Linear operators:

A linear operator on V (aka endomorphism of V) is a linear map $\varphi: V \to V$. Notation: End(V) = Hom(V, V).

- when using a basis to express $\varphi \in \text{Hom}(V,V)$ by a (square) matrix, we want to use the same basis on each side: $A = \mathcal{M}(\varphi,(e_i),(e_i))$, transforms by P'AP.
- * decre: if din V<00, \q:V-V is injective \ suijective \ is injective \ is injective \ is inverse linear operator).
- # given vector spress V_1V_2 and liner operators $\psi_i: V_i \rightarrow V_i$, we can define $\psi = \psi_1 \oplus \psi_2: V_1 \oplus V_2 \rightarrow V_1 \oplus V_2$ operator on $V = V_1 \oplus V_2$.

The operator φ leaves the subspaces $V_1, V_2 \subset V$ invariant: $\varphi(V_i) \subset V_i$; and warring in a basis of V st. $e_1 \dots e_m \in V_1$, $e_{m+1} \dots e_n \in V_2$, the makex of φ is block diagonal: $\left(\frac{\varphi_1}{O}\right) = 0$ Conversely, if $V = V_1 \oplus V_2$ and $\varphi(V_i) = V_i$ then φ is of this form.

Now generally, if we only assume $\varphi: V \rightarrow V$ and $V_i \subset V$ is invariant $(\varphi(V_i) \subset V_i)$ but not necess. V_2 , then the matrix of φ would be block briangular: $(\varphi_i V_i) \times V$

block hiangular: $\left(\frac{y_1y_1}{0} \times \right)$

So; a hypical way to study 4: V-V is to look for invavent subspaces.

- * If UCV is invariant and dim U=1 (so: U=k.v for some $v\in V$), then necessarily $\varphi(v)=\lambda v$ for some $\lambda\in k$.
- Defi An eigenvector of $\varphi: V \rightarrow V$ is a vector $v \in V, v \neq 0$, st. $\varphi(v) = \lambda v$ for some $\lambda \in k$. λ is called the eigenvalue corresponding to V.

we can find a basis of V consisting by exercises diagonal $(v_i) = \lambda_i v_i$ $(\lambda_1, 0)$ $(\lambda_1, 0)$ * If we can find a basis of V consisting of eigenvectors of 4, then we have (2)

This is the best outcome, but not always possible!

 \underline{EX} : $V = \mathbb{R}^2$, $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ has eigenvectors (1,0) (or any multiples) with eigenvalues $\frac{\lambda}{\mu}$. However $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has only one eigenvector (1,0) with eigenvalue 1, (1,0) with eigenval

Prop: | Eigenvectors of 4: V-V with district eigenvalues are liverly independent.

Pf; Assume $v_1...v_\ell$ are eigenvectors with $\varphi(v_i) = \lambda_i v_i$, λ_i all distinct. Assume there is a linear relation 914++1004=0 with a; not all zero. and this has the fewest (>2) possible nonzer as of any such relation Then $\varphi(\Sigma a; v_i) = \Sigma a; \varphi(v_i) = \Sigma a; \lambda_i v_i = 0$ another linear relation! a, h, v, + ... + ae he ve = 0.

Tix i st. a; \$0, and subtract: $a_1(\lambda_1 - \lambda_i) v_1 + \dots + a_\ell(\lambda_\ell - \lambda_i) v_\ell = 0$

-> linear relation where coefficient of v; is now zero, but all other nanzero coefficients (at least one) remain nowizero (since 1;-1; +0)Contraderts minimalty assumption.

Conslay: The number of distinct eigenvalues of $\varphi \in Hom(V,V)$ is at most $n = \dim V$, and if equality holds then φ is diagonalizable.

Def: A field k is algebraically closed if every noncombat polynomial $p \in k[x]$ has a root in k, i.e. $\exists \alpha \in k$ st. $p(\alpha) = 0$.

If so, then by drivion algorithm for polynomials, can write $p=(x-\alpha)q$, and repeating, we get $p=c(x-\alpha_1)...(x-\alpha_d)$. $(d=deg\ p,\ \alpha_i\in k)$.

* Findanetal theorem of algebra: I is algebraically closed. (proof is not pure algebra; we'll downs it in Math 556).

IF k is not algebraically closed then there exists an algebraically closed to $\overline{k} > k$, (3) committed from k by adjoining rooks of polynomials Ek[sc]. Eg. R=C, whereas Q={all nots of polynomial egis with Q-coeffs} CC (fait polymonials in R[x] have roots in R) Lemma: If k is algebraically closed, V a finite dimensional vector space one k, then any linear operator $\varphi: V \to V$ has an eigenvector, ie. $\exists v \in V - \{o\}$, $\exists \lambda \in k$ st. $\varphi(v) = \lambda v$. Proof: Let $n=\dim V$, and take any nonzero vector $v \in V$. Then v, $\varphi(v)$, ..., $\varphi^n(v)$ must be liverly dependent.

note that $v \in V$ and $v \in V$. Then v, $\varphi(v)$, ..., $\varphi^n(v)$ So $\exists a_{0},..., a_{n} \in k$ (not all zero) sh $a_{0}v + a_{1}\varphi(v) + ... + a_{n}\varphi(v) = 0$. Since It is algebraically closed, we can factor the polynomial Iaix', hence $a_0 + a_1 \varphi + ... + a_n \varphi^n = c(\varphi - \lambda_1) ... (\varphi - \lambda_4)$, cfo, $\lambda_i \in k$. (!! the probab here is composition of operators, but his is legit!!). Now, $(\varphi - \lambda_1) \dots (\varphi - \lambda_d)$: $V \rightarrow V$ has a nontrivial kernel $(\ni v)$, which implies that at least one of $\varphi - \lambda_1$ is not an isomorphism, here] [ε { ... d } and w ∈ V-{0} d. w ∈ Ke(φ-λ;), i.e. φ(w) = λ; ω. Conllay: Given $\varphi: V \to V$ on an algebraically cloud field k, there exists a basis $(v_1, ..., v_n)$ of V in which the matrix of φ is upper-triangular. $\binom{n}{0}$ (i.e. each subspace $V_k = \operatorname{span}(v_1...v_k) \subset V$ is invavant) Proof: Induction on dim V: If dim V= 1, then any nances vector 4 gets rapped to a multiple of itself V. (any 1x1 matrix is triangular) · Agume rout true for din. ≤n-1, and cavider φ ; V-V with din V=n. By lenna, φ has it least one eigenvalue $\lambda \in k$. Let $U = Im(\varphi - \lambda)$. Since $\varphi - \lambda$ has nonhinial kernel (= eigenvectors for λ), In U < dim V. Morose, Le classe U is an invariant subspace for y. Indeed: if $u=(\varphi-\lambda)v \in Im(\varphi-\lambda)=U$, then $\varphi(u) = \varphi(\varphi - \lambda) v = (\varphi - \lambda) \varphi(v) \in \text{Im}(\varphi - \lambda) = 0.$ Now, by induction, $\varphi_{|U} \in Hon(U,U) \rightarrow 3 basis u_1, -, u_m of U$ in which (10 is uper-hiangular. (\psi(u_i) \in span(u_1...u_i))

Complete to a basis (u_um, v,... vk) of V. Then: · φ(ui) ∈ span(u,...ui) / • $\psi(v_i) = (\varphi - \lambda) v_i + \lambda v_i \in span(u, u_m, v_i) V$ * Rmk: thee's ansher prof that is easier to discover but harder to follow: again by induction, but now start from Vo = k. vo whee Vo is an eigenvector of φ, and let U=V/Vo, q:V-> U gutiev. Using $\varphi(V_0) \subset V_0$, $\exists \overline{\varphi} : U \to U$ st. $V \xrightarrow{\varphi} V$ commutes (because: (904)10=0 50 904: V-1U factors though V/V0=U). By induction hypothesis, I hasis u,... un., of U st. \psi(ui) \in span(u,...ui). Let $v_i \in V$ such that $q(v_i) = u_i$. Then $q(\varphi(v_i)) \in \text{span}(u_1 ... u_i)$ (Note: (Vo.-Vn-1) basis of V) = γ(vi) € span(vo, v, ... vi). Now suppose he have $\varphi: V \rightarrow V$ and a basis $(v_1, ..., v_n)$ of V sh $\mathcal{M}(\varphi) = A$ uper-hiangular, ie. each V:= span(v,.., vi) is an invariant subspace of q. Denote by $\lambda_i = a_{ii}$ the diagonal entries of A. Lemma: | 4 is invertible iff all the diagonal entires of A are nouseo. Pf: . if all i are nouses then (p is sujective (have isom.) since $\varphi(v_i) = \lambda_i v_i$, $\lambda_i \neq 0$ so $v_i \in I_m \varphi$ $\varphi(v_2) = \lambda_2 v_2 + a_{12} v_1$, $\lambda_2 \neq 0$ so $v_2 = \frac{1}{\lambda_2} (\varphi(v_2) - a_{12} v_1) \in I_m \varphi$ et. = Vi & Im 4 Vi. · if $\lambda_i = 0$ then $\varphi(V_i) \subset V_{i-1}$ so $\varphi_{|V_i|}$ has northwish kernel (since $rk \varphi_{|V_i|} \leq dim V_{i-1} \leq dim V_i$), hence $ker \varphi_{|V_i|} = 0$, not invertible. Conlay: The following are equivalent: (1) I is an eigenvalue of φ (2) φ -I is not invertible

(3) $\lambda = \lambda$; for some diagonal entry of the uper-mangular matrix A representing φ .

((1) \rightleftharpoons (2) since eigenvectors = $\ker(\varphi - \lambda)$, and (2) \rightleftharpoons (3) by applying the lenna to $\varphi - \lambda$ and matrix $A - \lambda I$).