Task12

Nawar Saeed

Artificial Intelligence for the Web, VT21 $$\operatorname{DT506A}$$

 $16~\mathrm{april}~2021$

This task is about minimizing the expression $E[L] = \sum_i p_i L_i$ under the constraint $\sum_i 2^{-L_i}$ and then prove that $L_i = log_2$ $(\frac{1}{p_i})$

Proof: This is a minimizing problem that can be solved with Lagrange method:

$$min \ H(x) = \sum_{i \ge 1}^{m} p_i \ .L_i + \lambda . (1 - \sum_{i \ge 1}^{m} 2^{-L_i})$$

$$s.t \ \sum_{i \ge 1}^{m} 2^{-L_i}$$

$$L_i > 0$$

With Lagrangian optimization, it obtains:

$$\mathcal{L} = \sum_{i \ge 1}^{m} p_i . L_i + \lambda . (1 - \sum_{i \ge 1}^{m} 2^{-L_i})$$

Solving the derivatives with respect to i and set them to zero, obtains:

$$\frac{\partial \mathcal{L}}{\partial L_i} = p_i + \lambda. \ln(2).2^{-L_i} = 0$$

$$\Leftrightarrow 2^{-L_i} = -\frac{p_i}{\lambda \cdot \ln(2)} \tag{1}$$

Now, lets derivative with respect to λ :

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 1 - \sum_{i \ge 1}^{m} 2^{-L_i}$$

$$1 - \sum_{i=1}^{m} 2^{-L_i} = 0$$

$$\sum_{i>1}^{m} 2^{-L_i} = 1 \tag{2}$$

Combining (1) into (2) in order to calculate the value of λ yields:

$$\sum_{i=1}^{m} -\frac{p_i}{\lambda \cdot \ln(2)} = 1 \Leftrightarrow -\frac{1}{\lambda \cdot \ln(2)} \cdot \sum_{i=1}^{m} p_i = 1$$

$$\Leftrightarrow \lambda = -\frac{1}{\ln(2)}$$
 (3), since $\sum_{i>1}^{m} p_i \to 1$

The last step is calculating L_i , and it can be don by combining (3) into (1):

$$p_i - \frac{\ln(1)}{\ln(2)} \cdot 2^{-L_i} = 0 \Leftrightarrow p_i = 2^{-L_i}$$

$$log_2 \ p_i = -L_i \Leftrightarrow L_i = log_2 \frac{1}{p_i}$$

Compute the second derivative on $L_i = \log_2 \frac{1}{p_i}$ yields $\frac{1}{2^{L_i}} \cdot \ln(2) > 0$ which means $E(L_i)$ reaches a global minimum and $L_i = \log_2 \frac{1}{p_i}$ is its minimizer \square