See chapter 2 in Regression and Other Stories.

Widen the notebook.

```
html"""

<style>
    main {
        margin: 0 auto;
        max-width: 2000px;
        padding-left: max(160px, 10%);
        padding-right: max(160px, 10%);
}

</style>
"""
```

```
\circ using Pkg \checkmark , DrWatson \checkmark
```

A typical set of Julia packages to include in notebooks.

```
begin

# Specific to this notebook
using GLM 

# Specific to ROSStanPluto
using StanSample 

# Graphics related
using GLMakie 

# Common data files and functions
using RegressionAndOtherStories 
end
```

2.1 Examining where data come from.

hdi =

	rank	state	hdi	canada
1	1	"Connecticut"	0.962	2
2	2	"Massachusetts"	0.961	2
3	3	"New Jersey"	0.961	2
4	4	"Washington, D.C."	0.96	4
5	5	"Maryland"	0.96	3
6	6	"Hawaii"	0.959	2
7	7	"New York"	0.959	1
8	8	"New Hampshire"	0.958	1
9	9	"Minnesota"	0.958	1
10	10	"Rhode Island"	0.958	3
•	more			
51	51	"Mississippi"	0.799	5

⁻ hdi = CSV.read(ros_datadir("HDI",
 "hdi.csv"), DataFrame)


```
• let
      f = Figure()
      ax = Axis(f[1, 1]; title = "HDI",
         xlabel = "HDI rank of state", ylabel
           = "HDI index")
     limits!(ax, 0, 60, 0.7, 1)
      scatter!(hdi.rank, hdi.hdi)
      selection = 1:20:50
     scatter!(hdi.rank[selection],
      hdi.hdi[selection]; color=:darkred)
      for i in selection
         lines!([hdi.rank[i], hdi.rank[i] +
          3],
              [hdi.hdi[i], hdi.hdi[i] +
              0.015]; color=:grey)
          annotations!(hdi.state[i],
              position = (hdi.rank[i] + 3,
              hdi.hdi[i] + 0.015),
              textsize = 10)
     end
      selection = [4, 51]
      scatter!(hdi.rank[selection],
      hdi.hdi[selection]; color=:darkred)
      for i in selection
          lines!([hdi.rank[i], hdi.rank[i] +
              [hdi.hdi[i], hdi.hdi[i] -
              0.015]; color=:grey)
          annotations!(hdi.state[i],
              position = (hdi.rank[i] + 3,
              hdi.hdi[i] - 0.023),
              textsize = 10)
     end
     selection = 45:3:50
     scatter!(hdi.rank[selection],
      hdi.hdi[selection]; color=:darkred)
```

	st_state	st_stateabb	st_income	
1	"Alabama"	"AL"	21656.2	
2	"Alaska"	"AK"	27209.7	
3	"Arizona"	"AZ"	23381.0	
4	"Arkansas"	"AR"	19977.9	
5	"California"	"CA"	29581.4	
6	"Colorado"	"CO"	30406.0	
7	"Connecticut"	"CT"	37808.2	
8	"Delaware"	"DE"	28128.1	
9	"Florida"	"FL"	25977.8	
10	"Georgia"	"GA"	25502.2	
: r	nore			
50	"Wyoming"	"WY"	25934.1	

```
begin

votes = CSV.read(ros_datadir("HDI",

"votes.csv"), DataFrame;

delim=",", stringtype=String,

pool=false)

votes[votes.st_year .== 2000,
[:st_state, :st_stateabb, :st_income]]
end
```

```
hdi
                                        canada.dis
     rank
                  state
            "Connecticut"
    1
                              0.962
                                        2
1
    2
            "Massachusetts"
                              0.961
                                        2
2
            "New Jersey"
    3
                                        2
3
                              0.961
            "Maryland"
    5
                              0.96
                                        3
4
            "Hawaii"
    6
                              0.959
                                        2
5
            "New York"
6
    7
                              0.959
                                        1
    8
            "New Hampshire"
                              0.958
7
                                        1
            "Minnesota"
    9
                              0.958
                                        1
8
            "Rhode Island"
    10
                              0.958
                                        3
9
            "California"
10
    11
                              0.958
                                        3
: more
            "Mississippi"
                              0.799
                                        5
50
    51
```

```
tmp = votes[votes.st_year .== 2000,
    [:st_state, :st_stateabb, :st_income]]
votes2 = DataFrame(state=tmp.st_state,
    abbr=tmp.st_stateabb,
    income=tmp.st_income)
    global hdivotes = innerjoin(hdi,
    votes2, on = :state)
end
```



```
• let
      f = Figure()
      ax = Axis(f[1, 1]; title = "HDI ~
      income",
          xlabel = "Average state income in
          2000",
          ylabel = "Human Development Index")
      for i in 1:size(hdivotes, 1)
          if length(hdivotes.abbr[i]) > 0
              annotations!(hdivotes.abbr[i],
                  position =
                  (hdivotes.income[i],
                  hdivotes.hdi[i]),
                  textsize = 10)
          end
      end
     hdivotes.rank_hdi =
      sortperm(hdivotes.hdi)
     global hdivotes2 = sort(hdivotes,
      :income)
      ax = Axis(f[1, 2]; title = "Ranked HDI
      ~ ranked income",
          xlabel = "Rank of average state
          income in 2000",
          ylabel = "Rank of Human Development
          Index")
      for i in 1:size(hdivotes2, 1)
          if length(hdivotes2.abbr[i]) > 0
              annotations!(hdivotes2.abbr[i],
                  position = (i,
                  hdivotes2.rank_hdi[i]),
                  textsize = 10)
          end
      end
      current_figure()
  end
```

	rank	state	hdi	canada.dis
1	51	"Mississippi"	0.799	5
2	50	"West Virginia"	0.8	3
3	48	"Arkansas"	0.803	4
4	40	"New Mexico"	0.895	4
5	42	"Montana"	0.885	1
6	49	"Louisiana"	0.801	5
7	47	"Alabama"	0.809	5
8	29	"Utah"	0.932	2
9	41	"Idaho"	0.89	1
10	46	"Oklahoma"	0.815	4
: r	nore			
50	1	"Connecticut"	0.962	2

hdivotes2

```
• stan2_1 = "
data {
     int N;
     vector[N] rank_hdi;
     vector[N] rank_income;
• }
parameters {
    real a;
     real b;
     real<lower=0> sigma;
- model {
     vector[N] mu;
     mu = a + b * rank_income;
    a \sim normal(0, 5);
    b \sim normal(0, 5);
     sigma ~ exponential(1);
     rank_hdi ~ normal(mu, sigma);
· }";
```

	parameters	mean	mcse	std	5.
1	"lp"	-132.26	0.04	1.28	-134
2	"a"	3.08	0.05	1.88	-0.6
3	"b"	0.87	0.0	0.07	0.77
4	"sigma"	7.19	0.01	0.7	6.17

```
data = (N = size(hdivotes2, 1),
    rank_income = collect(1:size(hdivotes2,
    1)), rank_hdi = hdivotes2.rank_hdi)
    global m2_1s = SampleModel("hdi",
    stan2_1)
    global rc2_1s = stan_sample(m2_1s; data)
    success(rc2_1s) && describe(m2_1s,
    [:lp__, :a, :b, :sigma])
end
```

/var/folders/l7/pr04h0650q5dvqttnvs8s2c00000gn/l

```
parameters median mad_sd
                                              st
                                    mean
   "a"
                3.087
                         1.881
                                   3.079
                                            1.88
1
   "b"
                0.874
                         0.064
2
                                   0.874
                                            0.06
   "sigma"
                7.13
                         0.717
                                   7.194
                                            0.76
```



```
• let
      \bar{a}, \bar{b}, \sigma = ms2\_1s[:, :median]
      f = Figure()
      ax = Axis(f[1, 1]; title = "HDI ~
      income",
          xlabel = "Average state income in
          2000",
          ylabel = "Human Development Index")
      for i in 1:size(hdivotes, 1)
          if length(hdivotes.abbr[i]) > 0
              annotations!(hdivotes.abbr[i],
                   position =
                   (hdivotes.income[i],
                   hdivotes.hdi[i]),
                   textsize = 10)
          end
      end
      ax = Axis(f[1, 2]; title = "Ranked HDI
      ~ ranked income",
          xlabel = "Rank of average state
          income in 2000",
          ylabel = "Rank of Human Development
          Index")
      for i in 1:size(hdivotes2, 1)
          if length(hdivotes2.abbr[i]) > 0
              annotations!(hdivotes2.abbr[i],
                   position = (i,
                   hdivotes2.rank_hdi[i]),
                   textsize = 10)
          end
      end
      x = 0:52
      lines!(x, \bar{a} .+ \bar{b} .* x; color=:red)
      f
 end
```

2.2 Validity and reliability.

```
regicert
            survey
      "june08voter"
                          "absolutely certain"
      "aug08relig"
                          "absolutely certain"
 2
      "aug08relig"
                          "absolutely certain"
 3
      "aug08relig"
                          "absolutely certain"
 4
      "june08voter"
                          "absolutely certain"
 5
      "july08poli-econ"
                          "absolutely certain"
      "june08voter"
                          "absolutely certain"
 7
      "aug08relig"
                          "absolutely certain"
      "june08voter"
                          "absolutely certain"
 9
      "july08poli-econ"
                          "absolutely certain"
more
      "sept08forpoli"
                          "absolutely certain"
begin
     pew_pre_raw =
      CSV.read(ros_datadir("Pew", "pew.csv"),
      DataFrame; missingstring="NA",
      pool=false)
     pew_pre = pew_pre_raw[:, [:survey,
      :regicert, :party, :state, :heat2,
      :heat4, :income2, :party4, :date,
          :weight, :voter_weight2, :pid,
          :ideology, :inc]]
  end
```

pid_incprob =

	Column1	V1	V2	V3	,
1	1	0.0	0.0	0.0	0.0
2	2	0.434068	0.410585	0.40081	0.3
3	3	0.583262	0.54593	0.51899	0.5
4	4	0.780714	0.717176	0.67472	0.6
5	5	0.849178	0.818929	0.778284	0.7
6	6	1.0	1.0	1.0	1.0

pid_incprob = CSV.read(ros_datadir("Pew",
 "pid_incprop.csv"), DataFrame;
missingstring="NA", pool=false)

ideo_incprob =

	Column1	V1	V2	V3	
1	1	0.0	0.0	0.0	0
2	2	0.10736	0.0713431	0.0545858	0
3	3	0.261838	0.220291	0.211839	0
4	4	0.640184	0.634329	0.617531	0
5	5	0.914783	0.925208	0.930161	0
6	6	1.0	1.0	1.0	1

- ideo_incprob = CSV.read(ros_datadir("Pew",
 "ideo_incprop.csv"), DataFrame;
 missingstring="NA", pool=false)


```
• let
     x1 = 1.0:1.0:9.0
      f = Figure()
      ax = Axis(f[1, 1], title = "Self-
      declared political ideology by income",
          xlabel = "Income category", ylabel
          = "Vote fraction")
     limits!(ax, 1, 9, 0, 1)
      for i in 1:6
          sca1 = scatter!(x1,
          Array(ideo_incprob[i, 2:end]))
          lin = lines!(x1,
          Array(ideo_incprob[i, 2:end]))
          band!(x1, fill(0, length(x1)),
          Array(ideo_incprob[i, 2:end]);
              color = (:blue, 0.25), label =
              "Label")
      annotations!("Very conservative",
      position = (3.2, 0.945), textsize=15)
      annotations!("Conservative", position =
      (3.9, 0.78), textsize=15)
      annotations!("Moderate", position =
      (4.0, 0.4), textsize=15)
      annotations!("Liberal", position =
      (4.2, 0.1), textsize=15)
      annotations!("Very liberal", position =
      (3.8, 0.0075), textsize=15)
      ax = Axis(f[1, 2], title = "Self-
      declared party indentification by
      income..",
          xlabel = "Income category", ylabel
          = "Vote fraction")
     limits!(ax, 1, 9, 0, 1)
      for i in 1:6
```

```
sca1 = scatter!(x1,
        Array(pid_incprob[i, 2:end]))
        lin = lines!(x1,
        Array(pid_incprob[i, 2:end]))
        band!(x1, fill(0, length(x1)),
        Array(pid_incprob[i, 2:end]);
            color = (:blue, 0.25), label =
            "Label")
    annotations!("Republican", position =
    (4.0, 0.87), textsize=15)
    annotations!("Lean Rep", position =
    (4.15, 0.675), textsize=15)
   annotations!("Independent", position =
    (3.95, 0.53), textsize=15)
    annotations!("Lean Dem", position =
    (4.2, 0.4), textsize=15)
    annotations!("Democrat", position =
    (4.1, 0.19), textsize=15)
    current_figure()
end
```

2.3 All graphs are comparisons.

ealth =		country	spending	lifespan
	1	"Australia"	3357	81.4
	2	"Austria"	3763	80.1
	3	"Belgium"	3595	79.8
	4	"Canada"	3895	80.7
	5	"Czech"	1626	77.0
	6	"Denmark"	3512	78.4
	7	"Finland"	2840	79.5
	8	"France"	3601	81.0
	9	"Germany"	3588	80.0
	10	"Greece"	2727	79.6
	: n	nore		
	30	"USA"	7290	78.1

```
health =
CSV.read(ros_datadir("HealthExpenditure",
    "healthdata.csv"), DataFrame;
missingstring="NA", pool=false)
```

expm =

StatsModels.TableRegressionModel{LinearModel{GLM}

lifespan ~ 1 + spending

Coefficients:

	Coef.	Std. Error	t	Pr(:
(Intercept) spending	76.0642	0.95546	79.61	<1
	0.00103241	0.00029198	3.54	0

```
expm = lm(@formula(lifespan ~ spending),
health)
```

- ▶ [76.0642, 0.00103241]
- \hat{a} , \hat{b} = coef(expm)


```
• let
      x = 0:8000
      f = Figure()
      ax = Axis(f[1, 1], title = "Health
      expenditure of 30 'western' countries",
          xlabel = "Spending [PPP US\$]",
          ylabel = "Life expectancy [years]")
     limits!(ax, 0, 8100, 73, 83)
      sca = scatter!(health.spending,
      health.lifespan; color=:darkred)
     lin = lines!(x, \hat{a} + \hat{b} * x;
      color=:lightblue)
      for i in 1:nrow(health)
          if health.country[i] == "UK"
              annotations!(health.country[i],
              position =
              (health.spending[i]+40,
              health.lifespan[i]-0.25),
              textsize=8)
          elseif health.country[i] ==
          "Finland"
              annotations!(health.country[i],
              position =
              (health.spending[i]-100,
              health.lifespan[i]+0.1),
              textsize=8)
          elseif health.country[i] == "Greece"
              annotations!(health.country[i],
              position =
              (health.spending[i]-300,
              health.lifespan[i]-0.25),
              textsize=8)
          elseif health.country[i] == "Sweden"
              annotations!(health.country[i],
              position =
              (health.spending[i]-180,
```

```
health.lifespan[i]-0.25),
            textsize=8)
        elseif health.country[i] ==
        "Ireland"
            annotations!(health.country[i],
            position =
            (health.spending[i]-150,
            health.lifespan[i]-0.25),
            textsize=8)
        elseif health.country[i] ==
        "Netherlands"
            annotations!(health.country[i],
            position =
            (health.spending[i]+50,
            health.lifespan[i]+0.01),
            textsize=8)
        elseif health.country[i] ==
        "Germany"
            annotations!(health.country[i],
            position =
            (health.spending[i]-350,
            health.lifespan[i]+0.08),
            textsize=8)
        elseif health.country[i] ==
        "Austria"
            annotations!(health.country[i],
            position =
            (health.spending[i]+30,
            health.lifespan[i]-0.2),
            textsize=8)
        else
            annotations!(health.country[i],
            position =
            (health.spending[i]+60,
            health.lifespan[i]-0.1),
            textsize=8)
        end
   end
    current_figure()
end
```

Names example.

cleannames =

	X	name	sex	X1880	X1
1	1	"Mary"	"F"	7065	69
2	2	"Anna"	"F"	2604	26
3	3	"Emma"	"F"	2003	20
4	4	"Elizabeth"	"F"	1939	18
5	5	"Minnie"	"F"	1746	16
6	6	"Margaret"	"F"	1578	16
7	7	"Ida"	"F"	1472	14
8	8	"Alice"	"F"	1414	13
9	9	"Bertha"	"F"	1320	13
10	10	"Sarah"	"F"	1288	12
: more					
98012	98148	"Zzyzx"	"M"	0	0

```
cleannames = CSV.read(ros_datadir("Names",
    "allnames_clean.csv"), DataFrame)
```

- ▶ (98012, 134)
 - size(<u>cleannames</u>)
- ▶["X", "name", "sex", "X1880", "X1881", "X1882",
- names(<u>cleannames</u>)

	name	sex	X1906	X1956	X20(
1	"John"	"M"	8263	80735	1514		
2	"William"	"M"	6567	58927	1891		
3	"James"	"M"	5908	84840	1621		
4	"Charles"	"M"	3607	35198	7999		
5	"George"	"M"	4201	17228	2699		
6	"Frank"	"M"	2798	11126	1399		
7	"Joseph"	"M"	3527	32706	1839		
8	"Thomas"	"M"	2177	44785	9493		
9	"Henry"	"M"	2111	5951	4661		
10	"Robert"	"M"	3636	83869	9874		
more	: more						
36659	"Zzyzx"	"M"	0	0	0		
<pre>- df = cleannames[cleannames.sex .== "M", ["name", "sex", "X1906", "X1956", "X2006"]]</pre>							

```
• letters = 'a':'z';
```

```
count_letters (generic function with 1 method)
 function count_letters(df::DataFrame,
 • years::Vector{String})
       letter_counts = DataFrame()
       for year in Symbol.(years)
           !(year in Symbol.(names(df))) &&
           begin
               @warn "The year $(year) is not
               present in df."
               continue
           end
           tmpdf = df[:, [:name, year]]
           yrcounts = zeros(Int,
           length(letters))
           for (ind, letter) in
           enumerate(letters)
               yrcounts[ind] = sum(filter(row -
               > row.name[end] == letter,
               tmpdf)[:, 2])
           letter_counts[!, year] = 100 *
           yrcounts / sum(yrcounts)
       letter_counts
```

letter_count =

	X1906	X1956	X2006
1	0.473516	0.201557	1.76002
2	0.208106	0.0938356	2.07864
3	0.237512	0.466714	1.29964
4	11.2287	13.5269	2.50852
5	14.7936	8.31948	6.97453
6	0.104807	0.13137	0.0960275
7	0.200566	0.562255	0.0941245
8	4.5082	3.9746	4.79937
9	0.0806786	0.054927	1.63744
10	0.0	0.0	0.0605539
: 1	nore		
26	0.0180961	0.0176297	0.15058

- ▶ [100.0, 100.0, 100.0]
- sum.(eachcol(letter_count))

all_letter_count =

```
X1880
                X1881
                           X1882
                                     X1883
              0.738044
                         0.675187
                                   0.703254
   0.683795
   0.461607
              0.467494
                         0.446011
                                   0.433066
   0.316504
              0.329235
                         0.307625
                                   0.286475
              8.34229
                         8.55178
                                   8.42755
   8.32253
   12.2122
              12.3229
                         12.855
                                   12.602
   0.0979441 0.0825575
                         0.118995
                                   0.10156
6
   0.133313
              0.145222
                         0.128691
                                  0.129345
7
8 3.66383
              3.74095
                         3.66858
                                   3.74142
9 0.181378
            0.204902
                         0.182459
                                  0.160005
10 0.0
              0.0
                         0.0
                                   0.0
: more
26 0.0262998 0.00795735 0.0273248 0.011497
• all_letter_count =
```

```
all_letter_count =
count_letters(cleannames[cleannames.sex .==
"M", :], names(cleannames[:, vcat(4:end)]))
```

```
▶ [0.473516, 0.208106, 0.237512, 11.2287, 14.7936
```

⁻ all_letter_count[:, "X1906"]


```
• let
      f = Figure()
     ax = Axis(f[1, 1], title="Last letters
      in boys' names over time",
         ylabel="Perc of all boys' names
          that year")
     ax.xticks = (6:25:131, ["1886", "1906",
      "1931", "1956", "1981", "2006"])
     for l in 1:length(letters)
         col = :lightgrey
         if letters[l] == 'n'
              col = :darkblue
          elseif letters[l] == 'd'
              col = :darkred
          elseif letters[l] == 'y'
              col = :darkgreen
          end
          if maximum(Array(all_letter_count)
          [1,:]) > 1
              lines!(1:size(all_letter_count,
              2), Array(all_letter_count)
              [l,:], color=col)
          end
          annotations!("n", position = (106,
          25), textsize=15)
          annotations!("d", position = (56,
          18), textsize=15)
          annotations!("y", position = (106,
          11), textsize=15)
      current_figure()
  end
```

2.4 Data and adjustment.

Not yet done.