Statement 1: False.

Proof: We assume that ab=3, then 4(ab) = 4x3=12. So 1214(a-b)
holds. However, 613 does not hold. So the statement is folse of
Statement 2: True.

Proof: Assume that 31n, then there exist an integer k such that nask

So 2n2+18 = 2(3k)2+18 = 18k2+18 = 9 (2k3+2). Since k is an integer,

2k3+2 is also an integer. Thus, 9/2n2+18. So for all nEN

that if 3/n, then 9/2n2+18.

Q2. $x^2y^2-1=0$ would be translate as $(x^2-1)y^2=1$. Since x>1, then $x^2-1>0$. So $y^2=\frac{1}{x^2-1}$, Because $x^2-1>0$, $x^2-1>0$. Thus, $x\in\mathbb{R}$ and x>1 implies that there exist a $y\in\mathbb{R}$ such that $x^2y^2-y^2-1=0$ and y>0. \square

Assume there exist $x \in A$. Since that every $A \in F$ is disjoint from B, $\forall x (x \in A \rightarrow x \notin B)$. Since $A \in F$, $A \in UF$, so $\forall x (x \in A \rightarrow x \in UF)$. Since $A \in F$ candom, every $x \in A$ is in UF and is not in B.

Thus, every $A \in F$ is disjoint from B implies that UF and B are disjoint. \Box .