Name: <u>Caleb McWhorter — Solutions</u>

MATH 101

"The economy stinks, bees are dying, and movies are pretty much all

Fall 2021
HW 5: Due 10/08

The economy sequels now."

-Winston Saint-Marie Schmidt, New Girl

Problem 1. (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not.

The relation f(x) is a function—for each input, there is precisely one output. It does not matter that two of the inputs (namely 1 and 6) both map to -6 under f(x). The relation g(x) is not a function—the input 1 maps to both -6 and 9, i.e. for this input, there is more than one output.

Problem 2. (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not.

\boldsymbol{x}	f(x)	x	g(x)
1	8	5	2
2	-7	6	π
3	8	8	1.87
4	8	9	-9
5	10	5	3

The relation f(x) is a function—for each input, there is precisely one output. It does not matter that three of the inputs (namely 1, 3, and 4) get mapped to 8 under f(x). The relation g(x) is not a function—for the input 5, there is more than one output.

Problem 3. (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not.

$$f(x) = 2.54x + 91$$

$$g(x) = x^3 - x + 1$$

Both relations f(x) and g(x) are functions—for each input, there is one output. Namely, the output is the value obtained after plugging in the value for x and following order of operations.

Problem 4. (10pt) Suppose f(x) is the function given below.

- (a) What is the domain of f(x)?
- (b) What is the codomain of f(x)?
- (c) What is the range of f(x)?

Solution.

- (a) The domain of f(x) is $\{-9, 5, 7\}$.
- (b) The codomain of f(x) is $\{-1, 8, 10\}$.
- (c) The range of f(x) is $\{-1, 10\}$.

Problem 5. (10pt) Suppose f(x) and g(x) are the functions given below.

x	-2	0	1	3	4	5	10
f(x)	5	-3.1	π	5	3/2	14	0
g(x)	6	4	6.6	-15	4	9	2

Compute the following:

(a)
$$f(1) = \pi$$

(b)
$$g(0) = 4$$

(c)
$$(f+g)(5) = f(5) + g(5) = 14 + 9 = 23$$

(d)
$$(f-g)(-2) = f(-2) - g(-2) = 5 - 6 = -1$$

(e)
$$(6f)(1) = 6f(1) = 6(\pi) = 6\pi$$

(f)
$$\left(\frac{f}{g}\right)(10) = \frac{f(10)}{g(10)} = \frac{0}{2} = 0$$

(g)
$$f(4)g(5) = \frac{3}{2} \cdot 9 = \frac{27}{2}$$

(h)
$$f(2-g(0)) = f(2-4) = f(-2) = 5$$

(i)
$$(f \circ g)(0) = f(g(0)) = f(4) = \frac{3}{2}$$

(j)
$$(g \circ f)(3) = g(f(3)) = g(5) = 9$$

Problem 6. (10pt) Suppose f(x) and g(x) are the functions given below.

$$f(x) = 3x - 1$$

$$g(x) = x^2 + x + 1$$

Compute the following:

(a)
$$f(1) = 3(1) - 1 = 3 - 1 = 2$$

(b)
$$g(0) = 0^2 + 0 + 1 = 0 + 0 + 1 = 1$$

(c)
$$f(1) - 2g(1) = (3(1) - 1) - 2(1^2 + 1 + 1) = 2 - 2(3) = 2 - 6 = -4$$

(d)
$$f(x) - g(x) = (3x - 1) - (x^2 + x + 1) = 3x - 1 - x^2 - x - 1 = -x^2 + 2x - 2$$

(e)
$$f(x) g(x) = (3x-1)(x^2+x+1) = 3x^3+3x^2+3x-x^2-x-1 = 3x^3+2x^2+2x-1$$

(f)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{3x-1}{x^2+x+1}$$

(g)
$$(g \circ f)(1) = g(f(1)) = g(2) = 2^2 + 2 + 1 = 4 + 2 + 1 = 7$$

(h)
$$f(g(0)) = f(1) = 2$$

(i)
$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) = 3(x^2 + x + 1) - 1 = 3x^2 + 3x + 3 - 1 = 3x^2 + 3x + 2$$

(j)
$$(g \circ f)(x) = g(f(x)) = g(3x - 1) = (3x - 1)^2 + (3x - 1) + 1 = (9x^2 - 6x + 1) + (3x - 1) + 1 = 9x^2 - 3x + 1$$