

Escola de Artes, Ciências e Humanidades

4ª Lista de Matrizes Vetores e Geometria Analítica Sistemas de Informação EACH - USP

1ª Questão. Encontre o polinômio característico, os autovalores e os autovetores de cada matriz:

a.
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

b.
$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

c.
$$\begin{pmatrix} 2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix}$$

2ª Questão.

- a. Seja λ um autovalor fixo de $A = (a_{ij})_{nxn}$. Mostre que o conjunto formado por todos os autovetores de A associados a λ , juntamente com o vetor nulo, é um subespaço de \mathbb{R}^n . Este subespaço é chamado de *autoespaço associado a* λ .
- b. Determine uma base para os autoespaços associados a cada autovalor das seguintes matrizes:

A.
$$\begin{pmatrix} 1 & 4 \\ 1 & -2 \end{pmatrix}$$

B. C.
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \begin{pmatrix} C & \\ \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 1 & 3
\end{pmatrix}$$

3ª Questão. Se possível, encontre para cada matriz $A = (a_{ij})_{nxn}$, uma matriz invertível P tal que $P^{-1}AP$ seja diagonal.

a)
$$\begin{pmatrix} 1 & 4 \\ 1 & -2 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 2 & 1 & 2 \end{pmatrix}$$

$$\begin{array}{c} c) & \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

4ª Questão. Prove as seguintes afirmações para uma matriz $A = (a_{ij})_{nxn}$:

- a. Se A é uma matriz triangular superior, então os autovalores de A são os elementos da sua diagonal principal.
- b. $A \in A^t$ possuem os mesmos autovalores.
- c. Se λ é um autovalor de uma matriz invertível A com autovetor associado X, então $1/\lambda$ é um autovalor de A^{-1} com autovetor associado X.
- d. Se A é diagonalizável por uma matriz ortogonal (isto é, existem P ortogonal e D diagonal tal que $D = P^{t}AP$), então A é uma matriz simétrica.

Escola de Artes, Ciências e Humanidades

- 5ª Questão.
 - a) Verifique se a matriz $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ é ortogonal.
 - b) Mostre que X = (x, y) é ortogonal a $Y = (a, b) \neq (0, 0)$ com ||X|| = ||Y||, se e somente se X = (-b, a) ou X = (b, -a).
- 6ª Questão. Diagonalize cada matriz por meio de uma matriz ortogonal.

a)
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

b) $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

c)
$$\begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$$

$$\begin{array}{cccc}
 & 2 & 1 & 1 \\
 & 1 & 2 & 1 \\
 & 1 & 1 & 2
 \end{array}$$

7ª Questão. Identificar a cônica, achar a equação no último sistema de coordenadas utilizado e fazer um esboço do gráfico.

a)
$$9x^2 - 4xy + 6y^2 = 30$$

b)
$$3x^2 - 8xy - 12y^2 + 81 = 0$$

c)
$$2x^2 - 4xy - y^2 = -24$$

d)
$$4x^2 - 20xy + 25y^2 - 15x - 6y = 0$$

Respostas: Use o Mathematica.