Chapter 1

Introduction to The Theory of Computation

1.1 Mathematical Preliminaries and Notation

Sets

A set is a collection of elements, without any structure other than membership.

The usual set operations are union (\cup), intersection (\cap), difference (-) and complementation defined as

$$S_1 \cup S_2 = \{ x : x \in S_1 \text{ or } x \in S_2 \},$$

 $S_1 \cap S_2 = \{ x : x \in S_1 \text{ and } x \in S_2 \},$
 $S_1 - S_2 = \{ x : x \in S_1 \text{ and } x \notin S_2 \},$
 $\overline{S} = \{ x : x \in U \text{ and } x \notin S \}.$

DeMorgan's laws

$$\overline{S_1 \cup S_2} = \overline{S_1} \cap \overline{S_2},$$
$$\overline{S_1 \cap S_2} = \overline{S_1} \cup \overline{S_2}.$$

A set S_1 is said to be a **subset** of S if every element of S_1 is also an element of S. We write this as

$$S_1 \subseteq S$$
.

If $S_1 \subseteq S$, but S contains an element not in S_1 , we say that S_1 is a **proper subset** of S; we write this as

$$S_1 \subset S$$
.

If S_1 and S_2 have no common element, then the sets are said to be **disjoint**. We write this as

$$S_1 \cap S_2 = \emptyset$$
.

A set is said to be finite if it contains a **finite** number of elements; otherwise it is **infinite**. The set of all subsets of a set S is called the **powerset** of S and is denoted by S. If S is finite, then

$$|2^S| = 2^{|S|}$$
.

The sets whose elements are ordered sequences of elements from other sets are said to be the **Cartesian product** of other sets. For the Cartesian product of n sets, which itself is a set of ordered pairs, we write

$$S = S_1 \times S_2 \times \cdots \times S_n = \{ (x_1, x_2, \cdots, x_n) : x_i \in S_i \}.$$

Suppose that S_1, S_2, \dots, S_n are subsets of a given set S and that the following holds:

- 1. The subsets S_1, S_2, \dots, S_n are mutually disjoint;
- $2. S_1 \cup S_2 \cup \cdots \cup S_n = S;$
- 3. none of the S_i is empty.

Then S_1, S_2, \dots, S_n is called a **partition** of S.

Functions and Relations

A function is a rule that assigns to elements of one set a unique element of another set. If f denotes a function, then the first set is called the **domain** of f, and the second set is its range. We write

$$f: S_1 \to S_2$$

to indicate that the domain of f is a subset of S_1 and that the range of f is a subset of S_2 . If the domain of f is all of S_1 , we say that f is a **total function** on S_1 ; otherwise f is said to be a **partial function**.

Let f(n) and g(n) be functions whose domain is a subset of the positive integers. We say that

1. f has **order at most** g if there exists a positive constant c such that for all sufficiently large n

$$f(n) \leqslant c|g(n)| \xrightarrow{\text{expressed as}} f(n) = O(g(n)).$$

2. f has **order at least** g if there exists a positive constant c such that for all sufficiently large n

$$f(n)\geqslant c|g(n)| \qquad \xrightarrow{\text{expressed as}} \qquad f(n)=\Omega(g(n)).$$

3. f and g have the **same order of magnitude** if there exist constant c_1 and c_2 such that for all sufficiently large n

$$c_1|g(n)| \leqslant |f(n)| \leqslant c_2|g(n)|$$
 $\xrightarrow{\text{expressed as}}$ $f(n) = \Theta(g(n)).$

Some functions can be represented by a set of pairs

$$\{(x_1,y_1),(x_2,y_2),\cdots\}.$$

where x_i is an element in the domain of the function, and y_i is the corresponding value in its range. For such a set to define a function, each x_i can occur at most once as the first element of a pair. If this is not satisfied, the set is called a **relation**.

Equivalence is a generalization of the concept of equality (identity). A relation denoted by \equiv is considered an equivalence if it satisfies three rules:

1. The reflexivity rule

$$x \equiv x \text{ for all } x;$$

2. The symmetry rule

if
$$x \equiv y$$
, then $y \equiv x$;

3. The transitivity rule

if
$$x \equiv y$$
 and $y \equiv z$, then $x \equiv z$.

If S is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into **equivalence classes**.

Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V = \{v_1, v_2, \dots, v_n\}$ of **vertices** and the set $E = \{e_1, e_2, \dots, e_m\}$ of **edges**. Each edge is a pair of vertices from V, for instance

$$e_i = (v_i, v_k)$$

is an edge from v_j to v_k . We say that the edge e_i is an outgoing edge for v_j and an incoming edge for v_k .

- 1. A sequence of edges $(v_i, v_j), (v_j, v_k), \cdots, (v_m, v_n)$ is said to be a **walk** from v_i to v_n ;
- 2. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one;
- 3. A walk in which no edge is repeated is said to be a path;
- 4. A path is **simple** if no vertex is repeated;
- 5. A walk from v_i to itself with no repeated edges is called a **cycle** with **base** v_i ;
- 6. An edge from a vertex to itself is called a **loop**.

A tree is a directed graph that has no cycles and that has one distinct vertex, called the **root**, such that there is exactly one path from the root to every other vertex.

- 1. The vertices which have no outgoing edges are called the **leaves** of the tree;
- 2. If there is an edge from v_i to v_j , then v_i is said to be the **parent** of v_j , and v_j the **child** of v_i ;
- 3. The **level** associated with each vertex is the number of edges in the path from the root to the vertex;

- 4. The **height** of the tree is the largest level number of any vertex;
- 5. In **ordered trees**, an ordering with the nodes is associated with the nodes at each level.

Proof Techniques

Proof by induction

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements P_1, P_2, \cdots we want to prove to be true. Furthermore, suppose also that the following holds:

- 1. For some $k \ge 1$, we know that P_1, P_2, \dots, P_k are true.
- 2. The problem is such that for any $n \ge k$, the truths of P_1, P_2, \dots, P_n imply the truth of P_{n+1} .

We can then use induction to show that every statement in this sequence is true.

- 1. The starting statements P_1, P_2, \dots, P_k are called the **basis** of the induction.
- 2. The step connecting P_n with P_{n+1} is called the **inductive step**.
- 3. The inductive step is generally made easier by the **inductive assumption** that P_1, P_2, \dots, P_n are true, then argue that the truth of these statements guarantees the truth of P_{n+1} .

Proof by contradiction

Suppose we want to prove that some statement P is true. We then assume, for the moment, that P is false and see where that assumption leads us. If we arrive at a conclusion that we know is incorrect, we can lay the blame on the starting assumption and conclude that P must be true.

1.2 Three Basic Concepts

Languages

An **alphabet** Σ is a finite, nonempty set of symbols. A **string** w is a finite sequence of symbols from the alphabet Σ . The **length** of a string w, denoted by |w|, is the number of symbols in the string.

1. The **concatenation** of two strings w and v is the string obtained by appending the symbols of v to the right end of w, that is, if

$$w = a_1 a_2 \cdots a_n, \qquad v = b_1 b_2 \cdots b_m,$$

where $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_m \in \Sigma$ and $n, m \in \mathbb{N}^+$. Then the concatenation of w and v, denoted by wv, is

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m.$$

It is obvious that

$$|wv| = |w| + |v|.$$

In addition, w^n stands for the string obtained by repeating w n times.

2. The **reverse** of a string w is obtained by writing the symbols in reverse order, that is, if

$$w = a_1 a_2 \cdots a_n,$$

where $a_1, a_2, \dots a_n \in \Sigma$ and $n \in \mathbb{N}^+$. Then the reverse of w, denoted by w^R , is

$$w^R = a_n \cdots a_2 a_1.$$

The **empty string**, denoted by λ , is the string with no symbols at all. The following simple relations

$$|\lambda| = 0, \qquad \lambda w = w\lambda = w, \qquad w^0 = \lambda$$

holds for all w.

If w is a string, any string of consecutive symbols in some w is said to be a **substring** of w. If

$$w = vu$$
,

then the substrings v and u are said to be a **prefix** and **suffix** of w, respectively.

If Σ is an alphabet, then we use Σ^* to denote the set of strings obtained by concatenating zero or more symbols from Σ . To exclude the empty string, we define

$$\Sigma^+ = \Sigma^* - \{\lambda\}.$$

A **language**, denoted by L, is defined as a subset of Σ^* . A string in a language L will be called a **sentence** of L. A finite language is a language with finite number of sentences; an infinite language is a language with infinite number of sentences.

1. The **complement** of a language L is defined with respect to Σ^* , that is,

$$\overline{L} = \Sigma^* - L.$$

2. The **reverse** of a language L is the set of all string reversals, that is,

$$L^R = \{ w^R : w \in L \}.$$

3. The **concatenation** of two languages L_1 and L_2 is the set of all strings obtained by concatenating any element of L_1 with any element of L_2 , that is,

$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}.$$

We define L^n as L concatenated with itself n times, with the special cases

$$L^0 = \{\lambda\}, \qquad L^1 = L,$$

for every language.

4. The **star-closure** of a language as

$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

and the positive closure as

$$L^+ = L^1 \cup L^2 \cdots$$

Grammars

Definition 1.1 A grammar G is defined as a quadruple

$$G = (V, T, S, P),$$

where

V is a finite set of objects called variables,

T is a finite set of objects called **terminal symbols**,

 $S \in V$ is a special symbol called the **start** variable,

P is a finite set of **productions**.

It will be assumed that the sets V and T are non-empty and disjoint. All productions rules are of the form

$$x \to y$$
,

where

$$x \in (V \cup T)^+, \qquad y \in (V \cup T)^*.$$

The productions are applied in the following manner: Given a string w of the form

$$w = uxv$$

where $u, v \in (V \cup T)^*$, we say the production $x \to y$ is applicable to this string, and we may use it to replace x with y, thereby obtaining a new string

$$z = uyv.$$

This is written as

$$w \Rightarrow z$$
.

We say that w derives z or that z is derived from w. If

$$w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n$$
,

we say that w_1 derives w_n and write

$$w_1 \stackrel{*}{\Rightarrow} w_n$$
.

The * indicates that an unspecified of steps (including zero) can be taken to derive w_n from w_1 .

Definition 1.2 Let G = (V, T, S, P) be a grammar. Then the set

$$L(G) = \{ w \in T^* : S \stackrel{*}{\Rightarrow} w \}$$

is the language generated by G.

If $w \in L(G)$, then the sequence

$$S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n \Rightarrow w$$

is a **derivation** of the sentence w. The strings S, w_1, w_2, \cdots, w_n , which contain variables as well as terminals, are called **sentential forms** of the derivation.

To show that a given language is indeed generated by a certain grammar G, we must be able to show

- (a) that every $w \in L$ can be derived from S using G;
- (b) that every string so derived is in L.

We say that two grammars G_1 and G_2 are **equivalent** if they generate the same language, that is, if

$$L(G_1) = L(G_2).$$