

向量空间

向量是线性代数的重点内容之一,也是难点,对逻辑推理有较高的要求.

本章从研究向量的线性关系(线性组合,线性相关、无关)出发,然后讨论向量组含最多的线性无关的向量的个数,即引出向量组的秩和极大无关组,进而扩展到向量空间的基、维数、坐标等.最后,应用向量空间的理论研究线性方程组解的结构.

本章特点:概念多,定理多,结论多,证明多

- 线性相关与线性无关
- 向量组的秩
- 3 向量空间的基
- 线性方程组解的结构
- 5 线性空间

第一节核性相关核性无关

- 1 n维向量的定义与运算
- 2 线性相关与线性无关

、11维向量的定义与运算

(一) 3维向量

设三个坐标轴上的基本单位向量为

$$\vec{i} = (1,0,0), \quad \vec{j} = (0,1,0), \quad \vec{k} = (0,0,1)$$

则任一三维向量可表示为

$$\vec{a} = (a_x, a_y, a_z) = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$

运算:

坐标

用基本向量表示

- (1) \sharp : $(a_x, a_y, a_z) \pm (b_x, b_y, b_z) = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$
- (2) 数乘: $k(a_x, a_y, a_z) = (ka_x, ka_y, ka_z)$
- (3) 数量积: $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$ 向量内积与 模和夹角关系

 $=a_xb_x+a_yb_y+a_zb_z$ … 可用作内积定义

一、11维向量的定义与运算

(一) 3维向量

一、n维向量的定义与运算

(二) n维向量的定义

定义任意数域上的n个有顺序的数 a_1, a_2, \dots, a_n 所组成的数组 $\alpha = (a_1, a_2, \dots, a_n)$ 称为n维向量. 其中数 a_j 称为向量 α 的第j个分量(或坐标).

向量的分量都是实数时称为**实向量**,分量中有复数时称为**复向量**.分量都是0的向量称为零向量,记作0.

数域F上全体n维向量的集合称为n维向量空间(或数组空间),记为 $F^{1\times n}$ 或 F^{n} .

·N维向量的定义与运算

(三) n维向量的实际意义

例1确定飞机的状态,需要以下6个参数:

机身的仰角
$$\varphi$$
 $\left(-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}\right)$ 机翼的转角 ψ $\left(-\pi < \psi \le \pi\right)$

机身的水平转角 θ $(0 \le \theta < 2\pi)$

飞机重心在空间的位置参数 P(x,y,z)

所以,确定飞机的状态,需用6维向量 $a = (x, y, z, \varphi, \psi, \theta)$

n>3时,n维向量没有直观的几何形象.

一、11维向量的定义与运算

例 2n-1 次代数多项式

$$f(t) = a_1 + a_2 t + \dots + a_n t^{n-1} \leftrightarrow \boldsymbol{\alpha} = (a_1, a_2, \dots, a_n)$$
 系数向量

例3 线性方程组 Ax=b

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\alpha}_1 \\ \boldsymbol{\alpha}_2 \\ \vdots \\ \boldsymbol{\alpha}_m \end{pmatrix}$$

其中

$$\boldsymbol{\alpha}_1 = (a_{11}, a_{12}, \dots, a_{1n})$$

$$\boldsymbol{\alpha}_2 = (a_{21}, a_{22}, \dots, a_{2n})$$

 $(a_{21}, a_{22}, \cdots, a_{2n})$

 $\boldsymbol{\alpha}_{m} = (a_{m1}, a_{m2}, \cdots, a_{mn})$

n维向量的定义与运算

增广矩阵
$$\hat{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix} = \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \vdots \\ \boldsymbol{\beta}_m \end{pmatrix}$$

$$\beta_1 = (a_{11}, a_{12}, \dots, a_{1n}, b_1)$$
 — 第1个方程
 $\beta_2 = (a_{21}, a_{22}, \dots, a_{2n}, b_2)$ — 第2个方程
 :

$$\beta_m = (a_{m1}, a_{m2}, \dots, a_{mn}, b_m)$$
 — 第*m*个方程

未知向量
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 右端向量 $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$

、N维向量的定义与逐算

(四) n维向量的运算

行向量 $\alpha = (a_1, a_2, \dots, a_n)$ 列向量 $\beta = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix}$ 转置 $\alpha^{T} = \beta$ $\beta^{T} = \alpha$ 1. 行向量、列向量、转置

注意: 行、列向量在代数上表示不同的向量, 在几何上表示同一个向量.

2. 两向量相等

设F^{1×n}中任意2行(列)向量

$$\boldsymbol{\alpha} = (a_1, a_2, \dots, a_k) \qquad \boldsymbol{\beta} = (b_1, b_2, \dots, b_l)$$

则 $\boldsymbol{\alpha} = \boldsymbol{\beta} \Leftrightarrow k = l \perp a_i = b_i \quad (i = 1, 2, \dots, k)$

一、几维向量的定义与运算

(四) n维向量的运算

3. 向量的线性运算

1) 加法 设 $F^{1\times n}$ 中任意2行(列)向量 $\alpha = (a_1, a_2, \dots, a_n)$ $\beta = (b_1, b_2, \dots, b_n)$ 同维同形

则
$$\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

- 2) 数乘 $k\boldsymbol{\alpha} = (ka_1, ka_2, \dots, ka_n)$
- 3) 负向量 $-\alpha = (-a_1, -a_2, \dots, -a_n)$
- 4) 減法 $\alpha \beta = (a_1 b_1, a_2 b_2, \dots, a_n b_n)$

、II维向量的定义与逐

(四) n维向量的运算

5) 向量线性运算的运算规律 设 α, β, γ 都是 $F^{1\times n}$ 中行/列向量,k, l为数域F中的数

(1)
$$\alpha + \beta = \beta + \alpha$$
;

(2)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$$

(3)
$$\alpha + \theta = \alpha$$
;

(4)
$$\alpha + (-\alpha) = 0$$
;

(5)
$$1 \cdot \alpha = \alpha$$
;

(6)
$$k(l\alpha) = (kl)\alpha$$
;

(7)
$$k(\boldsymbol{\alpha} + \boldsymbol{\beta}) = k\boldsymbol{\alpha} + k\boldsymbol{\beta};$$
 (8) $(k+l)\boldsymbol{\alpha} = k\boldsymbol{\alpha} + l\boldsymbol{\alpha}.$

(8)
$$(k+l)\alpha = k\alpha + l\alpha$$
.

、n维向量的定义与运算

(四) n维向量的运算

4. 行向量与列向量的乘法

行向量与列向量可以进行如下乘法运算:

设Fl×n中任意2个行向量

$$\alpha = (a_1, a_2, \dots, a_n) \qquad \beta = (b_1, b_2, \dots, b_n)$$

$$\alpha = (a_1, a_2, \dots, a_n) \qquad \beta = (b_1, b_2, \dots, b_n)$$

$$\beta = (a_1, a_2, \dots, a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

一、n维向量的定义与运算

(四) n维向量的运算

5. 向量的(标准)内积

定义: 设有 $F^{1\times n}$ 中的向量 $\boldsymbol{\alpha} = (a_1, a_2, \dots, a_n)$ 与 $\boldsymbol{\beta} = (b_1, b_2, \dots, b_n)$,称

$$[\alpha, \beta] = a_1b_1 + a_2b_2 + \dots + a_nb_n = \alpha\beta^T$$

为向量 α与 B的标准内积.

有的书上也记作 $\langle \alpha, \beta \rangle$ 或 (α, β) .

一、II维向量的定义与运算

(四) n维向量的运算

6. 向量范数(模,长度)

定义: 任意n维向量 $\alpha = (a_1, a_2, \dots, a_n)$ 的范数定义为

$$\|\alpha\| = \sqrt{[\alpha, \alpha]} = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

7. 夹角设 α 与 β 是n维非零向量,则其夹角定义为

$$\varphi = \arccos \frac{[\alpha, \beta]}{\|\alpha\| \cdot \|\beta\|}$$

$$=\arccos\frac{a_1b_1 + a_2b_2 + \dots + a_nb_n}{\sqrt{a_1^2 + a_2^2 + \dots + a_n^2} \cdot \sqrt{b_1^2 + b_2^2 + \dots + b_n^2}}$$

$$(0 \le \varphi \le \pi)$$

一、II维向量的定义与运算

(四) n维向量的运算

8. 正交

 $若[\alpha,\beta]=0$,则称向量 α 与 β 正交,记作 $\alpha \perp \beta$

$$\alpha \perp \beta \Leftrightarrow [\alpha, \beta] = 0 \Leftrightarrow \varphi = \frac{\pi}{2}$$

9. 非零向量单位化 α 是单位向量 ⇔ $\|\alpha\| = 1$

设
$$\alpha \neq \mathbf{0}$$
,单位化向量 $\alpha' = \frac{\alpha}{\|\alpha\|}$ 则有 $\|\alpha'\| = 1$ 且 α' 与 α 同向.

一、II维向量的定义与运算

(五) n维向量的线性组合

1. 线性组合、线性表示

定义 设 $\alpha,\alpha_1,\alpha_2,...,\alpha_m$ 均为 $F^{1\times n}$ 中的n维向量,若存在一组数 $k_1,k_2,...,k_m$,使得

$$\alpha = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m$$

则称 α 是 $\alpha_1,\alpha_2,\dots,\alpha_m$ 的线性组合. 称 k_1,k_2,\dots,k_m 为组合系数. 又称 α 可由 $\alpha_1,\alpha_2,\dots,\alpha_m$ 线性表示.

例如

(1) 设 $\alpha = (2,-3,1), i = (1,0,0), j = (0,1,0), k = (0,0,1)$ 则 α 可由 i,j,k 线性表示为 $\alpha = 2i - 3j + k$.

一、n维向量的定义与运算

(五) n维向量的线性组合

(2) 向量组 $\alpha_1 = (1,2,-1), \alpha_2 = (2,-3,1), \alpha_3 = (4,1,-1)$,则有 $\alpha_3 = 2\alpha_1 + \alpha_2$

因此, α_3 是 α_1 和 α_2 的线性组合.

(五) n维向量的线性组合

2. 线性表示的矩阵形式,与线性方程组的关系

例4 设向量组
$$\beta_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \beta_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \beta_3 = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \beta_4 = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$$

- (1) 试判断 β_4 是否可由 β_1,β_2,β_3 线性表示?
- (2) 如果可以的话,求出一个线性表示式.

一、n维向量的定义与运算

(五) n维向量的线性组合

 eta_4 可由 eta_1, eta_2, eta_3 线性表示 \Leftrightarrow 存在一组数 k_1, k_2, k_3 使得 $eta_4 = k_1 eta_1 + k_2 eta_2 + k_3 eta_3$

$$\Leftrightarrow \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + k_3 \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}$$

$$\begin{cases} k_1 + k_2 + 3k_3 = 5 \\ k_2 + k_3 = 3 \\ -k_1 + k_2 - k_3 = 1 \end{cases}$$
 f f

一、n维向量的定义与运算

(五) n维向量的线性组合

$$\hat{A} = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 0 & 1 & -1 & 3 \\ -1 & 1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

取特解
$$k_1 = 2, k_2 = 3, k_3 = 0$$

所以, β_4 可由 β_1 , β_2 , β_3 线性表示为

$$\beta_4 = 2\beta_1 + 3\beta_2 + 0\beta_3$$

一、11维向量的定义与运算

(五) n维向量的线性组合

判断数组向量 α 是否可由另一组向量 $\alpha_1,\alpha_2,\dots,\alpha_m$ 线性表示的问题 可以转化为判定非齐次线性方程组

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = \alpha$$

是否有解: 若有解,则可以;若无解,则不可以.

二、线性相关与线性无关

(一) 线性相关与线性无关的定义

定义 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 均为 F^n 中的n维向量,

(1) 若有一组不全为零的数 k_1, k_2, \dots, k_m ,使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$

则称向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关;

(2) 否则称向量组 $\alpha_1,\alpha_2,\dots,\alpha_m$ 线性无关.

=

线性相关与线性无关

(一) 线性相关与线性无关的定义

"否则" \Leftrightarrow 没有一组不全为零的数 k_1, k_2, \dots, k_m ,使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$

 \Leftrightarrow 对任意一组不全为零的数 k_1, k_2, \dots, k_m ,都有

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m \neq 0$$

 \Leftrightarrow 只有当 $k_1 = k_2 = \dots = k_m = 0$ 的时候,才有 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$

 \Leftrightarrow 使 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$ 成立,只有

$$k_1 = k_2 = \dots = k_m = 0$$

<u>-</u>,

、线性相关与线性无关

(一) 线性相关与线性无关的定义

特别地: (1) 对单个向量 α 组成的向量组

$$\begin{cases} \alpha = 0 & 线性相关 \\ \alpha \neq 0 & 线性无关 \end{cases}$$

(2)一组同维向量,若包含零向量,则必定线性相关.

注意:对任意一组向量,不是线性相关就是线性无关.

例5 设 $\alpha_1, \alpha_2, \dots, \alpha_m$ 是两两正交的非零向量组,证明:该向量组线性无关.

二、线性相关与线性无关

(一) 线性相关与线性无关的定义

- 例5 设 $\alpha_1, \alpha_2, \dots, \alpha_m$ 是两两正交的非零向量组,证明:该向量组线性无关.
- 证 设有一组数 k_1, k_2, \dots, k_m ,使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$

把上式两端同时与 α_i 作内积,有

=

线性相关与线性无关

(一) 线性相关与线性无关的定义

$$k_1[\alpha_1,\alpha_i] + k_2[\alpha_2,\alpha_i] + \dots + k_i[\alpha_i,\alpha_i] + \dots + k_m[\alpha_m,\alpha_i] = 0$$

因为向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 两两正交,所以

$$[\alpha_i, \alpha_j] = 0 \quad (i \neq j)$$

所以

$$k_i[\alpha_i,\alpha_i]=0$$

又因为

$$[\alpha_i, \alpha_i] > 0$$

$$(:: \alpha_i \neq 0)$$

所以一定有

$$k_i = 0$$

$$(i=1,2,\cdots,m)$$

所以向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关.

证毕

线性相关与线性无关

(一) 线性相关与线性无关的定义

例6 判断n维向量组

$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \varepsilon_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$
的线性相关性.

解 设有一组数 k_1, k_2, \dots, k_n ,使得 $k_1 \varepsilon_1 + k_2 \varepsilon_2 + \dots + k_n \varepsilon_n = 0$

线性相关与线性无关

(一) 线性相关与线性无关的定义

所以只有当 $k_1 = k_2 = \cdots = k_n = 0$ 时上式才成立, 所以此向量组线性无关.

一般地,称向量组 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为单位坐标向量组.

例7 判断向量组
$$\beta_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \beta_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \beta_3 = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \beta_4 = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$$
的线性相关性.

正常使用主观题需2.0以上版本雨课堂

=

线性相关与线性无关

(二) 通过线性方程组的解判断线性相关性

例7 判断向量组
$$\beta_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \beta_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \beta_3 = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \beta_4 = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$$

的线性相关性.

解法一 由例4知 $\beta_4 = 2\beta_1 + 3\beta_2 + 0\beta_3$ 即有 $2\beta_1 + 3\beta_2 + 0\beta_3 - 1 \cdot \beta_4 = 0$ 而 $k_1 = 2, k_2 = 3, k_3 = 0, k_4 = -1$ 不全为零,所以 $\beta_1, \beta_2, \beta_3, \beta_4$ 线性相关.

解法二 设有一组数 k_1, k_2, \dots, k_4 , 使得 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 + k_4\beta_4 = 0$

线性相关与线性无关

(二) 通过线性方程组的解判断线性相关性

$$k_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + k_3 \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} + k_4 \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} = 0$$

比较上式两端向量的对应分量,得到齐次线性方程组

$$\begin{cases} k_1 + k_2 + 3k_3 + 5k_4 = 0 \\ k_2 + k_3 + 3k_4 = 0 \\ -k_1 + k_2 - k_3 + k_4 = 0 \end{cases}$$

可得一组非零解 $k_1 = 2, k_2 = 3, k_3 = 0, k_4 = -1$,所以 $\beta_1, \beta_2, \beta_3, \beta_4$ 线性相关.

线性相关与线性无关

(二) 通过线性方程组的解判断线性相关性

判断数字向量组 $\alpha_1,\alpha_2,\dots,\alpha_m$ 线性相关性的方法: 齐次线性方程组

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$$

有非零解 \longleftrightarrow $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关; 只有零解 \longleftrightarrow $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关.

例8 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,判断向量组 $\beta_1 = \alpha_1 + \alpha_2, \beta_2 = \alpha_2 + \alpha_3, \beta_3 = \alpha_3 + \alpha_1$ 的线性相关性.

线性相关与线性无关

(二) 通过线性方程组的解判断线性相关

例8 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,判断向量组 $\beta_1 = \alpha_1 + \alpha_2, \beta_2 = \alpha_2 + \alpha_3, \beta_3 = \alpha_3 + \alpha_1$ 的线性相关性.

解 设有一组数 k_1, k_2, k_3 , 使得

$$k_{1}\beta_{1} + k_{2}\beta_{2} + k_{3}\beta_{3} = 0$$

$$\Leftrightarrow k_{1}(\alpha_{1} + \alpha_{2}) + k_{2}(\alpha_{2} + \alpha_{3}) + k_{3}(\alpha_{3} + \alpha_{1}) = 0$$

$$\Leftrightarrow (k_{1} + k_{2})\alpha_{1} + (k_{2} + k_{3})\alpha_{2} + (k_{3} + k_{1})\alpha_{3} = 0$$

$$\Leftrightarrow \begin{cases} k_{1} + k_{3} = 0 \\ k_{1} + k_{2} = 0 \end{cases} (因为 \alpha_{1}, \alpha_{2}, \alpha_{3} 线性无关)$$

$$k_{2} + k_{3} = 0$$

线性相关与线性无关

(二) 通过线性方程组的解判断线性相关

此方程组只有零解,即

$$k_1 = k_2 = k_3 = 0$$

所以向量组 β_1 , β_2 , β_3 线性无关.

(三) 三维向量线性相关性的几何背景 线性相关

- \rightarrow 若两个非零向量 α_1 和 α_2 共线,则 $\alpha_2 = l\alpha_1$
- \Leftrightarrow 存在不全为零的数 k_1, k_2 , 使 $k_1 \alpha_1 + k_2 \alpha_2 = 0$

线性无关

- 若 α_1 和 α_2 不 共 线,则 $\alpha_2 \neq l\alpha_1$ ($\forall l \in \mathbf{R}$)
- \Leftrightarrow 只有当 k_1,k_2 全为0时,才有 $k_1\alpha_1+k_2\alpha_2=0$ 线性相关
- \rightarrow 若三个非零向量 $\alpha_1, \alpha_2, \alpha_3$ 共面,则其中至少有一个向量可由另外两个向量线性表示

不妨设 $\boldsymbol{\alpha}_3 = c_1 \boldsymbol{\alpha}_1 + c_2 \boldsymbol{\alpha}_2$

 \Leftrightarrow 存在不全为零的数 k_1, k_2, k_3 ,使 $k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 = \mathbf{0}$

<u>-</u>,

线性相关与线性无关

(三) 三维向量线性相关性的几何背景

线性无关

- \succ 若 $\alpha_1, \alpha_2, \alpha_3$ 不共面,则任一个向量都不能由另外两个向量线性表示
- \Leftrightarrow 只有当 k_1, k_2, k_3 全为0时,才有 $k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 = \mathbf{0}$

(四)线性相关性判定定理

定理1 $\alpha_1, \alpha_2, \dots, \alpha_m (m \ge 2)$ 线性相关 $\iff \alpha_1, \alpha_2, \dots, \alpha_m$ 中某个向量可由其余 m-1个向量线性表示.

证: 必要性.设 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关. 由定义, \exists 不全为零的数 k_1, k_2, \cdots, k_m ,使 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$ 若 $k_l \neq 0$ ($1 \leq l \leq m$), 则有

$$\boldsymbol{\alpha}_{l} = \left(-\frac{k_{1}}{k_{l}}\right)\boldsymbol{\alpha}_{1} + \dots + \left(-\frac{k_{l-1}}{k_{l}}\right)\boldsymbol{\alpha}_{l-1} + \left(-\frac{k_{l+1}}{k_{l}}\right)\boldsymbol{\alpha}_{l+1} + \dots + \left(-\frac{k_{m}}{k_{l}}\right)\boldsymbol{\alpha}_{m}$$

充分性. 设 α_i ($1 \le i \le m$) 可由 $\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_m$ 线性表示,则有一组数 $k_1, \dots, k_{i-1}, k_{i+1}, \dots, k_m$,使

$$a_{i} = k_{1}a_{1} + \dots + k_{i-1}a_{i-1} + k_{i+1}a_{i+1} + \dots + k_{m}a_{m}$$

即有 $k_{1}a_{1} + \dots + k_{i-1}a_{i-1} + k_{i}a_{i} + k_{i+1}a_{i+1} + \dots + k_{m}a_{m} = 0$
其中 $k_{i} = -1$,可见 $k_{1}, k_{2}, \dots, k_{m}$ 不全为零,:: $a_{1}, a_{2}, \dots, a_{m}$ 线性相关.

证毕

(四) 线性相关性判定定理

(1) 设 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关, 则 α_1 可用 $\alpha_2, \dots, \alpha_m$ 线性表示. **b**: $\alpha_1 = (1,0,0)$, $\alpha_2 = (1,1,0)$, $\alpha_3 = (-1,-1,0)$, α_1 不能用 α_2, α_3 线性表示, 但 $\alpha_1, \alpha_2, \alpha_3$ 线性相关: $0\alpha_1 + 1\alpha_2 + 1\alpha_3 = 0$. (2) 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关, 则其中任一个可用其余m-1个线性表示. (3) 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关, 则其中有一个可用其余m-1个线性表示. (4) 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 中,有一个不能用其余m-1个线性表示, 则 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关.

(四) 线性相关性判定定理

- (5) 设 $\alpha_1, \alpha_2, \dots, \alpha_m$ 中,任一个都不能用其余 m-1个线性表示,则 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关.($\sqrt{}$) 说明: 此命题为定理1的逆否命题.
- (6) 若0可用 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性表示,则 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关.(×)
- (7) 设 β_1 , β_2 ,…, β_n 是A的列向量组, 齐次线性方程组Ax=0,则
 - Ax=0 有非零解 $\Leftrightarrow \beta_1, \beta_2, \dots, \beta_n$ 线性相关.($^{(1)}$)
 - Ax=0 只有零解 $\Leftrightarrow \beta_1, \beta_2, \dots, \beta_n$ 线性无关.($^{(\vee)}$)
 - 说明: $Ax=0 \Leftrightarrow x_1\beta_1 + x_2\beta_2 + \cdots + x_n\beta_n = 0$

线性相关与线性无关

四)线性相关性判定定理

定理 2 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关,而 $\alpha_1,\alpha_2,\cdots,\alpha_m,\beta$ 线性相关,则 β 可由 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性表示,且表示形式唯一(系数唯一).

证明 : $\alpha_1, \alpha_2, \dots, \alpha_m, \beta$ 线性相关,::∃一组数 k_1, k_2, \dots, k_m, k 不全为零,使

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_m\boldsymbol{\alpha}_m + k\boldsymbol{\beta} = \boldsymbol{0}$$

可设 $k \neq 0$. 若不然, 假设 k = 0, 则由上式

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$$

由于 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关, $a_1 = k_2 = \dots = k_m = 0$,

与 k_1, k_2, \dots, k_m, k 不全为零矛盾.

 $: k \neq 0.$ 故 β 可用 $\alpha_1, \alpha_2, \dots, \alpha_m$ 表示为

$$\boldsymbol{\beta} = \left(-\frac{k_1}{k}\right)\boldsymbol{\alpha}_1 + \left(-\frac{k_2}{k}\right)\boldsymbol{\alpha}_2 + \dots + \left(-\frac{k_m}{k}\right)\boldsymbol{\alpha}_m$$

(唯一性)设 β 有 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 的两种线性表示:

$$\boldsymbol{\beta} = k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_m \boldsymbol{\alpha}_m, \quad \boldsymbol{\beta} = l_1 \boldsymbol{\alpha}_1 + l_2 \boldsymbol{\alpha}_2 + \dots + l_m \boldsymbol{\alpha}_m$$

$$\Rightarrow (k_1 - l_1)\boldsymbol{\alpha}_1 + (k_2 - l_2)\boldsymbol{\alpha}_2 + \dots + (k_m - l_m)\boldsymbol{\alpha}_m = \boldsymbol{0}$$

由
$$\alpha_1, \alpha_2, \dots, \alpha_m$$
 线性无关 $\Rightarrow k_1 = l_1, k_2 = l_2, \dots, k_m = l_m$

(四) 线性相关性判定定理

定理3 向量组的部分向量线性相关⇒此向量组线性相关.

证:不妨设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 中,部分组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ $(r \leq m)$ 线性相关,

∴∃不全为零的数 k_1, \dots, k_r , 使

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \dots + k_r\boldsymbol{\alpha}_r = \boldsymbol{0}$$

::可令 $k_{r+1} = \cdots = k_m = 0$,使下式成立

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \dots + k_r\boldsymbol{\alpha}_r + k_{r+1}\boldsymbol{\alpha}_{r+1} + \dots + k_m\boldsymbol{\alpha}_m = \boldsymbol{0}$$

证毕

- 推论1 含零向量的向量组一定线性相关.
- 推论2 (定理3的逆否命题)

向量组线性无关 ⇒ 任一部分向量组线性无关.

定理3的逆命题,不成立.

(8) 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关, 则其中至少有m-1个向量线性相关. 例: $\alpha_1 = (1,0,0), \alpha_2 = (0,1,0), \alpha_3 = (1,1,0),$ 线性相关: $\alpha_1 + \alpha_2 + (-1)\alpha_3 = 0$ 但 α_1 与 α_2 , α_2 与 α_3 , α_3 与 α_1 , 每二个都线性无关. (9) 若 $\alpha_1, \alpha_2, \dots, \alpha_m$ 中任意m-1个向量都线性无关, 则此组向量线性无关. 见(8)之例.此命题为命题(8)的逆否命题,故也错. (10) 若向量组线性相关, 则它必有一部分向量线性相关.

向量个数: 少相关,则多相关;

多无关,则少无关。

向量维数:短无关,则长无关;

长相关,则短相关。

注: 逆命题都不成立。

- 例9 设 $\alpha_1, \alpha_2, \dots, \alpha_{m-1} \ (m \ge 3)$ 线性相关,向量组 $\alpha_2, \alpha_3, \dots, \alpha_m$ 线性无关,试讨论:
 - (1) α_1 能否由 $\alpha_2,\alpha_3,\cdots,\alpha_{m-1}$ 线性表示?
 - (2) α_m 能否由 $\alpha_1, \alpha_2, \dots, \alpha_{m-1}$ 线性表示?

- 例9 设 $\alpha_1, \alpha_2, \dots, \alpha_{m-1} (m \ge 3)$ 线性相关,向量组 $\alpha_2, \alpha_3, \dots, \alpha_m$ 线性无关,试讨论:
 - (1) α_1 能否由 $\alpha_2, \alpha_3, \dots, \alpha_{m-1}$ 线性表示?
 - (2) α_m 能否由 $\alpha_1, \alpha_2, \dots, \alpha_{m-1}$ 线性表示?
 - 解(1)因为 $\alpha_2, \alpha_3, \dots, \alpha_m$ 线性无关,所以其部分组 $\alpha_2, \alpha_3, \dots, \alpha_{m-1}$ 也线性无关。 又因为 $\alpha_1, \alpha_2, \dots, \alpha_{m-1}$ 线性相关,则由**定理2**知,

 α_1 能由 $\alpha_2, \alpha_3, \dots, \alpha_{m-1}$ 线性表示。

(2) (反证)假设 α_m 能由 $\alpha_1,\alpha_2,\cdots,\alpha_{m-1}$ 线性表示

即存在一组数 $k_1, k_2, k_3, ..., k_{m-1}$, 使得

$$\boldsymbol{\alpha}_{m} = k_{1}\boldsymbol{\alpha}_{1} + k_{2}\boldsymbol{\alpha}_{2} + k_{3}\boldsymbol{\alpha}_{3} \cdots + k_{m-1}\boldsymbol{\alpha}_{m-1}$$
 (1)

由第一问结论可知 α_1 可由 $\alpha_2, \alpha_3, ..., \alpha_{m-1}$ 线性表示即存在一组数 $l_2, l_3, ..., l_{m-1}$,使得

$$\boldsymbol{\alpha}_1 = l_2 \boldsymbol{\alpha}_2 + l_3 \boldsymbol{\alpha}_3 + \dots + l_{m-1} \boldsymbol{\alpha}_{m-1}$$

代入(1)式得:

 $\alpha_{m} = (k_{1}l_{2} + k_{2})\alpha_{2} + (k_{1}l_{3} + k_{3})\alpha_{3} + ... + (k_{1}l_{m-1} + k_{m-1})\alpha_{m-1}$ 即 α_{m} 能由 $\alpha_{2}, \alpha_{3}, ..., \alpha_{m-1}$ 线性表示,
这与已知 $\alpha_{2}, \alpha_{3}, ..., \alpha_{m}$ 线性无关矛盾。
所以假设不成立,即 α_{m} 不能由 $\alpha_{1}, \alpha_{2}, ..., \alpha_{m-1}$ 线性表示。