NOMBRE Y APELLIDO:

Justificar todas las respuestas.

Para aprobar son necesarios al menos 45 puntos, que corresponden a la nota 4 (cuatro).

Ejercicio 1. (20 pts.)

- (a) Sea M_n(k) el espacio vectorial de matrices n × n sobre el cuerpo k y sea S ⊆ M_n(k) el subconjunto de matrices de traza igual a cero. Mostrar que S es un subespacio vectorial.
 - (Recordar que la traza de una matriz $A=(a_{ij})_{i,j}$ es la suma $\sum_i a_{ii}$ de los elementos de la diagonal.)
- (b) Sean V₁ y V₂ los subespacios de R⁴:

$$V_1 = \langle (1,0,1,0), (1,1,1,1) \rangle, \quad V_2 = \{(x,y,z,w) \in \mathbb{R}^4 : w-y=0, x+z=0 \}.$$

Calcular la dimensión de $V_1 \cap V_2$ y de $V_1 + V_2$.

(c) Sea $V=P_4$ el \mathbb{R} -espacio vectorial de polinomios de grado menor a 4. Sean $p_1(x)=1+x^2$ y $p_2(x)=x-x^3$ en P_4 . Completar el conjunto $\{p_1(x),p_2(x)\}$ a una base de V.

Ejercicio 2. (20 pts.) Sea $\mathcal{B} = \{(1,i,0), (1-i,0,1), (1+i,0,1)\} \subset \mathbb{C}^3$. Sea $\mathcal{C} = \{(1,0,0), (0,1,0), (0,0,1)\}$ la base canónica.

- (a) Mostrar que B es una base de C³ como C-espacio vectorial.
- (b) Hallar las matrices de cambio de base $P_c^{\mathcal{B}}$ y $P_{\mathcal{B}}^{\mathcal{C}}$.
- (c) Dar las coordenadas del vector (1, 1, i) en la base \mathcal{B} .

Ejercicio 3. (20 prs.) Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ (lada por T(x, y, z) = (z, x + y, x + y + z).

- (a) Probar que T es una transformación lineal.
- (b) Describir implícitamente el núcleo de T.
- (c) Dar una base de la imagen.

Ejercicio 4. (20 pts.)

- (a) Definir una transformación lineal invertible $T: \mathbb{R}^2 \to \mathbb{R}^2$ de manera tal que T(1,1)=(1,0).
- (b) Dar la matriz $[T]_{\mathcal{E}}^{\mathcal{E}}$ de T en la base canónica $\mathcal{E} = \{(1,0),(0,1)\}$ de \mathbb{R}^2 .
- (c) Calcular $[T^{-1}]_C^C$.

Ejercicio 5. (20 pts.) Determinar si las siguientes afirmaciones son verdaderas o falsas. Justificar o dar un contraejemplo según el caso.

- (a) Sea V un subespacio vectorial de un espacio vectorial U. Entonces V+V=V.
- (b) Sea $T \in L(V)$ tal que $T^2 = 0$. Entonces T no es invertible.
- (c) Sea V un \mathbb{R} -espacio vectorial y $T:\mathbb{R}^3\to V$ una transformación lineal inyectiva. Entonces T es suryectiva.
- (d) Sea A una matriz $n \times n$ (a) que $\det A \neq 0$. Entonces $\det(A^k) \neq 0 \ \forall k \in \mathbb{N}$.

MANAGE TO THE PARTY OF THE PART	Ejercicio	1	2	3	4	5	Total
Nota	Nota						