Triangulating a Monotone Polygon

- Problem Statement
- triangulating y-monotone polygons
- An Incremental Triangulation Algorithm
- walking left and right boundary chains
 - pseudo code for the algorithm
- 3 Linear Time
- cost analysis

pseudo code - the initialization and loop

Algorithm TriangulateMonotonePolygon(P)

Input: a doubly connected edge list $\mathcal D$ stores a strictly y-monotone polygon P.

Output: the updated \overline{D} stores a triangulation of P.

- Merge vertices of the left and right chains in [u₁, u₂,..., u_n], sorted on their y-coordinate, leftmost breaks ties, in descending order.
 - **2** Initialize the stack S, push u_1 and u_2 onto S.
- **©** For j from 3 to n-1 do
- process vertex u_j .

The statement "process vertex u_j " is explained in the next two slides.

ional Geometry (MCS 481) Triangulating a Monotone Polycon L-8 4 February 2019 13 / 21

processing vertices on opposite chains

- **©** For j from 3 to n-1 do
- if u_j and Top(S) are on opposite chains then
 - for all $u \in \mathcal{S} \setminus \mathsf{Bottom}(\mathcal{S})$ do
- $u = \mathsf{pop}(\mathcal{S})$
- insert diagonal (u_j,u) into $\mathcal D$
- $u=\mathsf{pop}(S)$
- $\mathsf{push}(S, u_{j-1})$; $\mathsf{push}(S, u_j)$
 - else ...

The popping of all vertices and the removal of Bottom(S) corresponds to triangles splitting off.

Exercise 1: Explain why the diagonals (u_j, u) are inside P. In your proof, take into account that P is y-monotone and the processing order of the vertices.

outational Geometry (MCS 481) Triangulating a Monotone Polygon L-8 4 February 2019

processing vertices on the same chain

- else
- $n_\ell = \mathsf{pop}(S)$
- $u=u_\ell$
- while the diagonal $(u_j,u)\in P$ do
 - insert (u_j,u) into ${\cal D}$
 - $u=\mathsf{pop}(S)$
- $\mathsf{push}(S,u_\ell)$; $\mathsf{push}(S,u_j)$;
- Add diagonal from u_n to all $u \in S$ except for Top(S) and Bottom(S).

Exercise 2: Using your solution to Exercise 1 as a Lemma, prove the correctness of Algorithm TRIANGULATEMONOTONEPOLYGON.

A Cometry (MCS 481) Triangulating a Monotone Polygon Le 4 February 2019 15/21