

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 2

Название:	Построение IDEF0-модели AS-IS функцион	пирования заданной
	системы	-

Дисциплина: Теория систем и системный анализ

Студент	ИУ6-72Б		И.С. Марчук		
	(Группа)	(Подпись, дата)	(И.О. Фамилия)		
Преподаватель					
		(Подпись, дата)	(И.О. Фамилия)		

Цель лабораторной работы: овладение методологией IDEF0 для функционального моделирования сложных систем.

Ход работы

Задание: построить структурно-функциональную модель системы на основе методологии IDEF0.

Предметная область: технология кроссплатформенного программирования микроконтроллеров в Интегрированной среде разработки ArduinoIDE.

Субъект моделирования: система компилятора программ среды ArduinoIDE.

Цель моделирования: проанализировать процесс компиляции программ.

Точка зрения: пользователь системы.

Рассмотрим основные параметры субъекта моделирования.

В качестве управляющих данных выступают настройки (параметры) выбранные пользователем для конкретной отладочной платы.

В качестве входных параметров выступают исходный код программы на языке Си и библиотеки для работы с микроконтроллером и периферией.

Механизмами системы является компилятор программ в среде ArduinoIDE.

Выходными данными является скомпилированный байт-код, предназначенный для прошивки микросхемы.

На основе этих данных была построена контекстная диаграмма, представленная на рисунке 1.

Рисунок 1 — Контекстная диаграмма «А-0. Компиляция программ из исходного кода»

Составим диаграмму декомпозиции А0.

Она представлена следующими функциональными блоками:

- Компоновка кода из библиотек;
- Трансляция команд с языка Си++ на язык Си;
- Ассемблирование кода по заданным параметрам сборки.

Код программы переходит последовательно между блоками. Сначала в нем ссылки на библиотеки заменяются кодом, затем происходит трансляция получившейся программы на язык Си и в конце ассемблирование. Действуют на каждом этапе компиляции программные средства Arduino IDE. Параметры сборки применяются на этапе трансляции языка С++ в Си, а также при транслировании программы на Си в байткод.

Результаты моделирования представлены на рисунке 2.

Рисунок 2 — Диаграмма «А0. Компиляция программ из исходного кода» Далее декомпозируем функциональный блок А1. Декомпозиция блока А1 представлена на рисунке 3.

Рисунок 3 — Диаграмма «А1. Компоновка кода из библиотек»

При рассмотрении полученной модели были выявлены следующие недостатки:

1. Компоновка библиотек происходит не с единой базой пополняемых библиотек, а с подключаемыми индивидуально модулями, что снижает скорость разработки.

Узкое место			Способ исправления		
Отсутствует	единая	система	Создание	модуля,	объединяющего
библиотек компонентов		имеющиеся библиотеки, имеющего			
			функцию		автоматического
			подключения библиотек.		

Вывод: в процессе выполнения лабораторной работы были освоены основы методологии IDEF0 для функционального моделирования сложных систем, получены навыки выделения недостатков системы с помощью этой методологии.