入門向けFPGA決定戦? GOWIN FPGAボードのすすめ

実践的!FPGA開発セミナーvol.19 LT

自己紹介

- 井田 健太
- FPGAの論理設計屋だった気がする
- 最近は組込みRust屋になった気がする
 - 。ESP32とか

入門向けFPGAボード

- 入門 = FPGA初学者向け
- FPGA初学者
 - 。 HDL含めてこれから習得する人
- いくつかの要件がある
 - 。 入手性
 - ◦情報の多さ
 - 価格
 - 機能

入手性

- 国内の企業から買えるかどうか
 - メールお問い合わせとか無く通常の通販サイトで買えるかどうか
 - 。 e.g. 秋月電子通商の通販で買える等
- 在庫が豊富か
 - 在庫がなくなりやすい、LTが長い、流通在庫のみなどではない
- 国外でもdigikeyやmouserから買えるかくらいが限界
 - 初学者にはこれでもハードルが高い

情報の多さ

- みんな使ってるFPGAの方が当然、情報量は多い
 - 。このあたりは2大ベンダー (AMD, Intel) が有利
- 情報発信を継続して行っている人が居る
 - FPGAの部屋 AMD有利
 - ∘ ACRi Blog まだAMD率が高い
 - (私は元AMDユーザーなのでIntel事情あまり知らない)
- FPGAマガジンのバックナンバーに記事がある

価格

- 理想的にはマイコンボードくらいの価格が良い
 - 。数千円
 - ついうっかり手をだせる価格
- 円安等の影響でかなり価格が上がっている
 - 2大ベンダーのまともなボードは軒並み2万円越え

機能 (1/2)

- もちろんいろいろできる方がいい
- 無償利用可能な開発環境で行えることが重要
 - 。 開発環境のライセンスはボードの価格より高いので...
- AMDがかなり有利
 - 無償範囲で使えるIPが多い
 - 。 フルセットの高位合成環境が使える

機能 (2/2)

- 必要な機能は何をきっかけにFPGAを触りたいと思ったかによる
- とりあえず触ってみたい
 - 映像出力とかできるとある程度面白い?
- カメラの画像処理がしたい!
 - カメラ入力、映像出力
- CPU実装してみたい!
 - 。 それなりの規模のFPGAならなんでもよさそう
- ネットワーク!
 - Ethernetつながるやつにしよう

入手性のよさそうなFPGAボード(1/5)

ボード名	製造元	FPGA	価格	特徴
TE0726-03- 41C64-A	Trenz	Zynq XC7Z010	21480	Raspberry Pi形状のZynqボード
ARTY S7	Digilent	Spartan7 XC7S50	22440	使いやすいSpartan7ボード
ARTY A7-35	Digilent	Artix7 XC7A35	23480	小規模Artix7ボード

入手性のよさそうなFPGAボード(2/5)

ボード名	製造元	FPGA	価格	特徴
CORA Z7- 07S	Digilent	Zynq XC7Z007S	22000	Zynq系最小規模
CORA Z7- 10	Digilent	Zynq XC7Z010	24100	お手頃?Zynqボード
ZYBO Z7	Digilent	Zynq XC7Z010	33500	定番Zynqボード。情報多い
PYNQ Z1	Digilent	Zynq XC7Z020	42760	PYNQシリーズ初代ボード HDMI IN/OUT

入手性のよさそうなFPGAボード(3/5)

ボード名	製造元	FPGA	価格	特徴
LiteFury	Xilinx	Artix-7 XC7A100T	16734	M.2形状、PCIe遊び可能
Kria KV260	Xilinx	Zynq Ultrascale+ XCZU5EV相当	42587	カメラ入力、H/264/265 CODEC
Kria KR260	Xilinx	Zynq Ultrascale+ XCZU5EV相当	59690	GbE, 10GbEで遊べる!

入手性のよさそうなFPGAボード(4/5)

- Intel系は今は入手性がかなり悪い...
 - 。 現時点でdigikey/mouserで在庫あるのこれくらいしか見つけられなかった
 - 。 Agilex3期待してます

ボード名	製造元	FPGA	価格	特徴
T-Core	Terasic	MAX10 10M50DAF	20775	まだ買えるMAX10ボード

入手性のよさそうなFPGAボード(5/5)

ボード名	製造元	FPGA	価格	特徴
Tang Nano 9K	Sipeed	LittleBee GW1NR- LV9PC6/I5	2480	DVI映像出力
Tang Primer 20K + Dock	Sipeed	Arora GW2A-LV18	6880	DVI映像出力、 100BASE-TX
Tang Nano 20K	Sipeed	Arora GW2AR-LV18	未発売	たぶんPrimer 20Kよ り安い

おまけ:価格が安かったが終売のボード

- Intel系はTrenzから安価で便利なボードが出ていた
- 終売らしい... 残念

ボード名	製造元	FPGA	価格	特徴
MAX1000	Trenz	MAX10 10M08	4780	安い!
CYC1000	Trenz	Cyclone10LP 10CL025	4900	安い!

一覧表

- Google Spreadsheetにまとめておきました。
- https://docs.google.com/spreadsheets/d/e/2PACX-1vQ3g3hP8YLRfTDaKJNNuwWqaVlPn9l2qi8h0QCMJiUsb0z2lqMmRJ_ygFK7Eod RKH1Y7fu1HfC493h-/pubhtml

結論?

- だいたい1万円越えでつらい
- GOWIN FPGA安くて良さそうだね!
- ところでGOWIN FPGAってどんなものなの?

GOWIN FPGAについて

- 中国 GOWIN が製造しているFPGA
 - 。 国内正規代理店は丸文
- 小~中規模のFPGA
 - LittleBee: 1k~9k LUT4 55nmLP
 - Arora: 20k~50k LUT4 55nm
 - Arora V: 20k~50k LUT4 22nm
- ファミリ間でアーキテクチャはほぼ同じ
 - Arora Vは高速トランシーバがある (>10Gbps)

開発環境

- GOWIN EDA
 - 論理合成・配置配線
 - 。 IPコアの生成
- 2種類のEdition
 - Standard: 要ライセンス申請 (無償)
 - 。 Education: ライセンス申請不要

(C) 2023 Kenta Ida

GOWIN EDAの機能

- VHDL2008, SystemVerilog 2017入力の合成
 - 各言語機能にどれくらい対応するかは要確認
- GOWINが提供する各種IPコアのカスタマイズと生成
- FPGA自体のJTAGによるコンフィグレーション
- FPGA内蔵フラッシュ等へのビットストリーム書き込み
- デバッグ用ロジックアナライザ回路の埋め込みと操作

デバッグ機能 GOWIN Analyzer Oscilloscope

● 合成前・合成後のデザインにロジック・アナライザ機能を埋め込み○ GUI上からトリガソース、クロック、記録対象のネットを設定

デバッグ機能 GOWIN Analyzer Oscilloscope

- 書き込み後、トリガ条件などを設定して取り込み開始
- JTAG経由で取り込んだ波形を画面に表示

GOWIN EDAに無い機能

- IPベース設計ツール
 - 。現在のところIPコアのインスタンス化と接続は手動
- シミュレータ
 - 別途商用のシミュレータ等を用意する必要あり

(C) 2023 Kenta Ida

GOWIN EDA所感(1/2)

- 良くも悪くもシンプル
 - 現在の2大ベンダーのツールと比べて機能が少ない
- 初学者はむしろ混乱しなくて良いのではないか
- 最低限の機能はある
 - デバッグ用のロジックアナライザ機能

GOWIN EDA所感(2/2)

- シミュレータはOSSでなんとかする
 - Icarus Verilog
 - Velirator
 - Chiselを使う (おすすめ)
- 初めのうちは高度な機能使わないので問題ない
 - 。とはいえSystemVerilogの基本的な機能も一部制限があるので対策は必要

Tang Nano 9K

- LittleBee GW1NR-LV9
 - 8640 LUT4, 6480 FF
- 秋月で2480円
- HDMI(DVI)出力
- 書き込み回路搭載
 - ∘ USB-C接続で書き込み可能

入門向けのベースボード

- Tang Nano 9Kはオンボード機能があまり 多くない
- ブレッドボード配線は間違いやすい初学者には辛い
- Pmodモジュールを 簡単につなげられるとよさそう
- ボード発注済み (たぶん今週中に届く)
- 秋月で買える部品のみで構成
- 基板のみ、部品付き、実装済みで頒布予定

宣伝: 2500円ボードで始めるFPGA開発 Vol.2

- Interface 2022年12月号の別冊付録 (CQ出版)
 - 2022年10月25日発売
- 鈴木さん、望月さん、井田の3名で執筆
- Tang Nano 9Kの使用方法・使用例を紹介
 - 。 GOWIN EDAのインストール手順
 - 。 デザインの合成と書き込み
- 3日後に出る Interface 2023年4月号 にも Tang Primer 20Kの紹介が少しあります

今後の予定

- GOWINにも高位合成ほしい!
 - 。 Google XLSを試す予定 (ビルドしてサンプルは試した)
- IPベース設計は?
 - 。 Chiselで解決?
 - ∘ FuseSoCを試す?

まとめ!

- 従来の初学者向けFPGAボードの価格が高騰している
 - 。 1万円台ですらきびしい
- デカい画処理などやりたいのであれば、Xilinx KV260一択
- 10GbEで遊びたい Xilinx KR260買おう
- それ以外でとりあえず試したい場合
 - 。 SipeedのGOWIN FPGAボードは秋月で数千円で買える
 - 。 初学者が学ぶには十分な機能がある
 - GOWIN FPGAボードでFPGAを触ってみよう!