1 Uvod

V današnjem času elektromotorski pogoni vse hitreje nadomešcajo druge oblike ustvarjanja mehanskega dela. Zahteve po čim hitrejši regulaciji in zaneslivosti pogona so čedalje višje. V pogonih se želi doseči tudi čim višji izkoristek. Za doseganje uspešnega obratovanja elektromotorskega pogona se potrebuje dober in zanesljiv dajalnik pozicije. Dejalnike delimo na linearne dajalnike in dajalnike zasuka oz. rotacije. Tu se bom osredotočil na rotacijske dajalnike pozicije. Ti so lahko montirani na poljubnem mestu na osi (angl.: through hole), ali le na koncu osi (ang.: On-axis).

Vsak dajalnik ima točnost, katero doseže, če je pravilno montiran. naapka nepravilne montaze je odvisna od nepravilno postavljenega aktuatorja na osi pogona, ali nepravilno montiranega senzorja. V tem delu bom analiziral kako se napaka

V tem delu se bom osredotočil na dajalnik RM44, ki ga bom namerno

Dajalnike ločimo tudi glede na uporabljen princip zaznavanja premika. Poznamo magnetne, optične, induktivne in druge. Dejalniki se razlikujejo tudi na izodne signale.

Uvod

2 Dajalniki pozicije RM44

Dajalnik pozicije RM44 je produkt podjetja RLS merilna tehnika d.o.o. kratica RLS pomeni rotacijski in linearni senzorji zasuka (ang.: Rotary and Linear motion Sensors). Podjetje proizvaja merilnike na podlagi merjenja magnetnega polja. Dajalnik pozicije RM44 spada v družio enkoderjev montiranih na koncu osi rotirajoče gredi (ang.: On-axis). Na rotirajočo os je pritrjen cilindrični magnet, ki je diametralno magnetiziran. Senzor je sestavljen iz čipa AM8192B, v katerem so vgrajene Hallove sonde za merjenje pravokotne komponente magnetnega polja, magneta montiranega na os pogona. Izhod senzorja je lahko analogen v obliki dveh signalov sinusa in kosinusa. Izhod senzorja je lahko inkrementalni, ki poda relativno spremembo pozicije ter smer premikanja. Senzor lahko prikaže tudi absolutno vrednost pozicije. Njegova resolucija je nastavljiva med 320 in 8192 pozicij na obrat.

3 Analitična izpeljava dinamične in statične eksčentričnosti

Napake so prisotne pravzaprav pri vsakem senzorju. V tem poglavju bom analitično prikazal vpliv napak omenjenih ekscentričnosti, ki se pojavijo ob nepravilni montaži senzorja. Njuna vpliva ražlično vplivata na napako zato ju bom obravnaval posamično. V delu sem predpostavil, da se izmiki iz idealne pozicije izmikajo le v smeri x in y. Napaka se pojavi tudi ob premiku v smeri z vendar tega tu nebom obravnaval. Zaradi narave problema je smiselno uporabiti kartezi"ni koordinatni sistem. V izpeljavah bom predpostavil, da so izmiki majhni. Najprej bom izpeljal po kašni trajetoriji se giblje posamezna Hallova sonda. Iz znane tretnutne lokacije Hallova sonda bom lahko izračunal vrednost B komponente ki jo meri posamezna Hallova sonda. Pri analitični izpeljavi bom predopstavil, da je polje ob majhnih odmikih linearno in ustreza enacbi polja $B(x,y) = k \cdot y$. Nato bom analitično izrazil vrednost kota, ki predstavlja izhod senzorja.

3.1 Začetna pozicija senzorjev

Za določanje kota med vektorjem ki kaže v smeri x-os (1_x) in vektorjem med koordinatnim izhodiscem in poljubno točko v koordinatnem sistemu, je potrebno poznati poznati le položaj točke. Primer je podan na sliki 3.1. Kot φ določimo preko trigonometrične funkcije arctan:

$$\varphi = \arctan \frac{y_0}{x_0}$$

Slika 3.1: Slika za pomoč pri določanju kota

Za določitev kota φ je dovolj poznati že projekciji vektorja na koordinatni osi(slika 3.2),

Slika 3.2: Slika za pomoč pri določanju kota

Če poznamo le projekciji točke na koordinatni osi, je to zadosten pogoj za določitev kota φ . Za določitev kota zasuka v idealnih pogojih, kot je predpostavka, da je polje linearno, sta dovolj dve Hallovi sondi, ki sta prostorsko zamaknjeni za 90° (Slika 3.3).

Začetni lokaciji sond enostavmo postavimo na koordinatni osi in s tem ustrežemo pogoju po prostorskem zasuku med sondama. Sondi postavimo na

razdaljo r_0 od koordinatnega izhodišča. S tem dobimo začetni lokaciji Hallovih sond $H_1(x_0, y_0) = (r_0, 0), H_2(x_0, y_0) = (0, r_0).$

Slika 3.3: Začetna postavitev Hallovih sond

3.2 Zasuk magneta

Z zasukom magneta za kot θ se na mestu, kjer merimo magnetno polje, polje spremni. Polje bi se spremnilo enako če bi nad magnetom zasukali senzor za kot $-\theta$. Hallova sonda z začetno lokacijo (x_0, y_0) bi se po krožnici premaknila v novo lokacijo(x, y):

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$
(3.1)

Z upoštevanjem da je funkcija sinus liha in funkcija kosinus soda, se izračun v enačbi 3.1 poenostavi v:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$
(3.2)

Ko zavrtimo senzor okoli magneta pri tem pomeri polje. Ker sem predpostavil linearno polje, ga predstavim s izrazom

$$B(x,y) = k \cdot x \tag{3.3}$$

Slika 3.4: Hallovi sondi se glede na magnet nahajati na enaki lokaciji

Za poenostavitev vzemimo k=1. S tem se enačba 3.3 poenostavi v:

$$B(x,y) = x (3.4)$$

Polje ki ga pomeri posamezna sonda dobimo z upostevanjem enačb 3.2 in 3.4.

$$B_{H_1}(\theta) = r_0 \cdot \sin \theta \tag{3.5}$$

$$B_{H_2}(\theta) = r_0 \cdot \cos \theta \tag{3.6}$$

3.3 Izpeljava enačb pri dinamični ekscentričnosti

Opazujmo sedaj opisan sistem z dodano dinamično ekscentričnostjo. Definirajmo začetno lego rotorja v centru statorja $S_r(0,0) = S_s(0,0)$. Rotor izmaknemo iz začetne lege v novo središče $S_r(\Delta x_d, \Delta y_d,)$. Os vrtenja ostaja v centru statorja, zato staro središče rotorja opisuje krožnico s polmerom $\sqrt{\Delta x_d^2 + \Delta y_d^2}$.

Če sedaj sistem miselno obrnemo kot sem to napravil v prej"njem poglavju in senzor zavrtimo. Ob takem premiku senzor opiše trajektorijo kot pri pravilno

Slika 3.5: Magnetno polje, ki ga pomeriti sondi, ko je montaža pravilna

montiranem senzorju le z dodano translacijo ekscentričnosti. Kako Hallova sonda spreminja lokacijo glede na vrtenje je prikazano na sliki 3.6b, s pikčasto krožnico.

Novo lokacijo Hallove sonde lahko določimo po enačbi 3.7.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} -\Delta x_d \\ -\Delta y_d \end{bmatrix}$$
(3.7)

Enačbo 3.7 lahko poenostavimo pri čemer Δx_d in Δy_d predstavlja vrednost za koliko je rotor izmaknjen iz osi vrtenja.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} - \begin{bmatrix} \Delta x_d \\ \Delta y_d \end{bmatrix}$$
(3.8)

Z upoštevanjem magnetnega polja po izrazu 3.4 izrazimo odvistnost ma-

Slika 3.6: Hallovi sondi se glede na magnet nahajati na enaki lokaciji

gnetnega polja od kota zasuke in ekscenričnosti. Iz potekov magnetnega polja v izrazih (3.9) in (3.10) opazimo da magnetno polje ni odvisno od dinamične eksčentričnosti v y smeri. S hitrim miselnim eksperimentom si lahko hitro predstavljamo, da če senzor izmaknemo v smeri y magnetno polje na novi lokaciji ostane enako.

$$B_{H_1}(\theta) = r_0 \cdot \cos \theta - \Delta x_d \tag{3.9}$$

$$B_{H_2}(\theta) = r_0 \cdot \sin \theta - \Delta x_d \tag{3.10}$$

3.4 Izpeljava enačb pri statični ekscentričnosti

Opazovani sistem ostaja enak, brez ekscentričnosti. Sedaj iz osi vrtenja izmaknemo senzor. Os magneta in os vrtenja sta poravnani. Središče senzorja se sedaj nahaja na koorinatah $S_s(\Delta x_s, \Delta y_s)$. kot pri izpeljavi pri dinamični ekscentričnosti obrnimo sistem in zavrtimo senzor upoštevajoče z ekscentričnostjo. Središče senzorja opiše krožnico okoli središca magneta oz. osi vrtenja. Hallovi

Slika 3.7: Magnetno polje, ki ga pomeriti sondi, ko je magnet izmaknjen

sondi se vrtita vsaka po svoji krožnici. Gibanje posamezne sonde lahko opišemo z izrazom:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x_0 + \Delta x_s \\ y_0 + \Delta y_s \end{bmatrix}$$
(3.11)

Magnetno polje, ki ga pomerita dobimo iz izraza (3.4).

$$B_{H_1} = (r_0 + \Delta x_s)\cos(\theta) + \Delta y_s\sin(\theta)$$
 (3.12)

$$B_{H_1} = -\Delta x_s \sin(\theta) + (r_0 + \Delta y_s) \cos(\theta)$$
(3.13)

Slika 3.8: Hallovi sondi se glede na magnet nahajati na enaki lokaciji

3.5 Končna enačba za določitev lokacije sonde in določanje pomerjenega kota

Sedaj lahko izraza za določanje lokacije in hkrati magnetnega polja zapišemo z eno enačbo:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x_0 + \Delta x_s \\ y_0 + \Delta y_s \end{bmatrix} - \begin{bmatrix} \Delta x_d \\ \Delta y_d \end{bmatrix}$$
(3.14)

Polje ki ga opišeti sondi se glasi:

$$B_{H_1} = (r_0 + \Delta x_s)\cos(\theta) + \Delta y_s\sin(\theta) - \Delta x_d \tag{3.15}$$

$$B_{H_2} = \Delta x_s \cos(\theta) + (r_0 + \Delta y_s) \sin(\theta) - \Delta x_d \tag{3.16}$$

Iz izrazov (3.15) in (3.16) sedaj lahko izračunamo kot.

Slika 3.9: Magnetno polje, ki ga pomeriti sondi, ko je senzor izmaknjen

$$\varphi = \arctan \frac{B_{H_2}}{B_{H_1}} = \arctan \frac{\Delta x_s \cos(\theta) + (r_0 + \Delta y_s) \sin(\theta) - \Delta x_d}{(r_0 + \Delta x_s) \cos(\theta) + \Delta y_s \sin(\theta) - \Delta x_d}$$
(3.17)

3.6 Določanje kota pri statični ekscntričnosti v smeri x

Zaradi nelinearnosti fukcije arctan je izraz (3.17) analitično težko poenostaviti v polni obliki. Zato se vsake ekscentričnosti lotim posamično. Če upoštevamo le ekscentričnost Δx_s se izraz (3.17) poenostavi v:

$$\varphi = \arctan \frac{\Delta x_s \cos(\theta) + r_0 \sin(\theta)}{(r_0 + \Delta x_s) \cos(\theta)}$$
(3.18)

Z upoštevanjem Taylorjeve vrse za arctan:

$$\arctan(x) = x - \frac{x^3}{3}...pri|x| \le 1$$
 (3.19)

Izraz lahko zapišemo kot

$$\varphi = \frac{\Delta x_s \cos(\theta) + r_0 \sin(\theta)}{(r_0 + \Delta x_s) \cos(\theta)} + \frac{(\Delta x_s \cos(\theta) + r_0 \sin(\theta))^3}{3((r_0 + \Delta x_s) \cos(\theta))^3}$$
(3.20)

3.7 Določanje približka za funkcijo arctan

3.8 Določanje kota pri statični ekscntričnosti v smeri y

$$\varphi = \frac{(r_0 + \Delta y_s)\sin(\theta)(8r_0^2 + 4r_0\Delta y_s + 8\Delta y_s^2)\cos(2\theta) + 12r_0\Delta y_s\sin(2\theta)}{((3r_0^3 + 3r_0\Delta y_s^2)\cos(\theta) + (r_0^3 - 3r_0\Delta y_s)\cos(3\theta) + (3r_0^2\Delta y_s + 3\Delta y_s^3)\sin(\theta) + (3r_0^2\Delta y_s - \Delta y_s^3)\sin(\theta))}$$
(3.21)