Thesis Plan as it should be

Title: Random Graph model for links prediction: Social network perspective

Introduction

Mathematical Background

- Probability (and random process)
 - Random variable, random vector, array and process and object in general.
 - Convergence of random variable
 - Bayesian inference
- Exponential family distributions
- Fondemental Theorem
 - representation theorems
- Nonparametric prior (DP, HDP, GP)

State of the Art

- Social network analysis
 - type of networks and applications (clustering, link prediction, compression)
 - Properties
 - Algorithms
- Random graph model
 - Erdos-Reni
 - Barabasi-ALbert
 - Stochatic Blockmodel
 - * SB
 - * IRM
 - Stochastic Mixed-Membership model
 - * (latent space?)
 - * LFM
 - $* \ \mathrm{MMSB}$
 - * non parametric extensions
- Bayesian Inference
 - Markov Chain Monte Carlo (MCMC)
 - Variational Inference

- Stochastic Variationan Inference (SVB)
- Other Approach
 - matrix factorization

Study of random graph model properties for social network (contrib 1)

- homophily
- preferential attachment
- sparsity
- experimentation
- (note on pymake (contrib 3): * plateform for reproducible research (open source project)

Model for weighted and temporal networks (contrib 2)

- poisson process (and/or neg bin,) model extension of MMSB (retains as best properties and scalable trough SVB)
- temporal/weighted large scale networks inference

if possible:

- review theoritical properties defined contrib 1
- process with growing edge and node.

Perspective	
Canalusian	
Conclusion	