Summary of: Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight

Key Findings and Quantitative Results:

Microbiome Shifts: - **Bacterial Shifts:** Significant bacterial shifts were observed in the oral, nasal, and skin microbiomes. - **Viral Shifts:** Viral genera showed significant increases in the skin microbiome, particularly in the gluteal crease. - **Gene Expression:** Gene expression in the oral microbiome showed significant increases in CD4 T cells, CD8 T cells, and CD16 monocytes, which are associated with innate immune response against pathogens.

Host-Host Interactions: - **Oral Microbiome:** Streptococcus species showed significant increases in CD4 T cells, CD8 T cells, and CD16 monocytes. - **Nasal Microbiome:** Streptococcus species showed significant increases in CD4 T cells, CD8 T cells, and CD16 monocytes. - **Skin Microbiome:** Fusobacterium species showed significant increases in CD4 T cells, CD8 T cells, and CD16 monocytes.

Time-Dependent Trends: - **Oral Microbiome:** Oral microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. - **Nasal Microbiome:** Nasal microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. - **Skin Microbiome:** Skin microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight.

Spaceflight-Associated Changes: - **Oral Microbiome:** Oral microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. - **Nasal Microbiome:** Nasal microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. - **Skin Microbiome:** Skin microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight.

Longitudinal Study: - **Oral Microbiome:** Oral microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. - **Nasal Microbiome:** Nasal microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. - **Skin Microbiome:** Skin microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight.

Spaceflight-Associated Changes: - **Oral Microbiome:** Oral microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. - **Nasal Microbiome:** Nasal microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. - **Skin Microbiome:** Skin microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight.

- **Spaceflight-Associated Changes:** **Oral Microbiome:** Oral microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. **Nasal Microbiome:** Nasal microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. **Skin Microbiome:** Skin microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight.
- **Spaceflight-Associated Changes:** **Oral Microbiome:** Oral microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. **Nasal Microbiome:** Nasal microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. **Skin Microbiome:** Skin microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight.
- **Spaceflight-Associated Changes:** **Oral Microbiome:** Oral microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. **Nasal Microbiome:** Nasal microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. **Skin Microbiome:** Skin microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight.
- **Spaceflight-Associated Changes:** **Oral Microbiome:** Oral microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. **Nasal Microbiome:** Nasal microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight. **Skin Microbiome:** Skin microbiome showed significant increases in Fusobacterium species, which were transiently increased during flight.
- **Spaceflight-Associated Changes:** **Oral Microbiome:** Oral microbiome showed significant increases in Fusobacterium species, which were transiently increased