EE210: Microelectronics-I

Lecture-1: Introduction

Instructor - Y. S. Chauhan

Slides from B. Mazhari
Dept. of EE, IIT Kanpur

EE210 is an Analog Circuits Course

Both BJT and MOS analog circuits will be studied

Books:

- 1. Semiconductor Devices and Circuits, A.K. Dutta, Oxford University Press India, 2008.
- 2. Analysis and Design of Analog Integrated Circuits; P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer; John Wiley & Sons, 4th Edition, 2001.
- 3. Microelectronic Circuits; A.S. Sedra and K.C. Smith; Oxford University Press, 4th Edition, 2000.
- 4. CMOS Analog Circuit Design, P.E. Allen and D.R. Holberg, Oxford University Press second Edition, 2002.
- 5. Design of Analog CMOS Integrated Circuits," B. Razavi, Tata McGraw Hill, 2002

Journals:

- 1. IEEE Journal of Solid state circuits
- 2. IEEE Trans. On Circuits and Systems
- 3. Analog Integrated Circuits and Signal Processing, springer.

Lecture notes (from previous years):

https://www.youtube.com/channel/UCHJ-zINIZnOh3UQMo1IcuZw

Microelectronics: Courses EE619 **Systems** EE210; EE610; Sub-Systems **EE370 Basic Circuit Blocks** EE210; EE610;EE370 Device EE 311; EE614; EE616; EE611

What is Microelectronics?

It is a field which deals with implementation of 'ideas' on a piece of semiconductor (e.g. Silicon)

Microelectronics is 'Writing in Sand'

EE 210 is a Course on Amplifiers

$$\frac{P_O}{P_{sig}} > 1$$

"Amplification is the heartbeat of Electronics"

The foundation of civilization is "Amplification"

Depending on the input and output, there can be four broad classes of amplifiers

INPUT	OUTPUT	Amplifier
V	V	Voltage
V	<u>I</u>	Transconductance
1	1	Current
I	V	Transresistance

Ideal Voltage Amplifier

$$V_O = A_v \times V_{IN}$$

A, is a constant

Should A_v be >1?

Practical Amplifier

Ideal: $V_O = A_v \times V_{IN}$

$$V_o = A_v(f, V_{in}, R_L, R_S, T) \times v_{in} + \tilde{e}_N$$

Frequency Response

$$V_o = A_v(f, V_{in}, R_L, R_S, T) \times v_{in} + \tilde{e}_N$$

dc Amplifier

Unity Gain Frequency

