A Statistical Classification of Cryptocurrencies

Daniel Traian Pele, Niels Wesselhöfft, Wolfgang K. Härdle, Yannis Yatracos, Michalis Kolossiatis

International Research Training Group 1792 Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin

Department of Statistics and Econometrics Bucharest University of Economic Studies

Department of Mathematics and Statistics University of Cyprus, Nicosia

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

Genus differentia approach

Figure: Genus differentia approach in biology

Genus differentia approach

Figure: Genus differentia approach in finance

Aim of classification

- Genotypic differentiation
 - Biology the change in DNA sequences.
 - Finance the underlying process of price manifestation.
- Phenotypic differentiation
 - Biology classification based on behavior and features of a species.
 - Finance classification based on statistical features of the price series.

Motivation

Question: What defines cryptocurrencies?

- □ Plato: man is an upright, featherless biped, with broad, fat nails.
- Aristotle: definition of a species consists of genus proximum and differentia specifica.
- Goal: Define cryptocurrencies in terms of their genus proximum and differentia specifica.
- Method: Find latent variables, to form groups of shared characteristics.
- Finding: Phenotypic convergence of cryptocurrencies, i.e. asymptotic speciation.
- Implication: Cryptocurrencies are a different species in the ecosystem of financial instruments.

Outline

- 1. Motivation
- 2. Data and descriptives
- 3. Factor model
- 4. Explanation
- 5. Expanding window
- 6. Conclusion

Literature review

- Dyhrberg (2016): BTC has similarities to both GOLD and the USD, being in between a currency and a commodity.
- Baur et al. (2018): BTC volatility and correlation characteristics are distinctively different compared to GOLD and USD.
- Härdle et al. (2018): BTC, XRP, LTC, ETH returns exhibit higher volatility, skewness and kurtosis compared to GOLD and S&P500 daily returns.
- Henriques et al. (2018): BTC can serve as a substitute for GOLD in a portfolio.
- ☑ Zhang et al. (2018): Cryptocurrencies presents heavier tails and higher Hurst exponent than the classical assets.

Data

- \odot Sample: n = 679 assets.
- - ightharpoonup Cryptocurrencies: $n_1 = 150$
- Old asset classes
 - ► Stocks (S&P 500): $n_2 = 496$
 - Exchange rates: $n_3 = 13$
 - ► Commodities (Bloomberg Commodity Index): $n_4 = 20$ List
- Daily data from 01/02/2014 08/30/2019 (1426 trading days).

Statistical assessment

- Return X is a r.v. with cdf F() from which p=23 statistics are estimated.
- □ Moments of order $k ∈ \mathbb{R}^+$, $μ_k = E\{(X μ)^k\}$.
 - variance: $\sigma^2 = E\left\{ \left(X \mu\right)^2 \right\}$;
 - skewness: $Skewness = E\left\{ (X \mu)^3 \right\} / \sigma^3$;
 - kurtosis: $Kurtosis = E\left\{ (X \mu)^4 \right\} / \sigma^4$.
- $\Box \text{ Tails: } \alpha \in \{0.005, 0.01, 0.025, 0.05, 0.95, 0.975, 0.99, 0.995\}.$
 - $Q_{\alpha} = \inf \{ x \in \mathbb{R} : \alpha \leq F(x) \};$
 - $\mathsf{CTE}_{\alpha} = \begin{cases} \mathsf{E} \left\{ X \mid X < Q_{\alpha} \right\}, & \alpha < 0.5 \\ \mathsf{E} \left\{ X \mid X > Q_{\alpha} \right\}, & \alpha > 0.5 \end{cases}$
- Scaling and memory parameters
 - ► Alpha-stability ► Alpha-stability
 - ► ARCH parameter (GARCH (1,1))
 - ➤ GARCH parameter (GARCH (1,1))

Assets profile

Variable	Commodities	Cryptocurrencies	Exchange rates	Stocks
$\sigma^2 \cdot 10^3$	3.603	43.274	0.027	1.260
Skewness	0.214	3.876	-1.231	-7.797
$Stable_{\alpha}$	1.713	1.398	1.703	1.692
$Stable_{\gamma} \cdot 10^3$	9.266	47.080	2.868	8.738
Q _{0.5%}	-0.026	-0.159	-0.008	-0.025
Q1%	-0.034	-0.211	-0.010	-0.033
Q _{2.5%}	-0.043	-0.300	-0.012	-0.045
$Q_{5\%}$	-0.054	-0.388	-0.014	-0.056
CTE _{0.5%}	-0.042	-0.274	-0.011	-0.047
CTE _{1%}	-0.056	-0.367	-0.013	-0.065
CTE _{2.5%}	-0.082	-0.546	-0.017	-0.108
CTE _{5%}	-0.122	-0.744	-0.020	-0.167
CTE _{95%}	0.044	0.368	0.011	0.038
CTE _{Q7 5%}	0.058	0.533	0.013	0.049
CTE99%	0.087	0.877	0.015	0.072
CTE99.5%	0.128	1.299	0.018	0.099
$Q_{95\%}$	0.026	0.171	0.007	0.024
Q97.5%	0.034	0.246	0.010	0.030
$Q_{99\%}$	0.046	0.377	0.012	0.040
Q99.5%	0.057	0.518	0.014	0.050
ARCH	0.111	0.494	0.079	0.698
GARCH	0.665	0.478	0.720	0.206
Kurtosis	58.608	218.732	38.167	561.702

Factor analysis

- Estimate the correlation matrix for all variables.
- □ Factor extraction based on the correlation of the coefficients.
- □ Factor rotation.

Correlation matrix

Figure: Correlation matrix of the statistical estimates. Q SFA cryptos

Factor model

Linear Factor model

$$X = QF + \mu + \varepsilon, \ \varepsilon \sim G() \tag{1}$$

- X is the initial matrix of p variables
- Q is a matrix of the non-random loadings
- F are the common k factors (k < p)
- \triangleright μ is the vector of the means of initial p variables
- \triangleright ε is a matrix of the random specific factors
- \triangleright Random vectors F and U are unobservable and uncorrelated

Factor model extensions

$$X_t = Q_t F_t + \mu_t + \varepsilon_t, \ \varepsilon_t \sim G() \tag{2}$$

Nonlinearities in the factors

$$X = Qm(F) + \mu + \varepsilon, \ \varepsilon \sim G() \tag{3}$$

General nonlinear

$$X = m(F) + \varepsilon, \ \varepsilon \sim G(),$$
 (4)

where m() is a function

Factors loadings and scree plot

Figure: Scree plot and factors loadings. Q SFA_cryptos

Factor rotation

Mapping of the factors

- 1. Tail factor 71% of the total variance
 - lacksquare Alpha-stable parameters S_lpha , S_γ
 - Lower and upper quantiles
 - Conditional tail expectations
- 2. Moment factor 11% of the total variance
 - Skewness
 - Variance
- 3. Memory factor 7% of the total variance
 - Kurtosis
 - ARCH parameter
 - GARCH parameter

Tail factor vs Moment factor

Figure: Loadings (left) and scores (right) based on tail and moment factor. Q SFA cryptos

Tail factor vs Memory factor

Figure: Loadings (left) and scores (right) based on tail and memory factor. Q SFA_cryptos

Moment factor vs Memory factor

Figure: Loadings (left) and scores (right) based on moment and memory factor. Q SFA cryptos

Factor explanation

- Classify between Cryptocurrencies and other asset classes
- $oxed{oxed}$ Binary logistic regression for each factor $F_k,\ k\in\{1,2,3\}$

$$P(Y = 1) = \frac{\exp(\beta_0 + \beta_1 F_k)}{1 + \exp(\beta_0 + \beta_1 F_k)},$$
 (5)

$$Y = \begin{cases} 1, & \text{if Cryptocurrency} \\ 0, & \text{if otherwise} \end{cases}$$
 (6)

Factor explanation

Exogenous factor	Factor 1	Factor 2	Factor 3
Estimated β_1	-7.879**	0.728**	-0.389**
	(1.077)	(0.102)	(0.093)
$\widetilde{R^2}$	0.967	0.134	0.034

Note: Standard errors in (); ** denotes significance at 95% confidence level.

$$\widetilde{R}^{2} = \frac{1 - \left\{\frac{L(\mathbf{0})}{L(\widehat{\beta})}\right\}^{\frac{2}{n}}}{1 - \left\{L(\mathbf{0})\right\}^{\frac{2}{n}}} \tag{7}$$

- \Box L(0) is the likelihood of the intercept-only model

Linear Discriminant Analysis

- Finding a projection that maximizes the separability between classes.
- Assumes Gaussianity with equal covariances.

Figure: LDA PLDA

Explanation — 5-4

Quadratic Discriminant Analysis

- Finding a projection that maximizes the separability between classes.
- Assumes Gaussianity with different covariances.

Figure: Quadratic Discriminant Analysis

Support Vector Machines

- Finding a projection that maximizes margin in a hyperplane of the original data.
- No parametric assumptions on the underlying probability distribution function.

Figure: SVM ▶SVM

Explanation — 5-6

K-means clustering

- Projection of the clusters on the 3D space extracted trough Factor Analysis.
- Each cryptocurrencies cluster was labeled with its leader in terms of market capitalization.

Figure: 3D. Q Cluster_cryptos

Explanation — 5-7

Maximum Variance Components Split

- These method have goals to separate, respectively, the components of a structure like the types of assets herein, and clusters defined as the components of a mixture distribution.
- They are based on an unusual variance decomposition in between-group variations.

Figure: MVCS. Q VCS_cryptos

Video — 6-1

Video

- Expanding rolling window estimation
 - ➤ Starting window 2014-01-02 until 2016-10-231 (1/2 of the data)
 - ▶ Increases daily up to full window 2014-01-02 until 2019-08-30
 - Kernel density contour level 0.015
- Clusters converge over time

Q DFA cryptos

Video — 6-2

Synchronic evolution

Figure: Likelihood Ratios for the binary logistic model, estimated for the period 10/31/2016- 08/30/2019 CONV_cryptos

Conclusion — 7-1

Conclusion

- - Main statistical difference between Cryptocurrencies and other asset classes: tail behavior.
 - Moments and memory are of subliminal importance.
 - Nonlinear classification with SVM provides proficient results for risk analysts and regulators.
 - Cryptocurrencies are completely separated by the other types of assets, as proved by Maximum Variance Components Split method.
- Biological perspective
 - ► Speciation takes time to form distinct species, which potentially evolve further away from each other.
 - ► Cryptocurrencies establish themselves as unique asset classes.

A Statistical Classification of Cryptocurrencies

Daniel Traian Pele, Niels Wesselhöfft, Wolfgang K. Härdle, Yannis Yatracos, Michalis Kolossiatis

International Research Training Group 1792 Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin

Department of Statistics and Econometrics Bucharest University of Economic Studies

Department of Mathematics and Statistics University of Cyprus, Nicosia

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

Exchange rates

▶ Data

- 1. EUR/USD Euro
- 2. JPY/USD Japanese Yen
- 3. GBP/USD Great Britain Pound
- 4. CAD/USD Canada Dollar
- 5. AUD/USD Australia Dollar
- 6. NZD/USD New Zealand Dollar
- 7. CHF/USD Swiss Franc
- 8. DKK/USD Danish Krone
- NOK/USD Norwegian Krone
- 10. SEK/USD Swedish Krone
- 11. CNY/USD Chinese Yuan Renminbi
- 12. HKD/USD Hong Kong Dollar
- 13. INR/USD Indian Rupee

Cryptocurrencies

▶ Data

- 1. BTC Bitcoin
- 2. ETH Ethereum
- 3. XRP Ripple
- 4. BCH Bitcoin Cash
- 5. EOS EOS
- 6. XLM Stellar
- 7. LTC Litecoin
- 8. ADA Cardano
- 9. XMR Monero
- 10. TRX TRON
- 11. BNB Binance Coin
- 12. MIOTA lota
- 13. DASH Dash
- 14. NEO Neo

Commodities

▶ Data

- 1. WTI Crude oil USCRWTIC Index
- 2. Natural Gas NGUSHHUB Index
- 3. Brent oil EUCRBRDT Index
- 4. Unleaded Gasoline RBOB87PM Index
- 5. ULS Diesel DIEINULP Index
- 6. Live cattle SPGSLC Index
- 7. Lean hogs HOGSNATL Index
- 8. Wheat WEATTKHR Index
- 9. Corn CRNUSPOT Index
- 10. Soybeans SOYBCH1Y Index
- 11. Aluminum LMAHDY Comdty
- 12. Copper LMCADY Comdty
- 13. Zinc ZSDY Comdty
- 14. Nickel CKEL Comdty
- 15. Tin JMC1DLTS Index
- 16. Gold XAU Curncy
- 17. Silver XAG Curncy
- 18. Platinum XPT Curncy
- 19. Cotton COTNMAVG Index
- 20. Cocoa MLCXCCSP Index

Appendix —————————————————————9-4

Lévy-Stable distributions

oxdot Fourier transform of characteristic function $\varphi_X(u)$

$$S(X \mid \alpha, \beta, \gamma, \delta) = \frac{1}{2\pi} \int \varphi_X(u) \exp(-iuX) du$$

- Characteristic function representation, 0 < α < 2, α ≠ 1</p> $\log \varphi_X(u) = iu\delta \gamma |u|^{\alpha} \left\{ 1 + i\beta \left(u/|u| \right) \tan \left(\alpha \pi/2 \right) \right\} \quad (8)$
- $oxed{\Box}$ Stability or invariance under addition $n\log arphi_X(u)=iu(n\delta)-(n\gamma)|u|^{-\alpha}\left\{1+i\beta\left(u/|u|\right)\tan\left(lpha\pi/2
 ight)
 ight\}$
- ☑ Limiting distribution of *n* i.i.d. stable r.v., $0 < \alpha \le 2$ GCLT (Gnedenko and Kolmogorov, 1954)

$$n^{-\frac{1}{\alpha}} \sum_{i=1}^{n} (X_i - \delta) \xrightarrow{\mathcal{L}} S(\alpha, \beta, \gamma, 0)$$
 (9)

Linear Discriminant Analysis

- □ Let $X_i \sim N(\mu_i, \Sigma_i)$ belonging to class $ω_i, Σ_i = Σ_j$
- $\ \ \$ Project samples X onto a line $Y=w^{\top}X$
- Select the projection that maximized the separability
- Maximize normalized, squared distance in the means of the classes

$$w^* = \underset{w}{\arg \max} \frac{|w^{\top}(\mu_i - \mu_j)|^2}{s_i^2 + s_j^2},$$
 (10)

$$s_i^2 = \sum_{x_i \in \omega_i} (w^\top x_i - w^\top \mu_i)^2 = w^\top S_i w$$
 (11)

□ Linear Discriminant of Fisher (1936)

$$w^* = S_W^{-1}(\mu_i - \mu_j), \ S_W = S_i + S_j$$
 (12)

▶ LDA

Support Vector Machines

□ Given training data set D with n samples and 2 dimensions

$$D = (X_1, Y_1), \dots (X_n, Y_n),$$
$$X_i \in \mathbb{R}^2, \quad Y_i \in [0, 1]$$

 Finding a hyperplane that maximizes the margin

$$\min_{w,b} \frac{1}{2} ||w||^2$$
s.t. $Y_i \left(w^\top X_i + b \right) \ge 1$,
$$i = 1, \dots, n$$

Variance Component Split

 $oxed{\Box}$ Consider the groups $X_{(1)},\ldots,X_{(i)}$ and $X_{(i+1)},\ldots,X_{(n)}$ with averages, respectively, $\overline{X}_{[1,i]}$ and $\overline{X}_{[i+1,n]},\ i=1,...,n-1$, then

$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}=\sum_{i=1}^{n-1}\frac{i(n-i)}{n^{2}}(\overline{X}_{[i+1,n]}-\overline{X}_{[1,i]})(X_{(i+1)}-X_{(i)}).$$
(13)

⊡ The relative contribution of the groups $X_{(1)},...,X_{(i)}$ and $X_{(i+1)},...,X_{(n)}$ in the sample variability:

$$W_{i} = W_{i}(X_{1},...,X_{n}) = \frac{i(n-i)}{n} \frac{(\overline{X}_{[i+1,n]} - \overline{X}_{[1,i]})(X_{(i+1)} - X_{(i)})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$
(14)

☑ Index $\mathcal{I}_n = \max\{W_i, i = 1, ..., n-1\}$ determines two potential clusters or parts of a structure and is based on averages and inter-point distances.

Maximum Variance Component Split

- The Maximum Variance Component Split (MVCS) method compares known components of a structure, e.g. cryptocurrencies herein, with data splits for a set of unit projection directions \mathcal{D}_M usually determined by M positive equidistant angles of $[0,\pi]$; e.g. when r=2 and M=3 the angles used are $\pi/3, 2\pi/3, \pi$.
- When one of the data split along projection direction a coincides with a component of the structure we have complete separation of this component along a.
- oxdot A set of projection directions \mathcal{D}_M can be

$$(\Pi_{l=1}^{r}\cos\theta_{l}, \sin\theta_{1}\Pi_{l=2}^{r}\cos\theta_{l}, ..., \sin\theta_{r-1}\cos\theta_{r}, \sin\theta_{r}), \qquad (15)$$

where θ_l takes values in $\{\frac{m\pi}{M}, m=1,...,M\}, l=1,...,r$.

