Básicos de Topología Categórica

Vivian De Leon

16 de Octubre, 2024

Topología Inicial

Definición

Sean X y Y dos conjuntos,

$$f: X \to Y$$

una función, σ una topología para Y y

$$F := \{ \gamma \in \mathsf{Top}[X] : (X, \gamma) \xrightarrow{f} (Y, \sigma) \text{ es continua} \}$$

Diremos que $\tau \in \text{Top}[X]$ es la **topología inicial** para X respecto de (f, σ) si $\tau = \inf F$. Lo denotaremos por $\tau \mapsto (f, \sigma)$.

Topología Final

Definición

Sean X y Y dos conjuntos,

$$f: X \to Y$$

una función, τ una topología para X y

$$F' := \{ \gamma \in \mathsf{Top}[Y] : (X, \tau) \xrightarrow{f} (Y, \gamma) \text{ es continua} \}$$

Diremos que $\sigma \in \text{Top}[X]$ es la **topología final** para Y respecto de (τ, f) si $\sigma = \sup F'$. Lo denotaremos por $(\tau, f) \mapsto \sigma$.

Caracterización de topología inicial

Proposición.

Sea $f: X \to Y$ una función, $\tau \in \mathsf{Top}[X]$ y $\sigma \in \mathsf{Top}[Y]$. Son equivalentes:

- (a) $\tau \mapsto (f, \sigma)$.
- (b) $\tau = \{f^{-1}[V] : V \in \sigma\}$
- (c) La función $f:(X,\tau)\to (Y,\sigma)$ es continua
 - Dada cualquier función $g: Z \to X$ y cualquier $\rho \in \text{Top}(Z)$, si $f \circ g: (Z, \rho) \to (Y, \sigma)$ es continua entonces $g: (Z, \rho) \to (Z, \tau)$ es continua
- (c) La función $f:(X,\tau)\to (Y,\sigma)$ es continua
 - Dada cualquier factorización $(X, \tau) \xrightarrow{h} (W, \omega) \xrightarrow{k} (Y, \sigma)$ de f tal que h es biyectiva, entonces $h: (X, \tau) \to (W, \omega)$ es un homeomorfismo.

Encajes y Cocientes

Sea $f:(X,\tau)\to (Y,\sigma)$ una función continua y inyectiva entre dos espacios topológicos. Son equivalentes:

- (a) τ es final respecto a la pareja (f, σ) .
- (b) f es un **encaje** entre espacios topológicos.

Sea $f:(X,\tau)\to (Y,\sigma)$ una función continua y suprayectiva entre dos espacios topológicos. Son equivalentes:

- (a) σ es final respecto a la pareja (τ, f) .
- (b) f es un **cociente** entre espacios topológicos.

Factorizaciones canónicas

Sea $f:(X,\tau)\to (Y,\sigma)$ una función continua entre dos espacios topológicos. Notemos que f admite una factorización mediante funciones continuas de la forma

$$(X,\tau) \xrightarrow{f'} (f[X], \sigma_{f[X]}) \xrightarrow{\iota} (Y, \sigma)$$

donde $\sigma_{f[X]}$ es la topología inicial para f[X] respecto de la inclusión natural ι y de la topología σ , mientras que la función f' es la restricción de f a su imagen.

Factorizaciones canónicas

Sea $f:(X,\tau)\to (Y,\sigma)$ una función continua entre dos espacios topológicos. Notemos que f admite una factorización mediante funciones continuas de la forma

$$(X,\tau) \xrightarrow{p} (X_r,\tau_r) \xrightarrow{f'} (Y,\sigma)$$

donde $X_r = \{f^{-1}(y)\}_{y \in f[X]}$, p es la proyección natural

$$p: X \to X_r$$
$$x \to f^{-1}(f(x))$$

y la topología τ_r para X_r es final respecto de la pareja (τ, p) .

Topología Inicial para una Fuente de funciones

Definición

Sean $(X_i, \tau_i)_{i \in I}$ una familia de espacios topológicos,

$$(f_i:X\to X_i)_{i\in I}$$

una fuente de funciones y

$$F := \{ \gamma \in \mathsf{Top}[X] : (X, \gamma) \xrightarrow{f_i} (X_i, \tau_i) \text{ es continua } \forall i \in I \}$$

Diremos que $\tau \in \text{Top}[X]$ es la **topología inicial** para X respecto de (f_i, τ_i) si $\tau = \inf F$. Lo denotaremos por $\tau \mapsto (f_i, \tau_i)_{i \in I}$.

Tomemos una fuente de funciones continuas

$$(f_i:(Y,\phi)\to(X_i,\tau_i)_{i\in I}).$$

Podemos considerar al producto topológico del codominio de dicha fuente

$$(X, \tau) := \prod_{i \in I} (X_i, \tau_i)$$

y la fuente de proyecciones canónicas $(\pi_i = (X, \tau) \to (X_i, \tau_i))_{i \in I}$.

Topología Final para un Pozo de funciones

Definición

Sean $(X_i, \tau_i)_{i \in I}$ una familia de espacios topológicos,

$$(f_i:X_i\to X)_{i\in I}$$

un pozo de funciones y

$$F' := \{ \gamma \in \mathsf{Top}[X] : (X_i, \tau_i) \xrightarrow{f_i} (X, \gamma) \text{ es continua } \forall i \in I \}$$

Diremos que $\tau \in \text{Top}[X]$ es la **topología final** para X respecto de (τ_i, f_i) si $\tau = \sup F'$. Lo denotaremos por $(\tau_i, f_i)_{i \in I} \mapsto \tau$.

Tomemos un pozo de funciones continuas

$$(f_i:(X_i,\tau_i)\to(Y,\sigma)_{i\in I})$$

podemos considerar al coproducto topológico del dominio de dicho pozo

$$(X,\tau) := \coprod_{i \in I} (X_i, \tau_i)$$

y el pozo de inclusiones canónicas $(\iota_i = (X_i, \tau_i) \to (X, \tau))_{i \in I}$.

Propiedades Reflexivas

Definición

Una propiedad topológica \mathbf{P} es **reflexiva** si a cada (X, τ) podemos asociarle un $(X_P, \tau_P) \in \mathbf{P}$ y una función continua

$$P_X:(X,\tau)\to(X_P,\tau_P)$$

tales que, dada $f:(X,\tau)\to (Y,\sigma)$ con $(Y,\sigma)\in \mathbf{P}$ entonces existe:

Propiedades Coeflexivas

Definición

Una propiedad topológica **P** es **coreflexiva** si a cada (X, τ) podemos asociarle un $(X_P, \tau_P) \in \mathbf{P}$ y una función continua

$$P_X:(X_P,\tau_P)\to(X,\tau)$$

tales que, dada $f:(Y,\sigma)\to (X,\tau)$ con $(Y,\sigma)\in \mathbf{P}$ entonces existe:

Compactaciones

Definición

Sea (X, τ) un espacio topológico. Una **compactación** de dicho espacio es una pareja $(f, (Y, \sigma))$ donde (Y, σ) es compacto y T_2 , $f: (X, \tau) \to (Y, \sigma)$ es un encaje y f[X] es denso en (Y, σ) .

Se puede probar que para cualquier (X,τ) existe una pareja $(f^*,(Y,\sigma))$ tal que cumple con casi todas estas características (no es un encaje). Esto se soluciona cuando (X,τ) es Tychonoff $(T_{3\frac{1}{2}})$.

Definición

A esta compactación se le llama compactación de Čech-Stone.

Compactación de Čech-Stone

Proposición

Sea (X,τ) un espacio topológico, $f^*:(X,\tau)\to (Y,\sigma)$ la función usada anteriormente y (Z,ρ) un espacio compacto y T_2 . Si $h:(X,\tau)\to (Z,\rho)$ es una función continua entonces:

