

7

Foto: Cees Bo

OPTIMIZACIÓN POR ENJAMBRE DE PARTÍCULAS MULTIOBJETIVO (MOPSO)

- ¿Para qué sirve querer optimizar múltiples objetivos?
- Automóviles: Optimizar el diseño de un automóvil para minimizar el consumo de combustible, maximizar la seguridad y minimizar el costo de producción.
- Electrónica: Diseñar dispositivos electrónicos que maximice la potencia, minimice el costo y maximice la durabilidad.
- Construcción: Optimizar la planificación de un proyecto de construcción para minimizar el tiempo, el costo y maximizar la calidad de la obra.
- Portafolio de Inversiones: Maximizar el retorno de la inversión mientras se minimiza el riesgo.
- Planificación Fiscal: Optimizar la recaudación de impuestos mientras se minimiza el impacto negativo en la economía.
- Gestión de Recursos Hídricos: Optimizar el uso de agua para maximizar el abastecimiento humano y agrícola mientras se minimiza el impacto ambiental.

- La optimización multiobjetivo (MOO) consiste en optimizar simultáneamente varios objetivos que pueden estar en conflicto entre sí.
- Por ejemplo: La calidad y el precio de un producto, esto es, una alta calidad usualmente implica un alto precio.

Se expresa como:

Minimizar
$$\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_k(\mathbf{x})]^T$$
 sujeto a $\mathbf{x} \in \Omega$

- donde:
 - f(x) es el vector de funciones objetivo.
 - x es el vector de variables de decisión.
 - ullet Ω es el conjunto de soluciones factibles, definido por un conjunto de restricciones.
- Sujeto a:

$$g_i(\mathbf{x}) \le 0, \quad i = 1, 2, ..., m$$

 $h_j(\mathbf{x}) = 0, \quad j = 1, 2, ..., p$

• donde: $g_i(x)$ son las restricciones de desigualdad y $h_i(x)$ son las restricciones de igualdad.

- Ejemplo: Dadas 2 funciones $f_1(x) = x^2$, $f_2(x) = (x-2)^2$, $x \in [-2, 4]$
- Problema: Minimizar ambas funciones.

- Observación: No existe un "x" que minimice simultáneamente ambas funciones
- Idea: Encontrar soluciones de compromiso, para $x \in [0, 2]$ f1 y f2 no empeoran simultáneamente.
- Tal solución de compromiso se llama Solución de Pareto

Solución de Pareto

Frente de Pareto

Dominancia

Dominancia, en este caso la relación de dominación es una relación de orden

parcial.

Dominancia

Dominancia

- Solución Optima de Pareto, un elemento x es llamado Solución Óptima de Pareto si no existe un elemento x' tal que f(x') domine a f(x).
- El conjunto de todos los elementos óptimos de Pareto para un problema de optimización multiobjetivo is llamado Solución Óptima de Pareto.
- En este caso el Conjunto Óptimo de Pareto esta en el intervalo [0, 2]

Todas las soluciones pertenecientes al frente de Pareto son igualmente buenas, y no se puede especificar si alguna de las soluciones es preferible a las otras,

depende del Decision Making (Tomador de desiciones)

METAHEURÍSTICAS PARA OPTIMIZACIÓN MULTIOBJETIVO

- Las metaheurísticas más clásicas para MOO basadas en Optimalidad de Pareto son:
- ✓ NSGA-II (Non-dominated Sorting Genetic Algorithm II) (Deb et al., 2005)
- ✓ SPEA2 (Strength Pareto Evolutionary Algorithm 2) (Zitzler et al., 2001)
- √ MOPSO (Multi-Objective Particle Swarm Optimization) (Coello et al., 2002)

MOPSO (I)

MOPSO (II)

Pseudocódigo

INICIALIZAR PARTICULAS, VELOCIDADES, pbest
INICIALIZAR REPOSITORIO COMO VACIO
MIENTRAS no se alcance el número máximo de iteraciones HACER
ACTUALIZAR REPOSITORIO
INICIALIZAR no_dominadas COMO VACIO
PARA cada solución EN repositorio HACER
SI nueva_partícula DOMINA solución ENTONCES
CONTINUAR
SINO SI solución DOMINA nueva_partícula ENTONCES
RETORNAR repositorio
SINO
AGREGAR solución a no_dominadas

AGREGAR nueva_partícula a no_dominadas

ACTUALIZAR repositorio CON no dominadas

SELECCIONAR gbest ALEATORIAMENTE DEL REPOSITORIO

PARA cada partícula HACER

CALCULAR velocidad usando w, c1, c2, pbest y gbest

ACTUALIZAR posición

EVALUAR nueva posición

SI nueva posición DOMINA pbest ENTONCES

ACTUALIZAR pbest

REFERENCIAS BIBLIOGRÁFICAS Y WEB (I)

- ▶ J. Kennedy, R. Eberhart. (1995). Particle swarm optimization (in Neural Networks). Proceedings., IEEE International Conference on, vol. 4, pp. 1942 –1948 vol.4.
- ▶ Engelbrecht, A. P. (2007). Computational intelligence: an introduction. John Wiley & Sons.
- ▶ Clerc, M. (2010). Particle swarm optimization (Vol. 93). John Wiley & Sons.
- Shi, Y., & Eberhart, R. (1998). A Modified Particle Swarm Optimizer. Proceedings of the IEEE International Conference on Evolutionary Computation, 1998. IEEE World Congress on Computational Intellince (Cat. No.98TH8360), Anchorage, AK, USA, 1998, pp. 69-73. DOI: 10.1109/ICEC.1998.699146.
- Bratton, D., & Kennedy, J. (2007, April). Defining a standard for particle swarm optimization. In 2007 IEEE swarm intelligence symposium (pp. 120-127). IEEE.
- ▶ Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization method for constrained optimization problems. Intelligent technologies-theory and application: New trends in intelligent technologies, 76(1), 214-220.
- ▶ Hu, X., Eberhart, R. C., & Shi, Y. (2003, April). Engineering optimization with particle swarm. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No. 03EX706) (pp. 53-57). IEEE.

REFERENCIAS BIBLIOGRÁFICAS Y WEB (II)

- ▶ HILLIER, F. LIEBERMAN.(2010). Introducción a la Investigación de Operaciones.
- Coello Coello, C. A., "Use of a self-adaptive penalty approach for engineering optimization problems", Elsevier Science,
 Computers in Industry 41, 2000, pp. 113-127.
- Parsopoulos, K. E., and Vrahatis, M. N., "Particle Swarm Optimization Method for Constrained Optimization Problems", in Proceedings of the Euro-International Symposium on Computational Intelligence, 2002.
- ▶ Engelbrecht, A. P., "Fundamentals of Computational Swarm Intelligence", John Wiley & Sons Ltd, England, 2005.
- Pareto, V. (1919). Manuale di economia politica con una introduzione alla scienza sociale (Vol. 13). Società editrice libraria.
- ▶ Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
- ▶ Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK report, 103.
- ▶ Coello, C. C., & Lechuga, M. S. (2002, May). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600) (Vol. 2, pp. 1051-1056). IEEE.
- López, J. (2013). Optimización multiobjetivo: aplicaciones a problemas del mundo real. Buenos Aires, Argentina,
 Universidad Nacional de la Plata.