What is claimed is:

5

6

7

8

9

10

11

12

13

14

15

16

17

18

- 1 1. A reduced size GPS microstrip antenna comprising:
- 2 (a) a first dielectric substrate;
- 3 (b) a second dielectric substrate mounted on an upper 4 surface of said first dielectric substrate;
 - (c) a ground plane mounted on a bottom surface of said first dielectric substrate;
 - (d) a shaped layer of etched copper mounted on an upper surface of said second dielectric substrate;
 - (e) first and second rectangular shaped quarterwavelength microstrip antennas mounted on said upper
 surface of said second dielectric substrate, said
 first and second quarter-wavelength microstrip
 antennas being spaced apart from and electrically
 separated from said ground plane by said first and
 second dielectric substrates, said first and second
 quarter-wavelength mcirostrip antennas being adapted
 to receive an RF carrier signal containing GPS
 (Global Positioning System) data;
 - (f) said first quarter-wavelength microstrip antenna

being rotated ninety degrees with respect to said

second quarter-wavelength microstrip antenna on the

upper surface of said dielectric substrate:

- (g) a feed network mounted on the upper surface of said first dielectric substrate, said feed network having one end of a first feed line and one end of a second feed line connected thereto, said first feed line having an opposite end thereof connected to said first quarter-wavelength microstrip antenna, said second feed line having an opposite end thereof connected to said second quarter-wavelength microstrip antenna, said first and second feed lines forming a power divider which provides for a phase shift of 90° of an electrical equivalent signal of said RF carrier signal when transmitted through said first and second feed lines; and
- (h) said phase shift of said electrical equivalent signal and said first quarter-wavelength microstrip antenna being rotated ninety degrees with respect to said second quarter-wavelength microstrip antenna,

- 40 providing for a circular polarization of said GPS
 41 microstrip antenna.
 - 2. The reduced size GPS microstrip antenna of claim 1
 wherein each of said first and second shaped quarter-wavelength
 microstrip antennas has an overall length of 0.750 inches and
 an overall width of 0.650 inches.

- 3. The reduced size GPS microstrip antenna of claim 1 wherein each of said first and second quarter-wavelength microstrip antennas is connected to said ground plane by a plurality of copper plated through holes passing through said first and second dielectric substrates.
- 4. The reduced size GPS microstrip antenna of claim 1
 wherein each of said first and second quarter-wavelength
 microstrip antennas includes a copper feed which passes through
 said second dielectric substrate and connects said first feed
 line to said first quarter-wavelength microstrip antenna and

- said second feed line to said second quarter-wavelength microstrip antenna.
- 5. The reduced size GPS microstrip antenna of claim 1
 wherein said reduced size microstrip antennas has a center
 frequency of 1.575 GHz and a frequency bandwidth of twenty
 megahertz.

2

3

4

1

2

3

1

- 6. The reduced size GPS microstrip antenna of claim 5 wherein each of said first and second quarter-wavelength microstrip antennas includes a tuning tab for fine tuning the center frequency for said GPS microstrip antenna.
- 7. The reduced size GPS microstrip antenna of claim 1 wherein each of said first and second dielectric substrates has a thickness of approximately .046 inches.
 - 8. A reduced size GPS microstrip antenna comprising:
 - (a) a first conical wedge shaped dielectric substrate;
- 3 (b) a second conical wedge shaped dielectric substrate

4		mounted on an upper surface of said first dielectric
5		substrate;
6	(c)	a ground plane mounted on a bottom surface of said
7		first dielectric substrate;
8	(d)	a conical wedge shaped layer of etched copper mounted
9		on an upper surface of said second dielectric
10		substrate;
11	(e)	first and second rectangular shaped quarter-
12		wavelength microstrip antennas mounted on said upper
13		surface of said second dielectric substrate, said
14		first and second quarter-wavelength microstrip
15		antennas being spaced apart from and electrically
16		separated from said ground plane by said first and
17		second dielectric substrates, said first and second
18		quarter-wavelength mcirostrip antennas being adapted
19		to receive an RF carrier signal containing GPS
20		(Global Positioning System) data;
21	(f)	said first quarter-wavelength microstrip antenna
22		being rotated ninety degrees with respect to said
23		second quarter-wavelength microstrip antenna on the

upper surface of said dielectric substrate;

(g) a feed network mounted on the upper surface of said first dielectric substrate, said feed network having one end of a first feed line and one end of a second feed line connected thereto, said first feed line having an opposite end thereof connected to said first quarter-wavelength microstrip antenna, said second feed line having an opposite end thereof connected to said second quarter-wavelength microstrip antenna, said first and second feed lines forming a power divider which provides for a phase shift of 90° of an electrical equivalent signal of said RF carrier signal when transmitted through said first and second feed lines;

- (h) said phase shift of said electrical equivalent signal and said first quarter-wavelength microstrip antenna being rotated ninety degrees with respect to said second quarter-wavelength microstrip antenna, providing for a circular polarization of said GPS microstrip antenna;
- (i) each of said first and second quarter-wavelength

microstrip antennas including a tuning tab for fine

tuning a center frequency for said GPS microstrip

antenna, said center frequency for said GPS

microstrip antenna being approximately 1.575 GHz; and

- of said first rectangular shaped quarter-wavelength microstrip antenna and a second three-sided gap position around three sides of said second rectangular shaped quarter-wavelength microstrip antenna, wherein an electromagnetic radiation pattern for said GPS microstrip antenna emanates from said first three-sided gap and said second three-sided gap.
- 9. The reduced size GPS microstrip antenna of claim 8 wherein said first three-sided gap and said second three-sided gap each have a width of 0.050 inches exposing about 0.050 inches of the upper surface of said second dielectric substrate in alignment with said first three-sided gap and said second three-sided gap.

- 1 10. The reduced size GPS microstrip antenna of claim 8
 2 wherein each of said first and second shaped quarter-wavelength
 3 microstrip antennas has an overall length of 0.750 inches and
 4 an overall width of 0.650 inches.
- 1 11. The reduced size GPS microstrip antenna of claim 8
 2 wherein each of said first and second quarter-wavelength
 3 microstrip antennas is connected to said ground plane by a
 4 plurality of copper plated through holes passing through said
 5 first and second dielectric substrates.

- 12. The reduced size GPS microstrip antenna of claim 11 wherein said plurality of copper plated through holes comprises eighteen copper plated through holes.
- 13. The reduced size GPS microstrip antenna of claim 8
 wherein each of said first and second quarter-wavelength
 microstrip antennas includes a copper feed which passes through
 said second dielectric substrate and connects said first feed
 line to said first quarter-wavelength microstrip antenna and

- said second feed line to said second quarter-wavelength microstrip antenna.
- 1 14. The reduced size GPS microstrip antenna of claim 8
 2 wherein each of said first and second dielectric substrates has
 3 a thickness of approximately .046 inches.
- 1 15. A reduced size GPS microstrip antenna comprising:
- 2 (a) a first conical wedge shaped dielectric substrate;

4

5

6

7

8

9

10

11

12

- (b) a second conical wedge shaped dielectric substrate mounted on an upper surface of said first dielectric substrate;
 - (c) a ground plane mounted on a bottom surface of said first dielectric substrate;
 - (d) a conical wedge shaped layer of etched copper mounted on an upper surface of said second dielectric substrate;
 - (e) first and second rectangular shaped quarterwavelength microstrip antennas mounted on said upper
 surface of said second dielectric substrate, said

14 first and second quarter-wavelength microstrip antennas being spaced apart from and electrically 15 16 separated from said ground plane by said first and 17 second dielectric substrates, said first and second 18 quarter-wavelength mcirostrip antennas being adapted 19 to receive an RF carrier signal containing GPS 20 (Global Positioning System) data, each of said first 21 and second quarter-wavelength microstrip antennas 22 being connected to said ground plane by a plurality 23 of copper plated through holes passing through said 24 first and second dielectric substrates; 25

26

27

28

29

30

31

32

33

- (f) said first quarter-wavelength microstrip antenna being rotated ninety degrees with respect to said second quarter-wavelength microstrip antenna on the upper surface of said dielectric substrate;
- (g) a feed network mounted on the upper surface of said first dielectric substrate, said feed network having one end of a first feed line and one end of a second feed line connected thereto, said first feed line having an opposite end thereof connected to said first quarter-wavelength microstrip antenna, said

35		second feed line having an opposite end thereof
36		connected to said second quarter-wavelength
37		microstrip antenna, said first and second feed lines
38		forming a power divider which provides for a phase
39		shift of 90° of an electrical equivalent signal of
40		said RF carrier signal when transmitted through said
41		first and second feed lines;
42	(h)	said phase shift of said electrical equivalent signal
43		and said first quarter-wavelength microstrip antenna
44		being rotated ninety degrees with respect to said
45		second quarter-wavelength microstrip antenna,
46		providing for a circular polarization of said GPS
47		microstrip antenna;
48	(i)	each of said first and second quarter-wavelength
49		microstrip antennas including a tuning tab for fine
50		tuning a center frequency for said GPS microstrip
51		antenna, said center frequency for said GPS
52		microstrip antenna being approximately 1.575 GHz;
53	(j)	each of said first and second quarter-wavelength
54		microstrip antennas including a copper feed which

55

passes through said second dielectric substrate and

connects said first feed line to said first quarterwavelength microstrip antenna and said second feed
line to said second quarter-wavelength microstrip
antenna;

60

61

62

63

64

65

66

67

68

69

70

1

2

3

- (k) a first three-sided gap position around three sides of said first rectangular shaped quarter-wavelength microstrip antenna and a second three-sided gap position around three sides of said second rectangular shaped quarter-wavelength microstrip antenna, wherein an electromagnetic radiation pattern for said GPS microstrip antenna emanates from said first three-sided gap and said second three-sided gap; and
- (1) said GPS microstrip antenna having a frequency bandwidth of twenty megahertz.
- 16. The reduced size GPS microstrip antenna of claim 15 wherein said first three-sided gap and said second three-sided gap each have a width of 0.050 inches exposing about 0.050 inches of the upper surface of said second dielectric substrate

- in alignment with said first three-sided gap and said second three-sided gap.
- 1 17. The reduced size GPS microstrip antenna of claim 15
 2 wherein each of said first and second shaped quarter-wavelength
 3 microstrip antennas has an overall length of 0.750 inches and
 4 an overall width of 0.650 inches.
- 1 18. The reduced size GPS microstrip antenna of claim 15
 2 wherein said plurality of copper plated through holes comprises
 3 eighteen copper plated through holes.
 - 19. The reduced size GPS microstrip antenna of claim 15 wherein each of said first and second dielectric substrates has a thickness of approximately .046 inches.

2

3

1

2

3

4

20. The reduced size GPS microstrip antenna of claim 15 wherein said copper feed for each of said first and second quarter wavelength microstrip antennas corresponds to a 100 ohm input impedance.