Exam: Artificial Intelligence – Algorithms and Application

Module Exam

Summer 2022 Date: 02.09.2022

Important Information

- Please check your exam copy for completeness. It covers **20 pages** (cover sheet included).
- Fill out the cover sheet immediately after receiving the exam.
- Use only the examination paper to solve the tasks. If you do not have enough space, you can receive additional paper during the examination. Additional papers must also be marked with your name and matriculation number.
- Please leave a correction margin of 3 cm.
- You have a total of **90 minutes** to complete the exam.
- Except for a **non-programmable calculator**, **no other aids** are allowed in the exam.

We wish you much success!

Please fill out clearly in block letters.			
First Name	Last Name	Seat No	
Matr. No	Course of Study	☐ Master ☐ Diplom	
Repeater: □ yes □ no			

Section	Max. Points	Achieved Points	Exam Review ("Klausureinsicht"):
1	34		,
2	29		(do not fill out before the review)
3	27		I have reviewed the corrected exam:
Sum	90		There are no complaints about the correction.
			Complaints about the correction exist (see additional sheet).
			Date:
			Signature:

Firs	t Name Matr. No Matr. No
1	Basic Concepts and Algorithms (34 Points)
1.1	Many people have tried to define the concept "artificial intelligence". The most popular one is
1.1	from McCarthy. Please give his definition of Artificial Intelligence that we have discussed in
	the lecture. (1 P)
1.2	Imagine you have built a machine learning model that has a very low bias and a very high
	variance. Please state to which theoretical problem these characteristics correspond. (1 P)
4.0	
1.3	Please briefly explain the difference between Python development in the Spyder IDE and Jupyter notebooks . Please also name one use case in which the Spyder IDE is the better choice
	than <i>Jupyter notebooks</i> and one use case in which <i>Jupyter notebooks</i> are the better choice than
	Spyder IDE. (2 P)

1.4 Please briefly explain what the term <i>PCA</i> stands for and what it was used for in the lecture. (2 P) 1.5 Is <i>feature scaling</i> in general required after a normalization has been applied? Please briefly explain your decision. (2 P)		
L.5 Is feature scaling in general required after a normalization has been applied? Please briefly explain your decision. (2 P) 1.6 Please name three other scientific domains of AI than machine learning and knowledge	Firs	t Name Matr. No Matr. No
Please briefly explain your decision. (2 P) 1.6 Please name three other scientific domains of AI than machine learning and knowledge	11.4	
	11.5	
	1.6	

First Name	Last Name	Matr. No

1.7 In the lecture, we discussed the characteristics and benefits of Python.

Please **insert in the table** the **following** *Python concepts* that are **missing in the figure** to map them to the corresponding numbers: *Hardware, Python Program, Python API, Operating System, Python Interpreter*. (2.5 P)

Number	Python Concept
1	
2	
3	
4	
5	

First Name	Last Name	Matr. No
rnst name	Last Name	Matt. No

1.11 Please **briefly explain**: What is a "*CAPTCHA*" and **how** is it **related** to **Artificial Intelligence**? (2 P)

1.12 Please **briefly explain** the following **Python command** we used in the lecture (2 P):

pip install -r packages.txt

First Name	Last Name	Matr. No

1.13 In the lecture, we discussed *de Finetti's theorem*. Please **summarize** the *central statements* of the theorem. Please also construct an "*agent 2*" that **successfully defeats** the following irrational **agent 1**. Please **illustrate** your **explanations** by **computing** the different **actions** and **outcomes**. (8 P)

Agent 1 has the following **set of degrees of belief**:

$$P(A) = 0.3$$
 $P(B) = 0.2$ $P(A \lor B) = 0.9$

		-
First Name	Last Name	Matr. No

1.14 The current AI Capstone was conducted in the field of Porsche's complaint management. Please **briefly describe two potentials** of *Porsche's complaint management* as a sensor of product and service quality that were presented in the guest lecture by Porsche. (2 P)

1.15 Please **describe two** possible **data-related limitations** when aiming to create a **deployable AI** solution based on your experience that you gained with the Porsche complaint data during the AI Capstone project. (2 P)

First Name	Last Name	Matr. No

2 Application of Genetic Algorithms (29 Points)

Consider the following **AI problem**:

A genetic algorithm uses *chromosomes* in the form $c = G_1G_2G_3G_4G_5G_6G_7G_8$.

The chromosomes are of a *fixed length* of eight genes G_i .

Each gene can be any digit between 0 and 9.

The fitness of an individual x is calculated by the following *fitness function*:

$$fitness = (G_1 + G_2) - (G_3 + G_4) + (G_5 + G_6) - (G_7 + G_8)$$

The *initial population* consists of four individuals with the following chromosomes:

$$c_1 = 56415333; \ c_2 = 78176601; \ c_3 = 32291258; \ c_4 = 14854321$$

2.1 Please **illustrate** the **basic algorithm** of **genetic algorithms**. Please also **briefly explain** what happens in **each process step**. (5 P)

First Name	Last Name	Matr. No

2.2 Please **calculate** the *fitness* of **each** of the above given **individuals** and *rank* them from the **least fit one** to the **fittest one**. (5 P)

- **2.3** Please **perform** the **following crossover operations**. (4 P)
 - a) Cross the two **least fit individuals** using *one-point crossover* in the **middle**.
 - b) Cross the two **fittest individuals** using a *two-point crossover* between G_3 and G_4 and between G_5 and G_6 .

First Name	Last Name	Matr. No

2.4 After multiple evaluations you get the following **population** of **offsprings 0**. Please **evaluate** the **fitness** of the **new population** and **explain** if the **fitness** has **improved** or **not**. (5 P)

 $o_1 = 444444444$; $o_2 = 333333333$; $o_3 = 12341234$; $o_4 = 43214321$; $o_5 = 48163248$

First Name	Last Name	Matr. No

2.5 Please **consider only** the *fitness function* and that the *genes of the distinct chromosomes* can **only** be *digits*. Please **find** the *optimal solution* that has the **maximum fitness**. Please **explain** your **solution** and your **calculations**. (6 P)

First Name	Last Name	Matr. No

2.6 If you **consider** the *initial* **chromosomes**, is a genetic algorithm able to **reach** the **optimal solution from above without** the **mutation** operator? Please explain why or why not. (4 P)

First Name	Last Name	Matr. No

3 Intelligent Agents with Python (27 Points)

The manager of a local construction market hires you to design the agent program for an agent in Python. For this purpose, you have received the following code from your friend Sandra, which she has copied from her lecture "AI Algorithms and Applications with Python".

```
vacuum_world = {"1":[["2"], False],
                   "2":[["1", "3", "4"], False],
                    "3":[["2"], True],
                    "4":[["2"], False]}
   class Cleaner:
       def __init__(self, room, world):
           self.location = room
           self.world = world
       def percepts(self):
           is dirty = self.world[self.location][1]
           self.act(is dirty)
Python Code
       def drive(self):
           neigbor rooms = self.world[self.location][0]
           num rooms = len(neigbor rooms)
           r = numpy.random.randint(low = 0, high = num rooms)
           self.location = neigbor rooms[r]
       def suck(self):
           self.world[self.location][1] = False
       def act(self, ):
           if(is_dirty == True):
               self.suck()
           else:
               self.drive()
```


First Name	Last Name	Matr. No

3.1 Based on Sandra's code on the prior page, please **classify** the **type of agent** Sandra has implemented and **briefly explain** your **decision**. (2 P)

3.2 Sandra uses a specific Python data structure to **model** the **vacuum_world**. **Which kind of** *data structure* does she use to do so? Please also **draw** a **map** of the **vacuum_world** based on the information from the code and **mark** the **agent's starting position** in the map. (4 P)

First Name	Last Name	Matr. No

3.3 You try to run the code and you receive the following error message:

NameError: name 'numpy' is not defined

How do you fix this error, and what is "numpy"? (2 P)

3.4 Moreover, the act() function is missing a parameter: def act(self, _____)
Please correct the function and fill in the missing code. (2 P)

First Name	Last Name	Matr. No

- **3.5** The current agent version is missing an energy management. Please **extend** the **agent class** with a **"power consumption" functionality** in Python considering the following rules (9 P):
 - The agent consumes one energy level every time it sucks up some dirt.
 - If the energy level drops below 5, the agent should drive back to the location "1".
 - The starting energy is 10 energy units.

```
class Cleaner:
       def init__(self, room, world):
           self.location = room
           self.world = world
       def percepts(self):
           is dirty = self.world[self.location][1]
Python Code
           self.act(is dirty)
       def drive(self):
           neigbor rooms = self.world[self.location][0]
           num rooms = len(neigbor rooms)
           r = numpy.random.randint(low = 0, high = num rooms)
           self.location = neigbor rooms[r]
```

First Name	Last Name	Matr. No

Note: This code block continues on the next page.

```
def suck(self):
            self.world[self.location][1] = False
Python Code
       def act(self, _____):
            if(is_dirty == True):
                self.suck()
            else:
                self.drive()
```

First Name	Last Name	Matr. No

3.6 Please write some Python code to start a cleaning simulation with the agent. (6 P)

		_
First Name	Last Name	Matr. No

3.7 What will be a **possible problem** of this **type of agent** if the **number of rooms** in the construction market *increases*? **How** can you **solve** it? (2 P)

