Fun facts about Zero-Knowledge proofs

Ariel Gabizon

Protocol Labs

The deck of cards:

A full deck with red and black cards, face down.

I take out a red three of hearts. How to

convince you I took a red card, without showing which one

Proving color to the color blind:

A red and green ball, otherwise indentical

How to convince a color-blind friend they are different?.

Counting leaves in a tree:

How to prove you can instantly count the number of leaves on a tree, without disclosing the number of leaves?

Video: the cave

3-coloring

From interactive to non-interactive

Fiat-Shamir hueristic: simulate challenges of the verifier by hash of messages so far

From interactive to non-interactive

Fiat-Shamir hueristic: simulate challenges of the verifier by hash of messages so far

Homomorphic encryption: Give challenge in advance in homomorphically encoded form (Craig Gentry video)

ZK + bitcoin: Zero-Knowledge contingent payments (by Greg Maxwell)

Chicken and egg problem: I have sudoku puzzle solution, you want to buy it - who goes first?.

ZK + bitcoin: Zero-Knowledge contingent payments (by Greg Maxwell)

Chicken and egg problem: Alice has sudoku puzzle solution, Bob want's to buy it - who goes first?.

ZKCP: Protocol where money and solution change hands at exactly same time.

ZK + bitcoin: Zero-Knowledge contingent payments (by Greg Maxwell)

- 1. Alice chooses cryptographic key K, sends h = HASH(K).
- 2. Alice sends encrypted solution $C = E_K(S)$ to Bob; and proves in ZK: "C is encryption of sudoku solution under key who's hash is h.
- 3. Bob makes bitcoin "hash-locked-transaction" to Alice with **h**.
- 4. Alice reveals **K** to unlock her funds.
- 5. Bob can now use K to decrypt solution.

More on the mathy side: Schnorr's discrete log protocol

Given g^x , prove you know x without revealing it.

More on the mathy side: Schnorr's discrete log protocol

Given $X := g^x$, prove you know x without revealing it.

- 1. Prover chooses random r, sends $R := g^r$.
- 2. Verifier chooses random c
- 3. Prover sends $u := x \cdot c + r$
- 4. Verifier checks $X \cdot R = g^{u}$.