EASIS: An Optimized Information Service for High Performance Computing Environment

Can Wu, Xiaoning Wang, Haili Xiao, Rongqiang Cao, Yining Zhao, Xuebin Chi Computer Network Information Center, Chinese Academy of Sciences

Monday May 21. 2018

01 Background

◆ The High Performance Computing Environment in China (CNGrid)

INTRODUCTION-CNGRID

19 sites, 200PF+167PB

- CNIC (Beijing, major site)
- SSC (Shanghai, major site)
- NSCCWX (Wuxi)
- NSCCGZ (Guangzhou)
- NSCCTJ (Tianjin)
- NSCCSZ (Shenzhen)
- NSCCCS (Changsha)
- NSCCJN (Jinan)
- Tsinghua University (Beijing)
- IAPCM (Beijing)
- USTC (Hefei)
- XJTU (Xi'an)
- SJTU (Shanghai)
- SIAT (Shenzhen)
- HKU (Hong Kong)
- SDU (Jinan)
- HUST (Wuhan)
- GSCC (Lanzhou)
- JLCC(Changchun)

CNGRID HPC

- Sunway TaihuLight
- #1 TOP 500, 2016-now
- Sunway processor: SW26010
- 125 PFlops, 10,649,600 cores
- 15,371 kW
- Wuxi

CNGRID HPC

- Tianhe-2
- #1 TOP 500, 2013-2015
- 55 PFlop/s, 3,120,000 cores
- 17,808.00 kW
- Guangzhou

CNGRID HPC

- Tianhe-1A
- #1 TOP 500, 2010
- 4.7 PFlop/s
- Tianjin

- Sunway Blue Light
- #14 TOP 500, 2011
- · ShenWei processor
- 1 TFlop/s
- Jinan

- Nebulae
- #2 TOP 500, 2010
- 2.98 PFlops/s
- Shenzhen

- Era (CNIC)
- 2.3 PFlop/s
- Beijing

- Dawning 5000A
- #11 TOP 500, 2008
- 233.5 Tflop/s
- Shanghai

INTRODUCTION

Unified Service, Schedule and Management

SCE Middleware

Problem and Requirements

- Problem
- Requirements

PROBLEM

Exascale

55 PFlop/s

233.5 Tflop/s

REQUIREMENTS

Efficiency: The information service should extract and transfer all the resource information rapidly in the system.

High Availability: The resource information in SCE should not be lost when the network is down off or unstable.

Simplicity: The structure of resource information service should be simple and the interfaces are easy to use.

03

The Structure and Key Technologies

- Structure
- Key Technologies
 - Extracting information concurrently
 - Standardizing information
 - Merging information
 - Fault tolerance

Structure

Key Technologies

Extracting information concurrently

$$x = R \times \left| \frac{W \times N}{\alpha C + \beta S + \gamma I^{-1}} \right|$$

- *x:* the number of concurrent threads.
- R, α , θ , γ : regulatory factors.
- W: the amount of resource information.
- S: system load.
- *C:* the number of network connections.
- *N:* the number of cores.
- *I:* the computer hard disk I/O speed.

Key Technologies

Standardizing information

Information Type	Standard Format of Information	
job	{"GID":"GID","status":"status","utime":"utime"}	
queue	{"ID":"ID","hpcname":"hpcname","njobs":"njobs, "pendjobs":"pendjobs","runjobs":"runjobs", "status":"status"}	
application	{"ID": "ID", "hpcname": "hpcname", "applicationname ": "applicationname", "version"; "description"; "description"}	
user	{"username":"username","hpcname":"hpcname"}	

Job System	Job Status	Symbol
LSF	PEND, PSUSP, WAIT	PEND
	RUN, USUSP, SSUSP	RUN
	DONE	DONE
	EXIT, UNKWN, ZOMBI	EXIT
	*	ERROR
PBS	Q	PEND
	R	RUN
	C, E	DONE
	Н	HOLD
	*	ERROR
SLURM	PD, CF	PEND
	R, CG	RUN
	CD	DONE
	CA, F, NF, PR, TO	EXIT
	S	HOLD
	*	ERROR

Key Technologies

Merging information

Invalid-Update

```
{"GID": "9632587419632587411", "status": "PEND", "utime": "1512543239"},
{"GID": "9632587419632587411", "status": "RUN", "utime": "1512543267"},
{"GID": "9632587419632587411", "status": "DONE", "utime": "1512543299"}
```

{"GID": "9632587419632587411", "status": "DONE", "utime": "1512543299"}

Merged-Update

```
{"GID": "9632587419632587411", "status": "PEND", "utime": "1512543239"},
{"GID": "9632587419632587412", "status": "PEND", "utime": "1512543239"}

{"GID": "9632587419632587411", "9632587419632587412", "status": "PEND", "utime": "1512543239"}
}
```


Key Technologies

Fault tolerance

Server-Fault-Tolerant

Network-Fault-Tolerant

04 Evaluation

- Efficiency
- Availability

Efficiency Experiment Environment

Item	Configuration
СРИ	Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz, 1CPU
Cache	30720 KB
Memory	2G
Hard disk	40G
OS	CentOS release 6.9, 64 bit
DB	MySQL 5.1.73

Efficiency

Efficiency

Availability

05 Conclusions and Future Work

- Conclusions
- Future Work

CONCLUSIONS

- EASIS can process 1000 pieces of key resource information with less than 4s and low system load.
- The fault-tolerant system makes the EASIS more available and easier to use.

FUTURE WORK

06) Ac

Acknowledgement

- Our Team
 - Xuebin Chi, Haili Xiao, Rongqiang Cao
 - Xiaoning Wang, Yining Zhao, Shasha Lu, Rong He
 - Can Wu, Xiaodong Wang, Yimeng Han
- ◆ HPBDC

Thank you!

http://www.cngrid.org

