MUKAVEMET I (Ev Alıştırması 2)

SORU 1)

Soldaki şekilde verilen rijit ve kütlesiz olduğu varsayılan AB çubuğu A noktasından mafsallı olup, çelik ve bronz iki tel yardımıyla yatay konumda duracak biçimde bağlanmıştır. Daha sonra W=15 kN luk bir yük asılmıştır. Tellerdeki gerilmeleri hesaplayınız. Çubuk boyutları $\overline{AC}=250~cm,~\overline{CD}=200~cm,~\overline{DB}=150~cm,~$ metal tellerin boyları L_C=45 cm, L_B=75 cm olup, DF kablosu uzamasızdır. Çelik ve bronz tellerin kesit alanları A_C=3 cm², A_B=5 cm² ve elastisite modülleri E_C=220 GPa, E_B=85 GPa

SORU 2)

Sağdaki şekilde verilen rijit ve kütlesiz olduğu varsayılan yatay AB çubuğu, üç tane aynı malzemeden yapılmış elastik kabloyla mesnetlenmiştir. Kablolarda elastisite modülü E=180 GPa, emniyet gerilmesi $\sigma_{em}=160$ MPa, boylar $L_1=1.5$ m, $L_2=2.5$ m, $L_3=3.5$ m, rijit çubukta açıklıklar a=1 m, b=1.5m, c=2 m, kablolarda kesit alanları arasındaki ilişkiler $A_1=A$, $A_2=2A$, $A_3=1.5A$, yükler q=50 kN/m, P=220 kN dur.

- a) Taşıyıcı sistemin güvenliği bakımından, kesit alanı A nın alabileceği en küçük değeri hesaplayınız.
- b) Rijit AB çubuğunun yükleme sonrası yataydan sapma miktarını (deplasmanı) bulunuz.

SORU 3)

Sağdaki şekilde eksenel normal kuvvet etkisinde, aynı malzemeden yapılmış değişken kesitli bir çubuk görülmektedir. Emniyet gerilmesi, $\sigma_{em}=15~MPa$, yükleme P=70~kN, çubuğun boyutları a=2.5~m, b=1.5~m ve $A_2=1.5~A_1~dir$.

- a) Mesnet tepkilerini ve normal kuvvet diyagramını çiziniz.
- b) Çubuğun, uygulanmış olan P kuvvetini güvenle taşıyabilmesi için kesit alanları A_1 ve A_2 yi bulunuz.

SORU 4)

Soldaki şekilde normal kuvvet etkisinde değişken kesitli prizmatik bir çubuk görülmektedir. Çubuğa eksenel yükler $P_1=60$ kN, $P_2=15$ kN etkitilirken, aynı zamanda ortamın sıcaklık derecesi de $T_0=5^{0}$ C den $T_0=45^{0}$ C ye yükseltiliyor. Çelikte elastisite modülü E=200 GPa, emniyet gerilmesi, $\sigma_{em}=180$ MPa, ısısal genleşme katsayısı $a_T=15x10^{-6}1/{}^{0}$ C, çubuk açıklıkları a=450 mm ve b=250 mm olduğuna göre taşıyıcı sistemde güvenliği sağlayacak biçimde kesit alanları $A_1=2A_2$ nin en küçük değerini hesaplayınız.