

Real-Time Cadansaanpassing in een Automatische Fietstransmissie

Arno Cools

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Probleemstelling

- Fiets met automatische transmissie
- Automatische aanpassing van de snelheid van de trappers en de ondersteuning
- Manuele aanpassing mogelijk (cadans & ondersteuningsniveau)

Onderzoeksdoel

- Voorspellen optimale rpm
- Cadans ⇔ FCC ⇔ optimale rpm

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Benodigdheden

- Fiets genereert data
 - Snelheid
 - Hoek van trapas
 - Vermogen motor op voor- en achterwiel
 - •
- Weinig data beschikbaar

Fietssimulatie

- Genereert data aan 10Hz
- Aanname fietserskoppel

Last model

- $F_{grav} = totalmass * g * sin(slope)$
- $F_{friction} = totalmass * g * cos(slope) * c_r$

•
$$F_{aero} = \frac{c_d * \rho_{aero} * A_{aero} * v_{fiets}^2}{2}$$

• $F_{load} = F_{grav} + F_{friction} + F_{aero}$

Zwaartekracht coëfficiënt
Rolweerstand coëfficiënt
Luchtweerstandscoëfficiënt
Luchtdichtheid
Frontaal oppervlakte fietser

Freely Chosen Cadence (FCC)

Hypothese: Lineair verloop

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Preprocessing

- Sequenties (input)
- Normalizeren?
- Hoek van trapas
- Noise?

INSERT FOTO HIER

Noise

- Fast Fourier Transformatie
- Weg 20Hz
- Motor 13000+Hz

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Modellen

- LSTM
- Decision tree + random forest
- Passive Aggressive Algorithm (Perceptron)

LSTM

- +- Consistentie
- Snelheid(niet meer aangehaald)

Decision tree + random forest

Tree

- + Snelheid
- Noise
- Consistentie
- Online

Random Forest

- +- Snelheid
- +- Noise
- +- Consistentie
- Online

Passive Aggressive Algorithm (Perceptron)

- + Snelheid
- + Online
- Noise

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Postprocessing

- Geen
- Gemiddelde
- Exponential Smoothing
- Moving Average

Geen preprocessing

Gemiddelde

Exponential Smooting

$$rpm_t = \alpha * x_t + (1 - \alpha) * s_{t-1}$$

Moving Average

$$rpm_t = \frac{\sum_{i=1}^4 rpm_{t-i} + x_t}{5}$$

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Wat volgt?

- Model testen op echte data
- Model verbeteren
- Model op fiets zetten

