★ Início / Meus Ambientes / 2020 / IF / 430 / 4300318-2020 / 20 de maio de 2020 / Quarto EP

Iniciado em quarta, 20 mai 2020, 20:32

Estado Finalizada

Concluída em segunda, 1 jun 2020, 19:31

Tempo 11 dias 22 horas
empregado

Avaliar Ainda não avaliado

Questão **1**Completo
Vale 1,00

ponto(s)

Para sistemas em que se formam padrões com base no transporte de partículas por difusão, tais como eletrodeposição ou deposição mineral, um modelo simples é a **agregação limitada por difusão** (diffusion-limited aggregation, ou DLA).

Nesse modelo, começamos com uma rede quadrada de lado L+1, contendo na origem uma única partícula, que pode se mover apenas entre os sítios de coordenadas x e y inteiras. (Supomos L par e rotulamos as coordenadas x e y entre -L/2 e +L/2.) A partícula realiza uma caminhada aleatória de um sítio da rede a um dos sítios vizinhos (acima, abaixo, à esquerda ou à direita) até atingir algum sítio da borda. A partícula então fica presa a esse sítio, tornando-se imóvel.

Em seguida, uma segunda partícula parte da origem e realiza uma caminhada aleatória até tornar-se vizinha da primeira partícula ou atingir um sítio da borda, ficando então presa. Depois uma terceira partícula parte da origem, e assim por diante. Cada nova partícula parte da origem e caminha até ficar presa ao atingir um sítio da borda ou tornar-se vizinha de uma outra partícula já imóvel.

O programa para a caminhada aleatória do exemplo 7 da aula 8 pode servir de base para o seu trabalho.

Escreva um código que implemente esse modelo, segundo as regras acima. Seu programa deve ser interrompido quando uma partícula imóvel ocupar um sítio vizinho à origem. Ao final, produza um gráfico mostrando as posições de todas as partículas imóveis. Execute seu programa com $L=100~{\rm e}~L=200$, enviando figuras com os gráficos resultantes pelo campo abaixo, juntamente com seu programa. Um exemplo de figura obtida para $L=540~{\rm e}$ mostrado na figura a seguir. Os padrões obtidos têm características fractais, como o conjunto de Mandelbrot discutido em Introdução à Física Computacional 1.

Dica. Uma etapa que pode consumir muito tempo é verificar se um sítio ao qual chega uma partícula é vizinho de outro em que há uma outra partícula imóvel. Não é eficiente efetuar a verificação percorrendo uma lista que armazene as coordenadas das partículas já imobilizadas. É melhor criar uma matriz ou lista que indique para cada sítio se ele está vazio ou ocupado por uma partícula imóvel.

Figure L100.png
Figure L200.png
Questao1.py

Histórico de respostas

Passo	Hora	Ação	Estado	Pontos
<u>1</u>	20/05/2020 20:32	Iniciada	Ainda não respondida	
2	1/06/2020 19:31	Salvou: {\$a}	Resposta salva	
3	1/06/2020 19:31	Tentativa finalizada	Completo	