

HIRAC ON LAWS

SMART CONTRACT SECURITY AUDIT OF TOKIFY RISING FLOOR TOKEN

SMART CONTRACT AUDIT | SOLIDITY DEVELOPMENT & TESTING | PROJECT EVALUATION

RELENTLESSLY SECURING THE PUBLIC BLOCKCHAIN

Audit Introduction

Auditing Firm InterFi Network

Audit Architecture InterFi Echelon Auditing Standard

Language Solidity

Client Firm Tokify

Website https://www.tokify.xyz/

Telegram https://t.me/tokifytg/

Twitter https://twitter.com/Tokifyxyz/

Discord https://discord.gg/s9rMNFMV9u/

Report Date February 19, 2022

About Tokify

This is an example contract of a rising floor token generated through Tokify. The token is backed by BNB, which can be sent to the contract by anyone and can be redeemed by burning the token. The token also has a variable sell fee depending on the difference in the DEX price and floor price.

Audit Summary

InterFi team has performed a line-by-line manual analysis and automated review of the smart contract. The smart contract was analyzed mainly for common smart contract vulnerabilities, exploits, and manipulation hacks. According to the smart contract audit:

- Tokify Rising Floor's solidity source code has LOW RISK SEVERITY
- ❖ Tokify Rising Floor's smart contract has an ACTIVE OWNERSHIP
- Important owner privileges MAX TX LIMIT, SET FEES
- Tokify Rising Floor's smart contract owner has "Write Contract" privileges. Centralization risk correlated to the active owner is LOW

Be aware that smart contracts deployed on the blockchain aren't resistant to internal exploit, external vulnerability, or hack. For a detailed understanding of risk severity, source code vulnerability, functional hack, and audit disclaimer, kindly refer to the audit.

Token Contract address: Not deployed

🖁 Blockchain: **Not chained**

✓ Verify the authenticity of this report on InterFi's GitHub: https://github.com/interfinetwork

Table Of Contents

Audit Information

Audit Scope	5
Echelon Audit Standard	
Audit Methodology	6
Risk Classification	8
Smart Contract Risk Assessment	
Static Analysis	9
Software Analysis	12
Manual Analysis	15
SWC Attacks	19
Risk Status & Radar Chart	
<u>Audit Summary</u>	
Auditor's Verdict	22
<u>Legal Advisory</u>	
Important Disclaimer	23
About InterFi Network	24

Audit Scope

InterFi was consulted by Tokify to conduct the smart contract security audit of their solidity source code. The audit scope of work is strictly limited to the mentioned solidity file(s) only:

TokifyRisingFloor.sol

Solidity Source Code On InterFi GitHub

https://github.com/interfinetwork/audited-codes/blob/main/Tokify.sol

SHA-1 Hash

Solidity source code is audited at hash #68c7d4df3bdf3b09439bd577a91a334b9c455def

Smart Contract Security Audit

Audit Methodology

The scope of this report is to audit the smart contract source code of Tokify. InterFi has scanned the contract and reviewed the project for common vulnerabilities, exploits, hacks, and back-doors. Below is the list of commonly known smart contract vulnerabilities, exploits, and hacks:

Category

***	Re-entrancy

- Unhandled Exceptions
- Transaction Order Dependency
- Integer Overflow
- Unrestricted Action
- Incorrect Inheritance Order
- Typographical Errors
- Requirement Violation
- Ownership Takeover
- Gas Limit and Loops
- Deployment Consistency
- Repository Consistency
- Data Consistency
- Token Supply Manipulation
- Access Control and Authorization
- Operations Trail and Event Generation
- Assets Manipulation
- Liquidity Access

Smart Contract Vulnerabilities

Source Code Review

Functional Assessment

InterFi's Echelon Audit Standard

The aim of InterFi's "Echelon" standard is to analyze the smart contract and identify the vulnerabilities and the hacks in the smart contract. Mentioned are the steps used by ECHELON-1 to assess the smart contract:

- 1. Solidity smart contract source code reviewal:
 - Review of the specifications, sources, and instructions provided to InterFi to make sure we understand the size, scope, and functionality of the smart contract.
 - Manual review of code, which is the process of reading source code line-by-line to identify potential vulnerabilities.
- 2. Static, Manual, and Software analysis:
 - Test coverage analysis is the process of determining whether the test cases are covering the code and how much code is exercised when we run those test cases.
 - Symbolic execution is analyzing a program to determine what inputs cause each part of a program to execute.
- 3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the established industry and academic practices, recommendations, and research.
- 4. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts

Automated 3P frameworks used to assess the smart contract vulnerabilities

- Slither
- Consensys MythX, Mythril
- SWC Registry
- Solidity Coverage
- Open Zeppelin Code Analyzer
- Solidity Code Complier

Risk Classification

Smart contracts are generally designed to manipulate and hold funds denominated in ETH/BNB. This makes them very tempting attack targets, as a successful attack may allow the attacker to directly steal funds from the contract. Below are the typical risk levels of a smart contract:

Vulnerable: A contract is vulnerable if it has been flagged by a static analysis tool as such. As we will see later, this means that some contracts may be vulnerable because of a false positive.

Exploitable: A contract is exploitable if it is vulnerable and the vulnerability could be exploited by an external attacker. For example, if the "vulnerability" flagged by a tool is in a function that requires owning the contract, it would be vulnerable but not exploitable.

Exploited: A contract is exploited if it received a transaction on the main network which triggered one of its vulnerabilities. Therefore, a contract can be vulnerable or even exploitable without having been exploited.

Risk severity	Meaning Security Audit	
! High	This level vulnerabilities could be exploited easily and can lead	to asset loss,
	data loss, asset, or data manipulation. They should be fixed right o	away.
! Medium	This level vulnerabilities are hard to exploit but very important to	fix, they carry
	an elevated risk of smart contract manipulation, which can lea	d to high-risk
	severity	
! Low	This level vulnerabilities should be fixed, as they carry an inheren	t risk of future
	exploits, and hacks which may or may not impact the smart contr	act execution.
! Informational	This level vulnerabilities can be ignored. They are code style v	iolations and
	nformational statements in the code. They may not affect the si	mart contract
	execution	

Static Analysis

Symbol Meaning Function can be modified Function is payable S Function is locked Function can be accessed Important functionality | **<mark>SafeMath</mark>** | Library | └ | add | Internal 🔒 | | L | sub | Internal 🔒 | | L | mul | Internal 🗎 | | L | div | Internal 🔒 | | ^L | sub | Internal [@] | | **IBEP20** | Interface | ||| | L | totalSupply | External ! | NO! | | L | decimals | External ! | NO! | | L | symbol | External ! | NO! | | L | name | External ! | NO! | | L | getOwner | External ! | NO! | | L | balanceOf | External ! | NO! | | L | transfer | External ! | • | NO! | | L | allowance | External ! | | L | approve | External ! | P | NO! | | L | transferFrom | External ! | • | NO! | | **Auth** | Implementation | ||| | L | <Constructor> | Public ! | • | NO! | | L | authorize | Public ! | Public ! | onlyOwner | | L | unauthorize | Public ! | 📦 | onlyOwner | | L | isOwner | Public ! | NO! | | L | isAuthorized | Public ! | NO! | | L | transferOwnership | Public ! | 🔎 | onlyOwner | | **IDEXFactory** | Interface | ||| | L | createPair | External ! | 📦 |NO! |

| **IDEXPair** | Interface | |||

111111

```
| L | getReserves | External ! | NO! | |
| **IDEXRouter** | Interface | |||
| L | factory | External ! | NO! |
| L | WETH | External ! | NO! |
| L | addLiquidityETH | External ! | 💹 |NO! |
| L | swapExactETHForTokensSupportingFeeOnTransferTokens | External ! | 🕮 |NO! |
| └ | swapExactTokensForETHSupportingFeeOnTransferTokens | External └ | ● |NO │ |
111111
| **IDividendDistributor** | Interface | |||
| L | setDistributionCriteria | External ! | 🔎 |NO! |
| L | setShare | External ! | 🔎 |NO! |
| L | processDividend | External ! | • | NO! |
111111
| **DividendDistributor** | Implementation | IDividendDistributor |||
| L | <Constructor> | Public ! | • | NO! |
| L | setShare | External ! | 🛑 | onlyToken |
| L | <Receive Ether> | External ! | MO! |
| L | processDividend | External ! | 🔎 | onlyToken |
| └ | shouldDistribute | Internal 🗎 | | |
| └ | distributeDividend | Internal 🔒 | 🔴 | |
| L | getUnpaidEarnings | Public ! | NO! |
| └ | getCumulativeDividends | Internal 🗎 | | |
| L | addShareholder | Internal 🗎 | 🛑 | |
| └ | removeShareholder | Internal 🔒 | 🔴 | |
| L | viewDividendTokenAddress | External ! |
                                          |NO ! |
| **IRewardsPool** | Interface | ||| |
| └ | transferToDistributor | External ! | ● |NO! |
| └ | transferBNBToAddress | External ! | ● |NO! |
| **RewardsPool** | Implementation | IRewardsPool |||
| L | <Constructor> | Public ! | • | NO! |
| L | <Receive Ether> | External ! | MO! |
| L | transferToDistributor | External ! | 🔴 | onlyToken |
| L | transferBNBToAddress | External ! | 🔎 | onlyToken |
| **TokifyRisingFloor** | Implementation | IBEP20, Auth |||
| L | <Constructor> | Public ! | • | Auth |
| L | <Receive Ether> | External ! | M | NO! |
| L | totalSupply | External ! | NO! |
| L | decimals | External ! | NO! |
| L | symbol | External ! | NO! |
| L | name | External ! | NO! |
| L | getOwner | External ! | NO! |
| L | balanceOf | Public ! | NO! |
| L | allowance | External ! | NO! |
| L | approve | Public ! | Public ! | | NO! |
```



```
| └ | approveMax | External ! | ● |NO! |
| L | transfer | External ! | 🔎 |NO! |
| └ | transferFrom | External ! | ● |NO! |
| └ | checkTxLimit | Internal 🗎 | | |
| L | getTotalFee | Public ! | NO! |
| L | getSellMultipliedFee | Public ! | NO! |
| L | getCurrentGapRatio | Public ! | NO! |
| L | takeFee | Internal 🔒 | 🛑 | |
| └ | swapBack | Internal 🍙 | 🔴 | swapping |
| └ | setTxLimit | External ! | ● | authorized |
| └ | setIsDividendExempt | External ! | ● | authorized |
| └ | setIsFeeExempt | External ! | ● | authorized |
| └ | setIsTxLimitExempt | External ! | ● | authorized |
| L | setFeesWithDenominator10000 | External ! | 🔴 | authorized |
| L | setSwapBackSettings | External ! | • | authorized |
| L | setTargetLiquidity | External ! | • | authorized |
| L | setFeeActive | External ! | • | authorized |
| └ | setDistributionCriteria | External ! | ● | authorized |
| L | getCirculatingSupply | Public ! | NO! |
| L | getLiquidityBacking | Public ! | NO! |
| L | isOverLiquified | Public ! | NO! |
| L | payoutFractionOfRewardsPool | External ! | PayoutFractionOfRewardsPool |
| L | getAmountBNBInAssetPool | Public ! | NO! |
| L | getAmountBNBInRewardsPool | Public ! | |NO! |
| L | getDistributorPoolBalance | Public ! | NO! |
| L | getDividendTokenAddress | Public ! | NO! |
| └ | burnForBNB | External ! | ● |NO! |
| L | _burnForBNB | Internal 🗎 | 🛑 | |
```


Software Analysis

Function Signatures

```
884557bf => tryAdd(uint256,uint256)
a29962b1 => trySub(uint256,uint256)
6281efa4 => tryMul(uint256,uint256)
736ecb18 => tryDiv(uint256,uint256)
38dc0867 \Rightarrow tryMod(uint256,uint256)
771602f7 => add(uint256,uint256)
b67d77c5 \Rightarrow sub(uint256,uint256)
c8a4ac9c => mul(uint256,uint256)
a391c15b => div(uint256,uint256)
f43f523a => mod(uint256,uint256)
e31bdc0a => sub(uint256,uint256,string)
b745d336 \Rightarrow div(uint256,uint256,string)
71af23e8 => mod(uint256,uint256,string)
18160ddd => totalSupply()
313ce567 \Rightarrow decimals()
95d89b41 => symbol()
06fdde03 => name()
893d20e8 \Rightarrow get0wner()
70a08231 \Rightarrow balanceOf(address)
a9059cbb => transfer(address,uint256)
dd62ed3e => allowance(address,address)
095ea7b3 => approve(address,uint256)
23b872dd => transferFrom(address,address,uint256)
b6a5d7de => authorize(address)
f0b37c04 => unauthorize(address)
2f54bf6e => is0wner(address)
fe9fbb80 => isAuthorized(address)
f2fde38b => transfer0wnership(address)
c9c65396 => createPair(address,address)
0902f1ac => getReserves()
c45a0155 => factory()
ad5c4648 \Rightarrow WETH()
e8e33700 =>
             addLiquidity(address,address,uint256,uint256,uint256,uint256)
f305d719 =>
             addLiquidityETH(address,uint256,uint256,uint256,address,uint256)
5c11d795 =>
swapExactTokensForTokensSupportingFeeOnTransferTokens(uint256, uint256, address[], address, uint256)
b6f9de95 => swapExactETHForTokensSupportingFee0nTransferTokens(uint256,address[],address,uint256)
791ac947 =>
swapExactTokensForETHSupportingFeeOnTransferTokens(uint256,uint256,address[],address,uint256)
98e5bfee => setDistributionCriteria(uint256)
14b6ca96 => setShare(address.uint256)
9375eeb1 => processDividend(uint256)
7bf7d61b => viewDividendTokenAddress()
8c21cd52 => shouldDistribute(address)
5319504a => distributeDividend(address)
```



```
f0fc6bca => claimDividend()
28fd3198 =>
             getUnpaidEarnings(address)
             getCumulativeDividends(uint256)
e68af3ac =>
db29fe12 =>
             addShareholder(address)
9babdad6 => removeShareholder(address)
c86a17f9 => transferToDistributor(address,uint256)
2a50d278 => transferBNBToAddress(address,uint256)
571ac8b0 => approveMax(address)
cb712535 => transferFrom(address,address,uint256)
f0774e71 => _basicTransfer(address,address,uint256)
4afa518a => checkTxLimit(address,uint256)
e7c44c69 => shouldTakeFee(address)
f1f3bca3 => getTotalFee(bool)
2138ce01 => getSellMultipliedFee()
c8e02934 => getCurrentGapRatio(uint256)
20cb7bce => takeFee(address,address,uint256)
0d5c6cea => shouldSwapBack()
6ac5eeee => swapBack()
5c85974f => setTxLimit(uint256)
f708a64f => setIsDividendExempt(address,bool)
658d4b7f => setIsFeeExempt(address,bool)
f84ba65d => setIsTxLimitExempt(address,bool)
563bf54d => setFeesWithDenominator10000(uint256,uint256,uint256)
a4b45c00 => setFeeReceivers(address,address)
df20fd49 => setSwapBackSettings(bool,uint256)
201e7991 =>
             setTargetLiquidity(uint256,uint256)
b7bfff65 => setFeeActive(bool)
2b112e49 =>
             getCirculatingSupply()
d51ed1c8 =>
             getLiquidityBacking(uint256)
1161ae39 => is0verLiquified(uint256,uint256)
d717c918 =>
             payoutFractionOfRewardsPool(uint256,uint256)
75ead12b =>
             getAmountBNBInAssetPool()
a69c17e0 =>
             getAmountBNBInRewardsPool()
b0c02935 => getDistributorPoolBalance()
9e061b48 => getDividendTokenAddress()
51d016f5 => burnForBNB(uint256)
```


8f0ecf56 => burnForBNB(address,uint256)

Inheritance Graph

Interfi

Smart Contract Security Audit

Manual Analysis

Function	Description	Tested	Verdict
Total Supply	provides information about the total token	Yes	Passed
rotal supply	supply		
Balance Of	provides account balance of the owner's	Yes	Passed
Balance Of	account		
Transfer	executes transfers of a specified number of	Yes	Passed
Transier	tokens to a specified address		
Annrovo	allow a spender to withdraw a set number of	.,	Passed
Approve	tokens from a specified account	Yes	
Allowance	returns a set number of tokens from a spender to		Passed
Allowance	the owner	Yes	
	is an action in which the project buys back its		
Buy Back	tokens from the existing holders usually at a	NA	NA
	market price nairt Contract		
Рима	executes transfers of a specified number of	Yes	Passed
Burn	tokens to a burn address		
Mint	executes the creation of a specified number of		
MILLE	tokens and adds it to the total supply	NA	NA
	circulating token supply adjusts (increases or		
Rebase	decreases) automatically according to a token's	NA	NA
	price fluctuations		
Blacklist	stops specified wallets from interacting with the		
DIUCKIISU	smart contract function modules	NA	NA
Lock	stops or locks all function modules of the smart	NA	NA
LOCK	contract		

Function	Description	Tested	Verdict
Dividend	executes transfers of a specified dividend token to a specified address	Yes	Passed
Airdrop	executes transfers of a specified number of tokens to a specified address	NA	NA
Max Transaction	a non-whitelisted wallet can only transfer a specified number of tokens	Yes	! Low
Max Wallet	a non-whitelisted wallet can only hold a specified number of tokens	NA	NA
Cooldown Timer	functionality to limit the number of transactions that a wallet can make within 24-hours	NA	NA
Anti Bot	stops some or all bot wallets from interacting with the smart contract	NA	NA
Anti Snipe	prevents bots from making transaction at "addLiquidity" block	NA	NA
Transfer Ownership	executes transfer of contract ownership to a specified wallet	Yes	Passed
Renounce Ownership	executes transfer of contract ownership to a dead address	Yes	Passed

Best Practices V

- Owner cannot stop or pause the smart contract.
- Owner cannot lock or burn the user assets.
- Owner cannot mint tokens after initial contract creation/deployment.
- The smart contract utilizes "SafeMath" function to avoid common smart contract vulnerabilities.

```
string private _name = "Tokify";
library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
    uint256 c = a + b;
    require(c >= a, "SafeMath: addition overflow");

function sub(uint256 a, uint256 b) internal pure returns (uint256) {
    return sub(a, b, "SafeMath: subtraction overflow");

    uint256 c = a * b;
    require(c / a == b, "SafeMath: multiplication overflow");

    return c;

function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");

function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
}
```

Note 4

- Be aware that active smart contract owner privileges constitute an elevated impact to smart contract safety and security.
- Smart contract owner can change transaction fees. Maximum fee limits are set to reduce honeypot risk.

```
function setFeesWithDenominator10000(
    uint256 _liquidityFee,
    uint256 _rewardsFee,
    uint256 _backingFee,
    uint256 _marketingFee
) external authorized {
```



```
liquidityFee = _liquidityFee;
rewardsFee = _rewardsFee;
backingFee = _backingFee;
marketingFee = _marketingFee;
totalFee = _liquidityFee.add(_rewardsFee).add(_backingFee).add(_marketingFee);
require(totalFee < feeDenominator / 4);
}</pre>
```

Smart contract owner can change max transaction %. Limit is set to reduce honeypot risk.

```
function setTxLimit(uint256 amount) external authorized {
    require(amount >= _totalSupply / 1000);
    _maxTxAmount = amount;
}
```


Smart Contract Security Audit

SWC Attacks

SWC ID	Description	Verdict
SWC-101	Integer Overflow and Underflow	Passed
SWC-102	Outdated Compiler Version	! Informational
SWC-103	Floating Pragma	Passed
SWC-104	Unchecked Call Return Value	Passed
SWC-105	Unprotected Ether Withdrawal	Passed
SWC-106	Unprotected SELF-DESTRUCT Instruction	Passed
SWC-107	Re-entrancy	Passed
SWC-108	State Variable Default Visibility	Passed
SWC-109	Uninitialized Storage Pointer	Passed
swc-110	Assert Violation Smart Contract	Passed
swc-111	Use of Deprecated Solidity Functions	Passed
SWC-112	Delegate Call to Untrusted Callee	Passed
SWC-113	DoS with Failed Call	Passed
SWC-114	Transaction Order Dependence	Passed
SWC-115	Authorization through tx.origin	Passed
SWC-116	Block values as a proxy for time	Passed
SWC-117	Signature Malleability	Passed
SWC-118	Incorrect Constructor Name	Passed

SWC-119	Shadowing State Variables	Passed
SWC-120	Weak Sources of Randomness from Chain Attributes	Passed
SWC-121	Missing Protection against Signature Replay Attacks	Passed
SWC-122	Lack of Proper Signature Verification	Passed
SWC-123	Requirement Violation	Passed
SWC-124	Write to Arbitrary Storage Location	Passed
SWC-125	Incorrect Inheritance Order	Passed
SWC-126	Insufficient Gas Griefing	Passed
SWC-127	Arbitrary Jump with Function Type Variable	Passed
SWC-128	DoS With Block Gas Limit	Passed
SWC-129	Typographical Error	Passed
SWC-130	Right-To-Left-Override control character (U+202E)	Passed
SWC-131	Presence of unused variables	Passed
SWC-132	Security Audit Unexpected Ether balance	Passed
SWC-133	Hash Collisions With Multiple Variable Length Arguments	Passed
SWC-134	Message call with the hardcoded gas amount	Passed
SWC-135	Code With No Effects (Irrelevant/Dead Code)	Passed
SWC-136	Unencrypted Private Data On-Chain	Passed

Risk Status & Radar Chart

Risk Severity	Status
! High	No high severity issues identified
! Medium	No medium severity issues identified
! Low	No low severity issues identified
! Informational	2 informational severity issues identified Active Ownership Outdated Compiler
Verified	54 functions and instances verified and checked

Auditor's Verdict

InterFi team has performed a line-by-line manual analysis and automated review of the smart contract. The smart contract was analyzed mainly for common smart contract vulnerabilities, exploits, and manipulation hacks.

- Tokify Rising Floor's solidity source code has LOW RISK SEVERITY
- ❖ Tokify Rising Floor's smart contract has an ACTIVE OWNERSHIP
- Tokify Rising Floor's smart contract owner has "Write Contract" privileges. Centralization risk correlated to the active owner is LOW

Note for stakeholders

- Be aware that active smart contract owner privileges constitute an elevated impact on smart contract safety and security.
- If the smart contract is not deployed on any blockchain at the time of the audit, the contract can be modified or altered before blockchain development. Verify contract's deployment status in the audit report.
- Make sure that the project team's KYC/identity is verified by an independent firm.
- Always check if the contract's liquidity is locked. A longer liquidity lock plays an important role in the project's longevity. It is recommended to have multiple liquidity providers.
- Examine the unlocked token supply in the owner, developer, or team's private wallets. Understand the project's tokenomics, and make sure the tokens outside of the LP Pair are vested or locked for a longer period.
- Ensure that the project's official website is hosted on a trusted platform, and is using an active SSL certificate. The website's domain should be registered for a longer period.

Important Disclaimer

InterFi Network provides contract development, testing, auditing and project evaluation services for blockchain projects. The purpose of the audit is to analyze the on-chain smart contract source code and to provide a basic overview of the project. **This report should not be transmitted, disclosed, referred to, or relied upon by any person for any purpose without InterFi's prior written consent.**

InterFi provides the easy-to-understand assessment of the project, and the smart contract (otherwise known as the source code). The audit makes no statements or warranties on the security of the code. It also cannot be considered as enough assessment regarding the utility and safety of the code, bug-free status, or any other statements of the contract. While we have used all the data at our disposal to provide the transparent analysis, it is important to note that you should not rely on this report only — we recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contracts. Be aware that smart contracts deployed on a blockchain aren't resistant to external vulnerability, or a hack. Be aware that active smart contract owner privileges constitute an elevated impact on smart contract safety and security. Therefore, InterFi does not guarantee the explicit security of the audited smart contract.

The analysis of the security is purely based on the smart contracts alone. No applications or operations were reviewed for security. No product code has been reviewed.

This report should not be considered as an endorsement or disapproval of any project or team.

The information provided in this report does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the report's content as such. Do conduct your due diligence and consult your financial advisor before making any investment decisions.

About InterFi Network

InterFi Network provides intelligent blockchain solutions. InterFi is developing an ecosystem that is seamless and responsive. Some of our services: Blockchain Security, Token Launchpad, NFT Marketplace, etc. InterFi's mission is to interconnect multiple services like Blockchain Security, DeFi, Gaming, and Marketplace under one ecosystem that is seamless, multi-chain compatible, scalable, secure, fast, responsive, and easy to use.

InterFi is built by a decentralized team of UI experts, contributors, engineers, and enthusiasts from all over the world. Our team currently consists of 6+ core team members, and 10+ casual contributors. InterFi provides manual, static, and automatic smart contract analysis, to ensure that project is checked against known attacks and potential vulnerabilities.

To learn more, visit https://interfi.network

To view our audit portfolio, visit https://github.com/interfinetwork

To book an audit, message https://t.me/interfiaudits

