Non-Probabilistic Algorithms (II)

- Decision Trees -

The Motive Behind Decision Tree

- Features partitioned into subgroups to fit the class boundary
- Result rectangular shaped class regions

INDUCTION OF OBLIQUE DECISION TREES

Figure 2: The left side shows a simple 2-D domain in which two oblique hyperplanes define the classes. The right side shows an approximation of the sort that an axis-parallel decision tree would have to create to model this domain.

Example of a Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

How They Work

- Decision rules partition sample of data
- Terminal node (leaf) indicates the class assignment
- Tree partitions samples into mutually exclusive groups
- One group for each terminal node
- All paths
 - start at the root node
 - end at a leaf
- Each path represents a decision rule
 - joining (AND) of all the tests along that path
 - separate paths that result in the same class are disjunctions (ORs)
- All paths mutually exclusive

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

General Structure of Algorithms

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous

- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C 1. 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

• Gini Index

Entropy

Misclassification error

How to Find the Best Split

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Gini=	
C2	6
C1	0

	Gini=	0.278	Gini=	0.
	C2	5	C2	
	C1	1	C1	

C1	2	
C2	4	
Gini=0.444		

C1	3	
C2	3	
Gini=0.500		

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

P(C1) =
$$2/6$$
 P(C2) = $4/6$
Gini = $1 - (2/6)^2 - (4/6)^2 = 0.444$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType			
	Family Sports Luxury			
C1	1	2	1	
C2	4 1 1			
Gini	0.393			

Two-way split (find best partition of values)

	CarType		
	{Sports, Luxury} {Family}		
C1	3	1	
C2	2 4		
Gini	0.400		

	CarType		
	{Sports} {Family, Luxury}		
C1	2	2	
C2	1 5		
Gini	0.419		

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	6
C2	6
Gini = 0.500	

Gini(N1)

$$= 1 - (5/6)^2 - (2/6)^2$$

= 0.194

Gini(N2)

$$= 1 - (1/6)^2 - (4/6)^2$$

= 0.528

	N1	N2
C1	5	1
C2	2	4

Gini=0.333

Gini(Children)

= 7/12 * 0.194 +

5/12 * 0.528

= 0.333

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting valuesNumber of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v
 and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		Vo		No)	N	o	Ye	s	Ye	s	Υє	es	N	o	N	o	N	o		No	
											Ta	xabl	e In	com	e								
Sorted Values			60		70		7	5	85		90)	9	5	10	0	12	20	12	25		220	
Split Positions	3	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	'2	23	0
•		<=	>	<=	^	<=	^	<=	\	<=	>	<=	^	<=	^	<=	^	<=	^	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	400 0.375		0.343		0.417 0.4		100	0.300		0.3	43	0.3	75	0.4	00	0.4	20		

Alternative Splitting Criteria based on INFO

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum ($\log n_c$) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

P(C1) =
$$2/6$$
 P(C2) = $4/6$
Entropy = $-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$

Splitting Based on INFO...

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions;

n, is number of records in partition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Splitting Based on INFO...

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
 Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of Information Gain

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Comparison among Splitting Criteria

For a 2-class problem:

Misclassification Error vs Gini

	Parent
C1	7
C2	3
Gini	= 0.42

Gini(N1)
$= 1 - (3/3)^2 - (0/3)^2$
= 0

Gini(N2) = $1 - (4/7)^2 - (3/7)^2$ = 0.489

	N1	N2
C1	3	4
C2	0	3
		•

Gini(Children) = 3/10 * 0 + 7/10 * 0.489 = 0.342

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when there are no remaining attributes to split the samples
- Stop expanding if there are no tuples for a given branch

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Notes on Overfitting

 Overfitting results in decision trees that are more complex than necessary

 Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating errors

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

How to Avoid Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

Estimating Generalization Errors

- Re-substitution errors: error on training (Σ e(t))
- Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):
 Training error = 10/1000 = 1%
 Generalization error = (10 + 30×0.5)/1000 = 2.5%
 - Reduced error pruning (REP):
 - uses validation data set to estimate generalization error

How to Avoid Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

Example of Post-Pruning

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

PRUNE!

A1		\ 4
A2	A3	74
/ (2)	7.0	

A?

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Reduced Error Pruning (REP)

Use pruning set to estimate accuracy of sub-trees and accuracy at individual nodes

Let T be a sub-tree rooted at node v

Define:

Gain from prunning at v = # misclassification in T - # misclassification at v

Repeat: prune at node with largest gain until until only negative gain nodes remain

"Bottom-up restriction": T can only be pruned if it does not contain a sub-tree with lower error than T

REP Example

$$E(T_{v_2}) = 3$$
, $E(v_2) = 2$, $E(T_{v_3}) = 1$, $E(v_3) = 3$.

Scikit Learn Example

```
>>> from sklearn.tree import DecisionTreeClassifier
>>> tree = DecisionTreeClassifier(criterion='gini',
                                   max depth=4,
. . .
                                   random state=1)
>>> tree.fit(X train, y train)
>>> X combined = np.vstack((X train, X test))
>>> y combined = np.hstack((y train, y test))
>>> plot decision regions (X combined,
                           y combined,
                           classifier=tree,
                           test idx=range(105, 150))
. . .
>>> plt.xlabel('petal length [cm]')
>>> plt.ylabel('petal width [cm]')
>>> plt.legend(loc='upper left')
>>> plt.show()
```

Scikit Learn Example (cont.)

