Formal Lab Hooke's Law

Physics 4A

Connor Darling

Lab Partner: Gabe Ilano

December 2022

Contents

1	Purpose					
2	Theory					
3	Procedure 3.1 Procedure Equipment	3 3				
4	Data	5				
5	Analysis	6				
6 Error Analysis and Procedural Errors						
7	Conclusion					
8	Suggestions for Improvement	10				

Purpose

To verify Hooke's law and calculate the spring constant.

Chapter 2

Theory

The force due to a spring stretched (or compressed) a distance Δx from the equilibrium position is given by the following expression:

$$\vec{F_s} = -k\Delta \vec{x}$$

where s = (force exerted by) spring k = the spring constant (in N/m)

Procedure

3.1 Procedure Equipment

The necessary equipment for this lab is as follow:

- Meter Stick
- Spring
- Weights
- Clamp
- Rods
- Suspension Clamp

3.2 Position Measurements

• The equipment is to be set up as shown below:

- Hang a weight from the end of the spring. For the lng spring use weights ranging from 0.5 kg to 2 kg and for the short spring use weights ranging from 2 kg to 4 kg. Make sure you do not select too heavy of a weight or the spring will permanently stretch.
- Measure the distance (Δx) the spring is stretched from its equilibrium position (x = 0).
- \bullet Repeat the above measurement for at least 7 more weights.

Data

Data Collected							
Configuration	Mass in kg	Uncertainty	x_i in meters	x_f in meters	Uncertainty		
of Mass		+-m based			+-m based		
		on meter			on scale		
		stick					
#1	1.036	0.0005	0.782	0.784	0.0005		
#2	2.033	0.0005	0.782	0.803	0.0005		
#3	4.033	0.0005	0.782	0.876	0.0005		
#4	6.032	0.0005	0.782	0.951	0.0005		
#5	1.528	0.0005	0.782	0.786	0.0005		
#6	3.527	0.0005	0.782	0.860	0.0005		
#7	5.526	0.0005	0.782	0.933	0.0005		
#8	2.530	0.0005	0.782	0.822	0.0005		

Analysis

1. For each weight, calculate the force $(F=mg,g=9.8\frac{m}{s^2})$ exerted on the spring by the Earth's gravitational force.

Force Calculated for each Configuration of Mass & Δx					
Configuration	Experimental	Δx in meters			
of Mass	F in Nm				
#1	10.153	0.002			
#2	19.923	0.021			
#3	39.523	0.094			
#4	59.114	0.169			
#5	14.974	0.004			
#6	34.565	0.078			
#7	54.155	0.151			
#8	24.794	0.040			

2. Plot the force F versus the distance the spring is stretched (Δx) . Based on Hooke's law your graph should follow a straight line.

3. Draw a best-fit line between the points and calculate the slope of the line. The slope of the line will correspond to the spring constant k.

Using this graph, the spring constant k = 276.52m

4. Compare your experimental value(s) of k with the actual value(s) of k for your spring. (Long Spring k = 23 N/m & Short Spring k = 98 N/m)

The actual constant value of the spring is 278m. The experimental value of the spring is 276.52m. The difference between the two values is 1.48m.

5. Do your results agree with Hooke's law (i.e. is F directly proportional to x)?

The results obtained from the experiment were not exact, but are close enough to to agree with Hooke's law.

Error Analysis and Procedural Errors

%difference =
$$\frac{|E_1 - E_2|}{\frac{E_1 + E_2}{2}} \times 100\% = \frac{|276.52 - 278|}{\frac{276.52 + 278}{2}} \times 100\% = 0.53\% (0.534\%)$$

EXPLIN WHY

Conclusion

Suggestions for Improvement