Technical Summary For: "A Formal Framework for Static (Tissue) P Systems"

Ren Tristan A. de la Cruz

November 18, 2020

1 Multisets

- 1. $V = \{a_1, ..., a_k\}$ Alphabet
- 2. $m:V\to\mathbb{N}$ Finite multiset over V
- 3. m(a) Number of instances of object a
- 4. $|m| = \sum_{a \in V} m(a)$ Size of multiset m
- 5. $a_1^{m(a_1)}...a_k^{m(a_k)}$ Representation of multiset m
- 6. $supp(m) = \{a \in V \mid m(a) \ge 1\}$ Support of multiset m
- 7. $\langle V, \mathbb{N} \rangle$ Set of all finite multiset over V
- 8. $m: V \to \mathbb{N} \cup \{\infty\}$ Multiset over V (includes infinite multiset)
- 9. $\langle V, \mathbb{N}_{\infty} \rangle$ Set of all multiset over V
- 10. $[x \le y] := [x, y \in \langle V, \mathbb{N} \rangle] \land [\forall a \in V][x(a) \le y(a)]$
- 11. $[z = x + y] := [x, y, z \in \langle V, \mathbb{N} \rangle] \land [\forall a \in V][z(a) = x(a) + y(a)]$
- 12. $z = x y := [x, y, z \in \langle V, \mathbb{N} \rangle] \land [y \le x] \land [\forall a \in V][z(a) = x(a) y(a)]$
- 13. $[P \le Q] := [P, Q \in \langle V, \mathbb{N} \rangle^n] \wedge [P = (p_1, ..., p_n)] \wedge [Q = (q_1, ..., q_n)] \wedge [\forall i, 1 \le i \le n][p_i \le q_i]$
- 14. $[R = P + Q] := [P, Q, R \in \langle V, \mathbb{N} \rangle^n] \wedge [P = (p_1, ..., p_n)] \wedge [Q = (q_1, ..., q_n)] \wedge [R = (r_1, ..., r_n)] \wedge [\forall i, 1 \le i \le n] [r_i = p_i + q_i]$
- 15. $[R = P Q] := [P, Q, R \in \langle V, \mathbb{N} \rangle^n] \wedge [P = (p_1, ..., p_n)] \wedge [Q = (q_1, ..., q_n)] \wedge [R = (r_1, ..., r_n)] \wedge [Q \leq P] \wedge [\forall i, 1 \leq i \leq n][r_i = p_i q_i]$

2 Network of Cells

- 1. $\Pi = (n, V, w, Inf, R)$
- 2. n Number of cells
- 3. V Alphabet of objects
- 4. $w = (w_1, ..., w_n)$ vector of finite multisets, $w_i \in \langle V, \mathbb{N} \rangle$ finite multiset associated with cell i
- 5. $Inf = (Inf_1, ..., Inf_n)$ vector of sets, $Inf_i \subseteq V$ set of symbols occurring infinitely often in cell i
- 6. $R = \{r_i\}$ Set of interfactive rules

2.1 Interactive Rule

- 1. $r_i: (X \to Y; P, Q)$ Interactive rule
- 2. $X = (x_1, ..., x_n), Y = (y_1, ..., y_n), [X, Y \in \langle V, \mathbb{N} \rangle^n],$
 - ullet X contains the 'consumed' multisets. Y contains the 'produced' multisets.
- 3. $P = (p_1, ..., p_n), Q = (q_1, ..., q_n), [\forall i, 1 \le i \le n][p_i, q_i \subseteq \langle V, \mathbb{N} \rangle]$
 - p_i, q_i are finite sets of multisets (over V), $\forall i, 1 \leq i \leq n$.
 - p_i contains all the required multisets for cell i, q_i contains all the forbidden multisets for cell i.

2.2 Configurations

- 1. $C = (u'_1, ..., u'_n)$ Configuration, $[\forall i, 1 \le i \le n][u'_i \in \langle V, \mathbb{N}_{\infty} \rangle]$
- 2. $Inf^{\infty}=(Inf_{1}^{\infty},...,Inf_{n}^{\infty})$ Vector of infinite multisets
 - $Inf_i^{\infty} = b_1^{\infty} \cdots b_k^{\infty}, b_i \in Inf_i, \forall i, 1 \leq i \leq k = |Inf_i|$
- 3. $C^f = (u_1, ..., u_n)$ Finite part of configuration C
 - $u_i' = u_i + Inf_i^{\infty}, u_i \cap Inf_i = \emptyset, \forall i, 1 \le i \le n$
 - $C_0^f = w = (w_1, ..., w_n)$ finite parts of the initial configuration C.
 - $C_0 = w + Inf^{\infty}$ full initial configuration of Π .

2.3 Eligibility of an Rule and Applicability of a Multiset of Rules

- 1. $eligibe(r, C) := [\forall i, 1 \le i \le n][[x_i \subseteq u_i] \land [\forall p \in p_i][p \subseteq u_i] \land [\forall q \in q_i][q \not\subseteq u_i]]$
 - Eligibility of rule r with respect to configuration C.
 - $C^f = (u_1, ..., u_n)$ vector of finite multisets (u_i) . Multisets in the cells.
 - $X = (x_1, ..., x_n)$ vector of multisets (x_i) . Multisets to be 'consumed'.
 - $P = (p_1, ..., p_n)$ vector of multisets (p_i) . Sets of required multisets for all cells.
 - $Q = (q_1, ..., q_n)$ vector of multisets (q_i) . Sets of required multisets for all cells.
- 2. $[\exists j][x_j \cap (V Inf_j) \neq \emptyset]$. There is at least one multiset x_j in X such that least one symbol appearing in x_j that is no in Inf_j .
- 3. $Eligible(\Pi, C) = \{r \in R \mid eligible(r, C)\}$. Set of all eligible rules with respect to configuration C.

2.4 Marking Algorithm

- $r_i: (X_i \to Y_i; P_i, Q_i)$ interaction rule.
- $X_i = (x_{i,1}, ..., x_{i,n})$ vector of multisets.
- $X'_i = (x'_{i,1}, ..., x'_{i,n})$ vector of multisets.
- $x_{i,j} = x'_{i,j} + Inf_j^{\infty}$. $x'_{i,j} \cap Inf_j = \emptyset$
- $C^f = (v_1, ..., v_n)$ vector of multisets. Finite part of the configuration.
- $R = \{r_1, ..., r_h\}$ set of eligible rules r_i .
- $R' \in \langle R, \mathbb{N} \rangle$ finite multiset of eligible rules.
- 1. $Mark_0(\Pi, C, R') = (\lambda, ..., \lambda). i = 1.$
- 2. If $X_i' \leq (C^f Mark_{i-1}(\Pi, C, R'))$
 - TRUE: $Mark_i(\Pi, C, R') = (C^f Mark_{i-1}(\Pi, C, R')) X_i'$
 - FALSE: return false;
- 3. If i = k
 - TRUE: return true and $Mark(\Pi, C, R') = Mark_k(\Pi, C, R')$
 - FALSE: i = i + 1. Go back to step 2.

2.5 Applicability of a Multiset of Rules

- 1. $appl(R', C) \Leftrightarrow$ marking algorithm returns true and $Mark(\Pi, C, R')$ Applicability of multiset of rules R' with respect to configuration C.
- 2. $Appl(\Pi, C) = \{R' \in \langle R, \mathbb{N} \rangle \mid R = Eligible(\Pi, C), appl(R', C)\}$ Set of all applicable multisets of rules with respect to configuration C.
- 3. $Apply(\Pi, C, R') = C Mark(\Pi, C, R') + \sum_{i=1}^{k} Y_i'$ New configuration when rules in R' are applied.

2.6 Derivation Modes

- 1. $Appl(\Pi, C, \delta) \subseteq Appl(\Pi, C)$ Set of applicable multisets of rules in δ -mode.
- 2. $Appl(\Pi, C, asyn) = Appl(\Pi, C)$ $Asynchronous Mode (\delta = asyn)$.
- 3. $Appl(\Pi, C, sequ) = \{R' \in Appl(\Pi, C) \mid |R'| = 1\}$ Sequential Mode $(\delta = sequ)$ One rule per step.
- 4. $Appl(\Pi, C, max) = \{R' \in Appl(\Pi, C) \mid /\exists R'' \in Appl(\Pi, C), R'i \not\subseteq R''\}$ Maximally Parallel Mode $(\delta = max)$ Adding any rule to a maximally parallel R' will result in an inapplicable multiset of rules.
- 5. $Appl(\Pi, C, min) = \{R' \in Appl(\Pi, C) \mid \not\exists R'' \in Appl(\Pi, C), R' \subseteq R'', \exists j, (R'' R') \cap R_j \neq \emptyset, R' \cap R_j = \emptyset\}$ - $Minimally \ Parallel \ Mode \ (\delta = min)$ - There is no partition $R = R_1 \cup R_2 \cup \cdots \cup R_h$. Rule set R is be partitioned. $R' \subseteq R''$. R'' 'extends' R'.
- 6. $\delta \in \{asyn, sequ, max, min\}$ Basic derivation modes
- 7. $Appl(\Pi, C, max_{rule}\delta) = \{R' \in Appl(\Pi, C, \delta) \mid \not\exists R'' \in Appl(\Pi, C, \delta) \mid R'' \mid > |R'| \}$ - $Maximum \ Rules \ \delta$ -Mode.
- 8. $Appl(\Pi, C, max_{set}\delta) = \{R' \in Appl(\Pi, C, \delta) \mid \not\exists R'' \in Appl(\Pi, C, \delta) \mid |R''|| > ||R'||\}$ - $Maximum\ Sets\ (Partitions)\ \delta$ -Mode.
- 9. $Appl(\Pi, C, all_{set}\delta) = \{R' \in Appl(\Pi, C, \delta) \mid \forall j, 1 \leq j \leq h, (R_j \cap \bigcup_{X \in Appl(\Pi, C)} X \neq \emptyset) \rightarrow (R_j \cap R' \neq \emptyset)\}$ All Set δ -Mode.

2.7 Transition

- 1. $[C \Rightarrow_{(\Pi,\Delta)} C'] \Leftrightarrow [[\exists R' \in Appl(\Pi,C,\Delta)][C' = Apply(\Pi,C,R')]]$ Transition in Δ -mode.
- 2. $[C \Rightarrow_{(\Pi,\Delta)}^* C']$ Transitive closure and reflexive nature of the transition relation $\Rightarrow_{(\Pi,\Delta)}$
- 3. $[accessible(C,\Pi,\Delta)] \Leftrightarrow [C_0 \Rightarrow_{(\Pi,\Delta)} C]$ Accessibility of configuration C in Δ -mode.
- 4. $Acc(\Pi, \Delta) = \{C \mid accessible(C, \Pi, \Delta)\}\$ Set of all accessible configurations in Δ -mode derivation.
- 5. $[Deterministic(\Pi, \Delta)] \Leftrightarrow [\forall C \in Acc(\Pi, \Delta)][Appl(\Pi, C, \Delta)| \leq 1]$ Determinism of system Π under Δ -mode derivation.

2.8 Halting Conditions

- 1. $H(\Pi, \Delta) = \{C' \in Acc(\Pi, \Delta) \mid Appl(\Pi, C', \Delta) = \emptyset\}$ Set of *total halting* configurations. Under Δ derivation mode, accessible configurations where there are no applicable multisets of rules.
- 2. $A(\Pi, \Delta) = \{C' \in Acc(\Pi, \Delta) \mid Appl(\Pi, C', \Delta) \neq \emptyset, \forall R' \in Appl(\Pi, C', \Delta), Apply(\Pi, C', R') = C'\}$ Set of adult halting configurations. Under Δ derivation mode, accessible configurations where for all applicable multiset of rules R' applying R' to configuration C' result to C'.
- 3. $h(\Pi, \Delta) = \{C' \in Acc(\Pi, \Delta) \mid \exists R' \in Appl(\Pi, C', \Delta), \forall i, 1 \leq i \leq h, R' \cap R_j \neq \emptyset\}$ Set of partial halting configurations. Under Δ derivation mode, accessible configurations where there are no applicable multiset of rules R' such that R' contains rules from all partitions R_j .