SECTION 1 (4344)

CECS 285, Spring 2015

CAL STATE LONG BEACH Lab #6, Due: 2015, March 11

	Switch value in binary	PWM Duty Cycle	Numerator	Denominator
	000	11%	Y1=1	X=9
	001	22%	Y1=2	X=9
	010	33%	Y1=3	X=9
1.	011	44%	Y1=4	X=9
	100	55%	Y1=5	X=9
	101	66%	Y1=6	X=9
	110	77%	Y1=7	X=9
	111	88%	Y1=8	X=9

2. To get the required delay time, let us consider the snippet of code below for yet to be determined positive integers x and y.

DELAY:

MOV RO, #x

L00P0: MOV R1, #y DJNZ R1, LOOP1 LOOP1:

DJNZ RO, LOOPO

The number of machine cycles for this code is

$$2 + [2 + 4 \cdot y + 4] \cdot x = 4xy + 6x + 2.$$

Since we our machine is a DS89C450 and since we want to generate a $\frac{1}{5400}s$ delay time, we must have that

$$(4xy + 6x + 2) \cdot 90.42ns = \frac{1}{5400}.$$

So choose x = 11 and solve to get $y \approx 45$.

3.

VOM PO, #0 ;Set Port 0 as output

MOVP1, #07H ;Use low 3-bit of P1 for modulation

MAIN_LOOP:

MOV R2, P1 ;Read data from switch into R2 ;Add 1 to get index of switch INC

MOV PO, #OFFH ;Turn on LEDs

DELAY_ON:

JOSEPH OKONOBOH, 013755064
Computer Science
Cal State Long Beach

CECS 285, Spring 2015 Section 1 (4344) Lab #6, Due: 2015, March 11

	ACALL DJNZ	DELAY R2, DELAY_ON	;Keep LEDs on for R2 * Delay time	
	MOV	R2, P1	;Read data from switch into R2	
	MOV SUBB MOV	A, #8 A, R2 R2, A	;Off Time = (8 - R2) * Delay time	
	MOV	PO, #0	;Turn off LEDs	
DELAY_OFF:				
	ACALL DJNZ	DELAY R2, DELAY_OFF	;Keep LEDs on for R2 * Delay time	

SJMP MAIN_LOOP

DELAY:

MOV RO, #11 ; Delay time for DS89C450 at 600 Hz

LOOPO:

MOV R1, #45

LOOP1:

DJNZ R1, LOOP1

DJNZ RO, LOOPO

RET

END

4. Flow Chart

