

PH451, PH551 April 3, 2025

Generative Adversarial Networks

GAN

Generative Adversarial Networks

- Co-trained networks
 - first gradient ascent for discriminator
 - then gradient descent for generator
- Game Theory:
 - Nash Equilibrium, Minimax game
 - Watch out for "mode collapse"

GAN

Generative Adversarial Networks

- Co-trained networks
 - first gradient ascent for discriminator
 - then gradient descent for generator
- Game Theory:
 - Nash Equilibrium, Minimax game
 - Watch out for "mode collapse"

GAN

 04/03/25
 Sergei Gleyzer
 PH451/PH551 Lecture
 5

Graph Neural Networks

Network definition:

- collection of entities (nodes) joined by relationships (edges)
- Network = "graph"

Examples

Social Network

Genomic Associations

Natural Language Parsing

Protein-Protein Interactions

Internet Map

How to build a simple graph

- Measure distance between pairs
- Connect each entity to its k nearest neighbors

 Define: Adjacency matrix: A_{ij} weight of edge from i to j

	1	1	1	
1		1		
1	1		1	1
1		1		1
		1	1	

Adjacency matrix

Graph Neural Networks

Graph Neural Network:

- State of the node depends on its neighbors
- Any neural network can be expressed as a graph
- Powerful approach for when your data is not inherently Euclidian
- Optimize by energy minimization

$$x_i = \sum_{j \in \mathcal{N}(i)} f(l_i, l_{i,j}, x_j, l_j)$$

Message Passing

Message Passing Graph Neural Network:

- Message Passing
- Key idea: each graph node has a feature vector hidden state
 - Update the hidden state with message from previous hidden state (possibly also edges)

Example: link prediction

Which nodes are likely to get connected

i.e. Social network connection recommendations

Example: protein folding

Predicting which shapes proteins fold into

Alphafold 2 (DeepMind 2020)