Statistical Analysis on 2008 – 2012 IL & NC Alzheimer's Mortality Dataset

By: Michael Carnival

Last Updated: 12/7/2023

Contents

Introduction	3
Boxplot	3
Correlation coefficient	5
Shapiro Wilk's	6
Analysis of Variance	8
Kruskal Wallis	8
Equal Variances Test	10
Multiple Comparisons test:	11
Procedures that control the comparisonwise error	11
Procedures that control the stagewise error rate:	12
Procedures that control the experimentwise error	15
Contrast	20
Multiple Contrast	21
Test for Chi squared goodness of fit	24
Contingency Table	27
Chi-Squared Test for Independence:	27
Chi-Squared Test for homogeneity:	33
Regression	36
Conclusion	44

Introduction

Group 2 were tasked to identify trends in the AD mortality datasets provided by Professor Amin. This project aimed to conduct statistical analysis on several states where team members picked their states and variables to analyze. I decided to conduct these analyses on states; North Carolina, and Illinois with variables; smoking_rate, Nata_cancer, and Glyphosates. The analysis included central tendency, normality, ANOVA testing, test for equal variances, multiple comparisons test, goodness of fit test, contingency tables, and linear regression analysis. The results of this analysis are described in the following sections.

Boxplot

```
∃data ourdata;
 /*Consider the data set on Alzheimer's Disease (AD) Mortality Rate in the 6 state CA FL IL NJ NC WI
 input state $ smoking_rate nata_cancer_11 glyphosates deaths_5_yrs pop_5_yrs mental_distress diabetes cancer pop_dens;/*
 smoking: age adjusted rate of smoking
 {\tt nata\_cancer:} cancer caused by air pullatioon / air toxic
 glyphosates: level of Glyphosates used
 deaths 5yrs: death amount within 5 vr
 pop 5yrs: number of
 mental distress: mental distress rate
 diabetes: amount of diabetes
 cancer: number of cancer
 pop_dens:*/
  CA 13.74 37.926 1.63166 2516 7570613 10 7.68 150.7400216 789.0462994
  CA 18.96 16.326 0.0006 2 5805 13 7.94 155.3348548 0.614452367
  CA 22.76 35.596 0.84414 141 189565 10 7.66 170.7211034 24.73501001
  CA 21.14 48.926 48.635 879 1100616 12 8.1 181.0384095 51.90609518
  CA 20.26 33.537 0.5808 78 227537 10 6.78 158.7001835 17.25250197
  CA 20.06 33.747 46.1488 39 106763 12 7.74 154.9369297 7.186668993
  CA 14.18 35.132 7.8804 2782 5255952 10 7.28 155.0173274 565.7351187
  CA 27.08 21.824 0.23228 34 142654 12 8 195.2045597 10.97643101
   WI 20.02 20.000 1.7100 00 70000 II 7.72 210.007/1100 7.700001700
   WI 20 24.719 25.29359 286 659308 9 7.3 153.9236928 118.229675
   WI 17.82 27.851 22.3555 683 1948561 9 6.14 160.0924908 273.9173936
   WI 24.64 23.717 27.72854 180 262208 10 7.48 191.778383 27.06335639
   WI 26.3 23.11 16.28709 14 122847 10 7.48 183.6019817 15.10486205
   WI 23.04 31.33 31.55365 346 834826 10 7.76 176.7470568 148.3973959
   WI 24.08 27.402 19.64328 146 373104 10 7.62 155.7979535 36.38904627
  ods html close;
  ods html;
proc boxplot;
  plot smoking rate*state/ haxis =state;
  plot nata cancer 11*state/haxis =state;
  plot glyphosates*state/haxis =state;
  run;
```

<u>Smoking rate</u>: the distribution of all states: <u>smoking rate is the highest in Florida</u> on average among the states

<u>Nata Cancer</u>: the distribution of all states: **NJ is the highest in Nata_cancer** among the states

<u>Glyphosates</u>: the distribution of all states: IL is the highest in glyphosates among the states. The state with the highest outlier is CA

Box plots for variables for NC and IL

Smoking rate: the distribution of both states is similar

```
Dproc boxplot data=mcdata;
plot smoking*state/ haxis =state;
```

<u>Nata_cancer:</u> the distribution of IL is narrower than the NC.

```
Dproc boxplot data=mcdata;
plot nata_cancer*state/haxis =state;
```

<u>Glyphosates:</u> the glyphosates for NC are narrower and are less of the IL

```
Dproc boxplot data=mcdata;
plot glyposates*state/haxis =state;
```


Correlation coefficient

Correlation coefficient between the variables by state: H_0 : $\rho = 0 \mid H_1$: $\rho \neq 0$ assumptions

State: IL

The correlation coefficient for smoking vs natacancer, smoking vs Glyposates and nata_cancer vs. Glyposates were 0.01928, 0.14454, -0.25356. The P_{value} associated with them were 0.8475, 0.1472, and 0.0101. Only nata_cancer vs. glyposates showed significance. Therefore, we cannot conclude that the true correlation is zero for nata_cancer vs. glyposates.

```
/* correlation of the variables across states*/
]proc sort; by state;
]proc corr; by state;
var smoking nata_cancer glyposates; run;
```

State: NC

The correlation coefficient for smoking vs nata_cancer, smoking vs Glyposates, and nata_cancer vs. Glyposates were -0.24782, 0.13100, -0.06849. The P_{value} associated with them were 0.0129, 0.1939, and 0.4983. Only smoking vs. nata_cancer showed significance. Therefore, we cannot conclude that the true correlation is zero for smoking vs. nata_cancer.

```
/* correlation of the variables across states*/
|proc sort; by state;
|proc corr; by state;
var smoking nata cancer glyposates; run;
```

States: combined

The correlation coefficient for smoking vs natacancer, smoking vs Glyposates, and nata_cancer vs. Glyposates were -0.08230, 0.00336, -0.33229. The P_{value} associated with them were 0.2443, 0.9621, and 0.0001. **Only nata_cancer vs. glyphosates showed significance.** Therefore, **we** cannot conclude that the true correlation is zero for nata_cancer vs. glyposates.

```
□ proc corr; var smoking nata_cancer glyposates; run;
```

		elation Coefficients, N = 102 r under H0: Rho=0		
	smoking	nata_cancer	glyposates	
smoking	1.00000	0.01928 0.8475	0.14454 0.1472	
nata_cancer	0.01928 0.8475	1.00000	-0.25356 0.0101	
glyposates	0.14454 0.1472	-0.25356 0.0101	1.00000	

		n Coefficients ider H0: Rho=0	•
	smoking	nata_cancer	glyposates
smoking	1.00000	-0.24782 0.0129	0.13100 0.1939
nata_cancer	-0.24782 0.0129	1.00000	-0.06849 0.4983
glyposates	0.13100 0.1939	-0.06849 0.4983	1.00000

		n Coefficients nder H0: Rho=0	·
	smoking	nata_cancer	glyposates
smoking	1.00000	-0.08230 0.2443	-0.00336 0.9621
nata_cancer	-0.08230 0.2443	1.00000	-0.33229 <.0001
glyposates	-0.00336 0.9621	-0.33229 <.0001	1.00000

Shapiro Wilk's

Test for normality: H_0 : $normal \mid H_1$: non normal

Smoking_rate:

proc univariate plot normal;
 var smoking nata_cancer glyposates; run;

	Tests for Normality			
Test	St	atistic	p V	alue
Shapiro-Wilk	w	0.929187	Pr < W	<0.0001

At α =0.05 p_{value} < α . We can reject the H_o . Therefore, **the data for smoking is non-normal**

	Tests fo	or Normality		
Test	s	Statistic	рV	'alue
Shapiro-Wilk	w	0.929187	Pr <w< th=""><th><0.0001</th></w<>	<0.0001
30.0 – 27.5 –	'		To and the second	
25.0 - gs		A CONTRACTOR OF THE PARTY OF TH		
22.5 –	THE REAL PROPERTY.			
20.0 -	oo			
17.5 - 0 00	20°			
15.0 - 0 0			!	1 1
-3 -2	-1	0 Normal Quantiles	1	2 3

Nata_cancer:

proc univariate plot normal;

var smoking nata_cancer glyposates; run;

Te	sts for	Normality		
Test	Statistic p Value			ue
Shapiro-Wilk	w	0.955085	Pr < W	<0.0001

At α =0.05 p_{value} < α . We can reject the H_o. Therefore, **the data for** NATA_cancer is non-normal

Glyphosates:

proc univariate plot normal;
 var smoking nata_cancer glyposates; run;

	Tests fo	r Normality		
Test	S	tatistic	p Va	lue
Shapiro-Wilk	w	0.854961	Pr < W	<0.0001

At α =0.05 $p_{value} < \alpha$. We can reject the H_o . Therefore, the data for Glyphosates is non-normal.

Analysis of Variance

<u>Analysis of Variance for States</u>: FL, NJ, WI, CA, IL, NC on Deaths_5_yrs, Pop_5_yrs, and mental_distress, Diabetes, Cancer, and Pop Density for variables, **smoking rate, NATA cancer, and Glyphosates:**

$$H_0$$
: $\mu_1 = \mu_2 = \cdots = \mu_n | H_1$: not all means are equal

Assumptions: 1. $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_t^2$ random

2. Each population is normal 3. All samples are

If all three criteria were met, below are the results

Smoking rate: for state FL, NJ, WI, CA, IL, NC. At $\alpha = 0.05$, $p_{value} < \alpha$. We can reject the H_0 . Therefore, not all means for smoking rate are equal.

```
/*ANOVA testing for equal means*/

proc glm;
class state;
model smoking_rate = state;
```

Nata cancer: for state FL, NJ, WI, CA, IL, NC. IL, NC. At α =0.05, $p_{value} < \alpha$. We can reject the H_0 . Therefore, not all means for natacancer rate are equal.

```
Description

Description
```

<u>Glyphosates:</u> for state FL, NJ, WI, CA, IL, NC. At α =0.05, $p_{value} < \alpha$. We can **reject the H**₀. Therefore, **not all means for glyphosates rate are equal**

```
    proc glm;
    class state;
    model glyphosates = state;
    run;
```

		The GLM Proo	edure		
	Dep	endent Variable:	smoking_rate		
Source	DF	Sum of Squares	Mean Square	FValue	Pr > F
Model	5	2375.603240	475.120648	49.89	<.0001
Error	414	3942.620573	9.523238		
Corrected Total	419	6318.223813			

		The GLM Proo	edure		
	Dep	endent Variable: n	ata_cancer_11		
Source	DF	Sum of Squares	Mean Square	FValue	Pr > F
Model	5	8476.87918	1695.37584	40.05	<.0001
Error	414	17524.22429	42.32904		
Corrected Total	419	28001.10347			

		The GLM Proc	edure		
	Dej	pendent Variable:	glyphosates		
Source	DF	Sum of Squares	Mean Square	FValue	Pr > F
Model	5	405672.094	81134.419	27.76	<.0001
Error	414	1209907.687	2922.482		
Corrected Total	419	1615579.782			

Kruskal Wallis

<u>KW test for States</u>: FL, NJ, WI, CA, IL, NC on Deaths_5_yrs, Pop_5_yrs, and mental_distress, Diabetes, Cancer, and Pop Density for variables, smoking rate, NATA cancer, and **Glyphosates**:

 H_0 : all distribution are identical $|H_1|$: not all distribution are identical

Assumptions: 1. All population is normal 2. All variances are equal

```
/* KW test*/
□proc nparlway wilcoxon;
class state; var smoking_rate; run;
□proc nparlway wilcoxon;
class state; var nata_cancer_ll; run;
□proc nparlway wilcoxon;
class state; var glyphosates; run;
```

Smoking rate: for the six states, the KW test for smoking resulted in $p_{value} < 0.0001$, Since $p_{value} < \alpha$. We reject the H_0 . Therefore, not all distributions are identical

Nata cancer: for the six states KW test for nata_cancer resulted in $p_{value} < 0.0001$, Since $p_{value} < \alpha$. We reject the H_0 . Therefore, not all distributions are identical.

<u>Glyphosates:</u> for the six states KW test for glyphosates resulted in $p_{value} < 0.0001$, Since $p_{value} < \alpha$. We reject the H_0 . Therefore, not all distributions are identical.

	con S				for Variable (glyphosates
state	N	Sum of Scores		cted er H0		
CA	58	9540.0	122	09.00	858.25953	164.482759
FL	67	10222.0	141	03.50	910.90924	152.567164
IL	102	33980.0	214	71.00	1066.75331	333.137255
NJ	21	1797.0	44:	20.50	542.18369	85.571429
NC	100	17436.0	210	50.00	1059.55949	174.360000
WI	72	15435.0	151	56.00	937.57545	214.375000
	A	verage so	cores	wer	e used for tie	es.
		Kr	uskal	-Wall	is Test	
		Chi-Sq	uare	DF	Pr > ChiSq	
		158.	8868	5	<.0001	

Equal Variances Test

Testing for equal variances on variables smoking rate, nata_cancer, and glyphosates for the states CA, FL, IL, NJ, NC, WI: Bartlett's test, Brown & Forsythe.

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_t^2 = \sigma^2 \mid H_1$: at least two variances are different

Assumptions: 1) all sample are equal 2) the data is normal

If we would to proceed assuming the two criteria to be true. Below are the results

```
Eproc sort; by state;
Eproc univariate normal; by state;
var smoking rate nata_cancer_ll glyphosates; run;
Eproc glm;
class state;
model smoking_rate nata_cancer_ll glyphosates=state;
means state/howtest = bartlett;run;
```

Smoking rate: From the bartlett's test for homogeneity of variance. Since Pvalue < α, we reject the Ho thus, at least two variances are different

<u>Nata cancer:</u> From the bartlett's test for homogeneity of variance. Since **Pvalue** < α, we reject the Ho thus, at least two variances are different

Glyphosates: From the bartlett's test for homogeneity of variance. Since Pvalue < α, we reject the Ho thus, at least two variances are different


```
    proc sort; by state;
    proc univariate normal; by state;
    var smoking_rate nata_cancer_ll glyphosates; run;

    proc glm;
    class state;
    model smoking_rate nata_cancer_ll glyphosates=state;
    means state/hovtest = bf;
    run;
}
```

Smoking rate: From the Brown & Forsythe test for homogeneity of variance. Since Pvalue $< \alpha$, we reject the Ho thus, at least two variances are different

Nata cancer: From the Brown & Forsythe test for homogeneity of variance. Since Pvalue $< \alpha$, we reject the Ho thus at least two variances are different

Glyphosates: From the Brown & Forsythe test for homogeneity of variance. Since Pvalue < α, we reject the Ho thus, at least two variances are different

Multiple Comparisons test:

If we reject H_0 : H_0 : $\mu_1 = \mu_2 = \cdots = \mu_n | H_1$: not all means are equal

Which means are different?

Which error rate is controlled?

Procedures that control the comparisonwise error

$$H_o$$
: $\mu_i = |\mu_j| H_1$: $\mu_i \neq |\mu_j|$

Fisher's LSD method:

```
/* Fisher's LSD method */

proc glm;
class state;
model smoking_rate nata_cancer_ll glyphosates= state;
means state / LSD lines;
run;
```

Dependent Variable: smoking_rate							
Source DF Sum of Squares Mean Square F Value Pr > F							
Model 5 2375.603240 475.120648				49.89	<.0001		
Error 414 3942.620573 9.523238							
Corrected Total 419 6318.223813							

Smoking rate: MSE = 9.5232; t_{crit} = 1.96571 All means not covered by a common bar are significantly different. That is μ_{FL} are significantly different from μ_{IL} , μ_{WI} , μ_{NJ} , μ_{CA} .

Dependent Variable: nata_cancer_11							
Source DF Sum of Squares Mean Square F Value Pr>							
Model	5	8476.87918	1695.37584	40.05	<.0001		
Error 414 17524.22429 42.32904							
Corrected Total 419 26001.10347							

Nata_cancer: MSE = 42.32904

All means not covered by a common bar are significantly different. That is μ_{NJ} are significantly different from μ_{IL} , μ_{WI} , μ_{NJ} , μ_{CA} .

Dependent Variable: glyphosates							
Source DF Sum of Squares Mean Square F Value Pr							
Model	odel 5 405672.094 81134.419 27.76				<.0001		
Error 414 1209907.687 2922.482							
Corrected Total	419	1615579.782					

Glysphosates: MSE = 2922.482; All means not covered by a common bar are significantly different. That is μ_{IL} are significantly different from μ_{CA} , μ_{WI} , μ_{FL} ,

μιι, μνς μν..

		ests (LSD) for smoking	rate	
This test co	introls the Type	comparisonwise error rat	e, not the exp	perimentwise error rat
	Alpha		0.05	
		legrees of Freedom	414	
			9.523238	
	Critical	Value of t	1.96571	
	Least	Significant Difference	1.1798	
	Harmo	nic Mean of Cell Sizes	52.8734	
	,	lote: Cell sizes are not eq	ıal.	
smok		Grouping for Mean		(Alpha =
	Means covered	0.05) by the same bar are not sig		
state	Estimate			
FL	25.6030			_
NC	24.9524			_
IL	24.1173			
WI	23.0836			
NJ	19.4305			
CA	18.4528			
CA	18.4528			•
	tTe	ests (LSD) for nata_car	ncer_11	
his test cor	ntrols the Type	I comparison wise error r	ate, not the	experimentwise erro
	Alpha		0.05	
		Degrees of Freedom	414	
		Mean Square	42.32904	
		I Value of t	1.96571	
		Significant Difference		
		onic Mean of Cell Sizes		
	cancer_11	t Grouping for M = 0.05)	eans of s	
	cancer_11	t Grouping for M = 0.05)	eans of s	
	cancer_11	t Grouping for M = 0.05)	eans of s	
state	cancer_11 Means covered Estimate	t Grouping for M = 0.05)	eans of s	
state NJ FL	cancer_11 Means covered Estimate 39.0386 37.9398	t Grouping for M = 0.05)	eans of s	
state NJ	cancer_11 Means covered Estimate 39,0386	t Grouping for M = 0.05)	eans of s	
state NJ FL	cancer_11 Means covered Estimate 39.0386 37.9398	t Grouping for M = 0.05)	eans of s	
state NJ FL CA NC	cancer_11 Means covered Estimate 39.0386 37.9398 35.9194 35.6299	t Grouping for M = 0.05)	eans of s	
state NJ FL CA	cancer_11 Means covered Estimate 39.0386 37.9398 35.9194	t Grouping for M = 0.05)	eans of s	
state NJ FL CA NC	cancer_11 Means covered Estimate 39.0386 37.9398 35.9194 35.6299	t Grouping for M = 0.05)	eans of s	
state NJ FL CA NC	Cancer_11 Means covered Estimate 39.0386 37.9398 35.9194 35.6299 31.1649	t Grouping for M = 0.05)	eans of s	
state NJ FL CA NC	cancer_11 Means covered Estimate 39.0386 37.9398 35.9194 35.6299 31.1649 25.0192	t Grouping for M = 0.05) by the same bar are not	eans of s	
State NJ FL CA NC IL WI	Cancer_11 Means covered Estimate 39.0386 37.9398 35.9194 35.6299 31.1049 25.0192	t Grouping for M = 0.05) by the same bar are not:	eans of s	different.
State NJ FL CA NC IL WI	Cancer_11 Means covered Estimate 39.0386 37.9398 35.9194 35.6299 31.1649 25.0192	t Grouping for M = 0.05) by the same bar are not Tests (LSD) for glyphi	eans of securities of securiti	experiment/wise error
State NJ FL CA NC IL WI	Cancer_11 Means covered Estimate 39.0386 37.9398 35.9194 36.6299 31.1649 25.0192 t Alpha	t Grouping for M = 0.05) by the same bar are not: Tests (LSD) for glyphi	eans of seans of sean	experimentwise error
State NJ FL CA NC IL WI	Cancer_11 Means covered Estimate 39.0386 37.9398 35.9194 36.6299 31.1649 25.0192 t Alpha Alpha Error	t Grouping for M = 0.05) by the same bar are not Tests (LSD) for glyphical comparisonwise error	eans of s eans o	experimentwise error
State NJ FL CA NC IL WI	cancer_11 Means covered Estimate 39.0386 37.9398 35.9194 35.6299 31.1049 25.0192 t Alpha Error Error	t Grouping for M = 0.05) by the same bar are not Tests (LSD) for glyphe c comparisonwise error Degrees of Freedom Mean Square	peans of some state of the source of the sou	experimentvise error
State NJ FL CA NC IL WI	cancer_11 Means covered Estimate 30.0386 37.0308 35.9194 35.0299 31.1649 25.0192 t Alpha Error Error Critic	t Grouping for M = 0.05) by the same bar are not: Tests (LSD) for glyphic of comparisonwise error Degrees of Freedom Mean Square at Value of t	peans of s peans	experiment/wise error
State NJ FL CA NC IL WI	Cancer_11 Means covered Estimate 39.0386 37.0398 35.9194 36.6209 31.1649 25.0192 t Alpha Error Error Critici Leasi	t Grouping for M = 0.05) by the same bar are not Tests (LSD) for glyph cl comparisonwise error Degrees of Freedom Mean Square al Value of t 1. Significant Difference	peans of s peans	experimentwise error
State NJ FL CA NC IL WI	Cancer_11 Means covered Estimate 39.0386 37.0398 35.9194 36.6209 31.1649 25.0192 t Alpha Error Error Critici Leasi	t Grouping for M = 0.05) by the same bar are not: Tests (LSD) for glyphic of comparisonwise error Degrees of Freedom Mean Square at Value of t	peans of s peans	experimentwise error
State NJ FL CA NC IL WI	2ancer_11 Means covered Estimate 39.0380 37.9380 35.9194 35.6299 31.1649 25.0192 t Alpha Error Critic Leasi Harm	t Grouping for M = 0.05) by the same bar are not Tests (LSD) for glyph cl comparisonwise error Degrees of Freedom Mean Square al Value of t 1. Significant Difference	pans of s	experimentwise error
state NJ FL CA NC IL WI This test of	cancer_11 Means covered Estimate 39.0386 37.9393 35.9194 35.6299 31.1049 25.0192 t Alpha Error Error Critici Leasi Harm	t Grouping for Mea = 0.05) by the same bar are not Tests (LSD) for glyphi s I comparisonwise error al Value of t Significant Difference onic Mean of Cell Size Note: Cell sizes are not	peans of s peans	experimentwise error
state NJ FL CA NG IL WI This test of	2ancer_11 Means covered Estimate 39.0380 37.9380 35.9194 35.8299 31.1649 25.0192 t Alpha Error Critic Leasi Harm	t Grouping for M = 0.05) by the same bar are not Tests (LSD) for glyph cl comparisonwise error Degrees of Freedom Mean Square Al Value of t c Significant Difference onic Mean of Cell Size Note: Cell sizes are not	0.05 0.05	experimentwise error
State NJ FL GA NC IL VN This test of	Means covered	t Grouping for M = 0.05) by the same bar are not the same same the same same same same same same same sam	0.05 0.05	experimentwise error
State NJ FL CA NC IL WI This test cd glyp state IL	ancer_11 Means covered 50.0386 37.0388 35.9194 35.6209 31.1649 25.0192 t Alpha Error Error Critic Leasis Harm	t Grouping for M = 0.05) by the same bar are not the same same the same same same same same same same sam	0.05 0.05	experimentwise error
State NJ FL CA NC IIL WI This test out glyp state IL CA	Cancer_11 Means covered 19.0386 37.0388 35.9194 35.6209 31.1649 25.0192 t Alpha Error Error Critic Least Harm Means covere Estimate 95.6078 47.5881	t Grouping for M = 0.05) by the same bar are not the same same the same same same same same same same sam	0.05 0.05	experimentwise error
State NJ FL CA NC IL WI This test cd glyp state IL	ancer_11 Means covered 50.0386 37.0388 35.9194 35.6209 31.1649 25.0192 t Alpha Error Error Critic Leasis Harm	t Grouping for M = 0.05) by the same bar are not the same same the same same same same same same same sam	0.05 0.05	experimentwise error
State NJ FL CA NC IIL WI This test or state IL CA VI VI VI VI VI VI VI VI VI V	ancer_11 Means covered \$1,0386 \$30,0386 \$30,0386 \$30,0388 \$30,9194 \$30,6200 \$31,1649 \$25,0192 t Alpha Error Error Critic Least Harm Means covere Estimate \$95,078 47,5881 30,3570	t Grouping for M = 0.05) by the same bar are not the same same the same same same same same same same sam	0.05 0.05	experimentwise error
State NJ FL CA NC IIL WI This test or state IL CA VI FL	ancer_11 Means covered 50.0386 37.0398 35.9194 36.9290 31.1649 25.0192 t Alpha Error Critic Leasi Harm Means covere Estimate 95.078 47.6881 30.3570 24.1526	t Grouping for M = 0.05) by the same bar are not the same same the same same same same same same same sam	0.05 0.05	experimentwise error

Procedures that control the stagewise error rate:

$$H_o$$
: $\mu_i = |\mu_j| H_1$: $\mu_i \neq |\mu_j|$

Student-Newman-Keuls Test:

```
/*SNK test */

proc glm ;
class state;
model smoking_rate nata_cancer_ll glyphosates= state;
means state / snk lines;
run;
```

Smoking rate: MSE = 9.5232; All means not covered by a common bar are significantly different. That is μ_{FL} are significantly different from μ_{IL} , μ_{WI} , μ_{NJ} , μ_{CA} .

Nata cancer: MSE = 42.32904All means not covered by a common bar are significantly different. That is μ_{NJ} are significantly different from μ_{CA} , μ_{NC} , μ_{IL} , μ_{WI} .

Glysphosates: MSE = 2922.482;

All means not covered by a common bar are significantly different. That is μ_{IL} are significantly different from μ_{CA} , μ_{WI} , μ_{FL} , μ_{NC} , μ_{NJ} ,

Duncan's New Multiply Range Test:

```
/*Duncan's New Multiply Range test */

proc glm ;
class state;
model smoking_rate nata_cancer_ll glyphosates= state;
means state / duncan lines;
run;
```

Smoking rate: MSE = 9.5232; All means not covered by a common bar are significantly different. That is μ_{FL} are significantly different from μ_{IL} , μ_{WI} , μ_{NJ} , μ_{CA} .

Nata_cancer: MSE = 42.32904

All means not covered by a common bar are significantly different. That is μ_{NJ} are significantly different from μ_{CA} , μ_{NC} , μ_{IL} , μ_{WI} .

Glysphosates: MSE = 2922.482;

All means not covered by a common bar are significantly different. That is μ_{IL} are significantly different from μ_{CA} , μ_{WI} , μ_{FL} , μ_{NC} , μ_{NJ} ,

Procedures that control the experimentwise error

$$H_o$$
: $\mu_i = \mu_i | H_1$: $\mu_i \neq \mu_i$

```
/*Tukey Kramer test */

□proc glm ;
class state;
model smoking_rate nata_cancer_ll glyphosates= state;
means state / tukey lines;
run;
```

Smoking rate: MSE = 9.5232; All means not covered by a common bar are significantly different. That is μ_{FL} are significantly different from μ_{WI} , μ_{NJ} , μ_{CA} .

Nata cancer: MSE = 42.32904 All means not covered by a common bar are significantly different. That is μ_{NJ} are significantly different from μ_{IL} , and μ_{WI} .

Glysphosates: MSE = 2922.482; All means not covered by a common bar are significantly different. That is μ_{IL} are significantly different from μ_{CA} , μ_{WI} , μ_{FL} , μ_{NC} , μ_{NJ} ,

Bonferroni's method

```
t = 6; m = t(t-1)/2 = 15; \alpha_i = 0.05/15 = 0.0033 \sim 0.001
```

```
/*Bonferroni test */

proc glm alpha =0.0033;
class state;
model smoking_rate nata_cancer_ll glyphosates= state;
means state / bon lines;
run;
```

Smoking rate: MSE = 9.5232; All means not covered by a common bar are significantly different. That is μ_{FL} are significantly different from μ_{WI} , μ_{NJ} , μ_{CA} .

smoking_rate Bonferroni Grouping for Means of state (Alpha = 0.0033)

Means covered by the same bar are not significantly different.

state Estimate

FL 25.8030

NC 24.9524

IL 24.1173

WI 23.0836

NJ 19.4305

CA 18.4528

Nata cancer: MSE = 42.32904All means not covered by a common bar are significantly different. That is μ_{NJ} are significantly different from μ_{IL} , and μ_{WI} .

Glysphosates: MSE = 2922.482;

All means not covered by a common bar are significantly different. That is μ_{IL} are significantly different from $\underline{\mu}_{CA}$, $\underline{\mu}_{WI}$, $\underline{\mu}_{FL}$, $\underline{\mu}_{NC}$, $\underline{\mu}_{NJ}$,

Dunnetts test:

$$H_o$$
: $\mu_i = \mu_c | H_1$: $\mu_i \neq \mu_c$

```
/*dunnett's test */

proc glm;
class state;
model smoking_rate nata_cancer_ll glyphosates= state;
means state / dunnett('NC');
run;
```

Keeping NC as control

Smoking rate: MSE = 9.5232; All state comparisons with asterisks have significantly different means from NC. That is, WI, NJ, and CA are significantly different from NC

Dunnett's t Tests for smoking_rate Note: This test controls the Type I experimentwise error for comparisons of all treatments against a control. 0.05 **Error Degrees of Freedom** 414 9.523238 **Error Mean Square** Critical Value of Dunnett's t 2.54985 Comparisons significant at the 0.05 level are indicated by ***. Difference state Between Simultaneous 95% Confidence Comparison Means Limits FL - NC 0.6506 -0.5917 1.8929 IL - NC -0.8351 -1.9425 0.2722 -3.0850 -0.6526 WI - NC -1.8688 -5.5219 -7.4107 -3.6331 CA - NC -6.4996 -7.7984 -5.2009

Nata cancer: MSE = 42.32904 All state comparisons with asterisks have significantly different means from NC. That is, IL and WI are significantly different from NC

Dunnett's t Tests for nata_cancer_11

Note: This test controls the Type I experimentwise error for comparisons of all treatments against a control.

Alpha	0.05
Error Degrees of Freedom	414
Error Mean Square	42.32904
Critical Value of Dunnett's t	2.54985

state Comparison	Difference Between Means	Simultaneous 95% Confidence Limits		
NJ - NC	3.4086	-0.5735	7.3908	
FL - NC	2.3098	-0.3093	4.9289	
CA - NC	0.2894	-2.4487	3.0275	
IL - NC	-4.4650	-6.7996	-2.1304	21
WI - NC	-10.6108	-13.1749	-8.0467	21

Glysphosates: MSE = 2922.482; All state comparisons with asterisks have significantly different means from NC. That is, IL and CA are significantly different from NC

Keeping IL as control

Smoking rate: MSE = 9.5232; All state comparisons with asterisks have significantly different means from IL. That is, FL, NJ, and CA are significantly different from IL

Dunnett's t Tests for smoking_rate Note: This test controls the Type I experimentwise error for comparisons of all treatments against a control. 0.05 Error Degrees of Freedom 414 **Error Mean Square** 9.523238 Critical Value of Dunnett's t 2.55080 Comparisons significant at the 0.05 level are indicated by ***. Difference Simultaneous 95% Confidence state Between Means Limits Comparison 1.4857 0.2479 2.7236 FL - IL -0.2726 NC - IL 0.8351 1.9429 -2.2453 WI - IL -1.0336 0.1780 NJ - IL -4.6868 -6.5731 -2.8005 CA - IL -5.6645 -6.9590 -4.3700

Nata_cancer: MSE = 42.32904 All state comparisons with asterisks have significantly different means from IL. That is, FL, NJ, and CA are significantly different from IL.

Dunnett's t Tests for nata_cancer_11

Note: This test controls the Type I experimentwise error for comparisons of all treatments against a control

Alpha	0.05
Error Degrees of Freedom	414
Error Mean Square	42.32904
Critical Value of Dunnett's t	2.55080

Comparisons significant at the 0.05 level are indicated by ***.						
state Comparison	Difference Between Means	Simultaneous 95% Confidence Limits				
NJ - IL	7.8736	3.8968	11.8505	***		
FL - IL	6.7748	4.1651	9.3846	***		
CA - IL	4.7544	2.0252	7.4837	***		
NC - IL	4.4650	2.1296	6.8005	***		
WI - IL	-6.1458	-8.7003	-3.5913	***		

Glysphosates: MSE =

2922.482;

All state comparisons with asterisks have significantly different means from IL. All state has different means

Dunnett's t Tests for glyphosates

Alpha	0.05
Error Degrees of Freedom	414
Error Mean Square	2922.482
Critical Value of Dunnett's t	2.55080

Comparisons significant at the 0.05 level are indicated by ***.							
state Between Comparison Means Simultaneous 95% Confidence Limits							
CA - IL	-48.022	-70.699	-25.344	***			
WI - IL	-65.251	-86.476	-44.025	222			
FL - IL	-71.455	-93.140	-49.770	***			
NC - IL	-75.926	-95.332	-56.520	***			
NJ - IL	-92.061	-125.106	-59.017	222			

Contrast

Individual Contrast: $\alpha = 0.05$

$$H_0: L = 0 \mid H_1: L \neq 0$$

North Carolina

$$H_o: \mu_{NC} = \frac{\mu_{CA} + \mu_{FL} + \mu_{IL} + \mu_{NJ} + \mu_{WI}}{5} | H_1: \mu_{NC} \neq \frac{\mu_{CA} + \mu_{FL} + \mu_{IL} + \mu_{NJ} + \mu_{WI}}{5}$$

Illinois

$$H_o: \mu_{IL} = \frac{\mu_{CA} + \mu_{FL} + \mu_{IL} + \mu_{NJ} + \mu_{WI}}{5} | H_1: \mu_{IL} \neq \frac{\mu_{CA} + \mu_{FL} + \mu_{IL} + \mu_{NJ} + \mu_{WI}}{5}$$

```
/* individual contrast: testing if the mean rate of NC is a contrast to the rest of the mean rates. individual contrast: testing if the mean rate of IL is a contrast to the rest of the mean rates.*/

□ proc glm;
class state;
model smoking_rate nata_cancer_ll glyphosates= state;
estimate 'NC vs rest' state -1 -1 -1 -1 5 -1;
estimate 'IL vs rest' state -1 -1 5 -1 -1 -1;
```

Smokng rate: From testing a single contrast individually for NC and IL vs. the rest, we obtain a $p_{value} < 0.0001$ for both. Since $p_{value} < \alpha$, we can reject the H₀ and conclude the mean rate for smoking in both NC and IL is significantly different from the rest of the state.

<u>Nata_cancer:</u> From testing a single contrast individually for NC and IL vs. the rest, we obtain a $p_{value} < 0.0001$ for both. Since $p_{value} < \alpha$, we can **reject the** H₀ and conclude the mean rate for Nata_cancer in both NC and IL is significantly different from the rest of the state.

<u>Glyphosates:</u> From testing a single contrast individually for NC and IL vs. the rest, we obtain a $p_{value} < 0.0011$ and $p_{value} < 0.0001$ respectively. Since $p_{value} < \alpha$, we can reject the H₀ and conclude the mean rate for Glyphosates in both NC and IL is significantly different from the rest of the state.

Parameter	Estimate	Standard Error	t Value	Pr > t
NC vs rest	-19.0566288	3.45895714	-5.51	<.0001
IL vs rest	9.0640435	1.82248340	4.97	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
NC vs rest	29.5196776	7.29242700	4.05	<.0001
IL vs rest	-17.7221628	3.84229309	-4.61	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
NC vs rest	-199.653234	60.5938862	-3.29	0.0011
IL vs rest	352.715160	31.9261983	11.05	<.0001

Multiple Contrast

Multiple Contrast: Bonferoni correction: $\alpha = 0.05/m = 0.01$. m: number of comparisons

$$H_o$$
: $L = 0 \mid H_1$: $L \neq 0$, $F_0 - test$ or $t_0 - test$

North Carolina

 $\begin{array}{llll} H_o\colon \mu_{NC} = \mu_{FL} & H_o\colon \mu_{NC} = \mu_{IL} & H_o\colon \mu_{NC} = \mu_{NJ} & H_o\colon \mu_{NC} = \mu_{WI} & H_o\colon \mu_{NC} = \mu_{CA} \\ H_1\colon \mu_{NC} \neq \mu_{FL} & H_1\colon \mu_{NC} \neq \mu_{IL} & H_1\colon \mu_{NC} \neq \mu_{NJ} & H_1\colon \mu_{NC} \neq \mu_{WI} & H_1\colon \mu_{NC} \neq \mu_{CA} \end{array}$

```
/* testing for multiple contrast of mean rate of NC vs.
CA; NC vs. FL; NC vs. IL; NC vs. NJ; NC vs. WI*/

proc glm alpha = 0.01;
class state;
model smoking_rate nata_cancer_ll glyphosates = state;
estimate 'NC vs CA' state -1 0 0 0 1 0;
estimate 'NC vs FL' state 0 -1 0 0 1 0;
estimate 'NC vs IL' state 0 0 -1 0 1 0;
estimate 'NC vs NJ' state 0 0 0 -1 1 0;
estimate 'NC vs NJ' state 0 0 0 -1 1;
run;
```

Smokng rate: at $\alpha = 0.01$, The results of testing multiple contrasts on each pairwise comparison with NC, we obtain a significance for states FL, IL, NJ, and WI. Thus, the mean smoking rates for these states are significantly different from NC.

Nata cancer: at $\alpha = 0.01$, The results of testing multiple contrasts on each pairwise comparison with NC, we obtain a significance for states IL, NJ, and WI. Thus, the mean Nata_cancer rate for these states are significantly different from NC.

<u>Glyphosates:</u> at $\alpha = 0.01$, The results of testing multiple contrasts on each pairwise comparison with NC, we obtain a significance for states CA, and IL. Thus, the **mean** glyphosates rate for these states are significantly different from NC.

Parameter	Estimate	Standard Error	t Value	Pr > t
NC vs CA	0.97771757	0.78592703	1.24	0.2142
NC vs FL	-6.17250888	0.77176772	-8.00	<.0001
NC vs IL	-4.68677871	0.73949483	-6.34	<.0001
NC vs NJ	-5.52192381	0.74075631	-7.45	<.0001
NC vs WI	-3.65313492	0.76534615	-4.77	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
NC vs CA	3.1191921	1.65694897	1.88	0.0605
NC vs FL	1.0987953	1.62709728	0.68	0.4999
NC vs IL	7.8736401	1.55905722	5.05	<.0001
NC vs NJ	3.4086314	1.56171675	2.18	0.0296
NC vs WI	14.0194187	1.61355885	8.69	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
NC vs CA	-44.0396686	13.7678412	-3.20	0.0015
NC vs FL	-20.6061914	13.5197990	-1.52	0.1282
NC vs IL	-92.0613989	12.9544438	-7.11	<.0001
NC vs NJ	-16.1353560	12.9765423	-1.24	0.2144
NC vs WI	-26.8106188	13.4073061	-2.00	0.0462

Illinois

```
/* testing for multiple contrast of mean rate of IL vs.
CA; NC vs. FL; NC vs. IL; NC vs. NJ; NC vs. WI*/

proc glm alpha = 0.01;
class state;
model smoking_rate nata_cancer_ll glyphosates = state;
estimate 'IL vs CA' state -1 0 1 0 0 0;
estimate 'IL vs FL' state 0 -1 1 0 0 0;
estimate 'IL vs NJ' state 0 0 1 -1 0 0;
estimate 'IL vs NC' state 0 0 1 0 -1 0;
estimate 'IL vs WI' state 0 0 1 0 -1;
run;
```

Smokng_rate: at $\alpha = 0.01$, The results of testing multiple contrasts on each pairwise comparison with IL, we obtain a significance for states CA, FL, and NC. Thus, the mean smoking rates for these states are significantly different from IL.

Nata cancer: at $\alpha = 0.01$, The results of testing multiple contrasts on each pairwise comparison with IL, we obtain a significance for all comparison. Thus, the mean Nata_cancer rate for all states are significantly different from IL.

Glyphosates: at $\alpha = 0.01$, The results of testing multiple contrasts on each pairwise comparison with IL, we obtain significances for all comparison. Thus, the mean Glyphosates rate for all states are significantly different from IL.

Parameter	Estimate	Standard Error	t Value	Pr > t
IL vs CA	5.66449628	0.50750255	11.16	<.0001
IL vs FL	-1.48573017	0.48528647	-3.06	0.0023
IL vs NJ	-0.83514510	0.43427809	-1.92	0.0552
IL vs NC	4.68677871	0.73949483	6.34	<.0001
IL vs WI	1.03364379	0.47500766	2.18	0.0301

Parameter	Estimate	Standard Error	t Value	Pr > t
IL vs CA	-4.75444794	1.06995408	-4.44	<.0001
IL vs FL	-6.77484475	1.02311652	-6.62	<.0001
IL vs NJ	-4.46500863	0.91557691	-4.88	<.0001
IL vs NC	-7.87364006	1.55905722	-5.05	<.0001
IL vs WI	6.14577859	1.00144596	6.14	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
IL vs CA	48.0217303	8.8904114	5.40	<.0001
IL vs FL	71.4552075	8.5012309	8.41	<.0001
IL vs NJ	75.9260429	7.6076679	9.98	<.0001
IL vs NC	92.0613989	12.9544438	7.11	<.0001
IL vs WI	65.2507800	8.3211670	7.84	<.0001

Scheffe's Multiple Contrast Test: Use only for a huge number of contrasts α_E is controlled for all possible contrasts

```
/* scheffe's multiple contrast test for IL vs rest and NC vs rest */

proc glm;
class state;
model smoking_rate nata_cancer_ll glyphosates = state;
means state/scheffe cldiff lines;
estimate 'IL vs rest' state -1 -1 5 -1 -1 -1;
estimate 'NC vs rest' state -1 -1 5 -1;
run;
```

North Carolina

$$H_o: \mu_{NC} = \frac{\mu_{CA} + \mu_{FL} + \mu_{IL} + \mu_{NJ} + \mu_{WI}}{5} | H_1: \mu_{NC} \neq \frac{\mu_{CA} + \mu_{FL} + \mu_{IL} + \mu_{NJ} + \mu_{WI}}{5}$$

Illinois

$$H_o: \mu_{IL} = \frac{\mu_{CA} + \mu_{FL} + \mu_{IL} + \mu_{NJ} + \mu_{WI}}{5} | H_1: \mu_{IL} \neq \frac{\mu_{CA} + \mu_{FL} + \mu_{IL} + \mu_{NJ} + \mu_{WI}}{5}$$

<u>Smokng rate</u>: The Scheffe's multiple contrast for for ILvs rest and NC vs. rest resulted significantly different means for smoking rate across states.

Nata cancer: The Scheffe's multiple contrast for for ILvs rest and NC vs. rest resulted significantly different means for Nata_cancer across states.

<u>Glyphosates:</u> The Scheffe's multiple contrast for ILvs. rest and NC vs rest resulted **significantly different means for Glyphosates across states.**

Dependent Variable: smoking_rate

Parameter	Estimate	Standard Error	t Value	Pr > t
IL vs rest	9.0640435	1.82248340	4.97	<.0001
NC vs rest	-19.0566288	3.45895714	-5.51	<.0001

Dependent Variable: nata_cancer_11

Parameter	Estimate	Standard Error	t Value	Pr > t
IL vs rest	-17.7221628	3.84229309	-4.61	<.0001
NC vs rest	29.5196776	7.29242700	4.05	<.0001

Dependent Variable: glyphosates

Parameter	Estimate	Standard Error	t Value	Pr > t
IL vs rest	352.715160	31.9261983	11.05	<.0001
NC vs rest	-199.653234	60.5938862	-3.29	0.0011

Test for Chi squared goodness of fit.

$$H_0: F(x) = N(\mu, \sigma^2) \mid H_1: F(x) \neq N(\mu, \sigma^2)$$

```
/* test for categorical proportion for each variable*/
 ∃proc freq;
   tables smoking ratec/ chisq(df=1);
   weight smoking rate;
   run;
 ∃proc freq;
   tables natac/ chisq(df=1);
   weight nata;
   run;
 ∃proc freq;
   tables glyphosatesc/ chisq(df=1);
   weight glyphosates;
   run;
North Carolina
/* making categorical variable for north carolina*/
if smoking rate le 23.79 then smoking ratec = 'l'; /*creating categorical variable*/
if smoking_rate gt 23.79 and smoking_rate le 25.46 then smoking_ratec= '2';
if smoking rate gt 25.46 and smoking rate le 26.76 then smoking ratec = '3';
if smoking rate gt 26.76 then smoking ratec ='4';
if nata le 29.2495 then natac = 'l'; /*creating categorical variable*/
if nata gt 29.2495 and nata le 35.8435 then natac= '2';
if nata gt 35.8435 and nata le 41.5720 then natac = '3';
```

if glyphosates le 2.541915 then glyphosatesc = '1'; /*creating categorical variable*/
if glyphosates gt 2.541915 and glyphosates le 10.054425 then glyphosatesc= '2';
if glyphosates gt 10.054425 and glyphosates le 28.953130 then glyphosatesc = '3';

Smoking rate: The Chi squared goodness of fit test resulted in p_{value} <0.0001. Thus, we can reject H₀ and conclude the proportion of each category of smoking_rate are not the same.

if glyphosates gt 28.953130 then glyphosatesc ='4';

if nata gt 41.5720 then natac ='4';

smoking_ratec	Frequency	Percen		nulative quency	Cumulative Percent
1	530.52	21.26		530.52	21.26
2	617.02	24.73	1147.54		45.99
3	681.74	27.32	2 1829.28		73.31
4	665.96	26.69		2495.24	100.00
		Square T			
	Chi-Sq	Chi-Square 22.			
	DF		1		
	Pr > Ch	iSq	<.0001		

<u>Nata_cancer:</u> the Chi squared goodness of fit resulted in p_{value} <0.0001. Thus, we can reject H₀ and conclude the proportion of each category of Nata_cancer are not the same.

<u>Glyphosates:</u> the Chi squared goodness of fit resulted in p_{value} <0.0001. Thus, we can **reject** the H₀, and conclude that the proportion of each category of Glyphosates are not the same

natac	Frequency		cy Per	cent		ımulat requei		Cumulative Percent
1	65	7.7	57 1	18.46		657.	757	18.46
2	81	819.399		23.00		1477.	156	41.46
3	97	972.446		27.29		2449.	602	68.75
4	111	1113.392		31.25		3562.	994	100.00
			for Equ		оро			
			Chi-Sq DF	uare	12	9.0014		
			Pr > Ch	n2ic		<.0001		
			11701	lioq.				
glypho	satesc	Fr	equency	Pero	ent	Cumu	lative uency	
1			23.15567		1.18 23.1556	15567	1.18	
2			139.0744		7.07	.07 162.2301		8.24
3		486		2	4.70	.70 648.3896		32.94
4			1319.788	6	7.06	196	88.178	100.00
			Chi for Eq	-Squa ual Pr				
			Chi-Sq	uare	209	2.5727		
			DF Pr > ChiSq			1		

Illinois

```
/* making categorical variable for Illinois */
if smoking_rate le 22.90 then smoking_ratec = '1';
if smoking_rate gt 22.90 and smoking_rate le 24.58 then smoking_ratec= '2';
if smoking_rate gt 24.58 and smoking_rate le 25.82 then smoking_ratec = '3';
if smoking_rate gt 25.82 then smoking_ratec ='4';

if nata le 28.655 then natac = '1';
if nata gt 28.655 and nata le 30.7765 then natac= '2';
if nata gt 30.7765 and nata le 33.14 then natac = '3';
if nata gt 33.14 then natac ='4';

if glyphosates le 56.90997 then glyphosatesc = '1';
if glyphosates gt 56.90997 and glyphosates le 90.57663 then glyphosatesc= '2';
if glyphosates gt 90.57663 and glyphosates le 127.43457 then glyphosatesc = '3';
if glyphosates gt 127.43457 then glyphosatesc ='4';
```

Smoking rate: The Chi squared goodness of fit test resulted in p_{value} <0.0001. Thus, we can reject H₀ that the proportion of each category of smoking_rates are similar

	The FR	EQ Proce	edure		
smoking_ratec	Frequency	Percen		nulative quency	Cumulative Percent
1	533.68	21.69	•	533.68	21.69
2	620.2	25.2	1	1153.88	46.91
3	631.2	25.60	6	1785.08	72.57
4	674.88	27.43	3	2459.96	100.00
		Square T al Propo			
	Chi-Sq	Chi-Square 17.			
	DF				
	Pr > Ch	iSq	<.0001		

<u>Nata_cancer:</u> the Chi squared goodness of fit resulted in p_{value} <0.0001. Thus, we can **reject** H₀ and conclude that the proportion of each category of Nata_cancers are not the same

<u>Glyphosates:</u> the Chi squared goodness of fit resulted in p_{value} <0.0001. Thus we can **reject** the H₀, and conclude that the proportion of each category of Glyphosates are not the same

Contingency Table

Chi-Squared Test for Independence:

 H_0 : row factor and column factor are independent of each other H_1 : the row and column factor are dependent (associated) of each other

Assumptions:

- (a) One random sample is taken
- (b) Each observation may be classified into one of \underline{r} different categories for row factor and one of \underline{c} categories for column factor

Chi-squared test for independence on variables for all states (CA, FL, IL, NJ, NC, WI).

```
if smoking_rate le 21.29 then smoking_ratec = 'l'; /*creating categorical variable for smoking_rate*/
if smoking_rate gt 21.29 and smoking_rate le 24.06 then smoking_ratec= '2';
 if smoking_rate gt 24.06 and smoking_rate le 26.04 then smoking_ratec = '3';
if smoking rate gt 26.04 then smoking ratec ='4';
if nata le 27.4595 then natac = 'l'; /*creating categorical variable for nata*/
if nata gt 27.4595 and nata le 32.4345 then natac = '2';
 if nata gt 32.4345 and nata le 39.0790 then natac = '3';
if nata gt 39.0790 then natac='4';
 if glyphosates gt 2.836460 and glyphosates le 21.750745 then glyphosatesc = '2';
if glyphosates gt 21.750745 and glyphosates le 61.827565 then glyphosatesc = '3';
if glyphosates gt 61.827565 then glyphosatesc='4';
 /*test for independence between different variables smoking_rate vs. nata_cancer for all states */
 table smoking_ratec*natac/chisq cellchi2 expected;
 /*test for independence between different variables smoking rate vs. glyphosates for all states */
∃proc freq;
 table smoking_ratec*glyphosatesc/chisq cellchi2 expected;
 /*test for independence between different variables nata cancer vs. glyphosatesc for all states */
Eproc freg:
 table natac*glyphosatesc/chisq cellchi2 expected;
```

Smoking_rate vs. Nata_cancer (all states):

Statistics for Table of smok	9_	, accord	
Statistic	DF	Value	Prob
Chi- Square	9	42.3174	<.0001
Likelihood Ratio Chi-Square	9	40.7184	<.0001
Mantel-Haens zel Chi-Square	1	0.0095	0.9222
Phi Coefficient		0.3174	
Contingency Coefficient		0.3025	
Cramer's V		0.1833	

When testing for the independence of smoking_rate against nata_cancer rate, we obtain a $p_{value} < 0.0001$. Since $p_{value} < \alpha$, we can reject the H_0 and conclude that the smoking_rates and nata_cancers are associated with each other.

	The FRE	Q Proce	dure							
Frequency	Table	Table of smoking_ratec by natac								
Expected Cell Chi-Square				natac						
Percent	smoking_ratec	1	2	3	4	Total				
Row Pct Col Pct	1	18	24	22	41	105				
COTTCL		26.25	26.25	26.25	26.25					
		2.5929	0.1929	0.6881	8.2881					
		4.29	5.71	5.24	9.76	25.00				
		17.14	22.86	20.95	39.05					
		17.14	22.86	20.95	39.05					
	2	43	24	22	16	105				
		26.25	26.25	26.25	26.25					
		10.688	0.1929	0.6881	4.0024					
		10.24	5.71	5.24	3.81	25.00				
		40.95	22.86	20.95	15.24					
		40.95	22.86	20.95	15.24					
	3	27	36	26	17	108				
		26.5	26.5	26.5	26.5					
		0.0094	3.4057	0.0094	3.4057					
		6.43	8.57	6.19	4.05	25.24				
		25.47	33.96	24.53	16.04					
		25.71	34.29	24.78	16.19					
	4	17	21	35	31	104				
		26	26	26	26					
		3.1154	0.9615	3.1154	0.9615					
		4.05	5.00	8.33	7.38	24.78				
		16.35	20.19	33.65	29.81					
		16.19	20.00	33.33	29.52					
	Total	105	105	105	105	420				
		25.00	25.00	25.00	25.00	100.00				

Smoking_rate vs. Glyphosates (all states):

Statistics for Table of smoking_ratec by glyphosatesc

Statistic	DF	Value	Prob
Chi-Square	9	14.5729	0.1034
Likelihood Ratio Chi-Square	9	14.5111	0.1053
Mantel-Haenszel Chi-Square	1	0.0034	0.9533
Phi Coefficient		0.1863	
Contingency Coefficient		0.1831	
Cramer's V		0.1075	

When testing for the independence of smoking_rate against glyphosates, we obtain a $p_{value} < 0.1034$. Since $p_{value} > \alpha$, we cannot reject the H₀ and conclude that the smoking_rates and nata_cancers are independent from each other

Nata_cancer vs. Glyphosates (all states):

Statistics	for Table o	f natac by i	glyphosatesc

Statistic	DF	Value	Prob
Chi-Square	9	65.1048	<.0001
Likelihood Ratio Chi-Square	9	65.8271	<0001
Mantel-Haenszel Chi- Square	1	8.7806	0.0030
Phi Coefficient		0.3937	
Contingency Coefficient		0.3663	
Cramer's V		0.2273	

Sample Size = 420

When testing for the independence of nata_cancer against glyphosates, we obtain a $p_{value} < 0.0001$. Since $p_{value} < \alpha$, we can reject the H0 and conclude that the nata_cancer and glyphosates are associated with each other

	The FRE	Q Pro ce	dure								
Frequency	Table of	Table of smoking_ratec by glyphosatesc									
Expected Cell Chi-Square			gly	phosate	esc						
Percent	smoking_ratec	1	2	3	4	Tota					
Row Pct Col Pct	1	31	25	27	22	10					
COLFG		26.25	26.25	26.25	26.25						
		0.8595	0.0595	0.0214	0.6881						
		7.38	5.95	6.43	5.24	25.0					
		29.52	23.81	25.71	20.95						
		29.52	23.81	25.71	20.95						
	2	26	23	28	28	10					
		26.25	26.25	26.25	26.25						
		0.0024	0.4024	0.1167	0.1167						
		6.19	5.48	6.67	6.67	25.0					
		24.76	21.90	26.67	26.67						
		24.78	21.90	26.67	26.67						
	3	19	22	30	35	10					
		26.5	26.5	26.5	26.5						
		2.1226	0.7642		2.7264						
		4.52	5.24	7.14	8.33	25.2					
		17.92	20.75	28.30	33.02						
		18.10	20.95	28.57	33.33						
	4	29	35	20	20	10					
		26	26	26	26						
		0.3462	3.1154	1.3846	1.3848						
		6.90	8.33	4.76	4.78	24.7					
		27.88	33.65	19.23	19.23						
		27.62	33.33	19.05	19.05						
	Total	105	105	105	105	42					
		25.00	25.00	25.00	25.00	100.0					

Frequency	Table of natac by glypho sates c										
Expected				phosate							
Cell Chi-Square			ניפ	piiosate	- 50						
Percent	natac	1	2	3	4	Total					
Row Pct Col Pct	1	32	19	32	22	105					
5511 51		26.25	26.25	26.25	26.25						
		1.2595	2.0024	1.2595	0.6881						
		7.62	4.52	7.62	5.24	25.00					
		30.48	18.10	30.48	20.95						
		30.48	18.10	30.48	20.95						
	2	16	11	36	42	105					
		26.25	26.25	26.25	26.25						
		4.0024	8.8595	3.6214	9.45						
		3.81	2.62	8.57	10.00	25.00					
		15.24	10.48	34.29	40.00						
		15.24	10.48	34.29	40.00						
	3	27	26	26	26	105					
		26.25	26.25	26.25	26.25						
		0.0214	0.0024	0.0024	0.0024						
		6.43	6.19	6.19	6.19	25.00					
		25.71	24.76	24.78	24.78						
		25.71	24.76	24.76	24.78						
	4	30	49	11	15	105					
		26.25	26.25	26.25	28.25						
		0.5357	19.717	8.8595	4.8214						
		7.14	11.67	2.62	3.57	25.00					
		28.57	46.67	10.48	14.29						
		28.57	48.87	10.48	14.29						
	Total	105	105	105	105	420					
		25.00	25.00	25.00	25.00	100.00					

Chi-squared test for independence on variables for individual state (NC, IL)

```
/* making categorical variable for north carolina*/
if smoking_rate le 23.79 then smoking_ratec = '1';
if smoking rate gt 23.79 and smoking rate le 25.46 then smoking ratec= '2';
if smoking rate gt 25.46 and smoking rate le 26.76 then smoking ratec = '3';
if smoking_rate gt 26.76 then smoking_ratec ='4';
if nata le 29.2495 then natac = '1';
if nata gt 29.2495 and nata le 35.8435 then natac= '2';
if nata gt 35.8435 and nata le 41.5720 then natac = '3';
if nata gt 41.5720 then natac ='4';
if glyphosates le 2.541915 then glyphosatesc = '1';
if glyphosates gt 2.541915 and glyphosates le 10.054425 then glyphosatesc= '2';
if glyphosates gt 10.054425 and glyphosates le 28.953130 then glyphosatesc = '3';
if glyphosates gt 28.953130 then glyphosatesc ='4';
if state ne 'NC' then delete;
 /*test for independence between different variables smoking rate vs nata cancer for North Carolina */
∃proc freq;
 table smoking ratec*natac/chisq cellchi2 expected;
 /*test for independence between different variables smoking rate vs. glyphosates for North Carolina */
Eproc freq:
 table smoking_ratec*glyphosatesc/chisq cellchi2 expected;
 run:
 /*test for independence between different variables nata cancer vs. glyphosatesc for North Carolina */
∃proc freq;
 table natac*glyphosatesc/chisq cellchi2 expected;
 run;
```

Smoking_rate vs. Nata_cancer (NC):

Statistics for Table of smoking_ratec by natac

Statistic	DF	Value	Prob
Chi-Square	9	17.6544	0.0394
Likelihood Ratio Chi-Square	9	17.3017	0.0442
Mantel-Haenszel Chi-Square	1	1.1736	0.2787
Phi Coefficient		0.4202	
Contingency Coefficient		0.3874	
Cramer's V		0.2426	

Sample Size = 100

When testing for the independence of smoking_rate against nata_cancer rate, we obtain a $p_{value} < 0.0394$. Since $p_{value} < \alpha$, we can reject the H₀ and conclude that the smoking_rates and nata_cancers are associated with each other.

Frequency	Table of smoking_ratec by natac									
Expected Cell Chi-Square				natac						
Percent	smoking_ratec	1	2	3	4	Tota				
Row Pct Col Pct	1	5	5	4	11	2				
COLPCI		6.25	6.25	6.25	6.25					
		0.25	0.25	0.81	3.61					
		5.00	5.00	4.00	11.00	25.0				
		20.00	20.00	16.00	44.00					
		20.00	20.00	16.00	44.00					
	2	6	6	8	5	2				
		6.25	6.25	6.25	6.25					
		0.01	0.01	0.49	0.25					
		6.00	6.00	8.00	5.00	25.0				
		24.00	24.00	32.00	20.00					
		24.00	24.00	32.00	20.00					
	3	10	9	2	5	2				
		6.5	6.5	6.5	6.5					
		1.8846	0.9615	3.1154						
		10.00	9.00	2.00	5.00	26.0				
		38.46		7.69	19.23					
		40.00	36.00	8.00	20.00					
	4	4	5	11	4	2				
		6	6	6	6					
		0.6667	0.1667	4.1667						
		4.00	5.00	11.00	4.00	24.0				
		16.67	20.83	45.83	16.67					
		16.00	20.00	44.00	16.00					
	Total	25	25	25	25	100				
		25.00	25.00	25.00	25.00	100.0				

Smoking_rate vs. Glyphosates (NC):

Statistics for Table of smoking_ratec by glyphosatesc

Statistic	DF	Value	Prob
Chi-Square	9	6.1446	0.7254
Likelihood Ratio Chi-Square	9	6.2943	0.7101
Mantel-Haenszel Chi-Square	1	0.2721	0.6019
Phi Coefficient		0.2479	
Contingency Coefficient		0.2406	
Cramer's V		0.1431	

When testing for the independence of smoking_rate against glyphosates, we obtain a $p_{value} < 0.7254$. Since $p_{value} > \alpha$, we cannot reject the H₀. Thus, we conclude that the smoking_rates and nata_cancers are independent from each other

Nata_cancer vs. Glyphosates (NC):

Statistics for Table of natac by glyphosatesc

Statistic	DF	Value	Prob
Chi-Square	9	33.7600	<.0001
Likelihood Ratio Chi-Square	9	33.6113	0.0001
Mantel-Haenszel Chi-Square	1	0.1014	0.7502
Phi Coefficient		0.5810	
Contingency Coefficient		0.5024	
Cramer's V		0.3355	

When testing for the independence of nata_cancer against glyphosates, we obtain a $p_{value} < 0.0001$. Since $p_{value} < \alpha$, we can reject the H₀ and conclude that the nata_cancer and glyphosates are associated with each other

The FREQ Procedure

Frequency
Expected
Cell Chi-Square
Percent
Row Pct
Col Pct

Table of	smoking	g_ratec l	y glyph	osatesc	
		gly	phosate	sc	
smoking_ratec	1	2	3	4	Total
1	7	9	5	4	25
	6.25	6.25	6.25	6.25	
	0.09	1.21	0.25	0.81	
	7.00	9.00	5.00	4.00	25.00
	28.00	36.00	20.00	16.00	
	28.00	36.00	20.00	16.00	
2	6	4	8	7	25
	6.25	6.25	6.25	6.25	
	0.01	0.81	0.49	0.09	
	6.00	4.00	8.00	7.00	25.00
	24.00	16.00	32.00	28.00	
	24.00	16.00	32.00	28.00	
3	5	5	8	8	26
	6.5	6.5	6.5	6.5	
	0.3462	0.3462	0.3462	0.3462	
	5.00	5.00	8.00	8.00	26.00
	19.23	19.23	30.77	30.77	
	20.00	20.00	32.00	32.00	
4	7	7	4	6	24
	6	6	6	6	
	0.1667	0.1667	0.6667	0	
	7.00	7.00	4.00	6.00	24.00
	29.17	29.17	16.67	25.00	
	28.00	28.00	16.00	24.00	
Total	25	25	25	25	100
	25.00	25.00	25.00	25.00	100.00

The FREQ Procedure

Frequency
Expected
Cell Chi-Square
Percent
Row Pct
Col Pct

	Т	able of	natac I	by glyp	hosate	sc
iare			gly	phosat	esc	
	natac	1	2	3	4	Total
	1	13	2	6	4	25
		6.25	6.25	6.25	6.25	
		7.29	2.89	0.01	0.81	
		13.00	2.00	6.00	4.00	25.00
		52.00	8.00	24.00	16.00	
		52.00	8.00	24.00	16.00	
	2	4	3	6	12	25
		6.25	6.25	6.25	6.25	
		0.81	1.69	0.01	5.29	
		4.00	3.00	6.00	12.00	25.00
		16.00	12.00	24.00	48.00	
		16.00	12.00	24.00	48.00	
	3	5	7	5	8	25
		6.25	6.25	6.25	6.25	
		0.25	0.09	0.25	0.49	
		5.00	7.00	5.00	8.00	25.00
		20.00	28.00	20.00	32.00	
		20.00	28.00	20.00	32.00	
	4	3	13	8	1	25
		6.25	6.25	6.25	6.25	
		1.69	7.29	0.49	4.41	
		3.00	13.00	8.00	1.00	25.00
		12.00	52.00	32.00	4.00	
		12.00	52.00	32.00	4.00	
	Total	25	25	25	25	100
		25.00	25.00	25.00	25.00	100.00

```
/* making categorical variable for Illinois */
if smoking rate le 22.90 then smoking ratec = '1';
if smoking rate gt 22.90 and smoking rate le 24.58 then smoking ratec= '2';
if smoking rate gt 24.58 and smoking rate le 25.82 then smoking ratec = '3';
if smoking rate gt 25.82 then smoking ratec ='4';
if nata le 28.655 then natac = '1';
if nata gt 28.655 and nata le 30.7765 then natac= '2';
if nata gt 30.7765 and nata le 33.14 then natac = '3';
if nata gt 33.14 then natac ='4';
if glyphosates le 56.90997 then glyphosatesc = '1';
if glyphosates gt 56.90997 and glyphosates le 90.57663 then glyphosatesc= '2';
if glyphosates gt 90.57663 and glyphosates le 127.43457 then glyphosatesc = '3';
if glyphosates gt 127.43457 then glyphosatesc ='4';
 /*test for independence between different variables smoking_rate vs nata_cancer for Illinois */
∃proc freq;
 table smoking ratec*natac/chisq cellchi2 expected;
 run;
 /*test for independence between different variables smoking rate vs. glyphosates for Illinois */
proc freq;
 table smoking ratec*glyphosatesc/chisq cellchi2 expected;
 /*test for independence between different variables nata cancer vs. glyphosatesc for Illinois */
-proc freq;
 table natac*glyphosatesc/chisq cellchi2 expected;
```

Smoking_rate vs. Nata_cancer (IL):

Statistics for Table of smoking_ratec by natac

Statistic	DF	Value	Prob
Chi-Square	9	5.2214	0.8146
Likelihood Ratio Chi-Square	9	5.6713	0.7723
Mantel-Haenszel Chi-Square	1	1.1152	0.2910
Phi Coefficient		0.2263	
Contingency Coefficient		0.2207	
Cramer's V		0.1306	

Sample Size = 102

When testing for the independence of smoking_rate against nata_cancer rate, we obtain a $p_{value} < 0.8146$. Since $p_{value} > \alpha$, we cannot reject the H₀. Thus, smoking_rate and nata_cancer is independent from one another.

Smoking_rate vs. Glyphosates (IL):

Statistics for Table of smoking_ratec by glyphosatesc Statistic Prob Chi-Square 9 3.9991 0.9115 Likelihood Ratio Chi-Square 9 4.1777 0.8993 1 1.2148 0.2704 Mantel-Haenszel Chi-Square 0.1980 Phi Coefficient **Contingency Coefficient** 0.1942 0.1143 Cramer's V Sample Size = 102

When testing for the independence of smoking_rate against glyphosates, we obtain a $p_{value} < 0.9115$. Since $p_{value} > \alpha$, we cannot reject the H_0 . Thus, smoking_rates and nata_cancers are independent from one another

Frequency	Table of	Table of smoking_ratec by glyphosatesc							
Expected Cell Chi-Square			gly	phosate	esc				
Percent	smoking_ratec	1	2	3	4	Tota			
Row Pct Col Pct	1	7	8	6	5	26			
		6.6275	6.3725	6.6275	6.3725				
		0.0209	0.4156	0.0594	0.2956				
		6.86	7.84	5.88	4.90	25.4			
		26.92	30.77	23.08	19.23				
		26.92	32.00	23.08	20.00				
	2	8	7	6	5	2			
		6.6275	6.3725	6.6275	6.3725				
		0.2843	0.0618	0.0594	0.2956				
		7.84	6.86	5.88	4.90	25.4			
		30.77	26.92	23.08	19.23				
		30.77	28.00	23.08	20.00				
	3	4	6	7	8	2			
		6.3725	6.1275	6.3725	6.1275				
		0.8833	0.0027	0.0618	0.5723				
		3.92	5.88	6.86	7.84	24.5			
		16.00	24.00	28.00	32.00				
		15.38	24.00	26.92	32.00				
	4	7	4	7	7	2			
		6.3725	6.1275	6.3725	6.1275				
		0.0618	0.7387	0.0618	0.1243				
		6.86	3.92	6.86	6.86	24.5			
		28.00	16.00	28.00	28.00				
		26.92	16.00	26.92	28.00				
	Total	26	25	26	25	10			
		25.49	24.51	25.49	24.51	100.0			

Nata_cancer vs. Glyphosates (IL):

Statistics for Table of natac by glyphosatesc

Statistic	DF	Value	Prob
Chi-Square	9	20.0690	0.0175
Likelihood Ratio Chi-Square	9	20.7197	0.0140
Mantel-Haenszel Chi-Square	1	8.8337	0.0030
Phi Coefficient		0.4436	
Contingency Coefficient		0.4055	
Cramer's V		0.2561	

Sample Size = 102

When testing for the independence of nata_cancer against glyphosates, we obtain a $p_{value} < 0.0175$. Since $p_{value} < \alpha$, we can **reject the** H₀ and conclude that the nata_cancer and glyphosates are associated with each other

	Th	e FREQ F	rocedui	е		
Frequency		Table o	of natac I	by glyph	osatesc	
Expected Cell Chi-Square			gly	phosate	esc	
Percent	natac	1	2	3	4	Total
Row Pct Col Pct	1	2	9	5	10	26
COLLCE		6.6275	6.3725	6.6275	6.3725	
		3.231	1.0833	0.3996	2.0649	
		1.96	8.82	4.90	9.80	25.49
		7.69	34.62	19.23	38.46	
		7.69	36.00	19.23	40.00	
	2	6	2	11	6	25
		6.3725	6.1275	6.3725	6.1275	
		0.0218	2.7803	3.3602	0.0027	
		5.88	1.96	10.78	5.88	24.51
		24.00	8.00	44.00	24.00	
		23.08	8.00	42.31	24.00	
	3	6	8	6	5	25
		6.3725	6.1275	6.3725	6.1275	
		0.0218	0.5723	0.0218	0.2075	
		5.88	7.84	5.88	4.90	24.51
		24.00	32.00	24.00	20.00	
		23.08	32.00	23.08	20.00	
	4	12	6	4	4	26
		6.6275	6.3725	6.6275	6.3725	
		4.3553	0.0218	1.0417	0.8833	
		11.76	5.88	3.92	3.92	25.49
		46.15	23.08	15.38	15.38	
		46.15	24.00	15.38	16.00	
	Total	26	25	26	25	102
		25.49	24.51	25.49	24.51	100.00

Chi-squared test for homogeneity:

Chi-Squared Test for homogeneity:

 H_0 : the column distributions are homogeneous H_1 : the column distributions are not homogeneous

```
/*making categoriccal variable for all states*/
if smoking_rate le 21.29 then smoking_ratec = '1';
if smoking_rate gt 21.29 and smoking_rate le 24.06 then smoking_ratec= '2';
if smoking_rate gt 24.06 and smoking_rate le 26.04 then smoking_ratec = '3';
if smoking_rate gt 26.04 then smoking_ratec ='4';

if nata le 27.4595 then natac = '1';
if nata gt 27.4595 and nata le 32.4345 then natac = '2';
if nata gt 32.4345 and nata le 39.0790 then natac = '3';
if nata gt 39.0790 then natac='4';

if glyphosates le 2.836460 then glyphosatesc = '1';
if glyphosates gt 2.836460 and glyphosates le 21.750745 then glyphosatesc = '2';
if glyphosates gt 21.750745 and glyphosates le 61.827565 then glyphosatesc = '3';
if glyphosates gt 61.827565 then glyphosatesc='4';
```

All states (CA, FL, IL, NJ, NC, WI)

Smoking_rate:

Statistic	DF	Value	Prob
Chi-Square	15	165.5281	<.0001
Likelihood Ratio Chi-Square	15	166.1151	<.0001
Mantel-Haenszel Chi-Square	1	1.2064	0.2720
Phi Coefficient		0.6278	
Contingency Coefficient		0.5317	
Cramer's V		0.3625	

When testing for the homogeneity of all states having the same ratio of smoking_rate, we obtain a $p_{value} < 0.0001$. Since $p_{value} < \alpha$, we reject the H₀. Thus, the smoking rate distribution is not homogenous across states

When testing for independence. we obtain a $p_{value} < 0.0001$. Since $p_{value} < \alpha$, we reject the H₀. Thus, smoking_rate and states are associated

	Table of state by smoking ratec					
Frequency Expected		Table o	f state b	y smoki	ng_rate	C
Cell Chi-Square			sm	oking_ra	atec	
Percent Row Pct	state	1	2	3	4	Total
Col Pct	CA	42	12	3	1	58
		14.5	14.5	14.638	14.362	
		52.155	0.431	9.2529	12.432	
		10.00	2.86	0.71	0.24	13.81
		72.41	20.69	5.17	1.72	
		40.00	11.43	2.83	0.96	
	FL	10	8	16	33	67
		16.75	16.75	16.91	16.59	
		2.7201	4.5709	0.0489	16.231	
		2.38	1.90	3.81	7.86	15.95
		14.93	11.94	23.88	49.25	
		9.52	7.62	15.09	31.73	
	IL	14	29	37	22	102
		25.5	25.5	25.743	25.257	
		5.1863	0.4804	4.9227	0.42	
		3.33	6.90	8.81	5.24	24.29
		13.73	28.43	36.27	21.57	
		13.33	27.62	34.91	21.15	
	NC	8	20	32	40	100
		25	25	25.238	24.762	
		11.56	1	1.8117	9.3773	
		1.90	4.76	7.62	9.52	23.81
		8.00	20.00	32.00	40.00	
		7.62	19.05	30.19	38.46	
	NJ	13	7	1	0	21
		5.25	5.25	5.3	5.2	
		11.44	0.5833	3.4887	5.2	
		3.10	1.67	0.24	0.00	5.00
		61.90	33.33	4.76	0.00	
		12.38	6.67	0.94	0.00	
	WI	18	29	17	8	72
		18	18	18.171	17.829	
		0	6.7222	0.0755	5.4183	
		4.29	6.90	4.05	1.90	17.14
		25.00	40.28	23.61	11.11	
		17.14	27.62	16.04	7.69	
	Total	105	105	106	104	420
		25.00	25.00	25.24	24.76	100.00

Nata_cancer:

Statistic	DF	Value	Prol
Chi-Square	15	227.8974	<.000
Likelihood Ratio Chi-Square	15	228.6835	<.000
Mantel-Haenszel Chi-Square	1	63.6542	<.000
Phi Coefficient		0.7366	
Contingency Coefficient		0.5931	
Cramer's V		0.4253	

When testing for the homogeneity of all states having the same ratio of nata_cancer, we obtain a $p_{value} < 0.0001$. Since $p_{value} < \alpha$, we reject the H₀. Thus, the nata_cancer distribution is not homogenous across states

When testing for independence. we obtain a $p_{value} < 0.0001$. Since $p_{value} < \alpha$, we reject the H₀. Thus, nata_cancer and states are associated glyphosates:

Frequency	Table of state by natac						
Expected Cell Chi-Square Percent Row Pct Col Pct	natac						
	state	1	2	3	4	Total	
	CA	11	12	11	24	58	
001101		14.5	14.5	14.5	14.5		
		0.8448	0.431	0.8448	6.2241		
		2.62	2.86	2.62	5.71	13.81	
		18.97	20.69	18.97	41.38		
		10.48	11.43	10.48	22.86		
	FL	3	7	28	29	67	
		16.75	16.75	16.75	16.75		
		11.287	5.6754	7.556	8.959		
		0.71	1.67	6.67	6.90	15.95	
		4.48	10.45	41.79	43.28		
		2.86	6.67	26.67	27.62		
	IL	16	52	30	4	102	
		25.5	25.5	25.5	25.5		
		3.5392	27.539	0.7941	18.127		
		3.81	12.38	7.14	0.95	24.29	
		15.69	50.98	29.41	3.92		
		15.24	49.52	28.57	3.81		
	NC	17	20	24	39	100	
		25	25	25	25		
		2.56	1	0.04	7.84		
		4.05	4.76	5.71	9.29	23.81	
		17.00 16.19	20.00	24.00 22.86	39.00 37.14		
	NJ	1	3	8	9	21	
		5.25	5.25	5.25	5.25		
		3.4405	0.9643	1.4405	2.6786		
		0.24 4.76	0.71	1.90 38.10	2.14	5.00	
		0.95	14.29	7.62	42.86 8.57		
	WI	57	11	4	0	72	
		18	18	18	18		
		84.5	2.7222	10.889	18		
		13.57	2.62	0.95	0.00	17.14	
		79.17	15.28	5.56	0.00		
		54.29	10.48	3.81	0.00		
	Total	105	105	105	105	420	
		25.00	25.00	25.00	25.00	100.00	

Statistics for Table of state by glyphosatesc

Statistic	DF	Value	Prob
Chi-Square	15	211.1932	<.0001
Likelihood Ratio Chi-Square	15	217.4838	<.0001
Mantel-Haenszel Chi-Square	1	0.4528	0.5010
Phi Coefficient		0.7091	
Contingency Coefficient		0.5784	
Cramer's V		0.4094	

Sample Size = 420

When testing for the homogeneity of all states having the same ratio of nata_cancer, we obtain a $p_{value} < 0.0001$. Since $p_{value} < \alpha$, we reject the H₀. Thus, the glyphosates distribution is not homogenous across states

When testing for independence, we obtain a $p_{value} < 0.0001$. Since $p_{value} < \alpha$, we reject the H₀. Thus, glyphosates and states are associated

The FREQ Procedure								
Frequency	Table of state by glyphosatesc							
Expected Cell Chi-Square Percent	glyphosatesc							
	state	1	2	3	4	Total		
Row Pct	CA	26	12	11	9	58		
Col Pct	CA	14.5	14.5	14.5	14.5	36		
		9.1207	0.431	0.8448	2.0862			
		6.19	2.86	2.62	2.14	13.81		
		44.83	20.69	18.97	15.52			
		24.76	11.43	10.48	8.57			
	FL	27	24	7	9	67		
		16.75	16.75	16.75	16.75			
		6.2724	3.1381	5.6754	3.5858			
		6.43	5.71	1.67	2.14	15.95		
		40.30	35.82	10.45	13.43			
		25.71	22.86	6.67	8.57			
	IL	2	5	25	70	102		
		25.5	25.5	25.5	25.5			
		21.657	16.48	0.0098	77.657			
		0.48	1.19	5.95	16.67	24.29		
		1.96	4.90	24.51	68.63			
		1.90	4.76	23.81	66.67			
	NC	26	39	27	8	100		
		25	25	25	25			
		0.04	7.84	0.16	11.56			
		6.19	9.29	6.43	1.90	23.81		
		26.00 24.76	39.00 37.14	27.00 25.71	8.00 7.62			
	NJ	12	9	0	0	21		
	A.J	5.25	5.25	5.25	5.25	21		
		8.6786	2.6786	5.25	5.25			
		2.86	2.14	0.00	0.00	5.00		
		57.14	42.86	0.00	0.00			
		11.43	8.57	0.00	0.00			
	WI	12	16	35	9	72		
		18	18	18	18			
		2	0.2222	16.056	4.5			
		2.86	3.81	8.33	2.14	17.14		
		16.67	22.22	48.61	12.50			
		11.43	15.24	33.33	8.57			
	Total	105	105	105	105	420		
		25.00	25.00	25.00	25.00	100.00		

Regression

Fitting linear model for all states:

Assumptions:

- 1) x_i are non-random, observed without error:
- 2) ϵ_i are random variable with $E(\epsilon_i) = 0$ and $var(\epsilon_i) = \sigma^2$
- 3) ϵ_i are uncorrelated from observation to observation

$$y\widehat{\mathcal{Y}_{i_i}} = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i$$

Interval estimation of slope and assumption

Slope:
$$\hat{B}_1 \pm t_{\frac{\alpha}{2},n-2} \sqrt{\frac{MSE}{S_{XX}}}$$

Intercept: $\hat{B}_0 \pm t_{\alpha/2,n-2} \sqrt{MSE\left(\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}\right)}$

Test for slope: $H_0: \beta_1 = 0 \mid H_1: \beta_1 \neq 0, F_0 = \frac{MS_{reg}}{MSE}$

Assumptions:

- 1) ϵ_i are uncorrelated $\sim N(0, \sigma^2)$
- 2) $y \sim N(\beta_0 + \beta_1 x, \sigma^2)$ for all x

Test for lack of fit:

 H_0 : y and x are associated (no LOF) | H_1 : y and x are not associated (LOF)

Assumptions:

- 1) Are the data normal? Are residual normal?
- 2) No measurement errors
- 3) Should the model used be a linear model?

For all states (CA, FL, IL, NJ, NC, WI)

/* 95% confidence interval on the betas, test for slope, and lack of fit for
the response variable (smoking_rate) and the regressor variable (nata_cancer) */
∃ proc reg; model smoking=nata/ CLB lackfit alpha = 0.05; TEST nata = 0; run;

At 95 Confidence interval for true intercept & slope:

$$23.926 < \beta_0 < 27.141$$

 $-0.112 < \beta_1 < -0.018$

Test for slope:

We get a $P_{value} = 0.0066$, since **Pvalue** < α , we reject the Ho. We can conclude slope of the linear model is not entirely 0

Test for lack of fit:

Since the R^2 (coefficient of determination) is ~ 0.0175. It is a bad fit to use a linear model to represent the model

We get a $P_{value} = 0.5091$, since **Pvalue** > α , we fail to reject the Ho. We can conclude smoking rate and nata_cancer is associated in a linear fashion

/* 95% confidence interval on the betas, test for slope, and lack of fit for
the response variable (smoking_rate)and the regressor variable (glyphosates) */
□ proc reg; model smoking=glyphosates/ CLB lackfit alpha = 0.05; run;

Since the R^2 (coefficient of determination) is \sim 0.0002, It is a bad fit to use a linear model to represent the model

$$\widehat{y}_i = 23.393 - 0.001x_i$$

At 95 Confidence interval for true intercept & slope:
 $22.938 < \beta_0 < 23.849$
 $-0.007 < \beta_1 < 0.005$

Test for slope:

We get a $P_{\text{value}} = 0.80$, since $P_{\text{value}} > \alpha$, we fail to reject the H_0 . We can conclude the slope of the linear model for smoking and glyphosates is 0.

Test for lack of fit:

We get a $P_{value} = 0.8678$, since $Pvalue > \alpha$, we fail to reject the Ho. We can conclude smoking rate and glyphosates is associated in a linear fashion.

/* 95% confidence interval on the betas, test for slope, and test lack of fit
for where the response variable (nata) and the regressor variable (glyphosates)*/

proc reg; model nata=glyphosates/ CLB lackfit alpha = 0.05;run;

Since the R^2 (coefficient of determination) is ~ 0.0005, It is a bad fit to use a linear model to represent the model.

$$\hat{y}_i = 33.431 - 0.003x_i$$

At 95 Confidence interval for true intercept & slope:

$$32.506 < \beta_0 < 34.356$$

 $-0.015 < \beta_1 < 0.009$

Test for slope:

We get a $P_{\text{value}} = 0.64$, since **Pvalue** > α , we fail to reject the **Ho**. We can conclude the slope of the linear model for smoking and glyphosates is 0.

Test for lack of fit:

We get a $P_{value} = 0.99$, since $Pvalue > \alpha$, we fail to reject the Ho. We can conclude nata_cancer and glyphosates is associated in a linear fashion.

For North Carolina

/* 95% confidence interval on the betas and test for slope for where
the response variable (nata) and the regressor variable (glyphosates)*/
□ proc reg; model smoking=nata/ CLB alpha = 0.05;run;

 $\widehat{y}_i = 28.38 - 0.10x_i$

At 95 Confidence interval for true intercept & slope:

$$25.64 < \beta_0 < 31.129$$

 $-0.172 < \beta_1 < -0.021$

Test for slope:

We get a $P_{value} = 0.01$, since **Pvalue** < α , we reject the Ho. We can conclude slope of the linear model is not entirely 0

Since the R^2 (coefficient of determination) is ~ 0.06. It is a bad fit to use a linear model to represent the model

Since the R^2 (coefficient of determination) is \sim 0.0172, It is a bad fit to use a linear model to represent the model

$$\hat{y}_i = 24.630 - 0.016x_i$$

At 95 Confidence interval for true intercept & slope:

$$23.896 < \beta_0 < 25.364$$

 $-0.008 < \beta_1 < 0.04$

Test for slope:

We get a $P_{\text{value}} = 0.19$, since Pvalue > α , we fail to reject the Ho. We can conclude the slope of the linear model for smoking and glyphosates is 0.

Fit Plot for nata

Since the R^2 (coefficient of determination) is ~ 0.0047, It is a bad fit to use a linear model to represent the model

 $\widehat{y}_i = 36.06 - 0.022x_i$ At 95 Confidence interval for true intercept & slope:

$$34.163 < \beta_0 < 37.963$$

 $-0.086 < \beta_1 < 0.0422$

Test for slope:

We get a $P_{value} = 0.50$, since $Pvalue > \alpha$, we fail to reject the Ho. We can conclude the slope of the linear model for nata_cancer and glyphosate is 0.

For Illinois

/* 95% confidence interval on the betas and test for slope for where
the response variable (nata) and the regressor variable (glyphosates)*/

□ proc reg; model smoking=nata/ CLB alpha = 0.05;run;

Smoking_rate vs Nata Cancer:

$$\hat{y}_i = 23.69 - 0.01x_i$$

At 95 Confidence interval for true intercept & slope:

$$19.302 < \beta_0 < 28.085$$

 $-0.126 < \beta_1 < 0.153$

Test for slope:

We get a $P_{value} = 0.85$, since **Pvalue** > α , we reject the Ho. We can conclude slope of the linear model is 0

Since the R^2 (coefficient of determination) is \sim 0.0004. It is a bad fit to use a linear model to represent the model

Smoking_rate vs. Glyphosates:

$$\hat{y}_i = 23.495 - 0.007x_i$$

At 95 Confidence interval for true intercept & slope:

$$22.501 < \beta_0 < 24.487 \\ -0.002 < \beta_1 < 0.015$$

Test for slope:

We get a $P_{value} = 0.15$, since $Pvalue > \alpha$, we fail to reject the Ho. We can conclude the slope of the linear model for smoking and glyphosates is 0.

Since the R^2 (coefficient of determination) is \sim 0.0209, It is a bad fit to use a linear model to represent the model

 $\widehat{y}_i = 32.71 - 0.016x_i$ At 95 Confidence interval for true intercept & slope:

Since the R^2 (coefficient of determination) is ~ 0.064, It is a bad fit to use a linear model to represent the model

$$31.338 < \beta_0 < 34.089$$

 $-0.028 < \beta_1 < 0.004$

Test for slope:

We get a $P_{value} = 0.01$, since **Pvalue** < α , we reject the Ho. We can conclude the slope of the linear model for nata_cancer and glyphosate not 0.

If we wanted to make prediction interval of a mean y value when x is given

$$\widehat{y_i} \pm t_{\frac{\alpha}{2}, n-2} S_{\widehat{y_0}}$$

$$S_{\widehat{y_0}} = \sqrt{MSE\left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right]}$$

If we wanted to make prediction interval of an individual value of y value when x is given

$$\widehat{y}_{t} \pm t_{\frac{\alpha}{2}, n-2} S_{\widehat{y}_{0}}$$

$$S_{\widehat{y}_{0}} = \sqrt{MSE \left[1 + \frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{S_{xx}} \right]}$$

Conclusion

In conclusion, our investigation of the central tendency for the variables smoking_rate, nata_cancer, and glyphosates revealed the following: Florida has the highest average smoking rate, New Jersey has the highest Nata Cancer rate, and Illinois has the highest glyphosate mortality. Our normality tests for these variables indicated that they are not normally distributed. The ANOVA tests for all states across all variables were significant, as were the tests for equal variances. In the multiple comparisons test, North Carolina and Illinois showed significant differences from the rest in all variables. The Chi-squared tests for goodness of fit were significant for our states on smoking, nata, and glyphosates. The contingency table tests of independence and homogeneity were significant for smoking_rate vs nata_cancer and nata_cancer vs glyphosates, but not for smoking_rate vs glyphosates. Through regression analysis, we found that it is not recommended to use a linear model to predict the results of one variable against another for our variables. The coefficient of determination for all model results in poor R². This applies to all comparisons, such as smoking_rate vs Nata_cancer, smoking_rate vs glyphosates, and nata_cancer vs glyphosates.