Class Hierarchies

- As in C++, or other PLs, attributes are inherited.
- If we declare A ISA B, every A entity is also considered to be a B entity.

- Overlap constraints:
 - Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)
- Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)
- Reasons for using ISA:
 - To add descriptive attributes specific to a subclass.
 - To identify entities that participate in a relationship.

Where were we?

- Conceptual design follows requirements analysis,
 - · Yields a high-level description of data to be stored
- ER model popular for conceptual design
 - Constructs are expressive, close to the way people think about their applications.
- Basic constructs: entities, relationships, and attributes (of entities and relationships).
- Some additional constructs: weak entities, ISA hierarchies, and aggregation.
- Several kinds of integrity constraints can be expressed in the ER model (Key, Participation, Overlap, Covering)

Aggregation

- Used when we have to model a relationship involving (entity sets and) a relationship set.
- <u>Aggregation</u> allows us to treat a relationship set as an entity set for purposes of participation in (other) relationships.

A relationship is identified by its participating Entities

What if an Employee can work in a given Department for more than one period?

Better Design?!

Binary vs. Ternary Relationships

 If each policy is owned by just 1 employee, and each dependent is tied to the covering policy, first diagram is inaccurate.

