LÒGICA I LLENGUATGES

PROBLEMES

Llenguatges regulars

Imprimi jut and lu fusions

Exercici 1. Sigui $\Sigma = \{0, 1, 2\}$. Siguin $L_1 = \{1, 02, 10\}$ i $L_2 = \{\lambda, 112, 0\}$. Determinar els llenguatges L_1L_2 , L_2L_1 , $L_1L_2 \cup L_2L_1$ i $L_1L_2 \cap L_2L_1$.

Exercici 2. Sobre l'alfabet $\Sigma = \{0, 1\}$, siguin:

 $L_1 = \text{el conjunt de paraules de bits que tenen exactament tants 0's com 1's,}$

 $L_2 =$ el conjunt de paraules de bits que tenen almenys tants 0's com 1's,

 $L_3 = \text{el conjunt de paraules de bits que tenen almenys tants 1's com 0's.}$

Aleshores, determineu els següents L_1L_1 , L_1L_2 , L_1L_3 , L_2L_1 , L_2L_2 , L_2L_3 , L_3L_1 , L_3L_2 , L_3L_3 .

Exercici 3. Considerem els llenguatges $L_1 = \{x \in \{0,1\}^* : n_0(x) \text{ és parell }\}$ i $L_2 = \{x \in \{0,1\}^* : n_0(x) \text{ és senar }\}$. Determineu L_1^* i L_2^* .

Exercici 4. Demostreu que per a tot llenguatge L, $(L^*)^* = L^*$.

Exercici 5. Determineu si son certes les següents condicions:

- (a) $11001001 \in L((00 \cup 1)^*)$.
- (b) $000 \in L((00 \cup 1)^*)$.
- (c) $1101100 \in L((00 \cup 1)^*)$.
- (d) $10000111 \in L((00 \cup 1)^*)$.
- (e) $L(1^*0^*) \cap L(0^*1^*) = L(0^* \cup 1^*)$.
- (f) $L(0^*1^*) \cap L(2^*3^*) = \emptyset$.
- (g) $0123 \in L((0(23)^*1)^*)$.

 $\underline{\text{Exercici } 6}$ Determineu els llenguatges corresponents a les següents expressions regulars:

(a) 1*10.

```
(b) (0 \cup 1)*1(0 \cup 1)*.
```

- (c) $(0 \cup 10)(1 \cup 01)^*$.
- (d) (0*10*10*1)0*.
- (e) $(1 \cup 01)^*00(10 \cup 1)^*$.
- (f) $0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1 \cup 0 \cup 1$.

 $\underline{\text{Exercici }7}.$ Demostrar que els següents parells de'expressions regulars no son equivalents:

```
(a) \alpha = (0 \cup 1)^* y \beta = 0^* \cup 1^*.
```

(b)
$$\alpha = (0 \cup 1)^*$$
 y $\beta = (01)^*$.

(c)
$$\alpha = 00^*1 \text{ y } \beta = 0^*1.$$

(d)
$$\alpha = (0^*1)^*$$
 y $\beta = (0 \cup 1)^*1$.

<u>Exercici 8</u>. Simplifica les següents expressions regulars, trobant per cadascuna d'elles una expressió regular més simple i equivalent.

- (a) $(0 \cup \lambda)^*$.
- (b) $(0 \cup \lambda)(0 \cup \lambda)^*$.
- (c) $\lambda \cup 0^* \cup 1^* \cup (0 \cup 1)^*$.
- (d) $0^*1 \cup (0^*1)0^*$.
- (e) $(0^*1)^* \cup (1^*0)^*$.
- (f) $(0 \cup 1)*0(0 \cup 1)*$.

Exercici 9. Considerem el següent autòmat determinista M, on q_4 es l'únic estat acceptador:

Llavors, es demana:

- (a) Descrive L(M) informalment. $L(M) = 1 \times E + 0.1 + 1 \times x$ continue 0100 como subpalabrat
- (b) Descriure L(M) mitjançant una expressió regular. L(M) = L(V) dode $V = (0 \times 1)^4$ 0100 $(0 \times 1)^4$
- (c) Simular M mitjançant un programa en JAVA.

(4) Un autômata indeterminata es una estructura $M = (K, I, \Delta, q_0, F)$ donde K, I, q_0, F son como en ea definición de AD y Δ^{adelta} es un subconjunto de $K_X (\Sigma \cup \lambda \lambda)_X K$.

En el caso determinista, Δ es una función de $K_X \Sigma$ en K.

les paraules de les llistes corresponents que són reconegudas:

 $\underline{\text{Exercici }13}.$ (a) Descriu el llenguatge reconegut per l'autòmat determinista següent:

(b) Descriu el llenguatge reconegut per l'autòmat indeterminista següent:

text apareix la paraula "web" .

- (b) Convertir directament l'autòmat de l'apartat (a) en un autòmat determinista.
 - (c) Simular l'autòmat del apartat (b) mitjançant un programa en JAVA.

<u>Exercici 15</u>. (a) Definir un autòmat indeterminista per determinar si en un text apareix la paraula "web" o la paraula "ebay".

(b) Convertir directament l'autòmat de l'apartat (a) en un autòmat determinista.

Exercici 16. (a) Explicar com es pot dissenyar un autòmat indeterminista per reconèixer els números de telèfon de les províncies de Catalunya.

(b) Explicar com a partir de l'autòmat de l'apartat (a), es pot dissenyar un programa en JAVA per reconèixer aquests números.

Exercici 17. Mitjançant l'algorisme vist a classe, construir un autòmat determinista equivalent a l'autòmat indeterminista $M = (\{A, B, C, D, E\}, \{0, 1\}, \Delta, A, \{B, C\})$ on Δ està definida per la següent taula:

Exercici 18. Mitjançant l'algorisme vist a classe, construir un autòmat determinista equivalent a l'autòmat indeterminista $M = (\{A, B, C, D\}, \{0, 1\}, \Delta, A, \{A, D\})$ on Δ està definida per la següent taula:

Exercici 19. Mitjançant l'algorisme vist a classe, construir un autòmat

determinista equivalent a l'autòmat indeterminista $M = (\{q_0, q_1, q_2, q_3, q_4\},$ $\{0,1\}, \Delta, q_0, \{q_4\}$) on Δ està definida per la següent taula:

Estado inicial = 1 (go) = go

b'(q192,1)= 1(g0) U1(q3)=g0q3,

 $\delta'(q_0, o) = q_1, \qquad \delta'(q_0q_3, o) = q_0q_1,$ $\delta'(q_0, A) = q_1 \cdot q_2, \qquad \delta'(q_0q_3, A) = q_0q_1,$ $\delta'(q_1, A) = \emptyset, \qquad \delta'(q_0q_1, A) = q_1,$ $\delta'(q_1, A) = \emptyset, \qquad \delta'(q_0q_1, A) = q_1,$ $\delta'(q_1q_1, O) = \emptyset, \qquad \delta'(\phi, O) = \delta'(\phi, A) = \emptyset.$

-Alq:)=q: para i=1.2,3.4					
9. 1° 9,	4. F 9-192				
91136	911390				
	92 1 3 93 93 1 3 Ø				
92	l				
17·** Ø	کمیت براوا				

	q_1	1	q_0
	q_2	1	q_0
→ único esta	(q ₄)	0	q_0
	q_0	1	q_1
	q_3	1	q_2
	q_0	0	q_3

Exercici 20. (a) Construir un autòmat indeterminista per reconèixer nombres decimals que continguin: (a) un signe + o - opcional; (b) una paraula de dígits; (c) un punt decimal; (d) una segona paraula de dígits. Tant la primera paraula de dígits com la segona poden estar buides, però almenys una de les dues paraules no pot estar buida.

(b) Explicar com es pot dissenyar un programa en JAVA per reconèixer nombres decimals.

Exercici 21. Modificar l'autòmat vist a classe per dissenyar l'analitzador lèxic d'un compilador, de manera que es reconeguin també els nombres decimals segons la definició donada en l'exercici 20.

Exercici 22. Explicar com dissenyar un analitzador lèxic per reconèixer les següents categories sintàctiques:

- (1) identificadors formats per lletras i dígits de manera que el primer caràcter és una lletra,
 - (2) nombres enters,
 - (3) els operadors aritmètics + i -,
 - (4) els operadors ++ i --.

bl: corácter en ble

Al progamorlo y llegora este estado, no lecúamos el signiente

