

Pokročilé síťové technologie

Transmission Control Protocol - TCP a jeho funkce, principy řešení přetížení v síti, AIMD, vyhýbání se přetížení u TCP

Doc. Ing. Leoš Boháč, Ph.D.

Propustnost sítě při zvětšující se zátěži

- při rostoucí nabídce rostě propustnost nejprve lineárně až do oblasti kolene (< Knee)
- v okamžiku, kdy naroste agregovaná nabídka kapacity sítě, začne se propustnost saturovat a začne narůstat zpoždění (stav ukládání do vyrovnávací paměti a postupné zaplňování front) (Knee – Cliff)
- pokud se bude nabídka nadále zvětšovat, začnou se vyrovnávací paměti přeplňovat a pakety budou zahazovány, dojde k silnému poklesu propustnosti a značnému nárůstu zpoždění (>Cliff)

Metody řízené zátěže

$$y(t) = \begin{cases} 0 \to \text{Increase load,} \\ 1 \Rightarrow \text{Decrease load.} \end{cases}$$

$$x_i(t+1) = x_i(t) + u_i(t), \quad u_i(t) = f(x_i(t), y(t)),$$

$$x_i(t+1) = x_i(t) + f(x_i(t), y(t)),$$

$$x_i(t+1) = \begin{cases} a_1 + b_1 x_i(t) & \text{if } y(t) = 0 \Rightarrow \text{Increase,} \\ a_0 + b_0 x_i(t) & \text{if } y(t) = 1 \Rightarrow \text{Decrease.} \end{cases}$$

 Multiplicative Increase/Multiplicative Derease:

$$x_i(t+1) = \begin{cases} b_1 x_i(t) & \text{if } y(t) = 0 \Rightarrow \text{Increase,} \\ b_D x_i(t) & \text{if } y(t) = 1 \Rightarrow \text{Decrease.} \end{cases}$$

Here, $b_1 > 1$ and $0 < b_D < 1$.

(2) Additive Increase/Additive Decrease:

$$x_i(t+1)$$

$$= \begin{cases} a_1 + x_i(t) & \text{if } y(t) = 0 \Rightarrow \text{Increase,} \\ a_D + x_i(t) & \text{if } y(t) = 1 \Rightarrow \text{Decrease.} \end{cases}$$

Here, $a_1 > 0$ and $a_D < 0$.

(3) Additive Increase/Multiplicative Decrease:

$$x_i(t+1)$$

$$-\begin{cases} a_1 + x_i(t) & \text{if } y(t) = 0 \Rightarrow \text{Increase,} \\ b_D x_i(t) & \text{if } y(t) = 1 \Rightarrow \text{Decrease.} \end{cases}$$

(4) Multiplicative Increase/Additive Decrease:

$$x_i(t+1)$$

$$= \begin{cases} b_i x_i(t) & \text{if } y(t) = 0 \to \text{Increase,} \\ a_D + x_i(t) & \text{if } y(t) = 1 \to \text{Decrease.} \end{cases}$$

Criteria for Selecting Controls

- Efficiency
 - Closeness of the total load on the resource to the knee point
- Fairness
 - Users have the equal share of bandwidth

$$Fairness = \frac{\left(\sum x_i\right)^2}{n\left(\sum x_i^2\right)}$$

- Distributedness
 - Knowledge of the state of the system
- Convergence
 - The speed with which the system approaches the goal state from any starting state

Responsiveness and Smoothness of Binary Feedback System

Fig. 3. Responsiveness and smoothness.

Vector Representation of the Dynamics

Fig. 4. Vector representation of a two-user case.

Example of Additive Increase/ Additive Decrease Function - AIAD

Example of Additive Increase/ Multiplicative Decrease Function

Fig. 5. Additive Increase/Multiplicative Decrease converges to the optimal point.

Řízení přetížení u TCP

- prochází dvěma fázemi:
 - 1.pomalý start (slow-start)
 - 2. vyhýbání se přetížení (congestion avoidance)
- proměnné, které se přidávají pro každé TCP spojení :
 - cwnd: velikost okna přetížení (congestion window)
 - ssthresh: mez velikosti okna přetížení, kdy se přechází z pomalého startu do fáze vyhýbání se přetížení (slow start threshold)
- více metod, jak řešit problém s přetížením sítě u TCP:
 - TCP/Tahoe: méně optimalizovaná verze
 - TCP/Reno: většina implementací používá tento typ
 - TCP/Vegas: není dnes používán budoucnost

Fáze pomalého startu

!! cwnd – vyjadřuje se zde pro jednoduchost jako počet segmentů, ve skutečnosti je však v bajtech !!

Fáze vyhýbání se přetížení - RENO

```
Initially:
  cwnd = 2;
  ssthresh = infinite (64K);
For each newly ACKed segment:
  if (cwnd < ssthresh)
/* pomalý start
    cwnd = cwnd + 1;
  else
/* vyhýbání se přetížení; cwnd se zvětšuje o hodnotu jednoho TCP segmentu při každém
  uplynutém intervalu intervalu RTT */
   cwnd += 1;
    nebo cwnd+=SMSS*SMSS/cwdn při každém příchodu neduplikovaného potrvrzení od přijímče TCP
/* tři duplikované potvrzení pro jeden segment – na straně přijímače je v posloupnosti dat "díra":
  cwnd = ssthresh = cwnd/2; - jen u metody RENO; Tahoe toto nemá!!
/* vypšení RTT časovače:
  ssthresh = cwnd/2;
  cwnd = 2;
```

!! cwnd – vyjadřuje se zde pro jednoduchost jako počet segmentů, ve skutečnosti je však v bajtech !!

Změna okna přetížení v čase - RENO

TCP konečný automat

TCP protokol - záhlaví

