Multi-Objective Optimization

Example: speed and fuel efficiency and safety maximize

Single objective (minimizing)

Dominance

Pareto Optimality

Design point & is Pareto optimal if there is no x' in the feasible set that dominates x

Pareto Frontier: set of all Pareto-optimal design points.

Utopia Point Jutopia is the point in the criterion space consisting of the component-wise optimum

How to find design points on Pareto frontier

Method 1: weighting

cannot find points not on the convex hall of the Pareto front

Method Z: Constraints

minimize f; (7)

Subject to f;(x)=c; +; ≠i

downside: sometimes difficult to chose c

Method 3: Lexicographic Method

minimize
$$f_2(x)$$

 $x \in X$
 $5. + f_1(x) \leq y^*$
 y^*_2

Method 4: Goal Programming

minimize ||f(x)- ygal ||p

Method 5 weighted min-max method
minimize max (w: (fix) - y: soal))

equivalent to

minimize s \dot{x} ,5 \dot{x} ,6 \dot{x} ,6 \dot{x} ,6 \dot{x} ,0 $\dot{$

Can identify all points on Pareto front by Sweeping through weights