	Yesterday Topic 4: Sequences
	$a: \mathbb{N} \longrightarrow \mathbb{R}$ $a_{0,a_{1},a_{2},a_{3},\ldots}$
	$(a_n)_{n \in \mathbb{N}}$
	,
	Bounded JBER: an EB Vn
	Monotonic Increasing any > an Yn
	Decreasing and fan Yn
	Limit of a sequence (an) net in L
	⇒ YE>O F NEN such that n>N⇒
	$ a_n-L <\varepsilon$
	We say an >> L as n >> 0
<u> </u>	an converges
	Theorem Convergent => Bounded
	Theorem Monotonic increasing bounded above
√	Theorem Monotonic increasing bounded above
Simil	ar Monotonic decreasing, bounded below —) convergent.

	Basic Laws for Limits of Sequences
	Segmences
	Suppose (an) new (bn) new
	are both convergent, with
	limits
_	Then
	(antbn) new converges to L+M
	/ N E 1 V
	(kan) neil converges to ke
	(and neil) conveyes to LM
	$(a_n/b_n)_{n\in\mathbb{N}}$ (if b_n is never zero) $(a_n/b_n)_{n\in\mathbb{N}}$ (onverges to $1/m$ $(if M \neq 0)$
	bn) nell
	$(i+m \pm 0)$
	$\left\{ \begin{array}{c} a_n = \frac{1+n}{n} & -\frac{1+\frac{1}{n}}{n} & \rightarrow \\ b_n = \frac{1}{n} & -\frac{1}{n} & \rightarrow \end{array} \right\} = \left[\begin{array}{c} a_n + a_n \\ a_n = \frac{1+n}{n} \\ \end{array} \right] = \left[\begin{array}{c} a_n + a_n \\ a_n = \frac{1+n}{n} \\ \end{array} \right]$
CONVERGE	$\begin{pmatrix} 1 & - & 1 $
Lyprope	can = I+n unbounded
Cr. va g	$s \frac{a_n}{b_n} = +n $ unbounded so not convergent
	Proofs of limit laws one similar to those in Topi 2 "5" "N"
	to those in 10pm 2.0 N

We know convergent sequences are bounded, but the converse in general the converse is false.
, are bounded
but the converse in general the
Example
1,-1,1,-1,, bounded <u>not</u> convergent
But it does have convergent
subsequences
Still bounded but now also convergen + Similarly azr+1 = -1
SUM GOUNDIEN OUT NOW
Similarly azr+1 = -1 Vn
Definition A subsequence of
(an) ne IN is a sequence (6m) men
defined by - b_m = an_m
where $n_0 < n_1 < n_2 < \dots -$
ica striction increasing sequence
is a strictly increasing sequence of natural numbers

Theorem (Bolzano Weiers trass) theorem
theoren
Every bounded sequence has
at least one conveyent
Every bounded sequence has at least one conveyout subsequence
Proof next video!)
Definition (Carichy sequences)
A sequence $(a_n)_{n \in \mathbb{N}}$ has the Cauchy property if
Cauchy property it
VESO FINEIN such that
$n,m>N=) a_n-a_m < \varepsilon$
Compare with definition of
VE>O FNEIN such that

Strategy: to prove Caudry (=>) convergent One direction is easy: IF (an) is convergent then it is Cauchy Pt If an > L as n > 00 then given E>O we know 3 NEN: n>N => | an-L | < \(\xi_2\) $\leq n, m > N \Rightarrow$ $\frac{1}{|a_n-L|} \leq \frac{1}{2} \left| \frac{a_m-L}{2} \right| \leq \frac{1}{2} \left| \frac$ by the LEZ EZ EZ Lineaudity = E So we have shown (o.) nEN is a Couchy sequence