

Search in OOXX Games

2019/5/2

Introduction to OOXX Games (井井井井字棋)

- OOXX Games (井井井井字棋 or 井⁴字棋)
 - Invented by Adrien Wu (吳聖福) in 2018

Rules

- Two players, O and X, alternately place two tokens of their own, on a 5X5 board.
- O always plays first to put two O's on the board.
- X always plays second to put two X's on the board.
- After 11 plays, the game is ended by putting the last 3 X's to make the board full.
- How to determine the winner
 - One point for a player is achieved if we have at least 4 tokens of this player in each of the 5 rows, 5 columns, and 2 diagonals.
 - The player with more points wins the game.

An Example of OOXX Game

- Result
 - O: 4, X: 3 → O wins!

Problem Definition

- Given a half-filled board, determine who is the winner (or a tie) if both adopt the best strategy to play.
- Three possible results
 - O win
 - X win
 - Draw

Examples of Best Strategy (1/3)

Next play by O

- Both O and X have a score of 3
- O cannot score any more → No way for O to win
- The best bet for O is to take the gray positions, which leads to a tie.
- If O didn't choose the gray positions, X will win.
- So the best strategy for O is the above two gray positions.

Examples of Best Strategy (2/3)

Next play by O

- The best bet for O to score 3 is to take the gray positions
- X can get an addition score by take the yellow position.
- No matter how O play, s/he will lose the game.
- So the best strategy for O is actually any two positions (since s/he will lost the game anyway).

Examples of Best Strategy (3/3)

Next play by X

- If X takes the gray positions (which leads to the board in the previous slide), s/he will win.
- If X takes the positions marked with
 *, s/he will win too.
- So the best strategy for X is not unique.

Χ	0	0	0	0
Χ	Χ	Х	Χ	0
Χ		Х	0	0
Χ	0	*		
0	0			*

Hint: How to Determine the Result?

- Given a current half-filled board, search for the next possible board and record its result.
- Suppose the current board is O's move, s/he will adopt the best strategy to determine the result of the current board:
 - If any of the next boards is "O win" → "O win"
 - Else if any of the next boards is "Draw" → "Draw"
 - Else → "X win"

Hint: How to Speed Up Computation?

- During the search, it is likely that you run into a board that has been computed before.
- You can use <unordered_map> to record the result of a given board, so you can easily retrieve it later.

Hint: How to Save Memory?

- Each board has 25 elements, and each element has 3 states (O, X, and empty)
 - → Use 2 bits for each element
 - → Use a long long (64 bits) for a board to save it to an unordered map

Game Tree

Hint: How to Speed Up More?

○ Comments from 吳聖福

MinMax Rule: Game Tree of Tic-Tac-Toc

Example: α – β Pruning in a Game Tree (1/3)

o Source

Example: α – β Pruning in a Game Tree (2/3)

o Source

Example: α – β Pruning in a Game Tree (3/3)

o Source

Exercise 1: α – β Pruning in a Game Tree

 \circ Display how the search can be reduced via α - β Pruning

Exercise 2: α – β Pruning in a Game Tree

 \circ Display how the search can be reduced via α - β Pruning

