Project 2 For the course FYS3150

Erik Grammeltvedt, Erlend Tiberg North and Alexandra Jahr Kolstad

September 20, 2019 Week 37 - 40

Contents

1	Abs	tract	2
2	Intr	oduction	2
3	Met	hod	2
	3.1	Exercise a)	2
	3.2	Exercise b)	3
		3.2.1 Calculations	3
		3.2.2 The programming	3
	3.3	Exercise c)	3
		3.3.1 Calculations	3
		3.3.2 The programming	3
	3.4	Exercise d)	3
		3.4.1 Calculations	3
		3.4.2 The programming	3
	3.5	Exercise e)	3
		3.5.1 Calculations	3
		3.5.2 The programming	3
4	Res	ults and discussion	3
	4.1	Exercise a)	4
	4.2	Exercise b)	4
	4.3	Exercise c)	4
	4.4	Exercise d)	4
	4.5	Exercise e)	4

5	Conclusion and perspective	4
6	Appendix	4
7	References	5

1 Abstract

2 Introduction

All programs are found at our GitHub-repository.

3 Method

3.1 Exercise a)

In this exercise we are going to prove that $\vec{w_i} = U\vec{v_i}$ is an orthogonal or unitary transformation that preserves the dot product and orthogonality. We start by multiplying $\vec{w_j}^T$ with $\vec{w_i}$ to take the vector product, also called the dot product. If the vector product of these vectors is equal to δ_{ij} , given by $\vec{v_j}^T \vec{v_i} = \delta_{ij}$ in the exercise, then the dot product and orthogonality is preserved. In this exercise we assume that $U^TU = I$, where I is the identity matrix, because this defines a unitary matrix U which we compute with in this exercise.

The vector product is calculated as followed:

$$\vec{w}_j^T \vec{w}_i = (U\vec{v})^T U\vec{v}_i$$

$$= \vec{v}_j^T U^T U\vec{v}_i$$

$$= \vec{v}_j^T \vec{v}_i$$

$$= \delta_{ij}$$

The vector product of \vec{w}_j^T and \vec{w}_i is δ_{ij} , which proves that the dot product and orthogonality is preserved for the transformation.

3.2 Exercise b)

3.2.1 Calculations

Det under som ikke er mulig å lese blir kommentert ut: Ferdig kommentert ut.

- 3.2.2 The programming
- 3.3 Exercise c)
- 3.3.1 Calculations
- 3.3.2 The programming
- 3.4 Exercise d)
- 3.4.1 Calculations
- 3.4.2 The programming
- 3.5 Exercise e)
- 3.5.1 Calculations
- 3.5.2 The programming

4 Results and discussion

Our results are as shown in the Appendix. We also have .txt-files for all the raw data generated by the projects up on GitHub.

- 4.1 Exercise a)
- 4.2 Exercise b)
- 4.3 Exercise c)
- 4.4 Exercise d)
- 4.5 Exercise e)
- 5 Conclusion and perspective
- 6 Appendix

7 References

Link to the PDF for Project 2.

Our GitHub-repository.

Link to lecture slides in FYS3150 - Computational Physics.