Lecture 7.6: Other physical applications

■ (1) Hydrostatic pressure

A container is filled with water (density ρ , $[\rho] = \frac{kg}{m^3}$)

- \bullet Consider an element dA at depth h on the left-side wall of the container.
- The force $d\bar{F}$ acting on the element, in the direction of the outward unit normal \bar{n} to the element, is

$$d\bar{F} = \bar{n} \cdot dF$$
, $dF = P \cdot dA$

where P is the hydrostatic pressure

• According to Pascal's law,

$$P = \rho g h$$

where g is the gravity (acceleration due to gravity on Earth surface)

$$g \approx 9.8 \; \frac{m}{s^2}$$

Example 1. A water trough is filled to the top. The cross section is a half-disk of radius R. Find the total force F acting on the front.

 \Longrightarrow

- Consider a horizontal strip of the front at depth h and width dh.
- The pressure is constant (for small dh) along the strip:

$$P = \rho g h$$

• The force acting on the strip (out of plane) is

$$dF = P \cdot \underbrace{dA}_{=2rdh} = P \cdot 2\sqrt{R^2 - h^2}dh = 2\rho g \cdot h\sqrt{R^2 - h^2}dh$$

• The total force is the sum (an integral) of the forces from all the strips

$$F = \int dF = \int_0^R 2\rho g \cdot h\sqrt{R^2 - h^2} dh = \rho g \left(-\frac{2}{3}\right) (R^2 - h^2)^{3/2} \Big|_0^R$$
$$= \frac{2}{3}\rho g R^3$$

Example 2. Find the total force exerted by the water on the face of the dam of height a.

 \Longrightarrow

 \bullet Consider a horizontal strip (orange) distance h from the top of the dam,

$$0 \le h \le a$$

and the width ds.

• Note that

$$dh = ds \cos \alpha \implies ds = \sec \alpha \cdot dh$$

• The pressure is constant along the strip:

$$P = \rho g h$$

resulting in the force

$$dF = P \cdot dA = P \cdot Lds = \rho ghL \sec \alpha dh$$

• The total force is

$$F = \int dF = \int_0^a \rho g h L \sec \alpha dh = \rho g L \sec \alpha \int_0^a h dh = \rho g L \sec \alpha \left. \frac{1}{2} h^2 \right|_0^a = \frac{1}{2} \rho g L \sec \alpha a^2$$

■ (2) Work

- Suppose the box (orange) is pulled with a constant force \bar{F} , at angle α to the surface, from A to B.
- The total displacement is

$$\overline{AB} = \bar{\ell}$$

 \bullet The work W, performed on the object is

$$W = \bar{F} \cdot \bar{\ell} = F\ell \; \cos \alpha \,, \qquad |\bar{F}| = F \,, \qquad |\bar{\ell}| = \ell \,$$

• If the force is in the direction of the displacement, i.e., $\alpha=0$

$$W = F\ell$$

• If the force (assume $\alpha = 0$) is not constant \Longrightarrow we can calculate the amount of work dW due to a small displacement dx:

$$dW = F(x) dx$$

• The total work is the sum (an integral) of the works on each small displacement

$$W = \int dW = \int_0^\ell F(x)dx$$

Example 3. Suppose a spring requires a force of 2000N to extend is 4cm longer than normal. What is the work needed to extend the spring from normal state to 5cm longer?

 \Longrightarrow

ullet The force needed to extend the spring to x is

$$F(x) = kx$$
 \implies $k = \frac{2000N}{4 \cdot 10^{-2}m} = 5 \cdot 10^4 \frac{N}{m}$

• The work needed to extend the spring to length ℓ is

$$W = \int dW = \int_0^\ell kx dx = \frac{k}{2} x^2 \Big|_0^\ell = \frac{k}{2} \ell^2 = 5 \cdot 10^4 \frac{1}{2} (5 \cdot 10^{-2})^2$$
$$= \frac{1}{2} 5^3 N \cdot m = 62.5 J$$

Example 4. A water tank has the shape of an inverted cone of height H, and top radius R. Initially the tank is full. What work is done by a pump to completely empty the tank?

• Suppose the water level is h. Consider a small slab of water (orange) at the top, with depth dh. Its volume is

$$dV = A \cdot dh = \pi r^2 \ dh = \pi \left(\underbrace{R \frac{h}{H}} \right)^2 \ dh = \frac{\pi R^2}{H^2} \ h^2 dh$$

• The water in the slab has a mass dm

$$dm = \rho dV = \frac{\pi \rho R^2}{H^2} h^2 dh$$

and has to be lifted to the height (H - h), resulting in the work done dW:

$$dW = dmg(H - h) = \frac{\pi \rho g R^2}{H^2} (H - h)h^2 dh$$

• The total work is

$$W = \int dW = \frac{\pi \rho g R^2}{H^2} \int_0^H (H - h) h^2 dh \frac{\pi \rho g R^2}{H^2} \left(\frac{1}{3} H h^3 - \frac{1}{4} h^4 \right) \Big|_0^H = \frac{\pi \rho g R^2}{H^2} \frac{H^4}{12}$$
$$= \frac{1}{12} \pi \rho g R^2 H^2$$