电路基础实验报告

实验名称:		戴维南定理和诺顿定理				
班	级: _	22 材物	学 号:	22301056		
姓	名: _	王俊杰	合 作 者:	王慷		
桌	묵:	27	实验日期:	2024.5.21		

1 实验目的

- 1. 加深对戴维南定理和诺顿定理的理解。
- 2. 学习戴维南等效参数的各种测量方法。
- 3. 理解等效置换的概念。
- 4. 学习直流稳压电源、万用表、直流电流表和电压表的正确使用方法。

2 实验原理

2.1 戴维南定理

戴维南定理是指一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和一个电阻的串联组合来等效置换。此电压源的电压等于该端口的开路电压 U_{OC} ,而电阻等于该端口的全部独立电源置零后的输入电阻,如图 1 所示。这个电压源和电阻的串联组合称为戴维南等效电路。等效电路中的电阻称为戴维南等效电阻 R_{eq} 。

所谓等效是指用戴维南等效电路把有源一端口网络置换后,对有源端口(1-1')以外的电路的求解是没有任何影响的,也就是说对端口1-1'以外的电路而言,电流和电压仍然等于置换前的值。外电路可以是不同的。

2.2 诺顿定理

诺顿定理是戴维南定理的对偶形式,它指出一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电导的并联组合来等效置换,电流源的电流等于该一端口的短路电流 $I_{\rm SC}$,而电导等于把该一端口的全部独立电源置零后的输入电导 $G_{\rm eq}=\frac{1}{R_{\rm eq}}$,见图 1。

戴维南一诺顿定理的等效电路是对外部特性而言的,也就是说不管是时变的还是定常的,只要 含源网络内部除独立的电源外都是线性元件,上述等值电路都是正确的。

图 1: 一端口网络的等效置换

3 实验仪表

RIGOL DM3058 万用表、RIGOL DP832 直流稳压电源、电路分析实验箱、导线若干。

4 实验内容

- 1. 计算与测量有源一端口网络的开路电压、短路电流
 - (a) 计算有源一端口网络的开路电压 $U_{\rm OC}$ 、短路电流 $I_{\rm SC}$ 。结果记入表 1 中。
 - (b) 测量有源一端口网络的开路电压 U_{OC} , 可采用以下几种方法:
 - i. 直接测量法。
 - ii. 间接测量法。又称补偿法,分为补偿法一、补偿法二、补偿法三。
- 2. 计算与测量有源一端口网络的等效电阻 R_{eq}
 - (a) 计算有源一端口网络的等效电阻 R_{eq} 。当一端口网络内部无源时(把双刀双投开关 K1 合向短路线),计算有源一端口网络的等效电阻 R_{eq} 。把计算结果记入表 1 中。
 - (b) 测量有源一端口网络的等效电阻 R_{eq} 。可根据一端口网络内部是否有源,分别采用如下方法测量:
 - i. 开路电压、短路电流法。
 - ii. 伏安法。
 - iii. 半流法。
 - iv. 半压法。
 - v. 直接测量法。
- 3. 验证戴维南定理,理解等效概念
- 4. 验证诺顿定理,理解等效概念

5 实验结果与分析

5.1 实验结果

实验结果如表 1-5 所示。

表 1: 戴维南等效参数计算

表 2: 等效电压源电压 Uoc 测量结果

参数	计算值	方法	$U_{\mathrm{OC}}(\mathrm{V})$
$U_{ m OC}$	4 V	直接测量	4.060
$I_{ m SC}$	$20\mathrm{mA}$	补偿法之一	4.000
$R_{ m eq}$	200Ω	补偿法之二	4.061
		补偿法之三	4.060

5.2 分析

测量等效电阻时的不同方法相比,半流法和单臂电桥法测量的电阻与其他数据相差较大,可能是因为电流表在测量时量程一直自动变化导致的误差较大。

根据表 4、5 的数据可以看出,等效电路的外特性与原网络的外特性几乎相同,在一定程度上 验证了戴维南一诺顿定理。

表 3: 戴维南等效电阻 Req 计算

表 4: 验证戴维南定理

		电路	$U_{ m R6}({ m V})$	$I_{ m R6}({ m mA})$
采取方法	测量值 (Ω)	等效电路	1.349	13.59
开路电压、 短路电流法	199.7	原 N 网络	1.282	12.89
伏安法	200.06	- - -	表 5: 验证诺顿定理	E
半流法 半压法	214 199.7	电路	$U_{ m R6}({ m V})$	$I_{ m R6}({ m mA})$
万用表 单臂电桥	$199.135 \\ 228.7$	等效电路 原 N 网络	1.310 1.282	13.26 12.89

5.3 误差分析

- 1. 万用表在测量电阻时会有内部电阻,这个电阻值会对测量结果产生影响,特别是在测量较小阻值时。
- 2. 选择不当的测量范围也可能导致误差,如果选择的范围过大,测量会不准确;如果选择的范围过小,则可能会损坏仪器或导致不准确的读数。此次实验量程为自动确定,不能确定是是否选到了合适的量程。
- 3. 温度、湿度等环境因素也会对测量结果产生影响。
- 4. 元件长时间摆放导致内部结构发生变化,导致实际值发生变化。

6 思考题

6.1 用开路电压、短路电流法测量等效电阻时,开路电压、短路电流是否可以同时进行测量,为什么?

不能,因为接入电流表测量短路电流时,该电路就无法测量开路电压了。

7 实验心得

此次实验验证戴维南一诺顿定理,在实际操作中,观察到了由于仪器误差和连接线电阻带来的 微小偏差,但总体上实验结果符合理论预期。这些实验不仅加深了我对戴维南一诺顿定理的理解, 也提升了在实际电路中应用戴维南一诺顿定理的能力。

8 原始数据

2後末.. 22301·56

がくべい。 かり、ち・シー 実验五 戴维南定理和诺顿定理实验记录表

表1 戴维南等效参数计算

			WE	241日中104年	,
序号	 计	算	有源一	·端口电路参数	
1	U _{oc} =U ₁₁ .	4 V	$R = \bigcup_{U \in \mathbb{N}} \bigcup_{R,3} \mathbb{R}$	$U_{\text{SN}}\!\!=\!\!12\text{V}$	
2	I _s =I _{11'}	20 mA	R_2 R_4	$R_i=120 \Omega$	$R_2=360~\Omega$
3	R _{eq} ≈R ₁₁ ·	γ ov Ω	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R ₃ =240 Ω	R₄=180Ω

表 2 等效电压源电压 U.。测量结果

序号	采取方法	U_{oc}	条件说明
		(V)	
1	直接测量	4.06	N 网络有源 U _{sn} =12V
2	补偿法之一	4	N 网络有源,外加电源 Us 电压从 1V 增加到 1、2 两端等电位时(发光管不亮)
3	补偿法之二	4.061	N 网络有源,外加电源 Us电压从 1V 增加到 1、2 两端等电位时(电压表指 0)
4	补偿法之三	4.060	N 网络有源,外加电源 Us 电压从 1V 增加到 1、2 两端等电位时(电流表或检流计指 0)

表 3 戴维南等效电阻 Req测量(计算) 结果

序号	号 采取方法		测量(计算)Req	条件说明
1	开路电压、		Uoc=4x06V, Isc=20.33mA	N 网络有源
	短	路电流法	$R_{eq}=U_{oc}/I_{SC}=$ 19.7 Ω	U _{SN} =12V
2		伏安法	Us=10.00\$, Is2=49.99mA	N 网络无源
			$R_{eq}=U_{S}/I_{S2}=200.4\Omega$	外加电源 Us=10V
3	3 半流法		$R_{eq}=R_{w}=\chi \Psi \Omega$	N 网络无源
				外加电源 Us=10V
4	4 半压法		R _{eq} =R ,= 19.7 Ω	N网络无源
			red I'M 1 1/1 an	外加电源 Us=10V
5	直	万用表	Req=199.135	N 网络无源
	接	`,	. (** 9)	
6	単臂电桥 		$R_{eq} = 228 - 7\Omega$	N 网络无源(自备仪器)
	013			

表 4 验证戴维南定理

序	号		外接负载	测量负载电压、电流	
		-		U _{R6} (V)	I _{R6} (mA)
	戴维南等效用	且路电压源 U₀c串 Req	100 Ω		
	U _{oc} =3. 9	V, R_{eq} =200 Ω	100 52	1.349	13.59
2	原N网络	原 N 网络有源 Usn =12V			
	网络端口	□ 1-1′外接	100 Ω	1.282	12.29
	比较 1、2				
3	测量结果				
	进行说明				

表 5 验证诺顿定理

序号	电 路	路	外接负载	测量负载电压、电流	
	5 7.1		(Ω)	U _{R6} (V)	I _{R6} (mA)
1	诺顿等效电路电流源 I _{sc} 并 R _{eq} I _{sc} = 18.8mA, R _{eq} =200Ω		100 Ω	1.3)	13.26
2	原 N 网络有源 U _{sn} =12V 网络端口 1-1′外接		100 Ω	1.282	12.29
3	比较 1、2 测量结果 进行说明				