Machine Learning Exercise 4

Florian Schneider, Phil Szalay, Amin Kasipour 03.12.12

1 Experiments on SVMs using libSVM¹

1.1 Features

After some feature engineering I had the best scores with the following features.

- Mean of the image of all RGB channels
- Mean of the image of R channel
- Mean of the image of B channel
- Min of the image of all RGB channels
- Max of the image of all RGB channels
- Number of purple pixels in the RGB image. See 1.1.1

1.1.1 Number of purple pixels feature

This feature was computed by calculating the 'maximum' purple color $p_{max} = (157\ 80\ 139)$ and the 'minimum' purple color $p_{min} = (116\ 20\ 130)$. The number of purple pixel is the number of pixels which lay in between p_{max} and p_{min} .

1.2 libSVM Experiments

In our experiments we used the tools provided by the libSVM package for python and Ubuntu.

The first step is to split the data in a train and test set (0.8+0.2) and create a specially formed data files, what we accomplished with an own python script.

The second step is to scale the features so that they're all between 0...1 with the svm-scale tool.

¹https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Then we ran the parameter grid search for all kernels (c.f. Eq. 1, Eq. 2, Eq. 3, Eq. 4) on the training dataset for the parameters C and using the svm-grid tool as third step. The results are depicted in Table 1.2 and Figures 1.21.21.21.2

$$K_{linear}(\vec{x}, \vec{y}) = \vec{x} \cdot \vec{y} \tag{1}$$

$$K_{poly}(\vec{x}, \vec{y}) = (\gamma * \vec{x} \cdot \vec{y} + \text{coef})^d$$
 (2)

$$K_{rbf}(\vec{x}, \vec{y}) = \exp(-\gamma * ||\vec{x} - \vec{y}||^2)$$
 (3)

$$K_{sigm}(\vec{x}, \vec{y}) = tanh(\gamma * \vec{x} \cdot \vec{y} + coef)$$
 (4)

KERNEL	C	$\mid \gamma \mid$	d	coef	CV
linear (Eq. 1)	0.125	0.0078125	not present	not present	97.9167
polynomial (Eq. 2)	0.125	0.5	3	0	95.8333
RBF (Eq. 3)	2.0	0.5	not present	not present	100.0
sigmoid (Eq. 4)	32.0	0.0078125	not present	0	97.9167

Table 1: Results for the best parameters C and γ found by grid search using sym-grid on the training dataset with the polynomial degree d and/or the coefficient parameter coef. The resulting cross-validation rate (CV) is also shown.

After finding the best parameters we trained a model using *svm-train* for each kernel using the parameters from Table 1.2.

Those models were then used in $\mathit{svm-predict}$ to classify the vectors in the test dataset . The results are shown in Table 2

Kernel	Accuracy
linear	$\frac{12}{12} = 1.0$
polynomial	$\frac{9}{12} = 0.75$
RBF	$\frac{12}{12} = 1.0$
$_{ m sigmoid}$	$\frac{12}{12} = 1.0$

Table 2: Prediction results of the test set using sym-predict with models trained with parameters from Table

Figure 1: Visualization of grid search using a linear kernel.

Figure 2: Visualization of grid search using a polynomial kernel with $\mathbf{d}=3$ and $\mathrm{coef}=0$

Figure 3: Visualization of grid search using a RBF kernel.

Figure 4: Visualization of grid search using a sigmoid kernel with coef = 0