In the Claims:

Please cancel claims 20-31, 69 and 71, and amend the remaining claims as shown. A detailed listing of the claims is provided, below.

1. - 19. (Canceled)

20. – 31. (Canceled)

32. – 55. (Canceled)

56. (Currently Amended) A compound or salt, wherein the compound or the cation of the salt is of the formula

$$R_1$$
 Q_1 Q_1 Q_2 Q_3 Q_4 Q_4 Q_5 Q_6 Q_6

wherein

 R_1 and R_2 taken together with the carbon atoms to which they are attached form-an heteroaryl-ring wherein said heteroaryl-ring is an oxygen, sulfur or nitrogen heteroaromatic containing from 3 to 13 ring earbon atoms and 1.4 heteroatoms selected from O, S, and N a pyridyl ring, said heteroaryl pyridyl ring may be unsubstituted or substituted with a lower alkyl group or an electron donating group:

Y1 is N-or-CR15.

R₊₅ is H or lower alkyl;

Q₁ is N or CR₁₆;

R₁₆ is H or lower alkyl;

R₁₄ is a positively charged electron withdrawing group,

$$\begin{array}{c|c} & & & & & & & & \\ R_{10} & P & O & & & & & \\ R_{11} & & & & & & \\ R_{01} & & & & & \\ R_{01} & & & & & \\ R_{01} & & & & \\ R_{02} & & & & \\ \end{array}$$

 SO_2R_{17} , lower alkyl carbonyl, aryl carbonyl, lower alkyl aryl, or BLK_1 - AA_1

R₁₇ is aryl, aryl lower alkyl or lower alkyl;

AA₁ is an amino acid or peptide less a hydrogen atom on the N-terminus and an OH on the C-terminus;

BLK₁ is an amino protecting group,

 R_{10} is OR_{12} , lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl, or lower cycloalkenyl lower alkyl:

 R_{11} is OR_{13} , lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR₃₀, or (CHR₃₀)_m, wherein each R₃₀ is independently lower alkyl or hydrogen and m is 1-3; and

 R_{12} and R_{13} are independently lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cyclalkenyl lower alkyl;

ring A_1 and ring B are independently an aromatic ring containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms, and

 $R_{b1}, R_{c1}, R_{b2}, R_{c2} \mbox{ are independently hydrogen, lower alkyl or electron} \label{eq:Rb1}$ donating group;

T is CHR₃₁, O, S or NR₃₀; and R₃₁ is hydrogen or lower alkyl.

- 57. (Original) The salt according to Claim 56 wherein R₁₄ is a positively charged electron withdrawing group.
- 58. (Currently Amended) The salt according to Claim 57 wherein R₁₄ is an electron withdrawing group of the formula

wherein

 R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , and R_{24} and R_{25} are independently hydrogen, lower alkyl, or lower alkoxy lower alkyl or R_{18} and R_{19} taken together with the atoms to which they are attached form a ring containing up to 6 ring atoms and up to a total of 5 carbon ring atoms or R_{20} and R_{21} taken together with the nitrogen atom to which they are attached form a 5 or 6 membered nitrogen containing heterocyclic ring containing up to a total of 5 carbon ring atoms or R_{18} and R_{20} taken together with the nitrogen atom and the carbon atom to which they are attached form a heterocyclic ring, or R_{22} and R_{23} taken together with the atoms to which they are attached form a ring containing up to 6 ring atoms and up to a total of 5 carbon atoms or R_{24} and R_{25} taken together with the carbon atoms to which they are attached form a ring containing up to 6 ring atoms and up to a total of 5 carbon atoms.

59. (Currently Amended) The salt according to Claim 58 wherein R_{14} is

⊕ or P(NR₂₄R₂₅)₃

wherein R_{19} , R_{20} , and R_{21} , R_{24} and R_{25} are independently hydrogen, or lower alkyl or lower alkyl; and n_1 is 0 or 1.

- 60. (Currently Amended) The salt according to Claim 59 wherein R_{19} and R_{21} or R_{24} and R_{25} are the same,
 - 61. (Original) The salt according to Claim 56 wherein R₁₄ is

wherein R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} and R_{25} are independently hydrogen, methyl, ethyl, propyl, butyl, pentyl, or CH₂CH₂OCH₂CH₃.

- 62. (Currently Amended) The salt according to Claim 61 wherein R_{23} , R_{22} , R_{20} , R_{21} , R_{24} , and R_{25} are the same or R_{18} , R_{19} and R_{20} are the same or R_{19} and R_{21} are the same.
- 63. (Currently Amended) The compound or salt according to Claim 56 wherein R_{14} is \oplus

 $\stackrel{\oplus}{-} P\text{-}(NMe_2)_3,$ lower alkyl carbonyl, lower arylalkyl carbonyl, aryl carbonyl,

 $\mbox{64.} \qquad \mbox{(Currently Amended) The compound according to Claim 56 wherein}$ $\mbox{R}_{14}\mbox{is}$

65. (Original) The compound according to Claim 64 wherein R_{10} is OR_{12} , lower alkyl, aryl, or aryl lower alkyl; R_{11} is OR_{13} , lower alkyl, aryl; or aryl lower alkyl and R_{10} and R_{11} may optionally be connected by a bridging group selected form the group consisting of O, S, NH, and $(CH_2)_m$; m is 1-3; and

R₁₂ and R₁₃ are independently lower alkyl, aryl, or aryl lower alkyl.

66. (Original) The compound according to Claim 56 wherein

$$R_{14}$$
 is $P - R_{10}$

wherein R₁₀ and R₁₁ are independently lower alkyl or aryl.

67. (Currently Amended) The compound according to Claim 56 wherein

wherein R_{4211} and R_{1312} are independently lower alkyl or aryl.

 (Currently Amended) The compound or salt according to Claim 56 wherein the compound or the cation of the salt has the formula

69. (Canceled)

70. (Currently Amended) The compound according to Claim 56 wherein the compound or the cation of the salt has the formula

wherein

A is N or CR24;

D is CR25 or N;

E is CR26 or N;

G is CR27 or N;

 R_{24} , R_{25} , R_{26} and $R_{\underline{\underline{\underline{227}}}}$ are independently hydrogen, $\underline{\underline{a}}$ $\underline{\underline{a}}$ lower alkyl group or an electron donating group, or $R_{\underline{\underline{25}}}$ and $R_{\underline{26}}$ or $R_{\underline{\underline{24}}}$ and $R_{\underline{25}}$ or $R_{\underline{26}}$ and $R_{\underline{27}}$ taken together with the carbon atoms to which they are respectively attached from an aryl ring;

wherein at least one of A, D, E and G, is N;

Y₁ is N-or CR₁₅;

R₁₅ is H or lower alkyl;

O₁ is N or CR₁₆;

R₁₆ is H or lower alkyl;

R₁₄ is a positively charged electron withdrawing group,

$$R_{10} \stackrel{P}{\longrightarrow} 0$$
 , $R_{11} \stackrel{O}{\longrightarrow} R_{11} \stackrel{R_{11}}{\longrightarrow} R_{11} \stackrel{O}{\longrightarrow} R_{11} \stackrel$

 SO_2R_{17} , lower alkyl carbonyl, aryl carbonyl, loweralkyl aryl, or BLK_1 - AA_1 R_{17} is aryl, aryl lower alkyl or lower alkyl;

 $AA_1 \ \mbox{is an amino acid or peptide less a hydrogen atom on the} \ \ N\mbox{-terminus} \ \ and \ \mbox{an OH on the C-terminus};$

BLK₁ is an amino protecting group,

R₁₀ is OR₁₂, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl, or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3; and

 R_{12} and R_{13} are independently lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cyclalkenyl lower alkyl;

ring A_1 and ring B are independently an aromatic ring containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms, and

 $R_{b1}, R_{c1}, R_{b2}, R_{c2} \ \text{are independently hydrogen, lower alkyl or electron} \\$ donating group;

T is (CHR31), O, S or NR31; and

R₃₁ is hydrogen or lower alkyl.

71. (Canceled)

(Currently Amended) The compound or salt according to Claim 70
where the compound or the cation has the formula

wherein

A is N or CR24;

D is CR25 or N;

E is CR₂₆ or N;

G is CR27 or N;

R₂₄, R₂₅, R₂₆ and R₂₇ are independently hydrogen or lower alkyl; wherein at least one of A, D, E and G, is N;

Y1 is N-or-CR15;

R₁₅ is H or lower alkyl;

Q1 is Nor-CR16;

R₁₆ is H or lower alkyl;

 $R_{14} \ \text{is a positively charged electron withdrawing group,}$

$$R_{10} \longrightarrow P \longrightarrow 0$$
 Rb_2 Rb_2 Rc_1

SO₂R₁₇, lower alkyl carbonyl, aryl carbonyl, loweralkyl aryl, or BLK₁-AA₁

R₁₇ is aryl, aryl lower alkyl or lower alkyl;

 AA_1 is an amino acid or peptide less a hydrogen atom on the N-terminus and an OH on the C-terminus:

BLK₁ is an amino protecting group,

R₁₀ is OR₁₂, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl, or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3; and

 R_{12} and R_{13} are independently lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cyclalkenyl lower alkyl;

ring A_1 and ring B are independently an aromatic ring containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms, and

 $R_{b1}, R_{c1}, R_{b2}, R_{c2} \ are \ independently \ hydrogen, \ lower \ alkyl \ or \ electron$ donating group;

T is (CHR31), O, S or NR31; and

R₃₁ is hydrogen or lower alkyl.

73. (Original) The compound according to Claim 72 wherein R₁₄ is

wherein R_{10} and R_{11} , R_{b1} , R_{b2} , R_{e1} , R_{e2} are independently hydrogen or lower alkyl and T is O, CH₂, NH or S and ring A_1 and ring B are independently an aromatic ring.

74. (Original) The compound according to Claim 56 wherein

$$R_{14}$$
 is P OR_{12} or Rb_1 Rc_2 Rc_3

wherein R_{12} , R_{13} , R_{b1} , R_{b2} , R_{e1} and R_{e2} are independently hydrogen or lower alkyl; ring A_1 and ring B are independently phenyl; and T is CH_2 , O, S or NH. 75. (Currently Amended) The compound according to Claim 56 wherein the compound is a salt, the cation of which has the formula

76. (Currently Amended) The compound according to Claim 56 wherein the compound has the formula

wherein R_{b_1} R_{e_3} are independently lower alkyl or hydrogen and T is $\text{CH}_2,\,\text{NH},$ O or S.

77. – 129 (Canceled)