利用方向-能量重建探测 K-40 地球中微子

孙昊哲 清华大学工程物理系

2025.05.21

• K40 Th232 U238衰变中微子能谱

• 地球模型

• 地球中微子通量计算

K40 Th232 U238衰变中微子能谱

红色: U238

绿色: Th232

蓝色: K40

KamLAND

- 地壳 Crust1.0
 - 1deg x 1 deg
 - 8 layers
- 地幔
 - CLM DM EM
- 元素含量
- 依据文献

Upper CC + sediments	$(2.32 \pm 8\%) \times 10^{-2}$	$(10.5 \pm 10\%) \times 10^{-6}$	$(2.7 \pm 21\%) \times 10^{-6}$	64
Middle CC	$(1.91\pm14\%)\times10^{-2}$	$(6.5\pm 8\%) \times 10^{-6}$	$(1.3 \pm 31\%) \times 10^{-6}$	64
Lower CC	$(0.51 \pm 30\%) \times 10^{-2}$	$(1.2 \pm 30\%) \times 10^{-6}$	$(0.2 \pm 30\%) \times 10^{-6}$	64
OC sediments	$(1.83 \pm 7\%) \times 10^{-2}$	$(8.10\pm7\%)\times10^{-6}$	$(1.73 \pm 5\%) \times 10^{-6}$	69
OC crust	$(716 \pm 30\%) \times 10^{-6}$	$(0.21\pm30\%)\times10^{-6}$	$(0.07 \pm 30\%) \times 10^{-6}$	70
CLM	$315^{+432}_{-183} \times 10^{-6}$	$150^{+277}_{-97} \times 10^{-9}$	$33^{+49}_{-20} \times 10^{-9}$	15
Depleted Mantle	$(152\pm20\%)\times10^{-6}$	$(21.9 \pm 20\%) \times 10^{-9}$	$(8.0\pm20\%)\times10^{-9}$	71
Enriched Mantle	$402^{+350}_{-238}\times10^{-6}$	$147^{+74}_{-57} \times 10^{-9}$	$30^{+24}_{-18} \times 10^{-9}$	
Bulk Silicate Earth	$(280 \pm 21\%) \times 10^{-6}$	$(80 \pm 15\%) \times 10^{-9}$	$(20\pm20\%)\times10^{-9}$	72

OC

radius 4202 km

radius 3480 km

Ref.

PHYSICAL REVIEW D 95, 053001 (2017)

Geoneutrinos at Jinping: Flux prediction and oscillation analysis

Linyan Wan,* Ghulam Hussain,† Zhe Wang, and Shaomin Chen Department of Engineering Physics, Tsinghua University, Beijing 100084, China (Received 1 December 2016; published 3 March 2017)

- 由模型给出不同格点的密度、元素含量
- 计算该格点放出中微子数
- 按照距离计算锦屏处的通量
- 振荡概率

$$d\phi(\vec{r})_e = \frac{X\lambda N_A}{\mu} n_v P_{ee}^{\oplus} \frac{A(\vec{r})\rho(\vec{r})}{4\pi |\vec{r} - \vec{d}|^2} dv,$$

- 锦屏位置
 - (28.15323° N, 101.7114° E, 海拔1500 m)

K40 NeutrinoRate

Th232 NeutrinoRate

Th232 NeutrinoFlux

U238 NeutrinoRate

Hunting the Potassium Geoneutrinos with Liquid Scintillator Cherenkov Neutrino Detectors

Zhe Wang^{a,b,*}, Shaomin Chen^{a,b}

^aDepartment of Engineering Physics, Tsinghua University, Beijing 100084, China ^bCenter for High Energy Physics, Tsinghua University, Beijing 100084, China

地球中微子通量 (无振荡)

Figure B.15: Predicted non-oscillating geo electron-antineutrino energy spectra on the Earth's surface.

中微子通量计算

电子型(反)中微子存活概率

振荡前后中微子能谱

中微子通量计算

Geo $\bar{\nu}_e$ (TNU)	Crust	Mantle	BSE
Th	10.6 ± 0.8	2.1 ± 0.5	12.7 ± 1.0
U	38.4 ± 6.6	8.3 ± 2.3	46.7 ± 6.7
Th + U	49.0 ± 7.3	10.4 ± 2.7	59.4 ± 7.6

• 实验室位置

• 近点计算精度

	Curst	Mantle	Total
Th232	7.06	2.44	9.51
U238	26.21	9.98	36.19
Total	33.27	12.42	45.70

•

下一步

- 对照数据结果
 - IBD TNU:

•振荡周期~10km@1MeV,格点长度~20km,近点需精细计算

```
3.84
                       3.84
                            3.84
                                    3.84
22241
         3.84
                                          3.84 -22.37 -45.60 -55.72
                     3.42 3.41 3.41 3.41 -20.36 -41.44 -50.63
22242
22243
          2.61
                2.61
                       2.61
                             2.31
                                    2.31
                                          2.31 -19.09 -38.05 -46.32
```

• 用电子散射截面计算散射电子能谱