Curso Nivelador Análisis – Carrera de Especialización en Estadística 2022

Cuestionario 2

Cuestionario 1 – Reglas de derivación y recta tangente

Sea $f(x) = x^4 \cdot \sin(x) + 3 \cdot e^x$. $Dm(f) = \mathbb{R}$.

- ullet Usando las reglas de derivación, calcular la función derivada de f.
- Calcular la recta tangente al gráfico de f que pasa por (0,3).

Cuestionario 2 - Regla de la cadena y regla de L'Hôpital

Dada $f(x) = x^3 e^{-x^2}$,

- 1. Determinar el dominio de f'(x) y calcularla.
- 2. Calcular $\lim_{x \to +\infty} f(x)$.

Cuestionario 3 – Polinomio de Taylor

- 1. Decidir si el polinomio de Taylor de orden 3 de la función $\cos(x)$ alrededor de π viene dado por $P_3(x) = \frac{\pi^2}{2} 1 \pi x + \frac{x^2}{2}$.
- 2. Calcular los polinomios de Taylor de $\sin(x)$ alrededor de 0 de orden 1 hasta 8. Si asumimos que existe la serie de Taylor, cuál parece ser?

Cuestionario 4 – Extremos absolutos de funciones continuas en intervalos cerrados

 $Dada f(x) = x^4 - 4x^3$

- 1. Encontrar todos los puntos críticos en \mathbb{R} .
- 2. Encontrar máximos y mínimos absolutos de f en [1,4].

Cuestionario 5 – Extremos y crecimiento y decrecimiento

Dada $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^4 - 4x^3$.

- 1. Encontrar todos los puntos críticos en \mathbb{R} .
- 2. Dar intervalos de crecimiento y decrecimiento de f.
- 3. Determinar máximos y mínimos locales de f y decidir si existen máximos y mínimos absolutos.

Análisis Maestría Práctica 2

Cuestionario 6 - Derivada de funciones partidas

Dada f(x) = |x|, determinar el dominio de f'(x) y calcularla.

Cuestionario 7 – Series

Para cada una de las siguientes sucesiones a_n , calcular $\lim_{n\to\infty} a_n$ y decidir si la serie $\sum_{n=1}^{\infty} a_n$ es convergente. En caso de ser convergente, calcular su valor.

1.
$$a_n = \frac{n^2+1}{2n^2+n}$$

2.
$$a_n = \frac{1}{3^{n+2}}$$

3.
$$a_n = \frac{1}{n} - \frac{1}{n+1}$$

Cuestionario 8 - Concavidad

Dada $f:(0,+\infty)\to\mathbb{R}$ dada por $f(x)=x\ln(x)$.

- 1. Encontrar todos los puntos críticos en $(0, +\infty)$.
- 2. Determinar intervalos de crecimiento y decrecimiento.
- 3. Determinar intervalos de concavidad y convexidad y puntos de inflexión.
- 4. Determinar máximos y mínimos locales de f y decidir si existen máximos y mínimos absolutos.