Module MAU34403 Quantum mechanics I (Frolov) Homework Sheet 1

Each set of homework questions is worth 100 marks

Use Mathematica if necessary

Def. A group is a nonempty set G on which there is defined a binary operation $(a, b) \mapsto ab$, called multiplication, satisfying the following properties

- (i) Closure: If a and b belong to G, then ab is also in G.
- (ii) Associativity : a(bc) = (ab)c for all $a, b, c \in G$.
- (iii) Identity: There is an element $e \in G$ such that ae = ea = a for all a in G.
- (iv) Inverse: If $a \in G$, then there is an element $a^{-1} \in G$: $aa^{-1} = a^{-1}a = 1$.

Def. A Lie algebra is a vector space \mathcal{G} over \mathbb{C} (or \mathbb{R}) with a bilinear operation $[\cdot, \cdot]$: $\mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$ which is called a commutator or a Lie bracket, such that the following axioms are satisfied:

- (i) It is skew symmetric: $[\mathcal{J}, \mathcal{J}] = \mathcal{O}$ which implies $[\mathcal{J}, \mathcal{K}] = -[\mathcal{K}, \mathcal{J}]$ for all $\mathcal{J}, \mathcal{K} \in \mathcal{G}$
- (ii) It satisfies the Jacobi Identity: $[\mathcal{J}, [\mathcal{K}, \mathcal{L}]] + [\mathcal{K}, [\mathcal{L}, \mathcal{J}]] + [\mathcal{L}, [\mathcal{J}, \mathcal{K}]] = \mathcal{O}$ where \mathcal{O} is the zero vector of \mathcal{G} .

Given a basis \mathcal{E}_i , $i = 1, \dots, \dim \mathcal{G}$ of \mathcal{G} its Lie algebra structure is determined by commutators of the basis vectors

$$[\mathcal{E}_i, \mathcal{E}_j] = \sum_{k=1}^{\dim \mathcal{G}} c_{ij}^k \mathcal{E}_k \tag{0.1}$$

Here $c_{ij}^k \in \mathbb{C}$ (or $c_{ij}^k \in \mathbb{R}$ if \mathcal{G} over \mathbb{R}) are called the structure constants of the Lie algebra \mathcal{G} .

Compulsory Questions

Problem 1. Matrices. Find the structure constants of the algebra $Mat(n, \mathbb{C})$ with respect to the basis matrices E_{ab} , i.e. compute

$$E_{ab}E_{cd} = \sum_{ij} f_{ab,cd}^{ij} E_{ij} \tag{0.2}$$

- A. Express $f_{ab,cd}^{ij}$ as a product of the Kronecker deltas.
- B. List all nonzero structure constants $f_{ab,cd}^{ij}$ of the algebra $\operatorname{Mat}(2,\mathbb{C})$.

Problem 2. Groups. Prove that the set of all unitary $n \times n$ matrices with unit determinant forms a group. It is denoted by SU(n).

Problem 3. Lie algebras. Prove that the space of all traceless anti-hermitian $n \times n$ matrices is a Lie algebra over \mathbb{R} with the Lie bracket given by the matrix commutator. It is denoted by $\mathfrak{su}(n)$. What is the dimension of $\mathfrak{su}(n)$?

Problem 4. Bras and kets

A. Consider an $n \times n$ matrix S which acts on the canonical basis vectors as follows

$$S|1\rangle = |2\rangle, S|2\rangle = |3\rangle, \cdots S|n-1\rangle = |n\rangle, S|n\rangle = |1\rangle$$
 (0.3)

- (i) Use bras and kets to find the matrix. Write it in the form $S = \sum_{i,j=1}^{n} S_{ij} |i\rangle\langle j|$ and as a table for n=4.
- (ii) Check explicitly that it is unitary for any n by using bras and kets.
- B. Consider an $n \times n$ diagonal matrix $Q = \text{diag}(1, q, q^2, \dots, q^{n-1})$.
 - (i) If Q is unitary which condition does q satisfy?
 - (ii) If Q is traceless which condition does q satisfy?
 - (iii) Can Q be unitary and traceless?
 - (iv) Write it in the form $Q = \sum_{i,j=1}^{n} Q_{ij} |i\rangle\langle j|$.
- C. Compute SQ and QS by using bras and kets.
- D. Can q be chosen so that SQ = r QS where $r \in \mathbb{C}$, and if yes how is r related to q?

Practice Questions

Problem 1. Matrices

- (a) Prove that $\Re \operatorname{tr}(AH) = 0$ if A is anti-hermitian, and H is hermitian. Here $\Re z$ is the real part of z. What can you say about A and H if they both are real matrices?
- (b) Prove that the rows and columns of a unitary matrix constitute orthonormal sets.
- (c) Prove that the determinant of a unitary matrix is a complex number of modulus 1.

Problem 2. Groups. Prove that the set of all complex orthogonal $n \times n$ matrices with unit determinant forms a group. It is denoted by $SO(n, \mathbb{C})$.

Problem 3. Lie algebras

(a) The commutator of two square matrices A, B of the same size is

$$[A, B] \equiv AB - BA \tag{0.4}$$

Prove that it satisfies Jacobi's identity

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = O$$
(0.5)

where O denotes the zero matrix.

(b) Prove that the space of all complex anti-symmetric $n \times n$ matrices is a Lie algebra over $\mathbb C$ with the Lie bracket given by the matrix commutator. It is denoted by $\mathfrak{so}(n,\mathbb C)$. What is the dimension of $\mathfrak{so}(n,\mathbb C)$?

Problem 4. Bras and kets

- A. Compute products $\sigma^{\alpha}\sigma^{\beta}$ of the Pauli matrices by using bras and kets.
- B. Consider an $n \times n$ matrix S which acts on the canonical basis vectors as follows

$$S|1\rangle = |2\rangle$$
, $S|2\rangle = |3\rangle$, \cdots $S|n-1\rangle = |n\rangle$, $S|n\rangle = |1\rangle$ (0.6)

- (i) Use bras and kets to find the matrix.
 - Write it in the form $S = \sum_{i,j=1}^{n} S_{ij} |i\rangle\langle j|$ and as a table for n=4.
- (ii) Check explicitly that it is unitary for any n by using bras and kets.