Calculation of the pressure of the material in the brick

Cliente: Eugenio Kopanitskyy

Plataforma: Upwork

Objetivos

♦ El objetivo de este paquete de trabajo es verificar la viabilidad de un diseño específico de un ladrillo bajo unas condiciones de carga específicas.

Inputs

♦ Se ha proporcionado un esquema del diseño y se ha traducido a un model CAD.

 Para realizar los cálculos del modelo en cuestión, se ha creado un modelo de elementos finitos (FEM) basado en esa geometría

♦ De este modo, se han elegido las siguientes propiedades mecánicas:

E [GPa] – Módulo de elasticidad	Coeficiente Poisson	Densidad [kg/m³]
10.0	0.22	1790

σ_c [MPa] – Resistencia a compresión

- ♦ Las condiciones de análisis han sido las siguientes:
 - ♦ Se ha aplicado una fuerza (Newtons) equivalente al perfil de carga propuesto teniendo en cuenta el área transversal del modelo (2.49E-02 m²) :

kgcm2	Pa	Pa Fuerza [N]	
1	98066.5	2441.9	
10	980665	24418.6	
100	9806650	244185.6	

- ♦ Se han aplicado condiciones de contorno replicando lo esperando en un ensayo mecánico:
 - ♦ El modelo está apoyado con los grados de libertad restringidos (traslación en Z y rotación en X,Y,Z)

♦ Los resultados que se van a mostrar a continuación son los esfuerzos Von Misses (VM) obtenidos en todo el modelo. Estos esfuerzos representan un promedio de los esfuerzos de los ejes principales del modelo y representan el escenario más probable en la realidad.

♦ Caso1: F = **2441.9** N

♦ Caso 1: F = **2441.9** N

\diamond Caso 2: F = **24418.6** N

 \diamond Caso 2: F = **24418.6** N

\diamond Caso 3: F = **244185.6** N

 \diamond Caso 3: F = **244185.6** N

Resultados

- ♦ A continuación, se describe el resumen de los resultados:
 - ♦ Se ha aplicado un factor de seguridad (FoS = 1.5) para tener en cuenta las incertidumbres del proyecto (variación de propiedades mecánicas, modelización, etc).
 - ♦ El criterio para establecer si un modelo supera un determinado análisis es que el Margen de Seguridad sea mayor que cero (MoS > 0). El MoS se define de la siguiente manera:

$$MoS = \frac{\sigma_c}{FoS \cdot \sigma_vm} - 1 > 0$$

Resultados

- ♦ A continuación, se describe el resumen de los resultados:
 - ♦ De esta forma, se ha obtenido lo siguiente (como se aprecia, las cargas obtenidas son linealmente crecientes):

σ _c [Mpa]		25.0	
σ _{vm} [Mpa]	0.3852	3.852	38.52
FoS	1.5	1.5	1.5
MoS	42.27	3.33	-0.57

♦ El MoS negativo se ha obtenido en el último caso (F = 244185.6 N) que se corresponde con 100 kg/cm2, o lo que es lo mismo con una presión de 9806650 Pa.