Lec5 Note of Abstract Algebra

Xuxuayame

日期: 2023年3月24日

例 3.1. 在 \mathbb{Z} 中, $k \cdot 1 = 1 + \dots + 1 \neq 0$, $\forall k > 0$,故 1 为无限阶元。 但在 $\mathbb{Z}/n\mathbb{Z}$ 中, $k \cdot \overline{1} = \overline{k} = 0 \Leftrightarrow n \mid k$,故 $\operatorname{ord}(\overline{1}) = n$ 。

引理 3.1. 设 $g, h \in G$, ord(g) = n, ord(h) = m 有限,则

- (1) $\forall k \in \mathbb{Z}$, $\operatorname{ord}(g^*) = \frac{n}{(n,k)}$;
- (2) gh = hg, $(m, n) = 1 \Rightarrow \operatorname{ord}(gh) = mn$.
- 证明. (1) $(g^k)^n = (g^n)^k = 1 \Rightarrow \operatorname{ord}(g^k) \mid n$, 记 $\operatorname{ord}(g^k) = r$, 由 $(g^k)^{\frac{n}{(n,k)}} = (g^n)^{\frac{k}{(n,k)}} = 1 \Rightarrow r \mid \frac{n}{(n,k)}$ 。 而 $(g^k)^r = 1 \Rightarrow n \mid kr \Rightarrow \frac{n}{(n,k)} \mid r$,故 $r = \frac{n}{(n,k)}$ 。
 - (2) 记 $\operatorname{ord}(gh) = r$,则 $(gh)^r = 1 \Rightarrow 1 = ((gh)^r)^n = g^{rn}h^{rn} = h^{rn} \Rightarrow m \mid rn \Rightarrow m \mid r$,同样地, $1 = ((gh)^r)^m \Rightarrow n \mid r$,那么 $mn \mid r$ 。又 $(gh)^{mn} = 1 \Rightarrow r \mid mn$,所以 r = mn。

评论. $gh = hg \Rightarrow \operatorname{ord}(gh) \mid [m, n]$.

定义 3.2. 设 $\emptyset \neq S \subset G$,包含 S 的最小的 G 的子群,称为 S 生成的子群,记作 $\langle S \rangle$ 。 若 $G = \langle S \rangle$,则称 S 为 G 的一组生成元。若 $G = \langle \{s\} \rangle$,则 s 为 G 的一个生成元。可由一个元素生成的群称为循环群。

评论.
$$\langle S \rangle = \bigcap_{H \leq G, S \subset H} H \leq G$$

例 3.2. $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$ 。

 $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle = \langle \overline{-1} \rangle = \langle \overline{a} \rangle \Leftrightarrow (a,n) = 1$,于是有 $\varphi(n)$ 个生成元。

 $GL_n(\mathbb{F}) = \langle T_{ij}(a), P_{ij}, D_i(\lambda) \rangle = \langle T_{12}(a), P_{ij}, D_1(\lambda) \rangle$, $\mathbb{F} = \mathbb{C}, \mathbb{R}, \mathbb{Q} \cdots$, 且后一组生成元满足 $a \in \mathbb{F}, \ 1 \leq i < j \leq n, \ \lambda \neq 0$ 。

引理 3.2. 设 $g \in G$ 为有限阶元,则 $\operatorname{ord}(g) = |\langle g \rangle|$ 。

证明. g 有限阶,故令 $\operatorname{ord}(g) = n$,下证 $\langle g \rangle = \{1, g, \cdots, g^{n-1}\}$ 。

对 $\forall i \in \mathbb{Z}, i = qn + r(i)$,那么 $g^i = g^{r(i)}$ 。而 $\forall 0 \le i < j \le n - 1, g^i \ne g^j$,否则 $g^{j-i} = 1$,矛盾。

定理 3.3. 设 $G = \langle g \rangle$ 为循环群,则

- (1) 若G为无限群,则 $G \simeq \mathbb{Z}$ 。
- (2) 若 G 为有限群,则存在唯一的 n(=|G|) 使得 $G \simeq \mathbb{Z}/n\mathbb{Z}$ 。

证明. (1) G 无限 $\Rightarrow q^i \neq q^j$, $\forall i \neq j \in \mathbb{Z}$ 。则 $\varphi \colon \mathbb{Z} \to \langle q \rangle = G$, $i \mapsto q^i$ 为同构。

(2) 显然。

命题 **3.4.** $G = \langle g \rangle$,那么

- (1) 若 $G \simeq \mathbb{Z}$,则 G 的生成元为 g 或 g^{-1} 。
- (2) 若 $G \simeq \mathbb{Z}/n\mathbb{Z}$,则 G 的生成元为 g^a , (a, n) = 1。

(3)
$$\operatorname{Aut} G \simeq \begin{cases} \mathbb{Z}^{\times} = \{\pm 1\}, & G \simeq \mathbb{Z}, \\ (\mathbb{Z}/n\mathbb{Z})^{\times}, & G \simeq \mathbb{Z}/n\mathbb{Z}. \end{cases}$$

评论. 若 $G_1 \simeq G_2, \ \varphi \colon G_1 \overset{\sim}{\to} G_2$,那么 $\mathrm{Aut} G_1 \simeq \mathrm{Aut} G_2$,同构由 $f \mapsto \varphi f \varphi^{-1}$ 给出。 $\mathfrak{V} H \leq G$ 。

定义 3.3. $aH = \{ah \mid h \in H\}$ 称为 G 对于子群 H 的一个左陪集 (Left coset),类似可以 定义右陪集 (Right coset) 为 Ha。

引理 3.5. (1)

$$aH \cap bH = \begin{cases} aH, & a^{-1}b \in H, \\ \varnothing, & \textit{else}. \end{cases}$$

(2)

$$Ha \cap Hb = \begin{cases} Ha, & ba^{-1} \in H, \\ \varnothing, & \textit{else}. \end{cases}$$

- 证明. (1) 若 $x=ah_1=bh_2$,则 $b=ah_1h_2^{-1}\Rightarrow a^{-1}b=h_1h_2^{-1}\in H$,于是 $bH=ah_1h_2^{-1}H=aH$ 。
 - (2) 类似可得。

评论. G 可写成若干左陪集的无交并, 在 G 上可定义等价关系 \sim :

$$a \sim b : \Leftrightarrow a^{-1}b \in H$$
.

G在~下的等价类恰为G对于H的左陪集。

如果将 $a^{-1}b$ 替换为 ab^{-1} , 那么就得到了右陪集。

定义 3.4. 称 $\{a_i \in G \mid i \in I\}$ 为 G 对于子群 H 的一个左陪集完全代表元系,若

$$G = \bigcup_{i \in I} a_i H.$$

类似可定义右陪集完全代表元系。

引理 3.6. $\{a_i \in G \mid i \in I\}$ 为左陪集完全代表元系 \Rightarrow $\{a_i^{-1} \mid i \in I\}$ 为右陪集完全代表元系。

证明. $\forall g \in G, \exists ! i_{(g)} \in I$ 使得

$$g \in a_{i_{(g)}}H \Leftrightarrow g^{-1} \in Ha_{i_{(g)}}^{-1}.$$

于是我们知道, $\forall g \in G$, $\exists ! i_{(g^{-1})} \in I$, 使得

$$g^{-1} \in a_{i_{g^{-1}}}H \Rightarrow g \in Ha_{i_{g^{-1}}}^{-1}.$$

所以 $G=\bigcup Ha_i^{-1}$ 。而 $Ha_i^{-1}=Ha_j^{-1}\Leftrightarrow a_iH=a_jH\Leftrightarrow i=j$,故彼此不交,从而为不交并。

定理 3.7. (Lagrange): $|G| < \infty, H \le G, 则 |G| = |H| \cdot [G:H], 特别地, |H| | |G|$ 。

推论. $|G| < \infty$, $\forall g \in G$, $g^{|G|} = 1$ 。 也可等价表为 $\operatorname{ord}(g) \mid |G|$ 。