

Preliminary Technical Information

GigaMOS™ Power MOSFET

IXFK180N25T IXFX180N25T

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings			
V _{DSS}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	250	V		
V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	250	V		
V _{GSS}	Continuous	± 20	V		
V _{GSM}	Transient	± 30	V		
I _{D25} I _{L(RMS)}	$T_{\rm C}=25^{\circ}{\rm C}$	180	A		
	External Lead Current Limit	160	A		
	$T_{\rm C}=25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	500	A		
I _A	T _c = 25°C	90	A		
E _{AS}	T _c = 25°C	5	J		
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	20	V/ns		
P _D	T _C = 25°C	1390	W		
T _J		-55 +150	°C		
T _{JM}		150	°C		
T _{stg}		-55 +150	°C		
T _L T _{SOLD}	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260	°C		
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in		
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb		
Weight	TO-264	10	g		
	PLUS247	6	g		

SymbolTest ConditionsChar $(T_J = 25^{\circ}C \text{ Unless Otherwise Specified})$ Min.				cteristic Typ.	Values Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$		250			V	
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$		3.0		5.0	V	
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				± 200	nA	
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$				50	μΑ	
		$T_J = 125^{\circ}C$			2.5	mA	
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 90A, Note 1$				12.9	mΩ	

 $V_{DSS} = 250V$ $I_{D25} = 180A$ $R_{DS(on)} \le 12.9m\Omega$ $t_{rr} \le 200ns$

TO-264 (IXFK)

PLUS247 (IXFX)

G = Gate D = DrainS = Source Tab = Drain

Features

- International Standard Packages
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switched-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbol Test Conditions Cha		Chara	acteristic Values		
$(T_J = 25)$	5°C U	nless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}		$V_{DS} = 10V, I_{D} = 60A, Note 1$	90	150	S
C _{iss})			23.8	nF
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2070	pF
\mathbf{C}_{rss}	J			47	pF
R_{Gi}		Gate Input Resistance		1.1	Ω
t _{d(on)})	Resistive Switching Times		35	ns
t _r	Ţ	$V_{GS} = 15V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		52	ns
$\mathbf{t}_{d(off)}$	($R_{G} = 10$ (External)		88	ns
t,	J	Ti _G = 132 (External)		20	ns
$\mathbf{Q}_{g(on)}$)			364	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		137	nC
\mathbf{Q}_{gd}	J			60	nC
R _{thJC}					0.09 °C/W
R _{thCS}				0.15	°C/W

Source-Drain Diode

Symbol Test Conditions		Cha	racteristi	c Values	/alues			
$(T_{_{\rm J}} = 25^{\circ}\text{C}, \text{ Unless Otherwise Specified})$		Min.	Тур.	Max.				
I _s	$V_{GS} = 0V$			180	Α			
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			720	Α			
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.4	V			
$\left\{ egin{array}{c} oldsymbol{t_{rr}} \\ oldsymbol{Q_{RM}} \\ oldsymbol{I_{RM}} \end{array} ight\}$	$I_F = 90A$, -di/dt = 100A/ μ s $V_R = 75V$, $V_{GS} = 0V$		0.77 11	200	ns μC A			

Note 1: Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-264 AA Outline Terminals: 1 - Gate 2 - Drain 3 - Source 4 - Drain Dim. Millimeter Min. Max Min. Max 4.82 5.13 .190 .202 2.54 .100 A2 2 00 2.10 .079 .083 b 1.12 1.42 044 056 b1 2.39 .094 .106 2.69 2.90 3.09 .122 0.53 0.83 .033 .021 С D 1.020 25.91 26.16 1.030 Е 19.81 19.96 .780 .786

5.46 BSC .215 BSC е 0.00 0.25 .000 .010 K .010 0.00 0.25 .000 L 20.32 20.83 .800 .820 L1 2.29 2.59 .090 .102 Р 3.17 3.66 .125 .144 Q 6.07 6.27 .239 .247 Q1 .342 8.38 8.69 .330 R 3.81 4.32 .150 .170 2.29 6.04 6.30 .238 .248 1.57 1.83 .062 .072

PLUS 247™ Outline

Terminals: 1 - Gate 2 - Drain

Dim.	Millimeter		Inc	hes			
	Min.	Max.	Min.	Max.			
Α	4.83	5.21	.190	.205			
A_1	2.29	2.54	.090	.100			
A ₂	1.91	2.16	.075	.085			
b	1.14	1.40	.045	.055			
b_1	1.91	2.13	.075	.084			
b_2	2.92	3.12	.115	.123			
С	0.61	0.80	.024	.031			
D	20.80	21.34	.819	.840			
E	15.75	16.13	.620	.635			
е	5.45	BSC	.215	BSC			
L	19.81	20.32	.780	.800			
L1	3.81	4.32	.150	.170			
Q	5.59	6.20	.220	0.244			
R	4 32	4 83	170	190			

3 - Source

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

tr- Nanoseconds

Fig. 14. Resistive Turn-on Rise Time vs. **Drain Current** $R_G = 1\Omega$, $V_{GS} = 15V$ V_{DS} = 125V T_J = 125°C T_J = 25°C I_D - Amperes

Fig. 18. Resistive Turn-off Switching Times vs. **Gate Resistance** $t_{d(off)}$ - -T_J = 125°C, V_{GS} = 15V V_{DS} = 125V tf-Nanoseconds I_D = 180A R_G - Ohms

Fig. 19. Maximum Transient Thermal Impedance

