SBML Model Report

Model name: "Haberichter2007_cellcycle"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Enuo He¹ and Steven Dowdy² at March 20th 2007 at 1:29 p.m. and last time modified at July fifth 2012 at 2:49 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	57
events	1	constraints	0
reactions	138	function definitions	0
global parameters	61	unit definitions	2
rules	12	initial assignments	0

Model Notes

This model is according to the paper *A systems biology dynamical model of mammalian G1 cell cycle progression*. Supplementary Figure 2A has been reproduced by the MathSBML and CellDesigner. All the data of this model are from the set 2 of Supplementary talbe2.

¹BNMC, enuo@caltech.edu

 $^{^2} Howard\ Hughes\ Medical\ Institute,\ University\ of\ California\ San\ Diego\ School\ of\ Medicine,\ {\tt sdowdy@ucsd.edu}$

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name min

Definition 60 s

2.2 Unit substance

Name #

Definition item

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
X	cell		3	1	litre	\checkmark	

3.1 Compartment X

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains 57 species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
APCC	Х	item $\cdot 1^{-1}$		\Box
APCCYCdk1Y00YCdk1Y01YInt	X	item $\cdot 1^{-1}$		
APCCYCdk1Y10YCdk1Y11YInt	X	item $\cdot 1^{-1}$		\Box
APCCYCdk2Y000YCdk2Y002YInt	X	item $\cdot 1^{-1}$		
APCCYCdk2Y010YCdk2Y012YInt	X	item $\cdot l^{-1}$		
APCCYCdk2Y100YCdk2Y102YInt	X	item $\cdot l^{-1}$		
APCCYCdk2Y110YCdk2Y112YInt	X	item $\cdot l^{-1}$		
APCCYCyclinAYInt	X	item $\cdot 1^{-1}$		
APCCYEmi1	X	item $\cdot 1^{-1}$		
Cdk1Y00	X	item $\cdot 1^{-1}$		\Box
Cdk1Y01	X	item $\cdot 1^{-1}$		\Box
Cdk1Y10	X	item $\cdot 1^{-1}$		
Cdk1Y11	X	item $\cdot 1^{-1}$		
Cdk1Y11YpRbY10YpRbY20YInt	X	item $\cdot 1^{-1}$		\Box
Cdk1Y11YpRbY11YpRbY21YInt	X	item $\cdot 1^{-1}$		
Cdk2Y000	X	item $\cdot 1^{-1}$		
Cdk2Y001	X	item $\cdot 1^{-1}$		
Cdk2Y002	X	item $\cdot 1^{-1}$		
Cdk2Y010	X	item $\cdot 1^{-1}$		
Cdk2Y011	X	item $\cdot 1^{-1}$		
Cdk2Y011YpRbY10YpRbY20YInt	X	item $\cdot 1^{-1}$		
Cdk2Y011YpRbY11YpRbY21YInt	X	item $\cdot 1^{-1}$		

Id Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Cdk2Y012	Х	item · 1 ⁻¹		\Box
Cdk2Y012YpRbY10YpRbY20YInt	X	item $\cdot 1^{-1}$		
Cdk2Y012YpRbY11YpRbY21YInt	X	item $\cdot 1^{-1}$		
Cdk2Y100	X	item $\cdot 1^{-1}$		
Cdk2Y101	X	item $\cdot 1^{-1}$		
Cdk2Y102	X	item $\cdot 1^{-1}$		
Cdk2Y110	X	item $\cdot 1^{-1}$		
Cdk2Y111	X	item $\cdot 1^{-1}$		
Cdk2Y112	X	item $\cdot 1^{-1}$		
Cdk4Y00	X	item $\cdot 1^{-1}$		
Cdk4Y01	X	item $\cdot 1^{-1}$		
Cdk4Y01YpRbY00YpRbY10YInt	X	item $\cdot 1^{-1}$		
Cdk4Y01YpRbY01YpRbY11YInt	X	item $\cdot 1^{-1}$		
Cdk4Y10	X	item $\cdot 1^{-1}$		
Cdk4Y11	X	item $\cdot 1^{-1}$		
CyclinA	X	item $\cdot 1^{-1}$		
CyclinD	X	item $\cdot 1^{-1}$		
CyclinE	X	item $\cdot 1^{-1}$		
E2F	X	item $\cdot 1^{-1}$		
Emi1	X	item $\cdot 1^{-1}$		
p27	X	item $\cdot 1^{-1}$		
pRbY00	X	item $\cdot 1^{-1}$		
pRbY01	X	item $\cdot 1^{-1}$		
pRbY10	X	item $\cdot 1^{-1}$		
pRbY11	X	item $\cdot 1^{-1}$		\Box
pRbY20	X	item $\cdot 1^{-1}$		\Box
pRbY21	X	item $\cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
totalYCyclinYI)	X	item·1 ⁻¹		\Box
totalYCyclinYF	Ξ	X	item $\cdot 1^{-1}$		
totalYCyclinY <i>I</i>	A	X	item $\cdot 1^{-1}$		
totalYp27		X	item $\cdot l^{-1}$		\Box
hypophosphory	latedYpRb	X	item $\cdot l^{-1}$		\Box
hyperphosphory	ylatedYpRb	X	item $\cdot 1^{-1}$		\Box
totalYEmi1		X	item $\cdot 1^{-1}$		\Box
activeYCdk2		X	item $\cdot 1^{-1}$		\Box

5 Parameters

This model contains 61 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ksYE2F			0.000		
ksYEmi1			0.000		
ksYCyclin	nA		0.000		
ksYCyclin	ıΕ		0.000		
kYact			0.000		
ksYCyclin	nD		1354.231		\square
ksYp27			195.472		
kdYp27			0.002		$ \overline{\mathscr{A}} $
kd1Yp27			0.071		$ \overline{\mathscr{A}} $
ks0YCycli	.nE		254.074		
ks1YCycli	.nE		980.611		
ksMYCycli	.nE		9992.647		
ks0YCycli	.nA		499.944		
ks1YCycli	.nA		7999.996		
ksMYCycli	.nA		4064.384		
ks0YE2F			6.927		
ks1YE2F			65.443		
ksMYE2F			9818.780		\mathbf{Z}
kdYE2F			0.006		\mathbf{Z}
kd0YE2F			0.002		
ks0YEmi1			2.005		
ks1YEmi1			1788.517		\mathbf{Z}
ksMYEmi1			9608.162		
kdYEmi1			0.018		
kbYCyclin	DYYCdk4		$1.43 \cdot 10^{-6}$		$ \overline{\mathbf{Z}} $
kbYp27YYC	dk4		$6.34 \cdot 10^{-6}$		
kbYp27YYC	dk2		$1.23 \cdot 10^{-5}$		
k1Yact			0.011		
timeYModi	fier		240.064		
kbYCyclin	EYYCdk2		$5.01 \cdot 10^{-5}$		\square
kbYCyclin	AYYCdk2		$9.52 \cdot 10^{-5}$		
kbYCyclin	AYYCdk1		$6.48 \cdot 10^{-5}$		\square
kbYD4YYpR			$3.15 \cdot 10^{-5}$		\square
kupYD4YYp			1.695		
kbYE2YYpR			$5.74 \cdot 10^{-5}$		
kupYE2YYp			4.783		
kbYA2YYpR	lb		$6.25 \cdot 10^{-5}$		

Id	Name	SBO	Value	Unit	Constant
kupYA2YYpRb	1		0.200		\overline{Z}
kbYA1YYpRb			$6.73 \cdot 10^{-5}$		$\overline{\mathbf{Z}}$
kupYA1YYpRb	ı		0.202		$ ot\hspace{-1em} ot-1em$
ktYpRbYYDep	hos		0.023		
kbYE2FYYpRb	1		$9.66 \cdot 10^{-6}$		\mathbf{Z}
kbYEmi1YYAP	CC		10^{-4}		$ oldsymbol{ oldsymbol{Z}}$
kbYAPCCYYCy	clinA		$1.61 \cdot 10^{-5}$		\mathbf{Z}
kudYAPCCYYC	yclinA		5.000		\mathbf{Z}
${\tt kdYCyclinD}$			0.050		
${\tt kdYCyclinE}$			0.050		
kdYCyclinA			0.050		$ oldsymbol{ oldsymbol{Z}}$
kuYCyclinDY	YCdk4		0.100		$ oldsymbol{ oldsymbol{Z}}$
kuYp27YYCdk	4		0.100		
kuYCyclinEY	YCdk2		0.100		
kuYp27YYCdk	2		0.100		
kuYCyclinAY	YCdk2		0.100		$ oldsymbol{ oldsymbol{Z}}$
kuYCyclinAY	YCdk1		0.100		\mathbf{Z}
kuYD4YYpRb			0.100		
kuYE2YYpRb			0.100		\mathbf{Z}
kuYA2YYpRb			0.100		
kuYA1YYpRb			0.100		\mathbf{Z}
kuYE2FYYpRb	1		0.100		\mathbf{Z}
kuYEmi1YYAP	CC		0.100		\mathbf{Z}
kuYAPCCYYCy	clinA		0.100		

6 Rules

This is an overview of twelve rules.

6.1 Rule totalYCyclinYD

Rule totalYCyclinYD is an assignment rule for species totalYCyclinYD:

$$totalYCyclinYD = [CyclinD] + [Cdk4Y01] + [Cdk4Y11]$$
 (1)

Derived unit item $\cdot 1^{-1}$

6.2 Rule totalYCyclinYE

Rule totalYCyclinYE is an assignment rule for species totalYCyclinYE:

$$totalYCyclinYE = [CyclinE] + [Cdk2Y001] + [Cdk2Y011] + [Cdk2Y101] + [Cdk2Y101] + [Cdk2Y111] \quad (2)$$

Derived unit item $\cdot 1^{-1}$

6.3 Rule totalYCyclinYA

Rule totalYCyclinYA is an assignment rule for species totalYCyclinYA:

$$totalYCyclinYA = [CyclinA] + [Cdk1Y01] + [Cdk1Y11] + [Cdk2Y002] + [Cdk2Y012] + [Cdk2Y102] + [Cdk2Y112]$$
(3)

Derived unit item $\cdot 1^{-1}$

6.4 Rule totalYp27

Rule totalYp27 is an assignment rule for species totalYp27:

Derived unit item $\cdot l^{-1}$

6.5 Rule hypophosphorylatedYpRb

Rule hypophosphorylatedYpRb is an assignment rule for species hypophosphorylatedYpRb:

$$hypophosphorylated YpRb = [pRbY10] + [pRbY11]$$
 (5)

Derived unit item $\cdot 1^{-1}$

6.6 Rule hyperphosphorylatedYpRb

Rule hyperphosphorylatedYpRb is an assignment rule for species hyperphosphorylatedYpRb:

$$hyperphosphorylated YpRb = [pRbY20] + [pRbY21]$$
 (6)

Derived unit item $\cdot 1^{-1}$

6.7 Rule activeYCdk2

Rule activeYCdk2 is an assignment rule for species activeYCdk2:

$$active YCdk2 = [Cdk2Y011] + [Cdk2Y012]$$
(7)

Derived unit item $\cdot 1^{-1}$

6.8 Rule total YEmi1

Rule totalYEmi1 is an assignment rule for species totalYEmi1:

$$totalYEmi1 = [Emi1] + [APCCYEmi1]$$
 (8)

Derived unit item $\cdot 1^{-1}$

6.9 Rule ksYCyclinE

Rule ksYCyclinE is an assignment rule for parameter ksYCyclinE:

$$ksYCyclinE = ks0YCyclinE + \frac{ks1YCyclinE \cdot [E2F]}{ksMYCyclinE + [E2F]}$$
 (9)

6.10 Rule ksYCyclinA

Rule ksYCyclinA is an assignment rule for parameter ksYCyclinA:

$$ksYCyclinA = ks0YCyclinA + \frac{ks1YCyclinA \cdot [E2F]}{ksMYCyclinA + [E2F]}$$
 (10)

6.11 Rule ksYEmi1

Rule ksYEmi1 is an assignment rule for parameter ksYEmi1:

$$ksYEmi1 = ks0YEmi1 + \frac{ks1YEmi1 \cdot [E2F]}{ksMYEmi1 + [E2F]}$$
 (11)

6.12 Rule ksYE2F

Rule ksYE2F is an assignment rule for parameter ksYE2F:

$$ksYE2F = ks0YE2F + \frac{ks1YE2F \cdot [E2F]}{ksMYE2F + [E2F]}$$
(12)

7 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

7.1 Event event_0

Name modifier activation

Notes when time >= time_Modifier, kYact=k1Yact, otherwise kYact=0. Here time_Modifier=240.0637 from the set2 of the supplementary table 2.

time
$$> 240.0637$$
 (13)

Assignment

$$kYact = k1Yact$$
 (14)

8 Reactions

This model contains 138 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

	T 1		D (E (an o
N ₀	Id	Name	Reaction Equation	SBO
1	rxnY001		$\emptyset \longrightarrow CyclinD$	
2	rxnY002		$CyclinD \longrightarrow \emptyset$	
3	rxnY003		$Cdk4Y01 \longrightarrow Cdk4Y00$	
4	rxnY004		$Cdk4Y11 \longrightarrow Cdk4Y10$	
5	rxnY005		$\emptyset \longrightarrow p27$	
6	rxnY006		$\mathtt{p27} \longrightarrow \mathbf{\emptyset}$	
7	rxnY007		$Cdk4Y10 \longrightarrow Cdk4Y00$	
8	rxnY008		$Cdk4Y11 \longrightarrow Cdk4Y01$	
9	rxnY009		$Cdk2Y100 \longrightarrow Cdk2Y000$	
10	rxnY010		$Cdk2Y101 \longrightarrow Cdk2Y001$	
11	rxnY011		$Cdk2Y102 \longrightarrow Cdk2Y002$	
12	rxnY012		$Cdk2Y110 \longrightarrow Cdk2Y010$	
13	rxnY013		$Cdk2Y111 \longrightarrow Cdk2Y011$	
14	rxnY014		$Cdk2Y112 \longrightarrow Cdk2Y012$	
15	rxnY015		$\emptyset \longrightarrow CyclinE$	
16	rxnY016		$CyclinE \longrightarrow \emptyset$	
17	rxnY017		$Cdk2Y001 \longrightarrow Cdk2Y000$	
18	rxnY018		$Cdk2Y101 \longrightarrow Cdk2Y100$	
19	rxnY019		$Cdk2Y011 \longrightarrow Cdk2Y010$	
20	rxnY020		$Cdk2Y111 \longrightarrow Cdk2Y110$	
21	rxnY021		$\emptyset \longrightarrow CyclinA$	
22	rxnY022		$CyclinA \longrightarrow \emptyset$	
23	rxnY023		$Cdk1Y01 \longrightarrow Cdk1Y00$	

25 rxnY025 Cdk2Y002	$\longrightarrow Cdk1Y10$ $\longrightarrow Cdk2Y000$
	\longrightarrow Cdk2Y000
	- CGR2 1 000
26 rxn Y 026 Cdk2Y102	\longrightarrow Cdk2Y100
27 rxnY027 Cdk2Y012	\longrightarrow Cdk2Y010
28 rxnY028 Cdk2Y112	\longrightarrow Cdk2Y110
29 rxnY029 $\emptyset \longrightarrow E2F$	
30 rxnY030 E2F \longrightarrow 0	
31 rxnY031 pRbY01 —	\rightarrow pRbY00
32 rxnY032 pRbY11 —	→ pRbY10
33 rxnY033 pRbY21 —	→ pRbY20
Product34 rxnY034 $\emptyset \longrightarrow \text{Emi1}$ 35 rxnY035 $\text{Emi1} \longrightarrow \emptyset$ 36 rxnY036APCCYEm37 rxnY037 $\text{Cdk4Y00} +$	
$\frac{1}{8}$ 35 rxnY035 Emi1 \longrightarrow 0	
APCCYEm APCCYEm	$ii1 \longrightarrow APCC$
$\frac{7}{2}$ 37 rxnY037 Cdk4Y00+	$-CyclinD \longrightarrow Cdk4Y01$
	\rightarrow Cdk4Y00 + CyclinD
$\frac{\leq}{h_0}$ 39 rxnY039 Cdk4Y10+	$-CyclinD \longrightarrow Cdk4Y11$
2 40 rxnY040 Cdk4Y11 -	\rightarrow Cdk4Y10+CyclinD
7,	$-p27 \longrightarrow Cdk4Y10$
	$\rightarrow \text{Cdk4Y00} + \text{p27}$
	$-p27 \longrightarrow Cdk4Y11$
	$\rightarrow \text{Cdk4Y01} + \text{p27}$
	$+p27 \longrightarrow Cdk2Y100$
	$\longrightarrow Cdk2Y000 + p27$
	$+p27 \longrightarrow Cdk2Y101$
	\longrightarrow Cdk2Y001 + p27
	$+p27 \longrightarrow Cdk2Y102$
	\longrightarrow Cdk2Y002 + p27
	$+p27 \longrightarrow Cdk2Y110$
52 rxnY052 Cdk2Y110	\longrightarrow Cdk2Y010 + p27

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
55 $rxnY055$ $Cdk2Y012 + p27 \longrightarrow Cdk2Y112$ 56 $rxnY056$ $Cdk2Y112 \longrightarrow Cdk2Y012 + p27$ 57 $rxnY057$ $Cdk2Y000 \longrightarrow Cdk2Y010$ 58 $rxnY058$ $Cdk2Y100 \longrightarrow Cdk2Y110$ 59 $rxnY059$ $Cdk2Y001 \longrightarrow Cdk2Y011$ 60 $rxnY060$ $Cdk2Y101 \longrightarrow Cdk2Y111$ 61 $rxnY061$ $Cdk2Y002 \longrightarrow Cdk2Y012$	
56 $rxnY056$ $Cdk2Y112 \longrightarrow Cdk2Y012 + p27$ 57 $rxnY057$ $Cdk2Y000 \longrightarrow Cdk2Y010$ 58 $rxnY058$ $Cdk2Y100 \longrightarrow Cdk2Y110$ 59 $rxnY059$ $Cdk2Y001 \longrightarrow Cdk2Y011$ 60 $rxnY060$ $Cdk2Y101 \longrightarrow Cdk2Y111$ 61 $rxnY061$ $Cdk2Y002 \longrightarrow Cdk2Y012$	
57 $rxnY057$ $Cdk2Y000 \longrightarrow Cdk2Y010$ 58 $rxnY058$ $Cdk2Y100 \longrightarrow Cdk2Y110$ 59 $rxnY059$ $Cdk2Y001 \longrightarrow Cdk2Y011$ 60 $rxnY060$ $Cdk2Y101 \longrightarrow Cdk2Y111$ 61 $rxnY061$ $Cdk2Y002 \longrightarrow Cdk2Y012$	
$ \begin{array}{cccc} 58 & \text{rxnY058} & & & & \text{Cdk2Y100} \longrightarrow \text{Cdk2Y110} \\ 59 & \text{rxnY059} & & & \text{Cdk2Y001} \longrightarrow \text{Cdk2Y011} \\ 60 & \text{rxnY060} & & & \text{Cdk2Y101} \longrightarrow \text{Cdk2Y111} \\ 61 & \text{rxnY061} & & & & \text{Cdk2Y002} \longrightarrow \text{Cdk2Y012} \\ \end{array} $	
$ \begin{array}{ccc} 59 & \text{rxnY059} & & & \text{Cdk2Y001} \longrightarrow \text{Cdk2Y011} \\ 60 & \text{rxnY060} & & & \text{Cdk2Y101} \longrightarrow \text{Cdk2Y111} \\ 61 & \text{rxnY061} & & & \text{Cdk2Y002} \longrightarrow \text{Cdk2Y012} \\ \end{array} $	
$ \begin{array}{ccc} 60 & \text{rxnY060} & & \text{Cdk2Y101} \longrightarrow \text{Cdk2Y111} \\ 61 & \text{rxnY061} & & \text{Cdk2Y002} \longrightarrow \text{Cdk2Y012} \end{array} $	
61 rxnY061 $Cdk2Y002 \longrightarrow Cdk2Y012$	
62 rynV062 Cdk2V102 → Cdk2V112	
$CURZ 1 10Z \longrightarrow CURZ 1 11Z$	
63 $rxnY063$ $Cdk2Y000 + CyclinE \longrightarrow Cdk2Y001$	
64 $rxnY064$ $Cdk2Y001 \longrightarrow Cdk2Y000 + CyclinE$	
65 $rxnY065$ $Cdk2Y100 + CyclinE \longrightarrow Cdk2Y101$	
66 $rxnY066$ $Cdk2Y101 \longrightarrow Cdk2Y100 + CyclinE$	
67 $rxnY067$ $Cdk2Y010 + CyclinE \longrightarrow Cdk2Y011$	
68 rxnY068 $Cdk2Y011 \longrightarrow Cdk2Y010 + CyclinE$	
69 $rxnY069$ $Cdk2Y110 + CyclinE \longrightarrow Cdk2Y111$	
70 $rxnY070$ $Cdk2Y111 \longrightarrow Cdk2Y110 + CyclinE$	
71 $rxnY071$ $Cdk2Y000 + CyclinA \longrightarrow Cdk2Y002$	
72 $rxnY072$ $Cdk2Y002 \longrightarrow Cdk2Y000 + CyclinA$	
73 $rxnY073$ $Cdk2Y100 + CyclinA \longrightarrow Cdk2Y102$	
74 $rxnY074$ $Cdk2Y102 \longrightarrow Cdk2Y100 + CyclinA$	
75 $rxnY075$ $Cdk2Y010 + CyclinA \longrightarrow Cdk2Y012$	
76 $rxnY076$ $Cdk2Y012 \longrightarrow Cdk2Y010 + CyclinA$	
77 $rxnY077$ $Cdk2Y110 + CyclinA \longrightarrow Cdk2Y112$	
78 $rxnY078$ $Cdk2Y112 \longrightarrow Cdk2Y110 + CyclinA$	
79 $rxnY079$ $Cdk1Y10 \longrightarrow Cdk1Y10$	
80 rxnY080 $Cdk1Y01 \longrightarrow Cdk1Y11$	
81 $rxnY081$ $Cdk1Y00 + CyclinA \longrightarrow Cdk1Y01$	

14	N⁰	Id	Name	Reaction Equation	SBO
	82	rxnY082		$Cdk1Y01 \longrightarrow Cdk1Y00 + CyclinA$	
	83	rxnY083		$Cdk1Y10 + CyclinA \longrightarrow Cdk1Y11$	
	84	rxnY084		$Cdk1Y11 \longrightarrow Cdk1Y10 + CyclinA$	
	85	rxnY085		$pRbY00+Cdk4Y01 \longrightarrow Cdk4Y01YpRbY00YpRbY$	10YInt
	86	rxnY086		$Cdk4Y01YpRbY00YpRbY10YInt \longrightarrow pRbY00 +$	
				Cdk4Y01	
	87	rxnY087		$Cdk4Y01YpRbY00YpRbY10YInt \longrightarrow pRbY10 +$	
				Cdk4Y01	
	88	rxnY088		$pRbY01+Cdk4Y01 \longrightarrow Cdk4Y01YpRbY01YpRbY$	/11YInt
	89	rxnY089		$Cdk4Y01YpRbY01YpRbY11YInt \longrightarrow pRbY01 +$	
r_0				Cdk4Y01	
Produced by SBML2l ^{ET} EX	90	rxnY090		$Cdk4Y01YpRbY01YpRbY11YInt \longrightarrow pRbY11 +$	
ed				Cdk4Y01	
by	91	rxnY091		$pRbY10+Cdk2Y011 \longrightarrow Cdk2Y011YpRbY10YpR$	bY20YInt
<u>8</u>	92	rxnY092		$Cdk2Y011YpRbY10YpRbY20YInt \longrightarrow pRbY10 +$	
<u></u>				Cdk2Y011	
Ä	93	rxnY093		$Cdk2Y011YpRbY10YpRbY20YInt \longrightarrow pRbY20 +$	
×				Cdk2Y011	
		rxnY094		$pRbY11 + Cdk2Y011 \longrightarrow Cdk2Y011YpRbY11YpR$	bY21YInt
	95	rxnY095		$Cdk2Y011YpRbY11YpRbY21YInt \longrightarrow pRbY11 +$	
				Cdk2Y011	
	96	rxnY096		$Cdk2Y011YpRbY11YpRbY21YInt \longrightarrow pRbY21 +$	
				Cdk2Y011	
	97	rxnY097		$pRbY10+Cdk2Y012 \longrightarrow Cdk2Y012YpRbY10YpR$	bY20YInt
	98	rxnY098		$Cdk2Y012YpRbY10YpRbY20YInt \longrightarrow pRbY10 +$	
				Cdk2Y012	
	99	rxnY099		$Cdk2Y012YpRbY10YpRbY20YInt \longrightarrow pRbY20 +$	
				Cdk2Y012	
	100	rxnY100		$pRbY11 + Cdk2Y012 \longrightarrow Cdk2Y012YpRbY11YpR$	bY21YInt

No	Id	Name	Reaction Equation	SBO
101	rxnY101		$Cdk2Y012YpRbY11YpRbY21YInt \longrightarrow pRbY11 + \\$	
			Cdk2Y012	
102	rxnY102		$Cdk2Y012YpRbY11YpRbY21YInt \longrightarrow pRbY21 +$	
			Cdk2Y012	
103	rxnY103		$pRbY10+Cdk1Y11 \longrightarrow Cdk1Y11YpRbY10YpRbY1$	20YInt
104	rxnY104		$Cdk1Y11YpRbY10YpRbY20YInt \longrightarrow pRbY10 +$	
			Cdk1Y11	
105	rxnY105		$Cdk1Y11YpRbY10YpRbY20YInt \longrightarrow pRbY20 +$	
			Cdk1Y11	
106	rxnY106		$pRbY11 + Cdk1Y11 \xrightarrow{pRbY10} Cdk1Y11YpRbY11Yp$	RhV21VInt
107	rxnY107		$Cdk1Y11YpRbY11YpRbY21YInt \longrightarrow pRbY11 +$	K0 1 21 1 111t
107	IMITO		Cdk1Y11	
108	rxnY108		Cdk1Y11YpRbY11YpRbY21YInt \longrightarrow pRbY21 +	
100			Cdk1Y11	
109	rxnY109		pRbY20 → pRbY00	
110	rxnY110		pRbY21 → pRbY01	
111	rxnY111		$pRbY00 + E2F \longrightarrow pRbY01$	
112	rxnY112		$pRbY01 \longrightarrow pRbY00 + E2F$	
113	rxnY113		$pRbY10 + E2F \longrightarrow pRbY11$	
114	rxnY114		$pRbY11 \longrightarrow pRbY10 + E2F$	
115	rxnY115		$pRbY21 \longrightarrow pRbY20 + E2F$	
116	rxnY116		$APCC + Emi1 \longrightarrow APCCYEmi1$	
117	rxnY117		$APCCYEmi1 \longrightarrow APCC + Emi1$	
118	rxnY118		$CyclinA + APCC \longrightarrow APCCYCyclinAYInt$	
119	rxnY119		$APCCYCyclinAYInt \longrightarrow CyclinA + APCC$	
120	rxnY120		$APCCYCyclinAYInt \longrightarrow APCC$	
121	rxnY121		$Cdk2Y002 + APCC \longrightarrow APCCYCdk2Y000Y00YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000YCdk2Y000Y00Y00Y00Y00Y00Y00Y00Y00Y00Y00Y00Y0$	002YInt
122	rxnY122		$APCCYCdk2Y000YCdk2Y002YInt \longrightarrow Cdk2Y002-Cdk2Y002-Cdk2Y002YInt \longrightarrow Cdk2Y002-Cdk2Y002YInt \longrightarrow Cdk2Y002-Cdk2Y002YInt \longrightarrow Cdk2Y002-Cdk2Y002YInt \longrightarrow Cdk2Y002-Cdk2Y002-Cdk2Y002YInt \longrightarrow Cdk2Y002-Cdk2Y$	+
			APCC	

16	No	Id Name	Reaction Equation SBO	
	123	rxnY123	$\begin{array}{c} APCCYCdk2Y000YCdk2Y002YInt \longrightarrow Cdk2Y000 + \\ APCC \end{array}$	
	124	rxnY124	$Cdk2Y102 + APCC \longrightarrow APCCYCdk2Y100YCdk2Y102YInt$	
	125	rxnY125	$\begin{array}{c} APCCYCdk2Y100YCdk2Y102YInt \longrightarrow Cdk2Y102 + \\ APCC \end{array}$	
	126	rxnY126	$\begin{array}{l} APCCYCdk2Y100YCdk2Y102YInt \longrightarrow Cdk2Y100 + \\ APCC \end{array}$	
	127	rxnY127	$Cdk2Y012 + APCC \xrightarrow{Cdk2Y102} APCCYCdk2Y010YCdk2Y012Y$	
P	128	rxnY128	$\begin{array}{l} APCCYCdk2Y010YCdk2Y012YInt \longrightarrow Cdk2Y012 + \\ APCC \end{array}$	
Produced by SBML2PTEX	129	$ \begin{array}{ccc} \mathtt{rxnY129} & & \mathtt{APCCYCdk2Y010YCdk2Y012YInt} \longrightarrow \mathtt{Cdk2Y010} + \\ \mathtt{APCC} & & \mathtt{APCC} \end{array} $		
ed b	130	$ Cdk2Y112 + APCC \longrightarrow APCCYCdk2Y110YCdk2Y112YI1 $		
y SBN	131	31 $rxnY131$ APCCYCdk2Y110YCdk2Y112YInt \longrightarrow Cdk2YAPCC		
	132	rxnY132	$\begin{array}{l} APCCYCdk2Y110YCdk2Y112YInt \longrightarrow Cdk2Y110 + \\ APCC \end{array}$	
×	133	rxnY133	$Cdk1Y01 + APCC \longrightarrow APCCYCdk1Y00YCdk1Y01YInt$	
	134	rxnY134	$\begin{array}{ccc} APCCYCdk1Y00YCdk1Y01YInt & + \\ APCC \longrightarrow Cdk1Y01 & \end{array}$	
	135	rxnY135	$\begin{array}{l} APCCYCdk1Y00YCdk1Y01YInt \longrightarrow Cdk1Y00 \ + \\ APCC \end{array}$	
	136	rxnY136	$Cdk1Y11 + APCC \longrightarrow APCCYCdk1Y10YCdk1Y11YInt$	
	137	rxnY137	$\begin{array}{ccc} APCCYCdk1Y10YCdk1Y11YInt & + \\ APCC \longrightarrow Cdk1Y11 & \end{array}$	
	138	rxnY138	$\begin{array}{c} APCCYCdk1Y10YCdk1Y11YInt \longrightarrow Cdk1Y10 \ + \\ APCC \end{array}$	

8.1 Reaction rxnY001

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow CyclinD$$
 (15)

Product

Table 6: Properties of each product.

Id	Name	SBO
CyclinD		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{ksYCyclinD} \cdot \text{vol}(X)$$
 (16)

8.2 Reaction rxnY002

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$CyclinD \longrightarrow \emptyset \tag{17}$$

Reactant

Table 7: Properties of each reactant.

Id	Name	SBO
CyclinD		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{kdYCyclinD} \cdot [\text{CyclinD}] \cdot \text{vol}(X)$$
(18)

8.3 Reaction rxnY003

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk4Y01 \longrightarrow Cdk4Y00 \tag{19}$$

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
Cdk4Y01		

Product

Table 9: Properties of each product.

Id	Name	SBO
Cdk4Y00		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{kdYCyclinD} \cdot [\text{Cdk4Y01}] \cdot \text{vol}(X)$$
 (20)

8.4 Reaction rxnY004

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk4Y11 \longrightarrow Cdk4Y10 \tag{21}$$

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
Cdk4Y11		

Product

Table 11: Properties of each product.

Id	Name	SBO
Cdk4Y10		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = kdYCyclinD \cdot [Cdk4Y11] \cdot vol(X)$$
(22)

8.5 Reaction rxnY005

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow p27$$
 (23)

Product

Table 12: Properties of each product.

Id	Name	SBO
p27		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{ksYp27} \cdot \text{vol}(X) \tag{24}$$

8.6 Reaction rxnY006

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$p27 \longrightarrow \emptyset \tag{25}$$

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
p27		

Derived unit contains undeclared units

$$v_6 = kdYp27 \cdot [p27] \cdot vol(X)$$
(26)

8.7 Reaction rxnY007

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk4Y10 \longrightarrow Cdk4Y00 \tag{27}$$

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
Cdk4Y10		

Product

Table 15: Properties of each product.

Id	Name	SBO
Cdk4Y00		

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{kdYp27} \cdot [\text{Cdk4Y10}] \cdot \text{vol}(X)$$
(28)

8.8 Reaction rxnY008

$$Cdk4Y11 \longrightarrow Cdk4Y01 \tag{29}$$

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
Cdk4Y11		

Product

Table 17: Properties of each product.

Id	Name	SBO
Cdk4Y01		

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{kdYp27} \cdot [\text{Cdk4Y11}] \cdot \text{vol}(X) \tag{30}$$

8.9 Reaction rxnY009

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y100 \longrightarrow Cdk2Y000 \tag{31}$$

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
Cdk2Y100		

Table 19: Properties of each product.

Id	Name	SBO
Cdk2Y000		

Derived unit contains undeclared units

$$v_9 = kdYp27 \cdot [Cdk2Y100] \cdot vol(X)$$
(32)

8.10 Reaction rxnY010

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y101 \longrightarrow Cdk2Y001 \tag{33}$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
Cdk2Y101		

Product

Table 21: Properties of each product.

Id	Name	SBO
Cdk2Y001		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{kdYp27} \cdot [\text{Cdk2Y101}] \cdot \text{vol}(X)$$
(34)

8.11 Reaction rxnY011

$$Cdk2Y102 \longrightarrow Cdk2Y002 \tag{35}$$

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
Cdk2Y102		

Product

Table 23: Properties of each product.

Id	Name	SBO
Cdk2Y002		

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{kdYp27} \cdot [\text{Cdk2Y102}] \cdot \text{vol}(X)$$
(36)

8.12 Reaction rxnY012

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y110 \longrightarrow Cdk2Y010 \tag{37}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
Cdk2Y110		

Table 25: Properties of each product.

Id	Name	SBO
Cdk2Y010		

Derived unit contains undeclared units

$$v_{12} = \text{kdYp27} \cdot [\text{Cdk2Y110}] \cdot \text{vol}(X)$$
(38)

8.13 Reaction rxnY013

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y111 \longrightarrow Cdk2Y011 \tag{39}$$

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
Cdk2Y111		

Product

Table 27: Properties of each product.

Id	Name	SBO
Cdk2Y011		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{kd1Yp27} \cdot [\text{Cdk2Y111}] \cdot \text{vol}(X)$$

$$(40)$$

8.14 Reaction rxnY014

$$Cdk2Y112 \longrightarrow Cdk2Y012 \tag{41}$$

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
Cdk2Y112		

Product

Table 29: Properties of each product.

Id	Name	SBO
Cdk2Y012		

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{kdYp27} \cdot [\text{Cdk2Y112}] \cdot \text{vol}(X)$$

$$(42)$$

8.15 Reaction rxnY015

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow CyclinE$$
 (43)

Product

Table 30: Properties of each product.

Id	Name	SBO
CyclinE		

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{ksYCyclinE} \cdot \text{vol}(X) \tag{44}$$

8.16 Reaction rxnY016

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$CyclinE \longrightarrow \emptyset \tag{45}$$

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
CyclinE		

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{kdYCyclinE} \cdot [\text{CyclinE}] \cdot \text{vol}(X)$$
 (46)

8.17 Reaction rxnY017

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y001 \longrightarrow Cdk2Y000 \tag{47}$$

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
Cdk2Y001		

Table 33: Properties of each product.

Id	Name	SBO
Cdk2Y000		

Derived unit contains undeclared units

$$v_{17} = \text{kdYCyclinE} \cdot [\text{Cdk2Y001}] \cdot \text{vol}(X)$$
(48)

8.18 Reaction rxnY018

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y101 \longrightarrow Cdk2Y100 \tag{49}$$

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
Cdk2Y101		

Product

Table 35: Properties of each product.

Id	Name	SBO
Cdk2Y100		

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{kdYCyclinE} \cdot [\text{Cdk2Y101}] \cdot \text{vol}(X)$$
(50)

8.19 Reaction rxnY019

$$Cdk2Y011 \longrightarrow Cdk2Y010 \tag{51}$$

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
Cdk2Y011		

Product

Table 37: Properties of each product.

Id	Name	SBO
Cdk2Y010		

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{kdYCyclinE} \cdot [\text{Cdk2Y011}] \cdot \text{vol}(X)$$
 (52)

8.20 Reaction rxnY020

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y111 \longrightarrow Cdk2Y110 \tag{53}$$

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
Cdk2Y111		

Table 39: Properties of each product.

Id	Name	SBO
Cdk2Y110		

Derived unit contains undeclared units

$$v_{20} = \text{kdYCyclinE} \cdot [\text{Cdk2Y111}] \cdot \text{vol}(X)$$
(54)

8.21 Reaction rxnY021

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow CyclinA$$
 (55)

Product

Table 40: Properties of each product.

Id	Name	SBO
CyclinA		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{ksYCyclinA} \cdot \text{vol}(X) \tag{56}$$

8.22 Reaction rxnY022

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$CyclinA \longrightarrow \emptyset \tag{57}$$

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
CyclinA		

Derived unit contains undeclared units

$$v_{22} = \text{kdYCyclinA} \cdot [\text{CyclinA}] \cdot \text{vol}(X)$$
(58)

8.23 Reaction rxnY023

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk1Y01 \longrightarrow Cdk1Y00 \tag{59}$$

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
Cdk1Y01		

Product

Table 43: Properties of each product.

Id	Name	SBO
Cdk1Y00		

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{kdYCyclinA} \cdot [\text{Cdk1Y01}] \cdot \text{vol}(X)$$
(60)

8.24 Reaction rxnY024

$$Cdk1Y11 \longrightarrow Cdk1Y10 \tag{61}$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
Cdk1Y11		

Product

Table 45: Properties of each product.

Id	Name	SBO
Cdk1Y10		

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{kdYCyclinA} \cdot [\text{Cdk1Y11}] \cdot \text{vol}(X)$$
(62)

8.25 Reaction rxnY025

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y002 \longrightarrow Cdk2Y000 \tag{63}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
Cdk2Y002		

Table 47: Properties of each product.

Id	Name	SBO
Cdk2Y000		

Derived unit contains undeclared units

$$v_{25} = \text{kdYCyclinA} \cdot [\text{Cdk2Y002}] \cdot \text{vol}(X)$$
(64)

8.26 Reaction rxnY026

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y102 \longrightarrow Cdk2Y100 \tag{65}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
Cdk2Y102		

Product

Table 49: Properties of each product.

Id	Name	SBO
Cdk2Y100		

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{kdYCyclinA} \cdot [\text{Cdk2Y102}] \cdot \text{vol}(X)$$
(66)

8.27 Reaction rxnY027

$$Cdk2Y012 \longrightarrow Cdk2Y010 \tag{67}$$

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
Cdk2Y012		

Product

Table 51: Properties of each product.

Id	Name	SBO
Cdk2Y010		

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{kdYCyclinA} \cdot [\text{Cdk2Y012}] \cdot \text{vol}(X)$$
(68)

8.28 Reaction rxnY028

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y112 \longrightarrow Cdk2Y110 \tag{69}$$

Reactant

Table 52: Properties of each reactant.

Id	Name	SBO
Cdk2Y112		

Table 53: Properties of each product.

Id	Name	SBO
Cdk2Y110		

Derived unit contains undeclared units

$$v_{28} = \text{kdYCyclinA} \cdot [\text{Cdk2Y112}] \cdot \text{vol}(X)$$
(70)

8.29 Reaction rxnY029

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow E2F$$
 (71)

Product

Table 54: Properties of each product.

Id	Name	SBO
E2F		

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{ksYE2F} \cdot \text{vol}(X) \tag{72}$$

8.30 Reaction rxnY030

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$E2F \longrightarrow \emptyset \tag{73}$$

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
E2F		

Derived unit contains undeclared units

$$v_{30} = kd0YE2F \cdot [E2F] \cdot vol(X)$$
(74)

8.31 Reaction rxnY031

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$pRbY01 \longrightarrow pRbY00 \tag{75}$$

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
pRbY01		

Product

Table 57: Properties of each product.

Id	Name	SBO
pRbY00		

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{kdYE2F} \cdot [\text{pRbY01}] \cdot \text{vol}(X) \tag{76}$$

8.32 Reaction rxnY032

$$pRbY11 \longrightarrow pRbY10 \tag{77}$$

Reactant

Table 58: Properties of each reactant.

Id	Name	SBO
pRbY11		

Product

Table 59: Properties of each product.

Id	Name	SBO
pRbY10		

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \text{kdYE2F} \cdot [\text{pRbY11}] \cdot \text{vol}(X)$$
(78)

8.33 Reaction rxnY033

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$pRbY21 \longrightarrow pRbY20 \tag{79}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
pRbY21		

Table 61: Properties of each product.

Id	Name	SBO
pRbY20		

Derived unit contains undeclared units

$$v_{33} = \text{kdYE2F} \cdot [\text{pRbY21}] \cdot \text{vol}(X)$$
(80)

8.34 Reaction rxnY034

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow \text{Emi1}$$
 (81)

Product

Table 62: Properties of each product.

Id	Name	SBO
Emi1		

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{ksYEmi1} \cdot \text{vol}(X) \tag{82}$$

8.35 Reaction rxnY035

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$\text{Emil} \longrightarrow \emptyset$$
 (83)

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
Emi1		

Derived unit contains undeclared units

$$v_{35} = \text{kdYEmi1} \cdot [\text{Emi1}] \cdot \text{vol}(X)$$
(84)

8.36 Reaction rxnY036

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$APCCYEmi1 \longrightarrow APCC \tag{85}$$

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
APCCYEmi1		

Product

Table 65: Properties of each product.

Id	Name	SBO
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{kdYEmi1} \cdot [\text{APCCYEmi1}] \cdot \text{vol}(X)$$
 (86)

8.37 Reaction rxnY037

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk4Y00 + CyclinD \longrightarrow Cdk4Y01$$
 (87)

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
Cdk4Y00		
CyclinD		

Product

Table 67: Properties of each product.

Id	Name	SBO
Cdk4Y01		

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{kbYCyclinDYYCdk4} \cdot [\text{Cdk4Y00}] \cdot [\text{CyclinD}] \cdot \text{vol}(X)$$
 (88)

8.38 Reaction rxnY038

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk4Y01 \longrightarrow Cdk4Y00 + CyclinD$$
 (89)

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
Cdk4Y01		

Table 69: Properties of each product.

Id	Name	SBO
Cdk4Y00		
CyclinD		

Derived unit contains undeclared units

$$v_{38} = kuYCyclinDYYCdk4 \cdot [Cdk4Y01] \cdot vol(X)$$
 (90)

8.39 Reaction rxnY039

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk4Y10 + CyclinD \longrightarrow Cdk4Y11 \tag{91}$$

Reactants

Table 70: Properties of each reactant.

Id	Name	SBO
Cdk4Y10		
CyclinD		

Product

Table 71: Properties of each product.

Id	Name	SBO
Cdk4Y11		

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{kbYCyclinDYYCdk4} \cdot [\text{Cdk4Y10}] \cdot [\text{CyclinD}] \cdot \text{vol}(X)$$
(92)

8.40 Reaction rxnY040

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk4Y11 \longrightarrow Cdk4Y10 + CyclinD$$
 (93)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
Cdk4Y11		

Products

Table 73: Properties of each product.

Id	Name	SBO
Cdk4Y10		
CyclinD		

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{kuYCyclinDYYCdk4} \cdot [\text{Cdk4Y11}] \cdot \text{vol}(X)$$
(94)

8.41 Reaction rxnY041

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk4Y00 + p27 \longrightarrow Cdk4Y10 \tag{95}$$

Reactants

Table 74: Properties of each reactant.

Id	Name	SBO
Cdk4Y00		_

Id	Name	SBO
p27		

Product

Table 75: Properties of each product.

Id	Name	SBO
Cdk4Y10		

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{kbYp27YYCdk4} \cdot [\text{Cdk4Y00}] \cdot [\text{p27}] \cdot \text{vol}(X)$$

$$(96)$$

8.42 Reaction rxnY042

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk4Y10 \longrightarrow Cdk4Y00 + p27 \tag{97}$$

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
Cdk4Y10		

Table 77: Properties of each product.

Id	Name	SBO
Cdk4Y00		
p27		

Derived unit contains undeclared units

$$v_{42} = \text{kuYp27YYCdk4} \cdot [\text{Cdk4Y10}] \cdot \text{vol}(X)$$
(98)

8.43 Reaction rxnY043

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk4Y01 + p27 \longrightarrow Cdk4Y11 \tag{99}$$

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
Cdk4Y01		
p27		

Product

Table 79: Properties of each product.

Id	Name	SBO
Cdk4Y11		

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{kbYp27YYCdk4} \cdot [\text{Cdk4Y01}] \cdot [\text{p27}] \cdot \text{vol}(X)$$

$$(100)$$

8.44 Reaction rxnY044

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk4Y11 \longrightarrow Cdk4Y01 + p27 \tag{101}$$

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
Cdk4Y11		

Products

Table 81: Properties of each product.

Id	Name	SBO
Cdk4Y01		
p27		

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{kuYp27YYCdk4} \cdot [\text{Cdk4Y11}] \cdot \text{vol}(X)$$
(102)

8.45 Reaction rxnY045

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y000 + p27 \longrightarrow Cdk2Y100 \tag{103}$$

Reactants

Table 82: Properties of each reactant.

Id	Name	SBO
Cdk2Y000		
p27		

Table 83: Properties of each product.

Id	Name	SBO
Cdk2Y100		

Derived unit contains undeclared units

$$v_{45} = \text{kbYp27YYCdk2} \cdot [\text{Cdk2Y000}] \cdot [\text{p27}] \cdot \text{vol}(X)$$

$$(104)$$

8.46 Reaction rxnY046

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y100 \longrightarrow Cdk2Y000 + p27 \tag{105}$$

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
Cdk2Y100		

Products

Table 85: Properties of each product.

		1
Id	Name	SBO
Cdk2Y000		
p27		

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = \text{kuYp27YYCdk2} \cdot [\text{Cdk2Y100}] \cdot \text{vol}(X)$$
(106)

8.47 Reaction rxnY047

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y001 + p27 \longrightarrow Cdk2Y101 \tag{107}$$

Reactants

Table 86: Properties of each reactant.

Id	Name	SBO
Cdk2Y001		
p27		

Product

Table 87: Properties of each product.

Id	Name	SBO
Cdk2Y101		

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = kbYp27YYCdk2 \cdot [Cdk2Y001] \cdot [p27] \cdot vol(X)$$

$$(108)$$

8.48 Reaction rxnY048

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y101 \longrightarrow Cdk2Y001 + p27 \tag{109}$$

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
Cdk2Y101		

Table 89: Properties of each product.

Id	Name	SBO
Cdk2Y001		
p27		

Derived unit contains undeclared units

$$v_{48} = kuYp27YYCdk2 \cdot [Cdk2Y101] \cdot vol(X) \tag{110}$$

8.49 Reaction rxnY049

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y002 + p27 \longrightarrow Cdk2Y102 \tag{111}$$

Reactants

Table 90: Properties of each reactant.

Id	Name	SBO
Cdk2Y002		
p27		

Product

Table 91: Properties of each product.

Id	Name	SBO
Cdk2Y102		

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = kbYp27YYCdk2 \cdot [Cdk2Y002] \cdot [p27] \cdot vol(X)$$
(112)

8.50 Reaction rxnY050

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y102 \longrightarrow Cdk2Y002 + p27 \tag{113}$$

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
Cdk2Y102		

Products

Table 93: Properties of each product.

Id	Name	SBO
Cdk2Y002		
p27		

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \text{kuYp27YYCdk2} \cdot [\text{Cdk2Y102}] \cdot \text{vol}(X)$$
(114)

8.51 Reaction rxnY051

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y010 + p27 \longrightarrow Cdk2Y110 \tag{115}$$

Reactants

Table 94: Properties of each reactant.

Id	Name	SBO
Cdk2Y010		

Id	Name	SBO
p27		

Product

Table 95: Properties of each product.

Id	Name	SBO
Cdk2Y110		

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{kbYp27YYCdk2} \cdot [\text{Cdk2Y010}] \cdot [\text{p27}] \cdot \text{vol}(X)$$
(116)

8.52 Reaction rxnY052

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y110 \longrightarrow Cdk2Y010 + p27 \tag{117}$$

Reactant

Table 96: Properties of each reactant.

Id	Name	SBO
Cdk2Y110		

Table 97: Properties of each product.

Id	Name	SBO
Cdk2Y010		
p27		

Derived unit contains undeclared units

$$v_{52} = \text{kuYp27YYCdk2} \cdot [\text{Cdk2Y110}] \cdot \text{vol}(X)$$
(118)

8.53 Reaction rxnY053

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y011 + p27 \longrightarrow Cdk2Y111 \tag{119}$$

Reactants

Table 98: Properties of each reactant.

Id	Name	SBO
Cdk2Y011		
p27		

Product

Table 99: Properties of each product.

Id	Name	SBO
Cdk2Y111		

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = \text{kbYp27YYCdk2} \cdot [\text{Cdk2Y011}] \cdot [\text{p27}] \cdot \text{vol}(X)$$
(120)

8.54 Reaction rxnY054

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y111 \longrightarrow Cdk2Y011 + p27 \tag{121}$$

Reactant

Table 100: Properties of each reactant.

Id	Name	SBO
Cdk2Y111		

Products

Table 101: Properties of each product.

Id	Name	SBO
Cdk2Y011		
p27		

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = \text{kuYp27YYCdk2} \cdot [\text{Cdk2Y111}] \cdot \text{vol}(X)$$
(122)

8.55 Reaction rxnY055

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y012 + p27 \longrightarrow Cdk2Y112 \tag{123}$$

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
Cdk2Y012		
p27		

Table 103: Properties of each product.

Id	Name	SBO
Cdk2Y112		

Derived unit contains undeclared units

$$v_{55} = \text{kbYp27YYCdk2} \cdot [\text{Cdk2Y012}] \cdot [\text{p27}] \cdot \text{vol}(X)$$
(124)

8.56 Reaction rxnY056

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y112 \longrightarrow Cdk2Y012 + p27 \tag{125}$$

Reactant

Table 104: Properties of each reactant.

Id	Name	SBO
Cdk2Y112		

Products

Table 105: Properties of each product.

Id	Name	SBO
Cdk2Y012		
p27		

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{kuYp27YYCdk2} \cdot [\text{Cdk2Y112}] \cdot \text{vol}(X)$$
(126)

8.57 Reaction rxnY057

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y000 \longrightarrow Cdk2Y010 \tag{127}$$

Reactant

Table 106: Properties of each reactant.

Id	Name	SBO
Cdk2Y000		

Product

Table 107: Properties of each product.

Id	Name	SBO
Cdk2Y010		

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = \text{kYact} \cdot [\text{Cdk2Y000}] \cdot \text{vol}(X)$$
(128)

8.58 Reaction rxnY058

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y100 \longrightarrow Cdk2Y110 \tag{129}$$

Reactant

Table 108: Properties of each reactant.

Id	Name	SBO
Cdk2Y100		

Table 109: Properties of each product.

Id	Name	SBO
Cdk2Y110		

Derived unit contains undeclared units

$$v_{58} = \text{kYact} \cdot [\text{Cdk2Y100}] \cdot \text{vol}(X) \tag{130}$$

8.59 Reaction rxnY059

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y001 \longrightarrow Cdk2Y011 \tag{131}$$

Reactant

Table 110: Properties of each reactant.

Id	Name	SBO
Cdk2Y001		

Product

Table 111: Properties of each product.

Id	Name	SBO
Cdk2Y011		

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{kYact} \cdot [\text{Cdk2Y001}] \cdot \text{vol}(X) \tag{132}$$

8.60 Reaction rxnY060

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y101 \longrightarrow Cdk2Y111 \tag{133}$$

Reactant

Table 112: Properties of each reactant.

Id	Name	SBO
Cdk2Y101		

Product

Table 113: Properties of each product.

Id	Name	SBO
Cdk2Y111		

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{kYact} \cdot [\text{Cdk2Y101}] \cdot \text{vol}(X)$$
(134)

8.61 Reaction rxnY061

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y002 \longrightarrow Cdk2Y012 \tag{135}$$

Reactant

Table 114: Properties of each reactant.

Id	Name	SBO
Cdk2Y002		

Table 115: Properties of each product.

Id	Name	SBO
Cdk2Y012		

Derived unit contains undeclared units

$$v_{61} = \text{kYact} \cdot [\text{Cdk2Y002}] \cdot \text{vol}(X) \tag{136}$$

8.62 Reaction rxnY062

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk2Y102 \longrightarrow Cdk2Y112 \tag{137}$$

Reactant

Table 116: Properties of each reactant.

Id	Name	SBO
Cdk2Y102		

Product

Table 117: Properties of each product.

Id	Name	SBO
Cdk2Y112		

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{kYact} \cdot [\text{Cdk2Y102}] \cdot \text{vol}(X) \tag{138}$$

8.63 Reaction rxnY063

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y000 + CyclinE \longrightarrow Cdk2Y001$$
 (139)

Reactants

Table 118: Properties of each reactant.

Id	Name	SBO
Cdk2Y000		
CyclinE		

Product

Table 119: Properties of each product.

Id	Name	SBO
Cdk2Y001		

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = \text{kbYCyclinEYYCdk2} \cdot [\text{Cdk2Y000}] \cdot [\text{CyclinE}] \cdot \text{vol}(X)$$
 (140)

8.64 Reaction rxnY064

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y001 \longrightarrow Cdk2Y000 + CyclinE \tag{141}$$

Reactant

Table 120: Properties of each reactant.

Id	Name	SBO
Cdk2Y001		

Table 121: Properties of each product.

Id	Name	SBO
Cdk2Y000		
CyclinE		

Derived unit contains undeclared units

$$v_{64} = \text{kuYCyclinEYYCdk2} \cdot [\text{Cdk2Y001}] \cdot \text{vol}(X)$$
 (142)

8.65 Reaction rxnY065

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y100 + CyclinE \longrightarrow Cdk2Y101$$
 (143)

Reactants

Table 122: Properties of each reactant.

Id	Name	SBO
Cdk2Y100		
CyclinE		

Product

Table 123: Properties of each product.

Id	Name	SBO
Cdk2Y101		

Kinetic Law

Derived unit contains undeclared units

$$v_{65} = \text{kbYCyclinEYYCdk2} \cdot [\text{Cdk2Y100}] \cdot [\text{CyclinE}] \cdot \text{vol}(X)$$
 (144)

8.66 Reaction rxnY066

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y101 \longrightarrow Cdk2Y100 + CyclinE$$
 (145)

Reactant

Table 124: Properties of each reactant.

Id	Name	SBO
Cdk2Y101		

Products

Table 125: Properties of each product.

Id	Name	SBO
Cdk2Y100		
CyclinE		

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = \text{kuYCyclinEYYCdk2} \cdot [\text{Cdk2Y101}] \cdot \text{vol}(X)$$
(146)

8.67 Reaction rxnY067

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y010 + CyclinE \longrightarrow Cdk2Y011 \tag{147}$$

Reactants

Table 126: Properties of each reactant.

Id	Name	SBO
Cdk2Y010		

Id	Name	SBO
CyclinE		

Product

Table 127: Properties of each product.

Id	Name	SBO
Cdk2Y011		

Kinetic Law

Derived unit contains undeclared units

$$v_{67} = \text{kbYCyclinEYYCdk2} \cdot [\text{Cdk2Y010}] \cdot [\text{CyclinE}] \cdot \text{vol}(X)$$
 (148)

8.68 Reaction rxnY068

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y011 \longrightarrow Cdk2Y010 + CyclinE \tag{149}$$

Reactant

Table 128: Properties of each reactant.

Id	Name	SBO
Cdk2Y011		

Table 129: Properties of each product.

Id	Name	SBO
Cdk2Y010		
CyclinE		

Derived unit contains undeclared units

$$v_{68} = \text{kuYCyclinEYYCdk2} \cdot [\text{Cdk2Y011}] \cdot \text{vol}(X)$$
 (150)

8.69 Reaction rxnY069

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y110 + CyclinE \longrightarrow Cdk2Y111$$
 (151)

Reactants

Table 130: Properties of each reactant.

Id	Name	SBO
Cdk2Y110		
${\tt CyclinE}$		

Product

Table 131: Properties of each product.

Id	Name	SBO
Cdk2Y111		

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = \text{kbYCyclinEYYCdk2} \cdot [\text{Cdk2Y110}] \cdot [\text{CyclinE}] \cdot \text{vol}(X)$$
 (152)

8.70 Reaction rxnY070

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y111 \longrightarrow Cdk2Y110 + CyclinE$$
 (153)

Reactant

Table 132: Properties of each reactant.

Id	Name	SBO
Cdk2Y111		

Products

Table 133: Properties of each product.

Id	Name	SBO
Cdk2Y110		
CyclinE		

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \text{kuYCyclinEYYCdk2} \cdot [\text{Cdk2Y111}] \cdot \text{vol}(X)$$
(154)

8.71 Reaction rxnY071

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y000 + CyclinA \longrightarrow Cdk2Y002$$
 (155)

Reactants

Table 134: Properties of each reactant.

Id	Name	SBO
Cdk2Y000		
CyclinA		

Table 135: Properties of each product.

Id	Name	SBO
Cdk2Y002		

Derived unit contains undeclared units

$$v_{71} = \text{kbYCyclinAYYCdk2} \cdot [\text{Cdk2Y000}] \cdot [\text{CyclinA}] \cdot \text{vol}(X)$$
 (156)

8.72 Reaction rxnY072

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y002 \longrightarrow Cdk2Y000 + CyclinA \tag{157}$$

Reactant

Table 136: Properties of each reactant.

Id	Name	SBO
Cdk2Y002		

Products

Table 137: Properties of each product.

Id	Name	SBO
Cdk2Y000		
CyclinA		

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = \text{kuYCyclinAYYCdk2} \cdot [\text{Cdk2Y002}] \cdot \text{vol}(X)$$
(158)

8.73 Reaction rxnY073

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y100 + CyclinA \longrightarrow Cdk2Y102$$
 (159)

Reactants

Table 138: Properties of each reactant.

Id	Name	SBO
Cdk2Y100		
CyclinA		

Product

Table 139: Properties of each product.

Id	Name	SBO
Cdk2Y102		

Kinetic Law

Derived unit contains undeclared units

$$v_{73} = \text{kbYCyclinAYYCdk2} \cdot [\text{Cdk2Y100}] \cdot [\text{CyclinA}] \cdot \text{vol}(X)$$
 (160)

8.74 Reaction rxnY074

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y102 \longrightarrow Cdk2Y100 + CyclinA$$
 (161)

Reactant

Table 140: Properties of each reactant.

Id	Name	SBO
Cdk2Y102		

Table 141: Properties of each product.

Id	Name	SBO
Cdk2Y100		
CyclinA		

Derived unit contains undeclared units

$$v_{74} = \text{vol}(X) \cdot \text{kuYCyclinAYYCdk2} \cdot [\text{Cdk2Y102}]$$
 (162)

8.75 Reaction rxnY075

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y010 + CyclinA \longrightarrow Cdk2Y012$$
 (163)

Reactants

Table 142: Properties of each reactant.

Id	Name	SBO
Cdk2Y010		
CyclinA		

Product

Table 143: Properties of each product.

Id	Name	SBO
Cdk2Y012		

Kinetic Law

Derived unit contains undeclared units

$$v_{75} = \text{vol}(X) \cdot \text{kbYCyclinAYYCdk2} \cdot [\text{Cdk2Y010}] \cdot [\text{CyclinA}]$$
 (164)

8.76 Reaction rxnY076

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y012 \longrightarrow Cdk2Y010 + CyclinA$$
 (165)

Reactant

Table 144: Properties of each reactant.

Id	Name	SBO
Cdk2Y012		

Products

Table 145: Properties of each product.

Id	Name	SBO
Cdk2Y010		
CyclinA		

Kinetic Law

Derived unit contains undeclared units

$$v_{76} = \text{vol}(X) \cdot \text{kuYCyclinAYYCdk2} \cdot [\text{Cdk2Y012}]$$
 (166)

8.77 Reaction rxnY077

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y110 + CyclinA \longrightarrow Cdk2Y112$$
 (167)

Reactants

Table 146: Properties of each reactant.

Id	Name	SBO
Cdk2Y110		

Id	Name	SBO
CyclinA		

Product

Table 147: Properties of each product.

Id	Name	SBO
Cdk2Y112		

Kinetic Law

Derived unit contains undeclared units

$$v_{77} = \text{vol}(X) \cdot \text{kbYCyclinAYYCdk2} \cdot [\text{Cdk2Y110}] \cdot [\text{CyclinA}]$$
 (168)

8.78 Reaction rxnY078

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y112 \longrightarrow Cdk2Y110 + CyclinA \tag{169}$$

Reactant

Table 148: Properties of each reactant.

Id	Name	SBO
Cdk2Y112		

Table 149: Properties of each product.

Id	Name	SBO
Cdk2Y110		
CyclinA		

Derived unit contains undeclared units

$$v_{78} = \text{vol}(X) \cdot \text{kuYCyclinAYYCdk2} \cdot [\text{Cdk2Y112}]$$
 (170)

8.79 Reaction rxnY079

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk1Y00 \longrightarrow Cdk1Y10 \tag{171}$$

Reactant

Table 150: Properties of each reactant.

Id	Name	SBO
Cdk1Y00		

Product

Table 151: Properties of each product.

Id	Name	SBO
Cdk1Y10		

Kinetic Law

Derived unit contains undeclared units

$$v_{79} = \text{vol}(X) \cdot \text{kYact} \cdot [\text{Cdk1Y00}] \tag{172}$$

8.80 Reaction rxnY080

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Cdk1Y01 \longrightarrow Cdk1Y11 \tag{173}$$

Reactant

Table 152: Properties of each reactant.

Id	Name	SBO
Cdk1Y01		_

Product

Table 153: Properties of each product.

Id	Name	SBO
Cdk1Y11		

Kinetic Law

Derived unit contains undeclared units

$$v_{80} = \text{vol}(X) \cdot k\text{Yact} \cdot [\text{Cdk1Y01}] \tag{174}$$

8.81 Reaction rxnY081

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk1Y00 + CyclinA \longrightarrow Cdk1Y01$$
 (175)

Reactants

Table 154: Properties of each reactant.

Id	Name	SBO
Cdk1Y00		
CyclinA		

Table 155: Properties of each product.

Id	Name	SBO
Cdk1Y01		

Derived unit contains undeclared units

$$v_{81} = \text{vol}(X) \cdot \text{kbYCyclinAYYCdk1} \cdot [\text{Cdk1Y00}] \cdot [\text{CyclinA}]$$
 (176)

8.82 Reaction rxnY082

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk1Y01 \longrightarrow Cdk1Y00 + CyclinA \tag{177}$$

Reactant

Table 156: Properties of each reactant.

Id	Name	SBO
Cdk1Y01		

Products

Table 157: Properties of each product.

Id	Name	SBO
Cdk1Y00		
CyclinA		

Kinetic Law

Derived unit contains undeclared units

$$v_{82} = \text{vol}(X) \cdot \text{kuYCyclinAYYCdk1} \cdot [\text{Cdk1Y01}]$$
 (178)

8.83 Reaction rxnY083

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk1Y10 + CyclinA \longrightarrow Cdk1Y11$$
 (179)

Reactants

Table 158: Properties of each reactant.

Id	Name	SBO
Cdk1Y10		
CyclinA		

Product

Table 159: Properties of each product.

Id	Name	SBO
Cdk1Y11		

Kinetic Law

Derived unit contains undeclared units

$$v_{83} = \text{vol}(X) \cdot \text{kbYCyclinAYYCdk1} \cdot [\text{Cdk1Y10}] \cdot [\text{CyclinA}]$$
 (180)

8.84 Reaction rxnY084

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk1Y11 \longrightarrow Cdk1Y10 + CyclinA$$
 (181)

Reactant

Table 160: Properties of each reactant.

Id	Name	SBO
Cdk1Y11		

Table 161: Properties of each product.

Id	Name	SBO
Cdk1Y10		
CyclinA		

Derived unit contains undeclared units

$$v_{84} = \text{vol}(X) \cdot \text{kuYCyclinAYYCdk1} \cdot [\text{Cdk1Y11}]$$
 (182)

8.85 Reaction rxnY085

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$pRbY00 + Cdk4Y01 \longrightarrow Cdk4Y01YpRbY00YpRbY10YInt$$
 (183)

Reactants

Table 162: Properties of each reactant.

Id	Name	SBO
pRbY00		
Cdk4Y01		

Product

Table 163: Properties of each product.

	P	
Id	Name	SBO
Cdk4Y01YpRbY00YpRbY10YInt		

Kinetic Law

Derived unit contains undeclared units

$$v_{85} = \text{vol}(X) \cdot \text{kbYD4YYpRb} \cdot [\text{pRbY00}] \cdot [\text{Cdk4Y01}]$$
(184)

8.86 Reaction rxnY086

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk4Y01YpRbY00YpRbY10YInt \longrightarrow pRbY00 + Cdk4Y01 \tag{185}$$

Reactant

Table 164: Properties of each reactant.

Id	Name	SBO
Cdk4Y01YpRbY00YpRbY10YInt		

Products

Table 165: Properties of each product.

Id	Name	SBO
pRbY00 Cdk4Y01		

Kinetic Law

Derived unit contains undeclared units

$$v_{86} = vol(X) \cdot kuYD4YYpRb \cdot [Cdk4Y01YpRbY00YpRbY10YInt]$$
 (186)

8.87 Reaction rxnY087

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk4Y01YpRbY00YpRbY10YInt \longrightarrow pRbY10 + Cdk4Y01$$
 (187)

Table 166: Properties of each reactant.

Id	Name	SBO
Cdk4Y01YpRbY00YpRbY10YInt		

Table 167: Properties of each product.

Kinetic Law

Derived unit contains undeclared units

$$v_{87} = \text{vol}(X) \cdot \text{kupYD4YYpRb} \cdot [\text{Cdk4Y01YpRbY00YpRbY10YInt}]$$
 (188)

8.88 Reaction rxnY088

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$pRbY01 + Cdk4Y01 \longrightarrow Cdk4Y01YpRbY01YpRbY11YInt \tag{189}$$

Reactants

Table 168: Properties of each reactant.

Id	Name	SBO
pRbY01		
Cdk4Y01		

Product

Table 169: Properties of each product.

Id	Name	SBO
Cdk4Y01YpRbY01YpRbY11YInt		

Kinetic Law

$$v_{88} = \text{vol}(X) \cdot \text{kbYD4YYpRb} \cdot [\text{pRbY01}] \cdot [\text{Cdk4Y01}]$$
(190)

8.89 Reaction rxnY089

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk4Y01YpRbY01YpRbY11YInt \longrightarrow pRbY01 + Cdk4Y01 \tag{191}$$

Reactant

Table 170: Properties of each reactant.

Id	Name	SBO
Cdk4Y01YpRbY01YpRbY11YInt		

Products

Table 171: Properties of each product.

Id	Name	SBO
pRbY01		
Cdk4Y01		

Kinetic Law

Derived unit contains undeclared units

$$v_{89} = \text{vol}(X) \cdot \text{kuYD4YYpRb} \cdot [\text{Cdk4Y01YpRbY01YpRbY11YInt}]$$
 (192)

8.90 Reaction rxnY090

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk4Y01YpRbY01YpRbY11YInt \longrightarrow pRbY11 + Cdk4Y01$$
 (193)

Table 172: Properties of each reactant.

Id	Name	SBO
Cdk4Y01YpRbY01YpRbY11YInt		

Table 173: Properties of each product.

Id	Name	SBO
pRbY11		
Cdk4Y01		

Kinetic Law

Derived unit contains undeclared units

$$v_{90} = \text{vol}(X) \cdot \text{kupYD4YYpRb} \cdot [\text{Cdk4Y01YpRbY01YpRbY11YInt}]$$
 (194)

8.91 Reaction rxnY091

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$pRbY10 + Cdk2Y011 \longrightarrow Cdk2Y011YpRbY10YpRbY20YInt \tag{195}$$

Reactants

Table 174: Properties of each reactant.

Id	Name	SBO
pRbY10		
Cdk2Y011		

Product

Table 175: Properties of each product.

Id	Name	SBO
Cdk2Y011YpRbY10YpRbY20YInt		

Kinetic Law

$$v_{91} = \text{vol}(X) \cdot \text{kbYE2YYpRb} \cdot [\text{pRbY10}] \cdot [\text{Cdk2Y011}]$$
(196)

8.92 Reaction rxnY092

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y011YpRbY10YpRbY20YInt \longrightarrow pRbY10 + Cdk2Y011$$
 (197)

Reactant

Table 176: Properties of each reactant.

Id Name SBO

Cdk2Y011YpRbY10YpRbY20YInt

Products

Table 177: Properties of each product.

Id	Name	SBO
pRbY10		
Cdk2Y011		

Kinetic Law

Derived unit contains undeclared units

$$v_{92} = \text{vol}(X) \cdot \text{kuYE2YYpRb} \cdot [\text{Cdk2Y011YpRbY10YpRbY20YInt}]$$
 (198)

8.93 Reaction rxnY093

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y011YpRbY10YpRbY20YInt \longrightarrow pRbY20 + Cdk2Y011$$
 (199)

Table 178: Properties of each reactant.

Id	Name	SBO
Cdk2Y011YpRbY10YpRbY20YInt		

Table 179: Properties of each product.

Id	Name	SBO
pRbY20		
Cdk2Y011		

Kinetic Law

Derived unit contains undeclared units

$$v_{93} = \text{vol}(X) \cdot \text{kupYE2YYpRb} \cdot [\text{Cdk2Y011YpRbY10YpRbY20YInt}]$$
 (200)

8.94 Reaction rxnY094

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$pRbY11 + Cdk2Y011 \longrightarrow Cdk2Y011YpRbY11YpRbY21YInt \tag{201}$$

Reactants

Table 180: Properties of each reactant.

Id	Name	SBO
pRbY11		
Cdk2Y011		

Product

Table 181: Properties of each product.

Id	Name	SBO
Cdk2Y011YpRbY11YpRbY21YInt		

Kinetic Law

$$v_{94} = \text{vol}(X) \cdot \text{kbYE2YYpRb} \cdot [\text{pRbY11}] \cdot [\text{Cdk2Y011}]$$
 (202)

8.95 Reaction rxnY095

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y011YpRbY11YpRbY21YInt \longrightarrow pRbY11 + Cdk2Y011 \qquad (203)$$

Reactant

Table 182: Properties of each reactant.

Id	Name	SBO
Cdk2Y011YpRbY11YpRbY21YInt		

Products

Table 183: Properties of each product.

Id	Name	SBO
pRbY11		
Cdk2Y011		

Kinetic Law

Derived unit contains undeclared units

$$v_{95} = \text{vol}(X) \cdot \text{kuYE2YYpRb} \cdot [\text{Cdk2Y011YpRbY11YpRbY21YInt}]$$
 (204)

8.96 Reaction rxnY096

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y011YpRbY11YpRbY21YInt \longrightarrow pRbY21 + Cdk2Y011 \qquad (205)$$

Table 184: Properties of each reactant.

Id	Name	SBO
Cdk2Y011YpRbY11YpRbY21YInt		

Table 185: Properties of each product.

Id	Name	SBO
pRbY21		
Cdk2Y011		

Kinetic Law

Derived unit contains undeclared units

$$v_{96} = \text{vol}(X) \cdot \text{kupYE2YYpRb} \cdot [\text{Cdk2Y011YpRbY11YpRbY21YInt}]$$
 (206)

8.97 Reaction rxnY097

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$pRbY10 + Cdk2Y012 \longrightarrow Cdk2Y012YpRbY10YpRbY20YInt \tag{207}$$

Reactants

Table 186: Properties of each reactant.

Id	Name	SBO
pRbY10 Cdk2Y012		
-		

Product

Table 187: Properties of each product.

Id	Name	SBO
Cdk2Y012YpRbY10YpRbY20YInt		

Kinetic Law

$$v_{97} = \text{vol}(X) \cdot \text{kbYA2YYpRb} \cdot [\text{pRbY10}] \cdot [\text{Cdk2Y012}]$$
 (208)

8.98 Reaction rxnY098

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y012YpRbY10YpRbY20YInt \longrightarrow pRbY10 + Cdk2Y012$$
 (209)

Reactant

Table 188: Properties of each reactant.

Id	Name	SBO
Cdk2Y012YpRbY10YpRbY20YInt		

Products

Table 189: Properties of each product.

Id	Name	SBO
pRbY10 Cdk2Y012		

Kinetic Law

Derived unit contains undeclared units

$$v_{98} = \text{vol}(X) \cdot \text{kuYA2YYpRb} \cdot [\text{Cdk2Y012YpRbY10YpRbY20YInt}]$$
 (210)

8.99 Reaction rxnY099

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y012YpRbY10YpRbY20YInt \longrightarrow pRbY20 + Cdk2Y012$$
 (211)

Table 190: Properties of each reactant.

Id	Name	SBO
Cdk2Y012YpRbY10YpRbY20YInt		

Table 191: Properties of each product.

Id	Name	SBO
pRbY20		
Cdk2Y012		

Kinetic Law

Derived unit contains undeclared units

$$v_{99} = \text{vol}(X) \cdot \text{kupYA2YYpRb} \cdot [\text{Cdk2Y012YpRbY10YpRbY20YInt}]$$
 (212)

8.100 Reaction rxnY100

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$pRbY11 + Cdk2Y012 \longrightarrow Cdk2Y012YpRbY11YpRbY21YInt \tag{213}$$

Reactants

Table 192: Properties of each reactant.

Id	Name	SBO
pRbY11		
Cdk2Y012		

Product

Table 193: Properties of each product.

Id	Name	SBO
Cdk2Y012YpRbY11YpRbY21YInt		

Kinetic Law

$$v_{100} = \text{vol}(X) \cdot \text{kbYA2YYpRb} \cdot [\text{pRbY11}] \cdot [\text{Cdk2Y012}]$$
 (214)

8.101 Reaction rxnY101

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y012YpRbY11YpRbY21YInt \longrightarrow pRbY11 + Cdk2Y012$$
 (215)

Reactant

Table 194: Properties of each reactant.

Id	Name	SBO
Cdk2Y012YpRbY11YpRbY21YInt		

Products

Table 195: Properties of each product.

Id	Name	SBO
pRbY11		
Cdk2Y012		

Kinetic Law

Derived unit contains undeclared units

$$v_{101} = vol(X) \cdot kuYA2YYpRb \cdot [Cdk2Y012YpRbY11YpRbY21YInt]$$
 (216)

8.102 Reaction rxnY102

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk2Y012YpRbY11YpRbY21YInt \longrightarrow pRbY21 + Cdk2Y012$$
 (217)

Table 196: Properties of each reactant.

Id	Name	SBO
Cdk2Y012YpRbY11YpRbY21YInt		

Table 197: Properties of each product.

Id	Name	SBO
pRbY21		
Cdk2Y012		

Kinetic Law

Derived unit contains undeclared units

$$v_{102} = \text{vol}(X) \cdot \text{kupYA2YYpRb} \cdot [\text{Cdk2Y012YpRbY11YpRbY21YInt}]$$
 (218)

8.103 Reaction rxnY103

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$pRbY10 + Cdk1Y11 \longrightarrow Cdk1Y11YpRbY10YpRbY20YInt$$
 (219)

Reactants

Table 198: Properties of each reactant.

Id	Name	SBO
pRbY10		
Cdk1Y11		

Product

Table 199: Properties of each product.

Id	Name	SBO
Cdk1Y11YpRbY10YpRbY20YInt		

Kinetic Law

$$v_{103} = \text{vol}(X) \cdot \text{kbYA1YYpRb} \cdot [\text{pRbY10}] \cdot [\text{Cdk1Y11}]$$
 (220)

8.104 Reaction rxnY104

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk1Y11YpRbY10YpRbY20YInt \longrightarrow pRbY10 + Cdk1Y11 \tag{221}$$

Reactant

Table 200: Properties of each reactant.

Id	Name	SBO
Cdk1Y11YpRbY10YpRbY20YInt		

Products

Table 201: Properties of each product.

Id	Name	SBO
pRbY10		
Cdk1Y11		

Kinetic Law

Derived unit contains undeclared units

$$v_{104} = vol(X) \cdot kuYA1YYpRb \cdot [Cdk1Y11YpRbY10YpRbY20YInt]$$
 (222)

8.105 Reaction rxnY105

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk1Y11YpRbY10YpRbY20YInt \longrightarrow pRbY20 + Cdk1Y11 \qquad (223)$$

Table 202: Properties of each reactant.

Id	Name	SBO
Cdk1Y11YpRbY10YpRbY20YInt		

Table 203: Properties of each product.

Id	Name	SBO
pRbY20		
Cdk1Y11		

Kinetic Law

Derived unit contains undeclared units

$$v_{105} = \text{vol}(X) \cdot \text{kupYA1YYpRb} \cdot [\text{Cdk1Y11YpRbY10YpRbY20YInt}]$$
 (224)

8.106 Reaction rxnY106

This is an irreversible reaction of two reactants forming one product influenced by one modifier.

Reaction equation

$$pRbY11 + Cdk1Y11 \xrightarrow{pRbY10} Cdk1Y11YpRbY11YpRbY21YInt$$
 (225)

Reactants

Table 204: Properties of each reactant.

Id	Name	SBO
pRbY11 Cdk1Y11		

Modifier

Table 205: Properties of each modifier.

Id	Name	SBO
pRbY10		

Product

Table 206: Properties of each product.

	ov 110perioes of each product	
Id	Name	SBO
Cdk1Y11YpR	oY11YpRbY21YInt	

Kinetic Law

Derived unit contains undeclared units

$$v_{106} = \text{vol}(X) \cdot \text{kbYA1YYpRb} \cdot [\text{pRbY10}] \cdot [\text{Cdk1Y11}]$$
 (226)

8.107 Reaction rxnY107

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk1Y11YpRbY11YpRbY21YInt \longrightarrow pRbY11 + Cdk1Y11 \qquad (227)$$

Reactant

Table 207: Properties of each reactant.

Id	Name	SBO
Cdk1Y11YpRbY11YpRbY21YInt		

Products

Table 208: Properties of each product.

Id	Name	SBO
pRbY11		
Cdk1Y11		

Kinetic Law

Derived unit contains undeclared units

$$v_{107} = \text{vol}(X) \cdot \text{kuYA1YYpRb} \cdot [\text{Cdk1Y11YpRbY11YpRbY21YInt}]$$
 (228)

8.108 Reaction rxnY108

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Cdk1Y11YpRbY11YpRbY21YInt \longrightarrow pRbY21 + Cdk1Y11 \qquad (229)$$

Reactant

Table 209: Properties of each reactant.

Id	Name	SBO
Cdk1Y11YpRbY11YpRbY21YInt		

Products

Table 210: Properties of each product.

Id	Name	SBO
pRbY21 Cdk1Y11		

Kinetic Law

Derived unit contains undeclared units

$$v_{108} = \text{vol}(X) \cdot \text{kupYA1YYpRb} \cdot [\text{Cdk1Y11YpRbY11YpRbY21YInt}]$$
 (230)

8.109 Reaction rxnY109

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$pRbY20 \longrightarrow pRbY00 \tag{231}$$

Reactant

Table 211: Properties of each reactant.

Id	Name	SBO
pRbY20		

Product

Table 212: Properties of each product.

Id	Name	SBO
pRbY00		

Kinetic Law

Derived unit contains undeclared units

$$v_{109} = \text{vol}(X) \cdot \text{ktYpRbYYDephos} \cdot [\text{pRbY20}]$$
 (232)

8.110 Reaction rxnY110

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$pRbY21 \longrightarrow pRbY01$$
 (233)

Reactant

Table 213: Properties of each reactant.

Id	Name	SBO
pRbY21		

Product

Table 214: Properties of each product.

Id	Name	SBO
pRbY01		

Kinetic Law

Derived unit contains undeclared units

$$v_{110} = \text{vol}(X) \cdot \text{ktYpRbYYDephos} \cdot [\text{pRbY21}]$$
 (234)

8.111 Reaction rxnY111

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$pRbY00 + E2F \longrightarrow pRbY01 \tag{235}$$

Reactants

Table 215: Properties of each reactant.

Id	Name	SBO
pRbY00 E2F		

Product

Table 216: Properties of each product.

Id	Name	SBO
pRbY01		

Kinetic Law

Derived unit contains undeclared units

$$v_{111} = \text{vol}(X) \cdot \text{kbYE2FYYpRb} \cdot [\text{pRbY00}] \cdot [\text{E2F}]$$
 (236)

8.112 Reaction rxnY112

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$pRbY01 \longrightarrow pRbY00 + E2F \tag{237}$$

Reactant

Table 217: Properties of each reactant.

Id	Name	SBO
pRbY01		

Products

Table 218: Properties of each product.

Id	Name	SBO
pRbY00 E2F		

Kinetic Law

Derived unit contains undeclared units

$$v_{112} = \text{vol}(X) \cdot \text{kuYE2FYYpRb} \cdot [\text{pRbY01}]$$
 (238)

8.113 Reaction rxnY113

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$pRbY10 + E2F \longrightarrow pRbY11$$
 (239)

Reactants

Table 219: Properties of each reactant.

Id	Name	SBO
pRbY10 E2F		

Product

Table 220: Properties of each product.

Id	Name	SBO
pRbY11		

Kinetic Law

$$v_{113} = \text{vol}(X) \cdot \text{kbYE2FYYpRb} \cdot [\text{pRbY10}] \cdot [\text{E2F}]$$
 (240)

8.114 Reaction rxnY114

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$pRbY11 \longrightarrow pRbY10 + E2F \tag{241}$$

Reactant

Table 221: Properties of each reactant.

Id	Name	SBO
pRbY11		

Products

Table 222: Properties of each product.

Id	Name	SBO
pRbY10 E2F		

Kinetic Law

Derived unit contains undeclared units

$$v_{114} = \text{vol}(X) \cdot \text{kuYE2FYYpRb} \cdot [\text{pRbY11}]$$
 (242)

8.115 Reaction rxnY115

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$pRbY21 \longrightarrow pRbY20 + E2F \tag{243}$$

Table 223: Properties of each reactant.

Id	Name	SBO
pRbY21		

Table 224: Properties of each product.

Id	Name	SBO
pRbY20 E2F		

Kinetic Law

Derived unit contains undeclared units

$$v_{115} = \text{vol}(X) \cdot \text{kuYE2FYYpRb} \cdot [\text{pRbY21}] \tag{244}$$

8.116 Reaction rxnY116

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$APCC + Emi1 \longrightarrow APCCYEmi1$$
 (245)

Reactants

Table 225: Properties of each reactant.

Id	Name	SBO
APCC		
Emi1		

Product

Table 226: Properties of each product.

Id	Name	SBO
APCCYEmi1		

Kinetic Law

$$v_{116} = \text{vol}(X) \cdot \text{kbYEmi1YYAPCC} \cdot [\text{APCC}] \cdot [\text{Emi1}]$$
 (246)

8.117 Reaction rxnY117

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYEmi1 \longrightarrow APCC + Emi1$$
 (247)

Reactant

Table 227: Properties of each reactant.

Id	Name	SBO
APCCYEmi1		

Products

Table 228: Properties of each product.

Id	Name	SBO
APCC		
Emi1		

Kinetic Law

Derived unit contains undeclared units

$$v_{117} = \text{vol}(X) \cdot \text{kuYEmi1YYAPCC} \cdot [\text{APCCYEmi1}]$$
 (248)

8.118 Reaction rxnY118

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$CyclinA + APCC \longrightarrow APCCYCyclinAYInt$$
 (249)

Table 229: Properties of each reactant.

Id	Name	SBO
CyclinA		

Id	Name	SBO
APCC		

Table 230: Properties of each product.

Table 250. I Toperties of each product.		
Id	Name	SBO
APCCYCyclinAYInt		

Kinetic Law

Derived unit contains undeclared units

$$v_{118} = \text{vol}(X) \cdot \text{kbYAPCCYYCyclinA} \cdot [\text{CyclinA}] \cdot [\text{APCC}]$$
 (250)

8.119 Reaction rxnY119

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCyclinAYInt \longrightarrow CyclinA + APCC$$
 (251)

Reactant

Table 231: Properties of each reactant.

Id	Name	SBO
APCCYCyclinAYInt		

Products

Table 232: Properties of each product.

Id	Name	SBO
CyclinA APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{119} = \text{vol}(X) \cdot \text{kuYAPCCYYCyclinA} \cdot [\text{APCCYCyclinAYInt}]$$
 (252)

8.120 Reaction rxnY120

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$APCCYCyclinAYInt \longrightarrow APCC$$
 (253)

Reactant

Table 233: Properties of each reactant.

Id	Name	SBO
APCCYCyclinAYInt		

Product

Table 234: Properties of each product.

Id	Name	SBO
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{120} = \text{vol}(X) \cdot \text{kudYAPCCYYCyclinA} \cdot [\text{APCCYCyclinAYInt}]$$
 (254)

8.121 Reaction rxnY121

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y002 + APCC \longrightarrow APCCYCdk2Y000YCdk2Y002YInt$$
 (255)

Table 235: Properties of each reactant.

Id	Name	SBO
Cdk2Y002		
APCC		

Table 236: Properties of each product.

	1	1	
Id		Name	SBO
APCCYCdk2Y000YC	dk2Y002YInt		

Kinetic Law

Derived unit contains undeclared units

$$v_{121} = \text{vol}(X) \cdot \text{kbYAPCCYYCyclinA} \cdot [\text{Cdk2Y002}] \cdot [\text{APCC}]$$
 (256)

8.122 Reaction rxnY122

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk2Y000YCdk2Y002YInt \longrightarrow Cdk2Y002 + APCC$$
 (257)

Reactant

Table 237: Properties of each reactant.

Id	Name	SBO
APCCYCdk2Y000YCdk2Y002YInt		

Products

Table 238: Properties of each product.

Id	Name	SBO
Cdk2Y002		
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{122} = \text{vol}(X) \cdot \text{kuYAPCCYYCyclinA} \cdot [\text{APCCYCdk2Y000YCdk2Y002YInt}]$$
 (258)

8.123 Reaction rxnY123

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk2Y000YCdk2Y002YInt \longrightarrow Cdk2Y000 + APCC$$
 (259)

Reactant

Table 239: Properties of each reactant.

Id	Name	SBO
APCCYCdk2Y000YCdk2Y002YInt		

Products

Table 240: Properties of each product.

Id	Name	SBO
Cdk2Y000		
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{123} = \text{vol}(X) \cdot \text{kudYAPCCYYCyclinA} \cdot [\text{APCCYCdk2Y000YCdk2Y002YInt}]$$
 (260)

8.124 Reaction rxnY124

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y102 + APCC \longrightarrow APCCYCdk2Y100YCdk2Y102YInt$$
 (261)

Reactants

Table 241: Properties of each reactant.

Id	Name	SBO
Cdk2Y102		
APCC		

Product

Table 242: Properties of each product.

Id	Name	SBO
APCCYCdk2Y100YCdk2Y102Y	Int	

Kinetic Law

Derived unit contains undeclared units

$$v_{124} = \text{vol}(X) \cdot \text{kbYAPCCYYCyclinA} \cdot [\text{Cdk2Y102}] \cdot [\text{APCC}]$$
 (262)

8.125 Reaction rxnY125

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk2Y100YCdk2Y102YInt \longrightarrow Cdk2Y102 + APCC$$
 (263)

Reactant

Table 243: Properties of each reactant.

Id	Name	SBO
APCCYCdk2Y100YCdk2Y102YInt		

Products

Table 244: Properties of each product.

Id	Name	SBO
Cdk2Y102 APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{125} = \text{vol}(X) \cdot \text{kuYAPCCYYCyclinA} \cdot [\text{APCCYCdk2Y100YCdk2Y102YInt}]$$
 (264)

8.126 Reaction rxnY126

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk2Y100YCdk2Y102YInt \longrightarrow Cdk2Y100 + APCC$$
 (265)

Reactant

Table 245: Properties of each reactant.

Id	Name	SBO
APCCYCdk2Y100YCdk2Y102YInt		

Products

Table 246: Properties of each product.

Id	Name	SBO
Cdk2Y100		
APCC		

Kinetic Law

$$v_{126} = vol(X) \cdot kudYAPCCYYCyclinA \cdot [APCCYCdk2Y100YCdk2Y102YInt]$$
 (266)

8.127 Reaction rxnY127

This is an irreversible reaction of two reactants forming one product influenced by one modifier.

Reaction equation

$$Cdk2Y012 + APCC \xrightarrow{Cdk2Y102} APCCYCdk2Y010YCdk2Y012YInt$$
 (267)

Reactants

Table 247: Properties of each reactant.

Id	Name	SBO
Cdk2Y012		
APCC		

Modifier

Table 248: Properties of each modifier.

Id	Name	SBO
Cdk2Y102		

Product

Table 249: Properties of each product.

Id	Name	SBO
APCCYCdk2Y010YCdk	Y012YInt	

Kinetic Law

Derived unit contains undeclared units

$$v_{127} = \text{vol}(X) \cdot \text{kbYAPCCYYCyclinA} \cdot [\text{Cdk2Y102}] \cdot [\text{APCC}]$$
 (268)

8.128 Reaction rxnY128

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk2Y010YCdk2Y012YInt \longrightarrow Cdk2Y012 + APCC$$
 (269)

Reactant

Table 250: Properties of each reactant.

Id	Name	SBO
APCCYCdk2Y010YCdk2Y012YInt		

Products

Table 251: Properties of each product.

Id	Name	SBO
Cdk2Y012		
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{128} = \text{vol}(X) \cdot \text{kuYAPCCYYCyclinA} \cdot [\text{APCCYCdk2Y010YCdk2Y012YInt}]$$
 (270)

8.129 Reaction rxnY129

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk2Y010YCdk2Y012YInt \longrightarrow Cdk2Y010 + APCC$$
 (271)

Reactant

Table 252: Properties of each reactant.

Id	Name	SBO
APCCYCdk2Y010YCdk2Y012YInt		

Products

Table 253: Properties of each product.

Id	Name	SBO
Cdk2Y010		
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{129} = vol(X) \cdot kudYAPCCYYCyclinA \cdot [APCCYCdk2Y010YCdk2Y012YInt]$$
 (272)

8.130 Reaction rxnY130

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk2Y112 + APCC \longrightarrow APCCYCdk2Y110YCdk2Y112YInt$$
 (273)

Reactants

Table 254: Properties of each reactant.

Id	Name	SBO
Cdk2Y112		
APCC		

Product

Table 255: Properties of each product.

Id	Name	
APCCYCdk2Y110YCdk2Y112YInt		

Kinetic Law

$$v_{130} = \text{vol}(X) \cdot \text{kbYAPCCYYCyclinA} \cdot [\text{Cdk2Y112}] \cdot [\text{APCC}]$$
 (274)

8.131 Reaction rxnY131

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk2Y110YCdk2Y112YInt \longrightarrow Cdk2Y112 + APCC$$
 (275)

Reactant

Table 256: Properties of each reactant.

Id	Name	SBO
APCCYCdk2Y110YCdk2Y112YInt		

Products

Table 257: Properties of each product.

Id	Name	SBO
Cdk2Y112		
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{131} = vol\left(X\right) \cdot kuYAPCCYYCyclinA \cdot \left[APCCYCdk2Y110YCdk2Y112YInt\right] \quad (276)$$

8.132 Reaction rxnY132

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk2Y110YCdk2Y112YInt \longrightarrow Cdk2Y110 + APCC$$
 (277)

Table 258: Properties of each reactant.

Id	Name	SBO
APCCYCdk2Y110YCdk2Y112YInt		

Table 259: Properties of each product.

Id	Name	SBO
Cdk2Y110		
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{132} = \text{vol}(X) \cdot \text{kudYAPCCYYCyclinA} \cdot [\text{APCCYCdk2Y110YCdk2Y112YInt}]$$
 (278)

8.133 Reaction rxnY133

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk1Y01 + APCC \longrightarrow APCCYCdk1Y00YCdk1Y01YInt$$
 (279)

Reactants

Table 260: Properties of each reactant.

Id	Name	SBO
Cdk1Y01		
APCC		

Product

Table 261: Properties of each product.

Id	Name	SBO
APCCYCdk1Y00YCdk1Y01YInt		

Kinetic Law

$$v_{133} = \text{vol}(X) \cdot \text{kbYAPCCYYCyclinA} \cdot [\text{Cdk1Y01}] \cdot [\text{APCC}]$$
 (280)

8.134 Reaction rxnY134

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$APCCYCdk1Y00YCdk1Y01YInt + APCC \longrightarrow Cdk1Y01$$
 (281)

Reactants

Table 262: Properties of each reactant.

Id	Name	SBO
APCCYCdk1Y00YCdk1Y01YInt		

Product

Table 263: Properties of each product.

Id	Name	SBO
Cdk1Y01		

Kinetic Law

Derived unit contains undeclared units

$$v_{134} = \text{vol}(X) \cdot \text{kuYAPCCYYCyclinA} \cdot [\text{APCCYCdk1Y00YCdk1Y01YInt}]$$
 (282)

8.135 Reaction rxnY135

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk1Y00YCdk1Y01YInt \longrightarrow Cdk1Y00 + APCC$$
 (283)

Table 264: Properties of each reactant.

Id	Name	SBO
APCCYCdk1Y00YCdk1Y01YInt		

Table 265: Properties of each product.

Id	Name	SBO
Cdk1Y00		
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{135} = \text{vol}(X) \cdot \text{kudYAPCCYYCyclinA} \cdot [\text{APCCYCdk1Y00YCdk1Y01YInt}]$$
 (284)

8.136 Reaction rxnY136

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Cdk1Y11 + APCC \longrightarrow APCCYCdk1Y10YCdk1Y11YInt$$
 (285)

Reactants

Table 266: Properties of each reactant.

Id	Name	SBO
Cdk1Y11		
APCC		

Product

Table 267: Properties of each product.

Id	Name	SBO
APCCYCdk1Y10YCdk1Y11YInt		

Kinetic Law

$$v_{136} = \text{vol}(X) \cdot \text{kbYAPCCYYCyclinA} \cdot [\text{Cdk1Y11}] \cdot [\text{APCC}]$$
 (286)

8.137 Reaction rxnY137

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$APCCYCdk1Y10YCdk1Y11YInt + APCC \longrightarrow Cdk1Y11$$
 (287)

Reactants

Table 268: Properties of each reactant.

Id	Name	SBO
APCCYCdk1Y10YCdk1Y11YInt		
APCC		

Product

Table 269: Properties of each product.

Id	Name	SBO
Cdk1Y11		

Kinetic Law

Derived unit contains undeclared units

$$v_{137} = \text{vol}(X) \cdot \text{kuYAPCCYYCyclinA} \cdot [\text{APCCYCdk1Y10YCdk1Y11YInt}]$$
 (288)

8.138 Reaction rxnY138

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APCCYCdk1Y10YCdk1Y11YInt \longrightarrow Cdk1Y10 + APCC$$
 (289)

Table 270: Properties of each reactant.

Id	Name	SBO
APCCYCdk1Y10YCdk1Y11YInt		

Products

Table 271: Properties of each product.

Id	Name	SBO
Cdk1Y10		
APCC		

Kinetic Law

Derived unit contains undeclared units

$$v_{138} = \text{vol}(X) \cdot \text{kudYAPCCYYCyclinA} \cdot [\text{APCCYCdk1Y10YCdk1Y11YInt}]$$
 (290)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

9.1 Species APCC

Initial amount 24582.9 item

This species takes part in 24 reactions (as a reactant in rxnY116, rxnY118, rxnY121, rxnY124, rxnY127, rxnY130, rxnY133, rxnY134, rxnY136, rxnY137 and as a product in rxnY036, rxnY117, rxnY119, rxnY120, rxnY122, rxnY123, rxnY125, rxnY126, rxnY128, rxnY129, rxnY131, rxnY132, rxnY135, rxnY138).

$$\frac{d}{dt}APCC = v_{36} + v_{117} + v_{119} + v_{120} + v_{122} + v_{123} + v_{125} + v_{126}
+ v_{128} + v_{129} + v_{131} + v_{132} + v_{135} + v_{138} - v_{116} - v_{118}
- v_{121} - v_{124} - v_{127} - v_{130} - v_{133} - v_{134} - v_{136} - v_{137}$$
(291)

9.2 Species APCCYCdk1Y00YCdk1Y01YInt

Initial amount 104.388 item

This species takes part in three reactions (as a reactant in rxnY134, rxnY135 and as a product in rxnY133).

$$\frac{d}{dt}APCCYCdk1Y00YCdk1Y01YInt = |v_{133}| - |v_{134}| - |v_{135}|$$
 (292)

9.3 Species APCCYCdk1Y10YCdk1Y11YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY137, rxnY138 and as a product in rxnY136).

$$\frac{d}{dt}APCCYCdk1Y10YCdk1Y11YInt = |v_{136}| - |v_{137}| - |v_{138}|$$
 (293)

9.4 Species APCCYCdk2Y000YCdk2Y002YInt

Initial amount 52.8191 item

This species takes part in three reactions (as a reactant in rxnY122, rxnY123 and as a product in rxnY121).

$$\frac{d}{dt}APCCYCdk2Y000YCdk2Y002YInt = v_{121} - v_{122} - v_{123}$$
 (294)

9.5 Species APCCYCdk2Y010YCdk2Y012YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY128, rxnY129 and as a product in rxnY127).

$$\frac{d}{dt}APCCYCdk2Y010YCdk2Y012YInt = v_{127} - v_{128} - v_{129}$$
 (295)

9.6 Species APCCYCdk2Y100YCdk2Y102YInt

Initial amount 90.5091 item

This species takes part in three reactions (as a reactant in rxnY125, rxnY126 and as a product in rxnY124).

$$\frac{d}{dt}APCCYCdk2Y100YCdk2Y102YInt = v_{124} - v_{125} - v_{126}$$
 (296)

9.7 Species APCCYCdk2Y110YCdk2Y112YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY131, rxnY132 and as a product in rxnY130).

$$\frac{d}{dt}APCCYCdk2Y110YCdk2Y112YInt = v_{130} - v_{131} - v_{132}$$
 (297)

9.8 Species APCCYCyclinAYInt

Initial amount 8.79462 item

This species takes part in three reactions (as a reactant in rxnY119, rxnY120 and as a product in rxnY118).

$$\frac{d}{dt}APCCYCyclinAYInt = |v_{118}| - |v_{119}| - |v_{120}|$$
 (298)

9.9 Species APCCYEmi1

Initial amount 5160.61 item

This species takes part in three reactions (as a reactant in rxnY036, rxnY117 and as a product in rxnY116).

$$\frac{d}{dt}APCCYEmi1 = v_{116} - v_{36} - v_{117}$$
 (299)

9.10 Species Cdk1Y00

Initial amount 98550.6 item

This species takes part in five reactions (as a reactant in rxnY079, rxnY081 and as a product in rxnY023, rxnY082, rxnY135).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Cdk}1Y00 = |v_{23}| + |v_{82}| + |v_{135}| - |v_{79}| - |v_{81}| \tag{300}$$

9.11 Species Cdk1Y01

Initial amount 1345.01 item

This species takes part in six reactions (as a reactant in rxnY023, rxnY080, rxnY082, rxnY133 and as a product in rxnY081, rxnY134).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Cdk}1\mathrm{Y}01 = |v_{81}| + |v_{134}| - |v_{23}| - |v_{80}| - |v_{82}| - |v_{133}| \tag{301}$$

9.12 Species Cdk1Y10

Initial amount 0 item

This species takes part in five reactions (as a reactant in rxnY083 and as a product in rxnY024, rxnY079, rxnY084, rxnY138).

$$\frac{d}{dt}Cdk1Y10 = |v_{24}| + |v_{79}| + |v_{84}| + |v_{138}| - |v_{83}|$$
(302)

9.13 Species Cdk1Y11

Initial amount 0 item

This species takes part in twelve reactions (as a reactant in rxnY024, rxnY084, rxnY103, rxnY106, rxnY136 and as a product in rxnY080, rxnY083, rxnY104, rxnY105, rxnY107, rxnY108, rxnY137).

$$\frac{d}{dt}Cdk1Y11 = v_{80} + v_{83} + v_{104} + v_{105} + v_{107} + v_{108}
+ v_{137} - v_{24} - v_{84} - v_{103} - v_{106} - v_{136}$$
(303)

9.14 Species Cdk1Y11YpRbY10YpRbY20YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY104, rxnY105 and as a product in rxnY103).

$$\frac{d}{dt}Cdk1Y11YpRbY10YpRbY20YInt = v_{103} - v_{104} - v_{105}$$
 (304)

9.15 Species Cdk1Y11YpRbY11YpRbY21YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY107, rxnY108 and as a product in rxnY106).

$$\frac{d}{dt}Cdk1Y11YpRbY11YpRbY21YInt = v_{106} - v_{107} - v_{108}$$
 (305)

9.16 Species Cdk2Y000

Initial amount 33942 item

This species takes part in eleven reactions (as a reactant in rxnY045, rxnY057, rxnY063, rxnY071 and as a product in rxnY009, rxnY017, rxnY025, rxnY046, rxnY064, rxnY072, rxnY123).

$$\frac{d}{dt}Cdk2Y000 = v_9 + v_{17} + v_{25} + v_{46} + v_{64} + v_{72} + v_{123} - v_{45} - v_{57} - v_{63} - v_{71}$$
(306)

9.17 Species Cdk2Y001

Initial amount 2176.46 item

This species takes part in seven reactions (as a reactant in rxnY017, rxnY047, rxnY059, rxnY064 and as a product in rxnY010, rxnY048, rxnY063).

$$\frac{d}{dt}Cdk2Y001 = |v_{10}| + |v_{48}| + |v_{63}| - |v_{17}| - |v_{47}| - |v_{59}| - |v_{64}|$$
(307)

9.18 Species Cdk2Y002

Initial amount 680.557 item

This species takes part in nine reactions (as a reactant in rxnY025, rxnY049, rxnY061, rxnY072, rxnY121 and as a product in rxnY011, rxnY050, rxnY071, rxnY122).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Cdk2Y002} = |v_{11}| + |v_{50}| + |v_{71}| + |v_{122}| - |v_{25}| - |v_{49}| - |v_{61}| - |v_{72}| - |v_{121}|$$
(308)

9.19 Species Cdk2Y010

Initial amount 0 item

This species takes part in eleven reactions (as a reactant in rxnY051, rxnY067, rxnY075 and as a product in rxnY012, rxnY019, rxnY027, rxnY052, rxnY057, rxnY068, rxnY076, rxnY129).

$$\frac{d}{dt}Cdk2Y010 = v_{12} + v_{19} + v_{27} + v_{52} + v_{57} + v_{68} + v_{76} + v_{129} - v_{51} - v_{67} - v_{75}$$
(309)

9.20 Species Cdk2Y011

Initial amount 0 item

This species takes part in 13 reactions (as a reactant in rxnY019, rxnY053, rxnY068, rxnY091, rxnY094 and as a product in rxnY013, rxnY054, rxnY059, rxnY067, rxnY092, rxnY093, rxnY095, rxnY096).

$$\frac{d}{dt}Cdk2Y011 = v_{13} + v_{54} + v_{59} + v_{67} + v_{92} + v_{93} + v_{95}
+ v_{96} - v_{19} - v_{53} - v_{68} - v_{91} - v_{94}$$
(310)

9.21 Species Cdk2Y011YpRbY10YpRbY20YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY092, rxnY093 and as a product in rxnY091).

$$\frac{d}{dt}Cdk2Y011YpRbY10YpRbY20YInt = |v_{91}| - |v_{92}| - |v_{93}|$$
 (311)

9.22 Species Cdk2Y011YpRbY11YpRbY21YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY095, rxnY096 and as a product in rxnY094).

$$\frac{d}{dt}Cdk2Y011YpRbY11YpRbY21YInt = v_{94} - v_{95} - v_{96}$$
 (312)

9.23 Species Cdk2Y012

Initial amount 0 item

This species takes part in 15 reactions (as a reactant in rxnY027, rxnY055, rxnY076, rxnY097, rxnY100, rxnY127 and as a product in rxnY014, rxnY056, rxnY061, rxnY075, rxnY098, rxnY099, rxnY101, rxnY102, rxnY128).

$$\frac{d}{dt}Cdk2Y012 = v_{14} + v_{56} + v_{61} + v_{75} + v_{98} + v_{99} + v_{101} + v_{102}
+ v_{128} - v_{27} - v_{55} - v_{76} - v_{97} - v_{100} - v_{127}$$
(313)

9.24 Species Cdk2Y012YpRbY10YpRbY20YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY098, rxnY099 and as a product in rxnY097).

$$\frac{d}{dt}Cdk2Y012YpRbY10YpRbY20YInt = v_{97} - v_{98} - v_{99}$$
 (314)

9.25 Species Cdk2Y012YpRbY11YpRbY21YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY101, rxnY102 and as a product in rxnY100).

$$\frac{d}{dt}Cdk2Y012YpRbY11YpRbY21YInt = |v_{100}| - |v_{101}| - |v_{102}|$$
 (315)

9.26 Species Cdk2Y100

Initial amount 58162 item

This species takes part in eleven reactions (as a reactant in rxnY009, rxnY046, rxnY058, rxnY065, rxnY073 and as a product in rxnY018, rxnY026, rxnY045, rxnY066, rxnY074, rxnY126).

$$\frac{d}{dt}Cdk2Y100 = v_{18} + v_{26} + v_{45} + v_{66} + v_{74} + v_{126} - v_{9} - v_{46} - v_{58} - v_{65} - v_{73}$$
(316)

9.27 Species Cdk2Y101

Initial amount 3729.51 item

This species takes part in seven reactions (as a reactant in rxnY010, rxnY018, rxnY048, rxnY060, rxnY066 and as a product in rxnY047, rxnY065).

$$\frac{d}{dt}Cdk2Y101 = |v_{47}| + |v_{65}| - |v_{10}| - |v_{18}| - |v_{48}| - |v_{60}| - |v_{66}|$$
(317)

9.28 Species Cdk2Y102

Initial amount 1166.18 item

This species takes part in ten reactions (as a reactant in rxnY011, rxnY026, rxnY050, rxnY062, rxnY074, rxnY124 and as a product in rxnY049, rxnY073, rxnY125 and as a modifier in rxnY127).

$$\frac{d}{dt}Cdk2Y102 = v_{49} + v_{73} + v_{125} - v_{11} - v_{26} - v_{50} - v_{62} - v_{74} - v_{124}$$
 (318)

9.29 Species Cdk2Y110

Initial amount 0 item

This species takes part in eleven reactions (as a reactant in rxnY012, rxnY052, rxnY069, rxnY077 and as a product in rxnY020, rxnY028, rxnY051, rxnY058, rxnY070, rxnY078, rxnY132).

$$\frac{d}{dt}Cdk2Y110 = v_{20} + v_{28} + v_{51} + v_{58} + v_{70} + v_{78} + v_{132} - v_{12} - v_{52} - v_{69} - v_{77}$$
(319)

9.30 Species Cdk2Y111

Initial amount 0 item

This species takes part in seven reactions (as a reactant in rxnY013, rxnY020, rxnY054, rxnY070 and as a product in rxnY053, rxnY060, rxnY069).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Cdk2Y111} = |v_{53}| + |v_{60}| + |v_{69}| - |v_{13}| - |v_{20}| - |v_{54}| - |v_{70}| \tag{320}$$

9.31 Species Cdk2Y112

Initial amount 0 item

This species takes part in nine reactions (as a reactant in rxnY014, rxnY028, rxnY056, rxnY078, rxnY130 and as a product in rxnY055, rxnY062, rxnY077, rxnY131).

$$\frac{d}{dt}Cdk2Y112 = |v_{55}| + |v_{62}| + |v_{77}| + |v_{131}| - |v_{14}| - |v_{28}| - |v_{56}| - |v_{78}| - |v_{130}|$$
(321)

9.32 Species Cdk4Y00

Initial amount 46551.9 item

This species takes part in six reactions (as a reactant in rxnY037, rxnY041 and as a product in rxnY003, rxnY007, rxnY038, rxnY042).

$$\frac{d}{dt}Cdk4Y00 = |v_3| + |v_7| + |v_{38}| + |v_{42}| - |v_{37}| - |v_{41}|$$
(322)

9.33 Species Cdk4Y01

Initial amount 6547.64 item

This species takes part in twelve reactions (as a reactant in rxnY003, rxnY038, rxnY043, rxnY085, rxnY088 and as a product in rxnY008, rxnY037, rxnY044, rxnY086, rxnY087, rxnY089, rxnY090).

$$\frac{d}{dt}Cdk4Y01 = v_8 + v_{37} + v_{44} + v_{86} + v_{87} + v_{89} + v_{90} - v_3 - v_{38} - v_{43} - v_{85} - v_{88}$$
(323)

9.34 Species Cdk4Y01YpRbY00YpRbY10YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY086, rxnY087 and as a product in rxnY085).

$$\frac{d}{dt}Cdk4Y01YpRbY00YpRbY10YInt = |v_{85}| - |v_{86}| - |v_{87}|$$
 (324)

9.35 Species Cdk4Y01YpRbY01YpRbY11YInt

Initial amount 0 item

This species takes part in three reactions (as a reactant in rxnY089, rxnY090 and as a product in rxnY088).

$$\frac{d}{dt}Cdk4Y01YpRbY01YpRbY11YInt = |v_{88}| - |v_{89}| - |v_{90}|$$
 (325)

9.36 Species Cdk4Y10

Initial amount 41117.2 item

This species takes part in six reactions (as a reactant in rxnY007, rxnY039, rxnY042 and as a product in rxnY004, rxnY040, rxnY041).

$$\frac{d}{dt}Cdk4Y10 = |v_4| + |v_{40}| + |v_{41}| - |v_7| - |v_{39}| - |v_{42}|$$
(326)

9.37 Species Cdk4Y11

Initial amount 5783.23 item

This species takes part in six reactions (as a reactant in rxnY004, rxnY008, rxnY040, rxnY044 and as a product in rxnY039, rxnY043).

$$\frac{d}{dt}Cdk4Y11 = |v_{39}| + |v_{43}| - |v_{4}| - |v_{8}| - |v_{40}| - |v_{44}|$$
(327)

9.38 Species CyclinA

Initial amount 113.316 item

This species takes part in 16 reactions (as a reactant in rxnY022, rxnY071, rxnY073, rxnY075, rxnY077, rxnY081, rxnY083, rxnY118 and as a product in rxnY021, rxnY072, rxnY074, rxnY076, rxnY078, rxnY082, rxnY084, rxnY119).

$$\frac{d}{dt}CyclinA = v_{21} + v_{72} + v_{74} + v_{76} + v_{78} + v_{82} + v_{84} + v_{119}$$

$$- v_{22} - v_{71} - v_{73} - v_{75} - v_{77} - v_{81} - v_{83} - v_{118}$$
(328)

9.39 Species CyclinD

Initial amount 14753.7 item

This species takes part in six reactions (as a reactant in rxnY002, rxnY037, rxnY039 and as a product in rxnY001, rxnY038, rxnY040).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CyclinD} = |v_1| + |v_{38}| + |v_{40}| - |v_2| - |v_{37}| - |v_{39}| \tag{329}$$

9.40 Species CyclinE

Initial amount 191.985 item

This species takes part in ten reactions (as a reactant in rxnY016, rxnY063, rxnY065, rxnY067, rxnY069 and as a product in rxnY015, rxnY064, rxnY066, rxnY068, rxnY070).

$$\frac{d}{dt}CyclinE = |v_{15}| + |v_{64}| + |v_{66}| + |v_{68}| + |v_{70}| - |v_{16}| - |v_{63}| - |v_{65}| - |v_{67}| - |v_{69}|$$
(330)

9.41 Species E2F

Initial amount 546.211 item

This species takes part in seven reactions (as a reactant in rxnY030, rxnY111, rxnY113 and as a product in rxnY029, rxnY112, rxnY114, rxnY115).

$$\frac{\mathrm{d}}{\mathrm{d}t}E2F = v_{29} + v_{112} + v_{114} + v_{115} - v_{30} - v_{111} - v_{113}$$
(331)

9.42 Species Emi1

Initial amount 248.046 item

This species takes part in four reactions (as a reactant in rxnY035, rxnY116 and as a product in rxnY034, rxnY117).

$$\frac{d}{dt}\text{Emi1} = v_{34} + v_{117} - v_{35} - v_{116}$$
 (332)

9.43 Species p27

Initial amount 14150.9 item

This species takes part in 18 reactions (as a reactant in rxnY006, rxnY041, rxnY043, rxnY045, rxnY047, rxnY049, rxnY051, rxnY053, rxnY055 and as a product in rxnY005, rxnY042, rxnY044, rxnY046, rxnY048, rxnY050, rxnY052, rxnY054, rxnY056).

$$\frac{d}{dt}p27 = v_5 + v_{42} + v_{44} + v_{46} + v_{48} + v_{50} + v_{52} + v_{54} + v_{56} - v_6 - v_{41} - v_{43} - v_{45} - v_{47} - v_{49} - v_{51} - v_{53} - v_{55}$$
(333)

9.44 Species pRbY00

Initial amount 30000 item

This species takes part in six reactions (as a reactant in rxnY085, rxnY111 and as a product in rxnY031, rxnY086, rxnY109, rxnY112).

$$\frac{d}{dt}pRbY00 = |v_{31}| + |v_{86}| + |v_{109}| + |v_{112}| - |v_{85}| - |v_{111}|$$
(334)

9.45 Species pRbY01

Initial amount 0 item

This species takes part in six reactions (as a reactant in rxnY031, rxnY088, rxnY112 and as a product in rxnY089, rxnY110, rxnY111).

$$\frac{d}{dt}pRbY01 = |v_{89}| + |v_{110}| + |v_{111}| - |v_{31}| - |v_{88}| - |v_{112}|$$
(335)

9.46 Species pRbY10

Initial amount 28583.4 item

This species takes part in eleven reactions (as a reactant in rxnY091, rxnY097, rxnY103, rxnY113 and as a product in rxnY032, rxnY087, rxnY092, rxnY098, rxnY104, rxnY114 and as a modifier in rxnY106).

$$\frac{d}{dt}pRbY10 = v_{32} + v_{87} + v_{92} + v_{98} + v_{104} + v_{114} - v_{91} - v_{97} - v_{103} - v_{113}$$
 (336)

9.47 Species pRbY11

Initial amount 1416.59 item

This species takes part in ten reactions (as a reactant in rxnY032, rxnY094, rxnY100, rxnY106, rxnY114 and as a product in rxnY090, rxnY095, rxnY101, rxnY107, rxnY113).

$$\frac{d}{dt}pRbY11 = v_{90} + v_{95} + v_{101} + v_{107} + v_{113} - v_{32} - v_{94} - v_{100} - v_{106} - v_{114}$$
 (337)

9.48 Species pRbY20

Initial amount 0 item

This species takes part in six reactions (as a reactant in rxnY109 and as a product in rxnY033, rxnY093, rxnY099, rxnY105, rxnY115).

$$\frac{d}{dt}pRbY20 = |v_{33}| + |v_{93}| + |v_{99}| + |v_{105}| + |v_{115}| - |v_{109}|$$
(338)

9.49 Species pRbY21

Initial amount 0 item

This species takes part in six reactions (as a reactant in rxnY033, rxnY110, rxnY115 and as a product in rxnY096, rxnY102, rxnY108).

$$\frac{d}{dt}pRbY21 = v_{96} + v_{102} + v_{108} - v_{33} - v_{110} - v_{115}$$
(339)

9.50 Species total YCyclin YD

Involved in rule totalYCyclinYD

One rule which determines this species' quantity.

9.51 Species total YCyclin YE

Involved in rule totalYCyclinYE

One rule which determines this species' quantity.

9.52 Species total YCyclin YA

Involved in rule totalYCyclinYA

One rule which determines this species' quantity.

9.53 Species totalYp27

Involved in rule totalYp27

One rule which determines this species' quantity.

9.54 Species hypophosphorylatedYpRb

Involved in rule hypophosphorylatedYpRb

One rule which determines this species' quantity.

9.55 Species hyperphosphorylatedYpRb

Involved in rule hyperphosphorylatedYpRb

One rule which determines this species' quantity.

9.56 Species total YEmi1

Involved in rule totalYEmi1

One rule which determines this species' quantity.

9.57 Species activeYCdk2

Involved in rule activeYCdk2

One rule which determines this species' quantity.

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany