

Boolean Algebra

Α	A'	(A')'=A
0	1	0
1	0	1

What is Boolean Expression?

A Boolean expression is composed of a combination of the Boolean constants true or false, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions

Example 1: (A + B). C

Example 2: A . (B + 1)

A Boolean expression produces a Boolean value as an output when evaluated.

A Boolean value is either true or false

Types of Boolean Expression

Why Boolean Algebra?

To simplify complex Boolean expression/equation

Selected laws and rules are applied, step by step, to the original equation, so as to eventually arrive at a simplified version that can be implemented with a smaller number of gates and therefore lead to a simpler circuit.

What is Boolean Algebra?

What is Boolean Algebra?

Boolean Algebra is *used to analyze and simplify the digital (logic) circuits*. It uses only the binary numbers i.e. 0 and 1.

Boolean algebra was *invented by George Boole* in 1854.

Rule in Boolean Algebra Complement of a variable is represented by an overbar (-). Thus, complement of variable X is represented as X Bar. Thus if X = 0 then X Bar = 1 and X = 1 then X Bar = 0.

ORing of the variables is represented by a plus (+) sign between them. For example ORing of A, B, C is represented as A + B + C.

Logical ANDing of the two or more variable is represented by writing a dot between them such as A.B.C. Sometime the dot may be omitted like ABC.

Boolean Algebra Laws

Boolean Algebra laws

OR

A	А	X
0	0	0
1	1	1

6)	Α		Α	=	Α
----	---	--	---	---	---

AND

А	Α	Х
0	0	0
1	1	1

7) A	\ + A	= 1
------	-------	-----

OR

Α	A'	Х
0	1	1
1	0	1

8) A
$$. \overline{A} = 0$$

AND

Α	A'	X
0	1	0
1	0	0

Cont...

A	A'	(A')'=A
0	1	0
1	0	1

This is known as Complement law

Commutative Laws

The **order** of variables does not affect the result.

10)
$$A + B = B + A$$

Associative Laws

Grouping (parentheses**)** of variables does not affect the result.

12)
$$(A + B)+C = A+B+C$$

13)
$$(A . B).C = A.(B. C)$$

Distributive Laws

You can distribute one operation over another.

14)
$$A \cdot (B+C) = A.B+A.C$$

15)
$$A+(B \cdot C) = (A+B) \cdot (A+C)$$

Law	Practical Use
Commutative	Input order doesn't matter- simplifies circuit layout.
Associative	Can regroup logic expressions- helpful in gate reduction.
Distributive	Used for factoring expressions and optimizing gate usage.

De-Morgan's Laws

$$\overline{A.B} = \overline{A} + \overline{B}$$

The complement of the product of two variables is equal to the sum of the complements of the variables

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

The complement of the sum of two variables is equal to the product of the complements of the variables.

#1:

$$A.(A+B+C)+A$$

$$(A + A.B + A.C) + A$$

$$A.(1 + B + C) + A$$

Α

Distributive Laws

Since, A.A=A

Common Factor out

Since, 1+A=1

Since, A+A=A

#1:

Simplified Expression

$$A.(A+B+C)+A=A$$

Class Activities Exercises

Thank You