Math 242 Test 2, Monday 20 October

Name:

Last 4 digits of SSN:

Show all work **clearly**, **make sentences**. No work means no credit. The points are:

ex1: 25, ex2: 20, ex3: 20, ex4: 15, ex5: 20.

Exercise 1 We give the differential equation:

$$\frac{dx}{dt} = 2x^2 - 10x + 12.$$

1. What are the critical points? Use a phase diagram to determine whether each critical point is stable or unstable.

2. Solve this differential equation with $x_0 = 1$.

Exercise 2 We give an initial value problem and its exact solution y(x):

$$y' = 2xy^2$$
, $y(0) = 1$, $y(x) = \frac{1}{1 - x^2}$.

Apply Euler's method to approximate the solution on the interval [0, 0.4] with step size h = 0.1. Write the formula you use for the computation. Then compare the four-decimal-place values of the approximate solution with the values of the exact solution using the following array. Does this step size look good?

X	0	0.1	0.2	0.3	0.4
approx solution					
exact solution					

Exercise 3 Solve the differential equation:

$$y^{(3)} - 9y'' + 24y' - 20y = 0,$$

using the fact that the function $x \mapsto e^{5x}$ is solution of this differential equation. Then find the unique solution satisfying the initial conditions:

$$y(0) = 1, y'(0) = 0, y''(0) = -1.$$

Exercise 4 Find a linear homogeneous constant-coefficient equation with the general solution:

$$y(x) = Ae^{-3x} + B\cos(2x) + C\sin(2x) + x(D\cos(2x) + E\sin(2x)).$$

Exercise 5 Solve the initial value problem, where y_p is a particular solution of the differential equation:

$$y'' + 2y' - 8y = 14e^{3x}$$
, $y(0) = 3$, $y'(0) = 2$ $y_p(x) = 2e^{3x}$.