# CSE2209: Digital Electronics and Pulse Techniques

**Course Conducted By:** 

Nowshin Nawar Arony Lecturer, Dept of CSE, AUST

#### Transmission Gate

The structure of a CMOS transmission gate is shown in the figure. It consists of an NMOS in parallel with a PMOS such that the gates are controlled by the complementary voltages x applied to the NMOS, and  $\bar{x}$  applied to the PMOS. The TG is designed to act as a voltage-controlled switch.



#### Transmission Gate

| X | Α | B (output) |
|---|---|------------|
| 1 | 0 | 0          |
| 1 | 1 | 1          |
| 0 | 0 | H.I        |
| 0 | 1 | H.I        |













#### OR using transmission gate

| X | У | f |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Let **x** be the control signal

$$f(x, y) = x+y$$

$$= \bar{x}y + x\bar{y} + xy$$

$$= \bar{x}y + x(y + \bar{y})$$

$$= \bar{x}y + x \cdot 1 \text{ [inverse law]}$$



#### AND using transmission gate

| X | У | f |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Let **x** be the control signal

$$f(x, y) = xy$$
$$= xy + \bar{x} \cdot 0 \text{ [null law]}$$



## Implementing with Transmission Gate



# MUX Design Based on CMOS Transmission Gate

 $P_0$  active, when S=0  $P_1$  active, when S=1





 $P_0$  active, when S = 0



 $P_1$  active, when S=1

$$F = \overline{S}P_o + SP_1$$





$$F = P_0 \overline{S_1} \overline{S_0} + P_1 \overline{S_1} S_0 + P_2 S_1 \overline{S_0} + P_3 S_1 S_0$$



# Laws of Boolean Algebra

| Name             | AND form                                      | OR form                                       |
|------------------|-----------------------------------------------|-----------------------------------------------|
| Identity law     | 1A = A                                        | 0 + A = A                                     |
| Null law         | 0A = 0                                        | 1 + A = 1                                     |
| Idempotent law   | AA = A                                        | A + A = A                                     |
| Inverse law      | $A\overline{A} = 0$                           | $A + \overline{A} = 1$                        |
| Commutative law  | AB = BA                                       | A + B = B + A                                 |
| Associative law  | (AB)C = A(BC)                                 | (A + B) + C = A + (B + C)                     |
| Distributive law | A + BC = (A + B)(A + C)                       | A(B + C) = AB + AC                            |
| Absorption law   | A(A + B) = A                                  | A + AB = A                                    |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A + B} = \overline{A}\overline{B}$ |

#### Expressing Boolean function with Mean terms

$$F = a + b\overline{c}$$

$$= a.1.1 + 1. b\overline{c}$$

$$= a (b + \overline{b})(c + \overline{c}) + (a + \overline{a})b\overline{c}$$

$$= (ab + a\overline{b}) (c + \overline{c}) + ab\overline{c} + \overline{a}b\overline{c}$$

$$= abc + \underline{a}b\overline{c} + a\overline{b}c + a\overline{b}\overline{c} + \overline{a}b\overline{c}$$

$$= abc + ab\overline{c} + a\overline{b}c + a\overline{b}\overline{c} + \overline{a}b\overline{c}$$
 [Idempotent Law (x+x =x)]
$$= \Sigma(2,4,5,6,7)$$

# Implement F(a,b,c) = $\Sigma(2,4,5,6,7)$ using Transmission Gate

## Truth Table for $F(a,b,c) = \Sigma(2,4,5,6,7)$

| а | b | С | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

#### K-Map

Let b and c are the control signals.

| a b | c 00 | 01 | 11 | 10  |
|-----|------|----|----|-----|
| 0   | 0    | 1  | 3  | (2) |
| 1   | 4    | 5  | 7  | 6   |
| _   | а    | а  | а  | 1   |

$$F(a,b,c) = \Sigma(2,4,5,6,7)$$

$$a\overline{b}\overline{c} + a\overline{b}c + b\overline{c} + abc$$

# Implement using Transmission Gate:

$$f(a,b,c) = a\overline{b} \overline{c} + a\overline{b}c$$
  
+  $b\overline{c}$  + abc



### 2nd Approach

| а | b | С | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

#### Let, b and c are the control signal

| b | С | output |
|---|---|--------|
| 0 | 0 | а      |
| 0 | 1 | а      |
| 1 | 0 | 1      |
| 1 | 1 | а      |

$$a\overline{b} \overline{c} + a\overline{b}c + b\overline{c} + abc$$

### 3<sup>rd</sup> Approach

Given,  $f = a+b\overline{c}$ Let, bc are control signals.

$$f(a,b,c) = b f (a,1,c) + \overline{b} f (a,0,c)$$

$$= b.c. f (a,1,1) + b.\overline{c}. f (a,1,0) + \overline{b}.c. f (a,0,1) + \overline{b}.\overline{c}. f (a,0,0)$$

$$= b.c. a + b.\overline{c}. 1 + \overline{b}.c. a + \overline{b}.\overline{c}.a$$

$$= abc + b\overline{c} + a\overline{b} c + a\overline{b} \overline{c}$$

#### Here,

f (a,1,1) = 
$$a+b\overline{c} = a + 1.\overline{1} = a + 1.0 = a + 0 = a$$
  
f (a,1,0) =  $a+b\overline{c} = a + 1.\overline{0} = a + 1.1 = a + 1 = 1$   
f (a,0,1) =  $a+b\overline{c} = a + 0.\overline{1} = a + 0.0 = a + 0 = a$   
f (a,0,0) =  $a+b\overline{c} = a + 0.\overline{0} = a + 0.1 = a + 0 = a$ 

# Implement using CMOS transmission gate, 2x1 or/and 4x1 MUX

- $F(a,b,c) = \Sigma(0,2,4,6)$
- $F(x,y,z) = xy + \overline{z}$
- $\bullet F(x,y,z) = xy + yz + zx$
- F(a,b,c,d) =  $a\bar{b} + c\bar{d}$

## Read Only Memory (ROM)

2<sup>M</sup> x N ROM

M = No. of inputs N = No. of outputs







 $2^{M}$  x N ROM When M = 2 and N = 1

 $2^2 \times 1 = 4 \times 1 \text{ ROM}$ 

When M = 4 and N = 4

$$2^4 \times 4 = 16 \times 4 \text{ ROM}$$



4x2 ROM

#### Implement the given expression using 4x1 ROM

• f (
$$A_0, A_1$$
) =  $\Sigma(1,2,3)$ 

So ROM size:

$$2^2 \times 1 = 4 \times 1 \text{ ROM}$$

| A <sub>0</sub> | $A_1$ | output |
|----------------|-------|--------|
| 0              | 0     | 0      |
| 0              | 1     | 1      |
| 1              | 0     | 1      |
| 1              | 1     | 1      |



4x1 ROM

#### Reviewing NMOS Inverter functionality

| V <sub>i</sub> | NMOS | V <sub>o</sub> |
|----------------|------|----------------|
| V(0)           | OFF  | $V_{DD}$       |
| V(1)           | ON   | GND            |



| $f(A_{0}, A_{1}) = \Sigma(1,2,3) = A_{0} + A_{0}$ | f ( | $(A_0, A_1)$ | $)=\Sigma$ | (1,2,3) | $=A_0$ | + A |
|---------------------------------------------------|-----|--------------|------------|---------|--------|-----|
|---------------------------------------------------|-----|--------------|------------|---------|--------|-----|

| $A_0$ | $A_1$ | output |
|-------|-------|--------|
| 0     | 0     | 0      |
| 0     | 1     | 1      |
| 1     | 0     | 1      |
| 1     | 1     | 1      |



Use NMOS for 0 outputs.

$$f(A_{0}, A_{1}) = \Sigma(3) = A_{0} A_{1}$$

| $A_0$ | $A_1$ | output |
|-------|-------|--------|
| 0     | 0     | 0      |
| 0     | 1     | 0      |
| 1     | 0     | 0      |
| 1     | 1     | 1      |



Implement f (a,b,c) =  $\Sigma(2,3,5,6)$  using 4 x 1 ROM

Here,  $\pi(0,1,4,7)$ 

Let, a is selector



### Implement using 2x1 or/and 4x1 ROM

• 
$$F(a,b,c) = \Sigma(0,2,4,6)$$

• 
$$F(x,y,z) = xy + \overline{z}$$

$$\bullet F(x,y,z) = xy + yz + zx$$

<sup>\*</sup>Hint: Express the equation into min terms and then implement them.