CP Model - Present Wrapping Problem

Filippo Lo Bue

September 2020

1 Description of the Problem

Given a wrapping paper roll of a certain dimension and a list of presents, decide how to cut off pieces of paper so that all the presents can be wrapped. Consider that each present is described by the dimensions of the piece of paper needed to wrap it. Moreover, each necessary piece of paper cannot be rotated when cutting off, to respect the direction of the patterns in the paper.

The purpose of this project is to solve PWP proceeding as follows:

- 1. Start with the variables and the main problem constraints.
- 2. In any solution, if we draw a vertical line and sum the vertical sides of the traversed pieces, the sum can be at most l.
- 3. Use global constraints to impose the main problem constraints and the implied constraints in your CP model.
- 4. Investigate the best way to search for solutions in CP.
- 5. If rotation was enabled? which of the CP model encoding is easier to modify to take this into account? How would you modify that model/encoding?
- 6. there can be multiple pieces of the same dimension: how would you improve the CP model encoding?

Points 1 - 4 are part of the MiniZinc program.

Point 5 is expressed using mathematical notation and it was included in a second MiniZinc program.

Point **6** is expressed using mathematical notation and it was included in a third MiniZinc program.

$2 \quad pwp_v9.mzn (Points 1-4)$

2.1 Parameters

- **pr_w**: width of the wrapping paper roll.
- pr_h: height of the wrapping paper roll.
- \bullet **n_pieces**: number of the presents/pieces.
- ullet L: dimensions of the piece of paper needed to wrap each presents.
- index_largest_p: index of the biggest present/piece by area.
- widths_set_values: distinct(set) pieces' widths
- ordered_widths_values: widths_set_values descending ordered
- group_number: number of different widths(cardinality of widths_set_values).
- pieces_group_by_w: array of set pieces' indexes grouped by widths.
- number_columns_per_group: number of columns needed for each group of pieces.
- independent_solving_on_w: If 'true' means we renounce to the generality of the model (so it is not important to know the exact number of total solutions anymore), we want to speed up the process of finding 1 solution.

2.2 Variables

```
\mathbf{q} = [[piece\_1\_x, piece\_1\_y] \\ = [piece\_2\_x, piece\_2\_y] \\ \dots \\ = [piece\_n\_x, piece\_n\_y]]
```

Bottom left corner of each pieces

2.3 Constraints

2.3.1 the Double Cumulative Constraint(Point 2)

The cumulative constraint is not only used for scheduling tasks but it is used also for spatial positioning of objects(the presents) inside a container(paper roll). Essentially We can see every presents/pieces as an action which need to be scheduled, the x coordinate as the starting time of that action, the width as the duration and the height as the resources consuming.

Figure 1: "Horizontal" cumulative constraint

The second cumulative constraint has the same application as the first inverting the axes and the meaning of the actions'(pieces') duration(now the heights) and the resource consuming(now the widths).

```
% --- Point 2 ---
constraint cumulative(q[PIECES,1], L[PIECES, 1], L[PIECES, 2], pr_h);
constraint cumulative(q[PIECES,2], L[PIECES, 2], L[PIECES, 1], pr_w);
```

2.3.2 No exceeding the paper dimensions

No piece must have any part outside the paper roll.

2.3.3 No-overlap

No object must ever overlap with any other object.

```
constraint diffn_k(q, L);
```

2.3.4 Symmetry breaking rules[2]

The Problem so far contains a number of symmetries, which we need to remove as we may have to explore the complete search space. The symmetries that we want to remove are the horizontal reflection, vertical reflection and a combination of both. Considering a generic solution:

Figure 2: generic solution

We have the following 3 "reflected" solutions:

Figure 3: Reflected solutions

To remove those we can restrict the domain of one present in an enclosing rectangle of size $Width \times Height$ to:

$$X:: 1..1 + \lfloor \tfrac{Width - w_present}{2} \rfloor, \ Y:: 1..1 + \lfloor \tfrac{Height - h_present}{2} \rfloor$$

Considering we can choose any present, it is better to restrict the domain of the **largest** one of size $w_max \times h_max$ for ensuring a much bigger domain reduction propagation for the others presents.

$$X :: 1..1 + \lfloor \frac{Width - w_max}{2} \rfloor, Y :: 1..1 + \lfloor \frac{Height - h_max}{2} \rfloor$$

```
int: index_largest_p = arg_max([ L[i,1]*L[i,2] | i in PIECES]); % index
    of the largest piece
...
constraint
    2 * (q[index_largest_p,1]) <= (pr_w - L[index_largest_p, 1])
    /\ 2 * (q[index_largest_p,2]) <= (pr_h - L[index_largest_p, 2]);</pre>
```

2.3.5 Independent Solving based on widths

Constraint applied only if $independent_solving_on_w$ is true(only on the x axis). \forall group in $pieces_group_by_w$ the left margin(the starting point for that group) is calculated and all the pieces in that group will be constrained to be between the $left_margin$ and $left_margin + (columns - 1) * width$ (maximum width that the columns occupy for that group). this constraint allows us to speed up the resolution of many otherwise unsolvable instances.

E.g. Instance 18×18

```
pr_w=18, pr_h=18, n_pieces=16
```

```
 \mathbf{L} = [[3,3], [3,4], [3,5], [3,6] 
= [3,7], [3,8], [3,10], [3,11] 
= [4,3], [4,4], [4,5], [4,6] 
= [5,3], [5,4], [5,5], [5,6]
```

pieces_group_by_w=[13..16, 9..12, 1..8] pieces with the same width(5) from the 13^{th} to the 16^{th} array's element, pieces with width equals to 4 from the 9^{th} to the 12^{th} array's element and pieces with width equals to 3 from the 1^{st} to the 8^{th} array's element.

number_columns_per_group=[1, 1, 3] only one column is required for pieces with width 5 and 4(perfect stacking), instead for the pieces with width 3, three columns are needed.

So:

independent_solving_on_w = true because $\forall pieces_group_by_w$ the sum of the pieces' heights are greater or equal then 18.

```
width 5 : 3+4+5+6 = 18

width 4 : 3+4+5+6 = 18

width 3 : 3+4+5+6+8+8+10+11 = 54
```

So:

 $independent_solving_on_w = true$

```
pieces\_group\_by\_w=[13..16, 9..12, 1..8]

number\_columns\_per\_group=[1, 1, 3]
```

```
 \begin{array}{lll} \textbf{left\_margin} & \text{for the $1^{st}$ group(width $5)} &= 0 \\ & \text{for the $2^{nd}$ group(width $4)} &= number\_columns\_per\_group[1] \times total\_group\_width[1] = 3 \\ & \text{for the $3^{rd}$ group(width $3)} &= number\_columns\_per\_group[1] \times total\_group\_width[1] + \\ & number\_columns\_per\_group[2] \times total\_group\_width[2] = 9 \\ \end{array}
```

```
\forall pieces\ with\ index \in [13..16]: x\_coordinate \ge \mathbf{0}(\text{left\_margin}\ 1^{st}\ \text{group})\ \&\ x\_coordinate \le \mathbf{0}(\text{left\_margin}\ 1^{st}\ \text{group}) + 0*5(\text{columns-}1)^* \text{width}
```

```
\forall pieces\ with\ index \in [9..12]: x\_coordinate \geq \mathbf{3}(\text{left\_margin } 2^{st} \text{ group}) \& x\_coordinate \leq \mathbf{3}(\text{left\_margin } 1^{st} \text{ group}) + 0*4(\text{columns-}1)^* \text{width}
```

 $\forall pieces\ with\ index \in [1..8]: x_coordinate \geq 9(\text{left_margin } 2^{st}\ \text{group}) \& x_coordinate \leq 15(\text{left_margin } 1^{st}\ \text{group}) + 2*3(\text{columns-}1)*\text{width}$

```
% Independent Solving based on widths
predicate com_prec(int: i, int: left_margin) = let {
   int: n_pieces = card(pieces_group_by_w[i]);
   array[1..n_pieces] of PIECES: indexes = [j | j in
        pieces_group_by_w[i]];
   int: columns = number_columns_per_group[i];
   int: width = total_group_width[i];
} in forall(h in 1..n_pieces)
   (q[indexes[h],1] >= left_margin /\
        q[indexes[h],1] <= left_margin+(columns-1)*width);

constraint (independent_solving_on_w) ->
        forall(i in 1..group_number) (com_prec(i, group_starting_w(i)));
```

3 pwp_v9-rot.mzn (Point 5)

The same previous model with handling the possible rotation of each presents/-pieces without the *independent solving based on widths* constraint.

3.1 New Variables

rot: Array of 0|1 with dimension equal to the number of presents/pieces. If the i^{th} element of the array is '0' means no rotation otherwise if '1' that piece is rotated by 90°

```
\mathbf{rot} = [rot\_1, rot\_3, \dots, rot\_n]
```

3.2 Relevant Function

function int: $get_dim(int:i,int:d)$: According to the rotation, return the correct value of the width(d=1)/height(d=2) of a given piece index(i). This function is used every time I need to know the width/height of a piece, the pieces's dimension is not constant anymore like in the previous model.

3.3 New Constraints

In all constraints we no longer use the initial dimensions of the pieces but we use the new function *get_dim*.

```
% --- Point 2 ---
constraint cumulative(q[PIECES,1], [ get_dim(i, 1) | i in PIECES ],
                         [ get_dim(i, 2) | i in PIECES ], pr_h);
constraint cumulative(q[PIECES,2], [ get_dim(i, 2) | i in PIECES ],
                         [ get_dim(i, 1) | i in PIECES ], pr_w);
%-No exceeding the paper dimensions
constraint forall (i in PIECES)
                     (q[i,1] + get_dim(i, 1)) <= pr_w /\
                      (q[i,2] + get_dim(i, 2)) <= pr_h);
% Non-overlap
function array[PIECES] of var int:
           get_q(int: d) = [q[i, d] | i in PIECES];
function array[PIECES] of var int:
           L_axis(int: d) = [get_dim(i,d) | i in PIECES];
constraint diffn(get_q(1),get_q(2),L_axis(1),L_axis(2));
%Symmetry breaking rules
constraint
   2 * (q[index_largest_p,1]) <= (pr_w - get_dim(index_largest_p, 1)) /\
   2 * (q[index_largest_p,2]) <= (pr_h - get_dim(index_largest_p, 2));
```

3.3.1 square = no rotation

It is unnecessary to rotate any square piece (width = height) because I will get the same solution (same coordinates for each piece).

```
constraint forall (i in PIECES where L[i,1]=L[i,2]) (rot[i] = 0);
```

4 pwp_v9-same-dim.mzn (Point 6)

The same model as $pwp_-v9.mzn$ but taking into consideration the fact that there can be multiple pieces with the same dimension. Also the previous models are able to solve instances in which there are several equal pieces but in those cases it is possible to fix the positional relation with each other reducing the domains for some pieces and speeding up the instance resolution itself[3].

4.1 New Constraints

4.1.1 same dimension

If we have rectangles/pieces r_i , r_j and r_k which have the same dimensions we can fix/constrain the positional relation of those rectangles, between r_i - r_j and

 r_j - r_k . For example, if we have 2 pieces with the same dimension(2 × 2), the second piece(the pink one) will never placed to the left or under the first one(the yellow one). it will be placed always on the right or upper the first one.

Figure 4: Positional relation constraint

5 Experiments Results

In this section will be shared all the relevant experiments results contained in the jupyter notebook PWP.ipynb.

5.1 TEST 1

Number of solutions (#) and failures when looking for all solutions to some instances of the PW Problem, comparing the ordering of pieces or not, using the default search.

Independent solving on width deactivated ('bool: independent_solving_on_w = false;'), No search_ann and No "Symmetry breaking rules" part used.

n	#	$no-ord_time$	$no-ord_failures$	ord_time	$ord_failures$	$decr-ord_time$	$decr-ord_failures$
8x8	12	0	2	0	2	0	3
9x9	24	.001	4	.001	4	.001	21
10x10	64	.002	58	.003	58	.003	58
11x11	128	.011	422	.011	426	.014	554
12x12	192	.013	764	.014	753	.016	1096
13x13	1568	.115	3421	.109	3368	.115	3674
14x14	1344	.082	1110	.082	1149	.099	2602
15x15	10752	.766	9068	.772	9068	1.086	23246
16x16	2304	.162	2170	.171	2149	.218	2052
17x17	97856	14.64	$237,\!574$	12.897	177,718	35.886	980848
18x18	/	-	=	-	-	-	-
19x19	/	-	=	-	-	-	-
20x20	566784	77.84	2,681,267	85	2,626,486	-	-
21x21	/	-	-	-	-	-	-

Now the same test handling all the possible **symmetries**.

	1 11	7	1 8 11	1	1 6 .1		1 1 0 11
n	#	$no-ord_time$	$no-ord_failures$	ord_time	$ord_failures$	$decr-ord_time$	$decr-ord_failures$
8x8	0	0	2	0	2	0	3
9x9	0	.001	4	.001	4	.001	21
10x10	22	.001	58	.003	58	.003	58
11x11	32	.003	422	.011	426	.014	554
12x12	48	.004	764	.014	753	.016	1096
13x13	532	.047	3421	.109	3368	.115	3674
14x14	336	.022	1110	.082	1149	.099	2602
15x15	6272	.438	9068	.772	9068	1.086	23246
16x16	576	.038	2170	.171	2149	.218	2052
17x17	24464	2.576	237,574	12.897	177,718	35.886	980848
18x18	/	-	-	-	-	-	-
19x19	1,383,360	185.543	5,231,506	182.956	5,233,576	-	-
20x20	141696	15.854	434,603	17.104	434,203	20.927	751.911
21x21	478656	76.467	1,985,506	79.032	1,972,509	79.75	2,219,187

With the default search the best model is: incremental order pieces

5.2 TEST 2

Number of failures when looking for all solutions (with symm breaking) using different search heuristics (managed the descending order inside the model based on the area value).

The best results are marked with a "*" **bold** number: time limit reached(5 min.)

	Input-min		ff-min		DomWdeg-min	
n	ord	decr-ord	ord	decr-ord	ord	decr-ord
8x8	0*	0*	2	2	2	2
9x9	3*	3*	3*	3*	3*	3*
10x10	8*	8*	8*	8*	10	10
11x11	46	46	43*	43*	49	49
12x12	70	70	60*	60*	96	96
13x13	1064*	1079	1075	1073	1120	1120
14x14	448	445	265	269	262	261*
15x15	4029*	4354	5098	5039	5073	4997
16x16	583	573	583	573	524*	588
17x17	75,311	76,210	50,606	51,214	49,866*	50,859
18x18	11,925,446	11,935,654	9,123,160	9,191,395	8,695,525	$8,\!633.719^*$
19x19	3,663,131	3,666,035	$3,209,023^*$	3,211,247	3,214,267	3,213,256
20x20	430,396	370,630	447,872	371,263	434,203	$371,235^*$
21x21	1,719,412-70	1,721,371-71	1,419,547-69	1,437,661-66	$1,418,944^* - 68$	1,436,707-69

failures-time[s]

	Input-rand		ff-ra	and	DomWdeg-rand	
n	ord	decr-ord	ord	decr-ord	ord	decr-ord
8x8	1	1	2	2	2	2
9x9	4	4	4	4	4	4
10x10	11	11	12	12	12	12
11x11	48	48	44	44	47	45
12x12	100	100	77	77	90	90
13x13	1168	1130	1171	1141	1174	1195
14x14	493	501	315	313	300	316
15x15	4929	4834	5481	5457	5471	5441
16x16	581	587	581	587	593	582
17x17	84,216	85,261	54,832	54,260	54,970	56,626
18x18	10,751,176	10,834,891	11,986,136	11,531,960	12,141,790	11,018,706
19x19	4,088,991	$4,\!137,\!855$	3,608,068	3,635,708	3,587,009	3,597,849
20x20	467,476	420,972	478,043	434,628	470,117	408,973
21x21	1,941,636-77	1,949,438-74	1,587,390-65	1,609,090-67	1,590,398-65	1,607,347-67

failures-time[s]

The best search strategy is the *DomWdeg_min*.

NB: The search heuristics are always based on the descending order of all the pieces' area, so the input order is not so relevant such as for the default search(TEST 1).

5.3 TEST 3

Time and failures to find the first solution for each instance. Independent solving on width activated.

	Input-min		ff-r	nin	DomWdeg-min	
n	Time[s]	failures	Time[s]	failures	Time[s]	failures
8x8	0	0	0	0	0	0
9x9	0	0	.001	0	.001	0
10x10	0	0	0	0	0	0
•••	•••		•••	•••		•••
22x22	.001	0	.001	6	.001	6
23x23	7.543	298779	10.191	398237	1.014	36927
24x24	.001	24	0	0	.001	0
	•••		•••	•••		•••
37x37	.352	7400	.156	3594	.307	6343
38x38	.025	595	.002	21	.001	6
39x39	.003	0	.002	0	.002	0
40x40	.001	14	.002	14	.001	1
Tot:	8.244s	$312,\!514$	24.817s	947,511	18.989s	672,773

In **bold** the best result. The Input-min is the best strategy. All the instances are solved in 8.2 seconds and the 23x23 instance is the most difficult one to solve.

NB: the total is calculated considering all the instances. Open the report.odt file for the full test results.

6 References

- [1] Lesh, N., Marks. J., McMahon A., Mitzenmacher M. (2004) Exhaustive approaches to 2D rectangular perfect packings. https://www.eecs.harvard.edu/michaelm/postscripts/ipl2004.pdf
- [2] Simonis, H. & O'Sullivan, B. (2008) Search Strategies for Rectangle Packing. International Conference on Principles and Practice of Constraint Programming: pp 52-66.
- [3] Takehide, S., Katsumi, I., Naoyuki, T., Mutsunori, B., Hidetomo, N. A SAT-based Method for Solving the Two-dimensional Strip Packing Problem. http://ceur-ws.org/Vol-451/paper16soh.pdf
- [4] Clautiaux, F., Jouglet, A., Carlier, J., Moukrim, A. (2006) A new constraint programming approach for the orthogonal packing problem. http://vmk.ugatu.ac.ru/c%26p/article/new_2009/2D_OPP_clautiaux_constraint_progr.pdf
- [5] Huang, E., Korf, R.E. (2012) Optimal Rectangle Packing: An Absolute Placement Approach. https://arxiv.org/ftp/arxiv/papers/1402/1402.0557.pdf