

Основы программирования и баз данных

В.Г.Тетерин – Microsoft Solution Developer (Visual C++)

Модуль 2. ПРЕДСТАВЛЕНИЕ ДАННЫХ. ПРИНЦИП ПРОГРАММНОГО УПРАВЛЕНИЯ

Модуль 2. ПРЕДСТАВЛЕНИЕ ДАННЫХ. ПРИНЦИП ПРОГРАММНОГО УПРАВЛЕНИЯ

- Основы булевой алгебры
- Системы счисления. Связи между системами счисления
- Основы арифметики двоичных чисел
- Принцип программного управления.
 Базовая архитектура и структура ЭВМ.
 Принцип фон Неймана

Модуль 2. ПРЕДСТАВЛЕНИЕ ДАННЫХ. ПРИНЦИП ПРОГРАММНОГО УПРАВЛЕНИЯ

(продолжение)

- Представление целых и вещественных чисел в памяти ЭВМ
- Диапазоны представления чисел в двоичной системе счисления
- Понятие типа данных
- Представление символьной информации. Кодовые таблицы
- Единицы измерения ёмкости запоминающих устройств

Основы булевой алгебры

- **> Булевый** (логический) тип данных в информатике является примитивным типом данных имеющим два возможных значения:
 - true (правда)
 - **γ** false (ложь)
- Присутствует в подавляющем большинстве языков программирования как самостоятельная сущность или реализуется через численный тип. Обычно значение *true* представляется единицей, а *false* - нулем

Таблицы истинности

Отрицание:

а	a
0	1
1	0

Сложение (дизъюнкция):

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

Умножение (конъюнкция):

а	b	a*b
0	0	0
0	1	0
1	0	0
1	1	1

- Традиционным применением булевого типа данных в программировании являются значения «да»/«нет» в отношении результата более сложных операций.
- Все операции сравнения двух величин (равно, больше, меньше), операции вхождения элемента в множество и проверка на пересечение множеств возвращают в качестве результата булевый тип.

Системы счисления. Связи между системами счисления

- Система счисления способ записи чисел с помощью набора специальных знаков, называемых цифрами.
- > Системы счисления подразделяются на
 - позиционные (например, десятичная)
 - непозиционные (например, римская)
- В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе (позиции).
- Количество используемых цифр называется основанием системы счисления

1) десятичная3начение
$$10^3$$
 10^2 10^1 10^0 3начение1109 $1*10^3 + 1*10^2 + 0*10^1 + 9*10^0 = 1109_{(10)}$

2) двоичная
$$2^3$$
 2^2 2^1 2^0 3начение $1*2^3+1*2^2+0*2^1+1*2^0=13_{(10)}$

 4) шестнадцатеричная

 16³ 16² 16¹ 16⁰
 Значение

 1 1 0 F
 1*16³ +1*16² +0*16¹ +15*16⁰ = 4367(10)

 Перевод из двоичной в восьмеричную и шестнадцатеричную системы

Для этого типа операций существует упрощенный алгоритм.

- Для восьмеричной разбиваем число на триады, преобразуем триады по таблице
- Для шестнадцатеричной разбиваем число на тетрады, преобразуем тетрады по таблице
- > Пример:
 - преобразуем 101100₂
 - » восьмеричная 101 100 → 54₈
 - у шестнадцатеричная 0010 1100 → 2С₁₆

0 0	0	0	0
0 0	0	1	1
0 0	1	0	2
0 0	1	1	3
0 1	. 0	0	4
0 1	. 0	1	5
0 1	. 1	0	6
0 1	. 1	1	7
1 0	0	0	8
1 0	0	1	9
1 0	1	0	A
1 0	1	1	В
1 1	. 0	0	С
1 1	. 0	1	D
1 1	. 1	0	E
1 1	. 1	1	F

 Перевод из восьмеричной и шестнадцатеричной систем в двоичную

Для этого типа операций тоже существует упрощенный алгоритм.

- Для восьмеричной преобразуем цифры числа по таблице в триады
- Для шестнадцатеричной преобразуем цифры числа по таблице в тетрады
- Пример:
 - преобразуем
 - > 54₈ → 101 100
 - ightharpoonup 2C₁₆ ightharpoonup 0010 1100

0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 A 1 0 1 1 B 1 1 0 1 D 1 1 1 1 E 1 1 1 1 F					
0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 A 1 1 0 1 B 1 1 0 1 D 1 1 1 0 E	0	0	0	0	0
0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 A 1 1 0 1 B 1 1 0 1 D 1 1 1 0 E	0	0	0	1	1
0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 A 1 0 1 1 B 1 1 0 0 C 1 1 1 1 D 1 1 1 0 E	0	0	1	0	2
0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 A 1 0 1 1 B 1 1 0 0 C 1 1 0 1 D 1 1 1 0 E	0	0	1	1	3
0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 A 1 0 1 1 B 1 1 0 0 C 1 1 0 1 D 1 1 1 0 E	0	1	0	0	4
0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 A 1 0 1 1 B 1 1 0 0 C 1 1 0 1 D 1 1 1 0 E	0	1	0	1	5
1 0 0 0 8 1 0 0 1 9 1 0 1 0 A 1 0 1 1 B 1 1 0 0 C 1 1 0 1 D 1 1 1 0 E	0	1	1	0	6
1 0 0 1 9 1 0 1 0 A 1 0 1 1 B 1 1 0 0 C 1 1 0 1 D 1 1 1 0 E	0	1	1	1	
1 0 1 0 A 1 0 1 1 B 1 1 0 0 C 1 1 0 1 D 1 1 1 0 E	1	0	0	0	8
1 0 1 1 B 1 1 0 0 C 1 1 0 1 D 1 1 1 0 E	1	0	0	1	9
1 1 0 0 C 1 1 0 1 D 1 1 1 0 E	1	0	1	0	Α
1 1 0 0 C 1 1 0 1 D 1 1 1 0 E	1	0	1	1	В
1 1 1 0 E	1	1	0	0	С
	1	1	0	1	D
1111 F	1	1	1	0	E
	1	1	1	1	F

Основы арифметики двоичных чисел

Поразрядное сложение с переносом

Сдвиг влево

Сдвиг вправо

				Эначение ₍₁₀₎
0	0	0	0	0
0	0	0	1	
0	0	1	0	1 2
0	0	1	1	3
0	1	0	0	3 4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	6 7 8
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Принцип программного управления.

- Принцип программного управления:
 - функционирование вычислительной машины определяется заранее составленной и введенной в ее память программой
 - команды программы располагаются в последовательных адресах памяти
 - после исполнения первой команды машина автоматически переходит к выполнению следующей команды и т.д., пока не встретится команда прекратить вычисления
- Команда содержит
 - код операции (сложить, умножить, записать в память, перейти по адресу и т.п.)
 - адреса одного или нескольких операндов или (реже) их значения, а для команды перехода - адрес следующей команды

Базовая архитектура и структура ЭВМ. Принцип фон Неймана (продолжение)

- Машина фон Неймана вычислительная система, построенная на следующих принципах.
 - Основными ее блоками являются:
 - арифметико-логическое устройство,
 - устройство управления,
 - запоминающее устройство,
 - устройства ввода-вывода.
 - Программы и данные хранятся в одной и той же памяти.
 - Устройство управления и арифметико-логическое устройство, объединенные в центральный процессор, определяют действия, подлежащие выполнению, путем считывания команд из оперативной памяти.
- Подавляющее большинство вычислительных машин в настоящее время являются фон-неймановскими машинами.

Базовая архитектура и структура ЭВМ. Принцип фон Неймана (продолжение)

Схематичное изображение машины фон Неймана

Представление целых и вещественных чисел в памяти ЭВМ

Поразрядное сложение с переносом

Сдвиг влево (умножение на 2)

2 ³	2 ²	2 ¹	2 ⁰	Значение ₍₁₀₎
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Отрицательные числа: -1, -5 и т.д.

Определение: x + (-x) = 0

1 0 0 0 0 | = 0

Изменение знака числа: заменить все 0 на 1, а 1 - на 0 (NOT) и к результату прибавить 1

±	2 ²	2 ¹	2 ⁰	Со знаком ₍₁₀₎
0	0	0	0	+0
0	0	0	1	+1
0	0	1	0	+2
0	0	1	1	+3
0	1	0	0	+4
0	1	0	1	+5
0	1	1	0	+6
0	1	1	1	+7
1	0	0	0	- 8
1	0	0	1	- 7
1	0	1	0	- 6
1	0	1	1	- 5
1	1	0	0	- 4
1	1	0	1	- 3
1	1	1	0	- 2
1	1	1	1	- 1

Суммирование чисел со знаком:

土	2 ²	2 ¹	2 ⁰	Со знаком ₍₁₀₎
0	0	0	0	+0
0	0	0	1	+1
0	0	1	0	+2
0	0	1	1	+3
0	1	0	0	+4
0	1	0	1	+5
0	1	1	0	+6
0	1	1	1	+7
1	0	0	0	- 8
1	0	0	1	- 7
1	0	1	0	- 6
1	0	1	1	- 5
1	1	0	0	- 4
1	1	0	1	- 3
1	1	1	0	- 2
1	1	1	1	- 1

Сдвиг вправо (деление на 2)

Проблемы со сложением

Проблемы со сдвигом влево (умн. на 2)

<u>±</u>	2	2	2	Со знаком ₍₁₀₎
0	0	0	0	+0
0	0	0	1	+1
0	0	1	0	+2
0	0	1	1	+3
0	1	0	0	+4
0	1	0	1	+5
0	1	1	0	+6
0	1	1	1	+7
1	0	0	0	- 8
1	0	0	1	- 7
1	0	1	0	- 6
1	0	1	1	- 5
1	1	0	0	- 4
1	1	0	1	- 3
1	1	1	0	- 2
1	1	1	1	- 1

1 22 21 20 60 200

• Дробные числа

• Для представления дробной части числа в b-ичной системе счисления ее представляют в виде линейной комбинации отрицательных степеней числа b:

$$a_2 b^2 + a_1 b^1 + a_0 b^0 + a_{-1} b^{-1} + a_{-2} b^{-2} + ...,$$

• Например, в двоичной системе (b = 2) в формате с фиксированной точкой имеем:

$$0.1 = 0.50_{(10)}$$

$$0.01 = 0.25_{(10)}$$

$$0.11 = 0.75_{(10)}$$

$$1.11 = 1.75_{(10)}$$

±	2	2 -	2 -	Значение ₍₁₀₎
0	0	0	0	+0.00
0	0	0	1	+0.25
0	0	1	0	+0.50
0	0	1	1	+0.75
0	1	0	0	+1.00
0	1	0	1	+1.25
0	1	1	0	+1.50
0	1	1	1	+1.75
1	0	0	0	NAN
1	0	0	1	-0.25
1	0	1	0	-0.50
1	0	1	1	-0.75
1	1	0	0	-1.00
1	1	0	1	-1.25
1	1	1	0	-1.50
1	1	1	1	-1.75

. | 20 2-1 2-2 | 2-----

- В формате с плавающей точкой (экспоненциальный формат) возможно многими способами записать одно и то же число:
 - в десятичной системе:

$$3.14 * 10^0 = 31.4 * 10^{-1} = 314 * 10^{-2}$$

= $0.314 * 10^1 = 0.0314 * 10^2$ и т.д.

- в двоичной системе:

1.01 *
$$2^0$$
 = 10.1 * 2^{-1} = 101 * 2^{-2} = 0.101 * 2^1 = 0.0101 * 2^2 и т.д.

 В памяти компьютера вещественные числа хранятся в нормализованной форме с плавающей точкой (стандарт IEEE 754):

где **m** - мантисса (дробная часть) числа, а **p** - порядок.

причем, **1** (целая часть числа) не записывается, но подразумевается, а порядок **р** хранится в смещенном формате

Диапазоны представления чисел в двоичной системе счисления

- > Целые числа
 - при хранении без знака:
 - у обеспечивается диапазон значений от 0 до 2ⁿ − 1
 - при хранении со знаком:
 - у обеспечивается диапазон значений от -2ⁿ⁻¹ до 2ⁿ⁻¹ 1
- Числа с плавающей точкой имеют два формата:
 - при хранении с одинарной точностью (32 бита)
 - у обеспечивается диапазон значений от 10⁻³² до 10⁺³²
 - обеспечивается точность <u>6</u> верных десятичных цифр
 - при хранении с удвоенной точностью (64 бита)
 - у обеспечивается диапазон значений от 10⁻³08 до 10⁺³08
 - обеспечивается точность <u>15</u> верных десятичных цифр

Понятие типа данных

Тип данных определяет:

- объем блока памяти, выделяемый для хранения значений:
 - 1 байт для символьного типа
 - 4 байта для целого типа
- структурную организацию этого блока памяти:
 - наличие или отсутствие знакового разряда для целого типа
 - наличие знакового разряда, размеры полей порядка и мантиссы для плавающего типа
- диапазон возможных значений:
 - от 0 до 255 (от 00 до FF) для символьного типа
 - от -2ⁿ⁻¹ до 2ⁿ⁻¹-1 для целого типа
- набор возможных операций, применяемых к этим значениям:
 - для значений плавающего типа не определена операция вычисления остатка от деления
 - к значениям логического типа применяются операции отрицания, конъюнкции, дизъюнкции

Понятие типа данных (продолжение)

В различных языках программирования реализованы те или иные из перечисленных ниже типов:

- простые (скалярные) типы:
 - логический
 - СИМВОЛЬНЫЙ
 - у целый
 - с плавающей точкой
 - строковый
 - перечислимый
 - ссылочный (указатель)
- составные (структурные) типы:
 - массивы
 - записи (структуры)
 - множества
 - СПИСКИ
- другие типы, определяемые программистом

Понятие типа данных (продолжение)

- Преимуществом использования типов данных является надёжность.
- Типы данных защищают от трёх видов ошибок:
 - Некорректное присваивание.
 - Попытка присвоить числовой переменной строковое или другое недопустимое значение приведет к ошибке при контроле типов и позволит избежать многих трудностей.
 - Некорректная операция.
 - Контроль типов позволяет избежать попыток применения выражений вида «Hello world» + 1. Поскольку переменные в памяти хранятся как наборы битов, то при отсутствии контроля подобная операция была возможна и могла бы дать результат вроде «Hello worle».
 - Некорректная передача параметров в функцию.
 - Если функция «квадратный корень» ожидает, что ей будет передан числовой аргумент, то передача ей в качестве параметра строки «Hello world» (без контроля типов) может иметь непредсказуемые последствия.

Итоги

- В этом модуле Вы изучили:
 - Логический тип данных и основы булевой алгебры
 - Системы счисления, применяемые в программировании, и связи между ними
 - Принцип программного управления и базовую архитектуру компьютера:
 - Представление целых и вещественных чисел в памяти компьютера и особенности операций над ними
 - Понятие типа данных и его роль в языках программирования

В.Г.Тетерин – Microsoft Solution Developer (Visual C++)

teterin@specialist.ru

Вопросы?

Приложение

Приложение 1. Основы булевой алгебры

.

- Предметом Булевой алгебры являются высказывания
- **>** Высказывания это утверждения, которые можно оценить, т.е. определить их **истинность** или **ложность**.
- Высказывания обозначаются буквами латинского алфавита:
- » a, b, c,...
- Над ними определены операции:
 - Отрицание:
 - Сложение (дизъюнкция): a+b
 - Умножение (конъюнкция): a*b

Вычисление формально-логических выражений

$$F=a*b+\overline{b}$$

a	b	b	a*b	a*b+b	
0	0	1	0	1	
0	1	0	0	0	
1	0	1	0	1	
1	1	0	1	1	

Задача про високосный год

- **Високосный год** год, продолжительность которого равна 366 дням.
- **»** Високосным годом является каждый год, кратный 4, **кроме** годов кратных ста, но не кратных 400.
- Например:
- 1980, 1984, 1988, 1992, 1996 (2000) високосные.
- 1871, 1889, 1894 1900 невисокосные.

Определение високосного года через логическую формулу Обозначения:

Высказывание **a** = «год делится на 4"

Высказывание **b** = «год делится на 100"

Высказывание C = «год делится на 400»

$$V=a * \overline{b}+c$$

Год	а	b	С	b	a*b	a*b+c
2012	1	0	0	1	1	1
2011	0	0	0	1	0	0
2000						
1900						

В языках программирования к значениям логического типа чаще всего применяют следующие операции:

>	эквивалентность	(равенство)	EQV, =, ==
>	отрицание	(инверсия)	NOT, ~, !
>	конъюнкция	(И , логическое умножение)	AND, &, *
>	дизъюнкция	(ИЛИ , логическое сложение	e) OR, , +
>	исключающее ИЛИ	(сложение по модулю 2)	NEQV, XOR, ^

> Также существуют и другие операции булевой алгебры

Таблица истинности унарных операций

Х	false	EQ	NOT	true	
0	0	0	1	1	
1	0	1	0	1	

Таблица истинности бинарных операций

X	У	false	AND					XOR	OR		true
0	0	0	0	0	0	0	0	0	0	1	 1
0	1	0	0	0	0	1	1	1	1	0	 1
1	0	0	0	1	1	0	0	1	1	0	 1
1	1	0	1	0	1	0	1	0	1	0	 1

Приложение 2. Системы счисления. Связи между системами счисления

Определение:

b-ичная система счисления определяется натуральным числом *b* > 1, называемым *основанием системы счисления*.

Для представления числа x в b-ичной системе счисления его представляют в виде линейной комбинации степеней числа b:

$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_2 b^2 + a_1 b^1 + a_0 b^0$$

где каждая b-ичная цифра удовлетворяет условию $0 \le \mathbf{a_k} < \mathbf{b}$.

Перевод произвольной позиционной системы счисления в десятичную:

Если число в *b*-ичной системе счисления имеет запись

$$a_n a_{n-1} a_{n-2} ... a_2 a_1 a_0$$

то для перевода в десятичную систему вычисляем такую сумму:

$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_2 b^2 + a_1 b^1 + a_0 b^0$$

Пример:

$$101100_{2} = 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 0 \cdot 2^{0}$$

$$= 1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 0 \cdot 1$$

$$= 32 + 8 + 4$$

$$= 44_{10}$$

Перевод из десятичной в произвольную позиционную систему счисления:

Для перевода необходимо делить с остатком искомое число на основание системы счисления до тех пор, пока частное больше нуля, и записать цифры всех остатков в обратном порядке.

» Пример:

- 44₁₀ переведём в двоичную систему:
- 44 делим на 2. частное 22, остаток 0
- 22 делим на 2. частное 11, остаток 0
- 11 делим на 2. частное 5, остаток 1
- 5 делим на 2. частное 2, остаток 1
- 2 делим на 2. частное 1, остаток 0
- 1 делим на 2. частное 0, остаток 1
- Теперь, записав цифры всех остатков в обратном порядке, получим число 101100₂

Приложение 3. Представление символьной информации. Кодовые таблицы

- Однобайтные таблицы (ASCII, ANSI, KOI-8R)
 - для представления символов используются 8-битные числовые коды
 - кодовая таблица позволяет закодировать 256 различных символов
- Двухбайтная таблица (UNICODE)
 - для представления символов используются 16-битные числовые коды
 - кодовая таблица позволяет закодировать 65536 различных символов

Приложение 4. Единицы измерения ёмкости запоминающих устройств

- 1 бит = двоичная цифра /логическое значение
- ▶ 8 бит = 1 байт = символ (ASCII)
- ▶ 1 Кб = 1024 б = 2¹⁰ байт килобайт
- № 1 Мб = 1024 Кб = 2²⁰ байт мегабайт
- ▶ 1 Гб = 1024 Мб = 2³⁰ байт гигабайт
- ▶ 1 Тб = 1024 Гб = 2⁴⁰ байт терабайт
- 1 Пб = 1024 Тб = 2⁵⁰ байт петабайт
- 1 Эб = 1024 Пб = 2⁶⁰ байт эксабайт

