A bestiary of probability distributions

Peter Smits

A great and terrible bestiary

Figure 1. Univariate distribution relationships

The exponential family

Discrete probability distributions

Bernoulli distribution

probability of "success" from single trial

Suppose we toss a coin only once. Let $X \in {0,1}$ be a binary random variable, with probability of "success" or heads being θ .

We say that X has a **Bernoulli** distribution, written $X \sim \text{Bern}(\theta)$. The pmf is defined:

$$\mathsf{Bern}(x|\theta) = egin{cases} \theta & \mathsf{if} \ x = 1 \\ 1 - \theta & \mathsf{if} \ x = 0 \end{cases}$$

Binomial distribution part 1

probability of X "successes" in n trials

Suppose we toss a coin n times. Let $X \in 0, ..., n$ be the number of heads, with the probability of heads being θ .

We say X has a **binomial** distribution, written $X \sim \text{Bin}(n, \theta)$. The pmf is defined:

$$Bin(X|n,\theta) = \binom{n}{X} \theta^X (1-\theta)^{n-X}$$

Note: Bernoulli distribution is special case of Binomial where n = 1

Binomial distribution part 2

Geometric distribution part 1

number of "failures" before a "success"

If each pokeball we throw has probability 1/10 to catch Mew, the number of failed pokeballs will be distributed Geom(1/10).

Two definitions:

► The probability distribution of the number *X* of Bernoulli trials needed to get one success

$$\Pr(X = k) = (1 - \theta)^{k-1} p$$

▶ The probability distribution of the number Y = X - 1 of failures before the first success

$$\Pr(Y = k) = (1 - \theta)^k p$$

Geometric distribution part 2

Negative Binomial distribution

number of draws until n successes

Hypergeometric distribution

number of "successes" in a fixed number of trails without replacement

Drawing a particular type of card from a deck of cards without replacement.

counts of rare events in unit of space or time

Continuous probability distributions

Normal distribution

Exponential distribution

Beta distribution

Chi-Square distriution