i) (onsider the following snapshot at line to

Snapshot at time T0:

(i) is the s/m in a safe state?
(ii) if a request from PI arrives for (1,02) can the request be granted immediately

A=7+3=10; B=2+3=5; C=7 Sol!! ! Total instances of

(i) safety algorithm:

work = Available, Finish $(P_0 - P_4) = false$ work = [3, 3, 2]

(1) i= Po need [Po] < work [7,4,3] \{[3,3,2] Po connot executé, wait

(2) i= P, need (Pi) < work [1,2,2] < (3,3,2). Preneutes WORK = WORK + allocation

$$w_{Nk} = w_{Nk} + account = (3, 3, 2) + (2, 0, 0)$$

$$= (3, 3, 2) + (2, 0, 0)$$

$$w_{Nk} = (5, 3, 2), Finish[P] = True$$

```
(3) i= P2 need [P2] & work
             [6,0,0] x [5, 3,2] P2 connot execute,
            need [13] < work
             (0,1,1) \leq [5,3,2] P3 encutes
(4) i= P3
            borh = work + allocation [P3]
                 =[5,3,2]+[2,1,1]
           Work = (7, 4, 3), Findsh [P3] = True
           need [Py] < work
            (4,3,1) < [7,4,3] Py executes
(5) 2= P4
           work = work + allocation [P4]
               = [f,4,3]+[0,0,2]
               = (7,4,5), Finish (P4) = True
(6) i = P_0 [7, 4, 3] \in [7, 4, 5], f_0 executes
          work = [7,4,5] + [0,1,0]
          WWL=[7,5,5], Finish[Po]=True
     i=P_2 [6,0,0] \leq [7,5,5] P_2 executes
         work=[7,5,5]+(3,0,2]
       Work= [10,5,7] = Total no. of instances

of Resource Appen
         finish [P2] = True
```

: <P1, P3, P4, Po, P2> sofe sequence

(ii) Snapshot at time T0:

(1) Request [PI]
$$\leq$$
 Need [PI] $(1, 0, 2) \leq (1, 2, 2)$

.. requested resources are needed

(2) Request [P,]
$$\leq$$
 Available (2) $(1,0,2] \leq (3,3,2)$

. Requested resources are available

(3) Assume PI in allocated regressed resources

resources.

Allocate
$$(P_1)$$
 = Allocate (P_1) + Request (P_1) = $[2,0,0]$ + $(1,0,2)$ = $(3,0,2)$ = $(2,0,0)$ + $(1,0,2)$ = $(3,0,2)$

Need
$$(P1)$$
 = Need $(P1)$ = $(1, 2, 2)$ - $(1, 0, 2)$ = $[0, 2, 0]$
= $(1, 2, 2)$ - $(1, 0, 2)$ = $[0, 2, 0]$
Available = Available - Request $(P1)$

idable =
$$4 \text{ vailable} - \text{ Request(1)}$$

= $(3, 3, 2) - (1, 0, 2) = (2, 3, 3)$

Snapshot at time T0:

with these changes safety algorithm is wheched to find if the slm is in safe state.

work = avalable =
$$(2, 3, 0)$$

Finish $[P_0 - P_4] = False$

need
$$(PO) \subseteq WOVL$$

 $(7, 4, 3) \not= [2, 3, 0]$ po cannot ene
 $(7, 4, 3) \not= [2, 3, 0]$ execute; wants

2)
$$i=P1$$
, $(0,2,0] \leq [2,3,0]$ P_1 executes
 $var k = war k + allocation(P_1)$
 $= [2,3,0] + [3,0,2]$
 $= [5,3,2]$, $p_1 var k + [p_1] = True$

3)
$$i=P_2$$
, $(6,0,0)$ \neq $[5,3,2]$, P_2 connot execute

3)
$$i = P_2$$
, (b), $3 = P_3$
4) $i = P_3$, $\{0, 1, 1\} \leq \{5, 3, 2\}$, P_3 executes
work = $\{5, 3, 2\} + \{2, 1, 1\}$

5)
$$i = P_4$$
 $(4,3, 1] \leq [7,4,3]$, P_4 enerules

 $wrk = [7,4,3] + [0,0,2]$
 $= [7,4,5]$

6) $i = P_0$, $[7,4,3] \leq [7,4,5]$ P_0 executes

 $wrk = [7,4,5] + [0,1,0]$
 $= [7,5,5]$, Finish $[P_0] = T_{2}we$

7) $i = P_2$, need $(P_2) \leq work$
 $(6,0,0] \leq (7,5,5)$ P_2 executes

 $wrk = [7,5,5] + [3,0,2]$
 $= [10,5,7]$

... tope sequence in $\langle P_1, P_3, P_4, P_0, P_2 \rangle$... The request of P1 can be granted ... The request of

Devidlock detection

Five processes P0 through P4; three resource types A (7 instances), B (2 instances), and C (6 instances) Snapshot at time T0:

Allocation	Request	Available
ABC	АВС	ABC
010 -) 000	000
200	202	
303	000	
211	100	
002	002	
	ABC 010	$010 \rightarrow 000$ $200 202$ $303 000$ $211 100$

If the requested resources are allocated, check whether s/m will be in rafe state. Also, find ne sale sequence.

Bol?! Initialization.

work = available

work =
$$(0,0,0)$$

work = available | Frish (Po-Py) = False work = (0,0,0) | as all processes are allocated some resources

1) i= Po; Request (Po) < work $(0,0,0) \in (0,0,0)$ work = work + allocation [PO] =(0,0,0)+(0,1,0) = (0, 1, 0), Finish [Po] = True

2)
$$i=P_1$$
; $(2,0,2) \notin (0,1,0)$
 $3)$ $i=P_2$; $(0,0,0) \notin (0,1,0)$
 $with = (0,1,0) + (3,0,3)$
 $= (3,1,3)$, Finish $[P_1] = Tm$
4) $i=P_3$; $(1,0,0) \notin (3,1,3)$
 $with = (3,1,3) + (2,1,1)$
 $= (5,2,4)$, finish $[P_3] = Tme$
5) $i=P_1$; $(0,0,2) \notin (5,2,4)$
 $with = (5,2,4) + (0,0,2)$
 $= (5,2,6)$
 $6)$ $i=P_1$; $(2,0,2) \notin (5,2,6)$
 $with = (5,2,6) + (2,0,0)$
 $with = (7,2,6) + (2,0,0)$

Care Il 92 riqueon additional into -ce of Type c.

Snapshot at time T0:

not at tir	ne 10:		
	Allocation	Request	Available
	АВС	АВС	ABC
P0	010	000	000
P1	200	202	
P2	303	001	
Р3	211	100	
P4	002	002	
	, ,),,	'11 A	safe uf

clect if NIm is safe if the requested resources are allocated. (0,0,0)

sol!! 1) i= Po; request(Po) ≤ work

$$(0,0,0) \leq (0,0,0)$$

wrr = (0, 1, 0), Finish (Po] = drue

2)
$$i = P_1$$
: $(2, 0, 2) \neq (0, 1, 0)$, false

3)
$$i = P_2 : (0, 0, 1) \neq (0, 1, 0)$$
, talse

3)
$$i = P_3$$
: (1,0,0) $(0,1,0)$, false
4) $i = P_3$: (1,0,0) $(0,1,0)$, talse

5)
$$v=P_{4}: (0,0,2) \notin (0,1,0), \text{ false}$$

< P1, P2, P3 \$4> deadlocked processes

Linux Register (30) p Relocation Repister (14500)

press - 9 200 $14500 + 0 \leq PA Notes = 14500 + 300$ $14600 \leq (14800)$ $LA = 400 \times 301 - Nap | 4500 LA = 200 < 301 - 14700 LA = 200 < 301 - 14700

B(F) P2(<u>B</u>)
12 (3)	
P1(F) P8	(B) P, W
P2(W)	

$$\frac{12}{2} = 4 \text{ LB}$$
 $\frac{32}{2} = 4 \text{ B}$