SUPERIMPOSED EXTREMAL GRAPHS

Ray Tsai

June 21, 2024

1 Introduction

In this note we talk about superimposed graphs. Given graph G with n vertices, let G_1, \ldots, G_m be subgraphs of G. Let F be a graph with at least one edge. Our goal is to determine the maximum sum of the number of edges in each G_i , i.e. $\sum_{i=1}^m e(G_i)$, with the constraint of $E(G_i) \cap E(G_j)$ not including F for all distinct i, j.

2 Objectives

- Examine the case where G_1, \ldots, G_m are induced
 - The case $F = K_3$.
 - Generalize to any F.
- Examine the non-induced case
 - If $F = K_3$, what happens when m = 3?

3 Induced Case

In this section, we assume that G_1, \ldots, G_m are induced subgraphs of G.

3.1 Triangle-Free Case

Theorem 3.1. Suppose that $E(G_i) \cap E(G_j)$ does not include K_3 for distinct i, j. For $m \geq 2$,

$$\sum_{i=1}^{m} e(G_i) \le m \left\lfloor \frac{n^2}{4} \right\rfloor,\,$$

with equality if and only if $G_1 = G_2 = \cdots = G_m = K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}$.

We claim that it suffices to show for the case m=2. Suppose the theorem holds for m=2. Put $G_{m+1}=G_1$ and we have

$$\sum_{i=1}^{m} e(G_i) = \frac{1}{2} \sum_{i=1}^{m} (e(G_i) + e(G_{i+1})) \le \frac{1}{2} \sum_{i=1}^{m} 2 \left\lfloor \frac{n^2}{4} \right\rfloor = m \left\lfloor \frac{n^2}{4} \right\rfloor,$$

with equality only if $G_i = G_{i+1} = K_{\left\lceil \frac{n}{2} \right\rceil, \left\lfloor \frac{n}{2} \right\rfloor}$ for all i. That is, $G_1 = G_2 = \cdots = G_m = K_{\left\lceil \frac{n}{2} \right\rceil, \left\lfloor \frac{n}{2} \right\rfloor}$.

Proof for m = 2. Let $C = V(G_1) \cap V(G_2)$, the set of vertices in both G_1 and G_2 . Let $A = V(G_1) \setminus C$, and let $B = V(G_2) \setminus C$. For simplicity, put a = |A|, b = |B|, and c = |C|. We may assume that a + b + c = n.

We now find an upper bound of $e(G_1) + e(G_2)$ with respect to a, b, c. Obviously, $e(G_1[A]) \leq \binom{a}{2}$ and $e(G_2[B]) \leq \binom{b}{2}$. There are at most ac edges in G_1 between A and C, and at most bc edges in G_2 between B and C. Now consider the edges in C. Since G_1, G_2 are induced graphs, we have $\{u, v\} \in E(G_1)$ if and only if $\{u, v\} \in E(G_2)$, for $u, v \in C$. This implies the subgraph of G_1 induced by C is identical to the subgraph of G_2 induced by C. In other words, $E(G_1[C]) = E(G_2[C]) = E(G_i) \cap E(G_j)$, which is triangle-free. By Mantel's Theorem, $e(G_1[C]) \leq \left\lfloor \frac{c^2}{4} \right\rfloor$, with equality if and only if $G_1[C] = K_{\left\lceil \frac{c}{2} \right\rceil, \left\lfloor \frac{c}{2} \right\rfloor}$. Hence,

$$e(G_1) + e(G_2) \le {a \choose 2} + {b \choose 2} + ac + bc + 2 \left\lfloor \frac{c^2}{4} \right\rfloor. \tag{1}$$

Define real differentiable function $f(x,y,z) = {x \choose 2} + {y \choose 2} + xz + yz + \frac{z^2}{2}$, with real variables $x,y,z \ge 0$. Given the constraints x+y+z=n, we apply the Lagrange multiplier and get

$$x + z - \frac{1}{2} = y + z - \frac{1}{2} = x + y + z = n.$$

Solving it yields $x=y=-\frac{1}{2}$ and z=n+1, which is out of the boundary. Hence, there is no local maximum for x,y,x>0. By compararing the boundary conditions, we conclude that f attains global maximum at (0,0,n). It now follows that

$$e(G_1) + e(G_2) \le 2 \left| \frac{n^2}{4} \right|,$$

with equality if and only if $G_1 = G_2 = K_{\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil}$.

3.2 Generalization to any F