ECE2-Colle 14

23/01/23 au 27/01/23

1 Cours

1.1 Intégrales de fonctions positives

Intégrales de fonctions positives : convergence des intégrales de fonctions continues positives, critère de comparaison pour les intégrales de fonctions continues positives, critère de négligeabilité et d'équivalence pour les intégrales de fonctions continues positives.

1.2 Réduction des matrices

Valeurs propres, vecteurs propres: valeurs propres, vecteurs propres d'une matrice carrée; spectre. Caractérisation des valeurs propres : $\lambda \in Sp(A) \iff A - \lambda \cdot I_n$ n'est pas inversible; valeurs propres d'une matrice triangulaire. Méthode : déterminer les valeurs propres de A en trouvant la réduite de Gauss de $A - \lambda \cdot I_n$

Sous-espaces propres: définition des sous-espaces propres, cas particulier de la valeur propre 0.

Polynômes annulateurs : définition d'un polynôme de matrice; définition de polynôme annulateur. Les valeurs propres d'une matrice sont **des** racines de tout polynôme annulateur. Déterminer l'inverse d'une matrice avec un polynôme annulateur.

Famille de vecteurs propres : si $\lambda_1,...,\lambda_p$ sont des valeurs propres distinctes de $A \in \mathcal{M}_n(\mathbb{R})$ et pour tout $i \in [1,p]$, \mathscr{F}_i est une famille libre de $E_{\lambda_i}(A)$ alors la famille $\mathscr{F} = \mathscr{F}_1 \cup \cdots \cup \mathscr{F}_p$ est une famille libre. Conséquence : si Sp(A) = $\{\lambda_1,...,\lambda_p\}$ alors $\sum_{i=1}^p \dim(E_{\lambda_i}(A)) \leq n$ et le nombre de valeurs propres est $\leq n$.

Diagonalisabilité: définition de matrice diagonalisable. Critère de diagonalisabilité: $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable $\iff \sum_{i=1}^p \dim \left(E_{\lambda_i}(A) \right) = n$. Condition suffisante: en dimension n avoir n valeurs propres distinctes implique être diagonalisable. Les matrices symétriques sont diagonalisables.

Applications: calcul des puissances d'une matrice diagonalisable; étude de suites récurrentes.

2 Méthodes à maîtriser

- 1. Savoir déterminer la nature d'une intégrale impropre d'une fonction continue positive en utilisant les critères de comparaison, négligeabilité, équivalence.
- 2. Savoir déterminer les valeurs propres d'une matrice.
- 3. Savoir déterminer le sous-espace propre associé à une valeur propre donnée.
- 4. Savoir déterminer le spectre à partir d'un polynôme annulateur. Savoir déterminer l'inverse d'une matrice à partir d'un polynôme annulateur.
- 5. Savoir déterminer si une matrice A est diagonalisable ou non. Le cas échéant, savoir déterminer une matrice diagonale D et une matrice inversible P telles que $D = P^{-1}AP$.

3 Questions de cours

- Critères de comparaison pour les intégrales de fonctions continues positives.
- Définitions : matrice diagonalisable, valeurs propres, sous-espace propre.
- Propositions : critère de diagonalisabilité, condition suffisante de diagonalisabilité, diagonalisabilité des matrices symétriques, caractérisation des valeurs propres.