The MinRank Problem

Survey, Implementation, and One Application

Dario Gjorgjevski¹ gjorgjevski.dario@students.finki.ukim.mk

> ¹Faculty of Computer Science and Engineering Ss. Cyril and Methodius University in Skopje

> > January 12, 2016

Outline

- Definition and Fundamental Insights
 - Definition
 - Computational Complexity
- 2 Known Attacks
 - The Kernel Attack
 - \bullet Modeling MinRank Instances as \mathcal{MQ} Systems
 - Implementation Details
- 3 Zero-Knowledge Authentication Based on MinRank
 - The Protocol
 - Implementation Details

Definition of the MinRank Problem

The MinRank problem (MR) is a fundamental problem in linear algebra of finding a low-rank linear combination of matrices.

Definition (MinRank over a field)

Let \mathbf{M}_0 ; $\mathbf{M}_1, \ldots, \mathbf{M}_m$ be matrices in $\mathcal{M}_{\eta \times n}(\mathbb{K})$. The MinRank problem instance $\mathsf{MR}(m, \eta, n, r, \mathbb{K}; \mathbf{M}_0; \mathbf{M}_1, \ldots, \mathbf{M}_m)$ asks us to find an m-tuple $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_m) \in \mathbb{K}^m$ such that

$$\operatorname{rank}\left(\sum_{i=1}^{m} \alpha_i \mathbf{M}_i - \mathbf{M}_0\right) \le r.$$

In practice, we have $\mathbb{K} = \mathbb{F}_q$.

Complexity of the MinRank Problem

Theorem ([BFS99; Cou01])

The MinRank problem is NP-complete.

- MinRank's NP-completeness is what allows us to use it as an underlying problem in a zero-knowledge authentication scheme.
- We will also see a connection between MinRank and multivariate quadratic (\mathcal{MQ}) cryptosystems. Interestingly, any system of multivariate polynomial equations can be effectively encoded as a MR instance.

Outline

- Definition and Fundamental Insights
 - Definition
 - Computational Complexity
- 2 Known Attacks
 - The Kernel Attack
 - \bullet Modeling MinRank Instances as \mathcal{MQ} Systems
 - Implementation Details
- 3 Zero-Knowledge Authentication Based on MinRank
 - The Protocol
 - Implementation Details

Key Idea Behind the Kernel Attack

- Proposed by Goubin and Courtois [GC00].
- Rather than guess a solution, guess its kernel. If the kernel is guessed correctly, the solution can be solved for.
- Let $H_{\beta} = \sum_{i=1}^{m} \beta_i \mathbf{M}_i \mathbf{M}_0$ (β is a parameter).
- If α is a solution, (rank $H_{\alpha} \leq r \iff \dim(\ker H_{\alpha}) \geq n r$) \implies the kernel's dimension can be relatively large making guessing more feasible.
- Given a correct guess, the solution α can be retrieved in roughly cubic time by simply solving a linear system of equations.

The Kernel Attack Algorithm

Algorithm 1 The Kernel Attack on MinRank

Input: MR $(m, \eta, n, r, \mathbb{F}_q; \mathbf{M}_0; \mathbf{M}_1, \dots, \mathbf{M}_m)$

Output: A solution to the MR instance (if any)

repeat

$$\mathbf{x}^{(i)} \leftarrow \mathbb{F}_q^n, \ 1 \leq i \leq \left\lfloor \frac{m}{\eta} \right\rfloor$$

$$\boldsymbol{\beta} \leftarrow \text{solve } \left\{ \left(\sum_{j=1}^m \beta_j \mathbf{M}_j - \mathbf{M}_0 \right) \mathbf{x}^{(i)} = \mathbf{0} \right\}, \ 1 \leq i \leq \left\lceil \frac{m}{\eta} \right\rceil$$
until ($\boldsymbol{\beta}$ solves the MR instance) \vee (the algorithm has been

until (β solves the MR instance) \vee (the algorithm has been run sufficiently many times)

Guess & solve
$$q^{\left\lceil \frac{m}{\eta} \right\rceil r}$$
 times $\Longrightarrow \mathcal{O}\left(m\left(\left\lceil \frac{m}{\eta} \right\rceil \eta\right)^2 q^{\left\lceil \frac{m}{\eta} \right\rceil r}\right)$.

Key Idea Behind the \mathcal{MQ} Modeling

- Proposed by Kipnis and Shamir [KS99].
- Instead of guessing the kernel, we can attempt to explicitly construct it.
- If α is a solution, rank $H_{\alpha} \leq r \iff \dim(\ker H_{\alpha}) \geq n r$ $\iff \exists n - r \text{ linearly independent vectors in } \ker H_{\alpha}$.
- Write these vectors systematically as $\mathbf{x}^{(i)} = \begin{bmatrix} \mathbf{e}_i & x_1^{(i)} & x_2^{(i)} & \cdots & x_r^{(i)} \end{bmatrix}^T, \ 1 \leq i \leq n-r, \text{ where } \\ \mathbf{e}_i \in \mathbb{F}_q^{n-r} \text{ and the } x_i^{(i)} \text{'s are newly-introduced variables.}$

The \mathcal{MQ} System

Therefore, we can model a MR instance as an \mathcal{MQ} system:

$$\left(\sum_{i=1}^{m} \beta_{i} \mathbf{M}_{i} - \mathbf{M}_{0}\right) \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
x_{1}^{(1)} & x_{1}^{(2)} & \cdots & x_{1}^{(n-r)} \\
\vdots & \vdots & \ddots & \vdots \\
x_{r}^{(1)} & x_{r}^{(2)} & \cdots & x_{r}^{(n-r)}
\end{bmatrix} = \mathbf{0} \qquad (1)$$

(1) is a quadratic system of $\eta(n-r)$ equations in r(n-r)+m variables.

Solving the \mathcal{MQ} System

- The best method we have for solving multivariate polynomial systems of equations are lex Gröbner bases.
- Gröbner bases are defined w.r.t. monomial orderings. A lex Gröbner basis can be thought of as a generalization of Gaussian elimination.
- The theoretical complexity of computing a Gröbner basis for a system with m equations in n variables is $\mathcal{O}\left(m\binom{n+d_{\text{reg}}}{d_{\text{reg}}}\right)^{\omega}\right)$, where d_{reg} is the maximum degree reached during the computation and $2 \leq \omega \leq 3$ is the exponent in the complexity of matrix multiplication.
- The system given in (1) exhibits certain structural properties (it is formed by bilinear equations), so the complexity observed in practice is much lower.

Implementation of the Attacks

- The implementations are done in SageMath and follow the theoretical foundations in a straightforward manner.
- The kernel attack is a simple implementation of algorithm 1.
- Gröbner basis computation is done using the SINGULAR procedure stdfglm. Internally, it uses the F₄ algorithm to compute a Gröbner basis w.r.t. a degrevlex ordering, and then converts it to a lex ordering using the FGLM algorithm. Once the Gröbner basis is computed, solving (1) is trivial and handled by SageMath's variety() method, which computes the affine variety of an ideal.

Outline

- Definition and Fundamental Insights
 - Definition
 - Computational Complexity
- 2 Known Attacks
 - The Kernel Attack
 - \bullet Modeling MinRank Instances as \mathcal{MQ} Systems
 - Implementation Details
- 3 Zero-Knowledge Authentication Based on MinRank
 - The Protocol
 - Implementation Details

Key Idea Behind the Protocol

The protocol was proposed by Courtois [Cou01]. The key idea is stated in the following lemma.

Lemma

Let \mathbf{M} be an $\eta \times n$ matrix of rank $r \leq \min(\eta, n)$. Let \mathbf{S} and \mathbf{T} be two uniformly distributed random nonsingular matrices of orders η and n resp. Then \mathbf{SMT} is uniformly distributed among all $\eta \times n$ matrices of rank r.

The takeaway is that a MinRank solution can be effectively *masked* by two isomorphisms. In order to force a prover to "play by the rules," a collision-resistant hash function H is used to make commitments.

The Prover Setup

- A uniformly chosen random combination $\boldsymbol{\beta}^{(1)}$ of the \mathbf{M}_i 's. $\mathbf{N}_1 = \sum_{i=1}^m \beta_i^{(1)} \mathbf{M}_i$.
- ② Let $\boldsymbol{\beta}^{(2)} = \boldsymbol{\alpha} + \boldsymbol{\beta}^{(1)}$, where $\boldsymbol{\alpha}$ is the MinRank solution a legitimate prover should have access to. $\mathbf{N}_2 = \sum_{i=1}^m \beta_i^{(2)} \mathbf{M}_i$.
- **3** Random nonsingular matrices S and T, and a completely random matrix X.
- **1** The prover commits the hash values of the (S, T, X) triple, and of $SN_1T + X$ and $SN_2T + X SM_0T$.

The Verifier

The verifier sends a random query $(Q \leftarrow_{\$} \{0, 1, 2\})$ and either:

- Checks the committed hashes of the (S, T, X) triple and one of the N_i 's; or
- Checks the committed hashes of \mathbf{N}_1 , \mathbf{N}_2 , and the rank of $\mathbf{S}\mathbf{N}_2\mathbf{T} + \mathbf{X} \mathbf{S}\mathbf{M}_0\mathbf{T} \mathbf{S}\mathbf{N}_1\mathbf{T} + \mathbf{X} = \mathbf{S}\left(\sum_{i=1}^m \alpha_i\mathbf{M}_i \mathbf{M}_0\right)\mathbf{T}$. This step is the backbone of the authentication, as by the previous lemma it remains a solution to the MinRank instance.

The protocol is black box zero-knowledge with a cheating probability of $\frac{2}{3}$. A prover authenticating herself means either solving the NP-complete problem of MinRank, or finding a collision in the hash function H and playing "dishonestly." Authentication is carried out in multiple rounds and is successful if and only if each round is successful.

Implementation of the Protocol

- The implementation follows the description of the protocol. It is built around two objects, Prover and Verifier who are each associated to MinRankInstance objects.
- Legitimate provers are represented as LegitimateProver objects and can be given access to MinRankInstance objects.
- Instance generation is done according to the algorithm outlined in [Cou01], i.e. instances are generated such that both the \mathbf{M}_i 's and the solution $\boldsymbol{\alpha}$ are uniformly distributed.
- There is no strict concept of public/private keys in the toy implementation, but in practice the keys are quite short as most of their parts can be generated by a pseudo-random generator from a shared seed.

Performance

- Instance generation is relatively fast: generating 10 000 instances $m=10, \eta=n=6, r=3, q=65521$ required 10.252 s.
- Authentication performance depends largely on the parameter set (parameter sets A and C include few matrices over \mathbb{F}_{65521} , while D includes many matrices over \mathbb{F}_2).

Parameter set [Cou01]	Time (legitimate)	Time (illegitimate)
A	18.349	1.763
\mathbf{C}	133.610	11.450
D	1050.127	91.196

References

Jonathan F. Buss, Gudmund S. Frandsen, and Jeffrey O. Shallit. "The Computational Complexity of Some Problems of Linear Algebra". In: *Journal of Computer and System Sciences* 3 (June 1999).

Nicolas T. Courtois. "Efficient Zero-Knowledge Authentication Based on a Linear Algebra Problem MinRank". In: Advances in Cryptology — ASIACRYPT '01. Lecture Notes in Computer Science. Springer, 2001.

Louis Goubin and Nicolas T. Courtois. "Cryptanalysis of the TTM Cryptosystem". In: Advances in Cryptology — ASIACRYPT '00. Ed. by Tatsuaki Okamoto. Lecture Notes in Computer Science. Springer, 2000. ISBN: 978-3-540-41404-9.

Aviad Kipnis and Avi Shamir. "Cryptanalysis of the HFE Public Key System by Relinearization". In: Advances in Cryptology — CRYPTO '99. Ed. by Michael Wiener. Lecture Notes in Computer Science. Springer, 1999. ISBN: 978-3-540-66347-8.