International TOR Rectifier

IR2112

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V

 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- Separate logic supply range from 5 to 20V Logic and power ground ±5V offset
- CMOS Schmitt-triggered inputs with pull-down
- Cycle by cycle edge-triggered shutdown logic
- Matched propagation delay for both channels
- Outputs in phase with inputs

Description

The IR2112 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Product Summary

Voffset	600V max.				
lo+/-	200 mA / 420 mA				
V _{OUT}	10 - 20V				
t _{on/off} (typ.)	125 & 105 ns				
Delay Matching	30 ns				

Packages

Typical Connection

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.

	Parameter	Va					
Symbol	Definition	Min.	Max.	Units			
V _B	High Side Floating SupplyVoltage		-0.3	625			
Vs	High Side Floating Supply Offset Voltage		V _B - 25	V _B + 0.3			
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B +0.3			
V _{CC}	Low Side Fixed Supply Voltage		-0.3	25	V		
V_{LO}	Low Side Output Voltage		-0.3	V _{CC} + 0.3	v		
V_{DD}	Logic SupplyVoltage		-0.3	V _{SS} + 25			
V _{SS}	Logic Supply OffsetVoltage		V _{CC} - 25	V _{CC} + 0.3			
V _{IN}	Logic InputVoltage (HIN, LIN & SD)	V _{SS} - 0.3	V _{DD} + 0.3				
dV _s /dt	Allowable Offset Supply Voltage Transient (Fi	_	50	V/ns			
PD	Package Power Dissipation @ T _A ≤ +25°C	(14 Lead DIP)	_	1.6			
	(14 Lead	_	1.5	w			
	(16 Lead DIP	_	1.6	•			
		(16 Lead SOIC)	_	1.25			
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(14 Lead DIP)	_	75			
	(14 Lead	_	85	°C/W			
	(16 Lead DIP	_	75	C/VV			
		_	100				
TJ	Junction Temperature			150			
T _S	Storage Temperature	-55	150	∞			
TL	LeadTemperature (Soldering, 10 seconds)		300				

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37.

Parameter		Val			
Symbol	Definition	Min.	Units		
V _B	High Side Floating Supply Absolute Voltage	V _S +10	V _S + 20		
VS	High Side Floating Supply Offset Voltage	Note 1 600			
V _{HO}	High Side Floating OutputVoltage	Vs	V _B		
Vcc	Low Side Fixed Supply Voltage	10	20 V		
V_{LO}	Low Side Output Voltage	Vcc	V		
V_{DD}	Logic SupplyVoltage	V _{SS} + 5 V _{SS} + 20			
V _{SS}	Logic Supply OffsetVoltage	-5			
VIN	Logic InputVoltage (HIN, LIN & SD)	V _{SS}	V_{DD}		
T _A	AmbientTemperature	-40	125	℃	

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, C_L = 1000 pF, T_A = 25°C and V_{SS} = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Parameter			Value				
Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-On Propagation Delay	7	_	125	180		V _S = 0V
t _{off}	Turn-Off Propagation Delay	8	_	105	160		V _S = 600V
t _{sd}	Shutdown Propagation Delay	9	_	105	160	ns	V _S = 600V
t _r	Turn-On RiseTime	10	_	80	130	113	
t _f	Turn-Off Fall Time	11	_	40	65		
MT	Delay Matching, HS & LS Turn-On/Off	_	_	_	30		Figure 5

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, T_A = 25°C and V_{SS} = COM unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input leads: HIN, LIN and SD. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Parameter			Value				
Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic"1" Input Voltage	12	9.5	_	_	V	
V _{IL}	Logic"0" Input Voltage	13	_	_	6.0	ľ	
V _{OH}	High Level Output Voltage, V _{BIAS} - V _O	14	_	_	100	mV	I _O = 0A
V _{OL}	Low Level Output Voltage, VO	15	_	_	100	IIIV	I _O = 0A
I _{LK}	Offset Supply Leakage Current	16	_	_	50		V _B = V _S = 600V
I _{QBS}	QuiescentV _{BS} Supply Current	17	_	25	60		V _{IN} = 0V or V _{DD}
IQCC	Quiescent V _{CC} Supply Current	18	_	80	180	μA	V _{IN} = 0V or V _{DD}
I _{QDD}	Quiescent V _{DD} Supply Current	19	_	2.0	5.0	μΑ	V _{IN} = 0V or V _{DD}
I _{IN+}	Logic "1" Input Bias Current	20	_	20	40		$V_{IN} = V_{DD}$
I _{IN} -	Logic "0" Input Bias Current	21	_	_	1.0		V _{IN} = 0V
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	22	7.4	8.5	9.6		
VBSUV-	VBS Supply Undervoltage Negative Going Threshold	23	7.0	8.1	9.2	V	
Vccuv+	V _{CC} Supply Undervoltage Positive Going Threshold	24	7.6	8.6	9.6	V	
V _{CCUV} -	V _{CC} Supply Undervoltage Negative Going Threshold	25	7.2	8.2	9.2		
I _{O+}	Output High Short Circuit Pulsed Current	26	200	250	_	_	VO = 0V, VIN = VDD PW ≤ 10 μs
I _O -	Output Low Short Circuit Pulsed Current	27	420	500	_	A	V _O = 15V, V _{IN} = 0V PW ≤ 10 μs

Functional Block Diagram

Lead Definitions

Le	ad
Symbol	Description
V_{DD}	Logic supply
HIN	Logic input for high side gate driver output (HO), in phase
SD	Logic input for shutdown
LIN	Logic input for low side gate driver output (LO), in phase
V _{SS}	Logic ground
V _B	High side floating supply
НО	High side gate drive output
٧s	High side floating supply return
Vcc	Low side supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Device Information

Process &	Design Rule		HVDCMOS 4.0 μm			
Transistor (Count		220			
Die Size			100 X 117 X 26 (mil)			
Die Outline						
Thickness	of Gate Oxide		800Å			
Connection	ns	Material	Poly Silicon			
	First	Width	4 μm			
	Layer	Spacing	6 μm			
	-	Thickness	5000Å			
		Material	AI - Si (Si: 1.0% ±0.1%)			
	Second	Width	6 μm			
	Layer	Spacing	9 μm			
		Thickness	20,000Å			
Contact Ho	le Dimension		8 µm X 8 µm			
Insulation L	_ayer	Material	PSG (SiO ₂)			
		Thickness	1.5 μm			
Passivation)	Material	PSG (SiO ₂)			
		Thickness	1.5 μm			
Method of	Saw		Full Cut			
Method of I	Die Bond		Ablebond 84 - 1			
Wire Bond		Method	Thermo Sonic			
		Material	Au (1.0 mil / 1.3 mil)			
Leadframe		Material	Cu			
		Die Area	Ag			
		Lead Plating	Pb : Sn (37 : 63)			
Package			14 & 16 Lead PDIP / 16 Lead SOIC			
			EME6300 / MP150 / MP190			
Remarks:						

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 3. Shutdown Waveform Definitions

Figure 6. Delay Matching Waveform Definitions

Figure 7A. Turn-On Time vs. Temperature

Figure 7B. Turn-On Time vs. Voltage

Figure 8A. Turn-Off Time vs. Temperature

Figure 8B. Turn-Off Time vs. Voltage

Figure 9A. Shutdown Time vs. Temperature

Figure 9B. Shutdown Time vs. Voltage

Figure 10A. Turn-On Rise Time vs. Temperature

Figure 10B. Turn-On Rise Time vs. Voltage

Figure 11A. Turn-Off Fall Time vs. Temperature

Figure 11B. Turn-Off Fall Time vs. Voltage

Figure 12A. Logic "1" Input Threshold vs. Temperature

Figure 12B. Logic "1" Input Threshold vs. Voltage

Figure 13A. Logic "0" Input Threshold vs. Temperature

Figure 13B. Logic "0" Input Threshold vs. Voltage

Figure 14A. High Level Output vs. Temperature

Figure 14B. High Level Output vs. Voltage

Figure 15A. Low Level Output vs. Temperature

Figure 15B. Low Level Output vs. Voltage

Figure 16A. Offset Supply Current vs. Temperature

Figure 16B. Offset Supply Current vs. Voltage

Figure 17A. V_{BS} Supply Current vs. Temperature

Figure 17B. V_{BS} Supply Current vs. Voltage

Figure 18A. Vcc Supply Current vs. Temperature

Figure 18B. Vcc Supply Current vs. Voltage

Figure 19A. V_{DD} Supply Current vs. Temperature

Figure 19B. VDD Supply Current vs. Voltage

Figure 20A. Logic "1" Input Current vs. Temperature

Figure 20B. Logic "1" Input Current vs. Voltage

Figure 21A. Logic "0" Input Current vs. Temperature

Figure 21B. Logic "0" Input Current vs. Voltage

Figure 22. VBS Undervoltage (+) vs. Temperature

Figure 23. V_{BS} Undervoltage (-) vs. Temperature

Figure 24. V_{CC} Undervoltage (+) vs. Temperature

Figure 25. V_{CC} Undervoltage (-) vs. Temperature

Figure 26A. Output Source Current vs. Temperature

Figure 26B. Output Source Current vs. Voltage

Figure 27A. Output Sink Current vs. Temperature

Figure 27B. Output Sink Current vs. Voltage

Figure 28. IR2112 T_J vs. Frequency (IRFBC20) $R_{GATE} = 33\Omega$, $V_{CC} = 15V$

Figure 29. IR2112 T_J vs. Frequency (IRFBC30) RGATE = 22Ω , Vcc = 15V

Figure 30. IR2112 T_J vs. Frequency (IRFBC40) $R_{GATE} = 15\Omega$, $V_{CC} = 15V$

Figure 31. IR2112 T_J vs. Frequency (IRFPE50) $R_{GATE} = 10\Omega, V_{CC} = 15V$

Figure 32. IR2112S T_J vs. Frequency (IRFBC20) $R_{GATE} = 33\Omega$, $V_{CC} = 15V$

Figure 33. IR2112S T_J vs. Frequency (IRFBC30) $R_{GATE} = 22\Omega$, $V_{CC} = 15V$

Figure 34. IR2112S T_J vs. Frequency (IRFBC40) $R_{GATE} = 15\Omega, Vcc = 15V$

Figure 35. IR2112S T_J vs. Frequency (IRFPE50) $R_{GATE} = 10\Omega, V_{CC} = 15V$

Figure 36. Maximum V_S Negative Offset vs. V_{BS} Supply Voltage

Figure 37. Maximum Vss Positive Offset vs. Vcc Supply Voltage