

PROBABILITY VECTORS

Why

We can identify probability distributions with vectors.

Definition

Let $p: \Omega \to \mathbf{R}$ be a probability distribution on a finite set $\Omega = \{\omega_1, \ldots, \omega_n\}$. We can associate p with the vector $x \in \mathbf{R}^n$ defined by $x_i = p(\omega_i)$ for $i = 1, \ldots, n$. We call this vector y the probability vector associated with p. The conditions on p mean that (1) $\langle 1, y \rangle = 1$ and (2) $y \geq 0$ (i.e., $y_i \geq 0$ for all $i = 1, \ldots, n$.).

Conversely, suppose $z \in \mathbf{R}$ satisfies (1) and (2). Then $q: \Omega \to \mathbf{R}$ defined by $q(\omega_i) = z_i$ for $i = 1, \ldots, n$ is a probability distribution. For this reason, we call z satisfying the conditions a *distribution vector*. Notice that implicit in this correspondence is a numbering $\omega: \{1, \ldots, n\} \to \Omega$ of the set of outcomes Ω .

Expectation

Suppose $\rho \in \mathbf{R}^n$ is a distribution vector corresponding to $p: \Omega \to \mathbf{R}$ its corresponding distribution. Let $x: \Omega \to \mathbf{R}$ and (similar to ρ) define $\xi \in \mathbf{R}^n$ by $\xi_i = x(\omega_i)$ for $i = 1, \ldots, n$. Then $\mathbf{E} x = \langle \rho, \xi \rangle$.

Example

For
$$\rho = (-1, -1, 1, 1, 2)$$
 and $\xi = (0.1, 0.15, 0.1, 0.25, 0.4)$

$$\mathbf{E}x = \langle \rho, \xi \rangle - 1 - 0.15 + 0.1 + 0.25 + 2(0.4) = 0.9.$$

