■ Theorem: The Singular Value Decomposition Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ diagonal matrix Σ whose diagonal entries are nonnegative (the first r singular values of A, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$), and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

- The columns of *U* in such a decomposition are called **left singular vectors** of *A*, and the columns of *V* are called **right singular vectors** of *A*.
- The diagonal entries of Σ are called the **singular values** of A

$$A = U\Sigma V^T$$

- **Proof** Let λ_i and v_i be as in Theorem , so that $\{Av_1, \ldots, Av_r\}$ is an orthogonal basis for Col A.
- Normalize each Av_i to obtain an orthonormal basis $\{u_1, \ldots, u_r\}$, where

$$u_{i} = \frac{1}{\|Av_{i}\|} Av_{i} = \frac{1}{\sigma_{1}} Av_{i}$$
(*)

And

$$Av_i = \sigma_i u_i \qquad (1 \le i \le r)$$

Now extend $\{u_1, \ldots, u_r\}$ to an orthonormal basis $\{u_1, \ldots, u_m\}$ of \mathbb{R}^m , and let

$$U = [u_1 \ u_2 \dots um]$$
 and $V = [v_1 \ v_2 \dots vm]$

By construction, U and V are orthogonal matrices.

• Also, from (*),

$$AV = [Ax_1 \dots Avr \ 0 \dots 0] = [\sigma_1 u_1 \dots \sigma_r u_r \ 0 \dots 0]$$

Let *D* be the diagonal matrix with diagonal entries $\sigma_1,...,\sigma_r$, and let Σ be as follow. Then

• Since V is an orthogonal matrix, $U\Sigma V^T = AVVT = A$.

Example Construct a singular value decomposition of

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution A construction can be divided into three steps.

- Step 1. Find an orthogonal diagonalization of A^TA . That is, find the eigenvalues of A^TA and a corresponding orthonormal set of eigenvectors
- Step 2. Set up V and Σ . Arrange the eigenvalues of A^TA in decreasing order.
- Step 3. Construct U. When A has rank r, the first r columns of U are the normalized vectors obtained from Av_1, \ldots, Av_r .

Example Construct a singular value decomposition of

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Step 1. Find an orthogonal diagonalization of $A^{T}A$.

$$A^{T}A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$det(A^{T}A-\lambda I)=0$$

The eigenvalues are $\lambda = 2$, $\lambda = 1$, and $\lambda = 0$

Example Construct a singular value decomposition of

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Step 1. Find an orthogonal diagonalization of A^TA .

$$A^{T}A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad det(A^{T}A - \lambda I) = 0$$

Basis for
$$\lambda = 2$$
: $v_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$

Basis for
$$\lambda = 1$$
: $v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and Basis for $\lambda = 0$: $v_3 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$

• Step 2. Set up V and Σ . Arrange the eigenvalues of A^TA in decreasing order. The corresponding unit eigenvectors, v_1 , v_2 , and v_3 , are the right singular vectors of A.

$$V = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{bmatrix}$$

• The square roots of the eigenvalues are the singular values:

$$\sigma_1 = \sqrt{2}, \quad \sigma_2 = 1, \quad \sigma_3 = 0$$

• The matrix Σ is

$$\Sigma = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• Step 3. Construct U. When A has rank r, the first r columns of U are the normalized vectors obtained from Av_1, \ldots, Av_r .

$$A = U\Sigma V^T$$
 $AV = U\Sigma$

Thus

$$u_1 = \frac{1}{\sigma_1} A v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$u_2 = \frac{1}{\sigma_2} A v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Note that $\{u_1, u_2\}$ is already a basis for \mathbb{R}^2 . Thus no additional vectors are needed for U, and $U = [u_1 \ u_2]$. The singular value decomposition of A is

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix}$$

Example Construct a singular value decomposition of

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

The Singular Value Decomposition

$$\mathbf{A}_{m \times n} = \mathbf{U}_{m \times m} \times \mathbf{V}_{n \times n}^{T} \times \mathbf{V}_{n \times n}^{T}$$

$$\Sigma_{m \times n} \times \mathbf{V}_{n \times n}^{T}$$

$$\mathbf{A} \approx \mathbf{A}_k = \mathbf{U}_k \Sigma_k (\mathbf{V}_k)^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^2 + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T \qquad \qquad ||\mathbf{A} - \mathbf{A}_k||_F^2 = \sum_{i=k+1}^r \sigma_i^2$$

Image Compression

$$nk + k + km$$

nm

$$\frac{nk+k+km}{nm}$$

The Singular Value Decomposition

 10^{4}

€ 10³·

 10^{2}

$$\mathbf{A} \approx \mathbf{A}_k = \mathbf{U}_k \Sigma_k (\mathbf{V}_k)^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^2 + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T$$

$$\left|\left|\mathbf{A}-\mathbf{A}_{k}
ight|
ight|_{F}^{2}=\sum_{i=k+1}^{r}\sigma_{i}^{2}$$

Image Compression

