Counting order of elements in S5.

Cycle-types in Ss:	Their Orders	Ex
5	6	(15324)
4+1	4	(1325)
3+1+1	3	(154)
3+2	6	(154)(23)
2+1+1+1	2	(23)(14)
2+2+1	2	((2)
1+1+1+1	1	e

$$\binom{5}{3} \times 2$$
 of type 3+2.

$$\frac{1}{2} \binom{5}{2} \binom{3}{2}$$
 of type 242+1

Parlition $f_n: p(n) = \#$ ways to write n as som of positive integers. = # of cycle types in S_n .

an element of this in a subsect of G
of the form gH = {jh: heH} for some geG

not unique in general.

Defn $H \leq G$ is normal, denoted by $H \leq G$, if $\forall x \in G$, $h \in H$, we have $x h x^{-1} \in H$. i.e. xH = Hx. (Careful: <u>not</u> Saying $xhx^{-1} = h$)

 $\frac{E_{\times}}{D_{2n}} = \langle s, r \mid s^{2} = e = r^{n}, srs^{-1} = r^{-1} \rangle$ $H = \{e, r, r^{2}, ..., r^{n-1}\} \text{ is normal. (anly read to check } s \neq r)$ $Sr^{K}s^{-1} = r^{-K} \in H.$ Since everything in G can be represented as + powers.

Ex: $G = S_4 \supseteq H = \{e, (12)(34), (13)(24), (14)(23)\}$. Check that H is a subgroup. H is normal since $\sigma(X_1, X_2, \dots, X_d) \sigma' = (\sigma(X_1), \sigma(X_2), \dots, \sigma(X_d))$. and so conjugation doesn't change "permutation type." Note: Mis is unique to S_4 . $H \subseteq S_5$ but not normal.

Let G be a group and N = G. Group structure on G/N:

"definition" of \times : (g, N) * (g, N) = (g, g, N).

choices.

Only thing to check is: if $g_1 \sim g_1'$ and $g_2 \sim g_2'$ then $g_1 g_2 \sim g_1' g_2'$ (if obviously satisfies the axions)

This is not always true: $G = S_{ij} \ge S_{ij} = \{\sigma \in S_{ij} : \sigma(u) = 4\}$. Come up w_i example.

Page 2

| his is not always the: $6 = 3_4 < 3_3 = \{\sigma \in S_4 : \sigma(u) = 4\}$. Come up wy example.

(14) ~ (14)

(14) ~ (124)

We have $g_1'g_1'$, $g_2'g_2' \in H$.

Thus $(g_1g_2)^{-1}(g_1'g_2') = g_2'[g_1'g_1']g_2' = [g_2'h_1g_2][g_2'g_2']$ Let $h_1 \in H$.

50 G/N is called. Quotient group

= the set of left (or right) cosets of N in G.

 $\begin{array}{c} \underset{\text{in}}{\text{en}} & G = S_3 \geq N = \left\{ e \;,\; (123) \;,\; (132) \right\} \;. \quad \text{Easy} \quad \sigma \; \pi \; \sigma^{-1} \; \text{ does not an ange } \; \text{where} \; \sigma \; \pi \;. \\ \\ & \mathbb{Z}_3 \mathbb{Z} \;. \end{array}$

 $\left|\frac{G}{N}\right| = 2 = \frac{|G|}{|N|} = \frac{6}{3}$, so $\frac{G}{N} \cong \mathbb{Z}/2\mathbb{Z}$.

(recall: |H|=pprime () H = Z/rZ).

general eman

eg G=GL2(R) = { 2x2 matrices wy non-zero dot }. det TXT' = det X.

 $V = SL_2(R) = {1}$ Special (Num

Previous GL, (R)/SL, (R) = Rx