Frequent Pattern Growth (FP)

 First algorithm that allows frequent pattern mining without generating candidate sets

Construct FP-tree from a Transaction Database

TID	Items bought ((ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$

$$min_support = 3$$

Frequent Items f-c-a-b-m-p

- 1. Scan DB once, find frequent 1-itemset
- 2. Sort frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree

Head	Header Table	
<u>Item</u>	frequency	
$\mid f \mid$	4	
c	4	
a	3	
b	3	
$\mid m \mid$	3	
p	3	

Construct FP-tree from a Transaction Database

<u>TID</u>	Items bought (ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$

 $min_support = 3$

Frequent Items f-c-a-b-m-p

- Scan DB once, find frequent
 1-itemset
- 2. Sort frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree

Step 1: Construct Conditional Pattern Base

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Conditional pattern bases	
<u>item</u>	Cond. pattern base
c	f:3
a	fc:3
\boldsymbol{b}	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Step 2: Construct Conditional FP-tree

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the conditional FP-tree for the frequent items of the pattern base

Conditional Pattern Bases and Conditional FP-Tree

Item	Conditional pattern base	Conditional FP-tree
p	{(fcam:2), (cb:1)}	{(c:3)} p
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
a	{(fc:3)}	{(f:3, c:3)} a
c	{(f:3)}	{(f:3)} c
f	Empty	Empty

Single FP-tree Path Generation

For single path the frequent patterns can be generated by enumeration of all the combinations of the sub-paths

All frequent patterns concerning m
m,
fm, cm, am,
fcm, fam, cam,
fcam

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

$$r_1 = \begin{cases} \{ \} \\ | \\ a_1 : n_1 \\ | \\ a_2 : n_2 \\ | \\ a_3 : n_3 \end{cases} +$$

Example 2: FP-Tree Construction

Example 2: Conditional Pattern Base

Example 2: Conditional Pattern Base

Example 2: Conditional Pattern Base

↑ Complete FP-tree

Example 2: Extract all frequent itemsets containing e

minSup = 2

Extract all frequent itemsets containing e

Conditional Pattern base and FP tree for e

Example

- > Check if e is a frequent item
 - > Add the counts along the linked list (dotted line).
 - If, count = min support, then {e} is extracted as a frequent itemset.
- > As e is frequent, find frequent itemsets ending in e. i.e. de, ce and ae.

$$minSup = 2$$

Example

- Example: e -> de -> ade
- ▶ {d,e}, {a,d,e} are found to be frequent

$$minSup = 2$$

Example

- •Example: e -> ce
- •{c,e} is found to be frequent)

Result

Frequent itemsets found (ordered by sufix and order in which they are found):

Transaction Data Set

TID	Items
1	{a,b}
2	{b,c,d}
3	{a,c,d,e}
4	{a,d,e}
5	{a,b,c}
6	{a,b,c,d}
7	{a}
8	{a,b,c}
9	{a,b,d}
10	{b,c,e}

Suffix	Frequent Itemsets	
e	{e}, {d,e}, {a,d,e}, {c,e},{a,e}	
d	$\{d\}, \{c,d\}, \{b,c,d\}, \{a,c,d\}, \{b,d\}, \{a,b,d\}, \{a,d\}$	
C	$\{c\}, \{b,c\}, \{a,b,c\}, \{a,c\}$	
Ь	{b}, {a,b}	
a	{a}	

Frequent Pattern Growth Mining Method

Idea: Frequent pattern growth

Recursively grow frequent patterns by pattern and database partition

Method

- For each frequent item, construct its conditional patternbase, and then its conditional FP-tree
- Repeat the process on each newly created conditional FPtree
- Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

FP-Tree size

- > FP-Tree usually has a smaller size than the uncompressed data
 - > Typically many transactions share items (and hence prefixes).
 - Best case scenario: all transactions contain the same set of items.
 - > I path in the FP-tree
 - Worst case scenario: every transaction has a unique set of items (no items in common)
 - > Size of the FP-tree is at least as large as the original data.
 - > Storage requirements for the FP-tree are higher need to store the pointers between the nodes and the counters.

Discusion

- Advantages of FP-Growth
 - only 2 passes over data-set
 - "compresses" data-set
 - no candidate generation
 - much faster than Apriori
- Disadvantages of FP-Growth
 - ▶ FP-Tree may not fit in memory!!
 - ▶ FP-Tree is expensive to build

- Divide database into <u>n partitions</u>.
 - so that each portion can fit into memory.
- Any itemset that is frequent in DB must be frequent in at least one of the n partitions (pigeon hole principle)

- Require 2 DB Scans
 - Scan I: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns

- Scan I: partition database and find local frequent patterns
- Process one partition in main memory at a time:
 - For each partition, generate frequent itemsets using the Apriori algorithm
 - min_support for a partition = min_support of DB x no of transactions in that partition (here min_support is in %)
 - Form Tidlist for all item sets to facilitate counting in the merge phase

- After all partitions are processed, the local frequent itemsets are merged into global frequent sets
 - support can be computed from the tidlists.

Partition (Savasere, Omiecinski, & Navathe, VLDB'95).