ECE750T-28: Computer-aided Reasoning for Software Engineering

Lecture 7: Validity Proofs and Properties of FOL

Vijay Ganesh (Original notes from Isil Dillig)

► Last lecture: Started talking about formal semantics for FOL

- ► Last lecture: Started talking about formal semantics for FOL
- ► Agenda for today:

- ► Last lecture: Started talking about formal semantics for FOL
- ► Agenda for today:
 - ► Finish semantics of FOL

- ► Last lecture: Started talking about formal semantics for FOL
- ► Agenda for today:
 - Finish semantics of FOL
 - Semantics argument method for proving FOL validity

- ► Last lecture: Started talking about formal semantics for FOL
- ► Agenda for today:
 - Finish semantics of FOL
 - Semantics argument method for proving FOL validity
 - ► Important properties of FOL

▶ We evaluate formulas F under structure $S = \langle U, I \rangle$ and variable assignment σ .

- ▶ We evaluate formulas F under structure $S = \langle U, I \rangle$ and variable assignment σ .
- ▶ If F evaluates to true under U, I, σ , we write $U, I, \sigma \models F$

- ▶ We evaluate formulas F under structure $S = \langle U, I \rangle$ and variable assignment σ .
- ▶ If F evaluates to true under U, I, σ , we write $U, I, \sigma \models F$
- ▶ If F evaluates to false under U, I, σ , we write $U, I, \sigma \not\models F$

- ▶ We evaluate formulas F under structure $S = \langle U, I \rangle$ and variable assignment σ .
- ▶ If F evaluates to true under U, I, σ , we write $U, I, \sigma \models F$
- ▶ If F evaluates to false under U, I, σ , we write $U, I, \sigma \not\models F$
- ▶ Semantics of |= defined inductively.

- ▶ We evaluate formulas F under structure $S = \langle U, I \rangle$ and variable assignment σ .
- ▶ If F evaluates to true under U, I, σ , we write $U, I, \sigma \models F$
- ▶ If F evaluates to false under U, I, σ , we write $U, I, \sigma \not\models F$
- ▶ Semantics of |= defined inductively.
- Already defined semantics of terms, predicates, and logical connectives

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

► Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} &I(a) = \star \quad I(b) = \bullet \\ &I(f) = \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ &I(p) = \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$p(f(b), f(x)) \rightarrow p(f(x), f(b)) =$$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} &I(a) = \star \quad I(b) = \bullet \\ &I(f) = \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ &I(p) = \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$p(f(b), f(x)) \rightarrow p(f(x), f(b)) = true$$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} &I(a) = \star \quad I(b) = \bullet \\ &I(f) = \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ &I(p) = \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\begin{array}{lcl} p(f(b),f(x)) \rightarrow p(f(x),f(b) & = & true \\ p(f(x),f(b)) \rightarrow p(f(b),f(x)) & = & \end{array}$$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} &I(a) = \star \quad I(b) = \bullet \\ &I(f) = \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ &I(p) = \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\begin{array}{lcl} p(f(b),f(x)) \rightarrow p(f(x),f(b) & = & \textit{true} \\ p(f(x),f(b)) \rightarrow p(f(b),f(x)) & = & \textit{false} \end{array}$$

▶ We still need to evaluate formulas containing quantifiers!

- ▶ We still need to evaluate formulas containing quantifiers!
- lacktriangle But to do that, we first define an x-variant of a variable assignment.

- ▶ We still need to evaluate formulas containing quantifiers!
- ▶ But to do that, we first define an *x*-variant of a variable assignment.
- An x-variant of assignment σ , written $\sigma[x \mapsto c]$, is the assignment that agrees with σ for assignments to all variables except x and assigns x to c.

- We still need to evaluate formulas containing quantifiers!
- ▶ But to do that, we first define an *x*-variant of a variable assignment.
- An x-variant of assignment σ , written $\sigma[x \mapsto c]$, is the assignment that agrees with σ for assignments to all variables except x and assigns x to c.
- **Example**: If $\sigma: \{x \mapsto 1, y \mapsto 2\}$, what is $\sigma[x \mapsto 3]$?

- ▶ We still need to evaluate formulas containing quantifiers!
- ▶ But to do that, we first define an *x*-variant of a variable assignment.
- An x-variant of assignment σ , written $\sigma[x \mapsto c]$, is the assignment that agrees with σ for assignments to all variables except x and assigns x to c.
- ▶ Example: If $\sigma : \{x \mapsto 1, y \mapsto 2\}$, what is $\sigma[x \mapsto 3]$? $\sigma : \{x \mapsto 3, y \mapsto 2\}$

Evaluation of Formulas II

▶ We can now give semantics to quantifiers:

Evaluation of Formulas II

- ▶ We can now give semantics to quantifiers:
- ► Universal quantifier:

$$U, I, \sigma \models \forall x. F$$
 iff for all $o \in U, U, I, \sigma[x \mapsto o] \models F$

Evaluation of Formulas II

- ▶ We can now give semantics to quantifiers:
- ► Universal quantifier:

$$U, I, \sigma \models \forall x. F$$
 iff for all $o \in U, U, I, \sigma[x \mapsto o] \models F$

► Existential quantifier:

$$U, I, \sigma \models \exists x. F$$
 iff there exists $o \in U$ s.t $U, I, \sigma[x \mapsto o] \models F$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\forall x.p(x,a) =$$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\forall x.p(x,a) = false$$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\forall x.p(x, a) = false$$

 $\forall x.p(b, x) =$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\forall x.p(x,a) = false$$

 $\forall x.p(b,x) = true$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\forall x.p(x, a)$$
 = false
 $\forall x.p(b, x)$ = true
 $\exists x.p(a, x)$ =

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\begin{array}{lll} \forall x.p(x,a) & = & \mathit{false} \\ \forall x.p(b,x) & = & \mathit{true} \\ \exists x.p(a,x) & = & \mathit{false} \end{array}$$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\begin{array}{cccc} \forall x.p(x,a) & = & \mathit{false} \\ \forall x.p(b,x) & = & \mathit{true} \\ \exists x.p(a,x) & = & \mathit{false} \\ \forall x. \ (p(a,x) \to p(b,x)) & = & \end{array}$$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

```
\begin{array}{cccc} \forall x.p(x,a) & = & \mathit{false} \\ \forall x.p(b,x) & = & \mathit{true} \\ \exists x.p(a,x) & = & \mathit{false} \\ \forall x. \ (p(a,x) \to p(b,x)) & = & \mathit{true} \end{array}
```

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

$$\begin{array}{cccc} \forall x.p(x,a) & = & \mathit{false} \\ \forall x.p(b,x) & = & \mathit{true} \\ \exists x.p(a,x) & = & \mathit{false} \\ \forall x. \; (p(a,x) \to p(b,x)) & = & \mathit{true} \\ \exists x. \; (p(f(x),f(x)) \to p(x,x)) & = & \end{array}$$

▶ Consider universe $\{\star, \bullet\}$, variable assignment $\sigma : \{x \mapsto \star\}$, and interpretation I:

$$\begin{split} I(a) &= \star \quad I(b) = \bullet \\ I(f) &= \{ \star \mapsto \bullet, \bullet \mapsto \star \} \\ I(p) &= \{ \langle \bullet, \star \rangle, \langle \bullet, \bullet \rangle \} \end{split}$$

```
\begin{array}{cccc} \forall x.p(x,a) & = & \mathit{false} \\ \forall x.p(b,x) & = & \mathit{true} \\ \exists x.p(a,x) & = & \mathit{false} \\ \forall x. \ (p(a,x) \to p(b,x)) & = & \mathit{true} \\ \exists x. \ (p(f(x),f(x)) \to p(x,x)) & = & \mathit{true} \end{array}
```

Satisfiability and Validity of First-Order Formulas

 \blacktriangleright A first-order formula F is satisfiable iff there exists a structure S and variable assignment σ such that

$$S, \sigma \models F$$

Satisfiability and Validity of First-Order Formulas

 \blacktriangleright A first-order formula F is satisfiable iff there exists a structure S and variable assignment σ such that

$$S, \sigma \models F$$

▶ Otherwise, *F* is unsatisfiable.

Satisfiability and Validity of First-Order Formulas

 \blacktriangleright A first-order formula F is satisfiable iff there exists a structure S and variable assignment σ such that

$$S, \sigma \models F$$

- ▶ Otherwise, *F* is unsatisfiable.
- ▶ A structure S is a model of F, written $S \models F$, if for all variable assignments σ , S, $\sigma \models F$.

Satisfiability and Validity of First-Order Formulas

ightharpoonup A first-order formula F is satisfiable iff there exists a structure S and variable assignment σ such that

$$S, \sigma \models F$$

- ▶ Otherwise, *F* is unsatisfiable.
- ▶ A structure S is a model of F, written $S \models F$, if for all variable assignments σ , S, $\sigma \models F$.
- ▶ A first-order formula F is valid, written $\models F$ if for all structures S, S, $\sigma \models F$

▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable?

▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes

- ▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes
- Satisfying interpretation:

- ▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes
- \blacktriangleright Satisfying interpretation: $U=\{\star\},\ I(p)=\{\langle\star,\star\rangle\}$

- ▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes
- \blacktriangleright Satisfying interpretation: $U=\{\star\},\ I(p)=\{\langle\star,\star\rangle\}$
- ▶ Is this formula valid?

- ▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes
- \blacktriangleright Satisfying interpretation: $U=\{\star\},\ I(p)=\{\langle\star,\star\rangle\}$
- ▶ Is this formula valid? no

- ▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes
- $\blacktriangleright \ \, {\sf Satisfying \ interpretation:} \ \, U=\{\star\}, \, I(p)=\{\langle\star,\star\rangle\}$
- ▶ Is this formula valid? no
- ► Falsifying interpretation:

- ▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes
- \blacktriangleright Satisfying interpretation: $U=\{\star\},\ I(p)=\{\langle\star,\star\rangle\}$
- ▶ Is this formula valid? no
- ▶ Falsifying interpretation: $U = \{\star\}, I(p) = \{\}$

- ▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes
- \blacktriangleright Satisfying interpretation: $U=\{\star\},\ I(p)=\{\langle\star,\star\rangle\}$
- ▶ Is this formula valid? no
- ▶ Falsifying interpretation: $U = \{\star\}$, $I(p) = \{\}$
- ▶ Is the formula $\forall x.(p(x,x) \rightarrow \exists y.p(x,y))$ valid?

- ▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes
- \blacktriangleright Satisfying interpretation: $U=\{\star\},\ I(p)=\{\langle\star,\star\rangle\}$
- ▶ Is this formula valid? no
- ▶ Falsifying interpretation: $U = \{\star\}$, $I(p) = \{\}$
- ▶ Is the formula $\forall x.(p(x,x) \rightarrow \exists y.p(x,y))$ valid? yes

- ▶ Is the formula $\forall x.\exists y.p(x,y)$ satisfiable? yes
- ▶ Satisfying interpretation: $U = \{\star\}$, $I(p) = \{\langle\star,\star\rangle\}$
- Is this formula valid? no
- ▶ Falsifying interpretation: $U = \{\star\}$, $I(p) = \{\}$
- ▶ Is the formula $\forall x.(p(x,x) \rightarrow \exists y.p(x,y))$ valid? yes
- Intuition: Consider any object o. If p(o,o) is false, then implication satisfied. If p(o,o) is true, there there exists a y (namely o) s.t p(x,y) is also true.

▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid?

▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent

- \blacktriangleright Is the formula $(\exists x.p(x)) \to p(x)$ contingent, unsat, or valid? contingent
- ▶ Satisfying U, I, σ :

- \blacktriangleright Is the formula $(\exists x.p(x)) \to p(x)$ contingent, unsat, or valid? contingent
- $\blacktriangleright \ \ \, {\sf Satisfying} \ \ U,I,\sigma \colon \ U=\{\star,\circ\}, I(p)=\{\},\sigma(x)=\circ$

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- ▶ Satisfying U, I, σ : $U = \{\star, \circ\}, I(p) = \{\}, \sigma(x) = \circ$
- ► Falsifying interpretation:

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- ▶ Satisfying U, I, σ : $U = \{\star, \circ\}, I(p) = \{\}, \sigma(x) = \circ$
- $\blacktriangleright \ \ \text{Falsifying interpretation:} \ \ U = \{\star, \circ\}, I(p) = \{\langle \star \rangle\}, \sigma(x) = \circ$

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- $\blacktriangleright \ \ \, {\sf Satisfying} \ \ U,I,\sigma \colon \ U=\{\star,\circ\},I(p)=\{\},\sigma(x)=\circ$
- ▶ Falsifying interpretation: $U = \{\star, \circ\}, I(p) = \{\langle\star\rangle\}, \sigma(x) = \circ$
- ▶ Is the formula $(\forall x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid?

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- ▶ Satisfying U, I, σ : $U = \{\star, \circ\}, I(p) = \{\}, \sigma(x) = \circ$
- ▶ Falsifying interpretation: $U = \{\star, \circ\}, I(p) = \{\langle\star\rangle\}, \sigma(x) = \circ$
- ▶ Is the formula $(\forall x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? valid

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- ▶ Satisfying U, I, σ : $U = \{\star, \circ\}, I(p) = \{\}, \sigma(x) = \circ\}$
- ▶ Falsifying interpretation: $U = \{\star, \circ\}, I(p) = \{\langle\star\rangle\}, \sigma(x) = \circ$
- ▶ Is the formula $(\forall x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? valid
- ▶ What about $(\forall x.(p(x) \rightarrow q(x))) \rightarrow (\exists x.(p(x) \land q(x)))$?

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- ▶ Satisfying U, I, σ : $U = \{\star, \circ\}, I(p) = \{\}, \sigma(x) = \circ\}$
- ▶ Falsifying interpretation: $U = \{\star, \circ\}, I(p) = \{\langle\star\rangle\}, \sigma(x) = \circ$
- ▶ Is the formula $(\forall x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? valid
- ▶ What about $(\forall x.(p(x) \rightarrow q(x))) \rightarrow (\exists x.(p(x) \land q(x)))$? contingent

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- $\blacktriangleright \ \ \, {\sf Satisfying} \ \ U,I,\sigma \colon \ U=\{\star,\circ\},I(p)=\{\},\sigma(x)=\circ$
- ▶ Falsifying interpretation: $U = \{\star, \circ\}, I(p) = \{\langle\star\rangle\}, \sigma(x) = \circ$
- ▶ Is the formula $(\forall x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? valid
- ▶ What about $(\forall x.(p(x) \rightarrow q(x))) \rightarrow (\exists x.(p(x) \land q(x)))$? contingent
- Satisfying interpretation:

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- ▶ Satisfying U, I, σ : $U = \{\star, \circ\}, I(p) = \{\}, \sigma(x) = \circ\}$
- ▶ Falsifying interpretation: $U = \{\star, \circ\}, I(p) = \{\langle\star\rangle\}, \sigma(x) = \circ$
- ▶ Is the formula $(\forall x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? valid
- ▶ What about $(\forall x.(p(x) \rightarrow q(x))) \rightarrow (\exists x.(p(x) \land q(x)))$? contingent
- ▶ Satisfying interpretation: $U = \{\star\}, I(p) = \{\langle\star\rangle\}, I(q) = \{\langle\star\rangle\}$

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- ▶ Satisfying U, I, σ : $U = \{\star, \circ\}, I(p) = \{\}, \sigma(x) = \circ\}$
- ▶ Falsifying interpretation: $U = \{\star, \circ\}, I(p) = \{\langle\star\rangle\}, \sigma(x) = \circ$
- ▶ Is the formula $(\forall x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? valid
- ▶ What about $(\forall x.(p(x) \rightarrow q(x))) \rightarrow (\exists x.(p(x) \land q(x)))$? contingent
- ▶ Satisfying interpretation: $U = \{\star\}, I(p) = \{\langle\star\rangle\}, I(q) = \{\langle\star\rangle\}$
- Falsifying interpretation:

- ▶ Is the formula $(\exists x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? contingent
- ▶ Satisfying U, I, σ : $U = \{\star, \circ\}, I(p) = \{\}, \sigma(x) = \circ\}$
- ▶ Falsifying interpretation: $U = \{\star, \circ\}, I(p) = \{\langle\star\rangle\}, \sigma(x) = \circ$
- ▶ Is the formula $(\forall x.p(x)) \rightarrow p(x)$ contingent, unsat, or valid? valid
- ▶ What about $(\forall x.(p(x) \rightarrow q(x))) \rightarrow (\exists x.(p(x) \land q(x)))$? contingent
- ▶ Satisfying interpretation: $U = \{\star\}, I(p) = \{\langle\star\rangle\}, I(q) = \{\langle\star\rangle\}$
- ▶ Falsifying interpretation: $U = \{\star\}, I(p) = \{\}, I(q) = \{\langle\star\rangle\}$

▶ Consider a formula F such that $S, \sigma \models F$. Is S a model F?

▶ Consider a formula F such that $S, \sigma \models F$. Is S a model F? not necessarily

- ▶ Consider a formula F such that $S, \sigma \models F$. Is S a model F? not necessarily
- ▶ Consider a sentence F such that $S, \sigma \models F$. Is S a model F?

- ▶ Consider a formula F such that $S, \sigma \models F$. Is S a model F? not necessarily
- ▶ Consider a sentence F such that $S, \sigma \models F$. Is S a model F? yes

- ▶ Consider a formula F such that $S, \sigma \models F$. Is S a model F? not necessarily
- ▶ Consider a sentence F such that $S, \sigma \models F$. Is S a model F? yes
- ▶ Consider a ground formula F such that $S, \sigma \models F$. Is S a model of F?

- ▶ Consider a formula F such that $S, \sigma \models F$. Is S a model F? not necessarily
- ▶ Consider a sentence F such that $S, \sigma \models F$. Is S a model F? yes
- ▶ Consider a ground formula F such that $S, \sigma \models F$. Is S a model of F? yes

Motivation for semantic argument method

So far, we defined what it means for a first-order formula to be satisfiable and valid.

Motivation for semantic argument method

- So far, we defined what it means for a first-order formula to be satisfiable and valid.
- However, we haven't talked about how to prove that a formula in FOL is valid.

Motivation for semantic argument method

- So far, we defined what it means for a first-order formula to be satisfiable and valid.
- However, we haven't talked about how to prove that a formula in FOL is valid.
- ▶ Will use semantic argument method to prove validity of first-order formulas

Motivation for semantic argument method

- So far, we defined what it means for a first-order formula to be satisfiable and valid.
- However, we haven't talked about how to prove that a formula in FOL is valid.
- ▶ Will use semantic argument method to prove validity of first-order formulas
- Extension of same technique from propositional logic

▶ Recall: In propositional logic, satisfiability and validity are dual concepts:

 ${\cal F}$ is valid iff $\neg {\cal F}$ is unsatisfiable

▶ Recall: In propositional logic, satisfiability and validity are dual concepts:

$$F$$
 is valid iff $\neg F$ is unsatisfiable

► This duality also holds in first-order logic.

▶ Recall: In propositional logic, satisfiability and validity are dual concepts:

$$F$$
 is valid iff $\neg F$ is unsatisfiable

- This duality also holds in first-order logic.
- Thus, if we have a technquie for deciding validity in FOL, this immediately yields a way to decide satisfiability.

▶ Recall: In propositional logic, satisfiability and validity are dual concepts:

$$F$$
 is valid iff $\neg F$ is unsatisfiable

- This duality also holds in first-order logic.
- Thus, if we have a technquie for deciding validity in FOL, this immediately yields a way to decide satisfiability.
- ▶ Hence, we'll only focus on proving validity in this lecture

 We will use the semantic argument technique from earlier to prove validity of first-order formulas.

- We will use the semantic argument technique from earlier to prove validity of first-order formulas.
- This technique is not particularly amenable to automation, but is useful for paper-and-pencil proofs of validity.

- We will use the semantic argument technique from earlier to prove validity of first-order formulas.
- This technique is not particularly amenable to automation, but is useful for paper-and-pencil proofs of validity.
- ▶ Recall: Semantic argument method is a proof by contradiction.

- We will use the semantic argument technique from earlier to prove validity of first-order formulas.
- This technique is not particularly amenable to automation, but is useful for paper-and-pencil proofs of validity.
- ▶ Recall: Semantic argument method is a proof by contradiction.
- ▶ Basic idea: Assume that F is not valid, i.e., there exists some S, σ such that $S, \sigma \not\models F$

- We will use the semantic argument technique from earlier to prove validity of first-order formulas.
- This technique is not particularly amenable to automation, but is useful for paper-and-pencil proofs of validity.
- ▶ Recall: Semantic argument method is a proof by contradiction.
- ▶ Basic idea: Assume that F is not valid, i.e., there exists some S, σ such that $S, \sigma \not\models F$
- ► Then, apply proof rules.

- We will use the semantic argument technique from earlier to prove validity of first-order formulas.
- This technique is not particularly amenable to automation, but is useful for paper-and-pencil proofs of validity.
- ▶ Recall: Semantic argument method is a proof by contradiction.
- ▶ Basic idea: Assume that F is not valid, i.e., there exists some S, σ such that $S, \sigma \not\models F$
- ► Then, apply proof rules.
- lacktriangle If can derive contradiction on every branch of proof, F is valid.

▶ All proof rules from prop. logic carry over to first-order logic.

- ▶ All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for ⊨, one case for ⊭

- ▶ All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for ⊨, one case for ⊭
- ► Negation elimination:

$$\frac{S,\sigma \models \neg F}{S,\sigma \not\models F}$$

- ▶ All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for ⊨, one case for ⊭
- Negation elimination:

$$\frac{S,\sigma \hspace{0.2em}\models\hspace{0.2em} \neg F}{S,\sigma \hspace{0.2em}\not\models\hspace{0.2em} F} \hspace{0.5em} \frac{S,\sigma \hspace{0.2em}\not\models\hspace{0.2em} \neg F}{F}$$

- ▶ All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for ⊨, one case for ⊭
- Negation elimination:

- ▶ All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for ⊨, one case for ⊭
- Negation elimination:

$$S,\sigma \ \models \ F \wedge G$$

- ▶ All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for ⊨, one case for ⊭
- Negation elimination:

$$\begin{array}{c|cccc} S, \sigma & \models & F \land G \\ \hline S, \sigma & \models & F \\ S, \sigma & \models & G \end{array}$$

- ▶ All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for ⊨, one case for ⊭
- Negation elimination:

$$\frac{S,\sigma \models \neg F}{S,\sigma \not\models F} \qquad \frac{S,\sigma \not\models \neg F}{S,\sigma \models F}$$

- ▶ All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for ⊨, one case for ⊭
- Negation elimination:

$$\frac{S, \sigma \models \neg F}{S, \sigma \not\models F} \qquad \frac{S, \sigma \not\models \neg F}{S, \sigma \models F}$$

▶ Or elimination:

$$S, \sigma \models F \vee G$$

▶ Or elimination:

$$\frac{S,\sigma \ \models \ F \lor G}{S,\sigma \ \models \ F \ \mid \ S,\sigma \ \models \ G}$$

Or elimination:

$$\frac{S,\sigma \ \models \ F \lor G}{S,\sigma \ \models \ F \ \mid \ S,\sigma \ \models \ G} \qquad \frac{S,\sigma \ \not\models \ F \lor G}{S,\sigma \ \models \ G}$$

Or elimination:

Or elimination:

$$S, \sigma \models F \to G$$

▶ Or elimination:

$$\frac{S,\sigma \ \models \ F \to G}{S,\sigma \ \not\models \ F \ \mid \ S,\sigma \ \models \ G}$$

▶ Or elimination:

$$\frac{S,\sigma \ \models \ F \to G}{S,\sigma \not \models \ F \ \mid \ S,\sigma \ \models \ G} \qquad \frac{S,\sigma \not \models \ F \to G}{S,\sigma \not \models \ G}$$

▶ Or elimination:

Or elimination:

Implication elimination:

$$S, \sigma \models F \leftrightarrow G$$

▶ Or elimination:

Implication elimination:

$$\frac{S,\sigma \models F \leftrightarrow G}{S,\sigma \models F \land G \mid S,\sigma \models \neg F \land \neg G}$$

▶ Or elimination:

Implication elimination:

▶ Or elimination:

Implication elimination:

Proof Rules III (New)

▶ We need new rules to eliminate universal and existential quantifiers.

Proof Rules III (New)

- ▶ We need new rules to eliminate universal and existential quantifiers.
- ► Universal elimination I:

$$U, I, \sigma \models \forall x. F$$

Proof Rules III (New)

- ▶ We need new rules to eliminate universal and existential quantifiers.
- ► Universal elimination I:

$$\frac{U,I,\sigma \ \models \ \forall x.F}{U,I,\sigma[x\mapsto o] \ \models \ F} \ \ (\text{for any} \ \ o\in U)$$

Proof Rules III (New)

- ▶ We need new rules to eliminate universal and existential quantifiers.
- ► Universal elimination I:

$$\frac{U,I,\sigma \ \models \ \forall x.F}{U,I,\sigma[x\mapsto o] \ \models \ F} \ (\text{for any} \ \ o\in U)$$

▶ Example: Suppose $U, I, \sigma \models \forall x.hates(jack, x)$

Proof Rules III (New)

- ▶ We need new rules to eliminate universal and existential quantifiers.
- ▶ Universal elimination I:

$$\frac{U,I,\sigma \ \models \ \forall x.F}{U,I,\sigma[x\mapsto o] \ \models \ F} \ (\text{for any} \ \ o\in U)$$

- **Example:** Suppose $U, I, \sigma \models \forall x. hates(jack, x)$
- Using the above proof rule, we can conclude:

$$U, I, \sigma[x \mapsto I(jack)] \models hates(jack, x)$$

► Universal elimination II:

 $U, I, \sigma \not\models \forall x. F$

$$\frac{U,I,\sigma\not\models \forall x.F}{U,I,\sigma[x\mapsto o]\not\models F} \text{(for a fresh } o\in U\text{)}$$

► Universal elimination II:

$$\frac{U,I,\sigma \not\models \forall x.F}{U,I,\sigma[x\mapsto o]\not\models F} (\text{for a fresh } o\in U)$$

By a fresh object constant, we mean an object that has not been previously used in the proof

$$\frac{U,I,\sigma \not\models \forall x.F}{U,I,\sigma[x\mapsto o]\not\models F} (\text{for a fresh } o\in U)$$

- By a fresh object constant, we mean an object that has not been previously used in the proof
- ▶ Why do we have this restriction?

$$\frac{U,I,\sigma \not\models \forall x.F}{U,I,\sigma[x\mapsto o]\not\models F} (\text{for a fresh } o\in U)$$

- By a fresh object constant, we mean an object that has not been previously used in the proof
- ▶ Why do we have this restriction?
- ▶ If U, I, σ do not entail $\forall x.F$, we know there is some object for which F does not hold, but we don't know which one

$$\frac{U,I,\sigma \not\models \forall x.F}{U,I,\sigma[x\mapsto o]\not\models F} (\text{for a fresh } o\in U)$$

- By a fresh object constant, we mean an object that has not been previously used in the proof
- ▶ Why do we have this restriction?
- ▶ If U, I, σ do not entail $\forall x.F$, we know there is some object for which F does not hold, but we don't know which one
- If we have have used an object o before in the proof, we might know something else about o

$$\underline{U,I,\sigma} \; \models \; \exists x.F$$

$$\frac{U,I,\sigma \ \models \ \exists x.F \quad }{U,I,\sigma[x\mapsto o] \ \models \ F} (\text{for a fresh } o\in U)$$

► Existential elimination I:

$$\frac{U,I,\sigma \models \exists x.F}{U,I,\sigma[x\mapsto o] \models F} (\text{for a fresh } o \in U)$$

Again, fresh means an object that has not been used before

- Again, fresh means an object that has not been used before
- ▶ If U, I, σ entail $\exists x.F$, we know there is some object for which F holds, but we don't know which object

- Again, fresh means an object that has not been used before
- ▶ If U, I, σ entail $\exists x.F$, we know there is some object for which F holds, but we don't know which object
- \blacktriangleright If we introduce an object o we have previously used, we might know something else about o

► Existantial elimination II:

 $U, I, \sigma \not\models \exists x. F$

$$\frac{U,I,\sigma \not\models \exists x.F}{U,I,\sigma[x\mapsto o]\not\models F} (\text{for any } o\in U)$$

► Existantial elimination II:

$$\frac{U,I,\sigma \not\models \exists x.F}{U,I,\sigma[x\mapsto o]\not\models F} (\text{for any } o\in U)$$

▶ Why can we instantiate *x* with any object?

$$\frac{U,I,\sigma \not\models \exists x.F}{U,I,\sigma[x\mapsto o]\not\models F} (\text{for any } o\in U)$$

- ▶ Why can we instantiate *x* with any object?
- ▶ Because if U, I, σ do not entail $\exists x.F$, this means there does not exist any object for which F holds

$$\frac{U,I,\sigma \not\models \exists x.F}{U,I,\sigma[x\mapsto o]\not\models F} (\text{for any } o\in U)$$

- ▶ Why can we instantiate *x* with any object?
- ▶ Because if U, I, σ do not entail $\exists x.F$, this means there does not exist any object for which F holds
- ▶ Thus, no matter what object x maps to, it still won't entail F

$$\frac{U, I, \sigma \not\models \exists x. F}{U, I, \sigma[x \mapsto o] \not\models F} (\text{for any } o \in U)$$

- ▶ Why can we instantiate *x* with any object?
- ▶ Because if U, I, σ do not entail $\exists x.F$, this means there does not exist any object for which F holds
- ▶ Thus, no matter what object x maps to, it still won't entail F
- ► Therefore, ok to instantiate x with any object, regardless of whether it has been used before

Finally, we need a rule for deriving for contradicitons

- Finally, we need a rule for deriving for contradicitons
- ► Contradiction rule:

$$U, I, \sigma \models p(s_1, \ldots, s_n)$$

 $U, I, \sigma \not\models p(t_1, \ldots, t_n)$

- Finally, we need a rule for deriving for contradicitons
- ► Contradiction rule:

$$\begin{array}{ll} U, I, \sigma & \models & p(s_1, \ldots, s_n) \\ U, I, \sigma & \not\models & p(t_1, \ldots, t_n) \\ \underline{(I, \sigma)(s_i)} = (I, \sigma)(t_i) \text{ for all } i \in [1, n] \end{array}$$

- Finally, we need a rule for deriving for contradicitons
- ► Contradiction rule:

$$\begin{array}{ll} U, I, \sigma & \models & p(s_1, \dots, s_n) \\ U, I, \sigma & \not\models & p(t_1, \dots, t_n) \\ \underline{(I, \sigma)(s_i)} = (I, \sigma)(t_i) \text{ for all } i \in [1, n] \\ U, I, \sigma & \models & \bot \end{array}$$

- Finally, we need a rule for deriving for contradicitons
- ► Contradiction rule:

$$\begin{array}{ll} U, I, \sigma \models p(s_1, \dots, s_n) \\ U, I, \sigma \not\models p(t_1, \dots, t_n) \\ \underline{(I, \sigma)(s_i)} = (I, \sigma)(t_i) \text{ for all } i \in [1, n] \\ \overline{U, I, \sigma} \models \bot \end{array}$$

 $\blacktriangleright \ \, \mathsf{Example:} \ \, \mathsf{Suppose} \ \, \mathsf{we} \ \, \mathsf{have} \, \, S, \{x \mapsto a\} \models p(x) \, \, \mathsf{and} \, \, S, \{y \mapsto a\} \not\models p(y)$

- Finally, we need a rule for deriving for contradicitons
- ► Contradiction rule:

$$\begin{array}{ll} U, I, \sigma & \models & p(s_1, \dots, s_n) \\ U, I, \sigma & \not\models & p(t_1, \dots, t_n) \\ \underline{(I, \sigma)(s_i)} = (I, \sigma)(t_i) \text{ for all } i \in [1, n] \\ \overline{U, I, \sigma} & \models & \bot \end{array}$$

- $\blacktriangleright \ \, \mathsf{Example:} \ \, \mathsf{Suppose} \ \, \mathsf{we} \ \, \mathsf{have} \, \, S, \{x \mapsto a\} \models p(x) \, \, \mathsf{and} \, \, S, \{y \mapsto a\} \not\models p(y)$
- lacktriangle The proof rule for contradiction allows us to derive ot

▶ Prove the validity of formula:

$$F: (\forall x.p(x)) \to (\forall y.p(y))$$

Prove the validity of formula:

$$F: (\forall x.p(x)) \to (\forall y.p(y))$$

1.
$$S, \sigma \not\models (\forall x.p(x)) \rightarrow (\forall y.p(y))$$
 assumption

Prove the validity of formula:

$$F: (\forall x.p(x)) \to (\forall y.p(y))$$

2.
$$S, \sigma \models \forall x. p(x)$$
 1 and \rightarrow

.
$$S, \sigma \not\models \forall y. p(y)$$
 1 and –

Prove the validity of formula:

$$F: (\forall x.p(x)) \to (\forall y.p(y))$$

Prove the validity of formula:

$$F: (\forall x.p(x)) \to (\forall y.p(y))$$

Prove the validity of formula:

$$F: (\forall x.p(x)) \to (\forall y.p(y))$$

▶ Is this formula valid?

$$F: (\forall x.\ (p(x) \lor q(x))) \to (\exists x.p(x) \lor \forall x.q(x))$$

▶ Is this formula valid? Yes!

$$F: (\forall x. \ (p(x) \lor q(x))) \to (\exists x. p(x) \lor \forall x. q(x))$$

▶ Is this formula valid? Yes!

$$F: (\forall x. \ (p(x) \lor q(x))) \to (\exists x. p(x) \lor \forall x. q(x))$$

▶ Informal argument: Suppose $\forall x.(p(x) \lor q(x))$ holds

▶ Is this formula valid? Yes!

$$F: (\forall x. \ (p(x) \lor q(x))) \to (\exists x. p(x) \lor \forall x. q(x))$$

- ▶ Informal argument: Suppose $\forall x.(p(x) \lor q(x))$ holds
- \blacktriangleright This means either q(x) for all objects (i.e., $\forall x.q(x))$

▶ Is this formula valid? Yes!

$$F: (\forall x. \ (p(x) \lor q(x))) \to (\exists x. p(x) \lor \forall x. q(x))$$

- ▶ Informal argument: Suppose $\forall x.(p(x) \lor q(x))$ holds
- ▶ This means either q(x) for all objects (i.e., $\forall x.q(x)$)
- ▶ Or if q(x) does not hold for some object o, then p(x) must hold for that object o (i.e, $\exists x.p(x)$

▶ Is this formula valid? Yes!

$$F: (\forall x. \ (p(x) \lor q(x))) \to (\exists x. p(x) \lor \forall x. q(x))$$

- ▶ Informal argument: Suppose $\forall x.(p(x) \lor q(x))$ holds
- ▶ This means either q(x) for all objects (i.e., $\forall x.q(x)$)
- ▶ Or if q(x) does not hold for some object o, then p(x) must hold for that object o (i.e, $\exists x.p(x)$
- ▶ Thus, antecedent implies $\exists p(x) \lor \forall x.q(x)$

▶ Let's now prove validity using semantic argument method

$$F: (\forall x.\ (p(x) \vee q(x))) \rightarrow (\exists x.p(x) \vee \forall x.q(x))$$

▶ Let's now prove validity using semantic argument method

$$F: (\forall x. \ (p(x) \lor q(x))) \to (\exists x. p(x) \lor \forall x. q(x))$$

▶ Let's now prove validity using semantic argument method

$$F: (\forall x. \ (p(x) \lor q(x))) \to (\exists x. p(x) \lor \forall x. q(x))$$

- ▶ Let's assume there is some S, σ that does not entail ϕ , and derive contradiction on all branches
 - 1. $S, \sigma \not\models F$ assumption

▶ Let's now prove validity using semantic argument method

$$F: (\forall x.\ (p(x) \lor q(x))) \to (\exists x.p(x) \lor \forall x.q(x))$$

1.	S,σ	$\not\models$	F	assumption
2.	S, σ	=	$\forall x.(p(x) \lor q(x))$	1 and $ ightarrow$
3.	S, σ	$\not\models$	$\exists x. p(x) \lor \forall x. q(x)$	1 and $ ightarrow$

▶ Let's now prove validity using semantic argument method

$$F: (\forall x.\ (p(x) \lor q(x))) \to (\exists x.p(x) \lor \forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	=	$\forall x.(p(x) \lor q(x))$	1 and $ ightarrow$
3.	S, σ	¥	$\exists x. p(x) \lor \forall x. q(x)$	1 and $ ightarrow$
4.	S, σ	¥	$\exists x.p(x)$	3 and \lor
5.	S, σ	$\not\models$	$\forall x. q(x)$	3 and \lor

▶ Let's now prove validity using semantic argument method

$$F: (\forall x.\ (p(x) \lor q(x))) \to (\exists x.p(x) \lor \forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	Ė	$\forall x.(p(x) \lor q(x))$	1 and $ o$
3.	S, σ	$\not\models$	$\exists x.p(x) \lor \forall x.q(x)$	1 and $ o$
4.	S, σ	$\not\models$	$\exists x.p(x)$	3 and \lor
5.	S, σ	$\not\models$	$\forall x. q(x)$	3 and \lor
6.	$S, \sigma[x \mapsto o]$	$\not\models$	q(x)	5 and $\not\models \forall x$, fresh o

▶ Let's now prove validity using semantic argument method

$$F: (\forall x.\ (p(x) \lor q(x))) \to (\exists x.p(x) \lor \forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	=	$\forall x.(p(x) \lor q(x))$	1 and $ ightarrow$
3.	S, σ	¥	$\exists x. p(x) \lor \forall x. q(x)$	1 and $ ightarrow$
4.	S, σ	¥	$\exists x.p(x)$	3 and \lor
5.	S, σ	¥	$\forall x. q(x)$	3 and \lor
6.	$S, \sigma[x \mapsto o]$	¥	q(x)	5 and $\not\models \forall x$, fresh o
7.	$S, \sigma[x \mapsto o]$	$\not\models$	p(x)	4 and $\not\models \exists x$, any o

▶ Let's now prove validity using semantic argument method

$$F: (\forall x.\ (p(x) \lor q(x))) \to (\exists x.p(x) \lor \forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	=	$\forall x.(p(x) \lor q(x))$	1 and $ ightarrow$
3.	S, σ	$\not\models$	$\exists x. p(x) \lor \forall x. q(x)$	1 and $ ightarrow$
4.	S, σ	$\not\models$	$\exists x.p(x)$	3 and \lor
5.	S, σ	$\not\models$	$\forall x. q(x)$	3 and \lor
6.	$S, \sigma[x \mapsto o]$	$\not\models$	q(x)	5 and $\not\models \forall x$, fresh o
7.	$S, \sigma[x \mapsto o]$	$\not\models$	p(x)	4 and $\not\models \exists x$, any o
8.	$S, \sigma[x \mapsto o]$	=	$p(x) \vee q(x)$	2 and $\models \forall x$, any o

▶ Let's now prove validity using semantic argument method

$$F: (\forall x.\ (p(x) \lor q(x))) \to (\exists x.p(x) \lor \forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	=	$\forall x.(p(x) \lor q(x))$	1 and $ ightarrow$
3.	S, σ	¥	$\exists x. p(x) \lor \forall x. q(x)$	1 and $ ightarrow$
4.	S, σ	¥	$\exists x.p(x)$	3 and ∨
5.	S, σ	¥	$\forall x. q(x)$	3 and ∨
6.	$S, \sigma[x \mapsto o]$	¥	q(x)	5 and $\not\models \forall x$, fresh o
7.	$S, \sigma[x \mapsto o]$	$\not\models$	p(x)	4 and $\not\models \exists x$, any o
8.	$S, \sigma[x \mapsto o]$	=	$p(x) \vee q(x)$	2 and $\models \forall x$, any o
9a.	$S, \sigma[x \mapsto o]$	=	p(x)	8 and ∨
9b.	$S, \sigma[x \mapsto o]$	=	q(x)	8 and \vee

Let's now prove validity using semantic argument method

$$F: (\forall x. \ (p(x) \lor q(x))) \to (\exists x. p(x) \lor \forall x. q(x))$$

▶ Let's now prove validity using semantic argument method

$$F: (\forall x.\ (p(x) \lor q(x))) \to (\exists x.p(x) \lor \forall x.q(x))$$

S, σ	$\not\models$	F	assumption
S, σ	Ė	$\forall x.(p(x) \lor q(x))$	1 and $ ightarrow$
S, σ	⊭	$\exists x. p(x) \lor \forall x. q(x)$	1 and $ o$
S, σ	⊭	$\exists x.p(x)$	3 and \lor
S, σ	⊭	$\forall x. q(x)$	3 and \lor
$S, \sigma[x \mapsto o]$	⊭	q(x)	5 and $\not\models \forall x$, fresh o
$S, \sigma[x \mapsto o]$	$\not\models$	p(x)	4 and $\not\models \exists x$, any o
$S, \sigma[x \mapsto o]$	=	$p(x) \vee q(x)$	2 and $\models \forall x$, any o
$S, \sigma[x \mapsto o]$	=	p(x)	8 and V
$S, \sigma[x \mapsto o]$	=	q(x)	8 and ∨
S, σ	=	Τ΄	7, 9a
S, σ	=	\perp	6, 9b
	S, σ S, σ S, σ S, σ $S, \sigma[x \mapsto o]$	$\begin{array}{c cccc} S, \sigma & \models \\ S, \sigma & \not\models \\ S, \sigma & \not\models \\ S, \sigma & \not\models \\ S, \sigma [x \mapsto o] & \not\models \\ S, \sigma [x \mapsto o] & \not\models \\ S, \sigma [x \mapsto o] & \models \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

▶ Is this formula valid?

$$F: (\forall x.p(x,x)) \to (\exists x. \forall y.p(x,y))$$

▶ Is this formula valid? No!

$$F: (\forall x.p(x,x)) \to (\exists x. \forall y.p(x,y))$$

▶ Is this formula valid? No!

$$F: (\forall x.p(x,x)) \to (\exists x. \forall y.p(x,y))$$

lacktriangle Intuitively, antecedent says p(o,o) holds for every object o

▶ Is this formula valid? No!

$$F: (\forall x.p(x,x)) \to (\exists x. \forall y.p(x,y))$$

- ▶ Intuitively, antecedent says p(o, o) holds for every object o
- lacktriangle Consequent says there exists some object, say o_1 , for which $p(o_1,_)$ holds

Is this formula valid? No!

$$F: (\forall x.p(x,x)) \to (\exists x. \forall y.p(x,y))$$

- ▶ Intuitively, antecedent says p(o, o) holds for every object o
- lacktriangle Consequent says there exists some object, say o_1 , for which $p(o_1,_)$ holds
- ► Clearly, these mean very different things

$$F: (\forall x.p(x,x)) \to (\exists x. \forall y.p(x,y))$$

Now, how do we formally prove this formula is not valid?

$$F: (\forall x.p(x,x)) \to (\exists x. \forall y.p(x,y))$$

▶ We have to come up with U, I, σ such that $U, I, \sigma \not\models F$

$$F: (\forall x.p(x,x)) \to (\exists x. \forall y.p(x,y))$$

- ▶ We have to come up with U, I, σ such that $U, I, \sigma \not\models F$
- lacktriangle In this case, σ not necessary since no free variables

$$F: (\forall x.p(x,x)) \to (\exists x. \forall y.p(x,y))$$

- ▶ We have to come up with U, I, σ such that $U, I, \sigma \not\models F$
- ightharpoonup In this case, σ not necessary since no free variables
- ▶ Choose $U = \{\star, \bullet\}$, and $I(p) = \{\langle\star, \star\rangle, \langle\bullet, \bullet\rangle\}$

$$F: (\forall x. p(x, x)) \to (\exists x. \forall y. p(x, y))$$

- ▶ We have to come up with U, I, σ such that $U, I, \sigma \not\models F$
- ightharpoonup In this case, σ not necessary since no free variables
- ▶ Choose $U = \{\star, \bullet\}$, and $I(p) = \{\langle\star, \star\rangle, \langle\bullet, \bullet\rangle\}$
- ▶ Clearly, under I, $\forall x.p(x,x)$ evaluates to true.

$$F: (\forall x. p(x, x)) \to (\exists x. \forall y. p(x, y))$$

- ▶ We have to come up with U, I, σ such that $U, I, \sigma \not\models F$
- ightharpoonup In this case, σ not necessary since no free variables
- ▶ Choose $U = \{\star, \bullet\}$, and $I(p) = \{\langle\star, \star\rangle, \langle\bullet, \bullet\rangle\}$
- ▶ Clearly, under I, $\forall x.p(x,x)$ evaluates to true.
- ▶ Furthermore, under I, $(\exists x. \forall y. p(x, y))$ evaluates to false.

$$F: (\forall x. p(x, x)) \to (\exists x. \forall y. p(x, y))$$

- ▶ We have to come up with U, I, σ such that $U, I, \sigma \not\models F$
- ightharpoonup In this case, σ not necessary since no free variables
- ▶ Choose $U = \{\star, \bullet\}$, and $I(p) = \{\langle\star, \star\rangle, \langle\bullet, \bullet\rangle\}$
- ▶ Clearly, under I, $\forall x.p(x,x)$ evaluates to true.
- ▶ Furthermore, under I, $(\exists x. \forall y. p(x, y))$ evaluates to false.
- ▶ Thus, *I* is a falsfiying interpretation of *F*.

▶ Is the following formula valid?

$$(\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

▶ Is the following formula valid? Yes

$$(\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

▶ Is the following formula valid? Yes

$$(\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

 \blacktriangleright Suppose $(\forall x.p(x) \land q(x))$ holds, we know p(x) and q(x) hold for every object o

▶ Is the following formula valid? Yes

$$(\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

- ▶ Suppose $(\forall x.p(x) \land q(x))$ holds, we know p(x) and q(x) hold for every object o
- ▶ Thus, p(x) must hold for every object (i.e., $\forall x.p(x)$) and q(x) must hold for every object (i.e., $\forall x.q(x)$)

▶ Is the following formula valid? Yes

$$(\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

- \blacktriangleright Suppose $(\forall x.p(x) \land q(x))$ holds, we know p(x) and q(x) hold for every object o
- ▶ Thus, p(x) must hold for every object (i.e., $\forall x.p(x)$) and q(x) must hold for every object (i.e., $\forall x.q(x)$)
- ▶ Thus, we also have $\forall x.p(x) \land \forall x.q(x)$

▶ Let's prove validity using semantic argument method:

$$F:\ (\forall x.(p(x) \land q(x))) \to (\forall x.p(x)) \land (\forall x.q(x))$$

▶ Let's prove validity using semantic argument method:

$$F:\ (\forall x.(p(x) \land q(x))) \to (\forall x.p(x)) \land (\forall x.q(x))$$

▶ Let's prove validity using semantic argument method:

$$F:\ (\forall x.(p(x) \land q(x))) \to (\forall x.p(x)) \land (\forall x.q(x))$$

- ▶ Assume there is a S, σ such that $S, \sigma \not\models F$
 - 1. $S, \sigma \not\models F$ assumption

▶ Let's prove validity using semantic argument method:

$$F:\; (\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	⊨	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	⊭	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$

▶ Let's prove validity using semantic argument method:

$$F:\; (\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	Ė	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	⊭	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$
4a.	S, σ	⊭	$(\forall x.p(x))$	3 and \wedge

▶ Let's prove validity using semantic argument method:

$$F:\; (\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	F	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	$\not\models$	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$
4a.	S, σ	⊭	$(\forall x.p(x))$	3 and \wedge
4b.	S, σ	⊭	$(\forall x.q(x))$	3 and \wedge

▶ Let's prove validity using semantic argument method:

$$F:\; (\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	⊨	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	$\not\models$	$(\forall x.p(x)) \land (\forall x.q(x))$	f 1 and $ ightarrow$
4a.	S, σ	$\not\models$	$(\forall x.p(x))$	3 and \land
4b.	S, σ	$\not\models$	$(\forall x.q(x))$	3 and \land
5a.	$S, \sigma[x \mapsto o]$	⊭	p(x)	4a and $∀$

▶ Let's prove validity using semantic argument method:

$$F:\ (\forall x.(p(x) \land q(x))) \to (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	=	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	⊭	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$
4a.	S, σ	⊭	$(\forall x.p(x))$	3 and \land
4b.	S, σ	⊭	$(\forall x.q(x))$	3 and \land
5a.	$S, \sigma[x \mapsto o]$	⊭	p(x)	4a and \forall
6a.	$S, \sigma[x \mapsto o]$	⊨	$p(x) \wedge q(x)$	2 and \forall

▶ Let's prove validity using semantic argument method:

$$F:\ (\forall x.(p(x) \land q(x))) \to (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	=	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	$\not\models$	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$
4a.	S, σ	$\not\models$	$(\forall x.p(x))$	3 and \wedge
4b.	S, σ	⊭	$(\forall x.q(x))$	3 and \wedge
5a.	$S, \sigma[x \mapsto o]$	$\not\models$	p(x)	4a and \forall
6a.	$S, \sigma[x \mapsto o]$	=	$p(x) \wedge q(x)$	2 and \forall
7a.	$S, \sigma[x \mapsto o]$	F	p(x)	6a and \wedge

▶ Let's prove validity using semantic argument method:

$$F:\; (\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	=	$\forall x.(p(x) \land q(x))$	f 1 and $ ightarrow$
3.	S, σ	¥	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$
4a.	S, σ	¥	$(\forall x.p(x))$	3 and \land
4b.	S, σ	¥	$(\forall x.q(x))$	3 and \wedge
5a.	$S, \sigma[x \mapsto o]$	¥	p(x)	4a and \forall
6a.	$S, \sigma[x \mapsto o]$	=	$p(x) \wedge q(x)$	2 and \forall
7a.	$S, \sigma[x \mapsto o]$	=	p(x)	6a and \wedge
8a.	$S, \sigma[x \mapsto o]$	F	Τ.	5a, 7a

▶ Let's prove validity using semantic argument method:

$$F:\; (\forall x.(p(x) \land q(x))) \rightarrow (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	=	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	⊭	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$
4a.	S, σ	⊭	$(\forall x.p(x))$	3 and \land
4b.	S, σ	⊭	$(\forall x.q(x))$	3 and \land
5a.	$S, \sigma[x \mapsto o]$	⊭	p(x)	4a and \forall
6a.	$S, \sigma[x \mapsto o]$	=	$p(x) \wedge q(x)$	2 and \forall
7a.	$S, \sigma[x \mapsto o]$	=	p(x)	6a and \wedge
8a.	$S, \sigma[x \mapsto o]$	=	<u></u>	5a, 7a
5b.	$S, \sigma[x \mapsto o']$	⊭	q(x)	4b and \forall

▶ Let's prove validity using semantic argument method:

$$F: \ (\forall x.(p(x) \land q(x))) \to (\forall x.p(x)) \land (\forall x.q(x))$$

			_	
1.	S, σ	⊭	F	assumption
2.	S, σ	=	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	$\not\models$	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$
4a.	S, σ	$\not\models$	$(\forall x.p(x))$	3 and \wedge
4b.	S, σ	$\not\models$	$(\forall x.q(x))$	3 and \land
5a.	$S, \sigma[x \mapsto o]$	$\not\models$	p(x)	4a and \forall
6a.	$S, \sigma[x \mapsto o]$	=	$p(x) \wedge q(x)$	2 and ∀
7a.	$S, \sigma[x \mapsto o]$	=	p(x)	6a and \wedge
8a.	$S, \sigma[x \mapsto o]$	⊨	<u></u>	5a, 7a
5b.	$S, \sigma[x \mapsto o']$	⊭	q(x)	4b and \forall
6b.	$S, \sigma[x \mapsto o']$	=	$p(x) \wedge q(x)$	2 and \forall

▶ Let's prove validity using semantic argument method:

$$F:\ (\forall x.(p(x) \land q(x))) \to (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	Ė	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	$\not\models$	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$
4a.	S, σ	$\not\models$	$(\forall x.p(x))$	3 and \land
4b.	S, σ	$\not\models$	$(\forall x.q(x))$	3 and \land
5a.	$S, \sigma[x \mapsto o]$	$\not\models$	p(x)	4a and \forall
6a.	$S, \sigma[x \mapsto o]$	=	$p(x) \wedge q(x)$	2 and \forall
7a.	$S, \sigma[x \mapsto o]$	=	p(x)	6a and \wedge
8a.	$S, \sigma[x \mapsto o]$	=	Τ΄	5a, 7a
5b.	$S, \sigma[x \mapsto o']$	$\not\models$	q(x)	4b and $∀$
6b.	$S, \sigma[x \mapsto o']$	=	$p(x) \wedge q(x)$	2 and \forall
7b.	$S, \sigma[x \mapsto o']$	=	q(x)	6b and \wedge

▶ Let's prove validity using semantic argument method:

$$F:\ (\forall x.(p(x) \land q(x))) \to (\forall x.p(x)) \land (\forall x.q(x))$$

1.	S, σ	$\not\models$	F	assumption
2.	S, σ	⊨	$\forall x.(p(x) \land q(x))$	1 and $ ightarrow$
3.	S, σ	⊭	$(\forall x.p(x)) \land (\forall x.q(x))$	1 and $ ightarrow$
4a.	S, σ	⊭	$(\forall x.p(x))$	3 and \wedge
4b.	S, σ	⊭	$(\forall x.q(x))$	3 and \wedge
5a.	$S, \sigma[x \mapsto o]$	⊭	p(x)	4a and $∀$
6a.	$S, \sigma[x \mapsto o]$	=	$p(x) \wedge q(x)$	2 and \forall
7a.	$S, \sigma[x \mapsto o]$	=	p(x)	6a and \wedge
8a.	$S, \sigma[x \mapsto o]$	=	Τ΄	5a, 7a
5b.	$S, \sigma[x \mapsto o']$	⊭	q(x)	4b and $∀$
6b.	$S, \sigma[x \mapsto o']$	=	$p(x) \wedge q(x)$	2 and \forall
7b.	$S, \sigma[x \mapsto o']$	=	q(x)	6b and \wedge
8b.	$S, \sigma[x \mapsto o']$	F	上	5b, 7b

▶ The proof rules we used are sound and complete.

- ▶ The proof rules we used are sound and complete.
- ► Soundness: If every branch of semantic argument proof derives a contradiction, then F is indeed valid.

- ▶ The proof rules we used are sound and complete.
- Soundness: If every branch of semantic argument proof derives a contradiction, then F is indeed valid.
- ► Translation: The proof system does not reach wrong conclusions

- ▶ The proof rules we used are sound and complete.
- ► Soundness: If every branch of semantic argument proof derives a contradiction, then F is indeed valid.
- ► Translation: The proof system does not reach wrong conclusions
- ightharpoonup Completeness: If formula F is valid, then there exists a finite-length proof in which every branch derives \bot

- ▶ The proof rules we used are sound and complete.
- ► Soundness: If every branch of semantic argument proof derives a contradiction, then F is indeed valid.
- ► Translation: The proof system does not reach wrong conclusions
- ightharpoonup Completeness: If formula F is valid, then there exists a finite-length proof in which every branch derives \bot
- Translation: There are no valid first-order formulas which we cannot prove to be valid using our proof rules.

- ▶ The proof rules we used are sound and complete.
- Soundness: If every branch of semantic argument proof derives a contradiction, then F is indeed valid.
- ► Translation: The proof system does not reach wrong conclusions
- ightharpoonup Completeness: If formula F is valid, then there exists a finite-length proof in which every branch derives \bot
- Translation: There are no valid first-order formulas which we cannot prove to be valid using our proof rules.
- Completeness in this context also called refutational completeness

 Really important result: It is undecidable whether a first-order formula is valid. (Church and Turing)

- Really important result: It is undecidable whether a first-order formula is valid. (Church and Turing)
- Review: A problem is decidable iff there exists a procedure P such that, for any input:

- Really important result: It is undecidable whether a first-order formula is valid. (Church and Turing)
- Review: A problem is decidable iff there exists a procedure P such that, for any input:
 - 1. P halts and says "yes" if the answer is positive

- Really important result: It is undecidable whether a first-order formula is valid. (Church and Turing)
- Review: A problem is decidable iff there exists a procedure P such that, for any input:
 - 1. P halts and says "yes" if the answer is positive
 - 2. halts and says "no" if the answer is negative

- Really important result: It is undecidable whether a first-order formula is valid. (Church and Turing)
- Review: A problem is decidable iff there exists a procedure P such that, for any input:
 - 1. P halts and says "yes" if the answer is positive
 - 2. halts and says "no" if the answer is negative
- But, what about the completeness result? Doesn't this contradict undecidability?

- Really important result: It is undecidable whether a first-order formula is valid. (Church and Turing)
- Review: A problem is decidable iff there exists a procedure P such that, for any input:
 - 1. P halts and says "yes" if the answer is positive
 - 2. halts and says "no" if the answer is negative
- But, what about the completeness result? Doesn't this contradict undecidability?
- No, because completeness says we will find proof of validity if it exists, but if formula is invalid, we might search forever.

► First-order logic is semidecidable

- ► First-order logic is semidecidable
- ${\blacktriangleright}$ A decision problem is semidecidable iff there exists a procedure P such that, for any input:

- ► First-order logic is semidecidable
- ▶ A decision problem is semidecidable iff there exists a procedure *P* such that, for any input:
 - 1. P halts and says "yes" if the answer is positive

- ► First-order logic is semidecidable
- ${\blacktriangleright}$ A decision problem is semidecidable iff there exists a procedure P such that, for any input:
 - 1. P halts and says "yes" if the answer is positive
 - 2. P may not terminate if the answer is negative

- ► First-order logic is semidecidable
- A decision problem is semidecidable iff there exists a procedure P such that, for any input:
 - 1. P halts and says "yes" if the answer is positive
 - 2. P may not terminate if the answer is negative
- Thus, there exists an algorithm that always terminates and says if any arbitrary FOL formula is valid

- ► First-order logic is semidecidable
- A decision problem is semidecidable iff there exists a procedure P such that, for any input:
 - 1. P halts and says "yes" if the answer is positive
 - 2. P may not terminate if the answer is negative
- Thus, there exists an algorithm that always terminates and says if any arbitrary FOL formula is valid
- ▶ But no algorithm is guaranteed to terminate if the FOL formula is not valid

Decidable Fragments of First-Order Logic

Although full-first order logic is not decidable, there are fragments of FOL that are decidable.

Decidable Fragments of First-Order Logic

- Although full-first order logic is not decidable, there are fragments of FOL that are decidable.
- ► A fragment of FOL is a syntactially restricted subset of full FOL: e.g., no functions, or only universal quantifiers, etc.

Decidable Fragments of First-Order Logic

- Although full-first order logic is not decidable, there are fragments of FOL that are decidable.
- ► A fragment of FOL is a syntactially restricted subset of full FOL: e.g., no functions, or only universal quantifiers, etc.
- ► Some decidable fragments:
 - Quantifier-free first order logic
 - Monadic first-order logic
 - Bernays-Schönfinkel class

Quantifier-Free Fragment of FOL

The quantifier-free fragment of FOL is the syntactically restricted subset of FOL where formulas do not contain universal or existential quantifiers.

Quantifier-Free Fragment of FOL

- The quantifier-free fragment of FOL is the syntactically restricted subset of FOL where formulas do not contain universal or existential quantifiers.
- Determining validity and satisfiability in quantifier-free FOL is decidable (NP-complete).

Quantifier-Free Fragment of FOL

- The quantifier-free fragment of FOL is the syntactically restricted subset of FOL where formulas do not contain universal or existential quantifiers.
- Determining validity and satisfiability in quantifier-free FOL is decidable (NP-complete).
- ► This fragment can be reduced to a theory we will explore later, theory of equality with uninterpreted functions

 Pure monadic FOL: all predicates are monadic (i.e., arity 1) and no function constants.

- Pure monadic FOL: all predicates are monadic (i.e., arity 1) and no function constants.
- Impure monadic FOL: both monadic predicates and monadic function constants allowed

- Pure monadic FOL: all predicates are monadic (i.e., arity 1) and no function constants.
- Impure monadic FOL: both monadic predicates and monadic function constants allowed
- ► Result: Monadic first-order logic is decidable (both versions)

- Pure monadic FOL: all predicates are monadic (i.e., arity 1) and no function constants.
- Impure monadic FOL: both monadic predicates and monadic function constants allowed
- Result: Monadic first-order logic is decidable (both versions)
- However, if we add even a single binary predicate, the logic becomes undecidable.

Bernays-Schönfinkel Class

▶ The Bernays-Schönfinkel class is a fragment of FOL where:

- ▶ The Bernays-Schönfinkel class is a fragment of FOL where:
 - 1. there are no function constants,

- ▶ The Bernays-Schönfinkel class is a fragment of FOL where:
 - 1. there are no function constants,
 - 2. only formulas of the form:

$$\exists x_1,\ldots,\exists x_n.\forall y_1,\ldots,\forall y_m.F(x_1,\ldots,x_n,y_1,\ldots y_m)$$

- ▶ The Bernays-Schönfinkel class is a fragment of FOL where:
 - 1. there are no function constants,
 - 2. only formulas of the form:

$$\exists x_1,\ldots,\exists x_n.\forall y_1,\ldots,\forall y_m.F(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

▶ Result: The Bernays-Schönfinkel fragment of FOL is decidable

- ▶ The Bernays-Schönfinkel class is a fragment of FOL where:
 - 1. there are no function constants,
 - 2. only formulas of the form:

$$\exists x_1,\ldots,\exists x_n,\forall y_1,\ldots,\forall y_m.F(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

- ▶ Result: The Bernays-Schönfinkel fragment of FOL is decidable
- Database query language Datalog is based on Bernays-Schönfinkel class of FOL

- ▶ The Bernays-Schönfinkel class is a fragment of FOL where:
 - 1. there are no function constants,
 - 2. only formulas of the form:

$$\exists x_1,\ldots,\exists x_n,\forall y_1,\ldots,\forall y_m.F(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

- ▶ Result: The Bernays-Schönfinkel fragment of FOL is decidable
- Database query language Datalog is based on Bernays-Schönfinkel class of FOL
- However, it has additional restriction that all clauses are Horn clauses (i.e., at most one positive literal in each clause)

Datalog

 Datalog is a programming language that allows adding/querying facts in a deductive databases

Datalog

- Datalog is a programming language that allows adding/querying facts in a deductive databases
- An example Datalog program:

```
parent(bill, mary). % Bill is Mary's parent
parent(mary, john). % Mary is John's parent
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
?-ancestor(X, john).
```

Datalog

- Datalog is a programming language that allows adding/querying facts in a deductive databases
- An example Datalog program:

```
parent(bill, mary). % Bill is Mary's parent
parent(mary, john). % Mary is John's parent
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
?-ancestor(X, john).
```

Last statement is a query: Is there anyone in the database who is John's ancestor (and if so, who?)

```
parent(bill, mary). % Bill is Mary's parent
parent(mary, john). % Mary is John's parent
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
?-ancestor(X, john).
```

```
parent(bill, mary). % Bill is Mary's parent
parent(mary, john). % Mary is John's parent
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
?-ancestor(X, john).
```

▶ This program is just syntactic sugar for FOL:

 $parent(bill, mary) \land parent(mary, john) \land$

```
parent(bill, mary). % Bill is Mary's parent
parent(mary, john). % Mary is John's parent
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
?-ancestor(X, john).
```

```
\begin{aligned} parent(bill, mary) \wedge parent(mary, john) \wedge \\ (\forall x, y.\ parent(x, y) \rightarrow ancestor(x, y)) \wedge \end{aligned}
```

```
parent(bill, mary). % Bill is Mary's parent
parent(mary, john). % Mary is John's parent
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
?-ancestor(X, john).
```

```
\begin{array}{c} parent(bill, mary) \land parent(mary, john) \land \\ (\forall x, y. \ parent(x, y) \rightarrow ancestor(x, y)) \land \\ (\forall x, y, z. parent(x, y) \land parent(y, z) \rightarrow ancestor(x, z)) \land \end{array}
```

```
parent(bill, mary). % Bill is Mary's parent
parent(mary, john). % Mary is John's parent
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
?-ancestor(X, john).
```

```
\begin{array}{c} parent(bill, mary) \land parent(mary, john) \land \\ (\forall x, y. \ parent(x, y) \rightarrow ancestor(x, y)) \land \\ (\forall x, y, z. parent(x, y) \land parent(y, z) \rightarrow ancestor(x, z)) \land \\ (\exists x. ancestor(x, john)) \end{array}
```

```
parent(bill, mary). % Bill is Mary's parent
parent(mary, john). % Mary is John's parent
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
?-ancestor(X, john).
```

This program is just syntactic sugar for FOL:

```
\begin{array}{c} parent(bill, mary) \land parent(mary, john) \land \\ (\forall x, y. \ parent(x, y) \rightarrow ancestor(x, y)) \land \\ (\forall x, y, z. parent(x, y) \land parent(y, z) \rightarrow ancestor(x, z)) \land \\ (\exists x. ancestor(x, john)) \end{array}
```

► Thus, if this formula is satisfiable, there is someone in our database who is John's ancestor

► A Datalog interpreter is nothing more than a solver for Bernays-Schönfinkel fragment of FOL

- ► A Datalog interpreter is nothing more than a solver for Bernays-Schönfinkel fragment of FOL
- ▶ Since this fragment is decidable, Datalog programs always terminate

- A Datalog interpreter is nothing more than a solver for Bernays-Schönfinkel fragment of FOL
- ▶ Since this fragment is decidable, Datalog programs always terminate
- In general, interpreters for all logic programming languages decide satisfiability in FOL or a fragment

- ► A Datalog interpreter is nothing more than a solver for Bernays-Schönfinkel fragment of FOL
- ▶ Since this fragment is decidable, Datalog programs always terminate
- In general, interpreters for all logic programming languages decide satisfiability in FOL or a fragment
- ► A popular logic programming language is Prolog

- A Datalog interpreter is nothing more than a solver for Bernays-Schönfinkel fragment of FOL
- ▶ Since this fragment is decidable, Datalog programs always terminate
- In general, interpreters for all logic programming languages decide satisfiability in FOL or a fragment
- ► A popular logic programming language is Prolog
- Unlike Datalog, it is based on full FOL, so Prolog programs may not terminate

▶ Another important property of FOL is compactness.

- ▶ Another important property of FOL is compactness.
- A logic is called compact if an infinite set of sentences Γ is satisfiable iff every finite subset of Γ is satisfiable.

- ▶ Another important property of FOL is compactness.
- A logic is called compact if an infinite set of sentences Γ is satisfiable iff every finite subset of Γ is satisfiable.
- ► Theorem (due to Gödel): First-order logic is compact.

- ▶ Another important property of FOL is compactness.
- ▶ A logic is called compact if an infinite set of sentences Γ is satisfiable iff every finite subset of Γ is satisfiable.
- ► Theorem (due to Gödel): First-order logic is compact.
- ▶ Proof of compactness of FOL follows from the completeness of proof rules.

Recall: Completeness means that if a formula is unsatisfiable, then there exists a finite-length proof of unsatisfiability.

- Recall: Completeness means that if a formula is unsatisfiable, then there
 exists a finite-length proof of unsatisfiability.
- ▶ Suppose FOL was not compact, i.e., there is an infinite set of sentences Γ that are unsat, but every finite subset Σ is sat.

- Recall: Completeness means that if a formula is unsatisfiable, then there
 exists a finite-length proof of unsatisfiability.
- Suppose FOL was not compact, i.e., there is an infinite set of sentences Γ that are unsat, but every finite subset Σ is sat.
- \blacktriangleright By completeness of proof rules, if Γ is unsat, there exists a finite-length proof of unsatisfiability.

- Recall: Completeness means that if a formula is unsatisfiable, then there
 exists a finite-length proof of unsatisfiability.
- ▶ Suppose FOL was not compact, i.e., there is an infinite set of sentences Γ that are unsat, but every finite subset Σ is sat.
- \blacktriangleright By completeness of proof rules, if Γ is unsat, there exists a finite-length proof of unsatisfiability.
- \blacktriangleright But this means the proof must use a finite subset of sentences Σ of Γ , otherwise proof could not be finite.

- Recall: Completeness means that if a formula is unsatisfiable, then there
 exists a finite-length proof of unsatisfiability.
- Suppose FOL was not compact, i.e., there is an infinite set of sentences Γ that are unsat, but every finite subset Σ is sat.
- \blacktriangleright By completeness of proof rules, if Γ is unsat, there exists a finite-length proof of unsatisfiability.
- \blacktriangleright But this means the proof must use a finite subset of sentences Σ of $\Gamma,$ otherwise proof could not be finite.
- ▶ But this implies there is also a proof of unsatisfiability of Σ .

- Recall: Completeness means that if a formula is unsatisfiable, then there
 exists a finite-length proof of unsatisfiability.
- Suppose FOL was not compact, i.e., there is an infinite set of sentences Γ that are unsat, but every finite subset Σ is sat.
- \blacktriangleright By completeness of proof rules, if Γ is unsat, there exists a finite-length proof of unsatisfiability.
- \blacktriangleright But this means the proof must use a finite subset of sentences Σ of $\Gamma,$ otherwise proof could not be finite.
- ▶ But this implies there is also a proof of unsatisfiability of Σ .
- ▶ Thus, by soundness of proof rules, Σ must be unsat.

Consequences of Compactness

▶ Proof of compactness might look like a useless property, but it has very interesting consequences!

Consequences of Compactness

- Proof of compactness might look like a useless property, but it has very interesting consequences!
- Compactness can be used to show that a variety of interesting properties are not expressible in first-order logic.

Consequences of Compactness

- Proof of compactness might look like a useless property, but it has very interesting consequences!
- Compactness can be used to show that a variety of interesting properties are not expressible in first-order logic.
- For instance, we can use compactness theorem to show that transitive closure is not expressible in first order logic.

▶ Given a directed graph G = (V, E), the transitive closure of G is defined as the graph $G^* = (V, E^*)$ where:

$$E^* = \{(n,n') \mid \text{ if there is a path from vertex n to n'}\}$$

▶ Given a directed graph G = (V, E), the transitive closure of G is defined as the graph $G^* = (V, E^*)$ where:

$$E^* = \{(n,n') \mid \text{ if there is a path from vertex n to n'}\}$$

 \blacktriangleright Observe: A binary predicate p(t,t') be viewed as a graph containing an edge from node t to t'

▶ Given a directed graph G=(V,E), the transitive closure of G is defined as the graph $G^*=(V,E^*)$ where:

$$E^* = \{(n,n') \mid \text{ if there is a path from vertex n to n'}\}$$

- $lackbox{Observe:}$ A binary predicate p(t,t') be viewed as a graph containing an edge from node t to t'
- ▶ Thus, the concept of transitive closure applies to binary predicates as well

▶ Given a directed graph G=(V,E), the transitive closure of G is defined as the graph $G^*=(V,E^*)$ where:

$$E^* = \{(n, n') \mid \text{ if there is a path from vertex n to n'}\}$$

- $lackbox{Observe:}$ A binary predicate p(t,t') be viewed as a graph containing an edge from node t to t'
- ▶ Thus, the concept of transitive closure applies to binary predicates as well
- ▶ A binary predicate T is the transitive closure of predicate p if $\langle t_0, t_n \rangle \in T$ iff there exists some sequence $t_0, t_1 \dots, t_n$ such that $\langle t_i, t_{i+1} \rangle \in p$

▶ At first glance, it looks like transitive closure *T* of binary relation *p* is expressible in FOL:

$$\forall x, \forall z. (T(x,z) \leftrightarrow (p(x,z) \vee \exists y. p(x,y) \wedge T(y,z)))$$

▶ At first glance, it looks like transitive closure *T* of binary relation *p* is expressible in FOL:

$$\forall x, \forall z. (T(x,z) \leftrightarrow (p(x,z) \vee \exists y. p(x,y) \wedge T(y,z)))$$

▶ But this formula does not describe transitive closure at all!

At first glance, it looks like transitive closure T of binary relation p is expressible in FOL:

$$\forall x, \forall z. (T(x,z) \leftrightarrow (p(x,z) \lor \exists y. p(x,y) \land T(y,z)))$$

- ▶ But this formula does not describe transitive closure at all!
- ▶ To see why, consider $U = \mathbb{N}$, p is equality predicate, and T is relation that is true for any number x, y.

At first glance, it looks like transitive closure T of binary relation p is expressible in FOL:

$$\forall x, \forall z. (T(x,z) \leftrightarrow (p(x,z) \lor \exists y. p(x,y) \land T(y,z)))$$

- ▶ But this formula does not describe transitive closure at all!
- ▶ To see why, consider $U = \mathbb{N}$, p is equality predicate, and T is relation that is true for *any* number x, y.
- Clearly, this T is not the transitive closure of equality, but this structure is actually a model of the formula.

At first glance, it looks like transitive closure T of binary relation p is expressible in FOL:

$$\forall x, \forall z. (T(x,z) \leftrightarrow (p(x,z) \lor \exists y. p(x,y) \land T(y,z)))$$

- ▶ But this formula does not describe transitive closure at all!
- ▶ To see why, consider $U = \mathbb{N}$, p is equality predicate, and T is relation that is true for any number x, y.
- Clearly, this T is not the transitive closure of equality, but this structure is actually a model of the formula.
- ▶ Thus, the formula above is not a definition of transitive closure at all!

 In fact, no matter how hard we try to correct this definition, we cannot express transitive closure in FOL

- In fact, no matter how hard we try to correct this definition, we cannot express transitive closure in FOL
- Will use compactness theorem to show that transitive closure is not expressible in FOL

- In fact, no matter how hard we try to correct this definition, we cannot express transitive closure in FOL
- Will use compactness theorem to show that transitive closure is not expressible in FOL
- ▶ Compactness: An infinite set of sentences Γ is satisfiable iff every finite subset of Γ is satisfiable.

- In fact, no matter how hard we try to correct this definition, we cannot express transitive closure in FOL
- Will use compactness theorem to show that transitive closure is not expressible in FOL
- ▶ Compactness: An infinite set of sentences Γ is satisfiable iff every finite subset of Γ is satisfiable.
- For contradiction, suppose transitive closure is expressible in first order logic

- In fact, no matter how hard we try to correct this definition, we cannot express transitive closure in FOL
- Will use compactness theorem to show that transitive closure is not expressible in FOL
- ▶ Compactness: An infinite set of sentences Γ is satisfiable iff every finite subset of Γ is satisfiable.
- For contradiction, suppose transitive closure is expressible in first order logic
- Let Γ be a (possibly infinite) set of sentences expressing that T is the transitive closure of p.

• $\Psi^n(a,b)$ encode the proposition: there is no path of length n from a to b.

- lacksquare $\Psi^n(a,b)$ encode the proposition: there is no path of length n from a to b.
- In particular, $\Psi^1 = \neg p(a, b)$

- lacksquare $\Psi^n(a,b)$ encode the proposition: there is no path of length n from a to b.
- ▶ In particular, $\Psi^1 = \neg p(a, b)$
- ► Similarly,

$$\Psi^{n} = \neg \exists x_{1}, \dots, x_{n-1}. (p(a, x_{1}) \land p(x_{1}, x_{2}) \land \dots \land p(x_{n-1}, b))$$

▶ Recall: Γ is a set of propositions encoding T is transitive closure of p.

- ightharpoonup Recall: Γ is a set of propositions encoding T is transitive closure of p.
- ▶ Now, construct Γ' as follows:

$$\Gamma' = \Gamma \cup \{ T(a,b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

- ightharpoonup Recall: Γ is a set of propositions encoding T is transitive closure of p.
- ▶ Now, construct Γ' as follows:

$$\Gamma' = \Gamma \cup \{ T(a,b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

▶ Observe: Γ' is unsatisfiable because:

- ▶ Recall: Γ is a set of propositions encoding T is transitive closure of p.
- ▶ Now, construct Γ' as follows:

$$\Gamma' = \Gamma \cup \{ T(a, b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

- ▶ Observe: Γ' is unsatisfiable because:
 - 1. Since Γ encodes that T is transitive closure of $p,\ T(a,b)$ says there is some path from a to b

- ightharpoonup Recall: Γ is a set of propositions encoding T is transitive closure of p.
- ▶ Now, construct Γ' as follows:

$$\Gamma' = \Gamma \cup \{ T(a, b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

- ▶ Observe: Γ' is unsatisfiable because:
 - 1. Since Γ encodes that T is transitive closure of $p,\ T(a,b)$ says there is some path from a to b
 - 2. The infinite set of propositions Ψ^1,Ψ^2,\ldots say that there is no path of any length from a to b

$$\Gamma' = \Gamma \cup \{T(a,b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

▶ Now, consider any finite subset of Γ' :

$$\Gamma' = \Gamma \cup \{T(a,b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

▶ Clearly, any finite subset does not contain Ψ_i for some i.

$$\Gamma' = \Gamma \cup \{ T(a,b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

- ▶ Clearly, any finite subset does not contain Ψ_i for some i.
- $lackbox{Observe:}$ This finite subset is satisfied by a model where there is a path of length i from a to b

$$\Gamma' = \Gamma \cup \{ T(a,b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

- ▶ Clearly, any finite subset does not contain Ψ_i for some i.
- lackbox Observe: This finite subset is satisfied by a model where there is a path of length i from a to b
- ▶ Thus, every finite subset of Γ' is satisfiable.

$$\Gamma' = \Gamma \cup \{ T(a,b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

- ▶ Clearly, any finite subset does not contain Ψ_i for some i.
- Observe: This finite subset is satisfied by a model where there is a path of length i from a to b
- ▶ Thus, every finite subset of Γ' is satisfiable.
- lacktriangle By the compactness theorem, this would imply Γ' is also satisfiable

$$\Gamma' = \Gamma \cup \{ T(a,b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

- ▶ Clearly, any finite subset does not contain Ψ_i for some i.
- $lackbox{Observe:}$ This finite subset is satisfied by a model where there is a path of length i from a to b
- ▶ Thus, every finite subset of Γ' is satisfiable.
- lacktriangle By the compactness theorem, this would imply Γ' is also satisfiable
- lacktriangle But we just showed that Γ' is unsatisfiable!

$$\Gamma' = \Gamma \cup \{ T(a,b), \Psi^1, \Psi^2, \Psi^3, \dots, \}$$

- ▶ Clearly, any finite subset does not contain Ψ_i for some i.
- lackbox Observe: This finite subset is satisfied by a model where there is a path of length i from a to b
- ▶ Thus, every finite subset of Γ' is satisfiable.
- lacktriangle By the compactness theorem, this would imply Γ' is also satisfiable
- ▶ But we just showed that Γ' is unsatisfiable!
- ▶ Thus, transitive closure cannot be expressed in FOL!

► Semantic argument method for proving validity in FOL

- ► Semantic argument method for proving validity in FOL
- ▶ Soundness and completeness of semantic argument method

- Semantic argument method for proving validity in FOL
- Soundness and completeness of semantic argument method
- ▶ Important properties of FOL: undecidability, semidecidability, compactness

- Semantic argument method for proving validity in FOL
- Soundness and completeness of semantic argument method
- ▶ Important properties of FOL: undecidability, semidecidability, compactness
- Compactness: useful to show what is not expressible in FOL

- Semantic argument method for proving validity in FOL
- Soundness and completeness of semantic argument method
- ▶ Important properties of FOL: undecidability, semidecidability, compactness
- Compactness: useful to show what is not expressible in FOL
- Next lecture: Basics of automated first-order theorem provers (much less theoretical)