Felix Bragman

Work Experience

Medtronic, Surgical Robotics

Principal Al Scientist/Engineer

2021-present

- Al Tech Lead in a team 6 for the development of an intra-operative surgical guidance model
- Research and development of computer vision algorithms for surgical video processing products:
 Developing a video instance segmentation model with an external memory compression model
 - to improve real-time tracking for various surgical guidance products
 - Developed a multi-task learning algorithm for video processing using temporal multi-task prompt learning for real-time processing (patent filed)
 - Developed a generic backbone for video processing using temporal prompt learning and Mixture of Experts to improve model robustness and efficiency (patent filed)
 - Developed a multi-task transformer using Mixture of Experts and Gumbel-Softmax task-expert routing (patent filed)
- Supervision of PhD and MSc interns across topics such as video self-supervision with memory and multi-task learning on videos

Babylon

Senior Research Scientist 2019-2021

- Research on representation learning from electronic health records (EHR) for Al-assisted products
 - Conducted research on RNNs, graph neural networks and transformers for learning representations from EHRs
 - Deployed for internal product prototyping an attention-based RNN for risk factor interpretability and a BERT model for EHR disease progression modelling
- Developed a PyTorch library for medical time-series used throughout the company for internal R&D

University College London

Research Associate in Machine Learning and Medical Image Computing

2017-2019

- Conducted fundamental research in deep learning with a focus on multi-task learning:
 - Created Stochastic Filter Groups (SFG); a novel mechanism for probabilistic architecture search in multi-task learning (ICCV oral, top 4% of 4,303 submissions)
 - Developed a novel multi-task objective function using Bayesian deep learning for spatially adaptive weighting of task losses (MICCAI oral, top 5%, travel award)

Education

University College London

Ph.D. in Medical Image Computing

2012-2017

Quantitative lung CT analysis for the study & diagnosis of COPD

Supervisors: Prof. David J. Hawkes and Prof. John Hurst

- Developed supervised and unsupervised learning methods for the study and diagnosis of lung disease from 3D Computed Tomography scans
- Published at top technical (MICCAI and IEEE Transactions on Medical Imaging) and high ranking medical (American Journal of Respiratory & Critical Care Medicine, 11% acceptance rate) journals

University of Oxford

M.Sc. with distinction in Biomedical Engineering (ranked 1st in class)

2011-2012

University College London

B.Eng. first class honours in Mechanical Engineering (Dean's List)

2007-2011

Academic Activities

Reviewer

NeurIPS, ICML, ICLR, MICCAI, AISTATS, MIDL and IEEE Transactions on Medical Imaging

Program Committee

UNSURE workshop on Uncertainty and Safety in Medical Imaging at MICCAI 2019, 2020, 2021 DART workshop on Domain Adaptation and Representation Transfer at MICCAI 2019

Selected First Author Publications

ICCV - 2019 (oral) - top 4.3% of 4,303 submissions

Stochastic filter groups for multi-task CNNs: learning specialist and generalist convolution kernels https://arxiv.org/abs/1908.09597

- Novel method that learns task-specific and shared representations for multi-task learning
- Developed Stochastic Filter Groups modules; a probabilistic grouping of kernels that help learn the CNN architecture
- Optimisation enabled through variational inference to learn the posterior distribution over possible groupings of kernels and network parameters

MICCAI - 2018 (spotlight oral & travel award) - top 5% of submissions

Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy planning https://arxiv.org/abs/1806.06595

- Developed a multi-task learning method that learns to dynamically weight the loss function using heteroscedastic uncertainty
- · Method is based on Bayesian deep-learning to estimate uncertainty in the neural network
- Applied method to simultaneous MR to CT synthesis and organ-at-risk segmentation

IEEE Transactions on Medical Imaging - 2017

Pulmonary lobe segmentation with probabilistic segmentation of the fissures and a groupwise fissure prior https://ieeexplore.ieee.org/document/7903649

- Lung segmentation from three-dimensional Computed Tomography (CT) scans
- Developed an unsupervised lung fissure segmentation method based on Gaussian Mixture Modelling and Markov Random Field regularisation
- Lobe segmentation was performed using the fissure segmentation and a population model of the fissures

MICCAI - 2017

Manifold Learning of COPD

https://discovery.ucl.ac.uk/id/eprint/10042862/1/paper332.pdf

- Developed a novel method to analyse disease progression of COPD from CT scans
- Created a novel descriptor of disease severity to quantify patterns of tissue classification
- Performed manifold fusion of separate manifolds of COPD phenotypes learnt using Isomap
- Kernel regression to identify trajectories of disease progression to better monitor disease progression

Selected Awards

MIDL Honorable Mention Reviewer Award Medical Imaging with Deep Learning conference Awarded to the top reviewers at the conference	2020, 2021
MICCAI Reviewer Award Medical Image Computing and Computer Assisted Interventions conference Awarded to top reviewers at the conference	2019
MICCAI Travel Award Medical Image Computing and Computer Assisted Interventions conference Awarded to 50 researchers	2018
British Lung Foundation Travel Award European Respiratory Society conference Awarded to early-career clinical/non-clinical researchers in the respiratory field	2014
The Professor Sir Michael Brady Prize University of Oxford, Department of Engineering Science Awarded for overall best performance in the M.Sc. in Biomedical Engineering	2012
University College London Dean's List University College London Awarded for achieving a degree average of at least 75%	2011