СИГНАЛИ И СИСТЕМИ Втор колоквиум

Задача 1 (20 п). (Одговорите без соодветни образложенија нема да се бодуваат!)

- а) Позната е Фуриеовата трансформација на сигналот x(t), $X(j\omega) = \frac{2}{j\omega} (1 \cos(\omega))$. Без примена на инверзна Фуриеова трансформација, да се одреди Фуриеовата трансформација на сигналот $x_1(t) = x(0.5t-2)$;
- б) Дали сигналот зададен со Фуриеовата трансформација $X(j\omega) = (j\omega)^3 \cdot e^{-4\omega}$ е реален или е комплексен?
- в) Каузален LTI систем со преносна функција H(s) има пол-нула дијаграм прикажан на Слика 1. Дали за системот може да се дефинира фреквенциска карактеристика?

Слика 1

г) Дали системот со преносна функција
$$H(z) = \frac{2}{\left(1 + \frac{1}{144}z^{-2}\right)\left(1 - \frac{1}{400}z^{-2}\right)}$$
, $|z| < \frac{1}{12}$ е стабилен?

Задача 2 (20 п). На влез од LTI систем, прикажан на Слика 2, со импулсен одзив h(t) е доведен сигналот x(t). Да се скицира Фуриеовата трансформација на излезниот сигнал y(t), $Y(j\omega)$, ако $x(t) = \frac{\sin 8\pi t}{\pi t}$, Фуриеовата трансформација на h(t), $H(j\omega)$ е дадена на Слика 3, c(t) = 4 и $p(t) = 1 + 2\cos(2\pi t)$.

Задача 3 (20 п). Фреквенциската карактеристика на LTI систем е:

$$H(j\omega) = 2 \frac{(j\omega + 100)(10j\omega + 1)}{1 + j\omega + (j\omega)^2}$$

- а) Да се пресмета вредноста на засилувањето и на фазната функција во точката $\omega = 10 \ rad / sec$.
- б) Да се скицира Bode-овиот дијаграм на засилувањето.

Задача 4 (20 п.). Даден е каузален LTI систем со влезен сигнал $x(t) = e^{-2t}u(t)$ и излезен сигнал $y(t) = \left(e^{-2t} - e^{-3t}\right)u(t)$.

- а) Со употреба на Лапласова трансформација да се одреди импулсниот одзив на системот;
- б) Да се одреди фреквенциската карактеристика на системот;
- в) Да се одреди одзивот на системот, y(t), доколку на влез се донесе сигналот $x(t) = e^{j3t}$.

Задача 5 (20 п.). Каузален LTI систем е дефиниран со преносната функција

$$H(z) = \frac{3z - 3}{z + \frac{1}{2}}.$$

- а) Да се одреди импулсниот одзив на системот;
- б) Да се одреди влезниот сигнал, x[n], доколку одзивот на системот е $y[n] = 3\left(\frac{1}{4}\right)^n u[n-1];$
- в) Без пресметување, да се скицира амплитудната карактеристика на системот.