

COURSE OUTLINE

Course Code: CSE 204

Course Title: Data Structures and Algorithms I Sessional

Level/Term: 2/1 Section: All

Academic Session: July 2022

Course Teacher:

Name:	Office/Room:	E-mail and Telephone:
Md. Shamsuzzoha Bayzid	521	shams_bayzid@cse.buet.ac.bd
Abu Wasif		wasif.11033@gmail.com
Atif Rahman		atif.bd@gmail.com
Sadia Sharmin		sadiasharmin.ss@gmail.com
Syed Muhammad Ibne Zulfiker		syedmuhammadibnezulfiker@gmail.com
Sajib Acharjee Dip		sajibacharjee108@gmail.com
Md. Rakibul Hasan Sarker		rhrana99@gmail.com
Bishwajit Bhattacharjee		bishwajit0020@gmail.com
Md. Shahrar Fatemi		shahrar007@gmail.com
Najrin Sultana		nazrinshukti@gmail.com
Meher Afroz		meherafroz6331@gmail.com

Course Outline:

Internal data representation; Abstract data types; Introduction to algorithms; Asymptotic analysis: growth of functions, O, O and O notations; Correctness proof and techniques for analysis of algorithms; Master Theorem; Elementary data structures: arrays, linked lists, stacks, queues, trees and tree traversals, graphs and graph representations, heaps, binary search trees; Graph Traversals: DFS, BFS, Applications of DFS and BFS; Sorting: heap sort, merge sort, quick sort; Data structures for set operations; Methods for the design of efficient algorithms: divide and conquer, greedy methods, dynamic programming.

Objectives:

- i. Demonstrate a familiarity with major data structures.
- ii. Analyze the asymptotic performance of different algorithms.
- iii. Apply important algorithmic design paradigms and methods of analysis.
- **iv.** Assess how the choice of data structures and algorithm design methods impacts the performance of programs.

v. Choose the appropriate data structure and algorithm design method for solving different real-life problems.

Learning Outcomes:

After undergoing this course, students should be able to

- i. understand algorithmic behavior in terms of time and space
- ii. understand average case, worst case, best case behavior of algorithms
- iii. design, analyze, and implement basic data structures such as arrays, lists, stacks, queues, trees, and graphs
- iv. design, analyze, and implement some advanced data structures such as heaps
- v. assess data structure impacts on the performance of an application
- vi. compare between several data structures and choose the best one for specific application
- vii. learn basic graph algorithms and their applications viii.learn sorting algorithms
- viii. formulate problems and solve them using greedy method, divide and conquer, dynamic programming

Assessment:

Homework Assignments with Viva: 50-60%

Online Assignments: 20-30%

Quiz/Final Online: 20-30%

Text and Reference Books:

- i. Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, MIT Press, 3rd Edition
- ii. Data Structures and Algorithms in Java, 6th Edition Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser
- iii. Algorithm Design, by Jon Kleinberg and Eva Tardos, Pearsons Publishers
- iv. Data Structures and Algorithm Analysis, Edition 3.2 (C++ Version) by Clifford A. Shaffer

- v. Data Structures and Algorithms in C++, 2nd Edition by Michael T., Roberto Tamassia and David M. Mount
- vi. Algorithms, by Sanjoy Dasgupta, Christos Papadimitriou and Umesh Vazirani

Tentative Schedule:

Week	Topics	
Week 1	Discussion on subsequent course plan	
Week 2	Assignment 1 Declaration: Array List and Linked List	
Week 3	Evaluation of Assignment 1 with Online, Assignment 2 Declaration: Stack-Queue	
Week 4	Evaluation of Assignment 2 with Online, Assignment 3 Declaration: Binary Search Tree	
Week 5	Evaluation of Assignment 3 with Online, Assignment 4 Declaration: Graph	
	Enjoy the vacation	
Week 6	Reserved	
Week 7	Evaluation of Assignment 4 with Online, Assignment 5 Declaration: Heaps	
Week 8	Evaluation of Assignment 5 with online, Assignment 6 Declaration: Greedy Algorithms	
Week 9	Evaluation of Assignment 6 with online, Assignment 7 Declaration: Divide and Conquer	
Week 10	Evaluation of Assignment 7 with online, Assignment 8 Declaration:Dynamic Programming	
Week 11	Evaluation of Assignment 8, Sorting	
Week 12	Final Online with problem solving- Contest	
Week 13	QUIZ	

Note that the schedule is tentative and can be changed during the course timeline.

Prepared by:	
Name and Designation:	

	(
	(
	(
Signatura:	(
Signature.	(
Signature:	

