Homework 1

Lin Zejin May 15, 2025

• Collaborators: I finish this homework by myself.

Problem 1. (a) Reduce from the instance of MAX-E3SAT-6.

Variables x_i have $\sigma(x_i) \in \{0, 1\}$ and Clauses $c_i = x_{j_i}^1 \wedge x_{j_i}^2 \wedge x_{j_i}^3$ have $\sigma(c_i) \in [7]$ to represent the state of c_i . Therefore, constraint is naturally induced.

In the instance of MAX-E3SAT, the radio of |U| and |V| is 2. So this is a regular Label-Cover Game for K=2, L=7 and |V|=2|U|.

In the lecture we have proved that this is an instance of MAX – $LC_{1,1-\epsilon}$ for some ϵ .

So MAX – $LC_{1,1-\epsilon}$ is NP-Hard.

(b) We actually can construct another graph induced by (a).

We add \bar{x}_i to the graph in (a) and add the induced constraints from c_i contains variable x_i to \bar{x}_i .

Here the Label-Cover Game is regular and symmetric.

Then for the MAX – E3SAT – $6_{1,1-\epsilon}$ instance, the completeness is trivial.

Now we prove the soundness. That's because, if $OPT_{MAX-E3SAT-6} \leq 1 - \epsilon$, consider any $\sigma : U \to \{0,1\}, V \to [7]$. At least $(1 - \epsilon)|V|$ clauses are not satisfied by $\sigma|_U$. For each clause, there exists at least one variable x_i/\bar{x}_i such that do not satisfy the constraint.

So Verifier rejects with probability at least $(1 - \epsilon)|V|/2|V| = (1 - \epsilon)/2$. So the soundness property holds if we set $\epsilon' = \frac{1+\epsilon}{2}$.

So we prove that $GAP - LC(K, L)_{1,1-\epsilon}$ is NP-Hard for some ϵ and K, L even if the graph is regular and symmetric.

By Raz' Paralled Repetition Theorem, we can reduce an instance of GAP – $LC(K, L)_{1,\delta}$ to the instance of GAP – $LC_{1,\exp(-\Omega(\frac{\delta^3 t}{\log t}))}$. Therefore, we finally prove that for any $\eta > 0$, there exists K, L such that GAP – $LP(K, L)_{1,\eta}$ is NP-Hard.

Problem 2.

Problem 3.

$$\langle f, g \rangle = \left\langle \sum_{S \subset [n]} \hat{f}(S) \chi_S, \sum_{S \subset [n]} \hat{f}(S) \chi_S \right\rangle = \sum_{S_1, S_2 \subset [n]} \hat{f}(S_1) \hat{g}(S_2) \left\langle \chi_{S_1}, \chi_{S_2} \right\rangle = \sum_{S \subset [n]} \hat{f}(S) \hat{g}(S)$$