PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-231315

(43)Date of publication of application: 27.08.1999

(51)Int.Cl.

G02F 1/1335

F21V 8/00 G02B 6/00

(21)Application number : 10-033176

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

16.02.1998

(72)Inventor: YONEDA TOSHIYUKI

MURAKAMI EISHIN TOMOTA TOSHIMASA

NAI YASUTO

ZUMOTO NOBUYUKI

(54) PLANAR LIGHT SOURCE UNIT

(57) Abstract:

PROBLEM TO BE SOLVED: To eliminate light which has directivity to an improper direction and to obtain outgoing light having wide directivity by providing a linear light source, a light guide plate, a reflecting surface which is arranged closely to one surface of the light guide plate approaching and separating a flank, and plural reflecting means and making the reflecting surface into diffused reflecting one.

SOLUTION: The light of the linear light source 1 is made incident on the light guide plate 3 and a prism part 3f is formed on its reverse surface 3c. A diffused reflecting plate 4 is fitted nearby to the reverse surface 3c of the light guide plate 3. Then when a light beam is made incident on the opposite side of the prism part 3c below the critical angle, the majority of the incident light is refracted on a reflecting surface and and the refracted light is entered into the prism part 3f. The refracted light is reflected on the diffused reflecting plate 4, entered into the light guide plate 3 again through the flat part 3g

of the light guide plate 3, and then emitted from the top surface part 3b of the light guide plate 3. At this time, the refracted light is reflected on the diffused reflecting plate 4, so that the light is reflected on the diffused reflecting plate 4 in various directions to eliminate polarization of the outgoing light.

		t †	

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-231315

(43)公開日 平成11年(1999)8月27日

(51) Int.Cl. ⁶		識別記号	F I			
G02F	1/1335	530	G 0 2 F	1/1335	5 3 0	
F 2 1 V	8/00	601	F 2 1 V	8/00	601A	
G02B	6/00	3 3 1	G 0 2 B	6/00	3 3 1	

審査請求 未請求 請求項の数9 〇1. (全 13 頁)

		審査請求 未請求 請求項の数 9 OL (全 13 頁)
(21)出願番号	特願平10-33176	(71) 出願人 000006013
		三菱電機株式会社
(22)出顧日	平成10年(1998) 2月16日	東京都千代田区丸の内二丁目2番3号
		(72)発明者 米田 俊之
		東京都千代田区丸の内二丁目2番3号 三
		菱電機株式会社内
		(72)発明者 村上 英信
		東京都千代田区丸の内二丁目2番3号 三
		菱電機株式会社内
		(72)発明者 友田 利正
		東京都千代田区丸の内二丁目2番3号 三
		菱電機株式会社内
		(74)代理人 弁理士 宮田 金雄 (外2名)
		最終頁に続く

(54) 【発明の名称】 面光源装置

(57)【要約】

【課題】 適度な指向性を持つ面光源装置を提供すると と。

【解決手段】 この発明に係る面光源装置は、線状光源 1と、側面3aから線状光源1の光が入射される導光板 3と、この導光板3の下面3cに近接して配設された拡 散反射面4と、導光板3の下面3cに形成された凹部ま たは凸部からなる複数の反射手段3fとを備えている。

. 1

【特許請求の範囲】

【請求項1】 線状光源と、側面から前記線状光源の光が入射される導光板と、前記側面に隣接する前記導光板の一面に近接して配設された反射面と、前記導光板の一面に形成された凹部または凸部からなる複数の反射手段とを備え、前記反射面は拡散反射面であることを特徴とする面光源装置。

【請求項2】 線状光源と、側面から前記線状光源の光が入射される導光板と、前記側面に隣接する前記導光板の一面に近接して配設された反射面と、前記導光板の一 10面に形成された凹部または凸部からなる複数の反射手段とを備え、前記導光板の一面は、指向性を有する拡散反射面であることを特徴とする面光源装置。

【請求項3】 線状光源と、側面から前記線状光源の光が入射される導光板と、前記側面に隣接する前記導光板の一面に近接して配設された反射面と、前記導光体の一面に形成された凹部または凸部からなる複数の反射手段とを備え、前記複数の反射手段の反射面の少なくとも1つは、他の反射手段の反射面の方向に対し異なる方向になるように設けられていることを特徴とする面光源装置。

【請求項4】 線状光源と、側面から前記線状光源の光が入射される導光板と、前記側面に隣接する前記導光板の一面に近接して配設された反射面と、前記導光体の一面に形成された凹部または凸部からなる複数の反射手段とを備え、前記反射手段の反射面における入射光の入射角が前記線状光源の入射光の前記導光板の側面の屈折角よりも大きいことを特徴とする面光源装置。

【請求項5】 線状光源の入射光が入射される導光板の側面が前記導光板の一面に対して傾けて形成されている ととを特徴とする請求項4記載の面光源装置。

【請求項6】 導光板の一面に対向する対向面に凹部または凸部からなる反射手段を備え、前記導光板の一面に形成された反射手段の反射面と前記導光板の対向面に形成された反射手段の反射面とは線状光源の入射光側に向いていることを特徴とする請求項4記載の面光源装置。

【請求項7】 導光板の対向面に形成される反射手段 は、線状光源の入射光が入射される導光板の側面側に形 成されることを特徴とする請求項6記載の面光源装置。

【請求項8】 導光板の一面に対する前記導光板の一面 40 に形成された反射手段の反射面の角度を53度にするととを特徴とする請求項1~7のいずれか1項記載の面光 源装置。

【請求項9】 導光板の一面に形成された反射手段間の 距離と前記一面における1つの反射手段の距離との比 を、線状光源側では略10対1とし、その後徐々に変え ていき前記線状光源と反対側では略4対1にすることを 特徴とする請求項1~8のいずれか1項記載の面光源装 置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は液晶表示装置等に 用いる、面光源装置に関するものである。

2

[0002]

【従来の技術】図18は例えば特開平08-29623号公報に記載された従来の面光源装置の構成を示す分解斜視図である。図18において101は線状光源、102は線状光源101を覆うように取り付けられる反射体、103は線状光源101の光が入射される導光板で、下面103cにはプリズム部103fが形成される。なお、103aは光が入射される入射端面、103bは上面、103cは下面、103dは入射端面103aの対面である入射対向端面、103eは側面で、103fは下面103cに形成されたプリズム部、103gは下面103cにおけるプリズム部103fが形成されていない部分である平坦部である。

【0003】104は導光板103の下面103dに取り付けられる反射板、105は導光板103の上面103bに取り付けられる拡散板、106は導光板103の20入射対向端面103dに取り付けられる端面反射板である。

【0004】次に動作について説明する。線状光源10 1から放射された光は、反射体102によって反射され、導光板103の入射端面103aから導光板103 に入射される。導光板103に入射された光は導光板1 03の上面103bと下面103cで全反射しながら入射対向端面103d側に伝搬していくが、この伝搬過程において導光板103のプリズム部103fにより全反射した光は導光板103の上面103bより出射し、この出射光を拡散板105により拡散することにより拡散板105上に利用光が出射されることになる。

【0005】以下、導光板103における光の動作の詳細を説明する。図19は、図18に示した従来の面光源装置におけるY-Z断面のプリズム部3f近傍の拡大図である。図19において、点Aはプリズム部103fの反射面上の任意の一点、110はプリズム部103fの反射面に対する法線に対し臨界角以内で入射される光線、111はプリズム部103fの反射面に対する法線に対し臨界角以外で入射される光線である。なお、図18と同一の部分については、同一の符号を付すことにより個々の説明は省略する。

【0006】図19に示したプリズム部103fの反射面上の点Aに入射された光は、入射角と同角度の出射角で反射されるが、プリズム部103fの反射面に対する法線に対し臨界角以内であれば、図19に示すように、光線110は点Aにおいて屈折し、プリズム部103fの内部に進む。しかし、逆に臨界角以上であれば、図19に示すように、光線111は点Aにおいて屈折されるととなく、光線111の全てが全反射され導光体103のと正100にある。

50 の上面103bより出射されることになる。

3

[0007]

【発明が解決しようとする課題】従来の面光源装置は、 プリズム部の反射面を透過した屈折光が反射板により反 射し、この反射された光の多くが、再度、導光板に入射 した後、導光板の上面から出射する際に出射面(上面) に対する法線に対し大きな角度で出射するという問題が あった。また、光源からの光の方向を変化させ、被照射 体へ照射する手段として、導光板の下面に形成されたプ リズムによる全反射を用いているため、被照射体に照射 される光の指向性が狭いという問題があった。さらにま 10 た、面内の輝度分布が不均一であるという問題があっ た。

【0008】本発明は上記のような問題を解決するため になされたもので、プリズム部の反射面を透過した屈折 光が導光板の上面から出射する際に出射面(上面)に対 する法線に対し様々な角度で出射させることができる面 光源装置を提供することを目的とする。また、出射され る出射光が適度な指向性を持つような面光源装置を提供 することを目的とする。さらにまた、導光板から出射さ れる出射光の輝度分布が均一である面光源装置を提供す 20 ることを目的とする。

[0009]

【課題を解決するための手段】この発明に係る面光源装 置は、線状光源と、側面から線状光源の光が入射される 導光板と、側面に隣接する導光板の一面に近接して配設 された反射面と、導光板の一面に形成された凹部または 凸部からなる複数の反射手段とを備え、この反射面は拡 散反射面である。また、線状光源と、側面から線状光源 の光が入射される導光板と、側面に隣接する導光板の一 された凹部または凸部からなる複数の反射手段とを備 え、導光板の一面は、指向性を有する拡散反射面であ る。

【0010】また、線状光源と、側面から線状光源の光 が入射される導光板と、側面に隣接する導光板の一面に 近接して配設された反射面と、導光体の一面に形成され た凹部または凸部からなる複数の反射手段とを備え、複 数の反射手段の反射面の少なくとも1つは、他の反射手 段の反射面の方向に対し異なる方向になるように設けら れている。

【0011】また、線状光源と、側面から線状光源の光 が入射される導光板と、側面に隣接する導光板の一面に 近接して配設された反射面と、導光体の一面に形成され た凹部または凸部からなる複数の反射手段とを備え、反 射手段の反射面における入射光の入射角が線状光源の入 射光の導光板の側面の屈折角よりも大きいようにする。 さらに、線状光源の入射光が入射される導光板の側面が 導光板の一面に対して傾けて形成されている。

【0012】さらに、導光板の一面に対向する対向面に

に形成された反射手段の反射面と導光板の対向面に形成 された反射手段の反射面とは線状光源の入射光側に向い ている。さらにまた、導光板の対向面に形成される反射 手段は、線状光源の入射光が入射される導光板の側面側 に形成される。

【0013】また、導光板の一面に対する導光板の一面 に形成された反射手段の反射面の角度を53度にする。 さらに、 導光板の一面に形成された反射手段間の距離と 一面における1つの反射手段の距離との比を、線状光源 側では略10対1とし、その後徐々に変えていき線状光 源と反対側では略4対1にする。

[0014]

【発明の実施の形態】実施の形態1. 図1は、この実施 の形態1の面光源装置の構成を示す分解斜視図の概略図 である。図1において、1は線状光源、2は線状光源1 を覆うように取り付けられた反射体、3は線状光源1の 光が入射される導光板で、下面3cにはプリズム部3f が形成されている。なお、3aは光が入射される入射端 面、3bは上面、3cは下面、3dは入射端面3aの対 面である入射対向端面、3eは側面で、3fは下面3c に形成されたプリズム部、3gは下面3cにおけるプリ ズム部3 f が形成されていない部分である平坦部であ る。4は導光板3の下面3 cに近接して取り付けられる 拡散反射板、5は導光板3の上面3b側に設けられた被 照射体である。

【0015】説明を簡単にするため図示は省略するが、 導光板3の側面3eや、入射対向端面3dからの漏れ光 を防ぐため、白色または銀色からなる反射シートをとれ らの面に近接して設け、さらに、被照射体5と導光板3 面に近接して配設された反射面と、導光板の一面に形成 30 の間に、拡散シートやプリズムシートを設けるものとす る。また、導光板3にはアクリル樹脂(屈折率n=1. 49)などの透明樹脂を用い、拡散反射板4には例え ば、三井化学製:レフスター(商品名)、東レ製:RW 188 (商品名)等の市販品を用いた。

> 【0016】なお、導光板3の形状は平板としても良い し、くさび型としても良い。また、導光板3の上面3 b に反射面が導光板3の側面3e側になるようなプリズム 部を形成していても良い。また、本実施の形態では、導 光板3の入射端面3aにおける高さを3mm、側面の長 さを190mm、入射対向端面3dにおける高さを1m mとした。

【0017】次に、動作について説明する。図2は、と の実施の形態1の面光源装置の動作を説明するための図 で、図2(a)は、図18に示した従来の面光源装置に おけるプリズム部近傍のY-Z断面拡大図、図2(b) は、図1に示した面光源装置におけるプリズム部近傍の Y-Z断面拡大図である。図2において、10はプリズ ム部3fの反射面に対する法線に対し臨界角以内で入射 される光線、110はプリズム部103fの反射面に対 凹部または凸部からなる反射手段を備え、導光板の一面 50 する法線に対し臨界角以内で入射される光線である。な

お、図1及び図19と同一の部分については同一の符号 を付すことにより、個々の説明は省略する。

5

【0018】まず、図2(a)に示した従来の面光源装 置の場合について説明する。光線110がプリズム部1 03fの反射面に対し臨界角以下で入射されると、入射 光の大半がプリズム部103fの反射面で屈折され、屈 折光110がプリズム部103f内に入射される。この 屈折光110は反射板104で反射され、導光板103 の下面103c(平坦部)を介し再び導光板103内に 入射された後、導光板103の上面103bから出射さ 10 れる。

【0019】この時、上面103bに対する法線と出射 にかたよった出射光となる。

【0020】次に、図2(b)に示したとの実施の形態 の面光源装置の場合について説明する。光線10がプリ ズム部3fの反射面に対し臨界角以下で入射されると、 入射光の大半はプリズム部3fの反射面で屈折され、屈 折光10がプリズム部3f内に入射される。この屈折光 10は、拡散反射板4で反射され、導光板3の平坦部3 gを介し再び導光板3内に入射された後、導光板3の上 面3bから出射される。このとき、屈折光10は拡散反 射板4で反射されるため、拡散反射板4で反射された光 は様々な方向に反射されることになる。

【0021】そのため、例えば図2(b)に示したよう に、屈折光10が導光板3の上面3bから出射されると きの出射光と導光板3の上面3bに対する法線とのなす 角 θ 1は図2(a)に示した出射角 θ 1よりも小さくな る。すなわち、屈折光10を拡散反射板4において拡散 反射させることにより、角 θ 1を様々な角度にすること 30 において、3fは反射面と線状光源1側(z方向の負の ができるので、屈折光10が導光板3の上面3bから出 射されるときの出射光と導光板3の上面3bに対する法 線とのなす角 θ 1 が特に限定されることがなく、出射光 の偏りをなくすことができる。

【0022】図3はとの実施の形態1の面光源装置にお ける導光板の上面から出射される出射光角度分布を示す 図である。なお、図3に示した出射光は上記説明したプ リズム部における屈折光による出射光のみではなく、さ らにプリズム部の反射面による反射光の影響も含めたも Y-Z平面の出射光角度分布、図3(b)は図1に示し た面光源装置のY-Z平面の出射光角度分布を示す図で ある。なお、図3においては、導光板上の対向端面方向 を0°とし、導光板の上面に対する法線の方向を90° とするものとする。

【0023】まず、図3(a)に示す従来の面光源装置 の場合について説明する。プリズム部103の全反射に よる光が、ほぼ90度を中心に出射されている。この光 に加え、約30度を中心にする光が出射されており、と

よって反射された光である。

【0024】次に、図3(b)に示すとの実施の形態の 面光源装置の場合について説明する。図3(b)に示す ように、図1に示した面光源装置の場合には、図3

(a)で見られた約30度を中心とする光が消え、約9 0度方向を中心とする光のみになっており、被照射面に 垂直な方向から効率よく光を照射できる。さらに、約9 0度方向から出射される光の指向性は、拡散反射板4を 設けたことにより、プリズム部の反射面からの全反射光 のみならず指向性の広い拡散光の指向性も加わるため、 従来より広い指向性を持つ面光源装置が得られる。

【0025】本実施の形態では、導光板の下面に形成さ れたプリズム部は下面に対して凹部になるように形成さ れているが、この凹部の代わりに、凸部になるように形 成しても良い。たたし、との場合、凹部のものは線状光 源側の面が反射面になっているのに対し、凸部のもので は、線状光源と反対側の面が反射面になる。

【0026】本実施の形態1の面光源装置では、導光板 の下面に拡散反射板を設けているので、導光板のプリズ ム部の反射面での屈折光がこの拡散反射板で様々な方向 に反射され、屈折光が導光板の上面から出射されるとき の導光板上面の法線方向に対して様々な方向に出射させ ることができ、広い指向性を持つ面状光を出射させるこ とができる。

【0027】実施の形態2.本実施の形態は実施の形態 1で説明した図1に示した面光源装置のプリズム部の反 射面を導光板の下面に対して約53度になるようにした ものである。図4は、この実施の形態2の面光源装置に おけるプリズム部近傍のY-乙断面拡大図である。図4 方向側)の平坦部3gとなす角度が約53度になるよう に形成されたプリズム部である。10はプリズム部3 f の反射面に入射される光線である。ととで、導光板3の 平坦部3gとプリズム部3fの反射面とのなす角の光源 1に近い側の角度をθ2とする。また、導光板はアクリ ル樹脂製(屈折率n=1.49)とする。その他は、実 施の形態1と同様であるので説明は省略する。

【0028】次に、動作について説明する。導光板3に 入射した光は、導光板3の上面3bと平坦部3cの間で ので、図3(a)は図18に示した従来の面光源装置の 40 全反射を繰り返し、伝搬されていく。この伝搬の過程に おいて、図4に示した光線10のように、臨界角以上の 角度でプリズム部3 f の反射面に入射された光は全反射 し、上面3 bから出射される。ことで、プリズム部3 f の反射面で全反射し、導光板3の上面3bから出射され た光の指向性は、角度02によって異なるものになる。 【0029】図5(a)、(b)、(c)は、それぞれ θ 2を48度、53度、60度とした時の、Y-Z平面 の出射光角度分布を示す図で、図5(a)は θ 2が48 度、図5 (b) は θ 2が53度、図5 (c) は θ 2が6 の光は、プリズム部103fを透過し、反射板104に 50 0度の時の出射光角度分布を示す図である。図5に示し

*

た結果からわかるように、θ2を53度とすることによ り、導光板3の上面3bに対し、90度方向を中心とす る指向性を持った光を出射する面光源装置を得ることが 出来る。

【0030】さらに、図 $6は\theta2$ を53度とし、導光板 の屈折率を約1.65、約1.8とした時のY-Z平面 の出射光角度分布を示す図で、図6(a)は屈折率を約 1.65、図6(b)は屈折率を約1.8とした時の出 射光角度分布を示す図である。図6に示した結果からわ かるように、屈折率が約1.5から約1.8の屈折率の 10 導光板においてはθ2を約53度とすることにより、約 90度方向を中心とする指向性を持った光を出射する面 光源装置を得ることが出来る。なお。上記図5、6にお いては、導光板上の対向端面方向を0°とし、導光板の 上面に対する法線の方向を90°とするものとする。

【0031】なお、本実施の形態では導光板3をくさび 型としているが、下面3cの延長面と上面3bの延長面 のなす角は、一般的に1度以下と小さいため、出射光の 角度に与える影響は小さく、平板の場合においてもθ2 を約53度とすることにより、約90度方向を中心とす 20 る指向性を持った光を出射する面光源装置を得ることが 出来る。

【0032】本実施の形態では、導光板の下面に近接し て取り付けられる反射板を拡散反射板としているが、と れは特に限定するものではなく、一般の反射板にしても よいことは言うまでもない。

【0033】本実施の形態では、導光板の下面のプリズ ム部の反射面を導光板の下面に対して約53度になるよ うにしているので、約90度方向を中心とする指向性を 持った光を導光板の上面から出射させることができる。 【0034】実施の形態3.図7は、との実施の形態3 の面光源装置の構成を示す分解斜視図の概略図である。 図7において、31aは導光板3の下面3cに形成され たプリズム部、31bは導光板3の下面3cに形成され たプリズム部で、とのプリズム部31bの反射面の方向 とプリズム部31aの反射面の方向とが互いに異なるよ うに形成されている。導光板3の下面3cに形成される その他のプリズム部に関しても同様に反射面がプリズム 部31aまたはプリズム部31bと同じ方向の反射面を 有するように形成されるものとする。その他は、実施の 40 形態 1 と同様であるので説明は省略する。

【0035】次に、動作について説明する。図8はこの 実施の形態3の面光源装置の動作を説明するための図で あり、図7に示したプリズム部近傍のY-Z断面拡大図 である。11はプリズム部31aの反射面に入射される 光線、12はプリズム部31bの反射面に入射される光 線である。なお、図7と同一の部分については同一の符 号を付すことにより、個々の説明は省略する。また、平 坦部3gとプリズム部3laがなす角の光源1に近い側 $(z方向の負の方向側)の角度を<math>\theta$ 3、平坦部3gとプ 50 にサンドブラスト処理を施し、面粗度を0.5g

リズム部31bがなす角の光源1に近い側の角度を*θ* 4 とする。なお、本実施の形態では、角度 03を55度、 角度 θ 4を49度とした。

【0036】導光板3に入射された光は、導光板3の上 面3 bと下面3 cにおける平坦部3 gの間で全反射を繰 り返し、伝搬されていく。この伝搬の過程において、図 8に示したように、プリズム部31aの反射面に対し臨 界角以上の角度で入射された光線11は全反射し、導光 板3の上面3bから出射される。

【0037】また、伝搬の過程において、プリズム部3 1 b の反射面に対し臨界角以上の角度で入射された光線 12は全反射し、導光板3の上面3bから出射される。 ここで、プリズム部で全反射し導光板3の上面3bから 出射された光の指向性は、図5に示したように、導光板 3の平坦部3gとプリズム部の反射面のなす角度に依存 するので、プリズム部31aの反射面とプリズム部31 bの反射面の方向が異なれば、プリズム部31aの反射 面で反射される光による出射光の指向性と、プリズム部 31 bの反射面で反射され光による出射光の指向性とは 異なる。

【0038】そのため、導光板3の上面3bから得られ る出射光の指向性は、プリズム部31aの反射面で反射 される光の指向性とプリズム31bの反射面で反射され る光の指向性との足しあわせとなる。すなわち、角度θ 3と角度 0 4と適切な値に設定することにより、導光板 3の上面3bに対する法線に対して約90度方向を中心 とする指向性を持つ光で、なおかつ指向性の広い面状光 を出射させることができる。

【0039】本実施の形態では、ブリズム部の反射面の 30 角度を θ 3と θ 4の異なる2つの角度としているが、と れは特に限定するものではなく、さらに複数の異なる角 度を用いてもよいことは言うまでもない。

【0040】本実施の形態の面光源装置では、導光板下 面に形成する複数のプリズム部の反射面を下面に対して 異なる角度になるように形成したので、この角度を組み 合わせることにより、所望方向の指向性を持ち、かつ指 向性の広い面状光を出射させることができる。

【0041】実施の形態4.図9は、との実施の形態4 の面光源装置の構成を示す分解斜視図の概略図で、図1 に示した面光源装置における導光板の下面の平坦部を指 向性を残した拡散面にしたものである。図9において、 31cは導光板3の仮面3cにおけるプリズム部3fが 形成されていない部分である平坦部で、との平坦部3 1 cは指向性を残した拡散面、すなわち、鏡面と完全拡散 面の中間状態としている。なお、図1と同一の部分につ いては同一の符号を付すことにより個々の説明は省略す る。

【0042】本実施の形態では、例えば、アクリル樹脂 (屈折率n=1.49)などからなる透明樹脂の平坦部

s程度の面とすることにより平坦部31cの指向性を残 した拡散面を形成した。

9

【0043】次に、動作について説明する。図10は、 この実施の形態4の面光源装置の動作を説明するための 図であり、図IO(a)は、図I8に示した従来の面光 源装置におけるプリズム部近傍のY-Z断面拡大図、図 10(b)は図9に示した面光源装置におけるプリズム 部近傍のY-Z断面拡大図である。図10において、点 Aは導光板103のプリズム部103fの反射面上の1*

 $-Sin^{-1}(1/n) \le \theta \le Sin^{-1}(1/n) \cdot \cdot \cdot (1)$

【0046】平板の導光板においては、導光板103の 上面103bと平坦部103gの伝搬において、この角 度は保存されるため、プリズム部103fの反射面上の 点Aおいても入射される光の角度幅は2×Sin⁻¹(1 **/n)に制限され、プリズム部103fの反射面により** 全反射する光の角度幅も制限される。このため、導光板 103の上面103bから出射される光は、角度幅が制 限されることにより指向性の狭い光になってしまう。

【0047】次に、図10(b)に示したこの実施の形 態の面光源装置の場合について説明する。導光板3の屈 20 折率をnとすると、線状光源lより導光板3内に入射さ れた屈折光の広がり角は、スネルの法則により、上記式 (1)に示した角度内になる。

【0048】平板の導光板においては、導光板3の上面 3 b と平坦部3 g の伝搬において、式(1) に示した線 状光源1より導光板3内に入射された屈折光の広がり角 で入射された光線は、拡散性を持たせている平坦部3g での反射の際に前記広がり角が必ずしも保存されずに反 射されるため、プリズム部3fの反射面上の点Bにおい /n) に制限されることがなく、プリズム部3fの反射 面により全反射する光の角度幅も制限されことがない。 このため、導光板3の上面3bから出射される光は、角 度幅が制限されることなく指向性を広げることができ る。

【0049】なお、導光板3の上面3bから出射される 面状光は上面3 bに対して垂直方向になることが望まし いが、図1に示した導光板3の平坦部3gは指向性をも 有するようにしているので、出射光の指向性も適切な方 向に調整することができる。

【0050】本実施の形態では、導光板における下面の 平坦部を指向性を有する拡散面にしているので、導光板 の上面から出射される出射光の指向性を広げることがで きる。

【0051】実施の形態5.図11は、この実施の形態 5の面光源装置の構成を示す分解斜視図の概略図であ る。図において、3は線状光源1の光が入射される導光 板、3aは光が入射される入射端面で、導光板3の上面 3b、下面3cに対して垂直にならないように設けられ ている。なお、導光板3の上面3bと下面3cとは2軸 50

*点、点Bは導光板3のプリズム部3fの反射面上の1点 である。なお、図9と同一の部分については同一の符号 を付すことにより、個々の説明は省略する。

【0044】まず、図10(a)に示した従来の面光源 装置の場合について説明する。導光板103の屈折率を nとすると、線状光源101より導光板103内に入射 された屈折光の広がり角は、スネルの法則により、式 (1)に示した角度内になる。

[0045]

方向に対して平行に形成されているものとする。その他 は、実施の形態1で説明したものと同様であるので説明 は省略する。

【0052】次に、動作について説明する。図12は、 との実施の形態5の面光源装置の動作を説明するための 図で、図12(a)は図18に示した従来の面光源装置 のY-Z断面の拡大図、図12(b)は図11に示した 面光源装置のY-Z断面の拡大図ある。図12におい て、12は入射端面3aから入射される光線、110は 入射端面103aから入射される光線である。

【0053】また、図12(b)におけるY-Z断面に おいて入射面3 a と上面3 b がなす角度を θ 5、導光板 3の入射端面3aに対する法線を法線1、導光板3の上 面3 bに対する法線を法線2、導光板3の下面3 cに対 する法線を法線3とし、点Aを導光板103のプリズム 部103fの反射面上の点とし、点Bを導光板3のプリ ズム部3 fの反射面上の点とする。なお、図11と同一 の部分については同一の符号を付すことにより、個々の 説明は省略する。との実施の形態における角度の定義

ても入射される光の角度幅は必ずしも $2 \times S$ i n^{-1} (1 30 は、特にことわらない限りy - z 平面のz 方向を0 度、 y方向を90度、z方向の反対方向を180度と定義 し、導光板3の屈折率をnとする。

> 【0054】図12 (a) に示したように、従来の面光 源装置では、導光板103における入射端面103aが 導光板103の上面103b及び下面103cに対して 垂直に設けられているので、入射端面 103 a から入射 される屈折光110は、入射端面103aに対する法線 からSin⁻¹(1/n)の範囲内で入射されることにな る。その後、屈折光110は導光板103中を導光板3 40 の上面103b、下面104cで反射されながら伝搬し ていくが、入射角と反射角とは同じであるので、導光板 103のプリズム部103f上の点Aに入射される光の 角度幅は、2×Sin⁻¹(1/n)となる。

【0055】図12(b)に示したように、図11に示 した面光源装置では、導光板3における入射端面3aが 導光板3の上面3b及び下面3cに対する垂直より所定 角分傾けて設けられているので、入射端面3aと上面3 bとのなす角度 θ 5は、 θ 5 \neq 90°となる。それに伴 い、法線1も上記従来(θ 5=90°)の場合に比べ θ 6 (= | θ 5 - 9 0° |) 度傾くことになり、導光板 3

の入射端面3aから入射される屈折光12は、導光板3の下面3cに対し、 $Sin^{-1}(1/n)+\theta$ 6以下の範囲で入射されるととになる。

11

4 1 1 I

【0056】その後、屈折光12は導光板3中を導光板3の上面3b、下面3cで反射されながら伝搬していくが、入射角と反射角とは同じであるので、導光板3のプリズム部3f上の点Bに入射される光の角度幅は、 $2 \times \{Sin^{-1}(1/n) + \theta 6\}$ となる。すなわち、法線2及び法線3と光のなす最小角が上記従来($\theta 5 = 90$ °)の場合に比べ、 $\theta 6$ 分小さくなり、法線2及び法線103と光のなす最小角は90° $-Sin^{-1}(1/n) - \theta$ 6となる。

【0057】 ことで、光が導光板3中を伝搬するには、法線2または法線3と光のなす角が臨界角($=Sin^{-1}$ (1/n))より大きくなければならない。よって、光を導光板3内に伝搬させるには角度 θ 5を $90\pm2\times$ { $45^{\circ}-Sin^{-1}(1/n)$ }の範囲内とする必要がある。この時、プリズム部3f上の点Bに到達する光の角度幅は、 $2\times(Sin^{-1}(1/n)+|90^{\circ}-\theta5|$)となり、従来(θ 5= 90°)に比べ広がる。よって、プリズム部3fの反射面に入射される入射角が導光板3の入射端面3aにおける光の屈折角よりも大きくなるので、導光板3の上面3bから出射する光の指向性を広げることが出来る。

【0058】なお、導光板の屈折率nが2¹/²以下の場合は、法線2及び法線3と光のなす最小角を臨界角(= Sin⁻¹(1/n))より大きく出来ないため、導光板3の入射面3aに入射した光を効率よく伝搬することが出来ない。

【0059】本実施の形態では、導光板3おける入射端 30 面が導光板の上面及び下面に対する垂直より所定角分傾けて設けられているので、プリズム部の反射面で全反射する光の角度も広がり、導光板の上面から出射する光の指向性を広げることが出来る。

【0060】実施の形態6.図13は、この実施の形態6の面光源装置の構成を示す分解斜視図の概略図である。図13において、32は導光板3の上面3bの線状光源1側に設けられた凸部で、導光板3の上面の線状光源1側が他の上面3bに対して所定角度67分傾いて形成されている。以下、この実施の形態において凸部32をテーパ部と呼ぶこともある。なお、その他は実施の形態1と同様であるので、図1と同一の部分については同一の符号を付すことにより個々の説明は省略する。

【0061】次に、動作について説明する。図14はこの実施の形態6の面光源装置の動作を説明するための図で、図13に示した面光源装置のY-Z断面の拡大図である。図14において、13はテーパ部32で反射される光線の例である。また、Y-Z断面においてテーパ部32と導光板3の上面3bがなす角を θ 7とし、点Aを導光板3のプリズム部3fの反射面上の1点とする。す 50

る。なお、図13と同一の部分については同一の符号を 付すことにより、個々の説明は省略する。

12

【0062】線状光源1より導光板3内に入射された屈 折光の広がり角は、実施の形態1で説明したように、導 光板3の屈折率をnとすると、スネルの法則により、式 (1)に示した角度内になる。このような入射角で入射 された光線は順に導光板3の上面3b、下面3cで反射 されながら伝搬していくが、図14に示すように、導光 板3の上面3bの線状光源1側にテーパ部32を設けて いるため、導光板3内に入射された光の一部はテーパ部 32で反射されることにより、導光板3のテーパ部32 以外の上面3bでの反射に対し、上面3a及び下面3b に対する法線と光のなす角が $2 \times \theta$ 7だけ小さくなる。 【0063】ととで、導光板の屈折率をnとすると、光 が導光板中を伝搬するには、導光板3の上面3b及び下 面3cに対する法線と光のなす角が臨界角(=Sin⁻¹ (1/n)より大きくなければならない。よって、前記 法線と光のなす角が臨界角(=Sin-1(1/n))以 下にならないように θ 7を設定することにより、光は導 光板中を伝搬できる。との時、点Aに到達する光の角度 幅は $2\times$ (Sin⁻¹(1/n)+ $2\times\theta$ 7)となり、従 来 (θ 7 = 0°) の場合に比べ広がるので、プリズム部 3 f の反射面で全反射する光の角度も広がり、導光板3 の上面3 b から出射される光の指向性を広げることが出 来る。

【0064】図15は、この実施の形態6の他の面光源装置の構成を示す分解斜視図の概略図である。図15において、32は導光板3の上面3bの線状光源1側に設けられた凸部で、導光板3の上面の線状光源1側が他の上面3bに対して所定角度 07傾いて形成されている。33は導光板3の上面3bの線状光源1側に設けられた凸部で、この凸部の線状光源1と反対側(z方向の正の方向側)は、導光板3内に入射された屈折光が反射できるように、導光板3の上面の線状光源1側が他の上面3bに対して所定角度 07傾けた反射面を有している。なお、その他は実施の形態1と同様であるので、図1と同一の部分については同一の符号を付すことにより個々の説明は省略する。

【0065】次に、図15に示した面光源装置の動作であるが、図13に示した面光源装置においては、屈折光がテーパ部32で反射されることにより、導光板の上面及び下面に対する法線に対する屈折光の角度幅が広げられるのと同様に、図15に示した面光源装置では、さらに、凸部33を有しているので、屈折光が凸部33の反射面で反射されることによっても同様に、導光板の上面及び下面に対する法線に対する屈折光の角度幅が広げられる。そのため、図13に示した面光源装置よりも、さらに効率よく導光板の上面及び下面に対する法線に対する屈折光の角度幅が広げることができる。

【0066】本実施の形態では、導光板の上面に導光板

に入射される屈折光を線状光源と反対側に反射させる凸部を有しているので、導光板の下面におけるプリズム部の反射面へ入射する光の角度幅を広くすることができる。

13

【0067】実施の形態7.図16は、この実施の形態7の面光源装置の構成の分解斜視図を示す概略図である。図16において、3gは導光板3の下面3cのプリズム部3fが形成されていない平坦部で、線状光源1側になるほど長く、逆に対向端面3d側になるほど短くなるようになっている。なお、その他は、実施の形態1と10同様であるので、図1と同一の部分については同一の符号を付すことにより個々の説明は省略する。また、本実施の形態では、導光板3の入射端面3aにおける高さを3mm、側面の長さを190mm、入射対向端面3dにおける高さを1mmとした。

【0068】次に、動作について説明する。導光板3に入射した光は主として、導光板3の平坦部3gと上面3bを交互に全反射しながら入射対向端面3dへ伝搬していく。この過程において、導光板3のプリズム部3fに臨界角以上で入射された光は、導光板3の上面3bから20出射される。このため、入射端面3a近傍と、入射対向端面3d近傍では導光板3中を伝搬している光の強度が異なる。

【0069】このことは、ほぼ等しいピッチでプリズム部3 fが形成されている場合、平坦部3 gの長さを常に一定にしていると、導光板3の上面3 bから出射する輝度分布が均一にならないことを意味する。すなわち、面内の輝度分布を一定にするには、入射端面3 aから入射対向端面3 dに向かうにしたがい、平坦部3 gの長さを短くし、上面3 bからの出射に寄与するプリズム部3 fの割合を大きくする必要がある。ここで、ピッチとは、反射手段間の距離で、隣接するプリズム部3 f間の平坦部3 gの長さとプリズム部3 f の底部との和であると定義する。

【0070】図17はアクリル樹脂製の平板導光板において、入射端面側から入射対向端面側に向けて、連続的に平坦部の長さを変化させた時のY-Z断面における、輝度分布の例を示した図である。図17(a)は、入射端面側の平坦部の長さをプリズムピッチの約90%とし、以下順に平坦部3gの長さを短くしていき、最後の40入射対向端面側の平坦部の長さをプリズムピッチの約50%としたときの輝度分布を示す図である。図17(a)に示したように、この例においては導光板途中で大半の光は導光板3の上面3bから出射され、入射対向端面3d側にはほとんど光が伝搬されなくなる。

【0071】一方、図17(b)は、入射端面側の平坦部の長さをプリズムピッチの約90%とし、以下順に平坦部3gの長さを短くしていき、最後の入射対向端面側の平坦部の長さをプリズムピッチの約75%としたときの輝度分布を示す図である。図17(b)に示したよう50

に、この例においては輝度均一性の良い面光源装置が得 られる。

【0072】なお、入射端面側から入射対向端面側に向けて厚さが薄くなるくさび型導光板においては、入射対向端面に近づくにつれ、光の反射回数が増え、それにともないプリズム部31に入射する光が増えるため、入射対向端面側の平坦部の長さをプリズムピッチの約75%以上とすることで、輝度均一性の良い面光源装置を得ることが出来る。

[0073]

【発明の効果】この発明に係る面光源装置は、線状光源と、側面から前記線状光源の光が入射される導光板と、前記側面に隣接する前記導光板の一面に近接して配設された反射面と、前記導光板の一面に形成された凹部または凸部からなる複数の反射手段とを備え、前記反射面は拡散反射面であるので、不適正な方向への指向性を持つ光を無くすことが出来る。また、指向性の広い出射光を得ることが出来る。

【0074】また、線状光源と、側面から前記線状光源の光が入射される導光板と、前記側面に隣接する前記導光板の一面に近接して配設された反射面と、前記導光板の一面に形成された凹部または凸部からなる複数の反射手段とを備え、前記導光板の一面は、指向性を有する拡散反射面であるので、指向性の広い出射光を得ることが出来る。

【0075】線状光源と、側面から前記線状光源の光が入射される導光板と、前記側面に隣接する前記導光板の一面に近接して配設された反射面と、前記導光体の一面に形成された凹部または凸部からなる複数の反射手段とを備え、前記複数の反射手段の反射面の少なくとも1つは、他の反射手段の反射面の方向に対し異なる方向になるように設けられているので、指向性の広い出射光を得ることが出来る。

【0076】線状光源と、側面から前記線状光源の光が入射される導光板と、前記側面に隣接する前記導光板の一面に近接して配設された反射面と、前記導光体の一面に形成された凹部または凸部からなる複数の反射手段とを備え、前記反射手段の反射面における入射光の入射角が前記線状光源の入射光の前記導光板の側面の屈折角よりも大きいので、指向性の広い出射光を得ることが出来る。

【0077】線状光源の入射光が入射される導光板の側面が前記導光板の一面に対して傾けて形成されているので、指向性の広い出射光を得ることが出来る

【0078】導光板の一面に対向する対向面に凹部また は凸部からなる反射手段を備え、前記導光板の一面に形 成された反射手段の反射面と前記導光板の対向面に形成 された反射手段の反射面とは線状光源の入射光側に向い ているので、指向性の広い出射光を得ることが出来る

【0079】導光板の対向面に形成される反射手段は、

線状光源の入射光が入射される導光板の側面側に形成さ れているので、指向性の広い出射光を得ることが出来る 【0080】導光板の一面に対する前記導光板の一面に 形成された反射手段の反射面の角度を53度にするの で、導光板上の出射面に対し約90度の角度を中心とし た光を出射することが出来る。

【0081】導光板の一面に形成された反射手段間の距 離と前記一面における1つの反射手段の距離との比を、 線状光源側では略10対1とし、その後徐々に変えてい き線状光源と反対側では略4対1にするので、輝度均一 10 図である。 性のよい出射光を得ることができる。

【図面の簡単な説明】

【図1】 本発明の実施の形態1の面光源装置を示す概 略図である。

【図2】 本発明の実施の形態1の動作を説明するため の図である。

【図3】 本発明の実施の形態1の出射光角度分布を示 す図である。

【図4】 本発明の実施の形態2の動作を説明するため の図である。

【図5】 本発明の実施の形態2の出射光角度分布を示 す図である。

本発明の実施の形態2の出射光角度分布を示 【図6】 す図である。

本発明の実施の形態3の面光源装置を示す図 【図7】 である。

【図8】 本発明の実施の形態3の動作を説明するため の図である。

【図9】 本発明の実施の形態4の面光源装置を示す図 である。

【図10】 本発明の実施の形態4動作を説明するため の図である。

【図11】 本発明の実施の形態5の面光源装置を示す 図である。

[図12] 本発明の実施の形態5の動作を説明するた めの図である。 *

本発明の実施の形態6の面光源装置を示す *【図13】 図である。

本発明の実施の形態6の動作を説明するた 【図14】 めの図である。

【図15】 本発明の実施の形態6の面光源装置を示す 図である。

【図16】 本発明の実施の形態7の面光源装置を示す 図である。

【図17】 本発明の実施の形態7の出射光強度を示す

【図18】 従来の面光源装置を示す図である。

【図19】 従来の面光源装置の動作を説明するための 図である。

【符号の説明】

(9)

	1 絹	限状光源	2	反射体
	3 導	光板	3 a	導光板の入
	射端面			
	3 b 導	光板の上面	3 с	導光板の下
	面			
20	3 d 導	学光板の入射対向端面	3 e	導光板の側
	面			
	3 f 7	プリズム部	3 g	平坦部
	4	散反射板	5	被照射体
	10,1	1、12、13 光線		
	101	線状光源	102	尺射体
	103	導光板	103	Ba 導光板
	の入射端	插		
	103b	導光板の上面	103	c 導光板
	の下面			
30	1 0·3 d	導光板の入射対向端面	103	e 導光板
	の側面			
	103 f	プリズム部	103	g 平坦部
	104	反射板	105	拡散板
	106	端面反射板		
	110	光線		

【図1】

[図4]

【図5】

[図3]

【図6】

[図13] 【図14】 2x[sin-1(1/n)+2x07] 【図15】 【図16】 【図17】 出射光強度 AQE 103b 103p 入射端面 入射対的端面 (Q) 1034 103d -103)03f 1 103e 出射光强度 102

入射端面

(b)

入身村的城面

[図19]

フロントページの続き

(72)発明者 名井 康人

東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 頭本 信行

東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内