Manipal School of Information Sciences (MSIS)

Manipal Academy of Higher Education, Manipal

Master of Engineering - ME (Big Data Analytics)

Course File

Course Name : Architecture of Big Data Systems Lab

Course Code : BDA 5152

Academic Year : 2024 – 2025

Semester : I

Name of the Course Coordinator : Mr. DEEPAK RAO B

Name of the Program Coordinator : Dr. PRATHVIRAJ N

Signature of Program Coordinator	Signature of Course Coordinator
with Date	with Date

1. (Course Plan5	
1.1	v	
1.2	.2 Course Outcomes (COs)	5
1.3	.3 Course Content (Syllabus)	Error! Bookmark not defined.
1.4	.4 References	Error! Bookmark not defined.
1.5	.5 Other Resources (Online, Text, Multimedia, etc.)	9
1.6	.6 Topic Learning Outcomes (TLOs)	Error! Bookmark not defined.
1.7	.7 Course Timetable	Error! Bookmark not defined.
1.8	.8 Assessment Plan	10
1.9	.9 Assessment Details	11
1.9 1.1	.9 Assessment Details	11
1.1	.9 Assessment Details	11
1.1	.9 Assessment Details	Error! Bookmark not defined.
1.1 2. A	.9 Assessment Details	Error! Bookmark not defined Error! Bookmark not defined Error! Bookmark not defined.
1.1 2. A 2.1	.9 Assessment Details	Error! Bookmark not defined Error! Bookmark not defined Error! Bookmark not defined.

- 2.5 Attainment of Course Outcomes (Indirect): Course End Survey (CES) Questionnaire...... Error! Bookmark not defined.
- 3. CO-PO Assessment......Error! Bookmark not defined.
- **4. Observations and Comments.....** Error! Bookmark not defined.
 - 4.1 Observations from Course Coordinator based on the direct assessment Error! Bookmark not defined.
 - 4.2 Comments/Suggestions by the Course Coordinator Error! Bookmark not defined.

Program Education Objectives (PEOs)

The overall objectives of the Learning Outcomes-based Curriculum Framework (LOCF) for ME (Big Data Analytics), program are as follows.

PEO No.	Education Objective
PEO 1	Develop in depth understanding of the key technologies in data engineering, data science and business analytics.
PEO 2	Practice problem analysis and decision-making using machine learning techniques.
PEO 3	Gain practical, hands-on experience with statistics, programming languages and big data tools through coursework and applied research experiences.

Program Outcomes (POs)

By the end of the postgraduate program in Big Data Analytics, graduates will be able to:

PO1	Independently carry out research /investigation and development work to solve practical problems.
PO2	Write and present a substantial technical report/document.
PO3	Demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PO4	Develop and implement big data analysis strategies based on theoretical principles, ethical considerations, and detailed knowledge of the underlying data.
PO5	Demonstrate knowledge of the underlying principles and evaluation methods for analyzing data for decision-making.

1. Course Plan

1.1 Primary Information

Course Name	:	Architecture of Bid Data Systems Lab
L-T-P-C : 0-0-3-1		0-0-3-1
Contact Hours	:	36 Hours
Pre-requisite	:	Programming with Python or Java

1.2 Course Outcomes (COs)

со	At the end of this course, the student should be able to:	No. of Contact Hours	Program Outcomes (PO's)	BL
----	---	-------------------------	-------------------------	----

CO1	Use data extraction tools to ingest various types of data into big data systems.	6	PO3	3
CO2	Experiment with different tools and frameworks of Hadoop eco-system.	12	PO4	4
CO3	Experiment with Spark Engine to process real-time data.	12	PO4	4
CO4	Design applications to handle batch and streaming data using Hadoop and Spark tools.	6	PO5	6

1.3 Assessment Plan

Components	Lab Test	Flexible Assessments (4- 5 in number)	End semester/ Makeup examination	
Duration	90 minutes	To be decided by the faculty.	180 minutes	

Weightage	0.3	0.2	0.5	
Typology of questions Applying; Analyzing.		Applying; Analyzing. Evaluating.	Applying; Analyzing; Evaluating.	
Pattern	Answer all the questions. Maximum marks 30.	Assignment: Data Extraction, Batch possessing and handling real time processing	Answer all the questions. Maximum marks 50.	
Schedule	As per academic calendar.	Assignment submission: November 2024	As per academic calendar.	
Topics covered	HDFS, SQOOP, HIVE, Map-Reduce program, Spark, Data Frames and Data Streaming		Comprehensive examination covering the full syllabus.	

1.4 Lesson Plan

L. No.	TOPICS	Course Outcome Addressed
L0	Course delivery plan, Course assessment plan, Course outcomes, Program outcomes, CO-PO	
	mapping, reference books	
Lab1	Installing and configuring MySQL	CO1
Lab2	Write script to handle data in MySQL, Shell commands for HDFS	CO1
Lab3	Data ingestion using SQOOP	CO2
Lab4	Data Analysis using HIVE	CO2
Lab5	Introduction to Map-Reduce program	CO2
Lab6	Experiment with Map-Reduce programs	CO2
IT1	Internal lab test	CO1, CO2
Lab7	Introduction to Spark Program	CO3
Lab8	Data handling with Spark RDD	CO3
Lab9	Data Analysis with Spark Data Frames	CO3
Lab10	Data Streaming applications with Spark Structured Streams	CO3
Lab11	Develop batch processing application	CO4
Lab12	Develop real time processing application	CO4

1.5 References

- 1. Big Data: Principles and best practices of scalable real-time data systems Nathan Marz and James Warren. Manning Publisher.
- 2. Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale Tom White, O'Reilly Publication 4th Edition.
- 3. Spark: The Definitive Guide: Big Data Processing Made Simple Bill Chambers, Matei Zaharia, O'Reilly Publication 1st Edition.

1.6 Other Resources (Online, Text, Multimedia, etc.)

- 1. Web Resources: Blog, Online tools and cloud resources.
- 2. Journal Articles.

1.7 Course Timetable

1	st Semester Big	Data Analytics		Room: LG1 LH 3		Lab: Data Science Lab		
	9-10 10-11 11-12			12-1	1-2	2-3	3-4	4-5
MON								
TUE								
WED							ABD LAB	
THU								
FRI								
SAT								

1.8 Assessment Plan

	Cos	Marks & weightage			
CO No.	CO Name	Lab Test	Assignment	End Semester	CO wise
		(Max. 30)	(Max. 20)	(Max. 50)	Weightage
CO1	Use data extraction tools to ingest various types of data into big data systems.	5	5	5	0.15
CO2	Experiment with different tools and frameworks of Hadoop eco-system.	10	5	15	0.3
CO3	Experiment with Spark Engine to process real-time data.	10	5	20	0.35
CO4	Design applications to handle batch and streaming data using Hadoop and Spark tools.	5	5	10	02
	Marks (weightage)	0.3	0.2	0.5	1.0

- In-semester Assessment is considered as the Internal Assessment (IA) in each subject for 50 marks, which includes the performances in class / tutorial participation, assignment work, lab work, class tests, mid-term tests, quizzes etc.
- End-semester examination (ESE) for each lab subject is conducted for a maximum of 50.
- End-semester mark for a maximum of 50 and IA marks for a maximum of 50 are added for a maximum of 100 marks to decide upon the grade in a subject.

1.9 Assessment Details

The assessment tools to be used for the Current Academic Year (CAY) are as follows:

SI. No.	Tools (TLP)	Weightage	Frequency	Details of Measurement (Weightage/Rubrics/Duration, etc.)	
1	Sessional	0.3	2	 Performance is measured using sessional attainment level. Reference: question paper and answer scheme. Each test is assessed for a maximum of 30 marks. 	
2	Assignments	0.2	-	 Performance is measured using assignments/quiz attainment level. Assignments/quiz are evaluated for a maximum of 20 marks. 	
3	ESE	0.5	1	 Performance is measured using ESE attainment level. Reference: question paper and answer scheme. ESE is assessed for a maximum of 50 mark. 	

1.10 Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5
CO1			Y		
CO2				Y	

CO3			Y	
CO4				Y
Average Articulation Level		*	*	*

Note: Enter correlation levels 1, 2 or 3 as defined below for both CO-PO mapping:

- 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High)
- If there is no correlation, apply "-"