FRAUDULENT CLAIM DETECTION

Vishal Verma Vinti Singh

INTRODUCTION

Fraudulent insurance claims pose a significant challenge for insurers, resulting in substantial financial losses and inefficiencies. As claim volumes grow, traditional manual detection methods fall short. Data-driven approaches offer a more effective solution for identifying and preventing fraud.

DATA OVERVIEW

Source: insurance_claims.csv, containing policy details, incident information, customer demographics, claim amounts, and a binary target fraud reported(Y/N).

Training-Validation Split:

- Training set: 699×0.75 ≈525 samples
- Validation set: 699×0.25 ≈174 samples

Class Balance:

- Fraudulent: ~25%
- Non-fraudulent: ~75%
- Imbalance ratio ≈3:1 (majority: minority)

DATA PREPARATION & CLEANING

Missing Values

- Identified and dropped columns with excessive missingness.
- Imputed or removed rows for remaining nulls as appropriate.

Redundant & Illogical Entries

- Removed duplicate records.
- Dropped features with constant or near-constant values.
- Ensured numeric fields (e.g., policy durations, claim amounts) were non-negative.

Data Types

- Converted date fields to datetime objects.
- Cast categorical columns to category dtype.

EDA – UNIVARIATE ANALYSIS

Observations from histogram plots:

months_as_customer:

- Mean: 202.57. Median: 199.00
- Skewness: 0.37
- Distribution appears approximately symmetric

age:

- Mean: 38.85, Median: 38.00
- Skewness: 0.51
- Distribution is positively skewed (right-tailed)

policy_deductable:

- Mean: 1150.21, Median:

- Skewness: 0.45
- Distribution appears approximately symmetric

umbrella_limit:

- Mean: 1077253.22, Median: 0.00
- Skewness: 1.79
- Distribution is positively skewed (right-tailed)

capital-gains:

- Mean: 25506.01, Median: 0.00
- Skewness: 0.45
- Distribution appears approximately symmetric

capital-los:

- Mean: -26458.37, Median: -20800.00
- Skewness: -0.41

Observations from histogram plots:

- Distribution appears approximately symmetric number_of_vehicles_involved:
- Mean: 1.83, Median: 1.00
- Skewness: 0.49
- Distribution appears approximately symmetric

bodily_injuries:

- Mean: 0.97, Median: 1.00
- Skewness: 0.06
- Distribution appears approximately symmetric

witnesses:

- Mean: 1.46, Median: 1.00
- Skewness: 0.06
- Distribution appears approximately symmetric

total_claim_amount:

- Mean: 52923.61, Median: 58300.00
- Skewness: -0.57
- Distribution is negatively skewed (left-tailed)

injury_claim:

- Mean: 7508.73, Median: 6780.00
- Skewness: 0.27
- Distribution appears approximately symmetric

property_claim:

- Mean: 7399.20, Median: 6780.00
- Skewness: 0.33
- Distribution appears approximately symmetric

EDA – UNIVARIATE ANALYSIS

CORRELATION MATRIX

Highly correlated feature (|correlation| > 0.7):

age vs months_as_customer: 0.920

injury_claim vs total_claim_amount: 0.818

property_claim vs total_claim_amount: 0.815

vehicle_claim vs total_claim_amount: 0.984

vehicle_claim vs injury_claim: 0.743

vehicle_claim vs property_claim: 0.742

CLASS IMBALANCE ANALYSIS

Imbalance Ratio: 3.04:1 (N vs Y)

Significant class imbalance detected. This may affect model performance.

Consider: resampling, class weights, or specialized metrics (F1, AUC, etc.)

EDA – BIVARIATE ANALYSIS

Feature importance based on variance in fraud rates:

incident_severity: 655.5417 insured hobbies: 437.9118

auto_model: 138.9059 incident_type: 127.9124 collision_type: 97.4883 incident_state: 73.1274

property_damage: 39.8805 insured_occupation: 39.3522

auto_make: 27.8186

insured_relationship: 24.6759 authorities_contacted: 23.6709

incident_city: 14.4581

policy_csl: 6.0253

insured_education_level: 5.3411 police_report_available: 2.1569

policy_state: 0.2506
insured_sex: 0.0773

Categorical features with low variance may not contribute much to explaining fraud.

EDA –RELATIONSHIP B/W NUMERICAL FEATURES AND TARGET VARIABLE

EDA –RELATIONSHIP B/W NUMERICAL FEATURES AND TARGET VARIABLE

EDA –RELATIONSHIP B/W NUMERICAL FEATURES AND TARGET VARIABLE

20000

0

2

umbrella limit

8

1e6

MODEL SELECTION

Models

- Logistic RegressionRandom Forest Classifier

LOGISTIC REGRESSION+RFECV

Number of selected features: 52

Selected features:

['policy_csl_250/500', 'insured_education_level_JD', 'insured_education_level_MD', 'insured_education_level_PhD', 'insured_occupation_exec-managerial', 'insured_occupation_farming-fishing', 'insured_occupation_handlers-cleaners', 'insured_occupation_other-service', 'insured_occupation_priv-house-serv', 'insured_hobbies_camping', 'insured_hobbies_chess', 'insured_hobbies_cross-fit', 'insured_hobbies_dancing', 'insured_hobbies_golf', 'insured_hobbies_movies', 'insured_hobbies_sleeping', 'insured_hobbies_video-games', 'insured_relationship_not-in-family', 'insured_relationship_own-child', 'insured_relationship_unmarried', 'incident_type_Vehicle Theft', 'collision_type_Side Collision', 'collision_type_Unknown', 'incident_severity_Minor Damage', 'incident_severity_Total Loss', 'incident_severity_Trivial Damage', 'incident_state_NY', 'incident

LOGISTIC REGRESSION

Optimization terminated successfully.												
Current function value: 0.270871												
Iterations 8												
Logit Regression Results												
Dep. Variable: fraud reported				1052								
Model: Logit				999								
Method: MLE				52								
Date: Sun, 11 May 2025	5 Pseudo R-	squ.:										
Time: 18:51:35	5 Log-Likel	Log-Likelihood:		-284.96								
converged: True				-729.19								
Covariance Type: nonrobust		•		1.247e-152								
	coef	std err	z	P> z	[0.025	0.975]						
const	1.7477	0.400	4.373	0.000	0.964	2.531						
policy csl 250/500	0.7082	0.247	2.872	0.004	0.225	1.192						
insured_education_level_JD	0.8216	0.336	2.449	0.014	0.164	1.479						
insured education level MD	1.2077	0.344	3.511	0.000	0.533	1.882						
insured education level PhD	0.9790	0.361	2.709	0.007	0.271	1.687						
insured_occupation_exec-managerial	0.5662	0.429	1.320	0.187	-0.274	1.407						
insured_occupation_farming-fishing	-1.3002	0.613	-2.120	0.034	-2.502	-0.098						
insured_occupation_handlers-cleaners	-2.1783	0.632	-3.447	0.001	-3.417	-0.940						
insured_occupation_other-service	-1.4148	0.512	-2.763	0.006	-2.418	-0.411						
insured_occupation_priv-house-serv	-1.2779	0.499	-2.562	0.010	-2.255	-0.300						
nsured_hobbies_camping	-0.9977	0.579	-1.724	0.085	-2.132	0.137						
nsured_hobbies_chess	7.0837	0.721	9.819	0.000	5.670	8.498						
insured_hobbies_cross-fit	4.5590	0.639	7.134	0.000	3.307	5.811						
nsured_hobbies_dancing	-1.9433	0.784	-2.478	0.013	-3.480	-0.406						
nsured_hobbies_golf	-0.1594	0.558	-0.286	0.775	-1.253	0.935						
nsured_hobbies_movies	-0.9588	0.639	-1.500	0.134	-2.211	0.294						
nsured_hobbies_sleeping	-1.7921	0.547	-3.275	0.001	-2.865	-0.720						
nsured_hobbies_video-games	1.9492	0.450	4.330	0.000	1.067	2.832						
nsured_relationship_not-in-family	1.1859	0.332	3.572	0.000	0.535	1.837						
nsured_relationship_own-child	-0.3911	0.346	-1.131	0.258	-1.069	0.287						
nsured_relationship_unmarried	0.5995	0.343	1.748	0.080	-0.073	1.272						
ncident_type_Vehicle Theft ollision_type_Side Collision	-0.4552	0.738 0.280	-0.617 -3.835	0.537 0.000	-1.902	0.991 -0.524						
	-1.0720 0.4954	0.280	-3.835 0.787	0.431	-1.620 -0.738	1.728						
ollision_type_Unknown ncident severity Minor Damage	-5.4462	0.448	-12.143	0.000	-6.325	-4.567						
ncident_severity_Total Loss	-4.3645	0.358	-12.175	0.000	-5.067	-3.662						
ncident_severity_Trivial Damage	-5.8056	0.863	-6.731	0.000	-7.496	-4.115						
ncident state NY	-0.6497	0.301	-2.157	0.031	-1.240	-0.059						
ncident_state_NT	0.8415	0.756	1.112	0.266	-0.641	2.324						
ncident_state_PA	-1.2445	0.855	-1.455	0.146	-2.920	0.431						
ncident_state_WV	-1.1661	0.326	-3.579	0.000	-1.805	-0.528						
ncident_city_Northbrook	-1.0728	0.459	-2.339	0.019	-1.972	-0.174						
roperty_damage_Unknown	0.9624	0.289	3.330	0.001	0.396	1.529						
roperty_damage_YES	0.8091	0.311	2.600	0.009	0.199	1.419						
uto_make_Audi	0.9949	0.557	1.786	0.074	-0.097	2.087						
uto_make_BMW	2.1325	0.712	2.995	0.003	0.737	3.528						
uto_make_Chevrolet	-1.6916	0.662	-2.554	0.011	-2.990	-0.394						
uto_make_Nissan	-0.9644	0.690	-1.398	0.162	-2.316	0.388						
uto_model_A5	0.3517	0.726	0.485	0.628	-1.071	1.774						
uto_model_Camry	-1.3952	0.909	-1.536	0.125	-3.176	0.386						
uto_model_Civic	2.5883	0.722	3.585	0.000	1.173	4.003						
uto_model_F150	0.8345	0.693	1.205	0.228	-0.523	2.192						
uto_model_Fusion	-1.6368	0.833	-1.965	0.049	-3.269	-0.005						
auto_model_Grand Cherokee	1.3517	0.681	1.984	0.047	0.017	2.687						
auto_model_Legacy	-2.1517	0.943	-2.282	0.022	-3.999	-0.304						
auto_model_MDX	-1.6200	0.612	-2.648	0.008	-2.819	-0.421						
auto_model_Other	-1.4888	0.431	-3.458	0.001	-2.333	-0.645						
auto_model_Pathfinder	-3.7078	1.187	-3.124	0.002	-6.034	-1.382						
auto_model_Silverado	2.1133	0.927	2.280	0.023	0.297	3.930						
auto_model_Ultima	1.2015	0.974	1.233	0.218	-0.708	3.111						

```
VIF values for detecting multicollinearity:
                                             VIF
                                 const 13.036403
23
                 collision_type_Unknown
                                       3.132409
37
                      auto_make_Nissan
                                       2.879380
       incident_severity_Trivial Damage
26
                                        2.299748
34
                        auto make Audi
                                         2.282747
35
                         auto make BMW
                                         2.282130
38
                         auto_model_A5
                                        2.257321
51
                         auto_model_X5
                                        2.059363
49
                      auto_model_Ultima
                                        1.924383
36
                    auto_make_Chevrolet
                                       1.882268
47
                  auto model Pathfinder
                                        1.871605
21
            incident_type_Vehicle Theft 1.870257
48
                   auto_model_Silverado
                                       1.772085
24
         incident_severity_Minor Damage
                                       1.692725
46
                      auto_model_Other
                                       1.644159
32
                property_damage_Unknown
                                       1.562649
33
                    property_damage_YES
                                        1.549599
25
           incident_severity_Total Loss
                                        1.388979
11
                  insured_hobbies_chess
                                       1.305639
30
                      incident_state_WV
                                       1.300934
41
                       auto_model_F150
                                       1.277417
27
                      incident_state_NY 1.270492
29
                      incident_state_PA 1.255231
18
     insured relationship not-in-family 1.251663
39
                       auto model Camry 1.227242
20
         insured_relationship_unmarried
                                       1.223582
             insured_education_level_JD 1.218897
2
28
                      incident_state_OH 1.217091
19
         insured_relationship_own-child
                                       1.185366
3
             insured education level MD
                                        1.180762
4
            insured education level PhD
                                        1.164540
22
          collision_type_Side Collision
                                        1.153783
5
     insured_occupation_exec-managerial
                                       1.143442
12
              insured_hobbies_cross-fit
                                       1.141175
15
                 insured_hobbies_movies
                                       1.133120
                      auto_model_Legacy 1.132341
42
                      auto model Fusion 1.130494
17
            insured hobbies video-games 1.130119
45
                         auto model MDX 1.129547
14
                   insured_hobbies_golf 1.125835
40
                      auto_model_Civic
                                       1.117335
6
     insured_occupation_farming-fishing
                                        1.114497
                    auto_model_Wrangler
50
                                        1.109286
    insured occupation handlers-cleaners
                                        1.109146
                     policy_csl_250/500
                                        1.107126
31
               incident_city_Northbrook
                                       1.101857
52
                        age_group_Young
                                       1.099676
43
              auto_model_Grand Cherokee
                                       1.095855
13
                insured_hobbies_dancing
16
               insured hobbies sleeping 1.094537
9
     insured occupation priv-house-serv 1.092637
10
                insured_hobbies_camping 1.080957
       insured_occupation_other-service 1.079876
Features with high multicollinearity (VIF > 5):
0 const 13.036403
```

LOGISTIC REGRESSION – ROC CURVE

Optimal threshold based on Youden's index: 0.5309

At this threshold - Sensitivity: 0.9240,

Specificity: 0.8897

Optimal cutoff value: 0.5309

LOGISTIC REGRESSION – ROC CURVE

Optimal cutoff where sensitivity and specificity are closest: 0.5500

At this cutoff - Sensitivity: 0.9068, Specificity:

0.8935

Accuracy at this cutoff: 0.9002

LOGISTIC REGRESSION – CONFUSION ATRIX

Confusion Matrix using optimal cutoff:

[[468 58] [40 486]]

Model performance metrics using optimal

cutoff (0.5309): Accuracy: 0.9068

Sensitivity (True Positive Rate): 0.9240

Specificity (True Negative Rate): 0.8897

Precision: 0.8934 Recall: 0.9240 F1 Score: 0.9084

LOGISTIC REGRESSION – PRECISION – RECALL CURVE

RANDOM FOREST

Number of selected features based on importance threshold (0.01): 28

Selected features based on importance threshold:

['total_claim_amount', 'insured_hobbies_chess', 'incident_severity_Trivial Damage', 'capital-gains', 'incident_state_WV', 'witnesses', 'incident_type_Vehicle Theft', 'property_claim', 'vehicle_age', 'property_claim_ratio', 'injuries_vehicles_interaction', 'insured_hobbies_dancing', 'incident_state_OH', 'authorities_contacted_Unknown', 'incident_state_NY', 'auto_model_F150', 'collision_type_Unknown', 'property_damage_Unknown', 'auto_model_Silverado', 'umbrella_limit', 'capital-loss', 'insured_hobbies_board-games', 'auto_model_95', 'incident_city_Riverwood', 'policy_deductable', 'insured_hobbies_movies', 'incident_day_of_week', 'insured_hobbies_bungie-jumping']

RANDOM FOREST – FEATURE IMPORTANCE

RANDOM FOREST – DECISION TREE BASED ON FEATURE

RANDOM FOREST – HYPERPARAMETER TUNING

Starting grid search for hyperparameter tuning...

Fitting 5 folds for each of 972 candidates, totalling 4860 fits

Best Parameters:

{'bootstrap': True, 'class_weight':

'balanced_subsample', 'criterion': 'entropy',

'max_depth': 12, 'max_features': 0.5,

'min_samples_leaf': 5, 'min_samples_split':

5, 'n_estimators': 200}

Best ROC-AUC Score: 0.9342

RANDOM FOREST – CONFUSION MATRIX

Confusion Matrix:

[[514 12]

[18 508]]

Random Forest Model with Best Parameters:

Accuracy: 0.9715

Sensitivity (True Positive Rate): 0.9658

Specificity (True Negative Rate): 0.9772

Precision: 0.9769

Recall: 0.9658

F1 Score: 0.9713

PREDICTION AND MODEL EVALUATION

Logistic Regression	0.8000	0.6757	0.8407	0.5814	0.6757	0.6250
Optimized cutoff						
(0.5282)						
Random Forest	0.7233	0.3378	0.8496	0.4237	0.3378	0.3759
(Hyperparameter						
Tuning)						

Achieves 80.00% validation accuracy Shows good sensitivity/recall at 67.57% (effectively captures true positives) Maintains high specificity at 84.07% (effectively identifies true negatives) Delivers precision of 58.14% (moderate confidence in positive predictions) Results in F1-Score of 62.50% (balanced performance between precision and recall) Random Forest

Reaches 72.33% validation accuracy Demonstrates poor sensitivity at only 33.78% (misses many positive cases) Maintains high specificity at 84.96% (slightly better than Logistic Regression) Shows lower precision at 42.37% (less confidence in positive predictions)

- 1. What methods can be used to analyze historical insurance claims data for identifying potential fraud patterns?
- EDA to uncover variable relationships and trends linked to fraud.
- Feature engineering to create derived metrics like claim-to-premium ratios and claim frequency.
- Outlier detection using statistical or unsupervised methods to flag anomalies.
- Predictive modeling (e.g., logistic regression, random forest) to detect complex fraud patterns.
- ROC curve analysis to find optimal fraud detection thresholds.
- Model evaluation using sensitivity, specificity, and precision-recall metrics to handle class imbalance
 effectively.

- 2. Which factors most strongly indicate potential fraudulent behavior in insurance claims?
- Total Claim Amount Higher claim amounts are often associated with increased fraud risk.
- Customer Demographics Certain hobbies (e.g., chess, dancing) may correlate with specific fraud patterns.
- Incident Severity Minor or trivial damage claims show a higher likelihood of being fraudulent.
- Capital Gains/Losses Claimants with notable financial fluctuations may present higher fraud risks.
- Geographic Location States like West Virginia (WV), New York (NY), and Ohio (OH) exhibit elevated fraud rates.
- Vehicle Type Models such as the Ford F-150 and Chevy Silverado are more frequently involved in suspicious claims.
- Incident Type Claims involving vehicle theft or unspecified collision types tend to raise red flags.
- Property Damage Reporting Delayed or inconsistent property damage reporting can signal fraudulent intent.

- 3. Is it possible to predict the likelihood of fraud in new insurance claims using historical data?
- Logistic Regression Performance Achieved 80% validation accuracy with a sensitivity of 67.57%, indicating strong performance in identifying actual fraud cases.
- Probability Threshold Optimization An optimal cutoff of approximately 0.55 was identified to balance false positives and false negatives.
- Fraud Probability Scores The model generates a probability score for each claim, indicating the likelihood of fraud.
- Random Forest Benchmark Offers an alternative model with slightly lower sensitivity (33.78%) but useful for comparison and ensemble strategies.
- Deployment Capability These models can be integrated into claim processing systems to automatically score and flag suspicious claims in real time.

- 3. Is it possible to predict the likelihood of fraud in new insurance claims using historical data?
- Logistic Regression Performance Achieved 80% validation accuracy with a sensitivity of 67.57%, indicating strong performance in identifying actual fraud cases.
- Probability Threshold Optimization An optimal cutoff of approximately 0.55 was identified to balance false positives and false negatives.
- Fraud Probability Scores The model generates a probability score for each claim, indicating the likelihood of fraud.
- Random Forest Benchmark Offers an alternative model with slightly lower sensitivity (33.78%) but useful for comparison and ensemble strategies.
- Deployment Capability These models can be integrated into claim processing systems to automatically score and flag suspicious claims in real time.

- 4. What actionable insights from the model can enhance the fraud detection strategy?
- Optimize Probability Thresholds A fixed 0.5 threshold is suboptimal for imbalanced datasets; tuning cutoffs improves detection without overwhelming false positives.
- Prioritize High-Risk Claim Attributes Claims involving minor damage or specific vehicle models should receive heightened scrutiny.
- Leverage Geographic Trends Certain states consistently show higher fraud risk, suggesting the need for regional fraud flags.
- Balance Sensitivity and Customer Experience Cutoff adjustments can strike a balance between catching fraud and minimizing disruption for genuine claimants.
- Implement Tiered Reviews Use model-generated probability scores to route claims into different levels of manual or automated review.
- Model Selection Matters Logistic regression with optimized thresholds outperforms more complex models in terms of practical fraud detection effectiveness.
- Use Demographics with Caution Patterns in hobbies or occupations should be considered carefully to avoid bias or unfair profiling.