SDS 321 Worksheet 1

- 1. What do you know about sets?
 - a. $\{1,2\} \cup \{2,3\} =$
 - b. $\{1,2\} \cap \{2,3\} =$
 - c. True or False: $\{\{1,2\}, \{3\}, \{4,5\}\}\$ is a partition of $\{1,2,3,4,5\}$
- 2. Express the following in terms of the events A, B and C using the operations of complement, union and intersection:
 - at least one of the events A, B, C occurs
 - events A and B occur, but not C
- 3. Which of these numbers cannot be a probability?
 - a) 0.00001
 - b) 0.5
 - c) 1.001
 - d) 0
 - e) 1
- 4. Let A and B be two sets. Under what conditions is the set $A \cap (A \cup B)^c$ empty?
- 5. Is it possible to have the following: P(E) = .3, P(F) = .4, and $P(E \cup F) = .5$? Explain.
- 6. Given P(A) = 0.55, $P(B^c) = 0.35$, and $P(A \cup B) = 0.75$, find P(B) and $P(A \cap B)$.
- 7. Given that $P(A^c) = 0.5$, P(B) = 0.4, and $P(A \cap B) = 0.1$, determine $P(A \cup B)$.
- 8. Give a mathematical derivation of the formula $P(A \cap B^S) + P(A \cap B^S) = P(A \cap B^S) + P(B) = 2P(A \cap B^S) = P(A \cap B^S)$

$$P((A \cap B^{c}) \cup (A^{c} \cap B)) = P(A) + P(B) - 2P(A \cap B)$$

9. Show that $P(A \cup B \cup C) =$

$$P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C)$$

- 10. Consider two rolls of a fair four-sided die. Let X be the outcome on the first roll and Y be the outcome on the second. Determine:
 - a. P((X, Y) is (1,1) or (1,2)) =
 - b. $P({X = 2}) =$
 - c. P(X+Y is even) =

d.
$$P(\min(X, Y) = 1) =$$

e.
$$P(\min(X, Y) > 1) =$$

11. If you toss a fair coin until you first see a head, letting your sample space be the number of tosses to reach a head, then the sample space S will be $S=\{1, 2, ...\}$ with $P(n) = (1/2)^n$, n = 1, 2, ...

Find P(the number of tosses before seeing a head is even).

Note:

$$a+ar+ar^2+ar^3+ar^4+\cdots=\sum_{k=0}^{\infty}ar^k=rac{a}{1-r}, ext{ for } |r|<1.$$