Concept learning

1400/08/29

Concept learning

FIND-S

FIND-S :: Find Maximally Specific Hypothesis

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x
 - For each attribute constraint a_i in h
 - If the constraint a_i in h is satisfied by x
 - Then do nothing
 - Else replace a_i in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis h

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

$$h_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset \rangle$$

 $h_1 = \langle green, soft, no, wrinkled \rangle$

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

h₂ = < green, soft, no, wrinkled >

$$h_3 = ,?, no,?$$

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

$$h_4 = ,?, no,?$$

$$h_5 = \langle ?, ?, ?, ? \rangle$$

he key idea in the CANDIDATE-ELIMINAION algorithm, is to output a description of the set of all hypotheses consistent with the training examples.

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

$$S_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset \rangle$$

$$G_0 = \langle ?, ?, ?, ? \rangle$$

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

 $S_1 = \langle \text{green, soft, no, wrinkled} \rangle$

$$G_1 = \langle ?, ?, ?, ? \rangle$$

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

 $S_2 = \langle \text{green, soft, no, wrinkled} \rangle$

$$G_2 = \langle ?, ?, no, ? \rangle \langle ?, ?, wrinkled \rangle$$

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

$$S_3 = \langle ?, ?, no, ? \rangle$$

$$G_3 = \langle ?, ?, no, ? \rangle$$

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

$$S_4 = \langle ?, ?, no, ? \rangle$$

$$G_4 = \langle ?, ?, ?, ? \rangle$$

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

$$S_5 = \langle ?, ?, ?, ? \rangle$$

$$G_5 = \langle ?, ?, ?, ? \rangle$$

Example	Color	Toughness	Fungus	Appearance	Poisonous
1	Green	Soft	No	Wrinkled	Yes
2	Green	Soft	Yes	Smooth	No
3	Brown	Hard	No	Smooth	Yes
4	Green	Soft	Yes	Smooth	No
5	Orange	Soft	Yes	Wrinkled	Yes

Example	Size	Color	Shape	Class/Label
1	big	red	circle	No
2	small	red	triangle	No
3	small	red	circle	Yes
4	big	blue	circle	No
5	small	blue	circle	Yes

$$S_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset \rangle$$

$$G_0 = \langle ?, ?, ?, ? \rangle$$

Example	Size	Color	Shape	Class/Label
1	big	red	circle	No
2	small	red	triangle	No
3	small	red	circle	Yes
4	big	blue	circle	No
5	small	blue	circle	Yes

$$S_1 = \langle \emptyset, \emptyset, \emptyset \rangle$$

 $G_1 = < small, ?, ?>$

< ?, blue, ? > < ?, ?, triangle >

Amir Shokri

Example	Size	Color	Shape	Class/Label
1	big	red	circle	No
2	small	red	triangle	No
3	small	red	circle	Yes
4	big	blue	circle	No
5	small	blue	circle	Yes

$$S_2 = \langle \emptyset, \emptyset, \emptyset \rangle$$

Example	Size	Color	Shape	Class/Label
1	big	red	circle	No
2	small	red	triangle	No
3	small	red	circle	Yes
4	big	blue	circle	No
5	small	blue	circle	Yes

$$S_3 = < \text{small}, \text{ red, circle} >$$

Example	Size	Color	Shape	Class/Label
1	big	red	circle	No
2	small	red	triangle	No
3	small	red	circle	Yes
4	big	blue	circle	No
5	small	blue	circle	Yes

$$S_4 = < \text{small}, \text{ red, circle} >$$

Example	Size	Color	Shape	Class/Label
1	big	red	circle	No
2	small	red	triangle	No
3	small	red	circle	Yes
4	big	blue	circle	No
5	small	blue	circle	Yes

$$S_5 = < small, ?, circle >$$

References

https://stackoverflow.com/questions/22625765/candidate-elimination-algorithm/22637185