```
Daniel McDonough
9/21/19
CS 549
HW4
```

1. 1. $F\{(g*h)(x)\} = F\{f(x)\}, Given f(\overrightarrow{x}) = g(\overrightarrow{x}) * h(\overrightarrow{x})$ $F\{(g*h)(x)\} = 1/\operatorname{sqrt}(2pi)*\operatorname{integral}(\inf,-\inf,(g*h)(x)e^{-iwx})dx$ = $1/sqrt(2pi)* integral(inf,-inf, integral(inf,-inf, g(x)h(x-p))dp* e^{-iwx})dx$ = 1/sqrt(2pi)* integral(inf,-inf, integral(inf,-inf, g(x)h(x-p))* e^{-iwx})dx dp let q = x-p such that dq = dx and x = p+q therefore the above is equivalent to: $F\{(g*h)(x)\} = 1/\operatorname{sqrt}(2pi)* \operatorname{integral}(\inf,-\inf,\inf,\inf,g(p)h(q))* e^{-\operatorname{iw}(p+q)})\operatorname{dqdp}$ = 1/sqrt(2pi) * integral(inf,-inf, g(p)*e^{-iw(p)})dp * integral(inf,-inf, h(q)*e^{-iw(q)})dq as integral(inf,-inf, g(p)* $e^{-iw(p)}$)dp = F{g(x)} and integral(inf,-inf, h(q)* $e^{-iw(q)}$)dq = F{h(x)} $F\{(g*h)(x)\} = F\{g(x)\} * F\{h(x)\}$ 2. f(x)d/dx = f'(x)F(f'(w)) = jw*F(f(w)) $F(f'(x)) = integral(inf,-inf, e^{-jwx} * f'(x)) dx$ Integrate by parts: $u = e^{-jwx}$, $du = -jwx * e^{-jwx} dx$ v = f(x), dv = f'(x)dx= $e^{-jwx} * f(t) - integral(inf,-inf, -jwx*e^{-jwx}*f(x)dx)$ =jx*F(f(x))3. $F(x) = integral(inf,-inf,f(r)e^{jxr})dr$ assuming $r^2 \nabla f$ goes to 0 as $r \rightarrow \inf$ then using integration by parts (as shown in previous question): integral(inf,-inf, $\nabla^2 f(r)e^{jxr}$)dr = -integral(inf,-inf, $\nabla f(r) * \nabla (e^{jxr})$) again using integration by parts (as shown in previous question): = integral(inf,-inf,f(r) * ∇^2 (e^{jxr}))dr as $\nabla^2 (e^{jxr}) = (-|x|^2 * e^{ixr})$ then integral(inf,-inf,f(r) * ∇^2 (e^{jxr}))dr = integral(inf,-inf,f(r) * (-|x|^2*e^{ixr}))dr substituting for F(x) we then obtain our result $= -|x|^2 * F(x)$ 2. 1. As G(w) is the Fourier Transformed kernel g(x), we can simplify the proposed detector As H3(w) = H2(w)-H1(w)/s2-s1H2 = F(f(x))*F(g2(x)) = F(f * g2)(x)H1 = F(f(x))*F(g1(x)) = F(f * g1)(x)H3 = F(f * g2-g1)(x)/s2-s1h3 = (f * g2-g1)(x)/s2-s1

Therefore the new kernel g(x) can be simplified to (g2-g1)(x)/s2-s1 where g(x) =

 $e^{-.5s^2*(u^2+v^2)}$

- 3. As $s2 \rightarrow s1$ it becomes a less effective edge detector. As $s2 \rightarrow s1$ then the difference between them becomes smaller and therefore more sensitive to minor changes. Although zero-crossings may happen at the edges, it is a result of being so sensitive and producing false positives.
- 3.
- 1. How are these operators related to the Sobel H and V operators?

These operators are spatially related to the [1,0,-1] vector of the Sobel operators.

2. Suggest two different ways in which to combine the NW and NE operators into a single measure of edge strength. What are the relative strengths and weaknesses of each?

Addition:

This combines the NW and NE operators such that is measures both edges in such a way that is rotationally invariant. But it being small (3x3) it is highly susceptible to noise but it is fast.

This again provides a kernel that is rotationally invariant, as a 5x5 kernel it is less susceptible to noise but slightly slower.

3. Express the NW operator as the convolution of two different 2×2 operators.

-1	-1
-1	-1

0	-1
1	0

4. Show that
$$|NW*I| + |NE*I| = Max(|H*I|, |V*I|)$$

As
$$|NW|*I + |NE| * I = (|NW|+|NE|)*I$$

We can eliminate I from the equation.

Then
$$|NW|+|NE| = K =$$

1	2	1
2	0	2
1	2	1

For corners and center
$$K=|H|=|V|$$

As for all other cells, $K=2$. $|H|=[0,0,2,2]$, $|V|=[2,2,0,0]$
Then $K=Max(|H|,|V|)$

Then
$$K*I = Max(|H|,|V|)*I$$

= $|NW*I| + |NE*I| = Max(|H*I|,|V*I|)$

4.

- 1. List the 3 criteria that his approach optimizes.
 - 1. Detection
 - 2. Localization
 - 3. Single Response
- 2. Explain the drawback of using the Differences of Boxes (DoB) edge operator. The DoB edge operator is highly susceptible to noise. A noisy step, results in numerous "sharp maxima near the edge." This causes the noise to be nearly indistinguishable from the actual edge.