4.6 For the linear circuit shown in Fig. 4.74, use linearity to complete the following table.

Experiment	V_s	V_o
1	12 V	4 V
2		16 V
3	1 V	
4		-2 V

4.6

		<i>U</i> s	V•
	1	/2 <i>V</i>	4v
:	2 4	X12V=48V	16U = 4x4U
ä	3 / (V=台×12V	左×4V=≒V
4	+ -2	Ex12V=-6V	-2V= -2 ×4V

4.16 Given the circuit in Fig. 4.84, use superposition to obtain i_0 .

4.16

12-V source only: 12V (1)

$$i_{01} = \frac{12}{4+10||(3+2+5)} = \frac{4}{3}$$

current source only:

node 1:
$$\frac{V_1}{4} + \frac{V_1}{10} + \frac{V_1 - V_2}{3} = 4A$$

node 2: $\frac{V_1 - V_3}{3} + \frac{V_3 - V_3}{3} = 4A$
node 3: $\frac{V_3 - V_2}{2} + \frac{V_3}{5} = 2A$

Then:
$$i_{02} = -\frac{44}{9*4} = -\frac{11}{9}$$

So:
$$i_0 = i_{01} + i_{02} = \frac{1}{9}$$

第6版
$$i_0 = 12 - 11 = 1A$$

4.24 Use source transformation to find the voltage V_x in the circuit of Fig. 4.92.

Use kyl:
①
$$\hat{i} = \frac{Vx}{8}$$
.
②-40+ \sqrt{x} -30+ $\sqrt{20}$ x $\frac{Vx}{8}$ +
Pesult = \sqrt{x} = $\frac{140}{47}$ v

$$\Theta - 40 + \sqrt{x} - 30 + 20 \times \frac{\sqrt{x}}{8} + 20\sqrt{x} = 0$$

Result =
$$Vx = \frac{140}{47} V$$

4.36 Solve for the current i in the circuit of Fig. 4.103 第5版 using Thevenin's theorem. (*Hint:* Find the Thevenin equivalent seen by the 12- Ω resistor.)

4.40 Find the Thevenin equivalent at terminals *a-b* of the circuit in Fig. 4.107.

*4.55 Obtain the Norton equivalent at terminals *a-b* of the circuit in Fig. 4.121.

*4.60 For the circuit in Fig. 4.126, find the Thevenin and Norton equivalent circuits at terminals *a-b*.

*4.62 Find the Thevenin equivalent of the circuit in Fig. 4.128.

- **4.67** The variable resistor *R* in Fig. 4.133 is adjusted until it absorbs the maximum power from the circuit.
 - (a) Calculate the value of R for maximum power.
 - (b) Determine the maximum power absorbed by R.

$$(80+20)I_1 = 40$$
 $\therefore I_1 = 0.4A$
 $(10+90)I_2 = -40$ $\therefore I_{2} = -0.4A$
 $\therefore Uth = 20I_1 + 90I_2 = 8-36 = -28V$

$$P = \frac{V_{Th}^{3}}{4R_{Th}} = \frac{(-28)^{3}}{4x \times 5} = 7.84w$$

4.70 Determine the maximum power delivered to the variable resistor *R* shown in the circuit of Fig. 4.136.

4.85 The Thevenin equivalent at terminals a-b of the linear network shown in Fig. 4.142 is to be determined by measurement. When a 10-kΩ resistor is connected to terminals a-b, the voltage V_{ab} is measured as 20 V. When a 30-kΩ resistor is connected to the terminals, V_{ab} is measured as 40 V. Determine:
(a) the Thevenin equivalent at terminals a-b, (b) V_{ab} when a 20-kΩ resistor is connected to terminals a-b.

- **e**dd
 - **4.91** (a) In the Wheatstone bridge circuit of Fig. 4.147 select the values of R_a and R_b such that the bridge can measure R_r in the range of 0–25 Ω .
 - (b) Repeat for the range of $0-250 \Omega$.

Solution:

The condition of The bridge is balanced is:

$$R_a R_x = R_b R_{0-150}$$

(a) When $R_{0-150} = 150\Omega$

$$R_{\rm x} = 25\Omega$$

We get: $R_a = 6 R_b$

Such, we select: $R_h = 10\Omega$, $R_a = 60\Omega$

(b) When $R_{0-150} = 150\Omega$

$$R_x = 250\Omega$$

We get: $R_a = 3/5 R_b$

Such, we select: $R_{\rm h} = 10\Omega$, $R_{\rm a} = 6\Omega$