Жадные алгоритмы для построения многопроцессорного списочного расписания

Савицкий Илья

Научный руководитель: к.т.н. доцент Костенко Валерий Алексеевич

27 апреля 2023 г.

Цели и задачи ВКР

Целью ВКР является разработка детерминированного алгоритма построения многопроцессорного расписания с дополнительными ограничениями. Для достижения указанной цели требуется:

- Провести аналитический обзор алгоритмов построения списочных расписаний с целью выявления алгоритмов, которые возможно модифицировать под поставленную задачу и имеют хорошую возможность масштабирования.
- 2 Разработать и реализовать алгоритмы.
- Провести исследование качества решений и временной сложности алгоритмов.

Постановка задачи

- Граф потока управления G без циклов, в котором дуги зависимости по данным, а вершины задания. Вершин n, дуг m
- Вычислительная система, состоящая из р процессоров.
- Матрица $C_{n \times p}$ времени выполнения работ на процессорах. Каждая строка этой матрицы длины выполнения n-й задачи на p процессорах.
- **ullet** Время d, затрачиваемое на межпроцессорную передачу.

Граф потока данных

Постановка задачи

Требуется:

- Построить расписание HP, то есть для i-й работы определить время начала ее выполнения s_i и процессор p_i на котором она будет выполняться;
- Минимизируемый критерий: время завершения выполнения расписания.

Ограничение на корректность расписания

Множество корректных расписаний НР задается набором ограничений:

- В расписании не допустимы прерывания;
- Интервалы выполнения работ не пересекаются;
- Каждая работа назначена на процессор;
- Любую работу обслуживает один процессор;
- ullet Частичный порядок, заданный графом потока управления G, сохранен в HP.

Дополнительные ограничения

- Задача без дополнительных ограничений.
- 2 Задача с дополнительным ограничением на количество передач:
 - ullet $CR = rac{m_{ip}}{m} < 0.4$, где m_{ip} количество межпроцессорных передач в расписании.

Обзор предметной области

Проведен обзор детерминированных алгоритмов, которые возможно модифицировать под поставленную задачу и имеют хорошую возможность масштабирования.

Название алгоритма	Возможность модификации	Возможность масштабирования
	алгоритма	алгоритма
Метод ветвей и границ	✓	Х
Метод динамического программирования	✓	X
Алгоритм поиска максимального потока	×	✓
Жадные алгоритмы	✓	✓

Общая схема жадных алгоритмов построения расписания

Жадный алгоритм с выбором по числу потомков

- Выбор следующей работы на постановку критерий GC1
- Выбор процессора для работы
 - Для CR из изначально заданного распределения
 - Для *NO* по критерию *GC*2

Зададим множество доступных для добавления вершин $D=(d_1,d_2,\ldots,d_l)$, где l - количество вершин, доступных для добавления.

Критерий *GC*1:

Из множества D выбирается работа по критерию GC1 максимальности количества потомков у вершины.

Критерий *GC*2:

Работа ставится на процессор, на котором время завершения работы будет минимальным.

x_2 x_3 x_4 x_4

Выбранная вершина

*X*5

Алгоритм постановки работы на процессор

При постановке требуется найти такое минимальное время t, чтобы

- lacktriangle Все передачи данных завершились до t;
- Существует интервал простоя длительности не меньший времени выполнения работы, начинающийся в t.

Жадный алгоритм с фиктивными директивными сроками

- Выбор следующей работы на постановку в порядке возрастания фиктивных директивных сроков;
- 2 Выбор процессора для работы:
 - Для CR из изначально заданного распределения
 - Для *NO* по критерию *GC*2

Распространение директивных сроков по графу потока управления.

Все межпроцессорные передачи равны 2. Только x_2 и x_5 находятся на разных процессорах.

Наборы данных для исследования

Для исследования качества решений и временной сложности алгоритма были созданы следующие наборы данных:

- Набор данных с известным оптимумом.
- Набор данных, основанных на слоистых данных.
- Набор данных для построения расписания на неоднородных процессорах.

Точность полученного расписания. CR

(а) Жадный алгоритм с выбором по числу

(b) Жадный алгоритм с фиктивными директивными сроками

Качество решений алгоритмов на данных с известным оптимумом, постановка с дополнительным ограничением на межпроцессорные передачи

Точность полученного расписания. NO

(a) Жадный алгоритм с выбором по числу потомков

(b) Жадный алгоритм с фиктивными директивными сроками

Качество решений алгоритмов на данных с известным оптимумом, постановка без дополнительных ограничений

Программная реализация алгоритма

Программная реализация была выполнена на языке C++, с использованием библиотек boost, METIS, json и toml. Реализация занимает 1689 строк.

PlacedTask + task no : unsigned int

+ start : unsigned int + finish : unsigned int

Текущие результаты

- Проведен аналитический обзор алгоритмов построения списочных расписаний с целью выявления алгоритмов, которые возможно модифицировать под поставленную задачу и имеют хорошую возможность масштабирования, по результатам которого были выбраны жадные алгоритмы.
- Разработаны и реализованы алгоритмы, основанные на различных жадных критериях.
- Проведено исследование свойств алгоритма, которое показало низкую вычислительную сложность и среднее отклонение от оптимума в 30% для жадного алгоритма с выбором по числу потомков и до 5-10% для жадного алгоритма с фиктивными директивными сроками.

Критерии модификации алгоритма

- Возможность учета количества межпроцессорных передач.
- 2 Учет затрат на межпроцессорные передачи.

Проблема проверки алгоритма на данных с известным оптимумом

Точность полученного расписания. CR и NO

Отношение длительности работы алгоритма с фиктивными директивными сроками к длительности

работы жадного алгоритма на данных, основанных на слоистых графах

Точность полученного расписания. CR и NO

Отношение длительности работы алгоритма с фиктивными директивными сроками к длительности

работы жадного алгоритма на данных, основанных на неоднородных процессорах

Время выполнения программы. CR и NO.

(а) Жадный алгоритм с выбором по числу

потомков

Время выполнения алгоритма на данных с известным оптимумом, в секундах

(b) Жадный алгоритм с фиктивными

директивными сроками