CSE17040 - Apriori

August 25, 2020

1 MLDM Lab 5 - Apriori

(Without libraries)

Manojkumar V K - CB.EN.U4CSE17040

```
[1]: import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
```

1.1 Reading into dataframe

```
[2]: df = pd.read_csv('zoo.csv')
    df.head()
```

[2]:	animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	\
0	aardvark	1	0	0	1	0	0	1	
1	antelope	1	0	0	1	0	0	0	
2	bass	0	0	1	0	0	1	1	
3	bear	1	0	0	1	0	0	1	
4	hoar	1	0	0	1	0	0	1	

	toothed	backbone	breathes	venomous	fins	legs	tail	domestic	catsize	\
0	1	1	1	0	0	4	0	0	1	
1	1	1	1	0	0	4	1	0	1	
2	1	1	0	0	1	0	1	0	0	
3	1	1	1	0	0	4	0	0	1	
4	1	1	1	0	0	4	1	0	1	

1

1.2 Data preprocessing

```
[3]: df = df.set_index('animal_name')
df = df.drop(['class_type'],axis=1)
df.head()
```

[3]:		hair f	eathers	eggs	milk	airborn	ıe aqu	atic	predator	toothed	\
	animal_name										
	aardvark	1	0	0	1		0	0	1	1	
	antelope	1	0	0	1		0	0	0	1	
	bass	0	0	1	0		0	1	1	1	
	bear	1	0	0	1		0	0	1	1	
	boar	1	0	0	1		0	0	1	1	
		backbon	e breat	hes	venomous	s fins	legs	tail	domestic	catsize	
	animal_name						J				
	aardvark		1	1	(0 0	4	0	0	1	
	antelope		1	1	(0 0	4	1	0	1	
	bass		1	0	() 1	0	1	0	0	
	bear		1	1	(0 0	4	0	0	1	
	boar		1	1	(0 0	4	1	0	1	

1.3 Encoding

Instead of using Transaction Encoder, we directly apply a simple logic to encode the dataframe. This is because the given dataset is already encoded.

```
[4]: df = df > 0 df.head()
```

	ui.lleau()									
[4]:	animal name	hair f	eathers	eggs	milk	airborn	e aqua	tic p	redator	\
	aardvark	True	False	False	True	Fals	e Fa	lse	True	
	antelope	True	False	False	True	Fals	e Fa	lse	False	
	bass	False	False	True	False	Fals	e T	rue	True	
	bear	True	False	False	True	Fals	e Fa	lse	True	
	boar	True	False	False	True	Fals	e Fa	lse	True	
	animal_name	toothed	backbone	e brea	thes	venomous	fins	legs	tail	\
	aardvark	True	True	9	True	False	False	True	False	
	antelope	True	True	9	True	False	False	True	True	
	bass	True	True	e F	alse	False	True	False	True	
	bear	True	True	9	True	False	False	True	False	
	boar	True	True	e	True	False	False	True	True	

```
domestic catsize
animal_name
aardvark
                 False
                           True
antelope
                 False
                           True
bass
                False
                          False
bear
                False
                           True
boar
                False
                           True
```

1.4 Association Rule Mining - Apriori

```
[5]: frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)
     frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x:__
      \rightarrowlen(x))
     frequent itemsets[:5]
[5]:
                    itemsets length
         support
     0 0.425743
                      (hair)
                                   1
     1 0.584158
                      (eggs)
                                   1
     2 0.405941
                      (milk)
                                   1
     3 0.237624
                 (airborne)
                                   1
     4 0.356436
                   (aquatic)
                                   1
[6]: lift = association_rules(frequent_itemsets, metric="lift", min_threshold=1)
     lift[:5]
[6]:
       antecedents consequents
                                antecedent support consequent support
                                                                          support \
     0
            (milk)
                        (hair)
                                          0.405941
                                                               0.425743 0.386139
     1
            (hair)
                        (milk)
                                           0.425743
                                                               0.405941
                                                                         0.386139
     2
         (toothed)
                        (hair)
                                           0.603960
                                                               0.425743
                                                                         0.376238
     3
            (hair)
                     (toothed)
                                           0.425743
                                                               0.603960
                                                                         0.376238
            (hair)
                    (backbone)
     4
                                           0.425743
                                                               0.821782
                                                                         0.386139
        confidence
                       lift
                             leverage conviction
     0
          0.951220 2.23426 0.213312
                                        11.772277
          0.906977
                    2.23426 0.213312
     1
                                         6.386139
     2
          0.622951
                    1.46321 0.119106
                                          1.523031
     3
          0.883721
                    1.46321
                             0.119106
                                         3.405941
                    1.10367 0.036271
          0.906977
                                          1.915842
[7]: frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)
     rules = association_rules(frequent_itemsets, metric="confidence", u
      →min threshold=0.5)
     rules[:5]
```

```
[7]:
      antecedents consequents antecedent support consequent support
                                                                        support \
    0
            (milk)
                        (hair)
                                         0.405941
                                                             0.425743 0.386139
    1
            (hair)
                        (milk)
                                         0.425743
                                                             0.405941
                                                                       0.386139
    2
        (toothed)
                        (hair)
                                         0.603960
                                                             0.425743
                                                                       0.376238
    3
            (hair)
                    (toothed)
                                         0.425743
                                                             0.603960
                                                                       0.376238
    4
            (hair)
                   (backbone)
                                         0.425743
                                                             0.821782 0.386139
       confidence
                      lift leverage conviction
    0
         0.951220 2.23426 0.213312
                                       11.772277
    1
         0.906977
                   2.23426
                            0.213312
                                        6.386139
    2
         0.622951
                   1.46321
                            0.119106
                                        1.523031
    3
         0.883721
                   1.46321
                            0.119106
                                        3.405941
         0.906977 1.10367 0.036271
                                        1.915842
```

[]: