Instructions. The use of any text/literature, including the internet, is allowed. The use of other humans, including through the internet, is *not* allowed. You are to adhere to the Student Conduct Code at all times.

Submit your solution to each of the following 5 problems.

Your score will be based on correctness, completeness, and effectiveness of communication. Ample credit will be given to solutions that display thought process, or examples/instances.

Notation.

- Unless explicitly stated otherwise, a subset of a Euclidean space is understood as endowed with a subspace topology.
- Let $n \ge 0$. Denote

$$\mathbb{D}^n := \left\{ x \in \mathbb{R}^n \mid ||x|| \le 1 \right\} \subset \mathbb{R}^n$$

and

$$\mathbb{B}^n := \left\{ x \in \mathbb{R}^n \mid ||x|| < 1 \right\} \subset \mathbb{R}^n$$

and

$$\mathbb{S}^{n-1} := \left\{ x \in \mathbb{R}^n \mid ||x|| = 1 \right\} \subset \mathbb{R}^n.$$

• Let k > 0 be a positive integer. Let $X \subset \mathbb{R}^n$ be a subset of a Euclidean space. Denote

$$\mathsf{Conf}_k(X) := \left\{ (x_1, \dots, x_k) \in X^{\times k} \mid i \neq j \implies x_i \neq x_j \right\} \; \subset \; X^{\times k} \; \subset \; (\mathbb{R}^n)^{\times k} \; .$$

Date: 20 October 2019.

- (1) (a) Verify that, for each $(x_1,x_2) \in \mathsf{Conf}_2(\mathbb{D}^2)$, there exists a unique $(y_1,y_2) \in$ $Conf_2(\mathbb{S}^1)$ with the following properties.

 - The four points y₁, x₁, x₂, y₂ ∈ R² belong to a common line in R².
 If x₁ ∈ S¹ then y₁ = x₁. If x₁ ∈ D² \ S¹ then, on the above line, x₁ is between y_1 and x_2 .
 - If $x_2 \in \mathbb{S}^1$ then $y_2 = x_2$. If $x_2 \in \mathbb{D}^2 \setminus \mathbb{S}^1$ then, on the above line, x_2 is between x_1 and y_2 .
 - (b) Consider the map

$$f \colon \mathsf{Conf}_2(\mathbb{D}^2) \longrightarrow \mathsf{Conf}_2(\mathbb{S}^1)$$

whose value $f(x_1,x_2)$ is the unique element $(y_1,y_2) \in \mathsf{Conf}_2(\mathbb{S}^1)$ as above. Prove, or disprove, that f is continuous.

(2) Let $\Gamma = (V, E, s, t)$ be an abstract (directed) graph in which V and E are finite and not empty. Suppose Γ satisfies the following condition.

• For each $v, w \in V$ there exists $u \in V$ and $a, b \in E$ for which

$$v = s(a)$$
, $t(a) = u = s(b)$, $t(b) = w$.

Consider the set

$$|\Gamma| := \left(V \sqcup \left(E \times [0,1]\right)\right)_{/\sim}$$

of equivalence classes, where \sim is generated by declaring $(e,0) \sim s(e)$ and $(e,1) \sim t(e)$ for each $e \in E$. Consider the quotient map

$$q: V \sqcup (E \times [0,1]) \longrightarrow |\Gamma|$$
.

Through this quotient map, endow $|\Gamma|$ with the quotient topology. ^{1 2}

Prove, or find a counter-example to, the following assertion:

The cardinality $\left|\pi_0(|\Gamma|)\right| = 1$.

¹So a subset $U \subset |\Gamma|$ is in this quotient topology if and only if, for each $e \in E$, the preimage $q^{-1}(U) \cap \{e\} \times [0,1] \subset \{e\} \times [0,1] = [0,1]$ is open.

²Note that this quotient map restricts as a bijection $V \sqcup (E \times (0,1)) \xrightarrow{\cong} |\Gamma|$. So one can think of this quotient topology on $|\Gamma|$ as a topology on the set $V \sqcup (E \times (0,1))$.

(3) A *unit cube in 3-space* is a subset $C \subset \mathbb{R}^3$ with the property that there exists a point $x \in \mathbb{R}^3$ and an orthonormal basis (u, v, w) for \mathbb{R}^3 for which the subsets of \mathbb{R}^3 agree:

$$C = \left\{ x + au + bv + cw \in \mathbb{R}^3 \mid a, b, c \in [-1, +1] \right\}.$$

Consider the subspace

Faces
$$\subset (\mathbb{R}^3)^{\times 6}$$

consisting of (all) those $(x_1, ..., x_6)$ such that there is a unit cube in 3-space, C, for which $\{x_1, ..., x_6\}$ comprise the centers of the faces of C. Find a bound N < 6!, if not identify, the cardinalty:

$$\Big|\pi_0(\mathsf{Faces})\Big| \leq N$$
;

completely justify your answer. ³

³As a warm-up, you might think through a version of this problem in which the role of \mathbb{R}^3 is replaced by that of \mathbb{R}^2 , and the role of a *unit cube in 3-space* is replaced by a *unit square in 2-space*. In this case, there are $\frac{4!}{2!\cdot 2^2} = 6$ path-components.

(4) Let X be a path-connected topological space. Let Y be a topological space whose topology \mathcal{T}_Y consists of all subsets of Y. Prove, or find a counter-example to, the following assertion.

Let $f: X \to Y$ be a map between underlying sets. This map f is continuous if and only if f is constant. ^{4 5 6}

⁴As usual, I suggest the following strategy for this problem. First make sure you understand each term in this problem. Next, work through some instances of this problem. (For instance, you might take Y to be a circle (with this discrete topology) and X to be a closed interval (with its subspace topology from \mathbb{R} .)

⁵Hint: Consider the case in which X = [0,1] (with its subspace topology from \mathbb{R}). Try to reduce your examination to this case.

⁶Hint: for each pair $y_- \neq y_+ \in Y$ of distinct elements in Y, construct a continuous map $Y \stackrel{g}{\to} \mathbb{S}^0$ for which $g(y_\pm) = \pm 1$.

- (5) Submit one of the following two problems.
 - (a) A *unit cube in 3-space* is a subset $C \subset \mathbb{R}^3$ with the property that there exists a point $x \in \mathbb{R}^3$ and an orthonormal basis (u, v, w) for \mathbb{R}^3 for which there is an equality between subsets of \mathbb{R}^3 :

$$C = \left\{ x + au + bv + cw \in \mathbb{R}^3 \mid a, b, c \in [-1, +1] \right\}.$$

Consider the set

Cubes

of (all) cubes in 3-space.

- (i) Endow Cubes with a topology \mathcal{T}_{Cubes} with the property that it has infinitely many members yet no singleton is a member. (You're not expected to display your verification that \mathcal{T}_{Cubes} satisfies these properties; just convince yourself it does.)
- (ii) With respect to this topology, identify the cardinality

$$|\pi_0(\mathsf{Cubes})|$$
.

(b) A *line in 6-space* is a subset $L \subset \mathbb{R}^6$ with the property that there exists two distinct points $x \neq y \in \mathbb{R}^4$ for which there is an equality between subsets of \mathbb{R}^6 :

$$L = \left\{ tx + (1-t)y \in \mathbb{R}^6 \mid t \in \mathbb{R} \right\}.$$

Consider the set

Lines

of (all) lines in 6-space.

- (i) Endow Lines with a topology $\mathcal{T}_{\mathsf{Lines}}$ with the property that it has infinitely many members yet no singleton is a member. (You're not expected to display your verification that $\mathcal{T}_{\mathsf{Lines}}$ satisfies these properties; just convince yourself it does.)
- (ii) With respect to this topology, identify the cardinality

$$|\pi_0(\mathsf{Lines})|$$
.