Sound Zones with a Cost Function based on Human Hearing

Niels de Koeijer MSc Thesis Defence

Delft University of Technology, The Netherlands

Bang and Olufsen, Denmark

September 16, 2021

Preface: About Me

Niels de Koeijer

Master Student at:

- Delft University of Technology,
- Research Department at Bang & Olufsen.

Preface: The Sound Zone Problem I

"Using an array of loudspeakers to create zones of distinct audio with minimal interference in a room."

Preface: The Sound Zone Problem II

Sound Zone Example

Preface: Introducing Perceptual Sound Zones

Thesis Approach

- Goal of Thesis: Include a model of the human auditory system in sound zone algorithms.
 - **Motivation:**Optimize what matters to humans perceptually.

Preface: Research Questions

RQ1:

"How can perceptual models be included in sound zone algorithms?"

RQ2:

"What are benefits of including perceptual models in sound zone algorithms?"

- Finding a suitable perceptual model
- Proposal of a perceptual sound zone framework
- 3 Proposal of perceptual sound zone algorithms

- Finding a suitable perceptual model
- Proposal of a perceptual sound zone framework
- 3 Proposal of perceptual sound zone algorithms

Finding a Perceptual Model: Par Distortion Detectability Introduction

A perceptual model is found through literature review:

Par distortion detectability¹

- Defines a mathematical function $D(x[n], \varepsilon[n])$.
- Quantifies how easily a **human listener** can **detect disturbance** audio $\varepsilon[n]$ when **also listening to** masking audio $\times[n]$.
- It is used in audio coding to hide compression artifacts.

¹S. van de Par, A. Kohlrausch, R. Heusdens, J. Jensen, and S. H. Jensen (2005). "A perceptual model for sinusoidal audio coding based on spectral integration". In: *EURASIP Journal on Advances in Signal Processing* 2005.9, pp. 1–13

Finding a Perceptual Model: Par Distortion Detectability Workings

Psycho-Acoustical Principals

- Threshold of Hearing:
 The lowest sound pressure level humans can hear.
- Auditory Masking: The degree to which x[n] "overpowers" disturbance $\varepsilon[n]$.

- Finding a suitable perceptual model
 ✓ The Par distortion detectability perceptual model
- Proposal of a perceptual sound zone framework
- Oroposal of perceptual sound zone algorithms

- Finding a suitable perceptual model
 ✓ The Par distortion detectability perceptual model
- Proposal of a perceptual sound zone framework
- Oroposal of perceptual sound zone algorithms

Perceptual Sound Zone Framework: Pressure Matching I

A sound zone approach suitable for integration with the Par distortion detectability is found through literature review:

Pressure Matching Sound Zone Algorithm²

- Controls the sound pressure at discrete points in the room.
- Minimizes "sound pressure errors" to create sound zones.

²T. Betlehem, W. Zhang, M. A. Poletti, and T. D. Abhayapala (2015). "Personal sound zones: Delivering interface-free audio to multiple listeners". In: IEEE Signal Processing Magazine 32.2, pp. 81–91

Perceptual Sound Zone Framework: Pressure Matching II

The zones are sampled into *M* "control points" where we attempt to control the sound by controlling the inputs to the *L* loudspeakers in the room.

Perceptual Sound Zone Framework: Pressure Matching III

Pressure Matching Quantities

For each loudspeaker 1:

• Input signal $x_A^{(I)}[n]$ and $x_B^{(I)}[n]$.

For each point m:

- Target sound pressure $t_A^{(m)}[n]$ and $t_B^{(m)}[n]$.
- Resulting sound pressure $p_A^{(m)}[n]$ and $p_B^{(m)}[n]$.

Perceptual Sound Zone Framework: Pressure Matching IV

Pressure Matching Errors

• Reproduction error for point *m* in zone A:

$$\mathsf{RE}^{(m)} = \left| \left| t_A^{(m)} - p_A^{(m)} \right| \right|_2^2 \tag{1}$$

Leakage error for point m in zone A:

$$\mathsf{LE}^{(m)} = \left\| \left| p_B^{(m)} \right| \right\|_2^2 \tag{2}$$

Perceptual Sound Zone Framework: Pressure Matching V

Pressure Matching

Minimize the sum of reproduction and leakage errors:

$$\underset{x_A^{(l)}, x_R^{(l)}}{\operatorname{arg\,min}} \quad \sum_{m} \mathsf{RE}^{(m)} + \mathsf{LE}^{(m)} \tag{3}$$

Perceptual Sound Zone Framework: Perceptual Pressure Matching I

Idea: Error Detectability

- Use of error detectability $D(x[n], \varepsilon[n])$ rather than sound pressure error
- Reproduction error → Reproduction error detectability:
 How well can humans detect deviations from the target sound pressure?
- Leakage error → Leakage error detectability:
 How well can humans detect the leakage/interference?

Perceptual Sound Zone Framework: Perceptual Pressure Matching II

Pressure Matching Errors

• Reproduction error for point *m* in zone A:

$$RED^{(m)} = D\left(t_A^{(m)}, t_A^{(m)} - p_A^{(m)}\right)$$
(4)

Leakage error for point m in zone A:

$$\mathsf{LED}^{(m)} = D\left(t_A^{(m)}, \, p_B^{(m)}\right) \tag{5}$$

- Finding a suitable perceptual model
 - √ The Par distortion detectability perceptual model
- Proposal of a perceptual sound zone framework
 - \checkmark Framework of the detectability of sound pressure errors from pressure matching
- Opening in the second of th

- 1 Finding a suitable perceptual model
 - √ The Par distortion detectability perceptual model
- Proposal of a perceptual sound zone framework
 - \checkmark Framework of the detectability of sound pressure errors from pressure matching
- **3** Proposal of perceptual sound zone algorithms

Algorithms: Unconstrained Perceptual Pressure Matching

Unconstrained Perceptual Pressure Matching

Minimize the sum of error detectabilities:

$$\underset{x_A^{(l)}, x_B^{(l)}}{\operatorname{arg\,min}} \quad \sum_{m} \mathsf{RED}^{(m)} + \mathsf{LED}^{(m)} \tag{6}$$

Algorithms: Constrained Perceptual Pressure Matching

Constrained Perceptual Pressure Matching

Minimize the leakage error detectability with constraints:

$$\underset{x_A^{(I)}, x_B^{(I)}}{\min} \quad \sum_{m} \mathsf{LED}^{(m)} \\
\mathsf{RED}^{(m)} \leq D_0 \quad \forall m$$
(7)

- Finding a suitable perceptual model
 - √ The Par distortion detectability perceptual model
- Proposal of a perceptual sound zone framework
 - ✓ Framework of the detectability of sound pressure errors from pressure matching
- Opening Proposal of perceptual sound zone algorithms
 - \checkmark Proposal of unconstrained and constrained perceptual pressure matching

RQ2: What are benefits of including perceptual models in sound zone algorithms?

Simulation of proposed perceptual sound zone algorithms

RQ2: What are benefits of including perceptual models in sound zone algorithms?

1 Simulation of proposed perceptual sound zone algorithms

Algorithm Evaluation: Simulation Setup

Simulation Configuration

- Simulations use speech signals.
- Simulation of perceptual and a reference pressure matching algorithms

Algorithm Evaluation: Unconstrained Perceptual Pressure Matching I

Measure	Unconstrained Perceptual PM Mean (\pm 95% CI)	Reference PM Mean (\pm 95% CI)
PESQ (No interference)	$\textbf{3.345} \pm \textbf{0.087}$	4.107 ± 0.051
PESQ	3.154 ± 0.081	2.609 ± 0.084
Distraction	7.828 ± 1.868	12.693 ± 3.405

Algorithm Evaluation: Unconstrained Perceptual Pressure Matching II

Unconstrained

Algorithm Evaluation: Unconstrained Perceptual Pressure Matching III

Algorithm Evaluation: Constrained Perceptual Pressure Matching I

Reference	Unconstrained	Constraining

Algorithm Evaluation: Constrained Perceptual Pressure Matching II

RQ2: What are benefits of including perceptual models in sound zone algorithms?

Simulation of proposed perceptual sound zone algorithms

 \checkmark Unconstrained perceptual approach outperforms and constrained perceptual approach allows for control over the perceived quality of reproduced content

Future Work:

- Validation of current results through listening tests.
- Further proposal of new perceptual sound zone algorithms through the proposed framework.
- Current algorithms are very slow, as such it is of interest to speed them up!

Sources:

Betlehem, T., W. Zhang, M. A. Poletti, and T. D. Abhayapala (2015). "Personal sound zones: Delivering interface-free audio to multiple listeners". In: *IEEE Signal Processing Magazine* 32.2, pp. 81–91.

Par, S. van de, A. Kohlrausch, R. Heusdens, J. Jensen, and S. H. Jensen (2005). "A perceptual model for sinusoidal audio coding based on spectral integration". In: *EURASIP Journal on Advances in Signal Processing* 2005.9, pp. 1–13.