Addressing Systemic Risk Using Contingent Convertible Debt - A Network Analysis

Aparna Gupta^{1 2} Yueliang Lu³ Runzu Wang⁴

¹US Securities and Exchange Commission, Washington DC

²Lally School of Management, Rensselaer Polytechnic Institute

³Belk College of Business, University of North Carolina at Charlotte

⁴Price College of Business, University of Oklahoma

November, 2018

INFORMS 2018 Annual Meeting

The Securities and Exchange Commission disclaims responsibility for any private publication or statement of any SEC employee or Commissioner. This speech expresses the author's views and does not necessarily reflect those of the Commission, the Commissioners, or other members of the staff.

Contingent Convertible Debt

- Financial Crisis (2008)
 - Too-big-to-fail & Systemic Risk: Lehman Brothers, Bear Stearns
 - Too-connected-to-fail: the Federal Reserve re-proposed to limit business ties among Wall Street banks (2011 & 2016)
- Dodd-Frank Act (2010) & Basel III (2013)
 - Regulation: strengthen capital positions
 - Debate: increasing capital $\xrightarrow{???}$ "Too-big-to-fail"

Contingent Convertible Debt

- Financial Crisis (2008)
 - Too-big-to-fail & Systemic Risk: Lehman Brothers, Bear Stearns
 - Too-connected-to-fail: the Federal Reserve re-proposed to limit business ties among Wall Street banks (2011 & 2016)
- Dodd-Frank Act (2010) & Basel III (2013)
 - Regulation: strengthen capital positions
 - Debate: increasing capital $\xrightarrow{???}$ "Too-big-to-fail"
- Contingent convertible (CoCo) debt
 - More than €125 billion CoCo bonds in Europe with more than 60% of them as tax-deductible

Contingent Convertible Debt

- Financial Crisis (2008)
 - Too-big-to-fail & Systemic Risk: Lehman Brothers, Bear Stearns
 - Too-connected-to-fail: the Federal Reserve re-proposed to limit business ties among Wall Street banks (2011 & 2016)
- Dodd-Frank Act (2010) & Basel III (2013)
 - Regulation: strengthen capital positions
 - Debate: increasing capital $\xrightarrow{???}$ "Too-big-to-fail"
- Contingent convertible (CoCo) debt
 - More than €125 billion CoCo bonds in Europe with more than 60% of them as tax-deductible
 - Satisfying regulatory capital requirement & a Self-saving instrument

Motivation

Contingent convertible debt with,

- Trigger criteria [Glasserman and Nouri, 2012]
 - Single trigger
 - Regulatory ratio: [Credit Suisse, 2011], [Rabobank, 2010], [Lloyd, 2009]
 - Stock price/ equity ratio/ CDS prices ...
 - Dual-trigger
 - [Allen and Tang, 2016], [Pennacchi et al., 2014], [McDonald, 2013]

Motivation

Contingent convertible debt with,

- Trigger criteria [Glasserman and Nouri, 2012]
 - Single trigger
 - Regulatory ratio: [Credit Suisse, 2011], [Rabobank, 2010], [Lloyd, 2009]
 - Stock price/ equity ratio/ CDS prices ...
 - Dual-trigger
 - [Allen and Tang, 2016], [Pennacchi et al., 2014], [McDonald, 2013]

Network Model

- Researchers have applied network science for studying systemic risk.
 - [Allen and Gale, 2000] (first)
 - [Anand et al., 2013] (balance sheet network model for European banks)
 - [Brunetti et al., 2018] (SEC: systemic risk & portfolio concentration)
- However,
 - Network model calibration is a challenge due to the lack of data
 - No research has combined network analysis with CoCo debt

Questions, Contributions & Findings

Research Questions

- Impact of CoCo debt conversion on individual banks & banking system
- Effect of two designs of CoCo debt trigger: single trigger & dual-trigger

Contributions

- It's the first work to combine the network analysis with the CoCo debt by developing a reduced form balance sheet network model.
- Estimate the impact of different types of CoCo debts on banking system stability with the network model
- Calibrate a real world banking network with 13-F filings data and find consistent result

Questions, Contributions & Findings

Findings

- Theoretically, CoCo debt controls the spread of local stress to the banking system
 - Both # of bank failures and ΔCoVaR are significantly reduced
 - Design of CoCo triggers reflects a trade-off in systemic risk management
 - Single trigger is better at saving stressed individual banks
 - Dual trigger outperforms in improving banking system stability
 - CoCo debt performs better in the situation of lower financial stability
 - Lower the Basel III leverage ratio, the better the protective effects.
 - The dual trigger CoCo outperforms the single trigger CoCo
- Empirically,
 - Faster propagation of financial shocks along linkage of large BHCs
 - \bullet # of bank failures and ΔCoVaR are consistent with theoretical findings

Balance Sheet Construction

• Assuming that CoCo debt is allocated from common debt

$$C_{it} + G_{it} + M_{it} + A_{it}^B + A_{it}^I = D_{it} + L_{it}^B + L_{it}^C + E_{it}$$
 (1)

Table 1: Captured key financial ratios

Key Statistics	Value
Leverage Ratio ¹	10%
Debt to Deposit Ratio	7.5%
Average Liability Duration	1.5
Long Term Base Interest Rate	1.47%
Long Term BBB Debt Risk Premium	3.43%

Cash & Cash Equivalents				
Government Bonds	Customers' Deposits			
Commercial				
Mortgage	Common Debt			
Interbank Debt				
Holdings	CoCo Debt			
Industrial Debt Holdings	Shareholders' Equity			

Figure 1: A sample balance sheet

Banking Network: N banks and M sectors

Channel 1: interbank debt holdings

• w_{ij} , the percentage of bank j's common debt held by bank i

$$A_i^B = \sum_{j=1}^N \mathbf{w_{ij}} L_j^B, \quad \forall i, j = 1 \text{ to } N,$$
 (2)

where L_i^B is the inter-bank debt issuance of a bank j.

Banking Network: N banks and M sectors

Channel 1: interbank debt holdings

• w_{ij} , the percentage of bank j's common debt held by bank i

$$A_i^B = \sum_{j=1}^N \frac{\mathbf{w_{ij}}}{\mathbf{L}_j^B}, \quad \forall i, j = 1 \text{ to } N,$$
 (2)

where L_i^B is the inter-bank debt issuance of a bank j.

Channel 2: common debt exposures

• s_{ij} , the fraction of a bank i's debt exposure to a sector j.

$$A_i^I = \sum_{j=1}^M s_{ij} I_j, \quad \forall i = 1 \text{ to } N,$$
(3)

where I_j represents the value of a single share invested in a sector j.

Visualization: Theoretical Networks

Dynamism of Balance Sheet

• Interbank debt holdings

$$A_{it}^B = \sum_{j=1}^N w_{ij} L_{jt}^B$$

• Industrial debt holdings:

$$A_{it}^I = \sum_{j=1}^M s_{ij} I_{jt}$$

• Cash & cash equivalents:

$$dC_{it} = C_{it}dY_{it}$$
 (with jumps)

Common debt:

$$\frac{dL_{it}^{B}}{dL_{it}^{B}} = -D_{i}^{b}L_{it}^{B}\frac{dr_{t}^{l}}{dr_{t}^{l}} + \frac{1}{2}C_{i}^{b}L_{it}^{B}(dr_{t}^{l2})^{2}$$

• CoCo debt:

$$dL_{it}^{C} = -D_{i}^{c}L_{it}^{C}dr_{t}^{l} + \frac{1}{2}C_{i}^{c}L_{it}^{C}(dr_{t}^{l})^{2}$$

• Index value of industrial sectors

•
$$dI_{jt} = \alpha (I_{j\mu} - I_{jt})dt + \sigma_j I_{jt}dW_{jt} + I_{jt}dJ_{jt}$$
 (with jumps)

• Interest rate: for bank with credit rating l,

$$r_t^l = r_t + \alpha^l s_t$$

•
$$dr_t = \alpha_r(\bar{r} - r_t)dt + \sigma_r\sqrt{r_t}dW_t^r$$

•
$$ds_t = \alpha_s(\bar{s} - s_t)dt + \sigma_s\sqrt{s_t}dW_t^s$$

(Base Rate)

(Credit Spread)

CoCo trigger design

- Single trigger: only bank-level trigger
 - bank-level trigger: individual bank equity ratio

$$\frac{E_{it}}{TA_{it}} \le \alpha_i \tag{4}$$

- **Dual-trigger:** bank-level trigger + systemic trigger
 - bank-level trigger: individual bank equity ratio

$$\frac{E_{it}}{TA_{it}} \le \alpha_i \tag{5}$$

• systemic trigger: average of all individual bank equity ratios

$$\left\langle \frac{E_{it}}{TA_{it}} \right\rangle_t \le \beta \tag{6}$$

- systemic trigger MUST be activated for the conversion of CoCo debt
- **Two-tranches CoCo:** in sensitivity analysis

Stress Test & Measure of Systemic Risk

- We designed two types of shocks
 - industrial shocksexogenous shock that spreads from industrial to the banking system
 - 2 cash shocksendogenous shock that starts within the banking system
- Measure of Systemic Risk
 - The # of Bank Failures
 - $2 \Delta CoVaR$ [Adrian and Brunnermeier, 2016]
 - \bullet CoVaR

$$Pr(X_i \le CoVaR_q^{Shock}|Shock) = q\%. (7)$$

 \bullet $\Delta CoVaR$

$$\Delta CoVaR_q = VaR_q - CoVaR_q^{Shock} \tag{8}$$

Algorithm 1 pseudo algorithm for dual-trigger simulation (one path)

- 1: Initialization
- 2: **for** t = 0 to T 1 **do**
- 3: $r_{i,t+1}^l \leftarrow r_t^l, L_{i,t+1}^B \leftarrow L_t^B, L_{i,t+1}^C \leftarrow L_t^C,$ \triangleright update interest rate and debt
- 4: $C_{i,t+1} \leftarrow C_{i,t} + (shock)$, \triangleright update cash, if shocks, choose random # of banks
- 5: $I_{j,t+1} \leftarrow I_{j,t} + (shock)$, \triangleright update sectors, if shocks, choose random # of sectors

Algorithm 2 pseudo algorithm for dual-trigger simulation (one path)

- 1: Initialization
- 2: **for** t = 0 to T 1 **do**
- 3: $r_{i,t+1}^l \leftarrow r_t^l, L_{i,t+1}^B \leftarrow L_t^B, L_{i,t+1}^C \leftarrow L_t^C,$ \triangleright update interest rate and debt
- 4: $C_{i,t+1} \leftarrow C_{i,t} + (shock)$, \triangleright update cash, if shocks, choose random # of banks
- 5: $I_{i,t+1} \leftarrow I_{i,t} + (shock)$, \triangleright update sectors, if shocks, choose random # of sectors
- 6: $A_{i,t+1}^B \leftarrow \sum_{j=1}^N \mathbf{w_{ij}} L_{j,t+1}^B$, \triangleright update interbank holdings
- 7: $A_{i,t+1}^I \leftarrow \sum_{j=1}^M s_{ij} I_{j,t+1}$, \triangleright update industrial holdings
- 8: $x_{i,t+1} \leftarrow \frac{E_{i,t+1}}{TA_{i,t+1}}$, \triangleright update the equity ratio

Algorithm 3 pseudo algorithm for dual-trigger simulation (one path)

```
1: Initialization
 2: for t = 0 to T - 1 do
         r_{i,t+1}^l \leftarrow r_t^l, L_{i,t+1}^B \leftarrow L_t^B, L_{i,t+1}^C \leftarrow L_t^C,
 3:
                                                                                  ▶ update interest rate and debt
         C_{i,t+1} \leftarrow C_{i,t} + (shock),
                                                      ▶ update cash, if shocks, choose random # of banks
 4:
        I_{i,t+1} \leftarrow I_{i,t} + (shock),
                                                 ▶ update sectors, if shocks, choose random # of sectors
 5:
         A_{i,t+1}^{B} \leftarrow \sum_{j=1}^{N} w_{ij} L_{i,t+1}^{B},
 6:
                                                                                       ▶ update interbank holdings
         A_{i,t+1}^{I} \leftarrow \sum_{i=1}^{M} s_{i,i} I_{i,t+1},
                                                                                       ▶ update industrial holdings
 7:
         x_{i,t+1} \leftarrow \frac{E_{i,t+1}}{TA_{i,t+1}},
 8:
                                                                                          > update the equity ratio
         for all x_{i,t+1} < \alpha_i, i = 1, 2, ..., N do
 9:
              if \langle x_i \rangle < \beta then
10:
                   E_{i,t+1} \leftarrow E_{i,t+1} + L_{i,t+1}^c
                                                                                             11:
                   L_{i,t+1}^c \leftarrow 0,
12:
                                                                                                 ▶ update CoCo debt
13:
         if E_{i,t+1} \leq 0 then
```

 $E_{i,t+1} \leftarrow 0$,

14:

▶ bank failures

Algorithm 4 pseudo algorithm for dual-trigger simulation (one path)

```
1: Initialization
 2: for t = 0 to T - 1 do
         r_{i,t+1}^l \leftarrow r_t^l, L_{i,t+1}^B \leftarrow L_t^B, L_{i,t+1}^C \leftarrow L_t^C,
 3:
                                                                                  ▶ update interest rate and debt
         C_{i,t+1} \leftarrow C_{i,t} + (shock),
                                                      ▶ update cash, if shocks, choose random # of banks
 4:
        I_{i,t+1} \leftarrow I_{i,t} + (shock),
                                                ▶ update sectors, if shocks, choose random # of sectors
 5:
         A_{i,t+1}^{B} \leftarrow \sum_{i=1}^{N} w_{ij} L_{i,t+1}^{B},
 6:
                                                                                      ▶ update interbank holdings
         A_{i,t+1}^{I} \leftarrow \sum_{i=1}^{M} s_{i,i} I_{i,t+1},
                                                                                      ▶ update industrial holdings
 7:
         x_{i,t+1} \leftarrow \frac{E_{i,t+1}}{TA_{i,t+1}},
 8:
                                                                                         ▶ update the equity ratio
         for all x_{i,t+1} \le \alpha_i, i = 1, 2, ..., N do
 9:
              if \langle x_i \rangle < \beta then
10:
                   E_{i,t+1} \leftarrow E_{i,t+1} + L_{i,t+1}^c
                                                                                            11:
                  L_{i,t+1}^c \leftarrow 0,
12:
                                                                                                 ▶ update CoCo debt
13:
       if E_{i,t+1} \leq 0 then
14:
          E_{i,t+1} \leftarrow 0,
                                                                                                         ▶ bank failures
     return
```

15: $E_{i,T}$, i = 1, 2, ..., N

Theoretical Simulation Result I

Table 2: One Industrial Shock

В	anking Syster	n		Large Banks		Medium Banks		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
None	Single	Dual	None	Single	Dual	None	Single	Dual
1.8817	0.1752	0.9160	0.0001	0	0	1.8816	0.1752	0.9160
0.1629	0.0830	0.0735	0.1218	0.1035	0.1052	0.1948	0.0717	0.0619
В	anking Syster	n	Large Banks			Medium Banks		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single
-1.7064*** (-46.52)	-0.9657*** (-24.38)	0.7408*** (36.98)	-0.0001 (-1.00)	-0.0001 (-1.00)	0.0000	-1.7063*** (-46.53)	-0.9656*** (-24.38)	0.7408*** (36.98)
-0.0799*** (11.10)	-0.0894*** (12.61)	-0.0095* (1.88)	-0.0183** (2.75)	-0.0166** (2.54)	0.0017 (-0.27)	-0.1232*** (13.48)	-0.1329*** (15.54)	00097* (1.70)
	(1) None 1.8817 0.1629 B (1) Single-None -1.7064*** (-46.52) -0.0799***	(1) (2) None Single 1.8817 0.1752 0.1629 0.0830 Banking Syster (1) (2) Single-None Dual-None -1.7064*** -0.9657*** (-46.52) (-24.38) -0.0799*** -0.0894***	None Single Dual 1.8817 0.1752 0.9160 0.1629 0.0830 0.0735 Banking System (1) (2) (3) Single-None Dual-None Dual-Single -1.7064^{***} -0.9657^{***} 0.7408^{***} (-46.52) (-24.38) (36.98) -0.0799^{***} -0.0894^{***} -0.0095^{*}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1) (2) (3) (4) (5) (6) (7) None Single Dual None Single Dual None 1.8817 0.1752 0.9160 0.0001 0 0 1.8816 0.1629 0.0830 0.0735 0.1218 0.1035 0.1052 0.1948 Banking System Large Banks (1) (2) (3) (4) (5) (6) (7) Single-None Dual-None Dual-Single Single-None Dual-Single Single-None -1.7064*** -0.9657*** 0.7408*** -0.0001 -0.0001 0.0000 -1.7063*** (-46.52) (-24.38) (36.98) (-1.00) (-1.00) (.) (-46.53) -0.0799*** -0.0894*** -0.0095* -0.0183** -0.0166** 0.0017 -0.1232***	(1) (2) (3) (4) (5) (6) (7) (8) None Single Dual None Single Dual None Single 1.8817 0.1752 0.9160 0.0001 0 0 1.8816 0.1752 0.1629 0.0830 0.0735 0.1218 0.1035 0.1052 0.1948 0.0717 Banking System Large Banks Medium Bank (1) (2) (3) (4) (5) (6) (7) (8) Single-None Dual-None Dual-Single Single-None Dual-None -1.7064*** -0.9657*** 0.7408*** -0.0001 -0.0001 0.0000 -1.7063*** -0.9656*** (-46.52) (-24.38) (36.98) (-1.00) (-1.00) (.) (-46.53) (-24.38) -0.0799*** -0.0894*** -0.0095* -0.0183*** -0.0166** 0.0017 -0.1232*** -0.1329***

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Theoretical Simulation Result II

Table 3: Two Industrial Shocks

A: Systemic Risk Measures	В	anking Syster	m		Large Banks		N	Medium Banks		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
CoCo design	None	Single	Dual	None	Single	Dual	None	Single	Dual	
Mean of bank failures	4.6103	0.6965	1.7784	0	0	0	4.6103	0.6965	1.7784	
Equity $\Delta CoVaR_{0.05}$	0.3138	0.1942	0.1586	0.2574	0.2017	0.1996	0.3660	0.1915	0.1282	
B: Significance Test	Banking System			Large Banks			Medium Banks			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Difference	Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single	
Mean of bank failures	-3.9138*** (-68.90)	-2.8319*** (-48.05)	1.0819*** (34.22)	0.0000	0.0000 (.)	0.0000 (.)	-3.9138*** (-68.90)	-2.8319*** (-48.05)	1.0819*** (34.22)	
Equity $\Delta CoVaR_{0.05}$	-0.1195*** (16.46)	-0.1552*** (21.72)	-0.0356*** (6.28)	-0.0557*** (9.09)	-0.0578*** (9.77)	-0.0021 (0.39)	-0.1744*** (19.90)	-0.2378*** (27.37)	-0.0633*** (9.46)	

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Theoretical Simulation Result III

Table 4: Industrial & Cash Shocks

A: Systemic Risk Measures	В	anking System	m		Large Banks		1	Medium Banks		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
CoCo design	None	Single	Dual	None	Single	Dual	None	Single	Dual	
Mean of bank failures	2.0508	0.1910	0.8026	0.1840	0.0008	0.0111	1.8668	0.1902	0.7915	
Equity $\Delta CoVaR_{0.05}$	0.3447	0.1682	0.1817	0.5645	0.2984	0.4154	0.2008	0.0726	0.0503	
B: Significance Test	Banking System			Large Banks			Medium Banks			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Difference	Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single	
Mean of failures	-1.8598*** (-46.21)	-1.2482*** (-29.42)	0.6116*** (31.44)	-0.1832*** (-25.88)	-0.1729*** (-24.04)	0.0103*** (7.63)	-1.6766*** (-45.87)	-1.0752*** (-27.64)	0.6014*** (31.12)	
Equity $\Delta CoVaR_{0.05}$	-0.1765*** (21.87)	-0.1630*** (20.42)	0.0135*** (-2.52)	-0.2661*** (34.32)	-0.1490*** (18.29)	0.1171*** (-16.61)	-0.1282*** (13.94)	-0.1505*** (17.79)	-0.0223*** (3.98)	

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Sensitivity Analysis: Two Tranches CoCo

- \bullet single & systemic triggers \implies all converts
- ② only single trigger \implies first tranche converts
 - second tranche converts only when two triggers both activated
- \bullet first tranche, $100\% \implies \text{single trigger}$; $0 \implies \text{dual trigger}$

Figure 3: (a) Δ CoVaR (b) Δ Bank Failures

Sensitivity Analysis: Trigger Level

Figure 4: (a) Δ CoVaR (1 shock) (b) Δ CoVaR (2 shocks) (c) bank falures (1 shock) (d) bank falures (2 shocks)

Data

- 13-F Filings from SEC EDGAR System
- Call reports from Federal Financial Institutions Examination Council
- Interest rates, OAS, credit ratings, etc, from a Bloomberg terminal

Table 5: 36 Major US BHCs

BHC Size *	Total Assets	Number
Super Large BHCs	Greater than \$1000 Billion	4
Large BHCs	Greater than $$250$ Billion & Less than $$1000$ Billion	6
Medium BHCs	Greater than \$10 Billion & Less than \$250 Billion	16
Small BHCs	Less than \$10 Billion	10

^{*} Size definition is from [MBCA, 2013]

Table 6: Real-world Network Property

Network	Avg. Degree	Diameter	Path Len.	Betweenness	Cluster Coef.	Components
36 US BHCs	17.47	4	1.54	16.39	0.71	1 weak; 6 strong
10 Large & Super	9.6	2	1.03	0.30	0.97	1 weak; 1 strong

Visualization: Real-world Networks

Figure 5: (a) Interbank Holdings

(b) Common Exposures

Visualization: Common Exposures

Empirical Simulation Result I

Table 7: Two Industrial Shocks

A: Systemic Risk Measures	В	anking System	m	Large &	& Super Large	e BHCs	Medi	um & Small l	BHCs
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
CoCo design	None	Single	Dual	None	Single	Dual	None	Single	Dual
Mean of bank failures	3.3417	2.1583	3.1469	1.7489	1.0608	1.5921	1.5928	1.0975	1.5548
Equity $\Delta CoVaR_{0.05}$	0.1162	0.0950	0.0842	0.1510	0.1202	0.1053	0.0447	0.0443	0.0437
B: Significance Test	Banking System			Large & Super Large BHCs			Medium & Small BHCs		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Difference	Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single
Mean of bank failures	-1.1834*** (-9.2413)	-0.1948** (-1.7020)	0.9886*** (7.6684)	-0.6881*** (-9.7149)	-0.1568* (-1.8935)	0.5313*** (8.4882)	-0.4953*** (-7.4704)	-0.0380 (-1.3339)	0.4573*** (6.5160)
Equity $\Delta CoVaR_{0.05}$	-0.0213***	-0.0320***	-0.0108*	-0.0312***	-0.0461***	-0.0149**	-0.0007	-0.0011	-0.0005
	(3.5251)	(4.9057)	(1.7147)	(3.9337)	(6.1343)	(2.0871)	(0.2660)	(0.3623)	(0.2054)

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Empirical Simulation Result II

Table 8: Industrial & Cash Shocks

A: Systemic Risk Measures	В	anking System	m	Large &	& Super Large	e BHCs	Medi	um & Small I	BHCs
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
CoCo design	None	Single	Dual	None	Single	Dual	None	Single	Dual
Mean of bank failures	3.3751	2.1636	3.1621	1.7590	1.0636	1.5961	1.6161	1.1000	1.5660
Equity $\Delta CoVaR_{0.05}$	0.1322	0.1074	0.0950	0.1722	0.1374	0.1193	0.0466	0.0466	0.0459
B: Significance Test	Banking System			Large & Super Large BHCs			Medium & Small BHCs		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Difference	Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single	Single-None	Dual-None	Dual-Single
Mean of bank failures	-1.2115*** (-7.8084)	-0.2130** (-2.6679)	0.9985*** (6.2456)	-0.6954*** (-9.6613)	-0.1629** (-2.4686)	0.5325*** (8.4566)	-0.5161*** (-8.7689)	-0.0501* (-1.8033)	0.4660*** (6.4194)
Equity $\Delta CoVaR_{0.05}$	-0.0250***	-0.0373***	-0.0125**	-0.0351***	-0.0531***	-0.0183***	-0.0003	-0.0009	-0.0006
	(4.4387)	(6.2811)	(2.1167)	(4.9412)	(6.3115)	(2.7287)	(0.1047)	(0.2998)	(0.2422)

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Summary

- CoCo debt controls the spread of systemic risk of the banking system.
- A trade-off in CoCo debt trigger designs,
 - Single trigger better protects individual stressed banks.
 - Dual trigger outperforms when targeting the banking system.
 - These is no universally correct answer to this choice.
- The results are robust to simulation parameters.
- Calibrated real-world banking network gives consistent results.

Reference I

Adrian, T. and Brunnermeier, M. K. (2016).

Covar.

American Economic Review, 106(7):1705-1741.

Predicting and measuring a financial institution's contribution to systemic risk that internalizes externalities and avoids procyclicality.

Allen, F. and Gale, D. (2000).

Financial contagion.

Journal of political economy, 108(1):1-33.

Allen, L. and Tang, Y. (2016).

What's the contingency? a proposal for bank contingent capital triggered by systemic risk.

Journal of Financial Stability, 26:1-14.

Anand, K., Gai, P., Kapadia, S., Brennan, S., and Willison, M. (2013).

A network model of financial system resilience.

Journal of Economic Behavior & Organization, 85:219-235.

Brunetti, C., Harris, J. H., and Mankad, S. (2018).

Bank holdings and systemic risk.

The Board of Governors of the Federal Reserve System.

Glasserman, P. and Nouri, B. (2012).

Contingent capital with a capital-ratio trigger.

Management Science, 58(10):1816-1833.

Reference II

MBCA (2013).

Comparisions ans similarities between mid-size and small banks.

The Mid-size Bank Coalition of America (MBCA), Available at

http://midsizebanks.com/wp-content/files_mf/1386267758MBCAIndustryComparisonNov2013.pdf.

McDonald, R. L. (2013).

Contingent capital with a dual price trigger.

Journal of Financial Stability, 9(2):230-241.

Pennacchi, G., Vermaelen, T., and Wolff, C. C. (2014).

Contingent capital: The case of coercs.

Journal of Financial and Quantitative analysis, 49(03):541-574.