- 1. (000056) 设 $\log_{0.2} a > 0$, $\log_{0.2} b > 0$, 且 $\log_{0.2} a \cdot \log_{0.2} b = 1$, 求 $\log_{0.2}(ab)$ 的最小值.
- 2. (000067) 设常数 a > 0 且 $a \neq 1$, 若函数 $y = \log_a(x+1)$ 在区间 [0,1] 上的最大值为 1, 最小值为 0, 求实数 a 的 值.
- 3. (000082) 已知 k 是常数, 设 α 、 β 是二次方程 $x^2 2kx + k + 20 = 0$ 的两个实根. 问: 当 k 为何值时, $(\alpha + 1)^2 + (\beta + 1)^2$ 取到最小值?
- 4. (000087) 已知函数 $y = -x^2 + 2ax + 1 a$, $x \in [0,1]$ 的最大值为 2. 求实数 a 的值.
- 5. (000090) 已知 $f(x) = 2 x^2$ 及 g(x) = x. 定义 h(x) 如下: 当 $f(x) \ge g(x)$ 时, h(x) = g(x); 而当 f(x) < g(x)时, h(x) = f(x). 求函数 y = h(x) 的最大值.
- 6. (000344) 定义在 R 上的偶函数 y = f(x), 当 $x \ge 0$ 时, $f(x) = \lg(x^2 3x + 3)$, 则 f(x) 在 R 上的零点个数 为_____个.
- 7. (000555) 已知函数 f(x) = x|2x a| 1 有三个零点, 则实数 a 的取值范围为_____.
- 8. $_{(000565)}$ 已知函数 $f(x)=\begin{cases} \log_2(x+a), & x\leq 0, \\ x^2-3ax+a, & x>0 \end{cases}$ 有三个不同的零点,则实数 a 的取值范围是_____.
 9. $_{(000604)}$ 已知函数 $f(x)=\begin{cases} \log_2 x, & 0< x< 2, \\ (\frac{2}{3})^x+\frac{5}{9}, & x\geq 2. \end{cases}$ 若函数 g(x)=f(x)-k 有两个不同的零点,则实数 k 的取 值范围是
- 10. (000622) 若函数 $f(x) = 2^x(x+a) 1$ 在区间 [0,1] 上有零点, 则实数 a 的取值范围是______.
- 11. (0000655) 若将函数 $f(x)=|\sin(\omega x-\frac{\pi}{8})|$ $(\omega>0)$ 的图像向左平移 $\frac{\pi}{12}$ 个单位后,所得图像对应的函数为偶函 数, 则 ω 的最小值是_
- 12. (000665) 若适合不等式 $|x^2-4x+k|+|x-3|\leq 5$ 的 x 的最大值为 3, 则实数 k 的值为______.
- 13. (000769) 函数 $y = x + \frac{9}{x}, x \in (0, +\infty)$ 的最小值是______.
- 14. (000808) 若函数 $f(x) = \sqrt{2x+3}$ 的反函数为 g(x), 则函数 g(x) 的零点为______.
- 15. (000826) 函数 $y = \lg x 1$ 的零点是_
- 16. (000884) 函数 $y = \sqrt{x^2 + 2} + \frac{1}{\sqrt{x^2 + 2}}$ 的最小值为_____.
- 17. (000926) 已知函数 $f(x) = \begin{cases} 2^x + a, & x \geq 0, \\ x^2 ax, & x < 0. \end{cases}$ 若 f(x) 的最小值是 a, 则 a =______.

- 最小值点为____; (2) 函数 $y = 2x^2 - 8x$, $x \in [-1, 4]$ 的最大值为_______, 最小值为______, 最大值点为_______, 最 小值点为_____; (3) 函数 $y = 6x - x^2$, $x \in [-3,0]$ 的最大值为______, 最小值为______, 最大值点为______, 最 (4) 函数 $y = 2x^2 - 4x + 5$, $x \in [2,4]$ 的最大值为______, 最小值为_____, 最大值点为____ 最小值点为 (3) 函数 $y = \frac{x-5}{3x+2}$, $x \in [0,3]$ 的最大值为______, 最小值为______, 最大值点为______, 最小 值点为_____; (4) 函数 $y = x^2 + \frac{16}{x}$, $x \in [1, 4]$ 的最大值为______, 最小值为______, 最大值点为______, 最小 值点为_____ 20. (001228) 函数 $y = \max\{|x-4|, |2x-3|\}$ 的最小值为_____. 21. (1001229) 某植物园要建形状为直角梯形的苗圃, 其中的两邻边用夹角为 135°的两面墙, 另两边总长为 30 米. 以 其与两底垂直的腰长 x(单位: 米) 为自变量建立面积 S(单位: 平方米) 与 x 的函数关系, 并求苗圃面积的最 大值.
- 22. (001230) 设 x, y 是关于 m 的方程 $m^2 2am + a + 6 = 0$ 的两个实根, 求点 (x, y) 到点 (1, 1) 的距离的最小值.
- 23. (001231) 已知函数 $y=\frac{1}{2}x^2-x+\frac{3}{2}$ 的定义域为 [1,b], 最大值为 b, 最小值为 1. 求 b.
- 24. (001232) 已知函数 $f(x) = \frac{x^2 + 2x + a}{x}, \ x \in [1, +\infty).$
 - (1) 当 a=4 时, 求函数的最小值;
 - (2) 如果对一切定义域中的 x, f(x) 均为正数, 求实数 a 的取值范围.
- 25. (001233) 求下列函数零点的集合, 并说明理由.
 - (1) 函数 $f(x) = x^3 + 3x + 1, x \in \mathbf{Z}$:
 - (2) 函数 $f(x) = x^3 3x + 1, x \in \mathbf{Z}$.
- 26. (001234) 求函数 $y = x^3 + x + 1$ 的所有零点 (精确到 0.01, 需要给出理由, 包括为什么零点取该 (这些) 近似值 以及为什么没有其他零点).
- 27. (001235) 求函数 y=4(x-1)(x-2)(x-3)+1 的所有零点 (精确到 0.01, 需要给出理由, 包括为什么零点取该 (这些) 近似值以及为什么没有其他零点).

- 28. (001236) 函数 $f(x) = 2x^3 3x^2 18x + 28$ 在区间 (1,2) 内的零点为_____.(精确到 0.1) 试给出理由, 包括为什么零点取该 (这些) 近似值以及为什么没有其他零点.
- 29. $_{(001269)}(1)$ 求函数 $f(x)=rac{3+2x}{3-2x},\;x\in[-1,1]$ 的最大值和最小值;
 - (2) 已知 a > b > 0, 求函数 $f(x) = \frac{a + bx}{a bx}$, $x \in [-1, 1]$ 的最大值和最小值.
- 30. (001276) 已知 a 是实数, 函数 $y = -x^2 + 2ax + 1 a$, $x \in [0,1]$ 的最大值为 2. 求 a.
- 31. (001277) 已知 a, b 是实数, 函数 $y = ax^2 2ax + 2 + b$ 在 [2,3] 上的最大值和最小值分别为 5 和 2, 求 a, b.
- 32. (001282) 若函数 f(x) = 3ax 2a + 1 在 [-1,1] 上存在一个零点, 则实数 a 的取值范围为______.
- 33. (001323) 已知 $f(x) = -9^x 6a \cdot 3^x + (2a a^2)$ 在 [1,2] 上的最大值为 -3, 求实数 a.
- 34. (002839) 设常数 $p \in \mathbf{R}$, 设函数 $f(x) = \log_2 \frac{x+1}{x-1} + \log_2(x-1) + \log_2(p-x)$.
 - (1) 求 p 的取值范围以及函数 y = f(x) 的定义域;
 - (2) 若 y = f(x) 存在最大值, 求 p 的取值范围, 并求出最大值.
- 35. (002849) 若定义在 R 上的两个函数 y = f(x)、y = g(x) 均为奇函数. 设 F(x) = af(x) + bg(x) + 1.
 - (1) 若 F(-2) = 10, 则 $F(2) = ______;$
 - (2) 若函数 y = F(x) 在 $(0, +\infty)$ 上存在最大值 4, 则 y = F(x) 在 $(-\infty, 0)$ 上的最小值为_____.
- 36. (002872) 设函数 y = f(x) 为 R 上的奇函数, 且对于任意 $x \in \mathbb{R}$ 都有 f(x+2) = -f(x).
 - (1) 求证: 函数 y = f(x) 为周期函数;
 - (2) 对于任意 $x \in \mathbf{R}$, 求证: f(1+x) = f(1-x);
 - (3) 设 $0 \le x \le 1$ 时, $f(x) = \frac{1}{2}x$. 求函数 $y = f(x) + \frac{1}{2}$ 在 $-4 \le x \le 4$ 时的所有零点;
 - (4) 设 $-1 \le x \le 1$ 时, $f(x) = \sin x$.
 - ① 写出 $1 \le x \le 5$ 时, y = f(x) 的解析式;
 - ② 求 y = f(x) 在 R 上的解析式.
- 37. (002879) 已知定义域为 R 的函数 y = f(x) 是偶函数, 并且其图像关于直线 x = 1 对称.
 - (1) 若 f(0) = 1, f(1) = 2, 求 f(15) + 2f(20) 的值;
 - (2) $\mathfrak{P}_{x} x \in [0,1]$ $\mathfrak{P}_{x} f(x) = x^{3}$.
 - ① $1 < x \le 2$ 时, 求 y = f(x) 的解析式;
 - ② $-2 \le x < 0$ 时, 求 y = f(x) 的解析式;
 - ③ 求函数 $y = f(x) \frac{1}{8}$ 在 [-2, 2] 上的所有零点;
 - ④ 求 y = f(x) 在 R 上的解析式.
- 38. (002882) 已知定义在 R 上的函数 y = f(x) 是奇函数, 且 y = f(x) 也是以 4 为周期的一个周期函数.
 - (1) <math><math>f(1) = 1, <math><math>f(-1) + f(0) = ____; f(10) + f(11) = ____;
 - (2)* 若 f(1) = 0,则在区间 [-3,3] 上的零点的个数的最小值为______.

- 39. (002912) 函数 y = f(x) 满足两个条件: ① y = f(x) 是两个幂函数的和函数; ② y = f(x) 的最小值为 2, 则 y = f(x) 的解析式可以是______.
- 40. (002948) 设 a > 0, 函数 $f(x) = \frac{1}{1 + a \cdot 2^x}$.
 - (1) 若 a = 1, 求 f(x) 的反函数 $f^{-1}(x)$;
 - (2) 求函数 $y = f(x) \cdot f(-x)$ 的最大值 (用 a 表示);
 - (3)* 设 g(x) = f(x) f(x-1). 若对任意 $x \in (-\infty, 0], g(x) \ge g(0)$ 恒成立, 求 a 的取值范围.
- 41. (002955) 设常数 $a>0,\ a\neq 1$. 函数 $f(x)=a^x$ 在 [0,1] 上的最大值和最小值之和为 $a^2,\ 则\ a=$ ______.
- 42. (002959) 已知函数 $y=(\log_2\frac{x}{2^a})(\log_2\frac{x}{4}),\,x\in[\sqrt{2},4],$ 试求该函数的最大值 g(a).
- 43. $(002966)^*$ 已知常数 a>1, 函数 $y=|\log_a x|$ 的定义域为区间 [m,n], 值域为区间 [0,1]. 若 n-m 的最小值为 $\frac{5}{6}$, 则 a=______.
- 44. (002975) 设常数 $a \in \mathbb{R}$. 若函数 $y = -x^2 + 2ax(0 \le x \le 1)$ 的最小值用 g(a) 表示, 则 g(a) =_____.
- 45. (002976) 设常数 m>0. 若二次函数 $f(x)=x^2-2x$ 在区间 [0,m] 上的最大值为 0、最小值为 -1,则 m 的取值范围为______.
- 47. (002978) 已知 $g(x) = -x^2 3$, y = f(x) 是二次函数, 且 y = f(x) + g(x) 为正比例函数.
 - (1) 若 $0 \le x \le 1$ 时, y = f(x) 的最大值为 6, 则 y = f(x) 的表达式是______;
 - (2) 若 $0 \le x \le 1$ 时, y = f(x) 的最小值为 $2\sqrt{2}$, 则 y = f(x) 的表达式是_____.
- 48. (002980) 已知函数 $y = x + \frac{a}{x}$ 有如下性质: 如果常数 a > 0, 那么该函数在 $(0, \sqrt{a}]$ 上是减函数, 在 $[\sqrt{a}, +\infty)$ 上是增函数.
 - (1) 设常数 $c\in[1,+\infty)$, 求函数 $f(x)=x+\frac{c}{x}$ $(1\leq x\leq 2)$ 的最大值和最小值;
 - (2) * 设常数 c>0. 当 n 是正整数时, 研究函数 $g(x)=x^n+rac{c}{x^n}$ 的单调性, 并说明理由.
- 49. (002983) 设 x < 1, 则 $\frac{2x^2 2x + 1}{x 1}$ 的最大值为______
- 50. (002984) 函数 y = (x-3)(x-1)(x+1)(x+3) 的最小值为_____.
- 51. (002986) 设常数 $m \in \mathbf{R}$. 若函数 $f(x) = x^2 (m-2)x + m 4$ 的图像与 x 轴交于 A, B 两点, 且 |AB| = 2, 则函数 y = f(x) 的最小值为_____.
- 52. (002989) 设常数 $a \in \mathbf{R}$. 已知函数 $f(x) = x^2 2ax + 1(1 \le x \le 3)$ 存在反函数. 若函数 y = f(x) 的最大值为 4, 求实数 a 的值.
- 53. (002991) 设常数 $a \in \mathbb{R}$, 并将函数 $f(x) = 1 2a 2a\cos x 2\sin^2 x$ 的最小值记为 g(a).
 - (1) 写出 g(a) 的表达式;

- (2) 是否存在 a 的值, 使得 $g(a)=\frac{1}{2}?$ 若存在, 求出 a 的值以及此时函数 y=f(x) 的最大值; 若不存在, 说明 理由.
- 54. (002992) 函数 $y = \frac{1}{r^2 2r + 3}$ 的最大值是_____.
- 55. (002996)(1) 函数 $y = x^2 + \frac{8}{x^2 + 1}$ ($1 \le x \le 7$) 的最小值是______, 此时 x =_______;

 - (2) 函数 $y = \frac{3x}{x^2 + 4}$ 的值域是______; (3) 函数 $y = x + \frac{m}{x + 3}$, $x \in [0, +\infty)$ 的最小值为______;
 - (4) 设常数 $m \in \mathbf{R}$. 若函数 $y = \frac{mx}{r^2 + 1}$ 的最大值为 1, 则 m 的值为______.
- 56. (002997)(1) 函数 $y = x \sqrt{1-2x}$ 的最大值为______, 此时 x = ______;
 - (2) 函数 $y = 2x + \sqrt{1 2x}$ 的值域是______.
- 57. (003007) 设 $x,y \in \mathbf{R}$, 且 2x + 3y = 1. 若 $x^2 + y^2 \ge t$ 恒成立, 则实数 t 的最大值是
- 58. (003008) 设 $x, y \in [0, +\infty)$, 2x + y = 6, 求 $z = 5x^2 y^2 2x + 13y + 35$ 的最值.
- 59. (003011) 记 $\max\{a_1, a_2, \dots, a_n\}$ 为 a_1, \dots, a_n 中的最大值. 已知 $f(x) = \max\{x, x^2\} (-1 \le x \le 3)$.
 - (1) 求函数 y = f(x) 的值域;
 - (2) 设 PAB 三点的坐标分别为 (x, f(x)), (0, -1), (2, 0), 且 PAB 三点可以构成三角形, 求 $\triangle PAB$ 的面积的 取值范围.
- 60. (003013) 函数 f(x) = 3ax 2a + 1 在 [-1,1] 上存在一个零点, 则实数 a 的取值范围是______.
- 61. (003023) 设常数 $m \in \mathbf{R}$. 已知函数 $f(x) = x^2 + mx + 2$.
 - (1) 若函数 y = f(x) 在区间 (0,2) 上有且仅有一个零点, 求 m 的取值范围;
 - (2) 在区间 [0,2] 上, 函数 y=f(x) 是否存在两个不同的零点?若存在, 求出 m 的取值范围, 若不存在, 说明 理由.
- 62. (003032) 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = 4^x a \cdot 2^x + a + 3$.
 - (1) 若函数 y = f(x) 有且仅有一个零点, 求 a 的取值范围;
 - (2) 若函数 y = f(x) 有零点, 求 a 的取值范围
- 63. (003033) 设常数 $m \in \mathbf{R}$. 已知 $f(x) = x^2 + (m-1)x m^2 + 1$.
 - (1) 若函数 y = f(x) 在区间 $(0, +\infty)$ 内有两个不同的零点, 求 m 的取值范围;
 - (2) 若函数 y = f(x) 在区间 $(0, +\infty)$ 内有零点, 求 m 的取值范围;
 - (3) 若函数 y = f(x) 在区间 (0,3) 内有零点, 求 m 的取值范围.
- 64. (003628) 在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该路 段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为 $v=rac{q}{x},\ x$ 为道路密度, q 为车辆密度,

$$v = f(x) = \begin{cases} 100 - 135(\frac{1}{3})^{\frac{80}{x}}, & 0 < x < 40, \\ -k(x - 40) + 85, & 40 \le x \le 80, \end{cases} k > 0.$$

(1) 若交通流量 $v > 95$, 求道路密度	\dot{x}	的取值范围:
----------------------------	-----------	--------

- (2) 若道路密度 x = 80 时, 测得交通流量 v = 50, 求车辆密度 q 的最大值.
- 65. (003648) 已知 $f(x) = ax + \frac{1}{x+1}, a \in \mathbf{R}.$
 - (1) 已知 a = 1 时, 求不等式 f(x) + 1 < f(x+1) 的解集;
 - (2) 若 f(x) 在 $x \in [1, 2]$ 时有零点, 求 a 的取值范围.
- 66. (003693) 设定义在 R 上的函数 f(x) 满足: 对于任意的 $x_1, x_2 \in \mathbb{R}$, 当 $x_1 < x_2$ 时, 都有 $f(x_1) \leq f(x_2)$.
 - (1) 若 $f(x) = ax^3 + 1$, 求 a 的取值范围;
 - (2) 若 f(x) 是周期函数, 证明: f(x) 是常值函数;
 - (3) 设 f(x) 恒大于零. g(x) 是定义在 R 上的、恒大于零的周期函数, M 是 g(x) 的最大值. 函数 h(x) = f(x)g(x). 证明: "h(x) 是周期函数" 的充要条件是"f(x) 是常值函数".
- 67. (003694) 已知函数 $f(x) = \log_a x + x b(a > 0$ 且 $a \neq 1$). 当 2 < a < 3 < b < 4 时, 函数 f(x) 的零点 $x_0 \in (n, n+1), \ n \in \mathbf{N}^*, \ \parallel \ n = \underline{\hspace{1cm}}$.
- 68. (003697) 函数 $f(x) = \sin x$,对于 $x_1 < x_2 < x_3 < \dots < x_n$ 且 $x_1, x_2, \dots, x_n \in [0, 8\pi]$ $(n \ge 10, n \in \mathbb{N})$,记 $M = |f(x_1) f(x_2)| + |f(x_2) f(x_3)| + |f(x_3) f(x_4)| + \dots + |f(x_{n-1}) f(x_n)|$,则 M 的最大值等于
- 69. (003716) 若函数 $f(x) = ax^2 + bx + c \ (a > 0)$, 不等式 $ax^2 + bx + c < 0$ 的解集为 $\{x | -2 < x < 0\}$, 当 0 < n < m 时, f(n), f(m), $f(\sqrt{mn})$, $f\left(\frac{m+n}{2}\right)$ 这四个值中最大的一个是______.
- 70. (003754) 定义区间 (c,d),(c,d],[c,d),[c,d] 的长度均为 d-c (d>c). 若 $a\neq 0$, 关于 x 的不等式 $x^2-\left(2a+\frac{1}{a}\right)x-1<0$ 的非空解集 (用区间表示) 记为 I(a), 则当区间 I(a) 的长度取得最小值时, 实数 a 的值为
- 71. (003770) 函数 $f(x) = 2^x + x^3 2$ 在区间 (0,1) 内的零点的个数是_____.
 - A. 0 B. 1 C. 2 D. 3
- 72. (003778) 已知函数 $f(x) = 4^x k \cdot 2^{x+1} + 4$ 在 [0,2] 上存在零点,则实数 $k \in$ ______.
- 73. (003881) 要使 $y = x^2 + 4x$ ($x \ge a$) 有反函数, 则 a 的最小值为_____
- 74. $_{(003892)}$ 已知函数 f(x) 是定义在 $(-\infty,0)\cup(0,+\infty)$ 上的偶函数,当 x>0 时, $f(x)=\begin{cases} 2^{|x-1|}-1, & 0< x\leq 2, \\ \frac{1}{2}f(x-2), & x>2, \end{cases}$

则函数 g(x) = 4f(x) - 1 的零点的个数为_____.

- A. 4 B. 6 C. 8 D. 10
- 75. (003921) 已知函数 $f(x) = \frac{x}{1+|x|} \; (x \in \mathbf{R})$ 时,则下列结论不正确的是_____.

- A. 任意 $x \in \mathbb{R}$, 等式 f(-x) + f(x) = 0 恒成立
- B. 存在 $m \in (0,1)$, 使得方程 |f(x)| = m 有两个不等实数根
- C. 对任意 $x_1, x_2 \in \mathbf{R}$, 若 $x_1 \neq x_2$, 则一定有 $f(x_1) \neq f(x_2)$
- D. 存在 $k \in (1, +\infty)$, 使得函数 g(x) = f(x) kx 在 R 上三个零点
- 76. (004002) 从桥上将一小球掷向空中, 小球相对于地面的高度 h(单位: m) 和时间 t(单位: s) 近似满足函数关系 $h = -5t^2 + 15t + 12$. 问:
 - (1) 小球的初始高度是多少?
 - (2) 小球在 t=0 到 t=1 这段时间内的平均速度是多少?
 - (3) 小球在 t=1 时的瞬时速度是多少?
 - (4) 小球所能达到的最大高度是多少? 何时达到?
- 77. (004006) 借助求导数的结果, 求下列函数 y = f(x) 在给定区间上的最大值和最小值, 其中:
 - (1) $f(x) = \frac{2}{3}x 1$, $x \in [0, 3]$;
 - (2) $f(x) = 2 + x x^2, x \in [-1, 1];$
 - (3) $f(x) = x^3 + x^2 8x + 7$, $x \in [-3, 3]$.
- 79. $_{(004012)}$ 已知某厂生产一种产品的总成本 C(单位: 万元) 与产品件数 x 满足函数关系 $C=1200+\frac{2}{75}x^3$,产品单价 P(单位: 万元) 和产品件数 x 满足函数关系 $P^2=\frac{250000}{x}$. 问: 产量为多少件时, 总利润最大?
- 80. (004079) 已知函数 $f(x) = \log_2 x$.
 - (1) 若 f(x) 的反函数是 $f^{-1}(x)$, 解方程: $f^{-1}(2x+1) = 3f^{-1}(x) 1$;
 - (2) 当 $x \in (3m, 3m + 3](m \in \mathbb{N})$ 时, 定义 g(x) = f(x 3m). 设 $a_n = n \cdot g(n)$, 数列 $\{a_n\}$ 的前 n 项和为 S_n , 求 a_1 、 a_2 、 a_3 、 a_4 和 S_{3n} ;
 - (3) 对于任意 a、b、 $c \in [M, +\infty)$,且 $a \ge b \ge c$. 当 a、b、c 能作为一个三角形的三边长时,f(a)、f(b)、f(c) 也总能作为某个三角形的三边长,试探究 M 的最小值.
- 82. (004090) 在直角 $\triangle ABC$ 中, $\angle A = \frac{\pi}{2}$, AB = 1, AC = 2, M 是 $\triangle ABC$ 内一点, 且 $AM = \frac{1}{2}$, 若 $\overrightarrow{AM} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$, 则 $\lambda + 2\mu$ 的最大值为______.
- 83. (004118) 已知 $f(x) = ax + \frac{x^2}{x^2 + 1}$, a 为实常数.
 - (1) 当 a = 1 时, 求不等式 $f(x) + f(\frac{1}{x}) < x$ 的解集;
 - (2) 若函数 f(x) 在 $(0,+\infty)$ 中有零点, 求 a 的取值范围
- 84. (004149) 若函数 $f(x) = 2^x(x+a) 1$ 在区间 [0,1] 上有零点, 则实数 a 的取值范围是______

- 85. (004175) 已知实数 a、b 使得不等式 $|ax^2 + bx + a| \le x$ 对任意 $x \in [1,2]$ 都成立, 在平面直角坐标系 xOy 中, 点 (a,b) 形成的区域记为 Ω , 若圆 $x^2 + y^2 = r^2$ 上的任一点都在 Ω 中, 则 r 的最大值为______
- 86. $_{(004179)}$ 已知定义在实数集 R 上的函数 f(x) 满足 $f(x+1)=\frac{1}{2}+\sqrt{f(x)-f^2(x)},$ 则 f(0)+f(2021) 的最小值与最大值的和为 ().

A. 2 B. 3 C.
$$\frac{3}{2} + \frac{\sqrt{2}}{2}$$
 D. $\frac{5}{2} + \frac{\sqrt{2}}{2}$

- 87. (004184) 设 m 为给定的实常数, 若函数 y = f(x) 在其定义域内存在实数 x_0 , 使得 $f(x_0 + m) = f(x_0) + f(m)$ 成立, 则称函数 f(x) 为 "G(m) 函数".
 - (1) 若函数 $f(x) = 2^x$ 为 "G(2) 函数", 求实数 x_0 的值;
 - (2) 若函数 $f(x) = \lg \frac{a}{x^2 + 1}$ 为 "G(1) 函数", 求实数 a 的取值范围;
 - (3) 已知 $f(x) = x + b(b \in \mathbf{R})$ 为 "G(0) 函数", 设 g(x) = x|x 4|. 若对任意的 $x_1, x_2 \in [0, t]$, 当 $x_1 \neq x_2$ 时, 都有 $\frac{g(x_1) g(x_2)}{f(x_1) f(x_2)} > 2$ 成立, 求实数 t 的最大值.
- 88. (004203) 已知函数 $f(x) = ax + \log_2(2^x + 1)$, 其中 $a \in \mathbb{R}$.
 - (1) 根据 a 的不同取值, 讨论 f(x) 的奇偶性, 并说明理由;
 - (2) 已知 a>0, 函数 f(x) 的反函数为 $f^{-1}(x)$, 若函数 $y=f(x)+f^{-1}(x)$ 在区间 [1,2] 上的最小值为 $1+\log_2 3$, 求函数 f(x) 在区间 [1,2] 上的最大值.
- 89. (004217) 已知函数 f(x) 满足: ① 对任意 $x \in (0, +\infty)$ 恒有 f(2x) = 2f(x) 成立; ② $x \in (1, 2]$ 时, f(x) = 2 x; 若 f(a) = f(2020), 则满足条件的最小的正实数 a 是______.
- 90. $_{(004235)}$ 在 $\triangle ABC$ 中,角 A、B、C 所对的边分别为 a、b、c, 如果对任意的实数 λ , $|\overrightarrow{BA}-\lambda \overrightarrow{BC}| \geq |\overrightarrow{BC}|$ 恒成立,则 $\frac{c}{b}+\frac{b}{c}$ 的最大值是______.
- 91. (004247) 设函数 f(x) 在 [1,+∞) 上有定义, 实数 a 和 b 满足 1 ≤ a < b, 若 f(x) 在区间 (a, b] 上不存在最小值,则称 f(x) 在区间 (a, b] 上具有性质 P.</p>
 - (1) 当 $f(x) = x^2 + cx$, 且 f(x) 在区间 (1,2] 上具有性质 P, 求实数 c 的取值范围;
 - (2) 已知 $f(x+1) = f(x) + 1(x \ge 1)$, 且当 $1 \le x < 2$ 时, f(x) = 1 x, 判别 f(x) 在区间 (1,4] 上是否具有性质 P;
 - (3) 若对于满足 $1 \le a < b$ 的任意实数 a 和 b, f(x) 在区间 (a,b] 上具有性质 P, 且对于任意 $n \in \mathbb{N}^*$, 当 $x \in (n,n+1)$ 时, 有 |f(n)-f(x)|+|f(x)-f(n+1)|=|f(n)-f(n+1)|, 证明: 当 $x \ge 1$ 时, f(2x) > f(x).
- 92. (004259) 已知定义在 R 上的函数 f(x) 满足 f(x+1) = 2f(x) + 1, 当 $x \in [0,1)$ 时, $f(x) = x^3$. 设 f(x) 在区间 $[n, n+1)(n \in \mathbb{N}^*)$ 上的最小值为 a_n , 若存在 $n \in \mathbb{N}^*$, 使得 $\lambda(a_n+1) < 2n-7$ 成立, 则实数 λ 的取值范围 是_______.
- 93. (004286) 已知函数 $f(x) = a \frac{4}{3^x + 1} (a 为实常数).$
 - (1) 讨论函数 f(x) 的奇偶性, 并说明理由;
 - (2) 当 f(x) 为奇函数时, 对任意的 $x \in [1,5]$, 不等式 $f(x) \ge \frac{u}{3^x}$ 恒成立, 求实数 u 的最大值.

- 94. (004289) 已知函数 f(x) 的定义域为 D, 若存在实常数 λ 及 $a(a \neq 0)$, 对任意 $x \in D$, 当 $x + a \in D$ 且 $x a \in D$ 时, 都有 $f(x + a) + f(x a) = \lambda f(x)$ 成立, 则称函数 f(x) 具有性质 $M(\lambda, a)$.
 - (1) 判断函数 $f(x) = x^2$ 是否具有性质 $M(\lambda, a)$, 并说明理由;
 - (2) 若函数 $g(x) = \sin 2x + \sin x$ 具有性质 $M(\lambda, a)$, 求 λ 及 a 应满足的条件;
 - (3) 已知定义域为 R 的函数 y = h(x) 不存在零点,且具有性质 $M(t + \frac{1}{t}, t)$ (其中 $t > 0, t \neq 1$),记 $a_n = h(n)(n \in \mathbf{N}^*)$,求证: 数列 $\{a_n\}$ 为等比数列的充要条件是 $\frac{a_2}{a_1} = t$ 或 $\frac{a_2}{a_1} = \frac{1}{t}$.
- 95. (004293) 函数 $y = x + \frac{9}{x}, x \in (0, +\infty)$ 的最小值是______.
- 96. (004368) 已知函数 y = f(x) 的定义域为 $(0, +\infty)$, 满足对任意 $x \in (0, +\infty)$, 恒有 $f[f(x) \frac{1}{x}] = 4$. 若函数 y = f(x) 4 的零点个数为有限的 $n(n \in \mathbb{N}^*)$ 个,则 n 的最大值为 ().

A. 1 B. 2 C. 3 D. 4

- 97. (004387) 设函数 f(x) 的定义域为 $(0, +\infty)$, 若对任意 $x \in (0, +\infty)$, 恒有 f(2x) = 2f(x), 则称 f(x) 为 "2 阶缩 放函数".
 - (1) 已知函数 f(x) 为 "2 阶缩放函数", 当 $x \in (1,2]$ 时, $f(x) = 1 \log_2 x$, 求 $f(2\sqrt{2})$ 的值;
 - (2) 已知函数 f(x) 为 "2 阶缩放函数", 当 $x \in (1,2]$ 时, $f(x) = \sqrt{2x x^2}$, 求证: 函数 y = f(x) x 在 $(1, +\infty)$ 上无零点.
- 98. (004424) 设 $\mu(x)$ 表示不小于 x 的最小整数, 例如 $\mu(0.3) = 1$, $\mu(-2.5) = 2$.
 - (1) 解方程 $\mu(x-1)=3$;
 - (2) 设 $f(x) = \mu(x \cdot \mu(x)), n \in \mathbb{N}^*$, 试分别求出 f(x) 在区间 (0,1]、(1,2] 以及 (2,3] 上的值域; 若 f(x) 在区间 (0,n] 上的值域为 M_n , 求集合 M_n 中的元素的个数;
 - (3) 设实数 $a>0, g(x)=x+a\cdot\frac{\mu(x)}{x}-2, h(x)=\frac{\sin(\pi x)+2}{x^2-5x+7}$, 若对于任意 $x_1,x_2\in(2,4]$ 都有 $g(x_1)>h(x_2)$, 求实数 a 的取值范围.
- 99. (004439) 函数 $f(x) = |x^2 a|$ 在区间 [-1, 1] 上的最大值是 a, 那么实数 a 的取值范围是 ().

A. $[0, +\infty)$ B. $[\frac{1}{2}, 1]$

C. $[\frac{1}{2}, +\infty)$ D. [1]

- 100. (004444) 定义区间 (m,n)、[m,n]、(m,n]、[m,n) 的长度均为 n-m, 已知不等式 $\frac{7}{6-x} \geq 1$ 的解集为 A.
 - (1) 求 A 的长度;
 - (2) 函数 $f(x) = \frac{(a^2 + a)x 1}{a^2x} (a \in \mathbf{R}, a \neq 0)$ 的定义域与值域都是 [m, n](n > m), 求区间 [m, n] 的最大长度:
 - (3) 关于 x 的不等式 $\log_2 x + \log_2 (tx + 3t) < 2$ 的解集为 B, 若 $A \cap B$ 的长度为 B, 求实数 B 的取值范围.
- 101. (004466) 对于定义在 D 上的函数 y = f(x), 如果存在两条平行直线 $l_1: y = kx + b_1 \mp l_2: y = kx + b_2 (b_1 \neq b_2)$, 使得对于任意 $x \in D$, 都有 $kx + b_1 \leq f(x) \leq kx + b_2$ 恒成立, 那么称函数 y = f(x) 是带状函数, 若 l_1, l_2 之间的最小距离 d 存在, 则称 d 为带宽.
 - (1) 判断函数 $f(x) = \sin x + \cos x$ 是不是带状函数? 如果是, 指出带宽 (不用证明); 如果不是, 说明理由;

- (2) 求证: 函数 $g(x) = \sqrt{x^2 1} (x \ge 1)$ 是带状函数;
- (3) 求证: 函数 $h(x) = a|x x_1| + b|x x_2|(x_1 < x_2)$ 为带状函数的充要条件是 a + b = 0.
- 102. (004483) 如图, 正方形 OABC 的边长为 a(a>1), 函数 $y=3x^2$ 交 AB 于点 Q, 函数 $y=x^{-\frac{1}{2}}$ 与 BC 交于点 P, 当 |AQ|+|CP| 最小时, a 的值为______.

- 103. (004486) 某温室大棚规定: 一天中,从中午 12 点到第二天上午 8 点为保温时段,其余 4 小时为工人作业时段. 从中午 12 点连续测量 20 小时,得出此温室大棚的温度 y(单位: 度) 与时间 t(单位: 小时, $t \in [0,20]$) 近似地满足函数 $y = |t-13| + \frac{b}{t+2}$ 关系,其中,b 为大棚内一天中保温时段的通风量.
 - (1) 若一天中保温时段的通风量保持 100 个单位不变, 求大棚一天中保温时段的最低温度 (精确到 0.1°C);
 - (2) 若要保持大棚一天中保温时段的最低温度不小于 17°C, 求大棚一天中保温时段通风量的最小值.
- 104. (004500) 对于定义域为 D 的函数 f(x), 若存在 $x_1, x_2 \in D$ 且 $x_1 \neq x_2$, 使得 $f(x_1^2) = f(x_2^2) = 2f(x_1 + x_2)$, 则称 函数 f(x) 具有性质 M. 若函数 $g(x) = |\log_2 x 1|$, $x \in (0, a]$ 具有性质 M, 则实数 a 的最小值为______.

A. 0 B. 1 C. 2 D. 3

- 106. (004542) 已知 p 是实数, 函数 $f(x) = 10^x$. 若存在实数 m, n, 使得 f(m+n) = f(m) + f(n) 与 f(m+n+p) = f(m) + f(n) + f(p) 均成立, 则 p 的最大值等于______.
- $107._{(004544)}$ 设函数 $f(x) = \begin{cases} 1, & x \in \mathbf{Q}, \\ &$ 下列结论不正确的是 (). $\pi, & x \not\in \mathbf{Q}. \end{cases}$

A. f(x) 是偶函数

B. f(x) 是周期函数

C. 该函数有最大值也有最小值

D. 方程 f(f(x)) = 1 的解集为 $\{1\}$

108. (004658) 如图, A、B、C 三地有直道相通, AB = 5 千米, AC = 3 千米, BC = 4 千米, 现甲、乙两警员同时从 A 地出发匀速前往 B 地, 经过 t 小时, 他们之间的距离为 f(t)(单位: 千米), 甲的路线是 AB, 速度为 5 千米/小时, 乙的路线是 ACB, 速度为 8 千米/小时, 乙到 B 地后在原地等待, 设 $t = t_1$ 时乙到达 C 地.

- (1) 求 t_1 及 $f(t_1)$ 的值;
- (2) 已知警员的对讲机的有效通话距离是 3 千米, 当 $t_1 \le t \le 1$ 时, 求 f(t) 的表达式, 并判断 f(t) 在 $[t_1, 1]$ 上的最大值是否超过 3? 说明理由.
- 109. (004667) 若函数 $f(x) = \sqrt{2x+1}$ 的反函数为 g(x), 则函数 g(x) 的零点为______
- 110. (004679) 为实现"碳达峰", 减少污染,某化工企业开发了一个废料回收项目.经测算,该项目日回收成本 p(元) 与日回收量 $x(吨)(x\in[0,50])$ 的函数关系可表示为 $p= \begin{cases} 20x, & 0\leq x\leq 30, \\ x^2+16x-780, & 30< x\leq 50, \end{cases}$ 且每回收 1 吨废
 - 料,转化成其他产品可收入80元.
 - (1) 设日纯收益为 y 元, 写出函数 y = f(x) 的解析式 (纯收益 = 收入 成本);
 - (2) 该公司每日回收废料多少吨时, 获得纯收益最大?
- 111. (004680) 已知函数 $f(x) = 2^x + \frac{a}{2^x}$, a 为实常数.
 - (1) 若函数 f(x) 为奇函数, 求 a 的值;
 - (2) 若 $x \in [0,1]$ 时 f(x) 的最小值为 2, 求 a 的值;
 - (3) 若方程 f(x) = 6 有两个不等的实根 x_1, x_2 , 且 $|x_1 x_2| \le 1$, 求 a 的取值范围.
- 112. (004702) 给定区间 I 和正常数 a, 如果定义在 R 上的两个函数 y = f(x) 与 y = g(x) 满足: 对一切 $x \in I$, 均有 $|f(x) g(x)| \le a$, 称函数 y = f(x) 与 y = g(x) 具有性质 P(I, a).
 - (1) 已知 $I=(0,+\infty)$, 判断下列两组函数是否具有性质 P(I,2)? ① $f_1(x)=\frac{1}{x^2+1}$, $g_1(x)=2$; ② $f_2(x)=x^2+x+1$, $g_2(x)=x^2-x+1$;(不需要说明理由)
 - (2) 已知 f(x) = 0, y = g(x) 是周期函数, 且对任意的 a > 0, 均存在区间 $I = (M, +\infty)$, 使得函数 y = f(x) 与 y = g(x) 具有性质 P(I, a), 求证: g(x) = 0;
 - (3) 已知 I = [1, m], $f(x) = x^2$, 若存在一次函数 y = g(x) 与 y = f(x) 具有性质 P(I, 1), 求实数 m 的最大值.
- 113. (004720) 已知函数 $f(x) = x^2 + mx + 3$, 其中 $m \in \mathbf{R}$.
 - (1) 若不等式 f(x) < 5 的解集是 (-1,2), 求 m 的值;
 - (2) 若函数 y = f(x) 在区间 [0,3] 上有且仅有一个零点, 求 m 的取值范围.
- 114. (004721) 如图, 有一块扇形草地 OMN, 已知半径为 4, $\angle MON = \frac{\pi}{2}$, 现要在其中圈出一块举行场地 ABCD 作为儿童乐园使用, 其中点 A、B 在弧 \widehat{MN} 上, 且线段 AB 平行于线段 MN.

- (1) 若点 A 为弧 $\stackrel{\frown}{MN}$ 的一个三等分点, 求矩形 ABCD 的面积 S;
- (2) 当 A 在何处时, 矩形 ABCD 的面积 S 最大? 最大值为多少?
- 115. $_{(004755)}$ 设 $y=f^{-1}(x)$ 是函数 $f(x)=\frac{x}{2}+\frac{\pi}{8}\sin x+\frac{\pi}{8}, \, x\in[-\frac{\pi}{2},\frac{\pi}{2}]$ 的反函数,则函数 $y=f(x)+f^{-1}(x)$ 的最小值等于______.
- 116. (004756) 函数 f(x) = x, $g(x) = x^2 x + 2$. 若存在 $x_1, x_2, \cdots, x_n \in [0, \frac{9}{2}]$, 使得 $f(x_1) + f(x_2) + \ldots + f(x_{n-1}) + g(x_n) = g(x_1) + g(x_2) + \ldots + g(x_{n-1}) + f(x_n)$, 则 n 的最大值为______.
- 117. (004995) 从半径为 R 的圆形铁片里剪去一个扇形, 然后把剩下部分卷成一个圆锥形漏斗, 要使漏斗有最大容量, 剪去扇形的圆心角 θ 应是多少弧度?
- 118. (005012) 若 a>1, b>1, c>1, 则 $\log_a b + \log_b a$ 的最小值为______, $\log_a b + \log_b c + \log_c a$ 的最小值为______
- 119. (005014) 若 a > 1, 0 < b < 1, 则 $\log_a b + \log_b a$ 的最大值为_____.
- 120. (005103) 下列函数中, 最小值为 2 的是 ().

A.
$$x + \frac{1}{x}$$

B.
$$\frac{x^2+2}{\sqrt{x^2+1}}$$

C.
$$\log_a x + \log_x a(a > 0, x > 0, a \neq 1, x \neq 1)$$

D.
$$3^x + 3^{-x}(x > 0)$$

121. (005104) 若 $\log_{\sqrt{2}} x + \log_{\sqrt{2}} y = 4$, 则 x + y 的最小值是 ().

B.
$$4\sqrt{2}$$

122. (005105) 若 a, b 均为大于 1 的正数, 且 ab = 100, 则 $\lg a \cdot \lg b$ 的最大值是 ().

D.
$$\frac{5}{2}$$

- 123. (005110) 若 $x + 2y = 2\sqrt{2}a(x > 0, y > 0, a > 1)$, 则 $\log_a x + \log_a y$ 的最大值是_____
- 124. (005118) 若正数 x, y, z 满足 5x + 2y + z = 100, 则 $\lg x + \lg y + \lg z$ 的最大值是______
- 125. (005124) 求函数 $y = \frac{x^4 + 3x^2 + 3}{x^2 + 1}$ 的最小值.
- 126. (005125) 求 $f(x) = 4x^2 + \frac{16}{(x^2+1)^2}$ 的最小值.
- 127. (005126) 求 $f(x) = x^2 3x 2 \frac{3}{x} + \frac{1}{x^2}(x > 0)$ 的最小值.

- 128. (005132) 已知函数 $f(x) = \frac{2^{x+3}}{4^x + 8}$.
 - (1) 求 f(x) 的最大值;
 - (2) 对于任意实数 a, b, 求证: $f(a) < b^2 4b + \frac{11}{2}$.
- 129. (005136) 在 $\triangle ABC$ 中, 已知 BC=a, CA=b, AB=c, $\angle ACB=\theta$. 现将 $\triangle ABC$ 分别以 BC, CA, AB 所在 直线为轴旋转一周, 设所得三个旋转体的体积依次为 V_1,V_2,V_3 .
 - (1) 设 $T = \frac{V_3}{V_1 + V_2}$, 试用 a, b, c 表示 T;
 - (2) 若 θ 为定值, 并令 $\frac{a+b}{c}=x$, 将 $T=\frac{V_3}{V_1+V_2}$ 表示为 x 的函数, 写出这个函数的定义域, 并求这个函数的最大值 M;
 - (3) 若 $\theta \in [\frac{\pi}{3}, \pi)$, 求 (2) 中 M 的最大值.
- 130. (005218) 已知 x 满足不等式 $(\frac{1}{2})^{2x-4} (\frac{1}{2})^x (\frac{1}{2})^{x-2} + \frac{1}{4} \le 0$,且 $y = \log_{\frac{1}{a}}(a^2x) \cdot \log_{\frac{1}{a^2}}(ax)$ 的最大值是 0,最小值是 $-\frac{1}{8}$,求实数 a 的值.
- 131. (005243) 求函数 $f(x) = |x \frac{1}{2}| |x + \frac{1}{2}|$ 的最大值.
- 132. (005278) 已知函数 $y = f(x) = x^2 + ax + 3$ 在区间 $x \in [-1, 1]$ 上的最小值为 -3, 求实数 a 的值.
- 133. (005332) 若 $2x^2 3x \le 0$, 则函数 $f(x) = x^2 + x + 1$).
 - A. 有最小值 $\frac{3}{4}$, 但无最大值
- B. 有最小值 $\frac{3}{4}$, 有最大值 1
- C. 有最小值 1 有最大值 $\frac{19}{4}$

- D. 既无最小值, 也无最大值
- 134. (005344) 已知函数 $f(x) = x^2 2x + 3$ 在 [0, m] 上有最大值 3, 最小值 2, 求正数 m 的取值范围.
- 135. (005345) 已知函数 $y = x^2 + mx 1$ 在区间 [0,3] 上有最小值 -2, 求实数 m 的值.
- 136. (005346) 当 $x \ge 0$ 时, 求函数 $f(x) = x^2 + 2ax$ 的最小值.
- 137. (005357) 将进货单价为 40 元的商品按每件 50 元出售时,每月能卖出 500 个,已知这批商品在销售单价的基础上每涨价 1 元,其月销售数就减少 10 个,为了每月赚取最大利润,销售单价应定为多少?
- 138. (005358) 飞机飞行 1 小时的耗费由两部分组成: 固定部分 4900 元, 变动部分 P 与飞机飞行速度 v(千米/时) 的 函数关系是 $P=0.01v^2$. 已知甲、乙两地相距为一常数 a(千米), 试写出飞机从甲地飞到乙地的总耗费 y 与飞机速度 v 的函数关系式, 并写出耗费最小时飞机的飞行速度.
- 140. (005531) 已知函数 $y = -\sqrt{1-x^2}$ 的反函数是 $y = -\sqrt{1-x^2}$, 则原函数的定义域 "最大"可以是_____.
- 141. (005560) 求函数 $y = 9^x m \cdot 3^x + 1$ 的最小值.
- 142. (005585) 若 $1 \le x \le 2$, 则函数 $y = (\frac{1}{2})^{x^2 6x + 10}$ 的最大值为______.

- 143. (005586) 函数 $f(x) = a^{2x} 3a^x + 2(a > 0$ 且 $a \neq 1$) 的最小值为______.
- 144. (005587) 对于函数 $y = a^{x^2-4} (a > 0 且 a \neq 1)$:
 - (1) 若 0 < a < 1, 则 y 有最大值______;
 - (2) 若 a > 1, 则 y 有最小值______
- 145. (005598) 若 $0 \le x \le 2$, 求函数 $y = 4^{x-\frac{1}{2}} 3 \cdot 2^x + 5$ 的最大值和最小值.
- 146. (005599) 若函数 $f(x) = a^{2x} + 2a^x 1(a > 0$ 且 $a \neq 1$) 在 [-1,1] 上的最大值为 14, 求实数 a 的值.
- 147. (005644) 已知函数 $f(x) = x^2 \lg a + 2x + 4 \lg a$ 的最大值为 3, 求实数 a 的值.
- 148. (005733) 若 $-3 \le \log_{\frac{1}{2}} x \le -\frac{1}{2}$, 求 $y = (\log_2 \frac{x}{2})(\log_2 \frac{x}{4})$ 的最大 (小) 值及其相应的 x 值,
- 149. (005734) 已知 a, b 是两个不相等的正数, 且 $\log_m \frac{x}{a} \cdot \log_m \frac{x}{b}$ 的最小值是 $-\frac{1}{4}(m > 0$ 且 $m \neq 1)$, 求 m 的值.
- 150. (005735) 已知实数 x,y 满足 $(\log_4 y)^2 = \log_{\frac{1}{2}} x$, 求 $u = \frac{x}{y}$ 的最大值及其相应的 x,y 的值.
- 151. (005740) 若二次函数 $f(x) = (\lg a)x^2 + 2x + 4\lg a$ 有最小值 -3, 求实数 a 的值.
- 152. (005751) 已知函数 $f(x) = \lg \frac{x+1}{x-1} + \lg(x-1) + \lg(a-x)(a>1)$.
 - (1) 是否存在一个实数 a 使得函数 y = f(x) 的图像关于某一条垂直于 x 轴的直线对称? 若存在, 求出这个实数 a; 若不存在, 说明理由;
 - (2) 当 f(x) 的最大值为 2 时, 求实数 a 的值.
- 153. (005812) 已知函数 $f(x) = x^2 \lg a + 2x + 4 \lg a$ 的最大值是 3, 求实数 a 的值.
- 154. (005834)(1) 求函数 $y = 2x + \sqrt{1-2x}$ 的最大值. (2) 求函数 $y = 2x + \sqrt{1-x^2}$ 的值域. (3) 求函数 $y = \frac{\sqrt{x+1}}{x+2}$ 的值域.
- 155. (005838) 已知函数 $f(x) = x^2 2mx + m + 6$.
 - (1) 若对任意实数 x 都有 f(x) > 0, 求实数 m 的取值范围;
 - (2) 若实数 α, β 满足 $f(\alpha) = f(\beta) = 0$, 求 $\alpha^2 + \beta^2$ 的最小值.
- 156. (005840) 已知 $f(x) = -9x^2 6ax + 2a a^2$ 在 $-\frac{1}{3} \le x \le \frac{1}{3}$ 内有最大值 -3, 求实数 a 的值.
- 157. (005850) 已知函数 $f(x) = \log_3(x^2 4mx + 4m^2 + m + \frac{1}{m-1})$, 集合 $M = \{m|m>1, m \in \mathbf{R}\}$.
 - (1) 求证: 当 $m \in M$ 时, f(x) 的定义域为 $x \in \mathbb{R}$; 反之, 若 f(x) 对一切实数 x 都有意义, 则 $m \in M$;
 - (2) 当 $m \in M$ 时, 求 f(x) 的最小值;
 - (3) 求证: 对每一个 $m \in M$, f(x) 的最小值都不小于 1.
- 158. (007904) 求函数 $f(x) = x^2 4x 2$ 的最小值, 并求出取最值时相应的自变量 x 的值.
- 159. (007905) 求函数 $f(x) = 6x 3x^2$ 的最小值, 并求出取最值时相应的自变量 x 的值.
- 160. (007906) 求函数 $f(x) = -x^2 4x 3, x \in [-3, 1]$ 的最小值, 并求出取最值时相应的自变量 x 的值.

- 161. (007907) 求函数 $f(x) = x^2 2x 3, x \in [-2, 0]$ 的最小值, 并求出取最值时相应的自变量 x 的值.
- 162. (007908) 已知 p、q 分别是函数 f(x) = -2x + 3 在 [-2,2] 上的最大值和最小值, 求函数 $g(x) = 2x^2 px + q$ 在 [-2,2] 上的最大值和最小值.
- 163. (007909) 求函数 $y = \frac{2}{x-1} (2 \le x \le 6)$ 的最大值与最小值.
- 164. (007910) 求函数 $f(x) = x^3 + x^2 + x 1$ 在区间 (0,1) 内的零点 (精确到 0.1).
- 165. (007911) 画出函数 $y=x^2-2|x|$ 的图像, 并写出它的定义域、奇偶性、单调区间、最小值.
- 166. (007912) 研究函数 $f(x) = \frac{1}{1+x^2}$ 的定义域、奇偶性、单调性、最大值.
- 167. (007917) 已知 α, β 是方程 $4x^2 4mx + m + 2 = 0$ 的两个实数根, 当 m 为何值时, $\alpha^2 + \beta^2$ 有最小值? 并求出这个最小值.
- 168. (007918) 求函数 $y = x^2 4x + 1$ 在 $x \in [t, 4]$ 上的最小值和最大值, 其中 t < 4.
- 169. (007919) 已知集合 $A = \{x | 1 \le x \le 4\}$, $f(x) = x^2 + px + q$ 和 $g(x) = x + \frac{4}{x}$ 是定义在 A 上的函数, 且在 x_0 处同时取到最小值, 并满足 $f(x_0) = g(x_0)$, 求 f(x) 在 A 上的最大值.
- 170. (1007920) 已知某气垫船的最大船速是 48 海里/时, 船每小时使用的燃料费用和船速的平方成正比, 若船速为 30 海里/时, 则船每小时的燃料费用为 600 元. 其余费用 (不论船速为多少) 都是每小时 864 元. 甲乙两地相距 100 海里, 船从甲地行驶到乙地.
 - (1) 试把船每小时使用的燃料费用 P(元) 表示成船速 v(海里/时) 的函数;
 - (2) 试把船从甲地到乙地所需的总费用 y 表示成船速 v(海里/时) 的函数;
 - (3) 当船速为每小时多少海里时, 船从甲地到乙地所需的总费用最少?
- 171. (007921) 已知函数 y = f(x), 定义 F(x) = f(x+1) f(x). 某公司每月最多生产 100 台报警系统装置, 生产 x台 (x>0) 的收入函数为 $R(x) = 3000x 20x^2$ (单位: 元), 其成本函数为 G(x) = 5000x + 4000(单位: 元), 利润是收入与成本之差.
 - (1) 求利润函数 y = f(x) 及相应的 y = F(x);
 - (2) 利润函数 y = f(x) 与 y = F(x) 是否具有相等的最大值?
- 172. (007935) 设 α, β 是二次方程 $x^2 2kx + k + 20 = 0$ 的两个实数根, 当 k 为何值时, $(\alpha + 1)^2 + (\beta + 1)^2$ 有最小值?
- 173. (007938) 已知函数 $f(x) = -x^2 + 2ax + 1 a$ 在 [0,1] 上有最大值 2, 求实数 a 的值.
- 174. (007940) 已知函数 $f(x) = 2 x^2$, 函数 g(x) = x, 定义函数 F(x) 如下: 当 $f(x) \ge g(x)$ 时, F(x) = g(x); 当 f(x) < g(x) 时, F(x) = f(x). 求 F(x) 的最大值.
- 175. (007947) 已知函数 $f(x) = x^3 3x$.
 - (1) 试求函数 y = f(x) 的零点;

- (2) 求证: 函数 $f(x) = x^3 3x$ 在 $[1, +\infty)$ 上是增函数;
- (3) 是否存在自然数 n, 使 f(n) = 1000? 若存在, 求出一个满足条件的 n; 若不存在, 请问明理由.
- 176. (007989) 已知函数 $f(x) = a^x (a > 0, a \neq 1)$ 在区间 [1,2] 上的最大值比最小值大 $\frac{1}{4}$, 求实数 a 的值.
- 177. (007994) 若 2x + y = 1, 求 $4^x + 2^y$ 的最小值.
- 178. (007998) 甲乙两地的高速公路全长 166 千米, 在高速公路上最高行驶时速不得高于 120 千米/时, 假设汽车从甲地进入该高速公路以不低于 70 千米/时的速度匀速行驶到乙地,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度 v(千米/时) 的平方成正比,比例系数为 0.02; 固定部分为 220元.
 - (1) 把全程运输成本 y(元) 表示为速度 v(千米/时) 的函数, 并指出这个函数的定义域;
 - (2) 汽车应以多大速度行驶才能使全程运输成本最小? 最小运输成本约为多少元?
- 179. (008054) 求函数 $y = \log_{\frac{1}{\varepsilon}}(x^2 6x + 10)$ 在区间 [1,2] 上的最大值.
- 180. (008086) 已知 $\lg x + \lg y = 2$, 求 $\frac{1}{x} + \frac{1}{y}$ 的最小值.
- 181. (009497) 已知指数函数 $y = a^x (0 < a < 1)$ 在区间 [1,2] 上的最大值比最小值大 $\frac{a}{3}$, 求实数 a 的值.
- 182. (009523) 求函数 $y=(\frac{1}{2})^x,\,x\in[1,3]$ 的最大值与最小值.
- 183. (009524) 求下列函数的最大值与最小值:
 - (1) $y = 1 x^2$;
 - (2) $y = 1 x^2, x \in [-1, 2];$
 - (3) $y = 2x^2 8x$;
 - (4) $y = 2x^2 8x, x \in [0, 1].$
- 184. (009525) 已知 a > -2, 求函数 $y = x^2 + 1$, $x \in [-2, a]$ 的最大值.
- 185. (009530) 用函数的观点解不等式: $2^x + \log_2 x > 2$.
- 186. (009531) 对于在区间 [a,b] 上的图像是一段连续曲线的函数 y = f(x), 如果 $f(a) \cdot f(b) > 0$, 那么是否该函数在 区间 (a,b) 上一定无零点? 说明理由.
- 187. (009532) 已知函数 $y=2x^3-3x^2-18x+28$ 在区间 (1,2) 上有且仅有一个零点. 试用二分法求出该零点的近似值. (结果精确到 0.1)
- 188. (009922) 判断下列说法是否正确, 并说明理由:
 - (1) 函数在某区间上的极大值不会小于它的极小值;
 - (2) 函数在某区间上的最大值不会小于它的最小值;
 - (3) 函数在某区间上的极大值就是它在该区间上的最大值;
 - (4) 函数在某区间上的最大值就是它在该区间上的极大值.

- 189. (009924) 求函数 $y = x^3 3x$ 在区间 $[-\frac{3}{2}, 0]$ 上的最大值与最小值.
- 190. (009925) 商品的成本 C 和产量 q 满足函数关系 C=50000+200q, 该商品的销售单价 p 和产量 q 满足函数关系 $p=24200-\frac{1}{5}q^2$. 问: 要使利润最大, 应如何确定产量?
- 191. (009926) 采矿、采石或取土时,常用炸药包进行爆破,部分爆破呈圆锥漏斗形状 (如图),已知圆锥的母线长是炸药包的爆破半径 R,它的值是固定的.问:炸药包埋多深可使爆破体积最大?

- 192. (010147) 已知指数函数 $y = a^x (a > 0$ 且 $a \neq 1$) 在区间 [1,2] 上的最大值与最小值之和等于 6, 求实数 a 的值.
- 193. (010161) 已知对数函数 $y = \log_a x (a > 1)$ 在区间 [1,2] 上的最大值比最小值大 1, 求 a 的值.
- 194. (010179) 求下列函数的最大值与最小值, 并写出取最值时相应自变量的值:
 - (1) $y = x^2 4x 2$;
 - (2) $y = 6x 3x^2$;
 - (3) $y = -x^2 4x 3$, $x \in [-3, 1]$;
 - (4) $y = x^2 2x 3, x \in [-2, 0].$
- 195. (010180) 求函数 $y = \log_{\frac{1}{2}}(x+2), x \in [2,6]$ 的最大值与最小值.
- 196. (010181) 已知 $y=x^2+px+q$ 和 $y=x+\frac{4}{x}$ 都是定义在 [1,4] 上的函数, 且在 x_0 处同时取到相同的最小值. 求 $y=x^2+px+q$ 的最大值.
- 197. (010185) 作出函数 $y = x^2 2|x|$ 的大致图像, 并分别写出它的定义域、奇偶性、单调区间及最小值.
- 198. (010186) 研究函数 $y = \frac{1}{1 + x^2}$ 的定义域、奇偶性、单调性及最大值.
- 199. (010188) 设 t 是实数, 且 t < 4. 求函数 $y = |2^{x+1} 8|, x \in [t, 4]$ 的最小值.
- 200. (010191) 求函数 $y = \sqrt{2x+1} x + 1$ 的零点.
- 201. $_{(010192)}$ 已知函数 $y=x^3+x^2+x-1$ 在区间 (0,1) 上有且仅有一个零点,用二分法求该零点的近似值. (结果精确到 0.1)
- 202. (010193) 已知某气垫船的最大船速是 48 海里/时, 船每小时使用的燃料费用和船速的平方成正比. 当船速为 30 海里/时时, 船每小时的燃料费用为 600 元, 而其余费用 (不论船速为多少) 都是每小时 864 元. 船从甲地行

驶到乙地, 甲乙两地相距 100 海里.

- (1) 试把船每小时使用的燃料费用 P(单位: 元) 表示成船速 v(单位: 海里/时) 的函数;
- (2) 试把船从甲地到乙地所需的总费用 y(单位: 元) 表示成船速 v(单位: 海里/时) 的函数;
- (3) 当船速为多少时, 船从甲地到乙地所需的总费用最少?
- 203. (010821) 某函数图像如图所示,它在 [a, b] 上哪一点处取得最大值? 它是极大值点吗? 在哪一点处取得最小值? 它是极小值点吗?

204. (010829) 用长为 18m 的钢条制作一个如图所示的长方体框架. 已知长方体的长宽比为 2:1, 问:该长方体的长、宽、高各为多少时, 其体积最大? 最大体积是多少?

205. (010830) 某分公司经销一品牌产品,每件产品的成本为 4 元,且每件产品需向总公司交 3 元的管理费,预计当每件产品的售价为 x 元 $(8 \le x \le 11)$ 时,一年的销售量为 $(12-x)^2$ 万件.问:当每件产品的售价为多少元时,该分公司一年的利润犔最大?(结果精确到 1 元)