Data Science in Bioinformatics

Palle Villesen & Thomas Bataillon

Outline for week 06

- Contingency tables
- Testing tables
- Working with big datasets
- The exercises

Contingency tables

- Basically tables on two categorical variables
- Simple examples
 - Headache/no headache in placebo/panodil group
 - Side effects/no side effects in placebo/vaccinated group
- Contingency analysis estimates and test for association between two or more categorical variables

Titanic 1912

- Male survivors = 367
- Female survivors = 344

https://www.kaggle.com/c/titanic

Titanic

> chisq.test(TitanicTable, correct=F)

Pearson's Chi-squared test

data: TitanicTable
X-squared = 456.87, df = 1, p-value < 2.2e-16</pre>

Odds

$$\bullet \ \ O = \frac{p}{1-p}$$

- p = probability of "success" in the group
 - Very often we call this "risk of..."
- Odds ratio $=\frac{o_1}{o_2}$
- Relative risk $=\frac{p_1}{p_2}$

Titanic

```
> TitanicTable
      Survived Died
Men
           367 1364
Women
           344 126
> p1 = 1364 / (1364+367)
> 01 = p1 / (1-p1)
> 01
[1] 3.716621
> p2 = 126 / (126+344)
> o2 = p2 / (1-p2)
> 02
[1] 0.3662791
> 01/02
[1] 10.14697
Odds ratio
> p1/p2
[1] 2.939305
Relative risk
```


TERRORISTS POSE A VERY SMALL THREAT TO AMERICANS

CAUSE OF DEATH	LIFETIME ODDS
Heart disease	1 in 7
Cancer	1 in 7
Any injury	1 in 21
Chronic lung disease	1 in 27
Accidents	1 in 31
Stroke	1 in 31
Alzheimer's disease	1 in 47
Diabetes	1 in 53
Influenza/pneumonia	1 in 70
Kidney disease	1 in 85
Suicide	1 in 98
Any motor vehicle incident	1 in 113
Falling	1 in 133
Murder	1 in 249
Assault by gun	1 in 358
Car/van/truck incidents	1 in 565
Suffocation	1 in 608
Walking	1 in 672
Motorcycle	1 in 949
Drowning	1 in 1,183
Poisoning (liquid, gas, solid)	1 in 1,355
Fire or smoke	1 in 1,454
Assault by sharp object	1 in 2,448
Any force of nature	1 in 3,122

CAUSE OF DEATH	LIFETIME ODDS
Choking on food	1 in 3,409
Bicycling	1 in 4,337
Accidental gunshot	1 in 7,945
Police	1 in 8,359
Airplane and spaceship incidents	1 in 9,738
Heat wave	1 in 10,785
Electricity/radiation/heat/pressure	1 in 14,697
Animal attack or accident	1 in 30,167
Sharp objects accident	1 in 30,863
Foreign-born terrorists (all forms)	1 in 45,808
Tornado	1 in 60,000
Cataclysmic storm	1 in 63,685
Asteroid (global impact)	1 in 75,000
Legal execution	1 in 111,449
Dog attack	1 in 114,634
Earthquake	1 in 130,000
Bus, train, or streetcar	1 in 160,487
Lightning	1 in 174,443
Stinging by hornets, wasps, and bees	1 in 308,629
Asteroid (regional impact)	1 in 1,600,000
Shark attack	1 in 8,000,000
Refugee terrorists	1 in 46,192,893
Illegal immigrant terrorists	1 in 138,324,873
Visa Waiver Program entrant	0 in 1

NOTE: Most odds based on 2013 life expectancy, population, and death data. For infrequent events (e.g. asteroid), 2013 figures are assumed. Terrorism odds based on 41-year average (1975-2015).

Aspirin and cancer

	Aspirin	Placebo
Cancer	1438	1427
No cancer	18496	18515

Aspirin and cancer (observed)

Odds of cancer on aspirin

$$\bullet \ \ O = \frac{p}{1-p}$$

• p(cancer on aspirin) =
$$\frac{1438}{1438+18496}$$
 = 0.0721

•
$$1-p = 0.9279$$

•
$$O_1 = \frac{p}{1-p} = \frac{0.0721}{0.9279} = 0.0777$$

	Aspirin	Placebo
Cancer	1438	1427
No cancer	18496	18515

Odds of cancer on placebo

$$\bullet \ \ O = \frac{p}{1-p}$$

• p(cancer on placebo) =
$$\frac{1427}{1427+18515}$$
 = 0.0716

•
$$1-p = 0.9285$$

•
$$O_2 = \frac{p}{1-p} = \frac{0.0716}{0.9285} = 0.0771$$

	Aspirin	Placebo
Cancer	1438	1427
No cancer	18496	18515

Odds ratio

- The ratio of the odds (the aspirin vs. the placebo group)
- $\bullet OR = \frac{O_1}{O_2}$
- $O_1 = \frac{p}{1-p} = \frac{0.0721}{0.9279} = 0.0777$
- $O_2 = \frac{p}{1-p} = \frac{0.0716}{0.9285} = 0.0771$
- Odds ratio = 1.008

Standard error of OR

```
OR = (a*d) / (b*c)

OR = (1438*18515) / (1427*18496) = 1.009

ln(OR) = ln(1.009) = 0.00896

SE[ln(OR)] = sqrt(1/a + 1/b + 1/c + 1/d)

= 0.03878
```

	Aspirin	Placebo
Cancer	a = 1438	b = 1427
No cancer	c = 18496	d = 18515

Confidence interval of OR

$$ln(OR)-1.96*SE < ln(OR) < ln(OR)+1.96*SE$$

-0.067 < $ln(OR)$) < 0.085

$$exp(-0.067) < exp(ln(OR)) < exp(0.085)$$

0.93 < OR < 1.09

	Aspirin	Placebo
Cancer	a = 1438	b = 1427
No cancer	c = 18496	d = 18515

Case-control studies

- Two groups of samples
 - 1000 schizophrenia patiens
 - 1000 controls
- The group size is chosen by us not by the frequency in the poulation
 - So one of the groups is LARGER than in real life

	Likes coca cola	Hates coca cola
Schizophrenia	800	200
Normal	700	300

Relative risk

- RR = p1 / p2
- Only possible when p1 and p2 are unbiased estimates
- NOT possible for this dataset.

	Likes coca cola	Hates coca cola
Schizophrenia	800	200
Normal	700	300

5 minutes

- What is the response variable (outcome) in the example
- What is the explanatory variable in the example?
- Assume case/control is response
 - What is the problem with estimating p1?
- What is the OR?

	Likes coca cola	Hates coca cola
Schizophrenia	800	200
Normal	700	300

Relative risk

- RR = p1 / p2
- Only possible when you know p1
- Coca cola drinker and schizophrenia outcome
- p1 = risk of schizo if you like coca cola
 - We do not know this...
- But we can calculate OR = 24/14 = 1.71

	Likes coca cola	Hates coca cola
Schizophrenia	800	200
Normal	700	300

Relative risk

- RR = p1 / p2
- Calculate RR for the following prevalences of schizophrenia
 - 1:1 (so 1000 schizophrenia and 1000 normal)
 - 1:10 (so 100 schizophrenia and 1000 normal)
 - 1:100 (so 10 schizophrenia and 1000 normal)
 - 1:1000 (so 1 schizophrenia and 1000 normal)

	Likes coca cola	Hates coca cola
Schizophrenia	800	200
Normal	700	300

Relative risk and OR

```
P1 is biased (schizo:healthy)
> p1=800/1500
> p2=200/500
> p1/p2
[1] 1.333333
> p1=80/780
> p2=20/320
> p1/p2
[1] 1.641026
>
> p1=8/708
> p2=2/302
> p1/p2
[1] 1.706215
> p1=.8/700.8
> p2=.2/300.2
> p1/p2
[1] 1.71347
```

	Likes coca cola	Hates coca cola
Schizophrenia	800	200
Normal	700	300

χ² contingency test

- One assumption that is really important
 - A common rule is 5 or more in all cells of a 2-by-2 table, and 5 or more in 80% of cells in larger tables, but no cells with zero expected count.
- When this assumption is not met
 - Fishers exact test

- R: chisq.test(table(), correct=F)
- It is basically a goodness of fit test.

Cats are evil

	infected	uninfected
accidents	61	124
no accidents	16	169

Toxoplasma gondii OR=5.20

> chisq.test(x = toxTable)

Pearson's Chi-squared test with Yates' continuity correction

data: toxTable

X-squared = 31.75, df = 1, p-value = 1.753e-08

Example 9.4

You will do this during the exercises

Table 1Cat ownership in NAMI families and controls.

		Cases	Controls	
1992 questionnaire	Cat in house, birth to age 10	84/165 (50.9%)	65/165 (39.4%)	p = .03; OR = 1.60 (1.00-2.53)
1997 survey	Cat ownership, birth to age 13	136/262 (51.9%)	220/522 (42.1%)	p = .01; OR = 1.48 (1.09-2.02)
1982 questionnaire	Cat ownership, birth to age 13	1075/2125 (50.6%)	2065/4847 (42.6%)	$p \le .0001$; OR = 1.38 (1.25-1.53)

p values are derived from chi square, 2 tailed; ORs shown as mean (95% CI).

Schizophrenia Research 165 (2015) 1-2

Contents lists available at ScienceDirect

Schizophrenia Research

Is childhood cat ownership a risk factor for schizophrenia later in life?

E. Fuller Torrey ^{a,*}, Wendy Simmons ^a, Robert H. Yolken ^b

ARTICLE INFO

Article history:

Received 29 January 2015 Received in revised form 26 February 2015 Accepted 2 March 2015 Available online 17 April 2015

Keywords: Schizophrenia Bipolar disorder Cat contact Toxoplasmosis Toxoplasma gondii

ABSTRACT

Two previous studies suggested that childhood cat ownership is a possible risk factor for later developing schizophrenia or other serious mental illness. We therefore used an earlier, large NAMI questionnaire to try and replicate this finding. The results were the same, suggesting that cat ownership in childhood is significantly more common in families in which the child later becomes seriously mentally ill. If true, an explanatory mechanism may be *Toxoplasma gondii*. We urge our colleagues to try and replicate these findings to clarify whether childhood cat ownership is truly a risk factor for later schizophrenia.

© 2015 Elsevier B.V. All rights reserved.

^a Stanley Medical Research Institute, United States

b Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, School of Medicine, United States

REMINDER: A 50% INCREASE IN A TINY RISK IS **STILL TINY**.

Breast cancer and noise

- Up to 28% higher risk pr. 10 dB for estrogen receptor negative BC
- 30000 women
- 1219 with BC
- 203 with ER- (estrogen receptor negative)
- So increase in risk is from ~0.0067 to ~0.0086
- "We found no overall association between residential road traffic or railway noise and breast cancer risk."

Working with larger datasets

- Walkthrough of one rmarkdown html file
 - The sqlite is for future use (if any)
- This weeks exercises.

Too much time?

- Read r help
 - http://whitlockschluter.zoology.ubc.ca/r-code/rcode09
- Get data on toxoplasma
 - http://whitlockschluter.zoology.ubc.ca/data/chapter09
- Discuss
 - Is this tidy data or not?
 - Calculate Odd ratio
 - Test the association