Seminar 4 Alte criterii de decizie

- 1. Un sistem airbag detectează un accident prin eșantionarea semnalului de la un senzor cu 2 valori posibile: $s_0(t) = 0$ (OK) sau $s_1(t) = 5$ (accident). Semnalul este afectat de zgomot gaussian \mathcal{N} ($\mu = 0, \sigma^2 = 2$). Se ia un singur eșantion din semnal, cu valoarea r = 3.1. Costurile scenariilor sunt: $C_{00} = 0$, $C_{01} = 100$, $C_{10} = 10$, $C_{11} = -100$. Probabilitățile celor două ipoteze sunt $P(H_0) = 2/3$, $P(H_1) = 1/3$.
 - a. Găsiți decizia pentru eșantionul r, cu criteriul ML / MPE / MR
 - b. Găsiți regiunile de decizie R_0 și R_1 pentru toate cele trei criterii
 - c. Dar dacă zgomotul este uniform U[-3,3]?
- 2. O sursa de informație furnizeaza doua mesaje cu probabilitățile $p(a_0) = 2/3$, $p(a_1) = 1/3$. Mesajele sunt codificate prin semnale constante cu valorile $s_0(t) = -5$ (a0), și $s_1(t) = 5$ (a1). Semnalele sunt afectate de zgomot uniform cu distribuția U[-6, 6]. La recepție se ia un singur eșantion r din semnal.
 - a. Care sunt regiunile de decizie, conform criteriului Neyman-Pearson cu valoarea maximă a P_{af} de 10^{-2} ?
 - b. Care este probabilitatea detecției corecte în acest caz?