Aula 05: Notação Assintótica e Crescimento de Funções

Lista de Exercícios

- 1)
 a) verdadeiro, pois: f(n) = g(n), logo a afirmação: 0 ≤ f(n) ≤ c.g(n) é verdadeira
 - b) falso, pois n² > n, logo a afirmação: 0 ≤ f(n) ≤ c.g(n) é falsa
 - c) verdadeiro, pois: $n^{55} < 2^n$, logo a afirmação: $0 \le f(n) \le c.g(n)$ é verdadeira
- 2) Sim, pois para a análise assintótica, devemos apenas considerar a notação de maior valor de "n", logo: $f(n) = n^2 \& g(n) = n^2$. Assim podemos notar que a afirmação: $0 \le f(n) \le c.g(n)$ é verdadeira.
- 3) Não, pois, da mesma forma que no exercício anterior, podemos utilizar: $f(n) = n \& g(n) = n^2$. Logo a afirmação: $0 \le f(n) \le c.g(n)$ é falsa.
- 4)
 a) Falso, pois n² ≤ n não é verdadeiro, Logo a afirmação: 0 ≤ f(n) ≤ c.g(n) é falsa.
 - b) Verdadeiro, pois $n^2 \le n$ é verdadeiro, Logo a afirmação: $0 \le f(n) \le c.g(n)$ é verdadeira.
- 5) Não, pois $n^3 \le n^2$ não é verdadeiro, Logo a afirmação: $0 \le f(n) \le c.g(n)$ é falsa.
- 6)a) Falso, pois log_2 n ≤ log_3 n é falso, Logo a afirmação: 0 ≤ f(n) ≤ c.g(n) é falsa.
 - b) Verdadeiro, pois $\log_3 n \le \log_2 n$ é verdadeiro, Logo a afirmação: $0 \le f(n) \le c.g(n)$ é verdadeira.
- 7)
 a) Falso, pois 2ⁿ > 3ⁿ é falso, logo a afirmação 0 ≤ c.g(n) ≤ f(n) é falsa.
 - b) Verdadeiro, pois $n^2 = n^2$, logo a afirmação $0 \le c_1 . g(n) \le f(n) \le c_2 . g(n)$ é verdadeira.

- c) Verdadeiro, pois $n^2 = n^2$, logo a afirmação $0 \le c_1 .g(n) \le f(n) \le c_2 .g(n)$ é verdadeira.
- d) Verdadeiro, pois $n^2=n^2$, logo a afirmação $0 \le c_1.g(n) \le f(n) \le c_2.g(n)$ é verdadeira.
- e) Falso, pois $\lg n < \lg n$, $\lg n < \lfloor n \rfloor$, $\lg n < \lfloor n$

8)

	Α	В	0	0	Ω	ω	Θ
a.	lg^k n	n^ε	não	não	sim	sim	não
b.	n^k	Cn	não	não	sim	sim	não
c.	sqrt(n)	n^(sen n)	não	não	sim	sim	não
d.	2 ⁿ	2^(n/2)	sim	sim	não	não	não
e.	n^(lg n)	c^(lg n)	sim	sim	não	não	não
f.	lg(n!)	lg(n ⁿ)	não	não	sim	sim	não

9)

a)
$$f(n) = n^2 \& g(n) = n^3$$

- b) Não existe
- c) Não existe

d)
$$f(n) = n^2 \& g(n) = n$$

e)
$$f(n) = n \& g(n) = \lg n$$