Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

23 de janeiro de 2018

Plano de Aula

- Revisão
 - Ambiguidade
 - Forma Normal de Chomsky

- Autômato com Pilha
 - Exemplos

Sumário

- Revisão
 - Ambiguidade
 - Forma Normal de Chomsky

- 2 Autômato com Pilha
 - Exemplos

G_1

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Descrição formal

 $G_1 = (V, \Sigma, R, S)$ de forma que:

- $V = \{A, B\};$
- $\Sigma = \{0, 1, \#\};$
- $R = \{A \to 0A1, A \to B, B \to \#\};$
- S = A.

G_3

$$G_3=(\{S\},\{a,b\},R,S)$$
. O conjunto de regras R é: $S o aSb \mid SS \mid \epsilon$

G_4

$$V = \{\langle EXPR \rangle, \langle TERM \rangle, \langle FACTOR \rangle \};$$

$$\Sigma = \{a, +, \times, (,)\};$$

$$R \text{ \'e o conjunto de regras:}$$

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle TERM \rangle \mid \langle TERM \rangle$$

$$\langle TERM \rangle \rightarrow \langle TERM \rangle \times \langle FACTOR \rangle \mid \langle FACTOR \rangle$$

$$\langle FACTOR \rangle \rightarrow (\langle EXPR \rangle) \mid a$$

$$S = \langle EXPR \rangle.$$

 $G_4 = (V, \Sigma, R, S)$, de forma que:

Árvores Sintáticas

FIGURA 2.5 Árvores sintáticas para as cadeias a+axa e (a+a) xa

Projetando GLCs

- Considere a união de GLCs;
- Se a linguagem for regular, construa a GLC a partir do AFD correspondente;
- Considere subcadeias "ligadas";
- Considere estruturas recursivas.

Gramática G₅

$$\langle \text{ EXPR } \rangle \rightarrow \langle \text{ EXPR } \rangle + \langle \text{ EXPR } \rangle \mid \langle \text{ EXPR } \rangle \times \langle \text{ EXPR } \rangle$$

 $\langle \text{ EXPR } \rangle \rightarrow (\langle \text{ EXPR } \rangle) \mid a$

Cadeia a + a \times a

Esta gramática gera a + a \times a ambiguamente.

Ambiguidade¹

FIGURA 2.6 As duas árvores sintáticas para a cadeia a+axa na gramática G_5

G_4

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle TERM \rangle \mid \langle TERM \rangle$$

 $\langle TERM \rangle \rightarrow \langle TERM \rangle \times \langle FACTOR \rangle \mid \langle FACTOR \rangle$
 $\langle FACTOR \rangle \rightarrow (\langle EXPR \rangle) \mid a$

Porém...

G₄ não é ambígua!


```
G_2
```

```
 \langle \text{SENTENCE} \rangle \rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle 
 \langle \text{NOUN-PHRASE} \rangle \rightarrow \langle \text{CMPLX-NOUN} \rangle | \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle 
 \langle \text{VERB-PHRASE} \rangle \rightarrow \langle \text{CMPLX-VERB} \rangle | \langle \text{CMPLX-VERB} \rangle \langle \text{PREP-PHRASE} \rangle 
 \langle \text{PREP-PHRASE} \rangle \rightarrow \langle \text{PREP} \rangle \langle \text{CMPLX-NOUN} \rangle 
 \langle \text{CMPLX-NOUN} \rangle \rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle 
 \langle \text{CMPLX-VERB} \rangle \rightarrow \langle \text{VERB} \rangle | \langle \text{VERB} \rangle \langle \text{NOUN-PHRASE} \rangle 
 \langle \text{ARTICLE} \rangle \rightarrow \text{a | the} 
 \langle \text{NOUN} \rangle \rightarrow \text{boy | girl | flower} 
 \langle \text{VERB} \rangle \rightarrow \text{touches | likes | sees} 
 \langle \text{PREP} \rangle \rightarrow \text{with}
```

Porém...

 G_2 é ambígua!

(e.g. a cadeia "the girl touches the boy with the flower")

Definição 2.7

Uma cadeia ω é derivada **ambiguamente** na gramática livre-do-contexto G se ela tem duas ou mais derivações mais à esquerda diferentes. A gramática G é **ambígua** se ela gera alguma cadeia ambiguamente.

Existem linguagens que são inerentemente ambíguas!

Forma Normal de Chomsky

Por quê utilizá-la?

- É uma forma simplificada de escrever uma GLC;
- Facilita a construção de algoritmos para GLC.

Definição 2.8

Uma gramática livre-do-contexto está na forma normal de Chomsky se toda regra é da forma

$$A \rightarrow BC$$

$$A \rightarrow a$$

em que a é qualquer terminal e A, B e C são quaisquer variáveis - exceto que B e C não podem ser a variável inicial.

Adicionalmente...

Permite-se a regra $S \to \epsilon$, em que S é a variável inicial.

Forma Normal de Chomsky

Teorema 2.9

Qualquer linguagem livre-de-contexto é gerada por uma gramática livre-do-contexto na forma normal de Chomsky.

 G_6

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \epsilon$$

???

Como converter G_6 para a forma normal de Chomsky?

1. Introduzir uma nova variável inicial

$$S \rightarrow ASA \mid aB$$

 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$

$^{\circ}$ 2. Remover regras ϵ (B)

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid S \mid \epsilon$
 $B \rightarrow b$

$^{'}$ 2. Remover regras ϵ (A)

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid S \mid \epsilon$
 $B \rightarrow b$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

2. Remover regras unitárias (S)

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

forall 3. Remover regras unitárias (S_0)

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

$$S_0
ightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A
ightarrow B \mid S$
 $B
ightarrow b$

4. Remover regras unitárias (A)

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow S \mid b$
 $B \rightarrow b$

5. Remover regras unitárias (A)

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow S \mid b$
 $B \rightarrow b$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B \rightarrow b$

6. Acrescentar variáveis e regras adicionais

$$S_0
ightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A
ightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B
ightarrow b$

$$S_0 \rightarrow CA \mid DB \mid a \mid SA \mid AS$$

$$S \rightarrow CA \mid DB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid CA \mid DB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

$$C \rightarrow AS$$

$$D \rightarrow a$$

Sumário

- Revisão
 - Ambiguidade
 - Forma Normal de Chomsky
- Autômato com Pilha
 - Exemplos


```
Características...
```


Características...

• AFN + Pilha = Autômato com Pilha;

- AFN + Pilha = Autômato com Pilha;
- AFD + Pilha \neq AFN + Pilha;

- AFN + Pilha = Autômato com Pilha;
- AFD + Pilha \neq AFN + Pilha;
- Pilha com memória infinita;

- AFN + Pilha = Autômato com Pilha;
- AFD + Pilha \neq AFN + Pilha;
- Pilha com memória infinita;
- Pode escrever e ler símbolos na pilha;

- AFN + Pilha = Autômato com Pilha;
- AFD + Pilha ≠ AFN + Pilha;
- Pilha com memória infinita;
- Pode escrever e ler símbolos na pilha;
- Equivalentes em poder às GLCs.

- AFN + Pilha = Autômato com Pilha;
- AFD + Pilha ≠ AFN + Pilha;
- Pilha com memória infinita;
- Pode escrever e ler símbolos na pilha;
- Equivalentes em poder às GLCs.

DEFINIÇÃO 2.13

Um *autômato com pilha* é uma 6-upla $(Q, \Sigma, \Gamma, \delta, q_0, F)$, onde Q, Σ , Γ , e F são todos conjuntos finitos, e

- 1. Q é o conjunto de estados,
- 2. Σ é o alfabeto de entrada,
- 3. Γ é o alfabeto de pilha,
- **4.** $\delta \colon Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ é a função de transição,
- **5.** $q_0 \in Q$ é o estado inicial, e
- **6.** $F \subseteq Q$ é o conjunto de estados de aceitação.

$$L(M_1) = \{0^n 1^n \mid n \ge 0\}$$

$$L(M_1) = \{0^n 1^n \mid n \ge 0\}$$

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\}, e$

 δ é dada pela tabela abaixo, na qual entradas em branco significam \emptyset .

Input:	0			1			ε		
Pilha:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3, oldsymbol{arepsilon})\}$					
q_3				$\{(q_3, \boldsymbol{arepsilon})\}$				$\{(q_4, oldsymbol{arepsilon})\}$	
q_4									

$$L(M_2) = \{a^i b^j c^k \mid i = j \text{ ou } i = k\}$$

$$L(M_2) = \{a^i b^j c^k \mid i = j \text{ ou } i = k\}$$

$$L(M_3) = \{\omega\omega^{\mathcal{R}} \mid \omega \in \{0,1\}^*\}$$

$$L(M_3) = \{\omega\omega^{\mathcal{R}} \mid \omega \in \{0,1\}^*\}$$

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

23 de janeiro de 2018

