

ECE499/ECE590 Machine Learning for Embedded Systems (Fall 2021)

Lecture 1: Course Information and Introduction to Machine Learning

Weiwen Jiang, Ph.D.

Electrical and Computer Engineering

George Mason University

wjiang8@gmu.edu

Agenda

- Course Information
 - Logistics
 - Motivation
 - Overview
- Introduction to Artificial Neuron and MLP

Course Logistics

Course Resources

Course Website:

- https://jqub.github.io/2021/09/01/ML4Emb/
- Slides, readings, and documents will be posted here!
- Assignments will be posted here! (Until Blackboard can be used)

Blackboard:

Assignments will be posted and submitted here!

Piazza:

- Online discussion, shared documents, announcements.
- Do NOT upload codes.

About Me.

Dr. Weiwen Jiang

Background

- Researcher at University of Pittsburgh (2017-2019)
- Postdoc at University of Notre Dame (2019-2021)
- George Mason University (2021 present)

Research Interests

- HW/SW Co-Design
- Quantum Machine Learning

Contacts:

- wjiang8@gmu.edu
- (412)427-0695
- https://jqub.github.io/

Teaching Assistant

XXX

XXX@gmu.edu

Office Hours: TBD

Lecture-Presentation-Lab Hours

10-0-0 (No!)

Good Stuff

- No quizzes
- No mid-terms
- No finals
- Contents driven by demand and interest

4-3-3 (Yes!)

"Bad" Stuff

- You'll have to make presentation or critiques
- You'll have to hand-on labs
- You'll have to work on a final project
- Eventually, they will do you good!

Grading Policy

Undergraduate (ECE 499)

•	Homework & Labs	50%
•	Paper Critiques	10%
•	Project progress review	10%
•	Project final review	30%

Graduate (ECE 590)

•	Homework & Labs	50%
•	Research paper presentation	20%
•	Project progress review	10%
•	Project final review/report	20%

You have been warned. Zero tolerance!

 Lecture content and materials should NOT go online without explicit permission

No plagiarism!

The most common sense of way interpreting no plagiarism: You need to DO your work.

ML Programming Platform

Course Motivation

"MACHINE LEARNING WILL AUTOMATE JOBS THAT MOST PEOPLE THOUGHT COULD ONLY BE DONE BY PEOPLE." ~ DAVE WATERS.

ML Applications

Game Play

Autonomous Driving

Medical Al

Race of Computer Powers Enables ML

Machine Learning on the Edge

CAMERA (USB OR PI-CAMERA)

EDGE-BASED COMPUTER VISION SOLUTIONS

Why on the Edge?

Latency Problem

- Delay & Latency
- Speed
- WiFi Access

Privacy Leakage

- Data uploaded to the server
- Privacy concerns

Cost/energy efficiency considerations

Why on the Edge?

Al chip bearing artificial intelligence algorithm, billion dollar market opportunity

Big data, Maturing algorithm, Core processor for AI Chip is the key

Data

Calculation

Hardware

 Massie data and frequent human computer interaction

 Engineering methods and simulation methods require the use of convolutions.

 Insufficient calculation, AI chips provide computing power: GPU, FPGA, ASIC, TPU

Apple, Qualcomm, Spreadtrum, HiSilicon, Mediatek, annual volume

Smart appliance, digital TV, set top box, game console, VR/AR annual volume

200+
billions

Autopilot

ADAS chip market potential

Global Al Chip Market is Expanding!

Source: CCID, NVIDIA, Intel, gartner, CITIC Securities

Error rate improved exponentially

Error rate decreases by approximately 30% each year

Size of machine learning model also increases exponentially

Xu, Xiaowei, et al. "Scaling for edge inference of deep neural networks." Nature Electronics 1.4 (2018): 216.

Computing performance gap

Number of DNN **operations** increases exponentially

Performance density almost stops increasing

Storage energy efficiency gap

Number of DNN parameters increases exponentially

Energy efficiency of memory almost stops increasing

Course Overview

Open question on Machine Learning for Embedded Systems!

Machine Learning

- High computation complexity
- High storage complexity

V.S.

Embedded Systems

- Low power
- Small on-chip memory
- Low bandwidth
- Real-time requirements

How to overcome the limitations of embedded systems?

Software side: AI/ML/DL?

Artificial Intelligence (AI)

[Definition] Al is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals, which involves consciousness and emotionality.

Software side: AI/ML/DL?

Artificial Intelligence (AI)

Machine Learning (ML)

[Definition] ML is the study of computer algorithms that improve automatically through experience and by the use of data. It is seen as a part of AI.

ECE 527: Learning From Data

Software side: AI/ML/DL?

Overview: software side

Software

High Accuracy

Hardware side: from cloud to edge

ECE 350: Embedded Systems and Hardware Interfaces

Cloud GPU/CPU

General Purpose Computing

Microcontroller

Customized Computing

FPGA

Field-Programmable Gate Array

ASIC

Application Specifical Integrate Circuit

ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

8 | George Mason University

Overview

Software

Hardware

ECE 699: Hardware Accelerators for Machine Learning

7

Low-Latency

Low-Power

Overview

Optimization ML/DL Algorithms Application Computer Vision Network Inference MLP CNN AN Natural Language **Network Training LSTM** RNN RL **Model Compression** Games **MLP-Mixer Transformer Network Design** . . .

Hardware

Software

Week 1: Introduction to Artificial Neuron and MLP

Software

Hardware

Performance Model
Resource Usage
Power
Latency

Hardware Design

Mapping/Scheduling

Communication

ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

1 | George Mason University

Week 2: From Inference to Training, From MLP to CNN

ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

George Mason University

Week 3-4: From CV to NLP

Application ML/DL Algorithms **Optimization Network Inference** Natural Language **Network Training LSTM RNN Transformer** ML for Embedded Systems (Fall 2021) Dr. Weiwen Jiang, ECE, GMU George Mason University

Week 5-6: Model Compression

Application ML/DL Algorithms **Optimization Computer Vision** CNN MLP AN Natural Language LSTM RNN **Model Compression**

Dr. Weiwen Jiang, ECE, GMU

George Mason University

ML for Embedded Systems (Fall 2021)

Week 7: From Deep Learning to Deep Reinforcement Learning

Software

Hardware

Performance Model
Resource Usage
Power
Latency

Mapping/Scheduling

Communication

Week 8: RL-based Network Design (Neural Architecture Search)

Software

Hardware

Latency

Dr. Weiwen Jiang, ECE, GMU

Hardware Design

Mapping/Scheduling

Communication

ML for Embedded Systems (Fall 2021)

36 | George Mason University

Week 9: Hardware-Aware Neural Architecture Search

Software

Application
Computer Vision
Natural Language
Games

ML/DL Algorithms
AN MLP CNN

RNN LSTM RL

Transformer MLP-Mixer

Network Inference

Network Training

Model Compression

Network Design

Hardware

Week 10-11: ML Accelerator Design

Software

Application
Computer Vision
Natural Language
Games

ML/DL Algorithms
AN MLP CNN
RNN LSTM RL
Transformer MLP-Mixer

Network Inference

Network Training

Model Compression

Hardware

Week 12-14: HW/SW Co-Design with Neural Architecture Search

Software

Application
Computer Vision
Natural Language
Games

ML/DL Algorithms

AN MLP CNN

RNN LSTM RL

Transformer MLP-Mixer

Optimization
Network Inference
Network Training
Model Compression
Network Design

Hardware

ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

George Mason University

Introduction to Artificial Neuron and MLP

Week 1: Introduction to Neural Network

Software

Hardware

Performance Model
Resource Usage
Power
Latency

Mapping/Scheduling

Communication

ML for Embedded Systems (Fall 2021)

Dr. Weiwen Jiang, ECE, GMU

1 | George Mason University

Why Neural Networks

- An emulation of the biological neural systems
 - Parallel computation
 - Adaptive connections
- Very different style from sequential computation
 - Should be good for things that brains are good at (e.g., vision)
 - Should be bad for things that brains are bad at (e.g., 23 x 71)
- To solve practical problems by using novel learning algorithms inspired by the brain
 - Learning algorithms can be very useful even if they are not how the brain actually works.

Biological Neuron

Human intelligence reside

in the brain:

- Approximately 86 billion neurons in the human brain
- The brain is a **network** of **neurons**, connected with nearly $10^{14} 10^{15}$ synapses

How to equip intelligence in the machine?

- To understand how the brain network is constructed
- To mimic the brain

Biological Neuron

Neurons work together:

- Cell body process the information
- Dendrites receive messages from other neurons
- Axon transmit the output to many smaller branches
- Synapses are the contact points between axon (Neuron 1) and dendrites (Neuron 2) for message passing

Cell body receives input signal from **dendrites** and produce output signal along **axon**, which interact with the next neurons via **synaptic weights**

Synaptic weights are **learnable** to perform useful computations

(e.g., Recognizing objects, understanding language, making plans, controlling the body.)

Artificial Neuron Design

Idealized neuron models

- Idealization removes complicated details that are not essential for understanding the main principles.
- It allows us to apply mathematics and to make analogies.

The first computational model of a biological neuron @ 1943

Warren McCulloch

Walter Pitts

Assumptions:

- Binary devices (i.e., $x_i \in \{0,1\}$ and $y \in \{0,1\}$)
- Identical synaptic weights (i.e., +1)
- Activation function f has a fixed threshold θ

Boolean function 'AND' can be implemented by using MP Neuron

AND Gate

x_0	x_1	y
0	0	0
0	1	0
1	0	0
1	1	1

Boolean function 'OR' can be implemented by using MP Neuron

OR Gate

x_0	x_1	y
0	0	0
0	1	1
1	0	1
1	1	1

Boolean function XOR cannot be implemented by using MP Neuron

XOR Gate

x_0	x_1	y
0	0	0
0	1	1
1	0	1
1	1	0

MP Neuron is limited to only solve linearly separable functions!

Artificial Neuron Design

Idealized neuron models

- Idealization removes complicated details that are not essential for understanding the main principles.
- It allows us to apply mathematics and to make analogies.

Break the limitations on MP Neuron

- What about non-boolean inputs (say, real number)?
- What if we want to assign more weight (importance) to some inputs?
- Do we always need to hand code the threshold?
- What about activation functions other than threshold step function?
- What about functions which are not linearly separable?

Perceptron

What is Bias b?

Perceptron

Effect of bias b on Threshold Step activation function.

$$b = 0$$

$$z = \sum_{i} x_i w_i$$

$$y = \begin{cases} 1 & if \ z > \theta \\ 0 & otherwise \end{cases}$$

$$z = \sum_{i} x_i w_i - \theta$$

$$y = \begin{cases} 1 & if \ z > \mathbf{0} \\ 0 & otherwise \end{cases}$$

Perceptron v.s. MP Neuron

Perceptron

$$y = \begin{cases} 1 & if \sum_{i} x_i w_i + b > \mathbf{0} \\ 0 & otherwise \end{cases}$$

MP Neuron

$$y = \begin{cases} 1 & if \sum_{i} x_i > \theta \\ 0 & otherwise \end{cases}$$

In Perceptron: the inputs can be real numbers; the weights (including threshold) can be learned/trained.

In Perceptron: like MP Neuron, the Perceptron separates the input space into two halves. However, all inputs producing 1 lie on one side, and those producing 0 lie on the other side.

===> A single perceptron can still **only used to implement linearly separable functions**, but not for XOR-like function.

Artificial Neuron Design

Idealized neuron models

- Idealization removes complicated details that are not essential for understanding the main principles.
- It allows us to apply mathematics and to make analogies.

Break the limitations on MP Neuron

- What about non-boolean inputs (say, real number)?
- What if we want to assign more weight (importance) to some inputs?
- What about functions which are not linearly separable? ? => MLP
- Do we always need to hand code the threshold? ? => Training

Multi-Layer Perceptron (MLP)

Connect two neurons

Multi-Layer Perceptron (MLP)

Connect more neurons and more layers

Output Layer (Layer 3)

Hidden Layer (Layer 2)

Input Layer (Layer 1)

Lab 1: Implementing XOR using MLP on Google Colab

Assignments and Related Documents:

https://jqub.github.io/2021/09/01/ML4Emb/

Due Date: This Friday by 1 PM

 Please take this chance to evaluate the required programming background and the required bandwidth to decide whether keep or drop this course.

GMU.EDU

George Mason University

4400 University Drive Fairfax, Virginia 22030

Tel: (703)993-1000