Тема 1. Многокритериальная оптимизация.

- 1. Управленческие решения и их классификация. Общий случай задачи принятия решений. Процесс и методы принятия решений.
- 2. Термины и понятия многокритериальной оптимизации. Лицо, принимающее решение. Альтернатива. Критерии. Исход. Задача многокритериальной оптимизации. Векторные и скалярные методы решения.
- 3. Парето-оптимальность. Векторная оценка. Графическая интерпретация. Методы сужения множества Парето. Проблемы решения задач методом Парето.
- 4. Методы класса ЭЛЕКТРА. Этапы реализации. Гипотеза о превосходстве альтернативы и индекс несогласия в методе ЭЛЕКТРА II. Матрица и граф предпочтений. Смысл увеличения порога.
- 5. Метод Анализа Иерархий. Преимущества использования иерархий. Этапы выбора. Субъективные парные сравнения. Транзитивная несогласованность. Случайный индекс согласованности.
- 6. Метод Анализа Иерархий. Устранение комплексной несогласованности. Методика расчета максимального Собственного Значения (С3).
- 7. Метод Анализа Иерархий. Устранение комплексной несогласованности. Методики расчетов Индекса Согласованности (ИС) и Отношения Согласованности (ОС).
- 8. Метод Анализа Иерархий. Расчет локальных приоритетов. Синтез альтернатив.

Тема 2. Линейное программирование.

- 1. Понятие математического программирования. Основные этапы. Основные разделы. Математического программирования.
- 2. Линейное программирование. Общая постановка задачи. Допустимое и оптимальное решение. Свойства линейной модели: пропорциональность и аддитивность.

- 3. Понятие выпуклого множества в линейном программировании. Точки выпуклого множества. Основная теорема линейного программирования.
- 4. Стандартная форма задачи линейного программирования. Векторная или матричная запись. Правила по построению математической модели в стандартной форме.
- 5. Решение задач с двумя переменными графическим методом. Область допустимых решений. Возможные случаи области допустимых решений. Градиент и антиградиент функции.
- 6. Симплексный метод. Каноническая форма задачи линейного программирования. Правила перевода к канонической форме.
- 7. Сущность симплексного метода. Опорный план. Начальная симплекстаблица. Базисные переменные. Заполнение f-строки.
- 8. Алгоритм симплексного метода. Разрешающий элемент. Построение новой симплекс-таблицы. Правило прямоугольника.
- 9. Прямая и двойственная задачи. Симметричные или несимметричные задачи. Общие правила составления двойственных задач.
- 10. Первая теорема двойственности. Алгоритм решения двойственной задачи через обратную матрицу.
- 11. Вторая теорема двойственности. Условия дополняющей нежесткости с точек зрения рентабельности и дефицитности.
- 12. Третья теорема двойственности. Нижняя и верхняя границы интервала устойчивости двойственных оценок.
- 13. Методы решения транспортных задач. Методы нахождения начального опорного решения. Метод северо-западного угла. Метод минимальной стоимости.
- 14. Методы решения транспортных задач. Метод потенциалов. Определение исходного плана перевозок. Исследование базисного решения на оптимальность.

Задачи

а. Графический метод.

1. Решить задачу графическим методом.

$$f(x) = 3x_1 + 4x_2 \to min/max$$

$$\begin{cases} x_1 + x_2 \le 20 \\ x_1 \ge 10 \\ x_2 \ge 5 \\ -x_1 + 4x_2 \le 20 \\ x_1, x_2 \ge 0 \end{cases}$$

2. Решить задачу графическим методом.

$$f(x) = -x_1 + 2x_2 \to min/max$$

$$\begin{cases} x_1 - 8x_2 \le 10 \\ x_1 + x_2 \ge 1 \\ x_1 - 5x_2 \ge -5 \\ 3x_1 + 10x_2 \le 30 \\ x_1, x_2 \ge 0 \end{cases}$$

3. Решить задачу графическим методом.

$$f(x) = -3x_1 - 2x_2 \to min/max$$

$$\begin{cases} x_1 + 2x_2 \le 7 \\ 2x_1 + x_2 \le 8 \end{cases}$$

$$\begin{cases} x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases}$$

4. Решить задачу графическим методом

$$f(x) = 2x_1 + x_2 \to min/max$$

$$\begin{cases} x_1 + x_2 \le 3 \\ -x_1 + x_2 \le 2 \end{cases}$$

$$x_1 - x_2 \le 1$$

$$x_{1,1}x_2 \ge 0$$

5. Решить задачу графическим методом.

$$f(x) = x_1 + 2x_2 \to min/max$$

$$\begin{cases} x_1 + 2x_2 \le 7 \\ -x_1 + x_2 \le 2 \\ 2x_1 - x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

6. Решить задачу графическим методом.

$$f(x) = 2x_1 + x_2 \to min/max$$

$$\begin{cases} x_1 + x_2 \le 25 \\ 3x_1 - 5x_2 \le 8 \\ 5x_1 + 3x_2 \ge 26 \\ x_1 x_2 \ge 0 \end{cases}$$

7. Решить задачу графическим методом.

$$f(x) = 3x_1 - 2x_2 \to min/max$$

$$\begin{cases}
7x_1 + 2x_2 \ge 14 \\
-x_1 + 2x_2 \ge 2 \\
7x_1 + 10x_2 \le 28 \\
x_1, x_2 \ge 0
\end{cases}$$

б. Симплексный метод

1. Решить задачу симплексным методом.

Предприятие может работать по двум технологическим процессам, причем за единицу времени по I технологии выпускает 260 изделий, по II — 300 изделий. В таблице указаны затраты каждого ресурса в единицу времени.

Ресурсы	Технологи	Объем	
	процесс		pecypca
	I II		
Сырье	16	12	1200
Электроэнергия	0,2	0,4	30
Накладные расходы	6	5	600
Зарплата, ден. ед.	3	4	300

Найти программу максимального выпуска продукции из имеющихся ресурсов для первой итерации.

2. Решить задачу симплексным методом.

Фабрика выпускает три вида тканей. Суточные ресурсы фабрики, следующие: 700 ед. производственного оборудования, 800 ед. сырья, 600 ед. электроэнергии, расход которых на единицу ткани представлен в таблице.

Ресурсы	Ткани	Ткани		
	I	II	III	
Оборудовани	e 2	3	4	
Сырье	1	4	5	
Электроэнерг	ти 3	4	2	
Я				

Цена одного метра ткани I равна 8 ден.ед., ткани II - 7 ден.ед. и ткани III - 6 ден.ед. Найти программу максимальной прибыли от реализации для <u>первой итерации</u>.

3. Решить задачу симплексным методом.

Для изготовления двух видов изделий A и B завод имеет четыре вида машин. Каждое изделие последовательно обрабатывается этими машинами B таблице указано время, необходимое для обработки каждого изделия и время работы каждой машины.

Виды изделий	Виды машин			
	I	II	III	IV
A	1	0,5	0	0,8
В	1	1	1	1,5
Время работы машин, ед	16	12	12	16

От реализации одного изделия типа A завод получает прибыль 20 ден.ед., одного изделия типа B-30 ден. ед. Найти план выпуска изделий на стадии первой итерации, обеспечивающий максимальную прибыль.

4. Решить задачу симплексным методом.

Фирма специализируется на производстве шкафов. Она может производить три типа шкафов A, B и C, что требует различных затрат труда на каждой стадии производства:

Производствен	Затраты труда, чел.час		
ный	A	В	С
участок			
Лесопилка	1	2	4
Сборочный цех	2	4	2
Отделочный	1	1	2
цех			

В течении недели можно планировать работу на: лесопилке — на 360 чел.-час., сборочном цехе — 520 чел.-час., отделочном цехе — на 220 чел.-час. Прибыль от каждого шкафа типов А, В и С составляет соответственно 9, 11 и 15 ден.ед. Требуется составить оптимальный план производства шкафов для первой итерации с целью максимизации суммарной прибыли.

5. Решить задачу симплексным методом.

Для производства красок двух видов используются два ингредиента: A и B. Известны расходы A и B на 1 тонну соответствующих красок.

	7 1	J		1
Ингреди	Расход ингредиентов, т. ингр./т.			Запас, т. ингр./сутки
енты	Краска 1-го	Краска	2-го	
A	1	2		6
В	2	1		8

Суточный спрос на краску 2-го вида никогда не превышает спроса на краску 1-го вида более, чем на 1 тонну. Кроме того, установлено, что спрос на краску 2-го вида никогда не превышает 2 тонны в сутки. Оптовые цены одной тонны (т.) красок равны: для краски 1-го вида — 3 тыс. руб.; для краски 2-го вида — 2 тыс. руб. Необходимо установить, какое количество краски каждого вида надо производить, чтобы доход от реализации продукции был максимальным при первой итерации.

6. Решить задачу симплексным методом.

В кондитерском цехе выпускают печенье двух сортов. В таблице указан расход продуктов для каждого сорта и количество имеющихся продуктов.

Сорт	Масло	Яйца	Caxap	Молоко	Цена 1 кг, ден. ед.
1-й сорт	0,2	0,75	0,15	0,15	1,4
2-й сорт	0,1	0,20	0,20	0,25	0,9
Запасы	100	150	100	150	
продуктов					

Какое общее количество печенья каждого сорта надо выпекать, чтобы

общая стоимость была наибольшей при первой итерации?

7. Решить задачу симплексным методом.

Чаеразвесочная фабрика выпускает чай сорта A и B, смешивая три ингредиента: индийский, грузинский и краснодарский чай. В таблице приведены нормы расхода ингредиентов, объем запасов каждого ингредиента и прибыль от реализации 1 т. чая сорта A и B.

Ингредиенты	Нормы расхода		Объем
	A	В	запасов (т.)
Индийский чай	0,5	0,2	600
Грузинский чай	0,2	0,6	870
Краснодарский чай	0,3	0,2	430
Прибыль от реализации	320	290	
1 т. продукции, ден.ед.			

Требуется составить план производства чая сорта A и B с целью максимизации суммарной прибыли при первой итерации.

8. Решить задачу симплексным методом.

Фирма выпускает изделия четырех типов. При этом используется сырье двух видов, запасы которого соответственно 1200 и 1000 единиц. Нормы расхода сырья заданы в таблице:

Cuma	Нормы расхода				Объем
Сырье	I	II	III	IV	ресурсов
1	4	2	1	4	1200
2	1	5	3	1	1000
Лохол	15	5	3	20	

Составить план производства, обеспечивающий фирме наибольший суммарный доход при первой итерации.