HERMITIAN MODULAR FORMS FOR FIELDS OF LOW DISCRIMINANT

DIPLOMA THESIS in Mathematics

by Albert Zeyer

 $\label{eq:submitted} submitted to the \\ Faculty of Mathematics, Computer Science and Natural Science of \\ RWTH Aachen University$

October 2012 revised version from April 5, 2013

Supervisor: Prof. Dr. Aloys Krieg Second examiner: Dr. Martin Raum

written at the Lehrstuhl A für Mathematik Prof. Dr. A. Krieg

Contents

1	Introduction	3
2	Preliminaries	4
	2.1 Siegel modular forms	5
	2.2 Elliptic modular forms	6
	2.3 Hermitian modular forms	6
	2.3.1 Properties	7
3	Theory	8
4	Implementation	13
5	Conclusion	14
6	References	15

Chapter 1

Introduction

We develop an algorithm to compute Fourier expansions of Hermitian modular forms of degree 2 over $\operatorname{Sp}_2(\mathcal{O})$ for $\mathcal{O}\subseteq\mathbb{Q}(\sqrt{-\Delta})$, $\Delta\in\{3,4,8\}$.

In [PY07], spaces of Siegel modular cusp forms are calculated.

A similar algorithm is also [Rau12, Algorithm 4.3] for Jacobi forms.

We are doing the same for Hermitian modular forms.

4 2 PRELIMINARIES

Chapter 2

Preliminaries

 \mathbb{N} denotes the set $\{1,2,3,\ldots\}$, $\mathbb{N}_0=\mathbb{N}\cup\{0\}$ and \mathbb{Z} are all **integers**. \mathbb{Q} are all the **rational numbers**, \mathbb{R} are the **real numbers** and \mathbb{C} are the **complex numbers**. $\mathbb{R}^+:=\{x\in\mathbb{R}\mid x>0\}$, \mathbb{R}^\times and \mathbb{C}^\times denotes all non-zero numbers.

Let $\operatorname{Mat}_n(R)$ be the set of all $n \times n$ matrices over some commutative ring R. Likewise, $\operatorname{Mat}_n^T(R)$ are the symmetric $n \times n$ matrices. X^T is the transposed matrix of $X \in \operatorname{Mat}_n(R)$. \overline{Z} is the conjugated matrix of $Z \in \operatorname{Mat}_n(\mathbb{C})$. For $R \subseteq \mathbb{C}$, $\overline{R} \subseteq R$, the set of Hermitian matrices in R is defined as

$$\operatorname{Her}_n(R) = \left\{ Z \in \operatorname{Mat}_n(R) \mid \overline{Z}^T = Z \right\}.$$

A matrix $Y \in \operatorname{Mat}_n(\mathbb{C})$ is greater 0 if and only if $\forall x \in \mathbb{C}^n - \{0\} : Y[x] := \overline{x}^T Y x \in \mathbb{R}^+$. Such symmetric matrices are called the **positive definitive matrices**, defined by

$$\mathcal{P}_n(R) = \{ X \in \operatorname{Mat}_n(R) \mid X > 0 \}$$

for $R \subseteq \mathbb{C}$. Note that $\mathcal{P}_n(\mathbb{C}) \subseteq \operatorname{Her}_n(\mathbb{C})$.

For $A, X \in \operatorname{Mat}_n(\mathbb{C})$, we define $A[X] := \overline{X}^T A X$. The **denominator** of a matrix $Z \in \operatorname{Mat}_n(\mathbb{Q})$ is the smallest number $x \in \mathbb{N}$ such that $xZ \in \operatorname{Mat}_n(\mathbb{Z})$. We also write $\operatorname{denom}(Z) = x$. $1_n \in \operatorname{Mat}_n(\mathbb{Z})$ denotes the **identity matrix**. We use the **Gauß notation** $[a, b, c] := \left(\frac{a}{b} \frac{b}{c} \right) \in \operatorname{Mat}_n(\mathbb{C})$.

The general linear group is defined by

$$\operatorname{GL}_n(R) = \{ X \in \operatorname{Mat}_n(R) \mid \det(X) \text{ is a unit in } R \}$$

and the special linear group by

$$\operatorname{SL}_n(R) = \{ X \in \operatorname{Mat}_n(R) \mid \det(X) = 1 \}.$$

The orthogonal group is defined by

$$O_n(R) = \{ X \in GL_n(R) \mid X^T 1_n X = 1_n \} \subseteq GL_n(R).$$

The **symplectic group** is defined by

$$\operatorname{Sp}_n(R) = \left\{ X \in \operatorname{GL}_{2n}(R) \mid \overline{X}^T J_n X = J_n \right\} \subseteq \operatorname{GL}_{2n}(R) \subseteq \operatorname{Mat}_{2n}(R)$$

where $J_n := \begin{pmatrix} 0 & -1_n \\ 1_n & 0 \end{pmatrix} \in \operatorname{SL}_{2n}(R)$ (as in [Der01]). (Note that some authors (e.g. [PY07]) define J_n negatively.) $\operatorname{Sp}_n(R)$ is also called the **unitary group**. Note that [Der01] uses $\operatorname{U}_n(R) = \operatorname{Sp}_n(R)$. Also note that $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_1(\mathbb{Z}) \Leftrightarrow ad - bc = 1 \Leftrightarrow M \in \operatorname{SL}_2(\mathbb{Z})$. Thus, $\operatorname{Sp}_1(\mathbb{Z}) = \operatorname{SL}_2(\mathbb{Z})$.

For $Z \in \operatorname{Mat}_n(\mathbb{C})$, we call

$$\Re(Z) = \frac{1}{2} \left(Z + \overline{Z}^T \right) \in \operatorname{Mat}_n(\mathbb{C})$$

the real part and

$$\Im(Z) = \frac{1}{2i} \left(Z - \overline{Z}^T \right) \in \operatorname{Mat}_n(\mathbb{C})$$

the **imaginary** part of Z and we have $Z = \Re(Z) + i\Im(Z)$. Note that we usually have $\Re(Z), \Im(Z) \not\in \operatorname{Mat}_n(\mathbb{R})$ but we have $\Re(Z), \Im(Z) \in \operatorname{Her}_n(\mathbb{C})$.

We say that some function $f: \mathcal{A} \to \mathcal{B}$ with $\mathcal{A} \subseteq \operatorname{Mat}_n(R)$, $\mathcal{B} \subseteq R$ is k-invariant under some $\mathcal{X} \subseteq \operatorname{Mat}_n(R)$ where $\mathcal{A}[\mathcal{X}] \subseteq \mathcal{A}$ if and only if $\det(U)^k f(T[U]) = f(T)$ for all $T \in \mathcal{A}$, $U \in \mathcal{X}$.

2.1 Siegel modular forms

Siegel modular forms aren't directly used in this work. However, the idea of this work is inspired by [PY07] and they are using them. Also, they are a generalization of Elliptic modular forms.

Let $\mathcal{H}_n := \{Z \in \operatorname{Mat}_n^T(\mathbb{C}) \mid \Im(Z) > 0\}$ be the **Siegel upper half space**. We call $\operatorname{Sp}_n(\mathbb{Z})$ the **Siegel modular group**.

A Siegel modular form of degree $n \in \mathbb{N}$ with weight $k \in \mathbb{Z}$ for some $\Gamma \subseteq \operatorname{Sp}_n(\mathbb{Z})$, Γ subgroup of $\operatorname{Sp}_n(\mathbb{Z})$, is a holomorphic function

$$f\colon \mathcal{H}_n \to \mathbb{C}$$

with

(1)
$$f((AZ+B)\cdot (CZ+D)^{-1}) = \det(CZ+D)^k \cdot f(Z) \quad \forall \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma, Z \in \mathcal{H}_n$$

(2) for
$$n = 1$$
: $f(Z) = O(1)$ for $Z \to i\infty$

Note that many authors define the transformed function f|M for $M=(\begin{smallmatrix}A&B\\C&D\end{smallmatrix})\in\Gamma$ with

$$(f|M)(Z) := f(M \cdot Z) \cdot \det(CZ + D)^{-k}$$

with $Z \in \mathcal{H}_n$, where $M \cdot Z := (AZ + B) \cdot (CZ + D)^{-1}$. Then the first property of Siegel modular forms can be written as

$$f|M=f \quad \forall \ M \in \Gamma.$$

6 2 PRELIMINARIES

 $\mathcal{M}_k^{\mathcal{H}_n}(\Gamma)$ denotes the vector space of such Siegel modular forms.

2.2 Elliptic modular forms

These are functions over $\mathcal{H}_1 = \{z \in \mathbb{C} \mid \Im(z) > 0\} \subseteq \mathbb{C}$ which is called the **Poincaré upper half plane**.

We have Γ as a subgroup of $\mathrm{SL}_2(\mathbb{Z})$. A **Elliptic modular form** with weight $k \in \mathbb{Z}$ over Γ is a holomorphic function

$$f:\mathcal{H}_1\to\mathbb{C}$$

with

(1)
$$f\left(\frac{a\tau+b}{b\tau+c}\right) = (c\tau+d)^k \cdot f(\tau) \quad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, \tau \in \mathcal{H}_1$$

(2)
$$f(\tau) = O(1)$$
 for $\tau \to i\infty$

Note that most authors write $M\tau := \frac{a\tau + b}{b\tau + c}$.

 $\mathcal{M}_k(\Gamma)$ denotes the vector space of such Elliptic modular forms.

Note that we have $\mathrm{SL}_2(\mathbb{Z})=\mathrm{Sp}_1(\mathbb{Z})$. We can see that Elliptic modular forms are Siegel modular forms of degree n=1. Thus we have $\mathcal{M}_k(\Gamma)=\mathcal{M}_k^{\mathcal{H}_1}(\Gamma)$.

In this work, we use a specific subgroup of $\mathrm{Sp}_1(\mathbb{Z})$. We define

$$\Gamma_0(l) := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \operatorname{Sp}_1(\mathbb{Z}) \,\middle|\, c \equiv 0 \pmod{l} \right\} \subseteq \operatorname{Sp}_1(\mathbb{Z}) \subseteq \operatorname{Mat}_2(\mathbb{Z})$$

as a subgroup of $\mathrm{Sp}_1(\mathbb{Z})$.

2.3 Hermitian modular forms

Let $\mathbb{H}_n := \{Z \in \operatorname{Mat}_n(\mathbb{C}) \mid \Im(Z) > 0\}$ be the **Hermitian upper half space**. Note that these matrices are not symmetric as the Siegel upper half space \mathcal{H}_n but we have $\mathcal{H}_n \subseteq \mathbb{H}_n$ and $\mathcal{H}_1 = \mathbb{H}_1 \subseteq \mathbb{C}$.

Let $\Delta \in \mathbb{N}$ so that we have the imaginary quadratic number field $\mathbb{Q}(\sqrt{-\Delta})$ where $-\Delta$ is the fundamental discriminant. Then, let $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-\Delta})$ be the maximum order. We call $\operatorname{Sp}_n(\mathcal{O})$ the **Hermitian modular group**. Let Γ be a subgroup of $\operatorname{Sp}_n(\mathcal{O})$. Let $\nu \colon \Gamma \to \mathbb{C}^\times$ be an abel character of $\operatorname{Sp}_n(\mathcal{O})$.

7

A Hermitian modular form of degree $n \in \mathbb{N}$ with weight $k \in \mathbb{Z}$ over Γ and ν is a holomorphic function

$$f: \mathbb{H}_n \to \mathbb{C}$$

with

- (1) $f((AZ+B)\cdot (CZ+D)^{-1}) = \nu(M)\det(CZ+D)^k f(Z), \quad M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma, Z \in \mathbb{H}_n,$
- (2) for n = 1: f is holomorphic in all cusps.

Again as for Siegel modular forms, most authors write $M \cdot Z := (AZ + B) \cdot (CZ + D)^{-1}$.

 $\mathcal{M}_k^{\mathbb{H}_n}(\Gamma,\nu)$ denotes the vector space of such Hermitian modular forms.

In this work, we will concentrate on Hermitian modular forms of degree n=2. We will start with $\Delta \in \{3,4,8\}$.

2.3.1 Properties

Because $-\Delta$ is fundamental, we have two possible cases:

- 1. $\Delta \equiv 3 \pmod{4}$ and Δ is square-free, or
- 2. $\Delta \equiv 0 \pmod{4}$, $\Delta/4 \equiv 1, 2 \pmod{4}$ and $\Delta/4$ is square-free.

And for the **maximum order** \mathcal{O} , we have (compare [Der01])

$$\mathcal{O} = \mathbb{Z} + \mathbb{Z} \frac{-\Delta + i\sqrt{\Delta}}{2},$$

$$\mathcal{O}^{\#} = \mathbb{Z} \frac{i}{\sqrt{\Delta}} + \mathbb{Z} \frac{1 + i\sqrt{\Delta}}{2}.$$

From now on, we will always work with Hermitian modular forms of degree n=2. We also use $\Gamma = \operatorname{Sp}_2(\mathcal{O})$ for simplicity.

8 3 THEORY

Chapter 3

Theory

Lemma 3.1. Let $f: \mathbb{H}_2 \to \mathbb{C}$ be a Hermitian modular form of weight k. Let $S \in \mathcal{P}_2(\mathcal{O})$. Then, $f(S\tau): \mathbb{H}_1 \subseteq \mathbb{C} \to \mathbb{C}$ is an Elliptic modular form of weight 2k to $\Gamma_0(l)$, where l is the denominator of S^{-1} .

Proof. Define $\Gamma^H:=\mathrm{Sp}_2(\mathcal{O})$ as the translation group for f. Then, we can verify that

$$M:=\left(\begin{array}{cc} 1_2 & B \\ & 1_2 \end{array}\right)\in \Gamma^H, \quad B\in \mathrm{Her}_2(\mathcal{O}).$$

Let $\tau \in \mathbb{H}_1$. With $S \in \mathcal{P}_2(\mathbb{C})$ we have

$$\Im(S\tau) = \frac{1}{2i} \left(S\tau - \overline{S}^T \overline{\tau} \right)$$

$$= \frac{1}{2i} S(\tau - \overline{\tau})$$

$$= \frac{1}{2i} S \cdot 2i \Im(\tau)$$

$$= S\Im(\tau) > 0,$$

thus $S\tau \in \mathbb{H}_2$.

Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$. We have

$$S \frac{a\tau + b}{c\tau + d}$$

$$= (a(S\tau) + bS) \cdot ((cS^{-1})(S\tau) + d)^{-1}$$

$$= \begin{pmatrix} a1_2 & bS \\ cS^{-1} & d1_2 \end{pmatrix} \cdot S\tau.$$

And with $S = \overline{S}^T$ and ad - bc = 1 we have

$$\frac{1}{cS^{-1}} \frac{1}{d1_2} \frac{bS}{J_2} \left(\begin{array}{cc} a1_2 & bS \\ cS^{-1} & d1_2 \end{array} \right)^{-1} J_2 \left(\begin{array}{cc} a1_2 & bS \\ cS^{-1} & d1_2 \end{array} \right) \\
= \left(\begin{array}{cc} (-acS^{-1} + ac\overline{S^{-1}}^T) & (-ad1_2 + cb\overline{S^{-1}}^TS) \\ (-bc\overline{S}^TS^{-1} + ad1_2) & (-bd\overline{S}^T + bdS) \end{array} \right) \\
= J_2,$$

thus we have

$$M' := \begin{pmatrix} a1_2 & bS \\ cS^{-1} & d1_2 \end{pmatrix} \in \operatorname{Sp}_2(\mathbb{C}).$$

We also have $cS^{-1} \in \operatorname{Mat}_2(\mathcal{O})$, thus we have $M' \in \Gamma^H = \operatorname{Sp}_2(\mathcal{O})$.

Thus, because f is a Hermitian modular form, we have

$$f\left(S\frac{a\tau+b}{c\tau+d}\right)$$

$$= f\left(M'\cdot S\tau\right)$$

$$= \nu(M')\cdot \det(cS^{-1}S\tau+d1_2)^k\cdot f(S\tau)$$

$$= (c\tau+d)^{2k}\cdot f(S\tau).$$

Lemma 3.2. Prop 7.3. von Poor für herm Modulformen. $\Gamma(\mathcal{L}) \supseteq \Gamma_0(l)$ for $l \in \mathbb{Z}^+, ls^{-1} \in \mathcal{P}_n(\mathcal{O})$.

We want to calculate a generating set for the Fourier expansions of Hermitian modular forms. Now we will formulate the main algorithm of our work.

Algorithm 3.3. We have the Hermitian modular form degree n=2 fixed, as well as some Δ (for now, $\Delta \in \{3,4,8\}$). Then we select some form weight $k \in \mathbb{Z}$ ($k \in \{1,\ldots,20\}$ or so), let $\mathcal{O} \subseteq \mathbb{Q}(\sqrt{-\Delta})$ be the maximum order (see chapter 2.3.1) and some subgroup Γ of $\mathrm{Sp}_2(\mathcal{O})$. Then we select an abel character $\nu \colon \Gamma \to \mathbb{C}^\times$ of $\mathrm{Sp}_2(\mathcal{O})$.

We define the index set

$$\Lambda := \left\{ 0 \le \left(\begin{array}{cc} a & b \\ \overline{b} & c \end{array} \right) \in \operatorname{Mat}_2(\mathcal{O}^{\#}) \, \middle| \, a, c \in \mathbb{Z} \right\}.$$

10 3 THEORY

Fix $B \in \mathbb{N}$ as a limit. Select a precision

$$\mathcal{F} := \left\{ \left(\begin{array}{cc} a & b \\ \overline{b} & c \end{array} \right) \in \Lambda \middle| 0 \le a, c < B \right\} \subseteq \Lambda.$$

- 1. We start with l = 1 and increase it but only use the square-free numbers.
- 2. Set $S = \{\}$,
- 3. Enumerate matrices $S \in \operatorname{Mat}_2^T(\mathbb{Z})$, and set $S \leftarrow S \cup \{S\}$ and for each time you add a new matrix perform the following steps.
- 4. We set

$$\mathcal{M}^H_{k,\mathcal{S},\mathcal{F}} := \left\{ (a[S])_{S \in \mathcal{S}} \ \middle| \ a \in \mathbb{Q}^{\mathcal{F}} \text{ is } \mathrm{GL}_2(\mathcal{O}) \text{ invariant} \right\} \subseteq \bigoplus_{S \in \mathcal{S}} \mathbb{Q}^{\mathcal{F}(S)},$$

where

$$a[S] := \mathbb{N}_0 \to \mathbb{Q}, n \mapsto \sum_{T \in \Lambda, \operatorname{tr}(ST) = n} a(T),$$

The elements $a \in \mathbb{Q}^{\mathcal{F}}$ are Fourier expansions of Elliptic modular forms ($\mathbb{H}_1 \to \mathbb{C}$) and $a(T) \in \mathbb{Q}$ for $T \in \mathcal{F} \subseteq \operatorname{Mat}_2(\mathcal{O}^{\#})$ are the Fourier coefficients. Recall that a being invariant under $\operatorname{GL}_2(\mathcal{O})$ means that we have

$$\det(U)^k a(T[U]) = a(T) \ \forall \ U \in \mathrm{GL}_2(\mathcal{O}).$$

With $[a,b,c] \in \mathcal{F}$, we have $0 \leq a,c < B$, thus there are only a finite number of possibilities. Because $0 \leq [a,b,c]$, we get $ac-|b|^2 \geq 0$ and thus b is also always limited. Thus, \mathcal{F} is finite but it might be huge for even small B. Restricting the elements in \mathcal{F} by the $\mathrm{GL}_2(\mathcal{O})$ -invariation makes the set $\{x \in \mathcal{F} \mid x \text{ is } \mathrm{GL}_2(\mathcal{O}) \text{ invariant}\} \subseteq \mathcal{F}$ much smaller and better to handle in computer calculations. We use this set to identify a base of the finite dimension vector space $\{x \in \mathbb{Q}^{\mathcal{F}} \mid x \text{ is } \mathrm{GL}_2(\mathcal{O}) \text{ invariant}\}$.

We identify

$$\bigoplus_{S \in \mathcal{S}} \mathbb{Q}^{\mathcal{F}(S)} = \mathbb{Q}^N, \ N = \sum_{S \in \mathcal{S}} \mathcal{F}(S).$$

For a given $S \in \mathcal{S}$ and limit $B \in \mathbb{N}$ which restricts $\mathcal{F} \subset \Lambda$, $\mathcal{F}(S) \in \mathbb{N}_0$ is the limit such that for any $T \in \Lambda - \mathcal{F}$, $\operatorname{tr}(ST) \geq \mathcal{F}(S)$. Thus, for calculating the Fourier coefficients $T \in \Lambda$ with $\operatorname{tr}(ST) \in \{0, \dots, \mathcal{F}(S) - 1\}$, it is sufficient to enumerate the $T \in \mathcal{F}$.

Let S = [s, t, u] and T = [a, b, c]. Recall that $S \in \operatorname{Mat}_2^T(\mathbb{Z})$. Then we have

$$tr(ST) = as + \bar{t}b + t\bar{b} + cu = as + cu + 2t\Re(b).$$

Because $T \geq 0$, we have $ac \geq |b|^2$ and thus $\Re(b) \leq \sqrt{ac} \leq \max(a,c)$. Thus, $2t\Re(b) \geq -2|t|\max(a,c)$. We also have $as + cu \geq \max(a,c)(s+u)$. Assuming $T \in \Lambda - \mathcal{F}$, we have $\max(a,c) \geq B$. For such T, we get

$$tr(ST) > B \cdot (s + u - 2|t|).$$

Given S > 0, we have $su > t^2$. Then we have

$$s + u - 2|t| > 0$$

$$\Leftrightarrow su + u^{2} - 2|t|u > 0$$

$$\Leftrightarrow (t^{2} + u^{2} - 2|t|u) + (su - t^{2}) > 0$$

$$\Leftrightarrow (|t| - u)^{2} + (su - t^{2}) > 0.$$

All inequalities were sharp estimations¹, thus we get

$$\mathcal{F}(S) = B \cdot (s + u - 2|t|).$$

We want to calculate the matrix of the linear function

$$\left\{x \in \mathbb{Q}^{\mathcal{F}} \mid x \text{ is } \mathrm{GL}_2(\mathcal{O}) \text{ invariant}\right\} \to \bigoplus_{S \in \mathcal{S}} \mathbb{Q}^{\mathcal{F}(S)}, \ a \mapsto (a[S])_{S \in \mathcal{S}}.$$

The base of the destination room is canonical. The dimension is N. The base of the source room can be identified by $\{x \in \mathcal{F} \mid x \text{ is } \mathrm{GL}_2(\mathcal{O}) \text{ invariant}\}.$

And we set

$$\mathcal{M}_{k,\mathcal{S},\mathcal{F}} := \bigoplus_{S \in \mathcal{S}} \mathcal{F} \mathcal{E}_{\mathcal{F}(S)} (\mathcal{M}_k(\Gamma_0(l_S)))$$

where $\mathcal{M}_k(\Gamma_0(l_S))$ is the vectorspace of Elliptic modular forms over $\Gamma_0(l_S)$.

5. If

$$\dim \mathcal{M}_{k,\mathcal{S},\mathcal{F}}^H \cap \mathcal{M}_{k,\mathcal{S},\mathcal{F}} = \dim \mathcal{M}_k^{\mathbb{H}_2}(\Gamma,\nu),$$

¹For example, let S = [2, -1, 1]. Then you have s + u - 2|t| = 1. With c = B and a = b = 1, you hit the limit $tr(ST) = 2 + B - 2 = B = \mathcal{F}(S)$.

12 3 THEORY

then we are ready and we can reconstruct the Fourier expansion in the following way:

...

If not, then return to step 3, and enlarge \mathcal{S} .

Chapter 4

Implementation

In this chapter, we are describing the implementation.

14 5 CONCLUSION

Chapter 5

Conclusion

Blub

Chapter 6

References

- [Der01] T. Dern. Hermitesche Modulformen zweiten Grades. Mainz, 2001.
- [PY07] C. Poor and D.S. Yuen. Computations of spaces of siegel modular cusp forms. *Journal of the Mathematical Society of Japan*, 59(1):185–222, 2007.
- [Rau12] M. Raum. Computing Jacobi Forms and Linear Equivalences of Special Divisors. *ArXiv e-prints*, December 2012.