Problem Statement ## Credit Card Lead Prediction

Happy Customer Bank is a mid-sized private bank that deals in all kinds of banking products, like Savings accounts, Current accounts, investment products, credit products, among other offerings.

The bank also cross-sells products to its existing customers and to do so they use different kinds of communication like tele-calling, e-mails, recommendations on net banking, mobile banking, etc.

In this case, the Happy Customer Bank wants to cross sell its credit cards to its existing customers. The bank has identified a set of customers that are eligible for taking these credit cards.

Now, the bank is looking for your help in identifying customers that could show higher intent towards a recommended credit card, given:

- Customer details (gender, age, region etc.)
- Details of his/her relationship with the bank (Channel_Code, Vintage, 'Avg_Asset_Value etc.)

Data Dictionary

Train Data

Variable: Definition

ID: Unique Identifier for a row

Gender: Gender of the Customer

Age: Age of the Customer (in Years)

Region_Code: Code of the Region for the customers

Occupation: Occupation Type for the customer

Channel_Code: Acquisition Channel Code for the Customer (Encoded)

Vintage: Vintage for the Customer (In Months)

Credit_Product: If the Customer has any active credit product (Home loan, Personal loan, Credit

Card etc.)

Avg_Account_Balance: Average Account Balance for the Customer in last 12 Months

Is_Active: If the Customer is Active in last 3 Months

Is_Lead(Target): If the Customer is interested for the Credit Card 0: Customer is not interested

1: Customer is interested

▼ Test Data

Variable: Definition

ID: Unique Identifier for a row

Gender: Gender of the Customer

Age: Age of the Customer (in Years)

Region_Code: Code of the Region for the customers

Occupation: Occupation Type for the customer

Channel_Code: Acquisition Channel Code for the Customer (Encoded)

Vintage: Vintage for the Customer (In Months)

Credit_Product: If the Customer has any active credit product (Home loan, Personal loan, Credit

Card etc.)

Avg_Account_Balance: Average Account Balance for the Customer in last 12 Months

Is_Active: If the Customer is Active in last 3 Months

▼ Sample Submission

This file contains the exact submission format for the predictions. Please submit CSV file only.

Variable: Definition

ID: Unique Identifier for a row

Is_Lead (Target): Probability of Customer showing interest (class 1)

Table of Content

- Step 1: Importing the Relevant Libraries
- Step 2: Data Inspection
- Step 3: Data Cleaning
- Step 4: Exploratory Data Analysis
- Step 5: Building Model
- Submission

Importing Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

▼ Data Inspetion

We have 245725 rows and 11 column in Train Dataset

We have 105313 rows and 10 column in test set

#Taking look at first few entries in Train Data
train.head()

	ID	Gender	Age	Region_Code	Occupation	Channel_Code	Vintage	Credit
0	NNVBBKZB	Female	73	RG268	Other	X3	43	
1	IDD62UNG	Female	30	RG277	Salaried	X1	32	
2	HD3DSEMC	Female	56	RG268	Self_Employed	Х3	26	
3	BF3NC7KV	Male	34	RG270	Salaried	X1	19	
4	TEASRWXV	Female	30	RG282	Salaried	X1	33	

#Taking look at first few entries in Test Data.
test.head()

	ID	Gender	Age	Region_Code	Occupation	Channel_Code	Vintage	Credit_F
0	VBENBARO	Male	29	RG254	Other	X1	25	
1	CCMEWNKY	Male	43	RG268	Other	X2	49	
2	VK3KGA9M	Male	31	RG270	Salaried	X1	14	
3	TT8RPZVC	Male	29	RG272	Other	X1	33	
4	SHQZEYTZ	Female	29	RG270	Other	X1	19	

- By looking at Train and Test data, we have some categorical features.
- Also Is_Lead is our target feature which we need to predict for Test data.
- We are having some missing values too can bee seen in Test data.

Checking for Missing/Null values in both the dataset(Train & Test)

```
[ ] L, 4 cells hidden
```

Checking the no. of categorical & numerical feature in Train & Test Dataset

```
[ ] L, 2 cells hidden
```

Data Prepration/Data Cleaning

Checking the total no of missing values in Train dataset
train.isnull().sum()

ID	0
Gender	0
Age	0
Region_Code	0
Occupation	0
Channel_Code	0
Vintage	0
Credit_Product	29325
<pre>Avg_Account_Balance</pre>	0
Is_Active	0
Is_Lead	0
dtype: int64	

Total of 29325 values are null out of 245725 values in Train dataset

Checking the total no of missing values in Test dataset
test.isnull().sum()

```
ID
                            0
Gender
                            0
                            0
Age
Region_Code
                            0
Occupation
                            0
Channel Code
                            0
Vintage
                            0
Credit_Product
                        12522
Avg_Account_Balance
                            0
                            0
Is_Active
dtype: int64
```

• Total of 12522 values are null out of 105312 Values in test set

```
# Creating a new dataframe df similar to train dataset
df=train

# Checking the counts of different tpes of value in feature "Credit_Product"
df['Credit_Product'].value_counts()

    No     144357
    Yes     72043
    Name: Credit_Product, dtype: int64
```

- Can be seen that "No" is most frequent
- Imputing the missing values in Train dataset with most frequent occurring value i.e "No"

```
#using SimpleImputer Function to imput the missing value
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
imputer.fit(df[['Credit_Product']])
df[['Credit_Product']] = imputer.transform(df[['Credit_Product']])
#Checking for missing values after imputation
df.isnull().sum()
     ID
                            0
     Gender
                            0
     Age
     Region Code
                            0
     Occupation
                            0
     Channel Code
                            0
     Vintage
                            0
     Credit Product
                            0
     Avg_Account_Balance
                            0
     Is Active
                            0
     Is_Lead
                            0
     dtype: int64
```

There is no null values now as we have imputed them with most frequent value.

```
# Checking the counts of different tpes of value in Target feature "Is_Lead"
df['Is_Lead'].value_counts()
```

```
0 187437
1 58288
Name: Is_Lead, dtype: int64
```

- It shows that our dataset is Imbalanced
- So we we train our model with the same, It will be biased towards 0 target
- Will use **OverSampling** Technique for this

- Appending newly created dataframe with entries having only 1 in "Is_Lead" feature to "df"
- This is done to avoid Biasing of prediction

```
# Checking the counts of different tpes of value in Target feature "Is_Lead"
df['Is_Lead'].value_counts()
```

```
0 187437
1 174864
Name: Is_Lead, dtype: int64
```

- now data is almost balanced
- ▶ Imputin missing value in Test set too with same strategy used in Train set.

```
[ ] L, 4 cells hidden
```

Exploratory Data Analysis

```
'Is_Lead'],
dtype='object')
```

checking how many different types of values are there in Gender feature
df['Gender'].value_counts()

Male 205363 Female 156938

Name: Gender, dtype: int64

checking how many different types of values are there in Occupation feature
df['Occupation'].value_counts()

Self_Employed 156568 Other 104551 Salaried 94991 Entrepreneur 6191

Name: Occupation, dtype: int64

checking how many different types of values are there in Channel_Code feature
df['Channel_Code'].value_counts()

X1 122682 X3 119150 X2 112140 X4 8329

Name: Channel_Code, dtype: int64

plotting Occupation Feature to gain Insight
plt.figure(figsize=(8,5))
sns.countplot('Occupation',data=train,palette='ocean')

<AxesSubplot:xlabel='Occupation', ylabel='count'>

 Most of the customers self_Employed, While customers with occupation as Others & Salaried are almost equal, where as customers who Entreprenuer are very few as

```
# plotting Gender Feature to gain Insight
plt.figure(figsize=(25,7))
sns.countplot('Gender',data=train,palette='spring')
```


Males customers are more as compared to Female

```
# plotting Is_Active Feature to gain Insight
plt.figure(figsize=(25,7))
sns.countplot('Is_Active',data=train,palette='spring')
```

<AxesSubplot:xlabel='Is_Active', ylabel='count'>

· Max No of users are Inactive since last three months

```
# plotting Credit_Product Feature to gain Insight
plt.figure(figsize=(8,5))
sns.countplot('Credit_Product',data=train,palette='summer')
```

```
<AxesSubplot:xlabel='Credit_Product', ylabel='count'>
```


• Max no of customers in bank have no active credit product(i.e. Loans etc)

```
# plotting Gender Feature to gain Insight
plt.figure(figsize=(8,5))
sns.countplot('Channel_Code',data=train,palette='twilight')
```

```
<AxesSubplot:xlabel='Channel_Code', ylabel='count'>
100000 -
```

channel code 1 count is more

```
# plotting Gender Feature to gain Insight
plt.figure(figsize=(29,5))
sns.countplot('Region_Code',data=train,palette='ocean')
```

<AxesSubplot:xlabel='Region_Code', ylabel='count'>

→ Building Model

```
# Using Labelencoder to encode categorical features
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
var_mod = df.select_dtypes(include='object').columns
for i in var_mod:
    df[i] = le.fit_transform(df[i])

for i in var_mod:
    df1[i] = le.fit_transform(df1[i])
```

 Encoding the categorical features for model training purpose using label encode function from scikit learn

Separating target Feature & Independent Features

```
[ ] Ļ1 cell hidden
```

•	splitting the train Dataset in to train and validation						
	[] Ļ 2 cells hidden						
•	Training CatBoostClassifier						
	[] Ļ 10 cells hidden						

• ×