18MAB102T-Surprise Test 3-June 18

* Required

Answer ALL Questions

Each question carries ONE mark.

1 *

The Laplace transform for a function f(t) where t > 0 is defined by

- (A) $L[f(t)] = \int_{-\infty}^{\infty} e^{-st} f(t) dt$
- (B) $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$
- (C) $L[f(t)] = \int_{a}^{b} e^{-st} f(t) dt$
- (D) $L[f(t)] = \int_{0}^{\infty} e^{st} f(t) dt$

- A
- B
- O C
- () D

 $L[t^3] =$

(A) $\frac{3}{s^3}$

(B) $\frac{6}{s^4}$

(C) $\frac{3}{s^4}$

(D) $\frac{6}{s^3}$

- () A
- B
- O C
- (D

3 *

 $L[e^{2t} t] =$

(A) $\frac{1}{s-2}$

(B) $\frac{1}{(s-2)^2}$

(C) $\frac{2}{(s-2)^3}$

(D) $\frac{1}{s^2}$

- A
- E
- 0 0
- \bigcirc D

If L[f(t)] = F(s), then by Initial Value Theorem $\lim_{t\to 0} f(t) =$

(A) $\lim_{s \to \infty} sF(s)$

(B) $\lim_{s \to 0} sF(s)$

(C) $\lim_{s \to \infty} F(s)$

(D) $\lim_{s\to 0} F(s)$

- A
- B
- \bigcirc
- () D

5 *

The Laplace transform of a periodic function f(t) with period p is given by

(A)
$$L[f(t)] = \frac{1}{1 - e^{-sp}} \int_0^p e^{-st} f(t) dt$$

(B)
$$L[f(t)] = \frac{1}{1+e^{-sp}} \int_0^p e^{-st} f(t)dt$$

(C)
$$L[f(t)] = \frac{1}{1+e^{-sp}} \int_0^\infty e^{-st} f(t)dt$$

(D)
$$L[f(t)] = \frac{1}{1 - e^{-sp}} \int_0^\infty e^{-st} f(t) dt$$

- A
- O B
- \bigcirc c
- \bigcirc D

 $L^{-1}\left[\frac{1}{s-3}\right] =$

- (A) e^{3t}
- (C) $\cos 3t$

- (B) e^{-3t}
- (D) $\sin 3t$

- A
- B
- \bigcirc 0

7 *

 $L^{-1}\left[\frac{s}{s^2-9}\right] =$

 $(A) \cos 3t$

(B) $\sin 3t$

(C) $\cosh 3t$

(D) $\sinh 3t$

- \bigcap A
- B
- O D

 $L^{-1}\left[\frac{1}{(s-1)^2}\right] =$

- (A) $t e^{t}$ (C) e^{-t}

- (B) e^{t} (D) $t e^{-t}$

9 *

 $L^{-1}\left[\frac{s-a}{(s-a)^2+b^2}\right] =$

(A) $e^{at} \cosh bt$

(B) $e^{at}\cos bt$

(C) cosh bt

(D) sinh bt

- \bigcap D

By linear property of inverse Laplace Transforms, $L^{-1}[a F(s) + b G(s)] =$

- $(A)L^{-1}\left[a\ F(s)\ \right]$
- (B) $a L^{-1}[F(s)] + b L^{-1}[G(s)]$
- (C) L^{-1} [b G(s)]
- (D) $L^{-1}[F(s)] + L^{-1}[G(s)]$

- () A
- B
- \bigcirc 0
- O D
- Send me a copy of my responses.

Back

Submit

Never submit passwords through Google Forms.

reCAPTCHA Privacy Terms

This form was created inside of SRM Institute of Science and Technology. Report Abuse

Google Forms