PnS 2018

Deep Learing with Raspberry Pi

Session 3

PnS 2018 Team

Institute of Neuroinformatics University of Zürich and ETH Zürich

Outline

Multi-Layer Perceptron

2 Regularization

3 Convolutional Neural Networks

Artifical Neuron: Overview

- A basic computational model of the biological model
- Single neuron as linear/logistic regression

Multi-Layer Perceptron

hidden layer 2

- Neurons in an acyclic feed-forward graph
- Fully connected layers
- Each fully connected layer computation is a matrix multiplication, matrix addition and an activation function

What can an MLP learn?

- Neural Networks with at least one hidden layer are universal approximators¹
- More neurons are expected to approximate better

4 / 7

¹Approximation by superpositions of a sigmoidal function, by Cybenko G. http://cs231n.github.io/neural-networks-1/

Regularization

- Overfitting more probable with larger models
- Could be prevented by using a regularization term in the loss function

Regularization

• Use bigger networks but take measures to prevent overfitting

Working with images

- MLPs do not work well with images
- Hierarchy of local spatial features
- Extract these local spatial features through filters