Д.В.Карпов

Алгебра. Глава 4. Многочлены и теория чисел.

Д.В.Карпов

2024

Определение

Пусть $p \in \mathbb{P}$, $a \in \mathbb{Z}_p$, $a \neq 0$, $d \in \mathbb{N}$. Вычет *а принадлежит к показателю* d, если $a^d = 1$, но $a^s \neq 1$ при $s \in \mathbb{N}$, s < d. Обозначение: $a \in_p d$.

Лемма 1

Пусть $p\in\mathbb{P}$, $a\in\mathbb{Z}_p$. Тогда выполнены следующие утверждения.

- 1) Если $a^d=1$ и $a\in_p s$, то $s\mid d$.
- 2) Если $a \in_{p} d$, то $d \mid p 1$.

Доказательство. 1) • Предположим противное и поделим d на s с остатком: d = sq + r, 0 < r < s.

- Тогда $1 = a^d = a^{sq+r} = (a^s)^q \cdot a^r = a^r$, что противоречит минимальности s.
- 2) По теореме Эйлера $a^{p-1}=1$. Тогда по пункту 1 имеем $d\mid p-1$.

Если $p\in\mathbb{P}$ и $d\mid p-1$, то многочлен $t^d-1\in\mathbb{Z}_p[t]$ имеет ровно d корней, все они не 0.

Доказательство. • Многочлен $t^{p-1}-1$ имеет в $\mathbb{Z}_p[t]$ ровно p-1 корень (по теореме Эйлера, все ненулевые вычеты его корни).

- ullet Пусть p-1=qd. Тогда $t^{p-1}-1=(t^d-1)(t^{(q-1)d}+\cdots+t^d+1)=:(t^d-1)f(t).$
- ullet Так как $\deg(f)=(q-1)d$, этот многочлен по Теореме 3.7 имеет не более (q-1)d корней.
- ullet Если t^d-1 имеет менее d корней, то $t^{p-1}-1=(t^d-1)f(t)$ имеет менее d+(q-1)d=p-1 корней, противоречие.

Теорема 1

Если $p\in\mathbb{P}$ и $d\mid p-1$, то к показателю d принадлежит ровно arphi(d) вычетов.

Доказательство. ullet Индукция по d. База d=1 очевидна: $a\in_p 1\iff a=1$.

- ullet Все вычеты, принадлежащие к показателю d, являются корнями многочлена t^d-1 .
- ullet Если $s\mid d$ (скажем, d=qs) и $b\in_{
 ho}s$, то $b^d=(b^s)^q=1$, то есть, b корень t^d-1 .
- ullet Так как каждый ненулевой вычет принадлежит в точности одному показателю, вычеты, принадлежащие собственным делителям d дают нам

$$\sum\limits_{\substack{s\,|\,d,\,s< d}} arphi(s) = \left(\sum\limits_{\substack{s\,|\,d}} arphi(s)\right) - arphi(d) = d - arphi(d)$$
 различных корней многочлена t^d-1 (последнее равенство верно по Теореме 2.17).

• Оставшиеся $d-(d-\varphi(d))=\varphi(d)$ корней многочлена t^d-1 принадлежат к d (по Лемме 1 они должны принадлежать к делителю d, а этим делителем может быть только само d). \square

Определение

Пусть $p\in\mathbb{P}$. Вычет $a\in\mathbb{Z}_p$ — первообразный корень по модулю p, если $a\in_p p-1$.

ullet По Теореме 1 существует в точности arphi(p-1) первообразных корней по модулю p.

Теорема 2

Пусть $p \in \mathbb{P}$, a- первообразный корень по модулю p. Тогда $a^2, \ldots, a^{p-1} = 1 - \Pi p C B \pmod{p}$, то есть, в точности все ненулевые вычеты из \mathbb{Z}_p .

Доказательство. ullet Достаточно доказать, что $a^i \neq a^j$ при $1 \leq j < i \leq p-1$.

- ullet Предположим противное, пусть $a^i=a^j\iff a^j(a^{i-j}-1)=0.$
- ullet Однако, $a^j
 eq 0$ и $a^{i-j}
 eq 1$, так как 0 < i-j < p-1. Противоречие.
- Если a первообразный корень по модулю p, то любой ненулевой вычет $b \in \mathbb{Z}_p$ представляется в виде $b = a^k$, где 1 < k < p-1.

Определение

Пусть $p \in \mathbb{P}$, $a \in \mathbb{Z}_p$, $a \neq 0$.

- ullet Тогда a- квадратичный вычет, если существует такой $b\in\mathbb{Z}_p$, что $b^2=a$.
- Если такого b не существует, то a квадратичный невычет.
- ullet Далее в этом разделе p нечетное простое число.

Пусть $p \in \mathbb{P}$ нечетно, $p_1 := rac{p-1}{2}$. Тогда:

- 1) квадратичные вычеты в \mathbb{Z}_p корни многочлена $t^{p_1}-1;$
- 2) если $x^2 = y^2$, то x = y или x = -y;
- 3) существует в точности $\frac{p-1}{2}$ квадратичных вычетов в $\mathbb{Z}_p.$

Доказательство. 1) • Если a — квадратичный вычет, то $a=b^2$ в \mathbb{Z}_p .

- ullet По Теореме Эйлера $a^{p_1}-1=b^{2p_1}-1=b^{p-1}-1=0.$
- $x^2 = y^2 \iff (x+y)(x-y) = 0 \iff x = y$ или x = -y.
- 3) Из пункта 2 следует, что ненулевые вычеты из \mathbb{Z}_p разбиваются на $\frac{p-1}{2}$ пар вида $\{x,-x\}$, дающих одинаковый квадрат. Значит, существует ровно $\frac{p-1}{2}$ квадратичных вычетов по модулю p.

Пусть $p \in \mathbb{P}$ нечетно, $p_1 := \frac{p-1}{2}$. Тогда выполнены следующие утверждения.

- 1) Квадратичные невычеты в \mathbb{Z}_p корни многочлена $t^{p_1}+1$.
- 2) Существует в точности $\frac{p-1}{2}$ квадратичных невычетов в \mathbb{Z}_p .

Доказательство. • По Теореме Эйлера многочлен $t^{p-1}-1=(t^{p_1}-1)(t^{p_1}+1)$ имеет в \mathbb{Z}_p ровно p-1 корень — все ненулевые вычеты.

- ullet Многочлен $t^{p_1}-1$ имеет ровно p_1 корней, как мы знаем из Леммы 2. По Лемме 3 все эти корни квадратичные вычеты.
- Все p_1 ненулевых вычетов, не являющиеся корнями $t^{p_1}-1$, являются корнями многочлена $t^{p_1}+1$.
- Значит, и многочлен $t^{p_1} + 1$ имеет ровно p_1 корней в точности все квадратичные невычеты.

Пусть $p \in \mathbb{P}$ нечетно, $a,b \in \mathbb{Z}_p$, $a \neq 0$, $b \neq 0$. Тогда:

- 1) Если a, b квадратичные вычеты, то ab квадратичный вычет.
- 2) Если а квадратичный вычет, а b квадратичный невычет, то ab квадратичный невычет.
- 3) Если $a, b \kappa$ вадратичные невычеты, то $ab \kappa$ вадратичный вычет.

Доказательство. 1) Существуют такие $x,y\in\mathbb{Z}_p$, что $a=x^2$ и $b=y^2$. Тогда $ab=(xy)^2$.

- 2) Вычеты $a, 2a, \ldots, (p-1)a$ это в точности все ненулевые элементы \mathbb{Z}_p : среди них нет 0 и все они различны, так как $ai=aj\Rightarrow i=j$ (равенство можно домножить на a^{-1} .)
- ullet Значит, среди $a,2a,\dots,(p-1)a$ ровно по $\frac{p-1}{2}$ квадратичных вычетов и квадратичных невычетов.
- Так как при умножении a на квадратичные вычеты (на все $\frac{p-1}{2}$ штук) по пункту 1 получаются различные квадратичные вычеты (все $\frac{p-1}{2}$ штук), то при умножении a на квадратичные невычеты получаются квадратичные невычеты.

- 3) И на этот раз $a, 2a, \ldots a(p-1)$ это в точности все ненулевые элементы \mathbb{Z}_p , среди них ровно по $\frac{p-1}{2}$ квадратичных вычетов и квадратичных невычетов.
- Так как при умножении a на квадратичные вычеты (на все $\frac{p-1}{2}$ штук) по пункту 2 получаются различные квадратичные невычеты (все $\frac{p-1}{2}$ штук), то при умножении a на квадратичные невычеты получаются квадратичные вычеты.

Д. В. Карпов

ullet Пусть $p\in\mathbb{P}$, p
eq 2, $a,b,c\in\mathbb{Z}_p$, a
eq 0, $D=b^2-4ac$.

$$ax^{2} + bx + c = 0 \iff x^{2} + \frac{b}{a}x + \frac{c}{a} = 0 \iff (x + \frac{b}{2a})^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a} = \frac{b^{2} - 4ac}{4a^{2}} \iff (x + \frac{b}{2a})^{2} = \frac{D}{4a^{2}}.$$

ullet Если D — квадратичный вычет, то $D=d^2$ для некоторого $d\in\mathbb{Z}_p$ и $\frac{D}{4a^2}=\left(\frac{\pm d}{2a}\right)^2$. Тогда уравнение имеет два решения:

$$x_1 = \frac{-b+d}{2a}$$
 $x_2 = \frac{-b-d}{2a}$.

ullet Если D=0, то уравнение имеет одно решение:

$$x_1 = \frac{-b}{2a}.$$

• Если D — квадратичный невычет, то $\frac{D}{4a^2}$ — также квадратичный невычет, а значит, решений нет (так как квадратичный невычет не может быть равен квадрату).

Д. В. Карпов

Определение

Пусть $p \in \mathbb{P}$, $a \in \mathbb{Z}$, $a \not\mid p$.

- Тогда a квадратичный вычет по модулю p, если вычет a в \mathbb{Z}_p квадратичный вычет.
- Аналогично, a квадратичный невычет по модулю p, если вычет a в \mathbb{Z}_p квадратичный невычет.

Определение

Пусть $p \in \mathbb{P}$, $a \in \mathbb{Z}$. Тогда символ Лежандра

Свойство 1

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Доказательство. • a — квадратичный вычет по модулю p

$$\iff$$
 \overline{a} — квадратичный вычет в \mathbb{Z}_p \iff $(\overline{a})^{\frac{p-1}{2}}=1.$

- ullet а квадратичный невычет по модулю $p \iff \overline{a}$ квадратичный невычет в $\mathbb{Z}_p \iff (\overline{a})^{\frac{p-1}{2}} = -1.$
- $\bullet \ a=0 \iff a^{\frac{p-1}{2}}=0.$

Свойство 2

(Первое дополнение к закону взаимности Гаусса.)

$$\left(\frac{-1}{p}\right) \equiv (-1)^{\frac{p-1}{2}} \pmod{p}.$$

Свойство 3

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right).$$

Доказательство. • Следует из Леммы 5 и определения символа Лежандра.

Пусть
$$p\in\mathbb{P}$$
, $p_1=rac{p-1}{2}$, $a\in\mathbb{Z}$, $a
otin D$. Тогда $\left(rac{a}{p}
ight)=(-1)^{\sum\limits_{\chi=1}^{p}\left[rac{2a\chi}{p}
ight]}.$

Доказательство. ullet Пусть $M = \{1, 2, \dots, p_1\}.$

Утверждение 1

Для каждого $j \in M$ существует $s_j \in \{0,1\}$ и $r_j \in M$ такие, что $ja \equiv (-1)^{s_j} r_j \pmod p$.

Доказательство. \bullet Пусть r_i' — остаток от деления ja на p.

- ullet Если $r_i' \in M$, то положим $r_j := r_i', \ s_j = 0.$
- ullet Если $r_j'
 otin M$, то $r_j' \in \{p_1+1,\ldots,p-1\}$, тогда $p-r_j' \in \{1,\ldots,p-1-p_1=p_1\}=M$.
- ullet В этом случае положим $r_j = p r_i', \; s_j = 1.$

Утверждение 2

Если $i,j \in M$, $i \neq j$, то $r_i \neq r_j$.

Доказательство. • Предположим противное, пусть $r_i = r_j$.

- ullet Если $s_i=s_j$, то $r_i'=r_j'$.
- ullet Следовательно, $ia\equiv_p ja\iff a(i-j)\ \dot{\ }p\Rightarrow i-j\ \dot{\ }p,$ что не так (последний переход верен, так как (a,p)=1).
- ullet Если $s_i
 eq s_j$, то $r_i' = p r_j'$.
- ullet Следовательно, $ia\equiv_p -ja \iff a(i+j)\ \dot{\ } p\Rightarrow i+j\ \dot{\ } p,$ что не так: $2\leq i+j\leq 2p_1=p-1.$

$$s_j = 1 \iff \left[\frac{2aj}{p}\right] / 2.$$

Доказательство. • Напомним, что

$$aj=pq+r_j'\iff 2aj=2pq+2r_j'$$
, где $r_j'\in\{1,\ldots,p-1\}$.

$$s_{j} = 1 \iff \frac{p+1}{2} = p_{1} + 1 \le r'_{j} \le p - 1 \iff$$

$$p+1 \le 2r'_{j} \le 2p - 2 \iff p+1+2pq \le 2aj \le 2p - 2 + 2pq \iff$$

$$p+2pq < 2aj < 2p + 2pq \iff$$

$$2q+1 < \frac{2aj}{p} < 2q + 2 \iff \left\lceil \frac{2aj}{p} \right\rceil = 2q + 1 \ / \ 2.$$

- ullet Пояснение 1. Так как разность целых чисел не менее 1, $p+1+2pq\leq 2aj\iff p+2pq<2aj.$
- Пояснение 2. Так как разность четных чисел не менее 2, $2aj \le 2p 2 + 2pq \iff 2aj < 2p + 2pq$.

- ullet Вернемся к доказательству Леммы 6. По Утверждению 2, $\{r_1,\ldots,r_{p_1}\}=M$ (так как все эти числа из M и различны, а $|M|=p_1$).
- Пусть $R = 1 \cdot 2 \cdot \dots \cdot p_1$. Тогда $r_1 r_2 \cdot \dots \cdot r_{p_1} = R$.
- Напишем цепочку сравнений:

$$(-1)^{\sum_{x=1}^{p_1} s_x} R \equiv (-1)^{\sum_{x=1}^{p_1} s_x} \cdot \prod_{x=1}^{p_1} r_x \equiv \prod_{x=1}^{p_1} (-1)^{s_x} r_x \equiv \prod_{x=1}^{p_1} ax \pmod{p} \equiv a^{p_1} R \pmod{p} \qquad (1).$$

ullet Сокращая (1) на R (можно, так как (R,p)=1),

получаем
$$a^{p_1} \equiv (-1)^{\sum\limits_{x=1}^{p_1} s_x} \equiv (-1)^{\sum\limits_{x=1}^{p_1} \left[\frac{2ax}{p}\right]} \pmod{p}$$
 (последний переход верен по Утверждению 3).

Лемма 7 Пусть $p \in \mathbb{P}$, $p_1 = \frac{p-1}{2}$.

1) (Второе дополнение к закону взаимности Гаусса.) $\left(\frac{2}{3}\right) = (-1)^{\frac{p^2-1}{8}}.$

2) Пусть
$$a\in\mathbb{Z}$$
, $a\not\mid p$ и $a\not\mid 2$. Тогда $\left(\frac{a}{p}\right)=(-1)^{\sum\limits_{\chi=1}^{2}\left[\frac{a\chi}{p}\right]}.$

Доказательство. 1) • Тогда $\frac{p+a}{2} \in \mathbb{Z}$, применим Лемму 6:

- ullet Подставим a=1 в (1) и учтем, что при $1\leq x\leq p_1$ выполнено $\left[\frac{x}{p}\right] = 0$:
- $1 = \left(\frac{1}{n}\right) = \left(\frac{2}{n}\right) \cdot \left(-1\right)^{\frac{p^2-1}{8}}$, откуда следует, что $\left(\frac{2}{p}\right) = \left(-1\right)^{\frac{p^2-1}{8}}$.

и теория чисел. Д. В. Карпов

Алгебра, Глава 4. Многочлены

Д. В. Карпов

$$\left(\frac{a}{p}\right) = \left(\frac{2}{p}\right) \cdot (-1)^{\frac{p^2 - 1}{8}} \cdot (-1)^{\sum_{x=1}^{p_1} \left[\frac{ax}{p}\right]} = \left((-1)^{\frac{p^2 - 1}{8}}\right)^2 \cdot (-1)^{\sum_{x=1}^{p_1} \left[\frac{ax}{p}\right]} = (-1)^{\sum_{x=1}^{p_1} \left[\frac{ax}{p}\right]}. \qquad \Box$$

Теорема 3

(Закон взаимности Гаусса.)

Пусть $p,q\in\mathbb{P}$ нечетны. Тогда $\left(rac{q}{p}
ight)\cdot\left(rac{p}{q}
ight)=(-1)^{rac{p-1}{2}\cdotrac{q-1}{2}}.$

Доказательство. \bullet Пусть $p_1 := \frac{p-1}{2}$ и $q_1 := \frac{q-1}{2}$.

- По Лемме 7, $\left(\frac{q}{p}\right)\cdot\left(\frac{p}{q}\right)=(-1)^{\sum\limits_{x=1}^{p_1}\left[\frac{qx}{p}\right]+\sum\limits_{y=1}^{q_1}\left[\frac{py}{q}\right]}.$
- ullet Нам нужно доказать, что $\sum\limits_{x=1}^{p_1}[rac{q_x}{p}]+\sum\limits_{y=1}^{q_1}[rac{p_y}{q}]=p_1q_1.$

- Так как (p,q)=1, при $x\leq p_1$ на этой прямой нет узлов точек с целыми координатами. Аналогично, при $y\leq q_1$ на это прямой нет узлов. (Ближайший к началу координат узел в 1 четверти на ℓ это точка с координатами $x=p,\ y=q$.)
- На вертикалях с абсциссами $x \in \{1,2,\ldots,p_1\}$ отметим все узлы с положительными ординатами, лежащие под прямой ℓ (белые квадратики на рисунке). На вертикали с абсциссой x отмечено в точности $\left[\frac{qx}{p}\right]$ узлов.
- На горизонталях с ординатами $y \in \{1,2,\ldots,q_1\}$ отметим все узлы с положительными абсциссами, лежащие над прямой ℓ (черные квадратики на рисунке). На вертикали с ординатой y отмечено в точности $\lceil \frac{py}{q} \rceil$ узлов.

Алгебра. Глава 4. Многочлены и теория чисел.

Д.В.Карпов

- ullet В сумме мы отметили ровно $\sum\limits_{x=1}^{p_1} \left[rac{qx}{p}
 ight] + \sum\limits_{y=1}^{q_1} \left[rac{py}{q}
 ight]$ узлов.
- ullet Так как прямая ℓ не проходит через узлы с рассматриваемыми абсциссами и ординатами, каждый узел с абсциссой от 1 до p_1 и с ординатой от 1 до q_1 отмечен ровно один раз (он либо над ℓ , либо под ℓ).
- ullet Значит, отмечено ровно p_1q_1 узлов.

Д. В. Карпов

Пусть $f(t) = a_n t^n + \cdots + a_0 \in \mathbb{Z}[t]$. Тогда его содержание $c(f) = (a_0, \ldots, a_n)$ (НОД коэффициентов).

Лемма 8

(Лемма Гаусса.) Пусть $f,g\in\mathbb{Z}[x],\,c(f)=c(g)=1.$ Тогда c(fg) = 1.

Доказательство. • Предположим противное и рассмотрим такое $p \in \mathbb{P}$, что $c(fg) \stackrel{\cdot}{\cdot} p$. Однако, $c(f) \not/ p$ и $c(g) \not/ p$.

• Пусть $f(t) = a_n t^n + \cdots + a_0$ и $g(t) = b_m t^m + \cdots + b_0$. Рассмотрим такой наименьший индекс k, что $a_k \not\mid p$ и такой наименьший индекс ℓ , что $b_{\ell} \not\mid p$.

$$ullet$$
 Пусть $fg=d_{m+n}t^{n+m}+\cdots+d_0$. Тогда $d_{k+\ell}=\left(\sum\limits_{i=0}^{k-1}a_ib_{k+\ell-i}
ight)+a_kb_\ell+\left(\sum\limits_{i=k+1}^{k+\ell}a_ib_{k+\ell-i}
ight)$ // p ,

так как первая сумма делится на р $(a_i \cdot p$ при $i \in \{0, \dots, k-1\})$ и вторая сумма делится на p(при $i \in \{k+1, \ldots, k+\ell\}$ мы имеем $k+\ell-i \in \{0, \ldots, \ell-1\}$, а значит, $b_{k+\ell-i}$: p), а $a_k b_\ell \not\mid p$.

Следствие 1

Для $f,g \in \mathbb{Z}[x]$ выполнено c(fg) = c(f)c(g).

Доказательство. \bullet Пусть $f(t) = c(f) \cdot f_1(t)$ и $g(t) = c(g) \cdot g_1(t)$.

- ullet Тогда $f_1,g_1\in\mathbb{Z}[t]$ и $c(f_1)=c(g_1)=1$ и по Лемме Гаусса $c(f_1g_1)=1.$
- Следовательно, $c(fg) = c(c(f) \cdot f_1 \cdot c(g) \cdot g_1) = c(f)c(g) \cdot c(f_1g_1) = c(f)c(g)$ (мы воспользовались тем, что общий множитель c(f)c(g) при вычислении НОД коэффициентов можно вынести).

Лемма 9

Пусть $f \in \mathbb{Z}[x], \ q_1, \dots, q_n \in \mathbb{Q}[x], \ f = q_1 \dots q_n, \ \deg(q_i) \geq 1$ для всех $i \in \{1, \dots, n\}$. Тогда существуют такие $p_1, \dots, p_n \in \mathbb{Z}[x]$ и $c_1, \dots, c_n \in \mathbb{Q}$, что $f = p_1 \dots p_n$ и $p_i = c_i q_i$ для всех $i \in \{1, \dots, n\}$.

Доказательство. • Для каждого $i \in \{1, \dots, n\}$ представим все коэффициенты q_i в виде несократимых дробей, пусть m_i — НОК знаменателей этих коэффициентов.

ullet Тогда $g_i=m_iq_i\in\mathbb{Z}[x]$ и $mf=g_1\dots g_n$, где $m=m_1\dots m_n\in\mathbb{N}.$

 $c_i := d_i m_i$.

Пусть $mf = g_1 \dots g_n$, где $m \in \mathbb{N}$, $f, g_1, \dots, g_n \in \mathbb{Z}[x]$. Тогда существует разложение $f = p_1 \dots p_n$, где $p_i = d_i g_i \in \mathbb{Z}[x]$, $d_i \in \mathbb{Q}$ для всех $i \in \{1, \dots, n\}$.

Доказательство. Индукция по m.

База m=1: построенное разложение $f=g_1\dots g_n$ подходит. Переход. • Пусть для меньших m утверждение доказано, $p\in\mathbb{P},\ m:p$.

- Тогда $c(g_1)\dots c(g_n)=c(g_1\dots g_n)=c(m\cdot f)$ \vdots p, значит, существует такое $i\in\{1,\dots,n\}$, что $c(g_i)$ \vdots p.
- ullet НУО $c(g_1) \stackrel{.}{\cdot} p$. Тогда $g_1 = p \cdot g_1^*$, где $g_1^* \in \mathbb{Z}[x]$.
- ullet Пусть $m^*:=rac{m}{
 ho}.$ Тогда $m^*\in\mathbb{Z}$ и $m^*f=g_1^*g_2\dots g_n.$
- ullet Так как $m^* < m$, по индукционному предположению существует разложение $f = p_1 \dots p_n$, где $p_1 = d_1^* g_1^*$ и $p_i = d_i g_i$ при $i \in \{2, \dots, n\}$.
- ullet Положим $d_1 := rac{d_1^*}{p}$. Тогда $p_1 = d_1 g_1$, получено разложение для m.
- Для завершения доказательства леммы остается положить

ullet Если многочлен $f\in \mathbb{Z}[x]$ неприводим в $\mathbb{Q}[x]$, то он, очевидно, неприводим и в $\mathbb{Z}[x]$.

Следствие 2

Многочлен $f \in \mathbb{Z}[x]$ неприводим в $\mathbb{Q}[x]$, если и только если он неприводим в $\mathbb{Z}[x]$.

Доказательство. \Rightarrow . Если многочлен $f\in\mathbb{Z}[x]$ приводим в $\mathbb{Z}[x]$, то он, очевидно, приводим и в $\mathbb{Q}[x]$.

- \Leftarrow . Предположим противное, пусть f приводим в $\mathbb{Q}[x]$.
- ullet Тогда $f=g_1g_2$, где $g_1,g_2\in \mathbb{Q}[x]$, $1\leq \deg(g_1)<\deg(f)$ и $1\leq \deg(g_2)<\deg(f)$.
- По Лемме 9, существует разложение $f=h_1h_2$, где $h_1,h_2\in\mathbb{Z}[x]$, $h_1=cg_1$ и $h_2=c'g_2$, $c,c'\in\mathbb{Q}$.
- \bullet Тогда f приводим в $\mathbb{Z}[x]$, противоречие.

Основная теорема арифметики в $\mathbb{Z}[t]$

Определение

Многочлен $f \in \mathbb{Z}[t]$ — тривиальный, если c(f) = 1.

Теорема 4

Любой многочлен $f \in \mathbb{Z}[x]$ с положительным старшим коэффициентом раскладывается в произведение $f = r_1 \dots r_k \cdot p_1 \dots, p_n$, где $r_1, \dots, r_k \in \mathbb{P}$, а $p_1, \dots, p_n \in \mathbb{Z}[x]$ — тривиальные неприводимые многочлены с положительными старшими коэффициентами. Разложение единственно с точностью до перестановки сомножителей.

ullet Разумеется, многочлен $f\in \mathbb{Z}[x]$ с отрицательным старшим коэффициентом раскладывается в аналогичное произведение $f=-r_1\dots r_k\cdot p_1\dots,p_n$.

Доказательство. \exists • Пусть $f = c(f) \cdot g$, тогда $g \in \mathbb{Z}[x]$ и c(g) = 1. По ОТА в \mathbb{Z} существует разложение на простые множители $c(f) = r_1 \dots r_k$.

- ullet Пусть a- старший коэффициент g. Тогда a>0.
- ullet По ОТА в $\mathbb{Q}[x]$ существует разложение $g=aq_1'q_2\dots q_n$, где q_1',q_2,\dots,q_n неприводимые в $\mathbb{Q}[x]$ многочлены.
- ullet Положим $q_1:=aq_1'$, тогда q_1 также неприводим в $\mathbb{Q}[x]$.
- Итак, $g = q_1 q_2 \dots q_n$.
- По Лемме 9 существует разложение $g=p_1\dots p_n$, где $p_i\in \mathbb{Z}[x]$ и $p_i=c_iq_i,\ c_i\in \mathbb{Q}.$
- Можно считать, что старший коэффициент каждого p_i положителен: иначе заменим p_i на $-p_i$ и c_i на $-c_i$.
- ullet Так как $p_i \sim q_i$ в $\mathbb{Q}[x]$, многочлены p_1,\dots,p_n неприводимы в $\mathbb{Q}[x]$, а значит, и в $\mathbb{Z}[x]$.
- ullet Тогда $f=r_1\dots r_k\cdot p_1\dots p_n.$
- По Следствию 1 имеем $c(f) = c(r_1 \dots r_k \cdot p_1 \dots p_n) = r_1 \dots r_k \cdot c(p_1) \dots c(p_n) = c(f) \cdot c(p_1) \dots c(p_n),$ откуда $c(p_1) = \dots c(p_n) = 1.$
- ullet Значит, $f=r_1\dots r_k\cdot p_1\dots p_n$ искомое разложение.

Д.В.Карпов

! • Предположим, что разложение не единственно:

$$f = r_1 \dots r_k p_1 \dots p_n = s_1 \dots s_\ell q_1 \dots q_m,$$
 (1) где $r_1, \dots, r_k, s_1, \dots, s_\ell \in \mathbb{P}$ и $p_1 \dots p_n, q_1 \dots q_m \in \mathbb{Z}[x]$ — неприводимые тривиальные многочлены с положительными старшими коэффициентами.

- По Лемме 8, тогда $c(p_1\dots p_n)=c(p_1)\dots c(p_n)=1$, откуда $c(f)=r_1\dots r_k$ разложение на простые множители. Аналогично, $c(f)=s_1\dots s_\ell$ разложение на простые множители.
- \bullet По ОТА в \mathbb{Z} , эти разложения могут отличаться только порядком множителей, что нам и надо.
- ullet Пусть $g:=rac{1}{c(f)}f\in \mathbb{Z}[x]$, тогда $g=p_1\dots p_n=q_1\dots q_m$ два разложения g в произведение неприводимых в $\mathbb{Z}[x]$ тривиальных многочленов.
- По Следствию 2 это два разложения g в произведение неприводимых многочленов в $\mathbb{Q}[x]$.

Д. В. Карпов

• Пусть p_i^* — многочлен, полученный из p_i делением на старший коэффициент (для всех $i \in \{1, ..., n\}$), а q_i^* многочлен, полученный из q_i делением на старший коэффициент (для всех $j \in \{1, ..., m\}$), а a — старший коэффициент f.

- Тогда $g = ap_1^* \dots p_n^* = aq_1^* \dots q_m^*$ два разложения g в $\mathbb{Q}[x]$ в произведение неприводимых многочленов со старшим коэффициентом 1, а по ОТА в $\mathbb{Q}[x]$ (Теорема 3.5) такие разложения могут отличаться лишь порядком сомножителей.
- \bullet Значит, m = n и можно считать, что $p_i^* = q_i^*$ для всех i. • Тогда существует такое $c_i \in \mathbb{O}$, что $p_i = c_i q_i$. Тогда $c_i > 0$

(так как c_i равно отношению положительных старших коэффициентов p_i и q_i).

- \bullet Нам остается доказать, что $c_1 = \cdots = c_n = 1$. Пусть это не так. Из (1) ясно, что $c_1 c_2 \dots c_n = 1$. Значит, НУО $c_1 > 1$.
- Пусть $c_1 = \frac{a_1}{b_1}$ представление в виде несократимой дроби. Тогда $(a_1, b_1) = 1$, $a_1 > 1$.

 \bullet Пусть $q_1(t) = d_w t^w + \cdots + d_0$, тогда $p_1(t) = \frac{a_1 d_w}{b_n} t^w + \cdots + \frac{a_1 d_0}{b_n}$.

ullet Так как $(a_1,b_1)=1$, для всех $i\in\{1,\ldots,w\}$ мы имеем $rac{a_1d_i}{h}$ $grad a_1$. Значит, $1=c(p_1)$ $grad a_1$, противоречие.

Теорема 5

Пусть $f(t) = a_n t^n + \dots + a_1 t + a_0 \in \mathbb{Z}[t]$ и $p \in \mathbb{P}$ таковы, что $a_n \not \mid p, \ a_{n-1}, \dots, a_0 \not \mid p$ и $a_0 \not \mid p^2$. Тогда f — неприводим в $\mathbb{Z}[t]$.

Доказательство. • Предположим противное. Пусть f = gh, где $\deg(g) > 0$ и $\deg(h) > 0$.

- ullet Пусть $g(t) = b_m t^m + \dots + b_0$, $h(t) = c_k t^k + \dots + c_0$ (тогда m+k=n).
- Так как $c_0b_0=a_0$: p и c_0b_0 / p^2 , НУО b_0 : p и c_0 / p.
- ullet Так как $b_m c_k = a_n \slash p$, мы имеем $b_m \slash p$. Следовательно, можно выбрать наименьший такой индекс ℓ , что $b_\ell \slash p$.
- ullet Тогда $a_\ell=b_\ell c_0+\sum_{i=0}^{r}b_i c_{\ell-i}$ / p, так как $b_\ell c_0$ / p, а для всех $i\in\{0,\dots,\ell-1\}$ b_i p.
- Значит, $a_{\ell} \not \mid p$. Но $\ell \leq m < n$, противоречие.

Следствие 3

Пусть $f(t) = a_n t^n + \dots + a_1 t + a_0 \in \mathbb{Z}[t]$ и $p \in \mathbb{P}$ таковы, что $a_0 \not \mid p, a_1, \dots, a_n \not \mid p$ и $a_n \not \mid p^2$. Тогда f — неприводим в $\mathbb{Z}[t]$.

• Доказательство аналогично Теореме 5.

Д.В.Карпов

Лемма 10

Пусть
$$f(t)=a_nt^n+\cdots+a_0\in\mathbb{Z}[t]$$
, $x,y\in\mathbb{Z}$, $x\neq y$. Тогда $f(x)-f(y)$ \vdots $x-y$.

Доказательство. • HУО x-y>0. Так как $x\equiv_{x-y} y$, для всех $k\in\{0,\ldots,n\}$ выполняется $x^k\equiv_{x-y} y^k$.

$$ullet$$
 Тогда $f(x)=\sum\limits_{k=0}^{n}a_{k}x^{k}\equiv_{x-y}\sum\limits_{k=0}^{n}a_{k}y^{k}=f(y).$

Пусть
$$f(t)=a_nt^n+\cdots+a_0\in\mathbb{Z}[t]$$
, $f(\frac{p}{q})=0$, где $p,q\in\mathbb{Z}$, $(p,q)=1$. Тогда $a_n \ \ q$ и $a_0 \ \ p$.

Доказательство.

$$0 = q^n f(\frac{p}{q}) = a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n.$$
 (1)

- ullet Все слагаемые в правой части (1), кроме $a_n p^n$, делятся на q, значит, и $a_n p^n \ \dot{} \ q$. Так как (p,q)=1, получаем $a_n \ \dot{} \ q$.
- Все слагаемые в правой части (1), кроме a_0q^n , делятся на p, значит, и $a_0q^n \ p$. Так как (p,q)=1, получаем $a_0 \ p$.

Следствие 4

Пусть
$$f(t)=t^n+\cdots+a_0\in\mathbb{Z}[t]$$
, $lpha\in\mathbb{Q}$, $f(lpha)=0$. Тогда $lpha\in\mathbb{Z}$.

Доказательство.
$$ullet$$
 Пусть $lpha=rac{p}{q}$, где $p,q\in\mathbb{Z}$, $(p,q)=1$.

$$ullet$$
 По Лемме 11, 1 $\dot{}$ q , то есть $lpha \in \mathbb{Z}$.

Пусть $f(t)=a_nt^n+\cdots+a_0\in\mathbb{Z}[t]$, $f(\frac{p}{q})=0$, где $p,q\in\mathbb{Z}$, (p,q)=1. Тогда $f(k)\stackrel{.}{:}kq-p$ для любого $k\in\mathbb{Z}$.

Доказательство. ●

$$q^{n}f(k) = q^{n}(f(k) - f(\frac{p}{q})) = \left(\sum_{i=0}^{n} q^{n}a_{i}k^{i}\right) - \left(\sum_{i=0}^{n} a_{i}p^{i}q^{n-i}\right) = \sum_{i=1}^{n} q^{n-i}a_{i}((kq)^{i} - p^{i}) \stackrel{!}{\cdot} kq - p,$$

так для всех $i \in \{1,\ldots,n\}$

$$(kq)^i - p^i : kq - p \iff (kq)^i \equiv_{kq-p} p^i \iff kq \equiv_{kq-p} p.$$

Определение

Пусть $f \in K[x]$, где K — коммутативное кольцо с 1, причем $K \supset \mathbb{Z}$.

- ullet Разностный многочлен задается формулой $\Delta f(x) := f(x+1) f(x).$
- ullet Примеры подходящих колец $K\colon \quad \mathbb{Z}, \ \mathbb{Q}, \ \mathbb{R}, \ \mathrm{C}.$

Лемма 13

Пусть $f \in K[x]$, где K — коммутативное кольцо с 1, причем $K \supset \mathbb{Z}$. Тогда $\Delta f \in K[x]$, $\deg(\Delta f) = \deg(f) - 1$.

Доказательство. • Пусть
$$f(x) = a_n x^n + \cdots + a_0$$
, где $n = \deg(f)$.

- \bullet По биному Ньютона, $a_k ((x+1)^k x^k) = \sum_{i=1}^K a_k C_k^i x^{k-i}$.
- Поэтому $\Delta f \in K[x]$.
- Одночлены с x^n в Δf сокращаются, а единственный одночлен с x^{n-1} это $a_n \mathrm{C}_n^1 x^{n-1}$ с коэффициентом $a_n \mathrm{C}_n^1 \neq 0$. Следовательно, $\deg(\Delta f) = n-1$.