机器学习实验---神经网络

一、实验目的

- 1. 理解神经网络算法原理, 能实现神经网络分类算法;
- 2. 针对特定应用场景及数据,实现神经网络分类。

二、实验内容

- 1. 从 UCI 数据库中下载一个分类数据集, 进行数据说明:
- 2. 用 80%的数据训练, 余下的做测试, 计算分类准确度。
- 3. 换一个别的数据集,加深神经网络,调试结果。
- 4. 调试不同超参, Ir、优化器类别、迭代次数等等。

三、实验报告要求

- 1. 按实验内容撰写实验过程:
- 2. 报告中涉及到的代码,每一行需要有详细的注释;
- 3. 按自己的理解重新组织,禁止粘贴复制实验内容。

四、实验记录

ADULT 数据集:

Adult 数据集(即"人口普查收入"数据集),由美国人口普查数据集库 抽取而来,其中共包含 48842 条记录,年收入大于 50k 美元的占比 23.93%,年收入小于 50k 美元的占比 76.07%,并且已经划分为训练数据 32561 条和测试数据 16281 条。 该数据集类变量为年收入是否超过 50k 美元,属性变量包括年龄、工种、学历、职业等 14 类重要信息,其中有 8 类属于类别离散型变量,另外 6 类属于数值连续型变量。该数据集是一个分类数据集,用来预测年收入是否超过 50k 美元。

属性	类型	含义		
Age	Continuous	年龄		
Workclass	Discrete	工作类别		
Fnlwgt	Continuous	人口普查员序号		
Education	Discrete	受教育程度		
Education-num	Continuous	受教育时间		
Marital-status	Discrete	婚姻状况		
occupation	Discrete	职业		
Relationship	Discrete	社会角色		
Race	Discrete	种族		
Sex	Discrete	性别		
Capital-gain	Continuous	资本收益		
Capital-loss	Continuous	资本支出		
Hours-per-week	Continuous	每周工作时间		
Native-country	Discrete	国际		

```
# 通过 pandas 包中 read csv 方法,给每一列加上属性名
```

dataset = pd.read csv('adult.csv', names=columns)

下载数据集并导入。

	Age	Workclass	fnlgwt	Education	EdNum	MaritalStatus	Occupation	Relationship	Race	Sex	CapitalGain	CapitalLoss	HoursPerWeek	Country	Income
0		State-gov		Bachelors			Adm-clerical	Not-in- family	White	Male				United- States	<=50K
1		Self-emp- not-inc		Bachelors		Married-civ- spouse	Exec- managerial	Husband	White	Male				United- States	<=50K
2			215646	HS-grad			Handlers- cleaners	Not-in- family	White	Male				United- States	<=50K
3						Married-civ- spouse	Handlers- cleaners		Black	Male				United- States	<=50K
4			338409	Bachelors		Married-civ- spouse	Prof-specialty		Black	Female					<=50K
32556				Assoc- acdm		Married-civ- spouse	Tech-support		White					United- States	<=50K
32557						Married-civ- spouse	Machine-op- inspct		White	Male				United- States	>50K
32558				HS-grad		Widowed	Adm-clerical	Unmarried	White					United- States	<=50K

因为 fnlgwt 属性记录的是人口普查员的 ID,对预测结果无影响,故删除该列dataset.drop('fnlgwt', axis=1, inplace=True)

讲行数据清洗, 将数据集中'9'字符萃换为'Unknown'

for i in dataset.columns:

dataset[i].replace('?', 'Unknown', inplace=True)

for col in dataset.columns:

if dataset[col].dtype != 'int64':

dataset[col] = dataset[col].apply(lambda val: val.replace(" ", ""))

dataset[col] = dataset[col].apply(lambda val: val.replace(".", ""))

Education(受教育程度)和 Ednum(受教育时间)特征相似,为减少干扰因素, 删除 Education 属性;除此之外,Country 对年收入的影响也不大,故同样删除 dataset.drop(['Education', 'Country'], axis=1, inplace=True)

对数据集中缺失值和分类 Label 进行预处理,便于将其转化为数值属性,删除无效指标。

	Age	Workclass	EdNum	MaritalStatus	Occupation	Relationship	Race	Sex	CapitalGain	CapitalLoss	HoursPerWeek	Income
0		State-gov		Never-married	Adm-clerical	Not-in-family	White	Male	2174			<=50K
1		Self-emp-not-inc		Married-civ-spouse	Exec-managerial	Husband	White	Male				<=50K
2		Private		Divorced	Handlers-cleaners	Not-in-family	White	Male				<=50K
3		Private		Married-civ-spouse	Handlers-cleaners	Husband	Black	Male				<=50K
4		Private		Married-civ-spouse	Prof-specialty	Wife	Black	Female				<=50K
32556		Private		Married-civ-spouse	Tech-support		White	Female				<=50K
32557				Married-civ-spouse	Machine-op-inspct	Husband	White	Male				>50K
32558		Private		Widowed	Adm-clerical	Unmarried	White	Female				<=50K
32559		Private		Never-married	Adm-clerical	Own-child	White	Male				<=50K

```
# 调用 sklearn-pandas 包中的 DataFrameMapper 类对 AgeGroup、AgeGroup、Workclass、Occupation 等列进行标签编码,转化为连续的数值型变量,大大提高了代码的简洁性,一步到位。同时调用 sklearn.preprocessing 中的 LabelEncoder()进行编码 mapper = DataFrameMapper([('Workclass', LabelEncoder()),('MaritalStatus', LabelEncoder()), ('Occupation', LabelEncoder()),('Relationship', LabelEncoder()), ('Race', LabelEncoder()), ('Sex', LabelEncoder()), ('Income', LabelEncoder())], df_out=True, default=None) dataset = mapper.fit_transform(dataset.copy())
```

	Workclass	MaritalStatus	Occupation	Relationship	Race	Sex	Income	Age	EdNum	CapitalGain	CapitalLoss	HoursPerWeek
0									13	2174		40
1												13
2								38				40
3								53				40
4									13			40
32556			12					27	12			38
32557												40
32558								58				40
32559								22				20
32560	4	2	3	5	4	0	1	52	9	15024	0	40

```
import torch.nn as nn
import torch.nn.functional as F

class Adult_model(nn.Module):
    def __init__(self):
        super(Adult_model, self).__init__()
        self.input = nn.Linear(11, 8)
        self.layer = nn.Linear(8, 5)
        self.output = nn.Linear(5, 2)

def forward(self, x):
        x = F.relu(self.input(x))
        x = F.relu(self.layer(x))
        x = self.output(x)
        return x
```

构建全连接神经网络由于有 11 个属性标签,所以输入维度为 11, 而 Income 一共有两个类比,所以输出维度为 2。

```
from torch.utils.data import DataLoader, random_split

dataset_size = len(dataset)

test_size = int(dataset_size * 0.2) # 测试集大小为数据集大小的 20%

train_size = dataset_size - test_size # 训练集大小为数据集大小减去测试集大小
```

train_dataset, test_dataset = random_split(dataset, lengths=[train_size, test_size])

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, drop_last=False)

test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, drop_last=False)

model = Adult model()

optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

criterion = torch.nn.CrossEntropyLoss()

选择优化器和损失函数,并分割数据集。

最后在训练集上进行训练,并进行测试。

五、运行结果

学习率(优化器 SGD, 迭代次数 1000):

学习率 0.01

Income预测准确率 0.7756794104099494

学习率 0.001

Income预测准确率 0.780439121756487

优化器(学习率 0.001, 迭代次数 1000):

优化器 SGD

Income预测准确率 0.780439121756487

优化器 Adam:

Income预测准确率 0.8203592814371258

迭代次数(学习率 0.001, 优化器 Adam)

迭代次数 1000:

Income预测准确率 0.8203592814371258

迭代次数 5000:

Income预测准确率 0.8387839705204975

注: 训练过程代码以及最终准确率计算部分未给出, 需要自己在实验报告中补全

六、实验小结

本次实验是理解并实现神经网络算法的原理,输入是已标签的特征向量,输出为实例的分类类别。使用了 torch 深度学习框架并使用 pycharm 作为编译器。