The Effectiveness of Data Augmentation in Image Classification using Deep Learning

Extension of AutoAugment

Combining Two Images

Extension of AutoAugment

Related Word / Background

Affine Transformation == geometric and color augmentations: reflect, crop, translate, change color palette

Applied affine transformation at the feature map of each layer

GAN to generate new images: counterfeit vs distinguish

CycleGAN for style transfer: day → night drive

1. Traditional Transformation

Shifted, zoomed in/out, rotated, flipped, distorted, shaded with hue

Figure I: Traditional Transformations

2. GAN

Style transfer: Cezanne, Enhance, Monet, Ukiyoe, Van Gogh, Winter

Figure II: Style Transformations via GANs

3. Augmentation Network

$$1 + 1 = 3 + augmentation loss$$

Figure VI: Goldfish sample II

Figure VII: Dog sample I

3. Augmentation Network

$$1 + 1 = 3 + augmentation loss$$

Figure VI: Goldfish sample II

Figure VII: Dog sample I

Augmentation Network

- 1. Conv with 16 channels and 3x3 filters. Relu activations.
- 2. Conv with 16 channels and 3x3 filters. Relu activations.
- 3. Conv with 16 channels and 3x3 filters. Relu activations.
- 4. Conv with 16 channels and 3x3 filters. Relu activations.
 - 5. Conv with 3 channels and 3x3 filters.

Dataset

8:2 = train: valid

tiny-imagenet-200 MNIST

500 dogs 1k 0's 500 cats 1k 8's

500 goldfish

→ 80k training
images

→ 640k training
images

Experiment Setting

10 experiment

40 epochs

0.0001 Adam Opt

SmallNet

Specific net is not very important

Any net that can reliably predict the classes suffices

Replace SmallNet → VGG16

SmallNet

- 1. Conv with 16 channels and 3x3 filters. Relu activations.
 - 2. Batch normalization.
 - 3. Max pooling with 2x2 filters and 2x2 stride.
- 4. Conv with 32 channels and 3x3 filters. Relu activations.
- 5. Conv with 32 channels and 3x3 filters. Relu activations.
 - 6. Batch normalization.
 - 7. Max pooling with 2x2 filters and 2x2 stride.
- 8. Fully connected with output dimension 1024. Dropout.
 - 9. Fully connected layer with output dimension 2.

Loss

$$\alpha L_c + \beta L_a$$

$$L_a^{content} = \frac{1}{D^2} \sum_{i,j} (A_{ij} - T_{ij})$$

$$L_a^{style} = \frac{1}{C^2} \sum_{i,j} (G_{ij}^A - G_{ij}^T)$$

$$G_{ij} = \sum_{k} F_{ik} F_{jk}$$

Note:

Content loss never converged

But

Act as regularization so the "Augmentation net" doesn't generate images too different from original images

Overview

Figure III: Training model

Overview

Figure IV: Testing/Validation model

Result

And... additional points:

MNIST == structured data ImageNet == unstructured data

Figure XI: Accuracy plots

Dogs vs Goldfish		
Augmentation	Val. Acc.	
None	0.855	
Traditional	0.890	
GANs	0.865	
Neural + No Loss	0.915	
Neural + Content Loss	0.900	
Neural + Style	0.890	
Control	0.840	

Table I: Quantitative Results on Dogs vs Goldfish

Dogs vs Cat	
Augmentation	Val. Acc.
None	0.705
Traditional	0.775
GANs	0.720
Neural + No Loss	0.765
Neural + Content Loss	0.770
Neural + Style	0.740
Control	0.710

Table II: Quantitative Results on Dogs vs Cats

MNIST 0's and 8's	
Augmentation	Val. Acc.
None	0.972
Neural + No Loss	<u>0.975</u>
Neural + Content Loss	0.968

Table III: MNIST