2 - Instruções: A linguagem de Máquina

2.21 Exercícios¹

¹ Contribuição de John Oliver, da Cal Poly, San Luis Obispo, com colaborações de Nicole Kaiyan (Universidade de Adelaide) e Milos Prvulovic (Georgia Tech)

O Apêndice B descreve o simulador do MIPS, que é útil para estes exercícios. Embora o simulador aceite pseudoinstruções, tente não usá-las em qualquer exercício que pedir para produzir código do MIPS. Seu objetivo deverá ser aprender o conjunto de instruções MIPS real, e se você tiver de contar instruções, sua contagem deverá refletir as instruções reais executadas, e não as pseudoinstruções.

Existem alguns casos em que as pseudoinstruções precisam ser usadas (por exemplo, a instrução la quando um valor real não é conhecido durante a codificação em assembly).

Em muitos casos, elas são muito convenientes e resultam em código mais legível (por exemplo, as instruções li e move. Se você decidir usar pseudoinstruções por esses motivos, por favor, acrescente uma sentença ou duas à sua solução, indicando quais pseudoinstruções usou e por quê.

Exercício 2.10

Nos problemas a seguir, a tabela de dados contém bits que representam o opcode de uma instrução. Você deverá traduzir as entradas para o código assembly e determinar que formato da instrução MIPS os bits representam.

- a. 0000 0010 0001 0000 1000 0000 0010 0000_{dois}
- b. 0000 0001 0100 1011 0100 1000 0010 0010_{dois}

Utilizar MIPS Reference Data Card.pdf															
R Op (6 bits)	Rs (5 bits)	Rt (5 bits)	Rd (5 bits)	Shamt (5 bits)	Funct (6 bits)										
I Op	Rs	Rt	Endereço (16 bits)												
J Op	Endereço (26 bits)														
a. 0000 0010 0001 0000 1000 0000 0010 0000 _{dois}															
add \$s0, \$s0, \$s0			$R[rd] = R[rs] + R[rt] (0/20_{hex})$												
0x00	16	16	16	0	(0x20)										
0 0 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 0 0	1 0 0 0 0 0										
0	2 1	0	8	0	2 0										
b. 0000 0001 0100 1011 0100 1000 0010 0010 _{dois}															
sub \$t2, \$t2, \$t2			$R[rd] = R[rs] - R[rt] (0/22_{hex})$												
0x00	10	10	10	0	(0x22)										
0 0 0 0 0 0	0 1 0 1 0	0 1 0 1 1	0 1 0 0 1	0 0 0 0 0	1 0 0 0 1 0										
0	1 6	В	6	8	2 2										

2.10.1 [5] <2.5> Para essas entradas binárias, que instrução elas representam?

- a) Esta entrada binária representa uma operação add.
- b) Esta entrada binária representa uma operação sub.

2.10.2 [5] <2.5> Que tipo de instrução (tipo I, tipo R) as mesmas entradas binárias representam?

- a) É classificada como uma instrução do tipo R.
- b) Também é classificada como uma instrução do tipo R.

2.10.3 [5] <2.4, 2.5> Se as entradas binárias anteriores fossem bits de dados, que número elas representariam em hexadecimal?

- a) 0x02108020
- b) 0x016B6822

Nos problemas a seguir, a tabela de dados contém instruções MIPS. Você deverá traduzir as entradas para os bits do opcode e determinar qual é o formato da instrução MIPS.

a. addi \$t0, \$t0, 0b. sw \$t1, 32(\$t2)

R Op (6 bits)	Op (6 bits) Rs (5 bits)				Rt (5 bits)				Rd (5 bits)					Shamt (5 bits)					Funct (6 bits)				
I Op		Rs Rt						Endereço (16 bits)															
J Op		Endereço (26 bits)																					
a. 0010 0001 0000 1000 0000 0000 0000																							
a. addi \$t0 ,\$t0 ,0								$R[rt] = R[rs] + SignExtImm (8_{hex})$															
0x08			8	8				0x0															
0 0 1 0 0	0 0	0 1	0 0 0	0	1 0	0 0)	0	0	0 0)	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1 0			8			0			0			0			0						
b. 1010 1101 0010 1000 0000 0000 0010 0000																							
b. sw \$t1, 32(\$t2)								$M[R[rs]+SignExtImm] = R[rt] (2b_{hex})$															
0x2B		9			8			0x100000															
1 0 1 0 1	. 1	0 1	0 0 1	0	1 0	0 0)	0	0	0 0)	0	0	0	0	0	0	1	0	0	0	0	0
A	D	D 2			8				0			0			2			0					

- 2.10.4 [5] <2.4, 2.5> Mostre a representação hexadecimal dessas instruções.
- a) 0x21080000
- b) 0xAD280020
- 2.10.5 [5] <2.5> Que tipo (tipo I, tipo R) essas instruções representam?
- a) Esta instrução é classificada sendo do tipo I.
- b) Esta instrução também é classificada sendo do tipo I.
- 2.10.6 [5] <2.5> Qual é a representação binária e hexadecimal dos campos opcode, Rs e Rt nessa instrução? Para as instruções de tipo R, qual é a representação hexadecimal dos campos Rd e funct? Para as instruções de tipo I, qual é a representação hexadecimal do campo imediato?

Tabela 1 - TIPO R

a)

opcode $000000_{bin} \rightarrow 0x00_{hex}$ rs $10000_{bin} \rightarrow 0x10_{hex}$ rt $10000_{bin} \rightarrow 0x10_{hex}$ rd $0x10_{hex}$ funct $0x20_{hex}$

b)

opcode $000000_{bin} \rightarrow 0x00_{hex}$ rs $01010_{bin} \rightarrow 0x0A_{hex}$ rt $01010_{bin} \rightarrow 0x0A_{hex}$ rd $0x0A_{hex}$ funct $0x22_{hex}$

Tabela 2 - TIPO I

a)

opcode $001000_{\rm bin} \rightarrow 0x08_{\rm hex}$ rs $01000_{\rm bin} \rightarrow 0x08_{\rm hex}$ rt $01000_{\rm bin} \rightarrow 0x08_{\rm hex}$ im $0x0_{\rm hex}$

b)

opcode $101011_{\rm bin} \rightarrow 0x2B_{\rm hex}$ rs $01001_{\rm bin} \rightarrow 0x09_{\rm hex}$ rt $01000_{\rm bin} \rightarrow 0x08_{\rm hex}$ im $100000_{\rm bin} \rightarrow 0x20_{\rm hex}$

Exercício 2.16

Para estes problemas, a tabela mantém diversos valores binários para o registrador \$t0.

Dado o valor de \$t0, você deverá avaliar o resultado de diferentes desvios.

- a. $$t0 = 0010\ 0100\ 1001\ 0010\ 0100\ 1001\ 0010\ 0100_{\rm dois}$$ b. $$t0 = 0101\ 1111\ 1011\ 1110\ 0100\ 0000\ 0000\ 0000_{\rm dois}$$
- 2.16.1 [5] <2.7> Suponha que o registrador \$t0 contenha um desses valor e \$t1 tenha o valor

 $$t1 = 0011 \ 1111 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000_{dois}$

Note o resultado da execução de tais instruções em certos registradores. Qual é o valor de \$t2 depois das seguintes instruções?

slt \$t2, \$t0, \$t1
beq \$t2, \$ZERO, ELSE
j DONE

ELSE: addi \$t2, \$0, 2

DONE:

- a) \$t2 = 1
- b) \$t2 = 2
- 2.16.4 [5] <2.7> Suponha que o registrador \$t0 contenha um valor da tabela anterior.

Qual é o valor de \$t2 após as instruções a seguir?

slt \$t2, \$0, \$t0 bne \$t2, \$ZERO, ELSE j DONE

ELSE: addi \$t2, \$t2, 2

DONE:

- a) \$t2 = 3
- b) \$t2 = 3