PROJECT OVERVIEW RESTAURANT DATA ANALYSIS PROJECT

Restaurant datasets encompass various attributes such as names, locations, cuisine types, ratings, review counts, price ranges, and operating hours. They are sourced from online review platforms, food delivery apps, and restaurant websites. Analyses can include descriptive summaries, sentiment analysis, predictive modeling, and geospatial mapping. These insights help restaurant owners improve services, understand customer preferences, and conduct market research. Common challenges involve ensuring data quality, maintaining privacy, and integrating diverse data sources effectively.

```
# importing necessary libraries for data analysis and visualization
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Loading the restaurant dataset into a dataframe
dataset = pd.read_csv('<u>/content/Dataset</u> · (1).csv')

 $\mbox{\tt\#}$ Displaying the first few rows of the dataset to understand the structure dataset.head()

	_
7	7
	>

·		Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	 Currency	Tal book:
	0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.565443	French, Japanese, Desserts	 Botswana Pula(P)	
	1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.553708	Japanese	 Botswana Pula(P)	
	2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.056831	14.581404	Seafood, Asian, Filipino, Indian	 Botswana Pula(P)	
	3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475	14.585318	Japanese, Sushi	 Botswana Pula(P)	
	4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.057508	14.584450	Japanese, Korean	 Botswana Pula(P)	

5 rows × 21 columns

 $\ensuremath{\mathtt{\#}}$ Displaying nubers of rows and columns in the dataset dataset.shape

→ (9551, 21)

Displaying summary of the datset
dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Restaurant ID	9551 non-null	int64
1	Restaurant Name	9551 non-null	object
2	Country Code	9551 non-null	int64
3	City	9551 non-null	object
4	Address	9551 non-null	object
5	Locality	9551 non-null	object

6	Locality Verbose	9551 non-null	object						
7	Longitude	9551 non-null	float64						
8	Latitude	9551 non-null	float64						
9	Cuisines	9542 non-null	object						
10	Average Cost for two	9551 non-null	int64						
11	Currency	9551 non-null	object						
12	Has Table booking	9551 non-null	object						
13	Has Online delivery	9551 non-null	object						
14	Is delivering now	9551 non-null	object						
15	Switch to order menu	9551 non-null	object						
16	Price range	9551 non-null	int64						
17	Aggregate rating	9551 non-null	float64						
18	Rating color	9551 non-null	object						
19	Rating text	9551 non-null	object						
20	Votes	9551 non-null	int64						
dtyp									

memory usage: 1.5+ MB

Checking for missing values
dataset.isnull().sum()

Restaurant ID	0
	•
Restaurant Name	0
Country Code	0
City	0
Address	0
Locality	0
Locality Verbose	0
Longitude	0
Latitude	0
Cuisines	9
Average Cost for two	0
Currency	0
Has Table booking	0
Has Online delivery	0
Is delivering now	0
Switch to order menu	0
Price range	0
Aggregate rating	0
Rating color	0
	^
Rating text	0

dtype: int64

ststical summary of the dataset
dataset.describe()

_		Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	Aggregate rating	Votes
	count	9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000
	mean	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837	2.666370	156.909748
	std	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609	1.516378	430.169145
	min	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000	0.000000	0.000000
	25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000	2.500000	5.000000
	50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000	3.200000	31.000000
	75%	1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000	3.700000	131.000000
	max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000	4.900000	10934.000000

Data cleaning

Handling missing values

dataset['Cuisines'].fillna('Unknown',inplace=True)

Checking for missing values
dataset.isnull().sum()

dtype: int64

LEVEL 2

TASK 1= RESTAURANT RATING

Analyze the distribution of aggregate rating and dedtermine the most common rating range

Average_rating_common_range = dataset['Aggregate rating'].value_counts()
print(Average_rating_common_range)

Aggregate rating 0.0 2148 3.2 522

```
3.1
        519
3.4
        498
3.3
        483
3.5
        480
3.0
        468
3.6
        458
3.7
        427
3.8
        400
2.9
        381
3.9
        335
2.8
        315
4.1
        274
4.0
        266
2.7
        250
4.2
        221
2.6
        191
4.3
        174
4.4
        144
2.5
        110
4.5
2.4
         87
4.6
        78
4.9
2.3
         47
4.7
        42
2.2
         27
4.8
         25
2.1
         15
2.0
         7
1.9
          2
1.8
         1
Name: count, dtype: int64
```

Calculate the average number of votes recieved by reataurant

```
average_votes = dataset['Votes'].mean()
print(average_votes)
```

→ 156.909747670401

TASK 2 - CUISINES COMBINATION

Identigy the most common combination of cuisnes in the dataset

```
most_common_cuisines_combination = dataset['Cuisines'].value_counts()
print(most_common_cuisines_combination.head())
```

Cuisines
North Indian 936
North Indian, Chinese 511
Chinese 354
Fast Food 354
North Indian, Mughlai 334
Name: count, dtype: int64

Determine if certain cuisines combination tend to have higher rating

```
higher_rating = dataset.groupby('Cuisines')['Aggregate rating'].count().sort_values(ascending = False)
print(higher_rating.head())
```

```
Cuisines
North Indian 936
North Indian, Chinese 511
Fast Food 354
Chinese 354
North Indian, Mughlai 334
Name: Aggregate rating, dtype: int64
```

TASK 4 - RESTAURANT CHAINS

Identify if there are any restaurant chains present in thhe datset

```
restaurant = dataset['Restaurant Name'].value_counts()
restaurant_chains = restaurant[restaurant > 1]
print(restaurant_chains)
```

```
→ Restaurant Name
    Cafe Coffee Day
   Domino's Pizza
                       79
   Subway
                      63
   Green Chick Chop 51
   McDonald's
                       48
                       . .
   Town Hall
   Halki Aanch
   Snack Junction
   Delhi Biryani Hut
                       2
   Beliram Degchiwala
                        2
   Name: count, Length: 734, dtype: int64
```

Analyze the rating and popularity of different restaurant chains

```
# filter the datasset to include only restaurant chains
chain_data = dataset[dataset['Restaurant Name'].isin(restaurant_chains.index)]

#Group by 'Restaurant Name' and calculate average rating and total votes
chains_stats = chain_data.groupby('Restaurant Name').agg({'Aggregate rating':'mean','Votes':'sum'}).reset_index()

# Sort by average rating and total votes for analysis
chains_stats = chains_stats.sort_values(by=['Aggregate rating','Votes'],ascending=[False,False])

# Displaying the top reataurant chains by rating and popularity
print(chains_stats.head())
```

$\overline{\pm}$			Restau	urant Name	Aggregate	rating	Votes
	629		Talaga	Sampireun		4.900	5514
	8	AB's	Absolute	Barbecues		4.850	3151
	589		Silantr	ro Fil-Mex		4.850	1364
	7	AB's -	Absolute	Barbecues		4.825	13400
	449		Naturals	Ice Cream		4.800	3094