Specification

Document No.: OSK-SPC-SKC6812RV

Product No.: SKC6812RV

Sample NO.: OP0274E

Description 5.0x4.8x1.6 mm 0.2W Intelligent external control surface

mount SMD LED (MSL:5a)

Rev. No.: A/1

Date: 2021-03-17

Cus	tomer app	oroval	Opsco approval			
Approval Review Conf		Confirmation	Approval	Approval Review		
			朱更生	吴振雷	周凯	
□Qualified	□Disqu Stamp	ialified		Stamp		

Change History

Date	Rev. No.	Changes/Reason of changes	Signature
2020-01-16	A/0	Initial Document	KAEN ZHOU
2021-03-17	A/1	升级变更产品序列号	KEVIN ZHU

CONTENTS

1 · Product overview	4
2 · Main Application Field	4
3 · Description	4
4 · Mechanical Dimensions	5
5 · PIN configuration	5
6 · Recommended dimensions for PCB products	5
7 • General description of product naming	5
8 · Electrical parameters	6
9 · Electrical/Optical Characteristics	6
10 · The IC electrical parameters	7
11 · Switching characteristics	7
12 · The data transmission time	8
13 · Timing waveform	8
14 · The method of data transmission	9
15 • The data structure of 24bit	10
16 · The typica l application circuit	10
17 · Standard LED Performance Graph	11
18 · Packaging Standard	12
19 · Reliability Test	13

1. Product Overview:

SKC6812RV is an intelligent external control LED light source, which integrates control circuit and light-emitting circuit. Its appearance is the same as a SMD5050 side light-emitting LED bead, each component is a pixel. Pixel points contain intelligent digital interface data latch signal shaping and amplifying drive electric wheel, power supply voltage stabilization circuit, built-in constant current circuit, high precision RC oscillator. The output driver adopts patent PWM technology, which effectively guarantees high color consistency of light in the pixel points.

The data protocol being used is unipolar RZ communication mode. The 24-bit data is transmitted from the controller to DIN of the first element, and if it is accepted it is extracted pixel to pixel. After an internal data latch, the remaining data is passed through the internal amplification circuit and sent out on the DO port to the remaining pixels. The pixel is reset after the end of DIN. Using automatic shaping forwarding technology makes the number of cascaded pixels without signal transmission only limited by signal transmission speed.

The LED has a low driving voltage (which allows for environmental protection and energy saving), high brightness, scattering angle, good consistency, low power, and long life. The control circuit is integrated in the LED above.

2. Main Application Field:

- Full color LED string light, LED full color module, LED super hard and soft lights, LED guardrail tube, LED appearance / scene lighting
- LED point light, LED pixel screen, LED shaped screen, a variety of electronic products, electrical equipment etc.

3. Description:

- Top SMD internal integrated high quality external control line serial cascade constant current IC;
- control circuit and the RGB chip in SMD 5050 components, to form a complete control of pixel, color mixing uniformity and consistency;
- built-in data shaping circuit, a pixel signal is received after wave shaping and output waveform distortion will not guarantee a line;
- ●The built-in power on reset and reset circuit, the power does not work;
- gray level adjusting circuit (256 level gray scale adjustable);
- red drive special treatment, color balance;
- line data transmission;
- plastic forward strengthening technology, the transmission distance between two points over 10M;
- Using a typical data transmission frequency of 800 Kbps, when the refresh rate of 30 frames per sec
- ●When the service life of the light source is 25 °C, the service life of the product is 50000h (Note: the product is under the condition of good heat dissipation).

4. Mechanical Dimensions:

Bottom view

3

- 1. All dimensions are in millimeters.
- 2. Tolerance is ± 0.1 mm unless otherwise noted

5. PIN configuration

NO.	Symbol	Function description			
1	GND	Ground			
2	DIN	Control data signal input			
3	VDD	Power supply LED			
4	DOUT	Control data signal output			

6. Recommended dimensions for PCB products

TOP VIEW

7. General description of product naming.

SKC <u>6812</u>-RV

① ② ③ ④

1)	2	3		
Series	IC series and current code	Internal coding		
The default is to integrate the RGB chip with the IC in the 5.4x4.8x1.6mm package outline	Refers to the 68 series IC 12:12mA current version	RV:Represents an internal code		

8. Electrical parameters (Ta=25°C,VSS=0V):

Parameter Symbol		Range	Unit
Power supply voltage	VDD	+3.7~+5.5	V
Logic input voltage	V _{IN}	-0.5∼VDD+0.5	V
Reverse Voltage	VR	12	V
Working temperature	Topt	-40~+85	°C
Storage temperature	Tstg	-40~+85	°C
ESD pressure(HBM)	V _{ESD}	2K	V
ESD pressure(DM)	V _{ESD}	200	V

9. Electrical/Optical Characteristics:

	SKC6812-RV					
Color	Dominate Wavelength(nm)	Luminance(mcd)				
Red	620-625	320-580				
Green	520-525	815-1275				
Blue	465-470	160-320				

10. The IC electrical parameters (unless otherwise specified, TA=-20 \sim +70 $^{\circ}$ C, VDD=4.5 \sim 5.5V, VSS=0V):

Parmeter	Symbol	Min	Typic al	Max	Unit	Test conditions
The chip supply voltage	VDD		5.2		V	
The signal	VIH	0.7*VDD			V	\(\frac{1}{2}\)
input flip threshold	VIL			0.3*VDD	V	VDD=5.0V
The frequency of PWM	FPWM		4.0		KHZ	
Static power consumption	IDD		0.25		mA	

11. Switching characteristics (Ta=25 $^{\circ}$ C):

Parameter	Symbol	Min	Typical	Max	Unit	Test conditions
The speed of data transmission	fDIN		800		KHZ	The duty ratio of 67% (data 1)
	TPLH		100		ns	The earth load
DOUT transmission delay	TPHL		100		ns	capacitance of the dout port is 30pf, and the signal transmission delay from DIN to dout
Dout conversion	T_{TLH}		15		ns	The earth load capacitance of the
time	T_{THL}		24		ns	dout port is 30pf
	Tr		200		ns	IOUT R / B= 5mA, out R / B port connected
Out R/B conversion time	Tf		280		ns	with 200 Ω resistor to VDD in series, load capacitance to ground

Note 3, note 4 and note 5: as shown in the figure below:

12. The data transmission time:

	Name	Min.	Standard value	Max.	Unit
T	Code period	1.20		1	μs
ТОН	T0H 0 code, high level time		0.30	0.40	μs
TOL	T0L 0 code, low level time T1H 1 code, high level time T1L 1 code, low level time				μs
Т1Н			0.75	1.00	μs
T1L				1	μs
Trst	Trst Reset code, low level time			-	μs

- 1. The protocol uses a unipolar zeroing code. Each symbol must have a low level. Each symbol in this protocol starts with a high level. The high time width determines the "0" or "1" code. .
- 2. When writing programs, the minimum symbol period is 1.2μ s.
- 3. The high time of "0" code and "1" code should be in accordance with the stipulated range in the above table. The low time requirement of "0" code and "1" code is less than 20μ s.

13. Timing waveform:

Input code:

Connection mode:

14. The method of data transmission:

	1		<u> </u>	Reset code			reset code	
	Dat	Data refresh cycle 1						
D1	first 24 bit	second 24 blt	third 24 bit		first 24 bit	second 24 blt	third 24 bit	
D2		second 24 blt	third 24 bit			second 24 blt	third 24 bit	
D3 _			third 24 bit				third 24 bit	
D4 _								

Note: the D1 sends data for MCU, D2, D3, D4 for data forwarding automatic shaping cascade circuit.

15. The data structure of 24bit:

G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4
R3	R2	R1	RO	В7	В6	B5	B4	В3	B2	B1	ВО

Note: high starting, in order to send data (G7 - G6 -B0)

16. The typical application circuit:

In the practical application circuit, the signal input and output pins of the IC signal input and output pins should be connected to the signal input and output terminals. In addition, in order to make the IC chip is more stable, even the capacitance between beads is essential back;

Application: used for soft lamp strip or hard light, lamp beads transmission distance is short, suggested in signal in time the clock line input and output end of each connected in series protection resistors, R1=R2 of about 500 ohms.

Application: for module or general special-shaped products, lamp beads transmission distance is long, because of different wire and transmission distance, in the signal in time clock at both ends of the line on grounding protection resistance will be slightly different; to the actual use of fixed;

16. Standard LED Performance Graph:

Thermal Pad Temperature vs. Relative Light Output

Wavelength Characteristics

Typical Radiation Pattern 120°

17. Packaging Standard:

SKC6812RV

19. Reliability Test:

NO.	Test item	Test Conditions	Reference	Criterion
1	Thermal Shock	$100 \pm 5^{\circ}$ C ~ -40° C \pm 5° C 15min~15min 100 cycles	MIL-STD-202G	0/22
2	High Temperature Storage	Ta= +100°C 1000hrs	JEITA ED-4701 200 201	0/22
3	Low Temperature Storage	Ta=-40°C 1000hrs	JEITA ED-4701 200 202	0/22
4	High Temperature High Humidity Storage	Ta=60°C RH=90% 1000hrs	JEITA ED-4701 100 103	0/22
5	Temperature Cycle	-40° C~25° C~100° C~25° C 30min~5min~30min~5mi n 100 cycles	JEITA ED-4701 100 105	0/22
6	Resistance to Soldering Heat	Tsld = 260° C, 10sec. 2 times	JEITA ED-4701 300 301	0/22
7	Room temp Life Test	25° C, IF: Typical current , 1000hrs	JESD22-A 108D	0/22

Criteria for Judging the Damage:

Item	Symbol	Test Condition	Limit	
Пен			Min	Max
Luminous Intensity	IV	DC=5V, Typical current	Init. Value*0.7	
Resistance to Soldering Heat		DC=5V, Typical current	No dead lights or obvious damage	