

In this example we create an algorithm in Python which is simple but ineficcient. Then we try to figure out how we can make it faster.

Problem: From how many spots a given list of integers can be split in half so that the sums of left and right subsets are equal?

For example a list T = [1, -1, 2, -2] has only one spot: right in the middle. The solution can be computed by checking the sums of both sides from n - 1 spots:

```
def example(T:):
    count = 0
    for i in range(1, len(L)):
        if sum(T[:i]) == sum(T[i:]):
            count += 1
    return count
```

This algorithm gives us a right solution but how fast it is when it comes to largers lists? Let's create a small test program:

```
if __name__ == "__main__":
    N = 1
    T = [1, -1, 2, -2] * N
    print(example(T))
```

Below we see the results when we run the test program with time command:

N = 100	N = 1000	N = 10000	
\$ time python3 example.py	<pre>\$ time python3 example.py 1999</pre>	\$ time python3 example.py 19999	
real 0m0.016s user 0m0.016s sys 0m0.000s	real 0m0.118s user 0m0.111s sys 0m0.007s	real 0m13.678s user 0m13.579s sys 0m0.036s	

Analyzing the function example we can see that its time complexity is $\Theta(n^2)$. Inside the for-loop we have two sum functions which are together $\Theta(n)$ making it $\Theta(n^2)$ algorithm. Is it possible to create a faster solution?

Counting sums over and over again from each position is unnecessary. Instead of that we can count cumulative sums from left to right and from right to left in two new lists L (Left) and R (Right). After that we count how many times $L_i=R_{i+1}$.

```
def example_better(T):
    count = 0
    length = len(T)
    L = [T[0]] * length  # cumulative sums from left
    R = [T[-1]] * length  # cumulative sums from right

for i in range(1, length):
    L[i] = L[i - 1] + T[i]
    R[-(i + 1)] = R[-i] + T[-(i + 1)]

for i in range(1, length):
    if L[i-1] == R[i]:
        count += 1
```

Since the new algorithm has only inpidual for-loops depended by the length of the list n the algorithm performs in $\Theta(n)$ time!

Now let's run the test program again with the new algorithm:

N=100	N = 1000	N=10000	N = 100000
<pre>\$ time python3 example.py 199</pre>	\$ time python3 example.py	\$ time python3 example.py	\$ time python3 example.py 199999
real 0m0.017s user 0m0.007s sys 0m0.010s	real 0m0.015s user 0m0.015s sys 0m0.000s	real 0m0.027s user 0m0.027s sys 0m0.000s	real 0m0.127s user 0m0.127s sys 0m0.000s

Although the new algorithm is faster its space complexity is three times larger. With modern computers this is not a problem but with limited resources and small input size choosing the first algorithm can be some times more reasonable.

Last modified: Monday, 18 September 2023, 11:53 AM

You are logged in as Hung Nguyen (Log out)

Search and Moodle Help Course search Student Guide (PDF) Moodle teacher's guide Data retention summary
Get the mobile app
Policies

Copyright © LUT University