Sufficient conditions for elliptic problem of optimal control in the Sobolev space $W_0^{1,2}(I)$, where I is a bounded interval in \mathbb{R}

S.Lahrech & A.Addou

Université Mohamed I, Faculté des Sciences, Département de mathématiques et informatique, Oujda, Maroc.

email: lahrech@sciences.univ-oujda.ac.ma,addou@sciences.univ-oujda.ac.ma

Abstract

This paper is concerned with the local minimization problem for a variety of non Frechet-differentiable Gâteaux functional $J(f) \equiv \int\limits_I v(x,u(x),f(x))dx$

in the Sobolev space $(W_0^{1,2}(I), \|.\|_p)$, where u is the solution of the Dirichlet problem for a linear uniformly elliptic operator with nonhomogenous term f and $\|.\|_p$ is the norm generated by the metric space $L^p(I)$, (p > 1). We use a recent extension of Frechet-Differentiability (approach of Taylor mappings see [1]), and we give various assumptions on v to guarantee a critical point is a strict local minimum.

Finally, we give an example of a control problem, where classical Frechet differentiability can't be used and their approach of Taylor mappings works.

AMS subject. Classification:49xx49Kxx Keywords. Approach of Taylor mappings. Elliptic problem. Optimal control

1 Preliminaries

1.1 Description of the optimization problem

Let A be an elliptic operator of second order:

$$Au \equiv \sum_{|l| \leq 1, |s| \leq 1} (-1)^l \mathcal{D}^l(a_{ls}(x)\mathcal{D}^s u), \text{ where } a_{ls}(x) \in \mathcal{D}(\overline{I}).$$

Suppose that I is a bounded interval in \mathbb{R} .

Let us consider the problem:

$$\begin{cases} Au = f, & (1.1) \\ u/\partial I = 0. & (1.2) \end{cases}$$

For this problem, let us state Agmon's-Douglis-Niremberg's theorem:

Theorem 1.1 Let $1 < q < \infty$, then we have

 $\forall f \in L^q(I)$, there exists a unique solution $u \in W^{2,q}(I) \cap W_0^{1,q}(I)$ of problem (1.1), (1.2). Moreover, $\forall m \geq 0$ if $f \in W^{m,q}(I)$, then $u \in W^{m+2,q}(I)$ and $||u||_{W^{m+2,q}(I)} \leq c||f||_{W^{m,q}(I)}$.

Let $f \in F \subset W_0^{1,2}(I)$ a control and let u the solution of problem (1.1),(1.2) in $W_0^{1,2}(I) \cap W^{2,2}(I)$ associated to f.

Let us consider
$$J_k(f) = \int_I v_k(x, u(x), f(x)) dx + c_k ||f||_{W^{1,2}(I)}^2, \quad (k = 0, 1, 2, ..., s_1)$$

and
$$J_k(f) = \int_I v_k(x, u(x), f(x)) dx$$
, $(k = s_1 + 1, s_1 + 2, ..., s_1 + s_2)$,

where each function $v_k: I \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is measurable on $I \times \mathbb{R} \times \mathbb{R}$ and has second derivative with respect to (u, f) on $\mathbb{R} \times \mathbb{R}$ for almost all $x \in I$.

Put
$$J = (J_{s_1+1},, J_{s_1+s_2}).$$

We consider three problems of minimizing the functional $J_0(f)$:

$$i)J_0(f) \rightarrow \min,$$
 (1.3)

$$ii)J_0(f) \rightarrow \min, J(f) = 0,$$
 (1.4)

$$iii)J_0(f) \rightarrow \min, J(f) = 0, J_k(f) \le 0, (k = 1, 2, ..., s_1).$$
 (1.5)

We must choose a control f^0 in order that the solution u^0 of the problem (1.1),(1.2) with $f = f^0$ satisfies the inequality type: $J_k(f) \leq 0$, $(1 \leq k \leq s_1)$ and the equality type: $J_k(f) = 0$, $(s_1 + 1 \leq k \leq s_1 + s_2)$ and the functional $J_0(f)$ takes a minimum valued. This control f^0 will be called optimal.

1.2 Taylor mapping and lower semi-Taylor mapping

Let $\|.\|_{W^{1,2}(I)}$ the usual norm in $W_0^{1,2}(I)$, F a subset of $W_0^{1,2}(I)$, τ a topology in F, Y a normed space, and $\|.\|_Y$ a norm in Y.

According to [1], a mapping $r: F \longrightarrow Y$ (respectively, $r: F \longrightarrow \mathbb{R}$) is said to be infinitesimally $(\tau, \|.\|_{W^{1,2}(I)})$ -small (respectively, infinitesimally lower $(\tau, \|.\|_{W^{1,2}(I)})$ -semismall) of order p_1 at $f \in F$ if : $\forall \varepsilon > 0$, $\exists O_f \in \tau, \forall h \in W_0^{1,2}(I)$ we have

$$f + h \in O_f \Rightarrow ||r(h)||_Y \le \varepsilon ||h||_{W^{1,2}(I)}^{p_1},$$

(respectively, $\forall \ \varepsilon > 0, \ \exists \ O_f \in \tau, \forall \ h \ \in W_0^{1,2}(I)$ we have

$$f + h \in O_f \Rightarrow r(h) \ge -\varepsilon ||h||_{W^{1,2}(I)}^{p_1});$$

here and below, O_f is a neighborhood of f in (F, τ) .

A mapping $J: F \to Y$ (respectively, $J: F \to \mathbb{R}$) is called a $(\tau, \|.\|_{W^{1,2}(I)})$ -Taylor (respectively, lower $(\tau, \|.\|_{W^{1,2}(I)})$ -semi-Taylor) mappings of order p_1 at $f \in F$ if there exist k -linear symmetric (not necessarily continuous) mappings $J^{(k)}(f): (W_0^{1,2}(I))^k \to Y$ (respectively, $J^{(k)}(f): (W_0^{1,2}(I))^k \to \mathbb{R}, k = 1,..., p_1$, such that

$$J(f+h) - J(f) = J^{(1)}(f)h + 2^{-1}J^{(2)}(f)(h,h) + \dots + (p_1)!^{-1}J^{(p_1)}(f)(h,\dots h) + r(h),$$

where $r: F \longrightarrow Y$ (respectively, $r: F \longrightarrow \mathbb{R}$) is an infinitesimally $(\tau, \|.\|_{W^{1,2}(I)})$ -small (respectively, infinitesimally lower $(\tau, \|.\|_{W^{1,2}(I)})$ -semismall) mappings of order p_1 at $f \in F$.

We note that $J^{(1)}(f), \ldots, J^{(p_1)}(f)$ are not in general single-valued.

The set of tuples $(J^{(1)}(f), \ldots, J^{(p_1)}(f))$ is denoted by $S_n(J, f)$.

Let us solve the problems (1.3),(1.4) and (1.5).

For the problem (1.5) let us introduce the Lagrange functions:

$$\mathcal{L}(f, y^*, \lambda, \lambda_0) = \sum_{k=0}^{s_1} \lambda_k J_k(f) + \langle y^*, J(f) \rangle,$$
(1.6)

$$\mathcal{L}_f(f, y^*, \lambda, \lambda_0) = \sum_{k=0}^{s_1} \lambda_k J_k^{(1)}(f) + \langle y^*, J^{(1)}(f) \rangle, \tag{1.7}$$

$$\mathcal{L}_{ff}(f, y^*, \lambda, \lambda_0) = \sum_{k=0}^{s_1} \lambda_k J_k^{(2)}(f) + \langle y^*, J^{(2)}(f) \rangle, \tag{1.8}$$

where $\lambda_0 \in \mathbb{R}$, $y^* \in (\mathbb{R}^{s_2})^*$, $\lambda \in (\mathbb{R}^{s_1})^*$.

Also for the problem (1.4), let us introduce the Lagrange functions:

$$\mathcal{L}(f, y^*, \lambda_0) = \lambda_0 J_0(f) + \langle y^*, J(f) \rangle, \tag{1.9}$$

$$\mathcal{L}_f(f, y^*, \lambda_0) = \lambda_0 J_0^{(1)}(f) + \langle y^*, J^{(1)}(f) \rangle, \tag{1.10}$$

$$\mathcal{L}_{ff}(f, y^*, \lambda_0) = \lambda_0 J_0^{(2)}(f) + \langle y^*, J^{(2)}(f) \rangle, \tag{1.11}$$

where $\lambda_0 \in \mathbb{R}, \ y^* \in (\mathbb{R}^{s_2})^*$.

Let us give the following lemma where the proof can be traced back to [1].

Lemma 1.1 Let (Ω, Σ, μ) be a measure space with σ - finite measure, and let X be a complete linear metric space continuously imbedded in the metric space $M(\Omega)$ of equivalence classes of measurable almost everywhere finite functions x: $\Omega \longrightarrow \mathbb{R}$, with the metrizable topology $\tau(meas)$ of convergence in measure on each set of Σ finite measure.

Suppose that X contains with each element x(s) the function |x(s)|, the metric in X is translation-invariant, and $\rho(x,0) = \rho(|x|,0)$ for each $x \in X$. Then for each sequence $x_n \to 0$ in X there exist a subsequence x_{n_k} and an element $z \in X$ such that $|x_{n_k}(s)| \le z(s)$, $k=1,2,\ldots$ in the sense of the natural order on classes of functions.

2 Sufficient conditions of local minimum for Gâteaux functional of second order Dirichlet problem

Let I a bounded interval in $\mathbb R$ and let F a subset of $W_0^{1,2}(I)$. Let G the functional defined on F by: $G(f) = \int\limits_I v(x,u(x),f(x))dx$, where u(x) is the solution of problem (1.1),(1.2) in $W_0^{1,2}(I)\cap W^{2,2}(I)$ and the function $v:I\times\mathbb R\times\mathbb R\to\mathbb R$ is measurable on $I\times\mathbb R\times\mathbb R$ and has second derivative with respect to (u,f) on $\mathbb R\times\mathbb R$ for almost all $x\in I$. Suppose also that $v,v_{uf}^{(2)},\ v_{fu}^{(2)}$ are continuous in $I\times\mathbb R\times\mathbb R$.

Let τ_p the topology generated by the metric space $L^p(I)$, where p > 1. In the rest of this section a = const.

Theorem 2.1 Suppose that with every requirements of paragraph (1) and (2) the following conditions are verified: $v_{uf}^{(2)}$, $v_{fu}^{(2)}$ are continuous in $I \times \mathbb{R} \times \mathbb{R}$, p > 1.

Let us suppose also that

$$|v(x, u, f)| + |v_{u}^{(1)}(x, u, f)| + |v_{f}^{(1)}(x, u, f)| \le a(|u|^{p+2} + |f|^{p+2}) + b_{5}(x)$$

$$|v_{uu}^{(2)}(x, u, f)| + 2|v_{uf}^{(2)}(x, u, f)| + |v_{ff}^{(2)}(x, u, f)| \le a(|u|^{p} + |f|^{p}) + b_{6}(x)$$

where $b_5 \in L_1(I), b_6 \in L_1(I)$.

then G is $(\tau_p, \|.\|_{W_2^1(I)})$ Taylor mapping of second order at every $f \in F$.

Moreover $G^{(2)}(f) \in \mathcal{B}((W_0^{1,2}(I), ||.||_{W_2^1(I)}), \mathbb{R})$

and
$$G^{(1)}(f) \in \mathcal{L}((W_0^{1,2}(I), ||.||_{W_2^1(I)}), \mathbb{R})$$

Proof

let us prove first that the functional G is finite .

We have

$$|G(f)| = \left| \int_{I} v(x, u, f) dx \right|$$

$$\leq \int_{I} |v(x, u, f)| dx$$

$$\leq a \left(\int_{I} |u(x)|^{p+2} dx + \int_{I} |f(x)|^{p+2} dx \right) + \int_{I} b_{5}(x) dx$$

$$\leq a \left(||u(x)||_{L_{p+2}(I)}^{p+2} + ||f(x)||_{L_{p+2}(I)}^{p+2} \right) + ||b_{5}(x)||_{L_{1}(I)}$$

$$\leq c_{1} \left(||u(x)||_{W_{2}^{1}(I)}^{p+2} + ||f(x)||_{W_{2}^{1}(I)}^{p+2} \right) + ||b_{5}(x)||_{L_{1}(I)}$$

$$< \infty.$$

thus the functional G is finite.

let
$$R: W_0^{1,2}(I) \longrightarrow W_0^{1,2}(I)$$

 $h \longmapsto (R(h))(x)$

where (R(h))(x) is a solution of problem

$$\begin{cases} Au = h & (2.1) \\ u/_{\partial I} = 0 & (2.2) \end{cases}$$

such a solution exists $\forall h \in W_0^{1,2}(I)$.

let $G^{(1)}(f)$ defined by :

$$G^{(1)}(f)h = \lim_{\lambda \to 0} \lambda^{-1} \Big(G(f + \lambda h) - G(f) \Big)$$

$$\begin{split} &=\lim_{\lambda\to 0}\lambda^{-1}\int_{I}\Big[v(x,u+\lambda R(h),f+\lambda h)-v(x,u,f)\Big]dx\\ &=\lim_{\lambda\to 0}\lambda^{-1}\int_{I}\Big[v(x,u+\lambda R(h),f+\lambda h)-v(x,u,f+\lambda h)+v(x,u,f+\lambda h)\\ &-v(x,u,f)\Big]dx\\ &=\lim_{\lambda\to 0}\int_{I}\Big[\int_{0}^{1}v_{u}^{(1)}(x,u+\theta\lambda R(h),f+\lambda h)R(h)d\theta+\int_{0}^{1}v_{I}^{(1)}(x,u,f+\rho\lambda h)hd\rho\Big]dx\\ &=\lim_{\lambda\to 0}\int_{I}\Big[\int_{0}^{1}\Big[v_{u}^{(1)}(x,u+\theta\lambda R(h),f+\lambda h)-v_{u}^{(1)}(x,u,f)\Big]R(h)d\theta\\ &+\int_{0}^{1}v_{u}^{(1)}(x,u,f)R(h)d\theta+\int_{0}^{1}\Big[v_{I}^{(1)}(x,u,f+\rho\lambda h)-v_{I}^{(1)}(x,u,f)\Big]R(h)d\theta\\ &+\int_{0}^{1}v_{u}^{(1)}(x,u,f)d\rho\Big]dx\\ &=\int_{I}v_{u}^{(1)}(x,u,f)R(h)dx+\int_{I}v_{I}^{(1)}(x,u,f)hdx\\ &\text{therefore: }G^{(1)}(f)=\int_{I}v_{u}^{(1)}(x,u,f)R(h)dx+\int_{I}v_{I}^{(1)}(x,u,f)hdx. \qquad (2.3)\\ G^{(2)}(f)(h_{1},h_{2})&=\lim_{\lambda\to 0}\lambda^{-1}\Big[G^{(1)}(f+\lambda h_{2})-G^{(1)}(f)\Big]h_{1}\\ &=\lim_{\lambda\to 0}\lambda^{-1}\int_{I}\Big[v_{u}^{(1)}(x,u+\lambda R(h_{2}),f+\lambda h_{2})-v_{u}^{(1)}(x,u,f)\Big]R(h_{1})dx\\ &+\int_{I}\Big[v_{I}^{(1)}(x,u+\lambda R(h_{2}),f+\lambda h_{2})-v_{u}^{(1)}(x,u,f+\lambda h_{2})\\ &+v_{u}^{(1)}(x,u,f+\lambda h_{2})-v_{u}^{(1)}(x,u,f)\Big]R(h_{1})dx\\ &+\int_{I}\Big[v_{I}^{(1)}(x,u+\lambda R(h_{2}),f+\lambda h_{2})-v_{u}^{(1)}(x,u,f+\lambda h_{2})\\ &+v_{H}^{(1)}(x,u+\lambda R(h_{2}),f+\lambda h_{2})-v_{I}^{(1)}(x,u,f+\lambda h_{2})\\ &+v_{I}^{(1)}(x,u+\lambda R(h_{2}),f+\lambda h_{2})-v_{I}^{(1)}(x,u,f+\lambda h_{2})\\ &+v_{I}^{(1)}(x,u,f+\lambda h_{2})-v_{I}^{(1)}(x,u,f)\Big]h_{I}dx\Big] \end{aligned}$$

$$= \lim_{\lambda \to 0} \lambda^{-1} \left[\int_{I}^{1} v_{uu}^{(2)}(x, u + \theta \lambda R(h_{2}), f + \lambda h_{2}) \lambda R(h_{2}) d\theta \right.$$

$$+ \int_{0}^{1} v_{fu}^{(2)}(x, u, f + \rho \lambda h_{2}) \lambda h_{2} d\rho \left[R(h_{1}) dx \right.$$

$$+ \int_{I}^{1} \left[\int_{0}^{1} v_{uf}^{(2)}(x, u + \theta \lambda R(h_{2}), f + \lambda h_{2}) \lambda R(h_{2}) d\theta \right.$$

$$+ \int_{0}^{1} v_{ff}^{(2)}(x, u, f + \rho \lambda h_{2}) \lambda h_{2} d\rho \left[h_{1} dx \right]$$

$$= \int_{I}^{1} v_{uu}^{(2)}(x, u, f) R(h_{1}) R(h_{2}) dx + \int_{I}^{1} v_{uf}^{(2)}(x, u, f) R(h_{1}) h_{2} dx$$

$$+ \int_{I}^{1} v_{fu}^{(2)}(x, u, f) h_{1} R(h_{2}) dx + \int_{I}^{1} v_{ff}^{(2)}(x, u, f) h_{1} h_{2} dx. \tag{2.4}$$

The linearity and bilinearity of $G^{(1)}(f)$ and $G^{(2)}(f)$ are evidents. Let us prove now that they are bounded.

$$|G^{(1)}(f)h| \leq \int_{I} |v_{u}^{(1)}(x,u,f)| |R(h)| dx + \int_{I} |v_{f}^{(1)}(x,u,f)| |h| dx$$

$$\leq \int_{I} \left[a \left(|u(x)|^{p+2} + |f(x)|^{p+2} \right) + |b_{5}(x)| \right] \left[|R(h)| + |h| \right] dx$$

$$\leq \int_{I} \left[a \left(|u(x)|^{p+2} + |f(x)|^{p+2} \right) + |b_{5}(x)| \right] \left[\max_{x \in \bar{I}} (R(h))(x) + \max_{x \in \bar{I}} h(x) \right] dx$$

$$= \left[a \left(||u(x)||_{L_{p+2}(I)}^{p+2} + ||f(x)||_{L_{p+2}(I)}^{p+2} \right) + ||b_{5}(x)||_{L_{1}(I)} \right] \left[||R(h)||_{C(\bar{I})} + ||h||_{C(\bar{I})} \right]$$

$$\leq c_{2} \left[||h||_{W_{2}^{1}(I)} + ||R(h)||_{W_{2}^{1}(I)} \right].$$

Thus $\exists c_2 > 0$ such that $|G^{(1)}(f)h| \leq c_2 (||R(h)||_{W_2^1(I)} + ||h||_{W_2^1(I)})$. Since R(h) depends continually of h, then $|G^{(1)}(f)h| \leq c_3 ||h||_{W_2^1(I)}$, where $c_3 > 0$.

Consequently $G^{(1)}(f) \in \mathcal{L}((W_0^{1,2}(I), ||.||_{W_2^1(I)}), \mathbb{R}).$

$$|G^{(2)}(f)(h_1, h_2)| \le \int_I \left[a(|u|^p + |f|^p) + |b_6(x)| \right]$$

$$\left[|R(h_1)||R(h_2)| + |R(h_1)||h_2| + |h_1||R(h_2)| + |h_1||h_2| \right] dx$$

$$\leq \left[a \left(||u(x)||_{L_p(I)}^p + ||f(x)||_{L_p(I)}^p \right) + ||b_6(x)||_{L_1(I)} \right]$$

$$\left[\max_{x \in \bar{I}} |[R(h_1)](x)| \max_{x \in \bar{I}} |[R(h_2)](x)| + \max_{x \in \bar{I}} |[R(h_1)](x)| \max_{x \in \bar{I}} |h_2(x)| \right]$$

$$+ \max_{x \in \bar{I}} |h_1(x)| \max_{x \in \bar{I}} |[R(h_2)](x)| + \max_{x \in \bar{I}} |h_1(x)| \max_{x \in \bar{I}} |h_2(x)| \right]$$

$$\leq c_3 \left[||u||_{W_2^1(I)} + ||f||_{W_2^1(I)} + ||b_6(x)||_{L_1(I)} \right]$$

$$\left[||R(h_1)||_{C(\bar{I})} ||R(h_2)||_{C(\bar{I})} + ||R(h_1)||_{C(\bar{I})} ||h_2||_{C(\bar{I})} \right]$$

$$\leq c_4 \left[||R(h_1)||_{W_2^1(I)} ||R(h_2)||_{W_2^1(I)} + ||R(h_1)||_{W_2^1(I)} ||h_2||_{W_2^1(I)} + ||h_1||_{W_2^1(I)} ||h_2||_{W_2^1(I)} \right]$$

$$\leq c_5 ||h_1||_{W_1^1(I)} ||h_2||_{W_1^1(I)}.$$

Thus $G^{(2)}(f) \in \mathcal{B}((W_0^{1,2}(I), ||.||_{W_2^1(I)}), \mathbb{R}).$

Let us prove now that G is $(\tau_p, ||.||_{W_2^1(I)})$ Taylor mapping, where τ_p is a topology generated by $L_p(I)$.

Let $f \in F$, and let us prove that :

$$r(h) \equiv G(f+h) - G(f) - G^{(1)}(f)h - 2^{-1}G^{(2)}(f)(h,h)$$

is $(\tau_p, \|.\|_{W^1_2(I)})$ infinitely small of second order at zero.

Assume the contrary, then $\exists (\tilde{h}_m)_{m \in \mathbb{N}} \in F \text{ and } \varepsilon > 0 \text{ such that}$

$$\tilde{h}_m \to 0 \text{ in } L_p(I) \text{ and } r(\tilde{h}_m) \ge \varepsilon ||\tilde{h}_m||_{W_2^1(I)}^2.$$

Using the Agmon's-Douglis-Niremberg's theorem, we obtain

 $R(\tilde{h}_m) \to 0$ in $L_p(I)$, and using the lemma (1.1), we deduce that there exists $\tilde{Z}(x)$ in $L_p(I)$: $|(R(\tilde{h}_m))(x)| \leq \tilde{z}(x)$.

let
$$\tilde{Z}_0(x) = \tilde{z}(x) + |u(x)|$$
, then $|u(x)| + |(R(\tilde{h}_m))(x)| \leq \tilde{Z}_0(x)$ and $Z_0 \in L_p(I)$.

Analogously, for $f \in W_2^1(I)$, we obtain $|f(x)| + |\tilde{h}_m| \leq \tilde{Z}_1$, where $Z_1 \in L_p(I)$ We have

$$r(h) = \int_{I} \left[v(x, u + R(h), f + h) - v(x, u, f) - v_u^{(1)}(x, u, f) R(h) - v_f^{(1)}(x, u, f) h \right]$$

$$-2^{-1} \left[v_{uu}^{(2)}(x,u,f) R^2(h) + 2 v_{uf}^{(2)}(x,u,f) R(h) h + v_{ff}^{(2)}(x,u,f) h^2 \right] dx.$$

And since

$$\begin{split} v(x,u+R(h),f+h)-v(x,u,f) &= v(x,u+R(h),f+h)-v(x,u,f+h) \\ &+v(x,u,f+h)-v(x,u,f) \\ &= \int_0^1 v_u^{(1)}(x,u+\theta R(h),f+h)R(h)d\theta \\ &+ \int_0^1 v_f^{(1)}(x,u,f+\lambda h)hd\lambda \\ &= \int_0^1 R(h) \big[v_u^{(1)}(x,u+\theta R(h),f+h) \\ &-v_u^{(1)}(x,u+\theta R(h),f)+v_u^{(1)}(x,u+\theta R(h),f) \big] d\theta \\ &+ \int_0^1 v_f^{(1)}(x,u,f+\lambda h)hd\lambda \\ &= \int_0^1 R(h)v_u^{(1)}(x,u+\theta R(h),f)d\theta \\ &+ \int_0^1 v_f^{(1)}(x,u,f+\lambda h)hd\lambda \\ &+ \int_0^1 v_f^{(1)}(x,u,f+\lambda h)hd\lambda \\ &+ \int_0^1 v_f^{(1)}(x,u,f+\lambda h)hd\lambda \\ \end{split}$$

then

$$\begin{split} r(h) &= \int_{I} \int_{0}^{1} \left[v_{u}^{(1)}(x,u+\theta R(h),f+h)R(h) - v_{u}^{(1)}(x,u,f)R(h) - 2^{-1}v_{uu}^{(2)}(x,u,f)R^{2}(h) \right] d\theta dx \\ &+ \int_{I} \int_{0}^{1} \left[v_{f}^{(1)}(x,u,f+\lambda h)h - v_{f}^{(1)}(x,u,f)h - 2^{-1}v_{ff}^{(2)}(x,u,f)h^{2} \right] d\lambda dx \\ &- \int_{I} \int_{0}^{1} v_{uf}^{(2)}(x,u,f)R(h)h d\lambda dx + \int_{I} \int_{0}^{1} \int_{0}^{1} v_{uf}^{(2)}(x,u+\theta R(h),f+\lambda h)hR(h)d\lambda d\theta dx \\ &= \int_{I} \int_{0}^{1} \left[v_{u}^{(1)}(x,u+\theta R(h),f) - v_{u}^{(1)}(x,u,f) - \theta v_{uu}^{(2)}(x,u,f)R(h) \right] R(h) d\theta dx \\ &+ \int_{I} \int_{0}^{1} \left[v_{f}^{(1)}(x,u,f+\lambda h) - v_{f}^{(1)}(x,u,f) - \lambda v_{ff}^{(2)}(x,u,f)h \right] h d\lambda dx \end{split}$$

$$-\int_{I} \int_{0}^{1} v_{uf}^{(2)}(x, u, f) R(h) h d\lambda dx + \int_{I} \int_{0}^{1} \int_{0}^{1} v_{uf}^{(2)}(x, u + \theta R(h), f + \lambda h) h R(h) d\lambda d\theta dx.$$

let A_m, B_m two functions defined by :

$$A_m(x,\theta) = \begin{cases} \frac{v_u^{(1)}(x, u + \theta R(\tilde{h}_m), f) - v_u^{(1)}(x, u, f)}{R(\tilde{h}_m)} - \theta v_{uu}^{(2)}(x, u, f) & \text{if } R(\tilde{h}_m) \neq 0\\ 0 & \text{if } R(\tilde{h}_m) = 0 \end{cases}$$

$$B_m(x,\lambda) = \begin{cases} \frac{v_f^{(1)}(x, u, f + \lambda \tilde{h}_m) - v_f^{(1)}(x, u, f)}{\tilde{h}_m} - \lambda v_{ff}^{(2)}(x, u, f) & \text{if } \tilde{h}_m \neq 0\\ 0 & \text{if } \tilde{h}_m = 0 \end{cases}$$

Let F_m defined by:

$$F_m(x,\theta,\lambda) = v_{uf}^{(2)}(x,u(x) + \theta R(\tilde{h}_m), f + \lambda \tilde{h}_m) - v_{uf}^{(2)}(x,u(x),f),$$

then

$$r(\tilde{h}_m)| = \left| \int_I \int_0^1 A_m(x,\theta) R^2(\tilde{h}_m) d\theta dx + \int_I \int_0^1 B_m(x,\lambda) \tilde{h}_m^2 d\lambda dx \right|$$
$$+ \int_I \int_0^1 \int_0^1 F_m(x,\theta,\lambda) R(\tilde{h}_m) \tilde{h}_m d\lambda d\theta dx \right|.$$

So we obtain

$$|r(\tilde{h_m})| \leq \int_0^1 \int_I |A_m(x,\theta)| dx d\theta \max_{x \in \tilde{I}} |[R(\tilde{h}_m)](x)|^2$$

$$+ \int_0^1 \int_I |B_m(x,\lambda)| dx d\lambda \max_{x \in \tilde{I}} |\tilde{h}_m|^2$$

$$+ \int_0^1 \int_0^1 \int_I |F_m(x,\theta,\lambda)| dx d\lambda d\theta \max_{x \in \tilde{I}} |[R(\tilde{h}_m)](x)| \max_{x \in \tilde{I}} |\tilde{h}_m|$$

$$\leq c_6 \left[\int_0^1 \int_I |A_m(x,\theta)| dx d\theta + \int_0^1 \int_I |B_m(x,\lambda)| dx d\lambda \right]$$

$$+ \int_0^1 \int_0^1 \int_I |F_m(x,\theta,\lambda)| dx d\lambda d\theta \right] ||\tilde{h}_m||_{W_2^1(I)}, \qquad (2.8)$$

and

$$|A_m(x,\theta)| \le |v_{uu}^{(2)}(x,u(x)+k_m(x)\theta[R(\tilde{h_m})](x),f)| + |v_{uu}^{(2)}(x,u(x),f)|$$

$$\leq a \left[\left(|u(x)| + |R(\tilde{h_m})| \right)^p + |f(x)|^p \right] + |b_6(x)| + a \left[|u(x)|^p + |f(x)|^p \right] + |b_6(x)|$$

$$\leq a \left[|\tilde{Z}_0(x)|^p + 2|f(x)|^p + |u(x)|^p \right] + 2|b_6(x)| \in L_1(I).$$

Analogously

$$|B_{m}(x,\lambda)| \leq |v_{ff}^{(2)}(x,u(x),\lambda S_{m}(x)\tilde{h}_{m}(x)+f)| + |v_{ff}^{(2)}(x,u(x),f)|$$

$$\leq a\Big[|u(x)|^{p} + \Big(|f(x)| + |\tilde{h}_{m}|\Big)^{p}\Big] + |b_{6}(x)| + a\Big[|u(x)|^{p} + |f(x)|^{p}\Big] + |b_{6}(x)|$$

$$\leq a\Big[2|u(x)|^{p} + |\tilde{Z}_{1}(x)|^{p} + |f(x)|^{p}\Big] + 2|b_{6}(x)| \in L_{1}(I).$$

$$|F_m(x,\theta,\lambda)| \leq |v_{uf}^{(2)}(x,u(x),f)| + |v_{uf}^{(2)}(x,u(x)+\theta R(\tilde{h}_m),f+\lambda \tilde{h}_m)|$$

$$\leq a \left[|u(x)|^p + |f(x)|^p\right] + |b_6(x)| + a \left[|\tilde{Z}_0(x)|^p + |\tilde{Z}_1(x)|^p\right] + |b_6(x)| \in L_1(I).$$

Or $A_m(x,\theta) \to 0, B_m(x,\lambda) \to 0, F_m(x,\theta,\lambda) \to 0$ almost everywhere,

$$\int_0^1 \int_I |A_m(x,\theta)| dx d\theta \to 0 \quad m \to +\infty$$

$$\int_0^1 \int_I |B_m(x,\lambda)| dx d\lambda \to 0 \quad , m \to +\infty$$

$$\int_0^1 \int_0^1 \int_I |F_m(x,\theta,\lambda)| dx d\lambda d\theta \to 0 \quad , m \to +\infty$$

. which contradicts the assumption (2.8).

Thus we acheve the Proof.

Theorem 2.2 Suppose that in addition of conditions of theorem (2.1) we have:

$$|v_u^{(1)}(x,u,f)| + |v_f^{(1)}(x,u,f)| \le a(|u|^p + |f|^p) + |\hat{b}_3(x)|,$$

where $\hat{b}_3(x) \in L_1(I)$.

Then the functional G is $(\tau_p, ||.||_{W_2^1(I)})$ Taylor mapping of first and second order at every $f \in F$,

and
$$G^{(1)}(f) \in \mathcal{L}((W_0^{1,2}(I), ||.||_{W_2^1(I)}), \mathbb{R}).$$

Proof

Let $f \in F$, and let us prove that the map

 $r(h) \equiv G(f+h) - G(f) - G^{(1)}(f)h$ is $(\tau_p, \|.\|_{W_2^1(I)})$ infinitely small of first order at zero.

Assume the contrary, then

 $\exists \tilde{h}_m \in L_p(I) \text{ such that } \tilde{h}_m \to 0 \text{ in } L_p(I) \text{ but } |r(\tilde{h}_m)| \ge \varepsilon ||\tilde{h}_m||_{W_2^1(I)}.$

Thus $R(\tilde{h}_m) \to 0$ in $L_p(I)$, as $m \to +\infty$.

Using the lemma (1.1),we deduce that there exists $\tilde{Z}_0(x)$ in $L_p(I)$ and there exists $\tilde{Z}_1(x)$ in $L_p(I)$: for all m in \mathbb{N} $|u(x)| + |R(\tilde{h}_m)| \leq \tilde{Z}_0(x)$ almost everywhere in I.

We have also for all m in \mathbb{N} $|f(x)| + |\tilde{h}_m| \leq \tilde{Z}_1(x)$ almost everywhere in I. So,

$$|r(\tilde{h}_{m})| = \left| \int_{I} \left[v(x, u(x) + [R(\tilde{h}_{m})](x), f(x) + \tilde{h}_{m}(x)) - v(x, u(x), f(x)) - v(x, u(x), f(x)) R(\tilde{h}_{m}) - v_{f}^{(1)}(x, u(x), f(x)) \tilde{h}_{m} \right] dx \right|$$

$$\leq \left| \int_{I} \left[v(x, u(x) + R(\tilde{h}_{m}), f(x) + \tilde{h}_{m}) - v(x, u(x), f(x) + \tilde{h}_{m}) - v(x, u(x), f(x)) R(\tilde{h}_{m}) + v(x, u(x), f(x) + \tilde{h}_{m}) - v(x, u(x), f(x)) - v_{f}^{(1)}(x, u(x), f(x)) \tilde{h}_{m} \right] dx \right|$$

$$= \left| \int_{I} A_{m}(x) R(\tilde{h}_{m}) dx \right| + \left| \int_{Q} B_{m}(x) \tilde{h}_{m} dx \right|,$$

where,

$$A_{m}(x) = \begin{cases} \frac{v(x, u + R(\tilde{h}_{m}), f + \tilde{h}_{m}) - v(x, u, f + \tilde{h}_{m})}{R(\tilde{h}_{m})} - v_{u}^{(1)}(x, u, f) & \text{if } R(\tilde{h}_{m}) \neq 0 \\ 0 & \text{if } R(\tilde{h}_{m}) = 0 \end{cases}$$

$$B_{m}(x) = \begin{cases} \frac{v(x, u, f + \tilde{h}_{m}) - v(x, u, f)}{\tilde{h}_{m}} - v_{f}^{(1)}(x, u, f) & \text{if } \tilde{h}_{m} \neq 0 \\ 0 & \text{if } \tilde{h}_{m} = 0 \end{cases}$$

We have

$$|r(\tilde{h}_m)| \le \int_I |A_m(x)| dx \max_{x \in \bar{I}} |[R(\tilde{h}_m)](x)| + \int_I |B_m(x)| dx \max_{x \in \bar{I}} |\tilde{h}_m(x)|$$

$$\leq c_3 \left[\int_I |A_m(x)| dx + \int_I |B_m(x)| dx \right] ||\tilde{h}_m||_{W_2^1(I)}.$$
 (2.9)

let us remark that: $A_m(x) \to 0, B_m(x) \to 0$ almost everywhere in I. Using the mean value theorem, we obtain

$$|A_{m}(x)| \leq a \left[\left(\left| u \right| + \left| R(\tilde{h}_{m})(x) \right| \right)^{p} + \left(\left| f(x) \right| + \left| \tilde{h}_{m}(x) \right| \right)^{p} \right] + |\hat{b}_{3}(x)|$$

$$+ a \left[\left| u(x) \right|^{p} + \left| f(x) \right|^{p} \right] + |\hat{b}_{3}(x)|$$

$$\leq a \left[|\tilde{Z}_{0}(x)|^{p} + |\tilde{Z}_{1}(x)|^{p} \right] + 2|\hat{b}_{3}(x)| + a \left[|u(x)|^{p} + |f(x)|^{p} \right] \in L_{1}(I).$$

and

$$|B_{m}(x)| \leq a \left[|u(x)|^{p} + \left(|f(x)| + |\tilde{h}_{m}(x)| \right)^{p} \right] + |\hat{b}_{3}(x)|$$

$$+ a \left[|u(x)|^{p} + |f(x)|^{p} \right] + |\hat{b}_{3}(x)|$$

$$\leq a \left[2|u(x)|^{p} + |\tilde{Z}_{1}(x)|^{p} \right] + a|f(x)|^{p} + 2|\hat{b}_{3}(x)| \in L_{1}(I).$$

Using the dominated convergence theorem, we conclude that

$$\int_{I} |A_m(x)| dx \to 0, \text{as} \quad m \to +\infty$$

and

$$\int_{I} |B_m(x)| dx \to 0, \text{as} \quad m \to +\infty$$

which contradicts the assumption (2.9).

Thus we acheve the proof.

Now let us giving the sufficient conditions of optimality for the problem (1.3),(1.4) and (1.5).

Theorem 2.3 Suppose that for the problem $(1.5),v_k$ satisfies the conditions of theorem (2.1) and (2.2) then the functionals

$$J_k(f) \equiv \int_I v_k(x, u, f) dx \quad (k = s_1 + 1, ..., s_1 + s_2)$$

are $(\tau_p, \|.\|_{W^1_2(I)})$ Taylor mapping of first and second order at every $f \in F$ and $J_k(f) = \int\limits_I v_k(x, u, f) dx + c_k \|f\|^2_{W^1_2(I)}$ $(k = 0, ..., s_1)$ are lower semi Taylor mapping of first and second order at every $f \in F$.

Consequently,

$$\exists J_{k}^{(1)}(f) \ , \ \exists J_{k}^{(2)}(f) \ (k = 0, ..., s_{1} + s_{2}).$$
Let us suppose also that $\hat{f} \in F, J(\hat{f}) = 0, \ J_{k}(\hat{f}) = 0$
and put $L = \{h \in W_{0}^{1,2}(I)/J_{k}^{(1)}(\hat{f})h = 0, k = 1, ..., s_{1}, J^{(1)}(\hat{f})h = 0\}.$
Suppose that $\exists \hat{\lambda} \in (\mathbb{R}^{s_{1}})^{*}, \exists \hat{y}^{*} \in (\mathbb{R}^{s_{2}})^{*}, \exists \gamma \geq 0, \ \exists \hat{\lambda}_{k} > 0(k = 1, ..., s_{1}):$

$$\mathcal{L}_{f}(\hat{f}, \hat{y}^{*}, \hat{\lambda}, 1) = 0 \ \text{and} \ \forall h \in L \ \mathcal{L}_{ff}(\hat{f}, \hat{y}^{*}, \hat{\lambda}, 1)(h, h) \geq 2\gamma ||h||_{W_{2}^{1}(I)}^{2},$$
where $\mathcal{L}_{f}(\hat{f}, \hat{y}^{*}, \hat{\lambda}, 1) \ \text{and} \ \mathcal{L}_{ff}(\hat{f}, \hat{y}^{*}, \hat{\lambda}, 1) \ \text{are defined by formula}$
(1.7) and (1.8).

Then \hat{f} is τ_p strict local minimum.

Proof

All conditions of theorem (1.6) in [1] are satisfied, so \hat{f} is a strict τ_p -local minimum point.

Theorem 2.4 suppose that in the problem $(1.3), v_k$ satisfies the conditions of theorem (2.2) and (2.3) then the functionals

$$J_k(f) \equiv \int_I v_k(x, u, f) dx \quad (k = s_1 + 1, ..., s_1 + s_2)$$

are $(\tau_p, \|.\|_{W_2^1(I)})$ Taylor mapping of first and second order at every $f \in F$ and $J_k(f) = \int\limits_I v_k(x,u,f) dx + c_k \|f\|_{W_2^1(I)}^2$ $(k=0,..,s_1)$ are lower semi Taylor mapping of first and second order at every $f \in F$. Consequently, $\exists J_k^{(1)}(f)$ and $\exists J_k^{(2)}(f)$ $(k=0,..,s_1+s_2)$ Let us suppose also that $J_0^{(1)}(\hat{f}) = 0$ and $\exists \alpha > 0$, $\forall h \in W_0^{1,2}(I)$ $J_0^{(2)}(\hat{f})(h,h) \geq 2\alpha \|h\|_{W_2^1(I)}^2$. Then \hat{f} is τ_p strict local minimum.

Proof

All conditions of theorem (1.4) in [1] are satisfied, so \hat{f} is a strict τ_p -local minimum point.

Theorem 2.5 Suppose that in the problem $(1.4), v_k$ satisfies the conditions of theorem (2.1) and (2.2) then the functionals

$$J_k(f) \equiv \int_I v_k(x, u, f) dx \quad k = s_1 + 1, ..., s_1 + s_2$$

are $(\tau_p, \|.\|_{W_2^1(I)})$ Taylor mapping of first and second order at every $f \in F$ and $J_k(f) = \int\limits_I v_k(x, u, f) dx + c_k \|f\|_{W_2^1(I)}^2$ are lower semi Taylor mapping of first and second order at every $f \in F \ \forall \ k = 0, ..., s_1$.

Consequently, $\exists J_k^{(1)}(f)$ and $\exists J_k^{(2)}(f) \ (k = 0, ..., s_1 + s_2)$ Let us suppose also that $J(\hat{f}) = 0$, $\exists \ \hat{y}^* \in (\mathbb{R}^{s_2})^*$, $\exists \alpha > 0 \ \mathcal{L}_f(\hat{f}, \hat{y}^*, 1) = 0$ and $\forall h \in \ker J^{(1)}(\hat{f}) \ \mathcal{L}_{ff}(\hat{f}, \hat{y}^*, 1)(h, h) \geq 2\alpha \|h\|_{W_2^1(I)}^2$, where $\mathcal{L}_f(\hat{f}, \hat{y}^*, 1)$ and $\mathcal{L}_{ff}(\hat{f}, \hat{y}^*, 1)$ are given by formula (1.10),(1.11). Then \hat{f} is τ_p strict local minimum.

Proof

All conditions of theorem (1.5) in [1] are satisfied, so \hat{f} is a strict τ_p -local minimum point.

Remark 2.1 Let us remark that in the theorem (2.1) and (2.2), the increasing conditions verified by v are not sufficient to certify the Frechet differentiability of functional $G: (W_0^{1,2}(I), ||.||_{L_p(I)}) \to \mathbb{R}^{s_2}$.

In fact,

suppose we have $\frac{3}{2} . Let us define <math>v : I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by: $v(x, u, f) = a[|u|^{\frac{5}{2}} + |f|^{\frac{5}{2}}] + |b_0(x)|$,

where $b_0(x) \in C(\overline{I}), a \in \mathbb{R}, a > 0$.

Let $d_m \to +\infty$, and put $\alpha_m = |d_m|^{\frac{1}{2}}$, then $\alpha_m \to +\infty$ and $\forall x \in I \ \forall u \in \mathbb{R} \ \forall m \in \mathbb{N}$ We have

$$|v(x, u, d_m)| \geq a|d_m|^{\frac{5}{2}}$$

$$= a|d_m|^{\frac{1}{2}}|d_m|^2$$

$$\geq a|d_m|^{\frac{1}{2}}|d_m|^p$$

$$= a\alpha_m|d_m|^p.$$

Let $\tilde{f} \in W_0^{1,2}(I)$.

By the countable additivity of lebesgue measure, $\exists c > 0$, $\exists I' \subset I : \mu(I') > 0$, $\rho(I', \partial I) > 0$ and $\forall x \in I' \mid \tilde{f}(x) \mid \leq c$.

Put $\mathcal{D} \equiv \max\{|v(x, u, f)|/|u| \le c, |f| \le c, x \in \overline{I}\} < \infty.$

Let us choose $I_m \subset I'$ such that $\mu(I_m) = |d_m|^{-p} \alpha_m^{-\frac{1}{2}}$.

Let \tilde{h}_m defined by:

$$\tilde{h}_m(x) = \begin{cases} d_m - \tilde{f}(x) & \text{if } x \in I_m \\ 0 & \text{if } x \in I \setminus I_m \end{cases}$$

We have

$$\|\tilde{h}_{m}(x)\|_{L_{p}(I)} \leq \|d_{m}\|_{L_{p}(I_{m})} + |\tilde{f}(x)|\|_{L_{p}(I_{m})}$$

$$\leq d_{m}(\mu(I_{m}))^{\frac{1}{p}} + c(\mu(I_{m}))^{\frac{1}{p}}$$

$$\leq \alpha_{m}^{-\frac{1}{2p}} + c(\mu(I_{m}))^{\frac{1}{p}}.$$

Consequently $\|\tilde{h}_m(x)\|_{L_p(I)} \to 0$, i.e $\tilde{h}_m(x) \to 0$ in $L_p(I)$. We have also

$$|G(\tilde{f} + \tilde{h}_m) - G(\tilde{f})| = \left| \int_{I_m} \left[v(x, [R(\tilde{f} + \tilde{h}_m)](x), \tilde{f}(x) + \tilde{h}_m(x)) - v(x, [R(\tilde{f})](x), \tilde{f}(x)) \right] dx \right|$$

$$\geq \left| \int_{I_m} v(x, [R(\tilde{f} + \tilde{h}_m)](x), d_m) dx \right|$$

$$- \left| \int_{I_m} v(x, [R(\tilde{f})](x), \tilde{f}(x)) dx \right|$$

$$\geq a\alpha_m |d_m|^p - \mathcal{D}\mu(I_m)$$

$$= a\alpha_m^{\frac{1}{2}} \to +\infty.$$

Therfore, $|G(\tilde{f} + \tilde{h}_m) - G(\tilde{f})| \to +\infty$.

Thus G is not Frechet differentiable at every $f \in W_0^{1,2}(I)$.

References

- [1] M.F. SUKHININ, (1991) Lower Taylor mapping and sufficient condition of extremum //MAT.Sb.-1991-V.182, No.6.-P.877-891.(Russian).
- [2] F.H. CLARKE, Generalized gradients and applications trans, Amer. Math. Soc.-1975.-V.205.-P.247-262.
- [3] F.H. CLARKE, A new approach to Lagrange multipliers, //Math. Oper. Res.-1976.-V.1,No.2.-P165-174.
- [4] LARS HORMANDER, The analysis of linear partial Differential operators III, Springer-Verlag, Berlin, Heidel. (1985).
- [5] V.M. ALEKSEEV, V.M. TIKHOMIROV, C.V. FOMIN, Optimal control. -M. Nauka, 1979. (Russian).
- [6] ANGUSE. TAYLOR, DAVIDC. LAY, Introduction to functional analysis, Second edition, Krieger publishing company, Malabar, Florida. (1980).
- [7] G. KOTHE. Topological vector spaces I. Springer-Verlag, Berlin . Heidelberg.New York.(1983).
- [8] B.G. BOLTYANSKI, Mathematical metod of optimal control.-M. Nayka, (1969). (Russian).
- [9] A.N. KOLMOGOROV, C.V. FOMIN, Functional analysis.-M. Nayka, (1976). (Russian).