Программное обеспечение для моделирования световых столбов проходящих через листву деревьев и решётчатую поверхность

Студент: Воякин А.Я.

Руководитель: Корниенко В.В.

Цели и задачи

Разработать программное обеспечение для визуализации ярких лучей, проходящих через решётчатую поверхность и листву деревьев.

Реализовать интерфейс, который позволит выбирать из предложенного набора препятствия, представленные в виде объемных моделей, для искусственного источника света.

Программный продукт должен предоставлять возможность поворота объекта, а также возможность просмотра сцены с фиксированного положения наблюдателя.

Графические алгоритмы

В ходе выполнения проекта был проведён анализ потенциально применимых графических алгоритмов и выбраны более подходящие из них, а именно:

- Алгоритм z-буфер.
- Метод тонирования Гуро.
- Построение световых столбов методом масштабирования виртуальных планов

Алгоритм z-буфера

Принцип работы z-буфера заключается в том, что мы определяем глубину каждой отрисовываемой точки, сравниваем эту глубину с глубинами других точек, имеющие те же координаты X и Y, и в случае, если новая точка находится ближе к наблюдателю, тогда заносим координаты новой точки в z-буфер и цвет в буфер кадра.

Метод тонирования Гуро

Метод тонирования Гуро основан на интерполяции интенсивности, данный подход к закраске объекта позволяет устранить дискретность изменения интенсивности.

Интерполяция интенсивности работает следующим образом: для всех ребер запоминается начальная интенсивность, изменение интенсивности при каждом шаге по координате у. Затем, заполнение видимого интервала производится путём интерполяции между значениями интенсивности на ребрах, ограничивающих интервал.

$$I_a = I_1 rac{y_s - y_2}{y_1 - y_2} + I_2 rac{y_1 - y_s}{y_1 - y_2}$$
 $I_b = I_1 rac{y_s - y_3}{y_1 - y_3} + I_3 rac{y_1 - y_s}{y_1 - y_3}$
 $I_p = I_a rac{x_b - x_p}{x_b - x_a} + I_b rac{x_p - x_a}{x_b - x_a}$

Построение световых столбов методом масштабирования виртуальных планов

Отрендерив наш объект, отмасштабировав полученное изображение и сместив его в нужную сторону в зависимости от источника света мы получим достаточно реалистичное изображение с световыми столбами.

Чем больше виртуальных планов мы создаём тем качественнее получается результат.

15 virtual planes

30 virtual planes

75 virtual planes

Comparison of images under different numbers of virtual planes

Алгоритм z-буфера

Цикл і от 0 до nfaces

Файлы формата OBJ

В файле формата ОВЈ хранятся данные вершин, нормали к каждой вершине, связи между вершинами для образования граней. Данный формат позволяет хранить изображение с хорошей детализацией.

```
v 0.509630 0.681762 0.090279

v 0.513016 0.682144 0.090279

v 0.513016 0.682144 0.062612

v 0.509630 0.681762 0.062612

vn -0.081666 0.994967 0.000000

vn -0.111911 0.992020 0.000000

vn -0.081666 0.994967 0.000000

f 1/1/1 2/2/2 3/3/3

f 3/3/3 4/4/4 1/1/1
```

Пользовательский интерфейс

Программа позволяет пользователю выбирать объект для рендеринга из представленных («Дерево», «Решётка»). Так же у пользователя есть возможность вращать модель, изменяя её координаты. В папку obj можно поместить любые модели удовлетворяющие критериям хранения и она будет построена.

Пользовательский интерфейс

Сравнение моделирования объекта средствами разрабатываемого ПО и средствами операционной системы MacOS на примере объекта «Дерево»

OBJ viewer в разрабатываемом ПО

OBJ viewer в MacOS

Сравнение моделирования объекта средствами разрабатываемого ПО и средствами операционной системы MacOS на примере объекта «Решётка»

OBJ viewer в разрабатываемом ПО

Результаты проекта

Была разработана программа моделирования трёхмерного объекта и визуализации световых столбов, проходящих через листву/решётчатую поверхность. Хранение объектов было реализовано в ОВЈ файлах. Отображение каждого объекта на сцене было реализовано при помощи алгоритма z-буфера. Процесс визуализации световых столбов был реализован за счёт построения множества копий объекта увеличенного масштаба и сдвига на необходимую величину по обеим плоскостям.

Реализованные задачи:

- процедура чтения из файлов формата obj;
- создание объектов сцены;
- алгоритм z-буфера;
- метод тонирования Гуро для закраски объекта;
- камера и источник света;
- пользовательский интерфейс.
- построения копий объекта для создания световых столбов.

Результаты проекта

Было разработано программное обеспечение для визуализации ярких лучей, проходящих через решётчатую поверхность и листву деревьев.

Был реализован интерфейс, который позволяет выбирать из предложенного набора препятствия, представленные в виде объемных моделей, для искусственного источника света.

Программный продукт предоставляет возможность размещения источников света, а также возможность просмотра сцены с фиксированного положения наблюдателя.