Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Kondratyev Andrey Гр. 320201

Вариант 2

Часть I. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:416e:6472:6500:0/104

Задание 1.2: разбить сеть из п.1.1 на 2 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'{\Gamma}C},}$	2001: db8: 0: 4ee9: 416e: 6472: 6500: 0/105
Префикс $N_{\rm C,PePS}$	2001:db8:0:4ee9:416e:6472:6580:0/105

Часть II. Планирование адресного пространства IPv4

X0 = целая часть (N*16)/256+10 = целая часть (2*16)/256+10 = 10

X1 = остаток от деления (N*16)/256 = остаток от деления (2*16)/256 = 32

Дано: Сеть 10.32.0.0/12

Задание 2.1.1: разбить сеть на 16 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	32	0	0
Адрес сети	00001010	00100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета.

3. Итого, получается, что сеть 10.32.0.0/12 мы разбили на 16 подсети, в каждой из которых по 65534 узлов, указываем первые 5 подсетей:

	10	32	0	0
Адрес сети дв.с	00001010	00100000	00000000	00000000
Маска дв.с	11111111	11111111	00000000	00000000
	255	255	0	0

200 0
10.32.0.0/16
10.32.0.1
10.32.255.254
10.32.255.255
10.33.0.0/16
10.33.0.1
10.33.255.254
10.33.255.255
10.34.0.0/16
10.34.0.1
10.34.255.254
10.34.255.255
10.35.0.0/16
10.35.0.1
10.35.255.254
10.35.255.255
10.36.0.0/16
10.36.0.1
10.36.255.254
10.36.255.255

Дано: Сеть 10.32.0.0/12

Задание 2.1.2: разбить сеть на 12 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(12 \leqslant 2^4 = 16)$ подсетей необходимо заимствовать 4 бит из 3-го октета (получается, что сеть можно разбить на 16 подсетей: $2^4 = 16$; оставшиеся 16 бит идут под узлы: $2^{16} - 2 = 65534$ в каждой подсети).

3. Указываем первую и последнюю подсети:

Адрес сети $N_1/$ Префикс N_1	10.32.0.0/16
${ m A}$ дрес первого узла N_1	10.32.0.1
Адрес последнего узла N_1	10.32.255.254
Широковещательный адрес N_1	10.32.255.255
Адрес сети $N_2/$ Префикс N_2	10.43.0.0/16
Адрес сети $N_2/$ Префикс N_2 Адрес первого узла N_2	10.43.0.0/16 10.43.0.1
<u> </u>	,

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 16 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	32	0	0
Адрес сети	00001010	00100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=4, т.к. $2^4-2=14$. Т.е. нужно выбрать такую маску, которря выделит ровно 4 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^{16}=65536$ подсетей по 14 узла(08) в каждой.

3. Указываем последние 5 подсетей:

$oxed{A}$ дрес сети $N_1/$ Префикс N_1	$ \boxed{ 10.47.255.176/28 } $
Адрес первого узла N_1	10.47.255.177
Адрес последнего узла N_1	10.47.255.190
Широковещательный адрес N_1	10.47.255.191
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	$\fbox{10.47.255.192/28}$
Адрес первого узла N_2	10.47.255.193
Адрес последнего узла N_2	10.47.255.206
Широковещательный адрес N_2	10.47.255.207
$oxedsymbol{\Lambda}$ дрес сети $N_3/$ Префикс N_3	10.47.255.208/28
Адрес первого узла N_3	10.47.255.209
Адрес последнего узла N_3	10.47.255.222
Широковещательный адрес N_3	10.47.255.223

$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	$\fbox{10.47.255.224/28}$
Адрес первого узла N_4	10.47.255.225
Адрес последнего узла N_4	10.47.255.238
Широковещательный адрес N_4	10.47.255.239
Адрес сети $N_5/$ Префикс N_5	10.47.255.240/28
Λ дрес первого узла N_5	10.47.255.241
Адрес последнего узла N_5	10.47.255.254
Широковещательный адрес N_5	10.47.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 15 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	32	0	0
Адрес сети	00001010	00100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=5, т.к. $2^5-2=30 \geqslant 15$.

	10	32	U	U
Адрес сети дв.с	00001010	00100000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11100000
	255	255	255	224

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	10.32.0.0/27
Адрес первого узла N_1	10.32.0.1
Адрес последнего узла N_1	10.32.0.30
Широковещательный адрес N_1	10.32.0.31

Адрес сети $N_2/$ Префикс N_2	$\fbox{10.47.255.224/27}$
Адрес первого узла N_2	10.47.255.225
Адрес последнего узла N_2	10.47.255.254
Широковещательный адрес N_2	10.47.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 30 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	32	0	0
Адрес сети	00001010	00100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=5, т.к. $2^5-2=30$.

	10	32	0	0
Адрес сети дв.с	00001010	00100000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11100000
	255	255	255	224

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	$\fbox{10.47.255.96/27}$
Λ дрес первого узла N_1	10.47.255.97
Адрес последнего узла N_1	10.47.255.126
Широковещательный адрес N_1	10.47.255.127
Λ дрес сети $N_2/$ Префикс N_2	10.47.255.128/27
${ m A}$ дрес первого узла N_2	10.47.255.129
Адрес последнего узла N_2	10.47.255.158
Широковещательный адрес N_2	10.47.255.159

Адрес сети $N_3/$ Префикс N_3	$ \boxed{ 10.47.255.160/27 } $
Адрес первого узла N_3	10.47.255.161
Адрес последнего узла N_3	10.47.255.190
Широковещательный адрес N_3	10.47.255.191
$oxedsymbol{\Lambda}$ Адрес сети $N_4/$ Префикс N_4	$\boxed{10.47.255.192/27}$
Адрес первого узла N_4	10.47.255.193
Адрес последнего узла N_4	10.47.255.222
Широковещательный адрес N_4	10.47.255.223
$oxedsymbol{\Lambda}$ дрес сети $N_5/$ Префикс N_5	10.47.255.224/27
Адрес первого узла N_5	10.47.255.225
Адрес последнего узла N_5	10.47.255.254
Широковещательный адрес N_5	10.47.255.255