CLAIMS:

1

_	TT 74 .		4 .	4	•
')	What	10	C 217	ned :	10.

- 3 1. A method of manufacturing an electronic-charge-transferring device comprising:
- 4 providing a charged species source and a charge species drain; and
- 5 manufacturing a moveable component for transferring charge to the
- 6 charged species drain, a first protrusion proximate to the moveable component,
- 7 and a second protrusion proximate to the moveable component, wherein the
- 8 moveable component is positioned in close proximity to the charged species
- 9 source, and wherein at least one of the moveable component, the first protrusion
- and the second protrusion is micro-manufactured.
- 11 2. The method of claim 1, wherein the providing step comprises providing a micro-
- manufactured charged species source.
- 13 3. The method of claim 1, wherein the providing step comprises providing a micro-
- manufactured charged species drain.
- 15 4. The method of claim 1, wherein the providing step comprises providing the
- charged species source and the charged species drain in contact with the moveable
- 17 component.
- 18 5. The method of claim 1, wherein the manufacturing step comprises including a
- first material in the first protrusion and a second material, different from the first
- 20 material, in the second protrusion.
- 21 6. The method of claim 5, wherein the manufacturing step comprises including a
- 22 third material, different from the first material and the second material, in the
- 23 moveable component.
- 7. The method of claim 1, further comprising positioning the first protrusion and the
- 25 second protrusion in contact with the moveable component.
- 26 8. The method of claim 1, further comprising electrically connecting a device to the
- 27 charged species drain.
- 28 9. A method of transferring electric charge comprising:
- 29 providing a first charged species source and a first charged species drain;
- 30 micro-manufacturing at least one of a first moveable component, a first
- protrusion, and a second protrusion, wherein the moveable component is
- 32 positioned proximate to the first charged species source and the first charged
- 33 species drain, and wherein the first protrusion and the second protrusion each
- contact the first moveable component; and

1		moving the first moveable component relative to the first charged species
2		source and the first charged species drain.
3	10.	The method of claim 9, wherein the providing step comprises micro-
4		manufacturing the first charged species source and the first charged species drain.
5	11.	The method of claim 9, wherein the moving step comprises translating the first
6		moveable component relative to the first charged species source.
7	12.	The method of claim 9, wherein the moving step comprises rotating the first
8		moveable component about a rotation axis.
9	13.	The method of claim 9, further comprising tribocharging the first protrusion and
10		the second protrusion.
11	14.	The method of claim 9, further comprising using the first charged species drain to
12		supply an electric current to a device.
13	15.	The method of claim 9, further comprising providing a second moveable
14		component, a second charged species source and a second charged species drain,
15		each positioned proximate to the second moveable component, and a third
16		protrusion and a fourth protrusion, each positioned proximate the second
17		moveable component, wherein the first charged species drain and the second
18		charged species drain are each electrically connected to a device.
19	16.	The method of claim 15, further comprising moving the second moveable
20		component out of phase with the first moveable component.
21	17.	A van de graaf device comprising:
22		a moveable component;
23		a charged species source proximate to the moveable component;
24		a charged species drain proximate to the moveable component;
25		a first protrusion contacting the moveable component; and
26		a second protrusion contacting the moveable component, wherein at least
27		one of the moveable component, the first protrusion and the second protrusion is
28		micro-machined.
29	18.	The van de graaf device of claim 17, wherein the charged species source is
30		electrically grounded.

charged species drain are micro-machined.

The van de graaf device of claim 17, wherein the charged species source and the

31

32

19.

- 1 20. The van de graaf device of claim 17, wherein the first protrusion comprises a
- 2 material that can be tribocharged by a material comprised in the moveable
- 3 component.