

Examples of Markov-Chain Monte-Carlo Methods in Astronomy

Leandro Rocha Rímulo

Departamento de Física Universidad de los Andes, Colombia

12 February 2019

Example: twenty-sided dice

• whole set:

$$\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\};$$

- even number: $X = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$;
- prime number: $Y = \{2, 3, 5, 7, 11, 13, 17, 19\}$;

Therefore,

$$P(\Omega) = \frac{20}{20} = 1$$

$$P(\Omega) = \frac{20}{20} = 1$$

 $P(X) = \frac{10}{20} = 0.5$

$$P(Y) = \frac{20}{20} = 0.4$$

Example: twenty-sided dice

- whole set:
 - $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\};$
- even number: $X = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$;
- prime number: $Y = \{2, 3, 5, 7, 11, 13, 17, 19\}$;
- even number AND prime number: $X \cap Y = \{2\}$; $P(X \cap Y) = \frac{1}{20} = 0.05$
- even number OR prime number:

$$X \cup Y = \{2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20\}$$

 $P(X \cup Y) = \frac{17}{2} = 0.85$

$$P(X \cup Y) = \frac{17}{20} = 0.85$$

- odd number: $\Omega X = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19\}$;
 - $P(\Omega X) = \frac{10}{20} = 0.5$
- odd number that is NOT a prime number: $(\Omega X) Y = \{1, 9, 15\}$;

$$P((\Omega - X) - Y) = \frac{3}{20} = 0.15$$

The requirements for a function P to be a probability function are:

- $0 \le P(X) \le 1, \forall X \subseteq \Omega$
- $P(\Omega) = 1$
- $P(\bigcup_i X_i) = \sum_i P(X_i)$, where $X_i \cap X_j = \emptyset$

...where $\Omega \neq \emptyset$ is the set of all possible outcomes (the "ensemble"), and X is a set of zero or more possible outcomes.

Conditional probabilities:

Let there be two events X and W. We define the probability of "X given W" as

$$P(X \mid W) = \frac{P(X \cap W)}{P(W)} \tag{1}$$

Conditional probabilities:

Let there be two events X and W. We define the probability of "X given W" as

$$P(X \mid W) = \frac{P(X \cap W)}{P(W)} \tag{1}$$

Therefore,

- $0 \le P(X \mid W) \le 1, \forall X \subseteq \Omega, W \subseteq \Omega$
- $P(W \mid W) = 1$
- $P\left(\bigcup_{i=1}^{N} X_i \mid W\right) = \sum_{i=1}^{N} P(X_i \mid W)$, where $X_i \cap X_j = \emptyset$

Example: Coloured balls with numbers

- blue balls with prime numbers from 1 to 30: $B = \{b2, b3, b5, b7, b11, b13, b17, b19, b23, b29\}.$
- red balls with odd numbers from 1 to 30: $R = \{r1, r3, r5, r7, r9, r11, r13, r15, r17, r19, r21, r23, r25, r27, r29\}.$
- balls with number 11: $E = \{b11, r11\}.$

Red ball with number 11: $R \cap E = \{r11\}$. $P(R \cap E) = \frac{1}{25}$. But also, $P(R \cap E) = P(R \mid E)P(E) = \frac{1}{2} \times \frac{2}{25} = \frac{1}{25}$ and

 $P(R \cap E) = P(E \mid R)P(R) = \frac{1}{15} \times \frac{15}{25} = \frac{1}{25}$

Example: Coloured balls with numbers

- blue balls with prime numbers from 1 to 30: $B = \{b2, b3, b5, b7, b11, b13, b17, b19, b23, b29\}.$
- red balls with odd numbers from 1 to 30: $R = \{r1, r3, r5, r7, r9, r11, r13, r15, r17, r19, r21, r23, r25, r27, r29\}.$
- balls with number 11: $E = \{b11, r11\}.$

Red ball with number 11: $R \cap E = \{r11\}.$

$$P(R \cap E) = \frac{1}{25}.$$

But also,

$$P(R \cap E) = P(R \mid E)P(E) = \frac{1}{2} \times \frac{2}{25} = \frac{1}{25}$$

and

$$P(R \cap E) = P(E \mid R)P(R) = \frac{1}{15} \times \frac{15}{25} = \frac{1}{25}.$$

Notice that,

$$P(R)P(E) = \frac{15}{25} \times \frac{2}{25}$$
.

Therefore, $P(\tilde{R} \cap \tilde{E}) \neq P(R)P(E)!$

Probability density function (pdf):

- \bullet θ is an N-dimensional vector
- dW is an infinitesimal set that contains all elements θ contained in the infinitesimal volume dV_{θ} .

Therefore, the probability of $\mathrm{d}W$ is

$$P(\mathrm{d}W) = f(\boldsymbol{\theta})\mathrm{d}V_{\boldsymbol{\theta}}\,,$$

where f is the **pdf**.

In statistics, the quantities of interest are usually integrals of functions ϕ , weighed by the probability density p, over a certain domain: $\int p(\boldsymbol{\theta})\phi(\boldsymbol{\theta})\mathrm{d}V_{\boldsymbol{\theta}}$.

Example:

Maxwell-Boltzmann distribution:

$$f(v) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{1}{a^3} v^2 e^{-\frac{v^2}{2a^2}} \,, \text{ where } a = \left(\frac{kT}{m}\right)^{\frac{1}{2}}$$

- $\langle v \rangle = \int_0^\infty f(v)v dv = \left(\frac{8}{\pi}a^2\right)^{\frac{1}{2}}$
- $v_{\rm rms} = \left(\int_0^\infty f(v) v^2 dv \right)^{\frac{1}{2}} = \left(3a^2 \right)^{\frac{1}{2}}$

Some Markov chains have **stationary distributions** that are asymptotically reached by the states after a sufficiently large number of iterations, **regardless of the initial state of the chain**.

MCMC methods are a class of algorithms, which utilize Markov chains, for generating samples of states $\{\boldsymbol{\theta}_r\}$ $|_{r=1}^R$ from a probability distribution $p(\boldsymbol{\theta})$ which is given as input.

The algorithms construct a Markov chain that has the distribution $p(\theta)$ as its stationary distribution (MacKay, 2003).

The output of the MCMC algorithm is the sample of states $\{\boldsymbol{\theta}_r\}|_{r=1}^R$ and the stationary sample is such that $p(\boldsymbol{\theta})\mathrm{d}V_{\boldsymbol{\theta}} \to 1/R$, where $\mathrm{d}V_{\boldsymbol{\theta}}$ is a measure of the hypervolume occupied by a single state.

Therefore, for the MCMC sample:

$$\int p(\boldsymbol{\theta})\phi(\boldsymbol{\theta})dV_{\boldsymbol{\theta}} \to \frac{1}{R} \sum_{i=1}^{R} \phi(\boldsymbol{\theta}_i)$$

Obs: the probability density $p(\theta)$ does not need to be normalized, because the algorithms deal only with ratios of these distributions.

In this work, we use emcee (Foreman-Mackey et al., 2013)¹, which is Python implementation of several emsemble samplers:

- the Affine Invariant MCMC Ensemble sampler of Goodman and Weare (2010).
- Parallel-tempering sampler.
- the Metropolis-Hastings sampler.

The states are referred to as walkers.

¹http://dfm.io/emcee/current/

Examples of 1-D distributions (example000.py):

Gaussian:

$$p(x) \propto e^{-\frac{x^2}{2\sigma^2}}$$
, for all x

Sinusoidal:

$$p(x) \propto A + \sin^2(3\pi x)$$
, for $0 \le x \le 1$

Maxwell-Boltzmann:

$$f(v) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{1}{a^3} v^2 e^{-\frac{v^2}{2a^2}}, \text{ for } x \ge 0$$

Examples of applications

Estimating model parameters (Bayesian inference)

Question: What is the probability of a small subset of model parameters, given a small subset of data parameters? **Answer**: $P(dM \mid dD)$

$$P(dM \mid dD) = \frac{P(dM \cap dD)}{P(dD)}$$
$$= \frac{P(dD \mid dM)P(dM)}{P(dD)}$$

Question: What is the probability of a small subset of model parameters, given a small subset of data parameters? **Answer**: $P(dM \mid dD)$

$$P(dM \mid dD) = \frac{P(dM \cap dD)}{P(dD)}$$
$$= \frac{P(dD \mid dM)P(dM)}{P(dD)}$$

Replacing the small probabilities by pdfs:

- Prior: $P(dM) = \pi(\theta) dV_{\theta}$
- Likelihood: $P(dD \mid dM) = L(X \mid \theta) dV_X$
- Posterior: $P(dM \mid dD) = p(\boldsymbol{\theta} \mid \boldsymbol{X})dV_{\boldsymbol{\theta}}$
- Evidence: $P(dD) = g(X)dV_X$

Therefore, the pdf to be sampleed is

$$p(\boldsymbol{\theta} \mid \boldsymbol{X}) = \frac{L(\boldsymbol{X} \mid \boldsymbol{\theta})\pi(\boldsymbol{\theta})}{g(\boldsymbol{X})}$$
(2)

The uv-model (my invention) (example_uv.py)

Let $\boldsymbol{\theta} = (u, v)$ be the model parameters, such there are two observables: $\boldsymbol{X} = (x, y)$.

Therefore, the observables x and y depend on the model:

$$x = x(u, v)$$

$$y = y(u, v).$$

The uv-model (my invention) (example_uv.py)

Let $\boldsymbol{\theta} = (u, v)$ be the model parameters, such there are two observables: $\boldsymbol{X} = (x, y)$.

Therefore, the observables x and y depend on the model:

$$x = x(u, v)$$

$$y = y(u, v).$$

Suppose each measurement has a gaussian error.

Therefore, the likelihoods of measurements of x and y alone are:

$$L_x(x \mid u, v) \propto \exp\left(-\frac{1}{2} \left(\frac{x(u, v) - x_{\text{obs}}}{\sigma_x}\right)^2\right)$$
$$L_y(y \mid u, v) \propto \exp\left(-\frac{1}{2} \left(\frac{y(u, v) - y_{\text{obs}}}{\sigma_y}\right)^2\right)$$

The uv-model (my invention) (example_uv.py)

Let $\boldsymbol{\theta} = (u, v)$ be the model parameters, such there are two observables: $\boldsymbol{X} = (x, y)$.

Therefore, the observables x and y depend on the model:

$$x = x(u, v)$$
$$y = y(u, v).$$

Suppose each measurement has a gaussian error.

Therefore, the likelihoods of measurements of x and y alone are:

$$L_x(x \mid u, v) \propto \exp\left(-\frac{1}{2} \left(\frac{x(u, v) - x_{\text{obs}}}{\sigma_x}\right)^2\right)$$
$$L_y(y \mid u, v) \propto \exp\left(-\frac{1}{2} \left(\frac{y(u, v) - y_{\text{obs}}}{\sigma_y}\right)^2\right)$$

My invention:

$$x(u, v) = \sqrt{u^2 + v^2}$$

$$y(u, v) = \frac{2}{\pi} \arctan\left(\frac{v}{u}\right)$$

Estimating Be disk parameters from light curves (my PhD thesis)

The observable is the theoretical light curve:

$$M_X(\boldsymbol{\theta}) = M_{X_*}(\boldsymbol{\theta}) + \Delta X(\boldsymbol{\theta}),$$

where the likelihood of each measurement is:

$$L(\mathbf{X} \mid \boldsymbol{\theta}) \propto e^{-\frac{1}{2}\chi^2}$$
,

where

$$\chi^2 = \chi^2_{\rm diskless} + \chi^2_{\rm bump} \,,$$

$$\chi^2_{\rm diskless} = \sum_{\rm bands} \frac{(M_{X*}(\boldsymbol{\theta}) - M_{X*}^{\rm obs})^2}{\sigma^2(M_{X*}^{\rm obs})} \; , \label{eq:chi_diskless}$$

$$\chi^2_{\rm bump} = \sum_{\rm bands} \sum_{\rm bumps} \frac{1}{N_t} \sum_{i=1}^{N_t} \frac{(\Delta X_i(\theta) - \Delta X_i^{\rm obs})^2}{\sigma^2(\Delta X_i^{\rm obs})} \,, \label{eq:chibards}$$

where N_t is the number of datapoints for a given bump at a given photometric band.

The prior knowledge of the distribution of Be stars:

$$\pi\left(\boldsymbol{\theta}\right) \propto M^{-2.3} f_{\mathrm{Be}}(M) e^{-\frac{(W - \langle W \rangle)^2}{2\sigma_W^2}}$$

Radiative transfer models of bumps

Table: Representative grid of photometric bumps

Star	$i [\deg]$	$\Sigma_0 [{\rm g cm^{-2}}]$	$ ilde{ au}_{ m bu}$
Star 1	00.0	0.30	00.15
Star 2	21.8	0.41	00.45
Star 3	31.0	0.56	00.75
	38.2	0.75	01.50
	44.4	1.01	02.25
	50.0	1.37	03.00
	55.2	1.85	04.50
	60.0	2.50	06.00
	64.6		09.00
	69.1		15.00
	73.4		30.00
	77.6		
	81.8		
	85.9		
	90.0		

Star	Z	$M [M_{\odot}]$	W	$t/t_{ m MS}$	$\alpha \tau [d]$
Star 1	0.002	7	0.81	0.5	90.4
Star 2	0.002	11	0.81	0.5	103.3
Star 3	0.002	15	0.81	0.5	118.9

- MCRT code HDUST;
- Geneva tracks^a: $Z, M, t/t_{MS}, W \rightarrow R_{eq}, T_{eff}, etc;$

 a Georgy et al. 2013A&A...553Æ..24G $^{\circ}$

From the analysis of the models, I found the following:

$$\Delta X_{\rm bu} = \Delta X_{\rm bu}^{\infty} \left[1 - \frac{1}{1 + (\xi_{\rm bu} \tilde{\tau})^{\eta_{\rm bu}}} \right]$$

$$\Delta X_{\rm d} = \Delta X_{\rm d}^{0} \left[\frac{1}{1 + \left(\xi_{\rm d} \left(\tilde{\tau} - \tilde{\tau}_{\rm bu} \right) \right)^{\eta_{\rm d}}} \right]$$

$$\tilde{\tau} = \begin{cases} \alpha_{\text{bu}} \frac{t - t_1}{\alpha \tau}, & t_1 \le t < t_2 \\ \alpha_{\text{bu}} \frac{t_2 - t_1}{\alpha \tau} + \alpha_{\text{d}} \frac{t - t_2}{\alpha \tau}, & t \ge t_2 \end{cases}$$

- $\Delta X_{\rm bu}^{\infty} = \Delta X_{\rm bu}^{\infty}(\operatorname{Star}, \cos i, \Sigma_0)$
- $\xi_{\rm bu} = \xi_{\rm bu}(\operatorname{Star}, \cos i, \Sigma_0)$
- $\xi_{\rm d} = \xi_{\rm d}(\operatorname{Star}, \cos i, \Sigma_0, \tilde{\tau}_{\rm bu})$
- $\alpha \tau = \alpha \tau (\text{Star})$

Example^a

One bump of SMC_SC1 75701.

- $\Sigma_0 = 1.9^{+0.8}_{-0.4} \,\mathrm{g \, cm^{-2}}$
- $\alpha_{\rm bu} = 0.24^{+0.18}_{-0.08}$
- $\bullet \ \alpha_{\rm d} = 0.11^{+0.08}_{-0.05}$
- $-\dot{M}_{\text{typ}} = 1.15^{+1.06}_{-0.52} \times 10^{-9} \, M_{\odot} \, \text{yr}^{-1}$
- $-\dot{J}_{\rm std} = 2.47^{+2.62}_{-1.24} \times 10^{36} \,\mathrm{g\,cm^2\,s^{-2}}$
- $-\Delta J = 1.03^{+1.08}_{-0.52} \times 10^{44} \,\mathrm{g \, cm}^2 \,\mathrm{s}^{-1}$

 $[^]a$ Rímulo et al. 2018MNRAS.476.3555R

Example^a:

One bump of SMC_SC5 65500.

- $\Sigma_0 = 1.7^{+0.6}_{-0.4} \,\mathrm{g \, cm^{-2}}$
- $\alpha_{\rm bu} = 0.7^{+0.38}_{-0.34}$
- $\bullet \ \alpha_{\rm d} = 0.26^{+0.13}_{-0.1}$
- $-\dot{M}_{\text{typ}} = 2.07^{+1.66}_{-1.02} \times 10^{-9} \, M_{\odot} \, \text{yr}^{-1}$
- $-\dot{J}_{\rm std} = 3.70^{+3.62}_{-2.05} \times 10^{36} \,\mathrm{g \, cm^2 \, s^{-2}}$
- $-\Delta J = 0.32^{+0.31}_{-0.17} \times 10^{44} \,\mathrm{g \, cm^2 \, s^{-1}}$

aRímulo et al. 2018MNRAS.476.3555R

Example^a:

One bump of SMC_SC1 92262.

- $\Sigma_0 = 2.4^{+0.4}_{-0.5} \,\mathrm{g \, cm^{-2}}$
- \bullet $\alpha_{\rm bu} = 0.99^{+0.26}_{-0.23}$
- $\bullet \ \alpha_{\rm d} = 0.94^{+0.35}_{-0.3}$
- $-\dot{J}_{\rm std} = 8.36^{+6.38}_{-3.24} \times 10^{36} \, {\rm g \, cm^2 \, s^{-2}}$
- $-\Delta J = 1.51^{+1.01}_{-0.62} \times 10^{44} \,\mathrm{g \, cm}^2 \,\mathrm{s}^{-1}$

aRímulo et al. 2018MNRAS.476.3555R

Membership probability in star clusters ("Bayesian Model Comparison")

 $\bullet \ \Omega :$ The space of all possible configurations of stars.

- \bullet Ω : The space of all possible configurations of stars.
- All possible stars divide in 2 groups: stars in the cluster (\mathcal{H}_0) and stars in the field (\mathcal{H}_1) .

 Therefore, $\Omega = \mathcal{H}_0 \cup \mathcal{H}_1$.

- \bullet Ω : The space of all possible configurations of stars.
- All possible stars divide in 2 groups: stars in the cluster (\mathcal{H}_0) and stars in the field (\mathcal{H}_1) . Therefore, $\Omega = \mathcal{H}_0 \cup \mathcal{H}_1$.
- Stars may belong to very different models. Let dM be a very small subset of the whole, such that the stars in it have model parameters θ in the very small volume dV_{θ} .

Therefore, it follows also that the whole is the union of all those very small sets:

$$\Omega = \bigcup_i dM_i.$$

- \bullet Ω : The space of all possible configurations of stars.
- All possible stars divide in 2 groups: stars in the cluster (\mathcal{H}_0) and stars in the field (\mathcal{H}_1) . Therefore, $\Omega = \mathcal{H}_0 \cup \mathcal{H}_1$.
- Stars may belong to very different models. Let dM be a very small subset of the whole, such that the stars in it have model parameters θ in the very small volume dV_{θ} .

Therefore, it follows also that the whole is the union of all those very small sets:

$$\Omega = \bigcup_i dM_i.$$

• Let us consider a sequence of N stars. Let dD_k be the subset of sequences of N stars such that the k star of the sequence has data parameters X in the very small volume dV_X . We, therefore, define $dD = \bigcap_{k=1}^{N} dD_k$.

Question: What is the probability of a small subset of cluster+field parameters, given a small subset of data of N stars (from the field or the cluster)? **Answer**: $P(dM \mid dD)$.

Question: What is the probability of a small subset of cluster+field parameters, given a small subset of data of N stars (from the field or the cluster)? **Answer**: $P(dM \mid dD)$.

$$P(dM \mid dD) = \frac{P(dM \cap dD)}{P(dD)}$$

$$= \frac{P(dM \cap \Omega \cap dD)}{P(dD)}$$

$$= \frac{P(dM \cap \mathcal{H}_0 \cap dD) + P(dM \cap \mathcal{H}_1 \cap dD)}{P(dD)}$$

Question: What is the probability of a small subset of cluster+field parameters, given a small subset of data of N stars (from the field or the cluster)? **Answer**: $P(dM \mid dD)$.

$$P(dM \mid dD) = \frac{P(dM \cap dD)}{P(dD)}$$

$$= \frac{P(dM \cap \Omega \cap dD)}{P(dD)}$$

$$= \frac{P(dM \cap \mathcal{H}_0 \cap dD) + P(dM \cap \mathcal{H}_1 \cap dD)}{P(dD)}$$

$$P((dM \cap \mathcal{H}_i) \cap dD) = P(dD \mid (dM \cap \mathcal{H}_i))P(dM \cap \mathcal{H}_i)$$

$$= P\left(\bigcap_{k=1}^N dD_k \mid (dM \cap \mathcal{H}_i)\right)P(dM \cap \mathcal{H}_i)$$

$$= \left(\prod_{k=1}^N P(dD_k \mid (dM \cap \mathcal{H}_i))\right)P(dM \cap \mathcal{H}_i).$$

Therefore,

$$P(dM \mid dD) = \frac{1}{P(dD)} \sum_{i=0}^{1} \left(\prod_{k=1}^{N} P(dD_k \mid (dM \cap \mathcal{H}_i)) \right) P(dM \cap \mathcal{H}_i)$$

Therefore,

$$P(dM \mid dD) = \frac{1}{P(dD)} \sum_{i=0}^{1} \left(\prod_{k=1}^{N} P(dD_k \mid (dM \cap \mathcal{H}_i)) \right) P(dM \cap \mathcal{H}_i)$$

Replacing the probabilities of small subsets by pdfs:

$$p(\boldsymbol{\theta} \mid \boldsymbol{X}) = \frac{1}{g(\boldsymbol{X})} \sum_{i=0}^{1} \left(\prod_{k=1}^{N} \psi_{i} \left(\boldsymbol{X}_{k} \mid \boldsymbol{\theta}_{i} \right) \right) \pi_{i}(\boldsymbol{\theta}_{i})$$

Therefore,

$$P(dM \mid dD) = \frac{1}{P(dD)} \sum_{i=0}^{1} \left(\prod_{k=1}^{N} P(dD_k \mid (dM \cap \mathcal{H}_i)) \right) P(dM \cap \mathcal{H}_i)$$

Replacing the probabilities of small subsets by pdfs:

$$p(\boldsymbol{\theta} \mid \boldsymbol{X}) = \frac{1}{g(\boldsymbol{X})} \sum_{i=0}^{1} \left(\prod_{k=1}^{N} \psi_{i} \left(\boldsymbol{X}_{k} \mid \boldsymbol{\theta}_{i} \right) \right) \pi_{i}(\boldsymbol{\theta}_{i})$$

From the theory:

$$\psi_i(\boldsymbol{\mu}, \boldsymbol{r}, M \mid \boldsymbol{\theta}_i) = \xi_i(M \mid \boldsymbol{\theta}_i) f_i(\boldsymbol{r} \mid \boldsymbol{\theta}_i) \frac{\exp\left(-\frac{1}{2(1-\rho_i^2)}E\right)}{2\pi\sigma_{x_i}\sigma_{y_i}(1-\rho_i^2)^{\frac{1}{2}}}$$

where

$$E = \frac{(\mu_x - \mu_{x_i})^2}{\sigma_{x_i}^2} + \frac{(\mu_y - \mu_{y_i})^2}{\sigma_{y_i}^2} - \frac{2\rho_i(\mu_x - \mu_{x_i})(\mu_y - \mu_{y_i})}{\sigma_{x_i}\sigma_{y_i}}$$

example_steven.py: Part 1: Generating fakes cluster and field:

$$p(\boldsymbol{\theta} \mid \boldsymbol{X}) \propto \left(\prod_{k=1}^{N} \psi_{0}\left(\boldsymbol{X}_{k} \mid \boldsymbol{\theta}_{0}\right)\right) \pi_{0}(\boldsymbol{\theta}_{0}) + \left(\prod_{k=1}^{N} \psi_{1}\left(\boldsymbol{X}_{k} \mid \boldsymbol{\theta}_{1}\right)\right) \pi_{1}(\boldsymbol{\theta}_{1})$$

From the theory:

$$\psi_i(\boldsymbol{\mu}, \boldsymbol{r}, M \mid \boldsymbol{\theta}_i) = \xi_i(M \mid \boldsymbol{\theta}_i) f_i(\boldsymbol{r} \mid \boldsymbol{\theta}_i) \frac{\exp\left(-\frac{1}{2(1-\rho_i^2)}E\right)}{2\pi\sigma_{x_i}\sigma_{y_i}(1-\rho_i^2)^{\frac{1}{2}}}$$

where

$$E = \frac{(\mu_x - \mu_{x_i})^2}{\sigma_{x_i}^2} + \frac{(\mu_y - \mu_{y_i})^2}{\sigma_{y_i}^2} - \frac{2\rho_i(\mu_x - \mu_{x_i})(\mu_y - \mu_{y_i})}{\sigma_{x_i}\sigma_{y_i}}$$

and

- $f_0(\mathbf{r} \mid \boldsymbol{\theta}_0)$ is bivariate gaussian too. (My invention!)
- $\xi_0(M \mid \boldsymbol{\theta}_0) \propto M^{-2.3}$ (Well known IMF)
- $f_1(\mathbf{r} \mid \boldsymbol{\theta}_1) = \text{constant}$
- $\xi_1(M \mid \boldsymbol{\theta}_1) \propto M^{-5.3}$ (because $t_{\rm MS} \propto M^{-3}$)

example_steven.py: Part 2: Fitting pdf to stars from the cluster+field:

$$p(\boldsymbol{\theta} \mid \boldsymbol{X}) \propto \left(\prod_{k=1}^{N} \psi_{0}\left(\boldsymbol{X}_{k} \mid \boldsymbol{\theta}_{0}\right)\right) \pi_{0}(\boldsymbol{\theta}_{0}) + \left(\prod_{k=1}^{N} \psi_{1}\left(\boldsymbol{X}_{k} \mid \boldsymbol{\theta}_{1}\right)\right) \pi_{1}(\boldsymbol{\theta}_{1})$$

From the theory:

$$\psi_i\left(\boldsymbol{\mu}, \boldsymbol{r}, M \mid \boldsymbol{\theta}_i\right) = n_i \frac{\exp\left(-\frac{1}{2(1-\rho_i^2)}E\right)}{2\pi\sigma_{x_i}\sigma_{y_i}(1-\rho_i^2)^{\frac{1}{2}}}$$

where

$$E = \frac{(\mu_x - \mu_{x_i})^2}{\sigma_{x_i}^2} + \frac{(\mu_y - \mu_{y_i})^2}{\sigma_{y_i}^2} - \frac{2\rho_i(\mu_x - \mu_{x_i})(\mu_y - \mu_{y_i})}{\sigma_{x_i}\sigma_{y_i}}$$

Question: What is the probability of a new star (star N+1) belong to the cluster? **Answer**: $P(\mathcal{H}_i \mid dD \cap dD_{N+1})$.

Question: What is the probability of a new star (star N+1) belong to the cluster? **Answer**: $P(\mathcal{H}_i \mid dD \cap dD_{N+1})$.

$$P(\mathcal{H}_{0} \mid dD \cap dD_{N+1}) = P(\Omega \cap \mathcal{H}_{0} \mid dD \cap dD_{N+1})$$

$$= P\left(\bigcup_{j} dM_{j} \cap \mathcal{H}_{0} \mid dD \cap dD_{N+1}\right)$$

$$= \sum_{j} P(dM_{j} \cap \mathcal{H}_{0} \mid dD \cap dD_{N+1})$$

$$= \sum_{j} \frac{P(dM_{j} \cap \mathcal{H}_{0} \cap dD \cap dD_{N+1})}{P(dD \cap dD_{N+1})}$$

$$= \sum_{j} \frac{P(dD \cap dD_{N+1} \mid dM_{j} \cap \mathcal{H}_{0}) P(dM_{j} \cap \mathcal{H}_{0})}{P(dD \cap dD_{N+1})}$$

Therefore,

$$P\left(\mathcal{H}_0\mid \mathrm{d}D\cap \mathrm{d}D_{N+1}\right) = \sum_j \frac{\left(\prod_{k=1}^N P\left(\mathrm{d}D_k\mid \mathrm{d}M_j\cap\mathcal{H}_0\right)\right) P\left(\mathrm{d}D_{N+1}\mid \mathrm{d}M_j\cap\mathcal{H}_0\right) P(\mathrm{d}M_j\cap\mathcal{H}_0)}{P(\mathrm{d}D\cap \mathrm{d}D_{N+1})}$$

example_steven.py: Part 3: Membership probability of star clusters:

From the Bayes' theorem, the above equation becomes:

$$P\left(\mathcal{H}_0 \mid \mathrm{d}D \cap \mathrm{d}D_{N+1}\right) = \frac{\sum_{j} \left(\prod_{k=1}^{N} P\left(\mathrm{d}D_k \mid \mathrm{d}M_j \cap \mathcal{H}_0\right)\right) P\left(\mathrm{d}D_{N+1} \mid \mathrm{d}M_j \cap \mathcal{H}_0\right) P(\mathrm{d}M_j \cap \mathcal{H}_0)}{\sum_{i=0}^{1} \sum_{j} \left(\prod_{k=1}^{N} P\left(\mathrm{d}D_k \mid \mathrm{d}M_j \cap \mathcal{H}_i\right)\right) P\left(\mathrm{d}D_{N+1} \mid \mathrm{d}M_j \cap \mathcal{H}_i\right) P(\mathrm{d}M_j \cap \mathcal{H}_i)}$$

example_steven.py: Part 3: Membership probability of star clusters:

From the Bayes' theorem, the above equation becomes:

$$P\left(\mathcal{H}_0\mid \mathrm{d}D\cap \mathrm{d}D_{N+1}\right) = \frac{\sum_{j} \left(\prod_{k=1}^{N} P\left(\mathrm{d}D_k\mid \mathrm{d}M_j\cap\mathcal{H}_0\right)\right) P\left(\mathrm{d}D_{N+1}\mid \mathrm{d}M_j\cap\mathcal{H}_0\right) P(\mathrm{d}M_j\cap\mathcal{H}_0)}{\sum_{i=0}^{1} \sum_{j} \left(\prod_{k=1}^{N} P\left(\mathrm{d}D_k\mid \mathrm{d}M_j\cap\mathcal{H}_i\right)\right) P\left(\mathrm{d}D_{N+1}\mid \mathrm{d}M_j\cap\mathcal{H}_i\right) P(\mathrm{d}M_j\cap\mathcal{H}_i)}$$

Replacing the Probabilities of small subsets by pdfs:

$$P\left(\mathcal{H}_{0} \mid dD \cap dD_{N+1}\right) = \frac{\int \left(\prod_{k=1}^{N} \psi_{0}\left(\boldsymbol{X}_{k} \mid \boldsymbol{\theta}_{0}\right) \pi_{0}(\boldsymbol{\theta}_{0})\right) \psi_{0}\left(\boldsymbol{X}_{N+1} \mid \boldsymbol{\theta}_{0}\right) dV_{\boldsymbol{\theta}_{0}}}{\sum_{i=0}^{1} \int \left(\prod_{k=1}^{N} \psi_{i}\left(\boldsymbol{X}_{k} \mid \boldsymbol{\theta}_{i}\right) \pi_{i}(\boldsymbol{\theta}_{i})\right) \psi_{i}\left(\boldsymbol{X}_{N+1} \mid \boldsymbol{\theta}_{i}\right) dV_{\boldsymbol{\theta}_{i}}}$$

$$\approx \frac{\psi_{0}\left(\boldsymbol{X}_{N+1} \mid \hat{\boldsymbol{\theta}}_{0}\right)}{\psi_{0}\left(\boldsymbol{X}_{N+1} \mid \hat{\boldsymbol{\theta}}_{0}\right) + \psi_{1}\left(\boldsymbol{X}_{N+1} \mid \hat{\boldsymbol{\theta}}_{1}\right)}$$

Thank you!