

SBVS211B - AUGUST 2012 - REVISED APRIL 2015

TPS342

TPS342x Low-Power, Push-Button Controllers With Configurable Delay

Features

Very Small Package: 1.45-mm × 1.00-mm SON

Operating Range: 1.6 V to 6.5 V

Single (TPS3422) or Dual (TPS3420 and TPS3421) Push-Button Inputs

Low Supply Current: 250 nA (Typical)

Two-State Logic, User-Selectable Input Delay:

- For Example: 7.5 s and 0 s

Multiple Timing Options Available

Fixed Time-out Pulse at RST (TPS3421 and TPS3422): 400 ms (Typical)

Other Timing Options Available on Request

Active Low, Open-Drain Output

Applications

- **Smart Phones**
- Tablets, Ultrabooks™
- Gaming Consoles
- Portable Consumers
- **Navigation Devices**
- Consumer Medical
- Toys

3 Description

The TPS3420, TPS3421, and TPS3422 (TPS342x) are low-current, ultrasmall, push-button reset timers. These devices use a long timing setup delay to provide the intended system reset, and avoid resets from short push-button closures or key presses. This reset configuration also allows for differentiation between software interrupts and hard system resets.

The TPS3420 and TPS3421 monitor two inputs (PB1 and PB2) and output an active-low reset pulse signal (RST) when both inputs are low for the selected time delay. For the TPS3421, RST remains low for a factory-programmed fixed time. For the TPS3420, RST remains low until one of the PBx inputs is released. The need for a dedicated reset button is eliminated because two inputs are used to ensure reset. The TPS3422 monitors one input (PB1) and outputs an active-low reset pulse signal (RST) when PB1 is low for the selected time delay.

The TPS342x have an open-drain output that can be wire-ORed with other open-drain devices. The TPS342x operate from 1.6 V to 6.5 V over the -40°C to +125°C temperature range, and provide a precise, space-conscious micropower solution for system resetting needs.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS342x	USON (6)	1.45 mm × 1.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

TPS3421 Typical Application Diagram

Standby Supply Current vs Supply Voltage

Table of Contents

1	Features 1	7.4 Device Functional Modes	12
2	Applications 1	8 Application and Implementation	13
3	Description 1	8.1 Application Information	
4	Revision History2	8.2 Typical Applications	
5	Pin Configuration and Functions	9 Power Supply Recommendations	17
6	Specifications4	10 Layout	18
•	6.1 Absolute Maximum Ratings	10.1 Layout Guidelines	
	6.2 ESD Ratings	10.2 Layout Example	18
	6.3 Recommended Operating Conditions	11 Device and Documentation Support	19
	6.4 Thermal Information	11.1 Device Support	
	6.5 Electrical Characteristics	11.2 Documentation Support	19
	6.6 Timing Requirements	11.3 Related Links	19
	6.7 Typical Characteristics 7	11.4 Trademarks	19
7	Detailed Description9	11.5 Electrostatic Discharge Caution	19
-	7.1 Overview	11.6 Glossary	19
	7.2 Functional Block Diagrams	12 Mechanical, Packaging, and Orderable	
	7.3 Feature Description	Information	20
	•		

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	hanges from Revision A (December 2012) to Revision B	Page
•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	
•	Added Typical to Low supply current bullet in Features list	1
•	Added Typical to Fixed time-out pulse bullet in Features list	1
•	Changed Pin Configuration and Functions section; updated table format	3
•	Changed Absolute Maximum Ratings table; added storage temperature range (T _{stg}) specification	4
•	Changed Start-up time to start-up delay, added parametric symbol	5
Cł	hanges from Original (August 2012) to Revision A	Page

5 Pin Configuration and Functions

TPS3420, TPS3421: DRY Package 6-Pin USON Top View

TPS3422: DRY Package 6-Pin USON Top View

			ı
RST	1	6	TST
GND	2	5	TS
PB1	3	4	VC
	l		

Pin Functions

	PIN		PIN			
NAME	TPS3420/21	TPS3422	1/0	DESCRIPTION		
GND	2	2	_	Ground.		
PB1	3	3	I	Push-button input. PB1 and PB2 must be held low for greater than t _{TIMER} time to assert the reset output.		
PB2	6	_	I	Second push-button input. PB1 and PB2 must be held low for greater than $t_{\mbox{\scriptsize TIMER}}$ time to assert the reset output.		
RST	1	1	0	Active low, open-drain output. Reset is asserted (goes low) when both PB1 and PB2 are held low for longer than t _{TIMER} time (only PB1 for TPS3422). For TPS3420: Reset is deasserted when either PBx input goes high. For TPS3421,TPS3422: Reset is deasserted after fixed time of t _{RST} .		
TS	5	5	I	Time delay selection input. Connect to VCC or GND for different t_{TIMER} selections. In normal operation, the TS pin state should not be changed because it is intended to be permanently connected to either GND or VCC. If switching the TS pin is required, it should be done during power off, or when either PBx input is high.		
TST	_	6	_	Connect this pin to GND or VCC during normal device operation.		
VCC	4	4	I	Supply voltage input. Connect a 1.6-V to 6.5-V supply to VCC to power the device. It is good analog design practice to place a 0.1-µF ceramic capacitor close to this pin.		

Copyright © 2012–2015, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

over operating junction temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
	VCC	-0.3	7	
Valtage	RST	-0.3	7	V
Voltage	PB1, PB2	-0.3	7	V
	TS	-0.3	V _{CC} + 0.3	
Current	RST pin	-20	20	mA
Temperature ⁽²⁾	Operating junction, T _J	-40	125	٥
	Storage, T _{stg}	-65	150	C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Floatroatatia disabarra	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_{CC}	Input supply voltage	1.6	6.5	V
V_{TS}	TS pin voltage	0	V_{CC}	V
V_{PB1},V_{PB2}	PB1 and PB2 pin voltage	0	6.5	V
V_{RST}	RST pin voltage	0	6.5	V
I _{RST}	RST pin current	0.00035	8	mA

6.4 Thermal Information

		TPS342x	
	THERMAL METRIC ⁽¹⁾	DRY (USON)	UNIT
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	322	
R _{θJC(top)}	Junction-to-case (top) thermal resistance	1185.2	
$R_{\theta JB}$	Junction-to-board thermal resistance	184.7	°C ///
ΨЈТ	Junction-to-top characterization parameter	34.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	182.6	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	69.6	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Product Folder Links: TPS342

⁽²⁾ As a result of the low dissipated power in this device, it is assumed that $T_J = T_A$.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

All specifications are over the operating temperature range of $-40^{\circ}\text{C} < T_{J} < 125^{\circ}\text{C}$ and 1.6 V \leq V_{CC} \leq 6.5 V, unless otherwise noted. Typical values are at $T_{J} = 25^{\circ}\text{C}$ and $V_{CC} = 3.3 \text{ V}$.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{CC}	Input supply			1.6		6.5	V	
				V _{CC} = 3.3 V		250		nA
I _{CC}		TPS3421, TPS3422	V _{CC} = 6.5 V, -40°C < T _J < 85°C			1	μΑ	
	Supply current	11 00 122	V _{CC} = 6.5 V			3.3	μΑ	
	(standby)		V _{CC} = 3.3 V		350		nA	
		TPS3420	$V_{CC} = 6.5 \text{ V}, -40^{\circ}\text{C} < T_{J} < 85^{\circ}\text{C}$			1.2	μΑ	
			V _{CC} = 6.5 V			3.4	μΑ	
	Supply current	TPS3420, TPS3421	PB1, PB2 = 0 V, V _{CC} = 6.5 V		6	12	μΑ	
	(active timer) ⁽¹⁾	TPS3422	PB1, PB2 = 0 V, V _{CC} = 6.5 V		106	136		
V _{IH}	High-level input voltage	TPS3421, TPS3422	PB1, PB2	0.7 V _{CC}			V	
		TPS3420	PB1, PB2	0.85				
V _{IL}	Low-level input voltage	TPS3421, TPS3422	PB1, PB2	0		0.3 V _{CC}	V	
		TPS3420	PB1, PB2	0		0.3		
R _{PB1}	PB1 internal pullu (TPS3422)	up resistance			65		kΩ	
Input curre (PB1, PB2	Input current	TPS3420 TPS3421	PB1, PB2 = 0 V or V _{CC}	-50		50	nA	
	(PB1, PB2)	TPS3422	PB1, PB2 = V _{CC}	-50		50		
,			V _{CC} ≥ 4.5 V, I _{SINK} = 8 mA			0.4		
V_{OL}	Low-level output	voltage	V _{CC} ≥ 3.3 V, I _{SINK} = 5 mA			0.3	V	
			V _{CC} ≥ 1.6 V, I _{SINK} = 3 mA			0.3		
I _{lkg(OD)}	Open-drain outpu	ut leakage current	High impedance, V _{RST} = 6.5 V	-0.35		0.35	μΑ	

⁽¹⁾ Includes current through pullup resistor between input pin (PB1) and supply pin (VCC) for TPS3422.

6.6 Timing Requirements

All specifications are over the operating temperature range of $-40^{\circ}\text{C} < T_{\text{J}} < 125^{\circ}\text{C}$ and 1.6 V \leq V_{CC} \leq 6.5 V, unless otherwise noted. Typical values are at $T_{\text{J}} = 25^{\circ}\text{C}$ and $V_{\text{CC}} = 3.3 \text{ V}$.

			MIN	TYP	MAX	UNIT
			-20%		20%	
		TPS3420D: TS = GND	6	7.5	9	
t _{TIMER}	Push-button timer ⁽¹⁾	TPS3420D: TS = VCC	10	12.5	15	s
		TPS3421Ey, TPS3422Ey: TS = GND	6	7.5	9	
		TPS3421Ey, TPS3422Ey: TS = VCC		0		
			-20%		20%	
		TPS3421xC	64	80	96	
t _{RST}	Reset pulse duration	TPS3421xG	320	400	480	ms
		TPS3422xG	320	400	480	
t _{DD}	Detection delay (from input to RST) ⁽²⁾	For 0-s t _{TIMER} condition		150		μs
t _{SD}	Start-up delay ⁽²⁾	VCC rising		300		μs

⁽¹⁾ For devices with a 0-second delay while TS = VCC, this option is only for factory testing and is not intended for normal operation. In normal operation, the TS pin should be tied to GND.

Product Folder Links: 7

Copyright © 2012-2015, Texas Instruments Incorporated

⁽²⁾ For devices with a 0-second delay when TS = VCC, reset asserts in t_{DD} time when both PB inputs go low in this configuration. During start-up, if the PB inputs are low, reset asserts after a start-up time delay. This value is specified by design.

(1) For the TPS3420, t_{RST} is not a fixed time, but instead depends on one of the PB pins going high.

Figure 1. TPS3420 Timing Diagram

Figure 2. TPS3421 Timing Diagram

Figure 3. TPS3422 Timing Diagram

6.7 Typical Characteristics

At $T_J = 25$ °C and $V_{CC} = 3.3$ V, unless otherwise noted.

Typical Characteristics (continued)

At $T_J = 25$ °C and $V_{CC} = 3.3$ V, unless otherwise noted.

7 Detailed Description

7.1 Overview

The TPS342x are a family of push-button reset devices with an extended setup period that prevents resets from occurring as a result of short-duration switch closures. See Table 1 for details.

The TPS3420 is a dual-channel device with an output that asserts when both inputs (PB1 and PB2) are held low for the push-button timer duration, and deasserts when either input PBx is released.

The TPS3421 is a dual-channel device with an output that asserts when both inputs (PB1 and PB2) are held low for the push-button timer duration, and deasserts after the reset time-out duration.

The TPS3422 is a single-channel device with an output that asserts when the PB1 input is held low for the pushbutton timer duration, and deasserts after the reset time-out duration.

The TPS342x family also has a TS pin that selects between two different push-button timing options by connecting the pin to either GND or V_{CC}.

Table 1. Device Family Options

DEVICE	CHANNELS	INPUT	RESET BEHAVIOR (DEASSERTION)
TPS3420	2	NMOS-based threshold	Input (PBx) dependent
TPS3421	2	External pullup to VCC	Fixed pulse
TPS3422	1	Internal pullup	Fixed pulse

Copyright © 2012-2015, Texas Instruments Incorporated

7.2 Functional Block Diagrams

Figure 11. TPS3420 Block Diagram

Figure 12. TPS3421 Block Diagram

Figure 13. TPS3422 Block Diagram

7.3 Feature Description

7.3.1 Push-Button Timer Selection (TS)

The TPS342x offer two different push-button timer options (t_{TIMER}) for system flexibility with the use of the TS pin. Connect the TS pin to either GND or VCC for two different timing options, as shown in Table 2.

PUSH-BUTTON TIMER PRODUCT TS = VCC TS = GND **RESET PULSE** TPS3420DDRYR/T 12.5 s 7.5 sN/A TPS3421EGDRYR/T 0 s 7.5 s400 ms TPS3422EGDRYR/T 400 ms 0 s 7.5 s

Table 2. Push-Button Timer Option Examples

During normal operation, the TS pin state should not be changed because TS is intended to be permanently connected to either ground or VCC. The state of the TS pin is checked during power up and when either PBx input is high. Therefore, if a different timing option is desired, the state must be changed during power off, or when either PBx input is high, to avoid false operation.

7.3.2 Inputs

This section discusses the inputs of the TPS342x devices.

7.3.2.1 TPS3420 Inputs (PB1, PB2)

The TPS3420 has two NMOS-based threshold inputs (PB1, PB2) with a $V_{IH} \ge 0.85$ V, and a $V_{IL} \le 0.3$ V. When input conditions are met (that is, when both inputs are simultaneously held low for the push-button timer period, t_{TIMER}), the device asserts a reset low, as shown in Figure 1. Reset deassertion occurs when either input goes high. The reset pulse occurs only one time after each valid input condition. At least one input pin must be released (goes high) and then driven low for the t_{TIMER} period before \overline{RST} asserts again.

7.3.2.2 TPS3421 Inputs (PB1, PB2)

The TPS3421 has two inputs: PB1 and PB2. External pullup resistors to VCC are required to pull the input pins high. When input conditions are met (that is, when both inputs are held low simultaneously for the push-button timer period, t_{TIMER}), the device asserts a single reset pulse of a fixed time (t_{RST}); see Figure 2. Reset deassertion is independent of the inputs because t_{RST} is a fixed time pulse. A reset pulse occurs only one time after each valid input condition. At least one input pin must be released (go high) and then driven low for the t_{TIMER} duration before $\overline{\text{RST}}$ asserts again.

7.3.2.3 TPS3422 Inputs (PB1)

The TPS3422 has only one input: PB1. This input has an internal pullup resistor to V_{CC} . When input conditions are met (that is, when the input is held low for the push-button timer period, t_{TIMER}), the device asserts a single reset pulse of a fixed time (t_{RST}); see Figure 3. Reset deassertion is independent of the input because t_{RST} is a fixed time pulse. A reset pulse occurs only one time after each valid input condition. The input pin must be released (go high) and then driven low for the t_{TIMER} period before \overline{RST} asserts again.

7.3.3 Output (RST)

The TPS342x have an open-drain output. A pullup resistor must be used to hold the line high when the output is in a high-impedance state (not asserted). By connecting a pullup resistor to the proper voltage rail, the output can be connected to other devices at correct interface voltage levels. The TPS342x output can be pulled up to 6.5 V, independent of the device supply voltage. To ensure proper voltage levels, make sure to choose the correct pullup resistor values. The pullup resistor value is determined by V_{OL} , sink current capability, and output leakage current ($I_{Ikg(OD)}$). These values are specified in *Electrical Charactersitcs*.

The *Inputs (PB1, PB2)* describes how the output is asserted or deasserted. See Figure 1 (TPS3420), Figure 2 (TPS3421), or Figure 3 (TPS3422) for a timing diagram that describes the relationship between the PB1 and PB2 inputs and the output. Figure 14 shows the TPS3421 reset timing.

Copyright © 2012–2015, Texas Instruments Incorporated

Figure 14. TPS3421 Reset Timing Diagram

Any change in input condition is detected after reset is deasserted. If input PB1 or PB2 has a pulse (low-to-high-to-low) during the t_{RST} period, the change is not recognized by the device. If input PB1 or PB2 go high during the t_{RST} period, the change is detected after reset is deasserted.

7.4 Device Functional Modes

7.4.1 Normal Operation $(V_{DD} > 1.6 V)$

When the voltage on VDD is greater than 1.6 V ($V_{DD(min)}$) for approximately 300 μ s (t_{SD}), the \overline{RST} signal corresponds to the state of the PB1 and PB2 pins; see Table 1.

7.4.2 Below $V_{DD(min)}$ (1.6 V > V_{DD} > 1.3 V)

When the voltage on VDD is less than 1.6 V but greater than 1.3 V (typical), the \overline{RST} signal corresponds to the state of the PB1 and PB2 pins; however, the electrical specifications in the *Electrical Characteristics* and *Timing Requirements* tables do not apply when $V_{DD} < V_{DD(min)}$.

7.4.3 Power-On Reset $(V_{DD} < 1.3 \text{ V})$

When the voltage on VDD is lower than 1.3 V (typical), the \overline{RST} output should be high-impedance. However, it is not ensured to be in a high impedance state under all conditions.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS342x family of devices are small, low-current, push-button reset timers. These devices use a long timing setup delay to provide the system reset signals, and avoid resets from short push-button closures. This reset configuration allows for differentiation between user inputs and hard system resets. TPS342x uses an open drain output, has an input voltage range of 1.6 V to 6.5 V, and is specified from –40°C to +125°C.

The TPS3420 and TPS3421 are used to monitor two inputs while TPS3422 is used to monitor a single input.

8.2 Typical Applications

8.2.1 Single Input With Fixed Reset Pulse Duration

If only one input must be monitored to set the state of a logic pin, such as the enable pin of a load switch, use the TPS3422. After a reset event has occurred, \overline{RST} is held low for a fixed amount of time (t_{RST}) regardless of the state of the PB1 pin.

An application diagram is shown in Figure 15.

Connect TS to VCC or ground for different PB time delays.

Figure 15. TPS3422 Application Diagram

8.2.1.1 Design Requirements

Table 3 lists the design requirements for Figure 15.

Table 3. Design Requirements and Results

DESIGN REQUIREMENTS	DESIGN RESULT
Single input	PB1
Does not react to input signal less than 5 s	6 s (minimum)
Reset pulse greater than 240 ms	320 ms (minimum)
I _{CC} < 5 μA	3.3 μA (maximum)

Copyright © 2012–2015, Texas Instruments Incorporated

8.2.1.2 Detailed Design Procedure

When the output switches to the high-Z state, the rise time of the \overline{RST} node depends on the pullup resistance and the capacitance on that node. Choose pullup resistors that satisfy both the downstream timing requirements and the sink current required to have a V_{OL} low enough for the application; 1-k Ω to 1-M Ω resistors are a good choice for low-capacitive loads.

8.2.1.3 Application Curve

Figure 16. Reset Pulse Duration vs Temperature

8.2.2 Dual Input Applications

If two inputs must be monitored to set the state of a microprocessor reset pin, either the TPS3420 or the TPS3421 can be used. The system functionality determines which device to use. Use the TPS3420 if \overline{RST} must be held low until the signal on one of the PBx pins transitions to a logic high state. Use the TPS3421 if \overline{RST} should only be held low for a fixed amount of time (t_{RST}) regardless of the state of the PBx pins.

An application diagram that is suitable for either the TPS3420 and the TPS3421 is shown in Figure 17.

A. Connect TS to VCC or ground for different PB time delays. Connect one PB input to ground for use as a single channel.

Figure 17. TPS3420 or TPS3421 Application Diagram

Submit Documentation Feedback

Copyright © 2012–2015, Texas Instruments Incorporated

8.2.2.1 Design Requirements

Table 4 lists the design requirements for Figure 17.

Table 4. Design Requirements and Results

DESIGN DECLUDEMENTS	DESIGN RESULT						
DESIGN REQUIREMENTS	TPS3420	TPS3421					
Dual input	PB1 and PB2	PB1 and PB2					
Does not react to input signal less than 5 s	6 s (minimum)	6 s (minimum)					
Reset pulse greater than 140 ms	Depends on PBx timing	320 ms (minimum)					
Reset pulse ends after at least one input goes high	True	Does not depend on PBx timing					

8.2.2.2 Detailed Design Procedure

Determine which version of the TPS342x family best suits the functional performance required.

When the output switches to the high-Z state, the rise time of the \overline{RST} node depends on the pullup resistance and the capacitance on that node. Choose pullup resistors that satisfy both the downstream timing requirements and the sink current required to have a V_{OL} low enough for the application; 1-k Ω to 1-M Ω resistors are a good choice for low-capacitive loads.

8.2.2.3 Application Curve

Figure 18. Reset Pulse Duration vs Temperature

Copyright © 2012–2015, Texas Instruments Incorporated

8.2.3 Latched Reset Signal

Some applications require the reset signal (\overline{RST}) to be latched and only change state after a second low input signal is received. To achieve a latched version of the \overline{RST} signal, a D-flip-flop can be used. The output of the D-flip-flop, Q, is then connected to the device to be reset.

See Figure 19 for an example of a latched reset signal configuration.

Figure 19. Latched Reset Schematic and Timing Diagram

8.2.3.1 Design Requirements

Table 5 summarizes the design requirements for Figure 19.

Table 5. Design Requirements and Results

DESIGN REQUIREMENTS	DESIGN RESULT
Single input	PB1
Latched output	Q
Does not react to input signal less than 5 s	6 s (minimum)
Reset pulse greater than 200 ms	320 ms (minimum)
I _{CC} < 20 μA	13.3 μA (maximum)

8.2.3.2 Detailed Design Procedure

Once a positive-edge triggered D-flip-flop is chosen, make sure the slew rate of the \overline{RST} signal is fast enough to trigger the flip-flop. For the SN74LVC1G74 shown in Figure 19, TI recommends a 1-k Ω pullup resistor. The RC time constant of the delay cap (C_{DELAY}) and delay resistor (R_{DELAY})should be 10 times the rise time of the input voltage to VCC so that a clear signal is sent to the D-flip-flop, to initialize it into a known state.

8.2.3.3 Application Curve

Figure 20. Latched Reset Waveforms Using SN74LVC1G74

9 Power Supply Recommendations

The input power supply should range from 1.6 V to 6.5 V and should be well regulated. Though not required, it is good analog design practice to place a 0.1-µF ceramic capacitor close to the VCC pin.

Copyright © 2012–2015, Texas Instruments Incorporated

10 Layout

10.1 Layout Guidelines

Follow these guidelines for laying out the printed circuit board (PCB) that is used for the TPS342x.

- Place the VCC decoupling capacitor close to the device.
- Avoid using long traces for the VCC supply node. The VDD capacitor (C_{VDD}), along with parasitic inductance from the supply to the capacitor, can form an LC tank and create ringing with peak voltages above the maximum VCC voltage.

10.2 Layout Example

Figure 21. Layout Example (DRY Package)

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.1.1.1 Evaluation Modules

An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TPS3421EG. The TPS3421EGEVM-156 Evaluation Module (and related user's guide) can be requested at the TI website through the product folders or purchased directly from the TI eStore.

11.1.1.2 Spice Models

Computer simulation of circuit performance using SPICE is often useful when analyzing the performance of analog circuits and systems. A SPICE model for the TPS3421EG is available through the product folder under *Tools & Software*.

11.1.2 Device Nomenclature

Table 6. Device Nomenclature

PRODUCT	DESCRIPTION
TPS3420 xzzza TPS3421 xyzzza TPS3422 xyzzza	 x is the push-button timer option. y is the different reset timeout pulse option. zzz is the package designator. a is the tape or reel quantity.

11.2 Documentation Support

11.2.1 Related Documentation

TPS3421EGEVM-156 User's Guide, SLVU781

11.3 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 7. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TPS3420	Click here	Click here	Click here	Click here	Click here
TPS3421	Click here	Click here	Click here	Click here	Click here
TPS3422	Click here	Click here	Click here	Click here	Click here

11.4 Trademarks

Ultrabooks is a trademark of Intel Corporation.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Product Folder Links: TPS342

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

1-Sep-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS3420DDRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AD	Samples
TPS3420DDRYT	ACTIVE	SON	DRY	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AD	Samples
TPS3421ECDRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AB	Samples
TPS3421ECDRYT	ACTIVE	SON	DRY	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AB	Samples
TPS3421EGDRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AC	Samples
TPS3421EGDRYT	ACTIVE	SON	DRY	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AC	Samples
TPS3422EGDRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AE	Samples
TPS3422EGDRYT	ACTIVE	SON	DRY	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AE	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

1-Sep-2016

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 2-Sep-2014

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity A0

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3420DDRYR	SON	DRY	6	5000	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1
TPS3420DDRYT	SON	DRY	6	250	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1
TPS3421ECDRYR	SON	DRY	6	5000	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1
TPS3421ECDRYT	SON	DRY	6	250	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1
TPS3421EGDRYR	SON	DRY	6	5000	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1
TPS3421EGDRYT	SON	DRY	6	250	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1
TPS3422EGDRYR	SON	DRY	6	5000	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1
TPS3422EGDRYT	SON	DRY	6	250	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1

www.ti.com 2-Sep-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3420DDRYR	SON	DRY	6	5000	203.0	203.0	35.0
TPS3420DDRYT	SON	DRY	6	250	203.0	203.0	35.0
TPS3421ECDRYR	SON	DRY	6	5000	203.0	203.0	35.0
TPS3421ECDRYT	SON	DRY	6	250	203.0	203.0	35.0
TPS3421EGDRYR	SON	DRY	6	5000	203.0	203.0	35.0
TPS3421EGDRYT	SON	DRY	6	250	203.0	203.0	35.0
TPS3422EGDRYR	SON	DRY	6	5000	203.0	203.0	35.0
TPS3422EGDRYT	SON	DRY	6	250	203.0	203.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. SON (Small Outline No-Lead) package configuration.

The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs.

E. This package complies to JEDEC MO-287 variation UFAD.

 $frac{f}{K}$ See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape.

DRY (R-PUSON-N6)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A.

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity