Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Wechselstromwiderstände Protokoll

Praktikant: Michael Lohmann

Felix Kurtz

E-Mail: m.lohmann@stud.uni-goettingen.de

felix.kurtz@stud.uni-goettingen.de

Betreuer: Björn Klaas Versuchsdatum: 08.09.2014

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie	3
3	Durchführung	3
4	Auswertung4.1 Widerstand und Spule in Reihe4.2 RLC-Serienschaltung4.3 Parallelkreis	
5	Diskussion	5

1 Einleitung

2 Theorie

3 Durchführung

4 Auswertung

4.1 Widerstand und Spule in Reihe

Abbildung 1: Quadrat der Impedanz als Funktion der Kreisfrequenz

$$L = (386 \pm 0.6) \,\text{mH} \tag{1}$$

$$R_{\rm ges} = (77.3 \pm 1.1) \,\Omega$$
 (2)

4.2 RLC-Serienschaltung

$$R = (80.9 \pm 0.5)\,\Omega\tag{3}$$

$$L = (386.053 \pm 1.0) \,\mathrm{mH} \tag{4}$$

$$C = (1.799 \pm 0.005) \,\mu\text{F} \tag{5}$$

Abbildung 2: Impedanz des Serienresonanzkreis als Funktion der Kreisfrequenz

Abbildung 3: Phasenverschiebung des Serienresonanzkreises

Abbildung 4: Teilspannungen des Serienresonanzkreises

4.3 Parallelkreis

5 Diskussion

Abbildung 5: Impedanz des Parallelkreises als Funktion der Kreisfrequenz