Insertion in Red-Back Trees + Hash Tables

Instructor: Krishna Venkatasubramanian CSC 212

Red-Black Trees (Recap)

What is a Red-Black Tree?

What are main properties of Red-Black Trees?

How tall is a Red-Back Tree?

What is rotation in a Red-Black Tree?

Red-Black Trees: Insertion

- Case 0: New node is (z) is always RED .Insert as you would in BST
- Case 1: If the new node (z) is RED, and its parent (z.p) is BLACK you don't need to do anything.
- Case 2: If a new node (z) is RED and its parent (z.p) is RED, then:
 - 2.a: if the uncle (y) is BLACK, a rotation needs to be performed
 - 2.a.i. If the insertion path from grand-parent -> parent -> node **BOTH LEFT** then
 - Do RIGHT rotation around grandparent (z.p.p)
 - Color flip parent (z.p), grandparent (z.p.p)
 - 2.a.ii. If the insertion path from grand-parent -> parent -> node BOTH RIGHT then
 - Do LEFT rotation **around grandparent** (z.p.p)
 - Color flip parent (z.p), grandparent (z.p.p)
 - 2.a.iii. If the insertion path from grand-parent -> parent -> node is LEFT then RIGHT do:
 - Do LEFT rotation **around parent** (z.p)
 - Do RIGHT rotation around (z)
 - Color flip parent (z.p), grandparent (z.p.p)
 - 2.a.iV. If the insertion path from grand-parent -> parent -> node is **RIGHT then LEFT** do:
 - Do RIGHT rotation around parent (z.p)
 - Do LEFT rotationaround (z)
 - Color flip parent (z.p), grandparent (z.p.p)
 - 2.b: If the Uncle (y) is RED, a flip parent (z.p), uncle (y) and grandparent (z.p.p) color
- Case 3: If the Root is RED, change it to BLACK.

FROM: https://cathyatseneca.gitbook.io/data-strutures-and-algorithms/red-black-trees

Insert 7

 Case 0: New node is (z) is always RED .Insert as you would in BST

• Case 3: If the Root is RED, change it to BLACK.

Insert 5

 Case 0: New node is (z) is always RED .Insert as you would in BST

Case 1: If the new node

 (z) is RED, and its
 parent (z.p) is BLACK
 you don't need to do
 anything.

Insert 9

 Case 0: New node is (z) is always RED .Insert as you would in BST

Case 1: If the new node

 (z) is RED, and its
 parent (z.p) is BLACK
 you don't need to do
 anything.

Red-Black Trees: Insertion

Example

Insert 8

 Case 0: New node is (z) is always RED .Insert as you would in BST

- Case 2: If a new node (z) is RED and its parent (z.p) is RED, then:
 - 2.b: If the Uncle (y) is RED, a flip parent (z.p), uncle (y) and grandparent (z.p.p) color
- Case 3: If the Root is RED, change it to BLACK.

• Insert 12

Case 0: New node is (z) is always RED .Insert as you would in BST

Case 1: If the new node

 (z) is RED, and its
 parent (z.p) is BLACK
 you don't need to do
 anything.

- Insert 11
- Case 0: New node is (z) is always RED .Insert as you would in BST
- Case 2: If a new node (z)
 is RED and its parent (z.p)
 is RED, then:
 - 2.b: If the Uncle (y) is RED, a flip parent (z.p), uncle (y) and grandparent (z.p.p) color

Insert 10

 Case 0: New node is (z) is always RED .Insert as you would in BST

- Case 2: If a new node (z) is RED and its parent (z.p) is RED, then:
 - 2.a: if the uncle (y) is BLACK, a rotation needs to be performed
 - 2.a.i. If the insertion path from grand-parent -> parent -> node BOTH LEFT then
 - Do RIGHT rotation around grandparent (z.p.p)
 - Color flip parent (z.p), grandparent (z.p.p)

Red-Black Trees: Deletion

- And you thought insertion was tricky...
- We will not cover RB delete in class
 - If you want you can read section 13.4 of CR book on your own
 - I would recommend read for the overall picture, not the details

Hash Tables

Motivation

- In many applications we might want to store large amounts of data and quickly search them
- Example:
 - URI Student Database
 - Social Security office database for the U.S.
- One way of storing these is in a list
 - E.g., [Student 1, Student 2,.....Student n]
- However search this list will require O(n) complexity
 - As we have to go through the entire list in the worst case.
- Can we do better?

Hash Tables

Record X in Table

Key: {3}

- Hash table:
 - Given a table T and a record x, with key (= symbol) and values we need to support:
 - Insert (*T*, *x*)
 - Delete (*T*, *x*)
 - Search(*T*, *x*)
 - We want these to be fast, but don't care about sorting the records
- For example in the URI student database case:
 - x is a student's record, which contains the student information, which contains:
 - **Keys** is the id number
 - In the following discussions we will consider all keys to be (possibly large) natural numbers
 - We use the notation "x.key" to mean key for record x
 - Values: which is the actual details of student information (name, address, ...etc.)

Value: {name, Address,

Major}

Direct Addressing

- Suppose:
 - The range of keys is 0..*m*-1
 - Keys are distinct
- The idea:
 - Set up an array T[0..m-1] in which
 - T[i] = x if x.key = i
 - T[i] = NULL otherwise
 - This is called a *direct-address table*
 - Operations take O(1) time!

The Problem With Direct Addressing

- Direct addressing works well when the range m of keys is relatively small
- But what if the keys are 32-bit integers?
 - **Problem 1:** direct-address table will have how many entries?
 - 2³² = 4 billion
 - **Problem 2:** even if memory is not an issue, the time to initialize the elements to NULL may be an issue
- Solution?:
 - map keys to smaller range 0..m-1
 - This mapping is called a hash function

Next problem: collision

Resolving Collisions

- How can we solve the problem of collisions?
- Solution 1: *open addressing + probing*
- Solution 2: chaining

Open Addressing + Probing

Basic idea:

- To insert:
 - if slot is full, try another slot, ..., until an open slot is found (probing)
- To search:
 - Follow same sequence of probes as would be used when inserting the element
 - If reach element with correct key, return it
 - If reach a NULL pointer, element is not in table
- Good for fixed sets (adding but no deletion)
 - Example: spell checking

Linear Probing

k5 takes 1 probe to find it's slot K6 takes 3 probes to find it's slot

- If current slot taken, **probe** the next element and continue till you find an empty slot and then take it
- h(k,i) = h(k)+i mod m (here, i is the probe count)

Quadratic Probing

k5 takes 2 probes to find it's slot The quadratic probing makes it jump

- If current slot taken, **probe** based on a **quadratic equation** and continue till you find an empty slot and then take it
- $h(k,i) = h(k)+i^2 \mod m$ (where i is the probe count) [You can choose any quadratic equation based on i]

Double Hashing

First probe h1(k5) + 1 * h2(k5) lead to collision

- Use two hash functions instead of one every time you probe
- $h(k,i) = h1(k)+i * h2(k) \mod m$ (here, i is the probe count)

Alternative: Chaining

 Chaining puts elements that hash to the same slot in a linked list:

Chaining: Insert

How do we insert an element?

Chaining: Delete

• How do we **delete** an element?

Chaining:Search

 How do we search for a element with a given key?

 Assume simple uniform hashing: each key is equally likely to be hashed to any slot

• Given n keys and m slots: the load factor $\alpha = n/m = \text{average } \# \text{ keys per slot}$

 What will be the average cost of an unsuccessful search for a key?

 Assume simple uniform hashing: each key is equally likely to be hashed to any slot

• Given n keys and m slots, the load factor $\alpha = n/m = \text{average } \# \text{ keys per slot}$

• What will be the average cost of an unsuccessful search for a key? A: $O(1+\alpha)$

- Assume simple uniform hashing: each key is equally likely to be hashed to any slot
- Given n keys and m slots, the load factor $\alpha = n/m = \text{average } \# \text{ keys per slot}$
- What will be the average cost of an unsuccessful search for a key? A: $O(1+\alpha)$
- What will be the average cost of a successful search?

- Assume simple uniform hashing: each key is equally likely to be hashed to any slot
- Given n keys and m slots, the load factor $\alpha = n/m = \text{average } \# \text{ keys per slot}$
- What will be the average cost of an unsuccessful search for a key? A: $O(1+\alpha)$
- What will be the average cost of a successful search? A: $O(1 + \alpha/2) = O(1 + \alpha)$

Analysis of Chaining Continued

• So the cost of searching = $O(1 + \alpha)$

• If the number of keys n is proportional to the number of slots, what is α ?

- A: α = O(1)
 - In other words, we can make the expected cost of searching constant if we make α constant

Choosing A Hash Function

- Clearly choosing the hash function well is crucial
 - What will a worst-case hash function do?
 - O(n)
 - What will be the time to search in this case?
 - *O*(*n*)

- What are desirable features of the hash function?
 - Should distribute keys uniformly into slots
 - Should not depend on patterns in the data

Hash Functions: The Division Method

- $h(k) = k \mod m$
 - In words: hash k into a table with m slots using the slot given by the remainder of k divided by m
- What happens to elements with adjacent values of k?
 - They get stored in adjacent locations (mostly)
- What happens if m is a power of 2 (say 2^{P})?
 - Depends only on few least significant bits
 - Higher bits not used
 - Not a good idea to use!
- Pick table size m = prime number not too close to a power of 2 (or 10)

Hash Functions: The Multiplication Method

- For a constant *A*, 0 < *A* < 1:
- $h(k) = \lfloor m (k A \mod 1) \rfloor$

- Slower than division method, but choice of m not so critical
 - Typically choose $m = 2^p$
- Choose A not too close to 0 or 1
 - Good choice for $A = (\sqrt{5} 1)/2$

Hash Functions: Universal Hashing

- Universal hashing: pick a hash function randomly in a way that is independent of the keys that are actually going to be stored
 - Guarantees good performance on average

Universal Hashing

- Let H be a (finite) collection of hash functions
 - ...that map a given universe *U* of keys...
 - ...into the range {0, 1, ..., *m* 1}.
- *H* is said to be *universal* if:
 - for each pair of distinct keys $x, y \in U$, the number of hash functions $h \in H$ for which h(x) = h(y) is |H|/m
 - In other words:
 - With a random hash function from H, the chance of a collision between x and y is exactly 1/m $(x \neq y)$

