Regularized Logistic Regression

We can regularize logistic regression in a similar way that we regularize linear regression. As a result, we can avoid overfitting. The following image shows how the regularized function, displayed by the pink line, is less likely to overfit than the non-regularized function represented by the blue line:

Regularized logistic regression.

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right]$$

$$+ \frac{\lambda}{2m} \sum_{j=1}^{n} \bigotimes_{j} \sum_{i=1}^{n} \bigotimes_{j} \sum_{j=1}^{n} \sum$$

Cost Function

Recall that our cost function for logistic regression was:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

We can regularize this equation by adding a term to the end:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

The second sum, $\sum_{j=1}^{n} \theta_{j}^{2}$ means to explicitly exclude the bias term, θ_{0} . I.e. the θ vector is indexed from 0 to n (holding n+1 values, θ_{0} through θ_{n}), and this sum explicitly skips θ_{0} , by running from 1 to n, skipping 0. Thus, when computing the equation, we should continuously update the two following equations:

Gradient descent