Eine Einführung in R: Deskriptive Statistiken und Graphiken

Bernd Klaus, Verena Zuber

Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig

28. Oktober 2009

I. Diskrete Daten Häufigkeitstabellen Darstellung

II. Stetige Daten Maße für die Lage Maße für die Streuung Boxplot Stripcharts Histogramm

III. Graphiken in R

I. Diskrete Daten: Deskriptive Statistiken und Graphiken

Was sind diskrete Variablen?

Diskrete Variablen nehmen nur eine endliche Anzahl an Werten an:

- Kategorial: Es besteht keine Rangordnung der Kategorien
- Ordinal: Kategorien können geordnet werden

Kategoriale oder ordinale Variablen sollten in R als Faktoren definiert sein.

Mit einer Häufigkeitstabelle kann man ein kategoriales Objekt zusammenfassen:

- ▶ table(object): Absolute Häufigkeiten
- prop.table(table(object)): Relative Häufigkeiten

Betrachten wir einen Faktor mit 4 Ausprägungen:

► table(DNA) ergibt:

▶ prop.table(table(DNA)) ergibt:

Kuchendiagramm und Balkendiagramm

Zu erzeugen mit:
pie(table(DNA))

barplot(table(DNA))

Maße für die Lage Maße für die Streuung Boxplot tripcharts Iistogramm

II. Stetige Daten: Deskriptive Statistiken und Graphiken

Was sind stetige Variablen?

Stetige Variablen können (in der Theorie) eine unendliche Anzahl an Werten annehmen. Beispiele:

- ► Gewicht
- ▶ Größe
- ► Gehalt

R speichert stetige Variablen als metrische Objekte (numeric) ab.

Häufigkeitstabelle sind für stetige Variablen meist nicht geeignet. Wichtiger sind:

- Maße für die Lage
- Maße für die Streuung

Maße für die Lage

Die Lage (*location*) gibt an, in welcher Größenordnung sich Daten bewegen.

► (Empirische) Mittelwert

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + \ldots + x_n).$$

- ► In R: mean()
- ▶ Modus: Der Wert, der am häufigsten in den Daten vorkommt
- ► In R: which.max()

Maße für die Lage II

- x%-Quantile, trennen die Daten in zwei Teile. So liegen x% der Daten unter dem x%-Quantile und 100 – x% darüber.
 - ▶ Median $x_{0.5}$ entspricht dem 50%-Quantil
 - ► In R: median()
 - ▶ 25%-Quantil $x_{0.25}$ (das erste Quartil)
 - ▶ 75%-Quantil $x_{0.75}$ (das dritte Quartil)
- Der Median ist robuster gegen Ausreißer als der Erwartungswert
- ► Oder gleich in R: summary()

Maße für die Streuung

Die Streuung (scale) gibt an, wie stark die verschiedenen Werte voneinander abweichen.

Die (empirische) Varianz

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n} \left((x_{1} - \overline{x})^{2} + \ldots + (x_{n} - \overline{x})^{2} \right).$$

- ► Spannbreite: Differenz vom größten zum kleinsten Wert
- Interquartilsabstand:

$$IQR = x_{0.75} - x_{0.25}$$

Beispiel: oecd-Daten

Betrachten wir das durchnittliche, frei verfügbare Einkommen einer Familie [pro Kind, in tausend US-Dollar].

► Einen Überblick erhält man durch:

```
summary(Einkommen)
Min. 1st Qu. Median Mean 3rd Qu. Max.
5.10 16.60 21.10 19.18 22.65 34.20
```

Die Varianz bzw. Standardabweichung

```
var(Einkommen)
        [1] 50.75937
sd(Einkommen) (alternativ sqrt(var(Einkommen)))
        [1] 7.124561
```

Beispiel: oecd-Daten II

▶ Den Interquartilsabstand erhält man durch:

▶ Die Spannweite mit

Bei der Variable Alkohol (Prozentsatz der 13-15 jährigen Kinder, die mindestens zweimal betrunken waren) bestehen fehlende Werte.

Mittelwertsberechnung über

Was ist ein Boxplot?

Der Boxplot ist eine Graphik zur Darstellung stetiger Variablen. Er enthält

- ► Minimum und Maximum
- 25%-Quantil und 75%-Quantil
- Median
- ► In R: boxplot(variable)
- ▶ Um Variablen getrennt nach Faktorstufen zu untersuchen, bietet sich an: boxplot(variable ~ factor)
- ► Einschub: Ein Label für den Faktor Geo factor(Geo,levels=c("R","E"), labels=c("Nicht-Europa","Europa"))

Boxplot: Alkohol

Zu erzeugen mit: boxplot(Alkohol)

 $boxplot(Alkohol \sim Geo)$

Stripchart: Alkohol

Eine Alternative zum Boxplot bei wenigen Beobachtungen ist der Stripchart:

Zu erzeugen mit:

 ${ t stripchart(Alkohol}{\sim}{ t Geo})$

Was ist ein Histogramm?

- ➤ Zur Erstellung eines Histogramms teilt man die Daten in homogene Teilintervalle ein und plottet dann die absolute Häufigkeit pro Teilintervall
- Dieses Verfahren gibt einen ersten Überblick über die Verteilung der Daten

```
( => Ermitteln der "empirischen Dichte" möglich )
```

```
hist(x, breaks = "AnzahlBins", freq = NULL)
```

- ▶ x: Daten
- breaks = "AnzahlBins": Steuerung der Teilintervalle
- ► freq=TRUE: absolute Häufigkeiten
- ▶ freq=FALSE: relative Häufigkeiten ("empirische Dichte")

Histogramm: Einkommen

Histogramme des Einkommens mit verschiedenen Binstärken

Zu erzeugen mit: hist(Einkommen)

hist(Einkommen, breaks=15)

I. Diskrete Daten II. Stetige Daten III. Graphiken in R

III. Graphiken in R: Grundaufbau und Parameter

Graphiken in R

R kennt einen Standardbefehl für einfache Graphiken (plot()), aber auch viele spezielle Befehle, wie hist() oder pie().

```
plot(x, y, type, main, par (...) )
```

- x: Daten der x-Achse
- ▶ y: Daten der y-Achse
- type="1": Darstellung durch eine Linie
- ▶ type="p": Darstellung durch Punkte
- main: Überschrift der Graphik
- par (...): Zusätzlich können sehr viele Parametereinstellungen geändert werden

Parameter für Graphiken in R

```
par(cex, col, lty, mfrow, pch, x/yaxs)
```

- cex: Skalierung von Graphikelementen
- col: Farbe (colors() zeigt die vordefinierten Farben an)
- ► 1ty: Linienart
- mfrow: Anordnen von mehreren Graphiken nebeneinander
- pch: Andere Punkte oder Symbole
- x/yaxs: Stil der x- bzw. y-Achse

Einen Überblick über die Parameter erhält man mit ?par. par() kann entweder im plot() -Befehl gesetzt werden oder als eigene Funktion vor einem oder mehreren plot()-Befehlen.

Aufbau von Graphiken in R

- 1. plot(): Bildet den Grundstein einer Graphik
- 2. Zusätzlich können weitere Elemente eingefügt werden wie:
 - ▶ lines(): Linien
 - ▶ points(): Punkte
 - ▶ legend(): Legende
 - ▶ text(): Text
- 3. dev.off(): schließt die Graphik

Einen Überblick erhält man mit der betreffenden Hilfefunktion, z.B. ?legend.

Abspeichern von Graphiken

Folgende Graphikformate können in R erzeugt werden:

- ▶ pdf()
- ▶ ps()
- ▶ jpg()

Beispiel:

```
pdf(file="RGraphiken/boxplot.pdf", width=13, height=6)
par(mfrow=c(1,2))
boxplot(Alkohol, main="Boxplot")
boxplot(Alkohol~Geo, main="Boxplot für ...")
par(mfrow=c(1,1))
dev.off()
```



```
pdf(file="RGraphiken/beispiel.pdf", width=12, height=6)
plot(x,y, type="l", col="darkviolet", main="Cos und Sin")
lines(x,z, col="magenta")
points(x,null, pch=3)
legend("topleft", c("cosinus", "sinus"),
col=c("darkviolet", "magenta"), lty=1)
dev.off()
```