Precalculus

Composition of Functions

Rayan Ibrahim

Contents

Li	List of Examples		
Li	st of	Definitions	iii
5	Con	nposition of Functions	1
	5.1	Evaluating Compositions	1
	5.2	Recognizing Compositions	4
	5.3	Domain of Compositions	5

List of Examples

5.1	Example 5.1: Evaluating Compositions	1
5.2	Example 5.2: Compositions With Tables	2
5.3	Example 5.3: Compositions With Graphs	3
5.4	Example 5.4: Recognizing Compositions	4
5.5	Example 5.5: Domain of Compositions 1	5
5.6	Example 5.6: Domain of Compositions 2	6
5.7	Example 5.7: Domain of Compositions 3	7
5.8	Example 5.8: Domain of a Complicated Function	8

List of Definitions

5 Composition of Functions

In this chapter we will learn about composition of functions.

Given two functions, we may *compose* them; one function may act as an input of another. Let f(x) and g(x) be two functions.

We write a composition as f(g(x)) or g(f(x)), read as "f of g of x" and "g of f of x" respectively. An alternate notation of f(g(x)) is $(f \circ g)(x)$, which can be read as "f composed with g evaluated at x." T

To evaluate the composition $f(g(x)) = (f \circ g)(x)$, we first evaluate g(x), then we plug the result in to f(x). Note, it is not always the case that f(g(x)) = g(f(x)). In other words, **the order of composition matters**. To get the notation straight:

$$(f \circ g)(x) = f(g(x))$$
$$(g \circ f)(x) = g(f(x))$$

5.1 Evaluating Compositions

Let's do an example with some concrete functions.

Example 5.1: Evaluating Compositions

Let
$$f(x) = x + 5$$
 and $g(x) = x^2 + 2$. Then

$$f(g(x)) = (x^2 + 2) + 5 = x^2 + 7$$

$$g(f(x)) = (x + 5)^2 + 2 = x^2 + 10x + 27$$

Notice how $f(g(x)) \neq g(f(x))$.

We can compute some values for the compositions. For example, for f(g(2)) we compute $g(2)=(2)^2+2=6$, then plug 6 into f, so

$$f(g(2)) = f(2^2 + 2) = f(6) = (6) + 5 = 11.$$

Or, like above, we can write the composition in its general form, such as $f(g(x)) = x^2 + 7$ and then evaluate. Here are some examples, showing the many ways we can compute a composition of functions.

•
$$(g \circ f)(2) = ((2) + 5)^2 + 2 = (7)^2 + 2 = 51$$

•
$$g(f(10)) = ((10) + 5)^2 + 2 = (15)^2 + 2 = 227$$

•
$$(f \circ g)(1) = f(g(1)) = f((1)^2 + 2) = f(3) = (3) + 5 = 8$$

Try to work out the following on your own. Let $p(x) = \sqrt{x+1}$ and $q(x) = x^2 + 5$. Show that

•
$$(p \circ q)(x) = \sqrt{x^2 + 6}$$

•
$$(q \circ p)(x) = x + 6$$

We may also evaluate compositions from a table.

Example 5.2: Compositions With Tables

Consider the following table of values for two functions r and q.

x	r(x)	q(x)
1	4	12
2	3	10
3	1	5
4	2	14

Compute q(r(2)) and q(r(4)).

To evaluate these, we first must evaluate the inside. So

• q(r(2)): First we evaluate r(2), which from the table we know is 3.

x	r(x)	q(x)
1	4	12
2	3	10
3	1	5
4	2	14

So q(r(2)) = q(3). Looking at the third row, we know q(3) = 5.

x	r(x)	q(x)
1	4	12
2	3	10
3	1	5
4	2	14

• q(r(4)): First we evaluate r(4), which from the table we know is 2. So q(r(4)) = q(2). Looking at the third row, we know q(2) = 10.

Finally we can evaluate compositions via graphs. Note, it is always the same process. For any composition $(f \circ g)(x) = f(g(x))$, we first evaluate g(x) to get a number, then we plug in that number to f. On a graph this is nothing new; given an x coordinate, we find the y coordinate on a graph of g, then use that y coordinate as an x coordinate in a picture of f.

Consider two graphs below of f and g.

• To evaluate f(g(2)), we first evaluate g(2). From the graph of g, we see that g(2)=4. So f(g(2))=f(4)=3.

• To evaluate g(f(2)), we first evaluate f(2). From the graph of f, we see that f(2) = 2. So g(f(2)) = g(2) = 4.

5.2 Recognizing Compositions

As we've seen, given two functions, there are two ways we can compose them. We can also reverse the process; given a single function, we can recognize and write it as a composition of functions. Any function f is a composition of itself and the *identity* function g(x) = x. We've been writing functions all along as *trivial* compositions; f(x) is "f of x", where x is itself a function (a boring one, but still a function!) So a composition is not always unique, that is, it is possible that a function can be written as a composition in more than one way.

Example 5.4: Recognizing Compositions

The function $f(x) = (x-2)^4 + 3$ is a composition h(g(x)) where g(x) = x-2 and $h(x) = x^4 + 3$. We can check this:

$$h(g(x)) = h(x-2) = (x-2)^4 + 3.$$

One will require a bit of creativity and intuition when recognizing a composition. It may be helpful to think of needing one "outside function" and one "inside function". Here, the outside function is $x^4 + 3$ and the inside function is x - 2. Taken together:

$$f(x) = (x-2)^4 + 3.$$

We could have also set $h(x) = (x-2)^4$ and g(x) = x+3, and then f(x) = g(h(x)) (check this yourself). In colors,

$$f(x) = ((x-2)^4) + 3$$

Suppose $H(x) = 7\sqrt{x} - 4$. Then we find f(x) = 7x - 4 and $g(x) = \sqrt{x}$ so that

$$f(g(x)) = f(\sqrt{x}) = 7(\sqrt{x}) - 4 = H(x)$$

In general, when given a function and asked for a composition, we want to find an "inner" function and an "outer" function, then we can check our composition. Another way to think about it is: we find an inner function, and replace it with an x. The

resulting function is the outer function. For example

$$f(x) = \sqrt{x+5} + 2.$$

We can make x + 5 the inner function, and replacing it with an x we get an outer function $\sqrt{x} + 2$.

5.3 Domain of Compositions

Lastly, let's look at the domain of a composition. Consider a composition $f \circ g$. The domain of $f \circ g$ is all inputs x such that x is in the domain of g and g(x) is in the domain of f. That is, there are two things to check; the validity of an input x for $f \circ g$ relies on g, so that the output g(x) is defined, and further, g(x) must be in the domain of f so that f(g(x)) is defined. This all sounds a bit confusing, so let us do some examples.

Example 5.5: Domain of Compositions 1

Let $g(x) = x^2 - 1$ and $h(x) = \sqrt{x - 6}$. Let's find the composition $g \circ h$ and its domain.

$$(g \circ h)(x) = g(\sqrt{x-6}) = (\sqrt{x-6})^2 - 1.$$

Notice, we may simplify further to obtain $(g \circ h)(x) = (x-6)-1 = x-7$. However, notice that by simplifying, one would incorrectly assume that the domain of $(g \circ h)$ is all real numbers. However, if we write $g \circ h$ in the non simplified form $(g \circ h)(x) = (\sqrt{x-6})^2 - 1$, we may notice that we cannot have any number x less than 6 as an input, otherwise $\sqrt{x-6}$ would be undefined. That is, the domain of h, namely $[6,\infty)$ plays an important role here. Since the range of $\sqrt{x-6}$ is all real numbers, and the domain of $g \circ h$ is $[6,\infty)$. In total we have

$$(g \circ h)(x) = x - 7$$

Domain: $[6, \infty)$

Let's do a more complicated example.

Example 5.6: Domain of Compositions 2

Consider the functions $f(x)=\frac{x}{x+1}$ and $g(x)=\frac{11}{x}$. Find and simplify $(f\circ g)(x)$. Then, find the domain.

At this point, we should be able to evaluate a composition. Here it's a bit of work; the algebra can be tricky!

$$(f \circ g)(x) = f(g(x))$$

$$= f\left(\frac{11}{x}\right)$$

$$= \frac{\left(\frac{11}{x}\right)}{\left(\frac{11}{x}\right) + 1}$$

$$= \frac{\left(\frac{11}{x}\right)}{\frac{11}{x} + \frac{1}{1} \cdot \frac{x}{x}}$$

$$= \frac{\left(\frac{11}{x}\right)}{\frac{11+x}{x}}$$

$$= \left(\frac{11}{x}\right)\left(\frac{x}{11+x}\right)$$

$$= \frac{11}{11+x}$$
(Keep, Change, Flip)
$$= \frac{11}{11+x}$$

Now note, we have a rational function. The domain is **not** simply obtained from finding values for which the denominator is not equal to 0. That is, the domain is **not** simply $(-\infty, -11) \cup (-11, \infty)$. This is a *part* of the domain of $(f \circ g)$. To find the domain, we go back to when we plugged g(x) inside of f:

$$f(g(x)) = \frac{\left(\frac{11}{x}\right)}{\left(\frac{11}{x}\right) + 1}.$$

In this form, we find values of x which we must exclude from the domain. First, we have $\frac{11}{x}$ in the equation. This implies that $x \neq 0$, as then the function would be undefined. Notice that this issue does not appear in the simplified version of the composition! Then we notice that we have a rational function, so we must

check the denominator:

$$\frac{11}{x} + 1 \neq 0$$

$$\frac{11}{x} \neq -1$$

$$11 \neq -x$$

$$-11 \neq x$$

So we have two excluded values, -11 and 0. Thus the domain of the composition is $(-\infty, -11) \cup (-11, 0) \cup (0, \infty)$.

The above example is some work, but one needs to keep their head straight and obey algebra rules.

Example 5.7: Domain of Compositions 3

Let $p(x) = \sqrt{x+1}$ and $q(x) = x^2 + 5$. Find $(q \circ p)(x)$ and find the domain. We evaluate:

$$(q \circ p)(x) = q(p(x))$$

$$= q(\sqrt{x+1})$$

$$= (\sqrt{x+1})^2 + 5$$

$$= x+1+5$$

$$= x+6.$$

Again, while $(q \circ p)(x) = x + 6$, a line, the domain is **not** $(-\infty, \infty)$. We focus on when we plugged in:

$$(\sqrt{x+1})^2 + 5.$$

Here, we have to make sure that $\sqrt{x+1}$ is defined. An even root function is defined only when the inside evaluates to a number greater or equal to 0. That is in this case, $\sqrt{\blacksquare}$ is only defined when $\blacksquare \geq 0$. So we solve $x+1 \geq 0$ which yields $x \geq -1$. So in interval notation our domain is $[-1, \infty)$.

Suppose we are given a function already composed:

Example 5.8: Domain of a Complicated Function

Let

$$f(x) = \sqrt{\frac{x-2}{(x-5)(x-3)}}$$

Now here, one needs to reason through. What do we know:

- The domain of any square root function $\sqrt{\blacksquare}$ contains all x values which satisfy $\blacksquare \geq 0$.
- There is a rational function inside the square root. We need to ensure that we find the excluded values; find the x values which make the denominator 0.

Thus, we need to solve $\frac{x-2}{(x-5)(x-3)} \geq 0$. Luckily, we've learned this before with rational inequalities. Setting the numerator equal to 0 we obtain a closed circle at x=2, and setting the denominator equal to 0 we obtain open circles at x=5 and x=3. We find test values, and end up with (this work is left to the reader):

The domain in interval notation is $[2,3) \cup (5,\infty)$.

Summary Chapter 5

List of things you need to know.

- Compositions are written in two ways $(f \circ g)(x) = f(g(x))$.
- Evaluate compositions of functions for certain values, or give a general formula.
- To find the domain of a composition, find excluded values when you plug in a function. Do not find the domain simply based on the simplified version of a composition.