Am8T26A·Am8T28

Schottky Three-State Quad Bus Driver/Receiver

Distinctive Characteristics

- Advanced Schottky technology
- 48mA driver sink current
- Three-state outputs on driver and reciever
- PNP inputs
- Am8T26A has inverting outputs
- Am8T28 has non-inverting outputs

- Driver propagation delay 14ns max. for 8T26A 17ns max, for 8T28
- Receiver propagation delay 14ns max. for 8T26A 17ns max. for 8T28
- 100% reliability assurance testing in compliance wit MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am8T26A/Am8T28 are high speed bus transceivers consisting of four bus drivers with three-state outputs and four bus receivers, also with three-state outputs. Each driver output is internally connected to a receiver input. Both the drivers and receivers have PNP inputs.

One buffered common "bus enable" input is connected to the four drivers and another buffered common "receiver enable" input is connected to the receivers. A LOW on the bus enable (B/E) input forces the four driver outputs to the high-impedance state. A HIGH on the bus enable allows input data to be transferred onto the data bus.

A HIGH on the receiver enable (R/E) input forces the four receiver outputs to the high-impedance state while a LOW on the receiver enable input allows the received data to be transferred to the output. The complementary design of the bus enable and receiver enable inputs allows these control inputs to be connected together externally such that a single transmit/receive function is derived.

LOGIC SYMBOL

V_{CC} = Pin 16 GND = Pin 8

LIC-561

LOGIC DIAGRAMS

Am8T26A Inverting Output (Three-State)

Am8T28 Non-Inverting Output (Three-State)

ORDERING INFORMATION

Package Type	Temperature Range	Am8T26A Order Number	Am8T28 Order Number
Molded DIP	0°C to +75°C	N8T26AB	N8T28B
Hermetic DIP	0°C to +75°C	N8T26AF	N8T28F
Dice	0°C to +75°C	AM8T26AXC	AM8T28XC
Hermetic DIP	-55°C to +125°C	S8T26AF	S8T28F
Dice	-55°C to +125°C	AM8T26AXM	AM8T28XM

CONNECTION DIAGRAM (Top View)

Note: Pin 1 is marked for orientation.

LIC-564

MAXIMUM RATINGS (Above which the useful life may be impaired)

0- 45000		
_65°C to +150°C		
−55°C to +125°C		
−0.5V to +7V		
-0.5V to +V _{CC} max		
-0.5V to +5.5V		
30mA		
80mA		
-30mA to +5.0mA		

!LECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The Following Conditions Apply Unless Otherwise Noted:

18T26A, N8T28 $T_A = 0^{\circ}C \text{ to } +75^{\circ}C (COM'L)$ MIN. = 4.75 V MAX. = 5.25 V

:8T26A, S8T28 $T_A = -55^{\circ}C$ to +125°C(MIL) MIN. = 4.50 V MAX. = 5.50 V

arameters	Description		IG TEMPERATURE RANGE Test Conditions (Note 1)	Min.	(Note 2)	Max.	Units
river					T		
I _{IL}	Low Level Input Current		V _{IN} = 0.4 V			-200	μA
11L	Low Level Input Current (Disal	oled)	V _{IN} = 0.4 V		ļ	-50	μΑ
ЧН	High Level Input Current (DIN)	DE)	VIN = VCCMAX.			25	μА
VOL	Low Level Output Voltage		IOUT = 48mA (Note 5)			0.5	Volts
v _{OH}	High Level Output Voltage		I _{OUT} = -10mA, V _{CC} = V _{CC} MIN.(Note 6)	2.4			Volts
los	Short Circuit Output Current		V _{OUT} = 0V, V _{CC} = V _{CC} MAX.(Note 4)	-50		-150	mA
eceiver							
IIL	Low Level Input Current		$V_{IN} = 0.4 V$			-200	μΑ
he he	High Level Input Current (RE)		VIN = VCCMAX.			25	μΑ
VOL	Low Level Output Voltage		IOUT = 20mA (Note 5)			0.5	Volts
-OL	-OL		$I_{OUT} = -100 \mu\text{A}, V_{CC} = 5.0 \text{V}$	3.5			Volts
v oH	OH High Level Output Voltage		IOUT = -2.0 mA (Note 6)	2.4			
los	Short Circuit Output Current		VOUT = 0 V, VCC = VCCMAX.	-30		-75	mA
	er and Receiver						
V _{TL}				0.85			Volts
	High Level Input Threshold Voltage					2.0	Volts
V _{TH}	Low Level Output Off Leakage Current		V _{OUT} = 0.5 V		Ţ	-100	μΑ
IO	High Level Output Off Leakage Current		V _{OUT} = 2.4 V			100	μА
			1 _{IN} = -12mA			-1.0	Volts
v _I	Power/Current Consumption Am8T26A Am8T28		VCC = VCCMAX.			457/87	mW/m
PWR/ ICC			V _{CC} = V _{CC} MAX.			578/110	(1144/111)

witching Characteristics (T _A = +25°C, V _{CC} = 5.0 V)			Am8T26	A	Am8T28				
Switching C Parameters	Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
		Figure 1		10	14		13	17	ns
t _{PLH}	Driver Input to Bus		-	10	14		13	17] '"
tPHL				9.0	14		12	17	ns
^t PLH	Bus to Receiver Output	Figure 2		6.0	14		9.0	17	
^t PHL									
tZL	Driver Enable to Bus	Figure 3		19	25	<u> </u>	21	28	ns
tLZ		Figure 3		15	20		18	23	<u> </u>
	Receiver Enable to	Figure 4		15	20		18	23	ns
tZL				10	15		13	18	
tLZ	Receiver Output	use the appropriate value spe		I		ice for the	applicable	device tv	De.

- Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
 - 2. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.
 - 3. Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules).
 - 4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
 - 5. Output sink current is supplied through a resistor to V_{CC}.
 - 6. Measurements apply to each output and the associated data input independently.

DEFINITION OF FUNCTIONAL TERMS

D₀, D₁, D₂, D₃ The four driver inputs.

B₀, B₁, B₂, B₃ The four driver outputs and receiver inputs (data is inverted).

 R_0 , R_1 , R_2 , R_3 The four receiver outputs. Data from the bus is inverted while data from the driver inputs is non-inverted.

B/E Bus enable input. When the bus enable input is LOW, the four driver outputs are in the high-impedance state.

R/E Receiver enable input. When the receiver enable input is HIGH, the four receiver outputs are in the high-impedance state.

LOADING RULES (In Unit Loads)

		LOW	Fan-out		
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output LOW	
R/E	1	1/8	_		
R _O	2	_	50	10	
В ₀	3	1/16	250	25	
D ₀	4	1/8	_		
R ₁	5	_	50	10	
B ₁	6	1/16	250	25	
D ₁	7	1/8	_		
GND	8	_	_	_	
D ₂	9	1/8	_	_	
В2	10	1/16	250	25	
R ₂	11	_	50	10	
D ₃	12	1/8	_		
В3	13	1/16	250	25	
R ₃	14	-	50	10	
B/E	15	1/8	_		
Vcc	16	_	-		

A TTL Unit Load is defined as -1.6mA measured at 0.4V LOW and $40\mu\text{A}$ measured at 2.4V HIGH.

DRIVER FUNCTION TABLE

INPUTS		Am8T26A OUTPUT	Am8T28 OUTPUT	
B/E	Di	Bį	Bi	
L	Х	Z	Z	
н	L	н	L	
Н	Н	L	Н	

L = LOW

X ≈ Don't Care

H = HIGH

Z = High Impedance

i = 0, 1, 2, or 3

RECEIVER FUNCTION TABLE

INPUTS		Am8T26A OUTPUT	Am8T28 OUTPUT	
R/E	Bi	Ri	Rį	
Н	Х	Z	Z	
L	L	н	L	
L	н	L	н	

L = LOW

X = Don't Care

H ≃ HIGH

Z = High Impedance

i = 0, 1, 2, or 3

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

LIC-565

AC TEST CIRCUITS AND WAVEFORMS PROPAGATION DELAY (Data In to Bus) 2.6V Q Q V_{CC} = 5.0V Bn INPUT - tPLH R/E DO В3 2600 OUTPUT D₁ Ħ_O R₁ D₂ (NPUT PULSE: $t_f = t_f = 5ns (10\% \text{ to } 90\%) \\ freq = 10MHz (50\% \text{ duty cycle}) \\ Amplitude = 2.6V$ R₂ D3 R₃ 늪 LIC-567 LIC-568 Figure 1 LIC-566 PROPAGATION DELAY (Bus to Receiver Out) VCC = 5.0V B₀ INPUT 8, ^tPLH 82 D_O Вз OUTPUT D_1 R, D_2 INPUT PULSE: $t_y = t_1 = 5 ns (10\% to 90\%)$ freq = 10MHz (50% duty cycle) Amplitude = 2.6V D3 я3 30 pF LIC-570 LIC-571 Figure 2 L1C-569 PROPAGATION DELAY (Bus Enable to Bus Output) **Q** 5.0V 2.6V Q Q_{Vcc} INPU1 2.4kΩ 700 LZ ¹ZL PULSE GENERATOR 82 R/E OUTPUT В3 D_O 5kΩ (PROBE) R₀ INPUT PULSE: t_T = t₁ = 5ns (10% to 90%) freq = 5MHz (50% duty cycle) Amplitude = 2.6V R₁ 02 LIC-573 LIC-574 LIC-572 Figure 3 PROPAGATION DELAY (Receive Enable to Receive Output) Vcc Q 80 INPUT **Q** 5.0V B/F ^TZL PULSE GENERATOR В2 R/E В3 00 OUTPUT D₁ Ro 2.4kΩ 2400 D₂ R₁ INPUT PULSE $t_r = t_f = 5 ns (10\% to 90\%)$ freq = 5MHz (50% duty cycle) Amplitude = 2.6V R₂ R₃ 5ΚΩ (PROBE) LIC-576 LIC-577 LIC-575 Figure 4

LIC-578

Am8T26A Am8T26 Am8T26 Am8T26 Am8T26 Am8T28 Am8T2