Combo 2

2 de julio de 2024

1. Defina $d \stackrel{n}{\vdash} d'$ (no hace falta definir \vdash)

Para $d, d' \in Des$ y $n \geq 0$, escribiremos $d \stackrel{n}{\vdash} d'$ si existen $d_1, ..., d_{n+1} \in Des$ tales que

$$d = d_1$$

 $d' = d_{n+1}$
 $d_i \vdash d_{i+1}$, para $i = 1, ..., n$.

2. Defina L(M)

Diremos que una palabra $\alpha \in \Sigma^*$ es $aceptada \ por \ M$ por alcance de estado final cuando

$$\lfloor q_0 B \alpha \rfloor \stackrel{*}{\vdash} d$$
, con d tal que $St(d) \in F$.

El lenguage aceptado por M por alcance de estado final se define de la siguiente manera

 $L(M) = \{ \alpha \in \Sigma^* : \alpha \text{ es aceptada por } M \text{ por alcance de estado final} \}.$

3. Defina H(M)

Diremos que una palabra $\alpha \in \Sigma^*$ es aceptada por M por detencion cuando M se detiene partiendo de $\lfloor q_0 B \alpha \rfloor$. El lenguage aceptado por M por detencion se define de la siguiente manera

$$H(M) = \{ \alpha \in \Sigma^* : \alpha \text{ es aceptada por } M \text{ por detencion} \}$$

4. Defina "f es una función de tipo (n, m, s)"

Dada una funcion Σ -mixta f, si $n, m \in \omega$ son tales que $D_f \subseteq \omega^n \times \Sigma^{*m}$ y ademas $I_f \subseteq \omega$, entonces diremos que f es una funcion de tipo (n, m, #). Similarmente si $n, m \in \omega$ son tales que $D_f \subseteq \omega^n \times \Sigma^{*m}$ y ademas $I_f \subseteq \Sigma^*$, entonces diremos que f es una funcion de tipo (n, m, *).

5. Defina (x)

Dado $x \in \mathbf{N}$, usaremos (x) para denotar a la unica infinitupla $(s_1, s_2, ...) \in \omega^{[\mathbf{N}]}$ tal que

$$x = \langle s_1, s_2, \dots \rangle = \prod_{i=1}^{\infty} pr(i)^{s_i}$$

6. Defina $(x)_i$

Para $i \in \mathbb{N}$, usaremos $(x)_i$ para denotar a s_i de dicha infinitupla (la del anterior punto). Se le suele llamar la "bajada i-esima de x" al numero $(x)_i$. La idea de este nombre es que para obtener $(x)_i$ debemos bajar el exponente de pr(i) en la factorización de x