PART-1(Bias-Variance Tradeoff in Machine Learning)

Impact of Increasing Model Complexity on Bias and Variance

As we increase the complexity of a machine-learning model by adding more features or including higher-order polynomial terms in a regression model, the effects on bias and variance can be described through the **bias-variance trade-off**.

1. Bias

Bias refers to the error introduced by approximating a real-world problem with a simpler model.

- Low-complexity models (e.g., linear models) typically have **high bias**, as they underfit the data and fail to capture underlying patterns. - As model complexity increases, bias **decreases**, since the model can fit more complex patterns.

2. Variance

Variance refers to the model's sensitivity to small fluctuations in the training data.

- High-complexity models, especially those with many features or higher-order terms, have **high variance** since they can overfit the training data, learning patterns that do not generalize well to unseen data. - As model complexity increases, variance **increases**, as the model becomes too sensitive to the specific training data.

3. Bias-Variance Tradeoff

The bias-variance tradeoff represents the balance between bias and variance:

- Initially, as complexity increases, both training and test errors decrease due to a reduction in bias.
- After a certain point, increasing complexity results in overfitting, which causes an increase in test error due to higher variance.

Graphical Representation

The bias-variance tradeoff can be represented graphically as shown below:

In this graph: - The **x-axis** represents model complexity. - The **y-axis** represents the error (or loss). - The **training error** decreases as complexity increases. - The **test error** initially decreases but then increases due to overfitting. - **Bias** starts high and decreases, while **variance** starts low and increases.

Mathematical Formulation

The total error can be decomposed into three parts:

$$\label{eq:total_total_error} \text{Total Error} = \underbrace{\text{Bias}^2}_{\text{underfitting}} + \underbrace{\text{Variance}}_{\text{overfitting}} + \underbrace{\text{Irreducible Error}^2}_{\text{Noise}}$$

- Bias: Measures how far the model's predictions are from the true values.
- Variance: Measures the model's sensitivity to changes in the training data.
- Irreducible error: Represents the inherent noise in the data.

PART-2(Email Filtering System Evaluation)

Confusion Matrix

Based on the problem description, we can summarize the classification results in the following confusion matrix:

	Predicted Spam	Predicted Legitimate
Actual Spam	True Positives $(TP) = 200$	False Negatives $(FN) = 50$
Actual Legitimate	False Positives $(FP) = 20$	True Negatives $(TN) = 730$

1. Accuracy

Accuracy is the proportion of correctly classified emails (both spam and legitimate) out of the total number of emails:

$$\label{eq:accuracy} \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

Substituting the values:

$$Accuracy = \frac{200 + 730}{200 + 730 + 20 + 50} = \frac{930}{1000} = 0.93$$

Thus, the model's accuracy is 93%.

2. Precision

Precision measures how many of the emails classified as spam were actually spam:

$$Precision = \frac{TP}{TP + FP}$$

Substituting the values:

$$Precision = \frac{200}{200 + 20} = \frac{200}{220} \approx 0.909$$

So, the model's precision is 90.9%.

3. Recall

Recall (also known as Sensitivity or True Positive Rate) measures how many actual spam emails were correctly classified:

$$Recall = \frac{TP}{TP + FN}$$

Substituting the values:

$$Recall = \frac{200}{200 + 50} = \frac{200}{250} = 0.8$$

Thus, the model's recall is 80%.

4. F1-Score

The F1-score is the harmonic mean of precision and recall:

$$F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Substituting the values:

$$F1 = 2 \times \frac{0.909 \times 0.8}{0.909 + 0.8} = 2 \times \frac{0.7272}{1.709} \approx 0.851$$

Thus, the F1-score is 85.1%.

5. False Positive Rate

The false positive rate measures how many legitimate emails were incorrectly classified as spam:

$$FPR = \frac{FP}{FP + TN}$$

Substituting the values:

$$FPR = \frac{20}{20 + 730} = \frac{20}{750} \approx 0.0267$$

Thus, the false positive rate is 2.67%.

Conclusion

The email filtering system has the following performance metrics:

• **Accuracy**: 93%

• **Precision**: 90.9%

• Recall: 80%

• **F1-Score**: 85.1%

• False Positive Rate: 2.67%

The model performs well overall, but there is a tradeoff between precision and recall. Only a small portion of legitimate emails are mistakenly flagged as spam, but the model could improve its ability to correctly classify all spam emails.

PART-3(Finding the Equation of the Regression Line)

Given Data

The given data is as follows:

x	y
3	15
6	30
10	55
15	85
18	100

The number of data points n = 5.

Step 1: Calculate the Required Sums

We need to calculate the following sums:

$$\sum x = 3 + 6 + 10 + 15 + 18 = 52$$

$$\sum y = 15 + 30 + 55 + 85 + 100 = 285$$

$$\sum xy = (3 \times 15) + (6 \times 30) + (10 \times 55) + (15 \times 85) + (18 \times 100) = 45 + 180 + 550 + 1275 + 1800 = 3850$$

$$\sum x^2 = (3^2) + (6^2) + (10^2) + (15^2) + (18^2) = 9 + 36 + 100 + 225 + 324 = 694$$

Step 2: Calculate the Slope (m) and Intercept (c)

The slope m of the regression line is given by:

$$m = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$

Substituting the values:

$$m = \frac{5 \times 3850 - 52 \times 285}{5 \times 694 - 52^2}$$

$$m = \frac{19250 - 14820}{3470 - 2704} = \frac{4430}{766} \approx 5.78$$

The y-intercept c is calculated using the formula:

$$c = \frac{\sum y - m \sum x}{n}$$

Substituting the values:

$$c = \frac{285 - 5.78 \times 52}{5} = \frac{285 - 300.56}{5} = \frac{-15.56}{5} \approx -3.11$$

Step 3: The Equation of the Regression Line

Thus, the equation of the regression line is:

$$y = 5.78x - 3.11$$

Step 4: Using the Regression Line

To predict the value of y for a given x, substitute the value of x into the regression line equation. For example, for x = 12:

$$y = 5.78 \times 12 - 3.11 = 69.36 - 3.11 = 66.25$$

Thus, the predicted value of y when x = 12 is approximately 66.25.

PART-4 (Toy Example: Empirical Risk and Generalization)

Problem

Given a training dataset with features X and labels Y, let $\hat{f}(X)$ be the prediction of a model f, and let $L(\hat{f}(X), Y)$ be the loss function. Suppose we have two models, f_1 and f_2 , and the empirical risk for f_1 is lower than that for f_2 . We provide a toy example where model f_1 has a lower empirical risk on the training set but may not necessarily generalize better than model f_2 .

Toy Example

Consider a small dataset for a regression task:

X	Y
1	1.5
2	2.0
3	2.5
4	3.5
5	5.0

We will now create two models, f_1 and f_2 , and analyze their empirical risk and generalization ability.

Model f_1 : High Complexity (Overfitting)

Model f_1 is a high-degree polynomial regression, such as a 4th-degree polynomial. It fits the training data perfectly, with an equation that could look like:

$$f_1(X) = 0.05X^4 - 0.3X^3 + 0.7X^2 - 0.4X + 1.5$$

The predicted values of f_1 on the training set are:

$$\hat{Y}_1 = [1.55, 1.94, 2.38, 3.12, 5.01]$$

The empirical risk, computed as the Mean Squared Error (MSE), for f_1 is:

$$MSE(f_1) = 0.033$$

Although the empirical risk is very low, this model is highly complex and likely overfits the noise in the data, which means it may not generalize well to unseen data.

Model f_2 : Low Complexity (Better Generalization)

Model f_2 is a simple linear regression model, capturing the overall trend in the data. Its equation could be:

$$f_2(X) = 0.85X + 0.75$$

The predicted values of f_2 on the training set are:

$$\hat{Y}_2 = [1.60, 2.45, 3.30, 4.15, 5.00]$$

The empirical risk (MSE) for f_2 is:

$$MSE(f_2) = 0.255$$

Despite having a higher empirical risk on the training data, f_2 is likely to generalize better because it avoids overfitting and has lower variance.

Testing the Models

To further support our claim, we test both models on a new data point that was not part of the training set, say X = 6, where the true value of Y is Y = 6.0.

For model f_1 :

$$f_1(6) = 0.05(6)^4 - 0.3(6)^3 + 0.7(6)^2 - 0.4(6) + 1.5 = 9.23$$

For model f_2 :

$$f_2(6) = 0.85(6) + 0.75 = 5.85$$

We observe that model f_1 predicts 9.23, which is much farther from the true value of 6.0, while model f_2 predicts 5.85, which is closer to the true value.

Thus, the generalization ability of f_2 is better on unseen data, even though its empirical risk on the training set is higher.

Conclusion

In this example, model f_1 has a lower empirical risk on the training set because it overfits the data, but it does not generalize as well as model f_2 . Testing on a new data point further shows that model f_2 provides a better prediction. This illustrates that a lower training error does not necessarily imply better performance on unseen data, especially when the model is overly complex and prone to overfitting.