IMPUTING THE MISSING VALUE

- ➤ A simplified approach to impute missing data is with MICE package
- ➤ The mice package in R, helps you imputing missing values with probable data values. These probable values are drawn from a distribution specifically designed for each missing data point.
- ➤ In this HR analytics train data set using summary () we will try to get the detailed summary of the data set.
- From this we get to know the variable Nursing Room has 1712 missing values and we want to impute that missing values as we cannot delete the entire column.
- ➤ Using the mice package it provides the function md.pattern() which helps to understand the missing pattern.
- ➤ In this process VIM package is also used to visualize the missing data in that variable.
- The function md.pairs() gives the detailed view of all data points in four format. \$rr-It gives totally how many data points are observed in each variables \$rm- It gives the table of observed and missing values from variables \$mr- It gives the table if missing and observed values from variables \$mm- It gives the table if missing and missing values from variables
- Now using the mice() function which takes care of the imputing function in the Nursing room variable.

When we run the above code we get 5 iterations and for each iterations we get 3 imputations as mentioned in the code.

print(impute)

```
Class: mids
Number of multiple imputations: 3
Imputation methods:

Age Gender Marital_status

Nursing_room
"pmm"
```

From the above we can see there is no method is used for remaining variable except the Nursing Room which has NA value so "pmm"-predictive mean matching method has been used to predict the NA values in that variable.

impute\$imp\$Nursing_room

This gives 3 imputed values of Nursing Room values from this we can take any one imputed value for further work.

1 2 3 4 6 8 9 11 11 11 11 11 11 11 11 11 11 11 11 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 11111110001111111111110
27	1	1	1
28	0	0	1
29	1	1	1
30	0	0	0