Задача

Условие

В правильном тетраедре с ребром 2 проводится сечение плоскостью, параллельной одной из гранией. Выразите площадь этого сечения как f(x), где x – расстояние между гранью и плоскостью сечения.

Решение

Заметим, что, поскольку $B_0B_1B_2||A_0A_1A_2$,

$$OA_0A_1 \sim OB_0B_1;$$

 $OA_1A_2 \sim OB_1B_2;$
 $OA_2A_0 \sim OB_2B_0.$

Причем эти три подобия имеют обинаковые коэффициенты подобия, поскольку имеют общие стороны. Обозначим этот коэфициент подобия за α . Если P и Q – середины сторон B_0B_1 и A_0A_1 соответственно, то

$$OP = \alpha OQ, \tag{1}$$

как медианы подобных. А значит их высоты тоже относятся в α раз. Тогда, поскольку $B_0B_1B_2\sim A_0A_1A_2$ тоже с коэффициентом α , $S_B=\alpha^2S_A$. Известно, что высота правильного тетраедра равна $\sqrt{2/3}a=2\sqrt{2/3}$. А значит, что $S_B=\left(1-\sqrt{3/8}x\right)^2S_A=\left(1-\sqrt{3/8}x\right)^2\sqrt{3}$

