Mathematics for IT 2 — Practice Questions Polynomials & Vectors

A. Polynomial Functions

A1. Polynomial algebra — addition and subtraction

Add or subtract and simplify:

1.
$$(-9x^3 + 7x^2 - 5x + 3) + (13x^3 + 2x^2 - 8x - 6)$$

2.
$$(7x^3 - 8x^2 + 9x - 6) - (2x^3 - 6x^2 - 3x + 9)$$

A2. Polynomial algebra — multiplication

Expand and simplify:

1.
$$(-9x^3 + 7x^2 - 5x + 3)(8x - 6)$$

2.
$$(9x-6)(2x^3-6x^2-3x+9)$$

A3. Long division (remainder and factor theorems)

Determine the quotient and remainder:

1.
$$\frac{5x^3 - 4x^2 - 3x + 6}{x - 2}$$

$$2. \ \frac{4x^3 - 3x^2 + 5x - 3}{x - 4}$$

$$3. \ \frac{x^3 - 2x^2 - 3x + 5}{x - 5}$$

4.
$$\frac{2x^3 + 3x^2 - x + 4}{x + 2}$$

5.
$$\frac{3x^3 - 11x^2 + 10x - 12}{x - 3}$$

A4. Factorisation

Factor completely:

1.
$$18x + 27$$

2.
$$3x^2 + 6x$$

3.
$$9x^4 - 18x^3 + 27x^2$$

4.
$$x(x+5) + 3(x+5)$$

5.
$$x^3 + 2x^2 - 4x - 8$$

6.
$$x^2y - 16y + 32 - 2x^2$$

7.
$$2x^3 - 8a^2x + 24x^2 + 72x$$

B. Vectors

B1. Components and operations in \mathbb{R}^2

Let $z_1 = 2\mathbf{i} + 4\mathbf{j}$ and $z_2 = 5\mathbf{i} + 2\mathbf{j}$. Find:

- 1. $z_1 + z_2$
- 2. $z_2 z_1$

B2. Vector combinations in \mathbb{R}^3

Let $\vec{u} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$, $\vec{v} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$, $\vec{w} = \mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$. Compute:

- 1. $\vec{u} + \vec{v}$
- 2. $2\vec{u} 3\vec{v} + 4\vec{w}$

B3. Dot product (compute the value)

- 1. For u = (1, -2, 3) and v = (4, 5, -1), find $u \cdot v$.
- 2. For u = (2, -3, 4) and v = (-1, 2, 1), find $u \cdot v$.
- 3. For u = (1, 2, 3, 4) and v = (6, k, -8, 2), find k such that $u \cdot v = 0$.

B4. Inner products among three vectors

Given u = 3i - 4j + 2k, v = 2i + 5j - 3k, w = 4i + 7j + 2k, find:

1. $u \cdot v$, $u \cdot w$, $v \cdot w$

B5. Norms (lengths) and unit vectors

- 1. Find ||u|| for u = (1, -2, -4, 5, 3).
- 2. Given $u = 3\mathbf{i} 4\mathbf{j} + 2\mathbf{k}$, $v = 2\mathbf{i} + 5\mathbf{j} 3\mathbf{k}$, $w = 4\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}$, compute ||u||, ||v||, ||w||.

B6. Mixed practice (vectors u, v, w as in B4)

- 1. 2u 3v
- 2. 3u + 4w 2v
- 3. ||u||, ||v||, ||w||

B7. Distance, angle and projection

Let u = (1, -2, 3) and v = (2, 4, 5). Compute:

- 1. d(u, v) = ||u v||
- $2. \cos \theta = \frac{u \cdot v}{\|u\| \|v\|}$
- 3. $\operatorname{proj}_v(u) = \frac{u \cdot v}{\|v\|^2} v$

B8. Magnitude in \mathbb{R}^3

Find $|\vec{v}|$ for $\vec{v} = 3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k}$.

B10. Vector exercises — Part 1

- 1. Find the norm and the direction cosines of each of the vectors $3\mathbf{i} + 7\mathbf{j} 4\mathbf{k}$, $\mathbf{i} 5\mathbf{j} 8\mathbf{k}$, $6\mathbf{i} 2\mathbf{j} + 12\mathbf{k}$. Also find the modulus and the direction cosines of their sum.
- 2. If $\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} 3\mathbf{k}$ and $\mathbf{b} = \mathbf{i} 3\mathbf{j} + 2\mathbf{k}$, determine the scalar and vector products, and the angle between \mathbf{a} and \mathbf{b} .
- 3. If $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$ and $\overrightarrow{OB} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$, determine (a) $\overrightarrow{OA} \cdot \overrightarrow{OB}$, (b) the cosine of the angle between them.
- 4. Find the cosine of the angle between $2\mathbf{i} + 3\mathbf{j} \mathbf{k}$ and $3\mathbf{i} 5\mathbf{j} + 2\mathbf{k}$.
- 5. Find the scalar product $\mathbf{a} \cdot \mathbf{b}$ and the vector product $\mathbf{a} \times \mathbf{b}$ for:
 - (a) $\mathbf{a} = 2\mathbf{i} \mathbf{j}, \ \mathbf{b} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$
 - (b) $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}, \ \mathbf{b} = 5\mathbf{i} 2\mathbf{j} + \mathbf{k}$