Package 'tensorMam'

March 19, 2019

With 19, 2019
Type Package
Title tensorMam
Version 1.0
Date 2018-10-25
Author Xu Liu [aut,cre], Jian Huang [aut], Heng Lian [aut], Xiangyong Tan [ctb]
Maintainer Xu Liu <liu.xu@sufe.edu.cn></liu.xu@sufe.edu.cn>
Description A tensor Estimation approach to multivariate additive models. The B-splines are used to approximate unknown function. The number of predictors can be diverged as sample size increases, in which the penalty LASSO, MCP or SCAD can be used.
License GPL (>= 2)
Imports splines, Rcpp (>= 0.11.15), RcppEigen (>= 0.3.2.3.0)
LinkingTo Rcpp, RcppEigen
RoxygenNote 6.0.1
NeedsCompilation yes
Repository github
<pre>URL https://github.com/xliusufe/tensorMam</pre>
Encoding UTF-8
Archs i386, x64
R topics documented:
tensorMam-package 2 breastdata 2 generateData 3 mam 5 mam_dr 6 mam_sparse 7 mam_sparse_dr 9 plotfuns 12 TransferModalUnfoldings 13
Index 14

2 breastdata

tensorMam-package

A tensor estimation approach to multivariate additive models

Description

For a high-dimensional multivariate additive model (MAM) using B-splines, with or without aparsity assumptions, treating the coefficients as a third-order tensor and borrowing Tucker decomposition to reduce the number of parameters. The multivariate sparse group lasso (mcp or scad) and the coordinate descent algorithm are used to estimate functions for sparsity situation.

Details

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Xu Liu

Maintainer: Xu Liu <liu.xu@sufe.edu.cn>

References

A tensor estimation approach to multivariate additive models.

breastdata

Breast cancer gene expression and DNA copy number dataset

Description

The breast cancer dataset includes gene expressions and comparative genomic hybridization measurements for 89 subjects, which is from Chin et al. (2006). This dataset has been considered by Witten et al. (2009) and Chen et al. (2013). In our paper, we selected chromosome 21, including q=44 variables for copy-number variations and p=227 variables for gene expression. As in Chen et al. (2013), we consider copy-number variations as the responses and gene expressions as the predictors.

Usage

data(breastdata)

Details

The "breastdata" is formated as a list with elements:

dna: the CGH spots, a matrix with size 2149×89 and the smaple size 89

rna: genes, a matrix with size 19672×89 and the smaple size 89 chrom: chromosomal location of each CGH spot, a 2149-vector nuc: nucleotide position of each CGH spot, a 2149-vector gene: an accession number for each gene, a 19672-vector

genenames: gene name, a 19672-vector

generateData 3

genechr: chromosomal location of each gene, a 19672-vector

genedesc: description of each gene, a 19672-vector

genepos: nucleotide position of each gene, a 19672-vector

References

Chin, K., DeVries, S., Fridlyand, J., Spellman, P., Roydasgupta, R., Kuo, W.-L., Lapuk, A., Neve, R., Qian, Z., Ryder, T., Chen, F., Feiler, H., Tokuyasu, T., Kingsley, C., Dairkee, S., Meng, Z., Chew, K., Pinkel, D., Jain, A., Ljung, B., Esserman, L., Albertson, D., Waldman, F. & Gray, J. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer cell **10** (6), 429-541.

Witten, D. M., Tibshirani, R. and Hastie, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics **10** (3), 515-534.

Chen, K., Dong, H., and Chan, K. S. (2013). Reduced rank regression via adaptive nuclear norm penalization. Biometrika, **100(4)**, 901-920.

Examples

```
data(breastdata.rda)
Y = t(breastdata$dna[breastdata$chrom==21,])
Xt = t(breastdata$rna[which(breastdata$genechr==21),])
n = nrow(Y)

minX = apply(Xt,2,min)
maxX = apply(Xt,2,max)
X = (Xt - matrix(rep(minX,each = n),n))/matrix(rep(maxX-minX,each = n),n))
Y = scale(Y)
fit <- mam_sparse_dr(Y, X)
D3hat <- fit$Dnew
opt <- fit$rk_opt</pre>
```

generateData

Generate data from MAM model.

Description

Generate data for a high-dimensional multivariate additive model, with or without aparsity assumptions.

Usage

```
generateData(n, q, p, s, D2, sigma2=NULL)
```

Arguments

n	Sample size.
q	The number of responses, $q \ge 1$.
р	The number of covariates, $p \ge 1$.
S	The true covariates associating to response, $s \ge 1$.
D2	The mode of unfolding $D_{(2)}$.
sigma2	err variance. Default is 0.1.

4 generateData

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

```
Y Response, a n \times q-matrix.

X Design matrix, a n \times p-matrix.

f0 True functions.
```

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam_sparse
```

```
# Example 1
D2 <- matrix(runif(30, 0.7, 1), 2, 15)
mydata <- generateData(200, 3, 5, 5, D2)
Y <- mydata$Y
X \leftarrow mydata$X
# Example 2
n <- 500
p <- 10
q <- 10
s <- 10
K <- 6
s0 <- s
r10=r20=r30=2
S3 \leftarrow matrix(runif(r10*r20*r30,3,7),nrow = r30)
T1 <- matrix(rnorm(s0*r10), nrow = s0)
U1 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(K*r20),nrow = K)
U2 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(q*r30), nrow = q)
U3 <- qr.Q(qr(T1))
D3 <- U3%*%S3%*%t(kronecker(U2,U1))
D2 <- TransferModalUnfoldings(D3,3,2,s0,K,q)
mydata <- generateData(n,q,p,s0,D2)</pre>
```

mam 5

mam

Fit MAM without sparsity assumption and with fixed ranks.

Description

Fit a low-dimensional multivariate additive model using B-splines, without aparsity assumptions, and given ranks given ranks r_1, r_2, r_3 .

Usage

```
mam(Y, X, K = 7, r1 = NULL, r2 = NULL, r3 = NULL, SABC = NULL, degr = 3, eps = 1e-4, max_step = 20)
```

Arguments

Υ	A $n \times q$ numeric matrix of responses.
Χ	A $n \times p$ numeric design matrix for the model.
K	The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6.
degr	the number of knots of B-spline base function. Default is 3.
r1	The first dimension of single value matrix of the tensor. Default is 2.
r2	The second dimension of single value matrix of the tensor. Default is 2.
r3	The third dimension of single value matrix of the tensor. Default is 2.
SABC	A user-specified list of initial coefficient matrix of S, A, B, C . By default, initial matrices are provided by random.
eps	Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-4.
max_step	Maximum number of iterations. Default is 20.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

Dnew	Estimator of $D_{(3)}$.
rss	Residual sum of squares (RSS).
Υ	Response Y .
X	Design matrix X .
Z	Design matrix of Bspline approximation.

References

A tensor estimation approach to multivariate additive models.

See Also

mam_sparse

6 mam_dr

Examples

```
D2 <- matrix(runif(50, 0.7, 1), 2, 25) # tensor with size 5*2*5 mydata <- generateData(200, 5, 5, 5, D2)

fit <- mam(mydata$Y, mydata$X)
D3hat <- fit$Dnew
D2hat <- TransferModalUnfoldings(D3hat,3,2,5,2,5)
```

mam_dr

Fit MAM without sparsity assumption, and with ranks selected by BIC or CV.

Description

Fit a low-dimensional multivariate additive model using B-splines, without aparsity assumptions, and with ranks r_1, r_2, r_3 selected by BIC or CV.

Usage

Arguments

Υ	A $n \times q$ numeric matrix of responses.
•	•
Χ	A $n \times p$ numeric design matrix for the model.
method	The method to be applied to select parameters. Either "BIC" (the default), or "CV".
ncv	The number of cross-validation folds. Default is 10. If method is "BIC", ncv is useless.
K_index	A user-specified sequence of K values, where K is he number of B-spline base function. Default is k_index=6.
r1_index	A user-specified sequence of r_1 values, where r_1 is the first dimension of single value matrix of the tensor. Default is r1_index= $1, \dots, \min(\log(n)\rceil, p)$.
r2_index	A user-specified sequence of r_2 values, where r_2 is the second dimension of single value matrix of the tensor. Default is $r2_index = 1, \cdots, max\{K_index\}$.
r3_index	A user-specified sequence of r_3 values, where r_3 is the third dimension of single value matrix of the tensor. Default is $r3_index = 1, \cdots, \min(\log(n)\rceil, q)$.
SABC	A user-specified list of initial coefficient matrix of S , A , B , C , which is a list with values S , A , B , C . By default, initial matrices are provided by random.
degr	the number of knots of B-spline base function. Default is 3.
eps	Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-4.
max_step	Maximum number of iterations. Default is 20.

mam_sparse 7

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1, r_2 and r_3 by BIC or CV.

Value

Dnew	Estimator of $D_{(3)}$.
rss	Residual sum of squares (RSS).
rk_opt	The optimal parametres that slected by BIC or CV. It is a vector with length 4, which are selected r_1 , $\ \ r_2$, $\ r_3$, and K .
selected	Which λ is selection.
Υ	Response Y .
X	Design matrix X .
Z	Design matrix of Bspline approximation.

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam, mam_sparse_dr
```

Examples

```
D2 <- matrix(runif(50, 0.7, 1), 2, 25) # tensor with size 5*2*5 mydata <- generateData(200, 5, 5, 5, D2)

fit <- mam_dr(mydata$Y, mydata$X)
D3hat <- fit$Dnew
D2hat <- TransferModalUnfoldings(D3hat,3,2,5,2,5)
opt <- fit$rk_opt
```

mam_sparse

Fit MAM with sparsity assumption and fixed ranks.

Description

Fit a high-dimensional multivariate additive model using B-splines, with or without aparsity assumptions, and given ranks given ranks r_1, r_2, r_3 . The multivariate sparse group lasso (mcp or scad) and the coordinate descent algorithm are used to estimate functions for sparsity situation.

Usage

8 mam_sparse

Arguments

Y A $n \times q$ numeric matrix of responses.

X A $n \times q$ numeric design matrix for the model.

The number of B-spline base function, that is the plus of both degrees of base

function and the number of knots. Default is 7.

degr The number of knots of B-spline base function. Default is 3.

r1 The first dimension of single value matrix of the tensor. Default is 2.
r2 The second dimension of single value matrix of the tensor. Default is 2.
r3 The third dimension of single value matrix of the tensor. Default is 2.

penalty The penalty to be applied to the model. Either "LASSO" (the default), "SCAD",

or "MCP".

lambda A user-specified sequence of lambda values. By default, a sequence of values of

length nlam is computed, equally spaced on the log scale.

SABC A user-specified list of initial coefficient matrix of S, A, B, C. By default, initial

matrices are provided by random.

nlam The number of lambda values. Default is 20.

lam_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-3.

eps1 Convergence threshhold. The algorithm iterates until the relative change in any

coefficient is less than eps1. Default is 1e-4.

maxstep1 Maximum number of iterations. Default is 20.

eps2 Convergence threshhold. The Coordinate descent method algorithm iterates un-

til the relative change in any coefficient is less than eps2. Default is 1e-4.

maxstep2 The maximum iterates number of coordinate descent method. Default is 20.

gamma The tuning parameter of the MCP/SCAD penalty (see details).

dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound.

However, for large data sets, computational burden may be heavy for models

with a large number of nonzero coefficients.

alpha Tuning parameter for the Mnet estimator which controls the relative contri-

butions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha

may be arbitrarily small, but not exactly 0.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

betapath Solution path of β .

rss Residual sum of squares (RSS).

df Degrees of freedom.

lambda The sequence of regularization parameter values in the path.

lambda_opt The value of lambda with the minimum BIC value.

mam_sparse_dr 9

selectedID	The index of lambda corresponding to lambda_opt.
activeA	The active set.
Dnew	Estimator of $D_{(3)}$.
Υ	Response Y .
X	Design matrix X .
Z	Design matrix of Bspline approximation λ .

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam, mam_sparse_dr
```

Examples

```
D2 <- matrix(runif(50, 0.7, 1), 2, 25) # tensor with size 5*2*5
mydata <- generateData(200, 5, 10, 5, D2)

fit <- mam_sparse(mydata$Y, mydata$X)
D3hat <- fit$Dnew
D2hat <- TransferModalUnfoldings(D3hat,3,2,5,2,5)</pre>
```

mam_sparse_dr

Fit MAM with sparsity assumption and ranks selected by BIC or CV.

Description

Fit a high-dimensional multivariate additive model using B-splines, with or with aparsity assumptions and ranks selected by BIC or CV. The multivariate sparse group lasso (mcp or scad) and the coordinate descent algorithm are used to estimate functions for sparsity situation. The tuning parameter is selected by BIC or CV, which matchs the method of rank selection.

Usage

Arguments

```
Y A n \times q numeric matrix of responses. 
 X A n \times q numeric design matrix for the model. 
 The method to be applied to select parameters. Either "BIC" (the default), or "CV".
```

10 mam_sparse_dr

The number of cross-validation folds. Default is 10. If method is BIC, ncv is ncv useless. penalty The penalty to be applied to the model. Either "LASSO" (the default), "SCAD", or "MCP". K_index A user-specified sequence of K values, where K is he number of B-spline base function. Default is k_index=6. r1_index A user-specified sequence of r_1 values, where r_1 is the first dimension of single value matrix of the tensor. Default is r1_index= $1, \dots, \min(\lceil \log(n) \rceil, p)$. r2_index A user-specified sequence of r_2 values, where r_2 is the second dimension of single value matrix of the tensor. Default is $r2_index = 1, \dots, max\{K_index\}$. r3_index A user-specified sequence of r_3 values, where r_3 is the third dimension of single value matrix of the tensor. Default is $r3_index = 1, \dots, min(\lceil log(n) \rceil, q)$. lambda A user-specified sequence of lambda values. By default, a sequence of values of length nlam is computed, equally spaced on the log scale. SABC A user-specified list of initial coefficient matrix of S, A, B, C. By default, initial matrices are provided by random. nlam The number of lambda values. Default is 50. degr The number of knots of B-spline base function. Default is degr = 3. The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2. lam_min Convergence threshold. The algorithm iterates until the relative change in any eps1 coefficient is less than eps1. Default is 1e-4. Maximum number of iterations. Default is 20. maxstep1 Convergence threshhold. The Coordinate descent method algorithm iterates uneps2 til the relative change in any coefficient is less than eps2. Default is 1e-4. The maximum iterates number of coordinate descent method. Default is 20. maxstep2 The tuning parameter of the MCP/SCAD penalty (see details). gamma dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. Tuning parameter for the Mnet estimator which controls the relative contrialpha butions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha may be arbitrarily small, but not exactly 0.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

Dnew Estimator of $D_{(3)}$.

rss Residual sum of squares (RSS).

df Degrees of freedom.

activeA The active set.

mam_sparse_dr 11

lambda	The sequence of regularization parameter values in the path.
selectedID	The index of lambda corresponding to lambda_opt.
lambda_opt	The value of lambda with the minimum BIC or CV value.
RSS	The values of BIC or CV, which is a vector.
rk_opt	The optimal parametres that slected by BIC or CV. It is a vector with length 4, which are selected r_1 , r_2 , r_3 , and K .
Υ	Response Y .
Х	Design matrix X .
Z	Design matrix of Bspline approximation.

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam_dr, mam_sparse
```

```
#Example 1
D2 <- matrix(runif(50, 0.7, 1), 2, 25) \# tensor with size 5*2*5
mydata <- generateData(200, 5, 10, 5, D2)</pre>
fit <- mam_sparse_dr(mydata$Y, mydata$X)</pre>
D3hat <- fit$Dnew
D2hat <- TransferModalUnfoldings(D3hat,3,2,5,2,5)
opt <- fit$rk_opt
#Example 2
data(breastdata.rda)
Y = t(breastdata$dna[breastdata$chrom==21,])
Xt = t(breastdata$rna[which(breastdata$genechr==21),])
n = nrow(Y)
minX = apply(Xt, 2, min)
maxX = apply(Xt, 2, max)
X = (Xt - matrix(rep(minX,each = n),n))/matrix(rep(maxX-minX,each = n),n)
Y = scale(Y)
fit <- mam_sparse_dr(Y, X)</pre>
D3hat <- fit$Dnew
opt <- fit$rk_opt
```

12 plotfuns

plotfuns

Plot the estimated curves from tensorMam.

Description

Plot the curves fitted by mam, mam_dr, mam_sparse, and mam_sparse_dr

Usage

```
plotfuns(fit,funTrueID)
```

Arguments

fit Object outputting from mam, mam_dr, mam_sparse_dr.

funTrueID Which function to be plotted. It is a 2-vector. In MAM models, there are $s_0 \times q$

true functions. Thus, the first argument must be smaller than s_0 , and the second

argument must be smaller than q.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam, mam_dr, mam_sparse, mam_sparse_dr
```

```
n <- 200
p <- 10
q <- 10
s <- 10
K <- 6
s0 <- s
r10=r20=r30=2
S3 <- matrix(runif(r10*r20*r30,3,7),nrow = r30)
T1 <- matrix(rnorm(s0*r10), nrow = s0)
U1 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(K*r20),nrow = K)
U2 \leftarrow qr.Q(qr(T1))
T1 <- matrix(rnorm(q*r30), nrow = q)
U3 \leftarrow qr.Q(qr(T1))
D3 <- U3%*%S3%*%t(kronecker(U2,U1))
D2 <- TransferModalUnfoldings(D3,3,2,s0,K,q)
mydata <- generateData(n, q, p, s0, D2)</pre>
fit <- mam(mydata$Y, mydata$X)</pre>
fit$D2 <- D2
fit$s0 <- s0
```

```
fit$X0 <- matrix(runif(100*p),100,p)
plotfuns(fit, c(1,1))</pre>
```

TransferModalUnfoldings

Transfer a tensor's modal unfoldings to another.

Description

Transfer a tensor's modal unfoldings to another.

Usage

```
tensorTransModeUnfold(T, d1, d2 , r1, r2, r3)
```

Arguments

Т	A mode-d1-unfolding of a tensor with size $r_1 \times r_2 \times r_3$, input unfolding
d1	An integer, the mode of unfolding $T_{(d_1)}$
d2	An integer, the mode of output unfolding $T_{(d_2)}$
r1	The fist dimension of tensor
r2	The second dimension of tensor
r3	The third dimension of tensor

Details

This function transfers an input mode-d1-unfolding $T_{(d_1)}$ to mode-d2-unfolding $T_{(d_2)}$

Value

```
D the output mode-d2-unfolding, T_{(d_2)}
```

References

A tensor estimation approach to multivariate additive models.

```
D1 <- matrix(1:24,nrow = 4) # A tensor unfolding with size 4*6
D2 <- TransferModalUnfoldings(D1,1,2,4,3,2)
```

Index

```
*Topic High-dimensional, Sparse
        models; Tensor estimation;
        Tucker decomposition.
    tensorMam-package, 2
    TransferModalUnfoldings, 13
*Topic High-dimensional; Sparse
        models; Tensor estimation;
        Tucker decomposition.
    generateData, 3
    mam, 5
    mam_sparse, 7
*Topic datasets
    breastdata, 2
breastdata, 2
generateData, 3
mam, 5
mam-function (mam), 5
mam_dr, 6
mam_dr-function (mam_dr), 6
mam_sparse, 7
mam_sparse-function (mam_sparse), 7
mam_sparse_dr, 9
{\tt mam\_sparse\_dr-function} \; ({\tt mam\_sparse\_dr}),
plotfuns, 12
tensorMam (tensorMam-package), 2
tensorMam-package, 2
TransferModalUnfoldings, 13
TransferModalUnfoldings-function
        (TransferModalUnfoldings), 13
```