San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Regular Expressions

(Part 1)

Lecture 19 Day 22/31

CS 154
Formal Languages and Computability
Spring 2019

Agenda of Day 22

- Collecting Quiz 7
- Solution and Feedback of Quiz 6
- Summary of Lecture 18
- Lecture 19: Teaching ...
 - Regular Expressions (Part 1)

Solution and Feedback of Quiz 6 (Out of 20)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	18.55	20	15
02 (TR 4:30 PM)	17.86	20	8
03 (TR 6:00 PM)	18.29	20	13

Summary of Lecture 18: We learned ...

Multi-Tape TM

- It did not add more power to standard TM.
- It facilitate the design process.

Nondeterministic TMs

- There are two possible violations in standard TMs:
 - λ-transition
 - When δ is multifunction
- Historically, λ-transitions was not defined in TMs.

Formal Definition

 A nondeterministic TM M is defined by the septuple:

M = (Q, Σ, Γ, δ, q₀, □, F)
δ: Q x
$$\Gamma \rightarrow 2^{Q \times \Gamma \times \{L, R\}}$$

δ is total function.

- We concluded the fact that:
 - A nondeterministic TM is a collection of standard TMs.
 - Nondeterminism does not add power.
 - It just speed up the computation.

Any Question?

Summary of Lecture 18: We learned ...

Basic Concepts of Computation

- The algorithm for a problem is ...
 - ... the structure of the TM that solves it.
- The program of a TM is ...
 - ... the transition function of the TM.

Any Question?

Objective of This Lecture

- So far, we've represented formal languages by sets.
- In this lecture, we are going to introduce an alternative mathematical tool for representing them.
- So, in a nutshell:
- Regular expressions (REGEXs for short) are another mathematical way to represent formal languages.
 - They have important practical applications in OS's like Linux/UNIX, and programming languages like Java.
 - The question that raises here is:
 - Can REGEXs represent all formal languages?

Regular Expressions (REGEXs)

REGEXs Ingredients

- REGEXs like anything else in this course, have a mathematical base.
- REGEXs was introduced by American mathematician, Stephen C. Kleene (1909-1994) in 1956.

- First, we introduce its ingredients.
- REGEXs contain:
 - 1. Elements
 - 2. Rules (Formal Definition).

REGEXs Elements

- REGEXs have three elements:
- 1. The symbols of alphabet Σ (e.g. a, b, c, etc.), ϕ , and λ ϕ and λ has special usage that will be covered shortly.
- 2. ()
- 3. Operators:
 - + (union)
 - (dot or concatenation)
 - * (star-closure)
- Before defining REGEXs' rules, let's take some simple examples to have a taste of them!

Example 1

- Given L = {a} over Σ = {a, b}
- Represent L by a set builder and a REGEX
- Solution
- $L = \{x : x = a\}$
- r = a (we'll use "r" as a shortcut for REGEX.)

 So, we just learned how to write the REGEX of all languages with one symbol as string!

Theoretically, we can have infinite languages like this!

Concatenation Operator: '.'

• We can concatenate REGEXs symbols (Σ, ϕ, λ)

Example 2

- Given L = $\{ab\}$ over $\Sigma = \{a, b\}$
- r = ?

- L = {a} . {b}
- r = a.b

Union Operator: '+'

Example 3

- Given L = {ab, bb, ba} over Σ = {a, b}
- r = ?

- L = {ab, bb, ba} = {ab} U {bb} U {ba}
- r = a.b + b.b + b.a

Star-Closure Operator: '*'

Means "Zero or more concatenation"

Example 4

- Given $L = \{a^n : n \ge 0\}$ over $\Sigma = \{a\}$
- r = ?

- L = $\{\lambda, a, aa, aaa, ...\}$
- In formal languages terminology, L can also be represented as:
- $L = \{a\}^*$
- $r = a^*$

Example 5

- Given L = {aⁿ : n ≥ 1} over Σ = {a}
- r = ?

- It means, we need at least one 'a'.
- r = a.a*
 - The strings of the language L has at least one a.
 - So, we put the first 'a' to represent this fact.
 - And we put a* for zero or more a's.
- Note that we don't have expressions like a+, a2, a3 in REGEXs.

A Side Note

Different Notations of a Language

Set builder

$$L = \{a^n : n \ge 0\}$$

Roster Method

$$L = {\lambda, a, aa, aaa, ...}$$

NFA

REGEX

$$r = a^*$$

Why should we study REGEXs?

- They are shorthand for set builder notations!
- They are easier to be implemented in computer.

Precedence of Operators

For more complex REGEXs, there could be some ambiguity.

Example 6

- $r = a + b \cdot c$
- We may interpret the above REGEX as one of these:

$$r = ((a + b) \cdot c)$$

 $r = (a + (b \cdot c))$

- Which one is correct?
 - It depends on our definition of operators' precedence.
- So, to remove this ambiguity, we should define some "precedence rules".

Precedence of Operators

- The precedence from the highest to the lowest would be:
 - 1. Parentheses
 - Star-closure
 - 3. Concatenation
 - 4. Union

Example 7

- $r = a \cdot b^* + c$
- In fact, $r = ((a \cdot (b)^*) + c)$
- That is very similar to elementary algebra!
- For simplicity, from now on, we eliminate '.' (dot) operator.
- So, the above example can be shown as: r = ab* + c

Formal Definition of REGEXs

Formal Definition of REGEXs

- 1. ϕ , λ , and symbols of Σ are all REGEXs.
 - -These are called primitive REGEXs.
- 2. If r₁ and r₂ are REGEXs, then the following expressions are REGEXs too:

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 r_1^*
 (r_1)
Regular Expressions

3. A string is REGEX if it can be derived recursively from the primitive REGEXs by a finite number of applications of the rule #2.

REGEXs Validation

Example 8

- Is r a valid REGEX?
- $r = (a + bc)^* \cdot (c + \phi)$
- Yes, because it has been derived from the rules.

Example 9

- Is r a valid REGEX?
- r = (a + b +) . c
- No, it cannot be derived by application of the rules.

REGEX Definition

Repeated

- 1. ϕ , λ , and $a \in \Sigma$ are all REGEXs.
- 2. If r₁ and r₂ are REGEXs, then the following expressions are REGEXs too:

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 r_1^*
 (r_1)

3. A string is REGEX iff it can be derived from the primitive REGEXs by a finite number of applications of the rule #2.

REGEXs - Languages Correspondence

Introduction

The following REGEX is given:

$$r = a (a + b)*$$

- How can we mathematically calculate what language it represents?
- In other words, how can we calculate L(r)?

$$L(r) = L(a (a + b)*) = ?$$

We need some mathematical rules!

REGEXs-Languages Correspondence Rules

- If r₁ and r₂ are REGEXs, then the following rules hold recursively:
 - 1. $L(\phi) = \{ \}$
 - 2. $L(\lambda) = \{\lambda\}$
 - 3. $L(a) = \{a\}$ for all $a \in \Sigma$
 - 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
 - 5. $L(r_1 . r_2) = L(r_1) . L(r_2)$
 - 6. $L((r_1)) = L(r_1)$
 - 7. $L(r_1^*) = (L(r_1))^*$

- 1. ¢
- 2. λ
- 3. $a \in \Sigma$
- 4. $r_1 + r_2$
- 5. r₁.r₂
- 6. (r₁)
- 7. r₁*
- The first 3 rules are the termination conditions for the recursion.
- The last 4 rules are used to reduce L(r) to simpler components recursively.

Example 10

- Given r = b
- L(r) = ?

- $L(r) = L(b) = \{b\}$
- We used rule #3.

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = {\lambda}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 11

- Given r = b.a
- L(r) = ?

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 . r_2) = L(r_1) . L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 12

- Given r = a + b
- L(r) = ?

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 . r_2) = L(r_1) . L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 13

- Given r = a + b.a
- L(r) = ?

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 . r_2) = L(r_1) . L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 14

- Given r = a*
- L(r) = ?

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 15

- Given r = (a + b)*
- L(r) = ?

L(r) = L[(a + b)*]
= [L(a + b)]* (rule #7)
= [L(a)
$$\cup$$
 L(b)]* (rule #4)
= {a, b}* (rule #3)
= {w : w \in Σ *} (any string over Σ)

- 1. $L(\phi) = \phi$
- 2. $L(\lambda) = \{\lambda\}$
- 3. $L(a) = \{a\}$ for all $a \in \Sigma$
- 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
- 5. $L(r_1 . r_2) = L(r_1) . L(r_2)$
- 6. $L((r_1)) = L(r_1)$
- 7. $L(r_1^*) = (L(r_1))^*$

REGEX → **Language Summary**

REGEX	Language	
b	{b}	
b.a	{ba}	
a + b	{a, b}	
a + b.a	{a, ba}	
a*	${a^n:n\geq 0}$	
(a + b)*	{a, b}* ①	

Example 16

- Given r = a (a + b)*
- L(r) = ?

Example 17

- Given $r = a^* (a + b)$
- L(r) = ?

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790