Outline

Accuracy

Confusion Matrix

Sensitivity, Specificity, Precision

F1 Score

Threshold Dependence

ROC Curve and AUC

Precision-Recall Curve

Real-World Examples

Example Walkthrough

Summary

Threshold Tuning

1) Accuracy

Definition:

$$\mbox{Accuracy} = \frac{\mbox{Number of Correct Predictions}}{\mbox{Total Number of Predictions}} = \frac{TP + TN}{TP + TN + FP + FN}.$$

- Simple to understand: "What fraction of samples did we get right?"
- Fails on imbalanced data:
 - ▶ If you have 99% negatives and 1% positives, a naive model predicting all negatives ('print("negative")') has 99% accuracy but catches **0%** of actual positives.

2) Confusion Matrix

Binary confusion matrix:

Actual Positive	TP (True Positive) FN (False Negat	,
Actual Negative	FP (False Positive) TN (True Nega	ati

- ► All evaluation metrics derive from these four counts: TP, FP, TN, FN.
- ► Example: "TP = 20" means 20 actual positives were correctly predicted as positive.

3) Recall (Sensitivity/TPR), Specificity (TNR), & Precision

From the confusion matrix, we define:

► Recall (Sensitivity, TPR):

$$\frac{TP}{TP + FN}$$

"Out of actual positives, how many did we catch?"

Specificity (TNR):

$$\frac{TN}{TN + FP}$$

"Out of actual negatives, how many did we correctly reject?"

Precision:

"Of the predicted positives, how many truly are positive?"

Additional Terms: FPR and Their Relationships

False Positive Rate (FPR):

$$\mathsf{FPR} = \frac{\mathit{FP}}{\mathit{TN} + \mathit{FP}} = 1 - \mathsf{Specificity}.$$

Summary Table:

Metric	Formula	Interpretation
Recall(Sen, TPR)	$\frac{TP}{TP+FN}$	How many positives found?
Specificity (TNR)	$\frac{TN}{TN+FP}$	How many negatives correctly rejected?
Precision	TP TP+FP	How often a "positive" prediction is corr
FPR	TP TP+FN TN TN+FP TP TP+FP FP FP+TN	Probability of false alarm

4) F1 Score

F1 Score: Harmonic mean of Precision and Recall

$$F1 = 2 \cdot \frac{(Precision) \cdot (Recall)}{Precision + Recall}$$

- ▶ Value ranges from 0 to 1; higher is better.
- ▶ F1 = 1 only if Precision = 1 and Recall = 1.
- Useful when you need to balance false positives and false negatives.

5) Threshold Dependence

- ► Many models output a probability score (0 to 1).
- Choosing a different threshold changes TP, FP, TN, FN.
- ► **Lower threshold** ⇒ more positives, typically higher Recall but lower Precision.
- ► Higher threshold ⇒ fewer positives, typically higher Precision but lower Recall.

Hence, all these metrics can vary greatly with threshold!

- Overconfident but often wrong person:
 - ▶ Predicts 0.9 for positive class and 0.2 for negative class.
 - High confidence but often incorrect.
- Always correct but not confident person:
 - ▶ Predicts 0.4 for positive class and 0.1 for negative class.
 - Low confidence but usually correct.

The second person will predict negative for all samples if the threshold is set to 0.5.

6) ROC Curve & AUC (Conceptual)

- ▶ ROC Curve: plots TPR (Sensitivity) vs. FPR at various thresholds.
- ▶ **AUC**: Area Under the ROC Curve (0.5 = random, 1.0 = perfect).
- Interpretation:
 - If you vary the threshold from 0 to 1, how do TPR and FPR move?
 - A higher AUC typically means better ability to separate positives from negatives.
- For heavily imbalanced data, sometimes ROC AUC can be overly optimistic.

LABELS: ROC SPACE

- For comparing classifiers, we characterize them by their TPR and FPR values and plot them in a coordinate system.
- We could also use two different ROC metrics which define a trade-off, for instance, TPR and PPV.

$$\mathsf{TPR} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

$$\mathsf{FPR} = rac{\mathsf{FP}}{\mathsf{FP} + \mathsf{TN}}$$

Performance Evaluation 261 / 598

LABELS: ROC SPACE

- The best classifier lies on the top-left corner, where FPR equals 0 and TPR is maximal.
- The diagonal is worst as it corresponds to a classifier producing random labels (with different proportions).

- If each positive x will be randomly classified with 25% as "pos", TPR = 0.25.
- If we assign each negative x randomly to "pos",
 FPR = 0.25.

Performance Evaluation 262 / 598

LABELS: ROC SPACE

- In practice, we should never obtain a classifier below the diagonal.
- Inverting the predicted labels (0 \mapsto 1 and 1 \mapsto 0) will result in a reflection at the diagonal.

$$\Rightarrow$$
 TPR_{new} = 1 - TPR and FPR_{new} = 1 - FPR.

Performance Evaluation 263 / 598

LABEL DISTRIBUTION IN TPR AND FPR

TPR and FPR (ROC curves) are insensitive to the class distribution in the sense that they are not affected by changes in the ratio n_+/n_- (at prediction).

 $\overline{\text{Proportion}} \ n_{+}/n_{-} = 1$

Example 2	٠

 $\overline{\text{Proportion}} \ n_+/n_- = 2$

	Actual Positive	Actual Negative
Pred. Positive	40	25
Pred. Negative	10	25

Pred. Negative	20	

Actual Positive

Actual Negative

$$MCE = 35/100 = 0.35$$

$$\mathsf{TPR} = 0.8$$

$$FPR = 0.5$$

$$MCE = 45/150 = 0.3$$

$$\mathsf{TPR} = 0.8$$

Pred Positive

$$FPR = 0.5$$

Note: If class proportions differ during training, the above is not true. Estimated posterior probabilities can change!

Performance Evaluation

264 / 598

FROM PROBABILITIES TO LABELS: ROC CURVE

Remember: Both probabilistic and scoring classifiers can output classes by thresholding:

$$h(\mathbf{x}) = [\pi(\mathbf{x}) \ge c]$$
 or $h(\mathbf{x}) = [f(\mathbf{x}) \ge c_f]$.

To draw a ROC curve:

- Rank test observations on decreasing score.
- 2 Start with c = 1, so we start in (0,0); we predict everything as negative.
- Iterate through all possible thresholds c and proceed for each observation x as follows:
 - If x is positive, move TPR 1/n₊ up, as we have one TP more
 - If x is negative, move FPR 1/n_ right, as we have one FP more.

Performance Evaluation 265 / 598

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.9$$

 \rightarrow TPR = 0.167
 \rightarrow FPR = 0

Performance Evaluation 266 / 598

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.85$$

 $\rightarrow \text{TPR} = 0.333$
 $\rightarrow \text{FPR} = 0$

Performance Evaluation 267 / 598

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.66$$

 $\rightarrow \mathsf{TPR} = 0.5$
 $\rightarrow \mathsf{FPR} = 0$

Performance Evaluation 268 / 598

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.6$$

 \rightarrow TPR = 0.5
 \rightarrow FPR = 0.167

Performance Evaluation 269 / 598

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.55$$

 $\rightarrow \text{TPR} = 0.667$
 $\rightarrow \text{FPR} = 0.167$

Performance Evaluation 270 / 598

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.3$$

 $\rightarrow \text{TPR} = 0.833$
 $\rightarrow \text{FPR} = 0.5$

Performance Evaluation 271 / 598

$$c = 0$$

 $\rightarrow \text{TPR} = 1$
 $\rightarrow \text{FPR} = 1$

Performance Evaluation 272 / 598

ROC CURVE PROPERTIES

- The closer the curve to the top-left corner, the better.
- If ROC curves cross, a different model might be better in different parts of the ROC space.

- Small thresholds will very liberally predict the positive class, and result in a potentially higher FPR, but also higher TPR.
- High thresholds will very conservatively predict the positive class, and result in a lower FPB and TPB
- As we have not defined the trade-off between false positive and false negative costs, we cannot easily select the "best" threshold.
 Visual inspection of all possible results seems useful.

Performance Evaluation 273 / 598

CHOOSING THRESHOLD / OPERATING POINT

Often done visually and post-hoc, as class imbalances or costs are unknown a-priori.

- Identify non-dominated points
- Assess TPR / FPR
- Decide which combo is best for task
- Pick associated threshold

Performance Evaluation 274 / 598

AUC: AREA UNDER ROC CURVE

- AUC ∈ [0, 1] is a single metric to evaluate scoring classifiers independent of the chosen threshold.
 - AUC = 1: perfect classifier
 - AUC = 0.5: random, non-discriminant classifier
 - AUC = 0: perfect, with inverted labels

Performance Evaluation 275 / 598

7) Precision-Recall Curve (Conceptual)

Good article

- Precision-Recall Curve: Plots Precision vs. Recall across thresholds.
- Especially informative in imbalanced datasets (e.g., disease detection).
- Summary metric: Average Precision (AP) or the area under the P-R curve.
- ► If positives are rare, even small changes in FP can significantly affect Precision.

Introduction to Machine Learning

Evaluation Precision-Recall Curves

Learning goals

- Understand PR curves
- Same as PPV-TPR curve
- Compare to standard TPR-FPR ROC curve

Performance Evaluation 287 / 598

PRECISION-RECALL CURVES

- Slightly changed ROC plot
- Simply plot precision and recall, instead of TPR-FPR
- Precision = $\rho_{PPV} = \frac{TP}{TP + FP}$, recall = $\rho_{TPR} = \frac{TP}{TP + FN}$
- Might call them TPR-PPV curve
- NB: Both metrics don't depend on TNs

(a) Comparison in ROC space (b) Comparison in PR space

Davis and Goadrich (2006): The Relationship Between Precision-Recall and ROC Curves (URL).

Performance Evaluation 288 / 598

PRECISION-RECALL CURVES

- Might be better for highly imbal data $(n_- \gg n_+)$ than TPR-FPR
- Figure (a): ROC; both learners seem to perform well
- Figure (b): PR; visible room for improvement (top-right=best)
- PR reveals better that algo 2 has advantage over 1

(a) Comparison in ROC space
(b) Comparison in PR space
Davis and Goadrich (2006): The Relationship Between Precision-Recall and ROC Curves (URL).

Performance Evaluation 289 / 598

IMBALANCED DATA

- Assume imbalanced classes with $n_- \gg n_+$
- If neg class large, typically less interested in high TNR = low FPR, but more in PPV
- Large (abs) change in FP yields small change in FPR
- PPV likely more informative

FP=10:

	True +1	True -1
Pred. Pos	100	10
Pred. Neg	10	9990
Total	110	10000

H	Р=	1	0	0
_				

	True +1	True -1
Pred. +1	100	100
Pred1	10	9900
Total	110	10000

RHS: Given test says +1, it's now a coin flip that this is correct.

Performance Evaluation 290 / 598

IMBALANCED DATA

- ullet Top row: Imbal classes with $\pi=$ 0.003
- Bottom: balanced with $\pi = 0.5$
- ROC curves (LHS) are similar
- PR curve (RHS) changes strongly from imbal to bal classes

Wissam Siblini et. al. (2004): Master your Metrics with Calibration (URL).

Performance Evaluation 291 / 598

CONCLUSIONS

- Curve fully dominates in ROC space iff dominates in PR-space
- In imbalanced situations rather use PR than standard TPR-FPR
- If comparing few models on a single task, probably plot both.
 Then observe and think.
- For tuning: can also use PR-AUC (or partial versions)

(a) Comparison in ROC space

(b) Comparison in PR space

Davis and Goadrich (2006): The Relationship Between Precision-Recall and ROC Curves (URL).

Performance Evaluation 292 / 598

8) Real-World Examples

Medicine (e.g., Cancer Screening):

- ► High **Sensitivity** (TPR) is crucial: we do not want to miss actual positives (FN).
- Accepting more FP might be okay, because a false positive leads to follow-up tests rather than missed diagnoses.
- Specificity also matters in large-scale screenings (to avoid overloading the system with false alarms), but typically secondary to not missing positives.

Spam Detection:

- ▶ **Precision** often matters more: wrongly classifying an important email as spam has big consequences.
- Recall is still relevant, but missing some spam is often less critical than losing genuine mail.

9) Example Confusion Matrix

Dataset: 50 patients tested for a disease

- ▶ 10 are actually positive
- ▶ 40 are actually negative

Suppose the model's confusion matrix is:

	Pred Pos	Pred Neg	Total
Actual Pos (10)	TP = 8	FN = 2	10
Actual Neg (40)	FP = 5	TN = 35	40
Total	13	37	50

Metrics Computation

From this table:

- **Accuracy**: (8+35)/50 = 43/50 = 0.86 (86%).
- **Sensitivity (Recall, TPR)**: 8/(8+2) = 0.80 (80%).
- **Specificity (TNR)**: 35/(35+5) = 0.875 (87.5%).
- **Precision**: 8/(8+5) = 0.615 (61.5%).
- ► **F1 Score**: $2 \times \frac{0.615 \times 0.80}{0.615 + 0.80} \approx 0.70$.

Notice that while Accuracy is 86%, Precision is only about 62%. Meanwhile, Recall is 80%.

10) Summary

- Accuracy can be misleading for imbalanced datasets.
- Confusion Matrix reveals TP, FP, TN, FN the basis for all metrics.
- Sensitivity (TPR) & Specificity (TNR) show how well we catch positives or avoid false alarms.
- ▶ **Precision** checks how reliable a positive prediction is.
- ▶ **F1** balances Precision & Recall in a single measure.
- Metrics are threshold-dependent; we can analyze performance across thresholds with ROC (TPR vs. FPR) or Precision-Recall curves.
- Medicine often demands high Sensitivity; spam detection might demand high Precision.

Threshold Tuning

- ► Sklearn
- ► ML Mastery