

General Linear Tests

$$I$$
 and $\mathcal J$ are two non-overlapping index sets.

- Full model: Contain both X_I and $X_{\mathcal{J}}$.
- Reduced model: Contain only X_{I} .

VS.

• Test whether $X_{\mathcal{J}}$ may be dropped out of the full model:

$$H_0: \beta_j = 0$$
, for **all** $j \in \mathcal{J}$

 H_a : some β_j : $j \in \mathcal{J}$ are nonzero.

F-test for Regression Relation

• Full model with
$$X_1, \dots, X_{p-1}$$
:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_{p-1} X_{i,p-1} + \epsilon_i, \quad i = 1, \cdots n.$$

Reduced model with no X variable:

$$Y_i = \beta_0 + \epsilon_i, \quad i = 1, \cdots, n.$$

So SSE(R) = ,and df_R =

, and

4□ > 4₫ > 4 ≧ > 4 ≧ > ½ 900 €

$$df_F =$$

Test whether a Single $\beta_k = 0$

 $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, \quad i = 1, \dots, 20.$

Body fat: Test for the model with all three predictors whether the midarm circumference (X_3) can be dropped.

- Full model: SSE(F) = 98.40 with d.f. 16.
- Null and alternative hypotheses:
- - vs. H_a: H_0 :
 - Reduced model: SSE(R) =
 - Pvalue=
 - X_3 from the full model.

with d.f.

. So we

Equivalence between F-test and T-test

Test whether X_k can be dropped from a regression model with p – 1
 X variables:

$$H_0: \beta_k = 0$$
 vs. $H_a: \beta_k \neq 0$.

T-test:

$$T^* = rac{\hat{eta}_k}{\mathbf{s}\{\hat{eta}_k\}} \underset{H_0}{\sim} \mathbf{t}_{(n-p)},$$

where $\hat{\beta}_k$ is the LS estimator of β_k and $s\{\hat{\beta}_k\}$ is its standard error under the full model. Reject H_0 when $|T^*| > t(1 - \alpha/2; n - \rho)$.

• $F^* = (T^*)^2$ and $F(1-\alpha; 1, n-p) = (t(1-\alpha/2; n-p))^2$. So for this test, F-test and T-test are equivalent.

Notes: for one one-sided alternatives, we still need the T-tests.

Test whether Several $\beta_k = 0$

Body fat: Test whether both thigh circumference (X_2) and midarm circumference (X_3) can be dropped from the model with all three predictors.

Full model: SSE(F) = 98.40 with d.f. 16.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, \quad i = 1, \dots, 20.$$

Null and alternative hypotheses:

$$H_0$$
: vs. H_a :

• Pvalue=
at
$$\alpha = 0.05$$
.

with d.f.

The result is

Standardization

Different X variables often have different units which could make their values vastly different.

- Regression coefficients are not comparable.
- Elements of X'X could differ substantially in order of magnitude, causing numerical instability.
- A regression model can be reparametrized into a standardized regression model through centering and rescaling.
- This process is called standardization, a.k.a. correlation transformation.

Correlation Transformation

$$X_{ik}^* = \frac{1}{\sqrt{n-1}} \left(\frac{X_{ik} - \overline{X}_k}{s_{X_k}} \right), \quad k = 1, \cdots, p-1,$$

where

$$\overline{X}_k = \frac{1}{n} \sum_{i=1}^n X_{ik}, \quad s_{X_k} = \sqrt{\frac{\sum_{i=1}^n (X_{ik} - \overline{X}_k)^2}{n-1}}, \quad (k = 1, \dots, p-1).$$

are sample means and sample standard deviations, respectively.

The sample means of the transformed variables are The sample standard deviations of the transformed variables are So all variables are and are Correlation transformation the pairwise (sample) correlations among the X variables, the (sample) correlations between the X variables and the response variable.

4 □ b < 6 b < 2 b < 2 b</p>

Standardized Regression Model

Rewrite the regression model in terms of standardized variables:

$$Y_i = \beta_0^* + \beta_1^* X_{i1}^* + \beta_2^* X_{i2}^* + \dots + \beta_{p-1}^* X_{i,p-1}^* + \epsilon_i, \quad i = 1, \dots n,$$

where

$$\beta_k^* = (k = 1, \dots, p-1), \quad \beta_0^* =$$

4 D > 4 B > 4 E > 4 E > E 904

is a "reparametrization" of the original model.

Design Matrix of Standardized Model

$$\mathbf{X}^{*} = \begin{bmatrix}
1 & X_{11}^{*} & \cdots & X_{1,p-1}^{*} \\
1 & X_{21}^{*} & \cdots & X_{2,p-1}^{*} \\
\vdots & \vdots & \ddots & \vdots \\
1 & X_{n1}^{*} & \cdots & X_{n,p-1}^{*}
\end{bmatrix}$$

$$\begin{bmatrix}
n & 0 & 0 & \cdots & 0 \\
0 & 1 & r_{12} & \cdots & r_{1,p-1} \\
r_{21} & 1 & \cdots & r_{2,p-1}^{*}
\end{bmatrix} = \begin{bmatrix}
n & \mathbf{0}^{T} \\
\mathbf{0} & \mathbf{r}_{xx} \\
r_{xx} \\
r_{yx} \\$$

where \mathbf{r}_{XX} is the sample correlation matrix of the X variables.

Correlation Matrix

numbers

matrix:

- All its elements are
 - Its diagonal elements are correlation of a variable with itself is
- Correlation matrix is a

, since the

X'Y Matrix of Standardized Model

$$\mathbf{X}^{*'}\mathbf{Y} = \begin{bmatrix} n\overline{Y} \\ \sqrt{n-1}s_{Y}r_{Y1} \\ \sqrt{n-1}s_{Y}r_{Y2} \\ \vdots \\ \sqrt{n-1}s_{Y}r_{Y,p-1} \end{bmatrix} = \sqrt{n-1}s_{Y} \begin{bmatrix} \frac{n}{\sqrt{n-1}s_{Y}} \\ \frac{r}{\sqrt{N-1}s_{Y}} \\ \frac{r}{\sqrt{N-1}s_{Y}} \\ \vdots \\ \sqrt{n-1}s_{Y}r_{Y,p-1} \end{bmatrix}$$

where r_{Yk} is the sample correlation coefficient between Y and X_k :

$$r_{Yk} = \frac{\frac{1}{n-1}\sum_{i=1}^{n}(X_{ik} - \overline{X}_{k})(Y_{i} - \overline{Y})}{s_{X_{k}}s_{Y}}, \quad k = 1, \dots, p-1.$$

4□ > 4♂ > 4 ≥ > 4 ≥ > ≥ 90

LS Fit of Standardized Model

$$\hat{\boldsymbol{\beta}}^* = \begin{bmatrix} \hat{\beta}_0^* \\ \hat{\beta}_1^* \\ \hat{\beta}_2^* \\ \vdots \\ \hat{\beta}_{p-1}^* \end{bmatrix} = \begin{bmatrix} \sqrt{n-1} s_Y \mathbf{r}_{XX}^{-1} \mathbf{r}_{XY} \\ (p-1) \times 1 \end{bmatrix}$$

- These are called fitted standardized regression coefficients.
- Relationships with the LS estimators of the original model:

$$\hat{\beta}_{k} = \frac{1}{\sqrt{n-1}} \hat{\beta}_{x_{k}}^{*}, \quad k = 1, \dots, p-1$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1} \overline{X}_{1} - \dots - \hat{\beta}_{p-1} \overline{X}_{p-1}.$$

Do fitted values, residuals and sums of squares change due to standardization of the X variables?

Body Fat

Sample means and sample standard deviations (n = 20):

$$\overline{Y} = 20.20, \ \overline{X}_1 = 25.30, \ \overline{X}_2 = 51.17, \ \overline{X}_3 = 27.62;$$

$$s_{v} = 5.11$$
 $s_{v} = 5.02$ $s_{v} = 5.23$ $s_{v} = 3.65$

$$s_Y = 5.11, \ s_{X_1} = 5.02, \ s_{X_2} = 5.23, \ s_{X_3} = 3.65.$$

Correlation matrices:

$$\mathbf{r}_{XX} = \begin{bmatrix} 1.00 & 0.92 & 0.46 \\ 0.92 & 1.00 & 0.08 \\ 0.46 & 0.08 & 1.00 \end{bmatrix}, \quad \mathbf{r}_{XY} = \begin{bmatrix} 0.84 \\ 0.88 \\ 0.14 \end{bmatrix}.$$

Least-squares estimators of the standardized model:

$$\hat{\beta}_0^* = \overline{Y} = 20.20, \quad \begin{bmatrix} \hat{\beta}_1^* \\ \hat{\beta}_2^* \\ \hat{\beta}_3^* \end{bmatrix} = \sqrt{n-1} s_Y \mathbf{r}_{XX}^{-1} \mathbf{r}_{XY} = 27.5 \times \begin{bmatrix} 4.26 \\ -2.93 \\ -1.56 \end{bmatrix}.$$

Least-squares estimators of the original model:

$$\begin{vmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \end{vmatrix} = \begin{vmatrix} 4.33 \\ -2.86 \\ -2.18 \end{vmatrix} = \begin{vmatrix} \frac{5.11}{5.02} \times 4.26 \\ \frac{5.11}{5.23} \times (-2.93) \\ \frac{5.11}{3.65} \times (-1.56) \end{vmatrix} .$$

Multicollinearity

Multicollinearity refers to the situation when the X variables are among themselves.

- This term is often reserved for the situation when the inter-correlation/collinearity among the X variables is
- X variables being nearly collinear means

 To understand the effects of multicollinearity, we consider two extreme situations: When the X variables are not correlated with each other at all When they are perfectly intercorrelated. In practice, it is usually somewhere in between (i) and (ii). 4 D F 4 B F 4 B F 4 B F B

Uncorrelated X Variables

•
$$\mathbf{r}_{\chi\chi} =$$

are the

Fitted standardized regression coefficients:

$$\hat{\beta}_k^* =$$
, $k = 1, \cdots, p-1$

variable Y and individual X variables.

Variance-covariance matrix:

$$\sigma^2\{egin{array}{c} \hat{eta}_0^* \ \hat{eta}_1^* \ \hat{eta}_2^* \ \hat{eta}_{p-1}^* \ \end{pmatrix}\} = egin{array}{c} \hat{eta}_1^* \ \hat{eta}_{p-1}^* \ \end{pmatrix}$$

So the LS estimators of the standardized model are

. How about the LS estimators of the original model?

between the response

	wr	ien	the) X									-				of a	an .	ΧV	arı	able	9	
						oth	er	Xν	aria	able	es i	n th	ne r	noc	del.								
	•	Т	he	LS	fitte	ed ı	reg	res	sio	n co	oeff	icie	ent	of a	an 2	X v	aria	ıble	is				
		b	y w	hic	h o	the	r (u	inco	orre	elat	ed)	X	var	iabl	les	are	in	the	m	ode	el.		
	•	Т	he	LS	fitte	ed ı	reg	res	sio	n co	oef	icie	ents	of	the	<i>X</i>	vai	riab	les	are	Э		
		W	ith	ea	ch d	othe	er.																
	•	Т	he	cor	ntrik	outi	on	of a	an 2	Χv	aria	ıble	in	rec	luci	ng	the	er	ror	sur	n o	f	

Crew Productivity

							U	CV	V I	IU	ut	ICL	IVI	. у								
			١					١.				,										
As	tua	у о	n ti	ne (effe	ct (ot v	vori	k cr	ew	SIZ	е ($X_1)$	an	d le	evel	Of	boi	านร	pa	y	
(X_2)) o	n p	rod	uct	ivity	$+(\cdot)$	r).															
case	e	X1			Х	(2			Y													
	cr	ew-	size		bonu	ıs-r	ay	p:	rodu	cti	vity	,										
1		4			2	2			42													
2		4			2	2			39													
3		4				3			48													
4		4			3	3			51													
5		6			2	2			49													
6		6			2	2			5.3													
7		6			3	3			61													
8		6			3	3			60													
Pair	wise	cori	relati	on n	natri	Κ.																
	X1		X2	Y																		
X1 :	1.00	0.	00 0	.74																		
X2 (0.00	1.	00 0	64																		
Υ (0.74	0.	64 1	.00																		
X.	and	1 X	, aı	י בי	ınco	٦rr	alat	ьd														
/\]	and	<i>1</i> /\	z ai	U L	11100	,,,,	viai	cu.														

Crew Productivity: Model 1

Call: lm(fo		a = '	y ~ x	1, d	ata =	data	1)												
Resid	luals																		
Mi -6.75	n 10 –3		Medi 0.1		3Q 4.500		Iax 000												
Coeff	icie																		
(Inte	rcep		23.5	00		.111	2.	324	0.0	591									
X1 				75				711											
Signi	f.c	odes	: 0	***	0.001	** (0.01	* 0.0	95.	0.1	1								
Resid Multi	ple	R-sqı	uared	: 0.	<mark>5</mark> 505,		Adju	sted	R-sq	uare	d: 0.								
F-sta	tist	ic:	7.347	on	1 and	[6 D]	, р	-valı	ie: 0	.035	80								
> and Analy				ce T	able														
Respo	nse:																		
X1		1 2	231.1	2 23	an Sq 1.125	7.													
Resid	luals	6	188.7	5 3	1.458														
														4 4	 = .	4 =	=	9 0	a

Crew Productivity: Model 2

Call: lm(formula = Y ~ X2, data = data)	
Residuals:	
Min 10 Median 30 Max -7.000 -4.688 -0.250 5.250 7.250	
Coefficients:	
Estimate Std. Error t value Pr(> t) (Intercept) 27.250 11.608 2.348 0.0572 . X2 9.250 4.553 2.032 0.0885	
X2 9.250 4.553 2.032 0.0885 . Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1	
Residual standard error: 6.439 on 6 degrees of freedom Multiple R-squared: 0.4076, Adjusted R-squared: 0.3088	
F-statistic: 4.128 on 1 and 6 DF, p-value: 0.08846	
> anova(fit2) Analysis of Variance Table	
Response: Y Df Sum Sg Mean Sg F value Pr(>F)	
T Sum Sq rean Sq r Value (FT(\$F)) X2 1 171.12 171.125 4.1276 0.08846 . Residuals 6 248.75 41.458	
ACSIQUEIS U \$70.73 T1.730	
	Š.

Crew Productivity: Model 3

Call																		
lm(f	ormul	a =	Υ ~ }	(1 +	X2, d	ata :	= dat	a)										
Resi	duals																	
	1	2		3	4		5		6	7		8						
1.6	25 -1	. 375	-1.6	525	1.375	-2.	125	1.87	50.	625	-0.37	5						
Coef	ficie	nts:																
					td. E													
(Int	ercer	t)			4.													
X1			5.37	7 <mark>50</mark>	0.	6638	8.	097	0.000	466	***							
X2			9.25	5 <mark>00 -</mark>	1.	3276	6.	968	<mark>0</mark> .000	937	***							
Sign	if. c	odes	. 0	***	0.001	**	0.01	* 0.	0 5 .	0.1	1							
Resi	dual	stan	dard	erro	r: 1.	877	on 5	dear	ees c	f fr	eedom							
					958,													
					2 and													
> an																		
Anal	ysis	of V	ariar	nce T	able													
Resp	onse:	Y																
			Sum	Sa M	Iean S	a F	value		Pr(>F	7)								
X1					31.12						*							
X2		1	171.1	125 1	71.12	5 4	8.546	0.0	00936	6 **	×							
Resi	duals	5	17.6	525	3.52	5												
																. =	_	 <u> </u>

Perfectly Correlated X variables

A set of X variables is said to be collinear if one or several of them may be expressed as a linear combination of the other X variables (including $\mathbf{1}_{n}$).

- The design matrix X is matrix X'X is
- LS estimators are least-squares equation
- X'Xb = X'Ysolutions. has
- This means that there exist the least squares criterion:

$$Q(\mathbf{b}) = \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{i1} - \cdots - b_{p-1} X_{i,p-1})^2.$$

vectors **b** that minimize

. So the

because the

• If X variables are perfectly correlated, then there exists a nonzero

$$\mathbf{X}_{n \times pp \times 1} = \mathbf{0}_{n}.$$

$$X'Xb = X'Y,$$

then $\mathbf{b} + k\mathbf{c}$ is also a solution where $k \in \mathbb{R}$ is an arbitrary scalar since

$$\mathbf{X}'\mathbf{X}(\mathbf{b}+k\mathbf{c}) = \mathbf{X}'\mathbf{X}\mathbf{b} + k\mathbf{X}'\mathbf{X}\mathbf{c}$$
$$= \mathbf{X}'\mathbf{Y} + k\mathbf{X}'\mathbf{0}_n = \mathbf{X}'\mathbf{Y}.$$

• Similarly, if **b** minimizes the least-squares criterion function $Q(\cdot)$, then $\mathbf{b} + k\mathbf{c}$ also minimizes $Q(\cdot)$ since

$$Q(b) = (Y - Xb)'(Y - Xb)$$

$$= (\mathbf{Y} - \mathbf{X}(\mathbf{b} + k\mathbf{c}))'(\mathbf{Y} - \mathbf{X}(\mathbf{b} + k\mathbf{c})) = Q(\mathbf{b} + k\mathbf{c}).$$

Example

				_	_	
cas	e 2	X1	X2)	Z .	
1		2	6	-	24	
Т	-	<u>.</u>	U	4	.4	
2.	- 8	3	9	8	32	
_	1		_	1	_	
3	(5	8	(6	
1		10	10	(8	
4		LU	10	-	,0	

- X variables (including the column of 1) are perfectly correlated since $X_2 = 5 + 0.5X_1$.
- There are infinitely many response functions that fit this data equally "best" (with SSE = 17.14).

- The two response surfaces in the figure are completely different, but they have the same y values on $X_2 = 5 + 0.5X_1$: $y = 7.14 + 9.29X_1$.
- Actually, any response surface that passes the intersecting line will fit the data equally well as these two, e.g.,

$$\widehat{Y} = 7.14 + 9.29X_1, \quad \widehat{Y} = -85.71 + 18.57X_2.$$

Can you think about some others?

Call:																				
lm(fo	rmul <mark>a =</mark>	Y ~ X	1, da	ata =	data	1)														
Coof	ficients																			
Coeii		: Estima	to S1	rd F	rror	t va	1110 1	r(>	+1)											
(Inte	rcept)						021													
X1	.recpe)	9.28								**										
Signi	f. c <mark>ode</mark>	s: 0	*** (0.001	** (.01	* 0.0	95 .	0.1	1										
	lual <mark>sta</mark>																			
	ple <mark>R-s</mark>										9915									
F-sta	itist <mark>ic:</mark>	352.1	on :	1 and	2 DI	, p	-valı	ue: 0	.002	328										
Call:																				
	rmula =	v ~ v	. J.	a+a -	data)														
TW(IC	ormura =	1 1	.z, u	ala =	uata	1)														
Coeft	ficients	:																		
		Estima	te Si	td. E	rror	t va	lue 1	r(>	t)											
(Inte	rcept)									**										
X2		18.57	14	0.	9897	18	.76	0.00	283	**										
Signi	f. c <mark>ode</mark>	s: 0	*** (0.001	** (0.01	* 0.0	95 .	0.1	11										
						_	ļ.													
	lual sta																			
	ple R-s										9915									
r-sta	tistic:	352.1	on .	and	2 DI	, p	-va1	ie: 0	.002	328										
												4	□ ▶	4 🗗	▶ ∢	= ▶	4 ∄	Þ	=	6

When X variables are perfectly correlated, we may still get a fit of the data.

- The least-squares fitted values Y is and is the
- of the response vector \mathbf{Y} to the linear subspace of \mathbb{R}^n generated by the columns of the design matrix \mathbf{X} (the column space).
- However, the regression coefficients are

Body Fat: Compare Models

Va	ariat	les	in M	odel	\hat{eta}_1		,	\hat{eta}_2		s {β̂	}	s	$\hat{\beta}_2$ }	1	ИSE	
M	odel	1: 2	Χ 1		0.85	72		-		0.12	88		-		7.95	
	odel		_		-		-	3565		-		-	100		6.3	
M	odel	3: 2	X_1, X	2	0.22	24	0.6	5594	.	0.30	34	0.2	2912		6.47	
М	odel	4: 2	X_1, X	$_{2},X_{3}$	4.33	34	-2	.857		3.01	6	2.	582		6.15	

- The regression coefficient for X₁ (X₂)
 depending on which other X variables are included in the model.
- The standard errors of the fitted regression coefficients are becoming when more X variables are included into the model.
- MSE tends to as additional X variables are added into the model.

- $SSR(X_1) = 352.27, SSR(X_1|X_2) = 3.47.$
- The reason why $SSR(X_1|X_2)$ is so small compared to $SSR(X_1)$ is that X_1 and X_2 are with each other and with the response variable Y.
 - When X_2 is already in the model, the marginal contribution from X_1 in explaining Y is since X_2 contains much of the information as X_1 in terms of explaining Y.

What would happen if X_1 and X_2 were not correlated with Y, but were highly correlated among themselves?

In Model 4, none of the three *X* variables is statistically significant by the T-tests. However, the F-test for regression relation is highly significant. Is there a paradox?

- From the general linear test perspective, each T-test is a test, testing whether the of an X variable is significant given
 - X variables being included in the model.
- The three tests of the marginal effects of X_1 , X_2 , X_3 together are to testing whether there is a regression relation between Y and (X_1, X_2, X_3) .
- The reduced model for each individual test contains
 X variables and thus may lead to non-significant results due
 to
- On the other hand, the reduced model for testing regression relation contains
 X variable.

Effects of Multicollinearity: Summary

- With multicollinearity, the estimated regression coefficients tend to have sampling variability (i.e., standard errors). This leads to:
 - confidence intervals.
 - It's possible that of the regression coefficients is statistically significant, but at the same time there is a regression relation between the response variable and the entire set of X variables.
- Multicollinearity does not prevent us from getting a of the data.

Interpretation of Regression Coefficients and ESS

In the presence of multicollinearity:

- The regression coefficient of an X variable which other X variables are also in the model.
- Therefore, a regression coefficient reflect any inherent effect of the corresponding X variable on the response variable, but only a given whatever other X variables are also in the model.
- Similarly, there is sum of squares that can be ascribed to any one X variable.
 - The reduction in the total variation in Y ascribed to an X variable must be interpreted as a given other X variables also included in the model.