Switching gears: neural networks

Source: https://thesharperdev.com/build-your-first-neural-network-part-2/

- Best performing algorithms for complex tasks, bar none.
- Known potential of hierarchical organisation of simple units because of biological examples (though neural networks are not good models of actual neurons)
- Observation in frogs and cat visual cortex: there are specific layers of neurons, where earlier layers detect basic shapes

(lines, edges) with later layers incorporating this information into more complex features about what is seen.

Source: https://en.wikipedia.org/wiki/Axon#/media/File:Bla usen_0657_MultipolarNeuron.png

- Until now, we decided on the features to give to our algorithms: think tumour size, biopsy test scores, etc.
- With neural networks and images, the situation changes: we don't arduously describe what is in each image, but rather let the network learn to extract and combine features so that it can classify training examples correctly.

 Caveat for biology: it can be quite difficult to translate biological problems into a framework fit for deep learning, for reasons that will

become clear later.

Example: in images, nearby pixels probably hold similar information, i.e. are involved in the same thing. Due to (long-range)
 3D-folding of DNA, linearly far DNA can be close together functionally. You need to encode your network or input to

accomodate this!

Repressed TAD

Source: https://en.wikipedia.org/wiki/Topologically_associating_domain#/media/File:Structural_organization_of_chromatin.png

chromatin structure

 The mythical property of universal approximation. This says that neural networks can approximate any function with arbitrary accuracy, even with only 1 hidden layer (given enough neurons in it).

- The mythical property of universal approximation. This says that neural networks can approximate any function with arbitrary accuracy, even with only 1 hidden layer (given enough neurons in it).
- Of course, that doesn't necessarily mean we would have the data to train such a neural network efficiently. Just that it is provable that for any continuous function a neural network can exist that approximates it as well as you like.

Like biology? No

Biological Neurons: Complex connectivity patterns

Neurons in a neural network: Organized into regular layers for computational efficiency

This image is CC0 Public Domain

Like biology? No

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

Source: http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

- Human brains ~a cool 86 billion neurons
- A neuron can have 400,000 dendrites
- Real brains vastly outclass their computational analogues

Like biology? No

- Still extremely useful
- Parts of how they learn superficially resemble how we learn

A single neuron is a logistic regressor!*

Source: https://thedatafrog.com/en/articles/logistic-regression/

A single neuron is a logistic regressor!

Why non-linearity?

A single neuron is a logistic regressor!

 Why non-linearity? → without them, a NN (no matter how deep) could only approximate linear functions

Input layer: shown as neurons, are just features

Hidden layer(s): intermediate layers whose outputs are not directly observed (hence hidden). Here: 1 HL. Facebook's DenseNet family of NNs had 121-264 HLs in 2016 (0.8-15.3 million parameters).

Activation of neuron 1 in the 2nd layer of the network.

Activation of neuron 2 in the 2nd layer of the network.

Activation of neuron 1 in the 3rd layer of the network.

$$\sigma(\begin{bmatrix} 1 & x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} b \\ w_1 \\ w_2 \\ w_3 \end{bmatrix})$$

$$\sigma([1 \quad x_1 \quad x_2 \quad x_3] \begin{bmatrix} b \\ w_1 \\ w_2 \\ w_3 \end{bmatrix}) \rightarrow \sigma([1 \quad 66 \quad 39 \quad 12] \begin{bmatrix} -0.5 \\ -2 \\ 4 \\ 1.5 \end{bmatrix})$$

$$\sigma([1 \ 66 \ 39 \ 12] \begin{bmatrix} -0.5 \\ -2 \\ 4 \\ 1.5 \end{bmatrix}) \rightarrow \sigma(41.5) \rightarrow 0.999...$$

$$\sigma(\begin{bmatrix} 1 & x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} b \\ w_1 \\ w_2 \\ w_3 \end{bmatrix})$$

$$\sigma([1 \quad x_1 \quad x_2 \quad x_3] \begin{bmatrix} b \\ w_1 \\ w_2 \\ w_3 \end{bmatrix}) \longrightarrow \begin{array}{l} \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time with a theta matrix } \Theta^{(j)} \\ \text{Calculate for all units at the same time } \Theta^{(j)} \\ \text{Calculate for all units at the same time } \Theta^{(j)} \\ \text{Calculate for all units at the same time } \Theta^{(j)} \\ \text{Calculate for all units at the same time } \Theta^{(j)} \\ \text{Calculate for all units } \Theta^{(j)} \\ \text{Calcu$$

$$\sigma([1 \quad x_1 \quad x_2 \quad x_3] \begin{bmatrix} b_1 & b_2 & b_3 \\ w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ w_{13} & w_{23} & w_{33} \end{bmatrix}) \longrightarrow \sigma([1 \quad 2 \quad 3])$$

$$[\sigma(1) \quad \sigma(2) \quad \sigma(3)]$$

What is this network calculating?

$$\sigma\left(\begin{bmatrix} b_1 & w_{11} & w_{12} & w_{31} \\ b_2 & w_{21} & w_{22} & w_{23} \\ b_3 & w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) \longrightarrow \sigma\left(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}\right) \longrightarrow \begin{bmatrix} \sigma(1) \\ \sigma(2) \\ \sigma(3) \end{bmatrix}$$

What is this network calculating?

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

 Θ (1) (layer 1 to layer 2)

What is this petwork calculating? $x_0=1$

$$\Theta$$
(2) (layer 2 to layer 3)

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)}) \qquad \begin{bmatrix} b_1 & w_{11} & w_{12} & w_{13} \end{bmatrix}$$

What is this network calculating?

This calculation of the output of the network is called forward propagation

How do we perform?

- Just like before, there is a cost function.
- But we will talk about that and its implementation tomorrow!

How do we get parameters?

- Just like before, there is a cost function and a way to minimise this. But it's a bit more involved.
- To get parameters, we will use the principle of backpropagation. We'll get to that tomorrow.

Recap so far

- Neurons in neural networks are not really like biological neurons, except superficially
- Neural networks can be thought of as hiërarchical sets of logistic regressors
- We essentially make earlier layers learn useful features for distinction on their own, and can use these best possible learned features for the classification by the final unit(s)
- Parsing an example through the network and getting the output is called forward propagation
- Universal approximation holds that, in principle, neural networks can learn any continuous function arbitrarily well

 Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.

- Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.
- Boolean operators:

NOT		AND		OR			XOR					
X	x'		X	У	xy	X	У	X+Y		X	У	<i>x</i> ⊕ <i>y</i>
0	1		0	0	0	0	0	0		0	0	0
1	0		0	1	0	0	1	1		0	1	1
			1	0	0	1	0	1		1	0	1
			1	1	1	1	1	1		1	1	0

Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.

Boolean operators:

Only if two incoming connections are on, the output is on

Source: https://vtutorial.net/digitagate/

Source: https://www.electronics-tutorial.net/digital-logic-gates/and-gate/

NOT		AND	OR				XOR					
X	x'	X	У	xy		X	У	X+Y		X	У	<i>x</i> ⊕ <i>y</i>
0	1	0	0	0		0	0	0		0	0	0
1	0	0	1	0		0	1	1		0	1	1
		1	0	0		1	0	1		1	0	1
		1	1	1		1	1	1		1	1	0

 Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.

Boolean operators:

Only if either incoming connection is on, the output is on

https://projectiot123.com/2019/05/2 6/introduction-to-xor-gate/

NO	OT .		AND			OR			XOR	
X	x'	X	У	xy	X	У	X+Y	X	У	<i>x</i> ⊕ <i>y</i>
0	1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	1	0	1	1
		1	0	0	1	0	1	1	0	1
		1	1	1	1	1	1	1	1	0

 Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.

Combine: XNOR

Boolean operators:

X

https://www.tutorialspoint.com/com

puter logical organization/logic ga

Motivating example:

Motivating example:

Motivating example:

$$h_{\theta}(x) = sigmoid(-30 + 20 \cdot x_1 + 20 \cdot x_2)$$

 $h_{\theta}(x) = \sigma([-30 \ 20 \ 20]\begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix})$

$$h_{\theta}(x) = sigmoid(-30 + 20 \cdot x_1 + 20 \cdot x_2)$$

$$h_{\theta}(x) = sigmoid(-30 + 20 \cdot x_1 + 20 \cdot x_2)$$

x_1	x_2	$h_{\Theta}(x)$
0	0	9(-30) 20
0	1	9(-10) 20
1	0	9(-10) 20
1	1	9(10) %1

Over to you: make an OR function → try
it yourself and discuss with neighbours for 2 minutes

	U	Τ
X	y	x+y
0	0	0
0	1	1
1	0	1
1	1	1

$$h_{\theta}(x) = sigmoid(? + ?\cdot x_1 + ?\cdot x_2)$$

Answer

x_1	x_2	$h_{\Theta}(x)$
0	0	g(-10) ~= 0
0	1	g(-10+20) ~= 1
1	0	g(-10+20) ~= 1
1	1	g(-10 + 20 + 20) ~= 1

 Over to you: make a NOT function → try it yourself and discuss with neighbours for 2 minutes

NOT							
X	x'						
0	1						
1	0						

$$h_{\theta}(x) = sigmoid(? + ?\cdot x_1)$$

Answer

Just put a large negative weight in front of whatever you want to negate (enough to overcome the bias)

Making simple functions ourselves: (NOT x₁) AND (NOT x₂)

• Make NOT x_1 AND NOT $x_2 \rightarrow try$ it yourself and discuss with neighbours for 2 minutes

$$h_{\theta}(x) = sigmoid(? + ?\cdot x_1 + ?\cdot x_2)$$

Making simple functions ourselves: (NOT x₁) AND (NOT x₂)

Answer

Just put a large negative weight in front of whatever you want to negate (enough to overcome the bias)

Only positive when $x_1 = x_2 = 0$

		and the same in		
x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	
0	0	0	1	
0	1	0	0	
1	0	0	0	l
1	1	1	0	

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{\Theta}(x)$
0	0	0	17	1 -
0	1	0	07	0
1	0	0	0	0
1	1	1	0	1

Computing complex functions

 This is an illustration of how neural networks work: earlier layers can compute simple functions like AND and OR. By combining those outputs, you can compute more complex functions.

Multiclass classification in neural nets

Multiclass classification in neural nets

Question to you

- Say we have 10 classes and the following network, how many

parameters in Θ⁽²⁾?

 $\Theta^{(j)} = \mbox{matrix of weights controlling} \label{eq:theta-point} function mapping from layer <math display="inline">j$ to layer j+1

Example: 10th training sample is class 3 $v^{(10)} =$

Question to you

Say we have 10 classes and the following network, how many

Etc.

parameters in $\Theta^{(2)}$?

 $y^{(10)} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Example: 10th training sample is class 3

Answer: 60. 5*10 → weights between units.

+ 10 \rightarrow bias of each unit in output layer $\lfloor 0 \rfloor$

Question to you

 Say we have 10 classes and the following network, how many $\Theta^{(j)} = \text{matrix of weights controlling}$

parameters in Θ⁽²⁾?

function mapping from layer j to $\Theta^{(2)}$ layer j+1 W_{15} W_{12} w_{14} W_{35} Etc. W_{45}

Answer: 60. $5*10 \rightarrow \text{weights between units.}$ + 10 → bias of each unit in output layer

Summary

- We can use individual neurons to calculate simple logic functions
- We can combine the outputs of single neurons to calculate more complex (logic) functions
- For multiclass classification, we simply make class a vector, where we strive for the real class to be 1, and all other classes 0.

Time for the afternoon practical!

