

Business Analytics & Machine Learning Tutorial sheet 12: SGD and Neural Networks

Prof. Dr. Martin Bichler, Prof. Dr. Jalal Etesami Julius Durmann, Markus Ewert, Johannes Knörr, Yutong Chao January 30, 2024

Exercise T12.1 Linear Neural Network

This subsection is regarding linear networks. For input $x \in \mathbb{R}^{d_0}$, a deep linear network $F: \mathbb{R}^{d_0} \to \mathbb{R}$ of depth K will output $F(x) = W_K W_{K-1} ... W_1 x$, where each W_j is a matrix of appropriate dimension. We aim to train F to minimize the mean squared error loss on predicting real-valued scalar labels y. The loss is specified by

$$l(F) = \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2.$$

where $\{(x_i, y_i)\}_{i=1,...n}$ is our dataset.

- 1. Determine whether the following statement is true or false.
 - For K=1, we recover the linear regression (with no bias term).
 - For K=2, if there exists a pair of matrix W_1 , W_2 that minimizes l, then there are infinite pairs of matrices that minimizes l.
 - This network with increasing depth K doesn't allow one to model more complex relationship between x and y.
 - $W_K \in \mathbb{R}^{d_1 \times d_2}$ can be a matrix $(d_1, d_2 > 1)$.
- 2. You plan to train this model with stochastic gradient descent and batch size 1. In each batch, you minimize $l_x(F) = (y F(x))^2$, for a fixed data point x. For simplicity, suppose K = 3 and W_3 is a scalar. Then, what is $\frac{\partial l_x}{\partial W_3}$?

Exercise T12.2 Gradients of a fully connected neural network

Consider a fully connected neural network, which consists of

an input layer (I=0) representing two-dimentional data points

$$x = a^{[0]} = \left(a_1^{[0]}, a_2^{[0]}\right) \in \mathbb{R}^2$$

- a hidden layer (I=1) with 2 nodes, each with a sigmoid activation function $g_1^{[1]}\equiv\sigma,g_2^{[1]}\equiv\sigma$
- an output layer (I=2) with one node with a sigmoid activation function, i.e. $g^{[2]} \equiv \sigma$
- the weight matrix and bias between the input layer and the hidden layer are $W^{[1]} \in \mathbb{R}^{2 \times 2}$ and $b^{[1]} \in \mathbb{R}^{1 \times 2}$
- the weight matrix and bias between the hidden layer and the output layer are $W^{[2]} \in \mathbb{R}^{2 \times 1}$ and $b^{[2]} \in \mathbb{R}^{1 \times 1}$

The loss function is chosen to be the cross-entropy loss

$$\ell(y, \hat{y}) = -[y \ln(\hat{y}) + (1 - y) \ln(1 - \hat{y})]$$

- a) How many trainable parameters does it have?
- b) Write \hat{Y} as a function of X (use matrix notation).
- c) Compute the empirical risk \mathcal{L} for the following data points and initial weights

$$X = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$W^{[1]} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad b^{[1]} = \begin{pmatrix} 0 & 0 \end{pmatrix}, \quad W^{[2]} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad b^{[2]} = \begin{pmatrix} 0 \end{pmatrix}$$

- d) Compute the partial derivatives of $\mathcal L$ w.r.t. all trainable parameters.
- e) Perform one update step of gradient descent using a learning rate of $\alpha = 1$.
- f) Compute the empirical risk $\mathcal L$ for the data (X,Y) from c) with the updated weights. Discuss the result!