Homework to exercise 14

Exam preparation

Send the solutions to 2.and 3. to your seminar leader by january 30th 2024

- 1. When preparing to tasks 2-6 of the exam, it is recommended to repeat:
- Dielectric function and optical constants
- Momentum and energy conservation in collision events (relativistic and non-relativistic approaches)
- Properties of linear operators
- Commutation relations
- Expectation values
- Spherical coordinates and hydrogen atom
- Vibrations of molecules
- Multiple-choice test: Please tick all box(es) with correct answer(s)!
 (correctly ticked box: +1/2 point; wrongly ticked box: -1/2 point)

The rule of mutual exclusion in Raman spectroscopy	Concerns centrosymmetric systems	
,	Forbids any Raman-activity in	
	organic molecules	
	Is only valid in metals	
The operator of discrete translations $\hat{\mathbf{T}}_n$ defined by:	is self-adjoint	
$\hat{\mathbf{T}}_n \psi(\mathbf{r}) = \psi(\mathbf{r} + \mathbf{r}_n)$	is not self-adjoint	

3. Imagine a non-relativistic hydrogen atom in the excited quantum state $|n,l,m\rangle = |2,1,1\rangle$. In spherical coordinates, the wavefunction of the electron in that state may be written as:

$$\psi(r,\varphi,\theta) = \frac{1}{8\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \sin\theta e^{i\varphi}$$
. a₀ is the Bohr's radius. Calculate the

expectation value $\langle r \rangle$ as well as the variance $\operatorname{var}(r) = \langle r^2 \rangle - \langle r \rangle^2$ of r in this quantum state! (10 points)

$$= \iint \int_{0}^{\infty} \int_{0}^{\infty}$$