CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam

February 13, 2013.

Name:	ID:	
Instructions:		

- Answer the questions directly on the exam pages.
- Show all your work for each question. Giving more detail including comments and explanations can help with assignment of partial credit.
- If the answer to a question is a number, you may give your answer using arithmetic operations, such as addition, multiplication, and factorial (e.g., " $9 \times 35! + 2$ " or " $0.5 \times 0.3/(0.2 \times 0.5 + 0.9 \times 0.1)$ " is fine). "Choose" notation must be expanded in terms of arithmetic operations in final answers to receive full points.
- If you need extra space, use the back of a page.
- No books, notes, calculators or other electronic devices are allowed. Any cheating will result in a grade of 0.
- If you have questions during the exam, raise your hand.

Question	Value	Points Earned
1	10	
2	10	
3	10	
4	10	
5	10	
6 (Extra Credit)	10	
Total	50	

Question 1. (10 points) Indicate whether each of the following statements is TRUE or FALSE. No justification is required.

1.1 (2 points): For any two events A and B,

$$(A \cup B)^c = A^c \cap B^c$$

 $\textbf{1.2} \ (\textit{2 points}) : \ \textit{For any three events } A, B, \ \textit{and } C \ \textit{where } A \ \textit{and } B \ \textit{are disjoint and } 0 < P(C) < 1,$

$$P(A \cup B|C) = P(A|C) + P(B|C)$$

1.3 (2 points): For any two events A and B where 0 < P(B) < 1,

$$P(A|B) = 1 - P(A|B^c)$$

1.4 (2 points): For any three events A, B, and C,

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

1.5 (2 points): For any two events A and B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Question 2. (10 points) Suppose you throw a fair 12-sided dice to get a value from the set $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} .$

Consider the events

$$A = \{1, 2, 3, 4, 11, 12\}$$
, $B = \{3, 4, 5, 6, 11, 12\}$, $C = \{1, 2, 3, 4, 5, 6, 7, 8\}$

2.1 (1 points): What is the value of P(A)?

2.2 (1 points): What is the value of P(B)?

2.3 (2 points): What is the value of $P(A \cap B)$?

2.4 (1 points): Are the events A and B independent?

2.5 (1 points): What is the value of P(A|C)?

2.6 (1 points): What is the value of P(B|C)?

2.7 (2 points): What is the value of $P(A \cap B|C)$?

2.8 (1 points): Are the events A and B independent conditioned on C?

Question 3. (10 points) Suppose you perform an experiment where the sample space is

$$\Omega = \{o_1, o_2, o_3, o_4, o_5, o_6\}$$

and the probability rule satisfies:

$$P({o_1}) = 1/2$$
 , $P({o_2}) = 1/4$, $P({o_3}) = 1/8$, $P({o_4}) = 1/16$, $P({o_5}) = 1/32$

Define the events $A = \{o_1, o_2\}, B = \{o_2, o_3\}, \text{ and } C = \{o_1, o_2, o_3, o_4, o_5\}.$

- **3.1** (2 points): What is the value of $P({o_6})$?
- **3.2** (2 points): What is the value of P(A)?
- **3.3** (2 points): What is the value of $P(A \cup B)$?
- **3.4** (2 points): What is the value of $P(A \cap B)$?
- **3.5** (2 points): What is the value of $P(A \cap B|C)$?

Question 4. (10 points) Every Tuesday night I go to one of three restaurants: Amherst Chinese, Freshside, or Paradise of India. I go to Amherst Chinese with probability 0.3. I go to Freshside with probability 0.6. I go to Paradise of India with probability 0.1. If I go to Amherst Chinese, I'll eat rice with probability 1. If I go to Freshside, I'll eat rice with probability 0.3. If I go to Paradise of India, I'll eat rice with probability 0.4. Define the events:

$$C=$$
 "go to Amherst Chinese" , $\ F=$ "go to Freshside"
$$I=$$
 "go Paradise of India" , $\ R=$ "eat rice"

4.1 (2 points): Enter the values for the following probabilities:

$$P(C) = P(F) = P(I) = P(R|C) = P(R|F) = P(R|I) =$$

4.2 (2 points): What is the probability that I'll go to Freshside and eat rice?

4.3 (2 points): What is the probability that I'll go to Paradise of India and not eat rice?

4.4 (2 points): What is the probability that I'll eat rice?

4.5 (2 points): If you know I at rice, what is the probability that I went to Amherst Chinese?

section, 37 are in I write the name	the second discussion section, and 24 are in the third discussion section. Suppose of each student on a piece of paper and place all the pieces in a hat. I there a names out of the hat (without replacement).
5.1 (3 points):	What's the probability they are both in the first discussion section?
5.2 (3 points):	What's the probability they are both in the same discussion section?
5 3 (2 mainte).	What's the probability they are in different discussion sections?
$\omega \cdot \omega \ (\approx poulos).$	rribul o lite producing litey are in adjerent aboutoriou occurros:

Question 6. (10 points) Extra Credit: In the Spring 2013 offering of CMPSCI 245 "Rea-
soning about Certainty" there are six students: Amit, Bob, Charlie, Diane, Ely, and Fiona. Amit,
Bob, and Charlie are juniors and Diane, Ely, and Fiona are seniors. In each lecture, some subset of
the students are present. Let $S = \{Amit, Bob, Charlie, Diane, Ely, Fiona\}$. Hint: You'll be able
to solve parts 2, 3, 4, and 5 by enumerating all the possibilities (and will get full credit if you do
it correctly) but there are more efficient ways.

6.1 (2 points): How many subsets of S are there? Remember to include the empty set and S.

6.2 (2 points): How many subsets are there with exactly one junior?

6.3 (2 points): How many subsets are there with exactly three students?

6.4 (2 points): How many subsets are there with the same number of juniors and seniors?

6.5 (2 points): How many subsets are there where there are strictly more seniors than juniors?