Análise

— Folha de exercícios 5 — 2018'19 —

- 1. Determine equações da recta normal e do plano tangente a cada uma das superfícies dadas, no ponto indicado:
 - (a) $x^2 + 2y^2 + 3z^2 = 6$, (1, 1, 1);
 - (b) $xyz^2 = 1$, (1, 1, 1);
 - (c) $z = x^2 + 3y^3 + \operatorname{sen}(xy), (1, 0, 1);$
 - (d) $x^2 2y^2 + z^2 = 3$, (-1, 1, 2);
 - (e) $z = 4x^2$, (1, 2, 4);
 - (f) $e^{xyz} = 1$, (1, 1, 0).
- 2. Determine a equação do plano tangente à superfície $x^2+y^2-xyz=7$ no ponto (2,3,1) por dois processos diferentes:
 - (a) Considerando a superfície como a superfície de nível de uma função de 3 variáveis, f(x, y, z);
 - (b) Considerando a superfície como o gráfico de uma função de 2 variáveis, g(x,y).
- 3. O potencial eléctrico V em (x,y,z), de um dado objecto 3D, é dado por $V=x^2+4y^2+9z^2$. Determine a taxa de variação de V em P=(2,-1,3) na direcção e sentido de P para a origem do sistema de coordenadas. Indique ainda a direcção e sentido que produz a taxa máxima de variação de V em P. Qual o valor dessa taxa?
- 4. A temperatura T num dado ponto (x,y) de uma placa plana é dada por $T(x,y)=x^2\mathrm{e}^{-y}$. Partindo do ponto (2,1), em que direcção e sentido a temperatura diminui mais rapidamente? Qual a taxa de variação instantânea partindo de (2,1) e seguindo a direcção e sentido obtidos?
- 5. Considere a superfície de nível $S = \{(x, y, z) \in \mathbb{R}^3 : x^3 + xyz = 12\}.$
 - (a) Determine equações da recta normal e do plano tangente a S no ponto (2,2,1);
 - (b) Verifique se a recta encontrada na alínea anterior intersecta o eixo Oz.
- 6. Sejam $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x y^2$ e A = (-1,0).
 - (a) Determine e represente graficamente a curva de nível de f que passa em A;
 - (b) Calcule o vector $\nabla f(A)$. Coloque no esboço efectuado na alínea anterior, um representante de $\nabla f(A)$ com origem em A;
 - (c) Determine uma equação do plano tangente ao gráfico de f em (A, f(A)).
- 7. Determine os pontos da curva de equação $x(x^2+y^2)+9x^2+y^2=0$ cuja recta tangente é horizontal ou vertical.
- 8. Determine os pontos da elipse $2x^2 + y^2 = 1$ cuja recta tangente passa pelo ponto (1,1).
- 9. Determine os pontos da curva de equação $x^2 + y^2 2x + xy = 0$ cuja recta normal é paralela à recta y = x.
- 10. Determine os planos tangentes à esfera de equação $x^2+y^2+z^2=5$ que contêm a recta de equação $\left\{ \begin{array}{l} x=5-z\\ y=-5+2z \end{array} \right.$
- 11. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2y^3$. Indique, para o ponto (-1,2), um vector:
 - (a) com a direcção e sentido de maior crescimento de f;
 - (b) com a direcção e sentido de maior decrescimento de f;
 - (c) com a direcção e sentido em que a variação instantânea de f é nula.