Национальный исследовательский университет ИТМО Факультет информационных технологий и программирования Прикладная математика и информатика

Методы оптимизации

Отчет по лабораторной работе $\mathbb{N}3$

⟨Собрано 6 июня 2023 г.⟩

Работу выполнили:

Бактурин Савелий Филиппович M32331 Вереня Андрей Тарасович M32331 Сотников Максим Владимирович M32331

Преподаватель:

Ким Станислав Евгеньевич

Решение задачи нелинейной регрессии

Часто решая задачу создания регрессионной модели мы сталкиваемся с тем, что по жизни очень немногие рассматриваемые функции оказываются не представимы в виде обобщенной линейной зависимости или полиномиальной некоторой конечной степени k. Такая же ситуация часто случается и с некоторым набором данных, который нужно как-то обобщить. Именно в таких случаях к нам на помощь приходит более частный случай регрессионного анализа — нелинейная регрессия.

Идея построения нелинейной регрессии как и в случае с полиномиальной заключается в том, чтобы найти математическую функцию, которая максимально точно описывает зависимость между независимой переменной и зависимой от нее. Например, для построения нелинейной регрессии можно использовать функции типа полинома, логарифмической или экспоненциальной зависимости.

В целом весь процесс нахождения нелинейной регрессионной модели можно поделить на два этапа:

- \triangleright Определить регрессионную модель f(w,x), которая зависит от параметров $w=(w_1,\ldots,w_W)$ и свободной переменной x.
- ▶ Решить задачу по нахождению минимума сумма квадратов регрессионных остатков:

$$S = \sum_{i=1}^{m} r_i^2, \ r_i = y_i - f(w, x_i)$$

Однако, решая в лоб такую задачу, мы сталкиваемся с оптимизационной задачи нахождения параметров нелинейной регрессионной модели. Тут к нам и приходят на помощь различные методы нахождения, в том числе и рассматриваемые ниже: Gauss-Newton и Powell Dog Leg.

Gauss-Newton

Напомним, что мы решаем следующую задачу: дана нелинейная модель f(w,x), где $w \in \mathbb{R}^m$, тогда сумма квадратов регрессионных остатков высчитывается как

$$S = \sum_{i=1}^{\text{sizeof } X} (f(w, x_i) - y_i)^2 \to \min$$

Итак, пусть $n=\mathtt{sizeof}\ X$ и введем некоторые новые объекты для решения задачи, пусть $w^0=(w^0_0,\ w^0_1,\ \dots,\ w^0_m)$ — начальное приближение, и

$$\mathbf{J} = \left(\frac{\partial f}{\partial w_j}(w^{\mathbf{i}},x_i)\right)_{n\times m} - \text{Якобиан, или матрица первых производных } \vec{f}_{\mathbf{i}} = \left(f(w^{\mathbf{i}},x_i)\right)_{n\times 1} - \text{ вектор значений функции } f$$

$$\mathbf{\eth}_{\mathbf{i}} = \mathbf{const} - \mathbf{p} \mathbf{a} \mathbf{s} \mathbf{m} \mathbf{e} \mathbf{p} \mathbf{a} \text{ шага}$$

Тогда, формула і-й итерации рассматриваемого метода будет высчитываться как

$$w^{\mathbf{i}+1} \leftarrow w^{\mathbf{i}} - \eth_{\mathbf{i}} \cdot \underbrace{\left(\beth_{\mathbf{i}}^{\mathrm{T}} \beth_{\mathbf{i}} \right)^{-1} \beth_{\mathbf{i}}^{\mathrm{T}}}_{\beta} (\vec{f}_{\mathbf{i}} - y),$$

где β — это псевдообратная матрица к матрице $\mathbf{J_i}$, или решение некоторой задачи многомерной линейной регрессии, где мы ищем такой вектор β , что

$$\left\| \mathbf{J_i} \beta - (\vec{f_i} - y) \right\|^2 \to \min,$$

где y — вектор правильных/настоящих ответов нашей модели. Получается, для решения задачи, мы, так называемую, невязку пытаемся приблизить линейной комбинацией вектора из матрицы Якобиана так, что при следующем шаге итерации получить такой w^{i+1} , который бы сократил нам расстояние невязки. Причем, заметим, что на каждом шаге, задача будет новой, так как \mathbf{J}_i зависит от текущего приближения, чтобы решить задачу многомерной регрессии.

Заметим, что здесь, по алгоритму, мы видим достаточно очевидное ограничение: $m \geqslant n$, в ином случае для $\mathbf{J}_{\mathbf{i}}^{\mathrm{T}}\mathbf{J}_{\mathbf{i}}$ не будет существовать обратной матрицы и, в следствии, решения к уравнению.

Исследования

Powell Dog Leg

 $Trust-region\ method\ -$ это метод решения оптимизационных задач, который основывается на вычислении региона, в котором квадратичная модель аппроксимирует целевую функцию. Сам этот метод представляет из себя смесь сразу двух алгоритмов, решающих задачу:

- ▶ Линейный поиск используется для определения направления поиска и дальнейшего нахождения оптимального шага вдоль выбранного вектора пути.
- ▶ Сам по себе trust-region используется для определения области вокруг текущей итерации, в котором модель достаточно аппроксимирует целевую функцию. Причем, стоит заметить, что для поиска следующего радиуса рассматриваемого региона также будет использоваться линейный поиск.

В общем случае Trust-region на каждой итерации решает следующую квадратичную задачу:

$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + p^{\mathrm{T}} g_k + \frac{1}{2} p^{\mathrm{T}} B_k p,$$

где $f_k = f(x_k)$, $g_k = \nabla f_k$, $B_k = \nabla^2 f_k$ и $\nabla_k > 0$ – изменяющийся радиус региона, причем всё это, при условии, что $|p| \leqslant \nabla_k$. Заметим, что в таком простейшем виде мы получаем безусловно почти бесполезный алгоритм: он чрезвычайно медленный из-за появления B_k – Гессиана функции. С другой стороны, если он положительно определен и $|B_k^{-1}\nabla f_k| \leqslant \nabla_k$, то решение легко определить: $p_k^B = -B_k^{-1}\nabla_k$. Но, опять же, высчитывать еще и обратную матрицу – дело долгое и медленное, поэтому, начиная отсюда и до конца все лабораторной работы, мы будем то и дело пытаться приближать наши значения к реальным/по настоящему посчитанным значениям Гессиан-функции.

Здесь мы рассмотрим один из методов оптимизации при аппроксимации квадратичной модели — $Powell\ Dog\ Leg$. Начнем, пожалуй, с определения радиуса рассматриваемого доверительного региона: в алгоритме dogleg обычно выбирают основываясь на сходстве функции m_k (та, что мы решаем изначально) и оригинальной функции f на предыдущей итерации. Зададим ρ_k следующим образом:

$$\rho_k = \frac{f_k - f_k^*}{m_k(0) - m_k(p_k)},$$

где $f_k^{\star} = f(x_k + p_k)$. А теперь посмотрим на то, как именно лучше поменять шаг: в том случае, если ρ_k меньше нуля, то это значит, что наша модель далека от функции и нужно обязательно уменьшить радиус; в том случае, изменение функции почти не изменилось и мы попали на границу региона, то есть смысл увеличить радиус; в ином другом случае – остается неизменным.

$$\Delta_{k+1} = egin{cases} rac{1}{4}\Delta_k, &
ho_k < rac{1}{4} \\ \min{(2\Delta_k,\ \Delta_{\max})}, &
ho_k > rac{3}{4} \wedge \|p_k\| = \Delta_k \\ \Delta_k, & ext{в ином другом случае} \end{cases}$$

Наконец, начинается самое интересное со стороны Powell Dog Leg. Итак, мы находимся на некоторой точки нашей модели, есть подсчитанный Δ -радиуса доверительного региона, и посмотрим на полный шаг $p^B=-B^{-1}g$. Если p^B лежит в окружности региона, то мы можем его взять и более закончить алгоритм. В ином случае, рассмотрим анти-градиент -g и попробуем вдоль нее поискать минимум квадратичной модели, то есть решить

$$\min_{\|-\tau g\| \leqslant \Delta} m(-\tau g)$$

Для её решения мы можем взять некую новую точку без каких-либо ограничений в направлении анти-градиента и найти минимум модели

$$p^U = -\frac{g^{\mathrm{T}}g}{g^{\mathrm{T}}Bg}g$$

Здесь снова две ситуации, где может находиться т. p^U :

- ▶ Если она находится вне рассматриваемой области, то мы можем взять точку на границе и шагнуть туда.
- ightharpoonup Если же она находится в окружности, то построим отрезок $p^U p^B$ и начнем искать минимум вдоль этих двух линий $\left(\begin{tabular}{c} \begin{tabu$

Наконец, вдоль пути мы рассматриваем траекторию $\hat{p}(\tau)$

$$\hat{p}(\tau) = \begin{cases} \tau p^U, & 0 \leqslant \tau \leqslant 1\\ p^U + (\tau - 1)(p^B - p^U), & 1 \leqslant \tau \leqslant 2 \end{cases}$$

Подытожим. Мы получили, на самом деле, в чем-то схожий на метод Гаусса-Ньютона алгоритм нахождения схождения, в частности, кстати, точка p^B — это то, куда бы шагнул метод Гаусса-Ньютона, но при этом, если эта точка удовлетворяет нашим потребностям, то мы действуем как Гаусс-Ньютон, в ином случае — чуть по другому. Причем под «немного другим» способом предполагается, на самом деле, хитрая комбинация Гаусса-Ньютона и градиентного спуска (так как при маленьком доверительном регионе мы пойдем по направлению, близкому градиентному спуску).

Исследования

BFGS

BFGS, или Алгоритм Бройдена - Флетчера - Гольдфарба - Шанно – это тоже оптимизационный итерационный алгоритм для нахождения локального экстремума для не представимых данных или функций в линейном/полиномиальном виде.

Один из известных квазиньютоновских методов (то есть, тех, которые основаны на получении информации о кривизне функции). Тут следует сразу пояснить, что в квазиньютоновских методах для нахождения оптимальных параметров используется довольно медлительное определение гессиана функции (или: матрица вторых производных). И вот тут данный алгоритм ускоряет работу на порядок: ибо он не явно каждый раз высчитывает матрицу, а лишь приближает к ней значения.

Рассмотрим идею этого алгоритма. Пусть дана нам некоторая функция $f(\vec{x})$ и, как обычно, решаем задачу оптимизации нахождения $\mathop{\rm argmin}_{\vec{x}} f(\vec{x})$. Пусть также $x_i = \{x_i^0, x_i^1, \dots, x_i^{n-1}\}$, где n – размерность рассматриваемого пространства; $x_0 \leftarrow \mathbf{INIT}$ — начальная точка; $H_0 = B_0^{-1}$ — начальное приближение, где B_0^{-1} — обратный гессиан функции. Тогда:

- 0) Пусть i текущий номер итерации алгоритма.
- 1) Находим точку, в направлении которой будем производить поиск, она определяется следующим образом:

$$p_i = -H_i \times \nabla f_i$$

2) Вычисляем x_{i+1} через рекуррентное соотношение следующего вида:

$$x_{i+1} = x_i + \alpha \cdot p_i,$$

где α – коэффициент, удовлетворяющий условиям Вольфа, которые, напомню, выглядят вот так:

$$f(x_i + \alpha \cdot p_i) \leqslant f(x_i) + c_1 \cdot \alpha \cdot \nabla f_k^T p_i$$
$$\nabla f(x_i + \alpha \cdot p_i)^T p_i \geqslant c_2 \cdot \nabla f_i^T p_i$$

3) Теперь определим размер шага алгоритма после данной итерации и изменение градиента следующими соответствующими образами:

$$s_i = x_{i+1} - x_i$$
$$y_i = \nabla f_{i+1} - \nabla f_i$$

4) Наконец, обновим гессиан функции, зная, что ${\bf I}$ – единичная матрица и $\lambda = \frac{1}{u_i^{\rm T} s_i}$:

$$H_{i+1} = \left(\mathbf{I} - \lambda s_i y_i^{\mathrm{T}}\right) H_i \left(\mathbf{I} - \lambda y_i s_i^{\mathrm{T}}\right) + \lambda s_i s_i^{\mathrm{T}}$$

Исследования

L-BFGS

L-BFGS, или BFGS с ограниченной памятью — это оптимизационный алгоритм, который аппроксимирует оригинальный алгоритм BFGS с использованием заданного ограниченного объема памяти.

L-BFGS как BFGS использует приближенную оценку Гессиана, при этом в явном виде посчитав только один раз, а все остальные шаги лишь преобразовывая. Проблема: BFGS хранит всегда $n \times n$ приближение к обратному Гессиану. Решение: хранить несколько векторов, которые неявно представляют приближение, представляющие из себя историю последних m обновлений положения \vec{x} и градиента $\nabla f(\vec{x})$. При этом, m обычно выбирается небольшим (m < 10).

Рассмотрим идею этого алгоритма. Во многом она будет совпадать с предыдущим, поэтому пропустим обозначения и перейдем сразу алгоритму.

- 0) Пусть i текущий номер итерации алгоритма, возьмем $g_i = \nabla f(x_i)$.
- 1) Также находим точку, в направлении которой будем производить поиск:

$$p_{\mathbf{i}} = -H_{\mathbf{i}} \times \nabla f_{\mathbf{i}}$$

2) Пусть мы сохранили m обновлений вида:

$$s_{\mathbf{i}} = x_{\mathbf{i}+1} - x_{\mathbf{i}}$$
$$y_{\mathbf{i}} = g_{\mathbf{i}+1} - g_{\mathbf{i}}$$

- 3) Определим $\rho_{\bf i}=\frac{1}{y_{\bf i}^{\rm T}s_{\bf i}}$ и $H_{\bf i}^0$ «начальная» аппроксимация обратного гессиана, с которого начинается наша оценка на $\bf i$ -ой итерации. Теперь, наконец, основная оптимизация: мы хотим оптимизировать основную рекуррентную формулу.
 - ightharpoonup Для данного ${f i}$ определим $\{q_{{f i}-m},\ q_{{f i}-m+1},\ \dots,\ q_{f i}\},$ где

$$q_{\mathbf{i}} = g_{\mathbf{i}}$$

 $q_i = \left(\mathbf{I} - \rho_i y_i s_i^{\mathrm{T}}\right) q_{i+1} \ \forall i \setminus \mathbf{i}$

- \triangleright Тогда рекурсивный алгоритм вычисления q_i от q_{i+1} состоит в том, чтобы определить $\alpha_i \leftarrow \rho_i s_i^{\mathrm{T}} q_{i+1}$ и $q_i = q_{i+1} \alpha_i y_i$.
- \triangleright Определим также $\{z_{\mathbf{i}-m},\ z_{\mathbf{i}-m+1},\ \dots,\ z_{\mathbf{i}}\}$, где $\forall i\ z_i \leftarrow H_i q_i$.

Существует еще один рекурсивный алгоритм вычисления этих векторов, который заключается в определении $z_{\mathbf{i}-m} \leftarrow H_{\mathbf{i}}^0 q_{\mathbf{i}-m}$, а затем рекурсивно определить $\beta_i \leftarrow \rho_i y_i^{\mathrm{T}} z_i$ и $z_{i+1} = z_i + (\alpha_i - \beta_i) s_i$. Значение $z_{\mathbf{i}}$ тогда — наше направление восхождения.

Таким образом, мы можем вычислить направление спуска следующим образом:

```
q \leftarrow 
abla f_{\mathbf{i}};
\mathbf{for} \ i \in [\mathbf{i}-1, \ \mathbf{i}-2, \ \dots, \ \mathbf{i}-m] \ \mathsf{do}
\alpha \leftarrow \rho_i s_i^{\mathrm{T}} q;
q \leftarrow q - \alpha_i y_i;
```

```
\begin{array}{lll} & & \text{end (for)} \\ & & r \leftarrow H_{\mathbf{i}}^{0}q; \\ & \text{for } i \in [k-m, \ k-m+1, \ \dots, \ k-1] \ \text{do} \\ & & \beta \leftarrow \rho_{i}y_{i}^{\mathrm{T}}r; \\ & & r \leftarrow r + s_{i}(\alpha_{i} - \beta); \\ & \text{end (for)} \\ & & \text{return } r \equiv H_{\mathbf{i}} \nabla f_{\mathbf{i}}; \end{array}
```

4) Положим $H_{\mathbf{i}}^{0} = \gamma_{\mathbf{i}} \mathbf{I}$ следующим образом:

$$\gamma_{\mathbf{i}} = \frac{s_{\mathbf{i}-1}^{\mathrm{T}} y_{\mathbf{i}-1}}{y_{\mathbf{i}-1}^{\mathrm{T}} y_{\mathbf{i}-1}}$$

Исследования