FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery

Krishna Kumar Singh* Utkarsh Ojha* Yong Jae Lee University of California, Davis

CVPR 2019 (Oral) 2019.09.03

Yonggyu Kim

Motivation

Unsupervised learning으로 Representation이 disentangle 할 수 있도록 학습하여, 원하는 image를 생성하길 원함.

즉, vector representation(distribution)이 유의미하도록 만들자.

Main idea

$$\min_G \max_D V_I(D,G) = V(D,G) - \lambda I(c;G(z,c))$$

$$I(X;Y) = H(X) - H(X|Y)$$

- 의존 관계 크다.
- G가 바뀌면 c도 바뀐다.
- 둘 간의 공유하는 정보량이 높아야 한다.
- 기존 GAN처럼 G, D를 학습하되, latent code c ~ P(c)에 대해서 c 와 G(z, c)가
 의존관계에 놓이게 되도록 학습

Main idea

$$\begin{aligned} & \underset{G}{\min} \max_{D} V_{I}(D,G) = V(D,G) - \lambda I(c;G(z,c)) \\ & I(c;G(z,c)) = H(c) - H(c|G(z,c)) \overset{H(X|Y) = -\int_{\mathcal{X}} \int_{\mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(y)} dy dx = \int_{\mathcal{X}} \int_{\mathcal{Y}} p(x,y) \log p(y|x) dy dx \\ & = \mathbb{E}_{x \sim P_{X}} [\mathbb{E}_{y \sim P_{Y}} [\log P(Y|X)]] \\ & = \mathbb{E}_{x \sim G(z,c)} \left[\mathbb{E}_{c' \sim P(c|x)} [\log P(c'|x)] + H(c) \right] \\ & = \mathbb{E}_{x \sim G(z,c)} \left[\int \log \frac{p(c'|x) \cdot p(c'|x)}{Q(c'|x)} \cdot Q(c'|x) \cdot dc' \right] \\ & = \mathbb{E}_{x \sim G(z,c)} \left[\int \log \frac{p(c'|x) \cdot p(c'|x)}{Q(c'|x)} \cdot Q(c'|x) \cdot dc' \right] \\ & = \mathbb{E}_{x \sim G(z,c)} \left[D_{KL}(P(\cdot|x)||Q(\cdot|x)) + \mathbb{E}_{c' \sim P(c|x)} [\log Q(c'|x)] \right] + H(c) \\ & \geq \mathbb{E}_{x \sim G(z,c)} \left[\mathbb{E}_{c' \sim P(c|x)} [\log Q(c'|x)] \right] + H(c) \end{aligned}$$

- Lemma 5.1 & 증명
- For random variables X, Y and function f(x,y) under suitable regularity conditions:

$$\mathbb{E}_{x\sim X,y\sim Y|x}[f(x,y)]=\mathbb{E}_{x\sim X,y\sim Y|x,x'\sim X|y}[f(x',y)]$$

$$egin{align*} L_I(G,Q) &= E_{c \sim P(c),x \sim G(z,c)}[\log Q(c|x)] + H(c) &\longleftarrow \text{Goal eq} \ &= E_{c \sim P(c),x \sim P_G(x|z,c)}[\log Q(c|x)] + H(c) \ &= E_{c \sim P(c),x \sim P_G(x|z,c),\ c' \sim P(c|x)}[\log Q(c'|x)] + H(c) &\longleftarrow \text{Lemma 5.1} \ &= E_{x \sim P_G(x|z,c),c' \sim P(c|x)}[\log Q(c'|x)] + H(c) \ &= E_{x \sim P_G(x|z,c)}[E_{c' \sim P(c|x)}[\log Q(c'|x)]] + H(c) \ &\leq I(c;G(z,c)) \end{gathered}$$

Result

$$\min_{G,Q} \max_D V_{ ext{InfoGAN}}(D,G,Q) = V(D,G) - \lambda L_I(G,Q)$$
 $L_I(G,Q) = E_{c\sim P(c),x\sim G(z,c)}[\log Q(c|x)] + H(c)$
Reconstruction loss!

- Intuitions
 - V(D,G) is objective function of GAN
 - 이에 더불어 G, Q 는 L₁도 최대화해야 함
 - 즉, Q 는 G(z,c) 를 다시 c로 잘 바꿔야 하고,
 - G 는 Q 가 잘 바꿀 수 있도록 x=G(z,c) 를 생성해야 한다.

Result

(a) Varying c_1 on InfoGAN (Digit type)

(b) Varying c_1 on regular GAN (No clear meaning)

(c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)

(d) Varying c_3 from -2 to 2 on InfoGAN (Width)

배경(Background)

Main Idea & Contribution

<u>Authors hypothesize that a generative model</u> with the capability of hierarchically generating images with <u>fine-grained details can also be</u> useful for fine-grained grouping of real images.

Main Idea & Contribution

1. Image Generation (without any manual fine-grained annotations)

FineGAN은 unsupervised 방식으로 fine-grained object의 background, shape, appearance를 계층적으로 잘 생성하도록 학습

Main Idea & Contribution

- 2. <u>Unsupervised</u> fine-grained object clustering (or "discovery")
 - This is the first attempt to cluster fine-grained categories in the unsupervised setting (Because, unsupervised object category discovery focuses only on clustering entry-level categories. (e.g. birds vs cars vs dogs))

• FineGAN learns disentangled representation to cluster real images for unsupervised fine-grained object category discovery.

background code $b \sim \text{Cat}(K = N_b, p = 1/N_b)$

Relationship between latent code

Data에 implicit hierarchy가 존재한다고 가정 Hierarchy를 발견하기 위해 2가지 constraint를 걸어줌.

1)
$$(N_p < N_c)$$

2) For each parent code, authors tie a fixed number of child codes (multiple child codes share the same parent code.)

Object 와 background 사이에 correlation(ducks in water)을 없애주기 위해 학습할 때, Background code 수 = child code 수

Stitching process

Discriminative modules

Element wise multiplication

♠ Element wise addition

b - Background code

p - Parent code

c - Child code

$$\mathcal{L}_{bg_adv} = \min_{G_b} \max_{D_b} \mathbb{E}_x[\log(D_b(x))] + \mathbb{E}_{z,b}[\log(1 - D_b(G_b(z, b)))]$$

Intra-class background details

Different(unknown)

background classes

Auxiliary background classification loss:

$$\mathcal{L}_{bg_aux} = \min_{G_b} \ \mathbb{E}_{z,b}[\log(1 - D_{aux}(G_b(z,b)))] \qquad \text{Foreground : 1} \\ \text{Background : 0}$$

Background loss:

$$\mathcal{L}_b = \mathcal{L}_{bg_adv} + \mathcal{L}_{bg_aux}$$

we maximize the mutual information $I(p, \mathcal{P}_{f,m})$, with D_p approximating the posterior $P(p|\mathcal{P}_{f,m})$:

$$\mathcal{L}_p = \mathcal{L}_{p-info} = \max_{D_p, G_{p,f}, G_{p,m}} \mathbb{E}_{z,p}[\log D_p(p|\mathcal{P}_{f,m})]$$

we maximize the mutual information $I(p, \mathcal{P}_{f,m})$, with D_p approximating the posterior $P(p|\mathcal{P}_{f,m})$:

$$\mathcal{L}_p = \mathcal{L}_{p-info} = \max_{D_p, G_{p,f}, G_{p,m}} \mathbb{E}_{z,p}[\log D_p(p|\mathcal{P}_{f,m})]$$

$$\mathcal{P}_{c,m} = (1 - \mathcal{C}_m) \odot \mathcal{P} \quad \mathcal{C}_{f,m} = \mathcal{C}_m \odot \mathcal{C}_f$$

$$\mathcal{C} = \mathcal{C}_{f,m} + \mathcal{P}_{c,m}$$

$$\mathcal{L}_{c_info} = \max_{D_c, G_{c,f}, G_{c,m}} \mathbb{E}_{z,p,c}[\log D_c(c|\mathcal{C}_{f,m})]$$

$$\mathcal{L}_{c_adv} = \min_{G_c} \max_{D_{adv}} \mathbb{E}_x[\log(D_{adv}(x))] + \mathbb{E}_{z,b,p,c}[\log(1 - D_{adv}(\mathcal{C}))]$$

$$\mathcal{L}_c = \mathcal{L}_{c_adv} + \mathcal{L}_{c_info}$$

Train

Test

Experiments

Experiments

Experiments

	IS			FID		
	Birds	Dogs	Cars	Birds	Dogs	Cars
Simple-GAN	31.85 ± 0.17	6.75 ± 0.07	20.92 ± 0.14	16.69	261.85	33.35
InfoGAN [9]	47.32 ± 0.77	43.16 ± 0.42	28.62 ± 0.44	13.20	29.34	17.63
LR-GAN [52]	13.50 ± 0.20	10.22 ± 0.21	5.25 ± 0.05	34.91	54.91	88.80
StackGANv2 [57]	43.47 ± 0.74	37.29 ± 0.56	33.69 ± 0.44	13.60	31.39	16.28
FineGAN (ours)	52.53 ± 0.45	$\textbf{46.92} \pm \textbf{0.61}$	32.62 ± 0.37	11.25	25.66	16.03

	$N_p=20$	N_p =10	N_p =40	N_p =5	N_p =mixed
Inception Score (CUB)	52.53	52.11	49.62	46.68	51.83

$$N_c$$
 = 200 / (6, 5), (3, 20), (11, 10)

	NMI			Accuracy		
	Birds	Dogs	Cars	Birds	Dogs	Cars
JULE [53]	0.204	0.142	0.232	0.045	0.043	0.046
JULE-ResNet-50 [53]	0.203	0.148	0.237	0.044	0.044	0.050
DEPICT [15]	0.290	0.182	0.329	0.061	0.052	0.063
DEPICT-Large [15]	0.297	0.183	0.330	0.061	0.054	0.062
Ours	0.403	0.233	0.354	0.126	0.079	0.078

감사합니다.

참고: https://www.youtube.com/watch?v=_4jbgniqt_Q&t=948s (PR-22 InfoGAN, 차준범님 강의)

