Indução matemática

André Gustavo dos Santos¹

Departamento de Informática Universidade Federal de Viçosa

INF230 - 2021/1

1/26

s Indução matemática Exemplos Usos criativos Algoritmos Indução forte Erro 0000 000000 00 000 000

Conteúdo

- 1 Introdução
- 2 Ilustrações
- 3 Indução matemática
- 4 Exemplos
- 5 Usos criativos
- 6 Algoritmos
- 7 Indução forte
- 8 Erros

2/26

Os slides seguintes são baseados nas seções 5.1 e 5.2.1-3 do livro texto da disciplina:

Introdução

ROSEN, Kenneth H. Discrete mathematics and its applications. McGraw-Hill Education, 8th edition, 2018

3/26

 Ilustrações
 Indução matemática
 Exemplos
 Usos criativos
 Algoritmos
 Indução forte
 Erro

 00
 0000
 000
 000
 000
 000
 0

Introdução

Introdução

- Muitas proposições matemáticas afirmam que uma propriedade é verdadeira para todos os inteiros positivos
- Exemplos
 - um conjunto com *n* elementos tem 2ⁿ subconjuntos
 - \blacksquare a soma dos n primeiros inteiros positivos é n(n+1)/2
 - $n! \leq n^n$
 - $n^3 n$ é divisível por 3

- Indução matemática é utilizada para provar resultados como esses
- Provas por indução têm duas partes:
 - Elas mostram que a proposição é verdadeira para o inteiro positivo 1
 - E mostram que, se a proposição é verdadeira para um inteiro positivo, então é verdadeira para o inteiro sequinte

4/26

 Ilustrações
 Indução matemática
 Exemplos
 Usos criativos
 Algoritmos
 Indução forte
 Erro

 ● O
 0000
 000000
 00
 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t

<u>llu</u>stração

Introdução

FIGURE 2 Illustrating how mathematical induction works using dominoes.

Suponha uma fileira infinita de dominós com as propriedades:

- O dominó nº 1 cai
- ${f 2}$ Se o dominó ${f n}^{\scriptscriptstyle \Omega}$ (${\it k}$) cai, o dominó ${f n}^{\scriptscriptstyle \Omega}$ (${\it k}+1$) também cai

Podemos concluir que todos os dominós cairão?

Ilustração

FIGURE 1 Climbing an infinite ladder.

Suponha uma escada infinita com as propriedades:

- Podemos alcançar o primeiro degrau da escada
- Se podemos alcançar algum degrau qualquer, então podemos alcançar o seguinte

Podemos concluir que podemos alcançar todos os degraus?

6/26

Formalização

Como vimos, provas por indução têm duas partes:

- Elas mostram que a proposição é verdadeira para o inteiro positivo 1
- E mostram que, se a proposição é verdadeira para um inteiro positivo, então é verdadeira para o inteiro seguinte

Formalmente, para provar que $\forall nP(n)$ é verdadeira, temos que provar:

- Passo base: provar que P(1) é verdadeira
- **Passo indutivo**: provar que $P(k) \rightarrow P(k+1)$ para qualquer inteiro positivo k

Observações

- Pode ser expressa por $[P(1) \land \forall k(P(k) \rightarrow P(k+1))] \rightarrow \forall nP(n)$
- \blacksquare A hipótese de que P(k) é verdadeira é chamada **hipótese indutiva**

ATENÇÃO!

■ Na prova por indução, $\underline{não}$ assumimos que P(k) seja verdadeira para todos os inteiros positivos! Mostramos apenas que, se assumimos que P(k) é verdadeira, então P(k+1) também é.

7/26

Introdução Ilustrações Indução matemática Exemplos Usos criativos Algoritmos Indução forte Erro o o o o o o o o o o o o

Uso em provas

- Proposições da forma $\forall nP(n)$ no domínio dos inteiros positivos
- Teoremas escritos como proposições no formato acima
- Fórmulas de somatórios
- Inequações
- Identidades em combinações de conjuntos
- Resultados de divisibilidade
- Correção de algoritmos e programas
- Resultados de complexidade de algoritmos
- Definições e estruturas recursivas
- Propriedades de grafos (especialmente árvores)
- etc...

8/26

 Illustrações
 Indução matemática
 Exemplos
 Usos criativos
 Algoritmos
 Indução forte
 Erro

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

Por que é uma prova válida?

Introdução

- Pelo princípio da boa ordenação (da boa ordem): "Todo subconjunto não vazio de números naturais de números naturais possui um menor elemento."
- lacksquare Suponha que provamos que P(1) e P(k) o P(k+1) são verdadeiras
- Para mostrar que P(n) é verdadeira para todo n, suponha que não, que haja pelo menos um n tal que P(n) seja falsa
- Seja S o conjunto de elementos para os quais P(n) é falsa
- Como S não é vazio, pelo princípio da boa ordenação ele tem um menor elemento
- Seja *m* tal elemento
- Como provamos que P(1) é verdadeira, então m > 1
- Como m é inteiro positivo > 1 então m-1 também é inteiro positivo
- Como provamos que $P(m) \rightarrow P(m+1)$ é verdadeira, se P(m) é falsa, então P(m-1) também é falsa
- Mas então $m-1 \in S$, e m não é o menor elemento, uma contradição.

9/26

Sobre o passo base

- Muitas vezes temos que provar que P(n) é verdadeira para $n = b, b + 1, b + 2, \ldots$, ou seja, para todo $n \ge b$, mas com $b \ne 1$
- Indução matemática também pode ser usada
- Nesse caso mudamos o passo base de P(1) para P(b)

Somatórios

Introdução

Prove que a soma dos *n* primeiros inteiros positivos vale n(n+1)/2

- Seja P(n) a proposição que $1+2+3+\cdots+n=\frac{n(n+1)}{2}$
- Para provar que P(n) é verdadeira para n = 1, 2, 3, ... temos fazer duas coisas:
 - Mostrar que P(1) é verdadeira
 - Mostrar que $P(k) \rightarrow P(k+1)$ é verdadeira para k=1,2,3,...
- Passo base: P(1) é verdadeira pois $1 = \frac{1(1+1)}{2}$
- Passo de indução: para a hipótese indutiva, assuma que P(k) seja verdadeira, ou seja, que $1+2+3+\cdots+k=\frac{k(k+1)}{2}$. Considerando essa hipótese, devemos mostrar que P(k+1) é verdadeira, ou seja, que $1+2+3+\cdots+k+(k+1)$ $=\frac{(k+1)[(k+1)+1]}{2}=\frac{(k+1)[(k+2)}{2}$.

$$1 + 2 + 3 + \dots + k + (k + 1) = \frac{k(k+1)}{2} + (k+1)$$
 (pela hipótese de indução)
=
$$\frac{k(k+1) + 2(k+1)}{2}$$

=
$$\frac{(k+1)(k+2)}{2}$$

Então, se P(k) é verdadeira, P(k + 1) também é. E isso completa a prova.

rodução Ilustrações Indução matemática **Exemplos** Usos criativos Algoritmos Indução forte Erros ○○ ○○○○ ○○○○ ○○ ○○ ○○ ○○

Somatórios

Qual a soma dos *n* primeiros ímpares positivos

* feito durante a aula

Somatórios

Prove que $1 + 2 + 4 + 8 + \cdots + 2^n$ vale $2^{n+1} - 1$ para todo n inteiro não negativo

$$2^0 + 2^1 + 2^2 + \dots + 2^n = 2^{(n+1)} - 1$$

* feito durante a aula

rodução llustrações Indução matemática **Exemplos** Usos criativos Algoritmos Indução forte Erros ○○ ○○○○ ○○○ ○○○ ○○ ○○ ○○

Inequações

Prove que $n < 2^n$ para todo inteiro positivo n

* feito durante a aula

Inequações

Prove que $2^n < n!$ para todo $n \ge 4$

* feito durante a aula

rodução Ilustrações Indução matemática **Exemplos** Usos criativos Algoritmos Indução forte Erros ○○ ○○○○ ○○○○ ○○○ ○○ ○○ ○○

Divisibilidade

Prove que $n^3 - n$ é divisível por 3 para todo inteiro positivo n

* feito durante a aula

odução Ilustrações Indução matemática **Exemplos** Usos criativos Algoritmos Indução forte Erros ○○ ○○○○ ○○○○ ○○○ ○○

Conjuntos

Um conjunto finito de *n* elementos tem 2ⁿ subconjuntos

* feito durante a aula

Introdução Ilustrações Indução matemática Exemplos **Usos criativos** Algoritmos Indução forte Erro o oo ooo oo oo oo oo oo

Usos criativos

Guerra de torta

Um número ímpar de pessoas está em um parque com distâncias distintas entre elas. Dado um sinal, cada pessoa joga uma torta na pessoa mais próxima, acertando-a. Prove que há pelo menos um sobrevivente (alguém que não é acertado por uma torta).

* feito durante a aula

Ilustrações Indução matemática Exemplos **Usos criativos** Algoritmos Indução forte Erros ○○ ○○○ ○○ ○○ ○ ○ ○ ○ ○ ○

Usos criativos

Introdução

Ladrilhamento com triminós

Qualquer tabuleiro $2^n \times 2^n$ com uma casa removida, sendo n um inteiro positivo, pode ser completamento ladrilhado com triminós.

Triminós:

* feito durante a aula

Example com n=3

Uso de indução para construir algoritmos

Avaliação de polinômios

Introdução

Dada uma sequência de números reais $a_n, a_{n-1}, \ldots, a_1, a_0$ e um número real x, calcular o valor do polinômio $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$.

Hipótese de indução 1 – remover $a_n x_n$

Sabemos avaliar $P_{n-1}(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0$

Hipótese de indução 2 – remover $a_n x_n$ (versão melhorada)

Sabemos avaliar $P_{n-1}(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0$ e calcular x^{n-1}

Hipótese de indução 3 – remover a₀ (versão inversa)

Sabemos avaliar $P'_{n-1}(x) = a_n x^{n-1} + a_{n-1} x^{n-2} + \cdots + a_2 x + a_1$

Regra de Horner

Comentários

- Queremos resolver P(n), um problema P de tamanho n
- Indução permite concentrar em estender soluções de subproblemas menores
- Tentar resolver um P(n) arbitrário supondo que P(n-1) já foi resolvido
- Há muitas formas de definir a hipótese e muitas formas de usá-la
- O truque na última versão foi considerar a entrada da esquerda para direita
- Em algums casos existem versões top-down e bottom-up (no caso de árvores)
- Algumas vezes o incremento é de 2 em 2 (ou mais), entre outras ideias

Introdução Ilustrações Indução matemática Exemplos Usos criativos **Algoritmos** Indução forte Erro o oo ooo oo oo oo oo oo oo oo oo

Ordenação

Ordenação

Dados *n* números x_1, x_2, \dots, x_n rearranjá-los em ordem crescente.

- Um dos problemas mais estudados na computação
- Base de muitos algoritmos, consome boa parte do tempo em muitas aplicações
- Há muitas variações do problema e dezenas de métodos de ordenação
- Hipótese: sabemos ordenar n-1 elementos
- Ordenar os n-1 e colocar o n-ésimo no lugar, em ordem \Rightarrow Inserção
- **Retirar** um elemento específico (o maior) e ordenar os n-1 restantes \Rightarrow **Seleção**
- Mergesort, Quicksort, ...

 Introdução
 Ilustrações
 Indução matemática
 Exemplos
 Usos criativos
 Algoritmos
 Indução forte
 Error

 0
 00
 000
 000
 00
 00
 00
 00

Definição

- Na indução assumimos P(k) como verdadeira
- Em alguns casos precisamos mais que isso
- Na **indução forte** assumimos P(j), com j = 1 ... k, como verdadeira
- Na metáfora da escada, supomos que conseguimos alcançar os degraus 1 a k para provar que conseguimos alcançar o degrau k + 1.

Para provar que $\forall nP(n)$ é verdadeira, na indução matemática temos que:

- **Passo base**: provar que P(1) é verdadeira
- **Passo indutivo**: provar que $P(k) \rightarrow P(k+1)$ para qualquer inteiro positivo k

Na indução forte temos que:

- **Passo base**: provar que P(1) é verdadeira
- **Passo indutivo**: provar que $[P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1)$ para qualquer inteiro positivo k

odução Ilustrações Indução matemática Exemplos Usos criativos Algoritmos **Indução forte** Erros ○○ ○○○○ ○○○ ○○ ○○ ○○ ○○ ○○

Exemplos

Se *n* é um inteiro maior que 1, então *n* pode ser escrito como produto de primos.

* feito durante a aula

Exemplos

Qualquer postagem de \geq 12 centavos pode ser selada com selos de 4 e 5 centavos.

* feito durante a aula

ustrações Indução matemática Exemplos Usos criativos Algoritmos Indução forte

Exemplo de prova errada de indução

Paradoxo do cavalo

Todos os cavalos são da mesma cor.

Prova por indução

- Queremos provar ∀nP(n), sendo P(n) a sentença "em um grupo de n cavalos, todos têm a mesma cor."
- Passo base: P(1) é verdadeira

■ Passo indutivo: Assumindo *P*(*k*) verdadeira

queremos provar que P(k+1) é verdadeira

Erros

^{*} feito durante a aula