Troisième partie CINÉTIQUE CHIMIQUE

CHAPITRE 1_	
	CINÉTIQUE DES SYSTÈMES CHIMIQUES

1.1 VITESSE DE LA RÉACTION GLOBALE DANS UN RÉ-ACTEUR FERMÉ

1.1.1 DÉFINITION DE LA VITESSE DE LA RÉACTION DANS LE CAS D'UN SYSTÈME FERMÉ HOMOGÈNE

Soit la réaction chimique :

$$\alpha_1 A_1 + \alpha_2 A_2 + \dots \Longrightarrow \alpha_1' A_1' + \alpha_2' A_2' + \dots$$

- $ightharpoonup A_i$ sont les réactifs.
- $ightharpoonup A_i'$ sont les produits.
- Les α_i et α'_j sont les cœfficients stœchiométriques.

DÉFINITION

• Si la variation du nombre de mole d'un réactifs A_i est (dn_i) donc pour le produit A'_i est (dn'_i) alors on définit la variation du degré d'avancement $d\xi$ par :

$$d\xi = -\frac{1}{\alpha_i} dn_i = \frac{1}{\alpha_i'} dn_i'$$

♦ La vitesse de la réaction v est définie par :

$$v = \frac{d\xi}{dt} = -\frac{1}{\alpha_i} \frac{dn_i}{dt} = \frac{1}{\alpha_i'} \frac{dn_i'}{dt}$$

Exprimé en (mol.temps⁻¹).

♦ On appelle la vitesse spécifique de la réaction ou vitesse volumique :

$$v_s = \frac{1}{V} \frac{d\xi}{dt} = -\frac{1}{V\alpha_i} \frac{dn_i}{dt} = \frac{1}{V\alpha_i'} \frac{dn_i'}{dt}$$

Si le volume du système est constant alors :

$$v = \frac{1}{\alpha'} \frac{d[A']}{dt} = -\frac{1}{\alpha} \frac{d[A]}{dt}$$

Remarque

Pour une réaction chimique en phase gazeuse homogène évoluant à volume constant ,on peut utiliser les pressions partielles :

$$P_{A_i} = \frac{n_i}{V}RT = [A_i]RT$$

D'où:

$$v_s = -\frac{1}{RT\alpha_i} \frac{dP_{A_i}}{dt} = \frac{1}{RT\alpha_i'} \frac{dP_{A_i'}}{dt}$$

1.1.2 LES FACTEURS INFLUENÇANT LA VITESSE D'UNE RÉACTION :LES FACTEURS CINÉTIQUES

L'expérience montre que la vitesse d'une réaction chimique dépend de la concentration des produits et réactifs, la température et la catalyse.

1.1.2.1 INFLUENCE DE LA CONCENTRATION

► NOTION D'ORDRE D'UNE RÉACTION

L'expérience montre que certains nombre de réaction chimique à température constante, la vitesse

spécifique v s'écrit :

$$v_s = v = k \prod_i [A_i]^{n_i} = k[A_1]^{n_1} [A_2]^{n_2} \dots$$

Avec:

- ♦ *k* : constante de la vitesse spécifique
- \bullet n_i est appelé ordre partiel du réactif A_i
- lacktriangle $\sum_{i} n_i$ est appelé ordre globale (ou totale) de la réaction chimique

Remarque

En général : $\sum_{i} n_i \neq \sum_{i} \alpha_i$

Conclusion:

la vitesse d'une réaction augmente avec la concentration.

EXEMPLES

$$-2NO + 2H_2 \Longrightarrow 2H_2O + N_2 \qquad v = k[NO]^2[H_2]$$

- Ordre partiel du NO=2
- Ordre partiel de $H_2=1$
- *Ordre total* 2 + 1 = 3

$$-Cl_2 + 2NO \Longrightarrow 2NOCl \qquad v = k[Cl_2][NO]^2$$

- Ordre partiel du NO=2
- Ordre partiel de Cl₂=1
- *Ordre total* 2 + 1 = 3

$$-(CH_3)_3CBr + H_2O \Longrightarrow (CH_3)_3COH + HBr \qquad v = k[(CH_3)_3CBr]$$

- Ordre partiel de $(CH_3)_3$ CBr est = 1
- Ordre partiel de H_2O est = 1
- $-H_2 + Br_2 \Longrightarrow 2HBr$

$$v = \frac{[H_2][Br_2]^{\frac{1}{2}}}{1 + k' \frac{[HBr]}{[Br_2]}}$$

Réaction chimique ne présente pas d'ordre.

N.B: *Si* à t = 0 on a [HBr] = 0 alors: $v_o = k[H_2]_o [Br]_o^{\frac{1}{2}}$: ordre initial = 3/2

Remarque importante

Règle de VAN'T HOFF

Si la réaction chimique se fait en une seule étape (dite réaction élémentaire ou simple) alors l'ordre partiel est égal au cœfficients stœchiométriques quelque soit le composé A_i

1.1.2.2 INFLUENCE DE LA TEMPÉRATURE :

On admet la loi d'Arrhenius:

$$\frac{d\ln k}{dT} = \frac{E_a}{RT^2}$$

♦ *k* :constante de la vitesse.

T : température absolue(K).

 E_a : énergie d'activation (valeur positive) exprimée en J mol $^{-1}$.

Si
$$T \nearrow \Longrightarrow k \nearrow \Longrightarrow v \nearrow$$
.

Après integration on obtient :

$$k = Ae^{-\frac{E_a}{RT}}$$

A est dit facteur de fréquence ou facteur préexponentiel. ou bien :

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \frac{T_2 - T_1}{T_2 T_1}$$

Utilisée expérimentalement pour déterminer E_a à partir d'un bipoint (T_1, k_1) et (T_2, k_2) .

Ou bien on trace la courbe $\ln k = f(\frac{1}{T})$ de pente $-\frac{E_a}{R}$

1.2 CINÉTIQUE FORMELLE : RÉACTIONS SIMPLES

1.2.1 RÉACTION D'ORDRE 0

Exemple

$$2 \text{ NH}_3 \xrightarrow{1000^{\circ} C} \text{N}_2 + 3 \text{ H}_2$$

Dans le cas général :

$$\begin{array}{cccc}
A & \longrightarrow & B \\
t = 0 & a & & 0 \\
t & a - x & & x
\end{array}$$

$$v = \frac{dx}{dt} = k[A]^0 = k$$

Après intégration on obtient :

Representation graphique d'une loi cinétique d'ordre 0

Définition

On appelle temps de demi réaction $t_{1/2}$ le temps nécessaire pour que la moitié du réactif soit transformé en produit :

$$t = t_{1/2} \Longrightarrow x = \frac{a}{2}$$

D'où

$$t_{1/2} = \frac{a}{2k}$$

proportionnel à la concentration initiale

1.2.2 RÉACTION D'ORDRE 1

$$t = 0 \quad a \quad 0$$

$$t \quad a - x \quad x$$

$$v = -\frac{d[A]}{dt} = \frac{dx}{dt} = k[A] = k(a - x) \implies \frac{dx}{a - x} = kdt$$

$$\implies \int_0^x \frac{dx}{a - x} = \int_0^t kdt$$

$$\implies \left[\ln \frac{1}{a - x}\right]_0^x = kt$$

on obtient:

$$\ln \frac{a}{a-x} = \ln a - \ln(a-x) = kt \Longrightarrow x = a(1 - e^{-kt})$$

On trace la courbe ln(a - x) = ln a - kt une droite de pente (-k).

Representation graphique d'une loi cinétique du premier ordre $:\ln(a-x)=f(t)$

Si on représente $x = [B] = a(1 - \exp(-kt))$ et [A] = a - x on obtient :

Representation graphique d'une loi cinétique du premier ordre x = g(t)

Temps de demi-réaction $x = \frac{a}{2}$ on trouve :

$$t_{1/2} = \frac{\ln 2}{k}$$

Independent de la concentration initiale

Remarque

Si les cœfficients stœchiométriques different de l'unité alors :

$$\alpha A \longrightarrow \beta B$$

$$v = -\frac{1}{\alpha} \frac{d[A]}{dt} = k[A] \Longrightarrow \begin{cases} \ln \frac{a}{a - x} = \alpha kt \\ x = a(1 - e^{-\alpha kt}) \\ t_{1/2} = \frac{\ln 2}{\alpha k} \end{cases}$$

Conclusion:

On retient que si $\alpha \neq 1$ alors on remplace k par αk

1.2.3 RÉACTION D'ORDRE

$$A + B \longrightarrow C + D$$

Dans ce cas, on a:

$$v = k[A][B]$$

1.2.3.1 $1^{er} \mathbf{cas} [A]_o = [B]_o = a$

$$A + B \longrightarrow C + D$$

$$t = 0 \quad a \quad a \quad 0 \quad 0$$

$$t \quad a - x \quad a - x \quad x \quad x$$

$$v = \frac{dx}{dt} = k(a - x)^{2} \implies \frac{dx}{(a - x)^{2}} = kdt$$

$$\implies \int_{0}^{x} \frac{dx}{(a - x)^{2}} = \int_{0}^{t} kdt$$

$$\implies \left[\frac{1}{a - x}\right]_{0}^{x} = kt$$

On obtient:

$$\boxed{\frac{1}{a-x} - \frac{1}{a} = kt}$$

▶ Pour déterminer k on représente la fonction $\frac{1}{a-x} = f(t)$ on obtient une droite de pente (k > 0)

Representation d'une loi cinétique du deuxième ordre (même concentration initiale)

► Temps de demi-réaction $x = \frac{a}{2}$ on trouve :

$$t_{1/2} = \frac{1}{ka}$$

Inversement proportionnel à la concentration initiale

1.2.3.2 $2^{eme} \operatorname{\mathbf{cas}} [A]_0 = a \neq [B]_0 = b$

$$A + B \longrightarrow C + D$$

$$t = 0 \quad a \quad b \quad 0 \quad 0$$

$$t \quad a - x \quad b - x \quad x \quad x$$

$$v = \frac{dx}{dt} = k(a-x)(b-x) \implies \frac{dx}{(a-x)(b-x)} = kdt$$
$$\implies \int_0^x \frac{dx}{(a-x)(b-x)} = \int_0^t kdt$$

On obtient:

$$\frac{1}{a-b}\ln\frac{b(a-x)}{a(b-x)} = kt$$

C'est la loi cinétique d'une réaction chimique d'ordre 2 avec $a \neq b$.

♦ La représentation de la fonction $\ln \frac{b(a-x)}{a(b-x)} = f(t)$ avec a > b est une droite linéaire de pente (a-b)k croissante si a > b et décroissante si,a < b

Representation d'une loi cinétique du deuxième ordre (concentration différente)

Remarque importante

Dans ce cas $t_{1/2}$ est déterminé en choisissant le composé introduit par défaut.

1.2.4 Cas général : Réaction d'ordre n

Ce cas général ne donne une équation différentielle simple à intégrer que si on a même concentration initiale.

$$A + B + C \dots \longrightarrow produits$$
 $t = 0 \quad a \quad a \quad a \quad 0$
 $t \quad a - x \quad a - x \quad a - x \quad x$

Supposons que l'entier n est supérieur à 1.

$$v = \frac{dx}{dt} = k(a - x)^n \Longrightarrow \frac{dx}{(a - x)^n} = kdt$$
$$\Longrightarrow \int_0^x \frac{dx}{(a - x)^n} = \int_0^t kdt$$

On obtient:

$$\boxed{\frac{1}{n-1}(\frac{1}{(a-x)^{n-1}} - \frac{1}{a^{n-1}}) = kt}$$

C'est la loi cinétique d'une réaction chimique d'ordre n > 1

▶ L'expression du temps de demi réaction

$$t_{1/2} = \frac{2^{n-1} - 1}{(n-1)ka^{n-1}}$$

▶ La représentation de la fonction $\ln t_{1/2} = f(\ln a)$ est une droite affine de pente (1 - n) < 0

1.3 RÉACTIONS COMPLEXES

Les réactions chimiques complexes sont constituées par deux ou plusieurs réactions simples liées les unes aux autres ; on s'intéresse à :

1.3.1 RÉACTIONS OPPOSÉES (réversibles)

$$\begin{array}{c|ccc}
A & \xrightarrow{k_1} & B \\
t = 0 & a & b \\
t > 0 & a - x & b + x
\end{array}$$

$$v = -\frac{d[A]}{dt} = -k_{-1}[B] - k_1[A]$$
 ainsi $v = \frac{d[B]}{dt} = k_1[A] - k_{-1}[B]$ en général :

$$\frac{d[X]}{dt} = v_{formation} - v_{disparation}$$

$$\frac{d[x]}{dt} = k_1(a-x) - k_{-1}(b+x) = k_1a - k_{-1}b - (k_1 + k_{-1})x \Longrightarrow \frac{dx}{k_1a - k_{-1}b - (k_1 + k_{-1})x} = dt$$
Par integration on obtient :

$$\ln \frac{k_1 a - k_{-1} b}{(k_1 a - k_{-1} b) - (k_1 + k_{-1})x} = (k_1 + k_{-1})t$$

C'est la loi cinétique d'une réaction chimique reversible du premier ordre

Remarque

► A l'équilibre $v = 0 \Longrightarrow v_{formation} = v_{disparaition}$ donc $k_1[A]_{eq} = k_{-1}[B]_{eq} \Longrightarrow \frac{[B]_{eq}}{[A]_{eq}} = \frac{k_1}{k_{-1}} = K_c$

$$\mathbf{K} = \frac{[B]_{eq}}{[A]_{eq}} = \frac{k_1}{k_{-1}}$$

► A l'équilibre :**K** = $\frac{[B]_{eq}}{[A]_{eq}} = \frac{k_1}{k_{-1}} = \frac{b + x_e}{a - x_e}$

$$x_e = \frac{k_1 a - k_{-1} b}{k_1 + k_{-1}} \Longrightarrow \ln \frac{x_e}{x_e - x} = (k_1 + k_{-1})t$$

1.3.2 LES RÉACTIONS SUCCESSIVES

DÉFINITION

On appelle réactions successives une réaction de type :

$$A \longrightarrow R \longrightarrow C$$

S'effectuent par étapes avec formation d'un produit intermédiaire (B) ,on suppose pour la suite que toutes les réactions sont élémentaires.

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C \quad k_2 \neq k_1$$

$$t = 0 \quad a \qquad 0 \qquad 0$$

$$t \quad a - x \qquad x - y \qquad y$$

$$-\frac{d[A]}{dt} = k_1[A] \tag{1.1}$$

$$\frac{d[B]}{dt} = k_1[A] - k_2[B] \tag{1.2}$$

$$\frac{d[C]}{dt} = k_2[B] \tag{1.3}$$

On rappelle que la conservation de la matière donne l'équation :[A] + [B] + [C] = a La résolution donne :

(1)
$$\Rightarrow$$

$$[A] = ae^{-k_1t}$$
(2) \Rightarrow

$$\frac{d[B]}{dt} + k_2[B] = ak_1e^{-k_1t}$$
D'où:
$$[B] = \frac{k_1a}{k_2 - k_1}(e^{-k_1t} - e^{-k_2t})$$
La conservation de la matière donne $[C] = a - ([A] - [B])$ par conséquent:
$$[C] = a(1 - \frac{k_2}{k_2 - k_1}e^{-k_1t} + \frac{k_1}{k_2 - k_1}e^{-k_2t})$$

Représentation graphique pour les données suivantes: $a = 5, k_1 = 1, k_2 = 1, 5$ Si on pose t_{max} l'instant ou la concentration de B est maximale on trouve :

$$\frac{d[B]}{dt} = 0 \Longrightarrow t_{max} = \frac{1}{k_2 - k_1} \ln \frac{k_2}{k_1}$$

Representation graphique d'une loi cinétique d'une réaction successive

- ▶ Pour $t < t_{max}$ la vitesse de B est croissante.
- ▶ Pour $t > t_{max}$ la vitesse de B est décroissante.

Conséquences

- $-k_2 \gg k_1 \Longrightarrow \text{la } 2^{\grave{e}me}$ réaction chimique est plus rapide que le $1^{\grave{e}re}$ donc $[B] \approx cte$ (voir P.E.Q.S)
- $-[C] = a(1 e^{-k_1 t})$, $[A] = ae^{-k_1 t}$
- $-t_{max} \leadsto 0$
- $-k_2 \gg k_1$ on dit que la formation de B est l'étape cinétiquement déterminante

1.4 MÉCANISMES RÉACTIONNELS

Lorsque on représente une réaction chimique par une équation bilan, on donne seulement un aperçu macroscopique de cette réaction, l'étude du mécanisme d'une réaction à pour but d'essayer de comprendre ce qui ce passe de point de vue microscopique.

1.4.1 DÉFINITIONS

1.4.1.1 RELATION ORDRE-MOLÉCULARITÉ

DÉFINITION

La molécularité est le nombre d'entité (molécule, atome ou ions) qui interviennent dans un acte élémentaire

- ▶ Si la réaction est simple alors l'ordre est égale à la molécularité.
- ▶ Si la réaction se fait en plusieurs étapes, l'ordre est imposés par la vitesse du processus élémentaire lent et traduit la molécularité de l'étape déterminante (*k* faible)
- ▶ Si on a plusieurs étapes dont aucune n'impose sa vitesse, l'ordre est complexe : ordre fractionnaire on pas d'ordre

1.4.1.2 PRINCIPE DE L'ÉTAT QUASI-STATIONNAIRE(P.E.Q.S)

PRINCIPE DE L'ÉTAT QUASI-STATIONNAIRE ou PRINCIPE DE BODENSTEIN

Dans une suite de réaction chimique , si un intermédiaire I est formé dans certaines étapes et consommé dans d'autres étapes , on pourra lui appliquer le principe de BODENSTEIN

$$\boxed{\frac{d[I]}{dt} = 0}$$

C'est à dire I un intermédiaire très réactif, ne s'accumule pas :I est dans un état stationnaire. Autrement dit $\frac{d[I]}{dt}$ est négligeable devant toutes les autres vitesse ; cette hypothèse permet de simplifier plus simplement la résolution mathématique.

Exemple

$$A \longrightarrow B \longrightarrow C$$
B est un intermédiaire $\Longrightarrow \frac{d[B]}{dt} = 0$ et comme $[A] + [B] + [C] = a \Longrightarrow \frac{d[A]}{dt} + \frac{d[B]}{dt} + \frac{d[C]}{dt} = 0$
D'où : $\frac{d[A]}{dt} = -\frac{d[C]}{dt}$ et comme $[A] = ae^{-k_1t}$ alors $[C] = a(1 - e^{-k_1t})$

1.4.1.3 DIFFÉRENTS TYPES DE MÉCANISMES

On distingue en général deux mécanismes :

- ▶ Mécanisme à séquences ouvertes : les différentes étapes élémentaires se réalisent dans un ordre donné des réactifs aux produits : ce sont des réactions par stade (voir exemple 1)
- ▶ Mécanisme à séquences fermés : dites réactions en chaînes ; dans ce cas un intermédiaire réactionnel est régénère au bout d'un certain nombre d'étapes qui se produisent cycliquement, un seul centre actif pouvant conduire à un très grand nombre de molécules finales (voir exemple 2).

1.4.1.3.1 EXEMPLE 1- Réaction par stade : Réaction de substitution nucléophile

$$R-Br + OH^- \rightleftharpoons R-OH + Br^-$$

La loi cinétique de cette réaction est :

$$v = -\frac{d[R - Br]}{dt} = k[R - Br]$$

Le mécanisme proposé pour cette réaction chimique est le suivant :

$$\begin{cases}
R-Br & \xrightarrow{k_1} & R^+ + Br^- \\
R^+ + OH^- & \xrightarrow{k_2} & R-OH
\end{cases}$$

Remarque

L'équation bilan est la somme des réactions chimiques élémentaires (caractéristique d'une réaction par stade)

d the feaction par stade)
$$\frac{d[R - Br]}{dt} = k_{-1}[R^{+}][Br^{-}] - k_{1}[R - Br]$$

$$R^{+} = I \Longrightarrow \frac{d[R^{+}]}{dt} = 0 \quad (A.E.Q.S)$$

$$\frac{d[R^{+}]}{dt} = -k_{2}[R^{+}][OH^{-}] - k_{1}[R^{+}][Br^{-}] + k_{1}[R - Br] = 0 \Longrightarrow [R^{+}] = \frac{k_{1}[R - Br]}{k_{2}[OH^{-}] + k_{-1}[Br^{-}]}$$

$$d'où : v = k_{1}[R - Br] - k_{-1}[Br^{-}] \frac{k_{1}[R - Br]}{k_{2}[OH^{-}] + k_{-1}[Br^{-}]}$$

$$v = \frac{k_1 k_2 [OH^-][R - Br]}{k_2 [OH^-] + k_{-1} [Br^-]}$$

 $v = v_{exp}$ si $k_2 \gg k_1$ et k_{-1} c'est à dire la réaction (2) est plus rapide que (1)

$$k_2 \gg k_1 \Longrightarrow v = k_1[R - Br]$$

Réaction d'ordre 1

La première étape est l'étape cinétiquement déterminante.

1.4.1.3.2 EXEMPLE 2- Réaction en chaîne :synthèse de HBr

toute réaction chimique en chaîne droite comprend trois étapes :

- INITIATION: Correspond à la formation dans le milieu réactionnel des radicaux, selon un processus thermique (action de la chaleur), photochimique (action de la lumière)où par l'emploi d'un indicateur de radicaux [M].
- PROPAGATION : C'est l'étape de disparition d'un radical et formation d'un nouveau radical.
- RUPTURE DE CHAÎNE ou arrêt : étape de disparition des radicaux.

$$H_2 + Br_2 \longrightarrow 2HBr$$

Le mécanisme proposé est le suivant :

$$\begin{cases}
(1) Br_2 + M \xrightarrow{k_1} 2Br & initiation \\
(2) Br + H_2 \xrightarrow{k_2} HBr + H \\
(3) H + Br_2 \xrightarrow{k_3} HBr + Br \\
(4) HBr + H \xrightarrow{k_4} H_2 + Br
\end{cases} propagation$$

$$(5) 2Br + M \xrightarrow{k_5} Br_2 + M \qquad arrêt$$

On a:

$$v = \frac{1}{2} \frac{d[HBr]}{dt}$$

et puisque \dot{Br} et \dot{H} sont des intermédiaires réactionnels alors :

$$\frac{d[\dot{B}r]}{dt} = \frac{d[\dot{H}]}{dt} = 0$$

$$(1) \Rightarrow v = \frac{1}{2} \frac{d[HBr]}{dt} = k_2[\dot{B}r][H_2] + k_3[\dot{H}][Br_2] - k_4[HBr][\dot{H}]$$

$$(2) \Rightarrow \frac{d[\dot{H}]}{dt} = 0 = k_2[\dot{B}r][H_2] - k_3[\dot{H}][Br_2] - k_4[HBr][\dot{H}]$$

$$(3) \Rightarrow \frac{d[\dot{H}]}{dt} = 0 = 2k_1[Br_2][M] - k_2[H_2][\dot{B}r] + k_3[\dot{H}][Br_2] + k_4[HBr][\dot{H}] - 2k_5[M][\dot{B}r]^2$$

$$(2) + (3) \Rightarrow 2k_1[Br_2][M] = 2k_5[M][\dot{B}r]^2$$

$$d'où : [\dot{B}r] = \sqrt{\frac{k_1}{k_5}}[Br_2]}$$

$$(2) \Rightarrow [\dot{H}] = \frac{k_2[H_2]}{k_3[Br_2] - k_4[HBr]} \sqrt{\frac{k_1}{k_5}}[Br_2]}$$

$$d'où : (1) - (2)$$

$$v = 2k_3[\dot{H}][\dot{B}r_2] \Rightarrow v = \frac{2k_2k_3[H_2][Br_2] \sqrt{\frac{k_1}{k_5}}[Br_2]}}{k_3[Br_2] + k_4[HBr]}$$

$$v = \frac{2k_2\sqrt{\frac{k_1}{k_5}}[H_2][Br]^{1/2}}{1 + \frac{k_4}{k_5}}[HBr]}$$

1.4.2 Conclusion

L'étude cinétique d'une réaction est une méthode très importante pour obtenir des renseignements sur le mécanisme de la réaction.

pas d'ordre

Pour un processus élémentaire $A + B \longrightarrow C + D$ le profil énergétique est :

 $[A \cdots B \cdots C \cdots D]^{\#}$ dite état de transition.

- ♦ zone 1 : étude thermodynamique (voir thermochimie)
- zone 2 : caractérisé par l'énergie d'activation : donnée cinétique.

1.5 MÉTHODES EXPÉRIMENTALES DE L'ÉTUDE CINÉ-TIQUE CHIMIQUE

1.5.1 METHODES DE MESURES

1.5.1.1 MÉTHODES CHIMIQUES

On mesure (à température constante) directement des concentrations par les méthodes classiques de dosage

Soit on fera des prélèvements à différents instants, soit on étudiera différents exemplaires initialement identiques, à des instants différents.

Il faudra alors arrêter la réaction pour qu'elle ne se poursuive pas pendant le dosage :on pourra procéder par trempe (refroidissement rapide), forte dilution ;élimination d'un réactif par précipitation ou par neutralisation s'il est acide ou basique.

1.5.1.2 METHODES PHYSIQUES

On mesure (à température constante) une grandeur physique que l'on sait relier aux concentrations . Ces méthodes ont l'avantage de ne pas perturber la réaction en cours.

On citera par exemple:

- Conductimétrie (mesure de la conductivité électrique d'un mélange ionique).

$$\sigma = \sum i |Z_i| \lambda_i C_i$$

 Spectrophotomètrie :mesure de l'absorption de la lumière (nécessite un réactif ou produit coloré).

$$A = \sum i|Z_i|\lambda_i C_i$$

- Polarimètrie (mesure du pouvoir rotatoire de la lumière).

$$\alpha = \alpha_{T,\lambda} \ell C$$

- \bullet α angle de rotation observé en degrés.
- ℓ : longueur de la cuve en dm.
- \bullet C: concentration de la solution en g mL⁻¹.
- \bullet $\alpha_{T,\lambda}$: pouvoir rotatoire spécifique défini à une température T et mesuré pour une longueur d'onde donnée, exprimée en /gm'liter/dm.
- Mesure de la densité gazeuse.
- Mesure de la pression gazeuse (à volume constant).
- Réfractométrie (mesure de l'indice de réfraction).
- pH-métrie (pour les réactions acido-basiques).
- Potentiomètrie (pour des réactions d'oxydo-réductions).
- Microcalorimétrie (les quantités de chaleur sont proportionnelles à la quantité de matière ayant réagi)

1.5.2 DETERMINATION DE L'ORDRE

1.5.2.1 MÉTHODE INTÉGRALE

On cherche à tracer une fonction d'une concentration C_i , qui soit représentée en fonction du temps par une droite , aux incertitudes d'expérience près .

Par exemple, si : $\ln C_i = f(t)$ est représenté par une droite, l'ordre est 1.

Une variante de cette méthode consiste à calculer k en faisant l'hypothèse que la réaction a un ordre donné. On doit alors vérifier que les valeurs trouvées pour k sont les même, aux incertitudes d'expériences près.

1.5.2.2 MÉTHODE DIFFÉRENTIELLE

La méthode précédente est inefficace lorsque l'ordre n'est pas entier.

Si la vitesse est de la forme

$$v = k[A]^{\alpha}$$

on peut aussi écrire : $\ln v = \ln k + \alpha \ln[A]$. On trace d'abord le graphe représentatif de [A] = f(t). Par lecture de ce graphe. on peut en déduire la pente $v(t) = -\frac{d[A]}{dt}$. Il faut toutefois remarquer que cette détermination est délicate.

On trace ensuite le graphe représentatif de $\ln v(t)$ en fonction de $\ln[A]$. La pente de la droite nous fournira l'ordre α et l'ordonnée à l'origine $\ln k$.

C'est avec cette méthode que l'on peut mesurer la vitesse initiale et ensuite, en renouvelant ces mesures pour des concentrations initiales différentes que l'on peut en déduire l'ordre initial.

1.5.2.3 TEMPS DE DEMI-RÉACTION

C'est le temps $t_{1/2}$ tel que $C(t_{1/2}) = \frac{C_i(t=0)}{2}$.

La manière dont le temps de demi-réaction dépend des concentrations initiales est caractéristique aussi de l'ordre de la réaction .

Nous avons vu par exemple que le temps de demi-réaction d'une réaction d'ordre 1 est indépendant de la concentration initiale du constituant.

1.5.2.4 DÉGÉNÉRESCENCE DE L'ORDRE

Dès que l'ordre global devient supérieur à 3, le problème de la détermination des ordres partiels devient difficile à résoudre.

Soit par exemple une loi de vitesse de type :

$$v = k[A]^{\alpha}[B]^{\beta}$$

Si on opère avec un gros excès du constituant B,on aura $[B] \approx cte$.

La loi de vitesse se simplifie en : $v = k_{app}[A]^{\alpha}$ avec $k_{app} = k[B]^{\beta}$.

Il ne reste qu'à déterminer l'ordre partiel α .

 $k_{app}=k[B]^{\beta}$ est appelée constante apparente , car sa valeur dépend de la concentration choisie pour le constituant B

