README.md 2025-08-08

Machine Learning

Steps

- Problem statement
- Data collection
- Data cleaning
 - Check categorical values of columns if they have error in names using count.value(). If any,
 replace their names
 - Check the **missing value** and separate them in dataset for easiness
 - Separete numerical columns and categorical columns in two dataframe
 - Check a column has <=25 unique value will be considered as discrete data, otherwise it will be numerical data
 - Replace missing value with mode for categorical & discrete data and median for numerical data
 - Describe general statistics
 - Reducing Number of column
 - Drop any unnecessary categorical column
 - Combine similar numerical columns if it is possible. And dorp their original columns

0

Model Training

- o Train test splitting of data
 - Separete input as X and output as y using drop function
 - Split X into X_train & X_test and y_train & y_test using train_test_split function from sklearn.model_selection
 - mention test data will be 20% or you can adjust its amount based on test performance
- Encoding using ColumnTransfer
 - Separate Categorical and Numerical feature of X
 - Apply OneHotEncoder for categorical feature of X if not many features, Itherwise use LabelEncoding
 - Apply StandardScaler for numerical feature of X
- Transformation and Dataframe
 - Apply transformation on X_train usinf fit.transformer # reason to masking
 - Convert X_train in Dataframe
 - Apply transformer on X_test
 - Conver X_test into DataFrame
- Model Training Algorithms
 - Run RandomForestClassifier on X_train & and y_train import from sklearn.ensemble
 - Give X_test and X_train data to make prediction using model.prediction # we already know their prediction/output
- Performance metrics for both training and testing data
 - Then we check training performance by giving y_train & predict y_train data to performance metrics

README.md 2025-08-08

■ Then we check test performance by giving y_test & predict y_test data to performance metrics

- For Classification Algorithms
 - accuracy_score
 - classification_report
 - precision_score,
 - recall_score
 - f1_score
 - roc_auc_score
 - roc_curve

Hypertuning

- Enter parameters into algortthims using model list
- andomizedSearchCV
- Then run algorithms
- Plotting with the ROC AUC Curve