Implementation of queue using average LL Stack

Perfect Number Question
Double ended queue
Sliding Window maximum

Quiu				•	. 0	•	•	•
<u>ر.</u>	msvilid.	<i>/</i> · · ·	• •	•	<u>-</u>	rumi 1	oved	•
	, · · · · · · · · · · · · · · · · · · ·	3 .	② .	. •	. 1	•		٠
	linear	data	stru	cture	 wh	ru	elem	int
	gets ad	did f	rom	one	end,	but	•	•
	gets ad get ru	moved	from	n oth	we	nd.		•
	FILE	= 0		•				•
		• •		•	•	•		•
	1 2 3			•	• •			٠
Some rual	world exan			•	•	•		•
	cet countu plaza					•		•
J. Brim	tivi —	• • —	uu t	o pru	nt	•		•
4. Cui	tomur sur	vice	• •		•	•		•
		> Fui	st com	e for	ser ser	we b	nsis	٠
Functions	•			,		•		1
	add - Er	19mm	()	<u></u>				
	work - pr	guille	(_)	•	• •	•		•
	op - p uze - x	uk ()		•	•	•		٠
LL	~		• •	٠	• •	•	•	•
Avray						•		•
Stacks		• •		•	•	•		•

```
Arrays
         27 26 35 5 6 7 15 16 17 25 26
                       = inder of element which
just got removed
   = front = -
    n = ruar = -
                       inder of element which has just been added
                                engueue (1<u>5</u>)
                                enquire (16
               dequeue ()
enquiu (19)
                                enque (17)
               enguiu (<u>5</u>)
enqueue (26)
                                enguiu (25_)
                                 enquiu (26
               enquiu (6.)
engueur (35)
                                 enque (27)
               enquiu (7)
                                      = = +1
         n= (n+1) % N
A[n] = x
```

How will you move?

$$\begin{cases} 1 & = 1 \\ 1 & = 1 \end{cases}$$

oueur being

A small mistake

int size () {

ruturn sz;

 $TC \longrightarrow$

Linked hist

O(1)
Insert (add Last)

T. Next = NE

Head = NULL (19)

Tail = NULL (19)

SZ++

Removal (RemoveFirst)

H = H. Next

Peek()
Head

Size ()

0(1)

Ours

٠	10 25	42 49 51	63	•	•	• •
· K	() 18 26 35 C	insution	٠	•	٠	19
run	noval		٠	•	•	26 ·
٠		42 1 1	٠	•	٠	35
•		49 / 1	•	•	•	42
•		56	٠	•	٠	49
•		19 1	٠	•	•	56
•		26	٠	•	•	63
•		35	٠	•	•	
•			•	•	•	
•	enquire .	dequiere	٠	•	•	• •
•	Stack	stack	٠	•	•	•
•		_	ral	•	•	
•		(Remo	ider	्र	91	uue)
٠			•	. 0	•	• •

enquire () dequire () dequire Stack push into enquine Hack $SZ \neq 0$ SZ== 0 Pop 1. empty all enqueue stack and put it into dequeue Stack 2. 2000 Ouiz: en (3) en(7)en (12.) 371283 deg() deg () en(8) en(3)1283 <u>ms</u>

Ouiz:

en(4)

deg,

en(9)

en(3)

en(7)

en(11)

en(20)

deg()

deg en

3 7. 11 20

N ----> Number of series

$$\frac{12 \times 10 + 1}{12 \times 10 + 2} = 121$$

```
solve (int N) {
          int
                  \mathcal{A} \left( N = 1 \right)
                                 rutum ];
                  \mathcal{L}_{N} = 2
                                  return 2;
                   Quiu (int) q;
                   q. enquiu (1),
q. enquiu (2)
TC: O(N)
                   L=3
                   while (i <= N) {
50:0(N)
                           rum = q. dequeue().
                           a = rem x lo + 1
                           b = rem x10+2
                           if (i == N) { rutum a}
                           4 (i+1==N) { rutum b}
                            q.add(a);
q.add(b);
                             1=1+2;
```

Dry Run:

$$\alpha = 11 \quad 21$$

a = 11 21 b = 12(22)ans

M = 6

Deque: Doubly Ended	Queue
linear data structure allows removal & ins	vition at both ends
6 important functions:	
1) Insuit at front	bush-front ()
3) delete at front	push_back() pop_back()
4) delete at back 5) front 6) last	back (

•

•

•

•

•

•

•

•

٠

•

•

•

•

•

•

•

•

•

•

•

•

•

. .

•

•

•

•

•

•

٠

•

Sliding Window Maximum

q given an integer away A and a window

Find the maximum in all windows

$$A = \begin{cases} 10 & 1 & 9 & 3 & 7 & 6 & 5 & 11 & 8 \end{cases}, k = 4$$

Ams = 10 9971111

Ans 4 4 5

$$A \left[S - \overline{I} \right] = \frac{\text{top of}}{\text{Deque}}$$

```
void max window (int[] A, int K) {
       Deque (int > dq

// FIRST WINDOW

for (int i=0)
                            i<K; i++) {
                 while (\frac{dq \cdot sizel}) > 0 & L

A[i] > dq \cdot back()) {
dq \cdot pop - back()
                  dq. push-back(A[i])
       print (dg. front())
       // Next windows
       S=1, e=K
N=A.length
while (e < N) {
                 if (A[S-1] = = dq.front()){
                            dq. pop-front();
```

// Handle e while (dq.sizel) >0
L& A[e] >dq.backu)

dq. pop-back();

dq. push-back (A[e]);

// give the ans

print (dq. front ());

S++ } e++ } move to next window

Every element — touched twice going in 7 deque going out

Tc: 0(N)

950: 1 0(1K)