Conjuntos Difusos

- Conjuntos difusos
- Cardinalidad
- Tipos de funciones de pertenencia

Conjuntos difusos: Fundamentos

Definición

Un conjunto difuso, es una generalización de un conjunto binario (crisp), cuyas funciones de pertenencia toman valores entre [0,1]. Para facilitar implementaciones computacionales, normalmente se representan de manera discreta y finita con elementos definidos dentro de un universo de discurso X.

Por ejemplo:

$$A = \frac{\mu_A(x_1)}{x_1} + \frac{\mu_A(x_2)}{x_2} + \dots + \frac{\mu_A(x_n)}{x_n} = \sum_{x_i=1}^n \frac{\mu_A(x_i)}{x_i}$$

Cada término $(\mu_A(x_i)/x_i)$ proporciona el grado de pertinencia $\mu_A(x_i)$ del elemento x_i en relación al conjunto difuso A

¡Cuidado con esta notación! El sumatorio pierde su significado habitual. El signo más indica la concatenación de todos los elementos del conjunto A, y n indica la cantidad de elementos discretizados.

Conjuntos difusos: Terminología

• Por ejemplo, el **conjunto difuso** A dado por la función de pertenencia ilustrado en el gráfico, puede ser representado por:

$$A = \left\{ \frac{0}{1} + \frac{0}{2} + \frac{0.5}{3} + \frac{1}{4} + \frac{0.5}{5} + \frac{0}{6} + \frac{0}{7} \right\}$$

valor de x en el Universo de discurso X

Conjuntos difusos: propiedades

1) Normalidad: un conjunto difuso A se dice que está Normalizado si por lo menos existe un elemento que tiene grado de pertenencia igual a 1, es decir, $\mu_A(x_i) = 1$. Si $\mu_A(x_i) < 1$ para todo $x_i \in A$, se dice que el conjunto difuso es No normalizado.

Conjuntos difusos: propiedades

2) Altura: de un conjunto difuso A corresponde al mayor grado de pertenencia.

$$ALT(A) = \max_{x} \mu_A(x_i)$$

3) Soporte: es el conjunto de todos los elementos de A que tienen grados de pertenencia mayor a cero.

$$Supp(A) = \{x \in X | \mu_A(x_i)\}$$

$$Supp(A) = \{x \in X | 1 < x < 9\}$$

4) Centro: es el conjunto de todos los puntos para los cuales $\mu_A(x) = 1$

Conjunto difuso convexo

• Un conjunto difuso A es **convexo** si se cumple la siguiente desigualdad:

$$\mu_A(\lambda x_1+(1-\lambda)x_2)\geq \min\{\mu_A(x_1),\mu_A(x_2)\}$$
 donde $x_1,x_2\in X;\lambda\in[0,1]$

Cardinalidad en Conjuntos difusos

• La cardinalidad de un conjunto difuso es la suma de los grados de pertenencia de todos los elementos de A.

$$Card(A) = \sum_{x_i} \mu_A(x_i)$$

• Ejemplo 1: Sea A un conjunto difuso discreto dado por:

$$A = \{0.1/1 + 0.3/2 + 0.6/3 + 1/4 + 0.6/5 + 0.2/6\}, \text{ con } X = \{1,2,3,4,5,6\}$$

$$Card(A) = ? \qquad Card(A) = 2.8$$

Cortes en conjuntos difusos

• Un alfa-corte en un conjunto difuso A, es el conjunto que contiene todos los elementos de A pertenecientes a ${\bf X}$ que poseen grado de pertenencia mayor o igual al valor de corte α

$$A_{\alpha} = \{ x \in X | \mu_A(x) \ge \alpha \}$$

• Ejemplo 1. Sea A un conjunto difuso discreto dado por:

$$A = \{0.3/1 + 0.7/2 + 1/3 + 0.8/4 + 0.6/5 + 0.2/6\}, \text{ con } X = \{1,2,3,4,5,6\}$$

Ejemplo de alfa-corte

• Encuentre los alfa-cortes 0 y 0.8 para el conjunto difuso discreto A, definido en el universo de discurso $X = \{0,...,80\}$, por la siguiente función de pertenencia:

$$\mu_A(x) = \begin{cases} 0, & si \ x \le 20, x \ge 60 \\ \frac{x - 20}{10}, & si \ 20 < x < 30 \\ 1, & si \ 30 \le x \le 50 \\ \frac{60 - x}{10}, & si \ 50 < x < 60 \end{cases}$$

•
$$A_{\alpha=0} = [0,80] = X$$

•
$$A_{\alpha=0.8} = [(10\alpha+20), (60-10\alpha)]$$

=[28,52]

Operaciones con conjuntos difusos

Unión → Norma S

Intersección → Norma T

Complemento

Diferencia

Operaciones en conjuntos difusos: Unión

• El conjunto **UNIÓN** entre dos conjuntos difusos A y B, pertenecientes a un mismo universo de discurso X, se forma por todos los valores **máximos** entre $\mu_A(x)$ y $\mu_B(x)$. Formalmente se tiene:

$$\mu_A(x) \cup \mu_B(x) = MAX \{ \mu_A(x), \mu_B(x) \}$$
$$= \mu_A(x) \vee \mu_B(x)$$

• Generalizando, para una colección de *m* conjuntos difusos, todos definidos en un mismo universo de discurso X, se tiene:

$$\bigcup_{i=1}^{m} \mu_{A_i}(x) = MAX\{\mu_{A_1}(x), \mu_{A_2}(x), \dots, \mu_{A_m}(x)\}$$

Operaciones en conjuntos difusos: Unión

- Otros operadores de UNIÓN:
 - ☐ Suma algébrica

$$\mu_A(x) + \mu_B(x) = \{\mu_A(x) + \mu_B(x)\} - \mu_A(x) \cdot \mu_B(x)$$

Suma limitada

$$\mu_A(x) \oplus \mu_B(x) = MIN\{1, \mu_A(x) + \mu_B(x)\}\$$

☐ Suma drástica

tica
$$\mu_A(x) \rho \mu_B(x) = \begin{cases} \mu_A(x), & si \mu_B(x) = 0 \\ \mu_B(x), & si \mu_A(x) = 0 \\ 1, & caso \ contrario \end{cases}$$

S-normas

Ejemplo: Suma algébrica

Ejemplo: Suma drástica

Si en alguno de los conjuntos, existe $\mu(x) = 0$ (mínimo), esta función regresa el grado de pertenencia del otro conjunto.

Si no hay $\mu(x) = 0$ en ningún conjunto regresa 1.

Operaciones en conjuntos difusos: Intersección

• La INTERSECCIÓN entre dos conjuntos difusos A y B, pertenecientes a un mismo universo de discurso X, se forma por todos los valores **mínimos** entre $\mu_A(x)$ y $\mu_B(x)$. Formalmente se tiene:

$$\mu_A(x) \cap \mu_B(x) = MIN \{\mu_A(x), \mu_B(x)\}$$
$$= \mu_A(x) \wedge \mu_B(x)$$

• Generalizando, para una colección de *m* conjuntos difusos, todos definidos en un mismo universo de discurso X, se tiene:

$$\bigcap_{i=1}^{m} \mu_{A_i} = MIN\{\mu_{A_1}(x), \mu_{A_2}(x), \dots, \mu_{A_m}(x)\}$$

Operaciones en conjuntos difusos: Intersección

- Otros operadores de INTERSECCIÓN:
 - Producto algébrico $\mu_A(x) * \mu_B(x) = \mu_A(x). \mu_B(x)$
 - Producto limitado $\mu_A(x) \otimes \mu_B(x) = MAX\{0, \mu_A(x) + \mu_B(x) 1\}$
 - Producto drástico $\mu_A(x) \ \sigma \ \mu_B(x) = \begin{cases} \mu_A(x), & si \ \mu_B(x) = 1 \\ \mu_B(x), & si \ \mu_A(x) = 1 \\ 0, & caso \ contrario \end{cases}$

T-normas

Ejemplo: Producto algébrico

Ejemplo: Producto drástico

Si en alguno de los conjuntos, existe $\mu(x) = 1$ (máximo), esta función regresa el grado de pertenencia del otro conjunto.

Si no hay $\mu(x) = 1$ en ningún conjunto regresa 0.

Operaciones en conjuntos difusos: Complemento

• El conjunto **COMPLEMENTO** de un conjunto difuso A, perteneciente a un mismo universo de discurso X, se forma por la **sustracción** de $\mu_A(x)$ del valor unitario 1. Formalmente se tiene: $\mu_{\bar{A}}(x) = 1 - \mu_A(x)$

Ejemplo: Complemento $V \in [30,120]$ $A \land \land B$ Universo de Discurso $V \in [30,120]$

90

Ejemplos de operaciones en conjuntos difusos

• Ejemplo 1:

Sean A y B dos conjuntos difusos, definidos en el universo de discurso $X=\{1,2,3,4,5\}$:

$$A = \{0/_1 + 1/_2 + 0.5/_3 + 0.3/_4 + 0.2/_5\}$$

$$B = \{0/_1 + 0.5/_2 + 0.7/_3 + 0.2/_4 + 0.4/_5\}$$

Calcule las siguiente operaciones:

a)
$$\mu_A(x) \cup \mu_B(x) = \{0/1+1/2+0.7/3+0.3/4+0.4/5\}$$
 (Máximo)

b)
$$\mu_A(x) \cap \mu_B(x) = \{0/1+0.5/2+0.5/3+0.2/4+0.2/5\}$$
 (Mínimo)

c)
$$\mu_{\bar{A}}(x) = \{1/1+0/2+0.5/3+0.7/4+0.8/5\}$$

d)
$$\mu_{\bar{B}}(x) = \{1/1+0.5/2+0.3/3+0.8/4+0.6/5\}$$

Ejemplos de operaciones en conjuntos difusos

• Ejemplo 2:

Sean los siguientes conjuntos difusos definidos en el universo de discurso

$$X = \{1,2,3,4,5,6,7,8\}:$$

$$A = \{0.1/1 + 0.2/2 + 0.5/3 + 1/4 + 0.4/5 + 0.2/6 \}$$

$$B = \{0.1/3 + 0.2/4 + 0.5/5 + 1/6 + 0.4/7 + 0.2/8\}$$

Calcular las siguientes operaciones según las distintas S-normas (unión):

- Máximo: $MAX\{\mu_A(x), \mu_B(x)\}\$ $\mu_A(x) \lor \mu_B(x) = \{0.1/1, 0.2/2, 0.5/3, 1/4, 0.5/5, 1/6, 0.4/7, 0.2/8\}$
- Suma Algébrica: $\mu_A(x) + \mu_B(x)$

$$\mu_A(x).\mu_B(x) = \{0.05/3, 0.2/4, 0.2/5, 0.2/6\}$$
$$\{\mu_A(x) + \mu_B(x)\} - \mu_A(x).\mu_B(x) = \{0.1/1, 0.2/2, \mathbf{0.55/3}, \mathbf{1/4}, \mathbf{0.7/5}, \mathbf{1/6}, 0.4/7, 0.2/8\}$$

• Suma Drástica:
$$\begin{cases} \mu_A(x), & si \ \mu_B(x) = 0 \\ \mu_B(x), & si \ \mu_A(x) = 0 \\ 1, & caso \ contrario \end{cases}$$

$$\mu_A(x) \rho \mu_B(x) = \{0.1/1, 0.2/2, 1/3, 1/4, 1, /5, 1/6, 0.4/7, 0.2/8\}$$

Ejemplos de operaciones en conjuntos difusos

• Ejemplo 3:

$$A = \{0.1/1 + 0.2/2 + 0.5/3 + 1/4 + 0.4/5 + 0.2/6 \}$$

$$B = \{0.1/3 + 0.2/4 + 0.5/5 + 1/6 + 0.4/7 + 0.2/8\}$$

Calcular las siguientes operaciones según las distintas T-normas(intersección):

• Mínimo:
$$MIN\{\mu_A(x), \mu_B(x)\}\$$

$$\mu_A(x) \wedge \mu_B(x) = \{0.1/3, 0.2/4, 0.4/5, 0.2/6\}\$$

• Producto Algébrico: $\mu_A(x) * \mu_B(x)$ $\mu_A(x).\mu_B(x) = \{0.05/3, 0.2/4, 0.2/5, 0.2/6\}$

• Producto Drástico:
$$\begin{cases} \mu_A(x), & si \ \mu_B(x) = 1 \\ \mu_B(x), & si \ \mu_A(x) = 1 \\ 0, & caso \ contrario \end{cases}$$

$$\mu_A(x) \sigma \mu_B(x) = \{0/1,0/2,0/3,0.2/4,0/5,0.2/6,0/7,0/8\}$$

Operaciones en conjuntos difusos: Consideraciones especiales

• El conjunto **DIFERENCIA** entre dos conjuntos difusos A y B, pertenecientes a un mismo universo de discurso X, se forma por todos los valores **mínimos** entre $\mu_A(x)$ y los valores del complemento de $\mu_B(x)$. Formalmente puede definirse como:

$$\mu_A(x)|\mu_B(x) = MIN \{\mu_A(x), \mu_{\overline{B}}(x)\}$$
 \longrightarrow $A|B = A \cap \overline{B}$

• En lógica clásica se cumplen las siguientes leyes:

Ley de contradicción	$A\cap \overline{A} = \emptyset$
Ley del tercio excluido	$A \cup \overline{A} = X$
Leyes de Morgan	$\overline{\overline{A \cup B}} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

• En lógica difusa también se aplican esas leyes, pero tienen consideraciones especiales.

Operaciones en conjuntos difusos: Consideraciones especiales

- La ley de contradicción: $A \cap \overline{A} = \emptyset$ y del Tercio excluido: $A \cup \overline{A} \neq X$ no se cumplen en conjuntos difusos. Si se cumplieran significaría afirmar que o bien un valor es totalmente verdad o es totalmente falso. Un conjunto clásico se convertirá en difuso, justamente cuando se comiencen a quebrar dichas leyes.
- La Ley de contradicción y Tercio excluido en conjuntos difusos, deben cumplir lo siguiente:
 - \triangleright Ley de la contradicción: $A \cap \overline{A} \neq \emptyset \longrightarrow \mu_A(x) \cap \mu_{\overline{A}}(x) = MIN\{\mu_A(x), \mu_{\overline{A}}(x)\}$
 - \triangleright Ley del tercio excluido: A \cup $\overline{A} \neq X$ \longrightarrow $\mu_A(x) \cup \mu_{\overline{A}}(x) = MAX\{\mu_A(x), \mu_{\overline{A}}(x)\}$
- La ley de Morgan se cumple usando los operadores de intersección y unión en conjuntos difusos, en la siguiente forma:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$1 - \max\{\mu_A(x), \mu_B(x)\} = MIN\{\mu_{\bar{A}}(x), \mu_{\bar{B}}(x)\}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$1 - \min\{\mu_A(x), \mu_B(x)\} = MAX\{\mu_{\bar{A}}(x), \mu_{\bar{B}}(x)\}$$

Operaciones en conjuntos difusos

Ejemplo 1:

• Ley de la contradicción: $A \cap \overline{A} \neq \emptyset$

$$\mu_A(x) \cap \mu_{\bar{A}}(x) = MIN\{\mu_A(x), \mu_{\bar{A}}(x)\}$$

• Ley del tercio excluido: $A \cup \overline{A} \neq X$

$$\mu_A(x) \cup \mu_{\bar{A}}(x) = MAX\{\mu_A(x), \mu_{\bar{A}}(x)\}$$

Operaciones en conjuntos difusos

Ejemplo 2:

Sean A y B dos conjuntos difusos, definidos en el universo de discurso $X=\{1,2,3,4,5\}$:

$$A = \left\{ \frac{0}{1} + \frac{1}{2} + \frac{0.5}{3} + \frac{0.3}{4} + \frac{0.2}{5} \right\}, B = \left\{ \frac{0}{1} + \frac{0.5}{2} + \frac{0.7}{3} + \frac{0.2}{4} + \frac{0.4}{5} \right\}$$

Calcule las siguiente operaciones:

• Diferencia A|B y B|A

$$\overline{A} = \left\{ \frac{1}{1} + \frac{0}{2} + \frac{0.5}{3} + \frac{0.7}{4} + \frac{0.8}{5} \right\}, \ \overline{B} = \left\{ \frac{1}{1} + \frac{0.5}{2} + \frac{0.3}{3} + \frac{0.8}{4} + \frac{0.6}{5} \right\}$$
$$A|B = A \cap \overline{B} = \left\{ \frac{0}{1} + \frac{0.5}{3} + \frac{0.3}{3} + \frac{0.3}{4} + \frac{0.2}{5} \right\}$$

$$B|A = B \cap \overline{A} = \left\{ \frac{0}{1} + \frac{0}{2} + \frac{0.5}{3} + \frac{0.2}{4} + \frac{0.4}{5} \right\}$$

Operaciones en conjuntos difusos

$$A = \left\{ \frac{0}{1} + \frac{1}{2} + \frac{0.5}{3} + \frac{0.3}{4} + \frac{0.2}{5} \right\},\,$$

$$\overline{A} = \left\{ \frac{1}{1} + \frac{0}{2} + \frac{0.5}{3} + \frac{0.7}{4} + \frac{0.8}{5} \right\}$$

• Ley de contradicción $A \cap \bar{A} \neq \emptyset$

$$MIN\{\mu_A(x), \mu_{\bar{A}}(x)\} = \left\{\frac{0}{1} + \frac{0}{2} + \frac{0.5}{3} + \frac{0.3}{4} + \frac{0.2}{5}\right\}$$

• Ley del tercero excluido $A \cup \bar{A} \neq X$

$$MAX\{\mu_A(x), \mu_{\bar{A}}(x)\} = \left\{\frac{1}{1} + \frac{1}{2} + \frac{0.5}{3} + \frac{0.7}{4} + \frac{0.8}{5}\right\}$$

Operaciones en conjuntos difusos:

$$\overline{A} = \left\{ \frac{1}{1} + \frac{0}{2} + \frac{0.5}{3} + \frac{0.7}{4} + \frac{0.8}{5} \right\}$$

$$\overline{B} = \left\{ \frac{1}{1} + \frac{0.5}{2} + \frac{0.3}{3} + \frac{0.8}{4} + \frac{0.6}{5} \right\}$$

• Leyes de Morgan $\overline{A \cup B}$ y $\overline{A \cap B}$

$$\overline{A \cup B} = \overline{A} \cap \overline{B} = MIN\{\mu_{\bar{A}}(x), \mu_{\bar{B}}(x)\} = \left\{\frac{1}{1} + \frac{0}{2} + \frac{0.3}{3} + \frac{0.7}{4} + \frac{0.6}{5}\right\}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} = MAX\{\mu_{\overline{A}}(x), \mu_{\overline{B}}(x)\} = \left\{ \frac{1}{1} + \frac{0.5}{2} + \frac{0.5}{3} + \frac{0.8}{4} + \frac{0.8}{5} \right\}$$

Conjuntos Difusos: Aspectos importantes y uso

Aspectos importantes

- Todos los conjuntos difusos relacionados con una variable específica deben estar siempre compuestos por los mismos elementos del respectivo universo de discurso.
- En aplicaciones prácticas normalmente se utiliza la representación discreta de los conjuntos difusos.
- Las expresiones analíticas de las funciones de pertinencia se utilizan sólo para producir los vectores que se utilizarán para representar la forma discreta de los números difusos.

Uso de sistemas difusos

- Cuando se dispone de poca información cuantitativa sobre el proceso a ser mapeado.
 - ➤ Si se dispone de un conjunto de informaciones cuantitativas (mediciones) relacionando entradas/salidas, las redes neurales pueden ser también una alternativa de uso.
- Cuando las variables del proceso están inmersas en entornos de incertidumbre e imprecisión.
- Cuando un proceso es mejor definido teniendo como base el conocimiento de un experto sobre el proceso.
 - Especialista /Experto: Es aquel individuo que posee la capacidad de elaborar diagnósticos o recomendaciones sobre el proceso, a través de la utilización de términos inciertos/imprecisos.