AiSD L7

Maurycy Borkowski

9.06.2021

zadanie 2.

Dzielimy płaszczyznę na siatkę z kwadracików o boku $\frac{d}{2}$. W każdym kwadraciku jest co najwyżej jeden punkt (założenie, że d to najmniejsza odległość między sprocesowanymi już punktami).

Rozpatrując punkt p_i musimy rozpatrzeć tylko $25 = 5^2$ kwadracików (duży kwadrat o boku 2d) w nim znajduje się okrąg bez brzegu o promieniu d = wszystkie miejsca gdzie może wystąpić bliższy punkt z procesowanym p_i .

Gdy żaden nie znajdziemy w podejrzanych 25 kwadracikach zbyt bliskiego punktu, dodajemy do tablicy haszującej nowy zapełniony kwadracik z p_i . $\mathcal{O}(1)$

Gdy znajdziemy punkt bliższy w podejrzanych musimy stworzyć nową siatkę z mniejszymy kwadracikami o boku d'. Każdy punkt na nowo trzeba wstawić do pola siatki. $\mathcal{O}(i)$

Jeżeli punkty są przemieszane losowo (prawdopobieństwo bycia w najbliższej parze, każdy punkt ma takie samo) to prawdopodobieństwo tego, że p_i jest w najbliższej parze wynosi: $\frac{i-1}{i(i-1)}=\frac{1}{i}$

Wystarczy więc spermutować punkty na początku żeby otrzymać oczekiwany czas działania:

$$\mathbb{E}Czas = \sum_{i=0}^{n} \frac{i-1}{i} \mathcal{O}(1) + \frac{1}{i} \mathcal{O}(i) = \mathcal{O}(n)$$

zadanie 3.

Oznaczmy:

$$X_i = \begin{cases} 1 \text{ gdy } i\text{-ta lista jest pusta} \\ 0 \text{ w p.p.} \end{cases}$$

Wtedy liczba pustch list wynosi:

$$Y = \sum_{i=1}^{n} X_i$$

Wartość oczekiwana X_i wynosi:

$$\mathbb{E}X_i = \left(1 - \frac{1}{n}\right)^n$$

Prawdopodobieństwo, że za każdym z n razy, nie wrzucimy do i-tej listy. Z liniowości wartości oczekwianej:

$$\mathbb{E}Y = \mathbb{E}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{E}X_i = \sum_{i=1}^{n} \left(1 - \frac{1}{n}\right)^n = n \cdot \left(1 - \frac{1}{n}\right)^n \leqslant \frac{n}{e} < \frac{n}{2}$$