Engineering Mathematics I-(BAS-103) Unit 3 Differential Calculus II Tutorial 6

Que 1. If
$$x = r \cos \theta$$
, $y = r \sin \theta$ find $\frac{\partial(r,\theta)}{\partial(x,y)}$ [2021-22]
Que 2.(i) If u, v, w are the roots of equation $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$, cubic in λ , find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.

[2021-22]
(ii) If u, v, w are the roots of equation $(x - a)^3 + (x - b)^3 + (x - c)^3 = 0$, cubic in x , find $\frac{\partial(u,v,w)}{\partial(a,b,c)}$.

[2018-19], [2015-16]

Que 3. If
$$x = e^v \sec u$$
, $y = e^v \tan u$ then evaluate $\frac{\partial(x,y)}{\partial(u,v)}$. [2020-21]
Que 4. If $u^3 + v + w = x + y^2 + z^2$, $u + v^3 + w = x^2 + y + z^2$, $u + v + w^3 = x^2 + y^2 + z$

Que 4. If
$$u^3 + v + w = x + y^2 + z^2$$
, $u + v^3 + w = x^2 + y + z^2$, $u + v + w^3 = x^2 + y^2 + z$
then show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = \frac{1 - 4(xy + yz + zx) + 16xyz}{2 - 3(u^2 + v^2 + w^2) + 27u^2v^2w^2}$ [2020-21]

Que 5. If
$$u = x(1 - y)$$
, $v = xy$, find the value of $\frac{\partial (u,v)}{\partial (x,y)}$
Que 6. If $u^3 + v^3 + w^3 = x + y + z$, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$

Que 6. If
$$u^3 + v^3 + w^3 = x + y + z$$
, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$
 $u + v + w = x^2 + y^2 + z^2$ then show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = \frac{(x-y)(y-z)(z-x)}{(u-v)(v-w)(w-u)}$ [2019-20]
Que 7. If $u^3 + v^3 = x + y$, $u^2 + v^2 = x^3 + y^3$ then show that $\frac{\partial(u,v)}{\partial(x,y)} = \frac{y^2 - x^2}{2uv(u-v)}$ [2023-24]

Que 7. If
$$u^3 + v^3 = x + y$$
, $u^2 + v^2 = x^3 + y^3$ then show that $\frac{\partial(u,v)}{\partial(x,y)} = \frac{y^2 - x^2}{2uv(u-v)}$ [2023-24]

Que 8. If
$$u_{1=\frac{x_2x_3}{x_1}}$$
, $u_{2=\frac{x_3x_1}{x_2}}$, $u_{3=\frac{x_1x_2}{x_3}}$ then find $\frac{\partial(u_1,u_2,u_3)}{\partial(x_1,x_2,x_3)}$. [2017-18]

Que 9. If
$$x = v^2 + w^2$$
, $y = u^2 + w^2$, $z = v^2 + u^2$, then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} \cdot \frac{\partial(x, y, z)}{\partial(u, v, w)} = 1$ [2016-17]

Que 10 Find the jacobian of the function
$$y_1 = (x_1 + x_2)(x_2 - x_3)$$
, $y_2 = (x_1 - x_2)(x_2 + x_3)$ and $y_2 = x_2(x_1 - x_2)$. Hence show that functions are not independent. Find the relation between them

 $y_3 = x_2(x_1 - x_3)$. Hence show that functions are not independent. Find the relation between them.

[2022-23] **Que 11.** Find the relation between u, v, w for the values u = x + 2y + z, v = x - 2y + 3z,

$$w = 2xy - zx + 4yz - 2z^{2}$$
Que 12. If $x + y + z = u$, $y + z = uv$, $z = uvw$ find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

[2016-17]

Que 12. If
$$x + y + z = u, y + z = uv, z = uvw$$
 find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. [2015-16]

Que 13. An error of 2% is made in measuring length and breadth then find the percentage error in the area of rectangle. [2021-22]

Que 14. Calculate the error in R, if E = RI and the possible error in E and I are 30% and 20% respectively.

[2018-19], [2023-24]

Que 15. What error in log of a number will be produced by an error of 1% of the number? [2017-18]

Que 16. A balloon is in the form of right circular cylinder of radius 1.5 and length 4 m is surmounted by hemispherical ends. If radius is increased by .01m and length by .05m. Find the percentage change in volume of balloon. [2017-18]

Que 17. Find the percentage error in measuring the volume of a rectangular box when error of 1% is made in measuring the each side. [2016-17], [2022-23]

Que 18. If $pv^2 = k$ the relative error in p and v are .05 and .025 respectively. Show that error in k is 10%.

[2015-16]

Answers

- 1. $\frac{1}{r}$
- **2.** (*i*) $-2\frac{(x-y)(y-z)(z-x)}{(u-v)(v-w)(w-u)}$ (*ii*) $-2\frac{(a-b)(b-c)(c-a)}{(u-v)(v-w)(w-u)}$
- 3. $-e^{2v} \sec u$
- 5. *x*
- 7. $\frac{1}{r}$
- **8.** 4
- $10. y_1 + y_2 2y_3 = 0$
- **11.** $u^2 v^2 = 4w$
- **12.** u^2v
- **13.** 4%
- **14.** 10%
- **15.** 0.04343
- **16.** 2.389%
- **17.**3%