Last name	
First name	

LARSON—MATH 310-CLASSROOM WORKSHEET 09 Vectors!

Review

- 1. What are the distribution laws for scalar-vector multiplication and vector addition?
- 2. What is a *convex combination* of vectors?
- 3. Why does $\hat{v} + \alpha(\hat{w} \hat{v})$ (for $0 \le \alpha \le 1$) give all the points on the line from \hat{v} to \hat{w} ?
- 4. What are these points the convex combination of \hat{v} and \hat{w} ?
- 5. What is the *dot product* of two *n*-vectors?
- 6. Why is the dot product of *n*-vectors commutative?
- 7. How can we extend this idea to the dot product of two D-vectors?

Chapter 2 of Klein's Coding the Matrix text

1. What is an *upper-triangular* system of linear equations?

2. How can we use backward substitution to solve such a system?

Chapter 3 of Klein's Coding the Matrix text

3. What is a linear combination of vectors $\hat{v_1}, \ldots, \hat{v_n}$?

4.	What	is the	span	of ve	ctors	$\hat{v_1}, \dots$	$.,\hat{v_n}$?

5. Let \mathcal{V} be a set of vectors. What is a generating set of vectors for \mathcal{V} ?

6. What is \mathbb{R}^n ?

7. What are the *standard* generators for \mathbb{R}^n ?

8. Book problem:

Exercise 3.2.15: For each of the subproblems, you are to investigate whether the given vectors span \mathbb{R}^2 . If possible, write each of the standard generators for \mathbb{R}^2 as a linear combination of the given vectors. If doing this is impossible for one of the subproblems, you should first add one additional vector and then do it.

- 1. [1, 2], [3, 4]
- 2. [1, 1], [2, 2], [3, 3]
- 3. [1,1],[1,-1],[0,1]