Análisis de Datos con R

Sobre mi...

*Ana Valdivia*Analista de datos en la UGR

Borcolona

Coorganizadora de @DataBeersGRX

Es un lenguaje y entorno para cálculos estadísticos y gráficos.

Es un proyecto GNU!!!!

Titanic

Titanic

read.csv()

```
> train <- read.csv("train.csv", stringsAsFactors=FALSE)</pre>
```


Import Dataset

② Tutorial1.R ×					
♦ ♦ ₽ 891 observations of 12 variables					
	Passengerld	Survived	Pclass	Name	•
1	1	0	3	Braund, Mr. Owen Harris	Ξ
2	2	1	1	Cumings, Mrs. John Bradley (Florence	
3	3	1	3	Heikkinen, Miss. Laina	
4	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May	
5	5	0	3	Allen, Mr. William Henry	
6	6	0	3	Moran, Mr. James	
7	7	0	1	McCarthy, Mr. Timothy J	
8	8	0	3	Palsson, Master. Gosta Leonard	
9	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilh	
10	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	
11	11	1	3	Sandstrom, Miss. Marguerite Rut	
12	12	1	1	Bonnell, Miss. Elizabeth	
13	13	0	3	Saundercock, Mr. William Henry	
14	14	0	3	Andersson, Mr. Anders Johan	
15	15	0	3	Vestrom, Miss. Hulda Amanda Adolfir	~
4	III)	

2. Analizar estructura del dataset

str()

```
> str(train)
'data.frame':
             891 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
$ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
$ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
       : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 629 416 581 ...
$ Name
             : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
$ Sex
             : num 22 38 26 35 35 NA 54 2 27 14 ...
$ Age
$ SibSp
          : int 1101000301...
$ Parch
          : int 0000000120...
$ Ticket
          : Factor w/ 681 levels "110152","110413",...: 525 596 662 50 473 276 86 396 345 133 ...
$ Fare
           : num 7.25 71.28 7.92 53.1 8.05 ...
             : Factor w/ 148 levels "", "A10", "A14", ...: 1 83 1 57 1 1 131 1 1 1 ...
$ Cabin
$ Embarked
           : Factor w/ 4 levels "", "C", "Q", "S": 4 2 4 4 4 3 4 4 4 2 ...
```


table ()

```
> table(train$Survived)
   0  1
549 342
```

prop.table()

summary ()

```
> summary(train$Sex)
female male
314 577
```

```
> summary(train$Age)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.42 20.12 28.00 29.70 38.00 80.00 177
```

> test\$Survived[test\$Sex == 'female'] <- 1</pre>

creating variables

Step 3

Crea nuevas variables

```
> summary(train$Age)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.42 20.12 28.00 29.70 38.00 80.00 177
```

```
> train$Child <- 0
> train$Child[train$Age < 18] <- 1</pre>
```


aggregate()

```
> aggregate(Survived ~ Child + Sex, data=train, FUN=sum)
 Child Sex Survived
    0 female
                195
  1 female 38
3 0 male 86
    1 male
            23
4
> aggregate(Survived ~ Child + Sex, data=train, FUN=length)
 Child Sex Survived
   0 female
               259
 1 female 55
 0 male 519
    1 male
               58
```


aggregate()

install.packages() library()

```
> install.packages('rattle')
> install.packages('rpart.plot')
> install.packages('RColorBrewer')
> library(rattle)
> library(rpart.plot)
> library(RColorBrewer)
```


caret

The caret Package

The caret package (short for Classification And REgression Training) is a set of functions that attempt to streamline the process for creating predictive models. The package contains tools for:

data splitting

General Topics

Front Page

Visualizations

Pre-Processing

Data Splitting

Variable Importance

Model Performance

Parallel Processing

ggplot2

3. Juega con los datos... ¡Pero no naufragues!

Fuentes

Titanic: Getting Started With R

http://trevorstephens.com/kaggle-titanic-tutorial/getting-started-with-r/

Trevor Stephens

Regular Data Scientist, Occasional Blogger.

- San Francisco, CA
- % Website
- Twitter
- in LinkedIn
- **G** Github

bugs or typos, or have any suggestions on making the tutorial follow, please send me a direct message through Twitter. All con my Github repository.

I will be dividing this series of tutorials into five parts:

- Part 1: Booting Up R
- Part 2: The Gender-Class Model
- Part 3: Decision Trees
- Part 4: Feature Engineering
- Part 5: Random Forests

So go ahead and get started with part 1

Si quieres saber más...

Titanic: Getting Started With R

http://trevorstephens.com/kaggle-titanic-tutorial/getting-started-with-r/

Coursera – Machine Learning

https://www.coursera.org/learn/machine-learning

Si quieres saber más...

@ana_valdi

avaldivia@ugr.es

