Szám- és kódrendszerek

A digitális technikában használt alap áramköri elemek és a belőlük felépített bonyolultabb áramkörök, a működésüket leíró értékeket két jól elkülöníthető tartományban tudják megjeleníteni. Innen adódik a kettes számrendszer használata. A kettes számrendszerben kettő db számjegy van, a 0 és az 1. Hogy ezekhez az értékekhez milyen fizikai, kémiai, biológiai, biokémiai stb. mennyiséget rendelünk, az mindig az adott feladattól függ. A digitális iel alapegysége a bit, amely kétértékű (0/1). Bitek sorozatából állnak elő a kódszavak. Egy konkrét feladatnál a megoldást azzal célszerű kezdeni, hogy a bemeneteknél meghatározzuk, hogy a konkrét mennyiség mely értékéhez, vagy értékeihez rendeljük hozzá a 0 és az 1 számjegyeket. Ugyanezt a kimeneti mennyiséggel is megtesszük. Akármelyik számrendszerre igaz, hogy a számjegyek száma a számrendszer alapszáma, a számjegyek pedig 0-tól indulnak és a számrendszer alapszáma-1 értékig mennek. A kettes számrendszer mellett még a 16-os számrendszer használata terjedt el, a 2-eshez képest lényegesen rövidebb leírási hossza miatt. A 16-os számrendszerben 16 számjegy van 0-9-ig és A-F-ig (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). A hétköznapi életben a 10-es számrendszert használjuk, a digitális technikában azonban a 2-es és a 16-os számrendszer használata terjedt el, a feladatok speciális volta miatt. Bármely számrendszerben felírt számra igaz, hogy a baloldali számérték a legnagyobb, míg a jobboldali számérték a legkisebb helyi érték. Amikor a helyi értékeket betűvel jelöljük, jelen kurzusban mindig "A"-val jelöljük a legkisebb helyi értéket, és innen az abc-ből sorra véve az ékezet nélküli betűket, ezeket rendeljük a növekvő helyi értékekhez. Egy 4 bites 2-es számrendszerbeli szám felel meg egy egyszámjegyű 16-os számrendszerbeli számnak. A 10-es számrendszerbeli számokat nem jelöljük külön, de a 2-es számrendszerbeli számokat b-vel, a 16-os számrendszerbeli számokat pedig a szám jobb oldalára (legkisebb helyi érték után) írt h betűvel azonosítjuk. A 2-es és a 16-os számrendszer használata, az általános iskolától kezdve tanított 10- es számrendszerhez képest sokaknak nehézségekbe ütközik. Ezért kidolgoztak egy olyan számtípust, amelyet a digitális berendezések is könnyen kezelnek, és az emberek számára is egyszerűen értelmezhető. Ez a BCD (Binárisan Kódolt Decimális) kódolás. A tízes számrendszerbeli szám számjegyeit külön-külön véve, mindegyikhez hozzárendelünk egy-egy 4 bites 2-es számrendszerbeli számot, így kapjuk a normál BCD számot, amit BCDN-nel jelölünk. Az egyes számrendszerek közötti átváltást célszerű jól begyakorolni, hogy ez ne jelentsen senkinek problémát. A különböző számrendszerek közötti átváltásokra a kidolgozott feladatok között talál megoldásokat.

Nézzünk példákat a különböző számrendszerekre:

10-es számrendszer	2-es számrendszer	16-os számrendszer	BCD
0	0000b	0h	0000 BCDN
1	0001b	1h	0001 BCDN
2	0010b	2h	0010 BCDN
3	0011b	3h	0011 BCDN
4	0100b	4h	0100 BCDN
5	0101b	5h	0101BCDN
6	0110b	6h	0110 BCDN
7	0111b	7h	0111 BCDN
8	1000b	8h	1000 BCDN
9	1001b	9h	1001 BCDN
10	1010b	Ah	00010000 BCDN
11	1011b	Bh	00010001 BCDN
12	1100b	Ch	00010010 BCDN
13	1101b	Dh	00010011 BCDN
14	1110b	Eh	00010100 BCDN
15	1111b	Fh	00010101 BCDN

Kódolással kapcsolatos fogalmak:

- Kódnak nevezzük egy szám vagy alfabetikus karakter leírási módját.
- A kódot jellemzi a leírásához felhasznált bitek száma, a kódszó hossza.
- Fontos a bitek súlyozása. Korábban már említésre került, hogy a legkisebb helyi érték jelölésére az "A" betűt használjuk.
- Hamming távolság: két egymás utáni kódszóban az eltérő bitek száma.

A kódszót kiegészíthetjük a benne levő bitek számának párosságát jelző bittel. Ezt a bitet idegen szóval paritás bitnek nevezzük. Párosra (EVEN) kiegészítésről beszélünk, ha a plusz bit hozzáadásával a kódszóban lévő 1-ek száma páros lesz, és páratlanra (ODD) kiegészítő paritásról van szó, ha a kiegészítő bittel együtt a szóban lévő egyesek száma páratlan. Ezzel a megoldással növeljük a fölös információt, vagyis a **Redundanciát**, de a hibajavításnál segítségünkre lehet. Nézzünk néhány nemzetközileg elismert kódot, amelyeket számok kódolására használnak. Ezek a Stbitz- (3 többletes) kód, a Gray-kód, Johnson-kód.

• A Stibitz-kód a 0...9 decimális számjegyek négybites kódolására alkalmas. A kódolási szabály: a decimális számjegy kódja a nála 3-mal nagyobb szám bináris kódja.

10-es számrendszer	Stibitz
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

• Egy másik elterjedt kód a Gray-kód, amely tetszőlegesen nagy szám kódolására alkalmas. Ennél a kódolásnál a nullának a 0 a kódja. A következő számérték kódja az előzőtől 1 bitben tér el méghozzá a lehető legkisebb helyi értéken. Ha szabályt keresünk a kódszavak képzésére, akkor a következőt látjuk. A legkisebb helyiértéken (jobboldali bit) függőlegesen olvasva lefelé a biteket 01 bit után ennek a tükörképe 10 következik, majd újra 01 jön és így tovább. A következő helyi értéken 0011 követi egymást felülről lefelé olvasva, majd ennek a tükörképe 1100 jön, utána megint 0011 és ugyanígy folytatódik. A következő helyi értéken 00001111 jön egymás alatt, és ennek a tükörképe következik, vagyis 11110000. Az összes helyi értéken így haladhatunk.

10-es számrendszer	Gray
0	00000
1	00001
2	00011
3	00010
4	00110
5	00111
6	00101
7	00100
8	01100
9	01101
10	01111
11	01110
12	01010
13	01011
14	01001
15	01000
16	11000
17	11001

• Az N bites Johnson kód 2*N db kódszóból áll. A kiinduló kódszó a tiszta 0, majd jobbról 1-esek lépnek be a kódszóba, míg valamennyi biten 1-es lesz, majd jobbról 0-nak lépnek be, amíg el nem érünk újra a csupa 0-t tartalmazó kódszóig.

10-es számrendszer	5 bites Johnson
0	00000
1	00001
2	00011
3	00111
4	01111
5	11111
6	11110
7	11100
8	11000
9	10000

A betűk, írásjelek kódolása is nagyon fontos volt, amelynek nemzetközi kódja az ASCII. Ez egy 7 bites kód, amely 128 kódszó használatát teszi lehetővé. Ehhez a 7 bithez az adatátvitel biztonságosabbá tétele miatt egy hibajelző bitet is csatoltak (paritás bit), így a betűk, írásjelek, vezérlőjelek kódjai 8 bitesek lettek.