Diskrete Mathematik

Logik

Junktoren

Zeichen	Prädikat	Bezeichnung
_	$\neg A$	NICHT A
٨	$A \wedge B$	A UND B
V	$A \vee B$	A ODER B
\Rightarrow	$A \Rightarrow B$	WENN A DANN B
\Leftrightarrow	$A \Leftrightarrow B$	A GLEICH B

Negation: $\neg A =>$ kehrt den Wahrheitswert um

Konjunktion: $A \wedge B$ Disjunktion: $A \vee B$

 $\underline{\ddot{\mathsf{A}}\mathsf{quivalenz}}$: $A \leftrightarrow B \Rightarrow \mathsf{gleicher}$ Wahrheitswert

Implikation

Doppelte Negation	$\neg \neg A$	A
Assoziativität	$(A \land B) \land C$	$A \wedge (B \wedge C)$
	$(A \lor B) \lor C$	$A \lor (B \lor C)$
Distributivität	$A \wedge (B \vee C)$	$(A \land B) \lor (A \land C)$
	$A \lor (B \land C)$	$(A \lor B) \land (A \lor C)$
De Morgan	$\neg (A \land B)$	$\neg A \lor \neg B$
	$\neg (A \lor B)$	$\neg A \land \neg B$
Implikation	$A \Rightarrow B$	$\neg A \lor B$
(Kontraposition)	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
Äquivalenz	$A \leftrightarrow B$	$((A \Rightarrow B) \land (B \Rightarrow A))$
		$(\neg A \lor B) \land (\neg B \lor A)$

Α	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	<u>0</u>
1	1	1

In jedem Fall, wo A wahr ist, muss auch B wahr sein.

Wenn A wahr ist, muss B auch wahr sein
 Wenn A falsch ist, kann B wahr oder falsch sein.

Wenn xyz, dann abc: Falls xyz falsch, dann alles WAHR.

Quantoren

Allquantor : ∀x "für alle.."

• Existenzquantor: $\exists x$

Quantoren binden stärker als Junktoren

Vertauschungsregel	$\exists x A(x)$	$\neg \forall x \neg A(x)$
Negation	$\neg \exists x \in MA(x)$	$\forall x \in M \neg A(x)$
	$\neg \forall x \in MA(x)$	$\exists x \in M \neg A(x)$

Beispiele Logik

Mindestens 3 mit G(x):

$$\exists x,y,z(G(x)\wedge G(y)\wedge G(z)\wedge x
eq y\wedge x
eq z\wedge y
eq z)$$

Höchstens 2 mit G(x):

$$eg(\exists x,y,z(G(x)\wedge G(y)\wedge G(z)\wedge x
eq y\wedge x
eq z\wedge y
eq z))$$

Es gibt genau ein x mit $P(x) \Leftrightarrow \exists x (P(x)) \land \forall y, z (P(y) \land P(z) \Rightarrow y = z)$ Es gibt mindestens zwei Dinge mit der Eigenschaft $P \Leftrightarrow \exists x, y (P(x) \land P(y) \land x \neq y)$

Es gibt höchstens ein x mit $P(x) \Leftrightarrow \neg \exists x, y (P(x) \land P(y) \land x \neq y)$

Wenn P(x) und P(y) gilt, dann gilt stets auch Q(x, y) $\Leftrightarrow \forall x$, y (P(x) \land P(y) \Rightarrow Q(x, y))

Für kein x gilt $Q(x, x) \Leftrightarrow \forall x \neg Q(x, x)$

Umformungsregeln:

Vertauschungsregel für unbeschränkte Quantoren: $\forall x A(x) \Leftrightarrow \neg \exists x \neg A(x)$

Beschränkter und unbeschränkter Allquantor: $\forall x \in K \ A(x) \Leftrightarrow \forall x (x \in K \Rightarrow A(x))$

Beschränkter und unbeschränkter Existenzquantor: $\exists x \in K \ A(x) \Leftrightarrow \exists x (x \in K \land A(x))$

Semantik

$$\hat{B}(F \land G) = \text{and } (\hat{B}(F), \hat{B}(G))$$

 $\hat{B}(F \lor G) = \text{or } (\hat{B}(F), \hat{B}(G))$
 $\hat{B}(\neg F) = \text{not } (\hat{B}(F))$

Beispiele:

Gegeben sei eine Belegung $B:V
ightarrow \{false, true\}$

$$B(p) = B(q) = B(r) = B(s) = true$$

$$B(u) = B(v) = false$$

 \hat{B} von folgendem ist:

1.
$$p o s$$
 $\hat{B}(p o s)=\hat{B}(
eg pee s)=OR(\hat{B}(
eg p),\hat{B}(s))$

→ B hat von (s) im OR statement ist true, somit ist der Ausdruck TRUE.

2.
$$(u
ightarrow r)\wedge s$$
 $AND(\hat{B}(u
ightarrow r),\hat{B}(s))$

B hat von s ist false, also kann gestrichen werden.

$$\Rightarrow \hat{B}(u
ightarrow r) = \hat{B}(
eg u ee r) = OR(\hat{B}(
eg u), \hat{B}(r))$$

 $\hat{B}(r)$ im OR statement ist TRUE, somit ist der Ausdruck TRUE.

2

Teilformen:

p_0	q	p_1	$q \vee p_1$	$p_0 \to (q \vee p_1)$
0	0	0	0	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

▼ Allgemeingültig

- ▼ wenn unter jederBelegung true
- ▼ Wahrheitstabelle (ganz rechts) alles 1
- ▼ Wiederlegbar
 - ▼ Wahrheitstabelle ganz rechts mindestens ein 0

- Gesetz der doppelten Negation:
$$\neg\neg F \equiv F$$

- Assoziativität:
$$F \lor (G \lor H) \equiv (F \lor G) \lor H$$

- De Morgan:
$$\neg(F \vee G) \, \equiv \, \neg F \wedge \neg G$$

- Kontraposition:
$$F \to G \equiv \neg G \to \neg F$$

$\neg q \to \neg p \mid (p \to q) \to (\neg \overline{q \to \neg p})$ $\neg p \mid \neg q \mid p \rightarrow q$ 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1

Semantische Eigenschaften

- ▼ Erfüllbar
 - ▼ wenn mindestens eine Belegung true
 - ▼ Wahrheitstabelle ganz rechts mindestens ein 1.
- ▼ Unerfüllbar
 - ▼ wenn unter keiner Belegung true
 - ▼ Wahrheitstabelle alle werte ganz rechts auf 0

Beweisen:

$$\neg \neg F \equiv F$$

$$\hat{B}(\neg \neg F) \equiv \hat{B}(F)$$

$$\hat{B}(\neg \neg F) \equiv NOT(\hat{B}(\neg F)) \equiv NOT(NOT(\hat{B}(F)) = \hat{B}(F)$$

Normalformen

NNF (Negationsnormalform)

- ullet keine Implikation ightarrow
- negationen nur direkt beim Literal ($\neg p$)

KNF (konjuktive Normalform)

Literale:
$$L_{i,j}$$

$$(L_{1,1} \lor L_{1,2} \lor ...) \land (L_{2,1} \lor L_{2,2} \lor ...) \land (...)$$

DNF (disjunktive Normalform)

Literale: $L_{i,i}$

$$(L_{1,1} \wedge L_{1,2} \wedge ...) \vee (L_{2,1} \wedge L_{2,2} \wedge ...) \vee (...)$$

DNF und KNF sind auch immer NNF

⁻ Absorption: $F \wedge F \equiv F$ und $F \vee F \equiv F$

⁻ Kommutativität: $F \wedge G \equiv G \wedge F$ und $F \vee G \equiv G \vee F$

⁻ Assoziativität: $F \wedge (G \wedge H) \equiv (F \wedge G) \wedge H$

⁻ Distributivität: $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$

⁻ Distributivität: $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$

⁻ De Morgan: $\neg(F \land G) \equiv \neg F \lor \neg G$

Formel in Normalform bringen:

Beispiel 14. Wir bringen die Formel

$$(\neg p \to q) \to ((p \land p_1) \lor (p_2 \land p_3))$$

in DNF. Wir eliminieren zuerst alle Implikationen und doppelten Negationen:

Als Nächstes eliminieren wir alle Negationen, die nicht in Literalen vorkommen:

$$\neg (p \lor q) \lor ((p \land p_1) \lor (p_2 \land p_3)) \equiv (\neg p \land \neg q) \lor ((p \land p_1) \lor (p_2 \land p_3)).$$

Die Formel, die wir erhalten haben, ist sowohl in NNF als auch in DNF. Wir ke

 $(p \wedge p_1) \vee (p_2 \wedge p_3)$

äquivalente Formel in KNF. Wir wenden sukzessive die Distributivgesetze an:

$$\begin{split} (p \wedge p_1) \vee (p_2 \wedge p_3) &\equiv ((p \wedge p_1) \vee p_2) \wedge ((p \wedge p_1) \vee p_3) \\ &\equiv ((p \wedge p_1) \vee p_2) \wedge ((p \vee p_3) \wedge (p_1 \vee p_3)) \\ &\equiv ((p \vee p_2) \wedge (p_1 \vee p_2)) \wedge ((p \vee p_3) \wedge (p_1 \vee p_3)). \end{split}$$

Wahrheitstabellen

DNF V: Bildung einer Konjunktion aus jeder Zeile die <u>true</u> liefert = <u>Minterm</u> $(a \land b \land c) \lor ...$ **KNF** \land : Bildung einer Disjunktion \lor aus jeder Zeile die <u>false</u> liefert = <u>Maxterm</u> $(a \lor b \lor c) \land ...$

Mengen

 $y \in X$: y ist ein Element von X.

 $y \not\in X$: y ist kein Elment von X.

Schnittmenge

Veranschaulichung der Mengenbildung durch Schnitt von zwei Mengen

 $X\subset Y$: X ist eine Teilmente von Y.

X ∩ Y = Ø bedeutet, dass die Mengen keine gemeinsamen Elemente haben = disjunkt

 $X \setminus Y :=$ Menge aller Elemente von X die NICHT zu Y gehören.

<u>Vereinigung</u>

 $X \cap Y$

 $X \cup Y$

Potzenzmenge

A ist ein beliebige Menge, $\mathcal{P}(A)$ ist die Potenzmenge von A. Bedeutet genau die Teilmengen A als Elemente.

$$\mathcal{P}(\{0,1\}) = \{\varnothing, \{0\}, \{1\}, \{0,1\}\}\$$

Diskrete Mathematik

Partitionen

b)Eine Partition P={ $P_i|i\in I$ } einer Menge A, ist eine Menge von Teilmengen wiederrum von A. Ein Element von P wird Block (Blöcke) genannt.

 Die elemente von P sind nichtleer und paarweise diskjunkt.

Kartesisches Produkt

Wichtig: $A \times B \neq B \times A$ => Tupel haben eine innere Ordnung! $|A \times B| = |A| \cdot |B$ $\{1,3\} \times \{0,2\} = \{(1,0),(1,2),(3,0),(3,2)\}$ $\emptyset \times \{\emptyset\} = \emptyset$

Unendlichkeit

Injektiv

Surjektiv

Bijektiv

Grössenvergleich

Definition 33.

- Eine Menge X heisst endlich, wenn es eine natürliche Zahl n und eine Darstellung der Form $X=\{x_1,x_2,\dots,x_n\}$ gibt. Wenn $X=\{x_1,\dots,x_n\}$ gilt, und die Elemente x_i paarweise verschieden sind (d.h. es gilt $i\neq j\Rightarrow x_i\neq x_j$), dann hat die Menge X genau n viele Elemente und wir schreiben |X|=n.
- Nicht endliche Mengen nennen wir ${\it unendlich}.$
- Eine Menge Xheisst $abz\ddot{a}hlbar,$ wenn eine surjektive Funktion $F:\mathbb{N}\to X$ existiert oder wenn $X=\varnothing$ gilt.
- Die Menge X heisst $abz\ddot{a}hlbar~unendlich,$ wenn X abzählbar und unendlich ist.
- Eine *überabzählbare* Menge ist eine Menge, die nicht abzählbar ist.

Abzählbar unendlich	gleichmächtig wie N (bijektive Funktion «Zuordnung existiert»)	N, Z, Q, N x N, Z x Z	
Überabzählbar unendlich	grösser als N	(0, 1) = alle unendlichen Binärsequenzen	

Relationen

Binäre Relationen R auf einer Menge X :

gilt immer für ALLE $x \in X$

Reflexion

xRx

Äquivalenzrelationen

sind relfexiv, symetrische und transitive Relationen

Symetrisch

 $xRy \rightarrow yRx$

Äquivalenzklassen

Übung 27. Wie viele Aquivalenzklassen hat die Relation R von Übung 26?

Lösung. 366 (Auch in Schaltjahren haben an jedem Tag Leute Geburtstag.)

Antisymetrisch

 $xRy \wedge yRx \rightarrow x = y$

Transitiv

 $xRy \wedge yRz o xRz$

Ordnungsrelationen

R-unvergleichbar

falls weder xRy noch yRx gilt

R-maximal

kein anderes Element $y \in X$ mit xRy

R-minmal

 $\text{kein anderes Element } y \in X \text{ mit } yRx$

Beispiel:

minimalen Elemente: a,x

maximalen Elemente: z

unvergleichbar: t

	Reflexiv	Symmetrisch	Antisymmetrisch	Transitiv
Äquivalenzrelation	X	X		Х
Prä-Ordnung	Х			Х
Halb-Ordnung	X		X	Х
Totale Ordnung	Х		X	Х
Wohl-Ordnung	Х		X	Х

Präordnung

R reflexiv und transitiv

Total / lineare Ordnung

Halbordnung & keine Runvergleichbaren Elemente

DAG

gerichteter, zyklenfreier Graph => z.B. Hasse Diagramm

Hasse-Diagramm

Paarweise unvergleichbar: Im Hasse Diag. auf einer Linie!

Halbordnung

reflexiv, antisymmetrisch und transitiv

Wohlordnung

wenn R eine totale Ordnung ist so, dass jede Teilmenge von M (mindestens) ein R-minimales Element enthält

 R^+

transitiver Abschluss = $\{(1,1), (1,2), (2,3), (1,3)\}$

 R^*

reflexiv-transitiver Abschluss

Funktionen

 □
 Jedem
 Wert aus der Definitionsmenge wird genau ein
 Element aus der Bildmenge zugeordnet.

⇒ Rechtseindeutig + linkstotal

Linkseindeutig (injektiv)	zu jedem y gibt es höchstens ein x
Linkstotal	jedes x hat mindestens ein y Wert
Rechtstotal (surjektiv)	zu jedem y gibt es mindestens ein x
Rechtseindeutig	es gibt zu jedem x maximal ein y Wert

Induktion & Rekursion

Induktion

$$\sum_{k=1}^n k = rac{n(n+1)}{2}$$

1.IA:
$$n = 0$$

links:

$$\sum_{k=1}^{n} k = \sum_{k=1}^{0} = 0$$

2 . IV:
$$\exists~n\in\mathbb{N}:\sum_{k=1}^n k=rac{n(n+1)}{2}$$

3 . IS:
$$n o n+1$$

$$\sum_{k=1}^{n+1} k = rac{(n+1)((n+1)+1)}{2}$$

ZZ:
$$\displaystyle\sum_{k=1}^{n+1} k = \displaystylerac{(n+1)(n+2)}{2}$$

$$\sum_{i=1}^{0} a_i = 0$$

$$\sum_{i=1}^{n+1} a_i = (\sum_{i=0}^{n} a_i) + a_{n+1}$$

rechts:

$$\frac{n(n+1)}{2} = \frac{0(0+1)}{2} = 0$$

Für n=0 ist $0^5-0=0$. Da 0 durch jede Zahl teilbar ist, ist sie auch durch 5 Induktionsanfang bewiesen.

2. Induktionsschritt:

2a. Induktionsvoraussetzung:

- 2h Induktionshehauntung

 $(n+1)^5 - (n+1)$ ist durch 5 teilhar

Es gilt:

$$\begin{array}{l} (n+1)^5 - (n+1) = n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1 - n - 1 \\ \\ = \underbrace{(n^5 - n)}_{\text{durch 5 tellbar (IV)}} + \underbrace{5(n^4 + 2n^3 + 2n^2 + n)}_{\text{durch 5 tellbar}} \end{array}$$

links: "auseinander nehmen": $\sum_{k=1}^{n+1} k = \sum_{k=0}^n k + (n+1) \stackrel{IV}{=} \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2} \ qed$

Elementare Zahlentheorie

 $\operatorname{kgV}(m,n) \cdot ggT(m,n) = m \cdot n$

<u>Teilbarkeit</u>

Eine ganze Zahl a heißt durch eine natürliche Zahl b teilbar, wenn es eine ganze Zahl n gibt, sodass $\underline{a} = n \cdot \underline{b}$ ist. Die Zahl b heißt in diesem Fall Teiler von a. Man schreibt dafür $\underline{b}|\underline{a}$, gelesen: «b teilt a».

 $\underline{\mathsf{Teilermenge:}}\,T(y) = \{x \in \mathbb{N} | x | y\}$

<u>Teilerfremd:</u> Zwei ganze Zahlen x, y heissen teilerfremd, wenn ggT (x, y) = 1 gilt

gg

$$\begin{split} \operatorname{ggT}(n,m) &= \operatorname{ggT}(n,m-n) \\ \operatorname{ggT}(n,m) &= \operatorname{ggT}(n,m-k\cdot n). \quad \mathbf{k}\cdot n \leqslant m \end{split}$$

Euklidischer Algorithmus zur Bestimmung von ggT(a,b)

997(247,589)	=19
589: 247 = 2	Roof 95
247 = 95 = 2	Roof 57
95: 57 = 1	Pot 38
57: 38 = 1	Pot 19
38: 19 = 2	Port O

ggT(31, 26)								
i	а	b	q	r				
1	31	26	1	5				
2	26	5	5	1=	ggT(31, 26)			
3	5	1	5	0				

erweiterter Euklidischer Algorithmus zur Bestimmung von ggT(a, b)

ggT(31, 26)							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	1	31	26	1	5	-5	6
	2	26	5	5	1	1	- 5
	3	5	1	5	0	0	1
gg「	r(31	, 26) =	31	· x +	- 26	· y

1.
$$x_3 = 0$$
; $y_3 = 1$

2.
$$x_2=y_3=1$$
 $y_2=x_3-q_2\cdot y_3=0-(5\cdot 1)=-5$

3.
$$x_1=y_2=-5$$
 $y_1=x_2-q_1\cdot y_2=1-(1\cdot -5)=4$

Wenn in der obersten zeile angekommen = fertig.

$$31\cdot x + 26\cdot y = 31\cdot -5 + 26\cdot 6$$

Multiplikative Inverse

Wenn ggt(x,n)=1
ightarrow multiplakatives inverses

$$ggt(x,12) = 1$$

$$x = 1 \rightarrow ia$$

$$x = 2 \rightarrow nein (weil 2 ist ggt)$$

$$x = 3 \rightarrow nein (weil 3 ist ggt)$$

$$x = 4 \rightarrow nein$$

Beispiel:

Welche Elemente von $\mathbb{Z}/12$ besitzen multiplikative Inverse?

$$\mathbb{Z}/12 = \{1, 2, 3, 4.., 11\}$$

$$L\ddot{o}sung: \{1, 5, 7, 11\}$$

$$x = 5 \rightarrow ja$$

...

Modulare Arithmetik

Kongruent modulo m: Wenn zwei ganze Zahlen a und b bei Division durch $m \in \mathbb{N}$ denselben Rest haben, so sagt man, a und b sind kongruent modulo m.

Man schreibt dafür $a \equiv b \pmod{m}$. Die Zahl m heisst Modul. $\rightarrow 17 \equiv 22 \pmod{5}$

Zwei Zahlen sind also genau dann kongruent modulo m, wenn sie sich um ein Vielfaches von m unterscheiden.

Chinesischer Restatz

TR: Q....r

$$x \equiv_7 3$$

$$x \equiv_5 2$$

$$x \equiv_{9} 6$$

$$a_1 = 3, a_2 = 2, a_3 = 6$$

$$m_1 = 7, m_2 = 5, m_3 = 9$$

$$M = m_1 \cdot m_2 \cdot m_3 = 7 * 5 * 9 = 315$$

$$x = a_1 \cdot m_2 \cdot m_3 \cdot x_1 + a_2 \cdot m_1 \cdot$$

$$m_3 \cdot x_2 + a_3 \cdot m_1 \cdot m_2 \cdot x_3$$

$$x = 3 * 5 * 9 * 5 + 2 * 7 * 9 * 2 +$$

$$6*7*5*(-1)$$

$$x = 675 + 252 - 210 = 717$$

$$x \bmod M = 717 \bmod 315 = 87$$

$$L\ddot{o}sung:[87]_{315}$$

$$x = 87 + z * 315, z \in \mathbb{Z}$$

$$x_1 \cdot m_2 \cdot m_3 \equiv 1 \mod 7$$

$$m_2 \cdot m_3 \bmod 7$$
:

$$5 \cdot 9 \mod 7 = 45 \mod 7 = 3$$

$$x_1 \cdot 3 \equiv 1 \bmod 7 \Rightarrow x_1 = 5$$

$$x_2 \cdot m_1 \cdot m_3 \equiv 1 \bmod 5$$

$$63 \ mod \ 5 = 3$$

$$x_2 \cdot 3 \equiv 1 \bmod 5 \Rightarrow x_2 = 2$$

$$x_3 \cdot m_1 \cdot m_2 \equiv 1 \mod 9$$

$$35 \ mod \ 9 = 8$$

$$x_3 \cdot 8 \equiv 1 \mod 9 \Rightarrow \underline{x_3 = -1}$$