

DEPARTMENT OF MECHANICAL ENGINEERING

2D Ball Balancing

Barutta Edoardo 10726132 Milic Kristjan 11012938 Visentin Nicola 10797203

Mechatronics Laboratory A.Y. 2024/25 Lecturers: Marconi J., Pozzi M.

Summary

- 1. Bench description and calibration
- 2. Mathematical model
- 3. Control logics and experimental testing
- 4. Conclusions

DEPARTMENT OF MECHANICAL ENGINEERING

1. BENCH DESCRIPTION AND CALIBRATION

ORIGINAL BENCH

- 1. Acrome Ball Balancing Table set:
 - 1.1. touchpad panel
 - 1.2. servomotors
 - 1.3. steel ball
 - 1.4. power unit
- 2. MyRio microprocessor board
- 3. PoliArd unit (Arduino)
- 4. PC (Matlab/Simulink and PoliScope)

NEW BENCH

- 1. MDF panel
- 2. ping pong ball
- 3. servomotors
- 4. camera (smartphone)

- 5. TI Launchpad microcontroller board
- 6. Power supply
- 7. PC (Phyton/OpenCV and Matlab/Simulink)

DEPARTMENT OF MECHANICAL ENGINEERING

2. MATHEMATICAL MODEL

ASSUMPTIONS AND DATA

- Ball rolls without slipping
- Massless table and rods
- Motions in x and y are decoupled
- Small θ angles
- Negligible dissipations of the rolling ball
- Negligible centrifugal force due to platform rotation

	Original bench	New bench
L_{x}	182 <i>mm</i>	225 mm
$L_{\mathcal{Y}}$	150 <i>mm</i>	175 mm
b	24.5 <i>mm</i>	30 mm
m	0.264~kg	0.004~kg
R	20 <i>mm</i>	20 mm
J	$4.22\cdot 10^{-5}\ kg\cdot m^2$	$2.56 \cdot 10^{-6} \ kg \cdot m^2$

DERIVATION

Lagrange equations approach:

Kinetic energy
$$\rightarrow$$
 $E_{kin} = \frac{1}{2} \left(m + \frac{J}{R^2} \right) \dot{x}^2$
Potential energy \rightarrow $E_{pot} = mgx \sin\theta$
 $L \sin\theta = -b \sin\alpha$

$$\frac{d}{dt}\frac{\partial E_{kin}}{\partial \dot{x}} - \frac{\partial E_{kin}}{\partial x} + \frac{\partial D}{\partial \dot{x}} + \frac{\partial E_{pot}}{\partial x} = Q$$

Equation of motion:

$$\ddot{x} = \frac{mg}{\left(m + \frac{J}{R^2}\right)^{\frac{1}{L}}} \sin \alpha \quad \rightarrow \quad \begin{cases} \dot{x} = \dot{z}_1 = z_2 \\ \ddot{x} = \dot{z}_2 = \frac{mg}{\left(m + \frac{J}{R^2}\right)^{\frac{1}{L}}} \sin \alpha = C \sin \alpha \end{cases} \quad \rightarrow \quad linearization: \begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} 0 \\ C \end{bmatrix} \alpha$$

[same for x and y directions]

DEPARTMENT OF MECHANICAL ENGINEERING

3. CONTROL LOGICS AND EXPERIMENTAL TESTING

PD - ANALITICAL TUNING

Overshoot: $S\% < 20 \rightarrow \Psi_m > 54^{\circ}$

Settling time: $T_{s,\epsilon} = \frac{4.6}{\omega_c \, \xi} < 3 \, s \rightarrow \omega_c > 3.4 \, \frac{rad}{s}$

Noise reduction: (40 dB attenuation after 100 $\frac{rad}{s}$)

$$\rightarrow |F| \approx |L| < -40 \ dB$$

Resulting gains $\rightarrow K_p = 5$, $K_d = 3$

PD - STEP RESPONSE

PD AND PID - STEP RESPONSE

Integral action: no steady-state error, more overshoot and longer settling time \rightarrow slower response.

PID - STEP RESPONSE

- Reducing K_p and $K_i \rightarrow$ lower overshoot and settling time
- Anti-windup for the integral action

PID - STEP RESPONSE

- Increasing K_p and $K_i \rightarrow$ higher overshoot and settling time
- Increasing $K_d \rightarrow$ reduction of oscillation but more noise

PID - STEP RESPONSE (NEW BENCH)

PID: $K_p = 4.5$, $K_i = 1.5$, $K_d = 3.5$

- Same considerations of the original bench
- Further observations at the end of the presentation

PID:
$$K_p = 6.4$$
, $K_i = 1.8$, $K_d = 4$

PID - TRAJECTORY TRACKING

-50

x [mm]

50

100

150

200

PID - TRAJECTORY TRACKING

User-defined trajectory tracking with original bench. Duration T = 20 s. PID controller $K_p = 2$, $K_i = 0.5$, $K_d = 1.8$

PID - TRAJECTORY TRACKING (NEW BENCH)

Circle trajectory tracking with new bench. Period T=5~s. PID controller $K_p=2.6$, $K_{\rm i}=0.7$, $K_{\rm d}=0.9$

POLE PLACEMENT

Extended system to eliminate steady state error:

$$\dot{x} = A_{ex}x + B_{ex}u$$

Poles of the uncontrolled system: $|sI - A| = 0 \rightarrow s^3 = 0$ Poles of the controlled system:

$$|s\mathbf{I} - (\mathbf{A} - \mathbf{B}\mathbf{K})| = 0 \rightarrow s^3 + \frac{981}{980}k_2s^2 + \frac{981}{980}k_1s + \frac{981}{980}k_3 = 0$$

Desired poles of the controlled system:

$$s = [-0.5; -0.1; -5] \rightarrow s^3 + \frac{28}{5}s^2 + \frac{61}{20}s + \frac{1}{4} = 0$$

Equating the coefficients of the last two expressions the controller gains are obtained:

$$k_1 = \frac{2989}{981} \approx 3.05$$
 $k_2 = \frac{5488}{981} \approx 5.59$ $k_3 = \frac{245}{981} \approx 0.25$

- Almost no overshoot
- Long settling time
- Less control effort compared with PID controllers

KALMAN FILTER

Steady state **Kalman Bucy** estimator

$$\mathbf{Q_{obs}} = \begin{bmatrix} 100 & 0 \\ 0 & 1000 \end{bmatrix} \quad \mathbf{R_{obs}} = \begin{bmatrix} 0.5 \end{bmatrix}$$

$$\hat{z} = A\hat{z} + Bu + K_{obs}(x - C\hat{z})$$

KALMAN FILTER

Simulation: Low Pass Filter vs Kalman Filter

Testing Kalman Filter

LQR - STEP RESPONSE

Infinite time horizon LQR + Kalman Filter

$$J = \int_0^\infty \frac{1}{2} \left[\mathbf{z}^T(t) \ \mathbf{Q} \ \mathbf{z}(t) + \mathbf{u}^T(t) \ \mathbf{R} \ \mathbf{u}(t) \right] dt$$

subject to: $\dot{\mathbf{z}}(t) = \mathbf{A} \mathbf{z}(t) + \mathbf{B} \mathbf{u}(t)$

Weights:
$$\mathbf{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $\mathbf{R} = \begin{bmatrix} 0.05 \end{bmatrix}$

LQRI

Addition of the **integral action**

$$w = \int (x - x_{ref}) dt$$

Augmented system and weighting matrix Q

$$u = -\mathbf{Kz} - k_i \cdot w = -\mathbf{K_{ext}} \cdot \mathbf{z_{ext}}$$

$$\mathbf{Q_{ext}} = egin{bmatrix} \mathbf{Q} & \mathbf{0} \ \mathbf{0} & Q_w \end{bmatrix}$$

LQRI – STEP RESPONSE

LQR - TRACKING

$$Q_x = 1, Q_{\dot{x}} = 0, R = 0.05, T = 5s$$

4. CONCLUSIONS

LIMITATIONS AND IMPROVEMENTS

Original bench:

- Slipping motor's rod
- Limited operative area on touchpad panel
- Lower frequency of the microcontroller
- Metal ball, touching the panel

New bench:

- Changing ball and platform colours
- Fixing camera to the bench
- Smoother platform to reduce friction
- Improve data handling and transmission

Mathematical model:

Not accounting for the moving platform

LIMITATIONS AND IMPROVEMENTS

Control:

- Additional control loop on the motors → encoder
- Improving filtering (EKF, disturbances estimation, etc) → computational power
- Better tracking control strategies (ex.: finite time LQR) → computational power

CONTACTS

edoardo.barutta@mail.polimi.it
kristjan.milic@mail.polimi.it
nicola.visentin@mail.polimi.it

www.mecc.polimi.it

@meccpolimi

