1A - 2023-2024

Théorie des Probabilités - Examen de mi-parcours

- 1. Le sujet compte un nombre total de 24 points. Votre note finale sera simplement tronquée à 20.
- 2. L'accent sera mis sur la rigueur et la précision de vos réponses. Les réponses non justifiées très soigneusement ne seront pas prises en compte.
- 3. Bon courage!

Exercice 1 Quizz (14 points)

- 1. Les assertions suivantes sont-elles vraies ? Le cas échéant, justifiez-le (même si le résultat a déjà été vu en cours ou en TD). Sinon, proposez un argument précis et complet ou un contre-exemple invalidant l'assertion.
 - a) (1pt) Soit X une variable aléatoire réelle. Si X^{2024} admet une espérance, alors X admet une espérance.
 - b) (1pt) Soit X une variable aléatoire réelle strictement positive presque sûrement. Si X admet une espérance, alors $\log(X)$ admet une espérance.
 - c) (1pt) Soit X une variable aléatoire réelle admettant une densité par rapport à la mesure de Lebesgue et Z une variable aléatoire de loi de Bernoulli de paramètre 1/2, indépendante de X. Alors X+Z admet une densité par rapport à la mesure de Lebesgue.
 - d) (1pt) Soit (Ω, \mathcal{A}, P) un espace de probabilité et \mathcal{B} une sous-tribu de \mathcal{A} . Soient X et Y deux variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) , indépendantes et de carré intégrable. Alors $\mathbb{E}[X|\mathcal{B}]$ et $\mathbb{E}[Y|\mathcal{B}]$ sont des variables aléatoires indépendantes.
 - e) (1pt) Soit X une variable aléatoire de loi normale centrée réduite. Alors la variable aléatoire $Y = \min(X, 2024)$ admet une densité par rapport à la mesure de Lebesgue.
- 2. (2pt) Soit X une variable aléatoire de loi uniforme sur [0,1] et Y une variable aléatoire de Bernoulli de paramètre 1/2, indépendante de X. Déterminer la loi de X-Y.
- 3. Soient X et Y deux variables aléatoires réelles i.i.d. de loi exponentielle de paramètre $\lambda > 0$.

- a) (2pt) Montrer que X/(X+Y) et X+Y admettent une densité jointe.
- b) (1pt) En déduire que ces deux variables sont indépendantes.
- c) (1pt) Déterminer la loi de X/(X+Y).
- 4. Soit $n \geq 1$ un entier naturel. Soient X_1, \ldots, X_n des variables aléatoires réelles iid et $M_n = \min(X_1, \ldots, X_n)$. On note F la fonction de répartition de X_1 et F_n celle de M_n .
 - a) (1pt) Montrer que $1 F_n = (1 F)^n$.
 - b) (1pt) En déduire que le minimum d'un nombre fini de variables aléatoires indépendantes de lois exponentielles suit une loi exponentielle.
- 5. (1pt) Soient X et Y deux variables aléatoires réelles indépendantes, de lois de Poisson de paramètre $\lambda > 0$ et exponentielle de paramètre 1, respectivement. Calculer, en justifiant chaque étape, $\mathbb{E}[e^{-XY}]$.

Exercice 2 (5 points)

Soient X, Y, Z des variables aléatoires iid de loi uniforme sur [0, 1]. On pose M la médiane de X, Y et Z, i.e., la seconde valeur dans la liste réordonnée de X, Y et Z (par exemple, si X = 0.23, Y = 0.87 et Z = 0.12, alors M = 0.23).

- 1. On cherche à déterminer la fonction de répartition de M. Soit $t \in \mathbb{R}$.
 - a) (1pt) Vérifier que si t < 0, $P(M \le t) = 0$ et si $t \ge 1$, $P(M \le t) = 1$.
 - b) (1pt) Supposons que $0 \le t < 1$. Montrer qu'alors $P(M \le t)$ peut s'écrire comme $P(N \ge 2)$ où N est une variable aléatoire de loi binomiale de paramètre (3,t) (on rappelle que si U_1, U_2, U_3 sont des variables aléatoires iid de loi de Bernoulli de paramètre $p \in [0,1]$, alors $U_1 + U_2 + U_3$ suit la loi binomiale de paramètre (3,p), dont la fonction de masse est donnée par $f(k) = {3 \choose k} t^k (1-t)^{3-k}, k = 0,1,2,3$).
- 2. (2pt) En déduire $\mathbb{E}[M]$.
- 3. (1pt) Expliquer comment on aurait pu obtenir la valeur de $\mathbb{E}[M]$ sans faire aucun calcul.

Exercice 3 (5 points)

Soit X une variable aléatoire de loi normale centrée réduite et ε une variable aléatoire indépendante de X satisfaisant $P(\varepsilon=1)=P(\varepsilon=-1)=1/2$ (on rappelle que la loi normale centrée réduite est la loi absolument continue par rapport à la mesure de Lebesgue, de densité donnée par $f(x)=e^{-x^2/2}/\sqrt{2\pi}, x\in\mathbb{R}$).

- 1. (2pt) Montrer que εX suit la loi normale centrée réduite.
- 2. (1pt) Montrer que $cov(X, \varepsilon X) = 0$.
- 3. (2pt) X et εX sont-elles indépendantes?