13.3 习题

张志聪

2025年2月16日

13.3.1

设 $(f(x^{(n)}))_{n=1}^{\infty}$ 是 f(K) 中的任意序列,序列 $(x^{(n)})_{n=1}^{\infty}$ 是 K 中序列,且 $f(x^n)$ 是 $(f(x^{(n)}))_{n=1}^{\infty}$ 中的项。因为 K 是紧致的,那么存在一个收敛的子序列 $(x^{(n_j)})_{i=1}^{\infty}$,不妨设子序列收敛于 $x_0 \in K$ 。

又因为 f 是连续的,所以 f 在 x_0 处连续,由定理 13.1.4(b) 可知,序列 $(f(x^{(n_j)}))_{j=1}^{\infty}$ 依度量 d_Y 收敛于 $f(x_0) \in f(K)$,又因为 $(f(x^{(n_j)}))_{j=1}^{\infty}$ 是 $(f(x^{(n)}))_{n=1}^{\infty}$ 的子序列,由定义 12.5.1(紧致性)可知,f(K) 是紧致的。

13.3.2

(1) f 是有界的。

由定理 13.3.1 可知, f(X) 是紧致的, 由推论 12.5.6 可知, f 是有界的。

(2) f 在某个点 $x_{max} \in X$ 处取到最大值,并且在某个点 $x_{min} \in X$ 处取到最小值。

我们只证明 f 在某个点 $x_{max} \in X$ 处取到最大值,最小值的证明类似。 因为 f 是有界,那么, \mathbb{R} 中存在一个包含 f(X) 的球 $B(y_0,r),y_0 \in \mathbb{R}, r > 0$ 。现在设 E 表示集合

$$E:=\{f(x), x\in X\}$$

(即: E := f(X))。根据上述内容可知,这个集合是 $B(y_0, r)$ 的子集,而且 E 还是非空集合。根据最小上界原理可知(E 是 \mathbb{R} 的子集),它有一个实数上 确界 sup(E)。

记 m := sup(E),根据上确界的定义可知,对所有的 $y \in E$ 均有 $y \leq m$ 。而根据 E 的定义可知,这意味着 $f(x) \leq m$ 对所有的 $x \in X$ 均成立。因此,为了证明 f 在某个点达到最大值,我们只需要找到一个 $x_{max} \in X$ 使得 $f(x_{max}) = m$ 即可。

设 $n \ge 1$ 是任意一个整数,那么 $m - \frac{1}{n} < m = sup(E)$ 。因为 sup(E) 是 E 的最小上界,那么 $m - \frac{1}{n}$ 不可能是 E 的上界,从而存在一个 $y \in E$ 使得 $m - \frac{1}{n} < y$ 。又由 E 的定义可知,这蕴含着存在一个 $x \in X$ 使得 $m - \frac{1}{n} < f(x)$ 。

现在我们按照下面的方法选取一个序列 $(x_n)_{n=1}^{\infty}$: 对于每一个 n, 选取 x_n 为 $x \in X$ 中使得 $m - \frac{1}{n} < f(x_n)$ 的元素。(这里需要用到选择公理)这是 X 中的一个序列,因为 X 是紧致的,我们可以找到一个收敛于某极限 $x_{max} \in X$ 的子序列 $(x_{nj})_{j=1}^{\infty}$, 其中 $n_1 < n_2 < \ldots$ 。因为 $(x_{nj})_{j=1}^{\infty}$ 收敛于 x_{max} 并且 f 在 x_{max} 处连续,于是由定理 13.1.4(b) 可知

$$\lim_{j \to \infty} f(x_{n_j}) = f(x_{max})$$

另外, 根据该序列的构造过程可知,

$$f(x_{n_j}) > m - \frac{1}{n_j} \ge m - \frac{1}{j}$$

从而对上式两端同时取极限可得,

$$f(x_{max}) = \lim_{j \to \infty} f(x_{n_j}) \ge \lim_{j \to \infty} m - \frac{1}{j} = m$$

另外, $f(x) \le m$ 对所有的 $x \in X$ 均成立,从而 $f(x_{max}) \le m$ 。联合这两个不等式就得到 $f(x_{max}) = m$,结论得证。

13.3.3