<u>6.857 Computer and Network Security</u> Lecture 7

Admin:

• Notes from previous semester (only read the section on secret sharing)

Today:

• Shamir's "secret sharing"

TODIO	
TOPIC:	81

FILE UNDER:

PAGE: L19.10

	inagement with "secret sharing" (threshold cryptography)
	me Alice has a secret s. (e.g. a key)
	wants to protect s as follows:
	ne has n friends A, , A, , , An
51	ne picks a "threshold" t, 1 = t = n.
Sk	e wants to give each friend Ai,
	a "share" si of s, so that
	· any tor more friends can reconstructs
	• any set of < t friends can not.
asy co	1565 %
t-	1: 5; = 5
t>	n: 5,,52,, 5, random
	Sn chosen so that
	$S = S_1 \oplus S_2 \oplus \cdots \oplus S_n$
\a/k 4	about 1 <t<n?< td=""></t<n?<>
VYNA	about I to iii ;

HOPIC:		
11.500		

FILE UNDER:

PAGE L 19. 11

Ide	2 points determine a line 3 points determine a quadratic
	100
	t points determine a degree (t-1) curve
Let	f(x)= at x + at x + at x + at x + at
The	ere are t coefficients. Let's work modulo prime p.
We	can have t points: (xi, yi) for 15ist
Th	ey determine coefficients, and vice versa.
	Polynomial Evaluation
	{(xi,yi)} (at-1, at-2,, a, 90
	Pt/value pairs Palynomial Coefficients
	Interpolation
To s	share secrets (here Ossap):
	Let $y_0 = a_0 = s$
	Pick a, az,, at random from Zp
	Let share si = (i, yi) where yi = f(i), 15i
	Evaluation is easy.

PIC:	

FILE UNDER:

PAGE 119.12

Interpolation			
Given ((x:, y:)	\iet	(wlog)
Then f	$(x) = \sum_{i=1}^{\infty} f_i$	(x) • Y:	
whe	re f:(x)=	{ 1 at	x=x; r x= x;, j+i, l=j=t
Furthermon	e 3		
fi	$(x) = \prod_{j \neq i} (x)$		This is a polynomial of degree t-1.
	J‡:	:-×;)	So f also has degree t-1.
Evaluating fl	o) to get s	simplifies	to
5-	f(0) = \(\sum_{i=1}^{\text{t}} \)	γ _ι 5*' Π (× _ι	-× _j)
Theorem: Se			
information	-theoretically	secure. Adve	ersory with
< t share	s has no in	itormation al	pout s.
Pf: A degree 1	-1 curve can go	through any poi	nt (0,s)
as well as	amy given d	pts (xi,yi),	ifdet. @
Refs: Reed-Solow	ion codes, erasi	are codes, em	or correction,
informati	on dispersal ((Rabin).	

TOPIC.	DATE:
	N

PAGE: L19.2 "Gap group" is one in which ("Decision Diffie Hellmon") · DDH is easy [Recall: given (g, qa, gb, gc), to decide if ab=c (mod order(g)) ("Computational Diffie Hellman") but • CDH is hard [Recall: given (g,ga,gb), to compute gab (Note that CDH easy => DDH easy) This difference in difficulty between DDH ("easy") and CDH ("hard") forms a "gap". - How can one construct a "gap group"? · What good would that be?

FILE UNDER:

PAGE L19.3

	,	\		
e	(9	,g)	=	h

ilinear map	
Suppose:	G, is group of prime order & , with generator .
	Go is group at prime order q, with generaling
	[we use multiplicative notation for both groups]
	and there exists a (bilinear) map
	$e: G, \times G, \longrightarrow G_2$
	such that
	(Va,b) e(ga,gb) = hab
	= e(g,gab)
	= e(g,g)9b
	= e (g,gb)a
	= e(g,ga)b
	= e(g,gq)
	000
ilinear ma	ps also called "pairing functions"
	n enormous number of applications. \$
	urse, interested in efficiently computable
oilinear ma	ρ\$.
	* google: "The pairing-based crypto lounge"

TOPIC:	i .

FILE UNDER:

PAGE: 119.4

Theore	m a
If 4	there is a bilinear map
	e: G, × G, → G2
betu	veen two groups of prime order g,
the	n DDH is easy in G.
Proof:	
	en (g,ga,gb,gc) (elements of G,)
the	
	$c = ab \pmod{g} \iff e(g^a, g^b) = e(g, g^c)$
	hab = hc
	ab=c (mod g)
50	: accept (g, gq, gb, gc) iff e(gq, gb) = e(g, gc)
iven th	nough DDH is easy in G, , CDH may still be
nard;	we may have a "gap group".

TOPIC:	DATE
FILE UNDER:	PAGE: L19.5

					t ga										
•	7	115	is	not	Sin	ple	! v	le g	ive	just	9 .	sket	zh.		1
0	G	, \	wil	be	- "54	pers	ing	ular	"el	lipti	د د	urv	e		
		6	2.9	. el	liptic	cur	re o	lefir	red	by p	oint	3 81	1		-
					,2 _	1									
			,												ļ
		u	/ h1	ere	P				d 3	,	1 9	1 :	2		
					a	= ()								I
					b	ε ?	p*		can	cho	عرور	b=	1)		1
	G	L	is	fini	he fie].			-
					bgrou										
					9	•				1 1		1 1)		
	9	en	Lra	rors	of o	rder	~ ~	2	S	94	.)				-
	e	(h:	line	er m	1	1	imo	Jem	onto	10				
									1						İ
		W	eil	Pai	iring	16		<u> </u>	ate	Pair	ing				
															-
															-
															-
											-				
															-

FILE UNDER

PAGE: L 19.6

Application 1:

Digital signatures

(Boneh, Lynn, Shacham (2001))

Signatures are short (e.g. 160 bits)!

Public: groups G1, G2 of prime order q

Pairing function e: G1 × G1 → G2

g = generator of G,

H = hash for (c.R.) from messages to G,

Secretkey: x where O<x<q

Public key: y = gx (in G.)

To sign message M:

Let m = H(M)

 \rightarrow Output $\sigma = \sigma_{x}(M) = m^{x}$

(in 6,)

(in G,)

Note: Signature may be short!

Just one element of G.

To verify (y, M, o):

Check $e(g, \sigma) \stackrel{?}{=} e(y, m)$ where m = H(M)

e(g,m) in both cases

Theorem: BLS signature scheme secure against

existential forgery under chosen message attack in ROM

assuming CDH is hard in G.

TOPIC:			
TOPIC.			

FILE UNDER

PAGE L 19.8

Application 3:

Identity-based encryption (IBE) [Boneh, Franklin '01] TTP (trusted third party) publishes G, Ga, e (biliner map), g (generator of G,), y where y = gs & s is TTP's moster secret. Let H, be random oracle mapping names (e.g. "alice omitedu") to elements of G, Let Ha be random oracle mapping Ga to foil3 " (PRG). Want to enable anyone to encrypt message for Alice knowing only TTP public parameters & Alice's name Encrypt (y, name, M): $r \leftarrow R - Z_0^*$ (here prime $g = |G_1| = |G_2|$) $g_A = e(Q_A, y) \quad \text{where } Q_A = H_1(name)$ output (gr, M + H2 (gr))

1000	7.
TOPIC:	
	- 10

FILE UNDER:

PAGE L19. 9

Decrypt ciphertext c= (u,v):
· Alices obtains da = Qas from TTP (once is enough)
where QA = H, (name).
This is Alize's decryption key.
Note that TTP also knows it!
Note that message may be energy ted before Alice gets da.
· Compute V D Ha (e(dA, 4))
= V + Ha (e (Q, , g))
= V D H2 (e(QA, 9) rs)
= v + Ha (e(QA, 95)))
= V & Ha (e(QA, y)))
= V + Ha (9)
= M

FILE UNDER:

PAGE: L19.7

Application 2:

Three-way 1	rey agreement	(Joux, generalizing DH)
Recall DH:	$A \rightarrow B : g^a$ $B \rightarrow A : g^b$ $key = g^{ab}$	
JONX: 50	appose G, has go appose e: G, x	enerator g Gz is a bilinear map.
	A → B, C : 9	a
	B → A, c : g	Ь
	C → A, B : g	
		(gb,gc) = e(g,g) 3bc
		(ga,gc)b=e(g,g)abc -==
	C computes e	(99,96) = e (9,9) abc
	key = e(g,g))apc
Secure assu	ming "BDH"=	
given	9,9,9,9	, e
hard	to compute e	(9,9)96
Four-way k	ey agreement is	open problem!
		/Halevi Proc. Eurocrypt 13)

1 HAZI RUN DQG & RP SXVANU6 HFXULW

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.