Relazione sulla determinazione sperimentale del π

27 marzo 2024

Introduzione

L'obbiettivo di questo esperimento è quello di determinare il valore del π .

In particolare si vuole determinare il valore di questa costante matematica attraverso la misurazione di circonferenza e diametro di figure circolari data la nota relazione $c = d\pi$.

Materiali e strumenti

Materiali

- Compasso
- Cartoncino
- Spago
- Oggetti circolari
- Forbici

Strumenti

Strumento	Sensibilità	Portata
Righello	0.5 mm	30 cm
Metro	0.5 mm	500 cm

Tabella 1: Strumenti utilizzati

Descrizione

Tracciare sul cartoncino circa dieci circonferenze utilizzando il compasso e circa cinque utilizzando oggetti circolari

Successivamente misurare il diametro di ogni circonferenza con righello o metro e annotare le misure rilevate. È preferibile misurare il diametro piuttosto che il raggio al fine di diminuire l'incertezza relativa della misurazione. Infine ritagliare le circonferenze tracciate e, con l'ausilio di uno spago, misurarne la circonferenza.

Misure ed elaborazione dati

i	d_i (diametro)	c_i (circonferenza)
1	$37.0 \ mm \pm 0.5 \ mm$	$116 \ mm \pm 1 \ mm$
2	$54.0 \ mm \pm 0.5 \ mm$	$171 \ mm \pm 1 \ mm$
3	$61.0 \ mm \pm 0.5 \ mm$	$192 \ mm \pm 1 \ mm$
4	$70.5 \ mm \pm 0.5 \ mm$	$218 \ mm \pm 1 \ mm$
5	$85.5 \ mm \pm 0.5 \ mm$	$271 \ mm \pm 1 \ mm$
6	$89.5 \ mm \pm 0.5 \ mm$	$279 \ mm \pm 1 \ mm$
7	$104.5 \ mm \pm 0.5 \ mm$	$325 \ mm \pm 1 \ mm$
8	$134.0 \ mm \pm 0.5 \ mm$	$408 \ mm \pm 1 \ mm$
9	$149.5 \ mm \pm 0.5 \ mm$	$466 \ mm \pm 1 \ mm$
10	$151.0 \ mm \pm 0.5 \ mm$	$476 \ mm \pm 1 \ mm$
11	$167.5 \ mm \pm 0.5 \ mm$	$531 \ mm \pm 1 \ mm$
12	$198.5 \ mm \pm 0.5 \ mm$	$625 \ mm \pm 1 \ mm$
13	$211.0 \ mm \pm 0.5 \ mm$	$660 \ mm \pm 1 \ mm$
14	$220.0 \ mm \pm 0.5 \ mm$	$688 \ mm \pm 1 \ mm$
15	$293.5 \ mm \pm 0.5 \ mm$	$911~mm \pm 1~mm$

Tabella 2: Misure rilevate

Grafico 1: Relazione tra circonferenza e diametro

Detto n = 15 il numero di misurazioni effettuate si ha che:

$$\overline{\pi} = \frac{1}{n} \sum_{i=1}^{n} \frac{c_i}{d_i} = 3.128$$

Dati
$$\overline{c} = \frac{1}{n} \sum_{i=1}^{n} c_i = 422 \text{ mm}$$
 $\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = 135.1 \text{ mm}$

si considera la funzione $f(c, d) = \frac{c}{d}$; dunque, tramite analisi della propagazione dell'errore di misura, si ottiene:

$$\begin{split} \Delta \pi &= \sqrt{\left(\left|\frac{\partial f(c,d)}{\partial c}\right|_{\overline{c},\overline{d}} \Delta c\right)^2 + \left(\left|\frac{\partial f(c,d)}{\partial d}\right|_{\overline{c},\overline{d}} \Delta d\right)^2} = \sqrt{\left(\left|\frac{\partial \frac{c}{d}}{\partial c}\right|_{\overline{c},\overline{d}} \Delta c\right)^2 + \left(\left|\frac{\partial \frac{c}{d}}{\partial d}\right|_{\overline{c},\overline{d}} \Delta d\right)^2} \\ &= \sqrt{\left(\frac{1}{\overline{d}} \Delta c\right)^2 + \left(-\frac{\overline{c}}{\left(\overline{d}\right)^2} \Delta d\right)^2} = 0.014 \end{split}$$

Si riportano anche i valori di semidispersione, deviazione standard e coefficiente di correlazione lineare quadratico:

$$\frac{\pi_{max} - \pi_{min}}{2} = 0.06$$

$$\sigma_{\pi} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\overline{\pi} - \pi_{i})^{2}} = 0.03$$

$$R^{2} = 0.9996$$

Conclusione

Dalle misurazioni effettuate segue che la costante matematica del π risulta essere pari a 3.128 \pm 0.014. Si nota che il valore esatto $\pi \approx 3.14159 \cdots$ rientra nell'intervallo $(\overline{\pi} - \Delta \pi; \overline{\pi} + \Delta \pi)$.

Infine si ipotizza che il valore misurato sia inferiore al valore esatto a causa di un errore sistematico nella misurazione della circonferenza dovuta all'approssimazione di brevi archi di circonferenza con corde.¹

¹Per questo motivo l'incertezza sulla misura della circonferenza risulta diversa rispetto all'incertezza sulla misura del diametro nonostante gli strumenti utilizzati per entrambe le misure siano i medesimi