Ejercicios de Regresión Lineal

Aprendizaje Automático

Curso 2020-21

- 1. Calcular las primeras derivadas parciales de
: $f(x,y)=\sqrt{x^2+y^2}$.
- 2. Encontrar el mínimo local para la función $y=(x+5)^2$. (Sol: x=-5)
- 3. Dada la siguiente tabla de medidas:

X	1	2	3		
у	1.5	2	2.5		

- (a) Dibujar la tabla como una gráfica de puntos.
- (b) Calcular los coeficientes mediante ecuaciones normales.

(Sol:
$$y = 0.5x + 1$$
; $r^2 = 1$)

- (c) Dibujar la recta de regresión encima de los puntos.
- (d) ******* Calcular los distintos errores.
- 4. Tenemos la siguiente tabla:

X	0	1	2	3	4	
у	2	3	5	4	6	

- (a) Encontrar la regresión lineal y = ax + b.
- (b) Estimar los valores de y cuando x = -2, x = 2.5 y x = 10.
- 5. Se ha realizado un estudio para determinar la pérdido de actividad de una droga. La siguiente tabla muestra los resultados de los experimentos.

Tiempo	1	2	3	4	5
Actividad	96	84	70	58	52

(a) Construir el modelo lineal de la actividad en función del tiempo.

(Sol:
$$y = 106.2 - 11.4x$$
)

(b) A partir del modelo, ¿cuándo será la actividad del 80%?

(Sol:
$$x = 9.2182 - 0.0864y // x(80)=2.3091 years$$
)

- (c) ¿Cuándo perderá la droga toda la actividad? (Sol: x(0) = 9.2182 years.)
- 6. Un equipo de baloncesto está probando un nuevo programa de estiramientos para reducir las lesiones. Los datos siguientes muestran el numero de minutos diarios realizando estiramientos y las lesiones a lo largo del año.

Minutos	0	30	10	15	5	25	35	40
Lesiones	4	1	2	2	3	1	0	1

- (a) Construya la línea de regresión del número de lesiones en función del estiramiento (mins). (Sol: y = 3.35 0.08x)
- (b) ¿Cuánto es la reducción de lesiones por cada minuto de estiramiento?

 (Sol: 0.08 injures/min)
- (c) ¿Cuántos minutos de estiramiento se requieren para no tener lesiones? (Sol: x = 38.2609 10.4348y; x(0) = 38.2609 min.; $r^2 = 0.8348$)
- 7. Genera y representa los datos (valores x e y) para una línea recta simple de la forma $y = a + \beta x$ donde a = 2 y $\beta = 1$ son constantes, y $x \in [0, 1]$.
- 8. Repetir el ejercicio 3 aplicando el algoritmo de descenso por gradiente
 - (a) Si comenzamos con $\theta_0 = 0$ y $\theta_1 = 0$, ¿Cúal es el valor inicial para la función de Pérdida (error cuadrático)?
 - (b) Calcular la siguiente estimación para los valores de θ , después de 1 iteración.
- 9. ¿Qué puede suceder si la tasa de aprendizaje es demasiado alta o demasiado baja?
- 10. ¿Cómo actualiza el algoritmo de descenso por gradiente los θ ?
- 11. Sean los siguientes datos de personas:

$$height = 1.7m$$
 $weight = 80kg$
 $height = 1.8m$ $weight = 79kg$
 $height = 1.6m$ $weight = 60kg$

- (a) ¿Cuál es el valor de la función de costo cuando θ_0 y θ_1 son ambos iguales a 0?
- (b) ¿Cuál es su valor cuando $\theta_0=1$ y $\theta_1=2$?
- (c) y después de 1 iteración de descenso de gradiente?
- 12. Resolver el ejercicio: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex3/ex3.html