; 	

И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

10 класс

В двух частях **Часть 2**

Задачник

для учащихся общеобразовательных учреждений (профильный уровень)

Под редакцией А.Г. Мордковича

Рекомендовано Министерством образования и науки Российской Федерации

6-е издание, стереотипное

Москва 2009

УДК 373.167.1:[512+517] ББК 22.14я721+22.161я721.6 A45

На учебник получены положительные заключения Российской академии наук (№ 10106-5215/9 от 31.10.2007) и Российской академии образования (№ 01-667/5/7д от 29.10.2007)

Авторы:

А. Г. Мордкович, Л. О. Денищева, Л. И. Звавич, Т. А. Корешкова, Т. Н. Мишустина, А. Р. Рязановский, П. В. Семенов

Алгебра и начала математического анализа. 10 класс A45 В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (профильный уровень) / [А. Г. Мордкович и др.] под ред. А. Г. Мордковича. — 6-е изд., стер. — М.: Мнемозина, 2009. — 343 с.: ил.

ISBN 978-5-346-01202-3

Задачник представляет собой вторую часть комплекта из двух книг предназначенных для изучения курса алгебры и начал математического анализа в 10-м классе с профильной подготовкой по математике (первая часть — учебник).

УДК 373.167.1:[512+517 ББК 22.14я721+22.161я721.6

^{© «}Мнемозина», 2005

^{© «}Мнемозина», 2009

[©] Оформление. «Мнемозина», 2009 Все права защищены

ПРЕДИСЛОВИЕ ДЛЯ УЧИТЕЛЯ

Издательство «Мнемозина» выпускает учебно-методический комплект для изучения курса алгебры и начал математического анализа в 10-м классе профильной школы, состоящий из следующих книг:

- $A. \Gamma. Мордкович, П. В. Семенов. Алгебра и начала математического анализа. Часть 1. Учебник.$
- $A.\ \Gamma.\ Мордкович\ u\ др.\ Алгебра\ и начала математического анализа. Часть 2. Задачник.$
- $A.\ \Gamma.\ Мордкович,\ \Pi.\ B.\ Семенов.$ Алгебра и начала математического анализа. Методическое пособие для учителя.
- В. И. Глизбург. Алгебра и начала математического анализа. Контрольные работы / Под ред. А. Г. Мордковича.

У вас в руках вторая книга комплекта — задачник.

Наличие отдельного задачника позволило авторам выстроить в нем полноценную (как по объему, так и по содержанию) систему упражнений, достаточную для работы в классе, для домашних заданий, для повторения (без привлечения других источников). В каждом параграфе представлены упражнения трех уровней сложности: простые, средние (слева от номера такого упражнения помещен знак «О») и трудные (со знаком «●»).

В конце книги приведены ответы к большинству заданий ^{второго} и третьего уровней. Нумерация упражнений своя в каждом параграфе.

Число заданий в каждом номере — одно, два (а) и б)) или четыре (а)—г)). Все они в пределах конкретного номера однотипны, поэтому советуем вам разбирать в классе пункт а) (или пункты а) и б)), а на дом задавать пункт б) (или, соответственно, пункты в) и г)).

Данная книга естественным образом соотносится с известным задачником «Алгебра и начала анализа, 10-11» (издательство «Мнемозина», авторы — А. Г. Мордкович и др.),

который с 2000 года используется в общеобразовательных школах России: значительная часть материала, имеющаяся в упомянутом действующем задачнике, содержится и в настоящем задачнике. Это даст учителю, работавшему ранее по задачнику для общеобразовательной школы, возможность более комфортно работать по задачнику для профильной школы.

Количество упражнений в данном задачнике таково, что его достаточно для учащихся профильных классов различной математической направленности: и при четырех, и при пяти, и при шести часах в неделю на изучение курса алгебры и начал анализа. В дальнейшем предполагается выпуск методического пособия с комментариями к параграфам учебника, с решениями трудных упражнений из задачника, с разными вариантами поурочного планирования. Пока же, для удобства учителя, мы приводим три варианта примерного тематического планирования (из расчета 4, 5, 6 часов в неделю) в первой части комплекта — в учебнике.

В конце задачника появился новый (относительно предыдущих изданий) сравнительно небольшой раздел «Дополнительные задачи». В него мы включили задания с нестандартными формулировками, идеи которых навеяны материалами Единого государственного экзамена по математике. Распределение их по параграфам задачника потребовало бы переверстки всей книги, что неудобно ни нам, ни вам. Нумерация заданий в этом дополнительном разделе двойная: первые цифры указывают, к какому параграфу относится задание, а вторые — продолжают нумерацию упомянутого параграфа. Так что при желании (и при возможности) дополните материалы того или иного параграфа заданиями из нового раздела.

Авторы

Задачи на повторение

п.1. Сократите дробь и найдите ее значение при заданных значениях переменных:

a)
$$\frac{9ab-3b^2}{12a^2-4ab}$$
, если $a=\frac{1}{3}$; $b=\frac{3}{5}$;

б)
$$\frac{m^4-1}{m^8-1}$$
, если $m=\frac{1}{2}$;

в)
$$\frac{24t^2+8st}{5s^2+15st}$$
, если $t=\frac{1}{4}$; $s=\frac{5}{12}$;

$$r)\frac{x^3+y^3}{x^6-y^6}$$
, если $x=2$; $y=3$.

П.2. Сократите дробь:

a)
$$\frac{3x^2-10x+3}{x^2-3x}$$
;

B)
$$\frac{2x^2-9x+4}{x^2-16}$$
;

6)
$$\frac{5x^2+x-4}{x^2+x}$$
;

$$\mathbf{r}) \ \frac{2x^2 + 5x - 3}{x^2 - 9}.$$

П.З. Докажите, что заданная функция является линейной, и найдите ее область определения:

a)
$$y = \frac{x^4 - 5x^3 + 3x - 15}{x^3 + 3}$$
;
 B) $z = \frac{p^3 - 4p^2 - 5p + 20}{p^2 - 5}$;

B)
$$z = \frac{p^3 - 4p^2 - 5p + 20}{p^2 - 5}$$
;

$$6) \ u = \frac{t^4 - 8t^2 + 16}{(t+2)(t^2-4)};$$

r)
$$s = \frac{m^6 - 16m^3 + 64}{(m^2 + 2m + 4)(m^3 - 8)}$$
.

П.4. Докажите, что график данной функции принадлежит прямой, параллельной оси абсцисс; найдите область определения этой функции:

a)
$$y = \frac{4x-5}{7x-21} - \frac{x-1}{2x-6}$$
;

B)
$$y = \frac{3x+4}{5x-10} - \frac{x+4}{3x-6}$$
;

6)
$$y = \frac{2x+5}{x-3} - \frac{11(x+1)}{4x-12}$$
;

r)
$$y = \frac{x-5}{3x+3} - \frac{3x-1}{2x+2}$$
.

П.5. Докажите, что график данной функции принадлежит прямой; найдите область определения этой функции:

a)
$$y = \frac{x^3 + 5x^2 - 4x - 20}{x^2 + 3x - 10}$$
;

B)
$$y = \frac{x^3 - 4x^2 - 9x + 36}{x^2 - 7x + 12}$$
;

6)
$$y = \frac{x^3 - 2x^2 - 16x + 32}{x^2 - 6x + 8}$$
; $y = \frac{x^3 + x^2 - 4x - 4}{x^3 + 3x + 2}$.

$$\mathbf{r}) \ y = \frac{x^3 + x^2 - 4x - 4}{x^3 + 3x + 2}$$

П.6. Выразите переменную x через переменную y:

a)
$$y = \frac{3}{x-2} + 4;$$

B)
$$y = \frac{7}{r+3} - 1;$$

6)
$$y = \frac{4}{1-x} - 2;$$

r)
$$y = \frac{2}{3-x} + 5$$
.

Упростите выражение:

II.7. a)
$$\left(\frac{10}{25-b^2}-\frac{1}{5+b}+\frac{1}{5-b}\right)(25-10b+b^2);$$

6)
$$\left(\frac{2}{m-2}-\frac{8}{m^2-4}-\frac{1}{m+2}\right)(m^2+4m+4);$$

B)
$$\left(\frac{4}{a+1} + \frac{2a}{a^2-1} - \frac{1}{a-1}\right)(a^2+2a+1);$$

r)
$$\left(\frac{2}{3-x}-\frac{4x}{9-x^2}-\frac{1}{3+x}\right)(9+6x+x^2)$$
.

II.8. a)
$$\frac{2m}{m^2-4}-\frac{2}{m^2-4}:\left(\frac{m+1}{2m-2}-\frac{1}{m-1}\right);$$

6)
$$\left(\frac{1}{b-1} - \frac{1}{b^2-b}\right) \cdot \frac{b}{b+2} - \frac{2b}{b^2-4};$$

B)
$$\frac{1}{a-2} - \frac{4a}{a^2-4} \cdot \left(\frac{1}{a-1} - \frac{1}{a^2-a}\right);$$

r)
$$\left(\frac{c+4}{3c+3} - \frac{1}{c+1}\right)$$
: $\frac{c+1}{3} + \frac{2}{c^2-1}$.

11.9. a)
$$\left(a-1+\frac{2}{a+1}\right)$$
: $\frac{a^2+1}{a^2+2a+1}$;

6)
$$\left(b+3+\frac{18}{b-3}\right)\cdot\frac{b^2-6b+9}{b^2+9};$$

B)
$$\left(p-4+\frac{32}{p+4}\right)\cdot\frac{p^2+8p+16}{p^2+16};$$

r)
$$\left(x+5+\frac{50}{x-5}\right)$$
: $\frac{x^2+25}{x^2-10x+25}$.

$$\Pi.10.$$
 a) $\frac{3-x^2}{x^2-1} + \frac{3x}{x^2-1} : \frac{x}{x-1} + \frac{x-1}{x+1}$;

6)
$$\frac{5a-6}{a+2} + \frac{a}{a+2} \cdot \frac{a^2-4}{a} + \frac{10-3a}{a+2}$$
;

B)
$$\frac{3y-4}{y+1} + \frac{y}{y+1} : \frac{y}{y^2-1} + \frac{5-2y}{y+1};$$

$$r$$
) $\frac{3b-2}{b^2-4}+\frac{3}{b^2-4}\cdot\frac{b+2}{3}+\frac{b}{b+2}$.

II.11. a)
$$\left(\frac{1}{x+2} + \frac{5}{x^2 - x - 6} + \frac{2x}{x-3}\right) \cdot \frac{x}{2x+1}$$
;

6)
$$\left(\frac{2}{x+1} + \frac{10}{x^2 - 3x - 4} + \frac{3x}{x-4}\right)$$
: $\frac{3x+2}{3}$;

B)
$$\left(\frac{3}{x-3} + \frac{4}{x^2-5x+6} + \frac{2x}{x-2}\right) : \frac{2x+1}{3};$$

$$\Gamma\left(\frac{2x}{x+3} + \frac{1}{x-1} - \frac{4}{x^2 + 2x - 3}\right) \cdot \frac{x}{2x+1}.$$

П.12. Упростите выражение и найдите его значение при указанных значениях переменной:

a)
$$\left(x-\frac{x}{1-x}\right)$$
: $\frac{3x^4}{x^2-2x+1}$ при $x=\frac{1}{6}$;

6)
$$\left(m - \frac{4mn}{m+n}\right)$$
: $\left(\frac{m}{n+m} + \frac{n}{m-n} + \frac{2mn}{n^2 - m^2}\right)$ при $m = \frac{1}{5}$; $n = -\frac{4}{5}$.

П.13. Докажите, что при всех допустимых значениях переменных значение выражения не зависит от значений входящих в него переменных:

$$\frac{1}{b(abc+a+c)} - \frac{1}{a+\frac{1}{b+\frac{1}{c}}} : \frac{1}{a+\frac{1}{b}}.$$

Упростите выражение:

II.14. a)
$$10\sqrt{\frac{2}{5}} - 0.5\sqrt{160} + \sqrt{1\frac{1}{9}};$$
 B) $15\sqrt{\frac{3}{5}} - 0.5\sqrt{60} + 2\sqrt{3\frac{3}{4}};$

B)
$$15\sqrt{\frac{3}{5}} - 0.5\sqrt{60} + 2\sqrt{3\frac{3}{4}}$$
;

6)
$$4\sqrt{3\frac{1}{2}} - 0.5\sqrt{56} - \sqrt{1\frac{5}{9}};$$

r)
$$3\sqrt{2\frac{1}{3}} - \sqrt{84} - \sqrt{5\frac{1}{4}}$$
.

II.15. a)
$$\frac{3-\sqrt{5}}{3+\sqrt{5}} + \frac{3+\sqrt{5}}{3-\sqrt{5}}$$
;

B)
$$\sqrt{12\sqrt{2}} \cdot \sqrt{3\sqrt{8}}$$
;

6)
$$\sqrt{8\sqrt{3}} \cdot \sqrt{3\sqrt{12}};$$

$$\Gamma$$
) $\frac{4-\sqrt{6}}{4+\sqrt{6}}+\frac{4+\sqrt{6}}{4-\sqrt{6}}$.

II.16. a)
$$\sqrt{2} \left(\sqrt{8 + \sqrt{2} \cdot \sqrt{9 + \sqrt{17}}} + \sqrt{8 - \sqrt{2} \cdot \sqrt{9 - \sqrt{17}}} \right)$$

6)
$$\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}} + \frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}$$
.

П.17. Докажите, что

$$\frac{\sqrt{5}-3}{2}\left(\frac{\sqrt{5}-3}{2}+1\right)\left(\frac{\sqrt{5}-3}{2}+2\right)\left(\frac{\sqrt{5}-3}{2}+3\right)=-1.$$

П.18. Сравните числа A и B, если:

a)
$$A = \frac{5}{3 - \sqrt{2}} + \frac{5}{3 + \sqrt{2}}, B = \sqrt{1000};$$

6)
$$A = \frac{7}{5 - 4\sqrt{2}} + \frac{7}{5 + 4\sqrt{2}}, B = -\sqrt{90}.$$

П.19. а) Известно, что $f(x) = \sqrt{x}$. Найдите, при каких значениях переменной выполняется равенство f(x + 2) = f(2x+6).

б) Известно, что $f(x) = \sqrt{x}$. Найдите, при каких значениях переменной выполняется равенство f(5x-1) - f(3x+17) = 0.

п.20. Сократите дробы:

a)
$$\frac{4\sqrt{x} - 3\sqrt{y}}{9y - 16x}$$
;

B)
$$\frac{25p-49q}{5\sqrt{p}+7\sqrt{q}}$$
;

$$6) \ \frac{196m^2 - 169n}{13\sqrt{n} + 14m};$$

$$\Gamma) \ \frac{6\sqrt{ab} - 9\sqrt{c}}{81c - 36ab}.$$

п.21. Избавьтесь от иррациональности в знаменателе дроби:

a)
$$\frac{p - \sqrt{pq} + q}{\sqrt{p} - \sqrt{q}};$$

B)
$$\frac{x-3\sqrt{x}+9}{\sqrt{x}-3}$$
;

$$6) \ \frac{4+2\sqrt{t}+t}{2+\sqrt{t}};$$

$$\Gamma) \frac{a + 2\sqrt{ab} + 4b}{\sqrt{a} + 2\sqrt{b}}.$$

Упростите выражение:

II.22. a)
$$\frac{\sqrt{x}-2}{4\sqrt{x}} + \frac{2\sqrt{x}+5}{4\sqrt{x}} - \frac{3\sqrt{x}}{4\sqrt{x}}$$
;

6)
$$\frac{11\sqrt{m}-2\sqrt{n}}{3\sqrt{m}} - \frac{2\sqrt{m}-3\sqrt{n}}{3\sqrt{m}} + \frac{\sqrt{m}-\sqrt{n}}{3\sqrt{m}};$$

B)
$$\frac{4\sqrt{p}-2}{2\sqrt{p}} - \frac{2\sqrt{p}-1}{2\sqrt{p}} + \frac{1}{2\sqrt{p}};$$

r)
$$\frac{2\sqrt{c} - \sqrt{d}}{5\sqrt{c}} + \frac{2\sqrt{c} + \sqrt{d}}{5\sqrt{c}} + \frac{\sqrt{c} - 5\sqrt{d}}{5\sqrt{c}}$$
.

$$\Pi.23. \text{ a) } \left((a-b)\sqrt{\frac{a+b}{a-b}} + a-b \right) \left((a-b)\left(\sqrt{\frac{a+b}{a-b}} - 1\right) \right);$$

6)
$$\left(\sqrt{ab} - \frac{ab}{a + \sqrt{ab}}\right) : \frac{\sqrt{ab} - b}{a - b};$$

B)
$$\left(\frac{\sqrt{m}}{2} - \frac{1}{2\sqrt{m}}\right)^2 \left(\frac{\sqrt{m}-1}{\sqrt{m}+1} - \frac{\sqrt{m}+1}{\sqrt{m}-1}\right);$$

$$\Gamma) \quad \frac{\sqrt{(a+\sqrt{ab})(\sqrt{ab}+b)}+\sqrt{(a-\sqrt{ab})(\sqrt{ab}-b)}}{\sqrt{(a+\sqrt{ab})(\sqrt{ab}+b)}-\sqrt{(a-\sqrt{ab})(\sqrt{ab}-b)}}.$$

Решите уравнение:

$$\Pi.24. a) \frac{1}{x+2} + \frac{1}{x^2 - 2x} = \frac{8}{x^3 - 4x};$$

6)
$$\frac{x}{x+1} - \frac{1}{x-1} - \frac{2}{x^2-1} = 0;$$

B)
$$\frac{2x}{x+2} + \frac{1}{x-2} - \frac{4}{x^2-4} = 0;$$

$$\mathbf{r}) \ \frac{2}{x^2 + 5x} + \frac{3}{2x - 10} = \frac{15}{x^2 - 25}.$$

II.25. a)
$$\frac{2x-7}{x^2-9x+14} - \frac{1}{x^2-3x+2} = \frac{1}{x-1}$$
;

6)
$$\frac{3}{x^2-9} = \frac{1}{9-6x+x^2} + \frac{3}{2x^2+6x}$$
;

B)
$$\frac{3x}{x^3-1} - \frac{5}{4x^2+4x+4} - \frac{1}{2(1-x)} = 0;$$

r)
$$1 + \frac{4x^2}{2x^2 + 8x} + \frac{27}{2x^2 + 7x - 4} = \frac{6}{2x - 1}$$
.

- **П.26.** Не решая уравнения $x^2 + 4x 2 = 0$, найдите значение выражения:
- a) $x_1^2 + x_2^2$; 6) $\frac{1}{x_1} + \frac{1}{x_2}$; B) $\frac{x_1}{x_2} + \frac{x_2}{x_1}$; r) $x_1^3 + x_2^3$,

где x_1, x_2 — корни заданного уравнения.

- $\Pi.27$. При каком значении m сумма квадратов корней уравнения $x^2 + (m-2)x - (m+3) = 0$ будет наименьшей?
- $\Pi.28$. При каких значениях параметра a квадратный трехчлен $(2a-2)x^{2}+(a+1)x+1$ имеет отрицательные корни больше, чем -2?
- **П.29.** Известно, что корни x_1 , x_2 уравнения $x^2 3ax + a^2 = 0$ удовлетворяют соотношению $x_1^2 + x_2^2 = 1,75$. Найдите значение параметра a.
- П.30. Решите неравенство:
 - a) -2x + 3(x 2) < 5x;
- B) $8(x+1) + 3x \le 4x + 15$;
- 6) $7x + 1 \ge 12(x 2)$;
- r) 5x 4(x + 3) > 7x.

Решите неравенство:

$$\Pi.31. a) \frac{2x-5}{x+4} > 0;$$

$$B) \frac{4+3x}{1-x} \leq 0;$$

6)
$$\frac{12-4x}{2x+5} \ge 0;$$

$$\Gamma) \frac{2-x}{3-4x} > 0.$$

11.32. a)
$$x^2 - 5x + 15 > 0$$
;
6) $x^2 - 12x + 27 \le 0$;

B)
$$x^2 + 5x - 36 \ge 0$$
;
F) $x^2 - 7x + 20 < 0$.

1.33. a)
$$\frac{(1+x)(2+x)}{x^2-x-2} \ge 0;$$

B)
$$\frac{(x-2)(2x-1)}{2x^2+7x+3} > 0;$$

6)
$$\frac{-2}{2r^2 - 11r + 12} \le 0;$$

r)
$$\frac{x^2-4x+3}{x^2-6x+5} \ge 0$$
.

$$\Pi.34.$$
 a) $\frac{(1+x)(2+x)}{(1-x)(2-x)} \ge 1;$

B)
$$\frac{(x-3)(2-x)}{(3+x)(x+2)} < -1;$$

6)
$$\frac{2}{x} - \frac{3}{x-4} < \frac{5}{2}$$
;

$$\Gamma$$
) $\frac{6}{r-1} - \frac{13}{r-2} \le 2$.

- П.35. При каких значениях параметра a любое решение неравенства $x^2 3x + 2 < 0$ будет решением неравенства $ax^2 (3a + 1)x + 3 < 0$?
- П.36. Найдите все значения параметра a, при которых неравенство $(a^2 5a + 6)x^2 2(a 3)x + 1 > 0$ выполняется при всех действительных значениях x. Существуют ли такие значения a, при которых решением неравенства является пустое множество?

Решите систему неравенств:

II.37. a)
$$\begin{cases} 3x - 1 > 2(x + 5), \\ 7x - 1 < 3(3x - 11); \end{cases}$$

B)
$$\begin{cases} 2x + 3 \le 4(x - 1) + 13, \\ x - 1 < 2(3x - 16); \end{cases}$$

6)
$$\begin{cases} 2x + 5 \ge 4 - 3x, \\ 4x - 7 < 2(4 - x); \end{cases}$$

$$\begin{cases} x + 5 \le 12 - 3(x - 4), \\ 8x - 3 \ge 4(x - 5). \end{cases}$$

§ 1. Натуральные и целые числа

- 1.1. а) Сколько существует натуральных чисел, меньших 100. и делящихся на 2?
 - б) Сколько существует натуральных чисел, меньших 100 и делящихся на 3?
 - в) Сколько существует натуральных чисел, меньших 100 и делящихся на 6?
 - г) Сколько существует натуральных чисел, меньших 100 и делящихся на 27?
- 1.2. Может ли из 101 идущих подряд натуральных чисел быть ровно одно делящееся:
 - а) на 50;
- б) на 51;
- в) на 101; г) на 10001?
- 01.3. Найдите какие-нибудь 36 идущих подряд трехзначных чисел, среди которых нет ни одного кратного 37. Какое наименьшее и какое наибольшее значение может принимать наименьшее из этих 36 трехзначных чисел?
 - 1.4. Может ли произведение 101 идущих подряд натуральных чисел не делиться:
 - а) на 51;
- б) на 101;
- в) на 606;
- г) на 4386?

Докажите утверждение:

- \circ 1.5. a) Если каждое из натуральных чисел n и m делится на натуральное число p, то (n + m) : p и (n - m) : p.*
 - б) Если каждое из натуральных чисел n и m делится на натуральное число p, а x, y — произвольные натуральные числа, то $(nx \pm my) \vdots p$.
 - в) Если натуральное число n делится на натуральное число p, а натуральное m не делится на p, то ни сумма n + m, ни разность n-m не делятся на p.

^{*} Если натуральное число n делится на натуральное число p, то принято писать n : p.

- г) Если сумма натуральных чисел и каждое ее слагаемое, кроме последнего, делятся на некоторое натуральное число p, то и это последнее слагаемое делится на p.
- $_{\text{O1.6.}}$ а) Если n : p, то $(n \cdot m)$: p для любого натурального m.
 - б) Если x : 5, то 3x : 15.
 - в) Если x : 7 и y : 3, то (xy + 14y) : 21.
 - Γ) Если x : 17 и y : 23, то $(x^3 + y^3) : 40$.

Докажите, что:

- 1.7. а) Сумма двух четных чисел есть четное число;
 - б) сумма двух нечетных чисел есть четное число;
 - в) сумма четного и нечетного числа есть нечетное число;
 - г) если x, y произвольные натуральные числа, то xy(x + y)и xy(x-y) — четные числа.
- 1.8. а) Разность квадратов любых натуральных различных чисел делится на их сумму и на их разность;
 - б) разность любых натуральных различных чисел является делителем разности их кубов.
- 01.9. a) Если a + b делится на c, а a b не делится на c, то ни a, ни b не делятся на c:
 - б) ad + bc + ac + bd делится на a + b;
 - в) если ad + bc делится на a + b, то и ac + bd делится на a+b;
 - Γ) если ad+bc не делится на a+b, то и ac+bd не делится на a+b.
- 1.10. Объясните, почему не существует натуральных чисел a и bтаких, что:
 - a) 152a + 134b = 12345; 6) 150a + 135b = 1234.
- 1.11. Найдите все натуральные числа x и y такие, что:
 - a) 7x + 12y = 50:
- B) 5x y = 17;
- 6) 11x + 18y = 98;
- r) 5x 11y = 137.
- ○1.12. Докажите, что:
 - а) $72^3 + 34^3$ делится на 106;
 - б) $(1^3 + 2^3 + 3^3 + ... + 181^3 + 182^3)$ делится на 183;
 - в) $18^3 + 26^3$ делится на 176;
 - г) $(2^3 + 3^3 + ... + 196^3 + 197^3)$ делится на 199.
- $\circ 1.13$. а) Число 14a+11b не делится на 5; докажите, что и 9a+bне делится на 5.
 - б) Число 17a + 29b не делится на 13; докажите, что и 4a + 3bне делится на 13.

- 01.14. Найдите все такие натуральные числа n, при которых:
 - а) выражение $\frac{5n+4}{n}$ является натуральным числом;
 - б) выражение $\frac{5n+4}{n+3}$ является натуральным числом;
 - в) выражение $\frac{7n+12}{n}$ является натуральным числом;
 - г) выражение $\frac{7n+11}{n-5}$ является натуральным числом.
- 01.15. Найдите все такие натуральные числа n, при которых заданное выражение является натуральным числом: a) $\frac{5n^2+7n-12}{n}$; 6) $\frac{n^7+3n^2+36}{n^2}$.
- 1.16. На графике заданной функции найдите все точки, обе координаты которых — целые числа:
 - a) $y = 2 + \frac{4}{x+3}$; 6) $y = \frac{5x+17}{x+7}$.
- 01.17. При каком наименьшем натуральном значении параметра а на графике заданной функции есть ровно одна точка, координатами которой являются натуральные числа? Найдите координаты этой точки:
 - a) $y = \frac{a}{r + 1}$;
- $6) y = \frac{a}{r + 112}.$
- 01.18. Известно, что при некотором значении a число $b = a + \frac{2}{a}$ целое. Будет ли целым число:
 - a) $a^2 + \frac{4}{a^2}$;
- 6) $a^3 + \frac{8}{3}$?
- 01.19. Найдите все значения a, при которых x и y являются натуральными числами:

 - a) $x = \frac{4}{a} + 3$, $y = \frac{8}{a} + a$; 6) $x = \frac{3}{a} + 3$, $y = \frac{9}{a} + 2a$.
- \circ 1.20. При каких значениях параметра a уравнение имеет два различных натуральных корня:
 - a) $ax^2 (2a^2 + 5)x + 10a = 0$;
 - 6) $ax^2 (a^2 + 5)x + 3a 5 = 0$?
- **ullet1.21**. Найдите все целочисленные значения параметра a, при которых оба корня уравнения — целые числа:
 - a) $x^2 + ax + \frac{4}{a 4} = 0$;
 - 6) $(a + 2)x^2 + (2a 1)x + a^2 5a 4 = 0$.

01.24.	Существуют ли такие натуральные числа n и k , что последняя цифра разности указанных двух степеней равна нулю: a) 627^n-833^k ;
•1.25.	а) Докажите, что если при некотором натуральном значении n число n^3-n делится на 6, то и число $(n+1)^3-(n+1)$ также делится на 6. Проверьте наличие делимости для $n=1$ и подумайте, для каких еще значений n имеет место делимость. 6) Докажите, что если при некотором натуральном значении n число n^3+5n делится на 6, то и число $(n+1)^3+5(n+1)$ также делится на 6. Проверьте наличие делимости для $n=1$ и подумайте, для каких еще значений n имеет место делимость. 8) Докажите, что если при некотором натуральном значении n число 7^n+3n-1 делится на 9, то и число $7^{n+1}+3(n+1)-1$ также делится на 9. Проверьте наличие делимости для $n=1$ и подумайте, для каких еще значений n имеет место делимость. 7) Докажите, что если при некотором натуральном значении n число $3^{2n+2}-8n-9$ делится на 64, то и число $3^{2n+4}-8(n+1)-9$ также делится на 64. Проверьте наличении n число n
	чие делимости для $n=1$ и подумайте, для каких еще значений n имеет место делимость.
	Найдите НОД и НОК чисел:
1.26.	a) 154 и 210; b) 255 и 510; б)120 и 144; г) 105 и 165.
1.27.	а) $2^{32} \cdot 3^4 \cdot 11^{31}$ и $2^{23} \cdot 3^7 \cdot 11^{14}$; б) $4^{24} \cdot 6^{14} \cdot 9^8$ и $8^{18} \cdot 10^{17} \cdot 12^{16}$.
1.28.	Не пользуясь калькулятором, определите, является ли данное число квадратом или кубом некоторого натурального числа: а) 75 625; б) 614 656; в) 31 104; г) 45 212 176.
1.29.	Найдите все простые числа, меньшие: a) 50; б) 100.

1.30. Найдите все составные числа, меньшие:

б) 100.

a) 50;

г) 9¹⁸⁶¹.

в) 7¹⁷⁹⁹;

в) 1345⁶⁷⁸⁹¹²³⁴⁵; г) 23 456^{78901²³⁴⁵.}

1.22. Найдите последнюю цифру числа:

o1.23. Найдите последнюю цифру числа:

б) 3¹⁶⁴¹;

a) 2^{1047} ;

a) 2001^{2002²⁰⁰³;}

б) 1999^{2002¹³³³;}

- 1.31. Выпишите все пары взаимно простых составных чисел, из отрезка натурального ряда 1, 2, 3, ..., 20.
 О1.32. Докажите, что: а) наименьший отличный от 1 делитель натурального числа n, большего 1, есть простое число;
 - не больше \sqrt{n} ; в) если $p_1 < p_2 < \ldots < p_n$ простые числа, то число $p_1 p_2 \ldots p_n + 1$ является лисо простым числом, либо делится на простое

б) наименьший отличный от 1 делитель составного числа п

- число p, большее, чем p_n ; r) простых чисел бесконечно много.
- 01.33. Докажите, что:
 - а) любое натуральное число либо взаимно просто с заданным простым числом p, либо делится на p;
 - б) если произведение нескольких множителей делится на простое число p, то хотя бы один из множителей делится на p.
 - **1.34.** Составьте разложение на простые множители числа: а) 504; б) 8281; в) 108 000; г) 12 321.
- O1.35. Найдите число делителей числа: a) 24; б) 504; в) 180; г) 60.
- 01.36. Полагают, по определению, что $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot ... \cdot (n-1) \cdot n!$ (символ n! читают n-факториал), а 1! = 1. С каким показателем входит число 2 в разложение на простые множители числа:
 - a) 10!; б) 20!; в) 40!; г) 100!?
- **01.37.** С каким показателем входит число 5 в разложение на простые множители числа:
 - a) 10!; б) 20!; в) 40!; г) 100!?
- O1.38. Сколькими нулями оканчивается число: a) 10!; б) 20!; в) 40!; г) 100!?
- 01.39. Докажите, что среди данных последовательных натуральных чисел нет ни одного простого числа:
 - a) 23! + 2, 23! + 3; 23! + 4, ..., 23! + 23;
 - 6) 101! + 2, 101! + 3; 101! + 4, ..., 101! + 101.
 - в) Сколько составных чисел в каждой серии а) и б)?
 - г) Выпишите 1 000 000 последовательных натуральных чисел, среди которых нет ни одного простого.
- 01.40. Докажите, что:
 - а) произведение двух идущих подряд натуральных чисел делится на 2;

- б) произведение трех идущих подряд натуральных чисел лелится на 3 и на 6:
- в) произведение четырех идущих подряд натуральных чисел делится на 4, на 12 и на 24;
- г) произведение пяти идущих подряд натуральных чисел делится на 5, на 20 и на 120.
- $_{
 m O1.41}$. Найдите простые числа p и q, если известно, что корни уравнения $x^2 - px + q = 0$ — натуральные числа.
- $_{O}$ 1.42. Найдите все простые числа p и q такие, что:
 - 6) 7p + 3q = 86. a) 5p + 17q = 140;
 - 1.43. Составьте формулу натурального числа, которое:
 - а) при делении на 5 дает остаток 4;
 - б) при делении на 11 дает остаток 7;
 - в) при делении на 7 дает остаток 2:
 - г) оканчивается числом, делящимся на 15.
 - 1.44. Найдите остаток от деления на 10 числа:
 - a) 1234;
- б) 43 215 432.
- **1.45.** Число x при делении на 8 дает остаток 5. Чему может быть равен остаток от деления числа х:
 - а) на 2;
- б) на 3;
- в) на 4; г) на 6?

- 1.46. Докажите, что:
 - а) остаток от деления натурального числа на 2 равен остатку от деления его последней цифры на 2;
 - б) остаток от деления натурального числа на 5 равен остатку от деления его последней цифры на 5.
- 1.47. Докажите, что:
 - а) остаток от деления натурального числа на 4 равен остатку от деления на 4 числа, образованного его двумя последними цифрами;
 - б) остаток от деления натурального числа на 25 равен остатку от деления на 25 числа, образованного его двумя последними цифрами.
- 1.48. Найдите остаток от деления на 3 числа:
 - a) 1 234 321;
- 6) 55 555 155 555.
- 1.49. Найдите остаток от деления на 9 числа:
 - a) 1 234 567;
- **6)** 55 555 155 555.
- $^{\circ}1.50$. Докажите, что произведение $1\cdot 2\cdot 3\cdot \ldots \cdot 13$ делится на $(1 + 2 + 3 + \dots + 13)$, а произведение $1 \cdot 2 \cdot 3 \cdot \dots \cdot 16$ не делится на (1 + 2 + 3 + ... + 16).

1.51. В числе 23 🗌 47 заполните пропуск такой цифрой, чтобы:

а) число делилось на 3; б) число делилось на 9.

- 1.52. В числе 233 7 4 заполните пропуск такой цифрой, чтобы:

- а) число делилось на 4; б) число делилось на 12.
- 1.53. В числе 735 🗌 4 заполните пропуск такой цифрой, чтобы:
 - а) число при делении на 3 давало в остатке 2;
 - б) число при делении на 4 давало в остатке 2.
- 1.54. В числе 7345 заполните пропуск такой цифрой, чтобы:
 - а) число при делении на 9 давало в остатке 2;
 - б) число при делении на 25 давало в остатке 7.
- 01.55. Рассмотрите два предложения:
 - а) сумма квадратов двух натуральных чисел делится на 3 тогда и только тогда, когда каждое из этих чисел делится
 - б) сумма квадратов двух натуральных чисел делится на 5 тогда и только тогда, когда каждое из этих чисел делится на 5.

Докажите, что из этих утверждений верно только одно.

Найдите все пары целых чисел (x; y), удовлетворяющих уравнению:

- **01.56.** a) 2y x = 15;
- B) 7x + 4y = 123;
- 6) 6x y = 25; r) 5x 7y = 23.

- **•1.57.** a) yx = 15; B) $7xy + 4y^2 = 11$; c) $36x^2 y^2 = 27$; r) $x^2 7xy + 6y^2 = 18$.
- 01.58. Сколько делителей имеет данное число:
 - a) 315;

в) 250 000;

б) 9450;

г) 623 700?

§ 2. Рациональные числа

- **2.1.** Между рациональными числами a и b поместите 5 рациональных чисел:
 - a) a = 1,1, b = 1,2;
- B) a = 11,0001, b = 11,0002;
- 6) $a = \frac{11}{12}$, $b = \frac{10}{11}$; r $a = \frac{12221}{12222}$, $b = \frac{122221}{12222}$.
- 2.2. Сколько целых чисел заключено между числами:
 - a) $\frac{1111}{37}$ и $\frac{11512}{361}$;
- б) $\frac{1234}{56}$ и $\frac{78910}{789}$?

2.4.	Среди правильных дробей вида $\frac{n}{12}$, где n — натуральное
	число, найдите ближайшую к числу:
	a) $\frac{2}{7}$; 6) $\frac{3}{7}$; B) $\frac{4}{7}$; r) $\frac{6}{7}$.
2.5.	Среди всех дробей вида $\frac{n}{17}$, где n — натуральное число, най-
	дите ближайшую к числу:
	a) $\frac{2}{7}$; 6) $\frac{3}{7}$; B) $\frac{4}{7}$; r) $\frac{6}{7}$.
02.6.	Найдите число вида $\frac{m}{n}$ (m , n — натуральные взаимно про-
	стые числа) с наименьшим знаменателем, лежащее на числовой прямой между числами:
	a) $\frac{1}{3}$ u $\frac{2}{3}$; B) $\frac{3}{4}$ u $\frac{4}{3}$;
	6) $\frac{2}{9}$ u $\frac{2}{7}$; r) $\frac{121}{323}$ u $\frac{101}{232}$.
2.7.	Найдите число, равноудаленное от чисел:
	a) $\frac{5}{6}$ u $\frac{6}{5}$; 6) $\frac{171}{363}$ u $\frac{101}{242}$.
2.8.	Известно, что $0 < a < b$. Какое из двух чисел $\frac{a}{b}$ или $\frac{b}{a}$
	лежит ближе к 1?
2.9.	Запишите целое число в виде бесконечной десятичной периодической дроби:
	a) 1; 6) 20; b) -4; r) -111.
2.10.	Запишите обыкновенную дробь в виде бесконечной десятичной периодической дроби:
_	a) $\frac{2}{3}$; 6) $\frac{3}{7}$; B) $\frac{8}{11}$; r) $\frac{4}{15}$.
⊃ 2.11 .	Используя калькулятор, определите десятичный знак с указанным номером после запятой в десятичной записи числа:
	а) $\frac{5}{13}$, 301-й знак; в) $\frac{6}{19}$, 2000-й знак;
	б) $\frac{4}{17}$, 123-й знак; г) $\frac{7}{23}$, 78-й знак.
	19

2.3. Сколько существует обыкновенных правильных несокра-

Выпишите наибольшую из этих дробей в каждом случае.

тимых дробей со знаменателем, равным:

б) 236?

a) 17;

	ческой дробі а) 10,1;		в) 4,023;	г) -0,0101.
2.15.	дробей, име	ющих одно и т период каждой	ые периодическо то же число циф из этих дробей б) 3,(15) и 59	р в периоде, и й в полученной
2.16.	в виде смеш	анных периоди	ные чисто перио ческих десятич ственно ли такое	ных дробей, оп-
	a) 1,(34);	б) 30,(115);	в) 6,(543);	г) 9,(2610)?
o 2.17 .		ействия и пред одической деся	ставьте результа ятичной дроби:	т в виде беско-
	a) $\sqrt{0,(4)}$;	6) $\sqrt{3,48(4)}$;	B) $\sqrt{1,(7)}$;	Γ) $\sqrt{4,3402(7)}$.
o 2.18 .		куля и линейки	ены точки <i>А</i> (–5 и отметьте точку	7 :
	a) C(5);	б) <i>O</i> (0);	в) <i>D</i> (1);	r) $P(0,6)$.
	§ :	3. Иррациона	альные числа	
03.1.	Докажите и	ррациональнос	ть числа:_	_
	a) $\sqrt{2}$;	б) √3;	B) $1 - \sqrt{3}$;	r) $\sqrt{3} - \sqrt{15}$.
03.2.		-	кажите иррацион	
	a) $5\sqrt{2}$;	6) $-7\sqrt{3}$;	в) $5(1-\sqrt{3});$	$\Gamma) \ \frac{\left(\sqrt{3} + \sqrt{15}\right)}{12}.$
03.3.	a) Пусть $\frac{p}{q}$	— несократима	ая дробь и $q>1$. Докажите, что
	натуральная	и степень $\left(\frac{p}{q}\right)^n$,	$n\in \pmb{N}$, есть такж	ке несократимая
	дробь.			
20				

Запишите число в виде обыкновенной несократимой дроби:

2.14. Запишите число в виде бесконечной десятичной периоди-

в) 12,0006;

B) -1,2(3);

г) 0,00123.

 Γ) -0.01(234).

б) -123;

б) 12,0(006);

2.12. a) 0;

02.13. a) 0,(36);

- б) Пусть a^n , $n \in \mathbb{N}$ целое число. Докажите, что a либо целое, либо иррациональное число.
- в) Опираясь на утверждения а) и б), докажите иррациональность числа $\sqrt[3]{21}$.
- 03.4. Каким числом, рациональным или иррациональным, яв
 - а) сумма рационального и иррационального чисел;
 - б) разность рационального и иррационального чисел;
 - в) произведение не равного нулю рационального числа и иррационального числа;
 - г) частное рационального, не равного нулю числа, и иррационального числа?

Какое из данных чисел является иррациональным:

- 3.5. a) 2,(2345); 6) $\sqrt{0,(4)}$; B) $\sqrt{1,96}$; r) $\sqrt{19,6}$?

- o3.6. a) $1 + \sqrt{12} 2\sqrt{3}$; B) $2\sqrt{3} 3\sqrt{2}$;

 - 6) $(7-\sqrt{11})\cdot(7+\sqrt{11});$ r) $1+\sqrt{2}-\sqrt{3-2\sqrt{2}}$?
- 03.7. Приведите пример двух различных иррациональных чисел, таких, что:
 - а) их сумма рациональное число;
 - б) их разность рациональное число;
 - в) их произведение рациональное число;
 - г) их частное иррациональное число.
- 03.8. Приведите пример, если это возможно, двух иррациональных различных чисел, таких, что одновременно:
 - а) их сумма и разность рациональные числа;
 - б) их произведение и частное рациональные числа.
- 03.9. Составьте квадратное уравнение с целыми коэффициентами, у которого один из корней равен:

- 6) $\sqrt{3} 5$; B) $\sqrt{5} 2$; F) $\sqrt{3} \sqrt{8}$.
- 03.10. Докажите, что найдется пара иррациональных чисел α и β таких, что:
 - а) $\alpha^2 \beta$ натуральное число;
 - б) $2\alpha^2 + 3\beta$ целое отрицательное число.
- $\circ 3.11$. Докажите, что существует такое иррациональное число a, что число с является натуральным:
 - a) $c = a + \frac{1}{c}$;
- б) $c = a^2 + a$.

03.12. а) Докажите, что для любого иррационального числа о	•
найдется такое рациональное число в, что произведени	
	·e
αβ — рациональное число.	
б) Докажите, что если точка $(x;y)$ лежит на прямой $y=kx+$),
где $k \neq 0$, b — рациональные числа, то числа x и y или об	a
рациональные, или оба иррациональные.	
03.13. Найдите хотя бы одно рациональное число, расположе	Į-
ное на отрезке:	

a) $\left[\sqrt{2}; \sqrt{3}\right]$;

B)
$$[\sqrt{5} - 2; 2,236];$$

6) $[\sqrt{3} - \sqrt{2}; \sqrt{3} + \sqrt{2}];$ r) $[\sqrt{3} + \sqrt{5}; 3,(9)].$

$$\Gamma$$
) $[\sqrt{3} + \sqrt{5}; 3,(9)]$

03.14. Найдите хотя бы одно иррациональное число, расположенное на отрезке:

a) [0; 1];

в) [1,2; 1,6];

б) [1,2; 1,22];

г) [1,2; 1,201].

03.15. Найдите хотя бы одно рациональное число, расположенное на полуинтервале:

a)
$$(1,5; \sqrt{3}];$$

6)
$$[\sqrt{3} - \sqrt{2}; 0,5)$$
.

03.16. Найдите хотя бы одно иррациональное число, расположенное на полуинтервале:

a)
$$[0; \sqrt{2});$$

6)
$$(\sqrt{3} - \sqrt{2}; 0.5]$$
.

03.17. Найдите хотя бы одну точку (x; y), имеющую рациональные координаты, лежащую на прямой:

a)
$$y = x(\sqrt{2} + 1) - 2;$$

6)
$$y = \frac{x}{\sqrt[3]{2}} - 2$$
.

03.18. Найдите хотя бы одну точку (x; y), имеющую иррациональные координаты, лежащую на прямой:

a)
$$y = 5x - 2$$
;

б)
$$y = \frac{x}{7} + 2$$
.

03.19. Могут ли длины сторон треугольника выражаться числами:

a)
$$\sqrt{3}$$
, $\sqrt{2}$, 1;

6)
$$\sqrt{3}$$
, $\sqrt{5}$, 4?

ullet3.20. Отметьте на числовой прямой точки A(1) и B(4). С помощью циркуля и линейки постройте точку:

a)
$$C(\sqrt{7})$$
;

б)
$$D(1-\sqrt{7});$$

B)
$$E\left(\frac{2}{\sqrt{7}}\right)$$

a)
$$C(\sqrt{7});$$
 6) $D(1-\sqrt{7});$ B) $E\left(\frac{2}{\sqrt{7}}\right);$ r) $G(2-\sqrt{5}).$

§ 4. Множество действительных чисел

- 4.1. На числовой прямой отмечены точки A(-2) и B(17). Найдите координаты:
 - а) середины отрезка АВ;
 - б) точки M, если B середина отрезка AM;
 - в) точки M, делящей отрезок AB в отношении AM:MB=2:3:
 - Γ) точки C числовой прямой, такой, что AC=3CB.
- 4.2. а) Отметьте на числовой прямой нули функции
 - $y = (x 1)^2(31x 37)(41x 49);$
 - б) определите промежутки знакопостоянства функции $y = (x-1)^2(31x-37)(41x-49);$
 - в) отметьте на числовой прямой нули функции $y = (49x + 59)^2(31x + 37)^3(41x + 49);$
 - г) определите промежутки знакопостоянства функции $y = (49x + 59)^2(31x + 37)^3(41x + 49)$.
- 4.3. а) Отметьте на числовой прямой нули функции

$$y=\frac{(4x-7)^2}{(19x-43)^3(17x-39)};$$

б) определите промежутки знакопостоянства функции

$$y=\frac{(4x-7)^2}{(19x-43)^3(17x-39)};$$

в) отметьте на числовой прямой нули функции

$$y = \frac{(8x+17)^4}{(59x+69)^2(51x+73)};$$

г) определите промежутки знакопостоянства функции

$$y = \frac{(8x + 17)^4}{(59x + 69)^2(51x + 73)}.$$

- 4.4. Укажите два рациональных и два иррациональных числа, принадлежащих данному промежутку:
 - a) $(0,2; \frac{1}{\sqrt{2}});$
- в) (0,21; 51);
- 6) $\left(\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{2}}\right)$;
- г) (0,21; 0,22).

04.5. Существует ли геометрическая прогрессия, все члены которой различны и расположены на отрезке:

a) [1; 2];

б) [1: 1,2]?

Если существует, то приведите соответствующий пример. если не существует, то докажите это.

4.6. Используя калькулятор, расположите в порядке возрастания числа:

 π , $\frac{22}{7}$, $\frac{355}{113}$, 3,14; 3,1415; $\sqrt[3]{31}$ и $\sqrt{9,91}$.

- 4.7. Выпишите 10 различных чисел, расположенных между числами:
 - а) 0,123 и 0,456;
- в) 0,123 и 0,124;
- б) -0.123 и -0.132; г) -1.9999 и -2.
- 04.8. На числовой прямой отмечены точки 0 и 1. При помощи циркуля и линейки постройте точки:
 - a) 1,4;
- б) √2:
- B) $-\sqrt{10}$; r) $\sqrt{2} \sqrt{3}$.
- 04.9. а) На числовой прямой отмечены точки -3 и 1. При помощи циркуля и линейки постройте точки 0 и 5.
 - б) На числовой прямой отмечены точки $-\sqrt{2}$ и 3. При помощи циркуля и линейки постройте точку 0.
- 4.10. Найдите расстояние между точками числовой прямой:
 - а) 2,4 и 17,9;
- в) 12,14 и 18,92;
- б) -4,27 и 5,03;
- Γ) -4,27 и -5,03.
- 04.11. а) Докажите, что в интервале (8; 9) нет ни наименьшего ни наибольшего числа;
 - б) докажите, что среди чисел, удовлетворяющих неравенству $x^2 < 5$, нет ни наименьшего ни наибольшего числа.
- 04.12. Число т называют точной верхней границей числового множества X, если для любого числа $x \in X$ справедливо неравенство $x \le m$ и для любого числа $\varepsilon > 0$ (ε — буква греческого алфавита эпсилон) существует такое число $x_{\varepsilon} \in X$, что $x_{\varepsilon} > m - \varepsilon$. Найдите точную верхнюю границу множества X, если:

a)
$$X = [0; 1];$$

$$\mathbf{B}) \ X = \left\{ x | x = \frac{1}{n}, \ n \in \mathbf{N} \right\};$$

б)
$$X = [0; 1);$$

r)
$$X = \left\{ x | x = \frac{1+5n}{n}, n \in N \right\}.$$

- O4.13. Число m называют mочной нижней границей числового множества X, если для любого числа $x \in X$ справедливо неравенство $x \ge m$ и для любого числа $\varepsilon > 0$ существует такое число $x_\varepsilon \in X$, что $x_\varepsilon < m + \varepsilon$. Найдите точную нижнюю границу множества X, если:
 - a) X = [0; 1]; B) $X = \left\{x | x = \frac{1}{n}, n \in N\right\};$
 - 6) X = [0; 1); $\Gamma X = \left\{ x | x = \frac{1+5n}{n}, n \in N \right\}.$
- $_{\rm O}4.14$. а) Найдите все такие значения параметра b, при которых в промежутке (-5; b] содержится ровно 8 целых чисел.
 - б) Найдите все такие значения параметра b, при которых в промежутке (-5; b) содержится ровно 8 целых чисел.
 - в) Найдите все такие значения параметра b, при которых в промежутке [b; 8] находится ровно 8 целых чисел.
 - г) Найдите все такие значения параметра b, при которых в промежутке (b; b+4] находится ровно 5 целых чисел.
- О4.15. а) Найдите отрезок наименьшей длины, содержащий 33 целых числа, большее из которых есть 12.
 - б) Найдите промежуток наибольшей длины, содержащий не более четырех целых чисел, меньшее из которых есть 18.
- \circ 4.16. На числовой прямой отмечены точки $A(2a-6a^2)$ и B(2a-3). При каких значениях a точка C лежит между A и B, если: a) C(2); б) C(-1)?
- \circ 4.17. На числовой прямой отмечены точки $A(12a+6a^2)$ и B(-2a+3). При каких значениях a точка C лежит между A и B, если: a) C(-2); б) C(a)?
- **04.18.** При каких значениях p числа $\frac{p}{2-p}$ и $\sqrt{2p-4}$ принадлежат отрезку [-3; 2]?
 - **4.19.** Расположите на числовой прямой числа a, b, 0, если:

a)
$$\begin{cases} ab < 0, \\ a + b < 0; \end{cases}$$
 B) $\begin{cases} ab < 0, \\ a + b > 0; \end{cases}$

6)
$$\begin{cases} ab > 0, \\ a + b > 0; \end{cases}$$
 r) $\begin{cases} ab > 0, \\ a + b < 0. \end{cases}$

4.20. Пусть $\varepsilon > 0$. Множество всех точек x числовой прямой,
удовлетворяющих неравенству $a - \varepsilon < x < a + \varepsilon$, называют
ϵ -окрестностью точки a , при этом точки $a-\epsilon$ и $a+\epsilon$ назы-
вают граничными точками є-окрестности точки а. При ка-
ких $\varepsilon > 0$ точка 12,35 лежит в ε -окрестности точки:

- a) 12.5; 6) 12.2?
- 4.21. Точки х и у являются граничными точками некоторой ε-окрестности. Найдите є, если:
 - a) x=12,5, y=12,7;
- B) x = -2.9, y = 3.3;
- 6) x = 32,31, y = 31,32; r) x = -31, y = -29.8.
- $\mathbf{O4.22.}$ Дано множество $P = \left\{ x | x = \frac{1}{n}, \ n \in N \right\}$. Определите, при каких натуральных значениях n числа из P будут лежать в є-окрестности точки 0, если:
 - a) $\varepsilon = 1$;

- **4.23.** Целой частью действительного числа x называют наибольшее целое число, не превосходящее числа x, и обозначают [x]. Найдите целую часть числа:
 - a) 4:
- 6) -3,2;
- в) 4,45; г) -3,3456.

- 04.24. Докажите:
 - а) если [x] = k, то для любого натурального числа n верно равенство [x + n] = k + n;
 - б) если [x] = k, то для любого числа y справедливо неравенство $[x + y] \leq k + y$.

Решите уравнение:

б)
$$[x] = -11$$
:

$$\mathbf{B})[x] = -1;$$

$$\mathbf{r}) [x] = 11$$

•4.26. a)
$$[x] = x$$
;

$$\mathbf{B})\;[x]=\frac{x}{2};$$

6)
$$[x + 5] = 1 - x$$
;

$$\Gamma\left(\frac{x+1}{4}\right) = x+2.$$

- •4.27. Постройте на координатной плоскости хОу график соотношения:
 - a) [x] = [u]:

B) [x] < [u];

б) [x] > [y];

r) [x-1] > [y+1].

 $_{1.28}$. Дробной частью действительного числа x называют разность x - [x]; дробную часть числа x обозначают символом $\{x\}$. Вычислите:

a) {2};

б) $\{12,81\};$ в) $\{1,08\};$ г) $\{\sqrt{2}\}.$

4.29. Вычислите:

a) $\{-2\}$; 6) $\{-12,81\}$; b) $\{-1,08\}$; r) $\{-\sqrt{2}\}$.

 α 4.30. Пусть $\omega \in [0; 1)$. Докажите, что для любого натурального aверно равенство:

a) $\{a + \omega\} = \omega$;

6) $\{a - \omega\} = 1 - \omega$.

- 04.31. а) Найдите все числа x, для которых $\{x\} = 0.123$;
 - б) найдите наибольшее целое число, не превосходящее 1000, дробная часть которого равна 0,123.
- •4.32. Постройте график заданной функции на отрезке [-4; 4]:

a) y = [x];

B) y = [x + 4];

6) y = [1 - x];

$$\mathbf{r)} \ y = \left\lceil \frac{1-x}{2} \right\rceil.$$

•4.33. Постройте график заданной функции на отрезке [-4; 4]:

a) $y = \{x\};$

B) $y = \{x + 4\};$

6) $y = \{1 - x\};$

 $y = \{\frac{1-x}{2}\}.$

•4.34. Пусть $\alpha \in [-4; 0]$. Найдите отрезок наименьшей длины, содержащей все числа вида:

a) $1 + 2\alpha^2$:

в) $5\alpha^3$;

δ) δα + α²:

r) $\frac{2\alpha+1}{3\alpha-1}$.

§ 5. Модуль действительного числа

5.1. Найдите модуль числа:

a) $|1 - \sqrt{2}|$;

B) $|2,2-\sqrt{5}|$;

6) $|\sqrt{3} - \sqrt{2}|$; r) $|\sqrt{6} - 2.5|$.

- **5.2.** Используя определение модуля, запишите выражение без знака модуля:
 - a) |x-5|;

- B) |x-5|-|4x-5|;
- 6) |x-5|+|x+8|;
- $|x-5|\cdot(x+3)$.
- \circ 5.3. При каких значениях x верно равенство:
 - a) |x| = x;

- **B)** |x| = -x;
- 6) |x-7|=x-7;
- $\mathbf{r}) |x^2 7x + 12| = 7x x^2 12?$
- **5.4.** Найдите расстояние между точками A и B числовой прямой:
 - а) A(7) и B(12);
- в) A(-7) и B(12);
- б) A(-17) и B(-62);
- г) O(0) и B(-12).

На числовой прямой отметьте все такие точки x, которые удовлетворяют заданному соотношению:

5.5. a) |x| = -x;

- B) |x| = x;
- 6) |x+2|=x+2;
- |x-2|=2-x.

5.6. a) $|x| \leq x$;

B) $|x + 2| \le x + 2$;

6) |x| ≤ -x;

 $\mathbf{r}) |x-2| \leq 2-x.$

5.7. a) $|x| \ge x$;

B) $|x + 2| \ge x + 2$;

6) $|x| \ge -x$;

- $\Gamma) |x-2| \geq 2-x.$
- 5.8. Докажите свойства модуля действительного числа:
 - a) $|a| \ge a$;

- B) $|a| > a \Leftrightarrow a < 0$;
- 6) $-|a| \leq a \leq |a|$;
- r) $|a| + |b| + |c| = 0 \Leftrightarrow a = b = c = 0$.

Упростите выражение:

- **5.9.** a) |a-b|-|b-a|;
- 6) |a-c|-|a+c|-|c-a|+|-c-a|.
- $05.10. a) \sqrt{\pi^2 8\pi + 16};$
 - 6) $\sqrt{(2-\sqrt{5})^2} + \sqrt{(3-\sqrt{5})^2}$;
 - B) $\sqrt{4\pi^2-28\pi+49}$;
 - r) $\sqrt{(2,7-\sqrt{7})^2} \sqrt{(2,6-\sqrt{7})^2}$.
- **05.11.** a) $\left| \sqrt{51} 7 \right| + \left| \sqrt{51} 5\sqrt{3} \right| + \left| \sqrt{75} 11 \right|$;
 - 6) $|1 \sqrt{2}| + |\sqrt{2} 2\sqrt{2}| + |2\sqrt{2} 3\sqrt{2}| + \dots + |5\sqrt{2} 6\sqrt{2}| + |6\sqrt{2} 9|$:

B)
$$\left|1-\sqrt{37}\right|+\left|2-\sqrt{37}\right|+\left|3-\sqrt{37}\right|+...+$$

$$+ |6 - \sqrt{37}| + 6 \cdot |7 - \sqrt{37}|;$$

r)
$$\left| 1 - \sqrt{137} \right| + \left| 2 - \sqrt{137} \right| + \left| 3 - \sqrt{137} \right| + \dots +$$

$$+ |11 - \sqrt{137}| + 11 \cdot |\sqrt{137} - 12|.$$

$$_{
m O5.12.}$$
 а) Пусть $a_{_1} < a_{_2} < ... < a_{_n}$. Докажите, что $\left|a_{_1} - a_{_2}\right| + \left|a_{_2} - a_{_3}\right| + \left|a_{_3} - a_{_4}\right| + ... +$

$$+ |a_{n-1} - a_n| = |a_1 - a_n|.$$

б) Пусть
$$n < \sqrt{a} < n + 1$$
. Докажите, что

$$|1-\sqrt{a}|+|2-\sqrt{a}|+|3-\sqrt{a}|+...+$$

$$+\left|n-\sqrt{a}\right|+n\cdot\left|\sqrt{a}-n-1\right|=\frac{n(n+1)}{2}.$$

Решите уравнение:

$$05.13. a) |x + 4| = 5;$$

B)
$$|x-4|=15$$
:

6)
$$|x-4| = |10-x|$$
;

$$\Gamma) |x-4|=|5x|.$$

$$05.14. a) |x + 4| = -5;$$

B)
$$|x-4| = \sqrt{20} - 2\sqrt{5}$$
;

6)
$$|x-4| = 15 - \sqrt{227}$$
:

$$|x + 4| = 3\sqrt{12} - 6\sqrt{3}$$

$$05.15. a) |x + 4| = 2x;$$

B)
$$|x^2 - 4x| = 3x$$
:

6)
$$|x - 14| = 8 + 2x$$
:

$$|x^2 + 7x| = 4x + 10.$$

Решите неравенство:

•5.16. a)
$$|x+4| < 2x$$
;

B)
$$|x-14| \le 8 + 2x$$
;

6)
$$|x^2-4x|<3x$$
;

$$|x^2 + 7x| \le 4x + 10.$$

•5.17. a)
$$|x + 5| > 5x - 7$$
;

B)
$$|7x + 4| \ge 6 + 5x$$
;

6)
$$|x^2 + x - 5| > 3x$$
;

$$\Gamma) |-x^2-x| \geqslant 4x-2.$$

$$^{\circ}$$
5.18. а) Какие значения может принимать $|x-7|$, если $|x-4|=6$;

б) какие значения может принимать
$$|x + 5|$$
, если $|x - 2| = 16$?

- **•5.19.** а) Найдите все значения a, при которых |x-2|=a, если |x-a|=1;
 - б) найдите все значения a, при которых $|x-2a+a^2|=a$, если |x-a|=2-a.
- **•5.20**. а) Какие значения может принимать |x y|, если |x a| = 7, |y-a|=16;
 - б) какие значения может принимать |a-b|, если |x-a|=7. |x-b| = 16?
- **•5.21.** a) Пусть |x-1|=5. Найдите все возможные значения выражения $\sqrt{\frac{2|x+4|}{x^2-x-10}}$.
 - б) Пусть |x-1| < 5. Найдите все возможные значения выражения $\sqrt{\frac{x^2-2x+5}{20}}$.

Постройте график функции. Для каждой функции укажите область определения, множество значений, промежутки монотонности, нули функции:

o5.22. a)
$$y = |x - 5|$$
;

B)
$$y = 2 - |1 - x|$$
;

6)
$$y = |x + 3| + |1 - x|$$
:

6)
$$u = |x + 3| + |1 - x|$$
; $r) u = |x + 3| - |1 - x|$.

05.23. a)
$$y = |x - 5| \cdot (x + 3)$$
;

6)
$$y = |x + 3| \cdot |1 - x|$$
.

•5.24. a)
$$y = |2 - \sqrt{5 - x}|$$
;

B)
$$y = |2 - \sqrt{5 + x}|;$$

6)
$$y = 2 - \sqrt{5 - |x|}$$
;

$$\mathbf{r}) \ y = \left| 2 - \sqrt{5 + |x|} \right|.$$

●5.25. Найдите наименьшее значение функции:

a)
$$y = 2 + |x + 5|$$
;

B)
$$y = |x - 2| - |x + 5|$$
;

6)
$$y = |x - 2| + |x + 5|$$
; r) $y = |x - 2| \cdot |x + 5|$.

$$y = |x - 2| \cdot |x + 5|$$

•5.26. На рисунке 1 изображен график функции y = f(x). Постройте график уравнения:

$$\mathbf{a}) \ y = |f(x)|;$$

б)
$$u = f(|x|)$$
:

$$\mathbf{B}) |u| = f(x)$$

a)
$$y = |f(x)|$$
; 6) $y = f(|x|)$; B) $|y| = f(x)$; P) $|y| = f(|x|)$.

Выполните аналогичные задания для функций y = g(x) (рис. 2), y = h(x) (рис. 3) и $y = \varphi(x)$ (рис. 4).

Puc. 1

Puc. 2

Puc. 3

Puc. 4

•5.27. Постройте график уравнения:

a)
$$|x + 2y| = 4$$
;

B)
$$x + 2|y| = 4$$
;

6)
$$|x| + 2y = 4$$
;

$$\mathbf{r}) |x| + 2|y| = 4.$$

§ 6. Метод математической индукции

06.1. Методом математической индукции докажите:

- а) формулу общего члена арифметической прогресси $a_n = a_1 + d(n-1);$
- б) формулу суммы первых n членов арифметической при грессии $S_n = \frac{(2a_1 + d(n-1))n}{2};$
- в) формулу общего члена геометрической прогресси $b_n = b_1 q^{n-1};$
- г) формулу суммы первых n членов геометрической прогрессии $S_n = \frac{b_1(1-q^n)}{1-q}$ при $q \neq 1$.

Вычислите сумму:

$$06.2.$$
 a) $7 + 8 + 9 \dots + (n + 6)$;

6)
$$2 + 11 + 20 + ... + (9n - 7)$$
;

B)
$$1,35+1,4+1,45+...+(0,05n+1,3)$$
;

r)
$$0,(3) + 0,(5) + 0,(7) + ... + (0,(2)n + 0,(1))$$
.

06.3. a)
$$1-2+3-4+5-6...+n(-1)^{n+1}$$
;

6)
$$-1^2 + 2^2 - 3^2 + 4^2 - 5^2 + \dots + (-1)^n n^2$$
;

B)
$$0+3+2+5+4+7+6+...+(n+(-1)^n)$$
;

$$\Gamma$$
) 2 - 6 + 12 - 20 + ... + $(-1)^{n+1}(n^2 + n)$.

Докажите, что при любом натуральном значении n выполняется равенство:

$$06.4.$$
 a) $1+2+3+\ldots+n=\frac{n(n+1)}{2}$;

6)
$$1 + 4 + 7 + ... + (3n - 2) = \frac{n(3n - 1)}{2}$$
;

B)
$$5+6+7+...+(n+4)=\frac{n(n+9)}{2}$$
;

r)
$$1,6+3,1+4,6+...+(1,5n+0,1)=\frac{n(3n+3,4)}{4}$$
.

O6.5. a)
$$1 + 2 + 4 + 8 + ... + 2^{n-1} = 2^n - 1$$
;

6)
$$1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} = 1,5 - \frac{1,5}{3^n}$$
;

B)
$$3-9+27-81+...+(-3)^n=\frac{3}{4}(1-(-3)^n);$$

r) 1 + 0,1 + 0,01 + ... +
$$0,000...01_{n-1} = 1,(1) \cdot (1 - 1)$$

06.6. a)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

6)
$$1^2 + 4^2 + 7^2 + ... + (3n - 2)^2 = \frac{n(6n^2 - 3n - 1)}{2}$$
;

B)
$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(4n^2-1)}{3}$$
;

r)
$$3^2 + 7^2 + 10^2 + ... + (4n - 1)^2 = \frac{n(16n^2 + 12n - 1)}{3}$$
.

06.7. a)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
;

6)
$$1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2-1)$$
.

06.8. a)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
;

6)
$$\frac{1}{2 \cdot 7} + \frac{1}{7 \cdot 12} + \dots + \frac{1}{(5n-3)(5n+2)} = \frac{n}{10n+4}$$
.

●6.9. Докажите, что

$$\frac{1}{a \cdot (a+d)} + \frac{1}{(a+d) \cdot (a+2d)} + \frac{1}{(a+2d) \cdot (a+3d)} + \dots +$$

$$+ \frac{1}{(a+d(n-1))(a+dn)} = \frac{n}{a(a+dn)},$$

где $a \neq 0$, $d \neq 0$, $n \in N$:

- а) методом математической индукции;
- б) без использования метода математической индукции.

о6.10. Используя тождество из № 6.9, вычислите сумму:

a)
$$\frac{1}{4 \cdot 9} + \frac{1}{9 \cdot 14} + \frac{1}{14 \cdot 19} + \dots + \frac{1}{144 \cdot 149}$$
;

6)
$$\frac{1}{1,5 \cdot 2,5} + \frac{1}{2,5 \cdot 3,5} + \frac{1}{3,5 \cdot 4,5} + \dots + \frac{1}{73,5 \cdot 74,5}$$
.

о6.11. Используя тождество из № 6.9, докажите неравенство:

a)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} < 1;$$

6)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{98 \cdot 99} < 0.99;$$

B)
$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} < 0.5;$$

r)
$$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{997 \cdot 999} < 0,4996.$$

Докажите, что при любом натуральном значении n выполняется равенство:

06.12. a)
$$1 \cdot 4 + 2 \cdot 7 + 3 \cdot 10 + ... + n(3n + 1) = n(n + 1)^2$$
;

6)
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + ... + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
;

B)
$$1 \cdot 3 + 3 \cdot 5 + ... + (2n-1)(2n+1) = \frac{n(4n^2 + 6n - 1)}{3}$$
;

r)
$$2 \cdot 5 + 5 \cdot 8 + 8 \cdot 11 + \dots + (3n-1)(3n+2) = n(3n^2 + 6n + 1)$$
.

06.13. a)
$$4 \cdot 2 + 7 \cdot 2^3 + 10 \cdot 2^5 + \dots + (3n+1)2^{2n-1} = n \cdot 2^{2n+1}$$
;

6)
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}$$
;

B)
$$1 \cdot 2^2 + 2 \cdot 3^2 + ... + (n-1)n^2 = \frac{n(n^2-1)(3n+2)}{12}$$
;

r)
$$\frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + \frac{n}{3^n} = \frac{3}{4} \left(1 - \frac{2n+3}{3^{n+1}} \right)$$

$$06.14. a) \frac{1^2}{1 \cdot 3} + \frac{2^2}{3 \cdot 5} + \dots + \frac{n^2}{(2n-1)(2n+1)} = \frac{n(n+1)}{2(2n+1)};$$

6)
$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{(n+1)(n+2)}\right);$$

B)
$$\frac{1\cdot 4}{2\cdot 3} + \frac{2\cdot 5}{3\cdot 4} + \dots + \frac{n\cdot (n+3)}{(n+1)(n+2)} = \frac{n(n+1)}{n+2}$$
;

r)
$$\frac{1}{1 \cdot 3 \cdot 5} + \frac{2}{3 \cdot 5 \cdot 7} + \frac{3}{5 \cdot 7 \cdot 9} + \dots + \frac{1}{(2n-1)(2n+1)(2n+3)} = \frac{n(n+1)}{2(2n+1)(2n+3)}$$
.

●6.15. Докажите, что для любого $n \in N$ выполняется равенство:

a)
$$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + ... + n \cdot n! = (n+1)! - 1;$$

6)
$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$$
 (cm. No 1.36).

•6.16. Рассмотрите три утверждения, начните их доказывать в указанном порядке методом математической индукции и определите, какое из них является верным для любого натурального значения n, а какие нет:

a)
$$2+7+14+...+(n^2+2n-1)=\frac{n(2n^2+9n+2)}{6}$$
,

$$2+7+14+...+(n^2+2n-1)=\frac{n(2n^2+7n+3)}{6}$$
,

$$2+7+14+...+(n^2+2n-1)=\frac{n(2n^2+9n+1)}{6}$$
;

6)
$$1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \dots + \frac{2^{n} - 1}{2^{n-1}} = 2^{1-n} + 2n$$
,

$$1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \dots + \frac{2^{n} - 1}{2^{n-1}} = 3^{1-n} + 3(n-1),$$

$$1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \dots + \frac{2^{n}-1}{2^{n-1}} = 2^{1-n} + 2(n-1).$$

•6.17. Докажите неравенство:

а)
$$5^n > 3n - 1$$
, где $n \in N$;

б)
$$3^n > 2n^2 + 3n$$
, где $n \in \mathbb{N}$, $n \ge 4$;

в)
$$2^n > 5n + 1$$
, где $n \in N$, $n \ge 5$;

г)
$$5^n > 3n^2 + 10n$$
, где $n \in N$, $n \ge 3$.

•6.18. Докажите методом математической индукции неравенство Бернулли* $(1 + \alpha)^n \ge 1 + n \cdot \alpha$ при $\alpha > -1$.

> Докажите, что для любого натурального n выполняется неравенство:

•6.19. a)
$$\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{(n+1)^2} < 1$$
;

6)
$$\frac{1}{5^2} + \frac{1}{9^2} + \frac{1}{13^2} + \dots + \frac{1}{(4n+1)^2} < \frac{1}{4}$$
.

•6.20. a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n+1}} > \sqrt{n+1} - 1;$$

6)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n+1}} < 2\sqrt{n+1} - 1$$
.

Докажите, что для любого натурального значения n справедливо утверждение:

$$06.21.$$
 a) $(n^3 + 35n) \div 6$;

B)
$$(n^5 - n) : 30$$
;

6)
$$(n^3 + 3n^2 + 8n)$$
 : 3;

r)
$$(2n^3 + 3n^2 + 7n)$$
: 6.

$$06.22. a) (7^n - 1) \vdots 6;$$

B)
$$(17^n - 1) : 16$$
;

6)
$$(2^{2n+1}+1)$$
: 3:

r)
$$(13^{2n+1}+1)$$
: 14.

•6.23. a)
$$(11^{6n+3} + 1)$$
 : 148; 6) $(7^{2n} - 4^{2n})$: 33;

B)
$$(13^{4n+2} + 1) \vdots 85$$
;
F) $(5^{n+3} + 11^{3n+1}) \vdots 17$.

6.24. a)
$$(6^{2n} + 3^{n+2} + 3^n)$$
 : 11:

B)
$$(5^{2+n} + 26 \cdot 5^n + 8^{2n+1}) : 59$$

•6.24. a)
$$(6^{2n} + 3^{n+2} + 3^n) \vdots 11;$$

6) $(5^{2n+1} + 3^{n+2}2^{n-1}) \vdots 19;$

r)
$$(5^{n+3}2^n - 125)$$
 : 45.

•6.25. a)
$$(6^n + 20n + 24)$$
 : 25;

6)
$$(7^n + 12n + 17) : 18$$
.

ullet6.26. Выведите формулу n-го члена последовательности (a_n) , за данной рекуррентным соотношением:

а)
$$a_1 = 0$$
, $a_{n+1} = a_n + n$; докажите, что $a_n = \frac{(n-1)n}{2}$;

б)
$$a_1 = 0$$
, $a_{n+1} = a_n + n^2$; докажите, что $a_n = \frac{(n-1)n(2n-1)}{6}$;

в)
$$a_1 = -13$$
, $a_{n+1} = a_n + 3n$; докажите, что $a_n = \frac{(3n-29)n}{2}$;

г)
$$a_1 = 0$$
, $a_{n+1} = a_n + n^3$; докажите, что $a_n = \frac{(n-1)^2 n^2}{4}$.

^{*} Якоб Бернулли (1654—1705) — швейцарский математик.

- $_{0}$ 6.27. а) Докажите, что количество разных наборов по два предмета, которые можно сделать из n различных предметов $(n \ge 2)$, равно $\frac{n \cdot (n-1)}{2}$.
 - б) Докажите, что количество разных наборов по три предмета, которые можно сделать из n различных предметов $(n \ge 3)$, равно $\frac{n \cdot (n-1) \cdot (n-2)}{6}$.
- $_{
 m CO}$ (28. а) Докажите, что количество разных непустых наборов, которые можно сделать из n различных предметов, равно 2^n-1 .
 - б) Докажите, что n различных предметов можно расставить в ряд n! способами (см. № 1.36).
- •6.29. Докажите, что любое натуральное число h>4 можно представить в виде h=3m+5n, где m и n целые числа.
- 06.30. Докажите методом математической индукции, что у выпуклого n-угольника ($n \ge 3$):
 - а) сумма внутренних углов равна $180^{\circ}(n-2)$;
 - б) число диагоналей равно $\frac{n(n-3)}{2}$.

§ 7. Определение числовой функции и способы ее задания

7.1. На рисунке 5 изображен шестиугольник ABCDEF, составленный из двух прямоугольников, причем AB=10, BC=CD=3, DE=2.

Найдите:

- а) периметр шестиугольника АВСDEF;
- б) площадь шестиугольника АВСDEF;
- в) площадь прямоугольника AM_1M_2F , если $AM_1=x$, $0 \le x \le 7$;
- г) площадь шестиугольника AM_1M_2DEF , если $M_1M_2\|AF$ и $AM_1=x,\ 7\leqslant x\leqslant 10.$
- 7.2. Используя условие задания 7.1, выразите площадь S(x) части многоугольника *ABCDEF*, расположенной слева от прямой M_1M_2 , как функцию от длины отрезка $AM_1=x$.
- 7.3. Выполните рисунок 5 в тетради и совместите ось Ox с прямой AB, а ось Oy с прямой AF. Определите координаты точек A, M_1 , B, C, D, E, M_2 , F в полученной прямоугольной системе координат. Задайте функцию, графиком которой является:
 - а) прямая DC;
- в) отрезок DC;
- б) прямая FE;
- Γ) отрезок FE.

- 7.4. На рисунке 6 изображен сектор круга, радиус которого равен 1, а центральный угол равен ϕ , причем $\phi \in (0; 2\pi)$.
 - a) Выразите площадь S этого сектора как функцию угла $o: S = S(\phi)$.

Постройте график функции $S = S(\varphi)$.

- б) Вычислите значение функции $S = S(\varphi)$ при $\varphi = \frac{\pi}{2}$.
- в) Найдите S(2) S(1).
- Γ) Найдите $S(\varphi + \delta) S(\varphi)$.
- 7.5. Площадь треугольника со стороной a и высотой h, опущенной на эту сторону, равна 20. Выразите длину стороны a, как функцию длины высоты h и найдите область определения и множество значений этой функции.
- 7.6. Перед вами известные физические формулы, связывающие несколько переменных величин. Выразите указанную величину как функцию от величины, записанной в скобках.
 - a) s = vt, t(s);

- B) $v = v_0 + at$, a(v);
- 6) $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$, $R_1(R)$; r) $P = I^2 Rt$, I(t).
- 7.7. Выясните, при каких значениях переменных х и у линии, представленные на рисунках 7-10, задают функции вида y = f(x) или/и вида $x = \phi(y)$ (за единицу масштаба принят размер одной клетки).

Puc. 7

Puc. 9

Puc. 8

Puc. 10

7.8. Из прямоугольного листа жести размером 30×50 см по углам вырезали квадраты со стороной х см и из полученной заготовки в форме «креста» согнули коробку прямоугольной формы высотой, равной x см (см. рис.11). Выразить объем полученной коробки как функцию от x.

Puc. 11

- 7.9. На рисунке представлен график функции, определенной на отрезке [a; b]; S(x) — площадь «подграфика» на отрезке $[a; x], a \le x \le b$. Выразите величину S(x) через x и постройте график функции y = S(x). По этому графику найдите область значений функции y = S(x):
 - a) puc. 12 (a = 0, b = 2); 6) puc. 13 (a = -4, b = 8).

Puc. 12

Puc. 13

Решите данное уравнение относительно y и относительно xИсходя из полученных решений и допустимых значений переменных, выясните, можно ли говорить, что данное уравнение задает функцию вида y = f(x) или/и вида $x = \phi(y)$:

- **7.10.** a) 2x + 3y = 24;
- B) 7x 5y = 35;
- 6) $\frac{x-y}{x+2u} = 2;$
- Γ) $\frac{2x+y}{x-4y}=-2$.
- - 7.12. Постройте график функции:
 - a) y = 2x 3;
- B) y = 0.5x + 1;
- 6) y = 6 3x;
- $\mathbf{r}) \ y = -2 \frac{1}{3}x.$

Постройте график функции:

7.13. a)
$$y = 2x^2$$
;

6)
$$y = -\frac{3}{x}$$
;

B)
$$y = -0.5x^2$$
; $r) y = \frac{2}{x}$.

$$\mathbf{r}) \ y = \frac{2}{r}$$

7.14. a)
$$y = x^2 - 4$$
;

6)
$$y = (x - 1)^2$$
;

B)
$$y = 2x^2 + 1$$
;
F) $y = -(x + 2)^2$.

7.15. a)
$$y = x^2 - 6x + 8$$
;

6)
$$y = -x^2 + 2x + 3$$
;

B)
$$y = x^2 + 4x + 7$$
;
F) $y = -2x^2 - 6x + 1$.

7.16. a)
$$y = \sqrt{x}$$
;

a)
$$y = \sqrt{x}$$
,
b) $y = \sqrt{x} + 2$;

$$\mathbf{B)} \ y = \sqrt{x-1};$$

$$\mathbf{r)} \ y = \sqrt{x+2} - 4.$$

$$07.17. a) y = \frac{2}{x-1};$$

6)
$$y = \frac{2}{r} + 3$$
;

B)
$$y = \frac{2}{x-1} + 3;$$

$$6) y = \frac{2}{x} + 3;$$

r)
$$y = \frac{3x-1}{x-1}$$
.
B) $y = |x| - 3$:

7.18. a)
$$y = |x|$$
;
6) $y = |x + 2|$;

$$y = |x - 1| + 2.$$

7.19. a)
$$y = 3 - x$$
;

6)
$$y = 4 - |x|$$
.

07.20. а) Воспользовавшись тем, что

$$\frac{x-5}{2x+2} = \frac{1}{2} \cdot \frac{(x+1)-6}{x+1} = \frac{1}{2} \left(1 - \frac{6}{x+1} \right) = \frac{-3}{x+1} + \frac{1}{2},$$

постройте график функции $y = \frac{x-5}{2x+2}$. Напишите уравнения асимптот полученной гиперболы.

б) Функцию $y = \frac{ax + b}{cx + d}$, где $c \neq 0$, $\frac{a}{c} \neq \frac{b}{d}$ называют дробно-

линейной функцией. Докажите, что графиком дробнолинейной функции является гипербола с асимптотами $x=-\frac{d}{a}, y=\frac{a}{a}$

07.21. Постройте график функции и найдите область ее значений:

a)
$$y = 2x^2 - 1$$
, $x \in (-2; 1]$;

6)
$$y = \frac{x+1}{x-1}, x \in [0; +\infty);$$

B)
$$y = \sqrt{x+3} - 1$$
, $x \in (-2; 1]$;

$$\Gamma) y = 2x^2 + 2x - 1, x \in [-1; 2].$$

07.22. Постройте график функции y = f(x) и найдите область ее определения и область ее значений:

a)
$$f(x) = \begin{cases} 2 - x, & -3 \le x \le 1, \\ x^2, & 1 < x \le 2; \end{cases}$$
 6) $f(x) = \begin{cases} x^2, & -3 \le x \le 1, \\ 2 - x, & 1 < x \le 2. \end{cases}$

Найдите область определения функции:

7.23. a)
$$y = \frac{1}{x^2 - 1}$$
; B) $y = \frac{x - 2}{x^2 - x - 12}$;

6)
$$y = \frac{1}{x^2 + 1}$$
; $r) y = \frac{x + 2}{x^2 + x + 12}$.

07.24. a)
$$y = \frac{\sqrt{x-12}}{x^2-1}$$
; B) $y = \frac{\sqrt{x+12}}{x^2-1}$;

6)
$$y = \frac{1 - \sqrt{-x^2 - 7x + 8}}{1 + \sqrt{x + 9}};$$
 $r) y = \frac{x - \sqrt{-x^2 - 7x + 8}}{1 + \sqrt{x + 3}}.$

7.25. Пусть
$$f(x) = -3x + 2$$
. Найдите:

a)
$$f(-x)$$
; 6) $f(x + 5)$; B) $f(f(1))$; r) $f(f(x))$.

7.26. Пусть
$$f(x) = x^2$$
. Найдите:

a)
$$f(2x)$$
; 6) $f(x-5)$; B) $f(f(3))$; r) $f(f(x))$.

07.27. Пусть
$$f(x) = \frac{3x+2}{x-2}$$
. Найдите:

a)
$$f(\frac{1}{x})$$
; 6) $f(2x-1)$; B) $f(f(5))$; r) $f(f(x))$.

07.28. a) Пусть
$$f(x) = x^2 + 2$$
. Докажите, что $f(x) = f(-x)$.

б) Пусть
$$f(x) = -x^3 + 2x$$
. Докажите, что $f(x) = -f(-x)$.

в) Пусть
$$f(x) = \frac{1}{x}$$
. Докажите, что $(f(x))^{-1} = f\left(\frac{1}{x}\right)$.

г) Пусть
$$f(x) = x^2 + 2$$
. Докажите, что $f(|x|) = f(x)$, а $|f(x)| = f(x)$.

•7.29. Найдите область определения функции, учитывая все возможные значения параметра a:

a)
$$y = \frac{\sqrt{x-a}}{x^2-1}$$
; B) $y = \frac{\sqrt{x^2-7x+12}}{x-a}$;

6)
$$y = \sqrt{1-a\cdot|x|};$$
 r) $y = \frac{a\cdot x^3 - \sqrt{-x^2-7x+8}}{1+\sqrt{x-a}}.$

 $_{07.30}$. Пусть $f(x) = 2 - \sqrt{1-x}$; $g(x) = \frac{1+2x}{3+x}$. Найдите область определения функции:

a)
$$y = f(x) + g(x);$$
 B) $y = \frac{f(x)}{g(x)};$

 $_{0}$ 7.31. Пусть $f(x) = x^{2} - 3x - 4$; $g(x) = 5x - x^{2}$. Найдите область определения функции:

a)
$$y = \sqrt{f(x)} \cdot \sqrt{g(x)};$$
 B) $y = \frac{\sqrt{f(x)}}{\sqrt{g(x)}};$

б)
$$y = \sqrt{f(x) \cdot g(x)};$$
 $\Gamma = \sqrt{\frac{g(x)}{f(x)}}.$

07.32. Пусть D(f) = [-4; 1] — область определения функции y = f(x). Найдите область определения функции:

a)
$$y = 15x - f(x);$$
 B) $y = \frac{7 + 4f(x)}{4 + x};$

6)
$$y = \frac{7 + 4f(x)}{2 - x}$$
; r) $y = \frac{x - 3f(x)}{4 - x^2}$.

07.33. Пусть D(f) = [-5; 10]. Найдите область определения функции:

a)
$$y = f(-x);$$

B) $y = f(|-x|);$
c) $y = f(-|x|);$
r) $y = f(-|x|).$

6)
$$y = |f(-x)|;$$
 $y = f(-|x|).$

 $\bigcirc 7.34$. Пусть D(f) = [-2; 9]. Найдите область определения функции:

a)
$$y = 4f(x - 1);$$
 B) $y = 4 \cdot f(x) - 1;$

a)
$$y = 4f(x - 1);$$
 B) $y = 4 \cdot f(x) - 1;$ 6) $y = -4f(x + 11);$ r) $y = -4 \cdot f(x) + 11.$

 \circ 7.35. a) При каких значениях параметра a функция $y=3-\sqrt{x-a}$ определена во всех точках отрезка [-11; 7]?

б) При каких значениях параметра a функция $y=3-\sqrt{x-3}$ определена во всех точках отрезка [a-1; a+1]?

ullet 7.36. Найдите все значения параметра a, при которых областью определения функции $y = \sqrt{x-3} + \sqrt{ax+4}$ будет:

- а) луч;
- б) отрезок;
- в) единственное число (единственная точка);
- г) пустое множество.

- 07.37. а) Докажите, что, если число b принадлежит области определения функции $y = \sqrt{x^4 7x + 3} \sqrt{x^4 + 7x + 3}$, то и число (-b) принадлежит этой области.
 - б) Докажите, что, если число b не принадлежит области определения функции $y=\sqrt{x^5-x+3}+3\sqrt{-x^5+x+3}$, то и число (-b) не принадлежит этой области.
- •7.38. Найдите все такие числа b, принадлежащие области определения D(f) функции $y=\frac{1-\sqrt{2x^2-7x-22}}{x+30}$, для которых:
 - а) число b+1 не принадлежит D(f);
 - б) число b-1 не принадлежит D(f);
 - в) оба числа b + 1 и b 1 принадлежат D(f);
 - г) отрезок [b + 1; b + 2] принадлежит D(f).
- **07.39.** а) Докажите, что все значения функции y = 5x + 3 положительны в окрестности точки 0 радиуса 0,2.
 - б) Докажите, что в 0,5-окрестности точки -1 найдутся как положительные, так и отрицательные значения функции y = 5x + 3.
- 07.40. Пусть область значений функции y = f(x) есть отрезок [-3; 5]. Найдите множество значений функции:
 - a) $y = (f(x))^2$;

B) $y = (f(x))^3$;

б) y = |f(x)|;

- $r) \ u = \sqrt{4 + f(x)}.$
- 07.41. Пусть область значений функции y = f(x) есть отрезок [-3; 5]. Найдите множество значений функции:
 - a) y = f(x + 5);

- B) y = 5 f(x);
- 6) y = 5 f(x + 5);
- $\mathbf{r}) \ y = a f(x+b).$
- 07.42. Пусть область значений функции y = f(x-5) есть отрезок [-3; 5]. Найдите множество значений функции:
 - a) y = f(x);

- B) y = 5 f(x);
- 6) u = 5 f(x + 5);
- $\mathbf{r}) \ y = a f(x + b).$

•7.43. Пусть область значений функции y = f(x) есть отрезок [-3; 5]. Найдите все целочисленные значения функции:

a)
$$y = \frac{7}{5 + f(x)};$$

B)
$$y = \frac{15}{7 - f(x)};$$

6)
$$y = \frac{8 + f(x)}{7 + f(x)}$$
;

$$\Gamma) y = \frac{f(x)}{6 - f(x)}.$$

●7.44. Найдите область значений функции:

a)
$$y = |x| \cdot (x - 6) - 2$$
;

6)
$$y = x \cdot |x - 6| - 2$$
.

- •7.45. Выполните в указанном порядке задания а) и б), и, обобщив их результаты, предложите алгоритм нахождения множества E(f) значений функции y = f(x), исследуя вопрос существования корней уравнения f(x) = a, а также предложите алгоритм исследования существования корней уравнения f(x) = a, если известно E(f).
 - а) Найдите область значений функции $y=x^2-4x-1$ и определите, при каких значениях параметра b уравнение $b=x^2-4x-1$ имеет хотя бы один корень.
 - б) Определите, при каких значениях параметра a уравнение $x^2 + 4x 3 = a$ имеет хотя бы один корень и найдите область значений функции $y = x^2 + 4x 3$.
- •7.46. а) Определите, при каких значениях параметра a уравнение $x^2-ax+3=0$ имеет корни, и найдите область E(f) значений функции $y=\frac{x^2+3}{x}$;
 - б) определите, при каких значениях параметра a уравнение $ax^2-4x+a=0$ имеет корни, и найдите область E(f) значений функции $y=\frac{4x}{x^2+1}$.
- ●7.47. Найдите область значений функции y = f(x):

a)
$$f(x) = \frac{x^2 + 8}{x}$$
;

$$B) f(x) = \frac{x^2-4}{x};$$

6)
$$f(x) = \frac{x^2 + 8}{x + 1}$$
;

r)
$$f(x) = \frac{x^2 - 4}{x - 1}$$
.

§ 8. Свойства функций

- 8.1. Найдите область определения функции, заданной графически:
 - а) рис. 14;
- б) рис. 15;
- в) рис. 16;
- г) рис. 17.

Puc. 14

Puc. 15

Puc. 16

Puc. 17

Найдите область определения функции:

8.2. a)
$$y = \frac{x+1}{x^2-16}$$
;

B)
$$y = \frac{x^2 - 1}{x^2 - 10x}$$
;

6)
$$y = \frac{x}{x(x+5)+6}$$
;

$$r) \ y = \frac{x^2 - 1}{(x - 10)x - 24}.$$

8.3. a)
$$y = \sqrt{\frac{x}{x-1}}$$
;

$$\mathbf{B}) \ y = \sqrt{\frac{-4x}{-10-x}};$$

$$\mathbf{r)} \ y = \sqrt{\frac{x+11}{x^2+14x+33}}.$$

08.4. a)
$$y = \begin{cases} \frac{1}{x}, & x > 1, \\ x^3, & x \le 1; \end{cases}$$

B)
$$y = \begin{cases} \frac{1}{x}, & x < 1, \\ x^3, & x \ge 1. \end{cases}$$

6)
$$y = \begin{cases} \frac{6x}{x+7}, & x \ge -1, \\ \frac{18}{2-x}, & x < -1; \end{cases}$$
 r) $y = \begin{cases} \frac{6x}{x+7}, & x < -1, \\ \frac{18}{2-x}, & x \ge -1. \end{cases}$

F)
$$y = \begin{cases} \frac{6x}{x+7}, & x < -1, \\ \frac{18}{2-x}, & x \ge -1. \end{cases}$$

Придумайте выражение, задающее функцию, определенную только при всех тех значениях x, для которых выполнено условие:

08.5. a) $x \neq 100$;

- a) $x \neq 100$; b) $x \leq 100$; c) $100 \leq x \leq 101$; r) x = 100.

- O8.6. a) $x \neq 1$ if $x \neq 10$; b) $x \leq 1$ if $x \geq 2$; 6) $0 < |x| \leq 1$; c) $0 < |x 2| \leq 5$.

Найдите область значений функции, заданной графически:

- 8.7. а) рис. 14;
- б) рис. 15; в) рис. 16; г) рис. 17.
- 8.8. а) рис. 18; б) рис. 19; в) рис. 20; г) рис. 21.

Puc. 18

Puc. 19

Puc. 20

Puc. 21

Найдите область значений функции:

8.9. a)
$$y = 1 - 2x$$
;

6)
$$y = 1 - 2x^2$$
;

B)
$$y = 3x^2 - 12x + 1$$
;

r)
$$y = -3x^2 - 12x + 1$$
, $x \in [-6, 1)$.

08.10. a)
$$y = 1 - \frac{2}{x}$$
;

B)
$$y = \frac{3}{x} - 12;$$

6)
$$y = \frac{x-1}{x+1}$$
;

$$r) y = \frac{4x}{12x + 5}.$$

08.11. a)
$$y = \sqrt{x} + 5$$
;

B)
$$y = 2 - \sqrt{x+3}$$
;

6)
$$y = 1 - 2\sqrt{3 - x}$$
:

r)
$$y = -1 + 2\sqrt{-5 - 10x}$$
.

08.12. a)
$$y = 2 + \frac{x}{|x|}$$
;

$$\mathbf{B}) \ y = \ 2x - \frac{x}{|x|};$$

6)
$$y = x^2 + 2x - \frac{x}{|x|}$$
;

r)
$$y = x^2 - 2x + \frac{x+1}{|x+1|}$$
.

ullet8.13. Найдите область значений функции y = f(x), если:

a)
$$f(x) = \frac{|x|}{x} + \frac{|x-1|}{x-1} + \frac{|x-2|}{x-2} + \frac{|x-3|}{x-3}$$
;

6)
$$f(x) = \frac{|x|}{x} - \frac{|x-1|}{x-1} + \frac{|x-2|}{x-2} - \frac{|x-3|}{x-3}$$
.

Найдите все значения параметра a, при которых уравнение имеет решение:

08.14. a)
$$x^2 + 3 = a$$
;

B)
$$x^2 - 36 = -a$$
:

6)
$$\frac{1}{2-x} = a;$$

r)
$$\frac{1}{2+x} = 1 - a$$
.

08.15. a)
$$x^2 + 5x + 3 = a$$
:

6)
$$2x^2 + 5x - 3 = 7 - a$$
.

•8.16. a)
$$x + |x + 2| - 2 = a$$
;

6)
$$5x + |x - 7| - 2 = 3a$$
.

8.17. Используя условия заданий 8.7 и 8.8, определите промежутки монотонности функций, заданных графически.

08.18. Найдите промежутки монотонности функции:

a)
$$y = 2x^2 - 3x + 4$$
:

a)
$$y = 2x^2 - 3x + 4$$
; B) $y = 5x^2 + 6x - 11$;

6)
$$y = \sqrt{1-x}$$
; r) $y = \sqrt{3+5x}$.

r)
$$u = \sqrt{3 + 5x}$$

_{08.19}. Докажите:

- а) если функция y = f(x) возрастает на промежутке X и a>0, то при любом значении b функция $y=a\cdot f(x)+b$ возрастает на X;
- б) если функция y = f(x) убывает на промежутке X и a < 0, то при любом значении b функция $y = a \cdot f(x) + b$ возрастает на X;
- в) если функция y = f(x) убывает на промежутке X и a > 0, то при любом значении b функция $y = a \cdot f(x) + b$ убывает на X:
- r) если функция y = f(x) возрастает на промежутке X и a < 0, то при любом значении b функция $y = a \cdot f(x) + b$ убывает на X.

08.20. Докажите:

- а) если каждая из двух функций возрастает на промежутке X, то их сумма также возрастает на этом промежутке;
- б) если каждая из двух функций убывает на промежутке X, то их сумма также убывает на этом промежутке.
- 08.21. Определите промежутки монотонности функции:

a)
$$y = 4 - 3\sqrt{x - 5}$$
;

B)
$$y = -3 + 5\sqrt{2 - x}$$
;

6)
$$y = \sqrt{x+1} + \sqrt{2x-3}$$
;

6)
$$y = \sqrt{x+1} + \sqrt{2x-3}$$
; $y = \sqrt{1-x} + \sqrt{3-4x}$.

- 08.22. а) Пусть функция y = f(x) возрастает и принимает только положительные значения на промежутке X. Докажите, что функция $y = (f(x))^2$ возрастает на промежутке X.
 - б) Пусть функция y = f(x) убывает и принимает только положительные значения на промежутке X. Докажите, что функция $y = (f(x))^2$ убывает на промежутке X.
 - в) Пусть функция y = f(x) возрастает и принимает только отрицательные значения на промежутке X. Докажите, что функция $y = (f(x))^2$ убывает на промежутке X.
 - г) Пусть функция y = f(x) убывает и принимает только отрицательные значения на промежутке X. Докажите, что функция $y = (f(x))^2$ возрастает на промежутке X.

Найдите промежутки монотонности функции:

$$^{\circ}8.23.$$
 a) $y = (x^2 + 1)^2;$

B)
$$y = (x^2 - 3x + 10)^2$$
;
F) $y = (x^2 + 2)^2 - 2x^2 - 3$.

6)
$$y = (x + 1)$$
;

$$(x + 2) - 2x - 3$$

O8.24. a)
$$y = (x^2 - 1)^2$$
;
b) $y = (x^2 - 9)^2 + 6$;

B)
$$y = (x^2 - 3x - 10)^2$$
;

$$\vec{0} \quad \vec{v} = (x^2 - 9)^2 + 6$$

B)
$$y = (x^2 - 3x - 10)^2$$
;
F) $y = (x^2 - x - 20)^2 - 18$.

- **8.25.** На рисунке изображен график функции y = f(x). Найдите промежутки монотонности функции $y = (f(x))^2$:
 - а) рис. 22;
- б) рис. 23;
- в) рис. 24;
- г) рис. 25.

Puc. 22

Puc. 23

Puc. 24

08.26. а) Пусть функция y = f(x) возрастает на X и принимает на Х только положительные значения. Докажите, что функция $y = \frac{1}{f(x)}$ убывает на X.

- б) Пусть функции y = f(x) возрастает на X и принимает на X только отрицательные значения. Докажите, что функция $y = \frac{1}{f(x)}$ возрастает на X.
- в) Пусть функция y = f(x) убывает на X и принимает на Xтолько положительные значения. Докажите, что функция $y = \frac{1}{f(x)}$ возрастает на X.
- г) Пусть функция y = f(x) убывает на X и принимает на Xтолько отрицательные значения. Докажите, что функция $y = \frac{1}{f(x)}$ убывает на X.

08.27. Найдите промежутки монотонности функции:

a)
$$y = \frac{1}{x^4 + 1}$$
;

B)
$$y = \frac{1}{x^2 - 1}$$
;

6)
$$y = \frac{1}{x^2 + 6x + 10}$$
; $r) y = \frac{1}{x^2 - 4x - 12}$.

$$y = \frac{1}{r^2 - 4r - 12}$$

 $_{
m O8.28.}$ На рисунке изображен график функции y=f(x). Найдите промежутки монотонности функции $y = \frac{1}{f(x)}$:

- а) рис. 26;
- б) рис. 27; в) рис. 28; г) рис. 29.

Puc. 26

Puc. 27

Puc. 28

Puc. 29

 \circ 8.29. Пусть функция y = f(x) возрастает на **R**. Решите:

- a) уравнение $f(3x + 2) = f(4x^2 + x)$;
- б) неравенство $f(3x + 2) < f(4x^2 + x)$;
- в) уравнение $f(3x 48) = f(-x^2 + x)$;
- г) неравенство $f(3x 48) \le f(-x^2 + x)$.

- **08.30.** Пусть функция y = f(x) убывает на **R**. Решите:
 - a) уравнение $f\left(\frac{1}{3x^2+4x-7}\right) = f\left(\frac{1}{2x^2+3x-5}\right);$
 - б) неравенство $f\left(\frac{1}{3x^2 + 4x 7}\right) \ge f\left(\frac{1}{2x^2 + 3x 5}\right)$.
- **•8.31.** Пусть функция y = f(x) определена на интервале (-1; 1) и возрастает на нем. Решите:
 - a) уравнение $f(3x + 2) = f(4x^2 + x)$;
 - б) неравенство $f(3x + 2) < f(4x^2 + x)$.
- •8.32. Пусть функция y = f(x) определена на отрезке [-1; 1] и убывает на нем. Решите:
 - a) уравнение $f(3x + 2) = f(4x^2 + x)$;
 - б) неравенство $f(3x + 2) < f(4x^2 + x)$.
- **08.33.** Докажите:
 - а) если функция y = f(x) возрастает или убывает на промежутке X, то уравнение f(x) = a не может иметь более одного корня на X;
 - б) если функция y = f(x) возрастает на промежутке X, а функция y = g(x) убывает на промежутке X, то уравнение f(x) = g(x) не может иметь более одного корня на X.

Решите уравнение:

08.34. a)
$$x^3 = 2 - x$$
;

$$B) \sqrt{x+1} = 5 - x;$$

6)
$$x^3 = 10 - x$$
;

r)
$$3x = \sqrt{10 - x}$$
.

•8.35. a)
$$\sqrt{x} + \sqrt{x-5} = 23 - 2x$$
;

$$6) \frac{5}{x+1} = 8\sqrt{x};$$

B)
$$\sqrt{x} + \sqrt{x-3} = 43 - 6x - x^2$$
;

$$\Gamma) (x^2 + 4x + 9)\sqrt{4x + 1} = 9.$$

- 8.36. Для функций, графики которых изображены на рисунках к упражнениям 8.7, 8.8, найдите экстремумы, а также наибольшие и наименьшие значения.
- 8.37. а) Докажите, что функции, графики которых изображены на рисунках к упражнениям 8.7, 8.8, ограничены в области их определения.
 - б) Докажите: если функция имеет наибольшее и наименьшее значение на множестве M, то она ограничена на этом множестве.

- 08.38. Убедитесь, что функция, график которой изображен на заданном рисунке, не имеет ни наибольшего, ни наименьшего значений; задайте эту функцию аналитически:
 - а) рис. 30;

б) рис. 31.

Puc. 30

Puc. 31

- 8.39. а) Приведите пример функции, определенной во всех точках отрезка [a, b], ограниченной на этом отрезке, но не имеющей ни наибольшего, ни наименьшего значений на отрезке [a, b].
 - б) Приведите пример функции, определенной и ограниченной на R, но не имеющей ни наибольшего, ни наименьшего значений на R.
- 08.40. Докажите: если функция y = f(x) имеет наибольшее и наименьшее значения на отрезке [a, b], а отрезок $[a_1, b_1]$ является частью отрезка [a, b], то:
 - а) $y_{\text{наиб}}$ на [a, b] не меньше $y_{\text{наиб}}$ на $[a_1, b_1]$;
 - а) $y_{\text{наим}}$ на [a, b] не больше $y_{\text{наим}}$ на $[a_1, b_1]$.
- 08.41. Докажите: если функция y = f(x) имеет наибольшее и наименьшее значения на отрезке [a, b], причем $y_{\text{наиб}} = y_{\text{наим}}$, то функция является постоянной на отрезке [a, b].
- 08.42. Докажите, что если $y = x + \frac{1}{r}$, то:
 - а) при x < 0 $y_{\text{мам}} = -2$; б) при x > 0 $y_{\text{мам}} = 2$.
- O8.43. Найдите наибольшее и/или наименьшее значение функции $y = 3x^2 - 24x - 100$:
 - а) на отрезке [-1; 5]; в) на луче $[0; +\infty);$
 - б) на луче ($-\infty$; 0];
- г) на R.

- **08.44.** Найдите наибольшее и/или наименьшее значение функции $y = -2x^2 12x + 3$:
 - а) на отрезке [-1; 3]; в) на луче $[-4; +\infty);$
 - б) на луче ($-\infty$; -4]; г) на R.
- 08.45. Найдите наибольшее значение функции:
 - a) $y = \frac{2}{x^2 + 1}$;

- B) $y = \frac{2}{x^2 4x + 10}$;
- $\text{ б) } y = \frac{2}{x^4 + 8x^2 + 1};$
- $r) \ y = \frac{2}{x^4 8x^2 + 17}.$
- ●8.46. Используя результаты упражнения 8.42, найдите наибольшее и наименьшее значения функции:
 - a) $y = \frac{2x}{x^2 + 1}$;

- B) $y = \frac{10x}{x^2 + 4}$;
- $6) \ y = \frac{4x 4}{x^2 2x + 17};$
- $\Gamma) \ y = \frac{49(x-2)}{x^2-4x+53}.$
- •8.47. Найдите наименьшее значение функции:
 - a) y = |x| + |x 2|;
 - 6) y = |x 1| + |x 3| + |x 5|;
 - B) y = |x| + |x 2| + |x 4|;
 - $\Gamma) \ y = |x| + |x 1| + \ldots + |x n|, \ n \in \mathbb{N}.$
- **08.48.** Найдите наибольшее и наименьшее значения функции для каждого значения параметра a:
 - a) $y = x^2 + 4x + 5a$ на отрезке [-1; 1];
 - б) $y = -x^2 + 4x a$ на отрезке [-1; 3].
- **\bullet8.49.** Найдите наибольшее и наименьшее значение функции для каждого значения параметра a:
 - a) $y = x^2 4x$ на отрезке [-1; a];
 - б) $y = -x^2 + 2x 3$ на отрезке [a; 3].
- •8.50. а) Функция $y = \frac{15x^2 + 60}{x^4 16}$ определена только для допустимых целых значений x; найдите ее наибольшее значение.
 - б) Функция $y = \frac{14x^2 + 126}{81 x^4}$ определена только для допустимых целых значений x; найдите ее наименьшее значение.

8.51. Докажите теорему: если функции y = f(x), y = g(x) определены на множестве X и наибольшее значение одной из этих функций на X, равное A, совпадает с наименьшим значением другой функции на том же множестве, то уравнение

$$f(x)=g(x)$$
 равносильно на X системе уравнений $\begin{cases} f(x)=A, \\ g(x)=A. \end{cases}$

■8.52. Опираясь на теорему из упражнения 8.51, решите уравнение:

a)
$$\sqrt{x^{100} + 49} = 7 - x^4$$
;

6)
$$\sqrt{x^2-2x+5}=1+2x-x^2$$
;

B)
$$\sqrt{x^{22}+64}=8-x^{12}-x^{14}$$
;

$$\Gamma) \sqrt{-x^2 - 4x - 1} = x^2 + 4x + 7.$$

§ 9. Периодические функции

- 9.1. Функция y = f(x) периодическая, с периодом T = 2. Известно, что f(0). Вычислите:
 - a) f(2);
 - б) f(-22);
 - в) f(12k + 8), где k некоторое целое число;
 - г) f(4-8k), где k некоторое целое число.
- 9.2. Функция y = f(x) периодическая, с периодом $T = \sqrt{5}$. Известно, что f(1) = 1, f(-1) = 7. Вычислите:
 - a) $f(1 + 8\sqrt{5})$; 6) $f(-1 22\sqrt{5})$.
- 9.3. Может ли областью определения периодической функции быть:
 - а) отрезок;
- в) луч;
- б) интервал;
- г) множество целых чисел?
- 9.4. На рисунке изображена часть графика периодической функции с периодом T на промежутке I. Постройте график этой функции на промежутке I_1 :
 - a) (puc. 32) T = 2, I = [-1; 2]; $I_1 = [-4; 8]$;
 - б) (рис. 33) T = 3, I = [1; 4); $I_1 = [-3; 10,5)$;
 - B) (PMC. 34) T = 4, I = (-3; 1]; $I_1 = (-5; 11]$;
 - г) (рис. 35) T = 1.5; I = (0; 1.5); $I_1 = (-3; 6)$.

Puc. 32

Puc. 33

Puc. 35

- 09.5. Пусть y = f(x) периодическая функция с периодом 3, определенная для всех действительных значений х, причем f(3) = 7, f(4) = 11, f(17) = 13 и f(0,1) = 0. Вычислите:
 - a) f(141); f(-134); f(332) f(-8,9);
 - 6) f(17,3) f(20,3); f(32,(3)) f(332,(3)); f(0,(1)) f(-2,(8));
 - в) f(10); f(100); f(111111);
 - $f(13,1) \cdot f(14,1) \cdot f(15,1) \cdot f(16,1);$

f(8888...88) - f(22222...22).

- 09.6. Пусть y = f(x) периодическая функция с периодом 4, определенная для всех действительных значений x, причем f(3) = 5; f(4) = 11; f(5) = 9 и f(6) = 0. Сравните:
 - а) f(1) и f(31);

- в) f(-17) и f(831);
- б) f(11) и f(110);
- г) $f(6 + \sqrt[3]{3})$ и $f(\sqrt[3]{3} 6)$.

 $_{\text{O}}$ 9.7. Является ли функция y = f(x) периодической:

a)
$$f(x) = 2$$
;

B)
$$f(x) = \frac{x^2 - 9}{x - 3} - 3$$
;

6)
$$f(x) = \frac{1-x^4}{1-x^2} - \sqrt{x^4}$$
;

$$r) f(x) = \frac{1 - x^4}{1 + x^2} + \sqrt{x^4}?$$

о9.8. Докажите:

- а) если 3 период функции y = f(x), то 6 также период данной функции;
- б) если 9 период функции y = f(x), то 9 период функции y = 5f(x + 2) 1;
- в) если 2 период функции y = f(x), то 8 также период данной функции;
- г) если 5 период функции y = f(x), то 5 период функции y = -3f(2-x) + 25.

о9.9. Докажите:

- а) если 3 период функции y = f(x), то 6 период функции y = 5f(0,5x+2) 1;
- б) если 9 период функции y = f(x), то 3 период функции y = 3 1.4f(3x 7);
- в) если 2 период функции y=f(x), то 3 период функции $y=100f\Big(\frac{2x-11}{3}\Big)+7;$
- г) если 5 период функции y = f(x), то 1 период функции y = 81 3f(0,7 5x).
- 09.10. Докажите, что если период функции y = f(x) равен T, то а) период функции $y = k \cdot f(x + a) + b \ (k \neq 0)$ равен T;
 - б) период функции $y = kf(px + a) + b \ (pk \neq 0)$ равен $\frac{T}{|p|}$.
- 09.11. Пусть период функции y = f(x) равен T_1 , а период функции y = g(x) равен T_2 . Докажите, что период функции y = h(x) равен T_3 :
 - a) $T_1 = 2$, $T_2 = 7$, h(x) = 5f(x) 3g(x), $T_3 = 14$;
 - 6) $T_1 = 15$, $T_2 = 10$, h(x) = 8f(x) + 5g(x), $T_3 = 30$;
 - B) $T_1 = 3$, $T_2 = 13$, h(x) = 0.2f(x 3) g(x + 11), $T_3 = 26$;
 - r) $T_1 = \frac{\sqrt{13}}{15}$, $T_2 = \frac{\sqrt{13}}{10}$, h(x) = 5f(x) 3 g(x), $T_3 = \frac{\sqrt{13}}{5}$.
- 09.12. Пусть для любого x из области определения функции y = f(x) выполняется равенство f(x 0,1) = f(x + 0,1) = f(x). Докажите, что тогда для любого x из области определения функции выполняется равенство f(x 2) = f(x + 2) = f(x).

- $\circ 9.13$. Пусть для любого x из области определения функции y = f(x) выполняются равенства f(x - 3) = f(x + 3) = f(x)и f(x - 5) = f(x + 5) = f(x). Докажите, что для любого xиз области определения функции выполняется равенство f(x-2) = f(x+2) = f(x).
 - **9.14.** Пусть [x] целая часть действительного числа x, а $\{x\}$ дробная часть этого числа (напомним, что, согласно определению, $[x] \in \mathbb{Z}$, $x \leq [x] < x + 1$, $\{x\} = x - [x]$).

а) Найдите целую и дробную часть числа: 6; -3; 5,3; -5,3; $\frac{35}{53}$; $-\frac{35}{53}$; $\frac{535}{353}$; $-\frac{535}{353}$.

- б) Найдите целую и дробную часть числа: $\sqrt{11}$; $\sqrt{11}$ 2; $3 - \sqrt{11}$; π ; 0,(4); -2,(3); -7,(1).
- 09.15. a) Докажите, что для любого значения x выполняются равенства [x + 1] = [x] + 1, [x - 1] = [x].
 - б) Докажите, что для любого значения x выполняются равенства $\{x+1\} = \{x\} = \{x-1\}.$
 - в) Докажите, что функция y = [x] не является периодической.
 - Γ) Докажите, что функция $y = \{x\}$ является периодической с периодом 1.
- 09.16. Докажите, что 1 наименьший период функции $y = \{x\}$. Постройте график функции и определите, является ли функция периодической:
- B) y = [2x]; •9.17. a) y = [x];
 - $\mathbf{r}) \ y = [|x|].$ 6) y = [x - 2.5]:
- •9.18. a) y = |[x]|; B) $y = \{x\} + [x]$;
 - r) $y = [\{x\}].$ 6) u = x + [x]:
- **•9.19.** a) $y = \{x\}$; B) $y = \{2x\};$
 - 6) $y = \{x 2, 5\};$ Γ) $y = \{|x|\}.$
- **•9.20.** a) $y = |\{x\}|;$ B) $y = x - \{x\};$ 6) $y = x + \{x\};$ Γ) $y = \{[x]\}.$

Найдите основной период функции:

09.21. a)
$$y = \{x + 2\}; \ y = \{x - 3, 7\}; \ y = 2\{x + 1, 1\} - 14; \ y = 13 - 5\{x - 0, (3)\};$$

6)
$$y = \{2x\}; y = 3\{2x - 2,5\}; y = \{2x - 2,5\}; y = 4 - 0,5\{2x - 2,5\};$$

B)
$$y = \{0,5x\}; y = 3\{0,5x\}; y = 7\{0,5x\} + 6; y = 9 - 1,1\{0,5x\};$$

r)
$$y = \left\{\frac{3x}{4}\right\}$$
; $y = \left\{\frac{3x+2}{4}\right\}$; $y = \left\{\frac{3x}{4} + 0.3\right\}$; $y = \left\{\frac{3x+2}{4} + x\right\}$.

•9.22. a)
$$y = \{x - 3, 7\} + 3\{2x - 2, 5\}; y = \left\{\frac{3x}{4} + 0, 3\right\} + 5\{x - 11\};$$

6)
$$y = \{2x\} + \{3x - 2, 5\}; y = 4 - \{12x - 2, 5\} + \{18x\};$$

B)
$$y = \{0,3x\} + 5\{0,25x\}; y = 7\{0,15x\} + 1,1\{0,25x\};$$

r)
$$y = \left\{\frac{3x}{4}\right\} - \left\{\frac{5x+2}{3}\right\}$$
; $y = \left\{6 - \frac{10x}{11}\right\} + 3 \cdot \left\{\frac{15x+2}{22}\right\}$.

•9.23. Постройте график функции:

a)
$$y = (\{x\})^2$$
; B) $y = \sqrt{\{x\}}$;

Выясните, может ли функция быть периодической, если она обладает указанным свойством; если может, то приведите пример, если не может, — объясните почему:

- 09.24. a) Областью определения функции является отрезок или луч;
 - б) областью определения функции является объединение бесконечного множества отрезков, но не прямая;
 - в) функция определена на всей числовой прямой, кроме одной точки;
 - r) функция определена на всей числовой прямой, кроме бесконечного числа точек.
- ○9.25. а) Функция имеет шесть нулей;
 - б) функция не имеет нулей;
 - в) функция положительна при x>3 и отрицательна при $x\leqslant 3;$
 - г) при x>3 функция принимает положительные значения.
- 09.26. а) Функция убывает на всей области своего определения;
 - б) функция имеет бесконечно много промежутков убывания;
 - в) функция имеет наименьшее значение, но не имеет наибольшего;
 - г) функция убывает на интервале (3; 11).

Постройте график данной периодической функции y = f(x) и укажите область ее определения, область значений, промежутки монотонности, точки экстремума, наибольшее и наименьшее значения, нули функции, промежутки знакопостоянства; исследуйте функцию на четность-нечетность:

- 09.27. а) Период функции равен 2 и f(x) = 3x на промежутке (-1; 1]; б) период функции равен 4 и $f(x) = 4 x^2$ на отрезке [-2; 2];
 - в) период функции равен 3 и f(x) = 2 x на промежутке [0; 3);
 - г) период функции равен 1 и $f(x) = 2x^2 1$ на промежутке (0; 1).
- 09.28. а) Период функции равен 2 и f(x) = |x| на отрезке [-1; 1];
 - б) период функции равен 4 и $f(x) = 3\sqrt{x+2}$ на промежутке [-2; 2):
 - в) период функции равен 3 и f(x) = 3 |2 x| на промежутке [0; 3);
 - г) период функции равен 1 и $f(x) = 3 \sqrt{4 3x}$ на промежутке (0; 1).
- 09.29. а) Период функции равен 2 и $f(x) = \frac{1}{x+2}$ на промежутке (-1; 1];
 - 6) период функции равен 4 и $f(x) = \frac{1}{x}$ на промежутке (-2; 2];
 - в) период функции равен 3 и $f(x) = \frac{x}{x+2}$ на промежутке [0; 3);
 - г) период функции равен 5 и $f(x) = \frac{|x|}{|x|-1}$ на промежутке [-2; 3).
- О9.30. Наибольшее значение периодической функции с периодом 3 на отрезке [−1; 2] равно 5, а наименьшее значение равно −2. Найдите, если это возможно:
 - а) наибольшее и наименьшее значения функции на промежутке (-2; 11];
 - б) наибольшее и наименьшее значения функции на промежутке (-5; 8];
 - в) наибольшее и наименьшее значения функции на промежутке (-2; 1];
 - г) наибольшее и наименьшее значения функции на промежутке ($-\infty$;1).

 $_{0}$ 9.31. Пусть y = f(x) — периодическая функция с периодом 4 и f(x) = 5x + 2 на интервале (0; 4). Решите:

a) vравнение f(x) = 7:

- б) неравенство f(x) > 7.
- $\mathbf{a}9.32$. Пусть y = f(x) периодическая функция с периодом 5 и $f(x) = x^2 + 2x$ на полуинтервале (-3; 2]. Решите:

- а) уравнение f(x) = 0; в) уравнение f(x) = 8; б) неравенство f(x) > 3; г) неравенство f(x) < 0.

- **9.33.** Пусть y = f(x) периодическая функция с периодом 4 и $f(x) = x^2 + 8x + 5$ на отрезке [-6; -2]. Решите:

- а) уравнение f(x) = -11; в) уравнение f(x) = -10; б) неравенство $f(x) \le 11$; г) неравенство f(x) > -10.
- **9**,34. a) Существует ли такая функция y = f(x), что для любого х из области ее определения выполняется равенство f(x) = f(x + 2), а функция не является периодической? Если существует, приведите пример такой функции.
 - б) Существует ли такая функция y = f(x), что для любого x из области ее определения выполняется равенство f(x) = f(x - 3), а функция не является периодической? Если существует, приведите пример такой функции.
- •9.35. a) Существует ли такая функция y = f(x), что для любого x из области ее определения выполняется равенство f(2x) = f(x), а функция является периодической? Если существует, приведите пример такой функции.
 - б) Существует ли такая функция y = f(x), что для любого x из области ее определения выполняется неравенство f(2x) > f(x), а функция является периодической? Если существует, приведите пример такой функции.

§ 10. Обратная функция

- 10.1. Дано равенство $y = \frac{x^2}{x^2 + 1}$. Выразите из этого равенства xчерез u, если:
- B) $x \ge 2$; $r) x \le -0.21$.
- 10.2. Дано равенство $\rho = \frac{st^3}{2-s}$, связывающее три величины: ρ , s, t.
 - а) Выразите из этого равенства s через ρ и t;
 - б) выразите из этого равенства t через s и ρ .

- 10.3. Для функции, заданной графически, укажите область определения и выясните, имеет эта функция в своей области определения обратную функцию или нет; в случае положительного ответа постройте эскиз графика обратной функции:
 - а) рис. 36;
- б) рис. 37;
- в) рис. 38;
- г) рис. 39.

Puc. 36

Puc. 37

Puc. 39

10.4. Для функции, заданной табличным способом, укажите ее область определения и выясните, имеет эта функция в своей области определения обратную функцию или нет; в случае положительного ответа постройте график обратной функции:

a)	x	1	2	5	7
	ų	3	4	7	3

в)	x	1	2	3	7
	y	5	8	9	1

б)	x	$\frac{1}{3}$	1 8	5	7
	у	$\frac{1}{5}$	2 3	0,(6)	1,(4)

г)	х	-1	1	2	5
	у	4	1,(7)	$1\frac{2}{3}$	1

- 10.5. Найдите область определения и множество значений функции y = g(x), обратной для функции y = f(x), если:
 - a) D(f) = R, $E(f) = (3; +\infty)$;
 - 6) $D(f) = (2; 3) \cup [5; 6), E(f) = (3; 4) \cup (7; +\infty);$
 - B) $D(f) = [-5; 6), E(f) = (-\infty; 11];$
 - Γ) $D(f) = E(f) = \{-3; 4; 7\} \cup (10; +\infty).$
- 10.6. Найдите множество значений каждой из взаимно-обратных функций y = f(x) и y = g(x), если указаны их области определения:
 - a) D(f) = R, $D(g) = [-2; +\infty)$;
 - б) D(f) = [-3; 4], D(g) = [4; 11];
 - B) $D(f) = (0; +\infty), D(g) = (-\infty; 7);$
 - r) $D(f) = \{-1; 2; 4\}, D(g) = \{-2; 78; 123\}.$
- 010.7. Являются ли функции y = f(x) и y = g(x) взаимно-обратными, если:
 - a) f(x) = 3x + 5, $g(x) = \frac{1}{2}x \frac{5}{2}$;
 - 6) $f(x) = \frac{3}{5} 6x$, $g(x) = 0.1 \frac{1}{6}x$;
 - B) $f(x) = \frac{1}{7}x 3$, g(x) = 7x + 3;
 - r) $f(x) = \frac{7}{2}x + \frac{3}{7}$, $g(x) = \frac{3}{7}x + \frac{7}{2}$?

Найдите функцию, обратную данной. Постройте на одном чертеже графики этих взаимно-обратных функций:

10.8. a)
$$y = 3x$$
;

B)
$$y = x - 7$$
;

б)
$$y = 5x + 2$$
;

$$\mathbf{r}) \ y = \frac{1}{3}x - 4.$$

010.9. a)
$$y = \frac{3}{x-1}$$
;

$$\mathbf{B}) \ y = \frac{2}{x+4};$$

6)
$$y = \frac{x+7}{2x-5}$$
;

$$y = \frac{2x-1}{x+3}$$
.

010.10. Является ли данная функция обратной по отношению к самой себе:

a)
$$y = x$$
;

$$y=-x;$$

б)
$$y = 3x$$
;

B)
$$y = -x$$
;
r) $y = -x + 1$?

010.11. Совпадает ли данная функция со своей обратной:

a)
$$y = \frac{7}{x}$$
;

B)
$$y = -\frac{8}{r}$$
;

6)
$$y = \frac{7}{x-2}$$
;

r)
$$y = 5 - \frac{8}{x}$$
?

010.12. Задайте функцию, обратную данной; постройте ее график:

a)
$$y = \begin{cases} 2x, \text{ если } x \leq 0, \\ 3x, \text{ если } x > 0; \end{cases}$$

б)
$$y = \begin{cases} -5x - 3, \text{ если } x \leq -1, \\ -1 - 3x, \text{ если } x > -1; \end{cases}$$

в)
$$y = \begin{cases} -x, \text{ если } x < 0, \\ 3x, \text{ если } x \ge 0; \end{cases}$$

$$\mathbf{r}) \ y = \begin{cases} 2x + 1, \ \text{если} \ x \leq 2, \\ \frac{1}{2}x + 4, \ \text{если} \ x \geq 2. \end{cases}$$

О10.13. Задайте функцию, обратную данной; постройте графики заданной и обратной функций:

a)
$$y = \sqrt{x + 3}$$
;

B)
$$y = \sqrt{2x - 1}$$
;

6)
$$y = -\sqrt{2 - x}$$
:

$$\Gamma) y = -\sqrt{3-5x}.$$

о10.14. Может ли функция иметь обратную, если она:

а) линейная;

- в) дробно-линейная;
- б) квадратичная;
- Γ) вида $y = \sqrt{x + a}$?

010.15. Обязательно ли функция имеет обратную, если она:

а) линейная;

- в) вида $y = \sqrt{x + a}$;
- б) дробно-линейная;
- Γ) вида $y = x^3 + a$?

010.16. Может ли функция иметь обратную, если она:

а) четная;

в) периодическая;

б) нечетная;

г) непериодическая?

010.17. Может ли функция иметь обратную, если она:

- а) возрастающая;
- в) имеет три нуля;
- б) убывающая;
- г) не имеет нулей?

10.18. Рассмотрите график функции, представленный на рисунке, и укажите несколько числовых промежутков, на которых данная функция имеет обратную, и несколько, на которых она не имеет обратной:

г) рис. 43.

0 1

Puc. 40

Puc. 41

Puc. 43

Рассмотрите данную функцию на каждом из указанных промежутков; если она на этом промежутке имеет обратную функцию, то задайте обратную функцию аналитически, укажите ее область определения и область значений, постройте ее график:

 $010.19. y = x^2$:

а) на R;

- в) на (-1; 5];
- б) на $[1; +\infty);$
- г) на $(-\infty; 0]$.

 $010.20. \ y = x^2 - 2$:

а) на R;

- в) на (-1; 5];
- б) на [1; 2);
- г) на [-2; 0].

 $010.21. y = (x + 3)^2 - 2:$

а) на **R**;

- в) на $(-\infty; -3];$
- б) на $[-3; +\infty)$;
- г) на [-4; 4].

- 010.22. (См. задание на с. 65.) $y = x^2 4x + 18$:
 - а) на **R**:

- в) на $(-\infty; 0];$
- б) на $[2; +\infty);$
- г) на $[-\infty; 3)$.
- ●10.23. На каждом из указанных промежутков найдите, если это возможно, функцию, обратную данной:

а)
$$y=egin{cases} 2x-5,\ {
m ec}$$
ли $x\leqslant 1,\ x-6,\ {
m ec}$ ли $x>1$ на $(-\infty;\ 1],\ {
m ha}\ (1;\ +\infty),\ {
m ha}\ \emph{\textbf{R}};$

б)
$$y = \begin{cases} 5 - x, \text{ если } x \leq 2, \\ 7 - 2x, \text{ если } x > 2 \end{cases}$$
 на $(-\infty; 2]$, на $(2; +\infty)$, на R ;

в)
$$y = \begin{cases} 3x + 5, \text{ если } x \leq 0, \\ x^2, \text{ если } x > 0 \end{cases}$$
 на $(-\infty; 0]$, на $(0 + \infty)$, на R ;

г)
$$y = \begin{cases} 3-x, \text{ если } x \leq 0, \\ 2-7x, \text{ если } x>0 \end{cases}$$
 на $(-\infty; 0]$, на $(0; +\infty)$, на $(0; +\infty)$

- •10.24. Постройте на одном чертеже какие-нибудь графики двух взаимно-обратных непрерывных на (-5; 10) функций y = f(x) и y = g(x), для которых:
 - a) f(3) = 3, g(5) = 5;
 - 6) f(3) = 7, f(7) = 8, g(9) = 9;
 - B) f(-1) = -1, g(3) = 3;
 - Γ) f(1) = 9, f(2) = 7, g(4) = 4.
- **ullet10.25**. y = f(x) и y = g(x) взаимно-обратные функции.
 - а) f(3) = 5 и g(7) = 1. Решите уравнения f(x) = 7 и g(x) = 3.
 - б) f(4) = 4 и g(25) = 9. Решите уравнения $f(x^2) = 25$ и $g(x^2) = 4$.
 - в) f(15) = -3 и g(-7) = 1. Решите уравнения f(t) = -7 и g(t) = 15.
 - г) f(7) = 5 и g(7) = 1. Решите уравнения f(3x) = 7 и g(5-x) = 5.

Постройте график функции y = f(g(x)), если:

- **010.26.** a) f(x) = 4x, g(x) = 0.25x;
 - 6) f(x) = x 3, g(x) = x + 3;
 - B) f(x) = -2x, g(x) = -05x;
 - r) f(x) = -5x + 5, g(x) = -0.2x 1.

O10.27. a)
$$f(x) = \frac{3}{x}$$
, $g(x) = \frac{3}{x}$;

6)
$$f(x) = \frac{3}{x+1}$$
, $g(x) = \frac{3-x}{x}$;

B)
$$f(x) = \frac{1}{2x}$$
, $g(x) = \frac{1}{2x}$;

r)
$$f(x) = \frac{x-1}{x+1}$$
, $g(x) = \frac{x+1}{1-x}$.

010.28. a)
$$f(x) = x^2$$
, $g(x) = \sqrt{x}$;

B)
$$f(x) = x^2$$
, $g(x) = -\sqrt{x}$;

6)
$$f(x) = -x^2$$
, $g(x) = \sqrt{-x}$;

$$f(x) = -x^2, g(x) = -\sqrt{-x}.$$

010.29. a)
$$f(x) = x^2 + 1$$
, $g(x) = \sqrt{x - 1}$;

6)
$$f(x) = 3 - 0.5x^2$$
, $g(x) = \sqrt{6 - 2x}$;

B)
$$f(x) = x^2 - 2$$
, $g(x) = \sqrt{x + 2}$;

r)
$$f(x) = 8 - 2x^2$$
, $g(x) = -\sqrt{4 - 0.5x}$.

•10.30. Пусть y = f(x) и y = g(x) — взаимно-обратные функции. Постройте на двух различных чертежах графики функций y = f(g(x)) и y = g(f(x)), если:

a)
$$D(f) = E(f) = R$$
;

B)
$$D(f) = [1; 3]; E(f) = R;$$

6)
$$D(f) = E(f) = (0; 3];$$

$$\Gamma$$
) $D(f) = [-2; 3]; E(f) = [-3; 2].$

- •10.31. Постройте на одном чертеже графики таких двух взаимно-обратных функций y = f(x) и y = g(x), чтобы уравнение f(x) = x:
 - а) имело один корень;
 - б) имело три корня;
 - в) имело бесконечно много корней;
 - г) не имело корней.
- •10.32. Постройте на одном чертеже графики таких двух взаимно-обратных функций y = f(x) и y = g(x), чтобы уравнение f(x) = g(x):
 - а) имело один корень;
 - б) имело три корня;
 - в) имело бесконечно много корней;
 - г) не имело корней.

•10.33. Пусть y = f(x) и y = g(x) — некоторые взаимно-обратные функции. Являются ли равносильными следующие уравнения:

a)
$$f(x) = x \text{ if } g(x) = x$$
; 6) $f(g(x)) = x \text{ if } g(f(x)) = x$?

$$f(g(x)) = x$$
 и $g(f(x)) = x$?

Постройте график функции и определите, существует ли для нее обратная функция. Если да, то на том же чертеже постройте график обратной функции и задайте ее аналитически:

•10.34. a)
$$y = 3x + |x|$$
;

B)
$$y = 2|x| - 5x$$
;

6)
$$y = x + 2|x|$$
;

$$r) y = 2x - 5|x|.$$

•10.35. a)
$$y = x|x|$$
;

$$\mathbf{B}) \ y = 2 - x|x|;$$

6)
$$y = x^2 + 2|x|$$
;

$$\Gamma) y = x|x-2|.$$

§ 11. Числовая окружность

Горизонтальный диаметр CA и вертикальный диаметр DB разбивают единичную окружность на четыре четверти: AB — первая, BC — вторая, CD — третья, DA — четвертая (рис. 44).

11.1. Вторая четверть разделена на две равные части точкой M, а третья — на три равные части точками K и P. Найдите длину дуги:

a) AM;

б) BK;

B) PM;

г) *РК*.

11.2. Первая четверть разделена на две равные части точкой M, а четвертая — на три равные части точками K и P. Найдите длину дуги:

a) DM;

б) *ВК*;

 \mathbf{B}) PM;

г) *PC*.

11.3. Третья четверть разделена точкой M в отношении 2:3, первая — точкой P в отношении 1:5. Найдите длину дуги: а) CM; б) AP; в) PM; г) MP.

11.4. Можно ли найти на единичной окружности точку E с указанной ниже длиной дуги AE? Если да, то укажите четверть, в которой расположена точка E:

a) AE = 2;

B) AE = 6.3;

6) $AE = \sqrt{8\pi}$;

r) $AE = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$.

- 11.5. а) К радиусам OA и OC проведены серединные перпендикуляры, соответственно, MN и PQ (рис. 44). Чему равен центральный угол AOM? Найдите длину хорды MN. Найдите длину дуги QN. Докажите, что точки A, M, P, C, Q, N делят окружность на шесть равных частей.
 - б) К радиусам OB и OD проведены серединные перпендикуляры LK и TS, соответственно (рис. 45). Чему равен центральный угол KOB? Найдите длину хорды KL. Найдите длину дуги TL. Докажите, что точки K, B, L, T, D, S делят окружность на шесть равных частей.

Puc. 44

Puc. 45

Найдите на числовой окружности точку, которая соответствует заданному числу:

11.6. a)
$$\frac{\pi}{2}$$
;

б)
$$-\pi$$
; в) 4π ;

$$\Gamma$$
) $-\frac{3\pi}{2}$.

11.7. a)
$$\frac{\pi}{6}$$
; 6) $-\frac{\pi}{3}$; b) $\frac{7\pi}{4}$;

$$6) -\frac{\pi}{3};$$

B)
$$\frac{7\pi}{4}$$
;

$$\Gamma$$
) $-\frac{3\pi}{4}$.

11.8. a)
$$\frac{10\pi}{3}$$
;

6)
$$-\frac{17\pi}{4}$$
;

B)
$$\frac{31\pi}{6}$$
;

$$\Gamma$$
) $-\frac{19\pi}{3}$.

11.9. a)
$$\frac{\pi}{8}$$
; 6) $-\frac{\pi}{12}$; b) $\frac{7\pi}{12}$;

6)
$$-\frac{\pi}{12}$$
;

B)
$$\frac{7\pi}{12}$$
;

$$r) - \frac{11\pi}{8}$$
.

Какой четверти числовой окружности принадлежит точка, соответствующая заданному числу?

$$6) -4,5;$$

$$6) -17$$

011.13. Укажите однозначное натуральное число, которому на числовой окружности (рис. 44) соответствует точка, наиболее близкая:

а) к точке
$$A$$
;

в) к точке
$$C$$
;

б) к точке
$$B$$
;

$$\Gamma$$
) к точке D .

- 11.14. Как расположены на числовой прямой и на числовой окружности точки, соответствующие числам:
 - a) t и -t;

- в) t и $t + \pi$;
- б) t и $t + 2\pi k$, $k \in \mathbb{Z}$:
- Γ) $t + \pi$ и $t \pi$?

Найдите на числовой окружности все точки M(t), соответствующие заданной формуле (во всех формулах предполагается, что $n \in \mathbb{Z}$):

11.15. a) $t = 2\pi n$;

B) $t = \pi n$;

 $6) t = \frac{\pi}{2} + \pi n;$

- r) $t = \pm \frac{\pi}{2} + 2\pi n$.
- 11.16. a) $t = \pm \frac{\pi}{6} + 2\pi n$;
- B) $t = \pm \frac{\pi}{3} + \pi n;$

 $6) t = \frac{2\pi n}{3};$

- Γ) $t=\frac{\pi n}{2}$.
- 11.17. a) $t = (-1)^n \frac{\pi}{6} + \pi n$;
- B) $t = (-1)^{n+1} \frac{\pi}{3} + \pi n;$
- 6) $t = \frac{\pi}{4} + \frac{\pi n}{2}$;

 $r) t = -\frac{\pi}{6} + \frac{2\pi n}{3}$.

Числовая окружность разделена точками на восемь равных частей (рис. 46). Составьте формулу для всех чисел, которым соответствуют точки:

- 011.18. a) A и C;

- б) B и D; в) M и P; г) N и Q.
- 011.19. a) M, N, P, Q; 6) A, M, B, N, C, P, D, Q.

Puc. 46

Puc. 47

Числовая окружность разделена точками на 12 равных частей (рис. 47). Составьте формулу для всех чисел, которым соответствуют точки:

$$\mathbf{B})$$
 P и L ;

г) Ми F.

б)
$$B, K, F$$
;

$$\Gamma$$
) A , N , P , C , L , E .

Найдите все числа t, которым на числовой окружности соответствуют точки, принадлежащие указанной открытой дуге или объединению дуг (рис. 46):

б)
$$AB \cup CD$$
;

г)
$$BC \cup DA$$
.

011.24. a)
$$QA \cup NC$$
;

в)
$$MN \cup PQ$$
;

6)
$$AN \cup CQ$$
;

r)
$$\overrightarrow{AM} \cup \overrightarrow{BN} \cup \overrightarrow{CP} \cup \overrightarrow{DQ}$$
.

Найдите все числа t, которым на числовой окружности соответствуют точки, принадлежащие указанной дуге (рис. 47):

б)
$$AQ$$
;

в)
$$BL$$
;

$$\Gamma$$
) DF .

Выделите на числовой окружности дугу, точки которой удовлетворяют заданному неравенству (во всех формулах предполагается, что $n \in \mathbb{Z}$):

11.27. a)
$$\frac{\pi}{6} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n;$$
 B) $\frac{\pi}{2} + 2\pi n < t < \frac{3\pi}{2} + 2\pi n;$

$$\frac{\pi}{2} + 2\pi n < t < \frac{3\pi}{2} + 2\pi n;$$

6)
$$2\pi n < t < \frac{5\pi}{4} + 2\pi n$$
;

$$\Gamma$$
 $\pi + 2\pi n < t < \frac{5\pi}{3} + 2\pi n$.

11.28. a)
$$-\frac{\pi}{2} + 2\pi n < t < \frac{\pi}{2} + 2\pi n$$
;

6)
$$-\frac{\pi}{6} + 2\pi n < t < \frac{7\pi}{6} + 2\pi n$$
;

B)
$$-\frac{3\pi}{4} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n$$
;

$$\Gamma$$
 $-\frac{\pi}{6} + 2\pi n < t < \frac{5\pi}{4} + 2\pi n$.

Найдите на числовой окружности все точки M(t), соответствующие заданным формулам; составьте общую формулу для всех чисел, которым соответствуют найденные точки:

O11.29. a)
$$t = 2\pi n$$
, $t = \pi + 2\pi n$;

B)
$$t = \frac{\pi}{2} + 2\pi n$$
, $t = \frac{3\pi}{2} + 2\pi n$;

6)
$$t = \pi n$$
, $t = \frac{\pi}{2} + \pi n$; r) $t = \pi n$, $t = \frac{\pi n}{2}$.

$$\Gamma) \ t = \pi n, \ t = \frac{\pi n}{2}$$

011.30. a)
$$t = \pm \frac{\pi}{3} + \pi n$$
, $t = \frac{\pi n}{3}$;

6)
$$t = (-1)^n \frac{\pi}{4} + \pi n$$
, $t = (-1)^{n+1} \frac{\pi}{4} + \pi n$;

B)
$$t = \pm \frac{2\pi}{3} + 2\pi n$$
, $t = 2\pi n$;

r)
$$t = (-1)^n \frac{\pi}{6} + \pi n$$
, $t = (-1)^{n+1} \frac{\pi}{6} + \pi n$.

•11.31. a)
$$t = -\frac{\pi}{6} + \pi(2n+1), t = \frac{\pi}{30} + \frac{2\pi n}{5};$$

6)
$$t = (-1)^n \frac{\pi}{3} + \pi n$$
, $t = (-1)^{n+1} \frac{\pi}{3} + \pi n$, $t = \pi n$;

B)
$$t = -\frac{\pi}{4} + \pi n$$
, $t = \frac{\pi}{4} \pm \frac{\pi}{6} + \pi n$;

r)
$$t = \pm \frac{\pi}{4} + \pi n$$
, $t = \frac{\pi}{2} + \pi n$, $t = \pi n$.

о11.32. На числовой прямой и числовой окружности отметьте все точки M(t), заданные формулой и принадлежащие отрез-

$$\operatorname{ky}\left[-\frac{\pi}{2};\,\frac{\pi}{2}\right]$$
:

a)
$$t = (-1)^n \frac{\pi}{15} + \frac{\pi n}{3}$$
;

B)
$$t = (-1)^{n+1} \frac{\pi}{8} + \frac{\pi n}{4}$$
;

6)
$$t = \pm \frac{\pi}{8} + \frac{\pi n}{4}$$
;

$$\mathbf{r}) \ t = \pm \frac{3\pi}{7} + \frac{\pi n}{3}.$$

 \circ 11.33. На числовой прямой и числовой окружности отметьте все точки M(t), заданные формулой и принадлежащие отрезку [-2; 4]:

a)
$$t = \pm \frac{\pi}{6} + \pi n$$
,

B)
$$t = \pm \frac{3\pi}{4} + \frac{\pi n}{2}$$
;

$$6) t = (-1)^n \frac{\pi}{4} + \frac{\pi n}{2};$$

$$\Gamma) \ t = (-1)^{n+1} \frac{\pi}{3} + \frac{\pi n}{4}.$$

011.34. На числовой прямой и числовой окружности отметьте все точки M(t), заданные формулой и принадлежащие отрезку $[-\pi; 2\pi]$:

a)
$$t = n$$
;

B)
$$t = 2n + 1$$
;

6)
$$t = \frac{1}{2} + 2n$$
;

r)
$$t = \frac{1}{3} + \frac{3n}{2}$$
.

§ 12. Числовая окружность на координатной плоскости

Всюду в этом параграфе предполагается, что центр числовой окружности совпадает с началом координат плоскости xOy.

Найдите декартовы координаты заданной точки:

12.1. a)
$$M\left(\frac{\pi}{6}\right)$$
; 6) $M\left(\frac{\pi}{4}\right)$; B) $M\left(\frac{\pi}{3}\right)$; Γ) $M\left(\frac{3\pi}{2}\right)$.

6)
$$M\left(\frac{\pi}{4}\right)$$

B)
$$M\left(\frac{\pi}{3}\right)$$

$$\Gamma$$
) $M\left(\frac{3\pi}{2}\right)$

12.2. a)
$$M(-3\pi)$$
; 6) $M\left(\frac{11\pi}{4}\right)$; B) $M\left(-\frac{5\pi}{3}\right)$; r) $M\left(\frac{31\pi}{2}\right)$.

б)
$$M\left(\frac{11\pi}{4}\right)$$

B)
$$M\left(-\frac{5\pi}{3}\right)$$

$$\Gamma$$
) $M\left(\frac{31\pi}{2}\right)$

12.3. a)
$$M\left(-\frac{41\pi}{6}\right)$$
; 6) $M(117\pi)$; B) $M\left(-\frac{13\pi}{3}\right)$; r) $M(126\pi)$.

B)
$$M\left(-\frac{13\pi}{3}\right)$$

12.4. Найдите наименьшее положительное и наибольшее отрицательное числа, которым на числовой окружности соответствует заданная точка:

a)
$$M\left(\frac{\sqrt{3}}{2}; \frac{1}{2}\right)$$

B)
$$M\left(-\frac{\sqrt{3}}{2}; \frac{1}{2}\right);$$

6)
$$M\left(\frac{1}{2}; -\frac{\sqrt{3}}{2}\right)$$
;

r)
$$M\left(-\frac{1}{2}; -\frac{\sqrt{3}}{2}\right)$$
.

12.5. Каким числам из заданного отрезка соответствует точка $M\left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$ числовой окружности:

a)
$$[-4\pi; \pi];$$

B)
$$[0; 5\pi];$$

6)
$$\left[-\frac{3\pi}{2}; \frac{7\pi}{2}\right]$$
;

r)
$$\left[\frac{\pi}{2}; \frac{9\pi}{2}\right]$$
?

012.6. На отрезке $\left[-\frac{3\pi}{8}; \frac{17\pi}{6}\right]$ укажите числа, которым на числовой окружности соответствует заданная точка:

a)
$$M\left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right);$$

B)
$$M\left(-\frac{\sqrt{3}}{2}; -\frac{1}{2}\right);$$

6)
$$M\left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$$

r)
$$M\left(\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2}\right)$$

12.10.	Что больше, абсцисса или ордината заданной точки чист вой окружности:										
	a) $E(1)$;	5) $K(-2,5)$;	в) $P(7)$;	г) M(-4)?							
12.11.	заданной точк	и числовой с	циссы или моду окружности: в) <i>K</i> (-0,5);								
	окружности: a) t и $-t$; б) t и $t + \pi$;	в) t и г) t и между собо в) t и	ой абсциссы тоо $\pi-t;$ $2\pi-t?$ й ординаты тоо $\pi-t;$ $2\pi-t?$								
	На числовой окружности укажите все точки, координать которых удовлетворяют данным условиям, и составьте формулы для всех чисел, которым соответствуют эти точки										
12.14.	a) $x = 0$;	6) $x = \frac{1}{2}$;	B) $x = -\frac{\sqrt{3}}{2}$;	r) $x = 1$.							
12.15.	a) $x = \frac{\sqrt{3}}{2}$;	6) $x = -\frac{\sqrt{2}}{2}$;	B) $x = \frac{\sqrt{2}}{2}$;	Γ) $x = -1$.							
12.16.	a) $y = 0;$	6) $y = \frac{1}{2}$;	B) $y = -\frac{\sqrt{3}}{2}$;	r) $y = 1$.							
12.17.	a) $y = \frac{\sqrt{3}}{2}$;	6) $y = \frac{\sqrt{2}}{2}$;	B) $y = -\frac{\sqrt{2}}{2};$	r) $y=-1$.							
12.18.	a) $x = \frac{\sqrt{3}}{2}, y <$	0;	B) $x = -\frac{\sqrt{2}}{2}, y <$	0;							
	б) $x = \frac{\sqrt{2}}{2}, \ y >$	0;	r) $x = -\frac{1}{2}, y > 0$								
				75							

12.7. Имеется ли на числовой окружности точка, абсцисса или

Укажите знаки абсциссы и ординаты заданной точки число-

r) $\sqrt{17} - \sqrt{26}$?

B) P(3,2); r) M(-4,8).

 $6) \frac{\pi}{3}; \qquad B) \frac{\pi}{4};$

O12.9. a) E(12); 6) K(-15); B) P(49); r) M(100).

б) K(-4);

ордината которой равна:

вой окружности:

a) 0,7;

 \circ 12.8. a) E(2);

12.19. (См. задание к упражнениям 12.14-12.18.)

a)
$$y = \frac{\sqrt{3}}{2}$$
, $x > 0$; B) $y = \frac{\sqrt{2}}{2}$, $x < 0$;

B)
$$y = \frac{\sqrt{2}}{2}, \ x < 0;$$

6)
$$y = -\frac{\sqrt{2}}{2}, x < 0;$$

r)
$$y = -\frac{1}{2}, x > 0.$$

012.20. (См. задание к упражнениям 12.14—12.18.)

a)
$$y = x$$
;

B)
$$x + y = 0$$
;

6)
$$y = -x\sqrt{3}$$
;

$$\mathbf{r}) \ \frac{x}{u} = \sqrt{3}.$$

Найдите на числовой окружности все точки с абсциссой или ординатой, удовлетворяющей заданному неравенству или системе неравенств, и запишите (с помощью двойного неравенства), каким числам t они соответствуют:

6)
$$x < \frac{1}{2}$$
; B) $x > \frac{1}{2}$;

B)
$$x > \frac{1}{2}$$
;

O12.22. a)
$$x > -\frac{\sqrt{3}}{2}$$
; 6) $x < \frac{\sqrt{2}}{2}$; b) $x < -\frac{\sqrt{2}}{2}$; $r) x > -\frac{1}{2}$.

б)
$$x<\frac{\sqrt{2}}{2}$$

B)
$$x < -\frac{\sqrt{2}}{2};$$

$$(x) > -\frac{1}{2}$$
.

$$012.23.$$
 a) $y > 0$;

B)
$$y > \frac{1}{2}$$

г)
$$y < 0$$
.

O12.24. a)
$$y > -\frac{\sqrt{3}}{2}$$
; 6) $y < \frac{\sqrt{2}}{2}$; B) $y < -\frac{\sqrt{2}}{2}$; $y > -\frac{1}{2}$.

б)
$$y<rac{\sqrt{2}}{2};$$

B)
$$y < -\frac{\sqrt{2}}{2}$$

r)
$$y > -\frac{1}{2}$$
.

012.25. a)
$$\begin{cases} x > 0, \\ y < 0; \end{cases}$$

$$\begin{cases} x > -\frac{\sqrt{2}}{2}, \\ y > \frac{1}{2}; \end{cases}$$

$$\text{6) }\begin{cases} x < 0, \\ y > -\frac{1}{2}; \end{cases}$$

$$\mathbf{r}) \begin{cases} x < \frac{1}{2}, \\ y < \frac{\sqrt{3}}{2}. \end{cases}$$

O12.26. a)
$$x - y > 0$$
; b) $xy > 0$; b) $x + y < 0$; r) $xy < 0$.

б)
$$xu > 0$$
:

B)
$$x + y < 0$$
:

r)
$$xy < 0$$
.

O12.27. a)
$$x + y \le 1$$
; 6) $x - y > -1$; B) $x + y > -1$; r) $x - y \le 1$

б)
$$x - u > -1$$
:

$$r$$
 $r + u > -1 \cdot r$

г)
$$x - y \leq 1$$

$$012.28. a) 2x^2 - x < 0;$$

a)
$$2x^2 - x < 0;$$
 B) $y + 2y^2 > 0;$ 6) $(2x - 1)(y - 3) > 0;$ r) $(2y - \sqrt{2})(x + 2) \le 0.$

$$012.29. a) 4x^2 - 1 \le 0;$$

B)
$$3 - 4u^2 > 0$$

6)
$$1-2u^2<0$$
:

в)
$$3-4y^2>0;$$
г) $2x^2-1\geqslant 0.$

§ 13. Синус и косинус. Тангенс и котангенс

Вычислите $\sin t$ и $\cos t$, если:

$$6) t = \frac{\pi}{2}$$

$$\mathbf{B}) \ t = \frac{3\pi}{2};$$

$$\Gamma) t = \pi.$$

13.2. a)
$$t = \frac{5\pi}{6}$$
; 6) $t = \frac{5\pi}{4}$; B) $t = \frac{7\pi}{6}$; r) $t = \frac{9\pi}{4}$.

6)
$$t = \frac{5\pi}{4}$$

$$\mathbf{B}) \ t = \frac{7\pi}{6};$$

$$\mathbf{r)} \ t = \frac{9\pi}{4}.$$

13.3. a)
$$t = \frac{13\pi}{6}$$
; 6) $t = -\frac{8\pi}{3}$; B) $t = \frac{23\pi}{6}$; r) $t = -\frac{11\pi}{3}$.

б)
$$t = -\frac{8\pi}{3}$$

B)
$$t = \frac{23\pi}{6}$$

$$r) t = -\frac{11\pi}{3}.$$

Вычислите:

13.4. a)
$$\sin\left(-\frac{\pi}{4}\right) + \cos\frac{\pi}{3} + \cos\left(-\frac{\pi}{6}\right)$$
;

6)
$$\cos \frac{\pi}{6} \cdot \cos \frac{\pi}{4} \cdot \cos \frac{\pi}{3} \cdot \cos \frac{\pi}{2}$$
;

B)
$$\sin\left(-\frac{\pi}{2}\right) - \cos\left(-\pi\right) + \sin\left(-\frac{3\pi}{2}\right)$$
;

r)
$$\sin \frac{\pi}{6} \cdot \sin \frac{\pi}{4} \cdot \sin \frac{\pi}{3} \cdot \sin \frac{\pi}{2}$$
.

13.5. a)
$$\sin\left(-\frac{3\pi}{4}\right) + \cos\left(-\frac{\pi}{4}\right) + \sin\frac{\pi}{4} \cdot \cos\frac{\pi}{2} + \cos 0 \cdot \sin\frac{\pi}{2}$$
;

6)
$$\cos \frac{5\pi}{3} + \cos \frac{4\pi}{3} + \sin \frac{3\pi}{2} \cdot \sin \frac{5\pi}{8} \cdot \cos \frac{3\pi}{2}$$
.

Найдите значение выражения:

13.6. a) cos
$$2t$$
, если $t=\frac{\pi}{2}$;

б)
$$\sin\frac{t}{2}$$
, если $t=-\frac{\pi}{3}$;

в)
$$\sin^2 t - \cos^2 t$$
, если $t = \frac{\pi}{4}$;

$$r) \sin^2 t + \cos^2 t, ecли t = \frac{\pi}{6}.$$

13.7. Вычислите:

a)
$$tg \frac{5\pi}{4}$$
;

B)
$$tg\frac{5\pi}{6}$$
;

6)
$$\operatorname{ctg} \frac{4\pi}{3}$$
;

r)
$$\operatorname{ctg} \frac{7\pi}{4}$$
.

Вычислите:

13.8. a)
$$\operatorname{tg}\left(-\frac{5\pi}{4}\right)$$
;

B)
$$\operatorname{tg}\left(-\frac{\pi}{6}\right)$$
;

6)
$$\operatorname{ctg}\left(-\frac{\pi}{3}\right)$$
;

r)
$$\operatorname{ctg}\left(-\frac{2\pi}{3}\right)$$
.

13.9. a)
$$tg \frac{\pi}{4} \cdot \sin \frac{\pi}{3} \cdot ctg \frac{\pi}{6}$$
;

6)
$$2 \sin \pi + 3 \cos \pi + \cot \frac{\pi}{2}$$
;

B)
$$2 \sin \frac{\pi}{3} \cdot \cos \frac{\pi}{6} - \frac{1}{2} tg \frac{\pi}{3}$$
;

r) 2 tg 0 + 8 cos
$$\frac{3\pi}{2}$$
 - 6 sin $\frac{\pi}{3}$.

13.10. a)
$$tg \frac{\pi}{5} \cdot ctg \frac{\pi}{5}$$
;

B)
$$\operatorname{tg} \frac{\pi}{7} \cdot \operatorname{ctg} \frac{\pi}{7}$$
;

r)
$$7 \operatorname{tg} \frac{\pi}{12} \cdot \operatorname{ctg} \frac{\pi}{12}$$
.

13.11. a)
$$\sin^2(1.5 + 32\pi) + \cos^2(1.5 + \cos\left(-\frac{\pi}{4}\right) + \sin\left(-\frac{\pi}{6}\right)$$
;

6)
$$\cos^2\left(\frac{\pi}{8} + 4\pi\right) + \sin^2\left(\frac{\pi}{8} - 44\pi\right)$$

13.12. a) tg 2,5 · ctg 2,5 +
$$\cos^2 \pi - \sin^2 \frac{\pi}{8} - \cos^2 \frac{\pi}{8}$$
;

6)
$$\sin^2 \frac{3\pi}{7} - 2 \operatorname{tg} 1 \cdot \operatorname{ctg} 1 + \cos^2 \left(-\frac{3\pi}{7} \right) + \sin^2 \frac{5\pi}{2}$$
.

13.13. a)
$$\cos 1 + \cos (1 + \pi) + \sin \left(-\frac{\pi}{3}\right) + \cos \left(-\frac{\pi}{6}\right);$$

6)
$$\sin 2 + \sin (2 + \pi) + \cos^2 \left(-\frac{\pi}{12}\right) + \sin^2 \frac{\pi}{12}$$
.

013.14. Докажите равенство:

a)
$$\frac{\sin \frac{\pi}{4} - \cos \pi - tg \frac{\pi}{4}}{2 \sin \frac{\pi}{6} - \sin \frac{3\pi}{2}} = \frac{\sqrt{2}}{4};$$

$$6) \ \frac{\cot g \, \frac{5\pi}{4} + \sin \frac{3\pi}{2} \, tg \, (-\frac{5\pi}{4})}{2 \cos \frac{11\pi}{6} + 2 \sin^2 \frac{11\pi}{4}} = \sqrt{3} - 1.$$

13.15. Упростите выражение: a) $\sin t \cdot \cos t \cdot tg t$;

a)
$$\sin t \cdot \cos t \cdot \lg t$$
;

$$\mathbf{B}) \sin^2 t - \mathbf{tg} \ t \cdot \mathbf{ctg} \ t;$$

6)
$$\sin t \cdot \cos t \cdot \operatorname{ctg} t - 1$$
;

$$\Gamma) \frac{1-\cos^2 t}{1-\sin^2 t}.$$

Докажите тождество:

13.16. a)
$$1 + tg^2 t = \cos^{-2} t$$
;
6) $1 + ctg^2 t = \sin^{-2} t$;

B)
$$\sin^2 t (1 + \operatorname{ctg}^2 t) = 1$$
;
r) $\cos^2 t (1 + \operatorname{tg}^2 t) = 1$.

13.17. a)
$$tg(\pi - t) = -tg t$$
;

$$\mathbf{B})\ \mathbf{ctg}\ (\mathbf{\pi}-t)=-\mathbf{ctg}\ t;$$

13.17. a)
$$\lg (\pi - t) = -\lg t$$
;
6) $\lg (2\pi + t) = \lg t$;

r) ctg
$$(2\pi + t)$$
 = ctg t .

Найдите наименьшее и наибольшее значения выражения:

13.18. a)
$$2 \sin t$$
;

в)
$$-3\cos t$$
;

6)
$$3 + 4 \cos t$$
;

r)
$$3 - 5 \sin t$$
.

013.19. a)
$$\frac{15}{2|\sin t| + 3}$$
;

B)
$$\frac{1}{3\sin^2 t + 4\cos^2 t}$$
;

6)
$$\sqrt{7\cos^2 t + 9}$$
;

$$\Gamma) \ \frac{5\sin^2 t + 5\cos^2 t}{3|\cos t| + 2}.$$

Определите знак числа:

13.20. a)
$$\sin \frac{4\pi}{7}$$
; 6) $\cos \left(-\frac{5\pi}{7}\right)$; B) $\sin \frac{9\pi}{8}$; r) $\sin \left(-\frac{3\pi}{8}\right)$.

$$6) \cos\left(-\frac{5\pi}{7}\right)$$

$$s) \sin \frac{9\pi}{8}$$

r)
$$\sin\left(-\frac{3\pi}{8}\right)$$
.

б)
$$\cos 3$$
; в) $\sin 5$; г) $\cos (-6)$.

в)
$$\sin(-15)$$
;

Определите знак выражения:

013.23. a) $\sin 1 \cdot \cos 2$;

в)
$$\cos 2 \cdot \sin (-3)$$
;

6) $\sin \frac{\pi}{7} \cdot \cos \left(-\frac{7\pi}{5}\right)$;

r)
$$\cos\left(-\frac{14\pi}{9}\right) \cdot \sin\left(-\frac{4\pi}{9}\right)$$
.

013.24. a) $\cos \frac{5\pi}{9} - \operatorname{tg} \frac{25\pi}{19}$;

B)
$$\sin \frac{7\pi}{10} - \cot \frac{3\pi}{5}$$
;

6) tg 1 - cos 2:

r)
$$\sin 2 - \cot 5.5$$
.

 $\circ 13.25.$ a) $\sin 1 \cdot \cos 2 \cdot \tan 3 \cdot \cot 4$;

6)
$$\sin (-5) \cdot \cot (-6) \cdot \tan (-7) \cdot \cot (-8)$$
.

●13.26. Вычислите:

a)
$$\sin 4 + |\sin 4| + 2\cos 13 - 2|\cos 13|$$
;

6)
$$\frac{\text{tg } 11 + |\text{tg } 11|}{|\text{ctg } 12| - \text{ctg } 12}$$
.

Решите уравнение:

13.27. a)
$$\cos t = \frac{\sqrt{2}}{2}$$
;

$$\mathbf{B)} \cos t = -\frac{1}{2};$$

6)
$$\sin t = -\frac{1}{2}$$
;

$$r) \sin t = \frac{\sqrt{2}}{2}.$$

13.28. a)
$$\sin t = -\frac{\sqrt{3}}{2}$$
;

B)
$$\cos t = -\frac{\sqrt{3}}{2}$$
;

6)
$$\cos t = \sqrt{3}$$
;

$$r) \sin t = -\frac{\pi}{3}.$$

13.29. a)
$$10 \sin t = \sqrt{75}$$
;

B)
$$8\cos t - \sqrt{32} = 0$$
;

6)
$$\sqrt{8} \sin t + 2 = 0$$
;

r)
$$8\cos t = -\sqrt{48}$$
.

13.30. a)
$$\sin^2 \frac{\pi}{8} + \cos^2 \frac{\pi}{8} - \sqrt{2} \sin t = 0$$
;

6)
$$\sqrt{\frac{4}{3}}\cos t = \cos^2 1 + \sin^2 1$$
.

$$013.31.$$
 a) $|\sin t| = 1;$

$$\mathbf{B}) |\cos t| = 1;$$

6)
$$\sqrt{1-\sin^2 t} = \frac{1}{2}$$
;

$$\Gamma) \sqrt{1-\cos^2 t} = \frac{\sqrt{2}}{2}.$$

013.32. Имеет ли смысл выражение:

a)
$$\sqrt{\sin 10.2\pi}$$
;

B)
$$\sqrt{\sin{(-3,4\pi)}}$$
;

6)
$$\sqrt{\cos 1.3\pi}$$
;

$$\Gamma$$
) $\sqrt{\cos(-6.9\pi)}$?

Решите неравенство (относительно переменной x):

$$013.33.$$
 a) $\cos 2 \cdot (2x - 1) < 0$;

6)
$$\cos 3 \cdot \cos 5 \cdot (x^2 - 4) < 0$$
.

$$013.34.$$
 a) $(\cos t - 5)(3x - 1) \ge 0$;

6)
$$(2 + \sin t)(9 - x^2) \ge 0$$
.

$$013.35.$$
 a) ctg $5 \cdot (x-1) \ge 0$;

6)
$$\frac{\text{tg } 7 \cdot \cos 1}{\sin 1} (2x^2 - 72) < 0;$$

B)
$$(\text{tg } 2 \cdot \sin 5) \cdot (7 - 5x) \leq 0;$$

r)
$$tg \cdot 1 \cdot ctg \cdot 2 \cdot tg \cdot 3 \cdot ctg \cdot 4 \cdot (x^2 + 2) > 0$$
.

Сравните числа a и b:

O13.36. a)
$$a = \sin 1$$
, $b = \cos 1$; B) $a = \sin 2$, $b = \cos 2$; 6) $a = \sin 4$, $b = \cos 4$; r) $a = \sin 7$, $b = \cos 7$.

•13.37. a)
$$a = \sin 1$$
, $b = \cos 6$; b) $a = \sin 4$, $b = \cos 2$;

6)
$$a = \sin 2$$
, $b = \cos 4$; $a = \sin 3$, $b = \cos 5$.

Расположите в порядке возрастания числа:

013.38. a)
$$\sin \frac{\pi}{7}$$
; $\sin \frac{\pi}{5}$; $\sin \frac{2\pi}{3}$; $\sin \frac{7\pi}{6}$; $\sin \frac{4\pi}{3}$;

6)
$$\cos \frac{\pi}{8}$$
; $\cos \frac{\pi}{3}$; $\cos \frac{5\pi}{6}$; $\cos \frac{5\pi}{4}$; $\cos \frac{7\pi}{4}$.

$$\bullet 13.39$$
. a) $\sin 2$, $\sin 3$, $\cos 4$, $\cos 5$;

б)
$$\cos 3$$
, $\cos 4$, $\cos 6$, $\cos 7$;

в)
$$\sin 3$$
, $\sin 4$, $\sin 6$, $\sin 7$;

r)
$$\cos 2$$
, $\cos 3$, $\sin 4$, $\sin 5$.

6)
$$2, \sin 2, \cos 2, \cot 2$$
.

Вычислите:

•13.41. a)
$$\sqrt{\sin^2 1 + \sin^2 2 - 2 \sin 1 \cdot \sin 2} + \sqrt{\frac{1}{4} - \sin 1 + \sin^2 1} + \sqrt{1 + \sin^2 2 - 2 \sin 2}$$
;

6)
$$\sqrt{\cos^2 6 + \cos^2 7 - 2\cos 6 \cdot \cos 7} + \sqrt{\frac{1}{4} - \cos 7 + \cos^2 7} + \sqrt{1 + \cos^2 6 - 2\cos 6}$$
.

•13.42. a)
$$\sqrt{\sin^2 5 - 2 \sin 5 \cdot \sin \frac{11\pi}{6} + \sin^2 \frac{11\pi}{6}} - \sqrt{\sin^2 \frac{5\pi}{6} - 2 \sin \frac{5\pi}{6} \cdot \sin 5 + \sin^2 5};$$

6)
$$\sqrt{\cos^2 4 - 2 \cos 4 \cdot \cos \frac{2\pi}{3} + \cos^2 \frac{2\pi}{3}} + \sqrt{\cos^2 4 - 2 \cos 4 \cdot \cos \frac{\pi}{3} + \cos^2 \frac{\pi}{3}}$$

Решите неравенство:

$$013.43.$$
 a) $\sin t > 0$;

6) $\sin t < \frac{\sqrt{3}}{2}$;

B) $\sin t < 0$;

6)
$$\sin t < \frac{\sqrt{3}}{2}$$

r)
$$\sin t > \frac{\sqrt{3}}{2}$$
.

013.44. a) $\cos t > 0$;

B)
$$\cos t < 0$$
;

- 6) $\cos t < \frac{\sqrt{2}}{2}$;
- r) $\cos t > \frac{\sqrt{2}}{2}$.
- **013.45.** a) $\sin t < -\frac{1}{2}$;
- B) $\sin t > -\frac{1}{2}$;
- 6) $\sin t > -\frac{\sqrt{2}}{2}$;
- r) $\sin t < -\frac{\sqrt{2}}{2}$.
- **013.46.** a) $\cos t > -\frac{\sqrt{3}}{2}$;
- B) $\cos t < -\frac{\sqrt{3}}{2};$
- 6) $\cos t < -\frac{1}{9}$;
- r) $\cos t > -\frac{1}{2}$.
- **013.47.** a) $\sin t \leq \frac{1}{2}$;
- B) $\sin t \geqslant -\frac{1}{2}$;
- 6) $\cos t \geq -\frac{\sqrt{2}}{2}$;
- r) $\cos t \leq \frac{\sqrt{2}}{2}$.

Решите систему неравенств:

$$013.48. a) \begin{cases} \sin t > 0, \\ \sin t < \frac{1}{2}; \end{cases}$$

$$\begin{cases}
\sin t > -\frac{\sqrt{2}}{2}, \\
\sin t < \frac{\sqrt{3}}{2};
\end{cases}$$

$$\begin{cases}
\cos t < 0, \\
\cos t > -\frac{1}{2};
\end{cases}$$

$$\text{r) }\begin{cases} \cos t > \frac{1}{2}, \\ \cos t < \frac{\sqrt{2}}{2}. \end{cases}$$

o13.49. a)
$$\begin{cases} \sin t > 0, \\ \cos t < \frac{1}{2}; \end{cases}$$

$$\text{B)}\begin{cases} \sin t > -\frac{\sqrt{2}}{2}, \\ \cos t < \frac{\sqrt{3}}{2}; \end{cases}$$

$$\begin{cases}
\cos t < 0, \\
\sin t > -\frac{1}{2};
\end{cases}$$

$$\begin{cases} \cos t > \frac{1}{2}, \\ \sin t < \frac{\sqrt{2}}{2}. \end{cases}$$

013.50. Решите неравенство:

- a) $\sin t \cdot \cos t > 0$;
- B) ctg $t \cdot \cos t < 0$;
- 6) $\sin t \cdot \lg t \leq 0$;
- r) tg $t \cdot \operatorname{ctg} t \geq 0$.

Докажите неравенство:

 $\bigcirc 13.51$. a) $\sin t < ext{tg } t$, если $0 < t < rac{\pi}{2}$;

- б) $\cos t < \cot t$, если $0 < t < \frac{\pi}{2}$.
- $\bullet 13.52.$ a) $1 < \sin 1 + \cos^2 1 < 1.25;$
 - 6) $2 < 2 \sin^2 1, 2 + \cos 1, 2 < \frac{17}{8}$.
- •13.53. a) $0 < tg \frac{17}{7} + cos^{-2} \frac{17}{7} < 1;$
 - 6) $-1 < \sin^{-2} 4 + \text{ctg } 4 < 1$.

§ 14. Тригонометрические функции числового аргумента

Упростите выражение:

14.1. a) $1 - \sin^2 t$;

B) $1 - \cos^2 t$;

б) $\cos^2 t - 1$;

- t 1.
- 14.2. a) $(1 \sin t)(1 + \sin t)$; 6) $\cos^2 t + 1 - \sin^2 t$;
- B) $(1 \cos t)(1 + \cos t)$; r) $\sin^2 t + 2\cos^2 t - 1$.

- 14.3. a) $\frac{1}{\cos^2 t} 1$;
- B) $1 \frac{1}{\sin^2 t}$;

6) $\frac{1-\sin^2 t}{\cos^2 t}$;

- r) $\frac{1-\cos^2 t}{1-\sin^2 t}$.
- 14.4. a) $\frac{(\sin t + \cos t)^2}{1 + 2\sin t \cos t}$;
- $6) \frac{1-2\sin t\cos t}{(\cos t-\sin t)^2}.$

14.5. Докажите тождество:

a)
$$\frac{\cos^2 t}{1 - \sin t} - \sin t = 1$$
;

$$6) \frac{\sin^2 t}{1+\cos t} + \cos t = 1.$$

14.6. Докажите, что при всех допустимых значениях t выражение принимает одно и то же значение:

a)
$$(\sin t + \cos t)^2 - 2\sin t \cos t$$
;

6)
$$\frac{2 - \sin^2 t - \cos^2 t}{3 \sin^2 t + 3 \cos^2 t};$$

B)
$$\sin^4 t + \cos^4 t + 2 \sin^2 t \cos^2 t$$
;

$$\Gamma) \frac{\sin^4 t - \cos^4 t}{\sin^2 t - \cos^2 t}.$$

14.7. Найдите наименьшее и наибольшее значения функции

$$s = f(t)$$
, если:

a)
$$f(t) = 1 - (\cos^2 t - \sin^2 t);$$

6)
$$f(t) = 1 - \sin t \cos t \, \operatorname{tg} \, t;$$

6)
$$f(t) = 1 - \sin t \cos t \operatorname{tg} t$$
;
B) $f(t) = \cos^2 t \operatorname{tg}^2 t + 5 \cos^2 t - 1$;

r)
$$f(t) = \sin t + 3\sin^2 t + 3\cos^2 t$$
.

Упростите выражение:

14.8. a)
$$\frac{\cos^2 t - \cot g^2 t}{\sin^2 t - \cot^2 t}$$
;

B)
$$\cos^2 t - \sin^2 t (\cot g^2 t + 1);$$

6)
$$ctg^2 t - (sin^{-2} t - 1);$$

r)
$$\frac{\sin^2 t - 1}{\cos^2 t - 1} + \text{tg } t \text{ ctg } t$$
.

14.9. a)
$$\frac{\sin t}{1 + \cos t} + \frac{\sin t}{1 - \cos t}$$
;

$$B) \frac{\cos t}{1+\sin t} + \frac{\cos t}{1-\sin t};$$

6)
$$ctg^2 t (cos^2 t - 1) + 1$$
;

$$r) \frac{\operatorname{tg} t + 1}{1 + \operatorname{ctg} t}.$$

14.10. a) $(3 \sin t + 4 \cos t)^2 + (4 \sin t - 3 \cos t)^2$;

6)
$$(tg t + ctg t)^2 - (tg t - ctg t)^2$$
;

B)
$$\sin t \cos t (\operatorname{tg} t + \operatorname{ctg} t)$$
;

B)
$$\sin t \cos t \ (\text{tg } t + \text{ctg } t);$$

r) $\sin^2 t \cos^2 t \ (\text{tg}^2 t + \text{ctg}^2 t + 2).$

Докажите тождество:

014.11. a)
$$\frac{\operatorname{tg} t}{\operatorname{tg} t + \operatorname{ctg} t} = \sin^2 t$$
;

$$B) \frac{\operatorname{ctg} t}{\operatorname{tg} t + \operatorname{ctg} t} = \cos^2 t;$$

$$6) \frac{1 + \lg t}{1 + \operatorname{ctg} t} = \lg t;$$

$$\Gamma) \frac{1-\operatorname{ctg} t}{1-\operatorname{tg} t} = -\operatorname{ctg} t.$$

014.12. a)
$$1 + \sin t = \frac{\cos t + \cot t}{\cot t}$$
;

$$\mathbf{B}) \ \frac{1-\sin t}{\cos t} = \frac{\cos t}{1+\sin t};$$

6)
$$\frac{\sin t + \operatorname{tg} t}{\operatorname{tg} t} = 1 + \cos t; \qquad \text{r) } \frac{\sin t}{1 - \cos t} = \frac{1 + \cos t}{\sin t}.$$

$$r) \frac{\sin t}{1-\cos t} = \frac{1+\cos t}{\sin t}.$$

014.13. Докажите тождество:

a)
$$\frac{(\sin t + \cos t)^2 - 1}{\cot t - \sin t \cos t} = 2 tg^2 t;$$

6)
$$\sin^3 t(1 + \operatorname{ctg} t) + \cos^3 t(1 + \operatorname{tg} t) = \sin t + \cos t$$
;

B)
$$\frac{(\sin t + \cos t)^2 - 1}{\tan t - \sin t \cos t} = 2 \cot g^2 t;$$

r)
$$\frac{1-4\sin^2 t \cos^2 t}{(\sin t + \cos t)^2} + 2\sin t \cos t = 1.$$

По заданному значению функции найдите значения остальных тригонометрических функций:

14.14. a)
$$\sin t = \frac{4}{5}, \frac{\pi}{2} < t < \pi;$$

6)
$$\sin t = \frac{5}{13}$$
, $0 < t < \frac{\pi}{2}$;

B)
$$\sin t = -0.6, -\frac{\pi}{2} < t < 0;$$

r)
$$\sin t = -0.28$$
, $\pi < t < \frac{3\pi}{2}$.

14.15. a)
$$\cos t = 0.8$$
, $0 < t < \frac{\pi}{2}$;

B)
$$\cos t = 0.6, \ \frac{3\pi}{2} < t < 2\pi;$$

6)
$$\cos t = -\frac{5}{13}, \ \frac{\pi}{2} < t < \pi;$$

r)
$$\cos t = -\frac{24}{25}$$
, $\pi < t < \frac{3\pi}{2}$.

14.16. a) tg
$$t = \frac{3}{4}$$
, $0 < t < \frac{\pi}{2}$;

B)
$$tg t = -\frac{3}{4}, \frac{\pi}{2} < t < \pi;$$

6) tg
$$t = 2,4$$
, $\pi < t < \frac{3\pi}{2}$;

r) tg
$$t = -\frac{1}{3}$$
, $\frac{3\pi}{2} < t < 2\pi$.

014.17. a) ctg
$$t = \frac{12}{5}$$
, $3\pi < t < \frac{7\pi}{2}$;

6) etg
$$t = \frac{7}{24}$$
, $2\pi < t < \frac{5\pi}{2}$;

B) etg
$$t = -\frac{5}{12}$$
, $\frac{7\pi}{2} < t < 4\pi$;

r) ctg
$$t = -\frac{8}{15}$$
, $\frac{5\pi}{2} < t < 3\pi$.

$$\circ 14.18$$
. a) Дано: $\sin (4\pi + t) = \frac{3}{5}$, $0 < t < \frac{\pi}{2}$. Вычислите: $\operatorname{tg}(\pi - t)$.

б) Дано:
$$\cos{(2\pi + t)} = \frac{12}{13}$$
, $\frac{3\pi}{2} < t < 2\pi$. Вычислите: $\cot{(\pi - t)}$.

- 014.19. a) Дано: $\cos t = -\frac{5}{13}$, 8,5 $\pi < t < 9\pi$. Вычислите: $\sin (-t)$.
 - б) Дано: $\sin t = \frac{4}{5}, \frac{9\pi}{2} < t < 5\pi$. Вычислите: $\cos(-t) + \sin(-t)$.
- 014.20. а) Известно, что $\sin t + \cos t = 0.8$. Вычислите: $\sin t \cos t$.
 - б) Известно, что $\sin t \cos t = \frac{1}{3}$. Вычислите: $9 \sin t \cos t$.
- **•14.21.** Известно, что $\sin t + \cos t = 0.6$. Вычислите: a) $\sin^3 t + \cos^3 t$; б) tg $t \sin t + \cot t$

- 6) $tg t \sin t + ctg t \cos t$.
- **•14.22.** Известно, что tg t + ctg t = 2,3. Вычислите: a) $tg^2 t + \text{ctg}^2 t$; б) $tg^3 t + \text{ctg}^3 t$.

- •14.23. Известно, $\sin t \cos t = -0.5$. Вычислите:
 a) $\sin^2 t + \cos^2 t$;
 b) $\sin^6 t + \cos^6 t$;
 б) $\sin^4 t + \cos^4 t$;
 r) $\sin^8 t + \cos^8 t$.
- **•14.24.** Известно, что $\sin t \cos t = -\frac{12}{49}$. Вычислите:

a) tg t + ctg t:

6) $tg^2 t + ctg^2 t$.

- **●14.25**. Вычислите:
 - a) $\sin t + \cos t$, если $tg t \frac{1}{tgt} = -\frac{7}{12}$ и $0 < t < \frac{\pi}{2}$;
 - б) $2\sin t + \cos t$, если $4\cot t + 6\tan t + 11 = 0$ и $\frac{5\pi}{2} < t < \frac{11\pi}{4}$.
- 014.26. а) Вычислите tg t, если известно, что $\frac{\sin t + 3\cos t}{\sin t 3\cos t} = 4$.
 - б) Вычислите etg t, если известно, что $\frac{2 \sin t 3 \cos t}{2 \cos t 3 \sin t} = 3$.
- 014.27. a) Вычислите tg t, если известно, что $5 \sin t \cos^2 t = 2,36$ и $\frac{5\pi}{2} < t < 3\pi$.
 - б) Вычислите ctg t, если известно, что $\sin^2 t + 2\cos t +$ $+0.56 = 0 \text{ M} - \frac{7\pi}{2} < t < -3\pi.$
- •14.28. а) Вычислите ctg t, если известно, что $\frac{2\sin t\cos t}{\cos^2 t \sin^2 t} = \frac{3}{4}$ и $\frac{\pi}{4} < t < \pi$.
 - б) Вычислите tg t, если известно, что

$$\frac{2\sin^2 t + 3\sin t\cos t - \cos^2 t}{2\cos^2 t - \sin^2 t} = -\frac{1}{2} \text{ M } -\frac{\pi}{4} < t < \frac{\pi}{2}.$$

- $_{-14.29}$. Зная, что tg t=a, найдите:
 - a) $\cos^4 t$:
- B) $\sin^4 t$;
- δ) sin t cos t;
- r) $\sin^3 t \cos t$.
- $_{-14.30}$. Зная, что ctg t=a, найдите:

 - a) $2\sin^2 t + 3\cos^2 t$; 6) $2\sin^2 t 3\sin t \cos t 5\cos^2 t$.

Упростите выражение:

$$_{ ext{O14.31. a)}} \sqrt{rac{1+\cos t}{1-\cos t}} + \sqrt{rac{1-\cos t}{1+\cos t}} + rac{2}{\sin t}$$
, если $3\pi < t < rac{7\pi}{2}$;

б)
$$\sqrt{\frac{1-\sin t}{1+\sin t}}$$
 + tg t , если $2\pi < t < \frac{5\pi}{2}$.

•14.32. a)
$$\sqrt{\sin^{-2} t - \operatorname{ctg}^2 t + \cos^2 t - 1}$$
 +

$$+\sqrt{\cos^{-2}t- ext{tg}^2t+ \sin^2t-1}+2\sin t-\cos t$$
, если

$$t \in (13; 14);$$

б)
$$\sqrt{\sin^2 t(1-2\operatorname{ctg} t)+4\cos^2 t(1-0.5\operatorname{tg} t)}+$$

+ $\sin t+\cos t$, если $t\in(0;1)$.

- ●14.33. Расположите в порядке возрастания числа:

 - a) $\frac{1}{9}$, $\sin \frac{1}{9}$, $\sin \frac{13}{94}$; 6) $\frac{1}{9}$, $\cos 1$, $\cos 1$, 1.
- •14.34. Найдите наименьшее и наибольшее значения функции:
 - a) $y = \sin^2 x + 2 \sin x 5$;
 - 6) $y = \sin^2 x 3\cos^2 x + 2\cos x$:
 - B) $y = 4 \cos^2 x 4 \cos x 2$;
 - r) $u = \cos^2 x 3\sin^2 x 4\sin x$.

Постройте график функции:

O14.35. a)
$$y = \cos^2 x + \sin^2 x$$
; B) $y = \sin^2 \sqrt{x} + \cos^2 \sqrt{x}$;

B)
$$y = \sin^2 \sqrt{x} + \cos^2 \sqrt{x}$$
;

6)
$$y = \cos^2 \frac{1}{x} + \sin^2 \frac{1}{x}$$

6)
$$y = \cos^2 \frac{1}{x} + \sin^2 \frac{1}{x}$$
; r) $y = \sin^2 \frac{1}{x^2 - 4} + \cos^2 \frac{1}{x^2 - 4}$.

$$^{\circ}14.36$$
. a) $y = \operatorname{tg} x \operatorname{ctg} x$;

6)
$$y = 3\cos^2 x + 2 \log x \cot x + 3\sin^2 x$$
.

§ 15. Тригонометрические функции углового аргумента

Переведите из градусной меры в радианную:

15.1. a) 120°:

б) 220°;

в) 300°:

г) 765°.

15.2. a) 210°;

б) 150°:

в) 330°:

r) 675°.

Переведите из радианной меры в градусную:

15.3. a) $\frac{3\pi}{4}$; 6) $\frac{11\pi}{3}$; B) $\frac{6\pi}{5}$;

r) $\frac{46\pi}{9}$.

15.4. a) $\frac{5\pi}{8}$; 6) $\frac{7\pi}{12}$; B) $\frac{11\pi}{12}$; r) $\frac{47\pi}{9}$.

Вычислите $\sin \alpha$, $\cos \alpha$, $tg \alpha$, $ctg \alpha$ для заданного значения угла α:

15.5. a) 90°:

б) 180°;

в) 270°;

г) 360°.

15.6. a) 30°;

б) 150°; в) 210°;

г) 240°.

Расположите в порядке воз

 \circ 15.7. a) $\sin 40^{\circ}$, $\sin 80^{\circ}$, $\sin 120^{\circ}$.

б) $\cos 40^{\circ}$, $\cos 80^{\circ}$, $\cos 120^{\circ}$,

015.8. a) $\sin 380^{\circ}$, $\sin 830^{\circ}$, $\sin 210$

б) $\cos 390^{\circ}$, $\cos 460^{\circ}$, $\cos 920^{\circ}$

015.9. a) $\sin 22.5^{\circ}$, $\cos 37.4^{\circ}$, $\cos 990^{\circ}$, $\sin 990^{\circ}$;

б) tg 100°, ctg 225°, cos 94,3°, sin 77°.

15.10. В прямоугольном треугольнике известны гипотенуза c и острый угол α. Найдите катеты, площадь и радиус описанной окружности, если:

a) c = 12, $\alpha = 60^{\circ}$;

B) c = 4, $\alpha = 30^{\circ}$;

c = 6, α = 45°;

r) c = 60, $\alpha = 60^{\circ}$.

15.11. Хорда AB образует с диаметром AC окружности угол α° . Найдите длину хорды AB, если радиус окружности равен R

015.12. Докажите, что площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.

015.13. В $\triangle ABC$ известно, что $AB = 4\sqrt{2}$ см, $\angle A = 45^{\circ}$, $\angle C = 30^{\circ}$. Найдите BC, AC и площадь $\triangle ABC$.

- $_{015.14}$. Высота треугольника равна 5 см, а углы, прилегающие к основанию, равны 60° и 45° . Найдите площадь треугольника.
- •15.15. Использовав геометрические соображения, вычислите:

a) $\sin 15^\circ$ и $\cos 15^\circ$;

б) $\sin 22.5^{\circ}$ и $\cos 22.5^{\circ}$.

Вычислите:

- $_{0.015.16}$. a) $\sin^2 733^\circ + \cos^2 347^\circ$;
 - 6) $2\cos^2 395^\circ + \sin^2 1000^\circ + 2\sin^2 755^\circ + \cos^2 800^\circ$.
- 015.17. a) tg 1° tg 2° tg 3° · ... · tg 89°;
 - 6) ctg 2° ctg 4° ctg 6° ... ctg 178° .
- •15.18. a) $\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 90^\circ$; 6) $\cos^2 1^\circ + \cos^2 2^\circ + \cos^2 3^\circ + \dots + \cos^2 180^\circ$.
- 015.19. Докажите, что верно равенство:

a)
$$(4 \sin 30^{\circ} + tg 60^{\circ}) \left(\frac{1}{\cos (-60^{\circ})} + ctg 150^{\circ} \right) = 2 \sin 150^{\circ};$$

- 6) $(\text{ctg } 210^{\circ} + 2 \cos 120^{\circ})(\text{tg } 420^{\circ} 2 \sin 330^{\circ}) = 4 \cos^{2} 315^{\circ}.$
- •15.20. Дано выражение $\sin 1^{\circ} \sin 2^{\circ} \sin 3^{\circ} \cdot ... \cdot \sin n^{\circ}$.
 - а) При каких натуральных значениях n это выражение положительно?
 - б) При каких натуральных значениях n это выражение отрицательно?
 - в) При каких натуральных значениях n это выражение равно нулю?
- ullet15.21. Дано выражение $\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \cdot \ldots \cdot \cos n^{\circ}$.
 - а) При каких натуральных значениях n это выражение положительно?
 - б) При каких натуральных значениях n это выражение отрицательно?
 - в) При каких натуральных значениях n это выражение равно нулю?
- $\bullet 15.22$. Дано выражение $\sin 1^{\circ} + \sin 2^{\circ} + \sin 3^{\circ} + ... + \sin n^{\circ}$.
 - а) При каких натуральных значениях n это выражение положительно?
 - б) При каких натуральных значениях n это выражение отрицательно?
 - в) При каких натуральных значениях n это выражение равно нулю?

- •15.23. Дано выражение $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + ... + \cos n^{\circ}$.
 - а) При каких натуральных значениях $n \leq 360$ это выражение положительно?
 - б) При каких натуральных значениях $n \le 360$ это выра. жение отрицательно?
 - в) При каких натуральных значениях n это выражение равно нулю?
- ●15.24. Использовав равнобедренный треугольник с углом 36° при вершине, вычислите $\sin 18^\circ$, $\cos 18^\circ$, $\sin 36^\circ$, $\cos 36^\circ$.

Указание. Проведите биссектрису угла при основании треугольника.

§ 16. Функции $y = \sin x$, $y = \cos x$, их свойства и графики

Найдите значение функции:

16.1. a)
$$y = 2 \sin\left(x - \frac{\pi}{6}\right) + 1$$
 при $x = \frac{4\pi}{3}$;

б)
$$y = -\sin\left(x + \frac{\pi}{4}\right)$$
 при $x = -\frac{\pi}{2}$;

в)
$$y = 2 \sin \left(x - \frac{\pi}{6}\right) + 1$$
 при $x = \frac{7\pi}{6}$;

r)
$$y = -\sin\left(x + \frac{\pi}{4}\right)$$
при $x = -\frac{15\pi}{4}$.

16.2.
$$y = \frac{1}{\cos x}$$
, если:

a)
$$x = \frac{2\pi}{3}$$

a)
$$x = \frac{2\pi}{3}$$
; 6) $x = \frac{11\pi}{6}$.

16.3.
$$y = 2\cos\left(x - \frac{\pi}{4}\right) - 1$$
, если:

a)
$$x = -\frac{\pi}{2}$$
; 6) $x = \frac{\pi}{4}$.

$$6) x = \frac{\pi}{4}.$$

16.4. Не выполняя построения, ответьте на вопрос, принадлежит ли графику функции $y = \sin x$ точка с координатами:

a)
$$\left(-\frac{\pi}{2}; -1\right)$$

6)
$$\left(\frac{\pi}{2}; \frac{1}{2}\right)$$

a)
$$\left(-\frac{\pi}{2}; -1\right);$$
 6) $\left(\frac{\pi}{2}; \frac{1}{2}\right);$ B) $(\pi; 1);$ $\Gamma\left(\frac{3\pi}{2}; -1\right)$?

16.5.	Принадлежит	ли	графику	функции	y =	-sin	x +	$\left(\frac{\pi}{6}\right)$	+ 2
	точка:						`	,	

a)
$$(0; \frac{3}{2});$$

B)
$$\left(\frac{2\pi}{3}; \frac{3}{2}\right);$$

$$6) \left(\frac{\pi}{6}; -\frac{\sqrt{3}}{2} + 2\right);$$

16.6. Принадлежит ли графику функции $y = \cos x$ точка с координатами:

a)
$$\left(\frac{\pi}{3}; \frac{1}{2}\right);$$

B)
$$\left(\frac{2\pi}{3}; -\frac{1}{2}\right);$$

6)
$$\left(\frac{\pi}{6}; \frac{1}{2}\right)$$

$$\Gamma) \left(\frac{5\pi}{6}; -\frac{\sqrt{3}}{2}\right)?$$

16.7. Принадлежит ли графику функции $y = 2\cos\left(x - \frac{\pi}{6}\right) + 1$ точка с координатами:

a)
$$(0; \sqrt{3} + 1);$$

B)
$$\left(\frac{\pi}{2}; 2\right)$$
;

6)
$$\left(\frac{\pi}{6}; 1\right)$$

r)
$$\left(\frac{\pi}{6}; 3\right)$$
?

16.8. Найдите наименьшее и наибольшее значения функции $y = \sin x$:

a) на отрезке
$$\left\lceil \frac{\pi}{4}; \frac{2\pi}{3} \right\rceil$$
;

а) на отрезке
$$\left[\frac{\pi}{4}; \frac{2\pi}{3}\right];$$
 в) на интервале $\left(-\frac{3\pi}{2}; \frac{3\pi}{4}\right);$

б) на луче
$$\left[\frac{\pi}{4}; +\infty\right]$$
;

г) на полуинтервале
$$\left(-\pi; \frac{\pi}{3}\right]$$
.

16.9. Найдите наименьшее и наибольшее значения функции $y = \cos x$:

a) на отрезке
$$\left[\frac{\pi}{6}; \frac{2\pi}{3}\right];$$

в) на луче
$$\left[-\frac{\pi}{4}; +\infty\right];$$

б) на интервале
$$\left(-\pi; \frac{\pi}{4}\right)$$

б) на интервале
$$\left(-\pi; \frac{\pi}{4}\right)$$
; г) на полуинтервале $\left[-\frac{\pi}{3}; \frac{3\pi}{2}\right]$.

 $\circ 16.10$. Исследуйте функцию y = f(x) на четность:

a)
$$f(x) = x^5 \sin \frac{x}{2}$$
;

$$B) f(x) = \frac{2\sin\frac{x}{2}}{x^3};$$

б)
$$f(x) = x^3 \sin x^2;$$

$$\Gamma) f(x) = x^3 - \sin x.$$

Исследуйте функцию на четность:

016.11. a)
$$f(x) = x + \sin x$$
;

B)
$$f(x) = \frac{x^2 \sin x}{x^2 - 9}$$
;

$$f(x) = \frac{\sin^2 x}{x^2 - 1};$$

$$\Gamma) f(x) = \sin^2 x - x^4.$$

$$016.12. a) f(x) = \sin x \cos x;$$

B)
$$f(x) = \frac{\cos x^3}{x(25-x^2)}$$
;

6)
$$f(x) = \frac{\cos x^3}{4 - x^2}$$
;

r)
$$f(x) = (4 + \cos x)(\sin^6 x - 1)$$
.

016.13. a)
$$f(x) = x^2 \cos x$$
;

$$\mathbf{B}) \ f(x) = \frac{\cos 5x + 1}{|x|};$$

б)
$$f(x) = x^5 \cos 3x;$$

$$\Gamma) f(x) = x^{11} \cos x + \sin x.$$

О16.14. Найдите область значений заданной функции на заданном промежутке:

a)
$$y = \sin x$$
, $x \in \left[\frac{\pi}{3}; \frac{7\pi}{3}\right]$;

B)
$$y = \sin x, x \in (-1; 6);$$

б)
$$y = \cos x, x \in (1; +\infty);$$

r)
$$y = \cos x$$
, $x \in [1,2; 7,5]$.

Вычислите, преобразовав заданное выражение ($\sin t$ или $\cos t$) к виду $\sin t_0$ или $\cos t_0$ так, чтобы выполнялось соотношение $0 < t_0 < 2\pi$ или $0^{\circ} < t_0 < 360^{\circ}$:

16.15. a) $\sin 50.5\pi$;

в) $\sin 25.25\pi$;

б) $\cos 51.75\pi$;

r) $\sin 30.5\pi$.

16.16. a) sin 390°;

в) $\sin 540^{\circ}$;

б) cos 750°;

r) cos 930°.

16.17. Докажите тождество:

- a) $\sin^2(x-8\pi)=1-\cos^2(16\pi-x)$;
- 6) $\cos^2(4\pi + x) = 1 \sin^2(22\pi x)$.

016.18. Найдите основной период функции:

a) $y = \sin 2x$;

 $\mathbf{B}) \ y = \sin \frac{x}{2};$

 $6) y = \cos 3x;$

 $\mathbf{r}) \ y = \cos \frac{3x}{4}.$

 \circ 16.19. Преобразуйте заданное выражение (sin t или $\cos t$) к виду $\sin t_0$ или $\cos t_0$ так, чтобы выполнялось соотношение $0 < t_0 < 2\pi$:

- a) sin 8;
- б) $\cos(-10)$; в) $\sin(-25)$;
- r) cos 35.

16.20. Вычислите:

a)
$$\cos(t + 4\pi)$$
, если $\cos(2\pi - t) = -\frac{3}{5}$;

б)
$$\sin (32\pi - t)$$
, если $\sin (2\pi - t) = \frac{5}{13}$.

16.21. Решите уравнение:

a)
$$\sin(t + 2\pi) + \sin(t - 4\pi) = 1$$
;

6)
$$3\cos(2\pi+t)+\cos(t-2\pi)+2=0$$
;

B)
$$\sin(t+4\pi) + \sin(t-6\pi) = \sqrt{3}$$
;

r)
$$\cos(t + 2\pi) + \cos(t - 8\pi) = \sqrt{2}$$
.

Найдите область значений функции:

$$016.22.$$
 a) $y = 2 \sin x$;

B)
$$y = -3\cos x + 2$$
;

6)
$$y = (3 \cos x - 2)^4$$
;

$$\vec{y} = (1 + 4 \sin x)^2$$
.

016.23. a)
$$y = \frac{1}{\sin x + 2}$$
;

$$\mathbf{B}) \ y = \frac{2}{\sin x - 3};$$

$$6) y = \frac{8}{3\cos x - 5};$$

$$\mathbf{r)} \ y = \frac{15}{4 + \cos x}.$$

$$016.24.$$
 a) $y = \sin^2 x - 6 \sin x + 8;$

$$\mathbf{B}) \ y = \cos^2 x + \cos x + 2;$$

б)
$$y = \sqrt{2 - \cos x}$$
;

$$r) \quad y = \sqrt{8\sin x - 4}.$$

016.25. Найдите все целочисленные значения функции:

a)
$$y = 5 + 4 \cos x$$
;

$$\mathbf{B}) \ y = 3 - 2\sin x;$$

6)
$$y = \sqrt{2 - 7 \cos x}$$
;

$$\mathbf{r}) \ y = \sqrt{11 + 2\sin x}.$$

 \circ 16.26. Найдите все значения x, при которых заданному промежутку принадлежит только одно целое число; укажите это число:

a)
$$(5 - 2 \sin x; 5 + 2 \sin x);$$

6)
$$[4 + 2\cos x; 4 - 2\cos x]$$
.

Постройте график функции:

16.27. a)
$$y = \sin\left(x - \frac{\pi}{3}\right)$$
;

$$\mathbf{B}) \ y = \sin \left(x - \pi\right);$$

$$6) y = \sin\left(x + \frac{\pi}{4}\right);$$

$$\mathbf{r}) \ y = \sin\left(x + \frac{\pi}{3}\right).$$

16.28. a)
$$y = \sin x - 2$$
;

$$\mathbf{B}) \ y = \sin x + 2;$$

$$6) \ u = \sin x + 1;$$

$$\mathbf{r}) \ y = \sin x - 3.$$

Постройте график функции:

016.29. a)
$$y = \sin\left(x - \frac{\pi}{4}\right) + 1$$
;

$$6) y = \sin\left(x + \frac{\pi}{3}\right) - 1.$$

016.30. a)
$$y = -\sin\left(x + \frac{\pi}{6}\right)$$
;

б)
$$y = -\sin x + 3$$
.

016.31. a)
$$y = \sin\left(x + \frac{2\pi}{3}\right) + \frac{1}{2}$$
;

B)
$$y = \sin(x - \pi) - 1$$
;

6)
$$y = -\sin\left(x - \frac{\pi}{6}\right) + 2;$$

$$\mathbf{r)} \ y = -\sin\left(x + \frac{\pi}{2}\right) - 2.$$

016.32. Найдите наименьшее и наибольшее значения функции $y = \sin\left(x - \frac{\pi}{4}\right) + 0,5$ на промежутке:

a)
$$\left[\frac{\pi}{4}; \frac{3\pi}{4}\right];$$

$$6) \left(\frac{3\pi}{4}; \frac{9\pi}{4}\right);$$

$$\Gamma$$
) $\left[\frac{\pi}{4}; +\infty\right]$.

Постройте график функции:

16.33. a)
$$y = \cos\left(x + \frac{\pi}{6}\right)$$
;

$$\mathbf{B}) \ y = \cos\left(x - \frac{\pi}{3}\right);$$

$$6) y = \cos x - 2;$$

r)
$$y = \cos x + 1.5$$
.

016.34. a)
$$y = \cos\left(x + \frac{\pi}{2}\right) + 1;$$
 B) $y = \cos\left(x - \frac{\pi}{2}\right) + \frac{1}{2};$

B)
$$y = \cos\left(x - \frac{\pi}{2}\right) + \frac{1}{2};$$

6)
$$y = \cos\left(x - \frac{\pi}{3}\right) - 2;$$
 r) $y = \cos\left(x + \frac{\pi}{6}\right) - 3.$

$$\mathbf{r}) \ y = \cos\left(x + \frac{\pi}{6}\right) - 3.$$

•16.35. Найдите наименьшее и наибольшее значения функции $y = -\cos\left(x + \frac{\pi}{3}\right) + 1,5$ на промежутке:

a)
$$\left[\frac{\pi}{6}; \pi\right]$$
;

$$\mathbf{r)} \left[0; \, \frac{\pi}{2}\right)$$

16.36. Известно, что $f(x) = 3 \sin x$. Найдите:

a)
$$f(-x)$$
;

$$\mathbf{B}) \ 2f(x) + 1;$$

б)
$$2f(x)$$
;

a)
$$f(-x)$$
; B) $2f(x) + 1$; 6) $2f(x)$; r) $f(-x) + f(x)$.

16.37. Известно, что $f(x) = -\frac{1}{2}\cos x$. Найдите:

- a) f(-x);
- B) $f(x + 2\pi)$;
- 6) 2f(x); Γ) f(-x) f(x).

16.38. Известно, что $f(x) = \cos \frac{x}{3}$. Найдите:

- a) f(-x);
- в) f(-3x):
- \mathfrak{G}) 3f(x);
- $\Gamma) f(-x) f(x).$

16.39. Известно, что $f(x) = \sin 2x$. Найдите:

- a) f(-x);
- B) $f\left(-\frac{x}{2}\right)$;
- б) 2f(x);
- $\Gamma) f(-x) + f(x).$

0.16.40. a) Дано: $f(x) = 2x^2 - x + 1$. Докажите, что $f(\sin x) = 1$ $=3-2\cos^2x-\sin x.$

б) Дано: $f(x) = 3x^2 + 2x - 7$. Докажите, что $f(\sin x) = 2 \sin x - 1$ $-3\cos^2 x - 4$

016.41. а) Дано: $f(x) = 2x^2 - 3x - 2$. Докажите, что $-f(\cos x) =$ $= 2\sin^2 x + 3\cos x.$

б) Дано: $f(x) = 5x^2 + x + 4$. Докажите, что $f(\cos x) =$ $= 9 + \cos x - 5\sin^2 x.$

16.42. Исследуйте функцию $y = \sin x$ на монотонность на заданном промежутке:

- a) $\left[\frac{5\pi}{2}; \frac{7\pi}{2}\right]$;
- $\mathbf{B}) \left(\frac{11\pi}{3}; \frac{25\pi}{6} \right);$
- 6) $\left[-\frac{7\pi}{6}; \frac{\pi}{6}\right]$;
- Γ) $\left(\frac{\pi}{3}; \frac{7\pi}{3}\right)$.

16.43. Исследуйте функцию $y = \cos x$ на монотонность на заданном промежутке:

- a) $[3\pi; 4\pi];$
- B) $\left(\frac{7\pi}{3}; \frac{17\pi}{6}\right)$;
- 6) $\left[-\frac{\pi}{3}; \frac{\pi}{3}\right];$
- Γ) $\left(\frac{\pi}{6}; \frac{11\pi}{6}\right)$.

 \circ 16.44. На каких промежутках функция $y = \sin\left(x - \frac{\pi}{3}\right)$:

- а) возрастает;
- б) убывает?

016.45. На каких промежутках функция $y = \cos\left(x + \frac{\pi}{6}\right)$:

а) возрастает;

- б) убывает?
- **•16.46.** Докажите, что функция $y = \sin x$:
 - а) возрастает на отрезке [12; 13];
 - б) убывает на интервале (8; 10);
 - в) достигает на интервале (7; 12) наименьшего и наибольшего значений;
 - г) не достигает на интервале (-1; 1) ни наименьшего, ни наибольшего значений.
- **•16.47**. Докажите, что функция $y = \cos x$:
 - а) возрастает на отрезке [-3; -0,5];
 - б) убывает на интервале (7; 9);
 - в) достигает на интервале (3; 7) наименьшего и наибольшего значений;
 - г) не достигает на интервале (-3; -0,5) ни наименьшего, ни наибольшего значений.

Решите графически уравнение:

 $016.48. a) \sin x = x + \pi;$

 $\mathbf{B)}\,\sin\,x\,+\,x\,=\,\mathbf{0};$

6) $\sin x = 2x$;

 $\mathbf{r)}\sin x=2x-2\pi.$

016.49. a) $\sin x = \frac{2}{\pi}x$;

- B) $\sin x = -\frac{4}{\pi}x + 3;$
- 6) $\sin x + \left(x + \frac{\pi}{2}\right)^2 + 1 = 0;$
- $\Gamma) \sin x = x^2 + 1.$
- **016.50.** a) $\sin\left(x \frac{\pi}{3}\right) = \pi 3x;$
 - $6) \sin x \sqrt{x \pi} = 0;$
 - B) $\sin\left(x + \frac{\pi}{6}\right) = \left(x \frac{\pi}{3}\right)^2 + 1;$
 - Γ) $-\sin x = \sqrt{x}$.
- **016.51.** a) $\cos x = x + \frac{\pi}{2}$;
- $\mathbf{B)}\,\cos\,x=2x+1;$
- $6) -\cos x = 3x 1;$
- $\Gamma)\cos x=-x+\frac{\pi}{2}.$
- **016.52.** a) $\cos x = \sqrt{x} + 1$;
- B) $\cos x = -(x \pi)^2 1$;
- 6) $\cos x = \sqrt{x \frac{\pi}{2}};$
- $\mathbf{r)}\,\cos\,x=|x|+1.$

 $_{01}6.53$. Сколько решений имеет система уравнений: a) $\begin{cases} y = \sin x, \\ y = x^2 + 4x - 1; \end{cases}$ $\begin{cases} y = \sin x, \\ u = -3x^2 - 2; \end{cases}$

a)
$$\begin{cases} y = \sin x, \\ y = x^2 + 4x - 1; \end{cases}$$

$$\begin{cases} y = \sin x, \\ y = -3x^2 - 2; \end{cases}$$

$$\begin{cases} y = \sin x, \\ y = \frac{1}{x}; \end{cases}$$

$$\Gamma) \begin{cases} y = \sin x, \\ |x| - y = 0? \end{cases}$$

016.54. Сколько решений имеет система уравнений:

a)
$$\begin{cases} y = \cos x, \\ y = -x^2 + 2x - 3; \end{cases}$$

$$\mathbf{B} \begin{cases} y = \cos x, \\ y = x^2 - 3; \end{cases}$$

$$\begin{cases} y = \cos x, \\ y = \frac{2}{r}; \end{cases}$$

$$\mathbf{r}) \begin{cases} y = \cos x, \\ |x| - y = 0? \end{cases}$$

016.55. Решите графически уравнение:

a)
$$\sin x = \cos x$$
;

$$6) \sin x + \cos x = 0.$$

•16.56. Решите уравнение:

a)
$$\sin x = \left| \frac{3x}{2\pi} - \frac{3}{4} \right|;$$

6)
$$\cos x + \left| \frac{3x}{5\pi} - \frac{3}{10} \right| = 0, \ x \ge 0.$$

Решите неравенство:

016.57. a)
$$\cos x \ge 1 + |x|$$
;

6)
$$\sin x \leqslant -\left(x-\frac{3\pi}{2}\right)^2-1$$
.

•16.58. a)
$$\sin x > \frac{3x}{5\pi}$$
;

$$6) \cos x \leqslant \frac{9x}{2\pi} - 1.$$

Постройте график функции:

016.59. a)
$$y = |\sin x|$$
;

$$\mathbf{B}) \ y = |\cos x|;$$

$$\text{ f) } y = \left|\cos x - \frac{1}{2}\right|;$$

$$\mathbf{r}) y = \left| \sin x + \frac{1}{2} \right|.$$

•16.60. a)
$$y = \sin |x|$$
;

$$\mathbf{B}) \ y = \cos |x|;$$

$$\text{ f) } y = \sin \left| x - \frac{\pi}{3} \right|;$$

$$\mathbf{r}) \ y = \cos \left| x + \frac{2\pi}{3} \right|.$$

О16.61. Постройте и прочитайте график функции

a)
$$y = \begin{cases} x^2, \text{ если } x < 0, \\ \sin x, \text{ если } x \ge 0; \end{cases}$$

б)
$$y = \begin{cases} \sin x, \text{ если } x < 0, \\ x^2, \text{ если } x \ge 0. \end{cases}$$

016.62. Дана функция
$$y = f(x)$$
, где $f(x) = \begin{cases} \sin x, & \text{если } -\pi \leq x \leq 0 \\ \sqrt{x}, & \text{если } x > 0. \end{cases}$

а) Вычислите:
$$f\left(-\frac{\pi}{2}\right)$$
, $f(0)$, $f(1)$, $f(\pi^2)$;

- б) постройте график функции y = f(x);
- в) прочитайте график функции y = f(x).

$$o$$
16.63. Дана функция $y=f(x)$, где $f(x)=egin{cases} rac{1}{x}, & ext{если } x<0, \ \sin x, & ext{если } 0\leqslant x\leqslant\pi. \end{cases}$

- а) Вычислите: f(-2), f(0), f(1);
- б) постройте график функции y = f(x);
- в) прочитайте график функции y = f(x).

Постройте и прочитайте график функции:

016.64. а)
$$y = \begin{cases} x + 2, \text{ если } x < 0, \\ \cos x, \text{ если } x \ge 0; \end{cases}$$
 б) $y = \begin{cases} -\frac{2}{x}, \text{ если } x < 0, \\ -\cos x, \text{ если } x \ge 0. \end{cases}$

O16.65. a)
$$y= \begin{cases} \cos x, \ \text{если} \ x \leqslant \frac{\pi}{2}, \\ \sin x, \ \text{если} \ x > \frac{\pi}{2}; \end{cases}$$
 б) $y= \begin{cases} -\cos x, \ \text{если} \ x < 0, \\ 2x^2-1, \ \text{если} \ x \geqslant 0. \end{cases}$

●16.66. Постройте график функции:

a)
$$y = \frac{|\sin x|}{\sin x}$$
;
b) $y = \frac{2\cos x}{|\cos x|}$;
6) $y = \operatorname{tg} x \cdot |\cos x|$;
r) $y = \operatorname{ctg} x \cdot |\sin x|$.

016.67. Постройте и прочитайте график функции:

a)
$$y = \begin{cases} 2x - \pi, \text{ если } x < \frac{\pi}{2}, \\ \cos x, \text{ если } \frac{\pi}{2} \le x \le \frac{3\pi}{2}, \\ \frac{3\pi}{2} - x, \text{ если } x > \frac{3\pi}{2}; \end{cases}$$

$$6) y = \begin{cases} \sin x, \text{ если } x \le 0, \\ x^2, \text{ если } 0 < x < \frac{\pi}{2}, \\ \cos x, \text{ если } x \ge \frac{\pi}{2}. \end{cases}$$

$$_{\bigcirc 16.68}.$$
 Дана функция $y=f(x), \ \mathrm{rge}\ f(x)= egin{cases} 2x+2\pi, \ \mathrm{ecл}\ x\leqslant -\pi, \\ \sin x, \ \mathrm{ecл}\ u-\pi < x\leqslant 0, \\ -2x, \ \mathrm{ecл}\ u > 0. \end{cases}$

а) Вычислите:
$$f(-\pi - 2)$$
, $f\left(-\frac{\pi}{6}\right)$, $f(2)$;

- б) постройте график функции y = f(x);
- в) прочитайте график функции y = f(x).

$$_{\text{O}16.69}.$$
 Дана функция $y=f(x)$, где $f(x)=egin{cases} -x^2,\ \text{если } x<0,\ \sin x,\ \text{если } 0\leqslant x\leqslant\pi,\ -(x-\pi)^2,\ \text{если } x>\pi. \end{cases}$

- а) Вычислите: f(-3), $f(\frac{\pi}{2})$, $f(2\pi 3)$;
- б) постройте график функции y = f(x);
- в) прочитайте график функции y = f(x).

016.70. Дана функция y = f(x), где

$$f(x) = egin{cases} \sin\left(x + rac{\pi}{2}
ight), \ ext{если} - rac{3\pi}{2} \leqslant x \leqslant 0, \ x + 1, \ ext{если} \ 0 < x < 2; \ -\sqrt{x - 2} + 3, \ ext{если} \ x \geqslant 2. \end{cases}$$

- а) Вычислите: f(0), f(6), $f(-\pi 2)$;
- б) постройте график функции y = f(x);
- в) прочитайте график функции y = f(x).

Постройте график функции:

•16.71. a)
$$y = \frac{1}{\sin x}$$
;

$$6) y = \frac{1}{\cos x}.$$

•16.72. a)
$$y = \sin(\sin x)$$
;

$$\mathbf{B}) \ y = \cos{(\cos{x})};$$

б)
$$y = \sin(\cos x)$$
;

r)
$$y = \cos(\sin x)$$
.

§ 17. Построение графика функции y = mf(x)

Постройте график функции:

17.1. a)
$$y = 3\sqrt{x}$$
;

B)
$$y = \frac{1}{3}x^4$$
;

б)
$$y = -2|x|$$
;

$$\mathbf{r}) y = -\frac{2}{r^2}.$$

17.2. a)
$$y = -2(x-1)^3$$
;

B)
$$y = -2\sqrt{x-3}$$
;

6)
$$y = 3|x + 2|$$
:

$$r) u = 0.5x^{-3}$$
.

17.3. a)
$$y = 2 \sin x$$
;

$$\mathbf{B}) \ y = -\sin x;$$

6. a)
$$y = 2 \sin x$$
,
6) $y = 3 \cos x$;

r)
$$y = -\cos x$$
.

17.4. a)
$$y = -2 \sin x$$
;

B)
$$y = 1.5 \sin x$$
;

$$6) y = -3 \cos x;$$

r)
$$y = -1.5 \cos x$$
.

17.5. Найдите наибольшее и наименьшее значения функции $y = 2 \cos x$:

а) на отрезке
$$\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$
;

в) на полуинтервале
$$\left[\frac{\pi}{3}; \frac{3\pi}{2}\right]$$

б) на интервале
$$\left(0;rac{3\pi}{2}
ight)$$

б) на интервале
$$\left(0; \frac{3\pi}{2}\right);$$
 г) на отрезке $\left[-\frac{3\pi}{2}; -\frac{\pi}{4}\right]$.

17.6. Найдите наибольшее и наименьшее значения функции $y = -3 \sin x$:

а) на луче $[0; +\infty);$

б) на открытом луче
$$\left(-\infty; \frac{\pi}{2}\right)$$
;

в) на луче
$$\left[\frac{\pi}{4}; +\infty\right]$$
;

г) на открытом луче ($-\infty$; 0).

017.7. Постройте график функции:

a)
$$y = 2 \sin x - 1;$$

B)
$$y = -\frac{3}{2} \sin x + 3;$$

6)
$$y = -\frac{1}{2} \cos x + 2;$$

$$\mathbf{r}) \ y = 3 \cos x - 2.$$

Постройте график функции:

$$_{\text{O17.8.}}$$
 a) $y = 2 \sin \left(x - \frac{\pi}{3} \right)$;

$$\mathbf{B}) \ y = -\sin\left(x + \frac{2\pi}{3}\right);$$

$$6) y = -3 \cos \left(x + \frac{\pi}{6} \right)$$

6)
$$y = -3\cos\left(x + \frac{\pi}{6}\right)$$
; r) $y = 1.5\cos\left(x - \frac{2\pi}{3}\right)$.

017.9. a)
$$y = 2 \sin \left(x + \frac{\pi}{3}\right) + 1;$$

6)
$$y = -3\cos\left(x - \frac{5\pi}{6}\right) - 2;$$

B)
$$y = -1.5 \sin \left(x - \frac{2\pi}{3}\right) + 2;$$

r)
$$y = 2.5 \cos \left(x + \frac{2\pi}{3}\right) - 1.5$$
.

•17.10. a)
$$y = 2|\cos x|$$
;

$$\mathbf{B}) \ y = 3 \sin |x|;$$

$$6) y = -3 \cos \left| x + \frac{\pi}{6} \right|;$$

6)
$$y = -3\cos\left|x + \frac{\pi}{6}\right|$$
; r) $y = -2\left|\sin\left(x - \frac{\pi}{3}\right)\right|$.

- 017.11. Подберите коэффициенты a и b так, чтобы на данном рисунке был изображен график функции $y = a \sin x + b$ или $y = a \cos x + b$:
 - а) рис. 48;
- б) рис. 49;
- в) рис. 50;
- г) рис. 51.

Puc. 48

Puc. 49

Puc. 50

Puc. 51

017.12. Подберите коэффициенты a и b так, чтобы на данном рисунке был изображен график функции $y = a \sin(x + b)$ или $y = a \cos(x + b)$:

а) рис. 52;

б) рис. 53;

в) рис. 54;

г) рис. 55.

Puc. 52

Puc. 53

Puc. 54

Puc. 55

О17.13. Составьте возможную аналитическую запись функции по ее графику, изображенному:

а) на рис. 56;

б) на рис. 57.

Puc. 56

Puc. 57

017.14. Постройте и прочитайте график функции:

a)
$$y=egin{cases} 3\sin x,\ \mathrm{ec}$$
ли $x<rac{\pi}{2};\ 3x^3,\ \mathrm{ec}$ ли $x\geqslantrac{\pi}{2};\ \end{cases}$

б)
$$y = \begin{cases} -2\cos x, \text{ если } x < 0; \\ \frac{1}{2}x^4, \text{ если } x \geqslant 0. \end{cases}$$

■17.15. Решите уравнение:

a)
$$2 \sin x - 1 = \left(x - \frac{\pi}{2}\right)^2 - \frac{\pi^2}{9}$$
;

6)
$$2\cos x = \frac{9x^2}{\pi^2}$$
.

■17.16. Решите неравенство:

a)
$$2\cos x < 2 + x^4$$
;

6)
$$-2 \sin x > \frac{9}{\pi^2} \left(x + \frac{\pi}{2}\right)^2$$
.

Постройте график функции:

•17.17. a)
$$y = \frac{3\sin^3 x}{1-\cos^2 x}$$
;

$$6) \ y = \frac{\cos^3 x}{2\sin^2 x - 2}.$$

•17.18. a)
$$y = 3 \sin x + |\sin x|$$
;

$$6) y = \cos x - 3|\cos x|.$$

•17.19. a)
$$y = \frac{1}{\sin x} + \frac{1}{|\sin x|}$$
;

$$6) y = \frac{2}{\cos x} + \frac{1}{|\cos x|}.$$

•17.20. a)
$$y = \frac{|\sin x|}{\sin x}(x - \pi);$$

$$6) y = \frac{\cos x}{|\cos x|}(x + \pi).$$

•17.21. a)
$$y = \sin x + \sin |x| + |\sin x|$$
;
6) $y = \cos x + \cos |x| - |\cos x|$.

•17.22. a)
$$y = \cos x + \cos \frac{x - |x|}{2} + |\cos x|$$
;

6)
$$y = \sin x - \sin \frac{x + |x|}{2} + |\sin x|$$
.

§ 18. Построение графика функции y = f(kx)

Постройте график функции:

18.1. a)
$$y = \sqrt{2x}$$
;

$$6) y = \sqrt{\frac{x}{2}}$$

6)
$$y = \sqrt{\frac{x}{2}}$$
; B) $y = (2x)^4$; r) $y = \left| \frac{x}{3} \right|$.

$$\mathbf{r}) \ y = \left| \frac{x}{3} \right|.$$

18.2. a)
$$y = \sin \frac{x}{3}$$
;

$$\mathbf{B}) \ y = \cos \frac{x}{2};$$

$$6) y = \cos 2x;$$

r)
$$y = \sin 3x$$
.

Постройте график функции:

018.3. a)
$$y = 3 \sin \frac{x}{2}$$
;

B) $y = -3 \sin 2x$;

6)
$$y = 2.5 \cos 2x$$
;

 $\mathbf{r}) \ y = 2 \cos \frac{x}{2}.$

018.4. a)
$$y = 3 \sin(-x)$$
;

B) $y = 2 \sin(-2x)$; r) $y = -3 \cos(-x)$.

018.4. a)
$$y = 3 \sin(-x)$$
;
6) $y = -2 \cos(-3x)$;

18.5. Найдите наименьшее и наибольшее значения функции: $y = \sin 2x$:

a) на отрезке
$$\left[-\frac{\pi}{2}; 0\right];$$

в) на отрезке $\left[-\frac{\pi}{4}; \frac{\pi}{4}\right]$;

б) на интервале
$$\left(-\frac{\pi}{4}; \frac{\pi}{2}\right);$$
 г) на полуинтервале (0; π]

18.6. Найдите наименьшее и наибольшее значения функции:

$$y = \cos \frac{x}{3}$$
:

а) на луче $[0; +\infty)$;

б) на открытом луче ($-\infty$; π);

в) на луче
$$\left(-\infty; \frac{\pi}{2}\right]$$
;

г) на открытом луче $\left(\frac{\pi}{3}; +\infty\right)$

018.7. Постройте график функции:

a)
$$y = \sin 2x - 1$$
;

B) $u = \cos 2x + 3$:

6)
$$y = \cos \frac{x}{2} + 1$$
;

 $r) y = \sin \frac{x}{3} - 2.$

Постройте и прочитайте график функции:

018.8. а)
$$y = \begin{cases} \cos 2x, \text{ если } x \leq \pi; \\ -\frac{1}{2}, \text{ если } x > \pi; \end{cases}$$

б)
$$y = \begin{cases} -\sin 3x, \text{ если } x < 0; \\ \sqrt{x}, \text{ если } x \ge 0. \end{cases}$$

018.9. a)
$$y = \begin{cases} -2\sin x, \text{ если } x < 0; \\ \sqrt{2x}, \text{ если } x \ge 0; \end{cases}$$

б)
$$y = \begin{cases} \sqrt{-x}, & \text{если } x \leq 0; \\ 3 & \text{соs } x - 3, & \text{если } x > 0. \end{cases}$$

018.10. Составьте возможную аналитическую запись функции по ее графику, изображенному:

а) на рис. 58;

в) рис. 60;

б) на рис. 59;

г) рис. 61.

Puc. 58

Puc. 59

Puc. 60

Puc. 61

018.11. Исследуйте функці	ю y =	$2 \sin$	3х н	а монотонност	гь на	за-
данном промежутк	e:					

a)
$$\left[0; \frac{\pi}{2}\right]$$

a)
$$\left[0; \frac{\pi}{2}\right]$$
; 6) (-1; 0); B) $\left(\frac{2\pi}{3}; \frac{5\pi}{3}\right)$; r) (3; 4),

 \circ 18.12. Исследуйте функцию $y=-2\cosrac{x}{2}$ на монотонность на заданном промежутке:

a)
$$\left[0; \frac{5\pi}{2}\right];$$

a)
$$\left[0; \frac{5\pi}{2}\right];$$
 6) $(-3; 2);$ B) $\left(-\frac{2\pi}{3}; \frac{5\pi}{3}\right);$

г) (3; 9),

018.13. На каких промежутках функция $y = -0.5 \sin \frac{2x}{3}$:

а) возрастает;

б) убывает?

018.14. На каких промежутках функция $y = 1.5 \cos \frac{3x}{2}$:

а) возрастает;

б) убывает?

Постройте график функции:

$$018.15. a) y = \sin \pi x;$$

$$B) y = -2 \sin \frac{2\pi x}{3};$$

$$\text{ б) } y = -2\cos\frac{\pi x}{2};$$

$$r) y = 3 \cos \frac{3\pi x}{4}.$$

018.16. a)
$$y = \frac{1}{2} \cos 3 \left(x - \frac{\pi}{3} \right)$$
;

6)
$$y = -1.5 \sin \frac{2}{3} \left(x + \frac{\pi}{2} \right)$$
.

•18.17. a)
$$y = \sin(x + |x|)$$
;

$$\mathbf{B}) \ y = \cos\left(x + |x|\right);$$

$$\text{6) } y = \cos \frac{x - 2|x|}{2};$$

$$\mathbf{r}) \ y = \sin \frac{x+3|x|}{2}.$$

●18.18. Решите уравнение:

a)
$$\sin \pi x = 2x - 4$$
;

$$6) \cos \frac{\pi x}{3} = \sqrt{1.5x}.$$

§ 19. График гармонического колебания

019.1. Постройте график функции:

a)
$$y = 3 \sin \left(x + \frac{\pi}{2}\right)$$
;

$$\text{6) } y = \cos \frac{1}{2} \left(x + \frac{\pi}{3} \right).$$

Постройте график функции:

$$_{\text{O}}$$
19.2. a) $y = -2\cos 2\left(x + \frac{\pi}{3}\right)$;

$$\text{ 6) } y = -2\sin 3\left(x + \frac{\pi}{2}\right).$$

019.3. a)
$$y = 2 \sin \left(3x - \frac{3\pi}{4}\right)$$
;

$$6) y = -3 \cos \left(2x + \frac{\pi}{3}\right).$$

019.4. a)
$$y = \frac{1}{2} \sin \left(\frac{x}{2} + \frac{\pi}{6} \right)$$
;

$$6) y = -\frac{3}{2} \cos \left(\frac{x}{2} - \frac{\pi}{3} \right).$$

•19.5. Подберите коэффициенты a, b и c так, чтобы на данном рисунке был изображен график функции $y = a \sin(bx + c)$:

а) рис. 62;
б) рис. 63.

Puc. 62

Puc. 63

- **•19.6.** Подберите коэффициенты a, b и c так, чтобы на данном рисунке был изображен график функции $y = a \cos{(bx + c)}$:
 - а) рис. 64;

б) рис. 65.

Puc. 64

Puc. 65

- $_{O1}9.7$. На каких промежутках функция $y=-1.5\sin\left(\frac{x}{2}-\frac{\pi}{4}\right)$: а) возрастает; б) убывает?
- O19.8. На каких промежутках функция $y = 3\cos\left(2x + \frac{2\pi}{3}\right)$: а) возрастает; б) убывает?
- 019.9. Чему равен основной период функции:

a)
$$y = -1.5 \sin\left(\frac{x}{2} - \frac{\pi}{4}\right)$$
; 6) $y = 3 \cos\left(2x + \frac{2\pi}{3}\right)$?

- $_{ extstyle 0}$ 19.10. Исследуйте функцию $y=-1.5\sin\left(rac{x}{2}-rac{\pi}{4}
 ight)$ на монотонность на заданном промежутке:
 - a) $[0; 2\pi];$
- 6) (2; 4); B) $\left[-\frac{4\pi}{3}; 0\right]$; r) (-1; 2).
- \circ 19.11. Исследуйте функцию $y=3\cos\left(2x+rac{2\pi}{3}
 ight)$ на монотонность на заданном промежутке:
- a) $\left[0; \frac{2\pi}{3}\right]$; 6) (1; 2); B) $\left[-\frac{7\pi}{12}; 0\right]$; r) (-1; 1).
- •19.12. При каких значениях параметра a функция $y=2\sin\left(\frac{x}{2}+\frac{\pi}{6}\right)$:
 - а) возрастает на $\left(a-\frac{2\pi}{3}; a+\frac{2\pi}{3}\right)$;
 - б) убывает на $\left[a; a + \frac{\pi}{2}\right]$?
- •19.13. При каких положительных значениях параметра a функция $y = -3\cos\left(3x - \frac{\pi}{2}\right)$:
 - а) возрастает на (a; 2a);
 - б) убывает на $a; a + \frac{\pi}{3}$?

§ 20. Функции y = tg x, y = ctg x, их свойства и графики

- 20.1. Найдите наименьшее и наибольшее значения функции y = tg x на заданном промежутке:
 - а) на интервале $\left(\frac{\pi}{2}; \frac{3\pi}{2}; \frac{3\pi}{2}; \frac{\pi}{2}; \frac{\pi}{2}$
 - б) на полуинтервале $\left(\frac{3\pi}{4}; \pi\right]$;
 - в) на отрезке $\left|-\frac{\pi}{4}; \frac{\pi}{6}\right|$;
 - r) на полуинтервале π ; $\frac{3\pi}{2}$.
- 20.2. Найдите наименьшее и наибольшее значения функции y = ctg x на заданном промежутке:
 - а) на отрезке $\left|\frac{\pi}{4}; \frac{\pi}{2}\right|$;
- в) на интервале ($-\pi$; 0);
- б) на полуинтервале $\left|\frac{\pi}{2}; \pi\right|$; г) на отрезке $\left|\frac{\pi}{6}; \frac{3\pi}{4}\right|$.
- 20.3. Найдите область значений заданной функции:

a)
$$y = \operatorname{tg} x$$
, $x \in \left[0; \frac{\pi}{2}\right]$;

6)
$$y = \text{ctg } x, \ x \in \left[-\frac{5\pi}{6}; \ -\frac{\pi}{3} \right];$$

B)
$$y = \operatorname{tg} x$$
, $x \in \left(\frac{3\pi}{4}; \frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2}; \frac{7\pi}{4}\right)$;

r)
$$y = \operatorname{ctg} x$$
, $x \in \left(\frac{\pi}{2}; \pi\right) \cup \left(\pi; \frac{3\pi}{2}\right)$.

- 20.4. Решите графически уравнение:
 - a) to $x = -\sqrt{3}$:

B) tg x = -1;

б) tg x = 1:

- r) tg x = 0.
- 20.5. Решите графически уравнение:
 - a) ctg x = 1;

 $B) \operatorname{ctg} x = -\frac{\sqrt{3}}{2};$

б) ctg $x = \frac{\sqrt{3}}{2}$;

r) ctg x=0.

Исследуйте функцию y = f(x) на четность, если:

$$_{0}20.6.$$
 a) $f(x) = \text{tg } x - \cos x;$

$$6) f(x) = tg x + x;$$

B)
$$f(x) = \operatorname{ctg}^2 x - x^4$$
;
F) $f(x) = x^3 - \operatorname{ctg} x$.

$$0)/(x) - \log x$$

$$\mathbf{B}) \ f(x) = x^5 \ \mathrm{tg} \ x;$$

$$_{O}20.7.$$
 a) $f(x) = \operatorname{tg} x \sin^2 x;$

6)
$$f(x) = \frac{tg^2 x}{r^2 - 1}$$
;

$$\Gamma) f(x) = x^2 + \sin x + \operatorname{tg} x.$$

$$020.8.$$
 a) $f(x) = \sin x + \cot x$;

B)
$$f(x) = \frac{x^4 \cot x}{x^2 - 4}$$
;

$$6) f(x) = \frac{2 \operatorname{ctg} x}{x^3};$$

$$\Gamma) f(x) = \operatorname{ctg} x - x \cos x.$$

020.9. Дана функция y = f(x), где $f(x) = \lg x$. Докажите, что:

a)
$$f(2x + 2\pi) + f(7\pi - 2x) = 0$$
;

6)
$$f(\pi - x) + f(5\pi + x) = 0$$
.

 $\bigcirc 20.10$. Дана функция y = f(x), где $f(x) = x^2 + 1$. Докажите, что:

a)
$$f(\operatorname{tg} x) = \frac{1}{\cos^2 x}$$
;

$$6) \ f(\operatorname{ctg} x) = \frac{1}{\sin^2 x}.$$

Найдите основной период функции:

$$020.11. a) y = tg 2x;$$

$$\mathbf{B}) \ y = \mathbf{tg} \ 5x;$$

6)
$$y = \operatorname{tg} \frac{x}{3}$$
;

$$\mathbf{r}) \ y = \mathbf{tg} \ \frac{2x}{5}.$$

020.12. a) $y = \operatorname{tg} x + \sin 2x - \operatorname{tg} 3x - \cos 4x;$

6)
$$y = \sin 3x + \cos 5x + \cot x - 2 \cot 2x$$
.

20.13. Известно, что tg $(9\pi - x) = -\frac{3}{4}$. Найдите: tg x, ctg x.

20.14. Известно, что ctg $(7\pi - x) = \frac{5}{7}$. Найдите: tg x, ctg x.

○20.15. Определите знак разности:

a)
$$tg 200^{\circ} - tg 201^{\circ}$$
;

B)
$$tg 2,2 - tg 2,1;$$

r) tg
$$\frac{3\pi}{5}$$
 - tg $\frac{6\pi}{5}$.

Постройте график функции:

20.16. a)
$$y = \operatorname{tg}\left(x + \frac{\pi}{2}\right)$$
;

B)
$$y = \operatorname{tg}\left(x - \frac{\pi}{4}\right)$$
;

$$6) y = tg x + 1;$$

$$\mathbf{r)} \ y = \mathbf{tg} \ x - 2.$$

Постройте график функции:

20.17. a)
$$y = \operatorname{tg}\left(x + \frac{\pi}{6}\right) + 1;$$

B)
$$y = \operatorname{tg}\left(x - \frac{\pi}{2}\right) - 1;$$

6)
$$y = tg\left(x - \frac{2\pi}{3}\right) + \frac{1}{2}$$
; r) $y = tg\left(x + \frac{\pi}{3}\right) - 2$.

$$y = tg\left(x + \frac{\pi}{3}\right) - 2.$$

$$020.18. a) y = -tg x;$$

B)
$$y = -\operatorname{tg}\left(x - \frac{\pi}{2}\right);$$

б)
$$y = -\operatorname{tg} x + 1;$$

r)
$$y = -tg\left(x + \frac{\pi}{3}\right) - 2$$
.

020.19. a)
$$y = \text{ctg}\left(x + \frac{\pi}{2}\right)$$
;

$$\mathbf{B}) \ y = \mathbf{ctg}\left(x - \frac{\pi}{3}\right);$$

б)
$$y = \operatorname{ctg} x + 1$$
;

$$\mathbf{r)} \ y = \mathbf{ctg} \ x - 2.$$

$$020.20.$$
 a) $y = 2 \text{ tg } x$;

$$\mathbf{B}) \ y = \mathbf{tg} \ 2x;$$

6)
$$y = -0.5 \text{ ctg } x$$
;

$$\mathbf{r}) \ y = \mathbf{ctg} \ \frac{x}{2}.$$

020.21. Исследуйте заданную функцию на монотонность:

a)
$$y = 2 \operatorname{tg} \left(x - \frac{\pi}{3} \right) + 1;$$

$$\mathbf{B}) \ y = -\mathbf{t}\mathbf{g}\left(x + \frac{\pi}{4}\right) - 3;$$

$$6) y = \operatorname{ctg}\left(x + \frac{\pi}{3}\right) - 2;$$

r)
$$y = -2 \operatorname{ctg} \left(x - \frac{\pi}{6} \right) + 1.5.$$

Постройте график функции:

020.22. a)
$$y = |\operatorname{tg} x|$$
;

$$\mathbf{B}) \ y = |\operatorname{ctg} x|;$$

б)
$$y = \operatorname{tg} |x|$$
;

$$\Gamma$$
) $y = \operatorname{ctg} |x|$.

020.23. a)
$$y = \operatorname{tg} x + |\operatorname{tg} x|$$
;

$$6) y = |\operatorname{ctg} x| - \operatorname{ctg} x.$$

$$020.24.$$
 a) $y = \operatorname{tg} x |\operatorname{ctg} x|$;

6)
$$y = |\operatorname{tg} x| \operatorname{ctg} x$$
.

020.25. a)
$$y = 2 \operatorname{tg} x \operatorname{ctg} x + |x|$$
;

$$6) y = \operatorname{tg} x \operatorname{ctg} x + \sqrt{x}.$$

$$020.26.$$
 a) $y = \sin^2(tg x) + \cos^2(tg x)$;

6)
$$y = 3\cos^2(\cot x) + 3\sin^2(\cot x)$$
.

•20.27. a)
$$y = -tg(\cos x) \cdot ctg(\cos x)$$
;

6)
$$y = -2 \operatorname{tg} (\sin x) \cdot \operatorname{ctg} (\sin x)$$
.

 $_{\it O20.28}$. Решите неравенство:

a) tg
$$x \leq 1$$
;

B) tg
$$x > -\frac{\sqrt{3}}{3}$$
;

6) ctg
$$x > \sqrt{3}$$
;

$$\Gamma$$
) ctg $x \leq -1$.

_{020.29}. Решите систему неравенств:

a)
$$\begin{cases} \operatorname{tg} x > 0, \\ \sin x > -\frac{1}{2}; \end{cases}$$

$$\mathbf{B} \begin{cases} \operatorname{tg} x < \frac{\sqrt{3}}{3}, \\ \cos x < 0; \end{cases}$$

$$\begin{cases}
\cot x < 1, \\
\cos x > -\frac{\sqrt{3}}{2};
\end{cases}$$

$$\Gamma) \begin{cases} \cot x > -\sqrt{3}, \\ \sin x < \frac{\sqrt{2}}{2}. \end{cases}$$

§ 21. Обратные тригонометрические функции

Вычислите:

21.1. a)
$$\arcsin \frac{\sqrt{3}}{2}$$
;

B) arcsin
$$\frac{\sqrt{2}}{2}$$
;

21.2. a)
$$\arcsin\left(-\frac{\sqrt{3}}{2}\right)$$

6)
$$\arcsin\left(-\frac{1}{2}\right)$$

r)
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right)$$
.

021.3. Найдите область определения функции:

a)
$$y = \arcsin x$$
;

B)
$$y = \arcsin \frac{x}{2}$$
;

б)
$$y = \arcsin(5-2x)$$
;

$$r) y = \arcsin(x^2 - 3).$$

○21.4. Имеет ли смысл выражение:

a)
$$\arcsin\left(-\frac{2}{3}\right)$$
;

B)
$$\arcsin \left(3-\sqrt{20}\right)$$
;

r) arcsin
$$(4-\sqrt{20})$$
?

021.5. Найдите область значений функции:

a)
$$y = 2 \arcsin x$$
;

B)
$$y = \arcsin x + \frac{\pi}{2}$$
;

б)
$$y = -4 \arcsin x$$
;

r)
$$y = \pi - 2 \arcsin x$$
.

О21.6. Исследуйте функцию на четность:

a)
$$y = \frac{\arcsin x}{x^4}$$
;

6)
$$y = \sin^2 x + x \arcsin x$$
;

$$y = \arcsin x^3 + 3\cos 2x;$$

r)
$$y = 2 \text{ tg } x + x^5 - 3 \arcsin 2x$$
.

Постройте график функции:

021.7. a)
$$y = \arcsin x$$
;

в)
$$y = -\arcsin x$$
;

$$6) y = \arcsin(-x);$$

$$\mathbf{r}) \ y = -\arcsin\left(-x\right).$$

021.8. a)
$$y = \arcsin(x-1) + \frac{\pi}{2}$$
;

6)
$$y = -\arcsin(x + 2) - \frac{\pi}{3}$$
.

021.9. a)
$$y = 2 \arcsin x$$
;

$$B) y = -\frac{1}{3} \arcsin x;$$

б)
$$y = \frac{\pi}{2} - \arcsin x$$
;

r)
$$y = -2 \arcsin{(x - 3)}$$
.

021.10. a)
$$y = \arcsin 2x$$
;

B)
$$y = \arcsin \frac{x}{3}$$
;

$$6) y = \arcsin \frac{x}{2} + \frac{\pi}{6};$$

6)
$$y = \arcsin \frac{x}{2} + \frac{\pi}{6}$$
; r) $y = \arcsin 2(x-1) + \frac{\pi}{2}$.

021.11. Постройте и прочитайте график функции:

a)
$$y = \begin{cases} \frac{\pi x}{2}, & \text{если } x < -1; \\ \arcsin x, & \text{если } -1 \leqslant x \leqslant 1; \\ \frac{\pi}{2}, & \text{если } x > 1. \end{cases}$$

б)
$$y = \begin{cases} \arcsin x, \ \text{если} \ -1 \leqslant x \leqslant 0; \\ -\arcsin x, \ \text{если} \ 0 < x \leqslant 1; \end{cases}$$
 $(x-1)^2 - \frac{\pi}{2}, \ \text{если} \ 1 < x \leqslant 3.$

021.12. Постройте график функции:

a)
$$y = 3|\arcsin x| - \arcsin x$$
;

6)
$$y = \arcsin x + |\arcsin x|$$
;

B)
$$y = \left| \arcsin x - \frac{\pi}{3} \right|$$
;

$$\mathbf{r}) \ y = -\arcsin|x-2|.$$

Вычислите:

21.13. a) arccos 0;

B) $\arccos \frac{\sqrt{3}}{2}$;

б) arccos 1;

r) $\arccos \frac{1}{2}$.

21.14. a) $\arccos\left(-\frac{\sqrt{2}}{2}\right)$;

в) arccos (-1);

6) $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$;

r) $\arcsin\left(-\frac{1}{2}\right)$.

21.15. a) $\arccos(-1) + \arccos 0$;

6) $\arccos \frac{1}{2} - \arccos \frac{\sqrt{3}}{2}$;

B) $\arccos\left(-\frac{\sqrt{2}}{2}\right) + \arccos\frac{\sqrt{2}}{2}$;

r) $arccos\left(-\frac{1}{2}\right) - arccos\left(\frac{1}{2}\right)$

021.16. a) $\arcsin\left(-\frac{1}{2}\right) + \arcsin\left(-\frac{1}{2}\right)$;

6) $\arcsin\left(-\frac{\sqrt{2}}{2}\right) - \arcsin\left(-1\right)$;

B) $\arccos\left(-\frac{\sqrt{3}}{2}\right) + \arcsin\left(-\frac{\sqrt{3}}{2}\right)$;

r) $\arcsin \frac{\sqrt{2}}{2} - \arcsin \left(-\frac{\sqrt{3}}{2}\right)$

021.17. a) $\cos\left(2\arccos\frac{1}{2}-3\arccos0-\arccos\left(-\frac{1}{2}\right)\right);$

6) $\frac{1}{3} \left(\arccos \frac{1}{3} + \arccos \left(-\frac{1}{3} \right) \right)$.

 $\bigcirc 21.18. \ a) \sin \left(\arccos \left(-\frac{1}{2} \right) \right);$

в) ctg (arccos 0);

6) $\operatorname{tg}\left(\arccos\frac{\sqrt{3}}{2}\right)$;

r) $\sin \left(\arccos \frac{\sqrt{2}}{2} \right)$.

Вычислите:

021.19. a)
$$\sin \left(2 \arcsin \frac{1}{2} - 3 \arccos \left(-\frac{1}{2} \right) \right);$$

6)
$$\cos\left(\frac{1}{2}\arcsin 1 + \arcsin\left(-\frac{\sqrt{2}}{2}\right)\right);$$

B)
$$\operatorname{tg}\left(\arcsin\frac{\sqrt{3}}{2}+2\arccos\frac{\sqrt{2}}{2}\right)$$
;

r) ctg
$$\left(3 \arccos \left(-1\right) - \arcsin \left(-\frac{1}{2}\right)\right)$$
.

21.20. Докажите тождество:

a)
$$\sin(\arccos x + \arccos(-x)) = 0$$
;

6)
$$\cos(\arcsin x + \arcsin(-x)) = 1$$
.

©21.21. Найдите область определения функции:

a)
$$y = \arccos x$$
;

B)
$$y = \arccos 2x$$
;

б)
$$y = \arccos(x-1)$$
;

$$r) y = \arccos (3 - 2x)$$

21.22. Имеет ли смысл выражение:

a)
$$arccos \sqrt{5}$$
;

B)
$$\arccos \frac{\pi}{5}$$
;

6)
$$\arccos \sqrt{\frac{2}{3}}$$
;

r)
$$\arccos(-\sqrt{3})$$
?

021.23. Найдите область значений функции:

a)
$$y = 2 \arccos x$$
;

B)
$$y = -\frac{1}{2} \arccos x$$
;

6)
$$y = 1.5 \arccos x - \frac{\pi}{2}$$
; r) $y = \pi - 2 \arccos x$.

r)
$$y = \pi - 2 \arccos x$$
.

021.24. Исследуйте на четность функцию: a) $y = \arccos x^2 + \frac{\pi}{9}$; b) $y = \frac{x^4}{\arccos x}$;

a)
$$y = \arccos x^2 + \frac{\pi}{8}$$

B)
$$y = \frac{x}{\arccos x}$$
;

$$\text{ f) } y = \frac{\arccos x^2}{x^3};$$

$$r) y = 2x^3 \arccos x^6.$$

021.25. Постройте график функции:

a)
$$y = \arccos x$$
;

$$\mathbf{B}) \ y = -\arccos x;$$

6)
$$y = \arccos(-x)$$
; $r) y = -\arccos(-x)$.

$$\mathbf{r}) \ y = -\arccos\left(-x\right).$$

Постройте и прочитайте график функции:

$$_{0}21.26.$$
 a) $y = \arccos(x-1) - \frac{\pi}{2}$;

6)
$$y = \arccos(x + 2) + \frac{\pi}{3}$$
.

$$_{0}21.27.$$
 a) $y = -3 \arccos x$;

$$\mathbf{B}) \ y = \frac{1}{2} \ \arccos x;$$

$$6) y = \frac{3\pi}{4} - \arccos x;$$

6)
$$y = \frac{3\pi}{4} - \arccos x$$
; r) $y = \frac{2}{3} \arccos (x + 1.5)$.

$$021.28.$$
 a) $y = \arccos 2x$;

B)
$$y = -\arccos \frac{x}{3}$$
;

$$6) y = \arccos \frac{x}{2} - \frac{5\pi}{6}$$

6)
$$y = \arccos \frac{x}{2} - \frac{5\pi}{6}$$
; r) $y = \arccos 2(x - 1) - \frac{\pi}{2}$.

о21.29. a)
$$y = \begin{cases} \pi, \text{ если } x < -1; \\ \arccos x, \text{ если } -1 \leqslant x \leqslant 1; \\ \sqrt{x-1}, \text{ если } x > 1. \end{cases}$$

б)
$$y = \begin{cases} \arccos x, \ \operatorname{если} -1 \leqslant x \leqslant 0,5; \\ \frac{\pi}{3}, \ \operatorname{если} \ 0,5 < x \leqslant \frac{\pi}{3}; \\ x, \ \operatorname{если} \ \frac{\pi}{3} < x \leqslant 3. \end{cases}$$

●21.30. Постройте график функции:

a)
$$y = \left| \arccos x - \frac{2\pi}{3} \right|$$
; B) $y = -2 \arccos |x|$;

$$\mathbf{B}) \ y = -2 \arccos |x|;$$

$$6) y = \arccos |x|;$$

r)
$$y = \arccos |x - 2|$$
.

Вычислите:

в) arctg
$$\sqrt{3}$$
;

б)
$$arctg(-\sqrt{3});$$

r)
$$\arctan\left(-\frac{1}{\sqrt{3}}\right)$$
.

21.32. a) arcctg
$$\frac{\sqrt{3}}{3}$$
;

B)
$$\operatorname{arcctg}\left(-\frac{\sqrt{3}}{3}\right)$$
;

Вычислите:

021.33. a) arcctg (-1) + arctg (-1);

6)
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right) + \operatorname{arcctg}\left(-\sqrt{3}\right);$$

B)
$$\operatorname{arcctg}\left(-\frac{\sqrt{3}}{3}\right) - \operatorname{arctg}\left(\frac{\sqrt{3}}{3}\right)$$
;

r)
$$\arcsin\left(-\frac{1}{2}\right) - \arccos\left(-\sqrt{3}\right)$$
.

021.34. a) 2 arcsin $\left(-\frac{\sqrt{3}}{2}\right)$ + arctg (-1) + arccos $\frac{\sqrt{2}}{2}$;

6)
$$3 \arcsin \frac{1}{2} + 4 \arccos \left(-\frac{\sqrt{2}}{2}\right) - \arctan \left(-\frac{\sqrt{3}}{3}\right)$$

B)
$$\arctan\left(-\sqrt{3}\right) + \arccos\left(-\frac{\sqrt{3}}{2}\right) + \arcsin 1;$$

r)
$$\arcsin (-1) - \frac{3}{2} \arccos \frac{1}{2} + 3 \operatorname{arcctg} \left(-\frac{\sqrt{3}}{3} \right)$$

021.35. a) $\sin (\arctan (-\sqrt{3}));$

в) cos (arctg 0);

6) tg
$$\left(\arctan\left(-\frac{\sqrt{3}}{3}\right)\right)$$
;

г) ctg (arctg (-1)).

021.36. a) tg (arcctg 1);

в) $\cos(\operatorname{arcctg}(-1));$

б)
$$\sin \left(\operatorname{arcctg} \sqrt{3}\right)$$
;

r) ctg
$$\left(2 \operatorname{arcctg}\left(-\frac{1}{\sqrt{3}}\right)\right)$$
.

021.37. Найдите область определения функции:

a)
$$y = \arcsin x + \arctan x$$
;

6)
$$y = \operatorname{arcctg} \sqrt{x} + \operatorname{arccos} \frac{x}{2}$$
;

B)
$$y = \arctan \frac{1}{r} - \arccos (2x - 0.5);$$

r)
$$y = \arcsin(x^2 - 1) + \arctan 2x + \operatorname{arcctg}(x - 1)$$
.

_{021.38}. Исследуйте функцию на четность:

a)
$$y = \frac{\arctan x}{x^4}$$
;

б)
$$y = \sin^2 x + x \operatorname{arctg} x$$
;

B)
$$y = \arcsin x + \operatorname{arcctg} x$$
;

r)
$$y = 2 \operatorname{arcctg} x + x^5 - 3 \operatorname{arcsin} 2x$$
.

021.39. Найдите область значений функции:

a)
$$y = 2 \operatorname{arctg} x$$
;

B)
$$y = 1.5 \ \text{arcctg} \ x - \frac{\pi}{2}$$
;

6)
$$y = -\frac{1}{2} \operatorname{arcctg} x$$
;

$$\Gamma) y = \pi - 2 \arctan x.$$

Постройте график функции:

$$021.40.$$
 a) $y = \arctan(-x);$

B)
$$y = -\operatorname{arcctg} x$$
;

6)
$$y = \operatorname{arcctg}(-x)$$
;

$$\Gamma$$
) $y = -\arctan(-x)$.

$$021.41.$$
 a) $y = arctg(x - 1) - \frac{\pi}{2}$;

6)
$$y = \operatorname{arcctg}(x + 2) + \frac{\pi}{3}$$
.

$$021.42.$$
 a) $y = 0.5$ arctg x ;

B)
$$y = -\frac{1}{3} \operatorname{arcctg} x$$
;

б)
$$y = \frac{2\pi}{3} - \operatorname{arcctg} x$$
;

r)
$$y = 1.5 \arctan (x + 2)$$
.

$$021.43. a) y = arctg 3x;$$

B)
$$y = \operatorname{arcctg} \frac{3x}{4}$$
;

6)
$$y = \arctan \frac{x}{2} - \frac{\pi}{6}$$
; r) $y = \operatorname{arcctg} 2(x - 1)$.

$$\mathbf{r}) \ y = \operatorname{arcctg} \ 2(x-1).$$

021.44. Постройте и прочитайте график функции:

a)
$$y = \begin{cases} \operatorname{arctg} x, \operatorname{если} x \leq 0; \\ \sqrt{x}, \operatorname{если} x > 0. \end{cases}$$

б)
$$y = \begin{cases} \operatorname{arcctg} x, \operatorname{если} x \leq 1; \\ \operatorname{arctg} x, \operatorname{если} x > 1. \end{cases}$$

$$^{\circ}21.45.$$
 a) $y = |\arctan x|;$

B)
$$y = -2 \operatorname{arcctg} |x|$$
;

б)
$$y = \operatorname{arcctg} |x|$$
;

$$\Gamma) y = \left| \arctan x + \frac{\pi}{6} \right|.$$

Вычислите:

021.46. a)
$$\cos\left(\arcsin\left(-\frac{5}{13}\right)\right)$$
;

B) $\cos \left(\arcsin \frac{8}{17} \right)$;

 δ) tg (arcsin 0.6):

r) ctg (arcsin (-0.8)).

021.47. a) $\sin \left(\arccos \frac{3}{5} \right)$;

в) $\sin(\arccos(-0.8))$.

6) tg $\left(\arccos\left(-\frac{5}{13}\right)\right)$;

r) ctg $\left(\arccos\frac{4}{5}\right)$.

021.48. a) $\sin\left(\arctan\frac{3}{4}\right)$;

B) $\sin\left(\operatorname{arcctg}\left(-\frac{4}{3}\right)\right)$;

6)
$$\cos\left(\operatorname{arcctg}\frac{12}{5}\right)$$
;

r) $\cos \left(\arctan \left(-\frac{5}{12} \right) \right)$.

●21.49. Докажите, что

a)
$$\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}};$$

6) tg (arcsin
$$x$$
) = $\frac{x}{\sqrt{1-x^2}}$;

$$\text{B) sin (arcctg } x) = \frac{1}{\sqrt{1+x^2}};$$

r) tg (arccos x) =
$$\frac{\sqrt{1-x^2}}{x}$$
.

Постройте график функции:

21.50. a) $y = \cos(\arccos x)$;

б)
$$y = arctg x + arctg (-x);$$

в)
$$y = \operatorname{tg}(\operatorname{arctg} x);$$

r)
$$y = \arcsin x + \arcsin (-x)$$
.

21.51. a) $y = \arccos x + \arccos (-x)$;

6)
$$y = \arccos \frac{1}{x} + \arccos \left(-\frac{1}{x}\right)$$

B)
$$y = \operatorname{arcctg} x + \operatorname{arcctg} (-x);$$

r)
$$y = \operatorname{arcctg} \sqrt{x} + \operatorname{arcctg} (-\sqrt{x})$$
.

•21.52. a) $y = \sin(\arccos x)$;

 $\mathbf{B}) \ y = \cos\left(\arcsin x\right);$

σ) y = tg (arcctg x);

r) y = ctg (arctg x).

21.53. a) $y = \arccos(\cos x)$;

6) y = arctg(tg x).

Решите уравнение:

$$_{0}21.54.$$
 a) arcsin $2x = \frac{\pi}{3}$;

B)
$$\arccos(3x-3.5)=\frac{2\pi}{3};$$

6)
$$arctg(4x + 1) = \frac{7\pi}{12}$$
;

$$\Gamma) \ \operatorname{arcctg} (4x+1) = \frac{3\pi}{4}.$$

$$_{O21.55.}$$
 a) arcsin $(3x^2 - 5x + 1) = \frac{\pi}{2}$;

6)
$$arctg(x^3 - 27 - \sqrt{3}) = -\frac{\pi}{3}$$
;

B)
$$\arccos(3x^2 - 10x + 2,5) = \frac{2\pi}{3}$$
;

r) arcetg
$$(x^3 - 8x^2 + 15x + 1) = \frac{\pi}{4}$$
.

021.56. a)
$$\arcsin\left(\operatorname{tg}\frac{\pi}{4}\right) - \arcsin\sqrt{\frac{3}{x}} - \frac{\pi}{6} = 0;$$

6)
$$\arccos\left(\operatorname{ctg}\frac{3\pi}{4}\right) + \operatorname{arctg}\sqrt{2x-1} - \frac{7\pi}{6} = 0.$$

o21.57. a)
$$8 \arcsin^2 x + 2\pi \arcsin x = \pi^2$$
;
6) $18 \arctan^2 x - 3\pi \arctan x = \pi^2$;

6)
$$18 \arctan^2 x - 3\pi \arctan x = \pi^2$$
;

B)
$$18 \arccos^2 x = 3\pi \arccos x + \pi^2$$
:

B)
$$18 \arccos^2 x = 3\pi \arccos x + \pi^2$$
;
r) $16 \arccos^2 x + 3\pi^2 = 16\pi \arccos x$.

$$021.58. a) \arcsin \left(2x + 3\frac{1}{3}\right) = \arcsin \left(-\frac{2x}{9}\right);$$

б)
$$arctg(x^2 - 9) = arctg 8x;$$

B)
$$\arccos(3x + 1) = \arccos(2x + 5)$$
;

r)
$$\operatorname{arcctg}(x^2 - x) = \operatorname{arcctg}(4x - 6)$$
.

•21.59. a)
$$\arccos x = \arctan x$$
; B) $\operatorname{arcctg} x = \arctan x$;

6)
$$\arccos x = \arcsin x$$
; Γ) $\arcsin x = \arcctg x$.

Решите неравенство:

$$021.60.$$
 a) $\arccos x > \frac{3\pi}{4}$;

B)
$$\arcsin x < \frac{3\pi}{4}$$
;

6) arctg
$$x > -\frac{\pi}{4}$$
;

r)
$$\operatorname{arcctg} x \leq \frac{5\pi}{6}$$
.

•21.61. a)
$$9 \arcsin^2 x \le \pi^2$$
;
 6) $36 \arctan^2 x > \pi^2$;

B)
$$16 \arccos^2 x > \pi^2$$
;

6) 36
$$\arctan x > \pi^2$$
:

r) 9 arcctg²
$$x \leq \pi^2$$
.

•21.62. a)
$$8 \arcsin^2 x + 2\pi \arcsin x < \pi^2;$$

6) $18 \arctan^2 x - 3\pi \arctan x \ge \pi^2;$
B) $9 \arccos^2 x \le 9\pi \arccos x - 2\pi^2;$
r) $16 \arctan^2 x + 3\pi^2 > 16\pi \arctan x.$

6) 18
$$\operatorname{arctg}^2 x - 3\pi \operatorname{arctg} x \ge \pi^2$$
;

B) 9
$$\arccos^2 x \leq 9\pi \arccos x - 2\pi^2$$
;

r)
$$16 \operatorname{arcctg}^2 x + 3\pi^2 > 16\pi \operatorname{arcctg} x$$

Тригонометрические уравнения

╌╾┾╌┾┾┼┼┼

§ 22. Простейшие тригонометрические уравнения и неравенства

Решите уравнение:

22.1. a)
$$\cos x = \frac{1}{2}$$
;

B)
$$\cos x = -\frac{\sqrt{3}}{2}$$
;

$$6) \cos x = -\frac{\sqrt{2}}{2};$$

$$\Gamma)\cos x=\frac{\sqrt{2}}{2}.$$

22.2. a)
$$\cos x = \frac{1}{3}$$
;

$$B) \cos x = -\frac{\sqrt{5}}{3};$$

б)
$$\cos x = -1,1$$

$$\mathbf{r)}\,\cos\,x=\,\frac{\sqrt{5}}{2}.$$

022.3. Найдите корни уравнения на заданном промежутке:

a)
$$\cos x = \frac{\sqrt{3}}{2}, x \in [0; 2\pi];$$

6)
$$\cos x = -\frac{1}{2}, x \in [2\pi; 4\pi];$$

B)
$$\cos x = \frac{\sqrt{2}}{2}, x \in [-\pi; 3\pi];$$

r)
$$\cos x = -1$$
, $x \in \left[-\frac{3\pi}{2}; 2\pi\right]$.

22.4. a)
$$\frac{8\cos x - 3}{3\cos x + 2} = 1$$
;

6)
$$\frac{3\cos x + 1}{2} + \frac{5\cos x - 1}{3} = 1,75.$$

O22.5. a)
$$6 \cos^2 x + 5 \cos x + 1 = 0$$
;
6) $3 + 9 \cos x = 5 \sin^2 x$.

6)
$$3 + 9 \cos x = 5 \sin^2 x$$
.

о22.6. Найдите корни уравнения на заданном промежутке:

a)
$$\cos x = \frac{1}{2}, x \in [1; 6];$$

6)
$$\cos x = \frac{\sqrt{2}}{2}, \ x \in \left[-\frac{\pi}{4}; \ 12 \right];$$

B)
$$\cos x = -\frac{1}{2}, x \in [2; 10];$$

r)
$$\cos x = -\frac{\sqrt{2}}{2}, \ x \in \left[-4; \ \frac{5\pi}{4} \right].$$

о22.7. Сколько корней имеет заданное уравнение на заданном промежутке:

a)
$$\cos x = \frac{1}{3}, x \in [1; 6];$$

6)
$$\cos x = -0.4$$
, $x \in [3; 11]$?

22.8. a)
$$\sin x = \frac{\sqrt{3}}{2}$$
; b) $\sin x = 1$;

6)
$$\sin x = \frac{\sqrt{2}}{2}$$
; r) $\sin x = \frac{1}{2}$.

22.9. a)
$$\sin x = -\frac{\sqrt{3}}{2}$$
; B) $\sin x = -1$;

6)
$$\sin x = -\frac{\sqrt{2}}{2}$$
; r) $\sin x = -\frac{1}{2}$.

22.10. a)
$$\sin x = \frac{1}{4}$$
; b) $\sin x = -\frac{1}{7}$;

$$^{\circ}22.11.$$
 a) $(2\cos x + 1)(2\sin x - \sqrt{3}) = 0;$

$$6) \ 2\cos x - 3\sin x \cos x = 0;$$

B)
$$4 \sin^2 x - 3 \sin x = 0$$
;

r)
$$2\sin^2 x - 1 = 0$$
.

$$^{\circ}22.12.$$
 a) $6\sin^2 x + \sin x = 2$;

6)
$$3\cos^2 x = 7(\sin x + 1)$$
.

022.13. Решите уравнение:

a)
$$\sin^2 \frac{3x}{4} - \frac{\sqrt{2}}{2} = \sin x - \cos^2 \frac{3x}{4} + 1$$
;

6)
$$\cos^2 2x - 1 - \cos x = \frac{\sqrt{3}}{2} - \sin^2 2x$$
.

Найдите корни уравнения на заданном промежутке:

22.14. a) $\sin x = \frac{1}{2}, x \in [0; \pi];$

6)
$$\cos x = -\frac{1}{2}, x \in [-\pi; \pi];$$

B)
$$\sin x = -\frac{\sqrt{2}}{2}, x \in [-\pi; 2\pi];$$

r)
$$\cos x = \frac{\sqrt{3}}{2}, x \in [-2\pi; \pi].$$

022.15. a)
$$\sin x = \frac{1}{2}, x \in \left(\frac{1}{2}; \frac{11\pi}{4}\right);$$

6)
$$\sin x = -\frac{1}{2}, \ x \in \left(-\frac{5\pi}{6}; \ 6\right);$$

B)
$$\sin x = \frac{\sqrt{2}}{2}, x \in (-4; 3);$$

r)
$$\sin x = -\frac{\sqrt{2}}{2}, x \in (-3; 6).$$

○22.16. Сколько корней имеет заданное уравнение на заданном промежутке:

a)
$$\sin x = 0.6, x \in \left(\frac{\pi}{4}; 3\pi\right);$$

6)
$$\sin x = -\frac{2}{3}, \ x \in (2; 7)$$
?

22.17. a) tg
$$x = 1$$
;

$$B) tg x = -1;$$

6) tg
$$x = -\frac{\sqrt{3}}{3}$$
;

$$r) tg x = \frac{\sqrt{3}}{3}.$$

22.18. a) tg
$$x = 0$$
;

B)
$$tg x = -3$$
;

6) tg
$$x = -2$$
;

r) tg
$$x = \frac{1}{2}$$
.

22.19. a) ctg
$$x = 1$$
;

6) ctg
$$x = \sqrt{3}$$
;

$$\mathbf{B)}\ \mathrm{ctg}\ x=\mathbf{0};$$

$$\mathbf{r)}\ \mathrm{ctg}\ x=\frac{\sqrt{3}}{3}.$$

22.20. a) ctg
$$x = -\sqrt{3}$$
;

6) ctg
$$x = -1$$
;

r) ctg
$$x = -5$$
.

B) ctg $x = -\frac{\sqrt{3}}{2}$;

22.21. a)
$$tg^2 x - 3 = 0$$
;
6) $2 tg^2 x + 3 tg x = 0$;

$$6) \ 2 \ \text{tg}^2 \ x + 3 \ \text{tg} \ x = 0;$$

B)
$$4 ext{ tg}^2 x - 9 = 0;$$

F) $3 ext{ tg}^2 x - 2 ext{ tg} x = 0.$

22.22. a)
$$tg^2 x - 6 tg x + 5 = 0$$
;

6)
$$tg^2 x - 2 tg x - 3 = 0$$
.

22.23. a)
$$\sin 2x = \frac{\sqrt{2}}{2}$$
;

$$B) \sin \frac{x}{4} = \frac{1}{2};$$

6)
$$\cos \frac{x}{3} = -\frac{1}{2}$$
;

$$\mathbf{r})\cos 4x=0.$$

22.24. a)
$$\sin\left(-\frac{x}{3}\right) = \frac{\sqrt{2}}{2}$$
;

B)
$$tg(-4x) = \frac{1}{\sqrt{3}};$$

6)
$$\cos{(-2x)} = -\frac{\sqrt{3}}{2}$$
;

r) ctg
$$\left(-\frac{x}{2}\right) = 1$$
.

022.25. a)
$$2\cos\left(\frac{x}{2} - \frac{\pi}{6}\right) = \sqrt{3}$$
;

$$B) \ 2 \sin \left(3x - \frac{\pi}{4}\right) = -\sqrt{2};$$

6)
$$\sqrt{3} \operatorname{tg} \left(\frac{x}{3} + \frac{\pi}{6} \right) = 3;$$

$$r) \sin \left(\frac{x}{2} - \frac{\pi}{6}\right) + 1 = 0.$$

$$022.26. a) \cos \left(\frac{\pi}{6} - 2x\right) = -1;$$

$$B) \ 2\sin\left(\frac{\pi}{3}-\frac{x}{4}\right)=\sqrt{3};$$

6)
$$\operatorname{tg}\left(\frac{\pi}{4}-\frac{x}{2}\right)=-1;$$

$$r) \ 2 \cos \left(\frac{\pi}{4} - 3x\right) = \sqrt{2}.$$

022.27. Найдите корни уравнения на заданном промежутке:

a)
$$\sin 3x = \frac{\sqrt{2}}{2}$$
, $[0; 2\pi]$;

a)
$$\sin 3x = \frac{\sqrt{2}}{2}$$
, [0; 2π]; B) $\operatorname{tg} \frac{x}{2} = \frac{\sqrt{3}}{3}$, [-3π ; 3π];

6)
$$\cos 3x = \frac{\sqrt{3}}{2}$$
, $[-\pi; \pi]$; r) $\cot 4x = -1$, $[0; \pi]$.

r) ctg
$$4x = -1$$
, [0; π].

Найдите корни уравнения на заданном промежутке:

22.28. a)
$$\sin x = -\frac{1}{2}$$
, [-4; 4];

6)
$$\cos x = 1$$
, [-6; 16].

22.29. a)
$$\sin \frac{x}{2} = 0$$
, [-12; 18]; b) $\cos 3x = -\frac{\sqrt{2}}{2}$, [1; 7].

б)
$$\cos 3x = -\frac{\sqrt{2}}{2}$$
, [1; 7].

022.30. Решите уравнение $\sin \left(2x - \frac{\pi}{4}\right) = -1$ и найдите:

- а) наименьший положительный корень;
- б) корни, принадлежащие отрезку $\left|-\frac{\pi}{2}; \frac{3\pi}{2}\right|$;
- в) наибольший отрицательный корень;
- г) корни, принадлежащие интервалу $\left(-\pi; \frac{\pi}{2}\right)$.

022.31. Решите уравнение $\cos\left(\frac{\pi}{3}-2x\right)=\frac{1}{2}$ и найдите:

- а) наименьший положительный корень;
- б) корни, принадлежащие отрезку $\left|-\frac{\pi}{2}; \frac{3\pi}{2}\right|$;
- в) наибольший отрицательный корень;
- г) корни, принадлежащие интервалу $\left(-\pi; \frac{\pi}{2}\right)$.

Решите уравнение:

22.32. a)
$$|x + 3| \sin x = x + 3$$
; 6) $2|x - 6| \cos x = x - 6$.

$$5) \ 2|x-6|\cos x = x-6.$$

•22.33. a)
$$\sqrt{16-x^2} \sin x = 0$$
;

6)
$$(\sqrt{2}\cos x - 1)\sqrt{4x^2 - 7x + 3} = 0;$$

B)
$$\sqrt{7x-x^2}$$
 $(2\cos x-1)=0$;

r)
$$(2 \sin x - \sqrt{3})\sqrt{3x^2 - 7x + 4} = 0$$
.

022.34. Найдите область определения функции:

a)
$$y = \frac{\sin x}{2\cos x - 1};$$

$$\mathbf{B}) \ y = \frac{\sqrt{x}}{\sin x};$$

$$\text{6) } y = \frac{\operatorname{ctg} x}{\pi - 3 \cos x};$$

r)
$$y = \frac{\operatorname{tg} x}{\sqrt{x-5}}$$
.

Найдите область значений функции:

22.35. a)
$$y = \sin x + \sqrt{-\cos^2 x}$$
;

$$6) y = \cos x + \sqrt{-\sin^2 x}.$$

22.36. a)
$$y = \cos 3x + \sqrt{\cos^2 3x - 1}$$
;

6)
$$y = \sin 2x + \sqrt{\sin^2 4x - 1}$$
.

Решите уравнение:

$$=22.37.$$
 a) $|\sin x| = |\cos x|$;

$$|\sin 2x| = |\sqrt{3}\cos 2x|;$$

6)
$$\sqrt{3} \operatorname{ctg} x = 2|\cos x|;$$

r)
$$\sqrt{2} |\tan x + 2|\sin x| = 0$$
.

$$\bullet 22.38. \ a) (2x - 3) |\sin x| = \sin x;$$

6)
$$(3x - 7)\cos x = 5|\cos x|$$
.

•22.39. a)
$$x^2 | \operatorname{tg} x | + 9 \operatorname{tg} x = 0$$
;

6)
$$x^2 \cot |x - 4| \cot |x| = 0$$
.

•22.40. a)
$$(2x^2 - 12x + 13) \sin x = 3 |\sin x|$$
;

6)
$$(x^2 + 8x + 11) |\cos 2x| = 4 \cos 2x$$
.

●22.41. Сколько корней имеет уравнение:

a)
$$\sin \left(3x - \frac{\pi}{4}\right)\sqrt{8x - x^2 - 7} = 0;$$

6)
$$\cos\left(2x+\frac{\pi}{3}\right)\sqrt{10-x^2-3x}=0$$
?

Решите неравенство:

22.42. a)
$$\cos t > \frac{1}{2}$$
;

B)
$$\cos t \geqslant -\frac{\sqrt{2}}{2}$$
;

$$6) \cos t \leqslant -\frac{\sqrt{2}}{2};$$

r)
$$\cos t < \frac{1}{2}$$
.

$$022.43.$$
 a) $\cos t < \frac{2}{3};$

B)
$$\cos t > \frac{2}{3}$$
;

$$6) \cos t > -\frac{1}{7};$$

$$\Gamma) \cos t < -\frac{1}{7}.$$

•22.44. a)
$$3\cos^2 t - 4\cos t \ge 4$$
;

B)
$$3\cos^2 t - 4\cos t < 4$$
;

6)
$$6\cos^2 t + 1 > 5\cos t$$
;

$$\Gamma) 6 \cos^2 t + 1 \leq 5 \cos t.$$

Решите неравенство:

$$022.45.$$
 a) $4 \cos^2 t < 1$;

6)
$$3\cos^2 t < \cos t$$
;

B)
$$9\cos^2 t > 1$$
;

r)
$$3\cos^2 t > \cos t$$
.

22.46. a)
$$\sin t > \frac{\sqrt{3}}{2}$$
;

B)
$$\sin t < \frac{\sqrt{3}}{2}$$
;

6)
$$\sin t > -\frac{1}{2}$$
;

$$\Gamma$$
) $\sin t \leq -\frac{1}{2}$.

022.47. a)
$$\sin t < \frac{1}{3}$$
;

B)
$$\sin t \geqslant \frac{1}{3}$$
;

6)
$$\sin t \ge -0.6$$
;

r)
$$\sin t < -0.6$$
.

•22.48. a)
$$5 \sin^2 t > 11 \sin t + 12$$
; 6) $5 \sin^2 t \le 11 \sin t + 12$.

6)
$$5\sin^2 t \le 11\sin t + 12$$

•22.49. a)
$$6 \cos^2 t + \sin t > 4$$
;

б)
$$6\cos^2 t + \sin t \le 4$$
.

22.50. a) tg
$$x < \sqrt{3}$$
;

B)
$$\operatorname{tg} x < 0$$
;

. a)
$$tg x < \sqrt{3}$$
 б) $ctg x > 0$;

r) ctg
$$x > -1$$
.

$$022.51.$$
 a) tg $x < 3$;

6)
$$3 \cot x - 1 > 0$$
:

B)
$$\operatorname{ctg} x \leq 2$$
;
r) $2 \operatorname{tg} x + 1 \geq 0$.

$$022.52.$$
 a) $tg^2 x > 9;$

a)
$$tg^2 x > 9$$
;
6) $tg^2 x > tg x$;

B)
$$tg^2 x < 9$$
;
r) $tg^2 x < 2 tg x$.

022.53. a)
$$\sin 2x < \frac{1}{2}$$
;

B)
$$\cos 3x > \frac{\sqrt{3}}{2}$$
;

6)
$$3\cos 4x < 1$$
;

r)
$$7 \sin \frac{x}{2} > -1$$
.

022.54. a)
$$\sin\left(2x - \frac{\pi}{3}\right) > \frac{1}{3}$$
;

$$\mathrm{B)}\,\cos\left(3x-\frac{\pi}{6}\right)>-\frac{1}{4};$$

$$\text{ 6) } \cos\left(\frac{\pi}{4}-x\right)<\frac{\sqrt{2}}{2};$$

r)
$$\sin\left(\frac{3\pi}{4}-x\right)<\frac{\sqrt{3}}{2}$$
.

Найдите область определения функции:

•22.55. a)
$$y = \sqrt{\sin x} + \frac{1}{\sqrt{\cos x}}$$
;

6)
$$y = \sqrt{\cos x - \frac{1}{2}} + \cot 2x;$$

B)
$$y = \text{tg } 2x - \frac{1}{\sqrt{1 - 2\sin x}};$$

r)
$$y = \frac{1}{\sin 4x} - \sqrt{\cos x - \frac{1}{\sqrt{2}}}$$
.

•22.56. a)
$$y = \arcsin \frac{x}{2} + \sqrt{\sin x + \frac{1}{2}};$$

6)
$$y = \arccos(2x - 1) + \sqrt{\frac{1}{\sqrt{2}} - \cos x}$$
.

Решите уравнение:

$$\bullet 22.57. a) \sin^2 x + \sin^2 3x = 0;$$

6)
$$\cos^4 2x + 1 = \cos^2 \left(x - \frac{\pi}{4} \right)$$

$$-22.58.$$
 a) $\sin 4x + \cos 2x = 2;$

$$6) \sin 5x + \cos 3x = -2.$$

При каких значениях параметра а множество корней заданного уравнения не пусто:

O22.59. a)
$$\sin x = 2a - 1;$$
 B) $\cos x = 3a - 2;$ 6) $\cos x = 2a^2 - 5a + 1;$ r) $\sin x = a^2 - 3?$

B)
$$\cos x = 3a - 2$$
;

$$6) \cos x = 2a^2 - 5a + 1;$$

$$\mathbf{r})\sin x = a^2 - 35$$

e22.60. a)
$$\frac{a \cos x}{2 \cos x + a} = 5$$
;

$$6) \frac{a \sin x + 1}{2a - 3 \sin x} = 2.$$

ullet22.61. Решите уравнение с параметром *a*:

a)
$$\sin\left(2x-\frac{\pi}{3}\right)=\frac{a-1}{a+1};$$

6)
$$\cos\left(\frac{x}{2}+\frac{\pi}{4}\right)=\frac{2a-1}{a-2}$$
.

●22.62. Решите уравнение:

a) ctg
$$\left(\frac{\pi}{3}\cos 2\pi x\right) = \sqrt{3}$$
;

$$6) \sin (2\pi \cos x) = \frac{1}{2}.$$

•22.63. Решите неравенство:

a)
$$\sin x \sqrt{4-x^2} \leq 0$$
;

$$6) \cos x \sqrt{x+2-x^2} \ge 0.$$

 $^{ullet}22.64$. При каких значениях параметра a решением заданного неравенства служит любое действительное число:

a)
$$a \cos x - 2 < 0$$
;

6)
$$(2a - 3) \sin x + 1 \ge 0$$
?

Решите систему неравенств:

•22.65. a)
$$\begin{cases} \sin x > -\frac{4}{5}, \\ \cos x > -\frac{1}{3}; \end{cases}$$

$$\begin{cases}
\sin x < \frac{2}{7}, \\
\cos x < 0.6.
\end{cases}$$

•22.66. a)
$$\begin{cases} \sin x < \frac{\sqrt{3}}{2}, \\ \text{tg } x > 1.5; \end{cases}$$

6)
$$\begin{cases} \cos x > -\frac{3}{7}, \\ \tan x < -0.1. \end{cases}$$

•22.67. a)
$$\begin{cases} \operatorname{ctg} x < -\frac{\sqrt{3}}{3}, \\ \sin x > -0.8; \end{cases}$$

$$6) \begin{cases}
\cos x < \frac{4}{9}, \\
\cot x > -3.
\end{cases}$$

•22.68. a)
$$\begin{cases} \sin 2x < \frac{1}{2}, \\ 25 - x^2 \ge 0; \end{cases}$$

6)
$$\begin{cases} \cos\left(3x + \frac{\pi}{4}\right) < \frac{\sqrt{2}}{2}, \\ |x + 2| < 3. \end{cases}$$

§ 23. Методы решения тригонометрических уравнений

023.1. a)
$$3 \sin^2 x - 5 \sin x - 2 = 0$$
;

6)
$$3\sin^2 2x + 10\sin 2x + 3 = 0$$
;

B)
$$4\sin^2 x + 11\sin x - 3 = 0$$
;

r)
$$2\sin^2\frac{x}{2} - 3\sin\frac{x}{2} + 1 = 0$$
.

$$023.2.$$
 a) $6 \cos^2 x + \cos x - 1 = 0$;

6)
$$2\cos^2 3x - 5\cos 3x - 3 = 0$$
;

B)
$$2\cos^2 x - \cos x - 3 = 0$$
;

r)
$$2\cos^2\frac{x}{3} + 3\cos\frac{x}{3} - 2 = 0$$
.

$$023.3.$$
 a) $2\sin^2 x + 3\cos x = 0$;

6)
$$8 \sin^2 2x + \cos 2x + 1 = 0$$
;

B)
$$5\cos^2 x + 6\sin x - 6 = 0$$
;

r)
$$4 \sin 3x + \cos^2 3x = 4$$
.

$$023.4.$$
 a) $3 ext{ tg}^2 x + 2 ext{ tg } x - 1 = 0;$
6) $ext{ctg}^2 2x - 6 ext{ ctg } 2x + 5 = 0;$

6)
$$\operatorname{ctg}^2 2x - 6 \operatorname{ctg} 2x + 5 = 0$$
;

B)
$$2 \operatorname{tg}^2 x + 3 \operatorname{tg} x - 2 = 0$$
;

r)
$$7 \cot^2 \frac{x}{2} + 2 \cot \frac{x}{2} = 5$$
.

$$_{0}23.5.$$
 a) tg $x - 2$ ctg $x + 1 = 0$;

B)
$$2 \cot x - 3 \tan x + 5 = 0$$
;

6)
$$\frac{\lg x + 5}{2} = \frac{1}{\cos^2 x}$$
;

$$r) \frac{7 - \operatorname{ctg} x}{4} = \frac{1}{\sin^2 x}.$$

$$023.6.$$
 a) $2\cos^2\frac{x}{2} + \sqrt{3}\cos\frac{x}{2} = 0;$

6)
$$4\cos^2\left(x-\frac{\pi}{6}\right)-3=0$$
;

B)
$$\sqrt{3} \operatorname{tg}^2 3x - 3 \operatorname{tg} 3x = 0$$
;

r)
$$4 \sin^2 \left(2x + \frac{\pi}{3}\right) - 1 = 0$$
.

023.7. a)
$$\sin^2 x - \frac{12 - \sqrt{2}}{2} \sin x - 3\sqrt{2} = 0$$
;

6)
$$\cos^2 x - \frac{8 - \sqrt{3}}{2} \cos x - 2\sqrt{3} = 0$$
.

$$023.8. a) tg^3 x + tg^2 x - 3 tg x = 3;$$

6)
$$\operatorname{ctg}^4 2x - 4 \operatorname{ctg}^2 2x + 3 = 0$$
.

023.9. a)
$$\left(\sin^2\left(x-\frac{\pi}{4}\right)-\frac{1}{2}\right)(\cos 2x+1)=0;$$

6)
$$\left(\cos^2\left(2x + \frac{\pi}{6}\right) - \frac{3}{4}\right)\sin\frac{x}{2} = 0.$$

$$023.10.$$
 a) tg $x \sin 2x = 0$;

$$\mathbf{B)}\,\cos\,x\,\,\mathbf{tg}\,\,3x=0;$$

6)
$$(1 + \cos x) \left(\frac{1}{\sin x} - 1 \right) = 0;$$

$$r) (1 + \cos x) \operatorname{tg} \frac{x}{2} = 0.$$

$$023.11. a) \sin x = \frac{3}{4} \cos x;$$

$$B) 2 \sin x + 5 \cos x = 0;$$

$$6) 3 \sin x = 2 \cos x;$$

$$r) \sin x \cos x - 3 \cos^2 x = 0.$$

- **023.12.** a) $\sin x + \sqrt{3} \cos x = 0$;
- $\mathbf{B)}\,\sin\,x-3\,\cos\,x=0;$
- $6) \sin x + \cos x = 0;$
- $\Gamma) \sqrt{3} \sin x + \cos x = 0.$
- **023.13.** a) $\sin^2 x + \sin x \cos x = 0$;
 - 6) $\sqrt{3} \sin x \cos x + \cos^2 x = 0$;
 - $B) \sin^2 x = 3 \sin x \cos x;$
 - $\Gamma) \sqrt{3} \cos^2 x = \sin x \cos x.$
- **023.14.** a) $\sin^2 x + 2 \sin x \cos x 3 \cos^2 x = 0$;
 - 6) $\sin^2 x 4 \sin x \cos x + 3 \cos^2 x = 0$;
 - B) $\sin^2 x + \sin x \cos x 2 \cos^2 x = 0$;
 - r) $3 \sin^2 x + \sin x \cos x 2 \cos^2 x = 0$.
- 023.15. a) $\sin 2x = \cos 2x$;
- $B) \sin \frac{x}{2} = \sqrt{3} \cos \frac{x}{2};$
- $6) \sqrt{3} \sin 3x = \cos 3x;$
- $r) \sqrt{2} \sin 17x = \sqrt{6} \cos 17x.$
- **Q23.16.** a) $2 \sin^2 2x 5 \sin 2x \cos 2x + 2 \cos^2 2x = 0$;
 - 6) $3\sin^2 3x + 10\sin 3x\cos 3x + 3\cos^2 3x = 0$.
- **023.17.** a) $\sin^2 \frac{x}{2} = 3 \cos^2 \frac{x}{2}$;
- $6) \sin^2 4x = \cos^2 4x.$
- **023.18.** a) $5 \sin^2 x 14 \sin x \cos x 3 \cos^2 x = 2$;
 - 6) $3 \sin^2 x \sin x \cos x = 2$;
 - B) $2\cos^2 x \sin x \cos x + 5\sin^2 x = 3$;
 - r) $4 \sin^2 x 2 \sin x \cos x = 3$.
- **023.19.** a) $5 \sin^2 x + \sqrt{3} \sin x \cos x + 6 \cos^2 x = 5$;
 - 6) $2\sin^2 x 3\sin x \cos x + 4\cos^2 x = 4$.
- **Q23.20.** a) $3 \sin^2 2x 2 = \sin 2x \cos 2x$;
 - 6) $2\sin^2 4x 4 = 3\sin 4x\cos 4x 4\cos^2 4x$.
- **023.21.** a) $4 \sin^2 \frac{x}{2} 3 = 2 \sin \frac{x}{2} \cos \frac{x}{2}$;
 - 6) $3\sin^2\frac{x}{3} + 4\cos^2\frac{x}{3} = 3 + \sqrt{3}\sin\frac{x}{3}\cos\frac{x}{3}$.
- 023.22. a) $\sin^2 x 5 \cos x = \sin x \cos x 5 \sin x$;
 - 6) $\cos^2 x 7 \sin x + \sin x \cos x = 7 \cos x$.
- 023.23. a) $\sin^6 x + \sin^4 x \cos^2 x = \sin^3 x \cos^3 x + \sin x \cos^5 x$:
 - 6) $\sin^2 x \cos^2 x 10 \sin x \cos^3 x + 21 \cos^4 x = 0$.

23.24. a)
$$\cos^6 x + \sin^6 x = \frac{7}{16}$$
;

6)
$$\cos^{-4}\frac{x}{2}\left(2\sin^4\frac{x}{2}-1\right)=2.$$

Решите систему уравнений:

$$023.25. a) \begin{cases} 2 \sin x - 5 \cos y = 7, \\ 5 \sin x + \cos y = 4; \end{cases}$$

6)
$$\begin{cases} 5 \sin 2x + 3 \cos 3y = 1, \\ 8 \sin 2x - 6 \cos 3y = 7. \end{cases}$$

O23.26. a)
$$\begin{cases} \sin x + \cos y = -\frac{1}{2}, \\ \sin x \cos y = -\frac{1}{2}; \end{cases}$$

6)
$$\begin{cases} \sin\frac{x}{2} - \cos 2y = 1, \\ 2\sin^2\frac{x}{2} - 3\cos 2y = 2. \end{cases}$$

Решите уравнение:

•23.27. a)
$$|\cot x| = \cot x + \frac{1}{\sin x};$$

6)
$$\operatorname{tg} x + \frac{1}{9} \operatorname{ctg} x = \sqrt{\frac{1}{\cos^2 x} - 1} - 1$$
.

•23.28. a)
$$|\cos x| = 2\cos x - \sqrt{3}\sin x$$
;

6)
$$\sin x = \sqrt{3}\cos x + 2|\sin x|.$$

$$023.29. a) \frac{\sin x + \cos x}{\cos 2x} = 0;$$

$$\mathbf{B}) \; \frac{\cos^2 x + \cos x}{\sin x} = 0;$$

6)
$$\cot x + \frac{\sin x}{1 + \cos x} = 2;$$

$$\Gamma) \frac{\operatorname{tg} x}{1 + \operatorname{tg}^2 x} = \cos x.$$

•23.30. a)
$$\frac{2\sin^2 x - 3\sin x + 1}{\cos^2 x - \cos x} = 0;$$

$$6) \ \frac{4\sin^3 2x - 3\sin 2x}{\cos 3x} = 0.$$

 $\bullet 23.31$. Для каждого значения a решите уравнение:

a)
$$\frac{a\sin x - 1}{\sin x + \cos x} = 0;$$

$$6) \frac{a \cos x - 1}{\sin x - \cos x} = 0.$$

•23.32. a)
$$x^2 - 2x \cos \pi x + 1 = 0$$
;

6)
$$x^2 - 2x \sin \frac{\pi x}{2} + 1 = 0$$
.

•23.33. a)
$$\cos^5 x + \sin^4 x = 1$$
;

6)
$$\cos^8 x + \sin^3 x = 1$$
.

Q23.34. a)
$$3 \sin^2 \frac{x}{3} + 5 \sin^2 x = 8$$
;

$$6) \cos^2 2x - 2 \cos^3 3x = 3.$$

Решите уравнение:

•23.35. a)
$$2 \sin \left(\frac{2}{3}x - \frac{\pi}{6}\right) - 3 \cos \left(2x + \frac{\pi}{3}\right) = 5;$$

6)
$$\sin \frac{x}{4} + 2 \cos \frac{x - 2\pi}{3} = 3$$
.

23.36. a)
$$\sqrt{5-2\sin x}=6\sin x-1$$
;

6)
$$\sqrt{2+4\cos x} = 3\cos x + 0.5$$
.

•23.37. a)
$$\sqrt{3} \sin x - \sqrt{2 \sin^2 x - 2 \sin x \cos x + 3 \cos^2 x} = 0$$
;

6)
$$\cos x + \sqrt{\sin^2 x - 4 \sin x \cos x + 4 \cos^2 x} = 0$$
.

•23.38. a)
$$\sqrt{3\sin 5x - \cos^2 x - 3} = 1 - \sin x$$
;

6)
$$\sqrt{2\cos 4x - \sin^2 x - 2} = 1 + \cos x$$
.

Решите неравенство:

- **23.39.** a) $4 \sin x \cos x 1 > 2 \sin x 2 \cos x$;
 - 6) $1 + 2 \sin x \ge 4 \sin x \cos x + 2 \cos x$.

•23.40. a)
$$4 \sin^2 x - 2(\sqrt{3} - 1) \sin x - \sqrt{3} < 0$$
;

6)
$$4\cos^2 x - 2(\sqrt{3} + 1)\cos x + \sqrt{3} \ge 0$$
.

23.41. a)
$$\sin x - \cos x > 0$$
;

- B) $\sin x + \cos x < 0$:
- 6) $\sin x \sqrt{3} \cos x \le 0$; r) $\sqrt{3} \sin x + \cos x \ge 0$.

23.42. a)
$$\sin^2 x - 6 \sin x \cos x + 5 \cos^2 x > 0$$
;

- 6) $\sin^2 x 6 \sin x \cos x + 5 \cos^2 x < 0$;
- $\mathrm{B)}\,\sin^2 x 3\sin x\,\cos x + 2\cos^2 x \leqslant 0;$
- $r) \sin^2 x 2 \sin x \cos x 3 \cos^2 x \ge 0.$

Преобразование тригонометрических выражений

\S 24. Синус и косинус суммы и разности аргументов

24.1. Представив 105° как сумму 60° + 45° , вычислите:

a) $\sin 105^{\circ}$;

б) cos 105°.

24.2. Вычислите:

a) $\sin 15^{\circ}$;

в) $\sin 15^{\circ} \cos 15^{\circ}$;

б) cos 15°;

r) $\cos^2 15^\circ - \sin^2 15^\circ$.

Упростите выражение:

24.3. a) $\sin (\alpha + \beta) - \sin \alpha \cos \beta$;

6)
$$\sin\left(\frac{\pi}{3} + \alpha\right) - \frac{1}{2}\sin\alpha$$
;

B) $\sin \alpha \sin \beta + \cos (\alpha + \beta)$;

r)
$$\cos \left(\alpha + \frac{\pi}{4}\right) + \frac{\sqrt{2}}{2} \sin \alpha$$
.

24.4. a)
$$\sin\left(\frac{5\pi}{6} - \alpha\right) - \frac{1}{2}\cos\alpha$$
;

6)
$$\sqrt{3}\cos\alpha - 2\cos\left(\alpha - \frac{\pi}{6}\right)$$
;

B)
$$\frac{\sqrt{3}}{2} \sin \alpha + \cos \left(\alpha - \frac{5\pi}{3}\right)$$
;

r)
$$\sqrt{2} \sin \left(\alpha - \frac{\pi}{4}\right) - \sin \alpha$$
.

24.5. a)
$$\cos (\alpha - \beta) - \cos \alpha \cos \beta$$
;

$$δ$$
) $sin (α + β) + sin (α – β);$

24.6. a)
$$\frac{\sin{(\alpha+\beta)}-\cos{\alpha}\sin{\beta}}{\sin{(\alpha-\beta)}+\cos{\alpha}\sin{\beta}};$$

6)
$$\frac{\sin{(\alpha-\beta)} + 2\cos{\alpha}\sin{\beta}}{2\cos{\alpha}\cos{\beta} - \cos{(\alpha-\beta)}};$$

B)
$$\sin \alpha \cos \beta - \sin (\alpha - \beta)$$
;

r)
$$\cos (\alpha - \beta) - \cos (\alpha + \beta)$$
.

B)
$$\frac{\cos{(\alpha + \beta)} + \sin{\alpha}\sin{\beta}}{\cos{(\alpha - \beta)} - \sin{\alpha}\sin{\beta}};$$

$$\Gamma) \ \frac{\cos{(\alpha-\beta)}-2\sin{\alpha}\sin{\beta}}{2\sin{\alpha}\cos{\beta}-\sin{(\alpha-\beta)}}.$$

24.7. Представив 2x в виде x + x, докажите тождество:

a) $\sin 2x = 2 \sin x \cos x$;

 $6) \cos 2x = \cos^2 x - \sin^2 x$

Докажите тождество:

24.8. a) $\sin (\alpha + \beta) + \sin (-\alpha) \cos (-\beta) = \sin \alpha \cos \beta$;

6)
$$\cos(\alpha + \beta) + \sin(-\alpha)\sin(-\beta) = \sin\alpha\cos\beta$$
.

24.9. a)
$$\frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x = \sin \left(\frac{\pi}{3} + x \right)$$
;

6)
$$\frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x = \cos \left(\frac{\pi}{3} + x \right)$$
;

B)
$$\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = \sin\left(\frac{\pi}{3} - x\right);$$

r)
$$\frac{1}{2}$$
 cos $x + \frac{\sqrt{3}}{2}$ sin $x = \cos\left(\frac{\pi}{3} - x\right)$.

24.10. a) $\sin 5x \cos 3x + \cos 5x \sin 3x = \sin 8x$;

6) $\cos 5x \cos 3x - \sin 5x \sin 3x = \cos 8x$;

B) $\sin 7x \cos 4x - \cos 7x \sin 4x = \sin 3x$;

r) $\cos 2x \cos 12x + \sin 2x \sin 12x = \cos 10x$.

24.11. a) $\cos (\alpha - \beta) + \sin (-\alpha) \sin \beta = \cos \alpha \cos \beta$;

6) $\sin (30^{\circ} - \alpha) - \cos (60^{\circ} - \alpha) = -\sqrt{3} \sin \alpha$;

B) $\sin (\alpha - \beta) - \cos \alpha \sin (-\beta) = \sin \alpha \cos \beta$;

r) $\sin (30^{\circ} - \alpha) + \sin (30^{\circ} + \alpha) = \cos \alpha$.

024.12. a)
$$\frac{\sqrt{2}\cos\alpha - 2\cos\left(\frac{\pi}{4} - \alpha\right)}{2\sin\left(\frac{\pi}{6} + \alpha\right) - \sqrt{3}\sin\alpha} = -\sqrt{2}\operatorname{tg}\alpha;$$

6)
$$\frac{\cos \alpha - 2\cos\left(\frac{\pi}{3} + \alpha\right)}{2\sin\left(\alpha - \frac{\pi}{6}\right) - \sqrt{3}\sin \alpha} = -\sqrt{3} \operatorname{tg} \alpha.$$

Используя формулы сложения, выведите следующие фор мулы (их называют формулами приведения):

24.13. a)
$$\sin (\pi - x) = \sin x$$
;

24.14. a) $\sin\left(\frac{\pi}{2} + x\right) = \cos x;$

B)
$$tg (2\pi - x) = -tg x$$
;
r) $ctg (\pi - x) = -ctg x$.

$$6) \cos (\pi + x) = -\cos x;$$

B)
$$\operatorname{tg}\left(\frac{\pi}{2}-x\right)=\operatorname{ctg}x;$$

6)
$$\cos\left(\frac{3\pi}{2}-x\right)=-\sin x;$$
 r) $\cot\left(\frac{3\pi}{2}+x\right)=-\tan x.$

r) ctg
$$\left(\frac{3\pi}{2} + x\right) = -\text{tg } x$$
.

Вычислите:

24.15. a)
$$\sin 74^{\circ} \cos 16^{\circ} + \cos 74^{\circ} \sin 16^{\circ}$$
;

B)
$$\sin 89^{\circ} \cos 1^{\circ} + \cos 89^{\circ} \sin 1^{\circ}$$
;

r)
$$\cos 178^{\circ} \cos 2^{\circ} - \sin 178^{\circ} \sin 2^{\circ}$$
.

24.16. a)
$$\sin \frac{\pi}{5} \cos \frac{\pi}{20} + \cos \frac{\pi}{5} \sin \frac{\pi}{20}$$
;

6)
$$\cos \frac{2\pi}{7} \cos \frac{5\pi}{7} - \sin \frac{2\pi}{7} \sin \frac{5\pi}{7}$$
;

B)
$$\sin \frac{\pi}{12} \cos \frac{11\pi}{12} + \cos \frac{\pi}{12} \sin \frac{11\pi}{12}$$
;

r)
$$\cos \frac{2\pi}{15} \cos \frac{\pi}{5} - \sin \frac{2\pi}{15} \sin \frac{\pi}{5}$$
.

24.17. a)
$$\cos 107^{\circ} \cos 17^{\circ} + \sin 107^{\circ} \sin 17^{\circ}$$
;

6)
$$\cos 36^{\circ} \cos 24^{\circ} - \sin 36^{\circ} \sin 24^{\circ}$$
;

B)
$$\sin 63^{\circ} \cos 27^{\circ} + \cos 63^{\circ} \sin 27^{\circ}$$
;

r)
$$\sin 51^{\circ} \cos 21^{\circ} - \cos 51^{\circ} \sin 21^{\circ}$$
.

24.18. a)
$$\cos \frac{5\pi}{8} \cos \frac{3\pi}{8} + \sin \frac{5\pi}{8} \sin \frac{3\pi}{8}$$
;

6)
$$\sin \frac{2\pi}{15} \cos \frac{\pi}{5} + \cos \frac{2\pi}{15} \sin \frac{\pi}{5}$$
;

B)
$$\cos \frac{\pi}{12} \cos \frac{\pi}{4} - \sin \frac{\pi}{12} \sin \frac{\pi}{4}$$
;

r)
$$\sin\frac{\pi}{12}\cos\frac{\pi}{4} - \cos\frac{\pi}{12}\sin\frac{\pi}{4}$$
.

024.19. Докажите равенство:

a)
$$\sin 75^{\circ} \cos 75^{\circ} = \frac{1}{4}$$
;

B)
$$\sin 105^{\circ} \cos 105^{\circ} = -\frac{1}{4}$$
;

6)
$$\cos^2 75^\circ - \sin^2 75^\circ = -\frac{\sqrt{3}}{2}$$
;

r)
$$\cos^2 75^\circ + \sin^2 75^\circ = 1$$
.

○24.20. Решите уравнение:

a)
$$\sin 2x \cos x + \cos 2x \sin x = 1$$
;

6)
$$\cos 3x \cos 5x = \sin 3x \sin 5x$$
;

B)
$$\sin 6x \cos x + \cos 6x \sin x = \frac{1}{2}$$
;

r)
$$\cos 5x \cos 7x - \sin 5x \sin 7x = -\frac{\sqrt{3}}{2}$$
.

024.21. Найдите наименьший (в градусах) положительный кореж **уравнения:**

- a) $\sin x \cos 45^\circ + \cos x \sin 45^\circ =$
- $= \cos 17^{\circ} \cos 13^{\circ} \sin 17^{\circ} \sin 13^{\circ};$
- 6) $\cos x \cos 45^{\circ} + \sin x \sin 45^{\circ} =$
- $= \sin 200^{\circ} \cos 80^{\circ} \cos 200^{\circ} \sin 80^{\circ}$.

024.22. Решите уравнение:

- a) $\cos 6x \cos 5x + \sin 6x \sin 5x = -1$;
- 6) $\sin 3x \cos 5x \sin 5x \cos 3x = 0.5$.

024.23. Найдите корни уравнения на заданном промежутке:

- a) $\sin 0.2x \cos 0.8x + \cos 0.2x \sin 0.8x = \cos 3x \cos 2x$ $+ \sin 3x \sin 2x, x \in [0; 3\pi];$
- 6) $\cos 0.7x \cos 1.3x \sin 0.7x \sin 1.3x = \sin 7x \cos 9x$ $-\sin 9x \cos 7x, x \in [-\pi; \pi].$

Решите уравнение:

024.24. a) $\sqrt{2} \cos \left(\frac{\pi}{4} - x \right) - \cos x = 0.5;$

6)
$$\sqrt{2} \sin \left(\frac{\pi}{4} - \frac{x}{2} \right) + \sin \frac{x}{2} = \frac{\sqrt{3}}{2}$$
.

O24.25. a) $\frac{\sqrt{2}}{2}\sin x - \frac{\sqrt{2}}{2}\cos x = 1;$ B) $\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = 1;$

B)
$$\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = 1$$
;

 $6) \sin x - \cos x = 1;$

$$r) \sqrt{3} \cos x + \sin x = 1.$$

O24.26. a) $\frac{\sqrt{2}}{2} \sin x + \frac{\sqrt{2}}{2} \cos x = 1;$ B) $\frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x = 1;$

B)
$$\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = 1;$$

 $6) \sin x + \cos x = 1;$

$$r) \sqrt{3} \cos x - \sin x = 1.$$

024.27. Зная, что $\sin t = \frac{3}{5}, \ 0 < t < \frac{\pi}{2}$, вычислите:

a)
$$\sin\left(\frac{\pi}{3}+t\right)$$
;

B)
$$\sin\left(\frac{\pi}{2}+t\right)$$
;

6)
$$\cos\left(\frac{\pi}{2}+t\right)$$
; r) $\cos\left(\frac{\pi}{3}+t\right)$.

$$\left(\frac{\pi}{3} + t\right)$$

 $\mathbf{O24.28.}$ Зная, что $\cos t = -\frac{5}{13}, \ \frac{\pi}{2} < t < \pi$, вычислите:

a)
$$\sin\left(t+\frac{\pi}{6}\right)$$
;

B)
$$\cos\left(t+\frac{\pi}{6}\right)$$
;

6)
$$\cos\left(t+\frac{3\pi}{2}\right)$$
;

r)
$$\sin\left(t+\frac{3\pi}{2}\right)$$
.

$${\it O24.29.}$$
 Зная, что $\sin\alpha=\frac{8}{17},\;\cos\beta=\frac{4}{5},\;0<\alpha<\frac{\pi}{2},\;0<\beta<\frac{\pi}{2},$ найдите значение выражения:

a) $\sin (\alpha + \beta)$;

6) $\cos (\alpha + \beta)$.

 $_{\it O24.30}$. Зная, что $\sin \alpha = \frac{4}{5}, \; \cos \beta = -\frac{15}{17}, \; \frac{\pi}{2} < \alpha < \pi, \; \frac{\pi}{2} < \beta < \pi,$ найдите значение выражения:

a) $\sin (\alpha + \beta)$;

δ) cos (α + β).

 $_{0}24.31.$ Зная, что $\sin\alpha=\frac{9}{41},\ \sin\beta=-\frac{40}{41},\ 0<\alpha<\frac{\pi}{2},\ \frac{3\pi}{2}<\beta<2\pi,$ найдите значение выражения:

a) $\sin (\alpha + \beta)$;

δ) cos (α + β).

024.32. Зная, что $\sin t = \frac{5}{13}, \frac{\pi}{2} < t < \pi$, вычислите:

a) $\sin\left(\frac{\pi}{3}-t\right)$;

B) $\sin\left(\frac{\pi}{2}-t\right)$;

6) $\cos\left(t-\frac{\pi}{2}\right)$;

r) $\cos\left(\frac{\pi}{3}-t\right)$.

024.33. Зная, что $\cos t = \frac{3}{5}, \ \frac{3\pi}{2} < t < 2\pi$, вычислите:

a) $\sin\left(t-\frac{\pi}{6}\right)$;

B) $\cos\left(t-\frac{3\pi}{2}\right)$;

6) $\sin\left(t-\frac{3\pi}{2}\right)$;

r) $\cos\left(t-\frac{\pi}{6}\right)$.

024.34. Зная, что $\sin \alpha = \frac{4}{5}, \ \cos \beta = -\frac{15}{17}, \ \frac{\pi}{2} < \alpha < \pi, \ \frac{\pi}{2} < \beta < \pi,$ вычислите:

a) $\sin (\alpha - \beta)$;

6) $\cos (\alpha - \beta)$.

 $^{\bigcirc 24.35.}$ Зная, что $\sin\beta=-\frac{12}{13},\;\cos\alpha=-0.8,\;\pi<\beta<\frac{3\pi}{2},\;\frac{\pi}{2}<\alpha<\pi,$ вычислите:

a) $\sin (\alpha - \beta)$;

6) $\cos (\alpha - \beta)$.

Решите неравенство:

024.36. a) $\sin 5x \cos 3x - \cos 5x \sin 3x > \frac{1}{2}$;

6)
$$\cos x \cos \frac{x}{2} + \sin x \sin \frac{x}{2} < -\frac{2}{7}$$
;

B)
$$\sin \frac{x}{4} \cos \frac{x}{2} - \cos \frac{x}{4} \sin \frac{x}{2} < \frac{1}{3}$$

r)
$$\sin 2x \sin 5x + \cos 2x \cos 5x > -\frac{\sqrt{3}}{2}$$
.

024.37. a) $\sin x \cos 3x + \cos x \sin 3x > \frac{1}{2}$;

6)
$$\cos 2x \cos 5x - \sin 2x \sin 5x < -\frac{1}{3}$$
;

$$\text{B) } \sin x \cos \frac{x}{2} + \cos x \sin \frac{x}{2} \leqslant -\frac{2}{7};$$

r)
$$\cos \frac{x}{2} \cos \frac{x}{4} - \sin \frac{x}{2} \sin \frac{x}{4} > \frac{\sqrt{2}}{2}$$
.

●24.38. Докажите, что для любого действительного значения г справедливо неравенство:

- a) $\sin (5 + x) \cos x < \cos (5 + x) \sin x$;
- 6) $\cos (7-2x)\cos 2x > \sin (7-2x)\sin 2x$.

024.39. a) Зная, что $\sin\left(x-\frac{\pi}{6}\right)=0.6$ и $\frac{2\pi}{3}< x<\frac{7\pi}{6}$, вычислите: $\sin x$.

б) Зная, что
$$\cos\left(x+\frac{2\pi}{3}\right)=-0.8$$
 и $\frac{\pi}{3} < x < \frac{5\pi}{6}$, вычислите: $\cos x$.

024.40. Определите знак числа a:

a)
$$a = (\cos 1 + \cos 2)^2 + (\sin 1 - \sin 2)^2 - 2$$
:

a)
$$a = (\cos 1 + \cos 2)^2 + (\sin 1 - \sin 2)^2 - 2;$$

6) $a = (\sin 3 + \cos 4)^2 + (\cos 3 + \sin 4)^2 - 1.$

024.41. Сравните числа $a = \cos x \cos 2x$ и $b = \cos 3x$, если:

a)
$$0 < x < \frac{\pi}{2}$$
;

$$6) \frac{\pi}{2} < x < \pi.$$

024.42. Сравните числа $a = \sin x \cos 2x$ и $b = \sin 3x$, если:

a)
$$\frac{\pi}{2} < x < \pi;$$

6)
$$\pi < x < \frac{3\pi}{2}$$
.

$$m{\phi}24.43$$
. Сравните числа a и b , если:
a) $a=\frac{\sin 3}{\sin 4}$, $b=\frac{\cos 3}{\cos 4}$; 6) $a=\frac{\sin 4}{\cos 5}$, $b=\frac{\cos 4}{\sin 5}$.

 $a_{24.44}$. a) Зная, что $\cos(x+y)=a$, $\cos(x-y)=b$, найдите tg x tg y.

б) Зная, что
$$\sin(x + y) = a$$
, $\sin(x - y) = b$, найдите $\frac{\operatorname{tg} x}{\operatorname{tg} y}$.

•24.45. Докажите, что не существует пары (x; y), такой, что: a) $\sin x \cos y = 0.7$; $\cos x \sin y = 0.4$;

a)
$$\sin x \cos y = 0.7$$
; $\cos x \sin y = 0.4$;

6)
$$\cos x \cos y = \frac{\sqrt{6}}{3}$$
; $\sin x \sin y = -\frac{\sqrt{2}}{2}$.

24.46. a) Докажите, что если $tg(\alpha + \beta) \sin \gamma = \cos \gamma$, то $\alpha + \beta + \beta$ $+\gamma=\frac{\pi}{2}+\pi n;$

б) докажите, что если ctg (
$$\alpha + \beta$$
) sin $\gamma = -\cos \gamma$, то $\alpha + \beta + \gamma = \pi n$;

024.47. Постройте график функции:

a)
$$y = \sin \frac{11x}{5} \cos \frac{x + 10\pi}{5} - \cos \frac{11x}{5} \sin \frac{x}{5}$$
;

6)
$$y = \cos\left(2x + \frac{7\pi}{12}\right)\cos\left(x + \frac{\pi}{4}\right) + \sin\left(2x + \frac{7\pi}{12}\right)\sin\left(x + \frac{9\pi}{4}\right)$$

Вычислите:

•24.48. a)
$$\sin\left(\frac{\pi}{3} + \arccos\frac{3}{5}\right)$$

B)
$$\sin\left(\frac{\pi}{4} - \arcsin\frac{3}{5}\right)$$
;

6)
$$\cos\left(\frac{\pi}{6} + \arccos\left(-\frac{3}{5}\right)\right)$$
; r) $\cos\left(\frac{\pi}{2} - \arcsin\frac{5}{13}\right)$.

r)
$$\cos\left(\frac{\pi}{2} - \arcsin\frac{5}{13}\right)$$

•24.49. a)
$$\sin\left(\arccos\left(-\frac{4}{5}\right) + \arcsin\frac{1}{3}\right)$$
;

6)
$$\cos \left(\arctan \frac{3}{4} + \arcsin \left(-\frac{3}{5} \right) \right)$$

•24.50. Докажите равенство:

$$\arcsin\frac{4}{5} - \arccos\frac{2}{\sqrt{5}} = \arctan\frac{1}{2}.$$

Докажите равенство:

•24.51.
$$\arccos \frac{1}{2} + \arccos \left(-\frac{1}{7}\right) = \arccos \left(-\frac{13}{14}\right)$$

•24.52.
$$\arcsin \frac{4}{5} + \arcsin \frac{5}{13} + \arcsin \frac{16}{65} = \frac{\pi}{2}$$
.

§ 25. Тангенс суммы и разности аргументов

Вычислите:

в)
$$tg\ 105^{\circ}$$
; г) $tg\ 165^{\circ}$.

25.2. a)
$$\frac{\text{tg } 25^{\circ} + \text{tg } 20^{\circ}}{1 - \text{tg } 25^{\circ} \text{ tg } 20^{\circ}};$$

B)
$$\frac{\text{tg } 9^{\circ} + \text{tg } 51^{\circ}}{1 - \text{tg } 9^{\circ} \text{ tg } 51^{\circ}};$$

$$6) \ \frac{1 - tg \ 70^{\circ} \ tg \ 65^{\circ}}{tg \ 70^{\circ} + tg \ 65^{\circ}};$$

r)
$$\frac{1 + \text{tg } 54^{\circ} \text{ tg } 9^{\circ}}{\text{tg } 54^{\circ} - \text{tg } 9^{\circ}}$$
.

Упростите выражение:

25.3. a)
$$\frac{\text{tg } 2,22 + \text{tg } 0,92}{1 - \text{tg } 2,22 \text{ tg } 0,92}$$
;

6)
$$\frac{\text{tg } 1,47 - \text{tg } 0,69}{1 + \text{tg } 1,47 \text{ tg } 0,69}$$

25.4. a)
$$\frac{\operatorname{tg}\left(\frac{\pi}{8} + \alpha\right) + \operatorname{tg}\left(\frac{\pi}{8} - \alpha\right)}{1 - \operatorname{tg}\left(\frac{\pi}{8} + \alpha\right) \operatorname{tg}\left(\frac{\pi}{8} - \alpha\right)};$$

6)
$$\frac{\operatorname{tg} (45^{\circ} + \alpha) - \operatorname{tg} \alpha}{1 + \operatorname{tg} (45^{\circ} + \alpha) \operatorname{tg} \alpha}.$$

Докажите тождество:

O25.5. a)
$$\frac{1 - \lg \alpha}{1 + \lg \alpha} = \lg (45^{\circ} - \alpha);$$

6)
$$\operatorname{tg}\left(\frac{3\pi}{4}-x\right)+\operatorname{tg}x=\operatorname{tg}\left(\frac{3\pi}{4}-x\right)\operatorname{tg}x-1;$$

B)
$$\frac{\operatorname{tg} \alpha + \operatorname{tg} \beta}{\operatorname{tg} (\alpha + \beta)} + \frac{\operatorname{tg} \alpha - \operatorname{tg} \beta}{\operatorname{tg} (\alpha - \beta)} = 2;$$

r)
$$tg\left(\alpha + \frac{\pi}{4}\right) - tg\alpha = 1 + tg\left(\frac{\pi}{4} + \alpha\right)tg\alpha$$
.

O25.6. a)
$$tg(\alpha + \beta) - (tg \alpha + tg \beta) = tg(\alpha + \beta) tg \alpha tg \beta$$
;

6)
$$tg(\alpha - \beta) - (tg\alpha - tg\beta) = tg(\beta - \alpha) tg\alpha tg\beta$$
.

O25.7. a)
$$\frac{\lg^2 2x - \lg^2 x}{1 - \lg^2 2x \lg^2 x} = \lg 3x \lg x;$$

6)
$$\frac{tg^2 30^{\circ} - tg^2 15^{\circ}}{1 - tg^2 30^{\circ} tg^2 15^{\circ}} = tg 15^{\circ}.$$

25.8. Представив
$$2x$$
 в виде $x + x$, докажите тождество $tg\ 2x = \frac{2 tg\ x}{1 - t\sigma^2 x}$.

- 025.9. Докажите, что значение выражения $\frac{tg \ (\alpha-\beta)-tg \ \alpha+tg \ \beta}{tg \ (\alpha-\beta) tg \ \beta}$ не зависит от значения β .
- о25.10. Вычислите:

a)
$$tg\left(\frac{\pi}{4} - \alpha\right)$$
, если $tg\alpha = \frac{2}{3}$;

б)
$$\operatorname{tg}\left(\alpha + \frac{\pi}{3}\right)$$
, если $\operatorname{tg}\alpha = \frac{4}{5}$.

025.11. Известно, что tg $\alpha = \frac{1}{2}$, tg $\beta = \frac{1}{3}$. Вычислите:

a) tg
$$(\alpha + \beta)$$
;

$$δ$$
) tg $(α - β)$.

025.12. a) Вычислите tg
$$\alpha$$
, если tg $\left(\alpha - \frac{\pi}{4}\right) = 3$;

б) вычислите ctg
$$\alpha$$
, если tg $\left(\alpha + \frac{\pi}{4}\right) = 0,2$.

- $\circ 25.13$. a) Зная, что tg $\alpha = 3$ и tg $(\alpha + \beta) = 1$, вычислите tg β ;
 - б) зная, что tg $\alpha = \frac{1}{4}$ и tg $(\alpha \beta) = 2$, вычислите tg β .
- 025.14. Известно, что $\sin \alpha = -\frac{12}{13}, \ \pi < \alpha < \frac{3\pi}{2}$. Вычислите:

a)
$$\operatorname{tg}\left(\alpha + \frac{\pi}{4}\right)$$
;

6)
$$\operatorname{tg}\left(\alpha-\frac{\pi}{4}\right)$$
.

 $\bigcirc 25.15$. Известно, что $\cos \alpha = \frac{3}{5}, \ 0 < \alpha < \frac{\pi}{2}$. Вычислите:

a)
$$\operatorname{tg}\left(\alpha + \frac{\pi}{3}\right)$$
;

6)
$$\operatorname{tg}\left(\alpha - \frac{5\pi}{4}\right)$$

025.16. Дано: $\alpha - \beta = \frac{\pi}{4}$. Докажите, что:

a)
$$\frac{1 + \lg \beta}{1 - \lg \beta} = \lg \alpha$$
;

$$δ) \frac{tg α - 1}{tg α + 1} = tg β.$$

025.17. Решите уравнение:

a)
$$\frac{\lg x + \lg 3x}{1 - \lg r \lg 3r} = 1;$$

6)
$$\frac{ \text{tg } 5x - \text{tg } 3x}{1 + \text{tg } 3x \text{ tg } 5x} = \sqrt{3}$$
.

025.18. Найдите корни уравнения, принадлежащие отрезку [- π ; 2π]:

a)
$$\frac{\sqrt{3} - \lg x}{1 + \sqrt{3} \lg x} = 1;$$

6)
$$\frac{\operatorname{tg} \frac{\pi}{5} - \operatorname{tg} 2x}{\operatorname{tg} \frac{\pi}{5} \operatorname{tg} 2x + 1} = \sqrt{3}.$$

О25.19. Решите неравенство:

a)
$$\frac{\operatorname{tg} \frac{\pi}{5} + \operatorname{tg} x}{1 - \operatorname{tg} \frac{\pi}{5} \operatorname{tg} x} < 1;$$

$$6) \ \frac{ \log 3x - 1}{ \log 3x + 1} > 1.$$

025.20. Решите систему уравнений:

a)
$$\begin{cases} tg(x + y) = -3, \\ 2 tg x - tg y = 0; \end{cases}$$

6)
$$\begin{cases} tg(x - y) = -\frac{1}{2}, \\ 2tg x + tg y = 5. \end{cases}$$

•25.21. Вычислите β , если известно, что tg $(\alpha + \beta) = -3$, tg $(\alpha - \beta) =$ $=\frac{1}{2} \text{ if } \frac{\pi}{2} < \beta < \pi.$

•25.22. Вычислите:

a)
$$\operatorname{tg}\left(\frac{\pi}{4} + \operatorname{arctg}\frac{2}{7}\right)$$
;

B)
$$\operatorname{tg}\left(\frac{\pi}{3} - \operatorname{arcctg}\frac{1}{3}\right)$$
;

6)
$$\operatorname{tg}\left(\frac{3\pi}{4} - \arccos\left(-\frac{3}{5}\right)\right)$$

6)
$$\operatorname{tg}\left(\frac{3\pi}{4} - \operatorname{arccos}\left(-\frac{3}{5}\right)\right)$$
; r) $\operatorname{tg}\left(\operatorname{arcsin}\frac{4}{5} + \operatorname{arcctg}\frac{3}{4}\right)$

•25.23. Докажите, что прямые y = 3x + 1 и y = 6 - 2x пересекаются под углом 45°.

ullet25.24. Точка K — середина стороны CD квадрата ABCD. Чему равен тангенс острого угла между диагональю AC и отрезком BK?

§ 26. Формулы приведения

Упростите выражение:

26.1. a)
$$\sin\left(\frac{\pi}{2}-t\right)$$
;

B)
$$\cos\left(\frac{3\pi}{2}+t\right)$$
;

6)
$$\cos(2\pi-t)$$
;

r)
$$\sin (\pi + t)$$
.

26.2. a)
$$\sin (\pi - t)$$
;

B)
$$\cos(2\pi + t)$$
;

6)
$$\cos\left(\frac{\pi}{2}+t\right)$$

r)
$$\sin\left(\frac{3\pi}{2}-t\right)$$
.

26.3. a)
$$\cos (90^{\circ} - \alpha)$$
;

B)
$$\sin (270^{\circ} + \alpha);$$

$$6$$
) sin (360° – α);

r)
$$\cos (180^{\circ} + \alpha)$$
.

26.4. a) tg (90° –
$$\alpha$$
);

B)
$$tg (270^{\circ} + \alpha);$$

6) ctg (180° –
$$\alpha$$
);

r) ctg
$$(360^{\circ} + \alpha)$$
.

Вычислите с помощью формул приведения:

26.5. a)
$$\sin 240^{\circ}$$
;

в)
$$\cos 330^{\circ}$$
; г) $\cot g 315^{\circ}$.

26.6. a)
$$\cos \frac{5\pi}{3}$$
;

B)
$$\sin \frac{7\pi}{6}$$
;

6)
$$\sin\left(-\frac{11\pi}{6}\right)$$
;

r)
$$\cos\left(-\frac{7\pi}{3}\right)$$
.

в) $\cos 4650^{\circ}$;

г) ctg 4110°.

$$\circ 26.8.$$
 a) $\cos 630^{\circ} - \sin 1470^{\circ} - \cot 1125^{\circ}$;

6)
$$\sin(-7\pi) + 2\cos\frac{31\pi}{3} - \tan\frac{7\pi}{4}$$
;

B)
$$tg 1800^{\circ} - \sin 495^{\circ} + \cos 945^{\circ}$$
;

r)
$$\cos (-9\pi) + 2 \sin \left(-\frac{49\pi}{6}\right) - \cot \left(-\frac{21\pi}{4}\right)$$

○26.9. Упростите выражение:

a)
$$\sin (90^{\circ} - \alpha) + \cos (180^{\circ} + \alpha) + tg (270^{\circ} + \alpha) + ctg (360^{\circ} + \alpha);$$

6)
$$\sin\left(\frac{\pi}{2}+t\right)-\cos\left(\pi-t\right)+\operatorname{tg}\left(\pi-t\right)+\operatorname{ctg}\left(\frac{5\pi}{2}-t\right)$$

Упростите выражение:

026.10. a)
$$\frac{\cos{(180^{\circ} + \alpha)}\cos{(-\alpha)}}{\sin{(-\alpha)}\sin{(90^{\circ} + \alpha)}};$$

B)
$$\frac{\sin(-\alpha)\cot(-\alpha)}{\cos(360^{\circ}-\alpha)\tan(180^{\circ}+\alpha)};$$

$$6) \frac{\sin (\pi - t) \cos (2\pi - t)}{\operatorname{tg} (\pi - t) \cos (\pi - t)}$$

6)
$$\frac{\sin(\pi-t)\cos(2\pi-t)}{\operatorname{tg}(\pi-t)\cos(\pi-t)}; \qquad \text{r) } \frac{\sin(\pi+t)\sin(2\pi+t)}{\operatorname{tg}(\pi+t)\cos\left(\frac{3\pi}{2}+t\right)}.$$

O26.11. a)
$$\frac{\cos{(\pi-t)} + \cos{(\frac{\pi}{2}-t)}}{\sin{(2\pi-t)} - \sin{(\frac{3\pi}{2}-t)}};$$

6)
$$\frac{\sin^2(\pi-t)+\sin^2\left(\frac{\pi}{2}-t\right)}{\sin(\pi-t)}\cdot \operatorname{tg}(\pi-t).$$

026.12. a)
$$\frac{\sin^3(\alpha - 270^\circ)\cos(360^\circ - \alpha)}{tg^3(\alpha - 90^\circ)\cos^3(\alpha - 270^\circ)};$$

6)
$$\frac{\sin\left(\frac{3\pi}{2}+x\right)\operatorname{tg}\left(\frac{\pi}{2}+y\right)}{\cos\left(\pi-x\right)\operatorname{ctg}\left(\frac{3\pi}{2}-y\right)} - \frac{\sin\left(\frac{7\pi}{2}-y\right)\operatorname{ctg}\left(\frac{5\pi}{2}+x\right)}{\cos\left(2\pi-y\right)\operatorname{tg}\left(11\pi-x\right)}.$$

026.13. Докажите тождество:

a)
$$\frac{\operatorname{tg}(\pi-t)}{\cos(\pi+t)} \cdot \frac{\sin\left(\frac{3\pi}{2}+t\right)}{\operatorname{tg}\left(\frac{3\pi}{2}+t\right)} = \operatorname{tg}^{2}t;$$

6)
$$\frac{\sin(\pi-t)}{\operatorname{tg}(\pi+t)} \cdot \frac{\operatorname{ctg}\left(\frac{\pi}{2}-t\right)}{\operatorname{tg}\left(\frac{\pi}{2}+t\right)} \cdot \frac{\cos(2\pi-t)}{\sin(-t)} = \sin t;$$

$$\mathbf{B}) \ \frac{\cos^2(\pi-t) + \sin^2\left(\frac{\pi}{2}-t\right) + \cos\left(\pi+t\right)\cos\left(2\pi-t\right)}{\operatorname{tg}^2\left(t-\frac{\pi}{2}\right)\operatorname{ctg}^2\left(\frac{3\pi}{2}+t\right)} = \cos^2t;$$

r)
$$\frac{\sin^2\left(t - \frac{3\pi}{2}\right)\cos\left(2\pi - t\right)}{\operatorname{tg}^2\left(t - \frac{\pi}{2}\right)\cos^2\left(t - \frac{3\pi}{2}\right)} = \cos t.$$

Вычислите:

$$_{\odot}26.14.$$
 a) $\frac{11\cos 287^{\circ} - 25\sin 557^{\circ}}{\sin 17^{\circ}};$

6)
$$\frac{13\sin 469^{\circ} - 8\cos 341^{\circ}}{\cos 19^{\circ}}$$
.

$$_{\text{O}26.15. a)} \; \frac{2\cos\frac{11\pi}{5} + 8\sin\frac{13\pi}{10}}{\cos\frac{\pi}{5}}; \qquad \text{ 6)} \; \frac{5\sin\frac{5\pi}{7} + 2\cos\frac{25\pi}{14}}{\sin\frac{2\pi}{7}}.$$

6)
$$\cos 125^{\circ} \cos 5^{\circ} + \sin 55^{\circ} \cos 85^{\circ}$$
.

$$\circ 26.17.$$
 a) $\sin\left(\frac{\pi}{6} + t\right)\cos\left(\frac{\pi}{3} - t\right) + \sin\left(\frac{2\pi}{3} + t\right)\sin\left(\frac{\pi}{3} - t\right);$

6)
$$\cos\left(\frac{\pi}{4}+t\right)\cos\left(\frac{\pi}{12}-t\right)-\cos\left(\frac{\pi}{4}-t\right)\cos\left(\frac{5\pi}{12}+t\right)$$
.

026.18. a)
$$\frac{\cos 105^{\circ} \cos 5^{\circ} + \sin 105^{\circ} \cos 85^{\circ}}{\sin 195^{\circ} \cos 5^{\circ} + \cos 195^{\circ} \sin 185^{\circ}}$$

6)
$$\frac{\sin 75^{\circ} \cos 5^{\circ} - \cos 75^{\circ} \cos 85^{\circ}}{\cos 375^{\circ} \cos 5^{\circ} - \sin 15^{\circ} \sin 365^{\circ}}.$$

026.19. a)
$$\frac{\text{tg } 380^{\circ} + \text{tg } 25^{\circ}}{\text{tg } 225^{\circ} + \text{ctg } 290^{\circ} \text{ ctg } 65^{\circ}};$$
 6) $\frac{\text{tg } \frac{19\pi}{36} - \text{tg } \frac{7\pi}{36}}{\sqrt{3} \text{ ctg } \frac{7\pi}{3} - \text{ctg } \frac{\pi}{36} \text{ ctg } \frac{11\pi}{36}}.$

$$\bigcirc$$
26.20. Известно, что ctg $\left(\frac{3\pi}{2}-x\right)=0,4,\ \mathrm{tg}\left(\frac{\pi}{2}+y\right)=-3.$ Вычислите: a) tg $(x+y);$ б) ctg $(x-y).$

$$026.21.$$
 a) $2\cos(2\pi + x) + \sin(\frac{\pi}{2} + x) = 3;$

6)
$$\sin (\pi + x) + 2 \cos \left(\frac{\pi}{2} + x\right) = 3;$$

B)
$$2 \sin (\pi + x) + \cos \left(\frac{\pi}{2} - x\right) = -\frac{1}{2};$$

r)
$$3\sin\left(\frac{\pi}{2}+x\right)-\cos\left(2\pi+x\right)=1.$$

O26.22. a)
$$5 \sin \left(\frac{\pi}{2} + x\right) - \sin \left(\frac{3\pi}{2} + x\right) - 8 \cos (2\pi - x) = 1;$$

6) $\sin (2\pi + x) - \cos \left(\frac{\pi}{2} - x\right) + \sin (\pi - x) = 1.$

O26.23. a)
$$\sin^2(\pi + x) + \cos^2(2\pi - x) = 0$$
;
6) $\sin^2(\pi + x) + \cos^2(2\pi - x) = 1$.

026.24. a)
$$\sin \left(\frac{\pi}{2} + 2x\right) + \cos \left(\frac{\pi}{2} - 2x\right) = 0;$$

6)
$$2\sin(\pi-3x)+\cos(2\pi-3x)=0$$
.

026.25. a)
$$\cos\left(\frac{\pi}{2} - \frac{x}{2}\right) - 3\cos\left(\pi - \frac{x}{2}\right) = 0;$$

6)
$$\sqrt{3} \sin \left(\pi - \frac{x}{3}\right) + 3 \sin \left(\frac{\pi}{2} - \frac{x}{3}\right) = 0.$$

026.26. a)
$$\sin^2 x + \cos \left(\frac{\pi}{2} - x\right) \sin \left(\frac{\pi}{2} - x\right) - 2\cos^2 x = 0;$$

6)
$$\sin^2 3x + 3\cos^2 3x - 4\sin\left(\frac{\pi}{2} + 3x\right)\cos\left(\frac{\pi}{2} + 3x\right) = 0;$$

B)
$$\sin^2 x + 2 \sin (\pi - x) \cos x - 3 \cos^2 (2\pi - x) = 0$$
;

r)
$$\sin^2(2\pi - 3x) + 5\sin(\pi - 3x)\cos 3x + 4\sin^2\left(\frac{3\pi}{2} - 3x\right) = 0$$
.

026.27. a)
$$3 \sin^2 \frac{x}{2} + \sin \frac{x}{2} \sin \left(\frac{\pi}{2} - \frac{x}{2} \right) = 2;$$

6)
$$2\cos^2\frac{x}{2} - 3\sin\left(\pi - \frac{x}{2}\right)\cos\left(2\pi - \frac{x}{2}\right) + 7\sin^2\frac{x}{2} = 3;$$

B)
$$4\cos^2\left(\frac{\pi}{2} + x\right) + \sqrt{3}\sin\left(\frac{3\pi}{2} - x\right)\sin(\pi + x) +$$

$$+ 3 \cos^2 (\pi + x) = 3;$$

r)
$$3\sin^2\left(x-\frac{3\pi}{2}\right)-2\cos\left(\frac{3\pi}{2}+x\right)\cos(\pi+x)+$$

$$+ 2 \sin^2(x - \pi) = 2.$$

$$0.026.28.$$
 a) $2\sin^2(\pi+x)-5\cos\left(\frac{\pi}{2}+x\right)+2=0;$

6)
$$2\cos^2 x + 5\cos\left(\frac{\pi}{2} - x\right) - 4 = 0$$
;

B)
$$2\cos^2 x + \sin\left(\frac{\pi}{2} - x\right) - 1 = 0;$$

$$\Gamma$$
) 5 - 5 sin 3 (π - x) = $\cos^2(\pi - 3x)$.

$$_{0}26.29.$$
 a) $2 \text{ tg}^2 2x + 3 \text{ tg} (\pi + 2x) = 0$;

6)
$$tg^2 3x - 6 ctg \left(\frac{\pi}{2} - 3x\right) = 0.$$

026.30. a)
$$3 ext{ tg}^2 \frac{x}{2} - 2 \operatorname{ctg} \left(\frac{3\pi}{2} + \frac{x}{2} \right) - 1 = 0;$$

6)
$$\operatorname{tg}(\pi + x) + 2 \operatorname{tg}\left(\frac{\pi}{2} + x\right) + 1 = 0;$$

B)
$$3 ext{ tg}^2 4x - 2 \operatorname{ctg} \left(\frac{\pi}{2} - 4x \right) = 1;$$

r)
$$2 \cot x - 3 \cot \left(\frac{\pi}{2} - x\right) + 5 = 0$$
.

$$026.31.$$
 a) $\sin^2 x + \cos^2 2x + \cos^2 \left(\frac{3\pi}{2} + 2x\right) + 2\cos x \operatorname{tg} x = 1;$

6)
$$2\cos^2 x - \sin\left(x - \frac{\pi}{2}\right) + \lg x \lg\left(x + \frac{\pi}{2}\right) = 0$$
.

○26.32. Постройте график функции:

a)
$$y = \sin (3\pi + 3x) \sin \left(\frac{3\pi}{2} - x\right) + \sin \left(\frac{\pi}{2} + 3x\right) \sin (4\pi - x) + \sin \frac{99\pi}{2}$$
;

6)
$$y = \cos(\pi + x) \cos\left(3\pi - \frac{x}{2}\right) - \cos\left(\frac{\pi}{2} + x\right) \cos\frac{3\pi + x}{2} + \cos\frac{16\pi}{3}$$

•26.33. Докажите равенство:

a)
$$\frac{\sin 50^{\circ} + \cos 50^{\circ}}{\sqrt{2} \sin 85^{\circ}} = 1;$$
 6) $\frac{\cos 40^{\circ} - \sqrt{3} \sin 40^{\circ}}{\sin 190^{\circ}} = 2.$

●26.34. Докажите, что:

a)
$$\arcsin x + \arccos x = \frac{\pi}{2}, x \in [-1; 1];$$

6)
$$\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}, \ x \in \mathbb{R}.$$

Вычислите:

•26.35. a)
$$\arcsin\left(\sin\frac{2\pi}{5}\right)$$
;

B)
$$\arcsin\left(\sin\left(-\frac{2\pi}{5}\right)\right)$$
;

6)
$$\arcsin\left(\sin\frac{2\pi}{5}\right)$$
;

r)
$$\arcsin\left(\cos\left(-\frac{2\pi}{5}\right)\right)$$

•26.36. a)
$$\arcsin\left(-\cos\frac{4\pi}{5}\right)$$
;

B)
$$\operatorname{arctg}\left(\operatorname{ctg}\left(-\frac{21\pi}{5}\right)\right);$$

6)
$$\operatorname{arccos}\left(\cos\left(-\frac{24\pi}{5}\right)\right)$$
; r) $\operatorname{arcctg}\left(\operatorname{tg}\left(\frac{27\pi}{7}\right)\right)$.

r)
$$arcctg\left(tg\left(\frac{27\pi}{7}\right)\right)$$

•26.37. Постройте график функции:

a)
$$y = \arcsin(\sin x)$$
;

б)
$$y = \arcsin(\cos x)$$
.

§ 27. Формулы двойного аргумента. Формулы понижения степени

Упростите выражение:

27.1. a)
$$\frac{\sin 2t}{\cos t} - \sin t$$
;

$$\mathbf{B)}\,\cos^2t-\cos2t;$$

$$6) \frac{\sin 6t}{\cos^2 3t};$$

r)
$$\frac{\cos 2t}{\cos t - \sin t} - \sin t$$
.

27.2. a)
$$\frac{\sin 40^{\circ}}{\sin 20^{\circ}}$$
;

$$B) \frac{\sin 100^{\circ}}{2\cos 50^{\circ}};$$

6)
$$\frac{\cos 80^{\circ}}{\cos 40^{\circ} + \sin 40^{\circ}}$$
;

r)
$$\frac{\cos 36^{\circ} + \sin^2 18^{\circ}}{\cos 18^{\circ}}$$
.

27.3. Вычислите:

a)
$$2 \sin 15^{\circ} \cos 15^{\circ}$$
;

B)
$$\cos^2 15^\circ - \sin^2 15^\circ$$
;

6)
$$(\cos 75^{\circ} - \sin 75^{\circ})^2$$
;

r)
$$(\cos 15^{\circ} + \sin 15^{\circ})^{2}$$
.

Вычислите:

27.4. a)
$$2\sin\frac{\pi}{8}\cos\frac{\pi}{8}$$
;

B)
$$\cos^2 \frac{\pi}{8} - \sin^2 \frac{\pi}{8}$$
;

6)
$$\sin \frac{\pi}{8} \cos \frac{\pi}{8} + \frac{1}{4}$$
;

$$\Gamma) \ \frac{\sqrt{2}}{2} - \left(\cos\frac{\pi}{8} + \sin\frac{\pi}{8}\right)^2.$$

27.5. a)
$$\frac{\text{tg } 75^{\circ}}{1 - \text{tg}^2 75^{\circ}};$$

$$6) \ \frac{2 \operatorname{tg} \frac{5\pi}{12}}{\operatorname{tg}^2 \frac{5\pi}{12} - 1}.$$

27.6. a)
$$\frac{\sin 2t - 2\sin t}{\cos t - 1}$$
;

в)
$$\sin 2t \operatorname{ctg} t - 1$$
;

$$6) \frac{\cos 2t - \cos^2 t}{1 - \cos^2 t};$$

r)
$$2\cos^2\frac{\pi+t}{4}-2\sin^2\frac{\pi+t}{4}$$
.

27.7. a)
$$\frac{2}{\lg t + \csc t}$$
;

B)
$$(1 - tg^2 t) \cos^2 t$$
;

$$6) \ \frac{2}{\operatorname{tg} \ t - \operatorname{ctg} \ t};$$

r)
$$(tg t + ctg t) sin 2t$$
.

Докажите тождество:

27.8. a) $(\sin t - \cos t)^2 = 1 - \sin 2t;$ 6) $\cos^4 t - \sin^4 t = \cos 2t;$ 8) $(\sin t + \cos t)^2 = 1 + \sin 2t;$

 $\Gamma)\cos^4 t - \sin^4 t = 1 - \frac{1}{2}\sin^2 2t.$

27.9. a)
$$\sin^2 2t = \frac{1-\cos 4t}{2}$$
;

B)
$$2\sin^2 2t = 1 + \sin\left(\frac{3\pi}{2} - 4t\right)$$
;

6)
$$2\sin^2\frac{t}{2} + \cos t = 1$$
;

r)
$$2\cos^2 t - \cos 2t = 1$$
.

O27.10. a)
$$\cos^2 3t = \frac{1 + \sin\left(\frac{\pi}{2} - 6t\right)}{2}$$
; B) $\sin^2\left(\frac{3\pi}{4} + 2t\right) = \frac{1 - \sin 4t}{2}$;

B)
$$\sin^2\left(\frac{3\pi}{4} + 2t\right) = \frac{1 - \sin 4t}{2}$$
;

6)
$$\frac{1-\cos t}{1+\cos t} = tg^2 \frac{t}{2}$$
;

$$r) \frac{1-\cos t}{\sin t} = tg \frac{t}{2}.$$

$$^{\circ}27.11. \ a) \ 1 + \sin \alpha = 2 \cos^2 \left(45^{\circ} - \frac{\alpha}{2} \right);$$

6)
$$2 \sin^2(45^\circ - \alpha) + \sin 2\alpha = 1$$
;

B)
$$1 - \sin \alpha = 2 \sin^2 \left(45^\circ - \frac{\alpha}{2} \right)$$
;

r)
$$2\cos^2(45^{\circ} + \alpha) + \sin 2\alpha = 1$$
.

Докажите тождество:

o27.12. a)
$$\frac{\cos 2t}{\sin t \cos t + \sin^2 t} = \cot (\pi + t) - 1;$$

6)
$$\frac{\sin 2t - 2\sin\left(\frac{\pi}{2} - t\right)}{\cos\left(\frac{\pi}{2} - t\right) - \sin^2 t} = -2\operatorname{ctg} t;$$

B) (ctg
$$t - \text{tg } t$$
) sin $2t = 2 \cos 2t$;

r)
$$\frac{1-\cos 2t+\sin 2t}{1+\cos 2t+\sin 2t}\cdot tg\left(\frac{\pi}{2}-t\right)=1.$$

027.13. a)
$$\frac{\sin 2t}{1 + \cos 2t} \cdot \frac{\cos t}{1 + \cos t} = \operatorname{tg} \frac{t}{2}$$
;

6)
$$\frac{\sin 2t}{1+\cos 2t} \cdot \frac{\cos t}{1+\cos t} \cdot \frac{\cos \frac{t}{2}}{1+\cos \frac{t}{2}} = \operatorname{tg} \frac{t}{4}.$$

$$027.14.$$
 a) $\frac{1-\cos 2t + \sin 2t}{1+\sin 2t + \cos 2t} = \text{tg } t;$

6)
$$\frac{1+\cos 2t-\sin 2t}{1+\sin 2t+\cos 2t}= tg\left(\frac{\pi}{4}-t\right)$$
.

027.15. a)
$$\cos^2 t - \cos^2 \left(\frac{\pi}{4} - t\right) = \frac{1}{\sqrt{2}} \sin \left(\frac{\pi}{4} - 2t\right);$$

6)
$$\sin^2 t - \sin^2 \left(\frac{\pi}{4} - t \right) = \frac{1}{\sqrt{2}} \sin \left(2t - \frac{\pi}{4} \right)$$

027.16. a)
$$\cos x \cos 2x = \frac{\sin 4x}{4 \sin x}$$
;

6)
$$\cos x \cos 2x \cos 4x = \frac{\sin 8x}{8 \sin x}$$
;

$$\text{B) } \sin x \cos 2x = \frac{\sin 4x}{4\cos x};$$

r)
$$\sin x \cos 2x \cos 4x = \frac{\sin 8x}{8 \cos x}$$
.

027.17. Проверьте числовое равенство:

a)
$$\sin 18^{\circ} \cos 18^{\circ} \cos 36^{\circ} = \frac{1}{4} \sin 72^{\circ};$$

6)
$$\sin 18^{\circ} \cos 36^{\circ} = \frac{1}{4}$$
.

 $_{\sim 27.18}$. Упростите выражение $\sqrt{1-\cos 2t} + \sqrt{1+\cos 2t}$, если:

a)
$$t \in \left[\frac{\pi}{2}; \pi\right];$$

B)
$$t \in \left[0; \frac{\pi}{2}\right];$$

6)
$$t \in \left\lceil \frac{3\pi}{2}; 2\pi \right\rceil;$$

$$\Gamma$$
) $t \in \left[\pi; \frac{3\pi}{2}\right]$.

27.19. Вычислите (с помощью формул понижения степени):

B)
$$\sin \frac{3\pi}{9}$$
; r) $\cos \frac{3\pi}{9}$.

r)
$$\cos \frac{3\pi}{9}$$

о27.20. Вычислите:

a) sin 11°15′ cos 11°15′ cos 22°30′ cos 45°;

6)
$$\sin\frac{\pi}{48}\cos\frac{\pi}{48}\cos\frac{\pi}{24}\cos\frac{\pi}{12}$$
.

027.21. a)
$$\frac{1 + \cos 40^{\circ} + \cos 80^{\circ}}{\sin 80^{\circ} + \sin 40^{\circ}} \cdot \text{tg } 40^{\circ};$$

6)
$$\frac{1-\cos 25^{\circ}+\cos 50^{\circ}}{\sin 50^{\circ}-\sin 25^{\circ}}- \text{tg } 65^{\circ}.$$

o27.22. a)
$$\frac{\sin 125^{\circ}}{\sin 55^{\circ}} - \frac{\cos 125^{\circ}}{\cos 55^{\circ}}$$
;

6)
$$\frac{\cos 150^{\circ}}{\sin 40^{\circ}} - \frac{\sin 150^{\circ}}{\cos 40^{\circ}}$$
.

•27.23. a)
$$\left(\cos\frac{\pi}{8} + \sin\frac{\pi}{8}\right) \left(\cos^3\frac{\pi}{8} - \sin^3\frac{\pi}{8}\right)$$
;

6)
$$\sin \frac{7\pi}{8} \left(\cos^4 \frac{7\pi}{16} - \sin^4 \frac{7\pi}{16} \right)$$
;

$$\mathrm{B)}\left(\cos\frac{\pi}{12}-\sin\frac{\pi}{12}\right)\left(\cos^3\frac{\pi}{12}+\sin^3\frac{\pi}{12}\right);$$

r)
$$\sin \frac{\pi}{12} \left(\cos^6 \frac{\pi}{24} - \sin^6 \frac{\pi}{24} \right)$$
.

•27.24. a)
$$\sin^2 \frac{3\pi}{8} + \cos^2 \frac{3\pi}{8} + \sin^4 \frac{3\pi}{8} + \cos^4 \frac{3\pi}{8} + \sin^6 \frac{3\pi}{8} + \cos^6 \frac{3\pi}{8}$$
;

6)
$$\cos^2 \frac{5\pi}{8} - \sin^2 \frac{5\pi}{8} + \cos^4 \frac{5\pi}{8} - \sin^4 \frac{5\pi}{8} + \cos^6 \frac{5\pi}{8} - \sin^6 \frac{5\pi}{8}$$
.

•27.25. a)
$$\cos \frac{\pi}{33} \cos \frac{2\pi}{33} \cos \frac{4\pi}{33} \cos \frac{8\pi}{33} \cos \frac{16\pi}{33}$$
;

6)
$$\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}$$
.

●27.26. Докажите равенство:

- a) $8 \cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ} = \cot 10^{\circ};$ 6) $\sin 70^{\circ} + 8 \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = 2 \cos^2 10^{\circ}.$

027.27. Известно, что $\sin t = \frac{5}{13}, \frac{\pi}{2} < t < \pi$. Вычислите:

- a) $\sin 2t$:
- б) $\cos 2t$:
- \mathbf{B}) tg 2t:
- r) ctg 2t.

027.28. Известно, что $\cos x = 0.8$, $0 < x < \frac{\pi}{2}$. Вычислите:

- a) $\sin 2x$;
- б) $\cos 2x$;
- \mathbf{B}) tg 2x;

027.29. Известно, что tg $x = \frac{3}{4}$, $180^{\circ} < x < 270^{\circ}$. Вычислите:

- a) $\sin 2x$;
- 6) $\cos 2x$;
- \mathbf{B}) tg 2x;
- r) ctg 2x.

027.30. а) Известно, что $\cos t = \frac{3}{4}, \ 0 < t < \frac{\pi}{2}$. Вычислите: $\cos\frac{t}{2}$, $\sin\frac{t}{2}$, $\tan\frac{t}{2}$, $\cot\frac{t}{2}$.

> б) Известно, что ctg $t = \frac{3}{4}$, $\pi < t < \frac{3\pi}{2}$. Вычислите: $\cos\frac{t}{2}$, $\sin\frac{t}{2}$, $\tan\frac{t}{2}$, $\cot\frac{t}{2}$.

027.31. a) Известно, что $\sin 2x = -\frac{3}{5}, \frac{\pi}{2} < x < \pi$. Вычислите: $\cos x$, $\sin x$, tg x, ctg x.

- б) Известно, что tg $2x = \frac{3}{4}$, $\pi < x < \frac{5\pi}{4}$. Вычислите: $\cos x$, $\sin x$, tg x, ctg x.
- 027.32. a) Зная, что tg $\frac{x}{2} = a$, найдите $\sin \frac{2x \pi}{2}$, $\cos \frac{2x + \pi}{2}$;
 - б) зная, что tg $\frac{x}{4} = a$, найдите $\sin \frac{x 3\pi}{2}$, $\cos \frac{x + 3\pi}{2}$.

ullet27.33. a) Зная, что $\cos 4x = -\frac{527}{625}, \ \frac{\pi}{4} < x < \frac{\pi}{2}$, вычислите $\sin x$;

б) зная, что $\cos 4x = \frac{17}{81}, \ \frac{\pi}{2} < x < \frac{3\pi}{4}$, вычислите tg x.

027.34. Вычислите $\sin\left(x+\frac{\pi}{6}\right)$, если:

- a) $\sin\left(\frac{x}{2} \frac{\pi}{6}\right) = a;$ 6) $\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = a.$

 $_{O27.35.}$ а) Известно, что $\sin 2\alpha = \frac{1}{3}$. Вычислите $\sin^4 \alpha + \cos^4 \alpha$.

- б) Известно, что $\sin^4\alpha + \cos^4\alpha = \frac{49}{50}$ и $\frac{\pi}{2} < \alpha < \pi$. Вычислите $\sin 2\alpha$.
- $_{0}$ 27.36. Известно, что $\cos 2x = \frac{5}{12}$. Вычислите:
 - a) $\sin^4 x + \cos^4 x$:
- б) $\sin^8 x \cos^8 x$.
- $_{0}$ 27.37. Сравните числа a и b, если:

a)
$$a = \sin \frac{\pi}{12}$$
, $b = \frac{1}{4}$; 6) $a = \operatorname{tg} \frac{\pi}{8}$, $b = \frac{1}{2}$.

6)
$$a = \operatorname{tg} \frac{\pi}{8}, \ b = \frac{1}{2}$$
.

- о27.38. Выразите:
 - a) $\sin 3x$ uepes $\sin x$;
- б) $\cos 3x$ через $\cos x$.
- 027.39. Опираясь на результаты № 27.38, сформулируйте необходимое и достаточное условие для выполнения равенства:
 - a) $\sin 3x = 3 \sin x$;
- 6) $\cos 3x + 3 \cos x = 0$.
- 027.40. a) Зная, что $f(x) = \sin x$, f(a) = 0.1, вычислите f(3a);
 - б) зная, что $f(x) = \sin x$, f(a) = 0.25, вычислите f(4a);
 - в) зная, что $f(x) = \cos x$, f(a) = -0.1, вычислите f(3a);
 - г) зная, что $f(x) = \cos x$, $f(a) = \frac{2}{2}$, вычислите f(4a).
- ullet27.41. a) Зная, что 15 cos 2t + 8 sin t = 9 и 1 < t < 3, вычислите
 - б) зная, что $6\cos 2t + 5\cos t + 3 = 0$ и 4 < t < 6, вычислите ctg t.
- $\bullet 27.42$. a) Докажите, что если $\sin^2 x = \sin y \cos y$, то $\cos 2x = \cos y$ $=2\cos^2\left(\frac{\pi}{4}+y\right);$
 - б) докажите, что если $\cos^2 x = \sin y \cos y$, то $\cos (\pi + 2x) =$ $=2\sin^2\left(\frac{\pi}{4}-y\right).$

•27.43. a) Известно, что tg
$$x = \frac{1}{7}$$
, $\sin y = \frac{\sqrt{10}}{10}$, $0 < x < \frac{\pi}{2}$, $0 < y < \frac{\pi}{2}$.

Докажите, что $x + 2y = \frac{\pi}{4}$.

6) Известно, что
$$\sin x = \frac{7}{25}$$
, $\cos y = \frac{7}{25}$, $\cos z = \frac{3}{5}$, $0 < x < \frac{\pi}{2}$,

$$0 < y < \frac{\pi}{2}$$
, $0 < z < \frac{\pi}{2}$. Докажите, что $x + \frac{y}{2} = z$.

•27.44. а) Зная, что
$$t = 2 \arccos \frac{3}{5}$$
, вычислите $\sin t$, $\cos t$, $\tan t$, $\cot t$;

б) зная, что
$$t=2\arctan\left(-\frac{3}{4}\right)$$
, вычислите $\sin t$, $\cos t$, $\log t$, $\cot t$;

в) зная, что
$$t=2\arcsin\left(-\frac{5}{13}\right)$$
, вычислите $\sin t$, $\cos t$, $\lg t$, $\cot t$;

r) зная, что
$$t=2\arctan\frac{12}{5}$$
, вычислите $\sin t$, $\cos t$, $\log t$, $\cot t$.

•27.45. а) Зная, что
$$t = \arccos \frac{3}{5}$$
, вычислите $\sin \frac{t}{2}$, $\cos \frac{t}{2}$, $\tan \frac{t}{2}$;

б) зная, что
$$t = \arctan\left(-\frac{3}{4}\right)$$
, вычислите $\sin\frac{t}{2}$, $\cos\frac{t}{2}$, $\tan\frac{t}{2}$;

в) зная, что
$$t=\arcsin\left(-\frac{5}{13}\right)$$
, вычислите $\sin\frac{t}{2}$, $\cos\frac{t}{2}$, $\tan\frac{t}{2}$;

г) зная, что
$$t = \operatorname{arcctg} \frac{12}{5}$$
, вычислите $\sin \frac{t}{2}$, $\cos \frac{t}{2}$, $\operatorname{tg} \frac{t}{2}$.

27.46. a)
$$\sin 2x - 2\cos x = 0$$
;

$$\mathbf{B)}\,\sin\,2x-\sin\,x=0;$$

$$6) 2 \sin x = \sin 2x;$$

r)
$$\sin 2x - \cos x = 0$$
.

27.47. a)
$$\sin x \cos x = 1$$
;

B)
$$\cos^2 \frac{x}{3} - \sin^2 \frac{x}{3} = \frac{1}{2}$$
;

$$6) \sin 4x \cos 4x = \frac{1}{2};$$

$$r) \sin^2 x - \cos^2 x = \frac{1}{2}.$$

 $_{
m O27.48}$. Найдите корни уравнения, принадлежащие отрезку [0; 2π]:

- a) $\cos 2x + 3\sin x = 1$;
- $\mathbf{B)}\,\cos\,2x=\cos^2x;$
- $6) \sin^2 x = -\cos 2x;$
- $\Gamma)\cos 2x = 2\sin^2 x.$

 $_{02}$ 7.49. Решите уравнение:

- a) $2 \cos 2x + 3 \sin x = 0$;
- 6) $\cos 6x \cos 3x 2 = 0$;
- B) $26 \sin x \cos x \cos 4x + 7 = 0$;
- $\mathbf{r}) \sin^4 x + \cos^4 x = \sin x \cos x.$

 $_{
m O27.50}$. Найдите (в градусах) наибольший отрицательный корень уравнения:

a)
$$\cos x = \frac{\sin 22,5^{\circ} \cos 22,5^{\circ}}{\cos^2 67,5^{\circ} - \sin^2 67,5^{\circ}};$$

6)
$$\sin x = \frac{\sin^2 75^\circ - \cos^2 75^\circ}{4 \sin 15^\circ \cos 15^\circ}$$
.

Решите уравнение:

$$027.51.$$
 a) $3 \sin 2x + \cos 2x = 1$; 6) $\cos 4x + 2 \sin 4x = 1$.

$$027.52.$$
 a) $4 \sin x + \sin 2x = 0$, $x \in [0; 2\pi]$;

6)
$$\cos^2\left(3x + \frac{\pi}{4}\right) - \sin^2\left(3x + \frac{\pi}{4}\right) + \frac{\sqrt{3}}{2} = 0, x \in \left[\frac{3\pi}{4}; \pi\right].$$

027.53. Сколько корней имеет уравнение:

a)
$$(\cos x - \sin x)^2 = 1 - 2 \sin 2x$$
, на отрезке $\left[\frac{20\pi}{9}; \frac{28\pi}{9}\right]$;

б)
$$2\cos^2\left(2x-\frac{\pi}{4}\right)-2\sin^2\left(\frac{\pi}{4}-2x\right)+1=0$$
, на отрезке $\left\lceil\frac{\pi}{2};\frac{3\pi}{2}\right\rceil$?

$$027.54.$$
 a) $1 - \cos x = 2 \sin \frac{x}{2}$;

B)
$$1 + \cos x = 2 \cos \frac{x}{2}$$
;

$$6) 1 - \cos x = \sin x \sin \frac{x}{2};$$

$$\Gamma) \sin x = tg^2 \frac{x}{2} (1 + \cos x).$$

$$^{\circ}27.55.$$
 a) $\sin^2 2x = 1;$

$$\mathrm{B)}\,\sin^2\left(2x-\frac{\pi}{6}\right)=\frac{3}{4};$$

$$6) \cos^2\left(3x-\frac{\pi}{4}\right)=\frac{3}{4};$$

$$\Gamma)\cos^2\left(x+\frac{\pi}{3}\right)=1.$$

027.56. Найдите корни уравнения, удовлетворяющие неравенство |x| < 4:

a)
$$4 \sin^2 x + \sin^2 2x = 3$$
;

$$6) 4 \cos^2 2x + 8 \cos^2 x = 7.$$

•27.57. Решите уравнение:

a)
$$\sin 2x + 2 \sin x = 2 - 2 \cos x$$
;

6)
$$4 \sin 2x + 8 (\sin x - \cos x) = 7$$
.

027.58. Докажите тождество:

a)
$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}};$$

6)
$$\cos x = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}}$$
.

027.59. Используя замену $u = \operatorname{tg} \frac{x}{2}$ и тождества из упражне ния 27.58, решите уравнение:

a)
$$\sin x + 7\cos x = 5;$$

6)
$$5 \sin x + 10 \cos x + 2 = 0$$
.

027.60. Вычислите $\frac{x}{2}$, если известно, что:

a)
$$\sin x + \cos x = 1.4$$
; $0 < x < \frac{\pi}{4}$;

6)
$$\sin x - \cos x = 0.2$$
; $\pi < x < \frac{3\pi}{2}$.

Решите неравенство:

$$027.61.$$
 a) $4 \sin^2 3x < 3$;

6)
$$4\cos^2\frac{x}{4} > 1$$
.

027.62. a)
$$\sin 2x \cos 2x < \frac{1}{4}$$
;

6)
$$\cos^2 \frac{x}{4} - \sin^2 \frac{x}{4} > \frac{1}{2}$$
.

O27.63. a)
$$\cos^2 2x - \sin^2 2x \le -1$$
; B) $\sin^2 3x - \cos^2 3x \le -1$;

B)
$$\sin^2 3x - \cos^2 3x \le -1$$
:

6)
$$\sin 5x \cos 5x \geqslant \frac{1}{2}$$
;

$$r) \sin \frac{2x}{3} \cos \frac{2x}{3} \leqslant -\frac{1}{2}.$$

Найдите наименьшее и наибольшее значения функции:

$$027.64.$$
 a) $y = 2 \cos 2x + \sin^2 x$;

6)
$$y = 2 \sin^2 3x - \cos 6x$$
.

27.65. a)
$$y = 3 - \sin x + \cos 2x$$
;

6)
$$y = \cos 2x + 4 \cos x - 1$$
.

•27.66. a)
$$y = \sin 3x + \cos 2x + 4 \sin^3 x$$
;

6)
$$y = \cos 3x + \cos 2x - 4 \cos^3 x$$
.

027.67. Постройте график функции:

a)
$$y = 4 \sin \frac{x}{4} \cos \frac{x}{4}$$
;

$$6) y = 2 \cos^2 x.$$

Постройте график функции:

$$_{0}27.68.$$
 a) $y = \sqrt{\frac{1 + \cos x}{1 - \cos x}};$

$$6) \ y = -\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}.$$

$$_{027.69.}$$
 a) $y = \frac{\sin 2x}{\sin x}$;

$$6) y = \frac{\sin 2x}{\cos x}.$$

$$_{02}7.70.$$
 a) $y = \frac{\cos 2x}{\sin x - \cos x} + \sin x;$ B) $y = \frac{\cos 2x}{\cos x + \sin x} + \sin x;$

$$\text{B) } y = \frac{\cos 2x}{\cos x + \sin x} + \sin x;$$

6)
$$y = \frac{\cos 2x}{\cos x + \sin x} + \cos x$$
; $y = \frac{\cos 2x}{\cos x - \sin x} - \cos x$.

$$\mathbf{r}) \ y = \frac{\cos 2x}{\cos x - \sin x} - \cos x.$$

$$_{02}7.71.$$
 a) $y=egin{cases} 2\sin x\,\cos x,\ \text{если}\ x\leqslant 0,\ \\ 2\sin^2\frac{x}{4},\ \text{если}\ x>0; \end{cases}$

б)
$$y = \begin{cases} (\sin x + \cos x)^2, \text{ если } x \leqslant \frac{\pi}{4}, \\ 2 + \frac{\pi}{4} - x, \text{ если } x > \frac{\pi}{4}. \end{cases}$$

•27.72. a)
$$y = \frac{\sin 2x}{|\sin x|}$$
;

$$y = \frac{\sin 2x}{-|\cos x|};$$

$$6) y = \frac{\sin 2x}{-2|\cos x|};$$

$$\Gamma) y = \frac{\sin 2x}{2|\sin x|}.$$

§ 28. Преобразование суммы тригонометрических функций в произведение

Представьте в виде произведения:

28.1. a)
$$\sin 40^{\circ} + \sin 16^{\circ}$$
;

в)
$$\sin 10^{\circ} + \sin 50^{\circ}$$
:

6)
$$\sin 20^{\circ} - \sin 40^{\circ}$$
;

r)
$$\sin 52^{\circ} - \sin 36^{\circ}$$
.

28.2. a)
$$\cos 15^{\circ} + \cos 45^{\circ}$$
;

B)
$$\cos 20^{\circ} + \cos 40^{\circ}$$
;

б)
$$\cos 46^{\circ} - \cos 74^{\circ}$$
;

r)
$$\cos 75^{\circ} - \cos 15^{\circ}$$
.

28.3. a)
$$\sin \frac{\pi}{5} - \sin \frac{\pi}{10}$$
;

B)
$$\sin \frac{\pi}{6} + \sin \frac{\pi}{7}$$
;

6)
$$\sin \frac{\pi}{3} + \sin \frac{\pi}{4}$$
;

r)
$$\sin \frac{\pi}{3} - \sin \frac{\pi}{11}$$
.

Представьте в виде произведения:

28.4. a)
$$\cos \frac{\pi}{10} - \cos \frac{\pi}{20}$$
;

B)
$$\cos \frac{\pi}{5} - \cos \frac{\pi}{11}$$
;

6)
$$\cos \frac{11\pi}{12} + \cos \frac{3\pi}{4}$$
; r) $\cos \frac{3\pi}{8} + \cos \frac{5\pi}{4}$.

$$r) \cos \frac{3\pi}{8} + \cos \frac{5\pi}{4}$$

28.5. a) $\sin 3t - \sin t$;

6)
$$\cos (\alpha - 2\beta) - \cos (\alpha + 2\beta)$$
;

- B) $\cos 6t + \cos 4t$;
- Γ) $\sin (\alpha 2\beta) \sin (\alpha + 2\beta)$.

28.6. a)
$$tg 25^{\circ} + tg 35^{\circ}$$
;

B)
$$tg 20^{\circ} + tg 40^{\circ}$$
;

$$6) tg \frac{\pi}{5} - tg \frac{\pi}{10};$$

r) tg
$$\frac{\pi}{3}$$
 - tg $\frac{\pi}{4}$.

028.7. a)
$$\frac{1}{2} - \cos t$$
;

B)
$$1 + 2 \cos t$$
;

6)
$$\frac{\sqrt{3}}{2} + \sin t$$
;

$$\Gamma$$
) $\cos t + \sin t$.

 $028.8. a) \sin 5x + 2 \sin 6x + \sin 7x;$

$$6) 2\cos x + \cos 2x + \cos 4x.$$

028.9. a) $\sin t + \sin 2t + \sin 3t + \sin 4t$;

6)
$$\cos 2t - \cos 4t - \cos 6t + \cos 8t$$
.

Докажите тождество:

28.10. a)
$$\frac{\sin 2\alpha + \sin 6\alpha}{\cos 2\alpha + \cos 6\alpha} = \operatorname{tg} 4\alpha;$$

6)
$$\frac{\cos 2\alpha - \cos 4\alpha}{\cos 2\alpha + \cos 4\alpha} = \text{tg } 3\alpha \text{ tg } \alpha.$$

028.11. a)
$$\frac{\sin{(\alpha + \beta)} + \sin{(\alpha - \beta)}}{\cos{(\alpha + \beta)} + \cos{(\alpha - \beta)}} = tg \alpha;$$

6)
$$\frac{\cos{(\alpha - \beta)} - \cos{(\alpha + \beta)}}{\sin{(\alpha + \beta)} - \sin{(\alpha - \beta)}} = tg \alpha.$$

028.12. a)
$$\sin x + \sin y + \sin (x - y) = 4 \sin \frac{x}{2} \cos \frac{x}{2} \cos \frac{x - y}{2}$$
;

6)
$$\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x} = \text{tg } 2x.$$

$$028.13.$$
 a) $\sin^2(\alpha + \beta) - \sin^2(\alpha - \beta) = \sin 2\alpha \sin 2\beta$;

6)
$$\cos^2(\alpha - \beta) - \cos^2(\alpha + \beta) = \sin 2\alpha \sin 2\beta$$
.

Вычислите:

$$\frac{\cos 68^{\circ} - \cos 22^{\circ}}{\sin 68^{\circ} - \sin 22^{\circ}};$$

B)
$$\frac{\sin 130^{\circ} + \sin 110^{\circ}}{\cos 130^{\circ} + \cos 110^{\circ}}$$
;

$$6) \frac{\sin \frac{7\pi}{18} - \sin \frac{\pi}{9}}{\cos \frac{7\pi}{18} - \cos \frac{\pi}{9}};$$

$$r) \frac{\sin \frac{5\pi}{18} + \sin \frac{11\pi}{9}}{\cos \frac{5\pi}{18} + \cos \frac{11\pi}{9}}.$$

$$_{O28.15.}$$
 a) $\frac{\sin \alpha + \sin 3\alpha + \sin 5\alpha + \sin 7\alpha}{\cos \alpha + \cos 3\alpha + \cos 5\alpha + \cos 7\alpha}$, если ctg $4\alpha = 0,2$;

6)
$$\frac{\sin x - \sin 2x + \sin 3x - \sin 4x}{\cos x - \cos 2x + \cos 3x - \cos 4x}$$
, если $\frac{5x}{4} = 2$.

$$\bullet 28.16. \text{ a) } \sin^2 10^\circ + \sin^2 130^\circ + \sin^2 110^\circ;$$

6)
$$\cos^2 35^\circ + \cos^2 25^\circ - \cos^2 5^\circ$$
.

$$\bullet 28.17. a) \cos 24^{\circ} + \cos 48^{\circ} - \cos 84^{\circ} - \cos 12^{\circ};$$

6)
$$tg 9^{\circ} - tg 63^{\circ} + tg 81^{\circ} - tg 27^{\circ}$$
.

Проверьте равенство:

28.18. a)
$$\sin 35^{\circ} + \sin 25^{\circ} = \cos 5^{\circ}$$
; b) $\cos 12^{\circ} - \cos 48^{\circ} = \sin 18^{\circ}$;

6)
$$\sin 40^{\circ} + \cos 70^{\circ} = \cos 10^{\circ}$$
; r) $\cos 20^{\circ} - \sin 50^{\circ} = \sin 10^{\circ}$.

$$028.19.$$
 a) $\sin 20^{\circ} + \sin 40^{\circ} - \cos 10^{\circ} = 0;$

6)
$$\cos 85^{\circ} + \cos 35^{\circ} - \cos 25^{\circ} = 0$$
.

$$^{\circ}28.20$$
. a) $\sin 87^{\circ} - \sin 59^{\circ} - \sin 93^{\circ} + \sin 61^{\circ} = \sin 1^{\circ}$;
6) $\cos 115^{\circ} - \cos 35^{\circ} + \cos 65^{\circ} + \cos 25^{\circ} = \sin 5^{\circ}$.

•28.21. a)
$$\sin 47^\circ + \sin 61^\circ - \sin 11^\circ - \sin 25^\circ = \cos 7^\circ$$
:

6)
$$tg 55^{\circ} - tg 35^{\circ} = 2 tg 20^{\circ}$$
.

•28.22. Докажите, что если $\alpha + \beta + \gamma = \pi$, то выполняется равенство:

a)
$$tg \alpha + tg \beta + tg \gamma = tg \alpha tg \beta tg \gamma$$
;

6)
$$\sin \alpha + \sin \beta + \sin \gamma = 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$$
.

$$028.23.$$
 a) Зная, что $\sin 2x + \sin 2y = a$, $\cos 2x + \cos 2y = b$ ($a \neq 0$, $b \neq 0$), вычислите $tg(x + y)$;

б) зная, что
$$\sin x - \sin y = a$$
, $\cos x - \cos y = b$ ($a \neq 0$, $b \neq 0$), вычислите $\cot \frac{x+y}{2}$.

- **■28.24.** Докажите:
 - a) если $2 \sin x = \sin (x + 2y)$, то tg(x + y) = 3 tg y;
 - б) если $2 \cos x = \cos (x + 2y)$, то $\cot (x + y) 2 \cot x =$ $= \operatorname{tg} x + \operatorname{ctg} y.$
- ●28.25. Докажите:
 - а) если $\cos^2 x + \cos^2 y = m$, то $\cos (x + y) \cos (x y) = m 1$; б) если $\cos^2 (x + y) + \sin^2 x + \sin^2 y = m$, то

 - $\sin x \sin y \cos (x+y) = \frac{1-m}{2}.$

- 028.26. a) $\cos x + \cos 3x = 0$; B) $\cos x = \cos 5x$;
 - 6) $\sin 12x + \sin 4x = 0$; r) $\sin 3x = \sin 17x$.
- 028.27. a) $\sin x + \sin 2x + \sin 3x = 0$;
 - $6) \cos 3x \cos 5x = \sin 4x.$
- 028.28. a) $\sin 3x = \cos 2x$;
 - 6) $\sin (5\pi x) = \cos (2x + 7\pi)$;
 - $\mathbf{B)}\,\cos\,5x=\sin\,15x;$
 - Γ) $\sin (7\pi + x) = \cos (9\pi + 2x)$.
- O28.29. a) $1 + \cos 6x = 2 \sin^2 5x$ B) $\sin^2 \frac{x}{2} = \cos^2 \frac{7x}{2}$;
 - 6) $\cos^2 2x = \cos^2 4x$: F) $\sin^2 x + \sin^2 3x = 1$.
- 028.30. a) $2 \sin^2 x + \cos 5x = 1$;
 - 6) $2\sin^2 3x 1 = \cos^2 4x \sin^2 4x$.
- 028.31. a) tg x + tg 5x = 0;
- B) tg 2x = tg 4x;
- 6) tg 3x = ctg x;
- r) ctg $\frac{x}{2}$ + ctg $\frac{3x}{2}$ = 0.
- 028.32. a) $\sin x + \sin 3x + \cos x + \cos 3x = 0$;
 - 6) $\sin 5x + \sin x + 2\sin^2 x = 1$.
- 028.33. Сколько корней имеет заданное уравнение на отрезке

$$\left[0;\frac{\pi}{2}\right]$$
:

- a) $\sin 2x + \sin 6x = \cos 2x$;
- 6) $2\cos^2 x 1 = \sin 3x$?
- 028.34. Найдите корни уравнения, принадлежащие промежутку (0; 2,5):
 - a) $\cos 6x + \cos 8x = \cos 10x + \cos 12x$;
 - 6) $\sin 2x + 5 \sin 4x + \sin 6x = 0$.

 $_{028.35}$. При каких значениях x числа a, b, c образуют арифметическую прогрессию, если:

a)
$$a = \cos 7x$$
, $b = \cos 2x$, $c = \cos 11x$;

6)
$$a = \sin 3x$$
, $b = \cos x$, $c = \sin 5x$?

о28.36. Решите неравенство:

a)
$$\sin\left(x+\frac{\pi}{4}\right)+\sin\left(x-\frac{\pi}{4}\right)<1$$
;

6)
$$\cos\left(2x+\frac{\pi}{3}\right)+\cos\left(2x-\frac{\pi}{3}\right)>-\frac{1}{2}$$
.

о28.37. Постройте график функции:

a)
$$y = 1.5 \left(\cos \frac{9x + 10\pi}{6} + \cos \frac{9x - 10\pi}{6} \right)$$
;

6)
$$y = 2 \left(\sin \frac{9x + 2\pi}{3} + \sin \frac{9x - 2\pi}{3} \right)$$
.

•28.38. Постройте график уравнения:

a)
$$\sin 2x = \sin 2y$$
;

$$6) \cos 2x = \cos 2y.$$

§ 29. Преобразование произведения тригонометрических функций в сумму

Представьте в виде суммы:

- 29.1. a) sin 23° sin 32°;
- B) $\sin 14^{\circ} \cos 16^{\circ}$;

- 6) $\cos \frac{\pi}{12} \cos \frac{\pi}{8}$;
- r) $2\sin\frac{\pi}{8}\cos\frac{\pi}{5}$.
- **29.2.** a) $\sin (\alpha + \beta) \sin (\alpha \beta)$;
- B) $\cos\left(\frac{\alpha}{2} + \frac{\beta}{2}\right)\cos\left(\frac{\alpha}{2} \frac{\beta}{2}\right)$;
- δ) cos (α + β) cos (α β);
- r) $2 \sin (\alpha + \beta) \cos (\alpha \beta)$.
- 29.3. a) $\cos \alpha \sin (\alpha + \beta)$;
 - 6) $\sin (60^{\circ} + \alpha) \sin (60^{\circ} \alpha)$;
 - B) $\sin \beta \cos (\alpha + \beta)$;

r)
$$\cos \left(\alpha + \frac{\pi}{4}\right) \cos \left(\alpha - \frac{\pi}{4}\right)$$
.

- $^{\circ}29.4.$ a) $\sin 10^{\circ} \cos 8^{\circ} \cos 6^{\circ}$;
- 6) $4 \sin 25^{\circ} \cos 15^{\circ} \sin 5^{\circ}$.
- $^{\circ}29.5.$ a) $\sin x \sin y \sin z$;
- δ) $\cos x \cos y \cos z$.

 $^{\circ}29.6.$ a) $\sin^2 x \cos 4x$;

 $6) \cos^2 2x \sin 3x.$

Докажите тождество:

029.7. a) $2 \sin t \sin 2t + \cos 3t = \cos t$;

6)
$$\sin \alpha - 2 \sin \left(\frac{\alpha}{2} - 15^{\circ}\right) \cos \left(\frac{\alpha}{2} + 15^{\circ}\right) = \frac{1}{2}$$
.

029.8. a)
$$\sin^2 x + \cos \left(\frac{\pi}{3} - x\right) \cos \left(\frac{\pi}{3} + x\right) = \frac{1}{4};$$

6)
$$4\sin\left(\frac{\pi}{3}-x\right)\sin\left(\frac{\pi}{3}+x\right)=3-4\sin^2x$$
.

029.9. a)
$$4 \sin x \sin \left(\frac{\pi}{3} - x\right) \sin \left(\frac{\pi}{3} + x\right) = \sin 3x;$$

6)
$$\operatorname{tg} x \operatorname{tg} \left(\frac{\pi}{3} - x \right) \operatorname{tg} \left(\frac{\pi}{3} + x \right) = \operatorname{tg} 3x$$
.

29.10.
$$\cos^2(45^\circ - \alpha) - \cos^2(60^\circ + \alpha) - \cos 75^\circ \sin (75^\circ - 2\alpha) = \sin 2\alpha$$

29.11. a)
$$\sin x + \sin 2x + \sin 3x + \sin 4x + ... + \sin nx =$$

$$=\frac{\sin\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}};$$

6)
$$\cos x + \cos 2x + \cos 3x + \cos 4x + ... + \cos nx =$$

$$=\frac{\cos\frac{(n+1)x}{2}\,\sin\frac{nx}{2}}{\sin\frac{x}{2}}.$$

Вычислите:

029.12. a)
$$\cos^2 3^\circ + \cos^2 1^\circ - \cos 4^\circ \cos 2^\circ$$
;

6)
$$\sin^2 10^\circ + \cos 50^\circ \cos 70^\circ$$
.

029.13. a)
$$\frac{1}{2\sin 10^{\circ}}$$
 - $2\sin 70^{\circ}$; 6) $\frac{\text{tg }60^{\circ}}{\sin 40^{\circ}}$ + $4\cos 100^{\circ}$.

$$029.14.$$
 a) $2 \sin 87^{\circ} \cos 57^{\circ} - \sin 36^{\circ}$;

6)
$$2 \sin 59^{\circ} \sin 14^{\circ} + \sin 163^{\circ}$$
.

$$029.15$$
. a) $\sin 12^{\circ} \cos 72^{\circ} - \cos 33^{\circ} \cos 27^{\circ}$;

6)
$$2\cos 28^{\circ}\cos 17^{\circ} - 2\sin 31^{\circ}\sin 14^{\circ} - 2\sin 14^{\circ}\sin 3^{\circ}$$
.

•29.16. a)
$$\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}$$
;

6)
$$\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$$
.

₀₂9.17. Сравните числа:

- a) $a = \sin 1 \cos 2$, $b = \sin 3 \cos 4$;
- 6) $a = \cos 2 \cos 4$, $b = -\sin 3.5 \sin 2.5$.

_29.18. Докажите неравенство:

- a) $\sin(x+2)\cos(x-2) < \sin(x+3)\cos(x-3)$;
- 6) $\cos(2x-3)\cos(2x+3) > \sin(1+2x)\sin(1-2x)$.
- $_{\bullet 2}9.19.$ a) Зная, что $\cos x = \frac{3}{4}$, вычислите $16 \sin \frac{x}{2} \sin \frac{3x}{2}$;
 - б) зная, что $\cos x = -\frac{3}{5}, \ \frac{\pi}{2} < x < \pi$, вычислите
 - $125\sin\frac{x}{2}\cos\frac{5x}{2}.$

029.20. a)
$$\cos\left(x + \frac{\pi}{3}\right)\cos\left(x - \frac{\pi}{3}\right) - 0.25 = 0;$$

6)
$$\sin\left(x+\frac{\pi}{3}\right)\cos\left(x-\frac{\pi}{6}\right)=1$$
.

- 029.21. a) $2 \sin x \cos 3x + \sin 4x = 0$;
 - $6) \sin \frac{x}{2} \sin \frac{3x}{2} = \frac{1}{2}.$
- 029.22. a) $\sin 3x \cos x = \sin \frac{5x}{2} \cos \frac{3x}{2}$;

6)
$$2 \sin \left(\frac{\pi}{4} + x\right) \sin \left(\frac{\pi}{4} - x\right) + \sin^2 x = 0$$
;

- B) $\sin 2x \cos x = \sin x \cos 2x$;
- $\Gamma)\cos 2x\cos x = \cos 2.5x\cos 0.5x.$
- 029.23. Найдите наименьший положительный и наибольший отрицательный корень уравнения:
 - a) $\sin x \sin 3x = 0.5$;
- $6) \cos x \cos 3x = 0.5.$
- $^{\circ 29.24}$. При каких значениях x числа a, b, c образуют геометрическую прогрессию, если:
 - a) $a = \cos 6x$, $b = \cos 4x$, $c = \cos 2x$;
 - 6) $a = \sin 2x$, $b = \sin 3x$, $c = \sin 4x$?

029.25. Решите неравенство:

a)
$$\sin\left(\frac{\pi}{8}+x\right)\sin\left(\frac{\pi}{8}-x\right)<0$$
;

6)
$$\sin\left(\frac{\pi}{6} + \frac{x}{2}\right)\cos\left(\frac{\pi}{6} - \frac{x}{2}\right) \ge 0$$
;

B)
$$\sin\left(x-\frac{5\pi}{12}\right)\cos\left(x+\frac{5\pi}{12}\right) \leq 0;$$

$$\Gamma)\cos\frac{3x+\pi}{6}\cos\frac{3x-\pi}{6}>0.$$

●29.26. Решите систему уравнений:

a)
$$\begin{cases} \sin\frac{x+y}{2}\cos\frac{x-y}{2} = \frac{1}{2}, \\ 2\sin\frac{x-y}{2}\cos\frac{x+y}{2} = \frac{1}{3}; \end{cases}$$
 6)
$$\begin{cases} \cos(x+y)\cos(x-y) = \frac{1}{4}, \\ \sin(x+y)\sin(x-y) = \frac{3}{4}, \end{cases}$$

029.27. Найдите наименьшее и наибольшее значения функции:

a)
$$y = \sin\left(x + \frac{\pi}{8}\right)\cos\left(x - \frac{\pi}{24}\right)$$
;

6)
$$y = \sin\left(x - \frac{\pi}{3}\right) \sin\left(x + \frac{\pi}{3}\right)$$
.

●29.28. Постройте график функции:

a)
$$y = 2 \left| \sin \left(x - \frac{5\pi}{12} \right) \cos \left(x + \frac{5\pi}{12} \right) \right|$$
;

6)
$$y = -3 \left| \cos \frac{3x + \pi}{6} \cos \frac{3x - \pi}{6} \right|$$
.

Постройте график уравнения:

•29.29. a)
$$2 \sin(x + y) \cos y = \sin x$$
;

$$6) 2 \cos(x + y) \cos x = \cos y.$$

•29.30. a)
$$\cos \frac{x(y-1)}{2} \cos \frac{x(y+1)}{2} = \cos^2 \frac{x}{2}$$
;

6)
$$\sin \frac{y(x+1)}{2} \cos \frac{y(x-1)}{2} = \cos^2 \left(\frac{\pi}{4} - \frac{y}{2}\right)$$

s 30. Преобразование выражения $A \sin x + B \cos x$ κ виду $C \sin(x+t)$

Преобразуйте данное выражение к виду $C \sin(x + t)$ или $C\cos(x+t)$:

30.1. a)
$$\sqrt{3} \sin x + \cos x$$
;

$$\mathbf{B)}\,\sin\,x-\cos\,x;$$

6)
$$\sin x + \sqrt{3} \cos x$$
;

$$r) 2 \sin x - \sqrt{12} \cos x.$$

30.2. a)
$$3 \sin x + 4 \cos x$$
;

$$B) 7 \sin x - 24 \cos x;$$

6)
$$5 \cos x - 12 \sin x$$
;

r)
$$8\cos x + 15\sin x$$
.

о30.3. Докажите тождество:

a)
$$\sin x + \cos x + \sqrt{2} = 2\sqrt{2} \cos^2 \left(\frac{x}{2} - \frac{\pi}{8}\right)$$
;

6)
$$\cos 2x - \sin 2x - \sqrt{2} = -2\sqrt{2} \sin^2 \left(x + \frac{\pi}{8}\right)$$
.

030.4. Преобразуйте сумму в произведение:

a)
$$\sin t + \cos t + 5 \cos \left(t + \frac{\pi}{4}\right)$$
;

6)
$$\sin t - \cos t + \sqrt{34} \cos \left(\frac{\pi}{4} - t\right)$$

○30.5. Вычислите:

a)
$$\frac{\sin 38^{\circ} - \cos 38^{\circ}}{\sqrt{2} \sin 7^{\circ}}$$
;

B)
$$\frac{\sin 17^{\circ} + \sqrt{3}\cos 17^{\circ}}{2\cos 347^{\circ}};$$

6)
$$\frac{\sin 377^{\circ} - \sqrt{3}\cos 17^{\circ}}{\cos 407^{\circ}}$$
; r) $\frac{\sin 752^{\circ} + \cos 328^{\circ}}{\sqrt{2}\sin 437^{\circ}}$.

r)
$$\frac{\sin 752^{\circ} + \cos 328^{\circ}}{\sqrt{2} \sin 437^{\circ}}$$
.

030.6. Найдите наименьшее и наибольшее значения функции:

a)
$$y = \sqrt{3} \sin x + \cos x$$
;

$$6) y = \sin x - \sqrt{3} \cos x;$$

$$\mathbf{B}) \ y = \sin x - \cos x;$$

$$\mathbf{r}) y = \sqrt{6} \sin x - \sqrt{2} \cos x.$$

030.7. Найдите область значений функции:

a)
$$y = 3 \sin 2x - 4 \cos 2x$$
;

6)
$$y = 5 \cos 3x + 12 \sin 3x$$
;

B)
$$y = 7 \sin \frac{x}{2} + 24 \cos \frac{x}{2}$$
;

$$r) y = 8 \cos \frac{x}{3} - 15 \sin \frac{x}{3}.$$

- $\circ 30.8$. Существуют ли значения x, при которых выполняе $_{\text{тся}}$ равенство:
 - a) $\sin 5x + \cos 5x = 1.5$:
 - 6) $3 \sin 2x 4 \cos 2x = \sqrt{26}$;
 - B) $\sin 7x \sqrt{3}\cos 7x = \frac{\pi}{2}$;
 - r) $5 \sin x + 12 \cos x = \sqrt{170}$?
- 030.9. Постройте график функции:
 - a) $y = \sqrt{2} (\sin x + \cos x)$;
- B) $u = \sin x \sqrt{3} \cos x$:
- 6) $y = \sqrt{3} \sin x + \cos x$:
- Γ) $y = \sin x \cos x$.

Найдите наименьшее и наибольшее значения функции:

- **O30.10.** a) $y = \cos x 2 \sin x 1$;
 - 6) $y = |5 \sin x + 12 \cos x 17|$:
 - B) $y = 3\cos\frac{x}{2} + 4\sin\frac{x}{2} 5;$
 - $\mathbf{r}) \ y = |7 \sin 2x 24 \cos 2x| + 15.$
- •30.11. a) $y = \cos x \sqrt{3} \sin x + 2\sqrt{3} \cos \left(\frac{\pi}{6} x\right)$;
 - 6) $y = \cos 2x + \sin 2x \sqrt{7} \sin \left(\frac{\pi}{4} 2x\right)$.
- $\circ 30.12.$ При каком значении параметра a наибольшее значение заданной функции равно числу M:
 - a) $y = 6 \sin 1.5x 8 \cos 1.5x + a$, M = 17;
 - 6) $y = 7 \sin 0.3x + 24 \cos 0.3x + a$, M = -17?
- $\circ 30.13$. При каком значении параметра a наименьшее значение заданной функции равно числу т:
 - a) $y = -9 \sin 1.4x 12 \cos 1.4x + a$, m = 1;
 - 6) $y = 3.5 \sin 0.2x 12 \cos 0.2x + a$, m = -1?
- •30.14. При каком значении параметра a наибольшее значение функции y = f(x) равно наименьшему значению функции y = g(x):
 - a) $f(x) = 7 \sin 5x 24 \cos 5x + a 1$, $g(x) = 3 2 \cos 4x$;
 - 6) $f(x) = 9 \sin(x-2) + 12 \cos(x-2) 5 a$, $g(x) = 2 + 7 \sin(2x + 1)$?
- 030.15. Решите уравнение:

 - a) $\sqrt{3} \sin x + \cos x = 1;$ b) $\sin x \sqrt{3} \cos x = \sqrt{3};$
 - б) $\sin x + \cos x = \sqrt{2}$:
- $r) \sin x \cos x = 1.$

$$_{030.16.}$$
 a) $\cos 2x + \sqrt{3} \sin 2x = \sqrt{2}$;

$$6) \sin 5x - \cos 5x = \frac{\sqrt{6}}{2};$$

B)
$$\cos \frac{x}{2} - \sqrt{3} \sin \frac{x}{2} + 1 = 0;$$

$$r) \sin \frac{x}{3} + \cos \frac{x}{3} = 1.$$

$$_{03}$$
0.17. a) $4 \sin x - 3 \cos x = 5$;

6)
$$3\sin 2x + 4\cos 2x = 2.5$$
;

B)
$$12 \sin x + 5 \cos x + 13 = 0$$
;

r)
$$5\cos\frac{x}{2} - 12\sin\frac{x}{2} = 6.5$$
.

$$_{0}30.18$$
. a) $\sin 2x - \cos 2x = \sqrt{2} \sin 3x$;

6)
$$\sqrt{3}\sin x - \cos x = 2\cos 3x;$$

$$\mathbf{B})\,\sin\,5x\,+\,\cos\,5x\,=\,\sqrt{2}\,\cos\,x;$$

r)
$$\sin 2x + \sqrt{3} \cos 2x = 2 \sin 4x$$
.

•30.19. a)
$$2 \sin 17x + \sqrt{3} \cos 5x + \sin 5x = 0$$
;

6)
$$5 \sin x - 12 \cos x + 13 \sin 3x = 0$$
.

•30.20. a)
$$(\sin x + \sqrt{3}\cos x)^2 - 5 = \cos\left(\frac{\pi}{6} - x\right)$$
;

6)
$$(\sqrt{3}\sin x - \cos x)^2 + 1 = 4\cos\left(x + \frac{\pi}{3}\right)$$
.

•30.21. a)
$$\sqrt{3} \sin x + \cos x + 2 = \frac{12}{5\pi}x$$
;

6)
$$\sqrt{2} (\cos x - \sin x) = 2x - \frac{\pi}{2}$$
.

a)
$$\sqrt{3} \sin x + \cos x > 1$$
;

6)
$$3 \sin x - 4 \cos x < 2.5$$
.

$$^{\circ 30.23}$$
. При каких значениях параметра a уравнение не имеет решений:

a)
$$5 \sin 2x + 12 \cos 2x = 2a - 1$$
;

$$6) \ 3\cos\frac{x}{2} - 4\sin\frac{x}{2} + 1 = a^2?$$

Докажите, что при любых значениях x выполняется неравенство:

- **030.24.** a) $2 \sin^2 x + \sin 2x < 2.5$;
 - 6) $16 \sin^2 3x + 15 \sin 6x \le 25$.
- **•30.25.** a) $3 \sin x + 5 \cos x < \sqrt[3]{210}$;
 - 6) $\sqrt{3} \sin x 7 \cos x > -\sqrt[3]{390}$.
- **030.26.** При каких значениях параметра a решением неравенства является любое действительное число x:
 - a) $12 \sin 2x 35 \cos 2x < 148a^2$;
 - 6) $35 \sin 3x + 12 \cos 3x \ge 18,5(a^3 10)$?

§ 31. Методы решения тригонометрических уравнений

(продолжение)

- **O31.1.** a) $\sin(x-1) = \cos(x+2)$;
 - 6) $\sin(3x + 3) = \cos(x 1)$.
- **031.2.** a) $\sin x \sin 5x = \cos 4x$;
- $6) \cos x \cos 5x = \cos 6x.$

031.3.
$$\sin\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{3}\right) = 1 + \cos 2x$$
.

- **O31.4.** a) $2\cos^2 5x + \cos 3x = 1$;
 - 6) $\sin 5x + \sin x + 2\cos^2 x = 1$.
- **O31.5.** a) $8 \sin^2 \frac{x}{2} 3 \sin x 4 = 0$;
 - 6) $4 \sin^2 \frac{x}{2} \cos^2 \frac{x}{2} = 1.5 + \sin x$.
- **O31.6.** a) $\sin^2 x + \sin^2 2x + \sin^2 3x = 1.5$;
 - 6) $\cos^2 2x + \cos^2 4x + \cos^2 6x = 1.5$.
- **O31.7.** a) $\sin^2 \frac{x}{2} + \sin^2 x + \sin^2 \frac{5x}{2} + \sin^2 2x = 2$;
 - 6) $\cos^2 x + \cos^2 2x + \cos^2 3x + \cos^2 4x = 2$.
- **031.8.** $\operatorname{tg}(x 15^{\circ}) \operatorname{ctg}(x + 15^{\circ}) = \frac{1}{3}$

a31.9.
$$8 \sin^6 x + 3 \cos 2x + 2 \cos 4x + 1 = 0$$
.

a31.10. a)
$$5 \sin 3x + 2 \sin x = 0$$
;

6)
$$7\cos 3x - 3\cos x = 0$$
.

a31.11. a)
$$3|\cos x| + 2\cos x = 5|\sin x| - 3\sin x$$
;

6)
$$7|\cos x| - 4\cos x = 3|\sin x| + 2\sin x$$
.

$$031.12.$$
 a) $4 \cos^3 \frac{x}{2} + 3\sqrt{2} \sin x = 8 \cos \frac{x}{2}$;

6)
$$\frac{7}{4} \cos \frac{x}{4} = \cos^3 \frac{x}{4} + \sin \frac{x}{2}$$
.

$$031.13. \cos^4 x + \sin^4 x - \sin 2x + \frac{3}{4} \sin^2 2x = 0.$$

$$031.14.$$
 a) $\cos 4x + 5 \cos^2 x = 0.75$;

6)
$$\cos 4x + 3\sin^2 x = 0.25$$
.

$$031.15. \ 2 \sin^3 x - \cos 2x = \sin x.$$

$$\bullet 31.16. \text{ tg } x + \text{ctg } x = 3 + \cos 4x.$$

031.17. Решите уравнение $2 \sin x - 3 \cos x = 3$ двумя способами:

- а) с помощью универсальной подстановки $u=\operatorname{tg}\frac{x}{2};$
- б) сведя его к однородному уравнению второй степени относительно аргумента $\frac{x}{2}$.

Решите уравнение:

$$031.18. a) 3 \sin 2x + \cos 2x = 2;$$

6)
$$\cos 4x + 2 \sin 4x = 1$$
.

•31.19.
$$\sin 2x + \operatorname{tg} x = 2$$
.

$$\circ 31.20$$
. Применив подстановку $y = \cos x - \sin x$, решите уравнение $4 - 4(\cos x - \sin x) = \sin 2x$.

•31.21. a)
$$\sin x \cos x + 6 \cos x + 6 = 6 \sin x$$
;

6)
$$5 \sin 2x - 11 \cos x = 11 \sin x - 7$$
.

•31.22.
$$2(1 - \sin x - \cos x) + \operatorname{tg} x + \operatorname{ctg} x = 0$$
.

•31.23. a)
$$\cos \frac{4x}{3} = \cos^2 x$$
;

6)
$$32\cos^6 x - \cos 6x = 1$$
.

031.24.
$$\sin 5x + \cos 5x = \sqrt{2} \cos 13x$$
.

O31.25. a)
$$3 \cos(x+1) - 4 \sin(x+1) = 5$$
;
6) $15 \sin(2x-3) + 8 \cos(2x-3) = 8.5$.

•31.26.
$$3 \sin x - 5 \sin \left(7x + \frac{\pi}{6}\right) = 4 \cos x$$
.

•31.27.
$$\left(\sin 2x + \sqrt{3}\cos 2x\right)^2 = 2 + 2\cos\left(\frac{\pi}{6} - 2x\right)$$

•31.28.
$$\frac{\cos^2 x - \cos x - \sin^2 x}{1 - \cos 2x - \sin x} = 0.$$

•31.29. Найдите корни уравнения
$$\cos 4x + \frac{10 \operatorname{tg} x}{1 + \operatorname{tg}^2 x} = 3$$
, принад-
лежащие отрезку [-2; 1,4].

•31.30. 3 tg
$$\frac{x}{2}$$
 + ctg $x = \frac{5}{\sin x}$.

•31.31.
$$\cos 2x - 3\cos x + 1 = \frac{1}{(\cot 2x - \cot x)\sin(x - \pi)}$$

$$031.32. \frac{\cos^2 x (1 + \operatorname{ctg} x)}{\sin x - \cos x} = 3 \cos x.$$

031.33. a)
$$\frac{2 - \sin x + \cos 2x}{6r^2 - \pi r - \pi^2} = 0;$$

6)
$$\frac{6\sin^2 x - 6\sin x + \cos 2x + 1}{12x^2 - 8\pi x + \pi^2} = 0.$$

•31.34. a)
$$2 \cot 3x - 2 \tan 3x - 4 \tan 6x = 1$$
;
6) $\cot x - \tan x - 2 \tan 2x - 4 \tan 4x = 8 \tan 8x$.

$$\bullet 31.35. 6 \text{ tg } x + 5 \text{ ctg } 3x = \text{tg } 2x.$$

•31.36.
$$\sin 5x + \sin x = 2 + 2\cos^2 x$$
.

•31.37.
$$(\sin x + \sqrt{3}\cos x)\sin 3x = 2$$
.

•31.38.
$$\cos 2x \left(1 - \frac{3}{4}\sin^2 2x\right) = 1$$
.

$$_{-31.39.} \sin x + \cos x = \sqrt{2} + \sin^4 4x.$$

$$31.40. \sqrt{9-x^2} (\sin 2x - 3\cos x) = 0.$$

31.41. a)
$$\sqrt{25-4x^2}$$
 (3 sin $2\pi x + 8 \sin \pi x$) = 0;

6)
$$\sqrt{49-4x^2}\left(\sin \pi x + 3\cos \frac{\pi x}{2}\right) = 0.$$

§31.42. a)
$$\left(\operatorname{ctg} \frac{x}{2} - \frac{2}{3}\sin x\right)\sqrt{4x - x^2 + 5} = 0;$$

6)
$$(2 \sin 2x - \operatorname{tg} x) \sqrt{2 - x - x^2} = 0.$$

•31.43.
$$\sqrt{\cos 2x} + \sqrt{1 + \sin 2x} = 2\sqrt{\sin x + \cos x}$$
.

•31.44. a)
$$\sqrt{\sin 7x - \sin 5x} = \sqrt{\sin x}$$
;

6)
$$\sqrt{\cos 5x + \cos x - \sin 5x} = \sqrt{\sin x}$$
.

•31.45. a)
$$\sin \left(\pi \sqrt{5-x^2}\right) = 0.5;$$
 6) $\cos \left(\pi \sqrt{7-x^2}\right) = -0.5.$

•31.46. tg
$$\frac{\pi x}{1+r^2} + \sin \frac{2\pi x}{1+r^2} = 2$$
.

- •31.47. а) Дано уравнение с параметром a: $\sqrt{a\cos 2x 3\sin 2x} = \cos x$. Известно, что x = 0 является корнем этого уравнения. Найдите остальные корни.
 - б) Дано уравнение с параметром $a: \sqrt{2\sin 2x a\cos 2x} + \sin x = 0$. Известно, что $x = -\frac{\pi}{2}$ является корнем этого уравнения. Найдите остальные корни.

§ 32. Комплексные числа и арифметические операции над ними

- **32.1.** Приведите примеры линейных уравнений с действитель. ными коэффициентами, которые:
 - а) имеют целые корни, но не имеют натуральных корней:
 - б) имеют рациональные корни, но не имеют целых корней
 - в) имеют действительные корни, но не имеют рациональных корней;
 - г) не имеют действительных корней.
- 32.2. Приведите примеры квадратных уравнений с действительными коэффициентами, которые:
 - а) имеют целые корни, но не имеют натуральных корней;
 - б) имеют рациональные корни, но не имеют целых корней;
 - в) имеют действительные корни, но не имеют рациональных корней;
 - г) не имеют действительных корней.
- 32.3. Укажите хотя бы одно значение параметра a, при котором у уравнения $2x^2 + 4x + a = 0$:
 - а) оба корня целые, но не натуральные числа;
 - б) оба корня рациональные, но не целые числа;
 - в) оба корня действительные, но не рациональные числа;
 - r) укажите все значения a, при которых действительных корней нет.
- **32.4.** Укажите хотя бы одно значение параметра a, при котором у уравнения $3x^2 + ax + 6 = 0$:
 - а) оба корня целые, но не натуральные числа;
 - б) оба корня рациональные, но только один из них целое число;
 - в) оба корня действительные, но не рациональные числа
 - г) укажите все значения a, при которых действительных корней нет.

Вычислите:

- б) i^5 ; в) i^{22} ; г) $i^{17} + i^{2005}$. 32.5. a) i^3 ;
- a) $(-i)^3$; B) $-i^{22} (-i)^{22}$; 6) $(-2i)^5$; r) $i^3 + i^5 + i^7 + ... + i^{2005}$. $_{\bigcirc}$ 32.6. a) $(-i)^3$;
 - 32.7. Найдите значение многочлена $z^2 + 361$ при заданном значении переменной г:
 - a) z = i; B) z = -11i;
 - $r) z = -19(-i)^3$. б) z = -2i;
- 032.8. Найдите значение многочлена $z^3 + 3z$ при заданном значении переменной г:
 - B) z = -3i; a) z=-i;
 - 6) $z = \sqrt{2}i$; $r) z = -\sqrt{3}i$.
- 032.9. Дана геометрическая прогрессия с первым членом, равным i, и знаменателем, равным -i.
 - а) Выпишите первые 7 членов этой прогрессии;
 - б) найдите значение 27-го члена прогрессии;
 - в) найдите сумму первых 2007 членов прогрессии;
 - г) найдите сумму членов прогрессии с 15-го по 30-й.

Для комплексных чисел z_1 и z_2 найдите их сумму $z_1 + z_2$ и разность $z_1 - z_2$, если:

- 32.10. a) $z_1 = 1 + i$, $z_2 = 1 i$;

 - 6) $z_1 = 1 + i$, $z_2 = -1 + 2i$;
- B) $z_1 = -i$, $z_2 = 1 i$; i; $r_1 = i^3 + 4i^4$, $z_2 = i^2 3(-i)^3$.
- 032.11. a) $z_1 = 1 + i$, $z_2 = 1 2i$;
 - $6) z_1 = 2 + i, z_2 = -3 + 2i;$

 - B) $z_1 = i^{15}$, $z_2 = 15 + i$; r) $z_1 = i^{17} + 18i^{18}$, $z_2 = 15i^{15} 16(-i)^{16}$.
- 032.12. Дана арифметическая прогрессия с первым членом, равным 3-2i, и разностью, равной -1+i.
 - а) Составьте формулу n-го члена прогрессии;
 - б) найдите значение 15-го члена прогрессии;
 - в) найдите сумму первых 20 членов этой прогрессии;
 - г) найдите сумму членов прогрессии с 10-го до 40-го.
 - 32.13. Докажите, что:
 - a) $z_1 + z_2 = z_2 + z_1$, $z_1 \in C$, $z_2 \in C$;
 - 6) (a + b)z = az + bz, $a \in \mathbb{R}$, $b \in \mathbb{R}$, $z \in \mathbb{C}$;
 - B) $(ab)z = a(bz), a \in \mathbb{R}, b \in \mathbb{R}, z \in \mathbb{C};$
 - Γ) $a(z_1 + z_2) = az_1 + az_2, \ a \in \mathbb{R}, \ z_1 \in \mathbb{C}, \ z_2 \in \mathbb{C}.$

- 032.14. Известно, что сумма действительной и мнимой частей комплексного числа $az,\ a\in R$, равна 1. Найдите a если:
 - a) z = 1 + i;

B) z = 13 - 23i;

6) z = 7 + 3i;

- $\Gamma) z = 1 i.$
- O32.15. Вычислите $az_1 + bz_2$, если:
 - a) $z_1 = 1 + i$, $z_2 = 1 i$, a = 2, b = -1;
 - 6) $z_1 = 1 + i$, $z_2 = -1 + 2i$, a = -4, b = -5;
 - B) $z_1 = 1 + i$, $z_2 = 1 i$, a = -2, b = 3;
 - r) $z_1 = 1 + i$, $z_2 = -2 + 3i$, a = 12, b = -11.
- **032.16.** Известно, что число $az_1+z_2,\ a\in R$, является чисто мнимым. Найдите a, если:
 - a) $z_1 = 3 + i$, $z_2 = 6 i$;
- B) $z_1 = 8 + 3i$, $z_2 = -1 2i$;
- 6) $z_1 = 12 13i$, $z_2 = 3i$;
 - 3i; $r) z_1 = i, z_2 = -1 + 2i.$
- O32.17. Известно, что число $z_1+az_2,\ a\in R$, является действительным. Найдите a, если:
 - a) $z_1 = 3 + i$, $z_2 = 6 i$;
 - 6) $z_1 = 12 13i$, $z_2 = (3 + i)^2$;
 - B) $z_1 = 8 + 3i$, $z_2 = -1 2i$;
 - $r) z_1 = i, z_2 = (2 3i)^2.$
- O32.18. Найдите действительные числа a и b, для которых верно равенство $z=az_1+bz_2$, если:
 - a) $z_1 = 1$, $z_2 = 1 + i$, z = 5 + 2i;
 - 6) $z_1 = -2 + i$, $z_2 = 3 i$, z = i;
 - B) $z_1 = 1 + i$, $z_2 = 1 i$, z = 3 + 5i;
 - r) $z_1 = 4 i$, $z_2 = -7 + 2i$, z = 1.

Вычислите:

32.19. a) i(1+i);

B) (4 - 3i)i;

6) i(-3 + 2i);

- Γ) i(4-3i)i(4+3i).
- **32.20.** a) (1-2i)(1+i); 6) (1-i)(1+i);
- B) (4-3i)(-4+3i); F) (12+5i)(12-5i).

32.21. a) $(1+i)^2$;

B) $(2+i)^5$;

б) $(1-i)^3$;

- r) $(1+i)^3+(1-i)^2$.
- 32.22. Решите уравнение:
 - a) iz = 1;

 $\mathbf{B})\ (\mathbf{1}+i)z=i;$

- 6) (1 + i)z = 1;
- $\Gamma) (1+i)z = 1-i.$
- O32.23. Дана геометрическая прогрессия с первым членом, равным i, и знаменателем, равным 1-i.
 - а) Найдите третий член прогрессии.
 - б) Найдите девятый член прогрессии.

- в) На каких местах в этой прогрессии расположены чисто мнимые числа?
- г) На каких местах в этой прогрессии расположены действительные числа?

Вычислите:

O32.24. a)
$$\frac{1}{i}$$
; 6) $\frac{1-i}{i}$; B) $\frac{1-i}{1+i}$; r) $\frac{1+i}{1-i}$.

$$6) \ \frac{1-i}{i};$$

$$\frac{1-i}{1+i};$$

$$\Gamma) \ \frac{1+i}{1-i}.$$

O32.25. a)
$$i^2 + i^{-2}$$
; 6) $i^3 + i^{-3}$; B) $i^3 + i^{-5}$; Γ) $i^{-3} + i^{-5}$.

б)
$$i^3 + i^{-3}$$
;

B)
$$i^3 + i^{-5}$$

$$\Gamma$$
) $i^{-3} + i^{-5}$.

•32.26. a)
$$\frac{2i^4 + 3i^5}{(2+3i)(8+i)} + \frac{(2-i)^4}{(3-4i)(8-i)}i^6$$
;

6)
$$\frac{2i^{16}-3i^9}{(2-3i)^2}+\frac{(1+2i)^4}{(3-4i)(24-7i)}+\frac{93-36i}{325}$$
.

о32.27. Решите уравнение:

a)
$$iz = (1 - i);$$

$$B) (1 + i)z = iz$$

a)
$$iz = (1 - i);$$

6) $(1 + i)z = (1 - i);$

B)
$$(1 + i)z = i$$
;
r) $(1 + i)^2z = (1 - i)^3$.

 $_{\circ}$ 32.28. Найдите действительные числа a и b, для которых верно равенство $\frac{z_1}{z_0} = a \frac{z_2}{z_1} + bz_2$, если:

a)
$$z_1 = i$$
, $z_2 = 2$;

B)
$$z_1 = 1 + 2i$$
, $z_2 = 1 - 2i$;

$$\mathbf{6)} \ z_1 = 1 + i, \ z_2 = 1 - i;$$

a)
$$z_1 = i$$
, $z_2 = 2$;
b) $z_1 = 1 + 2i$, $z_2 = 1 - 2i$;
c) $z_1 = 1 + i$, $z_2 = 1 - i$;
r) $z_1 = 1 + i$, $z_2 = 1 + 2i$.

 $\bigcirc 32.29$. Найдите значение функции $w=\frac{z^2+1}{z-i}$, если:

a)
$$z = 1 + i$$
;

B)
$$z = 2i;$$

6)
$$z = 1 - i$$
;

$$\Gamma) z = 2 + i.$$

- \circ 32.30. а) Докажите, что число $\left(-b+i\sqrt{a}\right)^3+\left(b-i\sqrt{a}\right)^3$ при любых действительных значениях $a \geqslant 0$ и b является действительным.
 - б) Вычислите $(2 + i\sqrt{5})^3 + (2 i\sqrt{5})^3$
- $\bullet 32.31$. При каких действительных значениях a число $z = (2 - ai)^3 - (3 - ai)^2 + 5 + a(1 - a^2i)$:
 - а) является действительным;
 - б) является чисто мнимым?
- $^{\circ}32.32$. Для комплексного числа z найдите сопряженное число \overline{z} и вычислите произведение $z\overline{z}$ и частное $\frac{z}{z}$:

a)
$$z = i$$
;

B)
$$z = 3 - 7i$$
;

б)
$$z = -i$$
;

$$r) z = -5 - 6i$$
.

- 032.33. По заданному сопряженному числу \overline{z} восстановите ком плексное число z и вычислите произведение $z\overline{z}$ и частное $z: \overline{z}$.
 - a) $\overline{z} = 2i$:

B) $\overline{z} = 1 - i$:

 $\overline{z} = -3i$:

- $\Gamma) \ \overline{z} = -1 + 3i.$
- \circ 32.34. Дано: $z_1=1-i;\; z_2=4+i.$ Найдите:

 - a) $\frac{z_1}{\bar{z}_2}$; 6) $\frac{z_1^2}{(\bar{z}_2)^2}$; B) $\frac{\bar{z}_1}{z_2}$; r) $\frac{(\bar{z}_1)^2}{z_2}$.
- O32.35. Дано: $z_1 = 3 + 2i$; $z_2 = -2 + 3i$. Найдите:
 - a) $\frac{z_1-z_2}{\overline{z_1}}$;

B) $\frac{z_2}{z_2 + \overline{z_2}}$;

6) $\frac{(z_1+z_2)^2}{\overline{z}_1-\overline{z}_2}$;

- r) $\frac{z_2 2\overline{z}_1}{(\overline{z}_0 + z_1)^3}$.
- ●32.36. Решите систему уравнений:

 - a) $\begin{cases} 5z_1 3\overline{z}_2 = -9 + 5i, \\ 4\overline{z}_1 + z_2 = 3 4i; \end{cases}$ B) $\begin{cases} 4\overline{z}_1 + \overline{z}_2 = 7 6i, \\ 3z_1 2z_2 = -3 i; \end{cases}$
 - 6) $\begin{cases} 7z_1 + 2\overline{z}_2 = 7 4i, \\ 3\overline{z}_1 z_2 = 3 2i; \end{cases}$ r) $\begin{cases} i\overline{z}_1 + 2z_2 = 3 + 8i, \\ 2iz_1 \overline{z}_2 = 7i. \end{cases}$
- O32.37. Среди корней уравнения $z^2 + (\overline{z})^2 = 8$ укажите все корни:
 - а) с нулевой мнимой частью;
 - б) с мнимой частью, равной 1;
 - в) у которых действительная часть равна мнимой части;
 - г) у которых действительная часть в три раза больше положительной мнимой части.
- **•32.38.** Среди корней уравнения $\bar{z} + 1 = \frac{1}{z+1}$ найдите корень:
 - а) у которого действительная часть наименьшая;
 - б) у которого мнимая часть наименьшая;
 - в) который ближе всего расположен к началу координат;
 - \mathbf{r}) который ближе всего расположен к числу i.

§ 33. Комплексные числа и координатная плоскость

Для комплексного числа z = x + iy, его действительной части x и его мнимой части u используют следующие обозначения: x = Re z, y = Im z (от французских слов reelle действительный, imaginaire — мнимый).

- 33.1. а) Отметьте на координатной плоскости точки, соответствующие комплексным числам $z_1=1+2i,\ z_2=2+3i,\ z_3=-2+5i,\ z_4=-9+i,\ z_5=-3-2i.$
 - б) Укажите те точки, которые лежат левее оси ординат. Что можно сказать о знаке действительной части каждой из таких точек?
 - в) Укажите те точки, которые лежат выше оси абсцисс. Что можно сказать о знаке мнимой части каждой из таких точек?
 - г) Соедините данные точки последовательно отрезками. Сколько получилось точек пересечения замкнутой ломаной с осями координат? Запишите комплексные числа, которым соответствуют эти точки.
- 33.2. а) Отметьте на координатной плоскости точки, соответствующие комплексным числам $z_1=-5-4i,\ z_2=1+8i,\ z_3=-2-4i,\ z_4=8+i,\ z_5=-1-8i.$
 - б) Соедините заданные точки последовательно отрезками. Сколько получилось точек пересечения с осями координат? Запишите комплексные числа, которым соответствуют эти точки.
- 33.3. а) Отметьте на координатной плоскости точки \overline{z}_n (n=1, 2, 3, 4, 5), если $z_1 = -5 3i$, $z_2 = 1 + 6i$, $z_3 = -3 6i$, $z_4 = 9 + 2i$, $z_5 = 1 6i$.
 - б) Соедините отмеченные точки последовательно отрезками. Сколько чисто мнимых чисел имеется на полученной ломаной? Назовите их.
 - в) Сколько на этой ломаной лежит чисел, для которых $\operatorname{Re} z = -3$? Назовите их.
 - г) Сколько на ломаной чисел, для которых $\operatorname{Im} z = 3$? Назовите их.

Изобразите на координатной плоскости множество всех комплексных чисел z, удовлетворяющих заданному условию:

- $\circ 33.4.$ а) Действительная часть равна -2;
 - б) мнимая часть равна 3 или 4;
 - B) Re z = Im z;
 - r) Re $z = (\operatorname{Im} z)^2$.
- $\bigcirc 33.5.$ a) Re z = 4 или Im z = 4;
 - 6) $|\operatorname{Re} z| = |\operatorname{Im} z|;$
 - в) Re z = 5 или Im z = 4;
 - \vec{r}) Re $z = (\text{Im } z)^2$ или $(\text{Re } z)^2 = \text{Im } z$.

- 033.6. а) Действительная часть на 4 больше мнимой части;
 - б) сумма действительной и мнимой частей равна 4;
 - в) сумма квадратов действительной и мнимой частей рав-
 - г) квадрат суммы действительной и мнимой частей равен 4.
- •33.7. a) $|\operatorname{Re} z| |\operatorname{Im} z| = 1;$ B) $(\operatorname{Re} z)^2 = \operatorname{Im} z 1;$

 - 6) $(\text{Re }z)^2 = \text{Im }z + 1;$
- r) (Re z)(Im z) = 1.
- 033.8. а) Отметьте на координатной плоскости точки, соответствующие комплексным числам $z_0 = 1$, $z_1 = 1 + i$, $z_2 =$ $=(1+i)^2, z_3=(1+i)^3, \ldots, z_7=(1+i)^7.$
 - б) Чему равна величина угла: $\angle z_0 O z_1, \angle z_1 O z_2, ..., \angle z_6 O z_7$ $\angle z_7Oz_0$?
 - в) Перечислите все пары точек, лежащие по разные стороны от оси абсцисс. Сколько таких пар?
 - г) Запишите все числа, у которых произведение действительной и мнимой частей отрицательно. Сколько таких чисел?
 - 33.9. а) Отметьте на координатной плоскости точки, соответствующие комплексным числам $z_0 = 1$, $z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, $z_2 = z_1^2$, $z_3 = z_1^3$, $z_4 = z_1^4$, $z_5 = z_1^5$.
 - б) Чему равна величина угла: $\angle z_0 O z_1$, $\angle z_1 O z_2$, ..., $\angle z_5 O z_0$?
 - в) На каком расстоянии от начала координат находятся все эти точки?
 - г) Перечислите все пары точек, соответствующих сопряженным друг к другу числам. Сколько таких пар?

Изобразите на координатной плоскости множество всех комплексных чисел г, у которых:

- 033.10. а) Действительная часть больше мнимой части;
 - б) мнимая часть не меньше действительной части;
 - в) мнимая часть больше 2, а действительная часть не боль-
 - г) мнимая часть не меньше 2, а действительная часть меньше 3.
- •33.11 a) Im $z \ge 2$ или Re z < 3;
 - б) Im z > 2 или Re $z \le 3$:
 - в) Re $z > (\text{Im } z)^2$ и (Re $z)^2 > \text{Im } z$;
 - г) $\text{Im } z \ge 2 \text{ Re } z$ или Re z < 3 Im z.

- $_{0}33.12.$ a) Re $z + \text{Im } z \ge 0$;

 - 6) 1 < Re z + Im z < 2;B) $1 < (\text{Re } z)^2 + (\text{Im } z)^2 < 16;$
 - г) $(\text{Re }z)^2 + (\text{Im }z)^2 < 1$ или $16 < (\text{Re }z)^2 + (\text{Im }z)^2$.
 - 33.13. Изобразите на координатной плоскости числа $z_1 = 1 i$ и $z_2 = -1 + 3i$, а также числа:
 - a) $3z_1$;
- б) $-2z_{2}$;
- B) $z_1 + z_2$;
- r) $3z_1 2z_2$.
- 33.14. Изобразите на координатной плоскости числа $z_1 = 2 3i$ и $z_2 = -5 + 2i$, а также числа:
 - a) \bar{z}_i ;
- 6) $-3z_2$;
- B) $\overline{z_1 + z_2}$;
- r) $\overline{z_1-3z_2}$.
- $_{0}$ 33.15. а) Изобразите на координатной плоскости числа $z_{1}=-3+i$ и $z_2 = 5 + 2i$.
 - б) Найдите действительный коэффициент а, при котором $z_1 + az_2$ — чисто мнимое число.
 - в) По правилу параллелограмма постройте сумму чисел z_1 и az_2 из пункта б).
 - Γ) Найдите действительный коэффициент a, при котором $z_1 + az_2$ — действительное число; по правилу параллелограмма постройте сумму чисел z_1 и az_2 .
- 033.16. a) Изобразите на координатной плоскости числа $z_1 = -3 + i$ и $z_2 = 5 + 2i$.
 - б) Найдите действительный коэффициент а, при котором $az_1 + z_2$ — чисто мнимое число.
 - в) По правилу параллелограмма постройте сумму чисел az_1 и z_2 из пункта б).
 - г) Найдите действительный коэффициент а, при котором $az_1 + z_2$ — действительное число; по правилу параллелограмма постройте сумму чисел az_1 и z_2 .
- •33.17. a) Для n = 1, 2, 3, 4 изобразите на координатной плоскости точки $z_n = (2n-1) + (5-n)i;$
 - б) докажите, что все эти точки лежат на одной прямой l; составьте уравнение прямой;
 - в) укажите число, лежащее на прямой l, у которого Re z = -5;
 - Γ) укажите число, лежащее на прямой l, у которого $\operatorname{Im} z = 8.$
- $\bullet 33.18$. a) Для $n=1,\ 2,\ 3,\ 4,\ 5,\ 6$ изобразите на координатной плоскости точки $z_n = (n-1) + (n^2 - 5n + 6)i$.
 - б) Докажите, что эти точки лежат на одной параболе; составьте уравнение параболы.
 - в) Найдите действительную часть суммы $z_1 + z_2 + ... + z_6$.
 - r) Укажите номер n, начиная с которого мнимая часть числа z_n будет больше 100.

- ullet 33.19. a) Для $n=1,\ 2,\ 3,\ 4,\ 5,\ 6$ изобразите на координатной плоскости точки $z_n = (n+1) + \frac{3}{2}i$.
 - б) Докажите, что все эти точки лежат на одной гиперболе; составьте уравнение гиперболы.
 - в) Укажите точку, наиболее близкую к оси абсцисс.
 - г) Укажите точку, наиболее близкую к началу координат

Решите уравнение:

- $\circ 33.20.$ a) $z \operatorname{Re} z = 1;$
 - б) z Re z = -1:

B) $z (\text{Re } z)^2 = 1;$ r) $z (\text{Re } z)^2 = -1$.

- 033.21. a) z Im z = i;
 - б) $z \operatorname{Im} z = -i$;

- $\mathbf{B}) \ z \ (\mathrm{Im} \ z)^2 = i;$ $r) z (\operatorname{Im} z)^2 = -i;$
- 033.22. a) $z \operatorname{Re} z = \overline{z} \operatorname{Im} \overline{z}$:
 - 6) $z \operatorname{Re} \overline{z} = \overline{z} \operatorname{Im} z$:
- B) $z \operatorname{Im} \overline{z} = \overline{z} \operatorname{Re} z$; r) $z \operatorname{Re} z = \overline{z} \operatorname{Re} \overline{z}$.
- $\bigcirc 33.23.$ a) $z \operatorname{Re}(z-4) = i-4;$
- B) \bar{z} (Re z 6) = 21i 9;
- 6) $z \operatorname{Im} (z + 2i) = 7 i;$
 - - Γ) \bar{z} (Im z + 4) = 10 + 4*i*.

§ 34. Тригонометрическая форма записи комплексного числа

Найдите модуль комплексного числа:

- 34.1. a) 6 8i; B) i(2 + i); c) 20 + 21i; r) (3 i)(2 + i).
- 34.2. a) $\frac{2}{i}$; 6) $-\frac{3}{i}$; B) $\frac{i+1}{i}$; r) $\frac{i}{i+1}$.

- O34.3. Для комплексных чисел $z_1 = 12 5i$ и $z_2 = 3 + 4i$:
 - а) найдите $|z_1|$ и $|z_2|$;
 - б) вычислите z_1z_2 и проверьте равенство $|z_1z_2| = |z_1| \cdot |z_2|$;
 - в) вычислите $\frac{1}{z_1}$ и проверьте равенство $\left|\frac{1}{z_1}\right| = \frac{1}{|z_1|}$;
 - г) вычислите $\frac{z_1}{z_2}$ и проверьте равенство $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$.
 - 34.4. Для комплексных чисел $z_1 = 3 i$ и $z_2 = 1 + 2i$:
 - а) найдите $|\overline{z}_1|$ и $|\overline{z}_2|$ и проверьте равенства $|\overline{z}_1| = |z_1|$ и $|\overline{z}_0| = |z_2|$:

- б) проверьте неравенство $|z_1 + z_2| < |z_1| + |z_2|$;
- в) вычислите $\overline{z_1}\overline{z_2}$ и проверьте равенство $|\overline{z_1}\overline{z_2}| = |\overline{z_1}| \cdot |\overline{z_2}|$;
- г) проверьте неравенство $|z_1 z_2| > |z_1| |z_2|$.
- $_{
 m O}$ 34.5. При каком положительном значении параметра a модуль данного числа равен 10:
 - a) a + 8i;

B) (a + 1) + (a - 1)i;

б) 2a + ai;

r) $a + \frac{50i}{3}$?

Изобразите на комплексной плоскости множество всех чисел z, удовлетворяющих заданному условию:

34.6. a) |z| = 3:

- B) |z + 2| = 3:
- б) |z 1| = 3;
- |z + 3i| = 3.
- $034.7. \ a) |z-i|=1;$
- B) $|z-1-i|=\sqrt{2}$:
- 6) |z + 2i| = 2;
- r) |z+4+3i|=5.
- \circ 34.8. Про комплексное число z известно, что $\operatorname{Re} z = 3$ или $\operatorname{Re} z = 6$. Сколько имеется таких чисел, если, кроме того, известно, что:
 - a) |z| = 3;
- 6) |z| = 4; B) |z| = 6;
- |z| = 10?
- 034.9. Про комплексное число z известно, что $\mathrm{Re}\,z=3$ или ${
 m Im}\ z=4.$ Сколько имеется таких чисел, если, кроме того, известно, что:
 - a) |z| = 3:
- б) |z| = 4:
- B) |z| = 5;
- |z| = 10?
- 034.10. Изобразите на комплексной плоскости множество всех чисел г, удовлетворяющих уравнению:
 - a) |z| = |z 1|;

- B) |z-1|=|z-i|;
- 6) |z-1|=|z-3|:
- |z + 3i| = |z + 4|
- $\circ 34.11$. Число z задано в тригонометрической форме. Укажите его стандартную тригонометрическую форму:
 - a) $z = \cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4}$;
 - $6) z = \cos \frac{10\pi}{4} + i \sin \frac{10\pi}{4};$
 - B) $z = \cos \frac{9\pi}{4} + i \sin \frac{9\pi}{4}$;
 - r) $z = \cos \frac{101\pi}{4} + i \sin \frac{101\pi}{4}$.

Число z задано в тригонометрической форме. Укажите его стандартную тригонометрическую форму:

034.12. a)
$$z = \cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}$$
;

6)
$$z = \cos\left(-\frac{13\pi}{6}\right) + i\sin\left(-\frac{13\pi}{6}\right);$$

B)
$$z = \cos \frac{99\pi}{4} + i \sin \frac{99\pi}{4}$$
;

r)
$$z = \cos\left(-\frac{103\pi}{6}\right) + i\sin\left(-\frac{103\pi}{6}\right)$$

$$\bigcirc 34.13.$$
 a) $z = \cos(13.2\pi) + i\sin(13.2\pi);$

6)
$$z = \cos(-12,3\pi) + i\sin(-12,3\pi)$$
;

B)
$$z = \cos(17 \arccos(-1)) + i \sin(17 \arccos(-1));$$

r)
$$z = \cos(2\arccos(-0.5)) + i\sin(2\arccos(-0.5))$$
.

Найдите аргумент комплексного числа:

B)
$$-5,5i$$
;
B) $-3 + 3i$:

a)
$$2 - 2i$$
;
b) $(-\sqrt{3} + i)^2$;

$$\Gamma$$
) $(-3 + 3i)^2$.

 Γ) -5.555.

Изобразите на комплексной плоскости множество всех тех чисел, аргумент которых равен:

34.16. a)
$$\frac{\pi}{4}$$
;

a)
$$\frac{\pi}{4}$$
;

B)
$$-\frac{3\pi}{4}$$
;

б)
$$\frac{3\pi}{4}$$
 или $-\frac{\pi}{4}$;

$$\Gamma$$
) $-\frac{3\pi}{4}$ или $\frac{\pi}{4}$.

34.17. a)
$$\frac{2\pi}{3}$$
;

B)
$$-\frac{5\pi}{6}$$
;

б)
$$-\frac{\pi}{6}$$
 или $\frac{5\pi}{6}$;

$$\Gamma$$
) $-\frac{2\pi}{3}$ или $\frac{\pi}{3}$.

ОЗ4.18. Изобразите на комплексной плоскости множество всех тех чисел, у которых аргумент:

а) положителен;

в) больше чем $\frac{\pi}{2}$;

б) отрицателен;

г) меньше чем $\frac{\pi}{4}$.

ОЗ4.19. Изобразите на комплексной плоскости множество всех тех чисел, у которых аргумент:

a) больше чем $\frac{\pi}{9}$, но меньше чем $\frac{3\pi}{4}$;

б) больше чем $-\frac{3\pi}{4}$, но меньше чем $\frac{\pi}{6}$;

в) больше чем $\frac{3\pi}{4}$, или меньше чем $\frac{\pi}{6}$;

г) отличается от $-\frac{2\pi}{2}$ не более чем на $\frac{\pi}{6}$.

оз4.20. Изобразите на комплексной плоскости множество всех тех чисе \bar{z} , у которых:

a)
$$\frac{\pi}{2} < \arg(z) < \frac{3\pi}{4} \text{ if } |z| = 2;$$

6)
$$\frac{\pi}{2} < \arg(z) < \frac{3\pi}{4} \text{ in } 3 < |z| < 5;$$

B)
$$-\frac{3\pi}{4} < \arg(z) < \frac{\pi}{6} \text{ if } |z| = 8;$$

$$r) - \frac{5\pi}{6} < arg(z) < \frac{2\pi}{3}$$
 или $1 < |z| < 2$.

Запишите комплексное число в стандартной тригонометрической форме:

$$\Gamma$$
) -0,5*i*.

$$034.22. a) 4 + 4i;$$

$$6) 1 - i$$

$$-2 + 2i$$

6)
$$1-i$$
; B) $-2+2i$; r) $-2-2i$.

34.23. a)
$$\sqrt{3} + i$$
; B) $3\sqrt{3} - 3i$;

B)
$$3\sqrt{3} - 3i$$
;

6)
$$-\sqrt{3} + i$$
;

$$r) -2\sqrt{3} - 2i.$$

$$034.24. a) 4 - 4\sqrt{3}i;$$

в)
$$-2 - 2\sqrt{3}i;$$

$$6) 1 + \sqrt{3}i$$

6)
$$1 + \sqrt{3}i$$
; r) $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$.

$$034.25. a) 3 - 4i;$$

$$6) -5 + 12i;$$

B)
$$6 + 8i$$
;

$$\Gamma$$
) $-15 - 8i$.

•34.26. a)
$$\sin 35^{\circ} - i \cos 35^{\circ}$$
;

$$\cos 35^{\circ};$$

B)
$$-\sin 40^{\circ} + i \cos 40^{\circ}$$
:

6)
$$\sin(-23^\circ) + i\cos(-23^\circ)$$
;

B)
$$-\sin 40^{\circ} + i \cos 40^{\circ}$$
;
r) $\sin (-20^{\circ}) - i \sin (-70^{\circ})$.

•34.27. a)
$$1 - \cos 100^{\circ} + i \sin 100^{\circ}$$
;

$$\text{B) } \sin \frac{6\pi}{11} + i \left(1 - \cos \frac{6\pi}{11}\right);$$

6)
$$\sin \frac{4\pi}{7} + i \left(1 - \cos \frac{4\pi}{7}\right);$$

r)
$$1 - \cos 250^{\circ} + i \sin 610^{\circ}$$
.

034.28. Представьте в алгебраической форме комплексное число:

a)
$$5\left(\cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6}\right)$$
;

B)
$$5\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)$$
;

$$6) \frac{1}{\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)};$$

$$\Gamma) \ \frac{1}{\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)}.$$

Выполните действия, используя правила умножения и деления комплексных чисел в тригонометрической форме:

O34.29. a)
$$6\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)\cdot\frac{1}{3}\left(\cos\left(-\frac{\pi}{6}\right)+i\sin\left(-\frac{\pi}{6}\right)\right);$$

6)
$$(-5-5i)\cdot\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$$
;

B)
$$0.3 \left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right) \cdot 20 \left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right);$$

r)
$$\sqrt{3}\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)\cdot\left(2+2\sqrt{3}i\right)$$
.

034.30. a)
$$8\left(\cos\frac{7\pi}{12} + i\sin\frac{7}{12}\right) : 4\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right);$$

6)
$$(10 + 10i) : \left(\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)\right);$$

B)
$$12\left(\cos\left(\frac{5\pi}{6}\right)+i\sin\left(\frac{5\pi}{6}\right)\right)$$
: $0.3\left(\cos\left(\frac{\pi}{3}\right)+i\sin\left(\frac{\pi}{3}\right)\right)$;

r)
$$16\left(\cos\left(-\frac{\pi}{6}\right)+i\sin\left(-\frac{\pi}{6}\right)\right)$$
: $(4-4\sqrt{3}i)$.

- **34.31**. а) Зная, что z=i, изобразите на комплексной плоскости числа z, z^2 , z^3 , z^9 , z^{99} и найдите их аргументы.
 - б) Зная, что z=-i, изобразите на комплексной плоскости числа $z, z^5, z^{15}, z^{-25}, z^{-1001}$ и найдите их аргументы.
- 34.32. а) Зная, что $z = \sqrt{2} + \sqrt{2}i$, найдите z^2 , запишите числа z и z^2 в тригонометрической форме, сравните модули и аргументы этих чисел, изобразите числа на комплексной плоскости.
 - б) Зная, что $z=2-2\sqrt{3}i$, найдите z^2 , запишите числа z и z^2 в тригонометрической форме, сравните модули и аргументы этих чисел, изобразите числа на комплексной плоскости.

Зная, что $z_1 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ и $z_2 = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, изобразите на комплексной плоскости числа z_1 , z_2 , z и найдите аргумент указанного числа z:

$$_{0}34.33.$$
 a) $z = z_{1}z_{2};$ B) $z = z_{1}(z_{2})^{3};$

a)
$$z = z_1 z_2$$
,
b) $z = (z_1)^2 z_2$;
r) $z = (z_1)^5 (z_2)^3$.

O34.34. a)
$$z = \frac{z_1}{z_2}$$
; 6) $z = \frac{z_2}{z_1}$; b) $z = \frac{z_1^2}{z_2}$; r) $z = \frac{z_1^3}{z_2^5}$.

Зная, что $z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ и $z_2 = -\frac{\sqrt{3}}{2} + \frac{i}{2}$, изобразите на комплексной плоскости числа z_1 , z_2 , z и найдите аргумент указанного числа z:

•34.35. a)
$$z = z_1 z_2$$
; B) $z = z_1 (z_2)^5$;

6)
$$z = (z_1)^2 z_2$$
; Γ $z = (z_1)^{11} (z_2)^{10}$.

○34.37. Каждое комплексное число, действительная часть которого равна –4, умножили на z. Изобразите на комплексной плоскости полученное множество чисел, если:

a)
$$z = i$$
; 6) $z = -3i$; B) $z = 1 - \sqrt{3}i$; $z = 3 - i$.

034.38. Зная, что $z_1 = 2 + i$, $z_2 = 4 + 3i$, $z_3 = -1 + 7i$, изобразите на комплексной плоскости треугольник с вершинами zz_1 , zz_2 , zz_3 , если:

a)
$$z = i;$$
 B) $z = -i;$

5)
$$z = 2i$$
; $r) z = 1 - i$.

 \circ 34.39. Зная, что $z_1=2-i,\ z_2=4+3i,\ z_3=-2+5i,$ изобразите на комплексной плоскости треугольник с вершинами $\frac{z_1}{z},\ \frac{z_2}{z},$

$$\frac{z_3}{z}$$
, если:

a)
$$z = i$$
; 6) $z = 2i$; B) $z = -i$; r) $z = 1 - i$.

•34.40. Для числа $z = \cos(0.11\pi) + i \sin(0.11\pi)$ укажите наименьшее натуральное число n, при котором:

a)
$$\arg(z^n) > \frac{\pi}{4}$$
; B) $\arg(z^n) > \frac{5\pi}{6}$;

6)
$$\arg(z^n) > \frac{\pi}{2}$$
; r) $\arg(z^n) < 0$.

- ullet 34.41. a) Среди корней z уравнения $\sqrt{3}(z+\overline{z})(z-\overline{z})=4i^9$ най дите число, аргумент которого равен $\frac{\pi}{c}$.
 - б) Среди корней z уравнения $\operatorname{Re} z \cdot \operatorname{Im} \overline{z} = \frac{\sqrt{3}}{z^6}$ найдите число, аргумент которого равен $\frac{\pi}{9}$.
- •34.42. а) Изобразите на комплексной плоскости множество чисел z, удовлетворяющих условию $|zi-3i+4| \le$

$$\leq \left| rac{1}{2} - rac{\sqrt{3}}{2} i \right|$$
. Чему равно наибольшее значение $|z|$?

б) Изобразите на комплексной плоскости множество чисел z, удовлетворяющих условию $|zi-3-4i| \le$

$$\leq \left| \frac{1}{2} + \frac{\sqrt{3}}{2}i \right|$$
. Чему равно наименьшее значение $|z|$?

§ 35. Комплексные числа и квадратные уравнения

- $\circ 35.1$. Найдите все действительные значения параметра a, при которых уравнение $z^2 - 4x + a = 0$:
 - а) имеет только один корень;
 - б) имеет два действительных корня;
 - в) не имеет действительных корней;
 - г) имеет два действительных корня разных знаков.
- $\circ 35.2$. Найдите все действительные значения параметра a, при которых уравнение $x^2 + ax + 9 = 0$:
 - а) имеет хотя бы один действительный корень;
 - б) не имеет действительных корней;
 - в) имеет хотя бы один отрицательный корень;
 - г) имеет два действительных корня, больших, чем 1.
- 035.3. Найдите все действительные значения параметра а, при которых уравнение $ax^2 + 8x + 16 = 0$:
 - а) имеет только один корень;
 - б) имеет действительный положительный корень;
 - в) имеет два действительных корня разных знаков;
 - г) имеет два действительных корня, сумма квадратов которых равна 1.
- 035.4. Решите уравнение:

a)
$$z^2 + 144 = 0$$
;

B)
$$z^2 + 441 = 0$$
:

6)
$$\frac{5z^2-29}{z+3\sqrt{5}}=z-\sqrt{45}$$
;

6)
$$\frac{5z^2-29}{z+3\sqrt{5}}=z-\sqrt{45};$$
 r) $\frac{3z^2+2004}{z-\sqrt{44}}=z+2\sqrt{11}.$

Составьте квадратное уравнение, корнями которого являются числа:

$$_{\odot}$$
35.5. a) *i* и –*i*;

б)
$$7 + 2i$$
 и $7 - 2i$;

в)
$$7i$$
 и $-7i$;

$$\Gamma$$
) $1 + i$ и $1 - i$.

$$_{\bigcirc}$$
35.6. a) $2i$ и $\frac{2}{i}$;

в)
$$-2^{-3}i$$
 и $\frac{i}{8}$;

6)
$$1 + 3i \times \frac{10}{1 + 3i}$$
;

г)
$$(2^9 + 2^7 + 2^3)i$$
 и $(3^4 - 3^6)i$.

Решите уравнение:

35.7. a)
$$z^2 - 2z + 2 = 0$$
;

$$B) z^2 - 6z + 25 = 0;$$

6)
$$z^2 + 4z + 5 = 0$$
;

$$r) z^2 + 10z + 61 = 0.$$

○35.8. a)
$$z^2 - z + 2.5 = 0$$
;
6) $z^2 + 3z + 8.5 = 0$;

B)
$$z^2 - 5z + 6,5 = 0;$$

r) $z^2 + 11z + 36,5 = 0.$

035.9. При каких действительных значениях параметра а:

- а) уравнение $z^2 2z + a = 0$ имеет корень 1 + i;
- б) уравнение $z^2 + 6z + a = 0$ имеет корень i 3;
- в) уравнение $z^2 8z + (a^2 + 9) = 0$ имеет корень 4 3i;
- г) уравнение $z^2 + 10z + (a^2 + 4a + 5) = 0$ имеет корень -5 + i?

035.10. При каких действительных значениях параметра a:

- а) уравнение $z^2 + az + 5 = 0$ имеет корень 2 + i;
- б) уравнение $z^2 + az + 13 = 0$ имеет корень -2 3i;
- в) уравнение $z^2 + (1 a^2)z + 25 = 0$ имеет корень 4 + 3i;
- r) уравнение $z^2 + (a^2 + 2a + 2)z + 41 = 0$ имеет корень -5 + 4i?

035.11. Вычислите $\sqrt{a+bi}$, решив уравнение $(x+yi)^2 = a+bi$:

- a) $\sqrt{4}$; 6) $\sqrt{-4}$; B) $\sqrt{9i}$; r) $\sqrt{-25i}$.

035.12. Вычислите $\sqrt{a+bi}$, решив уравнение $(x+yi)^2 = a+bi$ или использовав формулу

$$\sqrt{a + bi} = \pm \left(\sqrt{\frac{\sqrt{a^2 + b^2} + a}{2}} + i \cdot \frac{b}{|b|} \cdot \sqrt{\frac{\sqrt{a^2 + b^2} - a}{2}} \right)$$

- a) $\sqrt{3-4i}$:
- B) $\sqrt{4-3i}$:
- 6) $\sqrt{3+4i}$:
- Γ) $\sqrt{12+5i}$.

035.13. Вычислите:

a)
$$\sqrt{15 + 8i}$$
:

B)
$$\sqrt{24-7i}$$
;

6)
$$\sqrt{15-8i}$$
;

$$\Gamma) \sqrt{40+9i}.$$

35.14. Изобразите на комплексной плоскости число z и множество \sqrt{z} , если:

a)
$$|z| = 1$$
, arg $(z) = \frac{\pi}{2}$; B) $|z| = 9$, arg $(z) = \frac{\pi}{3}$;

B)
$$|z| = 9$$
, arg $(z) = \frac{\pi}{3}$

6)
$$|z| = 4$$
, arg $(z) = -\frac{\pi}{2}$

6)
$$|z| = 4$$
, arg $(z) = -\frac{\pi}{2}$; r) $|z| = 0.25$, arg $(z) = -\frac{2\pi}{3}$.

35.15. Изобразите на комплексной плоскости число z и множество \sqrt{z} , если:

a)
$$|z| = 1$$
, arg $(z) = \frac{\pi}{4}$;

a)
$$|z| = 1$$
, arg $(z) = \frac{\pi}{4}$;
 B) $|z| = 9$, arg $(z) = -\frac{3\pi}{4}$;

6)
$$|z| = 4$$
, arg $(z) = -\frac{\pi}{4}$;

6)
$$|z| = 4$$
, $\arg(z) = -\frac{\pi}{4}$; r) $|z| = 0.25$, $\arg(z) = -\frac{9\pi}{10}$.

ullet 35.16. Изобразите на комплексной плоскости множество \sqrt{z} , если:

a)
$$|z| = 1$$
, $0 \le \arg(z) \le \frac{\pi}{2}$

a)
$$|z| = 1$$
, $0 \le \arg(z) \le \frac{\pi}{2}$; B) $|z| = 1$, $-\frac{2\pi}{3} \le \arg(z) \le 0$;

$$|z| = 1, \ 0 < \arg(z) < \pi$$

о35.17. Составьте квадратное уравнение, корнями которого являются числа:

a)
$$1 + i \times 2 - i$$
;

B)
$$1 + 2i \text{ m } 7 - 2i$$
:

б)
$$2 + i$$
 и $3 - 2i$;

$$\Gamma$$
) 5 + 4 i μ 4 - 5 i .

035.18. Решите уравнение:

a)
$$z^2 - 2iz = 0$$
;

B)
$$z^2 - 3z + 3 + i = 0$$
;

$$6) z^2 + 4iz = 0;$$

r)
$$z^2 - 8z + 11 + 12i = 0$$
.

035.19. Найдите те значения параметра a, при которых:

- а) уравнение $z^2 2z + a = 0$ имеет корень z = i;
- б) уравнение $z^2 8iz + a = 0$ имеет корень 3 i;
- в) уравнение $z^2 + 6z + a = 0$ имеет корень -i;
- г) уравнение $z^2 + 10iz + a = 0$ имеет корень -10 + i.

- $_{0}$ 35.20. Найдите те значения параметра a, при которых:
 - а) уравнение $z^2 + az + 5 = 0$ имеет корень i;
 - б) уравнение $z^2 + az + 13 = 0$ имеет корень -2i;
 - в) уравнение $z^2 + az + 24i = 0$ имеет корень 1 + i;
 - г) уравнение $z^2 + az + 1 + i = 0$ имеет корень -3 + 2i.

§ 36. Возведение комплексного числа в степень. Извлечение кубического корня из комплексного числа

- 36.1. Пусть z=2 (cos $0,2\pi+i\sin 0,2\pi$). Верно ли, что:
 - а) z^4 принадлежит первой координатной четверти;
 - б) z^4 принадлежит второй координатной четверти, а его модуль меньше $\sqrt{300}$;
 - в) z^8 принадлежит третьей координатной четверти;
 - г) z^8 принадлежит четвертой координатной четверти, а его модуль больше 100?
- $\bigcirc 36.2$. Пусть $z = 3 (\cos 0.3\pi + i \sin 0.3\pi)$. Верно ли, что:
 - а) z^6 принадлежит первой координатной четверти;
 - б) z^6 принадлежит четвертой координатной четверти, а его модуль больше 1000;
 - в) z^6 принадлежит четвертой координатной четверти, а его модуль меньше 750;
 - \mathbf{r}) z^{16} принадлежит второй координатной четверти?
- \bigcirc 36.3. Пусть $z=\cos 0.19\pi + i\sin 0.19\pi$. Какие числа из множества $\{z, z^2, z^3, \dots, z^9, z^{10}\}$:
 - а) расположены выше оси абсцисс;
 - б) расположены правее оси ординат;
 - в) расположены в первой координатной четверти;
 - r) расположены во второй или в четвертой координатной четверти?
- \bigcirc 36.4. Пусть z=2 ($\cos 0.21\pi+i\sin 0.21\pi$). Какие числа из множества $\{z,\ z^2,\ z^3,\ \dots,\ z^9,\ z^{10}\}$:
 - а) расположены во второй координатной четверти;
 - б) расположены внутри круга радиуса 500 с центром в начале координат;
 - в) расположены в первой координатной четверти;
 - г) расположены правее оси ординат и вне круга радиуса 500 с центром в начале координат?

- 036.5. Пусть $z = \cos 0.17\pi + i \sin 0.17\pi$. Какие числа из множества $\{z, z^2, z^3, \dots, z^9, z^{10}\}$:
 - а) расположены выше оси абсцисс;
 - б) расположены правее оси ординат;
 - в) расположены выше биссектрисы первой и третьеж координатной четвертей;
 - г) расположены ниже биссектрисы второй и четвертож координатной четвертей?
- •36.6. Пусть $z = 0.5(\cos 0.23\pi + i \sin 0.23\pi)$. Какие числа из множества $\{z, z^2, z^3, \dots, z^9, z^{10}\}$:
 - а) расположены во второй координатной четверти;
 - б) расположены вне круга радиуса 0,2 с центром в начале координат;
 - в) расположены в первой координатной четверти;
 - г) расположены правее оси ординат и внутри круга радиуса 0,001 с центром в начале координат?

Вычислите:

36.7. a)
$$(\cos 15^{\circ} + i \sin 15^{\circ})^{8}$$
;

B)
$$(\cos 75^{\circ} + i \sin 75^{\circ})^{10}$$
;
r) $(\cos 75^{\circ} + i \sin 75^{\circ})^{100}$.

6)
$$(\cos 15^{\circ} + i \sin 15^{\circ})^{18}$$
;

r)
$$(\cos 75^{\circ} + i \sin 75^{\circ})^{100}$$
.

O36.8. a)
$$(1 + i)^4$$
;
6) $(1 + i)^6$;

B)
$$(1-i)^{10}$$
;
r) $(1-i)^{20}$.

o36.9. a)
$$(1 + \sqrt{3}i)^3$$
;

B)
$$(\sqrt{3} + i)^7$$
:

6)
$$(1 + \sqrt{3}i)^5$$
:

B)
$$(\sqrt{3} + i)^7$$
;
F) $(\sqrt{3} - i)^9$.

O36.10. a)
$$(\cos 10^{\circ} + i \sin 10^{\circ})^{-9}$$
;
6) $(\cos 10^{\circ} - i \sin 10^{\circ})^{-3}$;

B)
$$(\cos 10^{\circ} + i \sin 10^{\circ})^{-12}$$
;
r) $(\cos 80^{\circ} - i \sin 80^{\circ})^{-18}$.

O36.11. a)
$$(1+i)^{-4}$$
; 6) $(1+i)^{-6}$;

B)
$$(1-i)^{-10}$$
;
r) $(1-i)^{-20}$.

O36.12. a)
$$(1 + \sqrt{3}i)^{-3}$$
;
6) $(1 + \sqrt{3}i)^{-5}$;

$$\Gamma$$
) $(1-i)$

6)
$$(1 + \sqrt{3}i)^{-5}$$
;

B)
$$(\sqrt{3} + i)^{-7}$$
;
F) $(\sqrt{3} - i)^{-9}$.

•36.13. a)
$$(1 + i\sqrt{3})^7 + (1 - i\sqrt{3})^7$$
;

(3 - 1).

B)
$$(\sqrt{3} + i)^5 + (\sqrt{3} - i)^5$$
;

6)
$$\frac{16i \left(\sin \frac{\pi}{3} - i \cos \frac{\pi}{3}\right)^2}{\left(\sqrt{3} + i\right)^4};$$

r)
$$\frac{32i\left(\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}\right)^2}{\left(\sqrt{3} - i\right)^5}.$$

$$ullet$$
 36.14. a) Вычислите z^{12} , если $z = 2\cos\frac{\pi}{8}\left(\sin\frac{3\pi}{4} + i + i\cos\frac{3\pi}{4}\right)$;

6) вычислите
$$z^{30}$$
, если $z = 2\sin\frac{\pi}{12}\left(1-\cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6}\right)$

- 036.15. Пусть $\{z, z^2, z^3, \dots, z^n, z^{n+1}, \dots\}$ бесконечная геометрическая прогрессия со знаменателем $z = \cos 0.2\pi + i \sin 0.2\pi$.
 - а) Укажите наименьшее натуральное значение n, при котором z^n принадлежит второй координатной четверти.
 - б) Укажите наименьшее натуральное значение n, при котором z^n принадлежит четвертой координатной четверти.
 - в) Укажите наименьшее натуральное значение n, при котором $z^n = 1$.
 - г) Сколько в этой прогрессии различных чисел?
- $_{0}$ 36.16. Пусть $\{z, z^{2}, z^{3}, \dots, z^{n}, z^{n+1}, \dots\}$ бесконечная геометрическая прогрессия со знаменателем $z = \cos 0.03\pi + i \sin 0.03\pi$.
 - а) Укажите наименьшее натуральное значение n, при котором z^n принадлежит второй координатной четверти.
 - б) Укажите наименьшее натуральное значение n, при котором z^n принадлежит третьей координатной четверти.
 - в) Укажите наименьшее натуральное значение n, при котором $z^n = -1$.
 - г) Сколько в этой прогрессии различных чисел?
- •36.17. Пусть $\{z, z^2, z^3, ..., z^n, z^{n+1}, ...\}$ бесконечная геометрическая прогрессия со знаменателем $z = \cos 0, 1\pi i \sin 0, 1\pi$.
 - а) Укажите наименьшее натуральное значение n, при котором z^n принадлежит третьей координатной четверти (не на координатных осях).
 - б) Укажите наименьшее натуральное значение n, при котором z^n принадлежит второй координатной четверти (не на координатных осях).
 - в) Сколько в этой прогрессии различных чисел?
 - г) Найдите сумму этих различных чисел.
- •36.18. Пусть $\{z, z^2, z^3, \dots, z^n, z^{n+1}, \dots\}$ бесконечная геометрическая прогрессия со знаменателем $z = \cos 0.01\pi i \sin 0.01\pi$.
 - а) Укажите наименьшее натуральное значение n, при котором z^n принадлежит второй координатной четверти.
 - б) Сколько в этой прогрессии различных чисел?
 - в) Сколько из этих чисел лежат на осях координат?
 - г) Найдите сумму этих различных чисел.
- ullet36.19. Пусть z=1+i. Какие числа из множества $\{z,\ z^2,\ z^3,\ \dots,\ z^{11},\ z^{12}\}$:
 - а) лежат на оси абсцисс; в) лежат левее оси ординат;
 - б) правее прямой x = 9; г) выше прямой y = 2?

036.20	Вычислите	и	изобразите	на	комплексной	плоскости
000.20.	рычислите	и	изооразите	на	KUMIIJIEKCHUM	плоскости

- a) $\sqrt[3]{64}$; 6) $\sqrt[3]{-27}$; B) $\sqrt[3]{125i}$;
- Γ) $\sqrt[3]{-512i}$.
- **36.21.** Произвольно отметьте на комплексной плоскости число z_0 ,

у которого
$$|z_0|=1$$
 и $\frac{\pi}{2}<\arg{(z_0)}<\pi$.

- а) Изобразите корень уравнения $z^3 = z_0$, принадлежащий первой координатной четверти.
- б) Изобразите корень уравнения $z^3 = z_0$, принадлежащий четвертой координатной четверти.
- в) Изобразите множество $\sqrt[3]{z_0}$.
- г) Объясните, почему у уравнения $z^3 = z_0$ нет корней, расположенных в третьей четверти.
- **36.22.** Произвольно отметьте на комплексной плоскости число z_0 ,

у которого
$$|z_0| = 1$$
 и $-\frac{\pi}{2} < \arg{(z_0)} < 0$.

- а) Изобразите корень уравнения $z^3 = z_0$, принадлежащий четвертой координатной четверти.
- б) Изобразите множество $\sqrt[3]{z_0}$.
- в) Объясните, почему у уравнения $z^3 = z_0$ нет корней, расположенных в первой четверти.
- г) Найдите площадь треугольника с вершинами в точках из пункта б).
- •36.23. Решите уравнение:
 - a) $z^6 + (8-i)z^3 + (1+i)^6 = 0$;
 - 6) $z^4 + (2-4i)z^2 (1-i)^6 = 0$.
- ullet 36.24. а) При каком действительном значении a выражение $\frac{a(\sin 75^{\circ} + i \cos 75^{\circ})^{12}}{i(a + 2i)^{2} - (14 - 3ai) - 2}$ является действительным числом?
 - б) При каком действительном значении b выражение $\frac{b:(\cos 22^{\circ}30^{\prime}-i\sin 22^{\circ}30^{\prime})^{16}}{i(3i-b)^{2}-(3-8bi)-3}$ является действительным чис-

лом?

§ 37. Числовые последовательности

37.1. Являются ли числовыми последовательностями следующие функции:

a)
$$y = 3x^2 + 5$$
, $x \in \mathbb{Z}$; B) $y = 7 - x^2$, $x \in \mathbb{Q}$;

B)
$$y = 7 - x^2, x \in Q$$

$$\text{ 5) } y = \sin x, \ x \in [0; \ 2\pi];$$

6)
$$y = \sin x$$
, $x \in [0; 2\pi]$; r) $y = \cos \frac{x}{2}$, $x \in \mathbb{N}$?

- 37.2. Приведите примеры последовательностей, заданных:
 - а) с помощью формулы n-го члена;
 - б) словесно;
 - в) рекуррентным способом.
- 37.3. Задайте последовательность аналитически и найдите ее первые пять членов, если:
 - а) каждому натуральному числу ставится в соответствие противоположное ему число;
 - б) каждому натуральному числу ставится в соответствие квадратный корень из этого числа;
 - в) каждому натуральному числу ставится в соответствие число -5:
 - г) каждому натуральному числу ставится в соответствие половина его квадрата.

По заданной формуле *n*-го члена вычислите первые пять членов последовательности (y_n) :

37.4. a)
$$y_n = 2n^2 - n$$
;

B)
$$y_n = \frac{3n-1}{2n}$$
;

6)
$$y_n = \frac{(-1)^n}{n^2 + 1}$$
;

r)
$$y_n = \frac{(-1)^n + 2}{3n - 2}$$
.

37.5. a)
$$y_n = 3 \cos \frac{2\pi}{n}$$
;

$$\mathbf{B}) \ y_n = 1 - \cos^2 \frac{\pi}{n};$$

$$\mathsf{6)} \ y_n = \mathsf{tg}\left((-1)^n\frac{\pi}{4}\right);$$

r)
$$y_n = \sin n\pi - \cos n\pi$$
.

По заданной формуле n-го члена вычислите первые пара членов последовательности (y_n) :

37.6. a)
$$y_n = \sin \frac{n\pi}{2} - \operatorname{ctg} \frac{\pi}{4} (2n + 1);$$

6)
$$y_n = \cos \frac{n\pi}{2} + \lg \frac{\pi}{4}(2n+1);$$

B)
$$y_n = n \sin \frac{n\pi}{2} + n^2 \cos \frac{n\pi}{2}$$
;

$$\Gamma) y_n = \sin \frac{n\pi}{4} - n \cos \frac{n\pi}{4}.$$

37.7. a)
$$y_n = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{n^3 + 1}$$
; 6) $y_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n - 1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}$.

6)
$$y_n = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot ... \cdot 2n}$$

- 37.8. Выпишите первые четыре члена последовательности десятичных приближений числа $\sqrt{2}$:
 - а) по недостатку;
- б) по избытку.

Выпишите первые пять членов последовательности, заданной рекуррентно:

37.9. a)
$$x_1 = 2$$
, $x_n = 5 - x_{n-1}$;

B)
$$x_1 = -1$$
, $x_n = 2 + x_{n-1}$;

$$6) x_1 = 2, x_n = x_{n-1} + 10;$$

$$\Gamma$$
) $x_1 = 4$, $x_n = x_{n-1} - 3$.

37.10. a)
$$x_1 = 2$$
, $x_n = nx_{n-1}$;

B)
$$x_1 = -2$$
, $x_n = -x_{n-1}$;

6)
$$x_1 = -5$$
, $x_n = -0.5 \cdot x_{n-1}$; $x_1 = 1$, $x_n = \frac{x_{n-1}}{0.1}$.

$$\mathbf{r}) \ x_1 = 1, \ x_n = \frac{x_{n-1}}{0,1}.$$

- **37.11.** а) Выпишите первые шесть членов последовательности (x_n) , у которой $x_1 = 5$, $x_2 = -3$ и каждый член, начиная с третьего, равен полусумме двух предыдущих членов. Составьте рекуррентное задание последовательности.
 - б) Выпишите первые шесть членов последовательности (y_n), у которой $y_1 = -1$, $y_2 = 1$ и каждый член, начиная с третьего, равен утроенной сумме двух предыдущих членов. Составьте рекуррентное задание последовательности.
- 037.12. Определите значения первых пяти членов последователь ности и составьте формулу ее п-го члена, если график последовательности представлен:
 - а) на рис. 66:

в) на рис. 68;

б) на рис. 67;

г) на рис. 69.

Puc. 66

Puc. 67

Puc. 69

O37.13. a)
$$y = (x + 1)^{-2}, x \in N;$$
 B) $y = -\frac{18}{x + 2}, x \in N;$

B)
$$y = -\frac{18}{x+2}, x \in N;$$

6)
$$y = 3x - x^2, x \in N$$

6)
$$y = 3x - x^2$$
, $x \in N$; r) $y = \sqrt{x+3}$, $x \in N$.

$$\circ 37.14. \ a) \ y = 2 - x, \ x \in N;$$

O37.14. a)
$$y = 2 - x$$
, $x \in N$; B) $y = \frac{x+5}{2}$, $x \in N$;

6)
$$y = 3x - x^2$$
, $x \in N$; $y = x^2 - 4x$, $x \in N$.

$$\mathbf{r}) \ y = x^2 - 4x, \ x \in \mathbf{N}.$$

037.15. a)
$$y = \sin \frac{\pi}{6} x$$
, $x \in N$;

B)
$$y = \operatorname{tg} \frac{\pi}{3} x$$
, $x \in N$;

6)
$$y = \text{ctg } \frac{\pi}{4}(2x+1), x \in N;$$
 $r) y = \cos \pi x, x \in N.$

r)
$$y = \cos \pi x$$
, $x \in N$.

Постройте график последовательности:

- **037.16.** a) $y_n = 10 n^3$;
- B) $y_n = n^3 8$;
- 6) $u_n = (-1)^n \sqrt{9n}$:
- $\mathbf{r}) \ y_n = 4 \sqrt{4n}.$
- O37.17. a) $y_n = 2 \sin \frac{\pi}{6} n$;
- 6) $y_n = (-1)^n \operatorname{tg} \frac{\pi}{4} (2n 1).$
- 037.18. а) Все натуральные числа, кратные пяти, расположенные в порядке возрастания, образуют последовательность Укажите седьмой, девятый, двенадцатый, п-й члены последовательности.
 - б) Все натуральные числа, кратные семи, расположенные в порядке возрастания, образуют последовательность Укажите шестой, десятый, тридцать первый, п-й члены последовательности.
- 037.19. а) Все натуральные числа, которые при делении на 5 дают в остатке 2, расположены в порядке возрастания. Найдите первые пять членов этой последовательности.
 - б) Все натуральные числа, которые при делении на 4 дают в остатке 3, расположены в порядке возрастания. Найдите сумму первых шести членов этой последовательности.
- 037.20. а) Последовательность состоит из квадратов простых чисел, расположенных в порядке возрастания. Найдите сумму первых восьми членов этой последовательности. (Число 1 не считается ни простым, ни составным).
 - б) Известно, что (y_n) последовательность всех натуральных степеней числа 3, расположенных в порядке возрастания. Найдите: y_5 , y_8 , y_{37} , y_{2n} , y_{2n+1} , y_{2n-3} .
- $\circ 37.21.$ Задайте формулой n-го члена и рекуррентным способом: а) возрастающую последовательность всех четных натуральных чисел, не делящихся на 4;
 - б) возрастающую последовательность всех натуральных чисел, которые при делении на 13 дают в остатке 5;
 - в) возрастающую последовательность всех натуральных чисел, делящихся на 3 и на 7 (одновременно);
 - г) возрастающую последовательность всех четных натуральных чисел, делящихся на 3 и на 5 (одновременно).

Составьте одну из возможных формул n-го члена последовательности по первым пяти ее членам:

- O37.22. a) -1, -2, -3, -4, -5, ...; B) 10, 9, 8, 7, 6, ...;

 - б) 6, 12, 18, 24, 30, ...;
- r) 4, 8, 12, 16, 20,

- 037.23. a) 3, 9, 27, 81, 243, ...; 6) 9, 16, 25, 36, 49, ...;
- в) 1, 8, 27, 64, 125, ...; r) 2, 9, 28, 65, 126,
- $_{037.24.}$ a) 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, ...;
 - 6) $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$, $\frac{9}{10}$, $\frac{11}{12}$,...;
 - B) $1, \frac{1}{8}, \frac{1}{27}, \frac{1}{64}, \frac{1}{125}, \dots;$
 - r) $\frac{1}{3.5}$, $\frac{1}{5.7}$, $\frac{1}{7.9}$, $\frac{1}{9.11}$, $\frac{1}{11.13}$,...
- $_{037.25. a)} \frac{3}{4}, \frac{9}{16}, \frac{27}{64}, \frac{81}{256}, \frac{243}{1024}, \dots;$
 - 6) $\frac{1}{\sqrt{2}}$, $\frac{3}{2}$, $\frac{5}{2\sqrt{2}}$, $\frac{7}{4}$, $\frac{9}{4\sqrt{2}}$, ...;
 - B) $\frac{1}{\sqrt{1+2}}$, $-\frac{4}{\sqrt{2+3}}$, $\frac{9}{\sqrt{3+4}}$, $-\frac{16}{\sqrt{4+5}}$, $\frac{25}{\sqrt{5+6}}$, ...;
 - r) $\frac{4}{1\cdot 2\cdot 3}$, $-\frac{9}{2\cdot 3\cdot 4}$, $\frac{14}{3\cdot 4\cdot 5}$, $-\frac{19}{4\cdot 5\cdot 6}$, $\frac{24}{5\cdot 6\cdot 7}$, ...
- 37.26. Какие члены последовательности (y_n) расположены между членами:
 - а) y_{732} и y_{745} ;

в) y_{998} и y_{1003} ;

б) y_{n-1} и y_{n+2} ;

- г) y_{2n-2} и y_{2n+3} ?
- 037.27. Укажите номер члена последовательности $y_n = \frac{2-n}{5n+1}$, равного:

- 6) $\frac{-3}{26}$; B) $\frac{-1}{6}$; Γ) $-\frac{43}{226}$.
- 037.28. Квадрат со стороной 1 см вписан во второй квадрат таким образом, что вершины первого квадрата являются серединами сторон второго. Второй квадрат, аналогично, вписан в третий квадрат и т. д. Получается последовательность вписанных друг в друга квадратов.
 - а) Составьте последовательность периметров полученных квадратов. Выпишите первые пять членов этой последовательности.
 - б) Составьте последовательность площадей полученных квадратов. Выпишите первые пять членов этой последовательности.
 - в) Чему равна длина стороны одиннадцатого квадрата?
 - г) Чему равна площадь семнадцатого квадрата?

037.29.	Сколько членов последова надлежит:	тельности $y_n = 2n^2 - 7n + 5$ при-		
	а) отрезку [2; 5];	б) промежутку ($-\infty$; 10)?		
	Начиная с какого номера (x_n) будут больше заданно	все члены последовательности го числа <i>А?</i>		

- **037.30.** a) $x_n = 3n 2$, A = 15; 6) $x_n = 5^{n-1}$, A = 125.
- **037.31.** a) $x_1 = 0$, $x_n = x_{n-1} + 3$, A = 28; 6) $x_1 = 1$, $x_n = 7x_{n-1}$, A = 285.
- 037.32. Сколько членов последовательности не превосходят 1:
 - a) $\frac{1}{3125}$, $\frac{1}{625}$, $\frac{1}{125}$, ...; B) $\frac{2}{720}$, $\frac{2}{243}$, $\frac{2}{81}$, ...;
- - 6) $\frac{6}{377}$, $\frac{11}{379}$, $\frac{16}{381}$, ...; r) $\frac{2}{219}$, $\frac{9}{222}$, $\frac{16}{225}$, ...?
- 037.33. Выпишите все отрицательные члены последовательности:
- B) $y_n = n^2 6n + 8$;
- a) $y_n = n^2 n 6$;
 - $\Gamma) y_n = \frac{1+2n}{6n}.$
- 037.34. Найдите число положительных членов последовательности:
 - a) $y_n = 4n n^2$;
- B) $y_n = -n^2 + 9n 14$;
- 6) $y_n = \frac{140 n^2}{6n 11}$;
- $r) y_n = \frac{123}{147 5n}.$
- 037.35. Найдите наименьший член последовательности:
 - a) $y_n = n^2 42n + 13$; 6) $y_n = n^2 26n + 41$.
- 037.36. Укажите номер наибольшего члена последовательности:
 - a) $y_n = 303 + 38n n^2$; 6) $y_n = 145 + 32n n^2$.
- 037.37. Найдите номер члена последовательности $y_n = \frac{3n+191}{2n+9}$, наиболее близкого к числу:
 - a) 25:
- б) 2:
- в) 5:
- г) 41.
- 037.38. Дана последовательность $y_n = n^2 18n$.
 - а) Установите, сколько в ней отрицательных членов;
 - б) найдите наименьший член последовательности;
 - в) укажите номер члена последовательности, который равен 19;
 - г) выясните, сколько членов последовательности принадлежит отрезку [-15; 2].

- •37.39. Найдите наименьший член последовательности:
 - a) $y_n = 3n^2 10n + 3$;
- B) $y_n = 2n^2 7n + 3$;

6) $y_n = \frac{-3}{2n-5}$;

- $\mathbf{r}) \ y_n = \frac{-4}{n+4}.$
- •37.40. Найдите наибольший член последовательности:
 - a) $y_n = -2n^2 + 11n 2;$
- B) $y_n = 20 12n 3n^2$;

 $\text{6) } y_n = \frac{3}{2n-5};$

- $\Gamma) y_n = \frac{4}{n+4}.$
- 037.41. Является ли ограниченной снизу последовательность:
 - a) -1, 2, -3, 4, -5, ...;
- в) 5, 4, 3, 2, 1, 0, -1, ...;

 $6) y_n = \frac{n^2}{n+1};$

- r) $y_n = ((-1)^n + 1)n^2$?
- 037.42. Является ли ограниченной сверху последовательность:
 - a) $x_n = \frac{(-1)^n + 1}{n}$;

- B) $x_n = \frac{n^2-1}{n^2+2}$;
- б) 1, -1, 1, -2, 1, -3, ...;
- Γ) $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, ...?
- 037.43. Является ли ограниченной последовательность:
 - a) $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{n}$, ...;
 - 6) -2, 3, -4, 5, ..., $(-1)^n(n+1)$, ...;
 - B) $\frac{\sin 1}{1}$, $-\frac{\sin 2}{2}$, $\frac{\sin 3}{3}$, ..., $\frac{(-1)^{n-1}\sin n}{n}$, ...;
 - r) $tg\frac{\pi}{4}$, $tg\frac{3\pi}{4}$, $tg\frac{5\pi}{4}$, ..., $tg\frac{\pi}{4}(2n-1)$, ...?
- •37.44. Известно, что (x_n) ограниченная последовательность. Является ли ограниченной последовательность:
 - a) $y_n = -5x_n + 2$;
- B) $z_n = \frac{1}{2|x_n|+1};$

6) $p_n = \frac{x_n^2}{x_n^2 + 1}$;

- $\mathbf{r}) \ t_n = x_n \sin{(3n)}?$
- \circ 37.45. При каких значениях параметра p заданная последовательность ограничена сверху числом 1:
 - a) $y_n = \frac{2n+p}{2n+1}$;

- $6) z_n = \frac{n}{p^2 + n}?$
- \circ 37.46. При каких значениях параметра p заданная последовательность ограничена снизу числом 1:
 - a) $y_n = \frac{n-p}{n+2}$;

 $6) z_n = \frac{2n + 9}{2n + p^2}?$

ullet 37.47. При каких значениях параметра p последовательность:

а)
$$y_n = \frac{2n+p}{3n-1}$$
 ограничена сверху числом 1;

б)
$$y_n = \frac{p+5n}{3n+1}$$
 ограничена снизу числом 1?

37.48. Определите, является последовательность (x_n) убывающей или возрастающей:

a)
$$x_n = 3n + 2$$
;

B)
$$x_n = 6^1 - n;$$

6)
$$x_n = \frac{5}{n+3}$$
;

$$\mathbf{r}) x_n = \left(-\frac{1}{5}\right)^{2n-1}.$$

37.49. Объясните, является последовательность (y_n) убывающей или возрастающей, если для любого номера n выполняется неравенство:

. a)
$$y_{n+1} - y_n > 0$$
;

B)
$$y_{n+1} - y_n < 0$$
;

6)
$$\frac{y_{n+1}}{y_n} < 1$$
;

$$\Gamma) \, \, \frac{y_{n+1}}{y_n} < 1 \, \, (y_n < 0).$$

037.50. Выясните, какие из приведенных последовательностей являются монотонными; укажите характер монотонности:

a)
$$y_n = 5^{-n}$$
;

B)
$$y_n = \frac{2}{3n+1}$$
;

6)
$$y_n = \cos \frac{\pi}{n+5}$$
;

$$\Gamma) \ y_n = \sqrt{n+8}.$$

037.51. Исследуйте на монотонность последовательность:

a)
$$y_n = -2n + 1$$
;

$$\mathbf{B}) \ y_n = \cos \frac{1}{n};$$

6)
$$y_n = 3n^2 + n - 1$$
;

$$r) y_n = \frac{n}{n^2 + 1}$$

•37.52. Докажите, что заданная последовательность возрастает:

a)
$$y_n = n^3 + 2n$$
;

B)
$$y_n = \frac{n+1}{n+7}$$
;

6)
$$y_n = \frac{n^2}{n^2 + 10}$$
;

$$\mathbf{r}) \ y_n = \frac{n^4 + 3n^2 + 1}{n^4 + 3n^2 + 6}.$$

•37.53. Докажите, что заданная последовательность убывает:

a)
$$y_n = \frac{3n+5}{3n-1}$$
;

B)
$$y_n = \frac{n^2 + 15}{n^2 + 2}$$
;

$$\text{ 6) } y_n = \frac{1}{n^3 + 2n};$$

$$\Gamma) y_n = \frac{n^4 + 2n^2 + 7}{n^2 + 2n^2 - 1}.$$

- $_{\rm O}$ 37.54. Если (x_n) возрастающая последовательность с положительными членами, то что можно сказать о монотонности последовательности (y_n) :
 - a) $y_n = 5x_n + 7;$
- B) $y_n = 2 3x_n$;

- $\text{ 6) } y_n = \frac{7}{3+x_n};$
- $\Gamma) y_n = (x_n)^2 + 2?$
- $\bigcirc 37.55$. При каких значениях параметра p последовательность (y_n) будет возрастающей:
 - a) $y_n = pn 5$;

- B) $y_n = 2 pn$;
- $6) y_n = -\frac{p-1}{n};$
- $\Gamma) y_n = \frac{p+2}{n+1}?$
- $\bigcirc 37.56$. При каких значениях параметра p последовательность (y_n) будет убывающей:
 - a) $y_n = \frac{2}{pn}$;

 $\mathbf{B}) \ y_n = \frac{p}{\sin \frac{1}{n}};$

 $6) y_n = \frac{pn+2}{pn+3};$

- $r) y_n = \frac{5n^2 p}{n^2}?$
- 037.57. Дана последовательность $x_n = n^2 1$. Исследуйте на ограниченность и монотонность последовательность (y_n) :
 - a) $y_n = x_n$;

- B) $y_n = \frac{x_{n+2}}{x_{n+1}}$;
- 6) $y_n = x_{n+1} x_n$;
- $\Gamma) y_n = \frac{1}{x_{n+1}}.$
- \circ 37.58. Исследуйте последовательность (x_n) на ограниченность и монотонность:

a)
$$x_n = \frac{n}{n+2}$$
;

$$6) x_n = \frac{n^2+1}{n^2}.$$

- 037.59. Приведите примеры последовательностей:
 - а) возрастающих и ограниченных снизу;
 - б) возрастающих и не ограниченных сверху;
 - в) убывающих и ограниченных снизу;
 - г) убывающих и не ограниченных снизу.
- •37.60. Приведите пример последовательности:
 - а) возрастающей, ограниченной сверху, все члены которой положительные числа;
 - б) убывающей, все члены которой принадлежат интервалу (0; 7);
 - в) возрастающей, имеющей ровно три отрицательных члена;
 - г) неограниченной, немонотонной.

§ 38. Предел числовой последовательности

- **38.1.** Запишите окрестность точки a радиуса r в виде интервала, если:
 - a) a = 0, r = 0.1;
- B) a = 2, r = 1;
- 6) a = -3, r = 0.5;
- r) a = 0,2, r = 0,3.
- **38.2.** Окрестностью какой точки и какого радиуса является интервал:
 - a) (1, 3);

в) (2,1, 2,3);

б) (-0,2, 0,2);

- Γ) (-7, -5)?
- **38.3.** Принадлежит ли точка x_1 окрестности точки a радиуса r, если:
 - a) $x_1 = 1$, a = 2, r = 0.5;
 - 6) $x_1 = 1,1, a = 1, r = 0,2;$
 - B) $x_1 = -0.2$, a = 0, r = 0.3;
 - r) $x_1 = 2.75$, a = 2.5, r = 0.3?
- **ОЗ8.4.** Существует ли номер n_0 , начиная с которого все члены последовательности (x_n) попадают в окрестность точки a радиуса r = 0,1, если:
 - a) $x_n = \frac{1}{n^2}, a = 0;$
- B) $x_n = \frac{n}{n+1}, \ a = 0;$
- 6) $x_n = \frac{1}{n^2}, a = 1;$
- $\Gamma) x_n = \frac{n}{n+1}, a = 1?$

Укажите номер n_0 того члена последовательности (x_n) , начиная с которого все члены последовательности попадут в окрестность точки a радиуса r:

- **038.5.** a) $x_n = \frac{1}{2n}$, a = 0, r = 0,1;
 - 6) $x_n = 3 + \frac{1}{n^2}$, a = 3, r = 0.2;
 - B) $x_n = 1 + \frac{2}{n^2}$, a = 1, r = 0.01;
 - r) $x_n = -\frac{3}{n}$, a = 0, r = 0,1.
- **038.6.** a) $x_n = \left(\frac{1}{3}\right)^n$, a = 0, $r = \frac{1}{27}$;
 - 6) $x_n = (-1)^n \frac{1}{2^n}$, a = 0, $r = \frac{1}{64}$;

B)
$$x_n = 2 + \left(\frac{1}{2}\right)^n$$
, $a = 2$, $r = \frac{1}{128}$;

r)
$$x_n = 3 - \left(\frac{1}{3}\right)^n$$
, $a = 3$, $r = \frac{1}{81}$.

Постройте график последовательности (y_n) и составьте, если можно, уравнение горизонтальной асимптоты графика:

$$\bigcirc$$
38.7. a) $y_n = \frac{2}{n}$;

$$\mathbf{B}) \ y_n = \frac{4}{n};$$

$$\mathbf{6)} \ y_n = \left(\frac{1}{3}\right)^n;$$

$$\mathbf{r}) \ \boldsymbol{y}_n = \left(\frac{1}{2}\right)^{n-1}.$$

$$\bigcirc 38.8. \ a) \ y_n = -1 + \frac{1}{n};$$

B)
$$y_n = 2 - \frac{2}{n}$$
;

6)
$$y_n = 2 - \frac{1}{n^2}$$
;

r)
$$y_n = -3 + \frac{1}{n^2}$$
.

038.9. a)
$$y_n = 2 + (-1)^n \frac{1}{n}$$
;

B)
$$y_n = -3 + (-1)^n \frac{2}{n}$$
;

6)
$$y_n = (-1)^n 2 + \frac{1}{n}$$
;

r)
$$y_n = (-1)^{n+1} \cdot 3 - \frac{2}{n}$$
.

38.10. Верно ли утверждение:

- а) если последовательность имеет предел, то она монотонна;
- б) если последовательность монотонна, то она имеет предел;
- в) если последовательность ограничена, то она имеет предел;
- г) если последовательность не монотонна, то она не имеет предела?

Пользуясь теоремой о пределе монотонной ограниченной последовательности, докажите, что последовательность имеет предел:

$$038.11.$$
 a) $x_n = \frac{3n^2 + 2}{n^2}$;

$$6) x_n = \frac{n^2 - 5}{n^2 + 5}.$$

•38.12. a)
$$x_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n};$$

6)
$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
.

Вычислите $\lim_{n\to\infty} x_n$:

38.13. a)
$$x_n = \frac{5}{n^2}$$
;

B)
$$x_n = \frac{-15}{n^2}$$
;

6)
$$x_n = \frac{-17}{n^3}$$
;

$$\Gamma) x_n = \frac{3}{\sqrt{n}}.$$

038.14. a)
$$x_n = \frac{7}{n} + \frac{8}{\sqrt{n}} + \frac{9}{n^3}$$
;

B)
$$x_n = \frac{3}{n} + \frac{7}{n^2} - \frac{5}{n^3} + \frac{13}{n^4}$$
;

6)
$$x_n = 6 - \frac{7}{n^2} - \frac{3}{n} - \frac{3}{\sqrt{n}}$$
;

$$\Gamma$$
) $x_n = \frac{1}{n} + \frac{3}{\sqrt{n}} - 4 + \frac{7}{n^2}$.

038.15. a)
$$x_n = \frac{5}{2^n}$$
;

B)
$$x_n = 7 \cdot 3^{-n}$$
;

6)
$$x_n = \frac{1}{2} \cdot 5^{-n}$$
;

$$\Gamma) x_n = \frac{4}{3^{n+1}}.$$

038.16. a)
$$x_n = \frac{5n+3}{n+1}$$
;

B)
$$x_n = \frac{3n+1}{n+2}$$
;

6)
$$x_n = \frac{7n-5}{n+2}$$
;

$$x_n = \frac{2n+1}{3n-1}$$
.

038.17. a)
$$x_n = \frac{2n^2 - 1}{n^2}$$
;

B)
$$x_n = \frac{3-n^2}{n^2}$$
;

6)
$$x_n = \frac{1 + 2n + n^2}{n^2}$$
;

r)
$$x_n = \frac{3n-4-2n^2}{n^2}$$
.

038.18. a)
$$x_n = \frac{(2n+1)(n-3)}{n^2}$$
;

B)
$$x_n = \frac{(3n-2)(2n+3)}{n^2}$$
;

6)
$$x_n = \frac{(3n+1)(4n-1)}{(n+1)^2}$$
;

$$\Gamma) x_n = \frac{(1-2n)(1+n)}{(n+2)^2}.$$

O38.19. a)
$$x_n = \frac{(2n+1)(3n-4)-6n^2+12n}{n+5}$$
;

6)
$$x_n = \frac{n^2(2n+5)-2n^3+5n^2-13}{n(n+1)(n-7)+(1-n)};$$

B)
$$x_n = \frac{(1-n)(n^2+1)+n^3}{n^2+2n}$$
;

$$\Gamma) x_n = \frac{n(7-n^2) + n^3 - 3n - 1}{(n+1)(n+2) + (2n^2+1)}.$$

Вычислите:

•38.20. a)
$$\lim_{n\to\infty} \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} \right);$$

6)
$$\lim_{n\to\infty} \left(\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} \right)$$

•38.21. a)
$$\lim_{n\to\infty} \frac{2\cdot 3^n + 3\cdot 4^n}{2^n - 6\cdot 4^n};$$
 6) $\lim_{n\to\infty} \frac{3\cdot 5^n - 7\cdot 4^n}{2^n + 6\cdot 5^n}.$

6)
$$\lim_{n\to\infty} \frac{3\cdot 5^n - 7\cdot 4^n}{2^n + 6\cdot 5^n}$$

38.22. Найдите сумму геометрической прогрессии (b_n) , если:

a)
$$b_1 = 3$$
, $q = \frac{1}{3}$;

B)
$$b_1 = -1$$
, $q = 0,2$;

6)
$$b_1 = -5$$
, $q = -0.1$; r) $b_1 = 2$, $q = -\frac{1}{2}$.

r)
$$b_1 = 2$$
, $q = -\frac{1}{3}$

38.23. Найдите сумму геометрической прогрессии:

a) 32, 16, 8, 4, 2, ...; B) 27, 9, 3, 1,
$$\frac{1}{3}$$
, ...;

6) 24, -8,
$$\frac{8}{3}$$
, $-\frac{8}{9}$, ...;

r) 18, -6, 2,
$$-\frac{2}{3}$$
,

38.24. Найдите знаменатель и сумму геометрической прогрессии (b_n) , если:

a)
$$b_1 = -2$$
, $b_2 = 1$;

B)
$$b_1 = 7$$
, $b_2 = -1$;

6)
$$b_1 = 3$$
, $b_2 = \frac{1}{3}$;

r)
$$b_1 = -20$$
, $b_2 = 4$.

38.25. Найдите знаменатель геометрической прогрессии (b_n) , если:

a)
$$S = 2$$
, $b_1 = 3$;

B)
$$S = -\frac{9}{4}$$
, $b_1 = -3$;

6)
$$S = -10$$
, $b_1 = -5$;

r)
$$S = 1.5$$
, $b_1 = 2$.

38.26. Найдите первый член геометрической прогрессии (b_n) , если:

a)
$$S = 10$$
, $q = 0,1$;

B)
$$S = 6$$
, $q = -0.5$;

6)
$$S = -3$$
, $q = -\frac{1}{3}$;

r)
$$S = -21$$
, $q = \frac{1}{7}$.

 $\circ 38.27$. Найдите n-й член геометрической прогрессии (b_n) , если:

a)
$$S = 15$$
, $q = -\frac{1}{3}$, $n = 3$;

B)
$$S = 20$$
, $b_1 = 22$, $n = 4$;

6)
$$S = -20$$
, $b_1 = -16$, $n = 4$; r) $S = 21$, $q = \frac{2}{9}$, $n = 3$.

r)
$$S=21,\ q=rac{2}{3},\ n=3.$$

 \circ 38.28. Найдите сумму геометрической прогрессии (b_n), если:

a)
$$b_n = \frac{25}{3^n}$$
;

B)
$$b_n = \frac{45}{3^n}$$
;

$$6) b_n = (-1)^n \frac{13}{2^{n-1}};$$

r)
$$b_n = (-1)^{n-1} \frac{7}{6^{n-2}}$$
.

- O38.29. a) Найдите сумму геометрической прогрессии, если известно, что сумма первого и третьего ее членов равна 29, а второго и четвертого 11,6.
 - б) Чему равен пятый член геометрической прогрессии, если известно, что он в 4 раза меньше куба третьего члена прогрессии, а сумма прогрессии равна 4,5?
- ОЗ8.30. а) Найдите геометрическую прогрессию, если известно, что ее сумма равна 24, а сумма первых трех членов равна 21.
 - б) Найдите седьмой член геометрической прогрессии, если известно, что ее сумма равна 31,25, а сумма первых трех членов равна 31.
- 038.31. а) Составьте геометрическую прогрессию, если известно, что ее сумма равна 18, а сумма квадратов ее членов равна 162. б) Найдите сумму квадратов членов геометрической прогрессии, если известно, что ее сумма равна 2, а сумма кубов ее членов равна $1\frac{1}{7}$.

Вычислите:

038.32. a)
$$2 + 1 + \frac{1}{2} + \frac{1}{4} + \dots$$
;

B)
$$\frac{3}{2} - 1 + \frac{2}{3} - \frac{4}{9} + \dots$$
;

6)
$$49 + 7 + 1 + \frac{1}{7^2} + \dots;$$

r)
$$125 + 25 + 5 + 1 + \dots$$

$$038.33. a) - 6 + \frac{2}{3} - \frac{2}{27} + \frac{2}{243} - \dots;$$

6)
$$3 + \sqrt{3} + 1 + \frac{1}{\sqrt{3}} + \dots;$$

B)
$$49 - 14 + 4 - \frac{8}{7} + \dots$$
;

$$\Gamma$$
) 4 + 2 $\sqrt{2}$ + 2 + $\sqrt{2}$ +

038.34. a)
$$2 + 4 + 6 + ... + 20 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} ...$$
;

6)
$$1 + 3 + 5 + \dots + 99 + \frac{2}{5} - \frac{4}{25} + \frac{8}{125} - \dots$$
;

B)
$$21 + 24 + 27 + \dots + 51 + \frac{1}{3} - \frac{1}{9} + \frac{1}{27} - \dots$$
;

r)
$$1 + 4 + 7 + ... + 100 + 0.1 + 0.01 + 0.001 + ...$$

$$\bigcirc$$
38.35. Упростите выражение $\left(x \neq \frac{\pi n}{2}\right)$:

- a) $\sin x + \sin^2 x + \sin^3 x + \sin^4 x + \dots$; 6) $\cos x \cos^2 x + \cos^3 x \cos^4 x + \dots$;
- B) $\cos^2 x + \cos^4 x + \cos^6 x + \cos^8 x + \dots$; r) $1 \sin^3 x + \sin^6 x \sin^9 x + \dots$

Решите уравнение, если известно, что |x| < 1:

$$\bigcirc 38.36.$$
 a) $x + x^2 + x^3 + x^4 + \dots + x^n + \dots = 4;$

6)
$$2x - 4x^2 + 8x^3 - 16x^4 + \dots = \frac{3}{8}$$

•38.37. a)
$$\frac{1}{x} + x + x^2 + x^3 + x^4 + \dots + x^n + \dots = \frac{7}{2}$$
;

6)
$$2x + 1 + x^2 - x^3 + x^4 - x^5 + \dots = \frac{13}{6}$$
.

•38.38. Решите уравнение:

- a) $\sin x + \sin^2 x + \sin^3 x + \dots + \sin^n x + \dots = 5;$ 6) $\cos x \cos^2 x + \cos^3 x \dots + (-1)^{n-1} \cos^n x + \dots = 2;$

B)
$$1 + \sin^2 x + \sin^4 x + ... + (\sin x)^{2n-2} + ... = \frac{4}{3}$$
;

r)
$$7\cos^3 x + 7\cos^6 x + ... + 7(\cos x)^{3n} + ... = 1$$
.

§ 39. Предел функции

- 39.1. Какая из функций, графики которых изображены на рис. 70—73, имеет предел при $x \to +\infty$? при $x \to -\infty$? при $x \to \infty$?
- 39.2. Выясните, имеет ли функция y = f(x) предел при $x \to +\infty$, при $x \to -\infty$ или при $x \to \infty$ и чему он равен, если:
 - а) прямая y = 3 является горизонтальной асимптотой графика функции на луче ($-\infty$; 4];
 - б) прямая y = -2 является горизонтальной асимптотой графика функции на луче $[-6; +\infty)$;
 - в) прямая y = -5 является горизонтальной асимптотой графика функции на луче ($-\infty$; 3];
 - г) прямая y = 5 является горизонтальной асимптотой графика функции на луче $[4; +\infty)$.

Puc. 70

Puc. 71

Puc. 72

Puc. 73

039.3. Известно, что $\lim_{x \to \infty} f(x) = 2$, $\lim_{x \to \infty} g(x) = -3$, $\lim_{x \to \infty} h(x) = 9$.

Вычислите:

a)
$$\lim_{x \to 0} (f(x) + g(x) - h(x));$$

a)
$$\lim_{x\to\infty} (f(x) + g(x) - h(x));$$
 B) $\lim_{x\to\infty} (g(x) - f(x) + h(x));$

6)
$$\lim_{x\to\infty}(g(x)\cdot(f(x))^2);$$

$$\Gamma) \lim_{x\to\infty} (f(x)\cdot g(x)\cdot h(x)).$$

039.4. Известно, что $\lim_{x\to\infty} f(x) = -2$, $\lim_{x\to\infty} g(x) = -10$, $\lim_{x\to\infty} h(x) = 6$. Вычислите:

a)
$$\lim_{x\to +\infty} \frac{f(x)}{g(x)}$$
;

B)
$$\lim_{x\to+\infty}\frac{f(x)h(x)}{g(x)}$$
;

6)
$$\lim_{x \to +\infty} \frac{3f(x) + h(x)}{2g(x) + 15}$$
;

$$\Gamma) \lim_{x\to+\infty} \frac{3g(x)}{5h(x)}.$$

Постройте график какой-либо функции y = f(x), обладающей указанными свойствами:

39.5. a)
$$\lim_{x \to \infty} f(x) = 3;$$

6) $\lim_{x \to \infty} f(x) = -2;$

$$\mathrm{B)} \ \lim_{x\to\infty}f(x)=-5;$$

$$6) \lim_{x \to \infty} f(x) = -2;$$

$$\Gamma) \lim_{x\to\infty} f(x) = 0.$$

39.6. a)
$$\lim_{x\to +\infty} f(x) = 4$$
, $\lim_{x\to +\infty} f(x) = 0$;

6)
$$\lim_{x \to +\infty} f(x) = 10$$
, $\lim_{x \to -\infty} f(x) = -2$;

B)
$$\lim_{x\to +\infty} f(x) = -2, \lim_{x\to -\infty} f(x) = 1;$$

$$\Gamma) \lim_{x\to+\infty} f(x) = 3, \lim_{x\to-\infty} f(x) = -4.$$

39.7. a)
$$\lim_{x\to +\infty} f(x) = 5$$
 и $f(x) > 0$ на $(-\infty; +\infty)$;

б)
$$\lim_{x \to -\infty} f(x) = -3$$
 и $f(x) \ge 0$ на отрезке [-7; 3];

в)
$$\lim_{x\to +\infty} f(x) = 0$$
 и $f(x) > 0$ на $[0, +\infty)$;

r)
$$\lim_{x\to -\infty} f(x) = 0$$
 и $f(x) < 0$ на $(-\infty; +\infty)$.

Постройте график какой-нибудь функции $y = h(x), x \in \mathbb{R}$ обладающей указанными свойствами:

039.8. а) $\lim_{x \to +\infty} h(x) = 4$ и функция возрастает;

- $\lim_{x\to\infty}h(x)=5$ и функция убывает;
- в) $\lim h(x) = -2$ и функция возрастает;
- r) $\lim_{x\to +\infty} h(x) = -3$ и функция убывает.
- O39.9. a) $\lim h(x) = 1$ и функция ограничена сверху;
 - б) $\lim h(x) = 1$ и функция ограничена снизу;
 - в) $\lim_{x\to\infty} h(x) = 1$ и функция ограничена сверху;
 - г) $\lim h(x) = 1$ и функция ограничена снизу.
- ullet 39.10. Постройте график непрерывной на $(-\infty; +\infty)$ функции y = f(x), обладающей следующими свойствами:
 - а) $\lim_{x \to 0} f(x) = 0$; f(x) > 0 на $(-\infty, 0)$; E(f) = [-5, 5], функция убывает на [2; 7];
 - 6) $\lim_{x\to -\infty} f(x) = 5$, $\lim_{x\to +\infty} f(x) = 0$, E(f) = [-3; 5), f(x) < 0 ha $(0; +\infty)$, функция возрастает на $[3; +\infty)$ и убывает на [0; 3].

Вычислите:

39.11. a)
$$\lim_{x\to\infty} \left(\frac{1}{x^2} + \frac{3}{x^3}\right)$$
;

$$\mathrm{B)} \lim_{x\to\infty}\left(\frac{2}{x^2}+\frac{8}{x^3}\right);$$

6)
$$\lim_{x\to\infty} \left(\frac{7}{x^5} - \frac{2}{x^3} \right)$$
;

$$\Gamma \lim_{x\to\infty} \left(\frac{9}{x^3} - \frac{5}{x^7} \right).$$

39.12. a)
$$\lim_{x\to\infty} \left(\frac{2}{x^9} + 1\right)$$
;

B)
$$\lim_{x\to\infty} \left(\frac{6}{x^5} + \frac{4}{x^2} + 9\right);$$

6)
$$\lim_{x\to\infty} \left(\frac{4}{x^3} - \frac{7}{x} - 21\right);$$
 r) $\lim_{x\to\infty} \left(\frac{7}{x^2} - 7\right).$

$$\Gamma) \lim_{x\to\infty} \left(\frac{7}{x^2}-7\right)$$

039.13. a)
$$\lim_{x\to\infty} \left(12 - \frac{1}{x^2}\right) \cdot \frac{16}{x^7};$$

6)
$$\lim_{x\to\infty} \left(\frac{5}{x^3} + 1\right) \cdot \left(-\frac{8}{x^2} - 2\right);$$

$$\mathrm{B)} \lim_{x\to\infty}\left(4+\frac{1}{x^3}\right)\cdot\frac{2}{x^5};$$

$$\text{f) } \lim_{x\to\infty}\left(\frac{7}{x^6}-2\right)\cdot\left(-\frac{6}{x^{10}}-3\right).$$

$$_{\bigcirc 39.14.}$$
 a) $\lim_{x\to\infty}\frac{x+1}{x-2};$

$$\text{B) } \lim_{x\to\infty}\frac{x-4}{x+3};$$

6)
$$\lim_{x \to \infty} \frac{3x-4}{2x+7}$$
;

$$r) \lim_{x\to\infty} \frac{7x+9}{6x-1}.$$

O39.15. a)
$$\lim_{x\to\infty} \frac{3x-1}{x^2+7x+5}$$
;

B)
$$\lim_{x\to\infty} \frac{-2x-1}{3x^2-4x+1}$$
;

6)
$$\lim_{x \to \infty} \frac{5 - 5x}{2x^2 - 9x}$$
;

r)
$$\lim_{x\to\infty} \frac{4x+3}{12x^2-6x}$$
.

o39.16. a)
$$\lim_{x \to \infty} \frac{4x - x^2 + 1}{5x^2 - 2x}$$
;

B)
$$\lim_{x\to\infty} \frac{3x-2x^2+4}{3x^2+2x}$$
;

6)
$$\lim_{x\to\infty} \frac{x^3-8}{x^3+18}$$
;

r)
$$\lim_{x\to\infty} \frac{x^3-3x^2}{x^4+2x+1}$$
.

o39.17. a)
$$\lim_{r\to\infty} \frac{4x^2+9}{r^2+2}$$
;

B)
$$\lim_{x\to\infty} \frac{3x^2-8}{x^2-1}$$
;

6)
$$\lim_{x\to\infty} \frac{12x^2+5x+2}{6x^2+5x-1}$$
;

$$\Gamma) \lim_{x\to\infty} \frac{10x^2+4x-3}{5x^2+2x+1}.$$

39.18. Какая из функций, графики которых изображены на рис. 74—81, имеет предел при $x \to 3$? Чему равен этот предел?

Puc. 74

Puc. 75

Puc. 78

Puc. 79

Puc. 80

Puc. 81

39.19. Постройте график какой-нибудь функции y = g(x), обладающей заданным свойством:

a)
$$\lim_{x\to -1} g(x) = 2;$$

$$\operatorname{B}) \lim_{x\to -7} g(x) = -4;$$

6)
$$\lim_{x\to 2} g(x) = -3;$$

$$\Gamma) \lim_{x\to 5} g(x) = 3,5.$$

39.20. Постройте график какой-нибудь функции y = f(x), обладающей заданными свойствами:

a)
$$\lim_{x\to 2} f(x) = 3$$
 u $f(2) = 3$;

6)
$$\lim_{x\to -6} f(x) = 4 \text{ u } \lim_{x\to -\infty} f(x) = 0;$$

в)
$$\lim_{x \to -1} f(x) = 4$$
, $f(-1)$ не существует;

- r) $\lim_{x\to 3} f(x) = -1$ u $\lim_{x\to +\infty} f(x) = -5$.
- 39.21. На рис. 82 изображен график функции y = f(x). Найдите:
 - a) $\lim_{x\to-\infty}f(x)$;
- $6) \lim_{x\to 0} f(x);$
- $B) \lim_{x\to 3} f(x);$
- $\Gamma) \lim_{x\to +\infty} f(x).$

Puc. 82

- $\bigcirc 39.22$. Постройте график функции y=f(x), обладающей следующими свойствами:
 - а) $\lim_{x\to 2} f(x) = 5$; f(2) = 5; $\lim_{x\to -3} f(x) = -1$; f(-3) = 1; $\lim_{x\to \infty} f(x) = -2$; функция возрастает на $(-\infty; 2]$.
 - 6) $\lim_{x \to -1} f(x) = -3$; f(-1) = 2; $\lim_{x \to 0} f(x) = -2$; f(0) = -2; $\lim_{x \to \infty} f(x) = 3$; E(f) = (-3; 5].

Вычислите:

39.23. a)
$$\lim_{x\to 1} (x^2 - 3x + 5);$$

6)
$$\lim_{x \to \frac{1}{2}} \frac{2x+3}{4x+2}$$
; r) $\lim_{x \to \frac{1}{2}} \frac{7x-14}{21x+2}$.

039.24. a)
$$\lim_{x\to 5} \sqrt{x+4}$$
;

B)
$$\lim_{x\to 3.5} \sqrt{2x-6}$$
;

6)
$$\lim_{x\to 0} \frac{2x-1}{x^2+3x-4}$$
;

r)
$$\lim_{x\to -1} \frac{5-2x}{3x^2-2x+4}$$
.

B) $\lim_{x\to -1} (x^2 + 6x - 8);$

039.25. a)
$$\lim_{x\to 4} \frac{\sin \pi x}{x-1}$$
;

B)
$$\lim_{x\to 0} \frac{\cos \pi x}{x+2}$$
;

6)
$$\lim_{x\to 2} \frac{\sin\frac{\pi}{x}}{2x+1};$$

r)
$$\lim_{x \to 3} \frac{\cos \frac{2\pi}{x}}{3x-1}$$
.

•39.26. a) $\lim_{x\to 0.5} (2 \arcsin x + 3 \arccos x);$

6)
$$\lim_{x\to-0.5} \frac{\arccos x + \pi \sin \pi x}{\pi \cos \pi x + 2 \arcsin x};$$

B)
$$\lim_{x\to\sqrt{3}} (2 \operatorname{arctg} x - \operatorname{arcctg} x);$$

r)
$$\lim_{x\to -1} \frac{2 \operatorname{arcctg} x + \pi x}{\cos x - \cos(-x) + \operatorname{arctg} x}$$
.

039.27. a)
$$\lim_{x\to 0} \frac{x^2}{x^2-x}$$
;

B)
$$\lim_{x\to 3} \frac{x^2-3x}{x-3}$$
;

6)
$$\lim_{x \to -1} \frac{x+1}{x^2+x}$$
;

r)
$$\lim_{x\to 5} \frac{x+5}{x^2+5x}$$
.

039.28. a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
;

B)
$$\lim_{x\to 5} \frac{x^2-25}{x-5}$$
;

6)
$$\lim_{x\to -2}\frac{x^2-4}{2+x}$$
;

r)
$$\lim_{x\to -3} \frac{3+x}{x^2-9}$$
.

039.29. a)
$$\lim_{x\to 1} \frac{x^2+2x-3}{x-1}$$
;

B)
$$\lim_{x\to -1}\frac{x+1}{x^2-2x-3}$$
;

6)
$$\lim_{x\to 2} \frac{x-2}{2x^2-x-6}$$
;

r)
$$\lim_{x\to 9} \frac{x^2-11x+18}{x-9}$$
.

$$_{\mathcal{O}}$$
39.30. a) $\lim_{x\to -2}\frac{x+2}{x^3+8}$;

B)
$$\lim_{x\to 3} \frac{x-3}{x^3-27}$$
;

6)
$$\lim_{x\to -1}\frac{1+x^3}{1-x^2}$$
;

$$\Gamma) \lim_{x\to 4} \frac{16-x^2}{64-x^3}.$$

$$_{\text{O}}$$
39.31. a) $\lim_{x\to 0} \frac{\sin x}{\log x}$;

B)
$$\lim_{x\to\frac{\pi}{2}}\frac{\cos x}{\cot x}$$
;

6)
$$\lim_{x\to\frac{\pi}{2}}\frac{\sin 3x + \sin x}{\cos 3x + \cos x};$$

r)
$$\lim_{x\to 0} \frac{\cos 5x - \cos 3x}{\sin 5x + \sin 3x}$$
.

•39.32. a)
$$\lim_{x\to 3} \frac{\sqrt{x+6}-3}{x^2-3x}$$
;

6)
$$\lim_{x \to +\infty} (\sqrt{2x+3} - \sqrt{2x-7});$$

B)
$$\lim_{x\to 2} \frac{x^2-4}{\sqrt{2x+5}-3}$$
;

$$r) \lim_{x\to\infty} (\sqrt{5-3x}-\sqrt{-3x}).$$

•39.33. a)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
;

6)
$$\lim_{x\to 0} \frac{\sin 7x - \sin 3x}{\sin 8x - \sin 2x}.$$

39.34. Найдите приращение функции y = 2x - 3 при переходе от точки $x_0 = 3$ к точке x_1 , если:

a)
$$x_1 = 3,2$$
;

B)
$$x_1 = 3.5$$
;

6)
$$x_1 = 2.9$$
;

r)
$$x_1 = 2.5$$
.

39.35. Найдите приращение функции $y = x^2 + 2x$ при переходе от точки $x_0 = -2$ к точке x_1 , если:

a)
$$x_1 = -1,9;$$

B)
$$x_1 = -1.5$$
;

6)
$$x_1 = -2,1$$
;

r)
$$x_1 = -2.5$$
.

39.36. Найдите приращение функции $y = \sin x$ при переходе от точки $x_0 = 0$ к точке x_1 , если:

a)
$$x_1 = \frac{\pi}{6}$$
;

B)
$$x_1 = \frac{\pi}{4}$$
;

6)
$$x_1 = -\frac{\pi}{6}$$
;

r)
$$x_1 = -\frac{\pi}{3}$$
.

039.37. Найдите приращение функции $y = 2 \sin x \cdot \cos x$ при переходе от точки $x_0 = 0$ к точке x_1 , если:

a)
$$x_1 = -\frac{\pi}{8}$$
;

B)
$$x_1 = \frac{\pi}{8}$$
;

$$6) x_1 = \frac{\pi}{12};$$

$$\mathbf{r}) x_1 = -\frac{\pi}{12}.$$

- 039.38. Найдите приращение функции $y = \sqrt{x}$ при переходе от точки $x_0 = 1$ к точке $x_1 = x_0 + \Delta x$, если:
 - a) $\triangle x = 0.44$:

B) $\triangle x = 0.21$;

6) $\triangle x = -0.19$;

- r) $\triangle x = 0,1025$.
- 39.39. По графику функции, представленному на рисунке, найдите приращение аргумента и приращение функции при переходе от точки x_0 к точке x_1 :
 - а) рис. 83;

б) рис. 84.

.3 \dot{x}_{0} ż, 0

Puc. 83

Puc. 84

- 039.40. Найдите приращение функции $y = 4x^2 x$ при переходе от точки x к точке $x + \Delta x$:

 - a) x = 0, $\triangle x = 0.5$; B) x = 0, $\triangle x = -0.5$;
 - 6) $x = 1, \Delta x = -0.1;$
- r) x = 1, $\triangle x = 0,1$.
- \bigcirc 39.41. Найдите приращение функции y = f(x) при переходе от точки x к точке $x + \Delta x$, если:
 - a) f(x) = 3x + 5;
- B) f(x) = 4 2x;

6) $f(x) = -x^2$:

- $\mathbf{r}) \ f(x) = 2x^2.$
- 039.42. Вычислите, чему равно отношение приращения функции $y = x^2 - 4x + 1$ к приращению аргумента при переходе от точки $x_0 = 2$ к точке:
 - a) x = 2,1;

B) x = 2,5;

б) x = 1.9;

- r) x = 1.5.
- **39.43.** Для функции y = f(x) найдите $\triangle f$ при переходе от точки xк точке $x + \Delta x$, если:
 - a) f(x) = kx + m;
- $\mathbf{B})\ f(x)=\frac{1}{x};$

б) $f(x) = ax^{2}$;

 $\mathbf{r}) \ f(x) = \sqrt{x}.$

 $_{\bigcirc}$ 39.44. Для функции y=f(x) найдите $\frac{\triangle f}{\triangle x}$ при переходе от точки x к точке $x + \Delta x$, если:

a)
$$f(x) = kx + b$$
; 6) $f(x) = ax^2$; B) $f(x) = \frac{1}{x}$; F) $f(x) = \sqrt{x}$.

 $_{\bigcirc 3}$ 9.45. Для функции y=f(x) найдите $\lim_{\triangle x \to 0} \frac{\triangle f}{\triangle x}$ при переходе от точки x к точке $x + \triangle x$, если:

a)
$$f(x) = kx + b$$
; 6) $f(x) = ax^2$; B) $f(x) = \frac{1}{x}$; r) $f(x) = \sqrt{x}$.

§ 40. Определение производной

- 40.1. Закон движения точки по прямой задается формулой s(t) = 2t + 1, где t — время (в секундах), s(t) — отклонение точки в момент времени t (в метрах) от начального положения. Найдите среднюю скорость движения точки с момента $t_1 = 2$ с до момента:
 - a) $t_2 = 3 c$;

B) $t_2 = 2.1 c$;

б) $t_2 = 2.5 c$;

r) $t_2 = 2.05 \text{ c.}$

Вычислите мгновенную скорость точки в момент t = 2 с.

- 40.2. Закон движения точки по прямой задается формулой $s(t) = t^2$, где t — время (в секундах), s(t) — отклонение точки в момент времени t (в метрах) от начального положения. Найдите среднюю скорость движения точки с момента $t_1 = 0$ с до момента:
 - a) $t_2 = 0.1 c$;

- B) $t_2 = 0.2 c$;
- б) $t_2 = 0.01 c$;

 $r) t_2 = 0.001 c.$

Вычислите мгновенную скорость точки в момент t = 1 с.

- 40.3. Закон движения точки по прямой задается формулой $s(t) = 2t^2 + t$, где t — время (в секундах), s(t) — отклонение точки в момент времени t (в метрах) от начального положения. Найдите среднюю скорость движения точки с момента t_1 = 0 с до момента:
 - a) $t_2 = 0.6 c$;

B) $t_2 = 0.5 c$;

б) $t_2 = 0.2 c$;

 $r) t_2 = 0.1 c.$

Вычислите мгновенную скорость точки в момент t=1 с.

- 040.4. Закон движения точки по прямой задается формулой s = s(t), где t — время (в секундах), s(t) — отклонение точки в момент времени t (в метрах) от начального положения. Найдите мгновенную скорость движения точки, если:
 - a) s(t) = 4t + 1;
- B) s(t) = 0, ..., r) $s(t) = t^2 2t$. B) s(t) = 3t + 2;
- 6) $s(t) = t^2 t$;

- **40.5.** Функция y = f(x) задана своим графиком. Определите зна чения $f'(x_1)$ и $f'(x_2)$, если график функции изображен:
 - а) на рис. 85;

в) на рис 87;

б) на рис. 86;

г) на рис. 88.

Puc. 85

Puc. 86

Puc. 87

- **40.6.** Функция y = f(x) задана своим графиком (рис. 89). Сравните значения производной в указанных точках:
 - а) f'(-7) и f'(-2);
- в) f'(-9) и f'(0);
- б) f'(-4) и f'(2);
- г) f'(-1) и f'(5).

Puc. 89

- 40.7. Функция y = f(x) задана своим графиком (рис. 89). Укажите два значения аргумента x_1 и x_2 , при которых:
- a) $f'(x_1) > 0$, $f'(x_2) > 0$; b) $f'(x_1) < 0$, $f'(x_2) < 0$; c) $f'(x_1) < 0$, $f'(x_2) < 0$; r) $f'(x_1) > 0$, $f'(x_2) < 0$.
- **40.8.** Функция $y = \varphi(x)$ задана своим графиком (рис. 90). Укажите несколько значений аргумента, для которых:
 - a) $\varphi'(x) > 0$;

- B) $\varphi'(x) < 0$;
- б) $\varphi'(x) < 0$ и x > 0;
- г) $\phi'(x) > 0$ и x < 0.

Puc. 90

Воспользовавшись определением, найдите производную функции в точке x:

•40.9. a) $y = x^2 + 2x$;

B) $3x^2 - 4x$;

б) $y = \frac{1}{4}$;

r) $y = \frac{4}{4}$.

•40.10. a) $y = \sqrt{x}$;

B) $y = \sqrt{x} + 1$;

б) $y = \frac{1}{x^2}$;

Воспользовавшись определением, найдите производную функции в точке x_0 или докажите, что она не существует:

- **•40.11.** a) $y = \begin{cases} 3x, \text{ если } x \ge 0, \\ -2x + 3, \text{ если } x < 0; \end{cases}$ $x_0 = 0.$
 - б) $y = \begin{cases} 2x^2, \text{ если } x \geqslant 0, \\ -2x^2, \text{ если } x < 0; \end{cases}$ $x_0 = 0.$
 - в) $y = \begin{cases} -4x + 2, \text{ если } x \geqslant 3, \\ 2x 4, \text{ если } x < 3; \end{cases}$ $x_0 = 3.$
 - r) $y = \begin{cases} x^2, \text{ если } x \leq 1, \\ 2x 1, \text{ если } x > 1; \end{cases} x_0 = 1.$

•40.12. a)
$$y = |x + 4|, x_0 = -4;$$

6)
$$y = -3x|x|$$
, $x_0 = 0$;

B)
$$y = 2x|x|, x_0 = 0;$$

$$y = (x-1)|x-1|, x_0 = 1.$$

40.13. Найдите скорость изменения функции в точке x:

a)
$$y = 9.5x - 3$$
;

B)
$$y = 6.7x - 13$$
;

6)
$$y = -16x + 3$$
;

r)
$$u = -9x + 4$$
.

040.14. Найдите скорость изменения функции y = f(x) в указав. ной точке:

a)
$$f(x) = x^2$$
, $x_0 = 2$;

a)
$$f(x) = x^2$$
, $x_0 = 2$; B) $f(x) = x^2$, $x_0 = -2$;

6)
$$f(x) = \frac{1}{x}, x_0 = -1$$

6)
$$f(x) = \frac{1}{x}$$
, $x_0 = -1$; $\Gamma(x) = \frac{1}{x}$, $x_0 = -0.5$.

040.15. Закон движения точки по прямой задается формулой $s(t) = t^2$, где t — время (в секундах), s(t) — отклонение точки в момент времени t (в метрах) от начального положения. Найдите скорость и ускорение (скорость изменения скорости) в момент времени t, если:

a)
$$t = 1$$
 c:

б)
$$t = 2.1 c$$
;

B)
$$t = 2 c$$
;

$$r) t = 3.5 c.$$

040.16. Закон движения некоторой точки по прямой задается формулой $s(t) = t^2 + t$, где t — время (в секундах), s(t) отклонение точки в момент времени t (в метрах) от начального положения. Найдите скорость и ускорение в момент времени t, если:

a)
$$t = 1 c$$
;

б)
$$t = 2,1$$
 с

в)
$$t = 2 \, c$$

6)
$$t = 2,1$$
 c; B) $t = 2$ c; r) $t = 3,5$ c.

§ 41. Вычисление производных

Найдите производную функции:

41.1. a)
$$y = 7x + 4$$
;

B)
$$y = -6x + 1$$
;

б)
$$y = x^2$$
;

$$\Gamma) y = \frac{1}{x}.$$

41.2. a)
$$y = x^5$$
;

B)
$$y = x^4$$
;

6)
$$y = x^{10}$$
;

r)
$$y = x^{201}$$
.

41.3. a)
$$y = \sin x$$
;

$$\mathbf{B}) \ y = \cos x;$$

б)
$$y = \sqrt{x}$$
;

$$y = x^{10}$$
.

41.4. a)
$$y = \text{tg } x$$
;

$$\mathbf{B}) \ y = \mathbf{tg} \ x + \mathbf{4};$$

б)
$$y = \operatorname{ctg} x$$
;

$$\mathbf{r}) \ y = \mathbf{ctg} \ x + 8.$$

41.5. a)
$$y = x^2 - 7x$$
;

$$6) \ y = -3x^2 - 13x;$$

41.6. a)
$$y = x^3 + 2x^5$$
;

6)
$$y = x^4 - x^9$$
:

41.7. a)
$$y = 12x + \sqrt{x}$$
;

6)
$$y = -2x^2 - \frac{1}{x}$$
;

41.8. a)
$$y = 6\sqrt{x} + \frac{3}{x}$$
;

$$6) y = -2\sqrt{x} - \frac{1}{x};$$

41.9. a)
$$y = \cos x + 2x$$
;

$$6) y = 3 \sin x + \cos x;$$

41.10. a)
$$y = \frac{1}{2} \sin x - 3 \cot x$$
;

6)
$$y = 2 tg x + \sqrt{3} \cos x$$
:

41.11. a)
$$y = x^5 + 9x^{20} + 1$$
;

$$6) \ y = x^7 - 4x^{16} - 3;$$

41.12. a)
$$y = (x^2 - 1)(x^4 + 2)$$
;

$$6) y = (x^2 + 3)(x^6 - 1);$$

41.13. a)
$$y = \sqrt{x(2x-4)}$$
;

6)
$$y = (x^3 + 1) \cdot \sqrt{x}$$
;

41.14. a)
$$y = x \cdot \sin x$$
;

б)
$$y = \sqrt{x} \cdot \cos x$$
;

41.15. a)
$$y = \left(\frac{1}{x} + 1\right)(2x - 3);$$

6)
$$y = \left(7 - \frac{1}{x}\right)(6x + 1);$$

$$^{\circ}41.16. a) y = x^3 \cdot tg x;$$

6)
$$y = \cos x \cdot \operatorname{ctg} x$$
;

B)
$$y = 7x^2 + 3x$$
;

r)
$$y = -x^2 + 8x$$
.

B)
$$y = x^3 + 4x^{100}$$
;

$$r) y = x^4 - 7x^9$$
.

$$\mathbf{B}) \ y = \sqrt{x} - 5x^2;$$

$$\mathbf{r}) \ y = 10x^2 + \frac{1}{x}.$$

B)
$$y = 10\sqrt{x} + \frac{5}{x}$$
;

$$\mathbf{r}) y = -8\sqrt{x} - \frac{1}{x}.$$

$$\mathbf{B}) \ y = \sin x - 3x;$$

$$\mathbf{r}) \ y = 2 \cos x + \sin x.$$

$$B) y = \frac{\cos x}{5} + 1.4 \operatorname{ctg} x;$$

$$\mathbf{r)} \ y = 6 \ \mathbf{tg} \ x - \sin x.$$

B)
$$y = x^6 + 13x^{10} + 12$$
:

$$\mathbf{r}) \ y = x^9 - 6x^{21} - 36.$$

B)
$$y = (x^2 + 3)(x^4 - 1);$$

r)
$$y = (x^2 - 2)(x^7 + 4)$$
.

B)
$$y = \sqrt{x}(8x - 10);$$

$$\mathbf{r}) \ y = \sqrt{x} \cdot (x^4 + 2).$$

$$\mathbf{B}) \ y = x \cdot \cos x;$$

$$\mathbf{r}) \ y = \sqrt{x} \cdot \sin x.$$

B)
$$y = \left(\frac{1}{x} + 8\right)(5x - 2);$$

r)
$$y = \left(9 - \frac{1}{x}\right)(3x + 2)$$
.

$$\mathbf{B}) \ y = \frac{1}{r} \cdot \operatorname{ctg} x;$$

r)
$$y = \sin x \cdot \lg x$$
.

Найдите производную функции:

041.17. a)
$$y = (x - 1)(x^2 + x + 1)$$
;

B)
$$y = (x + 1)(x^2 - x + 1)$$
;

$$6) y = (x^2 + 2x + 4)(x - 2);$$

$$y = (x^2 - 3x + 9)(x + 3),$$

041.18. a)
$$y = \frac{x^3}{2x+4}$$
;

B)
$$y = \frac{x^2}{3-4x}$$
;

6)
$$y = \frac{x^2}{x^2 - 1}$$
;

$$\Gamma) y = \frac{x}{x^2 + 1}$$

041.19. a)
$$y = \frac{3\sqrt{x}}{2x+9}$$
;

B)
$$y = \frac{-2\sqrt{x}}{8-3x}$$
;

$$6) y = \frac{\sin x}{x};$$

$$\mathbf{r)} \ y = \frac{\cos x}{x}.$$

041.20. a)
$$y = \frac{x^9 - 3}{x^3}$$
;

B)
$$y = \frac{x^5 + x}{x^5 - 1}$$
;

$$6) \ y = \frac{x^{15}}{x^{10} + 1};$$

$$\mathbf{r}) \ y = \frac{x^{13}}{x^4 - 2}.$$

O41.21. a)
$$y = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$
; B) $y = \cos^2 3x + \sin^2 3x$;

$$y = \cos^2 3x + \sin^2 3x;$$

6)
$$y = 2 \sin \frac{x}{2} \cos \frac{x}{2}$$
;

$$r) y = -\sin \frac{x}{2} \cos \frac{x}{2}.$$

041.22. a)
$$y = \sin 2x \cos x - \cos 2x \sin x$$
;

6)
$$y = \sin \frac{x}{3} \cos \frac{2x}{3} + \cos \frac{x}{3} \sin \frac{2x}{3}$$
;

$$\mathbf{B}) \ y = \cos 3x \, \cos 2x + \sin 3x \, \sin 2x;$$

r)
$$y = \cos \frac{x}{5} \cos \frac{4x}{5} - \sin \frac{x}{5} \sin \frac{4x}{5}$$
.

Найдите значение производной заданной функции в точке 🗱

41.23. a)
$$y = \sqrt{x}$$
, $x_0 = 4$;

B)
$$y = -3x - 11$$
, $x_0 = -3$;

6)
$$y = x^2$$
, $x_0 = -7$;

r)
$$y = \frac{1}{r}$$
, $x_0 = 0.5$.

41.24. a)
$$y = \sin x$$
, $x_0 = -\frac{\pi}{2}$;

B)
$$y = \cos x$$
, $x_0 = -3\pi$;

6)
$$y = \cos x$$
, $x_0 = \frac{\pi}{6}$;

$$\mathbf{r}) \ y = \sin x, \ x_0 = 0.$$

41.25. a)
$$y = 6x - 9$$
, $x_0 = 3$;
 6) $y = x^3 - 3x + 2$, $x_0 = -1$;

B)
$$y = 5x - 8$$
, $x_0 = 2$;

6)
$$y = x^3 - 3x + 2$$
, $x_0 = -1$

$$\mathbf{r}) \ y = x^2 + 3x - 4, \ x_0 = 1$$

41.26. a)
$$y = \frac{2}{x} - \frac{x}{2}$$
, $x_0 = 4$; b) $y = \frac{8}{x} - \frac{x^3}{3}$, $x_0 = 1$;

$$y = \frac{8}{x} - \frac{x^3}{3}, \ x_0 = 1;$$

$$y = \sqrt{x} + 5x, x_0 = 4.$$

41.27. a)
$$y = 2 \sin x - 13 \cos x$$
, $x_0 = \frac{\pi}{2}$;

6)
$$y = -\cos x + \frac{1}{\pi}x^2$$
, $x_0 = \frac{\pi}{6}$;

B)
$$y = -\sin x - 3$$
, $x_0 = \frac{\pi}{3}$;

r)
$$y = 4 \cos x + x\sqrt{2}, x_0 = \frac{\pi}{4}$$
.

41.28. a)
$$y = \operatorname{tg} x + \sqrt{\pi} \cdot \sqrt{x}$$
, $x_0 = \frac{\pi}{4}$;

6)
$$y = 2 \operatorname{ctg} x - 3 \operatorname{tg} x$$
, $x_0 = \frac{\pi}{3}$;

B)
$$y = \operatorname{ctg} x + \frac{\pi^2}{x}$$
, $x_0 = -\frac{\pi}{6}$;

r)
$$y = (2x + 3)^2 - 4 \operatorname{tg} x$$
, $x_0 = 0$.

041.29. a)
$$y = \frac{\sin x}{r}$$
, $x_0 = \frac{\pi}{2}$;

$$B) y = \frac{\cos x}{x}, x_0 = \pi;$$

6)
$$y = \frac{x+1}{x-1}$$
, $x_0 = 2$; $y = \frac{2x}{x+1}$, $x_0 = 0$.

r)
$$y = \frac{2x}{x+1}, x_0 = 0.$$

- 041.30. Докажите, что производная заданной функции принимает положительные значения при всех допустимых значениях аргумента:
 - a) y = 3x + 12:

- B) $u = -2 \sin x + 4x$;
- 6) $y = 2x^3 + 15x$;
- r) $y = 3x 1.5 \cos x$.
- 041.31. Докажите, что производная заданной функции принимает отрицательные значения при всех допустимых значениях аргумента:

a)
$$y = \frac{1}{x^5} - 1.5x;$$

B)
$$y = 1.4 \cos x - 3x$$
;

6)
$$y = -\sqrt{x} + 14$$
;

$$\mathbf{r)} \ y = \frac{12}{x^7} + 29.$$

- 041.32. а) Найдите те значения аргумента, при которых производная функции $y = x^3 - 3x$ принимает положительные значения:
 - б) найдите те значения аргумента, при которых производная функции $y=x^5-rac{5}{4}x^4$ принимает отрицательные значения;
 - в) найдите те значения аргумента, при которых производная функции $y = \sqrt{x} + x$ принимает неотрицательные значения;
 - г) найдите те значения аргумента, при которых производная функции $y = 7\cos x + 12$ принимает неположитель. ные значения.

Найдите скорость изменения функции в точке x_0 :

41.33. a)
$$y = x^2$$
, $x_0 = -0.1$; B) $y = \sqrt{x}$, $x_0 = 9$;

B)
$$y = \sqrt{x}, x_0 = 9$$

6)
$$y = \frac{1}{x}$$
, $x_0 = -2$;

$$\mathbf{r}) \ y = \cos x, \ x_0 = \pi.$$

041.34. a)
$$y = x^3 + 2x$$
, $x_0 = 2$;

B)
$$y = \frac{1}{x} \left(\frac{4}{x} - 2 \right)$$
, $x_0 = -0.5$;

6)
$$y = (\sqrt{x+1})\sqrt{x}$$
, $x_0 = 1$; $y = 2 \sin x - 4x$, $x_0 = \frac{\pi}{4}$.

r)
$$y = 2 \sin x - 4x$$
, $x_0 = \frac{\pi}{4}$.

ullet41.35. Существует ли производная заданной функции в точке x_0 ? Если да, то вычислите ее:

a)
$$y = |x - 2|(x - 2), x_0 = 2;$$

6)
$$y = (x + 2)|x + 2|, x_0 = -2.$$

•41.36. Существует ли производная заданной функции в указанных точках? Если да, то найдите значения производных:

a)
$$y = x^2 - 5|x| + 6$$
, $x_0 = 2$, $x_1 = 3$, $x_2 = 0$;

6)
$$y = |x^2 - 5|x| + 6|$$
, $x_0 = -2$, $x_1 = 0$, $x_2 = 2.5$.

Найдите угловой коэффициент касательной к графику функции y = f(x) в точке с абсциссой x_0 :

41.37. a)
$$f(x) = x^2$$
, $x_0 = -4$; B) $f(x) = \frac{1}{x}$, $x_0 = \frac{1}{2}$;

B)
$$f(x) = \frac{1}{x}, x_0 = \frac{1}{2};$$

6)
$$f(x) = \frac{1}{x}$$
, $x_0 = -\frac{1}{3}$; r) $f(x) = x^2$, $x_0 = 2$.

$$\mathbf{r}) \ f(x) = x^2, \ x_0 = 2.$$

41.38. a)
$$f(x) = \sin x$$
, $x_0 = \frac{\pi}{3}$; B) $f(x) = \cos x$, $x_0 = \frac{\pi}{3}$;

6)
$$f(x) = \cos x$$
, $x_0 = -\frac{\pi}{4}$; r) $f(x) = \sin x$, $x_0 = -\frac{\pi}{6}$.

Определите абсциссы точек, в которых угловой коэффициент касательной к графику функции y = f(x) равен k, если:

$$041.39.$$
 a) $f(x) = \sqrt{x} - x$, $k = 1$;

6)
$$f(x) = \sqrt{x} + 3x, k = 4.$$

O41.40. a)
$$f(x) = \sin \frac{x}{2} \cos \frac{x}{2}$$
, $k = -\frac{\sqrt{2}}{4}$;

6)
$$f(x) = \cos^2 \frac{x}{2}$$
, $k = \frac{1}{2}$.

Найдите тангенс угла между касательной к графику функции y = f(x) в точке с абсциссой x_0 и осью x:

41.41. a)
$$f(x) = x^6 - 4x$$
, $x_0 = 1$;

6)
$$f(x) = \sqrt{x} - 3$$
, $x_0 = \frac{1}{4}$;

B)
$$f(x) = -x^5 - 2x^2 + 2$$
, $x_0 = -1$;

$$\Gamma) \ f(x) = \frac{25}{x} + 2, \ x_0 = \frac{5}{4}.$$

$$041.42. a) f(x) = 10 - \cos x, x_0 = \frac{3\pi}{2};$$

6)
$$f(x) = 2 \operatorname{tg} x$$
, $x_0 = \frac{\pi}{4}$;

B)
$$f(x) = 4 - \sin x$$
, $x_0 = 6\pi$;

r)
$$f(x) = -4 \operatorname{ctg} x$$
, $x_0 = -\frac{\pi}{4}$.

$$^{\circ}41.43.$$
 a) $f(x) = x^2 \sin x$, $f'\left(\frac{\pi}{2}\right) = ?$

6)
$$f(x) = x(1 + \cos x), f'(\pi) = ?$$

B)
$$f(x) = \sqrt{3} \sin x + \frac{x^2}{\pi} + x \sin \frac{\pi}{6}, \ f'(\frac{\pi}{6}) = ?$$

r)
$$f(x) = \sqrt{3} \cos x - x \cos \frac{\pi}{6} + \frac{x^2}{\pi}$$
, $f'(\frac{\pi}{3}) = ?$

- 041.44. Определите абсциссы точек, в которых касательная к графику функции y = h(x) образует с положительным направлением оси абсцисс заданный угол а:
 - a) $f(x) = x^2 3x + 19$, $\alpha = 45^\circ$;
 - 6) $f(x) = \frac{4}{x+2}$, $\alpha = 135^{\circ}$.
- О41.45. Определите абсциссы точек, в которых касательная к графику функции y = h(x) образует острый угол с положительным направлением оси х, если:
 - a) $h(x) = x^3 3x^2 + 1;$ B) $h(x) = x^3 x^4 19;$ 6) $h(x) = 4\sqrt{x} x;$ F) $h(x) = \lg x 4x.$
- 041.46. Определите абсциссы точек, в которых касательная к графику функции $y = \varphi(x)$ образует тупой угол с положительным направлением оси x, если:
 - a) $\varphi(x) = \sin x + 3$;
 - 6) $\varphi(x) = 0.2x^5 3\frac{1}{2}x^3 + 9x;$
 - B) $\varphi(x) = \operatorname{ctg} x + 9x$:
 - r) $\varphi(x) = x^4 \frac{1}{2}x^3 + 21$.
- 041.47. При каких значениях a касательные к графикам функций y = f(x), y = h(x) в точке x = a не имеют общих точек:

 - a) $f(x) = x^7$, $h(x) = x^8$; 6) $f(x) = x^2 + x + 3$, $h(x) = x^3$?
- 041.48. а) При каких значениях x выполняется равенство f'(x) = 2, если известно, что $f(x) = 2\sqrt{x} - 5x + 3$?
 - б) При каких значениях x выполняется равенство f'(x) = 1, если известно, что $f(x) = 3x - \sqrt{x} + 13$?

Решите неравенство f'(x) < 0:

041.49. a)
$$f(x) = x^3 - 4^4$$
;

6)
$$f(x) = \frac{1}{5}x^5 - \frac{5}{3}x^3 + 6x$$
.

$$041.50.$$
 a) $f(x) = \sin 2x$;

$$6) f(x) = -4\cos x + 2x.$$

Решите неравенство f'(x) > 0:

041.51. a)
$$f(x) = x^3 + x^4$$
;

$$6) f(x) = \frac{4}{2-5x}.$$

041.52. a)
$$f(x) = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$
;

$$6) f(x) = \sin^2 \frac{x}{2}.$$

При каких значениях аргумента скорость изменения функции y = f(x) равна скорости изменения функции y = g(x):

O41.53. a)
$$f(x) = \frac{1}{3}x^3 - x^2$$
, $g(x) = 7.5x^2 - 16x$;

6)
$$f(x) = \sqrt{x}, \ g(x) = \frac{-1}{x}$$
?

$$041.54.$$
 a) $f(x) = \cos x$, $g(x) = \sin x$;

$$6) f(x) = \operatorname{tg} x, g(x) = -\operatorname{ctg} x?$$

 \bigcirc 41.55. При каких значениях аргумента скорость изменения функции y=g(x) больше скорости изменения функции y=h(x):

a)
$$g(x) = x^3 - 3x^2$$
, $h(x) = 1.5x^2 - 9$;

6)
$$g(x) = \operatorname{tg} x$$
, $h(x) = 4x - 81$?

 \bigcirc 41.56. Найдите значения аргумента, удовлетворяющие условию f'(x) = g'(x), если:

a)
$$f(x) = \frac{6}{5x - 9}$$
, $g(x) = \frac{3}{7 - 5x}$;

6)
$$f(x) = \operatorname{ctg} x$$
, $g(x) = 2x + 15$.

041.57. Найдите значения аргумента, удовлетворяющие условию $f'(x) \leq g'(x)$, если:

a)
$$f(x) = \sin x \cdot \cos x$$
, $g(x) = \frac{1}{2}x + 61$;

6)
$$f(x) = x \cos x, \ g(x) = \sin x.$$

41.58. Укажите, какой формулой можно задать функцию y = f(x), если:

a)
$$f'(x) = 2x$$
;

B)
$$f'(x) = 3$$
;

б)
$$f'(x) = \cos x$$
;

$$\mathbf{r}) \ f'(x) = -\sin x.$$

 \circ 41.59. Известна производная функции y = f'(x). Укажите, какой формулой можно задать функцию y = f(x), если:

a)
$$f'(x) = 3x^2 + 2x$$
;

B)
$$f'(x) = 5x^4 - 1$$
;

6)
$$f'(x) = -\frac{7}{x^2}$$
;

$$\Gamma) f'(x) = \frac{9}{2\sqrt{x}}?$$

- •41.60. Задайте аналитически функцию y = f(x), если графиком ее производной является:
 - а) парабола (рис. 100);
- б) ломанная (рис. 104).

- **041.61.** а) При каких значениях x верно равенство $y' \cdot y + y^2 = 0$, если $y = 2 \sin x$?
 - б) При каких значениях x верно равенство $y^2 + (y')^2 = 1$, если $y = \sqrt{x}$?
- **ullet41.62.** При каких значениях a и b функция

$$y = \begin{cases} 2x - 3, \text{ если } x \leq 1, \\ x^2 + ax + b, \text{ если } x > 1 \end{cases}$$

- а) непрерывна на всей числовой прямой;
- б) дифференцируема на всей числовой прямой?
- ullet41.63. При каких значениях a и b функция

$$y = \begin{cases} \frac{x^2 + 3}{4}, \text{ если } x \leq -1, \\ ax^3 + bx, \text{ если } x > -1: \end{cases}$$

- а) непрерывна на всей числовой прямой;
- б) дифференцируема на всей числовой прямой?
- 041.64. Найдите вторую производную функции:
 - a) $y = x^4 + 2x$;

 $\mathbf{B}) \ y = \sin x + 1;$

- 6) $y = x^5 3x$;
- $\Gamma) y = 2 \cos x 4.$
- \bigcirc **41.65.** Найдите f'''(0), если:
 - a) $y = 2x^3 x^2$;
- $\mathbf{B}) \ y = 4 \sin x \cos x;$
- б) $y = x + \cos x$;
- $\Gamma) y = \sin x + \cos x.$
- **041.66.** Тело движется по прямой согласно закону $x(t) = \frac{t^4}{4} \frac{t^3}{3} 6t^2 + 2t + 1$ (где t время (в секундах), x(t) координата (в метрах)). Найдите:
 - а) ускорение движения в момент времени t = 3 c;
 - б) силу, действующую на тело массой $1\ {
 m r}$ в момент времени $t=3\ {
 m c}.$
- **041.67.** а) При каких значениях x верно равенство y'' + y' y = 0, если $y = 3 \cos x$?
 - б) При каких значениях x верно равенство $(y'')^2 + 2y' = y^2 + 1$, если $y = \sin x$?
- **041.68.** а) Докажите, что функция $y = x \sin x$ удовлетворяет соотнот шению $y'' + y = 2 \cos x$;
 - б) докажите, что при любых значениях a и b функция $y = a \sin x + b \cos x$ удовлетворяет соотношению y'' + y = 0.

О41.69. Строится мост параболической формы, соединяющий пункты А и В, расстояние между которыми равно 200 м. Въезд на мост и съезд с моста должны быть прямолинейными участками пути, эти участки направлены к горизонту под углом 15°. Указанные прямые должны быть касательными к параболе. Составьте уравнение профиля моста в заданной системе координат (рис. 91).

Puc. 91

•41.70. а) При каких значениях параметра a касательные к графику функции $y = 4x^2 - |a|x$, проведенные в точках его пересечения с осью x, образуют между собой угол 60° ? 6) При каких значениях параметра a касательные к графику функции $y = x^2 + |a|x$, проведенные в точках его пересечения с осью x, образуют между собой угол 45° ?

§ 42. Дифференцирование сложной функции. Дифференцирование обратной функции

Найдите производную функции:

42.1. a)
$$y = (4x - 9)^7$$
;
b) $y = \left(\frac{x}{3} + 2\right)^{12}$;
c) $y = \left(12 - \frac{x}{5}\right)^6$;
r) $y = (15 - 9x)^{13}$.
42.2. a) $y = \sin(3x - 9)$;
b) $y = \sin(5 - 3x)$;

6)
$$y = \cos\left(\frac{\pi}{3} - 4x\right)$$
; r) $y = \cos(9x - 10)$.

42.3. a)
$$y = \text{tg}\left(5x - \frac{\pi}{4}\right)$$
; B) $y = \text{ctg}\left(\frac{\pi}{6} - 4x\right)$;

6)
$$y = \sqrt{50 + 0.2x}$$
; $y = \sqrt{4 - 9x}$.

Найдите производную функции:

042.4. a)
$$y = \cos^2 x - \sin^2 x$$
;

 $6) y = 2 \sin x \cdot \cos x;$

B) $y = 1 - 2\sin^2 3x$; r) $u = \sin^2 3x + \cos^2 3x$.

042.5. a)
$$y = \sin 3x \cos 5x + \cos 3x \sin 5x$$
;

 $6) y = \cos 4x \cos 6x - \sin 4x \sin 6x;$

B) $y = \sin 7x \cos 3x - \cos 7x \sin 3x$;

r)
$$y = \cos \frac{x}{3} \cdot \cos \frac{x}{6} + \sin \frac{x}{3} \cdot \sin \frac{x}{6}$$
.

042.6. a)
$$y = (1 - x^3)^5$$
;

B)
$$y = \frac{1}{(x^2 - 7x + 8)^2};$$

6)
$$y = \sqrt{x^3 + 3x^2 - 2x + 1}$$
;

$$\mathbf{r}) \ y = \sqrt{\frac{x^2 - 1}{x^2 + 5}}.$$

042.7. a)
$$y = \sin^3 x$$
;

$$\mathbf{B}) \ y = \mathbf{t}\mathbf{g}^5 \ x;$$

6)
$$y = \sqrt{\operatorname{ctg} x}$$
;

$$\Gamma) y = \operatorname{tg}(x + x^3).$$

42.8. a)
$$y = \sqrt{1 - x^2} + \cos^3 x$$
;

$$\mathbf{B}) \ y = \sin^2 x \cdot \cos \sqrt{x};$$

$$\text{ f) } y = \frac{\sqrt{\operatorname{tg} x}}{x^2 + 1};$$

$$\mathbf{r)} \ y = \frac{\sqrt{\operatorname{ctg} x}}{x^3}.$$

Найдите значение производной функции в точке x_0 :

042.9. a)
$$y = (3x - 2)^7$$
, $x_0 = 3$; b) $y = (4 - 5x)^7$, $x_0 = 1$;

B)
$$y = (4 - 5x)^7$$
, $x_0 = 1$;

6)
$$y = \sqrt{25 - 9x}$$
, $x_0 = 1$; r) $y = \sqrt{7x + 4}$, $x_0 = 3$.

r)
$$y = \sqrt{7}x + 4$$
, $x_0 = 3$.

042.10. a)
$$y = \sin\left(2x - \frac{\pi}{3}\right), x_0 = \frac{\pi}{6};$$

6)
$$y = \text{ctg}\left(\frac{\pi}{3} - x\right), \ x_0 = \frac{\pi}{6};$$

B)
$$y = \cos\left(\frac{\pi}{3} - 4x\right), x_0 = \frac{\pi}{8};$$

r)
$$y = \text{tg}\left(3x - \frac{\pi}{4}\right), \ x_0 = \frac{\pi}{12}.$$

042.11. a)
$$y = (x^2 - 3x + 1)^7$$
, $x_0 = 1$;

6)
$$y = \sqrt{\frac{x+1}{x+4}}, x_0 = 0;$$

B)
$$y = \sqrt{(x-1)(x-4)}, x_0 = 0;$$

$$\mathbf{r}) \ y = \left(\frac{x^2 + 1}{x^2 + 3}\right)^3, \ x_0 = 1.$$

$$_{O}42.12.$$
 a) $y = tg^3 x$, $x_0 = \frac{\pi}{4}$;

B)
$$y = \cos x^3, x_0 = 0;$$

6)
$$y = \sin \sqrt{x}, \ x_0 = \frac{\pi^2}{36}$$
;

r)
$$y = \operatorname{ctg}^2 x - 1$$
, $x_0 = \frac{\pi}{4}$.

Вычислите скорость изменения функции в точке x_0 :

$$_{O}42.13.$$
 a) $y = (2x + 1)^5, x_0 = -1;$

B)
$$y = \frac{4}{12x - 5}$$
, $x_0 = 2$;

6)
$$y = \sqrt{7x - 3}, x_0 = 1$$
;

$$r) y = \sqrt{11 - 5x}, x_0 = -1.$$

042.14. a)
$$y = \sin\left(3x - \frac{\pi}{4}\right)$$
, $x_0 = \frac{\pi}{4}$;

6)
$$y = \text{tg } 6x, \ x_0 = \frac{\pi}{24};$$

B)
$$y = \cos\left(\frac{\pi}{3} - 2x\right), x_0 = \frac{\pi}{3};$$

$$\mathbf{r}) \quad y = \operatorname{ctg} \ \frac{x}{3}, \ x_0 = \pi.$$

042.15. a)
$$y = \sqrt{4x^2 - 20x + 25}$$
, $x_0 = 3$;

6)
$$y = \sqrt{\sin^2 x - 2\sin x + 1}, \ x_0 = \frac{\pi}{3};$$

B)
$$y = \sqrt{1 - 10x + 25x^2}, x_0 = 1;$$

r)
$$y = \sqrt{1 - \cos x + \frac{1}{4} \cos^2 x}$$
, $x_0 = \frac{\pi}{4}$.

42.16. a)
$$y = (x - \sin x)^2$$
, $x_0 = \pi$;

6)
$$y = \sqrt{\frac{1 - \sin x}{\cos x}}, \ x_0 = \frac{\pi}{4};$$

B)
$$y = \sqrt{(\sin x + 1)\cos x}, x_0 = \frac{\pi}{6};$$

r)
$$y = (\operatorname{tg} x - 1)^4, x_0 = \frac{\pi}{4}.$$

042.17. При каких значениях аргумента скорость изменения функции y = f(x) равна скорости изменения функции y = g(x):

a)
$$f(x) = \cos 2x$$
, $g(x) = \sin x$;

6)
$$f(x) = \sin 6x$$
, $g(x) = \cos 12x + 4$;

B)
$$f(x) = \frac{2}{3} \sin 3x$$
, $g(x) = \cos 2x$;

r)
$$f(x) = \sqrt{x^2 - 2x}$$
; $g(x) = 2\sqrt{x}$?

042.18. При каких значениях аргумента скорость изменения функции y = g(x) больше скорости изменения функции y = h(x).

a)
$$g(x) = \sin\left(3x - \frac{\pi}{6}\right), \ h(x) = 6x - 12;$$

6)
$$g(x) = \cos\left(\frac{\pi}{4} - 2x\right), \ h(x) = 3 - \sqrt{2}x$$
?

 $\mathtt{O42.19}$. Найдите тангенс угла между касательной к графику функции y = h(x) в точке с абсциссой x_0 и осью x:

a)
$$h(x) = \frac{18}{4x+1}$$
, $x_0 = 0.5$;

B)
$$h(x) = \sqrt{6-2x}, x_0 = 1;$$

6)
$$h(x) = \cos^3 x$$
, $x_0 = \frac{\pi}{6}$;

$$\mathbf{r}) \ h(x) = \sqrt{\operatorname{tg} x}, \ x_0 = \frac{\pi}{4}.$$

042.20. Определите абсциссы точек, в которых угловой коэффициент касательной к графику функции y = f(x) равен a, если:

a)
$$f(x) = \sin x \cdot \cos x$$
, $k = -\frac{\sqrt{2}}{2}$;

6)
$$f(x) = \cos^2 x$$
, $k = \frac{1}{2}$.

O42.21. Определите абсциссы точек, в которых угловой коэффициент касательной равен 0:

a)
$$f(x) = tg^3 x$$
;

$$f(x) = \sin^2 x \cos 2x.$$

042.22. а) Найдите корни уравнения f'(x) = 0, принадлежащие отрезку [0, 2], если известно, что $f(x) = \cos^2 x + 1 + \sin x$.

б) Найдите корни уравнения f'(x) = 0, принадлежащие отрезку $\left\lceil \frac{\pi}{2}, \frac{3\pi}{2} \right\rceil$, если известно, что $f(x) = \sin^2 x - \cos x - 1$.

042.23. а) Дано: $f(x) = a \sin 2x + b \cos x$, $f'\left(\frac{\pi}{6}\right) = 2$, $f'\left(\frac{9\pi}{2}\right) = -4$. Чему равны a и b?

б) Дано:
$$f(x) = a \cos 2x + b \sin 4x$$
, $f'\left(\frac{7\pi}{12}\right) = 4$, $f'\left(\frac{3\pi}{4}\right) = 2$. Чему равны a и b ?

042.24. Решите уравнение f'(x) = 0, если:

a)
$$f(x) = \sqrt{\cos 2x}$$
;

$$\mathbf{B}) \ f(x) = \sin^4 x;$$

б)
$$f(x) = \operatorname{tg}^2 x;$$

$$r) f(x) = \cos^3 x - \sin^3 x.$$

042.25. Решите неравенство y' ≤ 0, если:

a)
$$y = \frac{(1-3x)^3}{(2-7x)^5}$$
;

$$6) y = \frac{(2x+3)^4}{(2-5x)^5}.$$

 $_{0}42.26$. Решите неравенство g'(x) > 0, если:

a)
$$g(x) = \frac{(2x-1)^4}{(3x+2)^5}$$
; 6) $g(x) = \frac{(4-3x)^4}{(5x-4)^3}$.

$$5) g(x) = \frac{(4-3x)^4}{(5x-4)^3}.$$

 $_{\text{O}}42.27$. Проверьте равенство g'(x) = f(x), если:

a)
$$g(x) = (1 - x^2) \sin x^2 - \cos x^2$$
, $f(x) = 2(x - x^3) \cos x^2$;

6)
$$g(x) = (x^2 - 1.5) \cos 2x - x \sin 2x$$
, $f(x) = (2 - 2x^2) \sin 2x$.

042.28. Найдите значения аргумента, удовлетворяющие условию f'(x) = g'(x), если:

a)
$$f(x) = \sin(2x - 3)$$
, $g(x) = \cos(2x - 3)$;

6)
$$f(x) = \sqrt{3x - 10}$$
, $g(x) = \sqrt{14 + 6x}$.

042.29. Определите абсциссы точек, в которых касательные к графику функции y = h(x) образуют с положительным направлением оси абсцисс заданный угол а:

a)
$$h(x) = 2 \cdot \sqrt{2x - 4}, \ \alpha = 60^{\circ};$$

6)
$$h(x) = \sin\left(4x - \frac{\pi}{3}\right), \alpha = 0^{\circ}.$$

Известна производная функции y = f'(x). Укажите, какой формулой можно задать функцию y = f(x):

$$042.30.$$
 a) $f'(x) = 6(2x - 1)^2$;

6)
$$f'(x) = -20(4 - 5x)^3$$
.

042.31. a)
$$f'(x) = \frac{2}{(2x+3)^2}$$
;

6)
$$f'(x) = \frac{5}{2\sqrt{5x-7}}$$
.

042.32. a)
$$f'(x) = \sin\left(3x - \frac{\pi}{3}\right)$$
; 6) $f'(x) = \frac{4}{\cos^2(5x - 1)}$.

6)
$$f'(x) = \frac{4}{\cos^2(5x-1)}$$
.

042.33. Найдите производную функции:

a)
$$y = \arcsin 3x$$
;

$$\mathbf{B}) \ y = (\arccos x)^3;$$

$$6) y = \operatorname{arctg} x^2;$$

$$\mathbf{r}) \ y = \operatorname{arcctg} \ \sqrt{x}.$$

•42.34. Найдите значение производной функции в точке x_0 :

a)
$$y = (\arccos x)^3, x_0 = 0;$$

6)
$$y = \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{2x+1}{\sqrt{3}}, x_0 = -1;$$

B)
$$y = \arcsin \sqrt{x}, x_0 = \frac{1}{2};$$

$$\Gamma) y = \arccos \frac{2-x}{x\sqrt{2}}, x_0 = 1.$$

042.35. Вычислите скорость изменения функции y = g(x) в точке x_0 :

a)
$$g(x) = \arctan(1 - 3x), x_0 = \frac{1}{3}$$
;

6)
$$g(x) = \arcsin \sqrt{x}$$
; $x_0 = 0.25$;

B)
$$g(x) = \arccos(2x - 3), x_0 = 1.5;$$

$$\Gamma) g(x) = \sqrt{\arctan x}, x_0 = 0.$$

042.36. Найдите тангенс угла между касательной к графику функции y = h(x) в точке с абсциссой x_0 и осью x:

a)
$$h(x) = \arcsin(3x - 2), x_0 = \frac{2}{3}$$
;

б)
$$h(x) = \arcsin x \cdot \arccos x$$
, $x_0 = 0$.

042.37. a) Решите уравнение f'(x) = 2, если f(x) = arctg(2x).

б) Найдите те значения x, при которых выполняется равенство $(f'(x))^2 = \frac{1}{x}$, где $f(x) = 2 \arcsin \sqrt{x}$.

•42.38. Решите неравенство $(f'(x))^2 > 1$, если:

a)
$$f(x) = \arcsin 2x$$
;

6)
$$f(x) = 2 \arccos \sqrt{x}$$
.

§ 43. Уравнение касательной к графику функции

43.1. Определите знак углового коэффициента касательной, проведенной к графику функции y = f(x), в точках с абсциссами a, b, c:

а) рис. 92;

Puc. 92

б) рис. 93;

Puc. 93

- 43.2. Укажите точки, в которых производная равна нулю и точки, в которых производная не существует, если график функции изображен на заданном рисунке:
 - а) рис. 94;
- б) рис. 95;
- в) рис. 96;
- г) рис. 97.

Puc. 94

Puc. 95

Puc. 96

Puc. 97

43.3. Найдите угловой коэффициент касательной, проведенной к графику функции y = f(x) в точке с абсциссой x = a, если:

a)
$$f(x) = x^3 - 2x^2 + 3$$
, $a = -1$;

6)
$$f(x) = \frac{x-1}{x+3}$$
, $a = 1$;

B)
$$f(x) = x^4 - 7x^3 + 12x - 45$$
, $a = 0$;

r)
$$f(x) = \frac{2x-1}{x+1}$$
, $a = 1$.

Найдите угловой коэффициент касательной, проведенной к графику функции y = f(x) в точке с абсциссой x = aесли:

43.4. a)
$$f(x) = \sqrt{x-7}$$
, $a = 8$;

6)
$$f(x) = \sqrt{4-5x}, \ a = 0;$$

B)
$$f(x) = \sqrt{10 + x}$$
, $a = -5$;

$$f(x) = \sqrt{3.5 - 0.5x}, \ a = -1.$$

43.5. a)
$$f(x) = \sin x$$
, $a = 0$;

B)
$$f(x) = \cos 3x, \ a = \frac{\pi}{2};$$

6)
$$f(x) = \lg 2x$$
, $a = \frac{\pi}{8}$; r) $f(x) = \operatorname{ctg} x$, $a = \frac{\pi}{3}$.

$$\mathbf{r}) \ f(x) = \operatorname{ctg} x, \ a = \frac{\pi}{3}$$

043.6. a)
$$f(x) = \sqrt{\lg x}$$
, $a = \frac{\pi}{4}$; B) $f(x) = \operatorname{ctg}^4 x$, $a = \frac{\pi}{4}$;

B)
$$f(x) = \operatorname{ctg}^4 x$$
, $a = \frac{\pi}{4}$

6)
$$f(x) = \cos^2 x$$
, $a = \frac{\pi}{12}$;

6)
$$f(x) = \cos^2 x$$
, $a = \frac{\pi}{12}$; r) $f(x) = \sqrt{2 - \sin x}$, $a = \frac{\pi}{2}$.

Найдите тангенс угла наклона касательной, проведенной к графику функции y = f(x) в точке с абсциссой x_0 :

043.7. a)
$$f(x) = (x-2)(x^2+2x+4), x_0 = 3$$
;

6)
$$f(x) = \cos^2 3x - \sin^2 3x$$
, $x_0 = \frac{\pi}{6}$;

B)
$$f(x) = (2x + 1)(4x^2 - 2x + 1), x_0 = -\frac{1}{2}$$
;

r)
$$f(x) = \sin x \cdot \cos x \cdot \cos 2x$$
, $x_0 = \frac{\pi}{4}$.

$$043.8.$$
 a) $f(x) = \frac{x^3 - 3x^2 + 3x - 1}{x - 1}, x_0 = -1;$

6)
$$f(x) = \sqrt{x^2 - 6x + 9}, x_0 = -2;$$

B)
$$f(x) = \frac{x^4 - 3x^3 + x}{x^2}$$
, $x_0 = -0.1$;

$$\Gamma f(x) = \sqrt[3]{x^3 - 6x^2 + 12x - 8}, \ x_0 = -5.$$

Найдите угловой коэффициент касательной, проведенной к графику функции y = f(x) в каждой из указанных то-

O43.9. a)
$$f(x) = \begin{cases} x^2 - 1, \text{ если } |x| \ge 1, \\ 1 - x^2, \text{ если } |x| < 1, \end{cases} x_1 = -2, x_2 = 0, x_3 = 3;$$

б)
$$f(x) = \begin{cases} x^2 + 2, \text{ если } x \geqslant 0, \\ 2 - x^2, \text{ если } x < 0, \end{cases} x_1 = -1, x_2 = 0, x_3 = 2;$$

в)
$$f(x) = \begin{cases} -3x, \text{ если } x \leq 0, \\ \sqrt{5x}, \text{ если } x > 0, \end{cases}$$
 $x_1 = -1, x_2 = 1, x_3 = 5;$

г)
$$f(x) = \begin{cases} \sqrt{4-2x}, \text{ если } x \leqslant 2, \\ x-2, \text{ если } x > 2, \end{cases}$$
 $x_1 = -2, x_2 = 2, x_3 = 5.$

043.10. a)
$$f(x) = x^2 - 9|x| + 14$$
, $x_1 = -7$, $x_2 = 4.5$, $x_3 = 8$;

6)
$$f(x) = x^2 - 4|x| - 12$$
, $x_1 = -3$, $x_2 = -2$, $x_3 = 2$.

043.11. a)
$$f(x) = |x^2 - 5x + 6|$$
, $x_1 = 0$, $x_2 = 2.5$, $x_3 = 4$;

6)
$$f(x) = |-x^2 + 2x + 3|$$
, $x_1 = -2$, $x_2 = 1$, $x_3 = 2$.

Найдите ту точку графика функции y = f(x), в которой угловой коэффициент касательной равен k:

$$\circ 43.12.$$
 a) $f(x) = 1.5x^2 - x + 1$, $k = 2$;

6)
$$f(x) = x + \frac{1}{x}$$
, $k = 3$;

B)
$$f(x) = x^3 - 2x^2 + x$$
, $k = 1$;

$$f(x) = \frac{x}{2} + \frac{2}{x}, k = -3.$$

$$\bigcirc 43.13.$$
 a) $f(x) = \arcsin 2x, k = 2;$

б)
$$f(x) = x - \arccos x$$
, $k = 2$;

B)
$$f(x) = 3 + \arctan x$$
, $k = \frac{1}{2}$;

r)
$$f(x) = \operatorname{arcctg} 3x$$
, $k = 3$.

43.14. Какой угол образует с осью x касательная, проведенная к графику функции y = f(x) в точке с абсциссой x = a:

a)
$$f(x) = 4 + x^2$$
, $a = 2$;

a)
$$f(x) = 4 + x^2$$
, $a = 2$; B) $f(x) = (1 - x)^3$, $a = -3$;

6)
$$f(x) = 1 - \frac{1}{x}$$
, $a = 3$; r) $f(x) = 2x - x^3$, $a = 1$?

$$\mathbf{r}) \ f(x) = 2x - x^3, \ a = 17$$

Какой угол образует с осью x касательная, проведенная κ графику функции y = f(x) в точке с абсциссой x = a:

43.15. a)
$$f(x) = x^2$$
, $a = 0.5$;

B)
$$f(x) = 0.2x^5$$
, $a = -1$;

6)
$$f(x) = -3x^3$$
, $a = \frac{1}{3}$;

r)
$$f(x) = -0.25x^4$$
, $a = 0$.

43.16. a)
$$f(x) = x^3 - 3x^2 + 2x - 7$$
, $a = 1$;

6)
$$f(x) = -7x^3 + 10x^2 + x - 12$$
, $a = 0$.

43.17. a)
$$f(x) = \frac{2x-1}{3-2x}$$
, $a = \frac{1}{2}$;

6)
$$f(x) = \frac{x-1}{x-2}$$
, $a = 1$.

43.18. a)
$$f(x) = \sqrt{6x + 7}$$
, $a = 3\frac{1}{2}$;

6)
$$f(x) = \sqrt{5-2x}, \ a = 2.$$

43.19. a)
$$f(x) = \sqrt{3} \cos \frac{x}{3}$$
, $a = \frac{3\pi}{2}$; 6) $f(x) = \frac{1}{2} \sin 2x$, $a = \frac{\pi}{2}$.

6)
$$f(x) = \frac{1}{2} \sin 2x$$
, $a = \frac{\pi}{2}$

43.20. a)
$$f(x) = \operatorname{tg} x + \sin \frac{x}{3}$$
, $a = 3\pi$;

6)
$$f(x) = \cos x + \cot \frac{x}{2}, \ a = \frac{\pi}{3}.$$

043.21. a)
$$f(x) = |2x - x^2|$$
, $a = 1$;

6)
$$f(x) = |x^2 - 3x - 4|, a = -2;$$

B)
$$f(x) = |x^2 + 4x|, a = -3;$$

$$f(x) = |x^2 - 3x - 4|, a = -1.$$

Составьте уравнение касательной к графику функции y = f(x) в точке с абсциссой x = a:

43.22. a)
$$f(x) = x^2$$
, $a = 3$;

6)
$$f(x) = 2 - x - x^3$$
, $a = 0$;

B)
$$f(x) = x^3, a = 1;$$

$$\Gamma) \ f(x) = x^2 - 3x + 5, \ a = -1.$$

043.23. a)
$$f(x) = \frac{3x-2}{3-x}$$
, $a = 2$;

B)
$$f(x) = \frac{2x-5}{5-x}$$
, $a = 4$;

6)
$$f(x) = \frac{1}{(x+2)^3}$$
, $a = -3$; r) $f(x) = \frac{1}{4(2x-1)^2}$, $a = 1$.

$$f(x) = \frac{1}{4(2x-1)^2}, a = 1.$$

043.24. a)
$$f(x) = 2\sqrt{3x-5}$$
, $a = 2$;

6)
$$f(x) = \sqrt{7-2x}, \ a = 3.$$

$$_{0}43.25.$$
 a) $f(x) = \cos \frac{x}{3}$, $a = 0$;

B)
$$f(x) = \sin 2x, \ a = \frac{\pi}{4};$$

6)
$$f(x) = \text{ctg } 2x, \ a = \frac{\pi}{4};$$

r)
$$f(x) = 2 \text{ tg } \frac{x}{3}, \ a = 0.$$

$$\bigcirc 43.26.$$
 a) $f(x) = \arccos 3x + 2x$, $a = 0$;

6)
$$f(x) = 3x^2 - 0.2 \arcsin 5x$$
, $a = 0$;

B)
$$f(x) = 2 \arctan x + 3\sqrt{x}, \ a = 1;$$

r)
$$f(x) = \frac{1}{x} - 5 \arccos 2x$$
, $a = 1$.

•43.27. a)
$$f(x) = \sin^3 2x$$
, $a = \frac{\pi}{12}$;

6)
$$f(x) = \frac{4}{\sqrt{\pi}} \sqrt{\arctan 3x}, \ a = \frac{1}{3};$$

B)
$$f(x) = \cos^2 2x$$
, $a = \frac{\pi}{8}$;

$$\Gamma$$
) $f(x) = 2 \operatorname{arcctg}(3x^2) + 3 \operatorname{arctg}(2x^3), a = 0.$

043.28. a)
$$f(x) = \begin{cases} x^2 + 2x, \text{ если } x \ge -3, \\ -2x - 3, \text{ если } x < -3, \end{cases}$$
 $a = -2;$

6)
$$f(x) = |x^2 - 3x|, a = 4;$$

в)
$$f(x) = \begin{cases} 4x - x^2, \text{ если } x \ge 0, \\ -4x, \text{ если } x < 0, \end{cases}$$
 $a = 1;$

$$\Gamma$$
) $f(x) = x^2 - 7|x| + 10$, $a = -1$.

 \circ 43.29. Напишите уравнения касательных к графику функции y = f(x) в точках его пересечения с осью абсцисс, если:

a)
$$f(x) = 9 - x^2$$
;

B)
$$f(x) = x^3 - 4x$$
;

6)
$$f(x) = x^3 - 27$$
;

$$\Gamma) f(x) = x^3 - x^4.$$

043.30. Напишите уравнения касательных к параболе:

а)
$$y = x^2 - 3x$$
 в точках с ординатой 4;

б)
$$y = -x^2 + 5x$$
 в точках с ординатой 6.

 \circ 43.31. В какой точке касательная к графику функции $y=x^2$ параллельна заданной прямой:

a)
$$y = 2x + 1$$
;

B)
$$y = \frac{3}{4}x - 2;$$

6)
$$y = -\frac{1}{2}x + 5$$
;

$$\Gamma) y = -x + 5?$$

043.32. Напишите уравнения тех касательных к графику функции $y = \frac{x^3}{3} - 2$, которые параллельны заданной прямой:

a)
$$y = x - 3$$
;

б)
$$y = 9x - 5$$
.

043.33. Напишите уравнения тех касательных к графику функции $y = \arcsin x$, которые параллельны заданной прямой: a) u = 2x - 3:

6)
$$y = x + 2$$
.

В какой точке графика заданной функции y = f(x) касательная параллельна заданной прямой:

043.34. a)
$$y = 3 + x$$
, $f(x) = \frac{x^3}{3} - 3x^2 + 10x - 4$;

6)
$$y = 0$$
, $f(x) = \frac{x^4}{4} - x^2 + 8$;

B)
$$y = x - 3$$
, $f(x) = \frac{x^3}{3} - x^2 + 2x - 7$;

r)
$$y = 2$$
, $f(x) = \frac{5}{4}x^4 - x^3 + 6$?

O43.35. a)
$$f(x) = \sin x$$
, $y = -x$; B) $f(x) = \operatorname{tg} x$, $y = x$;

$$\mathbf{B}) \ f(\mathbf{x}) = \mathbf{tg} \ \mathbf{x}, \ \mathbf{y} = \mathbf{x};$$

$$6) f(x) = \cos 3x, y = 0;$$

r)
$$f(x) = \sin \frac{x}{2}, y = -1$$
?

043.36. a)
$$f(x) = \cos^2 x$$
, $y = -x + 3$;

6)
$$f(x) = \operatorname{arcctg}(x^2), y = -3;$$

$$B) f(x) = \sqrt{\sin x}, y = 5;$$

$$\Gamma) f(x) = (\arcsin x)^2, y = -5.$$

К графику заданной функции проведите касательную так, чтобы она была параллельна прямой y = 2 - x:

043.37. a)
$$y = \frac{x^3}{3} + \frac{5}{2}x^2 - x$$
;

6)
$$y = \frac{x^3}{3} + x^2 - x$$
.

043.38. a)
$$y = \frac{3x+7}{x-3}$$
;

$$\text{6) } y = \frac{x+9}{x+8}.$$

043.39. a)
$$y = -4\sqrt{x+7}$$
;

6)
$$y = \sqrt{1 - 2x}$$
.

043.40. a)
$$y = \arccos x$$
;

б)
$$y = \operatorname{arcctg} x$$
.

- O43.41. a) На графике функции $y = x^3 3x^2 + x + 1$ найдите точки, в которых касательная образует с положительным направлением оси абсцисс угол 45°. Составьте уравнения этих касательных.
 - б) На графике функции $y = \frac{3x+7}{x+2}$ найдите точки, в которых касательная образует с положительным направлением оси абсцисс угол 135°. Составьте уравнения этих касательных.
- 043.42. Составьте уравнение той касательной к графику функции y = f(x), которая образует с осью x заданный угол α , если:

a)
$$f(x) = \frac{1}{\sqrt{3}}x^3 - 3\sqrt{3}x$$
, $\alpha = 60^\circ$;

6)
$$f(x) = \frac{4}{\sqrt{3}}x - \frac{\sqrt{3}}{3}x^3$$
, $\alpha = 30^\circ$.

- 043.43. а) Вычислите координаты точек пересечения с осью у тех касательных к графику функции $y = \frac{3x-1}{x+8}$, которые образуют угол 45° с осью x.
 - б) Вычислите координаты точек пересечения с осью у тех касательных к графику функции $y = \frac{x+4}{x-5}$, которые образуют угол 135° с осью x.
- \circ 43.44. Составьте уравнение параболы $y = x^2 + bx + c$, касающейся прямой y = -x в точке M(1; 1).
- \circ 43.45. Проведите касательную к графику функции $y = x^2 + 1$, проходящую через точку A, не принадлежащую этому графику, если:
 - a) A(-1; -2); 6) A(0; 0); B) A(0; -3); r) A(-1; 1).

- $^{\circ}43.46$. Через данную точку B проведите касательную к графику функции y = f(x):

a)
$$f(x) = -x^2 - 7x + 8$$
, $B(1; 1)$;

6)
$$f(x) = -x^2 - 7x + 8$$
, $B(0; 9)$.

Через данную точку B проведите касательную к графику функции y = f(x):

•43.47. a)
$$f(x) = \sqrt{3-x}$$
, $B(-2; 3)$;

6)
$$f(x) = \sqrt{3-x}$$
, $B(4; 0)$.

•43.48. a)
$$f(x) = \sqrt{4x-3}$$
, $B(2; 3)$;

6)
$$f(x) = \sqrt{2x+1}$$
, $B(1; 2)$.

- ${ t O43.49.}$ а) Найдите все значения x, при каждом из которых касательная к графику функции $y=\cos 7x+7\cos x$ в точках с абсциссой x параллельна касательной к этому же графику в точке с абсциссой $\frac{\pi}{6}$.
 - б) Найдите все значения a, при каждом из которых касательные к графикам функций $y=2-14\sin 3x$ и $y=6\sin 7x$ в точках с абсциссой x=a параллельны.
- •43.50. а) Составьте уравнение касательной к графику функции $y=\frac{1}{x^2},\ x>0,$ отсекающей от осей координат треугольник, площадь которого равна 2,25.
 - б) Составьте уравнение касательной к графику функции $y=\frac{1}{x^2},\ x<0,$ отсекающей от осей координат треугольник, площадь которого равна $\frac{9}{8}.$
- •43.51. а) Составьте уравнение касательной к графику функции $y=x^3,\ x>0,$ отсекающей от осей координат треугольник, площадь которого равна $\frac{2}{3}$.
 - б) Составьте уравнение касательной к графику функции $y=x^3,\ x<0,$ отсекающей от осей координат треугольник, площадь которого равна $\frac{27}{8}$.
- •43.52. а) На оси y взята точка B, из нее проведены касательные к графику функции $y=3-\frac{1}{2}x^2$. Известно, что эти касательные образуют между собой угол 90° . Найдите координаты точки B.
 - б) Составьте уравнения тех касательных к графику функции $y = 0.5x^2 2.5$, которые пересекаются под углом 90° в точке, лежащей на оси y.

- ■43.53. а) На оси у взята точка В, из нее проведены касательные к графику функции $y = \frac{\sqrt{3}}{2} x^2 + \frac{\sqrt{3}}{2}$. Известно, что эти касательные образуют между собой угол 60°. Найдите координаты точки B.
 - б) Составьте уравнения тех касательных к графику функции $y = \frac{\sqrt{3}}{6}(1-x^2)$, которые пересекаются под углом 120° в точке, лежащей на оси у.
- •43.54. а) Найдите точку пересечения касательных к графику функции $y = x^2 - |2x - 6|$, проведенных через точки с абсциссами x = 5, x = -5.
 - б) Найдите точку пересечения касательных к графику функции $y = x^3 + |x - 1|$, проведенных через точки с абсциссами x = 2, x = -2.
- •43.55. а) При каких значениях параметра р касательная к графику функции $y = x^3 - px$ в точке x = 1 проходит через точку (2; 3)?
 - б) При каких значениях параметра р касательная к графику функции $y = x^3 + px^2$ в точке x = 1 проходит через точку (3; 2)?
- ullet43.56. Является ли прямая y = 4x 5 касательной к графику заданной функции? Если да, то найдите координаты точки касания:

a)
$$y = x^3 + x^2 - x - 2$$
;

a)
$$y = x^3 + x^2 - x - 2$$
; 6) $y = x^3 - 2x^2 - 7x - 13$.

 $\circ 43.57$. Найдите все такие значения параметра a, при которых касательные, проведенные к графикам функций y = f(x)в точке (a; f(a)) и y = g(x) в точке (a; g(a)), параллельны:

a)
$$f(x) = x^6$$
; $g(x) = x^7$;

a)
$$f(x) = x^6$$
; $g(x) = x^7$; 6) $f(x) = x^4$; $g(x) = x^5$.

- ullet 43.58. a) При каких значениях параметра a прямая y=ax+1является касательной к графику функции $u = \sqrt{4x+1}$?
 - б) При каких значениях параметра a прямая y = 2x + aявляется касательной к графику функции $y = \sqrt{4x - 1}$?

ullet43.59. а) К графику функции $y=2\sin^2x+\sqrt{3}\sin2x,\ x\in\left[0;\ rac{\pi}{2}
ight]$

проведена касательная, параллельная прямой y-4x-1=0. Найдите ординату точки касания.

б) К графику функции $y=2\cos^2x+\sqrt{3}\sin\,2x,\ x\in\left[rac{\pi}{2};\ \pi
ight]$

проведена касательная, параллельная прямой 3y - 6x + 2 = 0. Найдите ординату точки касания.

•43.60. а) Найдите наименьшее положительное значение x, при котором касательные к графикам функций $y=3\cos\frac{5x}{2}$

и $y = 5\cos\frac{3x}{2} + 2$ параллельны.

- б) Найдите наибольшее отрицательное значение x, при котором касательные к графикам функций $y=2-14\sin 3x$ и $y=6\sin 7x$ параллельны.
- •43.61. а) Точка A с абсциссой -1 и точка B с абсциссой 1 принадлежат графику функции $y=2x^3+3x^2-\frac{x}{2}+1$. Найдите сумму абсцисс всех тех точек, в каждой из которых касательная к этому графику параллельна прямой AB.

б) Точка A с абсциссой -3 и точка B с абсциссой 3 принадлежат графику функции $y=\frac{1}{3}x^3-2x^2-22x-28$. Найдите сумму абсцисс всех тех точек, в каждой из которых касательная к этому графику параллельна прямой AB.

- •43.62. а) Составьте уравнение общей касательной к графикам функций $y = x^2 x + 1$ и $y = x^2 + 5x + 4$.
 - б) Найдите точку пересечения общих касательных к графикам функций $y = x^2$ и $y = -x^2 8$.
- •43.63. Углом между кривыми называют угол между касательными к кривым в точке их пересечения. Под каким углом пересекаются кривые:

- •43.64. Докажите, что параболы $y = \frac{(x-1)^2}{2}$ и $y = \frac{(x+1)^2}{2}$ перпендикулярны в точке их пересечения.
- ullet43.65. a) Из какой точки оси y кривая $y = \sqrt{1+x^2}$ видна под углом 120° ?
 - б) Найдите множество точек координатной плоскости, из которых парабола $y = x^2$ видна под прямым углом.
- •43.66. а) Найдите значение параметра a, при котором касательная к графику функции $y = x^3 + a^2x a$ в точке x = -1 проходит через точку M(1; 7).
 - б) Найдите значение параметра a, при котором касательная к графику функции $y = x^4 3x^3 + 2a$ в точке x = -2 проходит через точку M(-1; -8).
- •43.67. а) Найдите площадь треугольника, образованного биссектрисами координатных углов и касательной к графику функции $y = \sqrt{x^2 5}$ в точке x = 3.
 - б) Найдите площадь треугольника, образованного биссектрисами координатных углов и касательной к графику функции $y=\sqrt{x^2-9}$ в точке x=5.
- •43.68. а) Прямая y = 6x 7 касается параболы $y = x^2 + bx + c$ в точке M(2; 5). Найдите значения коэффициентов b и c. б) Прямая y = 7x 10 касается параболы $y = ax^2 + bx + c$ в точке x = 2. Найдите значения коэффициентов a, b и c, если известно, что парабола пересекает ось абсцисс в точке x = 1.
- •43.69. Докажите, что треугольник, образованный касательной к гиперболе $y = \frac{a^2}{x}$ и осями координат, имеет постоянную площадь, а точка касания является центром окружности, описанной около этого треугольника. Рассмотрев чертеж к задаче, придумайте геометрический способ построения касательной к гиперболе.
- •43.70. Докажите, что касательная к параболе $y=x^2$ в точке x=a делит пополам отрезок [0; a] оси абсцисс. Рассмотрев чертеж к задаче, придумайте геометрический способ построения касательной к параболе. Обобщите этот результат и этот способ построения касательной на любую степенную функцию $y=x^n$, где n натуральное число, большее 2.

§ 44. Применение производной для исследования функций на монотонность и экстремумы

44.1. Определите, какой знак имеет производная функции y = f(x) в точках с абсциссами a, b, c, d:

а) рис. 98;

б) рис. 99.

44.2. По графику производной функции y = f(x), представленному на заданном рисунке, определите, на каких промежутках функция y = f(x) возрастает, а на каких убывает: а) рис. 100; б) рис. 101; в) рис. 102; г) рис. 103.

Puc. 98

Puc. 99

- **44.3.** На каком из указанных промежутков функция y = f(x) убывает, если график ее производной представлен на рис. 104:
 - a) (-2; 1);
- б) (-∞; 4);
- B) $(4; +\infty);$
- Γ) $(-\infty; -2)$?

Puc. 100

Puc. 101

Puc. 102

Puc. 103

Puc. 104

44.4. Определите, для какой из функций y = f(x), y = g(x), y = h(x) отрезок [-1; 1] является промежутком возрастания, если на рис. 105, 106, 107 изображены графики производных этих функций.

Puc. 105

Puc. 106

Puc. 107

- **44.5.** На рис. 108, 109, 110 изображены графики производных y = f'(x), y = g'(x), y = h'(x). Определите, какая из функций y = f(x), y = g(x), y = h(x):
 - а) возрастает на R;

Puc. 109

Puc. 110

Puc. 111

Puc. 112

Puc. 113

Puc. 114

На рис. 111—114 изображены графики функций y = f(x), y = g(x), y = h(x) и $y = \varphi(x)$, определенных на всей числовой прямой. Используя их, решите неравенство:

44.6. a) f'(x) > 0;

B) h'(x) < 0;

6) g'(x) < 0;

 $\mathbf{r}) \ \phi'(x) > 0.$

44.7. a) $f'(x) \le 0$;

B) $h'(x) \ge 0$;

б) $g'(x) \ge 0$;

r) $\varphi'(x) \leq 0$.

- **44.8.** а) Изобразите эскиз графика производной функции y = f(x)если известно, что данная функция возрастает на $(-\infty; 1)$ и убывает на промежутке $(1; +\infty)$.
 - б) Изобразите эскиз графика производной функции y = f(x)если известно, что данная функция убывает на луче $(-\infty; -1]$, возрастает на отрезке [-1; 3], убывает на луче $[3; +\infty).$
- **44.9.** Изобразите эскиз графика функции y = f(x), если промежутки постоянства знака производной f'(x) представлены на схеме:
 - а) рис. 115; в) рис. 117;
 - б) рис. 116;
- г) рис. 118.

Puc. 116

Puc. 117

- 044.10. Докажите, что заданная функция возрастает на R:

 - a) $y = \cos x + 2x$; b) $y = x^5 + 3x^3 + 7x + 4$; 6) $y = \sin x + x^3 + x$; r) $y = x^5 + 4x^3 + 8x 8$.
- 044.11. Докажите, что заданная функция убывает на R:
 - a) $y = \sin 2x 3x$;
- $6) y = \cos 3x + 4x.$

044.12. Докажите, что функция монотонна на всей числовой прямой. Укажите характер монотонности.

a)
$$y = x^5 + 6x^3 - 7$$
; B) $y = \sin x - 2x - 15$;

6)
$$y = x - \cos x + 8$$
; $y = 11 - 5x - x^3$.

Докажите, что заданная функция возрастает:

$$044.13$$
. a) $y = x^5 + 3x - 6$ Ha $(-\infty; +\infty)$;

6)
$$y = 15 - \frac{2}{x} - \frac{1}{r^3}$$
 Ha $(-\infty, 0)$;

B)
$$y = x^7 + 7x^3 + 2x - 42$$
 Ha $(-\infty; +\infty)$;

r)
$$y = 21x - \frac{1}{r^5}$$
 Ha $(0, +\infty)$.

$$044.14$$
. a) $y = 7x - \cos 2x$ на $(-\infty; +\infty)$;

б)
$$y = 10x + \sin 3x$$
 на $(-\infty; +\infty)$.

044.15. a)
$$y = 2x^3 + 2x^2 + 11x - 35$$
 на $(-\infty; +\infty);$ 6) $y = 3x^3 - 6x^2 + 41x - 137$ на $(-\infty; +\infty).$

б)
$$y = 3x^3 - 6x^2 + 41x - 137$$
 на $(-\infty; +\infty)$.

044.16. a)
$$y = \frac{4x}{4x+1}$$
 Ha $\left(-\frac{1}{4}, +\infty\right)$;

6)
$$y = \frac{2x-13}{x-5}$$
 Ha $(-\infty, 5)$.

Докажите, что заданная функция убывает:

044.17. a)
$$y = -x^3 - 5x + 3$$
 Ha $(-\infty; +\infty)$;

6)
$$y = -2x^5 - 7x^3 - x + 8$$
 Ha $(-\infty; +\infty)$;

B)
$$y = -x^3 + 3x^2 - 6x + 1$$
 Ha $(-\infty; +\infty)$;

$$y = -4x^3 + 4x^2 - 2x + 9$$
 Ha $(-\infty; +\infty)$.

044.18. a)
$$y = \frac{3x+7}{x+2}$$
 Ha (-2, +\infty);

6)
$$y = \frac{-4x+1}{2x+1}$$
 Ha $\left(-\infty, -\frac{1}{2}\right)$.

$$\bigcirc 44.19$$
. a) $y = 7 \cos x - 5 \sin 3x - 22x$ Ha $(-\infty; +\infty)$;

6)
$$y = 3\cos 7x - 8\sin \frac{x}{2} - 25x + 1$$
 Ha $(-\infty; +\infty)$.

044.20. Определите промежутки монотонности функции:

a)
$$y = x^3 + 2x$$
;

6)
$$y = 60 + 45x - 3x^2 - x^3$$
;

B)
$$y = 2x^3 - 3x^2 - 36x + 40$$
;

$$\mathbf{r}) \ y = -x^5 + 5x.$$

Определите промежутки монотонности функции:

044.21. a)
$$y = \frac{3x-1}{3x+1}$$
;

$$6) \ y = \frac{1 - 2x}{3 + 2x}.$$

044.22. a)
$$y = \sqrt{3x - 1}$$
;

B)
$$y = \sqrt{1 - 2x}$$
;

6)
$$y = \sqrt{1-x} + 2x$$
;

$$\mathbf{r}) \ y = \sqrt{2x-1} - x.$$

044.23. a)
$$y = \frac{x^2}{x^2 + 2}$$
;

6)
$$y = -\frac{3x^2}{x^2 + 4}$$
.

044.24. a)
$$y = \sin^2 x$$
;

$$\mathbf{B}) \ y = \cos^2 x;$$

$$6) y = \frac{1}{\cos^3 x};$$

$$r) y = \frac{1}{\sin^5 x}.$$

044.25. a)
$$y = \sqrt{x^2 - 6x + 8}$$
;

6)
$$y = \sqrt{5x - 2 - 2x^2}$$
.

•44.26. a)
$$y = \arcsin x^2$$
;

B)
$$y = \arccos \sqrt{x}$$
;

6)
$$y = \operatorname{arcctg} \sqrt{x}$$
;

r)
$$y = \operatorname{arctg}^2 x$$
.

•44.27. a)
$$y = \begin{cases} 2x^3 - 6x, \text{ если } x \ge -1, \\ x^2 + 2x + 3, \text{ если } x < -1; \end{cases}$$

б)
$$y = \begin{cases} 3x^4 - 4x^3, \text{ если } x \leq 2, \\ -x^2 + 4x + 12, \text{ если } x > 2. \end{cases}$$

•44.28. a)
$$y = \begin{cases} x^5 - 5x^4 + 1, \text{ если } x \ge 0, \\ (x + 2)^2 - 3, \text{ если } x < 0; \end{cases}$$

б)
$$y = \begin{cases} -3x^5 + 5x^3 - 2, \text{ если } x \ge -1, \\ \frac{4}{x}, \text{ если } x < -1. \end{cases}$$

044.29. Исследуйте на монотонность функцию y = f(x) и постройте (схематически) ее график:

a)
$$f(x) = x^3 - 3x + 2$$
;

a)
$$f(x) = x^3 - 3x + 2;$$

b) $f(x) = x^3 + 6x^2 - 15x + 8;$
6) $f(x) = x^4 - 2x^2 + 1;$
r) $f(x) = -x^4 + 8x^2 - 7.$

6)
$$f(x) = x^4 - 2x^2 + 1$$
;

$$f(x) = -x^4 + 8x^2 - 7$$

044.30. Постройте график функции $y = f(x), x \in [0; 10]$, производ ная которой равна нулю на интервалах (0; 2); (2; 6); (6; 10), если известно, что f(1) = 0, f(5) = 3, f(8) = -2.

При каких значениях параметра a функция возрастает на всей числовой прямой:

$$044.31.$$
 a) $y = x^3 + ax;$

6)
$$y = \frac{x^3}{3} - ax^2 + 5x - 3$$
?

$$0.44.32.$$
 a) $y = ax - \cos x$;

$$6) y = 2 \sin 2x - ax?$$

0.44.33. При каких значениях параметра b функция убывает на всей области определения:

a)
$$y = 7 + bx - x^2 - x^3$$
;

a)
$$y = 7 + bx - x^2 - x^3$$
; B) $y = x^3 + bx^2 + 3x + 21$;

6)
$$y = -2\sqrt{x+3} + bx$$
; r) $y = -2bx + \sqrt{1-x}$?

$$\mathbf{r}) \ y = -2bx + \sqrt{1-x}$$

ullet44.34. При каких значениях параметра a функция $y = x^3 - 3x$:

а) убывает на отрезке
$$[a + 1; a + 3];$$

б) возрастает на отрезке
$$\left[a - \frac{1}{2}; \ 2a + 2\right];$$

в) убывает на отрезке
$$\left[a - 3; \frac{1}{6}a + \frac{2}{3}\right];$$

г) возрастает на отрезке
$$[a - 2,5; a - 0,5]$$
?

044.35. a) При каких значениях параметра a функция $y = 2x^3$ – $-3x^{2}+7$ возрастает в интервале (a-1; a+1)?

б) При каких значениях параметра a функция $y = -x^3 +$ +3x+5 убывает в интервале $\left(a; a+\frac{1}{2}\right)$?

 $\circ 44.36$. По графику функции $y = f(x), x \in \mathbb{R}$, изображенному на

заданном рисунке, определите точки, в которых ее производная обращается в 0:

- а) рис. 119;
- б) рис. 120;
- в) рис. 121;
- г) рис. 122.

Puc. 119

Puc. 120

Puc. 121

Puc. 122

- O44.37. По графику функции $y = f(x), x \in \mathbb{R}$, изображенному на заданном рисунке, определите точки, в которых производная не существует:
 - а) рис. 119;
- б) рис. 120; в) рис. 121; г) рис. 122.
- $\mathtt{O44.38.}$ При каких значениях параметра a заданная функция имеет одну стационарную точку: а) $y = x^3 - 3ax^2 + 27x - 5$; б) $y = x^3 - 3ax^2 + 75x - 10$?

- 44.39. Сколько точек минимума имеет функция y = f(x), график которой изображен на заданном рисунке:
 - а) рис. 119:
- б) рис. 120;
- в) рис. 121:
- г) рис. 122?
- 44.40. Сколько точек максимума имеет функция y = f(x), график которой изображен на заданном рисунке:
 - а) рис. 119;
- б) рис. 120;
- в) рис. 121;
- г) рис. 122?
- 44.41. Используя данные о производной y = f'(x), приведенные в таблице,

x	(–∞, 5)	-5	(-5; -2)	-2	(-2; 8)	8	(8; +∞)
y = f'(x)	+	0	_	0	+	0	+

укажите:

- а) промежутки возрастания функции y = f(x);
- б) промежутки убывания функции y = f(x);
- в) точки максимума функции y = f(x);
- r) точки минимума функции y = f(x).
- 44.42. По графику y = f'(x), изображенному на заданном рисунке, определите, имеет ли функция y = f(x) точки экстремума:
 - а) рис. 100;
- б) рис. 101; в) рис. 102;
- г) рис. 103.
- 044.43. Постройте эскиз графика какой-нибудь функции, обладающей указанными свойствами:
 - а) функция имеет две точки максимума, одну точку минимума и является ограниченной;
 - б) функция возрастает при $x \le 1$ и при $x \ge 5$ и убывает на промежутке [1; 5], точка x = 1 является критической, а точка x = 5 — стационарной;
 - в) функция имеет разрыв в точке x = -2, максимум в точке x = -1 и минимум в точке x = 1;
 - r) функция имеет горизонтальную асимптоту y = 3 при $x \to \infty$, одну точку максимума и одну точку минимума.
- 044.44. а) Постройте эскиз графика функции, дифференцируемой на интервале (a, b), имеющей на этом интервале одну точку минимума, две точки максимума и не имеющей наименьшего значения.
 - б) Постройте эскиз графика функции, дифференцируемой на интервале (a, b), имеющей на нем две точки минимума, две точки максимума, но не имеющей ни наименьшего, ни наибольшего значений.

- 044.45. Может ли иметь только одну точку экстремума:
- в) периодическая функция;
- а) четная функция; в) периодическая функция; б) нечетная функция; г) монотонная функция?
- 044.46. По графику функции $y = f(x), x \in \mathbf{R}$ изображенному на заданном рисунке, постройте эскиз графика ее производ ной:
 - а) рис. 123;
- б) рис. 124;
- в) рис. 125;
- г) рис. 126

Puc. 123

Puc. 124

Puc. 125

Puc. 126

O(44.47). Постройте эскиз графика функции y = f(x), $x \in \mathbb{R}$ по графику производной, изображенному на заданном рисунке: а) рис. 127; б) рис. 128; в) рис. 129; г) рис. 130.

Puc. 127

Puc. 128

Puc. 129

Puc. 130

Найдите точки экстремума заданной функции и определите их характер:

044.48. a)
$$y = 2x^2 - 7x + 1$$
;

6)
$$y = 3 - 5x - x^2$$
;

B)
$$y = 4x^2 - 6x - 7$$
;
r) $y = -3x^2 - 12x + 50$.

044.49. a)
$$y = \frac{x^3}{3} - \frac{5}{2}x^2 + 6x - 1$$
;

B)
$$y = x^3 - 7x^2 - 5x + 11$$
;

$$6) y = x^3 - 27x + 26;$$

$$\mathbf{r)} \ u = 2x^3 - 21x^2 + 19.$$

044.50. a)
$$y = 5x^5 - 3x^3$$
;

6)
$$y = x^4 - 4x^3 - 8x^2 + 13$$
;

B)
$$y = x^4 - 50x^2$$
;

$$\mathbf{r}) \ y = 2x^5 + 5x^4 - 10x^3 + 3.$$

044.51. a)
$$y = x + \frac{4}{x}$$
;

$$6) y = \frac{x^2 + 9}{x}.$$

044.52. a)
$$y = x - 2\sqrt{x-2}$$
;

6)
$$y = \sqrt{x+1} + \sqrt{5-x}$$
;

B)
$$y = 4\sqrt{2x - 1} - x$$
;
F) $y = \sqrt{x} + 2\sqrt{7 - x}$.

$$0) y = \sqrt{x+1} + \sqrt{5} - x;$$

O44.53. a)
$$y = x - 2 \cos x$$
, $x \in [-\pi, \pi]$;
6) $y = 2 \sin x - x$, $x \in [\pi, 3\pi]$.

044.54. a)
$$y = (x^3 - 27x)^3$$
;

B)
$$y = (x^3 - 3x^2)^4$$
;

$$\text{ б) } y = \sqrt{x^3 - 27x};$$

$$\Gamma) y = \sqrt{x^3 - 3x^2}.$$

44.55. a)
$$y = \arcsin x^2$$
;

$$\mathbf{B}) \ y = \arccos x^2;$$

6)
$$y = 3 \operatorname{arcctg} \sqrt{x}$$
;

r)
$$y = \arctan \sqrt{2x}$$
.

044.56. Докажите, что заданная функция не имеет ни точек максимума, ни точек минимума:

a)
$$y = \frac{1}{3}x^3 + 2x^2 + 4x - 12;$$
 B) $y = \frac{1}{5}x^5 + \frac{1}{3}x^3 + x - 7;$

B)
$$y = \frac{1}{5}x^5 + \frac{1}{2}x^3 + x - 7;$$

r)
$$y = -x^3 - x^5 + 27$$
.

044.57. Производная функции $y = ax^2 + 7x + 1$ в точке x_0 равна c. Найдите точку экстремума функции и определите, является она точкой максимума или точкой минимума, если:

a)
$$x_0 = 0.5$$
, $c = 15$;

B)
$$x_0 = -1$$
, $c = 9$;

б)
$$x_0 = 3$$
, $c = -5$;

r)
$$x_0 = -0.5$$
, $c = 7.1$.

●44.58. Найдите точки экстремума заданной функции и определите их характер:

a)
$$y = |x^4 + 1| + |x^4 - 1| + 2x^3$$
;

6)
$$y = |x^3 - 8| + |x^3 - 1| - x^2$$
.

Исследуйте функцию на монотонность и экстремумы:

$$_{\mathcal{O}44.59.}$$
 a) $y = \sin x - \frac{1}{2}x;$

$$\mathbf{B}) \ y = \frac{1}{\sqrt{2}} x + \cos x;$$

$$6) y = \frac{x}{2} - \cos x;$$

r)
$$y = x - \sin x$$
.

$$_{04}4.60.$$
 a) $y = x - \sin 2x;$

$$6) y = x + 4 \cos \frac{x}{2}.$$

$$_{04}4.61.$$
 a) $y = |x - 3| - 2;$

B)
$$y = |(x-2)(x+3)|$$
;

6)
$$y = \left| \frac{1}{r} - 1 \right|$$
;

$$y = (|x| - 2)|x|$$
.

$$\bigcirc 44.62$$
. a) $y = |x^3 - 3x|$;

6)
$$y = |x - x^3|$$
.

Исследуйте функцию на монотонность и экстремумы и постройте ее график:

$$044.63.$$
 a) $y = 3x^2 - 4x + 5;$

B)
$$y = 7 - x - 2x^2$$
;

$$6) y = 3 + 2x - x^2;$$

$$\mathbf{r}) \ y = 5x^2 - 15x - 4.$$

044.64. a)
$$y = 3x^2 - x^3$$
;
6) $y = 6x + x^3$;

B)
$$y = x^3 + 3x^2$$
;
F) $y = 3x - x^3$.

044.65. a)
$$y = x^3 - 3x^2 + 2$$
;
6) $y = -x^3 + 4x - 3$;

B)
$$y = -x^3 + 4x^2 - 3$$
;

6)
$$y = -x^3 + 4x - 3$$
;

r)
$$y = x^3 - 3x + 2$$
.

$$\circ 44.66$$
. a) $y = 2x^3 + x^2 - 2x - 1$;

6)
$$y = -\frac{x^3}{3} + x^2 + 3x - \frac{11}{3}$$
;

B)
$$y = x^3 + x^2 - x - 1$$
;

$$\Gamma) \ y = \frac{x^3}{3} + x^2 - 3x + \frac{5}{3}.$$

$$044.67. a) y = -x^4 + 5x^2 - 4;$$

$$y = 2x^4 - 9x^2 + 7;$$

6)
$$y = x^5 - 5x$$
;

r)
$$y = 5x^3 - 3x^5$$
.

$$\bigcirc 44.68$$
. a) $y = (x-1)^2(x+2)$;

B)
$$y = (x + 2)^2(x - 3)$$
;

6)
$$y = \frac{256}{9}x(x-1)^3$$
;

$$\Gamma) y = x^3(2-x).$$

Решите уравнение:

$$^{\circ}44.69$$
. a) $x^3 + 5 = 15 - x$;
6) $x^5 + 3x^3 + 7x - 11 = 0$;

B)
$$2x^5 + 3x^3 = 17 - 12x$$
;
r) $x^5 + 4x^3 + 8x - 13 = 0$.

6)
$$x^5 + 3x^3 + 7x - 11 = 0$$

$$\Gamma) x^5 + 4x^3 + 8x - 13 = 0.$$

•44.70. a)
$$\sin 5x - 2 \cos x - 8x = x^5 - 2$$
;

6)
$$4\cos 3x + 5\sin \frac{x}{2} + 15 = 4 - x^3$$
.

•44.71. a)
$$3\cos \pi x + 5\sin \frac{\pi x}{2} + 18x = 43 - x^5 - 22x^3$$
;

6)
$$2\sin\frac{\pi}{2}x - 2\cos\pi x - 10x = x^5 - 54$$
.

Докажите тождество:

$$\bullet 44.72. a) \arcsin x = \frac{\pi}{2} - \arccos x;$$

6)
$$\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}$$
.

•44.73. a)
$$\arccos \sqrt{1-x^2} = \begin{cases} \arcsin x, \ 0 \le x \le 1, \\ -\arcsin x, \ -1 \le x < 0; \end{cases}$$

6)
$$\operatorname{arctg} x + \operatorname{arctg} \frac{1-x}{1+x} = \begin{cases} \frac{\pi}{4}, & x > -1, \\ -\frac{3\pi}{4}, & x < -1. \end{cases}$$

•44.74. Докажите, что функция y = f(x) постоянна на указанном промежутке и найдите значение этой постоянной:

a)
$$f(x) = 2 \arctan x + \arcsin \frac{2x}{1+x^2} \text{ при } x \ge 1;$$

б)
$$f(x) = \arccos \frac{1}{\sqrt{1+x^2}} + \operatorname{arctg} x$$
 при $x < 0$.

Докажите неравенство:

•44.75. a)
$$x^2 - x^3 < \frac{1}{6}$$
, если $x > \frac{2}{3}$;

б)
$$2\sqrt{x} \ge 3 - \frac{1}{x}$$
, если $x > 0$.

$$ullet$$
44.76. a) arcsin $x > x$, если $0 < x < 1$;

б)
$$\arctan x > x - \frac{x^3}{3}$$
, если $x > 0$.

§ 45. Построение графиков функций

Исследуйте функцию и постройте ее график:

045.1. a)
$$y = \frac{1}{r^2 + 1}$$
;

6)
$$y = \frac{-2}{x^2 + 4}$$
.

045.2. a)
$$y = \frac{-1}{x^2 + 4x + 4}$$
;

$$6) \ y = \frac{1}{x^2 + 2x + 1}.$$

$$\bigcirc 45.3.$$
 a) $y = \frac{x}{2} + \frac{2}{x}$;

$$6) y = \frac{x^2 + 4}{x}.$$

$$\bigcirc 45.4.$$
 a) $y = \frac{2x+1}{x^2+2}$;

$$\text{ 6) } y = \frac{x-2}{x^2+5}.$$

$$045.5.$$
 a) $y = \frac{x}{x^2 - 4}$;

$$\text{ 6) } y = \frac{x-3}{x^2-8}.$$

$$\bigcirc 45.6.$$
 a) $y = \frac{x^2 - 1}{x^2 + 1}$;

$$6) \ y = \frac{x^2 - 4}{x^2 + 4}.$$

$$\bigcirc 45.7.$$
 a) $y = \frac{x^2 + 4}{x^2 - 4};$

$$6) \ y = \frac{x^2 + 1}{x^2 - 1}.$$

•45.8. a)
$$y = 2\sqrt{x} - x$$
;

6)
$$y = \sqrt{x+4} + \frac{2}{3}\sqrt{9-3x}$$
.

•45.9. a)
$$y = \sqrt{\frac{x-1}{x}}$$
;

$$6) y = (x-3)\sqrt{x}.$$

•45.10. a)
$$y = \frac{x}{\sqrt{1-x^2}}$$
;

$$\text{ 6) } y = \frac{x}{\sqrt{x^2 - 1}}.$$

- $\circ 45.11.$ а) Постройте график функции $y = x^4 2x^2 + 3.$
 - б) При каких значениях параметра a уравнение $x^4 2x^2 + 3 = a$ имеет три корня?
- $\circ 45.12$. а) Постройте график функции $y = -x^4 + 2x^2 + 8$.
 - б) При каких значениях параметра a уравнение $-x^4 + 2x^2 + 8 = a$ не имеет корней?
- $\circ 45.13$. Сколько корней имеет заданное уравнение при указанных ограничениях на параметр a:

a)
$$x^3 - 3x^2 = a$$
, $-4 < a < 0$;

6)
$$-x^3 + 3x^2 - 2 = a$$
, $a < -2$;

B)
$$3x^2 - x^3 = a$$
, $0 < a < 4$;

r)
$$x^3 - 3x^2 + 2 = a$$
, $a > 2$?

- •45.14. Сколько корней имеет уравнение $x^3 + ax + 2 = 0$ при различных значениях параметра a?
- ○45.15. Решите уравнение:

a)
$$3\sqrt{x+1} = -x^3 + 3x^2 + 6$$
;

$$6) x^3 - 3x = (x+1)^6 + 2.$$

§ 46. Применение производной для отыскания наибольших и наименьших значений величин

Найдите наибольшее и наименьшее значения заданнов функции на заданном отрезке без помощи производной.

046.1. a)
$$y = x^8 - 1$$
, [-1; 2];

B)
$$y = x^3 - 4$$
, [0; 3];

6)
$$y = -x^5 + 2$$
, [-2; 1];

r)
$$y = -2x^4 + 8$$
, [0; 3].

046.2. a)
$$y = (x - 1)^3 + 4$$
, [-2; 1];

6)
$$y = 7 - (2x - 8)^4$$
, [-1; 3];

B)
$$y = 5 - (3x + 6), [-2; 0];$$

r)
$$y = 2(x + 3)^6 - 4$$
, [-1; 2].

046.3. a)
$$y = \sin x - 3$$
, $\left[\frac{\pi}{2}; 3\pi\right]$;

6)
$$y = \cos x + 0.5, \left[-\pi; \frac{\pi}{3} \right];$$

B)
$$y = -2 \sin x + 1, \left[\frac{\pi}{3}; \frac{5}{6} \pi \right];$$

r)
$$y = 4 - 3 \cos x$$
, $\left[-\frac{\pi}{4}; \frac{7}{6}\pi \right]$.

046.4. a)
$$y = \sqrt{1 + \cos 2x}, \left[-\frac{\pi}{2}; \frac{\pi}{2} \right];$$

6)
$$y = \sqrt{1 + \sin x}$$
, $\left[0; \frac{\pi}{2}\right]$;

B)
$$y = \sqrt{1 - \sin 2x}$$
, [0; π];

$$\Gamma) \ y = \sqrt{1 + \cos 2x}, \ \left[-\frac{\pi}{2}; \ 0 \right].$$

•46.5. a)
$$y = ||x| - 4|$$
, [-3; 3];

6)
$$y = |3 - |x||, [-4; 4].$$

046.6. a)
$$y = 2 - 3 \sin x + 4 \cos x$$
;

6)
$$y = 3 \sin x - 4 \cos x + 1$$
.

046.7. Найдите наибольшее и наименьшее значения функции

$$y = \begin{cases} -4x + 12, \text{ если } x < 2, \\ x^2 - 2x + 2, \text{ если } x \geqslant 2 \end{cases}$$

на отрезке:

046.8. Найдите наибольшее и наименьшее значения функции

$$y = \begin{cases} (x+2)^2 - 3, \text{ если } x \leq -2, \\ x^2 - 4, \text{ если } x > -2. \end{cases}$$

на отрезке:

a)
$$[-4; -3];$$

О46.9. Найдите наибольшее и наименьшее значения заданной функции на заданном отрезке:

a)
$$y = x^2 - 8x + 19$$
, [-1; 5];

6)
$$y = x^2 + 4x - 3$$
, [0; 2];

B)
$$y = 2x^2 - 8x + 6$$
, [-1; 4];

r)
$$y = -3x^2 + 6x - 10$$
, [-2; 9].

046.10. Найдите наибольшее и наименьшее значения функции $y = x^3 - 9x^2 + 24x - 1$ на отрезке:

046.11. Найдите наибольшее и наименьшее значения функции $y = x^3 + 3x^2 - 45x - 2$ на отрезке:

046.12. Найдите наибольшее и наименьшее значения функции $y = x^3 - 9x^2 + 15x - 3$ на отрезке:

046.13. Найдите наибольшее и наименьшее значения функции $y = x^4 - 8x^3 + 10x^2 + 1$ на отрезке:

046.14. Найдите наибольшее и наименьшее значения функции $y = x + \frac{4}{r-1}$ на отрезке:

046.15. Найдите наименьшее и наибольшее значения заданной функции на заданном отрезке:

a)
$$y = \operatorname{ctg} x + x$$
, $\left[\frac{\pi}{4}; \frac{3\pi}{4}\right]$;

6)
$$y = 2 \sin x - x$$
, [0; π];

B)
$$y = 2 \cos x + x$$
, $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$;

$$\Gamma) y = \operatorname{tg} x - x, \left[0; \frac{\pi}{3}\right].$$

Найдите наименьшее и наибольшее значения заданной функции на заданном промежутке:

046.16. a)
$$u = x^3 - 2x^2 + 1$$
, $[0.5; +\infty)$;

6)
$$y = x - 2\sqrt{x}$$
, $[0; +\infty)$;

B)
$$y = \frac{1}{5}x^5 - x^2$$
, $(-\infty; 1]$;

r)
$$y = \frac{x^4}{x^4 + 1}$$
, $(-\infty; +\infty)$.

046.17. a)
$$y = x + \frac{1}{x}$$
, $(-\infty; 0)$;

6)
$$y = \frac{3x}{x^2 + 3}$$
, $[0; +\infty)$;

B)
$$y = -2x - \frac{1}{2x}$$
, $(0; +\infty)$;

r)
$$y = \sqrt{2x + 6} - x$$
, $[-3; +\infty)$.

046.18. a)
$$y = (2x - 1)^2(x - 2)$$
, [-1; 2];

6)
$$y = \frac{x^2}{x^2 - 2x - 1}$$
, [0; 2];

B)
$$y = (x + 4)(3x + 1)^2, \left[-2; -\frac{1}{2}\right];$$

r)
$$y = \frac{5x^3}{x^2 - 9}$$
, [-1; 1].

O46.19. a)
$$y = x^4 + 8x^3 + 24x^2 + 32x + 21$$
, [-3; 0];
6) $y = x^4 - 4x^3 + 6x^2 - 4x - 9$, [0; 4];
B) $y = 4x^3 - 21x^2 + 36x - 2$, [1; 2];

6)
$$y = x^4 - 4x^3 + 6x^2 - 4x - 9$$
, [0; 4];

B)
$$y = 4x^3 - 21x^2 + 36x - 2$$
, [1; 2];

r)
$$y = 0.25x^4 - 2\frac{1}{3}x^3 + 3.5$$
, [-1; 2].

046.20. a)
$$y = x^2 - 5|x| + 6$$
, [0; 4];

6)
$$y = x^2 - 5|x| + 6$$
, [-5; 0];

B)
$$y = x^2 + 8|x| + 7$$
, [1; 5];

r)
$$y = x^2 + 8|x| + 7$$
, [-8; -2].

•46.21. a)
$$y = x^3 - 2x|x - 2|$$
, [-1; 3];

6)
$$y = 3x|x + 1| - x^3$$
, [-1; 2].

•46.22. a)
$$y = x^2 - 4x + 5 + |1 - x|$$
, [0; 4]; 6) $y = |x^3 - 1| - 3x$, [-1; 3].

6)
$$y = |x^3 - 1| - 3x$$
, $[-1; 3]$.

$$\bigcirc 46.23.$$
 a) $y = \sin^3 x + \cos^3 x$, $\left[0; \frac{\pi}{2}\right]$;

6)
$$y = \sin^5 x - \cos^5 x$$
, $\left[-\frac{\pi}{2}; \ 0 \right]$.

$$046.24.$$
 a) $y = \sin^2 \frac{x}{2} \cdot \sin x$, $[-\pi; 0]$;

6)
$$y = \cos^2 0.5x \cdot \cos x$$
, [0; π].

$$\bigcirc 46.25$$
. a) $y = x^3 - 3x$, $(-\infty; 0]$; B) $y = x^3 - 3x$, $[0; +\infty)$;

6)
$$y = \frac{x}{x^4 + 3}$$
, [0; +\infty]; r) $y = \frac{x}{x^4 + 3}$, (-\infty; 0].

а)
$$y = x^4 - 2x^2 - 6$$
 на отрезке [-2; 2];
б) $y = x^3 - 3x^2 + 2$ на отрезке [-1; 2].

б)
$$y = x^3 - 3x^2 + 2$$
 на отрезке [-1; 2].

Найдите те значения аргумента, при которых заданная функция достигает наибольшего значения:

046.27. a)
$$y = \sqrt{(x-1)(10-x)}$$
; B) $y = \sqrt{(2x-6)(7-x)}$;

B)
$$y = \sqrt{(2x-6)(7-x)}$$
;

6)
$$y = \sqrt{(x+2)(4-x)}$$
; $y = \sqrt{(5-x)(x-3)}$.

r)
$$y = \sqrt{(5-x)(x-3)}$$

046.28. a)
$$y = \sqrt{x-5} + \sqrt{9-x}$$
; B) $y = \sqrt{10-2x} + \sqrt{3x}$;

B)
$$y = \sqrt{10 - 2x} + \sqrt{3x}$$
;

6)
$$y = 3\sqrt{x+1} + \sqrt{-x}$$
;

6)
$$y = 3\sqrt{x+1} + \sqrt{-x}$$
; $y = \sqrt{8-3x} + \sqrt{x}$.

a)
$$y = \sqrt{x^2 - 8x + 17}$$
;

B)
$$y = \sqrt{x^2 + 4x + 10}$$
;

6)
$$y = \sqrt{7(x+9)(x-6)}$$
; $y = \sqrt{2(x-4)(x+8)}$.

$$\Gamma y = \sqrt{2(x-4)(x+8)}$$

Найдите наибольшее и наименьшее значения функции:

O46.30. a)
$$y = \sqrt{(x-5)(15-x)}$$
; B) $y = \sqrt{(12-x)(x-4)}$;

B)
$$y = \sqrt{(12 - x)(x - 4)}$$
;

6)
$$y = \sqrt{(2x+4)(3-1)}$$

6)
$$y = \sqrt{(2x+4)(3-x)}$$
; r) $y = \sqrt{(5-x)(3x+6)}$.

046.31. a)
$$y = \sqrt{2x^2 - 5x + 2}$$
; B) $y = \sqrt{x^2 + 6x - 7}$;

B)
$$y = \sqrt{x^2 + 6x - 7}$$
:

6)
$$y = \sqrt{3x^2 + 6x + 4}$$
; r) $y = \sqrt{2x^2 - 2x + 1}$.

$$\text{F) } y = \sqrt{2x^2 - 2x + 1}$$

046.32. Найдите наибольшее значение функции:

a)
$$y = -x^8 + 2x^4 + 1$$
;

a)
$$y = -x^8 + 2x^4 + 1;$$
 6) $y = -x^4 + \frac{4}{3}x^3 + \frac{2}{3}.$

046.33. Найдите наибольшее значение функции:

a)
$$y = \sqrt{5 - x^2} + \sqrt{x}$$
;

a)
$$y = \sqrt{5 - x^2} + \sqrt{x}$$
; 6) $y = \sqrt{-x} + \sqrt{5 - x^2}$.

046.34. Найдите наименьшее значение функции:

a)
$$y = 2|x| - 4$$
;

B)
$$y = 3|x| + 9$$
;

a)
$$y = 2|x| - 4;$$

b) $y = 3|x| + 9;$
c) $y = x^2 - 5|x| + 6;$
r) $y = x^2 - 6|x| - 7.$

$$\mathbf{r}) \ y = x^2 - 6|x| - 7$$

Найдите область значений функции:

046.35. a)
$$y = 2x - \sqrt{16x - 4}, x \in \left[\frac{1}{4}; \frac{17}{4}\right];$$

6)
$$y = 2\sqrt{x-1} - 0.5x$$
, $x \in [1; 10]$.

•46.36. a)
$$y = x\sqrt{x+2}$$
;

$$6) y = x\sqrt{1-2x}.$$

$$\bullet 46.37. \ y = \frac{-2x^2 - 2x - 38}{x^2 + 6x + 34}.$$

- ullet46.38. a) При каком значении параметра a наименьшее значение функции $u = x\sqrt{x+a}$ равно $-6\sqrt{3}$?
 - б) При каком значении параметра a наибольшее значение функции $y = (a - x)\sqrt{x}$ равно $10\sqrt{5}$?
- ullet46.39. а) При каком значении параметра n сумма квадратов корней уравнения $x^2 - 2nx + 4n^2 + 3n = 0$ будет наибольшей?
 - б) При каком значении параметра n сумма квадратов корней уравнения $x^2 + nx + 2n - 1 = 0$ будет наименьшей?
- ullet46.40. Докажите, что при любых значениях x выполняется неравенство:

a)
$$x^5 + (1-x)^5 \ge \frac{1}{16}$$
;

a)
$$x^5 + (1-x)^5 \ge \frac{1}{16}$$
; 6) $x^7 + (1-x)^7 > \frac{\sqrt{2}}{100}$.

- 046.41. а) Сумма двух целых чисел равна 24. Найдите эти числа, если известно, что их произведение принимает наибольшее значение.
 - б) Произведение двух положительных чисел равно 484. Найдите эти числа, если известно, что их сумма принимает наименьшее значение.

- О46.42. а) Разность двух чисел равна 10. Найдите эти числа, если известно, что их произведение принимает наименьшее значение.
 - б) Разность двух чисел равна 98. Найдите эти числа, если известно, что их произведение принимает наименьшее значение.
- О46.43. а) Известно, что одно из двух чисел на 36 больше другого. Найдите эти числа, если известно, что их произведение принимает наименьшее значение.
 - б) Известно, что одно из двух чисел меньше другого на 28. Найдите эти числа, если известно, что их произведение принимает наименьшее значение.
- О46.44. а) Представьте число 3 в виде суммы двух положительных слагаемых так, чтобы сумма утроенного первого слагаемого и куба второго слагаемого была наименьшей.
 - б) Представьте число 5 в виде суммы двух положительных слагаемых так, чтобы произведение первого слагаемого и куба второго слагаемого было наибольшим.
- О46.45. а) Периметр прямоугольника составляет 56 см. Каковы его стороны, если этот прямоугольник имеет наибольшую площадь?
 - б) Периметр прямоугольника составляет 72 см. Каковы его стороны, если этот прямоугольник имеет наибольшую площадь?
- О46.46. а) Нужно огородить участок прямоугольной формы забором длиной 200 м. Каковы должны быть размеры этого прямоугольника, чтобы его площадь была наибольшей?
 - б) Нужно огородить участок прямоугольной формы забором длиной 240 м. Каковы должны быть размеры этого прямоугольника, чтобы его площадь была наибольшей?
- ○46.47. а) Площадь прямоугольника составляет 16 см². Каковы должны быть его размеры, чтобы периметр прямоугольника был наименьшим?
 - б) Площадь прямоугольника составляет 64 см². Каковы должны быть его размеры, чтобы периметр прямоугольника был наименьшим?
- ○46.48. Огораживают спортивную площадку прямоугольной фор-

мы площадью 2500 м². Каковы должны быть ее размеры, чтобы на забор ушло наименьшее количество сетки рабицы?

- ${\tt O46.49.}$ Сторона квадрата ABCD равна 8 см. На сторонах AB и BC взяты соответственно точки P и E так, что BP=BE=3 см. На сторонах AD и CD берутся точки соответственно K и M так, что четырехугольник KPEM трапеция. Чему равна наибольшая площадь такой трапеции?
- ${\tt O46.50.}$ а) В арифметической прогрессии с разностью d девятый член равен 1. При каком значении d произведение четвертого, седьмого и восьмого членов прогрессии будет наибольшим?
 - б) В арифметической прогрессии с разностью d второй член равен 6. При каком значении d произведение первого, третьего и шестого членов будет наименьшим?
- \circ 46.51. а) Найдите длину отрезка наибольшей длины, который заключен между графиками функций $y=2x^2$ (снизу), y=4x (сверху) и параллелен оси y.
 - б) Найдите длину отрезка наибольшей длины, который заключен между графиками функций $y = x^2$ (снизу), y = -2x (сверху) и параллелен оси y.
- \circ 46.52. а) На графике функции $y=x^2$ найдите точку M, ближайшую к точке $A(0;\ 1,5)$.
 - б) На графике функции $y = \sqrt{x}$ найдите точку M, ближайшую к точке A(4,5;0).
- ●46.53. Боковые стороны и одно из оснований трапеции равны 15 см. При какой длине второго основания площадь трапеции будет наибольшей?
- ullet46.54. Из прямоугольной трапеции с основанием a и b и высотой h вырезают прямоугольник наибольшей площади. Чему равна эта площадь, если:
 - a) a = 80, b = 60, h = 100;
- 6) a = 24, b = 8, h = 12?
- •46.55. У пятиугольника ABCDE углы A, B и E прямые, AB = a, BC = b, AE = c, DE = m. Впишите в пятиугольник прямочгольник наибольшей площади, если:
 - a) a = 7, b = 9, c = 3, m = 5;
 - 6) a = 7, b = 18, c = 3, m = 1.
- •46.56. Памятник состоит из статуи и постамента. К памятнику подошел человек. Верхняя точка памятника находится

- выше уровня глаз человека на a м, а верхняя точка постамента на b м. На каком расстоянии от памятника должен стать человек, чтобы видеть статую под наибольшим углом?
- ◆46.57. База находится в лесу в 5 км от дороги, а в 13 км от базы на этой дороге есть железнодорожная станция. Пешеход по дороге идет со скоростью 5 км/ч, а по лесу — 3 км/ч. За какое минимальное время пешеход может добраться от базы до станции?
- О46.58. Открытый металлический бак с квадратным основанием должен вмещать 32 л воды. При каких размерах на его изготовление уйдет наименьшее количество материала?
- ○46.59. Закрытый металлический бак с квадратным дном должен иметь объем 343 м³. При каких размерах на его изготовление пойдет наименьшее количество материала?
- О46.60. Для перевозки груза требуется изготовить закрытый короб в форме прямоугольного параллелепипеда, стороны основания которого относились бы как 2:3, а объем составлял 576 м³. Каковы должны быть размеры всех его сторон, чтобы полная поверхность была наименьшей?
- \circ 46.61. Диагональ боковой грани правильной четырехугольной призмы равна d. При какой длине бокового ребра объем призмы будет наибольшим?
- \circ 46.62. Апофема правильной четырехугольной пирамиды равна p. При какой высоте пирамиды ее объем будет наибольшим?
- \circ 46.63. Периметр осевого сечения цилиндра равен p см. Какова должна быть высота цилиндра, чтобы его объем был наибольшим?
- \circ 46.64. Объем цилиндра равен V м³. Каким должен быть его радиус, чтобы полная поверхность цилиндра была наименьшей?

§ 47. Правило умножения. Перестановки и факториалы

- \circ 47.1. Двузначное число составляют из цифр 0, 1, 3, 4, 5, 6, 9 (повторения цифр допустимы).
 - а) Сколько всего можно составить чисел?
 - б) Сколько всего можно составить чисел, больших 50?
 - в) Сколько всего можно составить нечетных чисел?
 - г) Сколько всего можно составить нечетных чисел, меньших 55?
- 047.2. Двузначное число составляют из цифр 0, 1, 2, 4, 5, 6, 7 (повторения цифр допустимы).
 - а) Сколько всего можно составить чисел?
 - б) Сколько всего можно составить чисел, отличающихся от 40 менее чем на 10?
 - в) Сколько всего можно составить четных чисел?
 - г) Сколько можно составить чисел, отличающихся от 50 более чем на 20?
- ●47.3. a) Сколько имеется трехзначных чисел, составленных только из четных цифр?
 - б) Сколько имеется трехзначных чисел, которые не меняются при перемене местами первой и последней цифр?
 - в) Сколько имеется трехзначных чисел, кратных 5?
 - г) Сколько имеется трехзначных чисел, которые при перемене местами первой и второй цифр меняются менее чем на 90?
- О47.4. На кусок белого, черного или ржаного хлеба можно положить сыр, колбасу или масло. Бутерброд можно запить чаем, кофе, молоком или кефиром, а после этого или погулять, или пойти в гости, или остаться дома.
 - а) Найдите общее число вариантов начала выходного дня.
 - б) В скольких случаях будет выпит молочный напиток?
 - в) Каков будет ответ в пункте а), если в доме привыкли масло мазать только на белый хлеб?

- г) Каков будет ответ в пункте а), если хлеб надо сначала купить в одном из трех ближайших магазинов?
- •47.5. За четверть в классе прошли пять тем по алгебре. Контрольная работа будет состоять из пяти задач: по одной задаче из каждой темы. К каждой теме заранее был составлен список из 10 задач, одна из которых будет входить в вариант контрольной. Ученик умеет решать только по 8 задач в каждой теме. Найдите:
 - а) общее число всех вариантов контрольной работы;
 - б) число тех вариантов, в которых ученик умеет решать все пять задач;
 - в) число тех вариантов, в которых ученик ничего не может решить;
 - г) число тех вариантов, в которых ученик умеет решать все задачи, кроме первой.
- ●47.6. В каждую клетку квадратной таблицы 3×3 произвольно ставят крестик или нолик.
 - а) Сколькими способами можно заполнить эту таблицу?
 - б) В скольких случаях в первом столбце будут одни крестики?
 - в) В скольких случаях по диагоналям будут стоять одни нолики?
 - г) В скольких случаях во второй строке будет стоять ровно один крестик?
- О47.7. В один день происходят выборы мэра города и префекта округа. На первую должность свои кандидатуры выставили Алкин, Балкин, Валкин, а на вторую — Эшкин, Юшкин, Яшкин.
 - а) Нарисуйте дерево возможных вариантов голосования на выборах.
 - б) В скольких вариантах будет кандидатура Эшкина?
 - в) В скольких вариантах фамилии кандидатов состоят из разного числа букв?
 - г) Как изменятся ответы в пунктах а) и б), если учесть еще кандидата «против всех»?
- \circ 47.8. Ученик помнит, что в формуле азотной кислоты подряд идут буквы $H,\,N,\,O$ и что есть один нижний индекс то ли двойка, то ли тройка.
 - а) Нарисуйте дерево возможных вариантов, из которых ученику придется выбирать ответ.

- б) Сколько среди них тех, в которых индекс стоит не $\mathbf{n}_{\mathbf{Q}}$ втором месте?
- в) Как изменится дерево вариантов, если ученик помнит, что на первом месте точно стоит H, а порядок остальных букв забыл?
- г) Как изменится дерево вариантов, если буквы могут идти в любом порядке?
- О47.9. В урне лежат три неразличимых на ощупь шара, два белых и один черный. При вытаскивании черного шара его возвращают обратно, а вытащенный белый шар откладывают в сторону. Такую операцию производят два раза подряд.
 - а) Нарисуйте дерево возможных вариантов.
 - б) В скольких случаях оба вытащенных шара будут черными?
 - в) В скольких случаях вытащенные шары будут разного цвета?
 - г) Нарисуйте дерево возможных вариантов для трех вытаскиваний из двух черных и двух белых шаров.
- ${\tt O47.10}.$ Из пяти одноклассниц $A, B, B, \Gamma, \mathcal{A}$ только B и \mathcal{A} дружат со всеми, B дружит, кроме B и \mathcal{A} , только с Γ , остальные не дружат между собой. Для проведения соревнования надо из этих одноклассниц выбрать капитана и его заместителя, которые дружат между собой.
 - а) Нарисуйте дерево возможных вариантов выбора.
 - б) В скольких вариантах капитаном будет А?
 - в) В скольких вариантах выбора будет присутствовать В?
 - г) В скольких вариантах выбора Γ будет заместителем?

Вычислите:

047.11. a)
$$\frac{7! + 8!}{5! + 6!}$$
;

B)
$$\frac{17 \cdot 6! + 8!}{7! + 9!}$$
;

6)
$$\frac{7}{11} \cdot \frac{(10!)^2 - (9!)^2}{(8!)^2 - (7!)^2}$$
;

$$\Gamma) \ \frac{(7!)^2 \cdot (6!)^2}{4! \cdot 5! \cdot 8! \cdot 9!}.$$

047.12. a)
$$\frac{1}{4!} + \frac{10}{5!} + \frac{630}{6!}$$
;

6)
$$\frac{1}{6!} + \frac{1}{5!} - \frac{49}{7!}$$
.

- 047.13. Сколькими нулями оканчивается число:
 - a) 10!;
- б) 15!;
- в) 26!;
- г) 100!?
- 047.14. Укажите наибольшее натуральное число n, для которого:
 - а) 10! кратно 2ⁿ;
- в) 26! кратно 5^n ;
- б) 16! кратно 2^{n} ;
- г) 28! кратно 3ⁿ.

- 047.15. Докажите тождество:
 - a) $(n + 1)! n! = n \cdot n!$;
 - 6) $(2n+1)! (2n-1)! \cdot 2n = 4n! \cdot (2n-1)!$
- $_{047.16}$. Решите уравнение:
 - a) n! = 42(n-2)!;

- B) 0.125n! = (n-1)! 90;
- 6) (k + 17)! = 420(k + 15)!;
- Γ) (3x)! = 504(3x 3)!.
- 047.17. При каких натуральных значениях n выполняется неравенство:
 - a) n! > (n+1)(n-2)!;
 - 6) $7 \cdot (2n+1)! \cdot (2n-1)! < 8 \cdot ((2n)!)^2$?

Докажите неравенство:

- •47.18. a) $n! > (n+3)^2$ при $n \ge 5$; B) $n! > 2^n$ при $n \ge 4$; 6) $n! > (n+2)^3$ при $n \ge 6$; $n! > 4^n$ при $n \ge 9$.
- •47.19. a) 2,66 < 1 + $\frac{1}{1!}$ + $\frac{1}{2!}$ + ... + $\frac{1}{n!}$ при всех $n \ge 3$;
 - б) $\frac{1}{2^4} + \frac{1}{2^5} + \dots + \frac{1}{2^n} < 0,125$ при всех $n \geqslant 4$;
 - в) $1 + \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!} < 3$ при всех n (используйте пункт
 - б) и номер 47.18 в));
 - г) $1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} < 2,75$ при всех n.
- 047.20. У мамы и папы один сын. К ним в гости пришла другая семья — мама, папа и дочь. За круглым обеденным столом есть 6 мест. Сколькими способами можно рассадить людей за столом, если:
 - а) место хозяина дома неприкосновенно;
 - б) первыми садятся дети, и они садятся рядом;
 - в) первыми садятся дети, но не рядом друг с другом;
 - г) жены садятся рядом со своими мужьями?
- 047.21. а) В каждом из двух заплывов по шести дорожкам участвует по 6 пловцов. Дорожки между пловцами в каждом заплыве разыгрываются по жребию. Найдите число всех возможных распределений пловцов по дорожкам.
 - б) То же, но если в каждом заплыве один из пловцов победитель отборочных соревнований — плывет по четвертой дорожке.
 - в) То же, но если во втором заплыве участвуют 5 пловцов.
 - г) То же, но если в обоих заплывах участвует по 4 пловца.

- O47.22. Две команды по 5 шахматистов проводят матч из пяти одновременно проходящих партий, в каждой из которых встречаются по одному из шахматистов каждой команды.
 - а) Найдите число всех возможных распределений встреч в матче.
 - б) То же, но для двух, независимо проводимых матчей.
 - в) То же, но если во втором матче участвует только по тр**х** лучших шахматиста из каждой команды.
 - г) То же, что и в пункте б), но если во втором матче капитаны команд обязательно играют между собой.
- О47.23. Одинаковый текст приглашения напечатан на семи разных открытках. Их надо разослать директорам семи разных школ.
 - а) Найдите число всех возможных рассылок приглащений.
 - б) То же, что и в пункте а), но если самую красивую открытку послать директору школы \mathbb{N} 1.
 - в) То же, что и в пункте а), но если в трех каких-либо приглашениях надо дописать и приглашения завучам по учебной работе.
 - г) То же, что и в пункте в), но если надо пригласить еще трех завучей по воспитательной работе из трех других школ.
- О47.24. В зоопарке пять львов надо распределить по одному по пяти клеткам, четырех тигров — по четырем другим клеткам и трех слонов — по трем вольерам.
 - а) Найдите число всех возможных распределений львов, тигров и слонов в зоопарке.
 - б) То же, но если есть четыре льва и львица и одного льва (известно какого именно) вместе с львицей надо посадить в одну клетку.
 - в) То же, что и в пункте а), но если у львов есть две семейные пары.
 - г) То же, что и в пункте a), но если между клетками для тигров и клетками для львов нет разницы.

§ 48. Выбор нескольких элементов. Биномиальные коэффициенты

- о48.1. Встретились несколько человек и стали здороваться друг с другом. Рукопожатий было от 60 до 70. Сколько человек встретилось, если известно, что:
 - а) каждый здоровался с каждым;
 - б) только один человек не здоровался ни с кем;

- в) только двое не поздоровались между собой;
- г) четверо поздоровались только между собой и остальные поздоровались только между собой.
- $_{\odot}$ 48.2. Каждую из n точек, являющихся вершинами выпуклого n-угольника, соединили отрезками с каждой другой вершиной.
 - а) Сколько провели отрезков?
 - б) Сколько провели диагоналей?
 - в) Сколько есть двузвенных ломаных, соединяющих вершину A с вершиной B?
 - г) Сколько есть трехзвенных ломаных, соединяющих вершину A с вершиной B (самопересекающиеся ломаные допускаются)?
- о48.3. В футбольной команде 11 человек: вратарь, 4 защитника, 4 полузащитника и 2 нападающих. Команда выбирает капитана и его заместителя.
 - а) Найдите число всех возможных вариантов выбора.
 - б) Найдите число всех возможных вариантов, если в команде 3 новичка и они не могут быть капитаном или заместителем.
 - в) Найдите число всех возможных вариантов, если капитан точно не нападающий, а его заместитель точно не вратарь.
 - г) Найдите в пунктах а) и б), число всех возможных вариантов выбора пары кандидатов, из которых тренеры позже будут делать окончательный выбор.
- •48.4. Все станции пригородной железной дороги разделены на 10 зон, в каждой зоне более одной станции. В билете на проезд в одну сторону указывают номер зоны отправления и номер зоны прибытия.
 - а) Сколько существует различных типов билетов?
 - б) Сколько существует различных стоимостей билетов, если стоимость проезда из зоны x в зону y рассчитывается по формуле S=7+6|x-y|?
 - в) Сколько различных типов билетов можно купить не более чем за 50 руб.?
 - г) Сколько существует различных типов билетов по цене, кратной 5 руб.?

Вычислите:

48.5. a) C_{17}^2 ;

б) C_{100}^2 ; в) C_5^3 ; г) C_8^4 .

48.7. a) $C_{27}^2 - C_{26}^2$;

6) $\frac{A_8^6}{A_{10}^2}$; B) $C_{11}^5 + C_{11}^6$; r) $\frac{A_{10}^3}{C_{10}^3}$.

048.8. Упростите выражение:

a)
$$\frac{P_n \cdot C_{n+1}^3}{A_n^{n-2}}$$
;

 $6) \frac{P_{n+1} \cdot C_n^{n-2}}{A^n}.$

048.9. Составив частное двух чисел, выясните, какое из них больше:

а) C_{17}^3 или C_{18}^4 :

в) C_{19}^5 или C_{18}^6 ;

б) C_{19}^4 или C_{19}^5 :

г) C_n^7 или C_{n+1}^8

Решите уравнение:

048.10. a) $C_r^3 = 2C_r^2$;

B) $C_r^2 + C_{r+1}^2 = 49$:

6) $C_{x}^{x-2} = 15$:

r) $C_8^x = 70$.

048.11. a) $A_r^5 = 18A_{r-2}^4$;

6) $A_{r-1}^2 - C_r^1 = 79$.

 $O48.12. a) C_r^3 = A_r^2;$

B) $C_r^4 = A_r^3 + C_r^3$;

6) $C_{r}^{4} = A_{r}^{3}$:

 Γ) $0.5A_r^4 = 3(A_{r-1}^3 + C_{r-1}^3)$.

048.13. Решите неравенство:

a) $120 < \tilde{A}_{k-3}^2 < 140$;

B) $C_{10}^2 < A_r^2 < 60$:

6) $C_6^2 < A_n^2 < C_8^2$;

 $\Gamma) C_{19}^2 < A_r^2 + C_r^2 < 200.$

048.14. Три ноты из семи нот (до, ре, ми, фа, соль, ля, си) одной октавы можно нажать либо одновременно (аккорд), либо поочередно (трезвучие).

- а) Найдите число всех возможных трезвучий.
- б) Найдите число всех возможных аккордов.
- в) Найдите число всех возможных аккордов, содержащих ноту «соль».
- г) Найдите число всех возможных трезвучий, в которых подряд не идут две соседние ноты (до и си — не соседние ноты).

048.15. «Проказница Мартышка, Осел, Козел и косолапый Мишка затеяли сыграть квартет». Сколькими способами они могут:

- а) выбрать каждый для себя по одному инструменту из 15 данных;
- б) выбрать набор из пяти инструментов из имеющихся 12 инструментов;

- в) сесть по одному за какие-то четыре из выбранных в пункте б) инструмента;
- г) выгнать одного из участников квартета, и потом сесть за какие-то три выбранных в пункте б) инструмента?
- О48.16. Из колоды в 36 карт выбирают 5 карт и потом одновременно открывают их. Найдите:
 - а) число всех возможных вариантов выбранных карт;
 - б) число вариантов, при которых среди полученных карт есть четыре туза;
 - в) число вариантов, при которых все полученные карты пики:
 - г) число вариантов, при которых все полученные карты одной масти.
- •48.17. По программе в концерте должен выступить хор из пяти певцов и трех певиц. Предварительное согласие на выступление дали 10 певцов и 8 певиц.
 - а) Сколько существует различных вариантов состава хора?
 - б) То же, но если известно, что певцы A и B ни за что не будут петь вместе.
 - в) То же, но если известно, что певец A будет петь тогда и только тогда, когда будет петь певица B.
 - г) То же, если 6 певцов накануне сорвали голос на футболе и вместо недостающего певца придется выступать одной певице.
- •48.18. Пусть $y(n) = \frac{C_n^3}{A_{n-1}^3}, \ n \ge 4.$
 - а) Укажите дробно-линейную функцию, на графике которой лежат все точки (n; y(n)).
 - б) Постройте график этой функции.
 - в) Укажите наибольшее n, при котором y(n) > 0.25.
 - г) Укажите наименьшее n, при котором y(n) отличается от $\frac{1}{6}$ менее чем на 0,01.
- •48.19. Пусть $y(n) = \frac{A_n^5}{C_{n-2}^3}, \ n \ge 4.$
 - а) Укажите многочлен, на графике которого лежат все точки (n; y(n)).
 - б) Постройте график этого многочлена.
 - в) Укажите наибольшее n, при котором y(n) < 600.
 - г) Укажите наименьшее n, при котором y(n) > 6000.

048.20. а) Докажите, что последовательность $\frac{A_{n+1}^4}{C_n^4}$, $n=3, 4, 5, \dots$ монотонно возрастает.

б) Докажите, что все члены этой последовательности боль. ше числа 4.

- в) Укажите номер, начиная с которого члены этой последовательности будут больше 20.
- г) Найдите предел этой последовательности при $n \to \infty$
- 048.21. Найдите n, при котором:
 - а) число C_{n+1}^2 составляет 80% от числа C_n^3 ;
 - б) число C_{n+1}^3 составляет 120% от числа C_n^4 ;
 - в) число C_{2n}^{n+1} составляет 56% от числа C_{2n+1}^{n-1} ;
 - г) число C_{2n+3}^n составляет 150% от числа C_{2n+2}^{n+2} .
- **•48.22**. Докажите тождество:
 - a) $C_n^3 = C_{n-1}^2 + C_{n-1}^3$;
- B) $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$;
- 6) $C_n^{n-4} = C_{n-1}^3 + C_{n-1}^{n-4}$; Γ) $C_n^k = C_{n-1}^{n-k} + C_{n-2}^{k-1} + C_{n-2}^{n-k-2}$.
- •48.23. Выпишите треугольник Паскаля до седьмой строки включительно.
 - а) Найдите сумму всех чисел в третьей строке треугольника Паскаля.
 - б) Найдите сумму всех чисел в четвертой строке треугольника Паскаля.
 - в) Найдите сумму всех чисел в седьмой строке треугольника Паскаля.
 - г) Методом математической индукции докажите, что сумма чисел в n-й строке треугольника Паскаля равна 2^n .
 - 48.24. Раскройте скобки в выражении:

 - a) $(x+1)^7$; 6) $(2x-y)^6$; B) $(x^2+2)^5$; r) $(1-x^3)^4$.
- \circ 48.25. У многочлена P найдите коэффициент при x^3 :
 - a) $P(x) = (1 + 3x)^4$;

 - 6) $P(x) = (3 2x)^5$; B) $P(x) = (x + 2)^5 (2x + 1)^4$;
 - r) $P(x) = (x^2 x)^4 + \left(3 \frac{x}{3}\right)^4$.
- **048.26.** В разложении $\left(x + \frac{1}{x}\right)^{10}$ по степеням x укажите:
 - а) член, содержащий x^8 ;
- в) член, содержащий x^{-2} ;
- б) член, содержащий x^4 ;
- г) член, не содержащий х.

48.27. Найдите член разложения, не содержащий переменных:

a)
$$\left(2x^2+\frac{1}{x}\right)^6$$
;

$$\mathrm{B)}\left(3\sqrt[4]{a} + \frac{1}{\sqrt{a}}\right)^9;$$

6)
$$\left(x^{\frac{1}{3}} + x^{-\frac{4}{3}}\right)^5$$
;

r)
$$\left(x^{0.75} + x^{\frac{2}{3}}\right)^{17}$$
.

- 048.28. Известно, что сумма биномиальных коэффициентов разложения $(a + b)^n$ равна 1024.
 - а) Найдите n.
 - б) Найдите наибольший биномиальный коэффициент этого разложения.
 - в) Сколько в разложении членов с этим наибольшим коэффициентом?
 - г) Дайте ответы на вопросы пунктов а), б), в), если сумма биномиальных коэффициентов разложения $(a + b)^n$ равна 512.
- 048.29. Найдите k, при котором достигается наибольшее значение выражения:
 - a) C_5^k ;

- ullet48.30. а) Докажите, что для любого натурального числа n>1 и любого x > 0 верно неравенство $(1 + x)^n > 1 + nx$ (неравенство Бернулли).
 - б) Используя неравенство пункта а), укажите какое-нибудь решение неравенства $1,001^n > 1000$.
 - в) Используя неравенство пункта а), укажите какое-нибудь решение неравенства $0.99^n < 0.01$.
 - г) Докажите, что для любого 0 < q < 1 и любого a > 0неравенство $q^n < a$ верно для всех натуральных n, начиная с некоторого номера.

§ 49. Случайные события и их вероятности

- ○49.1. Случайным образом выбирают двузначное натуральное число. Найдите вероятность того, что оно:
 - а) делится на 5;
- в) делится или на 15, или на 25;
- б) делится на 13;
- г) не делится на 29.
- 049.2. Случайным образом выбирают нечетное двузначное натуральное число. Найдите вероятность того, что:
 - а) его квадрат меньше 1000;
 - б) его квадрат больше 9000;
 - в) сумма квадратов его цифр больше 140;
 - г) сумма квадратов его цифр не больше 10.

- 049.3. Два ученика независимо друг от друга написали по одному двузначному натуральному числу. Найдите вероять ность того, что:
 - а) эти два числа различны между собой;
 - б) сумма чисел равна 100;
 - в) сумма чисел не больше 25;
 - г) сумма чисел больше 190.
- О49.4. Из набора домино случайно выбирают одну фишку. Найдите вероятность того, что:
 - а) это дубль;
 - б) одна из ее половинок «пустышка»;
 - в) различие между очками на ней больше 4;
 - г) сумма очков на ней больше 7.
- $\mathbf{049.5}$. Из значений n! для $n=1,\,2,\,3,\,\ldots,\,25$ случайно выбирают одно число. Найдите вероятность того, что это число:
 - а) меньше миллиона;
- в) делится на миллион;
- б) больше миллиарда; г) не делится на тысячу.
- 049.6. Из чисел, расположенных в пяти первых строчках треугольника Паскаля случайно выбирают одно число. Найдите вероятность того, что это число:
 - а) двузначно;

в) кратно трем;

б) нечетно:

- г) не является простым числом.
- ●49.7. В круге с центром в начале координат и радиусом π случайно выбрали точку с целыми координатами. Найдите вероятность того, что:
 - а) сумма координат этой точки больше 3;
 - б) произведение координат этой точки меньше 4;
 - в) эта точка лежит в круге с центром в начале координат и радиусом $\sqrt{3}$;
 - г) эта точка лежит вне треугольника с вершинами (0; 2), (-2; -2), (1; -2).
- •49.8. Двузначное число составляют так. Его первая цифра получается в результате первого бросания игрального кубика, грани которого пронумерованы цифрами от 1 до 6, а вторая цифра — в результате второго бросания этого кубика. Найдите вероятность того, что это число:
 - а) состоит из разных цифр;
- в) кратно 7;

б) больше 20;

г) простое.

- О49.9. Красивых учеников в классе 22, а умных 18. Всего в классе 30 учеников и каждый из них умный или красивый, или и умный, и красивый.
 - а) Сколько учеников, которые и умны, и красивы?
 - б) Сколько учеников, которые умны, но не красивы?
 - в) Сколько учеников, которые красивы, но не умны?
 - г) Измените в условии общее число учеников так, чтобы ответы в пунктах а) и в) были одинаковы.
- О49.10. При подготовке к экзамену один ученик решил 44 задачи из общего списка в 50 задач, а второй ученик решил 26 задач из этого же списка. Известно, что каждую задачу из общего списка задач кто-то из учеников решил.
 - а) Сколько задач были решены и первым, и вторым учеником?
 - б) Сколько задач были решены первым, но не решены вторым учеником?
 - в) Сколько задач были решены вторым, но не решены первым учеником?
 - г) Измените в условии общее число задач так, чтобы ответы в пунктах а) и б) были одинаковы.
- •49.11. У каждого из туристов есть или тугрики, или «еврики». У 100 туристов есть только тугрики, у 38 туристов есть только «еврики», а у 31% туристов есть обе валюты.
 - а) Сколько всего было туристов?
 - б) Сколько туристов имеют тугрики?
 - в) Сколько туристов имеют «еврики»?
 - г) Измените в условии задачи 31% так, чтобы ответ в пункте а) стал наибольшим из всех возможных.
- •49.12. Каждый из 30 учеников умный или красивый. Красивых учеников всего 26, умных 24, а 14 учеников ростом выше 180 см.
 - а) Про скольких учеников гарантированно можно утверждать, что они и умные, и красивые, и выше 180 см?
 - б) Каков ответ в пункте а), если известно, что все умные, но не красивые ростом ниже 180 см?
 - в) Каков ответ в пункте а), если известно, что все красивые, но не умные ростом выше 180 см?
 - г) Каков ответ в пункте а), если известно, что 12 умных ростом выше 180 см?

049.13	Экзамен пере	есдавали три	ученика. Рас	сматриваются со-
	бытия: $A-$	экзамен сдал	ровно один у	γ ченик; $B - \chi_{OTS}$
				ников; $D - \text{ровно}$
	два ученика.			
	a) $A + C$;	б) $A + D$;	B) B + D;	$\Gamma) A + B + C + D.$
049.14	. Опишите соб тов а) — г) п			обытиям из пунк.
●49.15			_	Рассматриваются о число больше 7.

- C это число кратно 3 и не равно 0; D это или 1, или 4. или 9. Опишите события:
 - a) AB;
- \mathfrak{G}) CD;
- в) BC; г) ABCD.
- **49.16.** Опишите события, противоположные событиям A, B, CD из предыдущей задачи.
- 049.17. В темном ящике 5 выигрышных билетов и 4 проигрышных. Вы случайно вытаскиваете одновременно 3 билета. Найдите вероятность того, что:
 - а) все билеты выигрышные;
 - б) есть ровно один проигрышный билет;
 - в) есть ровно два выигрышных билета:
 - г) есть хотя бы один выигрышный билет.
- **ullet49.18.** В темном ящике n выигрышных билетов и n проигрышных, n > 2. Вы случайно вытаскиваете одновременно 3 билета.
 - а) Найдите вероятность того, что есть ровно один проигрышный билет.
 - б) Докажите, что эта вероятность убывает с ростом n.
 - в) К какому числу стремится эта вероятность при $n \to \infty$?
 - r) Найдите n, начиная c которого эта вероятность будет меньше 0.4.
- •49.19. В темном ящике 5 выигрышных билетов и 4 проигрышных. Вы случайно вытаскиваете одновременно n билетов, n = 1, 2, 3, ..., 9. Найдите вероятность p(n) того, что у вас есть ровно один выигрышный билет. Численные результаты соберите в таблицу.

n	1	2	3	4	5	6	7	8	9
p(n)									

049.20. В темном ящике 6 билетов, из которых n билетов выигрышных и 6 - n проигрышных, n = 0, 1, 2, 3, ..., 6. Вы случайно вытаскиваете одновременно 2 билета. Найдите вероятность p(n) того, что у вас есть ровно один выигрышный билет. Численные результаты соберите в таблицу.

n	0	1	2	3	4	5	6
p(n)							

- О49.21. В темном ящике 8 белых и 7 черных шаров. Вы случайно вытаскиваете одновременно 4 шара. Найдите вероятность того, что:
 - а) все шары белые;
 - б) имеется, как минимум, три белых шара;
 - в) имеется, как минимум, два черных шара;
 - г) есть хотя бы один белый шар.
- \bullet 49.22. В темном ящике n белых и n-1 черных шаров. Вы случайно вытаскиваете одновременно 4 шара.
 - а) Найдите вероятность того, что имеется, как минимум, три белых шара.
 - б) Докажите, что эта вероятность убывает с ростом n.
 - в) К какому числу стремится эта вероятность при $n \to \infty$?
 - г) Найдите n, начиная с которого эта вероятность будет меньше 0.35.
- 049.23. Какова вероятность того, что при трех бросаниях монеты:
 - а) ни разу не выпадет «орел»;
 - б) ни разу не выпадет «решка»;
 - в) «орел» выпадет ровно один раз;
 - г) «решка» выпадет хотя бы один раз?
- 049.24. Решите задачу 49.23 для четырех бросаний монеты.
- •49.25. а) Какова вероятность того, что при n бросаниях монеты «решка» выпадет хотя бы один раз?
 - б) Как меняется эта вероятность с изменением n?
 - в) Найдите предел этой вероятности при $n o \infty$.
 - г) При каком наименьшем n вероятность появления хотя бы одной «решки» будет больше 0,999?
- О49.26. Три ученика независимо друг от друга написали по одной цифре от 0 до 9. Какова вероятность того, что среди написанных цифр:
 - а) не будет ни одной цифры 0;
 - б) будет хотя бы одна цифра 5;
 - в) не будет ни одной четной цифры;
 - г) будет хотя бы одна нечетная цифра?

- •49.27. Каждый из *n* учеников независимо друг от друга написал по одной цифре от 0 до 9.
 - а) Какова вероятность того, что среди написанных цифр будет хотя бы одна цифра 5?
 - б) Как меняется эта вероятность с изменением n?
 - в) Найдите предел этой вероятности при $n \to \infty$.
 - г) При каком наименьшем n вероятность появления хотя бы одной цифры 5 будет больше вероятности ее отсутствия?
- ●49.28. Буквы русского алфавита написаны на карточках. Вы случайно вытаскиваете одну карточку, читаете букву, возвращаете карточку и повторяете выбор. Как только появится гласная буква процедура заканчивается. (В русском алфавите 33 буквы, из них 10 гласных.)
 - а) Какова вероятность того, что никаких повторений не потребуется?
 - б) Какова вероятность того, что хватит двух повторений?
 - в) Какова вероятность того, что хватит именно n повторений?
 - г) Найдите предел этой вероятности при $n \to \infty$.
- O49.29. Стрелок не очень меток: вероятность того, что он попадет в мишень одним выстрелом, равна всего 0,1. Независимо от предыдущих промахов он повторяет выстрелы до первого попадания и после этого прекращает стрельбу.
 - а) Какова вероятность p(n) того, что ему хватит n выстрелов?
 - б) Найдите предел этой вероятности при $n \to \infty$.
 - в) Численные результаты для $n=1,\ 2,\ 3,\ \dots$, 7 соберите в таблицу.

n	1	2	3	4	5	6	7
p(n)							

- г) Найдите предел суммы p(1) + p(2) + ... + p(n) при $n \to \infty$.
- ullet 49.30. Найдите вероятность p встречи с контролером при одной поездке, если известно, что вероятность хотя бы одной встречи:
 - а) при трех поездках равна 0,875;
 - б) при четырех поездках равна 0,9984;
 - в) при пяти поездках равна 0,98976;
 - г) при шести поездках равна 0,468559.

Дополнительные задачи

•7.48. Найдите наименьшее целое число, принадлежащее области значений функции:

a) $y = \sqrt{x^2 - 7x - 3}$; 6) $y = \sqrt{x^2 - 7x + 24}$.

•8.53. а) Дана функция y = f(x), где $f(x) = 2x^2 - 5x + 3$. Нечетная функция y = g(x) определена на всей числовой прямой, причем f(x) = g(x) при $x \ge 0$.

Вычислите h(-2), где h(x) = f(x) + g(x).

б) Дана функция y = f(x), где $f(x) = \frac{5x + 1}{x^2 + 1}$. Четная функ-

ция y = g(x) определена на всей числовой прямой, причем f(x) = g(x) при $x \le 0$.

Вычислите h(1), где $h(x) = \frac{2f(x) - g(x)}{f(x) + g(x)}$.

•8.54. При каком значении параметра a функция $y=x^2(ax+2a-6)$ является:

а) четной; б) нечетной?

•9.36. Известно, что y = f(x) — четная, периодическая функция с основным периодом, равным 8, и что на отрезке [0; 4] она задается формулой $y = \sqrt{x+1}$.

а) Решите уравнение f(x) = 0;

б) решите уравнение f(x) = 1;

в) решите неравенство $f(x) \ge 0.97$;

- г) решите систему неравенств $\begin{cases} f(x) \ge 2, \\ -4 \le x \le 8. \end{cases}$
- •9.37. Функция y = f(x) является периодической с периодом T = 8. На отрезке [-1; 8] она задана следующим образом:

$$f(x) = \begin{cases} -x, \text{ если } -1 \le x \le 1; \\ x - 2, \text{ если } 1 < x < 5; \\ 8 - x, \text{ если } 5 \le x \le 7. \end{cases}$$

а) Вычислите: f(40), f(50), f(-65).

- б) Сколько корней имеет уравнение f(x) = 0 на отрезке [-10; 10]?
- •13.54. Решите уравнение $x^4 4x^3 + 4x^2 + \cos^2 \frac{3\pi x}{4} = 0$.
- ■14.37. Сколько целых чисел содержится в области значений функции:

a)
$$y = \sqrt{8 - 27 \sin x - 4 \sin^2 x}$$
;

6)
$$y = \sqrt{4 + 24 \cos x - \sin^2 x}$$
?

О16.73. Укажите число четных и нечетных функций среди данных:

a)
$$y_1 = 2 \sin x$$
, $y_2 = \cos 2x$, $y_3 = x \sin x$, $y_4 = \sin (x^2 + 1)$, $y_5 = \sin 0.25x^3$;

6)
$$y_1 = \frac{\sin x}{\cos x}$$
, $y_2 = \cos^3 3x$, $y_3 = -x \sin x$, $y_4 = \sin (x^4 - 1)$,

$$y_5 = x + \sin 0.5x;$$

B)
$$y_1 = 2 - \frac{\cos x}{\sin x}$$
, $y_2 = x + \cos 0.5x$, $y_3 = x^3 + x^2 \sin x$,

$$y_4 = \frac{\sin(x^2+2)}{2+\cos(2-x^2)}, \ y_5 = \frac{\sin x}{x};$$

r)
$$y_1 = \sqrt{3 + \cos 3x}$$
, $y_2 = \cos \sqrt{x}$, $y_3 = x\sqrt{1 - \cos 2x}$, $y_4 = \sin x + \cos x$, $y_5 = \sin x \cos x$.

016.74. Укажите число периодических функций среди данных:

a)
$$y_1 = \cos^2 x$$
, $y_2 = \cos x^2$, $y_3 = \sin (x^2 + 1)$, $y_4 = \sin (2x + 3)$, $y_5 = \sqrt{1 + \sin^2 x}$;

6)
$$y_1 = \frac{\cos x}{\sin x}$$
, $y_2 = 5$, $y_3 = \cos(\sqrt{x})$, $y_4 = \sin\frac{x+1}{x}$,

$$y_5 = \sqrt{1 + \cos^2 x};$$

B)
$$y_1 = \frac{\sin x}{\cos x}$$
, $y_2 = \sin (x + 2)$, $y_3 = \cos (x^2 + 2)$, $y_4 = \cos (14x - 7)$,

$$y_5 = \sqrt{2 - \sin^2 x};$$

r)
$$y_1 = 2$$
, $y_2 = x^2$, $y_3 = 2 \sin x$, $y_4 = \cos x^2$, $y_5 = \frac{\sin 2x}{\cos 2x}$,

$$y_6 = \sin(\cos x), y_7 = \cos^2 x.$$

- •16.75. а) Функция y = g(x) четная и определена на всей числовой прямой, а f(x) = g(g(x) + 3) + g(8 + 2g(x)). Вычислите f(2), если известно, что g(2) = -5.
 - б) Функция y = g(x) четная, периодическая с основным периодом T = 2 и определена на всей числовой прямой, а f(x) = g(g(x) + 1) + g(5 + 3g(x)). Вычислите f(3), если известно, что g(3) = -4.
 - в) Функция y = g(x) четная и определена на всей числовой прямой, а f(x) = g(g(x) + 2) + g(14 + 5g(x)). Вычислите f(1), если известно, что g(1) = -3.

- г) Функция y = g(x) четная, определена на всей числовой прямой и периодическая с основным периодом, равным 5, а $f(x) = 2g(13 2x) + \frac{1}{g(x^2 28)}$. Вычислите f(10), если известно, что g(7) = -5.
- **•20.30.** Решите уравнение $9x^2 6x + 6 = (\sqrt{5} \text{tg } 3\pi x)(\sqrt{5} + \text{tg } 3\pi x)$.
- ullet 20.31. a) Сколько целочисленных решений неравенства $\frac{4-x}{x+5} \geqslant 0$ удовлетворяют неравенству $1+\mathrm{ctg}^2\,rac{\pi x}{2} \geqslant 0$?
 - б) Сколько целочисленных решений неравенства $5x+36 \ge x^2$ удовлетворяют неравенству $4x^2+1+{\rm tg}^2\,\frac{\pi x}{6}\,>4x?$
- о21.63. На сколько процентов:
 - а) число $\arccos{(\sin{45^\circ}+\cos{135^\circ})}$ больше числа $\arcsin{\left(\cos{\frac{7\pi}{3}}\right)};$
 - б) число $\arccos{(\sin{30^\circ}+\cos{120^\circ})}$ больше числа $\arcsin{\left(\cos{\frac{9\pi}{3}}\right)};$
 - в) число $\arcsin\left(\cos\frac{9\pi}{4}\right)$ меньше числа

 $\arccos (\sin 30^{\circ} + \cos 120^{\circ});$

- г) число $\arccos{(\sin{60^\circ}+\cos{150^\circ})}$ больше числа $\arcsin{\left(\cos{\frac{13\pi}{6}}\right)}$?
- о21.64. На сколько:
 - a) число ctg (arctg 4) меньше числа tg (arcctg (0,8));
 - б) число tg^2 (arccos (-0,25)) больше числа tg^2 (arccos (-0,5));
 - в) число tg^2 (arccos 0,5) меньше числа ctg^2 (arcsin $\frac{1}{3}$);
 - г) число $\operatorname{ctg}^2(\arcsin{(-0,2)})$ больше числа $\operatorname{tg}^2(\arccos{\frac{1}{3}})$?
- ●21.65. Решите уравнение:

a)
$$2x^3 - x + 4 = 10x^2 + 2\cos(\arccos(0.5x - 3));$$

6)
$$\sin(\arcsin(5x-4)) = \sqrt{10x+16}$$
.

022.69. Сколько корней имеет данное уравнение на данном $\mathbf{n}_{\mathbf{p_0}}$ межутке:

a)
$$2 + \operatorname{ctg}^2 x = (\sin x)^{-2} + \cos 4x, \ x \in \left(-\pi; \ \frac{3\pi}{2}\right];$$

6)
$$tg^2 x = (\cos x)^{-2} + \sin 3x$$
, $x \in (-0.5\pi; 2\pi]$?

●23.43. Решите уравнение:

- a) $|\sin x|(\cos x + 2\sin x) = 2 2\cos^2 x;$
- 6) $|\cos x| (2\cos x 3\sin x) = 2$.
- ●23.44. Решите уравнение:

a)
$$\frac{2\cos^2 x + 5|\cos x| - 3}{2\sin x + \sqrt{3}} = 0$$
; 6) $\frac{2\sin^2 x + |\sin x| - 1}{4\cos^2 x - 3} = 0$.

- **©23.45.** Решите уравнение $\cos^2 3x 2 \cos 2x \cos 3x + 1 = 0$.
- 024.53. Найдите значение выражения:
 - a) $((1 + \cos 44^{\circ} \cos 1^{\circ} \sin 44^{\circ} \sin 1^{\circ})^2 1,5)^2$;
 - 6) $((1 + \sin 57^{\circ} \cos 3^{\circ} + \cos 57^{\circ} \sin 3^{\circ})^{2} 1,75)^{2};$
 - B) $((2 + \sin 41^{\circ} \cos 4^{\circ} + \cos 41^{\circ} \sin 4^{\circ})^2 4.5)^2$;
 - r) $((2 + \cos 25^{\circ} \cos 5^{\circ} \sin 25^{\circ} \sin 5^{\circ})^2 4,75)^2$.
- **027.73.** Сколько корней имеет данное уравнение на данном промежутке:
 - a) $2\cos^2 x \sin 2x = (\cos x \sin x)^2$, $(-0.5\pi; 3\pi)$;
 - 6) $6\cos^2 x + \sin 2x = (\cos x + \sin x)^2 + 2, (-\pi; 3,5\pi)$?
- **028.39**. Во сколько раз:
 - а) число $(\sin 70^{\circ} + \sin 50^{\circ})^{2}$ больше числа $\sin^{2} 80^{\circ}$;
 - б) число $(\cos 65^{\circ} + \sin 65^{\circ})^{2}$ больше числа $\sin^{2} 50^{\circ}$;
 - в) число $(\cos 50^{\circ} + \cos 40^{\circ})^2$ больше числа $\sin^2 85^{\circ}$;
 - г) число $(tg 57^{\circ} + tg 3^{\circ})^2$ больше числа $(cos 54^{\circ} + 0.5)^{-2}$?
- ullet 30.27. Сколько целых чисел содержится в области значений функции $y = \left(\sin x + \sqrt{3}\cos x\right)^2 + \sin\left(x + \frac{\pi}{3}\right) + 3?$
- •30.28. Решите уравнение $\cos x \sin x \cos 4x = \sqrt{2}$.
- O40.17. а) Прямая, проходящая через начало координат, является касательной к графику функции y = f(x) в точке A(2; -4,5). Вычислите f'(2).
 - б) Прямая, проходящая через точку A(1; 1), является касательной к графику функции y = f(x) в точке B(3; 4). Вычислите f'(3).

- **45.16.** Решите уравнение $\sqrt{x}(4x^3 + 3x^2 6x + 2,75 \sin \pi x) = 0$.
- •46.65. Сколько натуральных чисел принадлежит области значений функции $y = \sqrt{(x^3 x^2)^3} + \sqrt{x^2 6x + 9}, \ x \in [0; 5]$?
- •46.66. а) Найдите наибольшее и наименьшее значения функции $y = \left| \sqrt{2-x^2} 2 \right| + \sqrt{2-x^2} 2 + 2x x^2.$
 - б) Найдите область значений функции

$$y = \left| \sqrt{8 + 2x - x^2} - 4 \right| + \sqrt{8 + 2x - x^2} + x^3 - 3x^2 - 9x.$$

ОТВЕТЫ

Повторение

П.1. а) 1,35; б)
$$\frac{16}{17}$$
; в) $\frac{24}{25}$; г) $-\frac{1}{19}$. П.2. а) $\frac{3x-1}{x}$; б) $\frac{5x-4}{x}$; в) $\frac{2x-1}{x+4}$; г) $\frac{2x-1}{x-3}$. П.3. а) $y=x-5$, x — любое число; б) $y=t-2$, $t\neq\pm2$; в) $y=p-4$, $p\neq\pm\sqrt{5}$; г) $y=m-2$, $m\neq2$. П.4. а) $y=\frac{1}{14}$; $x\neq3$; б) $y=-\frac{3}{4}$; $x\neq3$; в) $y=\frac{4}{15}$; $x\neq2$; г) $y=-1\frac{1}{6}$; $x\neq-1$. П.5. а) $y=x+2$, $x\neq2$, $x\neq-5$; б) $y=x+4$, $x\neq2$, $x\neq4$; в) $y=x+3$, $x\neq3$, $x\neq4$; г) $y=x-2$, $x\neq-2$, $x\neq-1$. П.6. а) $x=\frac{3}{y-4}+2$; б) $x=1-\frac{4}{y+2}$; в) $x=\frac{7}{y+1}-3$; г) $x=3-\frac{2}{y-5}$. П.7. а) $2(5-b)$; б) $m+2$; в) $5(a+1)$; г) $3+x$. П.8. а) $\frac{2}{m+2}$; б) $\frac{1}{2-b}$; в) $\frac{1}{a+2}$; г) $\frac{1}{b-2}$. П.11. а) $\frac{x}{x-3}$; б) $\frac{3}{x-4}$; в) $\frac{3}{x-3}$; г) $\frac{x}{x+3}$. П.12. а) $\frac{x-1}{3x^2}$; -10 ; б) $\frac{m(m-3n)}{m-n}$; $\frac{13}{25}$. П.13. -1. П.14. а) $\frac{\sqrt{10}}{3}$; б) $\frac{2\sqrt{14}}{3}$; в) $3\sqrt{15}$; г) $-\frac{3\sqrt{21}}{2}$. П.15. а) 7; б) 12; в) 12; г) 4,4. П.16. а) 1; б) 1; в) $2\sqrt{17}$; г) $\sqrt{2}$. П.18. а) $A < B$; б) $A < B$. П.19. а) Ни при каких; б) 9. П.20. а) $-\frac{1}{3\sqrt{y}+4\sqrt{x}}$; б) $14m-13\sqrt{n}$; в) $\frac{x\sqrt{x}+27}{x-9}$; г) $\frac{a\sqrt{a}-8b\sqrt{b}}{a-4b}$. П.21. а) $\frac{p\sqrt{p}+q\sqrt{q}}{p-q}$; б) $\frac{8-t\sqrt{t}}{4-t}$; в) $\frac{x\sqrt{x}+27}{x-9}$; г) $\frac{a\sqrt{a}-8b\sqrt{b}}{a-4b}$. П.22. а) $\frac{3}{4\sqrt{x}}$; б) $3\frac{1}{3}$; в) 1; г) $\frac{\sqrt{c}-\sqrt{d}}{\sqrt{c}}$. П.23. а) $2b(a-b)$; б) a ; в) $1-m$; г) $1-m$

г) $-\frac{1}{3}$ · П.26. a) 20; б) 2; в) -10; г) -88. П.27. При m=1. П.28. 1 < a < 2.

П.29. $a = \pm \frac{1}{2}$. П.30. a) x > -1.5; б) $x \le 5$; в) $x \le 1$; г) x < -2. П.31. a) x < -4; x > 2.5; б) $-2.5 < x \le 3$; в) $x \le -1\frac{1}{3}$; x > 1; г) $x < \frac{3}{4}$; x > 2. П.32. a) x — любое число; б) $3 \le x \le 9$; в) $x \le -9$; $x \ge 4$; г) таких x нет. П.33. a) $x \le -2$; x > 2; б) x < 1.5; x > 4; в) x < -3; -0.5 < x < 0.5; x > 2; г) x < 1; $1 < x \le 3$; x > 5. П.34. a) $0 \le x < 1$; x > 2; б) x < 0; $1\frac{3}{5} < x < 2$; x > 4; в) x < -3; -2 < x < 0; г) x < 1; x > 2. П.35. При a < 0 и a > 1. П.36. a > 3; таких значений нет. П.37. a) x > 16; б) $-0.2 \le x < 2.5$; в) x > 6.2; г) $-4.25 \le x \le 4.75$.

§ 1

1.3. 112, 113, 114, ..., 147. Наименьшее 112, наибольшее 963. 1.14. а) 1; 2; 4; 6) 8; в) 1; 2; 3; 4; 6; 12; г) 6; 7; 28; 51. 1.15. а) 2; 3; 4; 6; 12. б) 1; 2; 3; 6. 1.17. а) 2; (1; 1); б) 114; (1; 1). 1.18. а) Да; б) да. 1.19. а) 1; 2; 4; б) 0,5; 1; 1,5; 3. 1.20. а) 0,5 и 1; б) таких значений нет. 1.21. а) 0; 3; 5; б) -1; 3. 1.23. а) 1; б) 1; в) 5; г) 6. 1.24. а) Да, например 6 и 2; б) да, например 2 и 1. 1.35. а) 8; б) 24; в) 18; г) 16. 1.36. а) 8; б) 18; в) 38; г) 98. 1.37. а) 2; б) 4; в) 9; г) 24. 1.38. а) Двумя; б) четырьмя; в) девятью; г) двадцатью четырьмя. 1.39. а) 23! + 2 делится на 2, 23! + 3 делится на 3; 23! + 4 делится на 4, ..., 23! + 23 делится на 23; б) 101! + 2 делится на 2, 101! + 3 делится на 3; 101! + 4 делится на 4, ..., 101! + 101 делится на 101; в) 22, 100; г) 1000001! + 2; 1000001! + 3; 1000001! + 2; ...; 1000001! + 1000001. 1.41. p = 3; q = 2. 1.42. а) p = 11; q = 5; б) p = 11; q = 3 или

$$p = 5; q = 17. \ 1.56. \ a)$$
 $\begin{cases} x = 1 + 2k; \\ y = 8 - k; \end{cases}$ $k \in \mathbb{Z}; \ 6)$ $\begin{cases} x = 4 + k; \\ y = 6k - 1; \end{cases}$ $k \in \mathbb{Z};$

B)
$$\begin{cases} x = 17 - 4k; \\ y = 1 + 7k; \end{cases} k \in \mathbb{Z}; \ r) \begin{cases} x = 6 + 7k; \\ y = 1 + 5k; \end{cases} k \in \mathbb{Z}. \ 1.57. \ a) \ (1; \ 15); \ (-1; \ -15);$$

(15; 1); (-15; -1); (3; 5); (-3; -5); (5; 3); (-5; -3); б) (1; 3); (-1; -3); (1; -3); (-1; 3); в) (1; 1); (-1; -1); г) решений нет. 1.58. а) 12; б) 48; в) 35; г) 180.

2.6. a)
$$\frac{1}{2}$$
; 6) $\frac{1}{4}$; B) 1; r) $\frac{2}{5}$. **2.11.** a) 3; 6) 7; B) 1; r) 6. **2.13.** a) $\frac{4}{11}$;

6)
$$12\frac{1}{1665}$$
; B) $-1\frac{7}{30}$; r) $-\frac{137}{11100}$. 2.17. a) 0,(6); 6) 1,8(6); B) 1,(3); r) 2,08(3).

3.4. а); б); в); г) Иррациональным. 3.6. а); б); г) — числа рациональные; в) — число иррациональное. 3.7. а) $\sqrt{7}-3$ и $1-\sqrt{7}$; б) $\sqrt{7}-3$ и $1+\sqrt{7}$; в) $\sqrt{7}-3$ и $\sqrt{7}+3$; г) $\sqrt{2}$ и $5\sqrt{2}$. 3.8. а) Нет таких чисел; б) $\sqrt{7}$ и $\sqrt{28}$. 3.9. а) $x^2-2=0$; б) $x^2+10x-22=0$; в) $3x^2+12x-3=0$; г) составить такое уравнение невозможно. 3.10. а) Например, $\alpha=2+\sqrt{3}$; $\beta=4\sqrt{3}$; б) например, $\alpha=3-\sqrt{2}$; $\beta=4\sqrt{2}$. 3.11. а) Сущестует, например, при $\alpha=2+\sqrt{3}$ число $\alpha=3$ 0; г) существует, например, при $\alpha=3$ 1. число $\alpha=3$ 2; $\alpha=3$ 3.13. а) 1,5; б) 1; в) 2; г) 3,99. 3.14. а) $\sqrt{0,7}$; б); в); г) $\sqrt{1,44001}$. 3.15. а) 1,6; б) 0,49. 3.16. а) $\sqrt{1,7}$; б) $\sqrt{3}-1,4$. 3.17. а); б) Единственная точка $\alpha=3$ 3.18. а) $\alpha=3$ 4. а) $\alpha=3$ 5. а) Такой треугольник существует, так как $\alpha=3$ 5. 4.

§ 4

4.5. a), б) Не существует. 4.12. a) 1; б) 1; в) 1; г) 6. 4.13. a) 0; б) 0; в) 0; г) 5. 4.14. a) $3 \le b < 4$; б) $3 < b \le 4$; в) 0 < b < 1; г) таких b не существует. 4.15. a) [-20; 12]; б) (17; 22). 4.16. a) a > 2.5; б) $\frac{1-\sqrt{7}}{6} < a < 1$; a > 1.

4.17. а)
$$\left(-1-\frac{\sqrt{6}}{3}; -1+\frac{\sqrt{6}}{3}\right); a>2,5; 6)$$
 $\left(-\frac{11}{6}; 0\right); a>1$. 4.18. $3\leqslant p\leqslant 4$. 4.22. а) $n\geqslant 2$; 6) $n\geqslant 11$; в) $n\geqslant 10$ 001; г) $n\geqslant 307$. 4.25. а) $1\leqslant x<2$; 6) $-11\leqslant x<-10$; в) $-1\leqslant x<0$; г) $11\leqslant x<12$. 4.26. а) x — любое целое число; 6) -2 ; в) 0; г) -3 . 4.31. а) $x=k+0,123$, где k принимает любые целочисленные значения; 6) 999,123. 4.34. а) [1; 33]; 6) [-6,25; 0]; в) $[-320; 0];$ г) $\left[-1; \frac{7}{13}\right]$.

§ 5

5.3. a) $x \ge 0$; б) $x \ge 7$; в) $x \le 0$; г) $3 \le x \le 4$. 5.10. a) $4 - \pi$; б) 1; в) $7 - 2\pi$; г) $5,3 - 2\sqrt{7}$. 5.11. a) 4; б) 8; в) 21; г) 66. 5.13. a) 1; -9; б) 7; в) 19; -11; г) -1; $\frac{2}{3}$. 5.14. a); б) Решений нет; в) 4; г) -4. 5.15. a) 4; б) 2; в) 0; 7; 1; г) 2; -1. 5.16. a) x > 4; б) $x \ge 2$; в) 1 < x < 7; г) -1 $\le x \le 2$. 5.17. a) x < 3; б) $(-\infty; 1) \cup (1 + \sqrt{6}; +\infty)$; в) $\left(-\infty; -\frac{5}{6}\right] \cup [1; +\infty)$;

 $_{\Gamma}$ ($-\infty$; 1] \cup [2; $+\infty$). 5.18. a) 3 или 9; б) 9 или 23. 5.19. a) 0,5; 1,5; б) 1; 2. 5.20. a) 9 или 23; б) 9 или 23. 5.21. a) 0 или 1; б) $\left(\frac{2\sqrt{29}}{29}; 1\right)$. 5.25. a) 2; б) 7; в) -7; г) 0.

§ 6

6.2. а)
$$\frac{(n+13)n}{2}$$
; б) $\frac{(9n-5)n}{2}$; в) $0,025n(33+n)$; г) $\frac{(n+2)n}{18}$. 6.3. а) $-k$ при $n=2k$; k при $n=2k-1$; б) $k(2k+1)$ при $n=2k$; $k(1-2k)$ при $n=2k-1$; в) $\frac{n(n+1)}{2}$ при $n=2k$; $\frac{n(n+1)}{2}-1$ при $n=2k-1$; г) $-2k(k+1)$ при $n=2k$; $2k^2$ при $n=2k-1$. 6.10. а) $\frac{29}{596}$; б) $\frac{292}{447}$. 6.16. а); б) Первое равенство неверно уже для $n=1$. Второе равенство верно для $n=1$, но не для всех k из $A(k)$ следует $A(k+1)$. Таким образом, равенство неверно. Третье равенство верно.

7.9. a)
$$S(x) = \frac{(4-x)x}{2}$$
, $0 \le x \le 2$; 6) $S(x) = \begin{cases} 5(x+4), & -4 \le x \le 2; \\ 2x+26, & 2 < x \le 8. \end{cases}$

7.11. а)
$$y=\pm\sqrt{\frac{2x+12}{3}}; \ x=\frac{3y^2-12}{2};$$
 уравнение задает функцию вида $x=\varphi(y)$ и не задает функцию вида $y=f(x);$ б) $y=x$ или $y=-x-1; \ x=y$ или $x=-y-1$ при $x\neq 3, -4, \ y\neq 3, -4.$ 7.21. а) $[-1;\ 7];$ б) $(-\infty;\ -1]\cup(1;+\infty);$ В) $(0;\ 1];\ r)$ $[-1,5;\ 11].$ 7.22. а) $D(f)=[-3;\ 2],\ E(f)=[1;\ 5];$ б) $D(f)=[-3;\ 2],\ E(f)=[0;\ 9].$ 7.24. а) $[12;+\infty);$ б) $[-8;\ 1];$ в) $[-12;-1)\cup(-1;\ 1)\cup(1;+\infty);$ г) $[-3;\ 1].$ 7.25. а) $3x+2;$ б) $-3x-13;$ в) $5;$ г) $f(f(x))=9x-4.$ 7.26. а) $4x^2;$ б) $(x-5)^2;$ в) $81;$ г) $x^4.$ 7.27. а) $\frac{2x+3}{1-2x};$ б) $\frac{6x-1}{2x-3};$ в) $f(f(5))=5\frac{2}{11};$ г) $\frac{11x+2}{x+6}.$ 7.29. а) Если $a>1$, то $[a;+\infty);$ если $a=1$, то $[a;+\infty);$ если $a<-1$, то $[a;-1)\cup(-1;1)\cup(1;+\infty);$ если $a=-1$, то $[a;-1)\cup(-1;1)\cup(1;+\infty);$ б) если $a\leqslant 0$, то $R;$ если $a>0$, то $\left[-\frac{1}{a};\frac{1}{a}\right];$ в) если $a>4$, то $(-\infty;\ 3]\cup(4;+\infty);$ если $a<3$, то $[a;\ 4)\cup(4;+\infty);$ если $a<3$, то $[a;\ 4)\cup(4;+\infty);$ если $a>1$, то $[a;\ 4)\cup(4;+\infty);$ если $a<1$, то $[a;\ 4)\cup(4;+\infty);$ если $[a;\ 4]$ $[a;\ 4]$ $[a;\ 4]$ если $[a;\ 4]$ $[a;\ 4]$ $[a;\ 4]$ если $[a;\ 4]$ $[a;\$

 \cup $(-3; -0.5] \cup (-0.5; 1]; r) <math>(-\infty; -3) \cup (-3; 1].$ 7.31. a) [4; 5]; 6) [-1; 0] \cup [4; 5]; в) [4; 5); г) (-1; 0] \cup (4; 5]. 7.32. a) [-4; 1]; б) [-4; 1]; в) (-4; 1]; г) [-4; -2) \cup (-2; 1]. 7.33. a) [-10; 5]; б) [-10; 5]; в) [-10; 10]; г) [-5; 5]. 7.34. a) [-1; 10]; б) [-13; -2]; в) [-2; 9]; г) [-2; 9]. 7.35. a) $a \le -11;$ 6) $a \ge 4$. 7.36. a) $a \ge 0$; б) $-\frac{4}{3} < a < 0$; в) $a = -\frac{4}{3}$; г) $a < -\frac{4}{3}$. 7.38. a) b = -31; $-3 < b \le -2$; б) b = -29; 5.5 $\le b < 6.5$; в) $(-\infty; -31) \cup (-31; -30) \cup (-30; -29) \cup (-29; -3] \cup [6.5; +\infty)$; г) $(-\infty; -32) \cup (-31; -4] \cup [4.5; +\infty)$. 7.40. a) [0; 25]; 6) [0; 5]; в) [-27; 125]; г) [1; 3]. 7.41. a) [-3; 5]; б) [0; 8]; в) [0; 8]; г) [a - 5; a + 3]. 7.42. a) [-3; 5]; б) [0; 8]; в) [0; 8]; г) [a-5; a + 3]. 7.43. a) 1, 2, 3; б) нет таких значений; в) 2, 3, 4, 5, 6, 7; г) 0, 1, 2, 3, 4, 5. 7.44. a) $(-\infty; +\infty)$; б) $(-\infty; +\infty)$. 7.46. a) При $|a| \ge 2\sqrt{3}$; $E(f) = (-\infty, -2\sqrt{3}] \cup [2\sqrt{3}; +\infty)$; б) при $|a| \le 2$; E(f) = [-2; 2]. 7.47. a) $(-\infty; -4\sqrt{2}] \cup [2\sqrt{3}; +\infty)$; б) при $|a| \le 2$; E(f) = [-2; 2]. 7.47. a) $(-\infty; -4\sqrt{2}] \cup [2\sqrt{3}; +\infty)$; б) при $|a| \le 2$; E(f) = [-2; 2]. 7.47. a) $(-\infty; -4\sqrt{2}] \cup [2\sqrt{3}; +\infty)$; б) $(-\infty; -8] \cup [4; +\infty)$; в) $(-\infty; +\infty)$; г) $(-\infty; +\infty)$.

§ 8

8.4. a)
$$(-\infty; +\infty)$$
; b) $(-\infty; +\infty)$; b) $(-\infty; 0) \cup (0; +\infty)$; r) $(-\infty; -7) \cup$

$$\cup$$
 (-7; 2) \cup (2; +\infty). 8.5. a) $y = \frac{1}{100-x}$; 6) $\sqrt{(100-x)(x-101)}$;

B)
$$y = \sqrt[4]{100 - x}$$
; r) $y = \sqrt{-(100 - x)^2}$. 8.6. a) $y = \frac{1}{(1 - x)(10 - x)}$;

6)
$$y = \frac{\sqrt{1-x^2}}{x}$$
; B) $y = \sqrt{(x-1)(x-2)}$; r) $y = \frac{\sqrt{21-x^2-4x}}{x-2}$.

8.10. a)
$$(-\infty; 1) \cup (1; +\infty)$$
; b) $(-\infty; 1) \cup (1; +\infty)$; b) $(-\infty; -12) \cup (-12; +\infty)$;

$$\text{r)} \left(-\infty; \, \frac{1}{3} \right) \cup \left(\frac{1}{3}; \, +\infty \right) \!\! . \, \, \textbf{8.11. a)} \, [5; \, +\infty); \, \textbf{6)} \, (-\infty; \, 1]; \, \text{b)} \, (-\infty; \, 2]; \, \text{r)} \, [-1; \, +\infty).$$

8.12. a)
$$\{1; 3\}$$
; б) $(-1; +\infty)$; в) $(-\infty; +\infty)$; г) $[0; +\infty)$. **8.13.** a) $\{0; \pm 2; \pm 4\}$; б) $\{0; 2\}$. **8.14.** a) $[3; +\infty)$; б) $(-\infty; 0) \cup (0; +\infty)$; в) $(-\infty; 36]$; г) $(-\infty; 1) \cup (1; +\infty)$.

8.15. a)
$$[-3,25; +\infty)$$
; 6) $\left(-\infty; 13\frac{1}{8}\right]$. **8.16.** a) $[-4; +\infty)$; 6) $(-\infty; +\infty)$.

8.18. а) Убывает на $(-\infty; 0.75]$; возрастает на $[0.75; +\infty)$; б) убывает на $(-\infty; 1]$; в) убывает на $(-\infty; -0.6]$; возрастает на $[-0.6; +\infty)$; г) возрастает на $[-0.6; +\infty)$. 8.21. а) Убывает на $[5; +\infty)$; б) возрастает на $[1.5; +\infty)$; в) убывает на $(-\infty; 2]$; г) убывает на $(-\infty; 0.75]$. 8.23. а) Убывает на $(-\infty; 0]$;

возрастает на $[0; +\infty)$; б) убывает на $(-\infty; 0]$; возрастает на $[0; +\infty)$; в) убыва- $_{eT}$ на $(-\infty; 1,5]$; возрастает на $[1,5; +\infty)$; г) убывает на $(-\infty; 0]$; возрастает на $[0; +\infty)$. 8.24. a) Убывает на $(-\infty; -1]$ и на [0; 1]; возрастает на [-1; 0]и на $[1; +\infty)$; б) убывает на $(-\infty; -3]$ и на [0; 3]; возрастает на [-3; 0] и на [3; +∞); в) убывает на $(-\infty; -2]$ и на [1,5; 5]; возрастает на [-2; 1,5] и на [5; + ∞); г) убывает на (- ∞ ; -4] и на [0,5; 5]; возрастает на [-4; 0,5] и на [5; + ∞). 8.27. а) Возрастает на (- ∞ ; 0]; убывает на [0; + ∞); б) возрастает на ($-\infty$; -3]; убывает на [-3; $+\infty$); в) возрастает на ($-\infty$; -1) и на (-1; 0]; убывает на [0; 1) и на $(1; +\infty)$; г) возрастает на $(-\infty; -2)$ и на (-2; 2]; убывает на [2; 6) и на (6; $+\infty$). 8.28. а) Возрастает на [-3; -1] и на [0; 2]; убывает на [-1; 0] и на [2; 3]; б) возрастает на [-2; -1] и на [1; 3]; убывает на [-1; 1];в) постоянна на [-3; -1); возрастает на [-1; 0) и на (0; 1]; убывает на [1; 2)и на (2; 3]; г) убывает на [-3; -2), (-2; -1], [1; 2) и (2; 3]; возрастает на [-1; 0) и на (0; 1]. 8.29. a) -0,5; 1; б) $(-\infty; -0,5) \cup (1; +\infty)$; в) -8; 6;

r) [-8; 6]. 8.30. a) -2; 6) [-
$$\infty$$
; -2,5) \cup $\left(-2\frac{1}{3}; -2\right] \cup (1; + ∞). 8.31. a) -0,5;$

6)
$$\left(\frac{-1-\sqrt{17}}{8}; -0.5\right)$$
. 8.32. a) -0.5; 6) $\left(-0.5; -\frac{1}{3}\right]$. 8.34. a) 1; 6) 2; b) 3;

r) 1. 8.35. a) 9; 6)
$$\frac{1}{4}$$
; B) 4; r) 0. 8.38. a) $y = \begin{cases} -\frac{4}{3}x - 3, -3 \le x < 0; \\ -\frac{4}{3}x + 2, 0 < x \le 3; \end{cases}$

6)
$$y = \begin{cases} \frac{5}{9}(x-1)^2 - 2, -2 < x < 1; \\ \frac{5}{9}(x-1)^2 - 2, 1 < x < 4. \end{cases}$$
 8.43. a) $y_{\text{Half}} = -73, y_{\text{Half}} = -148;$

б) наибольшего значения нет; $y_{\text{наим}} = y(0) = -100$; в) наибольшего значения нет; $y_{\text{наим}} = y(4) = -148$; г) наибольшего значения нет; $y_{\text{наим}} = y(4) = -148$. 8.44. а) $y_{\text{наиб}} = 13$; $y_{\text{наим}} = -51$; б) $y_{\text{наиб}} = 19$; наименьшего значения нет; в) $y_{\text{наиб}} = 21$; наименьшего значения нет; г) $y_{\text{наиб}} = y(-3) = 21$; наимень-

шего значения нет. 8.45. а) 2; б) 2; в) $\frac{1}{2}$; г) 2. 8.46. а) $y_{\text{наиб}} = 1$; $y_{\text{наим}} = -1$;

б)
$$y_{\text{наиб}} = 0.5$$
; $y_{\text{наим}} = -0.5$; в) $y_{\text{наиб}} = 2.5$; $y_{\text{наим}} = -2.5$; г) $y_{\text{наиб}} = 3.5$; $y_{\text{наим}} = -3.5$.

8.47. а) 2; б) 4; в) 4; г) если
$$n$$
 – четное число, то $y_{\text{наим}} = \frac{n(n+2)}{4}$; если n —

нечетное число, то $y_{\text{наим}} = \frac{(n+1)^2}{4}$. 8.48. a) $y_{\text{наиб}} = y(1) = 5(a+1)$; $y_{\text{наим}} =$ $y_{\text{наи6}}=y(-1)=5a-3;$ б) $y_{\text{наи6}}=y(2)=4-a;$ $y_{\text{наим}}=y(-1)=-5-a.$ 8.49. а) Если $-1< a\leqslant 2$, то $y_{\text{наи6}}=y(-1)=5,$ $y_{\text{наим}}=y(a)=a^2-4a;$ если $2 < a \leqslant 5$, то $y_{\text{наиб}} = y(-1) = 5$, $y_{\text{наим}} = y(2) = -4$; если a > 5, то $y_{\text{наиб}} = y(a) = a^2 - 4a$, $y_{\text{наим}} = y(2) = -4$; б) если $1 \leqslant a < 3$, то $y_{\text{наиб}} = y(a) = -a^2 + 2a - 3$, $y_{\text{наим}} = y(3) = -6$; если $-1 \leqslant a < 1$, то $y_{\text{наиб}} = y(1) = -2$, $y_{\text{нагм}} = y(-1) = -6$; если a < -1, то $y_{\text{наиб}} = y(1) = -2$, $y_{\text{нагм}} = y(a) = -a^2 + 2a - 3$. 8.50. a) 3; б) -2. 8.52. а) 0; б) 1; в) 0; г) корней нет.

9.5. a) 7; 11; 13; 0; 6) 0; 0; 0; B) 11; 11; 7; Γ) 0; 0. **9.6.** a) f(1) > f(31). 6) f(11) > f(110); B) f(-17) = f(831); P) $f(6 + \sqrt[3]{3}) = f(\sqrt[3]{3} - 6)$. 9.7. a) Π_{8} . б) нет; в) нет; г) да. 9.17. а) — г) Нет. 9.18. а) — в) Нет; г) да. 9.19. а) в) Да; г) нет. 9.20. а) Да; б) нет; в) нет; г) да. 9.21. а) 1; 1; 1; б) 0,5: 0,5; 0,5; 0,5; B) 2; 2; 2; 2; r) $\frac{4}{3}$; $\frac{4}{3}$; $\frac{4}{7}$. 9.22. a) T = 1; T = 3; 6) T = 1; $T=\frac{1}{6}$; в) T=20; T=20; г) T=12; T=4,4. 9.24. а) Нет; б) может, напрымер: $y = \sqrt{1-2\{x\}}$; в) нет; г) может, например: $y = \frac{1}{\{x\}}$. 9.25. а) Нет; б) $y = \{x\} + 6$; в) нет; г) $y = \{x\} + 8$. 9.26. а) Нет; б) может, например: $y = \{-x\}$; в) может, например: $y = \{x\}$; г) может, например: $y = \left\{\frac{3-x}{8}\right\}$. 9.30. а) Наибольшее значение 5; наименьшее -2; б) наибольшее 5; наименьшее -2; в) определить невозможно; г) наибольшее 5; наименьшее -2. 9.31. a) x = 1 + 4k, $k \in \mathbb{Z}$; 6) (1 + 4l; 4 + 4l], $l \in \mathbb{Z}$. 9.32. a) x = -2 + 5k; $x = 5l, k \in \mathbb{Z}; l \in \mathbb{Z}; 6$) $(1 + 5r; 2 + 5r], r \in \mathbb{Z}; B)$ $x = 2 + 5t, t \in \mathbb{Z}; \Gamma$) $(-2 + 5n; 5n), r \in \mathbb{Z}; C$ $n \in \mathbb{Z}$. 9.33. a) $x = 4k, k \in \mathbb{Z}$; 6) $x \in \mathbb{R}$; B) $x = -3 + 2n, n \in \mathbb{Z}$; г) (-3+4l;-1+4l), $l\in \mathbb{Z}.$ 9.34. а) Существует, например: $f(x)=3+\sqrt{x}-\sqrt{x};$ б) существует, например: $f(x) = 3 + \sqrt{-x} - \sqrt{-x}$. 9.35. а) Существует, на-

§ 10

пример: f(x) = 1; б) нет.

10.7. а) Да; б) да; в) нет; г) нет. 10.9. а)
$$y = \frac{3+x}{x}$$
; б) $y = \frac{7+5x}{2x-1}$; в) $y = -\frac{2+4x}{x}$; г) $y = \frac{3x+1}{2-x}$. 10.10. а) Да; б) нет; в) да; г) да. 10.11. а) Да; б) нет; в) да; г) нет. 10.12. а) $y = \begin{cases} 0.5x, \text{ если } x \leq 0, \\ \frac{1}{3}x, \text{ если } x > 0; \end{cases}$ б) $y = \begin{cases} -\frac{x-1}{3}, \text{ если } x < 2, \\ -\frac{x+3}{5}, \text{ если } x \geq 2; \end{cases}$ в) $y = \begin{cases} \frac{1}{3}x, \text{ если } x \leq 0, \\ -x, \text{ если } x > 0; \end{cases}$

г)
$$y = \begin{cases} 0.5(x-1), \text{ если } x \leq 5, \\ 2x-8, \text{ если } x \geq 5. \end{cases}$$
 10.13. a) $y = x^2 - 3, x \geq 0$; б) $y = 2 - x^2$,

 $x \le 0$; в) $y = \frac{x^2 + 1}{2}$, $x \ge 0$; г) $y = \frac{3 - x^2}{5}$, $x \le 0$. 10.14. а) Может; б) не может; в) может; г) может. 10.15. а) — г) Да. 10.16. а) Нет, не может (если область ее определения не состоит из одного нуля); б) может; в) не может; г) может. 10.17. а) Да, может; б) может; в) не может; г) может. 10.19. а) Нет; б) $y = \sqrt{x}$; в) нет; г) $y = -\sqrt{x}$. 10.20. а) Нет; б) $y = \sqrt{x + 2}$; D(f) = [-1; 2); E(f) = [1; 2); в) нет; г) $y = -\sqrt{x} + 2$; D(f) = [-2; 4]; E(f) = [-2; 0]. 10.21. а) Нет; б) $y = \sqrt{x + 2} - 3$; $D(f) = [-2; +\infty)$; $E(f) = [-3; +\infty)$;

B)
$$y = -\sqrt{x+2} - 3$$
; $D(f) = [-2; +\infty)$; $E(f) = (-\infty; -3]$; r) Her. 10.23. a) $y = \frac{x+5}{2}$,

y = x + 6, на **R** обратной функции нет; б) y = 5 - x, $y = \frac{7 - x}{2}$,

$$y=\begin{cases} \dfrac{7-x}{2}, \ \text{если} \ x<3; \\ 5-x, \ \text{если} \ x\geqslant 3; \end{cases}$$
 в) $y=\dfrac{x-5}{3}, \ y=\sqrt{x}, \ \text{на} \ \emph{\textbf{R}}$ обратной фукнции

нет; г)
$$y = 3 - x$$
, $y = \frac{2 - x}{7}$, $y = \begin{cases} \frac{2 - x}{7}, & \text{если } x < 2; \\ 3 - x, & \text{если } x \geqslant 3. \end{cases}$ 10.25. a) $f(x) = 7;$

x=1 и g(x)=3; x=5; б) $f(x^2)=25;$ корни: -3; 3 и $g(x^2)=4;$ корни: -2; 2;

B)
$$f(t) = -7$$
; $t = 1$ u $g(t) = 15$; $t = -3$; r) $f(3x) = 7$; $x = \frac{1}{3}$ u $g(5 - x) = 7$;

$$x=0.$$
 10.33. a) Да; б) нет. 10.34. a) $y=\begin{cases} \frac{x}{2}, \text{ если } x\leqslant 0, \\ \frac{x}{4}, \text{ если } x\geqslant 0; \end{cases}$ б) нет;

в)
$$y = \begin{cases} -\frac{x}{3}, \text{ если } x \leqslant 0, \\ -\frac{x}{7}, \text{ если } x > 0; \end{cases}$$
 г) нет. 10.35. а) $y = \begin{cases} -\sqrt{-x}, \text{ если } x \leqslant 0, \\ \sqrt{x}, \text{ если } x > 0; \end{cases}$ б) нет;

в)
$$y = \begin{cases} -\sqrt{2-x}, \text{ если } x \leq 2, \\ -\sqrt{x-2}, \text{ если } x > 2; \end{cases}$$
 г) нет.

§ 11

11.11. a) IV; б) II; в) III; г) I. 11.12. a) III; б) II; в) IV; г) IV. 11.13. a) 6; б) 8; в) 3; г) 5. 11.18. a) πn ; б) $\frac{\pi}{2} + \pi n$; в) $\frac{\pi}{4} + \pi n$; г) $-\frac{\pi}{4} + \pi n$.

11.19. a)
$$\frac{\pi}{4} + \frac{\pi n}{2}$$
; 6) $\frac{\pi n}{4}$. 11.20. a) $\frac{\pi}{6} + \pi n$; 6) $-\frac{\pi}{3} + \pi n$; B) $\pm \frac{2\pi}{3} + 2\pi n$; r) $\pm \frac{\pi}{6} + 2\pi n$. 11.21. a) $\frac{2\pi n}{3}$; 6) $\frac{\pi}{2} + \frac{2\pi n}{3}$; B) $\pm \frac{\pi}{6} + \pi n$; r) $\frac{\pi n}{3}$. 11.22. a) $2\pi n < t < \frac{\pi}{2} + 2\pi n$; 6) $\pi n < t < \frac{\pi}{2} + \pi n$; B) $\frac{\pi}{2} + 2\pi n < t < \frac{3\pi}{2} + 2\pi n$; r) $-\frac{\pi}{2} + \pi n < t < \pi n$. 11.23. a) $\frac{\pi}{4} + 2\pi n < t < \frac{3\pi}{4} + 2\pi n$; 6) $-\frac{5\pi}{4} + 2\pi n < t < \frac{\pi}{4} + 2\pi n$; B) $\frac{\pi}{2} + 2\pi n < t < \frac{\pi}{4} + 2\pi n$; r) $-\frac{3\pi}{4} + 2\pi n < t < \frac{\pi}{2} + 2\pi n$. 11.24. a) $-\frac{\pi}{4} + \pi n < t < \pi n$; 6) $\pi n < t < \frac{3\pi}{4} + \pi n$; B) $\frac{\pi}{4} + \pi n < t < \frac{3\pi}{4} + \pi n$; r) $\frac{\pi n}{2} < t < \frac{\pi}{4} + \frac{\pi n}{2}$. 11.25. a) $\frac{\pi}{6} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n$; 6) $2\pi n < t < \frac{5\pi}{6} + 2\pi n$; r) $\frac{\pi n}{2} < t < \frac{\pi}{4} + \frac{\pi n}{2}$. 11.25. a) $\frac{\pi}{6} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n$; 6) $2\pi n < t < \frac{5\pi}{6} + 2\pi n$; 11.26. a) $-\frac{\pi}{3} + 2\pi n < t < \frac{\pi}{3} + 2\pi n$; r) $-\frac{\pi}{2} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$; e) $-\frac{5\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$; f) $-\frac{5\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$; f) $-\frac{5\pi}{6} + 2\pi n < t < 2\pi n$; f) $-\frac{5\pi}{6} + 2\pi n < t < 2\pi n$; f) $-\frac{5\pi}{6} + 2\pi n < t < 2\pi n$; f) $-\frac{5\pi}{6} + 2\pi n < t < 2\pi n$; f) $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$; f) $-\frac{\pi}{6} + 2\pi n$ 11.29. a) πn ; f) $-\frac{5\pi}{6} + 2\pi n$; f) $-\frac{\pi}{6} + 2\pi n$; f)

r) $-2\frac{2}{2}$, $-1\frac{1}{6}$, $\frac{1}{2}$, $1\frac{5}{6}$, $3\frac{1}{2}$, $4\frac{5}{6}$;

12.6. a)
$$\frac{\pi}{3}$$
, $\frac{7\pi}{3}$; 6) $\frac{3\pi}{4}$, $\frac{11\pi}{4}$; B) $\frac{7\pi}{6}$; r) $-\frac{\pi}{4}$, $\frac{7\pi}{4}$. 12.8. a) $x < 0$, $y > 0$; 6) $x < 0$, $y > 0$; B) $x < 0$, $y < 0$; r) $x > 0$, $y > 0$. 12.9. a) $x > 0$, $y < 0$; 6) $x < 0$, $y < 0$; B) $x > 0$, $y < 0$; r) $x > 0$, $y < 0$. 12.10. a) $x < y$; 6) $x < y$; B) $x > y$; r) $x < y$. 12.11. a) $|x| > |y|$; 6) $|x| < |y|$; B) $|x| > |y|$; r) $|x| < |y|$. 12.20. a) $\frac{\pi}{4} + \pi n$; 6) $-\frac{\pi}{3} + \pi n$; B) $-\frac{\pi}{4} + \pi n$; r) $\frac{\pi}{6} + \pi n$. 12.21. a) $-\frac{\pi}{2} + 2\pi n < 0$. $|x| < \frac{\pi}{2} + 2\pi n$; 6) $|x| < \frac{\pi}{3} + 2\pi n < 0$.

11.34. a) -3, -2, -1, 0, 1, 2, 3, 4, 5, 6; 6) -1, 5; 0, 5; 2, 5; 4, 5; 8) -3, -1, 1, 3, 5.

$$\begin{array}{l} \frac{\pi}{2} + 2\pi n < t < \frac{3\pi}{2} + 2\pi n. \ 12.22. \ a) - \frac{5\pi}{6} + 2\pi n < t < \frac{5\pi}{6} + 2\pi n; \ 6) \ \frac{\pi}{4} + \\ + 2\pi n < t < \frac{7\pi}{4} + 2\pi n; \ B) \ \frac{3\pi}{4} + 2\pi n < t < \frac{5\pi}{4} + 2\pi n; \ r) - \frac{2\pi}{3} + 2\pi n < t < \\ < \frac{2\pi}{3} + 2\pi n. \ 12.23. \ a) \ 2\pi n < t < \pi + 2\pi n; \ 6) - \frac{7\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n; \\ B) \ \frac{\pi}{6} + 2\pi n < t < \frac{5\pi}{6} + 2\pi n; \ r) - \pi + 2\pi n < t < 2\pi n. \ 12.24. \ a) - \frac{\pi}{3} + 2\pi n < \\ < t < \frac{4\pi}{3} + 2\pi n; \ 6) - \frac{5\pi}{4} + 2\pi n < t < \frac{\pi}{4} + 2\pi n; \ B) \ \frac{5\pi}{4} + 2\pi n < t < \frac{7\pi}{4} + 2\pi n; \\ r) - \frac{\pi}{6} + 2\pi n < t < \frac{7\pi}{6} + 2\pi n. \ 12.25. \ a) - \frac{\pi}{2} + 2\pi n < t < 2\pi n; \ 6) \ \frac{\pi}{2} + 2\pi n < \\ < t < \frac{7\pi}{6} + 2\pi n; \ B) \ \frac{\pi}{6} + 2\pi n < t < \frac{3\pi}{4} + 2\pi n; \ r) \ \frac{2\pi}{3} + 2\pi n < t < \frac{5\pi}{3} + 2\pi n. \\ 12.26. \ a) - \frac{3\pi}{4} + 2\pi n < t < \frac{\pi}{4} + 2\pi n; \ 6) \ 2\pi n < t < \frac{\pi}{2} + 2\pi n; \ \pi + 2\pi n < t < \\ < \frac{3\pi}{2} + 2\pi n; \ B) \ \frac{3\pi}{4} + 2\pi n < t < \frac{\pi}{4} + 2\pi n; \ f) \ \frac{\pi}{2} + 2\pi n < t < \pi + 2\pi n; \ -\frac{\pi}{2} + 2\pi n < t < \pi + 2\pi n; \ c) \\ < \frac{3\pi}{2} + 2\pi n; \ B) \ \frac{3\pi}{4} + 2\pi n < t < \frac{7\pi}{4} + 2\pi n; \ r) \ \frac{\pi}{2} + 2\pi n < t < \pi + 2\pi n; \ -\frac{\pi}{2} + 2\pi n < t < \pi + 2\pi n; \ r) \\ < t < \pi n < t < 2\pi n < t < \pi + 2\pi n; \ r) \ 2\pi n < t < \pi n < \pi n < \pi n < t < \pi n < t < \pi n < \pi n$$

13.19. а) 3; 5; б) 3; 4; в) $\frac{1}{4}$; $\frac{1}{3}$; г) 1; 2,5. 13.21. а); б); в) Минус; г) плюс. 13.22. а); в); г) Минус; б) плюс. 13.23. а); б); г) Минус; в) плюс. 13.24. а) Минус; б); в); г) плюс. 13.25. а) Плюс; б) минус. 13.26. а) 0; б) 0. 13.31. а) $\frac{\pi}{2} + \pi n$; б) $\pm \frac{\pi}{3} + \pi n$; в) πn ; г) $\frac{\pi}{4} + \frac{\pi n}{2}$. 13.32. а) Да; б) нет; в) да; г) нет. 13.33. а) $x > \frac{1}{2}$; б) x < -2; x > 2. 13.34. а) $x < \frac{1}{3}$; б) -3 < x < 3. 13.35. а) x < 1; б) -6 < x < 6; в) x > 1,4; г) $-\infty < x < +\infty$. 13.36. а) a > b; б) a < b; г) a < b. 13.37. а) a < b; б) a > b; в) a < b; г) a < b.

13.38. a)
$$\sin \frac{4\pi}{3}$$
, $\sin \frac{7\pi}{6}$, $\sin \frac{\pi}{7}$, $\sin \frac{\pi}{5}$, $\sin \frac{2\pi}{3}$; 6) $\cos \frac{5\pi}{6}$, $\cos \frac{\pi}{4}$, $\cos \frac{\pi}{3}$, $\cos \frac{7\pi}{4}$, $\cos \frac{\pi}{8}$. 13.39. a) $\cos 4$, $\sin 3$, $\cos 5$, $\sin 2$; 6) $\cos 3$, $\cos 4$, $\cos 7$, $\cos 6$; B) $\sin 4$, $\sin 6$, $\sin 3$, $\sin 7$; r) $\cos 3$, $\sin 5$, $\sin 4$, $\cos 2$. 13.40. a) $\cos 1$, $\sin 1$, 1, 1; 1; 6) $\cot 2$, $\cos 2$, $\sin 2$, 2. 13.41. a) 0,5; 6) 0,5. 13.42. a) -1 ; 6) 1. 13.43. a) $2\pi n < t < \pi + 2\pi n$; 6) $-\frac{4\pi}{3} + 2\pi n < t < \frac{\pi}{3} + 2\pi n$; B) $-\pi + 2\pi n < t < 2\pi n$; r) $\frac{\pi}{3} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n$. 13.44. a) $-\frac{\pi}{2} + 2\pi n$; b) $-\pi + 2\pi n < t < 2\pi n$; r) $\frac{\pi}{3} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n$. 13.44. a) $-\frac{\pi}{2} + 2\pi n$; r) $-\frac{\pi}{4} + 2\pi n$; d) $-\frac{\pi}{4} + 2\pi n$; d) $-\frac{\pi}{4} + 2\pi n$; e) $-\frac{\pi}{4} + 2\pi n$; e) $-\frac{\pi}{4} + 2\pi n$; f) $-\frac{\pi}{6} + 2\pi n$;

 $\frac{3\pi}{2} + 2\pi n < t < 2\pi + 2\pi n$; r) $t \neq \frac{\pi n}{2}$.

14.17. a)
$$\sin t = -\frac{5}{13}$$
, $\cos t = -\frac{12}{13}$, $\tan t = \frac{5}{12}$; 6) $\sin t = \frac{24}{25}$, $\cos t = \frac{7}{25}$

$$\operatorname{tg} t = \frac{24}{7}$$
; b) $\sin t = -\frac{12}{13}$, $\cos t = \frac{5}{13}$, $\operatorname{tg} t = -\frac{12}{5}$; r) $\sin t = \frac{15}{17}$, $\cos t = -\frac{8}{17}$,

$$tg\ t = -\frac{15}{8}$$
. 14.18. a) $-\frac{3}{4}$; 6) $\frac{12}{5}$. 14.19. a) $-\frac{12}{13}$, 6) -1,4. 14.20. a) -0,18;

6) 4. 14.21. a) 0,792; 6) -2,475. 14.22. a) 3,29; 6) 5,267. 14.23. a) 1; 6)
$$\frac{1}{2}$$
;

B)
$$\frac{1}{4}$$
; r) $\frac{1}{8}$: 14.24. a) $-\frac{49}{12}$; 6) $\frac{2113}{144}$. 14.25. a) 1,4; 6) 1. 14.26. a) 5; 6) $\frac{11}{9}$.

14.27. a)
$$-\frac{3}{4}$$
; 6) $-\frac{3}{4}$. 14.28. a) $-\frac{1}{3}$; 6) 0. 14.29. a) $\frac{1}{(1+a^2)^2}$; 6) $\frac{a}{1+a^2}$;

B)
$$\frac{a^4}{(1+a^2)^2}$$
; r) $\frac{a^3}{(1+a^2)^2}$. 14.30. a) $\frac{3a^2+2}{a^2+1}$; 6) $\frac{2-3a-5a^2}{1+a^2}$. 14.31. a) 0;

6)
$$\frac{1}{\cos t}$$
. 14.32. a) $3 \sin t$; 6) $3 \cos t$. 14.33. a) $\sin \frac{1}{2}$; $\frac{1}{2}$; $\sin \frac{13}{24}$; 6) $\cos 1,1$;

$$\frac{1}{2}$$
; cos 1. 14.34. a) -6; -2; 6) -5; $1\frac{1}{4}$; B) -3; 6; F) -7; 2.

15.7. a) $\sin 160^{\circ}$, $\sin 40^{\circ}$, $\sin 120^{\circ}$, $\sin 80^{\circ}$; 6) $\cos 160^{\circ}$, $\cos 120^{\circ}$, $\cos 80^{\circ}$, $\cos 40^{\circ}$. 15.8. a) $\sin 1000^{\circ}$, $\sin 210^{\circ}$, $\sin 380^{\circ}$, $\sin 830^{\circ}$; 6) $\cos 920^{\circ}$, $\cos 460^{\circ}$, $\cos 650^{\circ}$, $\cos 390^{\circ}$. 15.9. a) $\sin 990^{\circ}$, $\cos 990^{\circ}$, $\sin 22.5^{\circ}$, $\cos 37.4^{\circ}$; 6) $tg 100^{\circ}$, $\cos 94.3^{\circ}$, $\sin 77^{\circ}$, $ctg 225^{\circ}$. 15.13. BC = 8 cm; $AC = 4(\sqrt{3} + 1)$ cm;

$$S = 8(\sqrt{3} + 1) \text{ cm}^2$$
. 15.14. a) $\frac{25(3 + \sqrt{3})}{6} \text{ cm}^2$. 15.15. a) $\sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$,

$$\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
; 6) $\sin 22.5^{\circ} = \frac{\sqrt{2 - \sqrt{2}}}{2}$, $\cos 22.5^{\circ} = \frac{\sqrt{2 + \sqrt{2}}}{2}$.

15.16. а) 1; б) 3. 15.17. а) 1; б) 0. 15.18. а) 45,5; б) 90. 15.20. а) $n=1,\,2,\,3,\,\ldots,\,179;$ б) ни при каких; в) $n\geqslant 180.$ 15.21. а) $n=1,\,2,\,3,\,\ldots,\,89;$ б) ни при каких; в) $n\geqslant 90.$ 15.22. а) При любых $n\in N$, кроме чисел вида $n=360k,\,n=360k-1,\,k\in N;$ б) ни при каких; в) $n=360k,\,n=360k-1,\,k\in N.$ 15.23. а) $n=1,\,2,\,3,\,\ldots,\,178;$ б) $n=180,\,181,\,\ldots,\,359;$ в) $n=360k,\,n=360k$

$$n = 360k - 181, k \in N.$$
 15.24. $\sin 18^{\circ} = \frac{\sqrt{5} - 1}{4}; \cos 18^{\circ} = \frac{\sqrt{10 + 2\sqrt{5}}}{4};$ $\sin 36^{\circ} = \frac{\sqrt{10 - 2\sqrt{5}}}{4}; \cos 36^{\circ} = \frac{\sqrt{5} + 1}{4}.$

§ 16 16.10. а) Четная; б) нечетная; в) четная; г) нечетная. 16.11. а) Нечетная; б) четная; в) нечетная; г) четная. 16.12. а) Нечетная; б) четная. в) нечетная; г) четная. 16.13. а) Четная; б) нечетная; в) четная; г) нечет-HAS. 16.14. a) [-1; 1]; 6) [-1; 1]; B) [-1; 1]; r) [-1; 1]. 16.18. a) π ; 6) $\frac{2\pi}{3}$; B) 4π ; r) $\frac{8\pi}{3}$. 16.19. a) $\sin (8 - 2\pi)$; 6) $\cos (-10 + 4\pi)$; B) $\sin (-25 + 8\pi)$; r) $\cos (35 - 10\pi)$. 16.22. a) [-2; 2]; 6) [0; 625]; B) [-1; 5]; r) [0; 25]. **16.23.** a) $\left[\frac{1}{3}; 1\right]$; 6) $\left[-4; -1\right]$; B) $\left[-1; -\frac{1}{2}\right]$; r) $\left[3; 5\right]$. **16.24.** a) $\left[3; 15\right]$; 6) $\left[1; \sqrt{3}\right]$; B) $\left[1\frac{3}{4}; 4\right]$; r) $\left[0; 2\right]$. 16.25. a) 1, 2, 3, 4, 5, 6, 7, 8, 9; 6) 0, 1, 2, 3; B) 1, 2, 3, 4, 5; r) 3. 16.26. a) 5; $2\pi n < x \le \frac{\pi}{6} + 2\pi n$; $\frac{5\pi}{6}$ + $+2\pi n \le x < \pi + 2\pi n; \ n \in \mathbb{Z}; \ 6) \ 4; \ \frac{\pi}{2} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n; \ \frac{4\pi}{3} + 2\pi n < \pi$ $< x < \frac{3\pi}{2} + 2\pi n; n \in \mathbb{Z}.$ 16.32. a) $\frac{1}{2}; \frac{3}{2};$ 6) $y_{\text{наим}} = -\frac{1}{2}; y_{\text{наим}}$ не существует; B) $\frac{1-\sqrt{2}}{2}$; $\frac{3}{2}$; r) $\frac{3}{2}$; $-\frac{1}{2}$. 16.35. a) 1,5; 2,5; 6) 0,5; 2,5; B) 0,5; 2,5; г) $y_{\text{наим}} = 1$; $y_{\text{наиб}}$ не существует. 16.44. а) $-\frac{\pi}{6} + 2\pi n \le x \le \frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{5\pi}{6} + 2\pi n \le x \le \frac{11\pi}{6} + 2\pi n, n \in \mathbb{Z}.$ 16.45. a) $\frac{5\pi}{6} + 2\pi n \le x \le \frac{11\pi}{6} + 2\pi n,$ $n \in \mathbb{Z}; \ 6) - \frac{\pi}{6} + 2\pi n \le x \le \frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z}. \ 16.48. \ a) -\pi; \ 6) \ 0; \ b) \ 0; \ r) \ \pi.$ 16.49. a) $\pm \frac{\pi}{2}$; 0; б) $-\frac{\pi}{2}$; в) $\frac{\pi}{2}$; г) нет корней. 16.50. a) $\frac{\pi}{3}$; б) π ; в) $\frac{\pi}{3}$; г) 0.

16.51. a) $-\frac{\pi}{2}$; 6) 0; B) 0; r) $\frac{\pi}{2}$. **16.52.** a) 0; 6) $\frac{\pi}{2}$; B) π ; r) 0. **16.53.** a) 2;

б) бесконечное множество; в) 0; г) 1. 16.54. а) 0; б) бесконечное множество;

B) 2; r) 2. 16.55. a)
$$\frac{\pi}{4} + \pi n$$
; 6) $-\frac{\pi}{4} + \pi n$. 16.56. a) $\frac{\pi}{6}$, $\frac{5\pi}{6}$; 6) $\frac{\pi}{2}$, $\frac{4\pi}{3}$.

16.57. a)
$$x = 0$$
; 6) $x = \frac{3\pi}{2}$. **16.58.** a) $x < -\frac{5\pi}{6}$; $0 < x < \frac{5\pi}{6}$; 6) $x \ge \frac{\pi}{3}$.

17.11. a)
$$y = 2 \sin x + 1$$
; 6) $y = -1.5 \cos x + 2$; B) $y = -0.5 \sin x - 2$;
17.12. a) $y = -\sin \left(x - \frac{\pi}{3}\right)$; 6) $y = 2 \cos \left(x + \frac{\pi}{6}\right)$;

B)
$$y = 1.5 \sin \left(x + \frac{5\pi}{6}\right)$$
; r) $y = -3 \cos \left(x - \frac{2\pi}{3}\right)$.

$$17.13. \ a) \ y = \begin{cases} x^2, & \text{если} \ x < 0, \\ \frac{1}{2} \sin x, & \text{если} \ 0 \leqslant x \leqslant \pi; \end{cases} \ 6) \ y = \begin{cases} 1,5 \cos x, & \text{если} - \frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}, \\ x - \frac{\pi}{2}, & \text{если} \ x > \frac{\pi}{2}. \end{cases}$$

17.15. a)
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$; 6) $\pm \frac{\pi}{3}$. 17.16. a) $x < 0$; $x > 0$; 6) $-\frac{5\pi}{6} < x < -\frac{\pi}{6}$.

18.10. а)
$$y = \begin{cases} -x, & \text{если } x \leq 0, \\ \sin 2x, & \text{если } x > 0; \end{cases}$$
 б) $y = \begin{cases} \cos 3x, & \text{если } -\frac{\pi}{6} \leq x \leq \frac{\pi}{3}, \\ -1, & \text{если } x > \frac{\pi}{3}; \end{cases}$

в)
$$y = \begin{cases} \sin 2x, & \text{если } x < 0, \\ 2\cos x, & \text{если } x > 0; \end{cases}$$
 г) $y = \begin{cases} -2\sin x, & \text{если } -2\pi \leqslant x \leqslant 0, \\ \cos\frac{x}{2}, & \text{если } x > 0. \end{cases}$

18.11. а) Возрастает на
$$\left[0,\ \frac{\pi}{6}\right]$$
, убывает на $\left[\frac{\pi}{6},\ \frac{\pi}{2}\right]$; б) убывает на $\left(-1,\ -\frac{\pi}{6}\right]$,

возрастает на
$$\left[-\frac{\pi}{6},\ 0\right]$$
; в) возрастает на $\left(\frac{2\pi}{3},\ \frac{5\pi}{6}\right]$, убывает на $\left[\frac{5\pi}{6},\ \frac{7\pi}{6}\right]$,

возрастает на
$$\left[\frac{7\pi}{6},\,\frac{3\pi}{2}\right]$$
, убывает на $\left[\frac{3\pi}{2},\,\frac{5\pi}{3}\right]$; г) убывает на $\left(3,\,\frac{7\pi}{6}\right]$,

возрастает на
$$\left\lceil \frac{7\pi}{6}, 4 \right\rceil$$
. 18.12. а) Возрастает на $\left[0, 2\pi \right]$, убывает на $\left\lceil 2\pi, \frac{5\pi}{2} \right\rceil$;

б) убывает на (-3; 0], возрастает на [0; 2); в) убывает на
$$\left(-\frac{2\pi}{3},\ 0\right]$$
,

возрастает на
$$\left[0, \, \frac{5\pi}{3}\right]$$
; г) возрастает на $(3, \, 2\pi]$, убывает на $[2\pi, \, 9)$.

18.13. a)
$$\frac{3\pi}{4} + 3\pi n \le x \le \frac{9\pi}{4} + 3\pi n, \ n \in \mathbb{Z}; \ 6) -\frac{3\pi}{4} + 3\pi n \le x \le \frac{3\pi}{4} + 3\pi n, \ n \in \mathbb{Z}.$$
 18.14. a) $\frac{2\pi}{3} + \frac{4\pi n}{3} \le x \le \frac{4\pi}{3} + \frac{4\pi n}{3}, \ n \in \mathbb{Z}; \ 6) \frac{4\pi n}{3} \le x \le \frac{2\pi}{3} + \frac{4\pi n}{3}, \ n \in \mathbb{Z}.$ **18.18.** a) $1\frac{1}{2}, 2, 2\frac{1}{2}; \ 6) \frac{1}{2}.$

19.5. a)
$$y = 2 \sin\left(2x + \frac{\pi}{6}\right)$$
; б) $y = -1.5 \sin\left(\frac{x}{2} - \frac{\pi}{4}\right)$. 19.6. a) $y = -2 \cos\frac{3x}{2}$; 6) $y = 3 \cos\left(2x + \frac{2\pi}{3}\right)$. 19.7. a) $\frac{3\pi}{2} + 4\pi n \le x \le \frac{7\pi}{2} + 4\pi n$, $n \in \mathbb{Z}$; б) $-\frac{\pi}{2} + 4\pi n \le x \le \frac{3\pi}{2} + 4\pi n$, $n \in \mathbb{Z}$. 19.8. a) $-\frac{5\pi}{6} + \pi n \le x \le -\frac{\pi}{3} + \pi n$, $n \in \mathbb{Z}$; 6) $-\frac{\pi}{3} + \pi n \le x \le \frac{\pi}{6} + \pi n$, $n \in \mathbb{Z}$. 19.9. a) 4π ; 6) π . 19.10. a) Убывает на $\left[0, \frac{3\pi}{2}\right]$, возрастает на $\left[\frac{3\pi}{2}, 2\pi\right]$; 6) убывает; в) возрастает на $\left[-\frac{4\pi}{3}, -\frac{\pi}{2}\right]$, убывает на $\left[-\frac{\pi}{2}, 0\right]$; г) убывает. 19.11. a) Убывает на $\left[0, \frac{\pi}{6}\right]$, возрастает на $\left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$; 6) возрастает на $\left[-\frac{7\pi}{12}, -\frac{\pi}{3}\right]$; убывает на $\left[-\frac{\pi}{3}, 0\right]$; г) убывает на $\left[-1, \frac{\pi}{6}\right]$, возрастает на $\left[\frac{\pi}{6}, 1\right]$. 19.12. a) $-\frac{2\pi}{3} + 4\pi n \le a \le 4\pi n$, $n \in \mathbb{Z}$; 6) $\frac{2\pi}{3} + 4\pi n \le a \le \frac{13\pi}{6} + 4\pi n$, $n \in \mathbb{Z}$. 19.13. a) $\frac{\pi}{6} \le a \le \frac{\pi}{4}$; 6) $a = -\frac{\pi}{6} + \frac{2\pi n}{3}$, $n \in \mathbb{N}$.

§ 20

20.6. а) Ни четная, ни нечетная; б) нечетная; в) четная; г) нечетная. 20.7. а) Нечетная; б) четная; в) четная; г) ни четная, ни нечетная. 20.8. а) Нечетная; б) четная; в) нечетная; г) нечетная. 20.11. а) $\frac{\pi}{2}$; б) 3π ;

$$_{\rm B}$$
) $\frac{\pi}{5}$; г) $\frac{5\pi}{2}$. 20.12. а) π ; б) 2π . 20.15. а) Минус; б) минус; в) плюс; г) ми-

нус. 20.21. а) Возрастает на
$$\left(-\frac{\pi}{6} + \pi n; \frac{5\pi}{6} + \pi n\right), n \in \mathbb{Z};$$

6) убывает на
$$\left(-\frac{\pi}{3} + \pi n; \frac{2\pi}{3} + \pi n\right), n \in \mathbb{Z};$$

в) убывает на
$$\left(-\frac{3\pi}{4} + \pi n; \frac{\pi}{4} + \pi n\right), n \in \mathbb{Z};$$

$$_{\Gamma}$$
) возрастает на $\left(\frac{\pi}{6}+\pi n; \frac{7\pi}{6}+\pi n\right)$, $n\in \mathbf{Z}$.

20.28. a)
$$-\frac{\pi}{2} + \pi n < x \leq \frac{\pi}{4} + \pi n$$
; 6) $\pi n < x < \frac{\pi}{6} + \pi n$;

(B)
$$-\frac{\pi}{6} + \pi n < x < \frac{\pi}{2} + \pi n$$
; (P) $\frac{3\pi}{4} + \pi n \le x \le \pi + \pi n$. 20.29. (a) $2\pi n < x < \pi + \pi n$

$$<\frac{\pi}{2}+2\pi n;\ \pi+2\pi n< x<\frac{7\pi}{6}+2\pi n;\ 6)-\frac{3\pi}{4}+2\pi n< x<2\pi n;\ \frac{\pi}{4}+2\pi n<$$

$$< x < \frac{5\pi}{6} + 2\pi n; \ _{B}) \ \frac{\pi}{2} + 2\pi n < x < \frac{7\pi}{6} + 2\pi n; \ _{\Gamma}) \ 2\pi n < x < \frac{\pi}{4} + 2\pi n;$$

$$\frac{3\pi}{4} + 2\pi n < x < \frac{5\pi}{6} + 2\pi n; \ \pi + 2\pi n < x < \frac{11\pi}{6} + 2\pi n.$$

21.3. a) [-1; 1]; 6) [2; 3]; b) [-2; 2]; r)
$$\left[-2; -\sqrt{2}\right] \cup \left[\sqrt{2}; 2\right]$$
.

21.4. а) Да; б) нет; в) нет; г) да. 21.5. а)
$$[-\pi; \pi]$$
; б) $[-2\pi; 2\pi]$; в) $[0; \pi]$;

г) [0;
$$2\pi$$
]. 21.6. а) Нечетная; б) четная; в) ни четная, ни нечетная;

г) нечетная. **21.16.** a)
$$\frac{\pi}{2}$$
; б) $\frac{5\pi}{4}$; в) $\frac{\pi}{2}$; г) $\frac{7\pi}{12}$. **21.17.** a) 0; б) $\frac{\pi}{3}$. **21.18.** a) $\frac{\sqrt{3}}{2}$;

6)
$$\frac{\sqrt{3}}{3}$$
; B) 0; P) $\frac{\sqrt{2}}{2}$. 21.19. a) $\frac{\sqrt{3}}{2}$; 6) 1; B) $-\frac{\sqrt{3}}{3}$; P) $\sqrt{3}$. 21.21. a) [-1; 1];

6) [0; 2]; B)
$$\left[-\frac{1}{2}; \frac{1}{2}\right]$$
; r) [1; 2]. 21.23. a) [0; 2 π]; 6) $\left[-\frac{\pi}{2}; \pi\right]$; B) $\left[-\frac{\pi}{2}; 0\right]$;

г) [
$$-\pi$$
; π]. 21.24. а) Четная; б) нечетная; в) ни четная, ни нечетная; г) нечетная. 21.33. а) $\frac{\pi}{2}$; б) $\frac{7\pi}{12}$; в) $\frac{\pi}{2}$; г) $-\frac{\pi}{6}$. 21.34. а) $-\frac{2\pi}{3}$; б) $\frac{11\pi}{3}$; в) π ; г) π .

21.35. a)
$$-\frac{\sqrt{3}}{2}$$
; 6) $-\frac{\sqrt{3}}{3}$; b) 1; r) -1. **21.36.** a) 1; 6) $\frac{1}{2}$; b) $-\frac{\sqrt{2}}{2}$; r) $\frac{\sqrt{3}}{3}$.

21.37. a) [-1; 1]; 6) [0; 2]; b)
$$\left[-\frac{1}{4}; 0\right] \cup \left[0; \frac{3}{4}\right]$$
; r) $\left[-\sqrt{2}; \sqrt{2}\right]$. **21.38.** a) Heyer.

ная; б) четная; в) ни четная, ни нечетная; г) ни четная, ни нечетная.

21.39. a)
$$(-\pi; \pi)$$
; 6) $\left(-\frac{\pi}{2}; 0\right)$; B) $\left(-\frac{\pi}{2}; \pi\right)$; r) $(0; 2\pi)$. **21.46.** a) $\frac{12}{13}$; 6) $\frac{3}{4}$;

B)
$$\frac{15}{17}$$
; r) $-\frac{3}{4}$. 21.47. a) $\frac{4}{5}$; 6) $-\frac{12}{5}$; B) $\frac{3}{5}$; r) $\frac{4}{3}$. 21.48. a) $\frac{3}{5}$; 6) $\frac{12}{13}$; B) $\frac{3}{5}$;

г)
$$\frac{12}{13}$$
. 21.54. a) $\frac{\sqrt{3}}{4}$; б) нет корней; в) 1; г) $-\frac{1}{2}$. 21.55. a) 0; $1\frac{2}{3}$; б) 3;

B)
$$\frac{1}{3}$$
, 3; r) 0; 3; 5. 21.56. a) 4; 6) $\frac{2}{3}$. 21.57. a) $\frac{\sqrt{2}}{2}$, -1; 6) $-\frac{\sqrt{3}}{3}$, $\sqrt{3}$; B) $\frac{1}{2}$;

г) ±1. **21.58**. а) -1,5; б) 9; -1; в) нет корней; г) 2; 3. **21.59**. а)
$$\sqrt{\frac{\sqrt{5}-1}{2}}$$
;

6)
$$\frac{\sqrt{2}}{2}$$
; B) 1; r) $\sqrt{\frac{\sqrt{5}-1}{2}}$. 21.60. a) $-1 \le x < -\frac{\sqrt{2}}{2}$; 6) $x > -1$; B) $-1 \le x \le 1$;

r)
$$x \ge -\sqrt{3}$$
. 21.61. a) $-\frac{\sqrt{3}}{2} \le x \le \frac{\sqrt{3}}{2}$; 6) $x < -\frac{\sqrt{3}}{3}$, $x > \frac{\sqrt{3}}{3}$; b) $-1 \le x < \frac{\sqrt{2}}{2}$;

r)
$$x \ge \frac{\sqrt{3}}{3}$$
. 21.62. a) $-1 < x < \frac{\sqrt{2}}{2}$; 6) $x \le -\frac{\sqrt{3}}{3}$; $x \ge \sqrt{3}$; B) $-\frac{1}{2} \le x \le \frac{1}{2}$; r) $x < -1$; $x > 1$.

22.3. a)
$$\frac{\pi}{6}$$
, $\frac{11\pi}{6}$; 6) $\frac{8\pi}{3}$, $\frac{10\pi}{3}$; B) $-\frac{\pi}{4}$, $\frac{\pi}{4}$, $\frac{7\pi}{4}$, $\frac{9\pi}{4}$; r) $\pm \pi$. **22.5.** a) $\pm \frac{2\pi}{3}$ +

+
$$2\pi n$$
, $\pm \arccos\left(-\frac{1}{3}\right)$ + $2\pi n$; 6) $\pm \arccos\frac{1}{5}$ + $2\pi n$. 22.6. a) $\frac{\pi}{3}$, $\frac{5\pi}{3}$;

6)
$$-\frac{\pi}{4}$$
, $\frac{\pi}{4}$, $\frac{7\pi}{4}$, $\frac{9\pi}{4}$, $\frac{15\pi}{4}$; B) $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{8\pi}{3}$; r) $\pm \frac{5\pi}{4}$, $\pm \frac{3\pi}{4}$. 22.7. a) 2; 6) 3.

22.11. a)
$$(-1)^n \frac{\pi}{3} + \pi n$$
, $\pm \frac{2\pi}{3} + 2\pi n$; 6) $\frac{\pi}{2} + \pi n$, $(-1)^n \arcsin \frac{2}{3} + \pi n$;

B)
$$(-1)^n \arcsin \frac{3}{4} + \pi n$$
, πn ; r) $\frac{\pi}{4} + \frac{\pi n}{2}$. 22.12. a) $(-1)^n \frac{\pi}{6} + \pi n$;

$$(-1)^{n+1} \arcsin \frac{2}{3} + \pi n$$
; 6) $-\frac{\pi}{2} + 2\pi n$. 22.13. a) $(-1)^{n+1} \frac{\pi}{4} + \pi n$; 6) $\pm \frac{5\pi}{6} + 2\pi n$.

$$22.15. \ a) \ \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}; \ 6) - \frac{\pi}{6}, \ \frac{7\pi}{6}, \ \frac{11\pi}{6}; \ a) - \frac{5\pi}{4}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}; \ r) - \frac{3\pi}{4}, \ -\frac{\pi}{4}, \ \frac{5\pi}{4}, \ \frac{7\pi}{4}, \ 22.16. \ a) \ 3; \ 6) \ 2. \ 22.25. \ a) \ \frac{2\pi}{3} + 4\pi\pi; \ 4\pi\pi; \ 6) \ \frac{\pi}{2} + 3\pi\pi; \ a) \ \frac{2\pi\pi}{3}, \ \frac{\pi}{3}; \ r) - \frac{2\pi}{3} + 4\pi\pi. \ 22.26. \ a) \ \frac{7\pi}{12} + \pi\pi; \ 6) \ \pi + 2\pi\pi; \ a) \ 8\pi\pi, - \frac{4\pi}{3} + 8\pi\pi; \ r) \ \frac{\pi}{6} + \frac{2\pi\pi}{3}, \ \frac{2\pi\pi}{3}, \ 22.27. \ a) \ \frac{\pi}{12}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}, \ \frac{11\pi}{12}, \ \frac{17\pi}{12}, \ \frac{19\pi}{12}; \ 6) \pm \frac{\pi}{18}, \ \pm \frac{11\pi}{18}, \ \pm \frac{11\pi}{12}, \ \pm \frac$$

$$22.44. \ a) \arccos \left(-\frac{2}{3}\right) + 2\pi n \leqslant t \leqslant 2\pi - \arccos \left(-\frac{2}{3}\right) + 2\pi n; \ b) - \frac{\pi}{3} + 2\pi n < < t < \frac{\pi}{3} + 2\pi n, \arccos \frac{1}{3} + 2\pi n < t < 2\pi - \arccos \left(-\frac{2}{3}\right) + 2\pi n; \ b) - \arccos \left(-\frac{2}{3}\right) + 2\pi n, \arccos \left(\frac{2}{3}\right) + 2\pi n, \arccos \left(\frac{2}{3}\right) + 2\pi n; \ c + 2\pi n < t < \arccos \left(-\frac{2}{3}\right) + 2\pi n; \ c + 2\pi n < t < \arccos \left(\frac{2}{3}\right) + 2\pi n; \ c + 2\pi n; \ c + 2\pi n < t < \frac{\pi}{3} + 2\pi n, \ c + 2\pi n; \ c + 2\pi n;$$

$$\begin{array}{l} \mathbf{n} - \frac{\pi}{18} + \frac{2\pi n}{3} < x < \frac{\pi}{18} + \frac{2\pi n}{3}; \ \mathbf{r}) - 2 \arcsin \frac{1}{7} + 4\pi n < x < 2\pi + 2 \arcsin \frac{1}{7} + 4\pi n. \ 22.54. \ \mathbf{a}) \frac{\pi}{6} + \frac{1}{2} \arcsin \frac{1}{3} + \pi n < x < \frac{2\pi}{3} - \frac{1}{2} \arcsin \frac{1}{3} + \pi n; \ \mathbf{6}) \frac{\pi}{2} + 2\pi n < x < 2\pi + 2\pi n; \ \mathbf{a}) \frac{\pi}{18} - \frac{1}{3} \arccos \left(-\frac{1}{4} \right) + \frac{2\pi n}{3} < x < \frac{\pi}{18} + \frac{1}{3} \arccos \left(-\frac{1}{4} \right) + \frac{2\pi n}{3}; \ \mathbf{r}) \frac{5\pi}{12} + 2\pi n < x < \frac{25\pi}{12} + 2\pi n. \ 22.55. \ \mathbf{a}) \ 2\pi n < x < \frac{\pi}{18} + \frac{1}{3} \arccos \left(-\frac{1}{4} \right) + \frac{2\pi n}{3}; \ \mathbf{r}) \frac{5\pi}{12} + 2\pi n < x < \frac{25\pi}{12} + 2\pi n. \ 22.55. \ \mathbf{a}) \ 2\pi n < x < \frac{\pi}{18} + \frac{\pi}{13} \arccos \left(-\frac{1}{4} \right) + \frac{2\pi n}{3}; \ \mathbf{r}) \frac{5\pi}{12} + 2\pi n < x < \frac{25\pi}{12} + 2\pi n. \ 22.55. \ \mathbf{a}) \ 2\pi n < x < \frac{\pi}{3} + 2\pi n; \ \mathbf{r} \right) -\frac{\pi}{3} + 2\pi n < x < 2\pi n, \ 2\pi n < x < \frac{\pi}{3} + 2\pi n; \ \mathbf{r} \right) -\frac{\pi}{4} + 2\pi n < x < 2\pi n, \ 2\pi n < x < \frac{\pi}{4} + 2\pi n. \ 22.56. \ \mathbf{a}) -\frac{\pi}{6} < x < \frac{\pi}{6} + 2\pi n; \ \mathbf{r}) -\frac{\pi}{4} + 2\pi n < x < 2\pi n, \ 2\pi n < x < \frac{\pi}{4} + 2\pi n. \ 22.56. \ \mathbf{a}) -\frac{\pi}{6} < x < 2; \ \mathbf{6}) \frac{\pi}{4} < x < 1. \ 22.57. \ \mathbf{a}) \ \pi n; \ \mathbf{6}) \frac{\pi}{4} + \pi n. \ 22.58. \ \mathbf{a}), \ \mathbf{6}) \ \text{Het pemehum}. \ 22.59. \ \mathbf{a}) \ \mathbf{0} < \mathbf{a} < 1; \ \mathbf{6}) \ \mathbf{0} < \mathbf{a} < 0.5, \ 2 < \mathbf{a} < 2.5; \ \mathbf{b}) \frac{1}{3} < \mathbf{a} < 1; \ \mathbf{r}) -2 < \mathbf{a} < -\sqrt{2}, \ \sqrt{2} < \mathbf{a} < 2. \ 22.60. \ \mathbf{a}) -\frac{5}{2} < \mathbf{a} < \frac{5}{3}; \ \mathbf{6}) -1 < \mathbf{a} < \frac{7}{3}. \ 22.61. \ \mathbf{a}) \frac{\pi}{6} + (-1)^n \frac{1}{2} \arcsin \frac{a-1}{a+1} + \frac{\pi n}{2}, \ \mathbf{echh} \ \mathbf{a} > \mathbf{0}; \ \mathbf{het pemehum}, \ \mathbf{echh} \ \mathbf{a} < \mathbf{0}; \ \mathbf{het pemehum}, \ \mathbf{echh} \ \mathbf{a} < \mathbf{0}; \ \mathbf{het pemehum}, \ \mathbf{echh} \ \mathbf{a} < \mathbf{a} < \mathbf{1}; \ \mathbf{a} < \mathbf{a} < \mathbf{a} < \mathbf{1}; \ \mathbf{a} < \mathbf{$$

 $\begin{array}{lll} \pi + 2\pi n < x < 2\pi - \arccos \frac{4}{9} + 2\pi n. & \textbf{22.68. a}) - \frac{19\pi}{12} < x < -\frac{11\pi}{12}; \ -\frac{7\pi}{12} < x < \\ < \frac{\pi}{12}; \ \frac{5\pi}{12} < x < \frac{13\pi}{12}; \ \frac{17\pi}{12} < x \leqslant 5; \ 6) \ -5 < x < -\frac{3\pi}{2}; \ -\frac{4\pi}{3} < x < -\frac{5\pi}{6}; \\ -\frac{2\pi}{3} < x < -\frac{\pi}{6}; \ 0 < x < 1. \end{array}$

$$23.1. \ a) \ (-1)^{n+1} \arcsin \frac{1}{3} + \pi n; \ 6) \ (-1)^{n+1} \frac{1}{2} \arcsin \frac{1}{3} + \frac{\pi n}{2};$$

$$B) \ (-1)^{n} \arcsin \frac{1}{4} + \pi n; \ r) \ \pi + 4\pi n; \ (-1)^{n} \frac{\pi}{3} + 2\pi n. \ 23.2. \ a) \pm \frac{2\pi}{3} + 2\pi n;$$

$$\pm \arccos \frac{1}{3} + 2\pi n; \ 6) \pm \frac{2\pi}{9} + \frac{2\pi k}{3}; \ B) \ \pi + 2\pi n; \ r) \pm \pi + 6\pi n. \ 23.3. \ a) \pm \frac{2\pi}{3} + 2\pi n;$$

$$\pm \arccos \frac{1}{3} + 2\pi n; \ B) \frac{\pi}{2} + 2\pi n; \ (-1)^{n} \arcsin \frac{1}{5} + \pi n; \ r) \frac{\pi}{6} + \frac{2\pi n}{3}.$$

$$23.4. \ a) -\frac{\pi}{4} + \pi n, \ \arccos \frac{1}{3} + \pi n; \ 6) \frac{\pi}{8} + \frac{\pi n}{2}, \ \frac{1}{2} \arccos 5 + \frac{\pi n}{2}; \ B) \arctan \frac{1}{2} + \pi n,$$

$$-\arctan \cot \frac{1}{2} + \pi n, \ \arctan \frac{3}{2} + 2\pi n, \ 2 \arccos \frac{5}{7} + 2\pi n. \ 23.5. \ a) \frac{\pi}{4} + \pi n, \ -\arctan 22 + \pi n; \ a) \frac{3\pi}{2} + 2\pi n, \ 2 \arccos \frac{5}{7} + 2\pi n. \ 23.5. \ a) \frac{\pi}{4} + \pi n, \ -\arctan 22 + \pi n; \ a) \arctan \frac{3}{2} + \pi n; \ B) \arctan 22 + \pi n, \ -\arctan \frac{1}{3} + \pi n; \ r) \frac{3\pi}{4} + \pi n,$$

$$\arctan \frac{3}{4} + \pi n, \ \arctan \frac{3}{2} + \pi n; \ B) \arctan \frac{5\pi}{3} + 4\pi n; \ 6) \frac{\pi}{3} + \pi n, \ \pi n; \ B) \frac{\pi n}{3}, \frac{\pi}{9} + \frac{\pi n}{3};$$

$$r) -\frac{\pi}{12} + \frac{\pi n}{2}, -\frac{\pi}{4} + \frac{\pi n}{2}. \ 23.7. \ a) \ (-1)^{n+1} \frac{\pi}{4} + \pi n; \ 6) \pm \frac{5\pi}{6} + 2\pi n.$$

$$23.8. \ a) -\frac{\pi}{4} + \pi n; \pm \frac{\pi}{3} + \pi n; \ 6) \frac{\pi}{8} + \frac{\pi n}{4}, \pm \frac{\pi}{12} + \frac{\pi n}{2}. \ 23.9. \ a) \frac{\pi n}{2}; \ 6) \frac{\pi n}{2},$$

$$-\frac{\pi}{6} + \frac{\pi n}{2}. \ 23.10. \ a) \ \pi n; \ 6) \frac{\pi}{2} + 2\pi n; \ B) \frac{\pi n}{3}; \ r) \ 2\pi n. \ 23.11. \ a) \arctan \frac{3}{4} + \pi n;$$

$$6) \arctan \frac{2}{3} + \pi n; \ B) \arctan 3; \ r) -\frac{\pi}{6} + \pi n. \ 23.13. \ a) \ \pi n, -\frac{\pi}{4} + \pi n; \ 6) \frac{\pi}{2} + \pi n,$$

$$-\frac{\pi}{6} + \pi n; \ B) \arctan 3; \ r) -\frac{\pi}{6} + \pi n, \ \arctan 3; \ r) -\frac{\pi}{4} + \pi n, \ -\arctan 23.14. \ a) \frac{\pi}{4} + \pi n,$$

$$-\arctan 23.15. \ a) \frac{\pi}{8} + \frac{\pi n}{2}; \ 6) \frac{\pi}{18} + \frac{\pi n}{3}; \ B) \frac{2\pi}{3} + 2\pi n;$$

г)
$$\frac{\pi}{51}$$
 + $\frac{\pi n}{17}$ · 23.16. a) $\frac{1}{2}$ arctg $2 + \frac{\pi n}{2}$, $\frac{1}{2}$ arctg $\frac{1}{2} + \frac{\pi n}{2}$; 6) - $\frac{1}{3}$ arctg $3 + \frac{\pi n}{3}$ · $-\frac{1}{3}$ arctg $\frac{1}{3} + \frac{\pi n}{3}$ · 23.17. a) $\pm \frac{2\pi}{3} + 2\pi n$; 6) $\pm \frac{\pi}{16} + \frac{\pi n}{4}$. 23.18. a) arctg $5 + \pi n$, -arctg $\frac{1}{3} + \pi n$; 6) - $\frac{\pi}{4} + \pi n$, arctg $2 + \pi n$; b) $\frac{\pi}{4} + \pi n$, -arctg $\frac{1}{2} + \pi n$; r) - $\frac{\pi}{4} + \pi n$, arctg $3 + \pi n$. 23.19. a) $\frac{\pi}{2} + \pi n$, - $\frac{\pi}{6} + \pi n$; 6) πn , -arctg $1,5 + \pi n$. 23.20. a) - $\frac{\pi}{8} + \frac{\pi n}{2}$, $\frac{1}{2}$ arctg $2 + \frac{\pi n}{2}$; 6) $\frac{\pi n}{4}$, $-\frac{1}{4}$ arctg $1,5 + \frac{\pi n}{4}$. 23.21. a) - $\frac{\pi}{2} + 2\pi n$, 2 arctg $3 + 2\pi n$; 6) $\frac{3\pi}{2} + 3\pi n$, $\frac{\pi}{2} + 3\pi n$. 23.22. a) $\frac{\pi}{4} + \pi n$; 6) - $\frac{\pi}{4} + \pi n$. 23.23. a) πn , $\frac{\pi}{4} + \pi n$; 6) $\frac{\pi}{2} + \pi n$, arctg $7 + \pi n$, arctg $3 + \pi n$. 23.24. a) $\pm \frac{\pi}{6} + \frac{\pi}{2} n$; 6) $\pm \frac{2\pi}{3} + 2\pi n$. 23.25. a) $\begin{cases} x = \frac{\pi}{2} + 2\pi n, \\ y = \pi + 2\pi k; \end{cases}$
6)
$$\begin{cases} x = (-1)^n \frac{\pi}{12} + \frac{\pi n}{2}, \\ y = \pm \frac{\pi}{3} + \pi k. \end{cases}$$
23.27. a) $\frac{2\pi}{3} + 2\pi n$; 6) -arctg $\frac{1}{3} + \pi n$, -arctg $\frac{1}{6} + \pi n$. 23.28. a) $\frac{\pi}{6} + 2\pi n$, $\frac{4\pi}{3} + 2\pi n$; 6) $\frac{2\pi}{3} + 2\pi n$; 7 her pemenum. 23.29. a) Her pemenum; 6) (-1)^n $\frac{\pi}{6} + \pi n$; b) $\frac{\pi}{2} + \pi n$; r) her pemenum. 23.29. a) Her pemenum; 6) (-1)^n $\frac{\pi}{6} + \pi n$; 6) $\frac{\pi n}{3}$ 23.31. a) Her pemenum, echu $a < -\sqrt{2}$, $\frac{\pi}{4} + 2\pi n$, echu $a < \sqrt{2}$; $a > \sqrt{2}$; 6) her pemenum, echu $a = \sqrt{2}$; $a > \sqrt{2}$; $a > \sqrt{2}$; $a > \sqrt{2}$; $a > \sqrt{2}$.

23.32. a) -1; 6) ±1. 23.33. a)
$$\frac{\pi}{2} + \pi n$$
, $2\pi n$; 6) $\frac{\pi}{2} + 2\pi n$, πn . 23.34. a) $\frac{3\pi}{2} + 3\pi n$; 6) $\pi + 2\pi n$. 23.35. a) \emptyset ; 6) $2\pi + 24\pi n$. 23.36. a) $(-1)^n \frac{\pi}{6} + \pi n$; 6) $\pm \frac{\pi}{3} + 2\pi n$. 23.37. a) $\frac{\pi}{4} + 2\pi n$; -arctg 3 + $\pi (2n + 1)$; 6) $\frac{5\pi}{4} + 2\pi n$; arctg 3 + $\pi (2n + 1)$. 23.38. a) $\frac{\pi}{2} + 2\pi n$; 6) $\pi + 2\pi n$. 23.39. a) $-\frac{\pi}{6} + 2\pi n < x < \frac{\pi}{3} + 2\pi n$; $\frac{7\pi}{6} + 2\pi n < x < \frac{5\pi}{3} + 2\pi n$; 6) $\frac{\pi}{3} + 2\pi n \le x \le \frac{7\pi}{6} + 2\pi n$; $-\frac{\pi}{3} + 2\pi n \le x \le \frac{7\pi}{6} + 2\pi n$. 23.40. a) $-\frac{\pi}{6} + 2\pi n < x < \frac{\pi}{3} + 2\pi n$; $\frac{2\pi}{3} + 2\pi n < x < \frac{7\pi}{6} + 2\pi n$; 6) $\frac{\pi}{3} + 2\pi n \le x \le \frac{5\pi}{3} + 2\pi n$; $-\frac{\pi}{6} + 2\pi n \le x \le \frac{\pi}{6} + 2\pi n$. 23.41. a) $\frac{\pi}{4} + 2\pi n < x < \frac{7\pi}{4} + 2\pi n$; c) $-\frac{\pi}{6} + 2\pi n \le x \le \frac{5\pi}{6} + 2\pi n$. 23.42. a) arctg 5 + $\pi n < x \le \frac{5\pi}{4} + \pi n$; 6) $\frac{\pi}{4} + \pi n < x < \arctan$; arctg 5 + πn ; B) $\frac{\pi}{4} + \pi n \le x \le \arctan$; r) $-\frac{\pi}{2} + \pi n \le x \le \frac{\pi}{4} + \pi n$; arctg 3 + $\pi n \le x \le \frac{\pi}{2} + \pi n$.

§ 24

24.20. a)
$$\frac{\pi}{6} + \frac{2\pi n}{3}$$
; 6) $\frac{\pi}{16} + \frac{\pi n}{8}$; B) $(-1)^n \frac{\pi}{42} + \frac{\pi n}{7}$; r) $\pm \frac{5\pi}{72} + \frac{\pi n}{6}$.

24.21. a) 15°; 6) 15°. 24.22. a) $\pi + 2\pi n$; 6) $(-1)^{n+1} \frac{\pi}{12} + \frac{\pi n}{2}$. 24.23. a) $\frac{\pi}{4}$, $\frac{5\pi}{4}$, $\frac{9\pi}{4}$; 6) $-\frac{5\pi}{8}$, $-\frac{\pi}{8}$, $\frac{3\pi}{8}$, $\frac{7\pi}{8}$. 24.24. a) $(-1)^n \frac{\pi}{6} + \pi n$; 6) $\pm \frac{\pi}{3} + 4\pi n$.

24.25. a) $\frac{3\pi}{4} + 2\pi n$; 6) $\frac{\pi}{2} + 2\pi n$, $\pi + 2\pi n$; B) $\frac{\pi}{6} + 2\pi n$; r) $\frac{\pi}{2} + 2\pi n$, $-\frac{\pi}{6} + 2\pi n$. 24.26. a) $\frac{\pi}{4} + 2\pi n$; 6) $2\pi n$, $\frac{\pi}{2} + 2\pi n$; B) $-\frac{\pi}{6} + 2\pi n$; r) $\frac{\pi}{6} + 2\pi n$, $-\frac{\pi}{2} + 2\pi n$. 24.27. a) $\frac{4\sqrt{3} + 3}{10}$; 6) $-\frac{3}{5}$; B) $\frac{4}{5}$; r) $\frac{4 - 3\sqrt{3}}{10}$. 24.28. a) $\frac{12\sqrt{3} - 5}{26}$; 6) $\frac{12}{13}$; B) $\frac{-5\sqrt{3} - 12}{26}$; r) $\frac{5}{13}$. 24.29. a) $\frac{77}{85}$; 6) $\frac{36}{85}$. 24.30. a) $-\frac{84}{85}$; 6) $\frac{13}{85}$.

r)
$$\frac{5\sqrt{3}-12}{26}$$
. 24.33. a) $-\frac{4\sqrt{3}+3}{10}$; 6) $\frac{3}{5}$; b) $\frac{4}{5}$; r) $\frac{3\sqrt{3}-4}{10}$. 24.34. a) $-\frac{36}{85}$;

6)
$$\frac{77}{85}$$
. 24.35. a) $-\frac{63}{65}$; 6) $-\frac{16}{65}$. 24.36. a) $\frac{\pi}{12} + \pi n < x < \frac{5\pi}{12} + \pi n$;

6)
$$2 \arccos \left(-\frac{2}{7}\right) + 4\pi n < x < 2\pi + 2 \arccos \frac{2}{7} + 4\pi n$$
; B) $-4 \arcsin \frac{1}{3} + \frac{1}{3}$

$$_{+} 8\pi n < x < 4\pi + 4 \arcsin \frac{1}{3} + 8\pi n; \text{ r}) \frac{-5\pi}{18} + \frac{2\pi n}{3} < x < \frac{5\pi}{18} + \frac{2\pi n}{3}.$$

24.37. a)
$$\frac{\pi}{24} + \frac{\pi n}{2} < x < \frac{5\pi}{24} + \frac{\pi n}{2}$$
; 6) $\frac{1}{7} \arccos\left(-\frac{1}{3}\right) + \frac{2\pi n}{7} < x < \frac{\pi}{2}$

$$< \frac{2\pi - \arccos\left(-\frac{1}{3}\right)}{7} + \frac{2\pi n}{7}; \text{ b) } \frac{2\pi}{3} + \frac{2}{3}\arcsin\frac{2}{7} + \frac{4\pi n}{3} < x < \frac{4\pi}{3} - x$$

$$-\frac{2}{3}\arcsin\frac{2}{7}+\frac{4\pi n}{3}; \text{ r})-\frac{\pi}{3}+\frac{8\pi n}{3}< x<\frac{\pi}{3}+\frac{8\pi n}{3}\cdot 24.39. \text{ a}) \frac{3\sqrt{3}-4}{10};$$

6)
$$\frac{3\sqrt{3}+4}{10}$$
. **24.40.** a) $a < 0$; 6) $a > 0$. **24.41.** a) $a > b$; 6) $a < b$. **24.42.** a) $a < b$;

6)
$$a > b$$
. 24.43. a) $a < b$; 6) $a < b$. 24.44. a) $\frac{b-a}{b+a}$; 6) $\frac{a+b}{a-b}$. 24.48. a) $\frac{3\sqrt{3}+4}{10}$;

6)
$$-\frac{3\sqrt{3}+4}{10}$$
; B) $\frac{\sqrt{2}}{10}$; r) $\frac{5}{13}$. 24.49. a) $\frac{6\sqrt{2}-4}{15}$; 6) 1.

25.10. a)
$$\frac{1}{5}$$
; 6) $-\frac{41\sqrt{3}+80}{23}$. 25.11. a) 1; 6) $\frac{1}{7}$. 25.12. a) -2; 6) $-\frac{3}{2}$. 25.13. a) $-\frac{1}{2}$; 6) $-1\frac{1}{6}$. 25.14. a) $-\frac{17}{7}$; 6) $\frac{7}{17}$. 25.15. a) $-\frac{25\sqrt{3}+48}{39}$; 6) $\frac{1}{7}$. 25.17. a) $\frac{\pi}{16} + \frac{\pi n}{4}$; 6) $\frac{\pi}{6} + \frac{\pi n}{2}$. 25.18. a) $-\frac{11\pi}{12}$, $\frac{\pi}{12}$, $\frac{13\pi}{12}$; 6) $-\frac{17\pi}{30}$, $-\frac{\pi}{15}$,

$$\frac{13\pi}{30}, \frac{14\pi}{15}, \frac{43\pi}{30}, \frac{29\pi}{15}. 25.19. a) -\frac{7\pi}{10} + \pi n < x < \frac{\pi}{20} + \pi n; 6) \frac{\pi}{6} + \frac{\pi n}{3} < \frac{\pi}{10}$$

$$\begin{cases} x < \frac{\pi}{4} + \frac{\pi n}{3} \end{cases}$$
 25.20. a) $\begin{cases} x = \frac{\pi}{4} + \pi n, \\ y = \arctan 2 + \pi k, \end{cases}$ $\begin{cases} x = -\arctan \frac{1}{2} + \pi n, \\ y = -\frac{\pi}{4} + \pi k; \end{cases}$

6)
$$\begin{cases} x = \frac{\pi}{4} + \pi n, & \{x = \text{arctg } 4.5 + \pi n, \\ y = \text{arctg } 3 + \pi k, \end{cases} \begin{cases} x = \text{arctg } 4.5 + \pi n, \\ y = -\text{arctg } 4 + \pi k. \end{cases}$$
 25.21. a) $\beta = \frac{3\pi}{4}$. 25.22. a) 1.8;

6)
$$\frac{1}{7}$$
; B) $\frac{6-5\sqrt{3}}{13}$; r) $-3\frac{3}{7}$. 25.24. 3.

26.7. a)
$$-0.5$$
; 6) 1; B) $\frac{\sqrt{3}}{2}$; r) $-\sqrt{3}$. 26.8. a) -1.5 ; 6) 2; B) $-\sqrt{2}$; r) -1 . 26.9. a) 0; 6) 2 cos t. 26.10. a) ctg α ; 6) cos t; B) ctg α ; r) $-\cos$ t. 26.11. a) -1 ; 6) $-\frac{1}{\cos t}$. 26.12. a) $\cos \alpha$; 6) $-\frac{\cos 2y}{\sin^2 y}$. 26.14. a) 36; 6) 5. 26.15. a) -6 ; 6) 7. 26.16. a) $\frac{\sqrt{3}}{2}$; 6) $-\frac{1}{2}$. 26.17. a) 1; 6) $\frac{1}{2}$. 26.18. a) 1; 6) 1. 26.19. a) 1; 6) $\sqrt{3}$. 26.20. a) $\frac{11}{13}$; 6) 17. 26.21. a) $2\pi n$; 6) $-\frac{\pi}{2} + 2\pi n$; B) $\frac{\pi}{6} + 2\pi n$, $\frac{5\pi}{6} + 2\pi n$; r) $\pm \frac{\pi}{3} + 2\pi n$. 26.22. a) $\pm \frac{2\pi}{3} + 2\pi n$; 6) $\frac{\pi}{2} + 2\pi n$. 26.23. a) Kopheй Her; 6) любое действительное число. 26.24. a) $-\frac{\pi}{8} + \frac{\pi n}{2}$; 6) $-\frac{1}{3}$ arctg $\frac{1}{2} + \frac{\pi n}{3}$. 26.25. a) -2 arctg $3 + 2\pi n$; 6) $-\pi + 3\pi n$. 26.26. a) $\frac{\pi}{4} + \pi n$, $-\arctan$ 27. arctg $2 + \pi n$; 6) $-\frac{\pi}{12} + \frac{\pi n}{3}$, $-\frac{1}{3}$ arctg $3 + \frac{\pi n}{3}$; B) $\frac{\pi}{4} + \pi n$, $-\arctan$ 28. arctg $3 + 2\pi n$; 6) $\frac{\pi}{2} + 2\pi n$, -2 arctg $3 + 2\pi n$; 7. arctg $3 + 2\pi n$; 8) πn , $-\frac{\pi}{3} + \pi n$; 9. arctg $3 + 2\pi n$; 10 arctg $3 + 2\pi n$; 11 arctg $3 + 2\pi n$; 12 arctg $3 + 2\pi n$; 13 arctg $3 + 2\pi n$; 14 arctg $3 + 2\pi n$; 15 arctg $3 + 2\pi n$; 16 arctg $3 + 2\pi n$; 17 arctg $3 + 2\pi n$; 18 arctg $3 + 2\pi n$; 19 arctg $3 + 2\pi n$; 26.28. a) $(-1)^{n+1}$ $\frac{\pi}{6} + \pi n$; 26.26. a) $\frac{\pi n}{3} + \pi n$; 27 arctg $\frac{1}{3} + 2\pi n$; 28.30. a) $-\frac{\pi}{2} + 2\pi n$; 28.31. a) $\frac{\pi n}{2} + 2\pi n$; 28.32. a) $\frac{\pi n}{2} + 2\pi n$; 29 arctg $\frac{3}{2} + \frac{\pi n}{2}$; 20 arctg $\frac{3}{2} + \frac{\pi n}{2}$; 30 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 31 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 32 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 33 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 34 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 35 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 37 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 37 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 37 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 39 arctg $\frac{3}{2} + \frac{\pi n}{3}$; 39 arct

$$27.18. \ a) \ 2 \sin \left(t - \frac{\pi}{4}\right); \ 6) \ 2 \sin \left(\frac{\pi}{4} - t\right); \ a) \ 2 \sin \left(t + \frac{\pi}{4}\right); \ r) - 2 \sin \left(t + \frac{\pi}{4}\right).$$

$$27.20. \ a) \ \frac{1}{8}; \ 6) \ \frac{1}{16}. \ 27.21. \ a) \ 1; \ 6) \ 0. \ 27.22. \ a) \ 2; \ 6) \ - 2. \ 27.23. \ a) \ \frac{1 + 2\sqrt{2}}{4};$$

$$6) \ - \frac{\sqrt{2}}{4}; \ a) \ \frac{3\sqrt{3}}{8}; \ r) \ \frac{14 + \sqrt{3}}{64}. \ 27.24. \ a) \ 2\frac{3}{8}; \ 6) \ - \frac{23\sqrt{2}}{16}. \ 27.25. \ a) \ \frac{1}{32};$$

$$6) \ \frac{1}{64}. \ 27.27. \ a) \ - \frac{120}{169}; \ 6) \ \frac{119}{169}; \ a) \ - \frac{120}{119}; \ r) \ - \frac{119}{120}. \ 27.28. \ a) \ \frac{24}{25}; \ 6) \ \frac{7}{25};$$

$$a) \ \frac{24}{7}; \ r) \ \frac{7}{24}. \ 27.29. \ a) \ \frac{24}{25}; \ 6) \ \frac{7}{25}; \ a) \ \frac{24}{7}; \ r) \ \frac{7}{24}. \ 27.30. \ a) \ \frac{\sqrt{2}}{4}, \ \frac{\sqrt{14}}{4},$$

$$\frac{\sqrt{7}}{7}, \ \sqrt{7}; \ 6) \ - \frac{1}{\sqrt{5}}, \ \frac{2}{\sqrt{5}}, \ -2, \ -\frac{1}{2}. \ 27.31. \ a) \ - \frac{1}{\sqrt{10}}, \ \frac{3}{3}. \ 3. \ 27.32. \ a) \ \frac{a^2 - 1}{a^2 + 1}; \ - \frac{2a}{1 + a^2};$$

$$6) \ \frac{1 - a^2}{1 + a^2}; \ \frac{2a}{1 + a^2}. \ 27.33. \ a) \ \frac{4}{5}; \ 6) \ -2\sqrt{2}. \ 27.34. \ a) \ 1 \ - 2a^2; \ 6) \ 1 \ - 2a^2.$$

$$27.35. \ a) \ \frac{17}{18}; \ 6) \ - \frac{1}{5}. \ 27.36. \ a) \ \frac{97}{169}; \ 6) \ - \frac{485}{2197}. \ 27.37. \ a) \ a > b; \ 6) \ a < b.$$

$$27.38. \ a) \sin 3x = 3 \sin x - 4 \sin^3 x; \ 6) \cos 3x = 4 \cos^3 x - 3 \cos x. \ 27.39. \ a) x = \pi n;$$

$$6) \ x = \frac{\pi}{2} + \pi n. \ 27.40. \ a) \ 0.296; \ 6) \pm \frac{7\sqrt{15}}{32}; \ a) \ 0.296; \ r) \ - \frac{79}{81}. \ 27.41. \ a) \ - \frac{3}{4};$$

$$6) \ - \frac{\sqrt{2}}{4}. \ 27.44. \ a) \ \frac{24}{25}, \ -\frac{7}{25}, \ -\frac{24}{27}, \ -\frac{7}{24}; \ 6) \ -\frac{24}{25}, \ -\frac{7}{25}, \ -\frac{24}{27}, \ -\frac{7}{24}; \ a) \ -\frac{26}{169},$$

$$6) \ - \frac{\sqrt{10}}{10}, \ \frac{3\sqrt{10}}{10}, \ -\frac{1}{3}; \ a) \ -\frac{\sqrt{26}}{26}, \ \frac{5\sqrt{26}}{26}, \ -\frac{1}{5}; \ r) \ \frac{\sqrt{26}}{26}, \ \frac{5\sqrt{26}}{26}, \ \frac{1}{5}.$$

$$27.48. \ a) \ 0, \ \pi, \ 2\pi; \ 6) \ \frac{\pi}{2}, \ \frac{3\pi}{2}; \ a) \ 0, \ \pi, \ 2\pi; \ r) \ \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{\pi}{6}, \$$

$$\pm \frac{5\pi}{6}, \pm \frac{7\pi}{6}. \quad 27.57. \quad a) \quad 2\pi n, \quad \frac{\pi}{2} + 2\pi n; \quad 6) \quad \frac{\pi}{4} + (-1)^n \arcsin \frac{\sqrt{2}}{4} + \pi n.$$

$$27.59. \quad a) \quad 2 \arctan \frac{1}{2} + 2\pi n; \quad -2 \arctan \frac{1}{3} + 2\pi n; \quad 6) \quad 2 \arctan 2 + 2\pi n; \quad -2 \arctan \frac{3}{4} + 2\pi n.$$

$$27.60. \quad a) \quad \frac{1}{3}; \quad 6) \quad -3. \quad 27.61. \quad a) \quad -\frac{\pi}{9} + \frac{\pi n}{3} < x < \frac{\pi}{9} + \frac{\pi n}{3}; \quad 6) \quad -\frac{4\pi}{3} + 4\pi n < x <$$

$$< \frac{4\pi}{3} + 4\pi n. \quad 27.62. \quad a) \quad \frac{5\pi}{24} + \frac{\pi n}{2} < x < \frac{13\pi}{24} + \frac{\pi n}{2}; \quad 6) \quad -\frac{2\pi}{3} + 4\pi n < x < \frac{2\pi}{3} +$$

$$+ 4\pi n. \quad 27.63. \quad a) \quad \frac{\pi}{4} + \frac{\pi n}{2}; \quad 6) \quad \frac{\pi}{20} + \frac{\pi n}{5}; \quad B) \quad \frac{\pi n}{3}; \quad r) \quad -\frac{3\pi}{8} + \frac{3\pi n}{2}. \quad 27.64. \quad a) \quad 2; \quad -1;$$

$$6) \quad 3; \quad -1. \quad 27.65. \quad a) \quad 4\frac{1}{8}; \quad 1; \quad 6) \quad 2; \quad -4. \quad 27.66. \quad a) \quad 2\frac{1}{8}; \quad -4; \quad 6) \quad 4; \quad -2\frac{1}{8}.$$

$$28.7. \ a) \ 2 \sin \left(\frac{t}{2} - \frac{\pi}{6}\right) \cdot \sin \left(\frac{t}{2} + \frac{\pi}{6}\right); \ 6) \ 2 \sin \left(\frac{t}{2} + \frac{\pi}{6}\right) \cdot \cos \left(\frac{t}{2} - \frac{\pi}{6}\right);$$
 B) $4 \cos \left(\frac{t}{2} - \frac{\pi}{6}\right) \cdot \cos \left(\frac{t}{2} + \frac{\pi}{6}\right);$ r) $\sqrt{2} \sin \left(t + \frac{\pi}{4}\right)$. $28.8. \ a) \ 4 \sin 6x \cos^2 \frac{x}{2};$ 6) $4 \cos x \cos^2 \frac{3x}{2}$. $28.9. \ a) \ 4 \cos t \cos \frac{t}{2} \sin \frac{5t}{2};$ 6) $-4 \sin t \sin 2t \cos 5t.$ $28.14. \ a) -1;$ 6) $-1;$ B) $-\sqrt{3};$ r) $-1.$ $28.15. \ a)$ 5; 6) $-\frac{3}{4}$. $28.16. \ a)$ 1,5; 6) 0,5. $28.17. \ a)$ $\frac{1}{2};$ 6) $4.$ $28.23. \ a)$ $\frac{a}{b};$ 6) $-\frac{a}{b}$. $28.26. \ a)$ $\frac{\pi}{2} + \pi n,$ $\frac{\pi}{4} + \frac{\pi n}{2};$ 6) $\frac{\pi n}{8};$ B) $\frac{\pi n}{2},$ $\frac{\pi n}{3};$ r) $\frac{\pi n}{7},$ $\frac{\pi}{20} + \frac{\pi n}{10}.$ $28.27. \ a)$ $\frac{\pi n}{2},$ $\pm \frac{2\pi}{3} + 2\pi n;$ 6) $\frac{\pi n}{4},$ $(-1)^n \frac{\pi}{6} + \pi n.$ $28.28. \ a)$ $\frac{\pi}{10} + \frac{2\pi n}{5};$ 6) $\frac{\pi}{2} + \frac{2\pi n}{3};$ B) $\frac{\pi}{40} + \frac{\pi n}{10};$ $\frac{\pi}{20} + \frac{\pi n}{5};$ r) $\frac{\pi}{6} + \frac{2\pi n}{3}.$ $28.29. \ a)$ $\frac{\pi}{16} + \frac{\pi n}{8},$ $\frac{\pi}{4} + \frac{\pi n}{2};$ 6) $\frac{\pi}{6};$ B) $\frac{\pi}{8} + \frac{\pi n}{4},$ $\frac{\pi}{6} + \frac{\pi n}{3};$ r) $\frac{\pi}{4} + \frac{\pi n}{2},$ $\frac{\pi}{8} + \frac{\pi n}{4}.$ $28.30.$ a) $\frac{2\pi n}{7},$ $\frac{2\pi n}{3};$ 6) $\frac{\pi}{14} + \frac{\pi n}{7}.$ $28.31.$ a) $\frac{\pi}{6},$ $n \neq 3 + 6k;$ 6) $\frac{\pi}{8} + \frac{\pi n}{4};$ B) $\frac{\pi n}{2};$ r) $\frac{\pi}{2} + \pi n,$ $\pi + 2\pi n.$ $28.32.$ a) $\frac{\pi}{2} + \pi n,$ $-\frac{\pi}{8} + \frac{\pi n}{2};$ 6) $\frac{\pi}{4} + \frac{\pi n}{3};$ 28.33. a) 3; 6) 2. $28.34.$ a) $\frac{\pi}{2},$ $\frac{\pi}{9},$ $\frac{\pi}{9},$ $\frac{\pi}{3},$ $\frac{4\pi}{9},$ $\frac{5\pi}{9},$ $\frac{2\pi}{3},$ $\frac{7\pi}{9};$ 6) $\frac{\pi}{4},$ $\frac{\pi}{2},$ $\frac{3\pi}{4}.$ 28.35. a) $\frac{\pi}{4} + \frac{\pi n}{2}.$ 28.36. a) $-\frac{5\pi}{4} + 2\pi n < x < \frac{\pi}{4} + 2\pi n;$ 6) $-\frac{\pi}{3} + \pi n < x < \frac{\pi}{3} + \pi n.$

$$29.4. \ a) \ \frac{1}{4} (\sin 24^{\circ} - \sin 4^{\circ} + \sin 12^{\circ} + \sin 8^{\circ}); \ 6) \cos 35^{\circ} - \cos 45^{\circ} + \cos 5^{\circ} - \cos 15^{\circ}. \ 29.5. \ a) \ \frac{1}{4} (\sin (x + y - z) + \sin (x + z - y) + \sin (y + z - z) + \sin (x + z - y)) + \cos (x + y - z) + \cos (x + z - y) + \cos (x + z - z) + \cos (x + y - z) + \cos (x + z - y) + \cos (x + z - z) + \cos (x + y + z) + \cos (x + y - z) + \cos (x + z - y) + \cos (y + z - z - x) + \cos (x + y + z) + \cos (x + y - z) + \cos (x + z - y) + \cos (y + z - z - x) + \cos (x + y - z) + \cos (x + z - y) + \cos (y + z - z - x) + \cos (x + y - z) + \cos (x + z - y) + \sin (y + z - z - x) + \cos (x + z - y) + \sin (y + z - z - x) + \sin (x + z - y) + \sin (x + z - y) + \sin (x + z - y) + \cos (x + z - z) +$$

6)
$$\begin{cases} x = \pm \frac{\pi}{3} + \pi n, \\ y = \pi k. \end{cases}$$
 29.27. a) $y_{\text{HAM6}} = \frac{3}{4}$, $y_{\text{HARM}} = -\frac{1}{4}$; 6) $y_{\text{HAM6}} = \frac{1}{4}$, $y_{\text{HAMM}} = -\frac{3}{4}$.

30.4. а)
$$3\sqrt{3}\sin\left(t+\frac{\pi}{4}+\varphi\right)$$
, где $\varphi=\arcsin\frac{5\sqrt{3}}{9}$; б) $6\sin\left(t-\frac{\pi}{4}+\varphi\right)$, где $\varphi=\arcsin\frac{\sqrt{34}}{6}$. 30.5. а) -1; б) -2; в) 1; г) 1. 30.6. а) -2; 2; б) -2; 2; в) $-\sqrt{2}$, $\sqrt{2}$; г) $-2\sqrt{2}$, $2\sqrt{2}$. 30.7. а) [-5; 5]; б) [-13; 13]; в) [-25; 25]; г) [-17; 17]. 30.8. а) Нет; б) нет; в) да; г) нет. 30.10. а) $-\sqrt{5}$ - 1, $\sqrt{5}$ - 1; б) 4; 30; в) -10; 0; г) 15; 40. 30.11. а) -4; 4; б) -3; 3. 30.12. а) 7; б) -42. 30.13. а) 16; б) 11,5. 30.14. а) -23; б) 15. 30.15. а) $2\pi k$, $\frac{2\pi}{3}$ + $2\pi k$;

6)
$$\frac{\pi}{4} + 2\pi k$$
; B) $\frac{2\pi}{3} + 2\pi k$, $\pi + 2\pi k$; r) $\frac{\pi}{2} + 2\pi k$, $\pi + 2\pi k$. 30.16. a) $(-1)^k \frac{\pi}{8} - \frac{\pi}{12} + \frac{\pi k}{2}$; 6) $(-1)^k \frac{\pi}{15} + \frac{\pi}{20} + \frac{\pi k}{5}$; B) $\frac{2\pi}{3} + 4\pi k$, $-2\pi + 4\pi k$; r) $6\pi k$, $\frac{3\pi}{2} + 6\pi k$. 30.17. a) $\frac{\pi}{2} + \arccos \frac{4}{5} + 2\pi k$; 6) $(-1)^k \frac{\pi}{12} - \frac{1}{2} \arccos \frac{3}{5} + \frac{\pi k}{2}$; B) $\pi + \arccos \frac{5}{13} + 2\pi k$; r) $\pm \frac{2\pi}{3} - 2 \arccos \frac{5}{13} + 4\pi k$. 30.18. a) $-\frac{\pi}{4} + 2\pi k$, $\frac{\pi}{4} + \frac{2\pi k}{5}$; 6) $\frac{\pi}{6} + \frac{\pi k}{2}$, $\frac{2\pi}{3} + \pi k$; B) $\frac{\pi}{16} + \frac{\pi k}{2}$, $\frac{\pi}{24} + \frac{\pi k}{3}$; r) $\frac{\pi}{6} + \pi k$, $\frac{\pi}{9} + \frac{\pi k}{3}$. 30.19. a) $-\frac{\pi}{66} + \frac{\pi k}{11}$, $\frac{\pi}{9} + \frac{\pi k}{6}$; 6) $\frac{1}{4} \arccos \frac{5}{13} + \frac{\pi k}{2}$, $\frac{\pi}{2} - \frac{1}{2} \arccos \frac{5}{13} + \pi k$. 30.20. a) $\frac{7\pi}{6} + 2\pi k$; 6) $2\pi k$, $-\frac{2\pi}{3} + 2\pi k$. 30.21. a) $\frac{5\pi}{6}$; 6) $\frac{\pi}{4}$. 30.22. a) $2\pi k < x < \frac{2\pi}{3} + 2\pi k$; 6) $\arcsin \frac{4}{5} - \frac{7\pi}{6} + 2\pi k < x < \arcsin \frac{4}{5} + \frac{\pi}{6} + 2\pi k$. 30.23. a) $a > 7$; $a < -6$; 6) $a > \sqrt{6}$; $a < -\sqrt{6}$. 30.26. a) $a > \frac{1}{2}$; $a < -\frac{1}{2}$; 6) $a \le 2$.

$$31.1. \text{ a)} - \frac{1}{2} + \frac{\pi}{4} + \pi n; \text{ 6)} \frac{\pi}{4} - 2 + \pi n, \frac{\pi}{8} - \frac{1}{2} + \frac{\pi n}{2}. \quad 31.2. \text{ a)} \frac{\pi}{10} (1 + 2n);$$

$$6) \frac{\pi n}{5}. \quad 31.3. \text{ a)} \frac{\pi}{2} + \pi n; \pm \frac{\pi}{3} + 2\pi n. \quad 31.4. \text{ a)} \frac{\pi}{7} + \frac{2\pi}{7} n, \frac{\pi}{13} + \frac{2\pi}{13} n;$$

$$6) \frac{\pi}{4} + \frac{\pi n}{2}, \quad (-1)^n \frac{\pi}{18} + \frac{\pi n}{3}. \quad 31.5. \text{ a)} - \operatorname{arctg} \frac{4}{3} + \pi n; \text{ 6)} - \operatorname{arctg} 2, 5 + \pi n.$$

$$31.6. \text{ a)} \frac{\pi}{8} (1 + 2n), \pm \frac{\pi}{3} + \pi n; \text{ 6)} \frac{\pi}{16} + \frac{\pi n}{8}; \pm \frac{\pi}{6} + \frac{\pi n}{2}. \quad 31.7. \text{ a)} \frac{\pi}{6} (1 + 2n),$$

$$\frac{\pi}{3} + \frac{2\pi n}{3}; \text{ 6)} \frac{\pi}{4} (1 + 2n); \frac{\pi}{10} (1 + 2n). \quad 31.8. \quad 45^\circ + 180^\circ n. \quad 31.9. \frac{\pi}{4} + \frac{\pi n}{2}.$$

$$31.10. \text{ a)} \pi n; \pm \frac{1}{2} \arccos(-0,7) + \pi n; \text{ 6)} \frac{\pi}{2} + \pi n; \pm \frac{1}{2} \arccos\frac{5}{7} + \pi n.$$

$$+ \pi n. \quad 31.11. \text{ a)} \arctan 2,5 + 2\pi n, \pi - \arctan 2,5 + 2\pi n, \pi + \arctan 2 \frac{1}{8} + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,6 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,1 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,6 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,1 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,6 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,1 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,6 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,1 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,6 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,1 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,2 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,1 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,2 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,1 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,2 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,2 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,2 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,2 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,2 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,2 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,2 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + \arctan 2,2 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,2 + 2\pi n, \pi - \arctan 2,2 + 2\pi n, \pi + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n; \text{ 6)} \arctan 2,2 + 2\pi n,$$

$$-\arctan 2 \frac{5}{8} + 2\pi n;$$

$$31.13. \oslash . 31.14. a) \pm \frac{1}{2} \arccos \left(-\frac{3}{4} \right) + \pi n, \pm \frac{\pi}{3} + \pi n; 6) \pm \frac{\pi}{6} + \pi n, \pm \frac{1}{2} \arccos \frac{1}{4} + \pi n. 31.15. a) \frac{\pi}{4} + \frac{\pi}{2}n; -\frac{\pi}{2} + 2\pi n. 31.16. a) \frac{\pi}{4} + \pi n, (-1)^n \frac{1}{2} \arcsin \frac{\sqrt{5} - 1}{2} + \frac{\pi}{2}n. 31.17. a) \pi + 2\pi n, 2 \arctan \frac{3}{2} + 2\pi n. 31.18. a) \arctan \frac{3 \pm \sqrt{6}}{3} + \pi n; 6) \frac{\pi}{2}n, \frac{1}{2} \arctan 2 + \frac{\pi}{2}n. 31.19. \frac{\pi}{4} + \pi n. 31.20. a) 2\pi n, -\frac{\pi}{2} + 2\pi n. 31.21. a) \frac{\pi}{2} + 2\pi n, \pi + 2\pi n; 6) \frac{\pi}{4} \pm \arccos \frac{\sqrt{2}}{10} + 2\pi n. 31.22. -\frac{\pi}{4} + \pi n, \frac{\pi}{4} \pm \arccos \frac{\sqrt{2} - \sqrt{10}}{4} + 2\pi n. 31.23. a) 3\pi n, \pm \frac{\pi}{4} + \frac{3\pi}{2}n; 6) \frac{\pi}{2} + \pi n; \pm \frac{1}{2} \arccos \left(-\frac{1}{4} \right) + \pi n. 31.24. a) \frac{\pi}{72} + \frac{\pi n}{9}, -\frac{\pi}{32} + \frac{\pi n}{4}. 31.25. a) -1 - \arccos \frac{3}{5} + 2\pi n; 6) 1,5 + \frac{1}{2} \arccos \frac{8}{17} \pm \frac{\pi}{6} + \pi n. 31.26. a) -\frac{\varphi}{6} - \frac{\pi}{36} + \frac{\pi}{3}n, \frac{\varphi}{8} + \frac{5\pi}{48} + \frac{\pi}{4}n, \operatorname{rge} \varphi = \arccos \frac{3}{5}. 31.27. \frac{\pi}{12} + \frac{\pi}{3}n. 31.28. \pm \frac{2\pi}{3} + 2\pi n. 31.39. \frac{\pi}{2} + 2\pi n, \operatorname{rge} n = \pm 1, \pm 2, \pm 3, \dots; (-1)^n \frac{\pi}{6} + \pi h, \operatorname{rge} h = \pm 1, \pm 2, \pm 3, \dots; 6) \frac{\pi}{2} + 2\pi n, \operatorname{rge} n = \pm 1, \pm 2, \pm 3, \dots; (-1)^n \frac{\pi}{6} + \pi h, \operatorname{rge} h = \pm 1, \pm 2, \pm 3, \dots; (11)^n \frac{\pi}{6} + \pi h. 31.38. \pi h. 31.39. \frac{\pi}{4} + 2\pi h. 31.40. \pm \frac{\pi}{2}; \pm 3.31.41. a) 0, \pm 1, \pm 2, \pm \frac{5}{2}; 6) \pm 1, \pm 3, \pm \frac{7}{2}. 31.42. a) -1, 5, \pi, \frac{2\pi}{3}, \frac{4\pi}{3}; 6) -2, 0, 1, -\frac{\pi}{3}. 31.43. 2\pi n, -\frac{\pi}{4} + \pi n. 31.44. a) (-1)^n \frac{\pi}{18} + \pi n, (-1)^n \frac{5\pi}{18} + \pi n, (-1)^n \frac{7\pi}{18} + \pi n, \pi n; 6) (-1)^n \frac{\pi}{4} + \pi n, \frac{5\pi}{12} + 2\pi n. 31.45. a) \pm \frac{\sqrt{11}}{6}, \pm \frac{\sqrt{155}}{6}, \pm \frac{\sqrt{179}}{6}; 6) \pm \frac{\sqrt{47}}{3}, \pm \frac{\sqrt{59}}{3}. 31.46. a) 2 \pm \sqrt{3}. 31.47. a) 2\pi n, -\arctan 6 + 2\pi n; 6) -\frac{\pi}{2} + 2\pi n, \pi n; 6) (-1)^n \frac{\pi}{4} + \pi n, \frac{5\pi}{12} + 2\pi n. 31.45. a) \pm \frac{\pi}{6}, \pm \frac{\sqrt{155}}{6}, \pm \frac{\sqrt{179}}{6}; 6) \pm \frac{\sqrt{47}}{3}, \pm \frac{\sqrt{59}}{3}. 31.46. a) 2 \pm \sqrt{3}. 31.47. a) 2\pi n, -\arctan 6 + 2\pi n; 6) -\frac{\pi}{2} + 2\pi n. 31.47. a) 2\pi n, -\arctan 6 + 2\pi n; 6) -\frac{\pi}{2} + 2\pi n. 31.49. a) 2\pi n, -\arctan 6 + 2\pi n; 6) -\frac{\pi}{2} + 2\pi n. 31.49. a) 2\pi n, -\arctan 6 + 2\pi n; 6) -\frac{\pi}{2} + 2\pi n. 31.49. a) 2\pi n, -\arctan 6 + 2\pi n; 6) -\frac{\pi}{2} + 2\pi n. 31.49. a) 2\pi n, -\arctan$$

 $\pi + \arctan \frac{1}{4} + 2\pi n. \ 31.48. \ a) \pm \frac{\sqrt{81}}{6}, \ \pm \frac{\sqrt{155}}{6}, \ \pm \frac{\sqrt{179}}{6}; \ 6) \pm \frac{\sqrt{47}}{3}, \ \pm \frac{\sqrt{59}}{3}.$

1, -i, -1, i, 1, -i; 6) -i; B) 1; r) 0. 32.11. a) $z_1 + z_2 = 2 - i$, $z_1 - z_2 = 3i$; 6) $z_1 + z_2 = -1 + 3i$, $z_1 - z_2 = 5 - i$; B) $z_1 + z_2 = 15$, $z_1 - z_2 = -15 - 2i$; r) $z_1 + z_2 = -34 - 14i$, $z_1 - z_2 = -2 + 16i$. 32.12. a) (4 - n) + (n - 3)i. 6) -11 + 12i; B) -130 + 150i; r) -651 + 682i. 32.14. a) 0.5; 6) 0.1; B) -0.1: г) таких a не существует. 32.15. a) 1+3i; б) 1-14i; в) 1-5i; г) 34-21i. 32.16. а) -2; б) 0; в) 0,125; г) таких a не существует. 32.17. а) 1; б) $\frac{13}{6}$; B) 1,5; r) $\frac{1}{12}$. 32.18. a) a = 3, b = 2; 6) a = 3, b = 2; B) a = 4, b = -1; r) a = 2, b=1. 32.23. a) 2; б) 16i; в) на 1-м, 5-м, 9-м, ... местах; г) на 3-м, 7-м, 11-м, ... местах. 32.24. а) -i; б) -1 - i; в) -i; г) i. 32.25. а) -2; б) 0; в) -2i; r) 0. 32.26. a) $\frac{-20+28i}{65}$; 6) 0,6. 32.27. a) -1-i; 6) -i; B) 0,5 + 0,5i; r) i - 1. 32.28. a) a = -0.25, b = 0; 6) a = -1, b = 0; B) a = 0.2, b = -0.48; r) a = 0.56, b = -0.24. 32.29. a) 1 + 2i; 6) 1; B) 3i; r) 2 + 2i. 32.30. 6) -44. **32.31.** a) 0; б) 1; $-\frac{4}{5}$: **32.32.** a) $\overline{z} = -i$; $z\overline{z} = 1$; \overline{z} : z = -1; б) $\overline{z} = i$; $z\overline{z} = 1$; $\overline{z}:z=-1; \ {}_{\mathbf{B}}) \ \overline{z}=3+7i; \ z\overline{z}=58; \ \overline{z}:z=\frac{-20+21i}{29}; \ {}_{\mathbf{F}}) \ \overline{z}=-5+6i; \ z\overline{z}=61;$ $\overline{z}: z = \frac{-11-60i}{61}$. 32.33. a) z = -2i; $z\overline{z} = 4$; $z: \overline{z} = -1$; 6) z = 3i; $z\overline{z} = 9$; $z:\overline{z}=-1;$ B) z=1+i; $z\overline{z}=2;$ $z:\overline{z}=i;$ r) z=-1-3i; $z\overline{z}=10;$ $z:\overline{z}=10;$ = -0.8 + 0.6i. 32.34. a) $\frac{5-3i}{17}$; 6) $\frac{16-30i}{289}$; B) $\frac{5+3i}{17}$; r) $\frac{2+8i}{17}$. 32.35. a) $\frac{17+7i}{13}$; 6) $\frac{-55+37i}{13}$; B) $\frac{1+5i}{2}$; P) $-\frac{1-15i}{4}$. 32.36. a) $z_1=i$; $z_2 = 3$; 6) $z_1 = 1$; $z_2 = 2i$; B) $z_1 = 1 + i$; $z_2 = 3 + 2i$; r) $z_1 = 2 - i$; $z_2 = 2 + 3i$. 32.37. а) 2; -2; б) $\sqrt{5}$ + i; $-\sqrt{5}$ + i; в) таких корней нет; г) $\frac{3+i}{\sqrt{2}}$. 32.38. а) -2; 6) -1 - i; B) 0; F) $\frac{1 - \sqrt{2} + i}{\sqrt{2}}$. § 33 33.8. 6) 45° ; B) $3 \cdot 3 = 9$; r) z^3 M z^7 . 33.15. 6) 0.6; r) -0.5. 33.16. 6) $\frac{5}{3}$;

32.6. a) i; 6) -32i; B) 2; r) 0. **32.8.** a) -2i; 6) $\sqrt{2i}$; B) 18i; r) 0. **32.9.** a) i.

б) -1 - i; в) 0; г) $\frac{1 - \sqrt{2} + i}{\sqrt{2}}$.

§ 33

33.8. б) 45°; в) $3 \cdot 3 = 9$; г) z^3 и z^7 . 33.15. б) 0,6; г) -0,5. 33.16. б) $\frac{5}{3}$; г) -2. 33.17. б) y = 0,5(9 - x); в) -5 + 7i; г) -7 + 8i. 33.18. б) $y = x^2 - 3x + 2$; в) 15; г) 13. 33.19. б) $y = \frac{3}{x - 1}$; в) $z_6 = 7 + 0,5i$; г) $z_2 = 3 + 1,5i$. 33.20. а) ± 1 ; б) нет решений; в) 1; г) -1. 33.21. а) $\pm i$; б) нет решений; в) i; г) -i.

33.22. а) 0; б) 0; в) 0; г) любое действительное или чисто мнимное число. 33.23. а) 2-0.5i; б) 7-i; в) 3+7i; г) 5-2i.

§ 34

34.3. a)
$$|z_1| = 13$$
, $|z_2| = 5$; 6) $z_1 z_2 = 56 + 33i$, $|z_1 z_2| = 65$; b) $\frac{1}{z_1} = \frac{12 + 5i}{169}$;

r)
$$\frac{z_1}{z_2} = \frac{16 - 63i}{25}$$
 · 34.5. a) 6; 6) $2\sqrt{5}$; B) 7; r) $5\sqrt{2}$. 34.8. a) 1; 6) 2; B) 3; r) 4.

34.9. a) 1; 6) 3; b) 3; r) 4. **34.11.** a)
$$z = \cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)$$
; 6) $z = \cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{\pi}{4}\right)$

+
$$i \sin \left(-\frac{2\pi}{3}\right)$$
; B) $z = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$; r) $z = \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}$. 34.12. a);

6)
$$z = \cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)$$
; b) $z = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}$; r) $z = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}$.

34.13. a)
$$z = \cos(-0.8\pi) + i\sin(-0.8\pi)$$
; 6) $z = \cos(-0.3\pi) + i\sin(-0.3\pi)$;

B)
$$z = \cos \pi + i \sin \pi$$
; r) $z = \cos \left(-\frac{2\pi}{3}\right) + i \sin \left(-\frac{2\pi}{3}\right)$. 34.15. a) $-\frac{\pi}{4}$; 6) $-\frac{\pi}{3}$;

B)
$$\frac{3\pi}{4}$$
; r) $-\frac{\pi}{2}$. 34.21. a) 5 (cos 0 + i sin 0); 6) 3 $\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right)$;

B)
$$8(\cos \pi + i \sin \pi)$$
; r) $0.5 \left(\cos \left(-\frac{\pi}{2}\right) + i \sin \left(-\frac{\pi}{2}\right)\right)$.

34.22. a)
$$4\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$$
; 6) $\sqrt{2} \left(\cos \left(-\frac{\pi}{4}\right) + i \sin \left(-\frac{\pi}{4}\right)\right)$;

B)
$$2\sqrt{2}\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$$
; r) $2\sqrt{2}\left(\cos\left(-\frac{3\pi}{4}\right)+i\sin\left(-\frac{3\pi}{4}\right)\right)$.

34.23. a)
$$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
; 6) $2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$;

B)
$$6\left(\cos\left(-\frac{\pi}{6}\right)+i\sin\left(-\frac{\pi}{6}\right)\right)$$
; r) $4\left(\cos\left(-\frac{5\pi}{6}\right)+i\sin\left(-\frac{5\pi}{6}\right)\right)$.

34.24. a)
$$8\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$$
; 6) $2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$;

B)
$$4\left(\cos\left(-\frac{2\pi}{3}\right)+i\sin\left(-\frac{2\pi}{3}\right)\right)$$
; r) $\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)$.

34.25. a)
$$5 (\cos (-\arccos 0.6) + i \sin (-\arccos 0.6));$$

$$6) \ 13 \left(\cos \left(\arccos \left(-\frac{5}{13} \right) \right) + i \sin \left(\arccos \left(-\frac{5}{13} \right) \right) \right);$$

B) $10 (\cos (\arccos 0.6) + i \sin (\arccos 0.6));$

r)
$$17\left(\cos\left(-\arccos\left(\frac{15}{17}\right)\right) + i\sin\left(-\arccos\left(\frac{15}{17}\right)\right)\right)$$
.

 $\begin{array}{l} \textbf{34.26. a)} & \cos{(-55^\circ)} + i \sin{(-55^\circ)}; \ \textbf{6}) \ \cos{113^\circ} + i \sin{113^\circ}; \ \textbf{8}) \ \cos{130^\circ} + \\ & + i \sin{130^\circ}; \ \textbf{r}) \ \cos{110^\circ} + i \sin{110^\circ}. \ \textbf{34.27. a)} \ 2 \sin{50^\circ} (\cos{40^\circ} + \\ & + i \sin{40^\circ}); \ \textbf{6}) \ 2 \sin{\frac{2\pi}{7}} \Big(\cos{\frac{2\pi}{7}} + i \sin{\frac{2\pi}{7}} \Big); \ \textbf{B}) \ 2 \sin{\frac{3\pi}{11}} \Big(\cos{\frac{3\pi}{11}} + i \sin{\frac{3\pi}{11}} \Big); \end{array}$

r) $2 \sin 125^{\circ} (\cos (-35^{\circ}) + i \sin (-35^{\circ}))$. 34.28. a) $2.5(-\sqrt{3} + i)$; 6) $0.5(1 + i\sqrt{3})$;

B)
$$2.5(-1+i\sqrt{3});$$
 r) $\frac{\sqrt{2}}{2}(-1+i)$. 34.29. a) $2i;$ 6) $-5i\sqrt{2};$ B) $3(\sqrt{3}+i);$

r)
$$i\sqrt{3}$$
. 34.30. a) $-\sqrt{3} + i$; 6) $-5i$; b) $40i$; r) $\sqrt{3} + i$. 34.33. a) π ; 6) $-\frac{3\pi}{4}$;

B)
$$\frac{\pi}{2}$$
; r) $-\frac{\pi}{2}$. 34.34. a) $-\frac{\pi}{2}$; 6) $\frac{\pi}{2}$; B) $-\frac{\pi}{4}$; r) π . 34.35. a) $-\frac{5\pi}{6}$; 6) $-\frac{\pi}{2}$; B) $\frac{\pi}{2}$;

r) 0. 34.36. a)
$$-\frac{\pi}{2}$$
; 6) π ; B) $\frac{5\pi}{6}$; r) $\frac{5\pi}{6}$. 34.40. a) 3; 6) 5; B) 8; r) 10.

34.41. а) $1 + \frac{1}{\sqrt{3}}i$; б) $1 + i\sqrt{3}$. 34.42. а) Круг радиуса 1 с центром в 3 + 4i, |z| = 6 — наибольшее значение; б) круг радиуса 1 с центром в 4 - 3i, |z| = 4 — наименьшее значение.

§ 35

35.1. a) 4; б) a < 4; в) a > 4; г) a < 0. 35.2. a) $|a| \ge 6$; б) -6 < a < 6; в) a > 6; г) -10 < a < -6. 35.3. a) a = 1 или a = 0; б) a < 0; в) a < 0; г) $a = -16 - 8\sqrt{5}$. 35.4. a) $\pm 12i$; б) $\pm 2i$; в) $\pm 21i$; г) $\pm 32i$. 35.5. a) $z^2 + 1 = 0$; б) $z^2 - 14z + 53 = 0$; в) $z^2 + 49 = 0$; г) $z^2 - 2z + 2 = 0$. 35.6. a) $z^2 + 4 = 0$; б) $z^2 - 2z + 10 = 0$; в) $64z^2 + 1 = 0$; г) $z^2 + 648^2 = 0$. 35.8. a) $0.5 \pm 1.5i$; б) $-1.5 \pm 2.5i$; в) $2.5 \pm 0.5i$; г) $-5.5 \pm 2.5i$. 35.9. a) 2; б) 10; в) ± 4 ; г) -7; 3. 35.10. a) a = -4; б) a = 4; в) $a = \pm 3$; г) a = -4 или a = 2. 35.11. a) ± 2 ; б) $\pm 2i$; в) $\pm \frac{3\sqrt{2}}{2}(1 + i)$; г) $\pm \frac{5\sqrt{2}}{2}(1 - i)$. 35.12. a) $\pm (2 - i)$; б) $\pm (2 + i)$; в) $\pm \frac{3 - i}{\sqrt{2}}$; г) $\pm \frac{5 + i}{\sqrt{2}}$. 35.13. a) $\pm (4 + i)$; б) $\pm (4 - i)$; в) $\pm \frac{7 - i}{\sqrt{2}}$; г) $\pm \frac{9 + i}{\sqrt{2}}$. 35.17. a) $z^2 - 3z + (3 + i) = 0$; б) $z^2 + (i - 5)z + (8 - i) = 0$; в) $z^2 - 8z + (11 + 12i) = 0$; г) $z^2 + (i - 9)z + (40 - 9i) = 0$. 35.18. a) $z_1 = 0$, $z_2 = 2i$; б) $z_1 = 0$, $z_2 = -4i$; в) $z_1 = 2 - i$, $z_2 = 1 + i$; г) $z_1 = 7 - 2i$, $z_2 = 1 + 2i$. 35.19. a) 1 + 2i; б) 30i; в) 1 + 6i; г) -89 + 120i. 35.20. a) a = 4i; б) a = -4.5i; в) a = -13 - 13i; г) $a = \frac{40 - 21i}{13}$.

36.2. a) Het; б) нет; в) да; г) да, **36.3.** a) z, z^2 , z^3 , z^4 , z^5 ; б) z, z^2 , z^8 , z^9 , z^{10} ; B) z, z^{2} ; r) z^{3} , z^{4} , z^{5} , z^{8} , z^{9} , z^{10} . 36.4. a) z^{3} , z^{4} ; 6) z, z^{2} , z^{3} , z^{4} , z^{5} , z^{6} , z^{7} , z^{8} ; B) z, z^2 , z^{10} ; r) z^9 , z^{10} . 36.5. a) z^1 , z^2 , z^3 , z^4 , z^5 ; б) z, z^2 , z^9 , z^{10} ; B) z^2 , z^3 , z^4 , z^5 , z^{6} , z^{7} ; r) z^{5} , z^{6} , z^{7} , z^{8} , z^{9} , z^{10} . 36.6. a) z^{3} , z^{4} ; 6) z, z^{2} ; B) z, z^{2} , z^{9} , z^{10} ; r) z^{10} . **36.8.** a) -4; 6) -8*i*; B) -32*i*; r) -1024. **36.9.** a) -8; 6) $16(1-i\sqrt{3})$; B) $-64(\sqrt{3}+i)$; r) -512i. 36.10. a) -i; 6) $0.5(\sqrt{3}+i)$; B) $-0.5(1+i\sqrt{3})$; r) 1. 36.11. a) $-\frac{1}{4}$; 6) $\frac{1}{8}i$; B) $\frac{1}{32}i$; r) $-\frac{1}{1024}$. 36.12. a) -0.125; 6) $2^{-6}(1+i\sqrt{3})$; B) $2^{-8}(-\sqrt{3}+i)$; r) $2^{-9}i$. 36.13. a) 128; 6) -i; B) $-32\sqrt{3}$; r) 1. 36.14. a) -64i; б) i. 36.15. a) 3; б) 8; в) 10; г) 10. 36.16. a) 17; б) 34; в) 100; г) 200. **36.17.** a) 6; б) 11; в) 20; г) 0. **36.18.** a) 101; б) 200; в) 4; г) 0. **36.19.** a) z^4 , z^8 , z^{12} ; 6) z^7 , z^8 , z^9 ; B) z^3 , z^4 , z^5 , z^{11} , z^{12} ; r) z^9 , z^{10} , z^{11} . 36.20. a) $4.2(-1+\sqrt{3i})$, $-2(1+i\sqrt{3})$; 6) 1,5 $(1+i\sqrt{3})$, -3, 1,5 $(1-i\sqrt{3})$; B) 2,5 $(\sqrt{3}+i)$, 2,5 $(-\sqrt{3}+i)$, -5i; r) $4(\sqrt{3}-i)$, $-4(\sqrt{3}+i)$, 8i. 36.23. a) -i, $0.5(\pm\sqrt{3}+i)$, $-2.1\pm i\sqrt{3}$;

6) $\pm\sqrt{2}(1+i)$, $\pm i\sqrt{2}$. 36.24. a) -4; 1; 6) -9; 1. § 37 **37.12.** a) 1,5; 3; 4,5; 6; 7,5; 9; $a_n = 1,5n$; 6) -1; 1; -1; 1; -1; $a_n = (-1)^n$; B) 8; 4; $2\frac{2}{3}$; 2; 1,6; $a_n = \frac{8}{n}$; r) 1; -2; 3; -4; 5; $a_n = (-1)^{n+1} n$. **37.19.** a) 7, 12, 17, 22, 27; 6) 102. **37.20.** a) 1027; 6) 3^5 , 3^8 , 3^{37} , 3^{2n} , 3^{2n+1} , 3^{2n-3} . 37.21. a) $a_n = 4n - 2$; $a_1 = 2$, $a_n = a_{n-1} + 4$; 6) $a_n = 13n + 5$; $a_1 = 18$; $a_n = a_{n-1} + 13$; B) $a_n = 21n$; $a_1 = 21$, $a_n = a_{n-1} + 21$; r) $a_n = 30n$; $a_1 = 30$, $a_n = a_{n-1} + 30$. 37.22. a) $a_n = -n$; б) $a_n = 6n$; в) $a_n = 11 - n$; г) $a_n = 4n$. 37.23. a) 3^n ; б) $(n+2)^2$; в) n^3 ; г) n^3+1 . 37.24. a) $\frac{1}{2^{n-1}}$; б) $\frac{2n+1}{2n+2}$; в) $\frac{1}{n^3}$; r) $\frac{1}{(2n+1)(2n+3)}$: 37.25. a) $a_n = \frac{3^n}{2^{2n}}$; 6) $a_n = \frac{2n-1}{(\sqrt{2})^n}$; B) $a_n = \frac{(-1)^{n+1}n^2}{\sqrt{n(n+1)}}$; r) $a_n = \frac{(-1)^{n+1}(5n-1)}{n(n+1)(n+2)}$ · 37.27. a) 2; 6) 5; B) 13; r) 45. 37.28. a) $P_n = (\sqrt{2})^{n-1}$ 4; 4; $4\sqrt{2}$; 8; $8\sqrt{2}$; 16; 6) $S_n = (\sqrt{2})^{2n-2}$; 1; 2; 4; 8; 16; B) 32; r) 65 536. 37.29. a) 1; б) 4. 37.30. a) 6; б) 5. 37.31. б) 11; в) 4. 37.32. a) 6; б) 124; B) 6; r) 55. 37.33. a) -6; -4; 6) $-22\frac{5}{8}$; -181; B) -1; r) Het. 37.34. a) 3; 6) 10; 327 в) 4; г) 29. 37.35. а) -428; б) -128. 37.36. а) 19; б) 16. 37.37. а) 2; б) 62;

B) 15; r) 1. 37.38. a) 17; б) -81; B) 19; r) 1. 37.39. a) $y_2 = -5$; б) $y_3 = -3$;

B) $y_2 = -3$; r) $y_1 = -\frac{4}{5}$. 37.40. a) $y_3 = 13$; 6) $y_3 = 3$; B) $y_1 = 5$; r) $y_1 = \frac{4}{5}$.

37.41. а) Нет; б) да; в) нет; г) да. 37.42. а) Да; б) да; в) да; г) да. 37.43. а) Да;

6) Her; B) p (a) p (b) p (c) p (d) p (e) p (e) p (e) p (f) p

б) p — любое. 37.46. a) $p \le -2$; б) $-3 \le p \le 3$. 37.47. a) $p \le 0$; б) $p \ge -1$.

37.50. а) Убывает; б) не является монотонной; в) убывает; г) возрастает.

37.51. а) Убывает; б) возрастает; в) не является монотонной; г) убывает. 37.54. а) Возрастает; б) убывает; в) убывает; г) возрастает. 37.55. а) p > 0;

6) p > 1; B) p < 0; F) p < -2. 37.56. a) p > 0; 6) p < 0; B) p < 0; F) p < 0;

37.57. а) Ограничена, возрастает; б) неограничена, возрастает; в) ограничена, убывает; г) ограничена, убывает. 37.58. а) Возрастает, ограничена;

б) убывает, ограничена. 37.59. a) $y_n = n^2$; б) $y_n = n^2 + 5$; в) $y_n = \frac{n^2}{n^2 - 5}$;

 \mathbf{r}) $y_n = -n$.

§ 38

38.4. а) Да; б) нет; в) нет; г) да. 38.5. а) 6; б) 3; в) 15; г) 31. 38.6. а) 4; б) 7; в) 8; г) 5. 38.7. а) y=0; б) y=0; в) y=0; г) y=0. 38.8. а) y=-1; б) y=2; в) y=2; г) y=-3. 38.9. а) y=2; в) y=-3. 38.10. а) Нет; б) нет; г) нет. 38.14. а) 0; б) 6; в) 0; г) -4. 38.15. а) 0; б) 0; в) 0; г) 0.

38.16. a) 5; 6) 7; B) 3; r) $\frac{2}{3}$: **38.17.** a) 2; 6) 1; B) -1; r) -2. **38.18.** a) 2; 6) 12;

B) 6; r) -2. 38.19. a) 7; 6) 0; B) 1; r) 0. 38.20. a) 1; 6) $\frac{1}{2}$. 38.21. a) $-\frac{1}{2}$; 6) $\frac{1}{2}$.

38.27. a) $2\frac{2}{9}$; 6) -0.128; b) -0.022; r) $3\frac{1}{9}$. **38.28.** a) 12.5; 6) $-8\frac{2}{3}$; b) 22.5;

r) 36. 38.29. a) $41\frac{2}{3}$; 6) $\frac{2}{27}$. 38.30. a) $b_1 = 12$; q = 0.5; 6) $\frac{1}{625}$. 38.31. a) $b_1 = 12$;

 $q = \frac{1}{3}$; 6) $1\frac{1}{3}$. 38.32. a) 4; 6) $57\frac{1}{6}$; B) 0,9; r) 156,25. 38.33. a) -5,4;

6) $\frac{3}{2}\sqrt{3}(\sqrt{3}+1)$; B) $38\frac{1}{9}$; r) $4\sqrt{2}(\sqrt{2}+1)$. 38.34. a) 111; 6) 2500 $\frac{2}{7}$;

B) 396,25; r) 1717 $\frac{1}{9}$. 38.35. a) $\frac{\sin x}{1-\sin x}$; 6) $\frac{\cos x}{1+\cos x}$; B) $\cot^2 x$; r) $\frac{1}{1+\sin^3 x}$.

38.36. a) 0,8; 6) 0,3. **38.37.** a) $\frac{1}{3}$; $\frac{2}{3}$; 6) $\frac{1}{2}$; $-\frac{7}{9}$. **38.38.** a) $(-1)^k \arcsin \frac{5}{6} + \pi k$,

 $k \in {\bf Z};$ б) нет корней; в) $\pm \frac{\pi}{6} + \pi k, \ k \in {\bf Z}; \ {\bf r}) \pm \frac{\pi}{3} + 2\pi k, \ k \in {\bf Z}.$

§ 39

39.13. a) 0; 6) -2; B) 0; r) 6. 39.14. a) 1; 6) 1,5; B) 1; r)
$$1\frac{1}{6}$$
 39.15. a) 0;

б) 0; в) 0; г) 0. 39.16. а)
$$-\frac{1}{5}$$
; б) 1; в) $-\frac{2}{3}$; г) 0. 39.17. а) 4; б) 2; в) 3; г) 2.

39.24. a) 3; 6)
$$\frac{1}{4}$$
; b) 1; r) $\frac{7}{9}$. 39.25. a) 0; 6) 0,2; b) 0,5; r) -0,2. 39.26. a) $\frac{4}{3}\pi$;

6) 1; B)
$$\frac{\pi}{2}$$
; r) -2. 39.27. a) 0; 6) -1; B) 3; r) 0,2. 39.28. a) 2; 6) -4; B) 10;

r)
$$-\frac{1}{6}$$
: 39.29. a) 4; 6) $\frac{1}{7}$; B) $-\frac{1}{4}$; r) 7. 39.30. a) $\frac{1}{12}$; 6) 1,5; B) $\frac{1}{27}$; r) $\frac{1}{6}$.

39.31. a) 1; б) 0; в) 1; г) 0. 39.32. a)
$$\frac{1}{18}$$
; б) 0; в) 12; г) 0. 39.33. a) $\frac{1}{2}$; б) $\frac{2}{3}$.

39.37. a)
$$-\frac{\sqrt{2}}{2}$$
; 6) 0,5; B) $\frac{\sqrt{2}}{2}$; r) -0,5. **39.38.** a) 0,2; 6) -0,1; B) 0,1; r) 0,05.

39.40. a) 0,5; б)
$$-0,66$$
; в) 1,5; г) 0,74. **39.41.** a) $3\Delta x$; б) $-2x\Delta x - (\Delta x)^2$;

B)
$$-2\Delta x$$
; r) $4x\Delta x + 2(\Delta x)^2$. 39.42. a) 0,1; 6) -0 ,1; B) 0,5; r) -0 ,5. 39.44. a) k ;

6)
$$2ax + a\Delta x$$
; B) $\frac{-1}{x(x + \Delta x)}$; F) $\frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}$. 39.45. a) k ; 6) $2ax$; B) $-\frac{1}{x^2}$;

$$\Gamma$$
) $\frac{1}{2\sqrt{x}}$.

§ 40

40.4. a) 4; 6)
$$2t - 1$$
; B) 3; r) $2t - 2$. **40.9.** a) $2x + 2$; 6) $-\frac{1}{x^2}$; B) $6x - 4$;

г)
$$-\frac{4}{x^2}$$
. 40.10. a) $\frac{1}{2\sqrt{x}}$; б) $\frac{-2}{x^3}$; в) $\frac{1}{2\sqrt{x}}$; г) $3x^2$. 40.11. a) Не существует;

б) 0; в) не существует; г) 2. 40.12. а) Не существует; б) 0; в) 0; г) 0. 40.14. а) 4;

- $\hbox{6)} -1; \hbox{ b)} -4; \hbox{ r)} -4. \ 40.15. \hbox{ a)} \ 2 \hbox{ m/c}, \ 2 \hbox{ m/c}^2; \hbox{ f)} \ 4,2 \hbox{ m/c}, \ 2 \hbox{ m/c}^2; \hbox{ b)} \ 4 \hbox{ m/c}; \ 2 \hbox{ m/c}^2;$
- $\label{eq:condition} \mbox{r) } 7 \mbox{ m/c}, \mbox{ 2 m/c}^2, \mbox{ 40.16. a) } 3 \mbox{ m/c}, \mbox{ 2 m/c}^2; \mbox{ 6) } 5,2 \mbox{ m/c}; \mbox{ 2 m/c}^2; \mbox{ B) } 5 \mbox{ m/c}, \mbox{ 2 m/c}^2; \\ \mbox{ 2 m/c}^2; \mbox{ 3 m/c}, \mbox{ 2 m/c}^2; \mbox{ 6) } 5,2 \mbox{ m/c}; \mbox{ 2 m/c}^2; \mbox{ 8) } 5 \mbox{ m/c}, \mbox{ 2 m/c}^2; \\ \mbox{ 6) } 5,2 \mbox{ m/c}; \mbox{ 2 m/c}^2; \mbox{ 8) } 5 \mbox{ m/c}, \mbox{ 2 m/c}^2; \\ \mbox{ 6) } 5,2 \mbox{ m/c}; \mbox{ 8) } 5 \mbox{ m/c}; \mbox{ 8) } 5 \mbox{ m/c}; \\ \mbox{ 9) } 5 \mbox{ m/c}; \mbox{ 9) } 5 \mbox{ m/c}; \\ \mbox{ 9) } 5 \mbox{ m/c}; \mbox{ 9) } 5 \mbox{ m/c}; \\ \mbox{ 9) } 5 \$
- г) 8 м/c, 2 м/c².

§ 41

41.15. a)
$$2 + \frac{3}{x^2}$$
; 6) $42 + \frac{1}{x^2}$; B) $40 + \frac{2}{x^2}$; r) $27 + \frac{2}{x^2}$. **41.16.** a) $3x^2 \cdot \lg x + \frac{1}{x^2}$

+
$$\frac{x^3}{\cos^2 x}$$
; 6) $-\cos x - \frac{\cos x}{\sin^2 x}$; b) $-\frac{\cot x}{x^2} - \frac{1}{x \sin^2 x}$; г) $\sin x + \frac{\sin x}{\cos^2 x}$.

41.17. a)
$$3x^2$$
; 6) $3x^2$; b) $3x^2$; r) $3x^2$. 41.18. a) $\frac{x^2(x+3)}{(x+2)^2}$; 6) $-\frac{2x}{(x^2-1)^2}$; b) $\frac{2x(3-2x)}{(3-4x)^2}$; r) $\frac{1-x^2}{(x^2+1)^2}$. 41.19. a) $\frac{3(9-2x)}{2\sqrt{x}(2x+9)^2}$; 6) $\frac{x\cos x - \sin x}{x^2}$; b) $-\frac{3x+8}{\sqrt{x}(8-3x)^2}$; r) $\frac{-x\sin x - \cos x}{x^2}$. 41.20. a) $\frac{6x^9+9}{x^4}$; 6) $\frac{5x^{14}(x^{10}+3)}{(x^{10}+1)^2}$; b) $-\frac{4x^5+5x^4+1}{(x^5-1)^2}$; r) $\frac{x^{12}(9x^4-26)}{(x^4-2)^2}$. 41.21. a) $-\sin x$; 6) $\cos x$; b) 0; r) $-\frac{1}{2}\cos x$. 41.22. a) $\cos x$; 6) $\cos x$; b) $-\sin x$; r) $-\sin x$. 41.29. a) $-\frac{4}{\pi^2}$; 6) -2 ; b) $\frac{1}{\pi^2}$; r) 2. 41.32. a) $x<-1$ if $x>1$; 6) $0< x<1$; if $x>0$; r) $2\pi n \le x \le \pi+2\pi n$. 41.34. a) 14; 6) $\frac{3\sqrt{2}}{4}$; b) 72; r) $\sqrt{2}-4$. 41.35. a) 0; 6) 0. 41.36. a) -1; 1; he cymectryet; 6) he cymectryet; he cymectryet; 0. 41.39. a) $\frac{1}{16}$; 6) $\frac{1}{4}$. 41.40. a) $\pm \frac{3}{4}\pi + 2\pi k$; 6) $-\frac{\pi}{2} + 2\pi k$. 41.43. a) π ; 6) 0; b) $2\frac{1}{3}$; r) $-\frac{5+3\sqrt{3}}{6}$. 41.44. a) $x=2$; 6) $x=0$; $x=-4$. 41.45. a) $x<0$; $x>2$; 6) $0< x<4$; b) $x<0$; $0< x<\frac{3}{4}$; r) $\frac{\pi}{3}+\pi n< x<\frac{\pi}{2}+\pi n$; $\frac{\pi}{2}+\pi n< x<\frac{2\pi}{3}+\pi n$. 41.46. a) $\frac{\pi}{2}+2\pi n$; $\frac{\pi}{2}+\pi n< x<\frac{2\pi}{3}+\pi n$. 41.46. a) $\frac{\pi}{2}+2\pi n$; $\frac{\pi}{2}+\pi n<1$ and $\frac{\pi}{2}+2\pi n$; $\frac{\pi}{2}+\pi n<1$ and $\frac{\pi}{2}+2\pi n$. 41.47. a) $\frac{\pi}{2}=\frac{\pi}{3}$; 6) $\frac{\pi}{2}=1$, $\frac{\pi}{2}=1$. 41.48. a) $\frac{1}{49}$; 6) $\frac{1}{16}$. 41.49. a) $x>\frac{3}{4}$; 6) $-\sqrt{3}< x<-\sqrt{2}$; $\sqrt{2}< x<\sqrt{3}$. 41.50. a) $\frac{\pi}{4}+\pi k< x<\frac{3}{4}\pi+\pi k$; 6) $-\frac{5\pi}{6}+2\pi k< x<-\frac{\pi}{6}+2\pi k$. 41.51. a) $-\frac{3}{4}< x<0$, $x>0$; 6) $x<\frac{2}{5}$; $x>\frac{2}{5}$. 41.52. a) $-\pi+2\pi n< x<\frac{\pi}{2}+\pi n$; 6) $2\pi n< x<\pi+2\pi n$. 41.55. a) 1; 16; 6) $\sqrt[3]{4}$, 41.54. a) $\frac{\pi}{2}+\pi n$; $\frac{\pi}{2}+\pi n<0$ and $\frac{\pi}{4}+\pi k<0$ and $\frac{$

3, ...;
$$k = 0$$
, -1 , -2 , -3 , ... 41.59. a) $x^3 + x^2$; 6) $\frac{7}{x}$; в) $x^5 - x$; г) $9\sqrt{x}$.

41.60. a) $y = \frac{x^3}{3} - 3x$; 6) $y = \begin{cases} -x^2 - 4x$, если $x < -2.5$, $\frac{1}{7}x^2 + \frac{12}{7}x$, если $x < 1$, (вершины $\frac{1}{3}x^2 + \frac{8}{3}x$, если $x > 1$

ломаной не учтены). 41.61. a) $-\frac{\pi}{4} + \pi k$, πn ; 6) $\frac{1}{2}$. 41.62. a) $a + b = -2$; 6) $a = 0$, $b = -2$. 41.63. a) $a + + b = -1$; 6) $a = \frac{1}{4}$, $b = -\frac{5}{4}$. 41.64. a) $12x^2$; 6) $20x^3$; в) $-\sin x$; г) $-2\cos x$. 41.65. a) 12 ; 6) 0 ; в) -4 ; г) -1 . 41.66. a) 9 м/с²; 6) 9 кгм/с². 41.67. a) $-\arctan x$ 6) $\pm \frac{\pi}{3} + 2\pi n$. 41.68. a) $y'' = 2\cos x - x\sin x$; 6) $y'' = -a\sin x - b\cos x$. 41.69. a) $y = \tan x$ 7. 41.68. a) $y'' = 2\cos x - x\sin x$; 6) $y'' = -a\sin x - b\cos x$. 41.69. a) $y = \tan x$ 6. 41.70. a) $\pm \sqrt{3}$, $\pm \frac{\sqrt{3}}{3}$; 6) $\pm \sqrt{2}$, ± 1 .

§ 42

42.4. a) $-2\sin 2x$; 6) $2\cos 2x$; b) $-6\sin 6x$; г) 0. 42.5. a) $8\cos 8x$; 6) $-10\sin 10x$; в) $4\cos 4x$; г) $-\frac{1}{6}\sin \frac{x}{6}$. 42.6. a) $-15x^2(1-x^3)^4$; 6) $\frac{3x^2 + 6x - 2}{2\sqrt{x^3 + 3x^2 - 2x + 1}}$; в) $\frac{14 - 4x}{(x^2 - 7x + 8)^3}$; г) $\frac{6x}{(x^2 + 5)\sqrt{x^2 + 5} \cdot \sqrt{x^2 - 1}}$. 42.7. a) $3\sin^2 x \cos x$; 6) $-\frac{1}{2\sin^2 x \cdot (\cot x)}$; в) $\frac{5\tan^2 x}{\cos^2 x}$; г) $\frac{1 + 3x^2}{\cos^2 (x + x^3)}$.

$$\begin{array}{c} 6) \quad \frac{3x^2+6x-2}{2\sqrt{x^3+3x^2-2x+1}}; \ \ {}_{\mathbf{B}}) \quad \frac{14-4x}{(x^2-7x+8)^3}; \ \ {}_{\mathbf{D}}) \quad \frac{6x}{(x^2+5)\sqrt{x^2+5}\cdot\sqrt{x^2-1}}. \\ 42.7. \ \ {}_{\mathbf{A}}) \quad 3\sin^2x\cos x; \ \ {}_{\mathbf{B}}) \quad -\frac{1}{2\sin^2x\sqrt{\cot g\,x}}; \ \ {}_{\mathbf{B}}) \quad \frac{5\,\mathrm{tg}^4\,x}{\cos^2x}; \ \ {}_{\mathbf{D}}) \quad \frac{1+3x^2}{\cos^2(x+x^3)}. \\ 42.8. \ \ \mathrm{a}) \quad \frac{-x}{\sqrt{1-x^2}} \quad -3\cos^2x\sin x; \ \ \mathrm{b}) \quad \frac{x^2+1-2x\sin 2x}{2(x^2+1)^2\sqrt{\mathrm{tg\,x}\cos^2x}}; \ \ \mathrm{b}) \sin 2x\cos \sqrt{x} \quad -\frac{\sin^2x\sin\sqrt{x}}{2\sqrt{x}}; \ \ \mathrm{r}) \quad -\frac{x\sqrt{\mathrm{tg\,x}}+6\sin^2x\sqrt{\cot g\,x}}{2x^4\sin^2x}. \quad 42.9. \ \ \mathrm{a}) \quad 3\cdot7^7; \ \ \mathrm{b}) \quad -1\frac{1}{8}; \ \ \mathrm{b}) \quad -35; \\ \mathrm{r}) \quad 0,7. \quad 42.10. \ \ \mathrm{a}) \quad 2; \ \ \mathrm{b}) \quad 4; \ \ \mathrm{b}) \quad -2; \ \ \mathrm{r}) \quad 3. \quad 42.11. \ \ \mathrm{a}) \quad -7; \ \ \mathrm{b}) \quad \frac{3}{16}; \ \ \mathrm{b}) \quad -1\frac{1}{4}; \ \ \mathrm{r}) \quad \frac{3}{16}. \\ 42.12. \ \ \mathrm{a}) \quad 6; \ \ \mathrm{b}) \quad \frac{3\sqrt{3}}{2\pi}; \ \ \mathrm{b}) \quad 0; \ \ \mathrm{r}) \quad -4. \quad 42.13. \ \ \mathrm{a}) \quad 10; \ \ \mathrm{b}) \quad 1,75; \ \ \mathrm{b}) \quad -\frac{48}{361}; \ \ \mathrm{r}) \quad -\frac{5}{8}. \\ 42.14. \ \ \mathrm{a}) \quad 0; \ \ \mathrm{b}) \quad -\sqrt{3}; \ \ \mathrm{r}) \quad -\frac{4}{9}. \quad 42.15. \ \ \mathrm{a}) \quad 2; \ \ \mathrm{b}) \quad 5; \ \mathrm{r}) \quad \frac{\sqrt{2}}{4}. \quad 42.16. \ \ \mathrm{a}) \quad 4\pi; \\ \ \mathrm{b}) \quad -\frac{1}{2} \quad \sqrt{2(\sqrt{2}-1)}; \ \ \mathrm{b}) \quad 0; \ \ \mathrm{r}) \quad 0. \quad 42.17. \ \ \mathrm{a}) \quad \frac{\pi}{2} + \pi k, \ (-1)^{n+1} \arcsin \frac{1}{4} + \pi k; \\ \ \mathrm{b}) \quad \frac{\pi}{12} + \frac{\pi k}{6}; \ \ (-1)^{k+1} \quad \frac{1}{6} \ \arcsin \frac{1}{4} + \frac{\pi k}{6}; \ \ \mathrm{b}) \quad \frac{\pi k}{2}; \ \ \mathrm{r}) \ \ \mathrm{Takux} \ \ \mathrm{3havehu hu her.} \\ \ 42.18. \ \ \mathrm{a}) \ \ \mathrm{Takux} \ \ \mathrm{3havehu hu her.} ; \ \mathrm{b}) \quad -\frac{\pi}{2} + \pi n < x < \frac{\pi}{4} + \pi n. \quad 42.19. \ \mathrm{a}) -8; \ \mathrm{b}) \quad -1 \quad \frac{1}{8}; \ \ \mathrm{b}$$

в)
$$-0,5$$
; г) 1. 42.20 . а) $\pm \frac{3}{8}\pi + \pi n$; б) $(-1)^{n+1}\frac{\pi}{12} + \frac{\pi n}{2}$. 42.21 . а) $x = \pi n$; б) $\frac{\pi}{2}n$; $(-1)^n\frac{\pi}{6} + \pi n$, $(-1)^{n+1}\frac{\pi}{6} + \pi n$. 42.22 . а) $\frac{\pi}{6}$, $\frac{\pi}{2}$; б) $\frac{2\pi}{3}$, π , $\frac{4\pi}{3}$. 42.23 . а) $a = 2$, $b = 0$; б) $a = 2.5$, $b = 0.75$. 42.24 . а) $\frac{\pi n}{2}$; б) πn ; в) $\frac{\pi n}{2}$; г) $\frac{\pi n}{2}$, $-\frac{\pi}{4} + \pi n$. 42.25 . а) $\frac{1}{3}$, $x \geqslant \frac{17}{42}$; б) $-9,1 \leqslant x \leqslant -1,5$. 42.26 . а) $\frac{1}{2} \leqslant x \leqslant 5\frac{1}{6}$; б) $x \leqslant -\frac{4}{5}$, $x \geqslant \frac{4}{3}$. 42.28 . а) $\frac{12-\pi}{8} + \frac{\pi k}{2}$; б) 9. 42.29 . а) $2\frac{2}{3}$; б) $\frac{5\pi}{24} + \frac{\pi k}{4}$. 42.30 . а) $(2x-1)^3 + C$; б) $(4-5x)^4 + C$, где C — любое число. 42.31 . а) $\frac{1}{2x+3} + C$; б) $\sqrt{5x-7} + C$, где C — любое число. 42.32 . а) $-\frac{1}{3}\cos\left(3x-\frac{\pi}{3}\right) + C$; б) $\frac{4}{5}$ tg $(5x-1) + C$, где C — любое число. 42.33 . а) $\frac{3}{\sqrt{1-9x^2}}$; б) $\frac{2x}{1+x^4}$; в) $\frac{-3(\arccos x)^2}{\sqrt{1-x^2}}$; г) $-\frac{1}{2\sqrt{x}(1+x)}$. 42.34 . а) $-\frac{3\pi^2}{4}$; б) 1; в) 1; г) 2. 42.35 . а) -3 ; б) $\frac{2\sqrt{3}}{3}$; в) -2 ; г) $-\frac{1}{\sqrt{2\pi}}$. 42.36 . а) 3; б) $\frac{\pi}{2}$. 42.37 . а) 0; б) нет таких значений. 42.38 . а) $-\frac{1}{2} \leqslant x \leqslant \frac{1}{2}$; б) $0 \leqslant x \leqslant 1$.

§ 43

43.6. а) 1; б) -0,5; в) -8; г) 0. 43.7. а) 27; б) 0; в) 6; г) -1. 43.8. а) -4; б) -1; в) -103,2; г) 1. 43.9. а) -4, 0, 6; б) 2, 0, 4; в) -3, $\frac{\sqrt{5}}{2}$, $\frac{1}{2}$; г) $-\frac{\sqrt{2}}{4}$, нет, 1. 43.10. а) -5, 0, 7; б) -2, 0, 0. 43.11. а) -5, 0, 3; б) -6, 0, -2. 43.12. а) (1; 15); в) (0; 0), $\left(\frac{4}{3}; \frac{4}{27}\right)$; г) $\left(\frac{2\sqrt{7}}{7}; \frac{8\sqrt{7}}{7}\right)$, $\left(-\frac{2\sqrt{7}}{7}; \frac{8\sqrt{7}}{7}\right)$. 43.13. а) (0; 0); б) (0; -1); в) $\left(-1; 3 - \frac{\pi}{4}\right)$, $\left(1; 3 + \frac{\pi}{4}\right)$. 43.21. а) 0; б) π — arctg 7; в) arctg 2; г) касательной не существует. 43.23. а) y = 7x - 10; б) y = -3x - 10; в) y = 5x - 17; г) $y = -x + \frac{5}{4}$. 43.24. а) y = 3x - 4; б) y = -x + 4. 43.25. а) y = 1; б) $y = \frac{\pi}{2} - 2x$; в) y = 1; г) $y = \frac{2}{3}x$. 43.26. а) $y = \frac{\pi}{2} - x$; б) y = -x; в) $y = 2,5x + 0,5 + \frac{\pi}{2}$; г) y = x - 5 arctg 2. 43.27. а) $y = \frac{3\sqrt{3}}{4}x + \frac{\pi}{8}$ — $\frac{\pi\sqrt{3}}{16}$; б) $y = \frac{6}{\pi}x + 2 - \frac{2}{\pi}$; в) $y = -2x + \frac{1}{2} + \frac{\pi}{4}$; г) $y = \pi$.

43.28. a) y = -2x - 4; b) y = 5x - 16; b) y = 2x + 1; r) y = 5x + 9. **43.29.** a) y = -6x + 18, y = 6x + 18; b) y = 27x - 81; b) y = -4x, y = 8x + 16, y = 8x - 16; r) y = 0, y = -x + 1. 43.30. a) y = 5x - 16; y = -5x - 1; 6) y = x - 4, y = -x + 9. 43.31. a) x = 1; 6) $x = -\frac{1}{4}$; B) $x = \frac{3}{8}$; r) x = -0.5. **43.32.** a) $y = x - \frac{8}{3}$, $y = x - \frac{4}{3}$; 6) y = 9x - 20, y = 9x + 16. **43.33.** a) y = 2x + 16 $+\frac{\pi}{3}-\sqrt{3}$, $y=2x-\frac{\pi}{3}+\sqrt{3}$; 6) y=x. 43.34. a) x=3; 6) $x_1=0$, $x_2=\sqrt{2}$, $x_3 = -\sqrt{2}$; B) x = 1; r) $x_1 = 0$, $x_2 = 0.6$. 43.35. a) $x = \pi + 2\pi n$; 6) $x = \frac{\pi}{3}n$; B) $x = \pi n$; r) $x = \pi + 2\pi n$. 43.36. a) $\frac{\pi}{4} + \pi n$; 6) 0; B) $\frac{\pi}{2} + \pi n$; r) 0. **43.37.** a) y = -x, $y = 20\frac{5}{6} - x$; 6) $y = 1\frac{1}{3} - x$; y = -x. **43.38.** a) y = 14 - x, y = -x - 2; 6) y = -x - 5, y = -x - 9. 43.39. a) y = -x - 11; 6) y = 1 - x. **43.40.** a) $y = \frac{\pi}{2} - x$; 6) $y = \frac{\pi}{2} - x$. **43.41.** a) $x_1 = 0$, y = x + 1, $x_2 = 2$, y = x - 3; 6) $x_1 = -3$, y = -x - 1, $x_2 = -1$, y = -x + 3. 43.42. a) $y = \sqrt{3}x - \frac{16\sqrt{3}}{2}$, $y = \sqrt{3}x + \frac{16\sqrt{3}}{3}$; 6) $y = \frac{\sqrt{3}}{3}x - \frac{2\sqrt{3}}{3}$, $y = \frac{\sqrt{3}}{3}x + \frac{2\sqrt{3}}{3}$. 43.43. a) (0; 1), -8, y = 2x; 6) y = 2x, y = -2x; 9 y = 4x - 3, y = -4x - 3; y = 1, y = -4x - 3. **43.46.** a) y = 8 - 7x, y = -11x + 12; 6) y = -9x + 9, y = -5x + 9. **43.47.** a) y = -0.1x + 2.8, y = -0.5x + 2; 6) y = -0.5x + 2. **43.48.** a) y = 2x - 1, y = 0.4x + 2.2; 6) y = x + 1, $y = \frac{1}{3}x + \frac{5}{3}$. 43.49. a) $a = \frac{\pi}{4}n$, $a = \frac{\pi}{6} + \frac{\pi}{3}n$; 6) $a = \frac{\pi}{10} + \frac{\pi n}{5}$, $a = \frac{\pi}{4} + \frac{\pi}{2}n$. 43.50. a) y = 3 - 2x; 6) $y = \frac{1}{4}x + \frac{3}{4}$. **43.51.** a) y = 3x - 2; 6) $y = \frac{27}{4}x + \frac{27}{4}$. **43.52.** a) B(0; 3,5); 6) y = x - 3, y = -x - 3. 43.53. a) B(0; 0); 6) $y = -\frac{\sqrt{3}}{3}(x - 1)$, $y = \frac{\sqrt{3}}{3}(x + 1)$. **43.54.** a) $\left(-\frac{3}{4}; -25\right)$; 6) (17; 204). **43.55.** a) p = 0.5; 6) p = -1. **43.56.** a) (1; -1); б) не является. 43.57. a) $\frac{6}{7}$; б) $\frac{4}{5}$. 43.58. a) a = 2; б) a = 0. 43.59. a) 1;

6) $1 + \sqrt{3}$. 43.60. a) $\frac{\pi}{4}$; 6) $-\frac{\pi}{10}$. 43.61. a) -1; 6) 4. 43.62. a) y = x; 6) (0; -4).

43.63. a) arctg 3; 6) $\frac{\pi}{2}$, arctg $\frac{3}{4}$. **43.65.** a) $\left[0; \frac{\sqrt{6}}{3}; 6\right]$; 6) $y = -\frac{1}{4}$. **43.66.** a) -1; 2;

б) 10. 43.67. a) 5; б) 9. 43.68. a) b=2; c=-3; б) a=3; b=-5; c=2. 43.69. $S=2a^2$. 43.70. $y=2ax-a^2$ — уравнение касательной, $x=\frac{a}{2}$ — абсцисса точки пересечения.

§ 44

44.31. a) $a \ge 0$; б) $-\sqrt{5} \le a \le \sqrt{5}$. **44.32.** a) $a \ge 1$; б) $a \le -4$. **44.33.** a) $b \le -\frac{1}{3}$; б) $b \le 0$; в) ни при каких b; г) $b \ge 0$. **44.34.** a) -2; 6) $-2.5 < a \le -1.5$; $a \ge 1.5$; B) 2; r) $a \le -0.5$; $a \ge 3.5$. 44.35. a) $a \le -1$; $a \ge 2$: б) $a \le -1.5$; $a \ge 1$. 44.36. a) b, d; б) c; в) a, 0; г) нет таких точек. 44.37. a) e: б) a, b; в) b, c; г) a, b, c, d, e. 44.38. а) При $a = \pm 3;$ б) при $a = \pm 5.$ 44.45. а) Да; б) нет; в) нет; г) нет. 44.48. а) $x = \frac{7}{4}$, точка минимума; б) x = -2.5 точка максимума; в) $x = \frac{3}{4}$ — точка минимума; г) x = -2 — точка максимума. 44.49. а) x = 2 — точка максимума, x = 3 — точка минимума; б) x = -3 — точка максимума, x = 3 — точка минимума; в) $x = -\frac{1}{2}$ точка максимума, x = 5 — точка минимума; г) x = 7 — точка минимума, x = 0 — точка максимума. 44.50. a) x = -0.6 — точка максимума, x = 0.6 точка минимума; б) x = -1, x = 4 — точки минимума, x = 0 — точка максимума; в) x = -5, x = 5 — точки минимума, x = 0 — точка максимума; г) x = -3 — точка максимума, x = 1 — точка минимума. **44.51**. a) x = -2 точка максимума, x = 2 — точка минимума; б) x = -3 — точка максимума, x = 3 — точка минимума. **44.52**. a) x = 3 — точка минимума; б) x = 2 точка максимума; в) x = 8.5 — точка максимума; г) x = 1.4 — точка максимума. 44.53. а) $x=-\frac{\pi}{6}$ — точка минимума, $x=-\frac{5\pi}{6}$ — точка максимума; б) $x = \frac{5\pi}{3}$ — точка минимума, $x = \frac{7}{3}\pi$ — точка максимума. **44.54.** а) x = -3 — точка максимума, x = 3 — точка минимума; б) x = -3 точка максимума; в) x = 0 и x = 3 — точка минимума; x = 2 — точка максимума; г) нет таких точек. 44.55. а) x = 0 — точка минимума; б) нет; в) x = 0 — точка максимума; г) нет. **44.56.** а) $y' = (x + 2)^2 \ge 0$ при всех x; 6) $y' = -x^2 + 3x - 3 < 0$ при всех x; в) $y' = x^4 + x^2 + 1 > 0$ при всех x; г) $y' = -5x^4 - 3x^2 \le 0$ при всех x. 44.57. a) 8; $x = -\frac{7}{16}$ — точка минимума; 6) -2; $x = \frac{7}{4}$ — точка максимума; в) -1; x = 3.5 — точка максимума; г) a = -0.1; x = 35 — точка максимума. **44.58**. а) Нет; б) x = 0 — точка максимума; $x = \frac{1}{3}$ x = 2 — точки минимума; x = 2 — точка минимума. **44.59**. a) Возраста- $_{\rm eT}$ на $\left[-\frac{\pi}{3}+2\pi n;\,\frac{\pi}{3}+2\pi n\right]$, убывает на $\left[\frac{\pi}{3}+2\pi n;\,\frac{5\pi}{3}+2\pi n\right]$, $x=-\frac{\pi}{3}$ + $x_{+} = 2\pi n$ — точки минимума, $x_{-} = \frac{\pi}{3} + 2\pi n$ — точки максимума; б) убывает на $\left[\frac{7\pi}{6} + 2\pi n; \frac{11\pi}{6} + 2\pi n\right]$, возрастает на $\left[-\frac{\pi}{6} + 2\pi n; \frac{7}{6}\pi + 2\pi n\right]$, $x = -\frac{\pi}{6}$ + $_{+}$ $2\pi n$ — точки минимума, $x=\frac{7}{6}\pi+2\pi n$ — точки максимума; в) убывает на $\left[\frac{\pi}{4} + 2\pi n; \frac{3\pi}{4} + 2\pi n\right]$, возрастает на $\left[-\frac{5\pi}{4} + 2\pi n; \frac{\pi}{4} + 2\pi n\right]$, $x = \frac{\pi}{4}$ + $x^{2}+2\pi n$ — точки максимума, $x=rac{3}{4}\pi+2\pi n$ — точки минимума; г) возрастает на R. 44.60. a) Убывает на $\left[-\frac{\pi}{6} + \pi n; \frac{\pi}{6} + \pi n\right]$, возрастает на $\left[\frac{\pi}{6} + \pi n; \frac{5\pi}{6} + \pi n\right], \ x = \frac{\pi}{6} + \pi n$ — точки минимума, $x = -\frac{\pi}{6} + \pi n$ — точки максимума; б) убывает на $\left\lceil \frac{\pi}{3} + 4\pi n; \frac{5\pi}{3} + 4\pi n \right\rceil$, возрастает $\left[-\frac{7\pi}{3}+4\pi n; \frac{\pi}{3}+4\pi n\right], x=\frac{\pi}{3}+4\pi n$ — точки максимума, $x=\frac{5\pi}{3}+4\pi n$ точки минимума. 44.61. a) Убывает на $(-\infty; 3]$, возрастает на $[3; +\infty)$, x=3 — точка минимума; б) возрастает на ($-\infty$; 0) и на [1; $+\infty$), убывает на (0; 1], x = 1 — точка минимума; в) убывает на ($-\infty$; -3] и на $\left| -\frac{1}{2}; 2 \right|$, возрастает на $\left[-3; -\frac{1}{2}\right]$ и на $[2; +\infty)$, x = -3 и x = 2 — точки минимума, $x = -\frac{1}{2}$ — точка максимума; г) возрастает на [-1; 0] и на [1; + ∞), убывает на $(-\infty; -1]$ и на [0; 1], x = -1, x = 1 — точки минимума, x = 0 — точка максимума. 44.62. а) Убывает на $(-\infty; -\sqrt{3}]$, на [-1; 0] и на $[1; \sqrt{3}]$, возрастает на $\left[-\sqrt{3}; -1\right]$, на $\left[0; 1\right]$ и на $\left[\sqrt{3}; +\infty\right)$, $x=-\sqrt{3}$, x=0, $x=\sqrt{3}$ точки минимума, x = -1, x = 1 — точки максимума; б) возрастает на $\left|-1; -\frac{1}{\sqrt{2}}\right|$, на $\left|0; \frac{1}{\sqrt{2}}\right|$ и на $[1; +\infty)$, убывает на $(-\infty; -1]$, на $\left|-\frac{1}{\sqrt{2}}; 0\right|$ и на $\left|\frac{1}{\sqrt{3}}; 1\right|$, x = -1, x = 0, x = 1 — точки минимума, $x = -\frac{1}{\sqrt{3}}$, $x = \frac{1}{\sqrt{3}}$ — точки максимума. 44.64. г) Возрастает на [-1; 1], убывает на $(-\infty; -1]$ и на $[1; +\infty)$, x=-1 — точка минимума, x=1 — точка максимума. 44.65. г) Возрастает на $(-\infty; -1]$ и на $[1; +\infty)$, убывает на [-1; 1], x=-1 — точка максимума, x=1 — точка минимума. 44.66. г) Возрастает на $(-\infty; -3]$ и на $[1; +\infty)$, убывает на [-3; 1], x=-3 — точка максимума, x=1 — точка минимума. 44.67. г) Возрастает на [-1; 1], убывает на $(-\infty; -1]$ и на $[1; +\infty)$, x=-1 — точка минимума, x=1 — точка максимума. 44.68. г) Возрастает на $(-\infty; 1,5]$, убывает на $[1,5; +\infty)$, x=1,5 — точка максимума. 44.69. а) 2; б) 1; в) 1; г) 1. 44.70. а) 0, б) 0. 44.71. а) 1; б) 2. 44.74. а) $\frac{2\pi}{3}$; б) 0.

§ 45

45.13. а) 3; б) 1; в) 3; г) 1. **45.14.** а) 1 корень, если a > -3; 2 корня, если a = -3; 3 корня, если a < -3. **45.15.** а) 3; б) -1.

§ 46

46.1. a) 255; -1; 6) 34; 1; b) 23; -4; r) 8; -154. 46.2. a)
$$y_{\text{ham6}} = 4$$
; $y_{\text{hamm}} = -23$; 6) $y_{\text{ham6}} = -9$; $y_{\text{hamm}} = -9993$; b) $y_{\text{ham6}} = 5$; $y_{\text{hamm}} = -1$; r) $y_{\text{ham6}} = 31$ 246; $y_{\text{hamm}} = 124$. 46.3. a) $y_{\text{ham6}} = -2$; $y_{\text{hamm}} = -4$; 6) $y_{\text{ham6}} = 1,5$; $y_{\text{hamm}} = -0,5$; b) $y_{\text{ham6}} = 0$; $y_{\text{hamm}} = -1$; r) $y_{\text{ham6}} = 7$; $y_{\text{hamm}} = 1$. 46.4. a) $y_{\text{ham6}} = \sqrt{2}$; $y_{\text{hamm}} = 0$; 6) $y_{\text{ham6}} = \sqrt{2}$; $y_{\text{hamm}} = 1$; b) $y_{\text{ham6}} = \sqrt{2}$; $y_{\text{hamm}} = 0$; r) $y_{\text{ham6}} = \sqrt{2}$; $y_{\text{hamm}} = 1$. 46.5. a) $y_{\text{ham6}} = 4$; $y_{\text{hamm}} = 1$; 6) $y_{\text{ham6}} = 3$. 46.6. a) $y_{\text{ham6}} = 7$; $y_{\text{hamm}} = -3$; 6) $y_{\text{ham6}} = 6$; $y_{\text{hamm}} = -4$. 46.7. a) $y_{\text{ham6}} = 24$; $y_{\text{hamm}} = 12$; 6) $y_{\text{ham6}} = 10$; $y_{\text{hamm}} = 5$; b) $y_{\text{ham6}} = 16$; $y_{\text{hamm}} = -4$. 46.7. a) $y_{\text{ham6}} = 24$; $y_{\text{hamm}} = -4$; r) $y_{\text{ham6}} = 10$; $y_{\text{ham6}} = 10$; $y_{\text{ham6}} = 10$; $y_{\text{ham6}} = 10$; $y_{\text{ham6}} = 24$; $y_{\text{hamm}} = -4$; r) $y_{\text{ham6}} = 10$; $y_{\text{ham6}} = -4$; r) $y_{\text{ham6}} = 10$; $y_{\text{ham6}} = -2$; n) $y_{\text{ham6}} = 10$; $y_{\text{ham6}} =$

$$y_{\text{HAHM}} = -\pi$$
; B) $y_{\text{HAHM}} = \sqrt{3} + \frac{\pi}{6}$; $y_{\text{HAHM}} = -\frac{\pi}{2}$; r) $y_{\text{HAHM}} = \frac{3\sqrt{3} - \pi}{3}$; $y_{\text{HAHM}} = 0$.

46.16. а) $y_{\text{наиб}}$ не существует; $y_{\text{наим}} = -\frac{5}{27}$; б) $y_{\text{наиб}}$ не существует; $y_{\text{наим}} = -1$;

в) $y_{\text{наиб}} = 0$; $y_{\text{наим}}$ не существует; г) $y_{\text{наиб}}$ не существует; $y_{\text{наим}} = 0$.

46.17. a) $y_{\text{наиб}} = -0$; $y_{\text{наим}}$ не существует; б) $y_{\text{наиб}} = \frac{\sqrt{3}}{2}$; $y_{\text{наим}} = -2$; в) $y_{\text{наиб}} = -2$; $y_{\text{наим}}$ не существует; г) $y_{\text{наиб}} = 3.5$; $y_{\text{наим}}$ не существует. 46.18. а) $y_{\text{наиб}} = 0$; $y_{\text{HAMM}} = -27$; 6) $y_{\text{HAMM}} = 0$; $y_{\text{HAMM}} = -4$; B) $y_{\text{HAMM}} = 50$; $y_{\text{HAMM}} = 0.875$; r) $y_{\text{HAMM}} = \frac{3}{8}$; $y_{\text{HAMM}} = -\frac{5}{8}$. 46.19. a) $y_{\text{HAMM}} = 21$; $y_{\text{HAMM}} = 5$; 6) $y_{\text{HAMM}} = 71$; $y_{\text{HAMM}} = -10$; B) $y_{\text{HAMM}} = 18,25$; $y_{\text{наим}} = 17$; г) $y_{\text{наиб}} = 6\frac{1}{12}$; $y_{\text{наим}} = -11\frac{1}{6}$. 46.20. a) и б) $y_{\text{наиб}} = 6$; $y_{\text{наим}} = -0.25$; B) $y_{\text{max6}} = 72$; $y_{\text{maxm}} = 16$; r) $y_{\text{max6}} = 135$; $y_{\text{maxm}} = 27$. 46.21. a) $y_{\text{max6}} = 21$; $y_{\text{наим}} = -\frac{40}{27}$; 6) $y_{\text{наиб}} = 10$; $y_{\text{наим}} = 5 - 4\sqrt{2}$. 46.22. a) $y_{\text{наиб}} = 8$; $y_{\text{наим}} = 1\frac{3}{4}$; 6) $y_{\text{Ban6}} = 17$; $y_{\text{Banm}} = -3$. 46.23. a) $y_{\text{Ban6}} = 1$; $y_{\text{Banm}} = \frac{\sqrt{2}}{2}$; 6) $y_{\text{Ban6}} = -\frac{\sqrt{2}}{4}$; $y_{\text{Banm}} = -1$. **46.24.** a) $y_{\text{Ham6}} = 0$; $y_{\text{Ham6}} = -\frac{3\sqrt{3}}{8}$; 6) $y_{\text{Ham6}} = 1$; $y_{\text{Hamm}} = -\frac{1}{8}$. **46.25.** a) $y_{\text{Ham6}} = 2$; $y_{\text{наим}}$ не существует; б) $y_{\text{наиб}} = \frac{1}{4}$; $y_{\text{наим}} = 0$; в) $y_{\text{наиб}}$ не существует; $y_{\text{наим}} = -2$; r) $y_{\text{nau6}} = 0$; $y_{\text{naum}} = -\frac{1}{4}$. **46.26.** a) -5; б) -9, 6; r) -8, 4. **46.27.** a) 5,5; б) 1; B) 5; r) 4. 46.28. a) 7; б) -0,1; B) 3; r) $\frac{2}{3}$. 46.29. a) 4; б) -1,5; B) -2; r) -2. **46.30.** a) $y_{\text{Haum}} = 5$; $y_{\text{Haum}} = 0$; б) $y_{\text{Haum}} = \frac{5}{2}\sqrt{2}$; $y_{\text{Haum}} = 0$; в) $y_{\text{Haum}} = 4$; $y_{\text{наим}} = 0$; r) $y_{\text{наиб}} = 3.5\sqrt{3}$; $y_{\text{наим}} = 0.46.31$. a) $y_{\text{наиб}}$ не существует; $y_{\text{наим}} = 0$; б) $y_{\text{ваиб}}$ не существует; $y_{\text{наим}} = 1$; в) $y_{\text{наиб}}$ не существует; $y_{\text{наим}} = 0$; г) $y_{\text{ваиб}}$ не существует; $y_{\text{ванм}} = \frac{\sqrt{2}}{2}$. 46.32. a) 2; б) 1. 46.33. a) 3; б) 3. 46.34. a) -4; 6) -0.25; B) 9; P) -16.46.35. a) $\left[-\frac{3}{2}; \frac{1}{2}\right]$; 6) $\left[-\frac{1}{2}; \frac{3}{2}\right]$. 46.36. a) $\left[-\frac{4\sqrt{6}}{9}, +\infty\right]$; 6) $\left(-\infty, \frac{\sqrt{3}}{9}\right)$. 46.37. [-3; -1]. 46.38. a) 9; 6) 15. 46.39. a) $n = -\frac{3}{4}$; 6) $n = 4 - 2\sqrt{3}$. 46.41. a) 12; 12; 6) 22; 22. 46.42. a) -5; 5; 6) -49; 49. **46.43.** a) -18; 18; 6) -14; 14. **46.44.** a) 2; 1; 6) $1\frac{1}{4}$; $3\frac{3}{4}$. **46.45.** a) 14 cm; 14 cm; 6) 18 cm, 18 cm. 46.46. a) 50 m \times 50 m; 6) 60 m \times 60 m. 46.47. a) 4 cm \times 4 cm; 6) 8 cm \times 8 cm. 46.48. a) 50 m \times 50 m. 46.49. 32 cm². 46.50. a) 0,8; 6) -4. 46.51. a) 2; 6) 1. 46.52. a) (1; 1); (-1; 1); 6) (4; 2). 46.53. 30 cm. **46.54.** a) 6000; б) 108. **46.55.** a) 21; б) 32,4. **46.56.** \sqrt{ab} . **46.57.** 3 ч 44 мин. **46.58.** 4 дм, 4 дм, 2 дм. **46.59.** 7 м, 7 м, 7 м. **46.60.** $4\sqrt[3]{5}$ м, $6\sqrt[3]{5}$ м, $6\sqrt[3]{5}$ м, $\frac{24\sqrt[3]{5}}{5}$ м. **46.61.** $\frac{d\sqrt{3}}{3}$. **46.62.** $\frac{p\sqrt{3}}{3}$. **46.63.** $\frac{p}{6}$. **46.64.** $\sqrt[3]{\frac{v}{2\pi}}$.

§ 47

47.1. а) 42; б) 20; в) 24; г) 14. 47.2. а) 42; б) 7; в) 24; г) 20. 47.3. а) 100; б) 90; в) 180; г) 90. 47.4. а) 108; б) 54; в) 84; г) 324. 47.5. а) 100 000; б) 32 768; в) 32; г) 8192. 47.6. а) 512; б) 64; в) 16; г) 192. 47.7. б) 3; в) 6; г) Эшкин будет в 4 вариантах. 47.8. б) 4. 47.9. б) 1; в) 3. 47.10. б) 8; в) 3. 47.11. а) 54; б) 5184; в) $\frac{1}{7}$; г) $\frac{5}{16}$. 47.12. а) 1; б) 0. 47.13. а) 2; б) 3; в) 6; г) 24. 47.14. а) 8; б) 15; в) 6; г) 13. 47.16. а) 7; б) 4; в) 7; г) 3. 47.17. а) $n \ge 3$; б) $n \ge 4$. 47.18. а); б); в); г) Начиная с указанного номера n, левая часть растет быстрее правой части. 47.20. а) 120; б) 288; в) 432; г) 72. 47.21. а) (6!)²; б) (5!)²; в) (6!)²; г) (6 · 5 · 4 · 3)². 47.22. а) 120; б) 14 400; в) 720; г) 2880. 47.23. а) 7!; б) 6!; в) 7! · C_7^7 = 176 400; г) 7! · C_7^3 · C_7^4 = 529 200. 47.24. а)5! · 4! · 3! = 17 280; б) 17 280; в) (5 · 4 · 3) · 4! · 3! = 8640; г) 2 177 280.

§ 48

48.1. а) 12; б) 13; в) 12; г) 15. 48.2. а)
$$\frac{n(n-1)}{2}$$
; б) $\frac{n(n-3)}{2}$; в) $n-2$; г) $\frac{(n-2)(n-3)}{2}$. 48.3. а) 110; б) 56; в) 82; г) 55; 28. 48.4. а) 100; б) 10; в) 94; г) 18. 48.8. Упростите выражение: а) $\frac{(n+1)n(n-1)}{3}$; б) $\frac{n(n-1)}{2}$. 48.9. а) $C_{17}^3 < C_{18}^4$; б) $C_{18}^4 < C_{19}^5$; в) $C_{19}^5 < C_{18}^6$; г) $C_n^7 < C_{n+1}^8$ при $n > 7$, $C_n^7 = C_{n+1}^8$ при $n = 7$. 48.10. а) 8; б) 6; в) 7; г) 4. 48.11. а) $x = 9$ или $x = 10$; б) $x = 11$. 48.12. а) 8; б) 27; в) 31; г) 7. 48.13. а) 15; б) 5; в) 8; г) 12. 48.14. а) 210; б) 35; в) 15; г) 100. 48.15. а) 32 760; б) 792; в) 120; г) 240. 48.16. а) 376 992; б) 32; в) 126; г) 504. 48.17. а) 14 112; б) 10 976; в) 7056; г) 280. 48.18. а) $y = \frac{x}{6(x-3)}$; в) 8; г) 54. 48.19. а) $y = 6x(x-1)$; в) 10; г) 33. 48.20. а) $y = 24\left(1-\frac{4}{x-1}\right)$ — монотонно возрастает; в) 23; г) 24.

г) 33. 48.20. а) $y = 24\left(1 - \frac{4}{x+2}\right)$ — монотонно возрастает; в) 23; г) 24. 48.21. а) 7; б) 8; в) 12; г) 3. 48.23. а) 8; б) 16; в) 128. 48.25. а) 108; б) -720;

B) 8; r) $-\frac{4}{9}$. 48.26. a) $10x^8$; 6) $120x^4$; B) $210x^{-2}$; r) 252. 48.27. a) 60; 6) 5;

в) 61 236; г) 24 310. 48.28. а) 10; б) 252; в) один; г) 9; 126; два. 48.29. а) k=2

или k=3; б) 8; в) k=30 или k=31; г) 500. **48.30**. б) 999 001; в) 9802; г) ука- $\frac{1}{3}$ ание: найти номер, начиная с которого $\frac{1}{q^n}=\left(1+\frac{1-q}{q}\right)^n>\frac{1}{a}$.

§ 49

49.1. а) 0,2; б) 0,077; в) 0,088; г) 0,966. 49.2. а) 0,244; б) 0,067; в) 0,044; г) 0,088. 49.3. а) 0,989; б) 0,01; в) 0,0026; г) 0,044. 49.4. а) 0,25; б) 0,25; в) 0,107; г) 0,321. 49.5. а) 0,36; б) 0,52; в) 0,04; г) 0,56. 49.6. а) 0,1; б) 0,7; в) 0,15; г) 0,75. 49.7. а) 0,04; б) 0,92; в) 0,36; г) 0,6. 49.8. а) 0,833; б) 0,833; в) 0,167; г) 0,222. 49.9. а) 10; б) 8; в) 12; г) 29. 49.10. а) 20; б) 24; в) 6; г) 48. 49.11. а) 200; б) 162; в) 100; г) 99. 49.12. а) 4; б) 8; в) 4; г) 8. 49.13. а) Это событие B; б) есть ученик, сдавший экзамен, но есть и ученик, не сдали экзамен; в) это событие B; г) это событие B. 49.14. а) Все трое не сдали экзамен; б) или все трое сдали экзамен, или все трое не сдали экзамен; в) никто не сдал экзамен; г) ни один ученик не сдал экзамен. 49.15. а) Это цифра 8; б) это цифра 9; в) это цифра 9; г) невозможное событие. 49.17. а) 0,119; б) 0,476; в) 0,476; г) 0,952. 49.18. а) $\frac{3n}{4(2n-1)}$; б) указание: постройте график функции из а); в) 0,375; г) 9.

49.19.

n	1	2	3	4	5	6	7	8	9
p(n)	<u>5</u>	<u>5</u>	$\frac{5}{14}$	$\frac{10}{63}$	$\frac{5}{126}$	0	0	0	0

49.20.

n	0	1	2	3	4	5	6
p(n)	0	$\frac{1}{3}$	8 15	<u>3</u> 5	8 15	$\frac{1}{3}$	0

49.21. a) 0,051; б) 0,338; в) 0,662; г) 0,974. **49.22.** a)
$$\frac{5n^2-7n}{4(2n-1)(2n-3)}$$
;

- б) указание: исследуйте функцию из а) на монотонность; в) 0,3125; г) 6. 49.23. а) 0,125; б) 0,125; в) 0,375; г) 0,875. 49.24. а) 0,0625; б) 0,0625;
- в) 0,25; г) 0, 9375. **49.25**. а) $1 2^{-n}$; б) возрастает; в) 1; г) 10. **49.26**. а) 0,729;
- 5) 0,271; в) 0,125; г) 0,875. **49.27**. а) $1 0.9^n$; б) возрастает; в) 1; г) 7. **49.28**. а) 0,303; б) 0,211; в) $\left(\frac{23}{33}\right)^{n-1} \cdot \left(\frac{10}{33}\right)$; г) 0.

49.29. a) $0,9^{n-1}0,1;$ б) 0;

1 2 3 4 5 6 7 n0,0531441 0,0729 0.059049 p(n)0,1 0.09 0,081 0,06561

г) 1. **49.30**. a) 0,5; б) 0,8; в) 0,6; г) 0,1.

Дополнительные задачи

7.48. а) 0; б) 4. 8.53. а) 20; б) 8. 8.54. а) 0; б) 3. 9.36. а) Нет корней; б) $x=8n,\ n\in \mathbb{Z};\ {\tt B})\ -\infty< x<+\infty;\ {\tt r})\ -4\leqslant x\leqslant -3;\ 3\leqslant x\leqslant 5.\ 9.37.\ a)\ 0,\ 0,\ 1;$ б) 6. 14.37. а) 6; б) 6. 16.73. а) 3 и 2; б) 3 и 2; в) 2 и 1; г) 1 и 2. 13.54. 2.

16.74. a) 3; 6) 3; B) 4; r) 5. **16.75.** a) -10; 6) -8; B) -6; r) 9,8. **20.30.** $x = \frac{1}{3}$.

20.31. a) 4; 6) 10. 21.63. a) 200; 6) 100; B) 50; r) 50. 21.64. a) 1; 6) 12; B) 5; r) 16. 21.65. a) 5; 6) Het kopheŭ. 22.69. a) 3; 6) 3. 23.43. a) $x = \pi n$, $x = -\frac{\pi}{4} + 2\pi n$, $x = -\arctan \left(\frac{1}{3} + 2\pi n\right)$; 6) $x = 2\pi n$, $x = -\arctan \left(\frac{3}{2} + 2\pi n\right)$.

23.44. a) $x = \frac{\pi}{3} + 2\pi n$, $x = \frac{2\pi}{3} + 2\pi n$; б) нет решений. 23.45. $x = 2\pi n$.

24.53. a) 2; б) 3; в) 8; г) 12. 27.73. a) 7; б) 9. 28.39. a) 3; б) 2; в) 2; г) 3.

30.27. 6. **30.28.** $x = \frac{\pi}{4} + 2\pi n$. **40.17.** a) -2,25; 6) 1,5. **45.16.** 0,5. **46.65.** 101.

46.66. a) 1, $-2\sqrt{2}$ - 2; 6) [-23; 9].

ОГЛАВЛЕНИЕ

П	реди	исловие для учителя	3
38	адач	и на повторение	5
		ГЛАВА 1. Действительные числа	
ç	1	Натуральные и целые числа	12
§		Рациональные числа	18
§		·	20
§		Иррациональные числа	23
§		Множество действительных чисел	23 27
§		Модуль действительного числа	32
§	0.	Метод математической индукции	32
		глава 2. Числовые функции	
§	7.	Определение числовой функции и способы ее задания	38
§	8.	Свойства функций	46
§	9.	Периодические функции	55
§	10.	Обратная функция	61
		глава 3. Тригонометрические функции	
§	11.	Числовая окружность	69
		Числовая окружность на координатной плоскости	74
§	13.	Синус и косинус. Тангенс и котангенс	77
§	14.	Тригонометрические функции числового аргумента	83
§	15 .	Тригонометрические функции углового аргумента	88
§	16.	Функции $y = \sin x$, $y = \cos x$, их свойства и графики	90
§	17.	Построение графика функции $y = mf(x)$	100
§	18.	Построение графика функции $y = f(kx) \dots$	105
		График гармонического колебания	108
		Функции $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$, их свойства и графики	
		Обратные тригонометрические функции	

ГЛАВА 4. Тригонометрические уравнения

§	22.	Простейшие тригонометрические уравнения
		и неравенства 124
§	23.	Методы решения тригонометрических уравнений 132
	ГЛ	IABA 5. Преобразование тригонометрических выражений
§	24.	Синус и косинус суммы и разности аргументов 137
§	25 .	Тангенс суммы и разности аргументов 144
§	26.	Формулы приведения
§	27.	Формулы двойного аргумента.
		Формулы понижения степени
§	28.	Преобразование суммы тригонометрических функций
		в произведение
§	29.	Преобразование произведения тригонометрических
		функций в сумму 165
§	30.	Преобразование выражения $A \sin x + B \cos x$ к виду
		$C\sin(x+t)$
§	31.	Методы решения тригонометрических уравнений
		(продолжение) 172
		ГЛАВА 6. Комплексные числа
§	32.	ГЛАВА 6. Комплексные числа Комплексные числа и арифметические операции
§	32.	
		Комплексные числа и арифметические операции
§	33.	Комплексные числа и арифметические операции над ними
§ §	33. 34.	Комплексные числа и арифметические операции над ними
§ § §	33. 34. 35.	Комплексные числа и арифметические операции над ними
§ § §	33. 34. 35.	Комплексные числа и арифметические операции над ними
§ § §	33. 34. 35.	Комплексные числа и арифметические операции над ними
§ § §	33. 34. 35. 36.	Комплексные числа и арифметические операции над ними
\$ \$ \$ \$ \$ \$	33. 34. 35. 36.	Комплексные числа и арифметические операции над ними
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	33. 34. 35. 36.	Комплексные числа и арифметические операции над ними
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	33. 34. 35. 36. 37. 38. 39.	Комплексные числа и арифметические операции над ними
	33. 34. 35. 36. 37. 38. 39. 40.	Комплексные числа и арифметические операции над ними
	33. 34. 35. 36. 37. 38. 39. 40.	Комплексные числа и арифметические операции над ними
	33. 34. 35. 36. 37. 38. 39. 40.	Комплексные числа и арифметические операции над ними

§	43.	Уравнение касательной к графику функции 238
§	44.	Применение производной для исследования функций
		на монотонность и экстремумы
§	45 .	Построение графиков функций
§	46 .	Применение производной для отыскания наибольших
		и наименьших значений величин
		ГЛАВА 8. Комбинаторика и вероятность
§	47.	Правило умножения. Перестановки и факториалы 274
§	48.	Выбор нескольких элементов.
		Биномиальные коэффициенты
§	49.	Случайные события и их вероятности 283
Д	опол	пнительные задачи

Учебное издание

Мордкович Александр Григорьевич, Денищева Лариса Олеговна, Звавич Леонид Исаакович и др.

АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

10 класс

В двух частях *Часть 2*

ЗАЛАЧНИК

для учащихся общеобразовательных учреждений (профильный уровень)

Генеральный директор издательства М. И. Безвиконная Главный редактор К. И. Куровский. Редактор С. В. Бахтина Оформление и художественное редактирование: С. А. Сорока Технический редактор И. Л. Ткаченко. Корректор И. Н. Баханова Компьютерная верстка: А. А. Горкин

Санитарно-эпидемиологическое заключение № 77.99.60.953.Д.001625.02.08 от 29.02.2008.

Формат $60 \times 90^1/_{16}$. Бумага офсетная № 1. Гарнитура «Школьная». Печать офсетная. Усл. печ. л. 21,5. Тираж 30 000 экз. Заказ № 0901200.

Издательство «Мнемозина». 105043, Москва, ул. 6-я Парковая, 29 б.

Тел.: 8 (499) 367 5418, 367 5627, 367 6781; факс: 8 (499) 165 9218.

E-mail: ioc@mnemozina.ru www.mnemozina.ru

Магазин «Мнемозина» (розничная и мелкооптовая продажа книг). 105043, Москва, ул. 6-я Парковая, 29 б.

Тел.: 8 (495) 783 8284, 783 8285, 783 8286.

Торговый дом «Мнемозина» (оптовая продажа книг). Тел./факс: 8 (495) 665 6031 (многоканальный).

E-mail: td@mnemozina.ru

Отпечатано в полном соответствии с качеством предоставленного электронного оригинал-макета в ОАО «Ярославский полиграфкомбинат» 150049, Ярославль, ул. Свободы, 97

. SBN 978-5-346 01202-785346 012023

ı