ΤΥΠΟΛΟΓΙΟ

ΠΑΡΑΓΩΓΟΙ	ΟΛΟΚΛΗΡΩΜΑΤΑ
(c)'=0	$\int 0 dx = c$
(x)'=1	$\int 1dx = x + c$
$(e^x)' = e^x, (e^{\alpha x})' = \alpha e^{\alpha x}$	$\int e^x dx = e^x + c, \int e^{\alpha x} dx = \frac{e^{\alpha x}}{\alpha} + c$
$(\mathbf{x}^{\alpha})' = \alpha \mathbf{x}^{\alpha - 1}$	$\int x^{\kappa} dx = \frac{x^{\kappa+1}}{\kappa+1} + c$
$(\ln x)' = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$
$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + c$
$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$\int \frac{1}{x^2} dx = -\frac{1}{x} + c$
$(\sin x)' = \cos x$	$\int \sin x dx = -\cos x + c, \int \sin \alpha x dx = \frac{-\cos \alpha x}{\alpha} + c$
$(\cos x)' = -\sin x$	$\int \cos x dx = \sin x + c, \int \cos \alpha x dx = \frac{\sin \alpha x}{\alpha} + c$
$(\alpha^x)' = \alpha^x \ln \alpha$	$\int \alpha^x dx = \frac{\alpha^x}{\ln \alpha} + c$
$(\tan x)' = \frac{1}{\cos^2 x}$	$\int \frac{1}{\cos^2 x} dx = \tan x + c$
$(\tan x)' = \frac{1}{\cos^2 x}$ $(\cot x)' = -\frac{1}{\sin^2 x}$	$\int \frac{-1}{\sin^2 x} dx = \cot x + c$
$(ar\sin x)' = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$
$(ar\sin x)' = \frac{1}{\sqrt{1 - x^2}}$ $(ar\cos x)' = \frac{-1}{\sqrt{1 - x^2}}$ $(ar\tan x)' = \frac{1}{1 + x^2}$	1
$(ar\tan x)' = \frac{1}{1+x^2}$	$\int \frac{1}{\sqrt{1-x^2}} dx = -\arccos x + c$ $\int \frac{1}{1+x^2} dx = \arctan x + c$
	$\int \frac{dx}{x^2 + \alpha^2} = \frac{1}{\alpha} \arctan(\frac{x}{\alpha}) + c$
$(\cosh x)' = \sinh x$	$\int \cosh x dx = \sinh x + c$
$(\sinh x)' = \cosh x$	$\int \sinh x dx = \cosh x + c$

ΔΕΝ ΞΕΧΝΩ:

$$\arctan x = \varepsilon \phi^{-1} x = \tau o \xi \varepsilon \varphi x$$

sinx=ημχ, cosx=συνχ

$$\arcsin x = \eta \mu^{-1} x = \tau o \xi \eta \mu x$$

tanx = εφχ, cotx = σφχ

 $ar \cos x = \sigma \upsilon v^{-1} x = \tau o \xi \sigma \upsilon v x$

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}, \quad \lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$$

$$\lim_{x \to -1} \arccos x = \pi, \lim_{x \to 1} \arccos x = 0$$

$$\lim_{x \to 1} \arctan x = \frac{\pi}{4}, \quad \lim_{x \to -1} \arctan x = -\frac{\pi}{4}$$

$$sinh x = \frac{e^x - e^{-x}}{2}, \cos h x = \frac{e^x + e^{-x}}{2}$$

ΤΥΠΟΛΟΓΙΟ Laplace

$f(t) = L^{-1}\left\{F(s)\right\}$	$F(s) = L\{f(t)\}$
1	<u>1</u>
$e^{\alpha t}$	$\frac{s}{\frac{1}{s-\alpha}}$
$\sin \alpha t$	$\frac{\alpha}{s^2 + \alpha^2}$
$\cos \alpha t$	$\frac{s}{s^2 + \alpha^2}$
$e^{bt}\sin \alpha t$	$\frac{s}{s^2 + \alpha^2}$ $\frac{\alpha}{(s-b)^2 + \alpha^2}$ $\frac{s-b}{(s-b)^2 + \alpha^2}$
$e^{bt}\cos \alpha t$	$\frac{s-b}{\left(s-b\right)^2+\alpha^2}$
t ⁿ	$\frac{n!}{s^{n+1}}$
$e^{\alpha t}t^n$	$\frac{n!}{\left(s-\alpha\right)^{n+1}}$
$t \sin \alpha t$	$\frac{2\alpha s}{\left(s^2+\alpha^2\right)^2}$
$t\cos \alpha t$	$\frac{s^2 - \alpha^2}{\left(s^2 + \alpha^2\right)^2}$
sinh αt	$\frac{\alpha}{s^2 - \alpha^2}$
$\cosh \alpha t$	$\frac{\alpha}{s^2 - \alpha^2}$ $\frac{s}{s^2 - \alpha^2}$
$e^{bt} \sinh \alpha t$	$\frac{\alpha}{(s-b)^2-\alpha^2}$
t sinh αt	$\frac{2\alpha s}{\left(s^2-\alpha^2\right)^2}$
$e^{bt} \cosh \alpha t$	$\frac{s-b}{\left(s-b\right)^2-\alpha^2}$
$t \cosh \alpha t$	$\frac{s^2 + \alpha^2}{\left(s^2 - \alpha^2\right)^2}$
f '(t)	sF(s)-f(0)
f "(t)	$s^2F(s)-sf(0)-f'(0)$

f "(t)	$s^3F(s)-s^2f(0)-sf'(0)-f''(0)$
u(t)	1
$u(t-\alpha)$	$e^{-\alpha s}$
	S
$u_c(t)$	$\underline{e^{cs}}$
	S
$\delta(t)$	1

$$\frac{\Gamma \text{ενικά ισχύει:}}{L(t^n f(t))(s) = (-1)^n F^n(s)}$$

$$L(e^{bt} f(t))(s) = F(s-b)$$