

Outline

- 1. What is Cluster Analysis?
- 2. K-Means Clustering
- 3. Density-based Clustering
- 4. Hierarchical Clustering

1. What is Cluster Analysis?

- Finding groups of objects such that
 - the objects in a group will be similar to one another
 - and different from the objects in other groups.
- Goal: Get a better understanding of the data

Types of Clusterings

Partitional Clustering

 A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

Hierarchical Clustering

A set of nested clusters organized as a hierarchical tree

Aspects of Cluster Analysis

A clustering algorithm

- Partitional algorithms
- Density-based algorithms
- Hierarchical algorithms
- •

A proximity (similarity, or dissimilarity) measure

- Euclidean distance
- Cosine similarity
- Data type-specific similarity measures
- Domain-specific similarity measures

Clustering quality

- Intra-clusters distance ⇒ minimized
- Inter-clusters distance ⇒ maximized
- The clustering should be useful with regard to the goal of the analysis

The Notion of a Cluster is Ambiguous

The usefulness of a clustering depends on the goal of the analysis

Example Application 1: Market Segmentation

- Goal: Identify groups of similar customers
- Level of granularity depends on the task at hand
- Relevant customer attributes depend on the task at hand

Example Application 2: E-Commerce

Identify offers of the same product on electronic markets

Example Application 3: Image Recognition

Identify parts of an image that belong to the same object

Cluster Analysis as Unsupervised Learning

- Supervised learning: Discover patterns in the data that relate data attributes with a target (class) attribute
 - these patterns are then utilized to predict the values of the target attribute in unseen data instances
 - the set of classes is known before
 - training data is often provided by human annotators
- Unsupervised learning: The data has no target attribute
 - we want to <u>explore the data</u> to find some intrinsic patterns in it
 - the set of classes/clusters is not known before
 - no training data is used
- Cluster Analysis is an unsupervised learning task

2. K-Means Clustering

- Partitional clustering algorithm
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters K must be specified beforehand
- The K-Means algorithm is very simple:
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Randomly

centroids

pick 3 initial

X

Y

Assign each point to the closest centroid

Y

Move each centroid to the mean of each cluster

Reassign
points if they
are now
closer to a
different
centroid

Question: Which points are reassigned?

Re-compute
 cluster means
 Move
 centroids to
 new cluster
 means

Convergence Criteria

Default convergence criterion

no (or minimum) change of centroids

Alternative convergence criteria

- no (or minimum) re-assignments of data points to different clusters
- 2. stop after x iterations
- 3. minimum decrease in the sum of squared error (SSE)
 - see next slide

Evaluating K-Means Clusterings

- Widely used cohesion measure: Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest centroid
 - To get SSE, we square these errors and sum them

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$

- C_i is the *j*-th cluster
- m_i is the centroid of cluster C_i (the mean vector of all the data points in C_i)
- dist(x, m_i) is the distance between data point x and centroid m_i
- Given several clusterings (= groupings), we should prefer the one with the smallest SSE

Illustration: Sum of Squared Error

Cluster analysis problem

- Good clustering
 - small distances to centroids

- Not so good clustering
 - larger distances to centroids

Weaknesses of K-Means: Initial Seeds

Clustering results may vary significantly depending on initial choice of seeds (number and position of seeds)

(A). Random selection of seeds (centroids)

Weaknesses of K-Means: Initial Seeds

If we use different seeds, we get good results

(A). Random selection of k seeds (centroids)

Increasing the Chance of Finding Good Clusters

1. Restart a number of times with different random seeds

chose the resulting clustering with the smallest sum of squared error (SSE)

2. Run k-means with different values of k

- The SSE for different values of k cannot directly be compared
 - think: what happens for $k \rightarrow$ number of examples?
- Workarounds
 - 3. Choose k where SSE improvement decreases (knee value of k)
 - 4. Employ X-Means
 - variation of K-Means algorithm that automatically determines k
 - starts with small k, then splits large clusters until improvement decreases

Weaknesses of K-Means: Problems with Outliers

(A): Undesirable clusters

(B): Better clusters

Weaknesses of K-Means: Problems with Outliers

Approaches to deal with outliers:

1. K-Medoids

- K-Medoids is a K-Means variation that uses the median of each cluster instead of the mean
- Medoids are the most central existing data points in each cluster
- K-Medoids is more robust against outliers as the median is less affected by extreme values:
 - Mean and Median of 1, 3, 5, 7, 9 is 5
 - Mean of 1, 3, 5, 7, 1009 is 205
 - Median of 1, 3, 5, 7, 1009 is 5

2. DBSCAN

- Density-based clustering method that removes outliers
 - see next section

K-Means Clustering Summary

Advantages

- Simple, understandable
- Efficient time complexity:O(n * K * I * d)

where

- n = number of points
- *K* = *number* of clusters
- I = number of iterations
- *d* = *number* of attributes

Disadvantages

- Need to determine number of clusters
- All items are forced into a cluster
- Sensitive to outliers
- Does not work for non-globular clusters

3. Density-based Clustering

Challenging use case for K-Means because

- Problem 1: Non-globular shapes
- Problem 2: Outliers / noise points

DBSCAN

- DBSCAN is a density-based algorithm
 - Density = number of points within a specified radius Epsilon (Eps)
- Divides data points into three classes:
 - 1. A point is a core point if it has at least a specified number of neighboring points (MinPts) within the specified radius Eps
 - the point itself is counted as well
 - these points form the interior of a dense region (cluster)
 - 2. A border point has fewer points than MinPts within Eps, but is in the neighborhood of a core point
 - 3. A noise point is any point that is not a core point or a border point

Examples of Core, Border, and Noise Points 1

Examples of Core, Border, and Noise Points 2

Original Points

Point types: core, border and noise

The DBSCAN Algorithm

Eliminates noise points and returns clustering of the remaining points:

- 1. Label all points as core, border, or noise points
- 2. Eliminate all noise points
- 3. Put an edge between all core points that are within Eps of each other
- 4. Make each group of connected core points into a separate cluster
- Assign each border point to one of the clusters of its associated core points
 - as a border point can be at the border of multiple clusters
 - use voting if core points belong to different clusters
 - if equal vote, than assign border point randomly

Time complexity: O(n log n)

dominated by neighborhood search for each point using an index

When DBSCAN Works Well

- Resistant to noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

DBSCAN has problems with datasets of varying densities.

(MinPts=4, Eps=9.92)

(MinPts=4, Eps=9.75)

4. Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits
 - The y-axis displays the former distance between merged clusters

Strengths of Hierarchical Clustering

- We do not have to assume any particular number of clusters
 - any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- May be used to discover meaningful taxonomies
 - taxonomies of biological species
 - taxonomies of different customer groups

Two Main Types of Hierarchical Clustering

Agglomerative

- start with the points as individual clusters
- at each step, merge the closest pair of clusters until only one cluster (or k clusters) is left

Divisive

- start with one, all-inclusive cluster
- at each step, split a cluster until each cluster contains a single point (or there are k clusters)
- Agglomerative Clustering is more widely used

Agglomerative Clustering Algorithm

The basic algorithm is straightforward:

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
 - 1. Merge the two closest clusters
 - 2. Update the proximity matrix

Until only a single cluster remains

- The key operation is the computation of the proximity of two clusters
- The different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

	p1	p2	р3	p4	p 5	<u>_</u>	
p1		d ₁₂	d ₁₃				
p2							
р3							
p4							
р ⁴ р5							
	Pr	Proximity Matrix					

Intermediate Situation

After some merging steps, we have larger clusters.

We want to keep on merging the two closest clusters

(C2 and C5?)

C2

How to Define Inter-Cluster Similarity?

Different approaches are used:

- 1. Single Link
- 2. Complete Link
- 3. Group Average
- 4. Distance Between Centroids

Cluster Similarity: Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
- Determined by one pair of points,
 i.e. by one link in the proximity graph

Example: Single Link

Nested Clusters

Dendrogram

Cluster Similarity: Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
- Determined by all pairs of points in the two clusters

Example: Complete Linkage

Nested Clusters

Dendrogram

Single Link vs. Complete Linkage

Single Link

- Strength: Can handle non-elliptic shapes
- Limitation: Sensitive to noise and outliers

Complete Linkage

- Strength: Less sensitive to noise and outliers
- Limitation: Biased towards globular clusters
- Limitation: Tends to break large clusters, as decisions can not be undone.

Hierarchical Clustering: Problems and Limitations

- Different schemes have problems with one or more of the following:
 - 1. sensitivity to noise and outliers
 - 2. difficulty handling non-elliptic shapes
 - 3. breaking large clusters
- High space and time complexity
 - O(N²) space since it uses the proximity matrix
 - N is the number of points
 - O(N³) time in many cases
 - there are N steps and at each step the size N² proximity matrix must be searched and updated
 - complexity can be reduced to O(N² log(N)) time in some cases
 - Workaround: Apply hierarchical clustering to a random sample of the original data (<10,000 examples)

Distance Measures in Data Science

- In clustering techniques, similarity (or dissimilarity) is an important measurement.
- Informally, similarity between two objects (e.g., two images, two documents, two records, etc.) is a numerical measure of the degree to which two objects are alike.
- The dissimilarity on the other hand, is another alternative (or opposite) measure of the degree to which two objects are different.
- Both similarity and dissimilarity also termed as proximity.
- Usually, similarity and dissimilarity are non-negative numbers and may range from zero (highly dissimilar (no similar)) to some finite/infinite value (highly similar (no dissimilar)).

Note:

- Frequently, the term distance is used as a synonym for dissimilarity
- In fact, it is used to refer as a special case of dissimilarity.

Distance Measures in Data Science

Euclidean Distance

Definition

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are the k^{th} attributes of data points p and q

- p_k q_k is squared to increase impact of long distances
- All dimensions are weighted equality

Example: Euclidean Distance

point	X	y	
p1	0	2	
p2	2	0	
р3	3	1	
p4	5	1	

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

How to Choose a good Clustering Algorithm?

- "Best" algorithm depends on
 - 1. the analytical goals of the specific use case
 - 2. the distribution of the data
- Normalization, feature selection, distance measure, and parameter settings have equally high influence on results
- Due to these complexities, the common practice is to
 - 1. run several algorithms using different distance measures, feature subsets and parameter settings, and
 - 2. then visualize and interpret the results based on knowledge about the application domain as well as the goals of the analysis

Thank You!