Zestaw 2

Zadanie 1. Zmienne losowe X i y są niezależne i mają geśtosći odpowiednio f_1 , f_2 . Udowodnij, że gęstość zmiennej losowej Z=X/Y wyraża się wzorem $g(u)=\int_{-\infty}^{\infty}|y|f_1(yu)f_2(y)dy$.

Zadanie 2. Podać przykłady:

- zmiennych losowych X_1 , X_2 zależnych i skorelowanych,
- zmiennej losowej X i takich funkcji f, g, że zmienne f(X) i g(X) są niezależne.

Zadanie 3. Niech $Z = \sum_{n=1}^{\infty} 2^{-n} U_n$, gdzie (U_n) jest ciągiem Bernoulliego. Wykaż, że $U \sim [0,1]$.

Zadanie 4. Niech X, Y będą niezależnymi wektorami losowymi, Wykaż, że $\mathbb{P}(X \in A, (X, Y) \in B) = \int_A \mathbb{P}((u, Y) \in B) d\mu_X$.

Zadanie 5. Niech $\mathbb{P}(B) > 0$. Udowodnij, że $\mathbb{P}(A|B)$ jako funkcja A, przy ustalonym B jest prawdopodobieństwem.

Zadanie 6. Jest n monet, ale k z nich jest asymetrycznych i orzeł wypada na nich z prawdopodobieństwem 1/3. Wybrano losowo monetę i w wyniku rzutu wypadł orzeł. Jaka jest szansa, że moneta jest asymetryczna?

Zadanie 7. W zbiorze 100 monet, jedna ma po obu stronach orty, natomiast pozostałe są prawidłowe. W wyniku 10 rzutów losowo wybraną monetą, otrzymaliśmy 10 orłów. Oblicz prawdopodobieństwo, że była to moneta z dwoma orłami.

Twierdzenie 1 (Nierówność Bernsteina). Niech S_n oznacza liczbę sukcesów w schemacie Bernoulliego z prawdopodobieństwem p. Wtedy dla dowolnego $\epsilon > 0$, $\mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > \epsilon\right) \leq 2\exp(-n\epsilon^2/4)$.

Zadanie* 8. Udowodnij nierówność Bernsteina.

Zadanie 9. Korzystając z nierówności Bernsteina, udowodnij, że w schemacie Bernoulliego z prawdopodobieństwem $p, \frac{S_n}{n} \to p$ prawie na pewno.

Zadanie 10. Jeśli $VarX_n \leq C < \infty$ dla dowolnego n oraz współczynniki korelacji $\rho(X_i, X_j) \rightarrow 0$, $gdy |i - j| \rightarrow \infty$, to ciąg (X_n) spełnia SPWL.

Zadanie 11. Wykaż, że jeśli (X_n) jest ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie takich, że $\mathbb{E}X_1^- < \infty$, $\mathbb{E}X_1^+ = \infty$, to $\mathbb{P}\left(\lim_n \frac{S_n}{n} = \infty\right) = 1$.

Zadanie 12. Niech $X_1, X_2, \dots \in L^2(\Omega)$ będą nieskorelowanymi zmiennymi losowymi o wspólnie ograniczonej wariancji. Udowodnij, że wtedy $\frac{X_1+X_2+\dots X_n-\mathbb{E}(X_1+X_2+\dots X_n)}{n} \xrightarrow{P} 0$.

Zadanie 13. Niech (A_n) będą niezależnymi zdarzeniami losowymi i niech $p_n = \mathbb{P}(A_n)$. Wykaż, że wtedy $\frac{\mathbf{1}_{A_1} + \mathbf{1}_{A_2} + \dots + \mathbf{1}_{A_n}}{n} - \frac{p_1 + p_2 + \dots p_n}{n} \xrightarrow{P} 0$.

Zadanie 14. Niech (X_n) będą niezależnymi zmiennymi losowymi takimi, że $\mathbb{P}(X_n=1)=\mathbb{P}(X_n=-1)=p_n$ i $\mathbb{P}(X_n=0)=1-2p_n$. Znajdź warunek konieczny i wystarczający, by ciąg (X_n) spełniał MPWL.

Zadanie 15. Niech $X_n \rightsquigarrow \mathcal{N}(0,1)$ oraz $Y_n x \xrightarrow{P} \sigma$. Udowodnij, że wtedy $X_n Y_n \rightsquigarrow \mathcal{N}(0,\sigma^2)$

Zadanie 16. Niech (X_n) , (Y_n) będzie ciągiem niezależnych wektorów losowych. Udowodnij, że jeżeli $X_n \leadsto X$ i $Y_n \leadsto Y$, to $(X_n, Y_n) \leadsto (X, Y)$.

Zadanie 17. Niech dla dowolnego n X_n i X posiadają rozkład duskretny skupiony na liczbach całkowitych. Udowodnij, że $X_n \leadsto X$ wtedy i tylko wtedy, gdy $\mathbb{P}(X_n = x) \to \mathbb{P}(X = x)$ dla każdego całkowitego x.

Zadanie 18. Niech $\sqrt{n}(T_n - \theta)$ ma granicę według rozkładu. Udowodnij, że T_n zbiega według prawdopodobieństwa do θ .

Zadanie 19. Niech $\mathbb{E}X_n \to \mu$ i $VarX_n \to 0$. Udowodnij, że wtedy X_n zbiega według prawdopodobieństwa do μ .