Examen de Aprendizaje Supervisado

Instrucciones: Utiliza los archivos hospital_data.csv y
students_data.csv para responder las siguientes preguntas. Escribe tu código
en las celdas correspondientes.

1. Cargar los datos

Carga ambos archivos CSV en dos DataFrames de pandas.

```
In [2]: import pandas as pd
# Cargar los datos

df_hospital = pd.read_csv('hospital_data.csv')

df_students = pd.read_csv('students_data.csv')
```

2. Exploración inicial

Muestra las primeras 5 filas y las estadísticas descriptivas de cada conjunto de datos.

```
In [3]: # Exploración inicial hospital
display(df_hospital.head())
display(df_hospital.describe(include='all'))

# Exploración inicial students
display(df_students.head())
display(df_students.describe(include='all'))
```

	Age	Blood_Pressure	Cholesterol	Heart_Rate	Gender	Diagnosis	Smoker	
0	51	113	225	96	Male	Diabetes	No	
1	92	87	270	63	Female	Healthy	No	(
2	14	119	195	89	Male	Heart Disease	No	(
3	71	162	229	65	Male	Heart Disease	Yes	
4	60	121	203	78	Female	Heart Disease	Yes	(

		Age	Blood_Pressur	e Cholestero	l Heart_Rate	Gender	Diagno:
c	ount	1000.000000	1000.0000	00 1000.00000	0 1000.00000	1000	10
ur	ique	NaN	Na	N Na	N NaN	2	
	top	NaN	Na	N Nai	N NaN	Male	He Disea
	freq	NaN	Na	N Na	N NaN	518	2
r	nean	49.128000	128.9480	00 226.64000	0 79.92800	NaN	N
	std	29.573505	29.1330	44.69606	4 11.49282	NaN	N
	min	0.000000	80.0000	00 150.00000	0 60.00000	NaN	N
	25%	23.000000	104.0000	00 188.00000	0 70.00000	NaN	N
	50 %	50.000000	128.0000	00 228.00000	0 80.00000	NaN	N
	75 %	74.000000	154.0000	00 267.00000	0 90.00000	NaN	N
	max	99.000000	179.0000	299.00000	0 99.00000	NaN	N
	GPA	Attendance	Study_Hours	Projects_Comp	oleted M	lajor	Year
0	3.52	66	37		0 Bus	iness	Junior
1	2.06	70	13		9 Bus	iness	Senior
2	2.16	95	18		7 Engine	ering	Senior
3	1.02	65	29		8 Sci	ence Fr	eshman
4	3.07	95	4		6 Bus	iness Sop	homore
		GPA	Attendance :	Study_Hours	Projects_Comp	oleted	Major
c	ount	1000.000000	1000.000000	1000.000000	1000	0.0000	1000
ur	ique	NaN	NaN	NaN		NaN	4
	top	NaN	NaN	NaN		NaN Bu	usiness S
	freq	NaN	NaN	NaN		NaN	271
r	nean	1.989410	73.735000	19.248000	4	4.6740	NaN
	std	1.170704	14.298994	11.400722	2	2.8555	NaN
	min	0.000000	50.000000	0.000000	(0.0000	NaN
	25%	0.950000	62.000000	10.000000	7	2.0000	NaN
	50 %	2.010000	73.000000	19.000000	ļ	5.0000	NaN
	75 %	2.940000	86.000000	29.000000	-	7.0000	NaN
	max	4.000000	99.000000	39.000000	(9.0000	NaN

3. Análisis de la variable objetivo

Muestra la distribución de la variable Risk_Level en hospitaldf y Result en studentsdf.

```
In [4]: import matplotlib.pyplot as plt

# Distribución Risk_Level
df_hospital['Risk_Level'].value_counts().plot(kind='bar', title='Distribució
plt.show()

# Distribución Result
df_students['Result'].value_counts().plot(kind='bar', title='Distribución Replt.show()
```


Distribución Result

4. Preprocesamiento

- Codifica las variables categóricas.
- Normaliza las variables numéricas si es necesario.

```
In [5]: from sklearn.preprocessing import LabelEncoder, StandardScaler

# Copias para preprocesar
df_hosp = df_hospital.copy()
df_stud = df_students.copy()

# Codificar categóricas
def encode_categoricals(df, target):
    for col in df.select_dtypes(include='object').columns:
        if col != target:
            df[col] = LabelEncoder().fit_transform(df[col])
    return df

df_hosp = encode_categoricals(df_hosp, 'Risk_Level')
df_stud = encode_categoricals(df_stud, 'Result')

# Codificar variable objetivo
df_hosp['Risk_Level'] = LabelEncoder().fit_transform(df_hosp['Risk_Level'])
df_stud['Result'] = LabelEncoder().fit_transform(df_stud['Result'])
```

```
# Normalizar numéricas
def normalize(df, exclude):
    scaler = StandardScaler()
    num_cols = df.select_dtypes(include=['int64', 'float64']).columns.differ
    df[num_cols] = scaler.fit_transform(df[num_cols])
    return df

df_hosp = normalize(df_hosp, 'Risk_Level')
df_stud = normalize(df_stud, 'Result')
```

5. División de datos

Divide los datos en conjuntos de entrenamiento y prueba (80/20).

```
In [6]: from sklearn.model_selection import train_test_split

# Hospital
y_hosp = df_hosp['Risk_Level']
X_hosp = df_hosp.drop('Risk_Level', axis=1)
Xh_train, Xh_test, yh_train, yh_test = train_test_split(X_hosp, y_hosp, test

# Students
y_stud = df_stud['Result']
X_stud = df_stud.drop('Result', axis=1)
Xs_train, Xs_test, ys_train, ys_test = train_test_split(X_stud, y_stud, test
```

6. Entrenamiento de modelos

Entrena al menos dos modelos de clasificación (por ejemplo, Regresión Logística y Árbol de Decisión) para cada conjunto de datos.

```
In [7]: from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier

# Hospital
    log_hosp = LogisticRegression(max_iter=1000)
    log_hosp.fit(Xh_train, yh_train)
    dt_hosp = DecisionTreeClassifier(random_state=42)
    dt_hosp.fit(Xh_train, yh_train)

# Students
    log_stud = LogisticRegression(max_iter=1000)
    log_stud.fit(Xs_train, ys_train)
    dt_stud = DecisionTreeClassifier(random_state=42)
    dt_stud.fit(Xs_train, ys_train)
Out[7]: DecisionTreeClassifier
```

Out[7]: DecisionTreeClassifier

DecisionTreeClassifier(random_state=42)

7. Evaluación de modelos

Evalúa los modelos usando métricas como precisión, recall, F1-score y matriz de confusión.

```
In [8]: from sklearn.metrics import accuracy score, precision score, recall score, f
        def eval model(model, X, y, nombre):
            y pred = model.predict(X)
            print(f"\nEvaluación para {nombre}:")
            print("Accuracy:", accuracy score(y, y pred))
            print("Precision:", precision_score(y, y_pred, average='weighted'))
            print("Recall:", recall_score(y, y_pred, average='weighted'))
            print("F1-score:", f1_score(y, y_pred, average='weighted'))
            print("Matriz de confusión:\n", confusion matrix(y, y pred))
            print(classification report(y, y pred))
        print("--- Modelos Hospital Data ---")
        eval_model(log_hosp, Xh_test, yh_test, 'Logistic Regression (Hospital)')
        eval model(dt hosp, Xh test, yh test, 'Decision Tree (Hospital)')
        print("\n--- Modelos Students Data ---")
        eval_model(log_stud, Xs_test, ys_test, 'Logistic Regression (Students)')
        eval model(dt stud, Xs test, ys test, 'Decision Tree (Students)')
```

--- Modelos Hospital Data ---

Evaluación para Logistic Regression (Hospital):

Accuracy: 0.47

Precision: 0.48214562192697985

Recall: 0.47

F1-score: 0.4652127659574468

Matriz de confusión:

[[53 38] [68 41]]

		precision	recall	f1-score	support
	0	0.44	0.58	0.50	91
	1	0.52	0.38	0.44	109
accurac	у			0.47	200
macro av	g	0.48	0.48	0.47	200
weighted av	g	0.48	0.47	0.47	200

Evaluación para Decision Tree (Hospital):

Accuracy: 0.515

Precision: 0.5154408212560386

Recall: 0.515

F1-score: 0.5152076250912846

Matriz de confusión:

[[43 48] [49 60]]

	precision	recall	fl-score	support
Θ	0.47	0.47	0.47	91
1	0.56	0.55	0.55	109
accuracy			0.52	200
macro avg weighted avg	0.51 0.52	0.51 0.52	0.51 0.52	200 200
-				

--- Modelos Students Data ---

Evaluación para Logistic Regression (Students):

Accuracy: 0.475

Precision: 0.47225112199102415

Recall: 0.475

F1-score: 0.4730491165095174

Matriz de confusión:

[[58 49] [56 37]]

	precision	recall	f1-score	support
0 1	0.51 0.43	0.54 0.40	0.52 0.41	107 93
accuracy macro avg weighted avg	0.47 0.47	0.47 0.47	0.47 0.47 0.47	200 200 200

Evaluación para Decision Tree (Students):

Accuracy: 0.55

Precision: 0.5506516290726817

Recall: 0.55

F1-score: 0.5502709755118427

Matriz de confusión:

[[61 46] [44 49]]

	precision	recall	f1-score	support
0	0.58	0.57	0.58	107
1	0.52	0.53	0.52	93
accuracy			0.55	200
macro avg	0.55	0.55	0.55	200
weighted avg	0.55	0.55	0.55	200

8. Comparación de modelos

Compara el rendimiento de los modelos y justifica cuál elegirías para cada conjunto de datos.

Análisis de resultados para Hospital Data

Regresión Logística:

Accuracy: 0.47Precision: 0.48Recall: 0.47F1-score: 0.47

• La matriz de confusión muestra que el modelo tiene dificultades para distinguir entre las clases, con un desempeño apenas superior al azar. El recall para la clase 1 (positiva) es bajo (0.38), lo que indica que muchos casos positivos no son detectados.

Árbol de Decisión:

Accuracy: 0.52Precision: 0.52Recall: 0.52F1-score: 0.52

• El árbol de decisión mejora ligeramente el desempeño respecto a la regresión logística, pero aún así el modelo no logra una buena discriminación entre clases. El accuracy y las demás métricas apenas superan el 50%, lo

que sugiere que los datos pueden ser complejos o que se requiere mayor preprocesamiento o ajuste de hiperparámetros.

Conclusión:

 Para el conjunto de datos hospital, el árbol de decisión es preferible sobre la regresión logística, aunque ambos modelos muestran un desempeño limitado. Se recomienda explorar más el preprocesamiento, ingeniería de variables o probar otros modelos para mejorar los resultados.

Analiza las métricas de cada modelo (accuracy, precision, recall, F1-score) y justifica tu elección según el mejor desempeño y la interpretación de los resultados para cada conjunto de datos.

Rúbrica de evaluación (10 puntos):

• Carga y exploración de datos: 2 pts

• Preprocesamiento: 2 pts

División y entrenamiento: 2 pts
Evaluación y comparación: 2 pts
Análisis y justificación: 2 pts

This notebook was converted with convert.ploomber.io