Специальные схемы цифровой подписи Многократные (коллективные, групповые) подписи

Несколько человек подписывают один и тот же документ. Они легко и просто могут подписать его независимо друг от друга. Однако, прилагаемые таким образом подписи могут значительно увеличить объём пересылаемой информации, связанной с исходным документом. Следующая схема подписи заметно оптимизирует эту задачу.

Abbut Jul - 6-b Wegeeby Cho Man Man My Duef

Многократные (коллективные, групповые) подписи Многократная подпись Гиллу-Кискате

Луи Гилу (Louis Claude Guillou, 1947 г. Франция)

Жан-Жак Кискатер (Jean-Jacques Quisquater, 1945 г. Бельгия)

Многократные (коллективные, групповые) подписи Многократная подпись Гиллу-Кискате

Алиса (A) и Боб (B) подписывают сообщение m, с тем, чтобы в дальнейшем Кэрол (C) могла проверить их совместную подпись.

Генерация общих параметров.

Доверенный центр T (Трент) выбирает большое число $n = p \cdot q$, где p, q — большие различные простые числа, которые держатся в секрете. T выбирает целое число e ($1 < e < \varphi(n)$), взаимно простое с $\varphi(n)$, где $\varphi(n) = (p-1)(q-1)$ — функция Эйлера. Параметры $\{n, e\}$ объявляются открытыми и общими для подписантов.

Генерация индивидуальных параметров.

T вычисляет $s = e^{-1} \pmod{\varphi(n)}$. Затем T вычисляет закрытый ключ Алисы $x_A = J_A^{-s} \pmod{n}$, где J_A — открытый ключ Алисы (битовая строка личной информации о пользователе A с условием $(J_A, n) = 1$), и закрытый ключ Баба $x_B = J_B^{-s} \pmod{n}$, где J_B — открытый ключ Боба (битовая строка личной информации о пользователе B с условием $(J_B, n) = 1$). Индивидуальными параметрами соответственно являются $\{J_A, x_A\}$ и $\{J_B, x_B\}$.

Многократные (коллективные, групповые) подписи Многократная подпись Гиллу-Кискате

Генерация подписи.

- 1. $A \to B$: $\{a_A\}$, где $a_A = r_A^e \mod n$ и r_A случайное число Алисы, $1 \le r_A \le n-1$;
- 2. $B \to A$: $\{a_B\}$, где $a_B = r_B^e \mod n$ и r_B случайное число Боба, $1 \le r_B \le n 1$;
- 3. A, B: {a}, где $a = a_A \cdot a_B \mod n$ (Алиса и Боб вычисляют a);
- 4. $A, B: \{d\},$ где d = h(m||a) mod e;
- 5. $A \rightarrow B$: $\{z_A\}$, где $z_A = r_A \cdot x_A^d \mod n$;
- 6. $B \rightarrow A$: $\{z_B\}$, где $z_B = r_B \cdot x_B^d \mod n$;
- 7. $A, B: \{z\}$, где $z = z_A \cdot z_B \mod n$;
- 8. $A, B \rightarrow C$: $\{m, d, z, J_A, J_B\}$.

Проверка подписи.

- 9. $C: \{J\}$, где $J = J_A \cdot J_B \mod n$;
- 10. $C: \{a^*\}$, где $a^* = z^e \cdot J^d \mod n$;
- 11. $C: \{d^*\}$, где $d^* = h(m||a^*) \mod e$;
- 12. *C* : проверяет, что $d^* = d$.

Специальные схемы цифровой подписи Неоспоримые подписи

Протокол неоспоримой подписи имеет такое название в силу того, что его записи не могут убедить третью сторону в подлинности подписи без того, чтобы третья сторона не провела весь протокол самостоятельно. Особенностью этих протоколов является тот факт, что проверка подписи осуществляется в интерактивном режиме и требует несколько проходов для участников протокола.

Неоспоримые подписи Неоспоримая подпись Дэвида Чаума

Неоспоримые подписи Неоспоримая подпись Дэвида Чаума

Алиса подписывает сообщение *m*, Боб проверяет подпись.

Генерация общих параметров. Генерируются: p — большое простое число; g — примитивный корень по модулю p.

Генерация индивидуальных параметров. Генерируются: x — случайное число Алисы с условием (x, p - 1) = 1; $y = g^x \mod p$. Элементы $\{p, g, y\}$ объявляется открытым ключом, элемент $\{x\}$ — закрытым ключом Алисы.

Генерация подписи.

- 1. $A: \{z\}$, Алиса вычисляет подпись $z = m^x \mod p$.
- 2. $A \rightarrow B$: $\{m, z\}$.

Проверка подписи.

- 3. $B \to A$: $\{c\}$, где $c = z^a y^b \mod p$, a, b случайные числа Боба, $1 \le a, b \le p$;
- 4. $A \to B$: $\{d\}$, где $d = c^t \mod p$, $t = x^{-1} \mod (p-1)$;
- 5. B: проверяет, что $d \equiv m^a g^b \mod p$.

Неоспоримые подписи Неоспоримая подпись Дэвида Чаума

Покажем, что этот протокол действительно нельзя оспорить. Допустим, Дейв перехватил m, z и хочет показать в рамках данного протокола, что на самом деле подпись z принадлежит Еве, а не Алисе. Для этого:

3. $D \to E$: $\{c'\}$, где $c' = z^u y^v \mod p$, u, v - случайные числа Дейва, $1 \le u, v \le p$.

Затем Дейв вычисляет $d' \equiv m^u g^v \mod p$ и отправляет это значение Еве по их совместному тайному каналу, с тем, чтобы она вернула ему это значение, будто бы она его вычислила как $d' = c'^t \mod p$, $t = x^{-1} \mod (p-1)$. После чего Ева возвращает это значение Дейву по открытому каналу:

- 4. $E \rightarrow D$: $\{d'\}$;
- 5. D: проверяет, что $d' \equiv m^u g^v \mod p$.

Кэрол, имеет две записи этого протокола, от Боба и от Дейва.

p, g, y, m, z.	
$a, b, c = z^a y^b \mod p, d,$ проверка $d \equiv m^a g^b \mod p.$	$u, v, c' = z^u y^v \mod p, d',$ проверка $d' \equiv m^u g^v \mod p.$

И Кэрол не может определить авторство подписи, поскольку эти записи выглядят совершенно равносильными.

Неоспоримые подписи Неоспоримая подпись Дэвида Чаума

Следующий способ проверки этой же подписи позволяет как подтвердить, так и опровергнуть подпись.

Проверка подписи.

- 3. $B \to A$: $\{c\}$, где $c = m^a g^b \mod p$, a, b случайные числа Боба, $1 \le a, b \le p$;
- 4. $A \to B$: $\{s_1, s_2\}$, где $s_1 = c g^q \mod p$, $s_2 = (c g^q)^x \mod p$, q случайное число Алисы, $1 \le q \le p$;
- 5. $B \to A$: $\{a, b\}$, чтобы Алиса могла убедиться, что Боб не мошенничал на проходе 3;
- 6. $A \to B$: $\{q\}$, чтобы Боб мог воспользоваться $z = m^x \mod p$ и восстановить s_1 и s_2 ;
- 7. *B* : проверяет, что $s_1 \equiv c \, g^q \mod p$ и $s_2 \equiv (g^x)^{b+q} z^a \mod p$.

Специальные схемы цифровой подписи Преобразуемые неоспоримые подписи

Преобразуемыми такие подписи названы в силу того обстоятельства, что опубликование дополнительного параметра этой неоспоримой подписи превращает её в обычную цифровую подпись, т.е. в подпись, проверка которой не требует ни одного интерактивного прохода. Преобразуемые неоспоримые подписи основаны на алгоритме цифровых под-

писей Эль-Гамаля. Рассмотрим сначала этот алгоритм.

Доктор Тахер Эль -Гамаль (араб. طاهر الجمل; род. 18 августа 1955, Каир, Египет) — американский криптограф родом из Египта.

В 1985 году он опубликовал статью под названием «Криптосистема с открытым ключом и схема цифровой подписи на основе дискретных логарифмов», в котором представил свои разработки по созданию систем асимметричного шифрования и цифровой подписи, эксплуатирующих сложность проблемы дискретного логарифмирования. Предложенная им схема ЭЦП стала основой для алгоритма DSA, принятого Национальным институтом стандартов и технологий США (NIST) в качестве стандарта цифровой подписи. Учёный также участвовал в создании протокола оплаты по кредитной карте SET, а также ряда схем интернет-платежей.

Преобразуемые неоспоримые подписи Cxema ELGamal

Эту схему можно использовать как для цифровых подписей, так и для шифрования. Её безопасность основана на трудности вычисления дискретного логарифма в конечном поле. Схема была предложена Тахером Эль-Гамалем в 1985 году. Алиса подписывает сообщение *m*, Боб проверяет подпись.

Генерация общих параметров. Генерируются: p — большое простое число, с условием m < p, в качестве m может выступать не само сообщение, а его хэш-значение; g — примитивный корень по модулю p.

Генерация индивидуальных параметров. Генерируются: x — случайное число Алисы, $1 \le x \le p$, с условием (x, p - 1) = 1; $y = g^x \mod p$. Элементы $\{p, g, y\}$ объявляется открытым ключом, элемент $\{x\}$ — закрытым ключом Алисы.

Генерация подписи.

- 1. $A: \{k\}$, где k случайное число Алисы, с условием $(k, p-1) = 1, 1 \le k \le p-1$;
- 2. $A: \{a\},$ где $a = g^k \mod p;$
- 3. $A: \{b\}$, где $b = k^{-1} (m xa) \mod (p 1)$ [в случае шифрования $b = y^k m \mod p$];
- 4. $A \to B$: $\{m, a, b\}$ [в случае шифрования $\{a, b\}$].

Проверка подписи.

5. B: проверяет, что $y^a a^b \mod p = g^m \mod p$ [в случае шифрования $m = b \cdot (a^x)^{-1} = b \cdot a^{(p-1)-x} \mod p$].

Преобразуемые неоспоримые подписи Преобразуемая неоспоримая подпись ELGamal

Алиса подписывает сообщение *m*, Боб проверяет подпись.

Генерация общих параметров. Генерируются: q — большое простое число, p — большое простое число вида $p = 2^n \cdot q + 1$ (т.е. $p - 1 = 2^n \cdot q$). Далее следующим образом генерируется число g. Выбирается случайное число h (1 < h < p - 1) и вычисляется $g = h^{(p-1)/q} \mod p$. Если $g \neq 1$, то используется полученное значение g.

Генерация индивидуальных параметров. Генерируются: x и z — различные случайные числа Алисы, 1 < x, z < q; вычисляются $y = g^x \mod p$ и $u = g^z \mod p$. Элементы $\{p, q, g, y, u\}$ объявляется открытым ключом, элементы $\{x, z\}$ — закрытым ключом Алисы.

Преобразуемые неоспоримые подписи Преобразуемая неоспоримая подпись ELGamal

Генерация подписи.

- 1. $A: \{t\}$, где t случайное число Алисы, $1 \le t \le q$;
- 2. $A: \{T\}$, где $T = g^t \mod p$;
- 3. $A: \{m'\},$ где $m' = Ttzm \bmod q;$

Теперь вычисляется обычная подпись Эль-Гамаля для m' в следующих обозначениях:

- 4. $A: \{R\}$, где R случайное число Алисы, с условием $(R, p-1) = 1, 1 \le R \le p-1;$
- 5. $A: \{r\},$ где $r = g^R \mod p;$
- 6. A: $\{s\}$, где $s = R^{-1}(m' rx) \mod q$;
- 7. $A \to B$: $\{m, r, s, T\}$.

Преобразуемые неоспоримые подписи Преобразуемая неоспоримая подпись ELGamal

Проверка подписи.

- 8. $B \to A$: $\{c\}$, где $c = T^{Tma} \cdot g^b \mod p$ и a, b случайные числа Боба, $1 \le a, b \le p$;
- 9. $A \to B$: $\{h_1, h_2\}$, где $h_1 = c \cdot g^k \mod p$, $h_2 = h_1^z \mod p$ и k случайное число Алисы, $1 \le k \le p$;
- 10. $B \rightarrow A$: {a, b};
- 11. *А*: проверяет, что c, полученное на проходе 8, удовлетворяет условию $c = T^{Tma} \cdot g^b \mod p$, после чего
- 12. $A \rightarrow B$: $\{k\}$;
- 13. *B*: проверяет, что $h_1 = T^{Tma} \cdot g^{b+k} \mod p$, и $h_2 = y^{ra} \cdot r^{sa} \cdot u^{b+k} \mod p$;

Опубликовав значение z, Алиса может преобразовать все свои неоспоримые подписи в обычные. Теперь любой сможет проверить подпись Алисы без ее помощи.

Специальные схемы цифровой подписи Подписи «вслепую»

Суть подписи «вслепую» заключается в том, чтобы подписант не имел возможности ознакомиться с содержанием документа, который он подписывает. Понятие слепой подписи было предложено Дэвидом Чаумом в 1982 г., он же предложил и первую реализацию подобной подписи. Она использует алгоритм RSA и обеспечивается его стойкостью. У Боба есть открытый ключ e, закрытый ключ d и открытый модуль n. Алиса хочет, чтобы Боб вслепую, не читая, подписал сообщение m.

Генерация подписи.

- 1. $A \to B$: $\{t\}$, где $t = m \cdot k^e \mod n$, и k случайное число Алисы, с условием $1 \le k \le n$ (Алиса маскирует сообщение m);
- 2. $B \to A$: $\{b\}$, где $b = t^d \mod n$ (Боб подписывает сообщение t);
- 3. *A*: {*s*}, где $s = b \cdot k^{-1} \mod n$ (Алиса снимает маскировку и получает подпись Боб $s = m^d \mod n$).
- 4. $A \rightarrow D$: $\{m, s\}$.

Проверка подписи.

1. D: проверяет, что $m = s^e \mod n$.

Подписи, подтверждаемые доверенным лицом

Идея этой подписи состоит в возможности Алисе подписать сообщение и Бобу проверить её подпись так, чтобы Кэрол (доверенное лицо Алисы) немного позже могла доказать Дэйву (третьему лицу) правильность подписи Алисы.

Алиса подписывает сообщение m, Боб проверяет подпись.

Генерация общих параметров. p — большое простое число; g — примитивный корень по модулю p; n — произведению двух различных больших простых чисел, отличных от p.

Генерация индивидуальных параметров. x — случайное число Алисы, её закрытый ключ; $a = g^x \mod p$ — открытый ключ Алисы; z — случайное число Кэрол, её закрытый ключ; $h = g^z \mod p$ — открытый ключ Кэрол;

Генерация подписи.

1. $A \to B$: $\{m, a, b, j\}$, где $a = g^x \mod p$, $b = h^x \mod p$, x — случайное число Алисы $(1 \le x \le n)$, H(m) — хэш-значение от m, H(a, b) — хэш-значение от конкатенации a и b, и $j = (H(m) \oplus H(a, b))^3 \mod n$;

Подписи, подтверждаемые доверенным лицом

Проверка подписи Бобом.

- 2. $B \to A$: $\{c\}$, где $c = g^s \cdot h^t \mod p$ и s, t случайные числа Боба, $1 \le s, t \le p$;
- 3. $A \to B$: $\{d, e\}$, где $d = g^q \mod p$, $e = (cd)^x \mod p$ и q случайное число Алисы, 1 < q < p;
- 4. $B \rightarrow A$: $\{s, t\}$;
- 5. A: проверяет, что $g^s h^t = c \mod p$, после чего
- 6. $A \rightarrow B$: $\{q\}$;
- 7. *B*: проверяет, что $d \equiv g^q \mod p$, $ea^{-q} \equiv a^s b^t \mod p$ и $(H(m) \oplus H(a, b))^3 \equiv j \mod n$. Если все три тождества подтверждаются, то подпись считается действительной.

Подписи, подтверждаемые доверенным лицом

Боб не может использовать запись этого доказательства для убеждения Дэйва в истинности подписи, но Дэйв может выполнить протокол с доверенным лицом Алисы Кэрол, которая уполномочена подтверждать ее подпись. Вот как Кэрол убеждает Дэйва в том, что a и b образуют правильную подпись.

Проверка подписи Дэйвом с помощью Кэрол.

- 1. $D \to C$: $\{k\}$, где $k = g^u \cdot a^v \mod p$ и u, v случайные числа Дэйва, $1 \le u, v \le p$;
- 2. $C \to D$: $\{l, y\}$, где $l = g^w \mod p$, $y = (kl)^z \mod p$ и w случайное число Кэрол, $1 \le w \le p$;
- 3. $D \to C$: {u, v};
- 4. C: проверяет, что $g^u a^v = k \mod p$, после чего
- 5. $C \rightarrow D$: $\{w\}$;
- 6. D: проверяет, что $l \equiv g^w \mod p$, $yh^{-w} \equiv h^u b^v \mod p$. Если оба тождества подтверждаются, то подпись считается действительной.

Задание 1. Алиса может отрицать подпись z под сообщением m в схеме неоспоримой подписи. Описать подробно действия этого отрицания.

Задание 2. Проверить корректность схемы ELGamal.

Задание 3. Каждая подпись или шифрование ELGamal требует нового значения k, и это значение должно быть выбрано случайным образом. Если когда-нибудь Ева раскроет k, используемое Алисой, она сможет раскрыть закрытый ключ Алисы x. Если Ева когда-нибудь сможет получить два сообщения, подписанные или зашифрованные с помощью одного и того же k, то она сможет раскрыть x, даже не зная значения k. Подробно раскрыть эти способы вскрытия схемы ELGamal.

Задание 4. Проверить корректность процедуры проверки преобразуемой неоспоримой подписи ELGamal.

Задание 5. В конце протокола преобразуемой неоспоримой подписи записано «Опубликовав значение *z*, Алиса может преобразовать все свои неоспоримые подписи в обычные». Показать, как в этом случае будет осуществляться проверка подписи.