Chapter 1

1.1 Brownian Motion

Definition 1.1

A real-valued stochastic process $B = (B_t)_{t\geq 0}$ defined on a probability space $(\Omega, \mathcal{F}; P)$ is called a Brownian motion if it satisfies the following conditions:

- a. Almost surely $B_0 = 0$.
- b. For all $0 \le t_1 < \cdots t_n$ the increments $B_{t_n} B_{t_{n-1}}, \cdots, B_{t_2} B_{t_1}$ are independent random variables.
- c. If $0 \le s < t$, the increment $B_t B_s$ is a Gaussian random variable with mean zero and variance t s.
- d. With probability one, the map $t \to B_t$ is continuous.
- A d-dimensional Brownian motion is defined as an \mathbb{R}^d -valued stochastic process $B=(B_t)_{t\geq 0}$, $B_t=(B_t^1,\cdots,B_t^d)$, where B^1,\cdots,B^d are d independent Brownian motions.

Proposition 1.1

Properties (a),(b),(c) are equivalent to that B is a Gaussian process,i.e. for any finite set of indices t_1, \dots, t_n , $(B_{t_1}, \dots, B_{t_n})$ is a multivariate Gaussian random variable, equivalently, any linear combination of B_{t_i} is normal distributed r.v., with mean zero and covariance function

$$\Gamma(s,t) = \min(s,t)$$

Proof

Suppose (a),(b),(c) holds, then we know $(B_{t_1}, \dots, B_{t_n})$ is normal for any finite indices and then

$$m(t) = E(B_t) = 0$$

$$\Gamma(s,t) = E(B_s B_t) = E(B_{\min(s,t)}^2) = \min(s,t)$$

Conversly, we know $E(B_0^2) = 0$ and hence $B_0 = 0$ a.s., then we know $E(B_s^2) = s$ and for any 0 < s < t,

$$E(B_s(B_t - B_s)) = 0$$

and it is easy to check (c), and (b) is deduced by computing the covariance of the increments, notice that two r.v.s are independent iff $\phi_{(X_1,X_2,\cdots,X_n)}=\phi_{X_1}\phi_{X_2}\cdots\phi_{X_n}$ which implies that normal r.v.s are independent iff they have zero covariances.