Lecture 10: Properties of Least Squares Estimates STAT 632, Spring 2020

Preliminaries: Let a and b be constants, and X a random variable.

$$E(aX + b) = \alpha E(x) + b$$

$$Var(aX + b) = \alpha^{2} Var(x)$$

Random Vectors

Let X_1, X_2, \dots, X_n be random variables. An $n \times 1$ random vector is given by 1

$$\boldsymbol{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$$

The variance-covariance matrix of X is the $n \times n$ symmetric matrix

$$\operatorname{Var}(X) = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_n) \\ \vdots & & & & & & & & & & & & & & \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \cdots & \operatorname{Var}(X_n) & & & & & & & & & & \\ \operatorname{cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \cdots & \operatorname{Var}(X_n) & & & & & & & & & \\ \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & & & & & & & \\ \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & & & & & & \\ \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & & & & & \\ \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & & & & \\ \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & & & & \\ \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & & & & \\ \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & & & \\ \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & & \\ \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Var}(X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_n) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_1) & & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_1) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_1) & & \\ \operatorname{cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_1) & & \\ \operatorname{cov}(X_1, X_1) & & & \\ \operatorname{cov}(X_1, X_1) & & & \\ \operatorname{cov}(X_1, X_1) & & & \\ \operatorname{cov}(X_1, X$$

Note that $Cov(X_i, X_i) = Var(X_i)$.

Properties of Expectation and Variance for Random Vectors

Let A be an $m \times n$ matrix of constants, b an $m \times 1$ vector of constants, and X an $n \times 1$ \mathcal{L} cov(x, y) random vector, then

$$E(AX + b) = AE(X) + b$$
$$Var(AX + b) = AVar(X)A'$$

$$\frac{E(X)}{E(X_2)} = \frac{S_{X_2}}{S_{X_2}} = \frac{(G_1(X_1,Y_1))}{S_{X_2}}$$

Cov(X,Y)

¹Note that the X here is different than the $n \times (p+1)$ model matrix in regression.

Properties of the Multiple Linear Regression Model

$$Y = X\beta + e$$

- Y is an $n \times 1$ response vector
- X is an $n \times (p+1)$ design matrix for the predictors
- β is a $(p+1) \times 1$ vector of regression parameters
- e is an $n \times 1$ vector of random errors; assuming $e_i \sim N(0, \sigma^2)$, independently

The variance-covariance matrix for the random errors e is given by

$$\operatorname{Var}(oldsymbol{e}) = egin{pmatrix} \sigma^2 & 0 & \cdots & 0 \ 0 & \sigma^2 & \cdots & 0 \ dots & & & \ 0 & 0 & \cdots & \sigma^2 \end{pmatrix} = \sigma^2 oldsymbol{I}_n$$

which follows since $Var(e_i) = \sigma^2$, and $Cov(e_i, e_j) = 0$ when $i \neq j$ (by independence).

Use the properties of expectation and variance for random vectors to find E(Y), Var(Y), and the distribution of Y.

Properties of Least Squares Estimates

Recall that the least squares estimates of the population parameters β is given by the $(p+1)\times 1$ vector

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X'X})^{-1}\boldsymbol{X'Y}$$

The estimator $\hat{\beta}$ is a random vector since it varies from sample to sample.

Show that $E(\hat{\beta}) = \beta$, the least squares estimates are unbiased.

Show that that variance-covariance matrix for the least squares estimates is given by $\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X'X})^{-1}$

$$Ver(\hat{\beta}) = Ver T(x'x)^{-1} x'Y$$

$$= (x'x)^{-1} x' Ver(Y) [(x'x)^{-1} x']$$

$$= (x'x)^{-1} x' (\sigma^{2} I_{n}) x (x'x)^{-1}$$

$$= \sigma^{2} (x'x)^{-1} x' x (x'x)^{-1}$$

$$= (x'x)^{-1} x (x'x)^{-1}$$

The variance of a particular estimate is given by the diagonal entry:

$$\operatorname{Var}(\hat{\beta}_j) = \sigma^2(\boldsymbol{X'X})_{j+1,j+1}^{-1} \text{ for } j = 0, \dots, p$$

This is how standard errors are calculated when constructing confidence intervals for the parameters. For example, a $1-\alpha$ confidence interval for β_j is given by

$$\hat{\beta}_j \pm t_{\alpha/2;n-p-1} \operatorname{se}(\hat{\beta}_j)$$

where
$$\operatorname{se}(\hat{\beta}_j) = \hat{\sigma}\sqrt{(\boldsymbol{X'X})_{j+1,j+1}^{-1}}$$
, and $\hat{\sigma} = \sqrt{\operatorname{RSS}/(n-p-1)}$

Using the menu pricing data set (lecture 7), the code below demonstrates how to manually compute the least squares estimates, variance-covariance matrix, and standard errors. The results are compared to the output from lm(). Note that it is always better to use lm() than to do the computations manually. I am just showing this to verify all the formulas.

```
nyc <- read.csv("https://ericwfox.github.io/data/nyc.csv")</pre>
# response vector
Y <- matrix(nyc$Price, ncol=1)
# design matrix
X <- cbind(Intercept = 1, nyc[,c('Food', 'Decor', 'East')])</pre>
X <- as.matrix(X)</pre>
rownames(X) <- nyc$Restaurant</pre>
X[1:5,]
##
                        Intercept Food Decor East
## Daniella Ristorante
                                     22
                                           18
                                                 0
                                1
## Tello's Ristorante
                                1
                                     20
                                           19
                                                 0
## Biricchino
                                     21
                                           13
                                                 0
                                1
## Bottino
                                1
                                     20
                                           20
                                                 0
## Da Umberto
                                     24
                                           19
                                                 0
# manually calculate least squares estimates
betaHat <- solve(t(X) %*% X) %*% t(X) %*% Y
betaHat
##
                    [,1]
## Intercept -24.026880
## Food
               1.536346
## Decor
               1.909373
## East
               2.067013
# compare with lm()
lm1 <- lm(Price ~ Food + Decor + East, data=nyc)</pre>
coef(lm1)
## (Intercept)
                       Food
                                  Decor
                                                East
## -24.026880 1.536346 1.909373
                                            2.067013
```

```
# manually calculate standard errors for least squares estimates
n <- nrow(nyc)</pre>
p <- 3
resid <- as.numeric(Y - X %*% betaHat)</pre>
sigmaHat2 <- sum(resid^2) / (n-p-1)
covBetaHat <- sigmaHat2 * solve(t(X) %*% X)</pre>
covBetaHat
##
             Intercept
                              Food
                                        Decor
                                                     East
## Intercept 21.8344883 -0.94964667 -0.12475347 0.19880619
           -0.9496467 0.06926176 -0.02530816 -0.04612459
## Decor
            -0.1247535 -0.02530816 0.03610588 0.01149201
## East
            0.1988062 -0.04612459 0.01149201 0.86827717
seBetaHat <- sqrt(diag(covBetaHat))</pre>
seBetaHat
## Intercept
               Food
                          Decor
## 4.6727388 0.2631763 0.1900155 0.9318139
# compare with lm()
summary(lm1)$coef
                Estimate Std. Error t value
                                                 Pr(>|t|)
## (Intercept) -24.026880 4.6727388 -5.141926 7.669997e-07
## Food
                1.536346  0.2631763  5.837705  2.758775e-08
## Decor
                1.909373 0.1900155 10.048513 8.201940e-19
                2.067013 0.9318139 2.218268 2.791009e-02
## East
vcov(lm1)
              (Intercept)
                                Food
                                           Decor
                                                        East
## (Intercept) 21.8344883 -0.94964667 -0.12475347 0.19880619
## Food
               ## Decor
               -0.1247535 -0.02530816 0.03610588 0.01149201
              0.1988062 -0.04612459 0.01149201 0.86827717
## East
```