Rahul Shome & Jo Gucă based on material by Thang Bui & Jo Ciuca

COMP3670/6670: Introduction to Machine Learning

Question 1

Systems of Linear Equations

Let

$$\mathbf{A} = \begin{bmatrix} 0 & 3 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

for some constants $b_1, \ldots, b_5 \in \mathbb{R}$.

- 1. Show that **A** is non-invertible.
- 2. Find the set of solutions $\{x : Ax = b\}$.
- 3. Hence, or otherwise, find a non-zero value for \mathbf{x} such that $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Question 2

Matrix Inverses

Let

$$\mathbf{A} = \begin{bmatrix} 1 & -a & 0 & 0 \\ 0 & 1 & -b & 0 \\ 0 & 0 & 1 & -c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

for some constants $a, b, c \in \mathbb{R}$.

- 1. For what values of a, b, c is the inverse of **A** defined?
- 2. Find A^{-1} assuming the properties on a, b, c to ensure the inverse exists.

Question 3

Which matricies commute?

Let

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}.$$

Find all matrices $\mathbf{B} \in \mathbb{R}^{2 \times 2}$ such that $\mathbf{AB} = \mathbf{BA}$.

Question 4 Proving Properties of Matrix Operations

For each of the following statements, if it is true, prove it. If it is false, give a counter-example.

- 1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times n}$. Assume that both \mathbf{A} and \mathbf{B} are invertible. Does $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ hold?
- 2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times n}$. Assume that both \mathbf{A} and \mathbf{B} are invertible. Does $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} + \mathbf{B}^{-1}$ hold? Note: in general, $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}(\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1}\mathbf{A}^{-1}$

¹a special case of Woodbury matrix identity

- 3. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Both $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$ are well-defined and symmetric matrices.
- 4. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. If \mathbf{A} is non-invertible, then there must exist two different vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{u} = \mathbf{A}\mathbf{v}$.
- 5. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. If there exists two different vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{u} = \mathbf{A}\mathbf{v}$, then \mathbf{A} is non-invertible.
- 6. If there exists two different vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{u} = \mathbf{A}\mathbf{v}$, then there exists a non-zero vector \mathbf{x} such that $\mathbf{A}\mathbf{x} = \mathbf{0}$.

 $^{^{2}\}mathrm{as}$ in, the matrix product is defined

 $^{^3\}mathrm{A}\ symmetric\ \mathrm{matrix}$ is one equal to its transpose.