InfAdapter: Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems

Mehran Salmani, Saeid Ghafouri, **Alireza Sanaee**, Kamran Razavi Joseph Doyle, Max Mühlhäuser, Pooyan Jamshidi, Mohsen Sharifi

"More than 90% of data center compute for ML workload, is used by inference services"

ML inference services have strict requirements

Highly Responsive!

ML inference services have strict requirements

Highly Responsive!

Cost-Efficient!

ML inference services have strict requirements

Highly Responsive!

Highly Accurate!

ML inference services have strict & conflicting requirements

Highly Responsive!

Cost-Efficient!

Highly Accurate!

More challenge: Dynamic workload

Existing adaptation mechanisms

Resource Scaling

Vertical Scaling (AutoPilot EuroSys'20)

Horizontal Scaling (MArk ATC'19)

Quality Adaptation

Model Switching (Model-Switching Hotcloud'20)

Over Provisioning

Quality adaptation

ResNet18: Tiger ResNet152: Dog

Quality adaptation

Quality adaptation

Solution: InfAdapter

InfAdapter is a latency SLO-aware, highly accurate, and cost-efficient inference serving system.

InfAdapter: Why?

Different throughputs with different model variants

InfAdapter: Why?

Higher average accuracy by using multiple model variants

InfAdapter: How?

Selecting a subset of model variants, each having its own size

It meets latency requirement for the predicted workload while maximizing accuracy and minimizing cost

InfAdapter: Design

InfAdapter: Design

$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC) \qquad \text{Adapter}$$

$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC) \qquad \text{Adapter}$$
 subject to
$$\lambda \leq \sum_{m \in M} th_m(n_m),$$

$$\lambda_m \leq th_m(n_m)$$

$$p_m(n_m) \leq L, \forall m \in M,$$

$$RC \leq B,$$

$$n_m \in \mathbb{W}, \forall m \in M.$$

$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC) \qquad \text{Adapter}$$
 subject to
$$\lambda \leq \sum_{m \in M} th_m(n_m), \qquad \text{Supporting incoming workload}$$

$$\lambda_m \leq th_m(n_m)$$

$$p_m(n_m) \leq L, \forall m \in M,$$

$$RC \leq B,$$

$$n_m \in \mathbb{W}, \forall m \in M.$$

$$\max \quad \alpha \cdot AA - (\beta \cdot RC + \gamma \cdot LC) \qquad \text{Adapter}$$
 subject to
$$\lambda \leq \sum_{m \in M} th_m(n_m), \qquad \text{Supporting incoming workload}$$

$$\lambda_m \leq th_m(n_m)$$

$$p_m(n_m) \leq L, \forall m \in M,$$

$$RC \leq B,$$

$$n_m \in \mathbb{W}, \forall m \in M.$$

InfAdapter: Design

InfAdapter: Experimental evaluation setup

Twitter-trace sample (2022-08)

Baselines

Kubernetes VPA and adapted Model-Switching

Used models

Resnet18, Resnet34, Resnet50, Resnet101, Resnet152

Interval adaptation

30 seconds

A Kubernetes cluster of 3 nodes

48 Cores, 192 GiB RAM

Workload Pattern

InfAdapter: Accuracy evaluation

InfAdapter: Cost evaluation

Takeaway

Inference Serving Systems should consider accuracy, latency, and cost at the same time.

Takeaway

Inference Serving Systems should consider accuracy, latency, and cost at the same time.

Model variants provide the opportunity to reduce resource costs while adapting to the dynamic workload.

Using a set of model variants simultaneously provides higher average accuracy compared to having one variant.

Takeaway

Inference Serving Systems should consider accuracy, latency, and cost at the same time.

Model variants provide the opportunity to reduce resource costs while adapting to the dynamic workload.

Using a set of model variants simultaneously provides higher average accuracy compared to having one variant.

InfAdapter!

https://github.com/reconfigurable-ml-pipeline/InfAdapter

Back up slides

InfAdapter: Experimental evaluation

Compare aggregated metrics of latency SLO violation, accuracy and cost with other works on different β values to see how they perform on different accuracy-cost trade-off

