アルゴリズムとデータ構造a 4 - 擬似言語

今日の授業

- フローチャートと構造化
- 擬似言語
 - 特徴
 - 表記方法
 - 擬似言語の実例
- ■簡単なアルゴリズム
 - 合計値、データの個数、平均値、最大値

フローチャートは構造化されてない


```
for (i = 0; i < 10; i++) {

→ for (j = 0; j < 10; j++) {

→ System.out.println(i*j);

→ }
```

Java等ではインデント(字下げ) によって、見た目が構造化され ている。

擬似言語(特徵1)

- 構造化されている(自然にインデントされる)
- Javaなどのプログラミング言語に似ている

擬似言語(特徵2)

- 情報処理試験独自の表記法 午後問題では頻繁に使用されている
- 構造化の3構造と手続き呼び出しが定められている
 - 逐次構造(順次構造)
 - 選択構造
 - 反復構造 (繰返し構造)
 - 副プログラム(手続き、メソッド)
- 午後問題に仕様が書いてあるので変更がない か確認すること 当初は頻繁に仕様変更があった。最近はほとんど変更は起きていない。

擬似言語の表記法(逐次構造)

- 処理1
- 処理2
- 処理3

擬似言語

※ 行の先頭に「・」を 忘れないように注意

擬似言語の表記法(選択構造)

条件が成り立つとき処理(成り立たないときは何もしない)

条件が成り立つとき処理1、成り立たないとき処理2

選択構造の例

擬似言語の表記法(反復構造)

条件が真の間、処理を繰 返す

■ 条件 | ・処理 (前判定) |

Javaのwhile文と同様

■ ・処理 (後判定) ■ 条件 Javaのdo~while文と同様 Javaのfor文と同様

■ 変数:初期値,条件式,増分 ■ •処理

```
for (変数 = 初期値;条件式;増分の式) {
処理;
}
```

反復構造の例(1)

Aに入力

 $A \ge 0$

- ・Aの値を表示
- Aに入力

逐次 構造 反復構造の中に逐次 構造が含まれている

0以上の値が 入力されてる 限り繰返す

0より小さい値 (負の値)が入力 されたら繰返し を終了する

反復構造の例(2)

■ 変数:初期値,条件式,増分 ・処理

・iの値を表示

0,1,2...9 を表示する(つまり10回繰返す)

ループ端を使用した場合

擬似言語の実例

(平成14年度秋期午後問題より抜粋)

宣言部

```
O 副プログラム名: GetLine(Text[], N, Sp, Moji, Ep)
O 文字型: Text[]
O 整数型: N, Sp, Moji, Ep
O 論理型: Loop
• Ep ← Sp

    Loop ← true

  Ep < N and Loop
   \blacktriangle Text[Ep] \neq "." and

    Ep ← Ep + 1

                                            処理部

    Loop ← false
```

合計値を求める

〇整数型: sum, a

- sum $\leftarrow 0$
- aに入力する

- sum←sum+a
- aに入力する

• sumを表示する

0以下の値を入力したら 繰返しを終了し、合計値 (sum)を表示する

データの個数を求める

(何個入力があったか数える)

〇整数型: count, a

- count $\leftarrow 0$
- aに入力する
- \blacksquare a ≥ 0
 - count←count+1
 - aに入力する
- countを表示する

負の値を入力したら繰返しを終了し、データの個数(count)を表示する

平均値を求める

- 〇整数型: sum,count, a
- 〇実数型: ave, rsum
- sum $\leftarrow 0$
- count $\leftarrow 0$
- aに入力する
- $\mathbf{a} \ge 0$
 - sum←sum+a
 - count←count+1
 - aに入力する
- rsum←sum
- ave←rsum -count
- aveを表示する

最大値を求める

〇整数型: max, a

- aに入力する
- max←a

aに入力する

繰返しの途中では、 その時点での最 大値がmaxに入っ ている

現時点の最大値 (max)より今度の 入力値aのほうが 大きい時

• maxを表示する

負の値を入力したら繰返しを終了し、最大値(max)を表示する

擬似言語(副プログラム)

■ Javaのメソッドに相当する

〇プログラム名:合計処理

〇整数型:T[] = (2,8,15,4)

〇整数型:N,ans

 $N \leftarrow 6$

•SUM(T, N, ans)

戻り値も(...)の中に書くことに注意。

引数 T,N 〇副プログラム名:

SUM (T[], N, ans)

〇整数型: T[], N, ans,i

• ans $\leftarrow 0$

• $i \leftarrow 1$

 $\mathbf{I} \quad \mathbf{i} \leq \mathbf{N}$

• ans \leftarrow T[i] + ans

 $i \leftarrow i + 1$

宿題

開始 Aを入力 B←A

右の流れ図(最小値を表示するプログラム)の内容を、擬似言語で描け。なお、入力する値は実数値とする。

