Book 10 Proposition 22

The square on a medial (straight-line), being applied to a rational (straight-line), produces as breadth a (straight-line which is) rational, and incommensurable in length with the (straight-line) to which it is applied.

Let A be a medial (straight-line), and CB a rational (straight-line), and let the rectangular area BD, equal to the (square) on A, have been applied to BC, producing CD as breadth. I say that CD is rational, and incommensurable in length with CB.

For since A is medial, the square on it is equal to a (rectangular) area contained by rational (straight-lines which are) commensurable in square only [Prop. 10.21]. Let the square on (A) be equal to GF. And the square on (A) is also equal to BD. Thus, BD is equal to GF. And (BD) is also equiangular with (GF). And for equal and equiangular parallelograms, the sides about the equal angles are reciprocally proportional [Prop. 6.14]. Thus, proportionally, as BC is to EG, so EF (is) to CD. And, also, as the (square) on BC is to the (square) on EG, so the (square) on EF (is) to the (square) on EG. And the (square) on EF is commensurable

with the (square) on EG. For they are each rational. Thus, the (square) on EF is also commensurable with the (square) on CD [Prop. 10.11]. And the (square) on EF is rational. Thus, the (square) on CD is also rational [Def. 10.4]. Thus, CD is rational. And since EF is incommensurable in length with EG. For they are commensurable in square only. And as EF (is) to EG, so the (square) on EF (is) to the (rectangle contained) by FE and EG [see previous lemma]. The (square) on EF[is] thus incommensurable with the (rectangle contained) by FE and EG [Prop. 10.11]. But, the (square) on CDis commensurable with the (square) on EF. For they are rational in square. And the (rectangle contained) by DC and CB is commensurable with the (rectangle contained) by FE and EG. For they are (both) equal to the (square) on A. Thus, the (square) on CD is also incommensurable with the (rectangle contained) by DCand CB [Prop. 10.13]. And as the (square) on CD (is) to the (rectangle contained) by DC and CB, so DC is to CB [see previous lemma]. Thus, DC is incommensurable in length with CB [Prop. 10.11]. Thus, CD is rational, and incommensurable in length with CB. (Which is) the very thing it was required to show.