${\rm MTH} 108--{\rm Linear~Algebra}$

James Li
 — 501022159 — Professor: K. Q. Lan — Email: klan@torontomu.ca

Content by Week

1	Euclidean Spaces	2
	1.1 Products of Vectors with Constants	2
	1.1.1 Examples:	2
	1.2 Products of two Vectors	2
	1.2.1 Examples:	2
	1.3 Other Properties of Vector Products	3
	1.3.1 Examples:	3
	1.4 Norm and Angle	3
	1.5 Determinants	4
2	Projections and Spanning Spaces 2.1 Projection and Area of a parallelogram	4
3	Placeholder	5
4	Placeholder	5
5	Placeholder	5
6	Placeholder	5
7	Placeholder	5
8	Placeholder	5
9	Placeholder	5
10	Placeholder	5

1 Euclidean Spaces

A Euclidean Space is a mathematical space in which points and lines can be represented by a set of coordinates in the respective dimension of the space, and every point can be represented in a defined set. For example:

$$\mathbb{R}^3 = (x, y, z); x, y, z \in \mathbb{R}$$

is three-dimensional space represented using coordinates in terms of (x, y, z), where $x, y, z \in \mathbb{R}$.

Theorem 1.1. Given two vectors \vec{a} , \vec{b} and some constant k, \vec{a} and \vec{b} are called **parallel** if:

$$\vec{a} = k\vec{b} \Leftrightarrow \vec{a}//\vec{b}$$

1.1 Products of Vectors with Constants

Theorem 1.2. Given a constant k in \mathbb{R} and some vector \vec{a} in \mathbb{R}^2 , the product of $k\vec{a}$ is:

$$k\vec{a} = k(x_1, y_1) = (k \cdot x_1, k \cdot y_1), x, y \in \mathbb{R}$$

To represent a vector in Linear Algebra, we can use the following notation (using the previously mentioned vector \vec{a} as an example):

$$\vec{a} = (x_1, y_1) = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

1.1.1 Examples:

Take $\vec{a} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$, compute $-2\vec{a} + 3\vec{b}$:

$$-2\vec{a} + 3\vec{b} = 2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} -4 \\ 2 \end{pmatrix} + \begin{pmatrix} 12 \\ -3 \end{pmatrix}$$
$$= \begin{pmatrix} 8 \\ -1 \end{pmatrix}$$
 (1)

1.2 Products of two Vectors

Theorem 1.3. Given two vectors in \mathbb{R}^n , $\vec{a} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $\vec{b} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, the product of $\vec{a} \cdot \vec{b}$ is:

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

= $x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

This is known as the **Dot Product**.

1.2.1 Examples:

Take $\vec{A} = \begin{pmatrix} \frac{1}{-1} \\ \frac{2}{3} \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} \frac{2}{1} \\ -1 \\ 1 \end{pmatrix}$, Find the dot product of $\vec{a} \cdot \vec{b}$:

$$\vec{a} \cdot \vec{b} = (2) + (-1) + (-2) + (3)$$

$$= 2$$
(2)

1.3 Other Properties of Vector Products

Given some \vec{a}, \vec{b} in \mathbb{R}^n and some constant k, the following properties apply:

- $(\vec{a} + \vec{b})(\vec{a} + \vec{b}) = \vec{a}^2 + 2\vec{a}\vec{b} + \vec{b}^2$
- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a}\vec{b} + \vec{a}\vec{c}$
- $\vec{a}(k\vec{b}) = k\vec{a}\vec{b}$
- $\vec{a} \cdot \vec{a} = \vec{a}^2 = x_1^2 + x_2^2 + \dots + x_n^2$

The midpoint $C(z_1, z_2, ..., z_n)$ of a line from $A(x_1, x_2, ..., x_n)$ to $B(y_1, y_2, ..., y_n)$ is calculated using the following forumla:

$$\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = (1-t) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + t \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
 for t such that $0 \le t \le 1$

We can simplify this to calculate every z_i :

$$z_i = \frac{x_i + y_i}{2}$$

1.3.1 Examples:

Given A(1,-2) and B(-3,4), find the midpoint C(x,y):

$$x = \frac{1 + (-3)}{2}$$
= -1
$$y = \frac{(-2) + 4}{2}$$
= 1
(3)

Therefore C = (-1, 1).

1.4 Norm and Angle

The magnitude of a vector in \mathbb{R}^n is called the **Norm**, it is notated and defined as:

$$||\vec{a}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
 (\vec{a} is some vector in \mathbb{R}^n)

We can use this definition to demonstrate some inequalities and properties (Given some $\vec{a}, \vec{b} \in \mathbb{R}^n$ and some constant k):

- $||\vec{a} + \vec{b}|| \le ||\vec{a}|| + ||\vec{b}||$ (Triangle Inequality)
- $||\vec{a} + \vec{b}|| \ge ||\vec{a}|| ||\vec{b}||$
- $\bullet ||k\vec{a}|| = |k| \cdot ||\vec{a}||$
- $\bullet ||\frac{\vec{a}}{||\vec{a}||}|| = 1$
- $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b} \ (Orthogonal)$
- $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}||||\vec{b}||}$

1.5 Determinants

The determinant of a matrix is a number that can be calculated using the following formula (in \mathbb{R}^2):

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Given $\vec{a}, \vec{b} \in \mathbb{R}^n$, the **Gram Determinant** of $\vec{a}\vec{b}$ is defined as:

$$G(\vec{a}, \vec{b}) = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} \end{vmatrix} = ||\vec{a}||^2 ||\vec{b}||^2 - (\vec{a}\vec{b})^2$$

Given some vectors $\vec{a}, \vec{b} \in \mathbb{R}^3$, the Gram Determinant can be calculated using the following formula:

$$G(\vec{a}, \vec{b}) = \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}^2 + \begin{vmatrix} x_1 & x_3 \\ y_1 & y_3 \end{vmatrix}^2 + \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix}^2$$

Lemma 1.3.1. The Cauchy Inequality states:

$$G(\vec{a}, \vec{b}) \ge 0 \Rightarrow |\vec{a} \cdot \vec{b}| \le ||\vec{a}|| \cdot ||\vec{b}||$$

2 Projections and Spanning Spaces

For some $\vec{a}, \vec{b} \in \mathbb{R}^n$, a projection of \vec{a} on \vec{b} is defined as:

$$proj_{\vec{a}}\vec{b} = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}||^2} \cdot \vec{a}$$

The norm of a projection is defined as:

$$||proj_{\vec{a}}\vec{b}|| = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}||^2} \cdot ||\vec{a}||$$

2.1 Projection and Area of a parallelogram

Given the above figure, we can determine formulas for calculating properties of the parallelogram:

1.
$$h = ||\vec{BC}|| = ||\vec{b} - proj_{\vec{a}}\vec{b}||$$

2.
$$Area = ||\vec{a}|| \cdot ||\vec{b} - proj_{\vec{a}}\vec{b}||$$

3.
$$\sin(\theta) = \frac{||\vec{b} - proj_{\vec{a}}\vec{b}||}{||\vec{b}||}$$

4.
$$\cos(\theta) = \frac{||proj_{\vec{a}}\vec{b}||}{||\vec{b}||} = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}||||\vec{b}||}$$

The generalized formula for calculating the area of some $\vec{a}, \vec{b} \in \mathbb{R}^n$ is as follows:

$$A(\vec{a}, \vec{b}) = \sqrt{G(\vec{a}, \vec{b})}$$

- 3 Placeholder
- 4 Placeholder
- 5 Placeholder
- 6 Placeholder
- 7 Placeholder
- 8 Placeholder
- 9 Placeholder
- 10 Placeholder