Lista de Exercícios 4

Universidade Tecnológica Federal do Paraná - Campus Pato Branco Programa de Pós-Graduação em Engenharia Elétrica Controle Ótimo e Multivariável Professor Dr. Rafael Cardoso

Cálculo Variacional Aplicado a Controle Ótimo

Ex. 1 — Determine as condições de contorno envolvidas na resolução das equações oriundas da condição necessária para o controle ótimo para os seguintes casos:

- 1) Problemas com tempo final definido;
- 2) Problemas com tempo final livre.

.

Ex. 2 — Mostre que, para o problema do regulador linear quadrático com $\mathbf{x}(t_f)$ livre, a matriz K(t) satisfaz a equação de Riccati

$$\dot{K}(t) = -K(t)A(t) - A^{T}(t)K(t) - Q(t) + K(t)B(t)R^{-1}(t)B^{T}(t)K(t)$$

com condições de contorno $K(t_f) = H$. Também mostre que a matriz K(t) é simétrica. Dica: derive $\mathbf{p}^*(t) = K(t)\mathbf{x}^*(t)$.

Ex. 3 — O sistema

$$\dot{x}_1 = x_2(t)
\dot{x}_2 = 2x_1(t) - x_2(t) + u(t)$$

deve ser controlado para minimizar o índice de desempenho

$$J(u) = [x_1(T) - 1]^2 + \int_0^T \{[x_1(t) - 1]^2 + 0,0025u^2(t)\} dt$$

onde o tempo final T=15~s e $\mathbf{x}(T)$ é livre. Os estados admissíveis e o controle não são limitados. Elabore um programa para resolver o problema de LTP.

Ex. 4 — O sistema

$$\dot{x}_1 = x_2(t)$$

 $\dot{x}_2 = 2x_1(t) - x_2(t) + u(t)$

deve ser controlado para minimizar o índice de desempenho

$$J(u) = \int_0^T \left\{ \left[x_1(t) - 0, 2t \right]^2 + 0,0025u^2(t) \right\} dt$$

onde o tempo final T=15~s e $\mathbf{x}(T)$ é livre. Os estados admissíveis e o controle não são limitados. Elabore um programa para resolver o problema de LTP.