Handwritten notes

riandwritten notes	
+ 11	
FEM	
	Nr 2.1 2024
Exercise 1.1	
a) Perive the exact expression for	The element matrix K:
19t y=(X-x.) //.	t 1:(A : X-X;
and Nin (x) = x-x; /hi = y.	ar N;(x)=1-4; =1-4
Then	
$V_{(i)} = V_{(i)} V_{(i)} V_{(i)} V_{(i)} V_{(i)} V_{(i)} V_{(i)} V_{(i)}$	7 dv 6565173
	J an , 1,00 c, c3
So make	
$V_{i,1}^{(i)} = \int_{X_{i}}^{X_{i+1}} \left[N_{i}^{(i)} \right]' \left(N_{i}^{(i)} \right)' + N_{i}^{(i)} N_{i}^{(i)}$	7 dx
$=\int_{X_{i}}^{N_{i}}\left[\left(1-\frac{X-X_{i}}{N_{i}}\right)^{\prime}\right)^{2}+\left(1-\frac{X-X_{i}}{N_{i}}\right)^{\prime}$) olx
= SXIN (+4) 2+ (1- x-x1) 2	× ·
1 cXiv	
Use integration by substitution	with $y = (x - x_i)/h_i$.
$(x_{ij}) = \frac{1}{x_{ij}} + \int_{0}^{\infty} -h_{i} \cdot y^{2} dy$	
= hi + hi So y2 dy	
$= \frac{1}{h_i} + h_i \left[\frac{1}{3} \right] \frac{3}{3} = \frac{1}{h_i}$	hi hi
Qual	
(V (1) = \ (V (1) \ (V (1) \) \ \ (V (1) \ (1) \ (1)	×
$=\int_{X_i}^{X_{i+1}} \left[\left(-\frac{1}{N_i} \right) \cdot \left(+\frac{1}{N_i} \right) + \left(1 + \frac{X_i - X_i}{N_i} \right) \right]$) hit day
$= -\frac{1}{h_i} + \int_{X_i}^{X_{iri}} \frac{x - x_i}{h_i} = \left(\frac{x - x_i}{h_i}\right)$ $= -\frac{1}{h_i} + \int_{X_i}^{X_{iri}} \frac{x - x_i}{h_i} = \left(\frac{x - x_i}{h_i}\right)$ $= -\frac{1}{h_i} + \int_{X_i}^{X_{iri}} \frac{x - x_i}{h_i} = \left(\frac{x - x_i}{h_i}\right)$ $= -\frac{1}{h_i} + \int_{X_i}^{X_{iri}} \frac{x - x_i}{h_i} = \left(\frac{x - x_i}{h_i}\right)$ $= -\frac{1}{h_i} + \int_{X_i}^{X_{iri}} \frac{x - x_i}{h_i} = \left(\frac{x - x_i}{h_i}\right)$ $= -\frac{1}{h_i} + \frac{1}{h_i} = \left(\frac{x - x_i}{h_i}\right)$	ey de
= hi Txi hi til hi /	X_{i+1} $(Y = X; Y^2)$
= - In - Skirl X-Ki dx - S	
= - it. 7 50 hix dx = 5 hix 2 d,	
= -1 + h; [= 2 × 2] - h; [= 3 ×	370
$= -\frac{1}{h_1} + \frac{1}{h_1} \left[\frac{1}{2} \right] - \frac{1}{h_1} \left[\frac{1}{3} \right]$ $= -\frac{1}{h_1} + \frac{h_1}{2} - \frac{h_1}{3}$	
h; 2	
=-4:+6	

C) $V^{T}AV = \alpha\left(\sum_{i=1}^{m} V_{i}N_{i}, \sum_{j=1}^{m} V_{j}N_{j}\right)$ = Sot(\(\varepsilon\)', \(\varepsilon\)', \(\var = So = V; N; ((E V; N; - 4 E ViN,) dx = \(\frac{\pi}{\infty} \frac{\pi}{\infty} \frac{\pi}{\pi} \fra Letic VII = XVIN and J = EVINS then were VAV = S. E. V'V' - VVV'dx = 5' EV'V'-45'VV' dx = 5' E(V')21- 4 51 (02)' dx $= \int_0^1 \xi(\hat{\mathbf{V}}')^2 d\mathbf{x} - \frac{\mathbf{v}}{2} \int_0^1 \hat{\mathbf{V}}'^2 d\mathbf{y}$ $= \int_{0}^{1} E(\hat{V}')^{2} dx - \frac{1}{2} \left(\hat{V}(1)^{2} - \hat{V}(0)^{2} \right)$ $=\int_0^1 \xi(\hat{V}')^2 dx \ge 0$ Since E > 0 and $(\hat{V}')^2 > 0$ $\pm V^{\dagger}AV = 0$ then $(\hat{V}')^2 = 0 = 1$ $(\hat{V}')^2 = 0$ (\(\varepsilon\)\) \(\varepsilon\)\) \(\varepsilon\)\) \(\varepsilon\)\) \(\varepsilon\)\) \(\varepsilon\)\)\(\varepsilon\)\) \(\varepsilon\)\)\(\varepsilon\)\)\(\varepsilon\)\(\varepsilon\)\)\(\varepsilon\)\(\vareps necause N; +0 When x e JX; , x goll to EEI, , MS so it

Note that airing = (i-1) air = (i-1) (i) air + We then approximate f by $\hat{f}(x) = \hat{\Sigma}\hat{f}(x)$ and substitute if with \$ so bi-So PN;(x)dx = So E F; N; N; dx = E (So f; N; N; dx) = E F; SoN; N; dx Mionly overlaps with Nin, Ni could Nin and consequently bi=fin So Nin Nidx + fiso Nidx + fin So Night dx = Pin Sxi Ni-1(x)Ni(x)dx + Pi Sxin Ni(x)2 + Pin Sxin Nin(x)Ni(x)dx = + ((x + x + x) (x - x + x) (= Pi-10(1-y) y dy + Pi, Shiz 2 dy + Shi W (hw+ Pin Shiz (1-Z)dz $= \frac{1}{16} \cdot (\frac{1}{2} - \frac{1}{3}) + \frac{1}{6} \cdot \frac{1}{3} + \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3})$ $= \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3}) + \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3})$ $= \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3}) + \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3})$ $= \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3}) + \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3})$ $= \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3}) + \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3})$ $= \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3}) + \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3})$ $= \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3}) + \frac{1}{6} \cdot (\frac{1}{2} - \frac{1}{3})$ bi = 5' ÎN, (x) dx = 50 E F; N; Nidx = 50 F, N, + 12 N2 N, dx = 1, Ju (1-x-x;) 2 dx + 2 (x-x;)(1-x-x;) dx = F, 50 h, (1-x)2dx + Fz 50 h, 1/(1-x)dx = F1 1 [1 3 x 3 - x 2 + x] + F2 1 [2 x 2 - 1 3 x 3] filhtithi) + Einhin + Firihi

1) The CPU time is: 0.004477s

2) AMR iteration count: 10

3) Degrees of freedom for final mesh: 724

4) Relevant plots:

- 5) We used a computer with 8 logical processors with arch linux as its operating system. We wrote the code in julia 1.10 and computed that our CO2 consumption is 0.000069953125g.
- 6) CO2 consumption formula: 15 what/8 *(cpu time / 3600)h * 30g/kwh
- 7) We used Error tolerance (1e-4) and initial mesh configuration used (x=[0.0, 0.5, 1.0], M=3)
- 8) For each iteration of our AMR we create a fine mesh, where we have subdivided each element. We then compute the estimated errors for each old element. The elements where the error is larger than our tolerance we keep, and the rest we do not update. We keep iterating until there are no elements where the estimated error is larger than the tolerance.
- We used this website to find the CO2 calculation formula. https://devblogs.microsoft.com/sustainable-software/how-can-i-calculate-co2eq-emis sions-for-my-azure-vm/