Some Security Considerations over Contiki-based Sensor Network

Yan Yan

December 7, 2015

Contents

1	Intr	roduction	
	1.1	Related Work	
	1.2	Experiment Setup	
2	Link Layer Security		
	2.1	Non core security	
	2.2	802.15.4 security	
	2.3	Reset Problem	
	2.4	Distinctive packet length for RPL packets	
3	DTLS		
	3.1	Conflicting MTU between DTLS and 6lowPAN	
		Overloading DTLS with LLSEC	
4	Application Detection		
	4.1	Packet Length	
	4.2	Response Time	
	4.3	Pingload: Ping side-channel for Pavload	

Introduction

This paper discusses two security measurements, namely Link Layer Security (LLSEC) and Datagram TLS (DTLS), within Contiki OS.

1.1 Related Work

[1] discusses some security concerns in 802.15.4. LLSEC[2] is the implementation of 802.15.4 security in Contiki.

tinydtls[3] is the implementation of DTLS we used in DTLS related experiments.

1.2 Experiment Setup

All experiments are done within the Cooja simulator.

The setup is as described in Figure 1.1.

- Adversary is the malicious party that tries to recover information from the encrypted traffic.
- Border Router, or BR, is a device that connects the adversary to the sensor network. However, this is only allowed when LLSEC is disabled.
- Sniffer is a device that passively captures all traffics in the sensor network.
- Target and Nodes are sensors deployed in the sensor network. They communicates to each other through encrypted channels.

Figure 1.1: Experiment setup

Link Layer Security

- 2.1 Non core security
- 2.2 802.15.4 security
- 2.3 Reset Problem
- 2.4 Distinctive packet length for RPL packets

DTLS

- 3.1 Conflicting MTU between DTLS and 6lowPAN The abandoned CoDTLS.
- 3.2 Overloading DTLS with LLSEC

Application Detection

- 4.1 Packet Length
- 4.2 Response Time
- 4.3 Pingload: Ping side-channel for Payload

Bibliography

- [1] Naveen Sastry and David Wagner. "Security Considerations for IEEE 802.15.4 Networks". In: Proceedings of the 3rd ACM Workshop on Wireless Security. WiSe '04. Philadelphia, PA, USA: ACM, 2004, pp. 32–42. ISBN: 1-58113-925-X. DOI: 10.1145/1023646.1023654. URL: http://doi.acm.org/10.1145/1023646. 1023654.
- [2] URL: https://github.com/kkrentz/contiki/wiki.
- [3] URL: http://sourceforge.net/projects/tinydtls/.