

Ingeniería en Computación Ingeniería en Sistemas de Información

SISTEMAS OPERATIVOS

Segundo Cuatrimestre de 2018

Trabajo Práctico N^{o} 5

1. Problemas

- 1. ¿Se puede producir deadlock sin estar involucrados recursos del sistema? En caso de ser cierto de un ejemplo.
- 2. Una computadora tiene seis unidades de cinta, con n procesos en competencia por ellas. Cada proceso necesita dos unidades. ¿Para cuáles valores de n se libera el bloqueo del sistema?
- 3. ¿Puede ocurrir deadlock en la siguiente situación? Explique

Proceso P	Proceso Q	
Requerir A	Requerir B	
Liberar A	Requerir A	
Requerir B	Liberar B	
Liberar B	Liberar A	

- 4. ¿Cómo utilizaría un algoritmo de detección de deadlock (en que momento se ejecutaría)? ¿Qué haría el algoritmo si detecta que hay deadlock?
- 5. Discuta hasta que punto son útiles los algoritmos de prevención y de detección de bloqueos.
- 6. De tres maneras de eliminar un bloqueo.
- 7. Defina qué es un estado seguro de un sistema.
- 8. ¿Qué diferencia hay entre deadlock y starvation?
- 9. Considere la situación del sistema que aparece en la figura 1.
 - a) Escriba la tabla de necesidad.

Proceso	Asignado	Máximo		
P0	0 0 1 2	0 0 1 2		
P1	1 0 0 0	1 7 5 0		
P2	1 3 5 4	2 3 5 6		
P3	0 6 3 2	$0 \ 6 \ 5 \ 2$		
P4	0 0 1 4	0 6 5 6		

Disponible				
1	5	2	0	

Figura 1: Estado del Sistema

- b) ¿Se encuentra en estado seguro?
- c) Supongamos que el proceso P1 solicita $(0,\ 4,\ 2,\ 0)$. ¿Puede satisfacerse de inmediato?
- 10. ¿Cuáles son las dificultades que se presentan cuando un proceso es 'rolled-back'? Comente también sus ventajas si las hubiere.
- 11. Dado un sistema controlado por el algoritmo del 'Banquero' (banker). Cuáles de los siguientes cambios pueden ser realizados sin pasar a un estado 'inseguro' (unsafe)?
 - a) Incremento Disponible (nuevos recursos).
 - b) Decremento Disponible.
 - c) Incremento MAX.
 - d) Decremento MAX.
 - e) Incremento del Número de Procesos.
 - f) Decremento del Número de Procesos.