Naive Bayes - Classification Algo

Prepared By: Dr.Mydhili K Nair, Professor, ISE Dept, RIT

For: Machine Learning Elective Class

Target Audience: Sem 6 Students

Term: Feb to June 2019

- What is Naive Bayes?
- Naive Bayes and Machine Learning
- Why do we need Naive Bayes?
- Understanding Naive Bayes Classifier
- Advantages of Naive Bayes Classifier
- Demo Text Classification using Naive Bayes

Python Code demo - not in the slides

Derivation of Bayes' Theorem

Cumulative Rule
$$P(A | B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B \cap A) = P(A \cap B)$$

$$P(B | A) = \frac{P(B \cap A)}{P(A)}$$

$$P(B|A).P(A) = P(A|B).P(B) \longrightarrow P(A|B) = \frac{P(B|A).P(A)}{P(B)}$$

Bayes' Theorem for Naive Bayes Algorithm

In a machine learning classification problem, there are multiple features and classes, say, C_1 , C_2 ,, C_k . The main aim in the Naive Bayes algorithm is to calculate the conditional probability of an object with a feature vector \mathbf{x}_1 , \mathbf{x}_2 ,....., \mathbf{x}_n belongs to a particular class C_i ,

Bayes' Theorem for Naive Bayes Algorithm

In a machine learning classification problem, there are multiple features and classes, say, C_1 , C_2 ,, C_k . The main aim in the Naive Bayes algorithm is to calculate the conditional probability of an object with a feature vector \mathbf{x}_1 , \mathbf{x}_2 ,....., \mathbf{x}_n belongs to a particular class C_i ,

Cricket Bat = {Made of Wood, White or Beige, Hit portion is Long rectangle, cylindrical hand holder

Feature Vector for Cricket Bat & Table Tennis Bat

Table Tennis Bat = {Made of Wood, White or Beige, Hit portion is circular, cylindrical hand holder

Bayes' Theorem for Naive Bayes Algorithm

In a machine learning classification problem, there are multiple features and classes, say, C_1 , C_2 ,, C_k . The main aim in the Naive Bayes algorithm is to calculate the conditional probability of an object with a feature vector \mathbf{x}_1 , \mathbf{x}_2 ,....., \mathbf{x}_n belongs to a particular class C_i ,

$$P(C_i|x_1, x_2, ..., x_n) = \frac{P(x_1, x_2, ..., x_n|C_i).P(C_i)}{P(x_1, x_2, ..., x_n)}$$
 for $1 \le i \le k$

Now, the numerator of the fraction on right-hand side of the equation above is

$$P(x_1, x_2, \dots, x_n | C_i).P(C_i) = P(x_1, x_2, \dots, x_n, C_i)$$

$$P(x_1, x_2, \dots, x_n, C_i) = P(x_1 | x_2, \dots, x_n, C_i).P(x_2, \dots, x_n, C_i)$$

$$= P(x_1 | x_2, \dots, x_n, C_i).P(x_2 | x_3, \dots, x_n, C_i)P(x_3, \dots, x_n, C_i)$$

$$= \dots$$

$$= P(x_1 | x_2, \dots, x_n, C_i).P(x_2 | x_3, \dots, x_n, C_i)...P(x_{n-1} | x_n, C_i).P(x_n | C_i).P(C_i)$$

The conditional probability term, $P(x_j | x_{(j+1)},, x_n, C_i)$ becomes $P(x_j | C_i)$ because of the assumption that features are independent

From the calculation above and the independence assumption, the Bayes theorem boils down to the following easy expression

$$P(C_i|x_1, x_2, \dots, x_n) = \left(\prod_{i=1}^{j=n} P(x_j|C_i)\right) \cdot \frac{P(C_i)}{P(x_1, x_2, \dots, x_n)} \text{ for } 1 \le i \le k$$

The expression $P(x_1, x_2, \dots, x_n)$ is constant for all the classes, we can simply say that

$$P(C_i|x_1,x_2,\ldots,x_n) \propto \left(\prod_{i=1}^{j=n} P(x_j|C_i)\right) . P(C_i) \text{ for } 1 \leq i \leq k$$

Face Recognition

Weather Prediction

Medical Diagnosis

News Classification

To predict whether a person will purchase a product on a specific combination of Day, Discount and Free Delivery using Naive Bayes Classifier

	Α	В	C	D
1	Day	Discount	Free Delivery	Purchase
2	Weekday	Yes	Yes	Yes
3	Weekday	Yes	Yes	Yes
4	Weekday	No	No	No
5	Holiday	Yes	Yes	Yes
6	Weekend	Yes	Yes	Yes
7	Holiday	No	No	No
8	Weekend	Yes	No	Yes
9	Weekday	Yes	Yes	Yes
10	Weekend	Yes	Yes	Yes
11	Holiday	Yes	Yes	Yes
12	Holiday	No	Yes	Yes
13	Holiday	No	No	No
14	Weekend	Yes	Yes	Yes
15	Holiday	Yes	Yes	Yes
4	Nai	ve_Bayes_Dat	taset (+)	

Frequency Table		Ви		
		Yes	No	
	Weekday	9	2	11
Day	Weekend	7	1	8
	Holiday	8	3	11
		24	6	30

Likelihood Table -		Ви		
		Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Frequency Table		Ви		
		Yes	No	
	Weekday	9	2	11
Day	Weekend	7	1	8
	Holiday	8	3	11
		24	6	30

	Likelihood Table		Buy		
			Yes	No	
		Weekday	9/24	2/6	11/30
	Day	Weekend	7/24	1/6	8/30
		Holiday	8/24	3/6	11/30
P(B) = P(Weekday)			24/30	6/30	

P(A|B) = P(No Buy | Weekday)

= P(Weekday| No Buy) * P(No Buy) / P(Weekday)

= (0.33 * 0.2) / 0.367 = 0.179

= 11/30 = 0.37

Frequency Table		Ви		
		Yes	No	
	Weekday	9	2	11
Day	Weekend	7	1	8
	Holiday	8	3	11
		24	6	30

Likelihood Table		Ви		
		Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
367		24/30	6/30	

$$P(B) = P(Weekday) = 11/30 = 0.367$$

$$P(A) = P(Buy) = 24/30 = 0.8$$

$$P(B|A) = P(Weekday | Buy) = 2/6 = 0.375$$

If A equals Buy, then

$$P(A|B) = P(Buy | Weekday)$$

$$= (0.375 * 0.8) / 0.367 = 0.817$$

```
P (A|B) = P (No Buy | Weekday)

= P(Weekday| No Buy) * P(No Buy) / P(Weekday)

= (0.33 * 0.2) / 0.367 = 0.179
```

As the Probability(Buy | Weekday) is more than Probability(No Buy | Weekday), we can conclude that a customer will most likely buy the product on a Weekday

Likelihood Table		Bu	ıy	
		Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Frequency Table		Buy		
		No		
Yes	19/24	1/6	20/30	
No	5/24	5/6	10/30	
	24/30	6/30		
	Yes	Yes Yes 19/24 No 5/24	Yes No Yes 19/24 1/6 No 5/24 5/6	

Frequency Table		В	ıy	
		Yes	No	
Free	Yes	21/24	2/6	23/30
Delivery	No	3/24	4/6	7/30
		24/30	6/30	

Calculating Conditional Probability of purchase on the following combination of day, discount and free delivery:

Where B equals:

- Day = Holiday
- Discount = Yes
- Free Delivery = Yes

Let A = No Buy

P(A|B) = P(No Buy | Discount = Yes, Free Delivery = Yes, Day = Holiday)

 $= \frac{(1/6) * (2/6) * (3/6) * (6/30)}{(20/30) * (23/30) * (11/30)}$

= 0.178

1.21 - 121-	Likelihood Table			Buy			
Likelinood lable			Yes	5	No		
Weekday			9/2	4	2/6		11/30
Day	Weekend		7/2	4	1/6		8/30
	Holiday		8/2	4	3/6		11/30
				0	6/30)	
Frequency Table			Buy				
		Y	'es		No		

Frequency Table		Ві		
		Yes	No	
Discount	Yes	19/24	1/6	20/30
	No	5/24	5/6	10/30
		24/30	6/30	
				,

			24/30	0/30	
	Frequency		Buy		
Table			Yes	No	
	Free	Yes	21/24	2/6	23/30
	Delivery	No	3/24	4/6	7/30
			24/30	6/30	

discount and free delivery:

Where B equals:

- Day = Holiday Discount = Yes
- Free Delivery = Yes

Let A = Buy

P(A|B) = P(Yes Buy | Discount = Yes, Free Delivery = Yes, Day = Holiday)

Calculating Conditional Probability of purchase on the following combination of day,

P(Discount = Yes | Yes) * P(Free Delivery = Yes | Yes) * P(Day = Holiday | Yes) * P(Yes Buy)

P(Discount=Yes) * P(Free Delivery=Yes) * P(Day=Holiday)

(19/24) * (21/24) * (8/24) * (24/30)

(20/30) * (23/30) * (11/30)

= 0.986

AS 84.71% IS GREATER THAN 15.29%, WE CAN CONCLUDE THAT AN AVERAGE CUSTOMER WILL BUY ON A HOLIDAY WITH DISCOUNT AND FREE DELIVERY

SUM OF PROBABILITIES = 0.986 + 0.178 = 1.164

LIKELIHOOD OF PURCHASE = 0.986 / 1.164 = 84.71 %

= 0.178 / 1.164 = 15.29 %

PROBABILITY OF PURCHASE = 0.986
PROBABILITY OF NO PURCHASE = 0.178

Handles both continuous and discrete data

We were able to correctly classify texts into different groups based on which category they belong to using Naive Bayes Classifier

RELIGION predict_category('Jesus Christ') SPACE predict_category('Sending load to International Space Station ISS') MOTORCYCLES predict_category('Suzuki Hayabusa is a very fast motorcycle') AUTOS predict_category('Audi is better than BMW') POLITICS predict category('President of India')

Weather Data Set - Naive Bayes Solution

Which one is the best predictor?

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

$$P(Yes) = 19 / 14$$

 $P(No) = 5 / 14$

Weather Data Set - Naive Bayes Solution

Frequency Tables

*		Play Golf	
		Yes	No
	Sunny	3 3/9	2 2/5
Outlook	Overcast	4 4/9	0 0/5
	Rainy	2 2/9	33/5

		Play Golf	
		Yes	No
	Hot	2 2/9	2 2/5
Temp.	Mild	44/9	2 2/5
	Cool	33/9	11/5

-1-x		Play Golf	
		Yes	No
Manufalla.	High	3 3/9	44/9
Humidity	Normal	6 6/9	11/5

		Play Golf	
		Yes	No
Windy	False	66/9	2 2/5
	True	3 3/9	33/5

Weather Data Set - Naive Bayes Solution

Let's assume we have a day with:

```
Outlook = Rainy
  Temp = Mild
  Humidity = Normal
  Windy = True
  Likelihood of Yes = P(Outlook=Rainy|Yes)*P(Temp=Mild|Yes)*P(Humidity=Normal|
  Yes)*P(Windy=True|Yes)*P(Yes) =
  2/9 * 4/9 * 6/9 * 3/9 * 9/14 = 0.014109347
  Likelihood of No = P(Outlook=Rainy|No)* P(Temp=Mild|No)*P(Humidity=Normal)
  No)*P(Windy=True|No)*P(No) =
  3/5 * 2/5 * 1/5 * 3/5 * 5/14 = 0.010285714

    Now we normalize:
```

```
P(Yes) = 0.014109347/(0.014109347+0.010285714) = 0.578368999
P(No) = 0.010285714/(0.014109347+0.010285714) = 0.421631001
```