Nombre: Guillermo García Arredondo

DNI: 75927655D

Curso académico: 3º

E-mail: ggarredondo@correo.ugr.es

Práctica Alternativa -Optimización Muscular

Índice

- Parte I. Descripción de la Optimización Muscular.
 - A. Introducción a la idea
 - B. ¿Cuál es la tarea?
 - C. Criterio de selección
 - **D.** Criterio de mejora
 - E. Pseudocódigo
- Parte II. Experimentación con la competición CEC2017.
 - A. Breve descripción
 - **B.** Resultados
 - **C.** Comentario
- Parte III. Propuesta de mejora con hibridación.
 - A. Tipos de hibridación y opciones
 - B. Hibridación con algoritmo genético generacional
 - C. Pseudocódigo
- Parte IV. Propuesta de mejora sobre el diseño.
 - A. El problema
 - B. División de la solución
 - **C.** Criterios

Parte Extra. Compilación y ejecución del código.

Parte I. Descripción de la Optimización Muscular.

Introducción a la idea

La denominada optimización muscular es una metaheurística original de mi autoría que se origina como contrapartida de los algoritmos genéticos. Si entendemos los AGs como algoritmos que reflejan el fenómeno donde una población/especie se adapta al entorno, la optimización muscular pretende reflejar el fenómeno donde el individuo se adapta a la tarea que tiene que resolver, desarrollando aquellas cualidades que dicha tarea requiere de él.

Desde el punto de vista natural, estas cualidades incluirían atributos característicos de la musculatura como fuerza o resistencia (de ahí la denominación), pero no se limita a éstas pues los seres vivos no dependemos únicamente de nuestra corpulencia para sobrevivir. El objetivo *no* es, por tanto, plasmar el complejo funcionamiento de reconstrucción y fortalecimiento de los músculos, sino reflejar la capacidad general de los animales (y en especial de los seres humanos) de mejorar sus aptitudes con tal de desempeñar eficientemente una tarea.

¿Cuál es la tarea?

Tal pregunta puede parecer trivial, ya que la tarea final siempre será alcanzar el mejor fitness. No obstante, es relevante extenderse un poco pues ahí yace la principal particularidad del algoritmo.

Volviendo a la analogía con la naturaleza, situándonos concretamente en el caso del hombre prehistórico, podríamos decir que su principal tarea es sobrevivir (y reproducirse, pero lo obviaremos por simplificar el ejemplo). Este objetivo, sin embargo, se puede lograr desde numerosos enfoques.

Para sobrevivir necesitará comida, y para comer necesitará cazar. Para llevar a cabo esta subtarea, podría desarrollar una musculatura que le permitiría correr más deprisa y no perder a su presa. También podría desarrollar la capacidad cardiaca y pulmonar (resistencia) para poder mantener esa carrera durante largas distancias. Incluso, podría desarrollar la inteligencia emocional necesaria para liderar un grupo de cazadores y coordinar un ataque que le asegurase atrapar a la presa. Podría desarrollar cualquiera de estas habilidades, o todas a la vez.

En resumen, el hombre prehistórico se entrenará en diversas aptitudes que en conjunto le harán un individuo más capaz de llevar a cabo la tarea que es sobrevivir. Ahí es donde surge el verdadero funcionamiento de la metaheurística: si suponemos

la solución como un vector de elementos, la *optimización muscular* dividirá esta solución en un número determinado de segmentos de tamaño aleatorio que serán las aptitudes (o como lo llamaremos a partir de ahora, músculos), e irá seleccionando y mejorando dichos segmentos siguiendo unos *criterios* (que representarían las subtareas).

Ejemplo de la representación:

Por lo tanto, el algoritmo resultante será uno de explotación que se centrará en mejorar y hacer converger una misma solución hacia el óptimo. No obstante, esta solución será mejorada necesariamente por secciones, y según el criterio que utilicemos para seleccionar el músculo a *entrenar* (mejorar) podremos añadir la diversificación necesaria para que la metaheurística no se estanque en óptimos locales. Esto es, con el *criterio de selección*.

Criterio de selección

Una vez establecida la representación particular de la optimización muscular, nos queda una pregunta más. ¿Cómo escogemos el músculo que se va a entrenar de la solución?

Aquí es donde veo relevante remarcar el carácter general y ajustable de la metaheurística. No es un único criterio el que tenemos a nuestro alcance sino innumerables criterios, tales como: el músculo que más aporte a la función objetivo, el músculo con peor/mejor fitness proporcional a su tamaño, un músculo aleatorio...

Para la implementación yo escogeré el criterio de "músculo aleatorio" con tal de aportar diversificación. Al limitar la convergencia de la solución a un segmento aleatorio del individuo, obligamos a que el algoritmo explore soluciones que de otra manera no habría explorado si hubiéramos tenido en cuenta la solución al completo,

pues habrían sido eclipsadas por aquellas mejoras globales superiores a las posibles en el segmento restringido.

No obstante, por muy prometedor que pueda sonar el criterio de músculo aleatorio, es importante mencionar que no tiene por qué ser el mejor. Dependerá del espacio de búsqueda del problema el que nos interese diversificar o explotar más la solución.

Lo que sí será universal para todo criterio de selección es que, una vez no sea posible mejorar la solución a partir de un músculo, habrá que seleccionar el siguiente músculo más apropiado (según el mismo criterio).

Criterio de mejora

Una vez seleccionado el músculo que vamos a entrenar, ¿cómo lo mejoramos? ¿Qué entendemos por mejora?

Nuevamente, la generalidad de la metaheurística daría pie a numerosas opciones, desde aplicar conocimiento del problema para mejorar la solución con una búsqueda más informada, hasta la hibridación con otros algoritmos que converjan la solución al óptimo local que supone el segmento restringido del músculo.

En la implementación haré uso de una especie de búsqueda local que consistirá en probar valores aleatorios para cada elemento del músculo y asignar aquellos que mejoren el fitness global de la solución. Aleatorios necesariamente, no barajados, ya que vamos a trabajar con un rango de valores *real*.

Esto supondrá un problema, y es que si la solución es inmejorable para un músculo el algoritmo ciclará indefinidamente probando aleatorios y malgastando evaluaciones. Para solventarlo, definiremos una constante denominada <u>número máximo de fallos</u> que determinará el número de veces que permitiremos que el algoritmo genere aleatorios que no mejoren el fitness. Alcanzado ese número máximo de fallos, consideraremos que la solución es inmejorable desde ese músculo y seleccionaremos el siguiente más apropiado (en nuestro caso, uno aleatorio).

Pseudocódigo

Ya puestos sobre la mesa las principales particularidades de la metaheurística, esquematizaré el algoritmo con pseudocódigo para hacer más intuitivo su desarrollo. Se tendrá un número máximo de evaluaciones como criterio de parada, y la división en músculos de tamaño aleatorio se hará con una función dividirMúsculos que dará como resultado un vector de enteros que almacenará el comienzo (en el vector solución) de cada músculo. Los criterios de selección y mejora se establecerán como criterios genéricos, y los elementos del músculo se recorrerán secuencialmente en círculo aprovechando la aleatoriedad que ya implica la división y selección del músculo.

Entrada: <u>ini</u> vector solución inicial, <u>dim</u> dimensión de la solución, <u>max fails</u> número máximo de fallos, <u>max evals</u> número máximo de evaluaciones, <u>num musculos</u> número de músculos.

- 1. Inicializar vector de enteros: distribución
- 2. distribución = dividirMúsculos(dim, num musculos)
- 3. mejor = ini
- 4. evaluaciones = 0
- 5. while evaluaciones < max_evals do
 - ÍndiceMúsculo, tamMúsculo = criterioSelección(distribución)
 - II. fallos = 0
 - III. while fallos < max fails do
 - aux = criterioMejora(mejor)
 - 2. **if** f(aux) es mejor que f(mejor) **do**
 - I. mejor = aux
 - 3. else do
 - I. fallos = fallos + 1
 - 4. end
 - 5. evaluaciones = evaluaciones + 1
 - 6. índiceMúsculo = (índiceMúsculo + 1) mod tamMúsculo
 - IV. end
- 6. **end**
- 7. **return** mejor

Cabe mencionar que en la implementación no he definido número máximo de músculos porque siempre escojo un número aleatorio de ellos, pero sí es un parámetro a tener en cuenta en la metaheurística original.

Parte II. Experimentación con la competición CEC2017.

Breve descripción

CEC2017 es un benchmark para la comparación de algoritmos en problemas básicos de minimización de funciones, el cual usaremos para evaluar el rendimiento de la *optimización muscular*. Incluye 29 distintas funciones además de cuatro tipos de dimensiones (10, 30, 50, 100) del vector solución, con un rango de valores real [-100, 100] por cada elemento del vector. Dichas funciones vienen definidas con un óptimo previamente calculado, por lo que evaluaremos el rendimiento dada la distancia a ese óptimo (el error). Más concretamente, el error promedio tras diez ejecuciones.

Resultados

Empezaré comparando con algoritmos clásicos de la competición como PSO (particle swarm optimization) y DE (differential evolution), ya que si la OM (optimización muscular) no es capaz de superar estos dos no tendría sentido compararla con otros algoritmos más complejos y eficientes. Estos son los resultados promedios para dimensión 10, 30 y 50 (respectivamente):

	DE	Muscular	PSO		DE	muscular	PSO		DE	Muscular	PSO
Best	20	6	4	Best	19	9	2	Best	12	17	1
F01	0	36817.39	52551101	F01	49094.72	80654.71	4.18E+09	F01	2.04E+08	90910.04	1.82E+10
F02	0	11.3	1	F02	1.31E+19	5.8E+12	1	F02	5.16E+52	1.69E+31	1
F03	0	14223.46	1988.879	F03	3481.079	187410.5	54534.28	F03	75969.91	387119.5	100772.2
F04	0.000111	20.18636	46.84269	F04	84.30386	99.28618	1183.191	F04	232.2053	136.4737	4091.419
F05	115.0819	16.22523	32.12004	F05	201.4981	113.489	217.0438	F05	397.7698	233.5132	432.8081
F06	34.59707	0.070555	10.01006	F06	6.320261	0.058741	36.93872	F06	11.80296	0.068203	54.5041
F07	38.48056	27.97524	42.75206	F07	233.4222	121.5427	359.5821	F07	478.1017	228.2192	819.6689
F08	29.8292	18.81044	22.03181	F08	189.372	131.5961	174.5205	F08	406.9707	197.7843	407.7498
F09	193.788	33.82614	56.86467	F09	65.2973	1780.91	2841.846	F09	3755.83	3382.808	16198.75
F10	359.6808	701.0663	1076.895	F10	3763.561	3042.803	6938.089	F10	11274.47	5242.141	12945.71
F11	0.019419	44.29752	38.42737	F11	79.5828	5425.079	1207.135	F11	217.3029	11980.35	3151.373
F12	4.931086	2532812	2516941	F12	325765.2	2316459	3.59E+08	F12	1.38E+08	6356802	6.06E+09
F13	5.988143	13545.67	8408.6	F13	153.6136	336901.1	45075854	F13	27264.28	40196.94	5.26E+08
F14	0.052398	5754.426	99.92584	F14	71.00224	3827602	305870.5	F14	168.3185	5938001	1558397
F15	0.060603	11106.71	2065.841	F15	62.55673	21251.33	273710.1	F15	508.9713	22522.38	5790072
F16	456.0592	196.1595	141.4558	F16	1319.233	1303.454	1568.291	F16	3047.474	1944.92	2744.694
F17	23.50453	58.39495	64.9719	F17	480.8806	784.6265	472.5476	F17	1827.133	1612.104	1651.838
F18	0.0363	10094.97	14840.1	F18	61.22245	4141452	2170364	F18	24198.42	15406831	12034534
F19	0.005192	9810.679	3219.606	F19	35.72268	17871.89	1260194	F19	132.1995	13617.66	13358179
F20	383.6905	5.517741	84.4391	F20	275.1128	643.1905	462.1451	F20	938.4169	1325.976	1282.219
F21	188.8937	228.4282	131.952	F21	325.4941	311.2543	411.2916	F21	617.6803	435.5598	665.5464
F22	100.481	538.0339	77.40418	F22	100.2235	3324.924	1026.573	F22	170.7379	5842.674	12582.31
F23	809.7517	345.4782	330.4044	F23	534.6092	464.9289	640.4298	F23	843.4995	662.5361	1097.931
F24	100	269.4298	181.0388	F24	605.9018	688.369	709.5056	F24	884.9783	1281.854	1206.235
F25	404.0113	414.5996	447.8069	F25	387.028	390.9068	686.3826	F25	566.7174	534.0106	3069.067
F26	270.5882	1168.457	372.9316	F26	403.7673	2162.527	3369.357	F26	574.5069	3158.776	7890.316
F27	389.7283	430.6798	413.4232	F27	492.5198	541.2346	806.8056	F27	576.5073	893.182	1743.583
F28	351.7333	530.8436	469.7623	F28	394.2696	409.3278	1105.036	F28	501.3251	491.5227	3468.41
F29	237.5455	382.2396	319.2936	F29	1025.095	903.3968	1409.126	F29	2217.738	1944.737	3565.966
F30	80512.17	704015.9	635248.2	F30	3656.552	16839.47	13585755	F30	2386399	1351845	3.37E+08

Para dimensión 10:

- 1. DE devuelve la mejor solución 20 veces.
- 2. OM devuelve la mejor solución 6 veces.
- 3. PSO devuelve la mejor solución 4 veces.

Para dimensión 30:

- 1. DE devuelve la mejor solución 19 veces.
- 2. OM devuelve la mejor solución 9 veces.
- 3. PSO devuelve la mejor solución 4 veces.

Para dimensión 50:

- 1. OM devuelve la mejor solución 17 veces.
- 2. DE devuelve la mejor solución 12 veces.
- 3. PSO devuelve la mejor solución una vez.

Por lo que podemos observar, la implementación de optimización muscular rinde mejor cuanto mayor es la dimensión sobre la que trabaja. Probemos entonces a enfrentar la OM con algoritmos más modernos para dimensión 50, concretamente AEO (artificial ecosystem-based optimization) y SSA (singular spectrum análisis). Estos son los resultados (10, 30, 50):

	AEO	Muscular	SSA
Best	1	24	6
F01	5.23E+08	90910.04	5922.35
F02	1	1.69E+31	1
F03	96046.64	387119.5	0.000594
F04	445.9256	136.4737	140.9477
F05	423.5969	233.5132	448.4464
F06	78.49611	0.068203	70.69212
F07	1092.223	228.2192	946.685
F08	445.3787	197.7843	441.1868
F09	22018.66	3382.808	16171.41
F10	10600.73	5242.141	8333.179
F11	1148.874	11980.35	253.1243
F12	4.14E+08	6356802	10994175
F13	9242019	40196.94	176291.6
F14	462824.5	5938001	26742.62
F15	495592.7	22522.38	74959.57
F16	3792.471	1944.92	2703.787
F17	2073.382	1612.104	2188.364
F18	2990373	15406831	212911.7
F19	5298829	13617.66	400903
F20	1549.698	1325.976	1610.491
F21	781.8707	435.5598	747.7839
F22	11236.07	5842.674	9165.073
F23	1546.376	662.5361	1464.919
F24	1668.612	1281.854	1563.594
F25	822.9434	534.0106	559.1655
F26	8047.064	3158.776	10827.68
F27	1792.022	893.182	1315.574
F28	843.0862	491.5227	823.6175
F29	4769.452	1944.737	4358.074
F30	2E+08	1351845	20590877

- 1. OM devuelve la mejor solución 24 veces.
- 2. SSA devuelve la mejor 6 veces.
- 3. AEO devuelve la mejor una vez.

La optimización muscular supera con aun más ímpetu los nuevos dos algoritmos con los que se compara, dando la mejor solución para la mayoría de funciones en dimensión 50. Lo último que quedaría por comprobar sería, por tanto, su rendimiento en contraste con algoritmos más competitivos. Concretamente, se comparará con jSO y EBOwithCMAR. Estos son los resultados:

	EBOwithCMAR	Muscular	jso
Best	17	0	16
F01	0	90910.04	0
F02	1	1.69E+31	0
F03	0	387119.5	0
F04	42.86363875	136.4737	56.21258
F05	7.584556986	233.5132	16.40531
F06	8.54E-08	0.068203	1.09E-06
F07	57.88431782	228.2192	66.49652
F08	7.911394759	197.7843	16.96232
F09	0	3382.808	0
F10	3114.736471	5242.141	3139.758
F11	26.36143449	11980.35	27.93855
F12	1938.754196	6356802	1680.563
F13	41.40139101	40196.94	30.5989
F14	31.21489729	5938001	24.96366
F15	29.35824894	22522.38	23.86433
F16	346.3637327	1944.92	450.5211
F17	274.7809067	1612.104	282.8672
F18	32.03371147	15406831	24.28282
F19	24.47839876	13617.66	14.13861
F20	147.2183591	1325.976	140.1016
F21	210.6179363	435.5598	219.1995
F22	365.3677327	5842.674	1487.236
F23	434.0470247	662.5361	430.0837
F24	506.4619198	1281.854	507.45
F25	488.6050682	534.0106	480.878
F26	705.5736088	3158.776	1128.779
F27	522.3751004	893.182	511.2716
F28	466.5108345	491.5227	459.8068
F29	347.3438812	1944.737	362.9353
F30	618165.3976	1351845	601051.7

- 1. EBOwithCMAR devuelve la mejor solución 17 veces.
- 2. jSO devuelve la mejor solución 16 veces.
- 3. OM nunca devuelve la mejor solución.

Comentario

Para empezar, es destacable mencionar el comportamiento del algoritmo respecto a la dimensión del vector solución. Conforme mayor era esa dimensión, más capaz era de encontrar el óptimo, y considero que es algo que podemos achacar a la aleatoriedad de los criterios de selección y mejora que he escogido para la implementación.

El seleccionar y mejorar los músculos aleatoriamente implica que el algoritmo dependa en cierta medida del azar para escoger caminos óptimos. Esto se hace más evidente si vemos los resultados para cada ejecución. Por ejemplo, para la función 2 (Shifted and Rotated Zakharov Function), el algoritmo usualmente daba con el óptimo (error 0), pero en ciertas ejecuciones se dieron picos de hasta 100 de error.

No obstante, tiene sentido que esa dependencia del azar se vea reducida conforme aumente la dimensión del vector solución, ya que se tienen en cuenta más valores aleatorios y por tanto hay más probabilidad de que el vector dé con el camino correcto al óptimo.

Es coherente entonces que sea capaz de superar algoritmos como DE, PSO, SSA y AEO. En altas dimensiones la aleatoriedad se pone a su favor para lograr un equilibrio diversificación/explotación suficientemente potente para alcanzar óptimos decentes.

No obstante, no es perfecto. En cuanto es enfrentado a algoritmos profesionales como EBOwithCMAR y jSO no es capaz de obtener ni una sola solución mejor que la de cualquiera de los dos. Es decir, siempre está por debajo que los dos algoritmos a la vez.

Es difícil discernir a qué se puede deber esta inferioridad tan considerable, más allá de la diferencia de mi experiencia y conocimiento con la de los autores de EBOwithCMAR y jSO. Son numerosos los factores a tener en cuenta para justificar esos rendimientos (forma de cada función, funcionamiento de los algoritmos, parámetros...), sin embargo, considero que hay unos hechos generales que seguramente sean la causa (o al menos en parte) de esa inferioridad.

Para empezar, los criterios escogidos. Por falta de tiempo no se ha experimentado con criterios de selección que, aunque más complejos, podrían haber sido más prometedores a la hora de guiar la búsqueda, ni tampoco se ha probado a mejorar con alternativas que llevase a converger la solución más deprisa desde el músculo. Lógicamente, estas opciones no tendrían porqué haber supuesto un mejor rendimiento, pero sí que nos habría dado una idea más global de qué es efectivo y qué no para la metaheurística.

Además, hay que tener en cuenta que la optimización muscular es un algoritmo bastante sencillo. De la misma manera que búsqueda local es un algoritmo simple que se vuelve interesante al ser hibridado con algoritmos como los genéticos, la optimización muscular podría tener más potencial si se hibridase con un algoritmo que aprovechase sus puntos fuertes y compensase sus carencias.

Parte III. Propuesta de mejora con hibridación.

Tipos de hibridación y opciones

Habiendo establecido las posibles causas del subóptimo rendimiento de la optimización muscular, comenzamos comentando la mejora con hibridación.

Escoger el algoritmo a hibridar ya es tarea ardua porque supone valorar lo que nos aporta las múltiples metaheurísticas que vayamos a tener en cuenta y contraponerlas a las características de la optimización muscular. No obstante, hay una dificultad añadida y es que hay dos enfoques principales para la hibridación.

El primero es el planteamiento clásico de utilizar optimización muscular como algoritmo secundario dentro de otro. Sabiendo que OM es una metaheurística principalmente de explotación, podría ser interesante introducirla en algoritmos principalmente de diversificación como los genéticos. La manera de hacerlo, de nuevo, tiene diversos enfoques.

Se podría entrenar muscularmente a un número pequeño o aleatorio de la población cada cierto número de generaciones, o al mejor de la población, o a todos para un solo músculo aleatorio... Las posibilidades son innumerables y la que escojamos dependerá del problema que pretendamos resolver.

El segundo enfoque es el del criterio de mejora. Sabemos que, una vez seleccionado el músculo sobre el que vamos a mejorar la solución, el algoritmo debe seguir un criterio de mejora para *entrenar* ese músculo. Como normalmente es en la división y selección de músculo donde se aporta la diversificación al algoritmo, lo interesante en este punto sería utilizar técnicas de explotación como búsqueda local que converjan la solución todo lo posible dentro del segmento restringido del músculo. Es decir, hibridar con algoritmos de explotación de tal manera que hagan converger la solución pero solo modificando elementos del segmento permitido que es el músculo.

Hibridación con algoritmo genético generacional

Finalmente, he optado por hibridar la optimización muscular con un algoritmo genético generacional no elitista bajo el primer enfoque.

Si estuviésemos tratando un problema concreto, me habría informado sobre el espacio de búsqueda y habría planteado una serie de alternativas a probar que considerase prometedoras. Sin embargo, como estamos lidiando con un problema genérico con todo tipo de funciones, no me quedó otra que optar por la hibridación que mejor creía que iba a funcionar a nivel general, basándome nuevamente en el fenómeno de la naturaleza de la que se originó la metaheurística en un primer momento.

El razonamiento es el siguiente: volviendo al hombre prehistórico, sabemos que él desarrollará las aptitudes que le sean necesarias para realizar eficientemente la tarea que es sobrevivir. No obstante, él forma parte de un todo más grande que el simple hecho de la supervivencia. Su capacidad para mantenerse con vida le hará un individuo más apto para cumplir con la gran segunda tarea de toda especie: reproducirse. Así, si consigue sobrevivir y destacar entre el resto de individuos, se asegurará que sus genes se extiendan durante generaciones e influenciará las poblaciones del futuro.

Es por esto que una hibridación con un algoritmo genético generacional es la opción más interesante a primera vista, porque nos permite reflejar con aún más autenticidad el fenómeno de la supervivencia y reproducción del más apto que se ha estado dado desde la existencia de los seres vivos.

La manera más adecuada que consideré para la implementación de esta hibridación era la de entrenar por optimización muscular a todos los individuos de cada generación, pero para un solo músculo escogido aleatoriamente (misma distribución entre individuos, distinto músculo seleccionado). De esta manera se reflejaría cómo cada individuo de la población desarrolla una aptitud distinta para sobrevivir.

No obstante, sabemos que en la naturaleza el entrenamiento no es un factor heredable para los descendientes, y aunque podamos ignorar esa particularidad en la implementación se podría dar una convergencia prematura de la población (por estar explotando todos los individuos desde el primer momento y en cada generación). Por lo tanto, se resolverá de la siguiente manera: se entrenará un músculo aleatorio de cada individuo de la población pero no se almacenará al individuo entrenado, solo el valor de fitness tras su entrenamiento y la mejor solución entrenada. Es decir, mantendremos las soluciones como estaban previas a la optimización muscular, pero las compararemos dado su fitness de entrenamiento, de esta manera escogiendo las

soluciones más "musculadas" para que se reproduzcan pero impidiendo que dicho entrenamiento lo hereden los hijos (como sería en la naturaleza).

Y manteniendo esa fidelidad con la naturaleza, el algoritmo no será elitista. Es decir, se guardará la mejor solución encontrada hasta el momento (la versión entrenada) pero no será reincluida en la población en ningún momento.

Pseudocódigo

Establecido el razonamiento detrás de la hibridación con los algoritmos genéticos generacionales, procedo a incluir pseudocódigo para concretar la implementación. Los operadores de selección, cruce y mutación particulares de los algoritmos genéticos se plantearán como operadores genéricos para simplificar el ejemplo. La función de optimizaciónMuscular se entenderá como una modificación del algoritmo definido previamente, donde solo se mejora un músculo por individuo; en cuanto no es posible mejorar más la solución a partir de ese músculo, el algoritmo termina.

Entrada: <u>num c</u> número de cromosomas, <u>dim</u> dimensión de la solución, <u>max evals</u> número máximo de evaluaciones, <u>num musculos</u> número de músculos para OM, <u>max fails</u> número máximo de fallos para OM.

- 1. Inicializar matriz vacía de soluciones P
- 2. while tamaño de P < num c do
 - S = generarSoluciónAleatoria(dim)
 - II. añadir S a P
- 3. **end**
- 4. dis = dividirMúsculos(dim, num_musculos)
- 5. Evaluaciones, mejorS = evaluar(optimizaciónMuscular(P, dis, max fails))
- 6. n evaluaciones = num c
- 7. **while** n evaluaciones < max evals **do**
 - I. Padres = seleccionar(P, Evaluaciones)
 - II. Intermedia = cruzar(Padres)
 - III. Hijos = mutar(Intermedia)
 - IV. P = Hijos
 - V. Evaluaciones, mejorActual = evaluar(optimizaciónMuscular(P, dis, max fails))
 - VI. n_evaluaciones = n_evaluaciones + num_c
 - VII. **if** f(mejorActual) mejor que f(mejorS) **do**
 - 1. mejorS = mejorActual
 - VIII. end
- 8. **end**
- 9. **return** mejorS

Parte III. Propuesta de mejora sobre el diseño.

El problema

Dejando de lado la posibilidad de hibridar (pues se ha comentado en el apartado anterior) y el hecho de que toda mejora con criterio de una metaheurística requiere, por lo menos, un esfuerzo de análisis teórica y empíricamente, hay un problema principal respecto a la optimización muscular.

Ese problema es su generalidad. Tenemos una metaheurística cuya principal función es dividir una solución y resolver segmento a segmento. Es una definición suficientemente genérica como para que no se pueda plantear una mejora intrínsecamente buena, y que en caso de que se plantease no sería realmente una mejora sino transformarla en una metaheurística completamente distinta.

¿Qué nos queda entonces? Trabajar con las partes más concretas del algoritmo. Es decir, con *cómo* dividimos la solución y *cómo* resolvemos. No será tanto una mejora sobre el diseño, sino una selección con más criterio de los operadores de la metaheurística.

División de la solución

Hasta ahora habíamos planteado la división como simplemente partir la solución en n segmentos de tamaño aleatorio. Es una manera efectiva, y similar al fenómeno natural de donde se inspira la metaheurística (los gemelos son más grandes que los bíceps, pero los gemelos son iguales entre sí).

No obstante, puede ser problemático. Podrían darse ciertas distribuciones donde un solo músculo contiene la mayor parte de los elementos de la solución, o músculos demasiado insignificantes que nada más que incluyen un solo elemento. Sería entonces de nuestro interés limitar esa aleatoriedad, por ejemplo, haciendo que los músculos no pudiesen ser más grandes que la mitad de la solución al completo, o que tuviesen que incluir por lo menos dos elementos.

Esto ya nos aporta opciones por la parte de la aleatoriedad, pero no tenemos porqué limitarnos a ello. En algunos problemas quizás nos podría interesar dividir la solución en músculos de tamaños fijos e iguales, o incluso podríamos utilizar información del propio problema para saber qué elementos del vector solución son más relevantes para la función objetivo y organizarlos en músculos según esa relevancia.

Tenemos multitud de opciones interesantes, y no es trivial escoger ya que la división de la solución es la base del algoritmo. Yo escogí una simple división en músculos de

tamaño aleatorio por la generalidad del problema que estábamos tratando, pero sería conveniente valorar otras opciones en caso de estar lidiando con un problema real.

Criterios

Volvemos entonces a mencionar brevemente las posibilidades de los criterios de selección y mejora, ya que, al igual que la división de los músculos, son clave para adecuar el algoritmo al problema.

El criterio de selección es el principal diversificador del algoritmo. Si queremos una alta exploración nos interesará, por ejemplo, seleccionar aleatoriamente, o escoger aquel músculo menos relevante para el fitness de la solución (pues así tarda más en converger). Si queremos que el algoritmo explore mínimamente, nos interesará seleccionar aquel que ya tenga un fitness alto proporcional a su tamaño, o que sea el más relevante para el fitness global de la solución (tarda menos en converger). Nuevamente, dependerá del espacio de búsqueda que escojamos un criterio de selección u otro.

No obstante, ya una vez hemos seleccionado músculo y nos hallamos en el criterio de mejora, no tiene sentido obstaculizar la explotación con tal de diversificar. La diversificación deseada ya se debe haber aportado en la selección, por lo que ahora nos interesa entrenar ese músculo lo más eficientemente posible para no malgastar evaluaciones (y tiempo de ejecución). Esto se puede lograr con algoritmos de rápida convergencia como búsqueda local, que exploten la solución hasta que no se pueda mejorar más en el segmento restringido del músculo.

Parte Extra. Compilación y ejecución del código.

La metaheurística fue implementada en un sistema Linux usando como base el código de Daniel Molina de la competición CEC2017 (https://github.com/dmolina/cec2017real/).

Para ejecutar mi implementación, será necesario tener instalado un sistema Linux, además de las herramientas CMake y Make, y seguir los siguientes pasos:

- 1. Abrir una consola en el directorio *code* que se encuentra en el zip de la entrega.
- 2. Ejecutar el comando "cmake." que preparará el makefile.
- 3. Ejecutar el comando "make" que compilará el código.
- 4. Darle permisos al ejecutable muscular_ggarredondo con el comando "chmod +x muscular_ggarredondo"
- 5. Ejecutar con el comando "./muscular_ggarredondo"

Hecho esto se empezarán a mostrar los resultados del algoritmo para las 29 funciones, las dimensiones 10, 30 y 50, y las 10 semillas, los cuales se almacenarán en la carpeta "results_muscular" como un archivo de texto txt.

Si se tuviese interés en obtener el Excel con el cual se comparó con el resto de algoritmos de la competición, sería tan sencillo como ejecutar el comando "python extract.py results_muscular" (es necesario tener instalado el intérprete de Python), el cual generará un Excel por cada tipo de dimensión en el directorio *results muscular*.