Probabilités

M3 - Chapitre 1

I. Dénombrement

$$E = (e_1, \dots e_n) \qquad x_i \in E$$

Ensemble	p-liste	Arrangement	Combinaison
	(x_1, \dots, x_p) x_i quelconques	(x_1,\ldots,x_p) x_i indep. 2 à 2	$\{x_1, \dots, x_n\}$
Cardinal	n^p	$A_n^p = \frac{n!}{(n-p)!}$	$\binom{n}{p} = \frac{n!}{p! (n-p)!}$

II. Probabilité sur un ensemble fini

1. Définition

Ω ensemble fini P proba sur Ω P: Ω → [0, 1] verifie:

- $P(\Omega) = 1$
- $\forall A, B \in \mathcal{P}(\Omega)^2$ $A \cap B = \emptyset$ $P(A \cup B) = P(A) + P(B)$

2. Propriétés

- $P(\emptyset) = 0$
- $P(A^c) = 1 P(A)$
- $P(A B) = P(A) P(A \cap B)$
- Si $A \subset B$ alors $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

3. Probabilité uniforme sur Ω

$$\Omega = \{\omega_1, \dots, \omega_n\}$$
 $A \subset \Omega$ P uniforme $\Rightarrow P(\{\omega_i\}) = \frac{1}{n}$ et $P(A) = \frac{\operatorname{card} A}{\operatorname{card} \Omega}$

4. Formule de Poincaré

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k-1} \left(\sum_{\substack{i_{1} \dots i_{k} \\ 1 \le i_{1} < \dots < i_{k} \le n}} P\left(\bigcap_{j=i_{1}}^{i_{k}} A_{j}\right)\right)$$

III. Probabilité sur un ensemble infini dénombrable

1. Définition

 Ω ensemble infini dénombrable P proba sur Ω $P: \Omega \rightarrow [0,1]$ verifie :

- $P(\Omega) = 1$
- $\forall (A_n)$ suite d'événements 2 à 2 incompatibles : $P\left(\bigcup_{n=0}^{\infty} A_n\right) = \sum_{n=0}^{\infty} P(A_n)$

2. Propriétés de monotonie

$$(A_n) \nearrow \Rightarrow P\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to +\infty} P(A_n) \qquad (A_n) \searrow \Rightarrow P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to +\infty} P(A_n)$$

Probabilités

M3 – Chapitre 1

IV. Probabilités conditionnelles

1. Définition

$$(\Omega, P)$$
 espace probabilisé

$$A\subset \Omega$$

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

2. Formule de probabilités composées

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = \prod_{i=1}^{n} P_{\bigcap_{j=1}^{i-1} A_{j}}(A_{i})$$

$$=P(A_1)\times P_{A_1}(A_2)\times P_{A_1\cap A_2}(A_3)\times \ldots \times P_{A_1\cap\ldots\cap A_{n-1}}(A_n)$$

3. Formule des probabilités totales

Soit $(A_i)_{1 \le i \le n}$ système complet d'événements $B \subset \Omega$

$$P(B) = \sum_{i=1}^{n} P(A_i) P_{A_i}(B)$$

4. Formule de Bayes

Soit $(A_i)_{1 \le i \le n}$ système complet d'événements $B \subset \Omega$

$$P_B(A_i) = \frac{P(A_i) P_{A_i}(B)}{\sum_{j=1}^{n} P(A_j) P_{A_j}(B)}$$

V. Independence

 $A ext{ et } B ext{ independantes} \Leftrightarrow P(A \cap B) = P(A) P(B)$