

Atividade Máquinas Síncronas - Gerador Máquinas Elétricas 2022.1

Grupo 05:

ELTON DAVI RAMOS DA SILVA MIGUEL MARQUES FERREIRA PAULO GABRIEL MARTINS LEANDRO RAFAEL PEREIRA DO NASCIMENTO WESLEY HENRIQUE DANTAS FURTADO

> UFPB/CEAR/DEE 16 de novembro de 2022

1 Atividade

Esta atividade consiste no desenvolvimento de dois algoritmos para o estudo de geradores síncronos. Toda a atividade e resultados tem como base a utilização do *software* MATLAB e, sobretudo, uma abordagem específica e de acordo com cada um dos problemas.

A Figura 1 apresenta a interface desenvolvida para o estudo de geradores síncronos nas situações de variação de carga e variação de corrente de campo.

Figura 1: Interface do Programa para a Análise de Geradores Síncronos.

Um gerador síncrono, quatro polos, de 13,8 kV, 50 MVA, fator de potência de 0,9 atrasado, 60 Hz,

ligado em Y e de tem uma reatância síncrona de 2,5 Ω e uma resistência de armadura de 0,2 Ω . Em 60 Hz, as perdas por atrito e ventilação são 1 MW e as perdas no núcleo são 1,5 MW. O circuito de campo tem uma tensão CC de 120 V e a I_F máxima é 10 A. A corrente do circuito de campo é ajustável no intervalo de 0 a 10 A. A CAV desse gerador está mostrada na Figura 2.

Figura 2: Característica a vazio.

Calcule o que se pede:

- 1. Qual é o valor da corrente de campo necessário para tornar a tensão de terminal V_T (ou tensão de linha V_L) igual a 13,8 kV, quando o gerador está operando a vazio?
- 2. Qual é o valor da tensão gerada interna E_A quando o gerador está funcionando nas condições nominais?
- 3. Qual é a tensão de fase V_{ϕ} desse gerador em condições nominais?
- 4. Quando o gerador está operando em condições nominais, quanta corrente de campo é necessária para tornar a tensão de terminal V_T igual a 13,8 kV?
- 5. Suponha que esse gerador esteja operando em condições nominais quando a carga é removida sem que a corrente de campo seja alterada. Qual seria a tensão de terminal do gerador?
- 6. Em regime permanente, quanta potência e quanto conjugado a máquina motriz deve ser capaz de fornecer para operar em condições nominais.

2 Questão 01

2.1 Atividade

Um algoritmo para o MATLAB que calcule, em pu, para esta máquina, I_A , I_L , E_A e FP partindo da carga inicial de 60 % da carga nominal e incrementando de 10 em 10 % até o limite da potência nominal da máquina.

Desenhe os diagramas fasoriais (todas as grandezas em pu) utilizando o MATLAB. Conforme a figura a seguir deve constar na figura traçada no MATLAB (desconsiderar a queda em RA):

- 1. Círculo unitário em cima do qual E_A deverá "escorregar";
- 2. Tensão de fase V_{ϕ} ;
- 3. O fasor $jXsI_A$;

- 4. Tensão induzida E_A ;
- 5. Corrente I_A .

2.2 Resultados

Primeiramente, nas Figuras 3, 4 e 5, ilustram-se os diagramas fasorias para um gerador síncrono operando em condições nominais de carga e com FP capacitivo, indutivo e resistivo, respectivamente. Além disso, o diagrama fasorial para o mesmo gerador síncrono operando nominalmente com FP resistivo e em ligação Δ é apresentado na Figura 6.

Figura 3: Operação Nominal para FP Capacitivo

Figura 4: Operação Nominal para FP Indutivo

Como solução para a questão 1, os diagramas fasoriais a seguir apresentam a curva E_A com variação de carga, isto é, de 60% até 100% da caraga, para um FP capacitivo, indutivo e resistivo. As Figuras 7, 8 e 9 apresentam os diagramas fasoriais e a curva Ea na cor preta, respectivamente.

Figura 5: Operação Nominal para FP Resistivo - Y

Figura 6: Operação Nominal para FP Resistivo - Δ

Figura 7: Variação de Carga para FP Capacitivo

Figura 8: Variação de Carga para FP Indutivo

Figura 9: Variação de Carga para FP Resistivo

3 Questão 2

3.1 Atividade

Para a mesma máquina, desenvolver um algoritmo para o MATLAB que calcule, em pu, I_A , I_L , E_A e FP considerando carga nominal, e incrementando a corrente de campo de 6 até 10 A, variando de 1 em 1 A. Desenhar os diagramas fasoriais (todas as grandezas em pu) utilizando o MATLAB. Conforme a figura a seguir deve constar na figura traçada no MATLAB:

- 1. Reta em cima da qual E_A deverá "escorregar";
- 2. Tensão de fase V_{ϕ} ;
- 3. O fasor $jXsI_A$;
- 4. Tensão induzida E_A ;
- 5. Corrente I_A ;
- 6. Trace o gráfico I_A versus I_F .

3.2 Resultados

Para essa questão, o usuário da solução para o estudo de geradores síncronos deve inserir um arquivo .csv com as informações de característica a vazio da máquina, como apresenta a Tabela 1. A partir disso, o programa é capaz de indentificar os pontos enviados e, assim, reconstruir a curva de caracterização do gerador sem carga.

Corrente de Campo (A)	Tensão de Terminal (V)
0	1500
1	5800
2	9700
3	12500
4	14600
5	16300
6	17800
7	18300
8	19000
9	19600
10	20000

Tabela 1: Informações de característica a vazio da máquina

A Figura 10 apresenta a curva de característica a vazio da máquina detalhada na questão, em que os pontos em azul são os valores informados no arquivo .csv e a linha vermelha é o polinômio que mais se aproxima da curva real de caracterização a vazio da máquina.

Com base em uma variação de corrente de campo e potência constante na saída do gerador, foi possível confeccionar os diagramas fasoriais ilustrados nas Figuras 11,12 e 13, para FP capacitivo, indutivo e resistivo, respectivamente.

Bem como os diagramas fasoriais para operação nominal podem ser vistos nas Figuras 3, 4, 5 e 6.

Figura 10: Curva a Vazio para a Análise de Geradores Síncronos.

Figura 11: Variação de I_F para FP Capacitivo

Figura 12: Variação de I_F para FP Indutivo

Diagramas Fasoriais - Variação da Corrente de Campo (IF) 5 Ea (20.64 / 14.67°) Vp (7.97 / 0.00°) Ia (5.24 / -66.46°) jXsla (13.09 / 23.54°) Reta 5 0 5 10 15 20 25 30

Figura 13: Variação de ${\cal I}_F$ para FP Resistivo