Section 5: Dummy Variables and Interactions

Tengyuan Liang, Chicago Booth

https://tyliang.github.io/BUS41000/
Suggested Reading:
Statistics for Business, Part IV

Example: Detecting Sex Discrimination

Imagine you are a trial lawyer and you want to file a suit against a company for salary discrimination... you gather the following data...

G	ender	Salary
1	Male	32.0
2	Female	39.1
3	Female	33.2
4	Female	30.6
5	Male	29.0
20	8 Female	30.0

You want to relate salary (Y) to gender (X)... how can we do that?

Gender is an example of a categorical variable. The variable gender separates our data into 2 groups or categories. The question we want to answer is: "how is your salary related to which group you belong to…"

Could we think about additional examples of categories potentially associated with salary?

- MBA education vs. not
- legal vs. illegal immigrant
- quarterback vs wide receiver

We can use regression to answer these question but we need to recode the categorical variable into a dummy variable

```
Gender Salary Sex
1 Male 32.00 1
2 Female 39.10 0
3 Female 33.20 0
4 Female 30.60 0
5 Male 29.00 1
... ... ...
208 Female 30.00 0
```

Note: In Excel you can create the dummy variable using the formula:

$$=$$
IF(Gender="Male",1,0)

Now you can present the following model in court:

$$Salary_i = \beta_0 + \beta_1 Sex_i + \epsilon_i$$

How do you interpret β_1 ?

$$E[Salary|Sex = 0] = \beta_0$$

 $E[Salary|Sex = 1] = \beta_0 + \beta_1$

 β_1 is the male/female difference

$$Salary_i = \beta_0 + \beta_1 Sex_i + \epsilon_i$$

Regression Statistics					
Multiple R	0.346541				
R Square	0.120091				
Adjusted R Square	0.115819				
Standard Error	10.58426				
Observations	208				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3149.634	3149.6	28.1151	2.93545E-07
Residual	206	23077.47	112.03		
Total	207	26227.11			

	Coefficientst	andard Ern	t Stat	P-value	Lower 95%	Upper 95%
Intercept	37.20993	0.894533	41.597	3E-102	35.44631451	38.9735426
Gender	8.295513	1.564493	5.3024	2.9E-07	5.211041089	11.3799841

 $\hat{\beta}_1 = b_1 = 8.29...$ on average, a male makes approximately \$8,300 more than a female in this firm.

How should the plaintiff's lawyer use the confidence interval in his presentation?

How can the defense attorney try to counteract the plaintiff's argument?

Perhaps, the observed difference in salaries is related to other variables in the background and NOT to policy discrimination. . .

Obviously, there are many other factors which we can legitimately use in determining salaries:

- education
- job productivity
- experience

How can we use regression to incorporate additional information?

Let's add a measure of experience. . .

$$Salary_i = \beta_0 + \beta_1 Sex_i + \beta_2 Exp_i + \epsilon_i$$

What does that mean?

$$E[Salary|Sex = 0, Exp] = \beta_0 + \beta_2 Exp$$

 $E[Salary|Sex = 1, Exp] = (\beta_0 + \beta_1) + \beta_2 Exp$

The data gives us the "year hired" as a measure of experience. . .

```
YrHired Gender Salary Sex
1 92 Male 32.00 1
2 81 Female 39.10 0
3 83 Female 33.20 0
4 87 Female 30.60 0
5 92 Male 29.00 1
... ...
208 62 Female 30.00 0
```

$$Salary_i = \beta_0 + \beta_1 Sex_i + \beta_2 Exp + \epsilon_i$$

Regression Statistics						
Multiple R	0.700680156					
R Square	0.490952681					
Adjusted R	0.485986366					
Standard E	8.070070757					
Observation	208					

ANOVA

	df	SS	MS	F	Significance F
Regression	2	12876.27	6438	98.8565	8.7642E-31
Residual	205	13350.84	65.13		
Total	207	26227.11			

	Coefficients	tandard Erre	t Stat	P-value	Lower 95%	Upper 95%
Intercept	121.0212441	6.891851	17.56	9.8E-43	107.433246	134.6092
Gender	8.011885777	1.193089	6.715	1.8E-10	5.65958805	10.36418
YrHired	-0.981150947	0.080285	-12.22	3.7E-26	-1.1394402	-0.822862

$$Salary_i = 121 + 8Sex_i - 0.98$$
 YrHired $+ \epsilon_i$

Data collected in 1995, so $YrHired_i = 95 - Exp_i$, which means $Salary_i = 27 + 8Sex_i + 0.98Exp_i + \epsilon_i$.

$$Salary_i = \begin{cases} 27 + 0.98Exp_i + \epsilon_i & \text{females} \\ 35 + 0.98Exp_i + \epsilon_i & \text{males} \end{cases}$$

More than Two Categories

We can use dummy variables in situations in which there are more than two categories. Dummy variables are needed for each category except one, designated as the "base" category.

Why? Remember that the numerical value of each category has no quantitative meaning!

We want to evaluate the difference in house prices in a couple of different neighborhoods.

```
Nbhd SqFt Price
1 2 1.79 114.3
2 2 2.03 114.2
3 2 1.74 114.8
4 2 1.98 94.7
5 2 2.13 119.8
6 1 1.78 114.6
7 3 1.83 151.6
8 3 2.16 150.7
```

Let's create the dummy variables dn1, dn2 and dn3...

```
SqFt Price dn1 dn2 dn3
  Nbhd
      2 1.79 114.3
1
                          0
      2 2.03 114.2 0 1
      2 1.74 114.8 0 1
3
4
      2 1.98 94.7
5
      2 2.13 119.8
6
                      0
      1 1.78 114.6
      3 1.83 151.6
                      0
8
      3 2.16 150.7
```

$$Price_{i} = \beta_{0} + \beta_{1}dn1_{i} + \beta_{2}dn2_{i} + \beta_{3}Size_{i} + \epsilon_{i}$$

$$\begin{split} E[\textit{Price}|\textit{dn}1 = 1, \textit{Size}] &= \beta_0 + \beta_1 + \beta_3 \textit{Size} \quad \text{(Nbhd 1)} \\ E[\textit{Price}|\textit{dn}2 = 1, \textit{Size}] &= \beta_0 + \beta_2 + \beta_3 \textit{Size} \quad \text{(Nbhd 2)} \\ E[\textit{Price}|\textit{dn}1 = 0, \textit{dn}2 = 0, \textit{Size}] &= \beta_0 + \beta_3 \textit{Size} \quad \text{(Nbhd 3)} \end{split}$$

$$Price = \beta_0 + \beta_1 dn 1 + \beta_2 dn 2 + \beta_3 Size + \epsilon$$

Regression Statistics					
Multiple R	0.828				
R Square	0.685				
Adjusted R Square	0.677				
Standard Error	15.260				
Observations	128				

ANOVA

Regression 3 62809.1504 20936 89.90	sion 2 63900 1E04 30036		
	5 62609.1304 20936	9.9053 5.8	3E-31
Residual 124 28876.0639 232.87	al 124 28876.0639 232.87		
Total 127 91685.2143	127 91685.2143		

	Coefficients 3ta	ndard Erroi	t Stat	P-value	.ower 95%	pper 95%
Intercept	62.78	14.25	4.41	0.00	34.58	90.98
dn1	-41.54	3.53	-11.75	0.00	-48.53	-34.54
dn2	-30.97	3.37	-9.19	0.00	-37.63	-24.30
size	46.39	6.75	6.88	0.00	33.03	59.74

$$Price = 62.78 - 41.54 dn 1 - 30.97 dn 2 + 46.39 Size + \epsilon$$

$$Price = \beta_0 + \beta_1 Size + \epsilon$$

Regression Statistics					
Multiple R	0.553				
R Square	0.306				
Adjusted R Square	0.300				
Standard Error	22.476				
Observations	128				

ANOVA

	df	SS	MS	F	nificance F
Regression	1	28036.4	28036.36	55.501	1E-11
Residual	126	63648.9	505.1496		
Total	127	91685.2			

	Coefficientsan	ndard Eri	t Stat	P-value	ower 95%	per 95%
Intercept	-10.09	18.97	-0.53	0.60	-47.62	27.44
size	70.23	9.43	7.45	0.00	51.57	88.88

$$Price = -10.09 + 70.23 Size + \epsilon$$

Back to the Sex Discrimination Case

Does it look like the effect of experience on salary is the same for males and females?

Back to the Sex Discrimination Case

Could we try to expand our analysis by allowing a different slope for each group?

Yes... Consider the following model:

$$Salary_i = \beta_0 + \beta_1 Exp_i + \beta_2 Sex_i + \beta_3 Exp_i \times Sex_i + \epsilon_i$$

For Females:

$$Salary_i = \beta_0 + \beta_1 Exp_i + \epsilon_i$$

For Males:

$$Salary_i = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)Exp_i + \epsilon_i$$

Sex Discrimination Case

How does the data look like?

YrHired		Gender	Salary	Sex	SexExp
1	92	Male	32.00	1	92
2	81	Female	39.10	0	0
3	83	Female	33.20	0	0
4	87	Female	30.60	0	0
5	92	Male	29.00	1	92
20	08 62	Female	30.00	0	0

Sex Discrimination Case

$$Salary = \beta_0 + \beta_1 Sex + \beta_2 Exp + \beta_3 Exp * Sex + \epsilon$$

Regression Statistics		
0.799130351		
0.638609318		
0.63329475		
6.816298288		
208		

ANOVA

	df	SS	MS	F	Significance F
Regression	3	16748.88	5582.96	120.16	7.513E-45
Residual	204	9478.232	46.4619		
Total	207	26227.11			

	Coefficients	tandard Erro	t Stat	P-value	Lower 95%	Upper 95%
Intercept	61.12479795	8.770854	6.96908	4E-11	43.831649	78.41795
Gender	114.4425931	11.7012	9.78041	9E-19	91.371794	137.5134
YrHired	-0.279963351	0.102456	-2.7325	0.0068	-0.4819713	-0.077955
GenderExp	-1.247798369	0.136676	-9.1296	7E-17	-1.5172765	-0.97832

$$Salary = 34 - 4Sex + 0.28Exp + 1.24Exp * Sex + \epsilon$$

Sex Discrimination Case

Is this good or bad news for the plaintiff?

Variable Interaction

So, the effect of experience on salary is different for males and females... in general, when the effect of the variable X_1 onto Y depends on another variable X_2 we say that X_1 and X_2 interact with each other.

We can extend this notion by the inclusion of multiplicative effects through interaction terms.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 X_2) + \varepsilon$$
$$\frac{\partial E[Y|X_1, X_2]}{\partial X_1} = \beta_1 + \beta_3 X_2$$

We will pick this up in our next section...

Example: College GPA and Age

Consider the connection between college and MBA grades:

A model to predict MBA GPA from college GPA could be

$$GPA^{MBA} = \beta_0 + \beta_1 GPA^{Bach} + \varepsilon$$

	Estimate	Std.Error	t value	\$Pr(>
BachGPA	0.26269	0.09244	2.842	0.00607 **

For every 1 point increase in college GPA, your expected MBA GPA increases by about .26 points.

College GPA and Age

However, this model assumes that the marginal effect of College GPA is the same for any age.

It seems that how you did in college should have less effect on your MBA GPA as you get older (further from college).

We can account for this intuition with an interaction term:

$$\textit{GPA}^{\textit{MBA}} = \beta_0 + \beta_1 \textit{GPA}^{\textit{Bach}} + \beta_2 (\textit{Age} \times \textit{GPA}^{\textit{Bach}}) + \varepsilon$$

Now, the college effect is $\frac{\partial E[GPA^{MBA}|GPA^{Bach}|Age]}{\partial GPA^{Bach}} = \beta_1 + \beta_2 Age$.

Depends on Age!

College GPA and Age

$$\textit{GPA}^{\textit{MBA}} = \beta_0 + \beta_1 \textit{GPA}^{\textit{Bach}} + \beta_2 (\textit{Age} \times \textit{GPA}^{\textit{Bach}}) + \varepsilon$$

Here, we have the interaction term but do not the main effect of age... what are we assuming?

	Estimate	Std.Error	t value	\$Pr(>
BachGPA	0.455750	0.103026	4.424	4.07e-05 ***
BachGPA:Age	-0.009377	0.002786	-3.366	0.00132 **

College GPA and Age

Without the interaction term

▶ Marginal effect of College GPA is $b_1 = 0.26$.

With the interaction term:

▶ Marginal effect is $b_1 + b_2 Age = 0.46 - 0.0094 Age$.

Age	Marginal Effect
25	0.22
30	0.17
35	0.13
40	0.08