TANMS URP Spring 2021

Magnetic Damping

David Tran

April 14, 2021

Derivation

As a function of time, the magnetic field in the x-direction $H_x(t)$ may be written as

$$H_x(t) = \int_{0^-}^t \left[\beta_{xx}^T + \left(\frac{1}{\mu_0} - \beta_{xx}^T \right) e^{-a(t-\tau)} \right] \frac{\partial B_x}{\partial \tau} d\tau + \int_{0^-}^t \beta_{xy}^T \left(1 - e^{-a(t-\tau)} \right) \frac{\partial B_y}{\partial \tau} d\tau \tag{1}$$

where the constants are given in the following table:

M_s	4.85E5	A/m
B	$\mu_0 M_s / 50$	N/A/m
γ	$1.759/(2\pi)E11$	$rad \cdot A \cdot m/N/s$
β_{xx}^T	$1/2.1152/\mu_0$	A^2/N
α	0.045	Dimensionless
ω	$2\pi \times 400E6$	rad/s
μ_0	$4\pi E - 7$	N/A^2
a	$\frac{\gamma \mu_0 M_s}{\alpha}$	1/s

The analytical solution to this convolution integral is

$$H_x(t) = |B|\beta_{xx}^T \sin(\omega t) + |B| \left(\frac{1}{\mu_0} - \beta_{xx}^T\right) \frac{\omega/a}{(1 + (\omega/a)^2)} \left\{\cos(\omega t) - e^{-at} + \frac{\omega}{a}\sin(\omega t)\right\}$$
(2)

We first observe that $B_y = 0$, which cancels out the 2nd integral from equation (1), resulting in

$$H_x(t) = \int_{0^-}^t \left[\beta_{xx}^T + \left(\frac{1}{\mu_0} - \beta_{xx}^T \right) e^{-\mathbf{a}(t-\tau)} \right] \frac{\partial B_x}{\partial \tau} d\tau \tag{3}$$

We also note that $B_x(\tau) = |B| \sin(\omega \tau)$, so $\frac{\partial B_x}{\partial \tau} = |B| \omega \cos(\omega \tau)$. So,

$$H_x(t) = |B|\omega \int_{0^-}^t \left[\beta_{xx}^T + \left(\frac{1}{\mu_0} - \beta_{xx}^T \right) e^{-a(t-\tau)} \right] \cos(\omega \tau) d\tau$$

To prove that equation (2) is true, we appeal to integration by parts which states

$$\int udv = uv - \int vdu$$

We use

$$\int_{0^{-}}^{t} e^{-a(t-\tau)} \cos(\omega \tau) d\tau$$

TANMS URP Spring 2021

$$u = \cos(\omega \tau) \qquad v = \frac{1}{a} e^{-a(t-\tau)}$$
$$du = -\omega \sin(\omega \tau) d\tau \quad dv = e^{-a(t-\tau)} d\tau$$

Performing integration by parts once again,

$$\int_{0^{-}}^{t} e^{-a(t-\tau)} \cos(\omega \tau) d\tau = \left[\cos(\omega \tau) \left(\frac{1}{a} e^{-a(t-\tau)} \right) \right]_{0^{-}}^{t} + \int_{0^{-}}^{t} \frac{1}{a} \omega \sin(\omega \tau) e^{-a(t-\tau)} d\tau$$

$$= \frac{1}{a} \left[\cos(\omega t) - e^{-at} \right] + \frac{\omega}{a} \left\{ \left[\frac{1}{a} \sin(\omega \tau) e^{-a(t-\tau)} \right]_{0^{-}}^{t}$$

$$- \frac{\omega}{a} \int_{0^{-}}^{t} e^{-a(t-\tau)} \cos(\omega \tau) d\tau \right\}$$

Solving for $\int_{0^{-}}^{t} e^{-a(t-\tau)} \cos(\omega \tau) d\tau$, we obtain

$$\int_{0^{-}}^{t} e^{-a(t-\tau)} \cos(\omega \tau) d\tau = \left(\frac{1}{1 + (\omega/a)^{2}}\right) \left\{ \frac{1}{a} \left[\cos(\omega t) - e^{-at} \right] + \frac{\omega}{a^{2}} \sin(\omega t) \right\}$$

Plugging this result back into equation (3) and then subsequently factoring out $\frac{1}{a}$ yields equation (2). It is also important to not neglect the presence of an ω term that is pulled out after the evaluation of $\frac{\partial B_x}{\partial \tau}$.

$$H_x(t) = |B|\beta_{xx}^T \sin(\omega t) + |B| \left(\frac{1}{\mu_0} - \beta_{xx}^T\right) \frac{\omega/a}{(1 + (\omega/a)^2)} \left\{\cos(\omega t) - e^{-at} + \frac{\omega}{a}\sin(\omega t)\right\}$$