CLUSTERIZAÇÃO

O que é Clusterização?

"Clusterização é a classificação não-supervisionada de dados, formando agrupamentos ou clusters. Ela representa uma das principais etapas de processos de análise de dados, denominada análise de clusters (JAIN et al., 1999).

A análise de clusters envolve, portanto, a organização de um conjunto de padrões (usualmente representados na forma de vetores de atributos ou pontos em um espaço multidimensional – espaço de atributos) em clusters, de acordo com alguma medida de similaridade.

Intuitivamente, padrões pertencentes a um dado cluster devem ser mais "similares" entre si do que em relação a padrões pertencentes a outros clusters.

Dependendo da disponibilidade de modelos apropriados para os fenômenos responsáveis pela produção dos dados, a análise de dados pode ser exploratória (formulação de hipóteses e tomada de decisão) ou confirmatória (validação de modelos).

A clusterização está normalmente associada com a análise exploratória, pois envolve problemas em que há pouca informação a priori acerca dos dados (por exemplo, modelos estatísticos), e poucas hipóteses podem ser sustentadas.

É justamente a clusterização que pode fornecer novas hipóteses a respeito dos inter-relacionamentos dos dados e de sua estrutura intrínseca."

(ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ia368 02/topico5 02.pdf)

Validação do resultado de um processo de clusterização

"Como avaliar a qualidade da saída produzida por um processo de clusterização? O que caracteriza bons e maus processos de clusterização? O fato é que todo algoritmo de clusterização vai produzir clusters a partir dos padrões de entrada. Sendo assim, caso os dados de entrada não contenham clusters, então eles não devem ser processados por um algoritmo de clusterização."

(ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ia368_02/topico5_02.pdf)

FERRAMENTAS

https://scikit-learn.org/stable/modules/clustering.html

COMPARAÇÃO ENTRE OS ALGORITMOS

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance between points

https://scikit-learn.org/stable/modules/clustering.html

CÓDIGO

Vamos executar o código da página:

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

```
ms = cluster.MeanShift(bandwidth=bandwidth, bin seeding=True)
110
          two means = cluster.MiniBatchKMeans(n clusters=params['n clusters'])
111
          ward = cluster.AgglomerativeClustering(
112
              n clusters=params['n clusters'], linkage='ward',
113
              connectivity=connectivity)
114
115
          spectral = cluster.SpectralClustering(
              n clusters=params['n clusters'], eigen solver='arpack',
116
              affinity="nearest neighbors")
117
          dbscan = cluster.DBSCAN(eps=params['eps'])
118
          affinity propagation = cluster.AffinityPropagation(
119
              damping=params['damping'], preference=params['preference'])
120
121
          average linkage = cluster.AgglomerativeClustering(
122
              linkage="average", affinity="cityblock",
              n clusters=params['n clusters'], connectivity=connectivity)
123
          birch = cluster.Birch(n clusters=params['n clusters'])
124
125
          gmm = mixture.GaussianMixture(
              n components=params['n clusters'], covariance type='full')
126
127
          clustering algorithms = (
128
              ('MiniBatchKMeans', two means),
129
130
              ('AffinityPropagation', affinity propagation),
131
              ('MeanShift', ms),
              ('SpectralClustering', spectral),
132
              ('Ward', ward),
133
              ('AgglomerativeClustering', average linkage),
134
              ('DBSCAN', dbscan),
135
              ('Birch', birch),
136
              ('GaussianMixture', qmm)
137
138
```

EXERCÍCIO

Epileptic Seizure Recognition Data Set

Download: Data Folder, Data Set Description

Abstract: This dataset is a pre-processed and re-structured/reshaped version of a very commonly used dataset featuring epileptic seizure detection.

Data Set Characteristics:	Multivariate, Time-Series	Number of Instances:	11500	Area:	Life
Attribute Characteristics:	Integer, Real	Number of Attributes:	179	Date Donated	2017-05-24
Associated Tasks:	Classification, Clustering	Missing Values?	N/A	Number of Web Hits:	50488

Agora que já entendemos um pouco mais sobre clusterização, vamos fazer uma clusterização do dataset https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition#. Neste dataset tempos a coluna Y que indica a classe [1,2,3,4,5]. Devemos retirar esta coluna e trabalhar apenas com os dados restantes. Ao final, devemos comparar o resultado da clusterização com o resultado real.