Introduction to Cloud Computing

Introduction

- 1. What is the origin of cloud computing?
- 2. What are the technological challenges of cloud computing?
- 3. What is the future of cloud computing?

Where Did Cloud Computing Start?

- 1. Cloud data centers host upwards of 50K servers
- 2. Amazon: House 50-80K servers with a power consumption of between 25 and 30 megawatts
 - 2015: 1.5-5.6 million servers across all data centers
- 3. Clouds distributed operating system at Georgia Tech
 - 1986-1993
 - Kishore Ramachandran was a PI
 - · Yousef Khalidi was the primary student and went on to run Azure product development
- 4. Cloud computing started as distributed systems research in the 80s and 90s
 - Georgia Tech, University of Washington, IBM, Emory, UCB
- 5. This led to grid computing in the 90s
 - Engineers and scientists began to pool resources to solve problems
- 6. Grid computing led to NSF HPC data centers in the mid 90s
- 7. Resurrection of virtualization (late 90s)
 - Originally pioneered by IBM in the 60s
 - Led to companies such as VMWare
- 8. Shrinking margins on selling boxes in the mid 00s
 - IBM pioneered the "services computing" model
 - Computing as a utility

Microsoft Azure Global Presence

What is Cloud Computing?

- 1. Amazon: Cloud computing, by definition, refers to the on-demand delivery of IT resources and applications via the Internet with pay-as-you-go pricing
- 2. IBM: Cloud computing is the delivery of on-demand computing resources everything from applications to data centers over the Internet on a pay-for-use basis
- 3. Computational resources (CPUs, memory, storage) in data centers available as "utilities" via the Internet
 - Illusion of infinite computational capacity
 - Ability to elastically increase/decrease resources based on need
 - "Pay as you go" model based on resource usage
 - Applications delivered as "services" over the Internet
- 4. Why Cloud Computing?
 - No capital or operational expenditure for owning/maintaining computational resources
 - Elasticity: Being able to shrink/expand resources based on need
 - Maintenance/upgrades are someone else's problem
 - Availability: No down time for the resources or services
 - "Pay as you go" model
 - Business services can be "out sourced"
 - Concentrate on core competency and let IBM/Amazon/Microsoft deal with the IT services
 - Disaster recovery of assets due to geographic replication of data

Types of Clouds

- 1. Different types of clouds
 - Public
 - Resources are shared among users
 - Users given the illusion that the resources are "theirs"
 - Virtualization at all levels including the network traffic guarantees perfect isolation at resource level and performance level
 - e.g., Amazon EC2
 - Private
 - Resources are physically dedicated to the individual user
 - Often the service provider may have the data center on user's premises
 - VMWare offers such services as part of their business model
 - Hybrid
 - Combines private and public
 - Keep sensitive business logic and mission-critical data in private cloud
 - Keep more mundane services (trend analysis, test and development, business projections, etc) in public cloud
 - Cloud bursting: Private cloud connects to the public cloud when demand exceeds a threshold
- 2. Cloud service models
 - Infrastructure as a service (IaaS)
 - Service provider offers to rent resources: CPUs, memory, network bandwidth, storage (Amazon EC2)
 - Use them as you would use your own cluster in your basement
 - Platform as a service (PaaS)
 - In addition to renting resources, service provider offers APIs for programming the resources and developing applications that run on these resources (Microsoft Azure)
 - Reduces the pain point for the cloud developer in developing, performance-tuning, and scaling large-scale cloud applications
 - Software as a service (SaaS)
 - Service provider offers services to increase end-user productivity (Gmail, Dropbox, YouTube, games)
 - User does not see physical resources in the cloud

 ${\bf IaaS~Marketplace}$

PaaS Marketplace

Security Issues and Challenges

- 1. Challenges with cloud computing
 - Data security
 - Lock-in with a service provider
 - Network latency to the provider
 - Network bandwidth to the provider
 - Dependence on reliable Internet connectivity
- 2. Security Issues
 - Data breaches
 - Compromised credentials and broken authentication
 - Hacked interfaces and APIs
 - Exploited system vulnerabilities
 - Account hijacking
 - Malicious insiders
 - Parasitic computing
 - Permanent data loss
 - Inadequate diligence
 - Cloud service abuses
 - DoS attacks
 - Shared technology, shared dangers
- 3. Current Issues being tackled in cloud computing
 - Mobile computing
 - Architecture and virtualization
 - IoT and mobile on the cloud
 - Security and privacy
 - Distributed cloud/edge computing

- Big data
- HPC
- Network (SDN and NFV)
- 4. Complex issues in cloud computing
 - Optimal scheduling and resource management
 - Communication isolation, NFV, and SDN
 - HPC with loosely coupled networks
 - Real-time computations
 - Energy
 - Amazon estimates 500 MW of power from 23 datacenters in northern VA
 - Incorporating heterogeneous resources (GPUs and other accelerators)
 - Human in the loop and integration with devices
 - Improving resource utilization

Challenges

Future of Cloud Computing

- 1. What is next in cloud computing?
 - Energy efficient computing
 - New network hardware: Software-defined hardware (software switch), FPGA-based NICs, improved optical amplification
 - "Big data" as a service
 - Rethink security policies -> Better identity management
 - Edge computing support
- 2. What is current cloud computing good for?
 - Throughput oriented apps
 - Search, mail, reservations, banking, e-commerce
 - Increasingly for streaming videos using CDNs or proprietary networks such as Netflix
 - 90% of Internet traffic is video
 - Interactive apps (human in the loop)
- 3. Limitations of existing cloud
 - Based on large data centers

- High latency/poor bandwidth for data-intensive apps
- API designed for traditional web applications
 - Not suitable for the future Internet apps
 - This is because IoT and many new apps need interactive response at computational perception speeds (sense -> process -> actuate)
 - Sensors are geo-distributed, so latency to the cloud is a limitation and uninteresting sensor streams should be quenched at the source
- 4. Future applications in IoT
 - Common characteristics
 - Dealing with real-world data streams
 - Real-time interaction among mobile devices
 - Wide-area analytics
 - Requirements
 - Dynamic scalability
 - Low-latency communication
 - Efficient in-network processing
- 5. Future cloud
 - Encompassing geo-distributed edge computing in the context of IoT
 - Distributed programming models and runtime systems
 - Geo-distributed resource allocation
 - Static and dynamic analyses of apps expressed as dataflow graphs with temporal constraints
 - Security and privacy issues for IoT
 - System architecture of edge computing nodes
 - Front-haul networks combining fiber and Wifi
 - Deployments and field study (camera networks for campus security)
 - More issues?

Conclusion

1. Next, will learn technical details of cloud computing starting with networks