CS561: Artificial Intelligence

Pushpak Bhattacharyya
CSE Dept.,
IIT Patna

Fuzzy Logic 26th August 2019

Resources

- Main Text:
 - Artificial Intelligence: A Modern Approach by Russell & Norvik, Pearson, 2003.
- Other Main References:
 - Principles of AI Nilsson
 - AI Rich & Knight
 - Knowledge Based Systems Mark Stefik
- Journals
 - AI, AI Magazine, IEEE Expert,
 - Area Specific Journals e.g, Computational Linguistics
- Conferences
 - IJCAI, AAAI

Positively attend lectures!

Modeling Human Reasoning

Fuzzy Logic

Fuzzy Logic tries to capture the human ability of reasoning with imprecise information

- Works with imprecise statements such as:
 - In a process control situation, "If the temperature is moderate and the pressure is high, then turn the knob slightly right"
- The rules have "Linguistic Variables", typically adjectives qualified by adverbs (adverbs are hedges).

Linguistic Variables

- Fuzzy sets are named by Linguistic Variables (typically adjectives).
- Underlying the LV is a numerical quantity
 E.g. For 'tall' (LV), 'height' is numerical quantity.
- Profile of a LV is the plot shown in the figure shown alongside.

Example Profiles

Example Profiles

Profile representing moderate (e.g. moderately rich)

Profile representing extreme

Concept of Hedge

- Hedge is an intensifier
- Example:

$$LV = tall$$
, $LV_1 = very$ tall, $LV_2 = somewhat$ tall

'very' operation:

$$\mu_{very tall}(x) = \mu^2_{tall}(x)$$

'somewhat' operation:

$$\mu_{somewhat tal}(\mathbf{x}) = \sqrt{(\mu_{tal}(\mathbf{x}))}$$

An Example

Controlling an inverted pendulum:

$$\dot{\theta} = d\theta / dt$$
 = angular velocity

Motor ==current

The goal: To keep the pendulum in vertical position $(\theta=0)$ in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current 'i'

Controlling factors for appropriate current

Angle θ , Angular velocity θ

Some intuitive rules

If θ is +ve small and θ is -ve small

then current is zero

If θ is +ve small and θ is +ve small

then current is —ve medium

Control Matrix

θ	-ve med	-ve small	Zero	+ve small	+ve med		_
-ve med							
-ve small		+ve med	+ve small	Zero			Region of interest
Zero		+ve small	Zero	-ve small			-
+ve small		Zero	-ve small	-ve med			- -
+ve med							_
	cs561:fuzzy:pushpak						11

Each cell is a rule of the form

If
$$\theta$$
 is \iff and θ is \iff

then i is <>

4 "Centre rules"

- 1. if $\theta =$ Zero and $\theta =$ Zero then i =Zero
- 2. if θ is +ve small and $\dot{\theta} = \text{Zero then i is -ve small}$
- 3. if θ is –ve small and $\dot{\theta} = \text{Zero then i is +ve small}$
- 4. if $\theta =$ Zero and θ is +ve small then i is –ve small
- 5. if $\theta =$ Zero and θ is –ve small then i is +ve small

Alternatives to fuzzy logic model human reasoning (1/2)

Non-numerical

- Non monotonic Logic
 - Negation by failure ("innocent unless proven guilty")
 - Abduction ($P \rightarrow Q AND Q gives P$)
- Modal Logic
 - New operators beyond AND, OR, IMPLIES, Quantification etc.
- Naïve Physics

Abduction Example

If there is rain (P)

Then

there will be no picnic (Q)

Abductive reasoning:

Observation: There was no picnic(Q)

Conclude: There was rain(P); in absence

of any other evidence

Alternatives to fuzzy logic model human reasoning (2/2)

- Numerical
 - Fuzzy Logic
 - Probability Theory
 - Bayesian Decision Theory
 - Possibility Theory
 - Uncertainty Factor based on Dempster Shafer Evidence Theory (e.g. yellow_eyes→jaundice; 0.3)

Fuzzy Logic tries to capture the human ability of reasoning with imprecise information

- Works with imprecise statements such as:
 - In a process control situation, "If the temperature is moderate and the pressure is high, then turn the knob slightly right"
- The rules have "Linguistic Variables", typically adjectives qualified by adverbs (adverbs are hedges).

Theory of Fuzzy Sets

- Intimate connection between logic and set theory.
- Given any set 'S' and an element 'e', there is a very natural predicate, $\mu_s(e)$ called as the *belongingness* predicate.
- The predicate is such that,

$$\mu_s(e) = 1, & iff \ e \in S \\
= 0, & otherwise$$

- For example, $S = \{1, 2, 3, 4\}$, $\mu_s(1) = 1$ and $\mu_s(5) = 0$
- A predicate P(x) also defines a set naturally.

$$S = \{x \mid P(x) \text{ is } true\}$$

For example, $even(x)$ defines $S = \{x \mid x \text{ is even}\}$

Fuzzy Set Theory (contd.)

- Fuzzy set theory starts by questioning the fundamental assumptions of set theory viz, the belongingness predicate, μ , value is 0 or 1.
- Instead in Fuzzy theory it is assumed that,

$$\mu_s(e) = [0, 1]$$

- Fuzzy set theory is a generalization of classical set theory aka called Crisp Set Theory.
- In real life, belongingness is a fuzzy concept.

Example: Let, T = ``tallness''

$$\mu_{T}$$
(height=6.0ft) = 1.0 μ_{T} (height=3.5ft) = 0.2

An individual with height 3.5ft is "tall" with a degree 0.2

Representation of Fuzzy sets

Let
$$U = \{x_1, x_2, ..., x_n\}$$

 $|U| = n$

The various sets composed of elements from U are presented as points on and inside the n-dimensional hypercube. The crisp sets are the corners of the hypercube. $\mu_A(x_1)=0.3$

$$U=\{x_1,x_2\}$$

A fuzzy set A is represented by a point in the n-dimensional space as the point $\{\mu_A(x_1), \mu_A(x_2), \mu_A(x_3)\}$

Degree of fuzziness

The centre of the hypercube is the *most fuzzy* set. Fuzziness decreases as one nears the corners

Measure of fuzziness

Called the entropy of a fuzzy set

Fuzzy set Farthest corner
$$E(S) = d(S, nearest) / d(S, farthest)$$
Entropy Nearest corner

cs561:fuzzy:pushpak

Definition

Distance between two fuzzy sets

$$d(S_1, S_2) = \sum_{i=1}^{n} |\mu_{s_1}(x_i) - \mu_{s_2}(x_i)|$$

$$L_1 - \text{norm}$$

Let C = fuzzy set represented by the centre point

$$d(c,nearest) = |0.5-1.0| + |0.5 - 0.0|$$

= 1
= $d(C,farthest)$

=> E(C) = 1

cs561:fuzzy:pushpak

Definition

Cardinality of a fuzzy set

$$m(s) = \sum_{i=1}^{n} \mu_s(x_i)$$
 (generalization of cardinality of classical sets)

Union, Intersection, complementation, subset hood

$$\mu_{s_1 \cup s_2}(x) = \max(\mu_{s_1}(x), \mu_{s_2}(x)), \forall x \in U$$

$$\mu_{s_1 \cap s_2}(x) = \min(\mu_{s_1}(x), \mu_{s_2}(x)), \forall x \in U$$

$$\mu_{s^c}(x) = 1 - \mu_s(x)$$

Example of Operations on Fuzzy Set

- Let us define the following:
 - Universe U={X₁,X₂,X₃}
 - Fuzzy sets
 - $A = \{0.2/X_1, 0.7/X_2, 0.6/X_3\}$ and
 - $B = \{0.7/X_1, 0.3/X_2, 0.5/X_3\}$

Then Cardinality of A and B are computed as follows:

Cardinality of
$$A=|A|=0.2+0.7+0.6=1.5$$

Cardinality of
$$B=|B|=0.7+0.3+0.5=1.5$$

While distance between A and B

$$d(A,B)=|0.2-0.7|+|0.7-0.3|+|0.6-0.5|=1.0$$

What does the cardinality of a fuzzy set mean? In crisp sets it means the number of elements in the set.

Example of Operations on Fuzzy Set (cntd.)

Universe U={
$$X_1$$
, X_2 , X_3 }
Fuzzy sets A={ $0.2/X_1$, $0.7/X_2$, $0.6/X_3$ } and B={ $0.7/X_1$, $0.3/X_2$, $0.5/X_3$ }

A U B=
$$\{0.7/X_1, 0.7/X_2, 0.6/X_3\}$$

$$A \cap B = \{0.2/X_1, 0.3/X_2, 0.5/X_3\}$$

$$A^{c} = \{0.8/X_{1}, 0.3/X_{2}, 0.4/X_{3}\}$$

Laws of Set Theory

- The laws of Crisp set theory also holds for fuzzy set theory (verify them)
- These laws are listed below:
 - Commutativity: $A \cup B = B \cup A$
 - Associativity: A U (B U C)=(A U B) U C
 - Distributivity: A U (B \cap C)=(A \cap C) U (B \cap C)
 - $A \cap (B \cup C) = (A \cup C) \cap (B \cup C)$
 - De Morgan's Law: (A U B) C = A^{C} ∩ B^{C}
 - $(A \cap B)^{c} = A^{c} \cup B^{c}$

Distributivity Property Proof

• Let Universe $U = \{x_1, x_2, ... x_n\}$ $p_i = \mu_{AU(B \cap C)}(x_i)$ $= max[\mu_A(x_i), \mu_{(B \cap C)}(x_i)]$ $= max[\mu_A(x_i), min(\mu_B(x_i), \mu_C(x_i))]$ $q_i = \mu_{(AUB) \cap (AUC)}(x_i)$ $= min[max(\mu_A(x_i), \mu_B(x_i)), max(\mu_A(x_i), \mu_C(x_i))]$

Distributivity Property Proof

```
• Case I: 0 < \mu_C < \mu_B < \mu_A < 1
      p_i = max[\mu_A(x_i), min(\mu_B(x_i), \mu_C(x_i))]
          = \max[\mu_{\Delta}(x_i), \mu_{C}(x_i)] = \mu_{\Delta}(x_i)
     q_i = min[max(\mu_A(x_i), \mu_B(x_i)), max(\mu_A(x_i), \mu_C(x_i))]
         = min[\mu_A(x_i), \mu_A(x_i)]=\mu_A(x_i)
• Case II: 0 < \mu_C < \mu_A < \mu_B < 1
      p_i = max[\mu_A(x_i), min(\mu_B(x_i), \mu_C(x_i))]
          = \max[\mu_{A}(x_{i}), \mu_{C}(x_{i})] = \mu_{A}(x_{i})
     q_i = min[max(\mu_A(x_i), \mu_B(x_i)), max(\mu_A(x_i), \mu_C(x_i))]
          = min[\mu_B(x_i), \mu_A(x_i)]=\mu_A(x_i)
      Prove it for rest of the 4 cases.
```

Note on definition by extension and intension

$$S_1 = \{x_i | x_i \mod 2 = 0 \}$$
 – Intension
 $S_2 = \{0,2,4,6,8,10,...\}$ – extension

How to define subset hood?

Meaning of fuzzy subset

Suppose, following classical set theory we say

$$B \subset A$$

if

$$\mu_B(x) \le \mu_A(x) \forall x$$

Consider the n-hyperspace representation of A and B

cs561:fuzzy:pushpak

This effectively means

$$B \in P(A)$$
 CRISPLY

$$P(A)$$
 = Power set of A

Eg: Suppose

$$A = \{0,1,0,1,0,1,\dots,0,1\} - 10^4$$
 elements

$$B = \{0,0,0,1,0,1,\dots,0,1\} - 10^4$$
 elements

Isn't $B \subset A$ with a degree? (only differs in the 2nd element)

Subset operator is the "odd man" out

- AUB, A∩B, A^c are all "Set Constructors" while A \subseteq B is a Boolean Expression or predicate.
- According to classical logic
 - In Crisp Set theory A ⊆ B is defined as

$$\forall x \ x \in A \Rightarrow x \in B$$

So, in fuzzy set theory A ⊆ B can be defined as

$$\forall x \quad \mu_A(x) \Rightarrow \mu_B(x)$$

Zadeh's definition of subsethood goes against the grain of fuzziness theory

■ Another way of defining A

B is as follows:

$$\forall x \ \mu_A(x) \leq \mu_B(x)$$

But, these two definitions imply that $\mu_{P(B)}(A)=1$ where P(B) is the power set of B

Thus, these two definitions violate the fuzzy principle that every belongingness except Universe is fuzzy

Fuzzy definition of subset

Measured in terms of "fit violation", i.e. violating the condition $\mu_B(x) \le \mu_A(x)$

Degree of subset hood S(A,B)=1 - degree of superset

$$= 1 - \frac{\sum_{x} \max(0, \mu_B(x) - \mu_A(x))}{m(B)}$$

$$m(B) = cardinality of B$$

= $\sum_{x} \mu_B(x)$

We can show that $E(A) = S(A \cup A^c, A \cap A^c)$

Exercise 1:

Show the relationship between entropy and subset hood

Exercise 2:

Prove that

$$S(B,A) = m(A \cap B) / m(B)$$

Subset hood of B in A

Fuzzy sets to fuzzy logic

Forms the foundation of fuzzy rule based system or fuzzy expert system

Expert System

Rules are of the form

<u>If</u>

$$C_1 \wedge C_2 \wedge \dots C_n$$

then

 A_i

Where C_i s are conditions

Eg: C_1 =Colour of the eye yellow

 C_2 = has fever

 C_3 =high bilurubin

A =hepatitis

In fuzzy logic we have fuzzy predicates

Classical logic

$$P(x_1, x_2, x_3, \dots, x_n) = 0/1$$

Fuzzy Logic

$$P(x_1,x_2,x_3,...,x_n) = [0,1]$$

Fuzzy OR

$$P(x) \lor Q(y) = \max(P(x), Q(y))$$

Fuzzy AND

$$P(x) \land Q(y) = \min(P(x), Q(y))$$

Fuzzy NOT

$$\sim P(x) = 1 - P(x)$$

Fuzzy Implication

- Many theories have been advanced and many expressions exist
- The most used is Lukasiewitz formula
- t(P) = truth value of a proposition/predicate. In fuzzy logic t(P) = [0,1]
- $t(P \rightarrow Q) = \min[1, 1 t(P) + t(Q)]$

Lukasiewitz definition of implication

Fuzzy Implication

- Many theories have been advanced and many expressions exist
- The most used is Lukasiewitz formula
- t(P) = truth value of a proposition/predicate. In fuzzy logic t(P) = [0,1]
- $t(P \rightarrow Q) = \min[1, 1 t(P) + t(Q)]$

Lukasiewitz definition of implication

Linguistic Variables

- Fuzzy sets are named by Linguistic Variables (typically adjectives).
- Underlying the LV is a numerical quantity
 E.g. For 'tall' (LV), 'height' is numerical quantity.
- Profile of a LV is the plot shown in the figure shown alongside.

Example Profiles

Example Profiles

Profile representing moderate (e.g. moderately rich)

Profile representing extreme

Concept of Hedge

- Hedge is an intensifier
- Example:

$$LV = tall, LV_1 = very tall, LV_2 = somewhat tall$$

'very' operation:

$$\mu_{very tall}(x) = \mu^2_{tall}(x)$$

'somewhat' operation:

$$\mu_{somewhat tal}(\mathbf{x}) = \sqrt{(\mu_{tal}(\mathbf{x}))}$$

Fuzzy Inferencing

- Two methods of inferencing in classical logic
 - Modus Ponens
 - Given p and $p \rightarrow q$, infer q
 - Modus Tolens
 - Given $\sim q$ and $p \rightarrow q$, infer $\sim p$
- How is fuzzy inferencing done?

A look at reasoning

- Deduction: $p, p \rightarrow q/-q$
- Induction: *p*₁, *p*₂, *p*₃, .../- for_all *p*
- Abduction: $q, p \rightarrow q/-p$
- Default reasoning: Non-monotonic reasoning: Negation by failure
 - If something cannot be proven, its negation is asserted to be true
 - E.g., in Prolog

Fuzzy Modus Ponens in terms of truth values

- Given t(p)=1 and $t(p\rightarrow q)=1$, infer t(q)=1
- In fuzzy logic,
 - given *t(p)>=a, 0<=a<=1*
 - and $t(p \rightarrow >q)=c$, 0 <=c <=1
 - What is *t(q)*
- How much of truth is transferred over the channel

$$ho \ \square \hspace{-0.5cm}
ightarrow \hspace{-0.5cm} q$$

Lukasiewitz formula for Fuzzy Implication

- t(P) = truth value of a proposition/predicate. In fuzzy logic t(P) = [0,1]
- $t(P \rightarrow Q) = \min[1, 1 t(P) + t(Q)]$

Lukasiewitz definition of implication

Use Lukasiewitz definition

- $t(p \rightarrow q) = min[1, 1 t(p) + t(q)]$
- We have t(p->q)=c, i.e., min[1,1-t(p)+t(q)]=c
- Case 1:
- c=1 gives 1 t(p) + t(q) > = 1, i.e., t(q) > = a
- Otherwise, 1 t(p) + t(q) = c, i.e., $t(q) \ge c + a 1$
- Combining, t(q) = max(0, a+c-1)
- This is the amount of truth transferred over the channel $p \rightarrow q$

Two equations consistent

$$\begin{split} Sub(B,A) &= 1 - Sup(B,A) \\ &= \sum_{x_i \in U} \max(0, \mu_B(x_i) - \mu_A(x_i)) \\ &= 1 - \frac{\sum_{x_i \in U} \mu_B(x_i)}{\sum_{x_i \in U} \mu_B(x_i)} \end{split} \qquad \text{where } U = \{x_1, x_2, ..., x_n\} \\ t(\mu_B(x_i) \to \mu_A(x_i)) &= \min(1, 1 - t(\mu_B(x_i)) + t(\mu_A(x_i))) \end{split}$$

These two equations are consistent with each other

Proof

Let us consider two crisp sets A and B

Proof (contd...)

Case I:

$$\mu_A(x_i) = 1$$
 only when $\mu_B(x_i) = 1$ So, $\mu_B(x_i) - \mu_A(x_i) <= 0$

So,

$$Sub(B, A) = 1 - \frac{\sum_{x_i \in U} \max(0, \mu_B(x_i) - \mu_A(x_i))}{\sum_{x_i \in U} \mu_B(x_i)}$$

$$=1-\frac{0}{\sum_{x_i \in U} \mu_B(x_i)} = 1$$

Proof (contd...)

Since
$$\mu_B(x_i) \to \mu_A(x_i) \le 0$$

 $L = t(\mu_B(x_i) \to \mu_A(x_i)) = \min(1, 1 - (t(\mu_B(x_i)) - t(\mu_A(x_i))))$
 $= \min(1, 1 - (-ve)) = 1$

- Thus, in case I these two equations are consistent with each other
- Prove them for other three cases

Fuzzy Inferencing

- Two methods of inferencing in classical logic
 - Modus Ponens
 - Given p and $p \rightarrow q$, infer q
 - Modus Tolens
 - Given $\sim q$ and $p \rightarrow q$, infer $\sim p$
- How is fuzzy inferencing done?

A look at reasoning

- Deduction: $p, p \rightarrow q/-q$
- Induction: *p*₁, *p*₂, *p*₃, .../- for_all *p*
- Abduction: $q, p \rightarrow q/-p$
- Default reasoning: Non-monotonic reasoning: Negation by failure
 - If something cannot be proven, its negation is asserted to be true
 - E.g., in Prolog

Fuzzy Modus Ponens in terms of truth values

- Given t(p)=1 and $t(p\rightarrow q)=1$, infer t(q)=1
- In fuzzy logic,
 - given t(p)>=a, 0<=a<=1</p>
 - and $t(p \rightarrow >q)=c$, 0 <=c <=1
 - What is *t(q)*
- How much of truth is transferred over the channel

$$ho \ \square \hspace{-0.5cm}
ightarrow \hspace{-0.5cm} q$$

Lukasiewitz formula for Fuzzy Implication

- t(P) = truth value of a proposition/predicate. In fuzzy logic t(P) = [0,1]
- $t(P \rightarrow Q) = \min[1, 1 t(P) + t(Q)]$

Lukasiewitz definition of implication

Use Lukasiewitz definition

- $t(p \rightarrow q) = min[1, 1 t(p) + t(q)]$
- We have t(p->q)=c, i.e., min[1,1-t(p)+t(q)]=c
- Case 1:
- c=1 gives 1 t(p) + t(q) > = 1, i.e., t(q) > = a
- Otherwise, 1 t(p) + t(q) = c, i.e., $t(q) \ge c + a 1$
- Combining, t(q) = max(0, a+c-1)
- This is the amount of truth transferred over the channel $p \rightarrow q$

ANDING of Clauses on the LHS of implication

$$t(P \wedge Q) = \min(t(P), t(Q))$$

Eg: If pressure is high then Volume is low

$$t(high(pressure) \rightarrow low(volume))$$

Pressure/Volume

An Example

Controlling an inverted pendulum:

$$\dot{\theta} = d\theta / dt$$
 = angular velocity

Motor ← i=current

The goal: To keep the pendulum in vertical position $(\theta=0)$ in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current 'i'

Controlling factors for appropriate current

Angle θ , Angular velocity θ

Some intuitive rules

If θ is +ve small and θ is -ve small

then current is zero

If θ is +ve small and θ is +ve small

then current is —ve medium

Control Matrix

θ	-ve med	-ve small	Zero	+ve small	+ve med		
-ve med							
-ve small		+ve med	+ve small	Zero			Region of interest
Zero		+ve small	Zero	-ve small			•
+ve small		Zero	-ve small	-ve med			·
+ve med							_
cs561:fuzzy:pushpak							62

Each cell is a rule of the form

If
$$\theta$$
 is \iff and θ is \iff

then i is <>

4 "Centre rules"

- 1. if $\theta =$ Zero and $\theta =$ Zero then i =Zero
- 2. if θ is +ve small and $\theta' = \mathbb{Z}$ ero then i is -ve small
- 3. if θ is –ve small and $\dot{\theta} = \text{Zero then i is +ve small}$
- 4. if $\theta =$ Zero and θ is +ve small then i is –ve small
- 5. if $\theta =$ Zero and θ is –ve small then i is +ve small

Linguistic variables

- 1. Zero
- 2. +ve small
- 3. -ve small

Inference procedure

- Read actual numerical values of θ and θ
- Get the corresponding μ values μ_{Zero} , $\mu_{(+ve\ small)}$, $\mu_{(-ve\ small)}$. This is called FUZZIFICATION
- For different rules, get the fuzzy I-values from the R.H.S of the rules.
- 4. "Collate" by some method and get <u>ONE</u> current value. This is called DEFUZZIFICATION
- 5. Result is one numerical value of 'i'.

Rules Involved

if θ is Zero and $d\theta/dt$ is Zero then i is Zero if θ is Zero and $d\theta/dt$ is +ve small then i is -ve small if θ is +ve small and $d\theta/dt$ is Zero then i is -ve small if θ +ve small and $d\theta/dt$ is +ve small then i is -ve medium

Fuzzification

Suppose θ is 1 radian and $d\theta/dt$ is 1 rad/sec $\mu_{zero}(\theta=1)=0.8$ (say) $M_{+ve\text{-small}}(\theta=1)=0.4$ (say) $\mu_{zero}(d\theta/dt=1)=0.3$ (say) $\mu_{+ve\text{-small}}(d\theta/dt=1)=0.7$ (say)

Fuzzification

Suppose θ is 1 radian and $d\theta/dt$ is 1 rad/sec

```
\mu_{zero}(\theta = 1) = 0.8 (say)
 \mu_{\text{+ve-small}}(\theta = 1) = 0.4 \text{ (say)}
 \mu_{zero}(d\theta/dt=1)=0.3 (say)
 \mu_{\text{+ve-small}}(d\theta/dt=1)=0.7 \text{ (say)}
if \theta is Zero and d\theta/dt is Zero then i is Zero
    min(0.8, 0.3)=0.3
          hence \mu_{zero}(i) = 0.3
if \theta is Zero and d\theta/dt is +ve small then i is -ve small
    min(0.8, 0.7)=0.7
          hence \mu_{-ve-small}(i)=0.7
if \theta is +ve small and d\theta/dt is Zero then i is -ve small
    min(0.4, 0.3)=0.3
          hence \mu-ve-small(i)=0.3
if \theta +ve small and d\theta/dt is +ve small then i is -ve medium
    min(0.4, 0.7)=0.4
          hence \mu_{-ve-medium}(i)=0.4
```

Finding *i*

Possible candidates:

i=0.5 and -0.5 from the "zero" profile and μ =0.3 i=-0.1 and -2.5 from the "-ve-small" profile and μ =0.3 i=-1.7 and -4.1 from the "-ve-small" profile and μ =0.3

Defuzzification: Finding *i* by the *centroid* method

Possible candidates:

i is the x-coord of the centroid of the areas given by the blue trapezium, the green trapeziums and the black trapezium