Artificial Intelligence

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Automated Planning

Actions and situations

- So far we modelled a static world only.
- · How to reason about actions and their effects in time?
- In propositional logic we need a copy of each action for each time (situation):
 - $-L_{x,y}^{t} \wedge FacingRight^{t} \wedge Forward^{t} \Rightarrow L_{x+1,y}^{t+1}$
 - We need an upper bound for the number of steps to reach a goal but this will lead to a huge number of formulas.
- Can we do it better in first order logic?
 - We do not need copies of axioms describing state changes; this can be implemented using a universal quantifier for time (situation)
 - – ∀t P is the result of action A in time t+1

Today we will explore techniques for **action planning** – how to find a sequence of actions to reach a given goal.

• problem representation

- situation calculus (pure logical representation)
- using sets of predicates (instead of formulas)
- planning domain vs. planning problem

planning techniques

- state-space planning
 - · forward and backward
- plan-space planning
 - partially ordered plans

Situation calculus

- actions are represented by terms
 - -Go(x,y)
 - Grab(g)
 - Release(g)
- **situation** is also a term
 - initial situation: S₀
 - situation after applying action a to state s: Result(a,s)
- fluent is a predicates changing with time
 - the situation is in the last argument of that term
 - Holding(G, S₀)
- rigid (eternal) predicates
 - Gold(G)
 - Adjacent(x,y)

- We need to reason about sequences of actions about plans.
 - Result([],s) = s- Result([a|seq],s) = Result(seq, Result(a,s))
- What are the typical tasks related to plans?
 - projection task what is the state/situation after applying a given sequence of actions?
 - At(Agent, [1,1], S_0) \wedge At(G, [1,2], S_0) \wedge ¬Holding(o, S_0)
 - At(G, [1,1], Result([Go([1,1],[1,2]),Grab(G),Go([1,2],[1,1])], S_o))
 - planning task which sequence of actions reaches a given state/situation?
 - \exists seq At(G, [1,1], Result(seq, S₀))

Frame problem

- We need to represent properties that are not changed by actions.
- A simple **frame axiom** says what is not changed:

 $At(o,x,s) \land o \neq Agent \land \neg Holding(o,s) \Rightarrow$ At(o,x,Result(Go(y,z),s))

- for F fluents and A actions we need O(FA) frame axioms
- This is a lot especially taking in account that most predicates are not changed.

Situation calculus: actions

- Each action can be described using two axioms:
 - possibility axiom: Preconditions ⇒ Poss(a,s)
 - At(Agent,x,s) \land Adjacent(x,y) \Rightarrow Poss(Go(x,y),s)
 - Gold(g) \wedge At(Agent,x,s) \wedge At(g,x,s) \Rightarrow Poss(Grab(g),s)
 - Holding(g,s) \Rightarrow Poss(Release(g),s)
 - effect axiom: Poss(a,s) ⇒ Changes
 - Poss(Go(x,y),s) \Rightarrow At(Agent,y,Result(Go(x,y),s))
 - Poss(Grab(g),s) ⇒ Holding(g,Result(Grab(g),s))
 - Poss(Release(g),s) $\Rightarrow \neg$ Holding(g,Result(Release(g),s))
- Beware! This is not enough to deduce that a plan reaches a given goal.
 - we can deduce At(Agent, [1,2], Result(Go([1,1],[1,2]), S₀))
 - but we cannot deduce At(G, [1,2], Result(Go([1,1],[1,2]), S₀))
 - Effect axioms describe what has been changed in the world but say nothing about the property that everything else is not changed!
 - This is a so called frame problem.

Can we use less axioms to model the frame problem?

· successor-state axiom

```
Poss(a.s) \Rightarrow
  (fluent holds in Result(a,s) ⇔
      fluent is effect of a v (fluent holds in s A a does not change fluent))
```

- We get F axioms (F is the number of fluents) with O(AE) literals in total (A is the number of actions, E is the number of effects).

Examples:

```
Poss(a.s) \Rightarrow
   (At(Agent,y,Result(a,s)) \Leftrightarrow a=Go(x,y) \lor (At(Agent,y,s) \land a\neq Go(y,z)))
   (Holding(g,Result(a,s)) \Leftrightarrow a=Grab(g) \lor (Holding(g,s) \land a\neq Release(g)))
```

- Beware of implicit effects!
 - If an agent holds some object and the agent moves then also the object moves.
 - This is called a ramification problem.

```
Poss(a.s) \Rightarrow
     (At(o,y,Result(a,s)) \Leftrightarrow
         (a=Go(x,y) \land (o=Agent \lor Holding(o,s))) \lor (At(o,y,s) \land \neg\exists z (y\neq z \land a=Go(y,z) \land (o=Agent \lor Holding(o,s)))))
```


Frame problem: even better axioms

- Successor-state axiom is still too big with O(AE/F) literals in average.
 - To solve the projection task with t actions, the time complexity depends on the total number of actions – O(AEt) – rather than on the actions in plan.
 - If we know each action, cannot we do it better say O(Et)?
- classical successor-state axiom:

$$\begin{array}{c} \text{Poss}(a,s) \Rightarrow \\ (F_i(\text{Result}(a,s)) \Leftrightarrow (a=A_1 \vee a=A_2 \vee ...) \vee (F_i(s) \wedge a \not= A_3 \wedge a \not= A_4 ...)) \\ \hline \text{actions having } F_i \text{ among effects} \\ \hline \end{array}$$

- We can introduce **positive** and **negative effects** of actions:
 - **PosEffect(a, F_i)** action a causes F_i to become true
 - **NegEffect(a, F_i)** action a causes F_i to become false
- modified successor state axiom:

```
\begin{split} \operatorname{Poss}(a,s) &\Rightarrow (F_i(\operatorname{Result}(a,s)) \Leftrightarrow \operatorname{PossEffect}(a,\,F_i) \, \vee \, (F_i(s) \, \wedge \, \neg \operatorname{NegEffect}(a,F_i)) \, ) \\ \operatorname{PosEffect}(A_1,\,F_i) \\ \operatorname{PosEffect}(A_2,\,F_i) \\ \operatorname{NegEffect}(A_3,\,F_i) \\ \operatorname{NegEffect}(A_4,\,F_i) \\ \end{split}
```

Classical representation: states

We can simplify the full FOL model into a so called **classical representation** of planning problems.

State is a set of instantiated atoms (no variables). There is a finite number of states!

 $\begin{cases} \text{attached(p1,loc1)}, \ \text{in(c1,p1)}, \ \text{in(c3,p1)}, \\ \text{top(c3,p1)}, \ \text{on(c3,c1)}, \ \text{on(c1,pallet)}, \ \text{attached(p2,loc1)}, \ \text{in(c2,p2)}, \ \text{top(c2,p2)}, \\ \text{on(c2,pallet)}, \ \text{belong(crane1,loc1)}, \ \text{empty(crane1)}, \ \text{adjacent(loc1,loc2)}, \ \text{adjacent(loc2,loc1)}, \ \text{at(r1,loc2)}, \ \text{occupied(loc2)}, \ \text{unloaded(r1)}. \end{cases}$

- The truth value of some atoms is changing in states:
 - fluents
 - example: at(r1,loc2)
- The truth value of some state is the same in all states
 - · rigid atoms
 - example: adjacent(loc1,loc2)

We will use a classical closed world assumption.

An atom that is not included in the state does not hold at that state!

Hidden assumptions

Example:

- · Assume the following claim:
 - "In summer we will teach courses CS101, CS102, CS106, and EE101"
 - so in FOL we have the facts
 - Course(CS, 101), Course(CS, 102), Course(CS, 106), Course(EE, 101)
- How many courses will we teach in summer?
 - Something between one and infinity!!

Why?

- We usually assume having a complete information about the world, i.e., what is not explicitly said does not hold – this is called a closed world assumption (CWA)
- There is no such assumption in FOL, so we need to complete the knowledge base:

```
Course(d,n) \Leftrightarrow [d,n] = [CS,101] \vee [d,n] = [CS,102] \vee [d,n] = [CS,206] \vee [d,n] = [EE,101]
```

- We also assumed that different names (constants) denote different objects
 this is called a unique name assumption (UNA)
- Again, we need to explicitly describe that objects are different:
 - [CS,101] ≠ [CS,102], ...

Classical representation: operators

operator o is a triple (name(o), precond(o), effects(o))

- name(o): name of the operator in the form $n(x_1,...,x_k)$
 - n: a symbol of the operator (a unique name for each operator)
 - $x_1,...,x_k$: symbols for variables (operator parameters)
 - Must contain all variables appearing in the operator definition!
- precond(o):
 - literals that must hold in the state so the operator is applicable on it
- effects(o):
 - literals that will become true after operator application (only fluents can be there!)

```
 \begin{split} \mathsf{take}(k,l,c,d,p) \\ &\text{;; crane } k \text{ at location } l \text{ takes } c \text{ off of } d \text{ in pile } p \\ &\text{precond: } \mathsf{belong}(k,l), \mathsf{attached}(p,l), \mathsf{empty}(k), \mathsf{top}(c,p), \mathsf{on}(c,d) \\ &\text{effects: } \mathsf{holding}(k,c), \neg \, \mathsf{empty}(k), \neg \, \mathsf{in}(c,p), \neg \, \mathsf{top}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{top}(d,p) \end{split}
```

Classical representation: actions

An action is a fully instantiated operator

- substitute constants to variables

```
\mathsf{take}(k,l,c,d,p) \\ \mathsf{;; crane } k \text{ at location } l \text{ takes } c \text{ off of } d \text{ in pile } p \\ \mathsf{precond: belong}(k,l), \mathsf{attached}(p,l), \mathsf{empty}(k), \mathsf{top}(c,p), \mathsf{on}(c,d) \\ \mathsf{effects: holding}(k,c), \neg \, \mathsf{empty}(k), \neg \, \mathsf{in}(c,p), \neg \, \mathsf{top}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{top}(d,p) \\ \mathsf{operator}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p)) \\ \mathsf{operator}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p)) \\ \mathsf{operator}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p)) \\ \mathsf{operator}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p), \neg \, \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p)) \\ \mathsf{operator}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p), \neg \, \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p)) \\ \mathsf{operator}(c,p), \neg \, \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p), \neg \, \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p)) \\ \mathsf{operator}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p), \neg \, \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p)) \\ \mathsf{operator}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p), \neg \, \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(d,p)) \\ \mathsf{operator}(c,p), \neg \, \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(c,p), \neg \, \mathsf{op}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{op}(c,p), \neg \, \mathsf{o
```

```
 \begin{array}{ll} {\sf take}({\sf crane1}, {\sf loc1}, {\sf c3}, {\sf c1}, {\sf p1}) & {\sf action} \\ {\sf ;;} \; {\sf crane} \; {\sf crane1} \; {\sf at} \; {\sf location} \; {\sf loc1} \; {\sf takes} \; {\sf c3} \; {\sf off} \; {\sf c1} \; {\sf in} \; {\sf pile} \; {\sf p1} \\ {\sf precond:} \; \; {\sf belong}({\sf crane1}, {\sf loc1}), \; \; {\sf attached}({\sf p1}, {\sf loc1}), \\ {\sf empty}({\sf crane1}), \; {\sf top}({\sf c3}, {\sf p1}), \; {\sf on}({\sf c3}, {\sf c1}) \\ {\sf effects:} \; \; \; {\sf holding}({\sf crane1}, {\sf c3}), \; \neg {\sf empty}({\sf crane1}), \; \neg {\sf in}({\sf c3}, {\sf p1}), \\ {\neg top}({\sf c3}, {\sf p1}), \; \neg {\sf on}({\sf c3}, {\sf c1}), \; {\sf top}({\sf c1}, {\sf p1}) \\ \end{array}
```


Classical representation: planning domain

Let L be a language and O be a set of operators.

Planning domain Σ over language L with operators O is a triple (S,A, γ):

- states S ⊆ P({all instantiated atoms from L})
- actions A = {all instantiated operators from O over L}
 - action a is applicable to state s if precond⁺(a) ⊆ s ∧ precond⁻(a) ∩ s = Ø
- transition function γ:
 - $\gamma(\mathbf{s},\mathbf{a}) = (\mathbf{s} \text{effects}^{-}(\mathbf{a})) \cup \text{effects}^{+}(\mathbf{a})$, if \mathbf{a} is applicable on \mathbf{s}
 - S is closed with respect to γ (if s ∈ S, then for every action a applicable to s it holds γ(s,a) ∈ S)

Classical representation: action usage

Notation:

- S⁺ = {positive atoms in S}
- S⁻ = {atoms, whose negation is in S}

Action **a** is **applicable** to state **s** if any only precond⁺(**a**) \subseteq **s** \land precond⁻(**a**) \cap **s** = \emptyset

The result of application of action a to s is $y(s,a) = (s - \text{effects}^-(a)) \cup \text{effects}^+(a)$

Classical representation: planning problem

- **Planning problem** P is a triple (Σ, s_0, g) :
 - $-\Sigma = (S,A,\gamma)$ is a planning domain
 - s₀ is an initial state, s₀∈ S
 - g is a set of instantiated literals
 - state s satisfies the goal condition g if and only if $g^+\subseteq s \land g^-\cap s=\varnothing$
 - $S_g = \{s \in S \mid s \text{ satisfies } g\}$ a set of goal states
- **Plan** is a sequence of actions $\langle a_1, a_2, ..., a_k \rangle$.
- Plan $\langle a_1, a_2, ..., a_k \rangle$ is a **solution plan** for problem P iff $\gamma^*(s_0, \pi)$ satisfies the goal condition g.
- Usually the planning problem is given by a triple (O,s₀,g).
 - O defines the the operators and predicates used
 - s₀ provides the particular constants (objects)

Classical representation: example plan

Forward planning: algorithm

```
Forward-search(O, s_0, q)
   s \leftarrow s_0
   \pi \leftarrow the empty plan
   loop
       if s satisfies q then return \pi
       E \leftarrow \{a | a \text{ is a ground instance of an operator in O},
                   and precond(a) is true in s}
       if E=\emptyset then return failure
       nondeterministically choose an action a \in E
       s \leftarrow \gamma(s, a)
                                                    C3
       \pi \leftarrow \pi.a
                                                   c1
                                 take c3
                                                          loc1
                                                     take c2
                                           move r1
```

State-space planning

- The search space corresponds to the state space of the planning problem.
 - search nodes correspond to world states
 - arcs correspond to state transitions by means of actions
 - the task is to find a path from the initial state to some goal state

Basic approaches

- forward search (progression)
 - start in the initial state and apply actions until reaching a goal state
- backward search (regression)
 - start with the goal and apply actions in the reverse order until a subgoal satisfying the initial state is reached
 - lifting (actions are only partially instantiated)

Forward planning: an example

Backward planning

Start with a goal (not a goal state as there might be more goal states) and through sub-goals try to reach the initial state.

Action a is relevant for a goal g if and only if:

- action a contributes to goal g: $g \cap effects(a) \neq \emptyset$
- effects of action a are not conflicting goal g:
 - $g^- \cap effects^+(a) = \emptyset$
 - $g^+ \cap effects^-(a) = \emptyset$

A **regression set** of the goal **g** for (relevant) action **a** is $\gamma^{-1}(g,a) = (g - effects(a)) \cup precond(a)$

Example:

goal: {on(a,b), on(b,c)}
action stack(a,b) is relevant

by backward application of the action we get a new goal:

stack(x,y)

{holding(a), clear(b), on(b,c)}

Backward planning: an example

Precond: holding(x), clear(y)

Effects: \sim holding(x), \sim clear(y),

on(x,y), clear(x), handempty

Backward planning: algorithm

```
 \begin{array}{c} \mathsf{Backward\text{-}search}(O,s_0,g) \\ \pi \leftarrow \mathsf{the} \; \mathsf{empty} \; \mathsf{plan} \\ \mathsf{loop} \\ \mathsf{if} \; s_0 \; \mathsf{satisfies} \; g \; \mathsf{then} \; \mathsf{return} \; \pi \\ A \leftarrow \{a|a \; \mathsf{is} \; \mathsf{a} \; \mathsf{ground} \; \mathsf{instance} \; \mathsf{of} \; \mathsf{an} \; \mathsf{operator} \; \mathsf{in} \; O \\ \; \; \mathsf{and} \; \gamma^{-1}(g,a) \; \mathsf{is} \; \mathsf{defined} \} \\ \mathsf{if} \; A = \emptyset \; \mathsf{then} \; \mathsf{return} \; \mathsf{failure} \\ \mathsf{nondeterministically} \; \mathsf{choose} \; \mathsf{an} \; \mathsf{action} \; a \in A \\ \; \pi \leftarrow a.\pi \\ \; g \leftarrow \gamma^{-1}(g,a) \\ \hline \\ \mathsf{take} \; \mathsf{c3,c2} \\ \hline \\ \mathsf{take} \; \mathsf{c3,c2} \\ \hline \end{array}
```

Backward planning: lifting

```
Lifted-backward-search (O,s_0,g) \pi \leftarrow the empty plan loop if s_0 satisfies g then return \pi A \leftarrow \{(o,\theta)|o is a standardization of an operator in O, \theta is an mgu for an atom of g and an atom of effects (o), and \gamma^{-1}(\theta(g),\theta(o)) is defined if A=\emptyset then return failure nondeterministically choose a pair (o,\theta) \in A \pi \leftarrow the concatenation of \theta(o) and \theta(\pi) g \leftarrow \gamma^{-1}(\theta(g),\theta(o))
```

Notes:

- standardization = a copy with fresh variables
- mgu = most general unifier
- by using the variables we can decrease the branching factor but the trade off is more complicated loop check

Plan-space planning: a core idea

- The principle of plan space planning is similar to backward planning:
 - start from an "empty" plan containing just the description of initial state and goal
 - add other actions to satisfy not yet covered (open) goals
 - if necessary add other relations between actions in the plan
- Planning is realised as repairing flaws in a partial plan
 - go from one partial plan to another partial plan until a complete plan is found

Plan space planning: the initial plan

- The initial state and the goal are encoded using two special actions in the initial partial plan:
 - Action a₀ represents the initial state in such a way that atoms from the initial state define effects of the action and there are no preconditions. This action will be before all other actions in the partial plan.
 - Action a_∞ represents the goal in a similar way atoms from the goal define the precondition of that action and there is no effect. This action will be after all other actions.
- Planning is realised by repairing flaws in the partial plan.

Plan space planning: an example

- Assume a partial plan with the following two actions:
 - take(k1,c1,p1,l1)
 - load(k1,c1,r1,l1)

Possible modifications of the plan:

- adding a new action
 - to apply action load, robot r1 must be at location l1
 - action move(r1,l,l1) moves robot r1 to location l1 from some location l
- binding the variables
 - action move is used for the right robot and the right location
- ordering some actions
 - the robot must move to the location before the action load can be used
 - · the order with respect to action take is not relevant
- adding a causal relation
 - new action is added to move the robot to a given location that is a precondition of another action
 - the causal relation between move and load ensures that no other action between them moves the robot to another location

Search nodes and partial plans

The search nodes correspond to partial plans.

A partial plan Π is a tuple (A,<,B,L), where

- A is a set of partially instantiated planning operators {a₁,...,a_k}
- < is a partial order on A ($a_i < a_i$)
- B is set of constraints in the form x=y, x≠y or x \in D_i
- L is a set of causal relations $(a_i \rightarrow p_a)$
 - a_i,a_i are ordered actions a_i<a_i
 - p is a literal that is effect of a, and precondition of a,
 - B contains relations that bind the corresponding variables in p

Partial plan: an example

Threats

- Threat is another example of flaw.
- This is action that can influence existing causal relation.
 - Let $a_i \rightarrow^p a_j$ be a causal relation and action **b** has among its effects a literal unifiable with the negation of **p** and action **b** can be between actions a_i and a_j . Then **b** is threat for that causal relation.
- We can **remove the threat** by one of the ways:
 - ordering b before a_i
 - ordering **b** after $\mathbf{a}_{\mathbf{j}}$
 - binding variables in b
 in such a way that p
 does not bind with
 the negation of p

Open goals

- Open goal is an example of a flaw.
- This is a precondition **p** of some operator **b** in the partial plan such that no action was decided to satisfy this precondition (there is no causal relation a_i→pb).
- The open goal p of action b can be resolved by:
 - finding an operator a (either present in the partial plan or a new one) that can give p (p is among the effects of a and a can be before b)
 - binding the variables from p
 - adding a causal relation a→pb

Solution plan

- Partial plan Π = (A,<,B,L) is a **solution plan** for the problem P = (Σ ,s₀,g) if:
 - partial ordering < and constraints B are globally consistent
 - there are no cycles in the partial ordering
 - we can assign variables in such a way that constraints from B hold
 - Any linearly ordered sequence of fully instantiated actions from A satisfying < and B goes from s₀ to a state satisfying g.
- Hmm, but this definition does not say how to verify that a partial plan is a solution plan!

Claim: Partial plan $\Pi = (A, <, B, L)$ is a solution plan if:

- there are no flaws (no open goals and no threats)
- partial ordering < and constraints B are globally consistent

Plan-space planning: algorithm

• PSP = Plan-Space Planning

```
\begin{array}{l} \mathsf{PSP}(\pi) \\ flaws \leftarrow \mathsf{OpenGoals}(\pi) \cup \mathsf{Threats}(\pi) \\ \text{if } flaws = \emptyset \mathsf{ then } \mathsf{return}(\pi) \\ \mathsf{select } \mathsf{any } \mathsf{flaw} \ \phi \in flaws \\ resolvers \leftarrow \mathsf{Resolve}(\phi, \pi) \\ \mathsf{if } resolvers = \emptyset \mathsf{ then } \mathsf{return}(\mathsf{failure}) \\ \mathsf{nondeterministically } \mathsf{choose } \mathsf{a} \mathsf{ resolver} \ \rho \in resolvers \\ \pi' \leftarrow \mathsf{Refine}(\rho, \pi) \\ \mathsf{return}(\mathsf{PSP}(\pi')) \\ \mathsf{end} \end{array}
```

Notes:

- The selection of flaw is deterministic (all flaws must be resolved).
- The resolvent is selected non-deterministically (search in case of failure).

Course summary

- An agent view of Artificial Intelligence
 - an agent is an entity perceiving environment and acting upon it
 - a rational agent maximizes expected performance
- Problem solving with simple state space
 - search techniques
 - exploiting extra information -> heuristic search A*
 - structured states –> constraint satisfaction
 - more agents –> adversarial search (games)
- Knowledge representation
 - propositional and first-order logic
 - inference procedures
- Automated planning
 - situation calculus
 - state-space and plan-space planning

More on automated planning

Course Planning and scheduling

http://ktiml.mff.cuni.cz/~bartak/planovani/

© 2013 Roman Barták

Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz