Note 1. This Specifications and Test Methods is downloaded from the website of Murata Manufacturing co...ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

2. This Specifications and Test Methods has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

GRM Series Specifications and Test Methods (1)

No.	lte	em	Specifications Temperature Compensating Type		Test Method				
1	Operating Temperature Range $ \begin{array}{c} -55 \text{ to } +125^{\circ}\text{C} \\ (2P/R/S/T, 3P/R/S/T/U; -25 \text{ to } +85^{\circ}\text{C}) \end{array} $ Reference temperature: 25°C $(2\Delta, 3\Delta, 4\Delta; 20^{\circ}\text{C})$			Reference temperature: 25°C (2A, 3A, 4A: 20°C) Tr/U, 4P/R/S/Tr/U: -25 to +85°C) Reference temperature: 25°C (2A, 3A, 4A: 20°C) The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, VP-P or VO-P, whichever is larger, should be maintained within the rated voltage range. Visual inspection Using calipers (GRM02 size is based on Microscope) No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at Reference Temperature and 75%RH max, and within 2 minuted what in 2 minuted charging, provided the charge/discharge current is less than 50mA. It dolerance The capacitance/Q/D.F. should be measured at Reference Temperature at the frequency and voltage shown in the table. Capacitance 1000pF and below more than 1000pF Frequency 1±0.1MHz 1±0.1Hz Voltage 0.5 to 5Vrms 1±0.2Vrms It dolerance (Table A-1) The capacitance change should be measured after 5 min, at each specified temp, stage. The temperature sequentially from step 1 through 5 (5C; +225 to 4125°C)C = 20 to +125°C Corter temp. coefficient of capacitance should be within the specified terms are saured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (5C; +225 to 4125°C)C = 20 to +125°C Corter temp. coefficient of capacitance change as Table A-1. The capacitance in minimum measured values in the step 1, 3 and 5 by the ca					
2	2 Rated Voltage		Oltage See the previous pages.		may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, VP-P or VO-P, whichever is larger, should be maintained within the rated				
3	Appearar	nce	No defects or abnormalities	Visual inspection					
4	Dimensio	ns	Within the specified dimensions	Using calipers (GRM	102 size is based on	Microscope)			
5	5 Dielectric Strength		No defects or abnormalities	is applied between the terminations for 1 to 5 seconds					
6	6 Insulation Resistance		C≦0.047μF: More than 10,000MΩ C>0.047μF: More than 500Ω · F C: Nominal Capacitance	voltage not exceeding the rated voltage at Reference Temperature and 75%RH max. and within 2 minutes of charging, provided the charge/discharge current is les					
7	Capacita	nce	Within the specified tolerance						
8	Q		30pF and over: Q≥1000 30pF and below: Q≥400+20C		1000pr and below	•			
			C: Nominal Capacitance (pF)						
		No bias	Within the specified tolerance (Table A-1)	The capacitance change should be measured after 5 min. at each specified temp. stage. The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (5C: +25 to +125°C/ΔC: +20 to +125°C: other temp. coeffs.: +25 to +85°C/+20 to +85°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A-1. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the					
9	Capacitance Temperature Characteristics	Temperature Capacitance Characteristics Capacitance (Whichev							
					–25±3 (for other TC)				
					125±3 (for ΔC)			
					85±3 (for	other TC)			
			No removal of the terminations or other defect should occur.		Fig. 1a using a eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *1N (GRM02), 2N (GRM03), 5N (GRM15, GRM18)				
10				Туре	a k				
	Adhesive Strength of Termination		GRM02 GRM03	0.2 0.9					
			Solder resist	GRM03 GRM15	0.3 0. 0.4 1.				
			Baked electrode or copper foil	GRM18	1.0 3.				
			Fig. 1a	GRM21	1.2 4.				
			i ig. ia	GRM31	2.2 5.				
				GRM32	2.2 5.				
				GRM43 GRM55	3.5 7. 4.5 8.				
				J.KIFIJJ	U 0.	0.0			

Continued on the following page.

Note 1. This Specifications and Test Methods is downloaded from the website of Murata Manufacturing co.,ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

2. This Specifications and Test Methods has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

GRM Series Specifications and Test Methods (1)

Continued from the preceding page.

No	No. Item		Specifications	Test Method				
			Temperature Compensating Type		Solder the capacitor on the test jig (glass epoxy board) in			
		Appearance	No defects or abnormalities		-			
		Capacitance	Within the specified tolerance	same manner and				
11	Vibration Resistance	Q	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	The capacitor should be subjected to a simple harm having a total amplitude of 1.5mm, the frequency be uniformly between the approximate limits of 10 and frequency range, from 10 to 55Hz and return to 10 be traversed in approximately 1 minute. This motic applied for a period of 2 hours in each of 3 mutuall perpendicular directions (total of 6 hours).			being varied nd 55Hz. The 10Hz, should tion should be	
		Appearance	No marking defects	Solder the capacito	or on the test ii	g (glass epoxy	/ board) shown	
				in Fig. 2a using a eutectic solder. Then apply a force in				
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	direction shown in	Fig. 3a for 5±1	sec. The solo	dering should be	
		Change	(Whichever is larger)	$oldsymbol{ol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$				
122	12 Deflection		20 50 Pressurizing speed : 1.0mm/sec. Pressurize R230 Flexure : ≤1 Capacitance meter 45 45 Fig. 3a	so that the soldering is uniform and free of defects such as heat shock. Fig. 2a t: 1.6mm (GRM02/03/15: t: 0.8mm) Type GRM02 0.2 0.56 0.23 GRM03 0.3 0.9 0.3 GRM15 0.4 1.5 0.5 GRM18 1.0 3.0 1.2				
			I ig. oa	GRM21	1.2	4.0	1.65	
				GRM31	2.2	5.0	2.0	
				GRM32 GRM43	3.5	5.0 7.0	3.7	
				GRM55	4.5	8.0	5.6	
				ORMOO	4.0	0.0	0.0	
13	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in a eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.				
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance No defects or abnormalities						
	Resistance to	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Set at room temperature for 24±2 hours, then measure.				
14	Soldering		30pF and over: Q≧1000	Preheating for GRM32/43/55				
	Heat	Q	30pF and below: Q≧400+20C				Time	
			C: Nominal Capacitance (pF)	1	100 to 120°	С	1 min.	
		I.R.	More than 10,000MΩ or 500Ω · F (Whichever is smaller)	_ 2	170 to 200°	U	1 min.	
			more than 10,000ms2 of 00022 1 (viriloffever is sitialier)	-				
		Dielectric Strength	No defects					

Continued on the following page.

Note 1. This Specifications and Test Methods is downloaded from the website of Murata Manufacturing co.,ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

2. This Specifications and Test Methods has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

GRM Series Specifications and Test Methods (1)

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

lo. Item		Specifications Temperature Compensating Type	Test Method					
		The measured and observed characteristics should satisfy the specifications in the following table.	Fix the capacitor to the supporting jig in the same					
	Appearance	No defects or abnormalities						
Townstee	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments shown in the following table. Set for 24±2 hours at room temperature, then measure.					
Temperature Cycle		30pF and over: Q≧1000	Step	1	2	3	4	
	Q	30pF and below: Q≧400+20C		Min.	Room	Max.	Room	
		C: Nominal Capacitance (pF)	Temp. (°C)	Operating Temp. +0/–3	Temp.	Operating Temp. +3/–0	Temp.	
	I.R.	More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)	Time (min.)	30±3	2 to 3	30±3	2 to 3	
	Dielectric Strength	No defects						
		The measured and observed characteristics should satisfy the specifications in the following table.						
	Appearance	No defects or abnormalities						
Humidity	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	Set the capacitor at 40±2°C and in 90 to 95% humidity for					
(Steady State)	Q	30pF and over: Q≥350 10pF and over 30pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C	500±12 hours. Remove and set for 24±2 hours at room temperature, measure.				, then	
		C: Nominal Capacitance (pF)						
	I.R.	More than 1,000M Ω or 50 Ω · F (Whichever is smaller)						
		The measured and observed characteristics should satisfy the specifications in the following table.						
	Appearance	No defects or abnormalities						
Humidity	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2°C and 90 to 95% humidity fo 500±12 hours. Remove and set for 24±2 hours at room					
Load	Q	30pF and over: Q≥200 30pF and below: Q≥100+10C/3	temperature, then measure. The charge/discharge current is less than 50mA.					
		C: Nominal Capacitance (pF)						
	I.R.	More than 500M Ω or 25 Ω · F (Whichever is smaller)						
		The measured and observed characteristics should satisfy the specifications in the following table.						
	Appearance	No defects or abnormalities						
High	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage at the maximum ope			erating		
3 Temperature		30pF and over: Q≧350 10pF and over 30pF and below: Q≧275+2.5C	temperature ±3°C for 1000±12 hours Set for 24±2 hours at room temperature the charge/discharge current is les		s at room temperature, then measure.			
Load	Q	10pF and below: Q≧200+10C						
Load	Q	i ·						

Continued on the following page.

Note 1. This Specifications and Test Methods is downloaded from the website of Murata Manufacturing co.,ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

2. This Specifications and Test Methods has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

GRM Series Specifications and Test Methods (1)

Continued from the preceding page. Table A-1

	Nominal Values (ppm/°C)*1	Capacitance Change from 25°C (%)							
Char.		- 55		-30		-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11		
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21		
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32		
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.56		
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95		
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44		
7 U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21		
1X	+350 to -1000	_	_	_	_	_	_		

^{*1:} Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for Δ C)/85°C (for other TC).

(2)

		Capacitance Change from 20°C (%)						
Char.	Nominal Values (ppm/°C)*2	-55		-25		-10		
		Max.	Min.	Max.	Min.	Max.	Min.	
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36	
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75	
2P	-150± 60	_	_	1.32	0.41	0.88	0.27	
3P	-150±120	_	_	1.65	0.14	1.10	0.09	
4P	-150±250	_	_	2.36	-0.45	1.57	-0.30	
2R	-220± 60	_	_	1.70	0.72	1.13	0.48	
3R	-220±120	_	_	2.03	0.45	1.35	0.30	
4R	-220±250	_	_	2.74	-0.14	1.83	-0.09	
2S	-330± 60	_	_	2.30	1.22	1.54	0.81	
3S	-330±120	_	_	2.63	0.95	1.76	0.63	
4S	-330±250	_	_	3.35	0.36	2.23	0.24	
2T	-470± 60	_	_	3.07	1.85	2.05	1.23	
3T	-470±120	_	_	3.40	1.58	2.27	1.05	
4T	-470±250	_	_	4.12	0.99	2.74	0.66	
3U	-750±120	_	_	4.94	2.84	3.29	1.89	
4U	-750±250	_	_	5.65	2.25	3.77	1.50	

^{*2:} Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for Δ C)/85°C (for other TC).