NEO-2 Quick Start Manual

1) <u>VEMEC / NEMEC / V3FIT equilibria from Erika Strumberger and David Terranova:</u> e.g., /proj/plasma/Neo2/ASDEX-U/32138/

comment:

Erika's file format -> out_neo-2_XXX (Boozer file)

David's file format – wout_XXX.nc (VMEC) → Konvertierung in Boozer file notwendig

Ad David's VMEC / V3FIT equilibria:

 $/proj/plasma/Neo2/NTV/Boozer_files_perturbation_field/ASDEX_U/vmec2boozer/$

./run_boozerpy.sh wout_XXX.nc NSURF

2) Converting Boozer files into the NEO-2 format:

i.e., decomposition with respect to toroidal mode number ,n'

comment:

Copy / link Boozer file from 1) into the working directory.

Launch Matlab script extract_pert_field_asedex.m.

If necessary, adapt line 1-3 of the Matlab script (e.g., filename).

3) Plasma profiles for multi-species NEO-2 computations:

e.g.

/proj/plasma/Neo2/NTV/ASDEX_INPUT_CONVERTER/30835_MULTISPEC_TEST/

a) Template for single-species computations:

impurity_profile_1spec.m

a) Template for multi-species computations:

impurity_profile.m

comment:

Profile data is provided by experimentalists in (usually) different formats.

Therefore a manual pre-processing of input data is nearly always necessary.

The necessary HDF5 input file for NEO-2 is generated in the Matlab script (line 458-EOF). Look for "h5write()" for necessary input.

4) Preparatory work for a NEO-2 run (example):

/temp/andfmar/NTV_220917_profileAUG32169woHelCore_vmecAUG32138_nspec2_ VphiProfFSAV/

a) Create "CODE"-directory:

git clone /proj/plasma/Git/NEO-2-MODULAR.git/.

Change to "NEO-2-QL"-directory and create "Build"-directory.

Compile NEO-2 in "Build"-directory – cmake .. && make

Debug flags can be acitvated - cmake -DCMAKE_BUILD_TYPE=DEBUG . . && make

b) Create "RUN"-directory: These input-files are required by NEO-2: .) profile - multi spec aug32169 t4.1500.in .) Boozer files – "aug_2_rmp-n0.bc" (axisymmetric) + "aug_2_rmp-n1.bc" (perturbation) Please mind the length of the filename ("aug-XXX.bc") which has to specified within "neo.in". If Condor is used, a copy of the Boozer files should be stored in "/temp". .) Link executable neo_2.x from "Build"-directory into the "RUN"-directory .) Copy neo.in into the "RUN"-directory und set switches properly: For ASDEX-U follwing switches must be set -"in_file=aug_2_rmp-n0.bc", "lab_swi=10" and "inp_swi=9". .) Copy neo.in into the "RUN"-directory und set switches properly: For ASDEX-U follwing switches must be set ! settings for multi-species computations &multi_spec lsw_multispecies = .true. isw_multispecies_init = 1 fname multispec in='multi spec aug32169 t4.0210.in' isw_coul_log = 0 ! 0: Coulomb logarithm species independent $isw_calc_Er = 1$ $isw_calc_MagDrift = 1$! settings for NTV computations &ntv_input isw ntv mode = 0! unused at the moment $isw_qflux_NA = 1 ! turn on(=1)/off(=0) computation of non-axisymmetric part$ in_file_pert = 'aug_2_rmp-n1.bc'! 'tok-synch2-n3.bc'! perturbation field file MtOvR = 0.0d0! toroidal Mach number (only important for Mach num scans) $B_rho_L_{loc} = 0.0d0$! Larmor radius times Bisw_ripple_solver = 3! ripple_solver version $isw_mag_shear = 1 ! turn on(=1)/off(=0) non-local computations (mag. shear)$ / 5) Launch ./neo 2.x NEO-2 runs in "profile"-mode und generates directories "es_XXX"

- 6) Change to directory ",es XXX", generate hostfile ",hosts" and launch ./run neo2.sh
- 7) <u>Output "neo2_multispecies_out.h5" is computed:</u>
 See /proj/plasma/Neo2/NTV/RIPPLE_SOLVER_NORMALIZATION/ for further documentation
- 8) <u>Finally there exists a possibility to merge the HDF5 output files:</u> /temp/andfmar/NTV_220917_profileAUG32169woHelCore_vmecAUG32138_nspec2 VphiProfFSAV/CODE/MULTI-SPEC-TOOLS/h5merge multispec.f90

"final_neo2_multispecies_out.h5" will be generated

Please mind that NEO-2 Output is given in cgs-units.

9) Plot NEO-2 output:

/proj/plasma/Neo2/NTV/AUG32169_DATA/NEO2_MULTISPEC_DATA_VMEC31021_ PROF32169/

see Matlab script ",plot_4spec_ZWav_wHelCore.m"