1179: Probability Lecture 29 — Monte Carlo Simulation and Central Limit Theorem

Ping-Chun Hsieh (謝秉均)

December 29, 2021

Announcements

- Final exam on 1/5 (next Wednesday, in class)
 - ▶ 10:10am 12:10pm
 - Coverage: Lec 1 Lec 29
 - You are allowed to bring a cheat sheet (A4 size, 2-sided, without any attachments)
 - Locations: EC015 and EC022

"Monte Carlo Simulation" is a Building Block of Many Practical Algorithms...

- 'Monte-Carlo Policy Gradient in Reinforcement Learning
 - https://www.youtube.com/watch?v=KHZVXao4qXs (by David Silver)

$$\nabla_{\theta} V^{\pi_{\theta}}(\mu) = \mathbb{E}_{\tau \sim P_{\mu}^{\pi_{\theta}}} \left[R(\tau) \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$

https://www.youtube.com/watch?v=UXW2yZndI7U (by John Levine)

- Markov-Chain Monte-Carlo (MCMC)
 - https://www.youtube.com/watch?v=TNZk8lo4e-Q (by Nando de Freitas)

Quick Review

Definition

Convergence in probability

Counter-example

WLLN

$$\begin{array}{c}
M : enpinical mean \\
M : enpinical mean \\
M : enpinical mean

 $\begin{array}{c}
M : enpinical mean
\end{array}$$$

2 equivalent definitions Almost-sure convergence

This Lecture

1. SLLN and Monte Carlo Simulation

2. Central Limit Theorem (CLT)

Reading material: Chapter 11.5

SLLN: Two Equivalent Statements

The Strong Law of Large Numbers: Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ . Define $S_n = (X_1 + \dots + X_n)$. Then, we have $P\Big(\Big\{\omega: \lim_{n\to\infty} \frac{S_n(\omega)}{n} = \mu\Big\}\Big) = 1$

Good event

The Strong Law of Large Numbers (Equivalent Statement):

Let $X_1, \dots, X_n \dots$ be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ . Define

$$S_n = (X_1 + \dots + X_n)$$
. Then, we have
$$P(\bigcap_{k=1}^{\infty} X_n) = 0, \forall \epsilon > 0$$
Then, we have
$$P(\bigcap_{k=1}^{\infty} X_n) = 0, \forall \epsilon > 0$$
Then, we have
$$P(\bigcap_{k=1}^{\infty} X_n) = 0$$
Then, we have

How to Prove SLLN (Under a Mild Condition)?

- 1. Borel-Cantelli Lemma
- 2. A Bound for the 4-th Moment Condition
- 3. Markov's Inequality

1. Borel-Cantelli Lemma

Recall: HW1, Problem 3

Problem 3 (Continuity of Probability Functions)

(12+12=24 points)

- (a) Let A_1, A_2, A_3, \cdots be a countably infinite sequence of events. Prove that if $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n) = 0$. This property is known as the *Borel-Cantelli Lemma*. (Hint: Consider the continuity of probability function for $\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$ and then apply the union bound)
- (b) Consider a countably infinite sequence of coin tosses. The probability of having a head at the k-th toss is p_k , with $p_k = 100 \cdot k^{-N}$ (Note: different tosses are NOT necessarily independent). We use I to denote the event
- ▶ Borel-Cantelli Lemma: Let $\{A_n\}$ be any sequence of events.

If
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, then we have

$$P\Big(\Big\{\omega:\omega\in A_n\text{ for infinitely many }n\Big\}\Big)=P(\bigcap_{k=1}^\infty\bigcup_{n=k}^\infty A_n)=0$$

2. A Bound For the 4-th Moment

► A Bound on 4-th Moment: Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and $E[X_1^4] < \infty$. Define $S_n = (X_1 + \dots + X_n)$.

Then, there exists a constant $K<\infty$ such that

$$E[(S_n - n\mu)^4] \leq Kn^2$$
moment of S_n

Proof: Please see the supplemental on E3

Question: How about
$$E[(\frac{S_n}{n} - \mu)^4] \le ?\frac{Kn^2}{N^4} + \frac{K}{N^2}$$

Put Everything Together: Proof of SLLN

Step 1:
$$P\left(\bigcap_{k=1}^{\infty}\bigcup_{n=k}^{\infty}\left\{\omega:\left|\frac{S_{n}(\omega)}{n}-\mu\right|>\varepsilon\right\}\right)=0, \forall \varepsilon>0$$

$$Proof:$$

$$Step 1: P\left(\left\{\left|\frac{S_{n}}{n}-\mu\right| \right| \right)=P\left(\left|\frac{S_{n}}{n}-\mu\right|^{\frac{1}{2}}\right)=n^{-4\gamma}\right)$$

$$Step 2: \sum_{n=1}^{\infty}P(A_{n})\leq \sum_{n=1}^{\infty}P(A_{n})<\infty \Rightarrow \sum_{n=1}^{\infty}P(B_{n},\varepsilon)<\infty$$

$$Step 3: \sum_{n=1}^{\infty}P(A_{n})<\infty \Rightarrow \sum_{n=1}^{\infty}P(B_{n},\varepsilon)<\infty$$

Application of SLLN: Monte Carlo Simulation

A Motivating Example: Find the following integration

- ightharpoonup Question: Is there a closed-form expression for I?
- Question: Could we approximate I by taking the Riemann sum?

Application of SLLN: Monte Carlo Simulation (Cont.)

LOTUS A Motivating Example: Find the following integration $I = \int_0^1 e^{-x^3} dx = \int_0^1 e^{-x^3} dx = E[e^{-x^3}]$ Let $U \sim \text{Unif}(0,1)$

- ► Monte-Carlo method: Let $U \sim \text{Unif}(0,1)$
 - 1. Let $U \sim \text{Unif}(0,1)$. Rewrite $\int_{0}^{1} e^{-x^3} dx = E[e^{-U^3}]$

2. Draw
$$K$$
 i.i.d. random variables $U_1, \cdots, U_K \sim \text{Unif}(0,1)$
$$\widehat{E[e^{-U^3]}} \approx \frac{1}{K} \sum_{i=1}^K e^{-U_i^3} \text{(Why?)} \qquad \text{inequalities}$$

Monte Carlo Simulation (Formally)

- Objective: Find the integration I = g(x)dx
- Monte Carlo Simulation:
 - 1. Let X be a random variable with PDF p(x). Rewrite I as

$$I = \int \frac{g(x)}{p(x)} p(x) dx = E_{X \sim p(x)} \left[\frac{g(X)}{p(X)} \right] \qquad \text{(Lotus)}$$

2. Draw K i.i.d. random variables X_1, \dots, X_K with PDF p(x)

$$\hat{I}_K = \frac{1}{K} \sum_{i=1}^K \frac{g(X_i)}{p(X_i)} \approx I$$

Question: How to choose K?

Variance Issue in Monte-Carlo Simulation

$$I = \int g(x)dx = \int \frac{g(x)}{p(x)} p(x)dx = E_{p(x)} \left[\frac{g(X)}{p(X)} \right]$$

$$\hat{I}_K = \frac{1}{K} \sum_{i=1}^K \frac{g(X_i)}{p(X_i)} \approx I$$

• Question: $E[\hat{I}_K] = ? \text{Var}[\hat{I}_K] = ?$

Central Limit Theorem

Beyond SLLN

▶ The Strong Law of Large Numbers: Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ . Define $S_n = (X_1 + \cdots + X_n)$.

Then, we have

$$P\left(\left\{\omega: \lim_{n\to\infty} \frac{S_n(\omega)}{n} = \mu\right\}\right) = \underline{1}$$

• Question: What does SLLN say about $S_n(\omega)$?

$$S_n(\omega) = n \cdot M$$
 for all ω , large n (scale linearly with n) Sublinear in n Sublinear in n $S_n(\omega) = n\mu + o(n)$?

 $S_n(\omega) = n\mu + \int_{17}^{\infty} \int_{1$

Recall (Lecture 14): Binomial and Normal

- Example: X_1, X_2, \cdots are i.i.d. Bernoulli r.v.s with mean μ and variance $\sigma^2 = \mu(1 - \mu)$

 - Question: What type of r.v. is S_n ? $E[S_n] = ? Var[S_n] = ?$

$$S_{n} \sim B_{inomial}(n, M)$$

$$E[S_{n}] \stackrel{!}{=} h \cdot M$$

$$V_{av}[S_{n}] = h \cdot (M \cdot (+M)) = h \cdot \sigma^{2}$$

$$S_{n} - n\mu$$
Question: How to find the distribution of $\frac{S_{n} - n\mu}{\sigma \sqrt{n}}$?

Recall: Plotting $Z_n = (S_n - n\mu)/(\sigma\sqrt{n})$

Central Limit Theorem (Formally)

• Central Limit Theorem (CLT): Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and variance σ^2 . Define

$$S_n = (X_1 + \dots + X_n)$$
. Then, we have $E[S_n]$

$$\lim_{n \to \infty} P\left(\frac{S_n - n\mu}{\sigma \sqrt{n}} \le z\right) \neq \Phi(z), \forall z \in \mathbb{R}$$

$$cof \text{ of standard normal}$$

where $\Phi(z)$ is the CDF of standard normal

► Question: How to interpret such convergence? $S_{h} = \eta_{M} + \sigma_{N} \cdot Z_{p}$

How to Interpret CLT?

Let X_1, X_2, \cdots be i.i.d. random variables with mean μ and variance σ^2

$$Define S_n = (X_1 + X_2 \cdots + X_n)$$

CLT:
$$\lim_{n \to \infty} P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}}\right) \le z = \Phi(z)$$

$$\frac{S_1 - 1 \cdot \mu}{\sigma \sqrt{1}} \qquad \frac{S_2 - 2 \cdot \mu}{\sigma \sqrt{2}} \qquad \dots$$

$$\frac{S_n - n \cdot \mu}{\sigma \sqrt{n}} \qquad \dots$$

Convergence in Distribution (Formally)

Convergence <u>in Distribution</u>: Let $F_1, F_2 \cdots, F_n, \cdots$ be a sequence of CDFs of random variables $Y_1, Y_2, \cdots, Y_n, \cdots$. We say that $\{Y_n\}$ converges in distribution to a random variable Y with CDF F if $\forall t \in \mathbb{R}$,

$$\lim_{n\to\infty} F_n(t) = F(t) \qquad (pointwise)$$

- Remark: Convergence in distribution is also called "weak convergence"
- ▶ Notation: $Y_n \Rightarrow Y$ or $F_n \Rightarrow F$
- Question: Why is such convergence regarded "weak"?

"Convergence in Distribution" does not imply "Convergence in Probability" or "Almost-Sure Convergence" \(\lambda \omega \)= \(|\lambda \omega \rangle \)

- in Probability" or "Almost-Sure Convergence" $\chi(\omega) = 1$ • Example: Let $X \sim N(0,1)$ $\chi(\omega) = 1$ $\chi(\omega) = 1$ $\chi(\omega) = 1$
 - For every $n \in \mathbb{N}$, let $X_n = (-1)^n X$, i.e., $X_n(\underline{\omega}) = (-1)^n X(\omega)$
 - Question: Do we have $X_n \Rightarrow X$? How about $X_n \stackrel{p}{\rightarrow} X$?

Why is CLT Useful? Approximation!

• Recall that $S_n = (X_1 + X_2 \cdots + X_n)$, where X_1, \dots, X_n are i.i.d.

CLT:
$$\lim_{n \to \infty} P\left(\frac{S_n - n\mu}{\sigma \sqrt{n}}\right) \le z = \Phi(z)$$
 CDF of Standard normal

Idea: For large n, consider $P\left(\frac{S_n - n\mu}{\sigma \sqrt{n}} \le z\right) \approx \Phi(z)$ to find

$$P(S_n \le c)$$
 for any c

$$\frac{P(S_n \leq c)}{S_n \leq c} = P\left(\frac{S_n - n\mu}{S_n} \leq \frac{c - n\mu}{S_n}\right)$$

Example: Approximation via CLT

• Example: X_1, \dots, X_{20} are 20 i.i.d. continuous uniform r.v.s on (0,1)

Hint:
$$P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le z\right) \approx \Phi(z)$$

$$P\left(\frac{20}{5} \times 1 \le 8\right) = P\left(\frac{5_{20} - 20 \times \frac{1}{2}}{\sqrt{\frac{1}{12} \cdot \sqrt{20}}} \le \frac{8 - 20 \times \frac{1}{2}}{\sqrt{\frac{1}{12} \cdot \sqrt{20}}}\right)$$

$$\approx \frac{8-20\times_{\overline{2}}^{1}}{\sqrt{1_{12}}\cdot\sqrt{20}}$$

Now let's prove CLT!

Review: From MGF to Distributions

- Recall: Lecture 23
- MGF Uniqueness Theorem: Let X_1 and X_2 be two random variables with MGFs $M_{X_1}(t)$ and $M_{X_2}(t)$, respectively. If $M_{X_1}(t) = M_{X_2}(t)$ for all t in some interval $(-\alpha, \alpha)$, then X_1 and X_2 follow the same distribution, i.e.

$$P(X_1 \le u) = P(X_2 \le u)$$
, for all $u \in \mathbb{R}$

Use MGF to Show CLT

- Idea: Suppose we find the MGF of $\frac{S_n n\mu}{\sigma\sqrt{n}}$ for $n \to \infty$
 - Question: Can we find its distribution?
- Levy Continuity Theorem: Let $V_1, V_2 \cdots$ be a sequence of random variables with CDFs F_1, F_2, \cdots and MGFs $M_{V_1}(t), M_{V_2}(t) \cdots$. Let V be a random variable with CDF F and MGF $M_V(t)$. If for every $t \in \mathbb{R}$, $\lim_{n \to \infty} M_{V_n}(t) = M_V(t)$, then the CDFs F_n converge to F.
- ▶ Remark: MGF of $\mathcal{N}(\mu, \sigma^2)$ is $e^{\mu t + \frac{1}{2}\sigma^2 t^2}$

Use MGF to Show CLT (Cont.)

- Example: X_1, X_2, \cdots are i.i.d. r.v.s with mean μ and variance σ^2

 - Question: $E[Y_i] = ____? \text{Var}[Y_i] = ____?$
 - Question: What is the MGF of $\frac{S_n n\mu}{\sigma\sqrt{n}}$ (in terms of MGF of Y_i)?

Use MGF to Show CLT (Cont.)

Question: When $n \to \infty$, what is the MGF of $\frac{S_n - n\mu}{\sigma \sqrt{n}}$?

Most likely we will forget about all the details in about 2 months...

Despite this, we will still know how to think probabilistically

Final Takeaway

1. Sample space and random variables

2. Leverage independence or normal structure

3. Limits could be very useful (e.g. LLN and CLT)

4. Bayesian view and conditioning could help simplify the problem