

Departamento de Matemática

Mestrado Integrado em Engenharia Informática

Teste 1 A :: 26 de novembro de 2020

Nome (Paopasta de	CORRECTION) Número (
	,		

As respostas às questões deste grupo devem ser convenientemente justificadas.

Represente o conjunto $A = \left\{x \in \mathbb{R} : \left|\frac{1-x}{2x+4}\right| \geq 1\right\}$ na forma de intervalo ou união de intervalos.

$$\left|\frac{1-x}{2x+4}\right| > 1 \iff \frac{1-x}{2x+4} \le -1 \quad \forall \quad \frac{1-x}{2x+4} > 1 \iff \frac{1-x+2x+4}{2x+4} \le 0 \quad \forall \quad \frac{1-x-(2x+4)}{2x+4} > 0$$

	I	-5		-2	
2 +5	_	O	+	+	+
27.+4	_	-	ı	0	+
₹+5	+	0	J	\times	+
2244	ļ ·				ı

		-2		-1	
32+3	١	1	1	0	+
22+4	١	0	+	+	+
32+3	+	X	_	0	+

Questão 2. [3 valores] Considere a função $f:[-2,5] \longrightarrow \mathbb{R}$ cujo gráfico se apresenta na figura anexa. No intervalo [0,3] o gráfico da função é um arco da circunferência centrada em (2,0) de raio 2, cuja equação $e^{(x-2)^2+y^2}=4$

a) Indique o contradomínio de f.

c) Determine $f^{-1}([1,2])$.

d) Indique os pontos de mínimo local de f, e o respetivo valor de f.

ftem 3 portos de mínimo local:

e) Indique os pontos onde f é descontínua.

$$|x-2| < \delta \Rightarrow |f(x)+2| < 1.$$

Questão 3. [3,5 valores] Calcule cada um dos seguintes limites:

a)
$$\lim_{x\to 0} \frac{\operatorname{ch} x - 1}{e^x - 1}$$
;

b)
$$\lim_{x \to +\infty} \frac{\operatorname{sen}(2x)}{x \operatorname{sen} x}$$
.

a)
$$\lim_{x \to 0} \frac{ch_{x-1}}{e^{x}-1} = \lim_{x \to 0} \frac{e^{x}+e^{-x}}{e^{x}-1} = \lim_{x \to 0} \frac{e^{x}+e^{-x}-2}{2(e^{x}-1)} = \lim_{x \to 0} \frac{e^{x}(e^{2x}+1-2e^{x})}{2(e^{x}-1)}$$

uma vez que lim == 0 e a função 2001x e'linita. da (∀xER -2≤2conx≤2).

Questão 4. [3,5 valores] Considere as funções $f \in g$ definidas por

$$f(x) = \begin{cases} x^2 + 1, & x \le 0 \\ 1 - x, & x > 0 \end{cases} \quad \mathbf{e} \quad g(x) = \begin{cases} x^2 + 1, & x \in \mathbb{Z} \\ 1 - x, & x \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$$

- a) Identifique os pontos onde cada uma das funções f e g é contínua.
- b) Calcule $\lim_{x \to +\infty} f(x) \in \lim_{x \to +\infty} g(x)$.

a) · lim f(z)=1= lim f(z) = f(0) pelo que f e'continuo em xco; not restantes pontos fo' continues pre see uma função polinomial, quer no interreb J-00,0[que no intervalo Jo, +0[. Assim, fe' continua em todo o domenio.

 Seja 3∈ Z. Grtao, como tim q(x) = 1-3 e g(3)=3+1, g e' continue em 3 se e so' se 1-3=32+1, isto e', quando 3(3+1)=0, ou reja, 3=-1

on [3,3+1[, a funças q + continue, por see poli-nomial. Ontos q e' continue em (R/Z) U (-1,0)

Questão 5. [3 valores] Em cada alinea, apresente um exemplo ou justifique porque não existe:

a) Dois números irracionais a e b tais que $10^{-3} < |a-b| < 10^{-1}$;

$$\alpha = T$$
, $b = T + \frac{2}{1000}$

b) Um conjunto não limitado que possua supremo mas não tenha máximo;

c)	Um conjunto não limitado cujo derivado seja um conjunto não vazio limitado; X = Z U]0,1[e'ras limitado e X'=[0,1]
d)	Uma função $f:[0,1] \rightarrow [0,1[$ contínua e sobrejetiva;
	Não existe. A imagem pore uma função continua de um
	Não existe. A imagem pore uma função continua de um intervalo fechado. Como [0,1 [
	nas o' um interals fechado, f nas o'sobegetiva
e)	Uma função contínua definida num intervalo limitado que não tenha mínimo mas tenha máximo;
	f:]on] - R, f o'esteitamente decescente e
	1,101,7 = 1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4
	$x \mapsto -\frac{1}{x}$ lim $f(x) = -\infty$, logs f not term minimo. Uma função $f: \mathbb{R} \to \mathbb{R}$, par e monótona. $f(1) = -1 = \max f$
	f(1) = -1 = mex f
f)	Uma função $f:\mathbb{R} o \mathbb{R}$, par e monótona. T
	f:R -> R
	$x \mapsto o$
	-
	II .
cad	la uma das questões seguintes, assinale neste enunciado, a afirmação verdadeira; não deve

Em apresentar qualquer justificação. Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

f é injetiva e crescente.

f é par e limitada.

 f é monótona e tem máximo. f é não limitada e não monótona.

Questão 1. Considere a função $f:\mathbb{R} \to \mathbb{R}$ definida por $f(x)=e^{\cos x}$. Então

Questão 2. Seja
$$f:\mathbb{R}^-_0 \to [-5,+\infty[$$
 tal que $f(x)=x^2-5$

$$f^{-1}(x) = \sqrt{x+5}$$
.

$$f^{-1}(x) = -\sqrt{x+5}$$
.

f não é invertível.

Questão 3. Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \operatorname{sh} x + \operatorname{ch} x$. Então

•
$$f$$
 é crescente. $\bigcirc \lim_{x \to +\infty} f(x) = -\infty.$

Questão 4. O valor de $arctg (tg \frac{5\pi}{7})$ é

 $\int f^{-1}(x) = \frac{1}{x^2-5}$

$$\bigcirc \frac{5\pi}{7}.$$

$$\bigcirc \frac{\pi}{2}.$$

$$\bigcirc \frac{2\pi}{7}.$$

Questão 5. Para todo o $x \in [-1, 1]$ verifica-se que

$$\bigcirc \quad \operatorname{sen}(\arccos x) = x - \frac{\pi}{2}. \qquad \qquad \bigcirc \quad \operatorname{arcsen}^2 x + \operatorname{arccos}^2 x = 1.$$

$$\bigcirc \quad \operatorname{sen}(2\operatorname{arccos} x) = 2x. \qquad \qquad \bigcirc \quad \operatorname{sen}(2\operatorname{arccos} x) = 2x\operatorname{sen}(\operatorname{arccos} x).$$

Questas 4 b) lim f(x)= lim (1-x)=-0 x++0 x++0 lim g (x)= lim (1-x)=-0 x++0 x++0 Como lim $g(x) \neq \lim_{x \to +\infty} g(x)$ reR\Z 26 R/Z NEZ $z \in \mathbb{R} \setminus \mathbb{Z}$ lim g(x)=lim (x2+1)=+00 então lim q(x) não existe XE Z $\mathcal{K} \in \mathbb{Z}$