

19CSE435: Computer Vision

Image formation: Geometric Primitives

Adopted from Computer Vision Textbook and course materials R_Szeliski

- 2D points:
- 2D lines:
- 2D conics:
- 3D points:
- 3D planes:
- 3D lines:

2D Coordinate Frames & Points

coordinates x and y

$$x = \left[\begin{array}{c} x \\ y \end{array} \right].$$

homogeneous coordinates,

$$\tilde{x} = (\tilde{x}, \tilde{y}, \tilde{w}) \in \mathcal{P}^2,$$

$$\mathcal{P}^2 = \mathcal{R}^3 - (0, 0, 0)$$
2D projective space.

inhomogeneous vector æ 1

$$\tilde{x} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\bar{x},$$

 $\bar{x} = (x, y, 1)$ is the augmented vector.

 $\tilde{w} = 0$ are called ideal points or points at infinity

2D Lines

• Line I = ax+by=c

Homogeneous Coordinates

- Uniform treatment of points and lines
- Line-point incidence: I^Tp=0

Join = cross product!

Join of two lines is a point:
 p=l₁xl₂

Join of two points is a line:
 I=p₁xp₂

Automatic estimation of vanishing points VIDVAPEETHAN and lines

Joining two parallel lines?

(a,b,c)

Points at Infinity!

Homogeneous coordinates

Conversion

Converting to *homogeneous* coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

homogeneous scene coordinates

Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

homogeneous augmented

- 2D points: (x,y), $\tilde{\boldsymbol{x}}=(\tilde{x},\tilde{y},\tilde{w})=\tilde{w}(x,y,1)=\tilde{w}\bar{\boldsymbol{x}}$
- 2D lines: $\bar{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}} = ax + by + c = 0$
- 2D conics:
- 3D points:
- 3D planes:
- 3D lines:

homogeneous augmented

• 2D points: (x,y),
$$\tilde{\boldsymbol{x}}=(\tilde{x},\tilde{y},\tilde{w})=\tilde{w}(x,y,1)=\tilde{w}\bar{\boldsymbol{x}}$$

• 2D lines:
$$\bar{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}} = ax + by + c = 0$$

- 2D conics:
- 3D points: $\boldsymbol{x}=(x,y,z)$ $\tilde{\boldsymbol{x}}=(\tilde{x},\tilde{y},\tilde{z},\tilde{w})$
- 3D planes: $\bar{\boldsymbol{x}}\cdot\tilde{\boldsymbol{m}}=ax+by+cz+d=0$
- 3D lines:

homogeneous augmented

• 2D points: (x,y),
$$\tilde{\boldsymbol{x}}=(\tilde{x},\tilde{y},\tilde{w})=\tilde{w}(x,y,1)=\tilde{w}\bar{\boldsymbol{x}}$$

• 2D lines:
$$\bar{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}} = ax + by + c = 0$$

• 2D conics:
$$ilde{m{x}}^T m{Q} ilde{m{x}} = 0$$

• 3D points:
$$\boldsymbol{x}=(x,y,z)$$
 $\tilde{\boldsymbol{x}}=(\tilde{x},\tilde{y},\tilde{z},\tilde{w})$

$$\bar{\boldsymbol{x}} \cdot \tilde{\boldsymbol{m}} = ax + by + cz + d = 0$$

3D lines:

$$r = (1 - \lambda)p + \lambda q$$

$$\tilde{r} = \mu \tilde{p} + \lambda \tilde{q}$$

$$r = p + \lambda \hat{d}$$

2.1.2: 2D Transformations

2.1.2: 2D Transformations

translation

rotation

aspect

affine

perspective

cylindrical

How would you implement scaling? Scale Each component multiplied by a scalar Uniform scaling - same scalar for each component

y

$$x' = ax$$

$$y' = by$$

What's the effect of using different scale factors?

- Each component multiplied by a scalar
- Uniform scaling same
 scalar for each component

 \boldsymbol{y}

Scale

$$x' = ax$$

$$y'=by$$
 matrix representation of scaling:

$$\left[egin{array}{c} x' \ y' \end{array}
ight] = \left[egin{array}{cc} a & 0 \ 0 & b \end{array}
ight] \left[egin{array}{c} x \ y \end{array}
ight]$$

- Each component multiplied matrix S by a scalar
- Uniform scaling same
 scalar for each component

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

or in matrix form:

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

Rotation matrix:

- Inverse is transpose

2D planar and linear transformations

Scale

$$\mathbf{M} = \left[egin{array}{cccc} s_x & 0 \ 0 & s_y \end{array}
ight] \qquad \qquad \mathbf{M} = \left[egin{array}{cccc} -1 & 0 \ 0 & 1 \end{array}
ight]$$

Rotate

$$\mathbf{M} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Shear

$$\mathbf{M} = \left[egin{array}{cc} 1 & s_x \ s_y & 1 \end{array}
ight] \qquad \qquad \mathbf{M} = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight]$$

Flip across y

$$\mathbf{M} = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right]$$

Flip across origin

$$\mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Identity

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2D translation using homogeneous coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

2D Transformations in homogeneous coordinates

Reminder: Homogeneous coordinates

Conversion:

 inhomogeneous → augmented/homogeneous

$$\left[\begin{array}{c} x \\ y \end{array}\right] \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$

ullet homogeneous $ar{ o}$

inhomogeneous

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow \left[\begin{array}{c} x/w \\ y/w \end{array}\right]$$

Special points:

point at infinity

$$\left[\begin{array}{cccc} x & y & 0 \end{array}\right]$$

· undefined

$$\left[\begin{array}{cccc} 0 & 0 & 0 \end{array}\right]$$

• scale invariance $\begin{bmatrix} x & y & w \end{bmatrix}^\top = \lambda \begin{bmatrix} x & y & w \end{bmatrix}^\top$

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{2} \\ \mathbf{2} \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 & 0 \\ 0 & \mathbf{s}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

shearing

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & & \\ & y \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
rotation
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

shearing

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

shearing

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}^{2} = \mathbf{2}$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

 $p' = translation(t_x, t_y)$ rotation(θ)

scale(s,s)

Does the multiplication order matter?

Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$?
similarity	$\left[\begin{array}{c c} sR & t \end{array}\right]$?
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]$?
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$?

Translation

Translat
$$\begin{bmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix}$$

How many degrees of freedom?

Euclidean/Rigid

Euclidean (rigid): rotation + translation

$$egin{bmatrix} \cos heta & -\sin heta & r_3 \ \sin heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$

How many degrees of freedom?

Affine

Affine transform:
uniform scaling +
shearing
+ rotation + translation

$$\left[egin{array}{cccc} a_1 & a_2 & a_3 \ a_4 & a_5 & a_6 \ 0 & 0 & 1 \end{array}
ight]$$

Are there any values that are related?

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations
- + translations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Does the last coordinate w ever change?

Projective transformations

Projective transformations are combinations of

- affine transformations;
- + projective wraps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

8 DOF: vectors (and therefore matrices) are defined up to scale)

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$?
similarity	$\left[\begin{array}{c c} sR & t \end{array}\right]$?
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]$?
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$?

Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$	2
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$	3
similarity	$\left[\begin{array}{c c} sR & t \end{array}\right]$	4
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]$	6
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$	8

2.1.3: 3D Transformations

- Need a way to specify the six degrees-offreedom of a rigid body.
- Why are their 6 DOF?

A rigid body is a collection of points whose positions relative to each other can't change

Fix one point, three DOF

Fix second point, two more DOF (must maintain distance constraint)

Third point adds one more DOF, for rotation around line

Notations

- Superscript references coordinate frame
- AP is coordinates of P in frame A
- BP is coordinates of P in frame B

Translation

• Using augmented/homogeneous coordinates, translation is expressed as a matrix multiplication. $^{B}P = ^{A}P + ^{B}O_{A}$

$$\begin{bmatrix} {}^{B}P \\ 1 \end{bmatrix} = \begin{bmatrix} I & {}^{B}O_{A} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix}$$

Rotation in homogeneous coordinates

 Using homogeneous coordinates, rotation can be expressed as a matrix multiplication.

$$^{B}P = {}_{A}^{B}R^{A}P$$

$$\begin{bmatrix} {}^{B}P\\1 \end{bmatrix} = \begin{bmatrix} {}^{B}AR & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} {}^{A}P\\1 \end{bmatrix}$$

- R is a rotation matrix:
 - Columns are unit vectors
 - Columns are mutually orthogonal
 - Inverse is transpose

3 D Rotations

Using Euler Angles

rotation along cardinal axes eg x,y,z. Need to keep the order in mind. Usually where hard because the euler angles change a lot for the small rotations. Used in Robotic Transformation. Sometimes useful when you are referring to situations of PAN TILT and HEAD.

Using

Department of ECE 52

3D Rigid transformations

$$^{B}P = {}_{A}^{B}R^{A}P + {}^{B}O_{A}$$

3D Rigid transformations

Unified treatment using homogeneous coordinates.

$$\begin{bmatrix} {}^{B}P \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & {}^{B}O_{A} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{B}R & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} {}^{B}R & {}^{B}O_{A} \\ 0^{T} & 1 \end{bmatrix} \begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} {}^{B}P \\ 1 \end{bmatrix} = {}^{B}T \begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix}$$

Hierarchy of 3D Transforms

Subgroup Structure:

- Translation (? DOF)
- Rigid 3D (? DOF)
- Affine (? DOF)
- Projective (? DOF)

Hierarchy of 3D Transforms

Subgroup Structure:

- Translation (3 DOF)
- Rigid 3D (6 DOF)
- Affine (12 DOF)
- Projective (15 DOF)

2.1.5: 3D to 2D: Projection

58

Orthographic Projection

Pinhole camera

f = focal lengthc = center of the camera

Camera obscura: the pre-camera

 Known during classical period in China and Greece (e.g. Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Projection can be tricky...

Projection can be tricky...

Camera and World Geometry

Pinhole Camera

• Fundamental equation:

Homogeneous Coordinates

Linear transformation of homogeneous (projective) coordinates

Recover image (Euclidean) coordinates by normalizing:

$$\hat{u} = \frac{u}{w} = \frac{X}{Z}$$

$$\hat{v} = \frac{v}{w} = \frac{Y}{Z}$$

We can see infinity!

Vanishing points and lines

Vanishing points and lines

Pixel coordinates in 2D

Intrinsic Calibration

3 ´ 3 Calibration Matrix K

$$m = \hat{\mathbf{e}} \overset{\circ}{\mathbf{u}} \overset{\circ}{\mathbf{u}} = K[I \quad 0] M = \hat{\mathbf{e}} \overset{\circ}{\mathbf{e}} \overset{\circ}{\mathbf{u}} \overset{\circ}{\mathbf{$$

Recover image (Euclidean) coordinates by normalizing:

$$\hat{u} = \frac{u}{w} = \frac{\partial X + sY + u_0}{Z}$$

$$\hat{v} = \frac{v}{w} = \frac{\partial Y + v_0}{Z}$$
5 Degrees of Freedom!

Camera Pose

In order to apply the camera model, objects in the scene must be expressed in *camera coordinates*.

Projective Camera Matrix

Camera = Calibration 'Projection 'Extrinsics

$$=K[R \quad t]M=PM$$

5+6 DOF = 11!

Projective Geometry

What is lost?

Length

Length and area are not preserved

Projective Geometry

What is lost?

- Length
- Angles

Projective Geometry

What is preserved?

Straight lines are still straight

Field of View (Zoom, focal length)

28mm

85mm

From London and Upton

2.1.6 Radial Distortion

Corrected Barrel Distortion