# SAR



Under The Mentorship of DR. TARUNPREET BHATIA

### Search & Rescue Rover

- Ishu Kumar (102215102)
- Udhav Bansal (102203396)
- Tanishq Goyal (102203364)
- Vaishnavi Gera (102203058)
- Mokshit Sandhu (102203010)

## PROJECT Overview



- Autonomous UGV designed for disaster zone operations
- Equipped with LiDAR for obstacle detection and terrain mapping
- Thermal cameras for detecting human presence through heat signatures
- Environmental sensors for hazard detection
- Sensor fusion for accurate situational awareness
- Real-time 3D map generation for navigation assistance
- Machine learning for path optimization and automated navigation
- Real-time dashboard displaying terrain maps and hazard information





### **NEED ANALYSIS**



Rescue operations face challenges like unstable structures, poor visibility, and hazardous conditions in disaster zones, risking human responders' safety.

The UGV's real-time 3D mapping and sensor integration help gather crucial environmental data for faster and informed decision-making.

An Al-driven UGV equipped with LIDAR, thermal imaging, and computer vision automates navigation, fire detection, and survivor identification.

04

03

A centralized dashboard supports real-time analytics, efficient coordination, resource management, task tracking, and enhanced operational effectiveness during critical rescue missions.

## LITERATURE Survey

Survey and analysis of existing literature, research advancements, and previous works relevant to the current project or study domain.

- Liu et al. [1] enhanced LiDAR-inertial SLAM for UGVs in search and rescue by using a particle swarm filter and loop closure, improving localization accuracy. Tested in real-world environments, the system showed high efficiency and robustness.
- Zade et al. [2] developed a deep learning system for real-time survivor detection in UAV thermal imagery, improving search and rescue efficiency with high human detection accuracy.
- Hasan et al. [3] introduced an explainable Al-enhanced YOLOv8 model for fire detection, achieving 98% fire accuracy and 99.1% mAP, ensuring reliable hazard recognition.
- Surmann et al. [4] reviewed lessons from German rescue robotics deployments, emphasizing real-world testing and collaboration to improve disaster response readiness.

## LITERATURE SURVEY

Survey and analysis of existing literature, research advancements, and previous works relevant to the current project or study domain.

- Li et al. [5] proposed the TAD-RRT\*-Smart algorithm for UGV path planning, optimizing route selection for efficient and stable maneuverability in disaster scenarios.
- Huang et al. [6] explored FPGA-based Al for UAV and UGV search and rescue, achieving 90% survivor detection accuracy and 1.7-1.9x faster processing speeds.
- Murcia et al. [7] introduced a 3D scene reconstruction method using a 2D moving LiDAR. Their approach efficiently generated accurate 3D maps, validated through real-world experiments, offering a cost-effective solution for robotics and autonomous navigation.
- Yan and Ma [8] developed a real-time obstacle avoidance algorithm using 2D LiDAR. Their method enabled autonomous systems to navigate dynamic and unstructured environments effectively, proving valuable for applications like search and rescue operations.

#### PROBLEM STATEMENT

Disaster response is challenging due to unpredictable environments; there's a need for autonomous systems to map terrains, detect hazards, and assist rescue teams in real-time.



#### **OBJECTIVE**

- To design and develop an unmanned ground vehicle (UGV) capable of navigating hazardous terrains using LIDAR.
- To enhance autonomous navigation by incorporating intelligent obstacle avoidance and optimized route planning for efficient movement in disaster zones.
- To leverage LIDAR technology to generate 3D maps, assisting rescue teams in disaster-stricken areas.
- To integrate thermal imaging and vision-based Al models to detect and locate survivors efficiently.

#### **ASSUMPTIONS**

- Disaster-Affected Sites are Accessible
- Sensors and Al Processing Units Exist

### CONSTRAINTS



- Harsh Environmental Conditions
- Obstacles & rough terrain
- Real-time data transmission might be delayed due to network poor coverage



### METHODOLOGY

RESEARCH & HARDWARE INTEGRATION

- Identify disaster challenges & UGV applications.
- · Research Al, LiDAR, thermal.
- Design UGV for optimal sensor placement & integration.

MODEL TRAINING

- Train CNN & YOLO for human/object detection.
- Implement SLAM for mapping & localization.

SENSOR DATA PROCESSING & FUSION

- · Process thermal, LiDAR sensor.
- Fuse data for accurate 3D mapping & obstacle detection

AUTONOMOUS NAVIGATION & OBSTACLE AVOIDANCE

- Developed SLAM-based algorithms for real-time mapping and path planning in dynamic environments
- Implemented strategies to detect and bypass obstacles, ensuring safe UGV operation without human intervention.

REAL-TIME MONITORING & ALERTS

- Build a dashboard for live UGV tracking.
- Display sensor data, maps & critical alerts.
- Enable quick decision-making for rescue teams



## PROJECT REQUIREMENTS



#### **HARDWARE**

- Computing Power: Raspberry Pi 4, ESP32 (Edge Al Processing)
- Smart Sensors: LiDAR (3D Mapping), Thermal Camera (Human Detection)
- Actuation System: High-precision motor drivers for autonomous navigation

#### SOFTWARE

- Programming: Python (ML & Automation)
- Al & Data Processing: TensorFlow, OpenCV, ROS (Robot Operating System)
- Security: End-to-end encryption



- Autonomous navigation, obstacle avoidance, rugged terrain adaptability,
  SLAM integration, path optimization.
- 3D environmental mapping, cave exploration, disaster site visualization, sensor fusion, LIDAR usage.
- Real-time detection, human identification, thermal imaging, vision-based Al, survivor tracking.
- Performance testing, disaster simulation, rugged terrain validation, data accuracy, system stress testing.
- Usability assessment, navigation efficiency, mapping precision, detection accuracy, user feedback.