Number Theory II: Worksheet

The following problems illustrate some of the main applications of congruences. Some of the problems will be worked out in class, others will be part of the homework assignments.

- 1. Divisibility properties of large numbers:
 - (a) Show that 3 divides $4^n 1$ for all $n \in \mathbb{N}$.
 - (b) Find the remainder of 3^{1001} when divided by 5.
 - (c) Find the reminder of 347^{1001} when divided by 3.
 - (d) Find the remainder of 347^{2016} when divided by 2017. (Hint: 2017 is prime ...)
 - (e) (HW) Find the remainder of 347^{101} when divided by 101. (Hint: 101 is prime ...)
 - (f) (HW) Show that 7 divides $4^{3n+1} + 2^{3n+1} + 1$ for all $n \in \mathbb{N}$.
- 2. Last digits of large numbers: The last (rightmost) digit in the base b representation of an integer $n \in \mathbb{N}$ is congruent to n modulo b. This fact can be used, along with the properties of congruences (and especially the fact that congruences can be taken to a fixed power), to quickly, and with minimal amounts of computations, find the last digits of very large numbers, as illustrated by the following examples.
 - (a) Find the last decimal digit of 3^{347} .
 - (b) For which natural numbers n does 3^n end in the digit 1 (when written in decimal)?
 - (c) (HW) Find the last digit in the base 8 expansion of 9^{1000} , 10^{1000} , 11^{1000} .
- 3. Divisibility of squares, and polynomials:
 - (a) What are the possible remainders when n^4 is divided by 5?
 - (b) Using congruences, show that $n^5 n$ is divisible by 3 for all $n \in \mathbb{N}$.
- 4. **Divisibility tests.** First recall the precise meaning of a base b representation of an integer $n \in \mathbb{N}$ (where the base b is an integer with $b \ge 2$):
 - (1) $n = (a_k a_{k-1} \dots a_0)_b \iff n = \sum_{i=0}^k a_i b^i$, with the "digits" a_i satisfying $a_i \in \{0, 1, \dots, b-1\}$ and $a_k \neq 0$.
 - (a) **Divisibility by** 9: Given $n \in \mathbb{N}$, let s(n) denote the sum of the digits of n in decimal (i.e., base 10) representation; i.e., $s(n) = a_0 + a_1 + \cdots$, where the a_i are as in (1). Show that $n \equiv s(n)$ mod 9. Deduce from this result the familiar divisibility test for 9: an integer is divisible by 9 if and only if the sum of its decimal digits is divisible by 9.
 - (b) **Divisibility by** 11: Given $n \in \mathbb{N}$, let t(n) denote the alternating sum of its decimal digits starting from the right; i.e., $t(n) = a_0 a_1 + a_2 a_3 + \cdots$, where the a_i are as in (1). (For example, if n = 347, then t(n) = 7 4 + 3 = 6, and if n = 1001, then t(n) = 1 0 + 0 1 = 0.) Show that $n \equiv t(n) \mod 11$. Deduce from this result the following divisibility test for 11: an integer is divisible by 11 if and only if the alternating sum of its decimal digits, starting from the right, is divisible by 9.
- 5. **Proof-writing practice: Congruence properties.** Prove the following properties of congruences, using only the basic definition of a congruence (i.e., $a \equiv b \mod m$ means that there exist $k \in \mathbb{Z}$ such that a = b + km) or basic properties of divisibility. (In all statements, a, b, c, d, \ldots are assumed to be arbitrary integers and m is a natural number.)
 - (a) If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$.
 - (b) If $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$.
 - (c) (HW) If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $ac \equiv bd \mod m$.
 - (d) (HW) If $a \equiv b \mod m$, then for any $k \in \mathbb{N}$, $a^k \equiv b^k \mod m$.