

Physik

V2: Mechanik - Kinematik

Prof. Dr.-Ing. Tatsiana Malechka

Mechanik

Kinematik

FH MÜNSTER University of Applied Sciences

Vorlesungsinhalte

- Grundsätzliche Bewegungsarten
- Modell Punktmasse
- Ort und Verschiebung
- Mittlere und momentane Geschwindigkeit
- Mittlere und momentane Beschleunigung
- Freier Fall
- Schiefer Wurf
- Kreisbewegung
- Bezugssystem

Kinematik

Grundsätzliche Bewegungsarten

- Kinematik ist die Lehre von Bewegung (beschreibt nur)
- Grundsätzliche Bewegungsarten (ausgedehnte Körper)
 - Translation Änderung der Position.
 Jeder Punkt des Körpers hat die gleiche Bahnkurve

2. Rotation (Drehung) - Änderung der Orientierung. Punkte bewegen sich auf Kreisbögen

Jede Bewegung ist eine Überlagerung von Translation und Rotation.

Kinematik

FH MÜNSTER University of Applied Sciences

Bahnkurve

Aufgabe der Kinematik: Bestimme den Ort (die Position) \vec{r} eines Körpers in Abhängigkeit von der Zeit t:

die Ort-Zeit-Funktion

$$\vec{r}(t) = x(t)\vec{e}_x + y(t)\vec{e}_y + z(t)\vec{e}_z$$

Massenpunkt

Bewegung: z. B. Änderung des Ortes x mit der Zeit t, x = f(t) = x(t)

Beispiele: $x = k \text{ oder } x = k' \cdot t \text{ } (k, k' \text{ - Konstanten})$

Problem: Reale Objekte ausgedehnt (Auto, Flugzeug,...) → Ort nicht eindeutig

Lösung: Idealisierung ausgedehnter Körper zur Punktemasse (oder Teilchen)= Körper,

dessen Masse man sich in einem Punkt konzentriert denkt

 $\underline{\text{https://www.spiegel.de/sport/wintersport/simon-schempp-vs-martin-fourcade-die-fussspitze-des-franzosen-a-1194140.html} \\$

Eindimensionale Bewegung

Ort und Verschiebung

Ein Wechsel von einem Ort x_1 zu einem anderen Ort x_2 wird eine **Verschiebung** Δx genannt.

$$\Delta \mathbf{x} = \mathbf{x}_2 - \mathbf{x}_1$$

Der Ortsvektor eines Teilchens ist ein Vektor vom Ursprung des Koordinatensystems

zum Ort des Teilchens.

$$\vec{r} = x \, \vec{e}_x + y \, \vec{e}_y$$

Mehrdimensionale Bewegung

Ort und Verschiebung

Die Ortsänderung eines Teilchens wird mit dem Verschiebungsvektor \vec{r} angegeben

$$\Delta \vec{\mathbf{r}} = \overrightarrow{r_2} - \overrightarrow{r_1} = (\mathbf{x}_2 - \mathbf{x}_1) \cdot \vec{e}_x + (y_2 - y_1) \cdot \vec{e}_y = \Delta x \cdot \vec{e}_x + \Delta y \cdot \vec{e}_y$$

Eindimensionale Bewegung

Mittlere Geschwindigkeit

Annahme: Bewegung 1-dimensional (z.B. x-Achse)

Modell: Punktmasse

Mittlere Geschwindigkeit ist der Quotient aus der Verschiebung Δx und dem Zeitintervall Δt :

$$\langle v_x \rangle = \frac{\Delta x}{\Delta t} = \frac{\mathbf{x}_2 - \mathbf{x}_1}{t_2 - t_1}$$

Mittlere Geschwindigkeit = die Steigung der Gerade, die zwei Punkte der Kurve x(t) verbindet.

Mittlere Geschwindigkeit = die durchschnittliche Geschwindigkeit, mit der zwischen den beiden betrachteten Punkten bewegt.

Eine Bewegung mit konstanter Geschwindigkeit = gleichförmige Bewegung

Mehrdimensionale Bewegung

Mittlere Geschwindigkeit

Annahme: Bewegung 2-dimensional

Modell: Punktmasse

Mittlerer Geschwindigkeitsvektor = der Quotient aus der Verschiebung $\Delta \vec{r}$ und dem Zeitintervall Δt :

$$\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{t_2 - t_1}$$

Mittlere Geschwindigkeit

Typische mittlere Geschwindigkeiten:

	Mittlere Geschwindigkeit m/s
Spaziergang	1
Schnellste Mensch	10
Schallgeschwindigkeit(Luft)	340
Mond um Erde	1000
GPS-Satellit	3.900
Elektron im Atom	5.000
Lichtgeschwindigkeit	299.792.458

Problem:

Keine Aussagen möglich über v und x zu einem bestimmten Zeitpunkt t.

ETI

Momentane Geschwindigkeit

Die **momentane Geschwindigkeit** ist der Grenzfall des Quotienten $\frac{\Delta x}{\Delta t}$ für kleine Zeiträume $\Delta t \rightarrow 0$:

$$v_x(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} = \dot{x}$$

Momentane Geschwindigkeit = Anstieg der Tangente an einer Funktion x(t) = Ableitung von x nach t

Bei der **gleichförmigen** Bewegung: momentane Geschwindigkeit = mittlere Geschwindigkeit.

Mehrdimensionale Bewegung

Momentane Geschwindigkeit

Der Vektor der momentanen Geschwindigkeit ist der Grenzfall des Vektors

des mittleren Geschwindigkeit für $\Delta t \rightarrow 0$:

$$\vec{v}(t) = \lim_{\Delta t \to 0} \vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t)$$

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} =$$

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \cdot \vec{e}_x + \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} \cdot \vec{e}_y = v_x \cdot \vec{e} + v_y \cdot \vec{e}_y$$

Eindimensionale Bewegung

Mittlere Beschleunigung

Annahme: Bewegung ist 1-dimensional.

Modell: Punktmasse

Fragen: - Wie schnell wird man schnell?

- Wie schnell wird man langsam?

Beschleunigung = die zeitliche Änderung der Geschwindigkeit. **Mittlere Beschleunigung** = die Steigung der Gerade, die zwei Punkte der Kurve v(t) verbindet.

$$\langle a_{\chi} \rangle = \frac{\Delta v_{\chi}}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$$

Gleichförmige Beschleunigung = zeitliche Änderung der Beschleunigung ist konstant

Eindimensionale Bewegung

Mittlere Beschleunigung

Mehrdimensionale Bewegung

Mittlere Beschleunigung

Annahme: Bewegung ist 3-dimensional.

Modell: Punktmasse

Fragen: - Wie schnell wird man schnell?

- Wie schnell wird man langsam?

Die mittlere Beschleunigung = Quotient der Änderung des Vektors der Momentangeschwindigkeit $\Delta \vec{v}$ und des verstrichenen Zeitintervalls $\Delta t \times t$

$$\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t}$$

Beschleunigung

Beschleunigung in Natur und Technik:

	Beschleunigung m/s ²
Erdbeschleunigung	9,81
Moderne S und U-Bahnen	1,3
Fahrradprofi	2
Beschleunigung der Kugel beim Kugelstoßen in der Abstoßphase	10
Beschleunigung in einem Space Shuttle während des Wiedereintritts in die Erdatmosphäre	16
Laut Guinness-Buch der Rekorde höchste gemessene Beschleunigung, die von einem Menschen überlebt wurde	1.764
Ungefähre Beschleunigung des Trommelinhalts von Waschmaschine im Schleudergang	3.000

ETI

Eindimensionale Bewegung

Momentane Beschleunigung

Die momentane Beschleunigung ist der Grenzfall des

Quotienten $\frac{\Delta v_x}{\Delta t}$ für kleine Zeiträume $\Delta t \rightarrow 0$:

$$a_{x}(t) = \lim_{\Delta t \to 0} \frac{\Delta v_{x}}{\Delta t} = \frac{dv_{x}}{dt} = \frac{d(\frac{dx}{dt})}{dt} = \frac{d^{2}x}{dt^{2}} = \ddot{x}$$

Momentane Beschleunigung = Anstieg der Tangente an einer Funktion v(t) = Ableitung von v nach t **Gleichförmige (gleichmäßige) Beschleunigung** $\rightarrow a_x(t) = \langle a_x \rangle$

Momentane Beschleunigung

Die momentane Beschleunigung ist der Grenzfall des

$$\vec{v}(t) = v_x \cdot \overrightarrow{e_x} + v_y \cdot \overrightarrow{e_y} + v_z \cdot \overrightarrow{e_z} =$$

Quotienten $\frac{\Delta v_{\chi}}{\Delta t}$ für kleine Zeiträume $\Delta t \rightarrow 0$:

$$\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

Momentane Beschleunigung = Anstieg der Tangente an

einer Funktion v(t) = Ableitung von des

Geschwindigkeitsvektors \vec{v} nach t

Gleichförmige (gleichmäßige) Beschleunigung →

$$\vec{a}(t) = \langle \vec{a} \rangle$$

Hinweis: Auch eine Richtungsänderung ist eine

Beschleunigung! (Kreisbewegung = Radialbeschleunigung.

Zusammenfassung

Bewegung in 3 Dimensionen

Mittlere

Geschwindigkeit

Momentane

Geschwindigkeit

Mittlere

Beschleunigung

Momentane

Beschleunigung

$$\langle v_x \rangle = \frac{\Delta x}{\Delta t}$$

$$v_x(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} = \dot{x}$$

$$\langle a_x \rangle = \frac{\Delta v_x}{\Delta t}$$

$$a_x(t) = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt} = \frac{d(\frac{dx}{dt})}{dt} = \frac{d^2x}{dt^2} = \ddot{x}$$

$$\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t} = (\langle v_x \rangle, \langle v_y \rangle, \langle v_z \rangle)$$

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t) = \left(\frac{d\vec{x}}{dt}, \frac{d\vec{y}}{dt}, \frac{d\vec{z}}{dt}\right)$$

$$\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t} = (\langle a_x \rangle, \langle a_y \rangle, \langle a_z \rangle)$$

$$\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \left(\frac{d\vec{v}_x}{dt}, \frac{d\vec{v}_y}{dt}, \frac{d\vec{v}_z}{dt}\right)$$

Zusammenfassung

Ort, Geschwindigkeit und Beschleunigung hängen über die Integration (und Differentiation) zusammen

Bsp.: Smartphone-Experiment (phyphox) – "Fahrt im Aufzug"

Bewegung

mit konstanter Geschwindigkeit

Geschwindigkeit: $v(t) = v_0 = const$

Anfangsort: $x(0) = x_0$

das Weg-Zeit-Gesetz der gleichförmigen Bewegung:

$$x(t) = x_0 + v_0 \cdot t$$

Bewegung

mit konstanter Beschleunigung

Beschleunigung: a(t) = a = const

Anfangsgeschwindigkeit: $v(0) = v_0$

Anfangsort: $x(0) = x_0$

das Geschwindigkeit-Zeit-Gesetz der gleichmäßig beschleunigten Bewegung:

$$v(t) = v_0 + a \cdot t$$

$$v(t) = \int_{0}^{t} a(t)dt = at + v_0$$

das Weg-Zeit-Gesetz der gleichmäßig beschleunigten Bewegung:

$$x(t) = x_0 + v_0 \cdot t + \frac{1}{2}a \cdot t^2$$

$$x(t) = \int_{0}^{t} v(t)dt = \frac{1}{2} \cdot at^{2} + v_{0} \cdot t + x_{0}$$

Freier Fall

Beispiel einer 1-dimensionalen Bewegung: vertikale

Wie groß ist die Beschleunigung?

Alle Körper fallen mit derselben konstanten **Fallbeschleunigung**:

g =

Freier Fall

Beispiel einer 1-dimensionalen Bewegung: vertikale

Wie groß ist die Beschleunigung?

Beispiel einer 2-dimensionalen Bewegung: vertikale und horizontale

https://www.youtube.com/watch?v=CiJ_7vK8PhU

ETI

Schiefer Wurf

- Der schiefe Wurf = der schräge Wurf
- Beispiel einer 2-dimensionalen Bewegung: vertikale und horizontale

Annahmen:

- 1. Tennisball ist punktförmig
- 2. Ball hat Anfangsgeschwindigkeit v_0

Prof. Dr.-Ing. Tatsiana Malechka

- 3. Abwurfwinkel = φ
- 4. Reibung wird vernachlässigt
- Anfangsbedingungen:

$$\vec{r} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \vec{v}_0 = \begin{pmatrix} v_{0x} \\ v_{0y} \end{pmatrix} = \begin{pmatrix} v_0 \cdot \cos(\varphi) \\ v_0 \cdot \sin(\varphi) \end{pmatrix} \quad \text{und } \vec{a} = \begin{pmatrix} 0 \\ -g \end{pmatrix}$$

Physik – Mechanik - Kinematik

gleichförmige Bewegung

gleichmäßige beschleunigte Bewegung

Schiefer Wurf

Anfangsbedingungen:

$$\vec{r} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \vec{v}_0 = \begin{pmatrix} v_{0x} \\ v_{0y} \end{pmatrix} = \begin{pmatrix} v_0 \cdot \cos(\varphi) \\ v_0 \cdot \sin(\varphi) \end{pmatrix} \quad \text{und } \vec{a} = \begin{pmatrix} 0 \\ -g \end{pmatrix}$$

- Superposition:
 - horizontal x(t):
 - vertikal y(t):
- Flugzeit?
- Flugweite?
- Flughöhe?

$$x(t) = v_{0x}t$$

$$y(t) = v_{oy}t + \frac{1}{2}(-g) t^2$$

Schiefer Wurf

Kreisbewegung

Position: $\varphi(t)$

Winkelgeschwindigkeit

Änderung der Position: $\omega(t) = \frac{d\varphi(t)}{dt}$

gleichförmig: ω = const

$$\varphi(t) = \omega T = 2\pi$$

Smartphone Experiment: Salatschleuder

Kreisbewegung

- Bahngeschwindigkeit verläuft tangential
- Zentripetalbeschleunigung zeigt zum Kreismittelpunkt

$$v = \omega R$$

$$a_{ZP} = \omega^2 R$$

Das Bezugssystem

- kann beliebig gewählt werden
- legt Bezugspunkt und Richtung fest, relativ zu denen die Bewegung beschrieben wird

Bewegung des Zugs

aus Sicht von A

aus Sicht von B

aus Sicht von E

$$v_{Zua}^{(A)} = 0$$

$$v_{Zug}^{(B)} = v_{Zug} = 80 \ km/h$$

$$v_{Zug}^{(E)}=0$$

Bewegung von Person C

$$v_C^{(A)} = v_C = 5 \, km/h$$

$$v_C^{(B)} = v_{Zug} + v_C = 85 \, km/h$$

$$v_C^{(E)} = -v_C = -5 \, km/h$$

Physik ist spannend!

Parabelflug

33 von 33

https://www.youtube.com/watch?v=B6N5KL8fVfl

https://de.wikipedia.org/wiki/Parabelflug

Prof. Dr.-Ing. Tatsiana Malechka Physik – Mechanik - Kinematik

Vielen Dank für Ihre Aufmerksamkeit!

Prof. Dr.-Ing. Tatsiana Malechka Labor Autonome Systeme

