Course Support - Calculus-M and MI-

Indeterminate forms

$\frac{0}{0}$ $\frac{\infty}{\infty}$	$\infty \times 0$	$+\infty-\infty$	00	1^{∞}	∞^0
---------------------------------------	-------------------	------------------	----	--------------	------------

Some usual limits

Some usuai iimus
$\lim_{x \to +\infty} x^n = +\infty,$
1
$\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$
$\lim x^n = \begin{cases} +\infty & \text{if } n \text{ is even} \\ \vdots & \text{if } n \text{ is even} \end{cases}$
$x \to -\infty$ $-\infty$ if n is odd
$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1$
$\lim_{x \to +\infty} \left(\frac{\sin x}{x} \right) = 0$
$\lim_{x \to 0} \left(\frac{\tan x}{x} \right) = 1$
$\lim_{x \to 0} \left(\frac{\cos x - 1}{x} \right) = 0$
$\lim_{x \to +\infty} \left(\frac{e^x}{x^n} \right) = +\infty, (n \in \mathbb{N})$
$\lim_{x \to 0} \left(\frac{e^{x} - 1}{x} \right) = 1,$
$\lim_{x \to -\infty} x^n e^x = 0^-, (n \in \mathbb{N})$
$\lim_{x \to +\infty} x^n e^{-x} = 0^+, (n \in \mathbb{N})$
$\lim_{x \to 0^+} (x \ln x) = 0^-$
$\lim_{x \to +\infty} (x \ln x) = +\infty,$
$\lim_{x \to +\infty} \left(\frac{\ln x}{x^n} \right) = 0^+, (n \in \mathbb{N})$
$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

Derivatives of usual functions:

Dolly wolf of abatal fallottons.			
Derivatives of trigonometric functions			
Particular case	Generalization		
$\sin' x = \cos x$	$\sin'[f(x)] = f'(x)\cos[f(x)]$		
$\cos' x = -\sin x$	$\cos' [f(x)] = -f'(x)\sin [f(x)]$		
$\tan' x = \frac{1}{\cos^2 x}$	$\tan' [f(x)] = f'(x) \frac{1}{\cos^2 [f(x)]}$		
$\cot g' x = \frac{-1}{\sin^2 x}$	$\cot g' [f(x)] = -f'(x) \frac{1}{\sin^2 [f(x)]}$		

Derivative of the inverse of a function $[f^{-1}(x)]' = \frac{1}{(f' \circ f^{-1})(x)}$

Derivatives of inverse trigonometric functions			
Particular case	Generalization		
$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}$	$\arcsin'[f(x)] = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$		
$\arccos'(x) = \frac{-1}{\sqrt{1 - x^2}}$	$\arccos' [f(x)] = \frac{-f'(x)}{\sqrt{1 - [f(x)]^2}}$		
$\arctan'(x) = \frac{1}{1+x^2}$	$\arctan' [f(x)] = \frac{f'(x)}{1 + [f(x)]^2}$		
$arccot g'(x) = \frac{-1}{1+x^2}$	$\operatorname{arccot} g'[f(x)] = \frac{-f'(x)}{1 + [f(x)]^{2}}$		

Derivatives of hyperbolic functions		
Particular case	Generalization	
sh'(x) = ch(x)	sh'[f(x)] = f'(x) ch[f(x)]	
ch'(x) = sh(x)	ch'[f(x)] = f'(x) sh[f(x)]	
$th'(x) = 1 - th^2(x)$	$th'[f(x)] = f'(x)[1 - th^2(f(x))]$	
1	-f'(x)	
$-\frac{1}{ch^2(x)}$	$-\frac{1}{ch^2(f(x))}$	
$\coth'(x) = 1 - \coth^2(x)$	$\cot h'[f(x)] = f'(1 - \coth^2 f(x))$	
1	-f'(x)	
$-\frac{1}{sh^2(x)}$	$-\frac{1}{sh^2(f(x))}$	

Derivatives of inverse hyperbolic functions			
Particular case	Generalization		
$argch'(x) = \frac{1}{\sqrt{x^2 - 1}};$	$argch'[f(x)] = \frac{f'(x)}{\sqrt{[f(x)]^2 - 1}}$		
$arg sh'(x) = \frac{1}{\sqrt{x^2 + 1}};$	$\arg sh'[f(x)] = \frac{f'(x)}{\sqrt{[f(x)]^2 + 1}}$		
$argth'(x) = \frac{1}{1 - x^2};$	$argth'[f(x)] = \frac{f'(x)}{1 - [f(x)]^2}$		
$argcoth'(x) = \frac{1}{1 - x^2};$	$argcoth'[f(x)] = \frac{f'(x)}{1 - [f(x)]^2}$		

Derivatives of power functions		
Particular case	Generalization	
$(x^n)' = nx^{n-1}$	$[f^n(x)]' = nf'(x)[f^{n-1}(x)]$	
$\operatorname{Ex:}(\sqrt{x})' = \frac{1}{2\sqrt{x}}$	$\left(\sqrt{f(x)}\right)' = \frac{f'(x)}{2\sqrt{f(x)}}$	

For $(a > 0, \neq 1)$:

Derivatives of logarithmic functions			
Particular case	Generalization		
$\ln' x = \frac{1}{x}$	$\ln' [f(x)] = \frac{f'(x)}{f(x)}$		
$\log_a' x = \frac{1}{\ln a} \cdot \left(\frac{1}{x}\right)$	$\log_a' [f(x)] = \frac{1}{\ln a} \cdot \left(\frac{f'(x)}{f(x)}\right)$		

For $(a > 0, \neq 1)$

(/ - / - /			
Derivatives of exponential functions			
Particular case	Generalization		
$\left(e^x\right)' = e^x$	$\left(e^{[f(x)]}\right)' = \left[f'(x)\right] \cdot e^{[f(x)]}$		
$(a^x)' = (\ln a) . a^x$	$(a^{[f(x)]})' = (\ln a) \cdot [f'(x)] \cdot a^{[f(x)]}$		

Properties of natural logarithmic and exponential functions:

If	$x \in]$	0,1[alors	$\ln x < 0$
If	$x \in]$	$1, +\infty$	[alor	$s \ln x > 0$
$\forall x > 0, Log_a(x) = \frac{\ln x}{\ln a} (a > 0, \neq 1).$				
$\forall x$	$\in \mathbb{R}$	$a^x = e^x$	$x \ln a$	$(a > 0, \neq 1).$

 $\forall x, y > 0$:

$e^0 = 1, e^1 = e = 2.718$	$ \ln 1 = 0, \ln e = 1 $
$\ln(x.y) = \ln x + \ln y$	
$\ln \frac{x}{y} = \ln x - \ln y$	Ex: $\ln\left(\frac{1}{x}\right) = -\ln x$,
$\ln\left(x\right)^y = y\ln x$	Ex: $\left(\ln\sqrt{x} = \frac{1}{2}\ln x\right)$

 $\forall x, y \in \mathbb{R}$

	$\forall x \in D_u, e^{u(x)} > 0.$
$e^{(\ln x)} = x, (x > 0) \text{ and } \ln (e^y) = y$	
$e^x \cdot e^y = e^{x+y}$	
$\frac{e^x}{e^y} = e^{x-y}$	Ex: $\left(\frac{1}{e^y} = e^{-y}\right)$,
$(e^x)^y = e^{xy}$	$\operatorname{Ex:}(\sqrt{e^x} = e^{\frac{x}{2}})$

Relationships between hyperbolic functions:

$\forall x \in \mathbb{R}, ch^2(x) - sh^2(x) = 1$	$\forall x \in \mathbb{R}, th(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$
$\forall x \in \mathbb{R}, ch(x) > sh(x)$	$\forall x \in \mathbb{R}, ch(s) + sh(x) = e^x$
	$\forall x \in \mathbb{R}, ch(s) - sh(x) = e^{-x}$

Relationships between hyperbolic functions and inverse hyperbolic functions:

 $\forall x \in \mathbb{R} \backslash [-1, 1]$:

$sh(\arg\cot h(x) = \frac{ x }{x\sqrt{x^2 - 1}}$	$ch(\arg\cot h(x) = \frac{ x }{\sqrt{x^2 - 1}}$
$coth(\arg\cot h(x) = x$	$th(\arg\cot h(x) = \frac{1}{x}$

(a) The trigonometric circle.

(b) The axes of the main trigonometric functions

Relationships between trigonometric functions:

$\forall x \in \mathbb{R}, \sin^2 x + \cos^2 x = 1$	$\pi = 3, 1415$	
$\tan x = \frac{\sin x}{\cos x}$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	
$\cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$	$\frac{1}{\sin^2 x} = 1 + \cot^2 x$	

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\
\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\
\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \\
\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \\
\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \cdot \tan \beta} \\
\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \cdot \tan \beta}$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$
$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$
$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$
$$\sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right)$$

$$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta$$
$$\cos(\alpha + \beta) - \cos(\alpha - \beta) = -2\sin\alpha\sin\beta$$
$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$$
$$\sin(\alpha + \beta) - \sin(\alpha - \beta) = 2\cos\alpha\sin\beta$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

$$\sin \alpha \sin \beta = \frac{-1}{2} \left[\cos(\alpha + \beta) - \cos(\alpha - \beta) \right]$$

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

$\sin^2 x = \frac{1 - \cos(2x)}{2}$	$\sin(2x) = 2\sin x \cos x$
$\cos^2 x = \frac{1 + \cos(2x)}{2}$	$\cos(2x) = \cos^2 x - \sin^2 x$
_	$=2\cos^2 x - 1$
	$=1-2\sin^2 x$
$\tan^2 x = \frac{1 - \cos(2x)}{1 + \cos(2x)}$	$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$

$$\sin(3x) = 3\sin x - 4\sin^3 x \cos(3x) = 4\cos^3 x - 3\cos x \tan(3x) = \frac{3\tan x - \tan^3 x}{3\tan^2 x}$$

$\sin(-x) = -\sin x$	$\sin(x + 2k\pi) = \sin x$
$\cos(-x) = \cos x$	$\cos(x + 2k\pi) = \cos x$
$\tan(-x) = -\tan x$	$\tan(x + k\pi) = \tan x$

$\sin(\frac{\pi}{2} - x) = \cos x$	$\sin(\frac{\pi}{2} + x) = \cos x$
$\cos(\frac{\pi}{2} - x) = \sin x$	$\cos(\frac{\pi}{2} + x) = -\sin x$
$\tan(\frac{\pi}{2} - x) = \cot x$	$\tan(\frac{\pi}{2} + x) = -\cot x$

$\sin(\pi - x) = \sin x$	$\sin(\pi + x) = -\sin x$
$\cos(\pi - x) = -\cos x$	$\cos(\pi + x) = -\cos x$
$\tan(\pi - x) = -\tan x$	$\tan(\pi + x) = \tan x$

$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi$	
$\sin x = 0 \Leftrightarrow x = k\pi$	$(k \in \mathbb{Z})$
$\tan x = 0 \Leftrightarrow x = k\pi$	

$$\forall x \in \mathbb{R}, 2\sin(3x)\cos x = \sin(4x) + \sin(2x)$$
$$\forall x \in D_{\tan}, \sin x \le x \le \tan x$$

Logarithmic functions of basis a:

Let be a a constant such that : $a > 0, a \neq 1$,

$$f: \quad]0, +\infty[\to \mathbb{R}$$

 $x \mapsto f(x) = \log_a(x)$

Properties

- 1. $\log_a(x)$ is only defined if x > 0.
- $2. \ \forall a \in I, \quad f(1) = 0.$
- 3. f is continuous on $]0, +\infty[$.
- 4. if a > 1 then f is strictly increasing and:

$$\lim_{x \to +\infty} f(x) = +\infty, \qquad \lim_{x \to 0} f(x) = -\infty.$$

On the other hand, if 0 < a < 1 then f is strictly decreasing and :

$$\lim_{x \to +\infty} f(x) = -\infty, \qquad \lim_{x \to 0} f(x) = +\infty.$$

The Neperian logarithmic function

This is the case when : a = e = 2.718...,

$$f: \quad]0, +\infty[\to \mathbb{R}$$

 $x \mapsto f(x) = \ln x$

$$\forall x \in]0, +\infty[\,, \log_a(x) = \frac{\ln x}{\ln a}$$

In is a bijection from $]0, +\infty[$ towards \mathbb{R} .

It then admits a reciprocal function, which is the Neperian exponential function.

Exponential functions of basis a

$$f: \mathbb{R} \to]0, +\infty[$$

 $x \mapsto f(x) = a^x$

It is the only function defined over \mathbb{R} that verifies f(0) = 1 and is equal to its derivative.

Properties

- 1. $\forall x \in \mathbb{R}, a^x > 0$.
- 2. $\forall a \in I, f(0) = 1, f(1) = a$.
- 3. f is continuous over \mathbb{R} .
- 4. If a > 1 then f is strictly increasing and:

$$\lim_{x \to +\infty} f(x) = +\infty, \qquad \lim_{x \to -\infty} f(x) = 0.$$

On the other hand, if a < 1 then f is strictly decreasing and:

$$\lim_{x \to +\infty} f(x) = 0, \qquad \lim_{x \to -\infty} f(x) = +\infty.$$

Natural exponential function

This is the case where: a = e = 2.718...

$$f: \mathbb{R} \to]0, +\infty[$$

$$x \mapsto f(x) = e^x$$

$$\forall x \in \mathbb{R}, a^x = e^{x \ln a}.$$

 e^x is a bijection from \mathbb{R} to $]0, +\infty[$.

It admits a reciprocal function. This is the Natural logarithm.

Graphs of e^x and $\ln x$ on the same coordinate system:

Trigonometric Functions

The cosine function

- a) Definition $\cos: \mathbb{R} \to [-1,1]$ $x \mapsto f(x) = \cos x$
- b) Properties cos is:
- 1. $2\pi periodic$ i.e. $\forall x \in \mathbb{R}, \cos(x + 2k\pi) = \cos x$. $(k \in \mathbb{Z})$.
- 2. Continuous on \mathbb{R} and even i.e. $\forall x \in \mathbb{R}, \cos(-x) = \cos x$.
- 3. Strictly decreasing on the domain $[0, \pi]$.

$$4.\forall x \in \mathbb{R}, \cos'(x) = -\sin x.$$

The sinus function

- a) Definition $\sin: \mathbb{R} \to [-1,1]$ $x \mapsto f(x) = \sin x$
- b) Properties sin is:
- 1. $2\pi periodic$ i.e. $\forall x \in \mathbb{R}, \sin(x + 2k\pi) = \sin x. \ (k \in \mathbb{Z})$.
- 2. Continuous on \mathbb{R} and odd i.e. $\forall x \in \mathbb{R}, \sin(-x) = -\sin x$.
- 3. Strictly increasing on the domain $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.
- $4.\forall x \in \mathbb{R}, \sin'(x) = \cos x.$

The tangent function

a) Definition

$$\overline{\tan}: D_{\tan} \to \mathbb{R}$$

$$x \mapsto f(x) = \tan x = \frac{\sin x}{\cos x}$$

tan is defined only on the points where the cos does not vanish:

$$\cos x = 0 \Leftrightarrow x = \left(\frac{\pi}{2} + k\pi\right), k \in \mathbb{Z}.$$
 So,

$$D_{\text{tan}} = \mathbb{R} \setminus \left\{ x \in \mathbb{R} / x = \left(\frac{\pi}{2} + k\pi \right), k \in \mathbb{Z} \right\}.$$

- b) Properties tan is:
- 1. $\pi periodic$ i.e. $\forall x \in \mathbb{R}, \tan(x + k\pi) = \tan x$. $(k \in \mathbb{Z})$.
- 2. Continuous and odd on D_{tan} i.e.

$$\forall x \in D_{\tan}, \tan(-x) = -\tan x.$$

3. Strictly increasing on the domain $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

$$4.\forall x \in \mathbb{R}, \tan' x = \frac{1}{\cos^2 x} = 1 + \tan^2(x).$$

c) Graphs

Like all odd functions, the graphs of sin and tan are symmetrical with respect to the origin.

Like all even functions, the \cos graph is symmetrical with respect to the ordinate axis.

Graphs of sin, cos and tan on the same coordinate system.

Inverse trigonometric functions

The arccosinus function $f: [0,\pi] \to [-1,1]$ $x \mapsto f(x) =$

On $[0, \pi]$, cos is continuous and strictly decreasing but it is not even because its definition interval is not symmetrical with respect to 0. In addition, $f([0, \pi]) = [-1, 1]$. It is therefore bijective and admits a reciprocal function, which we denote by arccos:

a) **Definition** $\arccos(x)$ is the unique arc between 0 and π whose cosine is x.

$$f^{-1}: \quad [-1,1] \to [0,\pi]$$
$$x \mapsto f^{-1}(x) = \arccos x$$

The arc of arccos.

b) Properties arccos verifies:

- 1. $\forall x \in [-1, 1], \cos(\arccos x) = x$.
- 2. $\forall x \in [0, \pi], \arccos(\cos x) = x$.
- 3. $\forall x \in [-1, 1], y = \arccos x \Leftrightarrow \begin{cases} x = \cos y \\ y \in [0, \pi] \end{cases}$

4. It is continuous, strictly decreasing, bijective but it is not even.

5.
$$\forall x \in]-1, 1[,\arccos'(x) = \frac{-1}{\sqrt{1-x^2}}]$$

Examples 1) $\cos(\arccos\frac{1}{2}) = \frac{1}{2}$, 2) $\arccos(\cos\frac{\pi}{2}) = \frac{\pi}{2}$.

3) $\arccos(\cos\frac{5\pi}{4}) = \arccos(\cos\frac{3\pi}{4}) = \frac{3\pi}{4}$.

c) Graph

The graphs of a function and its reciprocal function are symmetrical with respect to the first bisector $(\Delta): y = x$.

Graphs of cos and of arccos.

The arcsinus function We

We consider the function

$$f: \quad \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$$

 $x \mapsto f(x) = \sin x$

On $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, it is continuous and strictly increasing. In addition, $f\left(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\right) = [-1, 1]$. It is therefore a bijection and admits a reciprocal function, which we denote by arcsin:

a) **Definition** arcsin(x) is the only arc between $\frac{-\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.

$$f^{-1}: [-1,1] \to \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

 $x \mapsto f^{-1}(x) = \arcsin x$

The arc of arcsin.

- b) Properties arcsin verifies:
- 1. $\forall x \in [-1, 1]$, $\sin(\arcsin x) = x$.
- 2. $\forall x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right], \arcsin(\sin x) = x.$
- 3. $\forall x \in [-1, 1], y = \arcsin x \Leftrightarrow \begin{cases} x = \sin y \\ y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \end{cases}$

4. It is continuous, strictly increasing, bijective and odd on $\frac{-\pi}{2}$, $\frac{\pi}{2}$.

5.
$$\forall x \in]-1,1[,\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}.$$

Examples 1) $\sin(\arcsin \frac{1}{3}) = \frac{1}{3}$, 2) $\arcsin(\sin 0) = 0$,

- 3) $\arcsin(\sin\frac{3\pi}{4}) = \arcsin(\sin\frac{\pi}{4}) = \frac{\pi}{4}$
- c) Graph

Graphs of sin and of arcsin.

The arctangent function

Consider the function:

$$f: \quad \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$$
 $x \mapsto f(x) = \tan x$

On $\left]\frac{-\pi}{2}, \frac{\pi}{2}\right[$, it is continuous and strictly increasing. In addition $f\left(\left]\frac{-\pi}{2}, \frac{\pi}{2}\right[\right) = \mathbb{R}$. It is therefore bijective and admits a reciprocal function, which we denote by arctan:

a) **Definition** $\arctan(x)$ is the unique arc between $\frac{-\pi}{2}$ and $\frac{\pi}{2}$ whose tangent is x.

$$f^{-1}: \quad \mathbb{R} \to \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[\\ x \mapsto f^{-1}(x) = \arctan x$$

The arc of arctan.

b) Properties arctan verifies:

- 1. $\forall x \in \mathbb{R}, \tan(\arctan x) = x$.
- 2. $\forall x \in \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[\arctan(\tan x) = x.$
- 3. $\forall x \in \mathbb{R}, y = \arctan x \Leftrightarrow \begin{cases} x = \tan y \\ y \in \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[\end{cases}$

4. It is continuous, strictly increasing, bijective and odd on $\left]\frac{-\pi}{2}, \frac{\pi}{2}\right[$.

5.
$$\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{\sqrt{1+x^2}}$$

Examples 1) $\tan(\arctan 5) = 5$, 2) $\arctan(\tan 0) = 0$

- 3) $\arctan(\tan\frac{5\pi}{4}) = \arctan(\tan\frac{\pi}{4}) = \frac{\pi}{4}$
- c) Graph

Graphs of tan and of arctan.

Hyperbolic functions

Hyperbolic cosine function

$$f: \mathbb{R} \to [1, +\infty[$$

$$x \mapsto f(x) = ch \ (x) = \frac{e^x + e^{-x}}{2}$$

Properties ch is:

- 1. even i.e. $\forall x \in \mathbb{R}, ch(-x) = ch(x)$.
- 2. Continuous on \mathbb{R} , ch(0) = 1, and $\forall x \in \mathbb{R}, ch(x) \geq 1$.
- 3. $\lim_{x \to +\infty} ch(x) = \lim_{x \to -\infty} ch(x) = +\infty,$

$$\lim_{x \to +\infty} \frac{ch(x)}{x} = +\infty, \lim_{x \to -\infty} \frac{ch(x)}{x} = -\infty.$$

- $x \to +\infty$ $x \to -\infty$ $x \to -\infty$ 4. ch is strictly increasing on $[0, +\infty[$.
- 5. ch constitute a bijection from $[0, +\infty[$ to $[1, +\infty[$.

6.
$$\forall x \in \mathbb{R}, ch'(x) = sh(x)$$

Hyperbolic sine function

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = sh(x) = \frac{e^x - e^{-x}}{2}$$

Properties sh is:

- 1. Odd i.e. $\forall x \in \mathbb{R}, sh(-x) = -sh(x)$.
- 2. Continuous over \mathbb{R} , sh(0) = 0 and

 $\forall x \in]0, +\infty[, sh(x) > 0, \forall x \in]-\infty, 0[, sh(x) < 0.$

3. $\lim_{x \to +\infty} sh(x) = +\infty$, $\lim_{x \to -\infty} sh(x) = -\infty$,

$$\lim_{x \to +\infty} \frac{sh(x)}{x} = \lim_{x \to -\infty} \frac{sh(x)}{x} = +\infty.$$

- 4. Strictly increasing on \mathbb{R} .
- 5. sh constitute a bijection from \mathbb{R} to \mathbb{R} .
- 6. $\forall x \in \mathbb{R}, sh'(x) = ch(x)$

Graphs of ch and sh on the same coordinate system :

Hyperbolic tangent function

$$f: \mathbb{R} \to]-1,1[$$
 $x \mapsto f(x) = th(x) = \frac{sh(x)}{ch(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Properties: th is:

- 1. Odd i.e. $\forall x \in \mathbb{R}, th(-x) = -th(x)$.
- 2. Continuous on \mathbb{R} , th(0) = 0.
- 3. $\lim_{x \to +\infty} th(x) = 1, \lim_{x \to -\infty} th(x) = -1.$
- 4. Strictly increasing on \mathbb{R} .
- 5. th constitute a bijection from \mathbb{R} to]-1,1[.
- 6. $\forall x \in \mathbb{R}, th'(x) = \frac{1}{ch^2(x)} = 1 th^2(x).$

Graph of th.

Hyperbolic inverses functions

Hyperbolic cosine argument function

$$f: [1, +\infty[\to [0, +\infty[$$

 $x \mapsto f(x) = \arg ch(x)$

Properties argch is:

- 1. Continuous over \mathbb{R} .
- 2. $\forall x \in [1, +\infty[, \arg ch(x) = \ln (x + \sqrt{x^2 1}])$
- 3. Strictly increasing on $[0, +\infty[$.
- 4. argch constitute a bijection from $[1, +\infty[$ to $[0, +\infty[$.
- 5. $\forall x \in]1, +\infty[, argch'(x) = \frac{1}{\sqrt{x^2 1}}.$

Graphs of ch and of argch

Hyperbolic sine argument function

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = \arg sh(x)$

Properties argsh is:

- 1. Odd i.e. $\forall x \in \mathbb{R}, \arg sh(-x) = -\arg sh(x)$.
- 2. Continuous on \mathbb{R} .
- 3. $\forall x \in \mathbb{R}, \arg sh(x) = \ln \left(x + \sqrt{x^2 + 1} \right)$.

- 4. Strictly increasing on \mathbb{R} .
- 5. argsh constitute a bijection from \mathbb{R} to \mathbb{R} .
- 6. $\forall x \in \mathbb{R}, \arg sh'(x) = \frac{1}{\sqrt{x^2 + 1}}$

Graph of sh and argsh.

Hyperbolic tangent argument function

$$f^{-1}:]-1,1[\to \mathbb{R}$$

 $x \mapsto f(x) = \arg th (x)$

Properties argth is:

- 1. Continuous and Odd on]-1,1[, $i.e. \forall x$]-1,1[, arg th(-x) = -arg th(x).
 - 2. $\forall x \in]-1, 1[, \arg th(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right).$
 - 3. Strictly increasing on]-1,1[.
 - 4. $\forall x \in]-1,1[,argth'(x)] = \frac{1}{1-x^2}$

Graph of th and argth

Limited Expansion of some usual functions

$$\frac{\text{near } 0}{e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)}$$

$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}{n!}x^n + o(x^n)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n)$$

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n} + o(x^{2n})$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + \dots + \frac{\frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2)\dots(\frac{1}{2} - n + 1)}{n!}x^n + o(x^n)$$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3}{8}x^2 + \frac{x^3}{16} + \dots + \frac{\frac{-1}{2}(\frac{-1}{2} - 1)(\frac{-1}{2} - 2)\dots(\frac{-1}{2} - n + 1)}{n!}x^n + o(x^n)$$

$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{3}{8}x^4 + \dots + \frac{(2n)!}{2^{2n}(n!)^2}x^{2n} + o(x^{2n})$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\tan(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + o(x^5)$$

$$ch(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$sh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$th(x) = x - \frac{x^3}{3} + \frac{2}{15}x^5 + o(x^5)$$