Zaawansowane zastosowania kart graficznych

Laboratorium 3

Zadania demonstrujące wykorzystanie podstawowych klocków, z których buduje się algorytmy równoległe.

- 1. Napisz program znajdujący dla każdego elementu największą wartość znajdującą się przed nim w tablicy. Wykorzystaj operację scan.
- 2. Napisz program zliczający jedynki (bity) w tablicy intów (osobno dla każdego inta w tablicy). Wykorzystaj a) trik bitowy (parz slajdy z wykładu), b) instrukcję popc ().
- 3. Zmodyfikuj powyższy program aby podawał sumaryczną liczbę wartości. Wykorzystaj operację reduce.
- 4. Napisz program obliczający liczbę liczb parzystych znajdujących się w tablicy. Wykorzystaj operację reduce.
- 5. Napisz program znajdujący długość wspólnego prefiksu dwóch łańcuchów za pomocą operacji scan i reduce.
- 6. Napisz program znajdujący medianę w tablicy wejściowej. Wykorzystaj sort.
- 7. Napisz program wyszukujący wszystkie liczby większe od 10 i zwracający ich pozycje w tablicy wejściowej. Wykorzystaj operację compact.
- 8. Poczytaj o iteratorze counting_iterator (https://thrust.github.io/doc/classthrust_1_1counting_iterator.html) i wykonaj poprzednie zadanie z jego użyciem.
- 9. Napisz program wyszukujący zadany podłańcuch w większym łańcuchu. Zwróć położenia wszystkich wystąpień w osobnej tablicy. Wykorzystaj compact.
- 10. Napisz program wykonujący kompresję RLE za pomocą reduce_by_key.
- 11. Poczytaj o iteratorze constant_iterator (https://thrust.github.io/doc/classthrust_1_1constant_iterator.html) i wykonaj poprzednie zadanie z jego użyciem.
- 12. Zaimplementuj algorytm compact.
- 13. Dana jest posortowana tablica liczb. Część z nich to liczby kolejne a cześć nie. Przykładowo: 2,3,4,8,9,10,11,12,17,20,21,22,23,24. Oblicz tablicę zawierającą długości ciągów kolejnych liczb. Dla przykładowych danych wejściowych powinno to być: 3,3,2,1,5.
- 14. Zaimplementuj algorytm usuwania duplikatów z posortowanej tablicy.
- 15. Zaimplementuj algorytm, który dla danej tablicy dodatnich liczb x, np. 3,5,2,6, zwróci tablicę o długości równej sumie liczb x i zawierającą kolejne liczby od 0 do wartości x-1. Dla przykładowej tablicy wejściowej byłoby to 0,1,2(3),0,1,2,3,4(5), 0,1(2),0,1,2,3,4,5(6).
- 16. Niech będzie dana tablica kluczy, np. 1,1,1,2,2,3,3,3,3 oraz tablica odpowiadających im wartości, np.: a,b,c,a,d,e,f,k,l. W celu wytłumaczenia zadania wprowadzono następujące oznaczenie. Niech N(k) oznacza liczbę wystąpień klucza, np. N(3) wynosi 4. W wyniku powinny powstać trzy tablice K, V1 i V2. Obydwie tablice powinny mieć rozmiar równy sumie liczby kombinacji po 2 z N(k) po wszystkich kluczach występujących w tablicy wejściowej. W przykładowej tablicy N(1)=3, N(2)=2 i N(3)=4. Stąd $C_2^{N(1)}=3$, $C_2^{N(2)}=1$ i $C_2^{N(4)}=6$. Tablice wynikowe powinny zawierać zatem 3+1+6=10 pozycji. W tablicach wynikowych powinny

pojawić się wszystkie kombinacje dwuelementowe wartości z tablicy wejściowej. W niniejszym przykładzie wynik powinien wyglądać następująco:

Dane wejściowe			
Klucze	Wartości		
1	Α		
1	В		
1	С		
2	Α		
2	D		
3	E		
3	F		
3	K		
3	L		

Wynik				
	K	V1	V2	
Kombinacje wartości A,B,C	1	Α	В	
	1	Α	С	
	1	В	С	
Kombinacje wartości A,D	2	Α	D	
Kombinacje wartości E,F,K,L	3	E	F	
	3	E	K	
	3	E	L	
	3	F	K	
	3	F	L	
	3	K	L	