



Тема курсового проекат

## ВИЗУАЛИЗАЦИЯ СФЕР ПРИ ПОМОЩИ МЕТОДА ТРАССИРОВКИ ЛУЧЕЙ

МГТУ им. Н. Э. Бауман

Студент: Чаушев А.К.

Группа: ИУ7-56Б

Научный руководитель: Романова Т.Н.



## Цель курсового проекта

Разработка ПО для визуализация сфер при помощи метода трассировки лучей



## ДЛЯ ДОСТИЖЕНИЯ ПОСТАВЛЕННОЙ ЦЕЛИ НЕОБХОДИМО РЕШИТЬ СЛЕДУЮЩИЕ ЗАДАЧИ

Изучить предметную облась.

Изучить существующий алгоритм трассировки лучей.

Реализовать выбранный алгоритм.

Изучить и реализовать алгоритм трассировки лучей

Разработать ПО

Разработать программу визуализации сфер из заданного набора методом трассировки лучей. В программе должны быть учтены освещенность, тип поверхности объектов, должны быть визуализированы тени и блики.

#### АЛГОРИТМ ТРАССИРОВКИ ЛУЧЕЙ



#### Плюсы

Фотореалистичность, в том числе и при отрисовке теней, отражений и прозрачных объектов. Отсутствие привязок к системам координата. Правильная передача перспективы

#### Минусы

Серьёзным недостатком метода обратного трассирования является производительность.

# построения модели

В работе реализованы алгоритмы нахождения точки пересечения луча со следующими геометрическими объектами:

- 1) Пересечение со сферой
- 2) Пересечение с плоскостью





#### МОДЕЛЬ ОСВЕЩЕНИЯ КУКА-ТОРРЕНСА

Модель освещения Кука-Торренса предназначена для уточнения зеркальной (бликовой) составляющей, представленной тремя основными компонентами:

Цветовая модель RGB



# Кватернионы

- позволяют проще комбинировать вращения, а также избежать проблемы, связанной с невозможностью поворота вокруг оси, независимо от совершённого вращения по другим осям
- В сравнении с матрицами они обладают большей вычислительной устойчивостью и могут быть более эффективными.



# Распараллеливание



W1 W2 w3 w4 w5 w6 w7 w8 w9

На 4 потока

На 9 потоков

### СХЕМА АЛГОРИТМА







# ЗАДАНИЕ ОБЪЕКТОВ НА СЦЕНЕ

- в таблице приведены правила по которым задаются геометрические объекты

|                | Правила задание объектов на сцене                            |                                           |  |
|----------------|--------------------------------------------------------------|-------------------------------------------|--|
|                | Положение                                                    | Параметры                                 |  |
| Сфера          | Задается его центром                                         | Задается его радиусом (R)<br>и материалом |  |
| Плоскость      | Задается при помощи его<br>центром и вектором нормали        | Задается материал                         |  |
| Источник света | Задается при помощи его<br>центром и<br>вектором направлений | Задается интенсивность<br>и его тип       |  |



# Примеры работы программы







# Результаты проведённого эксперимента







### ЗАКЛЮЧЕНИЕ

В ходе выполнения работы была изучена предметная область, произведен сравнительный анализ алгоритмов растеризации, а также выбран и реализован алгоритм трассировки лучей. Для данного алгоритма были реализованы такие эффекты как:

- 1) диффузное отражение света;
- 2) блеск объектов;
- 3) зеркальное отражение;
- 4) прозрачность объектов
- 5) тени, в том числе тени частично прозрачных объектов





# Спасибо за внимания



