PROJECT – 1 MOBILE PHONE PRICING

Exploratory Data Analysis And Machine Learning Model

Aman Varma
UNID – UMIP270026

INTRODUCTION

OBJECTIVE

Predict the price category of mobile phones based on features.

DATASET USED

- The dataset used in this project is dataset.csv.
- Contains 2000 samples with 21 features

1	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	рс	px_heigh	t px_widtl	ram	sc_h	sc_w	talk_time	three_g	touch_screen wifi	price_range
2	842	0	2.2	0	1		0 7	0.6	188	2	2	2	0 75	6 2549	9	7	19	0	0 1	1
3	1021	1	0.5	1	C)	1 53	0.7	136	3	6	90	5 198	8 2631	17	3	7	1	1 0	2
4	563	1	0.5	1	2	2	1 41	0.9	145	5	6	126	3 171	6 2603	11	2	9	1	1 0	2
5	615	1	2.5	0	0)	0 10	0.8	131	6	9	121	6 178	6 2769	16	8	11	1	0 0	2
6	1821	1	1.2	0	13	3	1 44	0.6	141	2	14	120	8 121	2 1411	8	2	15	1	1 0	1

ALGORITHM

XGBoost Classifier

DATA OVERVIEW

Data Source : dataset.csv

Number of Samples: 2000

Number of Features: 21

Target Variable: price range (0: Low, 1: Medium, 2: High, 3: Very High)

Features: Battery power, RAM, Display size, etc

DATA CORRELATION ANALYSIS

Correlation Matrix:

Heatmap: Visualized correlations using Seaborn

FEATURES SELECTION

Used XGBoost feature importance visualization.

MODEL EVALUATION

Accuracy Score: 92.4%

```
import xgboost as xgb
from sklearn.model_selection import train_test_split
# Define features and target
X = df.drop(columns=["price_range"])
y = df["price_range"]
# Split dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
# Initialize and train the XGBoost model
model = xgb.XGBClassifier(objective="multi:softmax", num_class=4, eval_metric="mlogloss")
model.fit(X_train, y_train)
```

MAKING PREDICTION

```
new_mobile = {
    "battery_power": 1200, "blue": 1, "clock_speed": 1.5, "dual_sim": 1, "fc": 3, "four_g": 1,
    "int_memory": 16, "m_dep": 0.6, "mobile_wt": 150, "n_cores": 2, "pc": 8,
    "px_area": 720 * 1080, "ram": 1500, "sc_h": 11, "sc_w": 5, "talk_time": 10, "three_g": 1,
    "touch_screen": 1, "wifi": 1
}

predicted_category = predict_price(new_mobile)
print(f"Predicted Price Category: {predicted_category}")
```

Predicted Price Category: Medium Cost

CONCLUSION

Model Performance Summary:

• XGBoost achieved 92.4% accuracy.

			-		
	precision	recall	f1-score	support	
0	0.97	0.98	0.98	125	
1	0.93	0.90	0.91	125	
2	0.85	0.90	0.88	125	
3	0.95	0.91	0.93	125	
accuracy			0.92	500	
	0.02	0.02	0.02	FOO	
macro avg	0.92	0.92	0.92	500	
weighted avg	0.92	0.92	0.92	500	
Classificatio	n report sav	∕ed as 'cl	assificatio	on_report.txt	- '

PROJECT – 2 LUNG CANCER

Exploratory Data Analysis And Machine Learning Model

Aman Varma
UNID – UMIP270026

INTRODUCTION

OBJECTIVE

- The goal of this project is to analyze a given dataset using Exploratory Data Analysis (EDA) and build a Machine Learning model to make predictions.
- We aim to understand the dataset, clean the data, and extract insights before applying a machine learning algorithm.
- Finally, we train a Logistic Regression model to classify the data and evaluate its performance

DATASET USED

- The dataset used in this project is **dataset med.csv**.
- It contains information related to patient medical history, health conditions, treatments, and survival outcomes.
- It consists of 890,000 rows and 48 columns, including features such as age, gender, BMI, cholesterol level, hypertension, asthma, cancer stage, smoking status, and treatment type etc.

Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q
id	age	gender	country	diagnosis_c	dacancer_sta	ge family_history	smoking_status	bmi	cholesterol_level	hypertension	asthma	cirrhosis	other_cancer	treatment_type	end_treatment_date	survived
1	64	Male	Sweden	4/5/2016	6 Stage I	Yes	Passive Smoker	29.4	199	0	0	1	. 0	Chemotherapy	9/10/2017	0
2	50	Female	Netherlands	4/20/2023	3 Stage III	Yes	Passive Smoker	41.2	280	1	1	0	0	Surgery	6/17/2024	1
3	65	Female	Hungary	4/5/2023	3 Stage III	Yes	Former Smoker	44	268	1	1	0	0	Combined	4/9/2024	0
4	51	Female	Belgium	2/5/2016	6 Stage I	No	Passive Smoker	43	241	1	1	0	0	Chemotherapy	4/23/2017	0
5	37	Male	Luxembourg	########	# Stage I	No	Passive Smoker	19.7	178	0	0	0	0	Combined	1/8/2025	0
6	50	Male	Italy	1/2/2023	3 Stage I	No	Never Smoked	37.6	274	1	0	0	0	Radiation	12/27/2024	0

DATA EXPLORATION

Dataset Loading & Overview

Processed Dataset after performing EDA & Feature Engineering:

A preview of the dataset: (df.head())

age	gender	country	${\it diagnosis_date}$	cancer_stage	family_history	$smoking_status$	bmi	$cholesterol_level$	hypertension	asthma	cirrhosis
64.0	Male	Sweden	2016-04-05	Stage I	Yes	Passive Smoker	29.4	199	0	0	1
50.0	Female	Netherlands	2023-04-20	Stage III	Yes	Passive Smoker	41.2	280	1	1	0
65.0	Female	Hungary	2023-04-05	Stage III	Yes	Former Smoker	44.0	268	1	1	0
51.0	Female	Belgium	2016-02-05	Stage I	No	Passive Smoker	43.0	241	1	1	0
37.0	Male	Luxembourg	2023-11-29	Stage I	No	Passive Smoker	19.7	178	0	0	0

This shows the first few records and helps us understand the structure.

DATASET INFORMATION (df.info())

#	Column	Non-Null Count	Dtype
0	age	890000 non-null	float64
1	gender	890000 non-null	int64
2	diagnosis_date	890000 non-null	object
3	family_history	890000 non-null	int64
4	bmi	890000 non-null	float64
5	cholesterol_level	890000 non-null	int64
6	hypertension	890000 non-null	int64
7	asthma	890000 non-null	int64
8	cirrhosis	890000 non-null	int64
9	other_cancer	890000 non-null	int64
10	end_treatment_date	890000 non-null	object
11	survived	890000 non-null	int64
12	treatment_duration	890000 non-null	int64
13	cancer_stage_Stage II	890000 non-null	bool
14	cancer_stage_Stage III	890000 non-null	bool
15	cancer_stage_Stage IV	890000 non-null	bool
16	smoking_status_Former Smoker	890000 non-null	bool
17	smoking_status_Never Smoked	890000 non-null	bool
18	<pre>smoking_status_Passive Smoker</pre>	890000 non-null	bool
19	treatment_type_Combined	890000 non-null	bool
46	country_Spain	890000 non-null	bool
47	country_Sweden	890000 non-null	bool

HISTOGRAM

MACHINE LEARNING MODEL

Data Preprocessing:

Train-Test Split (train_test_split).

- The dataset was divided into 80% training and 20% testing.
- This helps the model learn patterns from the training set and generalize to unseen data.
- train_test_split() from sklearn.model_selection was used for splitting.

Feature Scaling (StandardScaler)

 StandardScaler normalized numerical features to ensure a uniform scale, improving model stability and efficiency.

Model Selection:

- Chose Logistic Regression for binary classification due to its efficiency.
- Uses a sigmoid function to estimate class probabilities

MACHINE LEARNING MODEL

Model Training:

- Trained the model using LogisticRegression() from sklearn.
- Learned patterns from training data and made predictions on the test set.

Model Evaluation:

- Accuracy Score measured overall model performance.
- Classification Report provided key metrics:
 - Precision (True Positives vs. False Positives)
 - Recall (Sensitivity to positive cases)
 - F1-score (Balance of precision & recall)
 - Support (Instances per class)

CONCLUSION

Model Performance Summary:

- The Logistic Regression model was trained on the dataset.
- Accuracy Score: [0.78]
- Classification Report: Show key metrics (Precision, Recall, F1-score)
- Model was evaluated using a train-test split (80-20%), ensuring fair evaluation.

Logistic Regression Model: Accuracy: 0.78 Classification Report:									
	precision	recall	f1-score	support					
0	0.78	1.00	0.88	138694					
1	0.00	0.00	0.00	39306					
accuracy			0.78	178000					
macro avg	0.39	0.50	0.44	178000					
weighted avg	0.61	0.78	0.68	178000					

PROJECT – 3 ANIMAL CLASSIFICATION

Deep Learning-Based Image Classification

Aman Varma
UNID – UMIP270026

PROJECT OVERVIEW

- This project aims to classify animal images into 15 categories using deep learning.
- Uses EfficientNetB0, a state-of-the-art convolutional neural network (CNN), for transfer learning.
- Transfer Learning :
 - Pretrained on the **ImageNet** dataset.
 - Learns general image features and adapts to our dataset.
- Dataset Processing & Augmentation:
 - Normalization: Pixel values scaled to [0,1].
 - Augmentations for better generalization:
 - Rotation: Random rotations up to $\pm 50^{\circ}$.
 - Shifts: Horizontal & vertical shifts up to 30%.
 - Shearing & Zooming: Up to 30%.
 - Horizontal Flipping: For symmetry-based learning
- Data Split:
 - 80% Training Set
 - 20% Validation Set

DATA PREPARATION

Data Organization:

- Each animal category has its own subdirectory.
- Example structure :
 - dataset/Lion/ (contains lion images)
 - dataset/Tiger/ (contains tiger images)
 - dataset/elephant/ (contains elephant images)

Data Splitting :

- Training Set (80%): Used to train the model.
- Validation Set (20%): Used to fine-tune model hyperparameters.

Image Format & Size :

- Images resized to 224x224 pixels.
- Supported formats: JPG, PNG.

Challenges:

- Class imbalance can affect model performance.
- Ensuring diverse samples for better generalization.

DATA PREPROCESSING & AUGMENTATION

Why Preprocessing?

- Improves model performance and generalization...
- Helps prevent overfitting by artificially expanding the dataset.

Rescaling:

• Pixel values normalized to [0,1] for consistent input representation.

Augmentation Techniques:

- Rotation: Random rotations up to $\pm 50^{\circ}$ to make the model rotation-invariant.
- Width & Height Shift: Random shifts up to 30% to improve spatial robustness.
- Shearing & Zooming:
 - Shearing by ±30% distorts the image slightly to introduce variation
 - Zooming in/out by ±30% to simulate different camera distances.

Impact:

- Improves model generalization to unseen images.
- Enhances robustness against variations in image orientation and scale
- Increases dataset size artificially.

MODEL ARCHITECTURE

- Base Model: EfficientNetB0
 - Pretrained on ImageNet for feature extraction.
 - Provides high accuracy with fewer parameters.
- Fine-Tuning Strategy:
 - Unfreezing the last 20 layers allows the model to learn dataset-specific patterns.
 - The initial layers remain frozen to retain pre-trained knowledge.
- Output:
 - Produces multi-class classification probabilities for each input image.

TRAINING CONFIGURATION & MODEL TRAINING

Training Configuration:

- Optimizer: Adam (learning rate = 0.001)
- Loss Function: Categorical Crossentropy
- . Metrics: Accuracy
 - Measures how well the model classifies images correctly.
- Learning Rate Scheduler :
 - Automatically reduces the learning rate if validation loss does not improve after a few epochs.
 - Helps in stabilizing training and achieving better convergence.

Model Training:

- Epochs: 50 .
 - Number of times the entire dataset passes through the model.
- Batch Size: 32.
 - Number of images processed before updating weights.
- Training & Validation Accuracy :
 - Accuracy is tracked across epochs to identify overfitting or underfitting.

RESULTS

THANK YOU

Aman Varma

955-506-3197 | amanvarma0486@gmail.com