Statistics

Statistics

An Introduction using R

Michael J. Crawley

Imperial College London, UK

Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Crawley, Michael J.

Statistics: an introduction using R / M. J. Crawley.

p. cm.

ISBN 0-470-02297-3 (acid-free: hardback) - ISBN 0-470-2298-1

(acid-free : pbk.)

1. Mathematical statistics–Textbooks. 2. R (Computer program language)

I Title

QA276.12.C73 2005

519.5-dc22

2004026793

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-02297-3 (Cloth) ISBN 0-470-02298-1 (Paper)

Typeset in 10/12pt Times by Thomson Press (India) Limited, New Delhi, India. Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Preface	xi
Chapter 1 Fundamentals	1
Everything Varies	2
Significance	3
Good and Bad Hypotheses	3
Null Hypotheses	3
p Values	3
Interpretation	4
Statistical Modelling	4
Maximum Likelihood	5
Experimental Design	7
The Principle of Parsimony (Occam's Razor)	7
Observation, Theory and Experiment	8
Controls	8
Replication: It's the <i>n</i> 's that Justify the Means	8
How Many Replicates?	9
Power	9
Randomization	10
Strong Inference	12
Weak Inference	12
How Long to Go On?	13
Pseudoreplication	13
Initial Conditions	14
Orthogonal Designs and Non-orthogonal Observational Data	14
Chapter 2 Dataframes	15
Selecting Parts of a Dataframe: Subscripts	19
Sorting	20
Saving Your Work	22
Tidying Up	22

vi CONTENTS

Chapter 3 Central Tendency	23
Getting Help in R	31
Chapter 4 Variance	33
Degrees of Freedom	36
Variance	37
A Worked Example	39
Variance and Sample Size	42
Using Variance	43
A Measure of Unreliability Confidence Intervals	44 45
Bootstrap	45
Chapter 5 Single Samples	51
Data Summary in the One Sample Case	51
The Normal Distribution	55
Calculations using z of the Normal Distribution	60
Plots for Testing Normality of Single Samples	64
Inference in the One-sample Case	65
Bootstrap in Hypothesis Testing with Single Samples	66
Student's <i>t</i> -distribution	67
Higher-order Moments of a Distribution	69
Skew	69
Kurtosis	71
Chapter 6 Two Samples	73
Comparing Two Variances	73
Comparing Two Means	75
Student's t-test	76
Wilcoxon Rank Sum Test	79
Tests on Paired Samples The Sign Test	81 83
Binomial Tests to Compare Two Proportions	84
Chi-square Contingency Tables	85
Fisher's Exact Test	90
Correlation and Covariance	93
Data Dredging	95
Partial Correlation	96
Correlation and the Variance of Differences Between Variables	97
Scale-dependent Correlations	98
Kolmogorov-Smirnov Test	100

CONTENTS vii

Chapter 7 Statistical Modelling	103
The Steps Involved in Model Simplification	105
Caveats	106
Order of Deletion	106
Model Formulae in R	106
Interactions Between Explanatory Variables	108
Multiple Error Terms	109
The Intercept as Parameter 1	109
Update in Model Simplification	110
Examples of R Model Formulae	110
Model Formulae for Regression	111
GLMs: Generalized Linear Models	113
The Error Structure	114
The Linear Predictor	115
Fitted Values	116
The Link Function	116
Canonical Link Functions	117
Proportion Data and Binomial Errors	117
Count Data and Poisson Errors	118
GAMs: Generalized Additive Models	119
Model Criticism	119
Summary of Statistical Models in R	120
Model Checking	121
Non-constant Variance: Heteroscedasticity	122
Non-Normality of Errors	122
Influence	123
Leverage	123
Mis-specified Model	124
Chapter 8 Regression	125
Linear Regression	128
Linear Regression in R	129
Error Variance in Regression: $SSY = SSR + SSE$	136
Measuring the Degree of Fit, r^2	142
Model Checking	143
Polynomial Regression	145
Non-linear Regression	149
Testing for Humped Relationships	152
Generalized Additive Models (gams)	152
Chapter 9 Analysis of Variance	155
One-way Anova	155
Shortcut Formula	161

viii CONTENTS

Effect Sizes	163
Plots for Interpreting One-way Anova Factorial Experiments	
Split-plot Experiments	176
Random Effects and Nested Designs	178
Fixed or Random Effects?	179
Removing the Pseudoreplication	180
Analysis of Longitudinal Data	180
Derived Variable Analysis	181
Variance Components Analysis (VCA)	181
What is the Difference Between Split-plot and Hierarchical Samples?	185
Chapter 10 Analysis of Covariance	187
Chapter 11 Multiple Regression	195
A Simple Example	195
A More Complex Example	202
Automating the Process of Model Simplification Using step	208
AIC (Akaike's Information Criterion)	208
Chapter 12 Contrasts	209
Contrast Coefficients	210
An Example of Contrasts in R	211
A Priori Contrasts	212
Model Simplification by Step-wise Deletion	214
Contrast Sums of Squares by Hand	217
Comparison of the Three Kinds of Contrasts	218
Aliasing	222
Contrasts and the Parameters of Ancova Models	223
Multiple Comparisons	226
Chapter 13 Count Data	227
A Regression with Poisson Errors	227
Analysis of Deviance with Count Data	229
The Danger of Contingency Tables	234
Analysis of Covariance with Count Data	237
Frequency Distributions	240
Chapter 14 Proportion Data	247
Analyses of Data on One and Two Proportions	249
Count Data on Proportions	249

CONTENTS	ix

Odds Overdispersion and Hypothesis Testing Applications Logistic Regression with Binomial Errors Proportion Data with Categorical Explanatory Variables Analysis of Covariance with Binomial Data	
Chapter 15 Death and Failure Data	263
Survival Analysis with Censoring	265
Chapter 16 Binary Response Variable	269
Incidence Functions Ancova with a Binary Response Variable	271 275
Appendix 1: Fundamentals of the R Language	281
R as a Calculator Assigning Values to Variables Generating Repeats Generating Factor Levels Changing the Look of Graphics Reading Data from a File Vector Functions in R Subscripts: Obtaining Parts of Vectors Subscripts as Logical Variables Subscripts with Arrays Subscripts with Lists Writing Functions in R Sorting and Ordering Counting Elements within Arrays Tables of Summary Statistics Converting Continuous Variables into Categorical Variables Using cut The split Function Trellis Plots The xyplot Function Three-dimensional (3-D) Plots Matrix Arithmetic Solving Systems of Linear Equations	281 282 283 284 286 287 288 289 291 292 292 294 294 295 295 297 299 300 301 304
References and Further Reading	305
Index	309

Preface

This book is an introduction to the essentials of statistical analysis for students who have little or no background in mathematics or statistics. The audience includes first or second year undergraduate students in science, engineering, medicine and economics, along with post-experience and other mature students who want to re-learn their statistics, or to switch to the powerful new language of R.

For many students, statistics is the least favourite course of their entire time at university. Part of this is because some students have convinced themselves that they are no good at sums, and consequently have tried to avoid contact with anything remotely quantitative in their choice of subjects. They are dismayed, therefore, when they discover that the statistics course is compulsory. Another part of the problem is that statistics is often taught by people who have absolutely no idea how difficult some of the material is for non-statisticians. As often as not, this leads to a recipe-following approach to analysis, rather than to any attempt to understand the issues involved and how to deal with them.

The approach adopted here involves virtually no statistical theory. Instead, the assumptions of the various statistical models are discussed at length, and the practice of exposing statistical models to rigorous criticism is encouraged. A philosophy of model simplification is developed in which the emphasis is placed on estimating effect sizes from data, and establishing confidence intervals for these estimates. The role of hypothesis testing at an arbitrary threshold of significance like $\alpha=0.05$ is played down. The text starts from absolute basics and assumes absolutely no background in statistics or mathematics.

As to presentation, the idea is that background material would be covered in a series of 1 hour lectures, then this book could be used as a guide to the practical sessions and for homework, with the students working on their own at the computer. My experience is that the material can be covered in 10 to 30 lectures, depending on the background of the students and the depth of coverage it is hoped to achieve. The practical work is designed to be covered in 10 to 15 sessions of about 1.5 hours each, again depending on the ambition and depth of the coverage, and on the amount of one-to-one help available to the students as they work at their computers.

R and S-PLUS

The R language of statistical computing has an interesting history. It evolved from the S language, which was first developed at AT&T's Bell Laboratories by Rick Becker, John Chambers and Allan Wilks. Their idea was to provide a software tool for professional

xii PREFACE

statisticians who wanted to combine state-of-the-art graphics with powerful model-fitting capability. S is made up of three components. First and foremost, it is a powerful tool for statistical modelling. It enables you to specify and fit statistical models to your data, assess the goodness of fit and display the estimates, standard errors and predicted values derived from the model. It provides you with the means to define and manipulate your data, but the way you go about the job of modelling is not predetermined, and the user is left with maximum control over the model-fitting process. Second, S can be used for data exploration, in tabulating and sorting data, in drawing scatter plots to look for trends in your data, or to check visually for the presence of outliers. Third, it can be used as a sophisticated calculator to evaluate complex arithmetic expressions, and a very flexible and general object-oriented programming language to perform more extensive data manipulation. One of its great strengths is in the way in which it deals with vectors (lists of numbers). These may be combined in general expressions, involving arithmetic, relational and transformational operators such as sums, greater-than tests, logarithms or probability integrals. The ability to combine frequently-used sequences of commands into functions makes S a powerful programming language, ideally suited for tailoring one's specific statistical requirements. S is especially useful in handling difficult or unusual data sets, because its flexibility enables it to cope with such problems as unequal replication, missing values, non-orthogonal designs, and so on. Furthermore, the open-ended style of S is particularly appropriate for following through original ideas and developing new concepts. One of the great advantages of learning S is that the simple concepts that underlie it provide a unified framework for learning about statistical ideas in general. By viewing particular models in a general context, S highlights the fundamental similarities between statistical techniques and helps play down their superficial differences. As a commercial product S evolved into S-PLUS, but the problem was that S-PLUS was very expensive. In particular, it was much too expensive to be licensed for use in universities for teaching large numbers of students. In response to this, two New Zealand-based statisticians, Ross Ihaka and Robert Gentleman from the University of Auckland, decided to write a stripped-down version of S for teaching purposes. The letter R 'comes before S' so what would be more natural than for two authors whose first initial was 'R' to christen their creation R. The code for R was released in 1995 under a GPL (General Public License), and the core team was rapidly expanded to 15 members (they are listed on the web site, below). Version 1.0.0 was released on 29 February 2000. This book is written using version 1.8.1, but all the code will run under R 2.0.0 (released in September 2004). R is an Open Source implementation of S-PLUS, and as such can be freely downloaded. If you type CRAN into your Google window you will find the site nearest to you from which to download it. Or you can go directly to

http://cran.r-project.org

There is a vast network of R users world-wide, exchanging functions with one another, and a vast resource of libraries containing data and programs. There is a useful journal called *R News* that you can read at CRAN.

This book has its own web site at

http://www.imperial.ac.uk/bio/research/crawley/statistics

PREFACE xiii

Here you will find all the data files used in the text; you can download these to your hard disc and then run all of the examples described in the text. The executable statements are shown in the text in Arial font. There are files containing all the commands for each chapter, so you can paste the code directly into R instead of typing it from the book. Another file supplies the code necessary to generate all of the book's figures. There is a series of 14 fully-worked stand-alone practical sessions covering a wide range of statistical analyses. Learning R is not easy, but you will not regret investing the effort to master the basics.

M. J. Crawley Ascot