Zastosowanie modelu Tile2Vec

do zbioru danych EuroSAT w wariancie multispektralnym

Natalia Choszczyk
Tymoteusz Kwieciński
Filip Langiewicz
Łukasz Lepianka
Maciej Momot

KM1

Model tile2vec

 Analogia do metod NLP, gdzie słowa o podobnym brzmieniu mają podobne znaczenie, tutaj obrazy geograficznie sąsiednie są do siebie podobne

Unsupervised

Trenujemy sieć na podstawowa (anchor), i odległa (distant)

Działa nie tylko dla danych obrazowych

Anchor, Neighbour and Distance with neighbour distance

Zbiór danych

EuroSAT multispectral

https://www.kaggle.com/datasets/apollo2506/eurosat-dataset

Wyczyszczone i opisane dane satelitarne pochodzące z satelity Sentinel-2 w wariancie wielospektralnym. Dane zawierają etykiety opisujące jakiego rodzaju jest obiekt na zdjęciu.

Annual Crop	0
Forest	1
Herbaceous Vegetation	2
Highway	3
Industrial	4
Pasture	5
Permanent Crop	6
Residential	7
River	8
Sea Lake	9

Ewaluacja wyników

- Zbiory zostały podzielone na testowy/walidacyjny/treningowy przez autorów datasetu
- Model był trenowany na zbiorze treningowym
- Klasyfikatory były trenowane na połączonym zbiorze walidacyjnym i testowym za pomocą 5-warstwowej stratyfikowanej kroswalidacji

Schema of evaluation approach

Zbiór	Rozmiar zbioru
Treningowy	19317
Walidacyjny	5119
Testowy	2759

Strojenie hiperparametrów

Rozważaliśmy i optymalizowaliśmy następujące hiperparametry:

- Rozmiar płytki
- Neighbour distance
- Sposób skalowania zmiennych

Podobnie jak autorzy artykułu nie modyfikowaliśmy:

- Wymiaru embeddingów
- Siły i sposobu regularyzacji
- Liczby epok
- Hiperparametrów optimizera

Rozmiar płytki

Wpływ różnego rozmiaru płytki na wyniki modelu

Tile size	Random Forest	Logistic regression
60	56.73±0.90%	56.43±0.97%
50	58.88±0.73%	58.95±0.77%
40	52.34±4.33%	51.60±4.23%
30	53.66±1.17%	53.44±1.09%

Skalowanie zmiennych

Skalowanie zmiennych

Wpływ skalowania obrazów na wynik klasyfikacji

Scaling type	Random Forest	Logistic regression
Default scaling	58.88±0.73%	58.95±0.77%
Band-wise scaling with outlier detection using IQR	51.01±0.86%	51.11±1.01%

Ewaluacja wyników

Porównanie różnych metod embeddingu

Embedding model	Random Forest	Logistic regression
our tile2vec	58.88±0.73%	58.95±0.77%
original tile2vec	45.80±1.50%	45.12±1.61%
PCA	73.33±0.78%	74.23±0.59%
ICA	67.54±0.42%	67.49±0.62%
K-means	75.15±0.82%	75.19±0.68%
None	79.71±1.05%	79.72±1.42%

Wizualizacja

t-SNE

Pokazuje, które punkty w danych są podobne do siebie, umieszczając podobne punkty blisko siebie na wykresie.

Wizualizacje "naszych" modeli -Tile2vec (scaling)

Wizualizacje "naszych" modeli -K-means

Czy to ma sens?

- U-Net 2014 rok
- Residual neural network (ResNet) 2015 rok
- ☐ Inception 2015 rok
- ☐ Densely Connected Convolutional Networks (DenseNet) 2017 rok
- ☐ Tile2Vec 2018 rok
- Vision transformer (ViT) 2020 rok
- □ Data Efficient Image Transformer (DeiT) 2021 rok
- ☐ Prithvi 2023 rok

Porównanie modeli

Otwarte pytania

- Jak zachowują się embeddingi modelu tile2vec, a jak innych metod redukcji wymiarowości przy zmniejszonej liczbie obserwacji?
- ☐ W jaki sposób wybór optimizera i jego hiperparametrów wpływa na model?
- Czy inne sposoby regularyzacji modelu mogą pomóc?
- Czy nowsze architektury są lepsze niż tile2vec?
- ☐ Które bandy najbardziej ułatwiają predykcje modelu?
- ☐ Jak duży wpływ na model ma wybrany podzbiór zdjęć satelity Sentinel-2?

Dziękujemy za uwagę

I zapraszamy do śledzenia postępów naszej pracy https://github.com/FilipLangiewicz/WB_projekt