

Model Optimization and Tuning Phase Template

Date	3 October 2024		
Team ID	LTVIP2024TMID24876		
Project Title	Rising Waters: A Machine Learning Approach to Flood Prediction		
Maximum Marks	10 Marks		

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Пурст	Hyperparameter luming Documentation (6 Marks):						
Model	Tuned Hyperparameters	Optimal Values					
Random Forest	<pre>[28] param_grid = {</pre>	0.9714285714285714 1.0					
KNN	kn2=KNeighborsClassifier() kn2.fit(x_tr,y_tr) param grid = { 'n_reighbors': [3, 5, 7, 9, 11], 'weights': ['uniform', 'distance'], 'metric': ['euclidean', 'manhattan'] } # Change 'model' to 'kn2' in the GridsearchCV instantiation grid_search = GridsearchCV(estimator=kn2, param_grid=param_grid, # Using the KNeigh cv=5, scoring='accuracy') grid_search.fit(x_tr, y_tr) best_model2 = grid_search.best_estimator_ print(best_model2) y_pred3=kn2.predict(x_t) y_pred32=kn2.predict(x_tr) from sklearn.metrics import accuracy_score knn2=accuracy_score(y_tr,y_pred3) knn3=accuracy_score(y_tr,y_pred32) print('test_accuracy',knn2) print('test_accuracy',knn3)	KNeighborsClassifier(metric='manhattan', n_neighbors=3, weights='distance') test accuracy 0.9428571428571428 train accuracy 0.95					

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric Optimized Metric					
Random Forest	▶ print(cl	assificat	ion_repor	t(y_t,y_	p))	
	₹	pred	cision	recall	f1-score	support
		0	1.00	0.96	0.98	27
		1	0.89	1.00	0.94	8
	accu	racy			0.97	35
		-	0.94	0.98	0.96	35
		avg	0.97	0.97	0.97	35
KNN	→ test accuracy: 0.9142857142857143					
	train accuracy: 0.9791666666666666					
		precision	recall	f1-sco	ore suppo	ort
	0	1.00	0.89	0.	.94	27
	1	0.73	1.00	0.	84	8
	accuracy			0.	91	35
	macro avg		0.94	0.	89	35
	weighted avg	0.94	0.91	0.	.92	35

Final Model Selection Justification (2 Marks):

Final Model	Reasoning			
	e de la companya de			
KNN	 According to the above data the KNN has been selected for prediction. Random Forest was not selected because the training data accuracy is 1.0 which overfits the model. Final Model: KNN			