Intervals, Transformations, and Slope Solution (version 92)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8, -4) \cup (-1, 6)$
Negative	$(-4,-1) \cup (6,7)$
Increasing	$(-8, -7) \cup (-3, 3)$
Decreasing	$(-7, -3) \cup (3, 7)$
Domain	(-8,7)
Range	(-3,9)

Intervals, Transformations, and Slope Solution (version 92)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=29$ and $x_2=92$. Express your answer as a reduced fraction.

$$\frac{g(92) - g(29)}{92 - 29} = \frac{74 - 18}{92 - 29} = \frac{56}{63}$$

The greatest common factor of 56 and 63 is 7. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{8}{9}$$

2