

NoEsis: Differentially Private Knowledge Transfer in Modular LLM Adaptation

Rob Romijnders¹, Stefanos Laskaridis*², Ali Shahin Shamsabadi², Hamed Haddadi²

¹Research done as internship ²Brave Research

LLMs at scale are running out of training data. Tapping into private data silos is the promising next step, but privacy concerns are paramount [2,3]. NoEsis tackles this setting by adopting a hybrid PEFT paradigm to achieve properties of modularity, privacy, and knowledge transfer.

Overview of modularity: in each domain, privacy w.r.t. local data is required, but knowledge transfer between domains is desired via shared parameters.

	Model	$\mid \varepsilon \mid$	Modular	Private	Transfer	PEFT	Python	Java	Go
(i)	Share Nothing	0.0	✓	✓	X	/	68.31	60.19	64.17
(ii)	Solo (separate models)	1.0	X	✓	X	X	30.19	14.84	4.84
(iii)	Monolithic Fine-tuning (Abadi et al., 2016)	1.0	X	✓	✓	X	36.05	23.54	18.34
(iv)	Single Common Adapter (rc=512)* (Yu et al., 2021b)	1.0	X	✓	✓	✓	48.21	36.16	27.24
(v)	Prompt-Tuning Only (pt32) [†] (Duan et al., 2023)	1.0	X	✓	✓	1	35.03	24.29	9.67
(vi)	NoEsis (pt32) [†]	1.0	✓	✓	✓	✓	69.14	61.18	66.53

^{*}rc, rank r of the common LoRA; $^{\dagger}pt$: number of trainable prompt tokens

Experimental comparison: NoEsis uniquely achieves high accuracy while obtaining DP at $\varepsilon = 1.0$ and enabling knowledge transfer across domains.

(Knowledge transfer is the accuracy increase over "Share Nothing," which does not have shared parameters between domains.)

NoE = DP-SGD(Prompt-Tuning
$$(X_1, ..., X_K)$$
)+
SGD(Mix{LoRA $(X_1), ..., LoRA(X_K)$ })

DP: A randomized algorithm $A(\cdot)$ is $(arepsilon,\delta)$ -differentially private if the following holds for any two adjacent data sets D, D', and for any subset Φ of outputs:

$$Pr[A(D) \in \Phi] \leq e^{arepsilon} Pr[A(D') \in \Phi] + \delta$$

where $D = \{d_i\}_{i=1}^N$ is a dataset that contains N documents. Two datasets Dand $D\prime$ are adjacent when they are identical except for one document in any domain being removed.

Let $W \in \mathbb{R}^{p imes q}$ be the weight matrix of a linear layer in the FFN of a transformer with parameters θ . We decompose this matrix:

$$W=W+lpha\sum_{l=1}^K B^{(k)}A^{(k)}$$

where $A^{(k)} \in \mathbb{R}^{r imes q}$ and $B^{(k)} \in \mathbb{R}^{p imes r}$ are the trainable low-rank matrices for the k-th domain-specific adapter, out of K domains.

Between the results of a nonshared model, which is the baseline, and a non-private model, NoEsis has knowledge transfer and, under privacy constraints, bridges the accuracy gap by more than 77%.

We run a novel *cross-domain* Membership Inference Attack on the shared parameters of a Mixture-of-LoRA model. NoEsis maintains knowledge transfer and reduces vulnerability to this attack, for example, from 65.4 AUC to 55.7 AUC.

[3] "Deep learning with differential privacy" Abadi et al. CCS 2016.

* Work done while at Brave