Chapitre 3: Modèle multinomial non ordonné 1 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

1) Présentation théorique

- → Dans le cas du modèle logit ou probit ordonné, le caractère ordinal de la variable expliquée permettait d'introduire une variable latente et des seuils.
- → Lorsque la variable est purement nominale, cette démarche n'est plus possible.

<u>Hypothèses sous_jacentes :</u>

L'individu est supposé <u>évaluer les différentes alternatives</u> qui s'offrent lui en se basant sur des critères (ex : prix, temps de trajets pour les modes de transport) et choisir l'alternative qui maximise son utilité.

Les différentes alternatives (choix) sont supposées mutuellement exclusives pour l'ensemble des individus.

L'utilité associée à chaque alternative est une variable aléatoire de la forme suivante :

$$U = V(X) + \epsilon$$

V est la partie déterministe, fonction linéaire des différentes caractéristiques observées X des alternatives et/ou des individus dont les coefficients associés sont inconnus et à estimer

 ϵ est la partie aléatoire (variables explicatives inobservées et erreur de mesure)

→ Différents types de modèles peuvent être utilisés pour l'analyse empirique des problèmes de choix discret (modèle multinomial, modèle conditionnel, modèle emboîté, etc.).

A) <u>Présentation du modèle Logit multinomial (simple ou général) et du modèle Logit conditionnel</u>

Ces deux types de modèles sont basés sur l'hypothèse d'indépendance des termes aléatoires des fonctions d'utilités.

Il ne tient pas compte d'éventuelles corrélations entre les alternatives.

Cette hypothèse est connue sous le sigle IIA (Independence from Irrelevant Alternatives) ou Indépendance par rapport aux choix non retenus.

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Ces modèles ne prennent donc pas en compte la proximité de nature qui peut exister entre plusieurs choix offerts à l'individu. L'individu arbitre entre deux choix a et b indépendamment des autres choix qui lui sont offerts.

Or, dans le cas ci-dessous, cette hypothèse n'est pas vérifiée

- → Il faudra donc tester lors de l'estimation l'hypothèse d'IAA et utiliser si nécessaire des modèles emboîtés (nested model)
- Econométrie des variables qualitatives I M.TRAVERS Année 2020-2021

→ Modélisons le choix du mode de pêche

La variable dépendante y prend les valeurs 1, 2, 3, et 4 en fonction du mode de pêche :

- 1: plage (beach)
- 2 : port (*pier*)
- 3 : bateau privé (boat)
- 4 : en bateau de groupe (charter)
- Les variables explicatives sont les suivantes :
 - le revenu : fonction de l'individu, ne variant pas avec le mode de pêche
 - le prix (P) et le taux de prise (C) variant avec le mode de pêche (alternative) et d'un individu à l'autre.
- •1182 observations.
- 5 Econométrie des variables qualitatives I M.TRAVERS Année 2020-2021

A.1) Modèle Logit conditionnel

Le modèle Logit conditionnel a comme variables explicatives <u>des caractéristiques liées aux différentes alternatives proposées</u>.

Il ne contient <u>aucune variable invariante</u> d'un choix à l'autre.

Le modèle Logit conditionnel ne contient pas de termes constants.

Par ailleurs, les paramètres β du modèle sont indépendants du choix j.

La probabilité que l'individu i choisisse l'alternative l est définie de la manière suivante :

$$P_{ii} = \text{Prob}[y_i = l \mid X] = \frac{\exp(\beta_p P_{ii} + \beta_C C_{ii})}{\sum_{i=1}^{4} \exp(\beta_p P_{ij} + \beta_C C_{ij})}; \quad j = 1,...,4$$

Où : P et C sont des variables explicatives dépendant des modalités (ici 4)

Interprétation des résultats :

Regressor	Туре	Coefficient	CL
Price (P)	Specific	β_P	-0.021
Catch rate (C)	Specific	β_{CR}	0.953

$\bullet\beta_P\!<\!0$

Une hausse du prix d'une alternative diminue la probabilité de choisir cette alternative et augmente la probabilité de choix d'autres alternatives.

• $\beta_{CR} > 0$

Une hausse des prises d'un mode de pêche augmente la probabilité de choisir cette alternative et diminue celle des autres alternatives.

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

A.2) Modèle Logit multinomial (au sens strict):

- → Les valeurs des variables explicatives ne changent pas avec les alternatives mais changent avec les individus (exemple : revenu)
- → Pour des raisons d'identification du modèle lors des estimations, il est nécessaire de modéliser (k-1) rapports de probabilités.
- → <u>Une alternative est donc toujours prise comme référence</u> et les résultats obtenus sont à interpréter par rapport à cette référence.
- → Le choix de cette alternative de référence peut être simple (non malade / différents types de maladies) mais si ce n'est pas le cas, on peut en choisir une arbitrairement.
- → Cela n'a aucune incidence sur les calculs, seule l'interprétation des coefficients est différente.

La probabilité que l'individu i choisisse l'alternative l (autre que celle de référence) est :

$$p_{il} = \text{Prob}[y_i = l] = \frac{\exp(\alpha_l + \beta_l I_i)}{1 + \sum_{j=1}^{3} \exp(\alpha_j + \beta_j I_i)}; \quad j = 1,...,3$$

La probabilité que l'individu choisisse l'alternative de référence est :

$$p_{i4} = \text{Prob}[y_i = 4] = \frac{1}{1 + \sum_{j=1}^{3} \exp(\alpha_j + \beta_j I_i)}; \quad j = 1,..,3$$

Où : I mesure le revenu.

- → Dans ce cas, les coefficients des variables explicatives changent avec les alternatives.
- 9 Econométrie des variables qualitatives I M.TRAVERS Année 2020-2021

			Model ty		
Regressor	Type	Coefficient	CL	MNL	
Price (P)	Specific	β_P	-0.021	-	
Catch rate (C)	Specific	β_{CR}	0.953	_	
Intercept	Invariant	α_1 : Beach	-	0.0	
•		α_2 : Pier	-	0.814	
		α_3 : Private	_	0.739	
		α_4 : Charter	_	1.341	
Income (I)	Invariant	β_{I1} : Beach	-	0.0	
		β_{I2} : Pier	-	-0.143	
		β_{I3} : Private	_	0.092	
		β_{14} : Charter	_	-0.032	
-ln L			-1311	-1477	

- → Si le revenu de la personne augmente, la probabilité de choisir le port par rapport à la plage diminue. Il en est de même pour la pêche en groupe.
- → Inversement, la probabilité de choisir la pêche en bateau privé par rapport à la plage augmente.
- Econométrie des variables qualitatives I M.TRAVERS Année 2020-2021

- → Il existe un **flottement terminologique** dans la littérature entre le Logit multinomial et le Logit conditionnel où le mot multinomial peut être utilisé pour un modèle multinomial simple ou un modèle combinant les deux types de caractéristiques, idem pour le terme de Logit conditionnel qui peut être utilisé pour un modèle conditionnel ou un modèle combinant les deux.
- → De plus, ce sont souvent les mêmes procédures informatiques qui sont utilisées pour estimer indifféremment un Logit multinomial ou un Logit conditionnel (ex : mlogit) à condition que les données soient configurées de manière adéquate.

A.3) Modèle logit multinomial général

Un modèle plus général regroupe donc les deux modèles précédents. Si on reprend l'exemple précédent :

$$p_{il} = \text{Prob}[y_i = l] = \frac{\exp(\beta_p P_{il} + \beta_c C_{il} + \alpha_l + \beta_l I_i)}{1 + \sum_{j=1}^{3} \exp(\beta_p P_{ij} + \beta_c C_{ij} + \alpha_j + \beta_j I_i)}; \quad j = 1,...,3$$

11 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

$$p_{i4} = \text{Prob}[y_i = 4] = \frac{1}{1 + \sum_{j=1}^{3} \exp(\beta_P P_{ij} + \beta_C C_{ij} + \alpha_j + \beta_j I_i)}; \quad j = 1,...,3$$

				Model type	
Regressor	Type	Coefficient	CL	MNL	MNL G
Price (P)	Specific	β_P	-0.021	_	-0.025
Catch rate (C)	Specific	β_{CR}	0.953	_	0.358
Intercept	Invariant	α_1 : Beach	_	0.0	0.0
•		α_2 : Pier	_	0.814	0.778
		α_3 : Private	_	0.739	0.527
		α_4 : Charter	_	1.341	1.694
Income (I)	Invariant	β_{I1} : Beach	_	0.0	0.0
. ,		$\beta_{I2}: Pier$	_	-0.143	-0.128
		β_{I3} : Private	_	0.092	0.089
		β_{I4} : Charter	_	-0.032	-0.033
-ln L		,	-1311	-1477	-1215

B) Méthode d'estimation

La méthode d'estimation des différents paramètres du modèle est toujours basée sur la méthode du maximum de vraisemblance.

La fonction de vraisemblance pour un échantillon de n observations indépendantes est :

$$L_n = \prod_{i=1}^n \prod_{j=1}^4 p_{ij}^{yij}$$

La fonction de vraisemblance est alors :

$$Log L_n = \sum_{i=1}^{n} \sum_{j=1}^{4} y_{ij} \ln p_{ij}$$

Avec

$$p_{ij} = F(X_i, \beta)$$

Où : F est la répartition du modèle Logit

3 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Les conditions du premier ordre permettent de terminer les coefficients à estimer :

$$\frac{\partial Log \ L_n}{\partial \beta} = 0$$

Ratio de vraisemblance :

Ce test doit être également utilisé pour vérifier l'intérêt du modèle. Il est nécessaire dans ce cas de calculer le modèle contraint (sans les variables explicatives).

Qualité de l'ajustement du modèle aux données

La qualité de l'estimation peut également se mesurer par le R² Mac Fadden (la plus part du temps indiqué dans les résultats de l'estimation)

Qualité de prévision du modèle estimé :

Il est nécessaire également de mesurer la qualité de la prévision pour chacune des probabilités associées à chaque alternative.

C) Effet marginaux et odd-ratio

Effets marginaux:

On peut mesurer l'effet de chaque variable explicative sur les différents choix en dérivant les probabilités de choix par rapport à la variable.

→ Calcul de la dérivée partielle de chaque probabilité par rapport à la variable. On mesure alors l'effet de l'augmentation *d'une unité* de la variable sur chaque choix.

Cas du modèle conditionnel sur la pêche :

L'effet marginal d'une variable explicative se calcule de la manière suivante :

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\partial p_{ij}}{\partial x_{ipj}}$$

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

→ Dans le cas d'un modèle multinomial stricte, la formule est la même mais l'interprétation se fait par rapport à la probabilité de référence.

Odd_ratio

Variable quantitative:

Les individus dont la variable explicative augmente d'un point ont x fois plus de chance de choisir l'alternative j (/ celle de référence dans le cas d'un modèle multinomial) par rapport à ceux dont la valeur de la variable explicative n'a pas changé.

Variable binaire (passage de 0 à 1)

Les individus ayant la caractéristique ont x fois plus de chance de choisir l'alternative j (/ celle de référence dans le cas d'un modèle multinomial) par rapport à ceux qui n'ont pas cette caractéristique.

2) Application sous R

2.1) Utilisation de la fonction mlogit

Cette fonction permet d'estimer les deux types de modèles <u>multinomiaux (simples et généraux) et conditionnels</u>.

→ Cette fonction nécessite néanmoins <u>une préparation de la base qui</u> différent selon le format initial de la base de données

En effet, les bases de données peuvent avoir deux formats.

- Un format appelé « wide shape » : il y a une ligne pour chaque individu où son choix est indiqué (ex: 200 individus)
- Un format appelé «long shape »: il y a dans ce cas une ligne pour chaque alternative pour chaque situation de choix (ex: 4 choix pour 200 individus → 800 lignes)

17 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Exemple : Reprenons l'exemple du choix du mode de pêche Cette base est disponible dans la librairie mlogit sous format « wide shape » library(mlogit) data("Fishing") head(Fishing,3) Prix des différentes pratiques de pêche (prix et alternative séparés par un .) mode price.beach price.pier price.boat price.charter catch.beach 157.930 157.930 157.930 182.930 1 charter 0.0678 0.1049 2 charter 15.114 15.114 10.534 34.534 161.874 161.874 24.334 59.334 0.5333 boat catch.pier catch.boat catch.charter income 0.0503 0.2601 0.5391 7083.332 Revenu pour 2 0.0451 0.1574 0.4671 1250.000 < chaque individu 0.4522 0.2413 1.0266 3750.000 invariant/alternative Capture pour les différentes pratiques de pêche Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021 18

<u>Inconvénient</u>: ce format oblige à créer beaucoup de colonnes (il y a autant de colonnes de prix que d'alternatives, idem pour les prises)

Format « long SHAPE »

library(AER) data("TravelMode") head(TravelMode,6)

	individual	mode	choice	wait	vcost	travel	gcost	income	size	
1	1	air	no	69	59	100	70	35	1	
2	1	train	no	34	31	372	71	35	1	
2 3 4 5	1	bus	no	35	25	417	70	35	1	
4	1	car	yes	0	10	180	30	35	1	
5	2	air	no	64	58	68	68	30	2	
6	2	train	no	44	31	354	84	30	2	

- → Base: 840 observations: 210*4
- → Car 4 modes de transport (air, train, bus et voitures) (variable mode) et 210 individus
- g Econométrie des variables qualitatives I M.TRAVERS Année 2020-2021

	individual	mode	choice	wait	vcost	travel	gcost	income	size	
1	1	air	no	69	59	100	70	35	1	
2	1	train	no	34	31	372	71	35	1	
3	1	bus	no	35	25	417	70	35	1	
4	1	car	yes	0	10	180	30	35	1	
5	2	air	no	64	58	68	68	30	2	
6	2	train	no	44	31	354	84	30	2	

→ 4 variables spécifiques aux alternatives :

wait : temps d'attente au terminal (0 pour la voiture)

vcost : coût lié au véhicule travel : temps du trajet gcost : coût global.

- → Deux variables spécifiques aux individus : le revenu (income) et la taille du ménage (size)
- → La variable choice indique si l'alternative a été choisie par l'individu
- Econométrie des variables qualitatives I M.TRAVERS Année 2020-2021

Transformation d'un format wide en un format long :

Fish<-mlogit.data(Fishing, shape= "wide",varying=2:9,choice= "mode") head(Fish,8)

varying =2:9 : indique que les colonnes 2 à 9 correspondent à des variables qui changent avec les alternatives.

choice = « mode » : indique que c'est la variable mode qui sera la variable à expliquer

	mode	income	alt	price	catch	chid
1.beach	<i>FALSE</i>	7083.332	beach	157.930	0.0678	1
1.boat	<i>FALSE</i>	7083.332	boat	157.930	0.2601	1
1.charter	r TRUE	7083.332	charter	182.930	0.5391	1
1.pier	<i>FALSE</i>	7083.332	pier	157.930	0.0503	1
2.beach	<i>FALSE</i>	1250.000	beach	15.114	0.1049	2
2.boat	<i>FALSE</i>	1250.000	boat	10.534	0.1574	2
2.charter	r TRUE	1250.000	charter	34.534	0.4671	2
2.pier	<i>FALSE</i>	1250.000	pier	15.114	0.0451	2

→ Variable chid (identifiant de l'individu) et variable alt (identifiant du choix) : créés lors de ce changement de format

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Importation d'un format long

 $Transport <-mlogit.data (Travel Mode, choice="choice", shape="long", alt.var="mode") \\ head (Transport, 8)$

	individud	al mode	choice	wait	vcost	travel	gcost	income	size
1.air	1	air	FALSE	69	59	100	70	35	1
1.train	1	train	<i>FALSE</i>	34	31	372	71	35	1
1.bus	1	bus	<i>FALSE</i>	35	25	417	70	35	1
1.car	1	car	TRUE	0	10	180	30	35	1
2.air	2	air	<i>FALSE</i>	64	58	68	68	30	2
2.train	2	train	<i>FALSE</i>	44	31	354	84	30	2
2.bus	2	bus	<i>FALSE</i>	53	25	399	85	30	2
2.car	2	car	TRUE	0	11	255	50	30	2

*<u>Estimation du modèle conditionnel (pas besoin de choix de référence) (ex : choix du mode de pêche)</u>

 $ml.Fish <-mlogit(mode \sim price + catch | 0, data = Fish) \\ summary(ml.Fish)$

Frequencies of alternatives:

beach boat charter pier 0.11337 0.35364 0.38240 0.15059

• • • • •

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Log-Likelihood: -1312

23 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Rappel:

- ullet ullet ullet ullet indique qu'une hausse du prix d'une alternative diminue de manière significative la probabilité de choisir cette alternative et augmente la probabilité de choix d'autres alternatives.
- $\beta_{CR}>0$: indique **qu'une hausse des prises** d'un mode de pêche **augmente la probabilité de manière significative de choisir cette alternative** et diminue celle des autres alternatives.

<u>Remarque</u>: dans le cas du modèle conditionnel, il faut calculer le R² de Mac Fadden ainsi que le ratio de vraisemblance (ce qui ne sera pas le cas des modèles multinomiaux estimés par la fonction mlogit)

<u>Calcul de la qualité du modèle</u>: R2_Mc_Fadden ml.Fish0<-mlogit(mode~1,data=Fish)
R2_Mc_Fadden<-1-(logLik(ml.Fish)/logLik(ml.Fish0))
R2_Mc_Fadden

'log Lik.' 0.1240171 (df=2)

library(lmtest) lrtest(ml.Fish0,ml.Fish)

Likelihood ratio test

Model 1: mode ~ 1

Model 2: mode ~ price + catch | 0

```
#Df LogLik Df Chisq Pr(>Chisq)
1 3 -1497.7
2 2 -1312.0 -1 371.49 < 2.2e-16 ***
```

Signif. codes: 0 '***'0.001 '**'0.01 '*'0.05 '.'0.1 ''1

→ Au seuil de risque de 1% (et donc de 5%), intérêt d'estimer le modèle avec les variables explicatives price et catch

25 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

* Modèle multinomial simple

$ml.Fish2 < -mlogit(mode \sim 0 | income, data = Fish) \\ summary(ml.Fish2)$

Estimate		Std. E	Std. Error		
boat:(intercept)	7.3892e-01	1.9673e-01	3.7560	0.00017	27 ***
charter:(intercept	t) 1.3413	1.9452e-01	6.8955	5.367e-1	12 ***
pier:(intercept)	8.1415e-01	2.2863e-01	3.5610	0.00036	95 ***
boat:income	9.1906e-05	4.0664e-05	2.2602	0.02381	16 *
charter:income	-3.1640e-05	4.1846e-05	-0.7561	0.44959	08
pier:income	-1.4340e-04	5.3288e-05	-2.6911	0.00712	23 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -1477.2 McFadden R^2: 0.013736

 $Likelihood\ ratio\ test: chisq = 41.145\ (p.value = 6.0931e-09)$

<u>Interprétation des résultats</u>:

- → Cette fonction permet d'obtenir directement le R2 de Mac Fadden et le test du ratio de vraisemblance
- → Le fait de n'introduire que les variables liées aux individus diminue la qualité du modèle / modèle logit conditionnel
- → Si le revenu de la personne augmente, la probabilité de choisir le port par rapport à la plage diminue.
- → Inversement, la probabilité de choisir la pêche en bateau privé par rapport à la plage augmente si le revenu augmente. Ces impacts sont significatifs.
- → Il n'y a pas d'effet significatif d'une variation du revenu sur la probabilité de choisir la pêche en bateau en groupe par rapport à la plage

27 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

* Modèle multinomial général

ml.Fish3<-mlogit(mode~price+catch|income,data=Fish) summary(ml.Fish3)

charter

Frequencies of alternatives: boat

beach

0.11337 0.35364	0.38240	0.15059		
	Estimate	Std. Error	t-value	Pr(>/t/)
boat:(intercept)	5.2728e-01	2.2279e-01	2.3667	0.0179485 *
charter:(intercept)	1.6944	2.2405e-01	7.5624	3.952e-14 ***
pier:(intercept)	7.7796e-01	2.2049e-01	3.5283	0.0004183 ***
price	-2.5117e-02	1.7317e-03	-14.5042	< 2.2e-16 ***
catch	3.5778e-01	1.0977e-01	3.2593	0.0011170 **
boat:income	8.9440e-05	5.0067e-05	1.7864	0.0740345.
charter:income	-3.3292e-05	5.0341e-05	-0.6613	0.5084031
pier:income	-1.2758e-04	5.0640e-05	-2.5193	0.0117582 *

pier

Log-Likelihood: -1215.1 McFadden R^2: 0.18868

 $Likelihood\ ratio\ test: chisq = 565.17\ (p.value = < 2.22e-16)$

- → C'est le meilleur modèle des 3 modèles estimés.
- → Il est intéressant de remarquer que l'effet du revenu sur la probabilité de choisir le bateau privé par rapport à la plage lorsque le revenu augmente devient moins significatif.

Au seuil de risque de 5 %, seule une augmentation du revenu fait diminuer de manière significative le fait de choisir le port par rapport à la plage.

Remarque:

- → L'alternative prise comme référence est l'alternative « beach ».
- → Si on veut changer la référence dans le modèle multinomial combiné, il suffit d'introduire l'option **reflevel**

g Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

 $ml.Fish4 <-mlogit(mode \sim price + catch | income, data = Fish, \ reflevel = "boat") \\ summary(ml.Fish4)$

	Estimate	Std. Error	t-value	Pr(>/t/)
beach:(intercept)	-5.2728e-01	2.2279e-01	-2.3667	0.017948 *
charter:(intercept)	1.1671	1.5905e-01	7.3380	2.169e-13 ***
pier:(intercept)	2.5068e-01	2.0394e-01	1.2292	0.219000
price	-2.5117e-02	1.7317e-03	-14.5042	< 2.2e-16 ***
catch	3.5778e-01	1.0977e-01	3.2593	0.001117 **
beach:income	-8.9440e-05	5.0067e-05	-1.7864	0.074035.
charter:income	-1.2273e-04	2.8631e-05	-4.2867	1.813e-05 ***
pier:income	-2.1702e-04	5.0058e-05	-4.3353	1.456e-05 ***

Log-Likelihood: -1215.1 McFadden R^2: 0.18868

 $Likelihood\ ratio\ test: chisq = 565.17\ (p.value = < 2.22e-16)$

Reprenons l'estimation ml.Fish3 (avec "beach" comme modalité de référence)

 $ml.Fish3 <-mlogit(mode \sim price + catch | income, data = Fish) \\ summary(ml.Fish3)$

→ Calcul des effets marginaux pour la variable explicative Income

Exemple : effet du revenu sur les différentes probabilités pour chaque individu

effects(ml.Fish3, covariate = "income", data = Fish)

	beach	boat	charter	pier
[1,]	-1.614352e-06	3.265371e-05	-1.567098e-05	-1.536841e-05
[2,]	2.141171e-06	2.708020e-05	-6.260531e-06	-2.296084e-05
[3,]	-1.598014e-07	3.082468e-05	-2.930347e-05	-1.361417e-06
[4,]	9.016848e-06	2.199539e-05	1.643405e-06	-3.265563e-05
[5,]	-7.832006e-07	3.195502e-05	-2.477757e-05	-6.394239e-06

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Calcul des effets marginaux pour le revenu mais au niveau moyen de l'échantillon

→ Créer un tableau contenant les valeurs moyennes des variables explicatives pour chaque alternative

(moy <- with(Fish, data.frame(price = tapply(price, index(Fish)\$alt, mean),
catch = tapply(catch, index(Fish)\$alt, mean), income = mean(income))))</pre>

	price	catch	Income
beach	103.42201	0.2410113	4099.337
boat	55.25657	0.1712146	4099.337
charter	84.37924	0.6293679	4099.337
pier	103.42201	0.1622237	4099.337

effects(ml.Fish3, covariate = "income", data = moy)

beach boat charter pier -7.214174e-07 3.176131e-05 -2.173391e-05 -9.305980e-06

→ Une augmentation du revenu d'une unité (/niveau moyen de l'échantillon) conduira par exemple à une baisse de la probabilité de choisir le mode charter de -2.173e-05

Calcul des effets marginaux au niveau moyen de l'échantillon (/ élasticités)

effects(ml.Fish3, covariate = "income", type="rr",data = moy)

beach boat charter pier -0.05634297 0.31030091 -0.19281695 -0.57932471

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Calcul des effets marginaux pour le prix au niveau moyen de l'échantillon

effects(ml.Fish3, covariate = "price", data = moy)

beach charter boat pier -1.249124e-03 0.0005531588 0.0006091541 8.681094e-05 beach boat 5.531588e-04 -0.0061167595 0.0048696270 6.939737e-04 charter6.091542e-04 0.0048696271 -0.0062430047 7.642235e-04 8.681094e-05 0.0006939736 0.0007642234 -1.545008e-03 pier

→ Une augmentation d'une unité du prix (1 \$) / plage (/au niveau moyen) aura pour impact une baisse de la probabilité de choisir la plage et mais aura également un impact positif sur les autres modes de pêches

→ Calcul des odd-ratios par exemple pour le modèle multinomial simple

ml.Fish2<-mlogit(mode~0|income,data=Fish) exp(coef(ml.Fish2))

boat:(intercept) charter:(intercept) pier:(intercept) 2.0936747 3.8239787 2.2572568

boat:income charter:income pier:income 1.0000919 0.9999684 0.9998566

→ Les individus dont le revenu augmente d'une unité ont 1/0,99985 (1,000143) moins de chance de choisir le port / plage que ceux dont le revenu n'a pas changé

35 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

2.2) Utilisation de la fonction vglm

→ Cette fonction permet d'estimer les <u>modèles multinomiaux simples</u> (pour les modèles conditionnels et multinomiaux généraux utiliser la fonction mlogit).

L'avantage de cette fonction (vglm) est qu'elle ne nécessite pas de transformation de la base de données dans le cas d'un <u>modèle multinomial simple.</u>

De plus, elle permet de représenter graphiquement l'effet d'une variable explicative quantitative sur les différentes probabilités des alternatives j et de calculer pour chaque individu la probabilité associée à chaque alternative

library(mlogit)
data("Fishing")

library (VGAM)

Fit<-vglm(mode~income,multinomial(refLevel=1),data=Fishing) summary(Fit)

Coefficients:

	Estimate	Std. Error	z-value	Pr(>/z/)
(Intercept):1	8.142e-01	2.286e-01	3.561	0.000369 ***
(Intercept):2	7.389e-01	1.967e-01	3.756	0.000173 ***
(Intercept):3	1.341e+00	1.945e-01	6.896	5.37e-12 ***
income:1	-1.434e-04	5.329e-05	-2.691	0.007121 **
income:2	9.191e-05	4.066e-05	2.260	0.023814 *
income:3	-3.164e-05	4.185e-05	-0.756	0.449594

Signif. codes: 0 '***'0.001 '**'0.01 '*'0.05 '.'0.1 ''1 Residual deviance: 2954.301 on 3540 degrees of freedom Log-likelihood: -1477.151 on 3540 degrees of freedom

str(Fishing)

\$ price.beach : num 157.9 15.1 161.9 15.1 106.9 ... \$ price.pier : num 157.9 15.1 161.9 15.1 106.9 ... \$ price.boat : num 157.9 10.5 24.3 55.9 41.5 ... \$ price.charter: num 182.9 34.5 59.3 84.9 71 ...

→ Par conséquent l'alternative de référence est « beach »

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Rappel: avec la fonction mlogit (lorsque "beach" est pris comme référence par défaut)

	Estimate	Std. Err	ror	t-value	<i>Pr</i> (>/t/)
boat:(intercept)	7.3892e-01	1.9673e-01	3.7560	0.000172	27 ***
charter:(intercept)	1.3413	1.9452e-01	6.8955	5.367e-1	2 ***
pier:(intercept)	8.1415e-01	2.2863e-01	3.5610	0.000369	95 ***
boat:income	9.1906e-05	4.0664e-05	2.2602	0.023811	6 *
charter:income	-3.1640e-05	4.1846e-05	-0.7561	0.449590	08
pier:income	-1.4340e-04	5.3288e-05	-2.6911	0.007122	23 **

Intérêt du modèle:

 $Fit0 < -vglm(mode \sim 1, multinomial(refLevel = 1), data = Fishing) \\ 1-pchisq(deviance(Fit0) - deviance(Fit)) \ , \ df = df.residual(Fit0) \ - \ df.residual(Fit0))$

[1] 6.093087e-09

Calcul du R2 de Mac Fadden:

$$\label{eq:R2_Mc_Fadden} \begin{split} R2_Mc_Fadden <& -1\text{-}(deviance(Fit)/deviance(Fit0)) \\ R2_Mc_Fadden \end{split}$$

[1] 0.01373575

Calcul des probabilités pour chaque alternative pour chaque individu

(fitted(Fit))

	beach	pier	boat	charter
1	0.11250922	0.09196564	0.4516733	0.3438518
2	0.11221981	0.21173938	0.2635553	0.4124855
3	0.11534399	0.15206503	0.3408657	0.3917253
4	0.11376764	0.19048097	0.2884583	0.4072931
5	0.11536587	0.13496232	0.3680676	0.3816042
6	0.11536587	0.13496232	0.3680676	0.3816042
7	0.10843710	0.06979378	0.5073859	0.3143832

39

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

→ Pour lire plus facilement les coefficients du modèle :

head(coef(Fit,matrix=TRUE))

 $log(mu[,2]/mu[,1]) \quad log(mu[,3]/mu[,1]) \quad log(mu[,4]/mu[,1])$

 (Intercept)
 0.8141502697
 7.389208e-01
 1.341291e+00

 income
 -0.0001434029
 9.190636e-05
 -3.163988e-05

→ Calcul des odd-ratios:

exp(coef(Fit))

 (Intercept):1
 (Intercept):2
 (Intercept):3
 income:1
 income:2
 income:3

 2.2572568
 2.0936747
 3.8239787
 0.9998566
 1.0000919
 0.9999684


```
Calcul des effets marginaux pour chaque personne :
margeff(Fit)
, , 1
                                                                charter
                  beach
                                                 boat
                                  pier
             -9.786391e-02
                             -0.0051206362 -5.912828e-02
                                                             1.621128e-01
(Intercept)
             -1.962620e-06
                             -0.0000147924 3.363263e-05 -1.687761e-05
income
                  beach
                                  pier
                                                 boat
                                                                charter
             -1.032868e-01
                             -2.249671e-02
                                             -4.782914e-02
                                                             1.736127e-01
(Intercept)
             2.153793e-06
                             -2.630021e-05 2.928073e-05 -5.134311e-06
income
    Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021
```

```
Représentation graphique de l'effet revenu sur les probabilités de choix :
 mycol <- c("red", "green", "blue")
 ooo <- with(Fishing, order(income))</pre>
  with (Fishing, matplot(income[ooo], fitted (Fit)[ooo,], ylim = c(0,1),
    xlab = "Revenu", ylab = "Probabilité estimée",
    main = " Effet de la variable Revenu ", type = "l", lwd = 2, col = c(mycol[1],
  "black", mycol[-1])))
  with(Fishing, rug(income))
 legend("topright",
                                     c(mycol[1],
                                                     "black",
                                                                  mycol[-1]),
                                                                                 lty=1:4
  ,legend=colnames(Fit@y))
     Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021
42
```


3) Extensions du modèle multinomial 3.1) Prise en compte de l'hétéroscédasticité des erreurs # Hypothèse d'homoscédascité des erreurs ml.Fish3<-mlogit(mode~price+catch|income,data=Fish) #Hypothèse d'hétéroscédasticité des erreurs ml.Fish3het<-mlogit(mode~price+catch|income, heterosc = TRUE, data=Fish) # Différence entre les deux modèles lrtest(ml.Fish3,ml.Fish3het) Likelihood ratio test Model 1: mode ~ price + catch / income *Model 2: mode ~ price + catch | income* #Df LogLik Df Chisq Pr(>Chisq) 1 8 -1215.1 2 11 -1218.2 3 6.0495 0.1092 → Au seuil de risque de 10%, il n'y pas de différence entre les deux modèles Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

3.2) Utilisation du modèle de type emboîté ou « nested model » :

- → L'expression des probabilités du modèle multinomial est liée au fait que les termes aléatoires sont indépendants et identiquement distribués : indépendance des états non pertinents (IIA)
- → Le rapport des probabilités associées au choix entre deux modalités est indépendant des autres modalités. Ajouter ou enlever une tierce modalité ne change pas le rapport entre ces deux probabilités.
- → Cette propriété peut être acceptée si les modalités sont peu comparables mais elle devient discutable lorsque le modèle multinomial (Logit) est utilisé pour modéliser des choix très similaires.
- \Rightarrow II faut donc tester cette hypothèse sachant que l'hypothèse H_0 correspond au fait d'accepter l'hypothèse IIA.

Pour cela, on utilise la fonction mlogit sous R.

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Vérification de l'hypothèse d'absence de corrélation sous R

Pour tester l'absence de « nœuds », il y a deux tests possibles :

Premier test possible : lrtest(modele nested)

<u>2ème test possible : scoretest(modele multinomial, nests = list(nom de la branche1 = c(' ',' '),nom de la branche2 = c(' ',' ',' '),......))</u>

Si la p-value est inférieure à 0,05 (ou 0,1), l'hypothèse IIA est refusée.

Reprenons l'exemple du transport :

- → Il faut tout d'abord faire des hypothèses sur les similarités entre les choix (branche)
- → Il est possible de supposer que le transport par air est différent des autres modes de transport. A l'inverse, on peut supposer que la voiture, le bus et le train sont des moyens similaires
- Econométrie des variables qualitatives I M.TRAVERS Année 2020-2021

Application du premier test :

library(lmtest)

library(mlogit)

data("TravelMode", package= "AER")

Transport<-mlogit.data(TravelMode, choice="choice",shape="long",alt.var="mode")

nl.Transport<-

 $mlogit(choice \sim wait + vcost + travel|income + size, data = Transport, reflevel = "train", nests = list(air = "air", terre = c("bus", "car", "train")), unscaled = TRUE)$

Remarque:

Si une branche de l'arbre ne comporte qu'une modalité (arbre dégénéré), il est nécessaire de mettre dans l'option nests : unscaled=TRUE

47 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

lrtest(nl.Transport)

Likelihood ratio test

Model 1: choice ~ wait + vcost + travel | income + size

 $Model\ 2:\ choice \sim wait + vcost + travel\ /\ income + size$

#Df LogLik Df Chisq Pr(>Chisq)

1 14 -153.74

2 12 -172.47 -2 37.453 7.365e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Deuxième type de test

ml.Transport<-

 $mlogit(choice \sim wait + vcost + travel | income + size, data = Transport, reflevel = "train") \\ scoretest(ml.Transport, reflevel = "train") \\ scoretest(ml.Tran$

nests=list(air="air",terre=c("bus","car","train")),unscaled=TRUE)

score test

data: nests = list(air = c('air'), terre = c('bus', 'car', 'train'))chisq = 26.7648, df = 2, p-value = 1.542e-06

alternative hypothesis: nested model

Conclusion:

Pour les deux tests, l'hypothèse IIA est refusée au seuil de 5 % pour les hypothèses émises

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

4) Application sous Stata

A) Comment estimer un modèle multinomial général sous Stata

Soit l'exemple suivant : choix du type d'automobile (américaine, japonaise ou européenne) de 295 consommateurs

Variables à expliquer

choice : 1 pour indiquer le type d'automobile choisi (américaine, japonaise, européenne), 0 dans le cas contraire

car : alternative (origine de la voiture)

Variables explicatives :

dealer : nombre de concessionnaires de chaque type de voiture dans la ville du consommateur

sex : genre du consommateur income : revenu en milliers de dollars size: taille du ménage du consommateur

La base est déjà en format long (3 choix possibles * 295 individus)

describe Contains data 885 obs: vars: 23,895 size: storage display value variable name type format label variable label id int %10.0g id str6 89s sex sex double %10.0g income income str8 %9s car car %10.0g size byte size choice %10.0g choice byte dealer byte %10.0g dealer Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021 52

list id car choice dealer sex income size in 1/12, sepby(id)

	id	car	choice	dealer	sex	income	size
1.	1	American	0	18	male	46.699997	2
2.	1	Japan	0	8	male	46.699997	2
3.	1	Europe	1	5	male	46.699997	2
4.	2	American	1	17	male	26.1	3
5.	2	Japan	0	6	male	26.1	3
6.	2	Europe	0	2	male	26.1	3
7.	3	American	1	12	male	32.700001	4
8.	3	Japan	0	6	male	32.700001	4
9.	3	Europe	0	2	male	32.700001	4
10.	4	American	0	18	female	49.199997	2
11.	4	Japan	1	7	female	49.199997	2
12.	4	Europe	0	4	female	49.199997	2

53 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

codebook sex

type: string (str6)

unique values: 2 missing "": 0/885

tabulation: Freq. Value
237 "female"
648 "male"

codebook dealer

type: numeric (byte)

range: [1,24] units: 1 unique values: 22 missing .: 0/885

mean: 9.99322 std. dev: 7.14538

percentiles: 10% 25% 50% 75% 90% 3 4 8 17 22

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

IIVERSITÉ DE NANTES

codebook car

55 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Estimation du modèle :

xi:asclogit choice dealer, case(id) alternatives(car) casevars(i.sex income size)

<u>Remarque</u> : l'alternative de référence est par défaut l'alternative ayant la plus haute fréquence (ici American, voir slide 69)

Si on souhaite une alternative de référence différente, il suffit de rajouter basealternative(nom de l'alternative) à la fin de la commande ci-dessus

```
Alternative-specific conditional logit
                                                              885
                                        Number of obs
Case variable: id
                                        Number of cases =
                                                               295
                                                                3
Alternative variable: car
                                        Alts per case: min =
                                                    avg = max =
                                                               3.0
                                                                3
                                                      = 121.43
                                          Wald chi2(7)
                                          Prob > chi2 = 0.0000
Log likelihood = -244.516
```


Coef. Std. Err. z P>|z| [95% Conf. Interval] choice car .1424601 .0300018 4.75 0.000 .0836577 .2012625 dealer (base alternative) American Europe 1.08 0.279 -.3604595 _Isex_2 .4446935 .4107999 1.249847 income .0271243 .0126302 2.15 0.032 .0023695 .051879 -.3263475 .1459232 -2.24 0.025 -.6123516 -.0403434 size Japan _Isex_2 -.3517742 .3117905 -1.13 0.259 -.9628723 .2593238 .0291353 .0728935 income .0510144 .011163 4.57 0.000 -.5896642 .1416146 -4.16 0.000 -.8672237 -.3121047 size

Avec _Isex_2 for sex==male

57 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	11 (model)	df	AIC	BIC
	885		-244.516	7	503.032	536.5311

Note: N=Obs used in calculating BIC; see [R] BIC note.

Pour obtenir les odd-ratios associés à chacune des variables explicatives du modèle précédent :

asclogit, or

choic	e Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	. Interval]
car						
deale	r 1.153107	.0345953	4.75	0.000	1.087257	1.222946
American	(base alt	ernative)				
Europe						
Isex	2 1.560012	.6408528	1.08	0.279	.6973558	3.489808
incom	e 1.027496	.0129775	2.15	0.032	1.002372	1.053248
siz	e .7215544	.1052915	-2.24	0.025	.5420746	.9604596
Japan						
Isex	2 .7034389	.2193255	-1.13	0.259	.3817947	1.296053
incom	e 1.052338	.0117473	4.57	0.000	1.029564	1.075616
siz	e .5545135	.0785272	-4.16	0.000	.4201163	.7319049

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

<u>Calcul des effets marginaux pour chacune des variables explicatives pour chaque type d'automobile (au niveau moyen de l'échantillon avec comme dummy la variable sex):</u>

estat mfx

Pr(choice = American|1 selected) = .67638735

variable	dp/dx	Std. Err.	z	P> z	[95%	C.I.]	X
dealer							
American	.031183	.006252	4.99	0.000	.01893	.043436	18.976
Europe	01317	.002981	-4.42	0.000	019014	007327	3.461
Japan	018012	.004008	-4.49	0.000	025868	010157	7.5424
casevars							
_Isex_2	.003365	.06077	0.06	0.956	115742	.122473	.7322
income	008958	.002273	-3.94	0.000	013413	004502	42.097
size	.104726	.023436	4.47	0.000	.058792	.15066	2.6237

variable	dp/dx	Std. Err.	z	P> z	[95%	C.I.]	X
dealer							
American	01317	.002981	-4.42	0.000	019014	007327	18.976
Europe	.01681	.00365	4.60	0.000	.009656	.023965	3.461
Japan	00364	.000835	-4.36	0.000	005276	002003	7.5424
casevars							
_Isex_2	.061462	.047366	1.30	0.194	031374	.154298	.7322
income	.001897	.001394	1.36	0.173	000834	.004629	42.097
size	023443	.016657	-1.41	0.159	056091	.009205	2.6237

variable	dp/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
dealer							
American	018012	.004008	-4.49	0.000	025868	010157	18.976
Europe	00364	.000835	-4.36	0.000	005276	002003	3.461
Japan	.021652	.004631	4.68	0.000	.012576	.030728	7.5424
casevars							
_Isex_2	064827	.045389	-1.43	0.153	153787	.024133	.7322
income	.007061				.003996		
size	081283	.01939	-4.19	0.000	119286	04328	2.6237

Pour estimer un modèle multinomial simple, on peut utiliser la ligne de commande suivante :

xi:asclogit choice, case(id) alternatives(car) casevars(i.sex income size)

Mais on pourrait penser utiliser la fonction suivante :

mlogit car sex income size (attention car et sex doivent être modifiées)

Au préalable, il faut modifier la base de données et ne garder que les choix = 1

keep if choice == 1

Remarque : à partir de cette base, il est possible de réaliser des statistiques

tab car

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

car	Freq.	Percent	Cum.
American	192	65.08	65.08
Japan	64	21.69	86.78
Europe	39	13.22	100.00
Total	295	100.00	

tab sex

sex	Freq.	Percent	Cum.
female male	79 216	26.78 73.22	26.78 100.00
Total	295	100.00	


```
Comment passe d'une variable texte (string) à une variable numérique ?

encode car, generate(Car)
codebook Car

type: numeric (long)
label: Car

range: [1,3] units: 1
unique values: 3 missing .: 0/295

tabulation: Freq. Numeric Label
192 1 American
39 2 Europe
64 3 Japan
```


Estimation d'un modèle multinomiale simple à partir de la fonction mlogit :

mlogit Car _Isex_2 income size

```
Iteration 0: log likelihood = -259.1712
Iteration 1: log likelihood = -248.26305
Iteration 2: log likelihood = -247.95024
Iteration 3: log likelihood = -247.94956
Iteration 4: log likelihood = -247.94956
Multinomial logistic regression
```

Multinomial logistic regression Number of obs = 295 LR chi2(6) = 22.44 Prob > chi2 = 0.0010 Log likelihood = -247.94956 Pseudo R2 = 0.0433

Qualité du modèle

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

95% Conf. Interval]	P> z	Z	Std. Err.	Coef.	Car
			ome)	(base outco	American
					Europe
3795309 1.40502	0.260	1.13	.4552509	.5127444	_Isex_2
0001524 .05324	0.051	1.95	.0136208	.0265438	income
2615952 .4133535	0.659	0.44	.1721839	.0758792	size
5.011233 -1.656768	0.000	-3.90	.8557467	-3.334001	_cons
					Japan
9793383 .2699762	0.266	-1.11	.3187085	3546811	_Isex_2
0057976 .0561466	0.016	2.41	.0128444	.0309721	income
69875591291371	0.004	-2.85	.1453136	4139465	size
.507734 .1823692	0.090	-1.69	.6862634	-1.162682	cons

Pour calculer les odd-ratios:

mlogit Car _Isex_2 income size,rrr

Calcul des effets marginaux (au niveau moyen de l'échantillon):

margins, dydx(income size _Isex_2) predict(outcome(American))

Average marginal effects Number of obs 295 Model VCE

: OIM

Expression : Pr(Car==American), predict(outcome(American))

dy/dx w.r.t. : _Isex_2 income size

	dy/dx	Delta-method Std. Err.	Z	P> z	[95% Conf.	Interval]
	.0033213	.0629575	0.05	0.958	1200732	.1267158
income	0063788	.0021633	-2.95	0.003	0106189	0021387
size	.048488	.0257396	1.88	0.060	0019607	.0989367

69 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

marginsplot, name(American)

 $margins, \ dydx (income \ size \ _Isex_2 \) \ predict(outcome(Japan))$ marginsplot, name(Japan)

margins, dydx(income size _Isex_2) predict(outcome(Europe)) marginsplot, name(Europe)

use "C:\Users\travers-m\Desktop\Cours_2020_2021\Econometrie_variables_qualitatives_M1_EKAP_M2_COD EME\Cours\Bases\mus15data.dta", clear describe $_{\text{obs:}}^{1,182}$

size:	75,648			-
variable name	storage type	display format	value label	variable label
mode	float	%9.0g	modetype	Fishing mode
price	float	%9.0g		price for chosen alternative
crate	float	%9.0g		catch rate for chosen alternative
dbeach	float	%9.0g		1 if beach mode chosen
dpier	float	%9.0g		1 if pier mode chosen
dprivate	float	%9.0g		1 if private boat mode chosen
dcharter	float	%9.0g		1 if charter boat mode chosen
pbeach	float	%9.0g		price for beach mode
ppier	float	%9.0g		price for pier mode
pprivate	float	%9.0g		price for private boat mode
pcharter	float	%9.0g		price for charter boat mode
qbeach	float	%9.0g		catch rate for beach mode
qpier	float	%9.0g		catch rate for pier mode
qprivate	float	%9.0g		catch rate for private boat mode
qcharter	float	%9.0g		catch rate for charter boat mode
income	float	%9.0q		monthly income in thousands \$

12 May 2008 20:46

75 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

vars:

list in 1/3 dpier dprivate pbeach mode price crate dbeach dcharter 157.93 182.93 .5391 0 0 charter 0 qprivate ppier pprivate pcharter qbeach qpier qcharter income 157.93 157.93 182.93 .0678 .0503 .2601 .5391 7.083332 price dpier dprivate dcharter charter 34.534 .4671 0 0 15.114 pprivate pcharter qbeach qpier qprivate qcharter income ppier .1049 1.25 3. price dbeach mode crate dpier dprivate dcharter pbeach 24.334 .2413 0 0 161.874 private 0 pprivate pcharter qpier qprivate qcharter ppier qbeach income 161.874 .5333 3.75 24.334 59.334 .4522 .2413 1.0266 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021 76

list mode price crate pheach ppier pprivate pcharter in 1/3, clean

	mode	price	crate	pbeach	ppier	pprivate	pcharter
1.	charter	182.93	.5391	157.93	157.93	157.93	182.93
2.	charter	34.534	.4671	15.114	15.114	10.534	34.534
3	private	24 334	2413	161 874	161 874	24 334	59 334

tabulate mode

Fishing mode	Freq.	Percent	Cum.
beach	134	11.34	11.34
pier	178	15.06	26.40
private	418	35.36	61.76
charter	452	38.24	100.00
Total	1.182	100.00	

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

Estimation d'un modèle multinomial simple en prenant l'alternative beach comme référence

mlogit mode income, baseoutcome(1)

Formatage de la base du format court en format long

 $generate id = _n$

reshape long d p q, i(id) j(fishmode beach pier private charter) string

Data	wide	->	long
Number of obs.	1182	->	4728
Number of variables	17	->	9
<pre>j variable (4 values) xij variables:</pre>		->	fishmode
dbeach dpier	dcharter	->	d
pbeach ppier	pcharter	->	p
qbeach qpier	qcharter	->	q

	id	fishmode	mode	price	crate	d	р	q	income
. [1	beach	charter	182.93	.5391	0	157.93	.0678	7.083332
.	1	charter	charter	182.93	.5391	1	182.93	.5391	7.083332
.	1	pier	charter	182.93	.5391	0	157.93	.0503	7.083332
.	1	private	charter	182.93	.5391	0	157.93	.2601	7.083332
.	2	beach	charter	34.534	.4671	0	15.114	.1049	1.25
. [2	charter	charter	34.534	.4671	1	34.534	.4671	1.25
.	2	pier	charter	34.534	.4671	0	15.114	.0451	1.25
	2	private	charter	34.534	.4671	0	10.534	.1574	1.25
		(2.1) .	ltarnative	c(fichmo	de) case	var	s(income)	
ati		pecific cond		•	Number Number	of	obs	= 4,	,728 1182
ati ari	ve-s able	pecific cond	ditional lo	•	Number Number	of	obs	= 4,	
ati ari	ve-s able	pecific cond	ditional lo	•	Number Number	of	obs cases	= 4,	1182
ati ari	ve-s able	pecific cond	ditional lo	•	Number Number	of	obs cases	= 4	4
ati ari	ve-s able	pecific cond	ditional lo	•	Number Number	of of er c	obs cases ase: min avg	= 4,	4 4.0

d	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
fishmode						
q	0251166	.0017317	-14.50	0.000	0285106	0217225
q	.357782	.1097733	3.26	0.001	.1426302	.5729337
beach	(base alte	rnative)				
charter						
income	0332917	.0503409	-0.66	0.508	131958	.0653746
_cons	1.694366	.2240506	7.56	0.000	1.255235	2.133497
pier						
income	1275771	.0506395	-2.52	0.012	2268288	0283255
_cons	.7779594	.2204939	3.53	0.000	.3457992	1.21012
private						
income	.0894398	.0500671	1.79	0.074	0086898	.1875695
_cons	.5272788	.2227927	2.37	0.018	.0906131	.9639444

B) Comment estimer un modèle « emboité » (nested model) sous Stata Prenons l'exemple suivant : Dining Variables explicatives: income, kids Variable: type Fast food Family Fancy restaurants restaurants restaurants <u>Variables explicatives</u>: Variable: Mama's Freebirds Wings 'N Café Christopher's Mad Los Pizza More cost, rating, distance Eccell chosen U 81 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

use http://www.stata-press.com/data/r13/restaurant, clear describe Contains data from http://www.stata-press.com/data/r13/restaurant.dta 2,100 obs: 10 Mar 2013 01:17 vars: 67,200 size: storage display value variable name type format label variable label family_id float %9.0g family ID restaurant float %12.0g names choices of restaurants income float %9.0g household income cost float %9.0g average meal cost per person %9.0g number of kids in the household kids float rating float. %9.0g ratings in local restaurant guide distance float %9.0g distance between home and restaurant chosen float %9.0g 0 no 1 yes Econométrie des variables qualitatives I - M.TRAVERS - Année 2020-2021 82

list family_id restaurant chosen kids rating distance cost income in 1/14, sepby(family_id)

	family~d	restaurant	chosen	kids	rating	distance	cost	income
1.	1	Freebirds	1	1	0	1.245553	5.444695	39
2.	1	MamasPizza	0	1	1	2.82493	6.19446	39
3.	1	CafeEccell	0	1	2	4.21293	8.182085	39
4.	1	LosNortenos	0	1	3	4.167634	9.861741	39
5.	1	WingsNmore	0	1	2	6.330531	9.667909	39
6.	1	Christophers	0	1	4	10.19829	25.95777	39
7.	1	MadCows	0	1	5	5.601388	28.99846	39
8.	2	Freebirds	0	3	0	4.162657	5.26874	58
9.	2	MamasPizza	0	3	1	2.865081	5.728618	58
10.	2	CafeEccell	0	3	2	5.337799	7.054855	58
11.	2	LosNortenos	1	3	3	4.282864	10.78514	58
12.	2	WingsNmore	0	3	2	8.133914	8.313948	58
13.	2	Christophers	0	3	4	8.664631	21.2801	58
14.	2	MadCows	0	3	5	9.119597	25.87567	58

83 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

nlogitgen type = restaurant(fast : Freebirds | MamasPizza , family : CafeEccell | LosNortenos | WingsNmore, fancy : Christophers | MadCows)

new variable type is generated with 3 groups label list lb_type lb_type:

1 fast 2 family

3 fancy

nlogittree restaurant type, choice(chosen)

tree structure specified for the nested logit model

type	N		restaurant	N	k
fast	600	_	Freebirds MamasPizza	300	12
		L	MamasPizza	300	15
family	900		CafeEccell	300	78
		-	LosNortenos WingsNmore	300	75
		_	WingsNmore	300	69
fancy	600	$\overline{}$	${\tt Christophers}$	300	27
		L	MadCows	300	24

total 2100 300

 $\label{eq:k} k \ = \ number \ of \ times \ alternative \ is \ chosen$ $\mbox{N} \ = \ number \ of \ observations \ at \ each \ level$

nlogit chosen cost rating distance || type: income kids, base(family) ||restaurant:, noconstant case(family_id) RUM-consistent nested logit regression Number of obs = 2,100 Case variable: family_id Number of cases = 300 Alternative variable: restaurant Alts per case: min = avg = 7.0 max = 7Wald chi2(7) = 46.71Prob > chi2 = 0.0000Log likelihood = -485.47331chosen Coef. Std. Err. z P>|z| [95% Conf. Interval] restaurant cost -.1843847 .0933975 -1.97 0.048 -.3674404 -.0013289 rating .463694 .3264935 1.42 0.156 -.1762215 1.10361 distance -.3797474 .1003828 -3.78 0.000 -.5764941 -.1830007 distance UÌ 85 Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

type equations						
fast						
income	0266038	.0117306	-2.27	0.023	0495952	0036123
kids	0872584	.1385026	-0.63	0.529	3587184	.1842016
family						
income	0	(base)				
kids	0	(base)				
fancy						
income	.0461827	.0090936	5.08	0.000	.0283595	.0640059
kids	3959413	.1220356	-3.24	0.001	6351267	1567559
dissimilarity	parameters					
type						
/fast_tau	1.712878	1.48685			-1.201295	4.627051
/family_tau	2.505113	.9646351			.614463	4.395763
/fancy_tau	4.099844	2.810123			-1.407896	9.607583
IR tost for II	A (tau = 1):		chi2(3) =	6.87	Prob > chi	2 = 0.0762

→ Après vérification, il existe des variables explicatives corrélées entre elles correlate cost rating distance income kids

	cost	rating	distance	income	kids
cost	1.0000				
rating	0.9070	1.0000			
distance	0.6445	0.6845	1.0000		
income	0.0007	0.0000	0.0049	1.0000	
kids	-0.0026	-0.0000	-0.0096	-0.0591	1.0000

→ Réestimation du modèle emboité en ne conservant que la distance

nlogit chosen distance \parallel type: income kids, base(family) \parallel restaurant:, no constant case(family_id)

RUM-consistent nested logit regression	Number of obs	=	2,100
Case variable: family_id	Number of cases	=	300
Alternative variable: restaurant	Alts per case: mir	. =	7
	avo	=	7.0
	max	=	7
	Wald chi2(5)	=	44.73
Log likelihood = -488.15228	Prob > chi2	=	0.0000

Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

restaurant distance3759665 .0945169 -3.98 0.0005612163 type equations	1907167
fast	
income0257008 .0117835 -2.18 0.0290487961 kids0741824 .1409697 -0.53 0.5993504778	0026055 .2021131
family	
income 0 (base) kids 0 (base)	
fancy	
income .0429303 .0088578 4.85 0.000 .0255692 kids3907581 .1193032 -3.28 0.0016245881	
dissimilarity parameters	
type	
/fast_tau 2.537008 1.6225856431995	5.717215
/family_tau 3.259947 1.018783 1.263169	
/fancy_tau 2.420526 1.5866066891651	5.530217

44

Si on reprend le cas de la base Transport

import excel "C:\Users\travers-

Contains	data	
obs:		840
vars:		9
size:		14,280

variable name	storage type	display format	value label	variable label	
individual	int	%10.0g		individual	
mode	str5	%9s		mode	
choice	byte	%10.0g		choice	
wait	byte	%10.0g		wait	
vcost	int	%10.0g		vcost	
travel	int	%10.0g		travel	
gcost	int	%10.0g		gcost	
income	byte	%10.0g		income	
size	byte	%10.0g		size	

g Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021

list individual mode choice wait vcost travel gcost income in 1/12, sepby(individual)

	indivi~l	mode	choice	wait	vcost	travel	gcost	income
1.	1	air	0	69	59	100	70	35
2.	1	train	0	34	31	372	71	35
3.	1	bus	0	35	25	417	70	35
4.	1	car	1	0	10	180	30	35
5.	2	air	0	64	58	68	68	30
6.	2	train	0	44	31	354	84	30
7.	2	bus	0	53	25	399	85	30
8.	2	car	1	0	11	255	50	30
9.	3	air	0	69	115	125	129	40
10.	3	train	0	34	98	892	195	40
11.	3	bus	0	35	53	882	149	40
12.	3	car	1	0	23	720	101	40


```
nlogitgen type = mode(Aerien: air,Terrestre: bus | car| train)
       new variable type is generated with 2 groups
        label list lb_type
       lb_type:
                                                                                            1 Aerien
                                                                                            2 Terrestre
     nlogit choice wait vcost travel|| type: income size,base(Aerien) ||mode:, noconstant
     case(individual)
       note: branch 1 of level 1 is degenerate and the associated dissimilarity parameter
                                                          ([Aerien_tau]_cons) is not defined; see help <a href="nlogit">nlogit</a> for details
        tree structure specified for the nested logit model % \left( 1\right) =\left( 1\right) \left( 1\right) \left
                                                                                                                                               mode N k
              type
                                                                      210 — air 210 58
                                                                                                                                                                            210 30
210 59
                                                                                                                               bus car
              Terrestre 630 -
                                                                                                                               L train 210 63
                                                                                                                                        total 840 210
     k = number of times alternative is chosen
N = number of observations at each level
                                         Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Uì
```

```
Iteration 0: log likelihood = -250.7477
Iteration 1:
              log likelihood = -242.29619 (backed up)
Iteration 2: log likelihood = -241.15974 (backed up)
Iteration 3:
              log likelihood = -240.68196 (backed up)
             log likelihood = -240.67949 (backed up)
Iteration 4:
             log likelihood = -236.45105
Iteration 5:
Iteration 6:
              log likelihood = -236.23812
Iteration 7:
             log likelihood = -234.94851
Iteration 8:
              log likelihood = -234.75033
              log likelihood = -234.64708
Iteration 9:
Iteration 10: \log likelihood = -234.64078
Iteration 11:
              log likelihood = -234.64001
Iteration 12: log likelihood = -234.63998
Iteration 13: log likelihood = -234.63998
RUM-consistent nested logit regression
                                              Number of obs
                                                                          840
Case variable: individual
                                              Number of cases
                                                                          210
Alternative variable: mode
                                              Alts per case: min =
                                                                           4
                                                            avg =
                                                                          4.0
                                                             max =
                                                                           4
                                                 Wald chi2(5)
                                                                        46.16
                                                                       0.0000
Log likelihood = -234.63998
                                                 Prob > chi2
     Econométrie des variables qualitatives I – M.TRAVERS – Année 2020-2021
```

choice	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
node						
wait	0601601	.010929	-5.50	0.000	0815806	0387396
vcost	.026249	.0100951	2.60	0.009	.0064629	.0460351
travel	0027675	.0007437	-3.72	0.000	0042252	0013098
type equations						
Aerien						
income	0	(base)				
size	0	(base)				
Terrestre						
income	0392629	.0106161	-3.70	0.000	0600701	0184558
size	.4944531	.1995406	2.48	0.013	.1033607	.8855456
dissimilarity p	arameters					
type						
/Aerien_tau	1	970571			-1902283	1902285
Terrestre_~u	1.954363	.3835601			1.202599	2.706127
LR test for IIA	(tau = 1):	ch	ni2(2) =	8.91	Prob > chi2	= 0.0116