A Convergence Proof Details

A.1 Proof of Theorem 1: Joint Gradient Decay

PROOF. **Step 1: unbiased gradient decomposition.** Lemma 1 yields $G_{i+1} = G_i - \eta_g(i) \left(\sum_f w_f \widehat{\nabla L_l}(G_i; f) + \Delta_i \right)$ with $\mathbb{E}[\Delta_i] = 0$ and $\mathbb{E}||\Delta_i||^2 \le |F|\delta^2$, so the total variance is $\Sigma^2 = \sigma^2 + |F|\delta^2$.

Step 2: smoothness descent inequality. Because $\alpha_i \in [0, 1]$, the composite loss $J_i = \alpha_i L_q + (1 - \alpha_i) \bar{L}_l$ is κL -smooth, giving

$$\mathbb{E}[J_{i+1}] \le \mathbb{E}[J_i] - \eta_q(i) \, \mathbb{E} \|\nabla J_i\|^2 + \frac{\kappa L}{2} \, \eta_q^2(i) \Sigma^2. \tag{21}$$

Step 3: telescoping sum. Summing the above inequality from i = 0 to T - 1 gives

$$\sum_{i=0}^{T-1} \eta_g(i) \, \mathbb{E} \|\nabla J_i\|^2 \le J_0 - J_T + \frac{\kappa L \Sigma^2}{2} \sum_{i=0}^{T-1} \eta_g^2(i) = O(1), \qquad (22)$$

since $\sum_{i=0}^{T-1} \eta_g^2(i) = O(1)$. Using the step size form $\eta_g(i) \approx 1/i$, we can see that the constant level on the right-hand side is bounded.

Step 4: extracting the minimum. With $\eta_g(i) \approx 1/i$, Inequality. (17) follows immediately by dividing both sides by $\sum_{i=0}^{T-1} \eta_g(i)$ and taking the minimum. The bounded increment $|\alpha_{i+1} - \alpha_i|$ (Oscillation of α_i) only affects the constant κ and does not change the $T^{-1/2}$ convergence order.

A.2 Proof of Corollary 1: Stability of the Joint Objective

PROOF. **Step 1: one-step descent.** κL -smoothness together with the unbiased gradient of Lemma 1 yields

$$J_{i+1} \le J_i - \eta_g(i) \|\nabla J_i\|^2 + \frac{\kappa L}{2} \eta_g^2(i) \Sigma^2.$$
 (23)

Step 2: monotonicity. Because $\sum_i \eta_g^2(i) < \infty$, there exists i_0 such that

$$\frac{\kappa L}{2} \eta_g(i) \Sigma^2 \le \frac{1}{2} \|\nabla J_i\|^2, \tag{24}$$

for all $i \ge i_0$. Plugging this into Eq.23 gives $J_{i+1} \le J_i$ for $i \ge i_0$, hence $\{J_i\}$ is eventually non-increasing.

Step 3: lower boundedness. Each loss term is non-negative (or contains a non-negative ℓ_2 regularizer), so $J_i \geq 0$.

Step 4: convergence and stability. A monotone, lower-bounded sequence converges; denote its limit by J_{∞} . Taking limits in Eq.23 gives $\lim_{i\to\infty} |J_{i+1}-J_i|=0$, i.e. the objective stabilizes.

A.3 Proof of Theorem 2: Personalization Error Bound

PROOF. **Step 1: from single-channel to network drift.** Summing Lemma 2 over all BN channels yields

$$\|\text{shift}_{\text{net}}\| \le \frac{\|\Delta \mu_t\|}{\|\sigma\|} + \frac{\|\Delta \sigma_t^2\|}{\|\sigma^2\|} = d_t.$$
 (25)

Step 2: from drift to error increment. Assume the logit mapping is L_f -Lipschitz; then $\|\Delta \log_{t} t\| \le L_f d_t$. If the logit margin satisfies $\Pr(M \ge m_0) \ge 1 - \rho$, Chebyshev gives $\Delta \operatorname{Err}_t \le (L_f/m_0) d_t = c d_t$. **Step 3: weighting by** $(1 - \alpha_t)$. Only the personalised part of the loss is affected:

$$\operatorname{Err}_{t}^{\text{JobFed}} \leq \operatorname{Err}_{t}^{\text{Oracle}} + (1 - \alpha_{t})c d_{t}.$$
 (26)

Step 4: bounding via a,b. Since $1 - \alpha_t \le 1 - b$ and $\alpha_t \ge a$, $(1 - \alpha_t)c\ d_t \le \frac{1-b}{a}\ d_t = \varepsilon_t$. As $\|\Delta\mu_t\|$, $\|\Delta\sigma_t^2\| \to 0$ during training (Theorem 1), we have $d_t \to 0$ and hence $\varepsilon_t \to 0$.