DM 8: Estimation statistique

Exercice 1 (Loi exponentielle translatée). On observe $\mathbf{x} = (x_1, \dots, x_n)$ que l'on considère comme la réalisation du vecteur aléatoire $\mathbf{X} = (X_1, \dots, X_n)$, où les X_i sont des variables aléatoires i.i.d. de la loi \mathbb{P}_{θ} de densité $f_{\theta}(x) = \mathrm{e}^{-(x-\theta)} \mathbb{1}_{\{x \geq \theta\}}$ de paramètre inconnu $\theta \in \mathbb{R}$.

- 1. Soit Y une v.a. de loi exponentielle de paramètre 1. Montrer que X_i a même loi que $Y + \theta$.
- 2. Calculer l'estimateur par la méthode des moments $\hat{\theta}_n^{\text{MM}}$ de θ . On utilisera le moment d'ordre 1.
- 3. Montrer que l'estimateur $\hat{\theta}_n^{\rm MM}$ est convergent et asymptotiquement normal. Déterminer son risque quadratique moyen.
- 4. Calculer l'estimateur du maximum de vraisemblance $\hat{\theta}_n^{\text{MV}}$ de θ , et déterminer sa loi.
- 5. Vérifier si l'estimateur $\hat{\theta}_n^{\text{MV}}$ est convergent.
- 6. Déterminer son risque quadratique moyen $\mathrm{RQM}_{\theta}(\hat{\theta}^{\mathrm{MV}})$.
- 7. Étudier la convergence en loi de $n^{\alpha}(\hat{\theta}_{n}^{\text{MV}} \theta)$ lorsque n tend vers l'infini. En déduire que $\hat{\theta}_{n}^{\text{MV}}$ n'est pas asymptotiquement normal et préciser la vitesse de convergence de l'estimateur.