Assignment 4 Arjun Posarajah (1004881737) Oct 15, 2023

Question 1

	[0/45/	160	ז				V.	1		1	1			7		-			1
t	= 0.1250	1	-	= 125	Gpe		£z	= 8.8	ap.		G12=	6.8	6P-	n	12=0	0.24			
								-											
54	iffners m	atrix	in	mode	rial	ccx	rol	nate	s ys	·en					1 13			19	
1	0.008	2		Q11 =					Q	I	125	508	7	2.	120	6		0	
	U. 1136			922	1		27520				2.1	206		8.	835	8		0	
5,2 =	-0.0010			Qiz =	1						F	0		-	0			6 8	
	0.1471			Q	1					4	-					15			+
			7		1	-		116				100							
en ffine	ss matri	631	- 40.0			am	na	rotate	d a	note.	s Ann	n	John	.1 .	ordi	note	54	sterr	-
SHARK									1.		5	10	1						
J. = (25. 5089	2	.12	06.	0	1		ā	72 =	5	11. 44	65	2:	2.84	105	20	7.16	83	7
	2.1206		5.63		0	G	Pan			1	7.846		-	11.44	27.00		9.16		60
	0	Î		11.0					70		9.168				683		2.5		
-						_												-	
5	18.700		21	15	112	120	8						150			8			
P3 =	21.415			0462		40		Gpa						g.					
				1001		091			45								+		
	14.1208		36.		20						-		1,6	10					
3					P.51		i de					1			-				
Lamin	ate stiff	ess	Mo	trix	-	7						-	1				1		
-	2					_			1000						- 1				
				-	T. Victoria	100					Land		-					7	
A = 2	3.2081	6,4	228		411				B=		-1.668					2.22		1	
	3.2081	15.9	1161	8.	196		бро	· mm	B=		-1.668		1.	065	8	0.5	658	1	7
6		The same	1161	8.			Spo	·mm	8=			5	1.	065		0.5		1	,
6	,4228	15.9	1161	8.	196		Spo	· mm	8=		0.30	5	1.	065	8	0.5	658	1	, .
	5.4111	8.19	9161	8.	17-7	5	Spo	·mm	g=		0.30	5	1.	065	8	0.5	658	1	, .
D= [0.3119	8.19	9161	8.	17-7	5 6) <u> </u>	on Mu			0.30	5	1.	065	8	0.5	658	1	
D= [0.3119	0.05 0.05	9161	8.	177	6) <u> </u>				0.30	5	1.	065	8	0.5	658	1	
D= [0.0543	0.05	9161	8.	196 177 034	6) <u> </u>				0.30	5	1.	065	8	0.5	658	1	
D= [0.0546	0.00	9161 946 943 1885 0815	8. 8. 0.	196 177 034 . 08	6 18	Gp	oo. Mn	3		0.30	56	1.	2.56	8 8	0.5	658	1	
D= [0.3119 0.0543 0.0346	0.08	9161	8. 8. 0. - 0. 9. (196 177 034 . 08	6	Gp	100. Ma	3		0.3015		1.	206	8 .58	0.5	658	1	
D= [0.0546 23.208 6.4228	0.08	1161	8. 8. 0. 7. 8. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	196 177 034 . 08 0.07	6 18 199) op	-1. (03 0687 8015		0.3015	3	0. z	206	8 8	0.5	658	1	
D= [0.0546 0.0546 0.0546 0.0346 0.0346 0.0346 0.0346	0.08	6: 15 8.	8. 8. 0. - 0 8. (1 422 8 .9(6)	196 177 034 05 05 05 8	5 6 118 119 119 119 119 119	Gp 35	-1. (0.3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		0.3015		0. Z	206	8	0.5	3015	1	
D= [0.0546 23.208 6.428 5.4111 -1.668 7	0.08	1885 1885 1885 1885 1885	8. 8. 0. 7 8. (1) 422 8 7.9161 196	196 177 034 0.05 5 8 8	5 6 18 19 19 19 19 19 220	Gp	-1. (0.3	206 206 206		0.3015	- 78	0.2	2068	8 .688	0.5	3015	1	
D= [0.0546 0.0546 0.0546 0.0346 0.0346 0.0346 0.0346	0.08	1885 1885 1885 1885 1885 1885 1885 1885	8. 8. 0. - 0 8. (1 422 8 .9(6)	196 177 034 035 05 05 05 05	5 6 118 119 119 119 119 119	Gp	-1. (0.3 0.2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		0.3015	3888888	0. Z 0. S 0	206	8 .58	0.5	3015	1	

7	sai	+	111	-			-	-			-		-		-						-	-					-
	3+		900	MP	4			3	r [†] =	57	DME	Pm	1 1	Z	7	- 80	MP	4			_	100	17	-			
				500	400			0	٠,	14	80+	Pa					18	-	150				100		11/2		
				1									1					-		-					1		
7 3		ċ	526		0	82		+ -	02	-	+	Ti.	4	2 1													
-		-	52		-0	L	•		07		1	22	1						51								
		-		-	-	+			-			-	i	L	1		7					-					
ply	1	7	sai	H	//	-	0.	80	6	-	7	-	-	-			-	-		3.0	4.5		-	1			
				-	-	+	-	-			+	-	-	-	1		-								-		
ply.	2 (75	ai	H.1	1 -	2	0.	144	3	=	1		-	-5	-	-	-	1,6		20				-	-		
						1	-		_	_	-	-			11 -	_		-					-	_			,
ply	3	. 7	sai	#1	=		1.	2188	3	2	1				×							9	100		-	ea"	
1					-										1					3	N.S		13	+	•		
70	aī -		.,																4 5	1	E A	25	12				
				E	5. Z	+	fi.	т.	2	+ 6	- 1	+ 0	5,82	+	2F	28,	0/2	2	1								
	1110	1	1	22 0	12		-				101		1														
-			-		6	+		F	-		+		-	1	-					,			1	E			
				5 111	100		-						5-4		1	= /.	-	-	-	-	-	100		-			
1	F22	= /	. 111	x /(2			F2	=	0	01	44		-	FIZ	= .	-6.	415	×	0-0	-	-	-	-		-	-
		-			1	_				_	-		1		21-12			3	-	1/5	7.	_	-	-	-	-	-
	Ply	1 1	7	sai	w	,	=	4	- (٥.	38	54	1	4	1			·L						-	-	-	
				10	1	1	13							1.8	12	3		-	120		N	191		-			1
	014		0 7	sai	w	, =			0.	26	52		4	1	1		4	-	1		GET :		-	1	1		
	-				-	T		-				4			1.								1	-			
	Ply	2	7	· coi		,	=				11.80	0	>	I.	1				×	100		18	1	4.			
#	1			301	-	1					0,0				1												
+			+	1	1	1			7	-	-			-								-	T		-		F
con	-		-		+			5	-	-	+	-	-			-	124	-		100				-	-		1
	PI	4	3	ha	2	- 4	9	leo	1	bo	4	7	sai	H	11,	Nu	-	nte	no.	2		١٦	7	-	+		-
	Ł	לטכ	n_	be	in	9	•	abt	ve		1		Py.	30	150	foril	15	'n	mo	xin	nur	n	-	-	-	-	-
-	3	the	22	0	rit	en	or	,_	as	w	41		Ano	The	- ,	net	noc		w	old	100	2	-	-	-	-	-
	,	no	×/*	nur	n	_ 5	tro	ic		cn	ter	101	· b	14	not	er	nous	1	int	0 1	59	ver	_				-
	1	733	- A -	do	1					1							-							1			
1	1								1					1	1						1				1		
		40		no			214	4		+-		DE	- 0		2	2/1.		-	410	11		in		20.0		-	
1		125							1				28		17	1	10.	4	0.00		1		1				- 1
	1											1	of t		1		100							41			-1
-	+												ate												The	2	t
	-	P	7	by-	ply	1	ano	aly	51.5	P	ngo	res	+5	unt	5/	the	U	thm	orte	5%	ren	ofte		of	-	-	-
	-											d		-	-	-	-	-	-		-	-	-	+	-	-	+
															-					-00	1						

```
code:
  %%Ouestion 1%%
  %Ply Angles
  x1=0;
  x2=45;
  x3=60;
  t=0.125;%mm
  E1=125:
  E2=8.8:
  G12=6.8;
  v12=0.24;
  %%%Part 1 stiffness matrix in the material coordinate system
  S11=1/E1;
  S22=1/E2;
  S12=(-v12)/E1;
  S66=1/G12:
  Q11=S22/((S11*S22)-(S12.^2));
  Q22=S11/((S11*S22)-(S12.^2));
  Q12=(-S12)/((S11*S22)-(S12.^2));
  Q66=G12;
  Q= [Q11 Q12 0; Q12 Q22 0; 0 0 Q66];
 %%Part2 stiffness matrix for the same lamina rotated angles from the global coordinate system
 %%x1
 x10bar11=(Q11*((cosd(x1)).^4))+(Q22*((sind(x1).^4)))+(2*(Q12+(2*Q66)))*((sind(x1)).^2)*((cosd(x1)).^2);
  x10bar12 = (Q11 + Q22 - (4*Q66))*((cosd(x1)).^2)*((sind(x1)).^2) + (Q12)*(((cosd(x1)).^4) + ((sind(x1)).^4)); \\ x10bar12 = (Q11 + Q22 - (4*Q66))*((cosd(x1)).^2) + (Q12)*(((cosd(x1)).^4) + ((sind(x1)).^4)); \\ x10bar12 = (Q11 + Q22 - (4*Q66))*((cosd(x1)).^2) + (Q12)*(((cosd(x1)).^4) + ((sind(x1)).^4)); \\ x10bar12 = (Q11 + Q22 - (4*Q66)) + ((cosd(x1)).^2) + (Q12)*(((cosd(x1)).^4) + ((sind(x1)).^4)); \\ x10bar12 = (Q11 + Q22 - (4*Q66)) + ((cosd(x1)).^4) + ((co
 x1Qbar22=(Q11)*((sind(x1)).^4)+(Q22)*((cosd(x1)).^4)+(2*(Q12+(2*Q66)))*(((sind(x1)).^2)*((cosd(x1)).^2));
 x10bar16=(Q11-Q12-(2*Q66))*((cosd(x1)).^3)*(sind(x1))-((Q22-Q12-(2*Q66))*(cbsd(x1))*(((sind(x1)).^3)));
 x1Qbar26=(Q11-Q12-(2*Q66))*(cosd(x1))*((sind(x1)).^3)-(Q22-Q12-(2*Q66))*((cosd(x1)).^3)*(sind(x1));
 x1Qbar66 = ((Q11 + Q22 - (2*Q12) - (2*Q66))*((cosd(x1)).^2)*((sind(x1)).^2)) + ((Q66)*(((cosd(x1)).^4) + ((sind(x1)).^4)));
 x1Qbar= [x1Qbar11 x1Qbar12 x1Qbar16; x1Qbar12 x1Qbar22 x1Qbar26; x1Qbar16 x1Qbar26 x1Qbar66];
  x2Qbar11 = (Q11*((cosd(x2)).^4)) + (Q22*((sind(x2).^4))) + (2*(Q12+(2*Q66)))*((sind(x2)).^2)*((cosd(x2)).^2); \\
  x2Qbar12 = (Q11 + Q22 - (4*Q66))*((cosd(x2)).^2)*((sind(x2)).^2) + (Q12)*(((cosd(x2)).^4) + ((sind(x2)).^4)); 
  x20bar22 = (Q11)*((sind(x2)).^4) + (Q22)*((cosd(x2)).^4) + (2*(Q12 + (2*Q66)))*(((sind(x2)).^2)*((cosd(x2)).^2)); \\ x20bar22 = (Q11)*((sind(x2)).^4) + (Q22)*((cosd(x2)).^4) + (2*(Q12 + (2*Q66)))*(((sind(x2)).^2))*((cosd(x2)).^2); \\ x20bar22 = (Q11)*((sind(x2)).^4) + (Q22)*((cosd(x2)).^4) + (2*(Q12 + (2*Q66)))*(((sind(x2)).^2))*((cosd(x2)).^4) + (2*(Q12 + (2*Q66)))*(((sind(x2)).^4)) + (2*(Q12 + (2*Q66)))*(((sind(x2)).^4)) + (2*(Q12 + (2*Q66))))*(((sind(x2)).^4)) + (2*(Q12 + (2*Q66))))*(((sind(x2)).^4)) + (2*(Q12 + (2*Q66))))*(((sind(x2)).^4)) + (2*(Q12 + (2*Q66)))) + (2*(Q12 + (2*Q66))) + (2*(Q12 + (2*Q66)))) + (2*(Q12 + (2*Q66))) 
 x2Qbar16=(Q11-Q12-(2*Q66))*((cosd(x2)).^3)*(sind(x2))-((Q22-Q12-(2*Q66))*(cbsd(x2))*(((sind(x2)).^3)));
 x2Qbar26=(Q11-Q12-(2*Q66))*(cosd(x2))*((sind(x2)).^3)-(Q22-Q12-(2*Q66))*((cosd(x2)).^3)*(sind(x2));
 x2Qbar66 = ((Q11 + Q22 - (2*Q12) - (2*Q66))*((cosd(x2)).^2)*((sind(x2)).^2)) + ((Q66)*(((cosd(x2)).^4) + ((sind(x2)).^4)));
 x2Qbar= [x2Qbar11 x2Qbar12 x2Qbar16; x2Qbar12 x2Qbar22 x2Qbar26; x2Qbar16 x2Qbar26 x2Qbar66];
 x3Qbar11 = (Q11*((cosd(x3)).^4)) + (Q22*((sind(x3).^4))) + (2*(Q12+(2*Q66)))*((sind(x3)).^2)*((cosd(x3)).^2);
 x3Qbar12 = (Q11+Q22-(4*Q66))*((cosd(x3)).^2)*((sind(x3)).^2) + (Q12)*(((cosd(x3)).^4)+((sind(x3)).^4));
 x3Qbar22 = (Q11)*((sind(x3)).^4) + (Q22)*((cosd(x3)).^4) + (2*(Q12 + (2*Q66)))*(((sind(x3)).^2)*((cosd(x3)).^2));
 x3Qbar16=(Q11-Q12-(2*Q66))*((cosd(x3)).^3)*(sind(x3))-((Q22-Q12-(2*Q66))*(cbsd(x3))*(((sind(x3)).^3)));
 x30bar26 = (Q11 - Q12 - (2*Q66))*(cosd(x3))*((sind(x3)).^3) - (Q22 - Q12 - (2*Q66))*((cosd(x3)).^3)*(sind(x3));
 x3Qbar66 = ((Q11 + Q22 - (2*Q12) - (2*Q66))*((cosd(x3)).^2)*((sind(x3)).^2)) + ((Q66)*(((cosd(x3)).^4) + ((sind(x3)).^4)));
 x3Qbar= [x3Qbar11 x3Qbar12 x3Qbar16; x3Qbar12 x3Qbar22 x3Qbar26; x3Qbar16 x3Qbar26 x3Qbar66];
```

```
%%%Part3: Calculating A,B,D
 %Need to input z manually for spacing changes/ply changes
 A11=x10bar11*(t)+ x20bar11*(t)+x30bar11*(t):
 A12=x1Qbar12*(t)+ x2Qbar12*(t)+x3Qbar12*(t);
  A22=x1Qbar22*(t)+ x2Qbar22*(t)+x3Qbar22*(t);
 A16=x1Qbar16*(t)+ x2Qbar16*(t)+x3Qbar16*(t);
A26=x1Qbar26*(t)+ x2Qbar26*(t)+x3Qbar26*(t);
 A66=x1Qbar66*(t)+ x2Qbar66*(t)+x3Qbar66*(t);
 B11= 0.5*((x1Qbar11*(-1/32))+(x2Qbar11*(0))+(x3Qbar11*(1/32)));
 B12= 0.5*((x1Qbar12*(-1/32))+(x2Qbar12*(0))+(x3Qbar12*(1/32)));
B22= 0.5*((x1Qbar22*(-1/32))+(x2Qbar22*(0))+(x3Qbar22*(1/32)));
B16= 0.5*((x1Qbar16*(-1/32))+(x2Qbar16*(0))+(x3Qbar16*(1/32)));
B26= 0.5*((x1Qbar26*(-1/32))+(x2Qbar26*(0))+(x3Qbar26*(1/32)));
 B66= 0.5*((x1Qbar66*(-1/32))+(x2Qbar66*(0))+(x3Qbar66*(1/32)));
 D11=(1/3)*((x1Qbar11*(13/2048))+(x2Qbar11*(1/2048))+(x3Qbar11*(13/2048)));
D12=(1/3)*((x1Qbar12*(13/2048))+(x2Qbar12*(1/2048))+(x3Qbar12*(13/2048)));
D22=(1/3)*((x1Qbar22*(13/2048))+(x2Qbar22*(1/2048))+(x3Qbar22*(13/2048)));
 D16=(1/3)*((x1Qbar16*(13/2048))+(x2Qbar16*(1/2048))+(x3Qbar16*(13/2048)));
 D26=(1/3)*((x1Qbar26*(13/2048))+(x2Qbar26*(1/2048))+(x3Qbar26*(13/2048)));
\label{eq:decomposition} D66 = (1/3)*((x1Qbar66*(13/2048)) + (x2Qbar66*(1/2048)) + (x3Qbar66*(13/2048)));
 %%%Part4 Laminate Stiffness Matrix
A= [A11 A12 A16; A12 A22 A26; A16 A26 A66];
B= [B11 B12 B16; B12 B22 B26; B16 B26 B66];
 D= [D11 D12 D16; D12 D22 D26; D16 D26 D66];
Oij=[A11 A12 A16 B11 B12 B16: A12 A22 A26 B12 B22 B26:A16 A26 A66 B16 B26 B66: B11 B12 B16 D11 D12 D16: B12 B22 B26 D12 D22 D26: B16 B26 B66 D16 D26 D66]:
 %Part5 Solve Laminate Stiffness Matrix for Midplane Strains
 F=[6;-2; 0;2; 2;0];
 Eo=linsolve(Qij,F);
  %Part6 Calculate Strains at Lamina Mid-Planes in Global Coordinates
  y1=-0.125;
 E1= [Eo(1,1)+(y1*(Eo(4,1)));Eo(2,1)+(y1*(Eo(5,1)));Eo(3,1)+(y1*(Eo(6,1)))]
 E3= [Eo(1,1)+(y2*(Eo(4,1)));Eo(2,1)+(y2*(Eo(5,1))); Eo(3,1)+(y2*(Eu(5,1)));
E3= [Eo(1,1)+(y3*(Eo(4,1)));Eo(2,1)+(y3*(Eo(5,1))); Eo(3,1)+(y3*(Eo(6,1)))];
  %Part7 Calculate Stress
  Ss1=x10bar*E1
 Ss2=x2Qbar*E2
Ss3=x3Qbar*E3
  %Part8 Calculate Lamina Stresses in Material Coordinates
 TRI= [(cosd(x1))*2 (sind(x1))*2 (cosd(x1))*(sind(x1)); (sind(x1))*2 (cosd(x1))*(sind(x1))*2 (cosd(x1))*(sind(x1))*2 (cosd(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind(x1))*(sind
 S1=Tk1*Ss1
 S2=Tk2*Ss2
S3= Tk3*Ss3
   %Part9 Tsai Hill
  sigmaLplus=900;
 sigmaLminus=750;
sigmaTplus=50;
sigmaTminus=180;
TLT= 80;
 plyITsaihill=((S1(1,1).^2)/(sigmaLminus .^2))-(((S1(1,1))*(S1(2,1)))/(sigmaLminus .^2))+(((S1(2,1)).^2)/(sigmaTminus .^2))+(((S1(3,1)).^2)/(TLT.^2)) ply2Tsaihill=((S2(1,1).^2)/(sigmaLminus .^2))-(((S2(1,1))*(S2(2,1)))/(sigmaLminus .^2))+(((S2(2,1)).^2)/(sigmaTplus .^2))+(((S2(3,1)).^2)/(TLT.^2)) ply3Tsaihill=((S3(1,1).^2)/(sigmaLplus .^2))-(((S3(1,1))*(S3(2,1)))/(sigmaLplus .^2))+(((S3(2,1)).^2)/(sigmaTplus .^2))+(((S3(3,1)).^2)/(TLT.^2))
 F11 1/((sigmaLplus)*(sigmaLminus))
  F22 1/((sigmaTplus)*(sigmaTminus))
 F1= (1/(sigmaLplus))-(1/(sigmaLminus))
 F2 (1/(sigmaTplus))-(1/(sigmaTminus))
 F66= 1/(TLT.^2)
 F12= (-1/2)*(sqrt(F11*F22))
 ply1TsaiWu_{\overline{z}} \ (F11*(S1(1,1).^2)) + (F22*(S1(2,1).^2)) + (F66*(S1(3,1).^2)) + (F1*S1(1,1)) + (F2*S1(2,1)) + 2*(F12*S1(1,1)*S1(2,1)) + (F12*S1(1,1)) + (
 ply2TsaiWu= (F11*(S2(1,1).^2))+(F22*(S2(2,1).^2))+(F66*(S2(3,1).^2))+(F1*S2(1,1))+(F2*S2(2,1))+2*(F12*S2(1,1)*S2(2,1))
 p1y3TsaiWu_{\overline{z}} (F11*(S3(1,1).^2)) + (F22*(S3(2,1).^2)) + (F66*(S3(3,1).^2)) + (F1*S3(1,1)) + (F2*S3(2,1)) + 2*(F12*S3(1,1)*S3(2,1)) + (F12*S3(1,1).^2)) + (F12*S3(1,1).^2) + (F12*S
```