21-238, Math Studies Algebra 2, Department of Mathematical Sciences, Carnegie Mellon University Spring 2012: Monday, Wednesday, Friday, 10:30 am, Doherty Hall 1211.

Luc TARTAR, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

8- Wednesday February 1, 2012.

Definition 8.1: If V is an E-vector space, a quadratic form on V is a mapping Q from V into E such that there exists a bilinear form B on $V \times V$ (into E) such that Q(v) = B(v, v) for all $v \in V$.

Remark 8.2: If $char(E) \neq 2$ and V is an E-vector space, then every quadratic form Q on V can be written as $B_s(x,x)$ with a symmetric bilinear form B_s on $V \times V$. Indeed, one just has to define $B_s(x,y) = 2^{-1}(B(x,y) + B(y,x))$. If V has finite dimension n, then it means that $Q(x) = \sum_{i,j=1}^{n} A_{i,j} x_i x_j$ for a symmetric $n \times n$ matrix A (with entries in E).

If char(E) = 2, and V has dimension > 1, then the result is not true, since V contains a copy of E^2 and on E^2 , $Q(x) = x_1x_2$ cannot be written as $B_s(x, x)$, because $B_s(x, y) = \sum_{i,j=1}^2 a_{i,j}x_iy_j$ with $a_{1,2} = a_{2,1}$ implies $B_s(x, x) = a_{1,1}x_1^2 + a_{2,2}x_2^2$.

Lemma 8.3: (Gauss's decomposition theorem) If $char(E) \neq 2$ and V is an n-dimensional E-vector space, then every quadratic form Q on V can be written as $Q(x) = \sum_{j=1}^{n} \kappa_j L_j^2(x)$, where $\kappa_1, \ldots, \kappa_n \in E$, and L_1, \ldots, L_n are linearly independent linear forms (i.e. elements of V^*).²

Proof. One uses an induction on n, and the result is clear if n=1. One assumes then that $n \geq 2$ and that the result has been proved if the dimension of the space is at most n-1, and one uses a basis of V, so that $Q(x) = \sum_{i=1}^{n} a_i x_i^2 + \sum_{i < j} b_{i,j} x_i x_j$, and one may assume that all x_i appear explicitly, since if it not the case the induction hypothesis applies.

If one of the coefficients a_i is $\neq 0$, one defines $L_i(x) = x_i + 2^{-1}a_i^{-1}\sum_{j\neq i}b_{i,j}x_j$, so that $Q(x) = a_iL_i(x)^2 + Q^*(x')$ where x' denotes the vector with components x_k for $k \neq i$; by the induction hypothesis, Q^* is a combination of n-1 squares of linearly independent linear forms, and since they do not use the variable x_i while L_i does, one obtains n linearly independent linear forms by adjoining L_i .

If all coefficients a_i are 0, there exists a coefficient $b_{i,j} \neq 0$ with $i \neq j$, and one defines $\ell_i(x) = x_i + b_{i,j}^{-1} \sum_{k \neq i,j} b_{j,k} x_k$ and $\ell_j(x) = x_j + b_{i,j}^{-1} \sum_{k \neq i,j} b_{i,k} x_k$, so that $Q(x) = b_{i,j} \ell_i(x) \ell_j(x) + Q^{**}(x'')$ where x'' denotes the vector with components x_k for $k \neq i,j$; by the induction hypothesis, Q^{**} is a combination of n-2 squares of linearly independent linear forms, and since they do not use the variables x_i or x_j while ℓ_i uses x_i but not x_j , and ℓ_j uses x_j but not x_i , one obtains n linearly independent linear forms by adjoining $\ell_i + \ell_j$ and $\ell_i - \ell_j$, noticing that $b_{i,j} \ell_i \ell_j = b_{i,j} 4^{-1} \left((\ell_i + \ell_j)^2 - (\ell_i - \ell_j)^2 \right)$.

Definition 8.4: A quadratic form Q on an \mathbb{R} -vector space V is said to be *positive definite* if Q(x) > 0 for all non-zero $x \in V$ (negative definite if Q(x) < 0 for all non-zero $x \in V$) and *positive semi-definite* if $Q(x) \geq 0$ for all $x \in V$ (negative semi-definite if $Q(x) \leq 0$ for all $x \in V$).

Remark 8.5: If V is an n-dimensional Euclidean space, and Q is a quadratic form on V, it can be written as $Q(x) = \sum_{i,j=1}^{n} A_{i,j} x_i x_j$ for a real symmetric $n \times n$ matrix A, and since there exists an orthonormal basis of eigenvectors $e_i, i = 1, \ldots, n$ of A, with eigenvalues $\lambda_1, \ldots, \lambda_n$, one has $Q(x) = \sum_{i=1}^{n} \lambda_i (e_i, x)^2$: one deduces that Q is positive definite if and only if $\lambda_i > 0$ for all i, and that it is positive semi-definite if and only if $\lambda_i \geq 0$ for all i.

Lemma 8.6: (Sylvester's law of inertia) If V is an n-dimensional Euclidean space, and Q is a quadratic form on V, then all decompositions $Q(x) = \sum_{i=1}^n \kappa_i L_i(x)^2$ with L_1, \ldots, L_n linearly independent have the same number of positive κ_i (corresponding to $i \in I$), the same number of zero κ_j (corresponding to $j \in J$), and the same number of negative κ_k (corresponding to $k \in K$, so that I, J, K is a partition of $\{1, \ldots, n\}$).

¹ If $e_i, i \in I$, is a basis of V, one may put a total order on I, and then Q can be written as $\sum_{i \leq j} q_{i,j} v_i v_j$ (where $v = \sum_i v_i e_i$). If V has dimension n, it is then any polynomial function in v_1, \ldots, v_n of degree ≤ 2 which has no terms of degree 0 or 1.

² If E is a field in which every element is a square, then one could replace L_j by $\ell_j L_j$ with $\ell_j^2 = \kappa_j$, and write Q as a sum of squares of linear forms, but since some κ_j may be 0, one must change the statement of independence, and say that the non-zero L_j are linearly independent.

Proof: One write $Q(x)=(A\,x,x)$ for a symmetric A, and one denotes V_+ the direct sum of the eigen-spaces of A with positive eigenvalues and d_+ its dimension, V_0 the kernel of A and d_0 its dimension, and V_- the direct sum of the eigen-spaces of A with negative eigenvalues and d_- its dimension. Let $W_+ = \{x \in V \mid L_j(x) = 0, j \in J, L_k(x) = 0, k \in K\}$ (having dimension |I|), $W_0 = \{x \in V \mid L_i(x) = 0, i \in I, L_k(x) = 0, k \in K\}$ (having dimension |J|), and $W_- = \{x \in V \mid L_i(x) = 0, i \in I, L_j(x) = 0, j \in J\}$ (having dimension |K|). On W_+ , the restriction of Q is positive definite, so that W_+ cannot intersect $V_0 \oplus V_-$ on which Q is negative semi-definite, hence $|I| + d_0 + d_- \le n$, i.e. $|I| \le d_+$. On $W_+ \oplus W_0$, the restriction of Q is positive semi-definite, so that $W_+ \oplus W_0$ cannot intersect V_- on which Q is negative definite, hence $|I| + |J| \le d_+ + d_0$. On W_- , the restriction of Q is negative definite, so that W_- cannot intersect $V_+ \oplus V_0$ on which Q is positive semi-definite, hence $|K| \le d_-$. Since $|I| + |J| + |K| = n = d_+ + d_0 + d_-$, one deduces that $|I| = d_+$, $|J| = d_0$, and $|K| = d_-$.

Definition 8.7: If V_1, V_2, W are \mathbb{C} -vector spaces, a mapping f from V_1 into W is said to be anti-linear if f(x+y)=f(x)+f(y) for all $x,y\in V_1$, and $f(\lambda x)=\overline{\lambda}\,f(x)$ for all $x\in V,\lambda\in\mathbb{C}$. A mapping g from $V_1\times V_2$ into W is said to be sesqui-linear if $x\mapsto g(x,y)$ is linear from V_1 into W for all $y\in V_2$, and $y\mapsto g(x,y)$ is anti-linear from V_2 into W for all $x\in V_1$. A sesqui-linear mapping h from $V_1\times V_1$ into W is said to be Hermitian symmetric if $h(y,x)=\overline{h(x,y)}$ for all $x,y\in V_1$.

An Hermitian space V is a \mathbb{C} -vector space equipped with a Hermitian symmetric scalar product B(x,y), usually simply denoted (x,y), such that (x,x)>0 for all non-zero $x\in V$, and the norm of $v\in V$ is $||v||=\sqrt{(v,v)}$. One says that x is orthogonal to y if (x,y)=0; an orthogonal basis is a basis $e_i, i\in I$, such that $(e_i,e_j)=0$ whenever $i\neq j$; an orthonormal basis is a basis $e_i, i\in I$, such that $(e_i,e_j)=\delta_{i,j}$ for all $i,j\in I$.

Remark 8.8: As for an Euclidean space, one has $|(x,y)| \le ||x|| \, ||y||$ for all $x,y \in V$, 4 since if $(x,y) = r \, e^{i\,\theta}$, so that $(y,x) = r \, e^{-i\,\theta}$, then for $t \in \mathbb{R}$ one has $0 \le (x+t \, e^{i\,\theta}y, x+t \, e^{i\,\theta}y) = ||x||^2 + 2t \, r + t^2 ||y||^2$, and because it is true for all $t \in \mathbb{R}$, one deduces that $r^2 \le ||x||^2 ||y||^2$. As a consequence, d(x,y) = ||x-y|| defines a (translation invariant) metric, since the triangle inequality means $||a+b|| \le ||a|| + ||b||$, and $||a+b||^2 = ||a||^2 + ||b||^2 + 2\Re(a,b)$ while $(||a|| + ||b||)^2 = ||a||^2 + ||b||^2 + 2||a|| \, ||b||$.

Remark 8.9: An Hermitian space is also called a (complex) pre-Hilbert space, and it is called a Hilbert space if the space is complete, i.e. if every Cauchy sequence converges.⁵

One should pay attention to a difference in notation with physicists, who use DIRAC's notation: mathematicians write $(x,y) \in \mathbb{C}$, which is linear in x and anti-linear in y, while physicists write $\langle b \mid a \rangle$, which is linear in a and anti-linear in b; it means that the $ket \mid a \rangle$ is an element of a Hilbert space H, while the $bra \langle b \mid$ is an element of the dual H'. Then the notation $|a\rangle \langle b|$ denotes a linear operator from H into itself, which mathematicians write $a \otimes b$ (and which is the mapping $x \mapsto (b, x) a$).

³ If h is Hermitian symmetric, one has $h(x,x) \in \mathbb{R}$ for all $x \in V_1$. Conversely, a sesqui-linear mapping h from $V_1 \times V_1$ into W which satisfies $h(x,x) \in \mathbb{R}$ for all $x \in V_1$ is Hermitian symmetric: for all $x, y \in V_1$, one has $h(x,y) + h(y,x) = h(x+y,x+y) - h(x,x) - h(y,y) \in \mathbb{R}$, and replacing x by λx with $\lambda \in \mathbb{C}$, one deduces that $\lambda h(x,y) + \overline{\lambda} h(y,x) \in \mathbb{R}$ for all $\lambda \in \mathbb{C}$, which implies $h(y,x) = \overline{h(x,y)}$.

⁴ However, $|\cdot|$ denotes the modulus of a complex number, since $(x,y) \in \mathbb{C}$.

⁵ The space ℓ^0 of complex sequences with only a finite number of non-zero terms is a Hermitian space with the scalar product $(x,y) = \sum_n x_n \overline{y_n}$, but it is not complete, and its completion is isometric to ℓ^2 , the space of square integrable complex sequences, i.e. $||x||^2 = \sum_{n=1}^{\infty} |x_n|^2 < +\infty$, with the scalar product $(x,y) = \sum_{n=1}^{\infty} x_n \overline{y_n}$. The space C([0,1]) of continuous complex functions on [0,1] with the scalar product $(u,v) = \int_0^1 u(x) \overline{v(x)} \, dx$ (where the integral is the Riemann integral), is a (complex) pre-Hilbert space but it is not complete; however, describing its completion requires inventing the Lebesgue integral, since the completion is isometric to $L^2((0,1))$, the space of (equivalence classes) of square integrable complex functions, i.e. $||u||^2 = \int_0^1 |u(x)|^2 \, dx < +\infty$, but where the integral is the Lebesgue integral.