Math 486/522 - Homework 6

Fall 2024 Len Washington III

1. The following data is modeled by a power law.

$$y = at^c (1)$$

$$\begin{array}{c|cc}
t & y \\
\hline
1 & 2 \\
1 & 4 \\
2 & 5 \\
5 & 10 \\
\end{array}$$

- (a) Derive a linear model to replace (1). Problem 1a answer here.
- (b) Write a linear system Ax = b with x related to a and c using the data points. Problem 1b answer here.
- (c) State the normal equations then solve, you can use a computer for the calculation. Problem 1c answer here.
- (d) Plot the data points and the continuous function (1) using the computed values of a and c on the same graph. Problem 1d answer here.
- 2. The drug concentration in the plasma is modeled by the equation

$$y = ate^{ct}, \quad t \ge 0. \tag{2}$$

The following data was collected for the drug norfluoxetine in a subject:

hour	conc. (mg/ml)
1	8.0
2	12.3
3	15.5
4	16.8
5	17.1
6	15.8
7	15.2
8	14.0

- (a) Derive a linear model to replace (2). Problem 2a answer here.
- (b) Write a linear system Ax = b with x related to a and c using the data points. Problem 2b answer here.
- (c) State the normal equations then solve, you can use a computer for the calculation. Problem 2c answer here.

- (d) Plot the data points and the continuous function (2) using the computed values of a and c on the same graph. Problem 2d answer here.
- **3.** The table below gives car sales data starting at 1950 (year 0) in 5 year increments. The data is modeled by the exponential function

$$y = c_1 e^{c_2 t} \tag{3}$$

year	cars $(\times 10^6)$
0	53.05
5	74.04
10	98.31
15	139.78
20	193.48
25	260.20
30	320.39

- (a) Derive a linear model to replace (3). Problem 3a answer here.
- (b) Write a linear system Ax = b with x related to c_1 and c_2 using the data points. Problem 3b answer here.
- (c) State the normal equations then solve, you can use a computer for the calculation. Problem 3c answer here.
- (d) Plot the data points and the continuous function (3) using the computed values of c_1 and c_2 on the same graph. Problem 3d answer here.
- (e) Compute the RMSE in the linear model in (a). Problem 3e answer here.
- (f) Compute the RMSE using the exponential model in (3). Problem 3f answer here.
- (g) Explain any differences in (e) and (f).