Лабораторная работа №4 Длинные линии

Иван Протасов Национальный исследовательский университет «Высшая школа экономики»

7 июня 2024 г.

1. Введение

1.1. Цель работы

В лабораторной работе исследуются свойства коаксиального кабеля - одного из примеров длинных линий передачи.

1.2. Оборудование

Длинный отрезок коаксиального кабеля 38 м, короткий зачищенный отрезок такого же кабеля, соединительные коаксиальные кабели, двухканальный осциллограф Keysight DSOX 1102G, анализатор цепей 'Обзор TR1300/1', резистор с сопротивлением 100 Ом, переменный резистор, макетная плата, однополюсные соединительные провода, BЧ-разъёмы и различные переходники BNC и N-типа.

2. Теоретические сведения

2.1. Длинные линии

В настоящее время имеется большое количество электронных устройств или отдельных блоков в устройстве, которые связаны между собой с помощью линий передачи сигналов: различных кабелей, волноводов, оптоволокна и т. п. В качестве переносчика информации в линии передачи выступает электромагнитное поле, которое распространяется в форме электромагнитных волн. Если длина линии передачи сравнима с длиной распространяющейся по ней волны, то могут возникать специфические эффекты, не проявляющиеся в обычных "коротких"линиях передачи, такие как искажение формы волны и отражение волны от концов линии.

Длинной линией или линией передачи называют электрическую цепь, образованную двумя параллельно идущими проводниками, длина которых больше или сравнима с длиной волны передаваемого сигнала. Теория длинных линий в том виде, в котором она здесь излагается, применима для длинных и узких линий передачи. Это означает, что длина линии больше или сравнима с длиной волны, по ней распространяющейся. При этом поперечные размеры проводников должны быть всё ещё много меньше длины волны.

В таком случае можно считать, что электромагнитное поле практически мгновенно распространяется в направлении, перпендикулярном направлению распространения волны, и для описания этого поля можно использовать известные решения задач электро- и магнитостатики, не учитывая волнового характера полей. Поскольку характерные толщины проводников, о которых в дальнейшем пойдёт речь, составляют от нескольких миллиметров до нескольких сантиметров, а скорость распространения волн в

них сравнима со скоростью света, то верхней границей применимости теории по частоте будет порядка 10 ГГц частоте длина волны становится сравнимой с поперечными размерами проводников.

2.2. Коаксиальные кабели

Рассмотрим более подробно коаксиальный кабель (рис. 1), который часто используется в экспериментальных лабораториях. Внутри изолирующей оболочки 1 находится сигнальный провод 4 (жила), и соосный с ним тонкий металлический электрод 2 (оплётка), состоящий из множества проводов, переплетённых друг с другом. Между жилой и оплёткой находится изолирующий слой диэлектрика 3.

Рис. 1

Применение оплётки вместо цельной оболочки позволяет сделать кабель более гибким. По той же причине в большинстве моделей коаксиальных кабелей жила состоит не из одного, а из множества переплетенных друг с другом проводов. С другой стороны, любые отклонения от аксиально-симметричной геометрии приводят к тому, что поле проникает в область вне оплётки, приводя к потерям мощности сигнала. Кроме того, если оплётка не целиком укрывает поверхность диэлектрика, то во внутренний кабель может проникать внешнее электромагнитное поле, приводя к шумам, искажающим сигнал. Для борьбы с этим в некоторых кабелях между диэлектриком и оплёткой помещают экран — тонкий слой металлической фольги (5 на рис. 1). Если необходимости в гибкости нет, но требуется уменьшить шумы и достичь малых потерь, то вместо оплётки используют цельный экран. В настоящее время существует множество различных моделей коаксиальных кабелей, удовлетворяющих тем или иным требованиям.

2.3. Волновое сопротивление

Волновым сопротивлением длинной линии называется величина

$$\Omega = \frac{U}{J},$$

где U и J - это напряжение и ток в линии соответственно. Волновое сопротивление измеряется в Омах. Мощность на нём не рассеивается.

2.4. Входное сопротивление

Входным сопротивлением (или входным импедансом) Z_{in} участка цепи называют отношение напряжения на этом участке к току, протекающему через него, когда контакты подключены ко входу этого участка. Для длинной линии

$$Z_{in} = \frac{U}{I} \big|_{x=0}.$$

3. Эксперимент и обработка данных

3.1. Измерение скорости распространения волн

Соберём схему, изображённую на рис. 2.

Рис. 2: Схема для определения волнового сопротивления

Подадим сигнал с генератора осциллографа на тройник, присоединим его одной стороной ко входу осциллографа, оставшейся стороной - к коаксиальному кабелю, свободный конец оставим разомкнутым. С генератора подадим меандр с малым коэффициентом заполнения, который отражается от свободного конца кабеля. Подберём должным образом период и длительность сигнала, так что на экране будет видно два прямоугольных импульса в течение одного периода: один поступающий с генератора сигнал и один отражённый от второго конца кабеля (рис. 3).

Рис. 3: Сигнал для входа осциллографа для схемы на рис. 2

Их довольно легко различить, ведь из-за затухания и дисперсии в кабеле амплитуда отражённого импульса меньше, а его форма немного меняется. Задержка между импульсами равна $\tau=\frac{2l}{u}$. По результатам измерений $\tau=398\,$ нс. Тогда

$$u = \frac{2 \cdot 38}{598 \cdot 10^{-9}} \text{m/c} = 1.9 \cdot 10^8 \text{m/c} \approx 0.63c.$$

3.2. Измерение волнового сопротивления

Снова воспользуемся схемой, изображённой на рис. 2, но свободный конец кабеля нагрузим на переменный резистор R_x . Подбирая различные значения R_x сопротивления переменного резистора, добьёмся отсутствия отражённого сигнала. Тогда значение R_x равно значению Ω .

3.3. Входное сопротивление длинной линии

Соберём схему, изображённую на рис. 4. Включим в цепь трансформатор так, чтобы отвязать землю генератора от земли входных каналов. Сила тока в линии пропорциональна напряжению на токосъёмном резисторе $R=100\,$ Ом : $I=-U_1/R$. Напряжение на втором канале равно напряжению на входе длинной линии. Их отношение равно

$$\frac{U_2}{U_1} = \frac{U}{-IR} = -\frac{Z}{R},$$

где Z=U/I—входное сопротивление линии. Снимем AЧX для разомкнутой, замкнутой накоротко и нагруженной на согласованную нагрузку цепей. По оси ординат отложим $|Z_{in}|=\frac{U_2}{U_1}R$ —входное сопротивление линии.

Рис. 4: Модуль входного сопротивления разомкнутой длинной линии в зависимости от частоты

Рис. 5: Модуль входного сопротивления замкнутой накоротко длинной линии в зависимости от частоты

Рис. 6: Модуль входного сопротивления нагруженной на согласованную нагрузку длинной линии в зависимости от частоты