The TLA⁺ Proof System

Denis Cousineau and Stephan Merz

Microsoft Research - INRIA Joint Centre Saclay

http://www.msr-inria.inria.fr/Projects/tools-for-formal-specs

Tutorial Integrated Formal Methods 2010 October 11, 2010

Leslie Lamport

PhD 1972 (Brandeis University), Mathematics

- Mitre Corporation, 1962–65
- Marlboro College, 1965–69
- Massachusets Computer Associates, 1970–77
- SRI International, 1977–85
- Digital Equipment Corporation/Compaq, 1985–2001
- Microsoft Research, since 2001

Pioneer of distributed algorithms

- Natl. Academy of Engineering, PODC Influential Paper Award, ACM SIGOPS Hall of Fame, LICS Award, IEEE John v. Neumann medal, ...
- honorary doctorates (Rennes, Kiel, Lausanne, Lugano, Nancy)

2/41

TLA⁺ specification language

http://tlaplus.net

- formal language for describing and reasoning about distributed and concurrent systems
- based on mathematical logic and set theory plus linear time temporal logic TLA
- book: Addison-Wesley, 2003 (free download for personal use)
- supported by tool set (TLA⁺ toolbox)

TLA+ specification language

- formal language for describing and reasoning about distributed and concurrent systems
- based on mathematical logic and set theory plus linear time temporal logic TLA
- book: Addison-Wesley, 2003 (free download for personal use)
- supported by tool set (TLA⁺ toolbox)

Some other publications

- Y. Yu, P. Manolios, L. Lamport: *Model checking TLA*⁺ *Specifications*. CHARME 1999, pp. 54-66, LNCS 1703.
- S. Merz: The Specification Language TLA⁺. In: Logics of Specification Languages (D. Bjørner, M. Henson, eds.), Springer 2008, pp. 401-451.
- K. Chaudhuri, D. Doligez, L. Lamport, S. Merz: *Verifying Safety Properties with the TLA*⁺ *Proof System*. IJCAR 2010, pp. 142-148, LNCS 6173

IFM 2010

Overview

- 1 Introductory example: Euclid's algorithm
- 2 The TLA⁺ Proof Language
- 3 Hints on Using the Prover Effectively
- 4 Case Study: Peterson's Algorithm

Euclid's Algorithm

• Euclid's algorithm in pseudo-code

```
variables x = M, y = N
begin
  while x \neq y do
    if x < y
    then y := y-x
    else x := x-y
    end if
  end while;
  assert GCD(M,N) = x
end</pre>
```

- This is a legal PlusCal algorithm
 - embedded in a TLA⁺ module defining GCD
 - can be checked for fixed values of M and N

Euclid's Algorithm in TLA⁺ (1/2)

We start by defining divisibility and GCD

```
EXTENDS Naturals d|q \triangleq \exists k \in 1..q: q = k*d \qquad \text{* definition of divisibility} Divisors(q) \triangleq \{d \in 1..q: d|q\} \qquad \text{* set of divisors} Maximum(S) \triangleq \text{CHOOSE } x \in S: \forall y \in S: x \geq y GCD(p,q) \triangleq Maximum(Divisors(p) \cap Divisors(q)) PosInteger \triangleq Nat \setminus \{0\}
```

- Standard mathematical definitions
 - ► TLA⁺ module *Naturals* defines basic operations on integers
 - ► TLA⁺ is based on untyped set theory
 - module contains declarations, assertions, and definitions
- These definitions could go to a library module

Euclid's Algorithm in TLA⁺ (2/2)

Now encode the algorithm and assert its correctness

```
CONSTANTS M, N
ASSUME Positive \stackrel{\triangle}{=} M \in PosInteger \land N \in PosInteger
VARIABLES x, y
Init \stackrel{\triangle}{=} x = M \land y = N
Next \triangleq \lor \land x < y
                 \wedge y' = y - x \wedge x' = x
             \vee \wedge y < x
                 \wedge x' = x - y \wedge y' = y
Spec \stackrel{\Delta}{=} Init \wedge \square[Next]_{\langle x,y \rangle}
Correctness \stackrel{\Delta}{=} x = y \Rightarrow x = GCD(M, N)
THEOREM Spec \Rightarrow \square Correctness
```

- Algorithm represented by initial condition and next-state relation
- Correctness expressed as TLA formula

TLA⁺ Modules

- Specifications of TLA⁺ are structured in modules
 - structured specifications: import existing modules via EXTENDS
 - ► INSTANCE allows import with renaming, but we don't need it here
- Modules contain declarations, assertions, and definitions
 - declarations of CONSTANTS and VARIABLES
 - assertions of facts via ASSUME and THEOREM (more later)
 - main body of module: operator definitions
- Levels of formulas and operators

constant	only Constant symbols	Positive
state	allow VARIABLES	Init, Correctness
action	allow primed VARIABLES	Next
temporal	use temporal operators	Spec

Verification of Euclid's Algorithm

- Verification by model checking: TLC
 - construct model by fixing concrete values for M and N
 - ▶ TLC verifies that the *Correctness* property is always true
 - variation: verify correctness for all initial values in fixed interval

Verification of Euclid's Algorithm

- Verification by model checking: TLC
 - construct model by fixing concrete values for M and N
 - ▶ TLC verifies that the *Correctness* property is always true
 - variation: verify correctness for all initial values in fixed interval
- Verification by theorem proving: TLAPS
 - need to strengthen correctness property to an inductive invariant

Underlying Data Properties

• The proof relies on the following properties of *GCD*

```
THEOREM GCDSelf \stackrel{\triangle}{=} ASSUME NEW p \in PosInteger
                            PROVE GCD(p,p) = p
THEOREM GCDSymm \stackrel{\triangle}{=} ASSUME NEW p \in PosInteger,
                                     NEW q \in PosInteger
                            PROVE GCD(p,q) = GCD(q,p)
THEOREM GCDDiff \stackrel{\triangle}{=} ASSUME NEW p \in PosInteger,
                                     NEW q \in PosInteger,
                                     p < q
                            PROVE GCD(p,q) = GCD(p,q-p)
```

- ASSUME ... PROVE assertions are sequents in TLA+
 - could use formulas instead, but sequents are often easier to read
- We don't bother proving these properties here

Invariant Reasoning in TLA+

• Establish an invariant in TLA+

$$\frac{Init \Rightarrow Inv \quad Inv \land [Next]_v \Rightarrow Inv' \quad Inv \Rightarrow Cor}{Init \land \Box [Next]_v \Rightarrow \Box Cor}$$

► *Inv* must imply *Cor*, be true initially, and preserved by every step

Invariant Reasoning in TLA+

• Establish an invariant in TLA+

$$\frac{\mathit{Init} \Rightarrow \mathit{Inv} \land [\mathit{Next}]_v \Rightarrow \mathit{Inv'} \quad \mathit{Inv} \Rightarrow \mathit{Cor}}{\mathit{Init} \land \Box [\mathit{Next}]_v \Rightarrow \Box \mathit{Cor}}$$

- ► *Inv* must imply *Cor*, be true initially, and preserved by every step
- This rule can be stated as the following sequent

```
THEOREM Inv1 \stackrel{\triangle}{=} \text{ASSUME } Init \Rightarrow Inv, Inv \wedge [Next]_v \Rightarrow Inv', Inv \Rightarrow Cor \text{PROVE } Init \wedge \square[Next]_v \Rightarrow \square Cor
```

- TLAPS doesn't handle temporal logic yet
- but it can be used to establish the non-temporal hypotheses

Simple Proofs

• Prove that *InductiveInvariant* implies *Correctness*

LEMMA InductiveInvariant ⇒ Correctness PROOF OBVIOUS

Simple Proofs

• Prove that *InductiveInvariant* implies *Correctness*

LEMMA InductiveInvariant \Rightarrow Correctness BY GCDSelf DEFS InductiveInvariant, Correctness

- definitions and facts must be cited explicitly for TLAPS to use them
- this helps keeping the size of proof obligations manageable

Simple Proofs

• Prove that InductiveInvariant implies Correctness

```
LEMMA InductiveInvariant \Rightarrow Correctness By GCDSelf DEFS InductiveInvariant, Correctness
```

- definitions and facts must be cited explicitly for TLAPS to use them
- this helps keeping the size of proof obligations manageable
- Prove that *Init* implies *InductiveInvariant*

```
LEMMA Init ⇒ InductiveInvariant
BY Positive DEFS Init, InductiveInvariant
```

These simple proofs are called leaf proofs

- A non-leaf proof consists of a sequence of claims, ending with QED
- Prove that Next preserves InductiveInvariant

```
LEMMA InductiveInvariant \land [Next]_{\langle x,y\rangle} \Rightarrow InductiveInvariant' \langle 1 \rangle USE DEFS InductiveInvariant, Next
```

▶ USE DEFS causes TLAPS to silently apply given definitions.

- A non-leaf proof consists of a sequence of claims, ending with QED
- Prove that Next preserves InductiveInvariant

```
LEMMA InductiveInvariant \land [Next]_{\langle x,y \rangle} \Rightarrow InductiveInvariant' \langle 1 \rangle USE DEFS InductiveInvariant, Next \langle 1 \rangle SUFFICES ASSUME InductiveInvariant, Next PROVE InductiveInvariant' PROOF OBVIOUS
```

▶ SUFFICES restates the current claim – trivial case UNCHANGED $\langle x,y \rangle$

- A non-leaf proof consists of a sequence of claims, ending with QED
- Prove that Next preserves InductiveInvariant

```
LEMMA InductiveInvariant \land [Next]_{\langle x,y\rangle} \Rightarrow InductiveInvariant' \langle 1 \rangle USE DEFS InductiveInvariant, Next \langle 1 \rangle SUFFICES ASSUME InductiveInvariant, Next PROVE InductiveInvariant' PROOF OBVIOUS \langle 1 \rangle a. CASE x < y \langle 1 \rangle b. CASE x > y
```

► The two subcases will be proved subsequently.

- A non-leaf proof consists of a sequence of claims, ending with QED
- Prove that Next preserves InductiveInvariant

```
LEMMA InductiveInvariant \land [Next]_{\langle x,y\rangle} \Rightarrow InductiveInvariant' \langle 1 \rangle USE DEFS InductiveInvariant, Next \langle 1 \rangle SUFFICES ASSUME InductiveInvariant, Next PROVE InductiveInvariant' PROOF OBVIOUS \langle 1 \rangle a. CASE x < y \langle 1 \rangle b. CASE x > y \langle 1 \rangle a. QED BY \langle 1 \rangle a, \langle 1 \rangle b
```

▶ The assertion follows from the cases and the definition of *Next*.

Sublevels

```
(...) \langle 1 \rangle a. Case x < y \langle 2 \rangle 1. (y - x \in PosInteger) \land \neg (y < x) \langle 2 \rangle 2. Qed \langle 1 \rangle b. Case x > y (...)
```

Sublevels

```
(...) \langle 1 \rangle a. Case x < y \langle 2 \rangle 1. (y - x \in PosInteger) \land \neg (y < x) \langle 2 \rangle 2. Qed by \langle 1 \rangle a, \langle 2 \rangle 1, GCDDiff \langle 1 \rangle b. Case x > y (...)
```

Sublevels

```
(...) \langle 1 \rangle a. CASE x < y \langle 2 \rangle 1. (y - x \in PosInteger) \land \neg (y < x) BY \langle 1 \rangle a, SimpleArithmetic DEF PosInteger \langle 2 \rangle 2. QED BY \langle 1 \rangle a, \langle 2 \rangle 1, GCDDiff \langle 1 \rangle b. CASE x > y (...)
```

• SimpleArithmetic

- theorem from the standard module TLAPS.tla
- calls another back-end
- Cooper's algorithm for Presburger's arithmetic

Overview

- 1 Introductory example: Euclid's algorithm
- 2 The TLA⁺ Proof Language
- 3 Hints on Using the Prover Effectively
- 4 Case Study: Peterson's Algorithm

Assertions

- Assertions state valid facts
- AXIOM and ASSUME assert unproved facts
 - ► TLAPS handles ASSUME and AXIOM identically
 - ▶ TLC checks ASSUMEd facts
- THEOREM asserts that a fact is provable in the current context
 - the proof need not be given at once
 - unproved theorems will be colored yellow in the toolbox
 - ► LEMMA and PROPOSITION are synonyms of THEOREM
- Facts can be named for future reference

Theorem Fermat $\ \triangleq \ \forall n \in \mathit{Nat} \setminus (0..2) : \forall a,b,c \in \mathit{Nat} \setminus \{0\} : a^n + b^n \neq c^n$

Shape of Assertions

A TLA⁺ assertion can be a formula or a logical sequent

```
F or ASSUME A_1, \ldots, A_n
PROVE F
```

- Shape of a sequent ASSUME ... PROVE
 - ▶ the conclusion *F* is always a formula
 - the assumptions A_i can be

```
declarations NEW msg \in Msgs
```

(levels: CONSTANT, STATE, ACTION, TEMPORAL)

formulas msg.type = "alert"

sequents ASSUME NEW $msg \in Msgs$, msg.type = "alert"

PROVE $msg \in Alarm$

Nested ASSUME ... PROVE

• Useful for writing proof rules

```
THEOREM ForallIntro \stackrel{\Delta}{=} ASSUME NEW P(\_),

ASSUME NEW y PROVE P(y)

PROVE \forall x: P(x)
```

ullet Nested Assume ... Prove encodes freshness of y

Proof Rules in TLA+

THEOREM RuleINV1
$$\stackrel{\triangle}{=}$$
 Assume state I , state v , action N ,
$$I \wedge [N]_v \Rightarrow I'$$

$$\text{PROVE} \quad I \wedge \square[N]_v \Rightarrow \square I$$

- Validity of conclusion follows from validity of hypotheses
 - given a substitution of the declared identifiers by expressions of the declared or lower level
 - if all hypotheses are provable in the current context then the instance of the conclusion may be concluded

Proof Rules in TLA⁺

THEOREM
$$RuleINV1 \triangleq \text{ASSUME STATE } I, \text{ STATE } v, \text{ ACTION } N,$$

$$I \wedge [N]_v \Rightarrow I'$$

$$\text{PROVE} \quad I \wedge \square[N]_v \Rightarrow \square I$$

- Validity of conclusion follows from validity of hypotheses
 - given a substitution of the declared identifiers by expressions of the declared or lower level
 - if all hypotheses are provable in the current context then the instance of the conclusion may be concluded
- Constant-level rules may be instantiated at any level

Theorem Substitutivity
$$\stackrel{\triangle}{=}$$
 assume New x , New y , New $P(_)$, $x=y$ prove $P(x) \Leftrightarrow P(y)$

• expression instantiating $P(_)$ must satisfy Leibniz condition

Structure of TLA⁺ Proofs

• Proofs are either leaf proofs ...

LEMMA Init ⇒ InductiveInvariant
BY Positive DEFS Init, InductiveInvariant

Structure of TLA⁺ Proofs

• Proofs are either leaf proofs ...

```
LEMMA Init \Rightarrow InductiveInvariant
BY Positive DEFS Init, InductiveInvariant
```

• ... or sequences of assertions followed by QED

```
\langle 1 \rangle a. Case x < y

\langle 1 \rangle b. Case x > y

\langle 1 \rangle q. Qed by \langle 1 \rangle a, \langle 1 \rangle b
```

- every step of a proof has the same level number $\langle 1 \rangle$
- ▶ and may be named for future reference $\langle 1 \rangle a$.
- QED step: the assertion follows from the preceding facts
- ► each step recursively has a proof \leadsto proof tree
- proof step with higher level number starts subproof
- Proofs are best developed per level (check only QED step)

Leaf Proofs

Elementary steps: assertion follows by "simple reasoning"

BY e_1, \ldots, e_m DEFS d_1, \ldots, d_n

- e_1, \ldots, e_m : known facts (assumptions, theorems, previous steps)
- ightharpoonup formulas implied by known facts may also appear among e_i
- d_1, \ldots, d_n : operator names whose definitions should be expanded
- citation of facts and definitions limits size of proof obligations
- ▶ OBVIOUS : assertion follows without use of extra facts

Leaf Proofs

• Elementary steps: assertion follows by "simple reasoning"

```
BY e_1, \ldots, e_m DEFS d_1, \ldots, d_n
```

- e_1, \ldots, e_m : known facts (assumptions, theorems, previous steps)
- ightharpoonup formulas implied by known facts may also appear among e_i
- d_1, \ldots, d_n : operator names whose definitions should be expanded
- citation of facts and definitions limits size of proof obligations
- ▶ OBVIOUS : assertion follows without use of extra facts
- Checking leaf proofs in TLAPS
 - verify that e_1, \ldots, e_m are provable in current context
 - expand the definitions of d_1, \ldots, d_n
 - pass obligation to a prover (default: Zenon, then Isabelle)
 - ▶ some "facts" specify a prover backend, e.g. SimpleArithmetic
- TLAPS is independent of axiomatic systems and theorem provers

Known and Usable Facts and Definitions

Scoping and context

- obvious scope rules determine current context
- context contains known declarations, facts, and definitions
- assertions state that a fact is provable in the current context

Usable facts and definitions

- usable facts/definitions : passed to backend provers
- facts and definitions must normally be cited explicitly in BY
- ▶ USE $e_1, ..., e_m$ DEFS $d_1, ..., d_n$ makes facts usable within scope
- ▶ domain facts $x \in S$ are usable by default
- facts stated in unnamed steps are usable by default
- definitions introduced within a proof are usable by default
- definitions of theorem names are usable by default
- ▶ HIDE $e_1, ..., e_m$ DEFS $d_1, ..., d_n$ is the opposite of USE

Proof Steps: Assertions

```
\langle 4 \rangle 3. Assume New x \in S, x > y, P(y)
Prove \exists w \in S : x \mid w + y
```

- Assertions in a proof are analogous to THEOREM statements
 - assumptions are added to known facts
 - ▶ formula after PROVE becomes current goal
 - ASSUMEd facts are automatically used if the step has a leaf proof
- References to proof steps

```
\langle 4 \rangle 3. Assume New x \in S, x > y, P(y)

Prove \exists w \in S : x \mid w + y
\langle 5 \rangle 1. Q(x,y)

By \langle 4 \rangle 3
\langle 5 \rangle 2. Qed

By \langle 5 \rangle 2 defs P,Q
\langle 4 \rangle 4. \exists w \in S : u \mid w + y

By u \in S, \langle 3 \rangle 5, \langle 4 \rangle 3
```

Proof Steps: Assertions

```
\langle 4 \rangle 3. Assume New x \in S, x > y, P(y)
Prove \exists w \in S : x \mid w + y
```

- Assertions in a proof are analogous to THEOREM statements
 - assumptions are added to known facts
 - ▶ formula after PROVE becomes current goal
 - ASSUMEd facts are automatically used if the step has a leaf proof
- References to proof steps

Proof Steps: CASE

```
\langle 3 \rangle 4. Case x < 0

\langle 3 \rangle 5. Case x = 0

\langle 3 \rangle 6. Case x > 0

\langle 3 \rangle 7. QED

BY \langle 3 \rangle 4, \langle 3 \rangle 5, \langle 3 \rangle 6, x \in Real
```

- Prove current goal under additional hypothesis
 - current goal remains unchanged
 - ► CASE assumption is added to the known facts
 - ► references to CASE step within the proof refer to assumption
 - equivalent to $\langle 3 \rangle 4$. ASSUME x < 0 PROVE G (G: current goal)
- Later, must show that the case distinction is exhaustive

Proof Steps: SUFFICES

```
\langle 2 \rangle6. \forall x \in S : P(x) \Rightarrow Q(x,y)
\langle 3 \rangle1. Suffices assume New x \in S, P(x), \neg Q(x,y)
PROVE Q(x,y)
Obvious
```

- TLA⁺ proofs are normally written in "forward style"
- SUFFICES steps introduce backward chaining
 - reduce current goal to assertion claimed after SUFFICES
 - proof shows that new assertion implies the current goal
 - assumption is usable within that proof
 - frequently used to restate goal in more perspicuous form
- SUFFICES steps modify the current goal
 - conclusion of SUFFICES becomes current goal (proved by QED)
 - references to $\langle 3 \rangle 1$ within remaining scope denote assumptions

Proof Steps: HAVE

$$\langle 3 \rangle 5. \ x+y>0 \ \Rightarrow \ x>-y$$
 $\langle 4 \rangle 1. \ \text{Have} \ x \in \textit{Real} \land y \in \textit{Real} \land x+y>0$

- Proof of implications
 - current goal must be of the form $H \Rightarrow G$
 - ▶ formula after HAVE must follow easily from *H* and known facts
 - ▶ *G* becomes the current goal
 - ► HAVE steps take no proof
- In this context, HAVE *F* is a shorthand for

```
SUFFICES ASSUME F
PROVE G
OBVIOUS
```

Proof Steps: TAKE

$$\langle 3 \rangle 7. \ \forall x,y \in S,z \in T:G$$

 $\langle 4 \rangle 1. \ \text{Take} \ x,y \in S,z \in T$

- Proof of universally quantified formulas
 - current goal must be (trivially equivalent to) $\forall \tau : G$
 - ▶ TAKE τ introduces new constant declarations
 - ▶ *G* becomes the current goal
 - ► TAKE steps have no proof
- TAKE $x, y \in S, z \in T$ is shorthand for

```
SUFFICES ASSUME NEW x \in S, NEW y \in S, NEW z \in T

PROVE G

OBVIOUS
```

Proof Steps: WITNESS

```
\langle 2 \rangle6. \exists x \in S, \ y \in T : F(x,y)
...
\langle 3 \rangle10. WITNESS Maximum(M) \in S, Minimum(M) \in T
```

- Proof of existentially quantified formulas
 - current goal must be (trivially equivalent to) $\exists \tau : G$
 - WITNESS specifies terms for each quantified variable
 - domain facts corresponding to bounded quantifiers easily provable
 - corresponding instance of G becomes the current goal
 - WITNESS steps take no proof
- The above WITNESS step is shorthand for

```
\langle 3 \rangle10. Suffices F(Maximum(M), Minimum(M))

\langle 4 \rangle1. Maximum(M) \in S Obvious

\langle 4 \rangle2. Minimum(M) \in T Obvious

\langle 4 \rangle3. QED BY ONLY \langle 4 \rangle1, \langle 4 \rangle2
```

Proof Steps: PICK

```
\langle 3 \rangle 3. PICK x \in S, \ y \in T : P(x,y)
BY m+n \in S, 0 \in T
```

- Make use of existentially quantified formulas
 - proof of PICK step shows existence of suitable values
 - declarations of constants asserted by PICK are added to the context
 - body of PICK is added to known facts (usable if step unnamed)
 - the goal is unchanged
- The above PICK step is shorthand for

```
\langle 3 \rangle 3a. \exists x \in S, \ y \in T : P(x,y)

BY m+n \in S, 0 \in T

\langle 3 \rangle 3. Suffices assume New x \in S, New y \in T,

P(x,y)

PROVE G
```

Pseudo Proof Steps: DEFINE, USE and HIDE

- $\langle 3 \rangle$. USE $\langle 2 \rangle 1$, n > 0 DEFS Invariant, Next
- $\langle 3 \rangle$. Define $Aux(x) \stackrel{\triangle}{=} \dots$
- $\langle 3 \rangle$. HIDE DEF Aux
- Manage set of usable facts
 - USE: make known facts usable, avoiding explicit citation
 - ► DEFINE : introduce local definitions in proofs
 - ▶ HIDE : remove assertions and definitions from set of usable facts
- USE and HIDE: use sparingly
 - more concise proof scripts, but at the expense of clarity
 - usually prefer explicit citation of facts and definitions
- DEFINE : frequently useful for good proof structure
 - abbreviate recurring expressions
 - mirror LET definitions in specifications
 - ▶ NB : local definitions are usable by default → use HIDE

Architecture of TLAPS

Proof Manager

- Interpret TLA⁺ proof language
 - interpret module structure (imports and instantiations)
 - manage context: known and usable facts and definitions
 - expand operator definitions if they are usable
- Rewrite proof obligations to constant level
 - handle primed expressions such as Inv'
 - distribute prime over (constant-level) operators
 - ▶ introduce distinct symbols e and e' for atomic state expression e
- Invoke backend provers
 - user may explicitly indicate which proof method to apply
 - optionally: certify backend proof

Overview

- 1 Introductory example: Euclid's algorithm
- 2 The TLA⁺ Proof Language
- 3 Hints on Using the Prover Effectively
- 4 Case Study: Peterson's Algorithm

Control the Size of Formulas

- Proof obligations are often large
 - long definitions of actions and invariants
 - LET constructions add to complexity when expanded
- The backend provers are easily overwhelmed by large formulas
 - may work on top-level operators or deeply inside a long formula
 - even simple proof steps may take an extraordinate amount of time
- Use local definitions and HIDE them when unnecessary
 - prove facts about a LET-bound operator, then HIDE it

Example: Controlling the Size of Expressions

LEMMA $\land x \in SomeVeryBigExpression$ $\land y \in AnotherBigExpression$ $\Leftrightarrow \land y \in AnotherBigExpression$ $\land x \in SomeVeryBigExpression$

Example: Controlling the Size of Expressions

LEMMA $\land x \in SomeVeryBigExpression$

 $\land \ y \in Another BigExpression$

 $\Leftrightarrow \land y \in Another BigExpression$

 $\land \ x \in SomeVeryBigExpression$

OBVIOUS may take forever here

Example: Controlling the Size of Expressions

```
LEMMA
                  \land x \in SomeVeryBigExpression
                    \land y \in Another BigExpression
            \Leftrightarrow \land y \in Another BigExpression
                    \land x \in SomeVeryBigExpression
\langle 1 \rangle. DEFINE S \triangleq SomeVeryBigExpression
\langle 1 \rangle. DEFINE T \stackrel{\triangle}{=} Another BigExpression
\langle 1 \rangle 1. S = SomeVeryBigExpression
   OBVIOUS
\langle 1 \rangle 2. T = Another BigExpression
   OBVIOUS
\langle 1 \rangle. HIDE DEF S, T
\langle 1 \rangle 3. x \in S \land y \in T
        \Leftrightarrow y \in T \land x \in S
   OBVIOUS
\langle 1 \rangle 4. QED BY \langle 1 \rangle 1, \langle 1 \rangle 2, \langle 1 \rangle 3
```

OBVIOUS may take forever here

Avoid Circular Rewrites

- Rewriting is often effective for reasoning about equalities
 - ▶ idea: replace left-hand side of equality by right-hand side
 - Isabelle's automatic tactic are based on rewriting
 - ▶ for example, use $x' = x y \land y' = y$ to eliminate x' and y'

Avoid Circular Rewrites

- Rewriting is often effective for reasoning about equalities
 - ▶ idea: replace left-hand side of equality by right-hand side
 - Isabelle's automatic tactic are based on rewriting
 - ▶ for example, use $x' = x y \land y' = y$ to eliminate x' and y'
- Must make sure that rewriting terminates
 - consider $s = f(t) \land t = g(s)$
 - ► Isabelle attempts to reject circular sets of equations
 - if rejected, proof may get stuck
 - if not rejected, proof may never terminate
- Use local definitions, and HIDE them to break loops

Circular Rewrites: Example

```
\langle 4 \rangle5. r.name = "xyz" \langle 5 \rangle1. r = [name \mapsto "xyz", value \mapsto r.value] BY \langle 2 \rangle2 \langle 5 \rangle2. QED BY \langle 5 \rangle1
```

Circular Rewrites: Example

```
\langle 4 \rangle5. r.name = "xyz" \langle 5 \rangle1. r = [name \mapsto "xyz", value \mapsto r.value]
BY \langle 2 \rangle2 \langle 5 \rangle2. QED
BY \langle 5 \rangle1
```

The equation in step $\langle 5 \rangle 1$ is circular!

Circular Rewrites: Example

```
\langle 4 \rangle 5. r.name = "xyz"

\langle 5 \rangle 1. r = [name \mapsto "xyz", value \mapsto r.value]

BY \langle 2 \rangle 2

\langle 5 \rangle 2. QED

BY \langle 5 \rangle 1
```

The equation in step $\langle 5 \rangle 1$ is circular!

```
\langle 4 \rangle 5. \ r.name = \text{``xyz''}
\langle 5 \rangle \ \text{DEFINE } rval \stackrel{\triangle}{=} r.value
\langle 5 \rangle 1. \ r = [name \mapsto \text{''xyz''}, \ value \mapsto rval]
BY \langle 2 \rangle 2
\langle 5 \rangle \ \text{HIDE DEF } rval
\langle 5 \rangle 2. \ \text{QED}
BY \langle 5 \rangle 1
```

Establishing Facts About CHOOSE

```
DEFINE m \stackrel{\triangle}{=} \text{CHOOSE } x \in S : P(x)
DEFINE NoValue \stackrel{\triangle}{=} \text{CHOOSE } x : x \notin Value
```

- How to prove a property Q(m) ?
 - ► CHOOSE always denotes some value, even if P(x) holds for no $x \in S$

Establishing Facts About CHOOSE

```
DEFINE m \stackrel{\triangle}{=} \text{CHOOSE } x \in S : P(x)
DEFINE NoValue \stackrel{\triangle}{=} \text{CHOOSE } x : x \notin Value
```

- How to prove a property Q(m) ?
 - ► CHOOSE always denotes some value, even if P(x) holds for no $x \in S$
- In practice, must establish the two following facts
 - $\Rightarrow \exists x \in S : P(x)$
 - $\forall x \in S : P(x) \Rightarrow Q(x)$
 - ▶ TLAPS will then deduce Q(m)

Establishing Facts About CHOOSE

```
DEFINE m \triangleq \text{CHOOSE } x \in S : P(x)
DEFINE NoValue \triangleq \text{CHOOSE } x : x \notin Value
```

- How to prove a property Q(m) ?
 - ► CHOOSE always denotes some value, even if P(x) holds for no $x \in S$
- In practice, must establish the two following facts
 - $\exists x \in S : P(x)$
 - $\forall x \in S : P(x) \Rightarrow Q(x)$
 - ▶ TLAPS will then deduce Q(m)
- Important special case: "null" values
 - existence of such a value follows from the library theorem

 $NoSetContainsEverything \ \stackrel{\triangle}{=} \ \forall S: \exists x: x \notin S$

It's Easier To Prove Something If It's True

- All specifications initially contain mistakes
 - errors range from typos to misunderstandings to genuine bugs
 - formal mathematical definitions are hard to get right
- TLAPS is not good at catching specification errors
 - if you are stuck on a proof, is it you, the prover or the specification?
 - even with structured proofs, complexity quickly gets out of hand
- Extensively debug your specifications using TLC
 - almost all bugs manifest themselves on small instances
 - run TLC on many properties and inspect the counter-examples

Focus On The Theorems You Are Interested In

- TLAPS currently has limited support for theories
 - set theory and functions are fully supported
 - decision procedure for elementary integer arithmetic
 - very rudimentary support for sequences

Focus On The Theorems You Are Interested In

- TLAPS currently has limited support for theories
 - set theory and functions are fully supported
 - decision procedure for elementary integer arithmetic
 - very rudimentary support for sequences
- State facts about "data" as assumptions
 - do you want to verify an algorithm or basic mathematics?
 - ▶ but isn't that dangerous?
 - it is, but you can validate many assumptions using TLC
 - override infinite sets with finite ones in the model, e.g. $Nat \stackrel{\triangle}{=} 0..50$

Focus On The Theorems You Are Interested In

- TLAPS currently has limited support for theories
 - set theory and functions are fully supported
 - decision procedure for elementary integer arithmetic
 - very rudimentary support for sequences
- State facts about "data" as assumptions
 - do you want to verify an algorithm or basic mathematics?
 - ▶ but isn't that dangerous?
 - it is, but you can validate many assumptions using TLC
 - override infinite sets with finite ones in the model, e.g. $Nat \stackrel{\triangle}{=} 0..50$
- Theory support will improve slowly and your help is welcome

Overview

- 1 Introductory example: Euclid's algorithm
- 2 The TLA⁺ Proof Language
- 3 Hints on Using the Prover Effectively
- 4 Case Study: Peterson's Algorithm