数字电路分析与设计

基本时序逻辑电路

(4.1.1, 4.1.3)

n逻辑电路

ü 在数字系统中,常用的各种数字逻辑电路按其功能可分为: 组合逻辑电路(combinational logic circuit); 时序逻辑电路(sequential logic circuit)。

ü组合逻辑电路:

任意时刻的输出仅取决于该时刻的输入,与电路的初始状态无关。

(只要输入改变,输出随之改变)

(电路的输出与输入之间无反馈,电路不需要记忆元件)

ü时序逻辑电路:

输出由输入和电路的初始状态共同决定。

(电路中一定包含具有记忆功能的触发器)

- n时序逻辑电路
- ∨ 时序逻辑电路(4.1.1)
- ∨基本时序逻辑电路的分析(4.1.3.1) (同步、异步、二进制计数器)
- ∨基本时序逻辑电路的设计(4.1.3.2)

V时序逻辑电路

- □ 时序逻辑电路的工作特点与组合逻辑电路不同;某时刻的输出不仅与该时刻的输入有关,还与前一时刻的输出有关;因此,必须把前一时刻的输出记忆下来。
- ü 时序逻辑电路由组合电路和记忆电路(触发器)两部分组成; 下图所示时序逻辑电路的基本框图:

❷时序逻辑电路

ü驱动方程

输出方程

$$D_{\mathbf{i}} = F_{\mathbf{1}}(X, Q^n)$$

$$Q^{n+1} = F_2(D_i, Q^n)$$

$$Z = F_3(X, Q^n)$$

 $\ddot{\mathbf{u}}$ 输入 X ,输出 Z ,触发器输入 $D_{\mathbf{i}}$,记忆电路初态 Q^n ,次态 Q^{n+1} ;除 X 以外,其它量都与时钟 CP 有关。

(电路需要一个时钟脉冲信号来触发或协调工作)

Ø时序逻辑电路(功能描述)

ü 时序逻辑电路的功能描述方式有:

状态(转换)真值表、状态转换图、波形(时序)图、逻辑函数表达

式、逻辑电路图和次态卡诺图。

转换、对比、选择?

ü 例: 3位二进制减法计数器

时钟	初态	次态
CP	$Q_2^n Q_1^n Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
1	000	111
2	111	110
3	110	101
4	101	100
5	100	011
6	011	010
7	010	001
8	001	000

Ø时序逻辑电路(分类)

- ü时序逻辑电路有多种分类依据和规则。
- ü 按电路中所有触发器的时钟是否连在一起分: 同步时序逻辑电路:同一时钟; 异步时序逻辑电路:不同时钟。
- ü 按输出是否与输入有关分:

Mealy型:输出由电路输入和触发器初态一起决定;

Moore 型:输出只由触发器的初始状态决定。

- v 基本时序逻辑电路的分析
 - ü分析:已知逻辑电路图,说明电路的功能。
 - □ 时序逻辑电路图,一般不能直接看出其具体的逻辑功能; 只有通过对电路的分析,得到电路的状态转换真值表(或状态转换图,或时序图)后,才能正确说明电路的功能。
 - ü 有多种分析方法,可以根据电路特点、自身爱好等选择; 本章节介绍常规通用方法,相对规范,容易理解。

◎同步时序逻辑电路的分析

□ 同步时序逻辑电路特点: 电路中所有触发器的 *CP* 端都连在一起(受同一个时钟触发); 具备翻转条件的触发器状态同时改变。

ü常规分析步骤:

根据电路,写出触发器的驱动方程,电路的输出方程; 将驱动方程代入触发器的特征方程,求得触发器的次态方程; 根据次态方程,列出状态转换真值表; (真值表包括:输入、初态、次态、输出)

将状态转换真值表转换为状态转换图;

根据状态转换图,说明电路功能。

分析右图所示电路功能。

解: 同步时序逻辑电路。

 FF_2

Φ C1

⇔ C1

以FF₂为例,

驱动方程:
$$\overline{J}_2 = K_2 = XQ_1^n + \overline{X}Q_0^n$$

CP

输出方程(无)

特征方程:
$$Q_2^{n+1} = J_2 \overline{Q_2^n} + \overline{K}_2 Q_2^n$$

次态方程:
$$Q_2^{n+1} = \overline{X}\overline{Q_0^n} + X\overline{Q_1^n} \implies Q_2^{n+1} = \begin{cases} \overline{Q_0^n} & X = 0\\ \overline{Q_1^n} & X = 1 \end{cases}$$

同理,可求得 FF_1 和 FF_0 的相关方程。

次态方程:
$$\begin{cases} X = 0 \text{ 时}: \ Q_2^{n+1} = \overline{Q_0^n}, Q_1^{n+1} = \overline{Q_2^n}, Q_0^{n+1} = \overline{Q_1^n} \\ X = 1 \text{ 时}: \ Q_2^{n+1} = \overline{Q_1^n}, Q_1^{n+1} = \overline{Q_0^n}, Q_0^{n+1} = \overline{Q_2^n} \end{cases}$$

列出状态转换真值表(右)

转换为状态转换图(下)

时钟	输入	初态	次态
CP	X	$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
1	0	000	111
2	0	111	000
3	0	001	011
4	0	011	010
5	0	010	110
6	0	110	100
7	0	100	101
8	0	101	001
9	1	000	111
10	1	111	000
11	1	001	101
12	1	101	100
13	1	100	110
14	1	110	010
15	1	010	011
16	1	011	001

功能:

不能自启动的×××编码六进制计数器。

自启动?

- ❷异步时序逻辑电路的分析
- □ 异步时序逻辑电路特点: 电路中各触发器的 *CP* 端并非都连在一起(触发时间不统一); 触发器状态翻转有先后。
- 道常规分析步骤(与同步的基本相同,但需特别关注时钟脉冲): 根据电路,写出触发器的时钟、驱动方程,电路的输出方程; 将时钟、驱动方程代入触发器的特征方程,求得触发器的次态方程; 根据次态方程,列出状态转换真值表; (真值表包括:输入、初态、次态、输出) 将状态转换真值表转换为状态转换图; 根据状态转换图,说明电路功能。

解: 异步时序逻辑电路。

驱动方程	次态方程	时钟方程	输出方程
$J_0 = K_0 = \overline{Q_2^n}$	$Q_0^{n+1} = \overline{Q_2^n} \overline{Q_0^n} + Q_2^n Q_0^n$	$CP_0 = CP$	$Z = \overline{Q_2^n}$
$J_1 = K_1 = 1$	$Q_1^{n+1} = \overline{Q_1^n}$	$CP_1 = Q_0^n$	
$J_2 = Q_1^n Q_0^n$	$Q_2^{n+1} = \overline{Q_2^n} Q_1^n Q_0^n$	$CP_2 = CP$	
$K_2 = Q_2^n$			

根据方程式,列出真值表(略)。 /Z (根据初态,依次求出次态,下一初态...)

状态转换图(右)

功能:

421 编码 5 进制加法计数器。(异步、可以自启动)

驱动方程	次态方程	时钟方程	输出方程
$J_0 = K_0 = \overline{Q_2^n}$	$Q_0^{n+1} = \overline{Q_2^n} \overline{Q_0^n} + Q_2^n Q_0^n$	$CP_0 = CP$	$Z = \overline{Q_2^n}$
$J_1 = K_1 = 1$	$Q_1^{n+1} = \overline{Q_1^n}$	$CP_1 = Q_0^n$	
$J_2 = Q_1^n Q_0^n$	$Q_2^{n+1} = \frac{Z_1}{Q_2^n} Q_1^n Q_0^n$	$CP_2 = CP$	
$K_2 = Q_2^n$	£2 £2£1£0		

∅二进制计数器的分析

ü 计数器是数字系统中应用极为广泛的一种时序逻辑电路;

可以应用在测频、测距,定时和时间测量中,如计算机中的定时器和时钟计数器等。

- ü二进制计数器的连接很有规律,分析时,只要看清电路的连接规律,一般都能得出结论;
 - 通用分析方法,等同于前述同步或异步时序逻辑电路的分析方法。

ü 计数器分类:

按连接方式分,同步计数器、异步计数器;

按进制分,二进制计数器、非二进制计数器;

按功能分,加法计数器、减法计数器、可逆计数器。

【例3.3-1】

解:每个触发器的 CP 均连在一起,是同步型时序电路。每个 JK 触发器都接成 T 功能(T=1 时状态翻转, T=0 时保持)。每个触发器的复位端均连在一起,作为总清零。

驱动方程:
$$\begin{cases} T_0 = 1 \\ T_1 = Q_0^n \\ T_2 = Q_0^n Q_1^n \\ C = Q_0^n Q_1^n Q_2^n \end{cases}$$

状态转换真值表(右)

时序图(下)

时钟	初态	次态	输出
CP	$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	C
1	000	001	0
2	001	010	0
3	010	011	0
4	011	100	0
5	100	101	0
6	101	110	0
7	110	111	1
8	111	000	0

功能: 421 编码 3 位二进制加法计数器 (同步)。

(由于一次计数循环需8个CP脉冲,也称模8计数器,分频器)

若调整各 JK 触发器的输入来源于低位的 $\overline{Q^n}$,即: $\begin{cases} T_0 = 1 \\ T_1 = \overline{Q_0^n} \\ T_2 = \overline{Q_0^n} \overline{Q_1^n} \\ C = \overline{Q_0^n} \overline{Q_1^n} \overline{Q_2^n} \end{cases}$ 次分析电路功能。 再次分析电路功能。

功能: 同步3位二进制减法计数器。

ØN位同步二进制计数器

$$\ddot{u}$$
 加法计数器: $T_i = Q_0^n Q_1^n \cdots Q_{i-2}^n Q_{i-1}^n = \prod_{j=0}^{i-1} Q_j^n$

$$\ddot{\mathbf{u}}$$
 减法计数器: $T_i = \overline{Q_0^n} \, \overline{Q_1^n} \cdots \overline{Q_{i-2}^n} \, \overline{Q_{i-1}^n} = \prod_{j=0}^{i-1} \overline{Q_j^n}$

ü 可逆计数器:
$$T_i = X \prod_{j=0}^{i-1} Q_j^n + \overline{X} \prod_{j=0}^{i-1} \overline{Q_j^n}$$
 $\begin{cases} X = 1 & \text{加法} \\ X = 0 & \text{减法} \end{cases}$

【例3.3-2】

分析右图所示电路功能。

解:各个触发器的 *CP* 没有完全连在一起,是异步型时序电路。 每个 *JK* 触发器的输入均接高(只要 *CP* 脉冲有效,状态即翻转)。 每个触发器的复位端均连在一起,作为总清零。

各触发器之间没有反馈,可逐个分析。

由 CP 求 FF_0 输出,由 FF_0 输出求 FF_1 输出,由 FF_1 输出求 FF_2 输出。

三个触发器共有8种状态(最多只需计算8个CP)。

若调整各 JK 触发器的时钟来源于低位的 Q^n ,即: $CP_i = Q_{i-1}^n$ (具体参教材 P148 图 4.1.22)

再次分析电路功能。

功能: 421 编码 3 位二进制减法计数器(异步)。

ØN位异步二进制计数器

$$\ddot{\mathbf{u}}$$
 加法计数器: $\uparrow CP_i = \overline{Q_{i-1}^n}$, $\downarrow CP_i = Q_{i-1}^n$

$$\ddot{\mathbf{u}}$$
 减法计数器: $\uparrow CP_i = Q_{i-1}^n$, $\downarrow CP_i = \overline{Q_{i-1}^n}$

Ø 同步~异步计数器

- ü 实现的功能相同,但异步计数器结构更简单。
- **ü** 异步计数器会产生过渡状态; 异步计数器的工作速度相对低。
- ü 计数器就是分频器; 模为 *M* 的计数器的最大分频数为 *M*:

$$T_{\text{max}} = \frac{1}{f_{\text{CP}}} \cdot M$$

v 基本时序逻辑电路的设计

- ü设计:已知电路的功能,要求画出对应的逻辑电路图。
- 立在保证电路功能的前提下,设计出来的电路越简越好。 什么是简?原则上以卡诺图化简为标准,实际上...(没有最简)
- ü设计分同步、异步时序逻辑电路设计:

同步时序逻辑电路,所有触发器受同一个 CP 触发,设计方法上相对单一,且比较简单;

异步时序逻辑电路,设计时要选好每个触发器的 CP,设计方法灵活、多样化,最终电路相对简单;具体方案可参照同步进行。

ü本章节,以同步时序逻辑电路的设计为主。

∅同步时序逻辑电路的设计

ü常规设计步骤:

根据题意,确定电路输入、输出变量;

根据输入输出,确定电路的状态数,并画出状态转换图(或时序图); (有时需要对状态图进行合并或简化)

选择触发器类型,用二进制代码对状态转化图进行编码; 将状态转化图转换为状态转换真值表(含输入、初态、次态、输出)

以真值表中输入、初态为变量,求各触发器驱动方程、电路输出方程; 检查自启动;

根据选定的触发器、上述方程, 画出同步时序电路图。

分析的逆过程

【例3.4】

用下降沿触发的 JK 触发器,设计 8421 编码的同步十进制减法计数器。

解:根据题意,电路无输入、输出定义为向高位借位 Z(也可以无); 十进制计数器,共有 10 个状态,状态转换图如下:

10个状态,至少需要四个 JK 触发器;

用 8421 编码后的状态转换图如下:

将状态转化图转换为状态转换真值表

CP	$Q_3^n Q_2^n Q_1^n Q_0^n$	$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	$J_3K_3 J_2K_2 J_1K_1 J_0K_0$	Z
1	0000	1001		1
2	1001	1000		0
3	1000	0111		0
4	0111	0110		0
5	0110	0101		0
6	0101	0100		0
7	0100	0011		0
8	0011	0010		0
9	0010	0001		0
10	0001	0000		0

CP	$Q_3^nQ_2^nQ_1^nQ_0^n$	$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	$J_3K_3 J_2K_2 J_1K_1 J_0K_0$	Z
1	0000	1001		1
2	1001	1000		0
3	1000	0111		0
4	0111	0110		0
5	0110	0101		0
6	0101	0100		0
7	0100	0011		0
8	0011	0010		0
9	0010	0001		0
10	0001	0000		0

以 $Q_3^n Q_2^n Q_1^n Q_0^n$ 为变量,(卡诺图化简)得: $Q_3^{n+1} = \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n} \overline{Q_0^n} + Q_3^n Q_0^n$

对照
$$JK$$
 触发器特征方程,得:
$$\begin{cases} J_3 = \overline{Q_2^n} \, \overline{Q_1^n} \, \overline{Q_0^n} \\ K_3 = \overline{Q_0^n} \end{cases}$$

同理,可求得其它...(参教材 P153)

求解驱动方程的其它方法

CP	$Q_3^n Q_2^n Q_1^n Q_0^n$	$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	J_3K_3	J_2K_2	J_1K_1	J_0K_0	Z
1	0000	>1001	1×	$0 \times$	$0 \times$	1×	1
2	1001	1000	$\times 0$	$0 \times$	$0 \times$	$\times 1$	0
3	1000	0111	×1	$1\times$	$1\times$	1×	0
4	0111	0110	$0 \times$	$\times 0$	$\times 0$	$\times 1$	0
5	0110	0101	$0 \times$	$\times 0$	$\times 1$	1×	0
6	0101	0100	$0 \times$	$\times 0$	$0 \times$	$\times 1$	0
7	0100	0011	$0 \times$	$\times 1$	$1\times$	1×	0
8	0011	0010	$0 \times$	$0 \times$	$\times 0$	$\times 1$	0
9	0010	0001	$0 \times$	$0 \times$	$\times 1$	1×	0
10	0001	0000	$0 \times$	$0\times$	$0 \times$	$\times 1$	0

以 $Q_3^n Q_2^n Q_1^n Q_0^n$ 为变量,(卡诺图化简)得: $\begin{cases} J_3 = \overline{Q_2^n} \overline{Q_1^n} \overline{Q_0^n} \\ K_3 = \overline{Q_0^n} \end{cases}$

同理,可求得其它...(结果与前述一样)

不一定永远一样

两种方法比对?

自启动检查

(由于前述设计中,利用了6个无关项,所以必须要检查)

<检查方法>

任意设定一无关项,获得JK,即可求出次态;

检查后实际状态转换图(右) 结论:该电路能自启动。

 $0001 \leftarrow 0010 \leftarrow 0011 \leftarrow 0100 \leftarrow 0101 \leftarrow 1110 \leftarrow 1111$ 1100 1010 1101 1011

逻辑电路图(下)

【例3.5】

用上升沿触发的 D 触发器,设计一个能检测 110 序列的同步时序电路。

110 序列检测:

连续三个时钟脉冲内,串行输入信号依次为1、1、0,则电路输出有效。

解:根据题意,定义串行输入数据X、输出检测结果Z。

定义初始状态 S_0 : 最近一次输入信号为 0;

针对 S_0 ,下一输入信号有可能为 0 或 1;

若为0,仍为状态 S_0 ;

若为 1 ,产生状态 S_1 : 最近两次输入信号为 01 ; 逻辑抽象 状态分析

针对 S_1 ,下一输入信号有可能为0或1;

若为0,重新转为状态 S_0 ;

若为 1 ,产生状态 S_2 : 最近两次输入信号为 11 ;

针对 S_2 , 下一输入信号有可能为 0 或 1;

若为0,产生状态 S_3 : 最近三次输入信号为110(输出有效);

若为 1 ,仍为状态 S_2 ;

 $(S_3$ 实际上就是 S_0)

画出状态转换图(右)

S_3 实际上就是 S_0

(由图,也可得出这一结论) 由此,简化状态转换图(右下)

3 个状态需要两个触发器; 将 00、01、10 分别分配给 $S_0 \sim S_2$ 。

不同的编码分配,会得出不同的电路(繁易)结果,习惯上按自然顺序。

列写状态转换真值表(下)

X	$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}$	$D_1 D_0$	Z
0	00	00	0 0	0
0	01	00	0 0	0
0	10	00	0 0	1
1	00	01	0 1	0
1	01	10	1 0	0
1	10	10	1 0	0

由表可得驱动、输出方程:

$$D_1 = Q_1^{n+1} = XQ_0^n + XQ_1^n$$

$$D_0 = Q_0^{n+1} = X\overline{Q_1^n} \overline{Q_0^n}$$

$$Z = \overline{X}Q_1^n$$

(也可以采用其它方法) 得到与上述相同的结果

自启动检查,正常(能自启动)

逻辑电路图(下)

此电路,还存在一个应用中的小问题 ...

【例3.6-1】

用JK触发器设计一个同步串行数据检测器。

要求:连续输入三个(或以上)1时,电路输出为1。

解:根据题意,定义串行输入数据X、输出检测结果Z。

定义初始状态 S_0 : 最近一次输入信号为 0;

针对 S_0 ,下一输入信号有可能为 0 或 1;

若为0,仍为状态 S_0 ;

若为 1 ,产生状态 S_1 : 最近两次输入信号为 01 ;

针对 S_1 , 下一输入信号有可能为 0 或 1;

若为0,重新转为状态 S_0 ;

若为1,产生状态 S_2 :最近三次输入信号为011;

针对 S_2 ,下一输入信号有可能为0或1;

若为0,重新转为状态 S_0 ;

若为1,产生状态 S_3 :最近三次输入信号为111(输出有效);

 $(S_3$ 实际上就是 S_2)

S_3 实际上就是 S_2

由此,简化状态转换图(右) 3个状态需要两个触发器; 将 00、01、10 分别分配给 $S_0 \sim S_2$ 。

状态转换真值表(下)

X	$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}$	$J_1K_1J_0K_0$	Z
0	00	00	$0 \times 0 \times$	0
0	01	00	$0 \times \times 1$	0
0	10	00	$\times 1 0 \times$	0
1	00	01	$0 \times 1 \times$	0
1	01	10	$1 \times \times 1$	0
1	10	10	$\times 0 0 \times$	1

$$J_1 = XQ_0^n$$
 , $K_1 = \overline{X}$
$$J_0 = X\overline{Q_1^n}$$
 , $K_0 = 1$
$$Z = XQ_1^n$$
 逻辑电路图(略)

【例3.6-2】

设计一个能自动出售饮料的控制逻辑电路。

要求:投币口每次只能接收一枚五角或一枚一元的硬币; 投入一元五角硬币后,给一杯饮料; 投入两元后,给一杯饮料,同时找回一枚五角的硬币。

解: 定义输入输出逻辑:

A: 五角硬币(1投入,0未投入);

B: 一元硬币(1 投入,0 未投入);

Y: 饮料(1给饮料,0不给饮料);

Z: 找零(1找零,0不找零)。

- A: 五角硬币(1 投入, 0 未投入);
- B: 一元硬币(1 投入,0 未投入);
- Y: 饮料(1 给饮料,0 不给饮料);
- Z: 找零(1找零,0不找零)。

定义初始状态 S_0 : 未接收到任何硬币;

针对 S_0 ,下一输入信号有可能为A或B;

若为A,产生状态 S_1 :接收到五角钱,不给饮料,不找零;

若为B,产生状态 S_2 :接收到一元钱,不给饮料,不找零;

针对 S_1 ,下一输入信号有可能为A或B;

若为A,转为状态 S_2 ;

若为B,产生状态 S_3 :接收到一元五角钱,给饮料,不找零;

针对 S_2 ,下一输入信号有可能为A或B;

若为A,转为状态 S_3 ;

若为B,产生状态 S_4 :接收到两元钱,给饮料,找零;

 $(S_3$ 和 S_4 实际上就是 S_0)

简化状态转换图(右) 需要两个触发器;

定义初始状态 S_0 : 未接收到任何硬币;

针对 S_0 ,下一输入信号有可能为 A 或 B;

若为A,产生状态 S_1 :接收到五角钱,不给饮料,不找零;

若为B,产生状态 S_2 :接收到一元钱,不给饮料,不找零;

针对 S_1 ,下一输入信号有可能为A或B;

若为A,转为状态 S_2 ;

若为B,产生状态 S_3 :接收到一元五角钱,给饮料,不找零;

针对 S_2 ,下一输入信号有可能为A或B;

若为A,转为状态 S_3 ;

若为B,产生状态 S_4 :接收到两元钱,给饮料,找零;

 $(S_3$ 和 S_4 实际上就是 S_0)

简化状态转换图(右) 需要两个触发器;

将 00、01、10 分别分配给 $S_0 \sim S_2$ 。

00/00

状态转换真值表(下)(选D触发器)

A B	$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}$	D_1D_0	Y Z
0 0	00	00	0 0	0 0
0 0	01	01	0 1	0 0
0 0	10	10	10	0 0
0 1	00	10	0 1	0 0
1 0	00	01	10	0 0
0 1	01	00	10	0 0
1 0	01	10	0 0	1 0
0 1	10	00	0 0	1 0
1 0	10	00	0 0	1 1

驱动、输出方程:
$$D_1 = A \overline{Q_1^n} \overline{Q_0^n} + B Q_0^n + \overline{A} \overline{B} Q_1^n$$
, $D_0 = B \overline{Q_1^n} \overline{Q_0^n} + \overline{A} \overline{B} Q_0^n$
 $Y = A Q_0^n + A Q_1^n + B Q_1^n$, $Z = A Q_1^n$

自启动检查 ... 逻辑电路 (略)

【例3.6-3】

用JK触发器设计一个能控制三相六节拍步进电机运行的控制电路。

要求:三相六节拍步进电机的驱动电脉冲(正、反转)如图所示。(三相绕组不允许同时通电和断电)

解:定义驱动电机的三相信号分别为A、B、C(1通电、0断电);定义控制电机正反转变量M(1正转、0反转)。

正转
$$(M=1)$$
 时的状态转换图: (100) (110) (010) (011) (001) (011) (001) (011)

状态转换真值表:

驱动方程:

$$\begin{cases} J_{A} = \overline{M} \overline{Q_{C}^{n}} + M \overline{Q_{B}^{n}} \\ K_{A} = \overline{M} \overline{Q_{C}^{n}} + M \overline{Q_{B}^{n}} \\ K_{A} = \overline{M} \overline{Q_{C}^{n}} + M \overline{Q_{C}^{n}} \\ J_{B} = \overline{M} \overline{Q_{A}^{n}} + M \overline{Q_{C}^{n}} \\ K_{B} = \overline{M} \overline{Q_{A}^{n}} + M \overline{Q_{C}^{n}} \\ J_{C} = \overline{M} \overline{Q_{B}^{n}} + M \overline{Q_{A}^{n}} \\ K_{C} = \overline{M} \overline{Q_{B}^{n}} + M \overline{Q_{A}^{n}} \end{cases}$$

M	$Q_{\rm A}^n Q_{\rm B}^n Q_{\rm C}^n$	$Q_{\rm A}^{n+1}Q_{\rm B}^{n+1}Q_{\rm C}^{n+1}$	$J_{\mathrm{A}}K_{\mathrm{A}}$	$J_{\rm B}K_{\rm B}$	$J_{\rm C}K_{\rm C}$
0	100	101	$\times 0$	$0 \times$	1×
0	101	001	×1	$0 \times$	$\times 0$
0	001	011	$0 \times$	$1\times$	$\times 0$
0	011	010	$0 \times$	$\times 0$	$\times 1$
0	010	110	$1 \times$	$\times 0$	$0 \times$
0	110	100	$\times 0$	$\times 1$	$0 \times$
1	100	110	$\times 0$	$1\times$	$0 \times$
1	110	010	$\times 1$	$\times 0$	$0 \times$
1	010	011	$0 \times$	$\times 0$	1×
1	011	001	$0 \times$	$\times 1$	$\times 0$
1	001	101	1X	$0 \times$	$\times 0$
1	101	100	$\times 0$	$0 \times$	$\times 1$

正转 (M=1) 时的状态转换图: $(100) \rightarrow (010) \rightarrow (011) \rightarrow (001) \rightarrow (100) \rightarrow (010) \rightarrow (011) \rightarrow (001) \rightarrow (010) \rightarrow$

反转 (M=0) 时的状态转换图:

自启动问题的解决

同步法:将000、111状态也列入至状态转换真值表。

(有多少种方案?)

异步法: 出现000、111状态时, 使能触发器的异步控制端。

(有多少种方案?)

同步法简单,但至少需要 1 个 CP 时间; 异步法复杂,但可以瞬间实现。

(按本例要求,应该采用异步法)

例,使能 \overline{S}_{DA} 、 \overline{R}_{DB} 、 \overline{R}_{DC}

即:一旦出现000、111状态,

则: 立即被强制转为100状态。

$Q_{\rm A}^n Q_{\rm B}^n Q_{\rm C}^n$	$\overline{S}_{\mathrm{DA}} \overline{R}_{\mathrm{DB}} \overline{R}_{\mathrm{DC}}$
000	000
001	111
010	111
011	111
100	111
101	111
110	111
111	000
011 100 101 110	111 111 111 111

所以: $\overline{S}_{DA} = \overline{R}_{DB} = \overline{R}_{DC} = Q_A^n Q_B^n Q_C^n + \overline{Q_A^n} \overline{Q_B^n} \overline{Q_C^n}$

v 本节作业

- ü 习题 4 (P232)10、11、15、补充题。
- ü补充题:

用 JK 触发器、与非门设计一个 110 序列脉冲检测器。

所有的题目,需要有解题过程(不是给一个答案即可)。