Sorted Subsegments

Consider an array $A=[a_0,a_1,\ldots,a_{n-1}]$ of n integers. We perform q queries of the following type on A:

ullet Sort all the elements in the subsegment $a_{l_i}, a_{l_i+1}, \ldots, a_{r_i}$.

Given A, can you find and print the value at index k (where $0 \leq k < n$) after performing q queries?

Input Format

The first line contains three positive space-separated integers describing the respective values of n (the number of integers in A), q (the number of queries), and k (an index in A).

The next line contains n space-separated integers describing the respective values of $a_0, a_1, \ldots, a_{n-1}$. Each line j of the q subsequent lines contain two space-separated integers describing the respective l_j and r_j values for query j.

Constraints

- $1 \le n, q \le 75000$
- $0 \le k \le n-1$
- $-10^9 \le a_i \le 10^9$
- $0 \leq l_i \leq r_i < n$

Output Format

Print a single integer denoting the value of a_k after processing all q queries.

Sample Input 0

3 1 1 3 2 1 0 1

Sample Output 0

3

Explanation 0

$$A = [3, 2, 1]$$

There is only one query to perform. When we sort the subarray ranging from index 0 to index 1, we get A' = [2, 3, 1]. We then print the element at index 1, which is 3.

Sample Input 1

4 2 0 4 3 2 1 0 2 1 3

Sample Output 1

Explanation 1

$$A=[4,3,2,1]$$

There are q=2 queries:

- 1. When we sort the subarray ranging from index 0 to index 2, we get $A^\prime = [2,3,4,1]$.
- 2. When we sort the subarray of A^\prime from index 1 to index 3, we get $A^{\prime\prime}=[2,1,3,4]$.

Having performed all of the queries, we print the element at index $\mathbf{0}$, which is $\mathbf{2}$.