Análise da Complexidade de Algoritmos

Vinicius A. Matias

May 4, 2021

1 Introdução

Muitos problemas reais podem ser aplicados computacionalmente por meio de algoritmos. A área de análise de algoritmos visa estudar e projetar algoritmos com base no tempo e espaço ocupado para uma solução ótima (de menor custo possível).

As maneiras mais comuns para medir o custo de algoritmos são: medição direta (medir o tempo de processamento com base no tempo real, logo, é influenciado pelo hardware); custo baseado em um computador ideal (valores tabulados por linguagem de programação para medir o custo de cada operação); e por meio das operações mais significativas (mais utilizada, focando em identificar as operações que aumentam o custo do algoritmo).

2 Função de complexidade

Para a análise de complexidade seguindo a operação de maior custo, podemos definir uma função de complexidade f(n), onde n é o tamanho da entrada e f(n) é o número de comparações necessárias para resolver um problema. Vamos exemplificar o problema utilizando o trecho de código em Python na Listing 1. Este código recebe um vetor ou lista A, que tem tamanho n (determinado por pelo comando len().

Listing 1: Maior valor de um arranjo

A operação crítica para este algoritmo é determinada pelo if da linha 6, cuja troca pode ser feita, no pior caso, n-1 vezes. Note que antes de se iniciar o loop, max é definido como o primeiro valor do arranjo, consequentemente, é desnecessário utilizar este valor no while (logo, o loop começa do segundo valor e vai até o último, com n-1 comparações). Portante, a função de complexidade para este algoritmo é $f(n) = n-1, \ \forall \ n > 0$. Ainda não foram tratadas as técnicas para definir se um algoritmo é ótimo, mas no caso deste algoritmo, já foi provado que o mínimo de operações necessárias é n-1 (para um arranjo desordenado), logo, este é um algoritmo ótimo.

Projetemos agora um novo algoritmo que calcule o máximo e mínimo de um arranjo no mesmo laço (Listing2). Para desenvolvê-lo reaproveitamos o código do máximo valor em um arranjo e adicionamos uma segunda comparação, caso a primeira tenha falhado (isto é, se o valor na posição atual não for o maior, verificamos se é menor).

Listing 2: Maior e menor valor de um arranjo

```
def max_min_array(A):
    max = min = A[0]
    i = 1

while i < len(A):
    if A[i] > max:
    max = A[i]
    elif A[i] < min:
    min = A[i]
    i += 1

return [max, min]
```

Pela análise do algoritmo, percebe-se que o melhor caso (menor número de comparações) ocorre quando realizamos apenas o primeiro if, isto é, apenas comparamos o valor atual do arranjo com o maior valor registrado até o momento. Este caso ocorre quando o arranjo é passado ordenado, logo, o valor mínimo nunca será

alterado e o valor máximo sempre será trocado, resultando em n-1 operações.

O pior caso é quando realizamos a segunda operação em todas as iterações. Para isto acontecer basta que o primeiro valor do arranjo seja o valor máximo, portanto, o primeiro teste sempre irá falhar e o segundo sempre será executado. Importante notar que o pior caso inclui o arranjo em ordem decrescente, mas não somente. Dado que o laço corre n-1 vezes e realizamos duas comparações nele, nosso algoritmo tem f(n)=2(n-1). Novamente, tanto o melhor caso quanto o pior caso são dados para todo n>0.

Tipicamente, estamos interessados em identificar o custo do algoritmo no pior caso, mas técnicas para determinar a complexidade de algoritmos no caso médio, melhor e pior caso serão discutidas nos próximos tópicios.

2.1 Exercícios

1. Determine a função de complexidade da busca sequêncial de um vetor A d tamanho n para o melhor caso, pior caso e caso médio.

Resolução:

- Pior caso: a busca passará pelos n elementos, logo, f(n) = n
- Melhor caso: o primeiro elemento é o valor buscado, logo, f(n) = 1
- Caso médio: Para este problema, podemos dizer que devemos passar por 50% dos elementos para encontrar o valor, portanto f(n) = n/2

Listing 3: Busca sequêncial

```
def linear_search(A, target):
    n = len(A)

for i in range(n):
    if A[i] == target:
        return i

return -1
```

3 Crescimento Assintótico

Como já deve ter ficado claro, as funções de complexidade dependem de n, o que deve ser o responsável por aumentar o tempo de execução do algoritmo. A tabela 1 mostra o cresimento na quantidade de operações para três n's em três diferentes funções de complexidade. O algoritmo para retornar os valores da tabela foi construído em R.

Table 1: Comportamento Assintótico

	100	1000	10^{6}
$\log n$	2	3	6
n	100	1000	1e + 06
$n \log n$	200	3000	6e + 06
n^2	1e+04	1e + 06	1e + 12
$100n^2 + 15n$	1e + 06	1e + 08	1e + 14
2^n	1.3e + 30	1e + 301	Inf

Note que a entrada n sempre aumentará a quantidade de operações, mas a função de complexidade interfere muito mais no aumento do custo. Na análise da complexidade dos algoritmos nos interessará encontrar, por exemplo, a partir de qual valor de n uma função se torna maior que outra (ou, em palavras bonitas, quando uma função domina assintóticamente outra função). Veja na figura 1 um exemplo. Caso necessário, dê zoom na imagem, mas o eixo x representa os valores de n(0 à 100) e y a quantidade de operações. A partir de n = 5 a função vermelha passa a crescer mais que a função azul mediante o aumento do n. À título de curiosidade, a função vermelha cresce em x^3 e a função azul cresce em 5x.

Figure 1: Crescimento no número de operações para diferentes valores de n em duas funções de complexidade

4 Notação O

A notação \mathcal{O} (leia-se O grande ou Big-O) diz que f(n) cresce no máximo ou tanto quanto g(n) pela notação $f(n) = \mathcal{O}(g(n))$.

Definition 4.1. $\mathcal{O}(g(n)) = \{f(n): \text{ existem constants positivas } c \in n_0 \text{ tais que } 0 \leq f(n) \leq cg(n), \text{ para todo } n \geq n_0\}$

4.1 Exemplo

Demonstrar que $f(n) = \frac{3}{2}n^2 - 2n \in \mathcal{O}(n^2)$. Isso é o mesmo que dizer que existem constantes positivas c e n_0 onde: $0 \le f(n) \le cg(n)$ Resolvendo $0 \le f(n)$:

Step 1: $0 \le \frac{3}{2}n^2 - 2$

Step 2: $0 \le n(\frac{3}{2}n - 2)$

Como n ≥ 0 , a multiplicação $n(\frac{3}{2}n-2)$ vai ser maior ou igual à zero se $\frac{3}{2}n-2$ for maior ou igual à zero. Resolvendo essa multiplicação temos:

Step 3: $0 \le \frac{3}{2}n - 2n$

Step 4: $2 \le \frac{3}{2}n$

Step 5: $\frac{2}{3/2} \le n$

Step 6: $\frac{4}{3} \le n$

Logo, n deve ser maior ou igual à 4/3

Resolvendo $\frac{3}{2}n^2 - 2n \le cn^2$ (note que $g(n) = n^2$ para $\mathcal{O}(n^2)$:

Step 1: $\frac{3}{2}n^2 - 2n \le cn^2$

Step 2: $n(\frac{3}{2}n - 2) \le cn^2$

Step 3: $\frac{3}{2}n - 2 \le cn$

Step 4: $-2 \le cn - \frac{3}{2}n$

Step 5: $cn - \frac{3}{2}n \ge -2$

Step 6: $n(c - \frac{3}{2}) \ge -2$

Como n $\geq 0,$ a multiplicação $n(c-\frac{3}{2})$ é maior ou igual que -2 quando $(c-\frac{3}{2})\geq 0$

Step 7: $c - \frac{3}{2} \ge 0$

Step 8: $c \ge \frac{3}{2}$

Logo, $c \ge 3/2$ e $n \ge 0$

Como $n \geq 4/3, n \geq 0ec \geq 3/2$, podemos escolher constantes n_0 e c que satisfaçam essas condições. Como exemplo:

$$n_0 = 2, c = 3/2$$

5 Notação Ω

A notação Ω (Omega) significa que f(n) cresce mais ou tão rápido quanto g(n), ou que f(n) domina g(n)

Definition 5.1. $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \leq cg(n) \leq f(n), \text{ para todo } n \geq n_0\}$

5.1 Exemplo

Demonstrar que $f(n) = \frac{3}{2}n^2 - 2n \in \Omega(n^2)$. Isso é o mesmo que dizer que existem constantes positivas c e n_0 onde: $0 \le cg(n) \le f(n)$ Resolvendo $0 \le cg(n)$:

Step 1: $0 \le cn^2$

Se $n \geq 0$, a condição também é satisfeita para $c \geq 0$

Resolvendo $cg(n) \leq f(n)$

Step 1: $cn^2 \le \frac{3}{2}n^2 - 2n$

Step 2: $cn^2 < n(\frac{3}{2}n - 2)$

Step 3: $cn \leq \frac{3}{2}n - 2$

Step 4: $2 \le \frac{3}{2}n - cn$

Step 5: $2 \le n(\frac{3}{2} - c)$

Como n e c são maiores que 0, a inequação será verdadeira para $(\frac{3}{2}-c)>0$ e um consequente valor mínimo de n.

Step 6: $(\frac{3}{2} - c) > 0 \rightarrow c < \frac{3}{2}$

Como precisamos de um c < 3/2, consideraremos c = 1 aplicado ao passo 5

Step 7: $2 \le n(\frac{3}{2} - 1)$

Step 8: $2 \le n(\frac{1}{2})$

Step 9: $4 \le n \to n \ge 4$

Logo, $\frac{3}{2}n^2-2n\in\Omega(n^2)$ para $n_0=4$ ec=1

6 Notação Θ

A notação Θ (Theta) diz que uma função de complexidade f(n) cresce no mínimo tão lentamente quanto $c_1g(n)$ e no máximo tão rapidamente quanto $c_2g(n)$, logo, f(n) deverá crescer junto à g(n), ou seja, tão rapidamente quanto g(n).

Definition 6.1. $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \text{ para todo } n \geq n_0 \}$

Note que $0 \le c_1 g(n) \le f(n)$ é a definição de \mathcal{O} para um $c = c_1$ (f(n) domina g(n)), e que $0 \le f(n) \le c_2 g(n)$ é a definição de Ω para $c = c_2$ (g(n) domina f(n)). A partir disso podese concluir duas coisas.

A primeira conclusão é algo que foi mencionado no parágrafo anterior à definição: $\Theta(g(n))$ significa que uma função cresce tão rapidamente quanto g(n). Se f(n) domina e é dominado por g(n), f(n) deve crescer tão rapidamente quanto g(n).

A segunda conclusão é que para definir as constantes de $\Theta(g(n))$, podemos utilizar as constantes c e n_0 encontradas em $\mathcal{O}(g(n))$ e $\Omega(g(n))$, tomando o cuidado de se escolher um n_0 que satisfaça as condições de $\mathcal{O}(g(n))$ e $\Omega(g(n))$.

6.1 Exemplo

Demonstrar que $f(n) = \frac{3}{2}n^2 - 2n \in \Theta(n^2)$. Isso é o mesmo que dizer que existem constantes positivas c_1 , c_2 e n_0 onde:

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

Como $cf(n) \in \mathcal{O}(g(n))$ para $c = \frac{3}{2}$ e $n_0 = 2$;

 $cf(n) \in \Omega(g(n))$ para c=1 e $n_0=4$ Podemos concluir que $f(n)=(3/2)n^2-2n \in \Theta(n^2)$ para $c_1=1, c_2=3/2$ e $n_0=4$.

7 Notação o

A notação o(g(n)) ("o" minúsculo ou "o" pequeno) diz que uma função f(n) cresce mais lentamente que g(n).

Definition 7.1.
$$o(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0 \mid 0 \le f(n) < cg(n), \forall n \ge n_0\}$$

7.1 Exemplo

Demonstrar que $1000n^2 \in o(n^3)$ (uma função quadrática cresce mais lentamente que uma função cúbica)

Demonstrar que $f(n) \in o(g(n))$) é o mesmo que mostrar que para toda constante positiva c, existe um valor de $n_0 > 0$ que satisfaça a inequação $0 \le f(n) < cg(n)$

Logo, deve-se encontrar uma função de n_0 em relação à c para $0 \le 1000 n^2 < c n^3$

Resolvendo $0 \le 1000n^2$ identificamos que o resultado é válido para qualquer valor real de n. Resolvendo $1000n^2 < cn^3$:

Step 1: $1000n^2 < cn^3$

Step 2: 1000 < cn

Step 3: 1000/c < n

Step 4: n > 1000/c

Dada esta inequação, precisamos formular uma equação para n_0 que siga as diretrizes de n estritamente maior que 1000/c. Uma equação possível é $n_0 = \frac{1000}{c} + 1$.

Assim, encontramos uma função de n_0 em função de c
 que satisfaz $0 \le 1000n^2 < cn^3$, sendo essa a função $n_0 = \frac{1000}{c} + 1$.

8 Notação ω

A notação $\omega(g(n))$ (ômega pequeno) diz que uma função f(n) cresce mais rapidamente que g(n).

Definition 8.1. $o(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0 \mid 0 \le cg(n) < f(n), \forall n \ge n_0\}$

8.1 Exemplo

Demonstrar que $\frac{n^2}{1000} \in \omega(n)$ (uma função quadrática cresce mais rapidamente que uma função linear)

Demonstrar que $f(n) \in \omega(g(n))$) é o mesmo que mostrar que para toda constante positiva c, existe um valor de $n_0 > 0$ que satisfaça a inequação $0 \le cg(n) < f(n)$

Logo, deve-se encontrar uma função de n_0 em relação à c para $0 \le cn < \frac{n^2}{1000}$

Resolvendo $0 \le cn$ identificamos que o resultado é válido para qualquer valor positivo de n

Resolvendo $cn < \frac{n^2}{1000}$

Step 1: $cn < \frac{n^2}{1000}$

Step 2: $c < \frac{n}{1000}$

Step 3: $1000c < n \rightarrow n > 1000c$

Dada esta inequação, precisamos formular uma equação para n_0 que siga as diretrizes de n estritamente maior que 1000c. Uma equação possível é $n_0 = 1000c + 1$.

Assim, encontramos uma função de n_0 em Step 4: $1 - \frac{c_2}{4} \le 0$ função de c que satisfaz $0 \le cn < \frac{n^2}{1000}$, sendo essa a função $n_0 = 1000c + 1$.

Exercícios 9 de demonstração

$\log_2 n \in \Theta(\log_{16} n)$ 9.1

Demonstrar que $\log_2 n \in \Theta(\log_{16} n)$ é o mesmo que achar constantes positivas c_1, c_2 e n_0 tais que a inequação $0 \le c_1 \log_{16} n \le \log_2 n \le$ $c_2 \log_{16} n$ seja verdadeira.

Primeiro, note que a propriedade de mudança de base dos logaritmos (ChiliMath, 2021) pode ser utilizada para trocar a base 16 de $\log_{16} n$

para base 2. Assim:
$$\log_{16} n = \frac{\log_2 n}{\log_2 16} = \frac{\log_2 n}{4}$$

Podemos então reconstruir a inequação como: $0 \le c_1 \frac{\log_2 n}{4} \le \log_2 n \le c_2 \frac{\log_2 n}{4}$ Resolvendo $0 \le c_1 \frac{\log_2 n}{4}$, notamos que a inequação será verdadeira para todo $c_1 \ge 0$ e para todo n>0, visto que o log de 0 não é definido. Resolvendo $c_1\frac{\log_2 n}{4}\leq \log_2 n$:

Step 1:
$$c_1 \frac{\log_2 n}{4} \le \log_2 n$$

Step 2:
$$c_1 \frac{\log_2 n}{4} - \log_2 n \le 0$$

Step 3:
$$\log_2 n(\frac{1}{4}c_1 - 1) \le 0$$

A inequação será verdadeira para n >0 e para $\frac{1}{4}c_1 - 1 \leq 0$, resolvendo essa segunda inequação:

Step 4:
$$\frac{1}{4}c_1 - 1 \le 0$$

Step 5:
$$\frac{1}{4}c_1 \le 1$$

Step 6:
$$c_1 \le 4$$

Logo, n > 0 e $c_1 \leq 4$ satisfazem a condição. Pode ser considerado, portanto:

$$n_0 = 1 e c_1 = 3$$

Resolvendo $\log_2 n \leq c_2 \frac{\log_2 n}{4}$:

Step 1:
$$\log_2 n \le c_2 \frac{\log_2 n}{4}$$

Step 2:
$$\log_2 n - c_2 \frac{\log_2 n}{4} \le 0$$

Step 3:
$$\log_2 n \ (1 - \frac{c_2}{4}) \le 0$$

A inequação será verdadeira para n > $0 \text{ e para } (1 - \frac{c_2}{4}) \leq 0$, resolvendo essa segunda inequação:

Step 4:
$$1 - \frac{c_2}{4} \le 0$$

Step 5:
$$1 \le \frac{c_2}{4}$$

Step 6:
$$4 \le c_2 \to c_2 \ge 4$$

Logo, $n_0 > 0$ e $c_2 \ge 4$ satisfazem a condição. Pode ser considerado, por-

$$n_0 = 1 e c_2 = 5$$

Portanto, as constantes $n_0 = 1$, $c_1 = 3$ e $c_2 = 5$ satisfazem as regras para demonstrar que $\log_2 n \in \Theta(\log_{16} n)$

9.2
$$n^3 \in \omega(n)$$

Demonstrar que $n^3 \in \omega(n)$ é o mesmo que achar uma função de n_0 em relação à c que obedeça a inequação $0 \le cn < n^3$

Resolvendo $0 \le cn$, notamos que a inequação será verdadeira para qualquer $c \geq 0$ e $n \geq 0$.

Resolvendo $cn < n^3$ temos:

Step 1:
$$cn < n^3$$

Step 2:
$$c < n^2$$

Step 3:
$$(c)^{\frac{1}{2}} < (n^2)^{\frac{1}{2}}$$

Step 4:
$$c^{\frac{1}{2}} < n$$

Step 5:
$$n > c^{\frac{1}{2}}$$

Step 6:
$$n > \sqrt{c}$$

Logo, uma possível função para definir $n_0 \notin n_0 = \sqrt{c} + 1$

9.3
$$n \in \Omega(\sqrt{n})$$

Demonstrar que $n \in \Omega(\sqrt{n})$ é o mesmo que encontrar constantes $c \geq 0$ e $n_0 \geq 0$ que satisfaçam a inequação $0 \le c\sqrt{n} \le n$.

Notamos que $0 \le c\sqrt{n}$ sempre será maior que 0 para qualquer constante c e n maiores ou iguais

Resolvendo $c\sqrt{n} < n$:

Step 1:
$$c\sqrt{n} \le n$$

Step 2:
$$c\sqrt{n} * (\frac{\sqrt{n}}{n}) \le n * (\frac{\sqrt{n}}{n})$$

Step 3:
$$c^{\frac{n}{n}} \leq \frac{n}{n} \sqrt{n}$$

Step 4:
$$c < \sqrt{n} \rightarrow \sqrt{n} > c$$

Step 5:
$$(\sqrt{n})^{\frac{1}{2}} \ge (c)^{\frac{1}{2}}$$

Step 6:
$$n \ge \sqrt{c}$$

Assim, valores de n_0 e c que obedecem $n \ge \sqrt{c}$ podem ser $n_0 = 2$ e c = 4

9.4
$$\sqrt{n} \in o(n)$$

Demonstrar que $\sqrt{n} \in o(n)$ é o mesmo que encontrar uma função para n_0 em relação à c onde a inequação $0 \le \sqrt{n} < cn$. Note que $0 \le \sqrt{n}$ é verdadeiro para todo n maior ou igual à zero.

Resolvendo $\sqrt{n} < cn$:

Step 1:
$$\sqrt{n} < cn \rightarrow cn > \sqrt{n}$$

Step 2:
$$c > \frac{\sqrt{n}}{n}$$

Step 3:
$$c > \frac{1}{\sqrt{n}}$$

Logo, uma equação possível é $c = \frac{1}{\sqrt{n}} + 1$

9.5
$$10n^2 - 10n \in \mathcal{O}(n^2)$$

Demonstrar que $10n^2-10n\in\mathcal{O}(n^2)$ é o mesmo que encontrar constantes positivas c e n_0 onde $0\leq 10n^2-10n\leq cn^2$

Resolvendo $0 \le 10n^2 - 10n$, notamos que o polinômio será sempre maior ou igual à zero para qualquer $n \ge 0$.

Resolvendo $10n^2 - 10n \le cn^2$

Step 1:
$$10n^2 - 10n \le cn^2$$

Step 2:
$$10n \le cn^2 - 10n^2$$

Step 3:
$$10n \le n^2(c-10)$$

Step 4:
$$10 \le n(c-10)$$

Step 5:
$$n(c-10) \ge 10$$

Considerando que n sempre será maior que 0, a verdade da inequação depende que (c-10) seja estritamente maior que 0, ou seja $c-10>0 \to c>10$.

Assim, a inequação é verdadeira para n>0 e c>10. Constantes possíveis são $n_0=1$ e c=11.

10 Referências

ChiliMath. 2021. **Proofs of Logarithm Properties or Rules**. Disponível em: https://www.chilimath.com/lessons/advanced-algebra/proofs-of-logarithm-properties. Acesso em 4 de maio de 2021.