

Integration Rules

Integration

<u>Integration</u> can be used to find areas, volumes, central points and many useful things. But it is often used to find the **area underneath the graph of a function** like this:

The integral of many functions are well known, and there are useful rules to work out the integral of more complicated functions, many of which are shown here.

There are <u>examples below</u> to help you.

Common Functions	Function	Integral
Constant	∫a dx	ax + C
Variable	∫x dx	$x^2/2 + C$
Square	$\int x^2 dx$	$x^3/3 + C$
Reciprocal	$\int (1/x) dx$	ln x + C
Exponential	$\int e^{x} dx$	e ^x + C
	\int a x d x	a ^x /ln(a) + C
	$\int \ln(x) dx$	$x \ln(x) - x + C$
Trigonometry (x in <u>radians</u>)	$\int \cos(x) dx$	sin(x) + C
	$\int \sin(x) dx$	-cos(x) + C
	$\int \sec^2(x) dx$	tan(x) + C

Function

Integral

Rules

Multiplication by constant
$$\int cf(x) dx$$
 $c \int f(x) dx$

Power Rule (n≠-1)
$$\int x^n dx \frac{x^{n+1}}{n+1} + C$$

Sum Rule
$$\int (f+g) dx \qquad \int f dx + \int g dx$$

Difference Rule
$$\int (f - g) dx \qquad \int f dx - \int g dx$$

Examples

Example: what is the integral of sin(x)?

From the table above it is listed as being $-\cos(x) + C$

It is written as:

$$\int \sin(x) \, dx = -\cos(x) + C$$

Example: what is the integral of 1/x?

From the table above it is listed as being ln|x| + C

It is written as:

$$\int (1/x) dx = \ln|x| + C$$

The vertical bars | | either side of x mean <u>absolute value</u>, because we don't want to give negative values to the <u>natural logarithm</u> function $| n \rangle$.

Power Rule

Example: What is $\int x^3 dx$?

The question is asking "what is the integral of x^3 ?"

We can use the Power Rule, where n=3:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int x^3 dx = \frac{x^4}{4} + C$$

Example: What is $\int \sqrt{x} dx$?

 \sqrt{x} is also $x^{0.5}$

We can use the Power Rule, where $n=\frac{1}{2}$:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int x^{0.5} dx = \frac{x^{1.5}}{1.5} + C$$

Multiplication by constant

Example: What is $\int 6x^2 dx$?

We can move the 6 outside the integral:

$$\int 6x^2 dx = 6 \int x^2 dx$$

And now use the Power Rule on x^2 :

$$= 6 \frac{x^3}{3} + C$$

Simplify:

$$= 2x^3 + C$$

Sum Rule

2020/8/21 Integration Rules

Example: What is $\int \cos x + x \, dx$?

Use the Sum Rule:

$$\int \cos x + x \, dx = \int \cos x \, dx + \int x \, dx$$

Work out the integral of each (using table above):

$$= \sin x + x^2/2 + C$$

Difference Rule

Example: What is $\int e^{W} - 3 \, dw$?

Use the Difference Rule:

$$\int e^{W} - 3 dw = \int e^{W} dw - \int 3 dw$$

Then work out the integral of each (using table above):

$$= e^{W} - 3w + C$$

Sum, Difference, Constant Multiplication And Power Rules

Example: What is $\int 8z + 4z^3 - 6z^2 dz$?

Use the Sum and Difference Rule:

$$\int 8z + 4z^3 - 6z^2 dz = \int 8z dz + \int 4z^3 dz - \int 6z^2 dz$$

Constant Multiplication:

$$= 8 \int z \, dz + 4 \int z^3 \, dz - 6 \int z^2 \, dz$$

Power Rule:

$$= 8z^2/2 + 4z^4/4 - 6z^3/3 + C$$

Simplify:

$$= 4z^2 + z^4 - 2z^3 + C$$

Integration by Parts

See <u>Integration by Parts</u>

Substitution Rule

See Integration by Substitution

Final Advice

- · Get plenty of practice
- Don't forget the **dx** (or dz, etc)
- Don't forget the + C

<u>Question 1 Question 2 Question 3 Question 4 Question 5</u> <u>Question 6 Question 7 Question 8 Question 9 Question 10</u>

Copyright © 2017 MathsIsFun.com