Processing Complex Aggregate Queries over Data Streams

SIGMOD 2002

Alin Dobra Minos Garofalakis Johannes Gehrke Rajeev Rastogi

June 4, 2002

Processing Network Data Streams

Computations over Streaming Data

• Goal: Approximately answer JOIN-COUNT and JOIN-SUM queries over streams

Outline of the Talk

- Motivation
- Sketch-based randomized algorithms
- Sketch-based approximation of aggregate queries results
- Sketch-partitioning for estimation accuracy boosting
- Experimental evaluation
- Summary

Sketch-Based Randomized Algorithms [AMS96]

• Estimate $F(\mathcal{D})$ for some function F and some data \mathcal{D}

Method:

- Build a **probability space** and a **random variable** X with the properties:
 - 1) $E[X] = F(D) > L_E$
 - 2) $Var(X) < U_V$
- Combine samples of X to achieve relative error ϵ with probability at least $1-\delta$
- ullet Boost accuracy to ϵ by averaging $\frac{8U_V}{\epsilon^2 L_F^2}$ pairwise independent samples of X
- Boost confidence to $1-\delta$ by taking the median of $2\log(1/\delta)$ averages

Example usage: frequency moments [AMS96], size of join [AGMS99], L^1 norm [FKSV99], wavelet decomposition [GKMS01]

Sketch-Based Randomized Algorithms (cont.)

Uniform random seed space (size 2^{65}) ξ family of random variables

- $\xi_i(s) = h(s,i) \in \{-1,+1\}$
- family ξ is 4-wise independent, i.e.

$$\forall i_1 \neq i_2 \neq i_3 \neq i_4, \forall v_1, v_2, v_3, v_4 \in \{-1, +1\},$$

$$P[\xi_{i_1} = v_1 \land \xi_{i_2} = v_2 \land \xi_{i_3} = v_3 \land \xi_{i_4} = v_4] =$$

$$P[\xi_{i_1} = v_1] P[\xi_{i_2} = v_2] P[\xi_{i_3} = v_3] P[\xi_{i_4} = v_4]$$

Estimation of COUNT $(F \bowtie_a G)$ [AGMS99]

	F	,
• • •	a	
	1	
	2	
	1 2 3 1 3	
	1	
	3	

	i	f_i
	1	3
\Rightarrow	2	1
	3	2

	G		
• • •	a	• • •	
	3		
	3		\Rightarrow
	1		·
	1		
	1		

• Estimate COUNT $(F \bowtie_a G) = \sum_{i=1}^3 f_i g_i = 3 \cdot 3 + 1 \cdot 0 + 2 \cdot 2 = 13$

Estimation of COUNT($F \bowtie_a G$) (cont.)

$$\frac{i}{\xi_i} \frac{1}{-1} \frac{2}{+1} \frac{3}{-1}$$

$$X = X_F X_G = -2 \cdot -5 = 10 \approx 13$$

$$\mathsf{SJ}(F) = (3 \cdot 3) + (1 \cdot 1) + (2 \cdot 2) = 14, \quad \mathsf{SJ}(G) = 13$$

Estimation of COUNT($F \bowtie_a G$) (cont.)

• To estimate COUNT $(F \bowtie G) = \sum_{i=1}^n f_i g_i$ define:

$$X_F = \sum_{i=1}^n f_i \xi_i = \sum_{t \in F} \xi_{t.a}$$
$$X_G = \sum_{i=1}^n g_i \xi_i = \sum_{t \in F} \xi_{t.a}$$

• With $X = X_F X_G$ we have:

$$E[X] = E\left[\sum_{i=1}^{n} f_{i}g_{i}\xi_{i}^{2} + \sum_{i \neq i'} f_{i}g_{i'}\xi_{i}\xi_{i'}\right]$$

$$= \mathsf{COUNT}(F \bowtie_{a} G)$$

$$\mathsf{Var}(X) \leq 2 \; \mathsf{SJ}(F) \; \mathsf{SJ}(G)$$

Outline of the Talk

- Motivation
- Sketch-based randomized algorithms
- Sketch-based approximation of aggregate queries results
- Sketch-partitioning for estimation accuracy boosting
- Experimental evaluation
- Summary

Using Sketches to Answer SUM Queries

• Estimate
$$\mathrm{SUM}_b\left(F(a)\bowtie_a G(a,b)\right) = \sum_{i=1}^3 f_i\left(\sum_{t\in g,t.a=i}t.b\right)$$

$$\frac{i}{\xi_i} \frac{1}{-1} \frac{2}{+1} \frac{3}{-1}$$

 $X = X_E X_C = -2 \cdot -8 = 16 \approx 20$

Using Sketches to Answer SUM Queries (cont.)

• To estimate $SUM_b\left(F(a)\bowtie_a G(a,b)\right) = \sum_{i=1}^n f_i\left(\sum_{t\in g,t.a=i}t.b\right)$

$$X_{F} = \sum_{i=1}^{n} f_{i}\xi_{i} = \sum_{t \in F} \xi_{t.a}$$

$$X_{G} = \sum_{i=1}^{n} \left(\sum_{t \in G, t.a=i} t.b\right) \xi_{i} = \sum_{t \in G} t.b \ \xi_{t.a}$$

• With $X = X_F X_G$

$$E[X] = \mathsf{SUM}_b \left(F(a) \bowtie_a G(a, b) \right)$$

$$\mathsf{Var}(X) \le 2 \; \mathsf{SJ}(F) \sum_{i=1}^n \left(\sum_{t \in G, t, a=i} t.b \right)^2$$

Extension to COUNT $(F \bowtie_a G \bowtie_b H)$

• Key idea: use independent ξ families for each join attribute

$$X = X_F X_G X_H = -2 \cdot 1 \cdot -2 = 4 \approx 21$$

Extention to COUNT $(F \bowtie_a G \bowtie_b H)$ (cont.)

To estimate

$$COUNT(F \bowtie_a G \bowtie_b H) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} f_i g_{ij} h_j$$

Define:

$$X_F = \sum_{i=1}^{n_1} f_i \xi_i^a, \quad X_G = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} g_{ij} \xi_i^a \xi_j^b, \quad X_H = \sum_{j=1}^{n_2} h_j \xi_j^b$$

ullet If ξ^a and ξ^b are independent families of ± 1 4-wise independent pseudo random variables

$$E[X_F X_G X_H] = \mathsf{COUNT}(F \bowtie_a G \bowtie_b H)$$

 $\mathsf{Var}(X_F X_G X_H) \le 4 \; \mathsf{SJ}(F) \; \mathsf{SJ}(G) \; \mathsf{SJ}(H)$

Estimation of COUNT $(R_1 \bowtie \cdots \bowtie R_r)$

- For each of the n equality join constraint build independent family of pseudo random variables
- ullet For every relation $R_l(a_1,\ldots,a_m)$ compute samples of the random variable X_{R_l} defined as:

$$X_{R_l} = \sum_{i_1}^{n_1} \cdots \sum_{i_m}^{n_m} f_{i_1,\dots,i_m} \xi_{1,i_1} \dots \xi_{m,i_m} = \sum_{t \in R} \xi_{1,t.a_1} \cdots \xi_{m,t.a_m}$$
$$X = \prod_{l=1}^r X_{R_l}$$

Can show:

$$E[X] = \mathsf{COUNT}(R_1 \bowtie \cdots \bowtie R_r)$$

$$\mathsf{Var}(X) \le 2^{2n} \prod_{l=1}^r \mathsf{SJ}(R_l)$$

Outline of the Talk

- Motivation
- Sketch-based randomized algorithms
- Sketch-based approximation of aggregate queries results
- Sketch-partitioning for estimation accuracy boosting
- Experimental evaluation
- Summary

Sketch Partitioning

large variance \Rightarrow loose estimation guarantees.

Our solution: sketch partitioning

Idea: split domain $I = \{1, 2, 3, 4\}$ into $I_1 = \{1, 3\}$ and $I_2 = \{2, 4\}$

- F splits into F_1 and F_2 , G into G_1 and G_2
- build X_1 to estimate COUNT $(F_1 \bowtie G_1)$ and independently X_2 to estimate $COUNT(F_2 \bowtie G_2)$
- take $X' = X_1 + X_2$; have $E[X'] = \mathsf{COUNT}(F \bowtie G)$

Sketch Partitioning (cont.)

• Estimation of COUNT $(F_1 \bowtie G_1)$

$$\begin{array}{cccc}
i & f_i & g_i \\
1 & 20 & 2 \\
3 & 10 & 3
\end{array}$$

$$Var(X_1) \approx 2 \text{ SJ}(F_1) \text{ SJ}(G_1)$$

$$= 2(20^2 + 10^2)(2^2 + 3^2)$$

$$= 13000$$

• Estimation of COUNT $(F_2 \bowtie G_2)$

$$\begin{array}{cccc}
 i & f_i & g_i \\
 2 & 5 & 15 \\
 4 & 2 & 10
\end{array}$$

$$Var(X_2) \approx 2 \text{ SJ}(F_2) \text{ SJ}(G_2)$$
$$= 2(5^2 + 2^2)(15^2 + 10^2)$$
$$= 18850$$

- $Var(X') = Var(X_1) + Var(X_2) = 31850$
- Improvement

$$\frac{\mathsf{Var}(X)/2}{\mathsf{Var}(X')} = \frac{357604/2}{31850} \approx 5.6$$

Binary Sketch Partitioning

- Prior information: historical data, histograms.
- ullet Find the partitioning $I=I_1\cup I_2$ and the space allocation $m=m_1+m_2$ that minimizes

$$\frac{\mathsf{Var}(X_1)}{m_1} + \frac{\mathsf{Var}(X_2)}{m_2},$$

where

$$\operatorname{Var}(X_k) pprox 2 \sum_{i \in I_k} f_i^2 \sum_{i \in I_k} g_i^2.$$

- Allocate space proportional to $\sqrt{\operatorname{Var}(X_k)}$. In example 5:6
- Have to look only at partitioning in the order f_i/g_i to find optimum $\Rightarrow O(|I|)$
- ullet In example order is $\{1,3,2,4\}$. Optimal partition is $\{1,3\}\cup\{2,4\}$.

K-ary Sketch Partitioning

- Want to split domain of join attribute in K parts
- Allocate space proportional to $\sqrt{\operatorname{Var}(X_k)}$
- Have to look only at partitioning in the order f_i/g_i to find optimum (generalization of previous result)
- Dynamic programming gives solution in time $O(K \mid I \mid^2)$ and space $O(K \mid I \mid)$
- Approximate frequencies with histograms
 - time and space dependency on number of buckets instead of |I|
 - provable approximation quality
- Generalization to larger joins possible: *details in the paper*

Experimental Study

Datasets:

- Census data set (www.bls.census.gov):
 - Current Population Survey data for Aug 1999(72100) and Aug 2001(81600)
 - Attributes used:
 - * income(1:14)
 - * education(1:46)
 - * age(1:99)
 - * weekly_wage and weekly_ wage_overtime(0:288416)

Comparison: estimation using unidimensional equi-depth histograms

Query load: JOIN-COUNT queries relations **Error metric:** relative error = $100 \frac{|actual-approx|}{actual} \%$

Sketches v/s Histograms: Census data

 $Census1999.weekly_wage = Census2001.weekly_wage$

Sketches v/s Histograms: Census data (cont.)

Census1999.age = Census2001.age

Census1999.education = Census2001.education

Sketches v/s Histograms: Census data (cont.)

Star join of four copies of Census 2001 on age, education and income

Sketch Partitioning: Census Data Sets

 $Census 1999. weekly_wage_overtime = Census 2001. weekly_wage_overtime$

Sketch Partitioning: Census Data Sets (cont.)

Census1999.weekly_wage_overtime = Census2001.weekly_wage Census1999.weekly_wage = Census2001.weekly_wage_overtime

Summary

- Shown how to process multi-join decision support queries over streams
- Proposed sketch partitioning improves estimate guarantees
- Shown experimental evidence that the proposed techniques work in practice