Stanford University ACM Team Notebook (2014-15)

Table of Contents

Combinatorial optimization

```
Min-cost matching (C++)
Max bipartite matching (C++)
Global min cut (C++)
                                                 Push-relabel max-flow (C++)

    Max bipartite matching (C+6 Global min cut (C++)
    Graph cut inference (C++)

Sparse max-flow (C++)
Min-cost max-flow (C++)
```

Geometry

```
9. Miscellaneous geometry (C++)
10. Java geometry (Java)
11. 3D geometry (Java)
12. Slow Delaumay triangulation (C++)
8. Convex hull (C++)
9. Miscellaneous geome
10. Java geometry (Java)
```

Numerical algorithms

```
13. Number theoretic algorithms (modular. Chinese remainder. linear Diophantine) (C++)
14. Systems of linear equations, matrix inverse, determinant (C++)
15. Reduced row excledon form, matrix rank (C++)
16. East Fourier transform (C++)
17. Simplex algorithm (C++)
```

Graph algorithms

Eulerian Path (C++ 18. Fast Dijkstra's al19. Strongly connec20. Eulerian Path (C

Data structures

```
21. Suffix arrays (C++)
22. Binary Indexed Tree
23. Union-Find Set (C/C++)
24. KD-tree (C++)
25. Splay Tree (C++)
26. Lazy Segment Tree (Ja
27. Lowest Common Ance
```

Lazy Segment Tree (Java)

Miscellaneous

Longest increasing subsequence (C++)

Knuth-Morris-Pratt (C++)

Dinic.cc 1/35

```
Adjacency list implementation of Dinic's blocking flow algorithm. This is very fast in practice, and only loses to push-relabel flow.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        long long totflow = 0;
for (int i = 0; i < G[t].size(); i++) {
    int ant = NG[G[t][i].to][G[t][i].index];
    int ant = INF;
    for (Glge * e start; ant 88 e != dad[s]; e = dad[e->from]) {
        if (!e) { ant = 0; break; }
        ant = min(ant, e->cap - e->flow);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 if (amt == 0) continue;
for (Edge *e = start; amt && e != dad[s]; e = dad[e->from]) {
e->flow += ant;
G[e->to][e->index].flow -= amt;

    maximum flow value
    To obtain the actual flow values, look at all edges with
capacity > 0 (zero capacity edges are residual edges).

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     void AddEdge(int from, int to, int cap) {
    G(from).usb back(Edge(from, to, cap, 0, G[to].size()));
    if (from == to) G[from].back(Edge(to, from) 0, 0, G[from].size() - 1));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 struct Edge {
int from, to, cap, flow, index;
fulf from, int to, int cap, int flow, int index) :
  from(from), to(to), cap(cap), flow(flow), index(index) {}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                int head = 0, tail = 0;
(tail+1) = 5;
while (head < tail) {
  int x = Q[head+4];
  for (int i = 0; i < G[x].size(); i++) {
    sage &e = G[x][i];
    if (ladde to) && e.cap - e.flow > 0) {
        dad[e.to] & sG[x][i];
        Q[tail+1] = e.tc;
        Q[tail+1] = e.tc;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        long long BlockingFlow(int s, int t) {
  fill(dad.begin(), dad.end(), (Edge *) NULL);
  dad[s] = &G[0][0] - 1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Dinic(int N) : N(N), G(N), dad(N), Q(N) {}
                                                                                                                                                                                                - graph, constructed using AddEdge()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           const int INF = 2000000000;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         vector<vector<Edge> > G;
vector<Edge *> dad;
vector<int> Q;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         if (!dad[t]) return 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        totflow += amt;
                                                                                                                                                                                                                                                                                                                                                                                                                                                 #include <cmath>
#include <vector>
#include <iostream>
#include <queue>
                                                                                 // Running time:
// O(|V|^2 |E|)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   }
return totflow;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   struct Dinic {
  int N;
                                                                                                                                                                  // INPUT:
// - gra
// - sou
                                                                                                                                                                                                                                                                                                             OUTPUT:
```

while (s != -1)

MinCostMaxFlow.cc 2/35

```
// Implementation of min cost max flow algorithm using adjacency
// matrix (Edmonds and Korp 1972). This implementation Reeps track of
// forward reverse edges separately (so you can set cap[i][i]] !=
// copial[i]). For a regular max flow, set all edge costs to 8.
                                                                                            // Running time, O(|V|^{\prime 2}) cost per augmentation // max flow: O(|V|^{\prime 3}) augmentations // mth cost max flow: O(|V|^{\prime 4}* NAX_EDGE_COST) augmentations
                                                                                                                                                                                                                                                                                                                                              - (maximum flow value, minimum cost value)
- To obtain the actual flow, look at positive values only.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \label{eq:minus} \begin{split} &\text{MinCostMaxFlow(int N)}:\\ &\text{N(N), cap(N, VL(N)), flow(N, VL(N)), cost(N, VL(N)),}\\ &\text{found(N), dist(N), pi(N), width(N), dad(N) } \end{split}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              void AddEdge(int from, int to, L cap, L cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          L Dijkstra(int s, int t) {
fill(found.begin(), found.end(), false);
fill(dist.begin(), dist.end(), INF);
fill(width.begin(), width.end(), 0);
                                                                                                                                                                                                                               graph, constructed using AddEdge()sourcesink
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       const L INF = numeric_limits<L>::max() / 4;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  typedef vector(int) VI;
typedef vector(VI) VVI;
typedef long long L;
typedef vector(L) VL;
typedef vector(VL) VVI;
typedef pafr(int, into PII;
typedef pafr(int, into PII;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       int N;
VVL cap, flow, cost;
VI found;
VL dist, pi, width;
VPII dad;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    struct MinCostMaxFlow {
                                                                                                                                                                                                                                                                                                                                                                                                                 #include <cmath>
#include <vector>
#include <iostream>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        dist[s] = 0;
width[s] = INF;
```

```
int best = -1;
found[s] = trudu(s] = tr
```

PushRelabel.cc 3/35

```
// Adjacency List implementation of FIFO push relabel maximum flow // with the ago relabeling heuristic. This implementation is // with the ago relabeling heuristic. This implementation is // singlificantly faster than straight Fond-Fulkerson. It solves // scands, should relate the worst-case.
// scands, should it is possible to construct test cases that achieve the worst-case.
// Running time:
// Running time:
// Source
// Source
// Source
// Source
// Source
// Copyrbu:
// Timple
// To obtain the actual flow values, look at all edges with
// To obtain the actual flow value // capacity edges are residual edges).
##include centarb
##include centarb
##include centarb
##include centarb
##include constructed using addex;
// To obtain the actual flow values
// To obtain the actual flow int cap, int flow, int index):
##include cqueue>
using namespace std;

typedef long long LL;

struct Edge(int from, int to, int cap, int flow, int index):
from(from), to(to), cap(cap), flow(flow), index(index) {}

int N;
vector/cure des, active, count;
queue(xint) Q;
queue(xint) Q;
queue(xint) Q;
queue(xint) Q;
```

// find closest j = -1; for (int k = 0; k < n; k++) {

```
// cost[i][j] = cost for pairing left node i with right node j
// lante[i] = index of right node that left node i pairs with
// marte[j] = index of left node that right node j pairs with
// The walues in cost[i][i] may be positive or negative. To perform
// maximization, simply negate the cost[i][i] maximization, simply) negate the cost[i][i]
)
for (int j = 0; j < n; j++) {
for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
                                                                                  // This is an O(n^2) implementation of a shortest augmenting path // algorithm for finding min cost perfect matchings in dense // graphs. In practice, it solves 1000×1000 problems in around 1 // second.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       // construct primal solution satisfying complementary slackness laste = V(f_0, -1); but set = V(f_0, -1); int mated = 0; in this = 0; i on i; i++) { for (int i = 0; i < n; j + +) { for (int i = 0; i < n; j + +) { if (mate[j] = -1) continue; if (fabs(cost[i][j] - u[i] - v[j]) < le-10) {
                                                                                                                                                                                                                              \cos(i)[j] = cost for pairing left node i with right node j lmate[i] = index of right node that left node i pairs with Rmate[j] = index of left node that right node j pairs with
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
  int n = int(cost.size());
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // construct dual feasible solution
VD u(n);
VD v(n);
For (int i = 0; i < n; i++) {
For (int i = 1: j + n; j++) u[i] = min(u[i], cost[i][j]);
For (int j = 1: j < n; j++) u[i] = min(u[i], cost[i][j]);
                            Min cost bipartite matching via shortest augmenting paths
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // repeat until primal solution is feasible
while (mated < n) {</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           // initialize Dijkstra
fill(dad.begin(), dad.end(), .1);
fill(sen.begin(), seen.end(), 0);
for (int k = 0; k < n; k++)
dist[k] = cost[s][k] - u[s] - v[k];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     // find an unmatched left node
int s = 0;
while (Lmate[s] != -1) s++;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    #include <algorithm>
#include <cstdio>
#include <cmath>
#include <cmath>
#include 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       int j = 0;
while (true) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               VD dist(n);
VI dad(n);
VI seen(n);
                                PushRelabel(int N) : N(N), G(N), excess(N), dist(N), active(N), count(2*N) {}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                void Enqueue(int v) { if (lactive[v] = true; Q.push(v); } if (lactive[v] && excess[v] > 0) { active[v] = true; Q.push(v); }
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        LL tofflow = 0;
for (int i = 0; i < G[s].size(); i++) tofflow += G[s][i].flow;
term tofflow;
                                                                                  void AddEdge(int from, int to, int cap) {
    (from].pusb.backEdge(from, to, cap, 0, G[to].size()));
    if (from == to) G[from].back().index++;
    G[to].push_back(Edge(to, from, 0, 0, G[from].size() - 1));
                                                                                                                                                                                                                                                                                                                                                                          void Push(Edge &e) {
int am = int(anievcess[e.from], LL(e.cap - e.flow)));
if (dist[e.from] <= dist[e.to] || amt == 0) return;
if (dist[e.from] <= dist[e.to] || amt == 0) return;
if (c.to] || e.from] <= amt;
e.ccess[e.to] += amt;
finquev(e.to);
finquev(e.to);</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     void Relabel(int v) {
    count(dist(y)]--;
    dist(y) = 2*N;
    for (int i = 0; y < (e[v], ii+v)
    if (G[v][i].cap - G[v][i].flow > 0)
    dist[v] = min(dist[v], dist[G[v][i].to] + 1);
    count[dist[v]]++;
    fnqueue(v);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LL GethBaxFlow(int s, int t) {
    count[0] = N-1;
    count[N] = 1;
    dist[s] = N;
    active[s] = active[t] = true;
    for (int i = 0; i < G[s] size(); i++) {
        excess[s] + G[s][i].cap;
        Push(G[s][i]);
        push(G[s][i]);</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         void Gap(int k) {
  for (int v = 0; v < N; v++) {
    ff (dist[v] < k) continue;
  count[dist[v]]-;
  dist[v] = max(dist[v], N+1);
  count[dist[v]]++;
  Enqueue(v);</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               while (!Q.empty()) {
  int v = Q.front();
  Q.pop();
  active[v] = false;
  Discharge(v);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Relabel(v);
```

MinCostMatching.cc 4/35

```
if (seen[k]) continue;
    if (i == -1 || dist[k] < dist[j]) j = k;
}
seen[j] = 1;

// terminorion condition

if (Rmate[j] == -1) break;

// relax neighbors

const int i = Rmate[j];
for (int k = 0; k < n; k+++) {
    if (seen[k]) continue;
    const double new dist = dist[j] + cost[i][k] - u[i] - v[k];
    if (dist[k]) new dist;
    dist[k] = new dist;
    dist[k] = new dist;
    if (dist[k] = new dist;
    dist[k] = new dist;
    if (a = j] || lisen[k]);
    cont int i = Rmate[k];
    v[k] = dist[k] - dist[j];
    v[k] = dist[k] - dist[j];
    v[k] = dist[k] - dist[j];
    v[s] = dist[k] - dist[j];
    v[s] = dist[k] - dist[j];
    v[s] = dist[k] = j;
    inmate[k] = s;
    lmate[s] = s;
    lmate[s
```

MaxBipartiteMatching.cc 5/35

```
// This code performs maximum bipartite matching.

// Running time: O(|E| |V|) -- often much faster in practice

// Running time: O(|E| |V|) -- often much faster in practice

// OUTPUT: w[i]j] = edge between row node i and column node j

// OUTPUT: w[i] = assignment for row node i, -1 if unassigned

#include <vector*

#include <vector*

using namespace std;

typedef vector*int> VI;

typedef vector*int> VI;

typedef vector*int> VI;

typedef vector*int> VI;

typedef vector*

bool FindWatch(int i, const VIX &w, VI &mr, VI &mc, VI &seen) {

for (int j = 0; j < w[i]; size(); j++) {

seen[j] = true; f = vector*

if (mc[j] = 0; j < w[i]; size(); j++) {

seen[j] = true; f = vector*

return true;

}

}
```

```
return felse;
}
int BipartiteMatching(const VVI &w, VI &mc) {
    mr = VI(w.size(), -1);
    mc = VI(w[0].size(), -1);
    int ct = 0;
    for (int i = 0; i < w.size(); i++) {
        VI seen(w[0].size());
        if (FindMatch(i, w, mr, mc, seen)) ct++;
    }
return ct;
}</pre>
```

MinCut.cc 6/35

```
last = -1;

for (int j = 1; j < N; j++)

if (i == phase-1) {

for (int j = 0; j < N; j++) weights[prev][j] += weights[last[j];

for (int j = 0; j < N; j++) weights[prev][j] += weights[prev][j];

used[last] = true;
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           cut.push_back(last);
if (best_weight == -1 || w[last] < best_weight) {</pre>
                                                                                                                                                                                          // OUTPUT: // - (min cut value, nodes in half of min cut)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    for (int phase = N-1; phase >= 0; phase--) {
VI w = weights[0];
VI added = used;
VI added = used;
int prev, last = 0;
for (int i = 0; i < phase; i++) {
prev = last;
                                                                                                                                                 - graph, constructed using AddEdge()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       return make_pair(best_weight, best_cut);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                pair.int, VI> GetMinCut(VVI &weights) {
  int N = weights.size();
  VI used(N), cut, best_cut;
  int best_weight = -1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              } else {
  for (int j = 0; j < N; j++)
  w[j] += weights[last][j];
  added[last] = true;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             best_cut = cut;
best_weight = w[last];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    const int INF = 1000000000;
                                                                                                                                                                                                                                                                                                                                                                                                               typedef vector<int> VI;
typedef vector<VI> VVI;
                                                                                                                                                                                                                                                              #include <cmath>
#include <vector>
#include <iostream>
                                                                                                                                                                                                                                                                                                                                                                   using namespace std;
                                            // Running time:
// O(|V|^3)
                                                                                                                   // INPUT:
// - gr
```

GraphCutInference.cc 7/35

```
VWVVI phi(c+d, VVVI(c+d, VVI(2, VI(2))));
VVI psi(c+d, VI(2));
for (int i = 0; i < v; i++) {</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         // solver for "Cat vs. Dog" from NWERC 2008
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       #ifdef MAXIMIZATION
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++)
cap[i][j] *= -1;
b[i] *= -1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for (int i = 0; i < M; i++) {
   if (b[i] >= 0) {
      cap[M][i] = b[i];
   } else {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              char p, q;
int u, v;
cin >> p >> u >> q >> v;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  if (p == 'C') {
    phi[u][c+v][0][0]+;
    phi[c+v][u][0][0]+;
    phi[c+v][u][0][0]+;
    phi[v][c+v][u][1]|+;
    phi[c+u][v][1]]|+;

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                cap[i][M+1] = -b[i];
c += b[i];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GraphCutInference graph;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        score *= -1; #endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   return score;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             c *= -1;
#endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                int main() {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       return 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             // OUTPUT: value of the optimal solution
//
// To use this code, create a GraphCutInference object, and call the
// DoInference() method. To perform maximization instead of minimization,
// ensure that #define MAXIMIZATION is enabled.
                                                                                                                                                                                                                                                                                                                                                                                                                                     phi\_\{ij\}(\theta,\theta) \, + \, phi\_\{ij\}(1,1) \, <= \, phi\_\{ij\}(\theta,1) \, + \, phi\_\{ij\}(1,\theta) \quad (*)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        // INPUT: phi -- a matrix such that phi[ij][ij][u][v] = phi\_(ij)(u, v) // psi -- a matrix such that psi[ij][u] = psi\_i(u) // x -- a vector where the optimal solution will be stored
                                                                                                          sum_i psi_i(x[i])
+ sum_{i < j} phi_{ij}(x[i], x[j])</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             // This can also be used to solve maximization problems where the // direction of the inequality in (st) is reversed.
// Special-purpose {0,1} combinatorial optimization solver for
// problems of the following by a reduction to graph cuts:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  int DoInference(const WWVI &phi, const WI &psi, VI &x) { int M = phi.size(); cap = VVI(H+2, VI(H+2)); VI b(H); VI b(H); int c = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        int Augment(int s, int t, int a) {
    reached[s] = 1;
    if (s == t) return a;
    for (int k = 0; k < N; k++) {
        if (reached[k]) continue;
    if (int a a min(a, cap[s][k] - flow[s][k])) {
        if (int b = Augment(k, t, aa)) {
            flow[s][k] += b;
            flow[s][k] = b;

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // comment out following line for minimization #define MAXIMIZATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           int totflow = 0;
while (int ant = Augment(s, t, INF)) {
    totflow += ant;
    fill(reached.begin(), reached.end(), 0);
                                                                                                                                                                                                                                                                psi_i : {0, 1} --> R
phi_{ij} : {0, 1} × {0, 1} --> R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    int GetMaxFlow(int s, int t) {
   N = cap.size();
   flow = VVI(N, VI(N));
   reached = VI(N);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<VVI> VVVI;
typedef vector<VVI> VWVI;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     struct GraphCutInference {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        const int INF = 10000000000
                                                                                                                    minimize
x[1]...x[n] in {0,1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      }
return totflow;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 int N;
WI cap, flow;
VI reached;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 }
}
return 0;
                                                                                                                                                                                                                                                                                                                                                                                                   // such that
                                                                                                                                                                                                                                        // where
```

```
| bill + pil(1) | bil(1) | bil
```

ConvexHull.cc 8/35

Geometry.cc 9/35

```
// C++ routines for computational geometry.
```

```
// determine if tines from a to b and c to d are parallel or collinear
bool tinesParalle[Pr a, PT b, Pr c, Pr d) {
return fabs(cross(b-a, c-d)) < FPS;</p>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         // determine if Line segment from a to b intersects with
// Line segment from c to d
// Line segment from c to d
if (LinesCollinear(a, b, c, d)) {
   if (LinesCollinear(a, b, c, d)) {
      if (LinesCollinear(a, b, c, d)) {
      if (LinesCollinear(a, b, c, d)) {
      if (LinesCollinear(a, b, c, d)) {
      if (LinesCollinear(a, c, c, e, e, d)) {
      if (dot(c, c, e, e, e, d)) {
      if (dot(c-a, c-b)) {
      8& dot(d-a, d-b)) {
      8& dot(c-b, d-b)) {
      }
}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // compure distance between point (\kappa, y, z) and plane ax+by+cz=d double DistancePointPlane(double x, double y, double z, double b, double c, double d)
                                                                                                                                                                                                                                                                                                                                                                                    double x, y;
PT() {
PT() {
PT(double x, double y) : x(x), y(y) {}
PT(const PT &p) : x(p.x), y(p.y) {}
PT(const PT &p) const { return PT(x+p.x, y+p.y);}
PT operator - (const PT &p) const { return PT(x-p.x, y-p.y);}
PT operator * (double c) const { return PT(x-c, x, y-p.y);}
PT operator * (double c) const { return PT(x-c, y, y-c);}
PT operator * (double c) const { return PT(x-c, y, y-c);}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // rotate a point CCW or CW around the origin
PT RotateCUB9(PT p) { return PT(-p.y.p.x); }
PT RotateCUB9(PT p) { return PT(p.y.-p.x); }
PT RotateCUM(PT p, double t) {
    return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              // compute distance from c to segment between a and b
double DistancePointSegment(PT a, PT b, PT c) {
    return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   // project point c onto Line through a and b
// assuming a != b
projectPointLine(PT a, PT b, PT c) {
    return a + (b-a)*dot(c-a, b-a)/dot(b-a, b-a);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          // project point c onto line segment through a cyprojectodissegment(pra , pT b, pT c) {
    double r = dot(b-a,b-a);
    r = dot(c/a,b-a);
    r = dot(c/a,b-a)/r;
    if (r < 0) return a;
    if (r < 0) return b;
    return a + (b-a)/r;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             bool LinesCollinear(PT a, PT b, PT c, PT return LinesParallel(a, b, c, d) && fabs(cross(a-b, a-c)) < EPS && fabs(cross(c-d, c-a)) < ePS;
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>
                                                                                                                                                                                 using namespace std;
                                                                                                                                                                                                                                                  double INF = 1e100;
double EPS = 1e-12;
                                                                                                                                                                                                                                                                                                                                                          struct PT {
```

```
// expected: 11.1 0
cerr << SegmentsIntersect(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << " "
<< SegmentsIntersect(PT(0,0), PT(2,4), PT(4,3), PT(0,5)) << " "
<< SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " "
<< SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // tests whether or not a given polygon (in CM or CCM order) is simple bool IsSimple(const vector(PT) &p) {
    for (int i = 0; i < p. size(); i++) {
        for (int k = i+1); k < p. size(); k++) {
            int j = (i+1) % p. size(); k++) {
                int i = (i+1) % p. size();
            int i = (i+1) % p. size();
            int i = (i+1) % p. size();
            if (i = 1 | | j == k) continue;
            if (segmentsIntersect(p[i], p[i], p[k], p[l]))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // expected: 0 0 1
cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
<< LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
<< LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
                                                                                             // expected: 1 0 1 cerr << Linespanalle(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " " </td>

cerr << Linespanalle(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " " </td>

cerr << Linespanalle(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;</td>

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // expected: (5,2) (7.5,3) (2.5,1)
cerr << ProjectPointSegment(PT(-5,-2), PT(10,4), PT(3,7)) << " "
<< ProjectPointSegment(PT(-5,5,2), PT(10,4), PT(3,7)) << " "
<< ProjectPointSegment(PT(-5,5,2), PT(2,5,1), PT(3,7)) << " "
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       // expected: (5,2)
cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       T ComputeCentroid(const vector<PT> &p) {
    PT (c0, 1);
    PT (c0, 1);
    for (int i = 0; i < p. size(); i++) {
        int j = (i, 1); x, p.size(); i++) {
        int j = (i, 1); x, p.size(); y, p.size(); i+1);
        c = c + (p[i]+p[j])*(p[i].x*p[j].y, p[j].y.p[i].y);</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   // expected: 6.78903
cerr << DistancePointPlane(4,-4,3,2,-2,5,-8) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // expected: (-5,2)
cerr << RotateCCW(PT(2,5),M_PI/2) << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              double ComputeArea(const vector<PT> &p)
    return fabs(ComputeSignedArea(p));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // expected: (-5,2)
cerr << RotateCCW90(PT(2,5)) << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           // expected: (5,-2)
cerr << RotateCM90(PT(2,5)) << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          return false;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        return area / 2.0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        return c / scale;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    return true;
return ret;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          int main() {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     // compute center of circle given three points
PT computedirelenter(PT a, PT b, PT c) {
    b=(a)+0,2;
    c=(a+0)/2;
    return ComputelineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                bool c = 0;

for (int i = 0; i < p. size(); i++){

int j = (i1.1%p. size(); i++){

if ((p[i].y <= q.y && q.y < p[i].y ||

p[i].y <= q.y && q.y < p[i].y ||

q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))

c = (c)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // determine if point is on the boundary of a polygon bool pointoblygon(constructore/PT) &p. PT q) {
for (int i = 0; i < p. size(); i++)
if (dist2(ProjectPointSegment(p[i], p[(i+1)%p.size()], q), q) < EPS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    // determine if point is in a possibly non-convex polygon (by William // Randoup Fannkin). returns 1 for strictly interior points, g for // strictly exterior points, and 0 or 1 for the remaining points. Note that it is possible to convert this into m'scard' test using // integen arithmetic by taking care of the division appropriately // (making sure to deal with signs properly) and then by writing exact boal point no polygon boundary
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        // compute intersection of circle centered at a with radius r
// with circle centered at b with radius R b, double r, double R) {
vector/P) circleCircleIntersection(PT a, PT b, double r, double R) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                // compute intersection of line through points a and b with
// circle contered at c with radius r > 0
vector(PT) CirclelineIntersection(PT a, PT b, PT c, double r) {
vector(PT) ret;
b = b-a;
b = b-a;
double A = dot(b, b);
double B = dot(a, b);
double C = dot(a, b) - r*r;
double D = BP + A**(r);
if (D < -FPS) return ret;
ret.push_back(c+a+b*(-B+sqrt(D+EPS))/A);
if (D > FPS)
return ret;
ret.push_back(c+a+b*(-B+sqrt(D))/A);
return ret;
return ret;
                                                                                                                                                                                                                                                                                  // compute intersection of line passing through a and b // with line possing through c and d, assuming that unique // intersection exists; for segment intersection, check if // segments intersect first
                                                                      )
if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
                                                                                                                                                                                                                                                                                                                                                                                                 // segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         vector.cPT ret;
double d = gart(dist2(a, b);
double d = gart(dist2(a, b));
if (d > r*R || d+min(r, R) < max(r, R)) return ret
double x = (d*d-R*R+r*r)/(2*d);
for uble y = sgrt(r*r-x*x);
for uble y = sgrt(r*r-x*x);
ret.push_back(a+v*x + RotateCCA90(v)*y);
if (y > 0)
ret.push_back(a+v*x - RotateCCA90(v)*y);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        b=b-a; d=c-d; c=c-a;
assert(dot(b, b) > EPS && dot(d, d) > EPS);
return a + b*cross(c, d)/cross(b, d);
return false;
                                       return true;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            }
return c;
```

```
// make an array of doubles from a string
static double[] readoints(string s) {
    String[] are = s.trim().split("\s++");
    double[] ret = new double[arr.length];
    for (int i = 0; i < arr.length; i++) ret[i] = Double.parseDouble(arr[i]);
    for which is a for a for it is a for it i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     // compute area of polygon
static double computePolygonArea(ArrayList<PointD.Double> points) {
pointSi.bouble[] prs = points.toArray(new Point2D.Double[points.size()]);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           // make an Area object from the coordinates of a polygon static Area makeArea(obuble[] pts) {
    Path2D.obuble p = new Path2D.obuble();
    p.movelo(pts[0], pts[1]);
    for (int i = 2; i < pts.length; i += 2) p.lineTo(pts[i], pts[i+1]);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             the area.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    return Math.abs(area)/2;
The area is 25.0
Point belongs to the area.
Point does not belong to t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      public class JavaGeometry {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              return new Area(p);
                                                                                                                                                                                                                                       import java.util.*;
import java.awt.geom.*;
import java.io.*;
                                                                 // expected: (1,2) cerr << ComputeLineIntersection(PT(\theta,\theta), PT(2,4), PT(3,1), PT(-1,3)) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // expected: (1,6)
(5,4) (4,5)
(5,4) (4,5)
(6,5) (5,4)
(4,5) (5,4)
(4,5) (5,4)
(4,5) (5,4)

blonk line
(4,5) (5,4)

vector(T) u = GircletineIntersection(PT(0,6), PT(2,6), PT(1,1), 5);

for (int i = 0; i v u.size(); i++) cerr (v u[i] << "'; cerr <= endi;

u = GircletineIntersection(PT(0,9), PT(0,9), PT(1,1), 5);

for (int i = 0; i v u.size(); i++) cerr (v u[i] << "'; cerr <= endi;

u = GircletineIntersection(PT(1,1), PT(0,8), 5, 5);

for (int i = 0; i v u.size(); i++) cerr (v u[i] << "'; cerr <= endi;

u = GircletineIntersection(PT(1,1), PT(0,8), 5, 5);

for (int i = 0; i v u.size(); i++) cerr (v u[i] << "'; cerr <= endi;

u = GircletineIntersection(PT(1,1), PT(4,5,4,5), 10, sqrt(2,0),2,0);

for (int i = 0; i v u.size(); i++) cerr (v u[i] << "'; cerr <= endi;

u = GircletineIntersection(PT(1,1), PT(4,5,4,5), 5, sqrt(2,0,0);

for (int i = 0; i v u.size(); i++) cerr (v u[i] << "'; cerr <= endi;

for (int i = 0; i v u.size(); i++) cerr <= u[i] << "'; cerr <= endi;
                                                                                                                                                                                                                                       // expected: (1,1) cerr << ComputeCircleCenter(PT(-3,4), PT(6,1), PT(4,5)) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            // area should be 5.0
// centroid should be (1.166666, 1.166666)
PT pel] = { PT(0,0), PT(5,0), PT(1,1), PT(0,5) };
vector<PT> p(pa, pa+4);
vector<PT> p(pa, pa+4);
cent < "Area: "<< Computable of the computable of the computable of the computable of the cent < "Centroid: "<< c< end1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         // expected: 0 1 1 1 1 1
cerr < PointOnDiggor(, pT(2,2)) << " "
< PointOnDiggor(, pT(2,0)) << " "
< PointOnDiggor(, pT(2,2)) << " "
< PointOnDiggor(, pT(2,2)) << " "
< PointOnPolygor(v, pT(5,2)) << " "
< PointOnPolygor(v, pT(5,2)) << " "
< PointOnPolygor(v, pT(2,5)) << " "
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // expected: 1110 0
cerr < PointInPolygen(v, PT(2,2)) << " "
< PointInPolygen(v, PT(2,0)) << " "
< PointInPolygen(v, PT(2,2)) << " " "
< PointInPolygen(v, PT(5,2)) << " " "
< PointInPolygen(v, PT(5,2)) << " " "
< PointInPolygen(v, PT(5,2)) << " " "
                                                                                                                                                                                                                                                                                                                                                                                                              vector<PT> v;
v.push_back(PT(0,0));
v.push_back(PT(5,0));
v.push_back(PT(5,5));
v.push_back(PT(0,5));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          return 0;
```

JavaGeometry.java 10/35

```
// In this example, we read an input file containing three lines, each // containing an even number of doubles, separated by comas. The first two // Lines represent the coordinates of two polygons, given in counterclockwise // (or clockwise) order, which we will call "A" and "B". The last line // contains a list of points, p[1], p[2], ... // (un wood is to determine. )

// (1) whether B - A is a single closed shape (as opposed to multiple shapes) // (2) the area of B - A

// (3) whether each p[i] is in the interior of B - A
                                                                                                                                                                                                                                                                                                                       0 0 10 0 0 10
0 0 10 10 10 0
8 6
5 1
                                                                                                                                                                                                                                                                                                    // INPUT:
// 0 0 10
// 0 0 10
// 8 6
// 5 1
// OUTPUT:
// The are
```

area is singular.

```
// compute the area of an Area object containing several disjoint polygons
static double computeArea(Area area) {
double totArea = 0;
PathIterator iter = area.getPathIterator(null);
ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>();
                                                                                                                                                                                                    while (liter.isDone()) {
double[] buffee = new double[6];
switch (iter.currentSegmen(funfer)) {
  case PathIterator.SEG_MOVETO:
  case PathIterator.SEG_LINETO:
  points.add(new Point2D.Double(buffer[0], buffer[1]));
  break;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     // (1) determine whether B - A is a single closed shape (as
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // notice that the main() throws an Exception -- necessary to \gamma/ avoid wrapping the Scanner object for file reading in a \gamma/ try ( . . . ) catch block. public static void main(String angs[]) throws Exception (
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Scanner scanner = new Scanner(new File("input.txt"));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   double[] pointsA = readPoints(scanner.nextLine());
double.] pointsB = readPoints(scanner.nextLine());
Area areaA = makeArea(pointsA);
Area areaB = makeArea(pointsB);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           // also,
// Scanner scanner = new Scanner (System.in);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   totArea += computePolygonArea(points);
points.clear();
break;
                                                                                                                                                                                                                                                                                                                                                                                                                                                     case PathIterator.SEG_CLOSE:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           areaB.exclusiveOr (areaA);
areaB.add (areaA);
areaB.intersect (areaA);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 areaB.subtract(areaA);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            iter.next();
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           return totArea;
```

int main()

```
boolsam isSingle = areaB.isSingular();

// also,
// also,
// also
// also
// also
// system.out.println("The area is singular.");

else
// system.out.println("The area is not singular.");

// also system.out.println("The area is " + computeArea(areaB) + ".");

// also determine whether each p[i] is in the interior of B - A
// system.out.println("The area is " + computeArea(areaB) + ".");

// also determine whether each p[i] is in the interior of B - A
// system.out.println("The area is " + computeArea(areaB) + ".");

// also determine whether each p[i] is in the interior of B - A
// system.out.println("Point belongs to the area.");

// system.out.println ("Point belongs to the area.");

// system.out.println ("Point belongs to the area.");

// system.out.println ("Point belongs to the area.");

// sincluy, some useful things we didn't use in this example:

// Finally, some useful things we didn't use in this example:

// sincluy, some useful things we didn't use in this example:

// finally, some useful things we didn't use in this example:

// sincluy, some useful things we didn't use in this example:

// finally, some useful things we didn't use in this example:

// finally, some useful things we didn't use in this example:

// finally, some useful things we didn't use in this example:

// finally, some useful things we didn't use in this example:

// finally, some useful things we didn't use in this example:

// finally, some useful things we didn't use in this example:

// finally, some useful things we didn't use in this example:

// finally, some useful things we didn't use in this example:

// finally, some useful things we didn't belong to the area.");

// sistem.out.println("Point belong to the area.");

// finally, some useful things we didn't belong to the area.");

// sistem.out.println
```

Geom3D.java 11/35

```
public class Geom3D {
     // distance from point (x, y, z) to plane ax + by + cz + d = 0
     public static double prblaneDist(double x, double y, double z,
     double a, double b, double c, double d) {
        return Math.abs(a*x + b*y + c*z + d) / Math.sqrt(a*a + b*b + c*c);
    }
} // distance between porollel planes ax + b*y + cz + d1 = 0 and
    // ax + b*y + cz + d2 = 0
        public static double planePlaneDist(double a, double b, double c,
        double d1, double d2) {
        return Math.abs(d1 - d2) / Math.sqrt(a*a + b*b + c*c);
    }
} // distance from point (px, py, pz) to line (x1, y1, z1)-(x2, y2, z2)
        // (or roy, or sament; in the case of the roy, the endpoint is the
        public static final int LNE = 0;
        public static final int LNE = 0;
        public static final int SEGMENT = 1;
        public static final int SEGMENT = 1;
        public static foll line px, double x1, double x2, double x2, double x3, double x4, double px, int type) {
        double x4, double x5, double x6, double x7, and x7 = x1;
        y = x2;
    }
}
```

Delaunay.cc 12/35

```
// Slow but simple Delaunay triangulation. Does not handle
// degenerate cases (from O'Rounke, Computational Geometry in C)
// Running time: O(n^4)
// Running time: O(n^4)
// InPUT: xi] = x-coordinates
// OUTPUT: triples = a vector containing m triples of indices
// OUTPUT: triples = a vector containing m triples of indices
##Includecvector
using namespace std;
// OUTPUT: triple {
    inf i, j, k;
    triple(inf i, inf j, inf k) : i(i), j(j), k(k) {}
}

struct triple {
    inf i, j, k;
    triple(inf i, inf j, inf k) : i(i), j(j), k(k) {}
}

vector(riple > delaunayTriangulation(vector(T>R x, vector(T>R)) {
        triple(inf i, inf j, inf k) : i(i), j(j), k(k) {}
}

vector(riple > delaunayTriangulation(vector(T>R x, vector(T>R)) {
        triple(inf i, inf j, inf k) : i(i), j(j), k(k) {}
}

vector(riple > delaunayTriangulation(vector(T>R x, vector(T>R)) {
        triple(inf i, inf j, inf k) : i(i), j(j), k(k) {}
}

vector(riple > delaunayTriangulation(vector(T>R x, vector(T>R)) {
        triple(inf i, inf j, inf k) : i(i), i(i),
```

```
T xs[]=(0, 0, 1, 0.9);
vs[]=(0, 1, 0, 0.9);
vetcor(x) x(&xs[d], &xs[d]), y(&ys[0], &ys[d]);
vetcor(xiple) tri = delauma)Triamgulation(x, y);

//expected: 0 1 3
//expecte
```

Euclid.cc 13/35

```
// This is a collection of useful code for activing problems that
// intolue mandian (isear equations. Note that of the
// algorithms described here work an namegative integers.
##include calgorithm>
##include calgorithm>
##include calgorithm>
##include calgorithm>
##include calgorithm by it
typedef paircint, into PII;
// return of & (osositive value)
int mod(int a, int b) {
   int mod(int a, int b) {
        int pod(int a, int b) {
        int tip (adb)+bb;
        }

   int tip (adb)+bb;
// computes (adb)+bb;
// computes (ada b) {
   int tim (adb)+bb;
// returns d = gcd(a,b); finds x,y such that d = ax + by
int (adb)+bb;
// returns d = gcd(a,b); finds x,y such that d = ax + by
int (ad b)
int (a b); b = adb; a = t;
// returns d = gcd(a,b)-b;
// mutla (b) x = 1;
// mutla (a b); b = adb; a = t;
// mutla (a b); b = adb; a = t;
// mutla (a b); b = adb; a = t;
// mutla (a b); b = adb; a = t;
// mutla (a b); b = adb; a = t;
// mutla (a c); b = adb; a = add;
// mutla (a c); c = add;
// computes b such that ab = 1 (mad n), returns -1 on failure
int x, y;
int d = extended_euclid(a, n, x, y);
// computes b such that ab = 1 (mad n), returns -1 on failure
int x, y;
int d = extended_euclid(a, n, x, y);
if (d x) int b) int d = extended_euclid(a, n, x, y);
if (d x) int d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_euclid(a, n, x, y);
if (d x) into d = extended_eucli
```

```
// Chinese remainder theorem: find z such that
// Z % x[i] = g[i] for all i. Note that the solution is
// unique modulo M = Lcm_i (x[i]). Return (z,M). On
// foilure, M = -1. Note that we do not require the a[i]'s
// to be relatively prime.
// to be relatively prime.
PII chinese_remainder_theorem(const VI &x, const VI &a) {
    PII ret = make_pair(a[0], x[0]);
    for (int i = 1, i < x.size(); i++) {
        ret = chinese_remainder_theorem(ret.second, ret.first, x[i], a[i]);
    if (ret.second == -1) break;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // expected: 95 45
VI sols = modular_linear_equation_solver(14, 30, 100);
for (int i = 0; i < (int) sols.size(); i++) cout << sols[i] << " ";
cout << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              int xs[] = {3, 5, 7, 4, 6};
int as[] = {2, 3, 2, 3, 5};
int as[] = {1, 2, 3, 3, 5};
int test = chinese_remainder_theorem(VI (xs, xs+3), VI(as, as+3));
cout << ret.first << " " < ret.second << rend;
ret = chinese_remainder_theorem (VI(xs+3, xs+5), VI(as+3, as+5));
cout << ret.first << " " << ret.second << end1;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    // computes x and y such that ax + by = c; on failure, x = y = -1 void linear diophantine(int a, int b, int c, int &x, int &y) { int d = gcd(a,b); if (cxb) { if (cxb) {
                                                                                                // Chinese remainder theorem (special case): find z such that
// z x = a, z y = b. Here, z is unique modulo H = Lcm(x,y).
// Return (z,M). On Jellune,
PII Chinese_remainder_theorem(int x, int a, int y, int b) {
    int s, t;
    int d = extended_euclid(x, y, s, t);
    if d = bxd) return make_pair(0, -1);
    if that le bxd) return make_pair(0, -1);
    return make_pair(mod(s*b*x*t**a*y**y)/d, x*y/d);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              int x, y;
int d = extended_euclid(14, 30, x, y);
cout << d << " " << x << " " << y << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          x = c/d * mod_inverse(a/d, b/d);
y = (c-a*x)/b;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // expected: 8
cout << mod_inverse(8, 9) << end1;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    // expected: 5 -15
linear_diophantine(7, 2, 5, x, y);
cout << x << " " << y << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // expected: 2
cout << gcd(14, 30) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       // expected: 2 -2 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            // expected: 23 56
// 11 12
return mod(x,n);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     x = y = -1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        return ret;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                int main() {
```

GaussJordan.cc 14/35

```
// Gauss-Jordan elimination with full pivoting.
// Uses:
// (1) solving systems of Linear equations (AX=B)
// (2) inverting matrices (AX=I)
```

// 0.233339 0.833333 -0.133333 -0.0666667 // 0.06 -0.75 0.1 0.05 -0.1 cout << "Inverse: " << end]; for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) { cout << end]; }

// expected: 1.63333 1.3 // -0.166667 0.5 // 2.36667 1.7

int rank = rref (a);

```
(3) computing determinants of square matrices
```

cout << "solution: " < end; for (int i = 0; i < n; i+) { for (int i = 0; i < n; i+) { cout << b[i][i]] << '; cout << end; cout << end; }

ReducedRowEchelonForm.cc 15/35

```
int main(){
    const int m = 5;
    const int m = 4;
    const int m = 4;
    wur a(n)[m] = { (16,2,3,13), (5,11,10,8), (9,7,6,12), (4,14,15,1), (13,21,21,13) };
    Wur a(n) i = 0; i < n; i++)
    **i = 0; i < n; i++)</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               T s = 1.0 / a[r][c];

for (int j = 0; j < m; j++) a[r][j] *= s;

for (int j = 0; j < n; i++) if (i != r) {

T t = a[i][c];

for (int j = 0; j < m; j++) a[i][j] = t * a[r][j];
// Reduced row echelon form via Gauss-Jordan elimination
// with partial pivoting. This can be used for computing
// the rank of a matrix.
                                                                                                                                                                              /// INPUT: a[][] = an nxm matrix
// OUTPUT: rref[][] = an nxm matrix (stored in a[][])
// returns rank of a[][]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          int rref(WT &a) {
   int n = a.size();
   int n = a | 0|.size();
   int r = 0;
   ior (int c = 0; c < m && r < n; c++) {
      int j = r;
      for (int i = r+1; i < n; i++)
      if (fabs(a[i][c]) > fabs(a[i][c])) j = i;
   if (fabs(a[i][c]) > fabs(a[i][c])) j = i;
   swap(a[j], a[r]);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           const double EPSILON = 1e-10;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
                                                                                                                            // Running time: O(n^3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 using namespace std;
                                                                                                                                                                                                                                                                                                                                                     #include <iostream>
#include <vector>
#include <cmath>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               return r;
```

```
for (int i = 0; i < n; i++) {
   int pi = -1, pk = -1;
   for (int i = 0; i < n; i++) if (!ipiv(j])
   for (int k = 0; k < n; k++) if (!ipiv(k])
   if (pj = -1 | | fabs(a[j][k]) > fabs(a[j][pk])) { pj = j; pk = k; }
   if (pj = -1 | | fabs(a[j][k]) > fabs(a[j][pk]));
   if (pj = -1 | | fabs(a[j][k]) > fabs(a[j][pk]);
   swp(a[j][ a pk]);
   swp(b[j]], a pk);
   if (pj = pk) det *= -1;
   if (pj = pk) det *= -1;
   icol[i] = pk;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) { for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      T c = 1.0 / a[pk][pk];

a[pk][pk];

a[pk][pk] = 1.9;

for (int p = 0; p < n; p++) a[pk][p] *= c;

for (int p = 0; p < n; p++) b[pk][p] *= c;

for (int p = 0; p < n; p++) b[pk][p] *= c;

c = a[p][pk];

a[p][pk] = 0;

for (int q = 0; q < n; q++) a[p][q] = a[pk][q] * c;

for (int q = 0; q < m; q++) b[p][q] = a[pk][q] * c;
                                                                                                             X = an nxm matrix (stored in b[][])

A^{-}\{-1\} = an nxn matrix (stored in a[][])

returns determinant of a[][]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       // expected: -0.233333 0.166667 0.133333 0.0666667 // 0.166667 0.166667 0.333333 -0.333333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        // expected: 60
cout << "Determinant: " << det << endl;</pre>
                                           a[][] = an nxn matrix
b[][] = an nxm matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            T GaussJordan(VVT &a, VVT &b) {
  const int n = a.size();
  const int m = b[0].size();
  VI inow(n), icol(n), ipiv(n);
  T det = 1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             double det = GaussJordan(a, b);
                                                                                                                                                                                                                                                                                                                                                                              typedef vector<int> VI;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
                                                                                                                                                                                                                                                                                                                                        const double EPS = 1e-10;
// Running time: O(n^3)
                                                                                                                                                                                                     #include <iostream>
#include <vector>
#include <cmath>
                                                                                                                                                                                                                                                                                            using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                return det;
                        // INPUT:
// OUTPUT:
//
```

```
// expected: 4

cout << "Rank: " << rank << end];

// expected: 1 0 0 1

// expected: 1 0 0 1

// 0 1 0 3

// 0 0 1.78206e-15

// 0 0 3.22396-15

cout << "rent" " <= (all);

cout << end];

cout << end];
```

FFT_new.cpp 16/35

```
// out: output array
// stei: (SET TO 1) (used internally)
// stei: length of the input/output (MUST BE A POWER OF 2)
// dir: either plus or minus one (direction of the FFT)
// Aftr: either plus or minus one (direction of the FFT)
// RESULT: out[k] = \lsum_{ij} = \lsum_{ij
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           cpx r = a * b.bar();
return cpx(r.a / b.modsq(), r.b / b.modsq());
                                                                                                                                                                                                                                                                                                                                                                     cpx(){}
cpx(double aa):a(aa){}
cpx(double aa, double bb):a(aa),b(bb){}
double a;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              }
FFT(in, out, step * 2, size / 2, dir);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        return cpx(cos(theta),sin(theta));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     return cpx(a.a + b.a, a.b + b.b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  const double two_pi = 4 * acos(0);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  cpx operator +(cpx a, cpx b) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       cpx operator /(cpx a, cpx b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        cpx operator *(cpx a, cpx b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   double modsq(void) const
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        return a * a + b * b;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                return cpx(a, -b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      input array
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                if(size < 1) return;
if(size == 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    cpx bar(void) const
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   cpx EXP(double theta)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  out[0] = in[0];
return;
#include <cassert>
#include <cstdio>
#include <cmath>
                                                                                                                                                                                                                                                        struct cpx
```

```
cpx even = out[i];
cpx od = out[i] + size / 2];
out[i] = even + EPV[dir* two_pi * i / size) * odd;
out[i] = size / 2] = even + EPV[dir* two_pi * (i + size / 2) / size) * odd;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // Usage: 
// If \theta....-1 and g(\theta..N-1] are numbers fried by want to compute the convolution h, defined by // Mont to compute the convolution h, defined by // h[n] = sum of f[k]g[n-k] (k = \theta, \dots, M-1). 
// Here, the tudex is cyclic, f[-1] = f[N-1], f[-2] = f[N-2], etc. 
// Let f[\theta, \dots, M-1] be f[T(\beta), and similarly, define G and H. 
// The convolution theorem soys H[n] = f[n]g[n] (Leement-wise product). 
// To compute h[1] in O(N \log M) time, do the divining the organism h[N]. 
2. Get H by taking the inverse F[T] (use d[n] = -1 as the argument) and "dividing by N^*. DO NOT FORGET THIS SCALING FACTOR.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   printf("If rows come in identical pairs, then everything works.\n");
FFT(in + step, out + size / 2, step * 2, size / 2, dir); for(int i = 0 ; i < size / 2 ; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 cpx a[8] = {0, 1, cpx(1,3), cpx(0,5), 1, 0, 2, 0};
cpx b[8] = {1, cpx(0,-2), cpx(0,1), 3, -1, -3, 1, -2};
cpx A[8];
cpx A[8];
cpx B[8];
fpx B[8];

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  printf("%7.21f%7.21f", aconvb[i].a, aconvb[i].b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      aconvbi = aconvbi + a[j] * b[(8 + i - j) % 8];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   printf("%7.21f%7.21f", aconvbi.a, aconvbi.b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Ai = Ai + a[j] * EXP(j * i * two_pi / 8);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           printf("%7.21f%7.21f", A[i].a, A[i].b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             printf("%7.21f%7.21f", Ai.a, Ai.b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    cpx Ai(0,0);
for(int j = 0 ; j < 8 ; j++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       cpx AB[8];
for(int i = 0; i < 8; i++)
AB[1] = A[11] * B[1];
cpx aconvb[8];
for(int i = 0; i < 8; i++)
aconvb[i] = aconvb[i] / 8;
for(int i = 0; i < 8; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   cpx aconvbi(0,0);
for(int j = 0 ; j < 8 ; j++)</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for(int i = 0; i < 8; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        printf("\n");
for(int i = 0 ; i < 8 ; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       printf("\n");
for(int i = 0 ; i < 8 ; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          printf("\n");
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         printf("\n");
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      int main(void)
```

Simplex.cc 17/35

```
for (int i = 0; i < m; i++) if (B[i] == -1) {
    int s == 1;
    int s == 1;
    for (int i = 0; i <= n; j++)
        Prior(i, s);
    }
} for (int i = 0; j <= n; j++)
    prior(i, s);

if ((size == 1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[j] < N[s]) s = j;

if ((size == 1 || D[i][j] < D[i][s] || D[i][i] == D[i][i]    )

if ((size == 1 || D[i][s] < D[i][s]    )

if ((size == 1 || D[i][s] < D[i][s]    )

if ((size == 1 || D[i][s] < D[i][s]    )

if ((size == 1 || D[i][s] < D[i][s]    )

int main() {
    const int m = 4;
    const int m = 4;
    const int m = 3;
    const int m = 4;
    const int m = 4;
    const int m = 4;
    const int m = 5;
    const int m = 5;
    const int m = 4;
    const int m = 5;
    const int m = 4;
    const int m = 6;
    const int m
```

FastDijkstra.cc 18/35

```
// Implementation of Dijkstra's algorithm using adjacency Lists
// and priority queue for efficiency.
// Running time: O(|E| Log |V|)
#include statio.h>
using masspace std;
const int ine = 200000000;
typedef paintint,int> PII;
int main(){
int N;
scaff ("%d&d", &N, i++){
for (int i = 0; i < N; i++){
   int N;
   scaff ("%d&d", &N i++){
   int vertex, dist;
   int vertex, &N i++){
   int vertex, dist;
   int vertex, &N i++){
   int vert
```

SCC.cc 19/35

```
#includecamenory.h>
struct adge(ant e, nxt);
int V, E;
edge [MAXE].
int sp[MAXV]. spr[MAXV];
int sp[MAXV]. spr[MAXV];
bool group_cnt, group_num[MAXV];
int st[MAXV].
void fill_forward(int x)
int st[MAXV];
void fill_forward(int x)
int i,
v[x]=fap[x];i;ae[i].nxt) if(lv[e[i].e]) fill_forward(e[i].e);
st[fi+stk[0]]=x;
for(i=sp[x];i;ae[i].nxt) if(v[e[i].e]) fill_backward(er[i].e);
st[fi+stk[0]]=x;
void fill_backward(int x)
int i,
v[x]=false;
group_num[x]=group_cnt;
for(i=sp[x];i;ae[i].nxt=sp[v2]; sp[v2]=E;
void add_edge(int v1, int v2) //add edge v1-v2
e [E]-e=v2; er[E].nxt=spr[v2]; spr[v2]=E;
void SCC()
int i;
stk[0]=0;
munsc(v, false, sizeof(v));
for(i=sizeof(v));
for(i=sizeof(v));
for(i=sizeof(v));
for(i=sizeof(v));
for(i=sizeof(v));
for(i=sizeof(v));
for(i=six[0]);
for(i=six[0]
```

EulerianPath.cc 20/35

```
struct Edge;
typedef list<Edge>::iterator iter;
struct Edge
{
   int next_vertex;
   iter reverse_edge;
   Edge(int next_vertex)
```

SuffixArray.cc 21/35

```
// Suffixer vory construction in O(1 Lag'2 l) time. Routine for // Suffixers in O(Lag l) time.
// Suffixes in O(Lag l) time.
// Suffixes in O(Lag l) time.
// INPUT: string s
// OUTPUT: array suffix[] such that suffix[i] = index (from 0 to L-1)
// OUTPUT: array suffix[] such that suffix of sorred suffixes.
// That is, if we take interes of the permutation suffixe],
// We get the actual suffix array.
##Include vectors
##Include clostnean
##Include ciostnean
##Incl
```

```
KDTree.cc 24/35
                                                                                                                                                                                                                                                                                                             #include <iostream>
#include <vector>
#include <limits>
#include <cstdlib>
                                                                                                                                                                                                                                                                                                                                                                                                              using namespace std;
                                                                                                                                                                                                                                                                                                                                                                             // Expected output: 0 5 1 6 2 3 4
// (oint i = 0; i < v.size(); i++) cout << v[i] << " "; cout << end]; cout << end];
                                                                                                                                                                                    // bobocel is the 0'th suffix
// obocel is the 1'st suffix
// occl is the 1'st suffix
// occl is the 1'st suffix
// cel is the 2'nd suffix
// el is the 3'nd suffix
// list he 4'th suffix
// suffix("bobocel");
vector(int) v = suffix.GetSuffixdrray();
j += 1 << k;
len += 1 << k;
                                                       }
return len;
                                                                                                                                                    int main() {
```

BIT.cc 22/35

UnionFind.cc 23/35

```
//union-find set: the vector/array contains the parent of each node in the find(vector citics G, into X); X) X: X) in the find(air X) (return (X|X|x)); X) X: X) in the find(air X) (return (X|X|x)).
```

```
    constructs from n points in Q(n Lg/2 n) time
handles nearest-neighbor query in O(Lg n) if points are well distributed
- worst case from nearest-neighbor may be linear in pathological case

//
// A straightforward, but probably sub-optimal KD-tree implmentation that's
// probably good enough for most things (current it's a 2D-tree)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             // squared distance between a point and this bbox, 0 if inside ntype distance(cont point &p) {
    if (p. x < x0) {
        if (p. x < x0) {
            if (p. y > y1) return pdist2(point(x0, y0), p); else return pdist2(point(x0, y1), p); else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               return pdist2(point(x0, y0), p);
return pdist2(point(x0, y1), p);
return pdist2(point(x0, p.y), p);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               bbox() : x0(sentry), x1(-sentry), y0(sentry), y1(-sentry) {}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           return pdist2(point(x1, y0), p);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            // computes bounding box from a bunch of points void compute(const vector-points &v) {
  for (int i = 0; i < v. size(); ++i) }
  x0 = min(x0, v[i].x); x1 = max(x1, v[i].x); y0 = min(y0, v[i].y); y1 = max(y1, v[i].y);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ntype x, y; point(ntype xx = 0, ntype yy = 0) : x(xx), y(yy) {}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // number type for coordinates, and its maximum value
typedef long long ntype;
const ntype sentry = numeric_limits<ntype>::max();
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             // point structure for 2D-tree, can be extended to 3D
                                                                                                                                                           // - handles nearest-neighbor query in O(lg n)
// - worst case for nearest-neighbor may be li
// Somy Chan, Stanford University, April 2009
//
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 bool operator==(const point &a, const point &b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            // squared distance between points
ntype pdist2(const point &a, const point &b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        // sorts points on x-coordinate
bool on_x(const point &a, const point &b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        // sorts points on y-coordinate
bool on_y(const point &a, const point &b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ntype dx = a.x-b.x, dy = a.y-b.y;
return dx*dx + dy*dy;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      return a.x == b.x && a.y == b.y;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            // bounding box for a set of points
struct bbox
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  else if (p.x > x1) {
if (p.y < y0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ntype x0, x1, y0, y1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          return a.x < b.x;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              return a.y < b.y;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          struct point {
```

```
// query some points
for (int i = 0; i < 10; ++1) {
    point q(rand()%100000), rand()%100000);
    cout << "Closest squared distance to (" << q.x << ", " << q.y << ")"
    < " is " << tree.nearest(q) << endl;
                                                                         vector<point> vp;
for (int i = 0; i < 100000; ++i) {
    vp.push_back(point(rand()%100000));
                                                                                                                                                                                                                                                                                                                            ntype best = search(node->second, p);
if (bfirst < best)
best = min(best, search(node->first, p));
return best;
ntype bfirst = node->first->intersect(p);
ntype bsecond = node->second->intersect(p);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           // generate some random points for a kd-tree
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // squared distance to the nearest
ntype nearest(const point &p) {
    return search(root, p);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 splay.cpp 25/35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         // some basic test code here
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                kdtree tree(vp);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              #include <cstdio>
#include <algorithm>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                using namespace std;
                                                                                                                                                                                                                                                                                                     else {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                return 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      int main()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // split on x if the bbox is wider than high (not best heuristic...) if (bound.XI-bound.XN >= bound.XI-bound.XN) sort(vy.begin(), vp.end(), on_X); // orherwise split on y-coordinate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // divide by taking half the array for each child // (not best performance if many duplicates in the middle) int half = up.size()/2; vector/copint vi(yp.begin(), vp.begin()+half); vector/copint vi(yp.begin(), vp.begin()); first = new Knhode(); first.construct(vl); second = new Knhode(); second->construct(vl);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 kdnode() : leaf(false), first(0), second(0) {}
~kdnode() { if (first) delete first; if (second) delete second; }
                                                                                                                                                                                                                                                                                                                                                                              // true if this is a leaf node (has one point)
// the single point of this is a leaf
// bounding box for set of points in children
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 /// intersect a point with this node (returns squared distance)
mtype intersect(const point &p) {
return bound.distance(p);
else if (p.y > y1) return pdist2(point(x1, y1), p);
else
                                                                                                          return pdist2(point(p.x, y0), p);
return pdist2(point(p.x, y1), p);
return 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // recursively builds a kd-tree from a given cloud of points
void construct(vectorcpoint> &vp)
                                                                                                                                                                                                                                                                                              // stores a single node of the kd-tree, either internal or leaf struct kdnode
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // if we're down to one point, then we're a leaf node
if (wp.size() ==1) {
    leaf = true;
    pt = vp[0];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \ensuremath{//} simple kd-tree class to hold the tree and handle queries struct kdtree
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               kdnode *first, *second; // two children of this kd-node
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // compute bounding box for points at this
bound.compute(vp);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           sort(vp.begin(), vp.end(), on_y);
                                              } else {
    if (p.y < y0)
        else if (p.y > y1) r'
        else if (p.y > y1) r'
```

} else {

bool leaf;
point pt;
bbox bound;

```
x->size = x->ch[0]->size + x->ch[1]->size + 1;
                                                                                                                                                                                                                                          static int freePos = 0;
Node ** a *nodePool[freePos ++];
**val = val, x-isTurned = false;
**vch[0] = x-vch[1] = x-yre = null;
**vsize = 1;
**return x;
                                                                                                       int val, size;
bool isTurned;
} nodePool[N_MAX], *null, *root;
                                                                                                                                                                                                                                                                                                                                                                                                                           inline void update(Node *x)
const int N_MAX = 130010;
const int oo = 0x3f3f3f3f;
                                                                                                                                                                                                 Vode *allocNode(int val)
                                                                                       Node *ch[2], *pre;
                                                 struct Node
```

// constructs a kd-tree from a points (copied here, as it sorts them)
kdtree(const vectoropaint> &vp) {
 vectoropaint> v(vb.begin(), vp.end());
 voot = new kdnode();

kdnode *root;

// recursive search method returns squared distance to nearest point type search(Kanode †node, const point &p) {

~kdtree() { delete root; } root->construct(v);

if (node->leaf) {
 // commented special case tells a point not to find itself
 if (p == node->pt) return sentry;
 else
 else

return pdist2(p, node->pt);

::

Node *makeTree(Node *p, int 1, int r) {

} splay(now, fa);

pushDown(now);
int tmp = now->ch[0]->size + 1;
if(tmp == k)

void select(int k, Node *fa)

update(x);

Node *now = root; while(1) break; else if(tmp < k) now = now->ch[1], k -= tmp; else now = now->ch[0];

x-pre = y-pre; if(y-pre != ml) y-pre-xcl(y == y-pre-xcl(1)] = x; y-xcl(|c| = x-ycl(c); if(x-xcl(c| = ml)) x-xcl(c| >pre = y; x-xcl(c| >pre = y; update(y); if(y == roct) roct = x;

inline void rotate(Node *x, int c)

Node *y = x -> pre;

inline void makeTurned(Node *x)

if(x == null)

inline void pushDown(Node *x)

if(x->isTurned)

makeTurned(x->ch[0]);
makeTurned(x->ch[1]);
x->isTurned ^= 1;

return; swap(x->ch[0], x->ch[1]); x->isTurned ^= 1;

SegmentTreeLazy.java 26/35

if(x == y->ch[0])
 rotate(y, 1), rotate(x, 1);

Node *y = x->pre, *z = y->pre; if(y == z->ch[0])

if(x->pre->pre == p)
rotate(x, x == x->pre->ch[0]);
else

void splay(Node *x, Node *p)

while(x->pre != p)

else rotate(x, 0), rotate(x, 1);

if(x == y->ch[1])
 rotate(y, 0), rotate(x, 0);
else
 rotate(x, 1), rotate(x, 0);

```
public class SegmentTreeRangeUpdate {
    public long[] leaf;
    public long[] leaf;
    public long[] leaf;
    public long[] leaf;
    public int origize;
    public segmentTreeRangeUpdate(int[] list) {
        cong[] leaf[] list.length];
        leaf = new long[] list.length];
        leaf[] list
```

```
int p; // read p, the parent of node i or -1 if node i is the root
                                                                                                                                                                                                                                          // read num_nodes, the total number of nodes
log_num_nodes=lb(num_nodes);
// "binary search" for the LCA for int i = log_num_nodes; i >= 0; i--) if(A[p][i] != -1 && A[p][i] != A[q][i])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // precompute A using dynamic programming for(int j = 1; j <= log_num_nodes; j++) for(int i = 9; i < num_nodes; j++) if((ili = 9; i < num_nodes; j++) if((ili = 1) = 1) A[il[j] = A[il[j] = A[il[j] = 1];
                                                                                                                                                                                                                                                                                                for(int i = 0; i < num_nodes; i++)
                                                                                                                                                                                                                                                                                                                                                                                      A[i][0] = p;
if(p != -1)
children[p].push_back(i);
                                                                                                                                                                                           int main(int argc, char* argv[])
{
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          else
A[i][j] = -1;
                                                                          p = A[p][i];
q = A[q][i];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                root = i;
                                                                                                                                                  return A[p][0];
                                                                                                                                                                                                                                                                                                                                                                                                                                                else
                                                                                                                                                                                                                                                                                                                                                                                                          update[curr] = 0;
infr mid = detBein+tEnd)/2;
infr mid = beigin && tBeign <= end)
if(mid >= beigin && tBeign <= end)
if(tEnd >= beigin && mid+l <= end);
if(tEnd >= beigin && mid+l <= end);
return ret;
                                                      leaf[curr] += (tEnd-tBegin+1) * update[curr];
if(2*curr < update.length){</pre>
                                                                                                                                                                                                                                                                                                                                                      update[2*curr] += update[curr];
update[2*curr+1] += update[curr];
    }
public long query(int begin, int end) {
    return query(1,0,orig5ize-1,begin,end);
                                                                                                                                                                                                                          update[curr] = 0;
                                                                                                                                                                                                                                            }
return leaf[curr];
```

LCA.cc 27/35

LongestIncreasingSubsequence.cc 28/35

// precompute
DFS(root, 0);

return 0;

```
// Given a list of numbers of length n, this routine extracts a
// Longest increasing subsequence.
// Running time: O(n log n)
// Running time: O(n log n)
// Bircule containing the Longest increasing subsequence
#include ciostream>
#include ciost
```

```
if (it == best.end()) {
    dad[i] = (best.ize() == 0 ? -1 : best.back().second);
    best.push_back(item);
    best.push_back(item);
    *it = item;
    *it = item;
}

vI ret;
for (int i = best.back().second; i >= 0; i = dad[i])
ret.push_back(v(i));
ret.second; i >= 0; i = dad[i])
ret.push_back(v(i));
ret.push_back(v(i));
ret.push_back(v(i));
ret.push_back(v(i));
}
```

Dates.cc 29/35

```
// Routines for performing computations on dates. In these routines, manchs are expressed as integers. from 1 to 12, days one expressed of integers from 1 to 12, days one expressed of integers. From 1 to 13, and years are expressed as 4-digit mantalue ciatring.

**Intalue ciatring**

using namespace std;

string dayOfleek[] = ("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun");

// converts Gregorian date to integer (Julian day number)

return the form of the mode of the mode of the month/day/year and the form of the mode of the m
```

LogLan.java 30/35

```
String predstring = "(" + PREDA + "(" + space + PREDA + ")*)";
String predename = "(" + A. space + predstring + "" | * MAH + ")";
String preds = "(" + predstring + "(" + space + A + * space + A + " + space + predstring + ")*)";
String predclaim = "(" + predmame + space + BA + space + preds + "|" + DA + space +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         s.compareTo(t) < 0 if s < t, lexicographically s.indexOf("apple" in s s.indexOf("apple") returns index of first occurrence of "apple" in s s.lostIndexOf("apple") returns index of lost occurrence of "apple" in s s.replace(c, d) replaces occurrences of character c with d s.standswith("apple") returns (s.indexOf("apple") = 0) s.toloperCase() returns (s.indexOf("apple") = 0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // In this problem, each sentence consists of multiple lines, where the last // line is terminated by a period. The code below reads lines until // encountering a line whose final character is a ''. Note the use of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    end of Java string
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                preds + "";

String verbpred = "(" + MOD + space + predstring + ")";

String statement = "(" + predname + space + verbpred + space + predname + "|" + predname + space + verbpred + ")";

String sentence = "(" + statement + "|" + predclaim + ")";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   String A = "([aeiou])";
String C = "([a-288/aeiou])";
String BA = "(b" + A + ")";
String BA = "(d" + A + ")";
String LA = "(d" + A + ")";
String LA = "(1" + A + ")";
String PREDA = "(1" + C + A + ")";
String PREDA = "(1" + C + C + A + C + C + A + C + C + A + ")";
                                                                                                                                                          // http://acm.voo.es/p/vi/134.html
// In this problem, we are given a regular language, whose rules can be
// inferred directly from the code. For each sentence in the input, we must
// determine whether the sentence matches the regular expression or not. The
// code consists of (1) building the regular expression (which is fairly
// complex) and (2) using the regex to match sentences.
// Code which demonstrates the use of Java's regular expression libraries. 
 // This is a solution for
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Integer.parseInt(s) converts s to an integer (32-bit)
Long.parseLong(s) converts s to a long (64-bit)
Double.parseDouble(s) converts s to a double
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            content ();
sentence = (sentence + " " + s.nextLine()).trim();
if (sentence.equals("#")) return;
if (sentence.charAt(sentence.length()-1) == '.') break;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  s.Length() to get Length of string
s.charAt() to extract characters from a Java string
s.trim() to remove whitespace from the beginning and
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  s.length() to get length of string
s.charAl() to extract characters from a Java strin
s.charAl() to remove whitespace from the beginning of
// other useful String manipulation methods include
// s.compareTo() < 0 if s < t, Lexicographically
s.tacThdexOf("apple") returns index of first occurrent
s.tacThdexOf("apple") returns index of first occurrent
s.replace(c, d) replaces occurrences of character (
// s.replace(c, d) replaces occurrences of character (
// s.tolowerCase() / s.toloperCase() returns a new L
// Integer.parseInt(s) converts s to an integer (32-4
// Long.parseLong(s) converts s to a long (64-bit)
// Double.parseDouble(s) converts s to a double
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     String regex = BuildRegex();
Pattern pattern = Pattern.compile (regex);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   public static void main (String args[]){
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Scanner s = new Scanner(System.in);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  public static String BuildRegex (){
   String space = " +";
                                                                                                                           Loglan: a logical language
http://acm.uva.es/p/v1/134.html
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       return "^" + sentence + "$";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         import java.util.*;
import java.util.regex.*;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               while (true) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     public class LogLan {
```

string a = (string) "The example above illustrates the general technique for assembling "+
"the table with a minimum of fass. The principle is that of the overall search: "
"most of the work was allready done in getting to the current position, so very "+

int main()

```
// now, we remove the period, and match the regular expression
String removed_period = sentence.substring(0, sentence.length()-1).trin();
if (pattern.matcher (removed_period).find()){
    System.out.println ("Good");
} else {
    System.out.println ("Bad!");
}
}
}
```

Primes.cc 31/35

```
#include canath
##include canath
##inclu
```

IO.cpp 32/35

```
#include <iostream>
#include <iostream>
#include <iomanip>
using namespace std;
int main()
```

```
// Output a specific number of digits past the decimal point,
in this case S
cour.setficas: His day, cout << setprecision(5);
cout. < +100.07/ a << end);
cout. unsetficias: His day)
// Output a + ' before positive values
cout. setficias: showpoint);
// Output a + ' before positive values
cout. setficias: showpoint);
// Output a + ' before positive values
cout. setficias: showpoint);
// Output a + ' before positive values
cout. setficias: showpos);
// Output numerical values in hexadecimal
```

KMP.cpp 33/35

```
"little needs to be done in leaving it. The only minor complication is that the "-
"logic which is correct late in the string erroneously gives non-proper "+
"substrings at the beginning. This necessitates some initialization code.";

string b = "table";

int p = KRP(a, b);

cout << p << ": " << b << endl;
}
```

LatLong.cpp 34/35

```
/* Converts from rectangular coordinates to latitude/longitude and vice versa. Uses degrees (not radians). */
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      B = convert(A);
cout << B.r << " " << B.lat << " " << B.lon << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          rect P;

P. x = Q.*cos(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);

P. y = Q.**sin(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);

P. z = Q.**sin(Q.lat*M_PI/180);
                                                                                                                                                                                                                                                                                                                                                                                                                                               11 Q;
Q.n = sqrt(P.x*P.x*P.y*P.y*P.y*P.z*P.z);
Q.lat = 189/M Pt*ssin(P.z*/Q.p);
Q.lon = 186/M_PI*scos(P.x/sqrt(P.x*P.x*P.y*P.y));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   A = convert(B);
cout << A.x << " " << A.y << " " << A.z << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              A.x = -1.0; A.y = 2.0; A.z = -3.0;
                                                                                                                                                                                                                                              double r, lat, lon;
                                                                                                                                                                using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     rect convert(11& Q)
                                                                                                    #include <iostream>
#include <cmath>
                                                                                                                                                                                                                                                                                                                                                                                                                 11 convert(rect& P)
                                                                                                                                                                                                                                                                                                                                                  double x, y, z;
                                                                                                                                                                                                                                                                                                          struct rect
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   return P;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          int main()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  rect A;
11 B;
                                                                                                                                                                                                        struct 11
```

```
(global-set-key "Ww." 'Deginning-or-butter)
(global-set-key "Ww." 'goto-line)
(global-set-key "We" 'Conforter)
(global-bar-mode 0)
(scroll-bar-mode 1)
(global-font-lock-mode 1)
(show-paren-mode 1)
(sto-paren-mode 1)
```

Generated by GNU Enscript 1.6.5.90.

```
EmacsSettings.txt 35/35
```

Stanford University

Every tree with n vertices has n-1

Kraft inequality: If the depths of the leaves of a binary tree are d_1, \dots, d_n : $\sum_{i=1}^n 2^{-d_i} \le 1,$

and equality holds only if every in-ternal node has 2

1	
	/

So $g_i = 2^i - 1$.

And so $T_{i+1} = 2T_i = 2^{i+1}$.

 $=T_i$.

Now expand the recurrence, and choose a factor which makes the left side "tele-

 $= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$

 $T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$

Subtracting we find

Rewrite so that all terms involving T are on the left side

T(n) - 3T(n/2) = n.

 $= \sum_{i \ge 0} (2^{i+1} - 1)x^{i+1}.$

cience Cheat Sheet Theoretical Computer Science Cheat Sheet	Series Identities Cont.	$\sum_{i} i = \frac{n(n+1)}{2}, \sum_{i} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{i} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$ $38. \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} n \\ m \end{bmatrix} n^{\frac{n-k}{k}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, 39. \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left(n \\ x \right) \left(\frac{x+k}{2n} \right), \frac{n+1}{2} = n $	40. ${n \brace m} = \sum_{k} {n \choose k} {k+1 \brack k-1}^{n-k},$	$(i+1)^{m+1} - i^{m+1} - (m+1)i^m$	$^{-k}$, 45. $(n-m)!\binom{n}{m} =$	8	$48. \begin{cases} \binom{k}{k} & \binom{k+m}{k} \\ \binom{k+m}{k} & \binom{k+m}{k} = \sum_{k} \binom{k}{k} \binom{k-k}{k} \binom{k}{k}, \end{cases}$	$\frac{(n+1)c^{n+1}+c}{(c-1)^2}, c\neq 1, \sum_{i=0}^{\infty}ic^i = \frac{c}{(1-c)^2}, c <1.$		$\sum_{i=1}^{l} u \pi_i = -\frac{1}{2} - \frac{1}{4} - 1$	$\sum_{i=1}^{n} {n \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right). $ then $T(n) = \Theta(n^{\log_5 a}).$	2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{n} = \binom{n}{n-k}$, If $f(n) = \Theta(n^{\log_6 n})$ then $T(n) = \Theta(n^{\log_6 n} \log_2 n)$. Let $m = \log_2 n$. Summing the left side 3. we get $T(n) - 3^m T(1) = T(n) - 3^m = 1$	$ (n-k), \qquad \tau \cdot \sum_{n=0}^{n} {r+k \choose k} = {r+n+1 \choose n}, \qquad (n-k), \qquad (n-k), \qquad \tau \cdot \sum_{n=0}^{n} {r+k \choose k} = {r+n+1 \choose n}, \qquad (n-k), \qquad (n-k$	9. $\sum_{k=0}^{n} {r \choose k} {n \choose n-k} = {r+s \choose n},$ Substitution (example): Consider the following recurrence $T_{t+1} = 2^{2^{n}} \cdot T_{t}^{2} \cdot T_{t} = 2^{n}$), 11. $\binom{n}{1} = \binom{n}{n} = 1$, Note that T is always a power of two.	13. ${n \choose k} = k {n-1 \choose k} + {n-1 \choose k-1},$ Let $t = \log_2 T$. Then we have $t = t - 1 = t - 1$.
Theoretical Computer Science Cheat		iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0.$	iff \exists positive c, n_0 such that In general: $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0.$	iff $f(n) = O(g(n))$ and $\sum_{i=1}^{n} i^m = \frac{1}{m+1} \left[\frac{1}{n} \right]$	iff $\lim_{n \to \infty} f(n)/g(n) = 0$. $\sum_{n=1}^{n-1} i^n = \frac{1}{m+1} \sum_{n=1}^{n-1} i^n = \frac{1}{m+1} \sum_{$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $\begin{vmatrix} i=1 & \cdots & -k \\ \text{Geometric series:} \end{vmatrix}$ $ a_n - a < \epsilon, \forall n \geq n_0.$	least $b \in \mathbb{R}$ such that $b \ge s$, $\sum_{i=0}^{c^i} c^i = \frac{1}{c-1}, c \ne 1,$ $\forall s \in S.$	greatest $b \in \mathbb{R}$ such that $b \le \sum_{i=0}^{n} i c^i = \frac{nc^{n+2}}{i}$, $\forall s \in S$.	$\lim_{i \to \infty} \inf\{a_i \mid i \ge n, i \in \mathbb{N}\}.$ Harmonic series:	$\lim_{n \to \infty} \sup \{a_i \mid i \ge n, i \in \mathbb{N}\}.$	Combinations: Size k sub- i=1 $\sum_{i=1}^{n} H_i = (n+1)H_n - n,$ sets of a size n set.	Strifting numbers (1st kind): 1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. Then set into k cycles. $\binom{n}{n} = \frac{n!}{(n-k)!k!}$.	Strifting numbers (2nd kind): 4. $\binom{n}{n} = \frac{n}{n}\binom{n}{n} + \frac{1}{n}$ Partitions of an n element set into k non-empty sets. 6. $\binom{n}{m}\binom{m}{k} = \binom{n}{n}$	1st order Eulerian numbers: 8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1}$, ${n+1 \choose k+2},\ldots,n$ with k ascents.	2nd order Eulerian numbers. 10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$	Catalan Numbers: Binary (12. $\begin{Bmatrix} n \\ n \end{Bmatrix} = 2^{n-1} - 1,$ trees with $n+1$ vertices.
	Definitions	$f(n) = O(g(n)) \qquad \text{iff } \exists \text{ po}$ $0 \le f(n)$	$f(n) = \Omega(g(n))$ iff $\exists pooletical pooletic$	$f(n) = \Theta(g(n))$ iff $f(n) = f(n) = $	$f(n) = o(g(n))$ iff \lim_{n}	$\lim_{n \to \infty} a_n = a \qquad \text{iff } \forall \epsilon > $	$\sup S \qquad \qquad \text{least } b \in A$	$\inf S \qquad \text{greatest}$ $s, \forall s \in$	$ \liminf_{n \to \infty} a_n \qquad \lim_{n \to \infty} \inf $	$\limsup_{n\to\infty} a_n \qquad \lim_{n\to\infty} \sup$	$\binom{n}{k}$ Combin sets of ϵ	$\begin{bmatrix} n \\ k \end{bmatrix}$ Stirling Arrange ment se	${n \brace k}$ Stirling Partition set into	$\binom{n}{k}$ 1st orde Permuti $\{1, 2, \dots \}$	$\binom{n}{k}$ 2nd ord	C_n Catalan trees wi

Master method: $T(n) = aT(n/b) + f(n), a \ge 1, b > 1$	1(T(n) - 3T(n/2) = n)	Generating functions: 1. Multiply both sides of the equa-
If $\exists c > 0$ and that $f(a) = O(a \log_b a - \epsilon)$	3(T(n/2) - 3T(n/4) = n/2)	tion by x^i .
If $\exists e > 0$ such that $f(u) = O(u - v^{-1})$, then		2. Sum both sides over all i for
$T(n) = \Theta(n^{\log_b a}).$		which the equation is valid.
If $f(n) = \Theta(n^{\log_b a})$ then	$3^{1052} = (T(2) - 3T(1) = 2)$	6. Choose a generating function $G(x)$. Usually $G(x) = \sum_{i=0}^{\infty} x^i q_i$.
$T(n) = \Theta(n^{\log_b a} \log_2 n).$	Let $m = \log_2 n$. Summing the left side	3. Rewrite the equation in terms of
If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$,	We get $I(n) = 3^{-1}I(1) \equiv I(n) = 3^{-1} \equiv 1$	the generating function $G(x)$.
and $\exists c < 1$ such that $af(n/b) \le cf(n)$	Summing the right side we get	4. Solve for $G(x)$. 5. The coefficient of x^i in $G(x)$ is a .
for large n , then $T(-1) = O(f(-1))$	$\sum_{i=1}^{m-1} n_{2i} = \sum_{i=1}^{m-1} (3)^{i}$	Example:
$I(n) \equiv \Theta(J(n)).$	$\sum_{i=0}^{\infty} \frac{2^i}{2^i} \mathbf{a} = n \sum_{i=0}^{\infty} \left(\frac{\overline{\mathbf{a}}}{2} \right) :$	$g_{i+1} = 2g_i + 1, g_0 = 0.$
Substitution (example): Consider the	Lot $\alpha = \frac{3}{2}$ Then we have	Multiply and sum:
following recurrence	Let $c = \frac{1}{2}$. Then we have	
$T_{i+1} = 2^{2^*} \cdot T_i^2, T_1 = 2.$	$n\sum_{i=1}^{m-1} c^i = n\left(\frac{c^m - 1}{1}\right)$	$\sum_{i>0} y_{i+1}x = \sum_{i>0} zy_ix + \sum_{i>0} x .$
Note that T_i is always a power of two.	$i=0$ $\langle c-1 \rangle$	
Let $t_i = \log_2 T_i$. Then we have	$= 2n(c^{\log_2 n} - 1)$	We choose $G(x) = \sum_{i \ge 0} x^i g_i$. Rewrite in terms of $G(x)$.
$t_{i+1} = 2^i + 2t_i, t_1 = 1.$	$=2n(c^{(k-1)\log_c n}-1)$	$G(x) - g_0$
Let $u_i = t_i/2^i$. Dividing both sides of	$\equiv 2n^k - 2n$	$x = 2G(x) + \sum_{x \ge 0} x^x$.
the previous equation by 2^{i+1} we get		O I
$\frac{t_{i+1}}{} = \frac{2^i}{} + \frac{t_i}{}.$		Simplify:
2^{i+1} 2^{i+1} 2^{i}	Imited	$\frac{G(x)}{x} = 2G(x) + \frac{1}{x}$.
	nistory ones (example): Consider	x = 1 - x
$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$	$T_i = 1 + \sum_{i=1}^{i=1} T_i, T_0 = 1.$	Solve for $G(x)$:
which is simply $u_i = i/2$. So we find	<i>j=0</i>	$G(x) = \overline{(1-x)(1-2x)}$.
that T_i has the closed form $T_i = 2^{i2^{i-1}}$.	Note that	Tomora this using moutial factions
Summing factors (example): Consider		Lapana uns using partial mactions.
the following recurrence	$I_{i+1} = 1 + \sum_{\hat{i}} I_j$.	$G(x) = x \left(\frac{1}{1 - 2x} - \frac{1}{1 - x} \right)$
T(n) = 3T(n/2) + n, $T(1) = 1$.	j=0	

	Theoretical	Theoretical Computer Science Cheat Sheet
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0.$	$\sum_{i} i = \frac{n(n+1)}{2}, \sum_{i} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{i} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0.$	
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{n=1}^{\infty} i^m = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{\infty} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{m=1}^{m-1} i^m = \frac{1}{m+1} \sum_{m=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	i=1 $i=1$
$S \mathrm{dns}$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{c} c^{i} = \frac{1}{c-1}, c \neq 1, \sum_{i=0}^{c} c^{i} = \frac{1}{1-c}, \sum_{i=1}^{c} c^{i} = \frac{1}{1-c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\frac{(n+1)c''}{(c-1)^2}$
$\liminf_{n\to\infty} a_n$	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $H = \sum_{i=1}^{n} \frac{1}{i!} \sum_{j=1}^{n} \frac{1}{i!} \frac{n}{j!} \frac{1}{i!} \frac{n(n+1)}{n(n+1)} \frac{1}{n!} \frac{n(n-1)}{n(n-1)} \frac{1}{n(n-1)} \frac{1}{n($
$\limsup_{n\to\infty} a_n$	$\lim_{n\to\infty} \sup\{a_i \mid i \ge n, i \in \mathbb{N}\}.$	
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1} H_i = (n+1)H_n - n, \sum_{i=1} {n \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
[n]	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$, $\binom{n}{k} = \binom{n}{k-1}$
$\binom{n}{k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	n n
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	
$\langle \langle {n \atop k} \rangle \rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$	11, 15.	1)! H_{n-1} , 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1$, 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix}$,
18. $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	${n \brack k} + {n-1 \brack k-1}, 19. \begin{Bmatrix} n \\ n-1 \end{Bmatrix}$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 1 \end{pmatrix}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix},$
22. $\binom{n}{0} = \binom{n}{n-1}$	$\left 1 \right\rangle = 1,$ 23. $\left\langle {n \atop k} \right\rangle = \left\langle {n \atop k$	$n-1-k$, 24. $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,
	If $k = 0$, 26. $\binom{n}{1}$	$\left. \begin{array}{l} > = 2^n - n - 1, \\ \end{array} \right. $ 27. $\left. \left< \begin{array}{l} n \\ 2 \end{array} \right> = 3^n - (n+1)2^n + \binom{n+1}{2}, $
$28. \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle$	$\binom{x+k}{n}$, 29. $\binom{n}{m} = \sum_{k=1}^{m}$	28. $x^n = \sum_{k=0}^n \left\langle n \right\rangle \binom{x+k}{n},$ 29. $\left\langle n \right\rangle = \sum_{k=0}^m \binom{n+1}{k} (m+1-k)^n (-1)^k,$ 30. $m! \left\{ n \right\} = \sum_{k=0}^n \left\langle n \right\rangle \binom{k}{n-m},$
$ 31. \left\langle \binom{n}{m} \right\rangle = \sum_{k=0}^{n} \left\{ \right. $	${n \atop k} \left\{ {n-k \choose m} (-1)^{n-k-m} k!, \right.$	32. $\left\langle \left\langle n \right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle n \right\rangle \right\rangle = 0$ for $n \neq 0,$
34. $\binom{n}{k} = (k + 1)^n$	34. $\left\langle \left\langle {n \atop k} \right\rangle \right\rangle = (k+1) \left\langle \left\langle {n-1 \atop k} \right\rangle \right\rangle + (2n-1-k) \left\langle \left\langle {n-1 \atop k-1} \right\rangle \right\rangle$	$35. \sum_{k=0}^{n} \left\langle \left n \right\rangle \right\rangle = \frac{(2n)^n}{2^n},$
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k=1}^{r}$	36. $ \left\{ \begin{array}{l} x \\ x-n \end{array} \right\} = \sum_{k=0}^{n} \left\langle \left\langle n \right\rangle \right\rangle \left(x+n-1-k \right), $	37. ${n+1 \brace m+1} = \sum_{k} {n \choose k} {k \brack m} = \sum_{k=0}^{n} {k \brack m} (m+1)^{n-k}$

Stanf	or	·d	Uni	ver	sit	/																							23
	More Trie.	0	b	$A \left(\begin{array}{c} + \\ c \\ - \\ - \\ - \\ B \end{array} \right)$ Law of cosines:	$c^2 = a^2 + b^2 - 2ab\cos C.$ Area.	$A = \frac{1}{b}bc$	$= \frac{1}{2}ab\sin C,$	$= \frac{c^2 \sin A \sin B}{2 \sin C}.$ Heron's formula:	$A = \sqrt{s \cdot s_{\alpha} \cdot s_{k} \cdot s_{\alpha}}$	$s = \frac{1}{2}(a+b+c),$	$s_a = s - a,$ $s_b = s - b,$	$s_c = s - c.$	More identities:	$\sin\frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}},$	$\cos\frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$	$\tan \frac{x}{x} = \sqrt{\frac{1-\cos x}{1-\cos x}}$	$\begin{array}{c} 2 & \sqrt{1 + \cos x} \\ 1 - \cos x \end{array}$	$-\sin x$, $\sin x$	$=\frac{1+\cos x}{1+\cos x},$	$\cot\frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$	$=\frac{1+\cos x}{\sin x},$	$= \frac{\sin x}{1 - \cos x},$	$\sin x = \frac{e^{ix} - e^{-ix}}{2^i},$	$\cos x = \frac{e^{ix} + e^{-ix}}{2},$	$\tan x = -i \frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}},$	$= -i \frac{e^{2ix} - 1}{e^{2ix} + 1},$	$\sin x = \frac{\sinh ix}{i},$	$\cos x = \cosh ix,$	$\tan x = \frac{\tanh ix}{i}$.
t Shoot	i Sirect		$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$	If A is non-singular. $tA \cdot \det B$,	$\operatorname{sign}(\pi)a_{i,\pi(i)}$.	nt:	ad-bc,	$g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$	aei + bfg + cdh	-ceg-fna-vba.	$\prod_{i=1}^{n} a_{i,\pi(i)}$.	n=1 functions	8 I	$ \cosh x = \frac{e^- + e^-}{2}, $	$\operatorname{csch} x = \frac{1}{\sinh x},$	$ coth x = \frac{1}{\tanh x}. $	6	$\tanh^2 x + \operatorname{sech}^2 x = 1,$	$\operatorname{sinh}(-x) \equiv -\operatorname{sinh} x,$ $\operatorname{tenh}(-x) = -\operatorname{tenh} x$	$\operatorname{cann}(-x) = -\operatorname{cann} x,$ $+ \cosh x \sinh u.$	$y + \sinh x \sinh y$,		r,		$nx + \sinh nx$, $n \in \mathbb{Z}$, $2\cosh^2 \frac{x}{2} = \cosh x + 1$.	in mathematics	you don't under-	just get used to them.	– J. von Neumann
Theoretical Committee Science Chest Sheet	Matrices	Multiplication:	$C = A \cdot B, c_{i,j}$	Determinants: $\det A \neq 0$ iff A is non-singular. $\det A \cdot B = \det A \cdot \det B,$	$\det A = \sum_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$	π $i=1$ 2 × 2 and 3 × 3 determinant:	$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$	$\begin{vmatrix} a & b & c \\ d & e & f \\ a & b & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix}.$	<i>a</i>		$\operatorname{perm} A = \sum_{i=1}^{n} a_{i,\pi(i)}.$	$\pi_{i=1}$ Hyperbolic Functions	Definitions:	2,			Identities:	$\cosh^2 x - \sinh^2 x = 1,$ $\cosh^2 x = 1,$	$coth \left(-\frac{\pi}{x}\right) = coch \frac{\pi}{x} = 1,$	$cosn(-x) = cosn x, cosn(-x) = -i$ $sinh(x+u) \equiv sinh x cosh u + cosh x sinh u.$	$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$	$\sinh 2x = 2\sinh x \cosh x,$	$\cosh 2x = \cosh^2 x + \sinh^2 x,$	$\cosh x + \sinh x = e^x,$	$(\cosh x + \sinh x)'' = \cosh nx + \sinh nx,$ $2\sinh^2 \frac{x}{2} = \cosh x - 1,$ $2\cosh^2 \frac{x}{2} = \alpha$	$\theta \sin \theta \cos \theta \tan \theta$	0 1	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 1 2 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
Theoretical			$(0,1)$ $(\cos\theta,\sin\theta)$	(1,0)	(0,-1)	$^{2} + B^{2}$.	D/ Q = 2,550		$\cot a = \frac{\cot a}{\sin a} = \frac{A}{A}$.	AB . $AB + C$.		$\cos x = \frac{1}{\sec x},$	$\sin^2 x + \cos^2 x = 1,$	$1 + \cot^2 x = \csc^2 x,$	$\sin x = \sin(\pi - x),$	$\tan x = \cot\left(\frac{\pi}{2} - x\right),$	$\csc x = \cot \frac{x}{2} - \cot x,$	$\cos x \sin y$,	$\sin x \sin y$,	$\frac{1y}{ny}$,		$\sin 2x = \frac{2\tan x}{1 + \tan^2 x},$	$\cos 2x = 2\cos^2 x - 1,$	$\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$	$\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$	$n^2 x - \sin^2 y,$	$\cos^2 x - \sin^2 y.$	$x, \qquad e^{i\pi} = -1.$	y Steve Seiden hacm.org lsu.edu/~seiden
	Trigonometra		40	0/	$\Box B = A$	Pythagorean theorem: $C^2 = A^2 + B^2$	Definitions:	sin a = A/C, csc a = C/A, sin a A	$\tan a = \frac{\cos a}{\cos a} = \frac{B}{B},$ Area radius of insembod	Area, radius of inscribed circle. $\frac{1}{2}AB$, $\frac{AB}{A+B+}$	Identities:	$\sin x = \frac{1}{\cos x},$	$\tan x = \frac{1}{1}$	$1 + \tan^2 x = \sec^2 x,$	$\sin x = \cos\left(\frac{\pi}{2} - x\right),$	$\cos x = -\cos(\pi - x),$	$\cot x = -\cot(\pi - x),$	$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$	$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$	$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x + \cot x}$	$\sin 2x = 2\sin x \cos x,$	$\cos 2x = \cos^2 x - \sin^2 x,$	$\cos 2x = 1 - 2\sin^2 x,$	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$	$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$	$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$	Euler's equation: $e^{ix} = \cos x + i \sin x,$	v2.02 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden

	$\pi \approx 3.14159$,	$e \approx 2.7$	2.71828, $\gamma \approx 0.57721$, $\phi = \frac{1 \pm \sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2} \approx 1.61803, \qquad \hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$
i	2^i	p_i	General	Probability
1	2	2	Bernoulli Numbers $(B_i = 0, \text{ odd } i \neq 1)$:	Continuous distributions: If
2	4	က	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{b}^{b} p(x) dx,$
က	œ	22	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X . If
22	32	111	$-p \mp 1$	$\Pr[X < a] = P(a),$
9 1	64	13	$\log_a b$ 2a Endow_b 2a	then P is the distribution function of X . If
<u></u>	128	17	Euer's number e:	P and p both exist then
œ	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	$P(a) = \int_{-a}^{a} p(x) dx.$
6	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$) — v — v — v — v — v — v — v — v — v —
10	1,024	29	$(1 + \frac{1}{2})^n < \rho < (1 + \frac{1}{2})^{n+1}$	Expectation: If X is discrete
11	2,048	31	(1) (1) (1)	$\mathbb{E}[g(X)] = \sum g(x) \Pr[X = x].$
12	4,096	37	$(1+\frac{1}{n})^n = e - \frac{c}{2n} + \frac{a^2c}{24n^2} - O\left(\frac{a}{n^3}\right).$	$\frac{x}{\Gamma}$
13	8,192	41	Harmonic numbers:	_
14	16,384	43	1, 3, 11, 25, 137, 49, 363, 761, 7129	$E[g(A)] = \int_{-\infty} g(x)p(x) dx = \int_{-\infty} g(x) dF(x).$
15	32,768	47	2 0 12 00 20 140 280 2020	Variance, standard deviation:
16	65,536	53	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$
17	131,072	59	$H_{-} = \ln n + \gamma + O\left(\frac{1}{-}\right)$	$\sigma = \sqrt{\mathrm{VAR}[X]}$.
18	262,144	61		For events A and B :
19	524,288	29	Factorial, Stirling's approximation:	$\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]$
20	1,048,576	7.1	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$
21	2,097,152	73	= (1)	iff A and B are independent.
22	4,194,304	43	$n! = \sqrt{2\pi n} \left(\frac{-}{e} \right) \left(1 + \Theta \left(\frac{-}{n} \right) \right).$	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[A \land B]}$
23	8,388,608	တ္တ	Ackermann's function and inverse:	$\operatorname{Fr}[B]$ For random raniables Y and V :
7.7	16,777,216	68		$\mathbf{E}[X \cdot Y] = \mathbf{E}[X] \cdot \mathbf{E}[Y].$
25	33,554,432	97	$a(i,j) = \begin{cases} a(i-1,2) & j=1\\ a(i-1,a(i,i-1)) & i,i>2 \end{cases}$	if X and Y are independent.
0 70	194 917 798	101	1	$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y],$
7 %	134,211,128	107	$\mathbf{Binomial distribution}.$	E[cX] = cE[X].
9 6	700,450,450	101		Bayes' theorem:
52 58	536,870,912	113	$\Pr[X=k] = \binom{r}{k} p^k q^{n-k}, \qquad q = 1 - p,$	$\Pr[A_i B] = \Pr[B A_i]\Pr[A_i]$
6 6	1,013,141,624	101		$\sum_{j=1}^{n} \Pr[A_j] \Pr[B A_j].$
32	2,147,483,048 4,294,967,296	127	$E[X] = \sum_{k=1}^{\infty} k \binom{n}{k} p^k q^{n-k} = np.$	Inclusion-exclusion:
	Pascal's Triangle	0	Poisson distribution:	$\Pr\left[\bigvee X_i\right] = \sum \Pr[X_i] +$
	1		$\Pr[X=k] = \frac{e^{-\lambda}\lambda^{\kappa}}{\lambda!}, \mathbb{E}[X] = \lambda.$	n n n k
	11		Normal (Gaussian) distribution:	$\sum (-1)^{k+1} \sum \Pr \left \bigwedge X_{i_j} \right $.
	121		$1 = (m-n)^2/2\sigma^2 = -i\pi r$	$k=2$ $i_i < \dots < i_k$ $j=1$
	1 3 3 1		$p(x) = \frac{p(x)}{\sqrt{2\pi}\sigma} e^{-(x-\mu')/2\pi}, E[X] = \mu.$	
	14641		The "coupon collector": We are given a	$\Pr\left[X \ge \lambda \mathrm{E}[X]\right] \le \frac{1}{\lambda},$
	15101051		random coupon each day, and there are n	D
	1615201561		tion of coupons is uniform. The expected	ζ
	1 7 21 35 35 21 7 1	1	number of days to pass before we to col-	Geometric distribution: $\mathbf{D}_{\mathbf{r}}[\mathbf{Y} = k] = m \alpha^{k-1}$
	$1\ 8\ 28\ 56\ 70\ 56\ 28\ 8\ 1$	8 1	lect all n types is	ħ
ī	$1\;9\;36\;84\;126\;126\;84\;36\;9\;1$	36 9 1	nH_n .	$E[X] = \sum kpq^{k-1} = \frac{1}{L}$
1 10 4	1 10 45 120 210 252 210 120 45 10 1	20 45 10 1		g

Cta	nfor	чı	Iniva	rsitv
വദ	111()1	(1) (JIIIVE	-1 >11 V

1	
,	•

Theoi	retical Compu	Theoretical Computer Science Cheat Sheet	
Number Theory		Graph Theory	leory
The Chinese remainder theorem: There ex-	Definitions:		Notation:
ists a number C such that:	Loop	An edge connecting a ver-	
$C \equiv r_1 \mod m_1$	i	tex to itself.	V(G) Vertex set
	Directed Simple	Each edge has a direction.	C(G) Induced subgraph
	Sentepre	multi-edges.	_
$C \equiv r_n \mod m_n$	Walk	A sequence $v_0e_1v_1\dots e_\ell v_\ell$.	
if m_i and m_j are relatively prime for $i \neq j$.	Trail	A walk with distinct edges.	
Euler's function: $\phi(x)$ is the number of	Path	A trail with distinct	$\chi(G)$ Chromatic number $\chi_{C}(G)$ Edge chromatic number
positive integers less than x relatively	Connected	vertices.	
prime to x. If $\prod_{i=1}^{n} p_i^*$ is the prime factorization of x than	2000000	a path between any two	
contradiction of x of them $x \in \mathbb{R}^{n}$ $x \in \mathbb{R}^{n}$ $x \in \mathbb{R}^{n}$		vertices.	K_{n_1,n_2} Complete bipartite graph $r(k, \ell)$ Bancar number
$\psi(x) = \prod_{i=1} P_i (P_i 1).$	Component	A maximal connected	
Euler's theorem: If a and b are relatively	Tree	A connected acyclic graph.	
prime then $\frac{\phi(b)}{1}$	Free tree	A tree with no root.	Frojective coordinates: triples (x, u, z) , not all x, u and z zero.
$1 \equiv a^{r+1} \mod \theta$.	DAG Falerian	Directed acyclic graph.	$(x, y, z) = (cx, cy, cz) \forall c \neq 0.$
Fermat's theorem: $\frac{1-p-1}{1-p}$		each edge exactly once.	Cartesian Projective
$1 \equiv a \mod p$.	Hamiltonian		$(x,y) \qquad (x,y,1)$
The Euclidean algorithm: if $a > b$ are in-		each vertex exactly once.	x + b
tegers then $\gcd(a \ b) = \gcd(a \ mod \ b \ b)$	Cut	A set of edges whose re-	$x = c \qquad (1, 0, -c)$
Scu(a, v) — Scu(a mou v, v).		moval increases the num-	Distance formula, L_p and L_{∞}
If $\prod_{i=1}^{t} p_i^{e_i}$ is the prime factorization of x	Cut-set	A minimal cut.	Heteric: $\sqrt{(m_1-m_1)^2+(m_1-m_1)^2}$
$C(m) = \sum_{A} A = \prod_{i} p_i^{e_i+1} - 1$	Cut edge	A size 1 cut.	$(\sqrt{x_1 - x_0}) + (y_1 - y_0)$,
$S(x) = \sum_{\substack{d \mid x \ i = 1}} a = \prod_{\substack{i = 1 \ p_i - 1}} .$	k-Connected	A graph connected with	$[x_1 - x_0 ^2 + y_1 - y_0 ^2]$,
Doubod Missolvone at the proposed successions		the removal of any $\kappa = 1$ vertices.	$\lim_{p \to \infty} \left[x_1 - x_0 ^p + y_1 - y_0 ^p \right]^{1/p}.$
Ferrect numbers: x is an even perfect number iff $x = 2^{n-1}(2^n-1)$ and 2^n-1 is prime.	k- $Tough$	$\forall S \subseteq V, S \neq \emptyset$ we have	Area of triangle $(x_0, y_0), (x_1, y_1)$
Wilson's theorem: n is a prime iff		$k \cdot c(G - S) \le S $.	and (x_2, y_2) :
$(n-1)! \equiv -1 \bmod n.$	k-Regular	A graph where all vertices	$\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_2 & y_2 - y_2 \end{vmatrix}$.
Möbius inversion:	k-Factor	A k-regular spanning	Angle formed by three noints:
$ \begin{pmatrix} 1 & \text{if } i \equiv 1. \\ 0 & \text{if } i \text{ is not square-free.} \end{pmatrix} $		subgraph.	Angre tormed by times points.
$\mu(i) = \begin{cases} (-1)^r & \text{if } i \text{ is the product of} \end{cases}$	Matching	A set of edges, no two of	$\nearrow (x_2, y_2)$
r distinct primes.	3	which are adjacent.	/62
E H	Ctique	A set of vertices, all of which are adjacent	0
$G(a) = \sum F(d),$	Ind. set	A set of vertices, none of	$(0,0)$ ℓ_1 (x_1,y_1)
		which are adjacent.	$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{2}$.
then $r \in \mathcal{L} \setminus \mathcal{L} $	Vertex cover	Vertex cover A set of vertices which	$\ell_1\ell_2$
$F(a) = \sum_{d c} \mu(a)G\left(\frac{a}{d}\right).$	Dlaman month	cover all edges.	Line through two points (x_0, y_0) and (x_1, y_1) .
Deimo mumbone.	r tartari gi apri	beded in the plane.	$\begin{vmatrix} x & y & 1 \end{vmatrix}$
$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{1 + n \ln n}$	Plane graph	Plane graph An embedding of a planar	$x_0 y_0 1 = 0.$
uul (w)		graph.	$ x_1 y_1 $
$+O\left(\frac{n}{\ln n}\right),$		$\sum \deg(v) = 2m.$	Area of circle, volume of sphere: $A = \frac{2}{m^2}$ $V = 4\frac{3}{m^3}$
$\pi(n) = n$, n , $2!n$	Dr. C. D. II	$v \in V$	
$n(n) = \frac{1}{\ln n} + \frac{(\ln n)^2}{(\ln n)^3}$	If G is planal then $f < 2n - 4$.	n - m + j = 2, so $n - 4$, $m < 3n - 6$.	If I have seen farther than others,
$+O\left(\frac{n}{(2n-n)4}\right)$.	Any planar g		to is pecause 1 have stood on the shoulders of giants.
((1111))	gree ≤ 5 .		- Issac Newton

	5	
	Theoretical Computer Science Cheat Sheet	et
Wellie' identities	Desirotizee	sn m
Walls Identity: $\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$	$c\frac{du}{du}$, 2. $\frac{d(u+v)}{du}$	$\frac{du}{a} + \frac{dv}{a}, \qquad 3. \frac{d(uv)}{a} = u\frac{dv}{a} + v\frac{du}{a},$
Brouncker's continued fraction expansion: $\frac{\pi}{\pi} = 1 + 1$	$\frac{dx}{dx} = nu^{n-1}\frac{du}{dx}, 5. \frac{d(u/v)}{dx} = \frac{1}{2}$	$\frac{u\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{\left(\frac{du}{dx}\right)}, 6. \frac{d(e^{cu})}{\left(\frac{du}{dx}\right)} = ce^{cu}$
$4 - 1 + 2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \cdots}}}$	7. $\frac{d(c^u)}{du} = (\ln c)c^u \frac{du}{du},$	$v^{2} \qquad dx \qquad dx$ $8. \frac{d(\ln u)}{d^{n}} = \frac{1}{n} \frac{du}{d^{n}},$
Gregrory's series: $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$	9. $\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$	- sin
Newton's series: $\frac{\pi}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1 \cdot 3}{1} + \cdots$	11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$	12. $\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$
6 2 2 3 2 3 2 4 5 2 5 S Sharp's series:	13. $\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$	14. $\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx},$
$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$	15. $\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$	16. $\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx},$
Euler's series:	17. $\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx},$	18. $\frac{d(\arccos u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx},$
$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$ $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2} + \cdots$	19. $\frac{d(\arccos u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx},$	20. $\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$
$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \dots$	21. $\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx},$	22. $\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx},$
Partial Fractions Let $N(x)$ and $D(x)$ be polynomial func-	23. $\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx},$	24. $\frac{d(\coth u)}{dx} = -\cosh^2 u \frac{du}{dx},$
tions of x . We can break down $N(x)/D(x)$ using partial fraction expan-	25. $\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx},$	26. $\frac{d(\cosh u)}{dx} = -\cosh u \coth \frac{du}{dx},$
sion. First, if the degree of N is greater than or equal to the degree of D , divide N by D , obtaining	27. $\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1 + u^2}} \frac{du}{dx},$	28. $\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx},$
$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$	29. $\frac{d(\arctan u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$	30. $\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$
where the degree of N' is less than that of D . Second, factor $D(x)$. Use the follow-	31. $\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$	32. $\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{ u \sqrt{1+u^2}} \frac{du}{dx}.$
mg rules: For a non-repeated factor: $\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$	Integrals: 1. $\int cu dx = c \int u dx$.	2. $\int (u+v) dx = \int u dx + \int v dx.$
where $A = \left\lceil \frac{N(x)}{D(x)} \right\rceil .$	_	4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,
For a repeated factor: $N(x) = \sum_{m=1}^{\infty} A_k = N'(x)$	$\mathbf{6. } \int \frac{dx}{1+x^2} = \arctan x,$	7. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$
$\overline{(x-a)^m D(x)} = \sum_{k=0}^{\infty} \overline{(x-a)^{m-k}} + \overline{D(x)},$	$8. \int \sin x dx = -\cos x,$	$9. \int \cos x dx = \sin x,$
where $A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$	10. $\int_{\mathcal{C}} \tan x dx = -\ln \cos x ,$	11. $\int \cot x dx = \ln \cos x ,$
The reasonable man adapts himself to the	12. $\int \sec x dx = \ln \sec x + \tan x ,$	13. $\int \csc x dx = \ln \csc x + \cot x ,$
word, use unreasonous persons in dying to adapt the world to himself. Therefore all progress depends on the unreasonable. – George Bernard Shaw	14. $\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2},$	$\frac{2}{3}$, $a > 0$,

Theoretical Computer Science Cheat Sheet

 $x^3 - 3x^2 + 2x^1$ $x^4 - 6x^3 + 11x^2 - 6x^1$ $x^5 - 10x^4 + 35x^3 - 50x^2 + 24x^1$

 $x^{\frac{1}{2}} = x^{\frac{1}{2}} =$

 $x^2 + x^1$ $x^3 + 3x^2 + 2x^1$ $x^4 + 6x^3 + 11x^2 + 6x^1$ $x^5 + 10x^4 + 35x^3 + 50x^2 + 24x^1$

 x^1 $x^2 - x^1$

 $x^{\overline{n}} = (-1)^{n}(x+1)^{-\overline{n}},$ $x^{\overline{n}} = (-1)^{n}(-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$ $= 1/(x-1)^{-\overline{n}},$

 $x^{\frac{x}{2}-x^{\intercal}}$ $x^{\frac{3}{2}-3x^{2}+x^{\intercal}}$ $x^{\frac{3}{2}-6x^{\frac{3}{2}}+7x^{\frac{3}{2}-x^{\intercal}}$ $x^{\frac{5}{2}-15x^{\frac{3}{2}}-10x^{2}+x^{\intercal}}$

 $x^{\underline{1}}$ $x^{\underline{2}} + x^{\underline{1}}$ $x^{\underline{3}} + 3x^{\underline{2}} + x^{\underline{1}}$

 $x^{\underline{4}} + 6x^{\underline{3}} + 7x^{\underline{2}} + x^{\underline{1}}$ $x^{\underline{5}} + 15x^{\underline{4}} + 25x^{\underline{3}} + 10x^{\underline{2}} + x^{\underline{1}}$

	Theoretical Compute	Theoretical Computer Science Cheat Sheet
15.	$\frac{x}{dx} = \arccos \frac{x}{x} - \sqrt{a^2 - x^2}, a > 0,$	Soone. 16. $\int \arctan \frac{x}{x} dx = x \arctan \frac{x}{x} - \frac{a}{3} \ln(a^2 + x^2), a > 0,$
17.	17. $\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$	J
19.	$19. \int \sec^2 x dx = \tan x,$	Joseph 20. $\int \csc^2 x dx = -\cot x$,
21.	21. $\int \sin^n x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx,$	22. $\int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x dx,$
23.	23. $\int \tan^n x dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx, n \neq 1,$	24. $\int \cot^n x dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x dx, n \neq 1,$
25.	25. $\int \sec^n x dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx, n \neq 1,$	1,
26.	$\int \csc^n x dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x dx, n \neq \infty$	26. $\int \csc^n x dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x dx$, $n \neq 1$, 27. $\int \sinh x dx = \cosh x$, 28. $\int \cosh x dx = \sinh x$,
29.	$\int \tanh x dx = \ln \cosh x , \ 30. \ \int \coth x dx = \ln \sinh x , \ 3$	29. $\int \tanh x dx = \ln \cosh x , \ 30. \int \coth x dx = \ln \sinh x , \ 31. \int \operatorname{sech} x dx = \arctan \sinh x, \ 32. \int \operatorname{csch} x dx = \ln \tanh \frac{x}{2} ,$
33.	33. $\int \sinh^2 x dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$, 34. $\int \cosh^2 x dx$	34. $\int \cosh^2 x dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$, 35. $\int \operatorname{sech}^2 x dx = \tanh x$,
36.	36. $\int \arcsin \frac{x}{a} dx = x \arcsin \frac{x}{a} - \sqrt{x^2 + a^2}, a > 0,$	37. $\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} + \frac{a}{2} \ln a^2 - x^2 ,$
38 8	38. $\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$	> 0 and $a > 0$, < 0 and $a > 0$, < 0 and $a > 0$,
39.	$\frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), a > 0,$	
40.	$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, a > 0,$	41. $\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, a > 0,$
42.	$\Big((a^2-x^2)^{3/2}dx = \frac{x}{8}(5a^2-2x^2)\sqrt{a^2-x^2} + \frac{3a^4}{8}\arcsin\frac{x}{a},$	a>0,
43.	$\frac{dx}{\sqrt{a^2-x^2}} = \arcsin\frac{x}{a}, a > 0, \qquad \qquad 44. \ \int \frac{dx}{a^2-x^2} = \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right ,$	$= \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right , \qquad 45. \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$
46.	_	47. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln x + \sqrt{x^2 - a^2} , a > 0,$
48.	$\frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left \frac{x}{a + bx} \right ,$	49. $\int x\sqrt{a+bx} dx = \frac{2(3bx - 2a)(a+bx)^{3/2}}{15b^2},$
50.	$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$	51. $\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right , a > 0,$
52.	$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$	53. $\int x\sqrt{a^2-x^2} dx = -\frac{1}{3}(a^2-x^2)^{3/2}$,
54.	$\int x^2 \sqrt{a^2 - x^2} dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a},$	$a > 0,$ $55.$ $\int \frac{dx}{\sqrt{a^2 - r^2}} = -\frac{1}{a} \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$
56.	$\int \frac{x dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$	57. $\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x^2 - x^2}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, a > 0,$
	$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right ,$	59. $\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{ x }, a > 0,$
60.	$\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$	61. $\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left \frac{x}{a + \sqrt{a^2 + x^2}} \right ,$

	DOLLAR DE LA CONTRACTOR	
	Calculus Cont.	Finite Calculus
62.	$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\arccos\frac{a}{ x }, a > 0, \qquad 63. \int \frac{1}{x^2\sqrt{x^2}} dx$	Difference, shift operators: $\Delta f(x) = f(x+1) - f(x),$
64.	$\int \frac{x dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2}, \qquad 65. \int \frac{\sqrt{a^2 + a^2}}{\sqrt{a^2 + a^2}}$	E f(x) = f(x+1). Fundamental Theorem:
. 66.	$ \left(\frac{1}{dx} - \frac{1}{dx} \right) = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right \\ \frac{1}{2ax + b} - \frac{1}{2ax + b} - \frac{1}{2ax + b} \right \\ \frac{1}{2ax + b} - \frac{1}{2ax + $	$f(x) = \Delta F(x) \Leftrightarrow \sum_{b} f(x) \delta x = F(x) + C.$
	$\int ax^2 + bx + c \qquad \begin{cases} 2 & 2 \\ \sqrt{4ac - b^2} & \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$	$\sum_{a} f(x)\delta x = \sum_{i=a} f(i).$ Differences:
1	$\int dx$	$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$ $\Delta(au) = -u\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$
67.	$\sqrt{ax^2 + bx + c} = \begin{cases} $	$\Delta(x^n) = u\Delta v + E v\Delta u, \ \Delta(x^n) = nx^{n-1},$
68.	68. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\Delta(H_x) = x^{-1}, \qquad \Delta(2^x) = 2^x,$ $\Delta(c^x) = (c - 1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$ Sums:
.69	$\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\sum cu \delta x = c \sum u \delta x,$ $\sum (u, +s) \delta x = \sum u \delta x,$
	l dx	$\sum_{u \Delta v} (\Delta v \delta x = uv - \sum_{u \Delta v} \Xi v \Delta u \delta x,$
.07	$x\sqrt{ax^2 + bx + c} = \begin{cases} x & x \\ x & x $	$\sum x^{\underline{n}} \delta x = \frac{x^{\underline{m+1}}}{m+1}, \qquad \sum x^{\underline{-1}} \delta x = H_x,$ $\sum c^x \delta x = \frac{c^x}{c-1}, \qquad \sum \binom{x}{m} \delta x = \binom{x}{m+1}.$
71.	71. $\int x^3 \sqrt{x^2 + a^2} dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2},$	Falling Factorial Powers: $x^{\underline{n}} = x(x-1)\cdots(x-n+1), n>0,$
72.	72. $\int x^{n} \sin(ax) dx = -\frac{1}{a} x^{n} \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx,$	$x^{0} = 1,$ 1
73.	73. $\int x^{n} \cos(ax) dx = \frac{1}{a} x^{n} \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx,$	$x = \frac{x - a}{(x + 1) \cdots (x + n)}, n < 0,$ $x^{n+m} = x^{m}(x - m)^{n}.$
74.	74. $\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$	Rising Factorial Powers: $x^{\overline{n}} = x(x+1)\cdots(x+n-1), n>0,$
75.	75. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$	$x^{\overline{0}} = 1,$
76.	76. $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$	$x'' = \frac{x''}{(x-1)\cdots(x- n)}, n < 0,$ $x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$
$x^1 =$	x^{\perp} = x^{\perp}	Conversion: $x^{\underline{n}} = (-1)^n (-x^{\underline{n}})^{\overline{n}} = (x-n+1)^{\overline{n}}$