COVID-19 because of which the traffic
 volume is not the same as regular time, i.e., before the pandemic. In future, we hope the
 data will be available for a pandemic free regular traffic condition.
- The data collection was done by humans (students) in the field. The more accurate data can be collected through video surveillance for better accuracy.

7. References (*Rakibul*, *Jorge*, *Johnathan*)

- 1. McTrans Center, 2020. Urban streets HCS 7.9 User's manual.
- Thurston Regional Planning Council, Washington, 2016. Appendix O: Level of service standard and measurements. Retrieved from https://www.trpc.org/DocumentCenter/View/2798/Appendix-O--Level-of-Service-Standard-and-Measurement
- 3. Dr. Sandt's lecture and supporting handouts.
- Photograph of Intersection 2. Google Maps, 20 Oct. 2020. Retrieved from https://www.google.com/maps/place/Waterford+Lakes+Town+Center/@28.5513469,-81.2041614,159m/data=!3m1!1e3!4m5!3m4!1s0x88e767764fd29dfb:0x403c54495dbd26 18!8m2!3d28.5545475!4d-81.2003099
- 5. Feigenbaum, B., 2011. Reducing Congestion on a Budget: Turn Lanes. Retrieved from https://reason.org/commentary/reducing-congestion-on-a-budgettur/#:~:text=Constructing%20a%20continuous%20turn%20lane,cost%20of%20widening %20the%20highway.

8. Appendix (Rakibul, Johnathan, Jorge)

Table 7.1: Summary of the control delay for intersection 1

Southbound Left	Control Delay Summary			
	ΣV_{iq}	93	N_c	75
	d_{vp}	12.31	FVS	0.03
	$\frac{V_{stop}}{N_c \times N}$	0.04	d_{ad}	0.15
	CF	5	d	12.46

Westbound Left	Control Delay Summary			
	ΣV_{iq}	152	N_c	43
	d_{vp}	5.95	FVS	0.02
	$\frac{V_{stop}}{N_c \times N}$	0.19	d_{ad}	0.12
	CF	5	d	6.06

ΣV_{iq}	Vehicle in queue	
N_c	Number of cycles	
V_{stop}	Stopped approach volume	
V_{tot}	Total approach volume	
d_{vp}	Time in queue per vehicle	
V_{stop}	Number of vehicles stopping per lane per	
$\overline{N_c \times N}$	cycle	
CF	Acceleration/deceleration factor	
FVS	Fraction of vehicle stopping	
d_{ad}	Acceleration/deceleration correction delay	
d	Control delay per vehicle	

Table 7.2: Summary of the control delay for intersection 2

		Control Dela	y Summary	y
	ΣV_{iq}	1819	N_c	47
Southbound Left	d_{vp}	64.12	FVS	0.87
	$\frac{V_{stop}}{N_c \times N}$	3.54	d_{ad}	4.35
	CF	5	d	68.46

		Control Dela	y Summary	y
	$\Sigma {V}_{iq}$	1819	N_c	47
Westbound Left	d_{vp}	56.69	FVS	0.80
	$\frac{V_{stop}}{N_c \times N}$	7.29	d_{ad}	4.02
	CF	5	d	60.70

ΣV_{iq}	Vehicle in queue
N_c	Number of cycles
V_{stop}	Stopped approach volume
V_{tot}	Total approach volume
d_{vp}	Time in queue per vehicle
$\frac{V_{stop}}{N_c \times N}$	Number of vehicles stopping per lane per cycle
CF	Acceleration/deceleration factor
FVS	Fraction of vehicle stopping
d_{ad}	Acceleration/deceleration correction delay
d	Control delay per vehicle

Figure 7.1: Summary of HCS input data sheet for intersection 1

		ŀ	ICS7	Signa	lized	Inter	secti	on In	put Da	ata						
General Information									Intersect	tion Inf		4 A4 L				
Agency Group 4									Duration,	h	0.250					
Analyst Jorge Ugan and Md Rakibul Alam			Analysis Date 10/18/2020					Area Typ		4 2 2		÷				
Jurisdiction HCM					eriod	4pm to	7pm		PHF		0.90		v			
Urban Street		North Alafaya Trail		Analys	is Year	2020			Analysis	Period	1> 7:0	00	-			
Intersection		North Alafaya Trail 8	& Wa	File Na	me	Projec	t1PlanE	3.xus					ħ	41471	2 1	
Project Descrip	tion	TTE6256 Project											1			
Demand Information					EB			WE	R.	Т	NB			SB		
Approach Move					T	l R	1	ΤŢ	_	1	ΤT	TR	1	ΤT	R	
Demand (v), v				124	32	125	194	55		267	1025	_	183	1144	651	
Demand (V), V	CII/II			124	32	12.0	154	5.	130	201	1020	143	103	1144	001	
Signal Informa	tion				7		14				<u> </u>					
Cycle, s	160.0	Reference Phase	2		5	1 502	, ₁	<u>,</u> [^		⊨	è	>		-	→	
Offset, s	0	Reference Point	End	Green		11.4	73.6	13.	6 0.4	26.9		1	2	3	¥ '	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	3.6	3.1		2.5				7	→	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0		0.0		6	6	7		
Traffic Informa					EB			WB			NB			SB		
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	T	R	
Demand (v), ve	h/h			124	32	125	194	55	138	267	1025	149	183	1144	651	
Initial Queue (C	(b), veh/	h		0	0	0	0	0	0	0	0	0	0	0	0	
Base Saturation	n Flow F	Rate (s₀), veh/h		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Parking (Nm), m	nan/h				None			None	9		None			None		
Heavy Vehicles	(PHV), 9	%		0	0		0	0	0	0	0	0	0	0	0	
Ped / Bike / RT	OR, /h			0	0	0	0	0	0	0	0	0	0	0	0	
Buses (Nb), bus	ses/h			0	0	0	0	0	0	0	0	0	0	0	0	
Arrival Type (A7	7)			3	3	3	3	3	3	3	3	3	3	3	3	
Upstream Filter	ing (/)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.82	0.82	0.82	
Lane Width (W)), ft			12.0	12.0		12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	
Tum Bay Lengt	h, ft			212	0		118	0	0	256	0	0	344	0	0	
Grade (Pg), %					0			0			0			0		
Speed Limit, mi	i/h			35	35	35	35	35	35	35	35	35	35	35	35	
Phase Informa	tion			EBL		EBT	\A/DI		WBT	NBL		NIDT	SBL		ерт	
) or Phase Split, s		20.4		33.1	WBL 16.7		29.4	33.0	_	92.6		_	SBT 77.2	
Yellow Change				3.3		3.2	3.1	_	2.5	4.0		4.0	17.6 4.3		3.6	
Red Clearance				0.0	-	0.0	0.0	-	0.0	0.0		0.0	0.0	-	0.0	
Minimum Green				6		6	6		6	6		6	6		6	
Start-Up Lost Ti				2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0	
Extension of Eff				2.0	$\overline{}$	2.0	2.0	-	2.0	2.0		2.0	2.0	$\overline{}$	2.0	
Passage (PT),				2.0	_	2.0	2.0	-	2.0	2.0		2.0	2.0	-	2.0	
Recall Mode				Off		Off	Off	-	Off	Off		Min	Off	-	Min	
Dual Entry			No		Yes	No	-	Yes	No		Yes	No	-	Yes		
Walk (Walk), s				_	0.0		+	0.0			0.0			0.0		
Pedestrian Clearance Time (PC), s				$\overline{}$	0.0			0.0			0.0			0.0		
Multimodal Information				EB			WB			NB			SB			
		Walk / Corner Radio	us	0	No	25	0	No	25	0	No	25	0	No	25	
		Vidth / Length, ft		9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0	
Street Width / Is				0	0	No	0	0	No	0	0	No	0	0	No	
		ane / Shoulder, ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	
Pedestrian Sigr	nal / Occ	cupied Parking		No		0.50	No		0.50	No		0.50	No		0.50	

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9

Generated: 10/18/2020 9:27:30 PM

Figure 7.2: Results summary from HCS for intersection 1

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resu	lts Sur	nmar	У					
General Inforn	nation								Intersec	tion Inf		4.444				
Agency		Group 4							Duration			11111				
Analyst Jorge Ugan and Md			Analys	is Date	10/18/	2020		Area Typ	e	Other		4				
Rakibul Alam													8		•	
Jurisdiction		HCM		Time F	Period	4pm to	o 7pm		PHF		0.90		Y			
Urban Street		North Alafaya Trail		Analys	sis Year	2020			Analysis	Period	1> 7:0	00		55 +++	4	
Intersection		North Alafaya Trail	& Wa	File Na	ame	Projec	t1PlanE	3.xus					T T	4144	1- (*)	
Project Descrip	tion	TTE6256 Project														
Demand Inforr					EB		\leftarrow	W	_	\leftarrow	NB		\leftarrow	SB		
Approach Move				L	T	R	L	1	_	L	T	R	L	T	R	
Demand (v), v	eh/h			124	32	125	194	5	5 138	267	1025	149	183	1144	65	
Cinnal Inform	4:			1				_		_		-	_	_		
Signal Informa	_	Deferre St	_	-	7		17		ا حالت		≒I		Ťπ	\mathcal{I}		
Cycle, s	160.0	Reference Phase	2		5	1 507	" ↑	آم	" R	B	E .	1	2	3	$\overrightarrow{}$	
Offset, s	0	Reference Point	End	Green	13.3	11.4	73.6	13	.6 0.4	26.9)				-5	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	3.6	3.1		2.5		\ 4	ļ <u> </u>	∠	7	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0		6	6	7		
Timor Passific				EDI		CDT	1A/P		MPT	NIDI		NDT	000		CDT	
Timer Results	•			EBI 7	-	EBT 4	WB 3	L	WBT 8	NBI 5	-	NBT 2	SBI 1	-	SBT 6	
Assigned Phas	e			_	-	_		-		_	_		_	_		
Case Number						4.0	1.1		3.0	2.0	-	3.0	2.0	-	3.0	
Phase Duration	<u> </u>					33.1	16.7		29.4	33.0	_	92.6	17.6	_	77.2	
Change Period				3.3	_	3.2	3.1		3.2 4.0				4.3	_	4.0	
Max Allow Hea		**		3.1	_	3.3	3.1		3.3	3.1	_	0.0	3.1	_	0.0	
Queue Clearan		10 //				17.3	15.6		16.1	14.1		0.0	8.7	-		
Green Extension		(ge), s				0.7	0.0		0.6	_			0.1	$\overline{}$	0.0	
Phase Call Pro	bability				1.00 1.		1.00		1.00	1.00			1.00)	_	
Max Out Proba	bility			0.79 0		0.00	1.00		0.01	0.00			0.14	<u> </u>		
Movement Cre	un Doc	ulto			EB			WE	,		NB			SB		
Movement Gro	_	suits		L	T	R		T	R		T	R	L	T	T R	
Approach Move				7	4	14	3	8	18	5	2	12	1	6	16	
Assigned Move		\ uoh/h		_		14	_	_	153	_			147	_		
Adjusted Flow I		••		138	174 1662		216	400	-	297	1139	166 1610		919	523 161	
•		ow Rate (s), veh/h/l	1	1810			1810	190		1757	1725		1757	1725	-	
Queue Service				11.8	15.3		13.6	4.4		12.1	20.1	8.2	6.7	13.6	29.	
Cycle Queue C		e πme (g c), s		11.8	15.3		13.6	4.4		12.1	20.1	8.2	6.7	13.6	29.	
Green Ratio (g				0.11	0.19		0.25	0.16		0.18	0.55	0.55	0.08	0.46	0.4	
Capacity (c), v		4:- / V/		193	311		296	311		637	2866	892	292	2368	73	
Volume-to-Cap				0.712	0.562		0.728	0.19		0.466	0.397	0.186	0.503	0.388	0.71	
		/In (50 th percentile)		150	164		55.6	54		135.2	206	79.9	79.5	123.4	160	
		eh/ln (50 th percenti	_	6.0	6.6		2.2	2.2		5.4	8.2	3.2	3.2	4.9	6.6	
		RQ) (50 th percent	ile)	0.71	0.00		0.47	0.00		0.53	0.00	0.00	0.23	0.00	0.0	
Uniform Delay	. ,,			69.1	59.1		54.1	57.8		58.6	20.4	17.8	76.7	18.1	16.	
Incremental De				10.1	1.4		7.7	0.1		0.2	0.4	0.5	0.4	0.4	4.7	
Initial Queue Delay (d 3), s/veh				0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh				79.1	60.5		61.7	57.9	_	58.8	20.8	18.2	77.1	18.5	21.	
Level of Service (LOS)			E	E		E	E	E	E	C	В	E	В	С		
Approach Dela				68.7	7	Е	62.0)	E	27.6	6	С	24.8	3	С	
Intersection De	lay, s/ve	h / LOS				33	3.5				С					
														-		
Multimodal Results				EB			WE			NB 2.27 B			SB			
Pedestrian LOS Score / LOS				2.87		С	2.87		С				2.11 B			

25

HCS™ Streets Version 7.9

Generated: 10/18/2020 9:27:30 PM

Copyright © 2020 University of Florida, All Rights Reserved.

Figure 7.3: Summary of HCS input data sheet for intersection 2

			JC97	Cian	lizac	l Inter	eacti	on I	nput D	ata					
	_		103/	Signa	anzec	mier	Secu	on i	nput D	ala	_	_	_		
General Inform	nation								Intoreor	tion Inf	ormati	n.	1 1	14444	b L
Agency	lauon	Group 4								- 1	111				
Analyst Jorge Ugan and Md			Analysis Date 10/18/2020					Duration, h 0.250 Area Type Other				4		- L	
Rakibul Alam			Allalys	NS Date	; IU/ IO	2020		Alea Iy	De	Oute	Other 🚉				
Jurisdiction HCM				Time F	eriod		o 7pm		PHF		0.90		7		7
Urban Street		North Alafaya Trail		_	sis Year	-			Analysis	Period	1> 7:	00	-	1111	
Intersection		North Alafaya Trail	& 40	File Na	ame	Projec	t1Plan	3.xus	i				1	4 1 4 Y	1
Project Descrip	tion	TTE6256 Project									-				
Demand Inform	nation				EB		Т	٧	/B	Т	NB		Т	SB	
Approach Move	ement			L	Т	R	L	T.	T R	L	Т	R	L	T	R
Demand (v), v	/eh/h						250	(67 85	471	1628	570	53	1207	
				1							-				
Signal Informa	_	D. f	_		7		- Ui⊾		Ħ		Į		Ťχ		
Cycle, s Offset, s	160.0	Reference Phase Reference Point	2 End		5	1 51	² ↑	7	K			1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		20.3	96.3		1.9 0.0	0.0		,			→
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	0.0	3.8	0.0	0.		0.0		۱. [۲	<u> </u>	7	V.
Force Wode	rixeu	Silliuli. Gap 19/5	Oil	Reu	0.0	JU.U	0.0	ĮŪ.	0 0.0	0.0		۰	•	- 1	0
Traffic Informa	ation				EB			W	В	Т	NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), ve	h/h						250	67	85	471	1628	570	53	1207	
Initial Queue (G	Q₀), veh/	/h					0	0	0	0	0	0	0	0	
Base Saturation	n Flow F	Rate (s₀), veh/h					1900	190	0 1900	1900	1900	1900	1900	1900	
Parking (Nm), m	nan/h							Nor	ne		None			None	
Heavy Vehicles	(PHv), '	%					0	0	0	0	0	0	0	0	
Ped / Bike / RT	OR, /h			0	0		0	0	0	0	0	0	0	0	
Buses (N _b), bus	ses/h						0	0	0	0	0	0	0	0	0
Arrival Type (A							3	3		3	3	3	3	3	
Upstream Filter							1.00	1.0		0.89	0.89	0.89	1.00	1.00	
Lane Width (W				_			12.0	12.	_	12.0	12.0	12.0	12.0	12.0	_
Turn Bay Lengt	th, ft			_			75	0	0	225	0	0	361	0	-
Grade (Pg), %	i/h			_	0		25	35	35	35	35	35	35	35	-
Speed Limit, m	VII						35	33	35	30	35	35	35	33	
Phase Informa	ition			EBL		EBT	WB	L	WBT	NBL		NBT	SBI		SBT
Maximum Gree	n (Gmax) or Phase Split, s							24.5	35.1	· ·	124.5	11.0)	100.4
Yellow Change	Interva	I (Y), s							2.6	3.8		4.5	3.8		4.1
Red Clearance								_	0.0	0.0		0.0	0.0		0.0
Minimum Greer					_		_	_	6	6		6	6		6
Start-Up Lost T	_ , ,						2.0	\rightarrow	2.0	2.0	\rightarrow	2.0	2.0	$\overline{}$	2.0
Extension of Ef		Green (e), s		-			2.0	-	2.0	2.0		2.0	2.0	_	2.0
Recall Mode	Passage (PT), s								2.0 Off	2.0 Off		2.0 Min	2.0 Off	-	2.0 Min
Dual Entry							-	Yes	No	-	Yes	No	-	Yes	
Walk (<i>Walk</i>), s					0.0			0.0	140		0.0	140		103	
Pedestrian Clearance Time (PC), s					0.0		7	0.0		_	0.0				
		· -// -													
Multimodal Information				EB			WE			NB			SB		
		Walk / Corner Radi	us	0	No	25	0	No		0	No	25			
		Width / Length, ft		9.0	12	0	9.0	12	_	9.0	12	0			
Street Width / Is					0		0	0		0	0	No	0		No
		ane / Shoulder, ft		No			12	5.0		12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking							No		0.50	No		0.50			0.50

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9

Generated: 10/18/2020 9:27:30 PM

Generated: 10/18/2020 9:27:30 PM

Figure 7.4: Results summary from HCS for intersection 2

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resi	ılts (Sun	nmar	У					
															4 24 1		
General Information										Intersection Information					4 24 1	20 12	
Agency Group 4								Duration, h 0.250					2				
Analyst Jorge Ugan and Md Rakibul Alam				Analys	3/2020			а Тур	e	Other		4		*			
Jurisdiction		HCM		Time P	eriod	4pm t	to 7pm		PHF			0.90		V			
Urban Street		North Alafaya Trail		Analys	is Year	2020			Anal	lysis l	Period	1> 7:0	00	1		, _	
Intersection		North Alafaya Trail 8	<u> 40</u>	File Na	ime	Proje	ct1PlanE	3.xus						n n	4 14 7	1- 1	
Project Descript	tion	TTE6256 Project												1	_		
Demand Inform	nation				EB		_	W	/B		Т	NB		Т	SB		
Approach Move	ment			L	Т	ΤR		T	FΤ	R		T	T R		T	ΓR	
Demand (v), v				H	<u> </u>	 	250	_	7	85	471	1628		53	1207	 ``	
Signal Informa					7		- ↓i₄		Ħ			Į		+ =			
Cycle, s	160.0	Reference Phase	2		5	51	ଅ 🕇	اح	6				1	2	3		
Offset, s	0	Reference Point	End	Green	7.2	20.3	96.3	21	.9	0.0	0.0					5	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.8	3.8	4.1	2.		0.0	0.0		/ 1	P		7	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0	0.0	0.0		6	6	7		
Timer Results				EBL	.	EBT	WB	L	WB	BT I	NBL	.	NBT	SBL	.	SBT	
Assigned Phase	e								8		5		2	1		6	
Case Number								\rightarrow	9.0	_	2.0		3.0	1.1		4.0	
Phase Duration	9			_	_		_	_	24.	_	35.1	1	24.5	11.0	,	100.4	
Change Period,		.) e							2.6	_	3.8	-	4.5		_	4.5	
Max Allow Head				_	_		$\overline{}$		3.2	_	3.0	_	0.0	3.8		0.0	
Queue Clearan									23.9		12.9		0.0			0.0	
Green Extensio									0.0	_	0.5	0.0		0.0	_	0.0	
Phase Call Prof		(3-71-						\rightarrow	1.00	0	1.00			1.00			
Max Out Probab								\neg	1.00	0	0.00			0.77	7		
Movement Gro	un Doe	ulte			EB			W	2			NB			SB		
Approach Move		ouits		L	T	R		T		R	L	T	R	L	T	R	
Assigned Move				<u> </u>	-	K	3	8		18	5	2	12	1	6	K	
		\alafla		\vdash			278	74	_	94	252	872	305	59	1341		
Adjusted Flow F		**	_	\vdash			1810	190	_				1610	1810			
		ow Rate (s), veh/h/l	П							610	1757	1725			1725		
Queue Service							21.9	5.6		3.6	10.9	6.9	6.7	1.9	22.4		
Cycle Queue C Green Ratio (g		e πme (g c), s					21.9 0.14	5.6 0.1		3.6	10.9 0.20	6.9 0.75	6.7 0.75	1.9 0.64	22.4		
Capacity (c), v	_						248	260	-	220	687	3882	1208	513	3102		
Volume-to-Capa		tio (V)					1,122	0.28		429	0.367	0.225	0.253	0.115	0.432		
		/In (50 th percentile)					414.2	68	_	92	128.5	58.2	53.1	19.4	225.1		
		eh/In (50 th percentile)					16.6	2.7		9.2 3.6	5.1	2.3	2.1	0.8	9.0		
		RQ) (50 th percent	_				5.52	0.0	_	.00	0.57	0.00	0.00	0.05	0.00		
Uniform Delay (-77	-,				69.1	62.		3.3	64.1	5.0	4.1	10.5	17.3		
Incremental Del	. ,,						93.8	0.2	_	0.5	0.1	0.1	0.5	0.0	0.4		
Initial Queue De							0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (d), s/veh						162.8	62.	_	3.8	64.2	5.1	4.5	10.5	17.8			
Level of Service (LOS)						F	E		E	E	A	A	В	В			
Approach Delay	· · · · · /	/LOS		0.0			125.	-	F		15.4		В	17.5	- -	В	
Intersection Del						3	1.2							С			
					- F.D.							NE			0.5		
Multimodal Re					EB		2.0	WI			0.00	NB	_		SB		
Pedestrian LOS				2.88		С	2.63	_	C	-	2.05	_	В	1.67	\rightarrow	В	
Bicycle LOS Sc	ore / LC	JS					1.22	2	Α		2.12		В	1.26)	Α	

HCS™ Streets Version 7.9

Copyright © 2020 University of Florida, All Rights Reserved.