Cálculo 1

Lista Extra de Exercícios – Semana 16

Temas abordados: Lista extra: Integração por partes; Volumes

Seções do livro: 8.1; 6.1; 6.2

1) Use a substituição indicada para calcular as integrais abaixo:

(a)
$$\int \frac{dx}{x\sqrt{x^2-2}}, \qquad x = \frac{1}{t};$$

(b)
$$\int \frac{dx}{e^x + 1}$$
, $x = -\ln t$;

(c)
$$\int x(5x^2-3)^7 dx$$
, $5x^2-3=t$;

(d)
$$\int \frac{x \, dx}{\sqrt{x+1}}$$
, $t = \sqrt{x+1}$;

(e)
$$\int \frac{\cos x \, dx}{\sqrt{1 + \operatorname{sen}(x)^2}}, \qquad t = \operatorname{sen}(x).$$

2) Use a substituição mais adequada para calcular as integrais abaixo:

(a)
$$\int x(2x+5)^{10} dx$$
; (b) $\int \frac{1+x}{1+\sqrt{x}} dx$; (c) $\int \frac{dx}{x\sqrt{2x+1}}$;

(d)
$$\int \frac{dx}{\sqrt{e^x - 1}};$$
 (e) $\int \frac{\ln(2x) dx}{x \ln(4x)};$ (f) $\int \frac{(\arcsin x)^2 dx}{\sqrt{1 - x^2}};$

$$(g) \int \frac{\sin(x)^3 dx}{\sqrt{\cos x}}; \qquad (h) \int \frac{dx}{x\sqrt{x^2+1}}.$$

3) Calcule as integrais abaixo usando substituição trigonométrica:

(a)
$$\int \frac{x^2 dx}{\sqrt{1-x^2}};$$
 (b) $\int \frac{x^3 dx}{\sqrt{2-x^2}};$ (c) $\int \frac{\sqrt{x^2-a^2} dx}{x};$

(d)
$$\int \frac{dx}{x\sqrt{x^2-1}};$$
 (e) $\int \frac{\sqrt{x^2+1}\,dx}{x};$ (f) $\int \frac{dx}{x^2\sqrt{4-x^2}};$

$$(g) \quad \int \sqrt{1-x^2} \, dx.$$

4) Use a substituição dada para transformar as integrais abaixo:

$$\int_{0}^{3} \sqrt{x+1} \, dx \qquad x = 2t - 1;$$

$$\int_{1/2}^{1} \frac{dx}{\sqrt{1-x^{4}}} \qquad x = \mathbf{sen}t;$$

$$\int_{3/4}^{4/3} \frac{dx}{\sqrt{x^2 + 1}} \qquad x = \text{sh}t;$$

$$\int_0^{\pi/2} f(x) dx \qquad x = \arctan t.$$

5) Calcular as integrais usando as substituições indicadas:

$$\int_{0}^{4} \frac{dx}{1+\sqrt{x}} \qquad x = t^{2};$$

$$\int_{3}^{29} \frac{(x-2)^{2/3} dx}{(x-2)^{2/3}+3} \qquad x - 2 = z^{3};$$

$$\int_{0}^{\ln 2} \sqrt{e^{x} - 1} dx \qquad e^{x} - 1 = z^{2};$$

$$\int_{0}^{\pi} \frac{dt}{3+2\cos t} \qquad \tan(\frac{t}{2}) = z;$$

$$\int_{0}^{\pi/2} \frac{dx}{1+a^{2} \sec^{2}x} \qquad \tan x = t.$$

6) Demonstre que se f(x) é uma função par, $\int_a^a f(x) dx = 2 \int_0^a f(x) dx$. Mostre que se f(x) é uma função ímpar, $\int_{-a}^{a} f(x) dx = 0$.

7) Use a fórmula de integração por partes para calcular as integrais seguintes:

- (a) $\int \ln x \, dx$;
- (b) $\int \arctan x \, dx$;
- (c) $\int \arcsin x \, dx$;

- (d) $\int x \operatorname{sen} x \, dx$;
- (e) $\int x \cos(3x) dx$; (f) $\int \frac{x dx}{e^x}$;

- (q) $\int x \, 2^{-x} \, dx$;
- (h) $\int x^2 e^{3x} dx$; (i) $\int (x^2 5x + 5) e^{-x} dx$;

- $(j) \quad \int x^3 \, e^{-x/3} \, dx; \qquad \qquad (k) \quad \int x \, \mathrm{sen}(x) \, \cos(x) \, dx; \qquad (l) \quad \int (x^2 + 5 \, x + 6) \, \cos(2x) \, dx;$
- (m) $\int x^2 \ln(x) dx$; (n) $\int \ln(x)^2 dx$; (o) $\int \frac{\ln(x) dx}{x^3}$;

- $(p) \int \frac{\ln(x) dx}{\sqrt{x}};$
- (q) $\int x \arctan x \, dx$; (r) $\int x \arcsin x \, dx$;
- (s) $\int \ln(x+\sqrt{1+x^2}) dx$; (t) $\int \frac{x dx}{\sin(x)^2}$; (u) $\int \frac{x \cos x dx}{\sin(x)^2}$;

- (v) $\int e^x \operatorname{sen} x \, dx$;
- 23) $\int 3^x \cos x \, dx$; $(x) \int e^{ax} \operatorname{sen}(bx) \, dx$;
- $(y) \int \operatorname{sen}(\ln x) dx.$

8) Use o método de sua escolha para resolver as integrais seguintes:

- (a) $\int x^3 e^{-x^2} dx$;
- (b) $\int e^{\sqrt{x}} dx$; (c) $\int (x^2 2x + 3) \ln x dx$;
- (d) $\int x \ln(\frac{1-x}{1+x}) dx;$ (e) $\int \frac{\ln(x)^2}{x^2} dx;$ (f) $\int \frac{\ln(\ln x) dx}{x};$

- (g) $\int x^2 \arctan(3x) dx$; (h) $\int x (\arctan x)^2 dx$; (i) $\int (\arcsin x)^2 dx$;

- (j) $\int \frac{\arcsin x}{x^2} dx$; (k) $\int \frac{\arcsin(\sqrt{x})}{\sqrt{1-x}} dx$; 12) $\int x \tan(2x)^2 dx$;
- (l) $\int \frac{\sin^2 x}{e^x} dx$; (m) $\int \cos^2(\ln x) dx$; 15) $\int \frac{x^2 dx}{(x^2+1)^2}$;

- (n) $\int \frac{dx}{(x^2+a^2)^2}$;
- (o) $\int \sqrt{a^2 x^2} \, dx$; (p) $\int \sqrt{A + x^2} \, dx$;

(q) $\int \frac{x^2}{\sqrt{9-x^2}} dx$.

9) Calcule as integrais abaixo:

(a)
$$\int \frac{dx}{\sqrt{x^2-1}}$$
 (b) $\int \frac{(2x+4)\,dx}{(x-1)(x^2+1)^2}$ (c) $\int \frac{(3x^2-5x+8)\,dx}{x^2-4}$

usando os seguintes métodos:

- (a) decompondo as frações nos itens b e c numa soma de frações;
- (b) usando a substituição $x = \cosh\theta$ ou $x = \sinh\theta$ (usar o fato de que $\cosh^2\theta \sinh^2\theta = 1$) no item a;
- 10) Calcule a área da figura limitada pelas curvas dadas:
 - (a) parábola $y = 4x x^2$ e o eixo ox;
 - (b) curva $y = \ln x$, eixo ox e a reta x = e;
 - (c) curva y = x(x-1)(x-2) e o eixo ox;
 - (d) curva $y^3 = x$, retas y = 1 e x = 8.
 - (e) curva $y = \tan x$, eixo $ox e \ x = \frac{\pi}{3}$;
 - (f) curva de Agnesi $y = \frac{a^3}{x^2 + a^2}$ e eixo ox, para $-a \le x \le a$;
 - (g) curvas $y^2 = 2 p x$ e $x^2 = 2 p y$;
 - (h) parábola $y = x^2$ e reta y = 3 2x;
 - (i) parábolas $y=x^2$, $y=\frac{x^2}{2}$ e reta $y=2\,x$;
 - (j) hipérbole $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ e reta x = 2a;
- 11) Considere os resultados abaixo:
 - ullet O volume V do sólido gerado pela rotação de uma região R em torno do eixo ox é

$$V = \int_a^b \pi[f(x)]^2 dx.$$

ullet O volume V do sólido gerado pela rotação de uma região R em torno do eixo oy é

$$V = \int_{a}^{b} 2\pi x f(x) dx.$$

• A área da superfície S gerada pela revolução da curva dada por y=f(x) entre x=a e x=b em torno do eixo oy é

$$S = \int_{a}^{b} 2\pi x \sqrt{1 + [f'(x)]^{2}} dx.$$

 \bullet A área da superfície S gerada pela revolução da curva dada por y=f(x) entre x=ae x=bem torno do eixo ox é

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx.$$

Levando-sae em conta estes resultados determine a área da superf'icie de revolução e o volume do sólido de revolução determinados pela rotação da região dada em torno de cada um dos eixos coordenados:

- (a) parábola $y = 4x x^2$ e o eixo ox;
- (b) curva $y = \ln x$, eixo ox e a reta x = e;
- (c) curva $y^3 = x$, retas y = 1 e x = 8.
- (d) curva $y = \tan x$, eixo $ox e x = \frac{\pi}{3}$;
- (e) curva de Agnesi $y = \frac{a^3}{x^2 + a^2}$ e eixo ox, para $0 \le x \le a$;
- (f) curvas $y^2 = 2 p x$ e $x^2 = 2 p y$;
- (g) parábola $y = x^2$ e reta y = 3 2x;