Cu ben. $3(\omega) = \frac{i_1 + \dots + i_n}{n}, i_j \in \{0, \dots, 10\}, \quad P(\{\omega: 5(\omega) > 3, (1)\})^{-1}$ $A = \{ \omega : \Im(\omega) \ge \Im, (1) \} \notin \mathcal{F} => \text{nongene c.b.}$ DF Tupon K-Knace naquer le se, Vepez o (k) будем обозне 6-am. noguer le k, m.?.: 1) K < 0 (K) 2) hum A - um. σ -am. negum be K, no $\sigma(K) \subseteq A = >$ => $\sigma(K) - um$ -bo σ -am., nopong. KMouns not., mo HAI! J(K), m.e. oup. J(K) Koppennio $\mathcal{E}_{\mathcal{K}}$ $\mathcal{S}_{\mathcal{L}} = \mathbb{R}$, $\mathcal{K}_{\mathcal{L}} = \mathbb{R}$ on $\mathcal{E}_{\mathcal{K}} = \mathbb{R}$ on $\mathcal{E}_{\mathcal{K}} = \mathbb{R}$ of $\mathcal{E}_{\mathcal{K}} = \mathbb{$ { (-~, x]} x & (-~, x)} x & Monno non, uno B noponeg. 6 m. 2. Ca, 6]3aler

T - color-one normalise bugs $(-\infty, x)_{x \in \mathbb{R}} \Rightarrow T(T) = 13$ $\mathbb{R} = 10$ C. b. 3 May. $\mathbb{R} = 10$ $\mathbb{R} = 10$

M/S, 2000 $\frac{2}{3}^{-1}(B)$, $B \in B_3^{\circ}$ som. We galaxie bee \mathcal{F} .

Haup, earl 3-queep, no upuruu kore was op 3-bloogur 3 = $\frac{2}{3}^{-1}(B)$, 3 = $\frac{2}{3}^{-1}(B)$, 3 = 3 -

J-air., rapang. C. b. 3. Monno nou., mo suo J-air.

$$T(3) = \frac{5}{3} \cdot ((-\infty, \times), \times \in \mathbb{R})$$

$$T(3) = \frac{5}{3} \cdot ((-\infty, \times), \times \in \mathbb{R})$$

DF Knaccon negure b $K_i \subset F$, i=1,n max. negat., even $\forall A_i \in K_i$. An $\in K_n \longrightarrow A_1...A_n - negat.$ B colony α .

 $\frac{D_{f}}{D_{f}}$] $3_{1,...,3_{n}}$ we emp. we (52, f, IP), more $3_{1,...,3_{n}}$ where, law $6_{3_{1},...,5_{n}}$ where.

Pacy. c.b.

P: F > R 3: 2 > R

P03-1

 $B \in \mathcal{B}(R) = >\xi^{-1}(B) \in \mathcal{F}_{u}$ more and $P(\xi^{-1}(B))$

Type smore $POS^{-1}(B) - beg. supp., m.k. supposof. coxp. meep. - success. org., <math>P_3(B) = P(\omega; 3(\omega) \in B_3^n) - pacy. c.b.$

P(A) AS

Beco soppeum l'unperoce mepor (push formated) c(s, F, P) na (R, B, P3)

 P_3 no momeno oup. generalmen c.b. ua $(-\infty, \times]$ u p-ynem pacy.: $F_3(\times) = P_3((-\infty, \times]) \equiv P(3\omega:3(\omega) \leq \times3)$

Cl. 6a F3(x)

- 1) 0 = F3(x) = 1
- 2) F3(X) ne goorb
- 3) F3(-m)=0, F3(+m)=1
- 4) F3 venp. cupaba +× ∈R u 3 reb. cmop. npeg. F3 (x-0)

Ynh $P(a \le 3 \le 6) = F_3(6 - 0) - F_3(a)$ $P(a \le 3 \le 6) = F_3(6) - F_5(a)$ $P(3 > a) = 1 - F_3(a)$

