Saving for a Rainy Day: Experimental Evidence on Prize Linked Saving and Financial Shocks

Kaden Grace

April 30, 2024

Motivation

We asked: Which of the following best describes how you would deal with a major unexpected expense, such as \$1,000 for an emergency room visit or car repair?

Bankrate survey, December 2023

Background: Prize Linked Savings (PLS)

- Dollars saved in PLS become entries in a drawing
 - Probability(Win) is (almost) a linear function of your deposit
- PLS is a "no-lose lottery;" principal is never at risk

Background: Prize Linked Savings (PLS)

- Dollars saved in PLS become entries in a drawing
 - Probability(Win) is (almost) a linear function of your deposit
- PLS is a "no-lose lottery;" principal is never at risk
- Popular in the UK
 - Premium Bonds, £25 "tickets" for a £1m prize

Background: Prize Linked Savings (PLS)

- Dollars saved in PLS become entries in a drawing
 - Probability(Win) is (almost) a linear function of your deposit
- PLS is a "no-lose lottery;" principal is never at risk
- Popular in the UK
 - Premium Bonds, £25 "tickets" for a £1m prize
- Still illegal in most US states
 - Fear of state lottery revenue cannibalization

What do we already know?

- People prefer PLS to standard saving even if the return is lower
- Effect is strongest among poor households
- Access to PLS increases total savings
 - Atalay et al. (2014), Filiz-Ozbay et al. (2015), Dizon & Lybbert (2021), Jindapon et al. (2022), Gertler et al. (2023)

What do we already know?

- People prefer PLS to standard saving even if the return is lower
- Effect is strongest among poor households
- Access to PLS increases total savings
 - Atalay et al. (2014), Filiz-Ozbay et al. (2015), Dizon & Lybbert (2021), Jindapon et al. (2022), Gertler et al. (2023)
- Saving increases stability, but decreases consumption
- PLS can increase savings, but does this increase welfare?

Research Question

Can access to a Prize-Linked Savings Account (PLSA) increase welfare for low-income households that face negative financial shocks?

Policy Implications

- PLS could move consumers closer to optimal consumption paths
- Vulnerable households better prepared for unexpected expenses
- Relatively cheap method of incentivizing saving

Why an Experiment?

- Jappelli and Pistaferri (2010) on observational data: "The lesson of the literature is that identifying episodes of genuine exogenous and unanticipated income changes is difficult."
- Observational data uses weather, layoffs, disabling injuries, etc.
 to measure financial shocks

Why an Experiment?

- Jappelli and Pistaferri (2010) on observational data: "The lesson of the literature is that identifying episodes of genuine exogenous and unanticipated income changes is difficult."
- Observational data uses weather, layoffs, disabling injuries, etc.
 to measure financial shocks
- However, complete portfolio allocation is difficult to observe

Contribution

 I use a controlled laboratory setting to measure the welfare effects of access to a PLSA.

2 Empirical Analysis

2 Empirical Analysis

Build on Hey and Dardanomi (1988)'s design:

- Agent receives 20 tokens of income, and can choose to:
 - consume by converting tokens to cash at a decreasing rate (asymptotic at \$3), or
 - save tokens at 16% until the next period, or
 - save tokens in a PLS with a prize of 60 tokens
- Saving 20 tokens in PLS gives a 5.3% chance of winning.
- 10% chance of incurring a 60-token expense
- 10 periods, played once with PLSA and once without

Decreasing Returns to Consumption

Tokens	Dollars
10	\$0.29
20	\$0.54
30	\$0.78
40	\$0.99
50	\$1.18
60	\$1.35
70	\$1.51
80	\$1.65
90	\$1.78
100	\$1.90

Tokens	Dollars
110	\$2.00
120	\$2.10
130	\$2.18
140	\$2.26
150	\$2.33
160	\$2.39
170	\$2.45
180	\$2.50
190	\$2.55
200	\$2.59

Tokens	Dollars
210	\$2.63
220	\$2.67
230	\$2.70
240	\$2.73
250	\$2.75
260	\$2.78
270	\$2.80
280	\$2.82
290	\$2.83
300	\$2.85

External Validity

- Subject's incentive is the sum of payoffs in the experiment
- Household's incentive is the sum of lifetime consumption

External Validity

- Subject's incentive is the sum of payoffs in the experiment
- Household's incentive is the sum of lifetime consumption
- ullet Incentives aligned \Longrightarrow subject's lab decisions pprox household's real-life decisions

Treatments

Treatment	PLSA Prize	Shock Size
1	No PLSA Offered	2x(Income)
2	1x(Income)	2x(Income)
3	3x(Income)	2x(Income)
4	No PLSA Offered	3x(Income)
5	1x(Income)	3x(Income)
6	3x(Income)	3x(Income)

Table: Parameters in each treatment

Hypotheses

- Subjects over-consume (under-save) in early periods.
- Introducing a PLSA leads subjects to save more and consume less in early periods.
- The PLSA will still be effective even if its prize is relatively small.

What does it mean to over-consume?

• Solve the model with backward induction for $c^*(a_{it})$, the optimal consumption choice given the subject i's assets in period t

What does it mean to over-consume?

- Solve the model with backward induction for $c^*(a_{it})$, the optimal consumption choice given the subject i's assets in period t
- Calculate the gap between optimal and observed consumption:

$$Error_{it} = c_{it}^{observed} - c^*(a_{it})$$

What does it mean to over-consume?

• Normalize into Marginal Propensity to Consume (MPC)

$$\frac{\mathsf{Error}_{it}}{a_{it}} = \frac{c_{it}^{\mathsf{observed}} - c^*(a_{it})}{a_{it}} = \mathsf{MPC}_{it}^{\mathsf{observed}} - \mathsf{MPC}_{it}^* = \mathsf{MPC}_{it}^{\mathsf{error}}$$

ullet MPC $_{it}^{\mathit{error}} \in [-1,1]$ is the fraction of assets the subject either over (+) or under (-) consumed in period t

Average MPC^{error}, April 24 Pilot, No PLSA

Average MPC^{error}, April 24 Pilot, Treated with PLSA

2 Empirical Analysis

Empirical Analysis

$$\frac{|\mathsf{MPC}_{ist}^{\mathit{error}}| = \alpha + \beta * \mathsf{Treat}_{it} + \delta * \mathsf{Second}_s + \underbrace{\gamma_i}_{\text{subject}} + \underbrace{\tau_t}_{\text{period}} + \underbrace{u_{it}}_{\text{error}}$$

- Identification is across the two treatments, within the subject
- \bullet β is coefficient of interest
 - $\beta < 0 \Longrightarrow \mathsf{PLS}$ is welfare-improving

Pilot Results

	(1)
Treat	-0.0818**
	(0.0379)
Second	-0.0199
	(0.0379)
Constant	0.2685***
	(0.0223)
N	480

Next Steps

• Sessions scheduled for Friday

Appendix: Simulated MPC Paths

Appendix: Simulated Earnings Distributions

