Anomaly Detection

Tozammel Hossain

Anomaly Detection

What are anomalies/outliers?

 The set of data points that are considerably different than the remainder of the data

Context is important, e.g., freezing temps in July

Can be important or a nuisance

- 200 pound, 2 year old
- Unusually high blood pressure

Types of Anomaly Detection

Outlier Detection

- Observations that is far from others (inliers)
- Focus on regions where the training data is the most concentrated

Novelty Detection

- Training data is not polluted by outliers
- Detecting whether a **new** observation is an outlier
- Aka deviation detection, exception mining

Importance of Anomaly Detection

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!

Applications

- Fraud Detection
- Intrusion Detection
- Public Health
- Medicine
- Ecosystem

Causes of Anomalies

Data from different classes

 Measuring the weights of oranges, but a few grapefruit are mixed in

Natural variation

- Unusually tall people

Data errors

200 pound 2 year old

Noise vs Anomalies

Noise doesn't necessarily produce unusual values or objects

Noise is not interesting

Noise and anomalies are related but distinct concepts

General Issues: Anomaly Scoring

Many anomaly detection techniques provide only a binary categorization

- An object is an anomaly or it isn't
- This is especially true of classification-based approaches

Other approaches assign a score to all points

- This score measures the degree to which an object is an anomaly
- This allows objects to be ranked

In the end, you often need a binary decision

- Should this credit card transaction be flagged?
- Still useful to have a score

Type of Anomaly Detection Problems

- Given a data set D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D
- Given a data set D, find all data points x
 ∈ D with anomaly scores greater than
 some threshold t
- Given a data set D, find all data points x
 ∈ D having the top-n largest anomaly
 scores

Model-Based Anomaly Detection

Unsupervised (Outlier Detection)

- Anomalies are those points that don't fit well
- Anomalies are those points that distort the model

Supervised (Rare Class Detection)

- -Anomalies are regarded as a rare class
- –Need to have training data

Semi-supervised (Novelty Detection)

Normal data is given for training

Anomaly Detection Techniques

- Statistical Approaches
- Proximity-based
 - Anomalies are points far away from other points
- Clustering-based
 - Points far away from cluster centers are outliers
- Reconstruction Based

Statistical Approaches

Probabilistic definition of an outlier:

- An outlier is an object that has a low probability with respect to a probability distribution model of the data.
- Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)

Apply a statistical test that depends on

- Data distribution
- Parameters of distribution (e.g., mean, variance)
- Number of expected outliers (confidence limit)

Box Plot

Elliptic Envelop

- Assumption: Data came from a normal/Gaussian distribution
- Fit a Gaussian model and try to define a shape of the data

Strengths/Weaknesses of Statistical Approaches

- Firm mathematical foundation
- Can be very efficient
- Good results if distribution is known
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution
- Anomalies can distort the parameters of the distribution

Distance-Based Approaches

 The outlier score of an object is the distance to its kth nearest neighbor

One Nearest Neighbor - Two Outliers

Strengths/Weaknesses of Distance-Based Approaches

- Simple
- Expensive O(n²)
- Sensitive to parameters
- Sensitive to variations in density
- Distance becomes less meaningful in high-dimensional space

Density-Based Approaches

Density-based Outlier:

- The outlier score of an object is the inverse of the density around the object.
- Can be defined in terms of the k nearest neighbors
- One definition: Inverse of distance to kth neighbor
- Another definition: Inverse of the average distance to k neighbors
- DBSCAN, LocalOutlierFactor (LOF)
- If there are regions of different density, this approach can have problems

Relative Density-based: LOF approach

- For each point, compute the density of its local neighborhood
- Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors
- Outliers are points with largest LOF value

In the NN approach, p_2 is not considered as outlier, while LOF approach find both p_1 and p_2 as outliers

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Strengths/Weaknesses of Density-Based Approaches

- Simple
- Expensive O(n²)
- Sensitive to parameters
- Density becomes less meaningful in high-dimensional space

Clustering-Based Approaches

Clustering-based Outlier:

- An object is a cluster-based outlier if it does not strongly belong to any cluster
- For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
- For density-based clusters, an object is an outlier if its density is too low
- For graph-based clusters, an object is an outlier if it is not well connected
- Other issues include the impact of outliers on the clusters and the number of clusters

Distance of Points from Closest Centroids

Strengths/Weaknesses of Clustering-Based Approaches

- Simple
- Many clustering techniques can be used
- Can be difficult to decide on a clustering technique
- Can be difficult to decide on number of clusters
- Outliers can distort the clusters

Isolation Forest

Based on Random Forest

Liu Tink Zhou icdm2008

Reconstruction-Based Approaches

- Based on assumptions there are patterns in the distribution of the normal class that can be captured using lower-dimensional representations
- Reduce data to lower dimensional data
 - Can use Principal Components Analysis (PCA) or other dimensionality reduction techniques
 - Can also use neural networks
- Measure the reconstruction error for each object
 - The difference between original and reduced dimensionality version

Reconstruction Error

- Let x be the original data object
- Find the representation of the object in a lower dimensional space
- Project the object back to the original space
- Call this object \hat{x}

Reconstruction Error(
$$\mathbf{x}$$
)= $\|\mathbf{x} - \hat{\mathbf{x}}\|$

Objects with large reconstruction errors are anomalies

Reconstruction of two-dimensional data

Strengths and Weaknesses

Does not require assumptions about distribution of normal class

- Can use many dimensionality reduction approaches
- The reconstruction error is computed in the original space
 - This can be a problem if dimensionality is high

One Class SVM

- Use an SVM approach to classify normal objects
- Uses the given data to construct such a model
- This data may contain outliers
- But the data does not contain class labels
- How to build a classifier given one class?

Finding Outliers with a One-Class **SVM**

Kumar

Strengths and Weaknesses

- Strong theoretical foundation
- Choice of v is difficult

Computationally expensive

Information Theoretic Approaches

 Key idea is to measure how much information decreases when you delete an observation

$$Gain(x) = Info(D) - Info(D \setminus x)$$

- Anomalies should show higher gain
- Normal points should have less gain

Information Theoretic Example

weight	height	Frequency
low	low	20
low	medium	15
medium	medium	40
high	high	20
high	low	5

• Eliminating last group give a gain of 2.08 − 1.89 = 0.19 Data Mining, 2nd

11/26/2019 Thtroduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Strengths and Weaknesses

Solid theoretical foundation

Theoretically applicable to all kinds of data

 Difficult and computationally expensive to implement in practice

Evaluation of Anomaly Detection

- If class labels are present, then use standard evaluation approaches for rare class such as precision, recall, or false positive rate
 - FPR is also know as false alarm rate
- For unsupervised anomaly detection use measures provided by the anomaly method
 - Reconstruction error or gain