Applied Data Science

Day 1 - Course Welcome

Module outline

- Console tools:
 - o git, conda, and jupyter
- Python packages:
 - o numpy, and pandas
- Mathematics for Data Scientists:
 - Linear Algebra
 - Probability
 - Optimisation
- **K.A.T.E.**® Knowledge Assessment Teaching Engine
- Best Practices for Programming:
 - Testing
 - Code Quality

Ice-breaker QUEEN BEE WORKER BEE (female)

We put the emphasis on **practice**

- Taught weekends:
 - develop intuition, ask questions, use "simple" datasets
- Practical homework exercises:
 - self-paced, remote support (slack channel), "realistic" data
- Cambridge Spark's Goal:
 - All graduates equipped to join or form a Data Science team
- You will:
 - Learn fundamental techniques
 - Learn how to develop robust, version controlled code with a team
 - Learn how to communicate your results

The teaching team

- **15+ people**: experts with diverse backgrounds
- Normal format: short lectures followed by practicals
- **Questions**: ask away, but please be considerate in lectures -- flow is important
- Nuanced questions: Slack is your friend!
- Feedback: https://goo.gl/forms/qfzRUVwP1dXMa8Kg1

Module homework

Expect ~10 hours of self-study between teaching sessions

Two forms:

- Defined coding exercises with K.A.T.E.®
- 2. More free open ended questions

Defined coding exercises: "kata"

- 1. Coding skill development
- 2. **K.A.T.E.**[®] gives feedback:
 - a. Test cases: meets spec? edge cases?
 - b. Code style
- 3. View your progress on the dashboard

Open ended questions

- Task briefing + dataset:
 - Hope you practiced your kata!
- Self-driven
- Presentations and discussions

Capstone project

- 6 weeks of work (50+ hours)
- Industry partners provide real problems...
- ...but you can do your own personal project instead
- You get a 1 to 1 supervisor to help
- Group presentation

An example project

https://blog.cambridgespark.com/early-infection-detection-using-yolo-10d593970794

MELANOMA

MELANOMA WITH OCCLUSION

Images from Google chosen at random

PIN SITE INFECTION

Summary and key points

- Don't study...Do!
- Read the docs
- Don't stress!
- Use Slack

Programme overview

- First 4 sessions A practical introduction to Machine Learning
 - Get to grips with python packages and K.A.T.E.
 - Data exploration and feature creation
 - o Introduction to classification, regression, time series', and unsupervised learning
 - Model evaluation, regularisation, and selection
- Middle 2 sessions Scaling up and out
 - Big data considerations
 - Cloud computing
 - Databases
- Final 4 sessions Advanced topics
 - o Ensemble methods e.g. Random Forests and Gradient Boosting
 - Neural Networks & Deep Learning
 - Natural Language Processing
 - Recommender Systems & Interpretability

What now?

- Software and packages:
 - Git version control
 - Conda package management
 - Jupyter python IDE
 - Numpy
 - Pandas
- Mathematics:
 - Linear Algebra
 - Probability
 - Optimisation
- K.A.T.E.®
- Coding best practices

