EEG Classification Project Report

Project Overview

This project focuses on classifying EEG signals using two distinct approaches:

- Logistic Regression with log-variance features
- **EEGNet**, a compact deep learning architecture tailored for EEG data

The goal is to evaluate and compare their performance across multiple cross-validation folds.

Dataset & Preprocessing

- Input shape: EEG epochs of shape (N, C, T)
 - N: number of samples
 - C: number of channels
 - T: number of time points
- Preprocessing:
 - Band-pass filtering
 - Epoch extraction
 - Feature extraction (log-variance for Logistic Regression)

Models

1. Logistic Regression

- Features: Log-variance across channels
- Optimizer: Momentum-based gradient descent
- Regularization: L2 penalty
- Hyperparameters:
 - o Epochs: 1000
 - Learning rate: 0.01
 - Batch size: 8

o L2: 1e-5

2. EEGNet

- Architecture: Depthwise and separable convolutions
- Input: Raw EEG epochs
- Optimizer: Adam
- Loss: CrossEntropy with label smoothing
- Hyperparameters:
 - o Epochs: 100
 - Learning rate: 5e-4
 - o Batch size: 32
 - o Dropout: 0.0
 - Early stopping: Patience = 20

Results

Logistic Regression

• Mean Accuracy: 0.6076 ± 0.0299

• Accuracy per Fold:

• Confusion Matrices:

EEGNet

• Mean Accuracy: 0.5833 ± 0.0225

• Accuracy per Fold:

• Confusion Matrices:

Comparison & Insights

Model	Mean Accuracy	Training Time
Logistic Regression	0.6076 ± 0.0299	Fast
EEGNet	0.5833 ± 0.0225	Longer

- Logistic Regression is lightweight and interpretable.
- EEGNet captures temporal and spatial patterns more effectively.