

Fine-tuning a clinical domain LLM

2024-08-10, 15:30 ~ 17:30 Seongsu Bae, Sujeong Im KAIST AI @ Edlab (Advised by Edward Choi)

Speaker Bio

Seongsu Bae (배성수)

Education

- Hanyang University Mathematics, B.Sc (2013-2019)
- KAIST Kim Jaechul Graduate School of AI, M.Sc (2020-2022)
- KAIST Kim Jaechul Graduate School of Al, Ph.D (2022-)

Research Interests

- Semantic Machine
- Multimodal Learning
- Machine Learning for Healthcare

Sujeong Im (임수정)

Education

- POSTECH Creative IT Engineering, B.Sc (2018-2022)
- KAIST Kim Jaechul Graduate School of Al, M.Sc (2023-)

Research Interests

- Foundation Model
- Natural Language Processing
- Machine Learning for Healthcare

Table of Contents

- How to build a clinical domain Large Language Model (LLM)? (40 mins)
 - (Large) Language Model
 - Output How to build a (large) language model?
 - Building an instruction-following LLM in the clinical domain
 - Asclepius (Gweon and Kim et al., ACL 2024 Findings)

- Hands-on Session: Fine-tuning a clinical domain LLM (80 mins)
 - Environment Setup & Colab Practice
 - LLM memory layout
 - Parameter-Efficient Fine-Tuning (LoRA/QLoRA)

Language Model

Language model

文_人 31 languages

Article Talk Read Edit View history Tools

From Wikipedia, the free encyclopedia

A **language model** is a probabilistic model of a natural language.^[1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed 'Shannon-style' experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.^[2]

Language models are useful for a variety of tasks, including speech recognition^[3] (helping prevent predictions of low-probability (e.g. nonsense) sequences), machine translation,^[4] natural language generation (generating more human-like text), optical character recognition, handwriting recognition,^[5] grammar induction,^[6] and information retrieval.^{[7][8]}

Large language models, currently their most advanced form, are a combination of larger datasets (frequently using words scraped from the public internet), feedforward neural networks, and transformers. They have superseded recurrent neural network-based models, which had previously superseded the pure statistical models, such as word *n*-gram language model.

We deal with LMs every day!

How to train a LM?

Next Token Prediction task for the sentence "The sky is blue."

Text Generation via a Probabilistic Model

- Pre-training and Fine-tuning
 - e.g., BERT (2018), T5 (2019)

(-) Task-specific training → One specialized model for each task

- Pre-training and Prompting
 - e.g., GPT-3 (2020)

(+) Improve performance via few-shot prompting or prompt engineering

Pre-training and Prompting

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

- (-) Forced few-shot prompting
- (-) Manual efforts for the prompting technique
 - (-) Not aligned with natural instructions

Pre-training and Instruction tuning

(+) model learns to perform many tasks via natural language instructions

- Pre-training and Alignment tuning
 - Supervised Fine-Tuning (SFT) on instruction data
 - + Alignment learning on preference data (e.g., RLHF, DPO)
 - e.g., InstructGPT (2022), ChatGPT (2022), Llama 2 (2023), Llama 3 (2024)

Building an instruction-following LLM

- How can we build an instruction-following LLM?
 - Prepare a pre-trained large language model (e.g., LLaMA 7B)
 - Perform supervised fine-tuning on instruction data (e.g., Alpaca 52K dataset)

- How can we build an instruction-following LLM in the clinical domain?
 - Prepare a pre-trained large language model
 - Pre-training on clinical corpus for domain adaptation
 - Perform supervised fine-tuning using domain-specific clinical instruction data
 - Today, we will focus on instruction-following data tailored for clinical notes!

Imagine a clinical LLM

- Given a clinical note, a clinical LLM can perform these tasks as follows:
 - "What medical procedures were performed on the patient during her hospital course, as mentioned in the discharge summary?" Named Entity Recognition
 - "What abbreviation was expanded using the acronym 'ANH' in the diagnosis section of the discharge summary?" Abbreviation Expansion
 - "When was the patient started on oral acyclovir and what was the duration of treatment?"
 Temporal Information Extraction
 - "Can you summarize the patient's hospital course, treatment, and diagnoses according to the given discharge summary?" Summarization
 - "What was the reason for the patient's transfer to ICU and what was the treatment plan for infection-induced respiratory failure?" Question Answering

Asclepius: Publicly Shareable Clinical Large Language Model Built on Synthetic Clinical Notes (Gweon and Kimet al., ACL 2024 Findings)

Real clinical note

Admission Date: [**2118-8-10**] Discharge Date: [**2118-8-12**] Date of Birth: [**2073-12-25**]

Sex: F

•••

Discharge Diagnosis:

AVM

Radionecrosis

...

Discharge Instructions:

- DISCHARGE INSTRUCTIONS FOR CRANIOTOMY/HEAD INJ URY
- Have a family member check y our incision daily for signs of inf ection
- Take your pain medicine as pre scribed

Real Clinilcal Note

- Semi-Structured Text about Patient Activity
- Properties
 - Semi-structured: Associated with headers
 - Acronyms
 - Typos
- Problem: Protected Health Information (PHI)
 - Use GPT: PHI ⇒ Impractical
 - Human Annotation: Require Experts \Rightarrow cost
 - ightharpoonup Machine Annotation: PHI \Rightarrow Impractical

Case report

Admission Date: [**2118-8-10**] Discharge Date: [**2118-8-12**] Date of Birth: [**2073-12-25**]

Sex: F

Discharge Diagnosis:

AVM

Radionecrosis

•••

Discharge Instructions:

- DISCHARGE INSTRUCTIONS FOR CRANIOTOMY/HEAD INJ URY
- Have a family member check y our incision daily for signs of inf ection
- Take your pain medicine as pre scribed

A 20-year-old Myanmarese woma n who was aware of a declining vi sion in her left eye for three years was diagnosed with a mature cata ract in her left eye.

and the postoperative course was uneventful with a recovery of the I

eft vision to 20/200.

A macula involved detachment wa s confirmed by optical coherence t omography.

The vision in her left eye improved to 20/60 and was stable for 19 months after the second surgery with out showing any worsening of the retinal proliferation or detachment.

Case Report

- To share "case" with community
 - No PHI ⇒ Sharable
- Properties
 - Plain text
 - Less acronyms
 - Well-written
- Contents are similar to the notes
- e.g., PMC (PubMed Central) case report

Synthetic clinical note generation

Admission Date: [**2118-8-10**] Discharge Date: [**2118-8-12**] Date of Birth: [**2073-12-25**]

Sex: F

Discharge Diagnosis:

AVM

Radionecrosis

Discharge Instructions:

- DISCHARGE INSTRUCTIONS FOR CRANIOTOMY/HEAD INJ URY
- Have a family member check v our incision daily for signs of inf ection
- Take your pain medicine as pre scribed

A 20-year-old Myanmarese woma n who was aware of a declining vi sion in her left eye for three years was diagnosed with a mature cata ract in her left eye.

and the postoperative course was uneventful with a recovery of the I eft vision to 20/200.

A macula involved detachment wa s confirmed by optical coherence t omography.

The vision in her left eye improved to 20/60 and was stable for 19 mo nths after the second surgery with out showing any worsening of the retinal proliferation or detachment.

Patient Name: N/A

Medical Record Number: N/A Date of Admission: N/A Date of Discharge: N/A

Diagnosis:

- Mature cataract in left eye
- Retinal detachment in left eve

Outcomes:

- Recovery of vision to 20/200 after initial surgery
- Improvement of vision to 20/60 after second surgery
- Stability of vision in left eye for 19 months after second surgery without worsening of retinal detachment

Synthetic Clinical Note

Real Clinilcal Note

Clinical instruction/response data generation

Final dataset

(clinical note, instruction, response) triples ⇒ all synthetics!

Asclepius-Llama3-8B

- How can we build an instruction-following LLM in the clinical domain?
 - Prepare a pre-trained large language model
 - use Llama3-8B model
 - Pre-training on clinical corpus for domain adaptation
 - Pre-training (1 epoch): 2h 59m with 4x A100 80G
 - dataset: synthetic clinical notes
 - Perform supervised fine-tuning using domain-specific clinical instruction data
 - Instruction fine-tuning (3 epoch): 30h 41m with 4x A100 80G
 - dataset: clinical instruction-response pairs with synthetic clinical notes

Fine-tuning a clinical domain LLM

Hands-on Session:

Environment Setup

https://github.com/baeseongsu/

colab link

Environment Setup

https://github.com/baeseongsu/KoSAIM2024-Clinical-LLM

Environment Setup

Colab Objectives

- Goal: Fine-tuning a clinical domain LLM
- Environment: Google Colab
- Dataset: starmpcc/Asclepius-Synthetic-Clinical-Notes
- Model: microsoft/phi-2 (2.7B)
- CAUTION (주의)
 - LLM 학습하는 과정에서 Colab을 절대 끄지 마시기 바랍니다.
 - 새로고침 금지
 - 코랩 내에서 다른 버튼 클릭 금지
 - 실행 중지 금지

Deep learning memory layout

- Model size: B (billion) scale
 - \circ **x**B parameters = **x**B floating point numbers = 2**x** GB (bf16/fp16)
- Deep Learning Memory Requirements
 - model parameter: 2x GB
 - o gradient state: 2**x** GB
 - o optimizer state: 2x ~ 12x GB
 - Total: 6~16x GB + alpha
- Our requirements
 - o model: phi-2 (2.7B)
 - o GPU VRAM: Colab T4 (16GB)
 - 0 2.7*6=16.2

Can You Run it?

https://huggingface.co/spaces/Vokturz/can-it-run-llm

LoRA (Hu and Shen et al., 2021)

QLoRA (Dettmers and Pagnoni et al., 2023)

Parameter-Efficient Fine-Tuning (PEFT)

https://github.com/huggingface/peft

```
Prepare a model for training with a PEFT method such as LoRA by wrapping the base model and PEFT
configuration with get_peft_model . For the bigscience/mt0-large model, you're only training 0.19% of the
parameters!
  from transformers import AutoModelForSeq2SeqLM
  from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
 model_name_or_path = "bigscience/mt0-large"
 tokenizer name or path = "bigscience/mt0-large"
 peft config = LoraConfig(
      task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.
 model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
 model = get_peft_model(model, peft_config)
 model.print_trainable_parameters()
  "trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282"
```


Thank you:D

If you require any further information, feel free to contact us: seongsu@kaist.ac.kr, sujeongim@kaist.ac.kr