Physical Chemistry (Chem 132A)

Lecture 12 Friday, October 27

Homework #4 will be due October 28

Grading should be complete by Monday

MIXTURES

Start by discussing binary mixtures $x_A + x_B = 1$ $x_i = mole$ fraction of component i.

Remember definitions of Molarity (moles/liter) and Molality (moles of solute per kilogram of solvent

It is useful to talk about "partial molar quantities"

$$V_{j} = \left(\frac{\partial V}{\partial n_{j}}\right)_{p,T,n'}$$

$$d\mu_B = -\frac{n_A}{n_B}d\mu_A$$
 Gibbs-Duhem Equation

Water/Ethanol mixtures (miscible)

MIXING

WHAT HAPPENS TO G AND S? $\Delta_{mix}G$ and $\Delta_{mix}S$??

Mixing for Solutions

Behavior is similar as for gases

 $\Delta_{mix}G$ is negative

and Δ_{mix} S is positive

Ideal solution definition: $\mu_j = \mu_j^* + RT \ln(x_j)$

Pressure above a mixed solution

$$p_a = x_a p$$
 note: $p = total pressure$

Definition of partial pressure.

Empirically: $p_a = x_a p_a^*$ Where p_a^* is the vapor pressure of pure A

Roult's law

Roult's Law

Mole fraction of A, x_A

Example of solution that obeys Roult's Law

Non-Ideal Solution

Dilute Solutions that don't obey Roult's Law-

 $p_B = x_B K_B$ Henry's Law---Dilute solutions

Note: K_B is not the pure solute vapor pressure.

Henry's Law (Dilute solution)

Mixture of acetone and chloroform (CHCl₃)

Colligative Properties

For an ideal solution: $\Delta H_{mix} = 0$ Driving force for freezing pt depreession and boiling point elevation is entropy!

Colligative Properties

Boiling point elevation: $\Delta T_b = K_b b = K_b m$ Note: b subscript refers to "boiling point" b (non-subscript) is the molality of the solution

Freezing point depression: $\Delta T_f = K_f b$

Note: These are empirical relationships valid for low concentrations.

THE END

SEE YOU MONDAY