Homework 4

February 6, 2016

1 Question 1

Let $f: G \to \mathbb{C}$ be a continuous function on an open set $G \subset \mathbb{C}$ and let $\gamma: [a,b] \to \mathbb{C}$ be a piecewise smooth curve in G.

(a) Find a counterexample demonstrating that the inequality

$$\left| \int_{\gamma} f(z) dz \right| \le \int_{\gamma} |f(z)| dz$$

no longer makes sense for integrals along a curve γ .

Proof. Let f(z) = z and γ be a straight line from $0 \to 1 + i$. Then I have that

$$\gamma(t) = (1+i)t, \ t \in [0,1]$$

 $\gamma'(t) = 1+i.$

And then I have that $f(\gamma(t)) = t + it$. Taking the integral I have that,

$$\left| \int_{\gamma} f(z)dz \right| = \left| (i+1) \int_{0}^{1} (t+it)dt \right|$$
$$= |i|$$
$$= 1.$$

Now taking the $|f(\gamma(t))|$ I have that $|f(\gamma(t))| = \sqrt(2)|t|$. Now by this into the right side of the inequality I obtain

$$\begin{split} \int_{\gamma} |f(z)| dz &= \int_{0}^{1} \sqrt{2} |t| (1+i) dt \\ &= \sqrt{(2)} (1+1) \int_{0}^{1} t dt \\ &= \frac{1+i}{\sqrt{2}}. \end{split}$$

2 QUESTION 2

if you calculate the right hand side you are going to get an approximation of 0.707107 + 0.707107i, and therefore,

$$\left| \int_{\gamma} f(z) dz \right| \not \leq \int_{\gamma} |f(z)| dz$$

(b) Show that

$$\left| \int_{\gamma} f(z) \right| \le \int_{\gamma} |f(z)| |dz|$$

where the latter is defined by

$$\int_{\gamma} |f(z)||dz| = \int_{a}^{b} |f(\gamma(t))||\gamma'(t)|dt.$$

Proof. For a complex-valued function g(t) on [a,b], I have

$$\Re \int_a^b g(t)dt = \int_a^b \Re g(t)dt,$$

since $\int_a^b g(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt$ if g(t) = u(t) + iv(t). Then we may use this fact to prove question (b). In Calculus we learned how to prove this inequality for g that are real-valued, but here g is complex-valued. Therefore, for our proof, I shall let $\int_a^b g(t)dt = re^{i\theta}$ for fixed f and f, where f is 0, so that f is f if f is f if f is f if f if f is f if f is f if f is f if f if f is f if f is f if f if f is f if f is f if f is f if f is f if f if f is f if f if f is f if f is f if f is f if f if f is f if f is f if f if f is f if f is f if f is f if f is f if f if f is f if f is f if f if f is f if f is f if f if f is f if f if f if f is f if f if f is f if f is f if f if f if f is f if f if f if f if f is f if f if

$$r = \Re r = \Re \int_a^b e^{-i\theta} g(t) dt = \int_a^b \Re (e^{-i\theta} g(t)) dt.$$

Then,

$$\Re(e^{-i\theta}g(t)) \le |e^{-i\theta}g(t)| = |g(t)|, \quad \text{since } |e^{-i\theta}| = 1.$$

Therefore, $\int_a^b \Re(e^{-i\theta}g(t))dt \leq \int_a^b |g(t)|dt$, so I have that

$$\left| \int_{a}^{b} g(t)dt \right| = r \le \int_{a}^{b} |g(t)|dt.$$

Using this fact and |zz'| = |z||z'|, I have

$$\left| \int_{\gamma} f \right| = \left| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \right| \le \int_{a}^{b} |f(\gamma(t)) \gamma'(t)| dt = \int_{a}^{b} |f(\gamma(t))| |\gamma'(t)| dt.$$

2 Question 2

Deduce from Question 1 that

$$\left| \int_{\gamma} f \right| \le M\ell(y)$$

Where $M \ge 0$ is a real constant such that $|f(z)| \le M$ for all points z on γ and

$$\ell(\gamma) = \int_{a}^{b} |\gamma'(t)| = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

is the length of the curve.

Proof. from Question 1 we have that

$$\left| \int_{\gamma} f \right| = \left| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \right|$$

$$\leq \int_{a}^{b} |f(\gamma(t))| |\gamma'(t)| dt$$

$$= \int_{a}^{b} M |\gamma'(t)| dt$$

$$= M \int_{a}^{b} |\gamma'(t)| dt$$

$$= M \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

$$= M \ell(\gamma).$$

I may pull at the M because it is a $\Re(z)$.

3 Question 3

Let γ be that arc of the circle |z|=2 in the first quadrant (x,y>0). Establish the inequality

$$\left| \int_{\gamma} \frac{dz}{1 + z^2} \right| \le \frac{\pi}{3}$$

without performing the integral explicitly.

Proof. Since I am in quadrant one, the arg θ is $0 \le \theta \le \frac{\pi}{2}$ with r = 2. Therefore I have that,

$$\begin{split} \left| \int_{\gamma} \frac{dz}{1+z^2} \right| &\leq \int_{\gamma} \left| \frac{dz}{1+z^2} \right| \\ & ' \leq \int_{\gamma} \left| \frac{1}{1+z^2} \right| |dz| \\ &\leq \int_{\gamma} \frac{1}{|1+z^2|} 2 \cdot \frac{\pi}{2} \\ &\leq \int_{\gamma} \frac{1}{|1|+|z|^2} \cdot \pi \\ &\leq \frac{\pi}{5} \leq \frac{\pi}{3}. \end{split}$$

4 QUESTION 4

4 Question 4

compute $\int_{\gamma} f(z)dz$ for the following

(a) $f(z) = -y^2 + x^2 - 2ixy$ and γ the straight line from 0 to -1 - i.

- (b) f(z) = (2+z)/z and γ the semi-circle $z = \exp(i\theta)$, $0 \le \theta \le \pi$.
- (c) f(z)=1/z and γ any path in the right half plane $\Re(z)\geq 0$ beginning at -i, ending at i avoiding the orgin.

Proof. For part (a), I have that the complex function is defined as $f(z) = -y^2 + x^2 - 2ixy$, and that γ is a straight line ranging from $0 \to -1 - i$. I would encourage our readers to draw this on the number line and indicate what this line looks like. Now, I have the function γ with respect to t defined as,

$$\gamma(t) = 0 + (\text{difference of starting point to ending point})t$$

$$= 0 + (-1 - i - 0)t$$

$$= 0 + (-1 - i)t \quad t \in [0, 1].$$

Let's now check that $0 \le t \le 1$ is our correct bounds,

$$\gamma(0) = (-1 - i)(0) = 0$$
 and $\gamma(1) = (-1 - i)(1) = (-1 - i)$.

Therefore, these bounds check out because we have remained in our function $\gamma(t)$. Now I may plug $f(\gamma(t))$ and $\gamma'(t)$ to obtain my function with respect to dt.

$$f(\gamma(t)) = -(-t)^2 + (-t)^2 - 2i(-t)(-t) = -t^2 + t^2 - 2it^2 = -2it^2,$$
$$\gamma'(t)) = -1 - i.$$

And therefore I have that

$$\int_{\gamma} f(z)dz = \int_{0}^{1} -2it^{2}(-1-i)dt$$

$$= -2i(-1-i)\int_{0}^{1} t^{2}dt$$

$$= -\frac{2i(-1-i)}{3}t^{2}\Big|_{0}^{1}$$

$$= -\frac{2}{3} + \frac{2}{3}i$$

Proof. For part (b), I have that the complex function is defined as f(z)=(2+z)/z, and that γ is the semi-circle ranging from $0\to\pi$. Now, I have the function γ with respect to t defined as

$$\gamma(t)=1\cdot e^{it} \quad t\in [0,\pi].$$

Now I may plug $f(\gamma(t))$ and $\gamma'(t)$ to obtain my function with respect to dt.

$$f(\gamma(t)) = \frac{2 + e^{it}}{e^{it}},$$

 $\gamma'(t) = ie^{it}.$

And therefore I have that

$$\int_{\gamma} f(z)dz = \int_{0}^{\pi} \frac{2 + e^{it}}{e^{it}} i e^{it} dt$$

$$= \int_{0}^{\pi} (2i + i e^{it}) dt$$

$$= \int_{0}^{\pi} 2i dt + \int_{0}^{\pi} i e^{it} dt$$

$$= 2it \Big|_{0}^{\pi} + \frac{i}{i} e^{it} \Big|_{0}^{\pi}$$

$$= -2 + 2\pi i.$$

Proof. For part (c), I have that the complex function is defined as f(z)=1/z. Let's choose γ to be a semi-circle ranging from $-\pi/2\to\pi/2$. I have the function γ with respect to t and its derivative defined as

$$\gamma(t) = 1 \cdot e^{it}$$
 $t \in [-\pi/2, \pi/2].$

Now I may plug $f(\gamma(t))$ and $\gamma'(t)$ to obtain my function with respect to dt.

$$\int_{\gamma} \frac{1}{z} dz = i \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{e^{it}} e^{it} dt$$

$$= i \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dt$$

$$= it \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \pi i.$$

5 Question 5

Let f, g be a continuous functions, c_1 , c_2 complex constants and γ , γ_1 , γ_2 piecewise smooth curves. Show that

(a)
$$\int_{\gamma} (c_1 f + c_2 g) = c_1 \int_{\gamma} f + c_2 \int_{\gamma} g$$

5 QUESTION 5

(b)
$$\int_{-\gamma} f = -\int_{\gamma} f$$

(c)
$$\int_{\gamma_1 + \gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f,$$

where $\gamma_1 + \gamma_2$ denotes concatenation of curves.

Proof. for (a) I want to show that,

$$\int_{\gamma} (c_1 f + c_2 g) = c_1 \int_{\gamma} f + c_2 \int_{\gamma} g.$$

Since f, g are piecewise continuous on γ ; that is, the real and imaginary parts

$$u[x(t), y(t)]$$
 and $v[x(t), y(t)]$

of f[z(t)], g[(z(t))] are piecewise continuous functions of t. I may define the linear integral of f, g along γ as

$$\int_{\gamma} (c_1 f(z) + c_2 g(z)) dz = \int_a^b \left[c_1 f[z(t)] z'(t) + c_2 g[z(t)] z'(t) \right] dt
= \int_a^b c_1 f[z(t)] z'(t) dt + \int_a^b c_2 g[z(t)] z'(t) dt
= c_1 \int_a^b f[z(t)] z'(t) dt + c_2 \int_a^b g[z(t)] z'(t) dt
= c_1 \int_{\gamma} f(z) dz + c_2 \int_{\gamma} g(z) dz.$$

Proof. for (b) I want to show that,

$$\int_{-\infty} f = -\int_{\infty} f.$$

Since f is piecewise continuous on γ ; that is, the real and imaginary parts

$$u[x(t), y(t)]$$
 and $v[x(t), y(t)]$

of f[z(t)] is a piecewise continuous functions of t. I may define the linear integral of f along γ as

$$\int_{-\gamma} f(z)dz = \int_{-h}^{-a} f[z(-t)][-z'(-t)]dt,$$

and by changing the variable from u = -t and rearranging the limits of a, b according to u I have that,

$$-\int_h^a f[z(u)][-z'(u)]du.$$

Therefore,

$$\int_{-\gamma} f(z)dz = \int_{-b}^{-a} f[z(-t)][-z'(-t)]dt$$

$$= -\int_{b}^{a} f[z(u)][-z'(u)]du$$

$$= -\int_{a}^{b} f[z(u)[z'(u)]dz$$

$$= -\int_{\gamma} f(z)dz.$$

Proof. for (c) I want to show that,

$$\int_{\gamma_1 + \gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f.$$

Since f is piecewise continuous on γ ; that is, the real and imaginary parts

$$u[x(t), y(t)]$$
 and $v[x(t), y(t)]$

of f[z(t)] is piecewise continuous functions of t. If γ consists of a contour γ_1 from a_1 to b_1 and a contour γ_2 from a_2 to b_2 then it must be that $b_1=a_2$ and therefore,

$$\begin{split} \int_{\gamma_1 + \gamma_2} f(z) dz &= \int_{a_1 + a_2}^{b_1 + b_2} f[z(t)] z'(t) dt \\ &= \int_{a_1}^{b_1} f[z(t)] f'(z) dt + \int_{a_2 = b_1}^{b_2} f[z(t)] z'(t) dt \\ &= \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz. \end{split}$$