A Convolution Neural Network for Plant Species Identification

Shiang Jin, Chin

Overview of the presentation

- Introduction
- Existing Research/Solution
- Experiments, Solution and Results
- Summary & Next Step

Introduction

- Project Goal: Machine Learning Model for Plant Species Identification based on the leaves, with target accuracy scores of > 96.8% within the top 5 results (top 5 error rate < 3.2%)
- Inspired by Greenstand (https://github.com/Greenstand)
- Dataset used for training & validation :
 - Leafsnap Dataset (https://www.kaggle.com/datasets/xhlulu/leafsnap-dataset/data)
 - Created by computer scientists from Columbia University and the University of Maryland, and botanists from the Smithsonian Institution in Washington, DC

Overview of the Dataset

- Covers all 185 tree species from the Northeastern United States
- Images of leaves taken from two sources
 - "Lab" images consisting of high-quality image taken of pressed leaves (Total of 23915 images)
 - "Field" images lower-quality images taken in the field environment using mobile devices in the outdoor setting (Total of 5192 images)

Existing Research / Solution

- The recognition process developed by the Leafsnap research team utilize a four-step process:
 - Step 1 Classifying whether the image is of a valid leaf
 - Step 2 Segmenting the image to obtain a binary image separating the leaf from the background
 - Step 3 Compute the feature vector from the binarized image using histograms of curvature over multiple scales with integral measures of curvature
 - Step 4 Comparing the feature vector with labeled database using nearest neighbor with histogram intersection as the distance metric
- Overall processing time = 5 seconds

Existing Research / Solution

Images taken from Leafsnap: A Computer Vision System for Automatic Plant Species Identification

Experiments

Model	Dataset	Results		
		Top1	Top5	No epoch
2CNN	Segmented Field			
2CNN	Original Lab			
2CNN	Original Lab + Field			
2CNN(Large)	Original Lab + Field			
2CNN(RGB)	Original Lab + Field			
3CNN	Original Lab + Field			
Resnet-50	Original Lab + Field			
Resnet-50	Original Lab + Field + Non Leaf			

Experiments (2CNN architecture)

Experiments – Datasets used for Training

Example leaves: 138

Example leaves: 79

Example leaves: 182

Example leaves: 18

Example leaves: 14

Example leaves: 174

Example leaves: 49

Example leaves: 8

Example leaves: 6

Example leaves: 73

Example leaves: 70

Example leaves: 134

Segmented Images

Original Images converted to grayscale

Experiments – Datasets used for Training

Lab Images
Total 23915
Mostly have the sidebar to help with segmentation

Experiments

Model	Dataset	Results			
		Top1	Top5	No epoch	
2CNN	Segmented Field	37.82%	68.33%	N/A	
2CNN	Original Lab	77.62%	97.75%	60	
2CNN	Original Lab + Field	68.53%	91.25%	N/A	
2CNN(Large)	Original Lab + Field				
2CNN(RGB)	Original Lab + Field				
3CNN	Original Lab + Field				
Resnet-50	Original Lab + Field				
Resnet-50	Original Lab + Field + Non Leaf				

Experiments (2CNN architecture)

Going wider – change input size into the model from 44 x 44 to 224 x 224 Going deeper – change the input depth from 1 (grayscale) to 3 (RGB)

Experiments (2CNN architecture)

Experiments Result

Model	Dataset	Results		
		Top1	Top5	No epoch
2CNN	Segmented Field	37.82%	68.33%	N/A
2CNN	Original Lab	77.62%	97.75%	60
2CNN	Original Lab + Field	68.53%	91.25%	N/A
2CNN(Large)	Original Lab + Field	70.10%	89.39%	N/A
2CNN(RGB)	Original Lab + Field	70.96%	92.86%	N/A
3CNN	Original Lab + Field			
Resnet-50	Original Lab + Field			
Resnet-50	Original Lab + Field +			
	Non Leaf			

Experiments (3CNN architecture)

Note the number of output node is the same as 2CNN

Experiments Result

Model	Dataset	Results			
		Top1	Top5	No epoch	
2CNN	Segmented Field	37.82%	68.33%	N/A	
2CNN	Original Lab	77.62%	97.75%	60	
2CNN	Original Lab + Field	68.53%	91.25%	N/A	
2CNN(Large)	Original Lab + Field	70.10%	89.39%	N/A	
2CNN(RGB)	Original Lab + Field	70.96%	92.86%	N/A	
3CNN	Original Lab + Field	71.91%	92.48%	N/A	
Resnet-50	Original Lab + Field				
Resnet-50	Original Lab + Field +				
	Non Leaf				

Experiments (ResNet50)

Resnet50 architecture reference from Mukherjee, S. (2022, August 18). The annotated resnet-50. Medium. https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758

Example Data for Resnet50

Original Images (mixed of field and lab)

Images Used for Leaf / Non-leaf classification

Experiments Result

Model	Dataset	Results after 100 epochs		
		Top1	Top5	No epoch
2CNN	Segmented Field	37.82%	68.33%	N/A
2CNN	Original Lab	77.62%	97.75%	60
2CNN	Original Lab + Field	68.53%	91.25%	N/A
2CNN(Large)	Original Lab + Field	70.10%	89.39%	N/A
2CNN(RGB)	Original Lab + Field	70.96%	92.86%	N/A
3CNN	Original Lab + Field	71.91%	92.48%	N/A
Resnet-50	Original Lab + Field	87.64%	98.10%	50
Resnet-50	Original Lab + Field +	88.29%	98.32%	50
	Non Leaf			

Average prediction time for Resnet-50 model = 0.03s

Resnet50: Losses curve & accuracies graph

Testing Results

Conclusion & Next Step

- Machine Learning Model based on Resnet50 is
 - Simpler combining four steps process of Leafsnap into one and let the model learned itself how to validate for leaves and segmented the images
 - More accurate top5 accuracy score achieved is 98.32% (Leafsnap 96.8%) with potential to get better with more training epochs
 - **Potentially faster** average evaluation time on cuda is 0.03s per image (Leafsnap about 5s on cpu)
- Next Step:
 - Build a backend to enable query based on the images and return the top
 5 results with example image
 - Build a mobile app to test it out on the field

