Linear Algebra-A

Assignments - Week 10

(Class 3 - 线性代数 A 中英双语 3 班)

Assignments from the Textbook (Hardcover)

Section 4.3: 11,36,40.

Section 4.4: 1,2,4,5,8,13,16,23,28,35,42.

Section 5.1: 3,6,7.

Supplementary Problem Set

1. Let **A** and **B** be $n \times n$ matrices. Please prove that

$$|\boldsymbol{I}_n - \boldsymbol{A}\boldsymbol{B}| = |\boldsymbol{I}_n - \boldsymbol{B}\boldsymbol{A}|.$$

As a corollary, $I_n - AB$ is invertible if and only if $I_n - BA$ is invertible.

[**Hint**: start from the block matrix: $\begin{bmatrix} I_n & A \\ B & I_n \end{bmatrix}$.]

2. Calculate the following determinant:

$$D = \begin{vmatrix} a_0 & 1 & 2 & \cdots & n \\ 1 & a_1 & 0 & \cdots & 0 \\ 2 & 0 & a_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ n & 0 & 0 & \cdots & a_n \end{vmatrix}.$$

[注: 此行列式又称作"爪形行列式"或"箭头形行列式"。

提示:按照 $a_1, a_2, ..., a_n$ 中0的个数分别进行讨论.]

3. (抽象型行列式)

a) Let α_1 , α_2 , α_3 be 3-dimensional column vectors which are linearly independent. If $\mathbf{A} = [\alpha_1, \alpha_2, \alpha_3]$, $\mathbf{B} = [\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 - \alpha_2 + \alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3]$, and $|\mathbf{A}| = 1$. Find $|\mathbf{B}|$.

b) Let \boldsymbol{A} and \boldsymbol{B} be $n \times n$ matrices, and $|\boldsymbol{A}| = 3$, $|\boldsymbol{B}| = 2$, $|\boldsymbol{A}^{-1} + \boldsymbol{B}| = 2$. Find $|\boldsymbol{A} + \boldsymbol{B}^{-1}|$.

4. Let
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 & 2 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
. Find the adjoint matrix (伴随矩阵) \mathbf{A}^* .

5. Let A be a square matrix of order n $(n \ge 2)$, with A^* as its adjoint matrix. Please prove the following statement about the rank of A^* :

$$\operatorname{rank}(\mathbf{A}^*) = \begin{cases} n, & \text{if } \operatorname{rank}(\mathbf{A}) = n, \\ 1, & \text{if } \operatorname{rank}(\mathbf{A}) = n - 1, \\ 0, & \text{if } \operatorname{rank}(\mathbf{A}) < n - 1. \end{cases}$$