3. Синтез комбінаційних схем

3.1. Представлення функції f_4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна

<u>Алгебра Буля (I, АБО, НЕ)</u>

 $f_{4\Pi\Pi H\Phi} = (\overline{X_4} \, \overline{X_3} \, \overline{X_2} X_1 / V (\overline{X_4} \, \overline{X_3} X_2 \overline{X_1} / V (\overline{X_4} X_3 X_2 X_1 / V (X_4 \overline{X_3} \, \overline{X_2} \, \overline{X_1}) (X_4 \overline{X_1} \, \overline{X_$

 $f_{4I\!IKH\Phi} = |x_4 v x_3 v x_2 v x_1| |x_4 v x_3 v \overline{x_2} v \overline{x_1}| |x_4 v \overline{x_3} v x_2 v x_1| |x_4 v \overline{x_3} v x_2 v \overline{x_1}| |x_4 v \overline{x_3} v x_2 v \overline{x_1}| |x_4 v \overline{x_3} v \overline{x_2} v \overline{x_1}| |x_4 v \overline$

<u>Алгебра Шеффера {I-HE}</u>

f₄ = ((x₄/x₄)/(x₃/x₃)/(x₂/x₂)/x₁)/((x₄/x₄)/(x₃/x₃)/x₂/(x₁/x₁))/
/((x₄/x₄)/x₃/x₂/x₁)/(x₄/(x₃/x₃)/(x₂/x₂)/(x₁/x₁))/
/(x₄/(x₃/x₃)/(x₂/x₂)/x₁)/(x₄/(x₃/x₃)/x₂/(x₁/x₁))/
/(x₄/x₃/(x₂/x₂)/(x₁/x₁)/(x₄/x₃/(x₂/x₂)/x₁)/(x₄/x₃/x₂/x₁).

Anzeδpa Πipca {A50-HE}

 $f_{4} = (x_{4} \uparrow x_{3} \uparrow x_{2} \uparrow x_{1}) \uparrow (x_{4} \uparrow x_{3} \uparrow (x_{2} \uparrow x_{2}) \uparrow (x_{1} \uparrow x_{1})) \uparrow (x_{4} \uparrow (x_{3} \uparrow x_{3}) \uparrow x_{2} \uparrow x_{1}) \uparrow \\ \uparrow (x_{4} \uparrow (x_{3} \uparrow x_{3}) \uparrow x_{2} \uparrow (x_{1} \uparrow x_{1})) \uparrow (x_{4} \uparrow (x_{3} \uparrow x_{3}) \uparrow (x_{2} \uparrow x_{2}) \uparrow x_{1}) \uparrow \\ \uparrow ((x_{4} \uparrow x_{4}) \uparrow x_{3} \uparrow (x_{2} \uparrow x_{2}) \uparrow (x_{1} \uparrow x_{1})) \uparrow ((x_{4} \uparrow x_{4}) \uparrow (x_{3} \uparrow x_{3}) \uparrow (x_{2} \uparrow x_{2}) \uparrow x_{1}).$

<u>Алгебра Жегалкіна {ВИК/110ЧНЕ АБО, I, const 1}</u>

 $f_4 = X_1 \oplus X_2 \oplus X_3 X_1 \oplus X_3 X_2 \oplus X_3 X_2 X_1 \oplus X_4 \oplus X_4 X_1 \oplus X_4 X_2 \oplus X_4 X_2 X_1 \oplus X_4 X_3 X_1 \oplus X_4 X_3 X_2 X_1.$

3.2. Визначення належності функції f_4 до п 3 яти чудових класів

- f(1111) = 1 => функція зберігає одиницю;
- f(0000) = 0 => функція зберігає нуль;
- f(0011) ≠ f(1100) => функція не само двоїста;
- f(0010) > f(0011) => функція не монотонна;
- функція нелінійна, оскільки її поліном Жегалкіна нелінійний.

Зм.	Арк.	№ докум.	Підп.	Дата

3.3. Мінімізація функції f_{4}

Метод Квайна-Мак-Класкі

Виходячи з таблиці 2.2, запишемо стовпчик ДДНФ (К°), розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми групами та виконаємо поглинання термів (рисунок 4.4)

Рисунок 4.4 – Склеювання і поглинання термів

Одержані прості імпліканти запишемо в таблицю покриття (таблиця 4.3).

Таблиця 4.3 -Таблиця покриття

	0001	0010	1000	1001	1010	1100	0111	1101	1111
X001	+			+					
X010		+			+				
10X0			+		+				
X111							+		+
11X1								+	+
1XOX			+	+		+		+	

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {X001; X010; 1X0X; X111}

Оскільки ядро повністю покриває функцію, то в МДНФ входять тільки терми ядра.

$$f_{4MH/I} = \overline{(X_3 X_2 X_1)} \overline{(X_3 X_2 X_1)} \overline{(X_4 X_2)} \overline{(X_4 X_4)} \overline{(X_4 X_$$

Зм.	Арк.	№ докум.	Підп.	Дата

ІАЛЦ.463626.004 ПЗ

Метод невизначених коефіцієнтів

Таблиця 4.4 – Метод невизначених коефіцієнтів

<i>X</i> ₄	X_3	X_2	<i>X</i> ₁	X_4X_3	X_4X_2	X_4X_1	X_3X_2	X_3X_1	X_2X_1	$X_4X_3X_2$	$X_4X_3X_1$	$X_4X_2X_1$	$X_3X_2X_1$	$X_4X_3X_2X_1$	f_4
Ф	Ф	Ф	Ф	00	00	00	00	00	00	000	000	000	000	<i>0000</i>	Ф
Ф	Ә	Ф	1	θθ	00	Ө1	00	01	<i>01</i>	000	<i>001</i>	<i>-001</i>	001	0001	1
О	Ф	1	Ф	00	01	00	<i>01</i>	θθ	10	<i>-001</i>	000	<i>010</i>	010	0010	1
Ә	Ф	1	1	00	01	01	01	0 1	-11	<i>-001</i>	<i>001</i>	011	011	0011	Ф
Ә	1	Ф	Ф	-01	00	00	10	10	00	<i>010</i>	<i>010</i>	000	<i>-100</i>	<i>0100</i>	Ф
Ә	1	Ф	1	01	00	01	10	-1 1	01	<i>010</i>	011	<i>-001</i>	101	<i>0101</i>	Ф
Ә	1	1	Ф	01	01	00	-1 1	10	10	011	<i>010</i>	<i>010</i>	-110	0110	Đ
Ф	1	1	1	-01	01	<i>01</i>	-1 1	-1 1	-1 1	011	011	011	111	0111	1
1	Ә	Ә	Ф	10	10	10	00	00	00	100	100	100	000	1000	1
1	Ф	Ф	1	10	10	-1 1	00	01	01	100	101	101	001	1001	1
1	Ф	1	Ф	10	-1 1	10	01	00	10	-101	100	-110	010	1010	1
1	Ф	1	1	10	-1 1	-1 1	01	01	-11	101	101	-111	011	1011	Ф
1	1	Ф	Ә	-1 1	10	10	10	10	00	110	-110	100	-100	1100	1
1	1	Ә	1	-11	10	-11	10	1 1	01	110	111	101	101	1101	1
4	1	1	Ф	-1 1	-1 1	10	-1 1	10	10	-111	-110	-110	-110	-1110	Ф
4	1	1	1	-1 1	-1 1	-1 1	-1 1	-1 1	-11	-111	111	-111	111	1111	1

Ідея цього методу полягає у відшуканні ненульових коефіцієнтів при кожній імпліканті. Метод виконується у декілька етапів:

- 1. Рівняння для знаходження коефіцієнтів представляється у вигляді таблиці (таблиця 4.4).
- 2. Виконується викреслення нульових рядків.
- 3. Викреслюються вже знайдені нульові коефіцієнти на залишившихся рядках. 4. Імпліканти, що залишилися, поглинають імпліканти справа від них.

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {X001; X010; 1X0X; X111}

Оскільки ядро повністю покриває функцію, то в МДНФ входять тільки терми ядра.

$$f_{4MHJI} = (x_4 \overline{x_2}) \sqrt{x_3} \overline{x_2} x_1 \sqrt{x_3} x_2 \overline{x_1} / \sqrt{x_3} x_2 x_1 / \sqrt{x_3} x_2 \overline{x_1} / \sqrt{x_3} x_2 x_1 / \sqrt{x_3} x_2 x_1 / \sqrt{x_3} x_2 \overline{x_1} / \sqrt{x_3} x_2 x_1 / \sqrt{x_3} x_2 \overline{x_1} / \sqrt{x_3} x_2 x_1 / \sqrt{x_3} x_2 \overline{x_1} / \sqrt{x_3} \overline{x_2} \overline{x_1} / \sqrt{x_3$$

Метод діаграм Вейча

Метод діаграм Вейча— це графічний метод, призначений для ручної мінімізації. Його наочність эберігається за невеликої кількості аргументів. Кожна клітинка відповідає конституанті. Кожний прямокутник, що містить 2 елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті (рисунок 4.5).

Зм.	Арк.	№ докум.	Підп.	Дата