

Photoluminezsenz (PL)

Praktikum-Festkörperphysik

Julia Jacob julia.jacob@udo.edu

Mario Alex Hollberg mario-alex.hollberg@udo.edu

12. August 2020

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Aus	Auswertung						
	1.1	Photolumineszenz-Eigenschaften der kolloidalen Nanokristalle						
		1.1.1 Größe der Nanokristalle						
		1.1.2 Polarisation der Photolumineszenz						
		1.1.3 Leistungsabhängige Peak-Energie						
	1.2	Abhängigkeit der Photolumineszenz von der Laserwellenlänge						
	1.3	Linearer Polarisationsgrad von Flüssigkeiten (Bonus-Aufgabe)						
2	Disk	Diskussion						
2.1 Photolumineszenz-Eigenschaften der kolloidalen Nand		Photolumineszenz-Eigenschaften der kolloidalen Nanokristalle						
		2.1.1 Größe der Nanokristalle						
		2.1.2 Polarisation der Photolumineszenz						
		2.1.3 Leistungsabhängige Peak-Energie						
	2.2	Abhängigkeit der Photolumineszenz von der Laserwellenlänge						
2.3 Linearer Polarisationsgrad von Flüssigkeiten (Bonus-Aufgabe)								

1 Auswertung

In diesem Kapitel folgen nun die Messungen und Ergebnisse der drei Messaufgaben.

$$y = a \cdot exp\left(-ln(2) \cdot \frac{(x - x_0)^2}{dx^2}\right) \tag{1}$$

1.1 Photolumineszenz-Eigenschaften der kolloidalen Nanokristalle

Die erste Aufgabe ist es, einige Eigenschaften der kolloidalen Nanokristalle anhand von Photoluminezsenzspektren zu untersuchen.

1.1.1 Größe der Nanokristalle

Zunächst soll die Größe der kolloidalen Nanokristalle jeder Probe bestimmt werden. Hierfür wird jede einzelne Probe mit einem Laser der Wellenlänge $405\,nm$ angeregt und ein Photoluminezsenzspektrum (PL-Spektrum) von ca 320 - $747\,nm$ wird aufgenommen. Diese PL-Spektren sind in Abbildung (1) zu sehen.

(a) Messung der Probe 1 mit Messdauer 1 s.

(b) Messung der Probe 2 mit Messdauer 0, 5 s.

(c) Messung der Probe 3 mit Messdauer 0,65 s.

Abbildung 1: Photoluminessenzspektren der drei vorliegenden Proben mit einer Anregungswellenlänge von 405 nm.

Alle drei Spektren weisen nur geringfügige Abweichungen auf. Mit Hilfe von Magicplots werden durch die Messwerte aller drei Pl-Spektren gaußförmige Ausgleichskurven gelegt. Diese besitzen die in Formel (1) beschriebene Form. Die Variable x_0 gibt die Wellenlänge der Probe an. Mittels der Formeln (2) und (3) lassen sich nun die Größe der Nanopartikel berechnen.

$$\Delta E_{r,i} = h \frac{c}{\lambda_i} \tag{2}$$

$$\Delta E_{r,i} = E_g + \frac{h^2}{8r_{NP,i}} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$$
 (3)

Alle Ergebnisse sind in Tabelle (1) aufgelistet.

Tabelle 1: Ergebnisse aus den Fit-Kurven der drei Messungen.

Probe	Wellen	länge λ / nm	Energie / eV	Radius r_{NP} / nm
	Theorie	experimentell		
1	644	642,819	1,9289	7,717
2	580	$580,\!832$	2,1348	$5,\!338$
3	542	$540,\!287$	2,2949	4,502

1.1.2 Polarisation der Photolumineszenz

Nachdem

Abbildung 2: PL-Spektrum der Probe 3 mit einer Anregungswellenlänge von $405\,nm$ für drei unterschiedliche Polarisationswinkel im Detektionspfad.

1.1.3 Leistungsabhängige Peak-Energie

- (a) Die aufgenommenen PL-Spektren für verschiedenen Laserleistungen.
- (b) Die aufgenommenen PL-Spektren für verschiedenen Laserleistungen mit einer Messzeit von $1~\mathrm{s}.$

(c) Die Peak-Energien der PL-Spektren mit linearem Fit.

Abbildung 3: Messung der Peak-Energie der Probe 3 mit einer Anregungswellenlänge von $405\,nm$ für unterschiedliche Laserleistungen.

Tabelle 2: Ergebnisse der Messung zur Leistungsabhängige Peak-Energie.

Laserleistung / mW	Intensiät	Zeitintervall Δt / ms
0,1	0,3311	1800
0,5	0,8477	1200
1	0,9658	700
5	0,9684	150
10	0,9286	70
15	0,9687	50
20	0,7922	30

1.2 Abhängigkeit der Photolumineszenz von der Laserwellenlänge

Abbildung 4: Messungen und Ergebnisse zur Probe 1.

- (a) PL-Spektren der Probe 1 mit unterschiedlicher Anregungswellenlänge.
- (b) Darstellung der Fits der Reflexionspeaks.

Abbildung 6: Messungen und Ergebnisse zur Probe 2.

- (a) PL-Spektren der Probe 2 mit unterschiedlicher Anregungswellenlänge.
- (b) Darstellung der Fits der Reflexionspeaks.

1.3 Linearer Polarisationsgrad von Flüssigkeiten (Bonus-Aufgabe)

Polarisationsgrad =
$$\frac{I_{PL,0^{\circ}} - I_{PL,90^{\circ}}}{I_{PL,0^{\circ}} + I_{PL,90^{\circ}}}$$
(4)

$$P_{0^{\circ}} = 0,08204$$

$$P_{90^{\circ}} = 0,03779$$

 ${\bf Abbildung}$ 8: Messungen und Ergebnisse zur Probe3.

- (a) PL-Spektren der Probe 3 mit unterschiedlicher Anregungswellenlänge.
- $\begin{tabular}{ll} \textbf{(b)} & \textbf{Darstellung der Fits der Reflexionspeaks}. \end{tabular}$

Abbildung 10: Die PL-Spektren der Messungen von der Wein-Probe fü verschiedene Polarisationspfade.

Abbildung 12: Vergleich der vier Messung der Wein-Probe.

(b) Messwerte zu den gefitteten Gauß-Kurven.

Anregung	Detektion	Intensitätsmaximum
0°	0°	0,0611
0°	90°	0,0719
90°	0°	0,0581
90°	90°	0,0539

(a) Die gefitteten Gauß-Kurven der vier gemessenen PL-Spektren im Vergleich.

2 Diskussion

2.1 Photolumineszenz-Eigenschaften der kolloidalen Nanokristalle

2.1.1 Größe der Nanokristalle

Die Messung zeigt, dass die experimentell bestimmte Wellenlänge der Proben nicht weit von der angegebenen abweicht und die bestimmten Radien der Nanopartikel liegen wie erwarten im nm-Bereich.

- 2.1.2 Polarisation der Photolumineszenz
- 2.1.3 Leistungsabhängige Peak-Energie
- 2.2 Abhängigkeit der Photolumineszenz von der Laserwellenlänge
- 2.3 Linearer Polarisationsgrad von Flüssigkeiten (Bonus-Aufgabe)