CSE 201: DIGITAL LOGIC DESIGN
BCD Adder, Magnitude Comparator, Decoder, Demultiplexer

Prepared By
Lec Sumaiya Afroz Mila
CSE, MIST

BINARY CODED DECIMAL

- Binary coded decimal (BCD) is a system of writing numerals that assigns a four-digit binary code to each digit 0 through 9 in a decimal (base-10) numeral.
- Numbers larger than 9, having two or more digits in the decimal system, are expressed digit by digit. For example, the BCD rendition of the number 1895, (base-10) is

Decimal	BCD	Binary
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111
8	1000	1000
9	1001	1001

- We will perform addition operation of two decimal numbers in BCD
- Each input does not exit 9
- Sum output will be highest: 19

9(augend) +9(addend) +1(input carry) 19

- The binary value and BCD value of the augend and addend are same
- Apply the BCD value of the augend and the addend to a 4-bit binary adder
- Adder will form the sum in binary and produce a result that may range from 0 to 19
- This binary result should be converted to BCD

		10210			 		M			
Binary Sum					BCD Sum					
K	Z ₈	<i>Z</i> 4	<i>Z</i> ₂	Zı	 c	Sa	54	S ₂	51	
0	0	O	0	0	O	o	o	o	0	
0	0	0	O	1	0	0	O	0	1	
0	0	0	1	0	O	O	O	1	O	
0	0	0	1	1	O	0	O	1	1	
0	0	1	0	O	0	0	1	0	0	
0	0	1	0	1	O	O	1	0	1	
0	O	1	1	O	0	O	1	1	0	
0	0	1	1	1	0	0	1	1	1	
0	1	O	0	O	O	1	0	0	0	
0	1	O	0	1	0	1	О	0	1	
0	1	0	1	0				0	0	
0	1	0	1	1	1	0	0	O	1	
0	1	1	0	O	1	0	0	1	O	
0	1	1	O	1	1	0	0	1	1	
0	1	1	1	O	1	0	1	0	0	
0	1	1	1	1	1	0	1	0	1	
1	0	O	0	O	1	0	1	1	0	
1	O	0	0	1	1	0	1	1	1	
1	0	O	1	0	i i o			0	0	
1	0	0	1	1	1	1	0	0	1	

- □ From the table, when binary sum $\leq 1001(9_{10})$, corresponding BCD is identical No conversion needed
- □ When binary sum > 1001, it becomes non-valid as BCD conversion needed
 - For binary sum>1001, we have to convert it to a valid BCD representation
 - When binary sum is 1010, decimal is 10 correct BCD representation will be

0001 0000

- To convert 1010 to 10000, we have to add $(0110)_2$ or $(6)_{10}$ with 1010
- Similarly if we add $(0110)_2$ or $(6)_{10}$ with 1011.....10011, we will get the corresponding BCD representation

- Now we have to design the circuit.
- We have to design a circuit that will detect when conversion should be performed and when not.
- ☐ From the table, it is visible that, conversion is needed when the binary sum has an output carry K=1.
- Other 6 combinationsFrom 1010 to 1111 that

K	Z ₈ Z ₄	Z ₂	Z,	С	S	S ₄	S	S.		
0	61 -4	0	0	0	8	o^4	21	1 0	0	O
0	1	O	0	1		0	1	0	0	1
0	1	0	1	0		1	0	0	o	0
0	1	0	1	1		1	0	o	0	1
0	1	1	0	o		1	0	o	1	O
0	1	1	0	1		1	0	O	1	1
0	1	1	1	O		1	0	1	0	0
0	1	î	1	1		1	0	1	0	1
1	0	0	0	O		1	0	1	1	O
l î	O	0	0	1		1	0	1	1	1
1	ŏ	Ö	1	0		1	1	O	0	O
1	Õ	o	1	1		1	1	O	0	1

Need conversion have a 1 in position z8

To distinguish them form the value 1000 and 1001 (also have a 1 in position Z8), we specify, either Z_4 or Z_7 must have a 1

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

- When $C = K + Z_8 Z_4 + Z_8 Z_2$, it is necessary to add 110 to the binary sum and provide an output carry for the next stage
- To add 0110 to the binary sum, we use a second 4-bit binary adder
- First the augend, added
 and the input carry are
 added in the top 4-bit binary adder
 to produce the binary sum
- When output carry=0 nothing added
- When output carry=1,binary 0110
 is added to the binary sum through the bottom 4-bit binary adder

2- BIT by 2-BIT BINARY MULTIPLIER

- Magnitude Comparator: A magnitude comparator is a combinational circuit that compares two numbers A and B, and determines their relative magnitudes. The outcome of the comparison is specified by three binary variables that indicate whether A=B, A>B, or A<B</p>
- □ The circuit for comparing two n-bit numbers has 2^{2n} entries in the truth table and becomes too cumbersome even with n=3.
- So, we will develop an algorithm to design a comparator

We will consider two 4-bit numbers:

$$A = A_3 A_2 A_1 A_0$$
$$B = B_3 B_2 B_1 B_0$$

- The two numbers are equal if all pairs of significant digits are equal. If $A_3 = B_3 \& A_2 = B_2 \& A_1 = B_1 \& A_0 = B_0$
- So the equality relation of each pair of bits will be
 - $x_i = A_i B_i + A_i' + B_i'$, where $x_i = 1$ only if the pair of bits in position i are equal
- If all pair of bits of A and B are equal which means, if X₃X₂X₁X₀ all are equal 1, we can say A=B

- To determine if A>B or A<B, we inspect relative magnitudes of significant bits starting from the MSB
- If these two bits are equal, we compare the next lower significant pair of bits
- This comparison continues until a pair of unequal digits is reached
 - If the corresponding digit of A=1 and that of B=0, we conclude 1
 A>B
- $\begin{array}{c|c}
 1 & 1 & 1 \\
 1 & 0 & 1
 \end{array}$
 - If the corresponding digit of A=0 and that of B=1, we conclude A<B</p>
- The boolean function for the above sequential comparison will be:

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(A > B) = A_3 B_3' + x_3 A_2 B_2' + x_3 x_2 A_1 B_1' + x_3 x_2 x_1 A_0 B_0'$$

$$(A < B) = A_3' B_3 + x_3 A_2' B_2 + x_3 x_2 A_1' B_1 + x_3 x_2 x_1 A_0' B_0$$

If
$$A_3B_3' = 1$$
, $A > B$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

If
$$X_3A_2B_2' = 1$$
, A>B

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

If
$$X_3 X_2 A_1 B_1' = 1$$
, A>B

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

If
$$X_3 X_2 X_1 A_0 B_0' = 1$$
, A>B

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$$

$$(A > B) = A_3 B_3' + x_3 A_2 B_2' + x_3 x_2 A_1 B_1' + x_3 x_2 x_1 A_0 B_0'$$

$$(A < B) = A_3' B_3 + x_3 A_2' B_2 + x_3 x_2 A_1' B_1 + x_3 x_2 x_1 A_0' B_0$$

DECODER

- □ A *decoder* is a combinational circuit that converts binary information from n-input lines to a maximum 2^n unique output lines.
- If the n-bit decoded information has unused or don't care combinations, the decoder output will have fewer than 2ⁿ outputs
- □ This decoders are called *n-to-m-line* decoders, where $m \le 2^n$
- 1-to-2-Line Decoder -

2-to-4 Line Decoder

- The 2 inputs are decoded into 4 outputs
- Each output represents one of the minterms of the 2-input variables
- 2 intverters provide the complement of the inputs
- Each one of the 4 AND gates generate one of the minterms

A B	D_3	D_2	D_1	D_{θ}
0 0	0	0	0	1
0 1	0	0	1	0
1 0	0	1	0	0
1 1	1	0	0	0

$$D_3 = AB$$

$$D_1 = A'B$$

$$D_2 = AB^2$$

$$D_0 = A'B$$

3-to-8 Line Decoder

- 3 inputs are decoded into 8 outputs
- Each output representsone of the minterms of the3-input variables
- 3 intverters provide the complement of the inputs

Inputs

Z

Each one of the 8 AND gates generate one of the minterms

Do

 D_1

 D_2

3-to-8 Line Decoder

- A particular application of this decoder is binary-to-octal conversion.
- The input variables represent a binary number
- The outputs represent the eight digits of a number in octal number system

Binary to Octal Conversion

Binary	Octal
0	0
/1	1
10	2
11	3
100	4
101	5
110	6
111	7

3	Inputs		Outputs							
x	y	z	Do	D_1	D ₂	D_3	D ₄	D ₅	D ₆	D_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

2-to-4 Line Decoder with enable input

- Some decoders are constructed with **NAND** gates
- May include one or more *Enable* inputs to control the circuit operation
- Circuit operates with complemented output
- and complement enable input
- The decoder is **enabled** when E=0
- Circuit is disabled when E=1
- When circuit is disabled, none of the outputs are equal to 0 and none of the minterms are selected
- At any given time, only one output is equal to 0, other outputs are 1

Decoder

- A decoder can operate with complemented or uncomplemented output
- Enable input may be activated with a 0 or a 1 signal
- Some decoders may have two or more enable inputs
- Block diagram of the 2-to-4 line decoder -

(a) Decoder with enable

COMBINATIONAL LOGIC IMPLEMENTATION

- \square A decoder produces 2^n minterms of n-inputs
- Any boolean function can be expressed in sum of minterms form
- So, a decoder can be used to generate minterms, and an external OR gate to form the sum
- Any combinational circuit can be implemented with a decoder and OR gates
- Implementing a combinational circuit with a decoder and OR gates requires the boolean function of the circuit be expressed in sum of minterms

IMPLEMENTING FULL ADDER USING DECODER

From the table of the full-adder, function for this circuit in sum of minterms:

$$S = X'Y'Z + X'YZ' + XY'Z' + XYZ$$
 or $S(x, y, z) = \sum (1, 2, 4, 7)$

$$C = X'YZ + XY'Z + XYZ' + XYZ$$
 or $C(x, y, z) = \sum (3, 5, 6, 7)$

- □Full-adder circuit has 3 inputs and total 8 outputs, we need 3-to-8-line decoder
- Decoder generates the 8 minterms for x,y,z
- The OR gate for output S forms the sum of minterms 1,2,4 and 7
- The OR gate for output C forms the sum of minterms 3,5,6,and 7

S
0
1
1
0
1
0
0
1

DEMULTIPLEXER

Demultiplexer: A *demultiplexer* is a circuit that **receives** information from a single line and **transmits** this information it to **one of 2**ⁿ **possible output lines.**

The selection of a specific output is controlled by the bit combination of n selection lines.

The decoder can function as 1-to-4-line demultiplexer when E is taken as a data input line and A and B are taken as the selection inputs.

(a) Decoder with enable

DEMULTIPLEXER

The single input variable **E** has a path to **all four outputs**, but the input information is **directed** to only **one of the output lines**, as specified by the binary combination of the two selection lines A and B

Example, if the selection lines AB = 10, output D_2 will be the same as the input value E, while all other outputs are maintained at 1.

□ As decoder and demultiplexer operations are obtained from the same circuit, a decoder with an enable input is referred to as a decoder – demultiplexer

DECODER EXPANSION

- Decoder/ Demultiplexer can be connected together to form a larger decoder circuit
- Example, two 3-to-8-line decoders with enable inputs connected to form a 4-to-16-line decoder
- When $\mathbf{w} = \mathbf{0}$, the top decoder is enabled and the other is disabled.
- The bottom decoder outputs are all 0's, and the top eight outputs generate minterms 0000 to 0111.
- When w = 1, the enable conditions are reversed: The bottom decoder outputs generate minterms 1000 to 1111, while the outputs of the top decoder are all 0's.

