

Humberto J. La Roche, Principal Engineer

in https://www.linkedin.com/in/laroche/

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated until February 24, 2023.

Agenda

- Introduction
- Operator Spectrum Strategies
- Enterprise 5G Spectrum Strategies
- The 5G NR Tools
- Summary

Introduction

5G Requirements are Placed in Buckets ...

Enhanced Mobile Broadband (eMBB)

- 10-20 Gbps peak
- 100 Mbps whenever needed
- 10000x more traffic
- Macro and small cells
- Support for high mobility (500 km/h)
- Network energy saving by 100 times

Massive Machine-Type Communications (mMTC)

- High density of devices (2x10⁵ - 10⁶ per km²)
- Long range
- Low data rate (1 100 kbps)
- M2M low cost
- 10 years battery
- Asynchronous access

Ultra Reliable Low Latency Communications (URLLC)

- Ultra responsive with latencies (< 1 ms air & < 5 ms E2E)
- Ultra reliable and resilient (> 10^{-5} PLR)
- Low to medium data rates (50 kbps - 10 Mbps)
- High speed mobility

... These buckets do not mean any 5G system will support all these use cases: it depends!

BRKSPM-1006

5G New Radio - Improvements

Better Frame Structure: about 20% improvement in spectral efficiency

Better Spectrum Management: **Improvements** in capacity and reach across multiple bands reduce need for densification

Multi-Connectivity is Essential for 5G

Multi- connectivity Carrier Carrier UE Connects to multiple carriers (spectrum bands) concurrently Carrier

Carrier Aggregation (CA) and Dual Connectivity enable deployments with tightly and loosely coordinated cells

- EN-DC is dual connectivity across LTE and NR supported by an EPC (Non-Stand-Alone architecture). Leverages LTE investments in first stage of NR deployment
- Carrier aggregation between C-band and low band or even between mmWave and Sub-6 to provide stability higher throughput, and better coverage
- Carrier aggregation between licensed and unlicensed spectrum such as a in License Assisted Access when NR-U is deployed
- Carrier aggregation to use supplementary uplink spectrum (SUL) for better coverage and supplementary downlink for more capacity

Phased Array Operation

- A phased array steers energy into a desired direction
 - Adjusting phase shifts $\{\phi_i\}$ on copies of a signal replicated into different antennas
 - A digital controller enters values into analog phase shifters
 - Different values of $\{\phi_i\}$ result in different directions
 - TDD is commonly used (means array is used for transmit & receive)

From Wikipedia https://bit.ly/3piHoOT

Massive MIMO - Capacity

Conventional Downlink

Without MIMO a single beam covers a sector with a DL signal shared by all users. Scheduling of users occurs within the beam using time-frequency resources (OFDMA)

M-MIMO Downlink

Massive MIMO beamforming adds directivity logic in the antenna array based on acquired channel state to focus power beams on each UE to the maximum # of DL beam, called a layer.

Conventional Uplink

The BS tells the UE which nonoverlapping resources in the time-frequency grid can be used for upstream traffic. This is where the BS will listen for traffic from a specific UE.

M-MIMO Uplink

Massive MIMO uplink uses the acquired channel state matrix to resolve power received into power components attributable to each UE through a signature derived from the propagation channel

Operator Spectrum Strategies

Myth: "Cell Coverage Areas are Tidy Packed Hexagons"

Map shows cells serving a moving user across a 3.7 km drive (5 towers & 9 cells).

Sunnyvale to downtown Mountain View in 7 min.

Source: https://fabiensanglard.net/lte/index.html

Different spectrum bands have different characteristics and therefore are not "fungible" ...

5G outcomes will depend on spectrum

N78 (in Mid-band) is by Far, the Most Widely Deployed 5G NR Band

We can anticipate midband TDD spectrum to have the most developed ecosystem in 5G for the next few years (2.3 - 6 GHz)

Provides a good balance between capacity and coverage

Source is crowd-sourced data in https://en.wikipedia.org/wiki/List_of_5G_NR_networks (3/25/21) The list includes market trials

BRKSPM-1006

3-4 GHz Spectrum Allocation Worldwide

Review: Anatomy of a Mast

- Radio Units (RU)
 - One per cell-sector
 - · Convert between digital baseband and analog RF
- Low band often at top of mast whereas C-band is added lower (historical reasons)
- Cabling
 - Fiber interfaces into RUs are much preferred (lighter and lossless)
 - · New cabling is hybrid and includes fiber optics, and power "all-in one" (hybriflex cable)
 - Legacy coax cables may also be present for older 2G & 3G with ground mounted radios
- Antennas use Remote Electrical Tilt (RET) to optimize their coverage footprints
- Equipment
 - · In US and many parts of the world, equipment is in an environmentally controlled shed
 - If no shed is available, hardened equipment is needed
 - Power: can be very high (> 6 kW with mid-band massive MIMO accounting for up to 3 kW)

Picture source is Viavi: https://telecoms.com/wp-content/blogs.dir/1/files/2020/05/5G-Cell-site-installation-poster.pdf

AT&T cell-site in S. Florida upgraded to C-band

Drillisch 1&1

Verizon cell-site being upgraded

Midband and 5G Macro Evolution

Sources: https://twitter.com/acetheillest/s

tps://twitter.com/Gabeuk/status/1533808727538733057 ttps://twitter.com/EMTech_/status/1521904041537724417

Multi-connectivity Example: C-Band with Carrier Aggregation and Dual Connectivity (Deutsche Telekom)

Bands:

- B1 (2100 MHz, 2x2, 20MHz)
- B3 (1800 MHz, 4x4, 30MHz)
- B7 (2600 MHz, 2x2, 20MHz)
- N1 (2100 MHz, 2x2, 20MHz)
- N78 (3.5 GHz, 64x64, 90Mhz)

Source: https://twitter.com/RxyzrCSGO/status/1523083780252368897

5G NR Provides Tools for Expanding Coverage

Old reality: path loss on power-limited UL increases with frequency requiring more base stations at higher bands for equivalent coverage at lower bands

5G reality: Combine a low band and a mid-band using m-MIMO into a carrier aggregate and use the low band to schedule downlink/uplink service on same grid as low band

The 5G Spectrum management system enables higher range operation at midband with little or no investment in densification

Range Extension

Almost 9 miles of range on VZW C-band with cross-carrier scheduling (IDEAL CONDITIONS)

Note:

- Always outdoors
- In this case, very favorable LOS propagation

https://twitter.com/jakepimental99/status/1532392110925791233

... 5G is a Powerful Spectrum Management Solution that brings the spectrum together

The "layer cake" approach to multi-connectivity has the virtue of extending C-band range to the point cell-site grid densification is not necessary

5G Macro Evolution: the Basic Toolchain

Multi-Connectivity

SA Architecture

Beambased air interface & m-MIMO

CrossCarrier
Scheduling

5G has a Powerful Toolchain for High Performance Mid-Band

The SA Architecture and why it Matters for Mid-Band TDD

- Yes, NSA is very powerful and capable of many features particularly if you enhance LTE signaling
- SA unlocks the value of the 5G system architecture
 - Unlike NSA, device signaling is based on NR protocols which support the full NR feature set
 - UL 256-QAM and UL 2x2 MIMO are unlocked in SA
 - The greenfield 5G band (e.g., C-band) can be completely unlocked for 5G operation
 - NR Carrier Aggregation can be used extensively and so can crosscarrier scheduling
- Note both NR & SA are supported in most recent device modem chipsets

Operators deploying C-band should also upgrade to SA

UL 2×2 MIMO and 256 QAM and Carrier Aggregation

- UL 2x2 MIMO Modes
 - Spatial diversity
 - Spatial multiplexing
- Transmitted power
 - Power transmitted by UE in Power Class 2: 26 dBm (400 mW) allowed in High Performance ("HPUE") in:
 - TD 2300 (N40: 2.3 2.4 GHz), TD 2500 (N41: 2.496 2.690 GHz)
 - C-Band (N77: 3.3 4.2 GHz, N78: 3.3 3.8 GHz, N79: 4.4 5 GHz,)
 - Usage: One antenna at 26 dBm or two antennas at 23 dBm each (UL 2x2 MIMO)

Source: https://twitter.com/High3eam/status/1582608765232160768

Open vRAN Architectural Elements (Macro)

(a) Low band FDD deployment

(c) mm-wave band TDD deployment for beamforming

Enterprise 5G Spectrum Strategies

Enterprise 5G

"A 5G-based system supporting the special requirements for coverage, service, and overall performance for wireless access of an enterprise"

Two main delivery mechanisms

- Private 5G delivered independent of public networks (NPN)
- Network Slicing delivered from public network (example of PNI-NPN)

Begin with Network Slicing

Definition:

- Network Slicing is an end-to-end partitioning of the network resources and network functions so that selected applications/services/connections may run in isolation from each other for a specific business purpose
- Proposed as a component of the "enterprise 5G" toolchain to tackle the 5G vision of supporting diversity of use cases (eMBB, URLLC, mMTC)
- Allows consumption of wide-area network resources to support enterprise verticals
- The critical element of the definition: Isolation interpreted as "no shared-fate" across slice instances
- Network slicing has emerged as a major talking point for operators and their plans for E5G

Localized E5G Examples

Robotic Control

Advanced Inventory Management

Power plant operation

Just-in-time logistics

AR for jet engine maintenance

Industrial IoT
Factories require wirelessly
connected robots for easy
reconfiguration

Warehouse Control

Mobile inventory
management & tracking
within the warehouse

Manufacturing and Maintenance
Control loops for monitoring
resources and other mission
critical functions

NR-U

- NR-U is a flavor of NR designed to work in unlicensed spectrum
 - Indoors: respects the Listen-Before-Talk discipline and uses mini-slots (begin transmission immediately)
 - Supports mini-slots for fast transmission on detection of an open window
- Two main deployment cases
 - Anchored operation where it supplements a licensed carrier
 - Stand-alone operation where it is used by itself, and
- NR-U should start showing up in UE chips in 2023

Anchored NR-U

BRKSPM-1006

Standalone NR-U

Potential Enterprise 5G Spectrum (partial list)

Sub-7 (lightly licensed or locally licensed)				
Country	Spectrum	Band		
US (CBRS)	3.55 - 3.7 GHz	N48		
Germany	3.7 - 3.8 GHz	N78/N77		
France	2.57 - 2.62 GHz	N38		
UK	3.8 - 4.2 GHz	N77		
Japan, China	4.4 - 5.0 GHz	N79		
Spain	2.3 - 2.4 GHz	N30		
Norway	3.8 - 4.2 GHz	N77		

Unlicensed (n96)

Country	Spectrum	Band
US	5.9 - 7.1 GHz	N96
EU	5.9 - 6.4 GHz	N96
S. Korea	5.9 - 7.1 GHz	N96

Path Loss at mmWave

At current emission levels (EIRP) allowed by most regulators and current receiver sensitivities, mmWave appears to be a good fit for delivering high throughput at short distances (< 0.5 km) in a contained environment

Factors to Consider in mmWave

Inter-Site
Distance (ISD)

Line-of-Sight (LOS)

Lots of Spectrum

Relays & IABs

Multiple Transmission Points

Low Latency

60 GHz by Region

Canada and the EU are expected to expand to six channels for licenses-exempt use soon.

In some countries, most notably India, there is no license exempt spectrum in V-band

3GPP has standardized N263 for V-band with the following CA options

NR CA Band	NR Band
CA_n41-n263	n41, n263
CA_n77-n263	n77, n263
CA_n79-n263	n79, n263

Spectrum Availability is Subject to National Regulator

Cisco has been part of a broad alliance of industry interest groups who promote opening 6 GHz to unlicensed operation

In places where 60 GHz is licenseexempt, there is 3x more spectrum at 60 GHz than the aggregate of all licensed spectrum

The Layer Cake, Green Buildings, and Indoor Coverage

Good carbon neutral design practices consider incident/radiated sunlight into a building [1]

Outdoor-indoor 5G coverage will need to reconcile with green design

Walls attenuate RF at between 5 – 50 dB [2]

Green buildings don't know how to distinguish RF from sunlight

- · Are designed with windows that reflect RF
- Insulate the inside from the outside using metallic foil

Consequently, outdoor 5G coverage does not easily extend indoors

 Answer: Indoor small cell densification via 5G (small cells or DAS) or Wi-Fi 6

References:

[1] La Roche, P. (2017). <u>Carbon-neutral architectural design.</u> Boca Raton, CRC Press, Taylor & Francis Group

[2] https://doi.org/10.6028/NIST.IR.6055

The 5G NR Toolchain

OFDMA Addresses Radio Propagation Issues

OFDM compared to FDM

OFDMA allocates users in time-frequency grid

Problem	Description		Solution
Small Scale Frequency Selective Fading	frequency time Frequency-selective fading.	Multi-path and Doppler result in a radio channel where attenuation is dependent on frequency and time	Divide spectrum into frequency bins (tones or subcarriers) each with a modulation (QAM constellation) that depends on radio channel
Inter-Symbol Interference (ISI)	Time dispersion (delay spread) means a symbol can overlap with the adjacent symbol		Add a cyclic prefix (CP) to extend the symbol into a guard band
Inter-Carrier Interference (ICI)	Doppler shifts received frequencies on moving objects, so subcarriers overlap		In bands susceptible to Doppler, make frequency bins larger!

OFDMA Scheduling in NR (2)

- Scheduling is a MAC layer function
 - Control loop relies on near-instantaneous state of the radio channel as conveyed by CSI (DL) and SRS (UL)
 - gNB scheduler controls both UL & DL resources
- Scheduler
 - Uses QoS indication (5QI) conveyed by 5G Core as input
 - Maps data bits to "blocks" packing more bits in the higher order QAM blocks
 - Populates a PDCCH (Physical Downlink Control Channel) with all the information needed for the receiver to receive bits and with information on where to put the UL bits
 - Maps digital traffic to each antenna in multi-antenna (MIMO) configurations

3GPP Definition of the URLLC: A 32-byte message is successfully transmitted over the radio interface within 1 ms with 99.999% probability.

URLLC is about delivering wireless services that are equivalent to what can be accomplished with the most stringent wired applications

URLLC will Require a Special Toolchain

Resilient connectivity through CoMP/JT

μ	$\Delta f_{\mu} = 2^{\mu} \times 15 \text{ kHz}$	$T_{slot}^{\mu} = 2^{-\mu} \times 1$ ms	Cyclic Prefix
0	15	1 ms	Normal
1	30	0.5 ms	Normal
2	60	0.25 ms	Normal, Extended
3	120	0.125 ms	Normal
4	240	0.0625 ms	Normal

Dynamic UL Scheduling

Grant-Free UL Scheduling

Mini-slot transmissions

Network-timing OTA

- Wired IEEE TSN is one of many communications links used today in the lloT scenario
- What appears to be requested is TSN functionality OTA
- Automation industry envisions TSN as the (single) wired communication technology that allows critical real-time communication on a common communication platform
 - IEEE 802.1 → TSN standardization
 - IEC/IEEE project 60802 →TSN automation profile
- How do we build TSN into a 5G RAN interface? That is the technical challenge!

Summary

New 5G Technology Changes the Way to Characterize Spectrum

Pre-5G Spectrum Characterization is based on path loss

The higher the frequency, the worse the Coverage: low-band was 400 MHz to 1 GHz and mid-band is 1 – 3 GHz

cisco life!

Post-5G Spectrum Characterization is defined by enabling technology

Coverage and capacity can be optimized simultaneously through the technology introduced in 5G

Learnings

- Not all 5G systems and not all spectrum applies to the same objectives: eMBB (consumer), m-MTC (IOT), and URLLC (industrial) all have very different features
 - The essence of using 5G successfully is to select the adequate spectrum and system for the use case
 - For eMBB high-capacity performance demand multiple bands
- Since 5G is (mostly) licensed technology, this gives operators an advantage but ... private 5G spectrum is becoming available
- Special features (e.g., URLLC) will not be free and will certainly not be available everywhere (they will be localized)
- Why is 5G interesting? It is a superior system for spectrum management!

Complete your Session Survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (open from Thursday) to receive your Cisco Live t-shirt.

https://www.ciscolive.com/emea/learn/sessions/session-catalog.html

Continue Your Education

Visit the Cisco Showcase for related demos.

Book your one-on-one Meet the Engineer meeting.

Attend any of the related sessions at the DevNet, Capture the Flag, and Walk-in Labs zones.

Visit the On-Demand Library for more sessions at <u>ciscolive.com/on-demand</u>.

Thank you

cisco live!

