Machine Learning, Tutorial 3 University of Bern

Mehdi Noroozi (noroozi@inf.unibe.ch)

10/10/2018

Logistic Regression

1. Compute the Hessian of the logistic regression training optimisation problem.

Solution

• The function we want to maximise is:

$$\log L(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$
(1)

where $h_{\theta}(x^{(i)}) = g(\theta^T x^{(i)})$ and $g(x) = \frac{1}{1 + e^{-x}}$. Remember that $x^{(i)} \in \mathbf{R}^{n+1}$ and $\theta \in \mathbf{R}^{n+1}$, while $h_{\theta}(x^{(i)})$ and $y^{(i)}$ are scalar. m is the number of training samples and $x^{(i)}$ and $y^{(i)}$ are the samples i in the training set.

• the gradient of $\log L(\theta)$ is:

$$\nabla \log L(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y - h_{\theta}(x^{(i)})) x^{(i)}$$
(2)

• the Hessian of $\log L(\theta)$ is:

$$\nabla^2 \log L(\theta) = -\frac{1}{m} \sum_{i=1}^m h_{\theta}(x^{(i)}) (1 - h_{\theta}(x^{(i)})) x^{(i)} (x^{(i)})^T$$
(3)

Generalized Linear Models

1. Consider the Laplace distribution

$$p(y;\lambda) = \frac{1}{\lambda} \exp\left(-\frac{|y-\mu|}{\lambda}\right) \tag{4}$$

where μ is a constant. Is it part of the exponential family of distributions?

2. If we parametrize the Laplace distribution on μ , is it still part of the exponential distributions? **Solution** The class of exponential distributions is defined as all the distributions that can be written in the form

$$p(y;\eta) = b(y)\exp(\eta^T T(y) - a(\eta))$$
(5)

where η is called natural parameter, T(y) is called sufficient statistic and $a(\eta)$ is called log partition function.

The Laplace distribution, if parametrized only on λ , with μ fixed, it is indeed possible to write in the above form:

$$p(y;\lambda) = \frac{1}{\lambda} \exp\left(-\frac{|y-\mu|}{\lambda}\right) \tag{6}$$

that is,
$$\eta = -\frac{1}{\lambda}$$
, $b(y) = 1$, $T(y) = |y - \mu|$ and $a(\eta) = \log\left(-\frac{1}{\eta}\right) = \log(\lambda)$.

However, if we parametrize the Laplace distribution on μ , keeping λ fixed, it is not possible to write the distribution in the above form, and it is indeed not part of the exponential family.