HW 8: pages 193, #1, 2, 3, 5, 9, 10, 17

For 2(c), see Theorem 1 and Example 9 below

Make sure when you do these problems, justify the answer by either writing down the theorem name or providing a counter example.

Section 4.3 Continued

Theorem 4.4.4

If a sequence s_n converges to $s \in \mathbb{R}$, then every subsequence of $\{s_n\}$ converges to s as well.

Proof.

Assume $\{s_n\}$ converges to s.

 $\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N} \text{ st } |s_n - s| < \epsilon \text{ for } n \ge N$ (1)

Let: $\{s_{n_k}\}_{k=1}^{\infty}$ be a subsequence of $\{s_n\}$

-Side Note-

 $\forall k \in \mathbb{N}$,

if $n_k \geq k$ and k diverges to ∞ , then n_k diverges to ∞

So, for $N \in \mathbb{N}$, $\exists k \in \mathbb{N}$ st $n_k > N$ for $k \geq K$

By practice 4.4.3,

 $\lim n_k = \infty$

Thus,

 $\exists K \in \mathbb{N} \text{ st } n_k > N \text{ for } k \geq K$ (2)

From (1) and (2),

$$|s_{n_k} - s| < \epsilon \text{ for } k \ge K$$

Hence,

$$\lim_{k \to \infty} s_{n_k} = \mathbf{s}$$

Example 4.4.5 (see page 170, Ex 7(f) for a similar example) (can use this for hw)

Prove that if 0 < x < 1, then $\lim_{n \to \infty} x^{\frac{1}{n}} = 1$

Proof.

Let: $x \in \mathbb{R}$, 0 < x < 1

Define $\mathbf{s}_n = \mathbf{x}^{\frac{1}{n}}$ for $\mathbf{n} \in \mathbb{N}$

We shall prove that $\{s_n\}$ is an increasing sequence that is bounded above.

Notice that for $n \in \mathbb{N}$,

$$x^{\frac{1}{n+1}} - x^{\frac{1}{n}} = x^{\frac{1}{n+1}} (1 - x^{\frac{1}{n} - \frac{1}{n+1}})$$

$$= x^{\frac{1}{n+1}} (1 - x^{n(n+1)})$$

$$= \frac{1}{n} - \frac{1}{n+1}$$

$$= \frac{n+1-n}{n(n+1)}$$

$$= \frac{1}{n(n+1)} > 0$$

So, $s_{n+1} \ge s_n$, $\forall n \in \mathbb{N}$, i.e. $\{s_n\}$ is increasing and $s_n = x^{\frac{1}{n}} < 1 \ \forall n \in \mathbb{N}$.

By the Monotone Convergence Theorem (4.3.3?),

 $\exists s \in \mathbb{R} \text{ st}$

$$\lim_{n \to \infty} s_n = s$$

Now $\{s_{2k}\}$ is a subsequence of s_n .

By Theorem 4.4.4,

 $\lim_{k \to \infty} \mathbf{s}_{2k} = \mathbf{s}$

-Side Note

This is $\{s_{n_k}\}$ where $n_k = 2k \ \forall \ k \in \mathbb{N}$

However.

$$s_{2k} = x^{\frac{1}{2k}} = (x^{\frac{1}{k}})^{\frac{1}{2}} = \sqrt{s_k}$$

By Exercise 4.2.6,

$$\lim_{k \to \infty} \mathbf{s}_{2k} = \sqrt{s}$$

Thus,
$$s = \sqrt{s}$$

But, if a sequence converges, then the limit is unique.

So,

$$s^{2} = s$$
$$s(s-1) = 0$$
$$s = 0, 1$$

However, we know that one of those must be wrong.

Since $s_1 = x^{\frac{1}{1}} = x > 0$ and $s_n \ge s \ \forall \ n \in \mathbb{N}$,

we see that $s \neq 0$.

Hence, s = 1

Exercise 4.4.6

If $s_n = (-1)^n \ \forall \ n \in \mathbb{N}$, prove that $\{s_n\}$ diverges.

Notice that

 $s_{2k} = 1 \ \forall \ k \in \mathbb{N}$

while

 $s_{2k-1} = -1, \forall k \in \mathbb{N}$

Thus, we have subsequences $\{s_{2k}\}$, $\{s_{2k-1}\}$ st

$$\lim_{k \to \infty} s_{2k} = 1 \text{ and } \lim_{k \to \infty} s_{2k-1} = -1$$

Hence, $\{s_n\}$ diverges.

Theorem 4.4.7

Every bounded sequence has a convergent subsequence.

Proof.

Let: $\{s_n\}$ be a bounded sequence Denote S as the range of $\{s_n\}$: $S = \{s_n : n \in \mathbb{N} \}$

i) S is finite.

$$\exists \ \mathbf{k} \in \mathbb{N} \ \mathrm{st} \ \mathbf{S} = \{\mathbf{s}_1, \, \mathbf{s}_2, \, \dots \, \mathbf{s}_k\}$$

Then there is at least one element $s \in S$ at s is equal to an infinite number of terms of $\{s_n\}$. (i.e. if the range has a finite number of elements, then that means s_n jumps between each of those elements an infinite number of times. Think of 1, -1, 1, -1...)

Thus,

Choose n_1 such that $s_{n_1} = s$.

Then

Choose $n_2 > n_1$ such that $s_{n_2} = s$.

Inductively, $\exists~s_{n_k} \in \mathcal{S}$ such that $s_{n_k} = \mathcal{s}$ and $\mathcal{n}_1 < \mathcal{n}_2 < \ldots < \mathcal{n}_k$

Hence,
$$\lim_{k\to\infty} s_{n_k} = s$$

ii) S is infinite.

Since $\{s_n\}$ is bounded, S (our set described above) is also bounded.

By the Bolzano-Weierstrass Theorem, $\exists s \in S'$ (i.e. an accumulation or limit point: s)

By HW Exercise 15, page 142 (section 3.4), if $x \in S'$, then $N(x, \epsilon)$ contains an infinite number of points in S.

Thus,
$$\exists s_{n_1} \in S \text{ st } s_{n_1} \in N(s, 1) \text{ (i.e. } (s - 1, s + 1)$$

$$|s_{n_1} - \mathbf{s}| < \frac{1}{1}$$

Then,

$$\exists n_2 > n_1 \text{ st}$$

$$|s_{n_2} - \mathbf{s}| < \frac{1}{2}$$

So, inductively, we can keep doing this (i.e. for N(s, $\frac{1}{3}$), N(s, $\frac{1}{4}$), etc)

Thus,

$$|s_{n_k} - s| < \frac{1}{k}$$
 and $n_1 < n_2 < \dots < n_k$

Hence,
$$\lim_{k\to\infty} s_{n_k} = s$$

Theorem 4.4.8

Every unbounded sequence contains a monotonic sequence that diverges to ∞ or $-\infty$

Proof.

Let: $\{s_n\}$ be a sequence that is unbounded above

Then, for $m\in\mathbb{R}$, $\exists\ N\in\mathbb{N}$ st

$$s_n > m \text{ if } n \geq N$$

Notice that this implies that there are an infinite number of terms of s_n that are strictly larger than m. (If there were only a finite number of terms greater than m, then s_n wouldn't be unbounded above. There would be a largest term, which would make it have an upper bound.)

Thus,

 $\exists \ n_1 \in \mathbb{N} \ st$

 $s_{n_1} > 1$

Then,

 $\exists\ n_2>n_1\ st$

 $s_{n_2} > 2$

So, inductively, for $k \in \mathbb{N}$, $\exists n_k \in \mathbb{N}$ st

$$s_{n_k} > k$$
 where $n_1 < n_2 < ... < n_k$

Hence, for $m \in \mathbb{R}$, the AP guarantees $k \in \mathbb{N}$ st $s_{n_k} > k > m$, $\forall k \geq K$.

This implies that $\lim_{k\to\infty} s_{n_k} = \infty$

If S is bounded above, then S must be unbounded below, a similar method shows that there is a subsequence $\{s_{n_l}\}$ st $\lim_{l\to\infty} s_{n_l} = -\infty$