Intro to dplyr

Contents

Data Manipulation (data cleaning)	1
Filtering cases with filter()	-
Adding new variables with mutate()	2
Renaming variable with rename()	2
Sorting with arrange()	9
Selecting variables with select()	
Descriptive statistics with summarize()	4
Grouped descriptives with group_by()	Ę
Pipelines	

acitelli <- read.csv("/Users/randigarcia/Desktop/acitelli.csv", header=TRUE)</pre>

Data Manipulation (data cleaning)

We'll use the package dplyr. The dplyr package contains the functions for all of the data cleaning varbs: filter(), mutate(), rename(), arrange(), select(), summarize(), and group by(). You can find a cheat sheet for dplyr here.

```
#install.packages("dplyr")
library(dplyr)
```

Filtering cases with filter()

First, let's filter cases. We can make a dataset of men only. Notice that we used a double equal sign, ==, instead of single, =. When you want to ask if something is equal to some value or another variable, that is, you want to use equal in a *logical statement*, you need the double equal. You can also use > < >= <= &, which means **AND**, and finally, | which means **OR**.

```
menOnly <- filter(acitelli, gender == 1)</pre>
```

We could also use the pipe, %>%.

```
menOnly <- acitelli %>%
filter(gender ==1)
```

We can save this new data set in our files as a csv. Note that the file path conventions are differnt for Windows machines. If copying and pasting from properties, you will need to change backslashes to forward slashes.

```
write.csv(menOnly,
   file = "/Users/randigarcia/Desktop/Three-day-workshop/R Workshop/Data/men.csv")
```

It's in your working directory, which you can find with the following command. It is an empty function, so it looks weird.

```
getwd()
```

How about only the men who are above the median for Yearsmar. First, find the median years married.

```
#use a function in the mosaic package
```

Then, filter for men above that cut off point.

```
mature_hus <- menOnly %>%
filter(Yearsmar > -1.089)
```

Instead of first finding the median with favstats(), we could ask for the median inside of filter() with the Base R function, median(). Base R has all of the descriptive stats functions you'd expect, mean(), sd(), cor(), but be careful because if you have missing data you'll have to add rm.na = TRUE as an argument to the function. The syntax also differs from mosaic.

```
mature_hus <- menOnly %>%
  filter(Yearsmar > median(Yearsmar))
```

Adding new variables with mutate()

Let's add a new categorical variable that marks the median split on Yearsmar. After you create it, take a look at it.

```
menOnly <- menOnly %>%
  mutate(mature_hus = Yearsmar > median(Yearsmar))
```

How would you get the frequencies on this vairable?

Now for a sanity check, how would you get the descriptive stats split by mature and non-mature husbands?

Renaming variable with rename()

We copy a variable and give it a new name with a function you already know, mutate().

```
menOnly <- menOnly %>%
  mutate(old_hus = mature_hus)
```

We can rename a variable without creating a new one with rename(). This is handy if you forget to name variables in Qualtrics!

```
menOnly <- menOnly %>%
  rename(wise_hus = old_hus)
```

We can rename a bunch at the same time. This is handy if you forget to name variables in Qualtrics!

Sorting with arrange()

First, you should know that you can sort in the viewer by clicking the (faint) arrows just to the right of each variable name. Give it a try. It's often handy to have a sort command in your code, and/or you might want to sort by more than one variable.

head(acitelli)

```
##
     cuplid Yearsmar gender self_pos other_pos satisfaction tension simhob
## 1
           3
              8.202667
                            -1
                                     4.8
                                                4.6
                                                         4.000000
                                                                       1.5
                                                                                 0
## 2
                                                4.0
           3
              8.202667
                             1
                                     3.8
                                                         3.666667
                                                                       2.5
                                                                                 1
## 3
         10 10.452667
                            -1
                                     4.6
                                                3.8
                                                         3.166667
                                                                       4.0
                                                                                 0
                                     4.2
                                                4.0
                                                                       2.0
                                                                                 0
## 4
         10 10.452667
                             1
                                                         3.666667
## 5
         11 -8.297333
                                     5.0
                                                4.4
                            -1
                                                         3.833333
                                                                       2.5
                                                                                 0
                             1
                                     4.2
## 6
         11 -8.297333
                                                4.8
                                                                       2.5
                                                                                 0
                                                         3.833333
```

Say we want to take a peak at the women with the bottom 6 self pos scores.

```
acitelli %>%
arrange(gender, self_pos) %>%
head()
```

```
##
     cuplid
               Yearsmar gender self pos other pos satisfaction tension simhob
## 1
        160
              8.7026667
                             -1
                                      3.2
                                                 3.8
                                                         3.333333
                                                                        4.0
                                                                                 0
## 2
         52 13.1193333
                                                 3.8
                                                                        2.0
                             -1
                                      3.4
                                                         3.833333
                                                                                 1
## 3
        441
                             -1
                                                 4.4
                                                                        3.0
                                                                                 0
             0.1193333
                                      3.4
                                                         4.000000
                             -1
                                                 4.4
                                                                        1.5
                                                                                 0
## 4
         70 11.3693333
                                      3.6
                                                         3.833333
## 5
              4.7860000
                             -1
                                                 4.2
                                                                        4.0
                                                                                 0
        116
                                      3.6
                                                         2.333333
## 6
        178 -7.0473333
                             -1
                                      3.6
                                                 3.6
                                                         2.666667
                                                                        3.0
                                                                                 0
```

We could also save the arranged dataset.

```
acitelli <- acitelli %>%
   arrange(gender, self_pos)
head(acitelli)
```

```
##
     cuplid
              Yearsmar gender self pos other pos satisfaction tension simhob
## 1
        160
                            -1
                                     3.2
                                                3.8
             8.7026667
                                                        3.333333
                                                                      4.0
                                                                      2.0
## 2
         52 13.1193333
                            -1
                                     3.4
                                                3.8
                                                        3.833333
                                                                                1
                                                                                0
## 3
        441 0.1193333
                            -1
                                     3.4
                                                4.4
                                                                      3.0
                                                        4.000000
## 4
         70 11.3693333
                            -1
                                     3.6
                                                4.4
                                                        3.833333
                                                                      1.5
                                                                                0
                                                4.2
## 5
        116 4.7860000
                            -1
                                     3.6
                                                                      4.0
                                                                                0
                                                        2.333333
## 6
        178 -7.0473333
                            -1
                                     3.6
                                                3.6
                                                        2.666667
                                                                      3.0
                                                                                0
```

What about the top 6? We can use the desc() function inside of arrange().

```
acitelli %>%
  arrange(gender, desc(self_pos)) %>%
  head()
```

```
cuplid Yearsmar gender self_pos other_pos satisfaction tension simhob
##
## 1
         11 -8.297333
                                      5
                                              4.4
                                                       3.833333
                                                                     2.5
                           -1
## 2
                                      5
                                              4.2
         98 -9.214000
                           -1
                                                       4.000000
                                                                     2.0
                                                                              1
## 3
                                      5
                                              3.4
                                                                     2.5
        114 12.619333
                                                       3.666667
                                                                              0
## 4
        127 3.619333
                           -1
                                      5
                                              4.6
                                                       3.833333
                                                                     2.0
                                                                              0
## 5
                           -1
                                      5
                                              5.0
                                                                              0
        135 7.786000
                                                       4.000000
                                                                     1.5
## 6
        177 11.619333
                           -1
                                      5
                                              5.0
                                                       4.000000
                                                                     1.0
                                                                              1
```

Selecting variables with select()

Save a smaller subset of variables.

```
small <- acitelli %>%
select(cuplid, gender, satisfaction, self_pos)
```

We can also save everything but some variable(s).

```
no_tension <- acitelli %>%
select(-tension)
```

Descriptive statistics with summarize()

```
## mean sd min
## 1 3.60473 0.4964205 1.166667
```

Grouped descriptives with group_by()

We can split the file and view results grouped by some variable.

```
acitelli %>%
  group_by(gender) %>%
  summarize(mean = mean(satisfaction),
            sd = sd(satisfaction),
            min = min(satisfaction))
## # A tibble: 2 x 4
##
     gender
                             sd
                                     min
                mean
##
      <int>
               <dbl>
                          <dbl>
                                   <dbl>
         -1 3.591216 0.5300260 1.500000
## 1
## 2
          1 3.618243 0.4617875 1.166667
```

You can use group_by() to create aggregated variables, this is handy if you have nested data. We actually do have married couples here, so let's create a dyad mean tension variable.

```
acitelli <- acitelli %>%
  group_by(cuplid) %>%
  mutate(tension_mean = mean(tension)) %>%
  ungroup()

#this last command is not entirely nessesary, but good practice
```

Pipelines

We now seen our first piplines, using <code>group_by()</code>. Now we can make a pipeline of many of the commands I did above. The last thing I do is drop useless <code>gender</code> variable, because the resulting dataset if all men.

Save a dataset of women who are perceiving above the mean tension, and drop the simhob variable.

What are the couple ID's of the couples with the lowest 3 average satisfaction scores?