Digital Logic Design

4190.201

2014 Spring Semester

Working with Finite State Machines

Naehyuck Chang
Dept. of CSE
Seoul National University
naehyuck@snu.ac.kr

Finite state machine optimization

- State minimization
 - Fewer states require fewer state bits
 - Fewer bits require fewer logic equations
- Encodings: state, inputs, outputs
 - State encoding with fewer bits has fewer equations to implement
 - However, each may be more complex
 - State encoding with more bits (e.g., one-hot) has simpler equations
 - Complexity directly related to complexity of state diagram
 - Input/output encoding may or may not be under designer control
- Combinational logic optimization
 - Next state forming logic
 - Output forming logic

Algorithmic approach to state minimization

- State minimization/reduction
 - Goal identify and combine states that have equivalent behavior
- Equivalent states:
 - Same output
 - For all input combinations, states transition to same or equivalent states
- Algorithm with the symbolic state transition table
 - Group states together with the same output
 - Examine transitions that have the same next state for every input combination
 - Row matching and implicant charts

4

State minimization example

Sequence detector for 010 or 110

Input Sequence	Present State		State X=1	X=0 Ou	itput X=1
Reset 0 1 00 01 10 11	S0 S1 S2 S3 S4 S5 S6	S1 S3 S5 S0 S0 S0 S0	S2 S4 S6 S0 S0 S0 S0	0 0 0 0 1 0 1	0 0 0 0 0

Method of successive partitions

Input Sequence	Present State		State X=1	X=0 Ou	tput X=1
Reset 0 1 00 01 10 11	S0 S1 S2 S3 S4 S5 S6	S1 S3 S5 S0 S0 S0 S0	S2 S4 S6 S0 S0 S0 S0	0 0 0 0 1 0	0 0 0 0 0 0

State minimized sequence detector for 010 or 110

Input		Nex	t State	Output		
Sequence	Present State	X=0	X=1	X=0	X=1	
Reset	S0	S1'	S1 '	0	0	
0 + 1	S1'	S3'	S4 '	0	0	
X0	S3'	S0	S0	0	0	
X1	S4'	S0	S0	1	0	

- Row matching does not always yield the most-reduced state table
- Counter example
 - Odd parity checker
 - S0 and S2 cannot be merged by row matching due to the self loop transitions on input 0

Drocont state	Next :	Output			
Present state	X=0	X=1	Output		
S0	S0	S1	0		
S1	S1	S2	1		
S2	S2	S1	0		

Original

Reduced

- Implicant chart method
 - More systematic approach to finding the state that can be combined into a single reduced state
 - More complex and better suited for machine implementation than hand use
 - (n2-n)/2 cells for n states
 - Xij: row is labeled by Si and column is labeled by Sj (Mark if Si, Sj can be combined)

S0	Х					9/1		
S1		Х					1	
S2			Х					
\$0 \$1 \$2 \$3 \$4 \$5 \$6 \$7				Х				
S4					Х		A	
S5						Х		
S6							Х	
S7								Χ

S0 S1 S2 S3 S4 S5 S6 S7

More complex state minimization

Multiple input example

Symbolic state transition table

- Implication chart method
 - Cross out incompatible states based on outputs (mark X if the output is different)
 - Complete the initial implicant chart
 - Cross out more cells if indexed chart entries are already crossed out

Equivalent states with don't cares

- Equivalence of states is transitive when machine is fully specified
 - \bigcirc a=b, b=c, then a=c
- But its not transitive when don't cares are present

e.g.,	state	output	
	S0	– 0	S1 is compatible with both S0 and S2
	S1	1 -	but S0 and S2 are incompatible
	S2	- 1	

No polynomial time algorithm exists for determining best grouping of states into equivalent sets that will yield the smallest number of final states

Minimizing states may not yield best circuit

Example: edge detector - outputs 1 when last two input changes from 0 to 1

Χ	Q_1	Q_0	Q_1^+	Q_0^+
0	0	0	0	0
0	0	1	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	1	1	1
_	1	0	0	0

$$Q_1^+ = X (Q_1 xor Q_0)$$

$$Q_0^+ = X Q_1' Q_0'$$

Another implementation of edge detector

"Ad hoc" solution - not minimal but cheap and fast

State assignment

- Choose bit vectors to assign to each "symbolic" state
 - With n state bits for m states there are 2n! / (2n m)! [log n <= m <= 2n]
 - ② 2n codes possible for 1st state, 2n−1 for 2nd, 2n−2 for 3rd, ...
 - Huge number even for small values of n and m
 - Intractable for state machines of any size
 - Heuristics are necessary for practical solutions
 - Optimize some metric for the combinational logic
 - Size (amount of logic and number of FFs)
 - Speed (depth of logic and fanout)
 - Dependencies (decomposition)

State assignment strategies

- Possible strategies
 - Sequential just number states as they appear in the state table
 - Random pick random codes
 - One-hot use as many state bits as there are states (bit=1 –> state)
 - Output use outputs to help encode states
 - Heuristic rules of thumb that seem to work in most cases
- No guarantee of optimality another intractable problem

One-hot state assignment

- Simple
 - Easy to encode
 - Easy to debug
- Small logic functions
 - Each state function requires only predecessor state bits as input
- Good for programmable devices
 - Lots of flip-flops readily available
 - Simple functions with small support (signals its dependent upon)
- Impractical for large machines
 - Too many states require too many flip-flops
 - Decompose FSMs into smaller pieces that can be one-hot encoded
- Many slight variations to one-hot

Heuristic methods

- CAD is preferred for good state encodings
 - Hand enumeration using trial and error becomes tedious
 - n-state FSM has n! different encodings even when densely encoded
- More tractable guidelines
 - Heuristics
 - To reduce the distance in Boolean n-space between related states
 - Encodings should differ by as few bits as possible
- State maps
 - Similar concept to K-maps

Output-based encoding

- Reuse outputs as state bits use outputs to help distinguish states
 - Why create new functions for state bits when output can serve as well
 - Fits in nicely with synchronous Mealy implementations (Basic machine)

	Inpu	ts	Present State	Next State		Output	S	
C	TL	TS			ST	Н	F	
0	_	_	HG	HG	0	00	10	
_	0	_	HG	HG	0	00	10	
1	1	_	HG	HY	1	00	10	
_	_	0	HY	HY	0	01	10	
_	_	1	HY	FG	1	01	10	
1	0	_	FG	FG	0	10	00	
0	_	_	FG	FY	1	10	00	
_	1	_	FG	FY	1	10	00	
_	_	0	FY	FY	0	10	01	
_	_	1	FY	HG	1	10	01	

HG = ST' H1' H0' F1 F0' + ST H1 H0' F1' F0 HY = ST H1' H0' F1 F0' + ST' H1' H0 F1 F0' FG = ST H1' H0 F1 F0' + ST' H1 H0' F1' F0' HY = ST H1 H0' F1' F0' + ST' H1 H0' F1' F0 Output patterns are unique to states, we do not need ANY state bits – implement 5 functions (one for each output) instead of 7 (outputs plus 2 state bits)

Heuristic methods

- Comparison with two assignments
 - May results in significant bit change differences during state transition

Ctata nama	Assignment			
State name	Q2	Q1	Q0	
S0	0	0	0	
S1	1	0	1	
S2	1	1	1	
S3	0	1	0	
S4	0	1	1	

State name	Assignment			
State Harrie	Q2	Q1	Q0	
S0	0	0	0	
S1	0	0	1	
S2	0	1	0	
S3	0	1	1	
S4	0	1	1	

Assignment 1

Assignment 2

Heuristic methods

Highest priority: adjacent codes to states that share a common next state

I	Q	Q ⁺	0
i	а	С	j
i	b	С	k

$$c = i * a + i * b$$

Medium priority: adjacent codes to states that share a common ancestor state

Lowest priority: adjacent codes to states that have a common output behavior

Current state assignment approaches

- For tight encodings using close to the minimum number of state bits
 - Best of 10 random seems to be adequate (averages as well as heuristics)
 - Heuristic approaches are not even close to optimality
 - Used in custom chip design
- One-hot encoding
 - Easy for small state machines
 - Generates small equations with easy to estimate complexity
 - Common in FPGAs and other programmable logic
- Output-based encoding
 - Ad hoc no tools
 - Most common approach taken by human designers
 - Yields very small circuits for most FSMs

FSM partitioning

- Large-size FSM
 - Impossible to implement in a single programmable logic
 - Hard to optimize it due to the exponentially increasing complexity
- The following is not always possible

FSM partitioning

- FSM partitioning by introducing idle states
 - Additional idle or coordination states
 - When a state transition from S1 to S16 occurs
 - The left-hand partition is lost control
 - S1 is no longer active, but all the other states in the left-hand partition are not active, either
 - Should be in an idle state until a state transition from S6 to S1 occurs

Sequential logic optimization summary

- State minimization
 - Straightforward in fully-specified machines
 - Computationally intractable, in general (with don't cares)
- State assignment
 - Many heuristics
 - Best-of-10-random just as good or better for most machines
 - Output encoding can be attractive (especially for PAL implementations)

