Лабораторная работа № 02 ДО

ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ *RC*-УСИЛИТЕЛЕЙ

1. Цель работы

Цель — изучение общих свойств усилителей. В работе изучается методика определения основных параметров усилителя: коэффициента усиления напряжения, входного и выходного сопротивления, снимаются его основные характеристики: амплитудная, амплитудно-частотная и временная. С помощью этих характеристик определяются динамический диапазон входного сигнала, полоса пропускания и время установления усилителя.

2. Методика эксперимента

Исследование схем проводится методом моделирования с помощью программы *Design Lab 8.0*. Эксперименты проводятся на модели усилителя (рис.1). В качестве усилительного элемента применяется управляемый источник напряжения ИНУН. Последовательно с ним для моделирования реальных свойств усилителя включен ограничитель сигнала LIMIT.

Рис. 1. Схема модели усилителя (для программы OrCad)¹

Резистор R1 моделирует входное сопротивление усилителя, а конденсатор C2 — входную емкость. Резистор R2 — моделирует выходное сопротивление усилителя, R3 и C4 —нагрузку, C1 и C3 — конденсаторы связи (разделительные конденсаторы). На вход усилителя (узел 1) подается сигнал от источника V1. С выхода усилителя (узел 2) снимается усиленный сигнал. Для проведения эксперимента необходимо установить параметры элементов схемы, параметры рассчитываются по следующим формулам:

емкость конденсатора $C1 = (1 + 0.11 \text{ M} + 0.07 \text{ N}) \text{ мк}\Phi$, емкость конденсатора $C2 = (5 - 0.07 \text{ M} + 0.04 \text{ N}) \text{ н}\Phi$, емкость конденсатора $C3 = (4 + 0.05 \text{ M} + 0.03 \text{ N}) \text{ мк}\Phi$,

¹ В программе DesignLab модель LIMIT объединяет усилитель и ограничитель (см. приложение)

емкость конденсатора $C4 = (5 - 0.07 \text{ M} + 0.04 \text{ N}) \text{ н}\Phi$, сопротивление резистора R1 = (2 - 0.1 L) кОм, сопротивление резистора R2 = (100 + 10 L) Ом, сопротивление резистора R3 = (200 + 30 N) Ом,

где M — номер группы, N — номер, под которым студент числится в учебном журнале, L — младший разряд N.

Коэффициент усиления ИНУН и пределы напряжения для ограничителя выбираются из табл.1.

Таблица 1.

Группа	1	2	3	4	6	7	8	9	12
Коэффициент передачи ИНУН	5,0	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0
Напряжение ограничения, В	±5	±6	±7	±8	±9	±10	±11	±12	±13

3. Подготовка к работе

- 3.1. Рассматривая усилитель как «черный ящик», показать, как экспериментально определить его основные параметры:
 - коэффициент усиления $K_{u \text{ xx}}$,
 - входное сопротивление $R_{\rm BX}$,
 - выходное сопротивление $R_{\text{вых}}$.
- 3.2. Описать методику экспериментального получения амплитудно-частотной характеристики усилителя:
 - какой формы сигнал надо подать на вход усилителя,
 - какова должна быть амплитуда этого сигнала,
 - какова должна быть частота этого сигнала.
- 3.3. Качественно показать, как выглядит АЧХ *RC*-усилителя и как по этой характеристике определить граничные частоты полосы пропускания усилителя $(f_{\rm H}, f_{\rm B})$.
- 3.4. Для RC-усилителя качественно изобразить его амплитудную характеристику (AX).
- 3.5. Описать методику экспериментального получения АХ усилителя:
 - какой формы сигнал надо подать на вход усилителя, какова должна быть частота этого сигнала.
 - в каких пределах необходимо менять амплитуду входного сигнала.
- 3.6. Описать методику экспериментального снятия переходной характеристики усилителя:
 - какой формы сигнал надо подать на вход усилителя,
 - какова должна быть амплитуда этого сигнала,
 - какова должна быть длительность этого сигнала.
- 3.8. Для усилителя с параметрами своего варианта рассчитать коэффициент усиления усилителя (при $R_{\Gamma}=0$), граничные частоты полосы пропускания ($f_{\rm H},f_{\rm B}$). Результаты расчетов занести в итоговую таблицу.

4. Рабочее задание

- 4.1. В операционной системе «Windows» под управлением программы «Schematics» собрать схему в соответствии с заданием.
- 4.2. Проверить работоспособность схемы. Для этого подать на вход синусоидальный сигнал с частотой f=5 к Γ ц и амплитудой $U_m=100$ мB, определить форму и амплитуду выходного сигнала. По этим данным определить коэффициент усиления K_{u0} .
- 4.3. Снять амплитудно-частотную характеристику усилителя, определить граничные частоты полосы пропускания и коэффициент усиления на средних частотах. Результаты занести в таблицу.
- 4.4. Определить входное сопротивление усилителя. Результат занести в таблицу.
- 4.5. Определить выходное сопротивление усилителя. Результат занести в таблицу.
- 4.6². Снять амплитудную характеристику усилителя. По характеристике определить коэффициент усиления в режиме малого сигнала и динамический диапазон усилителя.

Параметр	K_{u0}	$f_{\scriptscriptstyle m H}$, Гц	$f_{\scriptscriptstyle m B}$, к Γ ц	$R_{\rm BX}$, кОм	$R_{\text{вых}}$, Ом
Расчет					
Эксперимент					

² По указанию преподавателя

Приложение:

Puc. П1. Элемент LIMIT программы DesignLab, моделирующий усилитель с ограничением выходного сигнала

Рис. П2. Схема модели усилителя в программе DesignLab