Qualitative Chemistry

Solubility:

$$S = \frac{Moles of Solute}{Volume of Solvent} ; Unit: mole/L or M$$

$$S = \frac{100 \times Mass of solute in grams}{Mass of solvent in gram}$$

Effect of Pressure in Solubility (Henry's Law):

If applied pressure in a Gaseous Solute solution is *P*

$$S \propto P$$

$$S = K_H \times P$$

$$\frac{S_1}{P_1} = \frac{S_2}{P_2} = \frac{S_3}{P_3} = \dots$$

K_H = Henry's Proportional Constant = S/P

Unit of K_H in SI standard is: M atm⁻¹

Solubility Product (K_{sp} and K_{ip}):

Suppose, MgCl₂ is dissolved in water. Hence the ionic equation as follow- $MgCl_2 \rightleftharpoons = Mg^{2^+} + 2 Cl^ K_{sp} = [Mg^{2^+}] + [Cl^-]^2$

**Note: In IUPAC standard the Solubility of a solution with a specific solute and solvent is measured I mole/Liter which essentially means the Molarity of the solution. So K_{sp} is the Ionic Product of the product ion. For example: in the example above shows how to find Ksp of a Solution. Which needs the molarity of Mg^{2+} and Cl^{-} . But because solubility is the molarity of the solution so we can say $[Mg^{2+}] = [Cl^{-}] = Solubility$ or S

 K_{sp} in the above reaction is, $K_{sp} = S \times S^2 = S^3$

**In order to use this equation the given Solubility must be converted to mole L or M. For example if the Given solubility is : $5x10^{-4}$ g/L we have to covert g/L to mole/L. In order to convert g/L to mole/L we have to divide the g/L by the Molar mass of solute

**** The equation of K_{ip} and K_{sp} is the same . Difference between K_{ip} and K_{sp} is K_{sp} is the constant Ionic product for a solution in saturated state. It means we can identify K_{sp} only for saturated solutions. And it's value is constant in a specific solution and at a specific Temperature. But K_{ip} is essentially the ionic product of solute . K_{ip} can be changed if the Concentration of the solution is changed . Also K_{ip} can be calculated at any solution (saturated , unsaturated or oversaturated).

Relation between K_{sp} and K_{ip} :

if, $K_{ip} = K_{sp}$: The solution is saturated

if, $K_{ip} > K_{sp}$: The solution is over-saturated.

if, $K_{ip} < K_{sp}$: The solution is unsaturated.