

Mr. Nuttapong Pantong
Thai Meteorological
Department
www.tmd.go.th





- Introduction
- Calibration
- SWAT Parameter
- Technique for SWAT Calibration

# **Hydrological Calibration**



To calibrate water balance and stream flow we need to have some understanding of the actual conditions occurred in the watershed:

- Data of the stream flow located at the outlet of your model sub basin
- Quality check on the observed flow data
- Compare hydrograph of your model result with the observed flow at selected gauge site, and trial to match with calibration criteria (Volume ratio and COE)

## **Calibration and Validation**



Calibration: Model testing with know input and output used to adjust or estimate factors

Validation: Comparison of model results with an independent data set (without further adjustment)

## **How to Calibration?**



### Compare Simulated data with Observed data

- Look into sequence
  - o annual water balance
  - Seasonal variability
  - o Base flow
  - Overall Time Series
- Statistics
  - Mean & Standard deviation
  - Coefficient of Efficiency (COE)
  - o Volume Ratio

# **Calibration criteria**



### Look into sequence

Simulated data with Observed data



## Calibration criteria



## Compare Simulated data with Observed data

- Achieve Mass Balance
   Good comparison of volume ratio
- 2. Match Flow hydrograph (Yearly, monthly and daily) Good comparison of hydrograph shape
- Match Flow Distribution Patterns
   Good comparison of flow duration curves

## **Calibration criteria**



#### **Statistics**

1. Assessment of preservation of mass (Error of Volume Ratio, %)

$$V_r = \left(1 - \frac{\sum_{i=1}^n S_i}{\sum_{i=1}^n O_i}\right) * 100\% \qquad \boxed{90 - 110}$$

 $O_i = Observed flow at day i$ 

 $S_i = Simulated flow at day i$ 

i = Day no. i

n = Number of days

 $\overline{O} = Mean of observed flows$ 

2.Assessment of preservation of daily and monthly flow peaks

(Coefficient of Efficiency, Nash-Suttcliffe)

$$CE = 1 - \frac{\sum_{i=1}^{n} (O_i - S_i)^2}{\sum_{i=1}^{n} (O_i - \overline{O})^2}$$
 > **0.65**

# **Evaluate the efficiency of model**



### **Coefficient of efficiency**

| Value        | Performance<br>Rating | Modeling Phase             | Reference                                                 |
|--------------|-----------------------|----------------------------|-----------------------------------------------------------|
| > 0.65       | Very Good             | Calibration and validation | Saleh et al.(2000)                                        |
| 0.54 to 0.65 | Adequate              | Calibration and validation | Saleh et al.(2000)                                        |
| > 0.50       | Satisfactory          | Calibration and validation | Santhi et al. (2001); adopted by Bracmort et al. (2006)   |
| < 0.65       | Satisfactory          | Calibration and validation | Santhi et al. (2004); adopted by Narasimhan et al. (2005) |

After D.N.Moriasi et al. (2007)

### **Calibration Method**



- Optimization Method (Auto-Calib.)
  - → SWAT CUP
- Manual Method (Trial & Error)

# Calibration steps



- 1. Separate base flow (using base flow filter program)
- 2. Extract result from the model for comparison
- 3. Check compared values then select parameters for calibration
- 4. Adjust Parameters

## **Calibrate flowchart**





### Parameter for SWAT Calibration





#### www.tmd.go.th

## Parameter for SWAT Calibration

| Gro |                |                                |        | Sensitiv |
|-----|----------------|--------------------------------|--------|----------|
| up  | Parameter      | Description                    | Value  |          |
|     | AlPHA_B        | Base flow recession factor,    | 0.02 - | low      |
|     | F              | days                           | 0.8    |          |
|     | REVAPM         | Threshold depth for            | 0 -    | 1044     |
| GW  | N              | revaporation to occur, mm      | 1500   | low      |
|     | GWQMN          | Threshold depth for ground     | 0 -    | low      |
|     |                | water flow to occur, mm        | 500    |          |
|     | GW_DEL         | Cround water delays days       | 0 -    | high     |
|     | AY             | Ground water deleys, days      | 150    |          |
|     | RCHRG_         | Deep aquifer recharge fraction | 0 -    | high     |
|     | DP             | Deep aquiter recharge fraction | 0.4    |          |
|     | GW_REV         | Ground water revaporation      | 0.02 - | low      |
|     | AP coefficient |                                | 0.2    | low      |



#### **Check Surface Runoff**

| Surface  | Parameter |                   |                   |  |  |
|----------|-----------|-------------------|-------------------|--|--|
|          | CN        | Sol_AWC           | ESCO              |  |  |
| Too high | decrease  | increase <b>†</b> | decrease          |  |  |
| Too low  | increase  | decrease          | increase <b>†</b> |  |  |

#### **Check Subsurface Runoff**

| Subsurface (Baseflow) | Parameter |                   |                   |  |
|-----------------------|-----------|-------------------|-------------------|--|
|                       | GW_REVAP  | REVAPMN           | GWQMN             |  |
| Too high              | increase  | decrease          | increase          |  |
| Too low               | decrease  | increase <b>†</b> | decrease <b>J</b> |  |

### www.tmd.go.th



### Example 1



1. High Surface flow Adjust:

CN (\*.mgt)
SOL\_AWC (\*.sol)
ESCO (\*.sub)

2. Little Base flow

Adjust: GW parameter (\*.gw)

Simulated

Observed



### Example 2



### Lag Time

- Tc is too long
- Less than actual slope for overland flow
- Over estimated surface roughness
- Flood routing coefficients
- Increase slope for overland flow (SLOPE)
- Manning's roughness coefficient, lower it after checking OV\_N tables (OV\_N)
- The value of overland flow length- lower to 5-10m, if necessary (SLSUBBSN)

#### www.tmd.go.th



### Example 3



### Flow missing

Rainfall data is not represent or missing

## **Common Problems on Calibration**



- Too little data or monitoring period too short
- No observed data
- Prediction of future conditions which are outside the model conditions
- Adjustment of the wrong parameter
- Adjustments destroy physical representation of system by model





|                     | rch                                     | SUB                                    | ▼  | YEAR → | MON - | AREAkm2 → | _     | FLOW_OUTc - |
|---------------------|-----------------------------------------|----------------------------------------|----|--------|-------|-----------|-------|-------------|
| tblDepDef tblDepDef | thIDanDaf                               | d:                                     | 1  | 1985   | 1     | 1560      | 38.1  | 38.82       |
|                     | шьерьег                                 | ,                                      | 2  | 1985   | 1     | 2520      | 65.63 | 65.51       |
|                     | tblHruDef                               | · ei                                   | 3  | 1985   | 1     | 3038      | 77.7  | 76.14       |
| tblMgt              | 15154-14-6                              |                                        | 4  | 1985   | 1     | 4016      | 96.0  | . 99.78     |
| ===                 | tblMgtdef                               | ¥<br>85                                | 5  | 1985   | 1     | 195.2     | 6.40  | 6.403       |
|                     | 111111111111111111111111111111111111111 | 85<br>85                               | 6  | 1985   | 1     | 5204      | 130.3 | 130         |
|                     |                                         | 85                                     | 7  | 1985   | 1     | 627.9     | 26.43 | 26.37       |
| tblRchDef tblRchDef | tblRchDef                               | 85<br>85                               | 8  | 1985   | 1     | 5861      | 148.  | 146.7       |
|                     | tblRsvDef                               | 85<br>85                               | 9  | 1985   | 1     | 258.9     | 6.35  | 6.344       |
|                     |                                         | 85                                     | 10 | 1985   | 1     | 146.1     | 6.30  | 6.292       |
|                     | :blSedDef                               | 85<br>85                               | 11 | 1985   | 1     | 6496      | 180.  | 180.5       |
|                     |                                         | 85<br>85                               | 12 | 1985   | 1     | 1074      | 36.7  | 36.67       |
| _                   |                                         | 85                                     | 13 | 1985   | 1     | 267.7     | 16.2  | 16.28       |
|                     | tblSnwDef                               | 85<br>85                               | 14 | 1985   | 1     | 1937      | 77.13 | 77.09       |
| tblSub              | olSubDef 8                              | 85<br>85                               | 15 | 1985   | 1     | 173.3     | 4.59  | 4.591       |
|                     |                                         | 85<br>85                               | 16 | 1985   | 1     | 1452      | 36.3  | 36.27       |
|                     | tblSwrDef                               | 85                                     | 17 | 1985   | 1     | 302.3     | 9.50  | 9.373       |
| tblVel              |                                         | 85<br>85                               | 18 | 1985   | 1     | 2430      | 98.5  | 98.41       |
|                     |                                         | 85<br>85                               | 19 | 1985   | 1     | 9120      | 234   | 232.9       |
|                     |                                         | 85                                     | 20 | 1985   | 1     | 501.7     | 9.80  | 9.844       |
|                     | tblWtrDef                               | ### ### ### ### ### ### #### ######### | 21 | 1985   | 1     | 261.5     | 5.00  | 5.01        |
| LDIVVIIDEI          | IDIAAIIDEI                              |                                        |    | ,      |       |           |       |             |

www.tmd.go.th

### **SWAT Calibration**



#### **Simulation Flow out**





# Exercise

- Calibration and see results

Contract

Email: Nuttapong34@gmail.com