Лабораторна робота №1.1. Елементи теорії графів

Завдання 1. У наступній таблиці задана множина ребер E для графа G = (V, E), де V — множина вершин. Для непарних варіантів граф G — неорієнтований, для парних — орієнтований. Зобразити на площині граф G. Крім того, для кожного варіанта виконати наступні завдання:

- 1) побудувати матрицю суміжності;
- 2) побудувати матрицю інцидентності;
- 3) визначити число вершин;
- 4) визначити число ребер;
- 5) знайти степені всіх вершин;
- 6) побудувати таблицю відстаней графаG;
- 7) знайти діаметр;
- 8) знайти радіус;
- 9) визначити центр графа;
- 10) знайти хроматичне число графа G.

No	ланти хромати не тело графа О.
$_{3}/_{\Pi}$	Множина ребер <i>Е</i>
1	$\{(a, a), (a, b), (a, c), (b, b), (b, a), (b, f), (c, c), (c, b), (c, d), (d, a), (d, b), (d, e), (d, d), (e, a), (e, b), (e, e), (f, b), (f, c), (f, d), (f, e), (f, f)\}$
2	$\{(a, d), (a, e), (a, c), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, f), (d, a), (d, b), (d, d), (e, a), (e, e), (e, f), (f, c), (f, d), (f, e), (f, b)\}$
3	$\{(a,b), (a,d), (b,c), (b,d), (b,f), (b,b), (c,a), (c,d), (c,f), (d,a), (d,b), (d,c), (d,e), (d,d), (d,f), (e,b), (e,a), (e,e), (e,f), (f,a), (f,f), (f,c)\}$
4	$\{(a, a), (a, c), (a, e), (b, c), (b, d), (b, f), (c, c), (c, e), (c, f), (d, a), (d, c), (d, d), (d, f), (e, a), (e, b), (e, d), (e, f), (f, a), (f, c), (f, d), (f, e), (f, e)\}$
5	$\{(a, a), (a, d), (a, f), (b, b), (b, d), (b, f), (c, c), (c, d), (c, d), (d, a), (d, b), (d, e), (d, f), (e, a), (e, c), (e, f), (f, a), (f, c), (f, d), (f, e), (f, e), (f, f)\}$
6	$\{(a, c), (a, e), (a, f), (b, b), (b, c), (b, e), (b, f), (c, a), (c, d), (c, e), (c, f), (d, a), (d, a), (d, b), (d, d), (e, c), (e, e), (e, f), (f, a), (f, d), (f, e), (f, f)\}$
7	$\{(a, d), (a, f), (b, b), (b, d), (b, f), (b, f), (c, a), (c, e), (c, f), (d, a), (d, b), (d, c), (d, e), (d, f), (d, f), (e, b), (e, c), (e, e), (e, f), (f, a), (f, c), (f, d)\}$
8	$\{(a, a), (a, c), (a, e), (a, f), (b, c), (b, e), (b, f), (c, a), (c, c), (c, f), (c, f), (d, a), (d, b), (d, d), (d, f), (e, b), (e, d), (e, f), (f, a), (f, d), (f, f)\}$
9	$\{(a, c), (a, e), (a, f), (b, b), (b, c), (b, e), (b, f), (c, a), (c, d), (c, f), (c, f), (d, a), (d, b), (d, f), (e, c), (e, e), (e, f), (f, b), (f, d), (f, e), (f, f)\}$
10	$\{(a, a), (a, b), (a, f), (b, d), (b, f), (b, f), (c, a), (c, e), (c, f), (d, a), (d, a), (d, c), (d, e), (d, f), (e, a), (e, c), (e, f), (e, f), (f, b), (f, c), (f, d), (f, f)\}$
11	$\{(a,b), (a,c), (a,f), (b,a), (b,a), (b,e), (b,f), (c,b), (c,d), (c,f), (d,a), (d,d), (d,e), (d,f), (e,b), (e,a), (e,e), (f,a), (f,b), (f,c), (f,e), (f,f)\}$
12	$\{(a,b), (a,e), (a,d), (b,b), (b,d), (b,e), (b,f), (c,a), (c,e), (c,f), (c,f), (d,a), (d,b), (d,d), (d,f), (e,c), (e,d), (e,f), (f,b), (f,d), (f,e), (f,e)\}$
13	$\{(a, a), (a, c), (a, f), (b, a), (b, b), (b, e), (b, f), (c, b), (c, f), (c, f), (d, a), (d, d), (d, e), (d, f), (e, a), (e, b), (e, f), (f, a), (f, b), (f, d), (f, e), (f, f)\}$
14	$\{(a,d), (a,e), (b,a), (b,d), (b,e), (b,f), (c,b), (c,d), (c,c), (d,a), (d,b), (d,e), (d,f), (e,a), (e,e), (f,a), (f,b), (f,d), (f,e), (f,f)\}$
15	$\{(a, c), (a, e), (a, f), (b, b), (b, d), (b, f), (c, b), (c, e), (c, f), (c, c), (d, a), (d, b), (d, f), (e, c), (e, e), (f, b), (f, b), (f, c), (f, e)\}$

Завдання 2. Знайти для заданого в таблиці орієнтованого графа

G = (V, E), де V — множина вершин, E — множина ребер: 1) число компонент зв'язності;

- 2) цикломатичне число.

Продовж. таблиці \overline{G} G \overline{G} 4) b5) 6) QC $a \triangleleft$ ЮC $a \mathbf{Q}$ $a \subsetneq$ °e 7) 9) 8) b b b $a \circ$ a q $a\varsigma$ $d \, \dot{q}$ d ď gŏ g° $g \diamond$ 10) 12) 11) b $a\varsigma$ $a \circ$ $a\varsigma$ d ď gč g c $g \circ$ 13) 14) 15) b $a \circ$ $a\varsigma$ $d^{\frac{9}{1}}$ $g \ddot{q}$ gŏ

ЗРАЗОК ВИКОНАННЯ ЗАВДАННЯ

Завдання 1. Зобразити на площині граф G = (V, E), де V - множина вершин, E - множина ребер. Крім того, для графа G:

- 1) побудувати матрицю суміжності;
- 2) побудувати матрицю інцидентності;

- 3) визначити число вершин;
- 4) визначити число ребер;
- 5) знайти степені всіх вершин;
- 6) побудувати таблицю відстаней графаG;
- 7) знайти діаметр;
- 8) знайти радіус;
- 9) визначити центр графа;
- 10) знайти хроматичне число графа G.

Приклад 1. G = (V, E) – неорієнтований граф (рис. 1), $E = \{(a, b), (b, c), (a, c), (c, d), (c, c), (a, d), (d, a), (d, d)\}.$

Рис.1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
подвоєній кратності. $d 2 0 1 2$
2) Матриця інцидентності матиме т рядків та п
стовпців. Стовпці відповідають вершинам графа (п),
а рядки – його ребрам (т). Спочатку пронумеруємо реб-
ра графа у відповідності до їхнього порядку в заданому
списку. У рядку матриці, який відповідає ребру з тим
самим номером, у стовпцях інцидентних йому вершин
записуються одиниці, а в рядку, що відповідає петлі, -
двійка.

шин, дорівнює кратності ребра, інцидентного цим вершинам. Діагональний

елемент матриці відповідає петлі й дорівнює її

Розв'язання

1) Складаємо матрицю суміжності вимірності $n \times n$ (n – кількість вершин). Для неорієнтованого графа елемент мат-

риці, який стоїть на перетині рядка і стовпця, що відповідають певній парі вер-

0

- d 0 0 1 0 0 1 0 1 0 0 0 0 6 1 0 0 1 1 0 0 1
- 3) *Кількість вершин* графа n(G) = 4.
- 4) Кількість ребер графа m(G) = 8.

5) Використовуючи матрицю суміжності, можна визначити *покальні сте*-*пені* всіх вершин графа G. Оскільки для неорієнтованого графа матриця суміж-

-	а	b	С	d
Степінь вершини	4	2	5	5

ності симетрична відносно головної діагоналі, степінь кожної вершини обчислюється як сума елементів відповідного рядка або стовпця.

	a	b	С	d
а	0	1	1	1
b	1	0	1	2
С	1	1	0	1
d	1	2	1	0

6) Побудуємо для заданого графа матрицю відстаней вимірності $n \times n$ (n – кількість вершин). На перетині рядка і стовпця, які відповідають двом певним вершинам графа, елемент матриці відстаней дорівнює мінімальній довжині простого ланцюга між цими вершинами.

- 7) Діаметр графа d(G) = 2 максимальна відстань між довільними вершинами заданого графа.
- 8) У матрицю відстаней додамо стовпець, в якому визначимо максимальне віддалення r(v) від кожної вершини. *Радіус графа* визначається як найменше із значень максимального віддалення від кожної вершини: r(G) = 1.

	а	b	c	d	r(v)
а	0	1	1	1	1
b	1	0	1	2	2
С	1	1	0	1	1
d	1	2	1	0	2

- 9) Центр графа G це множина вершин графа, максимальне віддалення від яких збігається з радіусом цього графа. Отже, $\{a,c\}$ центр даного графа.
- 10) *Хроматичне число* графа це мінімальне число фарб (k), в які можна розфарбувати вершини графа так, щоб кінці будь-якого ребра мали різні кольори.

Для розв'язання задачі k-розфарбовування графа G (рис. 2) скориста-ємось наступним алгоритмом:

Крок 1. На рисунку біля кожної вершини графа позначимо її степінь. Візьмемо фарбу k=1.

Крок 2. Проглянемо вершини в порядку незростання степенів і забарвимо першу незафарбовану вершину в колір з номером k.

Крок 3. Проглянемо вершини в порядку незростання степенів і забарвимо в колір k всі вершини, які несуміжні вершинам, уже зафарбованим у колір k.

Рис. 2

Крок 4. Якщо всі вершини зафарбовані, то k – хроматичне число. Якщо ні, то k = k + 1, і переходимо до кроку 2.

Таким чином, хроматичне число для заданого графа k = 3.

Приклад 2. G = (V, E) – орієнтований граф (рис. 3), $E = \{(a, b), (b, a), (b, c), (b, c), (c, c), (c, d), (d, a), (e, d), (e, e)\}.$

Розв'язання

1) Складаємо матрицю суміжності вимірності $n \times n$ (n – кількість вершин) для заданого орієнтованого графа, враховуючи при цьому, що позначення рядків — імена вершин, з яких виходять дуги, а позначення стовпців — імена вершин, в які дуги входять. Якщо існує дуга, яка виходить з вершини v_i і входить в v_j , то елемент матриці суміжності на перетині i-го

Рис. 3

	а	b	c	d	e
а	0	1	0	0	0
b	1	0	2	0	0
С	0	0	1	1	0
d	1	0	0	0	0
e	0	0	0	1	1

	а	b	С	d	e
1	-1	1	0	0	0
2	1	-1	0	0	0
3	0	-1	1	0	0
4	0	-1	1	0	0
5	0	0	2	0	0
6	0	0	-1	1	0
7	1	0	0	-1	0
8	0	0	0	1	-1
9	0	0	0	0	2

рядка та j-го стовпця дорівнює 1 (або числу k, рівному кратності вказаної дуги).

2) Матриця інцидентності має m рядків та n стовпців. Стовпці відповідають вершинам графа (n), а рядки — його дугам (m). Пронумеруємо дуги графа у від-

повідності до їхнього порядку в заданому списку. У кожному рядку на перетині зі стовпцем, що відповідає вершині — початку дуги, елемент матриці дорівнює -1, а на перетині зі стовпцем, що відповідає вершині — кінцю дуги, елемент матриці дорівнює 1. Якщо дуга починається та закінчується в одній вершині (тобто це петля), то відповідний елемент матриці є 2.

- 3) *Кількість вершин* графа n(G) = 5.
- 4) *Кількість дуг* графа m(G) = 9.
- 5) Використовуючи матрицю суміжності, визначимо *локальні степені* всіх вершин графа *G*.

	а	b	С	d	e
Додатний степінь вершини (ρ^+)	1	3	2	1	2
Від'ємний степінь вершини (ρ^-)	2	1	3	2	1
Степінь вершини	3	4	5	3	3

Для вершин орієнтованого графа окремо визначається додатний степінь (по дугах, що виходять з вершини) та від'ємний степінь (по дугах, що входять у вершину). Степінь по вхідних дугах дорівнює сумі елементів відповідного вершиністовпця

матриці суміжності, а степінь по вихідних дугах — сумі елементів відповідного вершині рядка матриці суміжності.

	a	b	c	d	e
a	0	1	2	3	8
b	1	0	1	2	8
С	2	3	0	1	8
d	1	2	3	0	8
e	2	3	4	1	0

- 6) Побудуємо *матрицю відстаней* вимірності *n* × *n* (*n* − кількість вершин) для даного орієнтованого графа. На перетині рядка і стовпця, що відповідають певним вершинам графа, елемент матриці відстаней дорівнює мінімальній довжині простого ланцюга між цими вершинами. Якщо між вершинами не існує ланцюга, то відповідний елемент матриці визначається як ∞.
 - 7) Діаметр графа d(G) = 4 максимальна відстань між довільними вершинами заданого графа.
 - 8) У матрицю відстаней додамо стовпець, в якому визначимо максимальну відстань між вершинами. *Радіус графа* визначається як найменше із зна-

чень максимальної відстані між вершинами: r(G) = 2.

9) *Центр графа G* – це множина вершин, максимальна відстань від яких у графі G збігається з радіусом цього графа. Отже, $\{b\}$ – центр даного графа.

10) *Хроматичне число* графа — це мінімальне число фарб (k), в які можна розфарбувати вершини графа так, щоб кінці будь-якого ребра мали різні кольори. Для розв'язання задачі k-розфарбовування графа G скористаємось тим же алгоритмом, як і в прикладі 1. Хроматичне число для заданого графа k = 2 (рис. 4).

Завдання 2. Задано орієнтований граф G = (V, E) (рис. 5), де V — множина вершин, E — множина ребер. Знайти:

- 1) число компонент зв'язності;
- 2) цикломатичне число.

Розв'язання

1. Виділимо *компоненти зв'язності* орієнтованого графа G.

По-перше, знайдемо матрицю досяжності.

Позначимо через $A^k(G)$ k-й степінь матриці суміжності, k = n - 1, n - кількість вершин графа.

Рис. 4

Рис. 5

Знайдемо матриці $A^1(G)$, $A^2(G)$, $A^3(G)$, $A^4(G)$. Матриця суміжності $A^1(G)$ матиме виглял

$$A^{1}(G) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Тоді

$$A^{2}(G) = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix};$$

$$A^{3}(G) = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix};$$

$$A^4(G) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

Отже, $T(G) = E + A^{1}(G) + A^{2}(G) + A^{3}(G) + A^{4}(G)$, тобто

Знайдемо матрицю зв'язності як результат поелементної кон'юнкції матриці T(G) і транспонованої матриці $T^T(G)$:

Візьмемо $S_1(G) = S(G)$. Складаємо множину вершин першої компоненти зв'язності G_1 : це ті вершини, яким відповідають одиниці в першому рядку матриці $S_1(G)$. Таким чином, перша компонента зв'язності складається з чотирьох вершин $V_1 = \{a, b, c, d\}$. Матриця суміжності для цієї компоненти

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}$$

Викреслюючи з матриці $S_1(G)$ рядки та стовпці, які відповідають вершинам з множини V_1 , одержуємо матрицю $S_2(G)=(1)$, тобто $V_2=\{e\}$. Будуємо матрицю суміжності для компоненти зв'язності G_2 як підматрицю матриці A(G): вона буде складатися з тих елементів матриці A, які знаходяться на перетині рядків і стовпців, що відповідають вершинам з V_2 . Отже, маємо $A(G_2)=(1)$.

Отримано дві компоненти зв'язності графа G (рис. 6).

2. Визначимо *цикломатичне число* орієнтованого графа G за формулою

$$\lambda(G) = m(G) - n(G) + \gamma(G),$$
 де $\gamma(G)$ — число компонент зв'язності графа G :

Рис. 6

$$\lambda(G) = 7 - 5 + 2 = 4.$$

Лабораторнга робота № 1.2. Дерева

Завдання 1. У таблиці наведені ребра неорієнтованого графа G = (V, E). Побудувати остовне дерево графа. Знайти центр цього дерева.

<u>№</u> 3/П	Множина ребер графа $G(E)$						
1	01-15, 01-16, 02-14, 02-18, 03-12, 03-17, 04-11, 04-13, 05-06, 05-07, 06-09, 06-10, 07-04, 07-09, 07-17, 08-04, 08-06, 08-07, 09-02, 09-14, 10-03, 10-01, 10-11, 11-12, 12-14, 14-15, 16-15, 17-01, 17-02, 17-14, 18-15, 05-03, 11-14						
2	01-07, 05-07, 12-16, 18-10, 14-09, 06-07, 12-18, 13-14, 10-04, 11-07, 16-13, 18-08, 08-04, 11-12, 16-18, 15-14, 14-04, 02-12, 17-01, 15-08, 14-03, 08-09, 10-03, 10-09, 17-15, 13-03, 13-10, 07-18, 07-15, 07-17						
3	10-11, 06-02, 12-07, 01-08, 10-08, 06-14, 12-09, 01-07, 10-01, 06-05, 11-08, 09-07, 06-03, 11-07, 02-15, 14-04, 05-15, 05-13, 17-12, 13-12, 13-10, 10-09, 18-07, 18-11, 04-16, 04-18, 16-10, 03-15, 13-17, 13-18, 15-16						

Продовж. таблиці

<u>No</u>	
3/П	Множина ребер графа $G(E)$
4	01-14, 14-15, 09-08, 01-03, 14-17, 16-12, 01-02, 18-15, 11-12, 06-03, 13-17, 11-04, 06-02, 15-09, 03-14, 15-16, 03-18, 15-11, 03-13, 17-09, 02-07, 17-16, 02-14, 17-11, 07-10, 17-04, 07-09, 09-05, 07-15, 09-10
5	01-04, 01-08, 01-14, 02-08, 02-13, 03-01, 03-10, 03-02, 03-06, 04-11, 04-13, 05-11, 06-08, 06-16, 07-03, 07-05, 08-11, 08-13, 08-16, 09-03, 08-12, 09-06, 09-02, 10-14, 10-04, 11-12, 11-14, 12-15, 12-18, 12-17, 13-12, 13-15, 14-15, 15-17, 16-15, 16-17
6	01-05, 01-08, 02-17, 04-15, 04-03, 05-08, 05-10, 06-07, 06-10, 07-09, 07-10, 08-10, 08-13, 09-04, 09-17, 09-12, 09-18, 10-13, 10-12, 11-15, 12-17, 12-15, 13-03, 13-02, 13-11, 13-15, 14-05, 14-06, 14-08, 16-06, 16-07, 18-03, 18-15, 10-17, 16-10, 01-07
7	01-02, 01-04, 02-03, 02-08, 02-10, 02-17, 03-09, 04-09, 05-06, 05-08, 03-08, 06-14, 06-08, 08-07, 09-07, 09-08, 10-14, 10-09, 11-02, 11-05, 11-17, 12-01, 12-08, 13-01, 13-12, 15-11, 15-18, 16-15, 16-12, 17-06, 17-14, 18-02, 18-04, 18-09, 02-06, 13-04
8	01-11, 01-05, 02-01, 02-03, 02-04, 03-05, 03-12, 04-05, 04-11, 05-08, 05-11, 06-12, 06-16, 07-03, 07-06, 07-13, 08-17, 09-17, 11-08, 11-10, 12-16, 12-18, 13-12, 13-11, 14-13, 14-15, 15-05, 16-08, 16-10, 16-09, 18-10, 16-17, 07-12, 14-05, 02-12
9	01-03, 01-10, 02-05, 02-09, 03-09, 03-13, 04-07, 04-08, 05-06, 05-07, 05-17, 06-14, 06-17, 07-17, 07-12, 09-06, 09-17, 10-02, 10-03, 10-09, 11-01, 11-10, 13-06, 13-14, 15-02, 15-18, 16-10, 16-15, 16-18, 17-08, 17-12, 17-14, 18-04, 18-05, 15-05, 18-07
10	01-05, 01-07, 02-07, 02-10, 03-06, 03-12, 04-03, 04-06, 04-09, 05-16, 05-10, 06-02, 06-12, 06-11, 07-15, 07-17, 08-06, 08-13, 09-06, 09-13, 10-17, 11-10, 11-16, 12-07, 12-18, 13-07, 13-05, 14-09, 14-08, 14-01, 15-16, 15-18, 11-16, 01-11, 09-11, 07-10
11	01-02, 01-14, 04-03, 11-03, 11-12, 08-12, 12-16, 14-13, 03-02, 03-17, 03-18, 03-12, 02-14, 17-16, 18-16, 14-15, 05-06, 07-06, 07-10, 09-10, 15-05, 15-07, 13-09, 16-13, 16-15, 12-15, 14-09, 17-13, 08-18, 01-17
12	05-09, 10-09, 10-07, 10-16, 08-09, 08-16, 12-16, 12-11, 04-11, 04-17, 09-07, 09-15, 09-17, 16-17, 16-15, 11-15, 11-17, 15-07, 17-14, 17-13, 14-02, 02-06, 15-14, 15-18, 17-18, 07-02, 14-03, 18-03, 13-03, 03-01, 03-06, 02-01
13	01-03, 01-13, 02-15, 02-04, 03-16, 04-14, 05-12, 06-02, 06-13, 06-04, 07-02, 07-03, 08-06, 08-13, 09-02, 09-07, 09-15, 10-08, 10-09, 11-08, 11-12, 11-09, 12-01, 12-07, 13-14, 13-17, 14-17, 14-18, 15-16, 15-17, 16-17, 16-18, 04-16, 07-14, 12-13
14	01-12, 01-17, 02-13, 02-17, 03-01, 03-10, 04-11, 04-13, 05-03, 05-10, 06-05, 06-15, 07-08, 07-16, 08-09, 08-15, 09-02, 09-04, 09-11, 10-12, 10-17, 11-13, 11-17, 14-02, 14-03, 14-04, 15-04, 15-05, 15-14, 16-06, 16-08, 18-06, 18-16, 16-14, 15-10
15	01-12, 01-13, 02-10, 03-02, 03-10, 04-03, 05-09, 06-14, 06-01, 07-08, 07-17, 08-17, 08-05, 09-10, 11-02, 11-03, 12-04, 12-11, 13-04, 13-12, 14-01, 14-07, 14-15, 15-08, 15-13, 16-14, 16-15, 16-07, 17-05, 17-11, 17-04, 18-14, 18-07, 08-11, 05-03, 06-13

Завдання 2. Граф G=(V,E) містить 6 вершин: $V=\{a,b,c,d,e,f\}$. Відстані між вершинами задані таблицею. Знайти для графа G:

- 1) мінімальне остовне дерево;
- 2) максимальне остовне дерево.

<u>β/Π</u>	G	№ з/п	G	№ з/п	G
1)	a b c d e f a 0 2 3 0 0 4 b 2 0 3 0 0 4 c 3 3 0 4 2 0 d 0 0 4 0 0 2 e 0 0 2 0 0 4 f 4 4 0 2 4 0	2)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3)	a b c d e f a 0 2 3 0 0 0 b 2 0 4 2 3 0 c 3 4 0 0 4 2 d 0 2 0 0 3 0 e 0 3 4 3 0 4 f 0 0 2 0 4 0
4)	a b c d e f a 0 2 3 4 0 0 b 2 0 0 2 3 0 c 3 0 0 4 0 0 d 4 2 4 0 2 3 e 0 3 0 2 0 4 f 0 0 0 3 4 0	5)	$ \begin{vmatrix} a & b & c & d & e & f \\ \hline a & 0 & 2 & 3 & 0 & 0 & 0 \\ b & 2 & 0 & 4 & 2 & 0 & 0 \\ c & 3 & 4 & 0 & 3 & 0 & 4 \\ d & 0 & 2 & 3 & 0 & 2 & 3 \\ e & 0 & 0 & 0 & 2 & 0 & 4 \\ f & 0 & 0 & 4 & 3 & 4 & 0 \end{vmatrix} $	6)	a b c d e f a 0 2 3 0 4 0 b 2 0 0 2 0 0 c 3 0 0 3 4 2 d 0 2 3 0 3 4 e 4 0 4 3 0 0 f 0 0 2 4 0 0
7)	a b c d e f a 0 2 0 0 0 3 b 2 0 4 0 0 2 c 0 4 0 3 4 2 d 0 0 3 0 3 0 e 0 0 4 3 0 4 f 3 2 2 0 4 0	8)	a b c d e f a 0 2 0 0 4 3 b 2 0 4 0 0 2 c 0 4 0 0 3 4 d 0 0 0 0 2 0 e 4 0 3 2 0 3 f 3 2 4 0 3 0	9)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10)	a b c d e f a 0 2 3 0 0 0 b 2 0 4 2 0 0 c 3 4 0 3 4 2 d 0 2 3 0 0 3 e 0 0 4 0 0 4 f 0 0 2 3 4 0	11)	a b c d e f a 0 2 0 3 4 2 b 2 0 3 0 0 4 c 0 3 0 2 0 0 d 3 0 2 0 3 0 e 4 0 0 3 0 0 f 2 4 0 0 0 0	12)	a b c d e f a 0 0 2 3 0 0 b 0 0 4 0 2 0 c 2 4 0 3 4 2 d 3 0 3 0 3 4 e 0 2 4 3 0 2 f 0 0 0 4 2 0
13)	a b c d e f a 0 0 0 2 0 3 b 0 0 0 4 2 0 c 0 0 0 0 3 4 d 2 4 0 0 2 3 e 0 2 3 2 0 4 f 3 0 4 3 4 0	14)	a b c d e f a 0 2 3 0 0 4 b 2 0 2 0 0 0 c 3 2 0 3 4 2 d 0 0 3 0 3 0 e 0 0 4 3 0 4 f 4 0 2 0 4 0	15)	a b c d e f a 0 2 3 4 0 0 b 2 0 0 2 3 0 c 3 0 0 4 0 0 d 4 2 4 0 2 3 e 0 3 0 2 0 4 f 0 0 0 3 4 0

ЗРАЗОК ВИКОНАННЯ ЗАВДАННЯ

Завдання 1. Для неорієнтованого графа G=(V,E) задана множина ребер $E=\{01\text{-}02,01\text{-}08,01\text{-}09,01\text{-}16,02\text{-}04,02\text{-}15,02\text{-}03,03\text{-}05,03\text{-}06,04\text{-}05,04\text{-}06,04\text{-}07,05\text{-}06,05\text{-}07,09\text{-}04,06\text{-}14,06\text{-}18,07\text{-}14,07\text{-}18,08\text{-}03,08\text{-}15,09\text{-}07,10\text{-}02,10\text{-}09,10\text{-}16,11\text{-}10,11\text{-}12,12\text{-}01,12\text{-}10,13\text{-}01,13\text{-}12,15\text{-}05,16\text{-}03,17\text{-}12,17\text{-}10,15\text{-}18}\}. Побудувати остовне дерево графа. Знайти центр цього дерева.$

Pозв'язання. Для заданого графа G можна побудувати остовний підграф G_1 , який є деревом, за допомогою наступного алгоритму пошуку. Насамперед наведемо матрицю суміжності графа G.

G	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1		1						1	1			1	1			1		
2	1		1	1						1					1			
3		1			1	1		1								1		
4		1			1	1	1		1									
5			1	1		1	1								1			
6			1	1	1									1				1
7				1	1				1					1				1
8	1		1												1			
9	1			1			1			1								
10		1							1		1	1				1	1	
11										1		1						
12	1									1	1		1				1	
13	1											1						
14						1	1											
15		1			1			1										1
16	1		1							1								
17										1		1						
18						1	1								1			

Вибираємо в G довільну вершину, яка утворює підграф G_1 . Множина вершин $V^{(1)}=\{1\}$. Множина ребер $E^{(1)}=\varnothing$.

За допомогою матриці суміжності знайдемо вершини з множини вершин графа G, які суміжні з вершиною "1": $V^{(2)} = \{2, 8, 9, 12, 13, 16\}$. Запишемо в матрицю суміжності підграфа G_1 відповідні одиниці. Ребра, які інцидентні парам вершин із множин $V^{(1)}$ та $V^{(2)}$, утворюють множину $E^{(2)} = \{01\text{-}02, 01\text{-}08, 01\text{-}09, 01\text{-}12, 01\text{-}13, 01\text{-}16\}$.

Переглянувши елементи множини $V^{(2)}$, визначимо суміжні з ними вершини. Ті з них, які не є вже елементами множин $V^{(1)}$ та $V^{(2)}$, додаємо у множину $V^{(3)}$. Таким чином, $V^{(3)} = \{3, 4, 10, 15, 11, 17\}$. У матрицю суміжності підграфа G_1 запишемо тільки ті одиниці, які позначають суміжність вершин з множини $V^{(2)}$ та вершин з множини $V^{(3)}$. Ребра, які приводять до утворен-

ня циклів (позначка "*" у матриці суміжності), не включаємо до множини $E^{(3)} = \{02\text{-}03, 02\text{-}04, 02\text{-}10, 02\text{-}15, 12\text{-}11, 12\text{-}17}\}.$

	(-	,	-	, -		-,	_	,	,		. , .							
G_1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1		1						1	1			1	1			1		
2	*		1	1						1					1			
3		*			1	1		*								*		
4		*			*	*	1		*									
5			*	*		*	*								*			
6			*	*	*									1				*
7				*	*				*					*				*
8	*		*												*			
9	*			*			*			*								
10		*							*		*	*				*	*	
11										*		*						
12	*									*	1		*				1	
13																		
14						*	*											
15		*			*			*										1
16																		
17										*		*						
18						*	*								*			

Аналогічно $V^{(5)} = \{14\}, E^{(5)} = \{06-14\}.$

Тепер визначимо множини V_1 та E_1 остовного підграфа G_1 :

 $V_1 = V^{(1)} \mathbf{U} V^{(2)} \mathbf{U} V^{(3)} \mathbf{U} V^{(4)} \mathbf{U} V^{(5)} = \{1, 2, 8, 9, 12, 13, 16, 3, 4, 10, 15, 11, 17, 5, 6, 7, 18, 14\};$

 $E_1 = E^{(1)} \ \mathbf{U} \ E^{(2)} \ \mathbf{U} \ E^{(3)} \ \mathbf{U} \ E^{(4)} \ \mathbf{U} \ E^{(5)} = \{01\text{-}02,\, 01\text{-}08,\, 01\text{-}09,\, 01\text{-}12,\, 01\text{-}13,\, 01\text{-}16,\, 02\text{-}03,\, 02\text{-}04,\, 02\text{-}10,\, 02\text{-}15,\, 12\text{-}11,\, 12\text{-}17,\, 03\text{-}05,\, 03\text{-}06,\, 04\text{-}07,\, 15\text{-}18,\, 06\text{-}14}\}.$

Отримано остовний підграф $G_1=(V_1,\,E_1)$ заданого графа $G=(V,\,E)$. Матриця суміжності для G_1 повинна бути симетричною, тому що G_1 – неорієнтований граф. Для цього відобразимо всі одиниці отриманої матриці відносно головної діагоналі.

G	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1		1						1	1			1	1			1		
2	1		1	1						1					1			
3		1			1	1												
4		1					1											
5			1															
6			1											1				
7				1														
8	1						,							,				
9	1																	

	_	
Продовж.	таолии	1

G	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
10		1																
11												1						
12	1										1						1	
13	1																	
14						1												
15		1																1
16	1																	
17												1						
18															1			

Зведемо отримане остовне дерево (рис. 7) до кореневої форми, для

Рис. 7

чого знайдемо його центр. У дереві відтинаємо всі кінцеві вершини й ребра (рис. 8,*a*), потім в отриманому 17 дереві знову відтинаємо кінцеві вершини й ребра і т. д. (див. рис. 8,*6*,*s*) доти, поки дерево не скоротиться до єдиної вершини.

У даному прикладі центром (або коренем) дерева буде вершина "2". Центрально-коренева форма дерева зображена на рис. 9.

Завдання 2. Граф G = (V, E) містить 8 вершин:

$$V = \{a, b, c, d, e, f, g, h\}.$$

Відстані між вершинами задані таблицею. Знайти для графа G:

- 1) мінімальне остовне дерево;
- 2) максимальне остовне дерево.

	α.	h	С	d	0	£	α.	h
	а		· ·		e	J	g	_
a	0	6	0	0	0	11	17	0
b	6	0	19	0	0	17	0	0
С	0	19	0	9	0	0	0	0
d	0	0	9	0	14	0	0	0
e	0	0	0	14	0	2	0	21
f	11	17	0	0	2	0	6	0
g	17	0	0	0	0	6	0	0
h	0	0	0	0	21	0	0	0

Рис. 9

Розв'язання

1) Задача побудови мінімально-

го дерева полягає в тому, щоб з множини остовних дерев знайти таке, у якого сума довжин ребер мінімальна.

Цю задачу можна розв'язати за допомогою алгоритму Краскала. Усі ребра графа G перебираємо за неспаданням ваги. Для чергового ребра перевіряємо, чи лежать кінці ребра в різних компонентах зв'язності, і, якщо це так, ребро додається і компоненти поєднуються. Якщо вершини, які поєднуються цим ребром, лежать в одній компоненті зв'язності, то ребро не додаємо до остовного дерева, тому що воно утворює цикл.

Матриця відстаней між вершинами заданого графа G = (V, E) (рис. 10,a) симетрична, тому можна розглядати тільки елементи, які розташовані вище або нижче головної діагоналі.

Відсортуємо ребра графа в порядку неспадання ваги:

- 1. Додаємо до остовного дерева $G_1=(V_1,E_1)$ ребро з мінімальною вагою (e,f). Множина вершин $V_1=\{e,f\}$, множина ребер $E_1=\{(e,f)\}$ (див. рис. $10,\mathfrak{o}$).
- 2. Розглянемо ребро (a, b). Додавання вершин a, b до множини V_1 та ребра (a, b) до дерева не утворює циклів, тому що вершини a і b не належать

множині V_1 . Після включення ребра (a, b) до дерева множина вершин $V_1 = \{e, f, a, b\}$, множина ребер $E_1 = \{(e, f), (a, b)\}$ (див. рис. 10,**в**).

3. Наступним кандидатом на включення до остовного дерева є ребро (f, g). Додавання вершини g до множини V_1 та ребра (f, g) до дерева не приведе до утворення циклу, тому що вершина g не належить множині V_1 . Після включення ребра (f, g) до дерева маємо (див. рис. 10,e):

$$V_1 = \{e, f, a, b, g\};$$

 $E_1 = \{(e, f), (a, b), (f, g)\}.$

Множина ребер графа $G(E)$	Вага ребра	Додати до мінімального дерева-остова G_1
(e, f)	2	+
(<i>a</i> , <i>b</i>)	6	+
(f, g)	6	+
(c,d)	9	+
(a, f)	11	+
(d, e)	14	+
(a, g)	17	_
(<i>b</i> , <i>f</i>)	17	_
(<i>b</i> , <i>c</i>)	19	_
(e, h)	21	+

4. Аналогічно додаємо ребро (c, d) (див. рис. $10, \boldsymbol{\delta}$):

$$V_1 = \{e,f,a,b,g,c,d\}; E_1 = \{(e,f),(a,b),(f,g),(c,d)\}.$$

Рис. 10

- 5. Додавання ребра (a, f) не приведе до утворення циклу, тому що вершини a та f належать різним компонентам зв'язності. Множина вершин не змінюється: $V_1 = \{e, f, a, b, g, c, d\}$, а множина ребер буде складатися вже з п'яти елементів: $E_1 = \{(e, f), (a, b), (f, g), (c, d), (a, f)\}$ (див. рис. 10,e).
- 6. Кінці ребра (d, e) лежать у різних компонентах зв'язності, тому включення його до остовного дерева не утворить циклів: $V_1 = \{e, f, a, b, g, c, d\}$; $E_1 = \{(e, f), (a, b), (f, g), (c, d), (a, f), (d, e)\}$ (див. рис. 10,ж).
- 7. Додавання ребра (a, g) приведе до утворення циклу. Тому не включаємо це ребро до дерева G_1 .
- 8. З тих же міркувань не можна включати до остовного дерева ребра (b, f) та (b, c).
- 9. Розглянемо ребро (e,h). Додавання його до мінімального остовного дерева не утворить циклів, тому $V_1 = \{e,f,a,b,g,c,d,h\}; E_1 = \{(e,f),(a,b),(f,g),(c,d),(a,f),(d,e),(e,h)\}$ (див. рис. 10,3).

Усі вершини даного графа G = (V, E) увійшли в дерево, тобто отримано мінімальне остовне дерево $G_1 = (V_1, E_1)$, де $V_1 = \{e, f, a, b, g, c, d, h\}$; $E_1 = \{(e, f), (a, b), (f, g), (c, d), (a, f), (d, e), (e, h)\}.$

Вага цього дерева складає: 2+6+6+9+11+14+21=69.

2) Побудуємо максимальне остовне дерево $G_2 = (V_2, E_2)$. Для цього скористаємось тим же алгоритмом з тією різницею, що множина ребер даного

графа *G* повинна бути відсортована в порядку незростання ваги.

Починаючи з ребра (e, h), яке має найбільшу вагу, послідовно додаємо до дерева G_2 ребра, що не утворюють циклів: (b, c), (a, g), (b, f), (d, e), (a, f), (c, d).

Результатом зазначеної побудо- ви буде максимальне остовне дерево $G_2 = (V_2, E_2)$, де

$$\begin{split} V_2 &= \{e, h, b, c, a, g, f, d\}; \\ E_2 &= \{(e, h), (b, c), (a, g), (b, f), (d, e), \\ &\quad (a, f), (c, d)\}. \end{split}$$

Множина ребер графа $G(E)$	Вага ребра	Додати до максимального дерева-остова G_2
(e, h)	21	+
(b, c)	19	+
(a, g)	17	+
(<i>b</i> , <i>f</i>)	17	+
(d, e)	14	+
(a, f)	11	+
(c,d)	9	+
(f, g)	6	_
(a, b)	6	_
(e,f)	2	_

Вага цього остовного дерева складає: 21 + 19 + 17 + 17 + 14 + 11 + 9 = 108 (рис. 11,a-3).

Рис. 11