



# MOS Transistor Theory

#### Slides adapted from:

N. Weste, D. Harris, CMOS VLSI Design, © Addison-Wesley, 3/e, 2004

1

## EASTERN WASHINGTON UNIVERSITY

#### **Outline**

- The Big Picture
- MOS Structure
- Ideal I-V Charcteristics
- MOS Capacitance Models
- Non ideal I-V Effects
- Pass transistor circuits
- Tristate Inverter
- Switch level RC Delay Models



## The Big Picture

- So far, we have treated transistors as ideal switches
- An ON transistor passes a finite amount of current
  - Depends on terminal voltages
  - Derive current-voltage (I-V) relationships
- Transistor gate, source, drain all have capacitance
  - $I = C (\Delta V/\Delta t) \rightarrow \Delta t = (C/I) \Delta V$
  - Capacitance and current determine speed

3



## **MOS Transistor Symbol**

$$\left( -\right) \left( -$$

(a) (b) (c)

FIG 2.1 MOS transistor symbols



### **MOS Structure**

- Gate and body form MOS capacitor
- Operating modes
  - Accumulation
  - Depletion
  - Inversion





### nMOS Transistor Terminal Voltages

Mode of operation depends on V<sub>a</sub>, V<sub>d</sub>, V<sub>s</sub>

$$V_{as} = V_a - V_s$$

$$V_{gd} = V_g - V_d$$

$$V_{ds} = V_d - V_s = V_{gs} - V_{gd}$$



- Source and drain are symmetric diffusion terminals
  - By convention, source is terminal at lower voltage
  - Hence V<sub>ds</sub> ≥ 0
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
  - Cutoff
  - Linear
  - Saturation

6



## nMOS in cutoff operation mode

- No channel
- $I_{ds} = 0$



7

## EASTERN WASHINGTON UNIVERSITY

## nMOS in linear operation mode

- Channel forms
- Current flows from D
  - e- from S to D
- I<sub>ds</sub> increases with V<sub>ds</sub>
- Similar to linear resistor



(c)



## nMOS in Saturation operation mode

- Channel pinches off
- I<sub>ds</sub> independent of V<sub>ds</sub>
- We say current saturates
- Similar to current source







## I-V Characteristics (nMOS)

- In Linear region, I<sub>ds</sub> depends on
  - How much charge is in the channel?
  - How fast is the charge moving?



#### EASTERN WASHINGTON UNIVERSITY

## **Channel Charge**

- MOS structure looks like parallel plate capacitor while operating in inversion:
  - Gate oxide channel
- Q<sub>channel</sub> = CV
- $C = C_q = \varepsilon_{ox}WL/t_{ox} = c_{ox}WL$
- $V = V_{gc} V_t = (V_{gs} V_{ds}/2) V_t$

$$c_{ox} = \epsilon_{ox} / t_{ox}$$



Average gate to channel potential:

$$V_{gc} = (V_{gs} + V_{gd})/2 = V_{gs} - V_{ds}/2$$

FIG 2.5 Average gate to channel voltage



## Carrier velocity

- Charge is carried by e-
- Carrier velocity \( \nu \) proportional to lateral E-field between source and drain
- $\nu = \mu E$ μ called mobility
- $\blacksquare$  E =  $V_{ds}/L$
- Time for carrier to cross channel:
  - $t = L / \nu$

13



### nMOS Linear I-V

- Now we know
  - How much charge Q<sub>channel</sub> is in the channel
  - How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t} =$$

$$= \mu C_{\text{ox}} \frac{W}{L} \left( V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$



### nMOS Saturation I-V

- If V<sub>qd</sub> < V<sub>t</sub>, channel pinches off near drain
  - When  $V_{ds} > V_{dsat} = V_{qs} V_{t}$
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left( V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\beta}{2} \left( V_{gs} - V_t \right)^2$$

15



## EASTERN NWASHINGTON UNIVERSITY NMOS I-V Summary

first order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \Big(V_{gs} - V_t - \frac{V_{ds}}{2}\Big)V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \Big(V_{gs} - V_t\Big)^2 & V_{ds} > V_{dsat} & \text{saturation} \\ & \text{(and } V_{gs} > V_t) \end{cases}$$



## I-V characteristics of nMOS Transistor



FIG 2.7 I-V characteristics of ideal nMOS transistor

17



## Example

- 0.6 μm process from AMI Semiconductor
  - $t_{ox} = 100 \text{ Å}$
  - = m = 350 cm<sup>2</sup>/V\*s
  - $V_t = 0.7 V$
- Plot I<sub>ds</sub> vs. V<sub>ds</sub>
  - $V_{gs} = 0, 1, 2, 3, 4, 5$
  - Use W/L = 4/2 λ



$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left( \frac{3.9 \bullet 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left( \frac{W}{L} \right) = 120 \frac{W}{L} \, \mu A / V^2$$



## pMOS I-V Characteritics

- All dopings and voltages are inverted for pMOS
- Mobility  $\mu_{D}$  is determined by holes
  - Typically 2-3x lower than that of electrons μ<sub>n</sub>
  - 120 cm<sup>2</sup>/V\*s in AMI 0.6 mm process
- Thus pMOS must be wider to provide same current
  - In this class, assume  $\mu_{\text{n}}$  /  $\mu_{\text{p}}$  = 2

19



# EASTERN PMOS I-V Summary

first order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} > V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} > V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & V_{ds} & V_{dsat} & \text{saturation} \\ \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & V_{ds} & V_{dsat} & \text{saturation} \end{cases}$$



## I-V characteristics of pMOS Transistor



21



## Capacitances of a MOS Transistor

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
  - Creates channel charge necessary for operation (intrinsic capacitance)
- Source and drain have capacitance to body (parasitic capacitance)
  - Across reverse-biased diodes
  - Called diffusion capacitance because it is associated with source/drain diffusion



## Gate Capacitance

When the transistor is off, the channel is not inverted

$$C_g = C_{gb} = \epsilon_{ox}WL/t_{ox} = C_{ox}WL$$

- Let's call C<sub>ox</sub>WL = C<sub>0</sub>
- When the transistor is on, the channel extends from the source to the drain (if the transistor is unsaturated, or to the pinchoff point otherwise)
   C<sub>q</sub> = C<sub>gb</sub> + C<sub>gs</sub> + C<sub>gd</sub>

23



## **Gate Capacitance**

| Table 2.1            | Approximation of intrinsic MOS gate capacitance |                   |                    |  |  |
|----------------------|-------------------------------------------------|-------------------|--------------------|--|--|
| Parameter            | Cutoff                                          | Linear            | Saturation         |  |  |
| $C_{gb}$             | $C_0$                                           | 0                 | 0                  |  |  |
| $C_{gb}$ $C_{gs}$    | 0                                               | C <sub>0</sub> /2 | 2/3 C <sub>0</sub> |  |  |
| $C_{gd}$             | 0                                               | C <sub>0</sub> /2 | 0                  |  |  |
| $C_g = C_{gs} + C_g$ | $C_0$                                           | $C_0$             | 2/3 C <sub>0</sub> |  |  |



In reality the gate overlaps source and drain. Thus, the gate capacitance should include not only the intrinsic capacitance but also parasitic overlap capacitances:

$$C_{gs}(overlap) = C_{ox} W L_D$$
  
 $C_{gs}(overlap) = C_{ox} W L_D$ 

FIG 2.10 Overlap capacitance



## **Detailed Gate Capacitance**

| Capacitance             | Cutoff         | Linear               | Saturation             |
|-------------------------|----------------|----------------------|------------------------|
| C <sub>gb</sub> (total) | $C_0$          | 0                    | 0                      |
| C <sub>gd</sub> (total) | $C_{ox}WL_{D}$ | $C_0/2 + C_{ox}WL_D$ | $C_{ox}WL_{D}$         |
| C <sub>gs</sub> (total) | $C_{ox}WL_{D}$ | $C_0/2 + C_{ox}WL_D$ | $2/3 C_0 + C_{ox}WL_D$ |





Figure 3.31 Schematic representation of MOSFET oxide capacitances during (a) cut-off, (b) linear, and (c) saturation modes.

Source: M-S Kang, Y. Leblebici, CMOS Digital ICs, 3/e, 2003, McGraw-Hill

25



## **Diffusion Capacitance**

- $C_{sb}$ ,  $C_{db}$
- Undesired capacitance (parasitic)
- Due to the reverse biased p-n junctions between source diffusion and body and drain diffusion and body
- Capacitance depends on area and perimeter
  - Use small diffusion nodes
  - Comparable to C<sub>g</sub> for contacted diffusion
  - $\frac{1}{2}$  C<sub>g</sub> for uncontacted
  - Varies with process



FIG 2.9 Diffusion region geometries



# Lumped representation of the MOSFET capacitances



FIG 2.14 Capacitances of an MOS transistor

27



### Non-ideal I-V effects

- The saturation current increases less than quadratically with increasing  $V_{\alpha s}$ 
  - Velocity saturation
  - Mobility degradation
- Channel length modulation
- Body Effect
- Leakage currents
  - Sub-threshold conduction
  - Junction leakage
  - Tunneling
- Temperature Dependence
- Geometry Dependence



## Velocity saturation and mobility degradation

- At strong lateral fields resulting from high V<sub>ds</sub>, drift velocity rolls off due to carrier scattering and eventually saturates
- Strong vertical fields resulting from large V<sub>gs</sub> cause the carriers to scatter against the surface and also reduce the carrier mobility. This effect is called mobility degradation



FIG 2.16 Carrier velocity vs. electric field

29



#### Channel length modulation

- The reverse biased p-n junction between the drain and the body forms a depletion region with length L' that increases with V<sub>db</sub>. The depletion region effectively shorten the channel length to: L<sub>eff</sub> = L - L'
- Assuming the source voltage is close to the body votage V<sub>db</sub> ~ V<sub>sb</sub>. Hence, increasing V<sub>ds</sub> decrease the effective channel length.
- Shorter channel length results in higher current



FIG 2.18 I-V characteristics of nMOS transistor with channel length modulation



## **Body Effect**

- The potential difference between source and body V<sub>sb</sub> affects (increases) the threshold voltage
- Threshold voltage depends on:
  - V<sub>sb</sub>
  - Process
  - Doping
  - Temperature

31



#### **Subthreshold Conduction**

- The ideal transistor I-V model assumes current only flows from source to drain when V<sub>as</sub> > V<sub>t</sub>.
- In real transistors, current doesn't abruptly cut off below threshold, but rather drop off exponentially
- This leakage current when the transistor is nominally OFF depends on:
  - process  $(\varepsilon_{ox}, t_{ox})$
  - doping levels (N<sub>A</sub>, or N<sub>D</sub>)
  - device geometry (W, L)
  - temperature (T)
  - ( Subthreshold voltage (V<sub>t</sub>) )



#### Junction Leakage

- The p-n junctions between diffusion and the substrate or well for diodes.
- The well-to-substrate is another diode
- Substrate and well are tied to GND and VDD to ensure these diodes remain reverse biased
- But, reverse biased diodes still conduct a small amount of current that depends on:
  - Doping levels
  - Area and perimeter of the diffusion region
  - The diode voltage



FIG 2.19 Reverse-biased diodes in CMOS circuits

33

#### EASTERN WASHINGTON UNIVERSITY

## **Tunneling**

- There is a finite probability that carriers will tunnel though the gate oxide. This result in gate leakage current flowing into the gate
- The probability drops off exponentially with t<sub>ox</sub>
- For oxides thinner than 15-20 Å, tunneling becomes a factor



FIG 2.20 Gate leakage current from [Song01]



#### Temperature dependence

- Transistor characteristics are influenced by temperature
  - μ decreases with T
  - V<sub>t</sub> decreases linearly with T
  - I<sub>leakage</sub> increases with T
- ON current decreases with T OFF current increases with T
  - Thus, circuit performances are worst at high temperature





#### **Geometry Dependence**

- Layout designers draw transistors with W<sub>drawn</sub>, L<sub>drawn</sub>
- Actual dimensions may differ from some factor X<sub>W</sub> and X<sub>L</sub>
- The source and drain tend to diffuse laterally under the gate by L<sub>D</sub>, producing a shorter effective channel
- Similarly, diffusion of the bulk by W<sub>D</sub> decreases the effective channel width
- In process below 0.25 μm the effective length of the transistor also depends significantly on the orientation of the transistor

Leff = 
$$L_{drawn} + X_L - 2 L_B$$
  
Weff =  $W_{drawn} + X_W - 2 W_B$ 



#### Impact of non-ideal I-V effects

- Threshold is a significant fraction of the supply voltage
- Leakage is increased causing gates to
  - consume power when idle
  - limits the amount of time that data is retained
- Leakage increases with temperature
- Velocity saturation and mobility degradation result in less current than expected at high voltage
  - No point in trying to use high VDD to achieve fast transistors
  - Transistors in series partition the voltage across each transistor thus experience less velocity saturation
    - Tend to be a little faster than a single transistor
    - Two nMOS in series deliver more than half the current of a single nMOS transistor of the same width
- Matching: same dimension and orientation



FIG 2.37 Current in series transistors





#### **Pass Transistors**

- nMOS pass transistors pull no higher than V<sub>DD</sub>-V<sub>tn</sub>
  - Called a degraded "1"
  - Approach degraded value slowly (low I<sub>ds</sub>)
- pMOS pass transistors pull no lower than |V<sub>tp</sub>|
  - Called a degraded "0"
  - Approach degraded value slowly (low I<sub>ds</sub>)



## Pass transistor Circuits

(a) 
$$V_{DD} \perp V_s = V_{DD} - V_{tn}$$

(b) 
$$\sqrt[V_s]{V_{tp}}$$

$$V_{DD}$$
 $V_{DD}$ 
 $V_{DD}$ 
 $V_{DD}$ 
 $V_{DD}$ 
 $V_{DD}$ 
 $V_{DD}$ 
 $V_{DD}$ 

FIG 2.31 Pass transistor threshold drops 39



## Transmission gate ON resistance



At a given operating point:

$$R = \left(\frac{3l_{ds}}{3V_{ds}}\right)^{-1}$$



FIG 2.32 Resistance of a transmission gate as a function of input voltage

Input voltage Vin is swept from GND to VDD





### Effective resistance of a transistor

- First-order transistor models have limited value
  - Not accurate enough for modern transistors
  - Too complicated for hand analysis
- Simplification: treat transistor as resistor
  - Replace I<sub>ds</sub>(V<sub>ds</sub>, V<sub>qs</sub>) with effective resistance R
  - $I_{ds} = V_{ds}/R$
  - R averaged across switching range of digital gate
- Too inaccurate to predict current at any given time
  - But good enough to predict RC delay (propagation delay of a logic gate)



### **RC Values**

- Capacitance
  - $C = C_g = C_s = C_d = 2 \text{ fF/}\mu\text{m}$  of gate width
  - Values similar across many processes
- Resistance
  - $R \approx 6 \text{ K}\Omega^*\mu\text{m}$  in 0.6um process
  - Improves with shorter channel lengths
- Unit transistors
  - May refer to minimum contacted device (4/2 λ)
  - or maybe 1 μm wide device
  - Doesn't matter as long as you are consistent

43



## RC Delay Models

- Use equivalent circuits for MOS transistors
  - ideal switch + capacitance and ON resistance
  - unit nMOS has resistance R, capacitance C
  - unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width



## Switch level RC models

$$g \xrightarrow{d} kC$$

$$g \xrightarrow{k} kC$$

$$g \xrightarrow{k} kC$$

$$g \stackrel{d}{=} kC$$

$$\downarrow 2R/k$$

$$\downarrow 2R/k$$

$$\downarrow kC$$

$$\downarrow kC$$

$$\downarrow kC$$

$$\downarrow kC$$

$$\downarrow kC$$

$$\downarrow kC$$

FIG 2.34 Equivalent RC circuit models

45

#### EASTERN WASHINGTON

## **Inverter Delay Estimate**

Estimate the delay of a fanout-of-1 inverter



FIG 2.35 Inverter propagation delay

delay = 6RC



#### Resistance of a unit transmission gate

- The effective resistance of a transmission gate is the parallel of the resistance of the two transistor
- Approximately R in both directions
- Transmission gates are commonly built using equal-sized transistors
- Boosting the size of the pMOS only slightly improve the effective resistance while significantly increasing the capacitance

Effections dor resistants in the of a transition of a transition passing poor not the poor direction as double

FIG 2.36 Effective resistance of a unit transmission gate





### **Summary**

- Models are only approximations to reality, not reality itself
- Models cannot be perfectly accurate
  - Little value in using excessively complicated models, particularly for hand calculations
- To first order current is proportional to W/L
  - But, in modern transistors L<sub>eff</sub> is shorter than L<sub>drawn</sub>
    - Doubling the L<sub>drawn</sub> reduces current more than a factor of two
    - Two series transistors in a modern process deliver more than half the current of a single transistor
- Use Transmission gates in place of pass transistors
- Transistor speed depends on the ratio of current to capacitance
  - Sources of capacitance (voltage dependents)
    - Gate capacitance
    - Diffusion capacitance