8.7

Chapter Review

Section 8.1

Determine the smallest positive coterminal angle for the given angle. 1.

a)
$$-20^{\circ}$$

b)
$$-100^{\circ}$$

d)
$$-280^{\circ}$$

2. Find the reference angle for the following.

g)
$$-204^{\circ}$$

i)
$$-835^{\circ}$$

Find all angles, $0^{\circ} \le \theta < 360^{\circ}$, that have the given reference angle. 3.

Section 8.2

- **4.** Given a point on the terminal side of angle θ . Evaluate the three trigonometric functions of θ .
 - a) (3,7)

b) $(-1, 2\sqrt{2})$

c) $(-2\sqrt{3},2)$

d) $(-\sqrt{17}, -2\sqrt{2})$

e) $(2\sqrt{5}, -\sqrt{5})$

- f) $(-3\sqrt{2},\sqrt{7})$
- 5. Given a linear equation of the terminal side of angle θ , with a restriction, find the value of the three trigonometric functions of θ .
 - **a)** $y = \frac{2}{3}x, \ x \ge 0$

b) $y = \frac{2}{3}x, \ x \le 0$

c) $y = -\frac{1}{4}x, \ x \ge 0$

d) $y = -\frac{1}{4}x, \ x \le 0$

e) $y = \frac{5}{3}x, \ x \le 0$

- **f)** $y = -\frac{5}{3}x, \ x \ge 0$
- 6. Given one of the three primary trigonometric functions, find the other two trigonometric functions of θ .
 - a) $\sin \theta = \frac{2}{\sqrt{5}}$, θ in quadrant I

- **b)** $\tan \theta = -\frac{2}{\sqrt{21}}$, θ in quadrant II
- c) $\cos \theta = -0.416$, θ in quadrant III
- d) $\sin \theta = -0.421$, θ in quadrant IV

- e) $\cos \theta = -\frac{1}{3}$, θ in quadrant II
- f) $\tan \theta = 1.372$, θ in quadrant III

Section 8.3

7. Find all θ , $0^{\circ} \le \theta < 360^{\circ}$, which satisfy each equation.

$$\mathbf{a)} \quad \sin \theta = \frac{\sqrt{2}}{2}$$

b)
$$\cos \theta = -\frac{\sqrt{3}}{2}$$

c)
$$\tan \theta = \frac{\sqrt{3}}{3}$$

d)
$$\sin \theta = 0$$

e)
$$\cos \theta = 0.7071$$

$$\mathbf{f)} \quad \tan \theta = -1.732$$

$$\mathbf{g)} \quad \sin \theta = -\frac{1}{\sqrt{2}}$$

$$\mathbf{h)} \quad \cos \theta = -\frac{1}{2}$$

i)
$$\tan \theta = \text{undefined}$$

j)
$$\tan \theta = -1$$

Section 8.4

8. Solve $\triangle ABC$ by using right triangles, not by using the Law of Sines or Cosines.

a)
$$\angle A = 40^{\circ}, \ \angle B = 60^{\circ}, \ b = 8$$

b)
$$a = 4$$
, $b = 5$, $c = 6$

c)
$$\angle C = 47^{\circ}, \ a = 8, \ b = 5$$

d)
$$\angle B = 110^{\circ}, \ \angle C = 32^{\circ}, \ a = 5$$

Sections 8.5, 8.6

- Solve $\triangle ABC$ using the Law of Sines or Law of Cosines to begin the solution.
 - a) $\angle B = 104^{\circ}$, a = 17, c = 11
- **b)** $\angle A = 40^{\circ}, \ \angle B = 40^{\circ}, \ c = 2$

c)
$$a = 4$$
, $b = 3$, $c = 6$

$$A = 4$$

$$A = 4$$

$$A = 4$$

$$C = 6$$

$$A = 4$$

$$A = 60^{\circ}, a = 4, b = 5$$

e)
$$\angle A = 50^{\circ}$$
, $a = 3$, $b = 2^{\angle C} = (1.7.3^{\circ})$

f)
$$\angle A = 60^{\circ}, a = 4, b = 5$$

g)
$$\angle B = 20^{\circ}, b = 4, c = 6$$

h)
$$\angle C = 60^{\circ}, \ a = 2\sqrt{6}, \ c = 3\sqrt{2}$$

- 10. In $\triangle ABC$, b < a < c. What does this imply about angles A, B, and C?
- 11. Given $\triangle ABC$, with angle θ between sides b and c, find θ if $a^2 = b^2 + c^2 + bc$.