Example 3: Confirm the Cayley-Hamilton theorem for the rotation matrix
$M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$
$\begin{bmatrix} \sin \theta & \cos \theta \end{bmatrix}$
$\chi_M(\lambda) = \begin{bmatrix} \gamma & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} \omega \varsigma 0 & -\varsigma i \tilde{\gamma} 0 \\ Sin 0 & G \varsigma 0 \end{bmatrix}$
= 2000 = 2000
$= (12 - \cos \theta)^2 + \sin^2 \theta$
$= (12 - \cos 0) + \sin 20$ $= (12 - \cos 0) + \cos 20$ $= (12 - \cos 0) + \cos 20$
$= 2^2 - 2 \cos \theta + 1$
=(A-(cos0+isn0))(A-(cos0-isn0))
200 per
$=(\lambda - e)\lambda - e)$
Le Genvalel.

$$= \frac{(3520 - 51020) - [20050 - 51020] + [10]}{51020} + [10]$$

$$= \frac{(0520 - 20050) + (10)}{0} + [10]$$

Consider the case where
$$\theta=\pi$$
.

Then $M = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I$ and there is only a single eigenvalue of -1, since

$$\chi\left(\lambda\right) = \left(\lambda + 1\right)^{2}.$$

A similar thing happens for $\theta = 0$.

Exercise: Find the inverse matrices of the reflection and rotation matrices.

Example 4: Find the eigenvalues of the following matrix over Z, and find it's inverse.
$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$
$M = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
$\chi(\lambda) = \det(\lambda I - M) = \lambda - (-1)$
$\lambda(\lambda) = \lambda(e)(\lambda \pm 101)$
37(37(17))
$= \left(\frac{1}{2} \right) - \frac{1}{2}$
076-11(-1)(-1)
-1+(2-1)2 (5+-1-0)+
expand alpha
bottomor
$= [3-1](3^{2}-3-1) + (-3)$ $= [3-1](3^{2}-3-1) + (3-1)$
$= (\lambda - 1) \left[\lambda^2 - \lambda - 1 - 1 \right]$
$=(\lambda-(\sqrt{2}-\lambda-2))$
$= (\lambda - (\lambda - 2)\lambda + 1)$
Satte eigenvalues are 1,-1,2, or 1,4,2
ov 1,1/2

Nov to find mi. (3) = 3 - 22 - 21 - 21By the newren

M3-2M2-M+2I-0 $M^{2}-2M^{2}-M=-2I$ M(M-2M-I)=-2I $M = \frac{1}{2}(M-2M-1) = \frac{1}{2}$ $So M = -\frac{1}{2}(M^2-2M-1)$ Cheek:

332

332

332

333

Section 7.3 Diagonalisation over a Field

The Linear Algebra Principle: Move in straight lines whenever you can.

The Conjugation Principle: To do something difficult, change your position/viewpoint so that you can do something easily, then return.

Diagonalisation combines these two concepts. We use eigenvalues and eigenvectors to "straighten-out" a matrix. Then we can use the conjugation principle. $M=PDP^{-1}$

Let M be an nxn matrix with eigenvalues $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$.

These are the solutions to the chracteristic polynomial $\chi\left(\lambda\right)=\det\left(\lambda I-M\right)$

with corresponding eigenvectors $\underline{v}_1, \underline{v}_2, \underline{v}_3, ..., \underline{v}_n$ (respectively).

So
$$M\underline{v}_i = \lambda_i\underline{v}_i$$
 for $i = 1, ..., n$.

Let P be the nxn matrix whose columns are the eigenvectors. So

$$P = [\underline{v}_1 \ \underline{v}_2 \ \dots \ \underline{v}_n].$$

Then
$$MP = M \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

$$= \begin{bmatrix} M \sqrt{1} & M \sqrt{2} & \dots & M \sqrt{$$

			\searrow		
=PD	where	$\mathcal{D} =$	$\frac{1}{2}$		
				``\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

That is, MP = PD.

If P is invertible then we can rearrange to $M = PDP^{-1}$.

We say that M has been diagonalised. Also, M is the conjugate of D by the inverse of P.

Rearranging again, we see that D is the conjugate of M by P: $D=P^{-1}MP$

Note the most important word on this page: IF.

The matrix P is not always invertible. However, we have a useful sufficient condition to guarantee invertibility.

Theorem: If the eigenvalues of an nxn matrix are all different, then the matrix, P, whose columns are the eigenvectors, is invertible. It follows that M is diagonalisable.

I will prove the theorem in the case of only 2 distinct eigenvalues. This can be extended to the general case.

Lemma: If λ_1 and λ_2 are distinct eigenvalues associated to eigenvectors \underline{V}_1 and \underline{V}_2 then \underline{V}_1 and \underline{V}_2 are linearly independent.

Proof: Suppose A_1, A_2 are diffict eigenvalues associated to eigenvectors Σ_1 and Σ_1 .

Let $\Delta \Sigma_1 + \beta \Sigma_1 = 0 + \lambda_1 + \beta \xi = 0$

1) Multiply & by M: Mary +MBy=Mo
a My +BMy = 0
$A \frac{\partial}{\partial x} = 0$
2) Muthply & by 2,: 22, v, + B2, v_=0
Now subtract 2 -D
B2(V2 - B2 V2 = 0
$\beta(\lambda_1 - \lambda_2) \mathcal{V}_{z} = 0 \leftarrow$
$\beta(\lambda_1 - \lambda_2) \mathcal{V}_{z} = 0$ $($
30 B=0,
Sub $\beta = 0$ unto $\Re \partial \Delta \Sigma = 0$
Therefore 2=0.

Let $x \in \mathbb{R}, |x| < 1,$ and put

$$M = \begin{bmatrix} 1 & 1 \\ 0 & x \end{bmatrix}.$$

Find a closed formula for M^{γ} and hence prove that

$$1 + x + x^2 + \ldots + x^{n-1} = \frac{x^n - 1}{x - 1}.$$

O Find the eigenvalues of M

$$\begin{array}{c|c}
\boxed{\lambda I-M=[0]} &= \boxed{\lambda-1} &=$$

Find The eigenvectors.

$$A=1$$

Let $V_1 = \begin{bmatrix} a \\ b \end{bmatrix}$ then a is free . So let a = t dR.

So $V_1 = t \begin{bmatrix} 1 \\ t \neq 0 \end{bmatrix}$.

Also,
$$b=0$$
. So $\sqrt{1}=t[1]$ $t\neq 0$

