CMSC 411, Fall 2017 Computer Architecture Algorithms

SESSION 2: SHERMAN 013, TUESDAY/THURSDAY, 5:30-6:45PM

SESSION 3: SHERMAN 013, TUESDAY/THURSDAY, 7:10PM - 8:25PM

Professor: Russ Cain

eMail: rpcain@umbc.edu

Office: ITE 200F

Hours: Tuesdays & Thursdays 6:45-7:10 PM

& by appointment 8:25-9:00 PM

TA: Dayuan Tan

eMail: dayuan1@umbc.edu

Office: ITE 344B

Hours: Tuesday and Thursday, 2-4:30pm

& by appointment

Schedule

	Week	Date Class		Reading	HMW
	1		This is dynamic and will change during semester		
		31-Aug	Lecture 1: Introduction, Overview, History	1.1-1.4	
		5-Sep	Lecture 2: Performance Evaluation and Metrics	1.6-1.10	HW#1
	2	7-Sep	Logic and Making ICs	A, 1.5	
	3	12-Sep	VHDL	4.13	HW#2
		14-Sep	Instruction Set Architecture - ARM	2.1-2.11	
	4	19-Sep	Instruction Set Architecture - ARM, MIPS, x86	2.16-2.19	HW#3
		21-Sep	Arithmetic/Carry/Floating Point	3.5-3.9	
	5	26-Sep	Arithmetic/Carry/Floating Point	4.1-4.4	HW#4
		28-Sep	ALU		
	6	3-Oct	Pipelining 1	3.1-3.4	HW#5
	O	5-Oct	Pipelining 2		
	_	10-Oct	Pipelining 3	4.5-4.6	HW#6
	7	12-Oct	Review		
	8	17-Oct	Algorithms		
	0	19-Oct	Midterm		
	•	24-Oct	Hardware Algorithmsand Project		
	9	26-Oct	Cache	4.7-4.14	
	10	31-Oct	Cache	5.1-5.3	HW#7
	10	2-Nov	Cache Performance	5.4-5.45	
	44	7-Nov	Virtual Machines & Memory	5.6-5.7	HW#8
	11	9-Nov	I/O Types & Performance, Busses		
	12	14-Nov	Multicores, Multiprocessors, & Clusters	6.1-6.5	HW#9
	12	16-Nov	Embedded Computers	6.6	
	12	21-Nov	Microprogramming (Dayuan)		HW#10
	13	23-Nov	THANKSGIVING		
I	14	28-Nov	The Mill		
	14	30-Nov	Superscalar(Dayuan)	C	
	15	5-Dec	Quantum Computing and Neural Nets		
	15	7-Dec	TBD		
	16	12-Dec	Review		
	_ 10	14-Dec	Final Exam, 6-8 PM & 8:30-10:30 P, In class		

CMCS411 – Fall 2017 - RPCain

Lectures

- Last Lecture
 - A fun midterm review
- This Lecture
 - Hardware tradeoffs
 - Algorithms

COMPARISON OF RIPPLE VS CLA

- n-bit ripple
 - Delay = 2n
- n-bit CLA
 - Delay = 5 or 3 + 2[log n]
- 8-bit ripple Delay 16.
- 8-bit CLA Delay 5 or 8 or 2x faster.
- 32-bit ripple Delay 64.
- 32-bit CLA Delay 5 or 13 or 5x faster
- 64-bit ripple Delay 128.
- 64-bit CLA Delay 5 or 15 or 9x faster
- CLA looks much better. . . until we compute the cost!

N-BIT CLA COST ANALYSIS

n-bit CLA Cost Analysis

Cost of each CLA Cell:

$$\underbrace{\frac{\text{Sum Gen. Prop.}}{5} + 1 + 1}_{5} = 7$$

Cost of logic to compute c_i given p and g signals:

Cost of logic to compute c₁ to c_n:

$$\sum_{i=1}^{n} \frac{i(i+3)}{2} = \frac{1}{6}n(n+1)(n+5)$$

Cost of entire n-bit CLA:

CLA Cells
$$+\frac{1}{6}n(n+1)(n+5) \approx \frac{n^3}{6}$$

COST OF SELECTED SIZES

- n-bit ripple
 - 10n
- n-bit CLA
 - Delay = 7n + 1/6 n (n + 1) (n + 5)
- 8-bit ripple: 80 gates
- 8-bit CLA: 212 gates or 2.65x cost of ripple adder
- 32-bit ripple: 320 gates
- 32-bit CLA: 6736 gates or 21x cost of ripple adder
- 64-bit ripple: 640 gates
- 64-bit CLA: 48299 gates or 75x cost of ripple adder

§3.3 Multiplication

MULTIPLICATION

Start with long-multiplication approach

Length of product is the sum of operand lengths

MULTIPLICATION HARDWARE

CMCS411 - Fall 2017 - RPCain

MULTIPLY ALGORITHM

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 Prod = Prod + Mcand	0011	0000 0010	0000 0010
50 V-50 V-50	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: 1 Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ☑ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
10	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 🛛 No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

CMCS411 – Fall 2017 - RPCain

Perform steps in parallel: add/shift

Product Register

0000 Multiplier 0000 1001

shift 0000 0100 \rightarrow 1 add 1000 0100 shift 0100 0010 \rightarrow 0

shift 0010 0001 → 0

shift $0001\ 0000 \rightarrow 1$ add $1001\ 0000$

shift $0100\ 1000 \rightarrow 1$

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Time step: 0000

Product Register

0000 Multiplier 0000 1001

shift 0000 0100 \rightarrow 1 add 1000 0100

shift $0100\ 0010 \rightarrow 0$

shift $0010\ 0001 \rightarrow 0$

 $shift \qquad 0001 \ 0000 \ \rightarrow \ 1$

add 1001 0000

shift $0100\ 1000 \rightarrow 1$

Time step: 0001

Product Register

0000 Multiplier 0000 1001

shift $0000 \ 0100 \rightarrow 1$ add $1000 \ 0100$

shift $0100\ 0010 \rightarrow 0$

shift $0010\ 0001 \rightarrow 0$

shift 0001 0000 \rightarrow 1

add 1001 0000

Time step: 0002

Product Register

0000 Multiplier 0000 1001

shift 0000 0100 \rightarrow 1 add 1000 0100

shift $0100\ 0010 \to 0$

shift $0010\ 0001 \rightarrow 0$

shift $0001 0000 \rightarrow 1$

add 1001 0000

shift $0100\ 1000 \rightarrow 1$

Time step: 0004

Product Register

0000 Multiplier 0000 1001

shift 0000 0100 \rightarrow 1 add 1000 0100

1000 0100

shift $0100\ 0010 \rightarrow 0$

shift $0010\ 0001 \rightarrow 0$

shift 0001 0000 \rightarrow 1

add 1001 0000

Time step: 0005

Product Register

0000 Multiplier 0000 1001

shift 0000 0100 \rightarrow 1 add 1000 0100

shift $0100\ 0010 \rightarrow 0$

shift $0010\ 0001 \rightarrow 0$

shift 0001 0000 \rightarrow 1

add 1001 0000

Time step: 0006

Product Register

0000 Multiplier 0000 1001

shift 0000 0100 \rightarrow 1 add 1000 0100

shift $0100\ 0010 \rightarrow 0$

shift $0010\ 0001 \rightarrow 0$

shift 0001 0000 \rightarrow 1

add 1001 0000

Time step: 0007

Product Register

0000 Multiplier 0000 1001

shift 0000 0100 \rightarrow 1 add 1000 0100

1000 0100

shift $0100\ 0010 \rightarrow 0$

shift $0010\ 0001 \rightarrow 0$

shift 0001 0000 \rightarrow 1

add 1001 0000

Time step: 0008

Product Register

0000 Multiplier 0000 1001

shift 0000 0100 \rightarrow 1 add 1000 0100

shift $0100\ 0010 \rightarrow 0$

shift $0010\ 0001 \rightarrow 0$

shift 0001 0000 \rightarrow 1

add 1001 0000

FASTER MULTIPLIER

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel
- Sacrifice speed for area

CMCS411 - Fall 2017 - RPCain

DIVIDE ALGORITHM

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	①110 0111
1	2b: Rem < 0 ☐ +Div, LSL Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	①111 0111
2	2b: Rem < 0 ☐ +Div, LSL Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	①111 1111
3	2b: Rem < 0 ☐ +Div, LSL Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	0000 0011
4	2a: Rem ≥ 0 🛛 LSL Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	0000 0001
5	2a: Rem ≥ 0 🛛 LSL Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

OPTIMIZED DIVIDER

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

OPTIMIZED DIVIDER

SIGNED MULTIPLICATION WITH BOOTH'S ALGORITHM

- Invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London.
- Originally proposed to reduce addition steps
- Bonus: Works for two's complement numbers
- Uses shifting, addition, and <u>subtraction</u>

A Walther WSR160 arithmometer from 1960. Each turn of the crank handle adds (up) or subtracts (down) the operand set to the top register from the value in the accumulator register at the bottom. Shifting the adder left or right multiplies the effect by ten.

BOOTH'S ALGORITHM

- Observation: If we can both <u>add</u> and <u>subtract</u>, there are multiple ways to create a product
- Example: multiply 2_{ten} by 6_{ten} (0010_{two} X 0110_{two})
 - Product = (2 X 2) + (2 X 4) OR
 - Product = (2 X 2) + (2 X 8)

Regular Algorithm

	0010	
X	0110	
+	0000	shift
+	0010	shift + add
+	0010	shift + add
+	0000	shift
	00001100	

Booth's Algorithm

		0010	
	X	<u>0</u> 110	
ľ		0000	shift
ı	-	0010	<pre>shift + subtract</pre>
ı		0000	shift
L	+	0010	shift + add
		00001100	

BOOTH'S ALGORITHM CONTINUED

- Question:
 - How do we know when to subtract?
 - When do we know when to add?
- Answer: look for "runs of 1s" in multiplier
 - Example: 001110011
 - Working from Right to Left, any "run of 1's" is equal to:
 - value of first digit that's one
 - +value of first digit that's zero
 - Example: 001110011
 - First run: -1 + 4 = 3
 - Second run: -16 + 128 = 112
 - Total: 112 + 3 = 115
- Why is this faster?

IMPLEMENTING BOOTH'S ALGORITHM

- Scan multiplier bits from right to left
- Recognize the beginning and in of a run looking at only 2 bits at a time
 - "Current" bit a_i
 - Bit to right of "current" bit a_{i-1}

Bit a _i	Bit a _{i-1}	Explanation
1	0	Begin Run of 1's
1	1	Middle of Run of 1's
0	1	End of Run
0	0	Middle of Run of 0's

IMPLEMENTING BOOTH'S ALGORITHM

- Key idea: test 2 bits of multiplier at once
 - 10 subtract (beginning of run of 1's)
 - 01 add (end of run of 1's)
 - oo, 11 do nothing (middle of run of o's or 1's)

CMCS411 - Fall 2017 - RPCain

27

BOOTH'S ALGORITHM EXAMPLE

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Remember

4 = 00100

-4 = 11100

Multiply 4 X -9

00100

X 10111 LHProd LHProd

00011100101

11101110010

11110111001

+11100

```
00000101110
+11100
               (sub 4 = add -4)
 11100101110
 11110010111
               (shift after add)
 11111001011
               (shift without add)
 11111100101
               (shift without add)
+00100
               (add +4)
```

00001110010 (shift after add) (sub 4 = add -4)

(shift after add)

1111011100 = -(0000100011 + 1)= -(0000100100) $= -36 = 4 \times -9!$

BOOTH'S ALGORITHM EXAMPLE

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Remember

9 = 01001

-9 = 10111

Multiply -9 X -13

10111 x 10011

+10111 (add -9) 11001011001 (shift after add)

111001011<u>00</u> 111100101<u>10</u> +01001 (a

00111010110

00011101011

LHProd LHProd

(add 9)

(shift after add)

0001110101 = 64+32+16+4+1= 117

BOOTH'S ALGORITHM EXAMPLE

Multiply 4 X -9 00100 x 10111

Use 6-bit

Remember

```
4 = 000100
-4 = 111100
```

```
000000101110
+111100
                 (sub 4 / add -4)
 111100101110
 111110010111
                 (shift after add)
 111111001011
                 (shift w/ no add)
 111111100101
                 (shift w/ no add)
+000100
                 (add +4)
 000011100101
 000001110010
                 (shift after add)
+111100
                 (sub 4 / add -4)
 111101110010
 111110111001
         ——— Drop leftmost & rightmost bit
  1111011100 = -(0000100011 + 1)
               = -(0000100100)
               = -36 = 4 \times -9!
```


OPTIMIZED BOOTH MULTIPLIER

Time step: 0000

OPTIMIZED BOOTH MULTIPLIER

Time step: 0000

OPTIMIZED BOOTH MULTIPLIER

Time step: 0000

WHAT IS CORDIC?

- How to evaluate trigonometric functions?
 - Table lookup
 - Polynomial approximations
 - CORDIC
- CORDIC (COordinate Rotation Digital Computer)
 - Introduced in 1959 by Jack E. Volder
 - Rotate vector (1,0) by ϕ to get (cos ϕ , sin ϕ)
 - Can evaluate many functions
 - Rotation reduced to shift-add operations
 - Convergence method (iterative)
 - N iterations for N-bit accuracy
 - Delay / hardware costs comparable to division or square rooting!

BASIC CORDIC TRANSFORMAT IONS

y sin φ cos φ

Basic idea

Rotate (1,0) by f degrees to get (x,y): x=cos(f), y=sin(f)

Rotation of any (x,y) vector

$$x' = x * \cos(\phi) - y * \sin(\phi)$$

$$y' = y * \cos(\phi) + x * \sin(\phi)$$

Note:
$$\frac{\sin(\phi)}{\cos(\phi)} = \tan(\phi)$$

Rearrange as:

$$x' = \cos(\phi) * [x - y * \tan(\phi)]$$

$$y' = \cos(\phi) * [y + x * \tan(\phi)]$$

ROTATION AND MAGNITUDE COMPONENTS

$$x' = \cos(\phi) * [x - y * \tan(\phi)]$$
$$y' = \cos(\phi) * [y + x * \tan(\phi)]$$

- Two components:
 - $-\cos(\phi)$
 - Reduces the magnitude of the vector
 - If don't multiply → pseudo rotation
 - $tan(\phi)$
 - Rotates the vector
 - Break ϕ into a series of successively shrinking angles α_i such that:

$$tan(\alpha_i) = 2^{-i}$$
 — Shift operation

• Should we use all $\, lpha_{i} \, {}'$ s?

PRE-COMPUTATION OF TAN(A_I)

• Find α_i such that $\tan(\alpha_i) = 2^{-i}$: (or, $\alpha_i = \tan^{-1}(2^{-i})$)

i	α_{i}	$tan(\alpha_i)$	
0	45.0°	1	$= 2^{-0}$
1	26.6°	0.5	$= 2^{-1}$
2	14.0°	0.25	$= 2^{-2}$
3	7.1°	0.125	$= 2^{-3}$
4	3.6°	0.0625	$= 2^{-4}$
5	1.8°	0.03125	$= 2^{-5}$
6	0.9°	0.015625	$= 2^{-6}$
7	0.4°	0.0078125	$= 2^{-7}$
8	0.2°	0.00390625	$= 2^{-8}$
9	0.1°	0.001953125	$= 2^{-9}$

- Note: decreasing α_i .
 - Possible to write <u>any</u> angle $\phi = \pm \alpha_0 \pm \alpha_1 \pm ... \pm \alpha_9$ as long as -99.7 ° $\leq \phi \leq$ 99.7 ° (which covers -90..90)
 - Convergence possible: $\alpha_{i} \leq \sum_{j=i+1}^{N} \alpha_{i+1}$
 - 10⁻⁵ deg accuracy

EXAMPLE: REWRITING ANGLES IN TERMS OF A_I

• Example: ϕ =30.0 °

- Start with
$$\alpha_0$$
 = 45.0 (> 30.0)

$$-45.0 - 26.6 = 18.4$$
 (< 30.0)

$$-18.4 + 14.0 = 32.4$$
 (> 30.0)

$$-32.4 - 7.1 = 25.3$$
 (< 30.0)

$$-25.3 + 3.6 = 28.9$$
 (< 30.0)

$$-28.9 + 1.8 = 30.7$$
 (> 30.0)

$$-30.7-0.9=29.8$$
 (< 30.0)

$$-29.8 + 0.4 = 30.2$$
 (> 30.0)

$$-30.2-0.2=30.0$$
 (= 30.0)

$$-30.1 + 0.1 = 30.1$$
 (> 30.0)

$$= 30.1$$

WHY ANY ANGLE CAN BE FORMED FROM OUR LIST?

• Analogy: Paying a certain amount while using all currency denominations (in positive or negative direction) exactly once; red values are fictitious.

• **Example:** Pay \$12.50

- Convergence is possible as long as each denomination is no greater than the sum of all denominations that follow it.
- Domain of convergence: -\$42.16 to +\$42.16
- We can guarantee convergence with actual denominations if we allow multiple steps at some values:

```
$20 $10 $5 $2 $2 $1 $.50 $.25 $.10 $.10 $.05 $.01 $.01 $.01
```

• **Example:** Pay \$12.50

 We will see later that in hyperbolic CORDIC, convergence is guaranteed only if certain "angles" are used twice.

ANGLE RECODING

- The selection of angles during pseudorotations can be viewed as recoding the angle in a specific number system
- For example, an angle of 30 $^{\circ}$ is recoded as the following digit string, with each digit being 1 or –1:

45.0	26.6	14.0	7.1	3.6	1.8	0.9	0.4	0.2	0.1
1	-1	1	-1	1	1	-1	1	-1	1

- The money-exchange analogy also lends itself to this recoding view
- For example, a payment of \$12.50 is recoded as:

```
$20 $10 $5 $3 $2 $1 $.50 $.25 $.20 $.10 $.05 $.03 $.02 $.01
1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 -1
```

ROTATION REDUCTION

• Rewrite in terms of α_i : $(o \le i \le n)$ $x' = \cos(\phi) * [x - y * \tan(\phi)]$ $y' = \cos(\phi) * [y + x * \tan(\phi)]$

Where:

$$x_{i+1} = \cos(\alpha_i) * [x_i - y_i * d_i * \tan(\alpha_i)]$$

$$y_{i+1} = \cos(\alpha_i) * [y_i + x_i * d_i * \tan(\alpha_i)]$$

$$x_{i+1} = K_i * [x_i - y_i * d_i * 2^{-i}]$$

$$y_{i+1} = K_i * [y_i + x_i * d_i * 2^{-i}]$$

What about K_i's?

$$K_i = \cos(\alpha_i) = \cos(\tan^{-1}(2^{-i}))$$
$$d_i = \pm 1$$

Note:

$$\cos(\alpha_i) = \cos(-\alpha_i)$$

TAKING CARE OF THE MAGNITUDE

- Observations:
 - We choose to always use ALL α_i terms, with +/- signs
 - $K_i = \cos(\alpha_i) = \cos(-\alpha_i)$
 - At each step, we multiply by $\cos(\alpha_i)$ [constant?]
- Let the multiplications aggregate to:

$$x_{i+1} = K_i * [x_i - y_i * d_i * 2^{-i}]$$

$$y_{i+1} = K_i * [y_i + x_i * d_i * 2^{-i}]$$

Multiply this constant ONLY ONCE at the end

$$K = \prod_{i=0}^{n} K_i \quad n \to \infty, K = 0.607 252 935...$$

Even better: start with (K,0) instead of (1,0)no multiplication at all!

HARDWARE REALIZATION: CORDIC ROTATION MODE

Símílar to non-restoring sart

- To simplify the hardware:
 - First rotate by ϕ , then rotate by $-d_i * \alpha_i$ to get 0 (no subtraction to compare ϕ & current angle)
- Algorithm: (z is the current angle)
 - Mode: rotation: "at each step, try to make z zero"
 - Initialize x=0.607253, y=0, $z=\phi$
 - For i = o → n
 - $d_i = 1$ when z > 0, else $d_i = -1$
 - $x_{i+1} = x_i d_i * 2^{-i} * y_i$
 - $y_{i+1} = y_i + d_i * 2^{-i} * x_i$
- $X_{10} \rightarrow X Z_{i+1} = Z_i d_i * \alpha_i$
 - Result: $x_n = \cos(\phi)$, $y_n = \sin(\phi)$
 - Precision: n bits $(tan^{-1}(2^{-i}) \approx 2^{-i})$

CORDIC ROTATION **MODE C CODE**

```
10/17/2017
```

#include <math.h> #define AG CONST 0.6072529350 #define FXD(X) ((long int)((X) * 65536.0)) typedef long int fixed; /* 16.16 fixed-point */

// downloaded (and modified by Kia) from

// www.execpc.com/~geezer/embed/cordic.c

#include <stdio.h>

static const fixed Alpha[] = $\{FXD(45.0), FXD(26.565),$ FXD(14.0362), FXD(7.12502), FXD(3.57633), FXD(1.78991), FXD(0.895174), FXD(0.447614), FXD(0.223811), FXD(0.111906), FXD(0.055953), FXD(0.027977) }; int main(void) {

Only used: >0, >>, +
Integer ops

```
fixed X, Y, CurrAngle;
 unsigned i;
                              /* AG CONST * cos(0) */
 X = FXD (AG CONST);
 Y = 0:
                              /* AG CONST * sin(0) */
 CurrAngle=FXD(28.027);
 for (i = 0; i < 12; i++) {
     fixed NewX;
     if (CurrAngle > 0) {
        NewX=X - (Y >> i);
        Y += (X >> i);
        X = NewX;
        CurrAngle -= Alpha[i]; }
    else {
        NewX = X + (Y >> i);
       Y- = (X >> i);
        X = NewX;
        CurrAngle += Alpha[i];
     } // if-else
 } // for (i = ...
 printf("cos(28.027)=%6.4f, sin()=%6.4f\n", x/65536.0, y/65536.0);
} // main
```

USING CORDIC IN ROTATION MODE

```
x^{(i+1)} = x^{(i)} - d_i y^{(i)} 2^{-i}

y^{(i+1)} = y^{(i)} + d_i x^{(i)} 2^{-i}

z^{(i+1)} = z^{(i)} - d_i \tan^{-1} 2^{-i} Make z converge to 0 by choosing d_i = \text{sign}(z^{(i)})

= z^{(i)} - d_i e^{(i)}

x^{(m)} = K(x \cos z - y \sin z)

y^{(m)} = K(y \cos z + x \sin z)

z^{(m)} = 0

where K = 1.646 760 258 121 \dots
```

- For k bits of precision in results, k CORDIC iterations are needed, because $tan^{-1} 2^{-i} \cong 2^{-l}$ for large I
- Start with x = 1/K = 0.607 252 935 ... and y = 0 to find cos z and sin z
- Convergence of z to o is possible because each of the angles in our list is more than half the previous one or, equivalently, each is less than the sum of all the angles that follow it
- Domain of convergence is $-99.7^{\circ} \le z \le 99.7^{\circ}$, where 99.7° is the sum of all the angles in our list; the domain contains $[-\pi/2, \pi/2]$ radians

CMCS411 - Fall 2017 - RPCain

USING CORDIC IN VECTORING MODE

$$x^{(i+1)} = x^{(i)} - d_i y^{(i)} 2^{-i}$$

 $y^{(i+1)} = y^{(i)} + d_i x^{(i)} 2^{-i}$ Make y converge to 0 by choosing $d_i = -\text{sign}(x^{(i)}y^{(i)})$
 $z^{(i+1)} = z^{(i)} - d_i \tan^{-1} 2^{-i}$
 $= z^{(i)} - d_i e^{(i)}$
 $x^{(m)} = K(x^2 + y^2)^{1/2}$
 $y^{(m)} = 0$
 $z^{(m)} = z + \tan^{-1}(y/x)$
where $K = 1.646\ 760\ 258\ 121\dots$

- For k bits of precision in results, k CORDIC iterations are needed, because $tan^{-1} 2^{-i} \cong 2^{-i}$ for large I
- Start with x = 1 and z = 0 to find $tan^{-1}y$
- Even though the computation above always converges, one can use the relationship $tan^{-1}(1/y) = \pi/2 - tan^{-1}y$ to limit the range of fixed-point numbers encountered
- Other trig functions: tan z obtained from sin z and cos z via division; inverse sine and cosine (sin-1z and cos-1z) discussed later

CORDIC HARDWARE

• [© Oxford U Press]

CORDIC VECTORING MODE

- Difference with rotation mode?
 - When choosing d_i, instead of trying to make z
 converge to o, try to make y_i zero

$$- d_i = -sign(x_i * y_i)$$

• Variables will converge to:

$$-x_n = 1/K(x^2 + y^2)^{1/2}$$

$$-y_n = 0$$

$$-z_n = z + tan^{-1}(y/x)$$

- Application?
 - If start with x = 1, z = 0, the final

$$-z = tan^{-1}(y)$$

GENERALIZED CORDIC

Generalized CORDIC iteration:

$$- x_{i+1} = x_i - \mu * d_i * 2^{-i} * y_i$$

$$- y_{i+1} = y_i + d_i * 2^{-i} * x_i$$

$$-z_{i+1} = z_i - d_i * e(i)$$

Variations:

- μ = 1 Circular rotations (basic CORDIC) $e^{(i)}$ = $tan^{-1} 2^{-i}$
- μ = 0 Linear rotations $e^{(i)} = 2^{-i}$
- μ = -1 Hyperbolic rotations $e^{(i)}$ = $tanh^{-1}2^{-i}$

μ	Function	e(i)
1	Circular rotation (basic CORDIC)	tan ⁻¹ (2 ⁻ⁱ)
0	Linear rotation	2 ⁻ⁱ
-1	Hyperbolic rotation	tanh ⁻¹ (2 ⁻ⁱ)

VARIOUS CORDIC APPLICATIONS

- Directly computes:
 - sin, cos, sinh, cosh
 - tan⁻¹, tanh⁻¹
 - Division, multiplication
- Also directly computes:

$$- tan^{-1}(y/x)$$

$$-y+x*z$$

$$-(x^2+y^2)^{1/2}$$

$$-(x^2-y^2)^{1/2}$$

$$-e^{Z} = \sinh(z) + \cosh(z)$$

[© Wilde]

VARIOUS CORDIC APPLICATIONS (CONT.)

• Indirectly computes:

$$\tan z = \frac{\sin z}{\cos z}$$

$$\tanh z = \frac{\sinh z}{\cosh z}$$

$$\ln w = 2 \tanh^{-1} \left| \frac{w - 1}{w + 1} \right|$$

$$\log_b w = K \cdot \ln w$$

$$w^t = e^{t \ln w}$$

$$\cos^{-1} w = \tan^{-1} \frac{\sqrt{1 - w^2}}{w}$$

$$\sin^{-1} w = \tan^{-1} \frac{w}{\sqrt{1 - w^2}}$$

$$\cosh^{-1} w = \ln\left(w + \sqrt{1 - w^2}\right)$$

$$\sinh^{-1} w = \ln\left(w + \sqrt{1 + w^2}\right)$$

$$\sqrt{w} = \sqrt{(w+1/4)^2 - (w-1/4)^2}$$

SUMMARY OF CORDIC APPLICATIONS

[© Oxford U Press & Paroo, p. 371]

	AFFEIGATIONS					
	Rotation mode d_i =sign(z_i), $z_i \rightarrow 0$	Vectoring mode d _i =-sign(x _i y _i), y _i → o				
μ = 1 Circular e(i) = tan ⁻¹ 2 ⁻ⁱ	$x \rightarrow K(x \cos z - y \sin z)$ $y \rightarrow K(y \cos z + x \sin z)$ $z \rightarrow 0$ For $\cos \& \sin$, $\sec x = 1/K$, $y = 0$ $\tan z = \sin z / \cos z$	$x \longrightarrow K (x^2 + y^2)^{1/2}$ $y \longrightarrow Z + tan^{-1} (y/x)$ For tan^{-1} , set $x = 1$, $z = 0$ $cos^{-1}w = tan^{-1}[(1-w^2)^{1/2}/w]$ $sin^{-1}w = tan^{-1}[w/(1-w^2)^{1/2}]$				
μ = 0 Linear e(i)= 2 ⁻ⁱ	$x \rightarrow C \rightarrow X$ $y \rightarrow y + x * z$ $z \rightarrow 0$ For multiplication, set $y = 0$	$x \rightarrow C \rightarrow X$ $y \rightarrow C \rightarrow $				

Note: in linear mode, limited input range (convergence)

(CONT.)

[© Oxford U Press] & Paroo], p. 371

In the μ = -1 case, steps 4, 13, 40, 121, ..., j, 3j + 1, ... must be repeated for the method to converge. These repetitions are incorporated in the constant K' below.

$$x_{i+1} = x_i - \mu * d_i * 2^{-1} * y_i$$
 $\mu \in \{-1,0,1\}, di \in \{-1,1\}$
 $y_{i+1} = y_i + d_i * 2^{-i} * x_i$ $K = 1.646760258121...$
 $z_{i+1} = z_i - d_i * e(i)$ $K' = 0.8281593609602...$

CORDIC SPEEDUP METHODS

$$x^{(i+1)} = x^{(i)} - \mu d_i y^{(i)} 2^{-i}$$

$$y^{(i+1)} = y^{(i)} + d_i x^{(i)} 2^{-i}$$

$$z^{(i+1)} = z^{(i)} - d_i e^{(i)}$$

- Skipping some rotations
 - Must keep track of expansion via the recurrence:

-
$$(K_{(i+1)})^2 = (K_{(i)})^2 (1 \pm 2^{-2i})$$

 This additional work makes variable-factor CORDIC less cost-effective than constant-factor CORDIC

$$x^{(k)} = x^{(k/2)} - y^{(k/2)} z^{(k/2)}$$
$$y^{(k)} = y^{(i)} + x^{(k/2)} z^{(k/2)}$$
$$z^{(k)} = z^{(k/2)} - z^{(k/2)}$$

- Early termination
 - Do the first k/2 iterations as usual, then combine the remaining k/2 into a single multiplicative step:
 - For very small z, we have $tan^{-1}z \cong z \cong tan z$
 - Expansion factor not an issue because contribution of the ignored terms is provably less than ulp

$$d_i \in \{-2, -1, 1, 2\}$$
 or $\{-2, -1, 0, 1, 2\}$

High-radix CORDIC

REFERENCES · AND COPYRIGHT

- Kia Bazargan
 - EE 5324 VLSI Design II, University of Minnesota
- Textbook referenced
 - [Paroo] B. Parhami "Computer Arithmetic: Algorithms and Hardware Designs" Oxford University Press, 2000.
 - This presentation is intended to support the use of the textbook Computer Arithmetic: Algorithms and Hardware Designs (Oxford U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated regularly by the author as part of his teaching of the graduate course ECE 252B, Computer Arithmetic, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Unauthorized uses are strictly prohibited. © Behrooz Parhami
- Slides used(Modified by Kia when necessary)
 - [©Oxford U Press] © Oxford University Press, New York, 2000.
 http://www.ece.ucsb.edu/Faculty/Parhami/files_n_docs.htm
 - [©Wilde] © Prof. Doran Wilde, Lecture notes on the Computer
 Arithmetic Course, ECE Dept., Brigham Young University

TO PROBE FURTHER...

Tutorials

- http://cnmat.cnmat.berkeley.edu/~norbert/cor dic/node3.html
- http://www.execpc.com/~geezer/embed/cordic.
 htm (including C code)
- http://bsvi.ru/uploads/CORDIC--10EBA/cordic.pdf
- Papers
 - Survey paper on FPGA implementation of CORDIC algorithms: http://www.andraka.com/files/crdcsrvy.pdf
 - http://www.taygeta.com/cordic_refs.html
- Hardware implementations
 - http://www.free-ip.com/cordic/
 - http://www.stanford.edu/~chet/cordic.html

Concluding Remarks

CONCLUDING **REMARKS**

- This Lecture:
 - Algorithms
- Summary
 - Useful on embedded or specialty applications to meet performance requirements
- Next Lecture:
 - Project
- Questions?