東工大院試

un cinglé

2024年6月15日

概要

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/innsi.htmlを見よ.

目次

1	午前		2
1.1			
1.2	2013 年度	 	3
1.3			
1.4			
1.5	2016 年度	 	9
1.6	2017 年度	 	11
1.7			
1.8			
1.9	2020 年度	 	15
1.1	0 2021 年度	 	15
1.1			
1.1	2 2023 年度	 	16
1.1	3 2024 年度	 	16

1 午前

1.1 2012 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H24innsi.pdf

を見よ.

[1]

簡単すぎるため省略.

[2]

(1) a>0 を任意に固定する (今は a=1 でよい). $n\in\mathbb{N}_0$ に対して x_n を, [an,a(n+1)] における f の最小化元とする. すなわち

$$an \le x_n \le a(n+1)$$
 and $f(x_n) = \min_{[an,a(n+1)]} f$

となる $(x_n)_{n\in\mathbb{N}_0}$ を取る. 今

$$\sum_{n=0}^{\infty} \int_{an}^{a(n+1)} f(x) dx = \int_{0}^{\infty} f(x) dx < \infty$$

なので, とくに

$$f(x_n) \le \frac{1}{a} \int_{an}^{a(n+1)} f(x) dx \to 0 \quad (as \ n \to \infty)$$

であるから $f(x_n) \to 0 \ (n \to \infty)$ となる. $x_n \to \infty \ (n \to \infty)$ であることはよい.

- $f(x) = x/(1 + x^6 \sin^2 x)$ は(*) を満たすが有界ですらない.
- (3) $\varepsilon>0$ を任意に取る. f は一様連続であるから, $\delta>0$ があり,任意の $x,y\in[0,\infty)$ に対して次が成り立つ:

$$|x - y| \le \delta \Longrightarrow |f(x) - f(y)| < \varepsilon/2$$

ここで,(1) の解答において $a=\delta$ としたときの $\{x_n\}_{n\in\mathbb{N}_0}$ を取る. $f(x_n)\to 0$ $(n\to\infty)$ であるから,十分大きな $N\in\mathbb{N}$ があり,任意の $n\geq N$ に対して $f(x_n)<\varepsilon/2$ となる.したがって,任意の $x\geq N\delta$ に対して $n=\lfloor x/\delta\rfloor$ を x/δ の整数部分とすると

$$f(x) \le f(x_n) + |f(x) - f(x_n)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

を得る $(x \in [\delta n, \delta(n+1)]$ より $|x-x_n| \le \delta$ に注意せよ).

[3]

(1) \emptyset , $X \in \mathcal{O}$ であることはよい.

 $A,B \in \mathcal{O}$ だとする. もし $A \subset \mathbb{N}$ または $B \subset \mathbb{N}$ ならば $A \cap B \subset \mathbb{N}$ より $A \cap B \in \mathcal{O}$ である. 一方, もし X - A と X - B が \mathbb{N} の有限部分集合ならば, $X - (A \cap B) = (X - A) \cup (X - B)$ もそうである. よって $A \cap B \in \mathcal{O}$. 以上よりいずれの場合も $A \cap B \in \mathcal{O}$ は成り立つ.

 $\{A_{\lambda}\}_{\lambda\in\Lambda}$ を $\mathcal O$ の元の族とする。もし任意の $\lambda\in\Lambda$ に対して $A_{\lambda}\subset\mathbb N$ ならば, $\bigcup_{\lambda\in\Lambda}A_{\lambda}\subset\mathbb N$ より $\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\mathcal O$ である。一方,ある $\lambda_0\in\Lambda$ について $X-A_{\lambda_0}$ が $\mathbb N$ の有限部分集合ならば, $X-\bigcup_{\lambda\in\Lambda}A_{\lambda}\subset X-A_{\lambda_0}$ もそうである。よってこの場合も $\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\mathcal O$ が示された.

(2) $x,y \in X$ を相異なる元とする.このとき最初から x < y と仮定してもよい.もし 0 = x < y ならば $A = X - \{y\},\ B = \{y\}$ が x と y を分離する開集合たちである.もし 0 < x < y ならば $A = \{x\},\ B = \{y\}$ でよい.

次に $C,D\subset X$ は閉集合で $C\cap D=\emptyset$ だとする.このとき, $C\subset\{0\}$ であるか,C は $\mathbb N$ の有限部分集合である.D についても同様である.もし $C\subset\{0\}$ ならば, $D\subset\mathbb N$ かつ D は有限集合だとしてよい.このときは $A=X-D,\ B=D$ が C,D を分離する.一方,もし $C,D\subset\mathbb N$ らが有限部分集合ならば, $A=C,\ B=D$ とおけばよい.

- (3) 答えははい. $\{A_{\lambda}\}_{\lambda\in\Lambda}$ を X の開被覆だとせよ. このとき $\lambda_0\in\Lambda$ で $0\in A_{\lambda_0}$ となるものが存在する. ここで $X-A_{\lambda_0}$ は $\mathbb N$ の有限部分集合であることに注意する. 各 $x\in X-A_{\lambda_0}$ に対して $\lambda_x\in\Lambda$ があり $x\in A_{\lambda_x}$ となるので,これら $\{A_{\lambda_x}\}_{x\in\{0\}\cup(X-A_{\lambda_0})}$ が有限部分開被覆を与える.
- (4) 丁寧な誘導をありがとう。 $f\colon X\to Y$ を f(0)=0, f(n)=1/n $(n\in\mathbb{N})$ により定める。f は連続であることを示すが,それには \mathbb{R} の開区間 I=(a,b) について $f^{-1}(I\cap Y)\in\mathcal{O}$ であることを示せばよい。もし 0< a< b ならば $f^{-1}(I\cap Y)=\{n\in\mathbb{N}\mid 1/b< n<1/a\}\in\mathcal{O}$ である.一方, $a\leq 0< b$ ならば $f^{-1}(I\cap Y)=\{0\}\cup\{n\in\mathbb{N}\mid n>1/b\}\in\mathcal{O}$ となる.

f はコンパクト空間から Hausdorff 空間への連続全単射であるから同相である.

1.2 2013 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H25innsi.pdfを見よ.

[1]

答えは $\pi^2/8a$. 極座標に変換する. つまり

 $x = r \sin \theta \cos \varphi, \quad y = r \sin \theta \cos \varphi, \quad z = r \cos \theta; \quad (r, \theta, \varphi) \in [0, \infty) \times [0, \pi/2] \times [0, \pi/2]$

とおく. すると

$$\iiint_{D} \frac{dx dy dz}{(a^{2} + x^{2} + y^{2} + z^{2})^{2}} = \int_{0}^{\infty} dr \int_{0}^{\pi/2} d\theta \int_{0}^{\pi/2} d\varphi \frac{r^{2} \sin \theta}{(a^{2} + r^{2})^{2}}$$

$$= \frac{\pi}{2} \int_{0}^{\infty} \frac{r^{2}}{(a^{2} + r^{2})^{2}} dr$$

$$= \frac{\pi}{2} \int_{0}^{\pi/2} \frac{a^{2} \tan^{2} x}{a^{4} (1 + \tan^{2} x)^{2}} \frac{a}{\cos^{2} x} dx \qquad (\text{put } r = a \tan x)$$

$$= \frac{\pi}{2a} \int_{0}^{\pi/2} \sin^{2} x dx$$

$$= \frac{\pi}{2a} \left[\frac{x}{2} - \frac{\sin 2x}{4} \right]_{0}^{\pi/2}$$

$$= \frac{\pi^{2}}{8a}$$

と計算される.

[2]

(1)

$$\min_{I} f \le \mu_1 := \frac{1}{2a} \int_{-a}^{a} f(x) \, dx \le \max_{I} f$$

であるから、中間値の定理より $f(b) = \mu_1$ となる $b \in I$ が存在する.

(2)

$$\min_{I} f = \left(\frac{3}{2a^3} \min_{I} f\right) \int_{-a}^{a} x^2 \, dx \le \mu_2 \coloneqq \frac{3}{2a^3} \int_{-a}^{a} x^2 f(x) \, dx \le \left(\frac{3}{2a^3} \max_{I} f\right) \int_{-a}^{a} x^2 \, dx = \max_{I} f$$
 であるから、以下同文.

$$\mu_3 := \frac{3}{2a^3} \int_{-a}^a x f(x) \, dx$$

$$= \frac{3(f(a) - f(-a))}{4a} - \frac{3}{4a^3} \int_{-a}^a x^2 f'(x) \, dx$$

$$= \frac{3}{4a} \int_{-a}^a f'(x) \, dx - \frac{3}{4a^3} \int_{-a}^a x^2 f'(x) \, dx$$

$$= \frac{3}{4a^3} \int_{-a}^a (a^2 - x^2) f'(x) \, dx$$

であり、したがって

$$\min_{I} f' = \left(\min_{I} f'\right) \frac{3}{4a^3} \int_{-a}^{a} (a^2 - x^2) \, dx \le \mu_3 \le \left(\max_{I} f'\right) \frac{3}{4a^3} \int_{-a}^{a} (a^2 - x^2) \, dx = \max_{I} f'$$

であるから,以下同文.

[3]

- (1) $(\varphi(\mathbf{0}), \varphi(\mathbf{0})) = (\mathbf{0}, \mathbf{0}) = 0$ より $\varphi(\mathbf{0}) = \mathbf{0}$ を得る.
- (2) $x, y \in \mathbb{R}^n$, $a, b \in \mathbb{R}$ とする. このとき $\varphi(ax + by) = a\varphi(x) + b\varphi(y)$ を示せばよいが、内積の双線形性を用いて分解し、さらにわちゃわちゃすると

$$(\varphi(a\boldsymbol{x} + b\boldsymbol{y}) - a\varphi(\boldsymbol{x}) - b\varphi(\boldsymbol{y}), \varphi(a\boldsymbol{x} + b\boldsymbol{y}) - a\varphi(\boldsymbol{x}) - b\varphi(\boldsymbol{y}))$$

$$= (\varphi(a\boldsymbol{x} + b\boldsymbol{y}), \varphi(a\boldsymbol{x} + b\boldsymbol{y})) - a(\varphi(a\boldsymbol{x} + b\boldsymbol{y}), \varphi(\boldsymbol{x})) - b(\varphi(a\boldsymbol{x} + b\boldsymbol{y}), \varphi(\boldsymbol{y}))$$

$$- a(\varphi(\boldsymbol{x}), \varphi(a\boldsymbol{x} + b\boldsymbol{y})) + a^{2}(\varphi(\boldsymbol{x}), \varphi(\boldsymbol{x})) + ab(\varphi(\boldsymbol{x}), \varphi(\boldsymbol{y}))$$

$$- b(\varphi(\boldsymbol{y}), \varphi(a\boldsymbol{x} + b\boldsymbol{y})) + ab(\varphi(\boldsymbol{y}), \varphi(\boldsymbol{x})) + b^{2}(\varphi(\boldsymbol{y}), \varphi(\boldsymbol{y}))$$

$$= (a\boldsymbol{x} + b\boldsymbol{y}, a\boldsymbol{x} + b\boldsymbol{y}) - a(a\boldsymbol{x} + b\boldsymbol{y}, \boldsymbol{x}) - b(a\boldsymbol{x} + b\boldsymbol{y}, \boldsymbol{y})$$

$$- a(\boldsymbol{x}, a\boldsymbol{x} + b\boldsymbol{y}) + a^{2}(\boldsymbol{x}, \boldsymbol{x}) + ab(\boldsymbol{x}, \boldsymbol{y})$$

$$- b(\boldsymbol{y}, a\boldsymbol{x} + b\boldsymbol{y}) + ab(\boldsymbol{y}, \boldsymbol{x}) + b^{2}(\boldsymbol{y}, \boldsymbol{y})$$

$$= 0$$

となることから従う.

(3) e_1, \ldots, e_n を \mathbb{R}^n の標準基底とする. $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ は線形写像だから行列 $A = \begin{bmatrix} \varphi(e_1) & \cdots & \varphi(e_n) \end{bmatrix}$ により $\varphi(x) = Ax$ と表される. 仮定より $\varphi(e_1), \ldots, \varphi(e_n)$ は \mathbb{R}^n の正規直交系を与えており,したがって A は直交行列である.

[4]

- (1) 略.
- (2) 行列 $\begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \end{bmatrix}$ を基本変形してなんやかんややると $X+Y;\ X\cap Y$ の基底としてそれぞれ $\mathbf{a},\mathbf{b},\mathbf{c};\ \mathbf{a}-\mathbf{b}$ が取れることがわかる.

[5]

- (1)(X,d)は、n=1のとき不連結、 $n \ge 2$ のとき連結.
- (2) (X,d) の有界閉集合 $B = \{ p \in X \mid |p| \le 1 \}$ はコンパクトではない. 実際,

$$B_n = \{ p \in X \mid 1/n < |p| \}$$

で定まる A の開被覆 $\left\{B_n\right\}_{n\in\mathbb{N}}$ は、有限部分被覆を持たない.

(3) はい. X は完備距離空間 $\mathbb{R} \times S^{n-1}$ に同相である. ここで S^{n-1} は \mathbb{R}^n 内の単位 (n-1)-球面. 実際に

$$X \ni \boldsymbol{p} \mapsto (\log |p|, p/|p|) \in \mathbb{R} \times S^{n-1}$$

が同相写像である.

■余談 ある完備距離空間と同相となるような位相空間をポーランド空間という。例えば、ポーランド空間の G_{δ} 集合はポーランド空間であることが知られている。とくに無理数全体の集合に $\mathbb R$ の相対位相を入れるとポーランド空間になる。

1.3 2014 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H26innsi.pdfを見よ.

[1]

答えは π/12. 円柱座標

$$x = r\cos\theta$$
, $y = r\sin\theta$, $\zeta = z$; $(r, \theta, \zeta) \in [0, \infty) \times [0, \pi/2] \times [0, \infty)$

を用いよ.

[2]

(1) 答えは
$$p \le 3$$
 で、 $p < 3$ のとき $f(x) = 0$; $p = 3$ のとき $f(x) = \begin{cases} 0 & \text{(if } x = 0) \\ x^{-2} & \text{(if } 0 < x \le 1) \end{cases}$ である.

(2) 答えは p < 1. p = 3 のときは明らかに f_n は一様収束しない (連続関数の一様収束極限が連続であることを思い出せばよい). そこで p < 3 だとしよう.

$$f'_n(x) = \frac{n^p(1 - 2n^3x^3)}{(1 + n^3x^3)^2}$$

であり、増減を考えると $f_n(x)$ は $x=2^{-1/3}n^{-1}$ で最大値をとることがわかる. よって

$$\sup_{[0,1]} |f_n| = f_n(2^{-1/3}n^{-1}) = \frac{2^{2/3} \cdot n^{p-1}}{3}$$

である. よって f_n が一様に f=0 に収束するのは p<1 のときに限る.

(3) 答えは $p \le 2$. 変数変換 y = nx により

$$\int_0^1 f_n(x) \, dx = n^{p-2} \int_0^n \frac{y}{1+y^3} \, dy$$

だが,

$$I_n := \int_0^n \frac{y}{1+y^3} \, dy \le \int_0^1 y \, dy + \int_1^n \frac{1}{y^2} \, dy \le \frac{3}{2} - \frac{1}{n} \le \frac{3}{2} < \infty$$

は収束するので $n^{p-2}I_n$ は $p \le 2$ のときに限って収束する.

[3]

(1) 例えば

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- $(2) (a+d)^2$.
- (3) 16.

[4]

(1) F はスケール不変である. つまり F(kx)=F(x) ($\forall k\in\mathbb{R}\setminus\{0\},\ x\in\mathbb{R}^3\setminus\{\mathbf{0}\}$). とくに F(x)=F(x/|x|).

- (2) F の連続性より,F の S^2 への制限は最大値・最小値を持つが,(1) よりこれらは $\mathbb{R}^3\setminus\{\mathbf{0}\}$ 全域における F の最大値・最小値を与える.
- (3) 仮定より a と b は一次独立. よって $\det P = \det \begin{bmatrix} a & b & a \times b \end{bmatrix} = |a \times b|^2 \neq 0$ なので P は正則である. さて、a,b が A の固有ベクトルであることを示そう. a,b はそれぞれ、拘束条件 $|x|^2 = 1$ のもとでの

$$\langle A\boldsymbol{x}, \boldsymbol{x} \rangle = \sum_{i,j} a_{ij} x_i x_j$$

の最大化・最小化元である。 ここで $A=(a_{ij})_{i,j},\ \boldsymbol{x}={}^t(x_1,x_2,x_3)$ とおいた。Lagrange の未定乗数法より, $\boldsymbol{x}=\boldsymbol{a},\boldsymbol{b}$ に対して

$$\sum_{j} a_{ij} x_j - 2\lambda x_i = 0 \quad \text{(for } i = 1, 2, 3\text{)}$$

が成り立つ.ここで λ は未定定数を表す.これは a,b が A の固有ベクトルであることを示している.最後に c が A の固有ベクトルであることを示す.A は対称行列であり,a は A の固有ベクトルなので固有値を λ として

$$\langle A\boldsymbol{c}, \boldsymbol{a} \rangle = \langle \boldsymbol{c}, A\boldsymbol{a} \rangle = \lambda \langle \boldsymbol{c}, \boldsymbol{a} \rangle = 0$$

が成り立つ. 同様に $\langle Ac,b\rangle=0$ が成り立つので、Ac は a,b に直交するベクトルである. よって Ac は $a\times b=c$ の定数倍になるしかない.

以上より a,b,c が A の固有ベクトルからなる \mathbb{R}^3 の基底をなすことが示された.

[5]

- (1) はい. $a,b \in \mathbb{R},\ a \neq b$ とする.最初から a < b としてよい.このとき [a,b) と [b,b+1) は a と b を分離する開集合である.
- (2) いいえ. $U:=(-\infty,0)=\bigcup_{n\geq 0}[-n,0)\in\mathcal{O}$ および $V:=[0,\infty)=\bigcup_{n\geq 0}[0,n)\in\mathcal{O}$ は空でなく, $U\cup V=\mathbb{R},\ U\cap V=\emptyset$.
 - (3) いいえ. $[0,1] = \bigcup_{n \in \mathbb{N}} [0,1-1/2n) \cup [1,2)$ は有限部分被覆を持たない.

1.4 2015 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H27innsi.pdfを見よ.

[1]

(1) 答えは $\alpha < -1$. 極座標に変換すると

$$2\pi \int_0^\infty (1+r^2)^\alpha r \, dr$$

の収束・発散を見ればよい.

(2) $M=\sup_n |a_n|<\infty$ とおく、 $\varepsilon>0$ とせよ、 $\lim_n a_n=a$ より、十分大きい $N\in\mathbb{N}$ があり、任意の n>N に対して $|a-a_n|<\varepsilon$ が成り立つ、よって n>N ならば

$$\left| a - \frac{a_1 + \dots + a_n}{n} \right| \le \frac{|a - a_1| + \dots + |a - a_n|}{n} \le \frac{N(|a| + M)}{n} + \frac{(n - N)\varepsilon}{n}$$

よって

$$\lim\sup_{n}\left|a-\frac{a_1+\cdots+a_n}{n}\right| \leq \lim\sup_{n}\left(\frac{N(|a|+M)}{n}+\frac{(n-N)\varepsilon}{n}\right) = \varepsilon$$

となる. $\varepsilon > 0$ は任意なので $\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = a$ を得る.

[2]

(1) 1>0 に対して M>0 があり、任意の $|x|\geq M$ に対して $|f(x)|\leq 1$ となる.よって

$$\sup_{\mathbb{R}} |f| \le 1 + \sup_{[-M,M]} |f| < \infty$$

である.

(2) $\varepsilon>0$ とせよ.仮定より,M>0 があり,任意の $|x|\geq M$ に対して $|f(x)|\leq \varepsilon/3$ となる.f は有界閉区間 [-M,M] 上一様連続であるから, $0<\delta<1$ があり,任意の $x,y\in [-M,M]$ に対して

$$|x - y| \le \delta \Longrightarrow |f(x) - f(y)| \le \varepsilon/3$$

が成り立つ. $x, y \in \mathbb{R}$ が $|x - y| \le \delta$ を満たすと仮定しよう.

- $x, y \in [-M, M]$ ならば $|f(x) f(y)| \le \varepsilon/2$ である.
- $x,y \notin [-M,M]$ $\text{tbid} |f(x)-f(y)| \leq |f(x)|+|f(y)| \leq \varepsilon \text{ tbd}$.
- x > M かつ $y \in [-M, M]$ ならば, $|y M| \le |x y| \le \delta$ より $|f(x) f(y)| \le |f(x)| + |f(M)| + |f(M) f(y)| \le \varepsilon$ である.同様に $|x| \ge M$ もしくは $|y| \ge M$ の場合が示せる.
- (3) $M = \sup_{\mathbb{R}} |f|$ とおく. z = ny と変数変換して

$$f_n(x) = \int_{-\infty}^{\infty} f(x + z/n)g(z) dz$$

となる.

$$|f(x) - f_n(x)| \le \int_{-\infty}^{\infty} |f(x) - f(x + z/n)|g(z) dz$$

である. さて, $\varepsilon > 0$ とせよ. f は一様連続なので, $\delta > 0$ があり, 任意の $x, y \in \mathbb{R}$ に対して

$$|x - y| \le \delta \Longrightarrow |f(x) - f(y)| \le \varepsilon$$

となる. よって $x \in \mathbb{R}$ に対して

$$|f(x) - f_n(x)| \le \int_{|z| \le n\delta} |f(x) - f(x + z/n)| g(z) \, dz + \int_{|z| \ge n\delta} |f(x) - f(x + z/n)| g(z) \, dz$$

$$\le \varepsilon \int_{\mathbb{R}} g(z) \, dz + 2M \int_{|z| \ge n\delta} g(z) \, dz$$

$$\le \varepsilon + \int_{|z| \ge n\delta} g(z) \, dz$$

だが、今 $\int_{|z|>n\delta} g\,dz \to \infty \ (n\to\infty)$ より

$$\limsup_{n} \sup_{x \in \mathbb{R}} |f(x) - f_n(x)| \le \varepsilon$$

となる. $\varepsilon>0$ は任意なので $\sup_{x\in\mathbb{R}}|f(x)-f_n(x)|\to 0\ (n\to\infty)$ を得る.

[3]

固有多項式は $(\lambda - a - b)^2(\lambda - a + b)(\lambda + a - b)$. 固有値 λ に対する固有空間を V_{λ} と書くことにすると,

$$V_{2a} = \left\langle \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\rangle, \quad V_{0} = \left\langle \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix} \right\rangle \quad (\text{if } a = b)$$

$$V_{a+b} = \left\langle \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\rangle, \quad V_{a-b} = \left\langle \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix} \right\rangle, \quad V_{-a+b} \left\langle \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix} \right\rangle \quad (\text{if } a \neq b)$$

最小多項式は

$$(\lambda - 2a)\lambda$$
 (if $a = b$); $(\lambda - a - b)(\lambda - a + b)(\lambda + a - b)$ (if $a \neq b$)

[4]

 $(1) \ker(E_n-A) \subset \operatorname{Im}(A)$ より従う. (2) 等号成立は $\ker(E_n-A) \supset \operatorname{Im}(A)$ つまり $A-A^2=(E_n-A)A=0$ と同値.

[5]

(1) \emptyset , $\mathbb{R}^2 \in \mathcal{O}$ はよい. U_{λ} , U, $V \subset \mathbb{R}^2$ を \mathbb{R} の開集合とせよ ($\lambda \in \Lambda$). このとき

$$(U \times \mathbb{R}) \cap (V \times \mathbb{R}) = (U \cap V) \times \mathbb{R}, \quad \bigcup_{\lambda \in \Lambda} (U_{\lambda} \times \mathbb{R}) = \left(\bigcup_{\lambda \in \Lambda} U_{\lambda}\right) \times \mathbb{R} \in \mathcal{O}$$

である.

- (2) いいえ. (0,0), $(0,1) \in \mathbb{R}^2$ は開集合で分離できない.
- (4) $\operatorname{cl}(I \times I) = J \times \mathbb{R}$, $\operatorname{cl}(I \times J) = J \times \mathbb{R}$, $\operatorname{cl}(J \times I) = J \times \mathbb{R}$, $\operatorname{cl}(J \times J) = J \times \mathbb{R}$

1.5 2016 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H28innsi.pdfを見よ.

[1]

- (1), (2) 略.
- (3) $X = (x_{ij}) \in M_n(\mathbb{C})$ に対して

$$D_A(X) = 0 \iff x_{11} = x_{33}, \ x_{12} = x_{32}, \ x_{13} = x_{31}, \ x_{21} = x_{23}$$

であることがわかる. よって $\dim \ker(D_A) = 5$, 次元定理より $\dim \operatorname{Im}(D_A) = 4$.

[2]

(1) $\Phi_n(\lambda) = A - \lambda$ を A の固有多項式とすると,

$$\Phi_1(\lambda) = 1 - \lambda, \ \Phi_2(\lambda) = \lambda^2 - 2\lambda \quad ; \quad \Phi_n(\lambda) = (1 - \lambda)\Phi_{n-1}(\lambda) - \Phi_{n-2}(\lambda) \quad (n \ge 3).$$

を得る. よって

$$\det A = \Phi_n(0) = \begin{cases} 1 & \text{(if } n \equiv 0, 1 \mod 6), \\ -1 & \text{(if } n \equiv 3, 4 \mod 6), \\ 0 & \text{(if } n \equiv 2, 5 \mod 6). \end{cases}$$

(2) direct calculation より固有空間は

$$\left\langle {}^{t}(1,0,-1,0,\ldots,0,(-1)^{(n-1)/2})\right\rangle$$
.

[3]

- (1) 略.
- (2) $(-\infty,0)$ はコンパクトでないが $(-\infty,0]$ はコンパクトである. $(-\infty,0)$ の開被覆 $\{(-\infty,-1/n)\mid n\in\mathbb{N}\}$ は有限部分被覆を持たない. $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を $(-\infty,0]$ の \mathcal{O} -開被覆とせよ. $U_{\lambda}=(-\infty,a_{\lambda})$ とおく $(U_{\lambda}=\emptyset$ ならば $a_{\lambda}=-\infty$, $U_{\lambda}=\mathbb{R}$ ならば $a_{\lambda}=\infty$ と解釈せよ). $0\in\bigcup_{\lambda\in\Lambda}U_{\lambda}$ であるから,ある $\lambda_{0}\in\Lambda$ に対して $0\in U_{\lambda_{0}}$ である. $\{U_{\lambda_{0}}\}$ が有限部分被覆.
- (3) 答えははい. $(0,1) \cup (2,3) \subset U \cup V; \ U,V \in \mathcal{O}; \ U \cap V \cap ((0,1) \cup (2,3)) = \emptyset$ とせよ. このとき $U \subset V$ または $U \supset V$ が成り立つので, $U \cap ((0,1) \cup (2,3)) = \emptyset$ または $V \cap ((0,1) \cup (2,3)) = \emptyset$ である. よって $(0,1) \cup (2,3)$ は連結.
- (4) $f:(\mathbb{R},\mathcal{O})\to(\mathbb{R},\mathcal{O})$ を連続写像とする. $x,x'\in\mathbb{R}$ で $x\leq x',\ f(x)>f(x')$ を満たすものがあったと仮定しよう. f の連続性より

$$f^{-1}((-\infty, f(x))) = (-\infty, a), \quad a \in \mathbb{R} \cup \{\pm \infty\}$$

となる a がある. f(x') < f(x) より x' < a である. 一方明らかに $x \ge a$ である. よって x' < x となり矛盾.

[4]

- (1) 答えは p+q>0. $x\neq 0$ に対して $f_{p,q}(x)=|x|^{p+q}|\sin x/x|^q$ であり、 $\sin x/x\to 1$ $(x\to 0)$ に注意するとわかる.
 - (2) 答えは p + q > 1. $x \neq 0$ に対して

$$\frac{f_{p,q}(x) - f_{p,q}(0)}{x} = \frac{x}{|x|} |x|^{p+q-1} \left| \frac{\sin x}{x} \right|^{q}$$

が $x \to 0$ で有限確定値に収束する条件を考えればわかる.

(3) 答えはp+q>-1. 極座標に変換すると

$$\iint_D f_{p,q}(\sqrt{x^2 + y^2}) \, dx dy = \frac{\pi}{2} \int_0^1 r^{p+q+1} \left| \frac{\sin r}{r} \right|^q dr$$

で同様. [0,1] で $0 < \exists m \leq |\sin r/r| \leq 1$ に注意せよ.

[5]

(1) まず f,g は連続関数の一様収束極限として連続である. $\varepsilon>0$ とせよ. 次を満たす $\delta>0$ がある:任意の $x\in\mathbb{R}$ に対して

$$|a - x| \le \delta \Longrightarrow |f(a) - f(x)| \le \varepsilon$$

 $a_n \to a \ (n \to \infty)$ より, $N \in \mathbb{N}$ があり任意の $n \ge N$ について $|a - a_n| \le \delta$ かつ $\sup_{x \in \mathbb{R}} |f(x) - f_n(x)| \le \varepsilon$, よって

$$|f(a) - f_n(a_n)| \le |f(a) - f(a_n)| + |f(a_n) - f_n(a_n)| \le 2\varepsilon.$$

(2) $\varepsilon>0$ とせよ. $f\circ g$ は [0,1] で一様連続であるから、次を満たす $\delta>0$ がある:任意の $x,y\in [0,1], \ |x-y|\le \delta$ に対して $|f(g(x))-f(g(y))|\le \varepsilon$. g_n が g に一様収束することから、ある $N\in\mathbb{N}$ について、任意の $n\ge N$ に対して $\sup_{x\in [0,1]}|g(x)-g_n(x)|\le \delta$ 、よって

$$\sup_{x \in [0,1]} |f(g(x)) - f(g_n(x))| \le \varepsilon$$

となる.

(3) $\varepsilon>0$ とせよ. (2) と,f は f_n に一様収束することから, $N\in\mathbb{N}$ があり,任意の $n\geq N$ に対して $\sup_{x\in[0,1]}|f(g(x))-f(g_n(x))|\leq \varepsilon$ かつ $\sup_{x\in[0,1]}|f(x)-f_n(x)|\leq \varepsilon$. よって

$$\sup_{x \in [0,1]} |f(g(x)) - f_n(g_n(x))| \le \sup_{x \in [0,1]} |f(g(x)) - f(g_n(x))| + \sup_{x \in [0,1]} |f(g_n(x)) - f_n(g_n(x))| \le 2\varepsilon.$$

1.6 2017 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H29innsi.pdfを見よ.

[1]

- (1) 略.
- (2) 結果だけ書く:

$$P^{-1}AP = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}, \text{ where } P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

(3) $C_V(A) = \{X \in V \mid XA = AX\} = W$ と書く. $C_V(P^{-1}AP) = P^{-1}WP \cong W$ だが, $P^{-1}AP$ は相異なる固有値を持つ対角行列であるから, $C_V(P^{-1}AP)$ は対角行列全体. したがって $\dim W = 3$. 線形写像

 $\mathbb{R}[t] \to W$, $f(t) \mapsto f(X)$ を考察する. kernel は A の最小多項式 (t-1)(t-2)(t-3) で生成されるイデアルである. 準同型定理より

$$\mathbb{R}^3 \cong \mathbb{R}[t]/((t-1)(t-2)(t-3)) \cong \mathbb{R}[A] \subset W$$

である. $\dim W = 3$ だったので $W = \mathbb{R}[A]$ を得る.

[2]

 ${
m Im}(A^n)\subset {
m Im}(A^{n+1})$ が示されれば、逆の包含は明らかなので結論が従う。部分空間の列

$$\operatorname{Im}(A^{n+1}) \subset \operatorname{Im}(A^n) \subset \cdots \subset \operatorname{Im}(A^2) \subset \operatorname{Im}(A) \subset \operatorname{Im}(A^0) = \mathbb{C}^n$$

を考えると、 $\dim \mathbb{C}^n = n$ より、ある $k \in \{0, 1, \dots, n\}$ で $\operatorname{Im}(A^{k+1}) = \operatorname{Im}(A^k)$ となる. よって

$$\operatorname{Im}(A^{n+1}) = \operatorname{Im}(A^{n-k} \cdot A^{k+1}) = \operatorname{Im}(A^{n-k} \cdot A^{k}) = \operatorname{Im}(A^{n})$$

を得る.

[3]

(1)
$$\mathcal{O} = \{ U \subset \mathbb{R} \mid \forall x \in U \ \exists U(a, r) \in \mathcal{B} \text{ s.t. } x \in U(a, r) \subset U \}$$

が \mathbb{R} の位相であることが示されれば、 \mathcal{B} がその開基であることは明らかである。省略.

- (2) 「 $x \in U \in \mathcal{O}$ ならば $-x \in U$ 」であることに注意する. すると $1, -1 \in \mathbb{R}$ は \mathcal{O} の開集合で分離できない.
- (3) \mathcal{O} は通常の Euclid 位相 $\mathcal{O}_{\mathbb{R}}$ よりも弱い位相であることから従う.
- (4) [0,1] は $\mathcal{O}_{\mathbb{R}}$ の位相でコンパクトであるから, \mathcal{O} でもコンパクトである. $-1 \in \mathbb{R} \setminus [0,1]$ だが $1 \notin \mathbb{R} \setminus [0,1]$ である.よって $\mathbb{R} \setminus [0,1]$ は開集合ではない.

[4]

非負値単調非増加数列 $\{a_n\}_n$ について,

$$\sum_n a_n$$
 が収束する $\iff \sum_n 2^n a_{2^n}$ が収束する

であることに注意する.よって $\sum_{n\geq 2}1/(n^p\log n)$ が収束することは $\sum_n 2^n\cdot 1/(2^{np}n)=\sum_n n^{-1}2^{(1-p)n}$ が収束することと同値であり,これは $\sum_n 2^n\cdot 2^{-n}2^{(1-p)2^n}=\sum_n 2^{(1-p)2^n}$ が収束することと同値でこれは p>1 と同値.

(2) 仮定より,十分大きな $N\in\mathbb{N}$ があり,任意の $n,m\geq N$ に対して $\sup_{x\in\mathbb{R}}|f_m(x)-f_n(x)|\leq 1$ となる.各 f_n は多項式であるから, $n\geq N$ に対して, f_n の次数は n によらない定数であり, $d\geq 1$ について, f_n $(n\geq N)$ の d 次の係数は n によらない. f_n がある f に一様収束するということから定数項はある実数に収束し,したがって f は多項式となる.

[5]

 $(1) \varepsilon > 0$ とする. 仮定より, $\delta_1 > 0$ があり

$$|f(x) - f(y)| \le \varepsilon \quad (x, y \in [1 - \delta_1, 1))$$

となる. f は有界閉区間 $[0,1-\delta_1/2]$ で一様連続であるから、ある $\delta_2>0$ に対して

$$|f(x) - f(y)| \le \varepsilon \quad (x, y \in [0, 1 - \delta_1/2], |x - y| \le \delta_2)$$

となる. さて, $x,y \in [0,1),\ 0 \le y-x \le \min\left\{\delta_1/2,\delta_2\right\}$ とする. もし $x \in [0,1-\delta_1]$ ならば $y \in [0,1-\delta_1/2]$ であるから $|x-y| \le \delta_2$ とあわせて $|f(x)-f(y)| \le \varepsilon$ である. $x \in [1-\delta_1,1)$ ならば $y \in [1-\delta_1,1)$ でもあるから $|f(x)-f(y)| \le \varepsilon$ である.

- $(2) \limsup_{x \to 1-0} f(x) > t > s > \liminf_{x \to 1-0} f(x)$ となる s,t を取る.すると,任意の $x \in [0,1)$ に対して, $y,z \in (x,1)$ があり,f(y) < s < t < f(z) となる.よって f(z) f(y) > t s > 0.これは f が一様連続ではないことを示している.
- (3) 仮定より $(1-t)^{\alpha}f'(t)$ は [0,1] 上の連続関数に一意に拡張され、とくに有界である。 $M=\sup_{t\in[0,1)}(1-t)^{\alpha}|f'(t)|<\infty$ とおく、 $x,y\in[0,1)$ に対して

$$|f(x) - f(y)| = \left| \int_x^y (1 - t)^{-\alpha} (1 - t)^{\alpha} f'(t) dt \right| \le M \left| \int_x^y (1 - t)^{-\alpha} dt \right| = \frac{M}{1 - \alpha} \left| (1 - x)^{1 - \alpha} - (1 - y)^{1 - \alpha} \right|$$

より一様連続性が従う.

1.7 2018 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H30innsi.pdfを見よ.

[1]

(1) 略. (2) $T(x^3)=3x^3+3x^2y$, $T(x^2y)=x^3+3x^2y+2xy^2$, $T(xy^2)=2xy^2+3xy^2+y^3$, $T(y^3)=3xy^2+3y^3$ より T の行列表示は

$$A = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 3 & 3 & 2 & 0 \\ 0 & 2 & 3 & 3 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

である. 固有多項式を頑張って計算すると

$$\det(\lambda - T) = \lambda(\lambda - 2)(\lambda - 4)(\lambda - 6)$$

であり、各 $\lambda \in \{0,2,4,6\}$ に対応する固有空間 V_{λ} は

$$V_0 = \langle (x-y)^3 \rangle, \quad V_2 = \langle (x+y)(x-y)^2 \rangle, \quad V_4 = \langle (x+y)^2(x-y) \rangle, \quad V_6 = \langle (x+y)^3 \rangle$$

よって $V = V_0 \oplus V_2 \oplus V_4 \oplus V_6$ の基底が得られた.

[2]

(1) ker f の補空間 W_0 を取る. つまり $V=\ker f\oplus W_0$ である. W_0 は r 次元で $f|_{W_0}$ は単射 $(W_0\cap\ker f=0$ である).

(2) W_0 の基底 w_1, \ldots, w_r を取る.与えられた $x \in \mathbb{R}^n$ を x = v + w $(v \in \ker f, w \in W_0)$ と分解せよ.このとき $W' = \langle v + w_1, \ldots, v + w_r \rangle$ とおくと $v \in W'$,よって $x \in W_0 + W'$ である. $W' \in S$ であることも簡単にわかる.

[3]

(1) 略. (2) (0,0) と (1,0) が開集合で分離できない。 (3) 易しい。 (4) $\mathcal O$ から定まる位相の開集合系は $\{C\subset X\mid (0,0)\in C\}\cup \mathcal P(\{(1,0),(-1,0),(0,1),(0,-1)\})$

であることに注意する. $Q \subset X$ が可算ならば $Q \subset \{(0,0)\}$ は Q を含む閉集合であるから $\overline{Q} \cup Q \cup \{(0,0)\}$. X は非可算集合なので $\overline{Q} = X$ とはなり得ない.

[4]

 $(1) \varepsilon > 0$ とせよ. 仮定より K > 0 があり,

$$|\alpha - f(x)| < \varepsilon \quad (\forall x \ge K)$$

となる.またこのことから f は有界なので $M \coloneqq \sup_{[0,\infty)} |f|$ とおく $(\varepsilon = 1$ としたときの K を K_1 としたとき, f は有界閉区間 $[0,K_1]$ で連続なので, $\sup_{[0,\infty)} |f| \le \sup_{[0,K_1]} |f| + 1 + |\alpha| < \infty$).

$$|\alpha - g(t)| \le \left| \frac{1}{t} \int_0^t (\alpha - g(t)) \, dx \right| \le \frac{1}{t} \left\{ \int_0^K |\alpha - f(x)| \, dx + \int_K^t |\alpha - f(x)| \, dx \right\} \le \frac{(|\alpha| + M)K}{t} + \frac{\varepsilon(t - K)}{t} + \frac{\varepsilon(t -$$

そこで $t \to \infty$ とすれば

$$\limsup_{t \to \infty} |\alpha - g(t)| \le \varepsilon$$

 ε は任意なので $\limsup_{t\to\infty} |\alpha-g(t)|=0$ を得る.

[5]

(x+y)/2 まわりの Taylor 展開を考える.

$$f(x) = f\left(\frac{x+y}{2}\right) + \frac{x-y}{2}f\left(\frac{x+y}{2}\right) + \frac{(x-y)^2}{8}f''\left(\frac{x+y}{2}\right) + \int_{\frac{x+y}{2}}^x dt \int_{\frac{x+y}{2}}^t ds \left(f''(s) - f''\left(\frac{x+y}{2}\right)\right),$$

$$f(y) = f\left(\frac{x+y}{2}\right) + \frac{y-x}{2}f\left(\frac{x+y}{2}\right) + \frac{(y-x)^2}{8}f''\left(\frac{x+y}{2}\right) + \int_{\frac{x+y}{2}}^{y} dt \int_{\frac{x+y}{2}}^{t} ds \left(f''(s) - f''\left(\frac{x+y}{2}\right)\right)$$

である. 辺々足して

$$f(x) - 2f\left(\frac{x+y}{2}\right) + f(y) = \frac{(x-y)^2}{4}f''\left(\frac{x+y}{2}\right) + \left(\int_{\frac{x+y}{2}}^x dt \int_{\frac{x+y}{2}}^t ds + \int_{\frac{x+y}{2}}^y dt \int_{\frac{x+y}{2}}^t ds\right) \left(f''(s) - f''\left(\frac{x+y}{2}\right)\right)$$

を得る。両辺を $(x-y)^2/4$ で割って $x,y\to a$ とすれば結論が得られる。具体的には次のようにする:任意の $\varepsilon>0$ に対して $\delta>0$ があり, $|s-a|\le \delta$ に対して $|f''(x)-f''(s)|<\varepsilon$ となる。そこで $a-\delta< x< a< y< a+\delta$ ならば,

$$\left| \int_{\frac{x+y}{2}}^{x} dt \int_{\frac{x+y}{2}}^{t} ds \left(f''(s) - f''\left(\frac{x+y}{2}\right) \right) \right| \le 2\varepsilon \cdot \int_{\frac{x+y}{2}}^{x} dt \int_{\frac{x+y}{2}}^{t} ds = \frac{(x-y)^2 \varepsilon}{2}$$

など.

1.8 2019 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H31innsi.pdfを見よ.

1.9 2020 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/2020innsi.pdfを見よ.

1.10 2021 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/2021innsi.pdfを見よ.

[1]

(1)
$$D = D_1 \ l \sharp$$

$$D(e^x) = e^x$$
, $D(xe^x) = e^x + xe^x$, $e^{2x} = 2e^{2x}$

を満たすので、 $D, D_n = D^n$ の行列表示は

$$D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad D_n = \begin{bmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{bmatrix} \quad (n \ge 0)$$

である. $\{D_i\}_{0\leq i\leq 2}$ が一次独立であることを示そう: $a_i\in\mathbb{R},\ a_0D_0+a_1D_1+a_2D_2=0$ は

$$a_0 + a_1 + a_2 = a_1 + 2a_2 = a_0 + 2a_1 + 4a_2 = 0$$

と同値でこれは $a_0 = a_1 = a_2 = 0$ と同値.

(2) $n \ge 3$ に対して

$$D_n = (2^n - 2n)D_0 + (-2^{n+1} + 3n + 2)D_1 + (2^n - n - 1)D_2$$

であるから $\{D_i\}_{0 \le i \le 2}$ が $\operatorname{span} \{D_n \mid n \ge 0\}$ の基底を与える.

(3) 普通に

$$f(x) = \left(\frac{1}{2} - \frac{n}{4}\right)e^x + \frac{1}{2}xe^x + \frac{1}{1+2^n}e^{2x}$$

[2]

 $(1)\ A_n = \{n,n+1,n+2,\ldots\}. \ (2)\ \mathrm{閉集合の族}\ \{A_\lambda\}_{\lambda\in\Lambda}\ \mathrm{が}\ (*)\ \mathrm{を満たすことは},\ \mathrm{開集合た5}\ U_\lambda = X\setminus A_\lambda \\ \mathrm{が}\ \lceil\emptyset\neq F\subset\Lambda\ \mathrm{が有限ならば}\ \bigcup_{\lambda\in F}U_\lambda\neq X.\ \ \mathrm{か}\cap\bigcup_{\lambda\in\Lambda}U_\lambda=X.\ \ \mathrm{」}\ \mathrm{このことから明らか}.\ \ (3)\ X\ \mathrm{を algorithm}$ クト空間, $Y\subset X$ をその閉集合とする. Y の任意の閉集合の族は $\{A_\lambda\cap Y\}_{\lambda\in\Lambda},\ A_\lambda$ は X の閉集合という形をしている. 今 Y は X の閉集合より $A_\lambda\cap Y$ もそう. よって Y の閉集合族は (*) を満たし得ない.

[3]

$$(1)$$
 $(a,b) = (2,0)$. (2) $(a,b) = (4,0)$. (3) $(a,b) = (3,0)$.

1.11 2022 年度

問題は

を見よ.

1.12 2023 年度

問題は

を見よ.

1.13 2024 年度

問題は

を見よ.