Multiple Linear Regression and Interactions

EDS 222

Tamma Carleton Fall 2022

Announcements/check-in

- Thank you for filling out the survey!
 - Lectures: 64% (right on), 36% (too fast)
 - Labs: 96% (right on), 1% (too fast)
 - HW: 84% (right on), 16% (too fast)

Announcements/check-in

- Thank you for filling out the survey!
 - Lectures: 64% (right on), 36% (too fast)
 - Labs: 96% (right on), 1% (too fast)
 - HW: 84% (right on), 16% (too fast)
- In response to survey:
 - Adding more examples of applying concepts during the lecture
 - Slightly slower pace in lectures, try to remove jargon where possible, ensure definitions are provided
 - **Key adjustments to HW3**: due Nov 1, 9am; complete assignments all get 100%, answer key posted with HW to aid midterm studying
 - Extra example of testing OLS assumptions posted on our Resources page

Midterm Exam

Two parts:

Midterm Exam

Two parts:

Part 1: Short answer questions (~4)

- Focus on definitions of key concepts
- You should know key definitions (e.g., expectation/mean, median, variance, \mathbb{R}^2 , OLS slope and intercept formulas for simple linear regression)
- ullet You do not need to memorize math rules (e.g., $var(ax+b)=a^2var(x)$)
- Be able to interpret probability distributions, scatter plots, QQ-plots, boxplots, linear regression output (not p-values or t-statistics)

Midterm Exam

Two parts:

Part 2: Long answer questions (~2)

- Each question poses a data science problem and walks you through a set of analysis steps
- Very similar to assignments but focused on interpretation of existing code and output
- May include some minimal pseudo-coding

Today

Model fit in multiple regression

Nonlinear relationships in linear models, adjusted R^2

Today

Model fit in multiple regression

Nonlinear relationships in linear models, adjusted R^2

Interaction effects

Implementation and interpretation

Today

Model fit in multiple regression

Nonlinear relationships in linear models, adjusted R^2

Interaction effects

Implementation and interpretation

Multicollinearity

Problems and (some) solutions

Model fit in multiple regression

- Our linearity assumption requires that **parameters enter linearly** (*i.e.*, the β_k multiplied by variables)
- We allow nonlinear relationships between y and the explanatory variables x.

Example: Polynomials

$$y_i = eta_0 + eta_1 x_i + eta_2 x_i^2 + u_i$$
 $y_i = eta_0 + eta_1 x_i + eta_2 x_i^2 + eta_3 x_i^2 = 3 + u_i$ $y_i = eta_0 + eta_1 x_i + eta_2 x_i^2 + eta_3 x_i^3 + eta_4 x_i^4 + u_i$

•••

- Consider the relationship between temperature and harmful algal blooms (this is a real thing!).
- Suppose we sampled many coastal locations across the US, and measured the total surface water area at each site that had blooms present.
- Perhaps we have scientific evidence to suggest there is a nonlinear effect of temperature on extent of the blooms.
- We might want to estimate the following model:

$$area_i = \beta_0 + \beta_1 temperature_i + \beta_2 temperature_i^2 + u_i$$

$$area_i = eta_0 + eta_1 temperature_i + eta_2 temperature_i^2 + u_i$$

Estimating polynomial regressions in R, option 1:

blooms df = blooms df %>% mutate(temp2 = temp^2)

```
summary(lm(area~temp+temp2, data=blooms df))
#>
#> Call:
#> lm(formula = area ~ temp + temp2, data = blooms df)
#>
#> Residuals:
      Min
         1Q Median 3Q
#>
                                   Max
#> -12.5966 -2.0923 -0.1423 1.9951
                                9.4874
#>
#> Coefficients:
           Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 0.06363 0.29249 0.218 0.828
#> temp 0.62544 0.44007 1.421 0.156
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#>
```

Estimating polynomial regressions in R, option 2:

summary(lm(area~temp+I(temp^2), data=blooms_df))

```
#>
#> Call:
#> lm(formula = area ~ temp + I(temp^2), data = blooms df)
#>
#> Residuals:
  Min 1Q Median 3Q
#>
                                   Max
#> -12.5966 -2.0923 -0.1423 1.9951 9.4874
#>
#> Coefficients:
     Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 0.06363 0.29249 0.218 0.828
       0.62544 0.44007 1.421 0.156
#> temp
#> I(temp^2) 1.92118 0.14160 13.567 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 3.021 on 997 degrees of freedom
```

Watch out! Some things are not intuitive:

```
summary(lm(area~poly(area,2), data=blooms_df))
#>
#> Call:
#> lm(formula = area ~ poly(area, 2), data = blooms df)
#>
#> Residuals:
         Min
                    10
                           Median
#>
                                         3Q
                                                   Max
#> -1.278e-13 -6.600e-16 7.900e-17 3.970e-16 3.026e-13
#>
#> Coefficients:
                Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 7.059e+00 3.304e-16 2.136e+16 <2e-16 ***
#> poly(area, 2)1 2.021e+02 1.045e-14 1.934e+16 <2e-16 ***
#> poly(area, 2)2 1.394e-14 1.045e-14 1.334e+00 0.182
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 1.045e-14 on 997 degrees of freedom
```

Watch out! Some things are not intuitive (need raw=TRUE for coefficients to be interpretable -- see helpful Stack Overflow on this here):

```
summary(lm(area~poly(temp,2, raw=TRUE), data=blooms df))
#>
#> Call:
#> lm(formula = area ~ poly(temp, 2, raw = TRUE), data = blooms df)
#>
#> Residuals:
       Min 1Q Median
#>
                                 3Q
                                        Max
#> -12.5966 -2.0923 -0.1423 1.9951 9.4874
#>
#> Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept)
                            0.06363 0.29249 0.218 0.828
#> poly(temp, 2, raw = TRUE)1 0.62544 0.44007 1.421 0.156
\# poly(temp, 2, raw = TRUE)2 1.92118 0.14160 13.567 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                                                                        13 / 38
#>
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0636289	0.292487	0.2175444	0.8278286
temp	0.6254436	0.440068	1.4212430	0.1555588
I(temp^2)	1.9211754	0.141604	13.5672357	0.0000000

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0636289	0.292487	0.2175444	0.8278286
temp	0.6254436	0.440068	1.4212430	0.1555588
I(temp^2)	1.9211754	0.141604	13.5672357	0.0000000

How do we interpret these coefficients?

• Intercept: Predicted area of bloom when temperature = 0 degrees C

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0636289	0.292487	0.2175444	0.8278286
temp	0.6254436	0.440068	1.4212430	0.1555588
I(temp^2)	1.9211754	0.141604	13.5672357	0.0000000

How do we interpret these coefficients?

- Intercept: Predicted area of bloom when temperature = 0 degrees C
- $\hat{\beta}_1$ (coeff. on temp) and $\hat{\beta}_2$ (coeff. on $temp^2$)... ???

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0636289	0.292487	0.2175444	0.8278286
temp	0.6254436	0.440068	1.4212430	0.1555588
I(temp^2)	1.9211754	0.141604	13.5672357	0.0000000

How do we interpret these coefficients?

- Intercept: Predicted area of bloom when temperature = 0 degrees C
- $\hat{\beta}_1$ (coeff. on temp) and $\hat{\beta}_2$ (coeff. on $temp^2$)... ???

Go back to Algebra II (see here for a refresher): $y = ax^2 + bx + c$. a tells you whether the U-shape faces up or down, and how narrow or wide it is; b tells you whether the U-shape shifts left or right away from the y-axis; c simply shifts the U-shape up or down.

14 / 38

Don't worry about the Algebra II if it doesn't feel familiar!

$$area_i = eta_0 + eta_1 temperature_i + eta_2 temperature_i^2 + u_i$$

You can always:

- Graph your predicted values using geom_smooth() (see Lab 5)
- Put your coefficients into an automated grapher function (online or on your Mac)
- Use the regression output directly, along with a little basic math (e.g., predict area at temperature = 15, then at temperature = 16, and take the difference!)

Don't worry about the Algebra II if it doesn't feel familiar!

$$area_i = eta_0 + eta_1 temperature_i + eta_2 temperature_i^2 + u_i$$

You can always:

- Graph your predicted values using geom_smooth() (see Lab 5)
- Put your coefficients into an automated grapher function (online or on your Mac)
- Use the regression output directly, along with a little basic math (e.g., predict area at temperature = 15, then at temperature = 16, and take the difference!)

Key insight: effect of an increase in temperature on algal bloom area depends on the baseline level of temperature! (true for all nonlinear relationships)

Other examples:

• Polynomials and interactions:

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{1i}^2 + eta_3 x_{2i} + eta_4 x_{2i}^2 + eta_5 \left(x_{1i} x_{2i}
ight) + u_i$$

- **Exponentials** and **logs:** $\log(y_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 e^{x_{2i}} + u_i$ (more on this next week)
- Indicators and thresholds: $y_i = eta_0 + eta_1 x_{1i} + eta_2 \, \mathbb{I}(x_{1i} \geq 100) + u_i$

Other examples:

• Polynomials and interactions:

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{1i}^2 + eta_3 x_{2i} + eta_4 x_{2i}^2 + eta_5 \left(x_{1i} x_{2i}
ight) + u_i$$

- **Exponentials** and **logs:** $\log(y_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 e^{x_{2i}} + u_i$ (more on this next week)
- Indicators and thresholds: $y_i = eta_0 + eta_1 x_{1i} + eta_2 \, \mathbb{I}(x_{1i} \geq 100) + u_i$

In all cases, the effect of a change in x on y will vary depending on your baseline level of x. This is not true with linear relationships!

Transformation challenge: (literally) infinite possibilities. What do we pick?

$$y_i = eta_0 + u_i$$

$$y_i = \beta_0 + \beta_1 x + u_i$$

$$y_i=eta_0+eta_1x+eta_2x^2+u_i$$

$$y_i=eta_0+eta_1x+eta_2x^2+eta_3x^3+u_i$$

$$y_i = eta_0 + eta_1 x + eta_2 x^2 + eta_3 x^3 + eta_4 x^4 + u_i$$

$$y_i = eta_0 + eta_1 x + eta_2 x^2 + eta_3 x^3 + eta_4 x^4 + eta_5 x^5 + u_i$$

Truth: $y_i = 2e^x + u_i$

Model fit with multiple regressors

Measures of *goodness of fit* try to analyze how well our model describes (*fits*) the data.

Model fit with multiple regressors

Measures of *goodness of fit* try to analyze how well our model describes (fits) the data.

Common measure: R^2 [R-squared] (a.k.a. coefficient of determination)

$$R^2 = 1 - rac{\sum_i \left(y_i - \hat{y}_i
ight)^2}{\sum_i \left(y_i - \overline{y}
ight)^2} = 1 - rac{\sum_i e_i^2}{\sum_i \left(y_i - \overline{y}
ight)^2}$$

Recall $\sum_i \left(y_i - \hat{y}_i \right)^2 = \sum_i e_i^2$ is the "sum of squared errors".

Model fit with multiple regressors

Measures of *goodness of fit* try to analyze how well our model describes (fits) the data.

Common measure: R^2 [R-squared] (a.k.a. coefficient of determination)

$$R^2 = 1 - rac{\sum_i \left(y_i - \hat{y}_i
ight)^2}{\sum_i \left(y_i - \overline{y}
ight)^2} = 1 - rac{\sum_i e_i^2}{\sum_i \left(y_i - \overline{y}
ight)^2}$$

Recall $\sum_i \left(y_i - \hat{y}_i \right)^2 = \sum_i e_i^2$ is the "sum of squared errors".

 R^2 literally tells us the share of the variance in y our current models accounts for. Thus $0 \leq R^2 \leq 1$.

The problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

The problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

Intuition: Even if our added variable has *no true relation to* y, it can help lower e_i by fitting to the sampling noise

The problem: As we add variables to our model, \mathbb{R}^2 mechanically increases.

Intuition: Even if our added variable has *no true relation to* y, it can help lower e_i by fitting to the sampling noise

One solution: Penalize for the number of variables, e.g., adjusted \mathbb{R}^2 :

$$\overline{R}^2 = 1 - rac{\sum_i {(y_i - \hat{y}_i)}^2/(n-k-1)}{\sum_i {(y_i - \overline{y})}^2/(n-1)}$$

Note: Adjusted \mathbb{R}^2 need not be between 0 and 1.

We often use measures of model fit (or model "performance") to help choose a regression model from among multiple possibilities

• Adjusted \mathbb{R}^2 is just one of many possible performance metrics

We often use measures of model fit (or model "performance") to help choose a regression model from among multiple possibilities

- Adjusted \mathbb{R}^2 is just one of many possible performance metrics
- For example, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mean Squared Error (MSE), ...

We often use measures of model fit (or model "performance") to help choose a regression model from among multiple possibilities

- Adjusted \mathbb{R}^2 is just one of many possible performance metrics
- For example, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mean Squared Error (MSE), ...
- Lots more on the topic of model selection in EDS 232 ●●

We often use measures of model fit (or model "performance") to help choose a regression model from among multiple possibilities

- Adjusted \mathbb{R}^2 is just one of many possible performance metrics
- For example, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mean Squared Error (MSE), ...
- Lots more on the topic of model selection in EDS 232 ●●
- Don't forget the theory behind your data science!

Interactions allow the effect of one variable to change based upon the level of another variable.

Examples

- 1. Does the effect of schooling on pay change by gender?
- 2. Does the effect of gender on pay change by race?
- 3. Does the effect of schooling on pay change by experience?
- 4. ??

Previously, we considered a model that allowed women and men to have different average wages, but the model assumed the effect of schooling on pay was the same for everyone:

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Male}_i + u_i$$

but we can also allow the effect of school to vary by gender:

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Male}_i + eta_3 \, \mathrm{School}_i imes \mathrm{Male}_i + u_i$$

Previously, we considered a model that allowed women and men to have different average wages, but the model assumed the effect of schooling on pay was the same for everyone:

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Male}_i + u_i$$

but we can also allow the effect of school to vary by gender:

$$ext{Pay}_i = eta_0 + eta_1 \operatorname{School}_i + eta_2 \operatorname{Male}_i + eta_3 \operatorname{School}_i imes \operatorname{Male}_i + u_i$$

The multiplication of School by Male is called an **interaction term**

The model where schooling has the same effect for everyone (**F** and **M**):

$$\operatorname{Pay}_i = \beta_0 + \beta_1 \operatorname{School}_i + \beta_2 \operatorname{Male}_i + u_i$$

The model where schooling's effect can differ by gender (**F** and **M**):

$$\text{Pay}_i = \beta_0 + \beta_1 \, \text{School}_i + \beta_2 \, \text{Male}_i + \beta_3 \, \text{School}_i \times \text{Male}_i + u_i$$

Interpreting coefficients can be a little tricky -- carefully working through the math helps.

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Male}_i + eta_3 \, \mathrm{School}_i imes \mathrm{Male}_i + u_i$$

Expected effect of an additional year of schooling for **women**:

$$egin{aligned} \operatorname{Pay}_i(\operatorname{Female},\operatorname{School}_i = \ell + 1) - \operatorname{Pay}_i(\operatorname{Female},\operatorname{School}_i = \ell) = \ & (eta_0 + eta_1 * (\ell + 1) + eta_2 * 0 + eta_3 * (\ell + 1) * 0 + u_i) - \ & (eta_0 + eta_1 * \ell + eta_2 * 0 + eta_3 * \ell * 0 + u_i) = \ & eta_1 * (\ell + 1) - eta_1 * \ell = \ & eta_1 \end{aligned}$$

Interpreting coefficients can be a little tricky -- carefully working through the math helps.

$$ext{Pay}_i = eta_0 + eta_1 \operatorname{School}_i + eta_2 \operatorname{Male}_i + eta_3 \operatorname{School}_i imes \operatorname{Male}_i + u_i$$

Expected returns for an additional year of schooling for **men**:

$$egin{aligned} \operatorname{Pay}_i(\operatorname{Male},\operatorname{School}_i = \ell + 1) - \operatorname{Pay}_i(\operatorname{Male},\operatorname{School}_i = \ell) = \ & (eta_0 + eta_1 * (\ell + 1) + eta_2 + eta_3 * (\ell + 1) + u_i) - \ & (eta_0 + eta_1 * \ell + eta_2 + eta_3 * \ell + u_i) = \ & eta_1 * (\ell + 1) - eta_1 * \ell + eta_3 * (\ell + 1) - eta_3 * \ell = \ & eta_1 + eta_3 \end{aligned}$$

Interpreting coefficients can be a little tricky -- carefully working through the math helps.

$$\mathrm{Pay}_i = eta_0 + eta_1 \, \mathrm{School}_i + eta_2 \, \mathrm{Male}_i + eta_3 \, \mathrm{School}_i imes \mathrm{Male}_i + u_i$$

Expected returns for an additional year of schooling for **men**:

$$egin{aligned} \operatorname{Pay}_i(\operatorname{Male},\operatorname{School}_i = \ell + 1) - \operatorname{Pay}_i(\operatorname{Male},\operatorname{School}_i = \ell) = \ & (eta_0 + eta_1 * (\ell + 1) + eta_2 + eta_3 * (\ell + 1) + u_i) - \ & (eta_0 + eta_1 * \ell + eta_2 + eta_3 * \ell + u_i) = \ & eta_1 * (\ell + 1) - eta_1 * \ell + eta_3 * (\ell + 1) - eta_3 * \ell = \ & eta_1 + eta_3 \end{aligned}$$

Thus, β_3 gives the **difference in the returns to schooling** for men versus women.

$$\operatorname{Pay}_i = \beta_0 + \beta_1 \operatorname{School}_i + \beta_2 \operatorname{Male}_i + \beta_3 \operatorname{School}_i \times \operatorname{Male}_i + u_i$$

Another way to do interpretation: rearrange the expression.

$$ext{Pay}_i = eta_0 + eta_1 \operatorname{School}_i + eta_2 \operatorname{Male}_i + eta_3 \operatorname{School}_i imes \operatorname{Male}_i + u_i$$

Another way to do interpretation: rearrange the expression.

• Effect of one more year of schooling on expected pay:

$$Pay_i = eta_0 + eta_2 Male_i + (eta_1 + eta_3 Male_i) imes School_i + u_i$$

This helps you see that the effect of School on Pay is $\beta_1 + \beta_3 Male$, so it will vary based on whether an individual is Male or Female

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

In general, interaction models should be used when the level of one variable influences the relationship between the outcome and another variables

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

In general, interaction models should be used when the level of one variable influences the relationship between the outcome and another variables

For example:

• Income changes the relationship between extreme heat and mortality (Carleton et al., 2022)

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

In general, interaction models should be used when the level of one variable influences the relationship between the outcome and another variables

For example:

- Income changes the relationship between extreme heat and mortality (Carleton et al., 2022)
- Gender changes the relationship between air pollution and labor productivity (Graff-Zivin and Neidell, 2021)

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

In general, interaction models should be used when the level of one variable influences the relationship between the outcome and another variables

For example:

- Income changes the relationship between extreme heat and mortality (Carleton et al., 2022)
- Gender changes the relationship between air pollution and labor productivity (Graff-Zivin and Neidell, 2021)
- Other examples?

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

Interpreting interaction models means you have to consider the interaction term when computing slopes.

For example: What is the "slope" of the relationship between y and x_1 ?

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

Interpreting interaction models means you have to consider the interaction term when computing slopes.

For example: What is the "slope" of the relationship between y and x_1 ?

$$y_i(x_{i2},x_{i1}=\ell+1)-y_i(x_{i2},x_{i1}=\ell)= \ (eta_0+eta_1*(\ell+1)+eta_2x_{i2}+eta_3*(\ell+1) imes x_{i2}+u_i)- \ (eta_0+eta_1*\ell+eta_2x_{i2}+eta_3*\ell imes x_{i2}+u_i)= \ eta_1+eta_3x_{i2}$$

Key insight: Higher x_{i2} increases the slope of the relationship between y and x_1 ! The inverse is also true.

For two continuous random variables, we now have infinitely many slopes for each variable, depending on the level of the other independent variable.

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

Putting it all in one place...interaction models with two continuous variables:

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

• eta_3 is the **difference** in the effect of x_1 on y between an individual with $x_2=\ell+1$ and an individual with $x_2=\ell$

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

- eta_3 is the **difference** in the effect of x_1 on y between an individual with $x_2=\ell+1$ and an individual with $x_2=\ell$
- eta_3 is **also** the difference in the effect of x_2 on y between an individual with $x_1=\ell+1$ and an individual with $x_1=\ell$

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

- eta_3 is the **difference** in the effect of x_1 on y between an individual with $x_2=\ell+1$ and an individual with $x_2=\ell$
- eta_3 is **also** the difference in the effect of x_2 on y between an individual with $x_1=\ell+1$ and an individual with $x_1=\ell$
- eta_0 is the predicted level of y when **both** x_1 and x_2 are zero

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

- eta_3 is the **difference** in the effect of x_1 on y between an individual with $x_2=\ell+1$ and an individual with $x_2=\ell$
- eta_3 is **also** the difference in the effect of x_2 on y between an individual with $x_1=\ell+1$ and an individual with $x_1=\ell$
- ullet eta_0 is the predicted level of y when **both** x_1 and x_2 are zero
- ullet eta_1 is the effect of x_1 on y when x_2 is zero

$$y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + eta_3 x_{1i} imes x_{2i} + u_i$$

- eta_3 is the **difference** in the effect of x_1 on y between an individual with $x_2=\ell+1$ and an individual with $x_2=\ell$
- eta_3 is **also** the difference in the effect of x_2 on y between an individual with $x_1=\ell+1$ and an individual with $x_1=\ell$
- ullet eta_0 is the predicted level of y when **both** x_1 and x_2 are zero
- ullet eta_1 is the effect of x_1 on y when x_2 is zero
- β_2 is the effect of x_2 on y when x_1 is zero

Interactions in R

This will be the focus of Lab on Thursday.

As a preview...just like many other aspects of regression analysis, interactions are easy to implement but difficult to carefully interpret in R:

Interactions in R

This will be the focus of Lab on Thursday.

As a preview...just like many other aspects of regression analysis, interactions are easy to implement but difficult to carefully interpret in R:

```
summary(lm(hwy ~ displ + vear + displ:vear, data = mpg))
#>
#> Call:
#> lm(formula = hwy ~ displ + year + displ:year, data = mpg)
#>
#> Residuals:
      Min
          10 Median 30
#>
                                    Max
#> -7.8595 -2.4360 -0.2103 1.6037 15.3677
#>
#> Coefficients:
              Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) -40.72485 319.45688 -0.127 0.899
#> displ
        -71.54962 86.41661 -0.828 0.409
#> year
         0.03828 0.15947 0.240 0.811
```

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

What is it?

• When 2 (collinearity) or more (multicollinearity) of your independent variables are highly correlated with one another

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

What is it?

• When 2 (collinearity) or more (multicollinearity) of your independent variables are highly correlated with one another

What is the problem?

- Coefficients change *substantially* with small changes in independent variables
- Illogical/unexpected coefficients

Why might it happen?

- Too many independent variables ("overspecified" model)
- Including dummy variable for your reference group
- True population correlation between variables is high

Easy check: ggpairs(), pairs(), etc.

What to do about it?

- More data helps, if possible
- Check if some variables should be omitted based on theory/conceptual model (e.g., reference group dummy)?
- Eliminate highly correlated variables (ensure your interpretation changes accordingly)
 - E.g., temperature and humidity

Slides created via the R package **xaringan**.

Some slides and slide components were borrowed from Ed Rubin's awesome course materials.