Das SIR-Modell

Michael Hartmann

Linux User Group Augsburg

1. April 2020

Warnung

Ich bin kein Virologe/Epidemiologe!

...aber ein Nerd :-)

- SIR-Modell: Modell, um Epidemien zu beschreiben
- Modelle sind nur so gut wie ihre Annahmen
- unser Modell ist sehr einfach...
- und die Realität ist viel komplexer...

Wir teilen die Bevölkerung in drei Gruppen ein:

- S: Anzahl der suszeptiblen Menschen (anfällig für Erreger)
- I: Anzahl der infizierten Menschen
- R: Anzahl der resistenten Menschen

Wir teilen die Bevölkerung in drei Gruppen ein:

- S: Anzahl der suszeptiblen Menschen (anfällig für Erreger)
- I: Anzahl der infizierten Menschen
- R: Anzahl der resistenten Menschen

Konsequenzen:

- S nimmt im Laufe der Epidemie ab
- R nimmt im Laufe der Epidemie zu
- Anzahl der Menschen N = S + I + R bleibt konstant

- $S \rightarrow I$: noch nicht infizierte Menschen stecken sich am Virus an
- $I \rightarrow R$: infizierte Menschen werden wieder gesund oder sterben
- S, I, R ändern sich mit der Zeit: S(t), I(t), R(t)

Übergangsraten

$I \rightarrow R$:

- Wenn I Personen für T_I Tage infiziert sind, werden pro Tag I/T_I Personen gesund (oder sterben)
- $\gamma = 1/T_I$; für COVID-19: $T_I \approx 14$, $\gamma \approx 0.07$
- Änderungsrate von I zu R: γI

$S \rightarrow I$:

- Wahrscheinlichkeit, dass ein Suszeptibler infiziert wird:
 - 1 Wie viele Personen er/sie pro Tag trifft
 - 2 Wie wahrscheinlich eine Ansteckung ist
 - $oxed{3}$ Welcher Anteil der Bevölkerung infiziert ist (I/N)
- Punkt 1 und 2 fassen wir zusammen: β
- Änderungsrate von S zu $I: \beta(I/N)S$

Übergangsraten

$I \rightarrow R$:

- Wenn I Personen für T_I Tage infiziert sind, werden pro Tag I/T_I Personen gesund (oder sterben)
- $\gamma = 1/T_I$; für COVID-19: $T_I \approx 14$, $\gamma \approx 0.07$
- Änderungsrate von I zu R: γI

$S \rightarrow I$:

- Wahrscheinlichkeit, dass ein Suszeptibler infiziert wird:
 - 1 Wie viele Personen er/sie pro Tag trifft
 - 2 Wie wahrscheinlich eine Ansteckung ist
 - 3 Welcher Anteil der Bevölkerung infiziert ist (I/N)
- Punkt 1 und 2 fassen wir zusammen: β
- Änderungsrate von S zu $I: \beta(I/N)S$

Vollständiges Modell

$$\frac{dS}{dt} = -\beta \frac{I}{N}S \qquad \frac{dI}{dt} = \beta \frac{I}{N}S - \gamma I \qquad \frac{dR}{dt} = \gamma I$$

- $\frac{dS}{dt}$: Änderung der Suszeptiblen pro Zeit
- $\frac{dI}{dt}$: Änderung der Infizierten (Neuinfizierte pro Tag)
- $\frac{dR}{dt}$: Änderung der Resistenten (Genesung/Tode pro Tag)

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta \frac{I}{N}S - \gamma I = \left(\underbrace{\frac{\beta}{\gamma}}_{-R} \frac{S}{N} - 1\right) \gamma I$$

• Am Anfang der Epidemie $S \approx N$:

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta \frac{I}{N}S - \gamma I = \left(\underbrace{\frac{\beta}{\gamma}}_{=R_0} \underbrace{\frac{S}{N}}_{\approx 1} - 1\right) \gamma I$$

• Am Anfang der Epidemie $S \approx N$:

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \left(R_0 - 1\right)\gamma I$$

- R_0 gibt an wie viele Menschen eine infektiöse Person durchschnittlicht ansteckt (am Anfang einer Epidemie)
- $R_0 > 1$: exponentielles Wachstum
- für COVID-19: $R_0 \approx 1.4 3.9$

Für $\gamma = 0.07$:

Verdoppelung (in d)	β (in 1/d)	R_0
2	0.42	6.0
3	0.30	4.3
5	0.21	3.0
7	0.17	2.4
14	0.12	1.7

Annahmen des Modells

- Geburten und natürliche Tode können vernachlässigt werden
- Die Gruppe *R* ist permanent immun
- Homogene Vermischung der Menschen
- ...

Beispiele

$$\beta = 0.2, \gamma = 0.07$$

Beispiele

$$\beta = 0.1, \gamma = 0.07$$

Was können wir tun?

- Social Distancing: reduziert β
- bessere Hygiene: reduziert β
- Quarantäne (mit Testen): reduziert β
- Impfung: reduziert S, erhöht R

Danke für die Aufmerksamkeit

Links:

- Simulating an Epidemic (Video von 3blue1brown)
- Coronavirus unnötiger Alarm bei COVID-19? (Video von Harald Lesch)