Criptografía de Llave Pública

Introducción a la Criptografía y a la Seguridad de la Información

Iván Castellanos

Departamento de ingeniería de sistemas e industrial Universidad Nacional de Colombia

7 de noviembre de 2019

Motivación

- Los sistemas de clave privada son muy eficentes computacionalmente
- tienen una gran desventaja: emisor y receptor deben compartir una misma información (llave) en común

Nota

Para resolver este problema se desarrolló la criptografía de llave pública

Criptografía de llave pública

Definición (Criptografía de llave pública)

Un sistema de cifrado publico maneja 2 llaves diferentes k_e y k_d donde la llave de cifrado k_e es pública, la otra se mantiene secreta

Nota

La criptografía de llave pública es conocida también como criptografía asimétrica

Criptografía de llave pública

Un sistema de cifrado es *perfectamente seguro* si el texto cifrado no le da al adversario ninguna *información* sobre el texto limpio.

Definición (Seguridad)

En sistema es perfectamente seguro si

$$\forall m^* \in M, \ P(m = m^* | E_{k_e}(m) = c) = P(m = m^*)$$

Nota

Note que en este caso no obtener ninguna información sobre el texto limpio implica que tampoco debemos obtener información sobre la llave de descifrado

Analogía

- Supongamos que Alice quiere mandarle un mensaje secreto a Bob
- Para mandar el mensaje utilizamos una caja con anillos para el cierre
- Alice y Bob tienen candados abiertos disponibles en la oficina de correos

Analogia

- Alice utiliza el candado de Bob para cerrar la caja con el mensaje y se lo manda
- Independiente de quienes tengan la caja en sus manos durante el envío el único que puede abrirla es bob con us llave

• Para responder Bob utiliza el candado de Alice y envía la caja

Nota

Note que si Alice cerrara la caja con su candado Bob no podría abrirla

Dificultad del conocimiento de la llave privada

Ejemplo

- 1. ¿Cuanto es 314159265358979²?
- 2. ¿Cuál es la raiz cuadrada de 98696044010893382709735922441?
 - La pregunta 2 es la inversa de la pregunta 1
 - La pregunta 2 es mucho mas compleja computacionalmente que la pregunta 1

Nota

Esto mismo sucede entre la multiplicación y factorización o entre la exponenciación y el logaritmo

RSA

Definición (RSA)

El sistema de cifrado RSA es un sistema de cifrado público creado por Ronald <mark>Ri</mark>vest, Adi <mark>S</mark>hamir y Leonard <mark>A</mark>dleman en 1977

•
$$M = C = \mathbb{Z}_n$$

$$\bullet \ K = \mathbb{Z}_{\phi(n)}^* \times \{n\}$$

• Sea
$$k_e = (e, n)$$
,
 $E_{k_e}(m) = m^e \mod n$

• Sea $k_d = (d, n)$, $D_{k_d}(c) = c^d \mod n$

Nota

La escogencia de las llaves (y los posibles mensajes) depende fuertemente del valor *n*

Generación de llaves

El proceso de escogencia de n y de las llaves es el siguiente:

- Generar 2 primos grandes p y q de manera aleatoria $(p \neq q)$
- 2 Calcular n = pq, luego $\phi(n) = (p-1)(q-1)$
- $lacksquare{0}$ Selecionar $e \in \mathbb{Z}_{\phi(n)}^*$ aleatoramente (e
 eq 1)
- Publicar (e, n) como la llave pública
- **o** Conservar secreta (d, n), la llave privada

Generación de llaves

El proceso de escogencia de n y de las llaves es el siguiente:

- Generar 2 primos grandes p y q de manera aleatoria $(p \neq q)$
- 2 Calcular n = pq, luego $\phi(n) = (p-1)(q-1)$
- $lacksquare{0}$ Selecionar $e \in \mathbb{Z}_{\phi(n)}^*$ aleatoramente (e
 eq 1)
- **1** Publicar (e, n) como la llave pública
- **o** Conservar secreta (d, n), la llave privada

Ejercicio

Sean p = 41 y q = 53 calcule una llave publica (e, n) y su correspondiente llave privada (d, n)

RSA

Nota

La seguridad del sistema de llaves en RSA está basada en la dificultad de factorizar n = pq

- Para cifrar un mensaje cualquiera m podemos partir $m = m_1 m_2 m_3 ... m_t$ donde $m_i < n \ \forall i \in \{1,...,t\}$
- para cifrar se calcula $c_i = m_i^e \mod n$ y para descifrar se calcula $m_i = c_i^d \mod n$

Ejemplo

Considere un sistema que cifra la información de tarjetas de credito de sus usuarios, cifre $m=6882\ 3268\ 7966\ 6683$

RSA

Ejemplo

Sean
$$n = 3337 = 47 * 71$$
, $\phi(n) = 46 * 70 = 3220$

Se escoge aleatoreamente 79, gcd(3220,79)=1 y se computa $d=e^{-1}(mod\ 3220),\ d=1019$

$$k_e = (79,3337)$$
 pública y $k_d = (1019,3337)$

 $m = 6882 \ 3268 \ 7966 \ 6683 = m_1 m_2 m_3 m_4 m_5 m_6, \ m_1 = 688,$ $m_2 = 232, \ m_3 = 687, \ m_4 = 966, \ m_5 = 668 \ y \ m_6 = 3$

luego $c = 1570 \ 2756 \ 2091 \ 2276 \ 2423 \ 158$

Correctitud RSA

Teorema

RSA es un sistema de cifrado correcto

Demostración.

Sea $k_e = (e, n)$ y $k_d = (d, n)$, queremos probar que $\forall m \in M$ $D_{k_d}(E_{k_e}(m)) = m$.

Para el RSA esto es $\forall m \in \mathbb{Z}_n$, $(m^e)^d \equiv m \pmod{n}$, que es lo mismo que probar que $m^{ed-1} \equiv 1 \pmod{n}$, como $d \equiv e^{-1} \pmod{\phi(n)}$ entonces $\phi(n) \mid ed-1$, luego $m^{ed-1} \equiv m^{\phi(n)*k} \equiv (m^{\phi(n)})^k \pmod{n}$ para algún $k \in \mathbb{Z}$

Cuando gcd(m, n) = 1 se tiene el resultado

Correctitud RSA

Teorema

In tro du cción

RSA es un sistema de cifrado correcto

Demostración.

Sea $k_e = (e, n)$ y $k_d = (d, n)$, queremos probar que $\forall m \in M$ $D_{k_d}(E_{k_e}(m)) = m$.

Para el RSA esto es $\forall m \in \mathbb{Z}_n$, $(m^e)^d \equiv m \pmod{n}$, que es lo mismo que probar que $m^{ed-1} \equiv 1 \pmod{n}$, como $d \equiv e^{-1} \pmod{\phi(n)}$ entonces $\phi(n) \mid ed-1$, luego $m^{ed-1} \equiv m^{\phi(n)*k} \equiv (m^{\phi(n)})^k \pmod{n}$ para algún $k \in \mathbb{Z}$

Cuando gcd(m, n) = 1 se tiene el resultado

Ejercicio

Demuestre que 1. $m^{ed} \equiv m \pmod{p}$ y $m^{ed} \equiv m \pmod{q}$ para probar que 2. $m^{ed} \equiv m \pmod{n}$ cuando $gcd(m,n) \neq 1$

Definición (ElGamal)

El cifrado ElGamal descrito por Taher ElGamal en 1984 se basa en la dificultad del problema del logaritmo discreto

Sea *p* primo

- $M = \mathbb{Z}_p^*$
- $C = \mathbb{Z}_p^* \times \mathbb{Z}_p^*$
- $K = \{(p, \alpha, x, \beta) : \beta \equiv \alpha^{x} \pmod{p}\}$ donde $\alpha, x, \beta \in \mathbb{Z}_{p}^{*}, \alpha$ debe ser un elemento primitivo
- ullet Los valores p, lpha y eta son públicos, x se mantiene secreto
- Sea $y \in \mathbb{Z}_p^*$ y $k = (p, \alpha, x, \beta)$ escogido de manera aleatoria $E_k(m) = (\alpha^y \mod p, m\beta^y \mod p)$
- sea $c = (\gamma, \delta)$, $D_k(c) = \delta(\gamma^k)^{-1} \mod p$

Generación de llaves

- Generar un primo grande p y α un elemento primitivo (generador) de \mathbb{Z}_p
- Selectionar un entero grande x (1 < $x \le p 2$)
- Calcular $\beta = \alpha^x \mod p$
- Publicar (p, α, β) como la llave pública
- Conservar x de manera secreta

Generación de llaves

- Generar un primo grande p y α un elemento primitivo (generador) de \mathbb{Z}_p
- Selectionar un entero grande x (1 < $x \le p 2$)
- Calcular $\beta = \alpha^{\times} \mod p$
- Publicar (p, α, β) como la llave pública
- Conservar x de manera secreta

Ejercicio

Calcule una llave pública y una llave privada de ElGamal para p = 59

Nota

 $x = \log_{\alpha} \beta \pmod{p}$, luego si hubiera un algoritmo eficiente que calcule el logaritmo discreto romperiamos el sistema de cifrado

- Para cifrar un mensaje cualquiera m podemos partir $m=m_1m_2...m_t$ tal que $m_i\in\mathbb{Z}_p$
- En el cifrado se selecciona un entero aleatorio y_i , $1 < y_i \le p-2$ y se calcula $c_i = (\alpha^{y_i} \mod p, m\beta^{y_i} \mod p)$
- ullet para descifrar $c_i = (\gamma, \delta)$ se calcula $m_i = \delta(\gamma^{\kappa})^{-1} mod p$

Ejemplo

Cifrar m = 1299 con ElGamal usando p = 2579

Se selecciona lpha=2 elemento primitivo (generador) de \mathbb{Z}_{2579}

Como llave privada se escoge x = 765 y se calcula $\beta = 2^{765}$ mod 2579

Luego la llave pública (2579,2,949) y la privada es 765

Ejemplo

Aleatoreamente se escoge y = 853

Se calcula $\gamma = 2^{853} \mod 2579$

Se calcula $\delta' = 949^{853} \mod 2579$

Se calcula $\delta = 1299 * 2424 \mod 2579 = 2396$

Luego c = (435, 2396)

Nota

Note que y_i no se utiliza en el descifrado ni en la comunicación, por lo que ese valor se desecha luego del cálculo

Nota

Si se logra calcular $y_i = \log_{\alpha} \alpha^{y_i} \pmod{p}$ o $x = \log_{\alpha} \beta \pmod{p}$ se rompe el cifrado completamente

Nota

Podemos generalizar ElGamal para que funcione con cualquier cuerpo finito $\mathbb F$ en lugar de $\mathbb Z_p$

Rabin

- Sean p, q primos y n = pq
- El cifrado de Rabin se basa en la dificultad de calcular raices cuadradas de un número en \mathbb{Z}_n sin conocer p y q
- La llave pública es n, la privada es (p,q)
- Para el cifrado $E_{k_e}(m) = m^2 \mod n$
- Calculamos $a,b\in\mathbb{Z}$ tal que ap+bq=1, $r=c^{\frac{p+1}{4}}$ mod p y $s=c^{\frac{q+1}{4}}$ mod q, para el descifrado se calcula x=(aps+bqr) mod n y y=(aps-bqr) mod n. m es igual a x, -x, y o -y (pues hay 4 raices módulo n)

Merkle-Hellman

- El cifrado de Merkle-Hellman se basa en la dificultad de resolver el problema de la mochila (cada objeto una única vez)
- Se toma una instancia sencilla de resolver del problema de la mochila, $b_1, b_2, ..., b_n$ (supercreciente) y $s = \sum_{i=1}^n x_i b_i$ donde $x_i \in \{0,1\}$
- Se tienen 2 valores $k>b_1+b_2+...+b_n$ y $w\in\mathbb{Z}_k^*$ y una permutación π de $\{1,2,...,n\}$
- ullet Se calcula la secuencia $a_i = w * b_{\pi(i)} \mod k$ para i = 1,...,n
- La llave pública es $(a_1, a_2, ..., a_n)$ la llave privada es $(k, w, (b_1, b_2, ..., b_n))$
- Sea $m=m_1m_2...m_n$ una cadena de n bits, $E_{k_e}(m)=\sum_{i=0}^n a_im_i$
- El descifrado corresponde a la solución del problema de la mochila tomando la secuencia $d_i = w^{-1}a_i \mod k$
- Note que la secuencia $d_1, d_2, ..., d_n$ es la misma $b_i, b_2, ..., b_n$ en otro orden

Cifrado probabilístico

Nota

Cifrados como RSA, Rabin y Merkle-Hellman son determinísticos en el sentido que para $m_1=m_2$, $E_k(m_1)=E_k(m_2)$, es decir, un mismo mensaje siempre se cifra al mismo texto cifrado

Definición

Un cifrado probabilístico utiliza la *aleatorización* para que lo anterior no suceda, es decir, que un mismo mensaje pueda ser cifrado a diferentes textos sin romper la correctitud del cifrado

Ejemplo

ElGamal es un cifrado probabilístico, otros ejemplos de cifrados probabilísticos son Goldwasser-Micali y Blum-Goldwasser