Álgebra Universal e Categorias

Exame de recurso (13 de junho de 2018) — duração: 2h30 -

- 1. (a) Sejam $\mathcal{A}=(A;F)$ e $\mathcal{B}=(B;G)$ álgebras do mesmo tipo. Mostre que se S_1 é um subuniverso de \mathcal{A} e S_2 é um subuniverso de \mathcal{B} , então $S_1\times S_2$ é um subuniverso da álgebra $\mathcal{A}\times\mathcal{B}$.
 - (b) Sejam $\mathcal{A}=(\{a,b,c\};f^{\mathcal{A}})$ e $\mathcal{B}=(\{0,1\};f^{\mathcal{B}})$ as álgebras de tipo (1) tais que $f^{\mathcal{A}}$ e $f^{\mathcal{B}}$ são as operações definidas por

$$\begin{array}{c|ccccc} x & a & b & c \\ \hline f^{A}(x) & a & b & a \end{array} \qquad \begin{array}{c|cccc} x & 0 & 1 \\ \hline f^{B}(x) & 1 & 0 \end{array}.$$

Determine $Sg^{\mathcal{A}}(\{c\})$ e $Sg^{\mathcal{B}}(\{0\})$. Diga se $Sg^{\mathcal{A}}(\{c\}) \times Sg^{\mathcal{B}}(\{0\}) = Sg^{\mathcal{A} \times \mathcal{B}}(\{(c,0)\})$.

- 2. Sejam $\mathcal{A}=(\mathbb{Z};*^{\mathcal{A}})$ e $\mathcal{B}=(\mathbb{Z};*^{\mathcal{B}})$ as álgebras de tipo (2), onde $*^{\mathcal{A}}$ representa a adição usual em \mathbb{Z} e $*^{\mathcal{B}}$ é a operação definida por $x*^{\mathcal{B}}y=x+y-5$, para quaisquer $x,y\in\mathbb{Z}$. Seja $\alpha:\mathbb{Z}\to\mathbb{Z}$ a aplicação definida por $\alpha(x)=x+5$, para todo $x\in\mathbb{Z}$.
 - (a) Mostre que α é um epimorfismo de \mathcal{A} em \mathcal{B} .
 - (b) Justifique que o epimorfismo canónico $\pi_{\ker \alpha}$ de \mathcal{A} em $\mathcal{A}/\ker \alpha$, definido por

$$\begin{array}{ccc} \pi_{\ker\alpha}: \mathbb{Z} & \to & \mathbb{Z}/{\ker\alpha} \\ & x & \mapsto & [x]_{\ker\alpha} \end{array}$$

é uma aplicação injetiva.

- (c) Conclua que $A \cong A/\ker \alpha$ e $B \cong A/\ker \alpha$.
- 3. Seja $\mathcal{A}=(A,f^{\mathcal{A}})$ a álgebra de tipo (1), onde $A=\{0,1,2,3\}$ e $f^{\mathcal{A}}:\{0,1,2,3\}\to\{0,1,2,3\}$ é a operação definida por

Sejam $\theta_1 = \Theta(1,3)$ e $\theta_2 = \Theta(0,1) \vee \Theta(2,3)$.

- (a) Considere a álgebra $\mathcal{A}/\theta_1=(A/\theta_1;f^{\mathcal{A}/\theta_1})$. Para cada $[x]_{\theta_1}\in A/\theta_1$, determine $f^{\mathcal{A}/\theta_1}([x]_{\theta_1})$.
- (b) Sabendo que $\mathcal{A} \cong \mathcal{A}/\theta_1 \times \mathcal{A}/\theta_2$ e que um dos seguintes diagramas de Hasse representa o reticulado $\mathrm{Con}\mathcal{A}$, diga qual dos reticulados de congruências R_1 , R_2 ou R_3 é o reticulado $\mathrm{Con}\mathcal{A}$. Justifique.

 R_1

4. Considere os operadores de classes de álgebras H, P e S. Mostre que, para qualquer classe de álgebras \mathbf{K} , $HSP(\mathbf{K}) = HSPS(\mathbf{K})$. Conclua que $V(\mathbf{K}) = V(S(\mathbf{K}))$.

 R_2

- 5. Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: Para quaisquer categorias ${\bf C}$ e ${\bf D}$, para qualquer ${\bf C}$ -morfismo f e para qualquer ${\bf D}$ -morfismo g, se f e g são monomorfismos, então (f,g) é um monomorfismo de ${\bf C} \times {\bf D}$.
- 6. Sejam S e T objetos de uma categoria ${f C}$. Mostre que se S e T são objetos terminais, então S e T são isomorfos.
- 7. Na categoria **Set**, considere o conjunto $\mathbb Z$ dos números inteiros, o conjunto $\mathbb R$ dos números reais, o produto cartesiano $\mathbb Z \times \mathbb R = \{(z,r) \,|\, z \in \mathbb Z, r \in \mathbb R\}$ e as funções p e q a seguir definidas

$$\begin{aligned} p: \mathbb{Z} \times \mathbb{R} &\to \mathbb{Z}, \quad p(z,r) = z+2, \ \forall (z,r) \in \mathbb{Z} \times \mathbb{R}, \\ q: \mathbb{Z} \times \mathbb{R} &\to \mathbb{R}, \quad q(z,r) = r+3, \ \forall (z,r) \in \mathbb{Z} \times \mathbb{R}. \end{aligned}$$

Mostre que o par $(\mathbb{Z} \times \mathbb{R}, (p, q))$ é um produto de \mathbb{Z} e \mathbb{R} .

- 8. Sejam ${\bf C}$ uma categoria, A, B, I objetos de ${\bf C}$ e $f,g:A\to B$ e $i:B\to I$ morfismos de ${\bf C}$. Mostre que se (I,(i,i)) é uma soma amalgamada de (f,g), então (I,i) é um coigualizador de f e g.
- 9. Sejam C e D categorias, $F: C \to D$ um funtor e $f: A \to B$ e $g: B \to A$ morfismos de C. Mostre que se F é fiel, então F(f) é um inverso esquerdo de F(g) se e só se f é um inverso esquerdo de g.