Ejemplo clásico de problema NP: Viajante de comercio

- Dado un conjunto de ciudades y carreteras que las unen, y una longitu máxima d, hay que decidir si existe alguna trayectoria que pase una sola vez por cada ciudad recorriendo una distancia no mayor que d.
- Este problema puede resolverse con una MTN de la siguiente manera:
- 1)El input w contiene el nro. n de ciudades, las distancias que las separan y la longitud máxima d permitida
- 2)De manera no determinística se escribe una permutación cualquiera de los nros entre 1 y n. Puede hacerse así: Se escriben 2 listas, la primera con los nros ordenados de 1 a n y la segunda vacía. Se elige de manera no determinista uno de la primera lista que se tacha y pasa a la segunda. Cada ciclo tiene un costo de O(n), que se repite n veces hasta completar la permutación $O(n^2)$
- 3)Se calcula la distancia del recorrido elegido. Suponiendo un costo O(n) para localizar en la entrada la distancia entre 2 ciudades cualquiera, el costo de calcular la distancia del recorrido es O(n²)
- 4)Si la distancia del recorrido es menor que d para en q_A sino para en q_R.

Def. Co-NP= $\{L / L^c \in NP\}$ // Usamos L^c para referirme a L complemento

Teorema. Si
$$L \in P \rightarrow L \in (NP \cap Co\text{-}NP)$$

Si $L \in P \rightarrow L \in NP$ (por def. de P y NP)
Si $L \in P \rightarrow L^{C} \in P$ (simplemente intercambiando qa y qr en la MTD $\rightarrow L^{C} \in NP$ (por def de P y NP)
 $\rightarrow L \in Co\text{-}NP$ (por def Co-NP)
 $\rightarrow L \in (NP \cap Co\text{-}NP)$

Nota: No se sabe cómo está relacionados NP y Co-NP. No se puede asumir que son iguales, reconocer el complemento de un lenguaje, intentando intercambiar estados qa y qr de su MTN no funciona, una MTN puede aceptar teniendo computaciones que terminan en qr pues alcanza que una sola termina en qa.

Sí se sabe que si NP ≠ Co-NP → P ≠ NP Dem. Si P=NP → NP=Co-NP (porque P=Co-P) entonces NP ≠ Co-NP → P ≠ NP (por contrarecíproca)

Esta podría ser la situación:

Reducción polinómica.

Sean L_1 y L_2 dos lenguajes incluidos en Σ^* , decimos que L_1 se reduce polinómicamente a L_2 (se denota L_1 α_p L_2) sii L_1 α L_2 y además la función de reducibilidad f es computada por una MTD que trabaja en tiempo polinomial ($f \in P$)

Teorema Si $L_1 \alpha_p L_2 y L_2 \in P \rightarrow L_1 \in P$

Dem. Sea M_f la MTD que computa f en tiempo polinomial. Construimos M_1 una MTD tal que $L_1=L(M_1)$ de la siguiente manera:

 $L_1=L(M_1)$? Dado que $w\in L_1$ sii $f(w)\in L_2$ se tiene que $L_1=L(M_1)$. Falta ver que M_1 trabaja en tiempo polinomial

Sea n = |w|

 M_f computa f(w) en a lo sumo cn^k pasos, por lo tanto $|f(w)| \le cn^k$ por lo tanto M_1 hará a lo sumo $cn^k + c_2(cn^k)^{k2}$ por lo tanto M_1 trabaja en tiempo $O(n^{k1})$ Teorema. Sea L un lenguaje tal que $\varnothing \subset L \subset \Sigma^*$ entonces para cualquier lenguaje L' perteneciente a P, vale que L' α_p L

Dem. Como $\emptyset \subset L \subset \Sigma^*$ entonces existe algún $x \in L$ y algún $z \notin L$. La reducción consiste para cada w, resolver L' con su MTD polinomial, y asignar x o z según la respuesta sea sí o no.

Def. $L \in NPH$ (NP-Hard) sii para todo $L' \in NP$ se cumple $L'\alpha_p L$

Def. $L \in NPC$ (NP-Completo) sii $L \in NPH$ y $L \in NP$.

Teorema. Si $L \in NPC$, se cumple que si $L \in P \rightarrow P = NP$

Dem. Si $L \in NPC$ entonces para todo $L' \in NP$ se cumple $L'\alpha_p L$ (por def. de NPC)

Si $L \in P$ entonces para todo $L' \in NP$ se cumple $L' \in P$ (por teorema anterior)

Por lo tanto $NP \subseteq P$

Por lo tanto P=NP

Teorema. Sean $L_1, L_2 \in NP$. Si $L_1 \in NPC$ y $L_1\alpha_p$ L_2 entonces $L_2 \in NPC$ Dem. Como $L_1 \in NPC$, vale que para todo $L \in NP$ existe la reducción L α_p L_1 , por propiedad transitiva α_p de se cumple que para todo $L \in NP$ existe la reducción $L\alpha_p$ L_2 por lo tanto $L_2 \in NPC$

Para practicar: Demostrar que α_p es transitiva

Ejemplo de lenguaje NPC: **SAT**

Literal: es una variable proposicional o la negación de una variable proposicional.

FNC: fórmula normal conjuntiva, es una conjunción de una disjunción de literales.

Enunciado del problema SAT: Dada una fórmula proposicional en FNC, determinar si es satisfactible, es decir si existe alguna asignación de verdad para las variables que haga verdadera la fórmula.

Teorema (Cook/Levin) SAT es NPC.

Primero se prueba que SAT pertenece a NP y luego se toma un lenguaje arbitrario L perteneciente a NP y se prueba que L α_p SAT. Como L pertenece a NP sabemos que existe una MTN M tal que M(x) para (aceptando o rechazando) en tiempo polinomial p(|x|). A continuacion se define una fbf F(M; x) con el objetivo que F(M; x) sea satisfacible si y solo si M(x) termina en el estado aceptador.

Más de 1000 problemas de dominios muy diferentes, y con variadas aplicaciones se han probado que pertenecen a NPC haciendo reducciones desde un lenguaje que ya se conozca pertenece a NPC. Para ninguno de ellos se ha podido encontrar una solución polinomial.

Ejemplos:

SAT α_p 3-SAT

3-SAT α_p VC={(G,k)/G es un grafo que tiene un cubrimiento de vértices de tamaño k}

VC α_p Lclique={(G,k)/ G tiene un clique de tamaño k}, clique es un subgrafo totalmente conectado

Sea G=(V,E) un grafo y sea C⊂V un subconjunto de vértices. Decimos que C es un *cubrimiento de vértices* si cualquier e∈E tiene un extremo que pertenece a C.

P = NP?

Por varias décadas de estudio los investigadores no han podido responder a esta pregunta. Por ello se cree que $P \neq NP$ es mas plausible que P = NP.

