LÓGICA COMPUTACIONAL I

Tema: Semântica.

Conferencia: Tautologia, Contradição, Satisfação, & Equivalência Tautologia(T): É uma fórmula lógica ou uma proposição composta, em que todas as suas interpretações são verdadeiras.

As tautologias são também denominadas proposições tautológicas ou proposições logicamente verdadeiras

Exemplo: A proposição: ~(p \ ~p)

р	~ p	p ∧ ~ p	~(p ^ ~p)
1	0	0	1
0	1	0	1

Contradição (C): É uma fórmula lógica ou uma proposição composta, em que todas as suas interpretações são falsas.

As contradições são também denominadas proposições contraválidas ou proposições logicamente falsas.

Exemplo: A proposição: $p \leftrightarrow \sim p$

p	~ p	$\mathbf{p} \leftrightarrow \sim \mathbf{p}$	
1	0	0	
0	1	0	

Satisfatória(S): É uma fórmula lógica, em que algumas das as suas interpretações são verdadeiras e falsas, cada um pelo menos uma vez.

Em outros termos, satisfatória é toda proposição composta que não é tautologia e nem contradição.

Exemplo: A proposição: $p \rightarrow \sim p$

p	~ p	$\mathbf{p} ightarrow \sim \mathbf{p}$
1	0	0
0	1	1

Equivalente (\cong) : É quando as fórmulas lógicas são equivalentes em todas as suas interpretações.

Exemplo: As proposições:

$$F_1: p \to q \cong \neg p \vee q : F_2$$

p	q	~p	$F_1: p \to q$	F_2 : ~p \(\text{q} \)	$F_1 \cong F_2$
1	1	0	1	1	1
1	0	0	0	0	1
0	1	1	1	1	1
0	0	1	1	1	1

$$F_1 \cong F_2$$

Exercícios:

Determinar se as proposições a seguir são tautologia, contradição ou satisfatória, usando o método da Tabela de verdade.

- a) $p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$
- b) $\sim (p \lor q) \lor (\sim p \land r) \leftrightarrow \sim r$
- c) $p \lor (p \land q) \rightarrow p$
- d) $p \land (p \lor q) \rightarrow p$

Exercícios:

- e) $q \vee r \leftrightarrow (p \wedge q) \rightarrow (p \wedge r)$
- f) $(p \vee r) \vee (p \wedge q) \vee r$
- g) $\sim p \vee q \leftrightarrow r \vee \sim p \wedge r \leftrightarrow \sim r$
- h) $p \land q \leftrightarrow p \lor q \rightarrow p$
- i) $p \lor q \rightarrow q \land r \leftrightarrow \sim p \lor \sim r$
- j) $p \wedge r \vee q \rightarrow (p \leftrightarrow q \wedge \sim r)$