Problème du rectangle inscrit

Emanuel Morille

Avec les conseils de Jean-Baptiste Campesato

20 Juin 2025

Table des matières

Introduction		2
1.	Bases de théorie des catégories 1.1. Catégories · · · · · · · · · · · · · · · · · · ·	3 3 4 4
2.	Catégorie Comp des complexes de chaînes 2.1. Complexes de chaînes 2.2. Morphismes de complexes 2.3. La catégorie Comp 2.4. Premières propriétés 2.4.1. Homotopie 2.4.2. Complexe de chaînes quotient 2.4.3. Exactitude	5 5 5 6 6 6 7 8
3.	Homologie singulière 3.1. Simplexes	10 10 11 13 13 14 14 17
Co	Droite et plan projectifs réels 4.1. La droite projective réelle	21 21 21 24 25
Кi	hliographie	28

Introduction

Le questionnement à l'origine de ce sujet est le *problème du carré inscrit*, énoncé par Otto Toeplitz en 1911 de la manière suivante :

« Toute courbe de Jordan admet-elle un carré inscrit ? »

Bien que cette question fut l'objet de nombreuses recherches, elle n'est toujours pas résolue, en revanche nous sommes capables d'en démontrer une version simplifiée :

« Toute courbe de Jordan admet-elle un carré rectangle inscrit ? »

C'est donc cet énoncé que nous appellerons le problème du rectangle inscrit.

Par exemple dans le cas d'un cercle, on peut évidemment toujours trouver une infinité de carrés et de rectangles inscrits, le problème devient plus difficile lorsque la courbe est quelconque.

Fig. 1. – Un carré inscrit.

Fig. 2. - Un rectangle inscrit.

Dans la suite nous allons étudier l'homologie singulière qui nous permettra de démontrer un résultat très important dans la résolution du problème. Commençons d'abord par définir quelques notions du sujet.

Définition 0.1. Soit C une partie de \mathbb{R}^2 . On dit que C est une *courbe de Jordan* s'il existe une fonction continue $\gamma_C : [0,1] \to \mathbb{R}^2$ telle que :

- C est l'image de γ_C : $\operatorname{im}(\gamma_C) = C$.
- C est fermée : $\gamma_C(0) = \gamma_C(1)$.
- C est simple: γ_C est injective sur [0,1[, c'est-à-dire $\forall x,y \in [0,1[$, $\gamma_C(x)=\gamma_C(y) \Rightarrow x=y.$

Exemple 0.2. Le cercle C de la Fig. 1 est bien une courbe de Jordan, en effet on pose :

$$\gamma_C : [0,1] \to \mathbb{R}^2; (x,y) \mapsto (\cos(2\pi x), \sin(2\pi x))$$

Alors γ_C est bien continue, de plus :

- On a clairement $im(\gamma_C) = C$.
- On a $\gamma_C(0) = (1,0) = \gamma_C(1)$.
- Pour $x \in [0, 1[$, on a $2\pi x \in [0, 2\pi[$, donc γ_C est injective sur [0, 1[.

Définition 0.3. Soit C une courbe de Jordan de \mathbb{R}^2 et $R := \{a, b, c, d\}$ un rectangle de \mathbb{R}^2 . On dit que le rectangle R est *inscrit dans* C si $a, b, c, d \in C$.

Exemple 0.4. Le carré $R := \{ (\sqrt{2}/2, \sqrt{2}/2), (-\sqrt{2}/2, \sqrt{2}/2), (-\sqrt{2}/2, -\sqrt{2}/2), (\sqrt{2}/2, -\sqrt{2}/2) \}$ est bien inscrit dans le cercle C de la Fig. 1, en effet :

- On a $\gamma_C(1/8) = (\sqrt{2}/2, \sqrt{2}/2)$, donc $(\sqrt{2}/2, \sqrt{2}/2) \in C$.
- On a $\gamma_C(3/8) = (-\sqrt{2}/2, \sqrt{2}/2)$, donc $(-\sqrt{2}/2, \sqrt{2}/2) \in C$.
- On a $\gamma_C(5/8) = (-\sqrt{2}/2, -\sqrt{2}/2)$, donc $(-\sqrt{2}/2, -\sqrt{2}/2) \in C$.
- On a $\gamma_C(7/8) = (\sqrt{2}/2, -\sqrt{2}/2)$, donc $(\sqrt{2}/2, -\sqrt{2}/2) \in C$.

Théorème 0.5. Soit C une courbe de Jordan de \mathbb{R}^2 . Alors il existe un rectangle inscrit dans C.

1. Bases de théorie des catégories

1.1. Catégories

Définition 1.1. Une *catégorie* \mathcal{C} est la donnée de :

- Une classe $ob(\mathcal{C})$ dont les éléments sont appelés les *objets de* \mathcal{C} .
- Une classe hom(*C*) dont les éléments sont appelés les *morphismes de C*.
 Un morphisme *f* ∈ hom(*C*) a un *domaine X* ∈ ob(*C*) et un *codomaine Y* ∈ ob(*C*). On note alors ce morphisme *f* : *X* → *Y* et hom(*X*, *Y*) l'ensemble des morphismes de *X* dans *Y*.
- Pour tout objets $X, Y, Z \in ob(\mathcal{C})$, une *composition*:

$$\circ$$
: hom $(Y, Z) \times \text{hom}(X, Y) \rightarrow \text{hom}(X, Z)$.

• Pour tout objet $X \in ob(\mathcal{C})$, un morphisme *identité* :

$$id_X: X \to X$$
.

Vérifiant les propriétés suivantes pour tout objets X, Y, Z, T ∈ ob(\mathcal{C}):

• Associativité: Pour tout morphismes $f: X \to Y, g: Y \to Z$ et $h: Z \to T$, on a:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

• *Identité* : Pour tout morphisme $f: X \to Y$, on a :

$$id_Y \circ f = f = f \circ id_X$$
.

Exemple 1.2. La catégorie Ab des groupes abéliens :

- Les objets de Ab sont les groupes abéliens.
- Les morphismes de Ab sont les morphismes de groupes.

Exemple 1.3. Un groupe gradué est un groupe G muni d'une famille de sous-groupes $(G_i)_{i \in I}$ telle que $G = \bigoplus_{i \in I} G_i$. Pour tout $i \in I$, un élément non-nul de G_i est dit homogène de degré i.

Soit $G \coloneqq \bigoplus_{i \in I} G_i$ et $H \coloneqq \bigoplus_{i \in I} H_i$ deux groupes gradués. Un morphisme de groupes gradués est un morphisme de groupes $\varphi : G \to H$ tel que pour tout $i \in I$, on a $\varphi(G_i) \subset H_i$.

On définit ainsi la catégorie GrAb des groupes abéliens gradués :

- Les objets de GrAb sont les groupes abéliens gradués.
- Les morphismes de GrAb sont les morphismes de groupes gradués.

Exemple 1.4. La catégorie Top des espaces topologiques :

- Les objets de Top sont les espaces topologiques.
- Les morphismes de Top sont les applications continues.

Exemple 1.5. Une paire d'espaces topologiques est un espace topologique X muni d'une partie A de lui-même. On la note (X,A).

Soit (X,A) et (Y,B) deux paires d'espaces topologiques. Un *morphisme de paires* est une application continue $f:X\to Y$ telle que $f(A)\subset B$. On le note $f:(X,A)\to (Y,B)$.

On définit ainsi catégorie Top₂ des paires d'espaces topologiques :

- Les objets de Top₂ sont les paires d'espaces topologiques.
- Les morphismes de Top₂ sont les morphismes de paires.

Exemple 1.6. Soit (X, \leq) un ensemble partiellement ordonné. On définit la catégorie $\mathcal{C}(X, \leq)$:

- Les objets de $\mathcal{C}(X, \leq)$ sont les éléments de X.
- Pour tout $x, y \in X$, si $x \le y$, on a un morphisme $f_{x,y} : x \to y$.
- Pour tout $x, y, z \in X$, si $x \le y$ et $y \le z$, on a bien $x \le z$ et une composition $f_{y,z} \circ f_{x,y} = f_{x,z}$.
- Pour tout $x \in X$, on a bien $x \le x$ et un morphisme identité $f_{x,x}$.

Définition 1.7. Soit \mathcal{C} une catégorie. La *catégorie opposée* (ou duale) de \mathcal{C} , notée \mathcal{C}^{op} , est la catégorie dont les objets sont les objets \mathcal{C} et dont les morphismes sont les morphismes de \mathcal{C} dont le domaine et le codomaine sont inversés.

Exemple 1.8. Soit (X, \leq) un ensemble partiellement ordonné. Alors on a $\mathcal{C}(X, \leq)^{op} = \mathcal{C}(X, \leq)$ où pour tout $x, y \in X$, on a $x \leq y$ si et seulement si $y \leq x$.

1.2. Foncteurs

Définition 1.9. Soit $\mathcal C$ et $\mathcal D$ deux catégories. Un *foncteur (covariant) F de* $\mathcal C$ *vers* $\mathcal D$ est la donnée :

- Pour tout objet $X \in ob(\mathcal{C})$, d'un objet $F(X) \in ob(\mathcal{D})$.
- Pour tout objets $X, Y \in ob(C)$ et morphisme $f: X \to Y$, d'un morphisme $F(f): F(X) \to F(Y)$.

Vérifiant les propriétés suivantes pour tout objets $X, Y, Z \in ob(\mathcal{C})$:

• Composition: Pour tout morphismes $f: X \to Y$ et $g: Y \to Z$, on a:

$$F(g \circ f) = F(g) \circ F(f)$$
.

• Identité: On a:

$$F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$$
.

Exemple 1.10. Soit \mathcal{C} et \mathcal{D} deux catégories. On définit le foncteur covariant constant $\mathcal{C}:\mathcal{C}\to\mathcal{D}$:

- On prend $D \in \mathcal{D}$, pour tout objet $X \in ob(\mathcal{C})$, on a C(X) := D.
- Pour tout objets $X, Y \in ob(\mathcal{C})$ et morphisme $f: X \to Y$, on a $C(f) := id_D$.

Exemple 1.11. Soit \mathcal{C} une catégorie. On définit le foncteur covariant identité $\mathrm{id}_{\mathcal{C}}:\mathcal{C}\to\mathcal{C}:$

- Pour tout objet $X \in ob(\mathcal{C})$, on a $id_{\mathcal{C}}(X) := X$.
- Pour tout objets $X, Y \in ob(\mathcal{C})$ et morphisme $f: X \to Y$, on a $id_{\mathcal{C}}(f) := f$.

Définition 1.12. Soit \mathcal{C} et \mathcal{D} deux catégories. Un *foncteur contravariant* est un foncteur covariant de la catégorie opposée \mathcal{C}^{op} vers \mathcal{D} .

Exemple 1.13. Soit \mathbb{K} un corps et Vect la catégorie des \mathbb{K} -espaces vectoriels. On définit un foncteur contravariant $F: \mathsf{Vect}^\mathsf{op} \to \mathsf{Vect}:$

- Pour tout \mathbb{K} -espace vectoriel $E \in \text{Vect}$, on a $F(E) := E^*$.
- Pour tout \mathbb{K} -espaces vectoriels $E, F \in \mathsf{Vect}$ et application linéaire $u : E \to F$, on a :

$$F(u) := u^{\mathrm{T}} : F^* \to E^*$$
.

1.3. Transformations naturelles

Définition 1.14. Soit \mathcal{C} et \mathcal{D} deux catégories, $F:\mathcal{C}\to\mathcal{D}$ et $G:\mathcal{C}\to\mathcal{D}$ deux foncteurs covariants. Une *transformation naturelle* ∂ *de* F *vers* G est la donnée pour tout objet $X\in \mathrm{ob}(\mathcal{C})$, d'un morphisme $\partial_X:F(X)\to G(X)$, vérifiant la propriété suivante pour tout objet $Y\in \mathrm{ob}(\mathcal{C})$ et pour tout morphisme $f:X\to Y$, on a :

$$\partial_Y \circ F(f) = G(f) \circ \partial_X$$

c'est-à-dire que le diagramme suivant est commutatif :

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\partial_X \downarrow \qquad \qquad \downarrow \partial_Y$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

2. Catégorie Comp des complexes de chaînes

2.1. Complexes de chaînes

Définition 2.1. On appelle *complexe de chaînes*, noté C_{\bullet} , une suite de groupes abéliens $(C_n)_{n\in\mathbb{Z}}$ munie de morphismes de groupes $(d_n:C_n\to C_{n-1})_{n\in\mathbb{Z}}$ tels que pour tout $n\in\mathbb{Z}$, on a $d_nd_{n+1}=0$.

Définition 2.2. Soit C_{\bullet} un complexe de chaînes et $n \in \mathbb{Z}$.

- On appelle *n-cycle* un élément de $Z_n(C_{\bullet}) := \ker(d_n)$.
- On appelle *n-bord* un élément de $B_n(C_{\bullet}) := \operatorname{im}(d_{n+1})$.

Proposition 2.3. Soit C_{\bullet} un complexe de chaînes. Alors pour tout $n \in \mathbb{Z}$, on a $B_n(C_{\bullet}) \subset Z_n(C_{\bullet})$.

Démonstration. Soit $n \in \mathbb{Z}$. Alors $d_n d_{n+1} = 0$, donc $B_n(C_{\bullet}) = \operatorname{im}(d_{n+1}) \subset \ker(d_n) = Z_n(C_{\bullet})$.
□

Définition 2.4. Soit C_{\bullet} un complexe de chaînes et $n \in \mathbb{Z}$.

- On appelle n^e groupe d'homologie le groupe quotient $H_n(C_{\bullet}) := Z_n(C_{\bullet})/B_n(C_{\bullet})$.
- On appelle *homologie* la somme directe des groupes $H_{\bullet}(C_{\bullet}) := \bigoplus_{n \in \mathbb{Z}} H_n(C_{\bullet})$.

Définition 2.5. Soit C_{\bullet} un complexe de chaînes et $n \in \mathbb{Z}$.

- On dit que C_{\bullet} est exact en C_n si $H_n(C_{\bullet})$ est trivial, c'est-à-dire, im $(d_{n+1}) = \ker(d_n)$.
- On dit que C_{\bullet} est *exact* si pour tout $n \in \mathbb{Z}$, il est exact en C_n .
- On dit que C_{\bullet} est acyclique si pour tout $n \in \mathbb{Z} \setminus \{0\}$, il est exact en C_n .

2.2. Morphismes de complexes

Définition 2.6. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes. On appelle *morphisme de complexes*, noté $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$, une suite de morphismes de groupes $(\varphi_n: C_n \to D_n)_{n \in \mathbb{Z}}$ telle que pour tout $n \in \mathbb{Z}$, on a $d_n \varphi_n = \varphi_{n-1} d_n$.

Proposition 2.7. Soit C_{\bullet} , D_{\bullet} et E_{\bullet} trois complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\psi_{\bullet}: D_{\bullet} \to E_{\bullet}$ deux morphismes de complexes. Alors la composition $\psi_{\bullet} \circ \varphi_{\bullet}: C_{\bullet} \to E_{\bullet}$ est un morphisme de complexes.

Démonstration. Soit $n \in \mathbb{Z}$. Alors on a :

$$\mathrm{d}_n(\psi_n\circ\varphi_n)=\psi_{n-1}\mathrm{d}_n\varphi_n=(\psi_{n-1}\circ\varphi_{n-1})\mathrm{d}_n.$$

Donc $(\psi_n \circ \varphi_n)_{n \in \mathbb{Z}}$ est bien un morphisme de complexes.

Proposition 2.8. Soit C_{\bullet} un complexe de chaînes. Alors le morphisme identité $\mathrm{id}_{C_{\bullet}}: C_{\bullet} \to C_{\bullet}$ est un morphisme de complexes.

Démonstration. Soit $n \in \mathbb{Z}$. Alors on a :

$$d_n id_n = d_n = id_{n-1} d_n$$
.

Donc $(id_{C_n})_{n\in\mathbb{Z}}$ est bien un morphisme de complexes.

Proposition 2.9. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. Alors pour tout $n \in \mathbb{Z}$, φ_n induit un morphisme de groupes $H_n(\varphi): H_n(C_{\bullet}) \to H_n(D_{\bullet})$.

Démonstration. Soit $n \in \mathbb{Z}$.

Soit $z \in Z_n(C_{\bullet})$. Alors on a $d_n \varphi_n(z) = \varphi_{n-1}(d_n z) = \varphi_{n-1}(0) = 0$, donc $\varphi_n(z) \in Z_n(D_{\bullet})$.

Soit $b \in B_n(C_{\bullet})$. Alors il existe $c \in C_{n+1}$ tel que $b = d_{n+1}c$, et on a :

$$\varphi_n(b) = \varphi_n(\mathbf{d}_{n+1}c) = \mathbf{d}_{n+1}\varphi_{n+1}(c)$$

donc $\varphi_n(b) \in B_n(D_{\bullet})$.

On considère $\overline{\varphi_n}: Z_n(C_{\bullet}) \to H_n(D_{\bullet})$, alors $B_n(C_{\bullet}) \subset \ker(\overline{\varphi_n})$ et d'après la propriété universelle du groupe quotient le morphisme $\overline{\varphi_n}$ induit bien un morphisme $H_n(\varphi): H_n(C_{\bullet}) \to H_n(D_{\bullet})$.

Définition 2.10. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. On note $H_{\bullet}(\varphi): H_{\bullet}(C_{\bullet}) \to H_{\bullet}(D_{\bullet})$ la somme directe $H_{\bullet}(\varphi): \bigoplus_{n \in \mathbb{Z}} H_n(\varphi)$.

2.3. La catégorie Comp

Définition 2.11. On appelle Comp la catégorie des complexes de chaînes :

- Les objets de Comp sont les complexes de chaînes.
- Les morphismes de Comp sont les morphismes de complexes.
- La composition de Comp découle de la Proposition 2.7.
- Le morphisme identité de Comp découle de Proposition 2.8.

Théorème 2.12. Pour tout $n \in \mathbb{Z}$, le n^e groupe d'homologie H_n est un foncteur de Comp vers Ab.

Démonstration. Soit $n \in \mathbb{Z}$.

- Soit $C_{\bullet} \in \text{ob}(\mathsf{Comp})$ un complexe de chaînes. Alors le n^e groupe d'homologie $H_n(C_{\bullet})$ est bien un groupe abélien.
- Soit $C_{\bullet}, D_{\bullet} \in \text{ob}(\mathsf{Comp})$ deux complexes de chaînes et $\varphi_{\bullet} : C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. Alors le morphisme induit $H_n(\varphi) : H_n(C_{\bullet}) \to H_n(D_{\bullet})$ est bien un morphisme de groupes.

La propriété de composition découle de la Proposition 2.7 et la propriété d'identité découle de la Proposition 2.8, donc H_n est bien un foncteur de Comp vers Ab.

Corollaire 2.13. L'homologie H_{\bullet} est un foncteur de Comp vers GrAb.

Démonstration.

- Soit $C_{\bullet} \in \text{ob}(\mathsf{Comp})$ un complexe de chaînes. Alors l'homologie $H_{\bullet}(C_{\bullet}) \coloneqq \bigoplus_{n \in \mathbb{Z}} H_n(C_{\bullet})$ définit bien un groupe abélien gradué.
- Soit C_{\bullet} , $D_{\bullet} \in \text{ob}(\mathsf{Comp})$ deux complexes de chaînes et $\varphi_{\bullet} : C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. Alors le morphisme induit $H_{\bullet}(\varphi) : H_{\bullet}(C_{\bullet}) \to H_{\bullet}(D_{\bullet})$ est bien un morphisme de groupes abéliens gradués.

Les propriétés de composition et d'identité découlent du Théorème 2.12, donc H_{\bullet} est bien un foncteur de Comp vers GrAb.

2.4. Premières propriétés

2.4.1. Homotopie

Définition 2.14. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\psi_{\bullet}: C_{\bullet} \to D_{\bullet}$ deux morphismes de complexes. On dit que φ_{\bullet} et ψ_{\bullet} sont *homotopes* s'il existe une suite de morphismes de groupes $(h_n: C_n \to D_{n+1})_{n \in \mathbb{Z}}$ telle que pour tout $n \in \mathbb{Z}$, on a $\varphi_n - \psi_n = h_{n-1} d_n + d_n h_n$.

Proposition 2.15. L'homotopie est une relation d'équivalence sur les morphismes de complexes.

Démonstration. Notons ~ la relation d'homotopie. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes.

- Réflexivité: Soit $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. Alors pour tout $n \in \mathbb{Z}$, on peut écrire $\varphi_n \varphi_n = 0 = 0$ d_n + d_n0. Donc on a bien $\varphi_{\bullet} \sim \varphi_{\bullet}$.
- *Symétrie*: Soit $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\psi_{\bullet}: C_{\bullet} \to D_{\bullet}$ deux morphismes de complexes tels que $\varphi_{\bullet} \sim \psi_{\bullet}$. Alors pour tout $n \in \mathbb{Z}$, on a $\psi_n \varphi_n = -(\varphi_n \psi_n)$. On en déduit bien $\psi_{\bullet} \sim \varphi_{\bullet}$.
- Transitivité: Soit $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$, $\psi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\xi_{\bullet}: C_{\bullet} \to D_{\bullet}$ trois morphismes de complexes tels que $\varphi_{\bullet} \sim \psi_{\bullet}$ et $\psi_{\bullet} \sim \xi_{\bullet}$. Alors pour tout $n \in \mathbb{Z}$, on a $\varphi_n \xi_n = \varphi_n \psi_n + \psi_n \xi_n$. On en déduit bien que $\varphi_{\bullet} \sim \xi_{\bullet}$.

Donc l'homotopie est bien une relation d'équivalence sur les morphismes de complexes. □

Proposition 2.16. Soit A_{\bullet} , B_{\bullet} et C_{\bullet} trois complexes de chaînes, $\varphi_{\bullet}: A_{\bullet} \to B_{\bullet}$ et $\psi_{\bullet}: A_{\bullet} \to B_{\bullet}$, ainsi que $\alpha_{\bullet}: B_{\bullet} \to C_{\bullet}$ et $\beta_{\bullet}: B_{\bullet} \to C_{\bullet}$ deux paires de morphismes de complexes homotopes. Alors les compositions $\alpha_{\bullet} \circ \varphi_{\bullet}: A_{\bullet} \to C_{\bullet}$ et $\beta_{\bullet} \circ \psi_{\bullet}: A_{\bullet} \to C_{\bullet}$ sont homotopes.

Démonstration. Par définition il existe deux suites de morphismes de groupes $(f_n: A_n \to B_{n+1})_{n \in \mathbb{Z}}$ et $(g_n: B_n \to C_{n+1})_{n \in \mathbb{Z}}$ telles que pour tout $n \in \mathbb{Z}$, on a $\varphi_n - \psi_n = f_{n-1} d_n + d_n f_n$ et $\alpha_n - \beta_n = g_{n-1} d_n + d_n g_n$. Soit $n \in \mathbb{Z}$. Alors on a:

$$\begin{split} \alpha_n \circ \varphi_n - \beta_n \circ \psi_n &= \alpha_n \circ \varphi_n - \alpha_n \circ \psi_n + \alpha_n \circ \psi_n - \beta_n \circ \psi_n \\ &= \alpha_n \circ (\varphi_n - \psi_n) + (\alpha_n - \beta_n) \circ \psi_n \\ &= \alpha_n \circ (f_{n-1} \mathbf{d}_n + \mathbf{d}_n f_n) + (\mathbf{g}_{n-1} \mathbf{d}_n + \mathbf{d}_n f_n) \circ \psi_n \\ &= (a_n \circ f_{n-1}) \mathbf{d}_n + \mathbf{d}_n (a_{n+1} \circ f_n) + (\mathbf{g}_{n-1} \circ \psi_{n-1}) \mathbf{d}_n + \mathbf{d}_n (f_n \circ \psi_n) \\ &= (a_n \circ f_{n-1} + g_{n-1} \circ \psi_{n-1}) \mathbf{d}_n + \mathbf{d}_n (a_{n+1} \circ f_n + f_n \circ \psi_n) \end{split}$$

En posant $h_n := a_{n+1} \circ f_n + g_n \circ \psi_n$, on obtient l'égalité voulue $\alpha_n \circ \varphi_n - \beta_n \circ \psi_n = h_{n-1} d_n + d_n h_n$. Donc $\alpha_{\bullet} \circ \varphi_{\bullet}$ et $\beta_{\bullet} \circ \psi_{\bullet}$ sont bien homotopes.

Lemme 2.17. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\psi_{\bullet}: C_{\bullet} \to D_{\bullet}$ deux morphismes de complexes homotopes. Alors on a $H_{\bullet}(\varphi) = H_{\bullet}(\psi)$.

Démonstration. Par définition il existe une suite de morphismes de groupes $(h_n:C_n\to D_{n+1})_{n\in\mathbb{Z}}$ telle que pour tout $n\in\mathbb{Z}$, on a $\varphi_n-\psi_n=h_{n-1}\mathrm{d}_n+\mathrm{d}_nh_n$.

Soit
$$n \in \mathbb{Z}$$
 et $\overline{c} \in H_n(C_{\bullet})$. Alors on a $\varphi_n(c) - \psi_n(c) = h_{n-1}(d_nc) + d_nh_n(c) = d_nh_n(c) \in B_n(D_{\bullet})$, on en déduit $H_n(\varphi)(c) - H_n(\psi)(c) = 0 \in H_n(D_{\bullet})$. Donc $H_{\bullet}(\varphi) = H_{\bullet}(\psi)$.

2.4.2. Complexe de chaînes quotient

Définition 2.18. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes. On dit que D_{\bullet} est un *sous-complexe de chaînes de* C_{\bullet} si pour tout $n \in \mathbb{Z}$, on a $D_n \subset C_n$.

Proposition 2.19. Soit C_{\bullet} un complexe de chaînes et D_{\bullet} un sous-complexe de chaînes de C_{\bullet} . Alors pour tout $n \in \mathbb{Z}$, d_n induit un morphisme $\overline{d}_n : C_n/D_n \to C_{n-1}/D_{n-1}$ tel que $\overline{d}_n \overline{d}_{n+1} = 0$.

 $D\acute{e}monstration.$ Soit $n \in \mathbb{Z}$. Alors on a $D_n \subset C_n$, on peut donc former le quotient C_n/D_n . On pose $\delta_n \coloneqq \overline{d_n}: C_n \to C_{n-1}/D_{n-1}$, alors $D_n \subset \ker(\delta_n)$ et d'après la propriété universelle du groupe quotient δ_n induit bien un morphisme $\overline{d_n}: C_n/D_n \to C_{n-1}/D_{n-1}$. Enfin puisque $d_n d_{n+1} = 0$, on a bien $\overline{d_n} \overline{d_{n+1}} = \overline{d_n} d_{n+1} = 0$.

Proposition 2.20. Soit C_{\bullet} un complexe de chaînes et D_{\bullet} un sous-complexe de chaînes de C_{\bullet} . Alors la suite $(C_n/D_n)_{n\in\mathbb{Z}}$ munie des morphismes de bords induits $(\overline{\mathbf{d}}_n:C_n/D_n\to C_{n-1}/D_{n-1})_{n\in\mathbb{Z}}$ forme un complexe de chaînes.

Définition 2.21. Soit C_{\bullet} un complexe de chaînes et D_{\bullet} un sous-complexe de chaînes de C_{\bullet} . On appelle *complexe de chaînes quotient* le complexe de chaînes C_{\bullet}/D_{\bullet} .

Proposition 2.22. Soit A_{\bullet}/B_{\bullet} et C_{\bullet}/D_{\bullet} deux complexes de chaînes et $\varphi_{\bullet}: A_{\bullet} \to C_{\bullet}$ un morphisme de complexes. Si $\varphi_{\bullet}(B_{\bullet}) \subset D_{\bullet}$, alors φ_{\bullet} induit un morphisme de complexes $\overline{\varphi}_{\bullet}: A_{\bullet}/B_{\bullet} \to C_{\bullet}/D_{\bullet}$.

Démonstration. Pour tout $n \in \mathbb{Z}$, on considère $\overline{\varphi_n} : A_n \to C_n/D_n$, alors puisque $\varphi_n(B_n) \subset D_n$, on en déduit $B_n \subset \ker(\overline{\varphi_n})$ et d'après la propriété universelle du groupe quotient $\overline{\varphi_n}$ induit un morphisme $\overline{\varphi_n} : A_n/B_n \to C_n/D_n$. On pose $\overline{\varphi_\bullet} := (\overline{\varphi_n})_{n \in \mathbb{Z}}$

Soit $n \in \mathbb{Z}$. Alors par définition $\overline{\mathrm{d}}_n \overline{\varphi}_n = \overline{\mathrm{d}}_n \varphi_n = \overline{\varphi}_{n-1} \overline{\mathrm{d}}_n = \overline{\varphi}_{n-1} \overline{\mathrm{d}}_n$. Donc φ_{\bullet} est bien un morphisme de complexes.

2.4.3. Exactitude

Définition 2.23. On dit qu'une suite courte de complexes de chaînes est exacte, notée :

$$0 \longrightarrow A_{\bullet} \xrightarrow{\varphi_{\bullet}} B_{\bullet} \xrightarrow{\psi_{\bullet}} C_{\bullet} \longrightarrow 0$$

si pour tout $n \in \mathbb{Z}$, la suite courte suivante est exacte :

$$0 \longrightarrow A_n \xrightarrow{\varphi_n} B_n \xrightarrow{\psi_n} C_n \longrightarrow 0$$

c'est-à-dire que φ_n est injectif, $\operatorname{im}(\varphi_n) = \ker(\psi_n)$ et ψ_n est surjectif.

Lemme 2.24. Soit une suite exacte courte de complexes de chaînes :

$$0 \longrightarrow A_{\bullet} \xrightarrow{\varphi_{\bullet}} B_{\bullet} \xrightarrow{\psi_{\bullet}} C_{\bullet} \longrightarrow 0$$

Alors pour tout $n \in \mathbb{Z}$, il existe un morphisme de groupes $\partial_n : H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet})$ telle que la suite longue des groupes d'homologie est exacte :

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A_{\bullet}) \xrightarrow{H_n(\varphi)} H_n(B_{\bullet}) \xrightarrow{H_n(\psi)} H_n(C_{\bullet}) \xrightarrow{\partial_n} H_{n-1}(A_{\bullet}) \xrightarrow{H_{n-1}(\varphi)} \cdots$$

De plus pour tout diagramme commutatif:

$$0 \longrightarrow A_{\bullet} \xrightarrow{\varphi_{\bullet}} B_{\bullet} \xrightarrow{\psi_{\bullet}} C_{\bullet} \longrightarrow 0$$

$$\downarrow f_{\bullet} \qquad \downarrow g_{\bullet} \qquad \downarrow h_{\bullet}$$

$$0 \longrightarrow A'_{\bullet} \xrightarrow{\varphi'_{\bullet}} B'_{\bullet} \xrightarrow{\psi'_{\bullet}} C'_{\bullet} \longrightarrow 0$$

la transformation ∂_n est naturelle dans le sens où le diagramme suivant est commutatif :

$$H_n(C_{\bullet}) \xrightarrow{H_n(h)} H_n(C'_{\bullet})$$

$$\partial_n \downarrow \qquad \qquad \downarrow \partial_n$$

$$H_{n-1}(A_{\bullet}) \xrightarrow{H_{n-1}(f)} H_{n-1}(A'_{\bullet})$$

Remarque 2.25. La naturalité de ∂_n coïncide bien avec la notion introduite dans le Chapitre 1.3 si on considère la catégorie des suites exactes courtes de complexes.

Démonstration. Soit $n \in \mathbb{Z}$. On commence par faire un diagramme en 3 dimensions pour la suite :

Soit $\overline{c} \in H_n(C_{\bullet})$. Puisque ψ_n est surjective par exactitude, il existe $b \in B_n$ tel que $\psi_n(b) = c$. De plus on a $\psi_{n-1}(\operatorname{d}_n b) = \operatorname{d}_n \psi_n(b) = \operatorname{d}_n c = 0$, donc $\operatorname{d}_n b \in \ker(\psi_{n-1})$ et par exactitude il existe $a \in A_{n-1}$ tel que $\varphi_{n-1}(a) = \operatorname{d}_n b$. De plus on a $\varphi_{n-2}(\operatorname{d}_{n-1}a) = \operatorname{d}_{n-1}\varphi_{n-1}(a) = \operatorname{d}_{n-1}\operatorname{d}_n b = 0$, puisque φ_{n-2} est injective par exactitude, on a $\operatorname{d}_{n-1}a = 0$, donc $a \in Z_{n-1}(A_{\bullet})$. Donc on pose $\partial_n \overline{c} := \overline{a} \in H_{n-1}(A_{\bullet})$.

Vérifions que $\partial_n \overline{c}$ ne dépend pas des choix réalisés. Soit $b' \in B_n$ tel que $\psi_n(b') = c$ et $a' \in A_{n-1}$ tel que $d_n b' = \varphi_{n-1}(a')$. Alors on a $\psi_n(b-b') = c - c = 0$, donc $b-b' \in \ker(\psi_n)$ et par exactitude il existe $\hat{a} \in A_n$ tel que $\varphi_n(\hat{a}) = b - b'$. Alors $\varphi_{n-1}(d_n \hat{a}) = d_n b - d_n b' = \varphi_{n-1}(a-a')$, puisque $\varphi_{n-1}(a) = 0$ est injective par exactitude, on a $d_n \hat{a} = a - a'$, donc $a - a' \in B_{n-1}(A_{\bullet})$ et $\overline{a} = \overline{a'} \in H_{n-1}(A_{\bullet})$.

Vérifions que la suite longue est exacte.

- Soit $\overline{a} \in \operatorname{im}(\partial_{n+1})$. Par construction il existe $b \in B_{n+1}$ tel que $\varphi_n(a) = \operatorname{d}_{n+1}b$, d'où $\varphi_n(a) \in B_n(B_{\bullet})$ et $H_n(\varphi)(\overline{a}) = 0 \in H_n(B_{\bullet})$. Donc $\overline{a} \in \ker(H_n(\varphi))$.
 - Soit $\overline{a} \in \ker(H_n(\varphi))$. Alors $\varphi_n(a) \in B_n(B_{\bullet})$ et il existe $b \in B_{n+1}$ tel que $\varphi_n(a) = \mathrm{d}_{n+1}b$. De plus par exactitude on a $d_{n+1}\psi_{n+1}(b) = \psi_n(\mathrm{d}_{n+1}(b)) = \psi_n(\varphi_n(a)) = 0$, d'où $\psi_{n+1}(b) \in Z_{n+1}(C_{\bullet})$, et par construction on retrouve bien $\partial_n \overline{\psi}_{n+1}(b) = \overline{a} \in H_n(A_{\bullet})$. Donc $\overline{a} \in \operatorname{im}(\partial_{n+1})$.
- Soit $b \in \operatorname{im}(H_n(\varphi))$. Il existe $a \in A_n$ tel que $\varphi_n(a) = b$. Alors on a $b \in \operatorname{im}(\varphi_n)$ et par exactitude $b \in \ker(\psi_n)$. Donc $\overline{b} \in \ker(H_n(\psi))$.
 - Soit $\overline{b} \in \ker(H_n(\psi))$. Alors $\psi_n(b) \in B_n(C_{\bullet})$ et il existe $c \in C_{n+1}$ tel que $\psi_n(b) = \mathrm{d}_{n+1}c$. Puisque ψ_{n+1} est surjective par exactitude, il existe $b' \in B_{n+1}$ tel que $\psi_{n+1}(b') = c$. De plus on a $\psi_n(d_{n+1}b') = \mathrm{d}_{n+1}\psi_{n+1}(b') = \mathrm{d}_{n+1}c = \psi_n(b)$, donc $b \mathrm{d}_{n+1}b' \in \ker(\psi_n)$ et par exactitude il existe $a \in A_n$ tel que $\varphi_n(a) = b \mathrm{d}_{n+1}b'$. Alors $\varphi_{n-1}(\mathrm{d}_n a) = \mathrm{d}_n b \mathrm{d}_n \mathrm{d}_{n+1}b' = \mathrm{d}_n b = 0$, puisque φ_{n-1} est injective par exactitude, on a $\mathrm{d}_n a = 0$, donc $a \in Z_n(A_{\bullet})$. De plus $H_n(\varphi)(\overline{a}) = \overline{b} \in H_n(B_{\bullet})$. Donc $\overline{b} \in \operatorname{im}(H_n(\varphi))$.
- Soit $\bar{c} \in \operatorname{im}(H_n(\psi))$. Il existe $b \in Z_n(B_{\bullet})$ tel que $\psi_n(b) = c$. De plus on a $d_n b = 0 \in \ker(\psi_{n-1})$, par exactitude il existe $a \in A_{n-1}$ tel que $\varphi_{n-1}(a) = d_n b = 0$, puisque φ_{n-1} est injective par exactitude, on a a = 0 et par construction $\partial_n \bar{c} = \bar{a} = 0 \in H_{n-1}(A_{\bullet})$. Donc $\bar{c} \in \ker(\partial_n)$.

Soit $\overline{c} \in \ker(\partial_n)$. Alors $c \in Z_n(C_{\bullet})$, puisque ψ_n est surjective par exactitude, il existe $b \in B_n$ tel que $\psi_n(b) = c$, d'où $H_n(\psi)(\overline{b}) = \overline{c}$. Donc $\overline{c} \in \operatorname{im}(H_n(\psi))$.

Vérifions que ∂_n est naturelle. Soit $\bar{c} \in H_n(C_{\bullet})$.

Par construction il existe $b \in B_n$ tel que $\psi_n(b) = c$ et il existe $a \in Z_{n-1}(A_{\bullet})$ tel que $\varphi_{n-1}(a) = \mathrm{d}_n b$ et $\partial_n \overline{c} = \overline{a} \in H_{n-1}(A_{\bullet})$. Donc on a $H_{n-1}(f)(\partial_n \overline{c}) = \overline{f_{n-1}(a)} \in H_{n-1}(A_{\bullet}')$.

De plus $\psi_n'(g_n(b)) = h_n(\psi_n(b)) = h_n(c)$ et $\underline{\varphi_{n-1}'(f_{n-1}(a))} = g_{n-1}(\varphi_{n-1}(a)) = g_{n-1}(d_nb) = d_ng_n(b)$, alors par construction on a $\partial_n H_n(h)(\overline{c}) = \overline{f_{n-1}(a)} \in H_{n-1}(A_{\bullet}')$. Donc $H_{n-1}(f)(\partial_n) = \partial_n H_n(h)$.

Lemme 2.26. Soit C_{\bullet}/D_{\bullet} un complexe de chaînes. Alors pour tout $n \in \mathbb{Z}$, il existe un morphisme de groupes $\partial_n : H_n(C_{\bullet}/D_{\bullet}) \to H_{n-1}(D_{\bullet})$ telle que la suite longue suivante est exacte :

$$\cdots \xrightarrow{\partial_{n+1}} H_n(D_{\bullet}) \xrightarrow{H_n(i)} H_n(C_{\bullet}) \xrightarrow{H_n(\pi)} H_n(C_{\bullet}/D_{\bullet}) \xrightarrow{\partial_n} H_{n-1}(D_{\bullet}) \xrightarrow{H_{n-1}(i)} \cdots$$

où $i_{\bullet}: D_{\bullet} \to C_{\bullet}$ est l'inclusion canonique et $\pi_{\bullet}: C_{\bullet} \to C_{\bullet}/D_{\bullet}$ est la projection canonique.

Démonstration. Soit $n \in \mathbb{Z}$. Par définition l'inclusion $i_n : D_n \to C_n$ est injective, de plus on a clairement $\operatorname{im}(i_n) = D_n = \ker(\pi_n)$ et par définition la projection $\pi_n : C_n \to C_n/D_n$ est surjective. Donc on a une suite exacte courte de complexe de chaînes :

$$0 \; \longrightarrow \; D_{\bullet} \; \stackrel{i_{\bullet}}{\longrightarrow} \; C_{\bullet} \; \stackrel{\pi_{\bullet}}{\longrightarrow} \; C_{\bullet}/D_{\bullet} \; \longrightarrow \; 0$$

Alors d'après le Lemme 2.24 il existe bien un morphisme de groupes $\partial_n: H_n(C_{\bullet}/D_{\bullet}) \to H_{n-1}(D_{\bullet})$ tel que la suite longue est exacte.

3. Homologie singulière

3.1. Simplexes

Définition 3.1. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On dit que A est *convexe* si :

$$\forall p, q \in A, [p, q] := \{(1 - t)p + tq \mid t \in [0, 1]\} \subset A.$$

Définition 3.2. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. On appelle *combinaison convexe* une combinaison linéaire de la forme $t_0p_0 + \cdots + t_np_n$ où $t_0, ..., t_n \in [0, 1]$ et $t_0 + \cdots + t_n = 1$.

Proposition 3.3. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. Si A est convexe, alors toute combinaison convexe de $p_0, ..., p_n$ appartient à A.

Démonstration. Soit $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$. Notons $H(n): t_0p_0 + \cdots + t_np_n \in A$. Pour n=1. On pose $t:=t_1$, alors puisque A est convexe $t_0p_0 + t_1p_1 = (1-t)p_0 + tp_1 \in A$. Pour n>1. On suppose que H(n-1) est vérifiée. Sans perte de généralité, on suppose que $t_n \neq 0$, et on pose :

$$p \coloneqq \frac{t_0}{1 - t_n} p_0 + \dots + \frac{t_{n-1}}{1 - t_n} p_{n-1}$$

alors d'après H(n-1) on a $p \in A$. Par convexité on a $t_0p_0 + \cdots + t_np_n = (1-t_n)p + t_np_n \in A$. \square

Définition 3.4. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On appelle *enveloppe convexe de A*, notée $\operatorname{Conv}(A)$, l'ensemble des combinaisons convexes d'éléments de A.

Proposition 3.5. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. Alors l'enveloppe convexe de A est le plus petit ensemble convexe contenant A.

Démonstration. Soit $p, q \in \text{Conv}(A)$ et $t \in [0, 1]$. Puisque p et q sont des combinaisons convexes d'éléments de A, d'après la Proposition 3.3 on a $(1 - t)p + tq \in \text{Conv}(A)$. Donc l'ensemble Conv(A) est convexe.

Soit B un sous-ensemble convexe de E contenant A. Soit $x \in \text{Conv}(A)$. Puisque x est une combinaison convexe d'éléments de $A \subset B$, d'après la Proposition 3.3 on a $x \in B$. Donc $\text{Conv}(A) \subset B$. \square

Définition 3.6. Soit E un \mathbb{R} -espace vectoriel et F une famille libre de n+1 éléments de E. On appelle n-simplexe généré par F l'enveloppe convexe de F. On dit que les éléments de F sont les sommets de F0 et que F1 est la dimension de F2.

Définition 3.7. On appelle *n-simplexe standard*, noté Δ^n , le *n-*simplexe généré par la base canonique de \mathbb{R}^{n+1} .

Proposition 3.8. Soit E un \mathbb{R} -espace vectoriel et $F := (f_0, ..., f_n)$ une famille libre de n+1 éléments de E. Alors l'application :

$$\langle f_0, ..., f_n \rangle : \Delta^n \to \operatorname{Conv}(F); (t_0, ..., t_n) \mapsto t_0 f_0 + ... + t_n f_n$$

est un homéomorphisme.

Démonstration. Soit $(s_0,...,s_n), (t_0,...,t_n) \in \Delta^n$ tels que $s_0f_0 + ... + s_nf_n = t_0f_0 + ... + t_nf_n$. En particulier on a $(s_0 - t_0)f_0 + ... + (s_n - t_n)f_n = 0$, et puisque la famille $(f_0,...,f_n)$ est libre, on obtient $s_0 - t_0 = ... = s_n - t_n = 0$, c'est-à-dire $(s_0,...,s_n) = (t_0,...,t_n)$. Donc $\langle f_0,...,f_n \rangle$ est injective. Soit $x \in \text{Conv}(F)$. Alors il existe $(t_0,...,t_n) \in \Delta^n$ tels que $x := t_0f_0 + ... + t_nf_n$. Donc $\langle f_0,...,f_n \rangle$ est surjective. Puisque $\langle f_0,...,f_n \rangle$ est une application linéaire et que Δ^n est de dimension finie, $\langle f_0,...,f_n \rangle$ est continue. De plus Δ^n est compact et Conv(F) est séparé, donc $\langle f_0,...,f_n \rangle$ est un homéomorphisme.

Définition 3.9. Soit E un \mathbb{R} -espace vectoriel, $F := (f_0, ..., f_n)$ une famille libre de n+1 éléments de E et $x := t_0 f_0 + ... + t_n f_n$ un élément de $\operatorname{Conv}(F)$. On appelle *coordonnées barycentriques de x* les coefficients $t_0, ..., t_n \in [0, 1]$.

Définition 3.10. Soit E un \mathbb{R} -espace vectoriel, F une famille libre de n+1 éléments de E et G une famille non-vide d'éléments de m+1 éléments de F. On dit que $\operatorname{Conv}(G)$ est une m-face de $\operatorname{Conv}(F)$.

Fig. 3. – Un 2-simplexe standard. En vert les arêtes sont des 1-faces du triangle.

En rouge les sommets sont des 0-faces du triangle et des arêtes.

3.2. Chaînes singulières

Définition 3.11. Soit X un espace topologique. On appelle *n-simplexe singulier sur* X une application continue de Δ^n dans X.

Exemple 3.12. L'application $\langle e_0, ..., e_n \rangle$ de la Proposition 3.8, où $(e_0, ..., e_n)$ est la base canonique de \mathbb{R}^{n+1} , est un *n*-simplexe singulier sur \mathbb{R}^{n+1} .

Proposition 3.13. Soit X et Y deux espaces topologiques, $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X et $f: X \to Y$ une application continue. Alors la composition $f \circ \sigma: \Delta^n \to Y$ est un n-simplexe singulier sur Y.

Définition 3.14. Soit X un espace topologique. Pour tout $n \in \mathbb{Z}$, on appelle *groupe des n-chaînes singulières*, noté $C_n(X)$, le groupe abélien libre engendré par les n-simplexes singuliers sur X.

Démonstration. Puisque f est continue sur X et σ est continue sur Δ^n , par composition $f \circ \sigma$ est continue de Δ^n dans Y. Donc $f \circ \sigma$ est un n-simplexe singulier sur X.

Définition 3.15. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. Pour tout $n \in \mathbb{N}$, on appelle *application induite par* f, notée $C_n(f)$, le morphisme de groupes :

$$C_n(f): C_n(X) \to C_n(Y); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k (f \circ \sigma_k).$$

Proposition 3.16. Soit X, Y et Z trois espaces topologiques, $f: X \to Y$ et $g: Y \to Z$ deux applications continues. Alors pour tout $n \in \mathbb{N}$, on a $C_n(g \circ f) = C_n(g) \circ C_n(f)$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on a :

$$C_n(g\circ f)(\sigma)=(g\circ f)\circ\sigma=g\circ (f\circ\sigma)=g\circ C_n(f)(\sigma)=C_n(g)(C_n(f)(\sigma))$$

Proposition 3.17. Pour tout $n \in \mathbb{N}$, le groupe des n-chaînes singulières C_n est un foncteur de Top vers Ab.

Démonstration. Soit $n \in \mathbb{N}$.

- Soit X un espace topologique. Alors le groupe des n-chaînes singulières $C_n(X)$ est bien un groupe abélien.
- Soit X et Y deux espaces topologiques, $f: X \to Y$ une application continue. Alors l'application induite $C_n(f): C_n(X) \to C_n(Y)$ est bien un morphisme de groupes.

La propriété de composition découle de la Proposition 3.16 et la propriété d'identité découle directement de la définition, donc C_n est bien un foncteur de Top vers Ab.

Définition 3.18. Soit X un espace topologique et $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X. On appelle *bord de* σ , noté $d_n\sigma$, la (n-1)-chaîne singulière sur X définie par :

$$\mathbf{d}_n \sigma \coloneqq \sum_{k=0}^n (-1)^k \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ... e_n \right\rangle \right).$$

où le symbole - signifie que l'élément est enlevé.

Remarque 3.19. Le bord d'un n-simplexe singulier est la somme alternée de ses (n-1)-faces.

Définition 3.20. Soit X un espace topologique et $n \in \mathbb{N}$. On appelle *morphisme de bord*, noté d_n , le morphisme de groupes induit :

$$d_n: C_n(X) \to C_{n-1}(X); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k d_n \sigma_k.$$

Proposition 3.21. Soit X et Y deux espaces topologiques, $f: X \to Y$ une application continue. Alors pour tout $n \in \mathbb{N}$, on a $d_n C_n(f) = C_{n-1}(f) d_n$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on a :

$$d_n C_n(f)(\sigma) = \sum_{k=0}^n (-1)^k \left((f \circ \sigma) \circ \left\langle e_0, ..., \widehat{e_k}, ..., e_n \right\rangle \right)$$
$$= \sum_{k=0}^n (-1)^k \left(f \circ \left(\sigma \circ \left\langle e_0, ..., \widehat{e_k}, ..., e_n \right\rangle \right) \right)$$
$$= C_{n-1}(f)(d_n \sigma).$$

Proposition 3.22. Soit *X* un espace topologique. Alors pour tout $n \in \mathbb{N}$, on a $d_n d_{n+1} = 0$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un (n+1)-simplexe singulier $\sigma: \Delta^{n+1} \to X$. Alors on a :

$$d_{n+1}\sigma = \sum_{k=0}^{n+1} (-1)^k (\sigma \circ \langle e_0, ..., e_k, ..., e_{n+1} \rangle)$$

donc en appliquant d_n , on obtient :

$$\mathbf{d}_{n}\mathbf{d}_{n+1}\sigma = \mathbf{d}_{n}\left(\sum_{k=0}^{n+1} (-1)^{k} \left(\sigma \circ \left\langle e_{0}, ..., \overline{e_{k}}, ..., e_{n+1} \right\rangle \right)\right)$$
$$= \sum_{k=0}^{n+1} (-1)^{k} \mathbf{d}_{n} \left(\sigma \circ \left\langle e_{0}, ..., \overline{e_{k}}, ..., e_{n+1} \right\rangle \right)$$

on sépare la somme en deux selon les éléments enlevés :

$$\begin{split} \mathbf{d}_{n}\mathbf{d}_{n+1}\sigma &= \sum_{0 \leq k < l \leq n+1} \left(-1\right)^{k+l} \! \left(\sigma \circ \left\langle e_{0}, \, ..., \, \overline{e_{k}}, \, ..., \, \overline{e_{l}}, \, ..., \, e_{n+1} \right\rangle \right) \\ &+ \sum_{0 \leq l < k \leq n+1} \left(-1\right)^{k+l-1} \! \left(\sigma \circ \left\langle e_{0}, \, ..., \, \overline{e_{l}}, \, ..., \, \overline{e_{k}}, \, ..., \, e_{n+1} \right\rangle \right) \\ &= \sum_{0 \leq k < l \leq n+1} \! \left(\left(-1\right)^{k+l} + \left(-1\right)^{k+l+1} \! \right) \! \left(\sigma \circ \left\langle e_{0}, \, ..., \, \overline{e_{k}}, \, ..., \, \overline{e_{l}}, \, ..., \, e_{n+1} \right\rangle \right) \\ &= 0 \end{split}$$

car les puissances de −1 s'annulent.

3.3. Définitions de l'homologie singulière

3.3.1. D'un espace topologique

Proposition 3.23. La suite $(C_n)_{n\in\mathbb{Z}}$ où pour tout n<0, on pose $C_n:=0$, munie des morphismes des bords $(d_n:C_n\to C_{n-1})_{n\in\mathbb{Z}}$ est un foncteur de Top vers Comp.

Démonstration. Soit $n \in \mathbb{Z}$.

- Soit X un espace topologique. Alors la suite $(C_n(X))_{n\in\mathbb{Z}}$ munie des morphismes de bords $(d_n:C_n(X)\to C_{n-1}(X))_{n\in\mathbb{Z}}$ est bien un complexe de chaînes d'après la Proposition 3.22.
- Soit X et Y deux espaces topologiques, $f: X \to Y$ une application continue. Alors la suite des applications induites $(C_n(f): C_n(X) \to C_n(Y))_{n \in \mathbb{Z}}$ est bien un morphisme de complexes d'après la Proposition 3.21.

La propriété de composition découle de la Proposition 3.16 et la propriété d'identité découle directement de la définition, donc C_n est bien un foncteur de Top vers Comp.

Définition 3.24. Soit X un espace topologique. On appelle *complexe de chaînes singulières de* X, noté $C_{\bullet}(X)$, le complexe de chaînes déterminé par la suite $(C_n(X))_{n\in\mathbb{N}}$ munie des morphismes de bords $(d_n: C_n(X) \to C_{n-1}(X))_{n\in\mathbb{N}}$.

Définition 3.25. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$.

- On appelle *n-cycle singulier* un élément de $Z_n(X) := Z_n(C_{\bullet}(X))$.
- On appelle *n-bord singulier* un élément de $B_n(X) := B_n(C_{\bullet}(X))$.
- On appelle n^e groupe d'homologie singulière de X le groupe $H_n(X) := H_n(C_{\bullet}(X))$.
- On appelle homologie singulière de X le groupe $H_{\bullet}(X) := H_{\bullet}(C_{\bullet}(X))$.

Définition 3.26. Soit X et Y deux espaces topologiques, $f: X \to Y$ une application continue. On appelle *morphisme de complexes induit par* f, notée $f_{\bullet}: C_{\bullet}(X) \to C_{\bullet}(Y)$, la suite des applications induites $f_{\bullet}:=(C_n(f):C_n(X)\to C_n(Y))_{n\in\mathbb{Z}}$

Corollaire 3.27. Pour tout $n \in \mathbb{Z}$, le n^e groupe d'homologie singulière H_n est un foncteur de Top vers Ab.

Démonstration. Soit $n \in \mathbb{Z}$. D'après la Proposition 3.23 C_{\bullet} est un foncteur de Top vers Comp et d'après le Théorème 2.12 H_n est un foncteur de Comp vers Ab, par composition $H_n = H_n(C_{\bullet})$ est bien un foncteur de Top vers Ab. □

Corollaire 3.28. L'homologie singulière H_{\bullet} est un foncteur de Top vers GrAb.

Démonstration. D'après la Proposition 3.23 C_{\bullet} est un foncteur de Top vers Comp et d'après le Corollaire 2.13 H_{\bullet} est un foncteur de Comp vers GrAb, par composition $H_{\bullet} = H_{\bullet}(C_{\bullet})$ est bien un foncteur de Top vers GrAb.

3.3.2. D'une paire d'espace topologique

Proposition 3.29. La suite $(C_n/C_n)_{n\in\mathbb{Z}}$ où pour tout n<0, on pose $C_n:=0$, munie des morphismes des bords induits $\left(\overline{\mathbf{d}}_n:C_n/C_n\to C_{n-1}/C_{n-1}\right)_{n\in\mathbb{Z}}$ est un foncteur de Top_2 vers Comp .

Démonstration. Soit $n \in \mathbb{Z}$.

- Soit (X,A) une paire d'espaces topologiques. Alors il est clair que $C_{\bullet}(A)$ est un sous-complexe de chaînes de $C_{\bullet}(X)$, donc la suite $(C_n(X)/C_n(A))_{n\in\mathbb{Z}}$ munie des morphismes de bords induits $\left(\overline{\mathrm{d}}_n:C_n(X)/C_n(A)\to C_{n-1}(X)/C_{n-1}(A)\right)_{n\in\mathbb{Z}}$ est bien un complexe de chaînes d'après la Proposition 2.19
- Soit (X,A) et (Y,B) deux paires d'espaces topologiques, $f:(X,A)\to (Y,B)$ un morphisme de paires. Alors il est clair que $f_{\bullet}(C_{\bullet}(A))\subset C_{\bullet}(B)$, donc le morphisme induit $\overline{f}_{\bullet}:C_n(X)/C_n(A)\to C_n(Y)/C_n(B)$ est bien un morphisme de complexes d'après la Proposition 2.22.

La propriété de composition découle de la Proposition 3.16 par passage au quotient et la propriété d'identité découle directement de la définition, donc C_n est bien un foncteur de Top vers Comp. \square

Définition 3.30. Soit (X,A) une paire d'espaces topologiques. On appelle *complexe de chaînes singulières de la paire* (X,A), noté $C_{\bullet}(X,A)$, le complexe de chaînes quotient $C_{\bullet}(X,A) := C_{\bullet}(X)/C_{\bullet}(A)$.

Définition 3.31. Soit $C_{\bullet}(X, A)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$.

- On appelle *n-cycle singulier* un élément de $Z_n(X,A) := Z_n(C_{\bullet}(X)/C_{\bullet}(A))$.
- On appelle *n*-bord singulier un élément de $B_n(X,A) := B_n(C_{\bullet}(X)/C_{\bullet}(A))$.
- On appelle n^e groupe d'homologie singulière de X le groupe $H_n(X,A) := H_n(C_{\bullet}(X)/C_{\bullet}(A))$.
- On appelle homologie singulière de X le groupe $H_{\bullet}(X,A) := H_{\bullet}(C_{\bullet}(X)/C_{\bullet}(A))$.

Corollaire 3.32. Pour tout $n \in \mathbb{Z}$, le n^e groupe d'homologie singulière de paires H_n est un foncteur de Top₂ vers Ab.

Démonstration. Soit $n \in \mathbb{Z}$. D'après la Proposition 3.29 C_{\bullet} est un foncteur de Top₂ vers Comp et d'après le Théorème 2.12 H_n est un foncteur de Comp vers Ab, par composition $H_n = H_n(C_{\bullet})$ est bien un foncteur de Top₂ vers Ab. □

Corollaire 3.33. L'homologie singulière de paires H_{\bullet} est un foncteur de Top₂ vers GrAb.

Démonstration. D'après la Proposition 3.29 C_{\bullet} est un foncteur de Top₂ vers Comp et d'après le Corollaire 2.13 H_{\bullet} est un foncteur de Comp vers GrAb, par composition $H_{\bullet} = H_{\bullet}(C_{\bullet})$ est bien un foncteur de Top₂ vers GrAb.

3.4. Axiomes d'Eilenberg-Steenrod et principales propriétés

Théorème 3.34 (Axiome de dimension). Soit P un espace topologique constitué d'un unique point. Alors pour tout $n \in \mathbb{Z}$, on a :

$$H_n(P) \simeq \begin{cases} \mathbb{Z} & \text{si } n = 0\\ 0 & \text{sinon} \end{cases}$$

Démonstration. Soit $n \in \mathbb{Z}$. Si n < 0, on a clairement $H_n(P) \simeq 0$.

Si $n \ge 0$, il existe un unique n-simplexe singulier $\sigma_n : \Delta^n \to P$, alors on a :

$$d_n \sigma_n = \sum_{k=0}^n (-1)^k \sigma_{n-1} = \begin{cases} 0 & \text{si } n = 0 \text{ ou } n \text{ est impair} \\ \sigma_{n-1} & \text{si } n \neq 0 \text{ et } n \text{ est pair} \end{cases}$$

dans le cas n=0, alors $H_0(P)=\langle\sigma_0\rangle/0\simeq\mathbb{Z}$, dans le cas $n\neq 0$ et n est impair, alors $H_n(P)=\langle\sigma_n\rangle/\langle\sigma_n\rangle\simeq 0$, dans le cas $n\neq 0$ et n est pair, alors $H_n(P)=0/0\simeq 0$.

Définition 3.35. Soit X et Y deux espaces topologiques, $f: X \to Y$ et $g: X \to Y$ deux applications continues. On dit que f et g sont *homotopes* s'il existe une application continue $h: X \times [0,1] \to Y$ telle que pour tout $x \in X$, on a f(x) = h(x,0) et g(x) = h(x,1).

Lemme 3.36. Soit X et Y deux espaces topologiques, $f: X \to Y$ et $g: X \to Y$ deux applications continues homotopes. Alors les morphismes de complexes $f_{\bullet}: C_{\bullet}(X) \to C_{\bullet}(Y)$ et $g: C_{\bullet}(X) \to C_{\bullet}(Y)$ sont homotopes.

Démonstration. Par définition de l'homotopie il existe une application continue $h: X \times [0,1] \to Y$ telle que f(x) = h(x,0) et g(x) = h(x,1).

Soit $n \in \mathbb{Z}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de définir une homotopie pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on pose :

$$h_n(\sigma) := \sum_{k=0}^{n} (-1)^k (h \circ (\sigma \times id) \circ \langle f_0, ..., f_k, g_k, ..., g_n \rangle) \in C_{n+1}(Y)$$

où $(f_0,...,f_n) := (e_0 \times \{1\},...,e_n \times \{1\})$ et $(g_0,...,g_n) := (e_0 \times \{0\},...,e_n \times \{0\})$. Calculons maintenant les deux expressions qui nous intéressent :

$$\begin{split} h_{n-1}(\mathbf{d}_n\sigma) &= h_n \bigg(\sum_{l=0}^n (-1)^l \Big(\sigma \circ \left\langle e_0, ..., \widehat{e_l}, ..., e_n \right\rangle \Big) \bigg) \\ &= \sum_{0 \leq k < l \leq n} (-1)^{k+l} \Big(h \circ (\sigma \times \mathrm{id}) \circ \left\langle f_0, ..., f_k, g_k, ..., \widehat{g_l}, ..., g_n \right\rangle \Big) \\ &+ \sum_{0 \leq l < k \leq n} (-1)^{k+l-1} \Big(h \circ (\sigma \times \mathrm{id}) \circ \left\langle f_0, ..., \widehat{f_l}, ..., f_k, g_k, ..., g_n \right\rangle \Big) \end{split}$$

et:

$$\begin{split} \mathbf{d}_{n}h_{n}(\sigma) &= \mathbf{d}_{n} \sum_{k=0}^{n} \left(-1\right)^{k} \left(h \circ \left(\sigma \times \mathrm{id}\right) \circ \left\langle f_{0}, ..., f_{k}, g_{k}, ..., g_{n}\right\rangle\right) \\ &= \sum_{0 \leq l \leq k \leq n} \left(-1\right)^{k+l} \left(h \circ \left(\sigma \times \mathrm{id}\right) \circ \left\langle f_{0}, ..., \overbrace{f_{l}}, ..., f_{k}, g_{k}, ..., g_{n}\right\rangle\right) \\ &+ \sum_{0 \leq k \leq l \leq n} \left(-1\right)^{k+l-1} \left(h \circ \left(\sigma \times \mathrm{id}\right) \circ \left\langle f_{0}, ..., f_{k}, g_{k}, ..., \overline{g_{l}}, ..., g_{n}\right\rangle\right) \end{split}$$

en faisant la somme des deux expressions les termes d'indices différents s'annulent deux à deux :

$$h_{n-1}(\mathbf{d}_{n}\sigma) + \mathbf{d}_{n}h_{n}(\sigma) = \sum_{k=0}^{n} (h \circ (\sigma \times \mathrm{id}) \circ \langle f_{0}, ..., f_{k-1}, g_{k}, ..., g_{n} \rangle)$$

$$- \sum_{k=0}^{n} (h \circ (\sigma \times \mathrm{id}) \circ \langle f_{0}, ..., f_{k}, g_{k+1}, ..., g_{n} \rangle)$$

$$= (h \circ (\sigma \times \mathrm{id}) \circ \langle g_{0}, ..., g_{n} \rangle) - (h \circ (\sigma \times \mathrm{id}) \circ \langle f_{0}, ..., f_{n} \rangle)$$

$$= (h \circ (\sigma \times \{0\})) - (h \circ (\sigma \times \{1\}))$$

$$= (f \circ \sigma) - (g \circ \sigma)$$

$$= C_{n}(f)(\sigma) - C_{n}(g)(\sigma)$$

Donc les morphismes de complexes f_{\bullet} et g_{\bullet} sont bien homotopes.

Théorème 3.37 (Axiome d'homotopie). Soit X et Y deux espaces topologiques, $f: X \to Y$ et $g: X \to Y$ deux applications continues homotopes. Alors on a $H_{\bullet}(f) = H_{\bullet}(g)$.

Démonstration. Puisque f et g sont homotopes, d'après le Lemme 3.36 f_{\bullet} et g_{\bullet} sont homotopes. Donc d'après le Lemme 2.17 on a bien $H_{\bullet}(f) = H_{\bullet}(g)$.

Définition 3.38. Soit X et Y deux espaces topologiques. On dit que X et Y sont *homotopiquement* équivalents s'il existe deux applications continues $f: X \to Y$ et $g: Y \to X$ telles que $g \circ f$ est homotope à id_X et $f \circ g$ est homotope à id_Y .

Corollaire 3.39. Soit X et Y deux espaces topologiques homotopiquement équivalents. Alors les homologies $H_{\bullet}(X)$ et $H_{\bullet}(Y)$ sont isomorphes.

Démonstration. Par définition il existe deux applications continues $f: X \to Y$ et $g: Y \to X$ telles que $g \circ f$ est homotope à id_X et $f \circ g$ est homotope à id_Y . Alors d'après l'Axiome d'homotopie on a bien $H_{\bullet}(g) \circ H_{\bullet}(f) = \mathrm{id}_{H_{\bullet}(X)}$ et $H_{\bullet}(f) \circ H_{\bullet}(g) = \mathrm{id}_{H_{\bullet}(Y)}$, donc $H_{\bullet}(X) \simeq H_{\bullet}(Y)$.

Définition 3.40. Soit X un espace topologique et A un sous-ensemble de X. On dit que A est un rétract par déformation de X s'il existe une application continue $f: X \to X$ homotope à id_X telle que pour tout $x \in X$, on a $f(x) \in A$ et pour tout $a \in A$, on a f(a) = a.

Corollaire 3.41. Soit X un espace topologique et A un rétract par déformation de X. Alors les homologies $H_{\bullet}(X)$ et $H_{\bullet}(A)$ sont isomorphes.

Démonstration. Notons $i: A \to X$ l'inclusion canonique. Par définition il existe une application continue $f: X \to X$ homotope à id_X telle que pour tout $x \in X$, on a $f(x) \in A$ et pour tout $a \in A$, on a f(a) = a. Alors on a $f \circ i = \mathrm{id}_A$ et $i \circ f$ est homotope à id_X , donc d'après le Corollaire 3.39 on a bien $H_{\bullet}(X) \simeq H_{\bullet}(A)$. □

Théorème 3.42 (Axiome d'exactitude). Soit $C_{\bullet}(X,A)$ un complexe de chaînes singulières. Alors pour tout $n \in \mathbb{Z}$, il existe un morphisme de groupes $\partial_n : H_n(X,A) \to H_{n-1}(A)$ telle que la suite longue suivante est exacte :

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A) \xrightarrow{H_n(i)} H_n(X) \xrightarrow{H_n(j)} H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A) \xrightarrow{H_{n-1}(i)} \cdots$$

où $i: A \to X$ et $j: (X, \emptyset) \to (X, A)$ sont les inclusions canoniques.

Démonstration. On remarque que $i_{\bullet}: C_{\bullet}(A) \to C_{\bullet}(X)$ est l'inclusion canonique et qu'en passant au quotient $\bar{j}_{\bullet}: C_{\bullet}(X,\varnothing) \simeq C_{\bullet}(X) \to C_{\bullet}(X,A)$ devient la projection canonique.

Donc d'après le Lemme 2.26 il existe bien un morphisme de groupes $\partial_n: H_n(X,A) \to H_{n-1}(A)$ tel que la suite longue est exacte.

Théorème 3.43 (Axiome d'excision). Soit (X,A) une paire d'espaces topologiques, U une partie de A telle que $\overline{U} \subset \mathring{A}$ et $i: (X \setminus U, A \setminus U) \to (X,A)$ l'inclusion canonique. Alors pour tout $n \in \mathbb{Z}$, le morphisme induit $H_n(i): H_n(X \setminus U, A \setminus U) \to H_n(X,A)$ est un isomorphisme.

Théorème 3.44 (Théorème de Mayer-Vietoris). Soit U et V deux ouverts d'un espace topologique. Alors pour tout $n \in \mathbb{Z}$, il existe un morphisme de groupes $\partial_n : H_n(U \cup V) \to H_{n-1}(U \cap V)$ tel que la suite longue suivante est exacte :

où $i_0:U\cap V\to U,\ i_1:U\cap V\to V,\ j_0:U\to U\cup V$ et $j_1:V\to U\cup V$ sont les inclusions canoniques

Définition 3.45. Une *théorie de l'homologie* sur la catégorie des paires d'espaces topologiques Top_2 dans la catégorie des groupes abéliens Ab est une suite de foncteurs $(H_n : \mathsf{Top}_2 \to \mathsf{Ab})_{n \in \mathbb{Z}}$ munie de transformations naturelles $(\partial_n : H_n(X,A) \to H_{n-1}(A) \coloneqq H_{n-1}(A,\varnothing))_{n \in \mathbb{Z}}$ vérifiant les *axiomes d'Eilenberg-Steenrod* pour toutes paires d'espaces topologiques (X,A), (Y,B) et $n \in \mathbb{Z}$:

- *Dimension*: Soit P un espace constitué d'un unique point. Alors le groupe $H_n(P)$ est non-trivial si et seulement si n=0.
- Homotopie: Soit $f:(X,A) \to (Y,B)$ et $g:(X,A) \to (Y,B)$ deux morphismes de paires homotopes. Alors on a $H_n(f) = H_n(g)$
- Exactitude: La suite longue suivante est exacte:

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A) \xrightarrow{H_n(i)} H_n(X) \xrightarrow{H_n(j)} H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A) \xrightarrow{H_{n-1}(i)} \cdots$$

où $i: A \to X$ et $j: (X, \emptyset) \to (X, A)$ sont les inclusions canoniques.

• Excision : Soit U une partie de A telle que $\overline{U} \subset \mathring{A}$ et $i: (X \setminus U, A \setminus U) \to (X, A)$ l'inclusion canonique. Alors le morphisme induit $H_n(i): H_n(X \setminus U, A \setminus U) \to H_n(X, A)$ est un isomorphisme.

Corollaire 3.46. La suite des n^e groupe d'homologie singulière de paires $(H_n : \mathsf{Top}_2 \to \mathsf{Ab})_{n \in \mathbb{Z}}$ munie des morphismes $(\partial_n : H_n(X,A) \to H_{n-1}(A))_{n \in \mathbb{Z}}$ est une théorie de l'homogie vérifiant les axiomes d'Eilenberg-Steenrod.

3.5. Cas particuliers

Proposition 3.47. Soit X un espace topologique. Alors $H_0(X)$ est un groupe abélien libre engendré par les composantes connexes par arc de X.

Démonstration. On a déjà $\ker(\partial_0) = C_0(X) \simeq X$. Le groupe abélien $C_1(X)$ est engendré par les applications continues de Δ^1 dans X. De plus pour tout $\sigma \in C_1(X)$, on a $\partial_1 \sigma = \sigma(1) - \sigma(0)$, puisque σ est une application continue les points $\sigma(0)$ et $\sigma(1)$ appartiennent à une même composante connexe par arcs de X, on en déduit :

 $\operatorname{im}(\partial_1) = \langle x - y \mid x, y \in X, x \text{ et } y \text{ appartiennent à la même composante connexe par arcs} \rangle$.

On a $H_0(X) := \ker(\partial_0)/ \operatorname{im}(\partial_1)$, par passage au quotient on a bien que $H_0(X)$ est un groupe abélien libre engendré par les composantes connexes par arcs de X.

Proposition 3.48. Soit \mathbb{S}^0 la sphère de dimension 0. Alors pour tout $n \in \mathbb{Z}$, on a :

$$H_n(\mathbb{S}^0) \simeq \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$$

Démonstration. On a $\mathbb{S}^0 \simeq \{-1,1\}$. Soit $n \in \mathbb{Z}$. Si n < 0, on a clairement $H_n(\mathbb{S}^0) \simeq 0$. Si $n \ge 0$, il existe uniquement deux n-simplexes singuliers $\sigma_{-1} \coloneqq -1$, $\sigma_1 \coloneqq 1 : \Delta^n \to \mathbb{S}^0$ et ils sont constants. On en déduit que $C_n(\mathbb{S}^0) \simeq \mathbb{Z} \oplus \mathbb{Z}$. Soit $\sigma : \Delta^n \to \mathbb{S}^0$ un n-simplexe singulier, on peut supposer sans perte de généralité que $\sigma = 1$, alors on a :

$$d_n \sigma = \sum_{k=0}^n (-1)^k = \begin{cases} 1 & \text{si } n \text{ est pair} \\ 0 & \text{si } n \text{ est impair} \end{cases}$$

dans le cas n=0, alors $H_0(\mathbb{S}^0)\simeq \mathbb{Z}\oplus \mathbb{Z}$, dans le cas n pair, alors $H_n(\mathbb{S}^0)\simeq 0/0\simeq 0$, dans le cas n impair, alors $H_n(\mathbb{S}^0)\simeq (\mathbb{Z}\oplus \mathbb{Z})/(\mathbb{Z}\oplus \mathbb{Z})\simeq 0$.

Proposition 3.49. Soit \mathbb{S}^1 la sphère de dimension 1. Alors pour tout $n \in \mathbb{Z}$, on a :

$$H_n(\mathbb{S}^1) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0, 1\} \\ 0 & \text{sinon} \end{cases}$$

 $D\'{e}monstration$. On recouvre \mathbb{S}^1 par deux arcs ouverts U et V dont l'intersection est composée de deux arcs disjoints :

Fig. 4. – Recouvrement de \mathbb{S}^1 .

Les arcs U et V sont homotopiquement équivalents à un point, et l'intersection $U \cap V$ est homotopiquement équivalente à \mathbb{S}^0 . D'après le Corollaire 3.39, l'Axiome de dimension et la Proposition 3.48, pour tout $n \in \mathbb{Z}$, on a :

$$H_n(U) \simeq H_n(V) \simeq \begin{cases} \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$$
 et $H_n(U \cap V) \simeq \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$

Alors d'après le Théorème de Mayer-Vietoris la suite suivante est exacte :

$$\cdots \ \to \ 0 \ \to \ H_2(\mathbb{S}^1) \ \stackrel{\partial_2}{\to} \ 0 \ \stackrel{\varphi_1}{\to} \ 0 \ \stackrel{\psi_1}{\to} \ H_1(\mathbb{S}^1) \ \stackrel{\partial_1}{\to} \ \mathbb{Z} \oplus \mathbb{Z} \ \stackrel{\varphi_0}{\to} \ \mathbb{Z} \oplus \mathbb{Z} \ \stackrel{\psi_0}{\to} \ H_0(\mathbb{S}^1) \ \to \ 0$$

On en déduit directement que si $n \ge 2$, on a $H_n(\mathbb{S}^1) \simeq 0$.

On étudie $\varphi_0 := (-H_0(i), H_0(j)) : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ où $i : U \cap V \to U$ et $j : U \cap V \to V$ sont les inclusions canoniques, alors il est clair que $\varphi_0(1,0) = \varphi_0(0,1) = (-1,1)$, donc pour tout $a,b \in \mathbb{Z}$, on a $\varphi_0(a,b) = (-(a+b),a+b)$.

Alors on a $\ker(\varphi_0) = \{(a, -a) \mid a \in \mathbb{Z}\} \simeq \mathbb{Z}$. Par exactitude de la suite, ∂_1 est injective et on a bien $H_1(\mathbb{S}^1) \simeq \operatorname{im}(\partial_1) = \ker(\varphi_0) \simeq \mathbb{Z}$.

Enfin on a $\operatorname{im}(\varphi_0) = \{(-(a+b), a+b) \mid a, b \in \mathbb{Z}\} \simeq \mathbb{Z}$. Par exactitude de la suite, ψ_0 est surjective et on a bien $H_0(\mathbb{S}^1) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \ker(\psi_0) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \operatorname{im}(\varphi_0) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \mathbb{Z} \simeq \mathbb{Z}$.

Proposition 3.50. Soit $\mathbb{S}^1 \vee \mathbb{S}^1$ deux sphères de dimension 1 ayant un point d'intersection. Alors pour tout $n \in \mathbb{Z}$, on a :

$$H_n(\mathbb{S}^1 \vee \mathbb{S}^1) \simeq \begin{cases} \mathbb{Z} & \text{si } n = 0 \\ \mathbb{Z} \oplus \mathbb{Z} & \text{si } n = 1 \\ 0 & \text{sinon} \end{cases}$$

Démonstration. On recouvre $\mathbb{S}^1 \vee \mathbb{S}^1$ par deux ouverts U et V recouvrant chacun un \mathbb{S}^1 :

Fig. 5. – Recouvrement de $\mathbb{S}^1 \vee \mathbb{S}^1$.

Les ouverts U et V sont homotopiquement équivalents à \mathbb{S}^1 , et l'intersection $U \cap V$ est homotopiquement équivalente à un point. D'après le Corollaire 3.39, l'Axiome de dimension et la Proposition 3.49, pour tout $n \in \mathbb{Z}$, on a :

$$H_n(U) \simeq H_n(V) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0,1\} \\ 0 & \text{sinon} \end{cases}$$
 et $H_n(U \cap V) \simeq \begin{cases} \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$

Alors d'après le Théorème de Mayer-Vietoris la suite suivante est exacte :

$$\cdots \rightarrow 0 \rightarrow H_2(\mathbb{S}^1 \vee \mathbb{S}^1) \stackrel{\partial_2}{\rightarrow} 0 \stackrel{\varphi_1}{\rightarrow} \mathbb{Z} \oplus \mathbb{Z} \stackrel{\psi_1}{\rightarrow} H_1(\mathbb{S}^1 \vee \mathbb{S}^1) \stackrel{\partial_1}{\rightarrow} \mathbb{Z} \stackrel{\varphi_0}{\rightarrow} \mathbb{Z} \oplus \mathbb{Z} \stackrel{\psi_0}{\rightarrow} H_0(\mathbb{S}^1 \vee \mathbb{S}^1) \rightarrow 0$$

On en déduit directement que si $n \ge 2$, on a $H_n(\mathbb{S}^1 \vee \mathbb{S}^1) \simeq 0$.

En étudiant $\varphi_0 : \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ on trouve que pour tout $a \in \mathbb{Z}$, on a $\varphi_0(a) = (-a, a)$.

Alors on a $\ker(\varphi_0) \simeq 0$. Par exactitude de la suite, ψ_1 est injective, de plus $\operatorname{im}(\partial_1) = \ker(\varphi_0) \simeq 0$ et on a bien $H_1(\mathbb{S}^1 \vee \mathbb{S}^1) \simeq \operatorname{im}(\psi_1) = \ker(\partial_1) = \mathbb{Z} \oplus \mathbb{Z}$.

Enfin on a $\operatorname{im}(\varphi_0) = \{(-a,a) \mid a \in \mathbb{Z}\} \simeq \mathbb{Z}$. Par exactitude de la suite, ψ_0 est surjective et on a bien $H_0(\mathbb{S}^1 \vee \mathbb{S}^1) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \operatorname{im}(\varphi_0) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \mathbb{Z} \simeq \mathbb{Z}$.

Proposition 3.51. Soit \mathbb{T}^2 un tore. Alors pour tout $n \in \mathbb{Z}$, on a :

$$H_n(\mathbb{T}^2) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0, 2\} \\ \mathbb{Z} \oplus \mathbb{Z} & \text{si } n = 1 \\ 0 & \text{sinon} \end{cases}$$

Démonstration. On recouvre \mathbb{T}^2 par deux ouverts U et V de la manière suivante :

Fig. 6. – Recouvrement de \mathbb{T}^2 .

L'ouvert U est homotopiquement équivalent à $\mathbb{S}^1 \vee \mathbb{S}^1$, l'ouvert V est homotopiquement équivalent à un point, et l'intersection $U \cap V$ est homotopiquement équivalente à \mathbb{S}^1 . D'après le Corollaire 3.39, l'Axiome de dimension, la Proposition 3.49 et la Proposition 3.50, pour tout $n \in \mathbb{Z}$, on a :

$$H_n(U) \simeq \begin{cases} \mathbb{Z} & \text{si } n = 0 \\ \mathbb{Z} \oplus \mathbb{Z} & \text{si } n = 1, \\ 0 & \text{sinon} \end{cases} \quad H_n(V) \simeq \begin{cases} \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases} \quad \text{et} \quad H_n(U \cap V) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0, 1\} \\ 0 & \text{sinon} \end{cases}$$

Alors d'après le Théorème de Mayer-Vietoris la suite suivante est exacte :

$$\cdots \to 0 \to H_2(\mathbb{T}^2) \stackrel{\partial_2}{\to} \mathbb{Z} \stackrel{\varphi_1}{\to} \mathbb{Z} \oplus \mathbb{Z} \stackrel{\psi_1}{\to} H_1(\mathbb{T}^2) \stackrel{\partial_1}{\to} \mathbb{Z} \stackrel{\varphi_0}{\to} \mathbb{Z} \oplus \mathbb{Z} \stackrel{\psi_0}{\to} H_0(\mathbb{T}^2) \to 0$$

On en déduit directement que si n > 2, on a $H_n(\mathbb{T}^2) \simeq 0$.

En étudiant $\varphi_0: \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ on trouve que pour tout $a \in \mathbb{Z}$, on a $\varphi_1(a) = (-a, a)$. D'une manière similaire, en étudiant $\varphi_1: \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ on trouve que pour tout $a \in \mathbb{Z}$, on a $\varphi_1(a) = (0, 0)$.

Alors on a $\ker(\varphi_1) = \mathbb{Z}$. Par exactitude de la suite, ∂_2 est injective et on a bien $H_2(\mathbb{T}^2) \simeq \operatorname{im}(\partial_2) = \ker(\varphi_1) = \mathbb{Z}$.

De plus on a $\ker(\varphi_0) \simeq 0$. Par exactitude de la suite, $\ker(\psi_1) = \operatorname{im}(\varphi_1) \simeq 0$ donc ψ_1 est injective, de plus $\operatorname{im}(\partial_1) = \ker(\varphi_0) \simeq 0$ et on a bien $H_1(\mathbb{S}^1 \vee \mathbb{S}^1) \simeq \ker(\partial_1) = \operatorname{im}(\psi_1) = \mathbb{Z} \oplus \mathbb{Z}$.

Enfin on a $\operatorname{im}(\varphi_0) = \{(-a,a) \mid a \in \mathbb{Z}\} \simeq \mathbb{Z}$. Par exactitude de la suite, ψ_0 est surjective et on a bien $H_0(\mathbb{S}^1 \vee \mathbb{S}^1) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \operatorname{im}(\varphi_0) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \mathbb{Z} \simeq \mathbb{Z}$.

Proposition 3.52. Soit \mathbb{S}^1 une sphère de dimension 1 dans \mathbb{R}^3 . Alors pour tout $n \in \mathbb{Z}$, on a

$$H_n(\mathbb{R}^3 \setminus \mathbb{S}^1) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0, 1, 2\} \\ 0 & \text{sinon} \end{cases}$$

Démonstration. On recouvre $\mathbb{R}^3 \setminus \mathbb{S}^1$ par deux ouverts $U := (\mathbb{R}^3 \setminus \mathbb{S}^1) \setminus Z$ et $V := B(0, \frac{1}{2}) \times \mathbb{R}$, où on pose $Z := (0, 0) \times \mathbb{R}$ l'axe des z dans \mathbb{R}^3 , dans la suite on note $X := \mathbb{R}^3 \setminus \mathbb{S}^1$:

Fig. 7. – Recouvrement de $\mathbb{R}^3 \setminus \mathbb{S}^1$.

L'ouvert U est homotopiquement équivalent à \mathbb{T}^2 , l'ouvert V est homotopiquement équivalent à un point, et l'intersection $U \cap V := V \setminus Z$ est homotopiquement équivalente à \mathbb{S}^1 . D'après le Corollaire 3.39, l'Axiome de dimension, la Proposition 3.49 et la Proposition 3.51, pour tout $n \in \mathbb{Z}$, on a :

$$H_n(U) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0,2\} \\ \mathbb{Z} \oplus \mathbb{Z} & \text{si } n = 1 \\ 0 & \text{sinon} \end{cases}, \quad H_n(V) \simeq \begin{cases} \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases} \quad \text{et} \quad H_n(U \cap V) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0,1\} \\ 0 & \text{sinon} \end{cases}$$

Alors d'après le Théorème de Mayer-Vietoris la suite suivante est exacte :

$$\cdots \ \to \ 0 \ \to \ \mathbb{Z} \ \stackrel{\psi_2}{\to} \ H_2(X) \ \stackrel{\partial_2}{\to} \ \mathbb{Z} \ \stackrel{\varphi_1}{\to} \ \mathbb{Z} \oplus \mathbb{Z} \ \stackrel{\psi_1}{\to} \ H_1(X) \ \stackrel{\partial_1}{\to} \ \mathbb{Z} \ \stackrel{\varphi_0}{\to} \ \mathbb{Z} \oplus \mathbb{Z} \ \stackrel{\psi_0}{\to} \ H_0(X) \ \to \ 0$$

On en déduit directement que pour tout n > 2, on a $H_n(X) \simeq 0$.

En étudiant $\varphi_0: \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ on trouve que pour tout $a \in \mathbb{Z}$, on a $\varphi_0(a) = (-a, a)$. D'une manière similaire, en étudiant $\varphi_1: \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ on trouve que pour tout $a \in \mathbb{Z}$, on a $\varphi_1(a) = (-a, 0)$.

Alors on a $\ker(\varphi_1) \simeq 0$. Par exactitude de la suite ψ_2 est injective, de plus $\operatorname{im}(\partial_2) = \ker(\varphi_1) \simeq 0$ et on a bien $H_2(X) \simeq \ker(\partial_2) = \operatorname{im}(\varphi_2) = \mathbb{Z}$.

De plus on a $\ker(\varphi_0) \simeq 0$. Par exactitude de la suite, $\operatorname{im}(\partial_1) = \ker(\varphi_0) \simeq 0$ et $\operatorname{im}(\psi_1) = \ker(\partial_1) \simeq H_1(X)$ donc ψ_1 est surjective et on a bien $H_1(X) \simeq (\mathbb{Z} \oplus \mathbb{Z})/\operatorname{im}(\varphi_1) \simeq (\mathbb{Z} \oplus \mathbb{Z})/\mathbb{Z} \simeq \mathbb{Z}$.

Enfin on a $\operatorname{im}(\varphi_0) = \{(-a,a) \mid a \in \mathbb{Z}\} \simeq \mathbb{Z}$. Par exactitude de la suite, ψ_0 est surjective et on a bien $H_0(X) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \operatorname{im}(\varphi_0) \simeq (\mathbb{Z} \oplus \mathbb{Z}) / \mathbb{Z} \simeq \mathbb{Z}$.

4. Droite et plan projectifs réels

4.1. La droite projective réelle

Définition 4.1. On appelle *droite projective réelle*, noté $\mathbb{P}^1_{\mathbb{R}}$, le quotient de $\mathbb{R}^2 \setminus \{0\}$ par la relation d'équivalence $\sim_{\mathbb{P}^1}$ où pour tout $u, v \in \mathbb{R}^2 \setminus \{0\}$, on a $u \sim_{\mathbb{P}^1} v$ s'il existe $\lambda \in \mathbb{R} \setminus \{0\}$ tel que $u = \lambda v$. Soit $(x, y) \in \mathbb{R}^2 \setminus \{0\}$. On appelle coordonnées homogènes de (x, y) le point associé sur la droite projective réelle $[x:y] := \overline{(x,y)} \in \mathbb{P}^1_{\mathbb{R}}$.

Remarque 4.2. Formellement un point de $\mathbb{P}^1_{\mathbb{R}}$ est induit par une droite linéaire de \mathbb{R}^2 .

Définition 4.3. On appelle *cartes affines de* $\mathbb{P}^1_{\mathbb{R}}$ les sous-ensembles suivants :

```
• A_x \coloneqq \{[x:y] \in \mathbb{P}^1_{\mathbb{R}} \mid x \neq 0\} = \{[1:y] \in \mathbb{P}^1_{\mathbb{R}}\}.
• A_y \coloneqq \{[x:y] \in \mathbb{P}^1_{\mathbb{R}} \mid y \neq 0\} = \{[x:1] \in \mathbb{P}^1_{\mathbb{R}}\}.
```

Remarque 4.4. Les cartes affines A_x et A_y sont homéomorphes à \mathbb{R} .

On a $\mathbb{P}^1_{\mathbb{R}} = A_x \cup A_y$, mais surtout $\mathbb{P}^1_{\mathbb{R}} = A_y \sqcup \{\infty\}$ où $\infty := [1:0]$.

Intuitivement $\mathbb{P}^1_{\mathbb{R}}$ s'obtient donc à partir de \mathbb{R} auquel on ajoute un point à l'infini.

Remarque 4.5. La proposition suivante est naturelle puisque $\mathbb{P}^1_{\mathbb{R}}$ est donnée par les droites linéaires de \mathbb{R}^2 et \mathbb{S}^1 par les demi-droites linéaires de \mathbb{R}^2 .

Proposition 4.6. La droite projective réelle $\mathbb{P}^1_{\mathbb{R}}$ est homéomorphe au quotient du cercle \mathbb{S}^1 par la relation d'équivalence $\sim_{\mathbb{S}^1}$ où pour tout $u, v \in \mathbb{S}^1$, on a $u \sim_{\mathbb{S}^1} v$ si $u = \pm v$.

Démonstration. On pose $i: \mathbb{S}^1 \to \mathbb{P}^1_{\mathbb{R}}; (x,y) \mapsto [x:y]$. Alors i est bien définie, pour tout $u,v \in \mathbb{S}^1$, si $u \sim_{\mathbb{S}^1} v$, alors $u = \pm v$, d'où i(u) = i(v). De plus i est continue par composition de fonctions continues. Donc l'application $I: \mathbb{S}^1/\sim_{\mathbb{S}^1} \to \mathbb{P}^1_{\mathbb{R}}$ telle que $I \circ \pi = i$ est continue.

Réciproquement on pose $j: \mathbb{R}^2 \setminus \{0\} \to \mathbb{S}^1 / \sim_{\mathbb{S}^1}; u \mapsto \overline{u/\|u\|}$. Alors j est bien définie, en effet pour tout $u, v \in \mathbb{R}^2 \setminus \{0\}$, si $u \sim_{\mathbb{P}^1} v$, alors il existe $\lambda \in \mathbb{R} \setminus \{0\}$ tel que $u = \lambda v$, d'où $j(u) = j(\lambda v) = j(v)$. De plus j est continue par composition de fonctions continues. Donc l'application $J: \mathbb{P}^1_{\mathbb{R}} \to \mathbb{S}^1/\sim_{\mathbb{S}^1}$ telle que $J \circ \pi = j$ est continue.

Enfin il est clair que $J \circ I = \mathrm{id}$ et $I \circ J = \mathrm{id}$, donc I et J sont bien des homéomorphisme de la droite projective réelle $\mathbb{P}^1_{\mathbb{R}}$ dans $\mathbb{S}^1/\sim_{\mathbb{S}^1}$.

4.2. Le plan projectif réel

Définition 4.7. On appelle plan projectif réel, noté $\mathbb{P}^2_{\mathbb{R}}$, le quotient de $\mathbb{R}^3 \setminus \{0\}$ par la relation d'équivalence $\sim_{\mathbb{P}^2}$ où pour tout $u, v \in \mathbb{R}^3 \setminus \{0\}$, on a $u \sim_{\mathbb{P}^2} v$ s'il existe $\lambda \in \mathbb{R} \setminus \{0\}$ tel que $u = \lambda v$. Soit $(x, y, z) \in \mathbb{R}^3 \setminus \{0\}$. On appelle coordonnées homogènes de (x, y, z) le point associé sur le plan projectif réel $[x:y:z] := \overline{(x,y,z)} \in \mathbb{P}^2_{\mathbb{R}}$.

Remarque 4.8. Formellement un point de $\mathbb{P}^2_{\mathbb{R}}$ est induit par une droite linéaire de \mathbb{R}^3 et une droite de $\mathbb{P}^2_{\mathbb{R}}$ est induite par un plan linéaire de \mathbb{R}^3 . On déduit de la formule de Grassmann que deux droites distinctes de $\mathbb{P}^2_{\mathbb{R}}$ (même parallèles) s'intersectent en un point de $\mathbb{P}^2_{\mathbb{R}}$.

Définition 4.9. On appelle *cartes affines de* $\mathbb{P}^2_{\mathbb{R}}$ les sous-ensembles suivants :

```
 \begin{array}{l} \bullet \ A_x \coloneqq \big\{ [x:y:z] \in \mathbb{P}^1_{\mathbb{R}} \mid x \neq 0 \big\} = \big\{ [1:y:z] \in \mathbb{P}^2_{\mathbb{R}} \big\}. \\ \bullet \ A_y \coloneqq \big\{ [x:y:z] \in \mathbb{P}^1_{\mathbb{R}} \mid y \neq 0 \big\} = \big\{ [x:1:z] \in \mathbb{P}^2_{\mathbb{R}} \big\}. \\ \bullet \ A_z \coloneqq \big\{ [x:y:z] \in \mathbb{P}^1_{\mathbb{R}} \mid z \neq 0 \big\} = \big\{ [x:y:1] \in \mathbb{P}^2_{\mathbb{R}} \big\}. \end{array}
```

Remarque 4.10. Les cartes affines A_x , A_y et A_z sont homéomorphes à \mathbb{R}^2 .

On a $\mathbb{P}^2_{\mathbb{R}} = A_x \cup A_y \cup A_z$, mais surtout $\mathbb{P}^2_{\mathbb{R}} = A_z \sqcup \ell_\infty$ où $\ell_\infty \coloneqq \{[x:y:0] \in \mathbb{R}^2\}$. De plus l'ensemble ℓ_∞ est homéomorphe à $\mathbb{P}^1_{\mathbb{R}}$, intuitivement $\mathbb{P}^2_{\mathbb{R}}$ s'obtient donc à partir de \mathbb{R}^2 auquel on ajoute une copie de $\mathbb{P}^1_{\mathbb{R}}$ à l'infini.

Remarque 4.11. Pour être exact dans la Remarque 4.8, une droite de A_z intersecte ℓ_∞ en un point dépendant uniquement de son vecteur directeur. En effet, soit $D := \{(x_0 + ta, y_0 + tb) \mid t \in \mathbb{R}\}$ une droite de $\mathbb{R}^2 \simeq A_z$ passant par un point $(x_0, y_0) \in \mathbb{R}^2$ et de vecteur directeur $(a, b) \in \mathbb{R}^2 \setminus \{0\}$. Alors l'image de D dans A_z est donnée par $D_z := \{[x_0 + ta : y_0 + tb : 1] \mid t \in \mathbb{R}\}$, et on a :

$$[x_0 + ta : y_0 + tb : 1] = \left[\frac{x_0}{t} + a : \frac{y_0}{t} + b : \frac{1}{t}\right] \underset{t \to +\infty}{\to} [a : b : 0] \in \ell_{\infty}$$

Donc D_z intersecte ℓ_∞ en [a:b:0].

Soit D_1 et D_2 deux droites distinctes de $\mathbb{P}^2_{\mathbb{R}}$, on note $A_1 \coloneqq D_1 \cap A_z$ et $A_2 \coloneqq D_2 \cap A_z$.

- Si D₁ ≠ ℓ_∞ et D₂ ≠ ℓ_∞, alors A₁ ≠ Ø et A₂ ≠ Ø.
 Si A₁ et A₂ sont parallèles, elles ont le même vecteur directeur, donc D₁ et D₂ s'intersectent en ℓ_∞.
 Sinon A₁ et A₂ s'intersectent, donc D₁ et D₂ s'intersectent en A_z.
- Si $D_1 = \ell_{\infty}$, alors D_2 intersecte bien $D_1 = \ell_{\infty}$.

Remarque 4.12. La proposition suivante est naturelle puisque $\mathbb{P}^2_{\mathbb{R}}$ est donné par les droites linéaires de \mathbb{R}^3 et \mathbb{S}^2 par les demi-droites linéaires de \mathbb{R}^3 .

Proposition 4.13. Le plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ est homéomorphe au quotient de la sphère \mathbb{S}^2 par la relation d'équivalence $\sim_{\mathbb{S}^2}$ où pour tout $u, v \in \mathbb{S}^2$, on a $u \sim_{\mathbb{S}^2} v$ si $u = \pm v$.

Démonstration. La démonstration est similaire à celle de la Proposition 4.6, on identifie chaque élément de $\mathbb{P}^2_{\mathbb{R}}$ à deux éléments antipodaux de \mathbb{S}^2 .

Proposition 4.14. Le plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ est homéomorphe au quotient du carré $[0,1]^2$ par la relation d'équivalence $\sim_{[0,1]}$ où pour tout $t \in [0,1]$, on a $(t,0) \sim_{[0,1]} (1-t,1)$ et $(0,t) \sim_{[0,1]} (1,1-t)$.

Démonstration. D'après la Proposition 4.13 le plan projectif $\mathbb{P}^2_{\mathbb{R}}$ est homéomorphe à $\mathbb{S}^2/\sim_{\mathbb{S}^2}$, ensuite puisque l'on identifie les points antipodaux de \mathbb{S}^2 , on peut considérer seulement l'hémisphère nord de \mathbb{S}^2 en identifiant les points antipodaux du cercle de l'équateur :

Fig. 8. – Passage de la sphère à la demi-sphère.

On peut déformer continûment cette demi-sphère sur le disque en identifiant toujours les points antipodaux du cercle :

Fig. 9. – Passage de la demi-sphère au disque.

On peut de nouveau déformer continûment ce disque sur le carré en identifiant les points sur le bord du carré et en conservant l'orientation :

Fig. 10. - Passage du disque au carré.

Puisque les déformations à chaque étapes sont continues et préservent les points identifiés, on a bien construit un homéomorphisme du plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ dans $[0,1]^2/\sim_{[0,1]}$.

Proposition 4.15. Le plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ se décompose en l'union de deux ensembles $M \cup D$ tels que M est homéomorphe une bande de Möbius, D est homéomorphe à un disque fermé, et $M \cap D$ est homéomorphe à un cercle.

Démonstration. D'après la Proposition 4.14 le plan projectif $\mathbb{P}^2_{\mathbb{R}}$ est homéomorphe à $[0,1]^2/\sim_{[0,1]}$, ensuite on peut découper dans ce carré une bande de Möbius :

Fig. 11. – Découpage d'une bande de Möbius.

On peut recoller les parties restantes en suivant l'orientation des flèches bleues, puis l'orientation des flèches rouges pour obtenir un disque fermé :

Fig. 12. - Recollage du disque fermé.

De plus $M \cap D$ est homéomorphe au bord du disque, donc à un cercle.

Puisque les déformations à chaque étapes sont continues et préservent les points identifiés, on a bien décomposé le plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ comme l'union $M \cup D$ de deux ensembles tels que M est homéomorphe à une bande de Möbius, D est homéomorphe à un cercle.

4.2.1. Non-plongement dans l'espace euclidien

Définition 4.16. Soit X et Y deux espaces topologiques, $f: X \to Y$ une application. On dit que f est un *plongement de* X *dans* Y si elle induit un homéomorphisme de X dans f(X).

Théorème 4.17. Il n'existe pas de plongement du plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ dans l'espace euclidien \mathbb{R}^3 .

 $\textit{D\'{e}monstration}. \text{ Supposons par l'absurde qu'il existe un plongement } f: \mathbb{P}^2_{\mathbb{R}} \to \mathbb{R}^3.$

D'après la Proposition 4.15 on peut écrire $\mathbb{P}^2_{\mathbb{R}} = M \cup D$ où M est homéomorphe à une bande de Möbius, D est homéomorphe à un disque fermé et $M \cap D$ est homéomorphe à un cercle, dans la suite on identifie $\mathbb{P}^2_{\mathbb{R}}$, M et D avec leur images $f(\mathbb{P}^2_{\mathbb{R}})$, f(M) et f(D) dans \mathbb{R}^3 .

La bande de Möbius M est homotopiquement équivalente à son cercle central C, par passage au complémentaire $\mathbb{R}^3 \setminus M$ est homotopiquement équivalent à $\mathbb{R}^3 \setminus C$, d'après le Corollaire 3.39 on a alors $H_{\bullet}(\mathbb{R}^3 \setminus M) \simeq H_{\bullet}(\mathbb{R}^3 \setminus C)$, donc $H_{\bullet}(\mathbb{R}^3 \setminus M) \simeq H_{\bullet}(\mathbb{R}^3 \setminus S^1)$. D'après la Proposition 3.52, pour tout $n \in \mathbb{Z}$, on a :

$$H_n(\mathbb{R}^3 \setminus M) \simeq \begin{cases} \mathbb{Z} & \text{si } n \in \{0, 1, 2\} \\ 0 & \text{sinon} \end{cases}$$

Deuxième étape : On détermine l'application induite par l'inclusion $i : \mathbb{R}^3 \setminus M \to \mathbb{R}^3 \setminus \partial M$ en homologie de degré 1, c'est la multiplication par 2.

On a $\mathbb{R}^3 \setminus \mathbb{P}^2_{\mathbb{R}} = (\mathbb{R}^3 \setminus M) \cap (\mathbb{R}^3 \setminus D)$ et $\mathbb{R}^3 \setminus (\partial M) = (\mathbb{R}^3 \setminus M) \cup (\mathbb{R}^3 \setminus D)$. De plus d'après les calculs précédents on a $H_1(\mathbb{R}^3 \setminus M) \simeq H_1(\mathbb{R}^3 \setminus \partial M) \simeq \mathbb{Z}$ et $H_1(\mathbb{R}^3 \setminus D) \simeq 0$, alors d'après le Théorème de Mayer-Vietoris il existe $\partial_0 : H_1(\mathbb{R}^3 \setminus \partial M) \to H_0(\mathbb{R}^3 \setminus \mathbb{P}^2_{\mathbb{R}})$ telle que la suite suivante est exacte en $H_1(\mathbb{R}^3 \setminus \partial M)$:

$$\mathbb{Z} \simeq H_1(\mathbb{R}^3 \setminus M) \oplus 0 \xrightarrow{H_1(i)} \mathbb{Z} \simeq H_1(\mathbb{R}^3 \setminus \partial M) \xrightarrow{\partial_0} H_0(\mathbb{R}^3 \setminus \mathbb{P}^2_{\mathbb{R}})$$

par exactitude on a $\ker(\partial_0) = \operatorname{im}(H_1(i)) = 2\mathbb{Z}$, d'où $\partial_0(1) \neq 0$ et $2\partial_0(1) = \partial_0(2) = 0$, donc $\partial_0(1)$ est un élément non-nul d'ordre 2 de $H_0(\mathbb{R}^3 \setminus \mathbb{P}^2_{\mathbb{R}})$.

Mais d'après la Proposition 3.47 $H_0(\mathbb{R}^3 \setminus \mathbb{P}^2_{\mathbb{R}})$ est un groupe abélien libre, donc il n'existe aucun élément non-nul d'ordre 2 de $H_0(\mathbb{R}^3 \setminus \mathbb{P}^2_{\mathbb{R}})$, d'où une contradiction. Donc il n'existe pas de plongement du plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ dans l'espace euclidien \mathbb{R}^3 .

Conclusion

Démonstration du Problème du rectangle inscrit. Soit C une courbe de Jordan.

Pour commencer, au lieu de considérer un rectangle comme 4 sommets, on va considérer un rectangle comme 2 paires de sommets formant les diagonales :

Fig. 13. – 2 paires de sommets formant un rectangle.

On note $P := C \times C$ l'ensemble des paires de points de C. Cette représentation d'un rectangle nous permet de le caractériser de la manière suivante, 2 paires <u>non-ordonnées</u> de P forment un rectangle si et seulement si elles sont distinctes, ont le même milieu et ont la même distance.

Le faire que les paires soient non-ordonnées est très important, on va donc considérer le quotient de P par la relation d'équivalence \sim où pour tout $(u, v) \in P$, on a $(u, v) \sim (v, u)$.

Maintenant que l'on a caractérisé un rectangle par cette propriété, on va définir une fonction qui regroupe les informations dont nous avons besoin :

$$f: P \to \mathbb{R}^2 \times \mathbb{R}; (u, v) \mapsto \left(\frac{u+v}{2}, d(u, v)\right)$$

où $d(\cdot, \cdot)$ est la distance euclidienne. En parcourant toutes les paires de P cette fonction dessine une surface dans $\mathbb{R}^2 \times \mathbb{R} \simeq \mathbb{R}^3$:

Fig. 14. – Image d'une paire de sommets par la fonction f.

Puisque chacune de ses composantes est continue, la fonction f est continue. De plus puisque pour tout $(u, v) \in P$, on a f(u, v) = f(v, u), la fonction f passe bien au quotient pour la relation d'équivalence \sim et induit une fonction continue $\varphi : P/\sim \to \mathbb{R}^3$.

Ainsi 2 paires non-ordonnées de sommets $\overline{p}, \overline{q} \in P/\sim$ forment un rectangle si et seulement si elles sont distinctes et $\varphi(\overline{p}) = \varphi(\overline{q})$, donc montrer l'existence d'un rectangle inscrit dans C revient à montrer que la fonction φ n'est pas injective.

Supposons par l'absurde que la fonction φ est injective.

Puisque P/\sim est compact, $\varphi(P/\sim)\subset\mathbb{R}^3$ est séparé et φ est une bijection continue de P/\sim sur son image $\varphi(P/\sim)$, alors φ est un homéomorphisme de P/\sim sur son image $\varphi(P/\sim)$.

Puisque la courbe de Jordan C est paramétrée par une fonction continue $\gamma_C:[0,1]\to C$, on peut paramétrer P/\sim par la fonction $\gamma:=\overline{(\gamma_C,\gamma_C)}:[0,1]^2\to P/\sim$:

Fig. 15. – Image d'un point du carré par la fonction $\gamma_C \cdot \gamma_C$.

Mais ce paramétrage n'est pas un homéomorphisme, en effet $\gamma_C(0) = \gamma_C(1)$, et pour tout $t \in [0,1]$, on a $\gamma(0,t) = \gamma(1,t)$ et $\gamma(t,0) = \gamma(t,1)$. On va donc considérer le quotient de $[0,1]^2$ par la relation d'équivalence \sim_1 où pour tout $t \in [0,1]$, on a $(0,t) \sim_1 (1,t)$ et $(t,0) \sim_1 (t,1)$, on représente cette identification par des flèches :

Fig. 16. – Quotient du carré par la relation \sim_1 .

De plus pour tout $(a, b) \in [0, 1]^2$, on a $\gamma(a, b) = \gamma(b, a)$ car les paires sont non-ordonnées. On va donc considérer le quotient de $[0, 1]^2$ par la relation d'équivalence \sim_2 où pour tout $(a, b) \in [0, 1]^2$, on a $(a, b) \sim_2 (b, a)$, on représente cette identification en pliant le carré le long de la droite y = x:

Fig. 17. – Quotient du carré par la relation \sim_2 .

On découpe le long de la hauteur du triangle pour pouvoir recoller les flèches :

Fig. 18. – Apparition d'une bande de Möbius.

La figure ainsi obtenue est une bande de Möbius.

On a créé un homéomorphisme d'une bande de Möbius aux paires non-ordonnées de la courbe de Jordan P/\sim , puisque φ est un homéomorphisme de P/\sim sur son image $\varphi(P/\sim) \subset \mathbb{R}^3$, par composition on obtient donc un plongement d'une bande de Möbius dans \mathbb{R}^3 .

Ce plongement a une particularité, il envoie le bord de la bande de Möbius sur la courbe de Jordan C dans \mathbb{R}^3 , en effet les points sur le bord de la bande de Möbius sont les points sur la diagonale du carré, c'est-à-dire les points de la forme $(a, a) \in [0, 1]^2$, que le paramétrage γ envoie sur $(u, u) \in P$ et qui vérifie f(u, u) = (u, 0) appartient à la courbe de Jordan C dans \mathbb{R}^3 .

D'après le théorème de Jordan la courbe de Jordan C est homéomorphe à un cercle et son intérieur est homéomorphe à un disque, or d'après la Proposition 4.15 l'espace obtenu en collant une bande de Möbius à un disque fermé le long de leur bord est le plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$, on obtient donc un plongement du plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ dans \mathbb{R}^3 .

Mais d'après le Théorème 4.17 il n'existe pas de plongement du plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ dans \mathbb{R}^3 , d'où une contradiction, φ n'est pas injective.

Donc il existe un rectangle inscrit dans la courbe de Jordan C .	

Bibliographie

- [1] Eduard Looijenga, Algebraic Topology an introduction. 2010.
- [2] Allen Hatcher, Algebraic Topology. 2001.
- [3] Grégory Ginot, Topologie Algébrique. 2019.