ESERCIZI SU ALBERI DI DERIVAZIONE E PUMPING LEMMA

Linguaggi liberi da contesto

Docente: Cataldo Musto

Si ringrazia il prof. Marco De Gemmis ed Il tutor Francesco Paolo Caforio per il Materiale

Esercizi

 Dimostrazione di non-libertà dal contesto tramite il Pumping Lemma

Esercizio 1

Sia dato il linguaggio $L = \{a^n b^n c^n | n > 0\}$

- 1. Determinare la grammatica G che genera L
- 2. Che tipo di grammatica è *G*?
- Applicare il Pumping Lemma per dimostrare che L non è libero da contesto

$$L = \{a^n b^n c^n | n > 0\}$$

Quali sono le parole del linguaggio?

$$L = \{a^n b^n c^n | n > 0\}$$

- Quali sono le parole del linguaggio?
 - $L = \{a^1b^1c^1, a^2b^2c^2, ...\} = \{abc, aabbcc, aaabbbccc, ...\}$

$$L = \{a^n b^n c^n | n > 0\}$$

- Quali sono le parole del linguaggio?
 - $L = \{a^1b^1c^1, a^2b^2c^2, ...\} = \{abc, aabbcc, aaabbbccc, ...\}$
 - Ci servono i simboli terminali $X = \{a, b, c\}$

$$L = \{a^n b^n c^n | n > 0\}$$

Come ricaviamo le regole di produzione?

$$L = \{a^n b^n c^n | n > 0\}$$

- Come ricaviamo le regole di produzione?
- Consideriamo la parola più corta in L, w = abc. Una sua possibile derivazione è: $S \Rightarrow aBC \Rightarrow abC \Rightarrow abc$

$$L = \{a^n b^n c^n | n > 0\}$$

- Come ricaviamo le regole di produzione?
- Consideriamo la parola più corta in L, w = abc. Una sua possibile derivazione è: $S \Rightarrow aBC \Rightarrow abC \Rightarrow abc$
- Questa derivazione può essere prodotta dalle regole: $P = \{S \rightarrow aBC, \ aB \rightarrow ab, \ bC \rightarrow bc\}$

$$L = \{a^n b^n c^n | n > 0\}$$

- $P = \{S \rightarrow aBC, aB \rightarrow ab, bC \rightarrow bc\}$
- Come possiamo derivare la parola $a^2b^2c^2$?

$$L = \{a^n b^n c^n | n > 0\}$$

- $P = \{S \rightarrow aBC, S \rightarrow aSBC, aB \rightarrow ab, bC \rightarrow bc\}$
- Come possiamo derivare la parola $a^2b^2c^2$?
 - Ci serve sicuramente una regola ricorsiva S → aSBC

$$L = \{a^n b^n c^n | n > 0\}$$

- $P = \{S \rightarrow aBC, S \rightarrow aSBC, aB \rightarrow ab, bC \rightarrow bc\}$
- Come possiamo derivare la parola $a^2b^2c^2$?
 - Ci serve sicuramente una regola ricorsiva S → aSBC
 - Adesso, $S \Rightarrow aSBC \Rightarrow aaBCBC \Rightarrow aabCBC \Rightarrow ...?$

$$L = \{a^n b^n c^n | n > 0\}$$

- $P = \{S \rightarrow aBC, S \rightarrow aSBC, aB \rightarrow ab, bC \rightarrow bc, CB \rightarrow BC\}$
- Come possiamo derivare la parola $a^2b^2c^2$?
 - Ci serve sicuramente una regola ricorsiva $S \rightarrow aSBC$
 - Adesso, $S \Rightarrow aSBC \Rightarrow aaBCBC \Rightarrow aabCBC \Rightarrow ...?$
 - Ci serve anche una regola che effettui uno scambio di nonterminali
 CB → BC

$$L = \{a^n b^n c^n | n > 0\}$$

- $P = \{S \rightarrow aBC, S \rightarrow aSBC, aB \rightarrow ab, bC \rightarrow bc, CB \rightarrow BC\}$
- Come possiamo derivare la parola $a^2b^2c^2$?
 - Ci serve sicuramente una regola ricorsiva S → aSBC
 - Adesso, $S \Rightarrow aSBC \Rightarrow aaBCBC \Rightarrow aabCBC \Rightarrow ...?$
 - Ci serve anche una regola che effettui uno scambio di nonterminali
 CB → BC
 - Infine, ci servono le regole $bB \rightarrow bb$, $cC \rightarrow cc$

$$L = \{a^n b^n c^n | n > 0\}$$

- $P = \{S \rightarrow aBC, S \rightarrow aSBC, aB \rightarrow ab, bC \rightarrow bc, CB \rightarrow BC, bB \rightarrow bb, cC \rightarrow cc\}$
- Come possiamo derivare la parola $a^2b^2c^2$?
 - Adesso, $S \Rightarrow aSBC \Rightarrow aaBCBC \Rightarrow aaBBCC \Rightarrow aabBCC \Rightarrow aabbcC \Rightarrow aabbcC \Rightarrow aabbcC$

$$L = \{a^n b^n c^n | n > 0\}$$

- $P = \{S \rightarrow aBC, S \rightarrow aSBC, aB \rightarrow ab, bC \rightarrow bc, CB \rightarrow BC, bB \rightarrow bb, cC \rightarrow cc\}$
- Le derivazioni di parole più lunghe non hanno bisogno di altre regole: $S \Rightarrow aSBC \Rightarrow \cdots \Rightarrow a^n(BC)^n \Rightarrow \cdots \Rightarrow a^nB^nC^n \Rightarrow \cdots \Rightarrow a^nb^nc^n$

$$L = \{a^n b^n c^n | n > 0\}$$

- In conclusione, abbiamo G = (X, V, S, P) con
 - $X = \{a, b, c\}$
 - $V = \{S, A, B, C\}$
 - $P = \{S \rightarrow aBC, S \rightarrow aSBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

$$L = \{a^n b^n c^n | n > 0\}$$

- In conclusione, abbiamo G = (X, V, S, P) con
 - $X = \{a, b, c\}$
 - $V = \{S, A, B, C\}$
 - $P = \{S \rightarrow aBC, S \rightarrow aSBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$
- Che tipo di grammatica è G?

$$L = \{a^n b^n c^n | n > 0\}$$

- In conclusione, abbiamo G = (X, V, S, P) con
 - $X = \{a, b, c\}$
 - $V = \{S, A, B, C\}$
 - $P = \{S \rightarrow aBC, S \rightarrow aSBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$
- Che tipo di grammatica è G?
 - È monotona. Per il teorema di equivalenza delle grammatiche monotone e contestuali, esiste una grammatica contestuale G' equivalente a G

$$L = \{a^n b^n c^n | n > 0\}$$

Supponiamo per assurdo che L sia libero da contesto.

$$L = \{a^n b^n c^n | n > 0\}$$

- Supponiamo per assurdo che L sia libero da contesto.
- Allora, per il Pumping Lemma, $\exists p \in \mathbb{N}$ tale che $\forall z \in L, |z| > p \Rightarrow z = uvwxy$, con le seguenti proprietà:

$$L = \{a^n b^n c^n | n > 0\}$$

- Supponiamo per assurdo che L sia libero da contesto.
- Allora, per il Pumping Lemma, $\exists p \in \mathbb{N}$ tale che $\forall z \in L, |z| > p \Rightarrow z = uvwxy$, con le seguenti proprietà:
 - $|vwx| \le p$
 - $vx \neq \lambda$
 - $\forall i, i \geq 0 : uv^i wx^i y \in L$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
 - Ovviamente $z \in L$ e |z| = 3p > p, quindi il Pumping Lemma può essere applicato.

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
 - Ovviamente $z \in L$ e |z| = 3p > p, quindi il Pumping Lemma può essere applicato.
 - Scriviamo z = uvwxy, in modo tale che $|vwx| \le p$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
 - Ovviamente $z \in L$ e |z| = 3p > p, quindi il Pumping Lemma può essere applicato.
 - Scriviamo z = uvwxy, in modo tale che $|vwx| \le p$
 - Come saranno formate u, v, w, x, y?

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
 - Poiché la stringa $|vwx| \le p$ abbiamo le seguenti possibilità:

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (1) vwx è formata da sole a

$$u \quad v \quad w \quad x \quad y$$

$$a^k, 0 < k \le p$$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (1) vwx è formata da sole a

$$u \quad v \quad w \quad x \quad y$$

$$a^{j}, j \leq p - k \quad a^{k}, 0 < k \leq p \quad a^{p-k-j}b^{p}c^{p}$$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (2) vwx è formata da sole b

$$\begin{array}{c|cccc}
u & v & w & x & y \\
b^k, 0 < k \le p
\end{array}$$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (2) vwx è formata da sole b

$$u v w x y$$

$$a^{p}b^{j}, j \leq p-k b^{k}, 0 < k \leq p b^{p-k-j}c^{p}$$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (3) vwx è formata da sole c

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (3) vwx è formata da sole c

$$u v w x y$$

$$a^{p}b^{p}c^{p-k-j} c^{k}, 0 < k \le p c^{j}, j \le p-k$$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (4) vwx è a cavallo tra $a \in b$

$$u v w x y$$

$$a^k b^r, 0 < \frac{k}{r} \le p$$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (4) vwx è a cavallo tra $a \in b$

$$u v w x y$$

$$a^{p-k} a^k b^r, 0 < \frac{k}{r} \le p$$

$$b^{p-r} c^p$$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (5) vwx è a cavallo tra $b \in c$

$$\begin{array}{c|cccc} u & v & w & x & y \\ & b^k c^r, 0 < \frac{k}{r} \le p \end{array}$$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- (5) vwx è a cavallo tra $b \in c$

$$u v w x y$$

$$a^{p}b^{p-k} b^{k}c^{r}, 0 < \frac{k}{r} \le p$$

$$c^{p-r}$$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- Cosa notiamo?

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- Cosa notiamo?
 - vwx non può essere formata contemporaneamente da a, b e c

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola $z = a^p b^p c^p$.
- Consideriamo la parola «pompata» uv^2wx^2y per ognuno dei 5 casi precedenti

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 1 ($vwx = a^k$, $0 < k \le p$):

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 1 ($vwx = a^k$, $0 < k \le p$):
 - Stiamo aggiungendo almeno una a, e al massimo p a:

•
$$uv^2wx^2y = a^{p+t}b^pc^p$$
, $0 < t \le p$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 1 ($vwx = a^k$, $0 < k \le p$):
 - Stiamo aggiungendo almeno una a, e al massimo p a:

•
$$uv^2wx^2y = a^{p+t}b^pc^p \not\in L$$
, $0 < t \le p$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 2 ($vwx = b^k$, $0 < k \le p$):
 - Stiamo aggiungendo almeno una b, e al massimo p b:

•
$$uv^2wx^2y = a^pb^{p+t}c^p$$
, $0 < t \le p$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 2 ($vwx = b^k$, $0 < k \le p$):
 - Stiamo aggiungendo almeno una b, e al massimo p b:

•
$$uv^2wx^2y = a^pb^{p+t}c^p \notin L$$
, $0 < t \le p$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 3 ($vwx = c^k$, $0 < k \le p$):
 - Stiamo aggiungendo almeno una c, e al massimo p c:
 - $uv^2wx^2y = a^pb^pc^{p+t} \notin L$, $0 < t \le p$

$$L = \{a^n b^n c^n | n > 0\}$$

• Consideriamo la parola «pompata» uv^2wx^2y .

• Caso 4
$$(vwx = a^k b^r, 0 < \frac{k}{r} \le p)$$
:

Abbiamo tre possibilità:

- (4.1) $v \neq \lambda$, $x \neq \lambda$
- (4.2) $v \neq \lambda$, $x = \lambda$
- (4.3) $v = \lambda, x \neq \lambda$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 4 $(vwx = a^k b^r, \ 0 < \frac{k}{r} \le p)$:
 - Abbiamo tre possibilità:
 - (4.1) $v \neq \lambda, x \neq \lambda$
 - (4.2) $v \neq \lambda$, $x = \lambda$
 - (4.3) $v = \lambda, x \neq \lambda$
 - Osserviamo che se $v \neq \lambda$, allora v è composta da sole a, e analogamente se $x \neq \lambda$, allora x è composta da sole b. Altrimenti le a e le b si alternerebbero. Per cui:

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 4 $(vwx = a^k b^r, 0 < \frac{k}{r} \le p)$:
 - (4.1) $v \neq \lambda$, $x \neq \lambda$ $v \neq \lambda$ composta da sole $b \neq 0$
 - $v = a^{k'}$, $0 < k' \le k e x = b^{r'}$, $0 < r' \le r$
 - Da cui abbiamo $uv^2wx^2y=a^{p+k'}b^{p+r'}c^p\notin L$, poiché $\frac{k'}{r'}>0$

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 4 $(vwx = a^k b^r, 0 < \frac{k}{r} \le p)$:
 - (4.2) $v \neq \lambda$, $x = \lambda$ v composta da sole a
 - $v = a^{k'}$, $0 < k' \le k$
 - Da cui abbiamo $uv^2wx^2y = a^{p+k'}b^pc^p \notin L$, poiché k' > 0

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Caso 4 $(vwx = a^k b^r, 0 < \frac{k}{r} \le p)$:
 - (4.3) $v = \lambda$, $x \neq \lambda$ x composta da sole b

- $x = b^{r'}$, $0 < r' \le r$
- Da cui abbiamo $uv^2wx^2y = a^pb^{p+r'}c^p \notin L$, poiché r' > 0

$$L = \{a^n b^n c^n | n > 0\}$$

• Consideriamo la parola «pompata» uv^2wx^2y .

• Caso 5
$$(vwx = b^k c^r, 0 < \frac{k}{r} \le p)$$
:

Analogo al caso 4; si lascia per esercizio

$$L = \{a^n b^n c^n | n > 0\}$$

- Consideriamo la parola «pompata» uv^2wx^2y .
- Abbiamo mostrato che in ogni caso, $uv^2wx^2y \notin L$, il che è una contraddizione $\to L$ non è libero da contesto.

Esercizio 2

Sia dato il linguaggio $L = \{a^{n^2} | n \ge 0\}$

 Applicare il Pumping Lemma per dimostrare che L non è libero da contesto

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Alcune parole che costituiscono L:

•
$$L = \{\lambda, a, a^4, a^9, a^{16}, \dots\}$$

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Alcune parole che costituiscono L:

•
$$L = \{\lambda, a, a^4, a^9, a^{16}, \dots\}$$

- Sappiamo che se un linguaggio è libero da contesto, allora rispetta sicuramente il pumping lemma
 - Dimostrazione per assurdo

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Ricordiamo il Pumping Lemma:
 - $\exists p \in \mathbb{N}$ tale che se $z = uvwxy \in L$ e |z| > p, allora:
 - (1) $|vwx| \le p$
 - (2) $vx \neq \lambda$
 - (3) $uv^iwx^iy \in L, \forall i \geq 0$

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Assumiamo per assurdo che il P.L. sia soddisfatto.
- Consideriamo la parola $z = a^{p^2}$

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Consideriamo la parola $z = a^{p^2}$
 - Scriviamo la parola come z = uvwxy. Per il PL, $|vwx| \le p$.

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Consideriamo la parola $z = a^{p^2}$
 - Scriviamo la parola come z = uvwxy. Per il PL, $|vwx| \le p$.
 - A differenza dell'esempio precedente, non serve sviluppare i diversi casi perché vwx è composta da sole a
 - Come si applica il pumping lemma in questo caso?

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Consideriamo la parola $z = a^{p^2}$
 - Scriviamo la parola come z = uvwxy. Per il PL, $|vwx| \le p$.
 - Come si applica il pumping lemma in questo caso?
 - Si ragiona sulla lunghezza delle parole, dimostrando che la parola pompata non appartiene al linguaggio

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Consideriamo la parola $z = a^{p^2}$
 - Scriviamo la parola come z = uvwxy. Per il PL, $|vwx| \le p$.
 - Come si applica il pumping lemma in questo caso?
 - Si ragiona sulla lunghezza delle parole, dimostrando che la parola pompata non appartiene al linguaggio
 - Nel nostro caso $|z| = |a^{p^2}| = p^2$

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Consideriamo la parola $z = a^{p^2}$
 - Scriviamo la parola come z = uvwxy. Per il PL, $|vwx| \le p$.
 - Come si applica il pumping lemma in questo caso?
 - Nel nostro caso $|z| = |a^{p^2}| = p^2$
 - La parola «successiva» del linguaggio che lunghezza avrà? $= (p+1)^2$ Verifichiamo che questo non è verificato.

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Consideriamo la parola $z = a^{p^2}$
 - Scriviamo la parola come z = uvwxy. Per il PL, $|vwx| \le p$.
 - Inoltre, pompando $v \in x$, dobbiamo avere ancora $z \in L$:
 - $|uv^2wx^2y| = |uvwxy| + |vx|$

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Consideriamo la parola $z = a^{p^2}$
 - Scriviamo la parola come z = uvwxy. Per il PL, $|vwx| \le p$.
 - Inoltre, pompando $v \in x$, dobbiamo avere ancora $z \in L$:
 - $|uv^2wx^2y| = |uvwxy| + |vx| \le |uvwxy| + |vwx| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Consideriamo la parola $z = a^{p^2}$
 - Scriviamo la parola come z = uvwxy. Per il PL, $|vwx| \le p$.
 - Inoltre, pompando $v \in x$, dobbiamo avere ancora $z \in L$:
 - $|uv^2wx^2y| = |uvwxy| + |vx| \le |uvwxy| + |vwx| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$
 - Dunque $|uv^2wx^2y| < (p+1)^2$ ma questo è assurdo!

- Dimostrare che $L = \{a^{n^2} | n \ge 0\}$ non è libero da contesto
- Consideriamo la parola $z = a^{p^2}$
 - Scriviamo la parola come z = uvwxy. Per il PL, $|vwx| \le p$.
 - Inoltre, pompando $v \in x$, dobbiamo avere ancora $z \in L$:
 - $|uv^2wx^2y| = |uvwxy| + |vx| \le |uvwxy| + |vwx| \le p^2 + p <$ $p^2 + 2p + 1 = (p+1)^2 \longrightarrow uv^2wx^2y \notin L$
 - Contraddizione! L non soddisfa il PL per cui non è libero

Esercizio 3

Sia dato il linguaggio
$$L = \{a^i b^j | i = 2^j, \ \substack{i \\ j} \ge 0\}$$

 Applicare il Pumping Lemma per dimostrare che L non è libero da contesto

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

Analizziamo le parole che costituiscono L:

•
$$L = \{a^{2^j}b^j | j \ge 0\} = \{a, a^2b, a^4b^2, a^8b^3, a^{16}b^4, \dots\}$$

 Già qui si nota che le parole crescono in modo esponenziale e non costante.

$$L = \{a^i b^j | i = 2^j, _j^i \ge 0\}$$

 Supponiamo per assurdo che L sia libero da contesto e che quindi valga per L il Pumping Lemma sui linguaggi liberi. Allora:

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Supponiamo per assurdo che L sia libero da contesto e che quindi valga per L il Pumping Lemma sui linguaggi liberi. Allora:
 - $\exists p \in \mathbb{N}$ tale che se $z \in L$, |z| > p, allora:
 - $|vwx| \le p$
 - $vx \neq \lambda$
 - $uv^iwx^iy \in L, \forall i \geq 0$

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

• Consideriamo la parola $z = a^{2^p}b^p$

$$L = \{a^i b^j | i = 2^j, _j^i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Abbiamo $|z|=2^p+p>p$. Quindi per il Pumping Lemma, z=uvwxy con $|vwx|\leq p$

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Abbiamo $|z|=2^p+p>p$. Quindi per il Pumping Lemma, z=uvwxy con $|vwx|\leq p$
 - Inoltre, la parola «pompata» uv^iwx^iy , $i \ge 0$ sarà ancora in L

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Abbiamo $|z|=2^p+p>p$. Quindi per il Pumping Lemma, z=uvwxy con $|vwx|\leq p$
 - A differenza dell'esercizio precedente |vwx| può essere composta da a a e b
 - Non serve però necessario ragionare sui diversi casi, perché quando un linguaggio è «esponenziale» (almeno in una sua parte), ragionando sulle lunghezza delle derivazioni si riesce già a dimostrare l'assurdo.

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Abbiamo $|z|=2^p+p>p$. Quindi per il Pumping Lemma, z=uvwxy con $|vwx|\leq p$
 - Inoltre, la parola «pompata» uv^iwx^iy , $i \ge 0$ sarà ancora in L
 - Prendiamo $uv^2wx^2y \in L$
 - Quale lunghezza ha la parola «successiva» del linguaggio?

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Abbiamo $|z|=2^p+p>p$. Quindi per il Pumping Lemma, z=uvwxy con $|vwx|\leq p$
 - Inoltre, la parola «pompata» uv^iwx^iy , $i \ge 0$ sarà ancora in L
 - Prendiamo $uv^2wx^2y \in L$
 - Quale lunghezza ha la parola «successiva» del linguaggio?
 - $2^{p+1} + p + 1$

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Prendiamo $uv^2wx^2y \in L$
 - $|uv^2wx^2y| = |uvwxy| + |vx| \le |uvwxy| + |vwx|$

.

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Prendiamo $uv^2wx^2y \in L$
 - $|uv^2wx^2y| = |uvwxy| + |vx| \le |uvwxy| + |vwx|$
 - $\leq 2^p + p + p \leq 2^p + 2^p + p =$

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Prendiamo $uv^2wx^2y \in L$
 - $|uv^2wx^2y| = |uvwxy| + |vx| \le |uvwxy| + |vwx|$

•
$$\leq 2^p + p + p \leq 2^p + 2^p + p = 2^{p+1} + p < 2^{p+1} + p + 1$$

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Prendiamo $uv^2wx^2y \in L$
 - $|uv^2wx^2y| = |uvwxy| + |vx| \le |uvwxy| + |vwx|$

•
$$\leq 2^p + p + p \leq 2^p + 2^p + p = 2^{p+1} + p < 2^{p+1} + p + 1$$

Quindi

$$|uv^2wx^2y| < 2^{p+1} + p + 1$$

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Prendiamo $uv^2wx^2y \in L$
 - $|uv^2wx^2y| = |uvwxy| + |vx| \le |uvwxy| + |vwx|$

$$\leq 2^p + p + p \leq 2^p + 2^p + p = 2^{p+1} + p < 2^{p+1} + p + 1$$

Quindi

$$|uv^2wx^2y| < 2^{p+1} + p + 1$$

Dunque la stringa pompata non è del tipo $a^{2^j}b^j$, ovvero $uv^2wx^2y \notin L$

$$L = \{a^i b^j | i = 2^j, i \ge 0\}$$

- Consideriamo la parola $z = a^{2^p}b^p$
 - Prendiamo $uv^2wx^2y \in L$
 - $|uv^2wx^2y| = |uvwxy| + |vx| \le |uvwxy| + |vwx| \le 2^p + p + p \le 2^p + 2^p + p = 2^{p+1} + p < 2^{p+1} + p + 1$
 - Dunque la stringa pompata non è del tipo $a^{2^j}b^j$, ovvero $uv^2wx^2y \notin L$
 - Contraddizione. Ne segue che *L* non è libero da contesto.

Esercizio 4

$$L = \{a^k b^r | k > 0, r > k^2\}$$

• Dimostrare che non è L non è libero da contesto utilizzando il Pumping Lemma.

$$L = \{a^k b^r | k > 0, r > k^2\}$$

Analizziamo le parole che costituiscono L:

•
$$L = \{ab^2, ab^3, ab^4, ..., a^2b^5, a^2b^6, a^2b^7, ..., a^3b^{10}, a^3b^{11}, a^3b^{12}, ...\}$$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

Analizziamo le parole che costituiscono L:

•
$$L = \{ab^2, ab^3, ab^4, ..., a^2b^5, a^2b^6, a^2b^7, ..., a^3b^{10}, a^3b^{11}, a^3b^{12}, ...\}$$

Supponiamo per assurdo che L sia libero da contesto. Allora:

$$L = \{a^k b^r | k > 0, r > k^2\}$$

Analizziamo le parole che costituiscono L:

•
$$L = \{ab^2, ab^3, ab^4, ..., a^2b^5, a^2b^6, a^2b^7, ..., a^3b^{10}, a^3b^{11}, a^3b^{12}, ...\}$$

- Supponiamo per assurdo che L sia libero da contesto. Allora:
 - Per il P.L., $\exists p \in \mathbb{N}$ tale che se $z = uvwxy \in L$, |z| > p, abbiamo che:
 - $|vwx| \le p$
 - $vx \neq \lambda$
 - $uv^iwx^iy \in L, \forall i \geq 0$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

• Consideriamo la parola $z=a^pb^{p^2+1}$. Vediamo subito che $z\in L$ e $|z|=p+p^2+1>p$. Scriviamo z=uvwxy.

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z=a^pb^{p^2+1}$. Vediamo subito che $z\in L$ e $|z|=p+p^2+1>p$. Scriviamo z=uvwxy.
- Possiamo trovarci in uno di 3 casi:
 - (1) vwx è formata da sole a
 - (2) vwx è formata da sole b
 - (3) vwx è a cavallo tra $a \in b$
- Lo scopo è mostrare che «pompando» la stringa uv^iwx^iy , essa non appartiene più a L
- Trattiamo i casi separatamente

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (1): vwx è formata da sole a

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (1): vwx è formata da sole a
 - Denotiamo con #(x) il numero di occorrenze del simbolo x
 - Per il P.L., sappiamo che $0 < |vwx| \le p$ e $0 < |vx| \le p$, per cui vwx è formata da almeno una a e da massimo p a

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (1): vwx è formata da sole a
 - Denotiamo con #(x) il numero di occorrenze del simbolo x
 - Per il P.L., sappiamo che $0 < |vwx| \le p$ e $0 < |vx| \le p$, per cui per vwx abbiamo $1 \le \#(a) \le p$.

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (1): vwx è formata da sole a
 - Denotiamo con #(x) il numero di occorrenze del simbolo x
 - Per il P.L., sappiamo che $0 < |vwx| \le p$ e $0 < |vx| \le p$, per cui per vwx abbiamo $1 \le \#(a) \le p$.
- Pompiamo z e consideriamo uv^2wx^2y . Per quest'ultima, abbiamo $p+1 \le \#(a) \le 2p$, e $\#(b) = p^2+1$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (1): vwx è formata da sole a
 - Denotiamo con #(x) il numero di occorrenze del simbolo x
 - Per il P.L., sappiamo che $0 < |vwx| \le p$ e $0 < |vx| \le p$, per cui per vwx abbiamo $1 \le \#(a) \le p$.
- Pompiamo z e consideriamo uv^2wx^2y . Per quest'ultima, abbiamo $p+1 \le \#(a) \le 2p$, e $\#(b) = p^2+1$
- Quindi $\#(b) = p^2 + 1 < (p+1)^2 \le \#(a)^2 \le 4p^2$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (1): vwx è formata da sole a
 - Denotiamo con #(x) il numero di occorrenze del simbolo x
 - Per il P.L., sappiamo che $0 < |vwx| \le p$ e $0 < |vx| \le p$, per cui per vwx abbiamo $1 \le \#(a) \le p$.
- Pompiamo z e consideriamo uv^2wx^2y . Per quest'ultima, abbiamo $p+1 \le \#(a) \le 2p$, e $\#(b) = p^2+1$
- Quindi $\#(b) = p^2 + 1 < (p+1)^2 \le \#(a)^2 \le 4p^2$
- Dunque $r < k^2$ e $uv^2wx^2y \notin L$. Contraddizione.

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (2): vwx è formata da sole b

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (2): vwx è formata da sole b
 - Per il P.L., sappiamo che, in vwx, $1 \le \#(b) \le p$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (2): vwx è formata da sole b
 - Per il P.L., sappiamo che, in vwx, $1 \le \#(b) \le p$
 - Consideriamo uv^0wx^0y . Per quest'ultima, abbiamo $p^2-p+1 \le \#(b) \le p^2$ e #(a)=p

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (2): vwx è formata da sole b
 - Per il P.L., sappiamo che, in vwx, $1 \le \#(b) \le p$
 - Consideriamo uv^0wx^0y . Per quest'ultima, abbiamo $p^2-p+1 \le \#(b) \le p^2$ e #(a)=p
 - Quindi $\#(b) \le \#(a)^2 = p^2$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (2): vwx è formata da sole b
 - Per il P.L., sappiamo che, in vwx, $1 \le \#(b) \le p$
 - Consideriamo uv^0wx^0y . Per quest'ultima, abbiamo $p^2-p+1 \le \#(b) \le p^2$ e #(a)=p
 - Quindi $\#(b) \le \#(a)^2 = p^2$
 - Dunque $r \le k^2$ e $uv^0wx^0y \notin L$. Contraddizione.

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3): vwx è a cavallo tra $a \in b$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3): vwx è a cavallo tra $a \in b$
 - Per il P.L., abbiamo che, in vwx, $0 < \#(a) + \#(b) \le p$.

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3): vwx è a cavallo tra $a \in b$
 - Per il P.L., abbiamo che, in vwx, $0 < \#(a) + \#(b) \le p$.
 - Notiamo che se v ≠ λ, allora v contiene solo a, e analogamente se x ≠
 λ, allora x contiene solo b (qualcuno sa perché?)

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3): vwx è a cavallo tra a e b
 - Per il P.L., abbiamo che, in vwx, $0 < \#(a) + \#(b) \le p$.
 - Notiamo che se $v \neq \lambda$, allora v contiene solo a, e analogamente se $x \neq \lambda$, allora x contiene solo b
 - Distinguiamo allora 3 casi:
 - 1. $v \neq \lambda$, $x = \lambda$
 - 2. $v = \lambda$, $x \neq \lambda$
 - 3. $v \neq \lambda$, $x \neq \lambda$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.1): vwx è a cavallo tra a e b, $v \neq \lambda$, $x = \lambda$
 - Consideriamo la parola uv^2wx^2y

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.1): vwx è a cavallo tra a e b, $v \neq \lambda$, $x = \lambda$
 - Consideriamo la parola uv^2wx^2y . Quest'ultima avrà $p+1 \le \#(a) \le p+p-1$ e $\#(b)=p^2+1$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.1): vwx è a cavallo tra a e b, $v \neq \lambda$, $x = \lambda$
 - Consideriamo la parola uv^2wx^2y . Quest'ultima avrà $p+1 \le \#(a) \le p+p-1$ e $\#(b)=p^2+1$
 - Quindi $\#(b) = p^2 + 1 < (p+1)^2 \le \#(a)^2 \to uv^2wx^2y \notin L$. Assurdo.

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.2): vwx è a cavallo tra a e b, $v = \lambda$, $x \neq \lambda$
 - Consideriamo la parola uv^0wx^0y

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.2): vwx è a cavallo tra a e b, $v = \lambda$, $x \neq \lambda$
 - Consideriamo la parola uv^0wx^0y
 - Qui avremo $p^2 + 1 (p 1) \le \#(b) \le p^2$ e #(a) = p

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.2): vwx è a cavallo tra a e b, $v = \lambda$, $x \neq \lambda$
 - Consideriamo la parola uv^0wx^0y
 - Qui avremo $p^2 + 1 (p 1) \le \#(b) \le p^2$ e #(a) = p
 - Quindi $\#(b) \le \#(a)^2 = p^2 \to uv^0wx^0y \notin L$. Contraddizione.

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.3): vwx è a cavallo tra a e b, $v \neq \lambda$, $x \neq \lambda$
 - Consideriamo la parola uv^2wx^2y

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.3): vwx è a cavallo tra a e b, $v \neq \lambda$, $x \neq \lambda$
 - Consideriamo la parola uv^2wx^2y
 - In questo caso abbiamo, v^2 contiene almeno due a (perché?) e quindi uv^2wx^2y contiene almeno p+1 a.

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.3): vwx è a cavallo tra a e b, $v \neq \lambda$, $x \neq \lambda$
 - Consideriamo la parola uv^2wx^2y
 - In questo caso abbiamo, v^2 contiene almeno due a (perché?) e quindi uv^2wx^2y contiene almeno p+1 a.
 - Ma $|uv^2wx^2y| = |z| + |vx| \le |z| + |vwx| \le p + p^2 + 1 + p = (p+1)^2$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.3): vwx è a cavallo tra a e b, $v \neq \lambda$, $x \neq \lambda$
 - Consideriamo la parola uv^2wx^2y
 - In questo caso abbiamo, v^2 contiene almeno due a (perché?) e quindi uv^2wx^2y contiene almeno p+1 a.
 - Ma $|uv^2wx^2y| = |z| + |vx| \le |z| + |vwx| \le p + p^2 + 1 + p = (p+1)^2$
 - Dunque uv^2wx^2y contiene almeno p+1 a, ma la sua lunghezza è minore della parola più corta di L avente almeno p+1 a

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- Caso (3.3): vwx è a cavallo tra a e b, $v \neq \lambda$, $x \neq \lambda$
 - Consideriamo la parola uv^2wx^2y
 - In questo caso abbiamo, v^2 contiene almeno due a (perché?) e quindi uv^2wx^2y contiene almeno p+1 a.
 - Ma $|uv^2wx^2y|=|z|+|vx|\leq |z|+|vwx|\leq p+p^2+1+p=(p+1)^2< p+1+(p+1)^2+1$
 - Dunque uv^2wx^2y contiene almeno $p+1\,a$, ma la sua lunghezza è minore della parola più corta di L avente almeno $p+1\,a$
 - Ne consegue che $uv^2wx^2y \notin L$

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- In tutti i casi, la proposizione (3) del Pumping Lemma viene violata

$$L = \{a^k b^r | k > 0, r > k^2\}$$

- Consideriamo la parola $z = a^p b^{p^2+1}$
- In tutti i casi, la proposizione (3) del Pumping Lemma viene violata
- L'assurdo deriva dall'aver assunto L libero da contesto. Dunque L non è libero.

Domande?

Esercizio 5 – Senza Soluzione

Sia dato il linguaggio $L = \{a^i b^j c^k : 0 \le i < j < k\}$

• Stabilire se L è libero da contesto e giustificare formalmente la risposta