

Mathematical Foundations for Data Science

MFDS Team

DSECL ZC416, MFDS

Webinar#2

Agenda

- 1. Homework 3.4 Problems
- 2. Rank Nullity Theorem for Linear Transformations.
- 3. Problem on Eigenvalues and Eigenvectors.
- 4. Power method exemplification
- 5. Problem on Rayleigh's method.
- 6. Illustration of Gerschgorin's result for a few cases.

3.4 Homework Problems

Q1. Let B = $(b_1, b_2,..., b_{r-1}, b_r, b_{r+1},..., b_n)$ be a non-singular matrix. If column b_r is replace by 'a' and that the resulting matrix is called B_a along with $a = \sum_{i=1}^{i=n} y_i b_i$, then state the necessary and sufficient condition for B_a to be non-singular.

Solution:

Given matrix $\mathbf{B}=(\mathbf{b}_1,\mathbf{b}_2,...,\mathbf{b}_{r-1},\mathbf{b}_r,\mathbf{b}_{r+1},...,\mathbf{b}_n)$ is non-singular

 \rightarrow det(B) \neq 0

Therefore, the vectors are linearly independent. Therefore $\alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + ... + \alpha_{r-1} \mathbf{b}_{r-1} + \alpha_r \mathbf{b}_r + \alpha_{r+1} \mathbf{b}_{r+1} + ... + \alpha_n \mathbf{b}_n = 0$

Implies
$$\alpha_i$$
=0 for i=1,2,3,...,r,...n

The column vector $\mathbf{b_r}$ is replaced by vector ' \mathbf{a} ', to get a matrix

$$\mathbf{B_a}=[\mathbf{b_1},\mathbf{b_2},...,\mathbf{b_{r-1}},\mathbf{a},\mathbf{b_{r+1}},...,\mathbf{b_n}]$$
 Where, $\mathbf{b_r}=\boldsymbol{a}=\sum_{i=1}^{i=n}y_i\;\boldsymbol{b_i}$.

$$B_a = [b_1, b_2, ..., b_{r-1}, \sum_{i=1}^{i=n} y_i b_i, b_{r+1}, ..., b_n]$$

Necessary Condition

Assume B_a is non-singular then $det(B_a)\neq 0$

i.e

$$\alpha_{1}\mathbf{b}_{1}+\alpha_{2}\mathbf{b}_{2}+...\alpha_{r-1}\mathbf{b}_{r-1}+\alpha_{r}\left[\sum_{i=1}^{i=n}y_{i}\ b_{i}\right]+\alpha_{r+1}\mathbf{b}_{r+1}+...+\alpha_{n}\mathbf{b}_{n}=0$$
 $(\alpha_{1}+\alpha_{r}\ y_{1}\)\ \mathbf{b}_{1}+(\alpha_{2}+\alpha_{r}\ y_{2}\)\ \mathbf{b}_{2}+...+\alpha_{r}\ y_{r}\ \mathbf{b}_{r}+....+(\alpha_{n}+\alpha_{r}\ y_{n}\)\ \mathbf{b}_{n}=0$
Implies

$$\alpha_i + \alpha_r y_i = 0$$
 for all i=1,2,3,...r-1,r+1,n and also $\alpha_r y_r = 0$ for i=r $\alpha_r = 0$, from (I)

Therefore, the required condition for B_a is to be non-singular is $y_r \neq 0$

Therefore, $y_r = 0$ or $y_r \neq 0$

If $y_r = 0$ then in the system $a = \sum_{i=1}^{i=n} y_i b_i$, i.e in augmented matrix [B:a]) the rth column will be zero and it leads to det(B)=0. This contradicts that B is non-singular. Therefore, $y_r \neq 0$.

Sufficient Condition

Suppose $y_r \neq 0$ then in matrix \mathbf{B}_a the vector ' $\mathbf{a} = \sum_{i=1}^{i=n} y_i \, \mathbf{b}_i$ ' will become a new independent column.

Therefore, the columns of \mathbf{B}_a are linearly independent.

Hence B_a in non-singular.

Rank Nullity Theorem for Linear Transformation

Theorem: Let $T:V \to W$ be a linear transformation, with V be finite dimensional vector space. Then

dim(V)=dim(R(T))+dim(N(T)) =Rank of T+ Nullity of T

Where R(T) is Range of T and N(T) is Kernel of T.

Proof: First, Let us prove that N(T) is subspace of V

Let
$$v_1, v_2 \in N(T) \Rightarrow T(v_1) = 0, T(v_2) = 0$$

Consider
$$T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2) = 0 \Rightarrow \alpha v_1 + \beta v_2 \in N(T)$$

Hence N(T) is subspace of V.

Let $\{v_1, v_2, v_3, \dots, v_n\}$ be the basis of N(T). Hence Nullity of T is n i.e. $\dim(N(T))=n$

Let us pick the basis for V be
$$S = \{v_1, v_2, v_3, ..., v_n, v_{n+1}, v_{n+2}, ..., v_{n+m}\}$$
 implies (I) dim(V)=n + m

Let us consider $w \in R(T) \Rightarrow w = T(v)$ for v is in V

Since v is in V

$$v = \alpha_1 v_1 + \alpha_2 v_2 \dots + \alpha_n v_n + \alpha_{n+1} v_{n+1} + \alpha_{n+2} v_{n+2} \dots + \alpha_{n+m} v_{n+m}$$

Operating T on both sides

$$w = T(\alpha_{1}v_{1} + \alpha_{2}v_{2}..... + \alpha_{n}v_{n} + \alpha_{n+1}v_{n+1} + \alpha_{n+2}v_{n+2}...... + \alpha_{n+m}v_{n+m})$$

$$w = \alpha_{1}T(v_{1}) + \alpha_{2}T(v_{2})..... + \alpha_{n}T(v_{n}) + \alpha_{n+1}T(v_{n+1}) + \alpha_{n+2}T(v_{n+2})..... + \alpha_{n+m}T(v_{n+m})$$

$$w = \alpha_{n+1}T(v_{n+1}) + \alpha_{n+2}T(v_{n+2})..... + \alpha_{n+m}T(v_{n+m}), \text{ since } \sum_{j=1}^{n}\alpha_{j}T(v_{j}) = 0$$

$$\Rightarrow R(T) = span\{T(v_{n+1}), T(v_{n+2}), T(v_{n+m})\}$$

Now, let us show that $\{T(v_{n+1}), T(v_{n+2}),, T(v_{n+m})\}$ is linearly independent. Let us consider

$$\beta_{n+1}T(v_{n+1}) + \beta_{n+2}T(v_{n+2})..... + \beta_{n+m}T(v_{n+m}) = 0$$

$$T(\beta_{n+1}v_{n+1} + \beta_{n+2}v_{n+2}..... + \beta_{n+m}v_{n+m}) = 0$$

$$\sum_{i=1}^{m} T(\beta_{i+n} v_{i+n}) = \sum_{i=1}^{m} \beta_{i+n} T(v_{i+n}) = 0$$

This implies $\beta_{i+n} = 0$ for each i. From (I)

Hence $\{T(v_{n+1}), T(v_{n+2}), T(v_{n+m})\}$ is linearly independent and forms

basis of R(T) and hence dim(R(T))=m.

Implies

dim(V)=dim(R(T))+dim(N(T))=Rank of T+ Nullity of T

MID SEM-2021

Example

Let V and W be vector spaces of dimensions n and m respectively over \mathbb{R} and $T:V\to W$ be a linear transformation. Aravind starts with the basis $\{u_1,u_2,\ldots,u_r\}$, (r< n) of $\mathrm{Ker}(T)$ and adds a few more elements of V namely, $\{u_{r+1},u_{r+2},\ldots,u_n\}$ such that the combined set $\{u_1,u_2,\ldots,u_n\}$ becomes a basis for V. How should Aravind proceed to prove that $\mathrm{Range}(T)$ has dimension n-r, in order that the rank-nullity theorem is satisfied? Assumptions, if any, are to be stated clearly.

Solution:

Let $b \in Range(T)$ and $v \in V$ and let T(v) = b. Since $\{u_1, u_2, ..., u_r, u_{r+1}, ..., u_n\}$ is a basis for V, we can write

$$v = \sum_{i=1}^{n} \alpha_{i} u_{i} = \sum_{i=1}^{\gamma} \alpha_{i} u_{i} + \sum_{i=r+1}^{n} \alpha_{i} u_{i}.$$

Hence,

$$b = T(v) = T(\textstyle\sum_{i=r+1}^n \alpha_i u_i)$$

since
$$T(u_i)_{i=1...r} = 0$$
.

Also, since the set $\{u_i\}_{r+1}^n$ is linearly independent,

 $\{T\{u_i\}_{i=r+1}^n\}$ are also linearly independent.

Therefore, the dimension of Range(T) = n - r.

Eigen Values and Eigen Vectors

Example-1:

Let y be the real root of a polynomial equation of degree 9 with integer

coefficients. Construct the matrix
$$A = \begin{bmatrix} 2 & \gamma & 0 \\ \gamma & 2 & \gamma \\ 0 & \gamma & 2 \end{bmatrix}$$

With this information, is it possible to

- a) derive all the possible values of y so that A has all non-zero eigenvalues?
- b) Calculate the necessary condition on \(\gamma \) so that all the eigenvalues of A are positive?

Solution:

If matrix has only nonzero eigenvalues , then determinant is not zero this means $2 - \gamma^2 \neq 0$. So $\gamma \neq \sqrt{2}$

Similarly, one necessary condition for all positive eigenvalues is $2 - \gamma^2 > 0$. In summary $-\sqrt{2} \le \gamma \le \sqrt{2}$

Example-2:

A math professor teaching about eigenvalues and eigenvectors introduces a matrix $B_{n \times n}$ having an interesting property that $B^k = 0$ for some k < n. He then ask the students to work out the following questions.

- (i) estimate the trace and determinant of B
- (ii) derive all the eigenvalues of B.

Are the above tasks possible? If so, derive the results and if not, give reasons.

Solution:

Let λ be an eigenvalue of B for some eigenvector x.

Since $B^k = 0$.

It means that λ should satisfy $\lambda^k = 0$.

This means $\lambda = 0$

Hence *B* has only zero eigenvalues.

Hence Trace=0 and Determinant=0

Homework 4.4

Example-3:

- Q .a) Let P be a real square matrix satisfying P=P^T and P²=P.
 - i) Can the matrix P have complex eigenvalues?
 If so, construct an example, else, justify your answer.
 - ii) What are the eigenvalues of P?

b) Given the following matrix
$$A = \begin{bmatrix} 1 & 2 & r \\ c & 1 & 7 \\ c & 1 & 7 \end{bmatrix}$$

where c and r are arbitrary real numbers and $5.5 < r \le 6.5$, and the fact that $\lambda_1 = 3$ is one of the eigenvalues, is it possible to determine the other two eigenvalues? If so, compute them and give reasons for your answer.

Colution:

i) The matrix P cannot have complex eigenvalues.

Justification :

Given P=P2 and PT=P

Implies P is a real symmetric matrix.

By the property of eigenvalues real symmetric matrices will have only real eigenvalues.

ii) Let eigenvalue of P be λ then the eigenvalue of P² will be λ².

Hence, $\lambda^2 = \lambda$ (Since $P=P^2$) $\rightarrow \lambda^2 - \lambda = 0$, $\lambda(\lambda - 1) = 0$

That implies, λ =0 or 1.

Given
$$A = \begin{bmatrix} 1 & 2 & r \\ c & 1 & 7 \\ c & 1 & 7 \end{bmatrix}$$
 and one of the eigenvalue is $\lambda_1 = 3$.

Since matrix A has 2 identical rows. det(A)=0.

Implies, one of the eigenvalue must be zero say $\lambda_2=0$.

W.K.T ,Trace of A=sum of the eigenvalues

So,
$$\lambda_1 + \lambda_2 + \lambda_3 = 9$$

Implies λ_3 =6.

Since matrix A has 2 identical rows.

The value of 'r' will not play any role in computing eigenvalues.

Power Method – Example

Find the dominant eigenvalue & corresponding eigenvector of the matrix

Solution:

Step 1 : Choose column vector
$$\mathbf{u}_0 = [1,-1,-1,1]^T$$

$$A = \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix}$$

Step 2: Multiply the matrix by the matrix [A] by $u_o = y_1$

$$A = \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 5 \\ 7 \end{bmatrix} \implies \begin{bmatrix} 1 \\ 1 \\ -3 \\ 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 0.1429 \\ 0.7143 \\ 1 \end{bmatrix}$$

Step 3: Normalize the resulting vector obtained in step 2 by dividing each component by the largest in magnitude

$$u_1 = y_1 / 7 = [0.1429, -0.4286, 0.7143, 1]^T$$

Normalizing factor $m_1 = 7$

Power Method - Example

Step 4:

$$\begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0.1429 \\ -0.4286 \\ 0.7143 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.1429 \\ -5.2857 \\ 5.5714 \\ 5.8571 \end{bmatrix} = 5.8571 \begin{bmatrix} 0.0244 \\ -0.9024 \\ 0.9512 \\ 1.0000 \end{bmatrix}$$
 (normalizing factor m₂)

Now Repeating steps 2 and 3

$$\begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0.0244 \\ -0.9024 \\ 0.9512 \\ 1.0000 \end{bmatrix} = \begin{bmatrix} -1.6342 \\ -11.6830 \\ 8.4147 \\ 5.1464 \end{bmatrix} = 11.6830 \begin{cases} -0.1399 \\ -1.0000 \\ 0.7203 \\ 0.4405 \end{bmatrix}$$
 (normalizing factor m₃)

innovate achieve lead

Power Method – Example

 $u_4 = y_4 / 13.2798$ (normalizing factor m_4)

Continue the process

$$\begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix} \begin{bmatrix} -0.2243 \\ -1.0000 \\ 0.5513 \\ 0.1027 \end{bmatrix} = \begin{bmatrix} -3.5703 \\ -13.4486 \\ 6.3083 \\ -0.8327 \end{bmatrix} = 13.4486 \begin{bmatrix} -0.2655 \\ -1.0000 \\ 0.4690 \\ -0.0619 \end{bmatrix}$$

 $u_5 = y_5 / 13.4486$ (normalizing factor m_5)

m ₁	m ₂	m_3	m ₄	\mathbf{m}_{5}	m ₆
7	5.8571	11.6830	13.2798	13.4486	13.5310

Change in normalizing factor m_i is now negligible LARGEST Eigenvalue is $m_4 = 13.4486$ and Corresponding Eigen vector $u_4 = [-0.2655, -1.000, 0.469, -0.0619]^T$

Problem on Rayleigh's method

We have Rayleigh's coefficient $\lambda_{\text{max}} = \frac{X^T A X}{X^T X}$

$$=\frac{\begin{bmatrix} -0.2655 & -1.0000 & 0.4696 & -0.0619 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix} \begin{bmatrix} -0.2655 \\ -1.0000 \\ 0.4696 \\ -0.0619 \end{bmatrix}}{\begin{bmatrix} -0.2655 \\ -1.0000 \\ 0.4696 \\ -0.0619 \end{bmatrix}}$$

$$\lambda_{\text{max}} = \frac{16.98979478}{1.29484602} = 13.12109279217617$$

Illustration Gerschgorin's result for a few cases

Theorem: Every eigenvalue of matrix A satisfies

$$\left|\lambda - A_{ii}\right| \le \sum_{j \ne i} \left|A_{ij}\right|, i, j \in \{1, 2, 3...n\}$$

Example: For illustration $A = \begin{bmatrix} 5 & 0 & 0 & -1 \\ 1 & 0 & -1 & 1 \\ -1.5 & 1 & -2 & 1 \\ -1 & 1 & 3 & -3 \end{bmatrix}$

Row-1
$$|\lambda - 5| \le 1$$

Col-1
$$|\lambda - 5| \le 3.5$$

Row-2
$$|\lambda - 0| \le 3$$

Col-2
$$\left|\lambda - 0\right| \le 2$$

Row-3
$$\left|\lambda+2\right| \leq 3.5$$

Col-3
$$|\lambda + 2| \le 4$$

Col-4 $|\lambda + 3| \le 3$

Row-3
$$|\lambda + 3| \le 5$$

Col-4
$$|\lambda + 3| \le 3$$

Example-2

-1.000	00 2	.000	0	0	0	0	0	0		0]
-2.0	000	-1.0	000	0	0	0	0	0		0
ì	0	0	0.2379	0.5	145	0.1201	0.12	75	0	0
	0	0	0.1943	0.4	954	0.1230	0.18	73	0	0
	0	0	0.1827	0.4	955	0.1350	0.18	68	0	0
	0	0	0.1084	0.4	218	0.1045	0.36	53	0	0
	0	0	0	()	0	0	2.000	00	2.0000
	0	0	0		0	0	0	-2.00	00	0

Thank You