A brief introduction to Bayesian Statistics through Astronomical Applications (Lecture 3)

Cecilia Mateu J. Instituto de Astronomía, UNAM, Ensenada

> Universidad de Barcelona 6 de noviembre de 2014

More Examples

Coordinate Transformations

- Lets say we have a problem in which we know how to write our posterior P(x) in a variable x, but in reality we are interested in knowing the posterior P(y) for variable y=f(x)
- We know the integral of the probability must be conserved

$$\int P(x)dx = \int P(y)dy \qquad P(x)dx = P(y)dy$$

◆ This makes it easy, we know how to change variables inside an integral

$$P(y) = \left| \frac{dx}{dy} \right| P(x)$$

Jacobian of the transformation f(x)

- ◆ Lets illustrate this with an example. Say we have N measurements of the parallax for a star from Gaia
- ◆ Lets assume we have an error model and CU(?)/DPAC gives us an estimate on the parallax error and tells us that its safe to assume these errors are gaussian
- What we'd really like to get ultimately is the posterior on the distance to the star

Lets write the posterior on the parallax first

$$P(\varpi|\{\varpi_i\}) = P(\{\varpi_i\}|\varpi)P(\varpi) \qquad |I$$

◆ Our likelihood is

$$P(\{\varpi_i\}|\varpi) = \prod_{i=1}^N e^{-rac{(\varpi-\varpi_i)^2}{2\sigma_\varpi^2}}$$

So the posterior is

$$P(\varpi|\{\varpi_i\}) = \prod_{i=1}^{N} e^{-\frac{(\varpi - \varpi_i)^2}{2\sigma_{\varpi}^2}} P(\varpi) \qquad |I$$

no coordinate transformations yet...

• Now we want the posterior for the distance $D=1/\omega$

$$P(\varpi|\{\varpi_i\})d\varpi = P(D|\{\varpi_i\})dD$$

$$P(D|\{\varpi_i\}) = P(\varpi|\{\varpi_i\}) \left| \frac{d\varpi}{dD} \right|$$

$$P(D|\{\varpi_i\}) = P(\varpi|\{\varpi_i\}) \left| \frac{\omega}{dD} \right|$$

$$P(\varpi|\{\varpi_i\}) = \prod_{i=1}^{N} e^{-\frac{(\varpi - \varpi_i)^2}{2\sigma_{\varpi}^2}} P(\varpi)$$

$$P(D|\{\varpi_i\}) = P(\varpi|\{\varpi_i\}) \frac{1}{D^2}$$

$$(1/D - \varpi_i)^2$$

$$P(D|\{\varpi_i\}) = P(\varpi|\{\varpi_i\}) \frac{1}{D^2}$$

$$P(D|\{\varpi_i\}) = \prod_{i=1}^{N} e^{-\frac{(1/D - \varpi_i)^2}{2\sigma_{\varpi}^2}} \frac{1}{D^2} P(\varpi(D))$$

More Examples

Fitting a density profile to data

- Another example. Lets say you have a catalogue of a particular stellar tracer, e.g. RR Lyrae stars, Red Clump stars, Cefeids or whatever.
- We'd like to use these tracers to study how stars are distributed in space in the different components in the Galaxy, i.e. their density profile ρ
- How do we compare and fit this function to a sample of stars?

Thick Disc and Halo RRL Density Profiles

- ◆ Thick Disc density profile
 - $\rho_{\rm DG} = C_{\rm DG} e^{-\frac{R-R}{h_R}} e^{-\frac{|z|}{h_z}}$

Halo density profile

$$\rho_{\rm H} = \frac{C_{\rm H}}{R_{\odot}^n} \left[R^2 + \left(\frac{z}{q}\right)^2 \right]^{n/2}$$

... but the directly observable quantity is not the density ρ , but the number N_{RR} of RRLs in the survey volume V_S

$$N_{RR} = \iiint_{V_S} \rho(\vec{r}) dV = \iiint_{V_S} [\rho_{\rm H}(R,z) + \rho_{\rm DG}(R,z)] R dR dz d\varphi$$

Density Profiles: A Bayesian approach

 $\ln L = \sum_{i=1}^{N_{obs}^{RRL}} \ln \rho(\vec{\theta}, \vec{r}_i^{RRLS}) - N_{model}^{RRL}(\vec{\theta})$

Our free parameters are:

$$\vec{\theta} = (h_z, h_r, C_{tkd}, n, C_h)$$

- We build an imaginary grid restricted only to the survey volume Vs
- Our likelihood function is then

$$L \equiv p(\{\eta\}|\vec{\theta}) = \prod_{i \in V_S} p(\eta_i|\vec{\theta}) = \prod_{i \in V_S} \frac{\mu_i^{\eta_i} e^{-\mu_i}}{\eta_i!}$$

$$\ln L = \sum_{i \in V_S} \eta_i \ln \mu_i - \mu_i$$

◆ If now we make the grid cell size tend to 0

We finally get

 η_i - observed number or RRLS on i-th bin

$$\mu_i$$
- predicted number or RRLS on i -th bin

Density Profiles: A Bayesian approach

- ◆ This framework allows us to account for the inhomogeneities of the survey volume due to the variable extinction
- We could also include an incompleteness function for example

$$\ln L = \sum_{i=1}^{N_{obs}^{RRL}} \ln \rho(\vec{\theta}, \vec{r}_i^{RRLS}) - N_{model}^{RRL}(\vec{\theta})$$

This is the computationally intensive part

$$N_{RR} = \iiint_{V_S} \rho(\vec{r}) dV = \iiint_{V_S} [\rho_{\rm H}(R,z) + \rho_{\rm DG}(R,z)] R dR dz d\varphi$$

Density Profiles: Combined samples

Combining three different samples we find the following parameters for the Halo and normal Thick Disk:

Exploring the parameter space in high dimensionality problems: Markov Chain Monte Carlo

A two-parameter problem

- N Points in 2D
- We observe the following distribution of N pairs (xi,yi)
- It seems reasonable to assume they were drawn from a random distribution, so lets use a gaussian model with known $\sigma x = \sigma y = 1$ and μ_X, μ_Y the unknown means in the X and Y directions

The likelihood is expressed as

$$P(x_i, y_i | \mu_X, \mu_Y) = e^{\frac{1}{2}[(x_i - \mu_X)^2 + (y_i - \mu_Y)^2]}$$

$$P(\{x_i, y_i\} | \mu_X, \mu_Y) = \prod_{i=1}^{N} e^{\frac{1}{2}[(x_i - \mu_X)^2 + (y_i - \mu_Y)^2]}$$

A two-parameter problem

- lets assume a uniform prior probability for μχ,μγ
- The posterior is therefore given by

$$P(\mu_X, \mu_Y | \{x_i, y_i\}) = \prod_{i=1}^{N} e^{\frac{1}{2}[(x_i - \mu_X)^2 + (y_i + \mu_Y)^2]}$$

- The Posterior is a function of μx,μy, we want to explore the parameter space efficiently, i.e. spend more time computing the Posterior in high probability areas than in low probability ones
- This is called Importance Sampling and a way of doing it is Markov Chain Monte Carlo sampling

MCMC: The Metropolis-Hastings Recipe

from Hogg et al. 2010

- 1-Choose an initial position for the model params {µ_i}
- 2-Advance a step (in one parameter) randomly -> μ_{i+1}
- 3-Evaluate the posterior at current position P(μ_{i+1})
- 4-Draw a random number R with uniform probability in the range 0<R<1
 - If $R < P(\mu_{i+1})$, keep the point and add it to the chain
 - if not, go back to the previous step and re-add it to the chain
 - repeat ...
 - the set of {µ_i} obtained is a random realization of the Posterior!

MCMC: The Metropolis-Hastings Recipe

- The step size must be chosen so that the acceptance fraction (fraction of points accepted in the chain) lies between ~0.2 and ~0.5 (see Hogg et. al. 2010 and Foreman-Mackey et al. 2013)
- This algorithm is a piece of cake to write, excellent for playing around to develop some intuition as to how the MCMC works
- The problem is that fine-tunning the chain when the number of parameters is large is highly non-trivial! (there's no way of guessing it a priori)
- This is solved by MCMC implementations like *emcee* (Foreman-Mackey et al. 2013) that use algorithms more sophisticated than Metropolis-Hastings, with very few free parameters

A two-parameter problem

MCMC samples

 The set of points obtained in the final Markov Chain is a random realization of the Posterior PDF

 The mode of the histogram gives the most probable value of each parameter

The percentiles give the credible regions

Approximate Bayesian Computation (ABC)

Approximate Bayesian Computation (ABC)

+ Option for cases where there's no analytic likelihood, but there is enough knowledge about the problem to do forward modelling

Basic ABC algorithm

For the observed data $y_{1:n}$, prior $\pi(\theta)$ and distance function ρ :

Algorithm*

- Sample θ^* from prior $\pi(\theta)$
- ② Generate $x_{1:n}$ from forward process $f(y \mid \theta^*)$
- Accept θ^* if $\rho(y_{1:n}, x_{1:n}) < \epsilon$
- Return to step 1

Generates a sample from an approximation of the posterior:

$$f(x_{1:n} \mid \rho(y_{1:n}, x_{1:n}, \theta) < \epsilon) \cdot \pi(\theta) \approx f(y_{1:n} \mid \theta) \pi(\theta) \propto \pi(\theta \mid y_{1:n})$$

*Introduced in Pritchard et al. (1999) (population genetics)

"Though there be no such thing as Chance in the world; our ignorance of the real cause of any event has the same influence on the understanding"

-David Hume (1748)