Математический анализ и линейная алгебра Домашнее задание N2

Дмитрий Донецков (ddonetskov@gmail.com)

July 28, 2018

1 Задачи

1.1 Задача 1

Данная задача была ранее решена, как задача 8 задания 2.

1.2 Задача 2

Параметрическое уравнение касательного вектора: $r'(t) = (1, -2\sin 2t, 2\cos 2t)$.

Точке $(\pi, 1, 0)$ соответствует значение $t = \pi$, касательный вектор в данной точке принимает значение $r'(\pi) = (1, 0, 2)$.

Точке $(\pi/2, -1, 0)$ соответствует значение $t = \pi/2$, касательный вектор в данной точке принимает значение $t'(\pi/2) = (1, 0, -2)$.

Кривая r(t) и касательные вектора отображены на 1. Данную кривую можно представить, как спираль вокруг оси Ox с периодом π .

Figure 1: Эскиз кривой $r(t) = (t, \cos 2t, \sin 2t)$ и касательных векторов к ней.

1.3 Задача 3

См. рис. 2. Область определения функции - \mathbb{R}^2 , область значений - $[4, +\infty)$.

Figure 2: Линии уровня $f(x,y) = 4x^2 + 4y^2 + 4$ и эскиз её поверхности.

1.4 Задача 4

Градиент функции $\nabla f(4,6)$ показан на рис. 3. Он направлен в сторону роста значений функции и перпендикулярно линии уровня функции в заданной точке.

Figure 3: Заданные линии уровня с отмеченным градиентом

1.5 Задача 5

Найдём частные производные функции $f(x,y) = x^4 + y^4 - 4xy + 2$:

$$f_X = 4x^3 - 4y,$$
 $f_{XX} = 12x^2,$ $f_{XY} = -4,$ $f_{Y} = 4y^3 - 4x,$ $f_{YY} = 12y^2,$ $f_{YX} = -4.$

Определим в каких точках градиент $\nabla f(x,y) = (4x^3 - 4y, 4y^3 - 4x)$ равен (0,0):

$$\begin{cases} 4x^3 - 4y = 0, \\ 4y^3 - 4x = 0. \end{cases} \Rightarrow \begin{cases} x^3 - y = 0, \\ y^3 - x = 0. \end{cases} \Rightarrow \begin{cases} x^3 - \sqrt[3]{x} = 0, \\ y^3 - \sqrt[3]{y} = 0. \end{cases}$$

Корнями данной системы уравнений являются точки A=(0,0), B=(1,1). Это точки, которые могут быть как точками экстремума, так и седловыми точками. Для определения характера точек воспользуемся достаточным условием экстремума. Вычислим значения вторых частных производных и определителя функции $D=f_{XX}f_{YY}-f_{XY}^2=144x^2y^2-16$ в данных точках:

Точка	A = (0,0)	B = (1,1)
f_{XX}	0	12
f_{YY}	0	12
f_{XY}	-16	-16
D	-16	128

Исходя из значений детерминанта и вторых частных производных, точка В является точкой минимума. С точкой А возникла неопределенность, т.к. D=0 в данной точке.

Посмотрим значения самой функции в окрестности такой точки. Так, для малых (ε, δ) :

$$f(\varepsilon, 0) = \varepsilon^4 + 2 > 0,$$

$$f(0, \delta) = \delta^4 + 2 > 0.$$

Т.е. функция в самой точке принимает значение f(0,0)=2, а её окрестностях - значения больше, чем 2, то точка A является точкой минимума.

1.6 Задача 6

Данная задача была ранее решена, как задача 6 задания 2.

1.7 Задача 7

Данная задача была ранее решена, как задача 7 задания 2.