Aprendizagem Automática

FICHA N. 1

ENUNCIADO

Nome: Tomas Miguel Baptista de Matos

Número: A48286

- 1. No ficheiro A48286_Q001_data.p, encontram-se um conjunto de dados bi-dimensionais divididos em 5 classes (índices de 0 a 4). Há duas variáveis num dicionário: a chave trueClass contém os índices das classes dos dados, enquanto a chave dados contém os dados bidimensionais. Verificam-se as seguintes condições no conjunto de dados disponibilizado:
 - (a) Para esta alínea, arredonde os valores pedidos a 2 casas décimais.
 - i. A distância de Manhattan entre os vetores de média das classes 2 e 3 é: 9.76.
 - ii. A distância de cosseno entre os vetores de média das classes 0 e 4 é: 1.97.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
 - (b) Considere que μ_i e Σ_i com $i=0,\ldots,4$ são os vetores de média e as matrizes de covariância das classes. Para esta alínea, arredonde os valores pedidos a 2 casas décimais.
 - i. O determinante do produto matricial entre as matrizes de covariância das classes 1 e 4 é: 4.55.
 - ii. O resultado do produto matricial $\mu_0^{\top} \Sigma_0 \mu_3$ é: -15.05.
 - iii. O produto interno entre as médias das classes 0 e 2 é: -0.05.
 - iv. O vetor resultante do protudo $\Sigma_0\mu_2$, entre a matriz de covariância da classe 0 e o vetor de média da classe 2 é: $\begin{bmatrix} 1.34 \\ -7.64 \end{bmatrix}$.
 - (c) Para esta alínea, arredonde os valores pedidos a 2 casas décimais.
 - i. A probabilidade aprior da classe 2 é: 0.16.
 - ii. A matriz de covariância da classe 3 é: $\begin{bmatrix} 2.98 & 1.48 \\ 1.48 & 2.99 \end{bmatrix}$.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
 - (d) Para esta alínea, arredonde os valores pedidos a 2 casas décimais.

 - i. A média da classe 4 é: $\begin{bmatrix} -0.03 \\ -0.01 \end{bmatrix}$. ii. A média da classe 1 é: $\begin{bmatrix} -3.33 \\ -1.69 \end{bmatrix}$.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.

- 2. Considere o conjunto de 7 vetores bi-dimensionais, divididos em duas classes $\Omega = \{\varpi_0, \varpi_1\}$, representados na matriz $\mathbf{X} = \begin{bmatrix} -4 & -4 & -1 & -2 & 4 & 2 & 3 \\ 0 & -1 & 0 & 0 & -2 & -4 & -2 \end{bmatrix}$ (os 4 primeiros vetores do conjunto pertencem à classe ϖ_0).
 - (a) Para esta alínea, arredonde os valores pedidos a 2 casas décimais.
 - i. O produto interno entre as médias das duas classes é: -7.58.
 - ii. A norma da média da classe ϖ_1 é: 4.01.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
 - (b) Para esta alínea, arredonde os valores pedidos a 2 casas décimais.
 - i. A distância de Manhattan entre os vetores de média das duas classes é: 4.17.
 - ii. A distância de cosseno entre os vetores de média das duas classes é: 1.68.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.