Mục lục

1	Cnu	an oi	- 1
	1.1	Kiến thức giải tích	1
	1.2	Sai số làm tròn và số học máy tính	3
	1.3	Thuật toán và sự hội tụ	3
	1.4	MATLAB: ngôn ngữ tính toán và lập trình	3
	1.5	MATLAB: giải tích và đại số	5
2	Giải	phương trình một biến	19
	2.1	Phương pháp chia đôi	19
	2.2	Phương pháp Newton và mở rộng	22
	2.3	Lặp điểm bất động	27
	2.4	Phân tích sai số của các phương pháp lặp	31
	2.5	Tăng tốc độ hội tụ	31
	2.6	Nghiệm của đa thức và phương pháp Müller	32
3	Nội	suy và xấp xỉ bằng đa thức	33
	3.1	Nội suy tổng quát	33
	3.2	Đa thức nội suy	34
	3.3	Xấp xỉ số liệu và phương pháp Neville	38
	3.4	Sai phân chia	39
	3.5	Nội suy Hermite	42
	3.6	Nội suy spline bậc ba	42
	3.7	Đường cong tham số	42
4	Đạo	hàm và tích phân bằng số	43
	4.1	Đạo hàm bằng số	44
	4.2	Ngoại suy Richardson	48
	4.3	Tích phân bằng số	48
	4.4	Tích phân Romberg	54
	4.5	Phương pháp cầu phương thích ứng	54

ii Mục lục

	4.6	Cầu phương Gauss	54
	4.7	Tích phân bội	54
	4.8	Tích phân suy rộng	54
5	Bài	toán giá trị ban đầu của phương trình vi phân thường	55
	5.1	Lý thuyết cơ bản về bài toán giá trị ban đầu	56
	5.2	Phương pháp Picard	57
	5.3	Phương pháp chuỗi Taylor	60
	5.4	Phương pháp Euler	63
	5.5	Phương pháp Taylor bậc cao	66
	5.6	Phương pháp Runge-Kutta	66
	5.7	Điều khiển sai số và phương pháp Runge-Kutta-Fehlberg	70
	5.8	Phương pháp đa bước	70
	5.9	Phương pháp đa bước với bước nhảy biến thiên	70
	5.10	Phương pháp ngoại suy	70
	5.11	Phương trình cấp cao và hệ phương trình vi phân	70
	5.12	Sự ổn định	70
	5.13	Phương trình vi phân cứng	70
6	Phu	ơng pháp trực tiếp giải hệ phương trình tuyến tính	71
	6.1	Hệ phương trình tuyến tính	71
	6.2	Chiến thuật chốt	72
	6.3	Đại số tuyến tính và ma trận nghịch đảo	72
	6.4	Định thức của ma trận	72
	6.5	Phân tích ma trận	72
	6.6	Các dạng ma trận đặc biệt	72
7	Kỹ t	huật lặp trong đại số tuyến tính	73
	7.1	Chuẩn của véctơ và ma trận	73
	7.2	Giá trị riêng và véctơ riêng	75
	7.3	Lặp điểm bất động	75
	7.4	Kỹ thuật lặp Jacobi và Gauss–Seidel	79
	7.5	Ma trận nghịch đảo	81
	7.6	Kỹ thuật giảm dư giải hệ tuyến tính	82
	7.7	Giới hạn sai số và tinh chỉnh phép lặp	82
	7.8	Phương pháp gradient liên hợp	82
8	Lý t	huyết xấp xỉ	83
	8.1	Xấp xỉ bình phương nhỏ nhất	83
	8.2	Đa thức trực giao và xấp xỉ bình phương nhỏ nhất	88

Mục lục iii

	8.3	Đa thức Chebyshev và [Economization] chuối lũy thừa	88
	8.4	Xấp xỉ hàm hữu tỷ	88
	8.5	Xấp xỉ đa thức lượng giác	88
	8.6	Biến đổi Fourier nhanh	88
9	Xấp	xỉ giá trị riêng	89
	9.1	Đại số tuyến tính và giá trị riêng	89
	9.2	Ma trận trực giao và biến đổi đồng dạng	89
	9.3	Phương pháp lũy thừa	89
	9.4	Phương pháp Householder	89
	9.5	Thuật toán QR	89
	9.6	Phân tích giá trị kỳ dị	89
10	Giải	gần đúng hệ phương trình phi tuyến	90
	10.1	Phương pháp lặp điểm bất động	92
	10.2	Phương pháp Newton	95
	10.3	Phương pháp độ dốc nhất	97
	10.4	Đồng luân và các phương pháp mở rộng	97
11	Bài t	oán giá trị biên của phương trình vi phân thường	93
11		oán giá trị biên của phương trình vi phân thường Phương pháp bắn tuyến tính	
11	11.1	Phương pháp bắn tuyến tính	
11	11.1 11.2	Phương pháp bắn tuyến tính	93
11	11.1 11.2 11.3	Phương pháp bắn tuyến tính	93 93
11	11.1 11.2 11.3 11.4	Phương pháp bắn tuyến tính	93 93 93
	11.1 11.2 11.3 11.4 11.5	Phương pháp bắn tuyến tính	93 93 93 94
	11.1 11.2 11.3 11.4 11.5 Nghi	Phương pháp bắn tuyến tính	93 93 93 94 94
	11.1 11.2 11.3 11.4 11.5 Ngh i 12.1	Phương pháp bắn tuyến tính	93 93 94 94 95
	11.1 11.2 11.3 11.4 11.5 Ngh i 12.1 12.2	Phương pháp bắn tuyến tính	93 93 94 94 95
	11.1 11.2 11.3 11.4 11.5 Nghi 12.1 12.2 12.3	Phương pháp bắn tuyến tính	93 93 94 94 95 96 96
12	11.1 11.2 11.3 11.4 11.5 Ngh i 12.1 12.2 12.3 12.4	Phương pháp bắn tuyến tính Phương pháp bắn cho bài toán phi tuyến Phương pháp sai phân hữu hạn cho bài toán tuyến tính Phương pháp sai phân hữu hạn cho bài toán phi tuyến Phương pháp Rayleigh—Ritz iệm số của phương trình đạo hàm riêng Phương trình đạo hàm riêng Elliptic Phương trình đạo hàm riêng Parabolic Phương trình đạo hàm riêng Hyperbolic Giới thiệu về phương pháp phần tử hữu hạn	93 93 94 94 95 96 96
12	11.1 11.2 11.3 11.4 11.5 Nghi 12.1 12.2 12.3 12.4 Các	Phương pháp bắn tuyến tính Phương pháp bắn cho bài toán phi tuyến Phương pháp sai phân hữu hạn cho bài toán tuyến tính Phương pháp sai phân hữu hạn cho bài toán phi tuyến Phương pháp Rayleigh—Ritz iệm số của phương trình đạo hàm riêng Phương trình đạo hàm riêng Elliptic Phương trình đạo hàm riêng Parabolic Phương trình đạo hàm riêng Hyperbolic Giới thiệu về phương pháp phần tử hữu hạn phương pháp tối ưu	93 93 94 94 95 96 96
12	11.1 11.2 11.3 11.4 11.5 Nghi 12.1 12.2 12.3 12.4 Các 13.1	Phương pháp bắn tuyến tính Phương pháp bắn cho bài toán phi tuyến Phương pháp sai phân hữu hạn cho bài toán tuyến tính Phương pháp sai phân hữu hạn cho bài toán phi tuyến Phương pháp Rayleigh—Ritz iệm số của phương trình đạo hàm riêng Phương trình đạo hàm riêng Elliptic Phương trình đạo hàm riêng Parabolic Phương trình đạo hàm riêng Hyperbolic Giới thiệu về phương pháp phần tử hữu hạn phương pháp tối ưu	93 93 94 94 95 96 96 96 97
12	11.1 11.2 11.3 11.4 11.5 Ngh i 12.1 12.2 12.3 12.4 Các 13.1 13.2	Phương pháp bắn tuyến tính Phương pháp bắn cho bài toán phi tuyến Phương pháp sai phân hữu hạn cho bài toán tuyến tính Phương pháp sai phân hữu hạn cho bài toán phi tuyến Phương pháp Rayleigh—Ritz iệm số của phương trình đạo hàm riêng Phương trình đạo hàm riêng Elliptic Phương trình đạo hàm riêng Parabolic Phương trình đạo hàm riêng Hyperbolic Giới thiệu về phương pháp phần tử hữu hạn phương pháp tối ưu Tối ưu không ràng buộc một biến	93 93 94 94 95 96 96 97 97

Chương 10

Giải gần đúng hệ phương trình phi tuyến

Xét hệ *n* phương trình *n* ẩn

Đặt $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$, và hàm $f = (f_1, f_2, ..., f_n)^T$,

$$f\left(x\right) = 0\tag{10.2}$$

Để giải hệ, ta dùng lệnh vpasolve, gồm các bước

Bước 1: khai báo hàm véctơ cột, lưu ý nên tính thử xem khai báo có đúng không

```
f = @(x) [f_1(x(1), x(2), ..., x(n));
f_2(x(1), x(2), ..., x(n));
......
f_n(x(1), x(2), ..., x(n))]
f([a_1; a_2; ...; a_n])
```

Bước 2: khai báo biến symbolic, là véctơ côt n chiều

$$2 \times = sym('x', [n, 1])$$

Bước 3: lệnh giải hệ

```
[x1, x2, \dots, xn] = vpasolve(f(x))
```

Ví dụ 10.1.

$$\begin{cases} 3x_1 - \cos(x_2 x_3) - \frac{1}{2} &= 0\\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 &= 0\\ e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} &= 0 \end{cases}$$
 (*)

Giải. · Khai báo

```
f = 0(x) [3*x(1) - \cos(x(2) * x(3)) - 1/2;
     x(1)^2 - 81 * (x(2) + 0.1)^2 + \sin(x(3)) + 1.06;
2
      \exp(-x(1)*x(2)) + 20*x(3) + (10*pi - 3)/3
3
```

Tính thử

```
ans = 3x1
  -0.0839
  -96.0407
   50.4720
```

Giải hê

```
x = sym('x', [3, 1])
[x1, x2, x3] = vpasolve(f(x))
```

```
x2 = -0.0000000000000000004922163767608998188811268887
x3 = -0.52359877559829888228457997751389
```

· Xử lý (làm tròn) kết quả, lấy 6 chữ số có nghĩa

```
ans = -4.92216e-19
ans = -0.523599
```

Hệ phương trình có nghiệm $x_1 = 0.5 \ x_2 = -4.92216 \cdot 10^{-19} \approx 0, x_3 = -0.523599.$

Hệ (*) có nghiệm đúng $x_1 = \frac{1}{2}$, $x_2 = 0$, $x_3 = \frac{\pi}{6}$, kiểm tra bằng lệnh

```
7 f([1/2; 0; -pi/6])
```

ans =
$$3x1$$
 $10^{-14} x$

0
0
0.1776

cho
$$f\left(\frac{1}{2}, 0, -\frac{\pi}{6}\right) = 10^{-14}(0, 0, 0.1776)^T \approx (0, 0, 0)^T.$$

10.1 Phương pháp lặp điểm bất động

10.1.1 Phương pháp lặp điểm bất đông

Xét hàm vécto g(x), trong đó $x = (x_1, x_2, ..., x_n)^T \in D \subset \mathbb{R}^n$, và $g = (g_1, g_2, ..., g_n)^T$. g co trên D nếu

- 1) $g(x) \in D$, $\forall x \in D$, và
- 2) $\exists 0 \leq q < 1$ sao cho

$$||g(x) - g(y)|| \le q ||x - y||, \ \forall x, y \in D$$
 (10.3)

Điều kiện (10.3) thỏa mãn nếu xét chuẩn trên \mathbb{R}^n là $\|\cdot\|_{\infty}$, và

$$||J(x)||_{\infty} \le q < 1, \ \forall x \in D. \tag{10.4}$$

trong đó J(x) là ma trận Jacobi của g(x)

$$J(x) = \left(\frac{\partial g_{i}}{\partial x_{j}}\right)_{i,j=\overline{1,n}} = \begin{bmatrix} \frac{\partial g_{1}}{\partial x_{1}}(x) & \frac{\partial g_{1}}{\partial x_{2}}(x) & \cdots & \frac{\partial g_{1}}{\partial x_{n}}(x) \\ \frac{\partial g_{2}}{\partial x_{1}}(x) & \frac{\partial g_{2}}{\partial x_{2}}(x) & \cdots & \frac{\partial g_{2}}{\partial x_{n}}(x) \\ & \cdots & \cdots & \vdots \\ \frac{\partial g_{n}}{\partial x_{1}}(x) & \frac{\partial g_{n}}{\partial x_{2}}(x) & \cdots & \frac{\partial g_{n}}{\partial x_{n}}(x) \end{bmatrix}$$
(10.5)

Nên đánh giá q theo công thức (10.4) bằng phương pháp lý thuyết, vì trong thực hành, đánh giá q trên lưới đủ mịn của $x \in D$ mất khá nhiều thời gian. Chẳng hạn, nếu mỗi biến x_i của x đều có N điểm, thì số giá trị $\|J(x)\|_{\infty}$ cần tính là N^{n^*} .

^{*}Với n = 3, thống kê thời gian đánh giá q theo số khoảng chia của các biến

Số khoảng chia	N	10	20	30
Số điểm chia	N + 1	11	21	31
Số chu trình	$(N + 1)^3$	11 ³	21 ³	31 ³
Tổng thời gian (giây)	t	86	623	2235
Thời gian / chu trình (giây)	$\frac{t}{(N+1)^3}$	0.06461	0.06727	0.07562

Xét phương trình

$$x = g(x), \quad x \in D \tag{10.6}$$

hay

$$\begin{cases} x_1 = g_1(x_1, x_2, \dots, x_n) \\ x_2 = g_2(x_1, x_2, \dots, x_n) \\ \dots \\ x_n = g_n(x_1, x_2, \dots, x_n) \end{cases}$$

$$(10.7)$$

trong đó

- 1) D là miền đóng, bị chặn trong \mathbb{R}^n , và
- 2) *g* co trên *D*.

Khi đó

- 1) (10.6) có nghiệm duy nhất $x^* \in D$.
- 2) Xét dãy nghiệm xấp xỉ $\{x^{(k)}\}, x^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)})^T$, trong đó
 - i) $x^{(0)} \in D$ bất kỳ, và
 - ii) Với k = 0, 1, 2, ...

$$x^{(k+1)} = g\left(x^{(k)}\right) \tag{10.8}$$

thì

- a) $\lim_{k \to \infty} x^{(k)} = x^*$
- b) Công thức đánh giá sai số: với $k \ge 1$

$$||x^{(k)} - x^*|| \le \frac{q}{1 - q} ||x^{(k)} - x^{(k-1)}||$$

$$||x^{(k)} - x^*|| \le \frac{q^k}{1 - q} ||x^{(1)} - x^{(0)}||$$
(10.9)

Trong thực hành, với $\varepsilon>$ 0 đủ nhỏ, nếu tìm được $x^{(k)}$ sao cho

$$||x^{(k+1)} - x^{(k)}|| = ||g(x^{(k)}) - x^{(k)}|| < \varepsilon$$

thì có thể chọn một nghiệm gần đúng là $x^{(k)}$ (hoặc $x^{(k+1)}$ cũng được).

Ví dụ 10.2. Giải hệ phương trình trên miền $D = \{(x_1, x_2, x_3)^T \mid -1 \le x_i \le 1, i = \overline{1,3}\}$:

$$\begin{cases} x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6} \\ x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \\ x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60} \end{cases}$$

- a) Xác định J(x), từ đó tìm q.
- b) Với xấp xỉ ban đầu $x^{(0)} = (0, -1, 1)^T$, tìm nghiệm gần đúng $x^{(k)}$ và sai số $||x^{(k)}-x^{(k-1)}||_{\infty}$ sau 5 bước lặp.

$$Gi \mathring{a}i. \ \ \ \ \, \varTheta (x) = g\left(x_1, x_2, x_3\right) = \begin{bmatrix} \frac{1}{3}\cos\left(x_2x_3\right) + \frac{1}{6} \\ \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \\ -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60} \end{bmatrix}$$

```
1 g = Q(x) [1/3 * cos(x(2)*x(3)) + 1/6
                1/9 * sqrt(x(1)^2 + sin(x(3)) + 1.06) - 0.1;
-1/20 * exp(-x(1)*x(2)) - (10*pi - 3)/60
```

và tính thử

```
4 g([0; 1; 2])
```

```
ans = 3x1
0.0280
0.0559
```

a)
$$J(x) = \left(\frac{\partial g_i}{\partial x_j}(x)\right)_{i,j=\overline{1,n}} = \begin{bmatrix} 0 & -\frac{x_3 \sin(x_2 x_3)}{3} & -\frac{x_2 \sin(x_2 x_3)}{3} \\ \frac{x_1}{9\sqrt{x_1^2 + \sin(x_3) + \frac{53}{50}}} & 0 & \frac{18\sqrt{x_1^2 + \sin(x_3) + \frac{53}{50}}}{18\sqrt{x_1^2 + \sin(x_3) + \frac{53}{50}}} \\ \frac{x_2 e^{-x_1 x_2}}{20} & \frac{x_1 e^{-x_1 x_2}}{20} & 0 \end{bmatrix}$$

```
5  J = sym('J', [3, 3])
6  for j = 1:3
7     J(:, j) = diff(g(x), x(j)); % côt j
```

$$\left\|J(x)\right\|_{\infty} = \max\left\{\frac{\left|x_{2} \sin\left(x_{2} x_{3}\right)\right|}{3} + \frac{\left|x_{3} \sin\left(x_{2} x_{3}\right)\right|}{3}, \frac{\left|\cos\left(x_{3}\right)\right| + 2\left|x_{1}\right|}{18\sqrt{x_{1}^{2} + \sin\left(x_{3}\right) + \frac{53}{50}}}, \frac{e^{-x_{1} x_{2}}\left(\left|x_{1}\right| + \left|x_{2}\right|\right)}{20}\right\}$$

Nguyễn Đức Thinh

[Drafting ⇒ Do not Print] thinhnd@huce.edu.vn

$$\leq \max \big\{ \frac{(1+1)\sin 1}{3}, \frac{1+2\cdot 1}{18\sqrt{0+\sin \left(-1\right)+\frac{53}{50}}}, \frac{e^1\left(1+1\right)}{20} \big\} = 0.5610 = q < 1$$

```
10 q = max([2 * sin(1) / 3;

11 3 / 18 / sqrt(sin(-1) + 53/50);

12 2 * exp(1) / 20])
```

b)
$$x^{(0)} = (0, -1, 1)^T, x^{(k+1)} = g(x^{(k)})$$

k	$X_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$\left \left\ x^{(k)} - x^{(k-1)} \right\ _{\infty} \right $
0	0	-1	1	
1	0.3468	0.0532	-0.5236	1.5236
2	0.4999	-0.0084	-0.5227	0.1531
3	0.5000	0.5000	-0.5238	0.0084
4	0.5000	$-1.1388 \cdot 10^{-5}$	-0.5236	$2.1037 \cdot 10^{-4}$
5	0.5000	$5.4643 \cdot 10^{-8}$	-0.5236	$1.1443 \cdot 10^{-5}$

```
13 X0 = [0; -1; 1]
```

Lệnh để giải nhanh hệ trên

```
[x1, x2, x3] = vpasolve(x == g(x))
```

10.1.2 Công thức Gause-Seidel

Phương pháp Newton

Nhắc lai hê *n* phương trình *n* ẩn

thinhnd@huce.edu.vn

[DRAFTING ⇒ DO NOT PRINT] Nguyễn Đức Thịnh

hay

$$f(x) = 0 ag{10.2}$$

trong đó $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$, và $f = (f_1, f_2, \dots, f_n)^T$ là hàm véctơ.

Chọn xấp xỉ ban đầu $x^{(0)} \in \mathbb{R}^n$. Công thức lặp tìm nghiệm gần đúng tại lân cận điểm $x^{(0)}$: với k=0,1,2,...

$$x^{(k+1)} = x^{(k)} - J(x^{(k)})^{-1} f(x_k)$$
(10.10)

trong đó J(x) là ma trân Jacobi của f(x)

$$J(x) = \left(\frac{\partial f_{i}}{\partial x_{j}}(x)\right)_{i,j=\overline{1,n}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(x) & \frac{\partial f_{1}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(x) \\ \frac{\partial f_{2}}{\partial x_{1}}(x) & \frac{\partial f_{2}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(x) \\ & \cdots & \cdots & \cdots \\ \frac{\partial f_{n}}{\partial x_{1}}(x) & \frac{\partial f_{n}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{n}}{\partial x_{n}}(x) \end{bmatrix}$$
(10.11)

Nếu chọn được xấp xỉ ban đầu $x^{(0)}$ phù hợp, dãy $\{x^{(k)}\}$ sẽ hội tụ (và thường hội tụ rất nhanh) tới nghiệm đúng x^* của hệ.

Trong thực hành, với $\varepsilon > 0$ đủ nhỏ, nếu tìm được $x^{(k)}$ sao cho

$$||x^{(k+1)} - x^{(k)}|| < \varepsilon$$

thì từ
$$f(x^{(k)}) = -J(x^{(k)})(x^{(k+1)} - x^{(k)})$$
, ta có

$$\left\| f\left(x^{(k)}\right) \right\| = \left\| -J\left(x^{(k)}\right) \left(x^{(k+1)} - x^{(k)}\right) \right\| \leq \left\| J\left(x^{(k)}\right) \right\| \left\| x^{(k+1)} - x^{(k)} \right\| \leq \varepsilon \left\| J\left(x^{(k)}\right) \right\|$$

nên có thể chọn một nghiệm gần đúng là $x^{(k)}$ (hoặc $x^{(k+1)}$ cũng được).

Ví dụ 10.3. Cho hệ

$$\begin{cases} 3x_1 - \cos(x_2 x_3) - \frac{1}{2} &= 0\\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 &= 0\\ e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} &= 0 \end{cases}$$

- a) Tính J(x).
- b) Cho xấp xỉ ban đầu $x^{(0)} = (0.1, 0.1, -0.1)^T$. Tìm nghiệm gần đúng $x^{(k)}$ và sai số $\|x^{(k)} x^{(k-1)}\|_{\infty}$ sau 5 bước lặp.

Giải. Đặt
$$f(x) = f(x_1, x_2, x_3) = \begin{bmatrix} 3x_1 - \cos(x_2x_3) - \frac{1}{2} \\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 \\ e^{-x_1x_2} + 20x_3 + \frac{10\pi - 3}{3} \end{bmatrix}$$

Nguyễn Đức Thịnh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

```
f = @(x) [3*x(1) - cos(x(2) * x(3)) - 1/2;

x(1)^2 - 81 * (x(2) + 0.1)^2 + sin(x(3)) + 1.06;

exp(-x(1)*x(2)) + 20*x(3) + (10*pi - 3)/3]
```

a)
$$J(x) = \left(\frac{\partial f_i}{\partial x_j}\right)_{i,j=\overline{1,n}} = \begin{bmatrix} 3 & x_3 \sin(x_2 x_3) & x_2 \sin(x_2 x_3) \\ 2x_1 & -162x_2 - \frac{81}{5} & \cos(x_3) \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}$$

```
4 x = sym('x', [3, 1])
5 J = sym('J', [3, 3])
6 for j = 1:3
7     J(:, j) = diff(f(x), x(j)); % côt j
end
9 J
```

b)
$$x^{(0)} = (0, 1, -1)^T, x^{(k+1)} = x^{(k)} - J(x^{(k)})^{-1} f(x_k)$$

k	$X_1^{(k)}$	$X_2^{(k)}$	$x_3^{(k)}$	$\ x^{(k)}-x^{(k-1)}\ _{\infty}$
0	0	-1	1	
1	0.911093	-0.557227	-0.569153	1.56915
2	0.499182	-0.33727	-0.520956	0.411912
3	0.497661	-0.239506	-0.529849	0.0977637
4	0.498093	-0.205304	-0.528975	0.0342023
5	0.498143	-0.19976	-0.52883	0.00554407

```
10 X0 = [0; -1; 1] % \rightarrow x^{(k-1)}

11 for k = 1:5

12 X = vpa(X0 - subs(J, x, X0)^-1 * f(X0), 6) % \rightarrow x^{(k)}

13 ss = vpa(norm(X - X0, inf), 6) % \rightarrow ||x^{(k)} - x^{(k-1)}||_{\infty}

14 X0 = X;

end
```

10.3 Phương pháp độ dốc nhất

10.4 Đồng luân và các phương pháp mở rộng

[DRAFTING ⇒ DO NOT PRINT] Nguyễn Đức Thịnh

Tài liệu tham khảo

- [1] Phạm Kỳ Anh. Giải tích số. Đại học Quốc gia Hà Nội, 2002. 284 trang.
- [2] Steven C. Chapra **and** Raymond P. Canale. *Numerical Methods for Engineers*. phiên bản 8. Cengage Learning, 2020. 1006 trang.
- [3] Phan Văn Hạp **and** Lê Đình Thịnh. *Phương pháp tính và các thuật toán*. Nhà xuất bản Giáo dục, 2000. 400 trang.
- [4] Doãn Tam Hòe. Toán học tính toán. Đại học Quốc gia Hà Nội, 2009. 240 trang.
- [5] Trần Huệ Nương Phan Quốc Khánh. *Quy hoạch tuyến tính*. phiên bản 2. Nhà xuất bản Giáo dục, 2003. 457 trang.

Tài liệu tham khảo