Bayesian Active Learning For Sim-to-Real Robotic Perception

Jianxiang Feng, Jongseok Lee, Maximilian Durner, Rudolph Triebel

Idea: Bridging the Gap with Bayesian Active Learning

- Active learning for efficient data collection in Sim-to-Real
 - 1. Model predictive posterior for data query
 - Bayesian Neural Networks/Bayesian Object Detectors
 - 2. Mitigating label distribution shift
 - Combination of uncertainty and sub-sampling strategies

Bayesian Model

Dist. Mismatch

Sampling Strategy to Mitigate Label Shift

Sampling Strategy to Mitigate Label Shift

Sampling Strategy

 P_{label} : target label (uniform) distribution P_{unc} : uncertainty sampling distribution P_{SS} : sub-sampling (uniform) distribution \hat{P}_{label} : sampling label distribution

 $\hat{P}_{label} \cong P_{label}$ with $\hat{P}_{label} \propto P_{ss}P_{unc}$

Object Detection Experiment

Real Robot Deployment

Task 1&2:

Grasping a bottle & Opening a drawer

Take-away

- An active learning based pipeline to bridge Sim-to-Real gap for robotic perception.
- A simple and effective sampling strategy to mitigate label shift for active learning in Sim-to-Real.
- Extensive empirical experiments and real robot deployment along with a failure case analysis.

Thank you! & Questions?

