

SENSORS & FIELD TRANSMITTERS

HUMAN MACHINE INTERFACE (HMI)

INDUSTRIAL MOTOR DRIVE

INDUSTRIAL COMMUNICATION

LOGIC CONTROL (PLC)

TEMA 6 HMI: Human-Machine Interfaces

INDICE

- Introducción
- Sistemas clásicos
- Sensores capacitivos
- Pantallas resistivas
- Pantallas capacitivas

Introducción

- Necesidad de interacción del usuario
- Introducción de consignas
- Presentación de información
- Errores, alarmas

Introducción

- La interacción con el usuario debe ser
 - simple
 - intuitiva
 - robusta
 - agradable

- Éxito del iPod: control giratorio táctil
- Conviene pensar dos veces el interfaz
 - mandos a distancia complejos
 - colores, formas...

Sistemas clásicos

- Datos analógicos (consignas):
 - potenciómetros
- Datos digitales
 - Pulsador / conmutad
 - teclado matricial
 - teclado completo

Potenciómetros

- Divisor resistivo: tensión proporcional a la posición
- Lineales o logarítmicos
- rotativos o lineales
- ventajas:
 - muy baratos
 - muy intuitivos
- inconvenientes:
 - necesidad de un ADC
 - ruido -> circuito de adaptación y filtrado

Otros potenciómetros

- conmutador de n posiciones
 - en cada posición una R

- Resistencia de cinta
 - control deslizante táctil
- Joystick
 - un potenciómetro en cada eje
 - 2 ó 3 ejes, con o sin pulsación
 - Normalmente, con retroceso

Otros potenciómetros

(B Term B~C) off

- Encoder rotativo incremental
 - precisión discreta (6..1000 pulsos por vuelta)
 - sentido de giro
 - tren de pulsos:
- Sustituye al potenciómetro.
 - precisión conocida
 - multivuelta (precisión mejorable)
 - sin ruido analógico (estable en reposo)
- algunos, con un tercer canal que marca la vuelta
 - posición absoluta

Otros potenciómetros

- Potenciómetro digital
 - Control por pulso o valor absoluto (puerto serie)
 - Lineales o logarítmicos
 - Basados en interruptores CMOS (baja tensión)
 - Cambiar consignas o para ajustes iniciales
 - Uso con encoders

7-BIT 99 98 PO PRINT RHIVH COUNTER 98 97 PO PRINT RHIVH COUNTER NEW PRINT RESISTOR ARRAY PO PRINT RECALL CONTROL CONTROL CRECUITRY 0 PRINT RECALL CONTROL CONTROL CRECUITRY 0 PRINT RECALL RECALL CONTROL CONTROL CRECUITRY 0 PRINT RECALL RECAL

(Analog Devices

(Intersil X9C102)

Pulsadores

- Circuito mínimo: pulsador y resistencia de pull-up:
 - rebotes y ruido

- Filtro anti-rebotes:
 - si no, por software
 - esperar flanco de bajada
 - esperar 20ms.
 - esperar flanco de subida
 - esperar 20ms

Pulsadores

- Gran variedad de pulsadores
 - Mecánicos
 - De montaje en placa
 - De montaje en caja
 - De membrana
 - Con enclavamiento (interruptor)
 - Con luz
- Todos presentan el mismo problema

Teclado matricial

- Cuando se necesitan muchos botones
- Barrido por filas
 - conectar las filas a entradas del MC
 - las columnas a salidas
 - Resistencias de Pull-down en cada fila

Carga computacional alta

Teclado completo

- Teclado matricial, pero de 12x12.
- Combinaciones de teclas

- Normalmente, con un MC empotrado codificando las pulsaciones y transmitiendo en serie
- PS/2: bidireccional (colector abierto)
 - teclado a host: manda pulsaciones
 - host a teclado: control, leds...

Sensores capacitivos

 Opción para sustituir botones y potenciómetros

- Botones
- Sliders
- controles giratorios y mixtos

Ventajas y desventajas

Ventajas:

- sin partes mecánicas: mayor robustez
- fáciles de limpiar y mantener
- versátiles: diseños novedosos
- se pueden usar como sensores de proximidad

Inconvenientes:

- necesitan un MC que lea sensores capacitivos
- programación más compleja que con botones

Principio de funcionamiento

- Oscilador RC básico:
 - X1: 74HC14, inversor con histéresis

– oscilación depende de R⋅C

Principio de funcionamiento

- Se hace uso de la capacidad parásita de un pad, y la del dedo:
 - sin dedo cerca:

– Al acercar el dedo:

Principio de funcionamiento

- Dos maneras de medir la pulsación:
 - Ventana fija, midiendo los pulsos
 - Si se dan menos de N pulsos, se detecta como pulsado
 - Ventana variable, nº de pulsos fijo:

Diseño de los PAD

Botones circulares o cuadrados

- tamaño: 8-12mm
- el plano de masa hace perder sensibilidad
 - mejor a 50% ó 25%

- al pasar el dedo, la señal cambia:
- si se ponen juntos, se puede hacer un slider
 - interpolar el valor de cada pad

Ruedas y sliders

 Con un número reducido de electrodos, jugando con la forma:

Examples of Wheels (4, 6 and 8 sensors)

Detección similar a la analógica (continua)

Uso de sensores capacitivos

- Los MC que incorporan sensado capacitivo ofrecen librerías para facilitar el desarrollo
- Programas adicionales para el calibrado inicial

Pantallas resistivas

- Primer método para pantallas táctiles
- Menos transparencia y precisión que las capacitivas, pero más baratas
- Se pueden usar con guantes, o en bolsas

(quirófano)

Funcionamiento

- Están compuestas por dos capas, y tienen 4 pines
 - X+, X- para el eje X
 - Y+, Y- para el eje Y
- Controlador de pantalla
- En el propio MC:
 - 2 ADC's
 - E/S reconfigurables

Detección de pulsación

- Se conecta, por ejemplo:
 - Y+ a una entrada digital con Resistencia de Pull-Up (>1k)
 - X- a una salida a '0'.
 - Y-, X+, se dejan sin conectar (entradas sin pull-up)
- En reposo, Y+='1'
- Tocado, Y+='0'

Detección de posición

- Dos fases: primero X, luego Y.
- Para leer Y:
 - Y+, salida digital a '1'
 - Y-, salida digital a '0'
 - X-, al aire
 - X+, entrada ADC
 - Se lee Vx
 - La lectura, proporcional a la posición
- Para leer X, similar: $POS_X = \frac{V_Y}{V_{OH}} \cdot X_{MAX}$

$$POS_X = \frac{V_Y}{V_{OH}} \cdot X_{MAX}$$

 $POS_Y = \frac{V_X}{V_{OH}} \cdot Y_{MAX}$

Problemas de las pantallas resistivas

- Dos o tres capas: menor visibilidad
- Necesidad de hacer presión
- Un solo punto
- Necesitan calibración, al depender de VOH y de un ADC

Pantallas capacitivas

- Básicamente, dos tecnologías:
 - Campo eléctrico uniforme
 - Un solo punto de detección
 - Multipunto
 - Matriz de sensores capacitivos
 - las más usadas
 - Nº de puntos, depende del controlador
 - Funcionamiento análogo a los sensores capacitivos

Conclusión

- Múltiples tecnologías disponibles para interfaz
- Adaptar interfaz a necesidades
- La comodidad o la belleza son importantes

