STATS 451 Homework 3

Yuzhou Peng 2024-02-13

Problem 1

 θ is the proportion of girls in total births.

$$ext{Let } y_i = egin{cases} 1, & ext{i-th birth is a girl} \ 0, & ext{otherwise} \end{cases} \ y_i \overset{ ext{iid}}{\sim} Bernoul(heta)$$

The likelihood is given by:
$$\mathbb{P}(y_1,y_2\dots y_{1000}| heta)=\prod_{i=1}^{1000}\mathbb{P}(y_i| heta)= heta^{450}(1- heta)^{550}$$

The posterior is given by: $\mathbb{P}(\theta|y_1,y_1...y_{1000}) = \frac{\mathbb{P}(y_1,y_2...y_{1000}|\theta)\mathbb{P}(\theta)}{\mathbb{P}(y)} = b * \theta^{450}(1-\theta)^{550}$ where b is the normalizing constant. $\theta|y_1,y_2...y_{1000} \sim Beta(451,551)$

Problem 2

```
# According to we have derived in problem 1, the posterior follows distribution of Beta(451, 551) s1 <- 451 s2 <- 551 expect_pos <- s1/(s1 + s2) variance_pos <- s1*s2/((s1 + s2)^2 * (s1 + s2 + 1)) expect_pos
```

```
## [1] 0.4500998
```

```
variance_pos
```

```
## [1] 0.0002467697
```

```
p_ci <- c(0.025, 0.975)
q_ci_pos <- qbeta(p_ci, shape1 = s1, shape2 = s2)
q_ci_pos</pre>
```

```
## [1] 0.4194118 0.4809764
```

The expectation and variance of posterior distribution are 0.450 and 0.000247 A 95% confidence interval is [0.419, 0.481]

Problem 3

```
set.seed(451)

sample_pos <- rbeta(2000, shape1 = s1, shape2 = s2)
sample_step <- seq(0.1,1, by = 0.001)

hist(sample_pos,
    freq = F,
    xlim = c(0,1),
    main = "Histogram of samples from posterior distribution")
lines(sample_step, dnorm(sample_step, mean = expect_pos, sd = (variance_pos)^(1/2)), col = "red")</pre>
```

Histogram of samples from posterior distribution

The histogram looks very similar to Gaussian distribution

Problem 4

```
lambda <- log(sample_pos/(1-sample_pos))
lambda_step <- seq(-0.5, 0, by = 0.001)

mean_lambda <- mean(lambda)
variance_lambda <- var(lambda)
ci_lambda <- quantile(lambda, probs = c(0.02, 0.98))

hist(lambda,
    freq = F,
    breaks = 20)
lines(lambda_step, dnorm(lambda_step, mean = mean_lambda, sd = (variance_lambda^(1/2))), col = "blue")</pre>
```

Histogram of lambda

mean_lambda

```
## [1] -0.1999637

variance_lambda

## [1] 0.004070059

ci_lambda

## 2% 98%
## -0.32552868 -0.05855922
```

The histogram is similar to Gaussian distribution Expected value is -0.200 Variance is 0.00407 A 96% confidence interval is [-0.326, -0.0586]

Problem 5

```
## [1] 0.9866025
```

Based on the data, we have 98.66% confidence to claim that proportion of girl births under the special condition is less than 0.485

Problem 6

6.1

```
s1_prime <- 5
s2_prime <- 7
expect_pos_prime <- s1_prime/(s1_prime + s2_prime)
variance_pos_prime <- s1_prime*s2_prime/((s1_prime + s2_prime)^2 * (s1_prime + s2_prime + 1))
expect_pos_prime</pre>
```

```
## [1] 0.4166667
```

```
variance_pos_prime
```

```
## [1] 0.01869658
```

```
qbeta(p_ci, shape1 = s1_prime, shape2 = s2_prime)
```

```
## [1] 0.1674881 0.6920953
```

The expectation and variance of posterior distribution are 0.417 and 0.0187 A 95% confidence interval is [0.167, 0.692]

In comparison with posterior of larger sample, variance is much larger and confidence interval is much wider.

The expected value is more affected by the prior mean.

Histogram of samples from posterior distribution

6.3

```
lambda_prime <- log(sample_pos_prime/(1-sample_pos_prime))
lambda_step_prime <- seq(-3, 3, by = 0.001)

mean_lambda_prime <- mean(lambda_prime)
variance_lambda_prime <- var(lambda_prime)
ci_lambda_prime <- quantile(lambda_prime, probs = c(0.02, 0.98))

hist(lambda_prime,
    freq = F,
        breaks = 20)
lines(lambda_step_prime, dnorm(lambda_step_prime, mean = mean_lambda_prime, sd = (variance_lambda_prime^(1/2))), col = "blue")</pre>
```

Histogram of lambda_prime


```
mean_lambda_prime

## [1] -0.3550896

variance_lambda_prime

## [1] 0.3691726

ci_lambda_prime

## 2% 98% 
## -1.5587518 0.9739823
```

The histogram is similar to Gaussian distribution

Expected value is -0.355

Variance is 0.369

A 96% confidence interval is [-1.59, 0.974]

In comparison with posterior of larger sample, variance is much larger and confidence interval is much wider.

6.4

```
pbeta(0.485, s1_prime, s2_prime)

## [1] 0.6907652
```

Compared with the posterior of larger sample, we have lower confidence (69.08% compared with 98.66%) to claim the proportion of girl birth is lower than 0.485 even though the posterior mean is less than large sample posterior mean.