ÉQUATIONS DIFFÉRENTIELLES

ÉQUATIONS LINÉAIRES DU PREMIER ORDRE

Une équation différentielle linéaire du premier ordre a la forme

$$(E): (a(t)y'' + b(t)y = c(t))$$

où les fonctions a, b et c sont définies sur un intervalle $J \subset \mathbb{R}$.

Résoudre cette équation, c'est chercher l'intervalle $I \subset J$ le plus grand possible (si possible J tout entier) et l'ensemble des fonctions réelles définies sur I telles que, pour tout $t \in I$, l'égalité (E) soit vérifiée.

Si on se fixe un intervalle $I \subset J$, on note S l'ensemble des solutions de (E) sur I. C'est un ensemble de fonctions $I \to \mathbb{R}$.

1 Étapes de la résolution

A l'équation différentielle (E), on associe l'équation homogène (E_0) obtenue en annulant c(t) dans la partie droite de l'égalité :

$$(E_0) \qquad a(t)y' + b(t)y = 0$$

Quand on a fixé un intervalle $I\subset J$, on note S_0 l'ensemble des solutions de (E_0) sur I. C'est un ensemble de fonctions $I\to\mathbb{R}$. Il n'est pas vide car il contient au moins la fonction nulle.

1.1 Lien entre les ensembles S et S_0

Le théorème suivant montre comment l'ensemble S des solutions de (E) se déduit de l'ensemble S_0 des solutions de l'équation homogène.

Théorème 1 Supposons qu'il existe $y_p \in S$ une solution particulière de (E) sur $I \subset J$. Soit y une fonction dérivable sur I, alors

$$y \in S \iff y - y_p \in S_0$$

Ainsi, toute solution de (E) est de la forme $y=y_p+y_0$ où y_0 est une solution de (E_0) . Et réciproquement, pour toute fonction y_0 solution de (E_0) , $y=y_p+y_0$ est une solution de (E). Ainsi

$$S = \{y_p + y_0, y_0 \in S_0\}$$

1.2 Conséquence : les étapes de la résolution

La résolution de (E) se fait en trois étapes :

- Résolution de (E_0) : on détermine S_0
- Recherche d'une solution particulière y_p
- Conclusion : $S = \{y_p + y_0, y_0 \in S_0\}$

ÉQUATIONS DIFFÉRENTIELLES

ÉQUATIONS LINÉAIRES DU PREMIER ORDRE

2 Résolution de l'équation homogène

Le théorème suivant donne l'ensemble S_0 des solutions de l'équation homogène, sous réserves de quelques hypothèses sur les fonctions a et b:

Théorème 2 S'il existe un intervalle $I\subset J$ sur lequel les fonctions a et b sont continues et où la fonction a ne s'annule pas, alors l'ensemble des solutions de (E_0) sur I est donné par

$$S_0 = \left\{ \begin{array}{ccc} I & \to & \mathbb{R} \\ t & \to & ke^{-\int \frac{b(t)}{a(t)} dt} \end{array}, k \in \mathbb{R} \right\}$$

où $\int rac{b(t)}{a(t)} \, dt$ désigne une primitive de $rac{b}{a}$

Autrement dit, les solutions de (E_0) sur I sont les fonctions

$$y_0 = ke^{-\int \frac{b(t)}{a(t)} \mathrm{d}t}$$

où k est une constante réelle quelconque.

3 Recherche d'une solution particulière

Si on trouve une solution particulière évidente, on ne s'en prive pas. Sinon, on peut en trouver une par la méthode de *variation de la constante* :

- On choisit y_0 une solution non identiquement nulle de (E_0) . En général on prend $y_0=e^{-\int \frac{b(t)}{a(t)}\mathrm{d}t}$
- On cherche y_p sous la forme $y_p(t) = k(t)y_0(t)$ sur I. Le terme k n'est plus une constante, mais une fonction $I \to \mathbb{R}$ qu'il faut déterminer.
- La dérivée de y_p vaut alors $y_p' = k'y_0 + ky_0'$. On la reporte dans (E) :

$$(ay'_p + by_p = c) \iff (ak'y_0 + aky'_0 + bky_0 = c)$$

$$\iff ak'y_0 + k \times (ay'_0 + by_0) = c$$

$$\iff ak'y_0 = c$$

$$\iff k' \equiv \frac{c}{ay_0}$$

– On choisit pour k une primitive quelconque de $\frac{c}{ay_0}$ et on obtient

$$\begin{array}{ccc} y_p: & I & \to & \mathbb{R} \\ & t & \to & k(t)y_0(t) \end{array}$$

4 Conclusion

On conclut la résolution de (E) sur I en écrivant

$$S = \left\{ \begin{array}{ccc} I & \to & \mathbb{R} \\ t & \to & y_p(t) + ke^{-\int \frac{b(t)}{a(t)} \mathrm{d}t} \end{array}, k \in \mathbb{R} \right\}$$

2