Essentials of Data Science With R Software - 1

Probability and Statistical Inference

Probability Theory

Lecture 10
Set Theory and Events Using Venn Diagrams

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Union of Events:

Suppose A and B are any two events of a sample space Ω .

Define a new event $A \cup B$

 $A \cup B$ is called the union of the events A and B.

 $A \cup B$ consist of all outcomes that are

- either in A
- or in *B*
- or in both A and B.

Union of Events:

For example:

If the outcome of an experiment consists in the determination of the gender of a newly born child, then Ω = {M, F} where M and F indicates Male and Female child, respectively.

If $A = \{M\}$, then A is the event that the child is a male (boy).

Similarly, if $B = \{F\}$, then B is the event that the child is a female (girl).

Then $A \cup B = \{M, F\}$, i.e., $A \cup B$ is the whole sample space Ω .

 $\Omega = A \cup B$ is called as sure event

Intersection of Events:

Suppose A and B are any two events of a sample space Ω .

Define a new event $A \cap B$

 $A \cap B$ is called the intersection of the events A and B.

 $A \cap B$ consist of all outcomes that are in both A and B.

Event $A \cap B$ will occur if both A and B occur.

It is possible to view events as sets of simple events.

This helps to determine how different events relate to each other.

A popular technique to visualize this approach is to use Venn diagrams.

In Venn diagrams, two or more sets are visualized by circles.

Overlapping circles

Separated circles

We use the following notations:

 $A \cup B$: The union of events $A \cup B$ is the set of all simple events

A and B which occur when a simple

Events A or B occurs (grey shaded area in figure).

Please note that we use the word "or" from a statistical perspective: "A or B" means that either a simple event from A occurs, or a simple event from B occurs, or a simple event which is part of both A and B occurs.

We use the following notations:

 $A \cap B$: The intersection of events $A \cap B$ is the set of all simple events of A and B which occurs when the simple events of A and B occur (grey shaded area in figure).

Please note that we use the word "and" from a statistical perspective: "A and B" means that both simple events from A and from B occur.

 $A \cap B$ is also represented as AB.

We use the following notations:

A - B: The event A - B contains all simple events of A, which are not contained in B.

(grey shaded area in figure).

The event "A but not B" or "A minus B" occurs, if A occurs but B does not occur.

We use the following notations:

 \overline{A} : The event \overline{A} contains all simple events of Ω , which are not contained in A.

The complementary event of A (which is "Not-A" or " \overline{A} " occurs whenever A does not occur (grey shaded area in figure)

We use the following notations:

 $A \subseteq B$: A is a subset of B. This means That all simple events of A are also part of the sample space of B.

Events with Venn Diagram: Example - Rolling a die

Rolling a die: If a die is rolled once, then the possible outcomes are the number of dots on the upper surface: 1, 2, . . . , 6.

Sample space is the set of simple events

$$\omega_1 = "1", \quad \omega_2 = "2", \quad \omega_3 = "3", \quad \omega_4 = "4", \quad \omega_5 = "5", \quad \omega_6 = "6".$$

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}.$$

• If $A = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}$ and B is the set of all odd numbers, then $B = \{\omega_1, \omega_3, \omega_5\}$ and thus $B \subseteq A$.

Events with Venn Diagram using Set Theory: Example - Rolling a die:

• If $A = \{\omega_2, \omega_4, \omega_6\}$ is the set of even numbers and $B = \{\omega_3, \omega_6\}$ is the set of all numbers which are divisible by 3, then $A \cup B = \{\omega_2, \omega_3, \omega_4, \omega_6\}$ is the collection of simple events for which the number is either even or divisible by 3 or both.

Events with Venn Diagram using Set Theory: Example - Rolling a die:

• If $A = \{\omega_1, \omega_3, \omega_5\}$ is the set of odd numbers and

 $B = \{\omega_3, \ \omega_6\}$ is the set of the numbers which are divisible by 3, then $A \cap B = \{\omega_3\}$ is the set of simple events in which the numbers are odd and divisible by 3.

• If $A = \{\omega_1, \omega_3, \omega_5\}$ is the set of odd numbers and

 $B = \{\omega_3, \ \omega_6\}$ is the set of the numbers which are divisible by 3, then $A - B = \{\omega_1, \ \omega_5\}$ is the set of simple events in which the numbers are odd but not divisible by 3.

Events with Venn Diagram using Set Theory: Example - Rolling a die:

• If $A = \{\omega_2, \omega_4, \omega_6\}$ is the set of even numbers, then

 $\bar{A} = \{\omega_1, \omega_3, \omega_5\}$ is the set of odd numbers.

Disjoint Events with Set Theory

Two events A and B are disjoint if $A \cap B = \emptyset$ holds,

i.e. if both events cannot occur simultaneously.

Example:

The events ${\bf A}$ and \bar{A} are disjoint events.

Mutually Disjoint Events with Set Theory

The events A_1, A_2, \ldots, A_m are said to be mutually or pairwise disjoint, if $A_i \cap A_j = \emptyset$ whenever $i \neq j = 1, 2, ..., m$.

Example: Rolling a die: If a die is rolled once, then the possible outcomes are the number of dots on the upper surface: 1, 2, . . . , 6.

$$\omega_1 = "1", \quad \omega_2 = "2", \quad \omega_3 = "3", \quad \omega_4 = "4", \quad \omega_5 = "5", \quad \omega_6 = "6".$$

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}.$$

If $A = \{\omega_1, \omega_3, \omega_5\}$ and $B = \{\omega_2, \omega_4, \omega_6\}$ are the sets of odd and even numbers, respectively, then the events A and B are disjoint.

Unions of More than Two Events:

We can also define unions of more than two events.

Union of the events A_1, A_2, \ldots, A_m , denoted by $A_1 \cup A_2 \cup \ldots \cup A_m$ is defined to be the event consisting of all outcomes that are in A_i for at least one $i = 1, 2, \ldots, m$.

In other words, the union of the A_i occurs when at least one of the events A_i occurs.

Intersections of More than Two Events:

We can also define intersections of more than two events.

Intersection of the events A_1, A_2, \ldots, A_m ,

denoted by $A_1 \cap A_2 \cap ... \cap A_m$ is defined to be the event consisting of those outcomes that are in all of the events A_i , i = 1, 2, ..., m.

In other words, the intersection occurs when all of the events A_i occur.