STA 141C - Big Data & High Performance Statistical Computing

Spring 2022

Lecture 1: Review of linear algebra

Lecturer: 1 January 6, 2022

Disclaimer: My notes may contain errors, distribution outside this class is allowed only with the permission of the Instructor.

Announcement

- Sign up piazza, future communications will be sent via Piazza
- In person instruction starts next week @ Young Hall 194
- In person course will be recorded and uploaded on Canvas
- OH updated:
 - Wei's OH: Wednesday from 2:00 pm to 4:00pm
 - Eunseong's OH: Friday from 10:00 am to 12:00pm (Zoom links on syllabus)

Today

• Review linear algebra

Why linear algebra?

Statistical computation often requires solving linear regressions in this form: Ax = b

- Regression problem: $X'X\beta = X'y$
- Eigen-decomposition problem: $Ax = \lambda x$
- generalized eigen-decomposition problem: $Ax = \lambda Bx$
- sigular value decomposition: $A = U\Sigma V'$,
-

so we have to review the basic concepts in linear algebra.

1.1 Vector norms

- Vector norm $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$, for $a \in \mathbb{R}^n$:
 - 1. $||a|| \ge 0$
 - 2. ||a|| = 0 if and only if a = 0
 - 3. homogeneity: $||ca|| = c||a||, c \ge 0$
 - 4. triangle inequality: $||a+b|| \le ||a|| + ||b||$
- ℓ_p -norm for $a = (a_1, \dots, a_n), a \in \mathbb{R}^n$,
 - ℓ_1 -norm: $||a||_1 = \sum_{i=1}^n |a_i|$
 - $-\ell_2$ -norm: $||a||_2 = \sqrt{\sum_{i=1}^n a_i^2}$
 - $-\ell_{\infty}$ -norm: $||a||_{\infty} = \max_{i} |a_{i}|$
 - In general, ℓ_p -norm: $||a||_p = (\sum_i |a_i|^p)^{1/p}, p \in [1, \infty]$
- Example: a = (1, 2)':
 - $-\ell_1$ -norm: $||a||_1 = 1 + 2 = 3$
 - $-\ell_2$ -norm: $||a||_2 = \sqrt{1^2 + 2^2} = \sqrt{5}$
 - $-\ell_{\infty}$ -norm: $||a||_{\infty} = \max\{1,2\} = 2$
- $||a||_{\infty} \le \cdots \le ||a||_2 \le ||a||_1 \le n||a||_{\infty}$
- Cauchy-Schwarz inequality: $|a'b| \le ||a||_2 ||b||_2$ for $a, b \in \mathbb{R}^n$

1.2 Distances between two vectors

- a = [1, 2] and b = [1.1, 2.5], how close is a and b?
- b a = [1.1 1, 2.5 2] = [0.1, 0.5]
 - $-\ell_1$ -norm: $d_1(b,a) = ||b-a||_1 = 0.1 + 0.5 = 0.6$
 - $-\ell_2$ -norm: $d_2(b,a) = ||b-a||_2 = \sqrt{0.1^2 + 0.5^2} = \sqrt{0.26} \approx 0.51$
 - $-\ell_{\infty}$ -norm: $d_{\infty}(b,a) = ||b-a||_{\infty} = \max\{0.1, 0.5\} = 0.5$
- Application: asymptotically consistent estimator: $d(\hat{\beta}, \beta_0) \to 0$ as sample size $n \to \infty$
- $d(a,b) \ge 0$; d(a,b) = 0 if and only if a = b; d(a,b) = d(b,a); $d(a,b) \le d(a,c) + d(c,b)$ (triangular inequality)

1.3 Matrix norms

- Matrix norm $\|\cdot\|: \mathbb{R}^{m \times n} \to \mathbb{R}$, for $A \in \mathbb{R}^{m \times n}$:
 - We future require $||AB|| \le ||A|| ||B||$ for $B \in \mathbb{R}^{n \times p}$
- Matrix norm
 - Maximum absolute column sum norm (Matrix-1 norm): $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$

- Spectra norm: $||A||_2 = \sqrt{\rho(A'A)}$, the square root of the maximum eigenvalue of A'A
- Maximum absolute row sum norm (Matrix- ∞ norm): $||A||_{\infty} = \max_{i} \sum_{j=1}^{m} |a_{ij}|$
- Frobenius norm: $||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$
- Similarly, one can also define the distances between two matrices d(A, B)
- Application: Matrix completion problem.
 - Observe a very sparse matrix $Y = (y_{ij})$. Want to impute all the missing entries. It is possible only when the matrix is structured, e.g., of low rank.

Figure 1.1: Netflix problem: impute the unobserved ratings for personalized recommendation. See https://en.wikipedia.org/wiki/Netflix_Prize

• Let $\Omega = \{(i, j) : \text{observed entries}\}\$ index the observed entries and $P_{\Omega}(M)$ be the projection of matrix M to Ω , the problem

$$\min_{\text{rank}(X) \le 2} \frac{1}{2} \|P_{\Omega}(Y) - P_{\Omega}(X)\|_F^2 = \frac{1}{2} \sum_{(i,j) \in \Omega} (y_{ij} - x_{ij})^2$$

See matrix completion (https://en.wikipedia.org/wiki/Matrix_completion)

1.4 System of linear equations

The problem: $A\beta = b, A \in \mathbb{R}^{n \times p}, \beta \in \mathbb{R}^p, b \in \mathbb{R}^n$

- When is there a solution? The following statements are equivalent
 - The linear system $A\beta = b$ has a solution
 - $-b \in \mathcal{C}(A)$
 - * The column space of a matrix A, C(A), is the vector space made up of all linear combinations of the columns of A.
 - $-\operatorname{rank}((A,b)) = \operatorname{rank}(A)$
 - $-AA^{-}b=b$, A^{-} is the generalized inverse of A
- Ax = b has a unique solution if and only if A has a full column rank
- If A has full row and column rank, then A is non-singular and has the unique solution $A^{-1}b$

1.5 Linear independent and rank

- x_1, \ldots, x_n are linear independent: there exist scalars a_1, \ldots, a_n such that $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ if and only if $a_1 = a_2 = \cdots = a_n = 0$; otherwise, x_1, \ldots, x_n are linear dependent
- Example: suppose we have $x_1, x_2, x_3, x_1 = a_2x_2 + a_3x_3$, then x_1 is linear dependent on x_2 and x_3 .

Assume A is an $m \times n$ matrix

- rank(A) is the maximum number of linearly independent rows (or columns) of a matrix.
- $\operatorname{rank}(A) \leq \min\{m, n\}$
- A matrix is full rank if $rank(A) = min\{m, n\}$
- If rank(A) = m, A is full row rank; if rank(A) = n, A is full column rank
- If m = n, A is a square matrix
- For a square matrix $A \in \mathbb{R}^{m \times m}$, A is singular if $\operatorname{rank}(A) < m$ and is non-singular if $\operatorname{rank}(A) = m$
- $\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$, matrix multiplication cannot increase the rank
- A' (or A^T) is the transpose of A
- $\operatorname{rank}(A) = \operatorname{rank}(A') = \operatorname{rank}(AA') = \operatorname{rank}(A'A)$
- rank(AB) = rank(A) if B has full row rank
- rank(AB) = rank(B) if A has full column rank
- $rank(A + B) \le rank(A) + rank(B)$

1.6 Matrix inverses

For $A \in \mathbb{R}^{m \times n}$

- The Moore-Penrose inverse of A is a matrix $A^+ \in \mathbb{R}^{n \times m}$ with the following properties:
 - 1. $AA^{+}A = A$
 - 2. $A^+AA^+ = A^+$
 - 3. A^+A and AA^+ are both symmetric
- Generalized inverse (g_1 inverse) satisfies (1): not unique
- Reflexive generalized inverse $(g_2 \text{ inverse})$ satisfies (1) + (2): not unique
- Moore-Penrose inverse satisfies (1) + (2) + (3): unique
- Examples? (https://en.wikipedia.org/wiki/Generalized_inverse)

For $A \in \mathbb{R}^{n \times n}$

- A is invertible if there exist B such that $AB = BA = I_n$.
- If A is full rank (positive definite or nonsingular), then the generalized inverse is unique and denoted by A^{-1} .

For $A = X'X \in \mathbb{R}^{m \times m}$ and $X \in \mathbb{R}^{n \times m}$

- A is symmetric and positive semidefinite.
- If A is positive definite, A^{-1} is unique and $\beta = A^{-1}b$
- \bullet A is positive definite if and only if the columns of X are linearly independent (X has a full column rank)
- $\operatorname{rank}(X) = \operatorname{rank}(X') = \operatorname{rank}(A) = \operatorname{rank}(A')$
- A = 0 if and only if X = 0
- $P_X = X(X'X)^{-1}X'$ is symmetric, idempotent, P_X is known as the projection matrix

1.7 Positive definite matrix

Assume $A \in \mathbb{R}^{n \times n}$ is symmetric (A = A')

- A is positive definite if x'Ax > 0 for all x, we write $A \succ 0_{n \times n}$
- A is positive semi-definite (or nonnegative definite) if $x'Ax' \geq 0$ for all x, we write $A \succeq 0_{n \times n}$
- If A is a covariance matrix, $A \succeq 0$
- A positive definite matrix is full rank; that is, rank(A) = n
- For example, X'X (also known as the Gramian matrix)
- $A \succeq B$ means A B is positive semi-definite

1.8 Orthogonality

- v_1 is orthogonal to v_2 , we write $v_1 \perp v_2$ (more often $\langle v_1, v_2 \rangle = v_1' v_2 = 0$)
- v_1 is orthonormal to v_2 if v_1 is orthogonal to v_2 and $||v_1|| = 1$ and $||v_2|| = 1$
- A set of nonzero, mutually orthogonal vectors are linearly independent.
- A real square matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A'A = I_n$
- Orthogonal matrix is of full rank, thus $A' = A^{-1}$ and $AA' = A'A = I_n$.

1.9 Method of least squares

Goal: Approximate $y \in \mathbb{R}^n$ by a linear combination of column of $X = (x_1, \dots, x_p), X \in \mathbb{R}^{n \times p}$

- Least square criterion: $\min Q(\beta) = ||y X\beta||_2^2$
- Any solution to the normal equation $X'X\beta = X'y$ is a minimizer of the least squares criterion Q(b)
- Solutions to the normal equation (if X'X is positive definite)

$$\hat{\beta} = (X'X)^{-1}X'y$$

If X'X is positive semidefinite

$$\hat{\beta} = (X'X)^{-}X'y + (I_p - (X'X)^{-}X'X)q,$$

where q is arbitrary.

- $P_X = X(X'X)^{-1}X'$ is the orthogonal projection onto C(X)
- The fitted value from the least squares solution $\hat{y} = P_X y$ is the orthogonal projection of the response y onto the column space $\mathcal{C}(X)$.

• Decompose y

$$y = P_X y + (I - P_X)y = \hat{y} + \hat{e}$$

and $||y||_2^2 = ||\hat{y}||_2^2 + ||\hat{e}||_2^2$.

1.10 Idempotent matrix and projection

For a matrix $P \in \mathbb{R}^{n \times n}$

- P is idempotent if and only if $P^2 = PP = P$
- A matrix P is a projection on a vector space \mathcal{V} if
 - -P is idempotent
 - $-Px \in \mathcal{V}$ for all x
 - -Pz = z for all $z \in \mathcal{V}$
- A symmetric, idempotent matrix is called an orthogonal projection (P_X)
- Many books use the term "projection" in the sense of of orthogonal projection.

1.11 Eigenvalue and eigenvector

Assume $A \in \mathbb{R}^{n \times n}$ is a square matrix

- Eigenvalues are defined as roots of the characteristic equation $\det(\lambda I_n A) = 0$
- If λ is an eigenvalue of A, then there exist non-zero $x, y \in \mathbb{R}^n$ such that $Ax = \lambda x$ and $y'A = \lambda y'$, x is the (column) eigenvector and y is the row eigenvector of A associated with the eigenvalue λ
- A is singular if and only if it has at least one 0 eigenvalue.
- Eigenvectors associated with distinct eigenvalues are linearly independent
- Eigenvalues of an upper or lower triangular matrix are its diagonal entries: $\lambda = a_{ii}$
- Eigenvalues of an idempotent matrix are either 0 or 1
- In most statistical applications, we deal with eigenvalues/eigenvectors of symmetric matrices. The eigenvalues and eigenvectors of a real symmetric matrix are real.
- Eigenvectors associated with distinct eigenvalues of a symmetry matrix are orthogonal.
- Eigen-decomposition of a symmetric matrix: $A = U\Lambda U'$, where
 - $-\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$
 - Columns of U are the eigenvectors which are mutually orthonormal
 - A real symmetric matrix is positive semidefinite (positive definite) if and only if all eigenvalues are nonnegative (positive).
 - $\operatorname{tr}(A)$ (a square matrix not require to be symmetric), $\operatorname{tr}(A) = \operatorname{tr}(U\Lambda U') = \operatorname{tr}(U'U\Lambda) = \operatorname{tr}(\Lambda) = \sum_{i} \lambda_{ii}$