ENSC 2113 Engineering Mechanics: Statics

Chapter 2:

Force Vectors

(Sections 2.7-2.8)

Chapter 2 Outline:

- 2.1 Scalars and Vectors
- 2.2 Vector Operations
- 2.3 Vector Addition of Forces
- 2.4 Addition of a System of Coplanar Forces
- 2.5 Cartesian Vectors
- 2.6 Addition of Cartesian Vectors
- 2.7 Position Vectors
- 2.8 Force Vector Directed Along a

Line

2.9 Dot Product

Chapter 2 Objectives:

- To show how to add forces and resolve them into components using the Parallelogram Law
- To express force and position in Cartesian vector form and explain how to determine the vector's magnitude and direction
- To introduce the dot product in order to use it to find the angle between two vectors or the projection of one vector onto another

Vectors

 Finding the components from the magnitude and direction angles:

$$F_{x} = F \cos \alpha = 50 \cos 30$$
$$= 43.3N$$

$$F_y = F \cos \beta = 50 \cos 60$$
$$= 25N$$

Finding the direction angles from the magnitude and components:

$$\alpha = \cos^{-1} \frac{43.3}{50} = 30$$

$$\beta = \cos^{-1} \frac{25}{50} = 60$$

Vectors

Unit vector from magnitude and components:

$$\vec{u} = \left\{ \frac{F_x}{F} \hat{i} + \frac{F_y}{F} \hat{j} \right\}$$

$$\vec{u} = \left\{ \frac{43.3}{50} \hat{i} + \frac{25}{50} \hat{j} \right\}$$

$$\vec{u} = \left\{ 0.866 \hat{i} + 0.5 \hat{j} \right\}$$

Force magnitude

$$|F| = \sqrt{(F_x)^2 + (F_y)^2 + (F_z)^2}$$

 $|F| = 50$ N

Force in Cartesian VectorForm:

$$\vec{F} = \{43.3\hat{i} + 25\hat{j}\}N$$

• Unit vector from angles:

$$\vec{u} = \{\cos 30\hat{i} + \cos 60\hat{j}\}\$$

$$\vec{u} = \{0.866\hat{i} + 0.5\hat{j}\}\$$

- Vector Components
 - Written in x, y, and z components:

$$A_{x} = A\cos\alpha$$

$$A_{y} = A\cos\beta$$

$$A_{z} = A\cos\gamma$$

Written in Cartesian

Vector Form:

$$\vec{A} = \left\{ A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \right\}$$

Magnitude:

$$|A| = \sqrt{(A_x)^2 + (A_y)^2 + (A_z)^2}$$

Magnitude and Direction Cosines

$$\vec{A} = |A|\vec{u}$$

$$\vec{u} \text{ is a unit vector in the direction of A}$$

$$\vec{u} = \left\{\cos\alpha\hat{i} + \cos\beta\hat{j} + \cos\gamma\hat{k}\right\}$$

$$\vec{A} = |A|\left\{\cos\alpha\hat{i} + \cos\beta\hat{j} + \cos\gamma\hat{k}\right\}$$

$$\vec{A} = \left\{A_x\hat{i} + A_y\hat{j} + A_z\hat{k}\right\}$$

2.7 Position Vectors:

- Position Vectors and Unit Vectors
 - Utilized to find rectangular components of force
 - A position vector measures the distance between two points using the coordinates

$$r_{ABx} = (x_B - x_A)ft$$

$$r_{ABy} = (y_B - y_A)ft$$

$$\overrightarrow{r_{AB}} = \{r_{ABx}\hat{i} + r_{ABy}\hat{j}\}ft$$

$$|r_{AB}| = \sqrt{(r_{ABx})^2 + (r_{ABy})^2}ft$$

2.7 Position Vectors:

- Position Vectors and Unit Vectors
 - Recall that a unit vector is any vector divided by its magnitude
 - Apply to the determined position vector

2.7 Position Vectors:

- Position Vectors and Unit Vectors
 - Force components are found by multiplying the force magnitude by the unit vector

$$\overrightarrow{u_{AB}} = \left\{ \frac{\overrightarrow{r_{AB}}}{|r_{AB}|} \right\}$$

$$\overrightarrow{F_{AB}} = |F| \left\{ \frac{\overrightarrow{r_{AB}}}{|r_{AB}|} \right\}$$

$$\overrightarrow{F_{AB}} = \left\{ F_{ABx}\hat{i} + F_{ABy}\hat{j} \right\}$$

2.8 Force Vector Directed Along a Line

1. Specification by two angles

Step 1: Horizontal and Vertical Components (z-xy plane)

$$F_{xy} = F \cos \phi$$
 $F_z = F \sin \phi$

Step 2: Components in x-y plane

$$F_{x} = F_{xy} \cos \theta$$

$$F_{y} = F_{xy} \sin \theta$$

2.8 Force Vector Directed Along a Line

2. Specification by two points on line of action

■
$$\vec{F} = |\vec{F}|\vec{u}$$
, $\vec{u} = \frac{Position\ vector\ of\ Force}{Magnitude\ of\ Position\ Vector\ of\ Force}$

$$\overrightarrow{F_{AB}} = |F|\overrightarrow{u} = |F| \frac{r_{AB}}{|r_{AB}|}$$

$$|F| \frac{\{(x_2 - x_1) + (y_2 - y_1) + (z_2 - z_1)\}}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$$

$$|F| \frac{\{(x_2 - x_1) + (y_2 - y_1) + (z_2 - z_1)\}}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$$

$$|F| \frac{\{(x_2 - x_1) + (y_2 - y_1) + (z_2 - z_1)\}}{\sqrt{(x_2 - x_1)^2 + (z_2 - z_1)^2}}$$

ENSC 2113 Engineering Mechanics: Statics

Chapter 2:

Force Vectors

(Sections 2.7-2.8)

