

Empirische Evaluation: Kontrollierte Experimente

Ilhan Aslan, Chi Tai Dang, Björn Bittner, Katrin Janowski, Elisabeth André

Human Centered Multimedia

Institute of Computer Science Augsburg University Universitätsstr. 6a 86159 Augsburg, Germany

Kontrollierte Experimente – Grundlagen

- Beantwortung offener Fragen über:
 - Performance des Systems
 - Zufriedenheit der Nutzer

– ...

- Wissen über generische Fragen zu Anwendungen:
 - Vergleich von Designstrategien
 - Vergleich von Eingabe- bzw. Ausgabegeräten (Interaktionsparadigmen und Präsentationsformen)

– ...

- Sammeln von Wissen für Guidelines
 - Was ist in welcher Situation gut oder schlecht?
 - Wie sollte man das System in welchen Situationen realisieren?

– ...

Kontrollierte Experimente – Grundlagen

- Grundlegende Idee
 - Spezifikation von Werten (Variablen), die gemessen und verglichen werden sollen
 - Ausgewählte Teilnehmer führen ausgewählte Tasks aus
 - Ergebnisse helfen Schlussfolgerungen zu treffen
- Typischerweise als Laborstudien durchgeführt

Kontrollierte Experimente – Was wird getestet?

Mögliche Hypothesen:

- Das System funktioniert.
- Das System funktioniert besser mit Merkmal X.
 - > Test mit und ohne X
- Merkmal X hat die Eigenschaften...
 - Verändere X und beobachte die Effekte
- System A funktioniert besser als B (weil es X hat).
 - ➤ Test mit System A und B

Wichtige Fragestellungen:

- Ist nur Merkmal X als Grund für die Verbesserung möglich?
- Was bedeutet "besser"?
 (z.B. effizienter, effektiver, zufriedenstellender)

Kontrollierte Experimente – Schritte bei der Durchführung

1. Experimentelles Design:

- Variablendefinition:
 - Manipulierbare Eigenschaften (z.B. "Merkmal X")
 - Messbare Eigenschaften (z.B. Effizienz, Effektivität…)
 - Messverfahren:
 - Befragungs- und/oder Beobachtungstechniken
 - Qualitative und/oder Quantitative Messungen
- Hypothesen (Annahmen über Variablen) aufstellen
- Gruppendesign
 - Within-Groups
 - Between-Groups

Kontrollierte Experimente – Schritte bei der Durchführung

- Planung der Studie
 - Wahl der Versuchspersonen (Welche? Wie viele?)
 - Festlegung des Ablaufs
 - Auswahl der Aufgaben (Tasks)
 - Sonstiges: z.B. Texte zur Einführung und Erläuterung / Aufklärung
 - Sonstiges: Beschaffung und Testen der Messverfahren
- 2. Durchführung der Studie
 - Pilottest
 - Eigentliche Studie
- 3. Statistische Auswertung der Ergebnisse

Zwei Typen von Variablen:

- Unabhängige Variablen werden im Experiment verändert und beeinflussen das Ergebnis (Manipulierbare Eigenschaften)
- Abhängige Variablen hängen von den unabhängigen Variablen ab und werden gemessen (Messbare Eigenschaften)

Einfache Experimente:

Eine unabhängige Variable, ein bis zwei abhängige Variablen

Komplexere Experimente:

- Multivariate Experimente (mehrere abhängige Variablen)
- Multifaktorielle Experimente (mehrere unabhängige Variablen)

Unabhängige Variablen legen die Bedingungen im Experiment fest.

- Beispiele:
 - Anzahl der Elemente in einer Liste
 - Schriftgröße

Die Werte pro unabhängiger Variable heißen Level.

- Beispiel:
 - Unabhängige Variable: Schriftgröße
 - Level 1: 12
 - Level 2: 16
 - Level 3: 20

Frage:

Wie verändert die Manipulation der unabhängigen Variablen eine messbare Eigenschaft?

Vorgehen:

Durchlaufen aller Level der **unabhängigen Variablen** und Messen der entsprechende Effekte anhand der **abhängigen Variablen**.

Messverfahren:

- Objektive Datenerhebung
- Subjektive Datenerhebung

- Objektive Datenerhebung (Beobachtungstechniken)
 - Beispiele:
 - Verhalten der Nutzer (audio-visuelle Aufzeichnungen)
 - Zeit um einen Task T durchzuführen (Log-Files)
 - Anzahl der Fehler oder durchgeführten Aktionen (Log-Files)
- Subjektive Datenerhebung (Befragungstechniken)
 - Beispiele:
 - Vorlieben der Nutzer
 - Schwierigkeitsgrad der Nutzung
- Ergebnisse:
 - quantitative Daten und / oder
 - qualitative Daten, die quantifiziert wurden (z.B. Annotationen)

Wichtig!! Störeinflüsse vermeiden!!

- Abhängige Variablen sollten nur von den unabhängigen Variablen beeinflusst werden!
- Beispiel: "Schriftgröße" (Level: 12, 16 und 20)
 - Zwei abhängige Variablen: Zeit und Fehleranzahl
 - Zu jedem der drei Level werden die abhängigen Variablen gemessen und später in der Analyse verglichen
 - Beispiele für Ergebnisse:
 - Für die Schriftgröße gilt, dass:
 - der Level 16 am effizientesten (Zeit) ist.
 - der Level 20 am effektivsten (Anzahl Fehler) ist.
 - Mögliche Störeinflüsse: Licht, andere Personen im Raum ...

Experimentelles Design -Hypothese

Definition:

Vermutung bzw. Vorhersage bzgl. der Beziehung zwischen abhängiger und unabhängiger Variable (Ergebnis des Experiments)

Beispiele:

- H1: Unterschiedliche Schriftgrößen verändern die Effizienz.
- H0-1: Die Schriftgröße hat keinen Einfluss auf die Effizienz. (Gegenhypothese).
- H2: Unterschiedliche Schriftgrößen verändern die Effektivität.
- H0-2: Die Schriftgröße hat keinen Einfluss auf die Effektivität. (Gegenhypothese).
- Hinweis: Hypothesen können auch eine gerichtete Annahme enthalten. (z.B. Größere Schriftgröße erhöht die Effektiviät.)

Experimentelles Design -Hypothese

- Mit Hilfe des Experiments wird die Hypothese entweder bestätigt oder widerlegt
- Vorgehen:
 - Beginn mit einer Null-Hypothese (Gegenteil der Annahme):
 - "Die unabhängige Variable hat keinen Effekt auf die abhängige."
 - Durchführung des Experimentes und Nutzung statistischer Methoden um die Null-Hypothese zu widerlegen
 - Wenn die Statistik einen signifikanten Unterschied für die Ergebnisse des Experiments zeigt, ist der Effekt kein Zufall und die tatsächliche Annahme damit bewiesen! ("Signifikanz" siehe Foliensätze Datenanalyse)

1. Experimentelles Design - Grundproblem: Versuchspersonen

Versuchspersonen sind:

- teuer und schwer zu finden
 - > meist zu wenige Versuchspersonen,
 - ➤ bei hoher Variabilität Probleme mit statistischer Analyse
- **sehr variabel** bzgl. Vorwissen, Fähigkeiten, Reaktionszeiten, Einstellung zum Versuchsleiter...
 - ➤ Heterogenität statt Homogenität
 - > Störvariablen beim Vergleich der Ergebnisse
 - ➤ Nur Personen, die zu den Personas passen!

lernfähig

- ➤ <u>Trainingseffekt:</u> Aufeinanderfolgende, gleiche Versuche sind nicht unabhängig, da die Versuchsperson mit jedem Versuch dazulernt.
- ➤ Reihenfolgeeffekt: Wird eine Versuchsperson in unterschiedl. Levels getestet, kann die Reihenfolge der Level von Bedeutung sein.

Experimentelles Design - Gruppendesign

Within-Groups

Alle Teilnehmer führen alle Levels aus

- Werte aus jedem Level direkt miteinander vergleichbar
- kein Personeneffekt

ABER: Oft starke Lerneffekte!

- Reduzierung von Lerneffekten durch Beachtung von Reihenfolgen
- Beispiel:

Gruppe 1 Gruppe 2

Level 1 Level 2

Level 2 Level 1

gleiche Personenanzahl in beiden Gruppen

Experimentelles Design - Gruppendesign

Between-Groups

Unabhängige Gruppen testen immer genau einen Level

Level 1

Gruppe 1

➤ Werte von Person X aus Gruppe "Level 1" werden mit Werten von Person Y aus Gruppe "Level 2" verglichen.

Gruppe 2

Level 2

kein Lerneffekt

ABER: Personeneffekt, wenn Gruppen nicht homogen ist!

- Sind X und Y wirklich vergleichbar?
 - Reduzierung von Personeneffekten durch:
 - sehr viele Testpersonen
 - bewusste Eingruppierung von Personen (z.B. gleich viele Männer und Frauen)

2. Durchführung des Experimentes

- 1. Begrüßung und Aufklärung über die Grundlagen
- 2. Erlaubnis der Aufzeichnung einholen
- 3. Starten bzw. Kalibieren der Aufzeichnungsgeräte
- 4. Eigentlicher Versuch:
 - Versuchspersonen die Aufgaben mitteilen.
 - Abarbeitung der Aufgaben. (Wird aufgezeichnet.)
 - Within-Groups: Erneute Abarbeitung der Aufgaben mit geänderten unabhängigen Variablen bis alle Level durchlaufen wurden.
- 5. Aufzeichnungen beenden und bedanken
- 6. Eventuell Aufklärung über Details der Studie (z.B. gewünschte Erkenntnisse...)

3. Auswertung des Experimentes

- Auswertung der Ergebnisse z.B. anhand von Annotationen der Aufzeichnungen oder der quantitativen Daten (z.B. Click-Stream)
 - Beispiele:
 - Benötigte Zeit oder Fehleranzahl
 - Bewertung der Zufriedenheit anhand einer Skala von 1-5.
- Ergebnis:
 - Hypothese entweder belegt oder widerlegt.

Kontrollierte Experimente – Gütekriterien für Ergebnisse

Objektivität:

- Ergebnisse sind unabhängig davon welche Person das Experiment durchgeführt, ausgewertet oder die Ergebnisse interpretiert hat und wie sie sich dabei verhalten hat.
- Gibt es das selbe Ergebnis, wenn ein anderer Versuchsleiter den Versuch durchführt, auswertet und interpretiert?

Reliabilität bzw. Zuverlässigkeit:

- Grad der Genauigkeit, mit der ein bestimmtes Ergebnis bei einer Wiederholung des Experiments erneut gemessen wird (unabhängig davon, ob man dieses Ergebnis mit dem Test überhaupt messen wollte).
- Gibt es das selbe Ergebnis, wenn ich den Versuch wiederhole?

Kontrollierte Experimente – Gütekriterien für Ergebnisse

Validität:

- Grad der Genauigkeit mit der ein Test tatsächlich das misst, was er messen soll.
- Beispiel: Klausur
 Alles verstanden oder nur gut auswendig gelernt?
- Kann man mit dem Ergebnis wirklich eine Aussage über die Hypothese treffen?
- Arten von Validität:
 - Konstruktvalidität
 - externe Validität
 - interne Validität

Gütekriterien für Ergebnisse -Validität

1. Konstruktvalidität:

- Gibt es Korrelationen zwischen unabhängiger Variablen A und abhängiger Variablen B?
- Repräsentieren die unabhängigen und abhängigen Variablen tatsächlich die erwarteten Konstrukte?
- Schlechtes Beispiel: Erfassung der Intelligenz durch Kopfumfang (keine Korrelation)
- Stichwort: sinnvolle Variabilität

2. Externe Validität (Allgemeingültigkeit):

 Lassen sich die Schlussfolgerungen bzw. Entscheidungen auf andere Populationen, Situationen oder Zeitpunkte generalisieren bzw. übertragen?

Gütekriterien für Ergebnisse -Validität

3. Interne Validität:

- Sind die Ergebnisse auf eine Kausalbeziehung zwischen unabhängigen Variablen (UV) und abhängigen Variablen (AV) zurückführbar?
- Ist die AV einzig von der UV abhängig oder gab es während der Durchführung weitere Variablen bzw. Effekte, die die AV beeinflusst haben (= Störvariablen)?
- Beispiel: Verbesserte Effizienz der Nutzung nur mit der Änderung der Schriftgröße erklärbar oder hat sich noch etwas anderes geändert?
 - z.B. Lichtverhältnisse, Lautstärke?
 - Gab es Personen- oder Lerneffekte?
 - Lerneffekt, der Nutzer weiß jetzt wie die Aufgabe zu erfüllen ist und ist deshalb schneller
 - Personeneffekt, der eine Nutzer ist geübter bei der Aufgabenerfüllung als der andere Nutzer

Gütekriterien für Ergebnisse -Sicherung der externen Validität

- Generalisierung bezüglich
 - experimenteller Einheiten (sprich: Stichprobe)
 - Auswahl der Versuchspersonen (VP):
 - Entsprechen die VP den Personen, für die die Ergebnisse gelten sollen?
 - ➤ Repräsentative Stichprobe
 - Ist das Ergebnis auch mit anderen Versuchspersonen der Zielgruppe zu erwarten?
 - experimenteller Umgebung (sprich: Setting)
 - Situationsmerkmale
 - Künstlichkeit der experimentellen Situation
 - Ist das Ergebnis auch in einem anderen Setting zu erwarten (z.B. im Feld)?

Gütekriterien für Ergebnisse - Sicherung der internen Validität

Ziele:

- Äquivalenz aller experimentellen Einheiten (Personen, Gruppen...) hinsichtlich aller Merkmale, die nicht zur Erklärung der Unterschiede der abhängigen Variablen herangezogen werden sollen.
 - Veränderungen der abhängigen Variable können allein auf die Variation der unabhängigen Variablen zurückgeführt werden.
- 2. Variation bzw. Konstant-Haltung der Variablen
 - Kontrolle der unabhängigen Variablen durch planmäßige Variation
 - Kontrolle von Störvariablen durch Konstant-Haltung ihres Einflusses

Gütekriterien für Ergebnisse -Sicherung der internen Validität

Problem:

Versuchsteilnehmer können nicht "konstant gehalten" werden.

Verfahren zur Sicherung der internen Validität:

- Randomisieren
- Ausbalancierung
- Parallelisieren

Sicherung der internen Validität - Randomisierung

- Zufallszuweisung von:
 - Personen zu Gruppen
 - Gruppen zu experimentellen Bedingungen
- Ziel:
 - Zufällige Verteilung (unkontrollierbarer) Personenmerkmale
 (z.B. Motivation, Erfahrung, Stimmung...) auf verschiedene Gruppen
 - Systematische Unterschiede, die zu systematischen Fehlern in den Daten führen, sollen sich über die gesamte Gruppe hinweg "rausmitteln".
- Wann?
 - Unverzichtbar, wenn Störvariablen wirksam sind und keine andere Kontrolle möglich ist
 - Funktioniert nur bei großen Stichproben optimal

Sicherung der internen Validität -Ausbalancierung

Vollständige Ausbalancierung

Jeder Level soll:

- gleich häufig vorkommen
- gleich häufig vor und nach jedem anderen Level vorkommen
- jeder VP gleich oft dargeboten werden (bei Messwiederholung (= Within-Group Design))

Beispiel:

ABC

A C B

BAC

BCA

CBA

CAB

3! = 3*2 Möglichkeiten

Sicherung der internen Validität - Ausbalancierung

Unvollständige Ausbalancierung

Jeder Level steht:

- gleich oft an 1., 2., ...k-ter Stelle
- gleich oft vor jeder anderen Bedingung

Beispiel:

```
ABCD
BDAC 4 aus 24 (4!) möglichen Reihenfolgen
CADB wurden realisiert!
DCBA
```


Sicherung der internen Validität - Parallelisierung

- "Gleichmachung" verschiedener Gruppen bezüglich eventuell beeinflussender Merkmale
- Wann?
 - bei kleinen Stichproben
 - bei sehr engem Zusammenhang zwischen AV/UV und der Störvariablen.
 - Besonders bei Between-Groups Design, wenn es zu Störung durch Personeneffekte kommen kann.

Wie?

- Gruppen werden so gebildet, dass sie sich in Mittelwert und Standardabweichung der Störvariablen nicht unterscheiden
- Verteilung von Personenmerkmalen auf verschiedene Gruppen durch matching ("Statistische Zwillinge")