

도커컨테이너취약점동향분석

CINSLAB

김동은+, 이준희+, 김진우 ** 광운대학교(학부생+, 교수*)

*Corresponding author

컨테이너구조의문제점

1. 불완전한 분리

• 가상머신과는 달리 동일한 커널을 공유한다는 특징 때문에 컨테이너에서 호스트로 커널을 타고 접근하는 Container Escape 공격 등이 이루어질 수 있다.

2. 권한 문제

• 도커 엔진이나 리눅스 커맨드에 권한에 관련된 문제가 존재하는 경우 이를 이용하여 호스트 권한으로 상승시키는 Privilege Escalation나 호스트 파일에 접근하는 Host File Access가 이루어질 수 있다.

3. 컨테이너 간 자원 공유

• 컨테이너는 호스트의 자원을 공유하여 사용하기에 특정 컨테이너에 Exhaustion 공격을 가해 다른 컨테이너에 영향을 주는 것이 가능하다.

취약점동향및분류

Category	CVE	Summary	Image	Container Core
Container Escape	CVE-2022-39321	GitHub Action	0	О
	CVE-2022-0185	legacy_parse_param	О	Х
	CVE-2019-5736	runC	Х	О
Privilege Escalation	CVE-2022-24769	Moby process	X	О
	CVE-2022-36109	Moby group	Х	О
	CVE-2018-15664	docker cp	Х	О
Resource Exhaustion	CVE-2022-23471	containerd CRI	Х	О
	CVE-2019-9073	BFD Library	0	Χ
	CVE-2021-39939	GitLab	0	X
Host File Access	CVE-2022-23648	containerd CRI	X	О
	CVE-2021-25741	Volume mount	X	О
	CVE-2019-11246	kubectl cp	X	О
Code Injection	CVE-2021-1560	Cisco DNA Space Connector	X	Ο
	CVE-2023-26490	mailcow	0	0
	CVE-2021-34079	Mintzo Docker-Tester	0	Χ

- 조사한 CVE 36개 중 74%가 컨테이너의 취약점을 이용한 공격이다.
- 최근에는 어플리케이션이 컨테이너의 취약점을 유발시키는 공격이 많다.
- 위 분류 포함, 본 연구에서 조사한 공개된 PoC 20개 중 10개는 악성 이미지를 이용한다.

취약점위험도분석

1. Container Escape

• 컨테이너의 고질적인 문제인 커널의 불완전한 격리를 이용하여 호스트에 접근하는 점에서 범용적이고 가장 위험도가 높은 공격이다.

2. Privilege Escalation

• 도커 엔진이나 리눅스 커맨드 등의 권한 취약점을 이용하여 호스트에 접근한다는 점에서 범용적이진 않지만 위험도가 높은 공격이다.

3. Resource Exhaustion

• 컨테이너들이 호스트의 자원을 공유한다는 것을 이용하여 특정 컨테이너를 공격하여 모든 컨테이너에 영향을 준다는 점에서 범용적이지만 호스트에 접근하는 위 두 공격에 비해 위험도는 낮다.

4. Host File Access

• 파일 시스템의 마운트나 권한 부여의 취약점을 이용한다는 점에서 범용성이 떨어지고 파일에만 접근한다는 점에서 위험도도 가장 낮다

5. Code Injection

 프로토콜이나 어플리케이션의 입력에 대한 취약점을 이용한다는 점에서 컨테이너의 특성을 이용하지 못하기에 범용도를 측정하기 어렵고, 종류에 따라 위험도도 다르기에 측정하기 어렵다.

컨테이너보안가이드라인

1. 컨테이너 권한 최소화

• 컨테이너에 부여하는 권한(생성, 마운트)을 최소화 하면 권한에 관련된 취약점 Privilege Escalation, Host File Access, Container Escape를 보완할 수 있다.

2. 도커 및 이미지 최신화

 최신화된 도커 엔진 및 이미지의 경우 발견된 취약점 전체에 대한 검토가 이루어지므로 본 논문에서 분류한 취약점 전부에 대해 안전하다.

3. 인증된 이미지 사용

- 분류된 취약점 중 명령어를 통한 공격을 제외하면 전부 악성 이미지를 통한 공격이 가능하고 특히 Container Core를 이용하는 Container Escape, Privilege Escalation은 악성 이미지로만 가능한 경우가 있다.
- 도커에서 인증하는 이미지를 사용할 경우, 이들 공격에 대한 예방이 가능하다.