MATH 4281 Risk Theory-Ruin and Credibility

Module 3: Credibility Theory finale and the last lecture!

March 25th, 2021

Non-Parametric Bühlmann model

2 The Bühlmann-Straub model

Non-Parametric Bühlmann model

Recall from last class

- X_{it} : claims size of policy j during year t.
- Available data, 1 < i < J, 1 < t < T:

- $X_{11}, X_{12}, \dots, X_{IT}$ are iid conditional on Θ .
- $\mu(\theta_i) = E[X_{it}|\Theta = \theta_i]$
- $\sigma^2(\theta_i) = Var(X_{it}|\Theta = \theta_i)$

$$P_{j,T+1}^{cred} = z\bar{X}_{j\Sigma} + (1-z)m, \quad i=1,\ldots,J$$
 (1)

Nonparametric estimation (unbiaised estimators)

Estimation of $E[\mu(\Theta)] = m$:

$$\bar{X}_{\Sigma\Sigma} = \frac{1}{J} \sum_{i=1}^{J} \bar{X}_{j\Sigma} = \frac{\sum_{j=1}^{J} \sum_{t=1}^{T} X_{jt}}{JT}$$
 (2)

Estimation of $E[\sigma^2(\Theta)] = s^2$:

$$\hat{s}^2 = \frac{1}{J} \sum_{j=1}^{J} \hat{s}_j^2 = \frac{1}{J} \sum_{j=1}^{J} \sum_{t=1}^{T} \frac{(X_{jt} - \bar{X}_{j\Sigma})^2}{T - 1}$$
(3)

Nonparametric estimation (unbiaised estimators)

Estimation of $Var(\mu(\Theta)) = a$: (Bühlmann's estimator)

$$\hat{a}_{B} = Max \left\{ \frac{\sum_{j=1}^{J} (\bar{X}_{j\Sigma} - \bar{X}_{\Sigma\Sigma})^{2}}{J-1} - \frac{1}{T} \hat{s}^{2} ; 0 \right\}$$
 (4)

(CAS's estimator)

$$\hat{a}_{CAS} = Max \left\{ \frac{\sum_{j=1}^{J} \sum_{t=1}^{T} (X_{jt} - \bar{X}_{\Sigma\Sigma})^2}{JT - 1} - \hat{s}^2 ; 0 \right\}$$
 (5)

• If $\hat{a} = 0$ then z = 0, which makes sense (all risks have the same parameter)

Example 2

You are given the following past claims data on a portfolio of three classes of policyholders:

	Year					
Class	1	2	3			
1	700	800	600			
2	625	500	675			
3	800	850	750			

Estimate the Bühlmann credibility premium to be charged in year 4 for each class of policyholder.

The Bühlmann-Straub model

Adding more realism to the Bühlmann model

- Often we have somewhat coarse data available to us (this is changing but in 1970 when this model was introduced it was even more true).
- Many lines of business have a premium of the type "volume measure" times "premium rate".
- In this case we use an extension of Bühlmann model:
 Bühlmann-Straub.
- by far the most used and the most important credibility model for insurance practice.

There are $1 \le j \le J$ classes of risk (or contracts). For the *j*-th class/contract:

- S_{jt} is the aggregate claim amount in year t ($1 \le t \le T$)
- w_{jt} is the "volume" associated to S_{jt} in year t
- ullet $X_{jt}=S_{jt}/w_{jt}$ is the claim amount per unit of volume in year t
- One (my favourite) interpretation: average claim costs per year at risk in year t if w_{jt} is the number of years at risk during year t. That is if:

$$S_{jt} = \sum_{k=1}^{w_{jt}} Y_{jt,k}$$

Assumptions

- risk class/contract j is characterized by its specific risk parameter θ_j , which is the realization of a rv Θ_i
- Conditional on Θ_i , the $\{X_{jt}: t=1,2,\cdots,T\}$ are iid with $\mu(\theta_i) = E[X_{jt}|\Theta=\theta_i]$ but now:¹

$$Var(X_{jt}|\Theta=\theta_j)=rac{\sigma^2(\theta_j)}{w_{it}}$$

- the pairs $(\Theta_1, \mathbf{X_1}), (\Theta_2, \mathbf{X_2}), \dots$ are independent
- $\Theta_1, \Theta_2, \ldots$ are iid (from the structural distribution)

¹In the previous interpretation, $\mu(\theta_j) = E[Y_j]$ and $\sigma^2(\theta_j) = Var(Y_j)$

"New Quantities"

Risk j:

- individual risk premium $\mu(\theta_i) = E[X_{it}|\Theta = \theta_i]$
- variance within individ. risk $\sigma^2(\theta_j) = w_{jt} Var(X_{jt}|\Theta = \theta_j)$
- aggregate volume $w_{i\Sigma} = \sum_{t=1}^{T} w_{it}$
- weighted mean of outcomes $ar{X}_{j\Sigma} = \sum_{t=1}^{T} rac{w_{jt}}{w_{i\Sigma}} X_{jt}$

Collective:

- collective premium $m = E[\mu(\Theta)]$
- variance between individual risk premiums $a = Var(\mu(\Theta))$
- average variance within individual risks $s^2 = E[\sigma^2(\Theta)]$
- aggregate volume $w_{\Sigma\Sigma} = \sum_{i=1}^{J} w_{i\Sigma}$
- weighted mean of outcomes $\bar{X}_{\Sigma\Sigma} = \sum_{i=1}^{J} \frac{w_{j\Sigma}}{w_{\Sigma\Sigma}} \bar{X}_{i\Sigma}$

If m, s^2 and a are known

The credibility estimator in the Bühlmann-Straub model is given by

$$P_{j,T+1}^{cred} = z_j \bar{X}_{j\Sigma} + (1-z_j)m = m + z_j (\bar{X}_{j\Sigma} - m),$$

where

$$z_{j} = \frac{w_{j\Sigma}}{w_{j\Sigma} + K}$$

$$K = \frac{E[\sigma^{2}(\Theta)]}{Var(\mu(\Theta))}$$

Remarks:

- the credibility factor z_i now depends on j
- if $w_{jt} = 1$, then $w_{j\Sigma} = T$ and z_j is equivalent to the z of the simple Bühlmann model

If s^2 and a are known but m has to be estimated

$$P_{j,T+1}^{cred} = z_j \bar{X}_{j\Sigma} + (1-z_j) \widehat{m} = \widehat{m} + z_j (\bar{X}_{j\Sigma} - \widehat{m}),$$

where

$$\widehat{m} = \sum_{j=1}^{J} \frac{z_j}{z_{\Sigma}} \bar{X}_{j\Sigma}, \quad z_{\Sigma} = \sum_{j=1}^{J} z_j$$

Remarks:

- ullet it can be shown that \widehat{m} is a better estimator of m than $ar{X}_{\Sigma\Sigma}$
- Quadratic loss:

$$E[(\widehat{m}+z_j(\bar{X}_{j\Sigma}-\widehat{m})-\mu(\theta_j))^2]=a(1-z_j)\left(1+\frac{1-z_j}{z_{\Sigma}}\right)$$

 This makes sense- in an non-i.i.d sample, the weighted average where the weights are inversely proportional to the variances is BLUE.

If m, s^2 and a have to be estimated

$$P_{j,T+1}^{cred} = \widehat{z_j} \bar{X}_{j\Sigma} + (1 - \widehat{z_j}) \widehat{m} = \widehat{m} + \widehat{z_j} (\bar{X}_{j\Sigma} - \widehat{m}),$$

Where we use the following unbiased (weighted) sample statistics:

$$\hat{z}_{j} = \frac{w_{j\Sigma}}{w_{j\Sigma} + \frac{\hat{s}^{2}}{\hat{a}}}
\hat{s}^{2} = \frac{1}{J} \sum_{j=1}^{J} \hat{s}_{j}^{2} = \frac{1}{J} \sum_{j=1}^{J} \left(\frac{1}{T-1} \sum_{t=1}^{T} w_{jt} (X_{jt} - \bar{X}_{j\Sigma})^{2} \right)
\hat{a} = \frac{w_{\Sigma\Sigma}}{w_{\Sigma\Sigma}^{2} - \sum_{j=1}^{J} w_{j\Sigma}^{2}} \left\{ \sum_{j=1}^{J} w_{j\Sigma} (\bar{X}_{j\Sigma} - \bar{X}_{\Sigma\Sigma})^{2} - (J-1)\hat{s}^{2} \right\}$$

Numerical Example

Past claims data on a portfolio of two groups of policyholders are given below:

		Year				
	Group	1	2	3	4	
Total Claim Amount	1	8000	11,000	15,000	_	
Number in Group		40	50	70	75	
Total Claim Amount	2	20,000	24,000	19,000	_	
Number in Group		100	120	115	95	

Estimate the Bühlmann-Straub credibility premium to be charged in year 4 for each group of policyholder.