Equations with Discontinuous Right Hand Side

L. Fridman

Sirius

Outline

- Preliminaries
 - Absolute Continuity
 - Upper semi-continuity
- Equations with Discontinuous RHS
 - Historical Remarks
- 3 Regularization Procedure for ODE with Discontinuous RHS
 - Filippov Solutions
 - Utkin Solutions
 - Aizerman-Pyatniskii Solutions
- Disturbed Systems and Extended Differential Inclusions
 - Disturbances and Differential Inclusions
- Existence of Solutions
 - Existence Conditions

Outline

- Preliminaries
 - Absolute Continuity
 - Upper semi-continuity
- 2 Equations with Discontinuous RHS
 - Historical Remarks
- Regularization Procedure for ODE with Discontinuous RHS
 - Filippov Solutions
 - Utkin Solutions
 - Aizerman-Pyatniskii Solutions
- Disturbed Systems and Extended Differential Inclusions
 - Disturbances and Differential Inclusions
- 5 Existence of Solutions
 - Existence Conditions

Absolute Continuity

Definition

Let $\mathcal I$ be an interval in the real line $\mathbb R$. A function $f:\mathcal I\to\mathbb R$ is absolutely continuous on $\mathcal I$ if for every positive number ϵ , there is a positive number δ such that whenever a finite sequence of pairwise disjoint sub-intervals $(x_k;y_k)$ of $\mathcal I$ satisfies

$$\sum_{k} (y_k - x_k) < \delta$$

then

$$\sum_{k} |f(y_k) - f(x_k)| < \epsilon$$

The collection of all absolutely continuous functions on \mathcal{I} is denoted $AC(\mathcal{I})$.

Absolute continuity of functions

Equivalent Definitions

- f is absolutely continuous
- \circ f has a Lebesgue integrable derivative f' almost everywhere and

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt; \quad \forall x \in [a; b]$$

 \odot there exists a Lebesgue integrable function g on [a; b] such that

$$f(x) = f(a) + \int_{a}^{x} g(t)dt; \quad \forall x \in [a; b]$$

If these equivalent conditions are satisfied then necessarily g=f' almost everywhere. Equivalence between (1) and (3) is known as the fundamental

$$f(x) = \sqrt{|x|} = 2 \int_0^x \frac{1}{\sqrt{|t|}} dt$$

At zero it is not differentiable and the lateral derivatives do not exist!

The function is still absolutely continuous

$$f(x) = x\sin\frac{1}{x}$$

 $\lim_{x\to 0} x\sin(\frac{1}{x}) = 0 \to f(x)$ is continuous!

$$f'(x) = \sin\frac{1}{x} - \frac{\cos(\frac{1}{x})}{x}, \ x \neq 0$$

At zero it is not differentiable and the lateral derivatives do not exist!

$$f(x) = x^2 \sin \frac{1}{x}$$

 $\lim_{x\to 0} x^2 \sin(\frac{1}{x}) = 0 \to f(x)$ is continuous!

$$f'(x) = 2x\sin\frac{1}{x} - \cos(\frac{1}{x}), \ x \neq 0$$

At zero it is not differentiable and the lateral derivatives do not exist!

$$f'(x)$$
 is bounded for $x \neq 0$!

The function is still absolutely continuous

9.45.45.5.000

L. Fridman

Absolute continuity of functions

Properties

- **1** If $f, g \in AC(\mathcal{I})$, then $f \pm g$ is absolutely continuous.
- ② If \mathcal{I} is a bounded closed interval and $f, g \in AC(\mathcal{I})$, then fg is also absolutely continuous.
- **3** If \mathcal{I} is a bounded closed interval, $f \in AC(\mathcal{I})$ and $f \neq 0$ then $\frac{1}{f}$ is absolutely continuous.
- Every absolutely continuous function is uniformly continuous and, therefore, continuous. Every Lipschitz-continuous function is absolutely continuous.
- **⑤** If $f: \mathcal{I} \to \mathbb{R}$ is absolutely continuous, then it is of bounded variation on [a; b].

Outline

- Preliminaries
 - Absolute Continuity
 - Upper semi-continuity
- 2 Equations with Discontinuous RHS
 - Historical Remarks
- Regularization Procedure for ODE with Discontinuous RHS
 - Filippov Solutions
 - Utkin Solutions
 - Aizerman-Pyatniskii Solutions
- Disturbed Systems and Extended Differential Inclusions
 - Disturbances and Differential Inclusions
- 5 Existence of Solutions
 - Existence Conditions

Upper semi-continuity of set-valued functions

Introduce the following distances

$$\begin{split} \rho(x,\mathbf{M}) &= \inf_{y \in \mathbf{M}} \|x - y\|, \quad x \in \mathbb{R}^n, \mathbf{M} \subset \mathbb{R}^n, \\ \rho(\mathbf{M}_1,\mathbf{M}_2) &= \sup_{x \in \mathbf{M}_1} \rho(x,\mathbf{M}_2), \quad \mathbf{M}_1 \subset \mathbb{R}^n, \mathbf{M}_2 \subset \mathbb{R}^n, \end{split}$$

In general, the distance ρ is not symmetric, $\rho(\mathbf{M}_1, \mathbf{M}_2) \neq \rho(\mathbf{M}_2, \mathbf{M}_1)$.

Upper semi-continuity of set-valued functions

Introduce the following distances

$$\rho(x, \mathbf{M}) = \inf_{y \in \mathbf{M}} \|x - y\|, \quad x \in \mathbb{R}^n, \mathbf{M} \subset \mathbb{R}^n,$$

$$\rho(\mathbf{M}_1, \mathbf{M}_2) = \sup_{x \in \mathbf{M}_1} \rho(x, \mathbf{M}_2), \quad \mathbf{M}_1 \subset \mathbb{R}^n, \mathbf{M}_2 \subset \mathbb{R}^n,$$

In general, the distance ρ is not symmetric, $\rho(\mathbf{M}_1, \mathbf{M}_2) \neq \rho(\mathbf{M}_2, \mathbf{M}_1)$.

Definition

A set-valued function $F: R^{n+1} \to 2^{R^{n+1}}$ is said to be **upper** semi-continuous at a point $(t^*, x^*) \in \mathbb{R}^{n+1}$ if $(t, x) \to (t^*, x^*)$ implies

$$\rho(F(t,x),F(t^*,x^*))\to 0.$$

Example (Upper semi-continuous set-valued function)

$$\overline{\mathsf{sign}}[
ho] = \left\{ egin{array}{ll} 1 & \mathsf{if} \
ho > 0 \ -1 & \mathsf{if} \
ho < 0 \ [-1,1] & \mathsf{if} \
ho = 0 \end{array}
ight.$$

is an upper semi-continuous set-valued function.

Outline

- Preliminaries
 - Absolute Continuity
 - Upper semi-continuity
- Equations with Discontinuous RHS
 - Historical Remarks
- Regularization Procedure for ODE with Discontinuous RHS
 - Filippov Solutions
 - Utkin Solutions
 - Aizerman-Pyatniskii Solutions
- Disturbed Systems and Extended Differential Inclusions
 - Disturbances and Differential Inclusions
- 5 Existence of Solutions
 - Existence Conditions

Historical Remarks

Differential Equations with Discontinuous RHS

$$\dot{x}(t) = f(t, x(t)),$$
 $t \in \mathbb{R}, \ x \in \mathbb{R}^n, \ f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$

 RHS Discontinuous with respect to the **time** variable (Caratheodory 1927)

Constantin Caratheodory (1873-1950)

Historical Remarks

Differential Inclusions (Contingent Differential Equations)

 $\dot{x}(t) \in F(t, x(t)),$ $t \in \mathbb{R}, \ x \in \mathbb{R}^n, \ F : \mathbb{R} \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$

(Zaremba 1936, Marchaud 1938, Filippov 1960

Stanislaw Zaremba (1863-1942)

Historical Remarks

Differential Equations with Discontinuous RHS

$$\dot{x}(t) = f(t, x(t)), \quad t \in \mathbb{R}, \ x \in \mathbb{R}^n, \ f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

• RHS Discontinuous with respect to the **state** variable (Filippov 1960, Utkin 1967, Aizerman & Pyatnitskii 1974)

Professors A. Filippov, E. Pyatnitskii, M. Aizerman and V. Utkin

Outline

- Preliminaries
 - Absolute Continuity
 - Upper semi-continuity
- 2 Equations with Discontinuous RHS
 - Historical Remarks
- 3 Regularization Procedure for ODE with Discontinuous RHS
 - Filippov Solutions
 - Utkin Solutions
 - Aizerman-Pyatniskii Solutions
- Oisturbed Systems and Extended Differential Inclusions
 - Disturbances and Differential Inclusions
- 5 Existence of Solutions
 - Existence Conditions

ODE with Discontinuous RHS

$$\dot{x}(t) = f(t, x(t)), \quad t \in \mathbb{R}, \ x \in \mathbb{R}^n, \ f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$
 (DiscRHS)

ODE with Discontinuous RHS

$$\dot{x}(t) = f(t, x(t)), \quad t \in \mathbb{R}, \ x \in \mathbb{R}^n, \ f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$
 (DiscRHS)

f is piecewise continuous:

- 2 $S \bigcup_{j=1}^{N} \partial G_j$ is of measure zero;
- **③** f(t,x) is continuous in each G_j and $\forall (t,x) \in \partial G_j : \exists f^j(t,x) \in \mathbb{R}^n$

$$f^{j} = \lim_{(t^{k}, x^{k}) \to (t, x)} f(t^{k}, x^{k}),$$

$$(t^k, x^k) \in G_j, (t, x) \in \partial G_j$$

Filippov Regularization

$$\dot{x}(t) \in F(t,x(t)), \quad t \in \mathbb{R}$$
 (DiffInc)
$$F(t,x) = \begin{cases} \{f(t,x)\} & \text{if } (t,x) \in \mathbb{R}^{n+1} \backslash \mathcal{S}, \\ \cos \left(\bigcup_{j \in \mathcal{N}(t,x)} \{f^j(t,x)\}\right) & \text{if } (t,x) \in \mathcal{S}, \end{cases}$$

$$\mathcal{N}(t,x) = \{j \in \{1,2,\ldots,N\} : (t,x) \in \partial G_j\}.$$

Filippov Regularization

$$\dot{x}(t) \in F(t,x(t)), \quad t \in \mathbb{R}$$
 (DiffInc)
$$F(t,x) = \begin{cases} \{f(t,x)\} & \text{if } (t,x) \in \mathbb{R}^{n+1} \backslash \mathcal{S}, \\ \cos \left(\bigcup_{j \in \mathcal{N}(t,x)} \{f^j(t,x)\}\right) & \text{if } (t,x) \in \mathcal{S}, \end{cases}$$

$$\mathcal{N}(t,x) = \{j \in \{1,2,\ldots,N\} : (t,x) \in \partial G_j\}.$$

Definition (Filippov 1960)

An absolutely continuous function $x: \mathcal{I} \to \mathbb{R}^n$ defined on some interval or segment \mathcal{I} is called a solution of (DiscRHS) if it satisfies the differential inclusion (DiffInc) almost everywhere on \mathcal{I} .

Illustration of Filippov regularization

Illustration of Filippov regularization

(b) Sliding mode.

Example

$$\dot{x}(t) = -\operatorname{sign}[x(t)] + d(t), t > 0,$$

where
$$x(\cdot) \in \mathbb{R}, \ \|d\|_{\mathbb{C}} \le d_0 < 1.$$

$$\mathrm{sign}[\rho] = \left\{ \begin{array}{rl} 1 & \mathrm{if} \ \rho > 0 \\ -1 & \mathrm{if} \ \rho < 0 \\ 0 & \mathrm{if} \ \rho = 0 \end{array} \right.$$

Illustration of Filippov regularization

(b) Sliding mode.

Example

$$\dot{x}(t) \in -\overline{\operatorname{sign}}[x(t)] + d(t), t > 0,$$

where $x(\cdot) \in \mathbb{R}, \ \|d\|_{\mathbb{C}} \le d_0 < 1.$

$$\overline{\mathsf{sign}}[\rho] = \left\{ \begin{array}{rl} 1 & \text{if } \rho > 0 \\ -1 & \text{if } \rho < 0 \\ [-1, 1] & \text{if } \rho = 0 \end{array} \right.$$

Outline

- Preliminaries
 - Absolute Continuity
 - Upper semi-continuity
- 2 Equations with Discontinuous RHS
 - Historical Remarks
- 3 Regularization Procedure for ODE with Discontinuous RHS
 - Filippov Solutions
 - Utkin Solutions
 - Aizerman-Pyatniskii Solutions
- Disturbed Systems and Extended Differential Inclusions
 - Disturbances and Differential Inclusions
- 5 Existence of Solutions
 - Existence Conditions

Discontinuous Control Systems

Let us consider the system

$$\dot{x}(t) = f(t, x(t), u(t, x(t))), t \in \mathbb{R},$$
 (DisContSys)

where $f: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$, $f \in \mathbb{C}$ and

$$u: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^m, \quad u(t,x) = (u_1(t,x), u_2(t,x), \dots, u_m(t,x))^T$$

is a piecewise continuous feedback control

Discontinuous Control Systems

Let us consider the system

$$\dot{x}(t) = f(t, x(t), u(t, x(t))), t \in \mathbb{R},$$
 (DisContSys)

where $f: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$, $f \in \mathbb{C}$ and

$$u: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^m, \quad u(t,x) = (u_1(t,x), u_2(t,x), \dots, u_m(t,x))^T$$

is a piecewise continuous feedback control

Assumption

Each component $u_i(t,x)$ is discontinuous only on a surface

$$S_i = \{(t,x) \in \mathbb{R}^n : s_i(t,x) = 0\},\$$

where functions $s_i : \mathbb{R}^{n+1} \to \mathbb{R}$ are smooth, i.e. $s_i \in \mathbb{C}^1(\mathbb{R}^{n+1})$.

Utkin Regularization

$$\dot{x}(t) = f(t,x(t),U(t,x(t))), t \in \mathbb{R},$$
where $U(t,x) = (U_1(t,x),U_2(t,x)\dots,U_m(t,x))^T$ and
$$U_i(t,x) = \begin{cases} \{u_i(t,x)\}, & s_i(t,x) \neq 0 \\ co\left\{\lim_{\substack{(t_j,x_j)\to(t,x)\\s_i(t_j,x_j)>0}} u_i(t_j,x_j), \lim_{\substack{(t_j,x_j)\to(t,x)\\s_i(t_j,x_j)<0}} u_i(t_j,x_j) \right\}, & s_i(t,x) = 0 \end{cases}$$
(ValFunc)

The set f(t, x, U(t, x)) is **non-convex** in general case.

Example (Utkin Regularization)

$$u(x) = -\operatorname{sign}[x] \quad \text{and} \quad U(x) = \overline{\operatorname{sign}}[x]$$

$$\operatorname{sign}[\rho] = \left\{ \begin{array}{c} 1 & \text{if } \rho > 0 \\ -1 & \text{if } \rho < 0 \\ 0 & \text{if } \rho = 0 \end{array} \right., \quad \overline{\operatorname{sign}}[\rho] = \left\{ \begin{array}{c} 1 & \text{if } \rho > 0 \\ -1 & \text{if } \rho < 0 \\ [-1, 1] & \text{if } \rho = 0 \end{array} \right.$$

Equivalent Control (Utkin Solution)

Definition

An absolutely continuous function $x:\mathcal{I}\to\mathbb{R}^n$ defined on some interval or segment \mathcal{I} is called a solution of (DisContSys) if there exists a measurable function $u_{eq}:\mathcal{I}\to\mathbb{R}^m$ such that $u_{eq}(t)\in U(t,x(t))$ and $\dot{x}(t)=f(t,x(t),u_{eq}(t))$ almost everywhere on \mathcal{I} .

Equivalent Control (Utkin Solution)

Definition

An absolutely continuous function $x: \mathcal{I} \to \mathbb{R}^n$ defined on some interval or segment \mathcal{I} is called a solution of (DisContSys) if there exists a measurable function $u_{eq}: \mathcal{I} \to \mathbb{R}^m$ such that $u_{eq}(t) \in U(t, x(t))$ and $\dot{x}(t) = f(t, x(t), u_{eq}(t))$ almost everywhere on \mathcal{I} .

(a) Filippov definition. (b) Utkin definition.

Equivalent control (Utkin 1967): s(x) = 0 and $\frac{\partial s(x)}{\partial x} f(t, x, u_{eq}) = 0$

Example (Equivalent Control)

$$\dot{x}_1 = u$$

$$\dot{x}_2 = (2u^2 - 1)x_2$$

$$u(t) = -\operatorname{sign}[x_1(t)]$$

Example (Equivalent Control)

$$\dot{x}_1 = u$$

$$\dot{x}_2 = (2u^2 - 1)x_2$$

 $u(t) = -\operatorname{sign}[x_1(t)]$

Filippov definition

$$\left[\begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array}\right] \in \left[\begin{array}{c} -\overline{sign}[x_1(t)] \\ x_2(t) \end{array}\right]$$

Example (Equivalent Control)

$$\dot{x}_1 = u$$

$$\dot{x}_2 = (2u^2 - 1)x_2$$

$$u(t) = -\operatorname{sign}[x_1(t)]$$

Filippov definition

$$\left[\begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array}\right] \in \left[\begin{array}{c} -\overline{sign}[x_1(t)] \\ x_2(t) \end{array}\right]$$

Unstable

Example (Equivalent Control)

$$\dot{x}_1 = u$$

$$\dot{x}_2 = (2u^2 - 1)x_2$$

Filippov definition

$$\left[\begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array}\right] \in \left[\begin{array}{c} -\overline{sign}[x_1(t)] \\ x_2(t) \end{array}\right]$$

$$u(t) = -\operatorname{sign}[x_1(t)]$$

Utkin definition

$$\left[\begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array}\right] \in \left[\begin{array}{c} -\overline{sign}[x_1(t)] \\ -x_2(t) \end{array}\right]$$

Unstable

Example (Equivalent Control)

$$\dot{x}_1 = u$$

$$\dot{x}_2 = (2u^2 - 1)x_2$$

$$u(t) = -\operatorname{sign}[x_1(t)]$$

Filippov definition

$$\left[egin{array}{c} \dot{x}_1(t) \ \dot{x}_2(t) \end{array}
ight] \in \left[egin{array}{c} -\overline{sign}[x_1(t)] \ x_2(t) \end{array}
ight]$$

Utkin definition

$$\left[\begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array}\right] \in \left[\begin{array}{c} -\overline{sign}[x_1(t)] \\ -x_2(t) \end{array}\right]$$

Unstable

Stable

Outline

- Preliminaries
 - Absolute Continuity
 - Upper semi-continuity
- 2 Equations with Discontinuous RHS
 - Historical Remarks
- 3 Regularization Procedure for ODE with Discontinuous RHS
 - Filippov Solutions
 - Utkin Solutions
 - Aizerman-Pyatniskii Solutions
- Disturbed Systems and Extended Differential Inclusions
 - Disturbances and Differential Inclusions
- 5 Existence of Solutions
 - Existence Conditions

Aizerman-Pyatniskii Regularization (Filippov 1988)

$$\dot{x} \in co(f(t, x, U(t, x)), t \in \mathbb{R}$$

Definition

An absolutely continuous function $x: \mathcal{I} \to \mathbb{R}^n$ defined on some interval or segment \mathcal{I} is called a solution of (DiscRHS) if it satisfies the differential inclusion (Difflnc) almost everywhere on \mathcal{I} .

Aizerman-Pyatniskii Regularization (Filippov 1988)

$$\dot{x} \in co(f(t, x, U(t, x)), t \in \mathbb{R}$$

Definition

An absolutely continuous function $x: \mathcal{I} \to \mathbb{R}^n$ defined on some interval or segment \mathcal{I} is called a solution of (DiscRHS) if it satisfies the differential inclusion (Difflnc) almost everywhere on \mathcal{I} .

Example (Utkin 1970s)

$$\dot{x}_1 = 0.3x_2(t) + x_1(t)u(t), \qquad u(t) = -\operatorname{sign}[x_1(t)s(t)],
\dot{x}_2 = -0.7x_1(t) + 4x_1^3(t)u(t), \qquad s(t) = x_1(t) + x_2(t),$$

Example (Utkin 1970s)

$$\begin{split} \dot{x}_1 &= 0.3x_2(t) + x_1(t)u(t), & u(t) &= -\operatorname{sign}[x_1(t)s(t)], \\ \dot{x}_2 &= -0.7x_1(t) + 4x_1^3(t)u(t), & s(t) &= x_1(t) + x_2(t), \end{split}$$

Actuators

1st order actuator

$$\mu \dot{z}_1 = -2z_1 - u(s),$$

2nd order actuator

$$\mu \dot{z}_1 = z_2,$$

 $\mu \dot{z}_2 = -2z_1 - 3z_2 - u(s),$

$$\dot{s} = z_1, \quad \dot{x} = z_1^4 - z_1^2 + \beta x, \quad u(s) = \text{sign}[s],$$

Actuators

1st order actuator

$$\mu \dot{z}_1 = -2z_1 - u(s),$$

2nd order actuator

$$\mu \dot{z}_1 = z_2,$$

 $\mu \dot{z}_2 = -2z_1 - 3z_2 - u(s),$

$$\dot{s} = z_1, \quad \dot{x} = z_1^4 - z_1^2 + \beta x, \quad u(s) = \text{sign}[s],$$

Actuators

1st order actuator

$$\mu \dot{z}_1 = -2z_1 - u(s),$$

2nd order actuator

$$\mu \dot{z}_1 = z_2,$$

 $\mu \dot{z}_2 = -2z_1 - 3z_2 - u(s),$

$$\dot{s} = z_1, \quad \dot{x} = z_1^4 - z_1^2 + \beta x, \quad u(s) = \text{sign}[s],$$

Actuators

1st order actuator

$$\mu \dot{z}_1 = -2z_1 - u(s),$$

2nd order actuator

$$\mu \dot{z}_1 = z_2,$$

 $\mu \dot{z}_2 = -2z_1 - 3z_2 - u(s),$

$$\dot{s} = z_1, \quad \dot{x} = z_1^4 - z_1^2 + \beta x, \quad u(s) = \text{sign}[s],$$

Actuators

1st order actuator

$$\mu \dot{z}_1 = -2z_1 - u(s),$$

2nd order actuator

$$\mu \dot{z}_1 = z_2,$$

 $\mu \dot{z}_2 = -2z_1 - 3z_2 - u(s),$

$$\dot{s} = z_1, \quad \dot{x} = z_1^4 - z_1^2 + \beta x, \quad u(s) = \text{sign}[s],$$

Reduced Order System

$$\mu = 0 \Rightarrow z_1 = -u(s)/2, \quad \dot{s} = -u/2, \quad \dot{x} = (u^4 - u^2 + \beta)x,$$

Reduced Order System

$$\mu = 0 \Rightarrow z_1 = -u(s)/2, \quad \dot{s} = -u/2, \quad \dot{x} = (u^4 - u^2 + \beta)x,$$

Sliding Dynamics (Filippov=Utkin)

$$\dot{x} = \beta x$$

1 st order actuator $(z(t), s(t)) \rightarrow 0$ Sliding dynamics $\dot{x} = \beta x \Rightarrow \text{Unstable}$

2nd order actuator

$$\exists \left(z_0\left(\frac{t}{\mu}\right), s_0\left(\frac{t}{\mu}\right)\right) - \text{Periodic Solution}$$

$$\exists \bar{\beta}(\mu) : \forall \beta < \bar{\beta}(\mu) \exists \gamma :$$

$$-\gamma = \int_0^T \left[(2z_1(\tau))^4 - (2z_1(\tau))^2 \right] d\tau$$

$$\Rightarrow \dot{x} = -(\gamma - \beta)x$$

Could be stable

Equivalence of Definitions

Theorem (Utkin 1992, Zolezzi 2002)

Let a right-hand side of the system (DiscRHS) be affine with respect to control:

$$f(t,x,u(t,x))=a(t,x)+b(t,x)u(t,x),$$

where $a: \mathbb{R}^{n+1} \to \mathbb{R}^n$, $b: \mathbb{R}^{n+1} \to \mathbb{R}^{n \times m}$, $a, b \in \mathbb{C}$ and $u: \mathbb{R}^{n+1} \to \mathbb{R}^m$ is a piecewise continuous function $u(t,x) = (u_1(t,x), \ldots, u_m(t,x))^T$, such that u_i has a unique switching surface $s_i(x) = 0$, $s_i \in \mathbb{C}^1(\mathbb{R}^n)$.

Equivalence of Definitions

Theorem (Utkin 1992, Zolezzi 2002)

Let a right-hand side of the system (DiscRHS) be affine with respect to control:

$$f(t,x,u(t,x))=a(t,x)+b(t,x)u(t,x),$$

where $a: \mathbb{R}^{n+1} \to \mathbb{R}^n$, $b: \mathbb{R}^{n+1} \to \mathbb{R}^{n \times m}$, $a, b \in \mathbb{C}$ and $u: \mathbb{R}^{n+1} \to \mathbb{R}^m$ is a piecewise continuous function $u(t,x) = (u_1(t,x), \dots, u_m(t,x))^T$, such that u_i has a unique switching surface $s_i(x) = 0$, $s_i \in \mathbb{C}^1(\mathbb{R}^n)$.

Definitions of Filippov, Utkin and Aizerman-Pyatnitskii are equivalent iff

$$\det\left(\nabla^T s(x)b(t,x)\right) \neq 0 \quad \text{if } (t,x) \in \mathcal{S},$$

where $s(x) = (s_1(x), s_2(x), ..., s_m(x))^T$, $\nabla s(x) \in R^{n \times m}$ is the matrix of partial derivatives $\frac{\partial s_i}{\partial x_i}$ and S is a discontinuity set of u(t, x).

Example (Neimark 1961)

$$\dot{x} = Ax(t) + cu_1(t) + bu_2(t),$$
 $u_1(t)$
 $t > 0, \quad x(\cdot) = (x_1(\cdot), x_2(\cdot))^T \in \mathbb{R}^2,$ $u_2(t)$
 $A \in \mathbb{R}^{2 \times 2}, \quad b = (0, 1)^T,$

$$u_1(t) = -\operatorname{sign}[x_1(t)],$$

 $u_2(t) = -\operatorname{sign}[x_1(t)],$
 $c = (1, 0)^T,$

Example (Neimark 1961)

$$\dot{x} = Ax(t) + cu_1(t) + bu_2(t),$$

 $t > 0, \quad x(\cdot) = (x_1(\cdot), x_2(\cdot))^T \in \mathbb{R}^2,$
 $A \in \mathbb{R}^{2 \times 2}, \quad b = (0, 1)^T.$

$$u_1(t) = -\operatorname{sign}[x_1(t)],$$

 $u_2(t) = -\operatorname{sign}[x_1(t)],$
 $c = (1, 0)^T,$

Filippov definition

$$\dot{x} \in \{Ax\} \dotplus (b+c) \cdot \overline{\operatorname{sign}}[x_1]$$

Utkin definition

$$\dot{x} \in \{Ax\} \dotplus b \cdot \overline{\operatorname{sign}}[x_1] + c \cdot \overline{\operatorname{sign}}[x_1].$$

Outline

- Preliminaries
 - Absolute Continuity
 - Upper semi-continuity
- 2 Equations with Discontinuous RHS
 - Historical Remarks
- Regularization Procedure for ODE with Discontinuous RHS
 - Filippov Solutions
 - Utkin Solutions
 - Aizerman-Pyatniskii Solutions
- 4 Disturbed Systems and Extended Differential Inclusions
 - Disturbances and Differential Inclusions
- 5 Existence of Solutions
 - Existence Conditions

Disturbances and Differential Inclusions

Models of sliding mode control systems usually have the form

$$\dot{x}(t) = f(t, x(t), u(t, x(t)), \frac{d(t)}{d(t)}), \quad t \in \mathbb{R},$$

- $x(\cdot) \in \mathbb{R}^n$ is the vector of system states,
- $u(\cdot,\cdot)\in\mathbb{R}^m$ is the vector of control inputs,
- $d(\cdot) \in R^k$ is the vector of disturbances,
- the function $f: \mathbb{R}^{n+m+k+1} \to R^n$ is assumed to be continuous,
- the control function $u: \mathbb{R}^{n+1} \to \mathbb{R}^m$ is piecewise continuous,
- the vector-valued function $d: R \to \mathbb{R}^k$ is assumed to be locally measurable and bounded as follows:

$$d_i^{\min} \leq d_i(t) \leq d_i^{\max}$$

where $d(t) = (d_1(t), d_2(t), \dots, d_k(t))^T$, $t \in \mathbb{R}$.

Example (Disturbed sliding mode system)

Consider the simplest disturbed sliding mode system

$$\dot{x}(t) = -d_1(t) \operatorname{sign}[x(t)] + d_2(t),$$
 (Ex1)

where $x \in \mathbb{R}$, unknown functions $d_i : \mathbb{R} \to \mathbb{R}$ are bounded by

$$d_i^{\min} \leq d_i(t) \leq d_i^{\max}, \quad i = 1, 2.$$

Example (Disturbed sliding mode system)

Consider the simplest disturbed sliding mode system

$$\dot{x}(t) = -d_1(t) \operatorname{sign}[x(t)] + d_2(t),$$
 (Ex1)

where $x \in \mathbb{R}$, unknown functions $d_i : \mathbb{R} \to \mathbb{R}$ are bounded by

$$d_i^{\min} \leq d_i(t) \leq d_i^{\max}, \quad i = 1, 2.$$

Obviously, all solutions of the system (Ex1) belong to a solution set of the following extended differential inclusion

$$\dot{x}(t) \in -\left[d_1^{\min}, d_1^{\max}\right] \cdot \overline{\operatorname{sign}}[x(t)] + \left[d_2^{\min}, d_2^{\max}\right].$$
 (Ex2)

Stability of the system (Ex2) implies the same property for (Ex1). In particular, for $d_1^{\min} > \max\{|d_2^{\min}|, |d_2^{\max}|\}$ both these systems have asymptotically stable origin.

Extended Differential Inclusion

All further considerations deal with the extended differential inclusion

$$\dot{x}(t) \in F(t, x(t)), \quad t \in \mathbb{R},$$

where

$$F(t,x) = co\{f(t,x,U(t,x),D)\},\$$

the set-valued function U(t,x) is defined by (ValFunc) and

$$D = \left(egin{array}{c} \left[d_1^{ ext{min}}, d_1^{ ext{max}}
ight] \\ \left[d_2^{ ext{min}}, d_2^{ ext{max}}
ight] \\ dots \\ \left[d_k^{ ext{min}}, d_k^{ ext{max}}
ight] \end{array}
ight)$$

Outline

- Preliminaries
 - Absolute Continuity
 - Upper semi-continuity
- 2 Equations with Discontinuous RHS
 - Historical Remarks
- 3 Regularization Procedure for ODE with Discontinuous RHS
 - Filippov Solutions
 - Utkin Solutions
 - Aizerman-Pyatniskii Solutions
- Disturbed Systems and Extended Differential Inclusions
 - Disturbances and Differential Inclusions
- Existence of Solutions
 - Existence Conditions

Local existence conditions

Theorem (Filippov 1960)

Let

• $F: \mathbf{G} \to 2^{R^n}$ be upper semi-continuous at each point of the set

$$\mathbf{G} = \{(t, x) \in \mathbb{R}^{n+1} : |t - t_0| \le a \text{ and } ||x - x_0|| < b,$$

where $a, b \in \mathbb{R}_+$, $t_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^n$;

- F(t,x) be nonempty, compact and convex for $(t,x) \in G$;
- there exists K > 0 such that $\rho(0, F(t, x)) < K$ for $(t, x) \in \mathbf{G}$;

Local existence conditions

Theorem (Filippov 1960)

Let

• $F: \mathbf{G} \to 2^{R^n}$ be upper semi-continuous at each point of the set

$$\mathbf{G} = \{(t,x) \in \mathbb{R}^{n+1} : |t - t_0| \le a \text{ and } ||x - x_0|| < b,$$

where $a, b \in \mathbb{R}_+$, $t_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^n$;

- F(t,x) be nonempty, compact and convex for $(t,x) \in G$;
- there exists K > 0 such that $\rho(0, F(t, x)) < K$ for $(t, x) \in \mathbf{G}$;

then $\exists x : \mathbb{R} \to \mathbb{R}^n$ - absolutely continuous and defined at least on $[t_0 - \alpha, t_0 + \alpha]$, $\alpha = \min\{a, b/K\}$, such that $x(t_0) = x_0$ and the inclusion

$$\dot{x}(t) \in F(t, x(t))$$

holds almost everywhere on $[t_0 - \alpha, t_0 + \alpha]$.

On existence of Utkin Solutions

Lemma (Filippov 1959)

Let

- a function $f: \mathbb{R}^{n+m+1} \to \mathbb{R}^n$ be continuous;
- a set-valued function $U: \mathbb{R}^{n+1} \to 2^{R^m}$ be defined and upper-semicontinuous on an open set $\mathcal{I} \times \Omega$, where $\Omega \subseteq \mathbb{R}^n$;
- U(t,x) be nonempty, compact and convex for every $(t,x) \in \mathcal{I} \times \Omega$.
- a function $x : \mathbb{R} \to \mathbb{R}^n$ be absolutely continuous on \mathcal{I} , $x(t) \in \Omega$ for $t \in \mathcal{I}$,
- $\dot{x}(t) \in f(t, x(t), U(t, x(t)))$ almost everywhere on \mathcal{I} ;

On existence of Utkin Solutions

Lemma (Filippov 1959)

Let

- a function $f: \mathbb{R}^{n+m+1} \to \mathbb{R}^n$ be continuous;
- a set-valued function $U: \mathbb{R}^{n+1} \to 2^{R^m}$ be defined and upper-semicontinuous on an open set $\mathcal{I} \times \Omega$, where $\Omega \subseteq \mathbb{R}^n$;
- U(t,x) be nonempty, compact and convex for every $(t,x) \in \mathcal{I} \times \Omega$.
- a function $x : \mathbb{R} \to \mathbb{R}^n$ be absolutely continuous on \mathcal{I} , $x(t) \in \Omega$ for $t \in \mathcal{I}$,
- $\dot{x}(t) \in f(t, x(t), U(t, x(t)))$ almost everywhere on \mathcal{I} ;

Then there exists a measurable function $u_{eq}:R \to \mathbb{R}^m$ such that

$$u_{eq}(t) \in U(t, x(t))$$
 and $\dot{x}(t) = f(t, x(t), u_{eq}(t))$

almost everywhere on \mathcal{I} .

Non-local existence conditions

Theorem (Gelig et al. 1978)

Let a set-valued function $F : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ be defined and upper-semicontinuous in \mathbb{R}^{n+1} .

Let F(t,x) be nonempty, compact and convex for any $(t,x) \in \mathbb{R}^{n+1}$. If there exists a real valued function $L : \mathbb{R}_+ \cup \{0\} \to R_+ \cup \{0\}$ such that

$$ho(0,F(t,x)) \leq L(\|x\|)$$
 and $\int\limits_0^{+\infty} \frac{1}{L(r)} dr = +\infty,$

then for any $(t_0, x_0) \in \mathbb{R}^{n+1}$ the system (DiffInc) has a solution $x(t) : x(t_0) = x_0$ defined for all $t \in R$.

Summary

- Stability property of ODE with discontinuous RHS depends on definition of a solution.
- Stability of Aizerman-Pyatnitskii solutions always implies stability of Filippov and Utkin solutions.
- All introduced definitions may be equivalent in the case of affine control systems with discontinuous input.
- Analysis of the disturbed systems can be reduced to differential inclusions.