스터디 8주차 중간정리본(1~3주차 강의) 홍송은

1주차는 기본적으로 파이썬 활용, 텐서 이해 등 기본 내용이 대부분이라서 2주차와 3주차에 집중했습니다. (5월 7일에 배운 내용도 연결되는 부분이라 조금 넣었습니다!)

중간 점검인 만큼, 전반적인 흐름을 이해하며 실수하기 좋은 부분을 짚고, 여러 개념을 비교하며 핵심적인 부분을 이해할 수 있게 정리했습니다.

1. PyTorch 기본 개념 및 미분

- PyTorch 특징
 - Meta 개발, 연구/학계 중심
 - 동적 계산 그래프 지원 → 직관적 디버깅 가능
 - o GPU 연산 지원 (torch.cuda.FloatTensor)
- Tensor vs NumPy
 - .data.numpy()로 변환 가능 (단, GPU에선 .cpu().data.numpy() 필요함)

▲ 실수 주의

- requires_grad=True 설정하지 않으면 자동 미분 불가
- backward() 실행 시 경사 값 누적 → x.grad.zero_()로 초기화 필수

2. 자동 미분 (Autograd)

- backward() 호출 → .grad 속성에 미분 결과 저장
- 최종 결과는 스칼라 값이어야 미분 가능 (.sum() 사용)

V Torchviz

● make_dot(z, params={'x': x}) 로 계산 그래프 시각화

3. 시그모이드 함수와 미분

● 내장 함수: torch.nn.Sigmoid()

● 직접 정의: 1 / (1 + torch.exp(-x))

▲ 실수 주의

- sum() 없이 backward() 사용하면 에러 발생
- 다시 미분하기 전에는 .zero_()로 초기화 필수

4. AI/ML/DL 개요 비교

구분	설명
Al	인간처럼 사고하는 기술 (규칙 기반 포함)
ML	데이터 기반 학습, 예측 (지도/비지도/강화 학습)
DL	다층 신경망 사용, 특징 추출도 자동

☑ 머신러닝 학습 방법

- 지도학습: 정답 있음 → 분류/회귀
- 비지도학습: 정답 없음 → 군집
- 강화학습: 보상 기반 → 행동 학습

5. 퍼셉트론과 신경망

• 단층 퍼셉트론: 선형 분리 문제만 가능

● 다층 퍼셉트론 (MLP): XOR 해결 가능 (hidden layer 존재)

6. 신경망 학습 및 역전파

- $cdn \rightarrow cd nd \rightarrow qdn \rightarrow print qqqq$
- 기울기 소실(Vanishing Gradient) 문제
 - o Sigmoid, Tanh 사용 시 발생
 - o 해결책: ReLU, BatchNorm 등

7. 활성화 함수 비교

함수	특징	기울기 문제
Sigmoid	출력 (0, 1)	O (기울기 소실)
Tanh	출력 (-1, 1)	О
ReLU	0 이상만 활성화	X (0 이하에서 죽는 문제 있음)
Leaky ReLU	음수에서도 기울기 존재	해결됨

8. 경사 하강법 (Gradient Descent)

• 단계: 초기화 \rightarrow 기울기 계산 \rightarrow 파라미터 업데이트 \rightarrow 반복

● 종류

○ Batch: 전체 데이터 사용, 안정적이지만 느림

○ SGD: 1개 샘플 사용, 빠르지만 불안정

○ Mini-batch: 균형형

▲ 실수 주의

• 학습률(Ir) 너무 크면 발산, 너무 작으면 느림

• 적절한 learning rate 설정이 중요

9. 손실 함수 vs 비용 함수

항목	손실 함수 (Loss)	비용 함수 (Cost)
범위	샘플 단위	전체 데이터셋
목적	개별 오차 측정	전체 성능 평가
예시	MSE, CrossEntropy	평균 MSE, 전체 CrossEntropy

10. 회귀와 분류

- 회귀
 - o MSE 사용
 - 예:집값,혈압예측
- 이진 분류
 - Sigmoid + Binary Crossentropy
 - 예: P/F, 악성/양성
- 다중 분류
 - Softmax + Categorical Crossentropy
 - 예: 붓꽃, 성적 등급

11. 선형 회귀

- $y = \beta_0 + \beta_1 x + \epsilon$
- OLS (최소제곱법): 오차 제곱합 최소화

12. 다항 회귀

● 독립변수가 2차 이상 → 비선형 관계 모델링 가능

13. 이진 분류 (Binary Classification)

- 기본 구조: 입력층 → 활성화 함수 (예: Sigmoid) → 출력층 (확률 기반 이진 분류)
- 결정 경계 (Hyperplane): 2D에서는 선, 3D에서는 평면

▲ 실수 주의

• 확률로 예측하되, 임계값 기준 (보통 0.5) 이상이면 양성으로 판단

14. 데이터셋 분할 전략

구분	용도
Training Set	학습
Validation Set	하이퍼파라미터 튜닝
Test Set	최종 성능 평가

• 교차 검증: k-fold 사용

• 부트스트랩핑: 데이터 적을 때 사용, 여러 샘플 셋 생성

15. 혼동 행렬 (Confusion Matrix)

실제/예측	Positive	Negative
Positive	TP	FN
Negative	FP	TN

• TP, FP, FN, TN 개념 정확히 이해 필요!!

- Accuracy = TP + TN / (TP + FP + FN + TN)
- Precision = TP / (TP + FP)
- Recall = TP / (TP + FN)
- **F1 =** 조화 평균

☑ 지표 선택 예시(참고만 해도 괜찮을 듯)

중점 사항	지표	예시
FP 줄이기	Precision	스팸 필터
FN 줄이기	Recall	암 진단
균형	F1-score	일반적인 분류

전체 성능	ROC-AUC	분류 전반 성능
		평가

16. ROC-AUC

- x축: FPR (False Positive Rate) = 잘못 양성 판정한 비율
- y축: TPR (True Positive Rate) = 올바르게 양성 판정한 비율 (= 재현율, Recall)
- AUC (Area Under Curve) 값이 1에 가까울수록 좋음
- 곡선의 면적이 크다는 것은 좋은 분류 성능을 의미

17. 다중 분류 (Multinomial Classification)

- Softmax 함수 사용
 - 각 클래스에 대해 확률 계산, 총합은 1
 - 예측은 가장 확률 높은 클래스로 결정

18. Negative Log-Likelihood (NLL)

- 손실 함수
 - 예측이 정확할수록 NLL 값 작음

- 확률 기반 예측에서 자주 사용됨
- 다중 클래스에서도 NLL 사용 (Multiclass NLL)

19. CNN (Convolutional Neural Network)

구성 요소

• Convolutional Layer: 필터로 특징 추출

• Pooling Layer: 다운샘플링 (Max, Average)

● FC Layer: 분류 수행

• Activation: ReLU 주로 사용

• Loss Function: CrossEntropy

● Flatten Layer: FC로 연결되기 위한 1D 변환

 $\underline{https://aayushmaan1306.medium.com/basics-of-convolutional-neural-networks-using-pytorc} \\ \underline{h-lightning-474033093746}$

https://dotiromoook.tistory.com/19

20. CNN 연산 핵심

요소	설명
Stride	필터 이동 간격. 작을수록 세밀
Padding	경계 보존 목적. Same vs Valid
Pooling	Max, Average
Flatten	FC 연결 위한 1D 변환

21. 최적화 알고리즘 (**Optimizer** 종류)

알고리즘	특징
SGD	빠르지만 진동 가능
Momentum	관성으로 수렴 속도 증가
NAG	예측 위치에서 기울기 계산
Adagrad	학습률 자동 조절 (단점: 너무 작아질 수 있음)
RMSProp Adagrad 개선, 안정성 ↑	
Adam	모멘텀 + RMSProp, 가장 널리 사용됨

22. 과적합 (Overfitting)

원인

- 데이터 부족
- 모델 크기 과도
- Epoch 수 과다

해결 방법

- 데이터 증강
- 정규화 **(L1, L2)**
- Dropout
- Early Stopping

• 적절한 모델 구조 선택

23. Batch Normalization

- Internal Covariate Shift 해결
- 학습 속도 증가 + 안정성 향상 + 과적합 감소
- Mini-batch 단위 정규화 수행

24. 데이터 증강 (Data Augmentation)

기법	설명
회전/이동/확대	기하학 변환
밝기/대비	컬러 조절
노이즈 삽입	Gaussian Noise 등
블러링	이미지 흐림

필요 이유

• 데이터 불균형, 과적합 완화, 비용 절감