Block Ciphers: Modes of Operation

2019. 3. 19

Contents

- Introduction to crypto
- Symmetric-key cryptography
 - Stream ciphers
 - Block ciphers
 - Block cypher operation modes
- Public-key cryptography
 - RSA
 - ECC
 - Digital signature
 - Public key Infrastructure

- Cryptographic hash function
 - Attack complexity
 - Hash Function algorithm
- Integrity and Authentication
 - Message authentication code
 - GCM
 - Digital signature
- Key establishment
 - server-based
 - Public-key based
 - Key agreement (Diffie-Hellman)

Encryption of multiple blocks

- What if a file have multiple block?
 - If we use different keys for each block, encryption is like one time pad(OTP).

• What if we use the same key for all the blocks of the file? Are there any problems?

Modes of operation

- Block cipher modes of operation
 - ECB: Electronic code book
 - CBC: Cipher block chaining
 - CFB: Cipher feedback
 - OFB: Output feedback
 - CTR: Counter mode
 - and more

Classification of operation modes

ECB

- Mapping between blocks of plaintext and ciphertext is fixed as long as the key is same. (deterministic)
- It is like a traditional code book.

Key = Ki	
P_0	C_0
P ₁	C ₁
P ₂	C ₂
P ₃	C_3
P ₄	C ₄
•••	•••

Advantages of ECB

- Block synchronization is unnecessary.
 - Receiver can decrypt the received blocks regardless of receiving other blocks.
- Bit errors affect only corresponding block, not succeeding blocks.
- Encryption/decryption processes can be parallelized.

ECB weakness

- Suppose $P_i = P_i$
- Then $C_i = C_j$ and an attacker knows $P_i = P_j$
- This gives the attacker some information, even if he does not know P_i or P_j
- He might know P_i
- Is this a serious issue?

Substitution attack

Consider the following plaintext.

"Abel loves Bob. Cain hates Tom."

Suppose the block size is 64-bits:

- Then, the cipher texts are C_0 , C_1 , C_2 , C_3 .
- Attacker reordered the cipher text blocks: C₀,C₃,C₂,C₁
- Then the decrypted plaintext is:

"Abel loves Tom. Cain Hates Bob. "

Still, attacker does not know contents about the ciphertext.

An Example of ECB encryption

Alice's uncompressed image, and ECB encrypted (TEA)

• Why does this happen?

(source: Information Security of M. Stamp)

Fix the problem

CBC(Cipher block chaining) Encryption

$$C_0 = E_K(IV \oplus P_0), C_1 = E_K(C_0 \oplus P_1), C_2 = E_K(C_1 \oplus P_2),...$$

$$C_2 = E_K(C_1 \oplus P_2), \dots$$

(source: Wikipedia)

CBC Decryption

$$P_0 = D_K(C_0) \oplus IV$$
, $P_1 = D_K(C_1) \oplus C_0$, $P_2 = D_K(C_2) \oplus C_1$,...

(source: Wikipedia)

CBC

- CBC encryption is probabilistic.
 - If we use new IV every time we encrypt, two ciphertexts of the same plaintext blocks are completely different.
- IV should be nonce. (should be used only once)
- But it should not be secret.(doesn't need to be)

OFB Encryption

 $I_0 = IV$, $O_i = E_K(I_i)$, $I_i = O_{i-1}$, $C_i = P_i \oplus O_i$, $P_i = C_i \oplus O_i$... It works like the stream cipher. The key stream is generated block by block, not bitwise.

OFB Decryption

Note that when decrypting, block cipher uses the encryption.

CFB Encryption

$$C_0 = E_K(IV) \oplus P_0, C_i = E_K(C_{i-1}) \oplus P_i, P_i = E_K(C_{i-1}) \oplus C_i,$$

CFB Decryption

CTR Encryption

 $C_i = E_K(IV \parallel CTR_i) \oplus P_i$, $P_i = E_K(IV \parallel CTR_i) \oplus C_i$,...

CTR Decryption

Advantage of CTR

• The encryption/decryption of all blocks can be processed in parallel.

Question

- Why are there so many modes operations? Which one can be recommended for your use?
- IV should be nonce. How can we generate IVs every time new message blocks are sent?
- In doing this block operation, at the same time can we do the integrity and authentication check of the message?
 - i.e., can we verify that (1) the message is really created by Alice, and (2) the ciphertext was not tampered during transmission?