

Tarea 2

Carrera: Ing. Mecatrónica

Materia: Sistemas Expertos

Alumno: Alejandra Rodriguez Guevara 21310127

Profesor: Ing. Mauricio Alejandro Cabrera Arellano

Fecha de entrega: 31/08/24

El Motor de Inferencia

1. ¿Qué es el Motor de Inferencia en un Sistema Experto?

El motor de inferencia es el componente central de un sistema experto encargado de aplicar las reglas y el conocimiento almacenado en la base de conocimiento para resolver problemas, hacer deducciones, o tomar decisiones. Es, en esencia, el "cerebro" del sistema experto que simula el proceso de razonamiento de un experto humano.

Ejemplo: En un sistema experto para la planificación del tratamiento médico, el motor de inferencia utilizaría las reglas médicas almacenadas en la base de conocimiento para recomendar tratamientos específicos basados en los síntomas y el historial del paciente.

2. ¿Para qué se necesita el Motor de Inferencia?

El motor de inferencia es crucial para:

- Aplicar el conocimiento almacenado: Toma la información y las reglas en la base de conocimiento y las utiliza para hacer deducciones o recomendaciones.
- Simular el razonamiento experto: Permite que el sistema actúe como un experto humano, proporcionando soluciones a problemas complejos basados en un conjunto de reglas y conocimientos predefinidos.
- Manejar la incertidumbre: Algunos motores de inferencia también pueden manejar la incertidumbre y la probabilidad, aplicando técnicas como la lógica difusa o las redes bayesianas para razonar en situaciones donde la información es incompleta o incierta.

Ejemplo: En un sistema experto para la resolución de fallos en maquinaria industrial, el motor de inferencia podría analizar los síntomas de una falla en la máquina, aplicar las reglas sobre posibles causas, y sugerir las acciones correctivas más probables.

3. ¿Cómo funciona el Motor de Inferencia?

El motor de inferencia opera a través de varios pasos y técnicas clave:

- Matching (Comparación): El motor de inferencia compara los datos de entrada con las reglas almacenadas en la base de conocimiento. Busca coincidencias entre las condiciones especificadas en las reglas y los hechos presentados por el usuario.
- Ejecución de reglas: Cuando se encuentra una coincidencia, el motor de inferencia ejecuta la regla correspondiente. Esto puede implicar la derivación de nuevos hechos, la actualización de la base de datos de hechos, o la generación de recomendaciones.
- Propagación de cambios: Si la ejecución de una regla introduce nuevos hechos en la memoria de trabajo, el motor de inferencia revisa si estos nuevos hechos desencadenan otras reglas, lo que puede llevar a una cadena de inferencias.
- Manejo de la incertidumbre (opcional): En sistemas que manejan incertidumbre, el motor de inferencia puede utilizar técnicas probabilísticas, como redes bayesianas,

- para evaluar la probabilidad de distintas conclusiones basadas en la evidencia disponible.
- Explicación y justificación: El motor de inferencia también puede proporcionar explicaciones sobre cómo llegó a una conclusión, lo que es crucial para la aceptación y confianza del usuario. Esto se logra rastreando las reglas aplicadas y los hechos considerados.

Ejemplo: En un sistema experto de diagnóstico automotriz, el motor de inferencia podría recibir datos sobre un coche que no arranca. Utilizaría reglas como "Si el motor no gira y la batería está cargada, entonces verificar el motor de arranque." Luego, ejecutaría las reglas necesarias para determinar el problema y sugeriría soluciones, como revisar las conexiones del motor de arranque o reemplazarlo.

Este proceso permite que el sistema experto actúe de manera autónoma en la resolución de problemas, basándose en el conocimiento experto codificado, y brindando soluciones precisas en una variedad de escenarios complejos.