Fizyka C5 - poprawa egzaminu (28.06.2016)

Imię	i	nazwisko	nr albumu	Punkty	Ocena

Maksymalna liczba punktów: 20. Zaliczenie od 10 punktów

- 1. Nieściśliwa ciecz przepływa przez rurę o przekroju kołowym, zmieniającym się wzdłuż rury. Stosunek prędkości v_1/v_2 w dwóch miejscach rury wynosi 8. Wytłumaczyć, ile wynosi stosunek promieni R_1/R_2 w tych miejscach.
- 2. Jak nazywa się w hydrodynamice odpowiednik prawa $d\vec{p}/dt = \vec{F}$?
- 3. W wyniku pewnej przemiany ciśnienie pewnej masy gazu idealnego wzrosło trzykrotnie a temperatura absolutna zmalała dwukrotnie. Wytłumaczyć, jak zmieniła się przy tym objętość tego gazu (podać liczbę).
- 4. Wykładowca nieopacznie stwierdził, że w termodynamice nie jest możliwa pełna zamiana ciepła w pracę. Student zaprotestował i podał nazwę przemiany, w której taka zamiana zachodzi. Jaka to przemiana?
- 5. Fenomenologiczna definicja przyrostu entropii S ma postać $dS = \delta Q/T$. Ciepło δQ musi być przy tym wymienione w pewien specyficzny sposób. Jaki?
- 6. Dlaczego w sformułowaniu I zasady termodynamiki $dU = \delta Q + \delta W$ używa się różnych symboli $(d \text{ oraz } \delta)$ dla zmian energii wewnętrznej, pracy i ciepła?
- 7. Dwa jednoimienne ładunki punktowe znajdują się na osi x w punktach o współrzędnych $x_1 = -1, x_2 = 0$. Wytłumaczyć, czy na osi x istnieje taki punkt x > 0 (poza nieskończonością), w którym natężenie pola elektrostatycznego wynosi zero.

- 8. O co chodzi w wariacyjnych sformułowaniach praw fizyki?
- 9. Do obwodu elektrycznego zbliżamy magnes (rysunek). Indukowany prąd płynie (a) zgodnie (cw); (b) przeciwnie (ccw) do ruchu wskazówek zegara; (c) w układzie nie płynie prąd, bo nie ma w nim źródła zasilania; (d) inna odpowiedź.
- 10. Ładunki punktowe $q_1 > 0, q_2 = -q_1$ znajdują się w punktach zadanych przez wektory wodzące $\vec{r}_1 = -\hat{j}, \vec{r}_2 = \hat{j}$. Naszkicować wektor pola elektrycznego w punkcie $\vec{r} = [1, 0, 0]$.

- 11. Na czym polega przewaga bitu kwantowego (qbit) nad bitem klasycznym?
- 12. Ile wynosi potencjał pola elektrycznego w punkcie A, jeżeli praca siły zewnętrznej przy przeniesieniu ładunku q=-10 C z nieskończoności do punktu A wynosi 5 J?
- 13. Wektor siły działającej na ładunek próbny q=2 C umieszczony w punkcie A ma postać $\vec{F}=F[1,2,0]$ [N]. Wyznaczyć wektor nateżenia pola w tym punkcie.
- 14. Położenie ładunku q dane jest wzorem $\vec{r}(t) = [0, 2t, t^2]$. Wyznaczyć (podać obliczenia) wektor siły magnetycznej działającej na ładunek ze strony pola magnetycznego o indukcji $\vec{B} = B \hat{j}$.

- 15. Strumień pola magnetycznego przechodzący przez cewkę dany jest wzorem $\Phi(t) = \Phi_0 t^3$ (t czas, Φ_0 stała). Siła elektromotoryczna indukcji w cewce jest proporcjonalna do (a) t^4 ; (b) t^2 ; (c) t; (d) t^{-2} ; (e) t^{-4} ; (f) t^3 ; (g) nie zależy od czasu; (h) inna odpowiedź.
- 16. Które prawo magnetostatyki mówi o tym, że źródłem pola magnetycznego są prady?
- 17. Plaska fala elektromagnetyczna porusza się w dodatnim kierunku osi y. W pewnej chwili wektor pola magnetycznego w punkcie A wynosi $\vec{B} = |B| \hat{j}$. Wektor \vec{E} w tej samej chwili w tym samym punkcie wynosi $\vec{E} = |E| \hat{n}$, gdzie \hat{n} to (a) \hat{i} ; (b) $-\hat{i}$; (c) \hat{j} ; (d) $-\hat{j}$; (e) \hat{k} ; (f) $-\hat{k}$. Treść tego zadania zawiera kardynalny błąd. Jaki?
- 18. Energia stanu podstawowego (n = 1) elektronu w atomie wodoru wynosi -13.6 eV. Ile wynosi energia pierwszego stanu wzbudzonego (n = 2)?
- 19. Rozważamy atom wodoru. Orbitalna liczba kwantowa w pewnym stanie własnym wynosi l=3. Wytłumaczyć, dlaczego układ liczb kwantowych (n,l,m) opisujący ten stan nie może wynosić (4,3,4).
- 20. Przez dwa nieskończone przewodniki prostopadłe do płaszczyzny tej kartki, odległe od siebie o 3d, płyną, do czytającego to zdanie, stałe prądy o natężeniach I oraz 2I. Wyjaśnić, w jakiej odległości r od przewodnika z prądem I natężenie pola magnetycznego wynosi zero (rysunek).