Deep Factorization Machines for Knowledge Tracing

Jill-Jênn Vie

RIKEN Center for Advanced Intelligence Project (AIP) Tokyo, Japan vie@jill-jenn.net

Problem: Knowledge Tracing for Language Learning

We want to predict the correctness of students over words.

Each student can attempt to write a certain word multiple times, and learns in-between.

Fit: Ordered triplets $(i, j, o) \in I \times J \times \{0, 1\}$

 \Rightarrow Student *i* attempted word *j* and wrote it correctly/incorrectly.

Predict: (i, j, ?) for new triplets.

Existing families of models

- Prediction of sequences: Bayesian Knowledge Tracing (BKT := HMM) Deep Knowledge Tracing (DKT := LSTM) [3]
- Factor Analysis: Item Response Theory (IRT), Performance Factor Analysis (PFA)

$$\mathsf{BKT} < \mathsf{PFA} \simeq^{[6]} \mathsf{DKT} <^{[5]} \mathsf{IRT} <^{[\mathsf{this\ poster}]} \mathsf{FM}$$

Logistic Regression (LR)

All students $i \in I$, questions $j \in J$ and metadata are encoded into sparse features xEach feature k has a bias w_k

logit $p(x) = \text{logit Pr(event } x \text{ has positive outcome)} = \mu + w' x$

 \Rightarrow really simple, ignores pairwise interactions (d=0)

Particular cases for user i against token j:

Performance Factor Analysis (PFA):

Item response theory (IRT):

 $logit p_{ij} = \theta_i - d_i$ $logit p_{ij} = \sum_{k \in KC(i)} \beta_k + \gamma_k W_{ik} + \delta_k F_{ik}$

All students $i \in I$ and questions $j \in J$ and past performance are encoded into xAll entities have a bias w_k and features $v_k \in \mathbb{R}^d$ to model pairwise interactions

$$\psi(p(x)) = \mu + \sum_{k=1}^{N} w_k x_k + \sum_{1 \le k < l \le N} x_k x_l \langle \mathbf{v}_k, \mathbf{v}_l \rangle$$
logistic regression

⇒ converting sparse features to dense embeddings

Particular case:

Multidimensional Item Response Theory (MIRT):

logit $p_{ij} = \langle \boldsymbol{\theta_i}, \boldsymbol{d_i} \rangle + \delta_i$

Our proposal

Deep Factorization Machines (DeepFM)

All students $i \in I$ and questions $j \in J$ and past performance are encoded into x**FM:** All entities have a bias $\mathbf{w_k}$ and features $\mathbf{v_k} \in \mathbf{R}^d$ to model pairwise interactions **Deep:** Train layers $W^{(\ell)}$ and $b^{(\ell)}$ for each $\ell = 1, \ldots, L$ [2]

$$\log \operatorname{it} p(x) = y_{FM}(x) + y_{DNN}(x)$$

$$y_{DNN}(x) = \operatorname{ReLU}(W^{(L)}a^{(L)}(x) + b^{(L)})$$

$$y_{FM}(x) = \mu + \sum_{k=1}^{N} w_k x_k + \sum_{1 \le k < l \le N} x_k x_l \langle \mathbf{v_k}, \mathbf{v_l} \rangle \qquad a^{(\ell+1)}(x) = \operatorname{ReLU}(W^{(\ell)}a^{(\ell)}(x) + b^{(\ell)})$$

$$a^{0}(x) = (\mathbf{v_{user}}, \mathbf{v_{token}}, \dots, \mathbf{v_{countries}})$$

Bayesian Factorization Machines (Bayesian FM)

$$\text{probit } p(x) = \mu + \sum_{k=1}^{N} w_k x_k + \sum_{1 \leq k < l \leq N} x_k x_l \langle \mathbf{v_k}, \mathbf{v_l} \rangle$$
 Hyperpriors: w_k , $v_{kf} \sim \mathcal{N}(\mu_f, 1/\lambda_f)$, $\mu_f \sim \mathcal{N}(0, 1)$, $\lambda_f \sim \Gamma(1, 1)$,

Trained using **Gibbs sampling** [1, 4]

Encoding of entities

Unsupervised problem becomes a supervised problem:

Triplo+	Users		Items			Skills			Wins			Fails			Outcomo
Triplet	1	2	Q_1	Q_2	Q_3	$\overline{S_1}$	S_2	S ₃	$\overline{S_1}$	S_2	S ₃	$\overline{S_1}$	S_2	S ₃	Outcome
(2, 2, 1)	0	1	0	1	0	1	1	0	0	0	0	0	0	0	1
(2, 2, 0)	0	1	0	1	0	1	1	0	1	1	0	0	0	0	0
(2, 2, 1)	0	1	0	1	0	1	1	0	1	1	0	1	1	0	1
(2, 3, 0)	0	1	0	0	1	0	1	1	0	2	0	0	1	0	0
(2, 3, 1)	0	1	0	0	1	0	1	1	0	2	0	0	2	1	1
(1, 2, 1)	1	0	0	1	0	1	1	0	0	0	0	0	0	0	1
(1, 1, 0)	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0

IRT: user + token

first: <discrete features>

last: <discrete features> + time + days pfa: <discrete features> + wins + fails

Results in AUC on large-scale Duolingo dataset

data	model	d	epoch	train	first	last	pfa																
fr	Bayesian FM	1 20	500/500		0.822		<u> </u>	data	model	d	epoch	train	first	last	pfa								
	Bayesian FM		,				_	es	Bayesian FM	20	500/500	_	0.803	_	_	data	model	d	epoch	train	first	last	pfa
fr	DeepFM	20	15/1000	0.872	0.814	. <u>–</u>	_		Bayesian FM		' .		_	_	0.796	en	Bayesian FM	20	500/500	_	0.828	_	_
fr	Bayesian FM	1 20	100/100	_	_	0.813	_	es	DeepFM	20	11/1000	0.845	0.792	_	_	en	FM	20	17/1000	0.857	0.818	_	_
fr	DeepFM	20	21/1000	0.878	0.812	_	_	es	DeepFM	20	15/1000	0.851	0.79	_	_	en	DeepFM	20	20/1000	0.858	0.817	_	_
fr	FM	20	20/1000	0.874	0.811	_	_	es	FM	20	17/1000	0.85	0.788	_	_	en	Bayesian FM	20	500/500	_	_	_	0.817
fr	FM	20	20/1000	0.875	0.811	_	_	es	FM	20	15/1000	0.853	_	_	0.787	en	FM	20	20/1000	0.858	0.816	_	_
fr	Bayesian FM	1 20	500/500	_	_	_	0.806	es	FM	20	33/1000	0.857	0.782	_	_	en	FM	20	15/1000	0.858	_	_	0.81
fr	FM	20	21/1000	0.884	_	_	0.805	es	LR	0	50/50	_	_	_	0.765	en	LR	0	50/50	_	_	_	0.792
fr	FM	20	37/1000	0.885	_	8.0	_	es	Deep	20	94/1000	0.794	0.762	_	_	en	Deep	20	164/1000	0.81	0.792	_	_
fr	DeepFM	20	77/1000	0.89	_	0.792	_	es	LR	0	50/50	_	0.759	_	_	en	FM	20	45/1000	0.836	_	0.788	_
fr	Deep	20	7/1000	0.826	0.791	_	_	es	Deep	20	117/1000	0.792	0.759	_	_	en	LR	0	50/50	_	0.787	_	_
fr	Deep	20	321/1000	0.826	_	0.79	_	es	Deep	20	17/1000	0.787		0.756	_	en	Deep	20	32/1000	8.0	_	0.786	_
fr	Deep	20	5/5	0.827	_	0.789	_	es	FM	20	151/1000	0.834		0.748	_	en	DeepFM	20	97/1000	0.834	_	0.784	_
fr	LR	0	50/50	_	_	_	0.789	es	Bayesian FM	20	500/500	_	_	0.743	_	en	Bayesian FM	20	500/500	_	_	0.761	_
fr	Deep	20	127/1000	0.826	0.789	_	_	es	DeepFM	20	323/1000	0.832	_	0.742	_	en	LR	0	50/50	_	_	0.736	_
fr	LR	0	50/50	_	0.783	-	_	es	LR	0	50/50	_	_	0.718	_								
fr	LR	0	50/50	_	_	0.783	_																

Take home message

Pairwise interactions are useful

Proceedings on humanlearn.io

- Deep does not help much
- Time and days harm

Optimizing Human Learning

We are organizing a workshop in Montréal on **June 12**:

References

- [1] Christoph Freudenthaler, Lars Schmidt-Thieme, and Steffen Rendle. "Bayesian factorization machines". Presented at the Workshop on Sparse Representation and Low-rank Approximation, Neural Information Processing Systems (NIPS-WS). 2011.
- [2] Huifeng Guo et al. "DeepFM: a factorization-machine based neural network for CTR prediction". In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. AAAI Press. 2017, pp. 1725–1731.
- [3] Chris Piech et al. "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS). 2015, pp. 505–513.
- [4] Steffen Rendle. "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3 (2012), 57:1–57:22. DOI: 10.1145/2168752.2168771.
- [5] Kevin H. Wilson et al. "Back to the basics: Bayesian extensions of IRT outperform neural networks for proficiency estimation". In: Proceedings of the 9th International Conference on Educational Data Mining (EDM). 2016, pp. 539–544.
- [6] Xiaolu Xiong et al. "Going Deeper with Deep Knowledge Tracing". In: Proceedings of the 9th International Conference on Educational Data Mining (EDM). 2016, pp. 545–550.