# Debiased Contrastive Learning of Unsupervised Sentence Representations

Authors: Kun Zhou, Beichen Zhang, Wayne Xin Zhao, Ji-Rong Wen

Venue: ACL 2022

### 1. Introduction

- 최근 pre-trained language models(PLMs) 이 다양한 NLP task에서 높은 성능을 보이면서, semantic한 표현을 얻기 위해 많이 사용됨
- 하지만, 어떤 연구들에서 PLMs에서 얻은 sentence representations이 균일하게 분배되어 있지 않고, vector 공간에서 narrow cone 모양으로 나타남을 발견함. (Anistoropy함)
  - → 이런 현상은 표현성을 크게 제한할 수 있음



→ 이런 문제를 해결하기 위해 contrastive learning을 사용하여 PLMs로 얻는 sentence representations을 개선하고자 함

### 1. Introduction

- Contrastive learning이란?
  - Alignment를 개선하기 위해 Positive끼리는 가깝게, uniformity를 개선하기 위해 negative끼리는 멀게 학습시키는 방법
    - Representation은 불필요한 디테일에 불변해야 하고, 최대한 많은 정보를 보존해야 함
    - Alignment
      - positive끼리의 거리가 얼마나 가까운지를 나타냄
      - 유사한 sample은 유사한 Representation 를 가진다.
    - Uniformity
      - representation이 균일하게 분포하는지를 나타냄
      - Representation의 분포는 정보를 최대한 보존한다.
  - Positive sample은 이전 연구들 중 가장 높은 성능을 보인 데이터 증강 기법을 사용
  - Negative sample은 배치 안에서 random하게 샘플링 → in batch negative
    - Labeling data가 부족하기 때문
    - 배치 안에서 random하게 샘플링 하는 방법은 **간단하고 편리하지만 sampling bias를 일으킨다는 문제점이 있**음

### 1. Introduction

- Negative sampling의 문제점
  - 1. Sampling된 negative data가 original sentence와 의미적으로 유사한 false negative일 수 있음



2. Sampling된 negative data의 representations은 narrow cone에서 나오는 representation임

→ 표현 공간의 전체적인 의미를 반영하기에 충분하지 않음

### 2. Method

• 이를 해결하기 위해 DCLR(Debiased Contrastive Learning of unsupervised sentence Representations) 을 제안



- 1. Gaussian noise 추가하여 negative 생성
- 2. Instance weighting
  - In batch negatives 중에서 original sentence와의 유사도를 확인
  - 유사도가 높은 negative를 False negative라고 보고 이에 대한 weight을 지정
  - 유사도가 높을 수록 낮은 weight을 줌
- → 최종적으로는 이 두가지 모두를 사용

### 2. Method

- Generating Noise-based Negatives
  - Random한 Gaussian 분포를 통해 k개의 새로운 negative set 초기화

$$\{\hat{h}_1, \hat{h}_2, \cdots, \hat{h}_k\} \sim \mathcal{N}(0, \sigma^2),$$
 (1)

$$(h_i, h_i^+)$$
 as:

$$L_U(h_i, h_i^+, \{\hat{h}\}) = -\log \frac{e^{\sin(h_i, h_i^+)/\tau_u}}{\sum_{\hat{h}_j \in \{\hat{h}_j\}} e^{\sin(h_i, \hat{h}_i)/\tau_u}}, \quad (2)$$

이에 맞는 경사하강법 최적화

$$\hat{h}_j = \hat{h}_j + \beta g(\hat{h}_j)/||g(\hat{h}_j)||_2,$$
 (3) 원래 gradient ascent 식  $g(\hat{h}_j) = \nabla_{\hat{h}_j} L_U(h_i, h_i^+, \{\hat{h}\}),$  (4)  $g(x) = \nabla f(x)$ 

 $\beta$ : learning rate

### 2. Method

- Instance weighting
  - Negative와 original sentence의 유사도가 threshold보다 크면 0, 작으면 1로 weight 지정

$$\alpha_{h^{-}} = \begin{cases} 0, \sin_{C}(h_{i}, h^{-}) \ge \phi \\ 1, \sin_{C}(h_{i}, h^{-}) < \phi \end{cases}$$
 (5)

Gaussian noise-based negative, Instance weighting 방법을 적용한 최종 loss function 정의



- 3-1) STS(Semantic Textual Similarity) Tasks
  - GloVe, USE
  - CLS, Mean, First-Last AVG
  - Flow, Whitening
  - Contrastive(BT), ConSERT, SG-OPT, SimCSE
  - 학습 데이터: wikipedia에서 랜덤하게 100만 개의 문장 샘플링
  - **Backbone**: BERT-base, RoBERTa-base, BERT-large, RoBERTa-large
  - Epoch: 3, Temperature: 0.05
  - Optimizer: Adam
  - Batch size: (base)128, (large)256
  - Learning rate: (base, BERT-large) 3e-5, (RoBERTa-large) 1e-5
  - Instance weighting threshold: 각각 0.9, 0.85, 0.9, 0.85
  - Gaussian k: (k\*batch\_size) 각각 k 1, 2.5, 4, 5

|               | Models                         | STS12        | STS13 | STS14 | STS15 | STS16        | STS-B        | SICK-R       | Avg.         |
|---------------|--------------------------------|--------------|-------|-------|-------|--------------|--------------|--------------|--------------|
| Non-BERT      | GloVe (avg.) <sup>†</sup>      | 55.14        | 70.66 | 59.73 | 68.25 | 63.66        | 58.02        | 53.76        | 61.32        |
|               | USE <sup>†</sup>               | 64.49        | 67.80 | 64.61 | 76.83 | 73.18        | 74.92        | 76.69        | 71.22        |
| BERT-base     | CLS <sup>†</sup>               | 21.54        | 32.11 | 21.28 | 37.89 | 44.24        | 20.30        | 42.42        | 31.40        |
|               | Mean <sup>†</sup>              | 30.87        | 59.89 | 47.73 | 60.29 | 63.73        | 47.29        | 58.22        | 52.57        |
|               | First-Last AVG <sup>‡</sup> .  | 39.70        | 59.38 | 49.67 | 66.03 | 66.19        | 53.87        | 62.06        | 56.70        |
|               | +flow <sup>‡</sup>             | 58.40        | 67.10 | 60.85 | 75.16 | 71.22        | 68.66        | 64.47        | 66.55        |
|               | +whitening <sup>‡</sup>        | 57.83        | 66.90 | 60.90 | 75.08 | 71.31        | 68.24        | 63.73        | 66.28        |
|               | +Contrastive (BT) <sup>†</sup> | 54.26        | 64.03 | 54.28 | 68.19 | 67.50        | 63.27        | 66.91        | 62.63        |
|               | +ConSERT                       | 64.64        | 78.49 | 69.07 | 79.72 | 75.95        | 73.97        | 67.31        | 72.74        |
|               | +SG-OPT <sup>†</sup>           | 66.84        | 80.13 | 71.23 | 81.56 | 77.17        | 77.23        | 68.16        | 74.62        |
|               | +SimCSE                        | <u>68.40</u> | 82.41 | 74.38 | 80.91 | 78.56        | <u>76.85</u> | 72.23        | <u>76.25</u> |
|               | +DCLR (Ours)                   | 70.81        | 83.73 | 75.11 | 82.56 | <u>78.44</u> | 78.31        | <u>71.59</u> | 77.22        |
| BERT-large    | CLS <sup>†</sup>               | 27.44        | 30.76 | 22.59 | 29.98 | 42.74        | 26.75        | 43.44        | 31.96        |
|               | Mean <sup>†</sup>              | 27.67        | 55.79 | 44.49 | 51.67 | 61.88        | 47.00        | 53.85        | 48.91        |
|               | First-Last AVG                 | 57.73        | 61.17 | 61.18 | 68.07 | 70.25        | 59.59        | 60.34        | 62.62        |
|               | +flow <sup>†</sup>             | 62.82        | 71.24 | 65.39 | 78.98 | 73.23        | 72.72        | 63.77        | 70.07        |
|               | +whitening                     | 64.34        | 74.60 | 69.64 | 74.68 | 75.90        | 72.48        | 60.80        | 70.35        |
|               | +Contrastive (BT) <sup>†</sup> | 52.04        | 62.59 | 54.25 | 71.07 | 66.71        | 63.84        | 66.53        | 62.43        |
|               | +ConSERT                       | 70.69        | 82.96 | 74.13 | 82.78 | 76.66        | 77.53        | 70.37        | 76.45        |
|               | +SG-OPT <sup>†</sup>           | 67.02        | 79.42 | 70.38 | 81.72 | 76.35        | 76.16        | 70.20        | 74.46        |
|               | +SimCSE                        | 70.88        | 84.16 | 76.43 | 84.50 | <u>79.76</u> | <u>79.26</u> | 73.88        | 78.41        |
|               | +DCLR (Ours)                   | 71.87        | 84.83 | 77.37 | 84.70 | 79.81        | 79.55        | 74.19        | 78.90        |
| RoBERTa-base  | CLS                            | 16.67        | 45.57 | 30.36 | 55.08 | 56.98        | 45.41        | 61.89        | 44.57        |
|               | Mean <sup>†</sup>              | 32.11        | 56.33 | 45.22 | 61.34 | 61.98        | 54.53        | 62.03        | 53.36        |
|               | First-Last AVG <sup>‡</sup>    | 40.88        | 58.74 | 49.07 | 65.63 | 61.48        | 58.55        | 61.63        | 56.57        |
|               | +whitening <sup>‡</sup>        | 46.99        | 63.24 | 57.23 | 71.36 | 68.99        | 61.36        | 62.91        | 61.73        |
|               | +Contrastive (BT) <sup>†</sup> | 62.34        | 78.60 | 68.65 | 79.31 | 77.49        | 79.93        | 71.97        | 74.04        |
|               | +SG-OPT <sup>†</sup>           | 62.57        | 78.96 | 69.24 | 79.99 | 77.17        | 77.60        | 68.42        | 73.42        |
|               | +SimCSE                        | 70.16        | 81.77 | 73.24 | 81.36 | 80.65        | 80.22        | <u>68.56</u> | 76.57        |
|               | +DCLR (Ours)                   | 70.01        | 83.08 | 75.09 | 83.66 | 81.06        | 81.86        | 70.33        | 77.87        |
| RoBERTa-large | CLS <sup>†</sup>               | 19.25        | 22.97 | 14.93 | 33.41 | 38.01        | 12.52        | 40.63        | 25.96        |
|               | Mean <sup>†</sup>              | 33.63        | 57.22 | 45.67 | 63.00 | 61.18        | 47.07        | 58.38        | 52.31        |
|               | First-Last AVG                 | 58.91        | 58.62 | 61.44 | 69.05 | 65.23        | 59.38        | 58.84        | 61.64        |
|               | +whitening                     | 64.17        | 73.92 | 71.06 | 76.40 | 74.87        | 71.68        | 58.49        | 70.08        |
|               | +Contrastive (BT) <sup>†</sup> | 57.60        | 72.14 | 62.25 | 71.49 | 71.75        | 77.05        | 67.83        | 68.59        |
|               | +SG-OPT <sup>†</sup>           | 64.29        | 76.36 | 68.48 | 80.10 | 76.60        | 78.14        | 67.97        | 73.13        |
|               | +SimCSE                        | 72.86        | 83.99 | 75.62 | 84.77 | 81.80        | 81.98        | 71.26        | 78.90        |
|               | +DCLR (Ours)                   | 73.09        | 84.57 | 76.13 | 85.15 | 81.99        | 82.35        | 71.80        | 79.30        |

- 3-2) Performance comparison using different positive augmentation strategies
  - 모든 방법에서 DCLR을 적용한 것이 더 성능이 좋음을 보임



- 3-3) Ablation
  - Instance Weighting을 제거했을 때, 더 큰 하락 폭을 보임
  - Random Noise, Knowledge Distillation, Self Instance Weighting 모두 DCLR보다 낮음
    - Random Noise: gradient-based optimization 없이 noise-based negative 생성
    - Knowledge Distillation: SimCSE를 teacher model로 사용
    - Self Instance Weighting: weight을 생성하기 위해 자기 자신을 보조 모델로 사용

| Model                             | STS-Avg. |
|-----------------------------------|----------|
| BERT-base+Ours                    | 77.22    |
| w/o Noise-based Negatives         | 76.17    |
| w/o Instance Weighting            | 76.31    |
| BERT-base+Random Noise            | 75.22    |
| BERT-base+Knowledge Distillation  | 75.05    |
| BERT-base+Self Instance Weighting | 73.93    |

- 3-4) Uniformity Analysis
  - DCLR이 SimCSE보다 훨씬 빠르게 낮아지는 모습을 보임
  - Representation space에서 noise-based negative를 사용했기 때문
    - Gaussian noise-based negative가 uniformity 개선에 좋다는 것을 보임



- 3-5) Performance under Few-shot Settings
  - Data가 부족할 때도 DCLR이 robust하고 reliable한 지 알기 위해 실험
  - Backbone model: BERT-base
  - 데이터가 줄어도 stable한 결과를 보였고, 데이터를 극도로 줄인 0.3%에서의 성능 차이는 9, 4 정도뿐이였음



- 3-6) Hyper-parameters Analysis
  - Weighting threshold
    - STS-B에서 너무 크거나 너무 작은 threshold는 오히려 성능 저하를 일으킴
    - Threshold가 0.9일 때 가장 좋은 성능을 보임
  - **Negative Proportion** 
    - Noise-based negative의 수(k\*batch\_size)가 batch size와 가까울 때 가장 좋은 성능을 보임



(a) Weighting Threshold  $\phi$ 

(b) Negative Proportion k

2.5

### 5. Conclusion

- DCLR은 random negative sampling에서 발생하는 sampling bias를 완화하기 위해 instance weighting 방법을 제안했음
- 또한, PLMs에서 얻은 representation이 anisotropy하기 때문에 이런 문제를 해결하기 위해 noise-based negative를 생성하여 사용하는 방법도 제안했음
- 두 가지 방법 모두 사용한 결과, 7개의 STS task에서 baseline model보다 좋은 성능을 보였음

# Thank You

감사합니다.