Sistemas Operativos

LEI - 2019/2020

:: Gestão de memória ::

Escola Superior de Tecnologia de Setúbal - IPS

Conteúdos

- Organização de memória
- Alocação de memória para processos
- Blocos contínuos, segmentação e paginação
- Memória virtual

Motivação

- Memória e registos são único armazenamento disponível para CPU
- Programas devem ser lidos para memória a partir do disco
- Memória é lenta:
 - Acesso demora muitos ciclos de CPU
 - Acesso aos registos do CPU demora 1 ciclo de CPU
 - Caches L1 e L2 são memórias intermédias

Protecção de memória

- Processos devem estar isolados
- Utilização de registos: base e limit

Protecção de memória (hardware)

Endereços físicos vs lógicos

- Endereço físico: endereço real da memória como visto pela unidade de gestão da memória
- Endereço lógico: endereço gerado pelo CPU (virtual)

Ex:

- base = 14000
- Endereço lógico 0 -> Endereço físico 14000
- Endereço lógico 346 -> Endereço físico 14346
- 💻 Programas pensam que memória vai de 0..n mas vai de R+0..R+n..

Memory-management unit (MMU)

- Registo "base" passa a ser registo de relocação...
- Programas de utilizador nunca conhecem endereços físico real...

Swapping

Memória pode ser menor que necessária para todos processos.

- Guardar memória dos processos em disco
- Ler outros processos do disco para memória

⚠ Mecanismo muito demorado (ex: 100MB proc., 50MB/s -> 2 sec)

Swapping em mobile

Geralmente não suportado

- Memória flash
- Pouco espaço
- Número limitado de ciclos de escrita

Alternativas

- iOS: pedir apps para libertar memória de forma voluntária
- Antroid: escreve estado para flash e termina apps quando fica com pouca memória

Tecnicas de alocação de memória

Sistema operativo e processos de utilizador necessitam estar em memória.

- Alocação de blocos contíguos
- Segmentação
- Paginação

Alocação de blocos contíguos

- Número de processos limitado pelo número de partições
- Processos vão sendo colocados nos "buracos" disponíveis
- Possibilidade de fragmentação

Algoritmos de alocação de blocos

First-Fit:

Aloca o primeiro "buraco" disponível com tamanho suficiente

Best-Fit:

Aloca o "buraco" mais pequeno com tamanho suficiente

Worst-Fit:

Aloca o "buraco" maior com tamanho suficiente

Ocorrerá sempre fragmentação que pode ser minimizada com compactação e realocação de processos.

Segmentação

- Programadores vêm memória como colecções de segmentos (main, funções, stack, heap, arrays, etc.)
- Segmentos não necessariamente contíguos na memória..

Endereços lógicos da forma < segment, offset>

Ex: Endereço lógico <seg 2, byte 53> => Endereço físico 4353

Suporte de hardware

Paginação

Frames: divisão da memória física em blocos de tamanho fixo **Páginas:** divisão da memória lógica em blocos de tamanho fixo

💻 Resolve o problema da compactação..

Suporte de hardware

Endereços lógicos são da forma <page number, page offset>

Exemplo de paginação

- Endereço lógico <0,0> (a) corresponde a (5x4 + 0) = 20
- Endereço lógico <2,2> (k) corresponde a (1x4 + 2) = 6

Memória Virtual

Separação completa entre memória lógica e memória física.

Vários benefícios:

- Apenas parte de um processo necessita estar em memória
- Processos podem utilizar mais memória que a disponível fisicamente

Mais memória virtual que física...

Page demanding

- Quando se pretende executar um processo, é lido do disco apenas as páginas necessárias
- Se uma página não estiver em memória, gera-se um page fault

Quiz...

Sumário

- Gestão de memória facilita programação concorrencial de processos
- Várias técnicas (blocos contíguos, segmentação, paginação)
- É necessário suporte de hardware para não tornar os sistemas mais lentos
- Memória virtual permite manter em memória apenas as páginas mais usadas e simular mais capacidade de memória para processos.

Ler capítulo 8 (gestão de memória) e 9 (memória virtual)...