- 1. The GEM distribution with concentration parameter α , is closely related to the Dirichlet stick-breaking process. For a K dimensional Dirichlet distribution, with parameters $a_{1:K}$, then a draw (ρ) from the Dirichlet distribution also can be written as a stick breaking process with K-1 breaks (and K pieces): $\rho_1 \sim Beta(\alpha_1, \sum\limits_{k=1}^K (a_k-a_1)), \frac{\rho_2}{1-\rho_1} \sim Beta(\alpha_2, \sum\limits_{k=2}^K (a_k-a_2)), \ldots, \rho_K = 1 \sum\limits_{k=1}^{K-1} \rho_k$. If we did not place a limit on K and rather let $K \to \infty$, and if all $a_k = \alpha \forall K$ then we have described the GEM distribution. So the GEM distribution is like an infinite dimensional Dirichlet distribution.
- 2. Two elements drawn from the GEM ρ_i and ρ_j for i < j are not independent. Consider the stick breaking convention for the $GEM(\alpha)$ distribution where $\rho_k = \begin{bmatrix} k-1 \\ j=1 \end{bmatrix} (1-V_j) V_k = \left\{ \begin{bmatrix} k-2 \\ j=1 \end{bmatrix} (1-V_j) \rho_{k-1} \right\} V_k$ (where V_k is the proportion that is broken off at each step). Here we can see that ρ_k depends on the value of ρ_{k-1} (and previous values of ρ_i) and thus for two samples ρ_i and ρ_j for i < j, ρ_j is dependent on ρ_i $(P(\rho_j \mid \rho_i) \neq P(\rho_j))$.
- 3. As $N \to \infty$, the number of unique values $\{z_n\}$ also tends to ∞ . This is exactly the paradigm that we desire as we'd like the number of assignments to grow appropriately with more observations of data (e.g. as the number of documents in a corpus tends to ∞ , we might need new and unseen topics to help describe the data).