MA4102

Functional Analysis

Autumn 2022

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	Normed linear spaces		
	1.1	Basic definitions	1
	1.2	Banach spaces	3
	1.3	Linear maps	8

1 Normed linear spaces

1.1 Basic definitions

Definition 1.1. Let X be a vector space over the field F (typically \mathbb{R} or \mathbb{C}). A subset $S \subseteq X$ is called linearly independent if for every finitely many vectors $x_1, \ldots, x_n \in S$, we have

$$\sum_{i=1}^{n} c_i x_i = 0 \implies c_i = 0 \text{ for each } 1 \le i \le n$$

for all possible $c_1, \ldots, c_n \in F$.

Definition 1.2. A subset $B \subseteq X$ is called a Hamel basis of X if it is linearly independent, and every element of X can be written as a finite linear combination of elements from B.

Example. The standard basis $\{e_i\}$ of \mathbb{R}^n is a Hamel basis.

Example. The polynomials $\{1, x, x^2, \dots\}$ is a Hamel basis of the space $\mathscr{P}(\mathbb{R})$ of all polynomials.

Definition 1.3. A norm on X is a map $\|\cdot\|: X \to [0, \infty)$ satisfying the following properties.

- 1. ||x|| = 0 if and only if x = 0.
- 2. ||kx|| = |k|||x|| for all $x \in X$, $k \in F$.
- 3. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

The space $(X, \|\cdot\|)$ is called a normed linear space.

Example. The vector space \mathbb{R}^n equipped with the metric

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

is a normed linear space.

Example. The vector space of continuous functions C[0,1] equipped with the supremum norm

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

is a normed linear space.

Example. The vector space of continually differentiable functions $C^1[0,1]$ equipped with the norm

$$||f_1|| = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|$$

is a normed linear space.

Example. The function spaces $L^p(\mu)$ for $1 \leq p < \infty$, equipped with the metrics

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{1/p}$$

are normed linear spaces.

Definition 1.4. Every normed linear space $(X, \|\cdot\|)$ can be equipped with the normed topology τ_d , induced by the metric

$$d(x,y) = ||x - y||.$$

Lemma 1.1. Let $x_n \to x$, $y_n \to y$ in X with the normed topology, and let $\alpha_n \to \alpha$ in X. Then,

- 1. $x_n + y_n \to x + y$ in X.
- 2. $\alpha_n x_n \to \alpha x \text{ in } X$.

1.2 Banach spaces

Definition 1.5. A normed linear space X is called a Banach space if (X, d) is a complete metric space where

$$d(x,y) = ||x - y||.$$

Example. The spaces \mathbb{R}^n with the metrics $\|\cdot\|_p$ for $1 \leq p \leq \infty$ are Banach spaces.

Example. The sequence spaces ℓ^p for $1 \le p \le \infty$ are Banach spaces.

Definition 1.6. Let X be a normed linear space. A countable collection $\{x_i\} \subseteq X$ is called a Schauder basis of X if each $||x_i|| = 1$, and every vector $x \in X$ can be uniquely written as

$$x = \sum_{i=1}^{\infty} c_i x_i$$

for $c_i \in F$.

Remark. This infinite sum represents a convergent limit of partial sums in X.

Remark. A Schauder basis is linearly independent, from the uniqueness of the expansion $0 = \sum_{i=1}^{\infty} 0x_i$.

Lemma 1.2. The space of continuous functions C[0,1] equipped with the supremum norm

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

is a Banach space.

Proof. Let $\{f_n\}$ be a Cauchy sequence of functions in C[0,1]. We claim that this sequence converges to some f in C[0,1], i.e. there exists $f \in C[0,1]$ such that $||f_n - f|| \to 0$.

Using the fact that $\{f_n\}$ is Cauchy, we have the following: for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \geq N$, we have

$$||f_n - f_m|| < \epsilon.$$

In particular, for each $x \in X$,

$$|f_n(x) - f_m(x)| \le \sup_{x \in [0,1]} |f_n(x) - f_m(x)| = ||f_n - f_m|| < \epsilon.$$

In other words, each of the real sequences $\{f_n(x)\}\$ is Cauchy. From the completeness of \mathbb{R} , all such sequences converge, hence the pointwise limit

$$f: [0,1] \to \mathbb{R}, \qquad x \mapsto \lim_{n \to \infty} f_n(x)$$

exists. Furthermore, each

$$\lim_{m \to \infty} |f_n(x) - f_m(x)| = |f_n(x) - f(x)| \le \epsilon,$$

hence

$$||f_n - f|| = \sup_{x \in [0,1]} |f_n(x) - f(x)| \le \epsilon.$$

Thus, $||f_n - f|| \to 0$, i.e. $f_n \to f$ in X.

Finally, we must show that $f \in C[0,1]$, i.e. that f is continuous. Fix $x_0 \in X$, and let $\epsilon > 0$. Since $f_n \to f$ in X, pick $N \in \mathbb{N}$ such that for all $n \geq N$,

$$|f_n(x) - f(x)| \le \sup_{x \in [0,1]} |f_n(x) - f(x)| = ||f_N - f|| < \frac{\epsilon}{3}.$$

From the continuity of f_N , there exists $\delta > 0$ such that whenever $|x - x_0| < \delta$, we have

$$|f_N(x) - f_N(x_0)| < \frac{\epsilon}{3}.$$

Thus, whenever $|x - x_0| < \delta$, we have

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

This shows that f is continuous at each $x_0 \in X$, as desired.

Exercise 1.1. Is the space of continuous functions C[0,2] equipped with the norm

$$||f||_1 = \int_0^2 |f(x)| \, dx$$

a Banach space?

Solution. Consider the functions

$$f_n \colon [0,2] \to \mathbb{R}, \qquad x \mapsto \frac{x^n}{1+x^n}.$$

Note that this sequence has a pointwise limit $f_n \to f$, where

$$f : [0,2] \to \mathbb{R}, \qquad x \mapsto \begin{cases} 0, & \text{if } 0 \le x < 1, \\ 1/2, & \text{if } x = 1, \\ 1, & \text{if } 1 < x \le 2. \end{cases}$$

Now,

$$\int_{0}^{2} |f_{n}(x) - f(x)| dx = \int_{0}^{1} \left| \frac{x^{n}}{1 + x^{n}} \right| dx + \int_{1}^{2} \left| \frac{x^{n}}{1 + x^{n}} - 1 \right| dx$$

$$\leq \int_{0}^{1} |x^{n}| dx + \int_{1}^{2} |x^{-n}| dx$$

$$= \frac{1}{n+1} - \frac{1}{n-1} (2^{-n+1} - 1) \to 0.$$

Thus, given $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that for all $n \geq N$,

$$\int_0^2 |f_n(x) - f(x)| \, dx < \frac{\epsilon}{2}.$$

Then, for all $m, n \geq N$, we have

$$||f_n - f_m||_1 = \int_0^2 |f_n(x) - f_m(x)| dx$$

$$\leq \int_0^2 |f_n(x) - f(x)| dx + \int_0^2 |f_m(x) - f(x)| dx$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

This shows that $\{f_n\}$ is Cauchy in C[0,2]. However, if $||f_n - g||_1 \to 0$ for some continuous function $g \in C[0,2]$, then

$$0 \le \int_0^2 |f(x) - g(x)| \, dx \le \int_0^2 |f(x) - f_n(x)| \, dx + \int_0^2 |f_n(x) - g(x)| \, dx \to 0,$$

whence

$$\int_0^2 |f(x) - g(x)| \, dx = 0.$$

In particular,

$$\int_{[0,1)} |g(x)| \, dx = 0, \qquad \int_{(1,2]} |1 - g(x)| \, dx = 0.$$

The continuity of g forces g(x) = 0 on [0,1) and g(x) = 1 on (1,2]. Again, the continuity of g guarantees $\delta > 0$ such that for all $|x-1| < \delta$, we have |g(x) - g(1)| < 1/4. But

$$1 = |g(1 + \delta/2) - g(1 - \delta/2)| \le |g(1 + \delta/2) - g(1)| + |g(1) - g(1 - \delta/2)| < \frac{1}{4} + \frac{1}{4} = \frac{1}{2},$$

a contradiction.

Thus, the above Cauchy sequence $\{f_n\}$ does not converge in C[0,1], hence this is not a Banach space.

Lemma 1.3 (Young). Let $a, b \ge 0$, and $1 \le p \le \infty$. Then,

$$a^{1/p}b^{1/q} \le \frac{a}{p} + \frac{b}{q}, \qquad \frac{1}{p} + \frac{1}{q} = 1.$$

Lemma 1.4 (Hölder). Let $x, y \in \ell^p$ for $1 \le p \le \infty$. Then,

$$||x \cdot y||_1 \le ||x||_p ||y||_q, \qquad \frac{1}{p} + \frac{1}{q} = 1.$$

Lemma 1.5 (Minkowski). Let $x, y \in \ell^p$ for $1 \le p \le \infty$. Then,

$$||x + y||_p \le ||x||_p + ||y||_p$$
.

Lemma 1.6. Cauchy sequences in a normed linear space are bounded.

Proof. Let $\{x_n\}$ be a Cauchy sequence in the normed linear space X. Then, there exists $N \in \mathbb{N}$ such that for all $m, n \geq N$, we have

$$||x_n - x_m|| \le 1.$$

In particular, putting m = N, we have for all $n \geq N$,

$$||x_n|| = ||x_n - x_N + x_N|| \le ||x_n - x_N|| + ||x_N|| \le 1 + ||x_N||.$$

Thus, for all $n \in \mathbb{N}$,

$$||x_n|| \le \max\{||x_1||, \dots, ||x_{N-1}||, 1 + ||x_N||\}.$$

Lemma 1.7. The spaces of sequences $\ell^p(\mathbb{R})$ for $1 \leq p < \infty$ are Banach spaces.

Proof. Let $\{x_n\}$ be a Cauchy sequence in ℓ^p . Note that each term is of the form

$$x_n = (x_n^1, x_n^2, \dots, x_n^k, \dots).$$

Given $\epsilon > 0$, we can pick $N \in \mathbb{N}$ such that for all $m, n \geq N$,

$$|x_n^k - x_m^k| \le \left(\sum_{i=1}^{\infty} |x_n^i - x_m^i|^p\right)^{1/p} = ||x_n - x_m||_p \le \epsilon.$$

This shows that the sequences $\{x_n^k\}_{n\in\mathbb{N}}$ for each $k\in\mathbb{N}$ are Cauchy in \mathbb{R} . By the completeness of \mathbb{R} , they converge to some $x_n^k\to x^k$. Set

$$x = (x^1, x^2, \dots, x^k, \dots).$$

First, we show that $x \in \ell^p$. Recall that Cauchy sequences in a normed linear space are bounded, hence there exists M > 0 such that for each $n \in \mathbb{N}$,

$$\sum_{i=1}^{\infty} |x_n^i|^p = ||x_n||_p^p < M.$$

Thus, for every $k \in \mathbb{N}$, the partial sum

$$\sum_{i=1}^{k} |x_n^i|^p < M.$$

Taking the limit $n \to \infty$,

$$\lim_{n \to \infty} \sum_{i=1}^k |x_n^i|^p = \sum_{i=1}^k \lim_{n \to k} |x_n^i|^p = \sum_{i=1}^\infty |x^i|^p \le M.$$

In other words, each partial sum is bounded, hence taking the limit $k \to \infty$,

$$\lim_{k \to \infty} \sum_{i=1}^{k} |x^{i}|^{p} = \sum_{i=1}^{\infty} |x_{i}|^{p} = ||x||_{p}^{p} \le M.$$

Finally, we show that $x_n \to x$ in ℓ^p , i.e. that $||x_n - x||_p \to 0$. Note that given $\epsilon > 0$, we have for all $n, m \ge N$,

$$\sum_{i=1}^{\infty} |x_n^i - x_m^i|^p \le \epsilon^p,$$

hence for all $k \in \mathbb{N}$, the partial sums

$$\sum_{i=1}^{k} |x_n^i - x_m^i|^p \le \epsilon^p.$$

Thus,

$$\lim_{m \to \infty} \sum_{i=1}^{k} |x_n^i - x_m^i|^p = \sum_{i=1}^{k} \lim_{m \to \infty} |x_n^i - x_m^i|^p = \sum_{i=1}^{k} |x_n^i - x^i| \le \epsilon^p.$$

Taking the limit of partial sums,

$$\lim_{k \to \infty} \sum_{i=1}^{k} |x_n^i - x^i|^p = \sum_{i=1}^{\infty} |x_n^i - x^i| = ||x_n - x||_p^p \le \epsilon^p.$$

Exercise 1.2. Show that the space of sequences $\ell^{\infty}(\mathbb{R})$ is a Banach space.

Solution. Let $\{x_n\}$ be a Cauchy sequence in ℓ^{∞} . Then for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \geq N$,

$$|x_n^k - x_m^k| \le \sup_{k \in \mathbb{N}} |x_n^k - x_m^k| = ||x_n - x_m||_{\infty} < \epsilon.$$

This shows that the sequences $\{x_n^k\}_{n\in\mathbb{N}}$ are Cauchy in \mathbb{R} . By the completeness of \mathbb{R} , they converge to some $x_n^k \to x^k$. Set

$$x = (x^1, x^2, \dots, x^k, \dots).$$

First, we show that $x \in \ell^{\infty}$. Since Cauchy sequences in a normed linear space are bounded, there exists M > 0 such that for each $n \in \mathbb{N}$,

$$|x_n^k| \le \sup_{i \in \mathbb{N}} |x_n^i| = ||x_n||_{\infty} < M.$$

Thus, taking the limit $n \to \infty$,

$$\lim_{n \to \infty} |x_n^k| = |x^k| \le M.$$

This shows that

$$\sup_{k \in \mathbb{N}} |x^k| = ||x||_{\infty} \le M.$$

Finally, we show that $x_n \to x$ in ℓ^{∞} , i.e. $||x_n - x||_{\infty} \to 0$. Note that given $\epsilon > 0$, we have for all $m, n \ge N$,

$$|x_n^k - x_m^k| \le ||x_n - x_m||_{\infty} < \epsilon$$

for each $k \in \mathbb{N}$. Thus, taking the limit $m \to \infty$,

$$\lim_{m \to \infty} |x_n^k - x_m^k| = |x_n^k - x^k| \le \epsilon.$$

This shows that

$$\sup_{k \in \mathbb{N}} |x_n^k - x^k| = ||x_n - x||_{\infty} \le \epsilon.$$

1.3 Linear maps

Definition 1.7. Let V, W be normed linear spaces over \mathbb{R} or \mathbb{C} . Let $T \colon V \to W$ be a linear map. Then, T is called a bounded linear map if T is a continuous map between the normed topological spaces $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$.