	Single channel	Multi-channel
1-D	Audio waveform: The axis we	Skeleton animation data: Anima-
	convolve over corresponds to	tions of 3-D computer-rendered
	time. We discretize time and	characters are generated by alter-
	measure the amplitude of the	ing the pose of a "skeleton" over
	waveform once per time step.	time. At each point in time, the
		pose of the character is described
		by a specification of the angles of
		each of the joints in the charac-
		ter's skeleton. Each channel in
		the data we feed to the convolu-
		tional model represents the angle
		about one axis of one joint.
2-D	Audio data that has been prepro-	Color image data: One channel
	cessed with a Fourier transform:	contains the red pixels, one the
	We can transform the audio wave-	green pixels, and one the blue
	form into a 2D tensor with dif-	pixels. The convolution kernel
	ferent rows corresponding to dif-	moves over both the horizontal
	ferent frequencies and different	and vertical axes of the image,
	columns corresponding to differ-	conferring translation equivari-
	ent points in time. Using convolu-	ance in both directions.
	tion in the time makes the model	
	equivariant to shifts in time. Us-	
	ing convolution across the fre-	
	quency axis makes the model	
	equivariant to frequency, so that	
	the same melody played in a dif-	
	ferent octave produces the same	
	representation but at a different	
2 D	height in the network's output.	Colon vidos datas Oras series sana
3-D	Volumetric data: A common	Color video data: One axis corre-
	source of this kind of data is med-	sponds to time, one to the height
	ical imaging technology, such as	of the video frame, and one to
	CT scans.	the width of the video frame.

Table 9.1: Examples of different formats of data that can be used with convolutional networks.