pdftitle = Assignment, colorlinks = true, linkcolor = doc!90, bookmarksnumbered = true, bookmarksopen = true

NCKU 112.1 Note for Probability Theory

Eric Liu

CONTENTS

Chapter 1

σ-Algebra

1.1

Definition 1.1.1. (Definition of Measure Space) A measure space is a triple $(\Omega, \mathcal{G}, \mu)$ where

$$\Omega$$
 is a set (1.1)

$$\mathcal{G}$$
 is a σ -algebra over Ω (1.2)

$$\mu$$
 is a measure on (Ω, \mathcal{G}) (1.3)

Definition 1.1.2. (Definition of σ -Algebra) We say $\mathcal{G} \subseteq \mathcal{P}(\Omega)$ is a σ -algebra if

$$\Omega \in \mathcal{G} \tag{1.4}$$

$$X \in \mathcal{G} \implies \Omega \setminus X \in \mathcal{G}$$
 (Closed under complement) (1.5)

$$A \subseteq \mathcal{G}$$
 and $|A| \le |\mathbb{N}| \implies \bigcup A \in \mathcal{G}$ (Closed under countable union) (1.6)

From now, we denote $\Omega \setminus X$ by X^c . We say $\mathcal{G} = \{\emptyset, \Omega\}$ is the trivial σ -algebra on Ω .

Theorem 1.1.3. (Basic Property of σ -Algebra) Let (Ω, \mathcal{G}) be a σ -algebra. Then we have

$$\varnothing \in \mathcal{G} \tag{1.7}$$

$$\mathcal{A} \subseteq \mathcal{G} \implies \bigcap \mathcal{A} \in \mathcal{G} \tag{1.8}$$

$$A, B \in \mathcal{G} \implies A \setminus B \in \mathcal{G}$$
 (1.9)

Proof. Observe $\varnothing = \Omega^c$, and observe $\bigcap \mathcal{A} = (\bigcup_{X \in \mathcal{A}} X^c)^c$, and observe $A \setminus B = A \cup B^c$

Theorem 1.1.4. (Intersection of σ -Algebras is a σ -Algebra) Let S be a set of σ -algebra over Ω , then $\bigcap S$ is a σ -algebra.

Proof. missed

The following concerning measure

Definition 1.1.5. (Definition of a Measure) Let \mathcal{G} be a σ -algebra over Ω . Function $\mu: \mathcal{G} \to \mathbb{R}$ is called a measure if

$$\forall E \in \mathcal{G}, \mu(E) \ge 0 \text{ (Nonnegative)}$$
 (1.10)

$$\mu(\varnothing) = 0 \tag{1.11}$$

$$F \subseteq \mathcal{G} \text{ and } |F| \le |\mathbb{N}| \implies \mu(\bigcup F) = \sum_{X \in F} \mu(X) \text{ (Countable additivity)}$$
 (1.12)

The following concern generating a σ -Algebra from a set of subsets of sample space.

Theorem 1.1.6. (Representation of σ -Algebra) Let M be a countable partition of Ω . Then the set

$$\{\bigcup N : N \in \mathcal{P}(M)\}\tag{1.13}$$

is a σ -algebra

Proof. missed

Definition 1.1.7. (Definition of Generating σ -Algebra) Let $\mathcal{F} \subseteq \mathcal{P}(\Omega)$. The σ -algebra generated by \mathcal{F} is defined to be the smallest σ -algebra that contain \mathcal{F}

Theorem 1.1.8. (Definition of Generating σ -Algebra) Let $\mathcal{F} \subseteq \mathcal{P}(\Omega)$. The smallest σ -algebra containing \mathcal{F} consists precisely of set taking countable operation of complement countable operation.

Proof. need verified

Theorem 1.1.9. (Representation of σ -Algebra) Let M be a countable partition of Ω . Then the σ -algebra

$$\{ \bigcup N : N \in \mathcal{P}(M) \} \tag{1.14}$$

is the σ -algebra generate by M

Proof. need verified

Theorem 1.1.10. (Representation of σ -Algebra) Let M be a countable partition of Ω . Then the σ -algebra

$$\{\bigcup N : N \in \mathcal{P}(M)\} \tag{1.15}$$

contain no proper subset of element of M

The following concern a class of measure space, called probability space.

Definition 1.1.11. (Definition of Probability Space) A probability space is a triple (Ω, \mathcal{G}, P) where

$$\Omega$$
 is a set called *sample space* (1.16)

$$\mathcal{G}$$
 is a σ -algebra over Ω called event space (1.17)

$$P: \Omega \to [0,1]$$
 is a measure called probability measure (1.18)

where Ω is a set, called sample space, \mathcal{G} is a σ -algebra over Ω , called event space and $P:\Omega\to[0,1]$ is called probability measure.

A simple example of a σ -algebra is

$$\Omega_2 = \{HH, HT, TH, TT\}, \mathcal{G} = \{\emptyset, X, \{HT, HH\}, \{TH, TT\}\}$$
(1.19)

Notice in this example, Ω is ought to be interpreted as tossing two coins and \mathcal{G} is to observe the first coin is head or tail.

To expand the first example, we have another simple example:

$$\Omega_3 = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$
 (1.20)

Define

$$A_H := \{HHH, HHT, HTH, HTT\} \text{ and } A_T := \{THH, THT, TTH, TTT\}$$
 (1.21)

which is the information of tossing head or tail on first try.

Notice $A_T = A_H^c$. Define

$$A_{HH} := \{HHH, HHT\} \text{ and } A_{HT} := \{HTH, HTT\}$$
 (1.22)

$$A_{TH} := \{THH, THT\} \text{ and } A_{TT} := \{TTH, TTT\}$$
 (1.23)

so we have

$$A_H = A_{HH} \cup A_{HT} \text{ and } A_T = A_{TH} \cup A_{TT}$$
 (1.24)

Then we can define

$$\mathcal{G} := \{ \bigcup N : N \in \mathcal{P}(M) \}$$
 (1.25)

where $M = \{A_{HH}, A_{HT}, A_{TH}, A_{TT}\}$

Notice we can define four σ -algebras by

$$\mathcal{F}_0 = \{\varnothing, \Omega\}, \mathcal{F}_1 = \{\varnothing, \Omega, A_T, A_H\}, \mathcal{F}_2 = \mathcal{G}, \mathcal{F}_3 = \mathcal{P}(\Omega)$$
(1.26)

then we have

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \tag{1.27}$$

The following concern Borel σ -algebra

Definition 1.1.12. (Definition of Borel-Algebra) The Borel-Algebra on \mathbb{R} , which we denote $\mathcal{B}(\mathbb{R})$ is the σ -algebra generated by all open interval of \mathbb{R} .

Some members of $\mathcal{B}(\mathbb{R})$:

$$(b,a), (a,\infty), \mathbb{R} \tag{1.28}$$

$$(b, a] = (b, \infty) \setminus (a, \infty) \tag{1.29}$$

$$[a, \infty) = \mathbb{R} \setminus (-\infty, a) \tag{1.30}$$

$$[a,b] = [a,\infty) \setminus (b,\infty) \tag{1.31}$$

$$\{a\} = \mathbb{R} \setminus (-\infty, a) \cup (a, \infty) \tag{1.32}$$

Some members of $\mathcal{B}(\mathbb{R})$: $(b,a),(a,\infty),(b,a],(-\infty,a),[a,\infty),[a,b]$

Definition 1.1.13. (Definition of a Random Variable) We say the function from Ω to \mathbb{R} is a random variable.

We now define 3 random variable for example from the last example of σ -algebra.

Let $S_0, u, d \in \mathbb{R}^+$ and let d < 1 < u. We define three random variables S_1, S_2, S_3 on Ω_3

$$S_1(\omega) = \begin{cases} uS_0 & \text{if } \omega \in A_H \\ dS_0 & \text{if } \omega \in A_T \end{cases} S_2(\omega) = \begin{cases} u^2S_0 & \text{if } \omega \in A_{HH} \\ udS_0 & \text{if } \omega \in A_{HT} \cup A_{TH} \\ d^2S_0 & \text{if } \omega \in A_{TT} \end{cases}$$
(1.33)

$$S_3(\omega) = \begin{cases} u^3 S_0 & \text{if } \omega \in \{HHH\} \\ u^2 dS_0 & \text{if } \omega \in \{HHT, HTH, THH\} \\ ud^2 S_0 & \text{if } \omega \in \{HTT, THT, TTH\} \\ d^3 S_0 & \text{if } \omega \in \{TTT\} \end{cases}$$

$$(1.34)$$

Often, we just use S to denote $S(\omega)$.

Theorem 1.1.14. (Construct σ -Algebra with Random Variable) Let X be a random variable on Ω . We define

$$X^{-1}[B] = \{ \omega \in \Omega : X(\omega) \in B \}$$

$$(1.35)$$

and define the σ -algebra $\sigma(X)$ by

$$\sigma(X) = \{X^{-1}[B] : B \in \mathcal{B}(\mathbb{R})\}$$
 (1.36)

We can verify $\sigma(X)$ is a σ -algebra.

Proof. missed

Notice $\sigma(S_1) = \mathcal{F}_1, \sigma(S_2) = \mathcal{F}_2, \sigma(S_3) = \mathcal{F}_3$