Trigonométrie 1/2

I – Cercle trigonométrique

A – Définition

- Dans le plan muni d'un repère orthonormé $(O;\overrightarrow{i};\overrightarrow{j})$ et orienté dans le sens direct, le cercle trigonométrique est le cercle de centre O et de rayon 1.
- Sur un cercle, on appelle sens direct le sens contraire des aiguilles d'une montre.

<u>B – Enroulement d'une droite autour du cercle trigonométrique</u>

Dans un repère orthonormé ($O; \vec{\iota}, \vec{j}$), on considère le cercle trigonométrique et une droite (AC) tangente au cercle en A et orientée telle que ($A; \vec{j}$) soit un repère de la droite. Si l'on « enroule » la droite autour du cercle, on associe à tout point de la droite orientée un unique point du cercle. La longueur de l'arc AJ, est ainsi égale à la longueur AG

<u>II – Radian</u>

A – Définition

La longueur du cercle trigonométrique étant égale à 2π , on peut définir une nouvelle unité d'angle le radian, tel qu'un tour complet mesure 360° ou 2π radians. On appelle donc radian, noté rad, la mesure de l'angle au centre qui intercepte un arc de longueur 1 du cercle.

B – Conversions degrés/radian

$$180 = \pi \text{ radian}$$

90° =
$$\frac{\pi}{2}$$
 radian

$$45^{\circ} = \frac{\pi}{4}$$
 radian

III – Angles orientés

A - Plusieurs enroulements possibles

A plusieurs points de la droite orientée on peut faire correspondre un même point du cercle. La droite orientée peut en effet s'enrouler **plusieurs** fois autour du cercle dans un **sens et dans l'autre**.

Ci-contre, les points N et G d'abscisses $\frac{3\pi}{4}$ et $-\frac{5n}{4}$ correspondent tous les deux au point M. En effet : Plusieurs points de la droite peuvent donc avoir la même position sur le cercle.

B - Mesure principale d'un angle

- La mesure principale d'un angle orienté est la mesure, qui parmi toutes les autres, se situe dans l'intervalle] $-\pi;\pi]$
- Si est une mesure de l'angle $(\overrightarrow{i};\overrightarrow{OM})$ alors tout angle de la forme $\theta + k \times 2\pi$, avec $k \in \mathbb{Z}$, est une mesure de l'angle $(\overrightarrow{i};\overrightarrow{OM})$.
- On dit que l'angle $(\overrightarrow{i};\overrightarrow{OM})$ est égal à modulo 2.