Text Clustering: Motivation

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Text Clustering: Motivation

Overview

- What is text clustering?
 This lecture
- Why text clustering?
- How to do text clustering?
 - Generative probabilistic models
 - Other approaches
- How to evaluate clustering results?

What Is Text Clustering?

- Discover "natural structure"
- Group similar objects together
- Objects can be documents, terms, passages, websites,...

Not well defined!

What does "similar" mean?

The "Clustering Bias"

 Any two objects can be similar, depending on how you look at them!

• Are "car" and "horse" similar?

Basis for evaluation

• A user must define the **perspective** (i.e., a "bias") for assessing similarity!

Examples of Text Clustering

- Clustering of documents in the whole collection
- Term clustering to define "concept"/"theme"/"topic"
- Clustering of passages/sentences or any selected text segments from larger text objects (e.g., all text segments about a topic discovered using a topic model)
- Clustering of websites (text object has multiple documents)
- Text clusters can be further clustered to generate a hierarchy

Why Text Clustering?

- In general, very useful for text mining and <u>exploratory</u> text analysis:
 - →Get a sense about the overall content of a collection (e.g., what are some of the "typical"/representative documents in a collection?)
 - → Link (similar) text objects (e.g., removing duplicated content)
 - → Create a structure on the text data (e.g., for browsing)
 - → As a way to induce additional features (i.e., clusters) for classification of text objects
- Examples of applications
 - Clustering of search results
 - Understanding major complaints in emails from customers

Text Clustering: Generative Probabilistic Models

Part 1

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Text Clustering: Generative Probabilistic Models (Part 1)

Overview

- What is text clustering?
- Why text clustering?
- How to do text clustering?
 - Generative probabilistic models
 - Similarity-based approaches
- How to evaluate clustering results?

Topic Mining Revisited

One Topic(=cluster) Per Document

INPUT: C, k, V

OUTPUT: $\{\theta_1, ..., \theta_k\}, \{c_1, ..., c_N\} c_i \in [1,k]$

Mining One Topic Revisited

What Generative Model Can Do Clustering?

Generative Topic Model Revisited

Mixture Model for Document Clustering

Likelihood Function: p(d)=?

$$p(d) = p(\theta_1)p(d\mid\theta_1) + p(\theta_2)p(d\mid\theta_2)$$

$$= p(\theta_1)\prod_{i=1}^L p(x_i\mid\theta_1) + p(\theta_2)\prod_{i=1}^L p(x_i\mid\theta_2)$$

$$\text{d=x_1 x_2 ... x_L}$$
 How is this different from a topic model? Topic Choice
$$p(d) = \prod_{i=1}^L \left[p(\theta_1)p(x_i\mid\theta_1) + p(\theta_2)p(x_i\mid\theta_2)\right]$$
 food 0.003 ... text 0.000006

Text Clustering: Generative Probabilistic Models

Part 2

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Likelihood Function: p(d)=?

$$\begin{aligned} p(d) &= p(\theta_1) p(d \mid \theta_1) + p(\theta_2) p(d \mid \theta_2) \\ &= p(\theta_1) \prod\nolimits_{i=1}^L p(x_i \mid \theta_1) + p(\theta_2) \prod\nolimits_{i=1}^L p(x_i \mid \theta_2) \\ \text{d=x_1 x_2 ... x_L} \end{aligned}$$

How can we generalize it to include k topics/clusters?

Mixture Model for Document Clustering

- Data: a collection of documents C={d₁, ..., d_N}
- Model: mixture of k unigram LMs: $\Lambda = (\{\theta_i\}; \{p(\theta_i)\}), i \in [1,k]$
 - To generate a document, first **choose a** θ_i according to $p(\theta_i)$, and then generate **all** words in the document using $p(w | \theta_i)$
- Likelihood:

$$p(d \mid \Lambda) = \sum_{i=1}^{k} [p(\theta_i) \prod_{j=1}^{|d|} p(x_j \mid \theta_i)]$$
$$= \sum_{i=1}^{k} [p(\theta_i) \prod_{w \in V} p(w \mid \theta_i)^{c(w,d)}]$$

Maximum Likelihood estimate

$$\Lambda^* = \arg\max_{\Lambda} p(d \mid \Lambda)$$

Cluster Allocation After Parameter Estimation

- Parameters of the mixture model: $\Lambda = (\{\theta_i\}; \{p(\theta_i)\}), i \in [1,k]$
 - Each θ_i represents the content of cluster i : p(w | θ_i)
 - $-p(\theta_i)$ indicates the size of cluster i
 - Note that unlike in PLSA, $p(\theta_i)$ doesn't depend on d!
- Which cluster should document d belong to? c_d=?
 - **Likelihood only**: Assign d to the cluster corresponding to the topic θ_i that most likely has been used to generate d $c_d = arg \max_i p(d \mid \theta_i)$
 - Likelihood + prior $p(\theta_i)$ (Bayesian): favor large clusters

$$c_d = arg max_i p(d | \theta_i) p(\theta_i)$$

Text Clustering: Generative Probabilistic Models

Part 3

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

How Can We Compute the ML Estimate?

- Data: a collection of documents C={d₁, ..., d_N}
- Model: mixture of k unigram LMs: $\Lambda = (\{\theta_i\}; \{p(\theta_i)\}), i \in [1,k]$
 - To generate a document, first **choose a** θ_i according to $p(\theta_i)$ and then generate **all** words in the document using $p(w|\theta_i)$
- Likelihood:

$$p(d \mid \Lambda) = \sum_{i=1}^{k} [p(\theta_i) \prod_{w \in V} p(w \mid \theta_i)^{c(w,d)}]$$
$$p(C \mid \Lambda) = \prod_{i=1}^{N} p(d_i \mid \Lambda)$$

Maximum Likelihood estimate

$$\Lambda^* = \arg\max_{\Lambda} p(C \mid \Lambda)$$

EM Algorithm for Document Clustering

- Initialization: Randomly set $\Lambda = (\{\theta_i\}; \{p(\theta_i)\}), i \in [1,k]$
- Repeat until likelihood p(C| Λ) converges
 - E-Step: Infer which distribution has been used to generate document d: hidden variable $Z_d \in [1, k]$

$$p^{(n)}(Z_d = i \,|\, d) \propto p^{(n)}(\theta_i) {\prod}_{w \in V} p^{(n)}(w \,|\! \theta_i)^{c(w,d)} \qquad \sum\nolimits_{i=1}^k p^{(n)}(Z_d = i \,|\, d) = 1$$

- M-Step: Re-estimation of all parameters

$$\begin{split} p^{(n+1)}(\theta_i) &\propto \sum\nolimits_{j=1}^N p^{(n)}(Z_{d_j} = i \,|\, d_j) \\ p^{(n+1)}(w \,|\, \theta_i) &\propto \sum\nolimits_{j=1}^N c(w,d_j) p^{(n)}(Z_{d_j} = 1 \,|\, d_j) \\ &\sum\nolimits_{w \in V} p^{(n+1)}(w \,|\, \theta_i) = 1, \quad \forall i \in [1,k] \end{split}$$

An Example of 2 Clusters

Random Initialization

$$p(\theta_1)=p(\theta_2)=0.5$$

	$p(w \theta_1)$	$p(w \theta_2)$		
text	0.5	0.1		
mining	0.2	0.1		
medical	0.2	0.75		
health	0.1	0.05		

E-step Document d

Hidden variables:

$$Z_d \in \{1, 2\}$$

	c(w,d)
text	2
mining	2
medical	0
health	0

$$\begin{split} p(Z_d = 1 \,|\, d) &= \frac{p(\theta_1)p(\text{"text"}|\, \theta_1)^2p(\text{"mining"}|\, \theta_1)^2}{p(\theta_1)p(\text{"text"}|\, \theta_1)^2p(\text{"mining"}|\, \theta_1)^2 + p(\theta_2)p(\text{"text"}|\, \theta_2)^2p(\text{"mining"}|\, \theta_2)^2} \\ &= \frac{0.5*0.5^2*0.2^2}{0.5*0.5^2*0.2^2 + 0.5*0.1^2*0.1^2} = \frac{100}{101} \end{split}$$

$$p(Z_d = 2 | d) = ?$$

Normalization to Avoid Underflow

An Example of 2 Clusters (cont.)

From E-Step

	P(Z _d =1 d)		c("text")	c("mining")
d1	0.9	d1	2	3
d2	0.1	d2	1	2
d3	0.8	d3	4	3

M-Step

$$p(\theta_1)=? p(\theta_2)=?$$

$$p(\theta_1) = \frac{p(Z_{d_1} = 1 \mid d_1) + p(Z_{d_2} = 1 \mid d_2) + p(Z_{d_3} = 1 \mid d_3)}{3}$$
$$= \frac{0.9 + 0.1 + 0.8}{3} = 0.6$$

	$p(w \theta_1)$			$p(w \theta_2)$		
text		?			?	
mining		?			?	
medical		?			?	
health		?			?	

$$\begin{split} p(\text{"text"}|\,\theta_1) &\propto c(\text{"text"},d_1) * p(Z_{d_1} = 1\,|\,d_1) + ... + c(\text{"text"},d_3) * p(Z_{d_3} = 1\,|\,d_3) \\ &= 2*0.9 + 1*0.1 + 4*0.8 \\ p(\text{"mining"}|\,\theta_1) &\propto 3*0.9 + 2*0.1 + 3*0.8 \end{split}$$

$$p("text" | \theta_1) + p("mining" | \theta_1) + p("medical" | \theta_1) + p("health" | \theta_1) = 1$$

Summary of Generative Model for Clustering

- A slight variation of topic model can be used for clustering documents
 - Each cluster is represented by a unigram LM $p(w|\theta_i)$ Term cluster
 - A document is generated by first choosing a unigram LM and then generating ALL words in the document using this single LM
 - Estimated model parameters give both a topic characterization of each cluster and a probabilistic assignment of a document into each cluster
 - "Hard" clusters can be obtained by forcing a document into the cluster corresponding to the unigram LM most likely used to generate the document
- EM algorithm can be used to compute the ML estimate
 - Normalization is often needed to avoid underflow

Text Clustering: Similarity-based Approaches

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Overview

- What is text clustering?
- Why text clustering?
- How to do text clustering?
 - Generative probabilistic models
 - Similarity-based approaches
- How to evaluate clustering results?

Similarity-based Clustering: General Idea

- Explicitly define a similarity function to measure similarity between two text objects (i.e., providing "clustering bias")
- Find an optimal partitioning of data to
 - maximize intra-group similarity and
 - minimize inter-group similarity
- Two strategies for obtaining optimal clustering
 - Progressively construct a hierarchy of clusters (hierarchical clustering)
 - Bottom-up (agglomerative): gradually group similar objects into larger clusters
 - Top-down (divisive): gradually partition the data into smaller clusters
 - Start with an initial tentative clustering and iteratively improve it ("flat" clustering, e.g., k-Means)

Similarity-based Clustering Methods

Many general clustering methods are available!

- Two representative methods
 - Hierarchical Agglomerative Clustering (HAC)
 - k-means

Agglomerative Hierarchical Clustering

- Given a similarity function to measure similarity between two objects
- Gradually group similar objects together in a bottom-up fashion to form a hierarchy
- Stop when some stopping criterion is met
- Variations: different ways to compute group similarity based on individual object similarity

Similarity-induced Structure

How to Compute Group Similarity

Three popular methods:

Given two groups g1 and g2,

- Single-link algorithm: s(g1,g2)= similarity of the closest pair
- Complete-link algorithm: s(g1,g2)= similarity of the farthest pair
- Average-link algorithm: s(g1,g2)= average of similarity of all pairs

Group Similarity Illustrated

Comparison of Single-Link, Complete-Link, and Average-Link

- Single-link
 - "Loose" clusters
 - Individual decision, sensitive to outliers
- Complete-link
 - "Tight" clusters
 - Individual decision, sensitive to outliers
- Average-link
 - "In between"
 - Group decision, insensitive to outliers
- Which one is the best? It depends on what you need!

K-Means Clustering

- Represent each text object as a term vector and assume a similarity function defined on two objects
- Start with k randomly selected vectors and assume they are the centroids of k clusters (initial tentative clustering) → Initialization
- Assign every vector to a cluster whose centroid is the closest to the vector ≈ E-step difference?
- Re-compute the centroid for each cluster based on the newly assigned vectors in the cluster ≈ M-step difference?
- Repeat this process until the similarity-based objective function (i.e., within cluster sum of squares) converges (to a local minimum)

Very similar to clustering with EM for mixture model!

Summary of Clustering Methods

- Model based approaches (mixture model)
 - Uses an implicit similarity function (model → clustering bias)
 - Cluster structure is "built" into a generative model
 - Complex generative models can discover complex structures
 - Prior can be leveraged to further customize the clustering algorithm
 - However, no easy way to directly control the similarity measure
- Similarity-based approaches
 - Allows for direct and flexible specification of similarity
 - Objective function to be optimized is not always clear
- Both approaches can generate both term clusters and doc clusters

Text Clustering: Evaluation

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Overview

- What is text clustering?
- Why text clustering?
- How to do text clustering?
 - Generative probabilistic models
 - Similarity-based approaches
- How to evaluate clustering results?

The "Clustering Bias"

- Any two objects can be similar, depending on how you look at them!
- A user must define the perspective (i.e., a "bias") for assessing similarity!

 Basis for evaluation

Direct Evaluation of Text Clusters

- Question to answer: How close are the system-generated clusters to the ideal clusters (generated by humans)?
 - "Closeness" can be assessed from multiple perspectives
 - "Closeness" can be quantified
 - "Clustering bias" is imposed by the human assessors
- Evaluation procedure:
 - Given a test set, have humans to create an ideal clustering result (i.e., an ideal partitioning of text objects or "gold standard")
 - Use a system to produce clusters from the same test set
 - Quantify the similarity between the system-generated clusters and the gold standard clusters
 - Similarity can be measured from multiple perspectives (e.g., purity, normalized mutual information, F measure)

Indirect Evaluation of Text Clusters

- Question to answer: how useful are the clustering results for the intended applications?
 - "Usefulness" is inevitably application specific
 - "Clustering bias" is imposed by the intended application
- Evaluation procedure:
 - Create a test set for the intended application to quantify the performance of any system for this application
 - Choose a baseline system to compare with
 - Add a clustering algorithm to the baseline system → "clustering system"
 - Compare the performance of the clustering system and the baseline in terms of any performance measure for the application

Summary of Text Clustering

- Text clustering is an unsupervised general text mining technique to
 - obtain an overall picture of the text content (exploring text data)
 - discover interesting clustering structures in text data
- Many approaches are possible
 - Strong clusters tend to show up no matter what method used
 - Effectiveness of a method highly depends on whether the desired clustering bias is captured appropriately (either through using the right generative model or the right similarity function)
 - Deciding the optimal number of clusters is generally a difficult problem for any method due to the unsupervised nature
- Evaluation of clustering results can be done both directly and indirectly

Suggested Reading

 Manning, Chris D., Prabhakar Raghavan, and Hinrich Schütze. *Introduction to Information Retrieval*.
 Cambridge: Cambridge University Press, 2007.
 (Chapter 16)

Text Categorization: Motivation

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Text Categorization

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
 - Generative probabilistic models
 - Discriminative approaches
- How to evaluate categorization results?

Text Categorization

- Given the following:
 - A set of predefined categories, possibly forming a hierarchy and often
 - A training set of labeled text objects
- Task: Classify a text object into one or more of the categories

Examples of Text Categorization

- Text objects can vary (e.g., documents, passages, or collections of text)
- Categories can also vary
 - "Internal" categories that characterize a text object (e.g., topical categories, sentiment categories)
 - "External" categories that characterize an entity associated with the text object (e.g., author attribution or any other meaningful categories associated with text data)
- Some examples of applications
 - News categorization, literature article categorization (e.g., MeSH annotations)
 - Spam email detection/filtering
 - Sentiment categorization of product reviews or tweets
 - Automatic email sorting/routing
 - Author attribution

Variants of Problem Formulation

- **Binary** categorization: Only two categories
 - Retrieval: {relevant-doc, non-relevant-doc}
 - Spam filtering: {spam, non-spam}
 - Opinion: {positive, negative}
- K-category categorization: More than two categories
 - Topic categorization: {sports, science, travel, business,...}
 - Email routing: {folder1, folder2, folder3,...}
- Hierarchical categorization: Categories form a hierarchy
- **Joint** categorization: Multiple **related** categorization tasks done in a joint manner

Binary categorization can potentially support all other categorizations

Why Text Categorization?

- To enrich text representation (more understanding of text)
 - Text can now be represented in multiple levels (keywords + categories)
 - Semantic categories assigned can be directly or indirectly useful for an application
 - Semantic categories facilitate aggregation of text content (e.g., aggregating all positive/negative opinions about a product)
- To infer properties of entities associated with text data (discovery of knowledge about the world)
 - As long as an entity can be associated with text data, we can always use the text data to help categorize the associated entities
 - E.g., discovery of non-native speakers of a language; prediction of party affiliation based on a political speech

Text Categorization: Methods

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
 - Generative probabilistic models
 - Discriminative approaches
- How to evaluate categorization results?

Categorization Methods: Manual

- Determine the category based on rules that are carefully designed to reflect the domain knowledge about the categorization problem
- Works well when
 - The categories are very well defined
 - Categories are easily distinguished based on surface features in text
 (e.g., special vocabulary is known to only occur in a particular category)
 - Sufficient domain knowledge is available to suggest many effective rules
- Problems
 - Labor intensive → doesn't scale up well
 - Can't handle uncertainty in rules; rules may be inconsistent → not robust
- Both problems can be solved/alleviated by using machine learning

Categorization Methods: "Automatic"

- Use human experts to
 - Annotate data sets with category labels → Training data
 - Provide a set of **features** to represent each text object that can potentially provide a "clue" about the category
- Use machine learning to learn "soft rules" for categorization from the training data
 - Figure out which features are most useful for separating different categories
 - Optimally combine the features to minimize the errors of categorization on the training data
 - The trained classifier can then be applied to a new text object to predict the most likely category (that a human expert would assign to it)

Machine Learning for Text Categorization

- General setup: Learn a classifier f: X→Y
 - Input: X = all text objects; Output: Y = all categories
 - Learn a classifier function, f: X → Y, such that $f(x)=y \in Y$ gives the correct category for $x \in X$ ("correct" is based on the training data)

All methods

- Rely on discriminative features of text objects to distinguish categories
- Combine multiple features in a weighted manner
- Adjust weights on features to minimize errors on the training data

Different methods tend to vary in

- Their way of measuring the errors on the training data (may optimize a different objective/loss/cost function)
- Their way of combining features (e.g., linear vs. non-linear)

Generative vs. Discriminative Classifiers

- Generative classifiers (learn what the data "looks" like in each category)
 - Attempt to model p(X,Y) = p(Y)p(X|Y) and compute p(Y|X) based on p(X|Y) and p(Y) by using Bayes Rule
 - Objective function is likelihood, thus indirectly measuring training errors
 - E.g., Naïve Bayes
- Discriminative classifiers (learn what features separate categories)
 - Attempt to model p(Y|X) directly
 - Objective function directly measures errors of categorization on training data
 - E.g., Logistic Regression, Support Vector Machine (SVM), k-Nearest Neighbors (kNN)

Text Categorization: Generative Probabilistic Models

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
 - Generative probabilistic models
 - Discriminative approaches
- How to evaluate categorization results?

Document Clustering Revisited

Which cluster does d belong to? \rightarrow Which θ_i was used to generate d?

Text Categorization with Naïve Bayes Classifier

$$d=x_1x_2...x_L$$
 where $x_i \in V$

IF θ_i represents category i accurately, then...

How can we make this happen?

category(d) = arg max_i $p(\theta_i | d)$

- = arg max, $p(d | \theta_i)p(\theta_i)$
- $= \arg \max_{i} \prod_{w \in V} p(w | \theta_{i})^{c(w,d)} p(\theta_{i})$

category (d) = arg max_i log p(
$$\theta_i$$
) + $\sum_{w \in V} c(w, d) log p(w | \theta_i)$

Learn from the Training Data

How to Estimate $p(w|\theta_i)$ and $p(\theta_i)$

Naïve Bayes Classifier: $p(\theta_i)=?$ and $p(w|\theta_i)=?$

Category 1

$$T_1 = \{d_{11}, d_{12}, ..., d_{1N_1}\}$$

Category 2

$$T_2 = \{d_{21}, d_{22}, ..., d_{2N_2}\}$$

Category k

$$T_k = \{d_{k1}, d_{k2}, ..., d_{kN_k}\}$$

Which category is most popular?

$$p(\theta_i) = \frac{N_i}{\sum_{j=1}^k N_j} \propto |T_i|$$

$$p(w \mid \theta_i) = \frac{\sum_{j=1}^{N_i} c(w, d_{ij})}{\sum_{w' \in V} \sum_{j=1}^{N_i} c(w', d_{ij})} \propto c(w, T_i)$$

Which word is most frequent in category i?

What are the constraints on $p(\theta_i)$ and $p(w|\theta_i)$?

Smoothing in Naïve Bayes

- Why smoothing?
 - Address data sparseness (training data is small → zero prob.)
 - Incorporate prior knowledge
 - Achieve discriminative weighting (i.e., IDF weighting)
- How?

$$p(\theta_i) = \frac{N_i + \delta}{\sum_{i=1}^k N_j + k\delta} \qquad \delta \ge 0$$

 $p(w|\theta_B)$: background LM

What if $\delta \rightarrow \infty$?

$$p(w \mid \theta_i) = \frac{\sum_{j=1}^{N_i} c(w, d_{ij}) + \mu p(w \mid \theta_B)}{\sum_{w' \in V} \sum_{j=1}^{N_i} c(w', d_{ij}) + \mu}$$

 $\mu \geq 0 \label{eq:pwhat} \begin{aligned} & p(w|\theta_{\text{B}}) = 1/|V|? \\ & \mu \geq 0 \end{aligned}$ What if $\mu \rightarrow \infty$?

Anatomy of Naïve Bayes Classifier

Two categories: θ_1 and θ_2

$$score(d) = log \frac{p(\theta_1 \mid d)}{p(\theta_2 \mid d)} = log \frac{p(\theta_1) \prod_{w \in V} p(w \mid \theta_1)^{c(w,d)}}{p(\theta_2) \prod_{w \in V} p(w \mid \theta_2)^{c(w,d)}}$$

$$= \log \frac{p(\theta_1)}{p(\theta_2)} + \sum_{w \in V} c(w,d) \log \frac{p(w \mid \theta_1)}{p(w \mid \theta_2)}$$
Weight on each word (feature) β_i

Category bias (β_0) doesn't depend on d!

Sum over all words (features {f_i})

Feature value: f_i=c(w,d)

$$d = (f_1, f_2, ..., f_M), f_i \in \mathfrak{F}$$

$$\begin{aligned} &d = (f_1, f_2, ..., f_M), \ \ f_i \in \Re \\ &score(d) = \beta_0 + \sum\nolimits_{i=1}^M f_i \beta_i \quad \ \beta_i \in \Re \end{aligned} = \text{Logistic Regression!}$$

$$\beta_i \in \mathfrak{P}$$