

CLAIMS

What is claimed is:

1 1. A method for adjusting a binder laylength, the method
2 comprising:

3 positioning a plurality of buffer tubes with respect to each other
4 wherein each buffer tube houses a plurality of fiber optic bundles;

5 placing a detectable binder around one of the plurality of fiber optic
6 bundles, wherein the detectable binder contains a physically detectable
7 feature;

8 detecting the detectable binder;

9 calculating a distance value between at least two detectable points on
10 the detectable binder;

11 comparing the distance value to a stored value; and

12 adjusting the binder laylength according to the difference between the
13 distance value and the stored value while an operation is in progress.

1 2. The method for adjusting a binder laylength of Claim 1,
2 wherein the binder's physically detectable feature is a fluorescing element.

1 3. The method for adjusting a binder laylength of Claim 1,
2 wherein the binder's physically detectable feature is a color.

1 4. The method for adjusting a binder laylength of Claim 1, wherein the
2 binder's physically detectable feature is a magnetic or metal strip.

1 5. The method for adjusting a binder laylength of Claim 1, wherein the
2 binder's physically detectable feature is an identifiable marking.

1 6. The method of adjusting the binder laylength of claim 1, wherein the
2 said positioning step includes positioning the buffer tube around a central
3 strength member.

1 7. A method for determining a binder laylength, the method comprising:
2 positioning a plurality of buffer tubes with respect to each other wherein each
3 buffer tube houses a plurality of fiber optic bundles;
4 placing a detectable binder around one of the plurality of fiber optic bundles,
5 wherein the detectable binder contains a physically detectable feature;
6 detecting the detectable binder; and
7 calculating a distance value between at least two detectable points on the
8 detectable binder.

1 8. The method for determining a binder laylength of Claim 7, the method
2 further comprising:
3 comparing the distance value to a stored value; and

4 adjusting the binder laylength according to the difference between the
5 distance value and the stored value while an operation is in progress thus
6 resulting in the binder laylength being evaluated and adjusted on line.

1 9. The method for determining a binder laylength of Claim 7, wherein the
2 binder's physically detectable feature is a fluorescing element.

1 10. The method for determining a binder laylength of Claim 7, wherein the
2 binder's physically detectable feature is a color.

1 11. The method for determining a binder laylength of Claim 7, wherein the
2 binder's physically detectable feature is a magnetic or metal strip.

1 12. The method for determining a binder laylength of Claim 7, wherein the
2 binder's physically detectable feature is an identifiable marking.

1 13. The method for determining a binder laylength of Claim 7, wherein
2 said positioning step includes positioning the buffer tubes around a central
3 strength member.

1 14. A strander for manufacturing a fiber optic cable wherein the fiber optic
2 cable has at least one buffer tube housing a plurality of fiber optic bundles, the
3 strander comprising:

4 a binder wrapper for placing a detectable binder around the fiber optic
5 bundles wherein the detectable binder has a physically detectable feature;
6 a detector for detecting the physically detectable feature; and
7 a value unit for calculating a distance value between at least two
8 detectable points associated with the physically detectable feature on the
9 detectable binder.

1 15. The strander of Claim 14 further comprising;

2 a computer for calculating a difference value by comparing the
3 distance value to a stored binder laylength parameter and thus adjusting the
4 binder according to the difference value while the stranding operation is in
5 progress thereby resulting in the binder laylength being evaluated and
6 adjusted on line.

1 16. The strander of Claim 14, wherein the binder's physically detectable
2 feature is a fluorescing element.

1 17. The strander of Claim 14, wherein the binder's physically detectable
2 feature is a color.

1 18. The strander of Claim 14, wherein the binder's physically detectable
2 feature is a magnetic or metal strip.

1 19. The strander of Claim 14, wherein the binder's physically detectable
2 feature is an identifiable marking.

1 20. A fiber optic cable binder comprising:

2 a flexible material; and
3 a physically detectable feature within the flexible material.

1 21. The fiber optic cable binder of Claim 20, wherein the binder's
2 detectable feature is detected by a detection system.

1 22. The fiber optic cable of Claim 20, wherein the binder's physically
2 detectable feature is a fluorescing element.

1 23. The fiber optic cable of Claim 20, wherein the binder's physically
2 detectable feature is a color.

1 24. The fiber optic cable of Claim 20, wherein the binder's physically
2 detectable feature is a magnetic or metal strip.

1 25. The fiber optic cable of Claim 20, wherein the binder's physically
2 detectable feature is an identifiable marking.

1 26. A buffer tube comprising of:
2 a plurality of individual optic fibers located within the buffer tube and
3 arranged in a plurality of fiber optic bundles; and
4 a detectable binder having an adjustable laylength wherein the
5 detectable binder surrounds the fiber optic bundle.

1 27. The buffer tube of Claim 25, wherein the binder is detectable due to a
2 fluorescing element.

1 28. The buffer tube of Claim 25, wherein the binder is detectable due to a
2 distinguishing color.

1 29. The buffer tube of Claim 25, wherein the binder is detectable due to a
2 magnetic or metal strip.

30. The buffer tube of Claim 25, wherein the binder is detectable due to a
an identifiable marking.

add
x+