Homework 6

12432670

Zitong Huang

Problem 1 Solution

Part (a): $f(x,y)=x^2+y^2+2xy$ at (3,4)

1. Exact Partial Derivatives:

- $f_x(x,y) = \frac{\partial}{\partial x}(x^2 + y^2 + 2xy)$
- $f_y(x,y) = \frac{\partial}{\partial y}(x^2 + y^2 + 2xy)$
- Exact $f_x(x,y) = 2 * x + 2 * y$, $f_x(3,4) = 14$.
- $\bullet \ \ \operatorname{Exact} f_y(x,y) = 2*x + 2*y \text{, } f_y(3,4) \text{ = 14} \\$

2. Approximations using Formula (2):

- For $f_x(3,4)$:
 - $\circ \;\; f(x,y) = (x+y)^2$. At (3,4), $f_x(3,4) pprox rac{f(3+h,4)-f(3-h,4)}{2h} = rac{(7+h)^2-(7-h)^2}{2h}$

 - $\circ \ \ h = 0.0001$: $f_x(3,4) \approx 13.999999999995794$
- For $f_y(3,4)$:
 - \circ At (3,4), $f_y(3,4) pprox rac{f(3,4+h)-f(3,4-h)}{2h} = rac{(7+h)^2-(7-h)^2}{2h}$
 - $\circ \ \ h = 0.1$: $f_y(3,4) \approx 13.999999999999986$

 - h = 0.0001: $f_y(3,4) \approx 14.000000000002899$

3. Comparison:

For $f(x,y) = x^2 + y^2 + 2xy$ at (3,4):

- ullet The exact values are $f_x(3,4)=f_y(3,4)=14$
- For $f_x(3,4)$:
 - $\circ \ \ h = 0.1$: error \approx 1.4e-14
 - h = 0.01: error ≈ 2.98 e-13
 - h = 0.0001: error ≈ 4.206 e-12
- For $f_y(3,4)$:

 - h = 0.01: error ≈ 2.98 e-13
 - h = 0.0001: error ≈ 2.899 e-12

Part (b): $f(x,y)=rac{x^2y^2}{x+y}$ at (2,3)

1. Exact Partial Derivatives:

$$ullet f_x(x,y) = rac{\partial}{\partial x} \Big(rac{x^2y^2}{x+y}\Big)$$

$$ullet f_y(x,y) = rac{\partial}{\partial y} \Big(rac{x^2y^2}{x+y}\Big)$$

$$ullet$$
 Exact $f_x(x,y) = -x^2 * y^2/(x+y)^2 + 2 * x * y^2/(x+y)$, $f_x(2,3)$ = 5.76.

$$ullet$$
 Exact $f_y(x,y) = -x^2 * y^2/(x+y)^2 + 2 * x * y^2/(x+y)$, $f_y(2,3)$ = 3.36

2. Approximations using Formula (2):

• For
$$f_x(2,3)$$
:

$$\circ~f_x(2,3)pproxrac{f(2+h,3)-f(2-h,3)}{2h}$$

$$\circ \ \ h = 0.1 : f_x(2,3) \approx 5.7587034813925575$$

$$h = 0.01$$
: $f_x(2,3) \approx 5.759987039948067$

$$h = 0.0001$$
: $f_x(2,3) \approx 5.759999870400101$

• For
$$f_y(2,3)$$
:

$$\circ~f_y(2,3)pproxrac{f(2,3+h)-f(2,3-h)}{2h}$$

$$holdsymbol{\circ} h = 0.1: f_y(2,3) \approx 3.3597438975590332$$

$$h = 0.01$$
: $f_y(2,3) \approx 3.3599974399896926$

$$\circ \ \ h = 0.0001$$
: $f_y(2,3) \approx 3.359999974400285$

3. Comparison:

For
$$f(x,y)=rac{x^2y^2}{x+y}$$
 at $(2,3)$:

$$ullet$$
 The exact values are $f_x(2,3)=5.76$ and $f_y(2,3)=3.36$

• For
$$f_x(2,3)$$
:

o
$$h = 0.1$$
: error ≈ 1.296e-3

•
$$h = 0.01$$
: error ≈ 1.296 e-5

•
$$h = 0.0001$$
: error ≈ 1.296 e-7

• For
$$f_y(2,3)$$
:

o
$$h = 0.1$$
: error ≈ 2.56e-4

•
$$h = 0.01$$
: error ≈ 2.56 e-6

•
$$h = 0.0001$$
: error ≈ 2.56 e-8

Observations:

- 1. For the first function (simple polynomial), the numerical method achieves very high accuracy with errors in the range of 10^-12 to 10^-14.
- 2. For the second function (rational function), the errors are relatively larger, ranging from 10^-3 to 10^-8.
- 3. In both cases, accuracy generally improves as h decreases, but for the first function, there is a slight loss of precision when h becomes too small, likely due to rounding errors.

4. The second function shows significant improvement in accuracy as h decreases, indicating that choosing smaller step sizes is beneficial for such complex functions.

Problem 2

Let $\epsilon = 5 \cdot 10^{-4}$ be the round-off error in y_k .

Given
$$|f^{(3)}(c)| \leq M_3 = 1.5$$
 and $|f^{(5)}(c)| \leq M_5 = 1.5$.

The best step size h minimizes total error $E(h) pprox E_t(h) + E_r(h)$.

- (a) Formula: $f'(x_0) pprox rac{y_1 y_{-1}}{2h}$
 - 1. Truncation Error (E_t):

$$E_t(h)pprox rac{h^2}{6}M_3 = rac{1.5}{6}h^2 = 0.25h^2.$$

2. Round-off Error (E_r):

The error in y_1-y_{-1} is bounded by 2ϵ .

$$E_r(h)pprox rac{2\epsilon}{2h}=rac{\epsilon}{h}=rac{5\cdot 10^{-4}}{h}.$$

3. Total Error & Minimization:

$$\begin{split} E(h) &= 0.25h^2 + \frac{5 \cdot 10^{-4}}{h}.\\ \frac{dE}{dh} &= 0.5h - \frac{5 \cdot 10^{-4}}{h^2} = 0.\\ 0.5h^3 &= 5 \cdot 10^{-4} \Rightarrow h^3 = 10^{-3}. \end{split}$$

$$\frac{dE}{dh} = 0.5h - \frac{5 \cdot 10^{-4}}{h^2} = 0.$$

$$0.5h^3 = 5 \cdot 10^{-4} \Rightarrow h^3 = 10^{-3}$$

$$h = (10^{-3})^{1/3} = 0.1.$$

Best step size for (a): h=0.1.

- (b) Formula: $f'(x_0) pprox rac{-y_2 + 8y_1 8y_{-1} + y_{-2}}{12h}$
 - 1. Truncation Error (E_t):

$$E_t(h) pprox rac{h^4}{30} M_5 = rac{1.5}{30} h^4 = 0.05 h^4.$$

2. Round-off Error (E_r):

The error in the numerator $(-y_2+8y_1-8y_{-1}+y_{-2})$ is bounded by $(1+8+8+1)\epsilon=18\epsilon$.

$$E_r(h) pprox rac{18\epsilon}{12h} = rac{3\epsilon}{2h} = rac{3\cdot (5\cdot 10^{-4})}{2h} = rac{7\cdot 5\cdot 10^{-4}}{h}.$$

3. Total Error & Minimization:

$$E(h) = 0.05h^4 + \frac{7.5 \cdot 10^-}{h}$$

$$\frac{dE}{dE} = 0.2h^3 - \frac{7.5 \cdot 10^{-4}}{1.2} = 0$$

$$\begin{split} E(h) &= 0.05h^4 + \frac{7.5 \cdot 10^{-4}}{h}.\\ \frac{dE}{dh} &= 0.2h^3 - \frac{7.5 \cdot 10^{-4}}{h^2} = 0.\\ 0.2h^5 &= 7.5 \cdot 10^{-4} \Rightarrow h^5 = \frac{7.5 \cdot 10^{-4}}{0.2} = 37.5 \cdot 10^{-4} = 3.75 \cdot 10^{-3}. \end{split}$$

$$h = (3.75 \cdot 10^{-3})^{1/5}$$
.

Best step size for (b): $h = (0.00375)^{1/5} \approx 0.3268$.

Problem 3

Let $f(x)=\cos(x)$ and $x_0=1.2$. The approximation formula is $f'(x_0)pprox rac{-y_2+8y_1-8y_{-1}+y_{-2}}{12h}$. The inherent round-off error for $y_k = f(x_0 + kh)$ is $|e_k| \leq 5 \cdot 10^{-6}$.

Part (a)

1. Case 1: h=0.1

$$y_2 = f(1.4) = 0.16997$$

$$y_1 = f(1.3) = 0.26750$$

$$y_{-1} = f(1.1) = 0.45360$$

$$y_{-2} = f(1.0) = 0.54030$$

$$\circ~f'(1.2)pproxrac{-0.16997+8(0.26750)-8(0.45360)+0.54030}{12(0.1)}$$

$$\circ \ f'(1.2) pprox rac{-0.16997 + 2.14000 - 3.62880 + 0.54030}{1.2} = rac{-1.11847}{1.2} pprox -0.932058$$

2. Case 2: h = 0.001

$$y_2 = f(1.202) = 0.36049$$

$$y_1 = f(1.201) = 0.36143$$

$$y_{-1} = f(1.199) = 0.36329$$

$$y_{-2} = f(1.198) = 0.36422$$

$$\circ~f'(1.2) pprox rac{-0.36049 + 8(0.36143) - 8(0.36329) + 0.36422}{12(0.001)}$$

$$\circ \ \ f'(1.2) pprox rac{-0.36049 + 2.89144 - 2.90632 + 0.36422}{0.012} = rac{-0.01115}{0.012} pprox -0.929167$$

Part (b)

The total error bound is $B(h) pprox |E_{round}(f,h)|_{max} + |E_{trunc}(f,h)|_{max}$.

1. $|E_{round}(f,h)|_{max}$:

The formula for the round-off error contribution is
$$E_{round}(f,h) = \frac{-e_2 + 8e_1 - 8e_{-1} + e_{-2}}{12h}$$
. $|E_{round}(f,h)|_{max} \leq \frac{|e_2| + 8|e_1| + 8|e_{-1}| + |e_{-2}|}{12h} \leq \frac{(1 + 8 + 8 + 1) \cdot 5 \cdot 10^{-6}}{12h} = \frac{18 \cdot 5 \cdot 10^{-6}}{12h} = \frac{7 \cdot 5 \cdot 10^{-6}}{h}$.

2. $|E_{trunc}(f,h)|_{max}$:

The formula for the truncation error is $E_{trunc}(f,h)=rac{h^4f^{(5)}(c)}{30}$. $f(x)=\cos(x)$, so $f^{(5)}(x)=-\sin(x)$. Thus, $|f^{(5)}(c)|=|-\sin(c)|\leq 1$. $|E_{trunc}(f,h)|_{max}\leq rac{h^4\cdot 1}{30}=rac{h^4}{30}$.

3. Total Error Bound Calculation:

$$\circ$$
 For $h=0.1$:

$$|E_{round}(f, 0.1)|_{max} \le \frac{7.5 \cdot 10^{-6}}{0.1} = 7.5 \cdot 10^{-5}$$

$$|E_{trunc}(f, 0.1)|_{max} \le \frac{(0.1)^4}{30} = \frac{10^{-4}}{30} \approx 0.03333 \cdot 10^{-4} = 3.333 \cdot 10^{-6}$$

■ Total Error Bound

$$B(0.1) \leq 7.5 \cdot 10^{-5} + 3.333 \cdot 10^{-6} = 75 \cdot 10^{-6} + 3.333 \cdot 10^{-6} = 78.333 \cdot 10^{-6} \approx 7.83 \cdot 10^{-5}$$

 \circ For h = 0.001:

$$|E_{round}(f, 0.001)|_{max} \le \frac{7.5 \cdot 10^{-6}}{0.001} = 7.5 \cdot 10^{-3}$$

$$|E_{trunc}(f, 0.001)|_{max} \leq \frac{(0.001)^4}{30} = \frac{10^{-12}}{30} \approx 3.333 \cdot 10^{-14}$$

$$lacktriangledown$$
 Total Error Bound $B(0.001) \leq 7.5 \cdot 10^{-3} + 3.333 \cdot 10^{-14} pprox 7.5 \cdot 10^{-3}$

Thus:

$$ullet$$
 For $h=0.1$: $f'(1.2)pprox -0.932058$; Total Error Bound $pprox 7.83\cdot 10^{-5}$.

$$ullet$$
 For $h=0.001$: $f'(1.2)pprox -0.929167$; Total Error Bound $pprox 7.5\cdot 10^{-3}$.

Problem 4

True Value:

For
$$f(x) = \ln(x)$$
:

$$f'(x) = \frac{1}{x}$$

$$f''(x) = -rac{1}{x^2}$$

So,
$$f''(5) = -\frac{1}{5^2} = -\frac{1}{25} = -0.04$$
.

Given data values from the table for $x_0 = 5$:

$$f(4.90) = 1.5892$$

$$f(4.95) = 1.5994$$

$$f(5.00) = 1.6094$$
 (this is f_0 or $f(x_0)$)

$$f(5.05) = 1.6194$$

$$f(5.10) = 1.6292$$

(a) Using formula (3) with h=0.05:

Formula (3):
$$f''(x_0)pprox rac{f(x_0+h)-2f(x_0)+f(x_0-h)}{h^2}$$

Here,
$$x_0 = 5$$
 and $h = 0.05$.

$$f(x_0 + h) = f(5.05) = 1.6194$$

$$f(x_0) = f(5.00) = 1.6094$$

$$f(x_0 - h) = f(4.95) = 1.5994$$

$$h^2 = (0.05)^2 = 0.0025$$

$$h^2 = (0.05)^2 = 0.0025$$
 $f''(5) \approx \frac{1.6194 - 2(1.6094) + 1.5994}{0.0025} = \frac{1.6194 - 3.2188 + 1.5994}{0.0025} = \frac{0.0000}{0.0025} = 0.0000$

(b) Using formula (3) with h=0.1:

Here,
$$x_0 = 5$$
 and $h = 0.1$.

$$f(x_0 + h) = f(5.10) = 1.6292$$

$$f(x_0) = f(5.00) = 1.6094$$

$$f(x_0 - h) = f(4.90) = 1.5892$$

$$h^2 = (0.1)^2 = 0.01$$

$$f(x_0-h)=f(4.90)=1.3892$$
 $h^2=(0.1)^2=0.01$ $f''(5)pprox rac{1.6292-2(1.6094)+1.5892}{0.01}=rac{1.6292-3.2188+1.5892}{0.01}=rac{-0.0004}{0.01}=-0.0400$ (c) Using formula (4) with $h=0.05$:

(c) Using formula (4) with h=0.05:

Formula (4):
$$f''(x_0)pprox rac{-f(x_0+2h)+16f(x_0+h)-30f(x_0)+16f(x_0-h)-f(x_0-2h)}{12h^2}$$

Here, $x_0 = 5$ and h = 0.05.

$$f(x_0 + 2h) = f(5.10) = 1.6292$$

$$f(x_0 + h) = f(5.05) = 1.6194$$

$$f(x_0) = f(5.00) = 1.6094$$

$$f(x_0 - h) = f(4.95) = 1.5994$$

$$f(x_0 - 2h) = f(4.90) = 1.5892$$

$$12h^2 = 12(0.05)^2 = 12(0.0025) = 0.03$$

Numerator:

$$-1.6292 + 16(1.6194) - 30(1.6094) + 16(1.5994) - 1.5892$$

$$=-1.6292+25.9104-48.2820+25.5904-1.5892$$

$$= (25.9104 + 25.5904) - (1.6292 + 48.2820 + 1.5892)$$

$$=51.5008 - 51.5004 = 0.0004$$

$$f''(5) \approx \frac{0.0004}{0.03} = \frac{4}{300} = \frac{1}{75} \approx 0.0133$$

(d) Comparation

True value f''(5) = -0.04.

Comparing the approximations:

- (a) Approximation = 0.0000. Absolute error = |0.0000 (-0.04)| = 0.0400.
- (b) Approximation = -0.0400. Absolute error = |-0.0400 (-0.04)| = 0.0000.
- (c) Approximation pprox 0.0133 . Absolute error = $|0.013333\ldots (-0.04)| = |0.053333\ldots| pprox 0.0533$.

The approximation from (b) is the most accurate, as its absolute error is the smallest (in this case, 0 due to the rounding of the provided table values).

Problem 5

(a) Central-difference formula for $f^{\prime\prime}(x)+f^{\prime}(x)$ of order $O(h^2)$:

Let
$$f_c'(x)=rac{f(x+h)-f(x-h)}{2h}$$
 (which is $O(h^2)$) and $f_c''(x)=rac{f(x+h)-2f(x)+f(x-h)}{h^2}$ (which is $O(h^2)$).

Then,
$$f''(x)+f'(x)pprox f''_c(x)+f'_c(x)=rac{f(x+h)-2f(x)+f(x-h)}{h^2}+rac{f(x+h)-f(x-h)}{2h}$$
 .

This simplifies to:

$$f''(x) + f'(x) \approx \frac{2(f(x+h)-2f(x)+f(x-h))+h(f(x+h)-f(x-h))}{2(f(x+h)-2f(x))+h(f(x+h)-f(x-h))}$$

$$f''(x)+f'(x)\approx\frac{2(f(x+h)-2f(x)+f(x-h))+h(f(x+h)-f(x-h))}{2h^2}$$

$$f''(x)+f'(x)\approx\frac{(2+h)f(x+h)-4f(x)+(2-h)f(x-h)}{2h^2}.$$
 The order of this combined formula is $O(h^2)$.

(b) Backward-difference formula for f''(x) + f'(x) of order $O(h^2)$:

Let
$$f_b'(x) = \frac{3f(x) - 4f(x-h) + f(x-2h)}{2h}$$
 (which is $O(h^2)$) and $f_b''(x) = \frac{2f(x) - 5f(x-h) + 4f(x-2h) - f(x-3h)}{h^2}$ (which is $O(h^2)$).

Then,
$$f''(x)+f'(x)pprox f_b''(x)+f_b'(x)=rac{2f(x)-5f(x-h)+4f(x-2h)-f(x-3h)}{h^2}+rac{3f(x)-4f(x-h)+f(x-2h)}{2h}$$
 .

This simplifies to:

$$f''(x) + f'(x) \approx \frac{2(2f(x) - 5f(x - h) + 4f(x - 2h) - f(x - 3h)) + h(3f(x) - 4f(x - h) + f(x - 2h))}{2f(x)}$$

$$f''(x)+f'(x)pprox rac{2(2f(x)-5f(x-h)+4f(x-2h)-f(x-3h))+h(3f(x)-4f(x-h)+f(x-2h))}{2h^2} \ f''(x)+f'(x)pprox rac{(4+3h)f(x)-(10+4h)f(x-h)+(8+h)f(x-2h)-2f(x-3h)}{2h^2}.$$
 The order of this combined formula is $O(h^2)$

The order of this combined formula is (

(c) What would happen if a formula for f'(x) of order $O(h^4)$ were added to a formula for f''(x) of order $O(h^2)$?

If a formula for f'(x) with error $E_1=C_1h^4+\dots$ (order $O(h^4)$) is added to a formula for f''(x) with error $E_2=C_2h^2+\ldots$ (order $O(h^2)$), the total error is $E_{total}=E_1+E_2=C_2h^2+C_1h^4+\ldots$

The dominant term in the error for small h is C_2h^2 .

Therefore, the resulting formula would have an order of accuracy of $O(h^2)$.

Problem 6

• (base) → Home f(x)	work6 git:		<pre>Problem6.py analytic f'(x)</pre>	rel. err.	h_used
<pre>sin(cos(1/x))</pre>	0.707107	1.95156	1.95156	3.14e-11	1e-06
$X^{\Lambda}X^{\Lambda}X$	0.0001	1.01521	-8.20278	1.12	1e-09

Problem 7

(base) → Homework6 git:(main) ✗ python Problem7.py 0.999999999994271 0.0001