PROGRAMA			
MATERIA	Aprendizaje Automático		
CARRERAS	Todas		
SEDE	Miguelete		
CARÁCTER DE LA	Electiva de grado y de posgrado		
MATERIA			
PERÍODO DE	1 ^{er} y 2do cuatrimestre	DU	JRACION: cuatrimestral
VIGENCIA	2020		
DOCENTES			
MATERIAS	Conocimientos elementales de matemática y programación		
CORRELATIVAS			
CARGA HORARIA	Clases Teórico-prácticas	S	Total de horas semanales: 6
	y de Laboratorio: 90	6	Total de horas de la materia: 96

OBJETIVOS:

El objetivo general del curso es introducir al alumno en los principios y conceptos fundamentales del aprendizaje automático, la ciencia de datos y la inteligencia artificial.

CONTENIDOS MÍNIMOS

Conceptos elementales de programación, probabilidad y estadística. Algoritmos de aprendizaje supervisado y no supervisado. Aplicaciones generales de la Inteligencia Artificial.

FUNDAMENTACIÓN

Vivimos en un mundo donde cada día se generan miles de millones de gigabytes de datos sobre diferentes aspectos de nuestras vidas y que resultan en un gran activo en nuestra búsqueda de soluciones para los grandes desafíos de la ciencia, la ingeniería, la medicina y los negocios. En los últimos años han surgido nuevas tecnologías que, a partir del análisis de grandes cantidades de datos, permiten la generación de conocimiento con un impacto notable en la ciencia, pero también economía y en el mercado como lo muestra la revolución producida en las ventas on-line y en los negocios digitales. Este curso procura preparar a los estudiantes para poder realizar análisis de datos y aplicar algoritmos de aprendizaje automático, una tarea cada vez más requerida en nuestra sociedad. Los conocimientos adquiridos serán fundamentales para poder profundizar en la inteligencia artificial y seleccionar las herramientas adecuadas en diferentes contextos.

METODOLOGÍA DE EVALUACIÓN

Dos exámenes parciales. Los alumnos de posgrado deberán rendir un exámen final obligatorio. La materia es promocionable para alumnos de grado.

METODOLOGÍA DIDÁCTICA

Los contenidos se organizan en clases teórico-prácticas y trabajos prácticos de laboratorio. En cada tema se incluyen actividades prácticas que promueven la participación de los estudiantes. Las diferentes técnicas estudiadas serán introducidas con una breve descripción teórica y con énfasis en su aplicación a diversos conjuntos de datos reales. La aplicaciones generales serán presentadas a partir de seminarios de expertos en el tema. El curso se brindará con un formato completamente interdisciplinario para todas las carreras de la UNSAM.

PROGRAMA ANALÍTICO.

- 1. Programación y análisis exploratorio de datos:
 - 1.1 Python: estructuras de datos y control.
 - 1.2 Librerías para la manipulación de datos: Pandas, Seaborn y Scikit-learn.
 - 1.3 Visualización de datos: Histogramas, box-plots, qq-plots, scatter-plots.
 - 1.4 Limpieza e imputación de datos faltantes.

2. Probabilidad y estadística:

- 2.1 Distribuciones: Binomial, Poisson, Gaussiana.
- 2.2 Estimadores, correlaciones, máxima verosimilitud.
- 2.3 Conceptos elementales de la teoría de la información.
- 2.4 Enfoques frecuentista y Bayesiano.

3. Aprendizaje supervisado:

- 3.1 Regresión lineal. Cuadrados mínimos. Interpretación estadística.
- 3.2 Algoritmos de Clasificación: Naive Bayes, Árboles, R. Forests, SVM.
- 3.3 Sobreajuste y validación cruzada. K-folding.
- 3.4 Redes neuronales.

4. Aprendizaje no supervisado:

- 4.1 Algoritmos de clustering: K-means, mezcla de Gaussianas.
- 4.2 Máxima verosimilitud y algoritmo EM.
- 4.3 Criterios de selección de modelos.
- 4.4 El problema de la dimensión y la selección de atributos.

5. Aplicaciones generales de Inteligencia Artificial:

- 5.1 Procesamiento de texto y lenguaje natural.
- 5.2 Aplicaciones científicas.
- 5.3 Aplicaciones de negocios.

BIBLIOGRAFÍA.

- Ch. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.
- G. Boente y V. Yohai, *Notas de Estadística*, Notas online FCEN-UBA, 2010.
- A. Gelman et al., Bayesian Data Analysis, CRC press, 2013.
- J. Guttag, *Introduction to Computation and Programming Using Python*, MIT, 2013.
- K. Murphy, *Machine Learning, a Probabilistic Perspective*, MIT press, 2013.
- A. Ng, Machine Learning, CS229 Lecture Notes, Online, Stanford, 2017.
- J. VanderPlas, *Python Data Science Handbook: Essential Tools for Working with Data*, O'Reilly, 2017.
- Géron, A., *Hands-On Machine Learning with Scikit-Learn and TensorFlow*, O'Reilly, 2017.