University of Vienna Faculty of Mathematics

TENSOR METHODS FOR DATA SCIENCE AND SCIENTIFIC COMPUTING

Milutin Popovic

December 8, 2021

Contents

1 Assignment 4		gnment 4	1
	1.1	HOSVD Algorithm	1
	1.2	Testing the HOSVD	2
	1.3	Tucker approximation of function-related tensors	3
	1.4	TT-SVD for MPS-TT	4
	1.5	Testing the TT-SVD	5
	1.6	TT-MPS of function-related tensors	5

1 Assignment 4

1.1 HOSVD Algorithm

The HOSVD algorithm is used to compute the Tucker approximation of a given tensor $A \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ with given ranks $r_1, \dots, r_d \in \mathbb{N}$ ($d \in \mathbb{N}$ and $n_1, \dots, n_d \in \mathbb{N}$. Additionally we would like to compute and save

- the Forbenius norms of the error produced at each step of the algorithm $\frac{\|A \hat{A}_k\|_F}{\|A\|_F}$ and the vectors of
- the vector of singular values directly approximated by the algorithm

The Tucker decomposition for A, with the ranks above is the following

$$A_{i_1,\dots,i_d} = \sum_{\alpha_1=1}^{r_1} \cdot \sum_{\alpha_d=1}^{r_d} (U_1)_{i_1,\alpha_1} \cdots (U_d)_{i_d,\alpha_d} S_{\alpha_1,\dots,\alpha_d},$$
(1)

where $U_k \in \mathbb{R}^{n_k \times r_k}$ for all $k \in \{1, \dots, d\}$ and $S \in \mathbb{R}^{r_1 \times \dots \times r_d}$ is called the Tucker-core.

The HOSVD algorithm with the additional requirements for the Tucker decomposition of A is the following

Algorithm 1 HOSVD algorithm

```
\hat{S}_0 \leftarrow A
A_0 \leftarrow A
 for k = 1, ..., d do
            \begin{array}{l} (B_k)_{\alpha_1\cdots\alpha_{k-1}\cdot i_{k+1}\cdots i_d,i_k} \leftarrow (\hat{S}_{k-1})_{\alpha_1,\dots,\alpha_{k-1},i_k,\dots,i_d} \\ \hat{B}_k \leftarrow \hat{U}_k \hat{\Sigma}_k \hat{V}_k^* \end{array}
                                                                                                                                                                                                                                                               > permute then reshape
                                                                                                                                                                                                                                                               \triangleright rank r_k T-SVD for B_k
             (\hat{S}_{k})_{\alpha_{1},...,\alpha_{k},i_{k+1},...,i_{d}} \leftarrow (B_{k}\hat{V}_{k})_{\alpha_{1},...,\alpha_{k-1},i_{k+1},...,i_{d},\alpha_{k}} 
 (A_{k})_{i_{1},...,i_{d}} \leftarrow \sum_{\alpha_{1}=1}^{r_{1}} \cdot \sum_{\alpha_{k}=1}^{r_{k}} (\hat{V}_{1})_{i_{1},\alpha_{1}} \cdots (\hat{V}_{k})_{i_{d},\alpha_{d}} S_{\alpha_{1},...,\alpha_{k},i_{k+1},...,i_{d}} 
                                                                                                                                                                                                                                                               > reshape then permute
            save \frac{\|A-\hat{A}_k\|_F}{\|A\|\|}
            save \hat{V}_k
            save \hat{\Sigma}_k
 end for
```

We note that at the k-th step of the algorithm the shapes of the tensors are

$$\hat{S}_{k-1} \in \mathbb{R}^{r_1 \times \dots \times r_{k-1} \times n_k \times \dots n_d}$$

$$\hat{V}_k \in \mathbb{R}^{n_k \times r_k},$$

$$\hat{B}_k \in \mathbb{R}^{r_1 \dots r_{k-1} \cdot n_{k+1} \dots n_d, \times n_k},$$

$$\hat{\Sigma}_k \in \mathbb{R}^{r_k \times 1}.$$
(3)
(5)

$$\hat{V}_k \in \mathbb{R}^{n_k \times r_k},\tag{3}$$

$$\hat{B}_k \in \mathbb{R}^{r_1 \cdots r_{k-1} \cdot n_{k+1} \cdots n_d, \times n_k},\tag{4}$$

$$\hat{\Sigma}_k \in \mathbb{R}^{r_k \times 1}. \tag{5}$$

1.2 **Testing the HOSVD**

For the case d=4 we construct a quasirandom Tucker decomposition by drawing the entries for $U_k \in$ $\mathbb{R}^{n_k \times r_k}$ and $S \in \mathbb{R}^{r_1 \times \cdots \times r_d}$ uniformly on [-1,1]. The output of the errors in the k-th steps is in the figure bellow

HOSVD of Uniform Tensor

Figure 1: Tucker approximation error on the k-th step of a quasirandom Tensor

1.3 Tucker approximation of function-related tensors

Consider two multivariable functions $f(x_1, ..., x_d)$ and $g(x_1, ..., x_d)$, defined as

$$f(x_1, \dots, x_d) = \left(1 + \sum_{k=1}^d \frac{x_k^2}{8^{k-1}}\right)^{-1}$$
 (6)

$$g(x_1, \dots, x_d) = \sqrt{\sum_{k=1}^d \frac{x_k^2}{8^{k-1}}} \cdot \left(1 + \frac{1}{2} \cos\left(\sum_{k=1}^d \frac{4\pi x_k}{4^{k-1}}\right)\right)$$
 (7)

for $x_1, \ldots, x_d \in [-1, 1]$. Additionally we define a grid of points

$$t_i = 2\frac{i-1}{n-1} - 1, (8)$$

for i = 1, ..., n. With this we can construct a d dimensional tensor of size $n \times \cdots \times n$ by

$$b_{i_1,\dots,i_d} = f(t_{i_1},\dots,t_{i_d}),$$
 (9)

$$a_{i_1,\dots,i_d} = g(t_{i_1},\dots,t_{i_d}),$$
 (10)

for all $i_1, \dots, i_d \in \{1, \dots, n\}$.

For C = A and C = B. For every $k \in \{1, ..., d\}$, we compute the singular values of the k - th Tucker unfolding matrix of C.

Figure 2: Decrease of singular values of the k-th Tucker unfolding of A, B produced by its SVD

For the accuracy Threshold $\varepsilon_j = 10^{-j}$ with $j \in \{2, 4, ..., 12\}$, for each j and every k we find the smallest r_{jk} such that the k-th unfolding matrix can be approximated with ranks r_{jk} , where the approximations relative error does not exceed ε_j . Additionally we compute the ε_{jk} error in the k-th unfolding, which should by the error analysis be bounded by $\varepsilon_{jk} \le \varepsilon_j$ for all j.

Figure 3: Dependence of the approximated ranks r_{jk} on $j = \log_{10} \varepsilon^{-j}$

For every j we use our implementation of the HOSVD algorithm to compute the Tucker approximation of C for the ranks r_{jk} for $k = 1, \dots, d$ and the number of total entries N_j produced by the output decomposition. In the code [1] it is checked during run-time that the error produced by the HOSVD algorithm does not exceed $\|\varepsilon_{jk}\|_F$ and agrees wit the error analysis.

For j = 12 we plot the ratio of the singular values produced by the HOSVD algorithm and during the SVD approximation of the k - th Tucker unfolding matrix

Figure 4: Ratio of Singular values produced by the HOSVD and the k-th Tucker unfolding approximation of C.

Figure 5: Number of parameters N_i produced by the HOSVD for C

1.4 TT-SVD for MPS-TT

The TT-MPS (Tensor Train or Matrix Product States decomposition) for a given tensor $A \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ with ranks $r_1, \dots, r_{d-1} \in \mathbb{N}$ is the following

$$A_{i_1,\dots,i_d} = \sum_{\alpha_1=1}^{r_1} \dots \sum_{\alpha_{d-1}=1}^{r_{d-1}} U_1(\alpha_0, i_1, \alpha_1) \dots U_d(\alpha_{d-1}, i_d, \alpha_d)$$
(11)

for $\alpha_0 = \alpha_d = 1$, $i_k \in \{1, ..., n_k\}$. The decomposition factors are given by

$$V_k(i_k) \in \mathbb{R}^{r_{k-1} \cdot n_k \times r_k},\tag{12}$$

$$(V_k(i_k))_{\alpha_{k-1},\alpha_k} = U_k(\alpha_{k-1}, i_k, \alpha_k), \tag{13}$$

where i_k is called the mode index.

The TT-SVD algorithm for A as above is the following

Algorithm 2 TT-SVD algorithm

```
\hat{S}_0 \leftarrow A
A_0 \leftarrow A
r_0 \leftarrow 1
r_d \leftarrow 1
for k = 1, ..., d - 1 do
         \begin{array}{l} (B_k)_{\alpha_{k-1},i_k,i_{k+1},\cdots i_d} \leftarrow (\hat{S}_{k-1})_{\alpha_{k-1},i_k,i_{k+1},\dots,i_d} \\ \hat{B}_k \leftarrow \hat{U}_k \hat{\Sigma}_k \hat{V}_k^* \end{array}
                                                                                                                                                                                                                                               ⊳ reshape
                                                                                                                                                                                                            \triangleright rank r_k T-SVD for B_k
          (\hat{C}_k)_{\alpha_{k-1},i_k,\alpha_k} \leftarrow (\hat{U}_k)_{\alpha_{k-1}i_k,\alpha_k}
                                                                                                                                                                                                                                               ⊳ reshape
          (\hat{S}_k)_{\alpha_k,i_k,\dots,i_d} \leftarrow (\hat{\Sigma}_k \hat{V}_k)_{\alpha_k,i_{k+1}\dots i_d}
                                                                                                                                                                                                                                               ⊳ reshape
         save \frac{\|A-\hat{A}_k\|_F}{\|A\|_F}
          save \hat{C}_k
          save \hat{\Sigma}_k
end for
```

1.5 Testing the TT-SVD

For the case d=4 we construct a quasirandom Tucker decomposition by drawing the entries for $C_k \in \mathbb{R}^{r_{k-1} \cdot n_k \times r_k}$ uniformly on [-1,1]. The output of the errors in the k-th steps is in the figure bellow

TT-SVD of uniform tensor

Figure 6: TT-MPS error on the k-th step of a quasirandom Tensor in the TT-SVD algorithm

1.6 TT-MPS of function-related tensors

In this section we repeat everything we did in section 1.3, replacing the HOSVD algorithm for the Tucker approximation with the TT-SVD algorithm for the TT-MPS approximation

Figure 7: Ratio of Singular values produced by the TT-SVD and the k-th Tucker unfolding approximation of C.

Figure 8: Number of parameters N_i produced by the TT-SVD for C

References

[1] Popovic Milutin. Git Instance, Tensor Methods for Data Science and Scientific Computing. URL: git://popovic.xyz/tensor_methods.git.