Міністерство освіти і науки україни Запорізький національний технічний університет

Методичні вказівки до лабораторної роботи "ДОСЛІДЖЕННЯ ЗАПИЛЕНОСТІ ПОВІТРЯНОГО СЕРЕДОВИЩА У ВИРОБНИЧИХ ПРИМІЩЕННЯХ" для студентів усіх спеціальностей з будь-якої форми навчання

Методичні вказівки до лабораторної роботи "Дослідження запиленості повітряного середовища у виробничих приміщеннях» для студентів усіх спеціальностей з будь-якої форми навчання Укл. Скуйбіда О.Л.-Запоріжжя: ЗНТУ, 2014. –14с.

Укладач: О.Л. Скуйбіда, доцент, к.т.н.

Рецензент: О.В. Нестеров, доцент, к.т.н.

Відповідальний за випуск О.В. Нестеров, доцент, к.т.н.

Затверджено на засіданні кафедри «Охорона праці і навколишнього середовища» Протокол № 8 від 06.06. 2014 р

3MICT

1	Мета роботи	4
2	Теоретична частина	4
3	Дослідна частина	7
3.1	Опис застосування приладів	7
3.2	Послідовність виконання роботи	8
4	Зміст звіту.	10
5	Список літератури.	11
	Додаток А Гранично допустимі концентрації шкіливих	12
	речовин в повітрі робочої зони (ДСН 3.3.6.042-99)	

1 МЕТА РОБОТИ

Ознайомитися з основними критеріями, що характеризують залиленість повітяного середовища та методами її дослідження. Опанувати ваговий метод та його практичне застосування.

2 ТЕОРЕТИЧНА ЧАСТИНА

Повітря - один з основних факторів, що забезпечує життєдіяльність людини у всіх сферах її перебування.

Залежно від хімічного складу повітря, його фізичних і інших властивостей (температури, вологості, рухомості, тиску), а також наявності в ньому інших забруднень у вигляді пилу, туману, або диму повітряне середовище може бути сприятливим, несприятливим або навіть небезпечним. Хімічні речовини, які проникають в організм в умовах виробництва навіть у відносно невеликих кількостях, викликають порушення нормальної життєдіяльності та професійні отруєння. Тому дуже велике значення має чистота повітря від бруду і пилу, які утворюються під час подрібнення, розмолу та транспортування твердих, сипучих матеріалів, зварюванні металів, їх обробці різанням тощо.

Зважений у повітрі називають аерозолем, а осівший пил—аерогелем. Пил заповнює пори шкіри людини, утруднюючи потовиділення, що призводить до сухості шкіри, її обезжирення та розвитку захворювань.

Нетоксичні (подразнюючі) пили — мінеральні, металеві, деревні та інші при контакті з організмом людини викликають подразнення легень та лімфатичних вузлів, а при довій дії причиняють професійні захворювання — пневмоконіози. Пневмоконіози отримують назву в залежності від виду пилу, що їх викликав (силікоз — SiO_2 , мангаконіоз — Mn, сидероз — пили, що містять в собі залізо, антракоз — вугільний пил та ін.).

Токсичні (отруйні) пили — свинець, цинк, миш'як та інші, які розчиняються у біологічних середовищах організму людини, викликаючи не тільки хронічні, але й гострі отруєння.

Шкідлива дія пилу на організм людини залежить від дисперсності (розміру), форми частинок пилу, їх хімічного складу та кількості пилу, що вдихається. Для нетоксичного (подразнюючого) пилу головним фактором шкідливості є дисперсність (розмір) пилових частинок, для токсичних (отруйних) — їх хімічний склад.

Чим дрібніший пил, тим небезпечнішим він є для людини. Найбільш небезпечним для людини вважаються частинки розміром 3...10 мкм, які, потрапляючи в легені, при диханні затримуються в них і, накопичившись, можуть стати причиною захворювання. Частинки розміром менше 3 мкм видихаються, а розміром більше 10 мкм затримуються в горлі та носі. Особливо небезпечними є аерозолі, які за характером дії на організм людини поділяються на нетоксичні (подразнюючі) та токсичні (отруйні).

Для запобігання гострих і хронічних професійних отруєнь та захворювань внаслідок впливу шкідливих речовин на організм людини встановлені гранично допустимі концентрації (ГДК) шкідливих речовин. Гранично допустима концентрація шкідливої речовини у повітрі робочої зони — концентрація речовини, що в умовах регламентованої тривалості її щоденного впливу при 8-годинній роботі (але не більше 40 годин на тиждень) не може викликати в осіб, що піддаються її впливу, захворювань чи відхилень у стані здоров'я, що виявляються сучасними методами досліджень протягом робочого стажу чи у віддалений термін життя теперішнього і наступного поколінь.

Стандарт ДСН 3.3.6.042-99 (ГОСТ 12.1.005-88) встановлює ГДК для більш ніж 700 видів шкідливих речовин, частина з яких наведена у додатку 1. У залежності від особливостей дії на організм шкідливих речовин для них встановлюється ГДК двох типів: максимально разова та середньозмінна.

Контроль концентрації шкідливих речовин у повітрі здійснюється в лабораторних умовах, шляхом експрес-аналізу або з використанням індикаторів. Лабораторний спосіб є найточнішим, проте найбільш трудоємним. Він полягає в тому, що на робочих чи інших визначених місцях відбирають проби повітря, доставляють їх у спеціальні лабораторії, в яких виконується аналіз цих проб з метою визначення хімічного складу повітря та концентрації шкідливих речовин.

Таблиця 2.1 – Класифікація шкідливих речовин (ГОСТ 12.1.007-76)

	Норми за класами небезпечності			
Показники	1- надзвичайно небезпечні	2 - високо небезпечні	3- помірно небезпечні	4-мало небезпечні
ГДК шкідливих речовин у повітрі робочої зони, мг/м ³	менше 0,1	0.11,0	I,110,0	Більше 10,0
Середня смертельна концентрація у повітрі, мг/м ³	менше 500	5005000	500150000	Більше 50000

При використанні експрес-аналізу результати контролю стають відомими безпосередньо в момент його виконання. Він виконується за допомогою спеціальних вимірювальних приладів, принцип дії яких грунтується на використанні спеціальних вимірювальних приладів, принцип дії яких засновано на використанні деяких фізичних і хімічних явищ: зміні електропровідності речовин, фотоелектричному ефекті, зміні кольору речовин в ході хімічної реакції тощо.

Визначення концентрації шкідливих речовин здійснюється за допомогою наступних методів:

- ваговий визначення концентрації пилу, який затримується на спеціальному фільтрі після проходження через нього деякого об'єму запиленого повітря;
- лічильний визначення концентрації пилових частинок, їхнього розміру та форми під мікроскопом після попереднього осадження на предметне скло пилу, який знаходиться у певному об'ємі повітря;
- седиментаційний визначення концентрації пилу, природно осадженого з обмеженого або необмеженого об'єму запиленого повітря, за допомогою лічильників пилу;

- фотометричний вимірювання інтенсивності світла, яке проходить крізь запилене повітряне середовище;
- електрометричний підрахунок електричних імпульсів або зарядів попередньо наелектризованого пилу.
- В санітарно-гігієнічній практиці України стандартним вважається ваговий метод, що доповнюється дисперсним аналізом для визначення фракційного складу пилу.

За допомогою індикаторів можна швидко виявити присутність у повітрі деяких шкідливих речовин без визначення їхньої концентрації (за запахом або з використанням деяких хімічних речовин, які змінюють свої властивості, наприклад, колір).

Для захисту від пилу здійснюють вентиляцію (місцеву і загальнообмінну), герметизацію джерел пилу разом з аспірацією (місцеве відсмоктування), зволоження пилоподібних матеріалів, брикетування та гранулювання пилоподібних матеріалів, а також використовують засоби індивідуального захисту - респіратори, протигази, комбінезони, захисні окуляри тощо.

3 ДОСЛІДНА ЧАСТИНА

Дослідження запиленості повітряного середовища у цій роботі проводять ваговим (гравіметричним) методом.

3.1 Опис застосування приладів

Загальний вигляд пристрою для вагового визначення концентрації пилу, який знаходиться в повітрі, наведено на рисунку 3.1.

1- камера пилова, 2 - відсік приладовий, 3 - тумблер вмикання вентилятора, 4 - тумблер вмикання аспіратора, 5 - тумблер вмикання пристрою, 6 - аспіратор, 7-бункер-дозатор, 8 - вікно оглядове, 9 - алонжфільтроутримувач.

Рисунок 3.1 – Схема пристрою для відбору проб пилу:

Пилова камера 1 імітує виробниче приміщення, в яку за допомогою бункера-дозатора 7 висипають порцію пилу, що розвіюється вентилятором. На передній стінці камери є отвір з алонжем-фільтроутримувачем 9 для закріплення в ньому фільтру для відбору проби пилу. В приладовому відсіці знаходиться аспіратор 6, за допомогою якого проводять прокачування запиленого повітря через фільтр. У роботі використовують пластмасовий фільтроутримувач з аналітичним фільтром типу АФА.

В умовах виробництва проби повітря беруть, як правило, в зоні дихання працюючого, тобто на висоті 1,5...2,0 м від рівня підлоги. У кожній точці робочої зони беруть декілька проб (не менше трьох).

В роботі також використовують аналітичні терези, барометранероїд термометр, годинник.

3.2 Послідовність виконання роботи

1. Зважування фільтру. Для цього необхідно увімкнути аналітичні терези в електричну мережу і упевнитись, що вони застопорені рукояткою на передній панелі; розгорнути пакет з фільтром, розкрити захисні кільця і за допомогою пінцету обережно покласти фільтр на ліву чашку терезів. Розстопорити терези і, маніпулюючи поворотами більшого кільця (сотні міліграм) і меншого

кільця (десятки міліграм) на передній панелі терезів, досягти мінімального відхилення стрілки терезів від 0, а затим підрахувати масу фільтра.

- 2. Зважений фільтр пінцетом вкладають в захисні кільця і закріплюють у фільтроутримувачі 9.
- 3. Увімкнути електричний струм тумблером 5 та аспіратор тумблером 4. Ручкою вентилятора, який з'єднаний з фльтроутримувачем, встановити швидкість відбору проби повітря $10...20\,$ л/хв. по верхньому зрізу поплавка на шкалі і вимикають аспіратор.
- 4. Вмикають вентилятор тумблером 3 і поворотом ручки 7 бункера-дозатора подають пил у камеру
- 5. Після утворення в камері достатнього рівня запиленості вентилятор вимикають, одночасно вмикають аспіратор 1 на протязі 1...3 хв. вибирають пробу запиленого повітря.
- 6. Запилений фільтр за допомогою пінцета дуже обережно, щоб не струсити пил, витягують з фільтроутримувача і вкладають на терези і зважують.
- 7. За допомогою відповідних приладів встановлюють значення барометричного тиску та температуру у місці відбору проби і записують у таблицю 3.1.

Таблиця 3.1 - Підсумки дослідження запиленості

1	Номер досліду	
2	Місце відбору проб повітря	
3	Температура повітря у приміщенні, °С	
4	Барометричний тиск, мм рт. ст.	
5	Маса фільтру до відбору проби, мг	
6	Маса фільтру після відбору проби, мг	
7	Маса затриманого пилу, мг	
8	Тривалість відбору проби, хв.	
9	Швидкіть відбору проби, л/хв	
10	Об'єм повітря, який пройшов крізь фільтр, м ³	
11	Об'єм повітря, який пройшов крізь фільтр,	
11	приведений до нормальних умов, м ³	

12	Концентрація пилу у повітрі, мг/м ³	
13	Гранично допустима концентрація пилу за нормами, мг/м ³	
14	Примітки	

8. Знаючи об'ємну швидкість та тривалість відбору проби повітря, визначають об'єм повітря, яке пройшло через фільтр V, (м³) за формулою (1), приведене до нормальних умов:

$$V = \frac{V_t \cdot 273 \cdot P_t}{(273 + t) \cdot P_0},\tag{3.1}$$

де V_0 - об'єм повітря, який пройшов крізь фільтр, приведений до нормальних умов, м³;

 V_t - об'єм повітря, який пройшов крізь фільтр, при температурі t та тиску P, M^3 ;

Р - барометричний тиск у місці відбору проби, мм рт. ст.;

t - температура повітря у місці відбору проби, °С.

9. Розрахувати масову концентрацію пилу, мг/м 3 за формулою (2):

$$C = \frac{q_z - q_1}{V_0},\tag{3.2}$$

де q_1 - маса фільтру до відбору проби, м²; q_2 - маса фільтру після відбору проби, м²

10. Одержані результати дослідження і розрахункові дані записати у таблицю 2. Оцінку рівня запиленості у виробничому приміщенні проводять порівнянням результатів дослідження з вимогами санітарних норм ДСН 3.3.6.042-99 (додаток A).

4 3MICT 3BITY

Звіт повинен містити назву і мету роботи, результати досліджень (табл. 3.1), необхідні розрахунки та висновки.

5 СПИСОК ЛІТЕРАТУРИ

- 1. Охрана труда в машиностроении: Учебник для машиностроительных вузов /Е.Я. Юдин, С.В. Белов, С.К. Баланцев и др. Под ред. Б.Я. Юдина, С.В. Белова. -2-е изд., перераб. и доп. М.: Машиностроение, 1983. 432 с., ил.
- 2. Охрана труда в электроустановках /Б.А. Князевский, П.А. Долин, Т.П. Марусев и др. Под ред. Б,А Князевского. 2-е изд., перераб и доп. М.: Высшая школа, 1982.-311 с.
- 3. Руководство по гигиене труда /В двух томах под ред. И.Ф. Измерова. М.: Медицина, 1987.
- 6. Безопасность труда на производстве. Исследования и испытания. Справоч. пособие/Под ред. Б.М. Злобинского. М., 1976.

Додаток А Гранично допустимі концентрації шкіливих речовин в повітрі робочої зони (ДСН 3.3.6.042-99)

№	Речовина	ГДК,%	Клас шкідливості
1.	Пил з вмістом дюксиду кремнію більше 70%	1	3
2.	Пил з вмістом дюксиду кремнію менше 2%	10	4
	Силікати та силікатовмісні пили: азбест природний і штучний	2	3
3.	азбоцемент тальк, слюда-флагоніт, мусковіт мінеральне і скляне волокно	6 4 4	3 3 3
4.	Мідь	1	2
5.	Ртуть металічна	0,1	1
6.	Свинець та його сполуки	0,1	1
7.	Марганець	0,3	2
8.	Залізний та нікелевий концентрат (пил)	4	3
9.	Чавун	6	3
10.	Вугілля (пил)	10	3
11.	Кокс пековий, сланцевий, електродний	6	3
12.	Хлор	1	2
13.	Луги їдкі	0,5	2
14.	Кислота соляна	5	3

для нотаток

для нотаток