§ 1.2 预备知识和误差

§1.2.1 误差的来源

实际问题 建立数学模型 研究计算方法 编程上机计算 解结果

a) 模型误差:

在建立数学模型过程中,不可能将所有因素均考虑,必然要进行必要的简化,这就带来 了与实际问题的误差。

b) 测量误差:测量已知参数时,数据带来的误差。

c) 截断误差 : 在设计算法时,必然要近似处理,寻求一些简化。

d) 舍入误差 : 计算机的字长是有限的 ,每一步运算均需四舍五入,由此产出的误差称舍入误差。如: π 、 1 / 3, ……取小数点8位、 16 位。

[截断误差的实例]

例 1.4:
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$$

当|x| 很小时,可用 $1-\frac{x^2}{2}$ 作为 $\cos x$ 的近似值,其截断误差小于 $\frac{x^4}{24}$ 。

例 1.5: 已知:
$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n + \dots$$

求 e^{-1} 的近似值,并估计误差。

分析: 对函数 f(x) 用 Taylor 展开, 用多项式

$$P_n(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

近似代替,则数值方法的截断误差为

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$$

解:利用展开式的前三项,取 n=2,

$$e^{-1} \Box 1 + (-1) + \frac{1}{2}(-1)^2 = 0.5$$

由松或r

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

$$R_n(x) = \frac{x^{n+1}}{(n+1)!} e^{\theta x}, \qquad 0 < \theta < 1$$

截断误差为:

$$|R_2| = |e^{-1} - 0.5| \square \frac{1}{3!} < 1.7 * 10^{-1}$$

数值计算方法主要讨论截断误差和舍入误差的影响 ,不讨论模型误差和测量误差。

§1.2.2 误差分析的重要性以及数值稳定性

一个数值方法进行计算时,由于原始数据有误差,在计算中这些误差会传播,有时误差增长很快使计算结果误差很大,影响了结果不可靠. 定义 一个算法如果原始数据有扰动(即误差),而计算过程舍入误差不增长,则称此算法是数值稳定的. 否则,若误差增长则称算法不稳定.

例如: 计算并分析误差

$$I_n = \bigcap_{0}^{1} \frac{x^n}{x+5} dx$$
 n=0,1,2,...

解:

由积分估值

$$I_{n} = \bigoplus_{\theta}^{1} \frac{(x^{n} + 5x^{n-1}) - 5x^{n-1}}{x + 5} dx$$

$$= \bigoplus_{\theta}^{n-1} dx - 5 \bigoplus_{x + 5}^{x^{n-1}} dx$$

$$= \frac{1}{n} - 5I_{n-1}$$

$$\frac{1}{6(n+1)} = \min_{0 \subseteq x \subseteq 1} \left(\frac{1}{x+5}\right) \Big|_{\theta}^{1} x^{n} dx < I_{n}$$

$$< \max_{0 \subseteq x \subseteq 1} \left(\frac{1}{x+5}\right) \Big|_{\theta}^{1} x^{n} dx = \frac{1}{5(n+1)}$$

设计如下两种算法:

[算法1]:

取
$$I_0 = \prod_{\theta}^1 \frac{1}{x+5} dx = \ln 1.2$$
,按公式

$$I_n = \frac{1}{n} - 5I_{n-1}$$
 (n=0, 1, 2.....)

依次计算 I_1, I_2 ... 的近似值。

设
$$e_0 = I_0 - I_0^*$$
。

假设计算过程中不产生新的舍入误差,则有

$$e_n = I_n - I_n^* = -5I_{n-1} + 5I_{n-1}^* = -5e_{n-1}$$
 (n=0, 1, 2.....)

�
$$e_n = (-5)^n e_0$$
 误差扩散。

[算法 2]:

从 I_k 计算 I_{k-1} ,应有

在运算过程中,舍入误差不增大,数值稳定。

1
$$I_n = \frac{1}{n} - 5I_{n-1}$$
, $I_0 = \ln \frac{6}{5}$ \tilde{I}_n
2 $I_{n-1} = \frac{1}{5} \frac{1}{n} - I_n$, $I_8 = 0.019$ \bar{I}_n

2
$$I_{n-1} = \frac{1}{5} \bigcap_{n} -I_{n} \bigcap_{n} I_{8} = 0.019 \quad \overline{I}_{n}$$

n	I_n	$ ilde{I}_n$	\overline{I}_n
0	0.182	0.182	0.182
1	0.088	0.090	0.088
2	0.058	0.050	0.058
3	0.0431	0.083	0.0431
4	0.0343	-0.165	0.0343
5	0.0284	1.025	0.0284
6	0.024	-4.958	0.024
7	0.021	24.933	0.021
8	0.019	-124.540	0.019

[关于数值稳定性的算法]

• 误差的传播与积累

例:蝴蝶效应 —— 纽约的一只蝴蝶翅膀一拍,风和日丽的北京就刮起台风来了?!

• 以上是一个病态问题

例 5:
$$I_n = e^{-1} \prod_{0}^{1} x^n e^x dx$$
, $n = 0, 1, 2, \dots$,

解: 用分部积分公式得递推式:

$$I_n = 1 - nI_{n-1}, I_0 = 1 - e^{-1}$$

用四位有效数字计算: $I_0 = 0.6321$,

$$I_1 = 1 - I_0 = 0.3679$$
 , $I_2 = 1 - 2I_1 = 0.2642$,

$$I_3 = 1 - 3I_2 = 0.2074$$
, $I_4 = 1 - 4I_3 = 0.1704$,
$$I_5 = 1 - 5I_4 = 0.1480$$
, $I_6 = 1 - 6I_5 = 0.1120$,
$$I_7 = 1 - 7I_6 = 0.2160$$
, $I_8 = 1 - 8I_7 = -0.7280$.

分析 1:

可以估计出
$$0 < \frac{e^{-1}}{n+1} < I_n < \frac{1}{n+1}$$
 故

$$0,0460 < I_7 < 0.1250$$
 , $0.0409 < I_8 < 0.1111$,

于是 I_7,I_8 与精确值已经面目全非,一位有效数字也没有。

这是由于如果 I_0 有误差 e=0.5 $\square 10^{-4}$,不计中间再产生的舍入误差,该误差随着计算过程分别乘以 $2,3,\cdots,7,8$,到 I_8 时已经变成了 8! e=40320 e,误差扩大了 4 万倍。因而该算法不是稳定的。

分析 2:

如果递推式改为,由

$$I_{n-1} = \frac{1}{n} (1 - I_n)$$
 , $I_7 = 0.1124$,

逐步计算 I_6,I_5,\cdots ,直到 $I_0=0.6321$ 。计算结果有四位有效数字,如果 I_7 有误差 e,其传播到 I_0 所引起的误差仅为 $\frac{1}{7!}e=\frac{1}{5040}e$ 。 故该算法是稳定