Université Abdelmalek Essaâdi Faculté Polydisciplinaire de Larache SEG-S1/Année 2022-2023

Contrôle Final (Rattrapage) Analyse Mathématique Durée : 1 h 00 Pr. El Mahjour

Nom:	
Prénom:	
N°Ins: SEG	
Table n°:	Salle :

	Mercredi 30 février 2023
1. (8 p	points) Soit $f(x) = \frac{x^2}{\exp(x)} - 3$.
	$\exp(x)$ Le domaine de définition de f est : $D_f = \{\dots \}$
	Les limites au voisinage de $\pm \infty$ sont :
(-)	$\square \lim_{x \to -\infty} f(x) = \dots = \dots$
, ,	
(c)	On déduit de la question précédente que :
	\square f admet
(d)	Montrer, grâce au théorème des valeurs intermédiaires, qu'il existe \bar{x} dans $]-\infty,0]$ tel que $f(\bar{x})=0$
(e)	Calculer f' la dérivée de f et trouvez un point où elle admet une tangente horizontale (il y en a deux, mais il suffit de parler de mentionner un seul point)
2. (6 p	points) Calculez les intégrales suivantes
(a)	(Intégration directe)
	$\Box \int_{-\pi/4}^{0} \cos(x + \pi/4) dx = \dots = \dots$
(b)	(Intégration par parties)
	$-\int_0^1 t^2 e^t dt$
	J_0
	$-\int_0^1 \ln(z+1)(z^2+1)dz$

$$D_p = \{(x,y) \in \mathbb{R}^2 /$$

$$=$$

(b) Représenter graphiquement le domaine de définition trouvé :

(c) Trouvez le seul point critique X_0 de p en calculant ses dérivées partielles $\frac{\partial p}{\partial x}$ et $\frac{\partial p}{\partial y}$

.....

Donc $X_0 = (..., ...)$

(d) Complétez l'arbre des dérivées partielles et étudiez la nature du point critique X_0 en formant sa matrice hessienne et en calculant les quantités demandées.

$$\frac{\partial p}{\partial x} = \frac{\partial^2 p}{\partial x^2} = \frac{\partial^2 p}{\partial y \partial x} = \frac{\partial^2 p}{\partial x \partial y} = \frac{\partial^2 p}{\partial x \partial y} = \frac{\partial^2 p}{\partial y \partial x} = \frac{\partial^2 p}{\partial x \partial y} = \frac{\partial^2 p}{\partial y \partial x} = \frac{\partial^2 p}{\partial y \partial y} = \frac{\partial^2 p}{\partial y$$

La matrice hessienne au point critique est (s.v.p elle contient des nombres uniquement) :

$$H_p(X_0) = \left(\begin{array}{c} \\ \end{array} \right)$$

Le déterminant de et la trace sont :

$$\det H_p(X_0) = \dots \qquad \text{et} \qquad Tr(H_p(X_0)) = \dots$$