

Politecnico di Milano Fisica Sperimentale I

a.a. 2014-2015 - Scuola di Ingegneria Industriale e Informatica

II Prova in Itinere - 29/06/2015

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

1. Si consideri il carrello mostrato in figura, ottenuto congiungendo due cilindri omogenei di massa m_1 e m_2 e raggio R mediante una sbarra omogenea rigida di lunghezza L e massa m_A . I cilindri sono liberi di ruotare attorno al proprio asse. Il carrello è disposto su di un piano inclinato scabro con coefficiente di attrito statico μ_s e durante la discesa i due cilindri rotolano senza strisciare. Si determinino $[I=1/2 \ mr^2]$:

- a. la reazione vincolare che il piano esercita su ognuno dei due cilindri:
- b. l'accelerazione del centro di massa a_{cm};
- c. il minimo valore del coefficiente μ_s che permette ad entrambi i cilindri di rotolare senza strisciare.

 $[N_1=(m_1+1/2m_A)g \cos \alpha; N_2=(m_2+1/2m_A)g \cos \alpha; a_{cm}=(m_1+m_2+m_A)g \sin \alpha/(3/2 m_1 +3/2 m_2 + m_A); Fatt_{1,2}<\mu_s N_{1,2}]$

- 2. Una boa cilindrica di massa M = 50 Kg, altezza h=0.5 m e volume $V=0.5 \text{ m}^3$, galleggia in acqua mantenendosi in posizione verticale. Si determini:
 - a. la lunghezza del tratto di boa immersa nell'acqua.

Si supponga ora di sollevare la boa di 1 cm dalla posizione di equilibrio trovata al punto precedente e poi di lasciarla libera di muoversi. Si determinino:

- b. l'equazione che descrive il moto;
- c. la legge oraria del moto;
- d. Il punto nel quale la velocità della boa è massima e il valore di tale velocità.

[h_{imm} =5 cm; ω =14 rad/s; v_{max} =0.14 m/s]

- 3. n = 3 mol di gas perfetto biatomico subiscono un riscaldamento isocoro da uno stato iniziale (p_A, V_A) di equilibrio fino alla temperatura T_B = 680 K. In seguito a tale trasformazione l'entropia del gas aumenta di ΔS = 5 J/K. Successivamente il gas torna alla pressione p_A iniziale tramite espansione isoterma reversibile. Si calcoli, rappresentando le trasformazioni nel piano (p, V):
 - a. la temperatura iniziale T_A del gas ed il calore Q scambiato durante la trasformazione isocora;
 - b. il volume V_C a cui giunge il gas dopo l'espansione isoterma in funzione di V_A ;
 - c. il lavoro svolto dal gas.

Si supponga ora che, partendo dallo stato termodinamico (p_B , V_B) il gas compia una espansione adiabatica reversibile, che lo porti alla pressione iniziale p_A . In questo caso si calcoli:

d. il volume $V_{\rm C}$ a cui giunge il gas.

 $[T_A=627 \text{ K}; Q=3303 \text{ J}; V_C=1.08 \text{ V}_A \text{ W}=3257 \text{ J}]$

- **4.** In un contenitore adiabatico a pareti rigide sono poste $n_1 = 2$ mol di O_2 e $n_2 = 4$ mol di He, nello stato iniziale p_0, V_0, T_0 . Il gas subisce una espansione per mezzo di un pistone che lo porta ad una pressione finale $p_1 = p_0/5$. Determinare volume finale V_1 , temperatura finale T_1 , variazione di energia interna ΔU del gas e la corrispondente variazione di entropia ΔS in funzione di T_0
 - a. nel caso in cui l'espansione sia libera;
 - b. nel caso in cui l'espansione avvenga contro una pressione esterna costante $p_{\text{ext}} = p_0/5$. In tale caso si esprima ΔU in funzione della temperatura iniziale T_0 .

[Espansione libera V_{fin} =5V0; ΔS = 80.24 J/K; Espansione adiabatica irreversibile T_{fin} =0.71 T_0 ; ΔU = -26.5 T_0 J =-W; ΔS =31.86 J/K]