RECEIVED
CENTRAL FAX CENTER

DEC 0:2 2008

PENDING CLAIMS

- 1. (Original): An electrophysiology device, comprising:
- a) an elongated shaft having a proximal end, a distal end, and a distal shaft section;
- b) a plurality of tubular coil electrodes on an exterior portion of the distal shaft section, having an interelectrode spacing of about 1 mm to not greater than 3 mm;
- c) at least one temperature sensor on an exterior portion of the distal shaft section, being positioned so that the temperature sensor is disposed between two adjacent electrodes;
- d) a metal band adjacent to and radially disposed about an outer surface of the temperature sensor and shaft; and
- e) one or more electrical conductors electrically connected to the at least one temperature sensor, at least partially embedded and helically disposed within a wall of the elongated shaft.
- 2. (Original): The device of claim 1 further including a plurality of electrode electrical conductors which are each electrically connected to an individual electrode at a distal end of the electrode electrical conductor and having a proximal end configured to connect to an electrical source.
- 3. (Original): The device of claim 2 wherein the shaft has an elongated core member disposed therein.
- 4. (Original): The device of claim 3 further including a jacket disposed about the core member.

Dec 02 Q8 09:45a Edward J. Lynch 415 646 8035 p.5

5. (Original): The device of claim 4 having the electrode electrical

conductors at least in part helically braided into the core member jacket.

6. (Original): The device of claim 5 having the electrode electrical

conductors at least in part helically braided into the shaft.

7. (Original): The device of claim 3 further including a distal tip member

secured to the distal end of the shaft.

8. (Original): The device of claim 7 wherein the distal tip member includes a

coil member disposed about a distal extremity of the core member distal to the shaft.

9. (Original): The device of claim 2 wherein the shaft has a lumen extending

therein configured to slidably receive a guidewire therein.

10. (Original): The device of claim 2 wherein the electrode electrical

conductors are helically braided into the shaft.

11. (Original): The device of claim 1 further including a jacket disposed on

and about the metal band.

12. (Original): The device of claim11 wherein the jacket is in part disposed

about a periphery of the two electrodes adjacent to the temperature sensor.

13. (Original): The device of claim 4 wherein the jacket is disposed about and

in contact with the metal band, and defines an outer surface of the electrophysiology

device.

14. (Original): The device of claim1 wherein the jacket is in part disposed

about a periphery of at least one of the two electrodes adjacent to the temperature

sensor.

Dec 02 Q8 09:45a Edward J. Lynch 415 646 8035 p.6

15. (Original): The device of claim 1 wherein the electrodes are sensing and

ablation electrodes.

16. (Original): The device of claim 1 wherein the distal shaft section has a

maximum outer dimension less than 1.65 mm.

17. (Original): The device of claim 1 wherein the metal band is soldered to the

temperature sensor.

18. (Original): An electrophysiology device assembly, comprising:

a) a guiding member having an elongated shaft having a proximal

end, a distal end, a port in the proximal end, a port in a distal shaft section, and a lumen

extending therein; and

b) an electrophysiology device slidably disposed in the lumen of the

guiding member, comprising:

an elongated shaft having a proximal end, a distal end, and a distal

shaft section, and a plurality of electrical conductors helically braided into the shaft;

a plurality of tubular coil electrodes on an exterior portion of the

distal shaft section electrically connected to the electrical conductors, having an

interelectrode spacing of about 1 mm to not greater than 3 mm;

a plurality of temperature sensors on an exterior portion of the distal

shaft section, being positioned so that at least one temperature sensor is disposed

between two adjacent electrodes, each temperature sensor being electrically connected

to at least one of the electrical conductors helically braided into the shaft; and

a plurality of metal bands on the shaft, so that a metal band is

adjacent to and radially disposed about an outer surface of each temperature sensor

Dec 02 08 09:46a Edward J. Lynch 415 646 8035 p.7

and the shaft.

19. (Original): The assembly of claim 18 wherein the guiding member distal

shaft section is shapeable.

20. (Original): A method for treating a patient, comprising:

a) providing an electrophysiology device, comprising:

an elongated shaft having a proximal end, a distal end, and a distal

shaft section, and a plurality of electrical conductors helically braided into the shaft;

a plurality of tubular coil electrodes on an exterior portion of the

distal shaft section electrically connected to the electrical conductors, having an

interelectrode spacing of about 1 mm to not greater than 3 mm; and

a plurality of temperature sensors on an exterior portion of the distal

shaft section, being positioned so that at least one temperature sensor is disposed

between two adjacent electrodes, each temperature sensor being electrically connected

to at least one of the electrical conductors helically braided into the shaft; and

a plurality of metal bands on the shaft, so that a metal band is

adjacent to and radially disposed about an outer surface of each temperature sensor

and the shaft;

b) introducing the device into the patient's vasculature and advancing

the device until the distal section of the device is disposed within a chamber of the

patient's heart;

c) placing at least one electrode on the device distal shaft section in

contact with a desired surface of the heart chamber; and

d) delivering high frequency electrical energy to the at least one

Dec 02 08 09:46a Edward J. Lynch 415 646 8035 p.8

electrode on the device and measuring the temperature at a temperature sensor

adjacent the electrode.

21. (Original): The method of claim 20 further including before step (a),

providing an elongated guiding member having proximal and distal ends, an inner

lumen extending therein to the distal end configured to slidably receive the

electrophysiology device, and a port on a distal section in communication with the inner

lumen, and introducing the guiding member into the patient's vasculature and advancing

the distal end of the guiding member to a chamber of the patient's heart.

22. (Original): The method of claim 20 wherein the patient is treated for heart

fibrillation or flutter.

23. (Original): The method of claim 20 including placing at least two adjacent

electrodes on the device distal shaft section in contact with a desired surface of the

heart chamber, and delivering high frequency electrical energy to the two adjacent

electrodes on the device, and measuring the temperature at a temperature sensor

between the two electrodes, to form a first lesion and a second lesion continuous with

the first lesion on the surface of the heart chamber.

(Original): An electrophysiology device for use within a patient's heart,

comprising:

24.

a) an elongated shaft having proximal and distal ends; and

a distal shaft section including a plurality of longitudinally disposed

tubular coil electrodes on an exterior portion thereof, the electrodes having a maximum

outer diameter of about 1 mm to about 1.22 mm and a length of about 2 mm to about 8

mm and an interelectrode spacing of about 1 mm to not greater than 3 mm, at least one

Dec 02 08 09:47a Edward J. Lynch 415 646 8035 p.9

temperature sensor disposed on an exterior portion of the distal shaft section between

two adjacent electrodes, and a plurality of individually insulated electrical conductors at

least partially embedded and helically disposed within a wall of the elongated shaft each

electrode and the at least one temperature sensor being electrically connected to at

least one electrical conductor.

25. (Original): The electrophysiology device of claim 24 including an inner

lumen extending within the elongated shaft, configured to slidably receive a device

therein.

26. (Original): The electrophysiology device of claim 24 including a core

member extending within the elongated shaft.

27. (Original): The electrophysiology device of claim 26 wherein the electrical

conductors are disposed about the core member.

28. (Original): The electrophysiology device of claim 24 wherein the electrical

conductors form at least part of a wall of the distal shaft section.

29. (Original): The electrophysiology device of claim 24 including a source of

high frequency electrical energy electrically connected to the electrical conductors.

30. (Amended): An electrophysiology device, comprising:

a) an elongated shaft having a proximal end, a distal end, and a distal

shaft section;

b) a plurality of electrodes on an exterior portion of the distal shaft

section; and

c) a plurality of temperature sensors on an exterior portion of the distal shaft

7

Serial No.: 10/601,288 Atty. Docket No. CRDIP-02101 Dec 02 08 09:47a Edward J. Lynch 415 646 8035 p.10

section, being positioned so that at least one temperature sensor is disposed between

two adjacent electrodes, and each temperature sensor having a conducting member

comprising an annular metal band radially disposed about and adjacent to the shaft and

the temperature sensor thereon, which [transmits heat] facilitates detecting tissue

temperature adjacent to conducting member connected to the temperature sensor, and

a jacket radially disposed on and about an outer surface of the metal band configured to

insulate the temperature sensor from electrical interference from adjacent electrodes.

31. (Amended): An electrophysiology device, comprising:

an elongated shaft having a proximal end, a distal end, and a distal

shaft section;

b) a plurality of electrodes on an exterior portion of the distal shaft

section;

c) at least one temperature sensor on an exterior portion of the distal

shaft section, being positioned so that the temperature sensor is disposed between two

adjacent electrodes;

d) a conducting member connected to the temperature sensor which

is configured to facilitate detecting tissue temperature adjacent to the conducting

member connected to the temperature to the sensor; and

e) a jacket disposed about the conducting member and a periphery of

at least one of the two electrodes adjacent to the temperature sensor which is

configured to insulate the temperature sensor from electrical interference from adjacent

<u>tissue</u>.

32. (Amended): An electrophysiology device, comprising:

Dec 02 08 09:47a Edward J. Lynch 415 646 8035 p.11

a) an elongated shaft having a proximal end, a distal end, and a distal

shaft section;

b) a plurality of electrodes on an exterior portion of the distal shaft

section;

c) at least one temperature sensor on an exterior portion of the distal

shaft section, being positioned so that the temperature sensor is disposed between two

adjacent electrodes; and

d) a jacket which is disposed about the at least one temperature

sensor and in part disposed about a periphery of the two electrodes adjacent to the at

least one temperature sensor and which is configured to insulate the temperature

sensor from electrical interference from the adjacent electrodes.

33. (Original): The device of claim 32 wherein the jacket is an electrically

insulating material.

33: (Original): The device of claim 32 wherein the jacket is an electrically

insulating material.

34. (Original): An electrophysiology device, comprising:

a) an elongated shaft having a proximal end, a distal end, and a distal

shaft section;

b) a plurality of tubular coil electrodes on an exterior portion of the

distal shaft section having an interelectrode spacing of about 1 mm to not greater than 3

mm;

Dec 02 08 09:48a Edward J. Lynch 415 646 8035 p.12

c) at least one temperature sensor on an exterior portion of the distal shaft section, being positioned so that the temperature sensor is disposed between two adjacent electrodes;

d) one or more electrical conductors electrically connected to the at least one temperature sensor, at least partially embedded and helically disposed within a wall of the elongated shaft.

35. (Original): An electrophysiology device, comprising:

a) an elongated shaft having a proximal end, a distal end, and a distal shaft section;

 b) a plurality of tubular coil electrodes on an exterior portion of the distal shaft section, having an interelectrode spacing of about 1 mm to not greater than 3 mm;

c) at least one temperature sensor on an exterior portion of the distal shaft section, being positioned so that the temperature sensor is disposed between two adjacent electrodes;

d) a conducting member disposed about an outer surface of the temperature sensor; and

e) one or more electrical conductors electrically connected to the at least one temperature sensor, at least partially embedded and helically disposed within a wall of the elongated shaft.

36. (Twice Amended) An electrophysiology device, comprising:

a) an elongated shaft having a proximal end, a distal end, and a distal shaft section with a proximal portion and a distal portion;

Dec 02 08 09:48a Edward J. Lynch 415 646 8035 p.13

a plurality of electrodes on the proximal portion of the distal shaft section, having an interelectrode spacing of about 1 mm to not greater than 3 mm;

- at least one temperature sensor on an exterior portion of the distal shaft section disposed between two adjacent electrodes and having a conductive metallic band disposed over and connected to the sensor that is configured to insulate the temperature sensor from electrical interference from the adjacent electrodes;
 - an elongated core member in the distal shaft section.
- (Pending) The electrophysiology device of claim 36 wherein the distal portion of the distal shaft section is electrode free.
- The electrophysiology device of claim 36 wherein the distal 38. (Pending) portion of the distal shaft section is formed at least in part of a helical coil.
- The electrophysiology device of claim 38 wherein the helical (Pendina) coil is embedded in a polymeric material.
- The electrophysiology device of claim 36 wherein the distal shaft section has a core member extending therein.
- (Pending) The electrophysiology device of claim 40 wherein the core 41. member is formed of a material selected from the group consisting of stainless steel and NiTi alloy.
- (Pending) The electrophysiology device of claim 41 wherein the NiTi alloy exhibits superelasticity.
- (Pending) The electrophysiology device of claim 42 wherein the NiTi alloy has a stable austenite phase at body temperature.

Dec 02 08 09:48a Edward J. Lynch 415 646 8035 p.14

44. (Pending) The electrophysiology device of claim 43 wherein the NiTi alloy exhibits stress induced austenite-to-martensite phase transformation.

- 45. (Pending) The electrophysiology device of claim 40 wherein the core member has a distal end secured to the coil in the distal portion thereof.
- 46. (Pending) The electrophysiology device of claim 36 further including a plurality of electrode electrical conductors which are each electrically connected to an individual electrode at a distal end of the electrode electrical conductor and having a proximal end configured to connect to an electrical source.
- 47. (Pending) The electrophysiology device of claim 36 wherein the shaft has an inner lumen and the elongated core member is disposed therein.
- 48. (Pending) The device of claim 47 further including a jacket disposed about the core member.
- 49. (Pending) The device of claim 46 having the electrode electrical conductors at least in part helically braided into the core member jacket.
- 50. (Pending) The device of claim 46 having the electrode electrical conductors at least in part helically braided into the shaft.
- 51. (Pending) The device of claim 36 further including a distal tip member secured to the distal end of the shaft.
- 52. (Pending) The device of claim 51 wherein the distal tip member includes a coil member disposed about a distal extremity of the core member distal to the shaft.
 - 53. (Cancelled)

Dec 02 08 09:49a Edward J. Lynch 415 646 8035 . p.15

54. (Pending) The device of claim 36 wherein the metal band is soldered to the temperature sensor.

- 55. (Pending) The device of claim 36 wherein a jacket is disposed about and in contact with the metal band, and defines an outer surface of the electrophysiology device.
- 56. (Pending) The device of claim 55 wherein the jacket covers part of an adjacent electrode.
- 57. (Pending) The device of claim 55 wherein the jacket covers part of both electrodes adjacent to the temperature sensor.
- 58. (Pending) The device of claim 55 wherein the jacket covers a periphery of at least one of the two electrodes adjacent to the temperature sensor.
- 59. (Pending) The device of claim 36 wherein at least some of the electrodes are sensing and ablation electrodes.
- 60. (Pending) The device of claim 36 wherein the distal shaft section has a maximum outer dimension less than 1.65 mm.
 - 61. (Twice Amended) An electrophysiology device, comprising:
 - a) an elongated shaft having a proximal end, a distal end, a distal shaft section with a proximal portion and a distal portion and a wall portion defining at least in part an inner lumen extending within the distal shaft section;
 - b) an elongated core member disposed within the inner lumen;

Dec 02 08 09:49a Edward J. Lynch 415 646 8035 p.16

a plurality of electrodes on the proximal portion of the distal shaft section,
 having an interelectrode spacing of about 1 mm to not greater than 3 mm;

- d) a plurality of electrical conductors which are at least partially embedded
 within a wall of the elongated shaft, and which have distal ends electrically
 connected to an electrode on the proximal shaft portion; and
- e) at least one temperature sensor on an exterior portion of the distal shaft section which is disposed between two adjacent electrodes and having which has a conductive metallic band disposed over and connected to the sensor that is configured to tissue facilitate detecting temperature adjacent to the band connected to the temperature sensor.
- 62. (Twice Amended) An electrophysiology device, comprising:
- a) an elongated shaft having a proximal end, a distal end, a distal shaft section with a proximal portion and a distal portion and a wall portion defining at least in part an inner lumen extending within the distal shaft section;
- a plurality of electrodes on the proximal portion of the distal shaft section,
 having an interelectrode spacing of about 1 mm to not greater than 3 mm;
- at least one temperature sensor on an exterior portion of the distal shaft

 section disposed between two adjacent electrodes and having a

 conductive metallic band disposed over and connected to the sensor

 which is configured to facilitate detection of tissue temperature adjacent to

 the band connected to the sensor; and

Dec 02 08 09:50a Edward J. Lynch 415 646 8035 p.17

d) at least one electrical conductor which is at least partially embedded within

a wall of the elongated shaft, and which has a distal end electrically

connected to the at least one temperature sensor on the proximal shaft

portion.

63. (Twice Amended) An electrophysiology device, comprising:

a) an elongated shaft having a proximal end, a distal end, a distal shaft

section with a proximal portion and a distal portion and a wall portion

defining at least in part an inner lumen extending within the distal shaft

section;

b) a plurality of partially covered electrodes on the proximal portion of the

distal shaft section;

c) at least one temperature sensor on an exterior portion of the distal shaft

section disposed between two adjacent electrodes and having a

conductive metal band disposed over and connected to the at least one

temperature sensor which is configured to facilitate detection of tissue

temperature adjacent to the band connected tissue to the temperature

sensor;

d) at least one electrical conductor which has a distal end electrically

connected to the at least one temperature sensor on the proximal shaft

portion; and

e) a core member disposed in the distal shaft section.

15

Serial No.: 10/601,288 Atty. Docket No. CRDIP-02101 Dec 02 08 09:50a Edward J. Lynch 415 646 8035 p.18

64. (Pending) The electrophysiology device of claim 48 wherein the core member is formed of a material selected from the group consisting of stainless steel and NiTi alloy.

- 65. (Pending) The electrophysiology device of claim 64 wherein the NiTi alloy exhibits superelasticity.
- 66. (Pending) The electrophysiology device of claim 65 wherein the NiTi alloy has a stable austenite phase at body temperature.
- 67. (Pending) The electrophysiology device of claim 66 wherein the NiTi alloy exhibits stress induced austenite-to-martensite phase transformation.
 - 68. (Twice Amended) A method for treating a patient, comprising:
 - a) the step of providing an electrophysiology device, comprising:
 an elongated shaft having a proximal end, a distal end, and a distal shaft section, and a plurality of electrical conductors;
 - a plurality of electrodes on an exterior portion of the distal shaft section electrically connected to the electrical conductors, having an interelectrode spacing of not more than about 3 mm;
 - a plurality of temperature sensors on an exterior portion of the distal shaft section, being positioned so that at least one temperature sensor is disposed between two adjacent electrodes, each temperature sensor being electrically connected to at least one of the electrical conductors and having a conductive metallic band disposed over and connected to the sensor which is configured to facilitate

Dec 02 08 09:50a Edward J. Lynch 415 646 8035 p.19

detection of tissue temperature adjacent to the band connected to the temperature sensor;

- b) the step of introducing the device into the patient's vasculature and advancing the device until the distal section of the device is disposed at a desired location;
- c) the step of positioning the device within a location of the patient's

 vasculature where one or more electrodes are in contact with a desired

 surface within the vasculature;
- d) the step of delivering high frequency electrical energy to the one or more electrodes in contact with the desired surface to ablate tissue; and
- the step of detecting electrical activity with one or more of the electrodes
 after tissue ablation to determine the effectiveness of the tissue ablation.
- 69. (Twice Amended) The method of claim 68 wherein high frequency electrical energy is directed to the electrodes sequentially in a proximal direction.
- 70. (Twice Amended) An electrophysiology device for forming a continuous lesion in a patient's heart tissue, comprising:
 - a) an elongated shaft having a proximal end, a distal end, and a distal shaft section;
 - b) a plurality of partially covered electrodes on a proximal portion of the distal shaft section, with each electrode having a length of about 2 to about 8 mm and interelectrode spacing of about 1 mm to not greater than 3 mm;

415 646 8035. Dec 02:08 09:51a Edward J. Lynch p.20

> at least one temperature sensor disposed between two adjacent electrodes and having a conductive metallic band disposed over and connected to the sensor which is configured to facilitate detection of tissue temperature adjacent to the band connected to the temperature sensor; and

- one or more electrical conductors electrically connected to the at least one temperature sensor.
- (Twice Amended) A method of treating a patient for cardiac arrhythmia by electrically isolating a first tissue region from a second tissue region, comprising:
 - providing an electrophysiology device having an elongated shaft which has a proximal end, a distal shaft section having a proximal portion with a plurality of electrodes with temperature sensors between adjacent electrodes having conductive metal bands disposed over and connected to the sensors which are configured to facilitate detection of tissue temperature adjacent to the bands connected to the temperature sensors and having a distal portion with a distal end:
 - positioning the proximal portion of the distal shaft section at a desired b) location between the first tissue region and the second tissue region; and
 - ablating a continuous lesion pattern between the first and second tissue regions with the electrodes on the proximal portion of the distal shaft section to electrically isolate the two tissue regions.
- The method of claim 71 wherein an electrode is provided on (Pending) the distal end of the distal portion of the distal shaft section.

Dec 02 08 09:51a Edward J. Lynch 415 646 8035 p.21

73. (Twice Amended) An electrophysiology device for treating cardiac arrhythmia by electrically isolating a first tissue region from a second tissue region, comprising:

- a) an elongated shaft having a proximal end, a distal end, and a distal shaft section with a proximal portion and a distal portion;
- b) a plurality of electrodes on the proximal portion of the distal shaft section,
 having an interelectrode spacing not greater than 3 mm;
- c) at least one temperature sensor on the distal shaft section disposed

 between two adjacent electrodes and having a conductive metallic band

 extending over and connected to the sensor which is configured to

 facilitate detection of tissue temperature adjacent to the band connected

 to the temperature sensor; and
- a material selected from the group consisting of stainless steel and a NiTi alloy.
- 74. (Pending) The electrophysiology device of claim 73 wherein the NiTi alloy exhibits superelasticity.
- 75. (Pending) The electrophysiology device of claim 73 wherein the NiTi alloy has a stable austenite phase at body temperature.
- 76. (Pending) The electrophysiology device of claim 73 wherein the NiTi alloy exhibits stress induced austenite-to-martensite phase transformation.
 - 77. (Twice Amended) An electrophysiology device, comprising:

Dec 02 08 09:52a Edward J. Lynch 415 646 8035 p.22

a) an elongated shaft having a proximal end, a distal end, and a distal shaft section with a proximal portion and a distal portion:

b) a plurality of electrode means for ablation on the proximal portion of the distal shaft section, having a spacing between electrode means of about 1 mm to not greater than 3 mm;

c) at least one temperature sensor on an exterior portion of the distal shaft section disposed between two adjacent electrode means and having a conductive metallic band disposed over and connected to the sensor which is configured to facilitate detection of tissue temperature adjacent to the band connected to the temperature sensor; and

d) an elongated core member in the distal shaft section.