Matematika pro dementy

Fantomas

Únor 2025

Abstrakt

Vypracované otázky z matematiky, tipy a triky a tak

Obsah

1	Výroková logika a množiny	5
2	Mnohočleny, mocniny a odmocniny	10
3	Lomené výrazy	11
4	Lineární rovnice a nerovnice	13
5	Soustavy rovnic a nerovnice	21
6	Kvadratická rovnice a nerovnice	26
7	Lineární funkce a její vlastnosti	29
8	Kvadratická funkce a její vlastnosti	31
9	Mocninná a lomená funkce a její vlastnosti	32
10	Exponenciální a logaritmická funkce	36
11	Goniometrické funkce	41
12	Množiny bodů dané vlastnosti	45
13	Konstrukce trojúhelníků a čtyřúhelníků	52
14	Shodná zobrazení	52
15	Podobná zobrazení	52
16	Pythagorova a Eukleidovy věty	52
17	Trigonometrie obecného trojúhelníku	52
18	Stereometrie – polohové vlastnosti	52
19	Stereometrie – metrické vlastnosti	52
20	Stereometrie – objem a povrch těles	52
21	Analytická geometrie – body a vektory	52
22	Analytická geometrie – přímka a polorovina v E2	52

23 Analytická geometrie – přímka a rovina v E3	52
24 Analytická geometrie – kuželosečky	52
25 Kombinatorika	52
26 Pravděpodobnost	52
27 Statistika	52
28 Posloupnosti	52
29 Limita posloupnosti a nekonečná geometrická řada	52
30 Limita a derivace funkce	52

1 Výroková logika a množiny

Množiny

Množinou rozumíme souhrn nějakých objektů (prvků). Zápis $x \in M$ znamená že prvek x náleží množině M. Množinu můžeme určit výčtem prvků, charakteristickou vlastností nebo množinovými operacemi. Rovnost množin znamená, že každý prvek množiny M je prvkem množiny N a současně každý prvek množiny N je prvkem množiny M.

Podmnožina

Množinu M nazýváme podmnožinou množiny N, právě když je každý prvek množiny M prvkem množiny N. Zápis symbolem \subseteq nebo \subset ; $M \subset N$ značí, že M je vlastní podmnožinou množiny N, tedy $M \neq N$; $M \subseteq N$ značí nevlastní podmnožinu, tedy $M \subset N$ nebo M = N.

Charakteristická vlastnost

Zápis $A = \{x \in M; vlastnost\}$, kde každý prvek z množiny M, mající danou vlastnost, patří do množiny A.

Množinové operace

Sjednocení $A \cup B$, je množina všech prvků, patřících alespoň do jedné z množin A, B.

Průnik $A \cap B$, je množina všech prvků, patřících zároveň do obou množin A, B.

Rozdíl $A \setminus B$, je množina všech prvků, patřících do množiny A a **nepatřících** do množiny B.

! Sjednocení i průnik jsou komutativní a asociativní operace.

Doplněk A'_M množiny A v množině M je množina všech prvků množiny M, které nepatří do množiny A $\Rightarrow A'_M = M \setminus A$.

Intervaly

Nechť a, b jsou dvě reálná čísla, že a < b, pak

 $(a,b) = \{x \in \mathbb{R}; a < x < b\}$ je otevřený interval

 $(a,b) = \{x \in \mathbb{R}; a < x \le b\}$ je polootevřený interval

 $\langle a, b \rangle = \{x \in \mathbb{R}; a \le x < b\}$ je polouzavřený interval

 $\langle a,b\rangle=\{x\in\mathbb{R};a\leq x\leq b\}$ je uzavřený interval

Výroky

Výrokem rozumíme sdělení, o kterém má smysl uvažovat jeho pravdivost. Každý výrok má **pravdivostní hodnotu**, 0 (nepravda) nebo 1 (pravda). **Hypotéza** je výrok jehož pravdivostní hodnotu neznáme.

Výroková formule je tvrzení s proměnou, po dosazení se stane výrokem.

Negace výroku

Negace výroku, "Není pravda, že A", zapisujeme $\neg A$, vždy opačná pravdivostní hodnota.

Logické operátory

Pomocí těchto operátorů tvoříme složené výroky nebo formule. Konjunkce, "A a současně (et) B", zapisujeme $A \wedge B$

A	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Disjunkce, "A nebo (vel) B", zapisujeme $A \vee B$

Α	В	$A \lor B$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Ostrá disjunkce, "Buď A, nebo B", zapisujeme $A \veebar B$

A	В	$A \veebar B$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Implikace, "Z A plyne B", zapisujeme $A \Rightarrow B$

A	В	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Ekvivalence, "A je ekvivalentní s B.", "A právě tehdy, když B.", zapisujeme $A \Leftrightarrow B$

A	В	$A \Leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Tautologie

Tautologie je výrok/formule, který je vždy pravdivý. Kontradikce je výrok/formule, který je vždy nepravdivý. Důležité tautologie:

- $\neg(\neg A) \equiv A$
- $\neg (A \Rightarrow B) \equiv A \land \neg B$
- $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$
- $\bullet \neg (A \land B) \equiv \neg A \lor \neg B$
- $A \Rightarrow B \equiv \neg A \lor B$
- $\neg (A \Leftrightarrow B) \equiv A \veebar B$
- $\neg (A \lor B) \equiv \neg A \land \neg B$
- $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$
- $\neg (A \veebar B) \equiv A \Leftrightarrow B$

Kvantifikace výrokových formulí

Výroková formule $\varphi(x)$, obsahující proměnnou x, se stane výrokem po kvantifikaci x.

Obecný kvantifikátor \(\forall \), "pro každé, pro všechna, ..."

Malý kvantifikátor ∃, "existuje alespoň jedno, nějaké, ..."

Př.: Formuli $\varphi(x) \sim x > 0$ lze kvantifikovat:

 $(\forall x \in \mathbb{N})x > 0$... Všechna přirozená čísla jsou kladná.

 $(\exists x \in \mathbb{N})x > 0$... Existuje alespoň jedno přirozené číslo větší než 0.

Negace kvantifikátorů

Negace výroku $(\forall x)\varphi(x)$ je výrok $(\exists x)\neg\varphi(x)$. Negace výroku $(\exists x)\varphi(x)$ je výrok $(\forall x)\neg\varphi(x)$.

Věta, definice, důkaz, správné úsudky

Matematická věta je důležité, netriviální a dostatečně obecné tvrzení neboli výrok. Věta obsahuje předpoklad a závěr. Axiom (postulát) je tvrzení, které se předem předpokládá za platné. Definice slouží k zavedení nových pojmů; stanoví nový pojem a určí ho pomocí již stanovených.

Správný úsudek

Správný úsudek je takový, kdy je z pravdivých premis vyvozen pravdivý závěr.

Zákon vyloučení možnosti:

$p \lor q$
$\neg p$
\overline{q}

Zákon odloučení:

$$p \Rightarrow q$$

$$p$$

$$q$$

Zákon nepřímé úvahy:

${\bf Z\'{a}kon\ kontrapozice:}$

$$\begin{array}{c}
p \Rightarrow q \\
\neg q \Rightarrow \neg p
\end{array}$$

2 Mnohočleny, mocniny a odmocniny

Zápis $1 + \sqrt{1,5625 - (\frac{3}{4})^2}$ je **číselný výraz** s hodnotou 2.

Zápis $x^2 + 2xy + 1$ je výraz s proměnnými x, y.

Definiční obor výrazu je množina všech přípustných hodnot proměnné, pro které má výraz smysl.

Výraz $V=x^2+1$ má definiční obor $\mathbb R$

Výraz $V = \frac{1}{y}$ má smysl pro nenulové hodnoty y

 $\Rightarrow D_V: y \in \mathbb{R} \setminus \{0\} \text{ nebo } D_V = (-\infty, 0) \cup (0, +\infty)$

Mnohočleny

Mnohočlen (polynom) s jednou proměnnou je výraz $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0$, kde n je stupeň mnohočlenu.

 $a_1x + a_0$, resp. ax + b je linearní dvojčlen.

 $a_2x^2 + a_1x + a_0$, resp. $ax^2 + bx + c$ je kvadratický trojčlen.

Dělení mnohočlenu mnohočlenem

$$(4x^3 + 3x^2 - 2x - 5) : (x - 1) = 4x^2 + 7x + 5$$
$$4x^3 - 4x^2$$

$$0x^3 + 7x^2 - 2x$$

$$0x^3 + 7x^2 - 7x$$

$$0x^3 + 0x^2 + 5x - 5$$

$$0x^3 + 0x^2 + 5x - 5$$

$$0x^3 + 0x^2 + 0x - 0$$

pozn. zbytek stejně jako u číselného dělení

Umocňování

- $\bullet \ (AB)^n = A^n B^n$
- $(A+B)^2 = A^2 + 2AB + B^2$
- $(A-B)^2 = A^2 2AB + B^2$

$$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$$

•
$$(A-B)^3 = A^3 - 3A^2B + 3AB^2 - B^3$$

•
$$A^2 - B^2 = (A - B)(A + B)$$

•
$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

•
$$A^3 + B^3 = (A+B)(A^2 - AB + B^2)$$

•
$$(-A+B)^2 = (A-B)^2$$

•
$$(-A - B)^2 = (A + B)^2$$

•
$$(A+B)^n = \sum \binom{n}{k} a^{n-k} b^k$$

3 Lomené výrazy

Rozšiřování a krácení lomených výrazů

Rozšířit lomený výraz znamená vynásobit čitatele i jmenovatele stejným číslem.

$$\frac{x}{x+2} = \frac{x(x-2)}{(x+2)(x-2)} = \frac{x^2 - 2x}{x^2 - 4}$$

Krátit lomený výraz znamená vydělit čitatele i jmenovatele stejným číslem.

$$\frac{a^2bc^3}{abc^2} = \frac{a^2bc^3:abc}{abc^2:abc} = \frac{ac^2}{c} = ac$$

Sčítání a odčítání lomených výrazů

Nejdříve rozložíme všechny jmenovatele na součin, určíme společný jmenovatel jako NSN všech jmenovatelů, každý LV rozšíříme na společný jmenovatel, sečteme a odečteme čitatele, rozložíme čitatele na součin a zkrátíme (je-li to možné) a určíme podmínky.

$$V = \frac{3+2x}{2-x} - \frac{2-3x}{2+x} + \frac{x(16-x)}{x^2-4}$$

$$V = \frac{3+2x}{2-x} - \frac{2-3x}{2+x} + \frac{x(16-x)}{(x+2)(x-2)}$$

$$V = -\frac{(3+2x)(x+2)}{(x-2)(x+2)} - \frac{(2-3x)(x-2)}{(x+2)(x-2)} + \frac{x(16-x)}{(x+2)(x-2)}$$

$$V = \frac{-7x - 6 - 2x^2 - 8x + 4 + 3x^2 + 16x - x^2}{(x-2)(x+2)}$$

$$V = \frac{x-2}{(x-2)(x+2)}$$

$$V = \frac{1}{x+2}$$

Vyjadřování neznámé ze vzorce

Při vyjadřování neznámé ze vzorce využíváme:

- záměna stran vzorce
- vynásobení/vydělení vzorce nenulovým číslem nebo výrazem
- přičtení/odečtení libovolného čísla nebo výrazu
- pokud jsou ve vzorci nezáporné veličiny, pak umocnění nebo odmocnění

Výrazy s mocninami a odmocninami

Pro každá reálná a, b a pro každá reálná r, s platí:

- $\bullet \ a^r \cdot a^s = a^{r+s}$
- \bullet $(a^r)^s = a^{r \cdot s}$
- $\bullet \ \ \frac{a^r}{a^s} = a^{r-s}$
- $(ab)^r = a^r b^r$
- $\bullet \left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$
- $a^0 = 1, a \neq 0$
- $\bullet \ a^{-r} = \frac{1}{a^r}$
- $\bullet \sqrt[s]{a^r} = a^{\frac{r}{s}}$

4 Lineární rovnice a nerovnice

Lineární rovnice

Lineární rovnice má tvar $ax + b = 0, a \neq 0$. Má jediný kořen $x = -\frac{b}{a}$. Pokud užitím ekvivalentních úprav získáme tvar 0x + b = 0, pak má rovnice nekonečně mnoho řešení (b = 0), nebo nemá řešení $(b \neq 0)$.

Definiční obor rovnice je množina všech přípustných hodnot jejích kořenů; $x_1 \notin D_r \Rightarrow x_1 \notin K$.

Lineární nerovnice

Lineární nerovnice má tvar:

- ax + b < 0
- ax + b > 0
- $ax + b \le 0$
- $ax + b \ge 0$

Pokud lze nerovnici převést na tvar $ax + b \le 0$:

$$b < 0 \Rightarrow K = \mathbb{R} \lor b > 0 \Rightarrow K = \{\}$$

Pokud lze nerovnici převést na tvar $ax + b \ge 0$:

$$b \ge 0 \Rightarrow K = \mathbb{R} \lor b < 0 \Rightarrow K = \{\}$$

Pokud lze nerovnici převést na tvar ax + b < 0:

$$b < 0 \Rightarrow K = \mathbb{R} \lor b \ge 0 \Rightarrow K = \{\}$$

Pokud lze nerovnici převést na tvar ax + b > 0:

$$b > 0 \Rightarrow K = \mathbb{R} \lor b \le 0 \Rightarrow K = \{\}$$

Grafické řešení lineární rovnice a nerovnice

Lineární funkce je funkce s předpisem y = ax + bRovnici převedeme na tvar ax + b = cx + d a budeme uvažovat f(x) = ax + b a g(x) = cx + d, kořen leží v $f(x) \cap g(x)$.

Obrázek 1: 2x-1=2-x

Lineární nerovnici řešíme podobně jako rovnici: převedeme na tvar ax + b = cx + d a budeme uvažovat f(x) = ax + b a g(x) = cx + d, nerovnice mohou mít jeden z tvarů:

Obrázek 2: $-x - 1 > 2x - \frac{5}{2}$

Obrázek 3: $-x - 1 < 2x - \frac{5}{2}$

Obrázek 4: $-x - 1 \ge 2x - \frac{5}{2}$

Obrázek 5: $-x - 1 \le 2x - \frac{5}{2}$

Rovnice a nerovnice v součinovém tvaru

Při řešení využíváme $ab=0 \Leftrightarrow a=0 \lor b=0.$ Př.:

$$x(x+2) = 0$$
$$x = 0 \lor x = -2$$
$$K = \{-2; 0\}$$

Lze též použít **metodu nulových bodů** Př.:

$$4x^{2} - 6x < 2x$$
$$4x^{2} - 8x < 0$$
$$4x(x - 2) < 0$$
$$NB = \{0, 2\}$$

	$(-\infty;0)$	(0;2)	$(2;+\infty)$
4x -		+	+
x-2	-	_	+
*	+	-	+

$$K = (0; 2)$$

Rovnice s neznámou ve jmenovateli

Má-li rovnice neznámou ve jmenovateli, je nutné vždy stanovit její definiční obor.

Rovnice v podílovém tvaru

Rovnice v podílovém tvaru má na jedné straně jediný zlomek s neznámou ve jmenovateli a na druhé straně nulu. Po stanovení definičního oboru řešíme rovnici tak, že položíme čitatele rovno nule a řešíme jako lineární rovnici nebo převedením na součinový tvar.

Nerovnice v podílovém tvaru

Nerovnici v podílovém tvaru nesmíme vynásobit společným jmenovatelem, který obsahuje neznámou!

Nerovnici v podílovém tvaru převedeme na podílový tvar a řešíme metodou nulových bodů.

Př.:

$$\frac{2x-1}{x+1} \ge 1$$

$$x \ne -1$$

$$\frac{2x-1}{x+1} - 1 \ge 0$$

$$\frac{2x-1-(x+1)}{x+1} \ge 0$$

$$\frac{x-2}{x+1} \ge 0$$

$$NB = \{-1, 2\}$$

	$(-\infty;-1)$	(-1;2)	$\langle 2; +\infty \rangle$
x-2 -		-	+
x+1	x+1 -		+
*	+	-	+

$$K=(-\infty;-1)\cup \langle 2;+\infty)$$

Rovnice s absolutní hodnotou

Absolutní hodnota z reálného čísla je definována jako

$$|a| = \begin{cases} a; & a \ge 0 \\ -a; & a < 0 \end{cases}$$

Také platí:

- |a| = |-a|
- $|a| \ge 0$
- $|ab| = |a| \cdot |b|$

$$\bullet \ |\frac{a}{b}| = \frac{|a|}{|b|}$$

Nejprve určíme argumenty všech absolutních hodnot, ze kterých pak získáme nulové body a intervaly (u intervalu vždy ostrá závorka, kromě NB z jmenovatele). Poté vytvoříme tabulku jako v tabulkové metodě. Řešíme s upravenými tvary dle definice. **Ukaždého kořenu musíme ověřit zda leží v intervalu!**

Př.:

x-3 + 2x = 9					
	$x \in$	$(-\infty;3)$	$\langle 3; +\infty \rangle$		
x	-3	_	+		
x	-3	(x-3)	x-3		

a) b)
$$x \in (-\infty; 3)$$
 $x \in \langle 3; +\infty \rangle$ $-(x-3) + 2x = 9$ $x-3+2x = 9$ $x-3=9$ $x = 6$ $x = 4$ $6 \notin (-\infty; 3)$ $x \in \langle 3; +\infty \rangle$ $x \in \langle 3; +\infty \rangle$

Rovnice má tedy jediný kořen x = 4, tedy $K = \{4\}$.

Rovnici ve tvaru |ax+b|=clze řešit i **rychlejší metodou** bez stanovení intervalů, neboť platí $ax+b=c\vee ax+b=-c$.

I rovnici ve tvaru |ax + b| = |cx + d| lze řešit touto rychlou metodou: $ax + b = cx + d \lor ax + b = -(cx + d)$.

Nerovnice s absolutní hodnotou

Rešíme obdobně jako rovnici s absolutní hodnotou. Z argumentů určíme NB a řešíme nerovnice nahrezené dle definice. Množina řešení je sjednocení množin každého z případů.

$$|x+3| + 3x < 11$$

$$|x \in |(-\infty; 1)| |\langle 1; +\infty \rangle$$

$$|x-1| - |x-1| |x-1| |x-1|$$

a) b)
$$x \in (-\infty, 1) \qquad x \in [1; +\infty) \\ -(x-1) + 3x < 11 \qquad x - 1 + 3x < 11 \\ -x + 1 + 3x < 11 \qquad 4x < 12 \\ x < 5 \qquad x < 3 \\ x \in (-\infty; 5) \qquad x \in (-\infty; 3) \\ K_1 = (-\infty; 1) \cap (-\infty; 5) \qquad K_2 = (-\infty; 3) \cap \langle 1; +\infty \rangle \\ K_1 = (-\infty; 1) \qquad K_2 = \langle 1; 3 \rangle$$

Nerovnice má řešení $K=K_1\cup K_2=(-\infty;3).$

5 Soustavy rovnic a nerovnice

Soustava nerovnic

Soustavu nerovnic s jednou neznámou řešíme vyřešením každé nerovnice zvlášť. Řešením soustavy je $K_1 \cap K_2$. Př.:

$$2x - 5 < 0$$

$$3x + 2 \ge 0$$

$$2x - 5 < 0 \qquad 3x + 2 \ge 0$$

$$2x < 5 \qquad 2x \ge -2$$

$$x < \frac{5}{5} \qquad x \ge -\frac{2}{3}$$

$$K_1 = (-\infty, \frac{5}{2}) \quad K_2 = \langle -\frac{2}{3}, \infty \rangle$$

$$K = K_1 \cap K_2 = \langle -\frac{2}{3}, \frac{5}{2} \rangle$$

Složenou nerovnici ax + b < cx + d < ex + f převedeme na soustavu nerovnic:

$$ax + b < cx + d$$
$$cx + d < ex + f$$

Soustavy rovnic o dvou neznámých

Soustavu dvou rovnic řešíme buď:

- slučovací (sčítací) rovnice vhodně vynásobíme a sečteme
- porovnávací z každé rovnice vyjádříme tutéž neznámou a porovnáme
- dosazovací z jedné rovnice vyjádříme neznámou a dosadíme do druhé

Řešení pomocí inverzních matic

Soustavu m lineárních rovnic o n neznámých ve tvaru

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m1}x_2 + \dots + a_{mn}x_n = b_m$$

lze přepsat jako $A \cdot X = B$.

Je-li v soustavě rovnic $A \cdot X = B$ matice B rovna nulové matici, mluvíme o homogenní soustavě rovnic. Matici X nazýváme maticí řešení.

Maticovou rovnici $A \cdot X = B$ řešíme tak, že vynásobíme obě strany zleva vynásobíme maticí A^{-1}

$$\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$$

$$A^{-1} \cdot \mathbf{A} \cdot \mathbf{X} = A^{-1} \cdot \mathbf{B}$$
 nezapomenout že $A^{-1} \cdot A = E$
$$E \cdot \mathbf{X} = A^{-1} \cdot \mathbf{B}$$
 zde platí že $E \cdot X = X$
$$\mathbf{X} = A^{-1} \cdot \mathbf{B}$$

Př.:

$$4x + y = -2$$
$$3x + y = 5$$

$$A \cdot X = B, \text{ kde } A = \begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix}, B = \begin{pmatrix} -2 \\ 5 \end{pmatrix}.$$
 Určíme inverzní matici $A^{-1} = \begin{pmatrix} 1 & -1 \\ -3 & 4 \end{pmatrix}$ a $X = A^{-1} \cdot B = \begin{pmatrix} 1 & -1 \\ -3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} -7 \\ 26 \end{pmatrix} \Rightarrow x = -7 \land y = 26$

Pokud rozšíříme matici soustavy na tvar (A|B), pak platí, že (Frobeniova věta) soustava je řešitelná, když h(A) = h(A|B). Pokud h(A) se rovná počtu neznámých, má soustava jediné řešení.

Gaussova eliminační metoda

Soustavu převedeme na tvar např. $\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$, kterou pak upravíme do tvaru $\begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow K = \{[a_1, a_2]\}$. Pozn. aut. jestli se někdo dostane k tomuhle, nechť je mu zem lehká.

Cramerovo pravidlo

Nechť je dána soustava n lineárních rovnic o n neznámých $x_1, x_2, ..., x_n$ s maticí soustavy \mathbf{A} .

Matice **A** vznike z matice A nahrazením i-tého sloupce sloupkem pravé strany. Vznikou tři případy:

- det(A) = 0 a pro všechna $i \in \{1, 2, ..., n\}$ platí $det(A_i) = 0 \Rightarrow \text{NMŘ}$
- $\det(A)=0$ a existuje alespoň jedno $i\in\{1,2,...,n\}$ kdy $\det(A_i)\neq 0\Rightarrow$ ŽŘ
- $det(A) \neq 0$ a pro všechna $i \in \{1,2,...,n\}$ platí $x_i = \frac{det(A_i)}{det(A)} \Rightarrow$ právě jedno řešení

Př.:

$$x + y = 2$$

$$x - y = 4$$

$$D_s = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2$$

$$D_x = \begin{vmatrix} 2 & 1 \\ 4 & -1 \end{vmatrix} = -6$$

$$D_y = \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = 2$$

$$x = \frac{D_x}{D_s} = 3 \land y = \frac{D_y}{D_s} = -1$$

$$K = \{[3; -1]\}$$

Grafické řešení soustavy (ne)rovnic o dvou neznámých Soustava rovnic

Soustavu rovnic o dvou neznámých řešíme graficky tak, že si vyjádříme y a sestrojíme grafy funkcí.

$$2x - y = -3 \Rightarrow y = 2x + 3$$
$$x + 3y = -5 \Rightarrow y = -\frac{x + 5}{3}$$

Soustava nerovnic

Soustavu nerovnic řešíme graficky vyřešení každé zvlášť a určením průniku všech polorovin.

$$x + 2 < 0 \Rightarrow x < -2$$
$$y - 1 > 0 \Rightarrow y > 1$$

Soustavy tří rovnic o třech neznámých

Soustavu tří rovnic o třech neznámých řešíme nejčastěji metodou slučovací nebo dosazovací.

Metoda dosazovací: z jedné rovnice vyjádříme jednu neznámou a dosadíme do zbylých dvou. Soustavu dvou rovnic o dvou neznámých vyřešíme.

Metoda slučovací: Vhodně rovnice vynásobíme a sečteme tak, abychom získali soustavu dvou rovnic o dvou neznámých.

Můžeme také použít inverzní matici, GEM nebo Cramerovy vzorce.

6 Kvadratická rovnice a nerovnice

Rovnici nazýváme kvadratickou, pokud lze převést na tvar $ax^2 + bx + c = 0$. Číslo a nazýváme kvadratický koeficient, b lineární koeficient a c absolutní člen.

- Ryze kvadratická $b = 0 \land c \neq 0$ $x^2 4 = 0$
- Kvadratická bez absolutního členu $b \neq 0 \land c = 0$ $x^2 + 2x = 0$
- Úplná kvadratická $b \neq 0 \land c \neq 0$ $2x^2 + 4x 4 = 0$

Ryze kvadratická rovnice

Ryze kvadratická rovnice $ax^2 + c = 0$ je řešitelná právě když $a \cdot c < 0$. Řešíme ji převedním pomocí rozdílu čtverců. Př.:

$$4x^{2} - 8 = 0$$

$$4 \cdot (-8) < 0 \Rightarrow \text{je řešitelná}$$

$$4(x^{2} - 2) = 0$$

$$4(x - \sqrt{2})(x + \sqrt{2}) = 0$$

$$K = \{-\sqrt{2}, \sqrt{2}\}$$

Kvadratická rovnice bez absolutního členu

Kvadratická rovnice bez absolutního členu $ax^2 + bx = 0$ je řešitelná vždy a jeden z kořenů je roven nule. Řešíme převedením na součinový tvar vytknutím x. Př.:

$$3x^{2} + 18x = 0$$
$$3x(x+6) = 0$$
$$K = \{-6; 0\}$$

Úplná kvadratická

Řešíme pomocí diskriminantu a dosazením do vzorce.

$$D = b^2 - 4ac \wedge x_{1/2} = \frac{-b \pm \sqrt{D}}{2a}$$
.

•
$$D > 0 \Rightarrow K = \{x_1, x_2\}, |K| = 2$$

•
$$D = 0 \Rightarrow K = \{x_1/2\}, x_1 = x_2, |K| = 1$$

•
$$D < 0 \Rightarrow K = \{\}, |K| = 0$$

Rovnice vyšších řádů řešené pomocí KR

Bikvadratická rovnice ve tvaru $ax^4 + bx^2 + c = 0$, kterou substitucí $y = x^2$ převedeme na kvadratickou rovnici. Př.:

$$x^{4} - 3x^{2} + 2 = 0$$

$$[y = x^{2}]$$

$$y^{2} - 3y + 2 = 0$$

$$(y - 1)(y - 2) = 0$$

$$y = 1 \lor y = 2$$

$$x^{2} = 1 \Rightarrow x = 1 \lor x = -1$$

$$x^{2} = 2 \Rightarrow x = \sqrt{2} \lor -\sqrt{2}$$

$$K = \{\sqrt{(2)}; -1; 1; \sqrt{2}\}$$

Viètovy vzorce

Kvadratickou rovnici ve tvaru $ax^2 + bx + c = 0$ s kořeny x_1, x_2 lze rozložit na kořenové činitele: $a(x - x_1)(x - x_2)$.

Každou kvadratickou rovnici lze vydělením a normovat na tvar $x^2 + \frac{b}{a}x + \frac{c}{a}x = 0$, nebo x + px + q = 0.

Pro normovanou rovnici platí $x_1 + x_2 = -p \wedge x_1 \cdot x_2 = q$.

Kvadratické nerovnice

Kvadratickou nerovnici $ax^2 + bx + c \ge 0$ řešíme převedením na součinový tvar pomocí rozkladů na kořenové činitele a poté metodou nulových bodů. Př.:

$$-2x^{2} - x + 3 \ge 0$$

$$2x^{2} + x - 3 \le 0$$

$$D = 25 \land x_{1}/2 = \frac{-1 + \sqrt{25}}{2 \cdot 2}$$

$$2(x - 1)(x + \frac{3}{2}) \le 0$$

$x \in$	$\left(-\infty; -\frac{3}{2}\right)$	$\langle -\frac{3}{2}; 1 \rangle$	$\langle 1; +\infty \rangle$	
x-1	_	_	+	
$x + \frac{3}{2}$	_	+	+	
*	+	_	+	
$K = \langle -\frac{3}{2}; 1 \rangle$				

Soustava lineární a kvadratické rovnice

Soustavu vždy řešíme dosazovací metodou a to tak, že z lineární rovnice vyjádříme neznámou a dosadíme to kvadratické.

Iracionální rovnice

Iracionální rovnice je rovnice, ve které je neznámá v odmocnině. Takovou rovnici musíme řešit po stanovení D_f . Můžeme poté obě strany umocnit, což je úprava důsledková, takže musíme provést zkoušku a vyloučit některé kořeny.

Př.:

$$\sqrt{9+x} - \sqrt{x-7} = 2$$

$$\sqrt{9+x} = 2 + \sqrt{x-7} \quad |^2$$

$$9+x = 4 + 4\sqrt{x-7} + x - 7$$

$$4\sqrt{x-7} = 12$$

$$\sqrt{x-7} = 3 \quad |^2$$

$$x - 7 = 9$$

$$x = 16$$

Zk.:
$$L(16) = \sqrt{9+16} - \sqrt{16-7} = \sqrt{25} - \sqrt{9} = 2$$

$$P(16) = 2$$

$$L = P \Rightarrow K = \{16\}$$

7 Lineární funkce a její vlastnosti

Nechť jsou dány neprázdné podmnožiny A,B množiny \mathbb{R} . Funkce f na množině A je předpis, který každému číslu z množiny A přiřazuje právě jedno číslo z množiny B.

Množina A se nazývá **definiční obor funkce**, značí se D_f a množina B **obor hodnot funkce**, značí se H_f .

Funkce může být zadána:

- předpisem f: y = 4x 1
- tabulkou
- grafem

Že číslo x_0 z D_f přiřadí číslo y_0 z H_f , zapisujeme $y_0 = f(x_0)$. $f(x_0)$ nazýváme hodnotou funkce f v bodě x_0 .

Graf funkce

Graf funkce v soustavě souřadnic $O_x y$ je množina všech bodů [x, f(x)] kde $x \in D_f$.

Obrázek 6: Spojitý graf $y = x^2 - 2x$

Obrázek 7: Diskrétní graf

Maximální definiční obor je množina všech reálných čísel x_0 pro které je možné z předpisu určit funkční hodnotu $f(x_0)$.

Obor hodnot H_f funkce f je množina všech hodnot y ke kterým existuje alespoň jedno $x \in D_f$ tak, že y = f(x).

Průsečíky s osami:

- \bullet s osou x: $P_x[x_0,0]$ může jich být více
- s osou y: $P_y[0, y_0]$ maximálně jeden

Lineární funkce

Lineární funkce je funkce s předpisem f: y = ax + b. Jejím grafem je přímka (pro $D_f = \mathbb{R}$).

Je-li a = 0, je to **konstantní funkce**.

Je-li $a \neq 0 \land b = 0$ je to **přímá úměra**.

Máme-li z grafu/tabulky určit předpis, musíme znát 2 její různé body, které dosadíme do předpisu y = ax + b.

Casto se setkáváme s grafem **po částech lineární funkce**. Její předpis:

$$f: y = \begin{cases} 2x + 3, x \in \langle -2; -1 \rangle \\ x + 2, x \in \langle -1; 0 \rangle \\ -x + 2, x \in \langle 0; \frac{3}{2} \rangle \end{cases}$$
 (1)

Vlastnosti funkcí

- rostoucí pro $x_1, x_2 \in D_f$ platí: jestliže $x_1 < x_2$, pak $f(x_1) < f(x_2)$
- klesající pro $x_1, x_2 \in D_f$ platí: jestliže $x_1 < x_2$, pak $f(x_1) > f(x_2)$
- nerostoucí pro $x_1, x_2 \in D_f$ platí: jestliže $x_1 < x_2$, pak $f(x_1) \ge f(x_2)$
- neklesající pro $x_1, x_2 \in D_f$ platí: jestliže $x_1 < x_2$, pak $f(x_1) \le f(x_2)$

Každá rostoucí nebo klesající funkce je **prostá**.

Funkce může též být (ne)
rostoucí/klesající na určitém intervalu. Funkce f je:

- sudá, právě když pro každé $x \in D_f$ platí: f(-x) = f(x); souměrná podle osy y
- lichá, prácě když pro každé $x \in D_f$ platí: f(-x) = -f(x); souměrná podle počátku soustavy

Inverzní funkce

Inverzní funkcí f^{-1} k funkci f získámé tak, že v předpisu zaměníme navzájem proměnné.

8 Kvadratická funkce a její vlastnosti

Kvadratická funkce má obecný předpis $y=ax^2+bx+c; a\neq 0$. Jejím grafem je **parabola**.

Funkce se nazývá:

- zdola omezená, právě když existuje reálné číslo d takové, pro $x \in D_f$ platí: $f(x) \ge d$
- shora omezená, právě když existuje reálné číslo h takové, pro $x \in D_f$ platí: $f(x) \le h$
- omezená, právě když je shora i zdola omezená

Předpis kvadratické funkce můžeme též vyjádřit ve **vrcholovém tvaru** $y = a(x - m)^2 + n; a \neq 0$ kde lze určit souřadnice vrcholu V[m, n].

9 Mocninná a lomená funkce a její vlastnosti

Lineárně lomená funkce

Lineárně lomená funkce má obecný předpis $y=\frac{ax+b}{cx+d}$. Jejím grafem je hyperbola.

Nejjednoduší předpis LLF je $f: y = \frac{1}{x}; D_f = \mathbb{R} \setminus \{0\}$ (je to nepřímá úměrnost), střed hyperboly je v bodě [0;0], osy x,y jsou asymptoty hyperboly.

Obrázek 8: $y = \frac{1}{x}$

Obrázek 9: $y = \frac{2}{x}$

Předpis LLF může být i ve **středovém tvaru** $y = \frac{a}{x-m} + n$, kde [m; n] jsou souřadnice středu hyperboly (průsečík asymptot) a a je její koeficient. Obecný tvar na středový převedeme vydělením.

Mocninná funkce

Mocninná funkce je funkce s předpisem $y = x^n$.

Dovětek Mocninnou funkci s předpisem $y = x^n$ lze definovat i pro $n \in \mathbb{Q}$. Např. $n = \frac{1}{2}$ bude mít předpis $y = \sqrt{x}$ což je inverzní funkce k kvadratické funkci. Inverzní funkci lze stanovit pouze k prosté funkci, musíme tedy stanovit D_f , na kterém je původní funkce prostá, v tomto případě je $D_f = \mathbb{R}_0^+$.

Obrázek 14: $y = \sqrt{x}$

10 Exponenciální a logaritmická funkce

Exponenciální funkce

Exponenciální funkce o základu $a \in (0;1) \cup (1;+\infty)$ je funkce s předpisem $y = a^x$ a křivkou exponenciálou.

Funkce je pro $a \in (0;1)$ klesající, pro $a \in (1;+\infty)$ roustoucí. Maximální definiční obor je $\mathbb R$ a obor hodnot $H_f = (0;+\infty)$. Osa x je asymptotou. Je to funkce prostá.

Exponenciální rovnice

Exponenciální rovnice prvního typu

ER je rovnice, kde se neznámá vyskytuje v exponentu. **První typ** ER jsou rovnice, které po užití vzorců (str. 12) a ekvivalentních úprav mají na obou stranách jednočlen. Řešíme převedením na mocninu se stejným základem a porovnáváme exponenty.

Př.:

$$3^{x+2} + 3^{x-1} = 28$$

$$3^{x} \cdot 3^{2} + 3^{x} \cdot 3^{-1} = 28$$

$$3^{x}(9 + \frac{1}{3}) = 28$$

$$3^{x} \cdot \frac{28}{3} = 28| : \frac{28}{3}$$

$$3^{x} = 3^{1}$$

$$x = 1$$

$$K = \{1\}$$

Exponenciální rovnice druhého typu

Druhým typem jsou rovnice, které nelze upravit tak, aby na obou stranách byl jednočlen. Musíme zavést substituci. Př.:

$$4^{x} - 9 \cdot 2^{x} + 8 = 0$$
$$[y = 2^{x}]$$
$$(2^{x})^{2} - 9 \cdot 2^{x} + 8 = 0$$
$$y^{2} - 9y + 8 = 0$$
$$(y - 1)(y - 8) = 0$$
$$y = 1 \lor y = 8$$

! Musíme dosadit zpět do substituce!

i) ii)
$$2^{x} = 1$$
 $2^{x} = 8$ $2^{x} = 2^{0}$ $2^{x} = 2^{3}$ $x = 0$ $x = 3$ $K = \{0, 3\}$

Exponenciální nerovnice

Jednoduché exponenciální nerovnice lze upravit tak, aby měly jeden z tvarů: $a^r < a^s \lor a^r > a^s \lor a^r \geq a^s \lor a^r \leq a^s$. Záleží jestli je funkce $y = a^x$ klesající nebo rostoucí, je-li a > 1 pak neměníme znaménko. Pokud je 0 < a < 1 pak se znaménko nerovnosti mění.

$$\begin{pmatrix} \frac{1}{7} \end{pmatrix}^{3x+2} \le 1$$

$$\begin{pmatrix} \frac{1}{7} \end{pmatrix}^{3x+2} \le \begin{pmatrix} \frac{1}{7} \end{pmatrix}^{0}$$

$$3x + 2 \ge 0$$

$$x \ge -\frac{2}{3}$$

$$K = \left(-\infty; \frac{1}{2}\right)$$

Logaritmická funkce

Logaritmus

Logaritmus z kladného čísla a při základu z je roven číslu b zapisujeme $\log_z a = b$ právě když platí $z^b = a$.

Základ je vždy z intervalu $(0;1) \cup (1;+\infty)$, je-li z=10 pak píšeme jen $\log a$, je-li z=e pak píšeme jen $\ln a$.

Pravidla pro počítání s logaritmy:

- $\log_{2} 1 = 0$
- $\log_z ab = \log_z a + \log_z b$
- $\log_z \frac{a}{b} = \log_z a \log_z b$
- $\log_z a^n = n \log_z a$

Logaritmická funkce

Logaritmická funkce $f: y = \log_z x, z \in (0;1) \cup (1;+\infty)$ s definičním oborem $D_f = (0;+\infty)$ a oborem hodnot $H_f = \mathbb{R}$ je inverzní funkce k exponenciální funkci $y = z^x$.

Logaritmická funkce je pro $a \in (0, 1)$ klesající a pro $a \in (1, +\infty)$ rostoucí.

Logaritmické rovnice

V logaritmické rovnici se nachazí neznámá v logaritmu. Musíme vždy stanovit definiční obor rovnice. Řešíme převedením na logaritmus o stejném základu a porovnáme argumenty. Není-li to možné, zavádíme substituci.

$$\log(x-3) - \log x = -1$$
 Podmínky: $x > 3 \land x > 0 \Rightarrow D_R = (3; +\infty)$
$$\log \frac{x-3}{3} = \log 0.1$$

$$\frac{x-3}{3} = \frac{1}{10}$$

$$x-3 = \frac{1}{10}x$$

$$\frac{9}{10}x = 3$$

$$x = \frac{10}{3}$$

$$K = \left\{\frac{10}{3}\right\}$$

$$\log x + \frac{1}{\log x} = 2$$
 Podmínky: $x > 0 \land x \neq 1 \Rightarrow D_R = \mathbb{R}^+ \setminus \{1\}$
$$[y = \log x]$$

$$y + \frac{1}{y} = 2| \cdot y$$

$$y^2 - 2y + 1 = 0$$

$$y = 1$$

$$\log x = 1$$

$$x = 10 \in D_R$$

$$K = \{10\}$$

Logaritmické nerovnice

Logaritmické nerovnice řešíme:

- 1. určíme D_R
- 2. obě strany převedeme na logaritmus o stejném základu
- 3. porovnáváme argumenty, platí změna znaménka při základu z intervalu $\left(0;1\right)$

$$\log_{0.5}(x+3) \leq \log_{0.2} 2x$$
 Podmínky: $x > 3 \land x > 0 \Rightarrow D_N = \mathbb{R}^+$
$$x+3 \geq 2x$$

$$-x \geq -3$$

$$x \leq 3$$

$$K = (-\infty; 3) \cap D_N$$

$$K = (0; 3)$$

11 Goniometrické funkce

Uvažujme jednotkovou kružnici k se středem S a poloměrem r=1j, délka takové kružnice je $2\pi j$.

Radián je středový úhel, příslušící jednotkové kružnici oblouku o délce 1j.

Sinus

V pravoúhlém trojuhleníku definujeme funkci sinus jako poměr délek protilehlé odvěsny ku přeponě. Křivku funkce nazýváme sinusoida.

Funkce f: y = sin(x) je v Q_1 a Q_2 nezáporná, v Q_3 a Q_4 je nekladná. Obor hodnot je interval $\langle -1; 1 \rangle$.

Funkce sinus je **periodická** s periodou $2\pi \Rightarrow (\forall k \in \mathbb{Z}) sin(x+2k\pi) = sin(x)$.

Kosinus

Funkce kosinus je v Q_1 a Q_4 nezáporná, a v Q_2 a Q_3 nekladná. Obor hodnot je interval $\langle -1; 1 \rangle$. Maximální definiční obor \mathbb{R} . Perioda je 2π . Kosinusoida je sinusoida posunutá o $\frac{\pi}{2}$.

Tangens a kotangens

Obor hodnot obou funkcí je $\mathbb R$ Funkce jsou periodické s periodou $\pi.$ Obě funkce jsou v Q_1 nezáporné a v Q_2 nekladné.

Tangens

Funkce není definována v bodech $x=\frac{\pi}{2}+k\pi, k\in\mathbb{Z}.$ V grafu jsou to asymptoty.

Kotangens

Funkce není definována v bodech $x=k\pi, k\in\mathbb{Z}.$ V grafu jsou to asymptoty.

Goniometrické vzorce

Pozn. najdu je v TABULKÁCH!

- $\bullet \ \sin^2 x + \cos^2 x = 1$ (první goniometrická jednotka)
- $\tan x = \frac{\sin x}{\cos x}$
- $\tan x \cdot \cot x = 1$
- $\sin(x \pm y) = \sin x \cos y \pm \sin y \cos x$
- $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$
- $\sin^2 x = 1 \cos^2 x \Rightarrow |\sin x| = \sqrt{1 \cos^2 x}$
- $\cot x = \frac{\cos x}{\sin x}$
- $\tan x = \frac{1}{\cot x}$
- $\sin 2x = 2\sin x \cos x$
- $\bullet \cos 2x = \cos^2 x \sin^2 x$

Goniometrické rovnice

Př.:

$$\sin(2x - \frac{\pi}{6}) = \frac{\sqrt{3}}{2}$$

$$\sin \text{ je kladný v } Q_1 \wedge Q_2; \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$2x - \frac{\pi}{6} = \frac{\pi}{3} + 2k\pi$$

$$2x - \frac{\pi}{6} = \frac{2}{3}\pi + 2k\pi$$

$$2x = \frac{\pi}{2} + 2k\pi$$

$$2x = \frac{5}{6}\pi + 2k\pi$$

$$x = \frac{\pi}{4} + k\pi$$

$$x = \frac{5}{12}\pi + k\pi$$

$$K = \bigcup_{k \in \mathbb{Z}} \{\frac{\pi}{4} + k\pi; \frac{5}{12}\pi + k\pi\}$$

12 Množiny bodů dané vlastnosti

Množina M dané vlastnosti je množina všech bodů roviny, pro kterou platí:

- $\bullet\,$ každý bod množiny Mmá danou vlastnost
- $\bullet\,$ každý bod, který má danou vlastnost, patří do množiny M

Osa úsečky AB

- $\bullet\,$ je množina všech bodů, které mají od dvou bodů A,Bstejnou vzdálenost
- \bullet je množina všech středů kružnic, které procházejí danými body A,B

 $o_{AB} = \{X; |AX| = |BX|\}$

Osa rovnoběžek a, b

Resp. osa rovinného pásu

- \bullet je množina všech bodů, které mají od daných dvou rovnoběžek a,bstejnou vzdálenost
- $\bullet\,$ je množina středů všech kružnic, které se dotýkají daných rovnoběžek a,b

$$o_{ab} = \{X; |Xa| = |Xb| = \frac{1}{2}ab\}$$

Osy různoběžek

- \bullet je množina všech bodů, které mají od daných různoběžek a,bstejnou vzdálenost
- \bullet (kromě jejich průsečíku) je množina všech středů kružnic, které se dotýkají daných dvou různoběžek a,b

 $o_1 \cup o_2 = \{X; |Xa| = |Xb|\}$ Osy různoběžek jsou na sebe vždy kolmé.

Soustředné kružnice

Nechť jsou dány dvě soustředné kružnice $k_1(S, r_1), k_2(S, r_2), r_1 > r_2$. **Kružnice** k(S, r) kde $r = \frac{1}{2}(r_1 + r_2)$, je množina všech bodů, které mají od daných kružnic stejnou vzdálenost.

Dvě kružnice $k(S,r_1),l(S,r_2)$, kde $r_1=\frac{1}{2}(r_1+r_2),r_2=\frac{1}{2}(r_1-r_2)$ je množina středů kružnic, které se dotýkají daných kružnic.

Ekvidistanty kružnice

Nechť je dána kružnice k(S,r) a kladné reálné číslo d. Pro d < r sjednocení kružnic $k_1(S,r+d) \cup k_2(S,r-d)$; pro $d \ge r$ kružnice $k_1(S,r+d)$ je

- $\bullet\,$ množina všech bodů, které mají od dané kružnice k vzdálenost d
- \bullet množina středů všech kružnic s poloměrem d,které se dotýkají dané kružnice

- 13 Konstrukce trojúhelníků a čtyřúhelníků
- 14 Shodná zobrazení
- 15 Podobná zobrazení
- 16 Pythagorova a Eukleidovy věty
- 17 Trigonometrie obecného trojúhelníku
- 18 Stereometrie polohové vlastnosti
- 19 Stereometrie metrické vlastnosti
- 20 Stereometrie objem a povrch těles
- 21 Analytická geometrie body a vektory
- 22 Analytická geometrie přímka a polorovina v E2
- 23 Analytická geometrie přímka a rovina v E3
- 24 Analytická geometrie kuželosečky
- 25 Kombinatorika
- 26 Pravděpodobnost
- 27 Statistika
- 28 Posloupnosti
- 29 Limita posloupnosti a nekonečná geometrická řada 52
- 30 Limita a derivace funkce