We want to find function f from class \mathcal{F} , which we call the **hypothesis class**. We choose a **loss function** to measure how well f does at the learning problem. **Risk** or **expected loss** is:

$$R(f) = E(X, Y) \sim_P [L(Y, f(x))]$$

or

$$R(f) = E(X) \sim_P [L(X, f(x))]$$

We denote the optimal risk as r^* and the optimal function as f^*

The Bayes classifier, $f^*(x) = argmax_y P(Y = y|X = x)$, is the theoretical optimum (at least for 0-1 loss). But, it isn't a practical scheme because we don't actually know the conditional distribution. Rather, we use it as a benchmark.

We have a host of **margin-based** loss functions (margin is $yf(\mathbf{X})$ for $\mathbf{X} \in \mathbb{R}, y \in -1, 1$). The margin only takes positive values when the classification is correct. A margin-based loss function is: L(y, f(x)) = L(yf(x)). The simple 0-1 loss function can be written as I(yf(x) < 0 (we want to minimize this). We are interested in alternate loss functions that have two key properties:

- L is a convex function of the margin
- L upper bounds L_{0-1} (our above simple 0-1 loss function)

Some candidate functions (for classification) are below. All of them have the same sign as Bayes loss and so are called **classification-calibrated** or **surrogate** loss functions, in that minimizing them is equivalent to minimizing Bayesian loss.

Π	loss function	Form	Notes
	Hinge	$\max\{0, 1 - yf(x)\}$	Tightest convex upper bound to 0-1; non-smooth
	Exponential	$\exp(-yf(x))$	1-Lipschitz (robust)
	Logistic	$\log_2(1 + \exp(-yf(x)))$	1-Lipschitz (robust)
	Squared	$(1 - yf(x))^2$	Not recommended for class. (weird errors)
	Squared hinge	$\max\{0, 1 - yf(x)\}^2$	Only 1x differentiable at 1

Loss function	Form
Squared	$(y - f(x))^2$
Absolute	$L_1(y, f(x)) = y - f(x) $
ϵ -insensitive	$ y - f(x) I(y - f(x) \ge \epsilon)$
Huber	loooong

Now, let's switch from classification to regression. Some potential loss functions are:

We want minimize risk (expected loss) $(E_{(X,Y)\sim_P[L(Y,f(X))]})$ over all possible f. But that's ambitious, so lets replace R by its empirical counterpart:

$$R_{\text{emp}}(f) = \frac{1}{n} \sum_{i=1} nL(Y_i, f(X_i))$$

By LLN, we know that for any fixed f, $R_{\rm emp}(f) \to R(f)$ as $n \to \infty$, but we can't be assured that we have infinite n, nor is f fixed (we are considering lots of f), so this is a weak guarantee. Let \mathcal{F} be the hypothesis class the minimum is taken over:

$$\min_{f \in \mathcal{F}} R_{\text{emp}}(f)$$

Denote empirical risk minimizer as \hat{f} . Denote minimizer of risk over the class \mathcal{F} as \bar{f} . The difference between the minimum risk \bar{R} over \mathcal{F} and the minimum risk R^* is called **excess risk**. Reminder: $R(f^*)$ is theoretical optimum. Theorem:

$$R(\hat{f}) \le R(\bar{f}) + 2\sup_{f \in \mathcal{F}} |R_{\text{emp}}(f) - R(f)|$$
$$= R(f^*) + \epsilon(\bar{f}) + 2\sup_{f \in \mathcal{F}} |R_{\text{emp}}(f) - R(f)|$$

= intrinsicerror + approximationerror + estimationerror

The latter two are bias and variance by another name. They are antagonists: decreasing one means increasing another.

You can fit any series of datapoints with interpolating polynomial of degree n-1. You are guaranteed to minimize empirical risk, but it will generalize poorly to new data. Or, you can have some really general method, but it will have high empirical risk.

A good way to find the optimal balance is **regularization**, covered next class.