Table 1
 Microeconomic Model Calibration

{table:Parameters}

Calibrated Parameters							
Description	Parameter	Value	Source				
Permanent Income Growth Factor	\mathcal{G}	1.03	PSID: Carroll (1992)				
Interest Factor	R	1.04	Conventional				
Time Preference Factor	β	0.96	Conventional				
Coefficient of Relative Risk Aversion	γ	2	Conventional				
Probability of Zero Income	q	0.005	PSID: Carroll (1992)				
Std Dev of Log Permanent Shock	σ_{ψ}	0.1	PSID: Carroll (1992)				
Std Dev of Log Transitory Shock	$\sigma_{ heta}$	0.1	PSID: Carroll (1992)				

 Table 2
 Model Characteristics Calculated from Parameters

{table:Calibration}

				Approximate
				Calculated
Description	Symbol and Formula			Value
Finite Human Wealth Factor	$\tilde{\mathcal{R}}^{-1}$	=	\mathcal{G}/R	0.990
PF Value of Autarky Factor	コ	=	$eta \mathcal{G}^{1-\gamma}$	0.932
Growth Compensated Permanent Shock	$\underline{\psi}$	=	$(\mathbb{E}[\psi^{-1}])^{-1}$	0.990
Uncertainty-Adjusted Growth	$\underline{\mathcal{G}}$	=	$\mathcal{G}\underline{\psi}$	1.020
Utility Compensated Permanent Shock	$\underline{\psi}$	≡	$(\mathbb{E}[\psi^{1-\gamma}])^{1/(1-\gamma)}$	0.990
Utility Compensated Growth	$\frac{\underline{\psi}}{\underline{\mathcal{G}}}$	=	$\mathcal{G}\underline{\psi}$	1.020
Absolute Patience Factor	Þ	\equiv	$(R\beta)^{1/\gamma}$	0.999
Return Patience Factor	<u>Þ</u> R	=	Þ /R	0.961
Growth Patience Factor	$\frac{\mathbf{b}}{\mathcal{G}}$	\equiv	\mathbf{b}/\mathcal{G}	0.970
Modified Growth Patience Factor	$\frac{\mathbf{b}}{\mathcal{G}}\mathbb{E}[\psi^{-1}]$	=	$\mathbf{P}/\underline{\mathcal{G}}$	0.980
Value of Autarky Factor	⊒	=	$eta \mathcal{G}^{1-\gamma} \underline{\underline{\psi}}^{1-\gamma}$	0.941
Weak Return Impatience Factor	$q^{1/\gamma}\mathbf{p}$	=	$(q\betaR)^{\overline{1/\gamma}}$	0.071

Table 3 Definitions and Comparisons of

{table:Comparison}

Perfect Foresight Versions Uncertainty Versions Finite Human Wealth $\overline{\mathcal{G}/\mathsf{R}} < 1$ G/R < 1The growth factor for permanent income The model's risks are mean-preserving \mathcal{G} must be smaller than the discounting spreads, so the PDV of future income is factor R for human wealth to be finite. unchanged by their introduction. Absolute Impatience Condition $\overline{\mathbf{p}} < 1$ **p**< 1The unconstrained consumer is If wealth is large enough, the expectation sufficiently impatient that the level of of consumption next period will be consumption will be declining over time: smaller than this period's consumption: $\lim_{m_t o \infty} \mathbb{E}_t[oldsymbol{c}_{t+1}] < oldsymbol{c}_t$ $\boldsymbol{c}_{t+1} < \boldsymbol{c}_t$ Return Impatience Weak RIC (WRIC) $q^{1/\gamma}\mathbf{p}/R < 1$ Return Impatience Condition $\mathbf{P}/R < 1$ The growth factor for consumption \mathbf{p} If the probability of the zero-income must be smaller than the discounting event is q = 1 then income is always zero factor R, so that the PDV of current and and the condition becomes identical to future consumption will be finite: the RIC. Otherwise, weaker. $c'(m) < 1 - q^{1/\gamma} \mathbf{P} / \mathbf{R} < 1$ $c'(m) = 1 - \mathbf{P}/R < 1$ Growth Impatience GIC-Mod $\mathbf{p}\mathbb{E}[\psi^{-1}]/\mathcal{G} < 1$ GIC $\overline{\mathbf{p}/\mathcal{G}} < 1$ For an unconstrained PF consumer, the By Jensen's inequality stronger than GIC. ratio of \boldsymbol{c} to \boldsymbol{p} will fall over time. For Ensures consumers will not expect to constrained, guarantees the constraint accumulate m unboundedly. eventually binds. Guarantees $\lim_{m_t \uparrow \infty} \mathbb{E}_t[\psi_{t+1} m_{t+1}/m_t] = \frac{\mathbf{P}}{\mathcal{G}}$ $\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \frac{\mathbf{b}}{\mathcal{G}} \mathbb{E}[\psi^{-1}]$ Finite Value of Autarky $\begin{array}{c} \text{PF-FVAC} \\ \beta \mathcal{G}^{1-\gamma} < 1 \\ \text{equivalently } \mathbf{\dot{p}} < \mathsf{R}^{1/\gamma} \mathcal{G}^{1-1/\gamma} \end{array}$ $\frac{\text{FVAC}}{\beta \mathcal{G}^{1-\gamma} \mathbb{E}[\psi^{1-\gamma}] < 1}$ The discounted utility of constrained By Jensen's inequality, stronger than the PF-FVAC because for $\gamma > 1$ and nondegenerate ψ , $\mathbb{E}[\psi^{1-\gamma}] > 1$. consumers who spend their permanent income each period should be finite.

Table 4 Sufficient Conditions for Nondegenerate[‡] Solution

{table:Required}

Consumption Model(s)	Conditions	Comments
$\bar{\mathbf{c}}(m)$: PF Unconstrained	RIC, FHWC°	$ RIC\Rightarrow v(m) < \infty; FHWC\Rightarrow 0 < v(m) $
$\underline{\mathbf{c}}(m) = \underline{\kappa}m$		PF model with no human wealth $(h = 0)$
Section 2.3.1:		RIC prevents $\bar{\mathbf{c}}(m) = \underline{\mathbf{c}}(m) = 0$
Section 2.3.1:		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
Eq (48) in Appendix A.2:		$PF-FVAC+FHWC \Rightarrow RIC$
Eq (47) in Appendix A.2:		$GIC+FHWC \Rightarrow PF-FVAC$
$\grave{\mathrm{c}}(m)$: PF Constrained	GIC, RIC	FHWC holds $(\mathcal{G} < \mathbf{P} < R \Rightarrow \mathcal{G} < R)$
Section 5.1.1:		$\grave{\mathbf{c}}(m) = \bar{\mathbf{c}}(m) \text{ for } m > m_{\#} < 1$
		(RHC would yield $m_{\#} = 0$ so $\dot{c}(m) = 0$)
Appendix D:	GIC,RIC	$\lim_{m\to\infty} \dot{c}(m) = \bar{c}(m), \lim_{m\to\infty} \dot{k}(m) = \underline{\kappa}$
		kinks where horizon to $b = 0$ changes*
Appendix D:	GIC,RIC	$\lim_{m \to \infty} \grave{\boldsymbol{\kappa}}(m) = 0$
		kinks where horizon to $b = 0$ changes*
c(m): Friedman/Muth	Section 2.4.1 & 2.4.2	$\underline{\mathbf{c}}(m) < \mathbf{c}(m) < \bar{\mathbf{c}}(m)$
		$\underline{\mathbf{v}}(m) < \mathbf{v}(m) < \overline{\mathbf{v}}(m)$
Section 2.4.2:	FVAC, WRIC	Sufficient for Contraction
Section 5.2:		WRIC is weaker than RIC
Figure 7:		FVAC is stronger than PF-FVAC
Section 5.2.1: Case 3		EHWC+RIC \Rightarrow GIC, $\lim_{m\to\infty} \kappa(m) = \underline{\kappa}$
Section 5.2.1: Case 1		RHC \Rightarrow EHWC, $\lim_{m\to\infty} \kappa(m) = 0$
Section 3.2:		"Buffer Stock Saving" Conditions
Theorem 3:		GIC $\Rightarrow \exists \check{m} \text{ s.t. } 0 < \check{m} < \infty$
Theorem 2:		GIC-Mod $\Rightarrow \exists \hat{m} \text{ s.t. } 0 < \hat{m} < \infty$

[‡]For feasible m satisfying $0 < m < \infty$, a nondegenerate limiting consumption function defines a unique optimal value of c satisfying $0 < c(m) < \infty$; a nondegenerate limiting value function defines a corresponding unique value of $-\infty < \mathrm{v}(m) < 0$.

[°]RIC, FHWC are necessary as well as sufficient for the perfect foresight case. *That is, the first kink point in c(m) is $m_{\#}$ s.t. for $m < m_{\#}$ the constraint will bind now, while for $m > m_{\#}$ the constraint will bind one period in the future. The second kink point corresponds to the m where the constraint will bind two periods in the future, etc.

^{**}In the Friedman/Muth model, the RIC+FHWC are sufficient, but not necessary for nondegeneracy

 Table 5
 Appendix: Perfect Foresight Liquidity Constrained Taxonomy

For constrained \dot{c} and unconstrained \bar{c} consumption functions

				-
Main Condition				
Subcondition		Math		Outcome, Comments or Results
SIC		1 <	\mathbf{b}/\mathcal{G}	Constraint never binds for $m \geq 1$
and RIC	⊅ /R	< 1		FHWC holds $(R > \mathcal{G})$;
				$\grave{\mathbf{c}}(m) = \bar{\mathbf{c}}(m) \text{ for } m \ge 1$
and RIC		1 <	\mathbf{P}/R	$\grave{\mathbf{c}}(m)$ is degenerate: $\grave{\mathbf{c}}(m)=0$
GIC	\mathbf{P}/\mathcal{G}	< 1		Constraint binds in finite time $\forall m$
and RIC	Þ /R	< 1		FHWC may or may not hold
				$\lim_{m\uparrow\infty} \bar{\mathbf{c}}(m) - \grave{\mathbf{c}}(m) = 0$
				$\lim_{m\uparrow\infty} \hat{\boldsymbol{\kappa}}(m) = \underline{\kappa}$
and RIC		1 <	\mathbf{P}/R	EHWC
				$\lim_{m \uparrow \infty} \grave{k}(m) = 0$

Conditions are applied from left to right; for example, the second row indicates conclusions in the case where GIC and RIC both hold, while the third row indicates that when the GIC and the RIC both fail, the consumption function is degenerate; the next row indicates that whenever the GIC holds, the constraint will bind in finite time.

 $\{table: LiqConstrSco$