kaviyadevi 20106064

In [9]: #to import libraries

import numpy as np
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

In [10]: #to import dataset

data1=pd.read_csv(r"C:\Users\user\Downloads\18_world-data-2023 - 18_world-data-20
data1

Out[10]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	1
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0	
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.0	
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0	
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0	
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0	
	•••								
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	58.0	
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	84.0	
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	967.0	
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	260.0	
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	263.0	

195 rows × 35 columns

4

Angola

5 rows × 35 columns

In [11]: #to display top 5 rows data=data1.head() data Out[11]: Armed **Agricultural** Land Birth Calling Country Density\n(P/Km2) **Abbreviation Forces** Land(%) Area(Km2) Rate Code size Afghanistan 60 AF 58.10% 652,230 323,000 32.49 93.0 1 Albania 105 AL43.10% 28,748 9,000 11.78 355.0 2 Algeria DΖ 17.40% 2,381,741 317,000 24.28 213.0 18 3 Andorra 164 AD 40.00% 468 NaN 7.20 376.0

ΑO

47.50%

1,246,700 117,000 40.73

244.0

DATA CLEANING AND PREPROCESSING

26

```
In [12]:
         data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 35 columns): Column Non-Null Count Dtype _ _ _ -----_____ 0 Country 5 non-null object 1 Density (P/Km2)5 non-null object Abbreviation 5 non-null object 2 Agricultural Land(%) 5 non-null object 3 4 Land Area(Km2) 5 non-null object Armed Forces size 5 4 non-null object 6 Birth Rate 5 non-null float64 7 Calling Code 5 non-null float64 8 Capital/Major City 5 non-null object 9 Co2-Emissions 5 non-null object 10 CPI 4 non-null object 11 CPI Change (%) 4 non-null object 12 Currency-Code 5 non-null object 13 Fertility Rate 5 non-null float64 14 Forested Area (%) 5 non-null object 15 Gasoline Price 5 non-null object 16 GDP 5 non-null object 17 Gross primary education enrollment (%) 5 non-null object 18 Gross tertiary education enrollment (%) object 4 non-null 19 Infant mortality 5 non-null float64 20 Largest city 5 non-null object 21 Life expectancy 4 non-null float64 22 Maternal mortality ratio 4 non-null float64 23 Minimum wage 5 non-null object 24 Official language 5 non-null object 25 Out of pocket health expenditure 5 non-null object Physicians per thousand float64 26 5 non-null 27 Population 5 non-null object 28 Population: Labor force participation (%) object 4 non-null 29 Tax revenue (%) 4 non-null object 30 Total tax rate 4 non-null object 31 Unemployment rate 4 non-null object 32 Urban_population 5 non-null object 33 Latitude 5 non-null float64 34 Longitude float64 5 non-null dtypes: float64(9), object(26)

memory usage: 1.5+ KB

Matarnal Physicians

In [13]: #to display summary of statistics(here to know min max value)
data.describe()

Out[13]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	Latitude
count	5.000000	5.000000	5.000000	5.0000	4.000000	4.000000	5.000000	5.000000
mean	23.296000	256.200000	3.180000	26.0200	70.125000	251.500000	1.348000	26.885984
std	13.974456	114.850773	1.819821	22.6048	8.793321	273.791283	1.277134	22.075793
min	7.200000	93.000000	1.270000	2.7000	60.800000	15.000000	0.210000	-11.202692
25%	11.780000	213.000000	1.620000	7.8000	63.575000	87.750000	0.280000	28.033886
50%	24.280000	244.000000	3.020000	20.1000	70.600000	176.500000	1.200000	33.939110
75%	32.490000	355.000000	4.470000	47.9000	77.150000	340.250000	1.720000	41.153332
max	40.730000	376.000000	5.520000	51.6000	78.500000	638.000000	3.330000	42.506285

EDA and DATA VISUALIZATION

In [15]: sns.pairplot(data)

Out[15]: <seaborn.axisgrid.PairGrid at 0x1839b94c8e0>

In [16]: | sns.distplot(data['Birth Rate'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[16]: <AxesSubplot:xlabel='Birth Rate', ylabel='Density'>


```
In [18]: sns.heatmap(df.corr())
```

Out[18]: <AxesSubplot:>

TRAINING MODEL

```
In [22]: #to find intercept
print(lr.intercept_)

40.53209455498641
```

In [23]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff

Out[23]:

Co-efficient

0.005563

Density\n(P/Km2)	-0.023768
Calling Code	-0.073853
Physicians per thousand	-0.000079
Latitude	-0.003664

Longitude

In [24]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)

Out[24]: <matplotlib.collections.PathCollection at 0x183a0057b50>

In [25]: print(lr.score(x_test,y_test))

0.3741205537460398

RIDGE AND LASSO REGRESSION

```
In [26]: from sklearn.linear_model import Ridge,Lasso
```

In [27]: rr=Ridge(alpha=10)
 rr.fit(x_train,y_train)

Out[27]: Ridge(alpha=10)

```
In [28]: |rr.score(x_test,y_test)
Out[28]: 0.3740314910611825
In [29]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[29]: Lasso(alpha=10)
In [30]: |la.score(x_test,y_test)
Out[30]: 0.3248845431918559
In [31]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[31]: ElasticNet()
In [32]: print(en.coef_)
         [-0.01990074 -0.07558713 0.
                                               -0.
                                                            -0.
                                                                       1
In [33]: print(en.predict(x_test))
         [ 9.03382805 21.75763045]
In [34]: |print(en.score(x_test,y_test))
         0.35368430614607294
In [35]: from sklearn import metrics
In [36]: print("Mean Absolute error", metrics.mean absolute error(y test, prediction))
         Mean Absolute error 10.10670295627709
In [37]: print("Mean Squared error", metrics.mean_squared_error(y_test, prediction))
         Mean Squared error 175.9129473842447
In [38]: print("Root Mean Absolute error", np. sqrt(metrics. mean squared error(y test, predic
         Root Mean Absolute error 13.263217836718384
```