Chemotactic Chiral Active Matter

Yichen Lu

January 13, 2025

Contents

1	${f Models}$	
	1.1 Defin	nitions
	1.1.1	Self-propelled dynamics
	1.1.2	Polar alignment dynamics
	1.1.3	Chemotactic dynamics
	1.1.4	Mixed phase dynamics
	1.1.5	Chemotactic Lotka-Volterra dynamics
2	Short format coarse graining	
3	Coarse g	raining
	3.0.1	Angular Fourier expansion of the phase-space distribution

1 Models

1.1 Definitions

1.1.1 Self-propelled dynamics

$$\dot{x}_i = v \cos \theta_i \,\,, \tag{1a}$$

$$\dot{y}_i = v \sin \theta_i \,, \tag{1b}$$

1.1.2 Polar alignment dynamics

• Additive coupling:

$$\dot{\theta}_i = \omega_i + K \sum_{j=1}^{N} f(r_{ij}) \sin(\theta_j - \theta_i + \alpha) , \qquad (2)$$

• Mean-field coupling by oscillator number:

$$\dot{\theta}_i = \omega_i + \frac{K}{N} \sum_{i=1}^{N} f(r_{ij}) \sin(\theta_j - \theta_i + \alpha) , \qquad (3)$$

which is similar to the swarmalator model.

Here, $f(r_{ij})$ is a function of $r = |\mathbf{r}_i - \mathbf{r}_j|$, and K is the coupling strength. The function f(r) can be defined as

1.
$$f_H(r) = H(d_0 - r), r_0 > 0;$$

2.
$$f_E(r) = e^{-\frac{r}{d_0}}, r_0 > 0.$$

The natural frequencies ω_i are distributed with following two cases:

- 1. Single-chiral swarmalators: The natural frequencies ω_i are distributed in $U(\omega_{\min}, \omega_{\max})$ for all swarmalators and $\omega_{\min}\omega_{\max} > 0$.
- 2. **Double-chiral swarmalators:** The frequencies are distributed in two symmetric uniform distributions, representing two types of chirality. Exactly half of the swarmalators have natural frequencies $\omega_i \sim U\left(\omega_{\min}, \omega_{\max}\right)$ and the other half have natural frequencies $\omega_i \sim U\left(-\omega_{\max}, -\omega_{\min}\right)$.

1.1.3 Chemotactic dynamics

Consider two chemical fields $u(\mathbf{r},t)$, $v(\mathbf{r},t)$ that are produced by the ensemble of two symmetrically chiral swarmalators. Swarmalators interact with the chemical field and move towards/against the regions with higher concentration, which can be described by the following equation $(i=1,2,\ldots,N)$:

$$\dot{\mathbf{r}}_{i}^{s} = v\mathbf{p}\left(\theta_{i}^{s}\right) \tag{4a}$$

$$\dot{\theta}_i^s = \omega_i^s + \alpha^s \mathbf{p}_i^s \times \nabla u + \beta^s \mathbf{p}_i^s \times \nabla v \tag{4b}$$

where α , β_i^s denote the 'chemotactic' coupling strength and $\mathbf{p}(\theta) = (\cos \theta, \sin \theta)$ is the unit vector pointing in the direction of the *i*-th swarmalator, $s \in \{p, n\}$ denotes the two chiral species. Here, we used the notation $\mathbf{a} \times \mathbf{b} = a_1b_2 - a_2b_1$.

These two fields evolve as

$$\dot{u} = k_0 \sum_{j=1}^{N} \delta\left(\mathbf{r} - \mathbf{r}_j^p\right) - k_d u + D_u \nabla^2 u , \qquad (5a)$$

$$\dot{v} = k_0 \sum_{j=1}^{N} \delta\left(\mathbf{r} - \mathbf{r}_j^n\right) - k_d v + D_v \nabla^2 v , \qquad (5b)$$

where S_+ and S_- are the sets of two chiral swarmalators, k_0 is the production rate, k_d is the decay rate, $D_{u,v}$ are the diffusion coefficients.

1.1.4 Mixed phase dynamics

$$\dot{\mathbf{r}}_i = v\mathbf{p}_i \tag{6a}$$

$$\dot{\theta}_{i} = \omega_{i} + \beta_{i}^{u} \mathbf{p}_{i} \times \nabla u + \beta_{i}^{v} \mathbf{p}_{i} \times \nabla v + \frac{K}{N} \sum_{j=1}^{N} f(|\mathbf{r}_{j} - \mathbf{r}_{i}|) \sin(\theta_{j} - \theta_{i}) , \qquad (6b)$$

1.1.5 Chemotactic Lotka-Volterra dynamics

$$\dot{\mathbf{r}}_{i}^{1,2} = v\mathbf{p}\left(\theta_{i}^{1,2}\right) - \sum_{j \in A_{i}^{1,2}} \frac{1}{\left|\mathbf{r}_{j} - \mathbf{r}_{i}^{1,2}\right|^{\beta}}, \tag{7a}$$

$$\dot{\theta}_i^{1,2} = \alpha_{1,2} |\nabla c_{1,2}| \sin \left(\varphi_{c_{1,2}} - \theta_i^{1,2}\right) , \tag{7b}$$

$$\dot{c}_1 = D_1 \nabla^2 c_1 + c_1 \left(k_1 - k_2 c_2 \right) \sum_{j=1}^N \delta \left(\mathbf{r} - \mathbf{r}_j^1 \right), \tag{7c}$$

$$\dot{c}_2 = D_2 \nabla^2 c_2 + c_2 \left(k_3 c_1 - k_4 \right) \sum_{j=1}^N \delta \left(\mathbf{r} - \mathbf{r}_j^2 \right), \tag{7d}$$

where $\varphi_{c_{1,2}} = \arctan\left(\frac{\partial_y c_{1,2}}{\partial_x c_{1,2}}\right)$ and $A_i^{1,2} = \left\{j \mid r_c \geqslant \left|\mathbf{r}_j - \mathbf{r}_i^{1,2}\right|\right\}$.

2 Short format coarse graining

We begin with Eq. (2), replacing the finite coupling distance alignment interaction with a pseudopotential (the ' δ '-interaction). This substitution is justified when the interaction is sufficiently short-ranged, making the specific shape of the associated interaction potential irrelevant to the dynamics of many swarmalators. The pseudopotential is defined as:

$$\dot{\mathbf{r}}_{i}^{c} = v\mathbf{p}\left(\theta_{i}^{c}\right),$$

$$\dot{\theta}_{i}^{c} = \omega_{i}^{c} + K \sum_{j=1} \delta\left(\mathbf{r}_{j}^{c} - \mathbf{r}_{i}^{c}\right) \sin\left(\theta_{j}^{c} - \theta_{i}^{c}\right)$$
(8a)

$$+ K \sum_{j=1} \delta \left(\mathbf{r}_{j}^{b} - \mathbf{r}_{i}^{b} \right) \left[\sin \left(\theta_{j}^{b} - \theta_{i}^{b} + \alpha_{0} \right) - \sin \alpha_{0} \right], \tag{8b}$$

where $c \in \{+, -\}$ is the chirality of the swarmalator i and b = + if c = - and vice versa. Then following [1] we derive a continuum equation of motion for the combined N-swarmalator probability density

$$\rho^{c}(\mathbf{r}, \theta, t) = \sum_{i=1} \rho_{i}^{c}(\mathbf{r}, \theta, t) , \qquad (9)$$

where $\rho_i^c(\mathbf{r}, \theta, t) = \delta(\mathbf{r}_i^c(t) - \mathbf{r}) \delta(\theta_i^c(t) - \theta)$ is the probability density of finding *i*-th swarmalator at position \mathbf{r} with phase θ and chirality c at time t. Since the deterministic dynamical equation Eq. (??) conserves the number of oscillators with a given natural frequency over time, the distribution function evolves according to a continuity equation of the following form:

$$\frac{\partial \rho_i^c}{\partial t} = -\nabla \cdot (\rho_i^c v_{\mathbf{r}}) - \frac{\partial}{\partial \theta} \left(\rho_i^c v_{\theta}^{c,i} \right) . \tag{10}$$

Here, the velocity fields read

$$v_{\mathbf{r}}(\mathbf{r}, \theta, t) = v\mathbf{p}(\theta)$$
, (11a)

$$v_{\theta}^{c,i}(\mathbf{r},\theta,t) = \omega_i^c + K \int d\phi \rho^c(\mathbf{r},\phi,t) \sin(\phi-\theta)$$

$$+ K \int d\phi \rho^b (\mathbf{r}, \phi, t) \left[\sin \left(\phi - \theta + \alpha_0 \right) - \sin \alpha_0 \right]. \tag{11b}$$

Summing Eq. (10) over the i and c indices, and using the definition of the density ρ^c in Eq. (9), we obtain

$$\frac{\partial \rho^{c}(\mathbf{r}, \theta, t)}{\partial t} = -v\mathbf{p}(\theta) \cdot \nabla \rho^{c}(\mathbf{r}, \theta, t) - \frac{\partial}{\partial \theta} \Omega(\mathbf{r}, \theta, t)
+ K \frac{\partial}{\partial \theta} \rho^{c} \int d\phi \rho^{c}(\mathbf{r}, \phi, t) \sin(\phi - \theta)
+ K \frac{\partial}{\partial \theta} \rho^{c} \int d\phi \rho^{b}(\mathbf{r}, \phi, t) \left[\sin(\phi - \theta + \alpha_{0}) - \sin\alpha_{0} \right],$$
(12)

where $\Omega\left(\mathbf{r},\theta,t\right)=\sum_{i=1}\rho_{i}^{c}\left(\mathbf{r},\theta,t\right)\omega_{i}^{c}$. Spatiotemporal dynamics of the ISS indicates $\forall i,c,\ \rho_{i}^{c}\left(\mathbf{r},\theta,t\right)\equiv\rho_{\mathrm{ISS}}\left(\mathbf{r},\theta,t\right)$, which yields

$$\Omega(\mathbf{r}, \theta, t) = \rho^{c}(\mathbf{r}, \theta, t) \frac{(\omega_{\text{max}} + \omega_{\text{min}})}{2}.$$
(13)

Transforming Eq. (12) to Fourier space, yields an equation of motion for the Fourier modes $\varrho_k^c(\mathbf{r},t) = \int \rho^c(\mathbf{r},\theta,t) e^{ik\theta} d\theta$ of ρ^c :

$$\frac{\partial \varrho_k^c}{\partial t} = -\frac{v}{2} \left[\frac{\partial}{\partial x} \left(\varrho_{k+1}^c + \varrho_{k-1}^c \right) - i \frac{\partial}{\partial y} \left(\varrho_{k+1}^c - \varrho_{k-1}^c \right) \right]
- \left[\frac{ik \left(\omega_{\text{max}} + \omega_{\text{min}} \right)}{2} \varrho_k^c - k^2 \right] \varrho_k^c
+ \frac{iKk}{2\pi} \sum_{m=-\infty}^{\infty} \varrho_{k-m}^c F_{-m} \varrho_m^c$$
(14)

3 Coarse graining

We now follow the strategy in [1] to consider the evolution of the density function for a single particle

$$\rho_{i}(\mathbf{r}, \theta, \omega, t) = \delta(\mathbf{r}_{i}(t) - \mathbf{r}) \delta(\theta_{i}(t) - \theta) g(\omega) , \qquad (15)$$

which denotes the probability of finding a particle at position \mathbf{r} , with orientation θ and natural frequency ω , where $g(\omega)$ is the time independent swarmalator frequency distribution. The density function ρ_i satisfies the continuity equation, and we shall then demonstrate how one may write a closed equation for the global density

$$\rho(\mathbf{r}, \theta, \omega, t) = \sum_{i=1}^{N} \rho_i(\mathbf{r}, \theta, \omega, t), \qquad (16a)$$

$$\varrho\left(\mathbf{r},\theta,t\right) = \int_{-\infty}^{+\infty} \rho\left(\mathbf{r},\theta,\omega,t\right) d\omega . \tag{16b}$$

The derivation follows a well known argument. Consider an arbitrary function f defined on the coordinate space of the system. Using the definition of the density it is a tautology that

$$f(\mathbf{r}_{i}(t), \theta_{i}(t), \omega_{i}) = \iiint d\mathbf{r} d\theta d\omega \rho_{i}(\mathbf{r}, \theta, \omega, t) f(\mathbf{r}, \theta, \omega).$$
(17)

Expanding the differential equation over the next time step δt one obtains

$$\frac{\mathrm{d}f\left(\mathbf{r}_{i},\theta_{i},\omega_{i}\right)}{\mathrm{d}t} = \frac{\partial f\left(\mathbf{r}_{i},\theta_{i},\omega_{i}\right)}{\partial\mathbf{r}_{i}} \cdot \frac{\mathrm{d}\mathbf{r}_{i}}{\mathrm{d}t} + \frac{\partial f\left(\mathbf{r}_{i},\theta_{i},\omega_{i}\right)}{\partial\theta_{i}} \frac{\mathrm{d}\theta_{i}}{\mathrm{d}t} + \frac{\partial f\left(\mathbf{r}_{i},\theta_{i},\omega_{i}\right)}{\partial\omega_{i}} \frac{\partial\omega_{i}}{\partial t}$$

$$= \iiint \mathrm{d}\mathbf{r}\mathrm{d}\theta\mathrm{d}\omega\rho_{i}\left(\mathbf{r},\theta,\omega,t\right) \left(\frac{\partial f\left(\mathbf{r},\theta,\omega\right)}{\partial\mathbf{r}} \cdot \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} + \frac{\partial f\left(\mathbf{r},\theta,\omega\right)}{\partial\theta} \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{\partial f\left(\mathbf{r},\theta,\omega\right)}{\partial\omega} \frac{\mathrm{d}\omega}{\mathrm{d}t}\right) \quad (18)$$

$$= \iiint \mathrm{d}\mathbf{r}\mathrm{d}\theta\mathrm{d}\omega \left(\rho_{i}\left(\mathbf{r},\theta,\omega,t\right)\dot{\mathbf{r}}\cdot\nabla f\left(\mathbf{r},\theta,\omega\right) + \rho_{i}\left(\mathbf{r},\theta,\omega,t\right)\dot{\theta}\frac{\partial}{\partial\theta} f\left(\mathbf{r},\theta,\omega\right)\right).$$

Re-arranging the above integral by integration by parts we obtain

$$\frac{\mathrm{d}f\left(\mathbf{r}_{i},\theta_{i},\omega_{i}\right)}{\mathrm{d}t} = \iiint \mathrm{d}\mathbf{r}\mathrm{d}\theta\mathrm{d}\omega f\left(\mathbf{r},\theta,\omega\right) \left(-\nabla\cdot\left(\rho_{i}\left(\mathbf{r},\theta,\omega,t\right)\dot{\mathbf{r}}\right) - \frac{\partial}{\partial\theta}\left(\rho_{i}\left(\mathbf{r},\theta,\omega,t\right)\dot{\theta}\right)\right). \tag{19}$$

However, from (17) we may also deduce

$$\frac{\mathrm{d}f\left(\mathbf{r}_{i},\theta_{i},\omega_{i}\right)}{\mathrm{d}t} = \iiint \mathrm{d}\mathbf{r}\mathrm{d}\theta\mathrm{d}\omega f\left(\mathbf{r},\theta,\omega\right) \frac{\partial\rho_{i}\left(\mathbf{r},\theta,\omega,t\right)}{\partial t} . \tag{20}$$

Comparing equations (19) and (20) we find (using the fact that f is an arbitrary function) that

$$\frac{\partial \rho_{i}\left(\mathbf{r},\theta,\omega,t\right)}{\partial t} = -\nabla \cdot \left(\rho_{i}\left(\mathbf{r},\theta,\omega,t\right)\dot{\mathbf{r}}\right) - \frac{\partial}{\partial \theta}\left(\rho_{i}\left(\mathbf{r},\theta,\omega,t\right)\dot{\theta}\right). \tag{21}$$

We emphasize that this argument is standard, and the only subtlety is that we have not carried out any thermal averaging at this point. Summing equation (21) over the i and using the definition of the density ρ we obtain

$$\frac{\partial \rho\left(\mathbf{r},\theta,\omega,t\right)}{\partial t} = -\nabla \cdot \left(\rho\left(\mathbf{r},\theta,\omega,t\right)\dot{\mathbf{r}}\right) - \frac{\partial}{\partial \theta}\left(\rho\left(\mathbf{r},\theta,\omega,t\right)\dot{\theta}\right) \ . \tag{22}$$

(1) For the case of the phase coupling dynamics, the equation for the density ρ is

$$\frac{\partial \rho\left(\mathbf{r},\theta,\omega,t\right)}{\partial t} = -\nabla \cdot \left(\rho\left(\mathbf{r},\theta,\omega,t\right)v\mathbf{p}\left(\theta\right)\right) - \frac{\partial}{\partial \theta}\left(\rho\left(\mathbf{r},\theta,\omega,t\right)\left(\omega + G\sum_{j=1}^{N}\sin\left(\theta_{j}-\theta\right)\delta\left(\mathbf{r}_{j}-\mathbf{r}\right)\right)\right)$$

$$= -v\mathbf{p}\left(\theta\right) \cdot \nabla\rho\left(\mathbf{r},\theta,\omega,t\right) - \omega\frac{\partial}{\partial \theta}\rho\left(\mathbf{r},\theta,\omega,t\right)$$

$$- G\frac{\partial}{\partial \theta}\rho\left(\mathbf{r},\theta,\omega,t\right) \iiint d\mathbf{r}'d\theta'd\omega'\rho\left(\mathbf{r}',\theta',\omega',t\right)\sin\left(\theta'-\theta\right)\delta\left(\mathbf{r}'-\mathbf{r}\right),$$
(23)

where $\mathbf{p}(\theta) = (\cos \theta, \sin \theta)$. Then for the density ϱ we have

$$\frac{\partial \varrho \left(\mathbf{r}, \theta, t\right)}{\partial t} = -v\mathbf{p}\left(\theta\right) \cdot \nabla \varrho \left(\mathbf{r}, \theta, t\right) - \frac{\partial}{\partial \theta} \int_{-\infty}^{+\infty} \omega \rho \left(\mathbf{r}, \theta, \omega, t\right) d\omega
- G \frac{\partial}{\partial \theta} \varrho \left(\mathbf{r}, \theta, t\right) \iint d\mathbf{r}' d\theta' \varrho \left(\mathbf{r}', \theta', t\right) \sin \left(\theta' - \theta\right) \delta \left(\mathbf{r}' - \mathbf{r}\right)$$
(24)

(2) For the case of the chemotactic dynamics, the equation for the density ρ^s is

$$\frac{\partial \rho^{s} (\mathbf{r}, \theta, \omega, t)}{\partial t} = -\nabla \cdot (\rho^{s} (\mathbf{r}, \theta, \omega, t) v \mathbf{p} (\theta)) - \frac{\partial}{\partial \theta} (\rho^{s} (\mathbf{r}, \theta, \omega, t) (\omega + \alpha^{s} \mathbf{p} (\theta) \times \nabla u + \beta^{s} \mathbf{p} (\theta) \times \nabla v))$$

$$= -v \mathbf{p} (\theta) \cdot \nabla \rho^{s} (\mathbf{r}, \theta, \omega, t) - \omega \frac{\partial}{\partial \theta} \rho^{s} (\mathbf{r}, \theta, \omega, t)$$

$$- \frac{\partial}{\partial \theta} \rho^{s} (\mathbf{r}, \theta, \omega, t) \alpha^{s} [|\nabla u| \sin (\theta + \varphi_{u}) + |\nabla v| \sin (\theta + \varphi_{v})]$$
(25)

where $\varphi_c = \arg(-\partial_y c + i\partial_x c), c = u, v$. Then for the density ϱ^s we have

$$\frac{\partial \varrho^{s}(\mathbf{r},\theta,t)}{\partial t} = -v\mathbf{p}(\theta) \cdot \nabla \varrho^{s}(\mathbf{r},\theta,t) - \frac{\partial}{\partial \theta} \int_{-\infty}^{+\infty} \omega \rho^{s}(\mathbf{r},\theta,\omega,t) d\omega
- \frac{\partial}{\partial \theta} \varrho^{s}(\mathbf{r},\theta,t) \alpha^{s} \left[|\nabla u| \sin(\theta + \varphi_{u}) + |\nabla v| \sin(\theta + \varphi_{v}) \right]$$
(26)

Next, let's determine the value of item

$$\int_{-\infty}^{+\infty} \omega \rho^{s} (\mathbf{r}, \theta, \omega, t) d\omega . \tag{27}$$

The uniform distribution of disorder state indicates $g(\omega) = [2(\omega_{\text{max}} - \omega_{\text{min}})]^{-1}$, which is an ω -independent constant. Then we have

$$\int_{-\infty}^{+\infty} \omega \rho^{s} \left(\mathbf{r}, \theta, \omega, t \right) d\omega = \begin{cases} \frac{1}{2} \rho^{s} \left(\mathbf{r}, \theta, \omega, t \right) \left(\omega_{\text{max}}^{2} - \omega_{\text{min}}^{2} \right), & \text{SingleChirality} \\ 0, & \text{DoubleChirality} \end{cases}$$
(28)

Similarly, equation (16b) can be rewritten as

$$\varrho^{s}\left(\mathbf{r},\theta,t\right) = \rho^{s}\left(\mathbf{r},\theta,\omega,t\right) \int_{-\infty}^{+\infty} d\omega = \begin{cases}
2\left(\omega_{\text{max}} - \omega_{\text{min}}\right)\rho^{s}\left(\mathbf{r},\theta,\omega,t\right), & \text{SingleChirality} \\
0, & \text{DoubleChirality}
\end{cases}$$
(29)

Substituting equations (29) into (28), we obtain

3.0.1 Angular Fourier expansion of the phase-space distribution

As $\varrho(\mathbf{r},\theta,t)$ is a periodic function of θ , it can be expanded in a Fourier series, defined as

$$\hat{\varrho}_k(\mathbf{r},t) = \int_{-\pi}^{\pi} \varrho(\mathbf{r},\theta,t) e^{ik\theta} d\theta .$$
(30)

The inverse Fourier transform is

$$\varrho(\mathbf{r}, \theta, t) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \hat{\varrho}_k(\mathbf{r}, t) e^{ik\theta} .$$
 (31)

In this framework, the uniform distribution $\varrho_0(\mathbf{r},\theta,t) = (2\pi)^{-1} \varrho_0^*$ corresponds to $\hat{\varrho}_k(\mathbf{r},\omega,t) = (2\pi)^{-1} \varrho_0^*$ for k=0.

Let us use as a basis of the plane the two orthogonal vectors $\mathbf{p}_1 = (1,0)$ and $\mathbf{p}_2 = (0,1)$. In order to obtain an evolution equation for the velocity field, we multiply equations (24) and (26) by $\mathbf{e}(\theta)$ and integrate over θ from $-\pi$ to π . For equation (26), we obtain (j = 1, 2)

$$\frac{\partial}{\partial t} \int_{-\pi}^{\pi} \mathbf{e}_{j}(\theta) \, \varrho(\mathbf{r}, \theta, t) \, d\theta + v \sum_{l=1}^{2} \frac{\partial}{\partial \mathbf{r}_{l}} \int_{-\pi}^{\pi} \mathbf{e}_{j}(\theta) \, \mathbf{e}_{l}(\theta) \, \varrho(\mathbf{r}, \theta, t) \, d\theta = \int_{-\pi}^{\pi} \mathbf{e}_{j}(\theta) \, (I_{\text{freq}} + I_{\text{chem}}) \, d\theta , \quad (32)$$

where

$$I_{\text{freq}} = -\frac{\partial}{\partial \theta} \int_{-\infty}^{+\infty} \omega \rho^s \left(\mathbf{r}, \theta, \omega, t \right) d\omega , \qquad (33a)$$

$$I_{\text{chem}} = -\frac{\partial}{\partial \theta} \varrho^s \left(\mathbf{r}, \theta, t \right) \alpha^s \left[|\nabla u| \sin \left(\theta + \varphi_u \right) + |\nabla v| \sin \left(\theta + \varphi_v \right) \right] . \tag{33b}$$

To proceed further, it is convenient to identify complex numbers with two-dimensional vectors, in such a way that $\mathbf{e}(\theta)$ is mapped onto $e^{\mathrm{i}\theta}$. Then, in the same way, $v\hat{\varrho}_1(\mathbf{r},t)$ is associated with the momentum field $\mathbf{w}(\mathbf{r},t) = \rho(\mathbf{r},t)\mathbf{u}(\mathbf{r},t)$. Hence, we wish to rewrite equation (32) in such complex notations. For later use, we shall write it in a slightly more general form, replacing $e^{\mathrm{i}\theta}$ by $e^{\mathrm{i}k\theta}$:

$$\frac{\partial}{\partial t} \int_{-\pi}^{\pi} e^{ik\theta} \varrho(\mathbf{r}, \theta, t) d\theta + v \sum_{l=1}^{2} \frac{\partial}{\partial \mathbf{r}_{l}} \int_{-\pi}^{\pi} e^{ik\theta} \mathbf{e}_{l}(\theta) \varrho(\mathbf{r}, \theta, t) d\theta = \int_{-\pi}^{\pi} e^{ik\theta} \left(I_{\text{freq}} + I_{\text{chem}}\right) d\theta.$$
 (34)

Equation (32) is recovered for k=1, up to the mapping between complex numbers and two-dimensional vectors. The first term on the left-hand side is simply $\partial \hat{\varrho}_k/\partial t$. The second term on the left-hand side can be evaluated as follows: For l=1,2 and k integer, let us define the complex quantity $Q_l^{(k)}(\mathbf{r},t)$ as

$$Q_l^{(k)}(\mathbf{r},t) = \int_{-\pi}^{\pi} d\theta e^{ik\theta} e_l(\theta) f(\mathbf{r},\theta,t).$$
(35)

The following relations are then easily obtained:

$$Q_1^{(k)}(\mathbf{r},t) = \frac{1}{2} [\hat{f}_{k+1}(\mathbf{r},t) + \hat{f}_{k-1}(\mathbf{r},t)],$$

$$Q_2^{(k)}(\mathbf{r},t) = \frac{1}{2i} [\hat{f}_{k+1}(\mathbf{r},t) - \hat{f}_{k-1}(\mathbf{r},t)].$$
(36)

The right-hand side of equation (34) is computed by inserting the Fourier series expansion (31) into equations (33). After a rather straightforward calculation, one finds

References

[1] David S Dean. Langevin equation for the density of a system of interacting langevin processes. Journal of Physics A: Mathematical and General, 29(24):L613, dec 1996.