

ecasmus HOGESCHOOL BRUSSEL

IT Essentials

Deel II: Hardwarecomponenten

1: Computerarchitectuur

COMPUTERARCHITECTUUR

- von Neumann architectuur
 - Processor
 - Werkgeheugen
 - Permanent geheugen
 - In- en uitvoerapparaten (randapparatuur)
 - Chipsets en bussen
 - Vaak gebruikt in X86 platform
- Harvard architectuur
 - Wat is het verschil?
 - Waar gebruiken we het?

VON NEUMANN ARCHITECTUUR

- John von Neumann: Hongaarse wiskundige die als eerste een bruikbaar model opstelde van hoe een computer in elkaar zit (1944)
- Ook vandaag nog kunnen we dit model toepassen

VON NEUMANN ARCHITECTUUR

- Computer bestaat uit 4 hoofdonderdelen:
 - Central Processing Unit (CPU)
 - Invoer
 - Uitvoer
 - Geheugen
 - Volatile
 - Non-volatile

PROCESSOR

- Meest centrale component van een computersysteem
- Doet uiteindelijk al het werk

WERKGEHEUGEN

- Geheugen van processor is veel te klein
- Inladen van programma's en data voor uitvoering
- Vluchtig (volatile)

PERMANENT GEHEUGEN

- Werkgeheugen is vluchtig (volatile)
 - Alle informatie weg bij stroomuitval
- Permanente geheugen verliest informatie niet bij stroomuitval
- Bv. harde schijf

IN- EN UITVOERAPPARATEN

- Randapparatuur
 - Aangesloten via poorten
- Voorbeeld
 - Keyboard
 - Muis
 - Printer

CHIPSETS EN BUSSEN

- Alle componenten met elkaar verbinden
- Niet te onderschatten component in een computersysteem!

HARVARD

- "Nieuwere" architectuur
- Is ontstaan door de Harvard Mark 1 computer
- Aparte bus voor instructies & data
- Minder kans op bottlenecks

VON NEUMANN VS HARVARD

- Neumann had 1 probleem
 - Als je een operatie moet uitvoeren op data in de memory unit, data moet naar CPU maar ook terug
 - De bus grootte tussen de CPU & memory unit speelt een grote rol hoe snel Neumann architectuur is
- Oplossing => harvard
 - 2 aparte memory units, voor instructions & data. Met ieder zijn eigen aparte bus

RISC EN CISC

CISC	RISC
Grote complexe instructies, vaak over meerdere clock cycli	Meerdere kleinere eenvoudige instructies, elk telkens over 1 clock cyclus
Nadruk op hardware	Nadruk op software (compiler)
Small code sizes, high cycles per second	Low cycles per second, large code sizes
x86 cpu's	ARM cpu's, mobiele devices, als onderdeel van laatste generaties Intel-cpu's, laatste generaties Apple cpu's
Focus op pure rekenkracht	Focus op I/O en energieverbruik
Dalend in populariteit	Stijgend in populariteit

ARM CPU'S

- Combinatie van RISC met gedeeltelijk Harvard architectuur
 - Gescheiden bussen voor data en instructies, maar gedeelde memory
 - Harvard enkel in de laatste generaties, daarvoor ook nog Von Neumann
- X86 vooral voor pc's, al de rest vaak ARM
 - Smartphones
 - Projectors
 - Smart tv's

ARM CPU'S

- In de toekomst: desktop CPU in ARM architectuur
 - Nieuwe Apple macbooks: zelf ontwikkelde ARM CPU
 - Vanaf Intel Alder lake:
 - nog steeds X86 cores, maar met ARM BIG.Little architectuur
 - snelle cpu's in combinatie met tragere maar energiezuinige ARM cpu's

