SOLID: Liskov Substitution Principle

Explore the Liskov Substitution Principle and how it guides the use of inheritance.

Introduction

The Liskov Substitution Principle (LSP) is one of the fundamental design principles of object-oriented design. The LSP helps guide the use of inheritance in design so that the application does not break. It states that the objects of a subclass should behave the same way as the objects of the superclass, such that they are replaceable. This rule generally applies to abstraction concepts like inheritance and polymorphism.

The Vehicle class

Let's construct a simple class called Vehicle that has some attributes and methods and a subclass Car that extends it as shown below:

So far, this implementation seems right since a car IS A vehicle, and the startEngine() method will override the superclass method. However, it's not as simple as it looks.

Violation

Let's add a Bicycle subclass in this system and see what happens:

method. Solution

vehicles as motorized vehicles and manual vehicles as follows:

Vehicle

name: string speed : double

A possible fix to this issue would be to add two subclasses of Vehicle that classify the

• Car is substitutable with its superclass, Motorized, and Bicycle is substitutable

- Their methods can also override the methods of the superclass.
- Conclusion

benefits of the LSP are provided below:

Interface Segregation Principle in the next lesson.

The LSP is an important principle that should be extended to the level of system architecture. A small violation of the substitutability of classes can cause the system

- to break down, which is why we should always be on the lookout for violations. A few
 - It avoids the generalization of concepts that may not be needed in the future.

• It makes the code maintainable and easier to upgrade. Now that we have learned about the Liskov Substitution Principle, let's look at the

