MACS 207b

1 La loi gaussienne

1.1 La loi gaussienne scalaire

Def. Une v.a. X sur \mathbf{R} est dite **gaussienne standard** si sa loi de probabilité admet la densité $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$.

Def. Soit $\sigma \in \mathbb{R}_+$ et $m \in \mathbb{R}$. On dit que la v.a. réelle Y suit la loi gaussienne $\mathcal{N}(m, \sigma^2)$ si $Y = \sigma X + m$ où X suit la loi gaussienne standard.

Prop. Soit $X \sim \mathcal{N}(0,1)$. Sa transformée de Laplace est $\psi(z) = \mathbf{E} \exp(zX) = \exp\left(\frac{z^2}{2}\right)$.

Prop. $Y \sim \mathcal{N}(m, \sigma^2)$ si et seulement si sa fonction caractéristique est $\phi(\lambda) = \psi(i\lambda) = \exp\left(im\lambda - \lambda^2 \frac{s^2}{2}\right)$.

Prop. Supposons $\sigma > 0$. Alors $Y \sim \mathcal{N}(m, \sigma^2)$ si et seulement si Y admet pour densité $f(y) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$.

Prop. Soit $Y \sim \mathcal{N}(m, \sigma^2)$, alors $\mathbf{E}Y = m$ et $Var(Y) = \sigma^2$.

Prop. Soit $X_n \sim \mathcal{N}(m_n, \sigma_n^2)$ une suite de v.a, $X_n \xrightarrow{\mathcal{L}} X$. Alors $(m_n)_n$ et $(\sigma_n^2)_n$ convergent et en notant m et σ^2 leurs limite on a $X \sim \mathcal{N}(m, \sigma^2)$. Si par ailleurs $X_n \xrightarrow{\mathbf{P}} X$ alors la convergence a lieu dans \mathcal{L}^p pour tout p > 0.

Démonstration. Le premier point se démontre par l'utilisation de la fonction caractéristique. Pour le second on déduit du premier que tous les moments de $|X_n - X|$ sont bornés et on applique un argument d'intégrabilité uniforme.

1.2 La loi gaussienne vectorielle

Def. Un vecteur aléatoire X sur \mathbb{R}^d est dit **gaussien** si $\forall u \in \mathbb{R}^d$, $\langle u \mid X \rangle$ est une v.a gaussienne.

Ex. Le vecteur $X = (X_1, \dots, X_d)^T$ où les variables aléatoires X_i sont gaussiennes et indépendantes est gaussien. En effet, on sait que toute combinaison linéaire de v.a gaussienne indépendantes est gaussienne.

Soit $X = (X_1, ..., X_d)^\mathsf{T}$ un vecteur aléatoire tel que $\mathbf{E}[\|X\|^2] < \infty$ et soit $m = \mathbf{E}X = (\mathbf{E}X_1, ..., \mathbf{E}X_d)^\mathsf{T}$ et $\Gamma = (\mathrm{Cov}(X_i, X_j))_{1 \le i,j \le d}$ sa moyennne et sa matrice de covariance respectivement. Il est alors clair que

$$\forall u \in \mathbf{R}^d, \mathbf{E} \langle u \mid X \rangle = \langle u \mid m \rangle$$
 et $\operatorname{Var}(\langle u \mid X \rangle) = u^{\mathsf{T}} \Gamma u$

(ce qui montre au passage que $\Gamma \in \mathcal{S}_d^+$, le cône des matrices $d \times d$ définies positives). Si le vecteur X est gaussien, la v.a $\langle u \mid X \rangle$ est gaussienne, et sa fonction caractéristique est $\mathbf{E} \left[e^{i\lambda\langle u \mid X \rangle} \right] = \exp \left(i\lambda\langle u \mid m \rangle - \lambda^2 \frac{u^\mathsf{T} \Gamma u}{2} \right)$. En particulier, en prenant $\lambda = 1$ nous obtenons la fonction caractéristique de $X: \phi(u) = \mathbf{E} \left[\exp(i\langle u \mid X \rangle) \right] = \exp \left(i\langle u \mid m \rangle - \frac{u^\mathsf{T} \Gamma u}{2} \right)$. La loi de X est ainsi entièrement déterminée par sa moyenne et par sa matrice de covariance. On note $X \sim \mathcal{N}(m,\Gamma)$.

Prop. Les composantes d'un vecteur gaussien sont indépendantes si et seulement si elles sont décorrelées, i.e la matrice de covariance est diagonale.

Prop. Soit $X \sim \mathcal{N}(m, \Gamma)$ sur \mathbf{R}^d et $H \in \mathfrak{M}_{n,m}$. Alors le vecteur aléatoire Y = HX suit la loi $\mathcal{N}(Hm, H\Gamma H^T)$.

Prop. On a $\forall d \in \mathbb{N}^*, \forall m \in \mathbb{R}^d, \forall \Gamma \in \mathcal{S}_d^+, \exists X \sim \mathcal{N}(m, \Gamma).$

Démonstration. Écrire $\Gamma = HH^{\mathsf{T}}$ et poser X = m + HZ où Z est un vecteur dont les éléments dont des gaussiennes standard indépendantes. □

Prop. Si Γ est définie positive, alors $X \sim \mathcal{N}(m, \Gamma)$ a pour densité $f(x) = \frac{1}{\sqrt{\det(2\pi\Gamma)}} \exp\left(-\frac{(x-m)^{\mathsf{T}}\Gamma^{-1}(x-m)}{2}\right)$.

2 Bases de la théorie des processus - Le mouvement brownien

2.1 Généralités

Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilités. Soit $d \in \mathbf{N}^*$, $E = \mathbf{R}^d$ et $\mathcal{E} = \mathcal{B}(E)$.

On note $\mu: B \mapsto \mathbf{P}(X^{-1}(B))$ la loi de probabilité de X.

Soit T un "ensemble d'indices" qui représente le temps. En général $T = R_+$.

Def. Un processus à valeurs dans (E, \mathcal{E}) indexé par **T** est une famille de v.a $X = (X_t)_{t \in \mathbf{T}}$ à valeurs dans (E, \mathcal{E}) . Pour tout $\omega \in \Omega$, l'application $t \mapsto X_t(\omega)$ est appelé **trajectoire** de X.

1

La famille X peut-être vue comme une application $\Omega \to E^T$ de toutes les trajectoires possibles. Il faut donc définir une tribu sur E^T et caractériser la mesure.

Soit $t \in T$, on pose $\mathcal{G}_t := \sigma(\xi_t)$ la tribu sur E^T engendrée par la projection $\xi_t : \begin{cases} E^T \to E \\ x \mapsto x(t) \end{cases}$. Cette tribu est donc constituée des ensembles $\{x \in E^T \mid x(t) \in H\}$ où H parcourt \mathcal{E} .

Def. La **tribu de Kolmogorov** est la tribu \mathcal{G} engendrée par la famille $\{\mathcal{G}_t\}_{t\in \mathbf{T}}$.

D'une manière équivalente, \mathcal{G} est la plus petite tribu rendant mesurables toutes les applications ξ_t où t parcourt \mathbf{T} . Avec cette construction $X \colon \Omega \to E^{\mathbf{T}}$ est \mathcal{F}/\mathcal{G} -mesurable de loi μ l'image de \mathbf{P} par X.

Étant donné une loi de probabilité μ sur (E^T, \mathcal{G}) , il est facile de construire un processus de loi μ : il suffit de prendre $(\Omega, \mathcal{F}, \mathbf{P}) = (E^T, \mathcal{G}, \mu)$ et de poser $X(\omega) = \omega$.

Ce processus est appelé processus canonique.

Def (Lois fini-dimensionnelles). Soit \mathcal{J} l'ensemble des parties finies de \mathbf{T} et $I=\{t_1,\ldots,t_n\}\in\mathcal{J}$ où $t_1< t_2<\cdots< t_n$. Soit μ_I la loi du vecteur (X_{t_1},\ldots,X_{t_n}) . En notant $\mathcal{G}_I:=\sigma(\xi_I)$ la sous-tribu de \mathcal{G} engendrée par $\xi_I\colon E^{\mathbf{T}} \to E^I$, la loi μ_I peut être définie sur (E^I,\mathcal{G}_I) comme étant l'image de μ par ξ_I .

Rem. \mathcal{G}_I est la collection des ensembles $\{x \in E^{\mathbf{T}} \mid (x(t_1), \dots, x(t_n)) \in H\}$ où $H \in \xi^{\otimes I}$ est la tribu produit sur E^I . Donc \mathcal{G}_I peut être identifiée à $\mathcal{E}^{\otimes I}$ et on peut caractériser μ_I par $\forall H_1, \dots, H_n \in \mathcal{E}, \mu_I(H_1 \times \dots \times H_n) = \mathbf{P}(X_{t_1} \in H_1, \dots, X_{t_n} \in H_n)$.

Def. La famille des lois fini-dimensionnelles de X est la famille des μ_I où I parcourt \mathcal{J} .

Prop. Si deux lois μ et ν sur (E^T, \mathcal{G}) possèdent les mêmes lois fini-dimensionnelles alors elles sont égales.

Démonstration. \mathcal{G} est engendré par l'algèbre $\bigcup_{I \in \mathcal{J}} \mathcal{G}_I$. Comme μ et ν coïncident sur cette algèbre elles coïncident sur \mathcal{G} .

Prop. Les lois fini-dimensionnelles satisfont la **condition de compatibilité** suivante : pour tout $I = \{t_1, \dots, t_n\}$ avec $t_1 < \dots < t_n$, pour $p \in [[1;n]]$ et $J = \{t_1, \dots, t_{p-1}, t_{p+1}, \dots, t_n\} \subset I$, pour toutes les familles (H_i) de \mathcal{E} , on a $\mu_I(H_1 \times \dots H_{p-1} \times E \times H_{p+1} \times \dots \times H_n) = \mu_J(H_1 \times \dots H_n)$.

Th (**Kolmogorov**). Soit $(\mu_I)_{I \in \mathcal{J}}$ une famille de lois sur $(E^I, \mathcal{E}^{\otimes I})_{I \in \mathcal{J}}$. Si elle vérifie les conditions de compatibilité, $(\mu_I)_{I \in \mathcal{J}}$ est la famille de lois fini-dimensionnelles d'une unique mesure de probabilités μ sur (E^T, \mathcal{G}) .

 $\sqrt{1}$ Ici $E = \mathbb{R}^d$. Cela ne marche pas pour tous types de E.

Ex. Prenons $E = \mathbf{R}$. Soit ν une mesure sur \mathbf{R} . Supposons $\mu_I = \otimes^n \nu$, avec $n = \operatorname{Card}(I)$. Alors il existe un processus aléatoire tel que ... TODO

Def. Soit *X* et *X'* deux processus définis sur le même espace de probabilités.

- On dit que X' est une **modification** de X si $\forall t \in T$, $P(X_t = X_t') = 1$.
- On dit que X et X' sont **indistinguables** si $\mathbf{P}(\forall t \in \mathbf{T}, X_t = X_t') = 1$ en admettant que $\{\forall t \in \mathbf{T}, X_t = X_t'\} \in \mathcal{F}$.

Ex. Soit $\Omega = \mathbf{T} = [0;1]$, $\mathcal{F} = \mathcal{B}([0;1])$, \mathbf{P} la mesure de Lebesgue sur [0;1]] et $\forall t \in \mathbf{T}, X_t(\omega) = \delta_{t,\omega} = \mathbf{1}_{\{t\}}(\omega)$ et $\forall t, X_t'(\omega) = 0$. Alors $\forall t \in \mathbf{T}, \mathbf{P}(\omega \mid X_t(\omega) \neq X_t'(\omega)) = \mathbf{P}(\{t\}) = 0$ mais $\mathbf{P}(\omega \mid \exists t \in \mathbf{T}, X_t(\omega) \neq X_t'(\omega)) = \mathbf{P}([0;1]) = 1$.

Question : peut-on trouver une condition sur μ qui rende le processsus X continu, au moins avec la probabilité 1, i.e. "presque toutes les trajectoires sont continues", si cela a un sens ? Non, comme le montr l'exemple précédent. En effet les lois fini-dimensionnelles de X et X' sont identiques. Donc X et X' ont la même loi μ .

Cet exemple montre que l'ensemble des processus continus n'est pas mesurable par la tribu de Kolmogorov. En effet, si $\mathcal{C}([0;1])$ était mesurable, on aurait $\mu(\mathcal{C}([0;1]))=1$ car μ est la loi de $X'\in\mathcal{C}([0;1])$. En même temps $\mu(\mathcal{C}([0;1]))=0$ car μ est la loi de X.

2.2 Le mouvement brownien

Def. Un processus aléatoire est dit gaussien si toutes ses lois fini-dimensionnelles sont gaussiennes.

Def. Un **mouvement brownien au sens large (MBL)** est un processus scalaire gaussien X sur $T = R_+$ tel que $\forall t \in T, EX_t = 0$ et $\forall t, s \in T, E[X_tX_s] = \min(t, s)$.

Prop. Le MBL existe.

Démonstration. Il nous faudra prouver que les conditions de compatibilité sont satisfaites. Pour tout $I=\{t_1,\ldots,t_n\},t_1<\cdots< t_n$ il nous suffira de prouver que μ_I est une loi de probabilité. Ainsi μ_J pour tout $J\subset I$ sera la marginale correspondante de μ_I . Cela revient à prouver que $\Gamma:=(t_i\wedge t_j)_{1\leqslant i,j\leqslant n}$ est une matrice de

Régis - BDE Télécom ParisTech

covariance, i.e une matrice semi-définie positive. En effet, avec $t_0 := 0$, $\forall x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbf{R}^n$,

$$x^{\mathsf{T}}\Gamma_{l}x = \sum_{i,j=1}^{n} x_{i}x_{j}(t_{i} \wedge t_{j}) = \sum_{i,j=1}^{n} x_{i}x_{j} \sum_{l=1}^{i \wedge j} (t_{l} - t_{l-1}) = \sum_{l=1}^{n} (t_{l} - t_{l-1}) \left(\sum_{i=l}^{n} x_{i}\right)^{2} \geqslant 0$$

Def. Soit $\sigma(X_t)$ la sous-tribu de \mathcal{F} engendrée par la v.a $\xi_t \circ X$. La tribu engendrée par $\{\sigma(X_s)\}_{0 \leqslant s \leqslant t}$, noté $\sigma(X_s, 0 \le s \le t)$ représente le **passé** de X antérieur à t.

Prop. Un processus X est un MBL si et seulement si il satisfait les conditions suivantes :

- (i) Il est à accroissement indépendants, i.e $\forall s, t \ge 0, X_{t+s} X_t$ est indépendant de $\sigma(X_u, 0 \le u \le t)$.
- (ii) Il est gaussien centré et $\forall t \ge 0$, $\mathbf{E}[X_t^2] = t$.

Par ailleurs les accroissements d'un MBL satisfont $\forall s,t \geqslant 0, X_{t+s} - X_t \stackrel{\mathcal{L}}{=} X_s - X_0 \stackrel{\mathcal{L}}{=} X_s \sim \mathcal{N}(0,s).$

Démonstration. Si X est un MBL, il suffit de prouver le premier point. Comme la loi de X est caractérisée par les lois fini-dimensionnelles, il suffit de prouver $\forall t_0, \dots, t_{n+1}$ tel que $0 = t_0 < t_1 < \dots < t_n = t < t_{n+1} = t+1$, la v.a

 $X_{t_{n+1}} - X_{t_n}$ et le vecteur $(X_{t_0}, \dots, X_{t_n})$ sont indépendants comme $(X_{t_0}, \dots, X_{t_{n+1}})$ est gaussien. Le vecteur $(X_{t_0}, \dots, X_{t_n}, X_{t_{n+1}} - X_{t_n})$ l'est par transformation linéaire, et il suffit de prouver la décorrélation

 $\forall i \in [[0;1]], \mathbf{E}\big[(X_{t_{n+1}} - X_{t_n})X_{t_i}\big] = 0. \text{ C'est imm\'ediat}: \mathbf{E}\big[X_{t_{n+1}}X_{t_i}\big] - \mathbf{E}\big[X_{t_n}X_{t_i}\big] = t_{n+1} \wedge t_i - t_n \wedge t_i = t_i - t_i = 0.$ Réciproquement, si les deux points sont satisfaits, il suffit de prouver que $\mathbf{E}[X_{t+s}X_t] = t$. En effet $\mathbf{E}[X_{t+s}X_t] = t$ $\mathbf{E}\left[(X_{t+s}-X_t)X_t\right]+\mathbf{E}\left[X_t^2\right]=\mathbf{E}\left[X_{t+s}-X_t\right]\mathbf{E}\left[X_t\right]+\mathbf{E}\left[X_t^2\right]=\mathbf{E}\left[X_t^2\right]=t.$ Enfin on sait que $X_{t+s}-X_t$ est gaussienne et il est facile de vérifier qu'elle est centrée et de variance s.

Th (Kolmogorov). Soit T un intervalle de R et $(X_t)_{t \in T}$ un processus à valeurs dans E^T . Supposons $\exists \alpha, \beta \in T$ $\mathbf{R}_{+}^{*}, \exists C > 0, \forall s, t \in \mathbf{T}, \mathbf{E}\left[\|X_{t} - X_{s}\|^{\beta}\right] \leqslant C|t - s|^{1 + \alpha}$. Alors X admet une modification $\tilde{X} = \left(\tilde{X}_{t}\right)_{t \in \mathbf{T}}$ dont toutes les trajectoires $t \mapsto \tilde{X}_t(\omega)$ sont continues.

Def. Un mouvement brownien (MB) ou processus de Wiener est un MBL dont toutes les trajectoires sont continues et nulles en t = 0.

Prop. Le MB existe.

Démonstration. Soit X un MBL. $\mathbf{E}\left[(X_s-X_t)^4\right]=(t-s)^2\mathbf{E}\left[U^2\right]$ où $U\sim\mathcal{N}(0,1)$ et on applique le théorème de Kolmogorov.

TODO

Prop. Soit B un MB. Alors $\limsup_{t\to\infty} \frac{B_t}{\sqrt{t}} \stackrel{\text{p.s.}}{=} +\infty$, $\liminf_{t\to\infty} \frac{B_t}{\sqrt{t}} \stackrel{\text{p.s.}}{=} -\infty$, $\lim_{t\to\infty} \frac{B_t}{t} = 0$, $\limsup_{t\to0} \frac{B_t}{\sqrt{t}} \stackrel{\text{p.s.}}{=} +\infty$ et $\liminf_{t \searrow 0} \frac{B_t}{\sqrt{t}} \stackrel{\text{p.s.}}{=} -\infty$. De plus le processus donné par $Z_t = tB_{1/t}$ est un MBL.

Rem. On peut prouver des résultats plus fins, comme $\limsup_{t\to\infty} \frac{B_t}{\sqrt{t \log \log t}} \stackrel{\text{p.s.}}{=} 1$ ou $\liminf_{t\to\infty} \frac{B_t}{\sqrt{t \log \log t}} \stackrel{\text{p.s.}}{=} -1$.

 $D\acute{e}monstration. \ \ \text{Soit} \ R := \limsup_{t \to \infty} \frac{B_t}{\sqrt{t}}. \ \ \text{On a} \ \forall s > 0, \\ R = \limsup_{t \to \infty} \frac{B_{t+s}}{\sqrt{t+s}} = \limsup_{t \to \infty} \frac{B_{t+s}}{\sqrt{t}} = \limsup_{t \to \infty} \frac{B_{t+s} - B_s}{\sqrt{t}}.$ Par conséquent R est indépendante de $\sigma(B_u, u \le s)$ pour tout s. Donc R est indépendante de la tribu $\sigma(B)$ engendrée par B. Comme R est $\sigma(B)$ -mesurable, R est indépendant d'elle même : $\forall H \in \mathcal{B}(\mathbf{R}), \mathbf{P}(R \in H) = P(R \in H)^2$. Donc $P(R \in H)$ vaut 0 ou 1. Donc R = a avec proba 1 où $a \in [-\infty; +\infty]$.

Supposons $a < \infty$. Soit b > a quelconque. Comme R = a on peut vérifier que $\mathbf{P}\left(\frac{B_t}{\sqrt{t}} > b\right) \xrightarrow[t \to \infty]{} 0$. Mais par ailleurs $\frac{B_t}{\sqrt{t}} \sim \mathcal{N}(0,1)$, d'où une contradiction. Par conséquent $R = \infty$. La 2^e et la 3^e convergences se démontrent de la même façon.

Pour prouver la 3^e convergence et le résultat sur $Z_t = tB_{1/t}$. Nous avons que Z_t est une gaussienne centrée. On peut prouver facilement que $\mathbb{E}Z_tZ_s = s \wedge t$. Z_t est continue sur $]0;\infty[$ car B_t est continue. Alors $\lim_{t \searrow 0} Z_t =$ $\lim_{t\searrow 0} tB_{1/t} = \lim_{u\to\infty} \frac{B_u}{u} \stackrel{\text{p.s.}}{=} 0$. Donc Z_t est un MBL dont presque toutes les trajectoires sont continues sur $[0;\infty[$. Nous avons alors $\limsup_{t\searrow 0} \frac{B_t}{\sqrt{t}} = \limsup_{t\to\infty} \frac{Z_t}{\sqrt{t}} = +\infty$.

Cor. Avec probabilité 1 on a :

(i) Le MB passe une infinité de fois par chaque point de R.

3 Régis - BDE Télécom ParisTech

(ii) Le MB n'est dérivable ni à droite pour tout $t \in \mathbf{R}_+$, ni à gauche pour tout $t \in \mathbf{R}_+^*$.

Démonstration. Pour (i), utiliser les convergences de la proposition précédente conjointement avec la continuité du MB.

Pour (ii), prenons t > 0. Pour s > 0 nous avons $\frac{B_{t+s}-B_t}{s} = \frac{1}{\sqrt{s}} \cdot \frac{B_{t+s}-B_t}{\sqrt{s}}$, mais $Z_s := B_{t+s} - B_t$ est un MB. Comme $\limsup_{s \searrow 0} \frac{Z_s}{\sqrt{s}} \stackrel{\text{p.s.}}{=} +\infty$ on a le résultat.

2.3 Mesurabilité du MB

On peut considérer un processus $X: \Omega \to E^{\mathbf{T}}$ où $\mathbf{T} = \mathbf{R}_+$ comme une application $\Omega \times \mathbf{T} \to E$ qui, à chaque couple $(\omega, t) \in \Omega \times \mathbf{T}$, associe $X_t(\omega)$. Si on adopte ce point de vue, on est amené à considérer la mesurabilité de X par rapport à la tribu-produit $\mathcal{F} \otimes \mathcal{B}(\mathbf{T})$.

Def. Un processus $X = (X_t, t \in \mathbf{T})$ à valeurs dans E est dit **mesurable** si l'application $(\omega, t) \mapsto X_t(\omega)$ est mesurable de $(\Omega \times \mathbf{T}, \mathcal{F} \otimes \mathcal{B}(\mathbf{T})$ dans (E, \mathcal{E}) .

En présence de mesurabilité, les trajectoires $t \mapsto X_t(\omega)$ à ω fixé sont mesurables pour la tribu $\mathcal{B}(\mathbf{T})$. En particulier, le bruit blanc n'est pas mesurable en ce sens (bien qu'il soit mesurable au sens de Kolmogorov) car ses trajectoires sont trop irrégulières si ν n'est pas un Dirac. Aucune trajectoire de ce processus n'est borélienne.

Quand le processus X est mesurable, l'intégrale $\int_a^b \varphi(X_t(\omega)) dt$ a un sens pour toute fonction mesurable φ , et par Fubini $\mathbf{E}\left[\int_a^b \varphi(X_t(\omega)) dt\right] = \int_a^b \mathbf{E}\varphi(X_t(\omega)) dt$ si $\int_a^b \mathbf{E}|\varphi(X_t(\omega))| dt < \infty$.

Not. Si $\forall \omega \in \Omega, t \mapsto X_t(\omega)$ est continue à droite (resp. à gauche), on dit que le processus est continu à droite (resp. à gauche).

Prop. Si un processus *X* est continu à gauche ou à droite, il est mesurable (par rapport à la tribu produit).

Démonstration. Supposons X continu à gauche. Pour tout $n \in \mathbb{N}$, soit $X_n(t) := X\left(\frac{\lfloor nt \rfloor}{n}\right)$. Alors on peut vérifier que $X_n(t) \xrightarrow[n \to \infty]{} X(t)$. Or $X_n(t)$ est toujours mesurable. Donc X l'est par passage à la limite. □

Cor. Le MB est mesurable.

Notre but est maintenant de construire une intégrale de type $\int_0^t \varphi(s) dB_s$ où B est un MB et où φ est une fonction déterministe qui appartient à une classe appropriée.

2.4 Rappels sur les fonctions à variations finies

Soit $C_0(\mathbf{R}_+)$ (resp. $C_0^+(\mathbf{R}_+)$) l'ensemble des fonctions continues (resp. continues croissantes) issues de zéro. Soit $\pi_t = \{t_0, \dots, t_n\}$, $0 = t_0 < t_1 < \dots < t_n = t$ une subdivision finie de l'intervalle [0;t].

Def. La **variation approchée** d'une fonction $f \in \mathcal{C}_0(\mathbf{R}_+)$ sur la subdivision π_t est $V_1(f, \pi_t, t) := \sum_{i=1}^n |f(t_i) - f(t_{i-1})|$. La fonction f est dit à **variation finie** si $\forall t, V_1(f, t) := \sup_{\pi_t} V_1(f, \pi_t, t)$ est finie.

Prop. Si $f \in \mathcal{C}_0(\mathbf{R}_+)$ est à variations finies, alors elle s'écrit d'une manière unique $f = f_+ - f_-$ où :

- (i) $f_+ \in C_0^+(\mathbf{R}_+), f_- \in C_0^+(\mathbf{R}_+),$
- (ii) $\forall f'_+, f'_- \in C_0^+(\mathbf{R}_+)$ telles que $f = f'_+ f'_-$ on a $f'_+ f_+ \in C_0^+(\mathbf{R}_+)$ et $f'_- f_- \in C_0^+(\mathbf{R}_+)$.

Nous savons que si $g \in \mathcal{C}_0^+(\mathbf{R}_+)$ alors la fonction d'ensemble $\mu(]a;b]) := g(b)-g(a)$ pour tout $a \le b$ est une mesure (de Radon) positive sur \mathbf{R}_+ . Soit $\mathrm{d}f_+$ et $\mathrm{d}f_-$ les mesures associées à f_+ et f_- de cette façon. Pour toute fonction borélienne φ sur \mathbf{R}_+ qui satisfait $\int |\varphi| \, \mathrm{d}f_+ < \infty$ et $\int |\varphi| \, \mathrm{d}f_- < \infty$, nous écrirons $\int \varphi \, \mathrm{d}f := \int \varphi \, \mathrm{d}f_+ - \int \varphi \, \mathrm{d}f_- = \int \varphi \, \mathrm{d}f_+ - \mathrm{d}f_-$). C'est l'intégrale de Lebesgue-Stieltjes par rapport à une fonction à variation finie.

2.5 Variation quadratique d'un MB

Def. La variation quadratique approchée d'une fonction $f \in C_0(\mathbf{R}_+)$ sur la subdivision π_t est $V_2(f, \pi_t, t) := \sum_{i=1}^n (f(t_i) - f(t_{i-1}))^2$.

Prop. Si f est à variation finie alors $V_2(f, \pi_t, t) \underset{|\pi_t| \to 0}{\longrightarrow} 0$ où $|\pi_t| := \max_i |t_i - t_{i-1}|$.

Démonstration. Comme f est continue sur [0;t], elle est uniformément continue, i.e $\forall \varepsilon > 0, \exists \eta > 0, \forall t_1, t_2 \in [0;t], |t_1 - t_2| < \eta \implies |f(t_1) - f(t_2)| < \varepsilon$. Par conséquent, si $|\pi_t| < \eta$,

$$V_2(f,\pi_t,t) \leqslant \varepsilon \sum_{i=1}^n |f(t_i) - f(t_{i-1})| = \varepsilon V_1(f,\pi_t,t) \leqslant \varepsilon V_1(f,t).$$

Comme ε est quelconque, on a le résultat.

Th. Sur tout intervalle [0;1] où t0, presque toutes les trajectoires d'un MB sont à variation infinie.

Régis - BDE Télécom ParisTech 4

Démonstration. On montre $\forall t > 0$, $V_2(B, \pi_t, t) \xrightarrow[|\pi_t| \to 0]{\mathcal{L}^2} t$ (*). En effet, soit $Y_n := \sum_{i=1}^n \left(B_{t_i} - B_{t_{i-1}}\right)^2$. En écrivant $B_{t_i} - B_{t_{i-1}} = \sqrt{t_i - t_{i-1}} Z_i$ où $Z_i \sim \mathcal{N}(0, 1)$ et où les Z_i sont indépendantes, on a $\mathbf{E} Y_n = t$ et

$$\operatorname{Var}(Y_n) = \sum_{i=1}^n \operatorname{Var}\left(\left(B_{t_i} - B_{t_{i-1}}\right)^2\right) = \operatorname{Var}\left(Z_1^2\right) \sum_{i=1}^n (t_i - t_{i-1})^2 \leqslant \operatorname{Var}\left(Z_1^2\right) |\pi_t| \sum_{i=1}^n (t_i - t_{i-1}) = \operatorname{Var}\left(Z_1^2\right) |\pi_t| t$$

qui tend vers 0 avec $|\pi_t|$, d'où (*).

Considérons une suite de subdivisions π_t^n telle que $|\pi_t^n| \underset{n \to \infty}{\longrightarrow} 0$. Les v.a Y_n associées tendent dans \mathcal{L}^2 , donc en probabilité, vers t. Par conséquent il existe une sous-suite $\left(\pi_t^{\varphi(n)}\right)$ telle que $V_2(B, \pi_t^{\varphi(n)}, t) \xrightarrow[n \to \infty]{p.s.} t > 0$. La proposition précédente nous dit que sur cet ensemble de proba $1, B_t$ n'est pas à variation finie.

Conclusion : on ne peut pas utiliser la théorie de Lebesgue pour construire des intégrales du type $\int_0^t \varphi(s) dB_s$.

2.6 L'intégrale de Wiener

L'intégrale de Wiener est définie sur l'espace de Hillbert $L^2(\mathbf{R}_+)$ des fonctions de carré intégrable par rapport à la mesure de Lebesgue sur \mathbf{R}_+ . C'est une isométrie entre cet espace et l'espace de Hilbert \mathcal{L}^2 des variables aléatoires qui ont un 2^{nd} moment fini. Rappelons que ces deux espaces sont munis des normes respectives $\|\varphi\|_{L^2(\mathbf{R}_+)} = \left(\int_{\mathbf{R}_+} \varphi(s)^2 \, \mathrm{d}s\right)^{\frac{1}{2}} \, \mathrm{et} \, \|X\|_{\mathcal{L}^2} = \left(\mathbf{E}\left[X^2\right]\right)^{\frac{1}{2}}.$

Th (**Intégrale de Wiener**). Soit B un MB. Il existe un opérateur linéaire isométrique $I: L^2(\mathbf{R}_+) \to \mathcal{L}^2$, unique à une classe d'équivalence près pour l'égalité presque partout, et qui satisfait $I(\mathbf{1}_{]s;t]}) = B_t - B_s$ pour tous $0 \le s \le t$. Par ailleurs $\mathbf{E}[I(\varphi)] = 0$ pour tout $\varphi \in L^2(\mathbf{R}_+)$. Nous écrivons $I(\varphi) = \int_{\mathbf{R}_+} \varphi(t) \, \mathrm{d}B_t$.

Rem. Dire que *I* est une isométrie revient à dire $\forall \varphi \in L^2(\mathbf{R}_+), \mathbf{E}[I(\varphi)^2] = [\varphi^2(x) dx$.

Démonstration. Dans un premier temps, nous construisons I sur l'ensemble $\mathcal E$ des fonctions en escalier, i.e de la forme $\varphi = \sum_{i=1}^n a_i \mathbf{1}_{]t_{i-1};t_i]}$ où $0 \leqslant t_0 < t_1 < \ldots < t_n$. Par linéarité $I(\varphi) = \sum_{i=1}^n a_i \left(B_{t_{i-1}} - B_{t_i}\right)$. Aussi nous avons sur $\mathcal E$,

$$||I(\varphi)||_{\mathcal{L}^2}^2 = \mathbf{E}\left[\left(\sum_{i=1}^n a_i(B_{t_{i-1}} - B_{t_i})\right)^2\right] = \sum_{i=1}^n a_i^2(t_i - t_{i-1}) = ||\varphi||_{L^2(\mathbf{R}_+)}^2.$$

Comme \mathcal{E} est dense dans $L^2(\mathbf{R}_+)$, l'opérateur I se prolonge d'une manière unique en une isométrie sur $L^2(\mathbf{R}_+)$. Il reste à prouver que $\mathbf{E}[I(\varphi)] = 0$ pour tout $\varphi \in L^2(\mathbf{R}_+)$. Le résultat est évident sur \mathcal{E} .

Soit $(\varphi_n)_n$ une suite de \mathcal{E} qui tend vers φ dans $L^2(\mathbf{R}_+)$. On a

$$|\mathbf{E}[I(\varphi)]| = |\mathbf{E}[I(\varphi - \varphi_n)]| \leqslant \mathbf{E}|I(\varphi - \varphi_n)| \leqslant ||I(\varphi - \varphi_n)||_{\mathcal{L}^2} = ||\varphi - \varphi_n||_{L^2(\mathbf{R}_+)}$$

en utilisant $\mathbf{E}|X| \leq \left(\mathbf{E}[X^2]\right)^{1/2}$ et I est une isométrie. Comme $|\varphi - \varphi_n|_{L^2(\mathbf{R}_+)} \longrightarrow 0$ nous avons le résultat.

Prop. On a
$$\forall \varphi \in L^2(\mathbf{R}_+), I(\varphi) \sim \mathcal{N}\left(0, \|\varphi\|_{L^2(\mathbf{R}_+)}^2\right)$$
.

Démonstration. On sait que $\mathbf{E}[I(\varphi)] = 0$ et $\mathbf{E}[I(\varphi)^2] = \|\varphi\|_{L^2(\mathbf{R}_+)}^2$. Reste à établir la gaussianité. Pour ceci il suffit d'approximer φ par une suite de fonctions dans \mathcal{E} (dont les intégrales de Wiener sont par construction des gaussiennes) et de passer à la limite en utilisant un résultat du chapitre sur la loi gaussienne.

Régis - BDE Télécom ParisTech