Übung zur Vorlesung im WS 2010/2011 **Algorithmische Eigenschaften von Wahlsystemen I**

(Lösungsvorschläge) Blatt 7, Abgabe am 9. Dezember 2010

Aufgabe 1 (PARTITION **und** SS): Die Entscheidungsprobleme PARTITION und SUBSET SUM seien wie folgt definiert:

PARTITION						
Gegeben:	Eine Folge (s_1, \ldots, s_n) positiver ganzer Zahlen mit $\sum_{i=1}^n s_i$ ist eine					
Frage:	gerade Zahl. Gibt es eine Teilmenge $A\subseteq\{1,\ldots,n\}$ derart, dass gilt $\sum_{i\in A}s_i=\sum_{i\in\{1,\ldots,n\}-A}s_i?$					

SUBSET SUM (SS)						
Gegeben:	Eine Folge (s_1, \ldots, s_n) positiver ganzer Zahlen und eine positive					
	natürliche Zahl k .					
Frage:	Gibt es eine Teilmenge $A \subseteq \{1, \dots, n\}$ derart, dass gilt $\sum s_i = k$?					
	$i \in A$					

Es sei nun (1, 9, 5, 3, 8) gegeben.

- (a) Ist (1, 9, 5, 3, 8) eine Ja-Instanz für PARTITION? Begründen Sie Ihre Antwort.
- (b) Entscheiden Sie für jedes $k \in \{2, 12, 15, 17\}$, ob ((1, 9, 5, 3, 8), k) eine Ja-Instanz für SUBSET SUM ist. Begründen Sie Ihre Antwort.

Lösungsvorschläge: Es gilt $\sum_{i=1}^{5} s_i = 26$.

- (a) Es ist eine Ja-Instanz mit der Partition $(A, \{1, \dots, 5\} A)$, wobei $A = \{1, 2, 4\}$. Es gilt $\sum_{i \in A} s_i = 1 + 9 + 3 = 13$.
- (b) k = 2: ((1, 9, 5, 3, 8), 2) ist eine Nein-Instanz, da aufgrund der Werte der s_i die Summe 2 nie erreicht werden kann.

$$k=12$$
: $((1,9,5,3,8),12)$ ist eine Ja-Instanz: Z.B. mit $A=\{2,4\}$, $\sum_{i\in A}s_i=9+3=12$ oder mit $A=\{1,4,5\}$, $\sum_{i\in A}s_i=1+8+3=12$.

$$k=15$$
: $((1,9,5,3,8),15)$ ist eine Ja-Instanz mit $A=\{1,2,3\}, \sum\limits_{i\in A}s_i=1+9+5=15.$

$$k = 17$$
: $((1, 9, 5, 3, 8), 17)$ ist eine JA-Instanz mit $A = \{2, 5\}$, $\sum_{i \in A} s(a) = 9 + 8 = 17$.

Aufgabe 2 (SS \leq_m^p PARTITION, PARTITION \leq_m^p SS): Zeigen Sie, dass folgendes gilt:

- (a) PARTITION $\leq_m^p SS$ und
- (b) $SS \leq_m^p PARTITION$.

Lösungsvorschläge:

(a) Es sei (s_1, \ldots, s_n) eine Partition-Instanz mit $\sum_{i=1}^n s_i = 2l$. Wir konstruieren daraus die SS-Instanz $((s_1, \ldots, s_n), l)$. Dies ist offensichtlich in Polynomialzeit möglich. Bleibt die Äquivalenz zu zeigen:

Von links nach rechts: Es sei (s_1, \ldots, s_n) eine Ja-Instanz für PARTITION mit $(A, \{1, \ldots, n\} - A)$. Es gilt also $\sum_{i \in A} s_i = l$. Somit ist A die gesuchte Teilmenge für $((s_1, \ldots, s_n), l)$.

Von rechts nach links: Es sei $((s_1,\ldots,s_n),l)$ eine Ja-Instanz für SS mit der Teilmenge $A\subseteq\{1,\ldots,n\}$. Es gilt also $\sum\limits_{i\in A}s_i=l$. Somit ist $(A,\{1,\ldots,n\}-A)$ eine Partition für (s_1,\ldots,s_n) .

(b) Es sei $((s_1, \ldots, s_n), k)$ eine SS-Instanz mit $S = \sum_{i=1}^n s_i$. Wir definieren die PARTITI-ON-Instanz $(s_1, \ldots, s_n, s_{n+1})$ mit $s_{n+1} = S - 2k$.

Es gilt $\sum_{i=1}^{n+1} s_i = 2S - 2k = 2(S - k)$. Es gilt $k \leq S$, also ist $(s_1, \ldots, s_n, s_{n+1})$ eine Partition-Instanz und diese Transformation ist offensichtlich in Polynomialzeit möglich. Bleibt die Äquivalenz zu zeigen:

Von links nach rechts: Es sei $((s_1,\ldots,s_n),k)$ eine Ja-Instanz für SS, dann gibt es ein $A\subseteq\{1,\ldots,n\}$ mit $\sum_{i\in A}s_i=k$. Damit gilt dann, dass $(A\cup\{n+1\},\{1,\ldots,n+1\}-(A\cup\{n+1\}))$ eine Partition von $\{1,\ldots,n+1\}$ ist, denn $\sum_{i\in A\cup\{n+1\}}s_i=k+S-2k=S-k$.

Von rechts nach links: Es sei (s_1,\ldots,s_n,s_{n+1}) eine Ja-Instanz für Partition mit der Partition $(A,\{1,\ldots,n+1\}-A)$. Es gilt, dass $n+1\in A$ oder $n+1\in\{1,\ldots,n+1\}-A$. OBdA sei nun $n+1\in A$. Dann gilt $\sum\limits_{i\in A-\{n+1\}}s_i=S-k-S+2k=k$. Da $A-\{n+1\}$ eine echte Teilmenge von $\{1,\ldots,n\}$ ist, ist $((s_1,\ldots,s_n),k)$ eine Ja-Instanz für SS mit der Teilmenge A.

Aufgabe 3 (CCWM **für Scoring-Protokolle und** 3 **Kandidaten**): Aus der Vorlesung kennen Sie die Reduktion von Partition auf CCWM für Scoring-Protokolle und 3 Kandidaten. Betrachten Sie die Partition-Instanz (1, 9, 5, 3, 8) aus Aufgabe 1.

- (a) Konstruieren Sie aus (1, 9, 5, 3, 8) die Wahl (C, V) gemäß der Reduktion und bestimmen Sie die Punktwerte der Kandidaten in (C, V).
- (b) Wieviele Manipulatoren gibt es in dieser CCWM-Instanz und welche Gewichte haben diese?
- (c) Bestimmen Sie die Präferenzen der einzelnen Manipulatoren und die Punktwerte der Kandidaten in der Wahl $(C, V \cup S)$.
- (d) Erläutern Sie an diesem Beispiel, wieso diese Reduktion für das Wahlsystem Plurality Voting nicht funktioniert.

Lösungsvorschläge: Es ist (1, 9, 5, 3, 8) gegeben und es existiert die Partition $(\{1, 2, 4\}, \{3, 5\})$.

(a)
$$C = \{a, b, p\}, V = \{v_1, \dots, v_{2(2\alpha_1 - \alpha_2)13 - 1)}\}$$
:

- $\bullet \,$ es gibt $(2\alpha_1 \alpha_2)13 1$ Wähler der Form $a\,b\,p$ und
- es gibt $(2\alpha_1 \alpha_2)13 1$ Wähler der Form b a p.

$$score_{(C,V)}(a) = \alpha_1((2\alpha_1 - \alpha_2)13 - 1) + \alpha_2((2\alpha_1 - \alpha_2)13 - 1)$$

$$= ((2\alpha_1 - \alpha_2)13 - 1)(\alpha_1 + \alpha_2),$$

$$score_{(C,V)}(b) = \alpha_2((2\alpha_1 - \alpha_2)13 - 1) + \alpha_1((2\alpha_1 - \alpha_2)13 - 1)$$

$$= ((2\alpha_1 - \alpha_2)13 - 1)(\alpha_1 + \alpha_2),$$

$$score_{(C,V)}(p) = 0.$$

(b) Es gibt 5 Manipulatoren mit den Gewichten

Manipulator i	1	2	3	4	5
Gewicht	$1(\alpha_1+\alpha_2)$	$9(\alpha_1+\alpha_2)$	$5(\alpha_1+\alpha_2)$	$3(\alpha_1+\alpha_2)$	$8(\alpha_1+\alpha_2)$

(c) Die Stimmen der Manipulatoren:

Manipulator i	1	2	3	4	5
Gewicht	$1(\alpha_1 + \alpha_2)$	$9(\alpha_1 + \alpha_2)$	$5(\alpha_1 + \alpha_2)$	$3(\alpha_1+\alpha_2)$	$8(\alpha_1 + \alpha_2)$
Präferenz	p a b	p a b	p b a	p a b	p b a

Die Punktwerte in $(C, V \cup S)$:

$$score_{(C,V \cup S)}(a) = ((2\alpha_1 - \alpha_2)13 - 1)(\alpha_1 + \alpha_2) + 13(\alpha_1 + \alpha_2)\alpha_2$$

$$= 26(\alpha_1 - \alpha_2)(\alpha_1 + \alpha_2)),$$

$$score_{(C,V \cup S)}(b) = 26(\alpha_1 - \alpha_2)(\alpha_1 + \alpha_2),$$

$$score_{(C,V \cup S)}(p) = 26(\alpha_1 + \alpha_2).$$

(d) An den Punktwerten in Aufgabenteil (c) ist zu sehen, dass Kandidat c mit dieser Manipulation im Plurality- Wahlsystem nicht zum eindeutigen Gewinner gemacht werden kann. Denn in PV gilt $\alpha_2=0$ und somit haben alle Kandidaten in der Wahl $(C,V\cup S)$ den gleichen Punktwert.