Ciagle zmienne losowe

Zmienna losowa ciągła przyjmuje wartości z pewnego przedziału.

$$P(X=a)=0$$

Dla zmiennej losowej ciągłej odpowiednikiem rozkładu prawdopodobieństwa jest funkcja gęstości.

Funkcja gęstości zmiennej losowej ciągłej X określona jest na zbiorze liczb rzeczywistych:

$$f: R \to R^+, \quad \text{przy czym}$$

$$f(x) \ge 0 \qquad \text{oraz} \qquad \int_{-\infty}^{+\infty} f(x) dx = 1. \text{(pole pod krzywą)}$$

$$f(x) = \begin{cases} 0 & dla \ x < a, \\ \frac{1}{b-a} & dla \ a \le x \le b \\ 0 & dla \ x > b \end{cases}$$

$$\int_{a}^{b} \frac{1}{b-a} dx = \frac{1}{b-a} x |_{a}^{b} = 1$$

$$1/(b-a)$$

Dystrybuanta zmiennej losowej ciągłej

$$F(x) = P(X < x) = \int_{-\infty}^{x} f(x) dx.$$

Własności dystrybuanty zmiennej losowej ciągłej:

i.
$$P(X=a)=0$$
, $a=$ const.

ii.
$$P(a \le X \le b) = P(a < X < b) = \int_a^b f(x) dx = F(b) - F(a)$$
.

iii.
$$P(X < a) = \int_{-\infty}^{a} f(x) dx = F(a)$$
.

iv.
$$P(X > a) = \int_{a}^{+\infty} f(x) dx = 1 - F(a)$$
.

Charakterystyki liczbowe rozkładów ciągłych z. l.

Wartość oczekiwana

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx.$$

Wariancja

$$D^{2}(X) = \int_{-\infty}^{+\infty} [x - E(X)]^{2} f(x) dx.$$

Przykłady rozkładów zmiennej losowej ciągłej.

Zmienna losowa X ma rozkład jednostajny na odcinku [a, b],

$$f(x) = \begin{cases} 0 & dla \ x < a, \\ \frac{1}{(b-a)} & dla \ a \le x \le b \\ 0 & dla \ x > b \end{cases} \qquad F(x) = \begin{cases} 0 & dla \ x < a, \\ \frac{x-a}{(b-a)} & dla \ a \le x \le b \\ 1 & dla \ x > b \end{cases}$$

Bo dla $a \le x \le b mamy$

$$F(x) = \int_{-\infty}^{x} \frac{1}{(b-a)} dt = \int_{a}^{x} \frac{1}{(b-a)} dt = \frac{1}{(b-a)} t \Big|_{a}^{x} = \frac{x-a}{(b-a)}$$

Wykresy obu funkcji b=3, a=1

Gęstość rozkładu jednostajnego w przedziale [a, b]

Dystrybuanta rozkładu jednostajnego w przedziale [a, b]

Przykład 16.

Czas oczekiwania na wydrukowanie książki jest zmienną losową o rozkładzie jednostajnym w przedziale [6 miesięcy, 18 miesięcy]. a = 6, b = 18

$$f(x) = \begin{cases} \frac{1}{18 - 6} = \frac{1}{12} & dla \ x < 6, \\ \frac{1}{18 - 6} = \frac{1}{12} & dla \ 6 \le x \le 18 \\ 0 & dla \ x > 18 \end{cases}$$

$$F(x) = \begin{cases} 0 & dla \ x \le 6, \\ \frac{x - 6}{12} & dla \ 6 < x \le 18 \\ 1 & dla \ x > 18 \end{cases}$$

$$E(X) = \frac{a + b}{2} = \frac{6 + 18}{2} = 12, \quad D^{2}(X) = \frac{(b - a)^{2}}{12} = \frac{(18 - 6)^{2}}{12}$$

$$= 12, \quad D(X) = 3.46$$

$$E(x) = \int_{6}^{18} x \frac{1}{12} dx = \frac{x^{2}}{24} \Big|_{6}^{18} = 12$$

$$D^{2}(x) = \int_{6}^{18} (x - 12)^{2} \frac{1}{12} dx = \frac{(x - 12)^{3}}{36} \Big|_{6}^{18} = 12$$

średnio na wydrukowanie książki czeka się 12 miesięcy.

a. Jakie jest prawdopodobieństwo, że książka będzie wydrukowane w terminie do 8 miesięcy.

b. Jakie jest prawdopodobieństwo, że książka zostanie wydana w przedziale [3 miesiące, 9 miesięcy].

$$P(3 < X < 9) = F(9) - F(3) = \frac{1}{4},$$
 $F(3) = 0.$

20

c) Jakie jest prawdopodobieństwo, że czas oczekiwania jest dłuższy niż 10 miesięcy.

$$P(X > 10) = 1 - P(x < 10) = 1 - F(10) = 1 - \frac{10 - 6}{12} = \frac{2}{3}$$

Wykres dla $P(X \ge 10)$

Wykres dla $P(X \ge 10)$

Rozkład normalny (idea)

Dany jest szereg rozdzielczy.

Wzrost poborowych w Polsce z roczników 1906-1909

Nr porz.	Wzrost w cm	Ilość poborowych w procentach		
1	137,5-140,5	0,1		
2	140,5-143,5	0,1		
3	143,5-146,5	0,2		
4	146,5-149,5	0,4		
5	149,5-152,5	1,2		
6.	152,5-155,5	2,9		
7	155,5-158,5	6,4		
8	. 158,5-161,5	11,9		
9	161,5-164,5	17,1		
. 10	164,5-167,5	19,8		
11	167,5-170,5	17,3		
. 12	170,5-173,5	11,8		
13	173,5-176,5	6,6		
14	176,5-179,5	2,8		
15	179,5-182,5	1,0		
16	182,5-185,5	0,3		
17	185,5-188,5	0,1		

Populacja: poborowi z lat 1906-1909.

Cecha: wzrost.

Rozpiętość każdej klasy wynosi 3. Gdyby za jednostkę na osi x przyjąć 3, to pole każdego prostokąta jest równe częstości odpowiedniej klasy, a suma pól wynosi 1 (100%). Pytania.

- 1. Jaka jest częstość występowania poborowych o wzroście od 161.5 do 167.5. (36.9% to suma powierzchni odpowiednich pól prostokątów).
- 2. Jaka część poborowych ma wzrost nie przekraczający 161.5 (suma pól od lewej strony do 161.5).

Szereg ten otrzymano z pewnego (*n* elementowego) ciągu statystycznego. Gdyby *n* dążyło do nieskończoności (liczba klas także, a rozpiętość klasy malała do zera), to łamane dążyły by do pewnej granicznej krzywej. Oznaczmy ją przez *f*(*x*) i nazywamy gęstością prawdopodobieństwa zmiennej losowej (zmienną losową X jest tu wzrost).

Rozkład normalny (definicja)

Zmienna losowa X ma rozkład normalny (ze średnią $m=\mu=0$ i odchyleniem standardowym $\sigma=1$), jeżeli funkcja gęstości

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} - Krzywa Gaussa N(0,1)$$

Gęstość zmiennej losowej o rozkładzie normalnym ze średnią μ i odchyleniem standardowym σ :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Własności rozkładu normalnego:

- Jednomodalny (jeden punkt skupienia)
- Symetryczny względem μ (średniej)
- Zmiana μ powoduje przesunięcie rozkładu bez zmiany kształtu
- Zmiana σ powoduje zmianę skali (rozciągnięcie bądź zwężenie rozkładu)
 - Regula trzech Sigm: $X \sim N(\mu, \sigma)$
 - $P(|X \mu| < \sigma) \approx 0,6827$
 - $P(|X \mu| < 2\sigma) \approx 0.9545$
 - $P(|X \mu| < 3\sigma) \approx 0.9973$

Rozkład normalny: $\mu = 1$, $\sigma = 1$

Rozkład normalny: $\mu = 0$, $\sigma = 2/3$

Dystrybuanta zmiennej losowej $X \sim N(0,1)$

$$F(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \bar{e}^{x^{2}/2} dx.$$

Wartości dystrybuanty zmiennej losowej $X \sim N(0, 1)$ są stablicowane. Zazwyczaj w tablicach występuje funkcja

$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx,$$

Na jej podstawie obliczamy wartość dystrybuanty.

Dystrybuanta rozkładu normalnego N(0,1) - $\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{t^2}{2}} dt$

	y str y b dan		au normur	1080 1 ((0)	1 (0)	$\sqrt{2\pi} J_{-\infty}$				
и	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,50000	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,52790	0,53188	0,53586
0,10	0,53983	0,54380	0,54778	0,55172	0,55567	0,55962	0,56356	0,56750	0,57142	0,57535
0,20	0,57936	0,58316	0,58706	0,59095	0,59484	0,59871	0,60257	0,60642	0,61026	0,61409
0,30	0,61791	0,62172	0,62552	0,62930	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,40	0,65542	0,65910	0,66258	0,66640	0,67003	0,67365	0,67724	0,68082	0,68439	0,68793
0,50	0,69156	0,69497	0,69847	0,70194	0,70540	0,70884	0,71226	0,71566	0,71904	0,72241
0,60	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,75490
0,70	0,75804	0,76115	0,76424	0,76731	0,77035	0,77337	0,77637	0,77935	0,78231	0,78524
0,80	0,78815	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,90	0,81594	0,81859	0,82121	0,82381	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
1,00	0,84135	0,84375	0,84614	0,84850	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,10	0,86433	0,86650	0,86864	0,87076	0,87286	0,87493	0,87698	0,87900	0,88100	0,88298
1,20	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90148
1,30	0,90320	0,90490	0,90658	0,90824	0,90988	0,91149	0,91309	0,91466	0,91621	0,91774
1,40	0,91924	0,92073	0,92220	0,92364	0,92507	0,92647	0,92786	0,92922	0,93056	0,93189
1,50	0,93329	0,93448	0,93575	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,60	0,94520	0,94630	0,94738	0,94845	0,94950	0,95053	0,95154	0,95254	0,95352	0,95449
1,70	0,95543	0,95637	0,95728	0,95819	0,95907	0,95994	0,96080	0,96164	0,96246	0,96327
1,80	0,96417	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,90	0,97138	0,97193	0,97257	0,97320	0,97381	0,97441	0,97500	0,97558	0,97615	0,97671
2,00	0,97725	0,97778	0,97831	0,97882	0,97933	0,97982	0,98030	0,98077	0,98124	0,98169
2,10	0,98214	0,98257	0,98300	0,98341	0,98382	0,98422	0,98461	0,98500	0,98537	0,98574
2,20	0,98610	0,98645	0,98679	0,98713	0,98746	0,98778	0,98809	0,98840	0,98870	0,98899
2,30	0,98938	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,40	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,50	0,99389	0,99396	0,99413	0,99430	0,99446	0,99461	0,99477	0,99492	0,99506	0,99520
2,60	0,99534	0,99547	0,99560	0,99573	0,99586	0,99598	0,99609	0,99621	0,99632	0,99643
2,70	0,99653	0,99664	0,99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99737
2,80	0,99745	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
2,90	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
3,00	0,99865	0,99869	0,99874	0,99878	0,99882	0,99886	0,99889	0,99893	0,99897	0,99900

$$Np. \ F(-\infty) = 0,$$
 $F(+\infty) = 1,$ $F(0) = 0.5$ $F(1) = 0.84135.$

$$F(-0.5) = 1 - F(0.5) = 1 - 0.69156 = \dots$$

$$F(1.52) = 0.93575$$

$$F(2.13) = 0.98341$$

Każdy rozkład normalny $X \sim N(m, \sigma)$ można transformo-wać do rozkładu normalnego (standaryzowanego), $Z \sim N(0, 1)$

$$Z=\frac{X-m}{\sigma}.$$

Wówczas

$$P(x_1 \le X \le x_2) = P(\frac{x_1 - m}{\sigma} \le \frac{X - m}{\sigma} \le \frac{x_2 - m}{\sigma}) = P(z_1 \le Z \le z_2),$$

$$z_1 = \frac{x_1 - m}{\sigma}, \qquad z_2 = \frac{x_2 - m}{\sigma}.$$

Ponieważ $Z \sim N(0, 1)$, więc z tablic można obliczyć $P(z_1 \le Z \le z_2)$.

Przykład17

Wydajność pracy w pewnym zakładzie jest zmienną losową X o rozkładzie normalnym ze średnią m=12 i odchyleniem standardowym $\sigma=2$. Tak więc $X\sim N(12,2)$ Jakie jest prawdopodobieństwo, że

a. wydajność jest mniejsza od 15.

$$P(X < 15) = P(\frac{X - 12}{2} < \frac{15 - 12}{2}) = P(T < 1.5) = \Phi(1.5) = 0,93329.$$

b. wydajność jest mniejsza od 7.

$$P(X < 7) = P\left(\frac{X - 12}{2} < \frac{7 - 12}{2}\right) = P(T < -2.5) = 1 - \Phi(2.5)$$

= 1 - 0,99389.

c. wydajność jest w przedziale [8, 16].

$$P(8 < X < 16) = P\left(\frac{8-12}{2} < T < \frac{16-12}{2}\right) = P(-2 < T < 2)$$

$$= \Phi(2) - \Phi(-2) = 0.97725 - (1-0.97725) = -1 + 2 * 0.97725$$

$$\Phi(-2) = 1 - \Phi(2)$$

d. wydajność przekroczy 19.

$$P(X > 19) = P(\frac{X - 12}{2} > \frac{19 - 12}{2}) = P(T > 3.5) = 1 - P(T < 3.5) = 1 - 0.999767 = \dots$$

<u>Przykład18.</u> Waga soku, w napełnianych przez automat kartonach, ma rozkład normalny $N(1 \ kg, \ 0.05 \ kg)$. Jakie jest prawdopodobieństwo, że waga losowo wybranego kartonu:

- a) jest mniejsza niż 0.95,
- b) przekroczy 1.05.

X – zmienna losowa określająca wagę kartonu, $X \sim N(1kg, 0.05kg)$.

a)
$$P(X < 0.95) = P(\frac{X-1}{0.05} < \frac{0.95-1}{0.05}) = P(T < -1) = 0.1587.$$

b) $P(X > 1.05) = P(\frac{X-1}{0.05} > \frac{1.05-1}{0.05}) = P(T > 1) = 1 - P(T < 1) = 0.1587.$

c) Jaka część soków ma wagę większą od 1.0 kg, a mniejsza niż 1.1 kg.

$$P(1.0 < X < 1.1) = P\left(\frac{1.0 - 1}{0.05} < \frac{X - 1}{0.05} < \frac{1.1 - 1}{0.05}\right) = P(0 < T < 2)$$

$$= P(X < 2) - P(X < 0) = 0.97725 - 0.5000$$

d) Jaka jest waga, poniżej której jest 75% kartonów.

Niech $T \sim N(0, 1)$ Szukamy a, dla którego P(T < a) = 0.75. Z tablic rozkładu normalnego, a=0.67.

Zmienna $T = \frac{X-1}{0.05}$. Szukamy takiego x, aby $\frac{x-1}{0.05} = a = 0.67$. Stąd $\frac{X-1}{0.05} = 0.67$ czyli x = 1 + 0.67 * 0.05 = 1.0335. Tak więc 75%kartonów ma wagę poniżej 1.0335

Przykład19. Z badań wynika, że przebieg opony ma rozkład $N(90\ 000\ km,\ 10\ 000\ km)$.

- a) jakie jest prawdopodobieństwo, że kupiona opona będzie miała przebieg większy niż 95 000 km.
- b) kupiono 5 opon. Jakie jest prawdopodobieństwo, że ich łączny przebieg przekroczy 40 000 km.

 $X - przebieg opony, X \sim N(90 000, 10 000)$

a)
$$P(X > 95000) = P(\frac{X - 90000}{10000} > \frac{95000 - 90000}{10000}) = P(T > 0.5) = 0.3085.$$

b)

Y – łączny przebieg 5 opon, $Y \sim N(450\ 000 = 5 * 90\ 000, 22360.68 = 10000\sqrt{5}).$

$$P(Y > 400\ 000) = P(\frac{X - 450000}{22360.68} > \frac{400\ 000 - 450\ 000}{22360.68}) = P(T > \frac{50}{22})$$

$$= P(T > -2.236068) = 0.9873263$$

$$22360.68 = \sqrt{5} * 10000$$

Na zmiennych losowych możemy wykonywać działania arytmetyczne. W wyniku otrzymujemy także zmienne losowe.

Przykład 20. Wzrost mężczyzn w Polsce ma rozkład normalny $N(175 \ cm, 8 \ cm)$, a kobiet $N(165 \ cm, 5 \ cm)$.

Jakie jest prawdopodobieństwo, że w losowo wybranym małżeństwie mężczyzna jest mniej niż o 5 cm wyższy od żony.

<u>Twierdzenie 1</u>. Jeżeli X_1, X_2 są niezależnymi zmiennymi losowymi oraz

$$X_i \sim N(m_i, \sigma_i)$$
, *i*=1,2, to zmienna losowa

$$Z = X_1 - X_2$$
 ma rozkład normalny $Z = N(m_1 - m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$.

Cd. Przykład

$$X_1 \sim N(175, 8)$$
 - wzrost, mężczyzny

$$X_2 \sim N(165,5)$$
 - wzrost kobiety,

Obie zmienne losowe są niezależne.

Ponieważ
$$m_1-m_2=175-165=10$$
 oraz $\sqrt{\sigma_1^2+\sigma_2^2}=$

$$\sqrt{8^2 + 5^2} = 9.4$$
, wiec

z Twierdzenie 1., zmienna losowa $Z = X_1 - X_2 \sim N(10,9.4)$.

$$P(Z < 5) = P(\frac{Z-10}{9.4} < \frac{5-10}{9.4}) = P(T < -0.53) = 0.2912.$$
 (1-0,70194)

Twierdzenie 2. Jeżeli zmienne losowe $X_1,~X_2,~\dots~,X_n$ są niezależne i zmienna $X_i{\sim}N(m_i,\sigma_i)$, to zmienna $Y=X_1+X_2+,~\dots~,+X_n$ na rozkład

$$N(m_1 + m_2 + \ldots + m_n, \sqrt{\sigma_1^2 + \sigma_2^2 +, \ldots, \sigma_n^2}).$$

Przykład 11. W windach osobowych znajduje się instrukcja: "maksymalne obciążenie 7 osób lub 500 kg." Zakładając, że waga pasażera ma rozkład normalny ze średnią 70 kg i odchyleniem standardowym 3 kg, obliczyć prawdopodobieństwo, że waga 7 osób przekroczy 500 kg.

 X_i - waga *i*-tego pasażera, $X_i \sim N(70,3)$.

Y – zmienna losowa określająca wagę 7 pasażerów,

$$Y = X_1 + X_2 + \ldots + X_n.$$

Z Tw. 2,
$$Y \sim N(m_1 + m_2 +, \ldots, +m_n, \sqrt{\sigma_1^2 + \sigma_2^2 +, \ldots, \sigma_n^2})$$
, tj.

$$Y \sim N(490 = 70 * 7, \sqrt{63} = \sqrt{3^2 * 7}).$$

$$P(Y > 500) = P\left(\frac{Y - 490}{\sqrt{63}} > \frac{500 - 490}{\sqrt{63}}\right) = P(T > 1.25) = 1 - 0.55962$$

Jakie jest prawdopodobieństwo, że waga 7 osób nie przekroczy 480 kg? $P(Y < 480) = \cdots$

Rozkład wykładniczy

Funkcja gęstości prawdopodobieństwa

$$E(X) = \lambda$$
, $\sigma^2 = \lambda^2$

Rozkładem tym opisuje się, między innymi, czas bezawaryjnej pracy badanego elementu. Jest on jedynym rozkładem ciągłym, który ma właściwość zwaną *brakiem pamięci*. Własność tę można interpretować jako niezależność dalszego czasu pracy elementu od tego co działo się z nim w "przeszłości". Dalszy czas pracy elementu ma taki sam rozkład jak całkowity czas pracy elementu.

Rozkład chi-kwadrat (rozkład χ²)

Danych jest k ciągłych zmiennych losowych o rozkładzie normalnym z wartością oczekiwaną 0 i odchyleniem standardowym 1, tj. każda zmienna $X_i: N(0;1)$ (i=1,2,...,k).

Zdefiniujemy nową zmienną losową o nazwie chi-kwadrat (χ^2) :

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_k^2$$

Rozkład tak zdefiniowanej zmiennej χ^2 nazywamy rozkładem zmiennej losowej chi-kwadrat o k stopniach swobody.

Typowy wykres funkcji gęstości (dla k>2) pokazuje rysunek:

Rozkład zmiennej losowej χ^2 o k stopniach swobody ma następujące parametry:

wartość oczekiwana

$$E(\chi^2) = k$$

odchylenie standardowe

$$\sqrt{V(\chi^2)} = \sqrt{2k}$$

Rozkład zmiennej losowej χ^2 o k stopniach swobody jest rozkładem pomocniczym używanym we wnioskowaniu statystycznym.

Tablice zmiennej losowej χ^2 o k stopniach swobody zostały opracowane tak, że podają przy założonym prawdopodobieństwie (α) taką wartość (oznaczmy ją $\chi^2_{\alpha,k}$) zmiennej losowej χ^2 , dla której :

$$P(\chi^2 > \chi^2_{\alpha,k}) = \alpha$$

UWAGA!!! Stopnie swobody są oznaczone w tablicach przez 1.

PRZYKŁAD 4

Jaka jest wartość zmiennej losowej χ^2 o 5 stopniach swobody, która spełnia warunek $P(\chi^2>\chi^2_{0,05;5})=0.05$?

r	α						
•	0,99		0,10	<u>0,05</u>	0,02		
1	0.0^3157		2,706	3,841	5,412		
2	0,0201		4,605	5,991	7,824		
3	0,115		6,251	7,815	9,837		
4	0,297		7,779	9,488	11,668		
<mark>5</mark>	0,554		9,236	11,070	13,388		
6	0,872		10,645	12,592	15,033		

Poszukiwaną wartością zmiennej losowej χ^2 o 5 stopniach swobody jest liczba $\chi^2_{0,05;5}=11{,}07$.

Spełnia ona warunek
$$P(\chi^2 > 11,07) = 0.05$$

Rozkład t - Studenta

Dana są dwie zmienne losowe:

- 1. zmienna losowa U:N(0;1)
- 2. zmienna losowa χ^2 o k stopniach swobody Zdefiniujemy nową zmienną losową postaci :

$$T_k = \frac{U}{\sqrt{\chi^2}} \sqrt{k}$$

Rozkład tak zdefiniowanej zmiennej $T_{\mathbf{k}}$ nazywamy rozkładem zmiennej losowej t-Studenta o k stopniach swobody. Wykres funkcji gestości pokazuje rysunek:

Rozkład zmiennej losowa t-Studenta o $m{k}$ stopniach swobody ma następujące parametry:

$$E(T_k) = 0$$

wartość oczekiwana

$$\sqrt{V(T_k)} = \sqrt{\frac{k}{k-2}}$$

odchylenie standardowe

Rozkład zmiennej losowej t-Studenta $T_{m k}$ o m k stopniach swobody jest rozkładem pomocniczym używanym we wnioskowaniu statystycznym.

[1 +]

Tablice zmiennej losowej t-Studenta T_k o k stopniach swobody zostały opracowane tak, że podają przy założonym prawdopodobieństwie (α) taką wartość (oznaczmy ją $t_{\alpha,k}$) zmiennej losowej T_k , dla której :

$$P(|T_k| \ge t_{\alpha,k}) = \alpha$$

UWAGA!!! Stopnie swobody są oznaczone w tablicach przez 1.

PRZYKŁAD 5

Jaka jest wartość zmiennej losowej t-Studenta o ${\bf 4}$ stopniach swobody, która spełnia warunek $P(\left|T_k\right| \ge t_{0,05;4}) = 0.05$?

α	0,5		0,1	<mark>0,05</mark>	0,02		α
r							r
1	1,0000		6,3138	12,7062	31,8205		1
2	0,8165		2,9200	4,3027	6,9646		2
3	0,7649		2,3534	3,1824	4,5407		3
4	0,7407	• • •	2,1318	<mark>2,7764</mark>	3,7469	• • •	4
5	0,7267		2,0150	2,5706	3,3649		5
6	0,7176		1,9432	2,4469	3,1427		6

Jest to liczba $t_{0,05;4}=2,7764$. Spełnia ona warunek $P(T_4|\geq 2,7764)=0,05$ Ilustruje to rysunek:

PRZYKŁAD 6

Jaka jest wartość zmiennej losowej t-Studenta o 4 stopniach swobody,

która spełnia warunek
$$P(T_k \ge t_{0.05;4}) = 0.05$$

Aby poprawnie odczytać musimy podwoić prawdopodobieństwo α.

α	0,5		0,1	0,05	0,02		α
r							r
1	1,0000		6,3138	12,7062	31,8205		1
2	0,8165		2,9200	4,3027	6,9646		2
3	0,7649		2,3534	3,1824	4,5407		3
4	0,7407	• • • •	2,1318	2,7764	3,7469	• • •	4
5	0,7267		2,0150	2,5706	3,3649		5
6	0,7176		1,9432	2,4469	3,1427		6

Poszukiwana liczba to $t_{0,05;4} = 2,1318$.

Spelnia ona warunek $P(T_4 \ge 2,1318) = 0.05$.