

## Lintasan parabola



## Bagaimana Gerak Parabola Terjadi?

Gerak parabola adalah gerakan dua dimensi yaitu gerak lurus beraturan pada sumbu horizontal (X) dan gerak lurus berubah beraturan pada sumbu vertikal (Y) secara terpisah.



#### Tiga Asumsi

- 1. Percepatan jatuh bebas, g, memiliki besar yang tetap.
- 2. Pengaruh hambatan udara atau gesekan udara diabaikan.
- 3. Rotasi bumi tidak mempengaruhi gerakan

## Kecepatan Partikel pada suatu Bidang



### Secara vektor

$$v_{ox} = v_o \cos \theta$$

$$v_{ox} = v_o \cos \theta$$
  
 $v_{oy} = v_o \sin \theta$ 

## Contoh

1. Andi melepaskan panah dari busur mainan dengan kecepatan awal 5 m/s. tentukan komponen kecepatan awal sumbu vertikal dan horisontal jika sudut tembakan terhadap sumbu horisontal 30°

$$v_{ox} = vo\cos\theta = 5\cos 30^{\circ} =$$

$$v_{oy} = vo\sin\theta = 5\sin 30^{\circ} =$$

## Variabel pada gerak parabola

Pada sumbu X = GLB Pada sumbu Y: GVA Y'Ymax = ketinggian maksimum  $v_{ty} = 0$ H $X_{-}$ P(x, y)H O(0, 0) $\alpha = -\alpha_0$ Xmax = Jangkauan terjauh

# Persamaan Posisi dan Kecepatan pada Gerak Parabola

| Besaran               | Sumbu X<br>(GLB)      | Sumbu Y<br>(GLBB)                   |  |  |  |
|-----------------------|-----------------------|-------------------------------------|--|--|--|
| Kecepatan<br>awal     | $Vox = Vo cos \theta$ | $Voy = Vo sin \theta$               |  |  |  |
| Kecepatan<br>tertentu | Vx = Vox              | Vy = Voy - g.t                      |  |  |  |
| Jarak & tinggi        | X = Xo + Vox.t        | $Y = Yo + Voy.t - \frac{1}{2}g.t^2$ |  |  |  |

Kecepatan benda pada sembarang titik

$$v = \sqrt{v_x^2 + v_y^2}$$

Arah kecepatan benda terhadap sumbu  $x(\theta)$ 

$$\tan \theta = \frac{v_y}{v_x}$$

Tinggi maksimum (Ymax)

Jangkauan maksimum (Xmax)

$$Ymax = \frac{v_o^2 \sin^2 \theta}{2g}$$

$$\mathsf{Xmax} = \frac{v_o^2 \sin(2\theta)}{g}$$

2. Bola dilemparkan dengan kecepatan vertikal 40 m/s dan kecepatan horisontal 20 m/s. jika g = 10m/s<sup>2</sup> ceritakan kecepatan dan arah gerakan benda pada tabel berikut!

| t (detik) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-----------|---|---|---|---|---|---|---|---|---|---|----|
| Vx (m/s)  |   |   |   |   |   |   |   |   |   |   |    |
| Arah      |   |   |   |   |   |   |   |   |   |   |    |
| Vy (m/s)  |   |   |   |   |   |   |   |   |   |   |    |
| Arah      |   |   |   |   |   |   |   |   |   |   |    |

(**Petunjuk**: nilai  $g = 10 \text{ m/s}^2$  mengakibatkan kecepatan sumbu y benda setiap 1 detik berkurang atau bertambah 10 m/s)

## Latihan soal

- 1. Sebuah bola dilempar lurus ke depan dari atas gedung yang tingginya 78,4 m. Jika kecepatan awal bola 5 m/s. tentukan
- a. Berapa lama bola mencapai tanah
- b. Berapa jauh bola jatuh dari dasar gedung
- c. Kecepatan horisontal dan vertikal bola ketika akan menyentuh tanah
- 2. Seorang pemain menendang bola dengan kelajuan awal 27 m/s pada sudut 30° terhadap horisontal. Tentukan (a) lama bola di udara (b) ketinggian maksimum bola (c) jangkauan bola

