'20 Spring

DUE: 1:30pm of June 1 (Mon)

PROBLEM SET #5

For the problems below, you need to write programs into a single Jupyter notebook document. Use Markdown cells and the hash(#) symbol to indicate the problem numbers, explanation, and comments. Name your notebook document using your student ID number as HW5_ID.ipynb, and email it to your teaching assistant at hangyeol@snu.ac.kr before the deadline. No homework will be accepted after the deadline.

1. An isothermal self-gravitating sphere in hydrostatic equilibrium ought to satisfy

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{du}{d\xi} \right) = -e^{-u},\tag{1}$$

where ξ is the the dimensionless radius and $u(\xi)$ is related to the density ρ via $\rho = \rho_c e^{-u}$, with ρ_c being the central density (at $\xi = 0$). The proper boundary conditions are $u(0) = du/d\xi|_{\xi=0} = 0$.

- (a) For small ξ , one can seek for a power series solution $u(\xi) = \sum_{m=0}^{\infty} a_m \xi^m$ of Equation (1), with a_m 's being coefficients. Using Taylor expansions, express the first five coefficients a_0, a_1, a_2, a_3 , and a_4 .
- (b) Write a program to solve Equation (1), and plot ρ/ρ_c as a function of $\xi \in [10^{-1}, 10^2]$.
- (c) The dimensionless mass within ξ of the sphere is given by

$$m(\xi) \equiv \frac{1}{\sqrt{4\pi}} \int_0^{\xi} {\xi'}^2 e^{-u(\xi')} d\xi'.$$
 (2)

Plot $p \equiv m^2 e^{-u}$ as a function of $r = (\xi du/d\xi)^{-1}$. Find the values of ξ and r where p is maximized. (*Hint: You can integrate Equation* (2) analytically by using Equation (1).)

2. In cosmology, the cosmic expansion is described by the scale factor a(t). By definition, a = 0 at the time of the Big Bang (i.e., t = 0), and a = 1 at the present time t_0 . The scale factor is related to the redshift z through

$$a = \frac{1}{1+z},\tag{3}$$

and also to the Hubble parameter

$$H = \frac{1}{a} \frac{da}{dt}.$$
 (4)

The Friedmann equation that governs the expansion of our Universe is given by

$$H^{2}(z) = H_{0}^{2} [\Omega_{R}(1+z)^{4} + \Omega_{M}(1+z)^{3} + \Omega_{k}(1+z)^{2} + \Omega_{\Lambda}],$$
(5)

where $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$ is the Hubble constant at the present time, Ω_R , Ω_M , Ω_k , and Ω_{Λ} denote the Ω parameters for radiation, matter, curvature, and dark energy, respectively, with the condition that $\Omega_R + \Omega_M + \Omega_k + \Omega_{\Lambda} = 1$.

(a) Suppose a fictitious, mass-dominated universe with $\Omega_R = \Omega_k = \Omega_\Lambda = 0$ and $\Omega_M = 1$. Solve Equation (5) numerically, and compare your results with the analytic solution

$$a(t) = \left(\frac{3H_0}{2}t\right)^{2/3}.\tag{6}$$

Note that the age of the universe is $t_0 = 2/(3H_0)$.

- (b) The current estimates of the Ω parameters in our Universe are $\Omega_R = 3 \times 10^{-5}$, $\Omega_k = 0$ (flat universe), $\Omega_M = 0.27$ and $\Omega_{\Lambda} = 0.73$. Solve Equation (5) numerically, and plot a as a function of time t. What is the current age of the Universe in Gyr?
- (c) When did the Universe switch from decelerating to accelerating expansion? What were the values of the the redshift and Hubble parameter at that time?
- 3. Consider a binary system consisting of two stars with masses $m_1 = 1$ and $m_2 = 0.5$ placed in the x-y plane. Initially (t = 0), the two stars are located at $\mathbf{r}_1 = (x_1, y_1) = (-0.5, 0)$ and $\mathbf{r}_2 = (1, 0)$, and have velocities of $\mathbf{v}_1 = (0.01, 0.05)$ and $\mathbf{v}_2 = (0.02, 0.2)$. The two stars orbit with each other due to the mutual gravity. The relevant equation of motion is

$$\ddot{\mathbf{r}}_i = -m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}, \quad (i \neq j), \tag{7}$$

for i, j = 1 or 2.

- (a) Integrate Equation (7) from t = 0 to t = 50 using the Leap-frog integrator, and plot the orbits of the two stars in the x-y plane. You need to choose a small enough dt for accurate orbit calculations.
- (b) The center of mass is defined as $\mathbf{r} = \sum m_i \mathbf{r}_i / \sum m_i$. Indicate the motion of the center of mass in the figure you draw in Part (a).
- (c) Plot the total energy defined by

$$E = \frac{1}{2}m_1\mathbf{v}_1^2 + \frac{1}{2}m_2\mathbf{v}_2^2 - \frac{m_1m_2}{|\mathbf{r}_1 - \mathbf{r}_2|}.$$
 (8)

over t = 0 - 1000. Comment on the accuracy of the calculated orbits in terms of the energy conservation.

4. Find smallest five values of λ (> 0) that satisfies

$$y'' + (\lambda - |x|)y = 0$$
, for $-5 \le x \le 5$, (9)

subject to y(-5) = 0, y'(-5) = 0.1, and y(0) = 0. Plot the corresponding eigenfunctions over $x \in [-5, 5]$.