Prism: Real-Time Privacy Protection Against Temporal Network Traffic Analyzers

Wenhao Li, Xiao-Yu Zhang, Huaifeng Bao, Binbin Yang, Zhaoxuan Li
Abril 2023

Contexto

 Análise de padrões em pacotes criptografados que prejudicam a segurança da rede

- A maior parte dos analisadores de tráfego aprendem via características temporais. ex: Sequências de tamanho de pacote e intervalos de chegada
- Propostas atuais empregam exemplos adversariais para ofuscar o tráfego.

Objetivo da pesquisa

- Propor um esquema de defesa que:
 - Engane analisadores temporais:
 - Targeted Defense: Confundir focando numa classe específica
 - Untargeted Defense: Defesa geral para todas as classes
 - Atue em tempo real
 - Seja assimétrico (Todo tráfego é manipulado em um único nó)

Problema de pesquisa

Projetar as perturbações no fluxo de dados em tempo real

Solução não deve sobrecarregar o fluxo de pacotes na rede.

Proposta - PRISM

Aprendizagem das características temporais

Modelo de transição de estados

Perturbação do tráfego

Proposta - PRISM

Proposta - PRISM

(a) Deployment on Switcher

(b) Deployment on Web Proxy

Temporal Feature Learning

- As características temporais são padronizadas com o algoritmo PLD (Power-Law Division Algorithm), que busca as características mais frequentes para cada classe de tráfego
 - Seleciona-se uma categoria de feature (ex: tamanho do pacote).
 - São coletados todos os pacotes com essa feature.
 - Para as outras features nos pacotes(da categoria), calcula-se a frequência.
 - Ordena-se a lista de frequências.
 - São usadas as primeiras K características mais frequentes.

Time-Stacked State Transition Modeling (TSTM)

- Tendo as características mais frequentes, o objetivo é obter a assinatura (fingerprint) de cada classe.
- São usadas matrizes de time-steps diferentes para caracterizar as classes.
- É mantida uma matriz temporal para cada classe.
- Cada elemento da matriz é a probabilidade de transição de pacotes entre dois time-steps diferentes.
- As transições dos pacotes são utilizadas para identificar os fingerprints.

Partição dos fluxos em Packet Blocks

- Usa as ACK's do protocolo TCP/IP como indicadores.
- Divide um fluxo de tráfego em diversos blocos, denominados Packet Blocks.
- As perturbações são geradas nos blocos, o Prism somente manipula o tráfego de um bloco por vez. De forma dinâmica e consecutiva.

Defesa global (Untargeted Defense)

- Para cada packet block, o objetivo é fazer com que um adversário o classifique com a classe diferente da correta (y).
- São usadas as transições minimizadas da matriz de probabilidades em cada time step para gerar os exemplos adversariais
- É gerada a sequência de características perturbadas com a probabilidade mínima de transição.

Defesa pontual (Targeted Defense)

- O objetivo é fazer com que uma classe específica não seja classificada corretamente.
- Para isso, ele aproxima a distribuição de características da classe alvo. Essa distribuição é usada para gerar os exemplos adversariais.

Experimentos

Base de dados

ISCX2016: Tráfego de 15 aplicações (Youtube, Netflix, Facebook, etc).
 207000 pacotes, tráfego totalmente criptografado

 USTC2016: Contém 10 tipos de tráfego de malware de sites de conexões reais, mas também tráfego de aplicações benignas (Skype, Facebook, etc).

Analisadores atacantes testados

TABLE I
TEMPORAL AND NON-TEMPORAL FEATURES USED BY THE ANALYZERS.

	Analyzers	Features
Temporal	FS-Net [13] DeepCorr [1] WF-LSTM [51] MB-Tree [16]	Sequences of message type and packet size. Inter-packet delays, intervals and packet sizes. Directions of packet sequences. Sequences of the head and tailed packets size.
Non-Temporal	RBRN [10] FC-Net [12] RF [53] FlowPrint [22]	Byte Sequences of traffic flows. Gray-scale images of raw-byte data flows. Statistical features such as max/min sizes. Statistical, temporal features and certificate.

· ·												
			Without Perturbation				With Perturbation (Untargeted Defense)					
			Acc (%)	Pre (%)	Re (%)	F1 (%)	Acc (%)	Pre (%)	Re (%)	F1 (%)		
(VI-A,VI-B)	ISCX2016	FS-Net [13] DeepCorr [1] MBTree [16] WF-LSTM [51]	86.77 83.05 90.67 62.89	88.59 84.11 88.64 61.21	87.47 83.89 88.38 62.86	88.03 84.00 88.51 62.02	3.92 (82.85↓) 1.53 (81.52↓) 0.78 (89.89↓) 5.32 (57.57↓)	3.07 (85.52↓) 1.49 (82.62↓) 1.21 (87.43↓) 3.05 (58.16↓)	2.93 (84.54\$\psi\$) 1.63 (82.26\$\psi\$) 0.89 (87.49\$\psi\$) 3.94 (58.92\$\psi\$)	3.00 (85.03\$\pi\$) 1.56 (82.44\$\pi\$) 1.03 (87.48\$\pi\$) 3.44 (58.58\$\pi\$)		
poral	USTC2016	FS-Net [13] DeepCorr [1] MBTree [16] WF-LSTM [51]	96.03 86.73 93.87 70.82	97.32 85.30 91.07 68.59	96.88 86.59 91.65 69.01	97.10 85.94 91.36 68.80	2.48 (93.55\$\displays 1.93 (84.80\$\displays 1.05 (92.82\$\displays 4.37 (66.45\$\displays)	2.03 (95.29\$\) 1.29 (84.01\$\) 0.94 (90.13\$\) 4.08 (64.51\$\)	$2.15 (94.73\downarrow)$ $1.80 (84.79\downarrow)$ $1.10 (90.55\downarrow)$ $3.91 (65.10\downarrow)$	2.09 (95.01\$\pi\$) 1.50 (84.44\$\pi\$) 1.01 (90.35\$\pi\$) 3.99 (64.81\$\pi\$)		
oral (VI-C)	ISCX2016	RBRN [10] FC-Net [12] RF [53] FlowPrint [22]	94.32 83.77 76.82 93.42	94.32 85.74 77.29 94.89	94.21 84.58 76.94 93.42	94.27 85.16 77.11 94.15	$14.82 (79.50\downarrow)$ $9.01 (74.76\downarrow)$ $6.92 (69.90\downarrow)$ $34.71 (58.71\downarrow)$	$13.70 (80.62\downarrow)$ $11.96 (73.78\downarrow)$ $5.70 (71.59\downarrow)$ $28.13 (66.76\downarrow)$	$14.03 (80.18\downarrow)$ $10.59 (73.99\downarrow)$ $5.42 (71.52\downarrow)$ $32.67 (60.75\downarrow)$	13.86 (80.41\$\dagger\$) 11.23 (73.93\$\dagger\$) 5.56 (71.55\$\dagger\$) 30.23 (63.92\$\dagger\$)		
Non-Temporal (VI-C) USTC2016 ISCX2016	USTC2016	RBRN [10] FC-Net [12] RF [53] FlowPrint [22]	93.30 84.55 81.95 95.42	94.19 85.13 79.76 94.69	94.86 85.30 80.07 94.72	94.52 85.21 79.91 94.70	$11.92 (81.38\downarrow)$ $7.68 (76.87\downarrow)$ $5.75 (76.20\downarrow)$ $27.73 (67.69\downarrow)$	$10.53 (83.66\downarrow)$ $7.24 (77.89\downarrow)$ $6.24 (73.52\downarrow)$ $25.08 (69.61\downarrow)$	$10.47 (84.39\downarrow)$ $6.99 (78.31\downarrow)$ $6.19 (73.88\downarrow)$ $26.91 (67.81\downarrow)$	$10.50 (84.02\downarrow)$ $7.11 (78.10\downarrow)$ $6.21 (73.70\downarrow)$ $25.96 (68.74\downarrow)$		

Analisadores defensivos comparados

 BLANKET: Gera exemplos adversariais. Usa GAN. Analisa tamanho de pacotes,tempos e direções.

- WTF-PAD: Ofuscador de tráfego que adiciona pacotes ingênuos (dummy packets) para enganar analisadores
- Manipulator: Cria tráfego pela manipulação de intervalos, camadas de protocolos e tamanhos de pacotes. Não pode ser usado em tempo real.

		FS-Net [13]		DeepCorr [1]		MBTree [16]		WF-LSTM [51]	
		$R_{\mathrm{UD}}(\%)$	$R_{\mathrm{TD}}(\%)$	$R_{\mathrm{UD}}(\%)$	$R_{\mathrm{TD}}(\%)$	$R_{\mathrm{UD}}(\%)$	$R_{\mathrm{TD}}(\%)$	$R_{\mathrm{UD}}(\%)$	$R_{\mathrm{TD}}(\%)$
USTC2016 ISCX2016	BLANKET [3]	75.26	35.02	64.83	27.83	89.72	71.70	87.39	48.50
	WTF-PAD [37]	37.43	-	32.05	-	20.94	2	67.39	-
	Manipulator [47]	74.60	61.94	64.06	58.14	86.42	39.87	90.70	24.92
	Prism	97.83	84.34	99.06	79.77	99.59	91.69	96.65	57.91
	BLANKET [3]	82.03	40.81	65.71	36.47	94.36	72.49	85.73	45.76
	WTF-PAD [37]	38.93	-	38.90	-	17.99	-	65.87	-
	Manipulator [47]	85.48	79.92	71.69	45.81	92.06	51.01	84.79	33.00
	Prism	98.18	88.17	99.27	84.25	99.62	92.41	97.03	63.89
	<u> </u>	(5),75,475,766		11545-477.50				(5) (5) (1) (1) (1)	

Fig. 8. Extra Bandwidth Overhead (BW Overhead) and Time Consumption when evaluating targeted defenses (TD) and untargeted defenses (UD) on FS-Net.

Sobre a implementação

Desenvolvido em Python

https://github.com/SecTeamPolaris/Prism

Duvidas?