Tufte Handout John Smith August 13th, 2014

Synopsis

The U.S. National Oceanic and Atmospheric Administration's (NOAA) storm database¹ tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage. The events in the database correspond to 902,297 observations starting in the year 1950 and ending in November 2011.

This report addresses the questions:

- 1. Across the United States, which types of events are most harmful with respect to population health?
- 2. Across the United States, which types of events have the greatest economic consequences?

This report was created for a Coursera class² on the following environment:

¹ http://d396qusza40orc.cloudfront. net/repdata%2Fdata%2FStormData.csv. bz2

2 http://class.coursera.org/ repdata-008

```
platform
               i386-w64-mingw32
arch
                i386
os
               mingw32
                i386, mingw32
system
status
major
               3
minor
               1.1
                2014
year
month
               07
               10
day
               66115
svn rev
language
version.string R version 3.1.1 (2014-07-10)
nickname
               Sock it to Me
```

Downloading the directive

- 1. Download the NOAA study's documentation in PDF form³. This file contains information about the study and the variable descriptions in the data.
- 2. Download the NOAA study's frequently asked questions guide in PDF form⁴. This file contains codes, abbreviations, and notes regarding the database.

³ http://d396qusza40orc.cloudfront. net/repdata%2Fpeer2_doc% 2Fpd01016005curr.pdf

http://d396qusza40orc.cloudfront. net/repdata%2Fpeer2_doc%2FNCDC% 20Storm%20Events-FAQ%20Page.pdf

if (!suppressWarnings(require("R.utils"))) {

```
install.packages("R.utils")
    library(R.utils)
}
## Loading required package: R.utils
## Loading required package: R.oo
## Loading required package: R.methodsS3
## R.methodsS3 v1.6.1 (2014-01-04) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.18.0 (2014-02-22) successfully loaded. See ?R.oo for help.
## Attaching package: 'R.oo'
##
## The following objects are masked from 'package:methods':
##
       getClasses, getMethods
##
##
## The following objects are masked from 'package:base':
##
##
       attach, detach, gc, load, save
##
## R.utils v1.34.0 (2014-10-07) successfully loaded. See ?R.utils for help.
##
## Attaching package: 'R.utils'
## The following object is masked from 'package:utils':
##
##
       timestamp
##
## The following objects are masked from 'package:base':
##
##
       cat, commandArgs, getOption,
       inherits, isOpen, parse, warnings
##
if (!exists("data")) {
    data <- read.csv(bzfile("data/StormData.csv.bz2"),</pre>
        header = TRUE, stringsAsFactors = FALSE)
}
Analysis
Which types of events are most harmful with respect to population
health? How many unique event types are there in the data?
numeventtypes <- length(table(data$EVTYPE))</pre>
print(numeventtypes, include.rownames = FALSE)
```

[1] 985

There are 985 unique event types in the data, and many of these event types are duplications with different unique names. Additionally, it was provided by Dr. Peng that:

"In the earlier years of the database there are generally fewer events recorded, most likely due to a lack of good records. More recent years should be considered more complete."

Because of this, we decided to look at the number of observations by year and select only those observations that fall outside the top 80% number of observations by BGN_DATE. To do this, we convert the BGN_DATE field from a factor to a date and crate a Pareto chart of the **BGN DATE** field⁵:

5 http://cran.r-project.org/web/ packages/qcc/index.html

```
if (!suppressWarnings(require("qcc"))) {
    install.packages("qcc")
    library(qcc)
}
NA Loading required package: qcc
NA Package 'qcc', version 2.6
NA Type 'citation("qcc")' for citing this R package in publications.
year <- as.numeric(format(as.Date(data$BGN_DATE,</pre>
    format = "%m/%d/%Y"), "%Y"))
if (!suppressWarnings(require("xtable"))) {
    install.packages("xtable")
    library(xtable)
}
NA Loading required package: xtable
options(xtable.comment = FALSE)
options(xtable.booktabs = TRUE)
xtbl_year <- xtable(pareto.chart(table(year),</pre>
    plot = FALSE), caption = "Distribution of Observations by Year")
print(xtbl_year, floating = FALSE)
```

	Frequency	Cum.Freq.	Percentage	Cum.Percent.
2011	62174.00	62174.00	6.89	6.89
2008	55663.00	117837.00	6.17	13.06
2010	48161.00	165998.00	5.34	18.40
2009	45817.00	211815.00	5.08	23.48
2006	44034.00	255849.00	4.88	28.36
2007	43289.00	299138.00	4.80	33.15
2003	39752.00	338890.00	4.41	37.56
2004	39363.00	378253.00	4.36	41.92
2005	39184.00	417437.00	4.34	46.26
1998	38128.00	455565.00	4.23	50.49
2002	36293.00	491858.00	4.02	54.51
2001	34962.00	526820.00	3.87	58.39
2000	34471.00	561291.00	3.82	62.21
1996	32270.00	593561.00	3.58	65.78
1999	31289.00	624850.00	3.47	69.25
1997	28680.00	653530.00	3.18	72.43
1995	27970.00	681500.00	3.10	75.53
1994	20631.00	702131.00	2.29	77.82
1992	13534.00	715665.00	1.50	79.32
1993	12607.00	728272.00	1.40	80.71
1991	12522.00	740794.00	1.39	82.10
1990	10946.00	751740.00	1.21	83.31
1989	10410.00	762150.00	1.15	84.47
1986	8726.00	770876.00	0.97	85.43
1983	8322.00	779198.00	0.92	86.36
1985	7979.00	787177.00	0.88	87.24
1987	7367.00	794544.00	0.82	88.06
1984	7335.00	801879.00	0.81	88.87
1988	7257.00	809136.00	0.80	89.68
1982	7132.00	816268.00	0.79	90.47
1980	6146.00	822414.00	0.68	91.15
1974	5386.00	827800.00	0.60	91.74
1975	4975.00	832775.00	0.55	92.29
1981	4517.00	837292.00	0.50	92.80
1973	4463.00	841755.00	0.49	93.29
1979	4279.00	846034.00	0.47	93.76
1976	3768.00	849802.00	0.42	94.18
1977	3728.00	853530.00	0.41	94.60
1978	3657.00	857187.00	0.41	95.00
1971	3471.00	860658.00	0.38	95.39
1968	3312.00	863970.00	0.37	95.75
1970	3215.00	867185.00	0.36	96.11
1969	2926.00	870111.00	0.32	96.43
1965	2855.00	872966.00	0.32	96.75
1967	2688.00	875654.00	0.30	97.05
1962	2389.00	878043.00	0.26	97.31
1966	2388.00	880431.00	0.26	97.58
1964	2348.00	882779.00	0.26	97.84
1961	2246.00	885025.00	0.25	98.09
1958	2213.00	887238.00	0.25	98.33

It looks like 80% of the observations fall between the years 1992 and 2011. Therefore, we decided to limit the analysis to the years 1992 through 2011. As such, we select all rows where the BGN_DATE is between 1992 and 2011. Additionally, we only care about the date of the event, event type, number of fatalities and injuries, and amount of property and crop damage. As such, we will limit the selected fields to the following:

```
• BGN_DATE
```

- EVTYPE
- FATALITIES
- INJURIES

```
    PROPDMG

    PROPDMGEXP

    CROPDMG

    CROPDMGEXP

data <- subset(data, BGN_DATE > as.Date("12/31/1991",
    format = \%m/\%d/\%Y"))
## Warning: Incompatible methods ("Ops.factor",
## "Ops.Date") for ">"
cols <- c("BGN_DATE", "EVTYPE", "FATALITIES",</pre>
    "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG",
    "CROPDMGEXP")
data <- data[cols]</pre>
  Now we are ready to look at the events that caused the most fatali-
ties between 1992 and 2011:
if (!suppressWarnings(require("dplyr"))) {
    install.packages("dplyr")
    library(dplyr)
}
Loading required package: dplyr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
```

intersect, setdiff, setequal, union

```
topfatals <- data %.% group_by(EVTYPE) %.% summarize(n = sum(FATALITIES)) %.%
    mutate(proportion = n/sum(n)) %.% arrange(desc(proportion))
top10fatals <- as.data.frame(head(topfatals, 10))</pre>
options(xtable.comment = FALSE)
options(xtable.booktabs = TRUE)
xtbl_fatals <- xtable(top10fatals, caption = "Top 10 Events Causing Fatalities")</pre>
print(xtbl_fatals, floating = FALSE, include.rownames = FALSE)
```

EVTYPE	n	proportion
EXCESSIVE HEAT	1894.00	0.24
TORNADO	1750.00	0.22
HEAT	936.00	0.12
LIGHTNING	722.00	0.09
FLASH FLOOD	658.00	0.08
TSTM WIND	371.00	0.05
RIP CURRENT	271.00	0.03
FLOOD	187.00	0.02
HEAT WAVE	172.00	0.02
RIP CURRENTS	122.00	0.02

And we can also look at the events that caused the most injuries between 1992 and 2011:

```
topinjuries <- data %.% group_by(EVTYPE) %.% summarize(n = sum(INJURIES)) %.%</pre>
    mutate(proportion = n/sum(n)) %.% arrange(desc(proportion))
top10injuries <- as.data.frame(head(topinjuries,</pre>
    10))
options(xtable.comment = FALSE)
options(xtable.booktabs = TRUE)
xtbl_injuries <- xtable(top10injuries, caption = "Top 10 Events Causing Injuries")</pre>
print(xtbl_injuries, floating = FALSE, include.rownames = FALSE)
```

EVTYPE	n	proportion
TORNADO	28702.00	0.52
EXCESSIVE HEAT	6525.00	0.12
TSTM WIND	4683.00	0.08
LIGHTNING	4578.00	0.08
HEAT	2096.00	0.04
FLASH FLOOD	1330.00	0.02
THUNDERSTORM WIND	1107.00	0.02
HAIL	1041.00	0.02
HURRICANE/TYPHOON	933.00	0.02
THUNDERSTORM WINDS	632.00	0.01

According to page 12 of the directive, in an attempt to save space in the data:

"Estimates should be rounded to three significant digits, followed by an alphabetical character signifying the magnitude of the number, i.e., 1.55B for \$1,550,000,000. Alphabetical characters used to signify magnitude include "K" for thousands, "M" for millions, and "B" for billions."

However, when we summarize the PROPDMGEXP and CROPDMG-**EXP** columns, we see that there are identifiers that are not included in the documentation:

```
options(xtable.comment = FALSE)
options(xtable.booktabs = TRUE)
print(xtable(as.data.frame(t(summary(data$PROPDMGEXP)))),
    caption = "Property Damage Identifiers"),
    floating = FALSE)
```

	V1	-	?	+	О	1	2	3	4	5	6	7	8	В	h	Н	K	m	M
1	303983	О	7	2	141	20	7	3	3	22	3	5	1	25	1	3	259841	1	5597

print(xtable(as.data.frame(t(summary(data\$CROPDMGEXP)))),

```
caption = "Crop Damage Identifiers"), floating = FALSE)
```

•		V1	?	О	2	В	k	K	m	M
	1	396836	2	8	1	7	3	171303	О	1505

Additionally, it looks like some of the identifiers are capitalized and some are not. Because of this, we convert the lower-case identifiers to upper-case. Then we can convert the estimated economic damages to real dollars prior to analyzing the data. To do this we must exponentiate the damages according to their corresponding identifier. We assume that if an identifier is not recognized, the amount of the damage is stated in its nominal terms:

```
data$PROPDMG[which(data$PROPDMGEXP %in% c("h",
    "H"))] <- data$PROPDMG[which(data$PROPDMGEXP %in%
    c("h", "H"))] * 10^2
data$PROPDMG[which(data$PROPDMGEXP %in% c("k",
    "K"))] <- data$PROPDMG[which(data$PROPDMGEXP %in%</pre>
    c("k", "K"))] * 10<sup>3</sup>
data$PROPDMG[which(data$PROPDMGEXP %in% c("m",
    "M"))] <- data$PROPDMG[which(data$PROPDMGEXP %in%</pre>
    c("m", "M"))] * 10^6
data$PROPDMG[which(data$PROPDMGEXP %in% c("b",
    "B"))] <- data$PROPDMG[which(data$PROPDMGEXP %in%</pre>
    c("b", "B"))] * 10^9
```

And now we can look at the events that caused the most economic damages between 1992 and 2011:

```
topdamages <- data %.% group_by(EVTYPE) %.% summarize(n = sum(PROPDMG +
    CROPDMG)) %.% mutate(proportion = n/sum(n)) %.%
    arrange(desc(proportion))
top10damages <- as.data.frame(head(topdamages,</pre>
    10))
options(xtable.comment = FALSE)
options(xtable.booktabs = TRUE)
xtbl_damages <- xtable(top10damages, caption = "Top 10 Events Causing Economic Damages")</pre>
print(xtbl_damages, floating = FALSE, include.rownames = FALSE)
```

EVTYPE	n	proportion
HURRICANE/TYPHOON	58856093646.48	0.29
STORM SURGE	43150368005.00	0.21
TORNADO	23763897052.29	0.12
FLASH FLOOD	13030085264.26	0.06
HURRICANE	10853181769.31	0.05
FLOOD	10163097858.08	0.05
TROPICAL STORM	7597574797.62	0.04
HAIL	6025503023.99	0.03
RIVER FLOOD	5031606060.00	0.02
STORM SURGE/TIDE	4635686000.00	0.02

Now we can plot the top 10 event types for each of fatalities, injuries, and economic damages in a Pareto chart to really see which ones are the worst:

```
pareto.chart(xtabs(n ~ EVTYPE, data = top10fatals,
    drop.unused.levels = TRUE), ylab = "Fatalities",
    ylab2 = "Cumulative Percentage", cumperc = seq(0,
        100, by = 20)
```

Pareto chart analysis for xtabs(n ~ EVTYPE, data = top10fatals, drop.unused.levels = TRUE) Frequency Cum.Freq.

EXCESSIVE HEAT	1894	1894
TORNADO	1750	3644
HEAT	936	4580
LIGHTNING	722	5302
FLASH FLOOD	658	5960
TSTM WIND	371	6331
RIP CURRENT	271	6602
FL00D	187	6789
HEAT WAVE	172	6961
RIP CURRENTS	122	7083

Pareto chart analysis for xtabs(n ~ EVTYPE, data = top10fatals, drop.unused.levels = TRUE)

```
Percentage Cum.Percent.
  EXCESSIVE HEAT
                 26.740082
                                 26.74008
  TORNADO
                                 51.44713
                  24.707045
  HEAT
                  13.214740
                                 64.66187
  LIGHTNING
                  10.193421
                                 74.85529
  FLASH FLOOD
                   9.289849
                                 84.14514
  TSTM WIND
                                 89.38303
                   5.237894
  RIP CURRENT
                                 93.20909
                   3.826062
  FL00D
                    2.640124
                                 95.84922
  HEAT WAVE
                   2.428350
                                 98.27757
                                100.00000
  RIP CURRENTS
                   1.722434
abline(h = (sum(top10fatals$n) * 0.8), col = "red",
    lwd = 4)
```

Figure 1: Pareto Chart for Events Causing Fatalities

bs(n ~ EVTYPE, data = top10fatals, drop.uni


```
pareto.chart(xtabs(n ~ EVTYPE, data = top10injuries,
    drop.unused.levels = TRUE), ylab = "Injuries",
    ylab2 = "Cumulative Percentage", cumperc = seq(0,
        100, by = 20)
```

```
Pareto chart analysis for xtabs(n ~ EVTYPE, data = top10injuries, drop.unused.levels = TRUE)
                     Frequency Cum.Freq.
  TORNADO
                         28702
                                   28702
  EXCESSIVE HEAT
                          6525
                                   35227
  TSTM WIND
                          4683
                                   39910
 LIGHTNING
                          4578
                                   44488
 HEAT
                          2096
                                   46584
  FLASH FLOOD
                          1330
                                   47914
  THUNDERSTORM WIND
                          1107
                                   49021
                          1041
 HAIL
                                   50062
 HURRICANE/TYPHOON
                           933
                                   50995
  THUNDERSTORM WINDS
                           632
                                   51627
Pareto chart analysis for xtabs(n ~ EVTYPE, data = top10injuries, drop.unused.levels = TRUE)
                     Percentage Cum.Percent.
  TORNADO
                      55.594941
                                    55.59494
  EXCESSIVE HEAT
                      12.638736
                                    68.23368
  TSTM WIND
                       9.070835
                                    77.30451
 LIGHTNING
                       8.867453
                                    86.17196
 HEAT
                       4.059891
                                    90.23186
  FLASH FLOOD
                       2.576171
                                    92.80803
  THUNDERSTORM WIND
                       2.144227
                                    94.95225
 HATI
                       2.016387
                                    96.96864
 HURRICANE/TYPHOON
                                    98.77583
                       1.807194
  THUNDERSTORM WINDS
                       1.224166
                                   100.00000
abline(h = (sum(top10injuries$n) * 0.8), col = "red",
    lwd = 4)
pareto.chart(xtabs(n ~ EVTYPE, data = top10damages,
    drop.unused.levels = TRUE), ylab = "Damages (in $'s)",
    ylab2 = "Cumulative Percentage", cumperc = seq(0,
        100, by = 20)
Pareto chart analysis for xtabs(n ~ EVTYPE, data = top10damages, drop.unused.levels = TRUE)
                      Frequency
                                   Cum.Freq.
  HURRICANE/TYPHOON 58856093646 58856093646
  STORM SURGE
                    43150368005 102006461651
                    23763897052 125770358704
  TORNADO
                    13030085264 138800443968
  FLASH FLOOD
 HURRICANE
                    10853181769 149653625737
  FL00D
                    10163097858 159816723595
                     7597574798 167414298393
  TROPICAL STORM
```

Figure 2: Pareto Chart for Events Causing Injuries

s(n ~ EVTYPE, data = top10injuries, drop.ur

HAIL 6025503024 173439801417 RIVER FLOOD 5031606060 178471407477 STORM SURGE/TIDE 4635686000 183107093477

Pareto chart analysis for xtabs(n ~ EVTYPE, data = top10damages, drop.unused.levels = TRUE) Percentage Cum.Percent.

HURRICANE/TYPHOON	32.142989	32.14299	
STORM SURGE	23.565645	55.70863	
TORNADO	12.978141	68.68678	
FLASH FLOOD	7.116101	75.80288	
HURRICANE	5.927232	81.73011	
FL00D	5.550357	87.28047	
TROPICAL STORM	4.149252	91.42972	
HAIL	3.290699	94.72042	
RIVER FLOOD	2.747903	97.46832	
STORM SURGE/TIDE	2.531680	100.00000	
hline(h - (sum(ton)	Odamagec¢n)	. * 0 2) col - "	

abline(h = (sum(top10damages\$n) * 0.8), col = "red", lwd = 4)

Figure 3: Pareto Chart for Events Causing Economic Damages

s(n ~ EVTYPE, data = top10damages, drop.u

Results

Between 1992 and 2011, EXCESSIVE HEAT is the event type that caused the most fatalities, TORNADO is the event type that caused the most injuries, and HURRICANE/TYPHOON is the event type that caused the most economic damages to property and crops.