(19) World Intellectual Property Organization International Burcau

(43) International Publication Date 18 April 2002 (18.04.2002)

PCT

(10) International Publication Number WO 02/31147 A2

- (51) International Patent Classification⁷: C07K 14/705
- C12N 15/12,
- (21) International Application Number: PCT/US01/31113
- (22) International Filing Date: 4 October 2001 (04.10.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/239,629

10 October 2000 (10.10.2000) US

- (71) Applicant: LEXICON GENETICS INCORPORATED [US/US]; 4000 Research Forest Drive, The Woodlands, TX 77381 (US).
- (72) Inventors: HU, Yi; 333 Holly Creek Ct. #203, The Woodlands, TX 77381 (US). NEPOMNICHY, Boris; 905 Cypress Station Dr. #1515, Houston, TX 77909 (US).
- (74) Agents: ISHIMOTO, Lance, K. et al.; Lexicon Genetics Incorporated, 4000 Research Forest Drive, The Woodlands, TX 77381 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

NOVEL HUMAN TRANSPORTER PROTEINS AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims the benefit of U.S.

Provisional Application Number 60/239,629, which was filed on

October 10, 2000, and is herein incorporated by reference in its entirety.

1. INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human

10 polynucleotides encoding proteins that share sequence similarity with mammalian transporter proteins. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed genes, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed genes that can be used for diagnosis, drug screening, clinical trial monitoring, the treatment of diseases and disorders, and cosmetic or nutriceutical applications.

2. BACKGROUND OF THE INVENTION

Transporter proteins are integral membrane proteins that mediate or facilitate the passage of materials across the lipid bilayer. Given that the transport of materials across the membrane can play an important physiological role, transporter proteins are good drug targets. Additionally, one of the mechanisms of drug resistance involves diseased cells using cellular transporter systems to export chemotherapeutic agents from the cell. Such mechanisms are particularly relevant to cells manifesting resistance to a multiplicity of drugs.

3. SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with mammalian ATP-binding cassette (ABC) transporters and multidrug resistance transporters.

The novel human nucleic acid sequences described herein,
10 encode alternative proteins/open reading frames (ORFs) of 1,642
and 1,594 amino acids in length (see respectively SEQ ID NOS: 2
and 4).

The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, 15 mutant NHPs, or portions thereof, that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and open reading frame or regulatory sequence replacement constructs) or to enhance the 20 expression of the described NHPs (e.g., expression constructs that place the described polynucleotide under the control of a strong promoter system), and transgenic animals that express a NHP sequence, or "knock-outs" (which can be conditional) that do not express a functional NHP. Knock-out mice can be produced in 25 several ways, one of which involves the use of mouse embryonic stem cells ("ES cells") lines that contain gene trap mutations in a murine homolog of at least one of the described NHPs. When the unique NHP sequences described in SEQ ID NOS:1-5 are "knockedout" they provide a method of identifying phenotypic expression 30 of the particular gene as well as a method of assigning function to previously unknown genes. In addition, animals in which the unique NHP sequences described in SEQ ID NOS:1-5 are "knockedout" provide a unique source in which to elicit antibodies to

homologous and orthologous proteins that would have been previously viewed by the immune system as "self" and therefore would have failed to elicit significant antibody responses. To these ends, gene trapped knockout ES cells have been generated in murine homologs of the described NHPs.

Additionally, the unique NHP sequences described in SEQ ID NOS:1-5 are useful for the identification of protein coding sequence and mapping a unique gene to a particular chromosome (in this case, human chromosome 17, see GENBANK accession no.

10 AC005495). These sequences identify biologically verified exon splice junctions as opposed to splice junctions that may have been bioinformatically predicted from genomic sequence alone. The sequences of the present invention are also useful as additional DNA markers for restriction fragment length

Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.

15 polymorphism (RFLP) analysis, and in forensic biology.

- 4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

 The Sequence Listing provides the sequences of the NHP ORFs encoding the described NHP amino acid sequences. SEQ ID NO:5 shows a NHP ORF and flanking regions.
- 5. DETAILED DESCRIPTION OF THE INVENTION

 The NHPs described for the first time herein are novel proteins that may be expressed in, inter alia, human cell lines, fetal brain, brain, pituitary, lymph node, kidney, fetal liver,

liver, testis, thyroid, adrenal gland, fetal lung, and fetal kidney cells.

The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such nucleotides, 5 the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described genes, including the specifically described NHPs, and the NHP products; (b) nucleotides that encode one or more portions of the NHPs that correspond to functional domains, and the polypeptide products 10 specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHPs in which all or a part of at least one domain is deleted or altered, and the polypeptide 15 products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal (or hydrophobic transmembrane) sequence is deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of an NHP, or one 20 of its domains (e.g., a receptor or ligand binding domain, accessory protein/self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or 25 gene therapy constructs comprising a sequence first disclosed in the Sequence Listing.

As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence Listing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF) that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO4, 7% sodium

PCT/US01/31113 WO 02/31147

dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1xSSC/0.1% SDS at 68°C (Ausubel et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 5 2.10.3) and encodes a functionally equivalent expression product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of a DNA sequence that encodes and expresses an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 10 0.2xSSC/0.1% SDS at 42°C (Ausubel et al., 1989, supra), yet still encodes a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, 15 directed evolution as described in, for example, U.S. Patent Nos. 5,837,458 and 5,723,323 both of which are herein incorporated by reference in their entirety). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

Additionally contemplated are polynucleotides encoding NHP ORFs, or their functional equivalents, encoded by polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar or identical to corresponding regions of the nucleotide sequences of the Sequence Listing (as measured by BLAST sequence comparison 25 analysis using, for example, the GCG sequence analysis package using standard default settings).

20

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP gene nucleotide sequences. 30 Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or

about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene 10 expression patterns (particularly using a micro array or highthroughput "chip" format). Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. An oligonucleotide or polynucleotide 15 sequence first disclosed in at least a portion of one or more of the sequences of SEQ ID NOS: 1-5 can be used as a hybridization probe in conjunction with a solid support matrix/substrate (resins, beads, membranes, plastics, polymers, metal or metallized substrates, crystalline or polycrystalline substrates, 20 etc.). Of particular note are spatially addressable arrays (i.e., gene chips, microtiter plates, etc.) of oligonucleotides and polynucleotides, or corresponding oligopeptides and polypeptides, wherein at least one of the biopolymers present on the spatially addressable array comprises an oligonucleotide or 25 polynucleotide sequence first disclosed in at least one of the sequences of SEQ ID NOS: 1-5, or an amino acid sequence encoded thereby. Methods for attaching biopolymers to, or synthesizing biopolymers on, solid support matrices, and conducting binding studies thereon are disclosed in, inter alia, U.S. Patent Nos. 30 5,700,637, 5,556,752, 5,744,305, 4,631,211, 5,445,934, 5,252,743, 4,713,326, 5,424,186, and 4,689,405 the disclosures of which are

herein incorporated by reference in their entirety.

Addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-5 can be used to identify and characterize the temporal and tissue specific expression of a gene. These addressable arrays incorporate oligonucleotide sequences of sufficient length to confer the required specificity, yet be within the limitations of the production technology. The length of these probes is within a range of between about 8 to about 2000 nucleotides. Preferably the probes consist of 60 nucleotides and more preferably 25 nucleotides from the sequences first disclosed in SEQ ID NOS:1-5.

For example, a series of the described oligonucleotide sequences, or the complements thereof, can be used in chip format to represent all or a portion of the described sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 8 nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences can begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

Microarray-based analysis allows the discovery of broad patterns of genetic activity, providing new understanding of gene functions and generating novel and unexpected insight into transcriptional processes and biological mechanisms. The use of addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-5 provides detailed information about transcriptional changes involved in a specific pathway, potentially leading to

the identification of novel components or gene functions that manifest themselves as novel phenotypes.

Probes consisting of sequences first disclosed in SEQ ID NOS:1-5 can also be used in the identification, selection and validation of novel molecular targets for drug discovery. The use of these unique sequences permits the direct confirmation of drug targets and recognition of drug dependent changes in gene expression that are modulated through pathways distinct from the drugs intended target. These unique sequences therefore also have utility in defining and monitoring both drug action and toxicity.

As an example of utility, the sequences first disclosed in SEQ ID NOS:1-5 can be utilized in microarrays or other assay formats, to screen collections of genetic material from patients who have a particular medical condition. These investigations can also be carried out using the sequences first disclosed in SEQ ID NOS:1-5 in silico and by comparing previously collected genetic databases and the disclosed sequences using computer software known to those in the art.

Thus the sequences first disclosed in SEQ ID NOS:1-5 can be used to identify mutations associated with a particular disease and also as a diagnostic or prognostic assay.

20

Although the presently described sequences have been specifically described using nucleotide sequence, it should be appreciated that each of the sequences can uniquely be described using any of a wide variety of additional structural attributes, or combinations thereof. For example, a given sequence can be described by the net composition of the nucleotides present within a given region of the sequence in conjunction with the presence of one or more specific oligonucleotide sequence(s) first disclosed in the SEQ ID NOS: 1-5. Alternatively, a restriction map specifying the relative positions of restriction endonuclease digestion sites, or various palindromic or other

specific oligonucleotide sequences can be used to structurally describe a given sequence. Such restriction maps, which are typically generated by widely available computer programs (e.g., the University of Wisconsin GCG sequence analysis package,

5 SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, MI, etc.), can optionally be used in conjunction with one or more discrete nucleotide sequence(s) present in the sequence that can be described by the relative position of the sequence relative to one or more additional sequence(s) or one or more restriction

10 sites present in the disclosed sequence.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligos), 48°C (for 17-base oligos), 55°C (for 20-base oligos), and 60°C (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP gene nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions.

20 Further, such sequences may be used as part of ribozyme and/or triple boliz cograpges that are also useful for NHP gene

O Further, such sequences may be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety that is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine,

5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide

will comprise at least one modified phosphate backbone selected

from the group consisting of a phosphorothicate, a

phosphorodithicate, a phosphoramidothicate, a phosphoramidate, a

phosphordiamidate, a methylphosphonate, an alkyl phosphotriester,

and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an α-anomeric oligonucleotide. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641).

The oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).

Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples,

phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, supra.

Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

For example, the present sequences can be used in restriction fragment length polymorphism (RFLP) analysis to identify specific individuals. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification (as generally described in U.S. Pat. No.

5,272,057, incorporated herein by reference). In addition, the sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e., another DNA sequence that is unique to a particular individual). Actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments.

Further, a NHP gene homolog can be isolated from nucleic acid from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products 15 disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene. The PCR product can be subcloned and sequenced to ensure that the amplified 20 sequences represent the sequence of the desired NHP gene. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment 25 can be used to isolate genomic clones via the screening of a genomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP gene). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis.

The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

A cDNA encoding a mutant NHP sequence can be isolated, for example, by using PCR. In this case, the first cDNA strand may

10 be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide

15 that hybridizes specifically to the 5' end of the normal sequence. Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant

20 NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascertained.

Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, obesity, high blood pressure, connective tissue disorders, infertility, etc.), or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such libraries. Clones containing mutant NHP sequences can then be

purified and subjected to sequence analysis according to methods well known to those skilled in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a 5 tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue can be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised 10 against a normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Additionally, screening can be accomplished Spring Harbor.) by screening with labeled NHP fusion proteins, such as, for 15 example, alkaline phosphatase-NHP or NHP-alkaline phosphatase fusion proteins. In cases where a NHP mutation results in an expression product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to NHP are likely to cross-react with a corresponding mutant NHP 20 expression product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their

25 complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculovirus as described in U.S. Patent No. 5,869,336 herein incorporated by reference);

30 (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host

cells that express an endogenous NHP sequence under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast α-mating factors.

The present invention also encompasses antibodies and antiidiotypic antibodies (including Fab fragments), antagonists and
agonists of a NHP, as well as compounds or nucleotide constructs
that inhibit expression of a NHP sequence (transcription factor
inhibitors, antisense and ribozyme molecules, or open reading
frame sequence or regulatory sequence replacement constructs), or
promote the expression of a NHP (e.g., expression constructs in
which NHP coding sequences are operatively associated with
expression control elements such as promoters,

25 promoter/enhancers, etc.).

The NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of

combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of NHP in the body. The use of engineered host cells and/or animals may offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous receptor for an NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

Finally, the NHP products can be used as therapeutics. example, soluble derivatives such as NHP peptides/domains 10 corresponding to NHPs, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHP-15 mediated pathway) can be used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a NHP-IgFc fusion protein or an antiidiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize the endogenous NHP receptor. 20 Nucleotide constructs encoding such NHP products can be used to genetically engineer host cells to express such products in vivo; these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to the body. Nucleotide constructs 25 encoding functional NHPs, mutant NHPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological disorders.

30 Various aspects of the invention are described in greater detail in the subsections below.

5.1 THE NHP SEQUENCES

The cDNA sequences and the corresponding deduced amino acid sequences of the described NHPs are presented in the Sequence Listing. The NHP nucleotides were obtained from clustered human 5 ESTs, and cDNAs from brain and kidney libraries (Edge Biosystems, Gaithersburg, MD). The described NHPs are similar to mammalian ABC transporters and transporters that have been linked to multidrug resistance. Accordingly, the described NHPs can be useful in detecting and treating mental disorders, or in the treatment of cancer.

Several polymorphism were identified during the sequencing of the NHPs, as evidenced by the W (an A/T polymorphism) at position 810 of SEQ ID NOS: 1 and 3 (which results in a tyr or STOP being present at the corresponding amino acid (aa) position 270 of SEQ ID NOS:2 and 4); the K (a G/T polymorphism) at position 2494 of SEQ ID NOS: 1 and 3 (which results in a ser or ala being present at the corresponding aa position 832 of SEQ ID NOS:2 and 4); the R (a G/A polymorphism) at position 2878 of SEQ ID NOS: 1 and 3 (which results in a val or met being present at the corresponding aa position 960 of SEQ ID NOS:2 and 4; and a C/T polymorphism at position 3265 of SEQ ID NOS: 1 and 3 (which does not result in a change in the amino acid sequence of SEQ ID NOS:2 and 4, as leu is encoded in both cases).

ABC transporters and transporter related multidrug
25 resistance (MDR) sequences, as well as uses and applications that
are germane to the described NHPs, are described in U.S. Patents
Nos. 5,198,344, 5,866,699, and 6,080,842, which are herein
incorporated by reference in their entirety.

An additional application of the described novel human polynucleotide sequences is their use in the molecular mutagenesis/evolution of proteins that are at least partially encoded by the described novel sequences using, for example, polynucleotide shuffling or related methodologies. Such

approaches are described in U.S. Patents Nos. 5,830,721 and 5,837,458, which are herein incorporated by reference in their entirety.

NHP gene products can also be expressed in transgenic

5 animals. Animals of any species, including, but not limited to,
worms, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, birds,
goats, and non-human primates, e.g., baboons, monkeys, and
chimpanzees may be used to generate NHP transgenic animals.

Any technique known in the art may be used to introduce a

10 NHP transgene into animals to produce the founder lines of
transgenic animals. Such techniques include, but are not limited
to pronuclear microinjection (Hoppe, P.C. and Wagner, T.E., 1989,
U.S. Pat. No. 4,873,191); retrovirus mediated gene transfer into
germ lines (Van der Putten et al., 1985, Proc. Natl. Acad. Sci.,

15 USA 82:6148-6152); gene targeting in embryonic stem cells
(Thompson et al., 1989, Cell 56:313-321); electroporation of
embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814); and spermmediated gene transfer (Lavitrano et al., 1989, Cell 57:717-723);
etc. For a review of such techniques, see Gordon, 1989,

20 Transgenic Animals, Intl. Rev. Cytol. 115:171-229, which is incorporated by reference herein in its entirety.

The present invention provides for transgenic animals that carry the NHP transgene in all their cells, as well as animals that carry the transgene in some, but not all their cells, i.e.,

25 mosaic animals or somatic cell transgenic animals. The transgene may be integrated as a single transgene or in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et

30 al., 1992, Proc. Natl. Acad. Sci. USA 89:6232-6236. The regulatory sequences required for such a cell-type specific

activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

When it is desired that a NHP transgene be integrated into the chromosomal site of the endogenous NHP gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous NHP gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous NHP gene (i.e., "knockout" animals).

The transgene can also be selectively introduced into a particular cell type, thus inactivating the endogenous NHP gene in only that cell type, by following, for example, the teaching of Gu et al., 1994, Science, 265:103-106. The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant NHP gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques that include but are not limited to Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and RT-PCR. Samples of NHP gene-expressing tissue, may also be evaluated immunocytochemically using antibodies specific for the NHP transgene product.

30

5.2 NHPS AND NHP POLYPEPTIDES

NHPs, NHP polypeptides, NHP peptide fragments, mutated, truncated, or deleted forms of the NHPs, and/or NHP fusion

proteins can be prepared for a variety of uses. These uses include, but are not limited to, the generation of antibodies, as reagents in diagnostic assays, for the identification of other cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be used as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease. Given the similarity information and expression data, the described NHPs can be targeted (by drugs, oligos, antibodies, etc.,) in order to treat disease, or to therapeutically augment the efficacy of, for example, chemotherapeutic agents used in the treatment of cancer.

The Sequence Listing discloses the amino acid sequences encoded by the described NHP genes. The NHPs typically display have initiator methionines in DNA sequence contexts consistent with a translation initiation site, and a signal like sequence near the N-terminal regions of the proteins.

The NHP amino acid sequences of the invention include the amino acid sequence presented in the Sequence Listing as well as analogues and derivatives thereof. Further, corresponding NHP 20 homologues from other species are encompassed by the invention. In fact, any NHP protein encoded by the NHP nucleotide sequences described above are within the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The 25 degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, the amino acid 30 sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, NY, herein incorporated by

reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

The invention also encompasses proteins that are 5 functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and cleave a substrate of a NHP, or the ability to effect an identical or complementary downstream pathway, or a change in 10 cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described above, 15 but that result in a silent change, thus producing a functionally equivalent expression product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino 20 acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged 25 (acidic) amino acids include aspartic acid and glutamic acid.

A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where, as in the present instance, the NHP peptide or polypeptide is thought to be membrane protein, the hydrophobic regions of the protein can be excised and the resulting soluble peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass engineered host cells that express a NHP, or functional equivalent, in situ. Purification

or enrichment of a NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

The expression systems that may be used for purposes of the invention include but are not limited to microorganisms such as 10 bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP nucleotide sequences; insect 15 cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti 20 plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the 25 vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may

be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding sequence may be ligated individually into the vector in frame with the lacZ coding region 5 so that a fusion protein is produced; pIN vectors (Inouye & Inouve, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Pharmacia or American Type Culture Collection) can also be used to express foreign polypeptides as fusion proteins 10 with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that 15 the cloned target expression product can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign polynucleotide sequences. The virus grows in Spodoptera

20 frugiperda cells. A NHP coding sequence can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of NHP coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted sequence is expressed (e.g., see Smith et al., 1983, J. Virol. 46: 584;

30 Smith, U.S. Patent No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as

an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric sequence may then be inserted in the adenovirus 5 genome by in vitro or in vivo recombination. Insertion in a nonessential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific 10 initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression 15 vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the 20 reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate 25 transcription enhancer elements, transcription terminators, etc. (See Bitter et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the expression product in the specific fashion

30 desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have

characteristic and specific mechanisms for the post-translational processing and modification of proteins and expression products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells that possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the expression product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines that stably express the NHP sequences described above can be engineered. Rather than using expression vectors that contain 15 viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be 20 allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci, which in turn can be cloned 25 and expanded into cell lines. This method may advantageously be used to engineer cell lines that express the NHP product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc.

Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes, which can be employed in tk⁻, hgprt⁻ or aprt⁻ cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein can be readily purified
by utilizing an antibody specific for the fusion protein being
expressed. For example, a system described by Janknecht et al.
allows for the ready purification of non-denatured fusion
proteins expressed in human cell lines (Janknecht, et al., 1991,
Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the
sequence of interest is subcloned into a vaccinia recombination
plasmid such that the sequence's open reading frame is
translationally fused to an amino-terminal tag consisting of six
histidine residues. Extracts from cells infected with
recombinant vaccinia virus are loaded onto Ni²⁺·nitriloacetic
acid-agarose columns and histidine-tagged proteins are
selectively eluted with imidazole-containing buffers.

Also encompassed by the present invention are fusion proteins that direct the NHP to a target organ and/or facilitate transport across the membrane into the cytosol. Conjugation of NHPs to antibody molecules or their Fab fragments could be used to target cells bearing a particular epitope. Attaching the appropriate signal sequence to the NHP would also transport the

NHP to the desired location within the cell. Alternatively targeting of NHP or its nucleic acid sequence might be achieved using liposome or lipid complex based delivery systems. Such technologies are described in "Liposomes: A Practical Approach", 5 New, R.R.C., ed., Oxford University Press, New York and in U.S. Patents Nos. 4,594,595, 5,459,127, 5,948,767 and 6,110,490 and their respective disclosures, which are herein incorporated by reference in their entirety. Additionally embodied are novel protein constructs engineered in such a way that they facilitate 10 transport of the NHP to the target site or desired organ, where they cross the cell membrane and/or the nucleus where the NHP can exert its functional activity. This goal may be achieved by coupling of the NHP to a cytokine or other ligand that provides targeting specificity, and/or to a protein transducing domain 15 (see generally U.S. applications Ser. No. 60/111,701 and 60/056,713, both of which are herein incorporated by reference, for examples of such transducing sequences) to facilitate passage across cellular membranes and can optionally be engineered to include nuclear localization.

20

5.3 ANTIBODIES TO NHP PRODUCTS

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention may be used, for example, in the detection of NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic

technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP expression product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity.

10 Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals may be immunized by injection with a NHP, an NHP peptide (e.g., one corresponding to a functional domain of an NHP), truncated NHP 15 polypeptides (NHP in which one or more domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, 20 depending on the host species, including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as aluminum hydroxide or aluminum phosphate, chitosan, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful human 25 adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Alternatively, the immune response could be enhanced by combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diphtheria toxoid, ovalbumin, cholera toxin or fragments thereof. Polyclonal 30 antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any

technique that provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Patent No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of 15 "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity 20 together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. 25 Such technologies are described in U.S. Patents Nos. 6,075,181 and 5,877,397 and their respective disclosures, which are herein incorporated by reference in their entirety. Also encompassed by the present invention is the use of fully humanized monoclonal antibodies as described in US Patent No. 6,150,584 and respective 30 disclosures, which are herein incorporated by reference in their entirety.

Alternatively, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 341:544-546) can be adapted to produce single chain antibodies against NHP expression products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments that recognize specific epitopes may be
generated by known techniques. For example, such fragments
include, but are not limited to: the F(ab')₂ fragments, which can
be produced by pepsin digestion of the antibody molecule and the
Fab fragments, which can be generated by reducing the disulfide
bridges of the F(ab')₂ fragments. Alternatively, Fab expression
libraries may be constructed (Huse et al., 1989, Science,
246:1275-1281) to allow rapid and easy identification of
monoclonal Fab fragments with the desired specificity.

Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies that bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind and activate or neutralize a receptor. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP mediated pathway.

Additionally given the high degree of relatedness of
30 mammalian NHPs, the presently described knock-out mice (having
never seen NHP, and thus never been tolerized to NHP) have a
unique utility, as they can be advantageously applied to the

generation of antibodies against the disclosed mammalian NHP (i.e., NHP will be immunogenic in NHP knock-out animals).

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as 5 single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

WHAT IS CLAIMED IS:

10

 An isolated nucleic acid molecule comprising a nucleotide sequence drawn from the group consisting of SEQ ID NO:1 and SEQ ID NO:3.

- 2. An isolated nucleic acid molecule comprising a nucleotide sequence that:
 - (a) encodes the amino acid sequence shown in SEQ ID NO:2; and
 - (b) hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO:1 or the complement thereof.
- 3. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes the amino acid sequence shown in SEQ ID NO:2.
- 4. An isolated nucleic acid molecule comprising a 20 nucleotide sequence that encodes the amino acid sequence shown in SEQ ID NO:4.

SEQUENCE LISTING

```
<110> LEXICON GENETICS INCORPORATED
<120> Novel Human Transporter Proteins and Polynucleotides Encoding the
<130> LEX-0250-PCT
<150> US 60/239,629
<151> 2000-10-10
<160> 5
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 4929
<212> DNA
<213> homo sapiens
<400> 1
atgtccactg caattaggga ggtaggagtt tggagacaga ccagaacact tctactgaag
                                                                        60
aattacttaa ttaaatgcag aaccaaaaag agtagtgttc aggaaattct ttttccacta
                                                                       120
                                                                       180
ttttttttat tttggttaat attaattagc atgatgcatc caaataagaa atatgaagaa
                                                                       240
gtgcctaata tagaactcaa tcctatggac aagtttactc tttctaatct aattcttgga
tatactccag tgactaatat tacaagcagc atcatgcaga aagtgtctac tgatcatcta
                                                                       300
cctgatgtca taattactga agaatataca aatgaaaaag aaatgttaac atccagtctc
                                                                       360
                                                                       420
tctaagccga gcaactttgt aggtgtggtt ttcaaagact ccatgtccta tgaacttcgt
ttttttcctg atatgattcc agtatcttct atttatatgg attcaagagc tggctgttca
                                                                       480
aaatcatgtg aggctgctca gtactggtcc tcaggtttca cagttttaca agcatccata
                                                                       540
                                                                       600
gatgctgcca ttatacagtt gaagaccaat gtttctcttt ggaaggagct ggagtcaact
aaagctgtta ttatgggaga aactgctgtt gtagaaatag atacctttcc ccgaggagta
                                                                       660
attttaatat acctagttat agcattttca ccttttggat actttttggc aattcatatc
                                                                       720
gtagcagaaa aagaaaaaaa aataaaagaa tttttaaaga taatgggact tcatgatact
                                                                       780
gccttttggc tttcctgggt tcttctataw acaagtttaa tttttcttat gtcccttctt
                                                                       840
atggcagtca ttgcgacagc ttctttgtta tttcctcaaa gtagcagcat tgtgatattt
                                                                       900
ctgctttttt tcctttatgg attatcatct gtattttttg ctttaatgct gacacctctt
                                                                       960
                                                                      1020
tttaaaaaat caaaacatgt gggaatagtt gaattttttg ttactgtggc ttttggattt
                                                                      1080
attggcctta tgataatcct catagaaagt tttcccaaat cgttagtgtg gcttttcagt
cetttetgte actgtacttt tgtgattggt attgcacagg tcatgcattt agaagatttt
                                                                      1140
aatgaaggtg cttcattttc aaatttgact gcaggcccat atcctctaat tattacaatt
                                                                      1200
atcatgctca cacttaatag tatattctat gtcctcttgg ctgtctatct tgatcaagtc
                                                                      1260
attccagggg aatttggctt acggagatca tctttatatt ttctgaagcc ttcatattgg
                                                                      1320
tcaaagagca aaagaaatta tgaggagtta tcagagggca atgttaatgg aaatattagt
                                                                      1380
tttagtgaaa ttattgagcc agtttcttca gaatttgtag gaaaagaagc cataagaatt
                                                                      1440
agtggtattc agaagacata cagaaagaag ggtgaaaatg tggaggcttt gagaaatttg
                                                                      1500
tcatttgaca tatatgaggg tcagattact gccttacttg gccacagtgg aacaggaaag
                                                                      1560
agtacattga tgaatattct ttgtggactc tgcccacctt ctgatgggtt tgcatctata
                                                                      1620
tatggacaca gagtctcaga aatagatgaa atgtttgaag caagaaaaat gattggcatt
                                                                      1680
tgtccacagt tagatataca ctttgatgtt ttgacagtag aagaaaattt atcaattttg
                                                                      1740
                                                                      1800
gcttcaatca aagggatacc agccaccaat ataatacaag aagtgcagaa ggttttacta
gatttagaca tgcagactat caaagataac caagctaaaa aattaagtgg tggtcaaaaa
                                                                      1860
agaaagctgt cattaggaat tgctgttctt gggaacccaa agatactgct gctagatgaa
                                                                      1920
ccaacagctg gaatggaccc ctgttctcga catattgtat ggaatctttt aaaatacaga
                                                                      1980
```

aaagccaatc	gggtgacagt	gttcagtact	catttcatgg	atgaagctga	cattcttgca	2040
gataggaaag	ctgtgatatc	acaaggaatg	ctgaaatgtg	ttggttcttc	aatgttcctc	2100
aaaagtaaat	gggggatcgg	ctaccgcctg	agcatgtaca	tagacaaata	ttgtgccaca	2160
gaatctcttt	cttcactggt	taaacaacat	atacctggag	ctactttatt	acaacagaat	2220
gaccaacaac	ttgtgtatag	cttgcctttc	aaggacatgg	acaaattttc	aggtttgttt	2280
tetgeectag	acagtcattc	aaatttgggt	ggcatttctt	atggggtttc	catgacgact	2340
ttggaagacg	tatttttaaa	gctagaagtt	gaagcagaaa	ttgaccaagc	agattatagt	2400
gtatttactc	agcagccact	ggaggaagaa	atggattcaa	aatcttttga	tgaaatggaa	2460
cagagettae	ttattctttc	tgaaaccaag	gctkctctag	tgagcaccat	gagcctttgg	2520
aaacaacaga	tgtatacaat	agcaaagttt	catttcttta	ccttgaaacg	tgaaagtaaa	2580
tcagtgagat	cagtgttgct	tctgctttta	attttttca	cagttcagat	ttttatgttt	2640
ttggttcatc	actcttttaa	aaatgctgtg	gttcccatca	aacttgttcc	agacttatat	2700
tttctaaaac	ctggagacaa	accacataaa	tacaaaacaa	gtctgcttct	tcaaaattct	2760
gctgactcag	atatcagtga	tcttattagc	tttttcacaa	gccagaacat	aatggtgacg	2820
atgattaatg	acagtgacta	tgtatccgtg	gctccccata	gtgcggcttt	aaatgtgrtg	2880
cattcagaaa	aggactatgt	ttttgcagct	gttttcaaca	gtactatggt	ttattctta	2940
cctatattag	tgaatatcat	tagtaactac	tatctttatc	atttaaatgt	gactgaaacc	3000
	ggagtacccc					3060
ctgtattttc	aagcagcttt	gcttggaatc	attgttactg	caatgccacc	ttactttgcc	3120
atggaaaatg	cagagaatca	taagatcaaa	gcttayactc	aacttaaact	ttcaggtctt	3180
ttgccatctg	catattggat	tggacaagct	gttgttgata	tccccttatt	ttttatcatt	3240
cttattttga	tgctaggaag	cttattggca	tttcattatg	gattatattt	ttatactgta	3300
aagtteettg	ctgtggtttt	ttqccttatt	ggttatgttc	catcagttat	tctgttcact	3360
tatattoctt	ctttcacctt	taagaaaatt	ttaaatacca	aagaattttg	gtcatttatc	3420
tattetgtgg	cagcgttggc	ttgtattgca	atcactgaaa	taactttctt	tatgggatac	3480
acaattgcaa	ctattcttca	ttatgccttt	tgtatcatca	ttccaatcta	tccacttcta	3540
ggttgcctga	tttctttcat	aaagatttct	tggaagaatg	tacgaaaaaa	tgtggacacc	3600
tataatccat	gggataggct	ttcagtagct	gttatatcgc	cttacctgca	gtgtgtactg	3660
togattttcc	tcttacaata	ctatgagaaa	aaatatggag	gcagatcaat	aagaaaagat	3720
ccctttttca	gaaacctttc	aacgaagtct	aaaaatagga	agcttccaga	accaccagac	3780
aatgaggatg	aagatgaaga	tatcaaaact	gaaagactaa	aggtcaaaga	gctgatgggt	3840
taccagtatt	gtgaggagaa	accatccatt	atggtcagca	atttgcataa	agaatatgat	3900
gacaagaaag	attttcttct	ttcaagaaaa	gtaaagaaag	tggcaactaa	atacatctct	3960
ttctatataa	aaaaaggaga	gatettagga	ctattgggtc	caaatggtgc	tggcaaaagc	4020
acaattatta	atattctggt	tootoatatt	gaaccaactt	caggccaggt	atttttagga	4080
gattattctt	cagagacaag	tgaagatgat	gattcactga	agtgtatggg	ttactgtcct	4140
cagataaacc	ctttgtggcc	agatactaca	ttgcaggaac	attttgaaat	ttatggagct	4200
gtcaaaggaa	tgagtgcaag	tgacatgaaa	gaagtcataa	gtcgaataac	acatgcactt	4260
gatttaaaag	aacatcttca	gaagactgta	aagaaactac	ctgcaggaat	caaacgaaag	4320
ttatatttta	ctctaagtat	gctagggaat	cctcagatta	ctttgctaga	tgaaccatct	4380
acaggtateg	atcccaaagc	caaacagcac	atotogcoag	caattcgaac	tgcatttaaa	4440
aacagaaaagc	gggctgctat	tctgaccact	cactatatag	aggaggcaga	ggctgtctgt	4500
datagadage	ctatcatggt	atctagacaa	ttaagatgta	tcggaacagt	acaacatcta	4560
aagagtaaat	ttggaaaagg	ctactttttc	gaaattaaat	tgaaggactg	gatagaaaac	4620
ctanaantan	accgccttca	aagagaaatt	cagtatattt	tcccaaatgc	aagccgtcag	4680
raaartttt	cttctatttt	ggcttataaa	attectaagg	aagatgttca	gtccctttca	4740
caatctttt	ttaagctgga	agaagctaaa	catgettttg	ccattgaaga	atatagettt	4800
	cattggaaca					4860
	gaactttaaa					4920
	gaactttaaa	Jugouluett	2992999440	2		4929
gtattttga						

<210> 2

<211> 1642

<212> PRT

<213> homo sapiens

<400															
1				5					10					Arg 15	
			20					25					30	Ser	
		35					40					45		Ile	
	50					55					60			Asn	
65					70					75				Leu	80
				85					90					Val 95	
			100					105					110	Asn	
		115					120					125		Val	
	130					135					140			Pro	
145					150					155				Cys	160
				165					170					Val 175	
			180					185					190	Val	
		195					200					205		Glu	
	210					215					220			Ile	
225					230					235				His	240
				245					250					Met 255	
		_	260					265					270	Thr	
		275					280					285		Ala	
	290					295					300			Phe	
305					310					315				Pro	320
				325					330					335	Val
			340					345					350		Pro
_		355					360					365			Val
	370					375					380				Ala
385					390					395					Ile 400
				405					410					415	
			420					425					430		Leu
Tyr	Phe	Leu	Lys	Pro	Ser	Tyr	Trp	Ser	Lys	Ser	Lys	Arg	Asn	Tyr	Glu

		435					440					445			
	450					455			Asn		460				
465					470				Gly	475					480
				485					Lys 490					495	
			500					505	Glu				510		
		515					520		Thr			525			
_	530					535			Ala		540				
545					550				Ala	555					560
				565					Val 570					575	
			580					585	Ile				590		
		595					600		Leu			605			
_	610					615			Gly		620				
625					630				Lys	635					640
				645					Arg 650					655	
	_		660					665	Thr				670		
		675				_	680		Arg			685			
	690					695			Met		700				
705					710				Ile	715					720
				725					His 730					735	
			740					745	Tyr				750		
		755					760		Ala			765			
	770					775					780				Val
785					790				Ile	795					800
				805					Glu 810					815	
			820					825	Leu				830		
		835					840		Gln			845			
	850					855			Glu		860				
865					870					875					Phe 880
Leu	Val	His	His	Ser	Phe	Lys	Asn	Ala	Val	val	Pro	тте	гла	ьeu	vaı

				885					890					895	
Pro	Asp	Leu	Tyr 900	Phe	Leu	Lys	Pro	Gly 905	Asp	Lys	Pro	His	Lys 910	Тут	Lys
Thr	Ser	Leu 915	Leu	Leu	Gln	Asn	Ser 920	Ala	Asp	Ser	Asp	Ile 925	Ser	Asp	Lėu
Ile	Ser 930	Phe	Phe	Thr	Ser	Gln 935	Asn	Ile	Met	Val	Thr 940	Met	Ile	Asn	Asp
Ser 945	Asp	Tyr	Val	Ser	Val 950	Ala	Pro	His	Ser	Ala 955	Ala	Leu	Asn	Val	Val 960
	Ser	Glu	Lys	Asp 965		Val	Phe	Ala	Ala 970	Val	Phe	Asn	Ser	Thr 975	Met
Val	Tyr	Ser	Leu 980		Ile	Leu	Val	Asn 985		Ile	Ser	Asn	Tyr 990	Tyr	Leu
Tyr	His	Leu 995		Val	Thr	Glu	Thr 1000	Ile	Gln	Ile	Trp	Ser 1005		Pro	Phe
Phe	Gln 1010	Glu	Ile	Thr	Asp	Ile 1015	Val		Lys	Ile	Glu 1020	Leu		Phe	Gln
Ala 102	Ala		Leu	Gly	Ile 1030	Ile		Thr	Ala	Met 1035	Pro		Tyr	Phe	Ala 1040
	Glu	Asn	Ala	Glu 1045	Asn		Lys	Ile	Lys 1050	Ala		Thr	Gln	Leu 1055	Lys
Leu	Ser	Gly	Leu 1060	Leu		Ser	Ala	Tyr 1065	Trp		Gly	Gln	Ala 1070		Val
Asp	Ile	Pro 1075	Leu		Phe	Ile	Ile 1080	Leu		Leu	Met	Leu 1089	Gly		Leu
Leu	Ala 1090	Phe		Tyr	Gly	Leu 1095	Tyr		Tyr	Thr	Val	Lys		Leu	Ala
Val	Val		Cvs	Leu	Ile			Va1	Pro	Ser			Len	Phe	Thr
			-3-			3	-3-	• • •							
110	5				1110)				1115	5				1120
110					1110 Thr)				1115 Leu	5				1120 Phe
110 Tyr	5	Ala	Ser	Phe 1125 Tyr	1110 Thr) Phe	Lys	Lys	Ile 1130 Leu	1115 Leu)	Asn	Thr	Lys	Glu 1135 Ile	1120 Phe
Tyr Trp Glu	Ile Ser Ile	Ala Phe Thr 1155	Ser Ile 1140 Phe	Phe 1125 Tyr) Phe	1110 Thr Ser Met	Phe Val Gly	Lys Ala Tyr 1160	Lys Ala 1149 Thr	Ile 1130 Leu 5 Ile	1115 Leu) Ala Ala	Asn Cys Thr	Thr Ile Ile 116	Lys Ala 1150 Leu	Glu 1135 Ile) His	1120 Phe Thr
Tyr Trp Glu Ala	Ser Ile Phe	Ala Phe Thr 1155 Cys	Ser Ile 1140 Phe Ile	Phe 1125 Tyr) Phe Ile	1110 Thr Ser Met	Phe Val Gly Pro 1175	Lys Ala Tyr 1160 Ile	Lys Ala 1145 Thr) Tyr	Ile 1130 Leu 5 Ile Pro	1115 Leu) Ala Ala Leu	Asn Cys Thr Leu 1180	Thr Ile Ile 1169 Gly	Lys Ala 1150 Leu Cys	Glu 1135 Ile) His Leu	1120 Phe Thr Tyr
Tyr Trp Glu Ala Ser 118	Ile Ser Ile Phe 1170 Phe	Ala Phe Thr 1155 Cys Ulle	Ser Ile 1140 Phe Ile Lys	Phe 1125 Tyr) Phe Ile	1110 Thr Ser Met Ile Ser 1190	Phe Val Gly Pro 1175 Trp	Lys Ala Tyr 1160 Ile Lys	Lys Ala 1145 Thr) Tyr Asn	Ile 1130 Leu Ile Pro Val	Leu Ala Leu Arg 1195	Asn Cys Thr Leu 1180 Lys	Thr Ile Ile 1169 Gly Asn	Lys Ala 1150 Leu Cys Val	Glu 1135 Ile) His Leu Asp	1120 Phe 5 Thr Tyr Ile Thr 1200
Tyr Trp Glu Ala Ser 118	Ile Ser Ile Phe 1170	Ala Phe Thr 1155 Cys Ulle	Ser Ile 1140 Phe Ile Lys	Phe 1125 Tyr) Phe Ile	1110 Thr Ser Met Ile Ser 1190 Arg	Phe Val Gly Pro 1175 Trp	Lys Ala Tyr 1160 Ile Lys	Lys Ala 1145 Thr) Tyr Asn	Ile 1130 Leu Ile Pro Val	Leu Ala Leu Arg 1195 Val	Asn Cys Thr Leu 1180 Lys	Thr Ile Ile 1169 Gly Asn	Lys Ala 1150 Leu Cys Val	Glu 1135 Ile) His Leu Asp	1120 Phe Thr Tyr Ile Thr 1200 Leu
Trp Glu Ala Ser 118	Ile Ser Ile Phe 1170 Phe	Ala Phe Thr 1155 Cys Ile	Ser Ile 1140 Phe Ile Lys Trp	Phe 1125 Tyr Phe Ile Ile Asp 1205	Thr Ser Met Ile Ser 1190 Arg	Phe Val Gly Pro 1175 Trp Leu	Lys Ala Tyr 1160 Ile Lys Ser	Lys Ala 1145 Thr) Tyr Asn Val	Ile 1130 Leu Ile Pro Val Ala 1210 Gln	Leu Ala Leu Arg 1195 Val	Asn Cys Thr Leu 1180 Lys Ile	Thr Ile Ile 1169 Gly Asn Ser	Lys Ala 1150 Leu Cys Val	Glu 1135 Ile His Leu Asp Tyr 1215	1120 Phe 5 Thr Tyr Ile Thr 1200 Leu
Trp Glu Ala Ser 118 Tyr Gln Gly	Ser Ile Phe 1170 Phe 5 Asn Cys	Ala Phe Thr 1155 Cys Ile Pro Val Arg 1235	Ser Ile 1140 Phe Ile Lys Trp Leu 1220 Ser	Phe 1125 Tyr) Phe Ile Asp 1205 Trp)	1110 Thr Ser Met Ile Ser 1190 Arg Ile Arg	Phe Val Gly Pro 1175 Trp Leu Phe Lys	Lys Ala Tyr 1160 Ile b Lys Ser Leu Asp 1240	Ala 1145 Thr Tyr Asn Val Leu 1225 Pro	Ile 1130 Leu Ile Pro Val Ala 1210 Gln Phe	Leu Ala Leu Arg 1195 Val Tyr	Asn Cys Thr Leu 1180 Lys Ile Tyr	Thr Ile Ile 1169 Gly Asn Ser Glu Asn 1249	Lys Ala 1150 Leu Cys Val Pro Lys 1230 Leu 5	Glu 1135 Ile His Leu Asp Tyr 1215 Lys Ser	1120 Phe Thr Tyr Ile Thr 1200 Leu Tyr Thr
Trp Glu Ala Ser 118 Tyr Gln Gly	Ser Ile Phe 1170 Phe 5 Asn Cys	Ala Phe Thr 1155 Cys Ile Pro Val Arg 1235 Lys	Ser Ile 1140 Phe Ile Lys Trp Leu 1220 Ser	Phe 1125 Tyr) Phe Ile Asp 1205 Trp)	1110 Thr Ser Met Ile Ser 1190 Arg Ile Arg	Phe Val Gly Pro 1175 Trp Leu Phe Lys	Lys Ala Tyr 1160 Ile Lys Ser Leu Asp 1240 Pro	Ala 1145 Thr Tyr Asn Val Leu 1225 Pro	Ile 1130 Leu Ile Pro Val Ala 1210 Gln Phe	Leu Ala Leu Arg 1195 Val Tyr	Asn Cys Thr Leu 1180 Lys Ile Tyr	Thr Ile Ile 1169 Gly Asn Ser Glu Asn 1249 Asn	Lys Ala 1150 Leu Cys Val Pro Lys 1230 Leu 5	Glu 1135 Ile His Leu Asp Tyr 1215 Lys Ser	1120 Phe Thr Tyr Ile Thr 1200 Leu Tyr
Trp Glu Ala Ser 118 Tyr Gln Gly Lys	Ser Ile Ser Ile Phe 1170 Phe S Asn Cys Gly Ser 1250 Glu	Ala Phe Thr 1155 Cys Ile Pro Val Arg 1235 Lys	Ile 1140 Phe Ile Lys Trp Leu 1220 Ser Asn	Phe 1125 Tyr) Phe Ile Asp 1205 Trp) Ile	1110 Thr Ser Met Ile Ser 1190 Arg Ile Arg	Phe Val Gly Pro 1175 Trp Leu Phe Lys Leu 1255 Glu	Lys Ala Tyr 1160 Ile Lys Ser Leu Asp 1240 Pro	Ala 1149 Thr Tyr Asn Val Leu 1229 Pro Glu	Ile 1130 Leu 5 Ile Pro Val Ala 1210 Gln 5 Phe	Leu Ala Leu Arg 1195 Val Tyr Phe Pro	Asn Cys Thr Leu 1180 Lys Tyr Arg Asp 1260 Lys	Thr Ile Ile 1169 Gly Asn Ser Glu Asn 1249 Asn	Ala 1150 Leu Cys Val Pro Lys 1230 Leu Glu	Glu 1135 Ile His Leu Asp Tyr 1215 Lys Ser	1120 Phe Thr Tyr Ile Thr 1200 Leu Tyr Thr
Trp Glu Ala Ser 118 Tyr Gln Gly Lys Asp	Ser Ile Ser Ile Phe 1170 Phe S Asn Cys Gly Ser 1250 Glu	Ala Phe Thr 1155 Cys Ile Pro Val Arg 1235 Lys Asp	Ile 1140 Phe Ile Lys Trp Leu 1220 Ser Asn	Phe 1125 Tyr Phe Ile Ile Asp 1205 Trp Ile Arg	Ser Met Ile Ser 1190 Arg Ile Arg Lys Ala 1270 Glu	Phe Val Gly Pro 1175 Trp Leu Phe Lys Leu 1255 Glu	Lys Ala Tyr 1160 Ile Lys Ser Leu Asp 1240 Pro Arg	Ala 1149 Thr Tyr Asn Val Leu 1229 Pro Glu Leu	Ile 1130 Leu Ile Pro Val Ala 1210 Gln Phe Pro	Ala Ala Leu Arg 1199 Val Tyr Phe Pro Val 1279 Met	Asn Cys Thr Leu 1180 Lys Ile Tyr Arg Asp 1260 Lys	Thr Ile Ile 1169 Gly Asn Ser Glu Asn 1249 Asn Glu Glu	Ala 1150 Leu Cys Val Pro Lys 1230 Leu Glu Leu	Glu 1135 Ile His Leu Asp Tyr 1215 Lys Ser Asp	Thr Tyr Ile Thr 1200 Leu Tyr Thr Glu Gly 1280 His
Trp Glu Ala Ser 118 Tyr Gln Gly Lys Asp 126 Cys	Ser Ile Ser Ile Phe 1170 Phe S Asn Cys Gly Ser 1250 Glu S	Ala Phe Thr 115! Cys Ile Pro Val Arg 123! Lys O Asp	Ser Ile 1140 Phe Ile Lys Trp Leu 1220 Ser Asn Val	Phe 1125 Tyr Phe Ile Ile Asp 1205 Trp Ile Arg Lys Glu 1285 Asp	1110 Thr Ser Met Ile Ser 1190 Arg Ile Arg Lys Ala 1270 Glu	Phe Val Gly Pro 1175 Trp Leu Phe Lys Leu 1255 Glu Lys	Lys Ala Tyr 1160 Ile C Lys Ser Leu Asp 1240 Pro Arg	Lys Ala 1145 Thr Tyr Asn Val Leu 1225 Pro Glu Leu Ser	Ile 1130 Leu Ile Pro Val Ala 1210 Gln Phe Pro Lys Ile 1290 Leu	Ala Ala Leu Arg 1195 Val Tyr Phe Pro Val 1275 Met	Asn Cys Thr Leu 1180 Lys Ile Tyr Arg Asp 1260 Lys Val	Thr Ile Ile 1169 Gly Asn Ser Glu Asn 1249 Asn Glu Ser	Lys Ala 1150 Leu Cys Val Pro Lys 1230 Leu Glu Leu Asn	Glu 1135 Ile His Leu Asp Tyr 1215 Lys Ser Asp Met Leu 1295 Val	Thr Tyr Ile Thr 1200 Leu Tyr Thr Glu Gly 1280 His
Trp Glu Ala Ser 118 Tyr Gln Gly Lys Asp 126 Cys	Ser Ile Ser Ile Phe 1170 Phe S Asn Cys Gly Ser 1250 Glu S	Ala Phe Thr 115! Cys Ile Pro Val Arg 123! Lys Asp Cys	Ser Ile 1140 Phe Ile Lys Trp Leu 1220 Ser Asn Val Cys Asp 1300 Thr	Phe 1125 Tyr Phe Ile Ile Asp 1205 Trp Ile Arg Lys Glu 1285 Asp	Ille Ser Ile Ser Ile Arg Lys Ala 1270 Glu Lys	Phe Val Gly Pro 1175 Trp Leu Phe Lys Leu 1255 Glu Lys Lys	Lys Ala Tyr 1160 Ile b Lys Ser Leu Asp 1240 Pro Arg Pro Asp	Lys Ala 1145 Thr Tyr Asn Val Leu 1225 Pro Glu Leu Ser Phe 1305 Phe	Ile 1130 Leu Ile Pro Val Ala 1210 Gln Phe Pro Lys Ile 1290 Leu 5	Leu Ala Ala Leu Arg 1195 Val Tyr Phe Pro Val 1275 Met Leu	Asn Cys Thr Leu 1180 Lys Ile Tyr Arg Asp 1260 Lys Val	Thr Ile Ile 1169 Gly Asn Ser Glu Asn 1249 Asn Glu Ser Arg	Lys Ala 1150 Leu Cys Val Pro Lys 1230 Leu Glu Leu Asn Lys 1310 Gly	Glu 1135 Ile His Leu Asp Tyr 1215 Lys Ser Asp Met Leu 1295 Val	Thr Tyr Ile Thr 1200 Leu Tyr Thr Glu Gly 1280 His Lys

	1330					1335					1340					
1345	5				1350)	Pro			1355	5				1360	
Asp	Tyr	Ser	Ser	Glu 1365		Ser	Glu	Asp	Asp 1370		Ser	Leu	Lys	Cys 1375		
Gly	Tyr	Cys	Pro 1380		Ile	Asn	Pro	Leu 138		Pro	Asp	Thr	Thr 1390		Gln	·
		1395	5				Ala 1400)				1405	5			
Met	Lys 141(Va1	Ile	Ser	Arg 141	Ile 5	Thr	His	Ala	Leu 1420		Leu	Lys	Glu	
1425	5				143	0	Lys			1435	5				1440	
Leu	Суѕ	Phe	Ala			Met	Leu	Gly			Gln	Ile	Thr			
	01	D	O	1445		Wot	Asp	Dro	1450		Tare	Gln	Hie	1455		
			1460)				146	5				1470)		
_		1475	5				Lys 1480)				1485	5			
Thr	Thr 1490		Tyr	Met	Glu	Glu 149!	Ala 5	Glu	Ala	Val	Cys 1500		Arg	Val	Ala	
Ile 1505		Val	Ser	Gly	Gln 151		Arg	Суз	Ile	Gly 151		Val	Gln	His	Leu 1520	
Lys	Ser	Lys	Phe	Gly 152	Lys		Tyr	Phe	Leu 1530		Ile	Lys	Leu	Lys 1539		
Trp	Ile	Glu	Asn 154	Leu		Val	Asp	Arg 154	Leu		Arg	Glu	Ile 1550	Gln	_	
Ile	Phe	Pro 155	Asn		Ser	Arg	Gln 156	Glu		Phe	Ser	Ser 156		Leu	Ala	
Tyr	Lys 1570	Ile		Lys	Glu	Asp 157	Val		Ser	Leu	Ser 158		Ser	Phe	Phe	
Lys 1585	Leu		Glu	Ala	Lys 159	His	Ala	Phe	Ala	Ile 159		Glu	Tyr	Ser	Phe 1600	
			Thr	Leu			Val	Phe	Val			Thr	Lys	Glu		
				160		_			161		a	mL	τ	1615		
			162	0			Gly	162	5		ser	Thr	163		пр	
Glu	Arg	Thr 163		Glu	Asp	Arg	Val 164		Phe							
<210)> 3															
	L> 4'															
	2> D) 3> h		sapi	ens												
	0> 3														_•	60
atg	tcca	ctg (caat	tagg	ga g	gtag	gagt	t tg	gaga	caga	cca	gaac	act	ccta hhhh	ctgaag ccacta	60 120
ttt	tact	taa tat	ttta	atta.	ay a at a	ttaa	ttao	g ay c at	gatg	catc	caa	ataa	gaa a	atat	gaagaa	180
gtg	ccta	ata	taga	actc	aa t	ccta	tgga	c aa	gttt	actc	ttt	ctaa	tct a	aatt	cttgga	240
tata	actc	cag	tgac	taat	at t	acaa	gcag	c at	catg	caga	aag	tgtc	tac	tgat	catcta	300
															agtctc	360
tct	aagc	cga (gcaa	cttt	gt a	ggtg	tggt	t tt	caaa	gact	cca	tgtc	cta	tgaa	cttcgt	420
ttt	tttc	ctg :	atat	gatt	cc a	gtat	cttc	t at	ttat.	atgg	att	caag	agc '	raac.	tgttca tgcata	480 540
															tccata tcaact	600

						cc0
aaagctgtta	ttatgggaga	aactgctgtt	gtagaaatag	atacctttcc	ccgaggagta	660 720
attttaatat	acctagttat	agcattttca	ccttttggat	actttttggc	aattcatatc	
gtagcagaaa	aagaaaaaa	aataaaagaa	tttttaaaga	taatgggact	tcatgatact	780
gccttttggc	tttcctgggt	tcttctataw	acaagtttaa	tttttcttat	greeerrerr	840
atggcagtca	ttgcgacagc	ttctttgtta	tttcctcaaa	gtagcagcat	tgtgatattt	900
ctgctttttt	tcctttatgg	attatcatct	gtatttttg	ctttaatgct	gacacctctt	960
tttaaaaaat	caaaacatgt	gggaatagtt	gaattttttg	ttactgtggc	ttttggattt	1020
attggcctta	tgataatcct	catagaaagt	tttcccaaat	cgttagtgtg	gcttttcagt	1080
cctttctgtc	actgtacttt	tgtgattggt	attgcacagg	tcatgcattt	agaagatttt	1140
aatgaaggtg	cttcattttc	aaatttgact	gcaggcccat	atcctctaat	tattacaatt	1200
atcatgctca	cacttaatag	tatattctat	gtcctcttgg	etgtetatet	tgatcaagtc	1260
attccagggg	aatttggctt	acggagatca	tctttatatt	ttctgaagec	ttcatattgg	1320
tcaaagagca	aaagaaatta	tgaggagtta	tcagagggca	atgttaatgg	aaatattagt	1380
tttagtgaaa	ttattgagcc	agtttcttca	gaatttgtag	gaaaagaagc	cataagaatt	1440
agtggtattc	agaagacata	cagaaagaag	ggtgaaaatg	tggaggcttt	gagaaatttg	1500
tcatttgaca	tatatgaggg	tcagattact	gccttacttg	gccacagtgg	aacaggaaag	1560
agtacattga	tgaatattct	ttgtggactc	tgcccacctt	ctgatgggtt	tgcatctata	1620
tatggacaca	gagtctcaga	aatagatgaa	atgtttgaag	caagaaaaat	gattggcatt	1680
tgtccacagt	tagatataca	ctttgatgtt	ttgacagtag	aagaaaattt	atcaattttg	1740
gcttcaatca	aagggatacc	agccaccaat	ataatacaag	aagtgcagaa	ggttttacta	1800
gatttagaca	tgcagactat	caaagataac	caagctaaaa	aattaagtgg	tggtcaaaaa	1860
agaaagctgt	cattaggaat	tgctgttctt	gggaacccaa	agatactgct	gctagatgaa	1920
ccaacagctg	gaatggaccc	ctgttctcga	catattgtat	ggaatctttt	aaaatacaga	1980
aaagccaatc	gggtgacagt	gttcagtact	catttcatgg	atgaagctga	cattcttgca	2040
gataggaaag	ctgtgatatc	acaaggaatg	ctgaaatgtg	ttggttcttc	aatgttcctc	2100
aaaagtaaat	gggggatcgg	ctaccgcctg	agcatgtaca	tagacaaata	ttgtgccaca	2160
gaatctcttt	cttcactggt	taaacaacat	atacctggag	ctactttatt	acaacagaat	2220
gaccaacaac	ttgtgtatag	cttgcctttc	aaggacatgg	acaaattttc	aggtttgttt	2280
tetgecetag	acagtcattc	aaatttgggt	ggcatttctt	atggggtttc	catgacgact	2340
ttggaagacg	tatttttaaa	gctagaagtt	gaagcagaaa	ttgaccaagc	agattatagt	2400
gtatttactc	agcagccact	ggaggaagaa	atggattcaa	aatcttttga	tgaaatggaa	2460
cagagcttac	ttattctttc	tgaaaccaag	gctkctctag	tgagcaccat	gagcctttgg	2520
aaacaacaga	tgtatacaat	agcaaagttt	catttcttta	ccttgaaacg	tgaaagtaaa	2580
tcagtgagat	cagtgttgct	tctgctttta	attttttca	cagttcagat	ttttatgttt	. 2640
ttggttcatc	actcttttaa	aaatgctgtg	gttcccatca	aacttgttcc	agacttatat	2700
tttctaaaac	ctggagacaa	accacataaa	tacaaaacaa	gtetgettet	tcaaaattct	2760
gctgactcag	atatcagtga	tcttattagc	tttttcacaa	gccagaacat	aatggtgacg	2820
atgattaatg	acagtgacta	tgtatccgtg	gctccccata	gtgcggcttt	aaatgtgrtg	2880
cattcagaaa	aggactatgt	ttttgcagct	gttttcaaca	gtactatggt	ttattcttta	2940
cctatattag	tgaatatcat	tagtaactac	tatctttatc	atttaaatgt	gactgaaacc	3000
atccagatct	ggagtacccc	attctttcaa	gaaattactg	atatagtttt	taaaattgag	3060
ctgtattttc	aagcagcttt	gcttggaatc	attgttactg	caatgccacc	ttactttgcc	3120
atggaaaatg	cagagaatca	taagatcaaa	gcttayactc	aacttaaact	ttcaggtctt	3180
ttgccatctg	catattggat	tggacaagct	gttgttgata	tccccttatt	ttttatcatt	3240
cttattttga	tgctaggaag	cttattggca	tttcattatg	gattatattt	ttatactgta	3300
aagttccttg	ctgtggtttt	ttgccttatt	ggttatgttc	catcagttat	tctgttcact	3360
tatattgctt	ctttcacctt	taagaaaatt	ttaaatacca	aagaattttg	gtcatttatc	3420
tattctgtgg	cagcgttggc	ttgtattgca	atcactgaaa	taactttctt	tatgggatac	3480
acaattgcaa	ctattcttca	ttatgccttt	tgtatcatca	ttccaatcta	tccacttcta	3540
ggttgcctga	tttctttcat	aaagatttct	tggaagaatg	tacgaaaaaa	tgtggacacc	3600
tataatccat	gggataggct	ttcagtagct	gttatatcgc	cttacctgca	gtgtgtactg	3660
tggattttcc	tcttacaata	ctatgagaaa	aaatatggag	gcagatcaat	aagaaaagat	3720
ccctttttca	gaaacctttc	aacgaagtct	aaaaatagga	agcttccaga	accaccagac	3780
aatgaggatg	aagatgaaga	tgtcaaagct	gaaagactaa	aggtcaaaga	gctgatgggt	3840
tgccagtgtt	gtgaggagaa	accatccatt	atggtcagca	atttgcataa	agaatatgat	3900
gacaagaaag	attttcttct	ttcaagaaaa	gtaaagaaag	tggcaactaa	atacatctct	3960

```
ttctgtgtga aaaaaggaga gatcttagga ctattgggtc caaatggtgc tggcaaaagc
                                                                     4020
acaattatta atattctggt tggtgatatt gaaccaactt caggccaggt atttttagga
                                                                     4080
gattattctt cagagacaag tgaagatgat gattcactga agtgtatggg ttactgtcct
                                                                     4140
cagataaacc ctttgtggcc agatactaca ttgcaggaac attttgaaat ttatggagct
                                                                     4200
gtcaaaggaa tgagtgcaag tgacatgaaa gaagtcataa gtcgaataac acatgcactt
                                                                     4260
gatttaaaag aacatcttca gaagactgta aagaaactac ctgcaggaat caaacgaaag
                                                                     4320
ttgtgttttg ctctaagtat gctagggaat cctcagatta ctttgctaga tgaaccatct
                                                                     4380
acaggtatgg atcccaaagc caaacagcac atgtggcgag caattcgaac tgcatttaaa
                                                                     4440
aacagaaagc gggctgctat tctgaccact cactatatgg aggaggcaga ggctgtctgt
                                                                     4500
gatcgagtag ctatcatggt gtctgggcag ttaagatgta tcggaacagt acaacatcta
                                                                     4560
                                                                     4620
aagagtaaat ttggaaaagg ctactttttg gaaattaaat tgaaggactg gatagaaaac
ctagaagtag accgccttca aagagaaatt cagtatattt tcccaaatgc aagccgtcag
                                                                     4680
gaaagttttt cttctatttt ggcttataaa attcctaagg aagatgttca gtccctttca
                                                                     4740
caatcttttt ttaagctgga agaaggtttt tgtagaactc actaa
                                                                     4785
<210> 4
<211> 1594
<212> PRT
<213> homo sapiens
<400> 4
Met Ser Thr Ala Ile Arg Glu Val Gly Val Trp Arg Gln Thr Arg Thr
                5
                                    10
Leu Leu Leu Lys Asn Tyr Leu Ile Lys Cys Arg Thr Lys Lys Ser Ser
                                25
Val Gln Glu Ile Leu Phe Pro Leu Phe Phe Leu Phe Trp Leu Ile Leu
                            40
Ile Ser Met Met His Pro Asn Lys Lys Tyr Glu Glu Val Pro Asn Ile
                        55
                                            60
Glu Leu Asn Pro Met Asp Lys Phe Thr Leu Ser Asn Leu Ile Leu Gly
                    70
                                        75
Tyr Thr Pro Val Thr Asn Ile Thr Ser Ser Ile Met Gln Lys Val Ser
                                    90
                85
Thr Asp His Leu Pro Asp Val Ile Ile Thr Glu Glu Tyr Thr Asn Glu
            100
                                105
Lys Glu Met Leu Thr Ser Ser Leu Ser Lys Pro Ser Asn Phe Val Gly
                                                125
                            120
Val Val Phe Lys Asp Ser Met Ser Tyr Glu Leu Arg Phe Phe Pro Asp
                                            140
                        135
Met Ile Pro Val Ser Ser Ile Tyr Met Asp Ser Arg Ala Gly Cys Ser
                                       155
                    150
```

195 200 205 Ala Val Val Glu Ile Asp Thr Phe Pro Arg Gly Val Ile Leu Ile Tyr 215 220 Leu Val Ile Ala Phe Ser Pro Phe Gly Tyr Phe Leu Ala Ile His Ile 235 230 Val Ala Glu Lys Glu Lys Lys Ile Lys Glu Phe Leu Lys Ile Met Gly 250

Lys Ser Cys Glu Ala Ala Gln Tyr Trp Ser Ser Gly Phe Thr Val Leu

Gln Ala Ser Ile Asp Ala Ala Ile Ile Gln Leu Lys Thr Asn Val Ser

185 Leu Trp Lys Glu Leu Glu Ser Thr Lys Ala Val Ile Met Gly Glu Thr

165

Leu His Asp Thr Ala Phe Trp Leu Ser Trp Val Leu Leu Tyr Thr Ser

170

190

270 265 260 Leu Ile Phe Leu Met Ser Leu Leu Met Ala Val Ile Ala Thr Ala Ser

		275					280					285			
Leu	Leu 290	Phe	Pro	Gln	Ser	Ser 295	Ser	Ile	Val	Ile	Phe 300	Leu	Leu	Phe	Phe
305	_				310					315				Pro	320
				325					330					Thr 335	
			340					345					350	Phe	
		355					360					365		Phe	
	370		•			375					380			Gly	
Ser 385	Phe	Ser	Asn	Leu	Thr 390	Ala	Gly	Pro	Tyr	Pro 395	Leu	Ile	Ile	Thr	Ile 400
	Met	Leu	Thr	Leu 405		Ser	Ile	Phe	Tyr 410	Val	Leu	Leu	Ala	Val 415	Tyr
Leu	Asp	Gln	Val 420	Ile	Pro	Gly	Glu	Phe 425	Gly	Leu	Arg	Arg	Ser 430	Ser	Leu
Tyr	Phe	Leu 435	ГЛЗ	Pro	Ser	Tyr	Trp 440	Ser	Lys	Ser	Lys	Arg 445	Asn	Tyr	Glu
	450					455					460			Glu	
465					470					475				Arg	480
				485					490					Glu 495	
	_		500					505					510	Ala	
		515					520					525		Leu	
	530					535					540			His	
545					550					555				Gly	560
				565					570					Glu 575	
			580					585					590	Ile	
		595					600					605		Ile	
	610					615					620				Ser
Leu 625	Gly	Ile	Ala	Val	Leu 630	Gly	Asn	Pro	Lys	11e 635	Leu	Leu	Leu	Asp	Glu 640
				645					650					655	Leu
Leu	Lys	Tyr	Arg 660	Ļys	Ala	Asn	Arg	Val 665	Thr	Val	Phe	Ser	Thr 670	His	Phe
	_	675					680					685			Gln
	690					695					700			Lys	
705					710					715					Thr 720
Glu	Ser	Leu	Ser	Ser	Leu	Val	Lys	Gln	His	Ile	Pro	Gly	Ala	Thr	Leu

				725					730					735	
Leu	Gln	Gln	Asn 740		Gln	Gln	Leu	Val 745	Tyr	Ser	Leu	Pro	Phe 750	Lys	Asp
		755					760			Leu		765			
	770					775				Thr	780				
785					790					Asp 795					800
				805					810	Met				815	
			820					825		Ser			830		
		835					840			Gln		845			
	850		•			855				Ser	860				
865					870					Val 875					880
				885					890	Val				895	
	_		900					905		Lys			910		
		915					920			Ser		925			
	930					935				Val	940				
945					950					Ala 955					960
				965					970	Val				975	
	_		980					985		Ile			990		
		995					1000)		Ile		1009	5		
	1010	כ				1015	5			Ile	1020)			
102	5				1030)				Met 103	5				1040
				104	5				105	Ala O				105	5
			106	0				1069	5				1070)	Val
		107	5				108	D		Leu		1085	5		
	109	0				109	5			Thr	110	0			
110	5				111	0				111!	5				Thr 1120
				112	5				113					113	5
			114	0				114	5	Ala			115	0	
		115	5				116	0		Ala		116	5		
Ala	Phe	Cys	Ile	Ile	Ile	Pro	Ile	Tyr	Pro	Leu	Leu	Gly	Cys	Leu	Ile

	1170					1175					1180				
1185	5				1190)		Asn		1195	5				1200
Tyr	Asn	Pro	Trp	Asp 1205		Leu	Ser	Val	Ala 1210		Ile	Ser	Pro	Tyr 1215	
	_		1220)				Leu 1225	5				1230)	
		1235	5				1240					1245	5		
_	1250)				1255	5	Glu			1260)			
1269	5				1270)		Leu		1275	5				1280
				1285	5			Ser	1290)				1295	5
			1300)				Phe 1305	5				1310)	
		1315	5				1320					1325	5		
	1330)				1335	5	Ala			1340)		•	
Ile 1345		Val	Gly	Asp	Ile 1350		Pro	Thr	Ser	Gly 1359		Val	Phe	Leu	Gly 1360
Asp	Tyr	Ser	Ser	Glu 136		Ser	Glu	Asp	Asp 1370		Ser	Leu	Lys	Cys 1375	
Gly	Tyr	Суз	Pro 1380		Ile	Asn	Pro	Leu 138		Pro	Asp	Thr	Thr 1390		Gĺn
Glu	His	Phe 1395		Ile	Tyr	Gly	Ala 1400	Val	Lys	Gly	Met	Ser 1405		Ser	Asp
	1410)				1415	5	Thr			1420)			
His 142		Gln	Lys	Thr	Val 1430		Lys	Leu	Pro	Ala 143		Ile	Lys	Arg	Lys 1440
				144	5			Gly	145	0				145	5
			1460	0				Pro 1469	5				1470)	
Arg	Ala	Ile 147		Thr	Ala	Phe	Lys 148		Arg	Lys	Arg	Ala 148		Ile	Leu
Thr	Thr 149		Tyr	Met	Glu	Glu 149		Glu	Ala	Val	Cys 150		Arg	Val	Ala
Ile 150		Val	Ser	Gly	Gln 151		Arg	Сув	Ile	Gly 151		Val	Gln	His	Leu 1520
		Lys	Phe	Gly 152		Gly	Tyr	Phe	Leu 153		Ile	Lys	Leu	Lys 153	Asp 5
Trp	Ile	Glu	Asn 154		Glu	Val	Asp	Arg 154		Gln	Arg	Glu	Ile 155		Tyr
Ile	Phe	Pro 155	Asn		Ser	Arg	Gln 156		Ser	Phe	Ser	Ser 156		Leu	Ala
Tyr	Lys 157	Ile		Lys	Glu	Asp 157	Val		Ser	Leu	Ser 158		Ser	Phe	Phe
Lys 158	Leu		Glu	Gly	Phe 159		Arg	Thr	His						

<210> 5 <211> 5262

<212> DNA <213> homo sapiens

<400> 5 60 actgttgata tggtggtatt tcaaattctg gtctacccta tttcacatgc cttgtttact tttcagagct gacagattgc tgctccatgc attctgtcca gtttcctaag agagacagct 120 tggagtatgc ttaatccatc ttacctggga ctgaaacagc tgcttatttt gccgttaaaa 180 240 attacatgca gtttactgcg tggctccggg tttgtttgtt tgtttttcct ctttaatagg tttattcaga aaacatgtcc actgcaatta gggaggtagg agtttggaga cagaccagaa 300 cacttctact gaagaattac ttaattaaat gcagaaccaa aaagagtagt gttcaggaaa 360 ttctttttcc actattttt ttattttggt taatattaat tagcatgatg catccaaata 420 agaaatatga agaagtgcct aatatagaac tcaatcctat ggacaagttt actctttcta 480 atctaattct tggatatact ccagtgacta atattacaag cagcatcatg cagaaagtgt 540 ctactgatca tctacctgat gtcataatta ctgaagaata tacaaatgaa aaagaaatgt 600 taacatccag tctctctaag ccgagcaact ttgtaggtgt ggttttcaaa gactccatgt 660 cctatgaact tcgtttttt cctgatatga ttccagtatc ttctatttat atggattcaa 720 780 gagetggetg ttcaaaatca tgtgaggetg ctcagtactg gtcctcaggt ttcacagttt tacaagcatc catagatgct gccattatac agttgaagac caatgtttct ctttggaagg 840 agctggagtc aactaaagct gttattatgg gagaaactgc tgttgtagaa atagatacct 900 ttccccgagg agtaatttta atatacctag ttatagcatt ttcacctttt ggatactttt 960 tggcaattca tatcgtagca gaaaaagaaa aaaaaataaa agaatttta aagataatgg 1020 gacttcatga tactgccttt tggctttcct gggttcttct atawacaagt ttaatttttc 1080 ttatgtccct tcttatggca gtcattgcga cagcttcttt gttatttcct caaagtagca 1140 gcattgtgat atttctgctt tttttccttt atggattatc atctgtattt tttgctttaa 1200 1260 tgctgacacc tctttttaaa aaatcaaaac atgtgggaat agttgaattt tttgttactg tggcttttgg atttattggc cttatgataa tcctcataga aagttttccc aaatcgttag 1320 tgtggctttt cagtcctttc tgtcactgta cttttgtgat tggtattgca caggtcatgc 1380 atttagaaga ttttaatgaa ggtgcttcat tttcaaattt gactgcaggc ccatatcctc 1440 taattattac aattatcatg ctcacactta atagtatatt ctatgtcctc ttggctgtct 1500 atcttgatca agtcattcca ggggaatttg gcttacggag atcatcttta tattttctga 1560 agccttcata ttggtcaaag agcaaaagaa attatgagga gttatcagag ggcaatgtta 1620 1680 atggaaatat tagttttagt gaaattattg agccagtttc ttcagaattt gtaggaaaag aagccataag aattagtggt attcagaaga catacagaaa gaagggtgaa aatgtggagg 1740 ctttgagaaa tttgtcattt gacatatatg agggtcagat tactgcctta cttggccaca 1800 gtggaacagg aaagagtaca ttgatgaata ttctttgtgg actctgccca ccttctgatg 1860 ggtttgcatc tatatatgga cacagagtct cagaaataga tgaaatgttt gaagcaagaa 1920 aaatgattgg catttgtcca cagttagata tacactttga tgttttgaca gtagaagaaa 1980 atttatcaat tttggcttca atcaaaggga taccagccac caatataata caagaagtgc 2040 agaaggtttt actagattta gacatgcaga ctatcaaaga taaccaagct aaaaaattaa 2100 gtggtggtca aaaaagaaag ctgtcattag gaattgctgt tcttgggaac ccaaagatac 2160 2220 tgctgctaga tgaaccaaca gctggaatgg acccctgttc tcgacatatt gtatggaatc ttttaaaata cagaaaagcc aatcgggtga cagtgttcag tactcatttc atggatgaag 2280 ctgacattct tgcagatagg aaagctgtga tatcacaagg aatgctgaaa tgtgttggtt 2340 cttcaatgtt cctcaaaagt aaatggggga tcggctaccg cctgagcatg tacatagaca 2400 aatattgtgc cacagaatct ctttcttcac tggttaaaca acatatacct ggagctactt 2460 2520 tattacaaca gaatgaccaa caacttgtgt atagcttgcc tttcaaggac atggacaaat 2580 tttcaggttt gttttctgcc ctagacagtc attcaaattt gggtggcatt tcttatgggg 2640 tttccatgac gactttggaa gacgtatttt taaagctaga agttgaagca gaaattgacc aagcagatta tagtgtattt actcagcagc cactggagga agaaatggat tcaaaatctt 2700 ttgatgaaat ggaacagagc ttacttattc tttctgaaac caaggctkct ctagtgagca 2760 ccatgagcct ttggaaacaa cagatgtata caatagcaaa gtttcatttc tttaccttga 2820 aacgtgaaag taaatcagtg agatcagtgt tgcttctgct tttaattttt ttcacagttc 2880 2940 agatttttat gtttttggtt catcactctt ttaaaaatgc tgtggttccc atcaaacttg 3000 ttccagactt atattttcta aaacctggag acaaaccaca taaatacaaa acaagtctgc 3060 ttcttcaaaa ttctgctgac tcagatatca gtgatcttat tagctttttc acaagccaga acataatggt gacgatgatt aatgacagtg actatgtatc cgtggctccc catagtgcgg 3120

					22424ta45	3180
	grtgcattca					
	tttacctata					3240
atgtgactga	aaccatccag	atctggagta	cccattett	tcaagaaatt	actgatatag	3300
	tgagctgtat					3360
	tgccatggaa					3420
	tcttttgcca					3480
	cattcttatt					3540
	tgtaaagttc					3600
	cacttatatt					3660
tttggtcatt	tatctattct	gtggcagcgt	tggcttgtat	tgcaatcact	gaaataactt	3720
tctttatggg	atacacaatt	gcaactattc	ttcattatgc	cttttgtatc	atcattccaa	3780
tctatccact	tctaggttgc	ctgatttctt	tcataaagat	ttcttggaag	aatgtacgaa	3840
aaaatgtgga	cacctataat	ccatgggata	ggctttcagt	agctgttata	tegeettace	3900
	actgtggatt					3960
	agatcccttt					4020
cagaaccacc	agacaatgag	gatgaagatg	aagatgtcaa	agctgaaaga	ctaaaggtca	4080
aagagctgat	gggttgccag	tgttgtgagg	agaaaccatc	cattatggtc	agcaatttgc	4140
ataaagaata	tgatgacaag	aaagattttc	ttctttcaag	aaaagtaaag	aaagtggcaa	4200
ctaaatacat	ctctttctgt	gtgaaaaaag	gagagatctt	aggactattg	ggtccaaatg	4260
	aagcacaatt					4320
	aggagattat					4380
	tcctcagata					4440
	agctgtcaaa					4500
	acttgattta					4560
	aaagttgtgt					4620
	atctacaggt					4680
	taaaaacaga					4740
cagaggetgt	ctgtgatcga	gtagctatca	tggtgtctgg	gcagttaaga	tgtatcggaa	4800
	tctaaagagt					4860
actggataga	aaacctagaa	gtagaccgcc	ttcaaagaga	aattcagtat	attttcccaa	4920
	tcaggaaagt					4980
	ttcacaatct					5040
	cttttctcaa					5100
	agataatagt					5160
	agtagtattt					5220
	aattttaact					5262
			_			