12. Minimum spanning trees

2018年12月4日 19:42

Input G = (V, E) undirected, connected, augmented $w: E \to \mathbb{R}^+$

Goal to compute a subgraph $H = (V, E_H)$ to minimize $\sum_{e \in E_H} w(e)$ and H is connected

Spanning tree of G

 $T = (V, E_T)$ is a spanning tree of G if it's connected acylic subgraph of GDefine $w(T) = \sum_{e \in E_T} w(e)$, then find the MST min{ $w(T) \mid T$ be a spanning tree}

Generic algorithm

```
E_T = \emptyset while (V, E_T) is not connected Find a SAFE edge e E_T = E_T \cup \{e\}
```

SAFE an edge such that if E_T is contained in some minimizing spanning tree, then the same is true for $E_T \cup \{e\}$

Spanning Forest of *G* is on acyclic subgraph $H = (V, E_H)$

Connected components of *H* are trees $T_1, ..., T_k$

Theorem Let H be a spanning forest of G with connected components $T_1, ..., T_k, T_i = (V_i, E_i), E_H = \bigcup_{1}^{k} E_i$ such that $E_H \subseteq E_T$ where $T = (V, E_T)$ is a MST Let $(u, v) \in E$ has the minimum weight among edges with one vertex in V_i and one vertex in V_i^C , then $H' = (V, E_H \cup \{u, v\})$ is contained in some MST of G

Fact Let T be a spanning tree of G = (V, E). If $(u, v) \in E_T^C$ then the graph $T' = (v, E_T \cup \{u, v\})$ has a unique cycle

```
If (u, v) \in E_T \Rightarrow done!

If not the case, T' = (V, E_T \cup \{u, v\}) then unique cycle C \in T' must contains some edge (u', v') \neq (u, v) s.t. u' \in U_i, v' \notin U_i

w(u', v') \geq w(u, v) since the way we choose (u, v)
```