Prova 3

Valor total: 23 pontos

ID: 43 (favor copiar esse valor no cabeçalho da resolução)

Questão 1

Um laboratório de pesquisas possui 35 computadores que devem ser usados para executar 29 simulações. Os computadores não são todos iguais, sendo 10 máquinas do tipo I, 14 do tipo II e 11 do tipo III. De modo semelhante, as simulações são divididas em cinco algoritmos diferentes, sendo 4 instâncias da simulação S1, 6 da simulação S2, 7 da S3, 7 da S4 e 5 da S5. Os gastos em energia para que cada tipo de computador execute uma instância de cada tipo de simulação são dados na tabela abaixo.

		Tipo de Simulação						
		S1	S2	S3	S4	S5		
	I	600	600	400	450	650		
Tipo de Máquina	II	300	370	360	390	320		
maqama	III	420	440	410	490	440		

Deseja-se executar todas as 29 simulações gastando a menor quantidade total de energia possível. Resolva o problema e marque a opção abaixo que representa corretamente o resultado ótimo.

- a) 11010
- b) 11020
- c) 11030
- d) 11040
- e) 11050
- f) 11060
- g) 11070
- h) 11080

5

Questão 2

O grafo abaixo representa uma rede de computadores, onde os valores nas arestas mostram o tempo em ms (milissegundos) que uma mensagem leva para trafegar entre os computadores. Determine a árvore de distâncias mostrando o caminho mais curto do computador 1 até todos os outros computadores. Marque abaixo a opção que contêm a soma de todas menores distâncias (veja exemplo abaixo).

Matriz de Adiacência:

Matriz de Adjacencia:														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1		2						4			3	3		
2	2		4					3		4				
3		4		7										3
4			7		7						4	4		
5				7		2							3	
6					2		2		3					7
7						2		2		6			7	
8	4	3					2		5					
9						3		5		2				
10		4					6		2		4			
11	3			4						4		4		
12	3			4							4		3	·
13					3		7					3		5
14			3			7							5	

- a) 73
- b) 74
- c) 75
- d) 76
- e) 77
- f) 78
- g) 79
- h) 80
 - 9
 - 6 7 8

10

- 1 2
- 14 13 12 11
 - 5 4
 - 3

Exemplo (extraído dos slides de aula):

Grafo original

Árvore de distâncias com origem no vértice 1

i	d_i	p_i
1	0	-
2	2	1
3	6	1
4	7	3
5	10	6
6	9	3
7	12	2

Soma das menores distâncias = 0 + 2 + 6 + 7 + 10 + 9 + 12 = 46

Questão 3

4

Considere a mesma rede mostrada na Questão 2, mas desta vez considere que os valores nas arestas representam os comprimentos dos cabos que interligam os computadores. Determine a Árvore Geradora de Custo Mínimo (AGM) para essa rede e marque abaixo o item que corresponde ao valor total da AGM (soma dos custos das arestas).

- a) 31
- b) 32
- c) 33
- d) 34
- e) 35
- f) 36
- g) 37
- h) 38

9

7 8

1 2

14 13 12 11

5 4

Questão 4

Uma empresa dispõe de cinco técnicos, que trabalham em *home office*, para cobrir quatro pedidos de conserto de geladeira. A tabela a seguir mostra o custo de transporte de cada técnico para cada local de serviço. Determine a atribuição de técnicos que minimiza a soma dos custos necessária para cobrir todos os pedidos, e marque abaixo a opção que corresponde ao valor ótimo.

		Pedido					
		1	2	3	4		
	1	22	27	30	17		
Técnico	2	23	21	28	27		
	3	33	34	22	28		
	4	28	16	27	22		
	5	6	10	6	10		

- a) 55
- b) 56
- c) 57
- d) 58
- e) 59
- f) 60
- g) 61
- h) 62

Resolva o Problema de Fluxo Máximo da rede de transporte de gás natural representada pelo grafo abaixo. Marque a opção abaixo que corresponde ao valor ótimo da Função Objetivo.

- a) 115
- b) 117
- c) 119
- d) 121
- e) 123
- f) 125
- g) 127
- h) 129