Globally-Robust Neural Networks

Klas Leino, Zifan Wang, Matt Fredrikson

Adversarial Examples & Local Robustness

Deep networks have extensively been shown to be vulnerable to adversarial examples, wherein inconspicuous perturbations are chosen to cause arbitrary misclassifications.

a model is ε -locally-robust at a point, x, if it classifies all points in the ϵ -ball centered at xconsistently; i.e., there are no decision boundaries within ϵ from x

certified defenses

Certification of local robustness at a given point allows us to provably preclude small-norm adversarial examples at that point

Our Contributions

We introduce a notion of *global* robustness

We devise a way to construct a type of network that is globally robust by construction

Our globally-robust networks are efficient to train and can certify points in a *single forward pass*

Global Robustness

A model cannot be locally robust at all points, as points near a decision boundary cannot be robust. Thus, a global notion of robustness must allow the model to reject some inputs. Ideally, the rejected inputs would lie off the data manifold.

a model is ε -globally-robust if on all points it is either ε -locally-robust or abstains from prediction by outputting ⊥; i.e., all non-⊥ classes are separated by a margin of at least 2ε global

GloRo Nets: Globally Robust by Construction

We present Globally Robust Networks (GloRo Nets), which instrument the output of a standard neural network in such a way that the resulting network is guaranteed to be globally robust by construction.

safety

If the GloRo Net outputs a non-⊥ class on a given point, then the underlying network is guaranteed to be locally robust at that point

robust training

As \perp is never the correct label, by training the GloRo Net to be accurate, it avoids picking \(\pm \), which means it avoids being non-robust

Calculating the Lipschitz Bound

The global Lipschitz constant can be efficiently bounded by taking a layer-wise product of the spectral norm of each layer.

yer-wise product may be loose; this bound may be able be improved, effectively increasing the certified radius

completeness of the global bound We use the *global* Lipschitz constant to implement GloRo Nets. Although only local Lipschitzness is required for robustness¹, we show that in theory, the global bound is equally powerful for robustness certification.

¹Yang et al., 2020

Summary of Results

GloRo Nets match or exceed the Verified Robust Accuracy (VRA) achieved by previous stateof-the art deterministic certification methods.

Carnegie Mellon University

¹Tsuzuku et al., 2018; ²Wong & Kolter, 2018; ³Lee et al., 2020; ⁴Li et al., 2019

GloRo Net certification and training is significantly more time- and memory-efficient than other certification methods, and more scalable than any other deterministic method.

CIFAR-10	method	time per training epoch (s)	memory per instance during training (MB)
	GloRo	6.9	3.6
	KW ¹	516.8	100.9
	BCP ²	47.5	12.7

CIFAR-10	method	time to certify test set (s)	memory per instance (MB)
	GloRo	0.4	1.8
	KW ¹	2,500.0	1,400.0
	BCP ²	5.8	19.1
	RS ³	36,800.0	19.8

¹Wong & Kolter, 2018; ²Lee et al., 2020; ³Cohen et al., 2019

