Informe simulaciones TP04 - GNA Congruencial de 3 semillas

Curso: 6to 1ra

Turno: Noche

<u>CPU:</u> Intel Core 2 Duo E6600

Vileriño, Silvio

11 de julio de $2010\,$

${\rm \acute{I}ndice}$

0.1.	Introducción	3
0.2.	Análisis	4
0.3.	Resultados Analíticos	5
0.4.	Resultados Gráficos	6
0.5	Conclusión	9

0.1. Introducción

Esta simulación se desarrolla con el fin de comprobar la calidad del generador de numeros aleatorios (GNA) denominado Congruencial Lineal.

Su fórmula es:
$$X_n = \frac{\frac{\alpha_n}{M_1} + \frac{\beta_n}{M_2} + \frac{\gamma_n}{M_3}}{3}$$

 $\alpha_n = (a_1 \alpha_{n-1} + b_1) \mod M_1$

$$\alpha_n = (a_1 \alpha_{n-1} + b_1) \mod M_1$$

$$\beta_n = (a_2 \beta_{n-1} + b_2) \mod M_2$$

$$\beta_n = (a_3 \gamma_{n-1} + b_3) \mod M_3$$

Los valores calibrados son los siguientes (Todos números primos de gran magnitud):

- α
- A=1865471
- B=1999993
- β
- A=1865533
- B=1999275
- A=1865893
- B=1999817
- $M_{1,2,3} = 10^6$

Las semillas iniciales α , β y γ son tomadas al azar por la funcion GNA del lenguaje Java

0.2. Análisis

Al GNA se le realizan las siguientes pruebas:

ullet Se calcula un promedio \bar{X} de 1000000 números generados al azar.

$$\bar{X} = \frac{\sum_{k=1}^{n} a_k}{n}, n = 1000000$$

• Se calcula la dispersión σ^2 entre cada número generado y el promedio obtenido anteriormente.

$$\sigma^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}, n = 1000000, \bar{X} \longrightarrow \text{promedio}$$

- Se confecciona un histograma donde se registran la cantidad de números generados entre 0,0 exclusive y 0,1 exclusive, en 10 intervalos de 0,1
- Se calcula \bar{f} , la frecuencia promedio de los intervalos.

$$\bar{f} = \frac{\sum_{i=1}^{n} k_i}{n}, n = 10, k_i \longrightarrow \text{frecuencia registrada en cada intervalo.}$$

 \blacksquare Se calcula la dispersion σ_{hist}^2 entre las frecuencias del histograma y la frecuencia promedio obtenida anteriormente

$$\sigma_{hist}^{2} = \frac{\sum_{i=1}^{n} (F_{i} - \bar{f})^{2}}{n}, n = 10$$

- \blacksquare Se realizan dos pruebas gráficas en las que se generan 250000 puntos al azar en un área de 500 \times 500 píxeles.
 - \bullet Paralelo: se toman dos GNA con distinta semilla , para x e y .
 - Serie: se toman dos GNA y se mantiene esta relación para la generación de valores de x e y :x = GNA(GNA(x)), previamente x siendo la semilla inicial.

0.3. Resultados Analíticos

Luego de realizar la simulación, se obtuvieron los siguientes resultados:

- Promedio $\longrightarrow \bar{X} = 0.4999497401833184$
- Dispersión $\longrightarrow \sigma^2 = 0.027776683385716264$
- Histograma:
 - Intervalo (0,0;0,1) = 4428
 - Intervalo [0,1;0,2) = 31596
 - Intervalo [0,2;0,3) = 85536
 - Intervalo [0,3;0,4) = 162275
 - Intervalo [0,4;0,5) = 216269
 - Intervalo [0,5;0,6) = 216146
 - Intervalo [0,6;0,7) = 162562
 - Intervalo [0,7;0,8) = 85189
 - Intervalo [0.8; 0.9) = 31394
 - Intervalo [0.9; 1.0) = 4605
- \blacksquare Frecuencia Promedio $\longrightarrow \bar{f}=100000$
- \blacksquare Dispersión del Histograma $\longrightarrow \sigma^2_{freq.hist.} = 6{,}2849229824 \times 10^9$

0.4. Resultados Gráficos

Histograma

<u>Test Gráfico Paralelo</u>

<u>Test Gráfico Serie</u>

0.5. Conclusión

Se puede observar que los α , β y γ individualmente, son buenos generadores, pero el modelo de las 3 semillas, arroja resultados irregulares y una cantidad de puntos concentrados en ciertos intervalos, si bien el promedio es bueno (se acerca a $\frac{1}{2}$), y la dispersión es bastante cercana a la denominada buena $0,08\ldots$, la dispersión del histograma, es muy alta. Estos resultados en conjunto hacen evidente, que el modelo congruencial de 3 semillas es un mal GNA.