master's project notes

Contents

1 Fast poisson logpmf													-																	
	1.1	The implementations																												2

1 Fast poisson logpmf

1.1 The implementations

The poisson logpmf is something aaaa

We have four different implementations performing (poisson logpmf?) ...:

The first implementation we consider is the implementation provided by the SciPy [1]

```
1 from scipy.stats import poisson
2
3 def poisson_logpmf(k, r):
4    return poisson.logpmf(k, r)
```


Figure 1: Temporary caption.

Some more text.

References

[1] Pauli Virtanen et al. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". In: *Nature Methods* 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.