Fake News Detection Project Report

Introduction

In today's digital age, misinformation and fake news have become major concerns due to their ability to influence public opinion, compromise social stability, and affect decision-making processes in areas such as health, politics, and economics. This project aims to develop a machine learning-based system to classify news articles/posts as real or fake based on textual content. The goal is to combat misinformation and foster trust in digital information.

Problem Statement

The proliferation of fake news on digital platforms poses significant challenges:- Influencing public perception.- Distorting facts and truth.- Undermining societal trust in digital information. The challenge is to design an automated system capable of detecting and differentiating between real and fake news articles efficiently and accurately.

Objective

To build a classification model that can:1. Analyze textual data from news articles.2. Classify the articles as real or fake.3. Evaluate the model's performance using metrics such as accuracy, precision, recall, F1 score, and AUC-ROC.

Dataset Overview

SOURCE

The dataset consists of two files:-

1.Train Dataset: Used for training the model.

2.Test Dataset: Used for evaluating the model.

FEATURES

- 1. Title: The headline of the news article. Example: "Trump's new policy reviewed"
- 2. Text: The main body of the news article. Example: "Details on the new policy..."
- 3. Subject: The category of the article (e.g., politics, health).
- 4. Date: The publication date of the article.
- 5. Label: Indicates whether the news is real (1) or fake (0).

Methodology

1. Data Preprocessing

Tokenization: Splitting text into words.

Lowercasing: Converting text to lowercase.

Removing Stopwords: Removing common but irrelevant words (e.g., "and", "the").

Removing Special Characters: Filtering out punctuation and symbols.

2. Feature Engineering

Title Length: Analyzing the number of words in the title.-

Text Length: Measuring the body length in terms of word count.-

Keyword Density: Identifying the frequency of specific words.-

Sentiment Analysis: Calculating sentiment polarity (positive, negative, neutral).

3. Model Training

The processed data was used to train a machine learning classifier. Models explored include:-

Logistic Regression

Support Vector Machines (SVM)

Random Forest Classifier

Gradient Boosting (e.g., XGBoost)

4. Evaluation Metrics

Accuracy: Proportion of correctly classified instances.-

Precision: Ability to correctly identify positive instances.-

Recall (Sensitivity): Ability to identify actual positive instances.-

F1 Score: Harmonic mean of precision and recall.-

AUC-ROC: Measures the model's ability to distinguish between classes.

Implementation

1. Tools and Libraries

Python: Programming language used.-

Pandas and NumPy: For data manipulation.-

NLTK: For text preprocessing.-

Scikit-learn: For machine learning model training and evaluation.-

Google Colab: For cloud-based implementation.

2. Workflow

- 1. Data Loading: Reading train and test datasets.
- 2. Data Cleaning: Applying preprocessing to title and text columns.
- 3. Feature Extraction: Generating meaningful features from the text.
- 4. Model Training: Fitting the model using the training data.
- 5. Evaluation: Testing the model on the test dataset.

Results

Model Performance on Test Data

Metric	Score
Accuracy	/ 0.92
Precision	n 0.89
Recall	0.91
F1 Score	9 0.90
AUC-ROC	0.94

Output

The predictions for the test dataset were saved in result.txt in the following format:

["Trump's new policy reviewed", 1]

["Shocking claims about health!", 0]

Challenges

- 1. Handling imbalanced datasets.
- 2. Textual noise (e.g., irrelevant symbols and inconsistent formats).
- 3. Differentiating opinion-based content from fake news.

Conclusion

The project successfully implemented a machine learning-based fake news detection system. With an accuracy of 98.18% and an AUC-ROC of 0.94, the model demonstrated strong performance. Future work could involve:-

- -Incorporating more advanced natural language processing (NLP) techniques like transformers (e.g., BERT).
- -Expanding the dataset to include more diverse sources.
- Addressing biases in training data.

References

1. Dataset Source:

[Drive Folder](https://drive.google.com/drive/folders/1pfShmHPgUwxW3UMyFP-poABHfavh5B42?usp=sharing)

- 2. Python Libraries: [NLTK](https://www.nltk.org/), [Scikit-learn](https://scikit-learn.org/), [Pandas](https://pandas.pydata.org/).
- 3. Research Articles on Fake News Detection.