Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

Programa de Engenharia de Sistemas e Computação

CPS863 - Aprendizado de Máquina Prof. Dr. Edmundo de Souza e Silva (PESC/COPPE/UFRJ)

Lista de Exercícios 5

Luiz Henrique Souza Caldas email: lhscaldas@cos.ufrj.br

18 de novembro de 2024

Questão 1 - HMM

Considere o robô da lista anterior, que pode se mover pelos quadrados da figura abaixo.

Figura 1: Robô andando por um ambiente

Para tentar melhorar a previsibilidade de se detectar a posição do robô da Figura 1 sensores são colocados no ambiente onde o robô circula. Há 4 tipos de sensores (R, B, Y, G), conforme mostrado na Figura 1. Quando o robô está em qualquer um dos quadrados, o respectivo sensor emite um sinal (para um receptor) com a letra igual ao tipo do sensor. Entretanto, os sensores não são perfeitos e podem emitir um sinal errado com probabilidade 0.1. Por exemplo, quando o robô está num dos quadrados azuis, emite um sinal b com probabilidade 0.9, ou um dos restantes sinais r ou y ou g, com probabilidade 0.1/3. Como outro exemplo, suponha que o robô esteja na posição inicial conforme mostrado na Figura 1. Em 3 unidades de tempo, uma possível sequência de sinais recebidos poderiam ser r g b, se o robô for para norte e depois para leste. Entretanto, mesmo com o mesmo movimento, os sinais recebidos poderiam ser também r g g ou b b, etc.

Seu objetivo é determinar a posição do robô, a partir dos sinais recebidos dos sensores.

• Explique como você fará uma HMM que possa permitir prever a posição do robô a partir dos sinais recebidos.

Resposta:

- 1. Estados: Assim como no problema da lista anterior, os estados são as posições possíveis do robô, com a diferença de que agora os estados não podem ser diretamente observáveis. Para facilitar a notação, os estados foram numerados em ordem crescente da esquerda para a direita e de cima para baixo. Assim, o antigo estado (1,1) passou a se chamar S_1 , (1,2) passou a se chamar S_2 e assim por diante. O modelo da Cadeia de Markov pode sewr visto na figura 2.
- 2. **Observações:** As observações são as emissões dos sensores, formadas pelos símbolos R, B, Y, G.
- 3. Matriz de transição: A matriz de transição é a mesma da lista anterior, com as probabilidades de transição entre os estados. Nesta lista foi utilizada a letra A para representar a matriz de transição, seguindo a simbologia de Rabiner (1989) [1]. A matriz A é mostrada na tabela 1.
- 4. Matriz de emissão: A matriz de emissão é a probabilidade de cada estado emitir cada uma das observações. Cada estado tem uma probabilidade de 0.9 de emitir a cor dele mesmo e 0.1 de emitir qualquer outra cor $(0.1/3 \approx 0.0333 \text{ para cada cor})$. Os estados proibidos (rosa) possuem probabilidade de emissão 0 para todos os símbolos. A matriz de emissão é mostrada na tabela 2.
- 5. **Probabilidade inicial:** O vetor de probabilidades iniciais (renomeado para π pelo mesmo motivo da matriz de transição) é o mesmo da lista anterior, com a probabilidade 1 do robô começar no estado S_5 (posição 2,1) $\pi_5 = 1$ e nula para os demais estados.

Figura 2: Cadeia de Markov representando o movimento do robô no ambiente.

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}	S_{12}	S_{13}	S_{14}	S_{15}	S_{16}
$\overline{S_1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S_2	0	0.75	0.25	0	0	0	0	0	0	0	0	0	0	0	0	0
S_3	0	0.25	0.25	0.25	0	0	0.25	0	0	0	0	0	0	0	0	0
S_4	0	0	0.25	0.50	0	0	0	0.25	0	0	0	0	0	0	0	0
S_5	0	0	0	0	0.75	0	0	0	0.25	0	0	0	0	0	0	0
S_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S_7	0	0	0.25	0	0	0	0.25	0.25	0	0	0.25	0	0	0	0	0
S_8	0	0	0	0.25	0	0	0.25	0.50	0	0	0	0	0	0	0	0
S_9	0	0	0	0	0.25	0	0	0	0.50	0.25	0	0	0	0	0	0
S_{10}	0	0	0	0	0	0	0	0	0.25	0.25	0.25	0	0	0.25	0	0
S_{11}	0	0	0	0	0	0	0.25	0	0	0.25	0.25	0	0	0	0.25	0
S_{12}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S_{13}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S_{14}	0	0	0	0	0	0	0	0	0	0.25	0	0	0	0.50	0.25	0
S_{15}	0	0	0	0	0	0	0	0	0	0	0.25	0	0	0.25	0.25	0.25
S_{16}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.25	0.75

Tabela 1: Matriz de Transição A

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}	S_{12}	S_{13}	S_{14}	S_{15}	S_{16}
R (Vermelho)	0	0.0333	0.0333	0.0333	0.9000	0	0.0333	0.0333	0.0333	0.0333	0.9000	0	0	0.9000	0.0333	0.0333
B (Azul)	0	0.0333	0.0333	0.9000	0.0333	0	0.0333	0.0333	0.0333	0.9000	0.0333	0	0	0.0333	0.0333	0.9000
Y (Amarelo)	0	0.0333	0.9000	0.0333	0.0333	0	0.0333	0.9000	0.0333	0.0333	0.0333	0	0	0.0333	0.9000	0.0333
G (Verde)																

Tabela 2: Matriz de Emissão B

- Suponha que o receptor de sinais tenha recebido a sequência r r y r y r b g b r y y g b. Qual a probabilidade desta sequência ocorrer? Explique e implemente o algoritmo necessário para responder a pergunta.
- Repita o item anterior para a sequência r b y r g r b g b r y y g b. (Obviamente não precisa reimplementar o algoritmo!)
- Para a primeira sequência acima, qual o quadrado mais provável onde estará o robô na última posição (isto é, o quadrado de onde foi emitido o último sinal)? Explique e implemente o algoritmo necessário.
- Para a segunda sequência acima, qual o quadrado mais provável onde estará o robô?
- Para a primeira sequência acima, qual o caminho mais provável percorrido pelo robô? Explique o algoritmo usado, mas não precisa implementar. Use uma biblioteca de Python ou outra linguagem preferida.

Questão 2 - Para exercitar o EM mais uma vez

Nesta tarefa, você usará o algoritmo Expectation-Maximization (EM) para inferir nota de filmes em um conjunto de dados. As notas são de 0.0 - 10.0 com uma casa decimal. O conjunto de dados contém as notas de clientes para quatro filmes de diferentes categorias (Sci-Fi e Romance). Os clientes são divididos em três classes com base em suas preferências, mas também é desconhecida a classe do cliente.

- 1. Explique as equações usadas para resolver o problema.
- 2. Baseado no item anterior, explique a sua implementação, incluindo as suas escolhas para a inicialização do código.
- 3. Quantas iterações foram necessárias para resolver o problema? Qual o teste de parada utilizado?
- 4. Quais os valores dos parâmetros encontrados? Quantos usuários foram alocados a cada uma das duas classes?
- 5. O resultado da clusterização fez algum sentido? Explique e justifique a sua resposta.
- 6. Qual a probabilidade do i-ésimo cliente ser um cliente que gosta mais de Sci-Fi? Explique sua resposta de forma genérica e escolha um dos 1000 usuários para exemplificar.

Questão 3 - Markov Reward Models

Considere a Questão 1, e o seguinte problema. A Figura 1 é modificada, de forma que o muro no quadrado [3, 4] é retirado, e dá lugar a um quadrado vermelho. Além disso, o robô ganha um prêmio de R\$100,00 ao atingir o quadrado [4, 4] (azul), mas perde:

- R\$40,00 cada vez que passa por um quadrado verde;
- R\$30,00 cada vez que passa por um quadrado vermelho;
- R\$5,00 cada vez que passa por um quadrado azul;
- R\$10,00 cada vez que passa por um quadrado amarelo.

O robô perde R\$1,00 a cada movimento, mesmo que sendo para o mesmo quadrado. Suponha que o robô escolhe uma das 4 direções aleatoriamente e caso a direção seja uma parede ele permanece no mesmo quadrado, (exatamente como no problema da lista anterior) e perde dinheiro conforme explicado acima.

1. Ignore a indicação dos sensores e mostre os passos necessários para calcular o valor médio do valor recebido ao atingir o quadrado do prêmio.

Codigos

Os códigos utilizados para a resolução dos exercícios estão disponíveis no repositório do GitHub: https://github.com/lhscaldas/cps863/

Referências

[1] RABINER, L. A tutorial on hidden markov models and selected applications in speech recognition. *Proceedings of the IEEE*, v. 77, n. 2, p. 257–286, 1989.