Окружность Аполлония

Утверждение. Пусть фиксированы точки A и B и положительное число $k \neq 1$. Тогда геометрическим местом точек X таких, что AX: XB = k является окружность. Она называется *окружностью Аполлония*.

В контексте треугольника можно рассматривать окружность Аполлония для точек B и C и k=BA/CA (будем называть её A-окружностью Аполлония) и две аналогичных окружности.

Теория

- **1.** (a) Докажите, что три окружности Аполлония треугольника ABC имеют две общие точки (они называются точками Аполлония).
 - (б) Докажите, что точки пересечения касательных к описанной окружности треугольника в вершинах с противоположными сторонами лежат на одной прямой.
 - (в) Докажите, что точки Аполлония инверсны относительно описанной окружности.
- **2.** Докажите, что прямая, проходящая через точки Аполлония треугольника ABC, проходит через
 - (a) центр (ABC);
 - (б) точку Лемуана треугольника (точку пересечения симедиан);
 - (в) ортоцентр треугольника с вершинами в основаниях внутренних биссектрис треугольника.
- 3. (а) Обозначим одну из точек Аполлония треугольника ABC через P. Прямые AP, BP, CP пересекают описанную окружность в точках A_1 , B_1 , C_1 соответственно. Докажите, что треугольник $A_1B_1C_1$ правильный.
 - (б) Точки A_2 , B_2 , C_2 проекции точки Аполлония на стороны треугольника ABC. Докажите, что треугольник $A_2B_2C_2$ правильный. Верно ли обратное утверждение: если треугольник с вершинами в проекциях точки X на прямые AB, AC, BC правильный, то X одна из точек Аполлония?
- **4.** Углы треугольника меньше 120° . Докажите, что одна из точек Аполлония треугольника изогонально сопряжена его точке Торричелли (то есть точке, из которой стороны треугольника видны под углами 120°).

5. Докажите, что точка P принадлежит A-окружности Аполлония тогда и только тогда, когда выполнено равенство

$$\angle APB - \angle ACB = \angle CPA - \angle CBA$$
.

Задачи

6. Дан треугольник ABC. Точки M и N таковы, что

$$AM:BM:CM=AN:BN:CN.$$

Докажите, что прямая MN проходит через центр описанной окружности треугольника ABC.

- 7. В равнобедренном треугольнике ABC с основанием BC выбраны точки P и Q так, что $\angle BPC=\frac{3}{2}\angle BAC$, BP=AQ и AP=CQ. Докажите, что AP=PQ.
- **8.** Выпуклый четырёхугольник ABCD таков, что $AB \cdot CD = AD \cdot BC$. Докажите, что

$$\angle BAC + \angle CBD + \angle DCA + \angle ADB = 180^{\circ}.$$