Estatística e Probabilidade - Teste 01 - 2024/01

Prof. Hugo Carvalho 25/04/2024

Questão 1:

a) Denotando por K o evento "uma cara é observada" e por M_i o evento "a moeda i é escolhida", para i = 1, 2, 3, temos que:

$$\mathbb{P}(K) = \sum_{j=1}^{3} \mathbb{P}(K|M_{j})\mathbb{P}(M_{j})$$
$$= \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{3} + \frac{1}{8} \cdot \frac{1}{3}$$
$$= \frac{7}{24}.$$

b) Para i = 1, 2, 3, temos, pelo Teorema de Bayes, que:

$$\mathbb{P}(M_i|K) = \frac{\mathbb{P}(K|M_i)\mathbb{P}(M_i)}{\sum_{j=1}^{3} \mathbb{P}(K|M_j)\mathbb{P}(M_j)}$$
$$= \frac{\mathbb{P}(K|M_i)\mathbb{P}(M_i)}{7/24}.$$

Portanto,

•
$$\mathbb{P}(M_1|K) = \frac{24}{7} \cdot \frac{1}{2} \cdot \frac{1}{3} = \frac{4}{7}$$
.
• $\mathbb{P}(M_2|K) = \frac{24}{7} \cdot \frac{1}{4} \cdot \frac{1}{3} = \frac{2}{7}$.
• $\mathbb{P}(M_3|K) = \frac{24}{7} \cdot \frac{1}{8} \cdot \frac{1}{3} = \frac{1}{7}$.

c) As "novas" probabilidades de se observar cara são as do item anterior. Denotando-as por $\mathbb{P}(M_i')$, para simplificar, temos que:

$$\mathbb{P}(K) = \sum_{j=1}^{3} \mathbb{P}(K|M_i)\mathbb{P}(M_i')$$

$$= \frac{1}{2} \cdot \frac{4}{7} + \frac{1}{4} \cdot \frac{2}{7} + \frac{1}{8} \cdot \frac{1}{7}$$

$$= \frac{21}{56}$$

$$= \frac{3}{8}.$$

Questão 2:

- a) Segue abaixo interpretação e cálculo da probabilidade dos eventos pedidos:
 - A = "os destroços estão na região" e $\mathbb{P}(A) = 1/2$, conforme informado pelo enunciado.
 - A^c = "os destroços não estão na região" e $\mathbb{P}(A^c) = 1 \mathbb{P}(A) = 1/2$.
 - B|A= "os destroços são encontrados dado que estão na região" e $\mathbb{P}(A)=3/4$, conforme informado pelo enunciado.
 - $B^c|A$ = "os destroços não são encontrados dado que estão na região" e $\mathbb{P}(B^c|A) = 1 \mathbb{P}(B|A) = 1/4$.

- $B|A^c$ = "os destroços são encontrados dado que não estão na região" e $\mathbb{P}(B|A^c)$ = 0, pois é impossível achar destroços que não estão na região!
- $B^c|A^c$ = "os destroços não são encontrados dado que não estão na região" e $\mathbb{P}(B^c|A^c) = 1 \mathbb{P}(B|A^c) = 1$; de outra forma, com certeza não iremos encontrar destroços que não estão na região!
- b) Queremos calcular $\mathbb{P}(B)$:

$$\begin{split} \mathbb{P}(B) &= \mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|A^c)\mathbb{P}(A^c) \\ &= \frac{3}{4} \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} \\ &= \frac{3}{8}. \end{split}$$

c) Queremos atualizar $\mathbb{P}(A)$ à luz do conhecimento do evento B^c , ou seja, queremos calcular $\mathbb{P}(A|B^c)$. Pelo Teorema de Bayes e por resultados obtidos nos itens a) e b), temos que:

$$\mathbb{P}(A|B^c) = \frac{\mathbb{P}(B^c|A)\mathbb{P}(A)}{\mathbb{P}(B^c)}$$
$$= \frac{1/4 \cdot 1/2}{5/8}$$
$$= \frac{1}{5}.$$