

UNIT 12

Registers and Counters

This chapter includes:

- 12.1 Registers and Register Transfers
- 12.2 Shift Registers
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences
- 12.5 Counter Design using S-R and J-K Flip-Flops
- 12.6 Derivation of Flip-Flop Input Equations-Summary

Learning Objectives

- 1. Explain the operation of registers. Show how to transfer data between registers using a tristate bus.
- 2. Explain the operation of shift registers, show how to build them using flip-flops, and analyze their operation. Construct a timing diagram for a shift register.
- 3. Explain the operation of binary counters, show how to build them using flip-flops and gates, and analyze their operation.

Learning Objectives

- 4. Given the present state and desired next state of a flip-flop, determine the required flip-flop inputs.
- 5. Given the desired counting sequence for a counter, derive the flip-flop input equations.
- 6. Explain the procedures used for deriving flipflop input equations.
- 7. Construct a timing diagram for a counter by tracing signals through the circuit.

Introduction:

- *A register consists of a group of flip-flops with a common clock input. Registers are commonly used to store and shift binary data.
- A counter is usually constructed from two or more flip-flops which change states in a prescribed sequence when input pulses are received.

4-Bit D Flip-Flop Registers with Data, Load, Clear and Clock Inputs:

FIGURE 12-1

4-Bit D Flip-Flop Registers with Data, Load, Clear, and Clock Inputs

Cengage Learning 2014

(a) Using gated clock

4-Bit D Flip-Flop Registers with Data, Load, Clear and Clock Inputs (continued):

Data Transfer Between Registers:

FIGURE 12-2

Data Transfer Between Registers

Cengage Learning 2014

8-Bit Register with Tri-State Output:

- *Figure 12-3(a) shows an integrated circuit register that contains eight D flip-flops with tri-state buffers at the flip-flop outputs.
- ❖These buffers are enabled when En = 0. A symbol for this 8-bit register is shown in Figure 12-3(b).

FIGURE 12-3 Logic Diagram for 8-Bit Register with Tri-State Output

Cengage Learning 2014

Data Transfer Using a Tri-State Bus:

FIGURE 12-4 Data Transfer Using

a Tri-State Bus

© Cengage Learning 2014

Operation is as follows:

If EF = 00, A is stored in G (or H).

If EF = 01, B is stored in G (or H).

If EF = 10, C is stored in G (or H).

If EF = 11, D is stored in G (or H).

Parallel Adder with Accumulator:

❖It is frequently desirable to store one number in a register of flip-flops (called an accumulator) and add a second number to it, leaving the result stored in the accumulator. See figure 12-5 below:

FIGURE 12-5 n-Bit Parallel Adder with Accumulator

Adder Cell with Multiplexer:

*Figure 12-6 shows a typical cell of the adder where the accumulator flip-flop can either be loaded directly from y_i or from the sum output (s_i).

> FIGURE 12-6 Adder Cell with Multiplexer

© Cengage Learning 2014

Shift Registers:

- A shift register is a register in which binary data can be stored, and this data can be shifted to the left or right when a shift signal is applied.
- Shifts can be linear or cyclic.
- The figure on the next slide shows a 4-bit right-shift register with serial input and output constructed from D flip-flops.
- ❖When Shift=1, the clock is enabled and shifting occurs on the rising clock edge. When Shift=0, no shifting occurs and the data in the register is unchanged.

FIGURE 12-7 Right-Shift Register

© Cengage Learning 2014

(a) Flip-flop connections

(b) Timing diagram

Serial In/ Serial Out Registers:

- **❖Serial in** means that data is shifted into the first flip-flop one bit at a time, and the flip-flops cannot be loaded in parallel.
- *Serial out means that data can only be read out of the last flip-flop and the outputs from the other flip-flops are not connected to terminals of the integrated circuit.

FIGURE 12-10

Parallel-In, Parallel-Out Right-Shift Register

Cengage Learning 2014

(a) Block diagram

(b) Implementation using flip-flops and MUXes

. The next-state equations for the flip-flops are

$$Q_3^+ = Sh' \cdot L' \cdot Q_3 + Sh' \cdot L \cdot D_3 + Sh \cdot SI$$

$$Q_2^+ = Sh' \cdot L' \cdot Q_2 + Sh' \cdot L \cdot D_2 + Sh \cdot Q_3$$

$$Q_1^+ = Sh' \cdot L' \cdot Q_1 + Sh' \cdot L \cdot D_1 + Sh \cdot Q_2$$

$$Q_0^+ = Sh' \cdot L' \cdot Q_0 + Sh' \cdot L \cdot D_0 + Sh \cdot Q_1$$

$$(12-1)$$

Action

Shift Registers

TABLE12-1

Shift Regi Operat

FIGURE 12-11 Timing Diagram for Shift Register

© Cengage Learning:

Cengage Learning 2014

Johnson Counter:

- A circuit that cycles through a fixed sequence of states is called a **counter**.
- A shift register with inverted feedback is called a Johnson counter or a twisted ring counter.

Shift Register with Inverted Feedback

© Cengage Learning 2014

General Form of a Shift Register Counter:

FIGURE 12-13 General Shift Register Counter

© Cengage Learning 2014

Synchronous and Ripple Counters:

- *For synchronous counters, the operation of the flipflops is synchronized by a common clock pulse so that when several flip-flops must change state, the state changes occur simultaneously.
- *Ripple counters are those in which the state change of one flip-flop triggers another flip-flop. These will not be focused on in this chapter.

Binary Counters Using 3 T Flip-Flops to Count Clock Pulses:

- *We assume that all the flip-flops change state a short time following the rising edge of the input pulse.
- ❖The state of the counter is determined by the states of the individual flip-flops; for example, if flip-flop C is in state 0, B in state 1, and A in state 1, the state of the counter is 011.
- ❖Initially, assume that all flip-flops are set to the 0 state. When a clock pulse is received, the counter will change to state 001; when a second pulse is received, the state will change to 010, etc.
- ❖When 111 is reached, the counter resets to the 000 state.
- See next slide for figure.

Synchronous Binary Counter

© Cengage Learning 2014

Design of Binary Counter Using Transition Tables:

- ❖This table shows the present state of flip-flops C, B, and A (before a clock pulse is received) and the corresponding next state (after the clock pulse is received).
- A third column in the table is used to derive the inputs for T_C , T_B , and T_A . Whenever the entries in the A and A^+ columns differ, flip-flop A must change state and T_A must be 1.

 $\star T_C$, T_B , and T_A are now derived from the table as functions of C, B, and A.

TABLE12-2
Transition Table for Binary Counter
© Cengage Learning 2014

Pres	ent S	state	Ne	xt St	ate	Flip-Flop Inpu		Inputs
C	В	Α	C+	B^+	A^+	T_{C}	T_{B}	T_{A}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Karnaugh Maps for Binary Counters:

❖ Figure 12-15 shows the Karnaugh maps for T_C and T_B , from which $T_C = BA$ and $T_B = A$. These equations yield the same circuit derived previously for Figure 12-14.

FIGURE 12-15 Karnaugh Maps for Binary Counter

© Cengage Learning 2014

Binary Counter with D Flip-Flops:

❖We must convert each D flip-flop to a T flip-flop by adding an XOR (exclusive-OR) gate, as shown in Figure 11-28(b). Figure 12-16 shows the resulting counter circuit.

FIGURE 12-16
Binary Counter
with D Flip-Flops
© Cengage Learning 2014

We can also derive the D flip-flop inputs for the binary counter starting with its transition table (Table 12-2). For a D flip-flop, $Q^+ = D$. By inspection of the table, $Q_A^+ = A'$, so $D_A = A'$. The maps for Q_B^+ and Q_C^+ are plotted in Figure 12-17. The D input equations derived from the maps are

$$D_A = A^+ = A'$$

 $D_B = B^+ = BA' + B'A = B \oplus A$ (12-2)
 $D_C = C^+ = C'BA + CB' + CA' = C'BA + C(BA)' = C \oplus BA$

which give the same logic circuit as was obtained by inspection.

FIGURE 12-17
Karnaugh Maps
for D Flip-Flops
© Cengage Learning 2014

Binary Up-Down Counter:

FIGURE 12-19 Binary Up-Down

Counter

© Cengage Learning 2014

Up-Down Counter Transition Graph, Table and Logic Equations:

FIGURE 12-18

Transition Graph and Table for Up-Down Counter

© Cengage Learning 2014

	C+B+A+		
CBA	U	D	
000	001	111	
001	010	000	
010	011	001	
011	100	010	
100	101	011	
101	110	100	
110	111	101	
111	000	110	

The up-down counter can be implemented using D flip-flops and gates, as shown in Figure 12-19. The corresponding logic equations are

$$D_A = A^+ = A \oplus (U+D)$$

$$D_B = B^+ = B \oplus (UA + DA')$$

$$D_C = C^+ = C \oplus (UBA + DB'A')$$

Loadable Counter with Count Enable:

FIGURE 12-20 Loadable Counter

with Count Enable

© Cengage Learning 2014

ClrN	Ld	Ct		C ⁺	B^+	A^+	
0	Х			0	0	0 <i>D_A</i> <i>A</i> tate +	
1	1	Х		D_C	D_B	D_A	(load)
1	0	0		C	В	Α	(no change)
1	0	1		Pres	ent s	tate +	1
			(b)				

The next-state equations for the counter of Figure 12-21 are

$$\begin{split} A^+ &= D_A = (Ld' \cdot A + Ld \cdot D_{Ain}) \ \oplus \ Ld' \cdot Ct \\ B^+ &= D_B = (Ld' \cdot B + Ld \cdot D_{Bin}) \ \oplus \ Ld' \cdot Ct \cdot A \\ C^+ &= D_C = (Ld' \cdot C + Ld \cdot D_{Cin}) \ \oplus \ Ld' \cdot Ct \cdot B \cdot A \end{split}$$

When Ld = 0 and Ct = 1, these equations reduce to $A^+ = A'$, $B^+ = B \oplus A$, and $C^+ = C \oplus BA$, which are the equations previously derived for a 3-bit counter.

Counter for Other Sequences (Example):

We will design a counter for the transition table shown in Table 12-3 using T Flip-Flops.

FIGURE 12-22 Transition Graph for Counter

© Cengage Learning 2014

TABLE 12-3

Transition Table for Figure 12-22

Cengage Learning 2014

C	В	Α	C ⁺	В+	A^{+}
0	0	0	1	0	0
0	0	1	_	_	_
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	_	_	_
1	1	0	_	_	_
1	1	1	0	1	0

© Cengage Learning 2014

(a) Next-state maps for Table 12-3

Input for T Flip-Flop:

❖ T=1 whenever a state of change is required.

TABLE 12-4	$Q Q^+$	T	
Input for	0 0	0	
T Flip-Flop	0 1	1	$T = Q^+ \oplus Q$
© Cengage Learning 2014	1 0	1	
3 3 3	1 1	0	

FIGURE 12-24

Counter Using T Flip-Flops

Cengage Learning 2014

FIGURE 12-25

Timing Diagram for Figure 12-24

© Cengage Learning 2014

Procedure for Designing a Counter Using T Flip-Flops:

- Form a transition table which gives the next flip-flop states for each combination
 of present flip-flop states.
- Plot the next-state maps from the table.
- 3. Plot a T input map for each flip-flop. When filling in the T_Q map, T_Q must be 1 whenever Q⁺ ≠ Q. This means that the T_Q map can be formed from the Q⁺ map by complementing the Q = 1 half of the map and leaving the Q = 0 half unchanged.
- 4. Find the T input equations from the maps and realize the circuit.

Counter Design using D Flip-Flops:

FIGURE 12-27 Counter of

Figure 12-22

Using D Flip-Flops

Binary Counter with Clear:

- Counters and shift registers with clear, preset, or parallel load capability can also be used to generate nonbinary count cycles.
- Consider a binary counter with a clear input as shown Figure 12-28.

FIGURE 12-28 Binary Counter with Clear

© Cengage Learning 2014

Synchronous Clear:

$$Clr = Q_3Q_0$$

Asynchronous Clear:

$$Clr = Q_3Q_1$$

Binary Counter with Parallel Load:

FIGURE 12-29 Binary Counter with Parallel Load

© Cengage Learning 2014

The counter must cycle through states 3 to 12. The logic must generate Ld when the counter is in state 12 and the parallel inputs must be 0011.

$$D_3 = 0$$
, $D_2 = 0$, $D_1 = 1$, $D_0 = 1$
 $Ld = Q_3Q_2$

States 0,1,2,13,14,15 are don't-cares.

Procedure for Counter Design Using S-R Flip-Flops:

Instead of deriving an input equation for each D or T flip-flop, the S and R input equations must be derived.

TABLE 12-5 S-R Flip-Flop Inputs © Cengage Learning 2014

		(a)	
5	R	Q	Q ⁺
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	−) inputs not
1	1	1	−∫ allowed

$$\begin{array}{c|cccc} & & & & & & \\ Q & Q^+ & & S & R \\ \hline 0 & 0 & & & & \\ 0 & 1 & & & \\ 0 & 1 & & 1 & 0 \\ 1 & 0 & & 0 & 1 \\ 1 & 1 & & & \\ 1 & 0 & & \\ \end{array}$$

TABLE 12-6

C	В	Α	C ⁺	B +	A^+	Sc	R_{C}	S_B	R_B	S_A	R_A
0	0	0	1	0	0	1	0	0	Χ	0	Χ
0	0	1	_	_	_	X	Χ	Χ	Χ	Χ	Χ
0	1	0	0	1	1	0	Χ	Χ	0	1	0
0	1	1	0	0	0	0	Χ	0	1	0	1
1	0	0	1	1	1	X	0	1	0	1	0
1	0	1	_	_	_	X	Χ	Χ	Χ	Χ	Χ
1	1	0	_	_	_	X	Χ	Χ	Χ	Χ	Χ
1	1	1	0	1	0	0	1	Χ	0	0	1

Counter Using S-R Flip Flops:

FIGURE 12-30

Counter of Figure 12-22 Using S-R Flip-Flops

© Cengage Learning 2014

(a) Next-state maps

Counter Using S-R Flip Flops (continued):

(b) S-R flip-flop equations

Counter Using S-R Flip-Flops (continued):

(c) Logic circuit

Procedure for Counter Design Using J-K Flip- Flops:

❖The procedure used to design a counter with J-K flip-flops is very similar to that used for S-R flip-flops, except that J and K can be 1 simultaneously, in which case the flip-flop changes state.

> J-K Flip-Flop Inputs

(a)								
J	K	Q	Q^+					
0	0	0	0					
0	0	1	1					
0	1	0	0					
0	1	1	0					
1	0	0	1					
1	0	1	1					
1	1	0	1					
1	1	1	0					

$$\begin{array}{c|cccc} (b) & & & \\ \hline Q & Q^+ & & J & K \\ \hline 0 & 0 & & \begin{cases} 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \end{array}$$

(c)									
Q	Q^+	J	K						
0	0	0	Х						
0	1	1	Х						
1	0	X	1						
1	1	X	0						

J-K Flip-Flop Table:

TABLE 12-8

C	В	Α	C+	B ⁺	A ⁺	J_{C}	K_{C}	J_B	K_B	J_A	K_{A}
0	0	0	1	0	0	1	Х	0	Χ	0	X
0	0	1	_		_	X	Х	Χ	Χ	Χ	X
0	1	0	0	1	1	0	Χ	Χ	0	1	X
0	1	1	0	0	0	0	Χ	Χ	1	Χ	1
1	0	0	1	1	1	Х	0	1	Χ	1	X
1	0	1	_		_	X	Χ	Χ	Χ	Χ	X
1	1	0	_	_	_	X	Χ	Χ	Χ	Χ	X
1	1	1	0	1	0	Χ	1	Χ	0	Х	1

Counter Design Using J-K Flip-Flop:

FIGURE 12-31

Counter of Figure 12-22 Using J-K Flip-Flops

Cengage Learning 2014

(a) Next-state maps

(b) J-K flip-flop input equations

Counter Design Using J-K Flip-Flop (continued):

(c) Logic circuit (omitting the feedback lines)

Derivation of Flip-Flop Input Equations- Summary

Summary:

- The input equation for the flip-flops in a sequential circuit may be derived from the next-state equations by using truth tables or by using Karnaugh maps.
- For the D flip-flop, the input is the same as the next state.
- ❖For the T flip-flop, the input is 1 whenever a state change is required.
- ❖For the S-R flip-flop, S is 1 whenever the flip-flop must be set to 1 and R is 1 when it must be reset to 0.
- ❖For a J-K flip-flop, the J and K inputs are the same as S and R, respectively, except that when one input is 1 the other input is X.

Derivation of Flip-Flop Input Equations- Summary

TABLE 12-9

Determination of Flip-Flop Input Equations from Next-State Equations Using Karnaugh Maps

© Cengage Learning 2014

		Q = 0		Q =	= 1	Rules for Forming Input Map From Next-State Map*		
Type of Flip-Flop	Input	$Q^+ = 0$	Q ⁺ = 1	$Q^+ = 0$	$Q^{+} = 1$	Q = 0 Half of Map	Q = 1 Half of Map	
Delay Toggle Set-Reset	D T S	0 0 0	1 1 1	0 1 0	1 0 X	no change no change no change	no change complement replace 1's with X's**	
	R	Х	0	1	0	replace 0's with X's**	complement	
J-K	J K	0 <i>X</i>	1 X	X 1	X 0	no change fill in with X's	fill in with X's complement	

Q⁺ means the next state of Q

X is a don't-care

^{*}Always copy X's from the next-state map onto the input maps first.

^{**}Fill in the remaining squares with 0's.

Derivation of Flip-Flop Input Equations- Summary

Example 1:

Example (illustrating the use of Table 12-9)

$$AB \qquad 0 \qquad 1$$

$$00 \qquad 0 \qquad 1$$

$$01 \qquad 1 \qquad 0$$

$$11 \qquad 0 \qquad 0$$

$$10 \qquad 1 \qquad X$$

$$D = Q'A'B + QB' + AB'$$

$$D \text{ input map}$$

Derivation of Flip-Flop Input Equations - Summary Example 1 (continued):

For the S-R flip-flop, note that when Q = 0, R = X if $Q^+ = 0$; and when Q = 1, R = 1 if $Q^+ = 0$. Therefore, to form the R map from the Q^+ map, replace 0's with X's on the Q = 0 half of the map and replace 0's with 1's on the Q = 1 half (and fill in 0's for the remaining entries). Similarly, to form the S map from the Q^+ map, copy the 1's on the Q = 0 half of the map, and replace the 1's with X's on the Q = 1 half.