11/14

Nathan Keough Acknowledgements:

3.3.2 For each of the following, prove that there is at least one $x \in \mathbb{R}$ which satisfies the given equation.

a.
$$e^x = x^3$$

Proof.

Let $f(x) = e^x$ and $g(x) = x^3$. Notice that f and g are both continuous on \mathbb{R} . Now let h(x) = f(x) - g(x).

h must be continuous on \mathbb{R} since f, g are both continuous on \mathbb{R} .

Now, consider $h(x) > 0 \implies f(x)$ lies on top of g(x) and f(x) < 0

 $\implies g(x)$ lies on top of f(x), when graphed.

If h(x) = 0, then $e^x = x^3$ is satisfied.

It suffices to find an $x \in \mathbb{R} \ni h(x) > 0$ and an $x \ni h(x) < 0$.

So let $x=1, h(1)\approx 1.72$ and let $x=2, h(2)\approx -0.61$.

Since, h is continuous on \mathbb{R} , h is closed on [1, 2], and $h(1) \leq 0 \leq h(2)$, \exists at at least one $x \in \mathbb{R} \ni f(x) = 0$ by the Intermediate Value Therem.

3.3.4 If $f:[a,b]\to [a,b]$ is continuous, then f has a fixed point; that is, there is a $c\in [a,b]$ such that f(c)=c.

Proof.

Let $f:[a,b] \to [a,b]$.

If f(a) = a or f(b) = b, then we have shown f(c) = c, otherwise, we may assume that a < f(a) < f(b) < b.

Consider g(c) = f(c) - c. Then g(a) = f(a) - a > 0 and

g(b) = f(b) - b < 0. [AP]

Since g(a) > 0 and $g(b) < 0, \exists c \in [a, b] \ni 0 = g(c) = f(c) - c$.

 \therefore if $f:[a,b]\to [a,b]$ is continuous, then f has a fixed point; that is, there is a $c\in [a,b]$ such that f(c)=c.