Komputasi Numerik: Tugas 3

Kelompok 15

1. Dapatkan akar-akar persamaan berikut dengan metode Iterasi:

(a)
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

Penyelesaian: Untuk melakukan metode Iterasi, f(x) = 0 harus diubah menjadi x = g(x):

$$x^{3} + 6.6x^{2} - 29.05x + 22.64 = 0$$

$$\implies x = \frac{x^{3} + 6.6x^{2} + 22.64}{29.05}$$

Dengan demikian,

$$g(x) = \frac{x^3 + 6.6x^2 + 22.64}{29.05}$$

Dengan asumsi $x_0 = 1$, selanjutnya akan dicari tahu apakah nilai x_0 tersebut memenuhi syarat $|g'(x_0)| < 1$:

$$|g'(x_0)| < 1$$

$$\left| \frac{3(1)^2 + 13,2(1)}{29,05} \right| < 1$$

$$\left| \frac{16,2}{29,05} \right| < 1$$

$$0,55 < 1$$

Dengan demikian, dengan $x_0 = 1$, proses iterasi akan konvergen.

Dengan relasi berulang:

$$x_{n+1} = \frac{x_n^3 + 6.6x_n^2 + 22.64}{29.05}$$

diperoleh hasil proses iterasi sebagai berikut:

n	x_n	x_{n+1}
0	1,000	$\frac{1,000^3 + 6,6 \times 1,000^2 + 22,64}{29,05} = 1,040$
1	1,040	$\frac{1,040^3 + 6,6 \times 1,040^2 + 22,64}{29,05} = 1,065$
2	1,065	$\frac{1,065^3 + 6,6 \times 1,065^2 + 22,64}{20,05} = 1,080$
3	1,080	$\frac{1,080^3 + 6,6 \times 1,080^2 + 22,64}{29.05} = 1,090$
4	1,090	$\frac{1,090^3 + 6,6 \times 1,090^2 + 22,64}{29.05} = 1,095$
5	1,095	$\frac{1,095^3 + 6,6 \times 1,095^2 + 22,64}{29,05} = 1,097$

Dengan demikian, akar dari persamaan di atas adalah $x \approx 1,097$.

(b)
$$x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$$

Penyelesaian: $f(x) = 0 \iff x = g(x)$:

$$x^{4} - 0.41x^{3} + 1.632x^{2} - 9.146x + 7.260 = 0$$

$$\implies x = \frac{x^{4} - 0.41x^{3} + 1.632x^{2} + 7.260}{9.146}$$

$$\therefore g(x) = \frac{x^{4} - 0.41x^{3} + 1.632x^{2} + 7.260}{9.146}$$

Dengan asumsi $x_0 = 1$, selanjutnya akan dicari tahu apakah nilai x_0 tersebut memenuhi syarat $|g'(x_0)| < 1$:

$$\left| \frac{|g'(x_0)| < 1}{4(1)^3 - 1,23(1)^2 + 3,264(1) - 9,146} \right| < 1$$

$$\left| \frac{3,112}{9,146} \right| < 1$$

$$0.34 < 1$$

Dengan demikian, dengan $x_0 = 1$, proses iterasi akan konvergen.

Dengan relasi berulang:

$$x_{n+1} = \frac{x_n^4 - 0.41x_n^3 + 1.632x_n^2 + 7.260}{9.146}$$

diperoleh hasil proses iterasi sebagai berikut:

diperoteti hasti proses iterasi sesagai serikat.					
n	x_n	x_{n+1}			
0	1,000	$\frac{1,000^4 - 0,41 \times 1,000^3 + 1,632 \times 1,000^2 + 7,260}{9,146} = 1,037$			
1	1,037	$\frac{9,146}{1,037^4 - 0,41 \times 1,037^3 + 1,632 \times 1,037^2 + 7,260} = 1,062$			
2	1,062	$1,062^4 - 0.41 \times 1.062^3 + 1.632 \times 1.062^2 + 7.260$			
3	1,078	$\frac{9,146}{\frac{1,078^4 - 0,41 \times 1,078^3 + 1,632 \times 1,078^2 + 7,260}{9,146}} = 1,088$			
4	1,088	$\frac{1,088^4 - 0,41 \times 1,088^3 + 1,632 \times 1,088^2 + 7,260}{0.146} = 1,094$			
5	1,094	$\frac{1,094^4 - 0,41 \times 1,094^3 + 1,632 \times 1,094^2 + 7,260}{9,146} = 1,098$			

Dengan demikian, akar dari persamaan di atas adalah $x \approx 1,098$.

2. Dapatkan akar-akar persamaan berikut dengan metode Faktorisasi:

(a)
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

Penyelesaian: Persamaan tersebut memenuhi rumusan metode Faktorisasi derajat tiga. Dengan $P_3(x) = x^3 + A_2x^2 + A_1x + A_0$, bentuk faktornya adalah $P_3(x) = (x + b_0)(x^2 + a_1x + a_0)$.

Dengan $P_3(x) = x^3 + 6.6x^2 - 29.05x + 22.64 = 0$ dan fakta bahwa $b_0 = A_0/a_0$, hasil proses iterasi diperoleh sebagai berikut:

iterasi	$\mathbf{b_0}$	$\mathbf{a_1}$	\mathbf{a}_0	keterangan
1	0,000	6,600	-29,050	Inisialisasi $(b_0 = 0)$
2	-0,779	7,379	$-23,\!300$	$b_0 = 22,64/(-29,05)$
3	-0,972	7,572	-21,690	$b_0 = 22,64/(-23,30)$
4	-1,044	7,644	-21,070	$b_0 = 22,64/(-21,69)$
5	-1,075	7,675	$-20,\!800$	$b_0 = 22,64/(-21,07)$
6	-1,088	7,688	-20,800	

Dengan demikian, diperoleh hasil faktorisasi: $P_3(x) \approx (x-1.088)(x^2+7.688x-20.800)$.

Akar-akar dari persamaan tersebut antara lain:

•
$$(x-1.088) = 0 \implies x \approx 1.088$$
.

•
$$(x^2 + 7,688x - 20,800) = 0$$

⇒ $x = \frac{-7,688 \pm \sqrt{7,688^2 - 4 \times -20,800}}{2}$
∴ $x \approx 2,121 \lor x \approx -9,809$.

Dengan demikian, terdapat tiga akar berbeda, yakni $x_1 = 1,088, x_2 = 2,121, dan x_3 = -9,809.$

(b)
$$x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$$

Penyelesaian: Persamaan tersebut memenuhi rumusan metode faktorisasi derajat empat. Dengan $P_4(x) = x^4 + A_3x^3 + A_2x^2 + A_1x + A_0$, bentuk faktornya adalah $P_4(x) = (x^2 + b_1x + b_0)(x^2 + a_1x + a_0)$.

Dengan $P_4(x)=x^4-0.41x^3+1.632x^2-9.146x+7.260=0$, hasil proses iterasi diperoleh sebagai berikut:

iterasi	$\mathbf{b_0}$	$\mathbf{b_1}$	$\mathbf{a_1}$	$\mathbf{a_0}$	keterangan
1	0,000	0,000	1,632	-9,146	Inisialisasi $(b_0 = 0)$
2	-0,794	1,022	2,426	-7,260	$b_0 = 7,260/(-9,146)$
3	-1,012	1,305	2,644	-6,678	$b_0 = 7,260/(-7,260)$
4	-1,101	1,447	2,733	-6,400	$b_0 = 7,260/(-6,678)$
5	-1,145	1,518	2,777	-6,260	$b_0 = 7,260/(-6,400)$
6	-1,167	1,553	2,799	-6,200	Konvergensi tercapai

Dengan demikian, diperoleh hasil faktorisasi:

$$P_4(x) \approx (x^2 + 1.553x - 1.167)(x^2 + 2.799x + 6.200).$$

Akar-akar dari persamaan tersebut antara lain:

•
$$(x^2 + 1,553x - 1,167) = 0$$

 $\implies x = \frac{-1,553 \pm \sqrt{(1,553)^2 - 4 \times -1,167}}{2}$
 $\therefore x \approx 0,577 \lor x \approx -2,130.$

•
$$(x^2 + 2,799x + 6,200) = 0$$

⇒ $x = \frac{-2,799 \pm \sqrt{(2,799)^2 - 4 \times 6,200}}{2}$
∴ $x \approx -1,400 + 1,825i \lor x \approx -1,400 - 1,825i$.

Dengan demikian, terdapat empat akar berbeda, yakni $x_1=0.577,\ x_2=-2.130,\ x_3=-1.400+1.825i,\ dan\ x_4=-1.400-1.825i.$

3. Gunakan metode Newton-Raphson untuk mendapatkan akar persamaan:

$$f(x) = -0.875x^2 + 1.75x + 2.625$$

dengan $x_i = 3,1$

Penyelesaian:

4. Gunakan metode Newton-Raphson untuk mendapatkan akar persamaan:

$$f(x) = -2.1 + 6.21x - 3.9x^2 + 0.667x^3$$

Penyelesaian:

5. Gunakan metode Newton-Raphson untuk mendapatkan akar persamaan:

$$f(x) = -23{,}33 + 79{,}35x - 88{,}09x^2 + 41{,}6x^3 - 8{,}68x^4 + 0{,}658x^5$$

dengan $x_i = 3.5$

Penyelesaian:

6. Gunakan metode Secant untuk mendapatkan akar dari persamaan:

$$f(x) = 9.36 - 21.963x + 16.2965x^2 - 3.70377x^3$$

Penyelesaian:

7. Gunakan metode Secant untuk mendapatkan akar dari persamaan:

$$f(x) = x^4 - 8.6x^3 - 35.51x^2 + 464x - 998.46$$

dengan $x_{i-1} = 7$ dan $x_i = 9$

Penyelesaian:

8. Gunakan metode Secant untuk mendapatkan akar dari persamaan:

$$f(x) = x^3 - 6x^2 + 11x - 6$$

dengan $x_{i-1} = 2.5$ dan $x_i = 3.6$

Penyelesaian:

9. Buatlah sebuah paparan untuk menjelaskan tentang metode Bairstow dan metode Quotient-Difference (Q-D). Dan buatlah sebuah kesimpulan mengenai kemudahan/kesulitan kedua metode tersebut didalam menyelesaikan masalah dibanding dengan metode2 yang telah anda pelajari dalam materi ini.

Penyelesaian: