Machine Learning for Graphs and Sequential Data

Sequential Data - Neural Network Approaches

lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2024

Roadmap

- Chapter: Temporal Data / Sequential Data
 - 1. Autoregressive Models
 - Markov Chains
 - 3. Hidden Markov Models
 - 4. Neural Network Approaches
 - a) Word Vectors
 - b) RNNs
 - c) Non-Recurrent Models (ConvNets, Transformer)
 - d) Structured State Space Models
 - 5. Temporal Point Processes

Introduction

- Sometimes when modeling a sequence we do not need the complete history to produce the output
- Example: generating speech
 - Raw audio has many data points (16000 per second)
 - Important relations on many time scales
- Recall an autoregressive model:

$$X_t = c + \sum_{i=1}^{p} \varphi_i X_{t-i} + \varepsilon_t$$

- Uses a fixed window of p previous inputs and performs regression
- Can we use neural networks to capture more complex behavior?
 - RNNs share the parameters across time steps, but depend on full history
 - We can instead use Convolutional Neural Networks (ConvNets)

Recap: Definition

• The convolution f * g of functions f and g is

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau$$

In image processing, given an image I and a kernel K, both 2-D matrices, the convolution can be writen as:

$$(K * I)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$$

 Output is again a 2-D matrix (transformed image), where an element (pixel) is a sum of its neighbors, weighted by a kernel

Figure from https://intellabs.github.io/RiverTrail/tutorial/

WaveNet

- Sequences are 1-D so we can use a 1-D version of ConvNets
- WaveNet [2] is an architecture that uses 1-D ConvNets to model speech
 - In addition, it uses special convolutions to ensure causality and increase receptive field
- Causal convolutions ensure that the output only depends on the past

WaveNet

- Dilated convolutions skip some inputs to increase the receptive field
 - Dilation of 1 gives standard convolution
 - If we start with dilation of 1 in the first layer and double it with every layer
 (2,4,8...) the receptive field will be the exponential of the number of layers
 - E.g. with 4 layers we use 16 inputs in the first layer

Transformers & Attention

Transformers:

- Transfomers [3] are fast models using attention mechanisms
 - Like WaveNet, it is not a recurrent neural network → parallelizable and fast

Attention:

• Attention is a learned weighting over the elements x_i (given element x_i)

Cross-Attention

- Cross-attention:
 - Two input sources X, X'
 - Key / query product decides which entries of X' "attend to" which entries of X
- Weighting mechanism:
 - The weighting is computed by applying softmax to query/key scores
 - Query depends on x_i ; key on x'_i
 - The weight indicates how much of v_j we use (the "value" of x_j')
- Attention is easily computable in a matrix formulation.

Self-Attention

- Self-attention: the attention is on the input signal X itself
- Weighting mechanism:
 - The weighting is computed by applying softmax to query/key scores
 - Query depends on x_i ; key on x_j
 - The weight indicates how much of v_j we use (the "value" of x_i)
- Attention is easily computable in a matrix formulation.

"Self-attention allows the model to look at other positions in the input sequence for clues that can help lead to a better encoding for this word" [4]

Encoder Block

- Tokens (e.g. words) are represented with **embeddings**
- The self-attention layer "couples" the embeddings
- The rest handles the embeddings independently

The following images are taken from [4] Jalammar blog

Positional Encoding

- Note: Attention mechanisms do not care about the order of tokens / words, i.e. the architecture itself is not aware of the non-i.i.d. nature
- Standard workaround: positional encoding to represent the token order. Positional encoding: meaningful static vectors which are concatenated with the token embeddings.

Transformers

 Transformers are composed of a stack of encoders and decoders using (self-)attention

Transformers: Notes on Training and Inference

- During training, the embeddings flow all through the transformer at the same time/in parallel (attention coefficients are masked for future tokens)
 - This enables efficient training on very large datasets;
 crucial for the success of recent models
- At inference time, decoding is done one step after the other until the end of sentence symbol is reached.

Transformers: Complexity

- Multi-Head Attention: Combine the output of h self-attention blocks
- Each self-attention block computes n^2 attention weights
- Intractable for long sequences
- Many possible solutions:
 - Fix structure of attention weights
 - Low-Rank approximations
 - Downsampling the sequence length n

Transformers: GPT Models

- Generative Pre-Trained Transformers:
 - First, unsupervised pre-training on predicting the next token in a sequence

$$L = \sum_{i} \log P_{\theta} (\boldsymbol{x}^{(i)} \big| \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(i-k)})$$

- Second, task-specific fine-tuning (classification, chatbots, ...)
- GPT-n models use large text corpora (Data crawled from the internet, books, ...)
- Strong performance because of large models and datasets: Loss and datasets compute follow a power-law
 - e.g. GPT-3 has ~175B parameters

Roadmap

- Chapter: Temporal Data / Sequential Data
 - 1. Autoregressive Models
 - Markov Chains
 - Hidden Markov Models
 - 4. Neural Network Approaches
 - a) Word Vectors
 - b) RNNs
 - c) Non-Recurrent Models (ConvNets, Transformer)
 - d) Structured State Space Models
 - 5. Temporal Point Processes

Introduction

- Seen two types of neural sequence models so far: RNN vs. non-recurrent
- Computationally, they have complementary advantages:

Is it somehow possible to get the best of both worlds?

Recurrence as a convolution

Consider a simple, purely linear RNN-type architecture with input $u_k \in \mathbb{R}$, output $y_k \in \mathbb{R}$, and $\overline{A} \in \mathbb{R}^{N \times N}$, $\overline{B} \in \mathbb{R}^{N \times 1}$, $\overline{C} \in \mathbb{R}^{1 \times N}$ ("state-space model"):

$$\begin{split} x_0 &= \overline{\pmb{B}} u_0, \quad x_1 = \overline{\pmb{A}} \overline{\pmb{B}} u_0 + \overline{\pmb{B}} u_1, \dots \\ \Downarrow \\ y_k &= \overline{\pmb{C}} \overline{\pmb{A}}^k \overline{\pmb{B}} u_0 + \dots + \overline{\pmb{C}} \overline{\pmb{A}} \overline{\pmb{B}} u_{k-1} + \overline{\pmb{C}} \overline{\pmb{B}} u_k \\ \Downarrow \end{split}$$

Equivalent to convolution with (sequence-long)

$$\text{kernel } \overline{K} = [\overline{C}\overline{B}, \overline{C}\overline{A}\overline{B}, ..., \overline{C}\overline{A}^{L-1}\overline{B}]$$

"Naïve" Idea:

Train in convolution representation, do inference in recurrent representation!

Efficient parametrization of \overline{K}

$$\overline{K} = [\overline{C}\overline{B}, \overline{C}\overline{A}\overline{B}, \dots, \overline{C}\overline{A}^{L-1}\overline{B}]$$

- Problem with "naïve" approach: parametrizing \overline{K} directly via $\overline{K}(\overline{A}, \overline{B}, \overline{C})$ requires taking L-1 powers of \overline{A} ($\mathcal{O}(N^2L)$ steps), effectively unrolling the recurrence \Rightarrow **no** computational benefit just yet...
- Precomputing once + caching not possible as \overline{A} , \overline{B} , \overline{C} are trainable
- SSMs are an old concept efficient parametrizations for changing between recurrent / convolutional representations contribute to recent successes:
 - [10]: Express \overline{A} in another basis to get \overline{K} in only $\mathcal{O}(N+L)$ steps (+ log factors)
 - [11]: Extract approximate SSM from explicitly parametrized convolution layer

Optimal initialization of \overline{A} – continuous-time view

- lacktriangledown RNN model with generic \overline{A} may suffer from vanishing / exploding gradients
- [10]: same output as continuous-time SSM,

$$x'(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$
$$y'(t) = \mathbf{C}x(t)$$

$$\overline{A} = \left(I - \frac{\Delta}{2} \cdot A\right)^{-1} \left(I + \frac{\Delta}{2} \cdot A\right),$$

$$\overline{B} = \left(I - \frac{\Delta}{2} \cdot A\right)^{-1} \Delta B, \ \overline{C} = C,$$

if we convert inputs $\{u_k\}$ to piecewise-constant signal $t\mapsto u(t)$ with step-size Δ and subsample y(t)

Advantage: admits new framework to analyze input memorization [12]

Optimal initialization of \overline{A} – "Structured" SSMs

lacktriangle RNN model with generic \overline{A} may suffer from vanishing / exploding gradients

[12] show (in continuous SSM representation): HiPPO matrix produces a
hidden state that memorizes its history by tracking Legendre polynomial

coefficients → stable gradient flow

Input Signal

HiPPO (compress and reconstruct signal information) 0 1 2 3 4 Time t Image taken from [8]

Reconstructed Signal

Putting things together: S4 model

- Three equivalent representations of SSMs:
 - Continuous (justifies HiPPO matrices A; get matrix \overline{A} from discretization)
 - Recurrent (unlimited context window, linear-time inference)
 - Convolutional (parallelizable training)
- S4 (Structured State Space for Sequences) model [10] = underlying continuous SSM + HiPPO matrices (long-range modeling) + efficient parametrization of discrete (i.e., convolutional + recurrent) representations

Image taken from [9]

Putting things together: S4 model

• General S4 layer also includes skip connection (with $m{D}$, $\overline{m{D}} \in \mathbb{R}^{1 \times 1}$):

$$x_k = \overline{A}x_{k-1} + \overline{B}u_k$$
 $x'(t) = Ax(t) + Bu(t)$ $y_k = \overline{C}x_k + \overline{D}u_k$ $y'(t) = Cx(t) + Du(t)$ (continuous)

- lacktriangle So far, this only defines map between 1D sequences $\mathbb{R}^L o \mathbb{R}^L$
- Given H hidden features, simply run H parallel SSMs, then mix features with position-wise linear layer (sharing parameters across positions)
- Stack this + apply position-wise nonlinearities in between to obtain deep S4 architecture: nonlinear sequence-to-sequence map of shape (batch size, sequence length, hidden dimension)
 → Same interface as for CNN, RNN, Transformer
- Deep S4 is essentially a CNN, but parametrizing global (i.e., sequence-length) filters acting separately along each hidden dimension

Putting things together: S4 model

Set a substantial SOTA in long-range (1K-16K tokens) sequence modeling

Model	LISTOPS	Техт	Retrieval	Image	Pathfinder	Ратн-Х	Avg
Random	10.00	50.00	50.00	10.00	50.00	50.00	36.67
Transformer	36.37	64.27	57.46	42.44	71.40	Х	53.66
Local Attention	15.82	52.98	53.39	41.46	66.63	X	46.71
Sparse Trans.	17.07	63.58	59.59	44.24	71.71	X	51.03
Longformer	35.63	62.85	56.89	42.22	69.71	X	52.88
Linformer	35.70	53.94	52.27	38.56	76.34	X	51.14
Reformer	37.27	56.10	53.40	38.07	68.50	X	50.56
Sinkhorn Trans.	33.67	61.20	53.83	41.23	67.45	X	51.23
Synthesizer	36.99	61.68	54.67	41.61	69.45	X	52.40
$\operatorname{BigBird}$	36.05	64.02	59.29	40.83	74.87	X	54.17
Linear Trans.	16.13	65.90	53.09	42.34	75.30	X	50.46
Performer	18.01	65.40	53.82	42.77	77.05	X	51.18
FNet	35.33	65.11	59.61	38.67	77.80	Х	54.42
Nyströmformer	37.15	65.52	79.56	41.58	70.94	X	57.46
Luna-256	37.25	64.57	79.29	47.38	77.72	X	59.37
S4	58.35	$\boldsymbol{76.02}$	87.09	87.26	86.05	88.10	80.48

Image taken from [9]

Image taken from [9]

Questions – NN

- 1. In an RNN, the hidden state at a given time influences all hidden states into the future. However, an RNN cannot model long-term dependencies. Why?
- 2. What is the receptive field of a causal convolution and dilated convolution with n layers ?

References

- [1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In *Advances in NIPS*, pp. 1097-1105. 2012.
- [2] Van Den Oord, Aäron, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. "WaveNet: A generative model for raw audio." SSW 125 (2016).
- [3] Ashish Vaswani et al., "Attention Is All You Need" NIPS 2017
- [4] Jalammar blog, http://jalammar.github.io/illustrated-transformer/
- [5] Cui, Baiyun, et. al. "Fine-tune BERT with sparse self-attention mechanism." Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). 2019.
- [6] Paul Michel, https://blog.ml.cmu.edu/2020/03/20/are-sixteen-heads-really-better-than-one/
- [7] OpenAI. GPT-4 Technical Report. arXiv preprint

References

- [8] Maarten Grootendorst,
 https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
- [9] Hazy Research Blog, https://hazyresearch.stanford.edu/blog/2022-01-14-s4-3
- [10] Gu, Albert, Goel, Karan, Ré, Christopher. Efficiently Modeling Long Sequences With Structured State Spaces, ICLR 2022
- [11] Massaroli et al. Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions, NeurIPS 2023
- [12] Gu, Albert, Dao, Tri, Ermon, Stefano, Rudra, Atri, Ré, Christopher.
 HiPPO: Recurrent Memory with Optimal Polynomial Projections, NeurIPS
 2020