Solution 1

Expr : { u+v, a*b, w+v }

BB	Gen	Kill
B1	100	0 0 0
B2	0 0 0	0 0 1
В3	0 0 0	0 0 0
B4	0 0 1	0 0 0
В5	0 1 0	0 0 0
В6	0 0 0	0 1 0
В7	0 0 0	0 0 0
В8	0 1 0	0 0 0
В9	100	0 0 0

	Iterat	tion 1	Iteration 2		
BB	In	Out	In	Out	
B1	0 0 0	100	0 0 0	100	
B2	100	100	100	100	
В3	100	100	100	100	
B4	100	101	100	1 0 1	
В5	100	1 1 0	100	1 1 0	
В6	1 1 0	100	1 1 0	100	
B7	1 1 0	1 1 0	1 1 0	1 1 0	
В8	100	1 1 0	100	1 1 0	
B9	100	100	100	100	

Iteration 1 and 2 gives same information, we will reach a fixed point after $2nd\ pass.$

Solution 2

BB	Gen	Kill		
В9	{ u, v }	ϕ		
В8	{ a, b }	ϕ		
В7	ϕ	ϕ		
В6	ϕ	ϕ		
B5	ϕ	{ a }		
B4	ϕ	{ w }		
В3	ϕ	ϕ		
B2	ϕ	ϕ		
B1	ϕ	{ u }		

	Iterat	tion 1	Iteration 2		n 2 Iteration	
$\mathbf{B}\mathbf{B}$	Out	In	Out	In	Out	In
B9	ϕ	{ u,v }	ϕ	{ u,v }	ϕ	{ u,v }
B8	{ u,v }	{ u,v,a,b }	{ u,v }	{ u,v,a,b }	{ u,v }	{ u,v,a,b }
B7	{ u,v,a,b }	{ u,v,a,b }				
B6	{ u,v,a,b }	{ u,v,a,b }				
B5	{ u,v,a,b }	{ u,v,b }	{ u,v,a,b }	{ u,v,b }	{ u,v,a,b }	{ u,v,b }
B4	ϕ	ϕ	{ u,v }	{ u,v }	{ u,v }	{ u,v }
В3	{ u,v }	{ u,v }				
B2	{ u,v }	{ u,v }				
B1	{ u,v,b }	{ v,b }	{ u,v,b }	{ v,b }	{ u,v,b }	{ v,b }

Iteration 2 and 3 gives same information, we will reach a fixed point after 3rd pass.

Solution 3

This is a sample solution, there can be variations based on the description provided.

Assumption

? = UNDEF

pe = positive even

po = negative odd

ne = positive even

no = negative odd

UN = UNKNOWN

Direction of analysis

Forward

Component lattice

Lattice for positive-negative integers Lattice for odd-even integers

Lattice after merging the two component lattice

Boundary information and meet operation

In(Entry) = ?

meet of two values can be obtained through lattice.

Transfer Functions

x = c

where x is variable and c is constant

$$Out_n = \{x \to type(c)\}$$

type(c) returns one of the values from set $\{po, pe, no, ne\}$ depending upon the type of constant.

x = y

where x and y both are variables

 $Out_n = \{x \to type_v(y)\}$

 $type_v(y)$ returns one of the values from set $\{\ ?,\ po,\ pe,\ no,\ ne,\ UN\}$ depending upon the In information of variable y.

x = y + z

where x, y and z are variables $Out_n = \{x \rightarrow eval_+(y, z)\}$

$eval_+$							
y	?	pe	po	ne	no	UN	
?	?	?	?	?	?	UN	
\mathbf{pe}	?	pe	po	UN	UN	UN	
po	?	po	pe	UN	UN	UN	
ne	?	UN	UN	ne	no	UN	
no	?	UN	UN	no	ne	UN	
UN	UN	UN	UN	UN	UN	UN	

x = y * z

where x, y and z are variables $Out_n = \{x \rightarrow eval_*(y, z)\}$

$eval_*$							
y	?	pe	po	ne	no	UN	
?	?	?	?	?	?	UN	
\mathbf{pe}	?	pe	pe	ne	ne	UN	
po	?	pe	po	ne	no	UN	
\mathbf{ne}	?	ne	ne	pe	pe	UN	
no	?	ne	no	pe	po	UN	
$\mathbf{U}\mathbf{N}$	UN	UN	UN	UN	UN	UN	