## Sistemas Operacionais

4º período

Professora: Michelle Hanne



# Escalonamento - Revisão -

baseado em http://www.univasf.edu.br/~andreza.leite/aulas/SO/ProcessosEscalonamento.pdf



- Definição:
  - O escalonamento consiste em distribuir o acesso aos recursos do sistema entre os processos que o solicitam.
- Objetivo:
  - Otimizar o rendimento dos recursos.
  - Priorizar o acesso aos recursos disponíveis.
- Recursos que necessitam escalonamento:
  - Dispositivos E/S (discos)
  - Processador
  - Memória



- Multiprogramação:
  - O S.O. gerencia múltiplos processos na memória principal de forma simultânea.
  - Os processos devem compartilhar o acesso ao

processador.

- Escalonamento de processos:
  - Decidir sobre:
    - Que trabalhos serão admitidos pelo sistema
    - Que processos serão mantidos na memória principal
    - Que processo utilizará a CPU quando ela estiver livre

O escalonador de processos é o responsável de tomar estas decisões, repartindo o uso da memória e do processador entre os processos ativos do sistema.



- Tipos de Escalonadores:
  - Escalonador de médio prazo
    - É o responsável de escolher os processos que serão removidos total ou parcialmente da memória para serem levados ao disco (suspensos)
- Manter rendimento do sistema
- Escalonador de curto prazo
  - Responsável por alocar à CPU os processos alocados em memória







### **Escalonador:Curto Prazo**

- Escalonador
  - Seleciona o processo para sua execução, atendendo a um determinado critério.
- Dispacher (despachador)

É o módulo que dá controle da CPU para o processo selecionado pelo escalonador de curto prazo.

- Salvar contexto do processo que sai da cpu
- Restaurar contexto do processo que entra na cpu
- Reiniciar a execução de processos
  - Alterar para estado pronto.
  - Configurar para o ponto apropiado do programa

Troca de contexto



## Troca de processos



(1) Finalização do tempo de execução ou o processo se bloqueia à espera de um recurso que necessita





## Troca de processos

processos intensivos em CPU
 as etapas de CPU são maiores que as de E/S.

#### **CPU BOUND:**

processo CPU intensivo:



processos intensivos en E/S
 as etapas de E/S são maiores que as de CPU.

**IO BOUND:** 

processo E/S intensivo:





- Escalonar...
  - Divisão equitativa do processador
  - Otimizar alguns critérios:
    - Grau de utilização da CPU.
    - Produtividade (throughput).
      - Número de processos terminados por unidade de tempo
    - Tempo de retorno (*Turnaround time*).
      - Tempo transcorrido desde que se lança um processo (entra na fila de prontos) até que finalize sua execução.
      - É a soma do tempo de espera para ir para a memória, tempo de espera na fila dos prontos, tempo em execução na CPU e o tempo de espera por recursos.



- O escalonador ideal
  - □ É aquele que consegue deixar a CPU 100% ocupada.
  - Objetivo
    - Maximizar a produtividade
    - Minimizar o tempo de retorno, resposta e espera.
  - Não existe nenhuma política de escalonamento ótima:
    - Cumprir com todos critérios anteriores
  - A política de escalonamento conveniente depende:
    - Tipo de processo.
    - Critério de otimizarão desejado.



- Algoritmos de Escalonamento:
  - Algumas políticas de escalonamento podem funcionar em modo não preemptivo ou em modo preemptivo.
    - Modo não preemptivo:
      - O processo que possui a CPU somente a libera quando quer (quando acaba sua execução)
      - Não necessita suporte de hardware adicional
      - Um processo pode monopolizar a CPU
      - Não são convenientes para ambientes de tempo compartilhado.
        - Exemplo: Windows 3.1 e Apple Macintosh OS



- Algoritmos de Escalonamento:
  - Algumas políticas de escalonamento podem funcionar em modo não preemptivo ou em modo preemptivo.
    - Modo preemptivo:
      - O escalonador pode desalocar um processo da CPU em qualquer instante de tempo.
      - Maior custo, porém evita-se que um processo tenha 100% da CPU



- Algoritmos de Escalonamento:
  - Não Preemptivos
    - Fisrt-Came, Fisrt-Served FCFS (FIFO)
    - Shortest-Job-First SJF
  - Preemptivos
    - Por prioridades
    - Turno rotativo ou Circular (Round-Robin)
    - Filas multi-nivel
    - Tempo Real



## Escalonamento - Exemplo

Para os exemplos dos algoritmos de escalonamento vamos supor a existência de 3 processos com as seguintes características:

| Processo   | Tempo de | Etapas do proceso  |
|------------|----------|--------------------|
|            | chegada  |                    |
| Processo A | 0        | $7_{\mathrm{CPU}}$ |
| Proceso B  | 2        | $4_{\mathrm{CPU}}$ |
| Processo C | 3        | $2_{\mathrm{CPU}}$ |

 OBS: Considere os delays dos tempos de chegada de cada processo.



## Não Preemptivos



# Algoritmo FCFS



## Algoritmo FCFS (First-Come First-Served)

### Funcionamento:

- O procesador é alocado seguindo a ordem de chegada dos processos à fila de processos prontos.
- O processo que tem a CPU não a libera até que acabe sua execução ou até que fique bloqueado por uma operação de E/S.

### Implementação:

 A fila de processos prontos é implementada mediante uma fila FIFO (First-In First-Out).



### Diagrama de Gant FCFS



$$TEspera_{medio} = \frac{TEspera_A + TEspera_B + TEspera_C}{n^{\circ} \ processos} = \frac{0 + (7 - 2) + (11 - 3)}{3} = \frac{0 + 5 + 8}{3} = 4,3$$

$$T \operatorname{Re} torno_{medio} = \frac{T \operatorname{Re} torno_A + T \operatorname{Re} torno_B + T \operatorname{Re} torno_C}{n^{\circ} processos} = \frac{7 + 11 + 13}{3} = 10,33$$



# Algoritmo SJF



### Algoritmo SJF (Shortest Job First)

#### Funcionamento:

- O processador é alocado ao processo com etapa de CPU mais breve.
- Em caso de empate se aplica outro algoritmo (normalmente o FIFO).
- Não preemptivo
  - O processo que possui a CPU somente a libera quando quando termina sua execução ou quando se bloqueia
- Com preempção
  - Se um outro processo chegar pico de CPU menor do que o restante do processo atual, há preempção. Esse esquema é conhecido como "Shortest Remaining Time First" (SRTF).

### Implementação:

 Ordena a fila de processos prontos em função do tempo das seguintes etapas de CPU dos processos.



### Diagrama de Gant SJF



$$TEspera_{medio} = \frac{TEspera_A + TEspera_B + TEspera_C}{n^{\circ} \ procesos} = \frac{(9-0) + (5-2) + (3-3)}{3} = \frac{9+3+0}{3} = 4$$

$$T \operatorname{Re} torno_{medio} = \frac{T \operatorname{Re} torno_A + T \operatorname{Re} torno_B + T \operatorname{Re} torno_C}{n^{\circ} processos} = \frac{16 + 9 + 5}{3} = 10$$



### Características SJF

Reduz o tempo de espera médio

Minimiza o efeito de priorizar processos do tipo cpu-bound

É difícil determinar a priori qual será a duração da seguinte etapa de CPU dos processos.



## Preemptivos



# Algoritmo Por Prioridades



### Algoritmo por prioridades

### Funcionamento:

- Cada processo tem associado um valor inteiro que representa sua prioridade de execução
- O escalonador escolhe o processo da fila de processos prontos que tenha a maior prioridade.

### Implementação:

 A fila de processos prontos é ordenada pela prioridade dos processos.

### Opcões:

- A Política pode ser preemptiva ou não.
- As prioridades podem ser definidas de forma interna (pelo SO) ou de forma externa (pelo usuário).
- Prioridades estáticas ou dinâmicas.



# Algoritmo Round Robin



## Algoritmo Round-Robin(turno rotativo)

 Atribui-se a cada processo durante um intervalo de tempo um valor pré fixado de forma rotativa, denominado quantum.

#### Funcionamento:

- Semelhante ao FCFS
- Fila de prontos é uma fila FIFO circular
- Escalonador percorre fila alocando, para cada processo, até 1 quantum

### Implementação:

Neste algorimo é requerido um valor temporal de troca de contexto.

#### Características:

- Permite esgotar ao máximo o tempo de resposta dos processos.
- Algoritmo ideal para sistemas de tempo compartilhado.



## Algoritmo Round-Robin(turno rotativo)

- Se processo não deixar a CPU dentro do quantum, é preemptado
- Se houverem n processos e o quantum for q, cada processo possui 1/n tempo de CPU, executado em porções de tempo de tamanho até q
- Nenhum processo espera mais do que (n-1)q para utilizar CPU
  - Não ocorre starvation (estagnação)
- Desempenho
  - Quantum muito grande: execução FCFS (FIFO)
  - Quantum muito pequeno: muitas trocas de contexto
    - Alto custo
  - Quantum deve ser pequeno suficiente para garantir o tempo compartilhado
  - Quantum deve ser grande bastante para compensar trocas de contexto
  - Bom desempenho: 80% dos picos de CPU devem ser menores que quantum



## Filas Multiníveis



### Filas Multiníveis

- Fila de prontos é dividida em várias filas
  - Ex.: 2 filas
    - Processos em primeiro plano (interativos/foreground);
    - Processos em segundo plano (background/batch);
- Cada fila possui seu próprio algoritmo de escalonamento:
  - □ Ex.:
    - Processos em primeiro plano: RR (para manter tempo compartilhado);
    - Processos em background: FCFS;
- É necessário haver escalonamento entre as filas:
  - Para escolher o processo de qual fila será executado;
  - Se usar algoritmo de prioridade fixa de uma fila sobre outra: starvation;
  - Outra opção: dividir o tempo de execução entre as filas:
  - Foreground fica com 80% e background com 20% do tempo de CPU.



- Sem retroalimentação: processo nunca é trocado de fila;
- Com retroalimentação: processo pode ser trocado de fila;
  - Permite separar processos com características de picos de CPU semelhantes;
    - Um processo que usa muito tempo de CPU é movido para fila de mais baixa prioridade;
    - Dessa forma: processos IO-bound e interativos (dependem da interação do usuário) ficam nas filas com mais prioridade;
    - Processos que ficam aguardando muito tempo por CPU podem ser movidos para filas de mais alta prioridade: evita starvation (estagnação)



- Escalonador é definido pelos seguintes parâmetros:
  - número de filas;
  - algoritmos de escalonamento para cada fila;
  - método usado para determinar quando elevar um processo;
  - método usado para determinar quando rebaixar um processo;
  - método usado para determinar em que fila um processo entrará quando esse processo precisar de atendimento;



- EX:
- Três filas (com prioridade fixa):
  - Q0 quantum de tempo 8 milissegundos
  - Q1 quantum de tempo 16 milissegundos
  - Q2 FCFS

- Uma nova tarefa entra na fila Q0, que é atendida com base no RR. Quando ganha a CPU, a tarefa recebe 8 milissegundos. Se não terminar nesse tempo, a tarefa é movida para a fila Q1.
- Em Q1, a tarefa é atendida novamente com base no RR e recebe 16 milissegundos adicionais. Se ainda não estiver completa, a tarefa é apropriada e movida para a fila Q2.







# Escalonamento em Tempo Real



- Escalonador de TEMPO REAL
  - Tipos de aplicações
    - Industriais
    - Automóveis
    - Multimídia
  - Tipos de sistemas tempo real
    - Sistemas críticos (Hard Real-Time)
    - Sistemas não críticos (Soft Real-Time)



### Escalonador de TEMPO REAL

- Sistemas críticos (Hard Real-Time)
  - É necessário garantir que a(s) tarefa(s) consideradas críticas terminem antes de um determinado tempo (deadline), caso contrário o seu não cumprimento pode resultar em graves danos para o sistema.

### Exemplos:

- Aplicações aeroespaciais
- ABS de um carro
- Sistema de automação



- Escalonador de TEMPO REAL
  - Sistemas não críticos (Soft Real-Time)
    - O funcionamento do sistema é apenas ligeiramente afetado caso não seja possível cumprir um determinado deadline.
    - Exemplos:
      - Aplicações multimídia
      - Jogos de computador