Analysis of Algorithms CS 477/677

Asymptotic Analysis
Instructor: George Bebis

Analysis of Algorithms

- An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.
- What is the goal of analysis of algorithms?
 - To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirements, programmer's effort etc.)
- What do we mean by running time analysis?
 - Determine how running time increases as the size of the problem increases.

Input Size

- Input size (number of elements in the input)
 - size of an array
 - polynomial degree
 - # of elements in a matrix
 - # of bits in the binary representation of the input
 - vertices and edges in a graph

Types of Analysis

Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are

Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest

$Lower\ Bound \le Running\ Time \le Upper\ Bound$

Average case

- Provides a prediction about the running time
- Assumes that the input is random

How do we compare algorithms?

- We need to define a number of <u>objective</u> measures.
 - (1) Compare execution times?

 Not good: times are specific to a particular computer!!
 - (2) Count the number of statements executed?

 Not good: number of statements vary with the programming language as well as the style of the individual programmer.

Ideal Solution

- Express running time as a function of the input size n (i.e., f(n)).
- Compare different functions corresponding to running times.
- Such an analysis is independent of machine time, programming style, etc.

Example

- Associate a "cost" with each statement.
- Find the "total cost" by finding the total number of times each statement is executed.

Another Example

Algorithm 3

Cost
$$C_1$$

$$C_2$$

$$C_2$$

$$C_3$$

$$C_3$$

$$c_1 + c_2 x (N+1) + c_2 x N x (N+1) + c_3 x N^2$$

Asymptotic Analysis

- To compare two algorithms with running times f(n) and g(n), we need a rough measure that characterizes how fast each function grows. f(n)=5.5n - 7(n)
- Hint: use rate of growth

• Compare functions in the limit, that is. asymptotically!

(i.e., for large values of *n*)

$$\frac{f(\omega)}{f(\omega)} = O(\omega)$$

Rate of Growth

 Consider the example of buying elephants and goldfish:

Cost: cost_of_elephants + cost_of_goldfish
Cost ~ cost_of_elephants (approximation)

 The low order terms in a function are relatively insignificant for large n

$$n^4 + 100n^2 + 10n + 50 \sim n^4$$

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same **rate of growth**

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: f(n) "≤" g(n)
- Ω notation: asymptotic "greater than":
 - f(n)= Ω (g(n)) implies: f(n) "≥" g(n)
- Θ notation: asymptotic "equality":
 - $f(n) = \Theta(g(n))$ implies: f(n) "=" g(n)

Big-O Notation

- We say $f_A(n)=30n+8$ is order n, or O (n) It is, at most, roughly proportional to n.
- $f_B(n)=n^2+1$ is order n^2 , or $O(n^2)$. It is, at most, roughly proportional to n^2 .
- In general, any $O(n^2)$ function is faster-growing than any O(n) function.

Visualizing Orders of Growth

 On a graph, as you go to the right, a faster growing function eventually becomes larger...

More Examples ...

- $n^4 + 100n^2 + 10n + 50$ is $O(n^4)$
- $10n^3 + 2n^2$ is $O(n^3)$
- $n^3 n^2$ is $O(n^3)$
- constants
 - -10 is O(1)
 - -1273 is O(1)

Back to Our Example

Algorithm 1

Cost arr[0] = 0; c_1 arr[1] = 0; c_1 arr[2] = 0; c_1 ... arr[N-1] = 0; c_1 $c_1+c_1+...+c_1 = c_1 \times N$

Algorithm 2

for(i=0; ic_2
arr[i] = 0;
$$c_1$$

$$(N+1) \times c_2 + N \times c_1 = (c_2 + c_1) \times N + c_2$$

Cost

Both algorithms are of the same order: O(N)

Example (cont'd)

Asymptotic notations

• O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Big-O Visualization

O(g(n)) is the set of functions with smaller or same order of growth as g(n)

Examples

```
- 2n^2 = O(n^3):

2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1 \text{ and } n_0 = 1

- n^2 = O(n^2):

n^2 \le cn^2 \Rightarrow c \ge 1 \Rightarrow c = 1 \text{ and } n_0 = 1000n^2 + 1000n = O(n^2):
```

```
1000n<sup>2</sup>+1000n ≤ 1000n<sup>2</sup>+ n<sup>2</sup> =1001n<sup>2</sup>⇒ c=1001 and n<sub>0</sub> = \frac{1000}{1000} n = O(n<sup>2</sup>):

n ≤ cn<sup>2</sup> ⇒ cn ≥ 1 ⇒ c = 1 and n<sub>0</sub> = 1
```

More Examples

- Show that 30n+8 is O(n).
 - Show $\exists c, n_0$: 30n+8 ≤ cn, $\forall n > n_0$.
 - Let c=31, $n_0=8$. Assume $n>n_0=8$. Then cn=31n=30n+n>30n+8, so 30n+8< cn.

Big-O example, graphically

- Note 30n+8 isn't less than n anywhere (n>0).
- It isn't even less than 31n everywhere.
- But it is less than
 31n everywhere to the right of n=8.

No Uniqueness

- There is no unique set of values for n₀ and c in proving the asymptotic bounds
- Prove that $100n + 5 = O(n^2)$

-
$$100n + 5 \le 100n + n = 101n \le 101n^2$$

for all $n \ge 5$

 $n_0 = 5$ and c = 101 is a solution

-
$$100n + 5 \le 100n + 5n = 105n \le 105n^2$$

for all $n \ge 1$

 $n_0 = 1$ and c = 105 is also a solution

Must find **SOME** constants c and n_o that satisfy the asymptotic notation relation

Asymptotic notations (cont.)

• Ω - notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Examples

```
-5n^2 = \Omega(n)
      \exists c, n_0 \text{ such that: } 0 \le cn \le \Rightarrow cn \le 5n^2 \Rightarrow c = 1 \text{ and } n_0 = 1
-100n + 5 \neq \Omega(n^2)
      \exists c, n_0 such that: 0 \le cn^2 \le 100n +
     500n + 5 \le 100n + 5n (\forall n \ge 1) = 105n
     cn^2 \le 105n \Rightarrow n(cn - 105) \le 0
      Since n is positive \Rightarrow cn - 105 \le 0 \Rightarrow n \le 105/c
      \Rightarrow contradiction: n cannot be smaller than a constant
- n = \Omega(2n), n^3 = \Omega(n^2), n = \Omega(logn)
```

Asymptotic notations (cont.)

• Θ-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an asymptotically tight bound for f(n).

Examples

- $n^2/2 n/2 = \Theta(n^2)$
 - $\frac{1}{2} n^2 \frac{1}{2} n \le \frac{1}{2} n^2 \forall n \ge 0 \implies c_2 = \frac{1}{2}$
 - $\frac{1}{2}$ $n^2 \frac{1}{2}$ $n \ge \frac{1}{2}$ $n^2 \frac{1}{2}$ $n * \frac{1}{2}$ $n (\forall n \ge 2) = \frac{1}{4}$ $n^2 \implies c_1 = \frac{1}{4}$

- $n \neq \Theta(n^2)$: $c_1 n^2 \le n \le c_2 n^2$
 - \Rightarrow only holds for: $n \le 1/c_1$

Examples

- $6n^3 ≠ \Theta(n^2)$: $c_1 n^2 ≤ 6n^3 ≤ c_2 n^2$
 - \Rightarrow only holds for: $n \le c_2 / 6$

- n ≠ $\Theta(\log n)$: $c_1 \log n \le n \le c_2 \log n$
 - \Rightarrow c₂ \ge n/logn, \forall n \ge n₀ impossible

Relations Between Different Sets

Subset relations between order-of-growth sets.

Common orders of magnitude

Common orders of magnitude

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n)=n^3$	$f(n) = 2^n$
10	0.003 μs*	0.01 µs	0.033 μs	0.1 µs	1 μs	lμs
20	0.004 μs	0.02 µs	0.086 µs	0.4 µs	8 μs	1 ms [†]
30	0.005 μs	0.03 µs	0.147 μs	0.9 µs	27 μs	1 s
40	0.005 μs	0.04 µs	0.213 μs	1.6 µs	64 μs	18.3 mir
50	0.005 μs	0.05 μs	0.282 µs	2.5 µs	.25 μs	13 days
10^{2}	0.007 μs	$0.10 \ \mu s$	0.664 µs	10 μs	1 ms	4×10^{15} years
10^{3}	0.010 μs	1.00 µs	9.966 µs	1 ms	1 s	
10 ⁴	0.013 µs	.0 μs	130 µs	100 ms	16.7 min	
10 ⁵	0.017 µs	0.10 ms	1.67 ms	10 s	11.6 days	
10 ⁶	0.020 μs	1 ms	19.93 ms	16.7 min	31.7 years	
10^{7}	0.023 µs	0.01 s	0.23 s	1.16 days	31,709 years	
10^{8}	0.027 μs	0.10 s	2.66 s	115.7 days	3.17 × 10' years	
109	0.030 µs	1 s	29.90 s	31.7 years		

^{*1} $\mu s = 10^{-6}$ second.

 $^{^{\}dagger}1 \text{ ms} = 10^{-3} \text{ second.}$

Logarithms and properties

In algorithm analysis we often use the notation "log n" without specifying the base

Binary logarithm
$$\lg n = \log_2 n$$
 $\log x^y = y \log x$

Natural logarithm $\ln n = \log_e n$ $\log xy = \log x + \log y$
 $\lg^k n = (\lg n)^k$ $\log \frac{x}{y} = \log x - \log y$
 $\lg \lg n = \lg(\lg n)$ $a^{\log_b x} = x^{\log_b a}$
 $\log_b x = \frac{\log_a x}{\log_a b}$

More Examples

 For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is Ω(g(n)), or f(n) = Θ(g(n)). Determine which relationship is correct.

-
$$f(n) = \log n^2$$
; $g(n) = \log n + 5$ $f(n) = \Theta$
- $f(n) = n$; $g(n) = \log n^2$ $f(n) = \Omega$
- $f(n) = \log \log n$; $g(n) = \log n$ $f(n) = \Omega$
- $f(n) = n$; $g(n) = \log^2 n$ $f(n) = \Omega$
- $f(n) = n \log n + n$; $g(n) = \log n$ $f(n) = \Omega$
- $f(n) = 10$; $g(n) = \log 10$ $f(n) = \Omega$
- $f(n) = 2^n$; $g(n) = 10n^2$ $f(n) = 2^n$; $g(n) = 3^n$ $f(n) = 0$

Properties

• Theorem:

$$f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n))$$
 and $f = \Omega(g(n))$

- Transitivity:
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
 - Same for O and Ω
- Reflexivity:
 - $f(n) = \Theta(f(n))$
 - Same for O and Ω
- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Asymptotic Notations in Equations

- On the right-hand side
 - $\Theta(n^2)$ stands for some anonymous function in $\Theta(n^2)$ $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means: There exists a function $f(n) \in \Theta(n)$ such that $2n^2 + 3n + 1 = 2n^2 + f(n)$
- On the left-hand side

$$2n^2 + \Theta(n) = \Theta(n^2)$$

No matter how the anonymous function is chosen on the left-hand side, there is a way to choose the anonymous function on the right-hand side to make the equation valid.

Common Summations

- Arithmetic series:
- Geometric series:
 - Special case: $|\chi| < 1$:
- · Harmonic series:
- Other important formulas:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

$$\sum_{k=1}^{n} \lg k \approx n \lg n$$

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + \dots + n^{p} \approx \frac{1}{p+1} n^{p+1}$$

Mathematical Induction

- A powerful, rigorous technique for proving that a statement S(n) is true for every natural number n, no matter how large.
- Proof:
 - Basis step: prove that the statement is true for n = 1
 - Inductive step: assume that S(n) is true and prove that
 S(n+1) is true for all n ≥ 1
- Find case n "within" case n+1

Example

- Prove that: $2n + 1 \le 2^n$ for all $n \ge 3$
- Basis step:

- n = 3:
$$2 * 3 + 1 \le 2^3 \Leftrightarrow 7 \le 8$$
 TRUE

- Inductive step:
 - Assume inequality is true for n, and prove it for (n+1):

$$2n + 1 \le 2^n$$
 must prove: $2(n + 1) + 1 \le 2^{n+1}$
 $2(n + 1) + 1 = (2n + 1) + 2 \le 2^n + 2 \le 2^n + 2^n = 2^{n+1}$, since $2 \le 2^n$ for $n \ge 1$