Denoising Diffusion Probabilistic Models for Image Inpainting $$\operatorname{Pranav}$$ Talluri

2022/23

Declaration of Originality

Proforma

Contents

_		5 5
2	Preparation	6
3	Implementation	7
4	Evaluation	8
5	Conclusion	q

1 Introduction

TODO

1.1 Motivation

Deep generative models "enabled scalable modeling of complex, high-dimensional data including images, text, and speech" - https://deepgenerativemodels.github.io/

"GAN models are known for potentially unstable training and less diversity in generation due to their adversarial training nature. VAE relies on a surrogate loss. Flow models have to use specialized architectures to construct reversible transform." - https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

DPMs - parameterised markov chains trained to denoise data inspired by non-equilibrium statistical physics

DDPMs - DPMs trained on a weighted variational bound designed according to a connection between DPMs and denoising score matching with Langevin Dynamics

DDPMs offer a solution...

Applications of DDPMs...

Image inpainting...

1.2 Previous Works

2 Preparation

PrepWork...

- logistic distribution
 - normal dist but with heavy tails
 - "increases the robustness of analyses based on it compared with using the normal distribution"
- PixelCNN++
 - openai implementation of PixelCNN
 - tractable likelihood
 - "model fully factorizes the probability density function on an image ${\bf x}$ over all its subpixels"
 - modification to PixelCNN discretised logistic mixture likelihood rather than softmax
 - modification conditions on whole pixels rather than rgb vals
 - modification downsampling to encourage long range dependencies
 - modification shortcut connections
 - modification standard binary dropout to prevent overfitting
- DDPMs (modified PixelCNN++)
 - replaced weight normalisation to group normalisation simplicity
 - 4 resolution levels for 32x32 and 6 for 256x256
 - two convolutional residual blocks per resolution level
 - "self-attention blocks at the 16x16 resolution between the convolutional blocks"
 - dropout rate set by sweeping over values
 - linear beta schedule
 - random horizontal flips
 - Adam rather than RMSProp
 - batch size is 128 for CIFAR
 - EMA set to 0.9999 decay factor
- ResNets

_

Related works...

Maths behind DDPMs...

Alternative methods of image generation...

Alternative methods of image in painting. . . 3 Implementation

4 Evaluation

5 Conclusion

Appendicies

Index