Generative Modelling for Fluid Simulations

Artem Alekberov, Diogo Soares, Vuk Bibic, Marten Lienen, Stephan Günnemann

DAML Group, Technical University of Munich

Motivation & Problem

- Significant amount of compute is spent everyday to model fluid dynamics in turbulent states
- Turbulent flows exhibit non-Gaussian velocity and pressure distributions, with values extending up to 10 standard deviations from the mean [1]
- Heavy Tailed Distributions are hard to model with generative models that leverage Gaussian noise [2]

The goal is to solve the following generative problem, where ${\cal B}$ denotes the boundary conditions:

$$p_{\theta}(X \mid \mathcal{B}) \approx p_{t_{\mathsf{turb}}}(X \mid \mathcal{B})$$

Ideas

- Use non-Gaussian noising procedures with heavier tails
- Map the original distribution to a distribution with smaller tails, by performing dimensionality reduction

Metrics

For our results we focus on two Wasserstein-2 distances:

- Turbulent Kinetic Energy (TKE) that captures the global patterns in the flow velocity by measuring the energy contained in various spatial scales [1]
- **Distributional Distance (DD)** that incorporates both velocity and pressure variations across space by focusing on regions with similar distributional characteristics [1]

Non Gaussian Denoising Diffusion

- Replacing the noising process is complex because of Gaussian properties like the reparameterization trick and stability
- Mixture of Gaussians and Gamma distributions are stable and can fit the diffusion framework with minimal technical adjustments [3]

Models	TKE ↓	DD \
Gaussian	3.87	1.19
Mix of Gaussians	3.35	1.20
Gamma	3.47	1.20

Latent Diffusion

Steps

- . Encode all datapoints (Training)
- 2. Learn the distribution of latent representations with denoising diffusion (Training)
- 3. Sample from the aforementioned distribution (Inference)
- 4. Decode the sample (Inference)

Autoencoder

Architecture

- Encoder-decoder with latent structure similar to input structure
- Each block consists of 3D convolutions + interpolation layers
- A transformer layer was applied to the latent space
- Conditioning added to both encoder and decoder

Loss

- Vital to accurately reconstruct the input data
- Patch-wise adversarial loss leads to more realistic samples [4]

$$Q^* = \arg\min_{AE,Z} \max_{D} \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\mathcal{L}_{\text{Rec}}(AE,Z) + \lambda_{\text{Adv}} \mathcal{L}_{\text{Adv}}(AE,Z,D) \right]$$
(2)

Autoencoder Results

Let $f \in \{2,4,8\}$ denote the downsampling factor, i.e the ratio of input to latent space dimensions per spatial dimension.

f	TKE ↓	DD \	Rec. Loss
2	1.68	1.10	$6.1 \times 10^{-}$
4	1.86	1.17	5.7×10^{-1}
8	2.39	1.20	1.5×10^{-1}

Tail Heaviness

- The number of standard deviations from the mean to the 0.01 and 99.99 percentiles indicates the heaviness of the distribution's left and right tails, respectively
- We define Mean to Percentile as $\underline{P_q \mu}$

where q is either 0.01 or 99.99

	Mean to Percentile (σ)		
Distribution	0.01	99.99	
gaussian	-3.72	3.72	
laplace	-8.52	8.52	
original-data	-0.89	7.12	
embed-f2	-1.86	7.96	
embed-f4	-1.82	4.83	
embed-f8	-1.58	4.05	

• To study the distribution of our embeddings, we transform the tensor by $\|\text{embed} - \mathbf{mean}(\text{embed})\|_2$

Latent Diffusion Results

- Large downsampling factors lead to higher compression error
- Small downsampling factors lead to harder denoising
- Latent Diffusion outperforms standard Diffusion

\downarrow
19
21
21
41

Generated Sample

Figure 1. z-slice of a wide elbow geometry by LD-f4 model

References

Latent Diffusion scheme was presented in [5].

- Lienen, M., Lüdke, D., Hansen-Palmus, J. & Günnemann, S. From Zero to Turbulence: Generative Modeling for 3D Flow Simulation. 2023.
- 2. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. (2020).
- Nachmani, E., Roman, R. S. & Wolf, L. Non gaussian denoising diffusion models. (2021).
- Esser, P., Rombach, R. & Ommer, B. Taming transformers for high-resolution image synthesis. in (2021).
- 5. Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-resolution image synthesis with latent diffusion models in (2022).