Theoretische Physik I: Klassische Mechanik Prof. Dr. A. Hebecker

Dr. N. Zerf

4. Übungsblatt

Abgabe in den Tutorien 14.11.2016 Besprechung in den Tutorien 21.11.2016

Aufgabe 4.1 (4 Punkte):

Betrachten Sie die Teilchenbewegung aus Aufgabe 2.2 von Übungsblatt 2.

Berechnen Sie $\vec{T}(t) = \vec{v}(t)/|\vec{v}(t)|$ und $(d\vec{T}/ds)(t) = (d\vec{T}(t)/dt) \cdot (dt/ds)(t)$. Berechnen Sie außerdem $\vec{N}(t=0)$.

Hinweis: Sie müssen hierzu nicht den Ausdruck s(t) invertieren. Benutzen Sie einfach die Ableitung der inversen Funktion.

Aufgabe 4.2 (6 Punkte):

Zeigen Sie durch explizite Rechnung, dass

$$\int \sqrt{ax^2 + 2bx + c} \, dx = \frac{ac - b^2}{2a^{3/2}} \operatorname{Arsinh} \frac{ax + b}{\sqrt{ac - b^2}} + \frac{ax + b}{2a} \sqrt{ax^2 + 2bx + c} \,,$$

falls a > 0 und $ac - b^2 > 0$. Möglicher Lösungsweg:

(a) Finden Sie eine Substitution der Form $y = x - x_0$, so dass

$$ax^2 + 2bx + c = a(y^2 + y_0^2)$$
.

Hierbei sind die Konstanten x_0 und y_0 zu bestimmen.

(b) Das resultierende Integral lässt sich mit Hilfe der Substitution $y = y_0 \sinh \phi$ lösen.

Aufgabe 4.3 (10):

Ein Massenpunkt wird unter dem Winkel θ zur Horizontalen hochgeworfen. Zum Zeitpunkt t=0 sei der Massenpunkt am Ort $\vec{r}(0)=(0,0,0)^{\mathrm{T}}$ und der Betrag der Geschwindigkeit sei $|\vec{v}(0)|=v_0$. Infolge von Stokesscher Reibung im umgebenden Medium ist die Beschleunigung durch $\vec{a}=-k\vec{v}-g\vec{e}_z$ gegeben. Durch Integration der Gleichung

$$\vec{a}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \vec{v}(t) = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \vec{r}(t)$$

erhalten Sie zunächst $\vec{v}(t)$ und dann $\vec{r}(t)$. Die jeweiligen Integrationskonstanten sind durch die Vorgabe von $\vec{v}(0) = v_0(\cos\theta, 0, \sin\theta)^{\mathrm{T}}$ und $\vec{r}(0)$ festgelegt.

bitte wenden

(a) Bestimmen Sie die Geschwindigkeit des Massenpunktes als Funktion der Zeit. Hinweis: Führen Sie in der Gleichung $\vec{a} = \dot{\vec{v}}$ die Substitution $\vec{v}(t) = \vec{\phi}(t) e^{-kt}$ ein und bestimmen Sie zunächst die Funktion $\vec{\phi}(t)$.

- (b) Bestimmen Sie die Bahnkurve $\vec{r}(t)$ des Massenpunktes.
- (c) Zeigen Sie, dass der Massenpunkt im Limes $t \to \infty$ eine endliche Grenzgeschwindigkeit erreicht und berechnen Sie deren Betrag.
- (d) Zeigen Sie: Der höchste Bahnpunkt wird nach der Zeit

$$T = \frac{1}{k} \ln \left(1 + \frac{v_0 k \sin \theta}{g} \right)$$

erreicht.

(e) Zeigen Sie: Die Höhe am Scheitelpunkt der Bahn ist

$$H = \frac{v_0 \sin \theta}{k} - \frac{g}{k^2} \ln \left(1 + \frac{v_0 k \sin \theta}{g} \right) .$$

(f) Zeigen Sie: Für kleine Reibung $(k \to 0)$ ist die Geschwindigkeit $\vec{v}(t)$ und der Ortsvektor $\vec{r}(t)$ annähernd gegeben durch

$$\vec{v}(t) = \vec{v}_0 - g t \vec{e}_z$$
, $\vec{r}(t) = t \vec{v}_0 - \frac{1}{2}gt^2\vec{e}_z$.

Hinweis: Für $(k \to 0)$ können Sie e^{-kt} durch $1 - kt + \frac{1}{2}k^2t^2$ ersetzen.

Aufgabe 4.4 (*):

Gegeben Sei die DGL $(a, b, c \in \mathbb{R})$: $\ddot{x}(t) = ax(t) + b\dot{x}(t) + c\ddot{x}(t)$. Schreiben Sie die gegebene DGL dritter Ordnung ausgehend von den Definitionen $y(t) = \dot{x}(t)$ und $z(t) = \dot{y}(t)$ in ein System gekoppelter DGLs erster Ordnung um:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{r}(t) = \stackrel{\leftrightarrow}{M} \cdot \vec{r}(t) .$$

Bestimmen Sie dazu die Matrix $\stackrel{\leftrightarrow}{M}$, wobei hier $\vec{r}(t) = (x(t), y(t), z(t))^T$ gilt.