Advanced Econometrics: Three-Stage Least Squares (3SLS)

Prepared by

Aditya Korekallu Srinivasa

Scientist (Senior Scale)

ICAR-Indian Agricultural Research Institute

New Delhi

Contents

1		Introduction: Why 3SLS?				
	1.1 1.2	Motivation				
2	The	The Structure of 3SLS Estimation				
	2.1	General System				
	2.2	Error Covariance Structure				
	2.3	Stacked System Representation				
3	Thr	Three-Stage Least Squares (3SLS): Step-by-Step				
	3.1	Stage 1: Obtain Fitted Values for Endogenous Regressors (2SLS)				
	3.2	Stage 2: Estimate Each Equation by 2SLS				
	3.3	Stage 3: Generalized Least Squares (GLS) on the System				
	3.4	Interpretation				
4	Mathematical Derivation of 3SLS Estimator					
	4.1	Notation				
	4.2	System Covariance Structure				
	4.3	3SLS Estimator				
	4.4	Properties				
	4.5	Assumptions				
5	Idei	Identification in 3SLS Systems				
	5.1	Order and Rank Conditions				
	5.2	Testing Overidentifying Restrictions				
6	Pra	Practical Implementation: Example from Agriculture				
	6.1	Example: Farm Production and Consumption System				
	6.2	Software Implementation				
7	Con	nparison: 2SLS, SUR, 3SLS, FIML				
8	Adv	Advantages and Limitations of 3SLS				
	8.1	Advantages				
	8.2	Limitations				
9	Agr	Agricultural Economics Papers Using 3SLS: Practical Examples				
	9.1	Example 1: Technology Adoption and Productivity				
	9.2	Example 2: Fertilizer Demand and Credit Access				
	9.3	Example 3: Market Participation and Farm Income				
	9.4	Example 4: Irrigation, Crop Choice, and Yield				
10	Pra	ctice Questions				

1 Introduction: Why 3SLS?

1.1 Motivation

In many economic applications, especially in agriculture and development, we encounter systems of equations with:

- Endogenous variables appearing as regressors in multiple equations,
- Correlation among error terms across equations (contemporaneous correlation),
- The need for efficient and consistent estimation of all parameters in the system.

Three-Stage Least Squares (3SLS) is a system estimation method that generalizes 2SLS by exploiting both the endogeneity structure and the correlation among error terms, leading to more efficient estimates.

1.2 When to Use 3SLS

- When you have a system of simultaneous equations (not just one equation).
- When errors across equations are correlated (e.g., due to unobserved shocks affecting multiple outcomes).
- When you want to estimate all equations jointly for efficiency.

2 The Structure of 3SLS Estimation

2.1 General System

Suppose we have a system of G linear equations, each with n observations:

$$y_{gi} = x'_{gi}\beta_g + u_{gi}, \quad g = 1, \dots, G; \quad i = 1, \dots, n$$

where:

- y_{gi} : Dependent variable in equation g,
- x_{qi} : Vector of regressors (including endogenous and exogenous variables),
- β_q : Parameter vector,
- u_{qi} : Error term.

2.2 Error Covariance Structure

The vector of errors across equations for observation i is:

$$u_i = (u_{1i}, u_{2i}, \dots, u_{Gi})'$$

Assume $E[u_i] = 0$, $E[u_i u_i'] = \Omega$ (a $G \times G$ positive definite matrix, constant across i), and $E[u_i u_j'] = 0$ for $i \neq j$.

2.3 Stacked System Representation

Stack all equations for all observations:

$$Y = X\beta + u$$

where Y is $nG \times 1$, X is block-diagonal, β is stacked, and u is $nG \times 1$.

3 Three-Stage Least Squares (3SLS): Step-by-Step

3.1 Stage 1: Obtain Fitted Values for Endogenous Regressors (2SLS)

- 1. For each equation, regress each endogenous regressor on all exogenous variables (instruments) in the system.
- 2. Obtain fitted values for all endogenous regressors.
- 3. Replace endogenous regressors in each equation with their fitted values.

3.2 Stage 2: Estimate Each Equation by 2SLS

- 1. Using the fitted values, estimate each equation by 2SLS.
- 2. Obtain residuals for each equation.

3.3 Stage 3: Generalized Least Squares (GLS) on the System

- 1. Compute the sample covariance matrix of the residuals across equations $(\hat{\Omega})$.
- 2. Use $\hat{\Omega}$ to perform GLS on the system, exploiting the cross-equation error correlation.
- 3. The 3SLS estimator is:

$$\hat{\beta}_{3SLS} = (X'(\Omega^{-1} \otimes I_n)X)^{-1}X'(\Omega^{-1} \otimes I_n)Y$$

where \otimes is the Kronecker product, and I_n is the $n \times n$ identity matrix.

3.4 Interpretation

- 3SLS combines the consistency of 2SLS with the efficiency of Seemingly Unrelated Regressions (SUR).
- If errors are uncorrelated across equations, 3SLS reduces to 2SLS.

4 Mathematical Derivation of 3SLS Estimator

4.1 Notation

Let
$$Y = (Y'_1, Y'_2, ..., Y'_G)'$$
, $X = \text{blockdiag}(X_1, ..., X_G)$, $\beta = (\beta'_1, ..., \beta'_G)'$, $u = (u'_1, ..., u'_G)'$.

4.2 System Covariance Structure

Let Ω be the $G \times G$ covariance matrix of the errors for each observation. The full covariance of u is $\Sigma = \Omega \otimes I_n$.

4.3 3SLS Estimator

The Generalized Least Squares (GLS) estimator for the system is:

$$\hat{\beta}_{GLS} = (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}Y$$

But since X contains fitted values from the first stage (instruments), this is 3SLS.

4.4 Properties

- 3SLS is consistent and asymptotically efficient among estimators using linear combinations of instruments.
- If the system is recursive (no endogenous regressors on the right), 3SLS reduces to SUR.
- If errors are uncorrelated, 3SLS reduces to 2SLS.

4.5 Assumptions

- Correct specification of the system.
- Valid instruments (relevance and exogeneity).
- Homoskedasticity and no serial correlation within equations (or use robust versions).

5 Identification in 3SLS Systems

5.1 Order and Rank Conditions

- Each equation must be identified (order and rank conditions) for 3SLS to be valid.
- Overidentification allows for testing instrument validity.

5.2 Testing Overidentifying Restrictions

- Sargan-Hansen tests can be applied equation-by-equation or system-wide.
- Failure to reject indicates instruments are valid.

6 Practical Implementation: Example from Agriculture

6.1 Example: Farm Production and Consumption System

Suppose we have a two-equation system for smallholder farms:

Production_i =
$$\alpha_0 + \alpha_1 \text{Labor}_i + \alpha_2 \text{Fertilizer}_i + \alpha_3 \text{Consumption}_i + u_{1i}$$

Consumption_i = $\beta_0 + \beta_1 \text{Production}_i + \beta_2 \text{Income}_i + \beta_3 \text{FamilySize}_i + u_{2i}$

Here, Production and Consumption are endogenous in both equations.

Steps:

- 1. Use exogenous variables (e.g., Labor, Fertilizer, Income, FamilySize) as instruments.
- 2. Stage 1: Predict endogenous variables using instruments.
- 3. Stage 2: Estimate each equation by 2SLS.
- 4. Stage 3: Estimate the system by GLS using the covariance of residuals.

Interpretation:

• 3SLS provides more efficient estimates of the effect of, say, fertilizer on production, accounting for the feedback between production and consumption and their error correlation.

6.2 Software Implementation

- R: Use the systemfit package.
- Stata: Use the reg3 command.
- Python: Use linearmodels.system (limited support).

7 Comparison: 2SLS, SUR, 3SLS, FIML

Method	Endogeneity	Error Correlation	System Estimation
2SLS	Yes	No	No
SUR	No	Yes	Yes
3SLS	Yes	Yes	Yes
FIML	Yes	Yes	Yes (full info)

8 Advantages and Limitations of 3SLS

8.1 Advantages

- More efficient than 2SLS if errors are correlated across equations.
- Allows joint hypothesis testing across equations.
- Useful in policy analysis where multiple outcomes are jointly determined.

8.2 Limitations

- Sensitive to misspecification in any equation (system estimation).
- Requires correct identification of all equations.
- Computationally more intensive.
- If instruments are weak or invalid, 3SLS can be inconsistent.

9 Agricultural Economics Papers Using 3SLS: Practical Examples

9.1 Example 1: Technology Adoption and Productivity

Source: Matuschke, I., Qaim, M. (2009). "The impact of social networks on hybrid seed adoption in India." *Agricultural Economics*, 40(5), 493–505.

Endogeneity: Adoption of hybrid seed and farm productivity are jointly determined—more productive farmers may be more likely to adopt, and adoption may increase productivity.

How 3SLS Solved It: The authors specified a system where adoption and productivity equations are estimated jointly, using exogenous variables (e.g., access to extension, social network characteristics) as instruments. 3SLS captured the feedback and improved efficiency.

9.2 Example 2: Fertilizer Demand and Credit Access

Source: Guirkinger, C., Boucher, S. (2008). "Credit constraints and productivity in Peruvian agriculture." *Agricultural Economics*, 39(3), 295–308.

Endogeneity: Fertilizer demand and access to credit are endogenous—credit affects input use, and productive farms are more likely to get credit.

How 3SLS Solved It: The authors estimated a system with fertilizer demand and credit access equations, using exogenous variables (e.g., land size, household characteristics) as instruments, and 3SLS to account for error correlation.

9.3 Example 3: Market Participation and Farm Income

Source: Barrett, C. B. (2008). "Smallholder market participation: Concepts and evidence from eastern and southern Africa." *Food Policy*, 33(4), 299–317.

Endogeneity: Market participation and income are jointly determined—higher income enables participation, and participation increases income.

How 3SLS Solved It: System of equations for participation and income, using household characteristics and asset variables as instruments, estimated by 3SLS.

9.4 Example 4: Irrigation, Crop Choice, and Yield

Source: Dillon, B., Barrett, C. B. (2017). "Agricultural factor markets in Sub-Saharan Africa: An updated view with formal tests for market failure." *Food Policy*, 67, 64–77.

Endogeneity: Irrigation use, crop choice, and yield are jointly determined.

How 3SLS Solved It: Joint estimation of equations for irrigation, crop choice, and yield, using exogenous weather and policy variables as instruments.

10 Practice Questions

- 1. Explain in detail the three stages of 3SLS and why each is necessary.
- 2. Discuss the efficiency gains of 3SLS over 2SLS and SUR.
- 3. In the context of smallholder farm systems, design a 3SLS system for production, consumption, and credit access.
- 4. How do you test for the validity of instruments in a 3SLS system?
- 5. Using one of the agricultural economics examples above, explain the identification strategy and the role of 3SLS.
- 6. What are the limitations of 3SLS in empirical research?
- 7. Compare and contrast 3SLS and FIML.

Glossary

- **3SLS**: Three-stage least squares, a system estimation method for simultaneous equations.
- SUR: Seemingly unrelated regressions, a system method for equations with correlated errors but no endogeneity.
- 2SLS: Two-stage least squares, single-equation IV method.
- GLS: Generalized least squares, efficient estimation in the presence of correlated errors.
- **Instrument**: Exogenous variable used to identify endogenous regressors.
- **Identification**: Ability to uniquely estimate model parameters.
- Sargan-Hansen Test: Test for overidentifying restrictions (instrument validity).

References

- Gujarati, D. N., & Porter, D. C. (2010). *Basic Econometrics* (5th ed.). McGraw-Hill.
- Wooldridge, J. M. (2013). *Introductory Econometrics: A Modern Approach* (5th ed.). Cengage Learning.
- Matuschke, I., & Qaim, M. (2009). "The impact of social networks on hybrid seed adoption in India." Agricultural Economics, 40(5), 493–505.

- Guirkinger, C., & Boucher, S. (2008). "Credit constraints and productivity in Peruvian agriculture." *Agricultural Economics*, 39(3), 295–308.
- Barrett, C. B. (2008). "Smallholder market participation: Concepts and evidence from eastern and southern Africa." *Food Policy*, 33(4), 299–317.
- Dillon, B., & Barrett, C. B. (2017). "Agricultural factor markets in Sub-Saharan Africa: An updated view with formal tests for market failure." Food Policy, 67, 64–77.