Infrared Molecular Absorption Cross-sections

The folder IR-XSect contains files of infrared cross-sections. The definition and units have been described in articles about the HITRAN compilation. Each molecule is placed in a single file. Within that file are sets of temperature and pressure pairs. The sets have a header that provides information to programs reading the data and also points to a reference for that observation. The sets contain absorption cross-sections (ten to a line from left to right) that are in equal wavenumber (cm⁻¹) increments, and the intervals can be determined by the minimum and maximum wavenumber and the number of points, namely

$$\Delta v = \frac{v_{\text{max}} - v_{\text{min}}}{npts - 1}$$

where v_{max} is the maximum (final) wavenumber of the set, v_{min} is the minimum (initial) wavenumber of the set, and *npts* is the number of points in the set. The format of the header is given below.

Note: **Chemical Symbol** is right adjusted; **Res**. is resolution in cm⁻¹ for FTS measurements, and **Br** indicates the broadening gas, such as air.

The \Supplemental folder contains two types of files: (1) some older, redundant cross-section data that have nonetheless been retained, and (2) data that have some small experimental negative cross-sections that were zeroed out for the files in the main directory (some users prefer these files as they do not introduce any bias). The extension for file names is ".xsc" for the former, and ".alt" for the latter.

A summary of the molecules represented with their temperature and pressures ranges and spectral coverage is given in the table on the following pages:

Summary	of Molec	ules Rep	presented by
Infrared	Cross-sec	tion Data	a in HITRAN

	illared Cross-	Section D			
			Pressure	Number	Spectral
		Temperature	Range	of T,P	Coverage
Molecule	Common Name	Range (K)	(torr)	sets	(cm ⁻¹)
SF_6	Sulfur hexafluoride	180-295	20-760	32	925-955
		189-297	0-117	25	750–830
ClONO ₂	Chlorine nitrate	189-297	0-117	25	1260-1320
		213-296	0	2	1680-1790
CCl ₄	Carbon tetrachloride	208-297	8-760	32	750-812
N_2O_5	Dinitrogen pentoxide	205-293	0	5	540-1380
HNO_4	Peroxynitric acid	220	0	1	780-830
	Hexafluoroethane,	181-296	25-760	43	1061-1165
C_2F_6	CFC-116	181-296	25-760	43	1220-1285
		190-296	8-760	55	810-880
CCl ₃ F	CFC-11	190-296	8-760	55	1050-1120
CCLE	CEC 12	190-296	8-760	52	850-950
CCl_2F_2	CFC-12	190-296	8-760	52	1050-1200
		203-293	0	6	765-805
CClF ₃	CFC-13	203-293	0	6	1065-1140
		203-293	0	6	1170-1235
CF_4	CFC-14	180-296	8-761	55	1250-1290
$C_2Cl_2F_3$	CFC-113	203-293	0	6	780-995
626121 3	CI C 113	203-293	0	6	1005-1232
		203-293	0	6	815-860
$C_2Cl_2F_4$	CFC-114	203-293	0	6	870-960
C2C121 4		203-293	0	6	1030-1067
		203-293	0	6	1095-1285
G GIF	CEC 44#	203-293	0	6	955-1015
C_2ClF_5	CFC-115	203-293	0	6	1110-1145
CHCLE	HODG 21	203-293	0	6	1167-1260
CHCl ₂ F	HCFC-21	296	1	1	785-840
		181-297	0-765	29	760-860
CHClF ₂	HCFC-22	181-296	22-761	31	1070-1195
2		253-287	0	3	1060-1210
		253-287	0	3 3	1275-1380
CHCl ₂ CF ₃	HCFC-123	253-287 253-287	0	3	740-900 1080-1450
		253-287	0	1	675-715
CHClFCF ₃	HCFC-124	287 287	0	1	675-715 790-920
СПСІГСГ3	ПСГС-124	287 287	0	1	1035-1430
		401	U	1	1033-1430

		253-287	0	3	710-790		
CH ₃ CCl ₂ F	HCFC-141b	253-287	0	3	895-1210		
J 2		253-287	0	3	1325-1470		
CHCL CE CE	HCEC 225	253-287	0	3	695-865		
CHCl ₂ CF ₂ CF ₃	HCFC-225ca	253-287	0	3	1010-1420		
CClF ₂ CF ₂ CHClF	HCFC-225cb	253-287	0	3	715-1375		
СПЕ	HFC-32	203-297	0-750	17	995-1236		
CH_2F_2	пгС-32	203-297	0-750	17	1385-1475		
		287	0	1	700-745		
CHF_2CF_3	HFC-125	287	0	1	840-890		
		287	0	1	1060-1465		
CHF_2CHF_2	HFC-134	203-297	0-750	9	600-1700		
		253-287	0	3	815-865		
CFH ₂ CF ₃	HFC-134a	190-296	20-760	32	1035-1130		
C1 112C1 3	III C 154u	190-296	20-760	33	1135-1340		
		253-287	0	3	935-1485		
		203-297	0-750	9	580-630		
CF ₃ CH ₃	HFC-143a	203-297	0-750	9	750-1050		
		203-297	0-750	9	1100-1500		
CVI CVIE	HFC-152a	253-287	0	3	840-995		
CH_3CHF_2		253-287	0	3	1050-1205		
		253-287	0 760		1320-1490		
		213-323 213-323	760 760	5 5	599-624 676-704		
	Trifluoromethyl	213-323	760 760	5	740-766		
SF ₅ CF ₃	sulfur pentafluoride	213-323	760 760	5	860-920		
		213-323	760 760	5	1150-1280		
		213-323	760	5	1280-2600		
CH ₃ C(O)OONO ₂	PAN	295	0.08	1	1650-1901		
- 3-(-)2		276-324	760	3	624-784		
		276-324	760	3	867-1159		
CH CN	Acetonitrile	276-324	760	3	1175-1687		
CH₃CN	(methyl cyanide)	276-324	760	3	2217-2343		
		276-324	760	3	2786-3261		
		276-324	760	3	3881-4574		
New data introduced since HITRAN2008							
C_2H_6	Ethane	194-297	49-763	14	2545-3315		
$C_2\Pi_6$	Lulane						
CH₃OH	Methanol	204-295	50-761	12	877-1167		
		204-296	51-761	12	2600-3250		
CH ₃ CN	Acetonitrile	203-297	50-760	12	880-1700		
		208-296	50-760	11	2550-3300		
C_3H_8	Propane	195-296	40-763	12	2540-3300		
5,118	openie						
CH ₃ COCH ₃	Acetone	194-298	50-700	19	830-1950		
		195-296	49-759	12	2615-3300		

CH ₃ C(O)OONO ₂	PAN	250-295	0	3	560-1400
		250	0	1	1590-2200
CH ₃ CHO	Acetaldehyde	200-297	50-762	16	2400-3400
CH ₃ CClF ₂	HCFC-142b	223-283	0	7	650-1500
$BrONO_2$	Bromine nitrate	218-296	0	2	770-843
Cloocl	Chlorine peroxide	225-250	15-33	4	500-835

Notes: These data are in the main directory. Additional redundant data for CFC-11, CFC-12, HFC-125, and HFC-143a are stored in a supplemental sub-directory.