

WO 2005/036554 A1

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局(43)国際公開日
2005年4月21日 (21.04.2005)

PCT

(10)国際公開番号
WO 2005/036554 A1

(51)国際特許分類:
20/10, 20/12, 27/10, G06F 19/00, 9/06

(21)国際出願番号:
PCT/JP2004/015330

(22)国際出願日:
2004年10月12日 (12.10.2004)

(25)国際出願の言語:
日本語

(26)国際公開の言語:
日本語

(30)優先権データ:
特願2003-352913
2003年10月10日 (10.10.2003) JP
特願2003-379758
2003年11月10日 (10.11.2003) JP

(71)出願人(米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒5718501 大阪府門真市大字門真 1006番地 Osaki (JP).

(72)発明者: および
(75)発明者/出願人(米国についてのみ): 池田航 (IKEDA, Wataru); 岩本啓明 (IWAMOTO, Hiroaki); 岡田智之 (OKADA, Tomoyuki).

(74)代理人: 中島司朗 (NAKAJIMA, Shiro); 〒5310072 大阪府大阪市北区豊崎三丁目2番1号 淀川5番館 6F Osaka (JP).

(81)指定国(表示のない限り、全ての種類の国内保護が可能): AB, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

/統葉有/

(54)Title: RECORDING MEDIUM, REPRODUCTION DEVICE, PROGRAM, AND REPRODUCTION METHOD

(54)発明の名称: 記録媒体、再生装置、プログラム、再生方法

A	B	C
title #1の生存範囲	title #2の生存範囲	title #3の生存範囲
D1		
D2		
D3	application #3の生存範囲	
		D4 application #4の生存範囲
		D5 application #5の生存範囲
E1	E2	E3
title #1のアプリケーション管理テーブル	title #2のアプリケーション管理テーブル	title #3のアプリケーション管理テーブル
F 生存範囲 G アプリケーションID H 活動属性	F 生存範囲 G アプリケーションID H 活動属性	F 生存範囲 G アプリケーションID H 活動属性
title #1 application #1	title #2 application #3	title #3 application #5
title #1 application #2		
title #1 application #3		

A...TIME AXIS OF TITLE #1
B...TIME AXIS OF TITLE #2
C...TIME AXIS OF TITLE #3
D1...LIVING SECTION OF APPLICATION #1
D2...LIVING SECTION OF APPLICATION #2
D3...LIVING SECTION OF APPLICATION #3
D4...LIVING SECTION OF APPLICATION #4
D5...LIVING SECTION OF APPLICATION #5
E1...APPLICATION MANAGEMENT TABLE OF TITLE #1
F...LIVING SECTION
G...APPLICATION ID
H...START ATTRIBUTE
E2...APPLICATION MANAGEMENT TABLE OF TITLE #2
E3...APPLICATION MANAGEMENT TABLE OF TITLE #3

(57)Abstract: A BD-ROM contains a plurality of titles which can be branched and a Java application. The Java application is a program described in a programming language for a virtual machine. The living section where execution by the virtual machine is enabled is predetermined. Each of the titles contains an application management table. The application management table indicates an application having a title as the living section for each title.

(57)要約: BD-ROMには、分岐可能な複数のタイトルと、Javaアプリケーションとが記録されている。Javaアプリケーションは、仮想マシン向けプログラミング言語で記述されたプログラムであり、仮想マシンによる実行が可能となる生存範囲が、予め規定されており、前記各タイトルは、アプリケーション管理テーブルを含み、アプリケーション管理テーブルは、タイトルを生存範囲とするアプリケーションを、各タイトル毎に示す。

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, ER, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

2 文字コード及び他の略語については、定期発行される各 PCT がゼットの巻頭に掲載されている「コードと略語のガイドンスノート」を参照。

添付公開書類:
— 國際調査報告書

明細書

記録媒体、再生装置、プログラム、再生方法

5 技術分野

本発明は、デジタル化された映像の再生と、アプリケーションの実行とを同時に実行する、再生制御技術の技術分野に属する発明であり、本再生制御技術を記録媒体、民生用の再生装置、プログラムに応用する場合の応用技術に深く係る。

背景技術

10 記録媒体を用いた映画ビジネスには、デジタル化された映画作品と、オンラインショッピング用のアプリケーションと同じ記録媒体に記録して販売するという販売戦略がある。映画作品に関連するキャラクタ・グッズを、オンラインで販売するような仕組みを一枚の記録媒体に組み込めば、映画作品と、アプリケーションとの相乗効果により、キャラクタ・グッズの売り上げを高めることができるので

15 はないかという、制作者側の目論見がある。かかるコンテンツを実現するにあたって、今後登場する記録媒体及び再生装置には、より自由度が高いアプリケーション実行環境の整備が要望されている。

ここでかかるデジタル化された映画作品と、オンラインショッピング用のアプリケーションとの同時実行を実現するには、デジタル映像の再生に従って、アプリケーションを動作させるという技術が必要になる。デジタルストリームの再生に従って、Java アプリケーションを動作させる技術としては、DVB-MHP 規格における”シグナリング”が知られている。シグナリングとは、デジタルストリームの再生時間軸において、アプリケーションを起動すべき時点、終了させるべき時点を定義しておき、この時点に、AIT(application Information Table)と呼ばれる情報を送信して、このAITに従った制御を再生装置に行わせるというものである。

しかしながらディスクコンテンツの再生進行は、再生時間軸の逆向がありうる。逆行とは、巻戻しにより時間軸を逆向きに進行することである。アプリケーションを起動すべき時点、終了させるべき時点の前後でこの逆行と、進行とが何度もなされ、いったりきたりが繰り返されれば、ワークメモリへのロード、廃棄が何

度もなされ、余分な読み出負荷が生じてしまう。

発明の開示

本発明の目的は、再生時間軸において再生の逆行があったとしても、余分な読み出負荷の発生を避けることができる再生装置を提供することである。

5 上記目的は、分岐可能な複数のタイトルと、アプリケーションとが記録された記録媒体であって、前記アプリケーションは、仮想マシン向けプログラミング言語で記述されたプログラムであり、仮想マシンによる実行が可能となる生存区間が、予め規定されており、前記各タイトルは、管理テーブルを含み、管理テーブルは、タイトルを生存区間とするアプリケーションを、各タイトル毎に示すこと
10 を特徴とする記録媒体により達成される。

タイトルは、時間軸と制御手順とからなり、タイトルからタイトルへの分岐は分岐コマンドで規定されているので、たとえ一個のタイトルにおける時間軸内において巻戻しがあったとしても、当該分岐コマンドによる分岐がなされる前の、分岐元タイトルまで、再生は逆行することはない。タイトルは、“再生の逆行が有
15 り得ない単位”であり、このタイトルを元に、アプリケーションの生存区間を規定すれば、ワークメモリへの読み込み、廃棄が何度も繰り返されることはない。読み込み、廃棄の繰り返しがなくなるので、余分な読み出負荷の発生を避けることができる。

図面の簡単な説明

20 図1は、本発明に係る再生装置の使用行為についての形態を示す図である。
図2は、BD-ROMにおけるファイル・ディレクトリ構成を示す図である。
図3は、AVClip 時間軸と、PL 時間軸との関係を示す図である。
図4は、4つの Clip_Information_file_name によりなされた一括指定を示す図である。
25 図5は、PLmark によるチャプター定義を示す図である。
図6は、SubPlayItem 時間軸上の再生区間定義と、同期指定とを示す図である。
図7 (a) は、Movie オブジェクトの内部構成を示す図である。
図7 (b) は、BD-J オブジェクトの内部構成を示す図である。
図7 (c) は、Java アプリケーションの内部構成を示す図である。
30 図8 (a) は、Java アーカイブファイルに収められているプログラム、データ

を示す図である。

図 8 (b) は、xlet プログラムの一例を示す図である。

図 9 (a) は、トップメニュー、title#1、title#2 といった一連のタイトルを示す図である。

5 図 9 (b) は、PlayList#1、PlayList#2 の時間軸を足し合わせた時間軸を示す図である。

図 10 は、本編タイトル、オンラインショッピングタイトル、ゲームタイトルという 3 つのタイトルを含むディスクコンテンツを示す図である。

図 11 は、図 10 に示した 3 つのタイトルの再生画像の一例を示す図である。

10 図 12 (a) は、図 10 の破線に示される帰属関係から各アプリケーションの生存区間をグラフ化した図である。

図 12 (b) は、図 12 (a) の生存区間を規定するため、記述されたアプリケーション管理テーブルの一例を示す図である。

図 13 (a) は、起動属性設定の一例を示す図である。

15 図 13 (b) は、他のアプリケーションからのアプリケーション呼出があって初めて起動するアプリケーション(application#2)を示す図である。

図 14 (a) (b) は、Suspend が有意義となるアプリケーション管理テーブル、生存区間の一例を示す図である。

図 15 は、起動属性がとり得る三態様(Persistent、AutoRun、Suspend)と、
20 直前タイトルにおけるアプリケーション状態の三態様(非起動、起動中、Suspend)とがとりうる組合せを示す図である。

図 16 は、本発明に係る再生装置の内部構成を示す図である。

図 17 (a) は、BD-ROM に存在している Java アーカイブファイルを、ローカルメモリ 29 上でどのように識別するかを示す図である。

25 図 17 (b) は、図 17 (a) の応用を示す図である。

図 18 は、ROM 24 に格納されたソフトウェアと、ハードウェアとかなる部分を、レイア構成に置き換えて描いた図である。

図 19 は、Presentation Engine 31 ～モジュールマネージャ 34 による処理を模式化した図である。

30 図 20 は、アプリケーションマネージャ 36 による処理を模式化した図である。

図21は、ワークメモリ37～Default Operation Manager40を示す図である。

図22は、アプリケーションマネージャ36による分岐時の制御手順を示す図である。

5 図23は、アプリケーション終了処理の処理手順を示すフローチャートである。

図24は、アプリケーション終了の過程を模式的に示した図である。

図25(a)は、PL時間軸上に生存区間を定めたアプリケーション管理テーブルを示す図である。

10 図25(b)は、図25(a)のアプリケーション管理テーブルに基づき、アプリケーションの生存区間を示した図である。

図26(a)は、PL時間軸から定まるタイトル時間軸を示す。

図26(b)は、メインとなるアプリケーションの生存区間から定まるタイトル時間軸を示す。

15 図26(c)は、複数アプリケーションの生存区間から定まるタイトル時間軸を示す図である。

図27は、タイトル再生時におけるアプリケーションマネージャ36の処理手順を示すフローチャートである。

図28(a)は、BD-ROMにより実現されるメニュー階層を示す図である。

図28(b)は、メニュー階層を実現するためのMOVIEオブジェクトを示す

20 図である。

図29は、Index Tableと、Index Tableから各Movieオブジェクトへの分岐とを模式化した図である。

図30(a)は、図29(b)のようにIndex Tableが記述された場合における分岐を示す。

25 図30(b)は、非AV系タイトルが強制終了した際ににおける分岐を示す図である。

図31は、モジュールマネージャ34の処理手順を示すフローチャートである。

図32は、アプリケーションマネージャ36によるアプリケーション強制終了の動作例を示す図である。

30 図33は、Playback Control Engine32によるPL再生手順を示すフローチャ

ートである。

図34は、アングル切換、SkipBack,SkipNext の受付手順を示すフローチャートである。

図35は、SkipBack,SkipNextAPI がコールされた際の処理手順を示すフロー

5 チャートである。

図36は、Presentation Engine 3.1による処理手順の詳細を示すフローチャートである。

図37は、SubPlayItem の再生手順を示すフローチャートである。

図38は、第5実施形態に係るアプリケーションマネージャ3.6の処理手順を示すフローチャートである。

図39は、データ管理テーブルの一例を示す図である。

図40は、BD-J オブジェクトが想定している実行モデルを示す図である。

図41 (a) は、ローカルメモリ29における Java アーカイブファイル生存を示す生存区間を示す図である。

15 図41 (b) は、図41 (a) での Java アーカイブファイル生存区間を規定するため、記述されたデータ管理テーブルを示す図である。

図42は、カルセル化による Java アーカイブファイル埋め込みを示す図である。

図43 (a) は、インターリープ化による AVClip 埋め込みを示す図である。

20 図43 (b) は、読み属性の3つの類型を示す図である。

図44 (a) は、データ管理テーブルの一例を示す図である。

図44 (b) は、図44 (a) のデータ管理テーブルの割り当てによるローカルメモリ29の格納内容の変遷を示す図である。

図45 (a) は、新旧再生装置におけるローカルメモリ29のメモリ規模を対比して示す図である。

25 図45 (b) は、読み優先度が設定されたデータ管理テーブルの一例を示す図である。

図46は、アプリケーションマネージャ3.6によるプリロード制御の処理手順を示す図である。

30 図47 (a) は、applicationID が同一であるが、読み優先度は互いに異なる

複数のアプリケーションを規定するデータ管理テーブルの一例を示す図である。

図4 7 (b) は、図4 7 (a) のデータ管理テーブルの割り当てによるローカルメモリ 29 の格納内容の変遷を示す図である。

5 図4 8 (a) は、プリロードされるべきアプリケーション、ロードされるべきアプリケーションに同一の applicationID を付与するよう記述されたデータ管理テーブルの一例を示す図である。

図4 8 (b) は、メモリ規模が小さい再生装置におけるローカルメモリ 29 の格納内容の変遷を示す図である。

10 図4 8 (c) は、メモリ規模が大きい再生装置におけるローカルメモリ 29 の格納内容の変遷を示す図である。

図4 9 は、データ管理テーブルに基づくアプリケーションマネージャ 36 によるロード処理の処理手順を示す図である。

図5 0 は、アプリケーション q の生存区間に、現在の再生時点が到達した場合のアプリケーションマネージャ 36 による処理手順を示す図である。

15 図5 1 は、Java 仮想マシン 38 によるアプリケーションの読み込みがどのようにして行われるかを模式化した図である。

図5 2 (a) は、第7実施形態に係る BD-J オブジェクトの内部構成を示す図である。

20 図5 2 (b) は、プレイリスト管理テーブルの一例を示す図である。

図5 2 (c) は、分岐先タイトルのプレイリスト管理テーブルにおいて、再生属性が AutoPlay に設定された PL が存在する場合、再生装置がどのような処理を行うかを示す図である。

図5 3 (a) は、再生属性が非自動再生を示すよう設定された場合の非 AV 系タイトルにおけるタイトル時間軸を示す図である。

25 図5 3 (b) は、再生属性が AutoPlay に設定された非 AV 系タイトルのタイトル時間軸を示す図である。

図5 3 (c) は、プレイリスト管理テーブルにおいて再生属性が "AutoPlay" を示すよう設定され、アプリケーションが強制終了した場合を示す図である。

30 図5 3 (d) は、プレイリスト管理テーブルにおいて再生属性が "AutoPlay" を示すよう設定され、メインアプリの起動に失敗したケースを示す図である。

図54は、第7実施形態に係るアプリケーションマネージャ36の処理手順を示すフローチャートである。

図55は、プレイリスト管理テーブルにおいて”再生属性=AutoPlay”に設定されることにより、どのような再生が行われるかを模式化した図である。

5 図56(a)(b)は、アプリケーションの扱いと、起動属性との関係を示した図である。

図57は、第8実施形態に係るJava仮想マシン38によるアプリケーションの読み込みがどのようにして行われるかを模式化した図である。

図58(a)(b)は、第9実施形態に係る読み込み優先度の一例を示す図である。

10 図59(a)は、グループ属性が付与されたデータ管理テーブルを示す図である。

図59(b)は、アプリケーション管理テーブルに基づくローカルメモリ29に対するアクセスを示す図である。

図60は、アプリケーション管理テーブルの割当単位のパリエーションを示す15図である。

発明を実施するための最良の形態

(第1実施形態)

以後、本発明に係る再生装置の実施形態について説明する。先ず始めに、本発明に係る再生装置の実施行為のうち、使用行為についての形態を説明する。図1には、本発明に係る再生装置の、使用行為についての形態を示す図である。図1において、本発明に係る再生装置は再生装置200であり、テレビ300、リモコン400と共にホームシアターシステムを形成する。

20 このBD-ROM100は、再生装置200、リモコン300、テレビ400により形成されるホームシアターシステムに、映画作品を供給するという用途に供される。

25 以上が本発明に係る再生装置の使用形態についての説明である。
続いて本発明に係る再生装置の再生の対象となる、記録媒体であるBD-ROMについて説明する。BD-ROMにより、ホームシアターシステムに供給されるディスクコンテンツは、互いに分岐可能な複数タイトルから構成される。各タイトルは、1つ以上のプレイリストと、このプレイリストを用いた動的な制御手順と

からなる。

プレイリストとは、1つ以上のデジタルストリームと、そのデジタルストリームにおける再生経路とから構成され、"時間軸"の概念をもつBD-ROM上のアクセス単位である。以上のプレイリストと、動的な制御手順とを包含しているため、
5 タイトルはデジタルストリーム特有の時間軸の概念と、コンピュータプログラム的な性質とを併せもっている。

図2は、BD-ROMにおけるファイル・ディレクトリ構成を示す図である。本図においてBD-ROMには、Rootディレクトリの下に、BDMVディレクトリがある。

10 BDMVディレクトリには、拡張子 bdmvが付与されたファイル(index.bdmv, MovieObject.bdmv)と、拡張子 BD-Jが付与されたファイル(00001.BD-J, 00002.BD-J, 00003.BD-J)がある。そしてこのBDMVディレクトリの配下には、更にPLAYLISTディレクトリ、CLIPINFディレクトリ、STREAMディレクトリ、BDARディレクトリと呼ばれる4つのサブディレクトリが存在する。
15

PLAYLISTディレクトリには、拡張子 mplsが付与されたファイル(00001.mpls, 00002.mpls, 00003.mpls)がある。

CLIPINFディレクトリには、拡張子 clpiが付与されたファイル(00001.clpi, 00002.clpi, 00003.clpi)がある。

20 STREAMディレクトリには、拡張子 m2tsが付与されたファイル(00001.m2ts, 00002.m2ts, 00003.m2ts)がある。

BDARディレクトリには、拡張子 jarが付与されたファイル(00001.jar, 00002.jar, 00003.jar)がある。以上のディレクトリ構造により、互いに異なる種別の複数ファイルが、BD-ROM上に配置されていることがわかる。

25 本図において拡張子 .m2tsが付与されたファイル(00001.m2ts, 00002.m2ts, 00003.m2ts……)は、AVClipを格納している。AVClipには、MainCLip、SubClipといった種別がある。MainCLipは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィクスストリーム、インタラクティブグラフィクスストリームというような複数エレメンタリストリームを多重化することで得られたデジタルストリームである。
30

SubClip は、オーディオストリーム、グラフィクストリーム、テキスト字幕ストリーム等、1 つのエレメンタリストリームのみにあたるデジタルストリームである。

拡張子 " clpi" が付与されたファイル(00001.clpi,00002.clpi,00003.clpi……)

5 は、AVClip のそれぞれに 1 対 1 に対応する管理情報である。管理情報故に、Clip 情報は、AVClip におけるストリームの符号化形式、フレームレート、ピットレート、解像度等の情報や、頭出し位置を示す EP_map をもっている。

拡張子 " mpls " が付与されたファイル(00001.mpls,00002.mpls,00003.mpls……)は、プレイリスト情報を格納したファイルである。プレイリスト情報は、AVClip を参照してプレイリストを定義する情報である。プレイリストは、MainPath 情報、PLMark 情報、SubPath 情報から構成される。

MainPath 情報は、複数の PlayItem 情報からなる。PlayItem とは、1 つ以上の AVClip 時間軸において、In_Time,Out_Time を指定することで定義される再生区間である。PlayItem 情報を複数配置させることで、複数再生区間からなるプレイリスト(PL)が定義される。図 3 は、AVClip と、PL との関係を示す図である。第 1 段目は AVClip がもつ時間軸を示し、第 2 段目は、PL がもつ時間軸を示す。PL 情報は、PlayItem#1,#2,#3 という 3 つの PlayItem 情報を含んでおり、これら PlayItem#1,#2,#3 の In_time,Out_time により、3 つの再生区間が定義されることになる。これらの再生区間を配列させると、AVClip 時間軸とは異なる時間軸が定義されることになる。これが第 2 段目に示す PL 時間軸である。このように、PlayItem 情報の定義により、AVClip とは異なる時間軸の定義が可能になる。

AVClip に対する指定は、原則 1 つであるが、複数 AVClip に対する一括指定もあり得る。この一括指定は、PlayItem 情報における複数の Clip_Information_file_name によりなされる。図 4 は、4 つの Clip_Information_file_name によりなされた一括指定を示す図である。本図において第 1 段目～第 4 段目は、4 つの AVClip 時間軸(AVClip#1,#2,#3,#4 の時間軸)を示し、第 5 段目は、PL 時間軸を示す。PlayItem 情報が有する、4 つの Clip_Information_file_name にて、これら 4 つの時間軸が指定されている。こう

することで、PlayItem が有する In_time,Out_time により、逐一的に再生可能な 4 つの再生区間が定義されることになる。これにより、PL 時間軸には、切り換え可能な複数アングル映像からなる区間(いわゆるマルチアングル区間)が定義されることになる。

5 PLmark 情報は、PL 時間軸のうち、任意の区間を、チャプターとして指定する情報である。図 5 は、PLmark によるチャプター定義を示す図である。本図において第 1 段目は、AVClip 時間軸を示し、第 2 段目は PL 時間軸を示す。図中の矢印 pk1,2 は、PLmark における PlayItem 指定(ref_to_PlayItem_Id)と、一時点の指定(mark_time_stamp)とを示す。これらの指定により PL 時間軸には、3 つ 10 のチャプター(Chapter#1,#2,#3)が定義されることになる。

SubPath 情報は、複数の SubPlayItem 情報からなる。SubPlayItem 情報は、SubClip の時間軸上に In_Time,Out_Time を指定することで再生区間を定義する。また SubPlayItem 情報は、SubClip 時間軸上の再生区間を、PL 時間軸に同期させるという同期指定が可能であり、この同期指定により、PL 時間軸と、 15 SubPlayItem 情報時間軸とは同期して進行することになる。図 6 は、SubPlayItem 時間軸上の再生区間定義と、同期指定を示す図である。本図において第 1 段目は、PL 時間軸を示し、第 2 段目は SubPlayItem 時間軸を示す。図中の SubPlayItem.IN_time は再生区間の始点を、SubPlayItem.Out_time は再生区間の終点をそれぞれ示す。これにより SubClip 時間軸上にも再生区間が定義されていることがわかる。矢印 Sn1 において Sync_PlayItem_Id は、PlayItem に対する同期指定を示し、矢印 Sn2 において sync_start PTS_of_PlayItem は、PL 時間軸における PlayItem 上の一時点の指定を示す。

複数 AVClip の切り換える可能とするマルチアングル区間や、AVClip 20 SubClip を同期させ得る同期区間の定義を可能とするのが、BD-ROM における 25 プレイリスト情報の特徴である。以上の Clip 情報及びプレイリスト情報は、“静的シナリオ”に分類される。何故なら、以上の Clip 情報及びプレイリスト情報により、静的な再生単位である PL が定義されるからである。以上で静的シナリオについての説明を終わる。

統いて“動的なシナリオ”について説明する。動的シナリオとは、AVClip の 30 再生制御を動的に規定するシナリオデータである。“動的に”というのは、再生裝

置における状態変化やユーザからのキーイベントにより再生制御の中身がかかる
ことをいう。BD-ROM では、この再生制御の動作環境として 2 つのモードを想定して
いる。1つ目は、DVD 再生装置の動作環境と良く似た動作環境であり、コマンドベースの実行環境である。2 つ目は、Java 仮想マシンの動作環境である。

5 これら 2 つの動作環境のうち 1 つ目は、HDMV モードと呼ばれる。2 つ目は、
BD-J モードと呼ばれる。これら 2 つの動作環境があるため、動的シナリオはこ
のどちらかの動作環境を想定して記述される。HDMV モードを想定した動的シ
ナリオは Movie オブジェクトと呼ばれ、管理情報により定義される。一方 BD-J
モードを想定した動的シナリオは BD-J オブジェクトと呼ばれる。

10 先ず初めに Movie オブジェクトについて説明する。

<Movie オブジェクト>

Movie オブジェクトは、“タイトル”の構成要素であり、ファイル
MovieObject.bdmv に格納される。図 7 (a) は、Movie オブジェクトの内部構
成を示す図である。Movie オブジェクトは、属性情報、複数のナビゲーションコ

15 マンドからなるコマンド列からなる。

属性情報は、PL 時間軸において、MenuCall がなされた際、MenuCall 後の再
生再開を意図しているか否かを示す情報(resume_intention_flag)、PL 時間軸に
おいて MenuCall をマスクするかを示す情報(menu_call_mask)、タイトルサーチ
をマスクするかを示す情報(title_search_flag)からなる。Movie オブジェクトは、“

20 時間軸” +” プログラム的制御”という 2 つの性質を併せ持つことができるで、
本編再生を実行するもの等、多様な種類のタイトルがこの Movie オブジェクトに
より記述されることになる。

ナビゲーションコマンド列は、条件分岐、再生装置における状態レジスタの設
定、状態レジスタの設定値取得等を実現するコマンド列からなる。Movie オブジ

25 ェクトにおいて記述可能なコマンドを以下に示す。

PlayPL コマンド

書式:PlayPL(第 1 引数, 第 2 引数)

第 1 引数は、プレイリストの番号で、再生すべき PL を指定することができる。

30 第 2 引数は、その PL に含まれる PlayItem や、その PL における任意の時刻、

Chapter、Mark を用いて再生開始位置を指定することができる。

PlayItem により PL 時間軸上の再生開始位置を指定した PlayPL 関数を PlayPLatPlayItem0、

Chapter により PL 時間軸上の再生開始位置を指定した PlayPL 関数を

5 PlayPLatChapter0、

時刻情報により PL 時間軸上の再生開始位置を指定した PlayPL 関数を PlayPLatSpecifiedTime0 という。

JMP コマンド

10 書式 : JMP 引数

JMP コマンドは、現在の動的シナリオを途中で廃棄し(discard)、引数たる分岐先動的シナリオを実行するという分岐である。JMP 命令の形式には、分岐先動的シナリオを直接指定している直接参照のものと、分岐先動的シナリオを間接参照している間接参照のものがある。

15

Movie オブジェクトにおけるナビゲーションコマンドの記述は、DVD におけるナビゲーションコマンドの記述方式と良く似ているので、DVD 上のディスクコンテンツを、BD-ROM に移植するという作業を効率的に行うことができる。Movie オブジェクトについては、以下の国際公開公報に記載された先行技術が存在する。詳細については、本国際公開公報を参照されたい。

国際公開公報 WO 2004/074976

以上で Movie オブジェクトについての説明を終える。続いて BD-J オブジェクトについて説明する。

<BD-J オブジェクト>

拡張子 BD-J が付与されたファイル(00001.BD-J,00002.BD-J,00003.BD-J)は、BD-J オブジェクトを構成する。BD-J オブジェクトは、Java プログラミング環境で記述された、BD-J モードの動的シナリオである。図 7 (b) は、BD-J オブジェクトの内部構成を示す図である。本図に示すように BD-J オブジェクトは、

Movie オブジェクト同様の属性情報、アプリケーション管理テーブルからなる。属性情報を有している点でBD-J オブジェクトは Movie オブジェクトとほぼ同じである。Movie オブジェクトとの違いは、BD-J オブジェクトはコマンドが直接記述されていない点である。つまり Movie オブジェクトにおいて制御手順は、ナ
5 ビゲーションコマンドにより直接記述されていた。これに対し BD-J オブジェクトでは、そのタイトルを生存区間としている Java アプリケーションをアプリケーション管理テーブル上に定めることにより、間接的に制御手順を規定している。このような間接的な規定により、複数タイトルにおいて制御手順を共通化するという、制御手順の共通化を効率的に行うことができる。

10 図7 (c) は、Java アプリケーションの内部構成を示す図である。本図においてアプリケーションは、仮想マシンのヒープ領域(ワークメモリとも呼ばれる)にロードされた 1つ以上の xlet プログラムからなる。このワークメモリでは、1つ以上のスレッドが動作しており、ワークメモリにロードされた xlet プログラム、及び、スレッドから、アプリケーションは構成されることになる。以上がアプリ
15 ケーションの構成である。

このアプリケーションの実体にあたるのが、BDMV ディレクトリ配下の BDAR ディレクトリに格納された Java アーカイブファイル(00001.jar,00002.jar)である。以降、Java アーカイブファイルについて説明する。

Java アーカイブファイル(00001.jar,00002.jar)は、Java アプリケーションを構
20 成するプログラム、データを格納したアーカイブファイルである。図8 (a) は、アーカイブファイルにより収められているプログラム、データを示す図である。本図におけるデータは、枠内に示すディレクトリ構造が配置された複数ファイルを、java アーカイバでまとめたものである。枠内に示すディレクトリ構造は、root ディレクトリ、java ディレクトリ、image ディレクトリとなり、root ディに common.pkg が、java ディレクトリに aaa.class,bbb.class が、image ディレクトリに、menu.jpg が配置されている。java アーカイブファイルは、これらを java アーカイバでまとめることで得られる。かかるデータは、BD-ROM からキャッシュに読み出されるにあたって展開され、キャッシュ上で、ディレクトリに配置された複数ファイルとして取り扱われる。Java アーカイブファイルのファイル名
25 における"xxxxx"という 5 行の数値は、アプリケーションの ID(applicationID)を
30

示す。本 Java アーカイブファイルがキャッシュに読み出された際、このファイル名における数値を参照することにより、任意の Java アプリケーションを構成するプログラム、データを取り出すことができる。

Java アーカイブファイルにおいて 1 つにまとめられるファイルには、xlet プログラムがある。

xlet プログラムは、JMF(Java Media FrameWork)インターフェイスを利用することができる Java プログラムである。xlet プログラムは、キーイベントを受信する EventListener 等、複数の関数からなり、JMF 等の方式に従って、受信したキーイベントに基づく処理を行う。

図 8 (b) は、xlet プログラムの一例を示す図である。JMF "BD://00001.mpls"; は、PL を再生するプレーヤインスタンスの生成を Java 仮想マシンに命じるメソッドである。A.play は、JMF プレーヤインスタンスに再生を命じるメソッドである。かかる JMF プレーヤインスタンス生成は、JMF ライブライにに基づきなされる。xlet プログラムの記述は、BD-ROM の PL に限らず、時間軸をもったコンテンツ全般に適用可能な JMF の記述である。このような記述が可能であるので、Java プログラミングに長けたソフトハウスに、BD-J オブジェクト作成を促すことができる。

図 8 (b) における JumpTitle(); は、ファンクション API のコールである。このファンクション API は、他のタイトルへの分岐(図中では title#1)を再生装置に命じるものである。ここでファンクション API とは、BD-ROM 再生装置により供給される API(Application Interface)である。JumpTitle コマンドの他にも、ファンクション API のコールにより、BD-ROM 再生装置特有の処理を xlet プログラムに記述することができる。

BD-J モードにおいて PL 再生は、JMF インターフェイスにより規定される。この JMF プレーヤインスタンスは、PL 時間軸を定めるものだから、タイトル時間軸は、この JMF プレーヤインスタンスをもったタイトルから定まる。また BD-J モードにおいてタイトルからタイトルへの分岐は JumpTitleAPI のコールにより規定される。JumpTitleAPI コールは、いわばタイトルの終了時点を定めるものなので、こうした JMF プレーヤインスタンス、JumpTitleAPI コールをもったアプリケーションが、BD-J モードにおいてタイトルの開始及び終了を

律することになる。かかるアプリケーションを本編再生アプリケーションという。

以上が、BD-J モードにおける動的シナリオについての説明である。この BD-J モードにおける動的シナリオにより、PL 再生と、プログラム的制御とを併せもったタイトルが定義されることになる。尚、本実施形態においてアプリケーションを構成するプログラム、データは、Java アーカイブファイルにまとめられたが、
5 LZH ファイル、zip ファイルであってもよい。

<タイトル時間軸>

タイトルを構成する静的シナリオ、動的シナリオについて説明を終えたところで、これらによりどのような時間軸が定義されるかについて説明する。タイトル
10 により定義される時間軸は、“タイトル時間軸”と呼ばれる。タイトル時間軸とは、Movie オブジェクト、又は、BD-J オブジェクトにより再生が命じられる PL に
より構成される。ここで一例を挙げるのは、図 9 (a) のようなタイトルである。
このタイトルは、トップメニュー→title#1→title#2→トップメニュー、トップメニ
ニュー→title#3→トップメニューという一連のタイトルである。かかるタイトル
15 のうち、title#1 は PlayList#1、PlayList#2、title#2 が PlayList#3、title#3 が PlayList#4 の再生を命じるものなら、図 9 (b) のように、PlayList#1、PlayList#2 の時間軸を足し合わせた時間軸を、title#1 はもつことになる。同様に title#2 は、
PlayList#3 時間軸からなる時間軸を、title#3 は PlayList#4 時間軸からなる時間
軸を持つことになる。これらタイトル時間軸における PL 時間軸ではシームレス
20 再生が保証されるが、タイトル時間軸ではシームレス再生の保証は必要でなく
なる。Java アプリケーションを動作させるにあたっては、Java アプリケーショ
ンを、仮想マシンのワークメモリ上に存在させてもよい期間(サービス期間)を、
こうしたタイトル時間軸上に定義せねばならない。BD-J モードにおいて Java ア
プリケーションを動作させるにあたっては、互いに分岐し合う時間軸上に、Java
25 アプリケーションのサービス期間を定義せねばならない。このサービス期間の定
義が、BD-ROM 向けのプログラミングを行うにあたっての留意点になる。

最後に、index.bdmv に格納された IndexTable について説明する。IndexTable
は、タイトル番号と、Movie オブジェクト、BD-J オブジェクトとを対応づける
テーブルであり、動的シナリオから動的シナリオへの分岐の際、参照される間接
30 参照用テーブルである。IndexTable は、複数ラベルのそれぞれに対する Index

からなる。各 Index には、そのラベルに対応する動的シナリオの識別子が記述されている。こうした IndexTable を参照することで、Movie オブジェクト、BD・J オブジェクトの違いを厳密に区別することなく、分岐を実現することができる。IndexTable については、以下の国際公開公報に詳細が記載されている。詳細につ

5 いては、本公報を参照されたい。

国際公開公報 WO 2004/025651 A1 公報

以上が BD-ROM に記録されているファイルについて説明である。

10 <アプリケーション管理テーブル>

JMF プレーヤインスタンス、JumpTitleAPI コールをもったアプリケーションが、タイトル時間軸を律することは上述した通りだが、JMF プレーヤインスタンスや JumpTitleAPI のコールをもたないその他のアプリケーションを、タイトル時間軸上で動作させる場合、時間軸の何処からアプリケーションによるサービスを開始し、時間軸の何処でアプリケーションによるサービスを終えるかという”サービスの開始点・終了点”を明確に規定することが重要になる。本実施形態では、アプリケーションによるサービスが開始してから、終了するまでを、”アプリケーションの生存”として定義する。アプリケーションの生存を定義するための情報は、BD・J オブジェクトにおけるアプリケーション管理テーブルに存在する。以降アプリケーション管理テーブルについてより詳しく説明する。

アプリケーション管理テーブル(AMT)は、各タイトルが有しているタイトル時間軸において、仮想マシンのワークメモリ上で生存し得るアプリケーションを示す情報である。ワークメモリにおける生存とは、そのアプリケーションを構成する xlet プログラムが、ワークメモリに読み出され、仮想マシンによる実行が可能になっている状態をいう。図 7 (b) における破線矢印 at1 は、アプリケーション管理テーブルの内部構成をクローズアップして示す。この内部構成に示すように、アプリケーション管理テーブルは、『生存区间』と、そのタイトルを生存区间としているアプリケーションを示す『applicationID』と、そのアプリケーションの『起動属性』とからなる。

30 近い将来、実施されるであろうディスクコンテンツを題材に選んで、アプリケ

ーション管理テーブルにおける生存区間記述について、具体例を交えて説明する。

ここで題材にするディスクコンテンツは、映像本編を構成する本編タイトル(title#1)、オンラインショッピングを構成するオンラインショッピングタイトル(title#2)、ゲームアプリケーションを構成するゲームタイトル(title#3)という、性

5 格が異なる3つのタイトルを含むものである。図10は、本編タイトル、オンラインショッピングタイトル、ゲームタイトルという3つのタイトルを含むディスクコンテンツを示す図である。本図における右側には IndexTable を記述しており、左側には3つのタイトルを記述している。

右側における破線枠は、各アプリケーションがどのタイトルに属しているかと
10 いう帰属関係を示す。3つのタイトルのうち title#1 は、application#1、
application#2、application#3 という3つのアプリケーションからなる。title#2 は、
application#3、application#4 という2つのアプリケーション、title#3 は、
application#5 を含む。図11は、図10に示した3つのタイトルの再生画像の一例を示す図である。これら3つのタイトルの再生画像において、図11 (a)

15 (b) の本編タイトル、オンラインショッピングタイトルには、ショッピングカードを模した映像(カート cr1)1 が存在するが、図11 (c) のゲームタイトルには、カート映像が存在しない。カート cr1 は、本編タイトル、オンラインショッピングタイトルにおいて共通して表示しておく必要があるので、カートプログラムたる application#3 を、title#1、title#2 の双方で起動するようにしている。こ
20 のように複数タイトルで起動するようなアプリケーションには、上述したカートアプリの他に、映画作品に登場するマスコットを模したエージェントアプリ、メニュー操作に応じてメニュー表示を行うメニューアプリがある。

図10の破線に示される帰属関係から各アプリケーションの生存区間をグラフ化すると、図12 (a) のようになる。本図において横軸は、タイトル時間軸で
25 あり、縦軸方向に各アプリケーションの生存区間を配置している。ここで application#1、application#2 は、title#1 のみに帰属しているので、これらの生存区間は、title#1 内に留まっている。application#4 は、title#2 のみに帰属しているので、これらの生存区間は、title#2 内に留まっている。application#5 は、title#3 のみに帰属しているので、これらの生存区間は、title#3 内に留まっている。application#3 は、title#1 及び title#2 に帰属しているので、これらの生存区
30

問は、title#1～title#2 にわたる。この生存区間に基づき、アプリケーション管理テーブルを記述すると、title#1,#2,#2 のアプリケーション管理テーブルは図 12 (b) のようになる。このようにアプリケーション管理テーブルが記述されれば、

title#1 の再生開始時において application#1、application#2、application#3 を

5 ワークメモリにロードしておく。そして title#2 の開始時に application#1、application#2 をワークメモリから削除して application#3 のみにするという制御を行う。これと同様に title#2 の再生開始時において application#4 をワークメモリにロードしておき、title#3 の開始時に application#3,#4 をワークメモリから削除するという制御を行いうる。

10 更に、title#3 の再生中において application#5 をワークメモリにロードしておき、title#3 の再生終了時に application#5 をワークメモリから削除するという制御を行いうる。

タイトル間分岐があった場合でも、分岐元一分岐先において生存しているアプリケーションはワークメモリ上に格納しておき、分岐元ではなく、分岐先にのみ

15 存在するアプリケーションをワークメモリに読み込めば良いから、アプリケーションをワークメモリに読み込む回数は必要最低数になる。このように、読み込回数を少なくすることにより、タイトルの境界を意識させないアプリケーション、つまりアンパウンドリなアプリケーションを実現することができる。

統いてアプリケーションの起動属性について説明する。起動属性には、自動的な起動を示す「AutoRun」、自動起動の対象ではないが、仮想マシンのワークメモリに置いて良いことを示す「Persistent」、仮想マシンのワークメモリにはおかれるが、CPU パワーの割り当ては不可となる「Suspend」がある。

「AutoRun」は、対応するタイトルの分岐と同時に、そのアプリケーションをワークメモリに読み込み、且つ実行する旨を示す生存区間である。あるタイトルから、別のタイトルへの分岐があると、アプリケーション管理を行う管理主体(アプリケーションマネージャ)は、その分岐先タイトルにおいて生存しており、かつ起動属性が AutoRun に設定されたアプリケーションを仮想マシンのワークメモリに読み込み実行する。これによりそのアプリケーションは、タイトル分岐と共に自動的に起動されることになる。起動属性を AutoRun に設定しておくアプリケーションとしては、JMF プレーヤインスタンス及び JumpTitleAPI コールを

もつようなアプリケーションが挙げられる。何故なら、このようなアプリケーションは、タイトル時間軸を律する側のアプリケーションであり、このようなアプリケーションを自動的に起動にしないと、タイトル時間軸の概念が曖昧になってしまうからである。

5 起動属性「Persistent」は、継続属性であり、分岐元 title におけるアプリケーションの状態を継続することを示す。またワークメモリにロードしてよいことを示す属性である。起動属性が「Persistent」である場合、この起動属性が付与されたアプリケーションは、他のアプリケーションからの呼び出しが許可されることになる。アプリケーション管理を行う管理主体(アプリケーションマネージャ)

10 は、起動中のアプリケーションから呼出があると、そのアプリケーションの applicationID が、アプリケーション管理テーブルに記述されていて、起動属性が「Persistent」であるか否かを判定する。「Persistent」であれば、そのアプリケーションをワークメモリにロードする。一方、その呼出先アプリケーションの applicationID がアプリケーション管理テーブルに記述されていない場合、その

15 アプリケーションはワークメモリにロードされない。アプリケーションによる呼出は、この「Persistent」が付与されたアプリケーションに限られることになる。

「Persistent」は、起動属性を明示的に指定しない場合に付与されるデフォルトの起動属性であるから、あるアプリケーションの起動属性が無指定「—」である場合、そのアプリケーションの起動属性の起動属性はこの Persistent である

20 ことを意味する。

これらの起動属性が、図 11 のアプリケーションにおいてどのように記述されているかについて説明する。図 13 は、図 12 の 3 つのアプリケーションに対する起動属性の設定例である。図 12 に示した 3 つのアプリケーションのうち application#2 は、図 13 (b) に示すように他のアプリケーションからのアプリケーション呼出があって初めて起動するアプリケーションであるとする。残りの application#1、application#3 は、title#1 の開始と同時に自動的に起動されるアプリケーションであるとする。この場合、図 13 (a) に示すように、アプリケーション管理テーブルにおける各アプリケーションの起動属性を、application#1、application#3 は「AutoRun」、application#2 は、「Persistent」
30 と設定しておく。この場合、application#1、application#3 は、title#1 への分岐

時において自動的にワークメモリにロードされ、実行されることになる。一方 application#2 は、起動属性が Persistent なので、「application#3 は仮想マシンのワークメモリ上にロードしてよいアプリケーション」であるとの消極的な意味に解される。故に、application#2 は、application#1 からの呼出があって初めて

5 仮想マシンのワークメモリにロードされ、実行されることになる。以上の生存区間・起動属性により、仮想マシン上で動作し得るアプリケーションの数を 4 個以下に制限し、総スレッド数を 64 個以下に制限することが可能なので、アプリケーションの安定動作を保証することができる。

統いて Suspend について説明する。

10 Suspend とは、リソースは割り付けられているが、CPU パワーは割り当てられない状態にアプリケーションが置かれることをいう。かかる Suspend は、例えばゲームタイトルの実行中に、サイドパスを経由するという処理の実現に有意義である。図 14 (a) (b) は Suspend が有意義となる事例を示す図である。図 14 (b) に示すように、3 つのタイトル(title#1、title#2、title#3)があり、そのうち title#1、title#3 はゲームアプリを実行するが、途中の title#2 はサイドパスであり、映像再生を実現するものである。サイドパスでは、映像再生を実現する必要があるため、ゲームの実行を中断させることになる。ゲームアプリでは途中のスコア等が計数されているため、リソースの格納値は title#2 の前後で維持したい。この場合、title#2 の開始時点でゲームアプリを Suspend し、title#3 の開始時点で application#2 をレジュームするというようにアプリケーション管理テーブルを記述する。こうすることで title#2 において application#2 は、リソースは割り付けられているので、リソースの格納値は維持される。しかし、CPU パワーは割り当てられない状態なので仮想マシンにより application#2 は実行されることはない。これにより、ゲームタイトルの実行中に、サイドパスを実行する

15 20 25 30 という処理が実現される。

図 15 は、起動属性がとり得る三態様(Persistent、AutoRun、Suspend)と、直前タイトルにおけるアプリケーション状態の三態様(非起動、起動中、Suspend)とがとりうる組合せを示す図である。直前状態が“非起動”である場合、起動属性が“AutoRun”であるなら、分岐先タイトルにおいてそのアプリケーションは、起動されることになる。

直前状態が”非起動”であり、起動属性が”Persistent”、“Suspend”であるなら、分岐先タイトルにおいてそのアプリケーションは、何ももせず、状態を継続することになる。

直前状態が”起動中”である場合、起動属性が”Persistent”、“AutoRun”であるなら、分岐先タイトルにおいてそのアプリケーションは、何もせず、状態を継続することになる。

起動属性が”Suspend”であるなら、アプリケーションの状態は Suspend されることになる。直前状態が”Suspend”である場合、分岐先タイトルの起動属性が”Suspend”なら Suspend を維持することになる。”Persistent”、“AutoRun”であるなら、分岐先タイトルにおいてそのアプリケーションは、レジュームすることになる。アプリケーション管理テーブルにおいて生存区間及び起動属性を定義することにより、タイトル時間軸の進行に沿って、Java アプリケーションを動作させるという同期制御が可能になり、映像再生と、プログラム実行とを併せた、様々なアプリケーションを世に送り出すことができる。以上が記録媒体についての説明である。続いて本発明に係る再生装置について説明する。

図 16 は、本発明に係る再生装置の内部構成を示す図である。本発明に係る再生装置は、本図に示す内部に基づき、工業的に生産される。本発明に係る再生装置は、主としてシステム LSI と、ドライブ装置という 2 つのパートからなり、これらのパートを装置のキャビネット及び基板に実装することで工業的に生産することができる。システム LSI は、再生装置の機能を果たす様々な処理部を集積した集積回路である。こうして生産される再生装置は、BD-ROM ドライブ 1、リードバッファ 2、デマルチプレクサ 3、ビデオデコーダ 4、ビデオブレーン 5、P-Graphics デコーダ 9、Presentation Graphics ブレーン 10、合成部 11、フォントゼネレータ 12、I-Graphics デコーダ 13、スイッチ 14、Interactive Graphics ブレーン 15、合成部 16、HDD 17、リードバッファ 18、デマルチプレクサ 19、オーディオデコーダ 20、シナリオメモリ 21、CPU 22、キーイベント処理部 23、命令 ROM 24、スイッチ 25、CLUT 部 26、CLUT 部 27、PSR セット 28、ローカルメモリ 29 から構成される。

BD-ROM ドライブ 1 は、BD-ROM のローディング／イジェクトを行い、BD-ROM に対するアクセスを実行する。

リードバッファ 2 は、FIFO メモリであり、BD-ROM から読み出された TS パケットが先入れ先出し式に格納される。

デマルチプレクサ(De-MUX)3 は、リードバッファ 2 から TS パケットを取り出して、この TS パケットを構成する TS パケットを PES パケットに変換する。

5 そして変換により得られた PES パケットのうち、CPU 2 2 から設定された PID をもつものをビデオデコーダ 4、オーディオデコーダ 2 0、P-Graphics デコーダ 9、I-Graphics デコーダ 1 3 のどれかに出力する。

ビデオデコーダ 4 は、デマルチプレクサ 3 から出力された複数 PES パケットを復号して非圧縮形式のピクチャを得てビデオブレーン 5 に書き込む。

10 ビデオブレーン 5 は、非圧縮形式のピクチャを格納しておくためのブレーンである。ブレーンとは、再生装置において一画面分の画素データを格納しておくためのメモリ領域である。再生装置に複数のブレーンを設けておき、これらブレーンの格納内容を画素毎に加算して、映像出力を行えば、複数の映像内容を合成させた上で映像出力を行うことができる。ビデオブレーン 5 における解像度は 1920
15 × 1080 であり、このビデオブレーン 5 に格納されたピクチャデータは、16 ピットの YUV 値で表現された画素データにより構成される。

P-Graphics デコーダ 9 は、BD-ROM、HDD 1 7 から読み出されたプレゼンテーショングラフィックスストリームをデコードして、非圧縮グラフィックスを Presentation Graphics ブレーン 1 0 に書き込む。グラフィックスストリームのデコードにより、字幕が画面上に現れることになる。

Presentation Graphics ブレーン 1 0 は、一画面分の領域をもったメモリであり、一画面分の非圧縮グラフィックスを格納することができる。本ブレーンにおける解像度は 1920 × 1080 であり、Presentation Graphics ブレーン 1 0 中の非圧縮グラフィックスの各画素は 8 ピットのインデックスカラーで表現される。

25 CLUT(Color Lookup Table)を用いてかかるインデックスカラーを変換することにより、Presentation Graphics ブレーン 1 0 に格納された非圧縮グラフィックスは、表示に供される。

合成部 1 1 は、非圧縮状態のピクチャデータ(i)を、Presentation Graphics ブレーン 1 0 の格納内容と合成する。

30 フォントゼネレータ 1 2 は、文字フォントを用いて textST ストリームに含ま

れるテキストコードをビットマップに展開する。

I-Graphics デコーダ 13 は、BD-ROM 又は HDD 17 から読み出されたインタラクティブグラフィクスストリームをデコードして、非圧縮グラフィクスを Interactive Graphics プレーン 15 に書き込む。

5 スイッチ 14 は、フォントゼネレータ 12 が生成したフォント列、P-Graphics デコーダ 9 のデコードにより得られたグラフィクスの何れかを選択的に Presentation Graphics プレーン 10 に書き込むスイッチである。

Interactive Graphics プレーン 15 は、I-Graphics デコーダ 13 によるデコードで得られた非圧縮グラフィクスが書き込まれる。

10 合成部 16 は、Interactive Graphics プレーン 10 の格納内容と、合成部 8 の出力である合成画像(非圧縮状態のピクチャデータと、Presentation Graphics プレーン 7 の格納内容とを合成したもの)とを合成する。

HDD 17 は、ネットワーク等を介してダウンロードされた SubClip、Clip 情報、プレイリスト情報が格納される内蔵媒体である。この HDD 17 中のプレイリスト情報は BD-ROM 及び HDD 17 のどちらに存在する Clip 情報であっても、指定できる点で異なる。この指定にあたって、HDD 17 上のプレイリスト情報は、BD-ROM 上のファイルをフルパスで指定する必要はない。本 HDD 17 は、BD-ROM と一緒にになって、仮想的な 1 つのドライブ(パーティショナルパッケージと呼ばれる)として、再生装置により認識されるからである。故に、PlayItem 情報における Clip_Information_file_name 及び SubPlayItem 情報の Clip_Information_file_name は、Clip 情報の格納したファイルのファイルボディにあたる 5 衔の数値を指定することにより、HDD 17、BD-ROM 上の AVClip を指定することができる。この HDD の記録内容を読み出し、BD-ROM の記録内容と動的に組み合わせることにより、様々な再生のバリエーションを産み出すことができる。

リードバッファ 18 は、FIFO メモリであり、HDD 17 から読み出された TS パケットが先入れ先出し式に格納される。

デマルチプレクサ(De-MUX) 19 は、リードバッファ 18 から TS パケットを取り出して、TS パケットを PES パケットに変換する。そして変換により得られた PES パケットのうち、所望の streamPID をもつものをフォントゼネレータ 1

2に出力する。

オーディオデコーダ20は、デマルチブレクサ19から出力されたPESパケットを復号して、非圧縮形式のオーディオデータを出力する。

5 シナリオメモリ21は、カレントのPL情報やカレントのClip情報を格納して
おくためのメモリである。カレントPL情報とは、BD-ROMに記録されている複数PL情報のうち、現在処理対象になっているものをいう。カレントClip情報とは、BD-ROMに記録されている複数Clip情報のうち、現在処理対象になっているものをいう。

10 CPU22は、命令ROM24に格納されているソフトウェアを実行して、再生装置全体の制御を実行する。

キーイベント処理部23は、リモコンや再生装置のフロントパネルに対するキー操作に応じて、その操作を行うキーイベントを出力する。

命令ROM24は、再生装置の制御を規定するソフトウェアを記憶している。

15 スイッチ25は、BD-ROM及びHDD17から読み出された各種データを、リードパッファ2、リードパッファ18、シナリオメモリ21、ローカルメモリ29のどれかに選択的に投入するスイッチである。

CLUT部26は、ビデオプレーン5に格納された非圧縮グラフィクスにおけるインデックスカラーを、Y,Cr,Cb値に変換する。

20 CLUT部27は、Interactive Graphicsプレーン15に格納された非圧縮グラフィクスにおけるインデックスカラーを、Y,Cr,Cb値に変換する。

PSRセット28は、再生装置に内蔵されるレジスタであり、64個のPlayer Status Register(PSR)と、4096個のGeneral Purpose Register(GPR)とからなる。Player Status Registerの設定値(PSR)のうち、PSR4～PSR8は、現在の再生時点を表現するのに用いられる。

25 PSR4は、1～100の値に設定されることで、現在の再生時点が属するタイトルを示し、0に設定されることで、現在の再生時点がトップメニューであることを示す。

PSR5は、1～999の値に設定されることで、現在の再生時点が属するチャプターパン号を示し、0xFFFFに設定されることで、再生装置においてチャプターパン号が無効であることを示す。

PSR6 は、0~999 の値に設定されることで、現在の再生時点が属する PL(カレント PL)の番号を示す。

PSR7 は、0~255 の値に設定されることで、現在の再生時点が属する Play Item(カレント Play Item)の番号を示す。

5 PSR8 は、0~0xFFFFFFFF の値に設定されることで、45KHz の時間精度を用いて現在の再生時点(カレント PTM(Presentation TiMe))を示す。以上の PSR4 ~PSR8 により、現在の再生時点が特定されることになる。

ローカルメモリ 29 は、BD-ROM からの読み出しが低速である故、BD-ROM の記録内容を一時的に格納しておくためのキャッシュメモリである。かかるローカルメモリ 29 が存在することにより、BD-J モードにおけるアプリケーション実行は、効率化されることになる。図 17 (a) は、BD-ROM に存在している Java アーカイブファイルを、ローカルメモリ 29 上でどのように識別するかを示す図である。図 17 (a) の表は、左欄に BD-ROM 上のファイル名を、右欄にローカルメモリ 29 上のファイル名をそれぞれ示している。これら右欄、左欄を比較すれば、ローカルメモリ 29 におけるファイルは、ディレクトリ指定"BDJA" を省いたファイルパスで指定されていることがわかる。

図 17 (b) は、図 17 (a) の応用を示す図である。本応用例は、ヘッダ+データという形式で、ファイルに格納されているデータを格納するというものである。何をヘッダに用いるかというと、ローカルメモリ 29 におけるファイルパスを用いる。図 17 (b) に示したように、ローカルメモリ 29 では BD-ROM におけるファイルパスの一部を省略したものをファイルパスに用いるから、当該ファイルパスをヘッダに格納することで、各データにおける BD-ROM 上の所在を明らかにすることができます。

以上が、本実施形態に係る再生装置のハードウェア構成である。続いて本実施形態に係る再生装置のソフトウェア構成について説明する。

図 18 は、ROM 24 に格納されたソフトウェアと、ハードウェアとからなる部分を、レイア構成に置き換えて描いた図である。本図に示すように、再生装置のレイア構成は、以下の a), b), c), d-1), d-2), e), f) からなる。つまり、

a)物理的なハードウェア階層の上に、

30 b)AVClip による再生を制御する Presentation Engine 31、

c)プレイリスト情報及び Clip 情報に基づく再生制御を行う Playback Control Engine 3 2、

という 2 つの階層があり、

最上位の階層に

5 e) タイトル間の分岐を実行するモジュールマネージャ 3 4 がある。

これら HDMV モジュール 3 3、モジュールマネージャ 3 4 の間に、

d-1) Movie オブジェクトの解読・実行主体である HDMV モジュール 3 3 と、

d-2) BD-J オブジェクトの解読・実行を行う BD-J モジュール 3 5 とが同じ階層に置かれている。

10 BD-J モジュール 3 5 は、いわゆる Java プラットフォームであり、ワークメモリ 3 7 を含む Java 仮想マシン 3 8 を中核にした構成になっていて、アプリケーションマネージャ 3 6、Event Listener Manager 3 9、Default Operation Manager 4 0 から構成される。先ず初めに、Presentation Engine 3 1 ~ モジュールマネージャ 3 4 について説明する。図 19 は、Presentation Engine 3 1 ~ 15 モジュールマネージャ 3 4 による処理を模式化した図である。

Presentation Engine 3 1 は、AV 再生機能を実行する。再生装置の AV 再生機能とは、DVD プレーヤ、CD プレーヤから踏襲した伝統的な機能群であり、再生開始(Play)、再生停止(Stop)、一時停止(Pause On)、一時停止の解除(Pause Off)、Still 機能の解除(still off)、速度指定付きの早送り(Forward Play(speed))、速度指定付きの巻戻し(Backward Play(speed))、音声切り換え(Audio Change)、副映像切り換え(Subtitle Change)、アングル切り換え(Angle Change)といった機能である。AV 再生機能を実現するべく、Presentation Engine 3 1 は、リードバッファ 2 上に読み出された AVClip のうち、所望に時刻にあたる部分のデコードを行うよう、ビデオデコーダ 4、P-Graphics デコーダ 9、I-Graphics デコーダ 1 3、25 オーディオデコーダ 2 0 を制御する。所望の時刻として PSR8(カレント PTM)に示される箇所のデコードを行わせることにより、AVClip において、任意の時点を再生を可能することができる。図中の◎1 は、Presentation Engine 3 1 によるデコード開始を模式化して示す。

再生制御エンジン(Playback Control Engine(PCE)) 3 2 は、プレイリストの再生機能(i)、再生装置における状態取得／設定機能(ii)といった諸機能を実行する。

PL の再生機能とは、Presentation Engine 3 1 が行う AV 再生機能のうち、再生開始や再生停止を、カレント PL 情報及び Clip 情報に従って行わせることをいう。これら機能(i)～(ii)は、HDMV モジュール 3 3～BD-J モジュール 3 5 からのファンクションコールに応じて実行する。つまり再生制御エンジン 3 2 は、ユーザ操作による指示、レイヤモデルにおける上位層からの指示に応じて、自身の機能を実行する。図 19において、◎2,◎3 が付された矢印は、Clip 情報及びプレイリスト情報に対する Playback Control Engine 3 2 の参照を模式的に示す。

HDMV モジュール 3 3 は、MOVIE モードの実行主体であり、モジュールマネージャ 3 4 から分岐先を構成する Movie オブジェクトが通知されれば、分岐先タイトルを構成する Movie オブジェクトをローカルメモリ 2 9 に読み出して、この Movie オブジェクトに記述されたナビゲーションコマンドを解読し、解読結果に基づき Playback Control Engine 3 2 に対するファンクションコールを実行する。図 19において▽2,▽3,▽4 が付された矢印は、モジュールマネージャ 3 4 からの分岐先 Movie オブジェクトの通知(2)、Movie オブジェクトに記述されたナビゲーションコマンドの解読(3)、Playback Control Engine 3 2 に対するファンクションコール(4)を、模式的に示している。

モジュールマネージャ 3 4 は、BD-ROM から読み出された Index Table を保持して、分岐制御を行う。この分岐制御は、JumpTitle コマンドを HDMV モジュール 3 3 が実行した場合、又は、タイトルジャンプ API が BD-J モジュール 3 5 からコールされた場合、そのジャンプ先となるタイトル番号を受け取って、そのタイトルを構成する Movie オブジェクト又は BD-J オブジェクトを HDMV モジュール 3 3 又は BD-J モジュール 3 5 に通知するというものである。図中の▽0,▽1,▽2 が付された矢印は、JumpTitle コマンドの実行(0)、モジュールマネージャ 3 4 による IndexTable 参照(1)、分岐先 Movie オブジェクト(2)の通知を模式的に示している。

以上が Presentation Engine 3 1 ～モジュールマネージャ 3 4 についての説明である。統いてアプリケーションマネージャ 3 6 について、図 20 を参照しながら説明する。図 20 は、アプリケーションマネージャ 3 6 を示す図である。

アプリケーションマネージャ 3 6 は、アプリケーション管理テーブルを参照したアプリケーションの起動制御、タイトルの正常終了時における制御を実行する。

起動制御とは、モジュールマネージャ 3 4 から分岐先となる BD-J オブジェクトが通知される度に、その BD-J オブジェクトを読み出し、その BD-J オブジェクト内のアプリケーション管理テーブルを参照してローカルメモリ 2 9 アクセスを行う。そして現在の再生時点を生存区間とするアプリケーションを構成する
5 xlet プログラムを、ワークメモリに読み出すという制御である。図 2 0 における
☆1,☆2,☆3 は、起動制御における分岐先 BD-J オブジェクトの通知(1)、アプリ
ケーション管理テーブル参照(2)、Java 仮想マシン 3 8 に対する起動指示を模式
化して示す。この起動指示により Java 仮想マシン 3 8 は、ローカルメモリ 2 9
からワークメモリ 3 7 に xlet プログラムを読み出す(☆5)。

10 タイトルの終了制御には、正常終了時の制御と、異常終了時の制御とがある。
正常終了時の制御には、タイトルを構成するアプリケーションによりジャンプタ
イトル API がコールされて、分岐先タイトルへの切り換えを分岐制御の主体(モ
ジュールマネージャ 3 4)に要求するという制御がある。この終了制御における、
モジュールマネージャ 3 4 通知を模式化して示したのが矢印☆6 である。ここで
15 タイトルを正常終了するにあたって、タイトルを構成するアプリケーションは、
起動されたままであってもよい。何故なら、アプリケーションを終了するか否か
は、分岐先タイトルにおいて判断するからである。本実施形態では深く触れない
が、アプリケーションマネージャ 3 6 は、BD-ROM からローカルメモリ 2 9 に
Java アーカイブファイルを読み出す(8)との処理を行う。このローカルメモリ 2
20 9 への読み出しを模式化したのが☆8 である。

以上がアプリケーションマネージャ 3 6 についての説明である。続いてワーク
メモリ 3 7 ~ Default Operation Manager 4 0 について、図 2 1 を参照しながら
説明する。

ワークメモリ 3 7 は、アプリケーションを構成する xlet プログラムが配置され
25 るヒープ領域である。ワークメモリ 3 7 は、本来 Java 仮想マシン 3 8 内に存在
するが、図 2 1 では、作図の便宜上、ワークメモリ 3 7 を Java 仮想マシン 3 8
上位層に記述している。ワークメモリ 3 7 上の xlet プログラムには、
EventListner や、JMF プレーヤインスタンスが含まれる。

Java 仮想マシン 3 8 は、アプリケーションを構成する xlet プログラムをワー
30 クメモリ 3 7 にロードして、xlet プログラムを解読し、解読結果に従った処理を

実行する。上述したように xlet プログラムは、JMF プレーヤインスタンス生成を命じるメソッド、この JMF プレーヤインスタンスの実行を命じるメソッドを含むので、これらのメソッドで命じられた処理内容を実現するよう、下位層に対する制御を行う。JMF プレーヤインスタンス生成が命じられれば、Java 仮想マシン 3 8 は、BD-ROM 上の YYYY.MPLS ファイルに関連付けられた JMF プレーヤインスタンスを得る。また、JMF プレーヤインスタンスにおける JMF メソッドの実行が命じられれば、この JMF メソッドを BD ミドルウェアに発行して、BD 再生装置が対応しているファンクションコールに置き換せる。そして置換後のファンクションコールを Playback Control Engine 3 2 に発行する。

Event Listener Manager 3 9 は、ユーザ操作により生じたイベント(キーイベント)を解析し、イベントの振り分けを行う。図中の実線矢印△1,△2 は、この Event Listener Manager 3 9 による振り分けを模式的に示す。START、STOP、SPEED 等、xlet プログラム内の Event Listener に登録されたキーイベントなら、BD-J オブジェクトにより間接参照されている xlet プログラムにかかるイベントを振り分ける。START、STOP、SPEED は、JMF に対応したイベントであり、xlet プログラムの Event Listener には、これらのキーイベントが登録されているので、本キーイベントにより xlet プログラムの起動が可能になる。キーイベントが Event Listener 非登録のキーイベントである場合、本キーイベントを Default Operation Manager 4 0 に振り分ける。音声切り替え、アングル切り替え等、BD-ROM 再生装置において生じるキーイベントには、Event Listener に登録されていない多様なものがあり、これらのキーイベントが生じたとしても、漏れの無い処理を実行するためである。

Default Operation Manager 4 0 は、xlet プログラム内の Event Listener に登録されてないキーイベントが Event Listener Manager 3 9 から振り分けられると、その Event Listener 非登録イベントに対応するファンクションコールを Playback Control Engine 3 2 に対して実行する。この Default Operation Manager 4 0 によるファンクションコールを模式的に示したのが、図中の矢印△3 である。尚、図 2 1 において Event Listener 非登録イベントは Event Listener Manager 3 9、Default Operation Manager 4 0 により振り分けられたが、Playback Control Engine 3 2 がダイレクトに Event Listener 非登録イベントを

受け取り、再生制御を行ってもよい(図中の◇4)。

(フローチャートの説明)

以上のアプリケーションマネージャ36についての説明は、その概要に触れたに過ぎない。アプリケーションマネージャ36の処理を更に詳しく示したのが図

5 22、図23のフローチャートである。以降、これらのフローチャートを参照してアプリケーションマネージャ36の処理手順についてより詳しく説明する。

図22は、アプリケーションマネージャ36による分岐時の制御手順を示す図である。本フローチャートは、ステップS2～ステップS5がなす条件を満たすアプリケーション(アプリケーションxという)を、起動又は終了させるという処理である。

10 15

ステップS2は、分岐元タイトルで非起動だが、分岐先タイトルで生存している、分岐先タイトルにおける起動属性がAutoRun属性のアプリケーションxが存在するか否かの判定であり、もしあれば、ローカルメモリ29に対するキャッシュセンスを行う。キャッシュセンスの結果、アプリケーションxがローカルメモリ29上に有れば(ステップS7でYes)、ローカルメモリ29からワークメモリ37にアプリケーションxを読み込む(ステップS8)。ローカルメモリ29に無ければ、BD-ROMからローカルメモリ29にアプリケーションxを読み込んだ上で、ローカルメモリ29からワークメモリ37にアプリケーションxを読み込む(ステップS9)。

20 25

ステップS3は、分岐元タイトルで起動中で、分岐先タイトルで非生存のアプリケーションxが存在するかどうかの判定である。もし存在するのなら、アプリケーションxをワークメモリ37から削除して終了させる(ステップS10)。

ステップS4は、分岐元Suspend、分岐先AutoRun又はPersistentのアプリケーションが存在するか否かの判定である。もし存在するなら、アプリケーションxをResumeする(ステップS11)。

ステップS5は、分岐元タイトルで起動中で、分岐先Suspendのアプリケーションが存在するか否かの判定である。もし存在すれば、アプリケーションxをSuspendする(ステップS12)。

個々のアプリケーションを終了させるにあたってのアプリケーションマネージ
30 ャ36の処理は、図23に示すものとなる。図23は、アプリケーション終了処

理の処理手順を示すフローチャートである。本図は、終了すべき複数アプリケーションのそれぞれについて、ステップS16～ステップS20の処理を繰り返すループ処理になっている(ステップS15)。本ループ処理においてアプリケーションマネージャ36は起動中アプリケーションを終了するようなterminateイベントを発行し(ステップS16)、タイマセットして(ステップS17)、ステップS18～ステップS20からなるループ処理に移行する。このterminateイベントをEvent Listenerが受信すれば、対応するxletプログラムは、終了プロセスを起動する。終了プロセスが終了すれば、そのxletプログラムはワークメモリ37から解放され、終了することになる。

10 ステップS18～ステップS20のループ処理の継続中、タイマはカウントダウンを継続する。本ループ処理においてステップS18は、発行先アプリケーションが終了したか否かの判定であり、もし終了していればこのアプリケーションに対する処理を終える。ステップS19は、タイマがタイムアウトしたか否かの判定であり、タイムアウトすれば、ステップS20において発行先アプリケーションをワークメモリ37から削除してアプリケーションを強制終了する。

15 以上のモジュールマネージャ34の処理を、図24を参照しながら説明する。

図24は、アプリケーション終了の過程を模式的に示した図である。本図における第1段目は、アプリケーションマネージャ36を、第2段目は、3つのアプリケーションを示す。図24の第2段目、左側のアプリケーションは、terminateイベントを受信して終了プロセスに成功したアプリケーションを示す。図24の第2段目、中列のアプリケーションは、terminateイベントを受信したが終了プロセスに失敗したアプリケーションを示す。第2段目、右側のアプリケーションは、EventListnerが実装されていないので、terminateイベントを受信することができなかったアプリケーションを示す。

20 第1段目～第2段目の矢印ep1,ep2は、アプリケーションマネージャによるterminateイベント発行を模式的に示し、矢印ep3は、終了プロセス起動を模式的に示している。

25 第3段目は、終了プロセス成功時における状態遷移後の状態であり、このアプリケーションは、自身の終了プロセスにより終了することになる。これらxletプログラムのように、所定の期間内に終了しないアプリケーションがあれば、アプ

30

リケーションマネージャ 3 6 は、それらを強制的にワークメモリ 3 7 から取り除く。第 4 段目は、アプリケーションマネージャ 3 6 による強制終了を示す。かかる第 4 段目の強制終了を規定するのも、アプリケーションマネージャ 3 6 の 1 つの使命といえる。

5 以上のように本実施形態によれば、分岐元タイトルで起動しており、分岐先タイトルで生存していないアプリケーションは、自動的に終了させられるので、条件付き分岐により再生が複雑に進行する場合でも、再生装置におけるリソースの限界を越える数のアプリケーション立ち上げはなされ無い。分岐前後におけるアプリケーション動作を保証することができるので、デジタルストリームを再生させながら、アプリケーションを実行させるようなディスクコンテンツを多く頒布することができる。

10 (第 2 実施形態)

15 第 1 実施形態においてアプリケーションの生存区間は、タイトル時間軸と一致していたが、第 2 実施形態は、PL 時間軸の一部をアプリケーションの生存区間とすることを提案する。PL 時間軸の一部は、チャプターにより表現されるので、チャプターにて開始点、終了点を記述することにより、アプリケーションの生存区間を規定することができる。図 25 (a) は、PL 時間軸上に生存区間を定めたアプリケーション管理テーブルを示す図である。図 25 (a) においてアプリケーション管理テーブルには、3 つのアプリケーションが記述されており、このうち application#2 は、title#1 の Chapter#2 から Chapter#3 までが生存区间に指定され、起動属性に AutoRun が規定されている。このため application#2 は、図 25 (b) に示すように、Chapter#2 の始点で起動され、Chapter#3 の終点で終了することになる。

一方 application#3 は、title#1 の Chapter#4 から Chapter#6 までが生存区間に指定されている。このため application#3 は、図 25 (b) に示すように、図 25 (b) に示すように、Chapter#4 の始点で起動され、Chapter#6 の終点で終了することになる。

こうして記述されたアプリケーション管理テーブルに基づき、処理を行うため本実施形態に係るアプリケーションマネージャ 3 6 は、PLmark により指示されるチャプター開始点に到達する度に、そのチャプター開始点から生存区間が始ま

るアプリケーションが存在するか否かを判定し、もし存在すればそのアプリケーションをワークメモリ 37 にロードする。

同様に、チャプター開始点に到達する度に、そのチャプターの直前のチャプターで生存区間が終わるアプリケーションが存在するか否かを判定し、もし存在す

5 ればそのアプリケーションをワークメモリ 37 から解放する。

チャプターという単位でアプリケーションの生存を管理すれば、アプリケーションの生存区間をより細かい精度で指定することができる。しかしディスクコンテナには、時間軸の逆向がありうることに留意せねばならない。逆行とは、巻戻しにより時間軸を逆向きに進行することである。チャプターの境界でこの逆行

10 と、進行とが繰り返されれば、ワークメモリへのロード、廃棄が何度もなされ、余分な読み出負荷が生じる。そこで本実施形態では、アプリケーションの起動時期を、タイトルに入って Playback Control Engine 32 による通常再生が開始された瞬間にしている。ここで PL の再生には、通常再生、トリック再生がある。ト

リック再生とは、早送り、巻戻し、SkipNext,SkipBack がある。かかる、早送り、
15 巷戻し、SkipNext,SkipBack がなされている間、アプリケーション起動を開始せず、通常再生が開始されて初めて、アプリケーションを起動するのである。通常再生開始の瞬間を基準にすることにより、上述したような生存区間前後の行き来
があつた場合でも、アプリケーションの起動が必要以上に繰り返されることはない。尚、通常再生開始の瞬間を、アプリケーションの起動基準にするとの処理は、

20 生存区間が title である場合にも、実行してよい。

以上のように本実施形態によれば、PL より小さい、チャプターの単位でアプリケーションの生存区間を規定することができるので、緻密なアプリケーション制御を実現することができる。

(第2実施形態の変更例)

25 図 25 では、各アプリケーションに優先度が付与されている。この優先度は、0~255 の値をとり、アプリケーション間でリソースの使用が競合等が競合した場合、どちらのアプリケーションを強制的に終了させるか、また、どちらのアプリケーションからリソースを奪うかという処理をアプリケーションマネージャ 36 が行うにあたって、判断材料になる。図 25 の一例では、application#1 の優先度は 255, application#2, application#3 の優先度は 128 なので、application#1

—application#2 の競合時において、アプリケーションマネージャ 3 6 は優先度が低い application#2 を強制終了するとの処理を行う。

(第3実施形態)

BD-ROM により供されるディスクコンテンツは、互いに分岐可能な複数タイトルから構成される。各タイトルは、1つ以上の PL と、この PL を用いた制御手順とからなるもの以外に、再生装置に対する制御手順のみからなる非 AV 系タイトルがある。本実施形態は、この非 AV 系タイトルについて説明する。

こうした非 AV 系タイトルのタイトルでは、どのようにタイトル時間軸を定めるのかが問題になる。図 26 (a) は、PL 時間軸から定まるタイトル時間軸を示す。この場合 PL 時間軸がタイトル時間軸になり、このタイトル時間軸上にアプリケーションの生存区間が定まる。この基準となる PL 時間軸がない場合、タイトル時間軸は図 26 (b) (c) のように定めるべきである。

図 26 (b) は、メインとなるアプリケーションの生存区間から定まるタイトル時間軸を示す。メインアプリとは、タイトルにおいて起動属性が AutoRun に設定され、タイトル開始時に自動起動される唯一のアプリケーションであり、例えばランチャーアプリと呼ばれるものがこれにあたる。ランチャーアプリとは、他のアプリケーションを起動するアプリケーションプログラムである。

この図 26 (b) の考え方は、メインアプリが起動している限り、タイトル時間軸は継続していると考え、メインアプリが終了すれば、時間軸を終結させるというものである。図 26 (c) は、複数アプリケーションの生存区間から定まるタイトル時間軸を示す図である。タイトルの開始点で起動されるのは 1 つのアプリケーションであるが、このアプリケーションが他のアプリケーションを呼び出し、更にこのアプリケーションが別のアプリケーションを呼び出すとの処理が繰り返されるというケースがある。この場合、どれかのアプリケーションが起動している限り、タイトル時間軸は継続していると考え、どのアプリケーションも起動していない状態が到来すれば、そこでタイトル時間軸は終結するという考え方である。このように非 AV 系タイトルのタイトル時間軸を定めれば、AV タイトルであっても、非 AV 系タイトルであっても、タイトル時間軸の終結と同時に、所定のタイトルに分岐するという処理を一的に行うことができる。尚非 AV タイトルにおけるタイトル時間軸は、AV タイトルと対比する上で、想定した架空の

時間軸に過ぎない。故に再生装置は、非 AV タイトルにおけるタイトル時間軸上を逆行したり、任意の位置に頭出しすることができない。

以上は本実施形態における記録媒体に対する改良である。続いて本実施形態における再生装置に対する改良について説明する。

5 上述したような手順でタイトル終了を行なうため第3実施形態に係るアプリケーションマネージャ 3 6 は、図 27 に示すような処理で処理を行う。図 27 は、タイトル再生時におけるアプリケーションマネージャ 3 6 の処理手順を示すフローチャートである。本フローチャートは、タイトル再生中、ステップ S 2 1 ~ ステップ S 2 3 を繰り返すというループ構造になっている。

10 10 ステップ S 2 1 は、タイトルジャンプ API が呼び出されたか否かの判定であり、呼び出されれば、ジャンプ先タイトルへの分岐をモジュールマネージャ 3 4 に要求する(ステップ S 2 7)。

15 15 ステップ S 2 2 は、タイトル内のアプリケーション呼出を担っているようなメインアプリが存在するか否かの判定であり、もし存在するなら、その起動の有無を確認する(ステップ S 2 5)。起動してなければ、" タイトルの終わり " であると解釈し、モジュールマネージャ 3 4 に終結を通知する(ステップ S 2 6)。

20 20 ステップ S 2 3 は、メインアプリがない場合に実行されるステップであり(ステップ S 2 2 で No)、どのアプリケーションも起動していない状態かどうかを判定する。もしそうなら、同じく " タイトルの終わり " であると解釈し、モジュールマネージャ 3 4 に終結を通知する(ステップ S 2 6)。

以上のように本実施形態によれば、PL 再生を伴わないタイトルであってしても、アプリケーション実行中は分岐せず、アプリケーション実行が終了して初めて分岐するという処理が可能になる。

(第4実施形態)

25 25 本実施形態は、DVD と同様のメニュー制御を BD-ROM 上で実現する場合の改良に関する。図 28 (a) は、BD-ROM により実現されるメニュー階層を示す図である。本図におけるメニュー階層は、TopMenu を最上位に配し、この TopMenu から下位の TitleMenu、SubTitleMenu、AudioMenu を選択できる構造になっている。図中の矢印 sw1,2,3 は、ボタン選択によるメニュー切り換えを模式的に示す。TopMenu とは、音声選択、字幕選択、タイトル選択の何れを行

うかを受け付けるボタン(図中のボタン sn1,sn2,sn3)を配置したメニューである。

TitleMenu とは、映画作品(title)の劇場版を選択するか、ディレクターズカット版を選択するか、ゲーム版を選択するか等、映画作品の選択を受け付けるボタンを配置したメニューである。AudioMenu とは、音声再生を日本語で行うか、

5 英語で行うかを受け付けるボタンを配置したメニュー、SubTitleMenu とは、字幕表示を日本語で行うか、英語で行うかを受け付けるボタンを配置したメニューである。

こうした階層をもったメニューを動作させるための MOVIE オブジェクトを図 28 (b) に示す。図 28 (b)において MovieObject.bdmv には、FirstPlay OBJ、

10 TopMenu OBJ、AudioMenu OBJ、SubTitleMenu OBJ が格納されている。

FirstPlay オブジェクト(FirstPlay OBJ)は、再生装置への BD-ROM のローディング時に自動的に実行される動的シナリオである。

TopMenu オブジェクト(TopMenu OBJ)は、TopMenu の挙動を制御する動的シナリオである。ユーザがメニュー コールを要求した際、呼び出されるのはこの

15 TopMenu オブジェクトである。TopMenu オブジェクトは、ユーザからの操作に応じて TopMenu 中のボタンの状態を変えるものや、ボタンに対する確定操作に応じて分岐を行う分岐コマンドを含む。この分岐コマンドは、TopMenu から TitleMenu、TopMenu から SubTitleMenu、TopMenu から AudioMenu というメニュー切り替えを実現するものである。

20 AudioMenu オブジェクト(AudioMenu OBJ)は、AudioMenu の挙動を制御する動的シナリオであり、ユーザからの操作に応じて AudioMenu 中のボタンの状態を変えるコマンドや、ボタンに対する確定操作に応じて音声設定を更新するコマンドを含む。

SubTitleMenu オブジェクト(SubTitleMenu OBJ)は、SubTitleMenu の挙動を制御する動的シナリオであり、ユーザからの操作に応じて SubTitleMenu 中のボタンの状態を変えるコマンドや、ボタンに対する確定操作に応じて字幕設定用の PSR を更新するコマンドを含む。

25 TitleMenu オブジェクト(TitleMenu OBJ)は、TitleMenu の挙動を制御する動的シナリオであり、TitleMenu 中のボタンの状態を変えるものや、ボタンに対する確定操作に応じて分岐を行う分岐コマンドをふくむ。

これらのメニュー用 MOVIE オブジェクトにより、DVD で実現されているようなメニューの挙動を実現することができる。以上がメニュー制御に関連する MOVIE オブジェクトである。

図 29 は、Index Table と、Index Table から各 Movie オブジェクトへの分岐 5 とを模式化した図である。本図では左側に Index Table の内部構成を示している。本実施形態における Index Table には、FirstPlayINDEX、TopMenuINDEX、 10 Audio MenuINDEX、Subtitle MenuINDEX、title MenuINDEX、title#1～ #mINDEX、title#m+1～#nINDEX、title#0INDEX を含む。図中の矢印 bc1,2 は、Index Table から FirstPlayOBJ への分岐と、FirstPlayOBJ から TopMenu へ 15 の分岐とを模式的に示し、矢印 bc3,4,5 は、TopMenu から TitleMenu、 SubTitleMenu、AudioMenu への分岐を模式的に示している。矢印 bc6,7,8 は、 TitleMenu から各 Movie オブジェクトへの分岐を模式的に示している。

FirstPlayINDEX、TopMenuINDEX、Audio MenuINDEX、Subtitle 15 MenuINDEX、title MenuINDEX は、それぞれ、FirstPlayOBJ、TopMenuOBJ、 Audio MenuOBJ、Subtitle MenuOBJ、title MenuOBJ についての Index あり、これらの識別子が記述される。

title#1～#mINDEX は、BD-ROM において 1 から m 番目にエントリーされている title についての Index であり、これら 1 から m までの title 番号の選択時に 20 おいて分岐先となる MOVIE オブジェクトの識別子(ID)が記述される。 title#m+1～#nINDEX は、BD-ROM において m+1 から n 番目にエントリーされている title についての Index であり、これら m+1 から n までの title 番号の選択時において分岐先となる BD-J オブジェクトの識別子(ID)が記述される。 25 title#0INDEX は、BD-J オブジェクトの強制終了時において分岐先になるべき Movie オブジェクト又は BD-J オブジェクトを規定する INDEX である。本実施 形態では、TopMenuOBJ についての識別子が、この title#0INDEX に格納され ている。

図 30 (a) は、図 29 のように Index Table が記述された場合における分岐 30 を示す。Index Table がこのように記述されているので、ラベル title#1～title#m を分岐先とした分岐コマンドの実行時には、title#1Index～title#mIndex から Movie オブジェクト#1～#m の識別子が取り出される。ラベル title#m+1～title#n

を分岐とした分岐コマンドの実行時には、title#m+1Index～title#nIndex から BD-J オブジェクト #m+1～#n の識別子が取り出される。BD-J オブジェクト #m+1～#n の識別子は、ファイル名を表す 5 衔の数値であるので、『00001.BD-J,00002.BD-J,00003.BD-J…』が取り出され、そのファイル名の動的シナリオがメモリに読み出されて、実行されることになる。これが Index Table を用いた分岐処理である。

図 30 (b) は、BD-J オブジェクト実行時の強制終了時における分岐を示す図である。強制終了時における分岐では、title#0Index から識別子が取り出され、その識別子の動的シナリオが再生装置により実行される。この識別子が、トップメニュータイトルの識別子なら、アプリケーション強制終了時には、自動的にトップメニューOBJ が選択されることになる。

以上は本実施形態における記録媒体に対する改良である。続いて本実施形態における再生装置に対する改良について説明する。上述した記録媒体の改良に対応するため、再生装置内のモジュールマネージャ 34 は図 31 に示すような処理手順で処理を行う。図 31 は、モジュールマネージャ 34 の処理手順を示すフローチャートである。本フローチャートは、ステップ S31、ステップ S32 からなるループ処理を構成しており、ステップ S31 又はステップ S32 のどちらかが Yes になった際、対応する処理を実行するものである。

ステップ S31 は、タイトルジャンプ API の呼び出しがあったか否かの判定である。もしタイトルジャンプ API の呼び出しがあれば、分岐先ラベルであるタイトル番号 j を取得し(ステップ S33)、Index Table におけるタイトル番号 j の Index から、IDj を取り出して(ステップ S34)、IDj の Movie オブジェクト又は BD-J オブジェクトを、HDMV モジュール 33 又は BD-J モジュール 35 に実行させる(ステップ S35)。

ステップ S32 は、タイトル終了がアプリケーションマネージャ 36 から通知されたか否かの判定であり、もし通知されれば(ステップ S32 で Yes)、トップメニュータイトルを構成するトップメニューOBJ を HDMV モジュール 33 又はモジュールマネージャ 34 に実行させる(ステップ S36)。

以上のアプリケーションマネージャ 36 によるアプリケーション強制終了の動

作例を、図32を参照しながら説明する。ここで再生すべきタイトルは、落下するタイル片を積み重ねるというゲームアプリを含む非AV系タイトルである。図32の下段は、アプリケーションの生存区間からなるタイトル時間軸を示し、上段は、タイトル時間軸において表示される画像を示す。非AV系タイトルがゲームアプリである場合、このゲームアプリの生存区間において、図32の上段左側のように、ゲームアプリの一画面が表示される。ゲームアプリにバグがあり、異常終了すると、アプリケーションマネージャ36は図23のフローチャートに従ってゲームアプリを強制終了させ、タイトルの終了をモジュールマネージャ34に通知する。タイトル終了が通知されると、モジュールマネージャ34はトップメニュータイトルに分岐する。そうすると、図32の上段右側に示すような画像が表示され、ユーザの操作待ちになる。

以上のように本実施形態によれば、プログラムが含むが、デジタルストリームは含まないような非AV系タイトルの終了時においても、トップメニュータイトルに分岐するという制御が可能になる。これによりアプリケーションプログラムがエラー終了したとしても、ブラックアウトやハングアップの発生を回避することができる。

(第5実施形態)

BD-Jモードにおいて、PL再生との同期をどのように実現するかという改良に関する。図8(b)の一例においてJMFプレーヤインスタンスの再生を命じるJMFプレーヤインスタンス(A.play)をJava仮想マシン38が解読した場合、Java仮想マシン38はPL再生APIをコールして、コール直後に"サクセス"を示す応答をアプリケーションに返す。

Playback Control Engine32は、PL再生APIがコールされれば、PL情報を基づく処理手順を実行する。PLが2時間という再生時間を有するなら、この2時間の間、上述した処理は継続することになる。ここで問題になるのは、Java仮想マシン38がサクセス応答を返す時間と、Playback Control Engine32が実際に処理を終える時間とのギャップである。Java仮想マシン38は、イベントドリブンの処理主体であるためコール直後に再生成功か、再生失敗かを示す応答を返すが、Playback Control Engine32による実際の処理終了は2時間経過後

であるので、サクセス応答をアプリケーションに返す時間を基準にしたのでは、2時間経過後にあたる処理終結を感じえない。PL再生において早送り、巻戻し、Skipが行われると、この2時間という再生期間は2時間前後に変動することになり、処理終結の感知は更に困難になる。

5 Playback Control Engine 3 2は、アプリケーションとスタンドアローンで動作するため、第3実施形態のような終了判定では、PL再生の終了をタイトル終了と解釈することができない。そこで本実施形態では、アプリケーションが終了してようがいまいが、ワークメモリ 3 7にJMFプレーヤインスタンスがある限り、つまり、Presentation Engine 3 1の制御権をBD-Jモジュール 3 5が掌握している間、Playback Control Engine 3 2から再生終結イベントを待つ。そして再生終結イベントがあれば、タイトルが終了したと解釈して、次のタイトルへの分岐を行うようモジュールマネージャ 3 4に通知する。こうすることにより、Playback Control Engine 3 2がPL再生を終結した時点を、タイトルの終端とすることができる。

10 15 以降図3 3～図3 7のフローチャートを参照して、Playback Control Engine 3 2による具体的な制御手順を説明する。

図3 3は、Playback Control Engine 3 2によるPL再生手順を示すフローチャートである。この再生手順は、Presentation Engine 3 1に対する制御(ステップS 4 6)と、BD-ROMドライブ1又はHDD 1 7に対する制御(ステップS 4 8)20とを主に含む。本フローチャートにおいて処理対象たるPlayItemをPlayItem#xとする。本フローチャートは、カレントPL情報(.mpls)の読み込みを行い(ステップS 4 1)、その後、ステップS 4 2～ステップS 5 0の処理を実行するというものである。ここでステップS 4 2～ステップS 5 0は、ステップS 4 9がYesになるまで、カレントPL情報を構成するそれぞれのPI情報について、ステップS 254 3～ステップS 5 0の処理を繰り返すというループ処理を構成している。このループ処理において処理対象となるPlayItemを、PlayItem#x(PI#x)とよぶ。このPlayItem#xは、カレントPLの先頭のPlayItemに設定されることにより、初期化される(ステップS 4 2)。上述したループ処理の終了要件は、このPlayItem#xがカレントPLの最後のPlayItemになることであり(ステップS 4 9)、もし最後のPlayItemでなければ、カレントPLにおける次のPlayItemが

PlayItem#x に設定される(ステップ S 5 0)。

ループ処理において繰り返し実行されるステップ S 4 3～ステップ S 5 0 は、 PlayItem#x の Clip_information_file_name で指定される Clip 情報をシナリオメモリ 2 1 に読み込み(ステップ S 4 3)、 PlayItem#x の In_time を、カレント Clip 情報の EPmap を用いて、 I ピクチャアドレス u に変換し(ステップ S 4 4)、 PlayItem#x の Out_time を、カレント Clip 情報の EP_map を用いて、 I ピクチャアドレス v に変換して(ステップ S 4 5)、これらの変換で得られたアドレス v の次の I ピクチャを求めて、そのアドレスの 1 つ手前をアドレス w に設定し(ステップ S 4 7)、 そして算出されたアドレス w を用いて、 I ピクチャアドレス u からアドレス w までの TS パケットの読み出しを BD-ROM ドライブ 1 又は HDD 1 7 に命じるというものである(ステップ S 4 8)。

一方、 Presentation Engine 3 1 に対しては、カレント PLMark の mark_time_stamp から PlayItem#x の Out_time までの出力を命じる(ステップ S 4 6)。以上のステップ S 4 5～ステップ S 4 8 により、 AVClip において、 PlayItem#x により指示されている部分の再生がなされることになる

その後、 PlayItem#x がカレント PL の最後の PI であるかの判定がなされる(ステップ S 4 9)。

PlayItem#x がカレント PL の最後の PI でなければ、カレント PL における次の PlayItem を、 PlayItem#x に設定して(ステップ S 5 0)、ステップ S 4 3 に戻る。以上のステップ S 4 3～ステップ S 5 0 を繰り返すことにより、 PL を構成する PI は順次再生されることになる。

図 3 4 は、 アングル切り換え手順及び SkipBack,SkipNext の手順を示すフローチャートである。本フローチャートは、図 3 3 の処理手順と並行してなされるものであり、ステップ S 5 1～S 5 2 からなるループ処理を繰り返すというものである。本ループにおけるステップ S 5 1 は、 アングル切り換え API のコールがあれば、カレント Clip 情報を切り換えるという操作を実行する。

図 3 4 のステップ S 5 5 は、 判定ステップであり、 PlayItem#x の is_multi_angles がオンであるか否かの判定を行う。 is_multi_angles とは、

PlayItem#x がマルチアングルに対応しているか否かを示すフラグであり、もしステップ S 55 が No であるならステップ S 53 に移行する。ステップ S 55 が Yes であるなら、ステップ S 56～ステップ S 59 を実行する。ステップ S 56 ～ステップ S 59 は、切り換えた後のアングル番号を変数 y に代入して(ステップ S 56)、PlayItem#x における y 番目の Clip_information_file_name で指定されている Clip 情報をシリオメモリ 21 に読み出し(ステップ S 57)、カレント PTM を、カレント Clip 情報の EP_map を用いて I ピクチャアドレス u に変換し(ステップ S 58)、PlayItem#x の Out_time を、カレント Clip 情報の EP_map を用いて I ピクチャアドレス v に変換する(ステップ S 59)というものである。こうして I ピクチャアドレス u,v を変化した後、ステップ S 46 に移行する。ステップ S 46 への移行により、別の AVClip から TS パケットが読み出されるので、映像内容が切り換わることになる。

一方、図 3 4 のループにおけるステップ S 52 は、SkipBack/SkipNext を意味する API が Java 仮想マシン 38 からコールされたか否かの判定であり、もしコールされれば、図 3 5 のフローチャートの処理手順を実行する。図 3 5 は、SkipBack,SkipNextAPI がコールされた際の処理手順を示すフローチャートである。SkipBack,SkipNext を実行するにあたっての処理手順は多種多様なものである。ここで説明するのはあくまでも一例に過ぎないことに留意されたい。

ステップ S 61 は、PSR で示されるカレント PI 番号、及び、カレント PTM を変換することにより、カレント Mark 情報を得る。ステップ S 62 は、押下されたのが SkipNext キーであるか、SkipBack キーであるかの判定であり、SkipNext キーであるならステップ S 63 において方向フラグを+1 に設定し、SkipBack キーであるならステップ S 64 において方向フラグを-1 に設定する。

ステップ S 65 は、カレント PLMark の番号に方向フラグの値を足した番号を、カレント PLMark の番号として設定する。ここで SkipNext キーであるなら方向フラグは+1 に設定されているのでカレント PLMark はインクリメントされることになる。SkipBack キーであるなら方向フラグは-1 に設定されているので、カレント PLMark はデクリメントされることになる。

ステップ S 66 では、カレント PLMark の ref_to_PlayItem_Id に記述されている PI を、PlayItem#x に設定し、ステップ S 67 では、PlayItem#x の

Clip_information_file_name で指定される Clip 情報を読み込む。ステップ S 6
8 では、カレント Clip 情報の EP_map を用いて、カレント PLMark の
mark_time_stamp を、I ピクチャアドレス u に変換する。一方ステップ S 6 9 で
は、PlayItem#x の Out_time を、カレント Clip 情報の EP_map を用いて、I ピク
5 チャアドレス v に変換する。ステップ S 7 0 は、カレント PLMark の
mark_time_stamp から PlayItem#x の Out_time までの出力を Presentation
Engine 3 1 に命じた上で、図 3 3 のステップ S 4 7 に移行する。こうして I ピク
チャアドレス u,v を変化して、別の部分の再生を命じた上でステップ S 4 7 への
移行するので、別の AVClip から TS パケットが読み出されることになり、映像
10 内容が切り替えが実現する。

図 3 6 は、Presentation Engine 3 1 による処理手順の詳細を示すフローチャ
ートである。本フローチャートは、I ピクチャの PTS をカレント PTM に設定し
た後で(ステップ S 7 1)、ステップ S 7 2～ステップ S 7 7 からなるループ処理
を実行するものである。

15 続いてステップ S 7 2～ステップ S 7 7 におけるループ処理について説明する。
このループ処理は、カレント PTM にあたるピクチャ、オーディオの再生出力と、
カレント PTM の更新とを繰り返すものである。本ループ処理におけるステップ
S 7 6 は、ループ処理の終了要件を規定している。つまりステップ S 7 6 は、カ
レント PTM が PI#x の Out_time であることをループ処理の終了要件にしている。
20 ステップ S 7 3 は、早送り API、又は、早戻し API が Java 仮想マシン 3 8 か
らコールされたか否かの判定である。もしコールされれば、ステップ S 7 8 にお
いて早送りか早戻しかの判定を行い、早送りであるなら、次の I ピクチャの PTS
をカレント PTM に設定する(ステップ S 7 9)。このようにカレント PTM を、次
の I ピクチャの PTS に設定することで、1 秒飛びに AVClip を再生してゆくこと
25 ができる。これにより、2 倍速等で AVClip は順方向に早く再生されることにな
る。早戻しであるなら、カレント PTM が PlayItem#x の Out_time に到達した
かを判定する(ステップ S 8 0)。もし到達していないのなら、1 つ前の I ピクチャの
PTS をカレント PTM に設定する(ステップ S 8 1)。このように読出先アドレス
A を、1 つ前の I ピクチャに設定することで、AVClip を後方向に 1 秒飛びに再生
30 してゆくことができる。これにより、2 倍速等で AVClip は、逆方向に再生され

ことになる。尚、早送り、巻戻しを実行するにあたっての処理手順は多種多様なものである。ここで説明するのはあくまでも一例に過ぎないことに留意された
い。

ステップ S 7 4 は、メニュー コール API がコールされたか否かの判定であり、
5 もしコールされれば、現在の再生処理をサスペンドして(ステップ S 8 2)、メニ
ュー処理用のメニュー プログラムを実行する(ステップ S 8 3)。以上の処理によ
り、メニュー メニュー コールがなされた場合は、再生処理を中断した上で、メニ
ュー表示のための処理が実行されることになる。

ステップ S 7 5 は、sync_PlayItem_id により、PlayItem#x を指定した
10 SubPlayItem#y が存在するか否かの判定であり、もし存在すれば、図 3 7 のフロ
ーチャートに移行する。図 3 7 は、SubPlayItem の再生手順を示すフローチャー
トである。本フローチャートでは、先ずステップ S 8 6において、カレント PTM
は SubPlayItem#y の sync_start PTS_of_playItem であるか否かを判定する。も
しそうであれば、ステップ S 9 3 において SubPlayItem#y に基づく再生処理を
15 行うよう Playback Control Engine 3 2 に通知する。

図 3 7 のステップ S 8 7 ～ステップ S 9 2 は、SubPlayItem#y に基づく再生処
理を示すフローチャートである。

ステップ S 8 7 では、SubPlayItem#y の Clip_information_file_name で指定
される Clip 情報を読み込む。ステップ S 8 8 では、カレント Clip 情報の EP_map
20 を用いて、SubPlayItem#y の In_time を、アドレス α に変換する。一方ステッ
プ S 8 9 では、SubPlayItem#y の Out_time を、カレント Clip 情報の EP_map を
用いて、アドレス β に変換する。ステップ S 9 0 は、SubPlayItem#y の In_time
から SubPlayItem#y の Out_time までの出力をデコードに命じる。これらの変
換で得られたアドレス β の次の I ピクチャを求めて、そのアドレスの 1 つ手前を
25 アドレス γ に設定し(ステップ S 9 1)、そうして算出されたアドレス γ を用いて、
SubClip#z におけるアドレス α からアドレス γ までの TS パケットの読み出しを
BD-ROM ドライブ 1 又は HDD 1 7 に命じるというものである(ステップ S 9 2)。

また図 3 3 に戻って Playback Control Engine 3 2 の処理の説明の続きを
30 行う。ステップ S 5 3 は Presentation Engine 3 1 による再生制御が完了したかの判定
であり、最後の PlayItem#x に対して、図 3 6 のフローチャートの処理が行われ

ている限り、ステップ S 5 3 が No になる。図 3 6 のフローチャートの処理が終了して初めて、ステップ S 5 3 は Yes になりステップ S 5 4 に移行する。ステップ S 5 4 は、Java 仮想マシン 3 8 への再生終結イベントの出力であり、この出力により、2 時間という再生時間の経過を Java 仮想マシン 3 8 は知ることができ

5 る。

以上が本実施形態における Playback Control Engine 3 2、Presentation Engine 3 1 の処理である。続いて本実施形態におけるアプリケーションマネージャ 3 6 処理手順について説明する。図 3 8 は、第 5 実施形態に係るアプリケーションマネージャ 3 6 の処理手順を示すフローチャートである。

10 図 3 8 のフローチャートは、図 2 7 のフローチャートを改良したものである。その改良点は、ステップ S 2 1 ～ステップ S 2 2 間にステップ S 2 4 が追加され、このステップ S 2 4 が Yes になった際、実行されるステップ S 1 0 1 が存在する点である。

15 ステップ S 2 4 は、JMF プレーヤインスタンスがワークメモリ 3 7 に存在するか否かの判定であり、もし存在しなければステップ S 2 2 に移行する。存在すれば、ステップ S 1 0 1 に移行する。ステップ S 1 0 1 は、Playback Control Engine 3 2 から再生終結イベントが出力されたか否かの判定であり、もし出力されれば、ワークメモリ中の Java プレーヤインスタンスを消滅させた上で(ステップ S 1 0 2)、タイトル終了をモジュールマネージャ 3 4 に通知する(ステップ S 2 6)。通知されねば、ステップ S 2 1 ～ステップ S 2 4 からなるループ処理を繰り返す。

20 以上のフローチャートにおいて、ワークメモリ 3 7 に JMF プレーヤインスタンスが存在する限り(ステップ S 2 4 で Yes)、ステップ S 2 2 、ステップ S 2 3 はスキップされる。そのため、たとえ全てのアプリケーションが終了したとしてもタイトルは継続中と解釈される。

25 以上のように本実施形態によれば、2 時間という再生時間の経過時点をアプリケーションマネージャ 3 6 は把握することができるので、PL 再生の終了条件にメニューを表示して、このメニューに対する操作に応じて他のタイトルに分岐するという制御を実現することができる。

30 (第 6 実施形態)

第6実施形態は、BD-J オブジェクトにデータ管理テーブルを設ける改良に関する。

データ管理テーブル(DMT)は、そのタイトル時間軸においてローカルメモリ29上にロードすべき Java アーカイブファイルを、読み属性と、読み優先度とに
5 対応づけて示すテーブルである。”ローカルメモリ29における生存”とは、そのアプリケーションを構成する Java アーカイブファイルがローカルメモリ29から読み出され、Java 仮想マシン38内のワークメモリ37への転送が可能になっている状態をいう。図39は、データ管理テーブルの一例を示す図である。本図に示すようにデータ管理テーブルは、アプリケーションの『生存区間』と、その10 生存区間をもったアプリケーションを識別する『applicationID』と、そのアプリケーションの『読み属性』と、『読み優先度』とを示す。

上述したようにアプリケーション管理テーブルには、生存区間という概念があり、データ管理テーブルにも同じ生存区間という概念がある。アプリケーション管理テーブルと同じ概念を、データ管理テーブルに設けておくというのは一見無駄のように思えるがこれには意図がある。

図40は、BD-J オブジェクトが想定している実行モデルを示す図である。本図における実行モデルは、BD-ROM、ローカルメモリ29、Java 仮想マシン38からなり、BD-ROM、ローカルメモリ29、ワークメモリ37という三者の関係を示す。矢印 my1 は、BD-ROM→ローカルメモリ29間の読み込みを示し、
20 矢印 my2 は、ローカルメモリ29→ワークメモリ37間の読み込みを示す。矢印上の注釈は、これらの読み込みが、どのようなタイミングでなされるかを示す。注釈によると、BD-ROM→ローカルメモリ29間の読み込みは、いわゆる”先読み”であり、アプリケーションが必要となる以前の時点に行われねばならない。
また注釈によると、ローカルメモリ29→ワークメモリ37間の読み込みは、
25 アプリケーションが必要になった際になされることがわかる。”必要になった際”とは、アプリケーションの生存区間が到来した時点(1)、アプリケーションの呼出が他のアプリケーション又はアプリケーションマネージャ36から指示された時点(2)を意味する。

30 矢印 my3 は、ワークメモリ37におけるアプリケーションの占有領域の解放を示し、矢印 my4 は、ローカルメモリ29におけるアプリケーションの占有領域の

解放を示す。矢印上の注釈は、これらの読み込みが、どのようなタイミングでなされるかを示す。注釈によると、ワークメモリ 37 上の解放は、アプリケーション終了と同時になされることがわかる。一方ローカルメモリ 29 上の解放は、Java 仮想マシン 38 にとって必要でなくなった時点でなされる。この必要でなく 5 なった時点とは、"終了時点" ではない。終了した上、再起動の可能性もない時点" であること、つまり該当する title が終了した時点を意味する。上述した読み込・解放のうち、ワークメモリ 37 における解放時点は、アプリケーション管理テーブルにおける生存区間から判明する。しかし" アプリケーションが必要となる以前の時点"、" 終了した上、再起動の可能性もない時点" については、規定し得ない。そこで、オーサリング段階において、かかる時点をディスクコンテンツ全体 10 の時間軸上で規定しておくため、本実施形態では各アプリケーションが生存している区間を、アプリケーション管理テーブルとは別に、データ管理テーブルに記述するようにしている。つまり" アプリケーションが必要となる以前の時点" をデータ管理テーブルにおける生存区間の始点と定義し、" 終了した上、再起動の可 15 能性もない時点" をデータ管理テーブルの終点と定義することにより、上述した ローカルメモリ 29 上の格納内容の遷移をオーサリング時に規定しておくことができる。これがデータ管理テーブルの記述意義である。

データ管理テーブルによるローカルメモリ 29 生存区間の記述について説明する。ここで制作しようとするディスクコンテンツは 3 つのタイトル(title#1、 20 title#2、title#3)からなり、これらタイトルの時間軸において、図 41 (b) に示すようなタイミングで、ローカルメモリ 29 を使用したいと考える。この場合、 title#1 時間軸の開始点において application#1、application#2 を構成する Java アーカイブファイルをローカルメモリ 29 に読み込み、title#1 時間軸の継続中、 application#1、application#2 をローカルメモリ 29 に常駐させておく。そして 25 title#2 時間軸の始点で、application#1 を構成する Java アーカイブファイルをローカルメモリ 29 から解放して、代わりに application#3 を構成する Java アーカイブファイルをローカルメモリ 29 に読み込んで、常駐させるというものである(以降、アプリケーションを構成する Java アーカイブファイルは、アプリケーションと同義に扱う。)。この場合のデータ管理テーブルの記述は、図 41 (a) の通りであり、アプリケーションの applicationID を、その生存区間に対応づけて 30

記述することで、ローカルメモリ 29 に常駐すべきアプリケーションを表現する。

図 4 1 (a) では、application#1 の applicationID が title#1 と対応づけられて記述されており、application#2 の applicationID は title#1、title#2 と対応づけられ、application#3 の applicationID は title#3 と対応づけられて記述されていることがわかる。こうすることで、ローカルメモリ 29 占有の時間的遷移がオーバーリング担当者により規定されることになる。

データ管理テーブル、アプリケーション管理テーブルの組合せとしては、アプリケーション管理テーブルに規定する生存区間は、細かい再生単位にし、データ管理テーブルに規定する生存区間は、大まかな再生単位にすることが望ましい。
10 大まかな再生単位には、タイトル、PL といった非シームレスな再生単位が望ましい。一方、細かい再生単位としては、PL 内のチャプターというようにシームレスな再生単位が望ましい。アプリケーションの生存区間をタイトル毎、PL 毎に定めれば、アプリケーションはローカルメモリ 29 上に存在するので、そのタイトルの再生中においてアプリケーションは何時でも取り出せる状態になる。そ
15 んであれば、アプリケーションの生存区間を細かく定めたとしても、アプリケーションを即座に、仮想マシン上のワークメモリに読み出すことができるので、アプリケーションの起動・終了が頻繁になされたとしても、スムーズなアプリケーション実行を実現することができる。

次に、読み込み属性について説明する。

20 図 2において Java アーカイブファイルは、AVClip とは別の記録領域に記録されることを前提にしていた。しかしこれは一例に過ぎない。Java アーカイブファイルは、BD-ROM において AVClip が占める記録領域に埋め込まれることがある。この埋め込みの様態には、カルーセル化、インターリーブユニット化という 2 種類がある。

25 ここで“カルーセル化”とは、対話的な放送の実現のために同一内容を繰り返しするという放送方式に変換することである。BD-ROM は、放送されたデータを格納するものではないが、本実施形態では、カルーセルの放送形式に倣って JAVA アーカイブファイルを格納するようにしている。図 4 2 は、カルーセル化による Java アーカイブファイル埋め込みを示す図である。第 1 段目は、AVClip 30 中に埋め込む Java アーカイブファイルであり、第 2 段目は、セクション化を示

す。第3段目は、TS パケット化、第4段目は、AVClip を構成する TS パケット列を示す。こうしてセクション化、TS パケット化されたデータ(図中の" D")が、AVClip に埋め込まれるのである。カルーセルにより AVClip に多重化された Java アーカイブファイルは、読み出すにあたって、低帯域で読み出されることになる。

5 この低帯域での読み出しは、概して 2~3 分というように長期間を要するため、再生装置は Java アーカイブファイルを 2~3 分をかけて読み込むことになる。

図 4 3 は、インターリープ化による Java アーカイブファイル埋め込みを示す図である。第1段目は、埋め込まれるべき AVClip、第2段目は、AVClip にインターリープ化された Java アーカイブファイル、第3段目は、BD-ROM の記録領域における AVClip 配置である。本図に示すように、ストリームに埋め込まれるべき Java アーカイブファイルは、インターリープ化され、AVClip を構成する XXXXX.m2ts を構成する分割部分(図中の AVClip2/4,3/4)の合間に記録される。インターリープ化により AVClip に多重化された Java アーカイブファイルは、カルーセル化と比較して、高い帯域で読み出されることになる。この高い帯域での読み出しであるため、再生装置は Java アーカイブファイルを比較的短期間に読み込むことになる。

カルーセル化・インターリープ化された Java アーカイブファイルは、プリロードされるのではない。BD-ROM における AVClip の記録領域のうち、カルーセル化・インターリープ化された Java アーカイブファイルが埋め込まれた部分に、現在の再生時点が到達した際、再生装置のローカルメモリ 29 にロードされる。Java アーカイブファイルの記録様には、図 2 に示すもの他に、図 4 2 、図 4 3 (a) に示すものがあるので、読み属性は、図 4 3 (b) に示すように、設定されうる。図 4 3 (b) に示すように、読み属性は、タイトル再生に先立ち、ローカルメモリ 29 に読み込まれる旨を示す" Preload" と、タイトル再生中に、カルーセル化方式で読み込まれる旨を示す" Load.Carousel" と、タイトル再生中に、インターリープ化方式で読み込まれる旨を示す" Load.InterLeave" とがある。読み属性には、カルーセル化されているか、インターリープ化されているかが添え字で表現されているが、これを省略してもよい。

データ管理テーブルにおける生存区間の具体的な記述例について、図 4 4 を参考照しながら説明する。図 4 4 (a) は、データ管理テーブルの一例を示す図であ

る。図4 4 (b) は、かかるデータ管理テーブルの割り当てによるローカルメモリ29の格納内容の変遷を示す図である。本図は、縦軸方向にローカルメモリ29における占有領域を示し、横軸を、1つのタイトル内のPL時間軸としている。データ管理テーブルにおいてapplication#1は、1つのタイトル内のPL時間軸全体を生存区間とするよう記述されているので、このタイトルのChapter#1～Chapter#5においてローカルメモリ29内の領域を占有することになる。データ管理テーブルにおいてapplication#2は、タイトル内のPL#1におけるChapter#1～Chapter#2を生存区間とするよう記述されているので、このタイトルのChapter#1～Chapter#2においてローカルメモリ29内の領域を占有することになる。データ管理テーブルにおいてapplication#3は、タイトル内のPL#1におけるChapter#4～Chapter#5を生存区間とするよう記述されているので、このタイトルのChapter#4～Chapter#5においてローカルメモリ29内の領域を占有することになる。以上で、データ管理テーブルにおける生存区間にについての説明を終える。

15

続いて読み込み優先度について説明する。読み込み優先度とは、ローカルメモリ29への読み込みに対する優劣を決める優先度である。読み込み優先度には複数の値がある。2段階の優劣を設けたい場合、Mandatoryを示す値、optionalを示す値を読み込み優先度に設定する。この場合、Mandatoryは高い読み込み優先度を意味し、optionalは、低い読み込み優先度を意味する。3段階の優劣を設けたい場合、Mandatoryを示す値、optional:high、optional:lowを示す値を読み込み優先度に設定する。Mandatoryは、最も高い読み込み優先度を示し、optional:highは、中程度の読み込み優先度、optional:lowは、最も低い読み込み優先度を示す。データ管理テーブルにおける読み込み優先度の具体的な記述例について、図4 5 (a) (b) を参照しながら説明する。

20 この具体例で、想定しているローカルメモリ29のメモリ規模は、図4 5 (a)に示すようなものである。図4 5 (a)は、新旧再生装置におけるローカルメモリ29のメモリ規模を対比して示す図である。矢印mk1は旧再生装置におけるメモリ規模を、矢印mk2は新再生装置におけるメモリ規模をそれぞれ示す。この矢印の対比から、新再生装置におけるローカルメモリ29のメモリ規模は、旧再生装置のそれと比較して、三倍以上である状態を想定している。このようにメ

25

30

モリ規模にバラツキがある場合、アプリケーションは、図45に示すような2つのグループに分類される。1つ目は、どのようなメモリ規模であっても読み込むべしのアプリケーション(#1,#2)である。2つ目は、旧再生装置での読み込みは望まないが、新再生装置での読み込みは希望するアプリケーション(#3,#4)である。
5 読み込もうとするアプリケーションが、これら2つのグループに分類されれば、前者に帰属するアプリケーションに、読み優先度=Mandatoryを設定し、後者に属するアプリケーションに、読み優先度=Optionalを設定する。図45(b)は、読み優先度が設定されたデータ管理テーブルの一例を示す図である。データ管理テーブルをこのように設定した上で、application#1～application#4 を
10 BD-ROMに記録すれば、あらゆるメモリ規模の再生装置での再生を保証しつつも、メモリ規模が大きい再生装置では、より大きなサイズのデータを利用したアプリケーションを再生装置に再生させることができる。

以上は本実施形態における記録媒体に対する改良である。続いて本実施形態における再生装置に対する改良について説明する。上述した記録媒体の改良に対応
15 するため、アプリケーションマネージャ36は図46に示すような処理手順で処理を行う。

図46は、アプリケーションマネージャ36によるプリロード制御の処理手順を示す図である。本フローチャートは、再生すべきタイトルにおけるデータ管理テーブルを読み込み(ステップS111)、データ管理テーブルにおいて最も高い
20 読み優先度をもつつ、applicationIDが最も小さいアプリケーションをアプリケーションiにした上で(ステップS112)、ステップS113、ステップS114の判定を経た上で、アプリケーションiをローカルメモリ29にプリロードする(ステップS115)という処理を、ステップS116がNo及びステップS117がNoと判定されるまで、繰り返すというループ処理を構成している。
25 ステップS113は、アプリケーションiの読み属性がプリロードであるか否かの判定であり、ステップS114は、アプリケーションの読み優先度が=MandatoryであるかOptionalであるかの判定である。ステップS113においてプリロードと判定され、ステップS114において読み優先度がMandatoryと判定されれば、アプリケーションはローカルメモリ29にプリロードされることになる(ステップS115)。もしステップS113において読み属性がロード
30 となる(ステップS115)。

であると判定されれば、ステップ S 114～ステップ S 115はスキップされることになる。

ループ処理の終了要件を規定する 2 つのステップのうちステップ S 116は、applicationID が次に高く、アプリケーション i と同一読込優先度のアプリケーシ

5 ョン k が存在するか否かを判定するものである。そのようなアプリケーション k
が存在するなら、そのアプリケーション k をアプリケーション i にする(ステップ
S 119)。

ループ処理の終了要件を規定する 2 つのステップのうちステップ S 117は、データ管理テーブルにおいて次に低い読込優先度をもつアプリケーションが存在

10 するか否かの判定であり、もし存在すれば、その次に低い読込優先度をもつアプリケーションのうち、最も小さい applicationID をアプリケーション k を選んで
(ステップ S 118)、そのアプリケーション k をアプリケーション i にする(ステ
ップ S 119)。これらステップ S 116、ステップ S 117が Yes になっている
限り、上述したステップ S 113～ステップ S 115の処理は繰り返されること
15 になる。ステップ S 116、ステップ S 117において、該当するアプリケシ
ョンが無くなれば本フローチャートの処理は終了することになる。

ステップ S 120～ステップ S 123は、ステップ S 114において読込優先度=Optional であると判定された場合に、実行される処理である。

20 ステップ S 120は、同じ applicationID をもち、読込優先度が高いアプリケ
ーション j が存在するか否かの判定である。

ステップ S 121は、ローカルメモリ 29 の残り容量がアプリケーション i の
サイズを上回るか否かを判定するステップである。ステップ S 120 が No、ス
テップ S 121 が Yes である場合、ステップ S 115においてアプリケーション
i がローカルメモリ 29 にプリロードされることになる。ステップ S 120 が No、
25 ステップ S 121 が No である場合、アプリケーション i はローカルメモリ 29
にプリロードされずそのままステップ S 116 に移行することになる。

こうしておくと、読込優先度=Optional のデータは、ステップ S 120～ステ
ップ S 121 の判定が Yes にならないと、ローカルメモリ 29 へのプリロードが
なされない。メモリ規模が小さい旧再生装置は、2～3 個のアプリケーションを読
み込んだ程度で、ステップ S 121 の判定は No になるが、メモリ規模が大きい

新再生装置は、更に多くのアプリケーションを読み込んだとしても、ステップ S 121 の判定は No にならない。以上のように、旧再生装置では、ローカルメモリ 29 に Mandatory のアプリケーションのみが読み込まれ、新再生装置には、Mandatory のアプリケーションと、Optional のアプリケーションとが読み込ま

5 れることになる。

ステップ S 122 は、ステップ S 120 において Yes と判定された場合に実行されるステップである。同じ applicationID をもち、読み優先度が高いアプリケーション j がローカルメモリ 29 上に存在する場合、ローカルメモリ 29 の残り容量と、アプリケーション j のサイズとの和が、アプリケーション i のサイズを上回るか否かを判定し(ステップ S 122)、もし上回れば、アプリケーション i を用いてローカルメモリ 29 上のアプリケーション j を上書きすることによりプリロードする(ステップ S 123)。下回る場合は、アプリケーション i はローカルメモリ 29 にプリロードされずそのままステップ S 116 に移行することになる。

ステップ S 115、ステップ S 123 による読み込み処理の一例を、図 47 (a) を参照しながら説明する。図 47 (a) は、この具体例が想定しているデータ管理テーブルの一例を示す図である。本図における 3 つのアプリケーションは、それぞれ 3 つのファイルに格納されており、applicationID は同じであるが(applicationID=1)、読み優先度は互いに異なる(mandatory(optional:high,optional:low))。こうしたデータ管理テーブルが処理対象であると、ステップ S 115 により、読み優先度=Mandatory のアプリケーションはローカルメモリ 29 に読み込まれる。しかし読み優先度=Optional のアプリケーションについては、ステップ S 120～ステップ S 122 の判定を経た上で、ステップ S 123 において読み込まれる。ステップ S 115 と違いステップ S 123 では、既にローカルメモリ 29 にある同じ applicationID のアプリケーションを上書きしてゆくよう、プリロードがなされるので、複数アプリケーションのうち 1 つが排他的に、ローカルメモリ 29 にロードされることになる。

i) 読み優先度=mandatory のアプリケーションを読み込んだ後、読み優先度=optional:high のアプリケーションを読み込むにあたって、ステップ S 122 が No と判定されれば、読み優先度=mandatory のアプリケーションがローカ

ルメモリ 29 に残ることになる。読み込んだ後、読み込めたアプリケーションを読み込んだ後、読み込めたアプリケーションを読み込むにあたって、ステップ S 122 が Yes と判定されれば、読み込めたアプリケーションにより、読み込めたアプリケーションは上書きされ、読み込めたアプリケーションがローカルメモリ 29 に残ることになる。

ii) 読込優先度=optional:high のアプリケーションを読み込んだ後、読み込めたアプリケーションを読み込むにあたって、ステップ S 122 が No と判定されれば、読み込めたアプリケーションがローカルメモリ 29 に残ることになる。読み込めた後、読み込めたアプリケーションを読み込むにあたって、ステップ S 122 が Yes と判定されれば、読み込めたアプリケーションは上書きされ(ステップ S 123)、読み込めたアプリケーションがローカルメモリ 29 に残ることになる。

ローカルメモリ 29 の容量が許す限り、ローカルメモリ 29 上のアプリケーションを上書きしてゆくとの処理が繰り返されるので、ローカルメモリ 29 の格納内容は、図 47 (b) に示すように、mandatory(optional:high) => optional:low と遷移してゆくことになる。メモリ規模に応じて、サイズが異なる Java アーカイブファイルをローカルメモリ 29 にロードすることができるので、メモリ規模が小さい再生装置については、必要最小限の解像度をもったサムネール画像を有する Java アーカイブファイルを、メモリ規模が中程度の再生装置については、中程度の解像度をもった SD 画像を有する Java アーカイブファイルを、メモリ規模が大規模である再生装置については、高解像度をもった HD 画像を有する Java アーカイブファイルをローカルメモリ 29 にロードすることができる。かかるロードにより、メモリ規模に応じて解像度が異なる画像を表示させることができ、オーサリング担当者によるタイトル制作の表現の幅が広がる。

図 48 は、データ管理テーブルを参照した読み取り処理の具体例を示す図である。
30 本図における 2 つのアプリケーションは、同じ applicationID(application#3) が

付与された 2 つのアプリケーションを示す図である。そのうち一方は、AVClip 中に埋め込まれていて、読み優先度が mandatory に設定されている。他方は、AVClip とは別ファイルに記録されていて、読み優先度が Optional に設定されている。前者のアプリケーションは、AVClip に埋め込まれているので、その埋込部分にあたる生存区間が、生存区間(title#1:chapter#4～#5)として記述されている。これらのアプリケーションのうち application#2、application#3 には、ロードを示す読み属性が付与されている。application#2 は Chapter#1～Chapter#2 を生存区間にしており、application#3 は Chapter#4～Chapter#5 を生存区間にしているので、タイトル時間軸においてどちらか一方が排他的にローカルメモリ 29 上に常駐することになる。図 48 (b) は、タイトル時間軸上の別々の時点において、排他的に格納される application#2、application#3 を示す図である。これは必要最低限のメモリ規模しかもたない再生装置での再生を念頭に置いた配慮である。こうした内容のデータ管理テーブルが処理対象であるとアプリケーションマネージャ 36 は、上述した図 46 のフローチャートによりメモリ規模に応じて異なる処理を行う。

後者のアプリケーションは、読み優先度=ロードであるので、ローカルメモリ 29 にロードされる。かかる処理により、Mandatory なメモリ規模さえあれば、アプリケーションマネージャはデータをローカルメモリ 29 にロードすることができる。ここで問題になるのは、メモリ規模が大きい再生装置による読み込み時である。メモリ規模が大きいにも拘らず、Chapter#4～Chapter#5 に到達するまで application#3 を読み込めないというのは、メモリ規模の無駄になる。そこで本図のデータ管理テーブルには、同じ application#3 にプリロードを示す読み属性を付与して BD-ROM に記録しておき、これらに同じ applicationID を付与している。

前者のアプリケーションは、読み優先度=Optional であるので、ステップ S 1 21 が Yes になった場合に限り、プリロードされる(ステップ S 1 15)。こうすることで、メモリ規模が大きい再生装置は、title#1、Chapter#4～Chapter#5 の到達を待つことなく、AVClip に埋め込まれているのと同じアプリケーションをローカルメモリ 29 にロードすることができる(図 48 (c))。

以上がプリロード時における処理である。続いてロード時における処理手順に

ついて説明する。

図49は、データ管理テーブルに基づくロード処理の処理手順を示す図である。本フローチャートは、ステップS131～ステップS133からなるループ処理を、タイトル再生が継続されている間、繰り返すというものである。

5 ステップS131は、AutoRunを示す起動属性を有したアプリケーションの生存区間が到来したか否かの判定である。もし到来すれば、AutoRunを示す起動属性を有したアプリケーションをアプリケーションqにして(ステップS134)、アプリケーションqを起動する旨の起動指示をJava仮想マシン38に発行して、アプリケーションqをローカルメモリ29からワークメモリ37に読み出させる
10 (ステップS135)。

ステップS133は、タイトル内PLの再生が全て終了したかの判定である。この判定は、第5実施形態に示したように、Playback Control Engine32からの再生終結イベントがあったか否かでなされる。もし終了すれば、本フローチャートの処理を終了する。

15 ステップS132は、起動中アプリケーションからの呼出があったか否かの判定である。もしあれば、呼出先アプリケーションをアプリケーションqにして(ステップS136)、現在の再生時点は、アプリケーション管理テーブルにおけるアプリケーションqの生存区間であるか否かを判定する(ステップS137)。もし生存区間でなければ、起動失敗を表示して(ステップS148)、ステップS131～ステップS133からなるループ処理に戻る。生存区間であれば、図50のフローチャートに従い、ロード処理を行う。

図50におけるステップS138は、現在の再生時点がデータ管理テーブルにおけるアプリケーションqの生存区間であるか否かを示す判定である。もし生存区間でなければ、アプリケーションqはローカルメモリ29にロードすることができない。この場合、アプリケーションqを起動する旨の起動指示をJava仮想マシン38に発行し、ローカルメモリ29を介すことなく、直接アプリケーションqをBD-ROMからワークメモリ37に読み出せる。この場合アプリケーションを読み出すためのヘッダシークが発生するから、PL再生は中断することになる(ステップS145)。

30 もし生存区間であれば、ステップS139において、アプリケーションには読

込属性が付加されているか否かを判定する。読み属性がないということは、アプリケーション q は、カルーセル化、若しくはインターーリーブ化されていないことを意味する。しかし読み属性が付加されていても、ローカルメモリ 29 にアプリケーション q を置くことは許される。そこで再生中断を承知の上、アプリケーションの読み出しを行う。つまり BD-ROM からローカルメモリ 29 へとアプリケーションを読み出した上で、アプリケーションをワークメモリ 37 に読み出す(ステップ S 140)。

5 テップ S 141～ステップ S 146 は、ステップ S 139 が Yes と判定された場合になされる処理である。ステップ S 141 では、読み属性を参照することで、アプリケーションがプリロードされているか否かを判定する。プリロードされていれば、ステップ S 135 に移行する。

ステップ S 142 は、読み属性がロードである場合に実行される判定ステップであり、アプリケーション q がカルーセル化されているか、インターーリーブ化されているかを判定する。インターーリーブ化されていれば、キャッシュセンスを 10 Java 仮想マシン 38 に実行させる(ステップ S 143)。ローカルメモリ 29 にアプリケーション q が存在すれば、ステップ S 135 に移行して、アプリケーション q を Java 仮想マシン 38 にロードさせる。

ローカルメモリ 29 にアプリケーションがなければ、トップメニュータイトルに分岐する等の例外処理を行う(ステップ S 144)。カルーセル化されていれば、 20 タイマをセットし(ステップ S 148)、そのタイマがタイムアウトするまで(ステップ S 147)、キャッシュセンスを Java 仮想マシン 38 に実行させる(ステップ S 146)。もしローカルメモリ 29 にアプリケーション q が出現すれば、図 49 のステップ S 135 に移行して、アプリケーション q を Java 仮想マシン 38 にロードさせる。タイムアウトすれば、トップメニュータイトルに分岐する等の例外処理を行う(ステップ S 144)。

図 51 は、Java 仮想マシン 38 によるアプリケーションの読み込みがどのようにして行われるかを模式化した図である。

矢印①, 2 は、アプリケーション管理テーブルに生存していて、データ管理テーブルに生存しており、カルーセル化、インターーリーブ化を示す読み属性が存在する Java アーカイブファイルの読み込みを示す。矢印① は、ステップ S 65、

6 7においてなされるローカルメモリ29センスを示す。このローカルメモリ29センスは、カルセル又はインテリーブ化により埋め込まれたデータが、ローカルメモリ29に存在するかもしれないためローカルメモリ29内をセンスするというものである。矢印◎2は、ステップS135に対応する読み込みであり、
5 アプリケーションがローカルメモリ29に存在していた場合、ローカルメモリ29からワークメモリ37へのロードを示す。×付きの矢印は、ローカルメモリ29にデータがない場合を示す。

矢印▽1,2は、アプリケーション管理テーブルに生存しているが、データ管理テーブルに生存しておらず、読込属性が存在しないJavaアーカイブファイルの
10 読み込みを示す。

矢印▽1は、ステップS145における読み込みに対応するものであり、Java仮想マシン38によるBD-ROMからのダイレクトリードの要求を示す。矢印▽2はその要求による、BD-ROMからワークメモリ37へのJavaアーカイブファイルの
ル読み出しを示す。

15 矢印☆1,2,3は、アプリケーション管理テーブルに生存していく、データ管理テーブルに生存しているが、読込属性が存在しないJavaアーカイブファイルの読み込みを示す。

矢印☆1は、ステップS140における読み込みに対応するものであり、Java仮想マシン38によるBD-ROMからのダイレクトリードの要求を示す。矢印☆2
20 はその要求による、ローカルメモリ29へのJavaアーカイブファイルの読み出しを示す。矢印☆3はローカルメモリ29からワークメモリ37へのJavaアーカイブファイルの読み出しを示す。

以上のように本実施形態によれば、ローカルメモリ29上で同時に常駐されるアプリケーションの数が所定数以下になるように規定しておくことができるので、
25 ローカルメモリ29からの読み出し時におけるキャッシュミスを極力回避することができる。キャッシュミスのないアプリケーション読み出しを保証することができるので、アプリケーション呼出時にあたっては、AVClipの再生を止めてまで、BD-ROMからアプリケーションを読み出すことはなくなる。AVClip再生を途切れさせないので、AVClipのシームレス再生を保証することができる。

30 (第7実施形態)

第3実施形態では、非AV系タイトルの時間軸をアプリケーションの生存区間に基づき定めることにした。しかしアプリケーションの動作というは不安定であり、起動の失敗や異常終了がありうる。本実施形態は、起動失敗、異常終了があった場合のFail Safe機能を提案するものである。図52(a)は、第7実施
5 形態に係るBD-Jオブジェクトの内部構成を示す図である。図7(b)と比較して本図が新規なのは、プレイリスト管理テーブルが追加されている点である。

図52(b)は、プレイリスト管理テーブルの一例を示す図である。本図に示すようにプレイリスト管理テーブルは、PLの指定と、そのPLの再生属性とからなる。PLの指定は、対応するタイトルのタイトル時間軸において、再生可能となるPLを示す。PLの再生属性は、指定されたPLを、タイトル再生の開始とともに自動再生するか否かを示す(こうして自動再生されるPLをデフォルトPLという)。

次にプレイリスト管理テーブルによりタイトル時間軸がどのように規定されるかを、図53を参照しながら説明する。図53(a)は、再生属性が非自動再生を示すよう設定された場合の非AV系タイトルにおけるタイトル時間軸を示す図である。この場合、デフォルトPLは再生されないから、非AV系タイトル同様、アプリケーションの生存区間からタイトル時間軸が定まる。

図53(b)は、再生属性がAutoPlayに設定された非AV系タイトルのタイトル時間軸を示す図である。再生属性がAutoPlayを示すよう設定されれば、
20 Playback Control Engine 3.2は非AV系タイトルの再生開始と同時に、デフォルトPLの再生を開始する。しかしあプリケーションが正常に動作し、正常終了したとしても、このタイトル時間軸は、PL時間軸を基準にして定められる。

図53(c)は、プレイリスト管理テーブルにおいて再生属性が"AutoPlay"を示すよう設定され、アプリケーションが異常終了した場合を示す。かかる異常終了により、どのアプリケーションも動作していない状態になるが、デフォルトPLの再生は継続する。この場合も、デフォルトPLのPL時間軸がタイトル時間軸になる。

図53(d)は、プレイリスト管理テーブルにおいて再生属性が"AutoPlay"を示すよう設定され、メインアプリの起動に失敗したケースを示す。この場合も、
30 Playback Control Engine 3.2によるデフォルトPL再生は、アプリケーションの

起動失敗とは関係なしに行われる所以、デフォルト PL の時間軸がタイトル時間軸になる。

以上のようにプレイリスト管理テーブルの再生属性を、"AutoPlay" に設定しておけば、Java アプリケーションの起動に、5~10 秒という時間がかかったとしても、その起動がなされている間、"とりあえず何かが写っている状態" になる。この"とりあえず何かが写っている状態" によりタイトル実行開始時のスタートアップディレイを補うことができる。

以上は本実施形態における記録媒体に対する改良である。統いて本実施形態における再生装置に対する改良について説明する。

図 5 2 (c) は、分岐先タイトルのプレイリスト管理テーブルにおいて、再生属性が AutoPlay に設定された PL が存在する場合、再生装置がどのような処理を行うかを示す図である。本図に示すように、再生属性が AutoPlay に設定された PL が、分岐先タイトルのプレイリスト管理テーブルに存在すれば、BD-J モジュール 3 5 内のアプリケーションマネージャ 3 6 は、タイトル分岐直後にこの AutoPlayPL の再生を開始するよう Playback Control Engine 3 2 に指示する。このように再生属性が AutoPlay の PL は、タイトル分岐直後に再生開始が命じられることになる。

上述した記録媒体の改良に対応するため、アプリケーションマネージャ 3 6 は図 5 4 に示すような処理手順で処理を行う。

図 5 4 は、第 7 実施形態に係るアプリケーションマネージャ 3 6 の処理手順を示すフローチャートである。本フローチャートは、図 3 8 のフローチャートにおいてステップ S 2 1 の前にステップ S 1 0 3、ステップ S 1 0 4 を追加し、ステップ S 2 1 と、ステップ S 2 2 との間にステップ S 1 0 0 を追加し、ステップ S 2 3~ステップ S 2 6 間に、ステップ S 1 0 5 を追加したものである。

ステップ S 1 0 3 は、対応するタイトルのプレイリスト管理テーブルの再生属性が AutoPlay であるか否かの判定である。もし AutoPlay なら、デフォルト PL に対する再生制御を Playback Control Engine 3 2 に開始させる(ステップ S 1 0 4)。

ステップ S 1 0 0 は、Presentation Engine 3 1 による再生中であるか否かを判定する。もし再生中であるなら、ステップ S 1 0 1 に移行する。

ステップ S 105 は、ステップ S 23 が Yes、ステップ S 25 が No である場合に実行される判定ステップであり、再生属性が AutoPlay であるか否かを示す。もし否であるなら、タイトル終了をモジュールマネージャ 34 に通知する。もし AutoPlay であるなら、ステップ S 101 に移行して、処理を継続する。

5 図 55 は、プレイリスト管理テーブルにおいて”再生属性=AutoPlay”に設定されることにより、どのような再生が行われるかを模式化した図である。ここで再生すべきタイトルは、落下するタイル片を積み重ねるというゲームアプリを含む非 AV 系タイトルである。この非 AV 系タイトルにおいて、プレイリスト管理テーブルの再生属性が AutoPlay に設定されていれば、Playback Control Engine
10 32 によるデフォルト PL 再生も開始する。ゲームアプリの実行と、デフォルト PL 再生とが並列的になされるので、図 55 の上段の左側に示すように、前景をゲームアプリの画面とし、背景をデフォルト PL の再生画像とした合成画像が表示されることになる。このゲームアプリは途中で異常終了したとする。ゲームアプリはアプリケーションマネージャ 36 により強制終了させられるが、デフォルト PL の再生が継続してなされたため、タイトルは、何かが写っている状態になる。このようなプレイリスト管理テーブルにおける再生属性の指定により、非 AV 系タイトル内のゲームアプリが異常終了した場合でも、ハングアップやブラックアウトがない動作を維持することができる。

(第 8 実施形態)

20 第 1 実施形態において BD-J オブジェクトは、データ管理テーブル、アプリケーション管理テーブルという 2 つのテーブルを具備していたが、本実施形態は、これらを 1 つのテーブルに統合するという形態を開示する。かかる統合にあたって、図 56 (a) に示すように、データ管理テーブルにおける読込属性という項目を廃し、代わりに起動属性に Ready 属性という属性を設ける。Ready 属性とは、他のアプリケーションからの呼出又はアプリケーションマネージャ 36 からの呼出に備えて、ローカルメモリ 29 に予めアプリケーションをロードしておく旨を示す起動属性の類型である。

図 56 (b) は、アプリケーションの扱いと、起動属性との関係を示した図である。第 1 実施形態に示したようにアプリケーションの扱いには、プリロードされるか否か(1)、現在の再生時点が有効区間に到来した際自動的に起動されるか、
30

他からの呼出に応じて起動されるか(2)、タイトル再生進行に従ってロードされるか(3)、生存しているかという違いがあり、これらの違いにより、図56 (b)に示すような5つの態様が出現する。このうち起動属性がAutoRunに設定されるのは、プリロードがなされ、“自動起動”である場合、及び、ロードがなされ、“

5 自動起動”である場合である。

一方、起動属性がReady属性に設定されるのは、プリロード、又は、ロードがなされ、起動項目が“呼出起動”を示している場合である。

尚、ワークメモリ37では生存しているが、ローカルメモリ29にはロードされないと類型が存在し得ない。これは、アプリケーション・データ管理テーブルでは、ワークメモリ37の生存区間と、ローカルメモリ29の生存区間とが一体だからである。

10 起動属性として、このReady属性を追加されたので、アプリケーションマネージャ36はタイトル再生に先立ち、起動属性がAutoRunに設定されたアプリケーション、及び、起動属性がReady属性に設定されたアプリケーションをローカルメモリ29にプリロードするとの処理を行う。こうすることにより、読み込み属性を設けなくても、アプリケーションをローカルメモリ29にプリロードしておくとの処理が可能になる。

15 図57は、第8実施形態に係るJava仮想マシン38によるアプリケーションの読み込みがどのようにして行われるかを模式化した図である。本図における読み込みは、図51をベースにして作図している。

20 矢印◎1,2は、アプリケーション・データ管理テーブルに生存していて、起動属性がReady属性に設定されているJavaアーカイブファイルの読み込みを示す。

矢印☆1,2,3は、アプリケーション・データ管理テーブルに生存しており、起動属性がPersistentであるアプリケーションの読み込みを示す。

25 これららの矢印◎1,2、矢印☆1,2,3は、図51でも記述されていたものだが、図51に記述していた、▽1,2の矢印に該当する読み込みは、図57では存在しない。これは、アプリケーション・データ管理テーブルは、アプリケーション管理テーブル、データ管理テーブルを一体化したものなので、アプリケーション管理テーブル=生存、データ管理テーブル=非存在という組合せは表現し得ないから
30 である。

以上のように本実施形態によれば、データ管理テーブル、アプリケーション管理テーブルを1つのテーブル(アプリケーション・データ管理テーブル)にまとめることができるので、アプリケーションマネージャ36による処理を簡略化することができる。尚、読み優先度をなくすことによりアプリケーション・データ管理テーブルをより簡略化にしても良い。

5 (第9実施形態)

第1実施形態では、アプリケーションをローカルメモリ29に読み込むにあたって、読み優先度を参照して、この読み優先度に従い、読み込み処理に優劣を与えた。これに対し第9実施形態は、Optionalを意味する情報と、0から255までの数値との組合せにより読み優先度を表す実施形態である。

10 図58(a)(b)は、第9実施形態に係る読み優先度の一例を示す図である。255、128は、0から255までの読み優先度の一例であり、本例におけるapplication#2は、application#3より読み優先度が高いことを意味する。

15 本実施形態においてアプリケーションマネージャ36は、第1実施形態同様、必ずMandatoryを示す読み優先度が付与されたアプリケーションをローカルメモリ29に読み込む。

その後、Optionalを示す読み優先度が付与されたアプリケーションに対しては、ローカルメモリ29における容量が、アプリケーションのサイズを上回るか否かを判定する。もし上回るなら、読み優先度=Optionalが付与されたアプリケーションをそのままローカルメモリ29に読み込む。もし下回るなら、アプリケーションを構成するデータのうち、読み優先度を表す数値が高いアプリケーションをローカルメモリ29に読み込む。そして、ローカルメモリ29における残りの領域に、読み優先度を表す数値が低いアプリケーションを読み出す。

25 こうすることでOptional扱いのアプリケーションについては、全体を格納する容量が再生装置のローカルメモリ29になくとも、その一部分をローカルメモリ29に格納しておくことができる。

(第10実施形態)

第1実施形態においてアプリケーションマネージャ36は、同じapplicationIDが付与されたアプリケーションを、読み優先度に従い排他的にローカルメモリ2

9にロードするましたが、第10実施形態は、アプリケーションにグループ属性を与えることにより、排他的なロードを実現する。図59は、グループ属性が付与されたデータ管理テーブルを示す図である。グループ属性には、排他グループなし、排他グループあり、といった、2通りの設定が可能であり、排他グループありの場合、そのグループ番号が記述される。図59(a)におけるtitle#1の「-」は、排他グループが存在しないことを示す。一方、title#2,#3の「group#1」は、排他グループがあり、title#2,#3は、group#1という排他グループに帰属していることを示す。以上が本実施形態に係る記録媒体の改良である。

5 本実施形態に係る再生装置は、データ管理テーブルに基づいて各アプリケーションをローカルメモリ29に読み込んだ後、ローカルメモリ29のアプリケーションにおけるグループ属性をペリファイする。同じ排他グループに帰属するアプリケーションが、ローカルメモリ29上に2つ以上存在していれば、そのうち一方をローカルメモリ29から削除する。

10 こうすることにより、ローカルメモリ29の利用効率を向上させることができ
15 る。排他グループの具体例としては、ランチャーアプリと、このアプリにより起動されるアプリとからなるグループが相応しい。本アプリケーションにより起動されるアプリケーションは、原則1つに限られるので、ローカルメモリ29には、ランチャー+1個のアプリケーションのみが存在する筈である。もし3つ以上のアプリケーションが存在していれば、これをローカルメモリ29から削除する
20 いう処理をアプリケーションマネージャ36は行う必要があるので、各アプリケーションのグループ属性を設け、ローカルメモリ29上で存在するアプリケーションがランチャー+1個のアプリケーションになっているかどうかのチェックを行ふのである。

25 図59(a)は、アプリケーション管理テーブルに基づくローカルメモリ29に対するアクセスを示す図である。本図において、読み優先度=Optionalと設定されたapplication#2、application#3のグループ属性は、group#1であるので、これらのアプリケーションは、同じ排他グループに属することになる。3つのアプリケーションのうち、application#1は上述したランチャーアプリケーションであり、application#2、application#3は、これにより起動されるアプリケーションであるので、どちらかのみがローカルメモリ29上に存在するよう、グル
30 ップである。

ブ属性が付与されている。アプリケーションマネージャ 36 は、これら application#2, application#3 のグループ属性を参照して、どちらか 1つをローカルメモリ 29 から削除するとの処理を行う。かかる削除によりローカルメモリ 29 に余白が生まれる。

5 (第 1 実施形態)

第 1 実施形態では、アプリケーション管理テーブルをタイトル毎に持たせるとしたが、本実施形態では、このアプリケーション管理テーブルの割当単位を変更させることを提案する。図 60 は、割当単位のバリエーションを示す図である。

本図において第 1 段目は、BD-ROM に記録されている 8 つのアプリケーション

10 管理テーブルを示し、第 2 段目は、タイトル単位、第 3 段目は、ディスク単位、第 4 段目は、複数 BD-ROM からなるディスクセット単位を示す。図中の矢印は、アプリケーション管理テーブルの割り当てを模式化して示している。この矢印を参考すると、第 1 段目におけるアプリケーション管理テーブル#1,#2,#3 のそれぞれは、第 2 段目に示した title#1,#2,#3 のそれぞれに割り当てられていることがわかる。また、ディスク単位ではアプリケーション管理テーブル#4 が割り当てられており、ディスクセット全体に対しはアプリケーション管理テーブル#5 が割り当てられている。このようにアプリケーション管理テーブルの割当単位を、タイトルより大きい単位にすることにより、1 つの BD-ROM がローディングされている間、生存するようなアプリケーションや複数 BD-ROM のうちどれかがローディングされている間、生存するようなアプリケーションを定義することができる。

15

20

(備考)

以上の説明は、本発明の全ての実施行為の形態を示している訳ではない。下記

(A)(B)(C)(D)……の変更を施した実施行為の形態によっても、本発明の実施は可能となる。本願の請求項に係る各発明は、以上に記載した複数の実施形態及びそれらの変形形態を拡張した記載、ないし、一般化した記載としている。拡張ないし一般化の程度は、本発明の技術分野の、出願当時の技術水準の特性に基づく。

(A)全ての実施形態では、本発明に係る光ディスクを BD-ROM として実施したが、本発明の光ディスクは、記録される動的シナリオ、Index Table に特徴があり、この特徴は、BD-ROM の物理的性質に依存するものではない。動的シナリ

30

オ、Index Table を記録しうる記録媒体なら、どのような記録媒体であってよい。例えば、

DVD-ROM,DVD-RAM,DVD-RW,DVD-R,DVD+RW,DVD+R,CD-R,CD-RW 等の

光ディスク、PD,MO 等の光磁気ディスクであってもよい。また、コンパクトフ

5 ラッシュカード、スマートメディア、メモリスティック、マルチメディアカード、
PCM-CIA カード等の半導体メモリカードであってもよい。フレキシブルディスク、
SuperDisk,Zip,Clik!等の磁気記録ディスク(i)、ORB,Jaz,SparQ,SyJet,EZFley,
マイクロドライブ等のリムーバルハードディスクドライブ(ii)であってもよい。更
に、機器内蔵型のハードディスクであってもよい。

10

(B) 全ての実施形態における再生装置は、BD-ROM に記録された AVClip をデ
コードした上で TV に出力していたが、再生装置を BD-ROM ドライブのみとし、
これ以外の構成要素を TV に具備させてもい、この場合、再生装置と、TV とを
IEEE1394 で接続されたホームネットワークに組み入れることができる。また、

15 実施形態における再生装置は、テレビと接続して利用されるタイプであったが、
ディスプレイと一体型となった再生装置であってもよい。更に、各実施形態の再
生装置において、処理の本質的部分をなす部分のみを、再生装置としてもよい。
これらの再生装置は、何れも本願明細書に記載された発明であるから、これらの
何れの態様であろうとも、各実施形態に示した再生装置の内部構成を元に、再生
20 装置を製造する行為は、本願の明細書に記載された発明の実施行為になる。各实
施形態に示した再生装置の有償・無償による譲渡(有償の場合は販売、無償の場
合は贈与になる)、貸与、輸入する行為も、本発明の実施行行為である。店頭展示、カ
タログ勧誘、パンフレット配布により、これらの譲渡や貸渡を、一般ユーザに申
し出る行為も本再生装置の実施行行為である。

25 (C)各フローチャートに示したプログラムによる情報処理は、ハードウェア資源
を用いて具体的に実現されていることから、上記フローチャートに処理手順を示
したプログラムは、単体で発明として成立する。全ての実施形態は、再生装置に
組み込まれた態様で、本発明に係るプログラムの実施行行為についての実施形態を
示したが、再生装置から分離して、各実施形態に示したプログラム単体を実施し
てもよい。プログラム単体の実施行行為には、これらのプログラムを生産する行為
30

(1)や、有償・無償によりプログラムを譲渡する行為(2)、貸与する行為(3)、輸入する行為(4)、双方向の電子通信回線を介して公衆に提供する行為(5)、店頭展示、カタログ勧誘、パンフレット配布により、プログラムの譲渡や貸渡を、一般ユーザに申し出る行為(6)がある。

5 (D)各フローチャートにおいて時系列に実行される各ステップの「時」の要素を、発明を特定するための必須の事項と考える。そうすると、これらのフローチャートによる処理手順は、再生方法の使用形態を開示していることがわかる。各ステップの処理を、時系列に行うことで、本発明の本来の目的を達成し、作用及び効果を奏するよう、これらのフローチャートの処理を行なうのであれば、本発明に係る記録方法の実施行為に該当することはいうまでもない。

10 (E)Chapter を一覧表示するための Menu(Chapter Menu)と、これの挙動を制御する MOVIE オブジェクトとを BD-ROM に記録しておき、Top Menu から分岐できるようにしてもよい。またリモコンキーの Chapter キーの押下により呼出されるようにしてもよい。

15 (F)BD-ROM に記録するにあたって、AVClip を構成する各 TS パケットには、拡張ヘッダを付与しておくことが望ましい。拡張ヘッダは、TP_extra_header と呼ばれ、『Arrival_Time_Stamp』と、『copy_permission_indicator』とを含み 4 バイトのデータ長を有する。TP_extra_header 付き TS パケット(以下 EX 付き TS パケットと略す)は、32 個毎にグループ化されて、3 つのセクタに書き込まれる。32 個の EX 付き TS パケットからなるグループは、6144 バイト($=32 \times 192$)であり、これは 3 個のセクタサイズ 6144 バイト($=2048 \times 3$)と一致する。3 個のセクタに収められた 32 個の EX 付き TS パケットを" Aligned Unit" という。

20 IEEE1394 を介して接続されたホームネットワークでの利用時において、再生装置 200 は、以下の送信処理にて Aligned Unit の送信を行う。つまり送り手側の機器は、Aligned Unit に含まれる 32 個の EX 付き TS パケットのそれぞれから TP_extra_header を取り外し、TS パケット本体を DTCP 規格に基づき暗号化して出力する。TS パケットの出力にあたっては、TS パケット間の隨所に、isochronous パケットを挿入する。この挿入箇所は、TP_extra_header の Arrival_Time_Stamp に示される時刻に基づいた位置である。TS パケットの出力に伴い、再生装置 200 は DTCP_Descriptor を出力する。DTCP_Descriptor

25

30

は、TP_extra_header におけるコピー許否設定を示す。ここで「コピー禁止」を示すよう DTCP_Descriptor を記述しておけば、IEEE1394 を介して接続されたホームネットワークでの利用時において TS パケットは、他の機器に記録されることはない。

5 (G)各実施形態において、記録媒体に記録されるデジタルストリームは AVClip であったが、DVD-Video 規格、DVD-Video Recording 規格の VOB(Video Object) であってもよい。VOB は、ビデオストリーム、オーディオストリームを多重化することにより得られた ISO/IEC13818-1 規格準拠のプログラムストリームである。また AVClip におけるビデオストリームは、MPEG4 や WMV 方式であってもよ。

10 い。更にオーディオストリームは、LinearPCM 方式、Dolby AC3 方式、MP3 方式、MPEG-AAC 方式、Dts、WMA(Windows media audio) であってもよい。

(H)各実施形態における映像作品は、アナログ放送で放送されたアナログ映像信号をエンコードすることにより得られたものでもよい。デジタル放送で放送されたトランスポートストリームから構成されるストリームデータであってもよい。

15 またビデオテープに記録されているアナログ／デジタルの映像信号をエンコードしてコンテンツを得ても良い。更にビデオカメラから直接取り込んだアナログ／デジタルの映像信号をエンコードしてコンテンツを得ても良い。他にも、配信サーバにより配信されるデジタル著作物でもよい。

(I)BD-J モジュール 35 は、衛星放送受信のために機器に組み込まれた Java プラットフォームであってもよい。BD-J モジュール 35 かかる Java プラットフォームであれば、本発明に係る再生装置は、MHP 用 STB としての処理を兼用することになる。

20 更に携帯電話の処理制御のために機器に組み込まれた Java プラットフォームであってもよい。かかる BD-J モジュール 35 かかる Java プラットフォームであれば、本発明に係る再生装置は、携帯電話としての処理を兼用することになる。

(K)レイアモデルにおいて、BD-J モードの上に MOVIE モードを配置してもよい。特に MOVIE モードでの動的シナリオの解釈や、動的シナリオに基づく制御手順の実行は、再生装置に対する負担が軽いので、MOVIE モードを BD-J モード上で実行させても何等問題は生じないからである。また再生装置や映画作品の

開発にあたって、動作保証が 1 つのモードで済むからである。

更に BD-J モードだけで再生処理を実行してもよい。第 5 実施形態に示したように、BD-J モードでも PL の再生と同期した再生制御が可能になるから、強いて MOVIE モードを設けなくてもよいという理由による。

5 (I) AVClip に多重化されるべきインタラクティブグラフィックスストリームにナビゲーションコマンドを設けて、ある PL から別の PL への分岐を実現しても良い。

産業上の利用可能性

本発明に係る再生装置は、ホームシアターシステムでの利用のように、個人的な用途で利用されることがある。しかし本発明は上記実施形態に内部構成が開示されており、この内部構成に基づき量産することが明らかなので、資質において工業上利用することができる。このことから本発明に係る再生装置は、産業上の利用可能性を有する。

請求の範囲

1. 分岐可能な複数のタイトルと、アプリケーションとが記録された記録媒体であって、
 - 5 前記アプリケーションは、仮想マシン向けプログラミング言語で記述されたプログラムであり、仮想マシンによる実行が可能となる生存区間が、予め規定されており、前記各タイトルは、管理テーブルを含み、管理テーブルは、
 - 10 タイトルを生存区間とするアプリケーションを、各タイトル毎に示すことを特徴とする記録媒体。
2. 前記記録媒体には、アプリケーションを構成するデータ及びプログラムを格納したアーカイブファイルが記録されており、
 - 15 前記各タイトルを生存区間とするアプリケーションは、前記そのアプリケーションを格納したアーカイブファイルの識別子と、タイトルを一意に示すタイトル番号との組みにより表現されることを特徴とする請求項1記載の記録媒体。
- 20 3. デジタルストリームを含むタイトルの再生と、アプリケーションの実行とを同時に使う再生装置であって、複数タイトル間の分岐を制御するモジュールマネージャと、1つのタイトルに帰属するデジタルストリームを再生する再生制御エンジン部と、
 - 25 タイトルの分岐が発生する度に、分岐先タイトルを生存区間としたアプリケーションの起動制御、及び、分岐先タイトルを生存区間としていないアプリケーションの終了制御を行うアプリケーションマネージャとを備えることを特徴とする再生装置。
- 30 4. タイトルは、アプリケーション管理テーブルを含み、

アプリケーション管理テーブルは、対応するタイトルを生存区間にしている 1
つ以上のアプリケーションを示し、

前記アプリケーションマネージャによる起動制御には、

5 タイトルの分岐があった場合、分岐先タイトルを生存区間にしているアプリケ
ーションが存在するかをアプリケーション管理テーブルを参照して判定し、生存
区間としたアプリケーションが存在する場合のみ、当該アプリケーションを起動
する制御がある

ことを特徴とする請求項3記載の再生装置。

10 5. 前記アプリケーションマネージャによる起動制御には、
1 つのタイトルにおいて起動しているアプリケーションからアプリケーション
呼出があった場合、呼出先アプリケーションが、当該タイトルを生存区間にして
いるか否かをテーブルを参照して判定し、生存区間にしている場合のみ、呼出先
アプリケーションを起動する制御がある

15 ことを特徴とする請求項4記載の再生装置。

6. タイトルは、テーブルを含み、

テーブルは、対応するタイトルを生存区間にしている 1 つ以上のアプリケーシ
ョンを示し、

20 前記アプリケーションマネージャによる終了制御には、
タイトルの分岐があった場合、起動中アプリケーションのうち、分岐先タイト
ルを生存区間にしていないものが存在するかをテーブルを参照して判定し、当該
アプリケーションが存在する場合のみ、当該アプリケーションを終了するよう制
御ことである

25 ことを特徴とする請求項1記載の再生装置。

7. 前記分岐は、タイトルへのジャンプを再生装置に命じるアプリケーション
インターフェイスにより実現され、

前記アプリケーションは、前記アプリケーションインターフェイスをコールす
30 る手順を含み、

モジュールマネージャは、仮想マシンによる前記手順の解説に応じて分岐を実行する、ことを特徴とする請求項3記載の再生装置。

8. 前記再生制御エンジンによるデジタルストリームの再生には、トリック再生と、通常再生とがあり、

前記アプリケーションマネージャは、

分岐先タイトルにおいてデジタルストリームの通常再生が開始した時点に、アプリケーションの起動処理を開始する
ことを特徴とする請求項3記載の再生装置。

10

9. デジタルストリームを含むタイトルの再生と、アプリケーションの実行と同時に、コンピュータに実行させるプログラムであって、

タイトルの分岐が発生する度に、分岐先タイトルを生存区間としたアプリケーションの起動制御、及び、分岐先タイトルを生存区間としていないアプリケーションの終了制御をコンピュータに行わせる
ことを特徴とするプログラム。

10. デジタルストリームを含むタイトルの再生と、アプリケーションの実行と同時に、コンピュータに実行させる再生方法であって、

20 タイトルの分岐が発生する度に、分岐先タイトルを生存区間としたアプリケーションの起動制御、及び、分岐先タイトルを生存区間としていないアプリケーションの終了制御をコンピュータに行わせる
ことを特徴とする再生方法。

図1

図2

図3

図4

図5

図6

図7

(a)

ZZZZZ.BDMV

resume_intention_flag	属性情報
menu_call_mask	
title_search_mask	
ナビゲーションコマンド	
ナビゲーションコマンド	
ナビゲーションコマンド	
:	

属性情報

コマンド列

(b)

ZZZZZ.BD-J

(c)

図8

(a)

xlet プログラム
Event listner
プログラム

(b)

xlet プログラム

```

JMF A "BD://00001.mpls" ;
A.play();
Jump Title>Title #1;
    
```

} プレーヤ
インスタンス
制御

} タイトル分岐

図9

図10

図11

図12

図13

図14

図15

起動属性によるアプリケーション状態の変化

		起動属性		
		Persistent	AutoRun	Suspend
直前タイトル における アプリケーション の状態	非起動	何もせず、 状態維続	アプリケーション を起動する	何もせず、 状態維続
	起動中	何もせず、 状態維続		サスPENDする
	Suspend	レジュームする	レジュームする	何もせず、 状態維続

図16

図17

図18

図19

図20

図21

図22

図23

図24

図25

図26

図27

図28

(b)

図29

図30

図31

図32

図33

図34

図35

図36

図37

図38

図39

図40

図41

図42

図43

図44

(a) title #1 のデータ管理テーブル

生存区間	アプリケーションID	読み属性	読み優先度
title #1	application #1	Preload	mandatory
title #1:chapter #1:#2	application #2	Load	optional
title #1:chapter #4:#5	application #3	Load	optional

(b) title #1 の
PL時間軸ローカルメモリ
の占有領域

図45

(b) title #1のデータ管理テーブル

タイトル番号	アプリケーションID	読み属性	読み優先度
title #1	application #1	Preload	mandatory
title #1	application #2	Preload	mandatory
title #1	application #3	Preload	optional
title #1	application #4	Preload	optional

圖46

図47

(a) title #1のデータ管理テーブル

生存区間	アプリケーションID	読み属性	読み優先度
title #1	application #1	Ppreload	mandatory
title #1	application #1	Ppreload	optional:high
title #1	application #1	Ppreload	optional:low

(b) ローカルメモリの占有領域

図48

(a) title #1のデータ管理テーブル

生存区間	アプリケーションID	読み属性	読み優先度
title #1	application #1	Preload	mandatory
title #1:chapter #1 -#2	application #2	Load	mandatory
title #1:chapter #4 -#5	application #3	Load	mandatory
title #1	application #3	Preload	optional

(b)

プレーヤの
メモリサイズ小

(c)

プレーヤの
メモリサイズ大

図49

図50

図51

図52

(a) zzzzz.BD-J

resume_intention_flag
menu_Call_Mask
title_search_mask
Application Management Table(AMT)
Data Management Table(DMT)
PlayList Management Table(PLMT)

(b) PL管理テーブル

プレイリストID	再生属性
---	Auto Play
---	---

(c)

図53

(a)

(b)

(c)

(d)

図54

図55

図56

(a) アプリケーション・データ管理テーブル

生存区間	アプリケーションID	起動属性	読み優先度
title #1	application #1	AutoRun	
title #1:chapter #1~#3	application #2	Ready	
title #1	application #3	--	
title #1:chapter #2~#4	application #4	Ready	

起動属性+読み属性

(b)

起動属性	AVストリーム再生 前のブリロード	自動転動 /呼出起動	ローカルメモリ へのロード	生存/非生存
AutoRun	○	自動	×	生存
AutoRun	×	自動	○	生存
READY	○	呼出	×	生存
READY	×	呼出	○	生存
無指定	×	呼出	×	生存

図57

図58

図59

(a) データ管理テーブル

生存区間	アプリケーションID	ロード属性	読み優先度	グループ属性
title #1	application #1		mandatory	—
title #1	application #2		optional	group #1
title #1	application #3		optional	group #1

(b)

図60

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/015330

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl ⁷ G11B27/00, G11B20/10, G11B20/12, G11B27/10, G06F19/00, G06F9/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl ⁷ G11B27/00-27/06, G11B20/10, G11B20/12, G11B27/10, G06F19/00, G06F9/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2002-369154 A (Matsushita Electric Industrial Co., Ltd.), 20 December, 2002 (20.12.02), Par. Nos. [0035] to [0207]; Figs. 1 to 39 & WO 02/082810 A1 & EP 1381232 A1 & US 2002/0194618 A1	1-10
A	JP 2003-249057 A (Toshiba Corp.), 05 September, 2003 (05.09.03), Par. Nos. [0020] to [0303]; Figs. 1 to 33 & EP 1357749 A1 & US 2003/0161615 A1	1-10
A	JP 6-4166 A (Okayama Nippon Denki Software Kabushiki Kaisha), 14 January, 1994 (14.01.94), Par. Nos. [0002] to [0027]; Figs. 1 to 2 (Family: none)	1-10

Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 07 January, 2005 (07.01.05)	Date of mailing of the international search report 25 January, 2005 (25.01.05)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Faxsimile No.	Telephone No.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2004/015330
--

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 6-230946 A (Fuji Xerox Co., Ltd.), 19 August, 1994 (19.08.94), Par. Nos. [0014] to [0043]; Figs. 4 to 12 (Family: none)	1-10
A	JP 2001-238161 A (Sony Corp.), 31 August, 2001 (31.08.01), Full text; all drawings (Family: none)	1-10
A	JP 2002-57990 A (NEC Corp.), 22 February, 2002 (22.02.02), Full text; all drawings & US 2002/0021887 A1	1-10
A	JP 2003-248637 A (Canon Inc.), 05 September, 2003 (05.09.03), Par. Nos. [0050] to [0054]; Fig. 8 (Family: none)	2
P,A	JP 2004-206863 A (Toshiba Corp.), 22 July, 2004 (22.07.04), Full text; all drawings (Family: none)	1-10

国際調査報告

国際出願番号 PCT/JP2004/015330

A. 発明の属する分野の分類 (国際特許分類 (IPC))
 Int. Cl' G11B 27/00, G11B 20/10, G11B 20/12, G11B 27/10, G06F 19/00, G06F 9/06

B. 調査を行った分野
 調査を行った最小限資料 (国際特許分類 (IPC))
 Int. Cl' G11B 27/00 - 27/06, G11B 20/10, G11B 20/12, G11B 27/10, G06F 19/00, G06F 9/06

最小限資料以外の資料で調査を行った分野に含まれるもの
 日本国実用新案公報 1922-1996年
 日本国公開実用新案公報 1971-2005年
 日本国実用新案登録公報 1996-2005年
 日本国登録実用新案公報 1994-2005年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2002-369154 A (松下電器産業株式会社) 2002. 12. 20, 段落番号【0035】-【0207】，第 1-39図 & WO 02/082810 A1 & EP 13 81232 A1 & US 2002/0194618 A1	1-10
A	JP 2003-249057 A (株式会社東芝) 2003. 09. 05, 段落番号【0020】-【0303】，第 1-33図 & EP 1357749 A1 & US 2003 /0161615 A1	1-10

C欄の続きをにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
 - 「A」特に関連のある文書ではなく、一般的技術水準を示すもの
 - 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 - 「L」優先権主張に疑義を提起する文献又は他の文獻の発行日若しくは他の特別な理由を確立するために引用する文獻（理由を付す）
 - 「O」図類による開示、使用、展示等に言及する文獻
 - 「P」国際出願日前で、かつ優先権の主張の基礎となる出願
- の日の後に公表された文獻
 - 「T」国際出願日又は優先日後に公表された文獻であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 - 「X」特に関連のある文獻であって、当該文獻のみで発明の新規性又は進歩性がないと考えられるもの
 - 「Y」特に関連のある文獻であって、当該文獻と他の1以上の文獻との、当事者にとって自明である組合せによって進歩性がないと考えられるもの
 - 「&」同一パテントファミリー文獻

国際調査を完了した日 07.01.2005	国際調査報告の発送日 25.1.2005
国際調査機関の名称及び先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) 前田祐希 電話番号 03-3581-1101 内線 3590

C(続き)、関連すると認められる文献	関連する請求の範囲の番号
引用文献の カテゴリー* A JP 6-4166 A (岡山日本電気ソフトウェア株式会社) 1994. 01. 14, 段落番号【0002】-【0027】，第 1-2図 (ファミリーなし)	1-10
A JP 6-230946 A (富士ゼロックス株式会社) 1994. 08. 19, 段落番号【0014】-【0043】，第 4-12図 (ファミリーなし)	1-10
A JP 2001-238161 A (ソニー株式会社) 2001. 08. 31, 全文, 全図 (ファミリーなし)	1-10
A JP 2002-57990 A (日本電気株式会社) 2002. 02. 22, 全文, 全図 & US 2002/002 1887 A1	1-10
A JP 2003-248637 A (キヤノン株式会社) 2003. 09. 05, 段落番号【0050】-【0054】，第 8図 (ファミリーなし)	2
P, A JP 2004-206863 A (株式会社東芝) 2004. 07. 22, 全文, 全図 (ファミリーなし)	1-10