DEEP LEARNING APPLIED TO PUBLIC COMPANY VALUATION FOR VALUE INVESTING

A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science

Ву

Abram Paul Haich

In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

> Major Program: Computer Science and Statistics

> > April 2021

Fargo, North Dakota

North Dakota State University Graduate School

Title

DEEP LEARNING AF	PPLIED TO PUBL	IC COMPANY	VALUATION
I	FOR VALUE INVI	ESTING	

FOR VALUE INVESTING		
Ву		
Abram Paul Haich		
The Supervisory Committee certifies that the	his disquisition complies with North Dakota	
State University's regulations and meets th	e accepted standards for the degree of	
NAME	OF DEGREE	
Master of Science in Co.	mputer Science and Statistics	
SUPERVISORY COMMITTEE:		
Dr. Juan Li		
Chair		
Dr. Gang Shen	, 	
Dr. Kenneth Magel		
Approved:		
04-30-2021	Dr. Saeed Salem	
Date	Department Chair	

ABSTRACT

Value investing is an investing approach that seeks to discover and take advantage of price discrepancies between the market price and the actual value of a company (intrinsic value). The purpose of this work is to measure the intrinsic value of companies using an approach that has had success in the broad field of Artificial Intelligence, Deep Learning. Finding patterns in large amounts of data is what Deep Learning can be used for. Typically for value investing an investor will seek to find conservative estimates on the current value of a company by analyzing fundamental data. Our method attempts to perform these estimates in a data driven manor using Deep Learning to estimate the intrinsic value of a company with the overall goal of aiding the Investor in uncovering undervalued companies.

DEDICATION

To my wife who has helped me endlessly during my master's program and is there for me in every step of my life.

TABLE OF CONTENTS

	ABSTRACT	iii
	DEDICATION	iv
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
	LIST OF EQUATIONS	ix
	LIST OF ABBREVIATIONS	X
	LIST OF APPENDIX TABLES	xi
	1. INTRODUCTION	1
	1.1. Overview of Contributions and Approach	1
	1.2. Value Investing	2
	1.3. Discount Cash Flow	4
	1.4. Deep Learning	
	2. RELATED WORK	
	2.1. Value Investing Approaches	9
	2.2. Discounted Cashflow Approaches	10
	3. METHODS	12
	3.1. Dataset	12
	3.2. Models	14
١	3.3. Comparison to Existing Approaches	16
	4. RESULTS	18
	4.1. EPS Model	18
	4.2. Valuation Model	19
	4.3. Evaluation to Linear Models	22
	5. DISCUSSION	27

5.1. Example Usage	27
5.2. Recommended Improvements	28
5.3. Current Applications	29
REFERENCES	31
APPENDIX DEFINITIONS OF VARIABLES	33

LIST OF TABLES

<u>Table</u>	<u>Page</u>
1. Top 5 Graham Suggestions.	22
2. Top 5 Model Suggestions.	22

LIST OF FIGURES

<u>Figure</u>	<u>Page</u>
1. Demonstration of price and value in short-term vs. long-term.	2
2. Relationship of AI, Machine Learning and Deep Learning.	5
3. Graph of sigmoid activation function.	6
4. Graph of tanh activation function.	6
5. Diagram of a simple Multilayer Neural Network	7
6. LSTM Network. (oinkina, 2015)	8
7. Network architecture.	
8. Loss curves for EPS model.	18
9. EPS from test set (for VOXX ticker).	19
10. Percent error distribution in the $\pm 100\%$ range.	20
11. Error beyond ±100% over time	20
12. Error beyond ±100% over time by sector.	
13. Mean Squared Error Comparison.	
14. Percent Error Comparison.	24
15. Error Comparison Over Time.	25
16. Performance Comparison Over Time.	26
17. Model Usage	27

LIST OF EQUATIONS

<u>Equation</u>	<u>Page</u>
1. Graham's Formula.	3
2. Discount Cash Flow.	4
3. Artifical Neuron Formulation	5
4. Standard Normalization Technique	12
5. Valuation Technique	13
6. Intrinsic Value Formulation	14
7. Desired Output of Model for Company Valuation	15
8. Compund Annual Growth Rate for EPS	16
9. Sticker Price	16

LIST OF ABBREVIATIONS

ANN	Artificial Neural Network
AI	Artificial Intelligence
CNN	Convolutional Neural Network
DCF	Discount Cash Flow
EPS	Earnings Per Share
FFN	Feed Forward Neural Network
MSE	Mean Squared Error
PE Ratio	Price to earnings ratio
RNN	Recurrent Neural Network
S&P	Standard and Poor Index