

RFM products are now Murata products.

RP1104

- 640.0 MHz **SAW Resonator**

- Ideal for 639.9 or 640.0 MHz Oscillators
- Nominal Insertion Phase Shift of 180° at Resonance
- **Quartz Stability**
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RP1105 is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency oscillators operating at

or near 640 MHz. In the typical CATV converter second LO application, the nominal LO frequency is 639.90 MHz. For these designs, the nominal resonator frequency is higher than the nominal oscillator frequency to allow for production frequency tuning.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+5	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C
Solder Temperature, 10 seconds/5 cycles maximum	260	°C

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency	Absolute Frequency	f _C	2, 3, 4, 5,	639.900		640.100	MHz
	Tolerance from 640.000 MHz	Δf_{C}	2, 3, 4, 3,			±100	kHz
Insertion Loss		IL	2, 5, 6		9.1	12.5	dB
Quality Factor	Unloaded Q	Q _U	5, 6, 7		8,600		
	50 Ω Loaded Q	Q_L	5, 6, 7		5,600		
Temperature Stability	Turnover Temperature	T _O		64	79	94	°C
	Turnover Frequency	f _O	6, 7, 8		f _C +69		kHz
	Frequency Temp. Coefficient	FTC			0.037		ppm/°C ²
Frequency Aging	Absolute Value during First Year	f _A	6		≤ 10		ppm/yr
DC Insulation Resistance between Any Two Pins			5	1.0			MΩ
RF Equivalent RLC	Motional Resistance	R_{M}			185		Ω
	Motional Inductance	L _M	5, 7, 9		395.520		μH
	Motional Capacitance	C _M			0.156356		fF
	Shunt Static Capacitance	Co	5, 6, 9		1.7		pF
Lid Symbolization (in ac	ddition to Lot and/or Date Codes)		•	R	FM P1105	1	•

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES:

- 1.Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years. The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1. Typically, $f_{OSCILLATOR}$ or
- f_{TRANSMITTER} is less than the resonator f_C.

 One or more of the following United States patents apply: 4,454,488; 4,616,197.

 Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.

- Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 5^{\circ}C$
- The design, manufacturing process, and specifications of this device are subject to change without notice.
- Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and T_C .

 Turnover temperature, T_C , is the temperature of maximum (or turnover) frequency, T_C . The nominal frequency at any case temperature, T_C , may be calculated from: T_C the nominal frequency at any case temperature. f_O [1 - FTC $(T_O - T_C)^2$]. Typically, oscillator T_O is 20° less than the specified resonator T_O .
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

Electrical Connections

This two-port, three-terminal SAW resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

Pin	Connection	
1	Input or Output	
2	Output or Input	
3	Case Ground	

Typical Test Circuit

Typical Application Circuits

This SAW resonator can be used in oscillator or transmitter designs that require 180° phase shift at resonance in a two-port configuration. One-port resonators can be simulated, as shown, by connecting pins 1 and 2 together. However, for most low-cost consumer products, this is only recommended for retrofit applications and not for new designs.

Conventional Two-Port Design:

Case Design

Equivalent LC Model

The following equivalent LC model is valid near resonance:

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Typical Frequency Response

The plot shown below is a typical frequency response for the RP series of two-port resonators. The plot is for RP1094.

Dimensions	Millimeters		Inches		
	Min	Max	Min	Max	