

JUNE EXAMINATION GRADE 12

2024

MARKING GUIDELINES

MATHEMATICS

(PAPER 1)

12 pages

More Recourses

Testpapers.co.za

Exam Papers / Study Guides / Summaries / Tutoring

Testpapers Pro.co.za

Study Notes / Quizzes / Flashcards / Exam Questions

NOTE:

Read the following instructions carefully before answering the questions.

- If a candidate answers a question TWICE, only mark the first attempt.
- If a candidate has crossed OUT an answer and did not redo it, mark the crossed-out answers.
- Consistent accuracy applies in ALL aspects of the marking guidelines
- Assuming values/answers in order to solve a question is UNACCEPTABLE.

QUE	STION	1	
1.1	1.1.1	2x(3x + 4) = 0 $x = 0$ or $x = -\frac{4}{3}$	$\checkmark x = 0$ $\checkmark x = -\frac{4}{3}$
	1.1.2	$2x^{2} - 4x + 1 = 0$ $x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(2)(1)}}{(2)(2)}$ $x = \frac{4 \pm \sqrt{8}}{4}$	✓ standard form ✓ substitute into correct formula
		$x = \frac{4 \pm \sqrt{8}}{4}$ $x = 1,71 \text{ or } x = 0,29$	\checkmark x = 1,71 \checkmark x = 0,29 [-1 for incorrect rounding only in this question]
	1.1.3	$(x-2)^2 \ge 1$ $x^2 - 4x + 4 \ge 1$ $x^2 - 4x + 3 \ge 0$ $(x-3)(x-1) \ge 0$ $CV \ x = 3 \text{ or } x = 1$ $x \le 1 \text{ or } x \ge 3$	✓ standard form ✓ factors ✓ critical values ✓ answer
		Or $(x-2) \le -1 \text{ or } (x-2) \ge 1$ $x \le -1 + 2 \text{ or } x \ge 1 + 2$ $x \le 1 \text{ or } x \ge 3$	✓✓ correct inequalities with square rooting both sides ✓ simplifying ✓ answer
1.2	1.2.1	$\sqrt{x-2} = 4 - x$ $x-2 \ge 0 and 4 - x \ge 0$ $x \ge 2 and x \le 4$ $2 \le x \le 4$	$\begin{array}{c} \checkmark \ x - 2 \ge 0 \\ \checkmark \ 4 - x \ge 0 \end{array}$
	1.2.2	$\sqrt{x-2} = 4 - x$ $x-2 = 16 - 8x + x^{2}$ $x^{2} - 9x + 18 = 0$ $(x-6)(x-3) = 0$ $x \neq 6 \text{ or } x = 3$	 ✓ square both sides ✓ standard form ✓ factors ✓ selecting x = 3

1.3	$3x + y = 2$ and $y^2 = 2x^2 - 1$
	Equation $1.y = 2 - 3x$
	$(2-3x)^2 = 2x^2 - 1$
	$4 - 12x + 9x^2 = 2x^2 - 1$
	$7x^2 - 12x + 5 = 0$
	(7x - 5)(x - 1) = 0
	ς
	$x = \frac{3}{7} or x = 1$
	$y = -\frac{1}{7}$ of $y = -1$
	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$

- ✓ subject of equation
- ✓ substitution
- ✓ standard form
- ✓ factors
- ✓ x-values
- ✓ y-values

OR

Euqation 1
$$x = \frac{2-y}{3}$$

 $y^2 = 2\left(\frac{2-y}{3}\right)^2 - 1$
 $y^2 = 2\left(\frac{4-4y+y^2}{9}\right) - 1$
 $9y^2 = 8 - 8y + 2y^2 - 9$
 $7y^2 + 8y + 1 = 0$
 $(7y+1)(y+1) = 0$
 $y = -\frac{1}{7}$ or $y = -1$
 $x = \frac{5}{7}$ or $x = 1$

(6)

1.4
$$r + 2s = a$$

$$r - 2s = b$$

$$2r = a + b$$

$$r = \frac{a+b}{2}$$

$$rs = \frac{a^2 - b^2}{8}$$

$$r + 2s = a$$

$$r - 2s = b$$

$$4s = a - b$$

$$s = \frac{a-b}{4}$$

 $\checkmark 2r = a + b$

$$\checkmark 4s = a - b$$

- ✓ r and s subject of equation
- ✓ multiplication

OR

RHS =
$$\frac{a^2 - b^2}{8}$$

= $\frac{(r + 2s)^2 - (r - 2s)^2}{8}$
= $\frac{(r^2 + 4rs + 4s^2) - (r^2 - 4rs + 4s^2)}{8}$
= $\frac{8rs}{8}$
= rs

OR

- ✓ substitution of a and b
- ✓ ✓ expand
- ✓ simplify

(4) [26]

QUE	STION	2		
2.1	2.1.1	$85;82;79;76$ $a = 85 d = -3$ $T_n = a + (n-1)d$ $T_n = 85 + (n-1)(-3)$ $T_n = 85 - 3n + 3$	✓ d value ✓ substitute a and d	
		$T_n = 88 - 3n$	✓ answer	(3)
	2.1.2	$T_n = 88 - 3n < 0$ $-3n < -88$ $n > \frac{88}{3}$ $\therefore T_{30} \text{ will be the first negative number.}$	✓ Tn<0 ✓ simplify ✓ answer Answer only full marks	(3)
2.2	$T_n - T_n$	$n_{n-1} = 4n - 3$		
	3 = 13 First diff Second $2a = 4$	$4(2) - 3 = 5$ $T_2 = 4(3) - 3 = 9$ $T_3 = 4(4) - 6$ fference = 5; 9; 13 difference = 4; 4 $3a + b = 5$ $3(2) + b = 5$ $b = -1$	✓ first difference ✓ value of a ✓ value of b ✓ value of c	
	$T_{11} = 1$.90	✓ value of T_1	
	190 =	$n^{2} - 1n + c$ $2(11)^{2} - 1(11) + c$ $242 - 11 + c$ 41 $T_{n} = 2n^{2} - n - 41$ $T_{1} = 2(1)^{2} - (1) - 41 = -40$		
			OR	
	OR			(5)

<u></u>	
	expanding T_{n-1}
$Tn - 1 = a(n-1)^2 + b(n-1) + c$	value of a
$Tn - Tn - 1 = an^{2} + bn + c - [a(n^{2} - 2n + 1) + bn - b + c]$	
$= an^{2} + bn + c - an^{2} + 2an - a - bn + b - c$ $= 2an - a + b$	value of b
	value of c
- "	\checkmark value of T_1
$\begin{vmatrix} a = 2 \\ -a + b = -3 \end{vmatrix}$	
-a + b = -3 -2 + b = -3	
b = -1	
121(2) + 11(-1) + c = 190	
$c = -41 T_n = 2n^2 - n - 41$	
$T_1 = 2(1)^2 - (1) - 41 = -40$	
	substitute in formula
	expanding $T_{25} + T_{26}$
51 = [2a + 49d]	answer
$T_{25} + T_{26} = a + 24d + a + 25d$	
$T_{25} + T_{26} = 2a + 49d$ $T_{25} + T_{26} = 51$	(3)
125 126 - 31	[14]
QUESTION 3	
3.1	
$\int_{-\infty}^{\infty} (4x-1)^k$	r
$\begin{vmatrix} k=1 \\ (4x-1)^1 + (4x-1)^2 + (4x-1)^3 \dots \end{vmatrix}$	
	condition
-1 < r < 1	
$\begin{vmatrix} -1 & < 4x - 1 < 1 \\ 2 & < 4x - 1 \end{vmatrix}$	answer
0 < 4% < 2	aliswei
$0 < x < \frac{1}{2} x \neq \frac{1}{4}$	\forall excluding $x \neq \frac{1}{4}$ (4)
	4
3.2 3.2.1 $T_1 = 3$ and $T_5 = 48$,
	sub into formula
	simplify
$\begin{vmatrix} 16 - 3.7 \\ 16 = r^4 \end{vmatrix}$	simping.
$ \therefore r = 2$	answer (3)

2.2.2		
3.2.2	Sum of radii for 5 circles $a(r^n - 1)$	✓ subt in formula
	$S_n = \frac{a(r^n - 1)}{r - 1}$	suot in formula
	$S_{5} = \frac{3(2^{5} - 1)}{2 - 1} = 93 \text{ units}$ $L = 93 \times 2 = 186 \text{ units}$	✓ simplify
	$3_5 = {2-1} = 93 \text{ units}$	
	$L = 93 \times 2 = 186 \ units$	✓ answer
	OR	
	Sum of diameter for 5 circles	
	$S_5 = \frac{a(r^n - 1)}{r - 1}$ $S_5 = \frac{6(2^5 - 1)}{2}$	
	r-1	
	$S_5 = \frac{O(2-1)}{2}$	
	$S_5 = 186^2$	
	L = 186 units	
	OR	
	6 + 12 + 24 + 48 + 96 = 186	
3.2.3		
	$r = \frac{\pi \cdot 6^2}{\pi \cdot 3^2}$	✓ area of circle ✓ r value
	$\begin{vmatrix} \pi \cdot 3^2 \\ r = 4 \end{vmatrix}$	7 I value
	$S_{10} = \frac{9\pi(4^{10} - 1)}{4 - 1}$	✓ subt into formula
	$S_{10} = 3\pi (1048575)$	✓ answer
	$S_{10} = 3145725\pi$	

QUE	STION 4		
4.1	y = x + 1 and $y = -x + 3x + 1 = -x + 32x = 2x = 1y = 1 + 1y = 2p = -1q = 2$	✓ x + 1 = -x + 3 $✓ x-value$ $✓ y-value$	(3)

(4)

4.2	$y = \frac{-4}{x - 1} + 2$	✓ y = 0	
	$0 = \frac{-4}{x - 1} + 2$ $-2 = \frac{-4}{x - 1}$		
	$-2 = \frac{-4}{x-1}$		
	x = 3	$\checkmark x = 3$	(2)
4.3	x = 1	✓ horizontal asymptote ✓ vertical asymptote ✓ y-intercept ✓ shape	

4.4 x < 1 or x > 3 \checkmark notation \checkmark critical values (2) [11]

QUESTION 5		
	$x(x) = -(x-2)^2 + 9$ = $-x^2 + 4x - 4 + 9$	\checkmark let $y = 0$
	$= x^{2} - 4x - 5$	\checkmark standard form
_	-5)(x + 1) = 0	✓ x-values
	5 or x = -1	, varaes
	= 6 units	✓ 6 units
	OR	OR
	$-2)^2 = 9$ 2 = +3	$\checkmark \text{ let } y = 0$
	$2 = \pm 3$ 2 = 3 or x - 2 = -3	$\checkmark (x-2)^2 = 9$
1		$\checkmark (x-2) = 9$ $\checkmark x$ -values
	5 or x = -1	\checkmark 6 units
AC	= 6 units	v o units
5.1.2 D(2		\checkmark sub in $g(x)$
$\begin{vmatrix} y = \\ 9 = \end{vmatrix}$	b^x	$\checkmark h = 3$
$\begin{vmatrix} y = b \\ b = b \end{vmatrix}$		$\mathbf{v} \ \ b \equiv 3$
<i>b</i> –	. 3	
$5.1.3 x \ge$	≥ 2	✓ answer
	$f(x) = -(x-2)^2 + 9$	✓ subst
	$=-(x+2-2)^2+9-9$	✓ answer
y =	$=-x^2$	Answer only full marks
5.1.5 x ≤	$\leq 0 \text{ or } x \geq 0$	✓ answer (accuracy mark)
	<u> </u>	()
5.1.6 Pro	ve: $g\left(x + \frac{1}{2}\right) = \sqrt{3}g(x)$	
	$x = 3^x$	✓ subt
	$\left(x + \frac{1}{2}\right) = 3^{x + \frac{1}{2}}$	✓ use of exp law
$\int g(x)$		use of exp law
	$= 3^x . 3^{\frac{1}{2}}$	
	$=\sqrt{3}g(x)$	
7.2		
$ \begin{cases} y = a(x - x) \\ y = a(x + 3) \end{cases} $	17 \ 27	✓ subt in formula
y = a(x + 1) $y = ax^2 + a$		Suot in formula
y = ax + c y = mx + c		✓ simplifying
0 = m(-6)		
		✓ subt in formula
0=m(-6)		(
6a = -6m		✓ subt c in formula
a = -m		$\checkmark a = -m$
OR		

$x = \frac{-3+2}{2} = -\frac{1}{2}$ $f'(x) = 2ax + b$ $0 = 2\left(-\frac{1}{2}\right)a + b$ $a = b$	
$(-6;0) (0;c)$ $m = \frac{c}{6}$ $c = 6m$ $0 = 4a + 2b + 6m$ $0 = 4a + 2a + 6m$ $-6a = 6m$ $a = -m$	

[17]

QUES	STION 6	
6.1	A(1:0)	✓ x = 1
6.2	x > 0	✓ answer
6.3	$y = \log_{\frac{1}{2}} x$ $x = \log_{\frac{1}{2}} y$	✓ swop x and y ✓ answer
	$y = \left(\frac{1}{2}\right)^x$	Answer only full marks
6.4		
	6-	✓ shape ✓ y-intercept ✓ one other point
	2-1 1 2 3	
6.5	$y = \log_{\frac{1}{2}} x$	✓ answer
···	$y = \log_{\frac{1}{2}} x$ $y = \log_{\frac{1}{2}} \frac{1}{2}$ $y = 1$	unswer

6.6	Reflection in the y-axis and translated one unit down	✓ reflection in y- axis	
		✓ translate one	
		down	(2)
			[10]

QUE	STION 7		
7.1	$1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m$	✓ subt into formula	
	$1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m$ $i_{eff} = \left(1 + \frac{0,075}{4}\right)^4 - 1$	✓ simplify ✓ answer (accept i=0.0771)	
	r = 7.71%	1-0.0771)	(3)
7.2	$A = P(1-i)^n$	✓ n-value	
	$4200 = 60000(1-i)^{42}$	✓ sub in form	
	$\frac{4\ 200}{60\ 000} =\ (1-i)^{42}$	✓ simplify	
		\checkmark r = 6,14% (accept	
	$\sqrt[42]{\frac{4200}{60\ 000}} = 1 - i$	in i form)	
	$i = 1 - \sqrt[42]{\frac{4\ 200}{60\ 000}}$		
	r = 6.14%		(4)
7.3	T0 T3 T10	✓ substitution (3 years)	
	27000 x 17614.76		
	$A = P\left(1 + \frac{i}{m}\right)^{n \times m}$		
	$17 614,76 = P\left(1 + \frac{0.054}{12}\right)^{7 \times 12}$	✓ answer	
	P = R12 080,41	✓ substitutions	
	$12\ 080,41 + x = 27\ 000\left(1 + \frac{0,054}{12}\right)^{3\times12}$	✓ simplify	
	$12\ 080,41 + x = 31\ 736,69$	✓ answer	
	x = R19656,28		
	OR		(5)
		Or	(3)

$17 614,76 = 27 000(1 + \frac{0,054}{12})^{120} - x(1 + \frac{0,054}{12})^{84}$ $x(1 + \frac{0,054}{12})^{84} = 27 000 \left(1 + \frac{0,054}{12}\right)^{120} - 17 614,76$ $x = R19 656,28$	$ \checkmark i = \frac{0,054}{12} $ $ \checkmark n = 120 $ $ \checkmark -x $ $ \checkmark n = 84 $ $ \checkmark answer $
--	--

[12]

QUE	STION 8 - Only penalise 1 mark for incorrect notation 8.1	1	
8.1	$f(x) = 2 - 3x^{2}$ $f(x+h) = 2 - 3(x+h)^{2}$ $f(x+h) = 2 - 3x^{2} - 6xh - 3h^{2}$	$\checkmark f(x+h)$	
	$f'(x) = \lim_{h \to 0} \frac{2 - 3x^2 - 6xh - 3h^2 - (2 - 3x^2)}{h}$	✓ substitution ✓ factors	
	$= \lim_{h \to 0} \frac{-6xh - 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$	✓ simplify	
	$= \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$ $= \lim_{h \to 0} (-6x - 3h)$	✓ answer	
	=-6x		
3.2	8.2.1 $f(x) = 2x^4 - 3x + a^2$ $f'(x) = 8x^3 - 3$	√ 8x3 √ -3 √ 0 (implied)	
		v o (implied)	
	$D_{x} \left[\frac{2x^{3} - \sqrt{x}}{x} \right]$	$\checkmark D_x \left[2x^2 - x^{-\frac{1}{2}} \right]$	
	$D_x \left[2x^2 - x^{-\frac{1}{2}} \right]$	$\checkmark 4x$ $\checkmark \frac{1}{2}x^{-\frac{3}{2}}$	
	$= 4x + \frac{1}{2}x^{-\frac{3}{2}}$	√ - x 2	
3.3	y = mx + c	✓ gradient	
	y = mx + c $y = 7x + c$ $5 = 7(4) + c$	✓ subt ✓ equation	
	c = -23 $y = 7x - 23$		
	$ \begin{array}{c} OR \\ y - 5 = 7(x - 4) \end{array} $		
	y - 5 = 7x - 28		
	y = 7x - 23		

QUE	STION 9		
9.1	$f(x) = 2x^3 + px^2 + qx + 3$ N(2;-9)	✓ sub in f	
	$-9 = 2(2)^3 + p(2)^2 + q(2) + 3$	$\checkmark f(x) = 0$	
	-9 = 16 + 4p + 2q + 3 $-28 = 4p + 2q \dots \dots \oplus$	✓ sub in f'	
	$f'(x) = 6x^{2} + 2px + q$ $0 = 6(2)^{2} + 2p(2) + q$ $0 = 24 + 4p + q$	✓ solve for q	
	$-24 = 4p + q \dots 2$	✓ solve for p	
	Equation		
	$ \begin{array}{r} -24 = 4p - 4 \\ 4p = -20 \\ p = -5 \end{array} $		(:
			`
9.2	G(0;3)	✓ y-value 3 ✓ x-value 0	(
9.3	$f(x) = 2x^3 - 5x^2 - 4x + 3$ $0 = (x - 3)(2x^2 + x - 1)$ $0 = (x - 3)(2x - 1)(x + 1)$ $x = 3 \text{ or } x = \frac{1}{2} \text{ or } x = -1$	\checkmark (2 $x^2 + x - 1$) \checkmark factors \checkmark roots \checkmark 1,5	
	AB = 1,5 units		(•
9.4	$f'(x) = 6x^{2} - 10x - 4$ $0 = 3x^{2} - 5x - 2$ $(3x + 1)(x - 2) = 0$	$\checkmark f'(x)$ \checkmark factors $\checkmark x$ value	
	$x = -\frac{1}{3}$		(
9.5	$f''(x) = 12x - 10$ $0 = 12x - 10$ $x = \frac{10}{12} = \frac{5}{6}$	$ \begin{array}{c} \checkmark f'' \\ \checkmark = 0 \\ \checkmark \frac{5}{6} \end{array} $	
	OR 1		
	$x = \frac{-\frac{1}{3} + 2}{2}$		
	$x = \frac{5}{6}$		
	OR		(.

			1
	y'' = 6ax + 2b = 0		
	6ax = -2b		
	2 <i>b</i>		
	$x = -\frac{6a}{6a}$ $x = \frac{-2(-5)}{6a} = \frac{5}{2a}$		
	-2(-5) 5		
	$x = \frac{2(3)}{6(2)} = \frac{3}{6}$		
	6(2) 6		
9.6	f'' > 0		
	6x - 5 > 0		
	$x > \frac{5}{}$	$\sqrt{x} > \frac{5}{4}$	(4)
	x > - 6	$\frac{\sqrt{\lambda} - \frac{1}{6}}{6}$	(1)
9.7	1 1	✓ <i>x</i> < −1	
	$x < -1 \text{ or } -\frac{1}{3} < x < \frac{1}{2} \text{ or } 2 < x < 3$	1 1 1	
	3 2	$\sqrt{-\frac{2}{3}} < x < \frac{2}{2}$	
		$\sqrt[4]{x} < -1$ $\sqrt{-\frac{1}{3}} < x < \frac{1}{2}$ $\sqrt[4]{2} < x < 3$	(3)
			21
L			_ [<u>-</u> +]

QUES	STION 1	0		
10.1	10.1.1	$P(S \text{ and } T) = \frac{1}{6}$ $P(\text{not } S) = \frac{3}{4}$ $P(S) = \frac{1}{4}$ $P(S \text{ and } T) = P(S) \times P(T)$ $\frac{1}{6} = \frac{1}{4} \times P(T)$ $P(T) = \frac{2}{3}$	✓ $P(S)$ ✓ subst in formula ✓ $P(T)$	(3
	10.1.2	$P(S \text{ or } T) = P(S) + P(T) - P(S \text{ and } T)$ $P(S \text{ or } T) = \frac{1}{4} + \frac{2}{3} - \frac{1}{6}$ $P(S \text{ or } T) = \frac{3}{4}$	✓ sub into formula ✓ answer	(2
	10.2.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ Branch B or C 30% and 65% ✓ Branch B or C 30% and 70% ✓ outcomes	(3
10.2	10.2.2	P(same meal) = $(0,35)(0,30) + (0,65)(0,70)$ P(same meal) = $0,105 + 0,455 = 0,56$ Number of people = $200 \times 0.56 = 112$	✓ (0,35)(0,30) + (0,65)(0,7) ✓ 0,56 ✓ 112	(3 [11

TOTAL: 150

