NETAJI SUBHAS UNIVERSITY OF TECHNOLOGY

COMPUTER HARDWARE SOFTWARE WORKSHOP COCSC19

YASH CHAUHAN- 2021UCS1628 KHUSHI KHARKE- 2021UCS1617

ADITYA YADAV- 2021UCS1640

SUBMITTED BY:

TINY ML PROJECT TITLE: AQI DETECTION

IDEA:

Develop a machine learning model capable of forecasting the Air Quality Index (AQI) for a specific location by leveraging key atmospheric parameters such as PM2.5, PM10, NO2, and SO2 concentrations.

TOOLS USED:

- Arduino uno simulator
- Juptyter notebook

FLOW DIAGRAM:

DATA:

To train the machine learning model we used a dataset consisting amounts of key atmospheric parameters like PM2.5, PM10, NO2, and SO2 concentrations from various cities across India since 2015 to 2020

	PM2.5	PM10	NO2	S02	IQA
2123	81.40	124.50	20.50	15.24	184.0
2124	78.32	129.06	26.00	26.96	197.0
2125	88.76	135.32	30.85	33.59	198.0
2126	64.18	104.09	28.07	19.00	188.0
2127	72.47	114.84	23.20	10.55	173.0
29525	7.63	32.27	23.27	6.87	47.0
29526	15.02	50.94	25.06	8.55	41.0
29527	24.38	74.09	26.06	12.72	70.0
29528	22.91	65.73	29.53	8.42	68.0
29529	16.64	49.97	29.26	9.84	54.0

PYTHON CODE:

25.142174108944573

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model
combined_data = pd.read_csv('city_day.csv')
combined_data.head()
                    Date PM2.5 PM10
                                                 NO2
        City
                                           NO
                                                        NOx NH3
                                                                     CO
                                                                            S02 \
0 Ahmedabad 2015-01-01
                            \mathtt{NaN}
                                 \mathtt{NaN}
                                         0.92
                                               18.22 17.15
                                                             {\tt NaN}
                                                                   0.92
                                                                         27.64
1 Ahmedabad 2015-01-02
                            \mathtt{NaN}
                                         0.97
                                               15.69 16.46 NaN
                                                                         24.55
                                  {\tt NaN}
                                                                   0.97
2 Ahmedabad 2015-01-03
                            NaN NaN 17.40
                                               19.30 29.70
                                                             NaN 17.40
                                                                         29.07
                            \mathtt{NaN}
3 Ahmedabad 2015-01-04
                                  {\tt NaN}
                                         1.70
                                               18.48 17.97
                                                             \mathtt{NaN}
                                                                   1.70
                                                                         18.59
4 Ahmedabad 2015-01-05
                            NaN NaN 22.10 21.42 37.76 NaN 22.10 39.33
       03 Benzene Toluene Xylene AQI AQI_Bucket
0 133.36
              0.00
                       0.02
                              0.00 NaN
                                                 NaN
1
    34.06
              3.68
                       5.50
                               3.77 NaN
                                                 NaN
                                                 NaN
2
    30.70
              6.80
                    16.40
                               2.25 NaN
3
    36.08
              4.43
                      10.14
                               1.00 NaN
                                                 NaN
    39.31
              7.01
                      18.89
                               2.78 NaN
                                                 NaN
combined_data=combined_data.dropna()
X= combined_data[['PM2.5','PM10','N02','S02']]
Y= combined_data['AQI']
regr=linear_model.LinearRegression()
regr.fit(X,Y)
LinearRegression()
print(regr.coef_)
[ 0.89991892  0.48236037  0.0356627  -0.04208933]
print(regr.intercept_)
```

ARDUINO CODE:

```
int redPin = A3;
int greenPin = A4;
int bluePin = A5;
float output=0;
float lrCoef[5] =
{25.142174108944573, 0.89991892, 0.48236037, 0.0356627, -0.04208933};
void setup() {
pinMode(A0, INPUT);
 pinMode(A1, INPUT);
 pinMode(A2, INPUT);
 pinMode(A3, INPUT);
pinMode(redPin, OUTPUT);
  pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);
Serial.begin(9600);
  // delay(1000);
 float val1 = 81.40;
  float val2 = 124.50;
  float
val3 = 20.50;
  float val4 = 15.24;
  output = multiLinReg(val1, val2, val3, val4);
Serial.print(output, 10);
void loop() {
 if(output<=100){
    analogWrite(redPin,
255);
   analogWrite(bluePin, 255);
  else if(output<=200){
   analogWrite(bluePin,
255);
  else{
    analogWrite(greenPin, 255);
    analogWrite(bluePin, 255);
delay(250);
  analogWrite(redPin, 0);
  analogWrite(bluePin, 0);
  analogWrite(greenPin, 0);
delay(250);
float multiLinReg(float a, float b, float c, float d) {
 return lrCoef[0] +
a * lrCoef[1] + b * lrCoef[2] + c * lrCoef[3] + d * lrCoef[4];
```

ARDUINO SIMULATION:

GREEN AQI RANGE: 0-100

YELLOW AQI RANGE: 100-200

RED AQI RANGE: >200