EE240B HW 2

Vighnesh Iyer

February 22, 2019

1 Electronic Noise

Noise source	Amplifier A	Amplifier B
$\sqrt{\frac{\overline{v_n^2}}{\Delta f}}$	$1 \frac{nV}{\sqrt{Hz}}$	$10\frac{\text{nV}}{\sqrt{\text{Hz}}}$
$\sqrt{\frac{\overline{\iota_n^2}}{\Delta f}}$	$1 \frac{pA}{\sqrt{\text{Hz}}}$	$1\frac{\mathrm{fA}}{\sqrt{\mathrm{Hz}}}$

(a) Calculate the input referred noise in $V/\sqrt{\text{Hz}}$ achieved with the two amplifiers for $R_S = 50\Omega, 5M\Omega$. Only consider the amplifier noise. Assume the amplifier voltage and current sources are uncorrelated.

R_s	Amplifier A	Amplifier B
50 Ω	$1.05 \frac{\text{nV}}{\sqrt{\text{Hz}}}$	$10\frac{\text{nV}}{\sqrt{\text{Hz}}}$
$5~\mathrm{M}\Omega$	$5000 \frac{\text{nV}}{\sqrt{\text{Hz}}}$	$15\frac{\text{nV}}{\sqrt{\text{Hz}}}$

(b) Significance of the result?

If the input voltage source's resistance is low, an amplifier with low voltage noise should be chosen (since the amplifier's current noise won't see a large resistance). Use a BJT op-amp.

If the input voltage source's resistance is high, an amplifier with low current noise should be chosen. This is usually a FET op-amp.

2 Amplifier Noise

Derive analytical expressions as a function of $g_m, \gamma, f_T, R_L, R_S$, and C_L . Consider only thermal noise from R_S, R_L , and transistor shot noise. Ignore flicker noise, r_o , and body effect. C_L is fixed and C_{gs} is expressed in terms of f_T .

EE240B~HW~2

(a) The voltage gain $a_v(s) = v_o/v_i$

This is a standard source-degenerated common-source amplifier with a complex load. We need to consider C_{gs} which will give a 2nd-order transfer function and makes the algebra complicated. I'm using the sympy CAS to do the algebra. I'll provide the source and the derived solution.

```
from sympy import *
def ll(a, b): # Put impedances a and b in parallel symbolically
    return (a*b) / (a + b)
s, RL, CL, ZL, Cgs, Rs, gm = symbols("s R_L C_L Z_L C_{gs} R_s g_m")
igate, isource, idrain = symbols("i_g i_s i_d")
vs, vd, vi = symbols("v_s v_d v_i")
sol = nonlinsolve([
    igate - ((vi - vs) / (1 / (s*Cgs))),
    isource - (vs / Rs),
    idrain - gm*(vi - vs),
    -vd - idrain*ZL,
    isource - igate - idrain
], [igate, isource, idrain, vd, vs])
vd_sol = sol.args[0][3]
gain = vd_sol / vi
ZL\_sol = 11(CL, RL)
ZL\_sol = ZL\_sol.subs(CL, (1 / (s*CL))).simplify()
display(gain.subs(ZL, ZL_sol).simplify())
```

$$a_v(s) = -\frac{R_L g_m}{(C_L R_L s + 1) (C_{gs} R_s s + R_s g_m + 1)}$$

(b) The PSD of the noise in $\frac{V}{\sqrt{Hz}}$ at node v_o

I derived the noise due to R_S , R_L , and the transistor.

$$\begin{split} V_{out,R_s} &= \frac{R_L g_m v_{nS}}{\left(C_L R_L s + 1\right) \left(C_{gs} R_s s + R_s g_m + 1\right)} \\ V_{out,R_L} &= \frac{R_L i_{nL}}{C_L R_L s + 1} \end{split}$$

EE240B~HW~2 3

- (c) The total noise integrated over all frequencies at node v_o
- (d) The dynamic range of the circuit as a function of the peak-to-peak voltage range $V_{o,pp}$ at node v_o
- (e) The minimum detectable signal in $\frac{nV}{\sqrt{\text{Hz}}}$ at low frequency at μV_{rms} based on the total noise at the output of the amplifier
- (f) Comment on the effect of R_S on the dynamic range and minimum detectable signal of the circuit