

Habib University

CS 102– Data Structures & Algorithm
Spring' 2021

Lab# 12 Dijkstra Algorithm

Objectives: In this lab, we will implement the Dijkstra algorithm and apply it to solve realworld problems.

Exercise # 1: Dijkstra's Algorithm

(a) Write a function named *getShortestPath (graph, from, to)* that takes a graph as an input and estimates the shortest distance between a node "from" to a node "to".

Example 1 :	
Input	Graph: Adjacency list of the following graph.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	From: A
	To: G
Output	[(A, B), (B, C), (C, G)]
	That is, the output shows that the shortest path to reach "G" from "A" is through the nodes B and C.

- (b) You are given a CSV file that contains a list of different cities in northern areas of Pakistan and their distances. Not all of the cities are directly connected which is represented by -1 in the distance matrix.
 - i. Load the given dataset in the form of a graph (adjacency list)
 - ii. Estimate the shortest distance between Islamabad and Kaghan.

Exercise # 2: Modify *getShortestPath (graph, from, to)* function so that if there is more than one minimum path from source node to destination node, it gives you the one with the minimum number of edges.

Example 1 :	
Input	Graph: Adjacency list of the following graph.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	From: A
	To: F or B
Output	[(A, F)]
	That is, the distance from A to F is 10 both through the following path
	A→D→F,
	$A \rightarrow D \rightarrow C \rightarrow G \rightarrow F$
	the correct answer is A→D→F
	[(A, B)]
	That is, the distance from A to B is 7 both through the following paths
	A→B,
	A→D→C→B
	the correct answer is A→B