2. Miroir de Fresnel

- 1. On observe d'après le schéma ci-contre que $sin\frac{2.\epsilon}{2} = \frac{a}{2.d}$ soit $a \equiv 2.\epsilon.d$
- 2. On se ramène à un dispositif équivalent aux trous d'Young, les franges seront donc rectilignes. L'interfrange sera $i = \frac{\lambda \cdot (D+d)}{a} = \frac{\lambda \cdot (D+d)}{2 \cdot \epsilon \cdot d}$.
- Il faut repérer la zone d'interférences, en observant le champ de réflexion des deux miroirs. La zone est donc limitée par les droites OS₁ et 0S₂, donc sur l'écran par les points d'abscisse x = ±ε.D
 On en déduit donc

$$N = 2.E\left(\frac{\epsilon.D}{i}\right) + 1 = 33$$

- 4. On aura annulation du contraste lorsque $\left|p_{\left(\lambda 0+\frac{\Delta\lambda}{2}\right)}-p\left(\lambda 0+\frac{\Delta\lambda}{2}\right)\right|=\frac{1}{2}$ soit $\delta=\pm\frac{\lambda_0^2}{2.\Delta\lambda_0}$. AN: p=137
- 5. Or l'ordre maximum visible est $p = \frac{\epsilon . D}{i}$ avec i = 0,54 mm donc $p_{Max} = 16,1$ Le phénomène de brouillage ne sera donc pas observable.

3. Caractérisation de sources

- Figure A :La seule zone contrastée se situe autour de la frange la plus brillante correspondant à p = 0. C'est la caractéristique d'une bande spectrale.
 - Figure B : Les zones de brouillages se retrouvent périodiquement sur la figure d'interférence. C'est la caractéristique de la présence de deux composantes spectrales (doublet)
- Pour chacune de ces sources, la figure d'interférence fait apparaître des franges rectilignes dont on peut mesurer l'interfrange i. On assimile cette figure à la figure d'interférence obtenue avec une source monochromatique de longueur d'onde la longueur d'onde moyenne λ₀.

Le caractère non monochromatique des sources est alors caractérisé par le brouillage de ces franges

- Mesure de i: On mesure $\Delta x = 4, 4$ cm pour 10 interfranges avec une incertitude évaluée $\sigma x = 1$ mm, ce qui donne $i = (4, 4 \pm 0, 1)$ mm
- Pour les fentes d'Young dans les conditions de Gauss : $\delta = \frac{a.x}{D} = p.\lambda_0$, soit $x_p = \frac{p.\lambda_0.D}{a}$, donc $i = |x_{p+1} x_p| = \frac{\lambda_0.D}{a}$. $\lambda_0 = \frac{i.a}{D}$
- Application numérique : λ₀ = (440 ± 10) nm

Cette longueur d'onde moyenne est identique pour les deux sources.

3. Figure A:

- Au centre de la figure, $p = 0 \forall \lambda$. On notera en $M : p_0$ l'ordre d'interférence associé à λ_0 et p_1 l'ordre d'interférence associé à $\lambda_0 + \frac{\Delta \lambda}{2}$
- La limite du brouillage est défini par $|p_1 p_0| = \frac{1}{2}$. Cette limite est associée aux points sur la figure x_{min} et x_{max} tels que $x_{max} x_{min} = (3 \pm 0, 5)$ cm. Or ces deux points doivent être symétriques par rapport à la frange d'ordre d'interférence p_0 , donc $x_{max} = (1, 50 \pm 0, 25)$ cm
- On a donc $\frac{a.x_{max}}{D}$. $\left| \frac{1}{\lambda_0 + \frac{\Delta \lambda}{2}} \frac{1}{\lambda_0} \right| = \frac{1}{2}$

En considérant $\Delta \lambda \ll \lambda_0$, un développement limité au premier ordre donne :

$$\frac{a.x_{max}}{D.\lambda_0} \cdot \left| \frac{1}{1 + \frac{\Delta\lambda}{2.\lambda_0}} - 1 \right| = \frac{1}{2} \equiv \frac{a.x_{max}.\Delta\lambda_0}{2.D.\lambda_0^2}.$$

Soit
$$\Delta \lambda = \frac{D \cdot \lambda_0^2}{a \cdot x_{max}} = 130 \ nm$$

On remarque qu'ici notre hypothèse pour effectuer le développement limité est un peu grossière...

Figure B : La méthode est similaire.