Static-37

Title

Twisted solid cantilever beam subjected to in-plane and out-of-plane shear forces

Description

A twisted solid cantilever beam of rectangular cross-section is individually subjected to inplane and out-of-plane shear forces at the free end.

Determine the displacements at the free end in the Z and Y directions.

Structural geometry and analysis model

MODEL

Analysis Type

3-D static analysis

Unit System

m, kgf

Dimension

 $Length\ 12\ m \quad Width\ 1.1\ m \quad Thickness\ 0.32\ m$

Element

Solid element

Material

Modulus of elasticity $E = 2.9 \times 10^7 \text{ kgf/m}^2$ Poisson's ratio v = 0.22

Sectional Property

Rectangular cross-section: h = 1.1 m, t = 0.32 m

Boundary Condition

Node 1, 3, 4, 6: Constrain D_X and D_Z Node 2, 5: Constrain D_X , D_Y and D_Z

Load Case

Case 1: In-plane shear force, $P_1 = 1.0$ kgf is applied at the free end in the -Z direction

Case 2: Out-of-plane shear force, $P_2 = 1.0$ kgf is applied at the free end in the -Y direction

Results

the tip displacement (δ_Z) in the load direction (Case 1)

the tip displacement (δ_Y) in the load direction (Case 2)

Comparison of Results

Unit: m

		OIIIt. III
Results	Theoretical	MIDAS/Civil
In-plane displacement (δ_Z)	-0.005424	-0.005395
Out-of-plane displacement (δ_Y)	-0.001754	-0.001734

Reference

MacNeal, R. H., and Harder, R. L. (1985). "A proposed Standard Set of Problems to Test Finite Element Accuracy", Finite Element in Analysis and Design, 1, Elsevier Science Publishers, North-Holland, 3-20.