# FUNDEMENTALS OF ECOLOGY GENERAL ECOLOGY

introductions course overview expectations

Martin Bulla Peter Mikula bullam@fzp.czu.cz mikulap@fzp.czu.cz

Česká zemědělská univerzita v Praze • CZU Prague

Today and coming days, the aim is not frontal teaching, but something that helps you. Ask questions.



- a newly founded research group exploring global patterns and evolution of traits along with local adaptations
- using mainly birds as our model species to understand reproduction and mating systems, song and fear;
- all tied together by a common thread: biorhythms and reproducibiliy
- we are promoters of open science





International team



collaborate with institutions and people across the globe





The aim of the course is to provide you with

- a fundamental understanding of the science of ecology, its scope, methods, and
- relevance to both basic and applied research.

Gain

- insights into
  - ecological theory,
  - empirical approaches,
  - the role of ecology in addressing pressing global environmental challenges.
- ability to work independently within a team (using individual strength to the teams advantage)
- Experience in
  - working with literature research
  - communication skills
  - time management
- Critical thinking



## Hands on learning

## Presentation – a back bone of the course

- Practice scientific thinking and clear communication
- Read and synthesize primary literature
- Learn about basic ecological concepts
- Connect classic ideas with modern developments
- Create re-usable study material for peers

### Course format

```
      21.10. 10:30 - 12:00
      (Z118)
      Course intro

      04.11. 10:30 - 12:00
      (Z118)
      Intro to ecology

      08.11. 10:30 - 12:00
      (Z118)
      Intro to Hands on

      21.11. 8:30 - 17:00
      Excursion

      28.11. 8:30 - 17:00
      (VN306) Home-work on the topics

      05.12. 8:30 - 17:00
      (VN306) Symposium (presentations)
```

### Course material

https://github.com/MartinBulla/Ecology\_Fund\_Gen

PUT THE INFO/NOTE HERE

## **Presentations logistics**

- 15 min talk + 15 min moderated discussion
- · On key aspects of ecology
  - Topic
  - Papers traditional and current
- 10 teams of 4-5 people

  - randomly selectedall member contribute equally
    - 1 day reading the papers and literature search
       1 day homework

    - 1 day preparing the presentation
       1 day presentation and engagement in the discussion (your and presentations of others)
  - all team members present

### Presentations format

### General

- Short intro → main concepts → papers analysis → conclusions
- Describe clearly topic and content of each slide and graphic
- Explain key concepts
- Compare classic vs. recent view using the provided papers and your research
- Engage critically with methods, uncertainty, limitations, evidence
- Acknowledge sources of information & visuals
- Deep dive vs ChatGPT
- List who did what on the final slide

- Engaging

  - Keep text to minimum
     Use high visual signal content (pics, photos, diagrams, graphs)
- Study material for peers
  - Leave detailed description for notes
  - Dynamic content welcomed, but
     Export with notes as pdf
- Number of slides vs detail vs thorough explanation

Engaging slides – rule of thumb: do the slides the way you learn the most when you see a presentation.

Study material – great if slides are dynamic (but either keep non-dynamic version or keep in mind that peers will study from the slide

Various approaches – one has clear signal content and then many slides are ossible

### Presentations evaluation

- · Conceptual understanding and clarity
- · Correctness: arguments grounded in evidence
- · Engagement: ability to capture audience's attention
- Academic integrity
- · Structure: logical and easy to follow
- Timing (15min)
- · Ability to discuss and defend your views

clarity, scientific grounding, engagement, and defence of arguments during group presentation at the symposium

### Course requirements

Required for admission to the exam - active participation at

- · lectures
- · excursion
- · symposium

Passing the course requires grades 1, 2 or 3 from both: (1 = 100-90%, 2 = 89-70%, 3 = 69-50%)

- presentation (60%)
- exam (40%)

Active participation in the excursion and the symposium is required for admission to the exam.

Passing the course requires passing (grade 1-3; 1 = 100-90%, 2 = 89-70%, 3 = 69-50%) both components:

(1) Presentation (60%): clarity, scientific grounding,

engagement, and defence of arguments during group presentation at the symposium.

(2) **Exam (40%)**: written test evaluating knowledge of key ecological principles.

The final grade is the weighted mean of the presentation and exam grades (rounded).

- 1. Eco-evolutionary dynamics & life histories
- 2. Population ecology essentials
- 3. Species interactions & coexistence
- 4. Food webs & network ecology
- 5. Macroecology & biogeography 1
- 6. Macroecology & biogeography 27. Global change ecology
- 8. Drivers of biodiversity crisis
- 9. Biodiversity (ecosystem functioning/services)
- 10. Applied ecology: New tools & data streams

Classic vs. modern papers

### **TOPICS & READINGS**

PETO, can you create the list

### Eco-evolutionary dynamics & life histories

Does the fast-slow continuum adequately capture life history variation across taxa, or do we need multiple axes of life-history strategy?

- Classic:
  - Stearns, S. C. (1977). The evolution of life history traits: a critique of the theory and a review of the data. Annual Review of Ecology and Systematics, 145–171.
- · Recent:
  - Stott, I. et al. (2024). Life histories are not just fast or slow. Trends in Ecology & Evolution, 39(9), 830–840.

## Population ecology essentials

## Allee effects: ecological curiosity or fundamental driver of population dynamics?

### · Classic

 Stephens, P. A., Sutherland, W. J., & Freckleton, R. P. (1999). What is the Allee effect? Oikos, 185–190.

### Recent

 Muir, E. J., Lajeunesse, M. J., & Kramer, A. M. (2024). The magnitude of Allee effects varies across mechanisms. Oikos, 2024(7), e10386.

## Species interactions & coexistence

## Top-down control or bottom-up release: Is there evidence for predation's grip on prey numbers?

### Classic

 Krebs, C. J. et al. (1995). Impact of food and predation on the snowshoe hare cycle. Science, 269, 1112–1115.

### Recent

 Krebs, C. J., Boonstra, R., & Boutin, S. (2018). Understanding the 10-year snowshoe hare cycle. Journal of Animal Ecology, 87, 87–100.

## Food webs & network ecology

## From keystone to rewiring: does food-web complexity build local biodiversity?

### · Classic:

 Paine, R. T. (1966). Food web complexity and species diversity. The American Naturalist, 100(910), 65–75.

### Recent

 Bartley, T. J. et al. (2019). Food web rewiring in a changing world. Nature Ecology & Evolution, 3, 345–354.

## Macroecology & biogeography 1

## Latitudinal gradients in biodiversity (and its dimensions) - how and why?

### · Classic:

 Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity. AREES, 34, 273–309.

### Recent

 Brodie, J. F., & Mannion, P. D. (2023). The hierarchy of factors predicting the LDG. TREE, 38(1), 15–23.

## Macroecology and biogeography 2

## How many species do we actually have on Earth? Why is it so hard to estimate?

### · Classic:

Mora, C. et al. (2011). How many species are there on Earth and in the ocean?
 PLoS Biology, 9(8), e1001127.

### Recent

 Wiens, J. J. (2023). How many species are there on Earth? Progress and problems. PLoS Biology, 21(11), e3002388.

## Global change ecology

### Are we facing a sixth mass extinction?

- · Classic:
  - Ceballos, G. et al. (2015). Entering the sixth mass extinction. Science Advances, 1(5), e1400253.
- Recent:
  - Wiens, J. J., & Saban, K. E. (2025). Questioning the sixth mass extinction. TREE, 40(4), 375–384.

## Drivers of biodiversity crisis

### What are the main drivers of the current biodiversity crisis?

### · Classic:

 Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. PNAS, 115(25), 6506–6511.

### Perent

 Jaureguiberry, P. et al. (2022). Direct drivers of global biodiversity loss. Science Advances, 8(45), eabm9982.

## Biodiversity ↔ ecosystem functioning/services

## From services to contributions: valuing nature in a human world

### · Classic

 Costanza, R. et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253–260.

### Recent

 Díaz, S. et al. (2018). Assessing nature's contributions to people. Science, 359(6373), 270–272.

## Applied ecology: New tools & data streams

### From new dawn to new standard: citizen science in ecology

- Classic:
  - Silvertown, J. (2009). A new dawn for citizen science. TREE, 24(9), 467-471.
- . Pacant
  - Fraisl, D. et al. (2022). Citizen science in environmental & ecological sciences.
     Nature Reviews Methods Primers, 2, 64.

# FUNDEMENTALS OF ECOLOGY GENERAL ECOLOGY

introductions course overview expectations

Martin Bulla Peter Mikula bullam@fzp.czu.cz mikulap@fzp.czu.cz

Česká zemědělská univerzita v Praze • CZU Prague

### Course format

```
      21.10. 10:30 - 12:00
      (Z118)
      Course intro

      04.11. 10:30 - 12:00
      (Z118)
      Intro to ecology

      08.11. 10:30 - 12:00
      (Z118)
      Intro to Hands on

      21.11. 8:30 - 17:00
      Excursion

      28.11. 8:30 - 17:00
      (VN306) Home-work on the topics

      05.12. 8:30 - 17:00
      (VN306) Symposium (presentations)
```

### Alternatives - January 2026

| 06.01. 8:30 - 17:00<br>07.01. 8:30 - 17:00 | Excursion Symposium (presentations) |
|--------------------------------------------|-------------------------------------|
| 06.01. 8:30 - 17:00                        | Home-work on the topics             |
| 13.01. 8:30 - 17:00                        | Excursion                           |
| 14.01. 8:30 - 17:00                        | Symposium (presentations)           |
|                                            |                                     |