Exercises 6.1.5 — Problem 8

Problem. Let f be a C^1 function on the line, and let $g(x) = \int_0^1 f(xy)y^2 dy$. Prove that g is a C^1 function and establish a formula for g'(x) in terms of f.

Proof. First define $h(x,y)=f(xy)y^2$ then $g(x)=\int_0^1 h(x,y)dy$. Since f(xy) and y^2 are continuous functions, Theorem 6.1.8 tells us that $\int_0^1 h(x,y)dy$ is a continuous function. Further, the fact that each of $f(xy),y^2$ is C^1 means that g(x) is C^1 since C^1 is closed under multiplication. Then the conditions for Theorem 6.1.7 are met (since the constant functions 0 and 1 are certainly C^1) so we can give the derivative formula:

$$g'(x) = \int_0^1 \frac{\partial h}{\partial x}(x, y) dy = \int_0^1 f'(xy) y^3 dy$$