- Der Index 0 z.b. μ_0 bedeutet, dass es sich um einen gegebenen Wert, und nicht um einen geschätzten Wert handelt.

I) Gauß Test:

Hauptziel: Hier wird die Hypothese über den Mittelwert (μ) getestet

Mean μ ist unbekannt, wir kennen SD σ

Gegeben muss sein:

$$H_0: \mu = \mu_0, \quad H_0: \mu \le \mu_0, \quad H_0: \mu \ge \mu_0$$

Symbol	Bedeutung
n	Stichprobengröße
σ_0	Standardabweichung der gesamtheit
$\overline{X}_{(n)}$	Sample Mean

Decision Rule *R*:

$$T = \frac{\overline{X} - \mu_0}{\frac{\sigma_0}{\sqrt{n}}} \in R \implies \text{reject } H_0$$

Rejection Region *R*:

H_0	rejection region R
$\mu = \mu_0$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$\mu \leq \mu_0$	$(u_{1-\alpha},\infty)$
$\mu \geq \mu_0$	$(-\infty, -u_{1-\alpha})$

Beispiel:

```
1 n <- 100
 2 sd <- 0.3
    sample_mean <- 10.1</pre>
 4 alpha <- 0.1
    #HO: mu = 10, H1: mu != 10
 5
 6 mu<sup>0</sup> <- 10
    #Rejection region
 8 \text{ ru } \leftarrow \text{gnorm}(1-(\text{alpha}/2))
    rl <- qnorm(1-(alpha/2))
    #[-1.644854, 1.644854]
                                                   11
11
    #teststatistic
    t <- (sample_mean - mu0) / (sd / sqrt(n)
13
    t > ru
14
    #3.333333
    #we reject hO because we are in the
        rejection region
    p_value <- 1 - pnorm(t)</pre>
16
    #0.0004290603
17
```

II) t-Test:

Hauptziel: Hier wird die Hypothese über den Mittelwert (μ) getestet.

Mean μ und SD σ_0 sind unbekannt

 \bigwedge Mean $\mu_0 wirddurch H_0$ gegeben \bigwedge

Gegeben muss sein:

$$H_0: \mu = \mu_0$$
, $H_0: \mu \le \mu_0$, $H_0: \mu \ge \mu_0$

Symbol	Bedeutung
n	Stichprobengröße
$S_{(n)}$	Sample SD
$\overline{X}_{(n)}$	Sample Mean

Decision Rule:

$$T = \frac{\overline{X} - \mu_0}{\frac{s_{(n)}}{\sqrt{n}}} \in R \implies \text{reject } H_0$$

Rejection Region R:

H_0	Rejection Region R
$\mu = \mu_0$	$(-\infty, -t_{n-1,1-\frac{\alpha}{2}}) \cup (t_{n-1,1-\frac{\alpha}{2}}, \infty)$
$\mu \leq \mu_0$	$(t_{n-1,1-lpha},\infty)$
$\mu \geq \mu_0$	$(-\infty, -t_{n-1,1-\alpha})$

Beispiel:

```
1 #H0: mu >= 250, h1: < 250
2 n <- 82
3 sample_mu <- 248
4 sample_sd <- 5
5 alpha <- 0.05
6 mu0 <- 250
7 R <- -qt(1-alpha, n-1)
8 #[, -1.663884]
9 t <- (sample_mu - mu0) / ((sample_sd) / sqrt(n))
10 #-3.622154
11 t < r
12 p_value <- pt(t,n - 1)
13 #0.0002540167</pre>
```

III) Test für Varianz σ_0^2 :

Hauptziel: Hier wird die Hypothese über die Varianz (σ_0^2) getestet.

Mean μ und SD σ sind unbekannt

∧ Kein $σ_0$ da σ gegeben durch $H_0
∧$ Also kein Schätzwert ∧

Gegeben muss sein:

$$H_0: \sigma^2 = \frac{\sigma_0^2}{\sigma_0^2}, \quad H_0: \sigma^2 \le \frac{\sigma_0^2}{\sigma_0^2}, \quad H_0: \sigma^2 \ge \frac{\sigma_0^2}{\sigma_0^2}$$

Symbol	Bedeutung
$S_{(n)}^2$	Sample SD
$\overline{X}_{(n)}$	Sample Mean

Decision Rule:

$$T = \frac{(n-1) S_{(n)}^2}{\sigma_0^2} \in R \implies \text{reject } H_0.$$

Rejection Region *R*:

H_0	rejection region <i>R</i>
$\sigma^2 = \sigma_0^2$	$(0, \chi^2_{n-1, \frac{\alpha}{2}}) \cup (\chi^2_{n-1, 1-\frac{\alpha}{2}}, \infty)$
$\sigma^2 \leq \frac{\sigma_0^2}{\sigma_0^2}$	$\left(\chi^2_{n-1,1-lpha},\infty\right)$
$\sigma^2 \ge \frac{\sigma_0^2}{\sigma_0^2}$	$\left(0,\chi^2_{n-1,\alpha}\right)$

Beispiel:

```
1 \mid \text{#h0: sd} >= 7, h1: sd < 7
 2 n <- 82
 3 | sample_mu <- 248
    sample_sd <- 5
 5 alpha <- 0.05
 6
   sd0 < -7
 7 #Rejection region
 8 R \leftarrow qchisq(alpha, n-1)
9 | #[ ,61.26148
10 | #Teststatistics
   t \leftarrow ((n - 1) * sample_sd)/sd0
    #57.85714
12
    t < r
    p_value <- pchisq(t, n-1)</pre>
    #0.02419782
```

IIII)Bernoulli Test für Probability p_0 :

Hauptziel: Zu prüfen, ob die beobachtete Erfolgsrate \hat{p} signifikant von der vorgegebenen Wahrscheinlichkeit p_0 abweicht

Probability p_0 ist unbekannt

Number of successes:
$$X = \sum_{i=1}^{n} X_i \sim B(n, p)$$
, d.h. $\mathbb{E}(X) = np$
 $Var(X) = np(1-p)$.

Gegeben muss sein:

$$H_0: p = p_0, \quad H_0: p \le p_0, \quad H_0: p \ge p_0$$

Symbol	Bedeutung
n	Stichprobengröße
X	Number of successes
ĝ	$\frac{X}{n}$ Example Probabilitz

Teststatistic

$$T = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}, \quad \text{mit } \hat{p} = \frac{X}{n}.$$

Decision Rule

$$T = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \in R \implies \text{Reject } H_0.$$

Rejection Region R

H_0	Rejection Area R
$p = p_0$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$p \leq p_0$	$(u_{1-\alpha},\infty)$
$p \ge p_0$	$(-\infty, -u_{1-\alpha})$

Normal Approximation:

1 | #a) 80% immunity rate

```
#b) H0: p \le 80, H1: p > 80
   p0 <- 0.8; n <- 200; x <- 172
   alpha \leftarrow 0.05
   phut <- x / n
6 #Rejection region
   R \leftarrow pnorm(1 - alpha)
   #r <- [0.8289439, ]
9
   #teststatistic
   t <- (phut-p0)/sqrt((p0 * (1 - p0)) / n)
10
11
   #2.12132
12 t > R
13 | p_value <- 1 - pnorm(t)
14 #0.01694743
```

Exact test: