第三章测试题

一,选择题

1. 已知二维随机变量(X,Y)的联合分布律为

Y	0	1	2	3
1	0	3/8	а	0
3	1/8	0	0	1/8

则常数a= ()

- (A) 1/8 (B) 3/8 (C) 2/8 (D) 6/8

2. 设二维随机变量(X,Y)的联合概率密度

$$f(x, y) = \begin{cases} Ae^{-(3x+2y)}, & x>0,y>0 \\ 0, & 其他 \end{cases}$$

则系数 A= ()

- (A) 1 (B) 3 (C) 2 (D) 6

3. 设 $X \sim N(0,1), Y \sim N(1,1), \exists X = Y$ 相互独立,则()。

(A)
$$P(X+Y \le 0) = \frac{1}{2}$$
 (B) $P(X+Y \le 1) = \frac{1}{2}$

(B)
$$P(X+Y \le 1) = \frac{1}{2}$$

(C)
$$P(X - Y \le 0) = \frac{1}{2}$$
 (B) $P(X - Y \le 1) = \frac{1}{2}$

(B)
$$P(X - Y \le 1) = \frac{1}{2}$$

4. 设随机变量 X 和 Y 相互独立, 且都在(0,1)区间上服从均匀分布,则服从区间或区域上的 均匀分布的随机变量是()

- (A) (X,Y) (B) X+Y (C) X^2 (D) $X-Y \le 1$

5. 设随机变量 X 和 Y 相互独立,具有同一分布,且 X 的分布函数为 F(x),则

 $Z = \max\{X,Y\}$ 的分布函数为(

(A)
$$F^2(z)$$

(B)
$$F(x)F(y)$$

(C)
$$1-[1-F(z)]^2$$

(A)
$$F^2(z)$$
 (B) $F(x)F(y)$ (C) $1-[1-F(z)]^2$ (D) $[1-F(x)][1-F(y)]$

二、填空题

1. 设随机变量 X 和 Y 概率分布为

$$X \sim \begin{pmatrix} -1 & 0 & 1 \\ 0.25 & 0.5 & 0.25 \end{pmatrix}, Y \sim \begin{pmatrix} -1 & 0 & 1 \\ 0.25 & 0.5 & 0.25 \end{pmatrix}$$

且满足 $P{XY = 0} = 1$,则 $P{X = Y} =$

2. 已知二维随机变量(X,Y)的联合分布函数为

$$F(x,y) = \begin{cases} (1-e^{-2x})(1-e^{-3y}), & x > 0, y > 0, \\ 0, & \text{其他} \end{cases}$$

则 $P\{0 < X \le 1, 1 < Y \le 2\} =$

3. 设
$$X \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \end{pmatrix}$$
, $Y = X^2$, 则 X, Y 的联合分布律为_____

4. 设(*X*,*Y*)的分布律为

X Y	-1	0	1
-1	1/6	1/12	1/6
1	1/8	1/3	1/8

$$\text{If } P\{Y = -1 \mid X = 1\}$$
, $P\{X = 0 \mid Y = -1\}$

5. 已知二维随机变量(X, Y)的联合概率密度为

$$f(x,y) = \begin{cases} 6x, & 0 \le x \le y \le 1, \\ 0, & 其他, \end{cases}$$

则
$$P\{X+Y\leq 1\}=$$

三、解答题

1. 设X和Y是相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为

$$f_{Y}(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & y > 0, \\ 0, & y \le 0, \end{cases}$$

求: (1) X 和Y 的联合概率密度;

- (2) 未知数a的方程 $a^2 + 2Xa + Y = 0$ 有实根的概率。(结果用标准正态分布表示)
- 2. 设随机变量 X 和 Y 相互独立,且均服从 N(0,1) ,求 $P\left\{X^2+Y^2\leq 1\right\}$ 。
- 3. 设二维随机变量(X,Y)的概率密度为

$$f(x, y) = ke^{-\frac{1}{2}x^2 - \frac{1}{8}y^2}, -\infty < x < +\infty, -\infty < y < +\infty.$$

求出常数k,并指出(X,Y)所服从的分布。

4. 已知二维随机变量(X,Y)和(U,V)的分布律分别为

Y	0	1
0	3/10	3/10
1	3/10	1/10

U V	0	1
0	9/25	6/25
1	6/25	4/25

分别求它们的边缘分布律,并判断其独立性。

5. 设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} ce^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{ #.d.}, \end{cases}$$

求: (1) 常数c; (2) $P\{X+Y=1\}$

6.设 X 关于 Y 的条件概率密度为

$$f_{X|Y}(x|y) = \begin{cases} 3x^2 / y^3, & 0 < x < y \\ 0, & 其他 \end{cases}$$
 其他,

而Y的概率密度为

$$f_{\rm Y}(y) = \begin{cases} 5y^4, & 0 < y < 1 & 0 < y < x, \\ 0, & 其他 & 其他, \end{cases}$$

求联合概率密度 f(x, y), X的概率密度 $f_{y}(x)$ 和概率 $P\{X > 0.5\}$.

7. 设随随机变量 X 和 Y 相互独立,且服从 N(0,1).

求
$$Z = X^2 + Y^2$$
的概率密度 $f_Z(z)$.

8. 设随机变量 X 和 Y 相互独立,且 $X \sim U(0,1), Y \sim U(0,1)$.

求 $Z = \min\{X,Y\}$ 的概率密度 $f_Z(z)$.