Logic and Hybrid Systems

Manasvi Saxena

Formal Systems Lab, UIUC

Hybrid Systems

- Dynamical Systems exhibiting both discrete (jump) and continuous (flow) behaviors.
- Physical systems thermostats, airplanes and trains.
- Continuous dynamics specified using Differential Equations.

Main focus - Differential Dynamic Logic for Hybrid Systems (Andre Platzer).

- Main focus Differential Dynamic Logic for Hybrid Systems (Andre Platzer).
- Practical deductive verification of hybrid systems.
- Introduces Hybrid Program program notation for hybrid systems.
- Dynamic Logic for Hybrid Programs, a generalization of Dynamic Logic.
- Suited for automation.

Hybrid Automata

- Commonly used to model Hybrid Systems, via Graphs.
- Nodes specify continuous dynamics. Edges describe discrete transitions.
- Intuitive, but not suitable for deductive verification.

Hybrid Automata

- Commonly used to model Hybrid Systems, via Graphs.
- Nodes specify continuous dynamics. Edges describe discrete transitions.
- Intuitive, but not suitable for deductive verification.

Figure: Hybrid Automata (simplified) of a Train Control System

Motivations

- First Order Logic No builtin means for referring to state transitions.
- ► **Temporal Logics** Modal operators allow referring to state transitions. But valid formulas only express generic facts.

- First Order Logic No builtin means for referring to state transitions.
- ► **Temporal Logics** Modal operators allow referring to state transitions. But valid formulas only express generic facts.
- Dynamic Logic (DL) Combines operational system models with operators for reasoning.
 - ▶ Provides parameterized modal operators, $[\alpha]$, $\langle \alpha \rangle$ that refer to states reachable by system α .
 - $[\alpha]\phi$ expresses all states reachable by α satisfy ϕ , allowing reasoning about discrete systems.
 - Say $(b > 0) \rightarrow [a := -b](a < 0)$ expresses a discrete transition. We can prove $(b > 0) \vdash (a < 0)[b/a]$ using DL's calculus.
 - No built in notion for describing or reasoning about continuous dynamics.

- ▶ Generalize DL so operational models α can be used in modal formulas like $[\alpha]\phi$. dL refers to generalized models as "Hybrid Programs".
- ▶ A compositional calculus for verification. Decompose $[\alpha]\phi$ into an equivalent formula $[\alpha_1]\phi_1 \wedge [\alpha_2]\phi_2$.
- ▶ Prove subsystems and subproperties $[\alpha_i]\phi_i$ independently and combine results conjuntively.
- Complete relative to handling of differential equations.

dL formulas built over

- ▶ V, set of real-valued logical variables and signature Σ containing functions, predicate symbols over reals, like $0, 1, +, \geq$.
- Signature Σ containing functions and predicates, like 0,1 ≥. Σ also contains System State Variables. Unlike rigid symbols, like 1,2, their interpretation can change from state to state.
- ▶ Set Trm(Σ , V) of *terms* defined as classical FOL polynomial (or rational) expressions over V with additional skolem terms $s(X_1, \ldots, X_n)$, where $X_1, \ldots, X_n \in V$.

Hybrid Programs

Consider $x_i \in \Sigma$, θ_i , $\vartheta_i \in \text{Trm}(\Sigma, V)$ for $1 \le i \le n$, χ a (Σ, V) FOL-formula, $\alpha, \beta \in \text{HP}(\Sigma, V)$ Set $\text{HP}(\Sigma, V)$, is defined inductively as -

- $(x_1 := \theta_1, \ldots, x_n := \theta_n) \in \mathsf{HP}(\Sigma, V)$
- ▶ $(x'_1 = \vartheta_i, ..., x'_n = \vartheta_n) \& \chi \in HP(\Sigma, V)$. $x'_i = \vartheta_i$ is a differential equation where x'_i is the first order time derivative of x_i .
- $(?\chi) \in \mathsf{HP}(\Sigma, V)$.
- $ho \quad \alpha \cup \beta \in \mathsf{HP}(\Sigma, V).$
- \bullet α ; $\beta \in HP(\Sigma, V)$.
- \bullet $\alpha^* \in HP(\Sigma, V)$.

Hybrid Program Example

Figure: Hybrid Automata of Simple Train Control System

Hybrid Program Example

Figure: Hybrid Automata of Simple Train Control System

$$q := accel;$$
 $((?q = accel; z' = v, v' = a))$
 $\cup (?q = accel \land z \ge s; a := -b; q := brake; ?v \ge 0)$
 $\cup (?q = brake; z' = v, v' = a&v \ge 0)$
 $\cup (?q = brake \land \le 1; a := a + 5; q := accel))*$

dL Formulas

The set $Fml(\Sigma, V)$ of dL formulas is defined as -

- ▶ If p is a n-ary predicate symbol in Σ and $\theta_1, \ldots, \theta_n \in \text{Trm}(\Sigma, V)$, then $p(\theta_1, \ldots, \theta_n) \in \text{Fml}(\Sigma, V)$
- ▶ If $\phi, \psi \in \text{Fml}(\Sigma, V)$ then $\phi \lor \psi, \phi \to \psi, \phi \land \psi \in \text{Fml}(\Sigma, V)$
- ▶ If $\phi \in \text{Fml}(\Sigma, V)$ and $x \in V$ then $\exists x.\phi, \forall x.\phi \in \text{Fml}(\Sigma, V)$
- If $\phi \in \text{Fml}(\Sigma, V)$ and $\alpha \in \text{HP}(\Sigma, V)$ then $[\alpha], \langle \alpha \rangle \in \text{Fml}(\Sigma, V)$

Some Notation

- Interpretation I assigns functions and relations over Reals to rigid symbols in Σ.
- ▶ A state is a map $\nu : \Sigma_{\mathit{fl}} \to \mathbb{R}$.
- ▶ Assignment of logical variables is a map $\eta: V \to \mathbb{R}$.
- Note the difference between Logical and State Variables. The evaluation of a state variable "evolves" across states. Logical Variables can be quantified over, but not state variables.
- The models of dL are Kripke Structures, where nodes are hybrid system states.

Syntax and Semantics

dL Valuation of dL Terms

Say $val_{I,\eta}(\nu,\cdot)$ is evaluation w.r.t. interpretation I, assignment η and state ν .

Syntax and Semantics

dL Valuation of dL Terms

Say $\mathit{val}_{I,\eta}(\nu,\cdot)$ is evaluation w.r.t. interpretation I, assignment η and state ν .

▶ (State Variables) $val_{I,\eta}(\nu, a) = \nu(a), x \in \Sigma_{fl}$

Syntax and Semantics

dL Valuation of dL Terms

Say $\mathit{val}_{I,\eta}(\nu,\cdot)$ is evaluation w.r.t. interpretation I, assignment η and state ν .

- (State Variables) $val_{I,\eta}(\nu,a) = \nu(a), x \in \Sigma_{fl}$
- ▶ (Logical Variables) $val_{I,\eta}(\nu,x) = \eta(x), x \in V$

dL Valuation of dL Terms

Say $\mathit{val}_{I,\eta}(\nu,\cdot)$ is evaluation w.r.t. interpretation I, assignment η and state ν .

- (State Variables) $val_{I,\eta}(\nu,a) = \nu(a), x \in \Sigma_{fl}$
- ▶ (Logical Variables) $val_{l,n}(\nu, x) = \eta(x), x \in V$
- (Rigid Symbols) $val_{I,\eta}(\nu, f(\theta_1, \dots, \theta_n)) = f_I(val_{I,\eta}(\nu, \theta_1), \dots, val_{I,\eta}(\nu, \theta_n))$ where f is n-ary rigid symbol in Σ

Valuation of dL Formulas

- $ightharpoonup val_{l,\eta}(\nu,p(\theta_1,\ldots,\theta_n)) = p_l(val_{l,\eta}(\nu,\theta_1),\ldots,val_{l,\eta}(\nu,\theta_n))$
- ▶ $val_{I,\eta}(\nu,\varphi \wedge \psi) = \top$ iff $val_{I,\eta}(\nu,\varphi) = \top \wedge val_{I,\eta}(\nu,\psi) = \top$. Similarly for \rightarrow , \neg , \lor
- ▶ $val_{I,\eta}(\nu,\exists x.\,\varphi) = \top$ iff $val_{I,\eta[x\mapsto d]}(\nu,\varphi) = \top$ for some $d\in\mathbb{R}$

Valuation of dL Formulas

- $ightharpoonup val_{l,\eta}(\nu,p(\theta_1,\ldots,\theta_n)) = p_l(val_{l,\eta}(\nu,\theta_1),\ldots,val_{l,\eta}(\nu,\theta_n))$
- ▶ $val_{I,\eta}(\nu,\varphi \wedge \psi) = \top$ iff $val_{I,\eta}(\nu,\varphi) = \top \wedge val_{I,\eta}(\nu,\psi) = \top$. Similarly for \rightarrow , \neg , \lor
- $ightharpoonup val_{I,\eta}(
 u,\exists x.\,arphi)= op ext{ iff } val_{I,\eta[x\mapsto d]}(
 u,arphi)= op ext{ for some } d\in\mathbb{R}$
- ▶ $val_{I,\eta}(\nu, [\alpha]\varphi) = \top$ iff $val_{I,\eta}(\omega, \varphi) = \top$ for all states ω with $(\nu, \omega) \in \rho_{I,\eta}(\alpha)$.
- ▶ $val_{I,\eta}(\nu, \langle \alpha \rangle \varphi) = \top$ iff $val_{I,\eta}(\omega, \varphi) = \top$ for some state ω with $(\nu, \omega) \in \rho_{I,\eta}(\alpha)$.

$$\begin{array}{l} \blacktriangleright \ (\nu,\omega) \in \rho_{l,\eta}(x_1 := \theta_1,\ldots,x_n := \theta_n) \text{ iff} \\ \nu[x_1 \mapsto \textit{val}_{l,\eta}(\nu,\theta_1),\ldots,x_n \mapsto \textit{val}_{l,\eta}(\nu,\theta_n)] = \omega \text{ and} \\ \forall y \in (\Sigma_{\mathit{fl}} - \{x_1,\ldots,x_n\}).\textit{val}_{l,\eta}(\nu,y) = \textit{val}_{l,\eta}(\omega,y). \end{array}$$

- $\begin{array}{l} (\nu,\omega) \in \rho_{l,\eta}(x_1 := \theta_1,\ldots,x_n := \theta_n) \text{ iff} \\ \nu[x_1 \mapsto \textit{val}_{l,\eta}(\nu,\theta_1),\ldots,x_n \mapsto \textit{val}_{l,\eta}(\nu,\theta_n)] = \omega \text{ and} \\ \forall y \in (\Sigma_{\mathit{fl}} \{x_1,\ldots,x_n\}).\textit{val}_{l,\eta}(\nu,y) = \textit{val}_{l,\eta}(\omega,y). \end{array}$
- $\rho_{I,\eta}(\alpha \cup \beta) = \rho_{I,\eta}(\alpha) \cup \rho_{I,\eta}(\beta)$

- $\begin{array}{l} (\nu,\omega) \in \rho_{l,\eta}(x_1 := \theta_1,\ldots,x_n := \theta_n) \text{ iff} \\ \nu[x_1 \mapsto \textit{val}_{l,\eta}(\nu,\theta_1),\ldots,x_n \mapsto \textit{val}_{l,\eta}(\nu,\theta_n)] = \omega \text{ and} \\ \forall y \in (\Sigma_{\mathit{fl}} \{x_1,\ldots,x_n\}).\textit{val}_{l,\eta}(\nu,y) = \textit{val}_{l,\eta}(\omega,y). \end{array}$
- $\rho_{I,\eta}(\alpha \cup \beta) = \rho_{I,\eta}(\alpha) \cup \rho_{I,\eta}(\beta)$
- $\rho_{I,\eta}(?\chi) = \{(\nu,\nu) : val_{I,\eta}(\nu,\chi) = \top\}$

- $\begin{array}{l} \blacktriangleright \ (\nu,\omega) \in \rho_{l,\eta}(x_1:=\theta_1,\ldots,x_n:=\theta_n) \ \text{iff} \\ \nu[x_1\mapsto \textit{val}_{l,\eta}(\nu,\theta_1),\ldots,x_n\mapsto \textit{val}_{l,\eta}(\nu,\theta_n)] = \omega \ \text{and} \\ \forall y \in (\Sigma_{\mathit{fl}} \{x_1,\ldots,x_n\}).\textit{val}_{l,\eta}(\nu,y) = \textit{val}_{l,\eta}(\omega,y). \end{array}$
- $\rho_{I,\eta}(\alpha \cup \beta) = \rho_{I,\eta}(\alpha) \cup \rho_{I,\eta}(\beta)$
- $\rho_{I,\eta}(?\chi) = \{(\nu,\nu) : val_{I,\eta}(\nu,\chi) = \top\}$
- $\rho_{I,\eta}(\alpha;\beta) = \{(\nu,\omega) : (\nu,\mathcal{Z}) \in \rho_{I,\eta}(\alpha) \land (\mathcal{Z},\omega) \in \rho_{I,\eta}(\beta) \text{ for some state } \mathcal{Z}\}$

- $\begin{array}{l} \blacktriangleright \ (\nu,\omega) \in \rho_{l,\eta}(x_1:=\theta_1,\ldots,x_n:=\theta_n) \ \text{iff} \\ \nu[x_1\mapsto \textit{val}_{l,\eta}(\nu,\theta_1),\ldots,x_n\mapsto \textit{val}_{l,\eta}(\nu,\theta_n)] = \omega \ \text{and} \\ \forall y \in (\Sigma_{\mathit{fl}} \{x_1,\ldots,x_n\}).\textit{val}_{l,\eta}(\nu,y) = \textit{val}_{l,\eta}(\omega,y). \end{array}$
- $\rho_{I,\eta}(\alpha \cup \beta) = \rho_{I,\eta}(\alpha) \cup \rho_{I,\eta}(\beta)$
- $\rho_{I,\eta}(?\chi) = \{(\nu,\nu) : val_{I,\eta}(\nu,\chi) = \top\}$
- $\rho_{I,\eta}(\alpha;\beta) = \{(\nu,\omega) : (\nu,\mathcal{Z}) \in \rho_{I,\eta}(\alpha) \land (\mathcal{Z},\omega) \in \rho_{I,\eta}(\beta) \text{ for some state } \mathcal{Z}\}$
- $(\nu, \omega) \in \rho_{I,\eta}(\alpha^*)$ iff for $n \in \mathbb{N}$, there are states $\nu = \nu_0, \dots, \nu_n = \omega$ s.t. $(\nu_i, \nu_{i+1}) \in \rho_{I,\eta}(\alpha)$ for $0 \le i < n$.

 $(\nu,\omega)\in
ho_{I,\eta}((x_1'=\vartheta_1\ldots x_n'=\vartheta_n)\&\chi)$ iff there is a flow of some duration $r\geq 0$, from ν to ω respecting the differential equations and evolution domain. Formally, there is a function $f:[0,r]\to\operatorname{Sta}(\Sigma)$ such that -

- $f(0) = \nu$ and $f(r) = \omega$.
- ▶ $\forall \delta : [0, r].val_{l,\eta}(f(\delta), x_i)$ is continuous and $val_{l,\eta}(f(\delta), \chi) = \top$.
- $\forall \epsilon : (0, r). val_{l, \eta}(f(\epsilon), \vartheta_i) = \dot{f}(\epsilon).$
- ▶ For any $z \notin \{x_1, x_2, \dots, x_n\}$, $val_{l,\eta}(f(\zeta), z)$ remains constant for $\zeta \in [0, r]$. In other words, all other state variables remain unchanged.

Syntax and Semantics

Figure: Unbounded Evolution

Figure: Evolution bound by χ

Differential Dynamic Logic Examples

Some Intuition behind dL

 Generally, want to reason about Embedded Systems (ES) or Cyber Physical Systems (CPS).

Some Intuition behind dL

- Generally, want to reason about Embedded Systems (ES) or Cyber Physical Systems (CPS).
- ► Loosely speaking, an ES or CPS is built upon the integration of Computation (Controller) and Physical Systems (Plant). Examples include autopilot, ABS (Anti Lock Braking Systems), fly-by-wire (human interaction).
- ▶ Expressed in dL as an HP $\alpha \equiv (\textit{ctrl}; \textit{plant})^*$.

Some Intuition behind dL

- Generally, want to reason about Embedded Systems (ES) or Cyber Physical Systems (CPS).
- ► Loosely speaking, an ES or CPS is built upon the integration of Computation (Controller) and Physical Systems (Plant). Examples include autopilot, ABS (Anti Lock Braking Systems), fly-by-wire (human interaction).
- ▶ Expressed in dL as an HP $\alpha \equiv (\textit{ctrl}; \textit{plant})^*$.
- ▶ Formulas of interest are of the form $\varphi \to [\alpha]\psi$.
- Formula above says that all states satisfying φ will always transition to states satisfying ψ , where α dictates the transition relation.

Motivating Example

European Train Control System (ETCS)

- Discards traditional fixed segments of track with mutual exclusion. Instead uses decentralized Radio Block Controllers (RBCs)
- Trains dynamically issues Movement Authorization (MAs).
- At the end of MA, agent requests MA extension (negotation). If request is denied, train breaks before exiting old MA zone.

European Train Control System (ETCS)

- Train controller is responsible for staying in MA.
- ► Controller has to determine point SB (Start Braking). Before SB, train can move freely (maximizing throughput).
- ▶ Beyond SB (correction phase) start braking such that train remains in MA if RBC refuses extension.

Motivating Example

European Train Control System (ETCS)

Say we have a train -

- with MA granted upto some track position m
- ▶ at position Z, heading with initial speed v towards m
- ▶ point SB as safety distance s relative to m, i.e. m s = SB

European Train Control System (ETCS)

Say we have a train -

- with MA granted upto some track position m
- ▶ at position z, heading with initial speed v towards m
- ▶ point SB as safety distance s relative to m, i.e. m s = SB

The following formula expresses that the train remains in its MA under precondition ψ .

$$\begin{array}{ll} \psi & \rightarrow & \left[(\mathit{ctrl} \, ; \mathit{drive})^* \right] z \leq m \\ \text{where } \mathit{ctrl} & \equiv & (?m-z \leq s; a := -b) \cup (?m-z \geq s; a := A) \\ \\ \mathit{drive} & \equiv & \tau := 0; (z' = v, v' = a, \tau' = 1 \,\&\, v \geq 0 \,\land\, \tau \leq \varepsilon) \end{array} .$$

Motivating Example

European Train Control System (ETCS)

Say we have a train -

- with MA granted upto some track position m
- ▶ at position Z, heading with initial speed v towards m
- ▶ point SB as safety distance s relative to m, i.e. m s = SB

European Train Control System (ETCS)

Say we have a train -

- with MA granted upto some track position m
- ▶ at position z, heading with initial speed v towards m
- ▶ point SB as safety distance s relative to m, i.e. m s = SB

The following formula expresses that the train remains in its MA under precondition ψ .

$$\begin{array}{ll} \psi & \rightarrow & \left[\left(\operatorname{ctrl}; \operatorname{drive} \right)^* \right] z \leq m \\ \text{where } \operatorname{ctrl} & \equiv & \left(?m - z \leq s; a := -b \right) \cup \left(?m - z \geq s; a := A \right) \\ & \operatorname{drive} & \equiv & \tau := 0; \left(z' = v, v' = a, \tau' = 1 \ \& \ v \geq 0 \land \tau \leq \varepsilon \right) \ . \end{array}$$

Motivating Example

European Train Control System (ETCS)

$$\psi \rightarrow [(\mathit{ctrl}; \mathit{drive})^*] z \leq m$$
 where $\mathit{ctrl} \equiv (?m - z \leq s; a := -b) \cup (?m - z \geq s; a := A)$
$$\mathit{drive} \equiv \tau := 0; (z' = v, v' = a, \tau' = 1 \& v \geq 0 \land \tau \leq \varepsilon) \ .$$

ECTS Safety Verification

In order to verify safety, we need

- 1. Use the calculus to analyze conditions of safety violation. Will provide some intuition about the safety precondition.
- 2. Use the calculus to verify safety, allowing exploration of the calculus' rules.

Preliminaries

- $\phi_{x_1}^{\theta_1}, \dots, \phi_{x_n}^{\theta_n}$ denotes simultaneous substitution of x_i for θ_i in ϕ .
- ▶ Substitution must be "admissible". Given term t and substitution σ , variables of t or $\sigma(t)$ must not occur in the scope of a quantifier or modality binding. α conversion for renaming is assumed and used when needed.
- ▶ $\forall^{\alpha}\phi$ denotes the universal closure of ϕ w.r.t. all state variables bound by α . Note quantification over state variables is definable via auxiliary logical variables as $\forall X[x:=X]\phi$
- ► The calculus consists of propositional (P), first order (F), global (G), dynamic modality (D) rules.
- ▶ The calculus has 32 rules.

Discrete Dynamics

$$\frac{\phi_{x_1}^{\theta_1} \dots_{x_n}^{\theta_n}}{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \phi}$$

Continuous Dynamics

$$\frac{\forall t \ge 0 \left((\forall 0 \le \tilde{t} \le t \langle S_{\tilde{t}} \rangle \chi) \to \langle S_t \rangle \phi \right)}{[x_1' = \theta_1, \dots, x_n' = \theta_n \& \chi] \phi}$$

▶ t and \tilde{t} are fresh logical variables. $\langle S_t \rangle$ is the jump set $\langle x_1 := y_1(t), \dots x_n := y_n(t) \rangle$, with simultaneous solutions y_1, \dots, y_n of the respective differential equations with constant symbols x_i as symbolic initial values.

Proof Calculus

F Rules

$$\frac{\vdash \phi(X)}{\vdash \exists x \, \phi(x)}$$

X is a new logical variable.

$$\frac{\vdash \phi(s(X_1,\ldots,X_n))}{\vdash \forall x \, \phi(x)}$$

 X_1, \ldots, X_n are all free logical variables of $\forall x \phi(x)$ F rules are inspired from Tableuax methods for FOL, introducing decision procedures into the proof system itself.

F Rules

$$\frac{\vdash \mathrm{QE}(\forall X (\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \dots, X_n)) \vdash \Psi(s(X_1, \dots, X_n))}$$

X is a new logical variable

$$\frac{\vdash \mathrm{QE}(\exists X \bigwedge_{i} (\Phi_{i} \vdash \Psi_{i}))}{\Phi_{1} \vdash \Psi_{1} \dots \Phi_{n} \vdash \Psi_{n}}$$

Logical variable X only occurs in $\Phi_i \vdash \Psi_i$. The intuition is variable X was introduced via skolemization (at some point in the proof tree). The rule reintroduces existentiality over X, allowing for Quantifier Elimination (QE) over the existentially quantified terms.

G Rules

$$\frac{\vdash \forall^{\alpha}(\phi \to [\alpha]\phi)}{\phi \vdash [\alpha^*]\phi}$$

$$\frac{\vdash \forall^{\alpha}(\phi \to \psi)}{[\alpha]\phi \vdash [\alpha]\psi}$$

European Train Control System (ETCS)

$$\psi \rightarrow [(\mathit{ctrl}; \mathit{drive})^*] \, z \leq m$$
 where $\mathit{ctrl} \equiv (?m - z \leq s; a := -b) \cup (?m - z \geq s; a := A)$
$$\mathit{drive} \equiv \tau := 0; (z' = v, v' = a, \tau' = 1 \,\&\, v \geq 0 \,\land\, \tau \leq \varepsilon) \ .$$

Deduction modulo for MA violation in braking mode

$$\frac{v \geq 0, z < m \vdash v^2 > 2b(m-z)}{\vdash v \geq 0 \land z < m \to v^2 > 2b(m-z)}$$

$$\frac{v \geq 0, z < m \vdash -\frac{b}{2}T^2 + vT + z > m}{v \geq 0, z < m \vdash T \geq 0}$$

$$\frac{v \geq 0, z < m \vdash T \geq 0}{v \geq 0, z < m \vdash (z := -\frac{b}{2}T^2 + vT + z)z > m}$$

$$\frac{v \geq 0, z < m \vdash T \geq 0 \land \langle z := -\frac{b}{2}T^2 + vT + z \rangle z > m}{v \geq 0, z < m \vdash \exists t \geq 0 \ \langle z := -\frac{b}{2}t^2 + vt + z \rangle z > m}$$

$$\frac{v \geq 0, z < m \vdash \exists t \geq 0 \ \langle z := -\frac{b}{2}t^2 + vt + z \rangle z > m}{v \geq 0, z < m \vdash \langle z' = v, v' = -b \rangle z > m}$$

$$\vdash v \geq 0 \land z < m \to \langle z' = v, v' = -b \rangle z > m$$

Deduction modulo for MA violation in braking mode

$$\frac{v \geq 0, z < m \vdash v^2 > 2b(m-z)}{\vdash v \geq 0 \land z < m \rightarrow v^2 > 2b(m-z)}$$

$$\frac{v \geq 0, z < m \vdash -\frac{b}{2}T^2 + vT + z > m}{v \geq 0, z < m \vdash T \geq 0}$$

$$\frac{v \geq 0, z < m \vdash T \geq 0}{v \geq 0, z < m \vdash \langle z := -\frac{b}{2}T^2 + vT + z \rangle z > m}$$

$$\frac{v \geq 0, z < m \vdash T \geq 0 \land \langle z := -\frac{b}{2}T^2 + vT + z \rangle z > m}{v \geq 0, z < m \vdash \exists t \geq 0 \ \langle z := -\frac{b}{2}t^2 + vT + z \rangle z > m}$$

$$\frac{v \geq 0, z < m \vdash \exists t \geq 0 \ \langle z := -\frac{b}{2}t^2 + vT + z \rangle z > m}{v \geq 0, z < m \vdash \langle z' = v, v' = -b \rangle z > m}$$

$$\vdash v \geq 0 \land z < m \rightarrow \langle z' = v, v' = -b \rangle z > m$$

QE
$$(\exists T ((v \ge 0 \land z < m \to T \ge 0) \land (v \ge 0 \land z < m \to -\frac{b}{2}T^2 + vT + z > m)))$$

 $\equiv v > 0 \land z < m \to v^2 > 2b(m - z)$.

European Train Control System (ETCS) Safety

- ▶ Invariant $\phi \equiv v^2 \le 2b(m-z) \land b > 0 \land A \ge 0$ can be deduced in the manner of finding the violation condition.
- The safety proof can then be completed by showing
 - ▶ Invariant holds initially $\psi \vdash \phi$
 - $\phi \rightarrow [(\textit{ctrl}; \textit{drive})^*] \phi$ holds.
 - $\phi \to \varphi_{post}$, where $\varphi_{post} \equiv (z \le m)$.

Differential Dynamic Logic

Beyond Deductive Verification

- Verification of a Hybrid System still doesn't guarantee the physical system behaves as intended.
- Hybrid System involve interaction with real world physics, which can never be captured fully by any model.
- Runtime monitoring used to obtain real world compliance.

Runtime Monitoring (ModelPlex)

- ModelPlex (Mitsch et al.) used dL for runtime validation of systems verified in dL.
- Uses dL to obtain monitoring conditions over Reals (which can be checked via SMT solvers)

$$(v, \omega) \in \rho(\alpha^*)$$

$$\updownarrow$$

$$(v, \omega) \models \langle \alpha^* \rangle r^+$$

$$\uparrow$$

$$(v, \omega) \models F(x, x^+)$$

Generate sandbox controller with strong safety guarantees.

Logic and Hybrid System

Conclusion

dL provides Hybrid Programs - concise notation for Hybrid Systems.

Logic and Hybrid System

Conclusion

- dL provides Hybrid Programs concise notation for Hybrid Systems.
- A proof calculus suited for verification of CPS and Embedded Systems.

Logic and Hybrid System

Conclusion

- dL provides Hybrid Programs concise notation for Hybrid Systems.
- A proof calculus suited for verification of CPS and Embedded Systems.
- Rich toolchain (Keymaera), ModelPlex built on top of dL.