

Revisão

Corrente (A)	Tensão (V)
dq	$d\omega$
$\iota - \overline{dt}$	$v = \frac{1}{dq}$

Potência (W)	Energia (J)		
$p = \frac{d\omega}{dt}$	$\omega = \int p dt$		

- Para a corrente indicamos a direção do fluxo da corrente
- Para a tensão indicamos a polaridade
- Potência é a velocidade com que se consome energia

•
$$p = v \cdot i$$

Revisão

 As fontes são representações gráficas de dispositivos capazes de converte energia elétrica em não elétrica e vice-versa. A fontes podem representar pilhas, motores, geradores. No entanto, devemos ter em mente que esses símbolos são representações matemáticas.

Representações gráficas de fontes ideais

Fontes de tensão	Fontes de corrente	Fontes de corrente e
Independente	Independente	tensão – dependentes
+		+

Lei de Ohm

A partir de medidas experimentais, Simon Ohm concluiu de que todos os materiais sujeitos a uma diferença de potencial, apresentam uma resistência R de valor constante à passagem da corrente elétrica. O fluxo de cargas cresce proporcionalmente ao valor da tensão aplicada, obedecendo à equação abaixo:

$$v = R \cdot i$$
 ou $R = \frac{v}{i}$

Resistência elétrica (Ω)

- Resistência elétrica é a propriedade dos materiais de impedir o fluxo de cargas elétricas.
- Por definição chama-se **resistência elétrica** de um condutor ao quociente da diferença de potencial entre seus extremos pela intensidade de corrente elétrica correspondente (**Lei de Ohm**).

Representação gráfica de uma resistência

Resistência em um cabo

Exercício

Exercício: João quer "tunar" seu carro, para tal irá utilizar a bateria do carro (**12V**) para ligar um LED alto brilho. Desenhe o circuito.

*** Considere que o LED alto brilho possui as seguintes características: 60mW/3V.

Exercício

Exercício: João quer "tunar" seu carro, para tal irá utilizar a bateria do carro (12V) para ligar um LED alto brilho. Desenhe o circuito Considere que o LED alto brilho possui as seguintes características: 60mW/3V.

$$V_{Rx} = 12 - 3 = 9V$$

$$P_{LED} = v \cdot i$$

$$60m = 3 \cdot i_{LED}$$

$$i_{LED} = 20mA$$

$$R_{x} = \frac{v}{i}$$

$$R_{\chi} = \frac{9}{20m}$$

$$R_x = 450\Omega$$

Fontes dependentes <

- Fontes dependentes são modelos matemáticos que representam fontes (geradores ou dissipadores) controladas, os parâmetros de tensão e corrente estarão em função da corrente ou tensão de outro elemento de circuito.
- Entre sua aplicações, podemos citas: modelagem de transistores, circuitos de amplificação, circuitos que estabelecem comunicações e etc.

Fontes dependentes

Fontes de tensão dependente

FTCT – Fonte de tensão controlada por tensão

FTCC – Fonte de tensão controlada por corrente

Fontes de corrente dependente

FCCT – Fonte de corrente controlada por tensão

FCCC – Fonte de corrente controlada por corrente

Fontes dependentes <

Exemplo: Calcule i1 e v1

A corrente não flui por um condutor que não se encontra em um caminho fechado, portanto **i1=0**.

$$v_{x} = 20mV$$

$$i_S = 100 \cdot v_{\chi} = 2A$$

$$v_1 = R \cdot i_S = 10 \cdot 2$$

$$v_1 = 20V$$

Fontes dependentes <

Exercício: Qual o valor de B para que a interconexão seja permissível?

Topologia de rede

Ramo: representa um único componente (b)

Nó: é o ponto de encontro entre dois ou mais ramos (n)

Laço: qualquer caminho fechado em um circuito (I)

Um caminho fechado iniciando-se em um nó, passando por uma série de nós e retornando ao nó de partida sem passar mais de uma vez pelo mesmo nó.

Exercício:

Identifique os ramos nós e laços

Topologia de rede

5 Ramos:
$$v_1$$
, R_1 , R_2 , R_3 , v_2

3 Nós: *a*, *b*, *c*

3 Laços:

$$i_1 - R_1 - R_2 - i_1$$

 $i_1 - R_1 - R_3 - i_1$
 $i_1 - R_1 - v_2 - i_1$

Topologia das redes:

$$b = l + n - 1$$

Topologia de rede ◀

Associação em paralelo: Dois ou mais ramos estão em paralelo quando estiverem conectados aos mesmos dois nós, consequentemente terão a mesma tensão.

Associação em série: Dois ramos estarão em série se compartilharem exclusivamente um único nó, consequentemente transportarão a mesma corrente.

Analise:

Lei de Ohm + Leis de Kirchhoff formam um conjunto de ferramentas poderoso para analisar uma série de circuitos elétricos

Georg Simon Ohm

Gustav Kirchhoff

Leis de Kirchhoff - LKC ◀

LKC – A lei de Kirchhoff para correntes afirma que a soma algébrica das correntes que "entram/saem" de um nó é igual a zero.

*** Os nós não podem acumular carga

Podemos considerar **negativas** as correntes que **"saem"** e **positivas** as correntes que **"entram"** (ou vice-versa).

Correntes no nó:

$$\sum_{n=1}^{k} i_n = 0$$

Leis de Kirchhoff - LKC ◀

Relação de equivalência

Leis de Kirchhoff - LKT ◀

LKT – A **lei de Kirchhoff para tensões** afirma que a **soma** algébrica das **tensões** em um caminho fechado (ou laço) é igual a **zero**.

Tensões no laço:

$$\sum_{m=1}^{k} v_m = 0$$

Leis de Kirchhoff - LKT ◀

Possíveis equações:

$$-v_0 + v_1 - v_6 + v_7 = 0$$

$$+v_6 + v_3 - v_4 - v_5 = 0$$

$$-v_0 + v_1 + v_3 - v_4 - v_5 + v_7 = 0$$

Relação de equivalência

$$v_T = v_1 + v_2 - v_3$$

$$v_T - bo$$

Exercício: Calcule a potência dissipada por cada resistor.

Exercício: Calcule a potência dissipada por cada resistor.

$$\begin{cases} -30 + 8i_1 + 3i_2 = 0 \\ -3i_2 + 6i_3 = 0 \end{cases}$$

$$i_i = i_2 + i_3$$

$$8i_1 + 3i_2 = 30$$

$$-3i_2 + 6i_3 = 0$$

$$i_1 - i_2 - i_3 = 0$$

$$i_1 = 3A$$

$$i_2 = 2A$$

$$i_3 = 1A$$

Exercício: Calcule a potência dissipada por cada resistor.

Componente	Tensão	Corrente	Resistência	Potência
Fonte	30V	3A	X	-90W
Resistor 8Ω	-	3A	8Ω	72W
Resistor 3Ω	-	2A	3Ω	12W
Resistor 6Ω	-	1A	6Ω	6W
			Soma	0W

Exercício: Calcule o valor de vo e a tensão da fonte dependente.

Exercício: Calcule o valor de vo e a tensão da fonte dependente.

$$-12 + 4 \cdot i + 2 \cdot (-6 \cdot i) - 4 + 6 \cdot i = 0$$

 $-16 + i \cdot (4 - 12 + 6) = 0$
 $i = -8A (arbitrei\ errado)$

$$-12 + 4 \cdot i + 2 \cdot v_o - 4 + 6 \cdot i = 0$$

$$v_{6\Omega} = 6 \cdot i$$

$$v_o = -v_{6\Omega}$$

$$v_o = -6 \cdot i$$

$$v_o = -6 \cdot (-8) = 48V$$

$$v_{fonte\ dep} = 2 \cdot 48 = 96V$$

Associação de resistores em Série

$$-v_{s} + v_{1} + v_{2} + v_{3} + v_{4} = 0$$

$$v_{s} = v_{1} + v_{2} + v_{3} + v_{4}$$

$$v_{s} = R_{1} \cdot i + R_{2} \cdot i + R_{3} \cdot i + R_{4} \cdot i$$

$$v_{s} = i \cdot (R_{1} + R_{2} + R_{3} + R_{4})$$

$$R_{eq} = R_1 + R_2 + R_3 + R_4$$

$$v_{s} = i \cdot R_{eq}$$

$$i = v_{s} \cdot \frac{1}{R_{eq}}$$

Associação de resistores em paralelo

$$i = i_1 + i_2 + i_3 + i_4$$

$$i = \frac{v_S}{R_1} + \frac{v_S}{R_2} + \frac{v_S}{R_3} + \frac{v_S}{R_4}$$

$$i = v_s \cdot \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}\right)$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$

$$v_{s} = i \cdot R_{eq}$$
$$i = v_{s} \cdot \frac{1}{R_{eq}}$$

Associação de resistores em paralelo

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R_{eq}} = \frac{R_1 + R_2}{R_1 \cdot R_2}$$

$$R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Associação de resistores

Exercício: Calcule a potência da fonte de corrente

Associação de resistores

Exercício: Calcule a potência da fonte de corrente

$$R_{eq}=10\Omega$$

 $v_{fonte} = 2 \cdot 10 = 20V$

$$P_{fonte} = -20 \cdot 2 = -40W$$

$$R_{eq} = \left(\left(\left(\left((8+4) \parallel 6) + 4 \right) \parallel 8 \right) + 8 \right) \parallel 6 \right) + 6 = 10\Omega$$