- Homework for Module 4 Part 2

Quiz, 9 questions

1 point

1.

(Difficulty: ★) Consider the following causal CCDE

$$y[n] + 2y[n-1] = 3x[n] + 2.5x[n-1].$$

Which of the following statements are correct?

Its ROC contains the unit circle.

If the input signal is $\delta[n]-\delta[n+1]$, then the z-transform of the output would be $(-3z+1/2+5/2z^{-1})/(1+2z^{-1}).$

It has two poles at -2 and $\frac{-5}{6}$.

The system is stable.

1 point

2.

(Difficulty: **) Suppose that the ROC of the sequence x[n] is $r_L < |z| < r_U$. What is the ROC of $x^*[-n]$?

 $\bigcap \quad r_L < |z| < r_U$

 $igcap r_U < |z| < r_L$

 $\frac{1}{r_U} < |z| < \frac{1}{r_I}$

1 point

3.

(Difficulty: \star) Consider an LTI system h[n], whose transfer function's ROC is R_h . Consider a second LTI system g[n] with ROC R_g . Now consider the cascade of the two filters.

What is the ROC of the cascade?

igcap 1 It contains $R_g \cup R_h.$

9/201	Digital Signal Processing - Home Coursera	
•	It is only R_g . Nework for Module 4 Part 2 It is only R_h .	
	It contains $R_g \cap R_h.$	
	4. (Difficulty: \star) Consider the following CCDE $y[n] - \frac{1}{2}y[n-1] = 2x[n] - 5x[n-1] - x[n-2] .$	
	Let $H(e^{j\omega})$ denote the transfer function of this system. What is $H(e^{j\pi})$?	
	1 point	
	 (Difficulty: ★★) Write some code in your preferred programming language that implements the following CCDE: 	
	$y[n] + 2y[n-1] = x[n+1] - rac{1}{2}x[n]$	
	Use $y[n]=0$ for $n<0$ as initial conditions and run the algorithm for $x[n]=\delta[n]+rac{1}{2}\delta[n-1].$	
	y[5]=1	
	The filter is stable but the output $y[n]$ diverges because of the chosen input $x[n]$	

The filter is stable but the output y[n] diverges because of the chosen input x[n].

The output shows a diverging oscillation around zero: as n grows, it assumes always larger values with alternated signs.

The filter is mathematically unstable. Even in practice, you can see the output diverging $|y[50]| > 10^{13}$.

y[4] = 2

1 point

6.

(Difficulty: $\star\star\star$) A filter H(z) has the following pole-zero plot:

Homework for Module 4 Part 2 Pole/Zero Plot

Which of the following figures shows the magnitude response of the filter? Assume an implementation where the "internal clock" is $T_s=1s$ so that the frequency axis is labeled in Hz and 1Hz corresponds to the digital frequency of $\omega=1$ radians.

Magnitude response

Magnitude response

Magnitude response

Magnitude response

Magnitude response

1 point

7.

(Difficulty: $\star\star$) Let h[n] represent the impulse response of the following system.

Select the correct statement about the poles and zeros of H(z).

- H(z) has two zeros at $z_1=5/4$ and $z_2=3/8$ and one pole at $z_3=1/4$.
- igcap It has one pole at $z_1=3/2$
- H(z) has one zero at $z_1=1/4$ and two poles at $z_3=5/4$ and $z_2=3/8$.
- igcap 1 It has one zero at $z_1=3/2$ and one pole at $z_2=5/6$.
- On the latest three latest la

1 point

8.

(Difficulty: $\star\star$) The following bit of Python code implements a discrete-time filter (assume x[n] and y[n] are suitably defined arrays):

```
1  f = 0;
2  g = 0;
3  for n in range(0, L-1):
4    y[n] = x[n] + f;
5    g = -f;
6    f = -x[n] + 0.5 * y[n] + g;
```

What is the minimum number of delays necessary to implement this filter efficiently?

Enter answer here

Homework for Module 4 Part 2

Quiz, 9 questions

1 point

9.

(Difficulty: **) Which of the following statements describes the system in this figure?

The system is a hum removal filter with $\omega_0=3\pi/4$.
The system is a hum removal filter with $\omega_0=\pi/2$.
This is a resonator at $\omega_0=\pi/2$.
The system is a resonator at $\omega_0=3\pi/4.$

The system is a resonator at $\omega_0=3\pi/4$.
The system is a DC notch.
None of these statements describe this system.

	I, Mark R. Lytell, understand that submitting work that isn't my own may result in permanent
	failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Submit Quiz

- Homework for Module 4 Part 2

Quiz, 9 questions