Math 10A Fall 2024 Worksheet 10

October 1 2024

1 Limits of sequences

1. Find a sequence a_n satisfying the given property. Then, sketch the sequence on a graph.

a) $\lim_{n\to\infty} a_n = 0$;

- b) $\lim_{n\to\infty} a_n = \infty$;
- c) $\lim_{n\to\infty} a_n$ is undefined.
- 2. For each sequence in Problem 1, decide if it converges or diverges.
- 3. For each of the following cases, decide whether it is possible or impossible. If it is possible, find an example. If it is impossible, explain why.
 - (a) A sequence a_n that has infinitely many ones, but $\lim_{n\to\infty} a_n \neq 1$;
 - (b) Sequences a_n and b_n such that a_n converges, b_n diverges, but $a_n + b_n$ converges;
 - (c) Sequences a_n and b_n such that $a_n b_n$ and a_n both converge but b_n does not.
- 4. For each of the following sequences, determine whether it is convergent or divergent. If it is convergent, find the limit.

1

a) $a_n = \ln(2n^2 + 1) - \ln(n^2 + 1)$

b) $a_n = 1 - (0.2)^n$

c) $a_n = \frac{10^n}{1+9^n}$

d) $a_n = \frac{\pi^n}{3^n}$

Limits at infinity

1. Find the following limits.

a) $\lim_{x\to\infty} \frac{1}{2x+3}$

b) $\lim_{x\to\infty} \frac{3x+5}{x-4}$

c) $\lim_{t\to-\infty} 0.6^t$

d) $\lim_{t\to\infty} \frac{\sqrt{t}+t^2}{2t-t^2}$

e) $\lim_{x \to -\infty} \frac{x^4 - 3x^2 + x}{x^3 - x + 2}$

f) $\lim_{x\to\infty} \frac{\sqrt{x^2-9}}{2x-6}$.

2. Find a function f(x) such that $\lim_{x\to\infty} = 2$ and $\lim_{x\to-\infty} = -2$.

Solutions

1 Limits of sequences

1. Solution:

- a) One possible sequence is $a_n = \frac{1}{n}$. As n grows, the terms of the sequence approach 0.
- b) Consider $a_n = n$. As n grows, the terms of the sequence grow without bound.
- c) One possible sequence is $a_n = (-1)^n$. This sequence oscillates between 1 and -1 and does not converge to a single value.

2. Solution:

- (a) $a_n = \frac{1}{n}$ converges to 0, so it **converges**.
- (b) $a_n = n$ diverges to infinity, so it **diverges**.
- (c) $a_n = (-1)^n$ does not converge to a limit, so it **diverges**.

3. Solution:

- (a) It is **possible**. An example is $a_n = 1$ for even n and $a_n = 0$ for odd n. The sequence does not converge to 1, but it has infinitely many ones.
- (b) It is **impossible**. If $a_n + b_n$ converges and a_n converges, then $a_n + b_n a_n = b_n$ must also converge.
- (c) It is **possible**. For example, let $a_n = \frac{1}{n}$ (which converges to 0) and $b_n = (-1)^n$ (which diverges). Then, the product $a_n b_n = \frac{(-1)^n}{n}$ converges to 0.

4. Solution:

- a) $\lim_{n\to\infty} \ln(2n^2+1) \ln(n^2+1) = \ln 2$.
- b) $\lim_{n\to\infty} 1 (0.2)^n = 1$.
- c) $\lim_{n\to\infty} \frac{10^n}{1+9^n} = \infty.$
- d) $\lim_{n\to\infty} \frac{\pi^n}{3^n} = \infty$ since $\pi > 3$.

2 Limits at infinity

1. Solution:

- a) $\lim_{x \to \infty} \frac{1}{2x+3} = 0.$
- b) $\lim_{x \to \infty} \frac{3x+5}{x-4} = 3$.
- c) $\lim_{t \to -\infty} 0.6^t = 0$ since 0.6 < 1.
- d) $\lim_{t\to\infty} \frac{\sqrt{t}+t^2}{2t-t^2} = -1$.
- e) $\lim_{x\to-\infty} \frac{x^4-3x^2+x}{x^3-x+2}=\infty$ since the degree of the numerator is higher than the degree of the denominator.
- f) $\lim_{x\to\infty} \frac{\sqrt{x^2-9}}{2x-6} = \frac{1}{2}$.
- 2. **Solution:** One possible function is $f(x) = \frac{4}{\pi}\arctan(x)$. As $x \to \infty$, $\arctan(x) \to \pi/2$, so $\lim_{x \to \infty} f(x) = 2$, and as $x \to -\infty$, $\arctan(x) \to -\pi/2$, so $\lim_{x \to -\infty} f(x) = -2$.

2