Задача G14. В държавата Фатландия има 10 града. Две авиокомпании контролират всички полети между градовете. Всяка двойка градове е свързана с точно един полет (в двете посоки). Докажете, че една от авиокомпаниите може да осигури два пътуващи цикъла, като всеки цикъл минава през нечетен брой градове и двата цикъла нямат общи градове.

Доказателство:

Нека всеки град бъде връх, а всеки полет между два града е ребро между съответните върхове за градовете. Оцветяваме ребро синьо, ако е от едната авиокомпания и червено, ако е от другата. Това ни дава двуцветен пълен граф Γ_{10} . В езика на теорията на графите, трябва да покажем, че има два монохромни (едноцветни), нечетни, непресичащи се цикъла. Ще започнем с добре познати резултати в теорията на графите.

Лема 1. Ако върховете на пълен граф Γ_6 са оцветени в 2 цвята, то графът съдържа монохромен триъгълник.

Доказателство: Нека v_1 , v_2 , v_3 , v_4 , v_5 , v_6 са върховете на Γ_6 (фиг. 1). Разглеждаме ребрата v_1v_2 , v_1v_3 , v_1v_4 , v_1v_5 и v_1v_6 . От принципа на Дирихле, имаме че 3 от тях са оцветени в един цвят. Без ограничение на общността, нека това са ребрата v_1v_2 , v_1v_3 , v_1v_4 (фиг. 2). Ако допуснем, че поне едно от ребрата v_2v_3 , v_3v_4 , v_4v_2 е червено, то тогава ще имаме монохромен триъгълник с това ребро и връх v_1 . В противен случай, нито едно ребро от тях е червено и всички са сини и $v_2v_3v_4$ е монохромен триъгълник.

Това доказва лемата, но доказателството е слабо и включва в себе си тривиалните съображения от принципа на Дирихле. Ще докажем по-силното твърдение, че графът Γ_6 съдържа не един, а два монохтомни триъгълника.

Доказателство: Ако двойка ребра v_iv_j и v_iv_k са с еднакъв цвят, тогава ще наричаме ъгълът $v_jv_iv_k$ монохромен. Нека r_i и b_i са съответно броя на червените и броя на сините ребра от връх v_i . Тогава $r_i+b_i=5$ за всяко i и броя на монохромните ъгли е равен на:

$$\sum_{i=1}^{6} \left(\binom{r_i}{2} + \binom{b_i}{2} \right) \ge \sum_{i=1}^{6} \left(\binom{2}{2} + \binom{3}{2} \right) = 24$$

Тоест броя на тези монохромни ъгли е поне 24.

От друга страна, във всеки монохромен триъгълник има 3 монохромни ъгли, докато във всеки от останалите триъгълници има точно един монохромен ъгъл. Нека m е броя на всички монохромни триъгълника. Тъй като графа образува общо $\binom{6}{3}=20$ триъгълника, то той има 3m+(20-m)=20+2m монохроматични ъгли. Следователно, $20+2m\geq 24$

то тои има 3m + (20 - m) = 20 + 2m монохроматични ъгли. Следователно, $20 + 2m \ge 24$ или $m \ge 2$, което искахме да докажем.

Лема 2. Ако върховете на пълен граф Γ_5 са оцветени в 2 цвята и графът не съдържа монохромен триъгълник, то той има два монохромни цикъла с дължина 5.

Доказателство: Нека v_1 , v_2 , v_3 , v_4 и v_5 са върховете на Γ_5 . От първото (тривиално) доказателство на Лема 1 знаем, че ако три от ребрата v_1v_2 , v_1v_3 , v_1v_4 и v_1v_5 са с един и същ цвят, то имаме монохромен триъгълник, което е забранено по условие. Следователно имаме по две червени и две сини ребра от всеки връх. Ако разгледаме само червените ребра като отделен граф, ще получим подграф от 5 върха и всички тези върхове ще са от степен 2. Следователно този подграф е или цикъл или може да се разбие на няколко непресичащи се цикли. Но тъй като той е само от 5 върха, то той не може да има 2 цикъла. Следователно трябва да има един цикъл с дължина 5. По аналогичен начин може да докажем, че трябва да има и син цикъл с дължина 5.

Вече сме готови да докажем резултата от основната задача. Нека v_1 , v_2 , ..., v_{10} са върховете в нашия двуцветен (червено и синьо) пълен граф Γ_{10} . От Лема 1 следва, че има монохромен триъгълник в Γ_{10} . Без ограничение на общността нека номерираме този триъгълник да е $v_1v_2v_3$. Отново от Лема 1, следва че има монохромен триъгълник и в подграфа $\Gamma_{10} - \{v_1, v_2, v_3\}$. Отново б.о.о. Нека номерираме този триъгълник да е $v_4v_5v_6$. Ако $v_1v_2v_3$ и $v_4v_5v_6$ са с един и същ цвят, то тогава твърдението е изпълнено. Ако не, допускаме, че $v_1v_2v_3$ е син и $v_4v_5v_6$ е червен.

Да разгледаме ребрата v_iv_j , за $1 \le i \le 3$ и $4 \le j \le 6$. Отново, от принципа на Дирихле, 5 от тези ребра са с един и същ цвят. Б.о.о. Нека допуснем, че са сини. Следователно съществува такова j_0 , $4 \le j_0 \le 6$, за което две от ребрата $v_{j_0}v_1$, $v_{j_0}v_2$, $v_{j_0}v_3$ са сини (фиг. 3).

Следователно имаме един син триъгълник и един червен триъгълник с точно един общ връх v_{i_0} .

За улеснение преномерираме върховете, така че $v_1v_2v_3$ е син, а $v_3v_4v_5$ е червен. Разглеждаме подграфа $\Gamma_{10}-\{v_1,v_2,\ldots,v_5\}$. Ако той има монохромен триъгълник, то тогава твърдението е доказано, тъй като може да изберем един от триъгълниците $v_1v_2v_3$ и $v_3v_4v_5$ да е със същия цвят като новия триъгълник. Така една авиокомпания може да предостави два пътуващи цикъла от нечетен брой градове без общи градове.

Ако пък подграфа $\Gamma_{10} - \{v_1, v_2, \dots, v_5\}$ няма монохромен триъгълник, то от Лема 2, имаме червен цикъл с дължина 5 и син цикъл с дължина 5. Следователно всяка от двете авиокомпании може да предостави един пътуващ цикъл от 3 града и един пътуващ цикъл от 5 града без общи градове.