

16. Boiling Salt Solutions

The boiling temperature of aqueous salt solution is variable and may be higher than $100^{o}C$. Formulate a problem requiring theoretical and experimental studies with chemical compositions of your choice.

Investigate the boiling point of aqueous salt solution for different salt concentrations and different group salts.

Reporter: Nikoloz Burduli

_1

- ☐ Explanation of the phenomenon;
 - What is the boiling point;
 - Why does the boiling temperature of an aqueous solution of salt increase;
- ☐ Theoretical model;
 - ➤ The formula for the change of boiling temperature;
- Experiments;
 - Experimental Setup;
 - Different types of salts;
 - ➤ Different concentrations of salts;
- ☐ Comparison of theoretical and experimental results;
 - Theoretical and experimental graphs;
- ☐ Conclusion;
 - Relevant parameters;
 - Analysis of results;

Explanation of the phenomenon

3

Change in boiling temperature

Adding salt to water changes the boiling temperature!

Why does the boiling point change

Phenomenon explanation

Theoretical model

experiment

Theoretical Model

7

A change in the boiling point of the solution

Molar constant of the solvent

$$K_b = 0.512[C * \frac{kg}{mole}]$$

The molar concentration of the salt

$$i = \alpha(n-1) + 1$$

Degree of dissociation

The number of ions after dissociation

Phenomenon

Boiling temperature change

 $(T_b - 100^{\circ}\text{C})$

Theoretical model

experiment

conclusion

Experimental Part

2

Experimental setup

Thermal couple

Multimeter

Distilled water

Salt solution

Theoretical model conclusion phenomenon experiment

Determination of K_b constancy

$$K_{b_{water}} = 0.512[C * \frac{kg}{mole}]$$
 Theoretical

$$K_{b_{water}} = 0.533[C * \frac{kg}{mole}]$$

$$K_b = \frac{\Delta T}{m * i}$$

The influence of concentration

Different types of salts don't affect the result if they have the same Van't Hoff

<u>phen</u>omenon

Theoretical model

experiment

conclusion

Salts with Van't Hoff factor 3

Salt with degree of dissociation 0.2

KCl

 $MgSO_4$

$$for KCl - \alpha = 0.92 \Rightarrow i = 1.92$$

Theoretical model phenomenon

experiment

conclusion

The final part

Experimental results

N	Temperature
1	103
2	102.7
3	103.3
4	103.1
5	102.9

$$a = \frac{a_1 + a_2 + a_3 + a_4 + a_5}{5}$$

$$error = \sqrt{\frac{(a-a_1)^2 + (a-a_2)^2 + (a-a_3)^2 + (a-a_4)^2 + (a-a_5)^2}{5}}$$

Each experiment was conducted five times

Comparison of theoretical and experimental results

< >

- ☐ Molar concentration;
- ☐ Molar constant of solvent;
- ☐ Van't Hoff factor;
 - Degree of dissociation

Molar concentration

$$\Delta T = K_b * m * i$$

Thanks for attention!

A change in the boiling point of the solution

$$m_{NaCl} - 25 g$$

 $m_{H_2o} - 75 g$
 $m_{solution} - 100 g$
 $M_{NaCl} - 58.44 g/mole$

$$T_b = ?$$

$$\Delta T = K_b * m * i$$

$$\frac{m_{NaCl}}{M_{NaCl} * V_{H_2O}}$$

$$Na^+ Cl^-$$

$$(T_b - 100$$
°C) = 0,512 * $\frac{25}{58.44}$ * 2 = 5.84 °C

$$T_b = 105,84 \, ^{\circ}\text{C}$$

Phenomenon Theoretical model

The influence of concentration

The influence of concentration

ნაცრისფერი- BaCl2 ცისფერი - CaCl2 ყვითელი - MgSO4

