Title: Real-Time Dual-Head YOLOv8 Architecture for Drone-Based Object and Disaster Detection

1. Introduction

This project aims to enable a drone to scan and identify objects in real-time, encompassing both everyday objects and disaster-related situations (e.g., floods, earthquakes,etc). Given the need for high-speed, accurate detection in a resource-constrained environment, YOLOv8 (You Only Look Once, version 8) is chosen due to its balance of speed and accuracy. However, since YOLOv8 is pre-trained on the COCO dataset (which covers only everyday objects), a dual-headed architecture is proposed.

2. Motivation for Dual-Head Architecture

- **Real-Time Constraints:** Real-time processing requires minimal latency. Running two separate models sequentially or in parallel would increase inference time significantly.
- **Modularity:** A dual-head model maintains shared backbone computation, reducing redundant processing and resource load.
- **Task Specialization:** One head can specialize in general object detection (COCO) while the other focuses on disaster detection, leading to better performance in each domain.
- **Unified Deployment:** Simplifies deployment on edge devices like drones compared to handling two separate models.

3. YOLOv8 Overview

YOLOv8 is an advanced object detection architecture known for its real-time performance. It consists of:

- Backbone: For feature extraction.
- Neck: For feature fusion.
- **Head:** For object detection and classification.

4. Proposed Architecture

The modified YOLOv8 model consists of:

- Shared Backbone & Neck: Extract and combine features from input images.
- Head A (General Object Detection): Uses pre-trained COCO weights.
- **Head B (Disaster Detection):** Fine-tuned on a custom disaster dataset.

Flowchart:

5. Dataset Preparation

- COCO Dataset: Already labeled and structured, used as-is for Head A.
- Disaster Dataset:
 - Collected from open-source repositories, satellite images, drone footage.
 - o Categories: Flooded areas, collapsed buildings, etc.

o Annotations: The images will be annotated manually.

6. Training Strategy

- Step 1: Load pre-trained YOLOv8 with COCO weights.
- **Step 2:** Freeze Backbone and Head A layers.
- **Step 3:** Add Head B and fine-tune only Head B on the disaster dataset.
- **Step 4:** Perform end-to-end evaluation to ensure no conflict in detections.

7. Inference Strategy

At inference time:

- Image passes through shared layers.
- Both heads produce bounding boxes and class scores.
- Post-processing merges detections with label source information.

8. Advantages of Dual-Head over Dual-Model

Feature	Dual-Head Model	Dual Model Setup
Inference Speed	Faster (shared backbone)	Slower (redundant passes)
Memory Footprint	Lower	Higher
Deployment Simplicity	Easier	Complex (sync required)
Feature Sharing	Yes	No
Training Flexibility	High	Moderate

11. Conclusion

A dual-head YOLOv8 architecture enables efficient, real-time detection of both everyday and disaster-related objects in drone-based applications. This structure offers a balanced trade-off between specialization and performance while maintaining real-time constraints crucial for autonomous aerial systems.

Visual Example:

(Insert drone image showing bounding boxes labeled by both heads with color codes: e.g., Blue for COCO objects, Red for Disaster scenarios.)

