COMPLEMENTARY SLACKNESS THEOREM

Active vs. Inactive Constraints

Primal	Dual
$x_1: 6$	$y_5: 0$
$x_2: 11$	$y_6: 0$
$x_3: 9$	$y_1: 0$
$x_4: 0$	$y_2: 2$
$x_5: 8$	$y_3: 0$
$x_6: 0$	$y_4: 1$

 $x_2 \ll 11$ is active.

- 1. y_2 (dual) is non-zero.
- 2. x_4 (slack) is zero

 $-3x_1 + x_2 \le 2$ is inactive.

- 1. y_1 (dual) is zero.
- 2. x_3 (slack) is non-zero

Complementary Slackness (Main Idea)

- Let x be a primal feasible solution
- Let y be a dual feasible solution.
- Complementarity Condition: Product of complementary pairs are all zero. $x_i \times y_j = 0$

Complementary Pairs

Theorem: x, y are primal and dual optimal respectively.

Proof

Will be discussed separately on a discussion forum.

An Example

Primal	Dual
$x_1: 6$	$y_5: 0$
$ x_2 : 11 $	$y_6: 0$
$x_3: 9$	$y_1: 0$
$x_4: 0$	$y_2: \ 2$
$x_5: 8$	$y_3: 0$
$x_6: 0$	$y_4: 1$

Complementary Slackness

$$egin{array}{c|cccc} \mathbf{x_B} & \mathbf{b} & +A\mathbf{x_I} \\ \hline z & z_0 & +\mathbf{c^\intercal x_I} \\ \hline \end{array} & egin{array}{c|cccc} \mathbf{x_I}^c & -\mathbf{c} & -A^\intercal \mathbf{x_B}^c \\ \hline d & -z_0 & -\mathbf{b^\intercal x_B}^c \\ \hline \end{array} \\ x_I = \mathbf{0}, x_B = \mathbf{b} & x_B^c = \mathbf{0}, x_I^c = -\mathbf{c} \\ \end{array}$$

Claim: The solutions represented by primal and dual dictionaries are complementary pairs.