Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерной техники

Лабораторная работа № 2 Вариант: 11

Студент гр. Р3213 Преподаватель Поленов К.А.

Санкт-Петербург 2025

Цель работы

Цель работы: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

№ варианта определяется как номер в списке группы согласно ИСУ. Лабораторная работа состоит из двух частей: вычислительной и программной.

Вычислительная реализация задачи

1. Решение нелинейного уравнения

2. Отделение корней

$$x_1 \approx -2.4, x_2 \approx -0.7, x_3 \approx 1.3$$

Разбиваем Ох на интервалы:

$$(-\infty; -2.4), (-2.4; -0.7), (-0.7; 1.3), (1.3; +\infty)$$

Теперь вычислим значения функции в произвольных точках интервалов и заполним таблицу

$$x = -3$$
; $f(x) = -29.17$

$$x = -2$$
; $f(x) = 6.71$

$$x = 0$$
; $f(x) = -8.17$

$$x = 2$$
; $f(x) = 39.43$

(- ∞; - 2.4)	(-2.4; -0.7)	(- 0.7; 1.3)	(1.3; +∞)	
_	+	_	+	

Таким образом имеем три интервала изоляции корней

$$(-3; -0.7), (-0.7; 1), (1; 1.3)$$

Сами корни:

$$x_1 \approx -2.34, x_2 \approx -0.64, x_3 \approx 1.23$$

Точность вычисления корней $\epsilon=0.01$

3. Крайний правый корень - Метод половинного деления

Шаг	а	b	х	f(a)	f(b)	f(x)	a-b
1	1	1.3	1.15	-5.53	2.3	-2.14	0.3
2	1.15	1.3	1.225	-2.14	2.3	-0.054	0.15
3	1.225	1.3	1.2625	-0.054	2.3	1.088	0.075
4	1.225	1.2625	1.24375	-0.054	1.088	0.51	0.0375
5	1.225	1.24375	1.234375	-0.054	0.51	0.225	0.019
6	1.225	1.234375	1.2296875	-0.054	0.225	0.0847	0.0094

4. Крайний левый корень - Метод секущих

$$x_0 = -2.5, x_1 = -2$$

Шаг	x_{k-1}	x_{k}	x_{k+1}	$f(x_{k+1})$	$\left x_{k+1} - x_k \right $
1	-2.5	-2	-2.29051	1.3637	0.217
2	-2	-2.29051	-2.365	-0.5891	0.148
3	-2.217	-2.365	-2.34	0.0691	0.025
4	-2.365	-2.34	-2.343191	0.00165	0.0032

5. Центральный корень - Метод простой итерации

Проверка условия сходимости на (- 0.7; 0.2):

$$f(x) = 4.45x^3 + 7.81x^2 - 9.62x - 8.17 = 0$$

$$f(x) = 13.35x^2 + 15.62x - 9.62$$

$$f'(-0.7) = -14.0125 < 0, f'(0.2) = -5.962 < 0$$

$$max(|f'(-0.7)|, |f'(0)|) = 14.0125 \Rightarrow \lambda = \frac{1}{max(|f'(x)|)} = \frac{1}{14.0125}$$

$$\phi(x) = x + \lambda f(x) = x + \frac{4.45x^3 + 7.81x^2 - 9.62x - 8.17}{14.0125}$$

$$\phi'(x) = 1 + \lambda f'(x) = 1 + \frac{13.35x^2 + 15.62x - 9.62}{14.0125}$$

 $\phi(x)$ непрерывна и дифференцируема на (-0.7; 0.2)

$$\dot{\phi}(-0.7)=0$$

$$\phi'(0.2) = 0.575 \Rightarrow q = 0.575$$

$$\phi'(x) <= q = 0.575$$

 $0 <= q < 1 \Rightarrow$ итерационная последовательность сходится.

Критерий окончания: $\left|x_n - x_{n-1}\right| < \frac{1-q}{q} \varepsilon$, т. к. 0.5 < q < 1. $x_0 = 0.2$

шаг	x_{k}	x_{k+1}	$f(x_{k+1})$	$\left x_{k+1} - x_k\right $
1	0.2	-0.496	-2.020	0.296
2	-0.496	-0.640	0.0192	0.144
3	-0.640	-0.639	0.0051	0.001

Решение системы нелинейных уравнений

Код программы

https://github.com/bilyardvmetro/CompMathLab2

Листинг программы

```
Выберете, что хотите решить (введите цифру)
1) Решить нелинейное уравнение
2) Решить систему нелинейных уравнений
Введите коэффициенты уравнения в порядке возрастания степеней: -8.17 -9.62 7.81 4.45
Выберете, как ввести данные
1) Файл
2) Вручную
Enter: 2
Введите два числа: левую и правую границу изоляции корня: -3 -1.7
Введите точность вычислений: 0.01
Корень, полученный методом хорд: -2.3430
Значение функции в данной точке: 0.0065
Количество итераций: 9
Корень, полученный методом Ньютона: -2.3433
Значение функции в данной точке: -0.0000
Количество итераций: 3
Корень, полученный методом простых итераций: -2.3471
Значение функции в данной точке: -0.0000
Количество итераций: 1
```

Вывод

В ходе работы я изучил и реализовал несколько численных методов для решения нелинейных уравнений: метод хорд, метод Ньютона и метод простой итерации, а также метод простой итерации для решения системы нелинейных уравнений.