第7讲 MOSFET及 MOSFET效大器

- 一、MOSFET晶体管
- 二、MOSFET放大器

MOSFET基本结构与特性

- 内容MOSFET基本结构及特性曲线
- ●目标

解释MOSFET特性曲线各段的意义与对应的理论模型。

MOSFET基本结构与特性(1/5)

- ●MOSFET结构
 - ●3端(两端口)元件(栅极G、源极S、漏极D)
 - G-S输入(控制)端口
 - ●D-S输出(受控)端口

MOSFET的物理结构

N沟道型图形符号

P沟道型图形符号

MOSFET基本结构与特性(2/5)。山岛山岛

●MOSFET的电气特性 (以N型为例)

 u_{GS} 小于 U_{T} 时, i_{DS} =0,D-S开路,为 截止区;

- u_{GS} 增加到 U_{T} ,D-S不再开路;
- u_{GS} 大于 U_T 时,D-S分为线性区(电阻区、三级管区)和饱和区(恒流区)
- ●在线性区, D-S相当于一个电阻;
- ullet 在饱和区,D-S相当于一个电流源,电流大小受 u_{GS} 控制,但与 u_{DS} 无关,即MOS管是一个压控电流源;
- ullet 在整个非截止区,只有当 u_{DS} 大于某一阈值(u_{GS} U_{T})后,D-S才从一个电阻变为一个受控源。

MOS管的电气特性

MOSFET的物理结构

MOSFET基本结构与特性(3/5)

●模型 化MOSFET特性

ullet 一开关(S)模型: u_{GS} 小于 U_{T} 时, i_{DS} =0, D-S开路, 否则 D-S导通

MOSFET基本结构与特性(4/5)

- ●模型 化MOSFET特性
 - ●开关-电阻 (SR) 模型: $u_{\rm GS} > U_{\rm T}$, 且 $u_{\rm DS} < u_{\rm GS}$ - $U_{\rm T}$ 射, D-S之间相当于一个电阻

MOS管的电气特性

MOSFET基本结构与特性(5/5)

- ●模型 化MOSFET特性
 - ・开 夭 电 流 源 (SCS) 模 型: $u_{\rm GS} > U_{\rm T}$, 且 $u_{\rm DS} > u_{\rm GS}$ $U_{\rm T}$ 財 , $i_{\rm DS} = K(u_{\rm GS} U_{\rm T})^2/2$

MOSFET放大器

- 内容MOSFET共源极效大器
- ●目标

用转移特性曲线正确描述MOSFET共源极效大电路的小信号放大工作状况。

MOSFET放大器(1/6)

- ●为什么要放大?
 - 信号幅值太小,不易察觉
 - 信号功率太小,不能驱动 负载
 - 传输过程中信号易被噪声 淹没
- ●什么是信号放大?
 - 电压放大
 - 电流放大
 - 功率放大
 - 能量守恒

MOSFET放大器 (2/6)

●MOSFET (共源极) 放大电路及模型

$$v_{\rm O} = V_{\rm S} - K \frac{(v_{\rm IN} - V_{\rm T})^2}{2} R_{\rm L}$$

截止区: $i_D=0$, $v_O=V_S$

饱和区: Vo如公式所示

线性区: 心不再服从该公式

MOSFET效大器 (3/6)

●MOSFET放大电路仅在饱和区表现出放大作用

- 截止区: vo为常数Vs
- 饱和区:曲线斜率大,vo随vIN快速变化
- 线性区:曲线斜率小,vo随v_{IN}慢速变化
- 放大电路必须工作在恰当位置才具有放大功能,当输入信号为零时,MOSFET必须加载合适的偏置电压。

MOSFET放大器 (4/6)

- ●MOSFET 放大器的偏置
 - ullet 通过加载合适的偏置电压 V_X 来实现

- 当偏置电压为零时,不仅没有 放大,而且输出严重失真
- 偏置点选择有不同方法,如范 围最大或增益最大

MOSFET放大器 (5/6)

例 根据MOSFET放大器的输入与输出关系曲线和输出电压在饱和区的表达式,估算偏置电压的范围。已知: $R_{\rm L}$ =10K Ω , K=1mA/V², $V_{\rm S}$ =5V, $V_{\rm T}$ =1V。

$$v_{\rm O} = V_{\rm S} - K \frac{(v_{\rm IN} - V_{\rm T})^2}{2} R_{\rm L}$$

1. 最小偏置?

$$v_{\min} = V_{\mathrm{T}} = 1 \mathrm{V}$$

2. 从下式求得的 v_{IN} 即为最大偏置电压 $v_{\text{max}} \approx 1.9 \text{V}$?

$$v_{\rm IN} - V_{\rm T} = V_{\rm S} - K \frac{(v_{\rm IN} - V_{\rm T})^2}{2} R_{\rm L}$$

3. 工作点常在v_{min}和v_{max}中 点,约为1.45V

MOSFET 放大器 (6/6)

- MOSFET放大电路的小信号与大信号工作状况
 - 小信号:线性放大
 - 大信号:信号整形(标准化)

传输

中继整形接收整形

小结

- ●MOSFET晶体管
 - ●3端(两端口)元件
 - ●开关 (S) 模型
 - ●开关—电阻 (SR) 模型
 - ●开关—电流源(SCS)模型
- ●MOSFET 放大器
 - ●放大的必要性
 - 共源极放大电路
 - ●小信号放大,加偏置使电路工作在饱和区
 - ●大信号整形、标准化
- ●测验