# Numerical Linear Algebra QR and Least Squares

Zahra Lakdawala

October 7, 2021

#### Outline

- 1 Projectors
- 2 QR Factorization
- 3 Gram-Schmidt Orthogonalization

# Projectors

#### **Projectors**

Projectors 000000

- A projector satisfies  $P^2 = P$ . They are also said to be *idempotent*.
  - Orthogonal projector
  - Oblique projector
- Example

$$\begin{bmatrix} 0 & 0 \\ \alpha & 1 \end{bmatrix}$$

- $\blacksquare$  is an oblique projector if  $\alpha \neq 0$ ,
- $\blacksquare$  is orthogonal projector if  $\alpha = 0$ .

# Complementary Projectors

- $\blacksquare$  Complementary projectors:  $\boldsymbol{P}$  vs.  $\boldsymbol{I}-\boldsymbol{P}.$
- What space does **I** − **P** project?

### Complementary Projectors

- Complementary projectors: P vs. I P.
- What space does I − P project?
  - Answer: null(P)
  - range(I P)  $\supseteq$  null(P) because  $Pv = 0 \Rightarrow (I P)v = v$ .
  - range(I P)  $\subseteq$  null(P) because for any  $\mathbf{v}$

$$(I-P)v = v - Pv \in null(P).$$

- A projector separates  $\mathbb{C}^m$  into two complementary subspace: range space and null space (i.e., range( $\mathbf{P}$ ) + null( $\mathbf{P}$ ) =  $\mathbb{C}^m$  and range( $\mathbf{P}$ )  $\cap$  null( $\mathbf{P}$ ) = 0 for projector  $\mathbf{P} \in \mathbb{C}^{m \times m}$ )
- It projects onto range space along null space
  - In other words,  $\mathbf{x} = \mathbf{P}\mathbf{x} + \mathbf{r}$ , where  $\mathbf{r} \in null(\mathbf{P})$
- Question: Are range space and null space of projector orthogonal to each other?



### Orthogonal Projector

 $\blacksquare$  An orthogonal projector is one that projects onto a subspace  $S_1$  along a space  $S_2$ , where  $S_1$  and  $S_2$  are orthogonal.

#### Theorem

Projectors 000000

A projector **P** is orthogonal if and only if  $P = P^*$ .

#### Proof

"If" direction: If  $P = P^*$ , then $(Px)^*(I - P)y = x^*(P - P^2)y$ . "Only if" direction: Use SVD. Suppose **P** projects onto  $S_1$  along  $S_2$  where  $S_1 \perp S_2$ , and  $S_1$  has dimension n. Let  $q_1, \dots, q_n$  be orthonormal basis of  $S_1$  and  $q_{n+1}, \dots, q_m$  be a basis for  $S_2$ . Let **Q** be unitary matrix whose jth column is  $q_i$ , and we have  $\mathbf{PQ} = (\mathbf{q}_1, \mathbf{q}_2, \cdot \mathbf{q}_n, 0, \cdot, 0)$ , so  $\mathbf{Q}^*\mathbf{PQ} = diag(1, 1, \cdot, 1, 0, \cdot) = \Sigma$ , and  $\mathbf{P} = \mathbf{Q}\Sigma\mathbf{Q}^*$ .

Question: Are orthogonal projectors orthogonal matrices?



### Basis of Projections

- Projection with orthonormal basis
  - Given any matrix  $\hat{\mathbf{Q}} \in \mathbb{C}^{m \times n}$  whose columns are orthonormal, then  $\mathbf{P} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^*$  is orthogonal projector, so is  $\mathbf{I} \mathbf{P}$
  - We write  $\mathbf{I} \mathbf{P}$  as  $\mathbf{P}_{\perp}$
  - $\blacksquare$  In particular, if  $\hat{\mathbf{Q}}=\mathbf{q},$  we write  $\mathbf{P}_{\mathbf{q}}=\mathbf{q}\mathbf{q}^*$  and  $\mathbf{P}_{\perp\mathbf{q}}=\mathbf{I}-\mathbf{P}_{\mathbf{q}}$
  - $\blacksquare$  For arbitrary vector a, we write  $P_a = \frac{aa^*}{a^*a}$  and  $P_{\perp a} = I P_a$

#### Basis of Projections

- Projection with arbitrary basis
  - Given any matrix  $\mathbf{A} \in \mathbb{C}^{m \times n}$  that has full rank  $m \ge n$

$$\mathbf{P} = \mathbf{A}(\mathbf{A}^*\mathbf{A})^{-1}\mathbf{A}^*$$

is an orthogonal projection

- What does P project onto?
  - range(**A**)
- $(A^*A)^{-1}A^*$  is called the pseudo inverse of A, denoted as  $A^+$

# **QR** Factorization

#### Motivation

- Question: Given a linear system Ax = b where  $A \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank, how to solve the linear system?
- Answer: One possible solution is to use SVD. How?

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*, \text{so } \mathbf{x} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^* \mathbf{b}$$

#### Motivation

- Question: Given a linear system Ax = b where  $A \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank, how to solve the linear system?
- Answer: One possible solution is to use SVD. How?

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*, \text{so } \mathbf{x} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^* \mathbf{b}$$

Another solution is to use QR factorization, which decompose  $\bf A$  into product of two simple matrices  $\bf Q$  and  $\bf R$  where columns of  $\bf Q$  are orthonormal and  $\bf R$  is upper triangular.

#### Two Different Versions of QR

■ Full QR factorization:  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$ 

$$A = QR$$

where  $\mathbf{Q} \in \mathbb{C}^{m \times m}$  is unitary and  $\mathbf{R} \in \mathbb{C}^{m \times n}$  is upper trianglular

■ Reduced QR factorization:  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$ 

$$\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$$

where  $\hat{\mathbf{Q}} \in \mathbb{C}^{m \times n}$  contains orthonormal vectors and  $\hat{\mathbf{R}} \in \mathbb{C}^{n \times n}$  is upper triangular

■ What space do  $\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_j, j \leq n$  span?

#### Two Different Versions of QR

■ Full QR factorization:  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$ 

$$A = QR$$

where  $\mathbf{Q} \in \mathbb{C}^{m \times m}$  is unitary and  $\mathbf{R} \in \mathbb{C}^{m \times n}$  is upper trianglular

■ Reduced QR factorization:  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$ 

$$\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$$

where  $\hat{\mathbf{Q}} \in \mathbb{C}^{m \times n}$  contains orthonormal vectors and  $\hat{\mathbf{R}} \in \mathbb{C}^{n \times n}$  is upper triangular

- What space do  $\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_j, j \leq n$  span?
  - Answer: For full rank **A**, first *j* column vectors of **A**, i.e.  $\langle \mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_i \rangle = \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_i \rangle$

### Gram-Schmidt Orthogonalization

- A method to construct QR factorization is to orthogonalize the column vectors of A:
- Basic idea:
  - Take first column  $\mathbf{a}_1$  and normalize it to obtain vector  $\mathbf{q}_1$ ;
  - Take second column  $\mathbf{a}_2$ , subtract its orthogonal projection to  $\mathbf{q}_1$ , and normalize to obtain  $\mathbf{q}_2$ ;
  - • •
  - Take *j*-th column of  $\mathbf{a}_j$ , subtract its orthogonal projection to  $\mathbf{q}_1, \dots, \mathbf{q}_{j-1}$  and normalize to obtain  $\mathbf{q}_j$

$$\mathbf{v}_j = \mathbf{a}_j - \sum_{i=1}^{j-1} \mathbf{q}_i^* \mathbf{a}_j \mathbf{q}_i, \quad \mathbf{q}_j = \mathbf{v}_j / \|\mathbf{v}_j\|$$

This idea is called Gram-Schmidt orthogonalization.



### Gram Schmidt Projections

 Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$\mathbf{q}_j = \frac{\mathbf{P}_j \mathbf{a}_j}{\|\mathbf{P}_j \mathbf{a}_j\|}$$

where

$$\mathbf{P}_j = \mathbf{I} - \hat{\mathbf{Q}}_{j-1}\hat{\mathbf{Q}}_{j-1}^*$$
 with  $\hat{\mathbf{Q}}_{j-1} = [\mathbf{q}_1 \quad \mathbf{q}_2 \quad \cdots \mathbf{q}_{j-1}]$ 

■  ${\bf P}_j$  projects orthogonally onto space orthogonal to  $\langle {\bf q}_1, {\bf q}_2, \cdots, {\bf q}_{j-1} \rangle$  and rank of  ${\bf P}_j$  is m-(j-1)

### Algorithm of Gram Schmidt Orthogonalization

Classical Gram-Schmidt method

$$\begin{aligned} &\text{for } j = 1 \text{ to } n \\ &\mathbf{v}_j = \mathbf{a}_j; \\ &\text{for } i = 1 \text{ to } j - 1 \\ &r_{ij} = \mathbf{q}_i^* \mathbf{a}_j \\ &\mathbf{v}_j = \mathbf{v}_j - r_{ij} \mathbf{q}_i \\ &r_{jj} = \|\mathbf{v}_j\|_2 \\ &\mathbf{q}_j = \frac{\mathbf{v}_j}{r_{jj}} \end{aligned}$$

 Classical Gram-Schmidt (CGS) is unstable, which means that its solution is sensitive to perturbation

#### Existence of QR

#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n}(m \ge n)$  has full QR factorization, hence also a reduced QR factorization.

Key idea of proof:

- If A has full rank, Gram-Schmidt algorithm provides a proof itself for having reduced QR.
- If **A** does not have full rank, at some step  $\mathbf{v}_j = 0$ . We can set  $\mathbf{q}_j$  to be a vector orthogonal to  $\mathbf{q}_i, i < j$ .
- To construct full QR from reduced QR, just continue Gram-Schmidt an additional m - n steps.

#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank has a unique reduced QR factorization  $\mathbf{A} = \hat{\mathbf{Q}} \hat{\mathbf{R}}$  with  $r_{jj} > 0$ .

Proof is provided by Gram-Schmidt iteration itself. If the signs of  $r_{jj}$  are determined, then  $r_{ii}$  and  $\mathbf{q}_i$  are determined.

#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank has a unique reduced QR factorization  $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$  with  $r_{jj} > 0$ .

Proof is provided by Gram-Schmidt iteration itself. If the signs of  $r_{ij}$  are determined, then  $r_{ij}$  and  $\mathbf{q}_{j}$  are determined.

**Question:** Why do we require  $r_{jj} > 0$ 

#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank has a unique reduced QR factorization  $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$  with  $r_{jj} > 0$ .

Proof is provided by Gram-Schmidt iteration itself. If the signs of  $r_{jj}$  are determined, then  $r_{ij}$  and  $\mathbf{q}_i$  are determined.

**Question:** Why do we require  $r_{ii} > 0$ 

Question: Is full QR factorization unique?

#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank has a unique reduced QR factorization  $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$  with  $r_{jj} > 0$ .

Proof is provided by Gram-Schmidt iteration itself. If the signs of  $r_{jj}$  are determined, then  $r_{ij}$  and  $\mathbf{q}_i$  are determined.

**Question:** Why do we require  $r_{jj} > 0$ 

**Question:** Is full QR factorization unique? **Question:** What if A does not have full rank?

### Gram-Schmidt Orthogonalization

### Gram-Schmidt Orthogonalization

- A method to construct QR factorization is to orthogonalize the column vectors of A:
- Basic idea:
  - Take first column  $\mathbf{a}_1$  and normalize it to obtain vector  $\mathbf{q}_1$ ;
  - Take second column  $\mathbf{a}_2$ , subtract its orthogonal projection to  $\mathbf{q}_1$ , and normalize to obtain  $\mathbf{q}_2$ ;
  - • •
  - Take *j*-th column of  $\mathbf{a}_j$ , subtract its orthogonal projection to  $\mathbf{q}_1, \dots, \mathbf{q}_{j-1}$  and normalize to obtain  $\mathbf{q}_j$

$$\mathbf{v}_j = \mathbf{a}_j - \sum_{i=1}^{j-1} \mathbf{q}_i^* \mathbf{a}_j \mathbf{q}_i, \quad \mathbf{q}_j = \mathbf{v}_j / \|\mathbf{v}_j\|$$

This idea is called Gram-Schmidt orthogonalization.

### **Gram Schmidt Projections**

 Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$\mathbf{q}_j = \frac{\mathbf{P}_j \mathbf{a}_j}{\|\mathbf{P}_j \mathbf{a}_j\|}$$

where

$$\mathbf{P}_j = \mathbf{I} - \hat{\mathbf{Q}}_{j-1}\hat{\mathbf{Q}}_{j-1}^*$$
 with  $\hat{\mathbf{Q}}_{j-1} = [\mathbf{q}_1 \quad \mathbf{q}_2 \quad \cdots \mathbf{q}_{j-1}]$ 

■  ${\bf P}_j$  projects orthogonally onto space orthogonal to  $\langle {\bf q}_1, {\bf q}_2, \cdots, {\bf q}_{j-1} \rangle$  and rank of  ${\bf P}_j$  is m-(j-1)

### Algorithm of Gram Schmidt Orthogonalization

Classical Gram-Schmidt method

$$\begin{aligned} &\text{for } j = 1 \text{ to } n \\ &\mathbf{v}_j = \mathbf{a}_j; \\ &\text{for } i = 1 \text{ to } j - 1 \\ &r_{ij} = \mathbf{q}_i^* \mathbf{a}_j \\ &\mathbf{v}_j = \mathbf{v}_j - r_{ij} \mathbf{q}_i \\ &r_{jj} = \|\mathbf{v}_j\|_2 \\ &\mathbf{q}_j = \frac{\mathbf{v}_j}{r_{jj}} \end{aligned}$$

 Classical Gram-Schmidt (CGS) is unstable, which means that its solution is sensitive to perturbation

#### Existence of QR

#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n}(m \ge n)$  has full QR factorization, hence also a reduced QR factorization.

Key idea of proof:

- If A has full rank, Gram-Schmidt algorithm provides a proof itself for having reduced QR.
- If **A** does not have full rank, at some step  $\mathbf{v}_j = 0$ . We can set  $\mathbf{q}_j$  to be a vector orthogonal to  $\mathbf{q}_i, i < j$ .
- To construct full QR from reduced QR, just continue Gram-Schmidt an additional m - n steps.



#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank has a unique reduced QR factorization  $\mathbf{A} = \hat{\mathbf{Q}} \hat{\mathbf{R}}$  with  $r_{jj} > 0$ .

Proof is provided by Gram-Schmidt iteration itself. If the signs of  $r_{jj}$  are determined, then  $r_{ii}$  and  $\mathbf{q}_i$  are determined.

#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank has a unique reduced QR factorization  $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$  with  $r_{jj} > 0$ .

Proof is provided by Gram-Schmidt iteration itself. If the signs of  $r_{ij}$  are determined, then  $r_{ij}$  and  $\mathbf{q}_{j}$  are determined.

**Question:** Why do we require  $r_{jj} > 0$ 

#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank has a unique reduced QR factorization  $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$  with  $r_{jj} > 0$ .

Proof is provided by Gram-Schmidt iteration itself. If the signs of  $r_{jj}$  are determined, then  $r_{ij}$  and  $\mathbf{q}_i$  are determined.

**Question:** Why do we require  $r_{ii} > 0$ 

Question: Is full QR factorization unique?

#### Theorem

Every  $\mathbf{A} \in \mathbb{C}^{m \times n} (m \ge n)$  has full rank has a unique reduced QR factorization  $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$  with  $r_{jj} > 0$ .

Proof is provided by Gram-Schmidt iteration itself. If the signs of  $r_{jj}$  are determined, then  $r_{ij}$  and  $\mathbf{q}_i$  are determined.

**Question:** Why do we require  $r_{jj} > 0$ 

**Question:** Is full QR factorization unique? **Question:** What if A does not have full rank?



#### Alternative view to Gram-Schmidt Projection

 Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$\mathbf{q}_j = \frac{\mathbf{P}_j \mathbf{a}_j}{\|\mathbf{P}_j \mathbf{a}_j\|},$$

where 
$$\mathbf{P}_i = \mathbf{I} - \hat{\mathbf{Q}}_{i-1} \hat{\mathbf{Q}}_{i-1}^*$$
 with  $\hat{\mathbf{Q}}_{i-1} = [\mathbf{q}_1 \ \mathbf{q}_2 \dots \mathbf{q}_{i-1}]$ 

lacktriangle We may view  ${f P}_j$  as product of a sequence of projections

$$\mathbf{P}_j = \mathbf{P}_{\perp q_{j-1}} \, \mathbf{P}_{\perp q_{j-2}} \dots \mathbf{P}_{\perp q_1}$$

where 
$$\mathbf{P}_{\perp_a} = \mathbf{I} - \mathbf{q}\mathbf{q}^*$$

■ Instead of computing  $\mathbf{v}_j = \mathbf{P}_j \mathbf{a}_i$ , one could compute  $\mathbf{v}_j = \mathbf{P}_{\perp q_{j-1}} \mathbf{P}_{\perp q_{j-2}} \dots \mathbf{P}_{\perp q_1} \mathbf{a}_j$  instead, resulting in modified Gram-Schmidt algorithm



### Modified Gram-Schmidt Orthogonalization

Classical Gram-Schmidt method: for j=1 to n  $\mathbf{v}_j=\mathbf{a}_j;$  for i=1 to j-1  $r_{ij}=\mathbf{q}_i^*\mathbf{a}_j$   $\mathbf{v}_j=\mathbf{v}_j-r_{ij}\mathbf{q}_i$   $r_{jj}=\|\mathbf{v}_j\|_2$   $\mathbf{q}_j=\frac{\mathbf{v}_j}{r_{ij}}$ 

Modified Gram-Schmidt method: for j=1 to n  $\mathbf{v}_j = \mathbf{a}_j$ for i=1 to n  $r_{ii} = \|\mathbf{v}_i\|_2$   $\mathbf{q}_i = \mathbf{v}_i/r_{ii}$ for j=i+1 to n  $r_{ij} = \mathbf{q}_i^* \mathbf{v}_j$   $\mathbf{v}_i = \mathbf{v}_i - r_{ii} \mathbf{q}_i$ 

#### Modified Gram-Schmidt Orthogonalization

Classical Gram-Schmidt method: for j=1 to n  $\mathbf{v}_j = \mathbf{a}_j;$ for i=1 to j-1  $r_{ij} = \mathbf{q}_i^* \mathbf{a}_j$   $\mathbf{v}_j = \mathbf{v}_j - r_{ij} \mathbf{q}_i$   $r_{ji} = \|\mathbf{v}_i\|_2$ 

 $\mathbf{q}_j = \frac{\mathbf{v}_j}{r_{ii}}$ 

Modified Gram-Schmidt method: for j=1 to n  $\mathbf{v}_j = \mathbf{a}_j$ for i=1 to n  $r_{ii} = \|\mathbf{v}_i\|_2$   $\mathbf{q}_i = \mathbf{v}_i/r_{ii}$ for j=i+1 to n  $r_{ij} = \mathbf{q}_i^* \mathbf{v}_j$   $\mathbf{v}_i = \mathbf{v}_i - r_{ii} \mathbf{q}_i$ 

- $\blacksquare$  Key difference between CGS and MGS is how  $r_{ij}$  is computed
- CGS above is column-oriented (in the sense that R is computed column by column) and MGS above is row-oriented, but this is NOT the main difference between CGS and MGS. There are also column-oriented MGS and row-oriented CGS.
- MGS is numerically more stable than CGS (less sensitive to round-off errors)



#### Example: CGS vs. MGS

Consider matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{bmatrix}$$

where  $\varepsilon$  is small such that  $1+\varepsilon^2=1$  with round-off error

For both CGS and MGS

$$\begin{aligned} \mathbf{v}_1 \leftarrow & (1, \epsilon, 0, 0)^T, r_{11} = \sqrt{1 + \epsilon^2} \approx 1, \mathbf{q}_1 = \mathbf{v}_1/r_{11} = (1, \epsilon, 0, 0)^T, \\ & \mathbf{v}_2 \leftarrow & (1, 0, \epsilon, 0)^T, r_{12} = \mathbf{q}_1^T \mathbf{a}_2 (or = \mathbf{q}_1^T \mathbf{v}_2) = 1 \\ & \mathbf{v}_2 \leftarrow \mathbf{v}_2 - r_{12} \mathbf{q}_1 = (0, -\epsilon, \epsilon, 0)^T \\ & r_{22} = & \sqrt{2} \epsilon, \mathbf{q}_2 = (0, -1, 1, 0)/\sqrt{2}, \\ & \mathbf{v}_3 \leftarrow & (1, 0, 0, \epsilon)^T, r_{13} = \mathbf{q}_1^T \mathbf{a}_3 (or = \mathbf{q}_1^T \mathbf{v}_3) = 1 \\ & \mathbf{v}_3 \leftarrow \mathbf{v}_3 - r_{13} \mathbf{q}_1 = (0, -\epsilon, 0, \epsilon)^T \end{aligned}$$

### Example: CGS vs. MGS Cont'd

For CGS:

$$r_{23} = \mathbf{q}_2^T \mathbf{a}_3 = 0, \mathbf{v}_3 \leftarrow \mathbf{v}_3 - r_{23} \mathbf{q}_2 = (0, -\varepsilon, 0, \varepsilon)^T$$
  
 $r_{33} = \sqrt{2}\varepsilon, \mathbf{q}_3 = \mathbf{v}_3/r_{33} = (0, -1, 0, 1)^T/\sqrt{2}$ 

- Note that  $\mathbf{q}_2^T \mathbf{q}_3 = (0, -1, 1, 0)(0, -1, 0, 1)^T/2 = 1/2$
- For MGS:

$$r_{23} = \mathbf{q}_2^T \mathbf{a}_3 = \varepsilon / \sqrt{2}, \mathbf{v}_3 \leftarrow \mathbf{v}_3 - r_{23} \mathbf{q}_2 = (0, -\varepsilon/2, -\varepsilon/2, \varepsilon)^T$$
  
 $r_{33} = \sqrt{6}\varepsilon/2, \mathbf{q}_3 = \mathbf{v}_3 / r_{33} = (0, -1, -1, 2)^T / \sqrt{6}$ 

■ Note that  $\mathbf{q}_2^T \mathbf{q}_3 = (0, -1, 1, 0)(0, -1, -1, 2)^T / \sqrt{12} = 0$ 



#### **Operation Count**

- It is important to assess the efficiency of algorithms. But how?
  - We could implement different algorithms and do head-to-head comparison, but implementation details might affect true performance
  - We could estimate cost of all operations, but it is very tedious
  - Relatively simple and effective approach is to estimate amount of floating-point operations, or 'flops', and focus on asymptotic analysis as sizes of matrices approach infinity
- $\blacksquare$  Count each operation +,-,\*,/, and  $\surd$  as one flop, and make no distinction of real and complex numbers

#### Theorem

CGS and MGS require  $\sim 2mn^2$  flops to compute a QR factorization of an  $m \times n$  matrix.

