```
PGP AI & ML - Cohort 5 - Tamal Acharya
 In [ ]:
# Data manipulation
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
# Visualization
import matplotlib.pyplot as plt
import seaborn as sns
# Set a few plotting defaults
%matplotlib inline
 In [ ]:
 In [3]:
# Read in data
movie = pd.read_csv('C:/Users/Tamal/Downloads/1567507480_amazonmoviesandtvratings/Amazon - Movies and TV
 Ratings.csv')
movie.head()
            user_id Movie1 Movie2 Movie3 Movie4 Movie5 Movie6 Movie7 Movie8 Movie9 ... Movie197 Movie198
                                                                                                            N
 0 A3R5OBKS7OM2IR
                                                                                          NaN
                   5.0
                           5.0
                                  NaN
                                          NaN
                                                 NaN
                                                         NaN
                                                                NaN
                                                                        NaN
                                                                               NaN
                                                                                                   NaN
                                                                                                             Ν
 1 AH3QC2PC1VTGP
                           NaN
                                  2.0
                                          NaN
                                                         NaN
                                                                        NaN
                                                                               NaN
                                                                                          NaN
 2 A3LKP6WPMP9UKX NaN
                           NaN
                                  NaN
                                          5.0
                                                 NaN
                                                         NaN
                                                                NaN
                                                                       NaN
                                                                               NaN
                                                                                          NaN
                                                                                                   NaN
                                                                                                            Ν
 3 AVIY68KEPQ5ZD
                   NaN
                           NaN
                                  NaN
                                          5.0
                                                 NaN
                                                        NaN
                                                                NaN
                                                                       NaN
                                                                               NaN
                                                                                          NaN
                                                                                                   NaN
                                                                                                            Ν
 4 A1CV1WROP5KTTW NaN
                           NaN
                                  NaN
                                          NaN
                                                         NaN
                                                                NaN
                                                                       NaN
                                                                               NaN
                                                                                          NaN
5 rows × 207 columns
 In [4]:
movie.describe().transpose()['count'].sort_values(ascending=False)
           2313.0
  Movie127
  Movie140
           578.0
           320.0
  Movie16
  Movie103
           272.0
  Movie29
           243.0
  Movie68
             1.0
  Movie69
             1.0
  Movie145
             1.0
  Movie71
             1.0
  Movie1
             1.0
  Name: count, Length: 206, dtype: float64
```

```
In [5]:
movie.describe().transpose()['mean']
  Movie1
            5.000000
  Movie2
            5.000000
            2.000000
  Movie3
            5.000000
  Movie4
  Movie5
            4.103448
           4.333333
  Movie202
 Movie203
           3.000000
  Movie204
            4.375000
  Movie205
           4.628571
 Movie206
           4.923077
  Name: mean, Length: 206, dtype: float64
```

```
In [6]:

movie[movie.columns[1:207]].sum().sort_values(ascending=False)[:5]

Movie127 9511.0

Movie140 2794.0

Movie16 1446.0

Movie103 1241.0

Movie29 1168.0

dtype: float64
```

Q1. Which movies have maximum views/ratings?

```
In [8]:
movie.describe().T
```

	count	mean	std	min	25%	50%	75%	max		
Movie1	1.0	5.000000	NaN	5.0	5.00	5.0	5.0	5.0		
Movie2	1.0	5.000000	NaN	5.0	5.00	5.0	5.0	5.0		
Movie3	1.0	2.000000	NaN	2.0	2.00	2.0	2.0	2.0		
Movie4	2.0	5.000000	0.000000	5.0	5.00	5.0	5.0	5.0		
Movie5	29.0	4.103448	1.496301	1.0	4.00	5.0	5.0	5.0		
Movie202	6.0	4.333333	1.632993	1.0	5.00	5.0	5.0	5.0		
Movie203	1.0	3.000000	NaN	3.0	3.00	3.0	3.0	3.0		
Movie204	8.0	4.375000	1.407886	1.0	4.75	5.0	5.0	5.0		
Movie205	35.0	4.628571	0.910259	1.0	5.00	5.0	5.0	5.0		
Movie206	13.0	4.923077	0.277350	4.0	5.00	5.0	5.0	5.0		
206 rows × 8 columns										

```
In [11]:

movie.describe().T["count"].sort_values(ascending = False).head()

Movie127 2313.0

Movie140 578.0

Movie16 320.0

Movie103 272.0

Movie29 243.0

Name: count, dtype: float64
```

From the above table it is clear that "Movie 127" is having maximum views (2313 views)

Q2. What is the average rating for each movie? Define the top 5 movies with the maximum ratings.

```
In [22]:
movie.drop('user_id',axis=1).mean()
  Movie1
            5.000000
  Movie2
           5.000000
            2.000000
  Movie3
            5.000000
  Movie4
  Movie5
           4.103448
           4.333333
  Movie202
           3.000000
 Movie203
  Movie204
            4.375000
  Movie205
           4.628571
 Movie206
           4.923077
  Length: 206, dtype: float64
```

From the above table, the average ratings of each movie is given and it is between 2 to 5

```
In [20]:

#Top 5 movies with max total ratings
movie.drop('user_id',axis=1).sum().sort_values(ascending=False).head()

Movie127 9511.0
Movie140 2794.0
Movie16 1446.0
Movie103 1241.0
Movie29 1168.0
dtype: float64
```

```
In [26]:
#Top 5 movies with max average ratings
movie.drop('user_id',axis=1).mean().sort_values(ascending=False).head()

Movie1     5.0
     Movie55     5.0
     Movie131     5.0
     Movie132     5.0
     Movie133     5.0
     dtype: float64
```

From the above table it is clear that "Movie 127" is having maximum rating (9511)

Q3. Define the top 5 movies with the least audience.

```
In [24]:

#Count the NaN fields

movie.drop('user_id',axis=1).isna().sum().sort_values(ascending=False).head()

Movie1 4847

Movie154 4847

Movie67 4847

Movie66 4847

Movie66 4847

Movie13 4847

dtype: int64
```

```
In [30]:
# Top 5 Movies with least audience
movie.drop('user_id',axis=1).fillna(movie.mean(axis=0)).min().head()
 Movie1
         5.0
 Movie2
         5.0
 Movie3
         2.0
         5.0
 Movie4
 dtype: float64
In [34]:
movie_min=movie.drop('user_id',axis=1).fillna(movie.mean(axis=0)).min().to_frame('Min_Ratings')
movie_min_least = movie_min[movie_min.Min_Ratings <= 1]</pre>
#dmin=dmin.sort_values(by=[Index],ascending = True)
movie_min_least.head()
        Min_Ratings
 Movie5
 Movie16 1.0
 Movie26 1.0
 Movie29 1.0
 Movie45 1.0
In [35]:
#Count the NaN fields
movie.drop('user_id',axis=1).isna().sum().sort_values(ascending=False).head()
 Movie1
           4847
 Movie154
          4847
 Movie67
           4847
 Movie13
 dtype: int64
```

From the above two tables it is clear the top 5 movies with least audience.

Recommendation Model: Some of the movies hadn't been watched and therefore, are not rated by the users. Netflix would like to take this as an opportunity and build a machine learning recommendation algorithm which provides the ratings for each of the users.

- Q4. Divide the data into training and test data
- Q5. Build a recommendation model on training data
- Q6. Make predictions on the test data

```
In []:
#Q4. Divide the data into training and test data

In [42]:
movie_final = movie.fillna(0)
movie_final.set_index('user_id',inplace=True)
#df_user_moviesratings_and_views_final
from sklearn.model_selection import train_test_split
movie_final_train,movie_final_test= train_test_split(movie_final,test_size=0.25,random_state=42)

In [37]:
#Shape of train and test set
print(movie_final_train.shape)
print(movie_final_train.shape)
print(movie_final_test.shape)

(3636, 206)
(1212, 206)
```

```
In [ ]:
#Q5. Build a recommendation model on training data
In [38]:
import numpy as np
matrix_training = np.array(movie_final_train)
matrix_testing = np.array(movie_final_test)
from sklearn.metrics.pairwise import pairwise_distances
user_similarity_training = pairwise_distances(matrix_training, metric='cosine')
user similarity testing = pairwise distances(matrix testing, metric='cosine')
user_similarity_training
 array([[0., 1., 1., ..., 1., 1., 1.],
       [1., 0., 0., ..., 0., 0., 1.],
       [1., 0., 0., ..., 0., 0., 1.],
       [1., 0., 0., ..., 0., 0., 1.],
       [1., 0., 0., ..., 0., 0., 1.],
       [1., 1., 1., ..., 1., 1., 0.]])
 In [ ]:
#Q6. Make predictions on the test data
In [40]:
def make prediction(rating matrix, similarity, type='user'):
    mean user rating = rating matrix.mean(axis=1)
    rating_difference = (rating_matrix - mean_user_rating[:, np.newaxis])
    pred = mean_user_rating[:, np.newaxis] + similarity.dot(rating_difference) / np.array([np.abs(similar
ity).sum(axis=1)]).T
    return pred
predict_train_set = make_prediction(matrix_training,user_similarity_training,type='user')
predict train set
  {\sf array}([[0.00417715,\ 0.00417715,\ 0.00324141,\ \dots,\ 0.01322262,\ 0.03755183,
       [0.00334392, 0.00334392, 0.00174392, ..., 0.01881062, 0.06041071,
        0.02414396],
       [0.00334392, 0.00334392, 0.00174392, ..., 0.01881062, 0.06041071,
       [0.00334392, 0.00334392, 0.00174392, ..., 0.01881062, 0.06041071,
       [0.00334392, 0.00334392, 0.00174392, ..., 0.01881062, 0.06041071,
       [0.0038696 , 0.0038696 , 0.00302186, ..., 0.01206441, 0.03410561,
        0.0148902 ]])
In [41]:
predict test set = make prediction(matrix testing, user similarity testing, type='user')
predict_test_set
  array([[ 0.00240065, 0.00240065, 0.00240065, ..., 0.00333796,
         0.04926633, 0.02114692],
       [-0.01869911, -0.01869911, -0.01869911, ..., -0.01720574,
         0.05596953, 0.01116835],
       [ 0.00233722, 0.00233722, 0.00233722, ..., 0.00317997,
        0.04447472, 0.01919222],
       [-0.01869911, -0.01869911, -0.01869911, ..., -0.01720574,
         0.05596953, 0.01116835],
       [\ 0.00071837,\ 0.00071837,\ 0.00071837,\ \dots,\ 0.000221174,
         0.075387 , 0.03058582],
       [ 0.00071837, 0.00071837, 0.00071837, ..., 0.00221174,
         0.075387 , 0.03058582]])
```

In []:			
In []:			
In []:			