APPUNTI DI GEOMETRIA E TOPOLOGIA DIFFERENZIALE

Manuel Deodato

Indice

1	Teoria delle curve		3
	1.1	Introduzione	3
	1.2	Riparametrizzazione di una curva	4
	1.3	Riferimento ed equazioni di Frenet	9

1 | Teoria delle curve

§1.1 Introduzione

Definizione 1.1 (Curva parametrizzata). Una *curva paramtrizzata* è un'applicazione $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ di classe $C^\infty(I)$, con I intervallo aperto. Data $t\in I$, si può scrivere in componenti come

$$\alpha(t) = (x(t), y(t), z(t))$$

con $x, y, z : I \to \mathbb{R}$ tutte di classe $C^{\infty}(I)$.

Osservazione 1.1. La necessità di definire la curva su un aperto, o quantomeno di poter estendere l'intervallo di definizione ad un aperto, deriva dal fatto che, in questo modo, si può effettivamente parlare di derivata piena anche per gli estremi, potendo trovare, infatti, un aperto che contiene interamente i punti di frontiera dell'intervallo di definizione. Se non si avesse questa possibilità, nel caso di $\alpha: [\mathfrak{a},\mathfrak{b}] \subset \mathbb{R} \to \mathbb{R}^3$, per esempio, non si potrebbe calcolare la derivata tradizionale in \mathfrak{a} , o \mathfrak{b} , perché si potrebbe solamente calcolare il limite destro o sinistro.

Si nota che, nel caso in cui I non fosse aperto, si estende l'intervallo di definizione ad $A \supset I$ aperto.

Si parla di *traccia* della curva in riferimento all'immagine che genera dell'intero intervallo: Tr $\alpha=\alpha(I)$. La traccia rappresenta l'unione di ciascun punto di $\alpha(t)\in\mathbb{R}^3,\ \forall t\in I.$ Per *velocità* della curva, invece, si intende la grandezza¹

$$\alpha'(t) = \lim_{h \to 0} \frac{\alpha(t+h) - \alpha(t)}{h} = \left(x'(t), y'(t), z'(t)\right) \tag{1.1.1}$$

In realtà, questo rappresenta il *vettore velocità*, mentre la velocità vera e propria è data dalla sua norma $\|\alpha'(t)\|$.

Esempio 1.1 (Retta parametrizzata). Siano $P, Q \in \mathbb{R}^3$, con $P \neq Q$, due punti dello

 $^{^1}$ Questa è ben definita perché si sta operando in uno spazio vettoriale, con $\alpha(t+h)-\alpha(t)$ giustificata dall'operazione di somma dello spazio e divisione per h data dalla moltiplicazione per uno scalare.

spazio; si definisce, allora, retta parametrizzata la curva

$$\alpha: \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & P+t(Q-P)=P+t\overrightarrow{PQ} \end{array}$$

La sua traccia è la retta affine passante per P e Q, e ha vettore velocità $\alpha'(t) = \overrightarrow{PQ}$, da cui $\|\alpha'(t)\| = \|\overrightarrow{PQ}\|$, che è costante.

Esempio 1.2 (Circonferenza parametrizzata). Dato $\alpha \in \mathbb{R}$, con $\alpha > 0$, si definisce *circonferenza parametrizzata* come

$$\alpha: \begin{array}{ccc} [0,2\pi] & \longrightarrow & \mathbb{R}^3 \\ t & \longmapsto & (a\cos t, a\sin t, 0) \end{array}$$

il cui vettore velocità è dato da $\alpha'(t) = (-\alpha \sin t, \alpha \cos t, 0)$, che non risulta costante, mentre la sua velocità $\|\alpha'\| = \alpha > 0$ sì. La traccia corrisponde ad una circonferenza nel piano z = 0, di centro l'origine e raggio α .

§1.2 Riparametrizzazione di una curva

Sia $\alpha:[\mathfrak{a},\mathfrak{b}]\to\mathbb{R}^3$ una curva parametrizzata; una sua *riparametrizzazione* è data dalla coppia di mappe $\mathfrak{h}:[\mathfrak{a},\mathfrak{b}]\to[\mathfrak{c},\mathfrak{d}]\subseteq\mathbb{R}$ e $\beta:[\mathfrak{c},\mathfrak{d}]\to\mathbb{R}^3$ tali che il diagramma

commuta, quindi si ha $\beta(h(t))=\alpha(t)$. Perché questo sia verificato, si assume che $h\in C^\infty([a,b])$ e $h'(t)\neq 0, \ \forall t\in [a,b]$; in questo modo, $\exists h^{-1}$ di classe C^∞ tale che $\beta=\alpha\circ h^{-1}$, quindi anche β risulta liscia ed è verificata la relazione $(\beta\circ h)(t)=\alpha(t)$, con ${\rm Tr}\ \alpha={\rm Tr}\ \beta$.

Ora si definisce la lunghezza di una curva; se ne giustifica la definizione tramite il seguente ragionamento. Sia dato $[\mathfrak{a},\mathfrak{b}]\subset\mathbb{R}$ un intervallo e sia $P\in\mathcal{P}([\mathfrak{a},\mathfrak{b}])$ una sua partizione, tale che $\mathfrak{a}=t_0< t_1< \ldots < t_{k-1}< t_k=\mathfrak{b}$; allora la lunghezza di una

curva $\alpha: [a,b] \to \mathbb{R}^3$ approssimata a tale partizione è data da:

$$L(\alpha, P) = \sum_{i=0}^{k-1} \|\alpha(t_{i+1}) - \alpha(t_i)\|$$
 (1.2.1)

Si nota, dunque, che la lunghezza effettiva della curva coincide con

$$\sup_{P\in\mathcal{P}([\alpha,b])}L(\alpha,P)=\int_{a}^{b}\|\alpha'(u)\|\,du\tag{1.2.2}$$

Definizione 1.2 (Lunghezza d'arco). Sia α : $[a,b] \subset \mathbb{R} \to \mathbb{R}^3$ una curva; si definisce *lunghezza d'arco* la funzione

La lunghezza dell'intera curva α è data da $L(\alpha) = s(b)$.

Osservazione 1.2. Si nota che per $\alpha:[0,+\infty)\to\mathbb{R}^3$, con $\alpha(t)=\big(a\cos t,a\sin t,0\big)$, valendo $\|\alpha'(t)\|=\alpha$, si ha:

$$s(t) = a \int_0^t du = ta \implies s(2\pi) = 2\pi a$$

Vale la pena chiedersi se $L(\alpha)$ sia indipendente dalla sua parametrizzazione, cioè se $L(\alpha) = L(\beta)$, se β è una riparametrizzazione di α ; questo si vede facilmente per conto diretto.

Dimostrazione. Se $\alpha(t) = \beta(h(t))$, allora $\alpha'(t) = \beta'(h(t))h'(t)$, quindi

$$L(\alpha) = \int_{\alpha}^{b} \|\alpha'(t)\| dt = \int_{\alpha}^{b} |h'(t)| \|\beta'(h(t))\| dt$$

Ora si distinguono due casi: essendo $h'(t) \neq 0$, $\forall t$, si può avere o h'(t) < 0, o h'(t) > 0. Nel primo caso, si ha h'(t) < 0, quindi |h'(t)| = -h'(t), con h(a) = d e h(b) = c; nel secondo caso, |h'(t)| = h'(t), con h(a) = c e h(b) = d. Si trova, per s = h(t),

rispettivamente:

$$\begin{cases} -\int_{d}^{c} h'(t) \, \|\beta'(h(t))\| \, dt = \int_{c}^{d} \|\beta'(s)\| \, ds = L(\beta) \\ \\ \int_{c}^{d} h'(t) \, \|\beta'(h(t))\| \, dt = \int_{c}^{d} \|\beta'(s)\| \, ds = L(\beta) \end{cases}$$

In entrambi i casi, dunque, si ottiene $L(\alpha) = L(\beta)$.

Ora si introduce una particolare riparametrizzazione, talvolta nota col nome di *riparametrizzazione canonica*, o *naturale*; per poterla definire, è necessario che α soddisfi la seguente condizione.

Definizione 1.3 (Curva regolare). Una curva parametrizzata $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ è detta *regolare* se $\alpha'(t)\neq 0,\ \forall t\in I.$

Si considera, quindi, una curva regolare $\alpha: [\alpha,b] \to \mathbb{R}^3$; visto che $s(t) = \int_{\alpha}^t \|\alpha'(u)\| \, du$, allora $s'(t) = \|\alpha'(t)\| > 0$. Si può pensare alla lunghezza d'arco come $s: [\alpha,b] \to [0,L(\alpha)]$, che, essendo monotona perché si è appena osservato che s'(t) > 0, allora ha anche inversa $t: [0,L(\alpha)] \to [\alpha,b]$. È, quindi, possibile definire la funzione

$$\beta = \alpha \circ t : [0, L(\alpha)] \to \mathbb{R}^3$$
 (1.2.3)

tale che $Tr(\beta) = Tr(\alpha)$ e $\beta(s) = \alpha(t(s))$, per cui

$$\beta'(s) = \alpha'(t(s))t'(s) = \frac{\alpha'(t(s))}{s'(t(s))} = \frac{\alpha'(t(s))}{\|\alpha'(t)\|}$$

per cui $\|\beta'(s)\| = 1$.

Definizione 1.4 (Curva p.l.a.). Se $\alpha : I \to \mathbb{R}^3$ è una curva tale che $\|\alpha'(t)\| = 1$, $\forall t \in I$, allora si dice che è *parametrizzata tramite lunghezza d'arco*, o pla.

Osservazione 1.3. In base a quanto detto prima, ogni curva regolare è *riparametrizzabile tramite lunghezza d'arco*.

Esempio 1.3 (Elica). Sia a > 0; allora la mappa

$$\phi: \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \\ (u,z) & \longmapsto & (\alpha\cos u, \alpha\sin u, z) \end{array}$$

definisce un cilindro di raggio a attorno all'asse z. Preso b $\,>\,0$ e presi i punti

 $\{(t,bt)\}_{t\in\mathbb{R}}$, relativi ad una retta passante per l'origine, aperto, si può definire la curva

$$\alpha(t) = \varphi(t, bt) = (a \cos t, a \sin t, bt)$$

che descrive un'*elica destrorsa*, visto che si è preso $b>0^a$, di raggio a e passo b. Si nota che

$$\alpha'(t) = (-a \sin t, a \cos t, b) \implies \|\alpha'(t)\| = \sqrt{a^2 + b^2} > 0, \ \forall t \in \mathbb{R}$$

da cui α è regolare. Restringendola a $[0,+\infty)$, cioè considerando $\alpha:[0,+\infty)\to\mathbb{R}^3$, si ha:

$$s(t) = \int_0^t \sqrt{a^2 + b^2} du = t(s)\sqrt{a^2 + b^2} \implies t(s) = \frac{s}{\sqrt{a^2 + b^2}}$$

quindi:

$$\begin{split} \beta(s) &= \alpha(t(s)) = \alpha\left(\frac{s}{\sqrt{a^2 + b^2}}\right) \\ &= \left(a\cos\left(\frac{s}{\sqrt{a^2 + b^2}}\right), a\sin\left(\frac{s}{\sqrt{a^2 + b^2}}\right), \frac{bs}{\sqrt{a^2 + b^2}}\right) \end{split}$$

con β pla e, conseguentemente, $\beta(\mathbb{R}) = \text{Tr}(\beta) = \text{Tr}(\alpha) = \alpha(\mathbb{R})$.

Esemplo 1.4 (Ellisse). Siano $a, b \in \mathbb{R} \setminus \{0\}$ e sia

$$\mathcal{E}_{a,b} = \left\{ (x, y, 0) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\} \subset \mathbb{R}^3$$

Si vuole definire una curva α tale che Tr $\alpha = \mathcal{E}_{a,b}$

Svolgimento. Si nota che $(x/a, y/b) \in S^1$, cioè

$$\frac{x}{a} = \cos t$$
 $\frac{y}{b} = \sin t$

con S^1 circonferenza unitaria e $t \in [0, 2\pi)$. Sia, allora

$$\alpha: \begin{array}{ccc} [0,2\pi) & \longrightarrow & \mathbb{R}^3 \\ t & \longmapsto & (a\cos t, b\sin t, 0) \end{array}$$

e si vede che Tr $\alpha = \mathcal{E}_{a,b}$.

^aFosse stato b < 0, sarebbe stata un'elica sinistrorsa.

Esempio 1.5. Sia

$$\mathcal{C} = \left\{ (x, y, 0) \in \mathbb{R}^3 \mid y^2 = x^3 \right\} \subset \mathbb{R}^3$$

Si vuole costruire α tale che Tr $\alpha = \mathcal{C}$.

Svolgimento. Se si considera la secante y = tx, allora $t^2x^2 = x^3$, ossia $x = t^2$ e $y = t^3$. Ne segue che la curva che soddisfa la richiesta è $\alpha(t) = (t^2, t^3, 0)$.

Esempio 1.6. Sia

$$C = \{(x, y, 0) \mid y^2 = x^3 + x^2\} \subset \mathbb{R}^3$$

Si vuole costruire una curva α tale che Tr $\alpha = \mathcal{C}$.

Svolgimento. Si considera, come prima, y = tx, da cui $x^3 + x^2(1 - t^2) = 0$, e si vede che $x = t^2 - 1$ e $y = t^3 - t$, quindi $\alpha(t) = (t^2 - 1, t^3 - t, 0)$.

Lemma 1.0.1. Se f, g : $I \to \mathbb{R}^3$ sono due mappe, allora

$$(f(t) \cdot g(t))' = f'(t) \cdot g(t) + f(t) \cdot g'(t)$$

Dimostrazione. Si ha

$$f(t) \cdot g(t) = \sum_{i=1}^{3} f_i(t)g_i(t)$$

quindi

$$(f(t) \cdot g(t))' = \sum_{i=1}^{3} [f'_i(t)g_i(t) + f_i(t)g'_i(t)]$$

Per quanto in linea teorica se α è una curva regolare, allora si può riparametrizzare tramite lunghezza d'arco, questo non è praticamente fattibile in ogni singolo caso; se, per esempio, si considera $\alpha(t)=(t,t^2,t^3)$, si ha $\alpha'(t)=(1,2t,3t^2)$, che, dunque, è regolare, ma data

$$s(t) = \int_0^t \sqrt{1 + 4u^2 + 9u^4} du$$

non si è in grado di trovare un'espressione per t(s) perché la primitiva di s non è scrivibile in termini di funzioni elementari.

§1.3 Riferimento ed equazioni di Frenet

Definizione 1.5 (Versore tangente). Data una curva riparametrizzabile $\alpha: I \to \mathbb{R}^3$ e la sua riparametrizzazione tramite lunghezza d'arco $\beta(s)$, si definisce il *versore tangente* ad α come $T(s) = \beta'(s)$.

Proposizione 1.1. Se $\beta: I \to \mathbb{R}^3$ è una curva pla, allora $\mathsf{T}'(s) \cdot \mathsf{T}(s) = 0$.

Dimostrazione. Per quanto visto, $\|\mathsf{T}(s)\|^2 = \mathsf{T}(s) \cdot \mathsf{T}(s) = 1$; per il lemma precedente 1.0.1, si ha $2\mathsf{T}'(s) \cdot \mathsf{T}(s) = (\mathsf{T}(s) \cdot \mathsf{T}(s))' = 0$.

Definizione 1.6 (Curvatura). Data una curva pla $\beta: I \to \mathbb{R}^3$ e il suo versore tangente T(s), allora se ne definisce la *curvatura* come

$$k(s) = \|\mathsf{T}'(s)\|$$

Definizione 1.7 (Curva di Frenet). Una curva regolare $\alpha : [a, b] \to \mathbb{R}^3$ è detta *di Frenet* se la sua pla $\beta = \alpha \circ t : [0, L(\alpha)] \to \mathbb{R}^3$ è tale che k(s) > 0, $\forall s \in [0, L(\alpha)]$.

Visto che k(s) = ||T'(s)||, allora si può scrivere

$$T'(s) = k(s)N(s)$$
 (1.3.1)

che è nota come **I equazione di Frenet**. Si nota che N(s) deve avere norma unitaria perché la norma di T'(s) è data interamente da k(s); inoltre, N(s) è un versore ortogonale a T(s) perché si è dimostrato (prop. 1.1) che $T(s) \perp T'(s)$. Se ne ricava la seguente definizione.

Definizione 1.8 (Versori normale e binormale). Dato T(s) versore tangente di una certa curva regolare $\alpha: I \to \mathbb{R}^3$, si definiscono N(s) versore normale principale e $B(s) = T(s) \times N(s)$ versore binormale.

Evidentemente, si ha $\|N(s)\| = \|B(s)\| = 1$ e $T(s) \cdot N(s) = T(s) \cdot B(s) = N(s) \cdot B(s) = 0$. Ne segue che (T(s), N(s), B(s)), $\forall s \in I$ forma una base ortonormale di \mathbb{R}^3 , nota col nome di **riferimento di Frenet**.

Si nota che, essendo un versore, si ha $N(s) \cdot N(s) = 1$, quindi $N'(s) \cdot N(s) = 0$ (per lo stesso ragionamento della prop. 1.1), dunque $N'(s) \in \langle T(s), B(s) \rangle$; inoltre, essendo $T(s) \cdot N(s) = 0$, si ha

$$\mathsf{T}'(s) \cdot \mathsf{N}(s) + \mathsf{T}(s) \cdot \mathsf{N}'(s) = \mathsf{k}(s) \underbrace{\mathsf{N}(s) \cdot \mathsf{N}(s)}_{=1} + \mathsf{T}(s) \cdot \mathsf{N}'(s) = 0$$

perciò si trova $\tau(s)$ tale per cui

$$N'(s) = -k(s)T(s) + \tau(s)B(s)$$
 (1.3.2)

Questa è nota come II equazione di Frenet.

Definizione 1.9 (Torsione). Data una curva regolare $\alpha: I \to \mathbb{R}^3$ e β la sua pla, si definisce $\tau(s)$ come la *torsione* di β nel punto s.

Ripetendo lo stesso ragionamento, si ha $B(s) \cdot B(s) = 1 \Rightarrow B'(s) \cdot B(s) = 0$, da cui $B'(s) \in \langle T(s), N(s) \rangle$ e, essendo $N(s) \cdot B(s) = 0$, dalla derivata di $T(s) \cdot B(s) = 0$, si ha

$$\mathsf{T}'(s) \cdot \mathsf{B}(s) + \mathsf{T}(s) \cdot \mathsf{B}'(s) = \mathsf{k}(s) \underbrace{\mathsf{N}(s) \cdot \mathsf{B}(s)}_{=0} + \mathsf{T}(s) \cdot \mathsf{B}'(s) = 0$$

quindi $B'(s) \in \langle N(s) \rangle$. Usando $T(s) \cdot B(s) = 0$ e derivando $N(s) \cdot B(s) = 0$, si ottiene

$$N'(s) \cdot B(s) + N(s) \cdot B'(s) = (-k(s)T(s) + \tau(s)B(s)) \cdot B(s) + N(s) \cdot B'(s)$$
$$= \tau(s) \underbrace{B(s) \cdot B(s)}_{=1} + N(s) \cdot B'(s) = 0$$

cioè

$$B'(s) = -\tau(s)N(s)$$
 (1.3.3)

che è nota come **III equazione di Frenet**. Ricapitolando, le equazioni di Frenet stabiliscono delle relazioni tra le derivate dei versori ortonormali del riferimento di Frenet e i versori stessi e sono:

$$\begin{cases} T'(s) = k(s)N(s) \\ N'(s) = -k(s)T(s) + \tau(s)B(s) \\ B'(s) = -\tau(s)N(s) \end{cases}$$
 (1.3.4)

Ora si applicano i concetti visti alle curve studiate nella sezione precedente.

Esempio 1.7. Sia $\alpha(t) = P + t\overrightarrow{PQ}$ una curva parametrizzata (con $P, Q \in \mathbb{R}^3$ e $P \neq Q$). Si ha $\alpha'(t) = \overrightarrow{PQ}$, quindi la curva è regolare, quindi se ne può trovare una

pla:

$$s(t) = \int_{a}^{t} \|\overrightarrow{PQ}\| du = t \|\overrightarrow{PQ}\| \implies t = \frac{s}{\|\overrightarrow{PQ}\|}$$

quindi si ha $\beta(s) = P + s \frac{\overrightarrow{PQ}}{\|\overrightarrow{PQ}\|}$. Allora il versore tangente è dato da

$$T(s) = \beta'(s) = \frac{\overrightarrow{PQ}}{\|\overrightarrow{PQ}\|} \implies T'(s) = 0$$

perciò k(s) = 0 e, quindi, α non è una curva di Frenet perché non ha curvatura positiva.

Esempio 1.8. Per a > 0, sia $\alpha(t) = (a \cos t, a \sin t, 0)$ una circonferenza parametrizzata di raggio a. Evidentemente, si può vedere come un caso particolare di elica parametrizzata per b = 0, quindi si può fare uso del risultato trovato in precedenza:

$$\begin{split} \beta(s) &= \left(\alpha\cos\left(\frac{s}{\alpha}\right), \alpha\sin\left(\frac{s}{\alpha}\right), 0\right) \implies T(s) = \left(-\sin\frac{s}{\alpha}, \cos\frac{s}{\alpha}, 0\right) \\ \Rightarrow T'(s) &= \underbrace{\frac{1}{\alpha}}_{k(s)} \underbrace{\left(-\cos\frac{s}{\alpha}, -\sin\frac{s}{\alpha}, 0\right)}_{N(s)} \end{split}$$

Si conclude che N(s) \perp z e punta proprio verso z; inoltre, la circonferenza parametrizzata è una curva di Frenet perché ha curvatura positiva, essendo $1/\alpha > 0$ perché $\alpha > 0$ per assunzione. Infine:

$$B(s) = \begin{pmatrix} -\sin s/\alpha \\ \cos s/\alpha \\ 0 \end{pmatrix} \times \begin{pmatrix} -\cos s/\alpha \\ -\sin s/\alpha \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$\Rightarrow -\tau(s)N(s) = B'(s) = 0 \implies \tau(s) = 0$$

Esempio 1.9. Si considera l'elica parametrizzata $\alpha=(a\cos t,a\sin t,bt)$, con raggio $a\in\mathbb{R}^{>0}$ e passo $b\in\mathbb{R}$. La sua pla è già stata ricava; dato $c=\sqrt{a^2+b^2}$, si ottiene:

$$\beta(s) = \left(\alpha\cos\left(\frac{s}{\sqrt{c}}\right), \alpha\sin\left(\frac{s}{\sqrt{c}}\right), \frac{b}{\sqrt{c}}s\right)$$

da cui

$$\mathsf{T}(s) = \frac{1}{c} \left(-a \sin \frac{s}{c}, a \cos \frac{s}{c}, b \right) \implies \mathsf{T}'(s) = \underbrace{\frac{a}{c^2}}_{\mathsf{k}(s)} \underbrace{\left(-\cos \frac{s}{c}, -\sin \frac{s}{c}, 0 \right)}_{\mathsf{N}(s)}$$

quindi, come nel caso della circonferenza, $N(s) \perp z$ e punta verso di esso. Si ha:

$$B(s) = \frac{1}{c} \begin{pmatrix} -a \sin s/c \\ a \cos s/c \\ b \end{pmatrix} \times \begin{pmatrix} -\cos s/c \\ -\sin s/c \\ 0 \end{pmatrix} = \frac{1}{c} \begin{pmatrix} b \sin s/c \\ -b \cos s/c \\ a \end{pmatrix}$$

Inoltre:

$$N'(s) = -k(s)T(s) + \tau(s)B(s) \implies \tau(s) = N'(s) \cdot B(s) = \frac{b}{c^2}$$

Da questo, si vede che

- se b > 0, allora l'elica è destrorsa e $\tau(s) > 0$,
- se b < 0, allora l'elica è sinistrorsa e $\tau(s)$ < 0,
- se b = 0, si ha una circonferenza e $\tau(s) = 0$, con k(s) = 1/a.

Fissando α , si nota che, per $b \to \pm \infty$, si ha $\tau(s) \to 0$ e $k(s) = \alpha/(\alpha^2 + b^2) \to 0$.

Proposizione 1.2. Sia $\alpha:I\to\mathbb{R}^3$ una curva regolare; allora $k_\alpha=0\iff\alpha(I)$ è contenuta in una retta.

Dimostrazione. Si divide la dimostrazione nelle due implicazioni.

• (\Leftarrow) Se $\alpha(I) \subseteq P + \langle \nu \rangle$, per ν versore generico, si considera la sua versione pla $\alpha(I) = \beta(J) \subseteq P + \langle \nu \rangle$; allora $\beta = P + f(s)\nu$ e $\beta' = f'(s)\nu$, con $f'(s) = \pm 1$ perché $\|\beta'\| = 1$. Ne segue che:

$$T(s) = \beta'(s) = f'(s)\nu = \pm \nu \implies T'(s) = 0 \implies k_{\alpha}(s) = 0$$

• (\Rightarrow) Sia $\|T'(s)\| = k_{\alpha}(s) = 0$, quindi $T(s) = \beta'(s) = \nu$, per qualche $\nu \in \mathbb{R}^3$. Allora si deve avere $\beta(s) = \beta(0) + s\nu \in \beta(0) + \langle \nu \rangle$.

Esercizio 1.1. Sia $\beta:I\to\mathbb{R}^3$ una curva pla tale che

$$\beta(I) \subseteq S_r^2(P) = \left\{ x \in \mathbb{R}^3 \; \middle| \; \|x - P\| = r \right\}$$

Mostrare che β è di Frenet.

Svolgimento. Se $\beta(I) \subseteq S_r^2(P)$, allora $\|\beta(s) - P\|^2 = r^2$; derivando due volte rispetto

a s, si ottiene:

$$\begin{split} &\frac{d}{ds}\left[T(s)\cdot(\beta(s)-P)\right]=0 \implies T'(s)\cdot(\beta(s)-P)+T(s)\cdot T(s)=0\\ &\Rightarrow T'(s)\cdot(\beta(s)-P)=-1 \implies k(s)\left[N(s)\cdot(\beta(s)-P)\right]=-1 \end{split}$$

Quindi $k(s) \neq 0$ e, pertanto β è di Frenet.

Proposizione 1.3. Sia $\alpha:I\to\mathbb{R}^3$ una curva di Frenet; allora $\tau_\alpha=0\iff\alpha(I)$ è contenuta in un piano.

Dimostrazione. Si divide la dimostrazione nelle due implicazioni.

• (\Rightarrow) Si assume, senza perdita di generalità, che α sia pla^a. Allora

$$\tau_{\alpha} = 0 \implies B'_{\alpha}(s) = -\tau_{\alpha}(s)N_{\alpha}(s) = 0$$

quindi B_{α} è costante; sia $B_{\alpha}(s)=B_0$, per qualche $B_0\in\mathbb{R}^3$ tale che $\|B_0\|=1$. Ne segue, allora, che

$$T(s) \cdot B_0 = \alpha'(s) \cdot B_0 \implies (\alpha(s) \cdot B_0)' = 0$$

quindi $\alpha(s) \cdot B_0 = c \in \mathbb{R}$, dunque $\alpha(I) \subseteq \{x \in \mathbb{R}^3 \mid x \cdot B_0 = c\}$.

- $\bullet \ \ (\Leftarrow) \ \text{Sia} \ \alpha(I) \subseteq \big\{ x \in \mathbb{R}^3 \ | \ x \cdot B_0 = c \big\} \text{, per qualche } B_0 \in \mathbb{R}^3 \ \text{tale che } \|B_0\| = 1.$
- Sia $\alpha(I) \subseteq \{x \in \mathbb{R}^3 \mid x \cdot B_0 = c\}$, per qualche $B_0 \in \mathbb{R}^3$ tale che $\|B_0\| = 1$ e $c \in \mathbb{R}$; allora $\forall s, \ \alpha(s) \cdot B_0 = c$. Ne segue che

$$T(s) \cdot B_0 = 0 \implies k(s)(N(s) \cdot B_0) = 0 \implies N(s) \cdot B_0 = 0$$

dove la seconda implicazione è giustificata dal fatto che α è di Frenet, quindi k(s) > 0. Visto che $B_{\alpha}(s) = T(s) \times N(s)$, considerando (continuare ...).

 a Altrimenti, α ammette una versione pla perché è una curva di Frenet.

Proposizione 1.4. Sia $\alpha: I \to \mathbb{R}^3$ una curva di Frenet; se $\tau_{\alpha} = 0$, allora k_{α} è costante $\iff \alpha(I)$ è contenuta in una circonferenza.