16: Nucleic Acids and Inheritance

16.1 DNA

- Experimenten met bacteriofagen gaven bewijs dat DNA bestaat.
- Nucleotide bevat:
 - ACTG;
 - Deoxyribose (vijfhoek);
 - Fosfaat groep.
- DNA is dubbele helix, anti-parallel met 3'-kant en 5'-kant.

16.2 Replicatie

	Parent cell	First replication	Second replication
(a) Conservative r The two parental strands reassociate after acting as templates for new strands, thus restoring the parental double helix.	model.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
(b) Semiconservar The two strands of the parental molecule separate, and each functions as a template for synthesis of a new, complementary strand.	tive model.	/NVO<	
(c) Dispersive mode Each strand of both daughter molecules con- tains a mixture of old and newly synthesized DNA.	del.	1000 <	

- Meerdere replicatieoorsprongen versnellen proces.
- Daar waar DNA wordt gesplitst, vormt een replicatievork.

Protein	Function
Helicase 5' 3' 5'	Unwinds parental double helix at replication forks
Single-strand binding protein 5' 3'	Binds to and stabilizes single- stranded DNA until it is used as a template
Topoisomerase 5' 3' 11111111 3' 5'	Relieves overwinding strain ahead of replication forks by breaking, swiveling, and rejoining DNA strands
Primase 5' 3' 3'	Synthesizes an RNA primer at 5' end of leading strand and at 5' end of each Okazaki fragment of lagging strand
DNA pol III 5' 3' 5'	Using parental DNA as a template, synthesizes new DNA strand by adding nucleotides to an RNA primer or a pre-existing DNA strand
DNA pol I 5' 3' 5'	Removes RNA nucleotides of primer from 5' end and replaces them with DNA nucleotides added to 3' end of adjacent fragment
DNA ligase	Joins Okazaki fragments of lagging strand; on leading strand, joins 3' end of DNA that replaces primer to rest of leading strand DNA

- Mismatch-reparatie corrigeren fouten in nucleotideparen mbv enzymen.
- In **nucleotide-excisiereparatie** worden foute nucleotiden eruitgehaald door **nuclease** en vervangen door **DNA polymerase** en **ligase**.
- Telomeren zitten aan uiteinden van lineaire DNA zodat lengte van DNA niet afneemt.
 - o Lange repeterende DNA sequenties.
 - o **Telomerase**: herstellen/behouden telomeerlengte.

16.3 Chromosomen

- **Chromatine**: DNA zit opgevouwen samen met specifieke eiwitten in celkern van eukaryoten.
- Interfase: DNA draait zich twee keer om histone-eiwit heen en vormt zo een ketting.
 - o **Euchromatine**: losser gevouwen, wel DNA replicatie.
 - o **Heterochromatine**: sterk gevouwen, geen DNA replicatie.
- Mitose: Condensine maakt compact en DNA keten vormt loopjes.
 Choromosoom vorming

H17: Expression of genes

17.1 Geschiedenis

- Gen expressie: proces waarbij DNA leidt tot eiwitsynthese.
- Archibald Garrod, 1902: Genen dicteert fenotype. Aangeboren vergissingen in het metabolisme.
- **Beadle en Tatum, 1930**: Experiment met *Nerospora crassa*. Gen leidt tot enzym: prototroof -> auxotroof
 - o **Prototroof**: zelfvoeder uit anorganische stoffen.
 - Auxotroof: buitenvoeder uit organische stoffen.

• Srb & Horowitz, 1944: Experimenten van route naar enzyme.

Data from A. M. Srb and N. H. Horowitz, The ornithine cycle in *Neurospora* and its genetic control, *Journal of Biological Chemistry* 154:129–139 (1944).

- Een gen leidt tot polypeptide.
- Niet helemaal correct: alternatieve splicing leidt in vele gevallen vaak tot meerdere polypeptiden.
- In algemeen wordt in boek geschreven: "een gen leidt tot een eiwit".

Het centrale dogma

Transcriptie mbv RNA polymerase.

(a) Bacterial cell

© 2014 Pearson Education, Inc.

• Translatie gebeurt meteen zonder enige tussenstappen.

(b) Eukaryotic cell

© 2014 Pearson Education, Inc.

RNA-splicing voordat er translatie plaatsvindt.

- **Coding strand** en mRNA zijn gelijk, waarbij Thymine wordt vervangen door Uracil.
- mRNA moet in juiste **reading frame** worden gelezen.

17.2 Transcriptie

Initiatie

- Promoter = TATA box
- Transcriptiefactoren nodig om RNA polymerase II te laten binden.

Elongatie

- DNA wordt gelezen en RNA nucleotiden worden gebonden aan template strand.
- mRNA is gelijk aan coding strand!

Terminatie

- Bacteriën: <u>Terminatie sequentie</u> zorgt voor stem-loop in mRNA -> RNA polymerase laat los; <u>mRNA</u> klaar voor translatie.
- Eukaryoten: Polyadenylatie signaal sequentie (AAUAAA) zorgt voor loslaten van RNA polymerase, klein stukje verder downstream vh signaal; pre-mRNA klaar voor splicing.

17.3 RNA-processing

- 5' krijgt **5'-cap** (gemodificeerde guanide) tijdens translatie.
- 3' krijgt poly-A-tail na signaal.
- Functies:
 - 1. Transport mRNA van kern naar cytoplasma;
 - 2. Bescherming mRNA tegen afbraak door hydrolytische enzymen;
 - 3. Helpen bij bindden aan ribosomen in cytoplasma.

Splicing

- Introns worden van pre-mRNA verwijderd. Alleen exons zijn belangrijk.
 - Introns: 'intervening' sequenties
 - o Exons: 'expressing' sequenties
- **Spliceosoom**: complex v eiwitten en 'kleine' RNA moleculen. Ook wel *ribozyme* genoemd (dient als katalysator).
 - Bindt aan herkennings sequenties aan begin en eind van intron
 intron wordt uit geknipt.
 - Exonen worden aan elkaar geplakt en intron wordt afgebroken.
- Alternatieve splicing: Gen kan meerdere eiwitten coderen (isovormen).
 - Verschillende isovormen nodig in verschillend celtype; elk exon heeft eigen actieve domein.
 - Vorm van efficiënt gebruik vh genoom; 1 code voor meerdere eiwitten.
 - Mogelijkheid voor exon shuffling: evolutionaire kader; zodat cross-overs meer kans op succes hebben.

17.4 Translatie

- a. tRNA lijkt op klaverblad door waterstof-bindingen. Asterisken voor chemisch gemodificeerde basen.
- b. L-vorm. **Anticodon**: nucelotidetriplet aan uiteinden van tRNA-molecuul dat kan 'baseparen' met een bepaald complementair codon op een mRNA-molecuul.
- c. Hoe tRNA in het boek wordt getekend.

- Complementaire tRNA anticodon = mRNA codon en bijbehorende aminozuur.
- Binden van aminozuur aan tRNA kost energie.
- 20 soorten tRNA synthetases; voor elk aminozuur 1.
- Wobble hypothese: 3^e nucleotide vd triplet maakt vaak niet uit welke het is voor de juiste aminozuur; 3^e basenpaar is vaak 'flexibel' (Valine).

Productie rRNA

- Pre-rRNA wordt afgeschreven vanaf verschillende chromosomen in de nucleolus.
- Pre-rRNA wordt geprocessed door snoRNA (small nucleolar RNA) tot rRNA.
- rRNA bindt aan eiwit in nucleolus.
- Geheel wordt naar het cytoplasma getransporteerd.
- Bindt daar aan andere subunits als er mRNA gebonden wordt.

(c) Schematic model with mRNA and tRNA

 rRNA doet al het werk, eiwitten handen wat omheen om structuurveranderingen vh rRNA te ondersteunen. Ribozym, net als telomerase.

<u>Initiatie</u>

Kleine subdeel herkent mRNA door mRNA binding site.
 Leest ook startcodon af en bindt met geladen tRNA.

Elongatie

- Volgende tRNA bindt met mRNA op A-site.
- Aminozuurketen bindt met nieuwe aminozuur.
- Lege tRNA verplaatst naar E-site, nieuwe tRNA verplaatst naar P-site. Volgende codon bevindt zich op lege A-site.

Terminatie

- Stopcodon wordt gelezen
- Release factor laat polypeptide los.
- Proces valt uit elkaar.

Polyribosomen

(a) Several ribosomes simultaneously translating one mRNA molecule

• In bacteriën kan na translatie meteen worden gevolgd met transcriptie.

Vouwen (structuren Fig. 5.18)

- Primaire structuur (az-code)
- Secundaire structuur (H-bruggen)
- Tertiare structuur (covalent)
- Quartenaire structuur (met andere polypeptides)
- Soms chaperones nodig voor correct vouwen

Post-translationele modificatie vd eiwitten

- Bevestiging suikers, lipiden, fosfaatgroepen
- Verwijderen eerste aminozuren
- Splitsen ketens
- Samenkomen verschillende eiwitten/RNA en co-factoren

Targeting eiwitten

SRP = Signal recognition particle

17.5 Mutagenese

- Spontane mutaties (bv. bij replicatie)
- Straling (röntgen, UV, etc.)
- Chemische mutagenen (carcinogene stoffen; rook, asbest, medicatie, bepaalde chemische oplossingen)

Mutaties

- Nucleotide-pair substitution:
 - Silent (zelfde aminozuur)
 - Missense (ander aminozuur)
 - Nonsense (geen aminozuurcodon, maar stopcodon)
- Nucleotide-pair insertion or deletion -> frameshift

Gene-editing

- Ziektes kunnen worden veroorzaakt door gen-afwijkingen
- **Genetic engineering**: biologische wetenschappers zoeken naar manieren om DNA aan te passen (DNA editen)
 - Om meer te weten te komen over functie van genen
 - Om onderzoek te doen naar mogelijke gen-correcties

CRISPR-Cas9

 In systeem gevonden in bacteriën, waar het gebruikt wordt als een soort immuunsysteem om de bacterie te beschermen.
 Kan worden gebruik als lab-gereedschap om genen aan te passen

H18: Control of Gene Expression

18.1 Regulatie genexpressie in prokaryoten

- Expressie kost veel energie -> alleen genen tot expressie brengen die op dat moment nodig zijn in cel.
- Constitutief: genen die altijd tot expressie komen.

Regulatie genexpressie trypofaan

• Tryptofaan: aminozuur betrokken bij regulatie van expressie.

• **Operon**: meerdere genen v 1 biochemische route zijn geclusterd en worden gecontroleerd door 1 promotor.

Situatie 1: geen tryptofaan aanwezig

- Regulatie-gen (trpR) is constitutief.
- Geen trp aanwezig -> respressor inactief -> bindt niet aan operator
 -> wel transcriptie

Situatie 2: wel tryptofaan aanwezig

- Wel trp aanwezig -> bindt aan repressor (verandert van vorm) -> repressor actief, bindt wel aan operator -> geen transcriptie
- Binding vd repressor aan operator is reversibel.

Regulatie genexpressie lactose

- Lac-genen betrokken bij de afbraak van lactose
- Lactose -> Glucose + Galactose

(a) Lactose absent, repressor active, operon off.

Situatie 1: er is geen lactose aanwezig

• Respressor actief -> bindt aan operator -> geen transcriptie

Situatie 2: er is wel lactose aanwezig

• Lactose bindt aan repressor -> repressor verandert van conformatie en is inactief (kan niet binden) -> transcriptie

Negatieve regulatie genexpressie: actieve repressor remt transcriptie

Postieve regulatie genexpressie

- Actieve activator stimuleert transcriptie
- Activatie van transcriptie lac-operon door cAMP-CRP (cyclic AMP Receptor Protein)

Situatie 1: Lactose en glucose aanwezig

[Glucose] \uparrow \rightarrow Adenylcyclase remt \rightarrow [cAMP] \downarrow \rightarrow [CRP] \downarrow \rightarrow Transcriptie lac \downarrow

(b) Lactose present, glucose present (cAMP level low): little *lac* mRNA synthesized.

Situatie 2: Lactose is aanwezig, weinig/geen glucose [Glucose] \downarrow \rightarrow Adenylcyclase niet geremt \rightarrow [cAMP] \uparrow \rightarrow [CRP] \uparrow \rightarrow Transcriptie lac \uparrow

(a) Lactose present, glucose scarce (cAMP level high): abundant *lac* mRNA synthesized.

Kataboliet repressie: Als er glucose (suiker) is worden allerlei andere koolstof/energiebronnen niet gebruikt. Pas als glucose op is worden andere bronnen aangesproken.

Bacterie "eet" liefst suiker, omdat minste energie komt om af te breken)

18.2 Genexpressie in eukaryoten

- Groter genoom dan prokaryoten
- Verschillende weefsels/soorten cellen
- Regulatie op meer niveaus dan bij prokaryoten
- Ook belangrijk voor ontwikkelilng van organismen en cel differentiatie

Chromatine modificaties

- Chromosome territory: vaste plek in celkern (H16)
- Transcriptie fabriek: locatie vh DNA waar transcriptie plaatsvindt in interfase
- Heterochromatine: sterk gevouwen, geen transcriptie
- Euchromatine: losser gevouwen, wel transcriptie

 Histon acetylatie: -COCH₃ aan histonstaarten → histon-eiwitten minder + → aantrekking Histon – DNA minder sterk → losser

 DNA methylatie: -CH₃ aan cytosine → DNA compacter/voller → minder ruimte voor transcriptiefactoren om aan DNA te binden

- **Epigenetica**: Studie v omkeerbare erfelijke veranderingen in genfunctie die optreden zonder wijzigingen in sequentie van DNA
- **Epigenetische overerving**: eigenschappen die niet gebaseerd zijn op nucleotide-variaties. Expressie v genen verandert wel door chromatine modificaties.

Transcriptie regulatie

- Basis transcriptie initiatie
- Extra: specifieke sequenties (meestal upstream v promotor sequentie) en bijbehorende specifieke transcriptiefactoren voor extra veel of juist rem op transcriptie

- Basis: proximal control elements → promotor en dichtbij promotor
- Extra: distal control elements → iets verder weg gelegen vd promotor

Transcriptiefactoren hebben meestal 2 functionele domeinen:

- DNA binding domein
- Activatie domein

Naast enhancer-sites bestaan er upstream ook silencer-sites, waar juist een repressor/inhibitor kan binden.

© 2014 Pearson Education, Inc.

- Specifieke combinatie v controle elementen in enhancer bepalen transcriptionele regulatie van gen. Aan elk element kan specifieke transcriptie factor binden.
- Biedt ruimte voor transcriptionele differentiatie (met relatief weinig verschillende elemeneten) tussen verschillende soorten cellen en dus verschillende 'eiwit-wensen'.
- Geen operons in eukaryoten (wel in prokaryoten)
- Uitzondering: soms wel naast elkaar, maar eigen promotor. In dat geval gezamenlijk profiteren v veranderingen in chromatinestructuur.
- Meerstal verspreid over chromosomen, in dat geval overeenkomende control elements, dus reagerend of dezelfde transcriptiefactoren/signalen in een cel.

Post-transcriptionele regulatie

Regulatie bij RNA-processing vindt het meest plaats bij splicing:

 Alternatieve RNA-splicing: één gen kan leiden tot verschillende polypeptiden.

Translatie initiatie:

- Specifiek (1 mRNA): blokkeren Ribosome Binding Site door specifiek regulatoir eiwit.
- Algemeen: (in)activatie translatie initiatie factoren.

Afbraak mRNA – regulier:

- Eerst korter maken van 3'-polyA-staart
- Verwijderen 5'-cap
- Afbraak door nuclease
 Sequenties in 3'untranslated region (UTR) bepalen hoe lang mRNA 'leeft'.

Afbraak mRNA – specifiek:

- RNA-interference (RNAi) kan door non-coding RNA (ncRNA):
 - microRNA (miRNA)
 - short interfering RNA (siRNA)

18.3 Afbraak specifieke mRNAs door ncRNAs

- miRNA, primair transcript
 - o non-protein-coding RNA
 - RNA vormt hairpin structuren door zichzelf te vouwen
 - Wordt gesplitst door enzym → siRNA
- Eiwitcomplex herkent siRNA
- siRNA kan aan mRNA binden om het af te breken of te blokkeren.

Post-translationele regulatie

Regulatie van eiwit processing:

- Verwijderen van stukjes van het peptide (bv. signaalpeptide)
- Chemische modificaties aan eiwit:
 - Toevoegen van fosfaatgroepen (ter activatie bv.)
 - Toevoegen van suikergroepen (voor uiteindelijke functie als glycoproteine bv.)

Regulatie van afbraak vh eiwit:

 Toevoegen v ubiquitine (klein eiwitje) = markering voor af te breken eiwit → transport naar het proteasoom → afbreken eiwit tot korte peptides en aminozuren.

