Pré-processamento de Dados

Ricardo Prudêncio

Relembrando KDD...

Bases de Dados,....

KDD (Knowledge Discovery in Databases)

IMPORTANTE

 Boa parte do processo de aquisição de conhecimento (KDD) é feito na realidade ANTES da modelagem!!!

Bases de Dados

Analistas de Dados

- Coleta de Dados
- Pré-Seleção dos Dados
- Padronização
- Transformações
- Enriquecimento de dados
- Seleção de atributos
- Seleção de instâncias

MODELAGEM

Boa massa de dados!!!

Transformações nos Dados

 Uma vez coletados, os dados podem ser transformados para facilitar a análise

- Existem vários tipos de transformação para vários tipos de dados
 - E.g., atributos numéricos vs categóricos

Transformações nos Dados

- Tipos de Atributos
 - Numérico X Categórico
 - E.g., Peso (Kg) X Classe social (A, B, C, ...)
 - Discreto X Contínuo
 - E.g., Idade X Temperatura
 - Ordinal X Nominal
 - E.g., Estatura (Alta, Media, Baixa) vs Cor (Azul, Verde)

Transformação de Dados Categóricos

- Boa parte dos algoritmos de aprendizagem não trata dados categóricos de forma direta
 - E.g., SVMs, Regressão Logística,...

 Necessidade de transformação para formato numérico tratável pelos algoritmos

Transformação de Dados Categóricos

- Abordagem ingênua:
 - Associar números inteiros às categorias
 - Ex.: Azul -> 1, Verde -> 2, Vermelho -> 3,...
 - Problema:
 - É inserida uma ordem nos valores que originalmente não existia (reflitam sobre o kNN!)
 - I.e. Azul < Verde < Vermelho</p>

Transformação de Dados Categóricos

- Representação 1-of-N
 - Dado N categorias de uma variável, gerar N variáveis binária
 - Atribuir valor 1 para a variável binária associada a uma categoria e 0 para as demais
 - E.g. Azul -> 100, Verde ->010, Vermelho -> 001
 - Feito comumente em Regressão Logística

OBS.: Ver filtro NominalToBinary no WEKA

Transformação de Dados Contínuos - Discretização

- Objetivo: criar informação mais fácil de ser tratada ou prevista
 - E.g.: número de bugs □ (presença, ausência) de bugs
 - E.g., índice da bolsa de valores □ tendência de queda (positiva ou negativa)
 - E.g., número de desenvolvedores □ tamanho da equipe (pequena, média ou grande)

Discretização – Equal-Width

- Divide o domínio do atributo em k intervalos de tamanho fixo
 - Nem sempre é trivial definir valor de k
 - Novos valores dos atributos podem ser distribuídos de forma desbalanceada

Discretização – Equal-Width

Discretização

- Equal-frequency discretization (EFD)
 - Divide domínio do atributo em k intervalos com mesmo número de exemplos

 Valores categóricos serão igualmente distribuídos

Discretização – Equal-Frequency

Transformação de Dados - Normalização

- Objetivo: transformar dados contínuos em escalas diferentes
 - E.g., idade, peso, altura,....
- Padronização
- Reescalonamento
- Normalização por Quantis

Transformação de Dados - Normalização

Padronização

$$z = \frac{x - \mu}{\sigma}$$

Reescalonamento

$$x' = \frac{x - \min}{\max - \min}$$

Normalização por Quantil

$$r = rank(x)$$

	Idade	Altura
Α	18	1,60
В	30	1,80
С	55	1,70
D	40	1,85
Е	21	1,64
Media 32.8		Media 1.71

Reescalonamento

	Idade	Altura
Α	0.0	0
В	0.32	0.8
С	1.0	0.4
D	0.59	1.0
Е	0.08	0.16

Padronização

	Idade	Altura
Α	- 0.98	-1.11
В	- 0.18	+ 0.77
С	+ 1.47	-0,17
D	+ 0.47	+ 1,25
E	- 0.78	- 0,73

Normalização por Quantil

	Idade	Altura
Α	0%	0%
В	50%	75%
С	100%	50%
D	75%	100%
Ε	25%	25%

Obs.: Ver Normalize e Stardardize no WEKA

Tratamento de Anomalias (Pontos Espúrios)

- Detecção de outliers:
 - Identificação de observações que diferem muito das outras

- Motivação:
 - Presença de outliers podem levar a modelos mal formados e resultados incorretos
 - Outliers podem representar situações de interesse do domínio de aplicação

- Métodos estatísticos
 - Definem se um dado atributo de um exemplo é um outlier
 - Assumem uma distribuição dos dados e definem região de outliers
 - Exemplo: x é um outlier se

Parâmetro que define região de outlier (comumente igual a 3)

- Uso de gráficos Box Plot
 - Outlier é uma observação que está a 1.5*IRQ do primeiro ou do terceiro quartil dos dados
 - IRQ = Intervalo interquartil = Primeiro quartil menos terceito quartil

OBS.: Ver InterQuartileRange no WEKA

- Métodos multivariados:
 - Permitem eliminar exemplos inteiros
 - E.g., usando medidas de distância

Tratamento de Dados Desbalanceados

- É comum nos depararmos com problemas de classificação com dados desbalanceados
 - I.e., Presença de classe majoritária com frequência muito maior que as outras classes

 Desbalanceamento de classes pode ser prejudicial dependendo do problema e algoritmo

- Conseqüência:
 - Maior tendência para a responder bem para as classes majoritárias em detrimento das minoritárias
 - Entretanto, em muitos casos, o que importa é ter um bom desempenho para as classes minoritárias!!!
 - Ver exemplos no próximo slide

- Exemplo: Detecção de Fraude
 - Menos de 1% das transações de cartão de crédito são fraudes
 - Em um conjunto de exemplos relacionados a transações, teremos:
 - 99% dos exemplos para a classe negativa (não-fraude)
 - 1% dos exemplos para a classe positiva (fraude)

- Exemplo: Detecção de Fraude
 - Classificadores terão uma tendência a dar respostas negativas para transações com fraude
 - I.e. Alto número de falsos negativos
 - Problema: o custo de um falso negativo é muito maior que o custo de um falso positivo
 - Falso negativo: fraude que não foi detectada em tempo
 - I.e., prejuízo a operadora de cartão
 - Falso positivo: transação normal bloqueada
 - I.e., aborrecimento para o usuário do cartão

- Exemplo: Diagnóstico Médico
 - Pacientes doentes são em geral menos comuns que pacientes saudáveis
 - No diagnóstico médico, novamente a classe positiva (dos pacientes doentes) tem uma freqüência muito menor que a classe negativa (pacientes saudáveis)

- Exemplo: Diagnóstico Médico
 - Classificadores terão uma tendência a classificar doentes reais como supostamente saudáveis
 - Novamente, alto número de falsos positivos
 - Conseqüência :
 - Diagnóstico tardio e dano para o paciente

Tratamento de Dados Desbalanceados

- Reamostragem aleatório:
 - Reamostragem dos exemplos de treinamento de forma a gerar conjuntos balanceados
 - Undersampling
 - Reduzir número de exemplos da classe majoritária
 - Pode acarretar em perda de informação
 - Oversampling
 - Replicar exemplos da classe minoritária
 - Se feito aleatoriamente, pode gerar overfitting

Abordagens para Tratamento de Dados Desbalanceados

SMOTE

- Oversampling usando exemplos sintéticos da classe minoritária
- Exemplos sintéticos extraídos ao longo dos segmentos que unem vizinhos mais próximos da classe minoritária

Abordagens para Tratamento de Dados Desbalanceados

- Comparação entre métodos
 - Melhor método de sampling depende do algoritmo sendo utilizado e da métrica de avaliação
 - Comumente métodos de oversampling mais inteligentes (e.g., SMOTE) se dão bem