

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Инс</u>	рорматика и системы	управления (ИУ)»	
КАФЕДРА « Пр о	ограммное обеспечени	ие ЭВМ и информацион	иные технологии (ИУ7)»
РАСЧЕ	тно-пояс	НИТЕЛЬНАЯ	І ЗАПИСКА
К ВЫПУС	КНОЙ КВАЛ	ИФИКАЦИО.	ННОЙ РАБОТЕ
	И	4 <i>TEMY</i> :	
	112	A ILMS.	
«Оптимизац	ция планирован	ия грузоперевоз	ок в транспортной
C	истеме на осно	ве метода потені	циалов»
Студент группы	ИУ7-82Б		В.А. Иванов
		(Подпись, дата)	(И.О. Фамилия)
Научный руково,	цитель		М.Ю. Барышникова
		(Подпись, дата)	(И.О. Фамилия)

СОДЕРЖАНИЕ

BI	ведение		
1	Ана	литическая часть	5
	1.1	Актуальность проблемы	5
	1.2	Анализ предметной области	6
	1.3	Сравнение с аналогами	7
	1.4	Детализация задачи	8
	1.5	Допущения и ограничения задачи	9
	1.6	Формализация задачи	11
	1.7	Метод решения	14
3 <i>A</i>	клн	очение	18
CI	писо	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19

ВВЕДЕНИЕ

В настоящее время активно идёт процесс замены интеллектуального труда человека на специализированные программы. Зачастую автоматизации подвергается лишь отдельные эпизоды работы человека, отличающиеся однотипностью действий, так как они зачастую просты в программной реализации и позволяют повысить производительность работника, предоставив ему больше времени для решения более сложных задач.

Примером подобной подзадачи является планирование доставки в профессии логиста. Решение этой проблемы должно учитывать достаточно большое количество факторов. Подобные задачи удаётся решать при помощи программ, так как с использованием математических методов оптимизации они способны принимать наиболее выгодные решения, с точки зрения выделенных критериев, чего не способен сделать человек.

Целью данной работы является разработка метода для планирования доставки товаров.

Выделены следующие задачи:

- провести анализ предметной области, сформулировать критерии оценки оптимальности решений;
- формализовать задание, определить необходимый функционал программного обеспечения;
- выбрать метод оптимизации;
- определить набор необходимых данных и способ их хранения;
- разработать программу в соответствии с выделенным функционалом.

1 Аналитическая часть

Необходимо разработать метод, который по заданной информации об элементах транспортной системы формировал бы рекомендации по объёмам и маршрутам поставки.

1.1 Актуальность проблемы

В данный момент торговые розничные сети (другое название — ретейл) динамически развиваются и с каждым годом занимают всё большую долю в общем объёме розничной торговли[1]. Деятельность подобных предприятий тесно связана с управлением цепочками поставок (SCM – Supply Chain Management) — комплекс подходов, помогающий эффективной интеграции поставщиков, производителей, дистрибьюторов и продавцов. Этот процесс можно разделить на следующие этапы[2].

- 1) Планирование. Принимается решение об управлении жизненным циклом товаров, объёмах производства и закупок.
- 2) Закупки. Происходит управление снабжением, оцениваются и выбираются поставщики.
- 3) Производство. Включает в себя процесс производства, контроль технологических изменений, управление качеством и т.д.
- 4) Доставка. Состоит из трёх основных процессов: управление заказами, управление складом и транспортировка.
- 5) Возврат. На этом этапе определяются элементы возврата товара, составляются графики возврата и направления на уничтожение и переработку.

Среди данных задач хочется выделить отдельно транспортную логистику. Затраты на неё являются существенными, что обосновывается её сложностью и жизненной важностью для деятельности фирмы.

Таким образом, расширение сегмента розничных сетей на рынке влечёт за собой повышение спроса на перевозку товаров. Большинство транспортных компаний прибегают к использованию программного обеспечения для ускоре-

ния и упрощения различных этапов процесса перевозки[3]. Автоматизация данной работы позволяет повысить её эффективность и надёжность.

1.2 Анализ предметной области

Целью деятельности транспортной логистики является организация перемещения груза между двумя местами по оптимальному маршруту[4]. В данном случае оптимальным считается тот маршрут, который позволяет перевезти объекты в предусмотренные сроки (желательно, минимальные) с наименьшими затратами и вредом для них. Стоит отметить, что зачастую возможные маршруты не являются оптимальными сразу по всем критериям, поэтому приходится принимать компромиссные решения.

Случаи, когда задачи розничной торговли, транспортировки и складирования товара (а иногда даже производства) выполняются одной фирмой достаточно редки и характерны только для крупного бизнеса. Этот подход организации позволяет улучшить интеграцию всех перечисленных элементов логистической системы, что способно снизить издержки на каждом из этапов. Малые предприятия не располагают подобными ресурсами и, как правило, пользуются услугами других компаний для данной функции.

В рамках данной работы рассматривается решение задач автоматического планирования для автомобильной транспортной компании.

Логистика малого бизнеса имеет ряд особенностей[5]. Как было отмечено, небольшие организации не способны содержать необходимый штат сотрудников, транспортных средств и т.д., а также не обладают достаточно большим оборотом товаров для собственной организации перевозки. Малые объёмы поставок для каждого отдельного предприятия приводят к тому, что компании-перевозчики совмещают планируют один маршрут сразу через несколько точек доставки.

Можно заключить, что обыкновенный процесс работы фирмы доставки заключается в следующем. Несколько ретейл-предприятий формируют заказы с указанием заказываемых товаров и их объёмов. Транспортная компания опре-

деляет совместные маршруты и средства доставки, формирует заказ для складского предприятия. Назначенные грузовые автомобили загружаются на складе и развозят груз по нужным пунктам.

1.3 Сравнение с аналогами

Системы управления перевозками (TMS – Transportation management system), как было отмечено выше, являются востребованными для предприятий, занимающихся логистикой. Данные системы, в основном, решают следующий перечень задач[6]:

- расчет логистических затрат;
- оптимальное использование транспортных средств для минимизации общих расходов;
- повышение качества обслуживания соблюдение сроков доставки, установленных транспортной службой компании;
- автоматизация процесса транспортного планирования и управления, обеспечивающая решение для конкурентного транспортного планирования и управления;
- повышение производительности труда работников при планировании и организации грузовых перевозок.

В число наиболее популярных в России входят следующие TMS.

- Oracle Transportation Management.
- SAP TM.
- 1С: TMS Логистика. Управление перевозками.

Перечисленные программы позволяют осуществлять составление, расчёт стоимостей, поручение и контроль выполнения транспортировок. Также зачастую реализуются различные интерфейсы и функционал для водителей, логистов и т.д. Таким образом, общей чертой данных систем является комплексный подход к решению задач транспортной логистики. Предпринимается попытка удовлетворить все потребности, так или иначе связанные с обработкой данных.

Сравнение наиболее интересных для данной задачи функций[6] можно привести в таблице 1.

Таблица 1 – Сравнение существующих решений

ТМS Функция	OTM	SAP	1C
Прогнозирование	да	да	нет
Планирование заказов	да	частично	частично
Распределение перево-	да	да	нет
зок между исполните-			
лями за период			

Однако среди указанных программ автоматическое планирование с учётом наиболее важных факторов позволяет Oracle TM. В случае других TMS планирование не реализовано настолько детально. Ввиду крайне высокой цены[6] на Oracle Transportation Management и в целом на подобные программы, небольшие транспортные фирмы не могут позволить себе столь высокие расходы. Решением может быть использование представленной в этой работе программой в интеграции с сравнительно недорогой TMS, решающей другие задачи транспортного управления.

1.4 Детализация задачи

Требуется разработать алгоритм, выполняющий оптимальную планировку маршрутов доставки заказов от складов до потребителей (ретейл-фирм). Целью создания продукта является определение маршрутов, которые будут наиболее выгодными для компании. Выгода в данном случае заключается во множестве факторов, но в первую очередь под ней подразумевается денежная прибыль.

Целевой пользователь – логист транспортной компании. Для него применение программы нужно для получения рекомендаций по заданию маршрутов в

определённый момент времени. После этого работник может проанализировать полученные маршруты, внести в них свои корректировки и заняться последующими этапами своей деятельности (непосредственно организации грузоперевозок, документооборотом и т.д.).

Исходными данными является информация о следующих объектах:

- грузовые машины, входящие в автопарк фирмы;
- перевозимые товары;
- стоянка грузовиков;
- поставщики и потребители товара (в данном случае склады и розничные торговые фирмы);
- пути между вышеописанными пунктами маршрута;
- заказы.

Результатом работы должны стать предлагаемые маршруты. Схематически пример модели представлен на рисунке 1, где стрелками обозначены маршруты, выбранные алгоритмом как оптимальные.

Рисунок 1 – Схема модели

1.5 Допущения и ограничения задачи

Рассмотрим упомянутые объекты, обозначим допущения и ограничения для задачи.

Одним из главных вопросов является выделение критерия оптимизации, служащего для оценки решений. Как было отмечено выше, главным является денежная прибыль, то есть повышение доходов и уменьшение затрат.

Первый путь достигается только через выполнение большего объёма грузоперевозок. Однако, количество перевозимого груза определяется не при планировании маршрутов перевозки товаров, а при заключении договора между
транспортной компанией и ритейл-фирмой. Поэтому, будем считать, что объём
заказов фиксирован и их выполнение в срок является обязательным. Это также обусловленно большими штрафами за невыполнение договора, как правило
существенно превышающими рассмотренные далее затратами.

Деятельность фирмы грузодоставки связана с множеством статей затрат, но пути перевозки влияют только на время доставки и пробег грузовиков, что в свою очередь отражается на средствах, затрачиваемых на топливо и амортизацию транспортных средств. Для упрощения, будем считать, что этот расход можно вычислить используя длину маршрута и среднюю затрату на километр. Оценка по времени для расчёта стоимости подходит меньше, так как одинаковое время затраченное в пробке и на свободной дороге ведёт к совершенно разным результатам.

Путь между пунктами доставки достаточно описать с использованием расстояния и времени. Следует уточнить, что последний фактор является крайне динамичным, ввиду разной загруженности дорог в разные периоды суток, возможностью ДТП и прочих сложно прогнозируемых событий. Поэтому время должно указываться усреднённое за весь период дня.

Решение проблемы расположения разнородного груза в автомобиле и расчёта его вместимости в общем случае является достаточно сложной задачей. Так, например, хрупкие вещи могут не допускать расположение другого груза поверх них. Поставка товаров является оптовой в поставленной задаче, поэтому примем распространённый в этой сфере подход: все виды товаров поставляются в внутри тар, которые имеют определённый объём и не требуют специальных

условий транспортировки. В таком случае также можно считать, что грузовик вмещает некоторые тары, если их суммарный объём не превышает заполняемый объём кузова.

Для упрощения решаемой задачи следует также принять, что грузовики и перевозимые тары обладают одинаковой вместимостью и объёмом соотвественно. Транспортные фирмы зачастую действительно закупают или арендуют грузовые автомобили одной модели или разных, но со схожими характеристиками. Это объясняется тем, что они закупаются для одной целей, а также упрощением процедуры технического обслуживания одинаковых авто. Таким образом, данное упрощение существенно не влияет на применимость метода к реальным системам.

Допущение о одинаковости тар сделано для упрощения разрабатываемого метода. Как было отмечено выше, форма и объём тар достаточно разнообразны, и их учёт повысит сложность и комплексность метода. Поэтому в качества объёма тар устанавливается одно значение. Для иных типов следует применять перевод их количества с сохранением общего объёма продукции.

Первым и последним пунктом любого рейса является автостоянка транспортной фирмы, причём в обоих случаях машина не содержит каких-либо грузов. Также будем считать, что посещение складов и потребителей не может происходить "вперемешку" — в первую очередь посещается склад, после чего товары из него доставляются в один или несколько пунктов. Это условие нужно для избежания длинных рейсов с промежуточными пополнениями.

1.6 Формализация задачи

Сформулированная задача является задачей поиска оптимального решения, а именно транспортной задачей [7]. Она решает проблему составления плана перевозок из пунктов отправления в пункты потребления, который будет иметь наименьшие затраты на перевозки.

В простейшем случае модель транспортной системы рассматривается как множество пунктов производства однородного продукта и множество его по-

требителей. Известны затраты перевозки одной единицы товара для любой пары производителя и потребителя.

Использование такой модели некорректно, так как она не учитывает следующие факторы.

- Склады и транспортные средства ограничены и обладают конечной вместимостью.
- Рассматриваемый магазин оперирует сразу множеством товаров. Это порождает сразу ряд дополнительных обстоятельств. Например, тары имеют различные габариты, что влияет на вместимость транспортного средства.
- Рассматриваются только маршруты "Производитель Потребитель" тогда как в рассмотренной модели маршрут может проходить сразу через несколько потребителей. Таким образом и перевозимый одним транспортом груз зависит сразу от нескольких потребителей.

Основным способом решения вопроса множества продуктов сводится к условному разбиению поставщиков и потребителей из общих на работающих только с одним продуктом. Таким образом задача сводится к однопродуктовой с общим для всех разбиений одного пункта ограничением на пропускную способность.

В таком случае рассмотрим математическую модель транспортной задачи для одного продукта.

Формализация данных Формализуем данные метода. В первую очередь обозначим основные величины: Vol — объём одной тары, Con — стоимость топлива (литр / у.е.)

 A_i – склады с запасом продукции в a_i , $(i = \overline{1, N_a})$.

 B_i – потребители с потребностью продукции в a_i , ($i=\overline{1,N_b}$).

Данные об A и B и автостоянке можно объединить в понятие пункта маршрута P, где a_i – количество продукта (в случае потребителя отрицательно,

по модулю равно потребности, в случае стоянки — всегда 0), где i=1 — автостоянка $i=\overline{2,N_a+1}$ — склады, $i=\overline{N_a+2,N_b+N_a+1}$ — потребители. Общее количество пунктов опишем как $N=N_b+N_a+1$.

 $O_{(k-1)+i}$ – заказ k-м, сделанный потребителем i-м на $ov_{(k-1)+i}$ товаров (в тарах) к сроку $ot_{(k-1)+i}$, где $i=\overline{1,N_b},\,k\geq 1.$

 T_i — транспорт с вместимостью в c_i (в кубометрах) и затратой топлива в f_i (в литр / км) ($i=\overline{1,N_t}$).

Рейсы транспорта обозначим как $R_{(k-1)N_t+i}$, где $i=\overline{1,N_t}$ – номер транспорта $T_i,\,k\geq 1$ – номер рейса (в рассматриваемый период).

Тогда $t_{ij}>0, d_{ij}>0$ — время перемещения и расстояние между P_i и $P_j, v_{ijk}\geq 0$ — количество товара перевезённое k-м рейсом между P_i и $P_j, i\neq j, i, j=\overline{1,N_b+N_a}, k=\overline{1,N_t}$. Вектор v, удовлетворяющий ниже идущим условиям и ограничениям считается **решением**.

Формулирование условия решения План перевозок можно считать решением задачи в случае, если поставки удовлетворили всех потребителей. В принятом обобщении пунктов это можно записать как

$$a_i + \sum_{j=1}^{N_b + N_a} \sum_{k=1}^{N_t} (v_{jik} - v_{ijk}) \ge 0$$
 (1)

Формулирование ограничений Ни на одном из этапов перевозки объём продукта не должен превысить максимальную вместимость транспорта.

$$v_{ijk} \cdot Vol \le c_k, \forall i, j \in \overline{1, N_b + N_a}, k \in \overline{1, N_t}$$
 (2)

Обратные перевозки невозможны

$$v_{ijk} > 0 \Longrightarrow v_{jik} = 0 \tag{3}$$

Транспорт может въехать и выехать из пункта только одним путём

Все заказы должны быть выполненны в срок.

Формулирование критериев Критерием оптимизации является минимизация затрат. Как было отмечено выше, планирование способно оказывать влияние только на стоимости всех рейсов. Целевая функция принимает следующий вид.

$$L(v) = Con \cdot \sum_{i=1}^{N_b + N_a} \sum_{j=1}^{N_b + N_a} d_{ij} \cdot \sum_{k=1}^{N_t} v_{ijk} \to \min$$
 (5)

Математическая модель Приведём все описанные формализации в математическую модель рассматриваемой задачи поиска оптимального плана поставок.

$$\begin{cases}
L(v) \to min \\
a_{i} + \sum_{j=1}^{N_{b}+N_{a}} \sum_{k=1}^{N_{t}} (v_{jik} - v_{ijk}) \geq 0
\end{cases}$$

$$v_{ijk} \cdot Vol \leq c_{k}, \forall i, j \in \overline{1, N_{b} + N_{a}}, k \in \overline{1, N_{t}}$$

$$v_{ijk} > 0 \Rightarrow v_{jik} = 0$$

$$\sharp i, k, j_{1}, j_{2} : j_{1} \neq j_{2}, v_{ij_{1}k} > 0, v_{ij_{2}k} > 0$$

$$\sharp j, k, i_{1}, i_{2} : i_{1} \neq i_{2}, v_{ijjk} > 0, v_{i2jk} > 0$$

1.7 Метод решения

Учитывая перечисленные факторы, в качестве основы для решения сформулированной задачи возможно выбрать метод потенциалов в сетевой постановке. Он является модификацией симплекс-метода, применяющегося для многих оптимизационных задач, в том числе и классической транспортной задачи[9].

Преимуществом такого метода является то, что он позволяет создавать транзитные маршруты через пункты потребления и добавлять ограничения на пропускную способность, что необходимо в данном случае. Для этого можно условно представить каждого потребителя складом на время отгрузки транс-

порта в нём. Вместимость такого склада равна неиспользованному месту в грузовике.

Описание алгоритма Алгоритм метода потенциалов состоит из двух этапов.

- 1) Предварительный. Служит для формирования начального (опорного) плана перевозок. Он соблюдает все поставленные ограничения, но не является оптимальным.
- 2) Основной. Данный этап изменяет составленный план и повторяется до тех пор, пока не будет достигнут оптимум.

Рассмотрим эти этапы подробнее.

Предварительный этап В первую очередь формируется допустимый план перевозок. Для формирования начальных маршрутов существует метод северозападного угла и метод минимального элемента[11]. Фактически данные методы различаются лишь порядком выбора путей между пунктами для формирования маршрутов. Для данной задачи будем использовать последний, так как эффективнее [12] за счёт того, что в нём изначально учитывается не только запасы и потребности, но и стоимость перевозок. Данный метод включит наикратчайшие пути в начальные маршруты, что позволит продлевать их для транзитных перевозок в соседние магазины.

Метод заключается в последовательном назначении маршрутов от поставщика до потребителя до полного удовлетворения потребности последних. Выбор осуществляется в порядке "наименьшего элемента". В данном случае первыми в графе дорог будут выбраны рёбра с наименьшим расстоянием. По выбранному пути назначается перевозка на максимально возможное количество товаров (ограничивается наличием на складе, потребностью заказчика и вместительностью транспорта). Грузовики выбираются по принципу минимально необходимой вместимости. После этого из рассмотрения удаляются склады и магазины без запасов и потребностей соответственно. Описанный шаг повто-

ряется до тех пор, пока все потребители не будут удовлетворены.

Как было отмечено ранее, решаемая задача имеет усложнения по сравнению с обычным. Рассмотрим какое влияние они оказывают на данном этапе.

- Ограничения по времени выполнения заказов в начальном плане не учитываются. Они являются задачей оптимизации на основном шаге.
- Транзитные маршруты на данном этапе могут быть проложены в случае, если ближайшим к данному магазину является магазин с уже проложенным маршрутом, а также запасы склада на начале маршрута и остаток места в курсирующем грузовике позволяют это сделать.
- Многопродуктовость[10]. По очередному выбранному пути перевозится максимальное количество каждого товара. В случае, если один из факторов не позволяет этого сделать, то в первую очередь на маршрут определяются грузы, потребность в которых способен полностью покрыть данный маршрут и для них определятся минимальный необходимый грузовик. Оставшееся место максимально заполняется оставшимися товарами. Это обусловленно тем, для неудовлетворённых товарах потребуется как минимум ещё один рейс, поэтому минимизируется стоимость маршрута формируемого на этом шаге.

Основной этап Основу алгоритма составляет метод потенциалов. Его целью является нахождение окончательного оптимального плана [13]. Действие заключается в следующем.

Каждый узел обладает некоторым значением потенциала Pot[P]. Фактически оно отражает значение целевой функции для определённого пункта. Изначально оно формируется в соответствии с сформированным на первом шаге плане. Значение складов устанавливается как стоимость проезда до стоянки. Значения для магазина $Pot[P_j]$ считается как $Pot[P_j] = Pot[P_i] + Cost_{ij}$, где $Pot[P_i]$ - потенциал пункта, из которого по плану осуществляется доставка груза, $Cost_{ij} = Con \cdot d_{ij}v_{ij}$ - стоимость перевозки груза по дуге ij.

Оптимизация производится за счёт рассмотрения альтернативных путей доставки груза в пункт вместо уже запланированных. Это делается при помощи определения значения невязки для каждой дуги. Для пути P[i] - > P[j] оно вычисляется как $Pot[P_j] - Pot[P_i] - Cost_{ij}$. В случае, если данная величина отрицательна это фактически означает, что существует более выгодный маршрут перевозки. После этого прокладывается новый или удлиняется существующий маршрут, а из старого удаляется дуга, ведущая в P[j]. Производится пересчёт потенциалов и всех невязок. В случае, если все невязки положительны считается, что оптимальное решение найдено. Иначе, выбирается самая значительная невязка и для неё повторяется описанный шаг.

Обратимся снова к выделенным дополнительным условиям задачи.

- Перестроение приведёт к тому, что некоторые изначально запланированные маршруты будут отменены, так как они будут заменены с помощью транзитных. Таким образом, общий график их доставки будет смещён.
- При прокладке транзитного маршрута считается, что в рассматриваемом магазине содержится всё оставшееся содержимое склада с ограничением на остаток вместимости в грузовике[14]. Однако, оно может быть пересмотренно с помощью замены транспорта на более вместительный, при условии, что таковой будет свободен и что использование более дорогостоящего грузовика будет оправдано.
- Для учёта многопродуктовости каждый склад условно разбивается на склады под каждый отдельный вид продукции [15]. Но при этом маршруты для их перевозки используются общие. Невязки рассматриваются для каждого товара отдельно.

ЗАКЛЮЧЕНИЕ

Результатом научно-исседовательской работы стала формализация поставленной задачи и описание метода её решения.

Была проанализированна предметная область задачи. Проведён сравнительный анализ с наиболее известными решениями, обозначены их преимущества и недостатки. Выявлены основные особенности транспортировки товаров для малого бизнеса.

На основании проведённого анализа были установленны цели создания метода. Описаны объекты модели, входные и выходные данные. Установленны допущения и ограничения для моделируемых объектов, основанные на особенностях рассматриваемого вида грузоперевозки. Также был описан критерий оптимизации маршрутов доставки.

Была разработана математическая модель исследуемой системы. С её использован был описан метод, предлгаемый для решения поставленной задачи. Выделены шаги метода, описаны способы обработки дополнительных учитываемых факторов, таких как транзитность маршрутов и многопродуктововсть.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Милов Сергей Николаевич, Милов Алексей Сергеевич. Исследование проблем управления ассортиментом и товарными запасами в торговых сетях // Вестник РЭА им. Г. В. Плеханова. 2019. №5 (107).
- 2. Хашман Т.Т. Управление цепочками поставок. Гуманитарный вестник, 2013, вып. 10. [Электронный ресурс] Режим доступа: http://www.hmbul.ru/articles/114/114.pdf (дата обращения 24.11.2021)
- 3. Костышева Яна Вячеславовна Эффективность применения программных обеспечений в области транспортной логистики // Экономикс. 2013. №1.
- 4. Макаров М. А., Мартынюк А. В., Зарецкий А. В. Транспортная логистика // Актуальные проблемы гуманитарных и естественных наук. 2012. №12.
- 5. Логистика для малого бизнеса при небольших объёмах [Электронный ресурс]. Режим доступа: https://itctraining.ru/biblioteka/logistika-ved/postroenie-logistiki-pri-nebolshikh-obemakh, свободный (дата обращения 01.12.2021)
- 6. Сборник научных статей по итогам работы Международного научного форума НАУКА И ИННОВАЦИИ- СОВРЕМЕННЫЕ КОНЦЕПЦИИ (г. Москва, 25 января 2019 г.). / отв. ред. Д.Р. Хисматуллин. Москва: Издательство Инфинити, 2019. 140 с.
- 7. А. В. Кузнецов, Н. И. Холод, Л. С. Костевич. Руководство к решению задач по математическому программированию. Минск: Высшая школа, 1978. С. 110.
- 8. С. И. Носков, А. И. Рязанцев. Двухкритериальная транспортная задача // Т-Сотт: Телекоммуникации и транспорт. 2019. Том 13. С. 59-63
- 9. И.В. Романовский. Алгоритмы решения экстремальных задач. М.: Наука, 1977. 352 с.

- 10. Сеславин А.И., Сеславина Е.А. Оптимизация и математические методы принятия решений. Учебное пособие. М.: МИИТ, 2011. 152.
- 11. Терентьев Д. А., Тимофеев А. В. МЕТОДЫ РЕШЕНИЯ ТРАНСПОРТНОЙ ЗАДАЧИ //АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТЕХНИЧЕСКИХ НАУК В РОССИИ И. 2016. С. 166.
- 12. Косенко О.В. дис. РАЗРАБОТКА МЕТОДОВ И АЛГОРИТМОВ РЕШЕ-НИЯ МНОГОИНДЕКСНЫХ РАСПРЕДЕЛИТЕЛЬНЫХ ЗАДАЧ В УСЛОВИ-ЯХ НЕОПРЕДЕЛЕННОСТИ канд. техн. наук: 05.13.01. — «ЮЖНЫЙ ФЕ-ДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ РАДИОТЕХНИЧЕСКИХ СИ-СТЕМ И УПРАВЛЕНИЯ (ИРТСУ), Таганрог — 2017 г. - 172 с.
- Герасименко Евгения Михайловна Метод потенциалов для определения заданного потока минимальной стоимости в нечетком динамическом графе // Известия ЮФУ. Технические науки. 2014. №4 (153)
- 14. Кривопалов В. Ю. РЕШЕНИЕ ТРАНСПОРТНОЙ ЗАДАЧИ С ПРОМЕЖУ-ТОЧНЫМИ ПУНКТАМИ И ОГРАНИЧЕНИЕМ ПО ТРАНЗИТУ //Главный редактор СВ Симак. С. 28.
- Цехан О. Б. Моделирование и алгоритмизация одной задачи планирования многопродуктовых перевозок с запрещенным транзитом //Веснік ГрДУ імя Я. Купалы.—Серия. 2011. Т. 2. С. 73-89.