

Rauschen

Rauschen ist ein stochastisches, gleichanteilfreies Signal. welches keiner Regelmäßigkeit folgt

1. Rauschen im Zeitbereich

Allgemeine rauschende Größe A(t) mit

Mittelwert
$$\overline{A(t)} = \lim_{T \to \infty} \frac{1}{2T} \int\limits_{-T}^{T} A(t) \, \mathrm{d}t$$

Rein rauschende Größe $a(t) = A(t) - \overline{A(t)}$ $\overline{a(t)} = 0$

Für kleine au lässt sich abschätzen in welchen Bereich das Signal verlaufen wird. (Max. Freq.)

1.1. Schwankungsquadrat (2. zentrales Moment, Varianz)

Ein Maß für die Rauschleistung ist die Varianz oder Schwankungsquadrat $\sigma^2 = \overline{a^2} = \overline{A^2} - \overline{A}^2$

mit Gesamtleistung $\overline{A^2}$ und Gleichleistung \overline{A}^2

$$\overline{A^2}_{\text{Gesamtleistung}} = \overline{A}^2 + \overline{a^2}_{\text{Rauschleistung}}$$

Effektivwert (RMS) $\sigma = \sqrt{\overline{a^2}}$

Höhere Momente:
$$\overline{A^n} = \int\limits_{-\infty}^{\infty} A^n \, \mathrm{P}(A) \, \mathrm{d}A$$

1.2. Scharmittel

Bei N gleichen Verstärker

$$\langle A \rangle = \lim_{N \to \infty} \frac{1}{N} \sum A$$

Falls $\langle A \rangle \equiv \overline{A}$, dann egodisches Rauschen

Fast alle Rauschen in dieser VL sind stationäres Rauschen

1.3. Korrelation

Korrelationskoeffizient
$$c_{12}=\frac{\overline{a_1a_2}}{\sqrt{\overline{a_1^2}}\sqrt{\overline{a_2^2}}}$$

 $c_{12}=0$ notwendig aber nicht hinreichend für unkorrelierte Größen

1.4. Korrelation

Ein Maß für die Ähnlichkeit zweier Signale x(t),y(t) bei Verschiebung. $\text{Korrelationskoeffizient } c_{xy} = \frac{E_{xy}}{\sqrt{E_x \cdot E_y}} = \frac{\varphi_{xy}(0)}{\sqrt{\varphi_x(0) \cdot \varphi_y(0)}}$

Es gilt: Korreliert c=1, Orthogonal $\rho=0$, Antipodisch $\rho=-1$

Kreuzkorrelationsfkt, zwischen zueinander verschobenen Signalen:

$$\varphi_{xy}(\tau) = \varphi_{yx}(-\tau) = \int_{-\infty}^{\infty} x(t) \cdot y(t+\tau) dt$$

Zusammenhang mit Faltung: $\varphi_{xy}(\tau) = x(-t) * y(t)|_{t=\tau}$

Autokorrelationsfkt. AKF ist Kreuzkorrelation mit sich selbst (y = x): $\varphi_x(\tau) = \varphi_{xx}(\tau)$ Anwendung: Erkennen von Perioden

Energiebeziehung: $E_{x,y} = \rho_{x,y} \sqrt{E_x E_y}$ mit

Energie
$$E_x=\int\limits_{-\infty}^{\infty}x(t)^2\,\mathrm{d}t=\int\limits_{-\infty}^{\infty}\Phi_x\,\mathrm{d}f=\varphi_{xx}(0)$$
 (endl. Sig.)

Leistung
$$P_x = \mathsf{E}[\mathsf{X}^2] = \frac{1}{2T}\int\limits_{-T}^T x(t)^2\,\mathrm{d}t$$
 (period. Sig.)

Leistungsdichtespektrum $\Phi_x(f)$ ist definiert als $\varphi_x \circ \stackrel{\mathcal{F}}{\longrightarrow} \Phi(f)$

Periodische Signale:
$$\overline{\varphi}_{xy}(\tau) = \frac{1}{2T} \int_{-T}^{T} x(t) y(t+\tau) \, \mathrm{d}t$$
 Stochastische Signale: $\varphi_{XY}(\tau) = \mathrm{E}[X(t) \cdot Y(t+\tau)]$

$$\rho_{X,Y} = \frac{\operatorname{Cov}[X Y]}{\sigma_X \sigma_Y}$$

$$\int\limits_{-\infty}^{\infty} \Phi_X(f) \, \mathrm{d}f = \varphi_X(0) = \mathsf{Var}[X] + \mathsf{E}[X]^2 = \sigma_X^2 + \mu_X^2$$

1.5. Grenzwerte

$$\begin{aligned} \rho_{a}(0) &= \overline{a^{2}} = \sigma^{2} & \rho_{a}(\infty) = 0 \\ \rho_{A}(\tau) &= A(t)A(t+\tau) = \overline{A}^{2} + \rho_{a}(\tau) \\ \rho_{A}(0) &= \overline{A}^{2} + \overline{a^{2}} = \overline{A^{2}} \\ \rho_{A}(\infty) &= \overline{A}^{2} \end{aligned}$$

1.6. Folge identischer unabhängiger Impulse

Impulsefolge
$$A(t) = \sum\limits_i A_i(t)$$
 $A_i(t) = g_0(t-t_i)$

Campbellsches Theorem
$$\sigma^2 = \overline{z} \int\limits_{-\infty}^{+\infty} g_0^2(t) \, \mathrm{d}t$$

 \overline{z} ist die Rate. Summe der Energie der Einzelimpulse ist die Energie der Fluktuation

Ankommende Impulse als Poisson-Prozess

2. Arten von Rauschen

Weißes Rauschen: Konstante Frequenzverteilung Rosa Rausche: Fällt mit $\frac{1}{f}$ ab.

Effektive Rauschspannung $U_{\rm eff}=\sqrt{\overline{U_1^2}+\overline{U_2^2}}$

2.1. Thermisches Rauschen

Durch die thermische Gitterschwingungen in einem Leiter erfolgt die Bewegung der Ladungsträger chaotisch.

Effektivwert des Rauschens: $I_n = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$

Spektrale Dichtefunktion $W_i(f) = 2eI_0$ für $f < 10^{12}$ Hz Leistungsdichtespektrum W

Widerstand Leitwert

$$\overline{u^2} = 4k_{\mathsf{B}} \cdot T \cdot R \cdot \Delta f$$
 $\overline{i^2} = 4k_{\mathsf{B}} \cdot T \cdot G \cdot \Delta f$ $W_{ii}(f) = 4k_{\mathsf{B}} \cdot T \cdot G$ $W_{ij}(f) = 4k_{\mathsf{B}} \cdot T \cdot G$

Blindwiderstände (C, L) geben keine Rauschleistung ab!! $W_u(f) = 4k_BT \operatorname{Re} \{ \mathbf{Z}(f) \}$ $W_u(f) = 4k_BT \operatorname{Re} \{ \mathbf{Y}(f) \}$

Beispiel
$$R \parallel C$$
: $W_u = \frac{4k_{\mathrm{B}}TR}{1+(2\pi fRC)^2}$

$$\overline{u_{c^2}} = \frac{k_{\mathrm{B}}T}{2}$$
 (Bandbegrenztes weißes Rauschen)

Schwarzer Strahler: $k_{\mathrm{B}}T \geq h \cdot f$ Daraus folgt bei $T=300\,\mathrm{K}$ weißes Rauschen bis 6 THz

2.1.1 Rauschleistung am Widerstand

$${\it Maximale Leistung} \ R = R_{\it L}$$

$$P_V = P(R) = \frac{\overline{U^2}}{4R} = k_B T \Delta f$$

2.1.2 Modell von Drude

Annahmen:

- isotrope Geschwindigkeitsverteilung
- ullet Freie Flugzeit zwischen Stößen $au_{\mathbb{C}}=\mathrm{const}$
- Energie ist $\frac{k_{\rm B}T}{2}$
- unabhängige Bewegung

$$i_q = \frac{e}{l} \cdot v_{xq}$$

$$W_0(f) = 4 \int_0^{\tau_C} \overline{i^2} \left(\frac{\tau_C - \tau}{\tau_C} \right) d\tau = 2\overline{i^2} \tau_C$$

$$\begin{array}{c} \overline{i^2} = e^2 \, \frac{n \cdot A}{l} \cdot \frac{k_{\mathrm{B}} T}{m} \\ \text{Leitwert: } W_0(f) = 4 k_{\mathrm{B}} TG \end{array}$$

Leitwert:
$$W_0(f) \stackrel{m}{=} 4k_{\mathsf{B}}TG$$

2.2. Schrotrauschen

Ursache: Quantisierung der Ladung.

Schrotrauschen tritt bei Stromfluss I_0 über eine Potentialbarriere auf. Tunnelndes Teilchen, Poisson-Prozess, Rate bekannt, Zeitpunkte zufällig.

Effektivwert des Rauschens: $I_n = \sqrt{\overline{i^2}} = \sqrt{2e \cdot I_0 \cdot \Delta f}$

Spektrale Dichtefunktion $W_{Schrot}(f) = 2 \frac{I_0}{e} |\mathcal{F}_q(f)|^2$

 $W_0 = 2eI_0$ (mit Impulsform g)

2.3. Generations-Rekombinations-Rauschen im TDGGW

 τ_0 mittlere Lebensdauer im Zustand 0. Mit WSL P $_0=rac{ au_0}{ au_0+ au_1}$ mittlere Lebensdauer im Zustand 1. Mit WSL P $_1=rac{ au_0}{ au_1+ au_1}$

 $\mathrm{d} au$ muss so klein sein, dass nur ein Übergang stattfindet

Übergänge $P_{10} + P_{11} = 1$

$$\begin{aligned} & \text{Possible for } & \text{Possi$$

Lösung:
$$\rho_A(\tau) = \mathsf{P}_1(1-\mathsf{P}_1) \exp\left(-\frac{\tau}{\tau\rho}\right) + \mathsf{P}_1^2$$

Maximales Rauschen falls Besetzung der Niveaus $\mathsf{P}_1(1-\mathsf{P}_1)=0.25$

Onsager Prinzip: Betrachtet man die Relaxation einer Störung einer bestimmten Größe, so ist der zeitlicher Ablauf dieser Relaxation gleich der AKF des Rauschens dieser Größe

2.4. Rauschen stromdurchflossener Widerstände

Leitfähigkeit änderrt sich durch G/R $W_I(f) = \frac{I_0^2}{N^2} W_N(f)$

2.5. 1/f Rauschen

Generell: Überlagerung von Bandbegrenzten, gleichmäßigen Rauschen. System mit begenzten Energiegehalt in welchem nichtlineare Prozesse für eine Verteilung der Energie auf einem breiten Frequenzbereich sorgen. Daraus folgt 1/f-Rauschen. Wärmeleitung, RC-Rauschen, Diffusionsvorgänge,

1/f-Rauschen ist energetisch sehr günstig.

2.6. Zeitskaleninvarianz

Leistung in einem Frequenzintervall zwischen f_1 und f_2 :

 $P = c \ln \left(\frac{f_2}{f_1} \right)$ allg. Konstante c

Leistung konstant im relativen Frequenzintervall

2.7. Geometrische Abhängigkeit des Rauschens

Bei einem homogenen Volumen V ist die relative Schwankung proportio-

Bsp. Spannungseinprägung:
$$\frac{W_i}{I_0^2} = \frac{1}{V} \frac{W_j}{\left\|\underline{j}\right\|^2}$$
 Mit $\Delta U = 0$ und

Bei einer homogenen Fläche A sind die Schwankungen proportional

2.8. Hooge-Modell (Mathematisches Modell)

$$\begin{array}{c|c} \overline{\Delta I^2} \\ \overline{I_0^2} \\ \Big|_{\Delta U = 0} = \left. \overline{\Delta U^2} \right|_{\Delta I = 0} = \frac{\overline{\Delta R^2}}{R_0^2} = \frac{\overline{\Delta R^2}}{\overline{N^2}} \\ \ddot{\text{Uberlagerung mehrerer Zeitkonstanten.} \ W_N \propto \overline{\Delta N^2} \end{array}$$

2.9. McWhorter-Modell (Physikalisches Modell)

3. Übertragung von Rauschen über elektrische Netzwerke

3.1. Übertragungsfunktion

Achtung: Bei Rauschen betrachten wir Leistungsspektren $W \propto \overline{a^2}$ Phaseninformationene gehen verloren.

 $W_a(f) = |G(f)|^2 \cdot W_e(f)$

Bei Filterung von weißem Rauschen sieht man die Übertragungsfunktion

Äquivalente Rauschbandbreite:
$$B_{\text{eq}} = \frac{\int\limits_{0}^{\infty} |G(f)|^2 \, \mathrm{d}f}{\frac{0}{|G(f)|^2_{\max}}}$$

$$\rho_a(0) = \overline{a^2} = W_{\text{e}} \cdot |G(f)|^2_{\max} \cdot B_{\text{eq}}$$

3.2. Impedanzfeldmethode

Räumlich verteilte Rauschquellen (nicht homogenen und statistisch unabhängig)

Rauschquellen sind linear verknüpft

Analytisch Stochastisch Mittelwert Erwartungswert Schwankungsquadrat Varianz

Abweichung Standardabweichung

Elektronentemperatur: $w_i = 4k_{\rm B}T_eG = 4k_{\rm B}T_e\frac{Aen}{r}\mu$

4. Praktikum

Op-Amps als invertierender Verstärker