Math 111C HW6

Zih-Yu Hsieh

May 19, 2025

1

Question 1 Let E be a splitting field of $f(x) \in F[x]$ and G = Aut(E/F). Prove that:

- (a) If f(x) is irreducible, then G acts transitively on the set of all roots of f(x), i.e. if α, β are two roots of f(x) in E, there exists $\sigma \in G$ with $\sigma(\alpha) = \beta$.
- (b) If f(x) has no repeated roots and G acts transitively on the roots, then f(x) is irreducible.

 $\mathbf{2}$

Question 2 In each part, find the degree of the extension K/F.

- (a) Splitting field $K \subseteq \mathbb{C}$ of $f(x) = x^4 4$ over $F = \mathbb{Q}$.
- (b) Splitting field $K \subseteq \mathbb{C}$ of $f(x) = x^6 2$ over $F = \mathbb{Q}$.
- (c) Splitting field K of $f(x) = x^{10} 2$ over $F = \mathbb{F}_5$.

3

Question 3 Let L be the splitting field of $f(x) = x^3 + x + 1$ over \mathbb{Q} contained in \mathbb{C} . Prove that $Aut(L/\mathbb{Q}) \cong S_3$.

4

Question 4 Calculate the splitting field of $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$.

5

Question 5 Let $f(x) \in \mathbb{F}_p[x]$ be an irreducible polynomial of degree 3. Prove that f(x) is irreducible over \mathbb{F}_{p^5} .