Ćwiczenie 3 & 4 & 5

Wstęp

Celem zestawu ćwiczeń jest praktyczna analiza danych pochodzących z kampanii marketingowej oraz wykorzystanie metod statystycznych i modeli predykcyjnych, by odpowiedzieć na pytanie: czy klient zdecyduje się na subskrypcję? Wnioski płynące z tej analizy mogą mieć realne zastosowanie w optymalizacji działań marketingowych, zwiększaniu skuteczności kampanii sprzedażowych oraz lepszym dopasowaniu ofert do oczekiwań klientów.

Wykonanie

Na początku procesu zaznajamiania się danymi sprawdzono, jakie cechy każdego klienta znajdują się w badanym datasecie oraz czy występują brakujące wartości:

Z racji niewystępowania wartości NULL w danych, sprawdzono każdą cechę; jej rozkład, statystyki opisowe i wiele innych parametrów:

1. Zmienna age

2. Zmienna job

3. Zmienna marital

4. Zmienna education

5. Zmienna default

6. Zmienna balance

7. Zmienna housing

8. Zmienna loan

9. Zmienna contact

10. Zmienna day

11. Zmienna month

```
month
may 13766
jul 6895
aug 6247
jun 5341
nov 3970
apr 2932
feb 2649
jan 1403
oct 738
sep 579
mar 477
dec 214
Name: count, dtype: int64
```


12. Zmienna duration

13. Zmienna campaign

14. Zmienna pdays

15. Zmienna previous

16. Zmienna outcome

17. Zmienna y (zmienna zależna)

Percentage of clients who subscribed: 11.70%

Podczas procesu zaznajamiania się z danymi stwierdzono występowanie wielu wartości odstających (outlier-ów). Ich występowanie mogłoby negatywnie wpłynąć na modelowanie, stąd podjęto decyzję o pozbyciu się ich ze zbioru danych. W tym celu wykorzystano poniższe wzory do wyznaczenia dolnej i górnej granicy każdej zmiennej niezależnej:

Dolna granica = Kwantyl(0.25) - 1.5*IQR

Górna granica = Kwantyl(0.75) + 1.5*IQR

Przed wykonaniem usunięcia outlierów zbiór danych liczył 45.211 rekordów. Po tym procesie ich liczbę zredukowano do 28.069 rekordów.

W następnym korku wykonano one-hot encoding, czyli proces konwersji danych kategorycznych na dane numeryczne. Procesowi temu uległa również zmienna zależna y. Klienci którzy wykupili subskrypcję oznaczono jako 1 (zamiast yes), a tych którzy nie zdecydowali się na zakup oznaczono 0 (zamiast no).

W dalszym etapie przeanalizowano korelację między zmiennymi. Wykonano w tym celu macierz korelacji:

W tym miejscu zakończono proces przygotowywania danych do modelowania.

W kolejnych krokach skupiono się na nauce modelów uczenia maszynowego, mających na celu przewidzenie czy klient wykupi subskrypcję, czy nie. Wykorzystano wiele różnych rodzajów modeli, a następnie przyjrzano się statystykom je opisującym, w celu określenia, który z nich najlepiej nadaje się do badanego problemu

Pierwszym utworzonym i przebadanym modelem był model lasu losowego. Poniżej zaprezentowano wyniki (dokładność i macierz korelacji):

```
Accuracy: 0.95
Confusion matrix:
[[5273 24]
[ 267 50]]
```

Drugim wykorzystanym modelem do przewidywania subskrypcji była regresja logistyczna (z wykorzystaniem wszystkich dostępnych cech):

```
Accuracy: 0.925
Confusion matrix:
[[5946 120]
[ 373 113]]
Classification Report:
             precision
                          recall f1-score
                                             support
                  0.94
                            0.98
                                      0.96
                                                6066
                  0.48
                                                 486
   accuracy
                                      0.92
  macro avg
                  0.71
                            0.61
                                      0.64
weighted avg
                  0.91
                            0.92
                                      0.91
```

Trzecim wykorzystanym modelem do przewidywania subskrypcji była regresja logistyczna (z wykorzystaniem wszystkich dostępnych cech) przy wykorzystaniu funkcji skalującej dane:

Czwartym wykorzystanym modelem do przewidywania subskrypcji była regresja logistyczna (z wykorzystaniem dostępnych cech dobrze korelujących się ze zmienną y) przy wykorzystaniu funkcji skalującej dane:

1.0

Piątym wykorzystanym modelem do przewidywania subskrypcji była regresja logistyczna (z wykorzystaniem 5 komponentów utworzonych z pomocą algorytmu PCA) przy wykorzystaniu funkcji skalującej dane:

Szóstym wykorzystanym modelem do przewidywania subskrypcji była regresja logistyczna (z wykorzystaniem 5 komponentów utworzonych z pomocą algorytmu PCA) przy wykorzystaniu funkcji skalującej dane oraz algorytmu SMOTE do wyrównania liczebności obu kategorii zmiennej y:

Siódmym wykorzystanym modelem do przewidywania subskrypcji była sztuczna sieć neuronowa; klasyfikator MLP złożony z 10 neuronów w jednej ukrytej warstwie (wykorzystując algorytm służący do standaryzacji danych):

✓ **Dokładność (accuracy):** 92.38%							
✓ **Macierz klasyfikacji:**							
	precision	recall	f1-score	support			
0	0.95	0.97	0.96	6066			
1	0.48	0.29	0.36	486			
accuracy			0.92	6552			
macro avg	0.71	0.63	0.66	6552			
weighted avg	0.91	0.92	0.92	6552			

Ósmym wykorzystanym modelem do przewidywania subskrypcji była sztuczna sieć neuronowa; klasyfikator MLP złożony z 10 neuronów w pięciu ukrytych warstwach (wykorzystując algorytm służący do standaryzacji danych):

✓ **Dokładność (accuracy):** 92.43%							
✓ **Macierz klasyfikacji:**							
	precision	recall	f1-score	support			
0	0.95	0.97	0.96	6066			
1	0.49	0.34	0.40	486			
accuracy			0.92	6552			
macro avg	0.72	0.66	0.68	6552			
weighted avg	0.91	0.92	0.92	6552			

Dziewiątym wykorzystanym modelem do przewidywania subskrypcji była sztuczna sieć neuronowa; prosty Perceptron (wykorzystując algorytm służący do standaryzacji danych):

```
**Wyniki Modelu Perceptron**
✓ **Dokładność (accuracy):** 91.41%
✓ **Macierz klasyfikacji:**
             precision recall f1-score
                                           support
          ø
                 0.93
                           0.98
                                     0.95
                                              6066
                 0.32
                                               486
                           0.14
                                     0.19
                                     0.91
                           0.56
  macro avg
                 0.63
                                     0.57
                                              6552
weighted avg
                 0.89
                           0.91
                                     0.90
```

WNIOSKI I PODSUMOWANIE

Podsumowując, przeprowadzono złożony proces analizy i procesowania danych w celu przygotowania ich do procesu modelowania. Skupiono się przede wszystkich na korelacji między zmiennymi, prostych miarach statystycznych, wykresach boxplot i histogramach. Z danych usunięto wartości odstające.

Na podstawie tak przygotowanych danych wykonano dziewięć różnych modelów uczenia maszynowego dedykowanych do problemu klasyfikacji. Przebadano, który model najlepiej przewiduje wartość zmiennej mówiącej o decyzji klienta (zakup subskrypcji bądź brak zakupu).

Moim zdaniem najlepszym modelem okazała się sieć neuronowa z 5 warstwami ukrytymi. Wartość dokładności okazała się wybitnie wysoka (93% rekordów zostało dobrze przypisanych do kategorii). Model ten kapitalnie radzi sobie z przewidywaniem kategorii 1 (wykup subskrypcji). Nieco gorzej przewiduje kategorię 0 (brak wykupu), choć statystyki wskazują, iż w tej kwestii jest on lepszy od reszty przebadanych modeli. Proponowałbym użycie tego właśnie modelu. Niewiele słabiej wypadły modele regresji logistycznej i lasu losowego (choć statystyki je opisujące również wskazują na wysoką dokładność, to modele te nie radzą sobie z przewidywaniem wartości dla kategorii 0).