

From Zero to Neural Networks

Data Science and Machine Learning for Engineering Applications

Lab 10

Giordano Paoletti

What Are Neural Networks?

 Neural Networks are computational models inspired by the human brain, used for tasks like image recognition, translation, and more.

Biological Inspiration

 Brains are made of neurons that fire when they receive signals above a threshold. Neural networks mimic this behavior.

Biological Neuron

The perceptron: The Artificial Neuron

- The perceptron is the simplest unit of neural networks
- It takes an input with *multiple features*, and:
 - It weights each input feature with a given weight
 - It produces a weighted sum of the inputs, and
 - It applies an *activation function* to the weighted sum and produces an output

$$y = f(w_1x_1 + w_2x_2 + \cdots + w_nx_n)$$

Inputs $x = (x_1, x_2, ..., x_n)$ are the input features $w = (w_1, w_2, ..., w_n)$ are the network weights

Perceptron Generalizes Classical Models

The perceptron is a linear model. Depending on its activation function:

- With *linear activation* f(x)=x, it behaves like **Linear Regression**: $y = w^t x + b$
- With a sigmoid activation, it becomes equivalent to Logistic
 Regression

$$y = \sigma(w^{t}x + b)$$
, where $\sigma(z) = 1 / (1 + exp(-z))$

• The original percetron use the step activation: $y = \delta(w^t x + b)$, where $\delta(z)=1$ if z>0, else 0

When Linearity fails: XOR Problem

- XOR is not linearly separable -> a single perceptron cannot solve the problem
- Requires at least one hidden layer

When Linearity fails: XOR Problem

Requires at least one hidden layer

- 2 input neurons $(x_1 \text{ and } x_2)$
- 1 hidden layer with 2 neurons
- 1 output neuron

When Linearity fails: XOR Problem

Let us define:

- Hidden neuron h_1 computes $h_1 = \delta(w_{11} x_1 + w_{12} x_2 + b_1)$
- Hidden neuron h_2 computes $h_2 = \delta(w_{21} x_1 + w_{22} x_2 + b_2)$
- Output neuron computes: $y = \delta(w_{31} h_1 + w_{32} h_2 + b_3)$

If:

- $W_{11} = W_{12} = W_{21} = W_{22} = 1$,
- $b_1 = -1.5$, $b_2 = -0.5$,
- $w_{31} = -1$, $w_{32} = 1$, $b_3 = -0.5$

The XOR is rocked

• (0,0):
$$h_1 = \delta(-1.5) = 0$$
, $h_2 = \delta(-0.5) = 0 \rightarrow y = \delta(-0.5) = 0$

• (0,1):
$$h_1 = \delta(-0.5) = 0$$
, $h_2 = \delta(0.5) = 1 \rightarrow y = \delta(0.5) = 1$

• (1,0):
$$h_1 = \delta(-0.5) = 0$$
, $h_2 = \delta(0.5) = 1 \rightarrow y = \delta(0.5) = 1$

•
$$(1,1)$$
: $h_1 = \delta(0.5) = 1$, $h_2 = \delta(1.5) = 1 \rightarrow y = \delta(-0.5) = 0$

Basic Elements in a FF-NN

- You have just seen the simplest form of a Feed-Forward Neural
 Network one capable of solving a non-linear problem like XOR.
- Generally thet are composed of:
 - An input layer: Receives raw features (e.g., pixels, numerical values).
 - One or more Hidden Layers: Perform transformations to capture non-linear relationships. The "deep" in deep learning. They learn new features combining the previuos one.
 - An output layer that makes the final decision

Basic Elements in a FF-NN

Weights and Biases:

Weights determine importance of inputs. Biases shift activations. Both are learned during training.

Activation Functions:

Introduce non-linearity. Enable networks to approximate complex functions.

Why does Non-Linearity matter?

Without them, any number of layers behaves like a single linear transformation.

$$f(g(x)) = W_2(g(x)) + b_2 = W_2(W_1x + b_1) + b_2 = (W_2W_1)x + (W_2b_1 + b_2) = h(x)$$

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation Functions

Sigmoid

Smooth, maps input to (0,1). Useful for binary classification, but suffers from vanishing gradients.

Tanh

Maps input to (-1,1). Zero-centered. Better than sigmoid in practice.

ReLU

ReLU(x) = max(0,x). Fast, simple, and widely used. Can lead to dead neurons.

Other Activations

Leaky ReLU, ELU, GELU – variants to mitigate ReLU issues.

How Wrong Is the Model? – Loss Function

- The **loss function** measures how far the model's predictions are from the true values. It is the objective minimized during training.
- Common Loss Functions:
- Mean Squared Error (MSE)
 - Used for regression tasks
 - Sensitive to large errors
- Cross-Entropy Loss (Log Loss)
 - Used for classification tasks

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Used for classification tasks
$$\text{CE} = -\sum_{i=1}^n \sum_{c=1}^C y_{i,c} \log(\hat{y}_{i,c})$$
 Compares predicted and true probability distributions

Gradient Descent

- What Are We Optimizing?
 We adjust weights to minimize the loss function. Optimization is the core of training.
- Gradient Descent
 A method to find the minimum of a function by moving in the opposite direction of the gradient.
- How It Works
 - Compute gradient of loss with respect to weights
 - Update rule:

$$w' = w - \eta \cdot \nabla L(w)$$

Backpropagation

- In a neural network, weights in earlier layers affect the output indirectly, through multiple transformations.
- To update those weights, we must know:
 "How does changing this weight change the final loss?"
- But the loss depends on the output, the output depends on activations, and activations depend on previous weights.
- We can't compute this influence in one step...
 - → But we can decompose it!

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial w}$$

• The **chain rule** allows us to break down the total derivative:

Backpropagation uses this rule recursively, layer by layer, to compute all gradients from output to input — efficiently and exactly.

Mini-Batch SGD and Learning Rate

- Why is the Learning Rate Important?
 - Too small → slow convergence
 - Too large → divergence or instability
 - Needs tuning → can be decayed or adapted (e.g., Adam)
- Neural networks are trained using Mini-Batch Stochastic Gradient Descent (SGD):
 - Updates weights using a small batch of samples
 - Faster and more memory-efficient than full-batch GD
 - Introduces noise → helps escape local minima

Training a Neural Network

- 1. Initialize weights
- 2. Forward pass
- 3. Compute loss
- 4. Backpropagate
- 5. Update weights
- 6. Repeat

How to Know When to Stop Training?

- Training Loss ↓: Model is learning to fit the data. If the model is big enough, it always decrease.
- Validation Loss ↓ then ↑: Indicates overfitting—model starts memorizing.
- Ideal Stop: When validation loss stops improving, even if training loss keeps decreasing.

Neural Networks -More complex architectures

Deep neural networks

- Deep neural networks are neural networks with "many" layers (up to billions of neurons)
- They often allow to use raw input
- The multiple layers are used to progressively extract higher-level features from the raw input
- Often deep learning uses more advanced layers than the one we have seen in feed-forward neural networks

Artificial neural networks

Different tasks, different architectures

numerical vectors classification/regression: feed forward NN (what we have seen so far)

image understanding: convolutional NN (CNN)

convolutional layers

Dog=0.9

time series analysis: recurrent NN (RNN)

denoising: auto-encoders

Convolutional neural networks

Allow automatically extracting features from images and performing classification

Convolutional Neural Network (CNN) Architecture

Convolutional layer

Dense layer

Convolutional layer

Weights of the different neurons are different!

Weights of the different neurons are the same!

Convolutional neural networks

- Convolutional layers training
 - during training each sliding filter learns to recognize a particular pattern in the input tensor
 - filters in shallow layers recognize textures and edges
 - filters in deeper layers can recognize objects and parts (e.g. eye, ear or even faces)

Autoencoders

- Autoencoders allow compressing input data by means of compact representations (embeddings) and from them reconstructing the initial input
 - for feature extraction: the compressed representation can be used as significant set of features representing input data
 - for image (or signal) denoising: the image reconstructed from the abstract representation is denoised with respect to the original one

Deep learning is advancing quickly...

- Long Short Term Memories (LSTM)
- Generative Adversarial Networks (GAN)
- Transformers
- Language models (LM) and large language models (LLM) Graph
- neural networks (GNN)

• • •

NN in Pytorch

What is PyTorch?

- Open source machine learning library
- Developed by Facebook's AI Research lab
- It leverages the power of GPUs
- Automatic computation of gradients
- Makes it easier to test and develop new ideas.

Other libraries?

Why PyTorch?

- It is pythonic- concise, close to Python conventions
- Strong GPU support
- Autograd- automatic differentiation
- Many algorithms and components are already implemented
- Similar to NumPy

Why PyTorch?

Computation Graph

Numpy

```
import numpy as np
np.random.seed(0)

N, D = 3, 4

x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```

Tensorflow

```
import numpy as np
np.random.seed(0)
import tensorflow as tf
M. D = 3, 4
with if.device('/opui0'):
   x = tf.placeholder(tf.float32)
   y = tf.placeholder(tf.float32)
   z = tf.placeholder(tf.float32)
    a = x + y
   b = a + z
   c = tf.reduce_sum(b)
grad x, grad y, grad x = tf.gradients(c, [x, y, x])
with tf.Dession() as sess:
    values = (
        m: np.random.randn(N, D),
       y: np.random.randn(E, D),
        #: np.random.randm(N, D),
   out = sees.run([c, grad_x, grad_y, grad_z],
                   feed_dict=values)
   c val, grad x val, grad v val, grad z val = out
```

PyTorch

```
import torch
N, D = 3, 4

x = torch.rand((N, D),requires_grad=True)
y = torch.rand((N, D),requires_grad=True)
z = torch.rand((N, D),requires_grad=True)
a =x * y
b =a * Z
c=torch.sum(b)
c.backward()
```


