

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(81) Designated States: CA, FI, JP, European patent (AT, BE, CH,

WO 95/31579

C22C 19/05, F22B 37/04

A1

(43) International Publication Date:

23 November 1995 (23.11.95)

O Ni + Cr

(21) International Application Number:

PCT/SE95/00561

(22) International Filing Date:

17 May 1995 (17.05.95)

(30) Priority Data:

9401695-3

18 May 1994 (18.05.94)

SE

Published

With international search report.

(71) Applicant: SANDVIK AB [SE/SE]; S-811 81 Sandviken (SE).

(72) Inventors: ROSÉN, Jonas; Smältostvägen 5, S-811 37 Sandviken (SE). NYLÖF, Lars; Nedre Åkargatan 74 A, S-802 51 Gävle (SE). LARSSON, Sven; Främlingshemsvägen 55, S-810 22 Årsunda (SE).

(74) Agent: TAQUIST, Lennart; Sandvik AB, Patent Dept., S-811 81 Sandviken (SE).

(54) Title: AUSTENITIC NI-BASED ALLOY WITH HIGH CORROSION RESISTANCE, GOOD WORKABILITY AND STRUCTURE **STABILITY**

(57) Abstract

The invention provides an austenitic Ni-based alloy with improved workability, good corrosion resistance and good structure stability preferably for usage as tube material in sulphur-, chloride- or alkaline-containing environments. The material has an austenitic structure which contains in weight % up to 0.025 C, 20-27 Cr, 8-12 Mo, up to 0.5 Si, up to 0.5 Mn, up to 0.3 Al, up to 0.1 N, 3-15 Fe, up to 0.5 Ti, up to 0.5 Nb, the remainder being Ni and usual impurities.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HÜ	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden .
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	sk	Slovakia
CM	Cameroon	Li	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	· MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon			V14	TRE PRINT

Austenitic Ni-based alloy with high corrosion resistance, good workability and structure stability

The present invention relates to an austenitic Ni-based alloy useful as construction material that satisfies demands in regard of high corrosion resistance, good hot workability, good tensile strength and structure stability.

10 Normally low alloyed steels are used in waste incineration boilers. It is a well known problem that large corrosion problems occur in such furnaces. It is a normal method primarily in USA to protect this low alloyed material by overlay-welding a highly alloyed 15 layer of a material such as A 625 which has been found to reduce the corrosion problems considerably. Overlaywelding like this is not practically useful for tubes that are not used as panels such as super-heaters. As alternative means instead of overlay-welding is the 20 usage of composite tubes in which A 625 is used as an external layer. This should result in a good product from corrosive aspect, however, such tubes are difficult to manufacture due to the large deformation forces that needs to be used in hot working. The material is furthermore sensitive for crack formation 25 during cold working.

It is a complex optimization to provide an Ni-based alloyed material with good corrosion resistance and simultaneously good workability. However, by carrying out a systematic development work it has now been possible to provide a Ni-based alloy material that in a surprising manner can bring optimal properties in regard of corrosion resistance combined with hot

30

workability, tensile strength and structure stability. By achieving these material properties such material becomes useful not only as an external component in tubes for waste combustion furnaces but also as material in black liquor recovery boilers, coal qasification etc.

The invention comprises the usage of a Ni-based alloy with austenitic micro-structure containing, in weight-

15	C Cr Mo N Fe	up to	0.025 % 20-27 8-12 0.10 3-15	
	Ti	up to	0.5	
	Nb	n	0.5	
20	Si	**	0.5	
	Mn	IT	0.5	
	Al	u	0.3	
	Ni	remainde	r (except normal	impurities)

whereby the contents of the various constituents are such that following condition is fulfilled $45 \le Cr + 3 \times Mo \le 57$.

In parallel, also the condition $\frac{Ti}{N} \ge 1.5$ ought to be fulfilled, where Ti and N are given in weight-%.

Further details and advantages of the present invention will appear from the following description of an extensive test program that has been carried out.

Bar samples were made out of selected test alloys. The manufacture included ingot casting, extrusion and heat treatment. During extrusion the alloys were subjected to a reduction of diameter from 77 mm to 38 mm. Test

35

3

samples were taken out of each bar, subjected to hot workability testing (Gleeble) tensile strength testing, thermal analysis and corrosion testing in a full scale plant for waste incineration. These tests have also been followed by real installation of tubes made of Sanicro 28 and A 625.

Table 1 below shows the chemical analysis of the investigated test alloys which have been subjected to all the three above mentioned test procedures. The 10 first alloy in Table 1 is designated SS 2216 which is a low alloy superheater steel corresponding to international standard ASTM SA213-T12. The second alloy is one of our developed and marketed alloy called 15 Sanicro 28 which corresponds with international designation UNS 08028. The third alloy is an alloy bought on the market called A 625 with international designation UNS 06625. The alloys following thereafter in the table are test alloys made for this 20 investigation, in the following only identifiable by the two last digits. The analysis of these test alloys has been varied such that the impact of Fe, Cr, Ni, Nb and Mo can be studied more closely.

25 Table 1

		C	Ši	Mn	Ti	AI	Ν	Cr	Ni	Мо	Nb	Fe
	SS 2216	0.12	0,25	0,50				0,95	·	0.66	ween Lumber of Sign	
3 0	Sanicro 28	0,01	0.45	1,7	-	_	0,03	26,7	30.6	0,55	-	97,5
	A 625	0,036	0.11	0,32	0,34	0,22	0,013	21,8	61,2	3,3	-	37,1
	Sanicro 63X51	0,028	0.20	0.27	0.26	0,15	0.020	32,0	51,6	8,8	3,8	2,8
	Sanicro 63X52	0,029	0.19	0,23	0,28	0,24	0.008	11.5	72.3	7,2	2,1	6,2
	Sanicro 63X53	0,033	0.22	0.26	0,34	0,27	0,016	21,8	62,7	7,0	2,1	6,0
	Sanicro 63X54	0.030	0.22	0.26	0,31	0,24	0,007	26.1	65.9	-	3,7	10,7
	Sanicro 63X55	0,030	0,21	0.27	0,29	0.20	0.008	21.8	62,8	•	3,8	3,1
	Sanicro 63X56	0,029	0.23	0,27	0,29	0,19	0,008	23,7	-	8,6	-	6,2
	Sanicro 63X57	0.031	0,23	0,26	0,32	0,22	0,005	21,6	63,8	8,6	•	2,7
	Sanicro 63X58	0.029	0.27	0,23	0,30	0,18	0,003	•	63,0	-	-	14,3
	Sanicro 63X59	0,029	0,24	0.25	0,30	0.20	0,007	27,7 22,1	. 68,5 61,6	4,0	•	2,7 11,1

4

The corrosion tests were carried out by mounting the various alloys on a cooled testing probe. These probes were thereafter located in the superheater section in one of the waste incinerators. The probe testing was done at material temperatures of 450°C during 90 days and 500°C during 45 days, althogether in four test runs, and the average loss of material α (mm) was measured, based on eight crossections around the samples circumference. The internal corrosion attacks were found to be negligible. The results from 500°C testing is shown in Fig. 1.

The following conclusions were made:

Nb, Fe and Ni gave no significant effect on corrosion rate within the studied alloy range. Cr and Mo give a positive effect on the corrosion rate, and alloys 51, 55 and 56 are at least comparable with alloy A 625 from corrosive point of view. Other test alloys gave results worse than A 625 regarding corrosion rate.

20

25

30

5

10

15

A careful analysis of the corrosive data from probe testing of these alloys shows a proportional relation between $Cr + 3 \times Mo$ and corrosion rate \mathcal{B} . This means that $\mathcal{B} = -k_1 \times (Cr + 3 \times Mo) + k_2$. An increase of $Cr + 3 \times Mo$ gives an almost linear reduction in corrosion rate.

In order to investigate the corrosion resistance sond samples in the form of rings were manufactured out of the extruded bar from the test alloys. The results are shown in Table 2. Large differences in hot workability were observed, during extrusion.

5

	<u>Table 2</u>		
	Alloy	Max-force (bar)	<u>Appearance</u>
5	51 52 53 54	120 130 115 110	Many surface cracks
10	55 56 57 58 59	130 130 95 100 110	A few surface cracks "- Minor surface cracks "- "-

Extrusion temperature was in all cases 1130°C.

15 From the above it appears that Nb has a negative effect on hot workability as regards crack formation. It also appears that Mo, to a certain extent, will increase the deformation force needed. Inspection of the material after extrusion has shown that the Nb-alloyed variants 20 51, 52, 53 and 54 appeared to have a larger number and more deep surface cracks than those alloys that are not alloyed with Nb.

In order to provide a larger amount of test alloys for the testing of hot workability and strength the number of alloys was increased, beyond those in Table 1, to include also those in Table 3 below.

Table 3

		С	Si	Mn	Ti	Al	N	ي اح	Ni	Mo		Fe	, Cu
	Sanicro 63X61	0,007	0.31	0,30	0.26	0.15	0,038	25,6	55.3	6.1		9.8	
5	Sanicro 63X62	0.005	0,42	0,34	0,21	0,10	0,034	29,6	53.1	6,2		10.1	2,0
	Sanicro 63X63	0,005	0,33	0,29	0,22	0,15	0,022	25,5	53.6	10.1	_	9.9	-
	Sanicro 63X64	0,008	0,29	0,31	0.24	0,14	0,018	20,5	56.5	12,2		9.8	-
	Sanicro 63X65	0,007	0,32	0,30	0.24	0,15	0,023	25,4	51,7	12,2	_	9.7	_
	Sanicro 63X66	0,008	0,32	0,30	0,23	0.13	0,012	15,2	58,5	15,0	-	10,1	-

6

Hot workability testing (Gleeble) was carried out on all alloys, i.e. Sanicro 28, A 625 and alloys 51-59 and 61-66.

As a basis for studying the force needed for the 5 forming at high temperatures Gleeble-curves such as shown in Fig. 2 were produced where a temperature marking has been made at 50 % ductility (T_1) and one at the maximum ductility (T_2) . The force is measured along 10 the Gleeble-curve at positions T1 and T2. A straight line is drawn between these two points. This is illustrated in Fig. 3. What appears from Fig. 3 is an essential reduction of the force needed for the alloys that do not contain any Nb in comparison with A 625. The reduction of force due to the exclusion of Nb is 15 largely associated with an increase of solidus temperature and upper hot working limit which enables hot-working to occur at a higher temperature where the deformation resistance is lower. Fig. 4 shows maximum deformation force F_{max} (kN) at maximum ductility. 20

Fig. 5 shows solidus- and liquidus lines for alloys 51-59 and 61-66. For the alloys that are not alloyed with Nb a correlation can be seen between these temperatures and the value Cr + 3 x Mo. By experience it is desirable from working perspective to keep solidus temperature above 1300°C. Fig. 6 shows the upper hot working limit from Gleeble-testing and defined as the temperature at which ductility approaches down to 0 %. Also here a correlation can be seen between the upper hot working limit and Cr + 3 x Mo for the alloys that are not containing any Nb. Both Fig. 4 and Fig. 5 show the unfavorable effect of adding Nb from workability point of view. Compare

25

7

also alloys 53 and 54 with 57 and 58.

Fig. 7 shows the effect of Mo and Nb upon the contraction Z_{max} (%). It appears therefrom that Mo- and Nb-contents have a negative effect on ductility. Also in this case the correlation to Cr + 3 x Mo can be seen for the alloys that do not contain any Nb.

Hence, the tests that were carried show that Nb has a negative effect on the upper hot working limit and also upon maximum ductility. Mo has same negative effect upon ductility but essentially smaller effect on the upper hot working limit than Nb.

Tensile strength testing has been carried out on Sanicro 63X51-59 and 61-66. Ultimate strength $R_{\rm m}$ and yield strength $R_{\rm p~0.2}$ are illustrated in Fig. 8. The following condition is valid for the alloy variants that do not contain Nb.

 $R_m \approx Cr + 3 \times Mo$, where R_m is ultimate strength (MPa) $R_{p \cdot 0.2} \approx Cr + 3 \times Mo$, where $R_{p \cdot 0.2}$ is yield strength (at a remaining elongation of 0.2 %).

154

It also appears that the materials with Nb have higher values for $R_{p\ 0.2}$ and R_m at the same value for $Cr + 3 \times Mo$. In other words, at a given value for $Cr + 3 \times Mo$ the value for $R_{p\ 0.2}$ is higher when adding Nb. A lower value for $R_{p\ 0.2}$ is of advantage for cold working.

In Fig. 9 measured contraction Z (%) is shown as a function of Cr + 3 x Mo. A remarkable difference appears between alloys with Nb as compared with alloys

5

8

without Nb. In the test alloys without Nb an essential reduction of grain boundary precipitations has been observed. This is related to the fact that Nb (C, N) is not formed. These could during heat treatment give additional precipitation and form a large volume fraction of Nb $_6$ (C, N). Hence, alloys without Nb give a significant reduction of unstable grain boundary precipitations which indicates that very good structure stability has been achieved.

10

15

5

From these observations it appears that it is advantageous if Nb is not present in the alloy since it gives no positive effect upon corrosion properties but rather a negative effect on primarily hot workability. The further conclusion that can be drawn is that it is

The further conclusion that can be drawn is that it is more favorable from corrosion resistance point of view to maximize value for Cr + 3 x Mo whereas it is of advantage from hot workability point of view to minimize Cr + 3 x Mo. An optimum analysis from

manufacturing and corrosion perspectives is achieved by defining the condition 45 ≤ Cr + 3 x Mo ≤ 57. At the same time the Nb-content ought to be max 0.5 %. The content of Si should preferably be selected within the range 0.20-0.40 %.

25

30

In order to find an analysis that is balanced from structure stability perspective the content of C should be max 0.025 % and the content of Fe should be 3-15 %, preferably 3-12 % and more preferably 4-8 %. At the same time the amounts of Ti and N should be selected such that the condition $\frac{\text{Ti}}{N} \ge 1.5$ is fulfilled.

The demand for C, Ti and N is related to the tendency for precipitation. The content of Fe should be

5

10

20

يانو. ٠

maximized to 15 %, preferably to 12 % in order to obtain good stability towards sigma phase formation.

The Cr-content should preferably be 20-24 % and Mo-content should preferably be 8-10 %. Other elements should be present in amounts less than 0.5 %.

Such an alloy has optimum properties with regard to corrosion in relation to hot workability, tensile strength and good structure stability. The analysis such as outlined above results in a material that from workability point of view is much better than A 625 but equally comparable from corrosive point of view.

In view thereof this material will be suitable for use in heat exchanger tubes in power boilers which are exposed to sulphur, chloride or alkaline containing environments which could result in high temperature corrosion.

Preferable applications include usage as superheater tubes and boiler tubes in power boilers for municipal and industrial waste incineration.

25 The material is well suitable for use in heat exchangers used at material temperatures of 300-550°C which are exposed to high temperature corrosion. In a preferred embodiment the material of this invention is used as material in the outer layer of a composite tube consisting of two tube components metallurgically bonded to each other by co-extrusion where the inner component consists of a conventional carbon steel (such as SA210-A1) or a low alloy pressure vessel steel (SA213-T22).

It is to be understood that, as an alternative, monotubes could be made of this Ni-based alloy for the purpose of being used in the above defined application areas.

5

11

Claims

 Austenitic Ni-based alloy with good workability, good corrosion resistance and good structure stability, c h a r a c t e r i z e d in that it contains, in weight-%,

	С	up to	0.025 %
	Cr		20-27 %
10	Mo		8-12 %
	Si	up to	0.5 %
	Mn	и _	0.5 %
	Al	11 _	0.3 %
	N	" _	0.1 %
15	Fe		3-15 %
	Ti	up to	0.5 %
	Nb	"-	0.5 %

Ni, remainder, and usual impurities, whereby the
contents of the constituents are selected such that the
following condition is fulfilled

$$45 \le Cr + 3 \times Mo \le 57$$

- 2. Alloy as defined in claim 1,
- characterized in that the amounts of Ti and Ni are selected such that the condition $\frac{Ti}{N} \ge 1.5$ is fulfilled.
- 30 3. Alloy as defined in claim 1, c h a r a c t e r i z e d in that the Fe-content is 3-12 %, preferably 4-8 %.
 - 4. Alloy as defined in claim 1,
- 35 characterized in that the Si-content is 0.20-0.40 %.

12

- 5. Alloy as defined in claim 1, characterized in that the Mo-content is 8-10 %.
- 6. Alloy as defined in claim 1, characterized in that the Cr-content is 20-24 %.
- 7. In a heat exchanger unit intended to be exposed to sulphur-, chloride- or alkaline-containing environments at high temperatures, the improvement comprising using tubes of the Ni-based alloy defined in claim 1.
- 8. The use of superheater and boiler tubes in a power boiler for municipal and industrial waste incinerators, the improvement comprising the use of tubes made of a Ni-based alloy as defined in claim 1.
- 9. In a heat exchanger unit, according to claim 8, the improvement comprising the use of said Ni-based alloy in tubes exposed to elevated temperature of 300-550°C.
- 10. The use of a Ni-based alloy as defined in claim 1, the improvement comprising the use of a composite tube made of two components metallurgically bonded to each other by co-extrusion, the inner portion being a conventional pressure vessel steel and an outer portion of said austenitic Ni-based alloy in the application areas defined in any of the claims 7-9.
- 11. The use of a Ni-based alloy as defined in claim 1, the improvement comprising the use of a mono-tube made of said Ni-based alloy for the application areas defined in claim 7-9.

SUBSTITUTE SHEET

2/9

Fig 2.

Fig 3.

WO 95/31579

4/9

Fig 4.

SUBSTITUTE SHEET

SUBSTITUTE SHEET

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

ional application No. PCT/SE 95/00561

Α.	CLASSIF	ICATION	OF SUB.	JECT	MATTER
----	---------	---------	---------	------	--------

IPC6: C22C 19/05, F22B 37/04
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: C22C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

METADEX

C. DOCU	MENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	GB 2102834 A (SUMITOMO METAL INDUSTRIES LTD.), 9 February 1983 (09.02.83), page 2, line 50 - page 5, line 26, the tables I,III,IV,V	1-6
Y	page 1, line 1 - line 34; page 2, line 50 - page 5, line 26	7-11
x	GB 2104100 A (SUMITOMO METAL INDUSTRIES LTD.), 2 March 1983 (02.03.83), page 4, line 19 - page 6, line 51, the tables 5,9,11,17	1-6
Y	page 1, line 1 - line 34; page 4, line 19 - page 6, line 51	7-11
·		

X	Further documents are listed in the continuation of Box	x C.	X See patent family annex.
•	Special categories of cited documents:	T-	later document published after the international filing date or priority
A	document defining the general state of the art which is not considered to be of particular relevance		date and not in conflict with the application but cited to understand the principle or theory underlying the invention
E.	ertier document but published on or after the international filing date	*X*	document of particular relevance: the claimed invention cannot be
-1-	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		considered novel or cannot be considered to involve an inventive step when the document is taken alone
	special reason (as specified) document referring to an oral disclosure, use, exhibition or other means	. Y.	document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination
-P-	document published prior to the international filing date but later than		being obvious to a person skilled in the art
	the priority date claimed	*&*	document member of the same patent family
Date	of the actual completion of the international search	Date	of mailing of the international search report
	ept 1995		0 8 -09- 199 5
Nam	e and mailing address of the ISA/	Autho	rized officer
Swe	dish Patent Office		
Box	5055, S-102 42 STOCKHOLM	Nils	Engne 11
Facs	imile No. +46 8 666 02 86		none No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE 95/00561

•		PC1/2E 95/0	JJ01	
C (Continu	nation). DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to cl	aim No.
х	GB 2080332 A (CABOT CORPORATION), 3 February (03.02.82), table 3, "A-20"	1982	1,3,5,6	
Y			7-11	
A			2,4	
Y	JOURNAL OF METALS, Volume 35, No 7, July 198 G.Y. Lai, et al, "Recuperator Alloys for High-Temperature Waste Heat Recovery" page 24 - page 29	3,	7-11	
A	page 24 page 23		1-6	
Y	EP 0334410 A1 (VDM NICKEL-TECHNOLOGIE AKTIENGESELLSCHAFT), 27 Sept 1989 (27.09.	89)	7-11	٠,
A			1-6	
A	DE 2904161 A1 (CABOT CORP.), 30 August 1979 (30.08.79)		1-11	
		·		
		٠		
	·.			

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. 31/07/95 PCT/SE 95/00561

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
B-A-	2102834	09/02/83	DE-A,C,C 3221857	27/01/83
			FR-A,B- 2507629	
			GB-A,B- 2154611	• •
			JP-C- 1449752	
			JP-A- 57203737	
			JP-B- 61044127	
			SE-B,C- 454360	
	•			23/08/83
			JP-B- 62005977	
			JP-A- 57207144	
		. •	JP-B- 61044131	01/10/86
			JP-C- 1399931	28/09/87
			JP-A- 57207146	
			JP-B- 62005978	07/02/87
			JP-C- 1449757	11/07/88
			JP-A- 57210938	24/12/82
			JP-B- 61044135	01/10/86
B-A-	2104100	02/03/83	DE-A,C,C 3224865	20/01/83
			FR-A,B- 2508930	07/01/83
			JP-C- 1623794	18/11/91
			JP-A- 58006927	14/01/83
			JP-B- 63062569	02/12/88
	•		SE-B,C- 461986	23/04/90
			SE-A- 8204121	02/07/82
			SE-A- 8901647	09/05/89
*			US-A- 4421571	20/12/83
			JP-C- 1632456	26/12/91
			JP-A- 58006928	14/01/83
			JP-B- 63062570	02/12/88
			JP-C- 1623795	18/11/91
			JP-A- 58006929	14/01/83
			JP-B- 63063605	08/12/88
			JP-C- 1562875	12/06/90
			JP-A- 58009922	20/01/83
			JP-B- 63063606	08/12/88
			JP-C- 1623796	18/11/91
			JP-A- 58009923	20/01/83
			JP-B- 63063607	
			JP-C- 1623797	08/12/88 18/11/91
			JP-A- 58009924	20/01/83
				08/12/88
			JP-C- 1571822	25/07/90
			JP-A- 58011735	22/01/83
			JP-B- 63063609	08/12/88
			JP-C- 1632457	26/12/91
			JP-A- 58011736	22/01/83
			JP-B- 63063610	08/12/88
			JP-C- 1623798	18/11/91
			JP-A- 58011737	22/01/83
			JP-B- 63063611	08/12/88
				

INTERNATIONAL SEARCH REPORT Information on patent family members

31/07/95

International application No.
PCT/SE 95/00561

Patent do		Publication date		nt family mber(s)	Publication date	
B-A-	2080332	03/02/82	AU-B-	540150	01/11/84	
			AU-A-	7271381	14/01/82	
			BE-A,A-	889555	03/11/81	
			CA-A-	1168478	05/06/84	
			CH-A,B-	649314	15/05/85	
			DE-A-	3125301	18/03/82	
			FR-A,B-	2493343	07/05/82	
			JP-C-	1594409	27/12/90	
			JP-B-	2008017	22/02/90	
			JP-A-	57043951	12/03/82	
			LU-A-	83484	29/10/81	
			NL-B,C-	191124	01/09/94	
			NL-A-	8102330	01/02/82	
			SE-B,C-	445468	23/06/86	
	-		SE-A-	8103909	11/01/82	
			US-A-	4533414	06/08/85	
P-A1-	0334410	27/09/89	SE-T3-	0334410		
			AU-A-	3086589	07/09/89	
			CA-A-	1327716	15/03/94	
			DE-A-	3806799	14/09/89	
			DE-A-	5890136	17/06/92	
			JP-A-	1272737	31/10/89	
			US-A-	4906437	06/03/90	
E-A1-	2904161	30/08/79	CA-A-	1119845	16/03/82	
	•		FR-A,B-	2417550	14/09/79	
			GB-A,B-	2014606	30/08/79	
			JP-C-	1367579	11/03/87	
			JP-A-	54110918	30/08/79	
•	•		JP-B-	61023255	05/06/86	
			SE-A-	7901494	22/08/79	
			US-A-	4171217	16/10/79	

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)