n维向量习题课

例1 设向量组I: $\alpha_1, \dots, \alpha_m$ 与向量组II: β_1, \dots, β_n 的秩相同,且向量组II可由向量组I线性表示,证明向量组I与向量组II等价.

设 r(I) = r(II) = s, $\alpha_{i1}, \dots, \alpha_{is}$ 为向量组I的极大无关组, $\beta_{i1}, \dots, \beta_{is}$ 为向量组II的极大无关组.

由题设 $\beta_{i1}, \dots, \beta_{is}$ 可由 $\alpha_{i1}, \dots, \alpha_{is}$ 线性表示,设表示式为

$$\begin{pmatrix} \beta_{j1} \\ \vdots \\ \beta_{js} \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1s} \\ \vdots & & \vdots \\ a_{s1} & \cdots & a_{ss} \end{pmatrix} \begin{pmatrix} \alpha_{i1} \\ \vdots \\ \alpha_{is} \end{pmatrix},$$

设
$$A = \begin{pmatrix} \alpha_{i1} \\ \vdots \\ \alpha_{is} \end{pmatrix}$$
, $B = \begin{pmatrix} \beta_{j1} \\ \vdots \\ \beta_{js} \end{pmatrix}$, $K = (a_{ij})_{s \times s}$, 则 $B = KA$. $\Rightarrow r(K) = s$.

由 $s = r(B) = r(KA) \le r(K)$ 知: $r(K) \ge s$, 但显然有 $r(K) \le s$,

即 K 为可逆阵,故有 $A = K^{-1}B$,即 $\alpha_{i1}, \dots, \alpha_{is}$ 可由 $\beta_{j1}, \dots, \beta_{js}$ 线性表示,从而 $\alpha_{i1}, \dots, \alpha_{is}$ 与 $\beta_{j1}, \dots, \beta_{js}$ 等价.

由极大无关组与原向量组的等价性得 $\alpha_1, \dots, \alpha_m$ 与 β_1, \dots, β_n 等价.

注: 1. 两向量组的秩相同,不能断言两向量组等价,但附加一定的条件后可以等价. 因此要注意: 向量组的等价仅由秩相等是不够的,这一点与矩阵等价不一样.

2. 在例1中,因为 *m* 与 *n* 不一定相同,但两向量组的秩相等,故取极大无关组来做. 实际上,此题若不利用极大无关组是很难证出来的. 因此,在讨论向量组的问题时,可取其极大无关组为讨论对象.

例2 设向量组 $\alpha_1, \dots, \alpha_s$ 线性无关且向量组 β_1, \dots, β_s 可由其线性表示为

$$\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_s \end{pmatrix} = \begin{pmatrix} k_{11} & k_{12} & \cdots & k_{1s} \\ k_{21} & k_{22} & \cdots & k_{2s} \\ \vdots & \vdots & & \vdots \\ k_{s1} & k_{s2} & \cdots & k_{ss} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_s \end{pmatrix},$$

设 $K = (k_{ii})_{s \times s}$,证明 $\beta_1, \beta_2, \dots, \beta_s$ 线性无关 $\Leftrightarrow r(K) = s$.

 $\beta_1, \beta_2, \dots, \beta_s$ 线性相关 $\Leftrightarrow r(K) < s$.

 \mathfrak{S} 已知向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,则线性无关的向量组为 (C).

(A)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$$
;

(B)
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1$$
;

(C)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 - \alpha_1$$
;

(D)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1$$
.

例3 设向量组(I)与(II)等价,其中

(I)
$$\alpha_1 = (1, 3, 0, 5), \ \alpha_2 = (1, 2, 1, 4), \ \alpha_3 = (1, 1, 2, 3);$$

(II) $\beta_1 = (1, -3, 6, -1), \ \beta_2 = (a, 0, b, 2).$
 $\vec{x} \ a, b \ \text{ind}.$

$$(\alpha_1 \ \alpha_2 \ \alpha_3) = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 0 & 1 & 2 \\ 5 & 4 & 3 \end{pmatrix} \rightarrow$$
初等行变换 $\rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

故 $r(\alpha_1, \alpha_2, \alpha_3) = 2$, α_1, α_2 为一极大无关组且 $\alpha_3 = -\alpha_1 + 2\alpha_2$;故只需考察 α_1, α_2 与 β_1, β_2 之间的相互表示问题. 由于

$$(\alpha_1 \ \alpha_2 : \beta_1 \ \beta_2) = \begin{pmatrix} 1 & 1 & \vdots & 1 & a \\ 3 & 2 & \vdots & -3 & 0 \\ 0 & 1 & \vdots & 6 & b \\ 5 & 4 & \vdots & -1 & 2 \end{pmatrix} \rightarrow 39$$
 $\rightarrow 39$ $\rightarrow 39$

若 α_1,α_2 与 β_1,β_2 等价,则有

$$r(\alpha_1, \alpha_2) = r(\beta_1, \beta_2) = r(\alpha_1, \alpha_2, \beta_1, \beta_2) = 2.$$

$$tx \begin{cases} b-3a=0, \\ 2-2a=0, \end{cases} \Rightarrow \begin{cases} a=1, \\ b=3. \end{cases}$$

当a=1,b=3时,

$$(\alpha_1 \ \alpha_2 : \beta_1 \ \beta_2) \rightarrow \begin{pmatrix} 1 & 1 & \vdots & 1 & 1 \\ 0 & -1 & \vdots & -6 & -3 \\ 0 & 0 & \vdots & 0 & 0 \\ 0 & 0 & \vdots & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & \vdots & -5 & -2 \\ 0 & 1 & \vdots & 6 & 3 \\ 0 & 0 & \vdots & 0 & 0 \\ 0 & 0 & \vdots & 0 & 0 \end{pmatrix}.$$

易知 α_1 , α_2 是 α_1 , α_2 , β_1 , β_2 的一个极大无关组,故 β_1 , β_2 可由 α_1 , α_2 线性表示. 显然 β_1 , β_2 也是 α_1 , α_2 , β_1 , β_2 的一个极大无关组,故 α_1 , α_2 也可由 β_1 , β_2 线性表示.

从而当 a=1,b=3 时, $\alpha_1,\alpha_2,\alpha_3$ 与 β_1,β_2 等价.

例4 设矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 经过初等行变换得到矩阵 B,且

$$B = \begin{pmatrix} 1 & 0 & 0 & -2 \\ 0 & \frac{1}{2} & 0 & 3 \\ 0 & 0 & -1 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的一个极大线性无关组。

(并将其余向量用这个极大无关组线性表示.)

显然 r(B) = 3,故 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 3$.

因为 B 是由 A 经初等行变换得到的,也就是将向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 按"列摆行变换"得到的,故 $\alpha_1,\alpha_2,\alpha_3$ 为一个极大无关组. 又因为

$$A = (\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4) \rightarrow$$
行变换 $\rightarrow B \rightarrow$ 行变换 $\rightarrow \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$,
 故 $\alpha_4 = -2\alpha_1 + 6\alpha_2 - 5\alpha_3$.

例5 设 $\alpha_1 = (1, 0, 2), \alpha_2 = (2, 0, -3), \alpha_3 = (1, 2, 1).$

- (1) 任一向量 β = (a, b, c) 能否由向量 α_1 , α_2 , α_3 线性表示?
- (2) 证明你的结论.

$$A = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 2 \\ 2 & -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & -7 & -1 \\ 0 & 0 & 2 \end{pmatrix}.$$

故 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,从而构成 R^3 的一组基,因此任给向量 $\beta = (a,b,c)$ 都可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.