#### Introdução

min

cx

(P) s.a.

 $Ax \ge b$  $Bx \ge d$ 

 $x \ge 0$ .

- $\rhd$  Propriedades desejáveis da matriz B:
- 1. contém a vasta maioria das restrições.
- 2. tem uma estrutura especial que faz com que o programa linear sobre  $Bx \ge d$  seja muito mais fácil que o problema original.

Cid C. de Souza

Algoritmos de Geração de Colunas

Cid C. de Souza – IC-UNICAMP

Outubro de 2005

# Decomposição de Dantzig-Wolfe (cont.)

 $\triangleright$  O problema (LP) é equivalente a:

min

 $Ax \ge b$ 

cx

s.a.:

 $x = \sum_{i=1}^{q} z_i x^i$ 

(1)

 $\sum_{i=1}^{q} z_i = 1$ z > 0. Este problema tem dois conjuntos de variáveis: x e z

 $\triangleright$  Idéia: eliminar as variáveis x usando as equações em (1).

Cid C. de Souza

Geração de Colunas

Dantzig-Wolfe  $\mathbf{de}$ Decomposição **Teorema:** (Minkowski) Se  $P = \{x \in \mathbb{R}^n | Ax = b, x \ge 0\}$ , então existem vetores  $x^1, \ldots, x^q, x^{q+1}, \ldots, x^r$  em  $\mathbb{R}^n$  tais que

$$P = \text{conv}(\{x^1, \dots, x^q\}) + \text{cone}(\{x^{q+1}, \dots, x^r\})$$

Os pontos extremos de P estão contidos em  $\{x^1,\ldots,x^q\}$  e os raios extremos de P no conjunto  $\{x^{q+1}, \dots, x^r\}$ .

- Suponha que  $\{x \in \mathbb{R}_+^n | Bx \ge d\}$  seja um politopo. Δ
- Sejam  $\{x^1, \ldots, x^q\}$  os pontos extremos deste politopo. Δ
- Então qualquer ponto  $\overline{x}$  de  $\{x \in \mathbb{R}^n | Bx \ge d, x \ge 0\}$  pode ser escrito como: Δ

$$\overline{x} = \sum_{i=1}^{q} z_i x^i, \quad \sum_{i=1}^{q} z_i = 1, \quad z_i \ge 0 \quad i = 1, \dots, q.$$

 $\mathfrak{S}$ 

# Decomposição de Dantzig-Wolfe (cont.)

- $\triangleright$  **Definição**:  $f_i := cx^i \in p^i := Ax^i$  para todo  $i = 1, \ldots, q$ .
- $\triangleright$  O problema original (LP) é equivalente a:

min 
$$\sum_{i=1}^{q} f_i z_i$$
(DW) s.a.: 
$$\sum_{i=1}^{q} p^i z_i \ge b$$

$$\sum_{i=1}^{q} z_i = 1$$

$$\sum_{i=1}^{q} z_i = 1$$

 $\triangleright$  (DW) é chamado de problema mestre de Dantzig-Wolfe.

Cid C. de Souza

Geração de Colunas

Decomposição de Dantzig-Wolfe (cont.)

▷ Novo problema:

min 
$$c\left(\sum_{i=1}^{q} z_{i} x^{i}\right)$$
s.a.: 
$$A\left(\sum_{i=1}^{q} z_{i} x^{i}\right) \ge b$$

$$\sum_{i=1}^{q} z_{i} = 1$$

$$z \ge 0.$$

⊳ Simplificação:

$$c(\sum_{i=1}^{q} z_i x^i) = \sum_{i=1}^{q} (cx^i) z_i$$
 e  $A(\sum_{i=1}^{q} z_i x^i) = \sum_{i=1}^{q} (Ax^i) z_i$ .

ಬ

### Dantzig-Wolfe (cont.) Decomposição de



Cid C. de Souza

Geração de Colunas

Dantzig-Wolfe (cont.) Decomposição de

> Exemplo:

 $-x_{1}-x_{2}$ 

min

s.a.:  $x_1 - x_2 \le 2$ 

 $4x_1 + 9x_2 \le 18$ 

 $(3) \quad (3)$ 

(4)

 $-2x_1 + 4x_2 \le 4$ 

 $x_1, x_2 \ge 0.$ 

> restrições do tipo  $\leq ...$ 

 $\triangleright Ax \ge b$  representado pela restrição (2).

 $\triangleright Bx \ge d$  representados pelas restrições (3) e (4).

 $\triangleright$  Pontos extremos de do politopo  $\{x \in \mathbb{R}^2_+ | Bx \ge d\}$ :

$$x^1 = (0,0), x^2 = (4\frac{1}{2},0), x^3 = (1\frac{1}{17}, 1\frac{9}{17}) e x^4 = (0,1).$$

\_

# Decomposição de Dantzig-Wolfe (cont.)

 $\triangleright$  O problema mestre é dado por:

min 
$$\sin 0z_1 - 4\frac{1}{2}z_2 - 2\frac{10}{17}z_3 - z_4$$
  
s.a.  $0z_1 + 4\frac{1}{2}z_2 - \frac{8}{17}z_3 - z_4 \le 2$   
 $z_1 + z_2 + z_3 + z_4 = 1$   
 $z_1, z_2, z_3, z_4 \ge 0$ .

 $\triangleright$  Problema mestre:

• Solução ótima:  $z_1 = z_4 = 0$ ,  $z_2 = 0.497$  e  $z_3 = 0.503$ .

• Valor ótimo: -3.538.

ho Problema original: solução ótima  $x_1^* = \frac{36}{13} \simeq 2.769$  e  $x_2^* = \frac{10}{13} \simeq 0.769$ .

 $(x_1^*, x_2^*)$  não é ponto extremo de  $\{x \in \mathbb{R}_+^2 | Bx \ge d\}$ .

Cid C. de Souza

Geração de Colunas

0

Decomposição de Dantzig-Wolfe (cont.)

 $\triangleright$  Todo ponto  $(x_1, x_2)$  deste politopo é dado por:

$$(x_1, x_2) = (0, 0)z_1 + (4\frac{1}{2}, 0)z_2 + (1\frac{1}{17}, 1\frac{9}{17})z_3 + (0, 1)z_4$$

com  $z_i \ge 0$  para todo  $i \in \{1, 2, 3, 4\}$  e  $z_1 + z_2 + z_3 + z_4 = 1$ .

 $\triangleright$  Como A = [1, -1], temos que  $p^i = Ax^i$  é dado por:

$$p^{1} = [1, -1][0, 0]^{T} = 0 p^{2} = [1, -1][4\frac{1}{2}, 0]^{T} = 4\frac{1}{2},$$

$$p^{3} = [1, -1][1\frac{1}{17}, 1\frac{9}{17}]^{T} = -\frac{8}{17} p^{4} = [1, -1][0, 1]^{T} = -1,$$

Para os coeficientes da função objetivo, como  $f^i=cx^i$ , tem-se:

$$f^{1} = [-1, -1][0, 0]^{T} = 0 f^{2} = [-1, -1][4\frac{1}{2}, 0]^{T} = -4\frac{1}{2},$$

$$f^{3} = [-1, -1][1\frac{1}{17}, 1\frac{9}{17}]^{T} = -2\frac{10}{17} f^{4} = [-1, -1][0, 1]^{T} = -1,$$

12

# Decomposição de Dantzig-Wolfe (cont.)

▷ Problema mestre restrito:

$$\min_{i \in \Lambda} \int_i z_i$$

8

(DWR) s.a.: 
$$\sum_{i \in \Lambda} p^i z_i \ge b$$

6)

$$\sum_{i \in \Lambda} z_i = 1 \tag{10}$$

$$z \geq 0$$
.

- $\Lambda$  é um conjunto muito pequeno de colunas do problema mestre e  ${f contém}$ uma base  $(\Longrightarrow |\Lambda| \ge m_1 + 1)$ . Δ
- Seja  $(u, u_0)$  o vetor de  $variáveis\ duais$  na solução ótima de (DWR): u dual de (9) e  $u_0$  dual de (10). Δ
- Custo reduzido de uma variável  $z_i$ , i = 1, ..., q: Δ

$$\xi_i = f_i - up^i - u_0.$$

Cid C. de Souza

Geração de Colunas

Decomposição de Dantzig-Wolfe (cont.)

 $\triangleright$  Problema mestre:

$$\min_{i=1}^q f_i z_i$$

(2)

s.a.: 
$$\sum_{i=1}^q p^i z_i \ge b$$
 
$$\sum_{i=1}^q z_i = 1$$

(DW)

(9)

$$\sum_{i=1}^{q} z_i = 1$$

$$z \ge 0.$$

- (6) são as restrições *acopladoras*. Δ
- Se  $A: m_1 \times n$  e  $B: m_2 \times n$ , (LP) tem  $m_2 1$  restrições a mais que (DW)! Δ
- Mas, o número de variáveis em (DW) é igual ao número de pontos extremos de  $\{x \in \mathbb{R}^n_+ : Bx \ge d\}$ , portanto, **é** exponencial! Δ
- Saída: geração de colunas! Δ

#### (cont. Dantzig-Wolfe deDecomposição

- $(\mathrm{DWS}(u,u_0))$  é chamado de subproblema ou problema escravo de Dantzig-Wolfe. $\triangle$
- é finito. Se o politopo for vazio, o subproblema é inviável e o problema mestreSe  $\{x \in \mathbb{R}^n | Bx \ge d\}$  é um politopo não vazio, o valor ótimo de  $(\mathrm{DWS}(u, u_0))$ também! Δ
- duzido (problema de minimização) sem fazer explicitamente o cálculo deste Qualquer método que procura a variável não-básica com menor custo recustos para todas as variaveis é chamado de geração de colunas.  $\triangle$
- Nota: não faz sentido deixar o conjunto de restrições acopladoras vazio pois, neste caso, o subproblema corresponderia ao problema original. Δ

Cid C. de Souza

Geração de Colunas

(cont. Dantzig-Wolfe Decomposição de

- Se  $\xi_i \geq 0$  para todo  $i=1,\ldots,q,$  então a solução ótima de (DWR) (mestre restrito) é ótima para (DW) (mestre completo) também. Δ
- Se  $\xi_j < 0$  para algum  $j \in \{1, \dots, q\}$ , a coluna  $(p^j, 1)$  é adicionada a (DWR) enquanto outra coluna sai. Δ
- $\triangleright$  Encontrando uma coluna com custo reduzido mínimo:

$$\min\{f_i - up^i - u_0 | i = 1, \dots, q\} = \min\{cx^i - uAx^i - u_0 | i = 1, \dots, q\}$$
$$= \min\{(c - uA)x^i - u_0 | i = 1, \dots, q\}$$

Como sempre existe um ponto extremo ótimo para um programa linear com ótimo finito, o problema acima reduz-se a: Δ

$$\min \qquad (c - uA)x - u_0$$
 
$$(\mathrm{DWS}(u, u_0)) \qquad \text{s.a.} \qquad Bx \geq d$$
 
$$x \geq 0.$$

### Estruturas bloco angulares

## ▷ Programa Linear na forma bloco angular:

 $x^K \in \mathbb{Z}_+^{n_K}$ 

 $x^2 \in \mathbb{Z}_+^{n_2}$ 

 $x^1 \in \mathbb{Z}_+^{n_1}$ 

Cid C. de Souza

### Geração de Colunas

# Decomposição de Dantzig-Wolfe (cont.)

## Algoritmo de Dantzig-Wolfe (Geração de colunas)

#### Passo 1:

Assuma que o problema mestre (DW) é viável.

Encontre um conjunto inicial de colunas  $\Lambda$  para o problema mestre restrito (DWR) que forme uma base.

#### Passo 2:

Passo 3:

Resolva (DWR) e encontre as variáveis duais ótimas  $(u, u_0)$ .

Se  $\xi_j = f_j - up^j - u_0 \ge 0$  pare, a solução ótima de (DWR)

Resolva o subproblema  $(DWS(u, u_0))$  e seja  $x^j$  a solução ótima.

é ótima para (DW) também. Se não vá para o Passo 4

#### basso 4:

Adicione a coluna  $[p^j,1]=[Ax^j,1]$  ao problema mestre restrito (DWR). Faça  $\Lambda \longleftarrow \Lambda \cup \{j\}$  e vá para o **Passo 2**.

### Estruturas bloco angulares

⊳ O problema mestre da relaxação linear:

max 
$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (c^k x^{k,t}) \lambda_{k,t}$$
(DWBA) s.a. 
$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (A^k x^{k,t}) \lambda_{k,t} = b$$

$$\sum_{t=1}^{T_k} \lambda_{k,t} = 1, \qquad k = 1, \dots, \dots$$

$$\lambda_{k,t} \ge 0, t = 1, \dots, T^k, \qquad k = 1, \dots, \dots$$

- > Coluna associada a  $x \in X^k$ :  $[c^k x, A^k x, e_k]^T$ .
- $\triangleright$  Variáveis duais associadas às restrições acopladoras:  $\{\pi_i\}_{i=1}^m$ .
- $\triangleright$  Variáveis duais associadas às restrições de convexidade:  $\{\mu_k\}_{k=1}^K$

Cid C. de Souza

Geração de Colunas

Estruturas bloco angulares

$$> X^k = \{x^k \in \mathbb{Z}_+^{n_k} \mid D^k x^k \le d_k\} \text{ para } k = 1, \dots, K;$$

 $\triangleright$  Pontos **viáveis** de  $X^k$ :  $\{x^{k,t}\}_{t=1}^{T_k}$ ;

> Pelo Teorema de Minkowski:

$$X^{k} = \{x^{k} \in \mathbb{R}^{n_{k}} \mid x^{k} = \sum_{t=1}^{T_{k}} \lambda_{k,t} x^{k,t},$$

$$\sum_{t=1}^{T_{k}} \lambda_{k,t} = 1,$$

$$\lambda_{k,t} \in \{0,1\}, t = 1, \dots, T_{k}\}$$

### Estruturas bloco angulares

- ▷ Limitante dual para o valor ótimo da relaxação:
- Subproblemas:  $(c^k \pi A^k)x \mu_k \xi_k \le 0, \ \forall x \in X^k$ .
- Para  $\xi = (\xi_1, \xi_2, \dots, \xi_K)$ ,  $(\pi, \mu + \xi)$  é dual viável para (DWBA). Por quê ?
- Logo,  $z(DWBA) \le \pi b + \sum_{k=1}^{K} (\mu_k + \xi_k)$ .
- Critério de parada alternativo para o algoritmo: Δ

se as soluções dos subproblemas  $(\tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^K)$  satisfazem às restrições acopladoras então elas formam uma solução ótima para o problema original (custo igual ao limitante dual).

$$\sum_{k} c^{k} \tilde{x}^{k} = \sum_{k} \pi A^{k} \tilde{x}^{k} + \sum_{k} \mu_{k} + \sum_{k} \xi_{k} = \pi b + \sum_{k} (\mu_{k} + \xi_{k})$$

Cid C. de Souza

Geração de Colunas

19

### Estruturas bloco angulares

 $\triangleright$  Problema *mestre restrito*:

(DWRBA) 
$$\max\{\tilde{c}\tilde{\lambda} \mid \tilde{A}\tilde{\lambda} = \tilde{b}, \tilde{\lambda} \ge 0\},\$$

onde  $\tilde{b} = [b,1]^T$ e  $\tilde{A}$ é um subconjunto das colunas da matriz de coeficientes de (DW) contendo uma base.

de (DWRBA) é viável para (DWBA). Logo, se  $\tilde{\lambda}^*$  é a solução ótima de Limitante primal para o valor ótimo da relaxação: toda solução viável (DWRBA) a qual estão associadas as variáveis duais  $\pi$ e  $\mu,$ tem-se: Δ

$$z(\text{DWRBA}) = \tilde{c}\tilde{\lambda}^* = \sum_{i=1}^m \pi_i b_i + \sum_{k=1}^K \mu_k \le z(\text{DWBA}).$$

 $\triangleright$  Geração de colunas: para todo  $k=1,\ldots,K$  resolva o subproblema correspondente

$$\xi_k = \max\{(c^k - \pi A^k)x - \mu_k \mid x \in X^k\}.$$

Se  $\xi_k > 0$  para algum k, adiciona coluna no mestre se não a solução é ótima (para a relaxação!).

## Geração de colunas para IP 0–1

- Ao terminar de resolver o problema mestre da relaxação, a solução tipicamente não é inteira. Só temos um limitante dual sobre o valor ótimo!
- Solução : usar geração de colunas dentro de um algoritmo branch-andbound, obtendo-se um algoritmo do tipo branch-and-price.  $\triangle$
- > Problema original:

(IP) 
$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} c^k x^k$$
$$\sum_{k=1}^{K} A^k x^k = b$$
$$D^k x^k \le d_k \qquad k = 1, \dots, K$$
$$x^k \in \mathbb{B}^{n_k} \qquad k = 1, \dots, K$$

Cid C. de Souza

Geração de Colunas

21

Qualidade dos limitantes

- Qual o melhor limitante dual que pode ser obtido para o problema <u>inteiro</u> resolvendo-se a <u>relaxação</u> do **problema mestre** ? Δ
- $z(DWBA) = \max\{\sum_{k=1}^{K} c^k x^k | \sum_{k=1}^{K} A^k x^k = b, x^k \in conv(X^k), k = 1, ..., K\}$ Proposição 1 Δ
- dualizar as restrições acopladoras (K subproblemas lagrangeanos independentes e fáceis de resolver).

Geração de colunas × Relaxação Lagrangeana:

Δ

Seja  $z_{LD}$  o valor ótimo do dual lagrangeano quando os K subproblemas

Teorema 1  $w_{LD} = z(\mathbf{DWBA})$ .

Δ

lagrangeanos são resolvidos <u>exatamente</u>.

 $\triangle$ 

## Geração de colunas para IP 0-1

- = 0} e Seja S o conjunto de todas as soluções viáveis,  $S_0 = S \cap \{x \mid x_j^\ell$  $S_1 = S \cap \{x \mid x_j^{\ell} = 1\}.$
- Como alterar o problema mestre e o subproblema em  $S_0$  e  $S_1$  ?
- Se  $x_j^k = \sum_{t=1}^{T_k} \lambda_{k,t} x_j^{k,t} = \delta$ , para  $\delta \in \{0,1\}$ ,  $x_j^{k,t}$  deve ter valor  $\delta$  para todo par (k,t) onde  $\lambda_{k,t} > 0$ .
- $\triangleright$  O problema mestre (IPM( $S_i$ )) para  $S_i$ ,  $i \in \{0,1\}$ , será:

max 
$$\sum_{k \neq \ell} \sum_{t} (c^k x^{k,t}) \lambda_{k,t} + \sum_{t \mid x_j^{\ell,t} = i} (c^\ell x^{\ell,t}) \lambda_{\ell,t}$$
s.a. 
$$\sum_{k \neq \ell} \sum_{t} (A^k x^{k,t}) \lambda_{k,t} + \sum_{t \mid x_j^{\ell,t} = i} (A^\ell x^{\ell,t}) \lambda_{\ell,t} = b,$$

$$\sum_{t=1}^{T_k} \lambda_{k,t} = 1, \forall k \neq \ell,$$

$$\sum_{t \mid x_j^{\ell,t} = i} \lambda_{\ell,t} = 1,$$

$$\lambda_{k,t} \geq 0, t = 1, \dots, T^k, k = 1, \dots, K.$$

Cid C. de Souza

Geração de Colunas

Geração de colunas para IP 0-1

> Reformulação (problema mestre de DW):

(IPM) max 
$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (c^k x^{k,t}) \lambda_{k,t}$$

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (A^k x^{k,t}) \lambda_{k,t} = b$$

$$\sum_{t=1}^{T_k} \lambda_{k,t} = 1 \qquad k = 1, \dots, K$$

$$\lambda_{k,t} \ge 0, \qquad t = 1, \dots, T^k \qquad k = 1, \dots, K$$

- Como  $x^{k,t} \in X^k$  são vetores 0–1 <u>distintos</u>,  $\tilde{x}^k = \sum_{t=1}^{T_k} \tilde{\lambda}_{k,t} x^{k,t}$  está em  $\mathbb{B}^{n_k}$  se e somente se  $\tilde{\lambda}$  é inteiro. Δ
- Assim, se a solução ótima de (IPM)  $\tilde{\lambda}$ é fracionária, existem  $\ell$ e jtais que  $\tilde{x}_j^\ell$ é fracionária. Logo, pode-se fazer uma ramificação usual nesta variável. Δ

### e partição Problemas implícitos de empacotamento

- Dados: conjunto finito  $M = \{1, ..., m\}$  e K subconjuntos de M descritos implicitamente. Encontrar um empacotamento ou partição de M formado por alguns deste subconjuntos. Δ
- ▷ Modelo geral:
- $z = \max\{\sum_{i=1}^{K} c^k x^k : \sum_{i=1}^{K} A^k x^k \le b, x^k \in X^k, \text{ para todo } k = 1, \dots, K\}.$
- Especializando:  $x^k=(y^k,w^k)$ , com  $y^k\in\{0,1\}^m$  sendo o vetor de incidência de um subconjunto k de M;  $c^k=(e^k,f^k),\,A^k=(I,0)$  e  $b=\mathbb{1}.$ Δ
- Variáveis auxiliares  $w^k$ : necessárias para impor que um subconjunto representado por  $y^k$  seja viável e para o cálculo do seu custo. (exemplos ...!) Δ
- $\,\rhd\,$  A formulação torna-se:

$$z = \max\{\sum_{k=1}^{K} (c^k y^k + f^k w^k) \mid \sum_{k=1}^{K} y^k \le \mathbb{1}_m, (y^k, w^k) \in X^k, k = 1, \dots, K\}.$$

Cid C. de Souza

Geração de Colunas

Geração de colunas para IP 0-1

> O subproblema referente a  $X^{\ell}$  para  $S_i$ ,  $i \in \{0,1\}$ , será:

$$\xi_{\ell}(S_i) = \max\{(c^{\ell} - \pi A^{\ell})x - \mu_{\ell} \mid x \in X^{\ell}, x_j = i\}.$$

Para os demais valores de k, o subproblema permanece *inalterado!* 

- $\triangleright$ Outra idéia para ramificação no branch-and-bound: fazer branching em uma variável fracionária  $\lambda_{k,t}.$
- ▷ Dificuldades com esta alternativa:
- árvore de enumeração tende a ficar muito desbalanceada pois fixando-se  $\lambda_{k,t}$  em zero praticamente não se altera o problema original.
- pode voltar a ser gerada.

### Multi-item Lot-sizing

São dadas demandas  $d_t^k$  para os itens  $k=1,\ldots,K$  em um horizonte de tempo  $t=1,\dots,n$ . Todos itens são produzidos em uma única máquina, esta máquina produz no máximo um item por período e tem uma capacidade de produção  $C_t^k$  para cada item k e período t. Os custos de produção (p), armazenamento (h) e setup (f) são conhecidos. Δ

Objetivo: minimizar o custo de produção.

$$\max \sum_{k=1}^{K} \sum_{t=1}^{n} (p_t^k x_t^k + h_t^k s_t^k + f_t^k y_t^k)$$
s.a. 
$$\sum_{k=1}^{K} y_t^k \le 1,$$
 
$$(x^k, s^k, y^k) \in X^k,$$
 
$$k = 1, \dots, n$$

$$(x^k, s^k, y^k) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \times \mathbb{B}^n \mid s_{t-1}^k + x_t^k = d_t^k + s_t^k,$$

$$x_t^k \le C_t^k y_t^k, \ t = 1, \dots, n \}.$$

Cid C. de Souza

Geração de Colunas

Problemas implícitos de empacotamento e partição

 $\, \triangleright \,$  Sendo  $(y^{k,t}, w^{k,t})$ a t-ésima solução viável no conjunto  $X^k$ e  $\lambda_{k,t}$ a variável correspondente a esta solução, o  $problema\ mestre$ torna-se:

max 
$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (e^k y^{k,t} + f^k w^{k,t}) \lambda_{k,t}$$
s.a. 
$$\sum_{k=1}^{K} \sum_{t \mid y_i^{k,t} = 1}^{K} \lambda_{k,t} \le 1, \quad \forall i \in M$$

$$\sum_{t=1}^{T_k} \lambda_{k,t} = 1, \quad k = 1, \dots, K$$

$$\sum_{t=1}^{T_k} \lambda_{k,t} = 1, \quad k = 1, \dots, K$$

- > Exemplos de problemas que se encaixam nesta forma especial:
  - $\circ$  Multi-item Lot-sizing;
- o Clustering (Classificação);
- o Capacitated Vehicle Routing (CVRP).

#### (CVRP)CapacidadeVeículos com deRoteamento

- cada aresta  $e \in E$ ; K veículos idênticos com capacidade de carga C e Dados: grafo G = (V, E), com |V| = n e |E| = m, representado locais sendo o vértice 0 um depósito e o restante clientes; custos  $c_e$  para demanda  $d_i$  para cada cliente  $i \in V \setminus \{0\}$ . Δ
- Solução viável: conjunto de subciclos contendo o depósito e tais que: Δ
- (i) cada vértice  $i \in V \setminus \{0\}$  está em exatamente um subciclo;
- (ii) a soma das demandas em cada subciclo é menor ou igual a C.
- Nota: cada subciclo denota a rota de um dos veículos.
- $\triangleright$  *Objetivo*: minimizar a soma dos custos dos subciclos.

Cid C. de Souza

Geração de Colunas

Clustering (Classificação)

Dados: um grafo G = (V, E) com n = |V| e m = |E|, custos  $c_e$  nas arestas, pesos  $d_i$  nos vértices e uma capacidade C para as classes. Δ

Objetivo: Particionar os vértices de V em K classes (possivelmente vazias) tal que a soma dos pesos nos vértices de cada classe não exceda C, minimizando a soma dos custos das arestas internas às classes.

max 
$$\sum_{k=1}^{K} \sum_{e \in E} (c_e w_e^k)$$
 s.a. 
$$\sum_{k=1}^{K} y_i^k = 1, \quad i \in V$$
 
$$(w^k, y^k) \in X^k, \quad k = 1, \dots, K,$$

onde 
$$X^k = \{ (w^k, y^k) \in \mathbb{B}^m \times \mathbb{B}^n \mid w_{ij}^k \leq y_i^k, w_{ij}^k \leq y_j^k, w_{ij}^k \geq y_i^k + y_j^k - 1, (i, j) \in E, \sum_{i \in V} d_i y_i^k \leq C \}$$
 e  $y_i^k = 1$   $(w_{ij}^k = 1)$  se e somente se o(s) vértice(s)  $i$  (e  $j$ ) está (estão) na

## Partição com conjuntos Idênticos

- > Os problemas de Classificação de Roteamento têm a propriedade de que os clusters e os veículos, respectivamente, são i<mark>nter-</mark> cambiáveis, ou seja, independem de k.
- Neste caso, a geração de colunas pode ser especializada ainda mais. Fazendo  $X^k=X,\;(e^k,f^k)=(e,f)$  e  $T_k=T$  para todo k, define-se  $\lambda_t=\sum_{k=1}^K\lambda_{k,t}$  e o problema mestre será: Δ

$$\max \sum_{i=1}^{T} (ey^t + fw^t) \lambda_t$$
s.a. 
$$\sum_{t|y_i^t=1}^T \lambda_t = 1, \ \forall i \in M, \quad (\pi_i)$$

$$\sum_{t=1}^T \lambda_t = K, \quad (\mu)$$

$$\lambda \in \mathbb{B}^T.$$

Cid C. de Souza

Geração de Colunas

31

 $Roteamento\ de\ Veículos\ com\ Capacidade\ ({ t CVRP})$ 

$$\max \sum_{k=1}^{K} \sum_{e \in E} (c_e w_e^k)$$
s.a. 
$$\sum_{k=1}^{K} y_i^k = 1, \quad \forall i \in V \setminus \{0\}$$

$$(w^k, y^k) \in X^k, \quad k = 1, \dots, K$$

onde  $X^k$  é o conjunto de pontos  $(w^k, y^k) \in \mathbb{B}^m \times \mathbb{B}^n$  satisfazendo:

$$\sum_{e \in \delta(i)} w_e^k = 2y_i^k, \qquad \forall i \in V \setminus \{0\}$$

$$\sum_{i \in V} d_i y_i^k \le C, \qquad \forall i \in V \setminus \{0\}$$

$$\sum_{e \in E(S)} w_e^k \le \sum_{i \in S \setminus \{k\}} y_i^k, \qquad \forall k \in S, \ S \subseteq V \setminus \{0\}$$

$$y_0^k = 1.$$

## Partição com conjuntos Idênticos

Prova da Proposição  $\Im$ : supor que  $0<\tilde{\lambda}_k<1$  e que  $y_i^k=1$ . Como  $\sum_{t|y_i^t=1}\tilde{\lambda}_t=1$ , existe  $\ell$  tal que  $0<\tilde{\lambda}_k<1$ . Como não existem duas colunas iguais na base, existe  $j \in M \setminus \{i\}$  tal que  $y_i^k=1~\underline{\mathrm{ou}}~y_j^\ell=1$ mas não <br/>ambos. Então: Δ

$$1 = \sum_{t|y_i^t=1} \tilde{\lambda}_t > \sum_{t|y_i^t=y_j^t=1} \tilde{\lambda}_t,$$

a designaldade é estrita pois a última somatória **não** inclui simultaneamente as variáveis  $\lambda_k$  e  $\lambda_\ell$ .

Cid C. de Souza

Geração de Colunas

Partição com conjuntos Idênticos

▷ Subproblema: é único!

$$\xi = \max\{(e - \pi)y + fw - \mu : (y, w) \in X\}.$$

- ▷ Branching de Ryan e Foster (1981):
- seja  $\tilde{\lambda}$  uma solução básica viável do problema mestre  $\overline{relaxado}$ ;

Proposição 3. Se  $\tilde{\lambda}$  é fracionária, então existem duas linhas  $i \in j$  em M tais que  $0 < \sum_{t|y_i^t = y_j^t = 1} \lambda_t < 1$ . Branching: o conjunto de soluções S é dividido em  $S_0=$  $S \cap \{\sum_{t|y_i^t=y_j^t=1} \lambda_t = 0\} \text{ e } S_1 = S \cap \{\sum_{t|y_i^t=y_j^t=1} \lambda_t = 1\};$ 

Ou seja, em  $S_1$  considera-se apenas colunas que cobrem ambas as linhas  $i \in j$ . Todas as demais estão em  $S_0$ .

o O