

Chapter 6

Multiple Radio Access for Control Channels

Outline

- Introduction
- Multiple Radio Access Protocols
- Contention-based Protocols
 - Pure ALOHA
 - Slotted ALOHA
 - CSMA (Carrier Sense Multiple Access)
 - CSMA/CD (CSMA with Collision Detection)
 - CSMA/CA (CSMA with Collision Avoidance)
- Summary

Introduction

- Multiple access control channels
 - Each Mobile Station (MS) is attached to a transmitter or receiver which communicates via a channel shared by other nodes
 - Transmission from any MS is received by other MSs

Introduction (Cont'd)

- Multiple access issues
 - ➤ If more than one MS transmit at a time on the control channel to BS, a collision occurs
 - ▶ How to determine which MS can transmit to BS?
- Multiple access protocols
 - Solving multiple access issues
 - Different types:
 - Contention protocols resolve a collision after it occurs. These protocols execute a collision resolution protocol after each collision
 - Collision-free protocols (e.g., a bit-map protocol and binary countdown) ensure that a collision can never occur

Channel Sharing Techniques

Classification of Multiple Access Protocols

DQDB: Distributed Queue Dual Bus

Contention-based Protocols

ALOHA

- Developed in the 1970s for a packet radio network by Hawaii University
- > Whenever a terminal (MS) has data, it transmits. Sender finds out whether transmission was successful or experienced a collision by listening to the broadcast from the destination station. If there is a collision, sender retransmits after some random time

Slotted ALOHA

Improvement: Time is slotted and a packet can only be transmitted at the beginning of one slot. Thus, it can reduce the collision duration

Slotted ALOHA

Collision mechanism in slotted ALOHA

4

Throughput of Slotted ALOHA

• The probability of successful transmission P_s is the probability no other packet is scheduled in an interval of length T

$$P_s = e^{-gT}$$
 where g is the packet rate of the traffic

• The throughput S_{th} of pure Aloha as:

$$S_{th} = gTe^{-gT}$$

• Defining G = gT to normalize offered load, we have

$$S_{th} = Ge^{-G}$$

• Differentiating S_{th} with respect to G and equating to zero gives

$$\frac{dS_{th}}{dG} = -Ge^{-G} + e^{-G} = 0$$

• The Maximum throughput of ALOHA is

$$S_{\text{max}} = \frac{1}{e} \approx 0.368$$

Pure ALOHA

Collision mechanism in ALOHA

Throughput of Pure ALOHA

$$P_s = P(no_collision)$$

= e^{-2gT} where g is the packet rate of the traffic

• The throughput S_{th} of pure Aloha as:

$$S_{th} = gTe^{-2gT}$$

$$S_{th} = Ge^{-2G}$$

• Differentiating S_{th} with respect to G and equating to zero gives $\frac{dS_{th}}{dG} = -2Ge^{-2G} + e^{-2G} = 0$

• The Maximum throughput of ALOHA is

$$S_{\text{max}} = \frac{1}{2e} \approx 0.184$$

Time

Throughput

Contention Protocols (Cont'd)

- **CSMA** (Carrier Sense Multiple Access)
 - > Improvement: Start transmission only if no transmission is ongoing
- CSMA/CD (CSMA with Collision Detection: for wired system)
 - Improvement: Stop ongoing transmission if a collision is detected
- CSMA/CA (CSMA with Collision Avoidance)
 - Improvement: Wait a random time and try again when carrier is quiet. If still quiet, then transmit
- CSMA/CA with ACK
- CSMA/CA with RTS/CTS

CSMA (Carrier Sense Multiple Access)

- Max throughput achievable by slotted ALOHA is 0.368
- CSMA gives improved throughput compared to Aloha protocols
- Listens to the channel before transmitting a packet (avoid avoidable collisions)

Collision Mechanism in CSMA

p-persistent CSMA Protocols

p-persistent CSMA Protocol:

Step 1: If the medium is idle, transmit with probability p, and delay for worst case propagation delay by one

packet with probability (1-p)

Special case of p=0: non-persistent and p=1:1-persistent

Step 2: If the medium is busy, continue to listen until

medium becomes idle, then go to Step 1

Step 3: If transmission is delayed by one time slot,

continue with Step 1

- > p=0: non-persistent (**no wait**) and p=1: 1-persistent CSMA (**wait**)
- ➤ A good tradeoff between non-persistent and 1-persistent CSMA

Throughput

Nonpersistent/p-persistent CSMA Protocols

Nonpersistent CSMA Protocol (no wait):

Step 1: If the medium is idle, transmit immediately (same as p=1)

Step 2: If the medium is busy, wait a random amount of time and repeat Step 1

- Random backoff reduces probability of collisions
- Waste idle time if the backoff time is too long

For unslotted nonpersistent CSMA, the throughput is given by:

$$S_{th} = \frac{Ge^{-2\alpha T}}{G(1+2\alpha) + e^{-\alpha G}} \qquad where \ \alpha = \frac{\tau}{T} = \frac{propagation \ delay}{packet \ transmission \ time}$$

For slotted nonpersistent CSMA, the throughput is given by:

$$S_{th} = \frac{\alpha G e^{-2\alpha T}}{(1 - e^{-\alpha G} + \alpha)}$$

1-persistent CSMA Protocols

1-persistent CSMA Protocol (wait):

- Step 1: If the medium is idle, transmit immediately
- Step 2: If the medium is busy, continue to listen until medium becomes idle, and then transmit immediately without wait
 - There will always be a collision if two nodes want to retransmit (usually you stop transmission attempts after few tries)

For unslotted 1-persistent CSMA, the throughput is given by

$$S_{th} = \frac{G[1 + G + \alpha G(1 + G + \alpha G/2)]e^{-G(1 + 2\alpha)}}{G(1 + 2\alpha) - (1 - e^{-\alpha G}) + (1 + \alpha G)e^{-G(1 + \alpha)}}$$

For slotted 1-persistent CSMA, the throughput is given by

$$S_{th} = \frac{G(1 + \alpha - e^{-\alpha G})e^{-G(1 + \alpha)}}{(1 + \alpha)(1 - e^{-\alpha G}) + \alpha e^{-G(1 + \alpha)}}$$

How to Select Probability p?

- Assume that N nodes have a packet to send and the medium is busy
- *Then, Np* is the expected number of nodes that will attempt to transmit once the medium becomes idle
- If Np > 1, then a collision is expected to occur Therefore, network must make sure that $Np \le 1$ to avoid collision, where N is the maximum number of nodes that can be active at a time

p-persistent CSMA Protocol

If N terminals have packets to send, Np terminals will attempt to transmit once the medium becomes idle. If Np>1, then collision is expected. Therefore, $Np \le 1$. Throughput S as:

$$S_{th}(G, p, \alpha) = \frac{(1 - e^{-\alpha G}) \left[P_s' \pi_0 + P_s (1 - \pi_0) \right]}{(1 - e^{-\alpha G}) \left[\alpha t' \pi_0 + \alpha t (1 - \pi_0) + 1 + \alpha \right] + \alpha \pi_0}$$

where G is offered traffic rate $\alpha = \tau/T = \text{propagation delay/packet transmission time}$

where $P_s', P_s, \overline{t'}, \overline{t'}$ and π_0 are given by the following equations:

$$P_{s}' = \sum_{n=1}^{\infty} P_{s}(n) \pi_{n}' \qquad P_{s} = \sum_{n=1}^{\infty} P_{s}(n) \frac{\pi_{n}}{1 - \pi_{0}}$$
 $\overline{t}' = \sum_{n=1}^{\infty} \overline{t_{n}} \pi_{n}' \qquad \overline{t} = \sum_{n=1}^{\infty} \overline{t_{n}} \frac{\pi_{n}}{1 - \pi_{0}}$

p-persistent CSMA Protocol

Where:

$$\pi_{n} = \frac{[(1+\alpha)G]^{n}}{n!} e^{-(1+\alpha)G}, n \ge 0, \quad P_{s}(n) = \sum_{l=n}^{\infty} \frac{lp(1-p)^{l-1}}{1-(1-p)^{l}} \Pr\{L_{n} = l\}$$

$$\pi_{n}' = \frac{g^{n}e^{-g}}{n!(1-e^{-g})}, n \ge 1 \qquad \bar{t}_{n} = \sum_{k=0}^{\infty} \Pr\{\bar{t}_{n} > k\}$$

$$where \quad \Pr\{L_{n} = l\} = \sum_{k=1}^{\infty} \frac{(kg)^{l-n}}{(l-n)!} e^{-kg} \quad \Pr\{t_{n} = k\} + [1-(1-p)^{n}] \delta_{l,n}, l \ge n$$

$$and \quad \delta_{i,j} \text{ is the Kronecker} \quad delta.$$

4

CSMA/CD (**CSMA** with Collision Detection)

- In CSMA, if 2 terminals begin sending packet at the same time, each will transmit its complete packet (although collision is taking place)
- Wasting medium for an entire packet time
- CSMA/CD (only wired medium):

Step 1: If the medium is idle, transmit

Step 2: If the medium is busy, continue to listen until

the channel is idle then transmit

Step 3: If a collision is detected during transmission,

cease transmitting (detection not possible by

wireless devices)

Step 4: Wait a random amount of time and repeats

the same algorithm

Throughput of Slotted Nonpersistent CSMA/CD

Example of CSMA/CD

Example 6.1: Consider building a CSMA/CD network running at 2 Gbps over a 4 km long cable without any repeater and the travel spread of the signal in the cable is $2x10^5$ km/s, find the minimum frame size?

For a 4 km long cable, the round-trip propagation time of the signal is: $t = \frac{2x4 \text{ km}}{2x10^3 \text{ km/s}} = 40\mu\text{s}$

To make CSMA/CD work, it must transmit an entire frame in this interval. For a CSMA/CD network running at 2 Gbps, it can propagate 2000 bits per 1 µs. Therefore, the minimum frame size is:

Minimum Frame Size=2000 bits/\pusx20\pus=4x10^4 bits

CSMA/CA (CSMA with Collision Avoidance)

- All terminals listen to the same medium as CSMA/CD
- Terminal ready to transmit senses the medium
- If medium is busy it waits until the end of current transmission
- It again waits for an additional predetermined time period DIFS (Distributed inter frame Space)
- Then picks up a random number of slots (the initial value of backoff counter) within a contention window to wait before transmitting its frame
- If there are transmissions by other MSs during this time period (backoff time), the MS freezes its counter
- It resumes count down after other MSs finish transmission plus DIFS. The MS can start its transmission when the counter reaches to zero

CSMA/CA (Cont'd)

CSMA/CA Explained

DIFS – Distributed Inter Frame Spacing

Random Delay helps CSMA/CA

CW = 31, MS_A and MS_B are backoff intervals at nodes A and B

- \square MS_A and MS_B are the backoff intervals of MS_A and MS_B
- \blacksquare We assume for this example that CW = 31
- MS_A and MS_B have chosen a backoff interval of 25 and 20, respectively
- MS_B will reach zero before five units of time earlier than MS_A
- When this happens, MS_A will notice that the medium became busy and freezes its back-off interval currently at 5
- □ As soon as the medium becomes idle again, MS_A resumes its backoff countdown and transmits its data once the backoff interval reaches zero

CSMA/CA with ACK for ad hoc networks

- Immediate Acknowledgements from receiver upon reception of data frame without any need for sensing the medium
- ACK frame transmitted after time interval SIFS (*Short Inter-Frame Space*) (*SIFS < DIFS*)
- Receiver transmits ACK without sensing the medium
- If ACK is lost, retransmission done

SIFS – Short Inter Frame Spacing

Hidden Terminal Problem

Nodes A and C are hidden with respect to each other

4

CSMA/CA with RTS/CTS

- Transmitter sends an RTS (request to send) after medium has been idle for time interval more than DIFS
- Receiver responds with CTS (clear to send) after medium has been idle for SIFS
- Then Data is exchanged
- RTS/CTS is used for reserving channel for data transmission so that the collision can only occur in control message

CSMA/CA with RTS/CTS

RTS/CTS

This helps avoid hidden terminal problem in such networks like ad hoc

Exposed Terminal Problem

Transmission at Node A forces Node C (Exposed) to stop transmission to Node D