Глава 4 Векторные пространства

§ 4.1 Определения и конструкции, связанные с векторными пространствами

Далее K — поле.

• Векторное пространство V над K — абелева группа (относит. +, 0, -) с «правильным» умножением на скаляры из K (\cdot : $K \times V \to V$). Свойства операций в вект. пространствах.

Условия на операцию умножения скаляров из K и векторов из $V\colon \forall c,c'\in K,v\in V$ $\big((c+c')v=cv+c'v\wedge(cc')v=c(c'v)\wedge 1v=v\big)$ и $\forall c\in K,v,v'\in V$ $\big(c(v+v')=cv+cv'\big)$ (это эквив.-но тому, что отобр. $\binom{K\to\operatorname{End}(V^+)}{c\mapsto (v\mapsto cv)}$, где $\operatorname{End}(V^+)$ — кольцо эндоморфизмов абелевой группы V^+ , определено корректно и является гомоморфизмом колец). Легко видеть, что для любых $v\in V$ и $c\in K$ выполнено 0v=c0=0 и (-c)v=c(-v)=

Легко видеть, что для любых $v \in V$ и $c \in K$ выполнено 0v = c0 = 0 и (-c)v = c(-v) = -cv, а также $cv = 0 \Rightarrow c = 0 \lor v = 0$ (так как $c \neq 0 \Rightarrow v = 1v = \frac{1}{c}(cv) = 0$).

• Примеры: простр.-ва столбцов K^n и строк K_n ($n \in \mathbb{N}_0$), простр.-ва матриц $\mathrm{Mat}(p,n,K)$ ($n,p \in \mathbb{N}_0$), пространства многочленов K[x], пространства функций и финитных функций.

Примеры вект. простр.-в, состоящих из функций, действующих из мн.-ва X в поле K:

- * $\operatorname{Func}(X,K)$; структура вект. пр.-ва на $\operatorname{Func}(X,K)$: $\forall f,f' \in \operatorname{Func}(X,K),c,c' \in K,x \in X$ ((cf+c'f')(x)=cf(x)+c'f'(x)) (поточечные сложение и умножение на скаляры);
- * $\operatorname{FinFunc}(X,K) = \{f \in \operatorname{Func}(X,K) \mid | \{x \in X \mid f(x) \neq 0\}| < \infty \}$ простр.-во финитных функций $(\forall f,f' \in \operatorname{FinFunc}(X,K),c,c' \in K \left(cf+c'f' \in \operatorname{FinFunc}(X,K)\right))$; для любых $x \in X$ обозначим $\delta_x = \left(y \mapsto \delta_{x,y}\right)$; тогда $\forall f \in \operatorname{FinFunc}(X,K) \left(f = \sum_{x \in X} f(x)\delta_x\right)$.

Далее V,Y — векторные пространства над K и $D\subseteq V.$

• Множ.-во линейных операторов (гомоморфизмов векторных пространств): $\operatorname{Hom}(V,Y)$ — векторное простр.-во. Кольцо $\operatorname{End}(V) = \operatorname{Hom}(V,V)$, группа $\operatorname{GL}(V) = \operatorname{Aut}(V) = \operatorname{End}(V)^{\times}$.

 $\operatorname{Hom}(V,Y) = \{a \in \operatorname{Map}(V,Y) \mid \forall \, v,v' \in V, c,c' \in K \, \big(a(cv+c'v') = ca(v) + c'a(v') \big) \};$ структура вект. пр.-ва на $\operatorname{Hom}(V,Y) \colon \forall \, a,a' \in \operatorname{Hom}(V,Y), c,c' \in K, v \in V \, \big((ca+c'a')(v) = ca(v) + c'a'(v) \big);$ легко видеть, что опред.-е корректно и $\operatorname{Hom}(V,Y) - \operatorname{вект}$. простр.-во.

Примеры линейн. операт.:
$$\binom{K^n \to K}{v \mapsto v^i} (i \in \{1, \dots, n\}), \, \binom{K^n \to K^p}{v \mapsto a \cdot v} (a \in \operatorname{Mat}(p, n, K)), \, \binom{\operatorname{Mat}(p, n, K) \to \operatorname{Mat}(n, p, K)}{a \mapsto a^\mathsf{T}}, \, \binom{\operatorname{Mat}(n, K) \to K}{a \mapsto \operatorname{tr} a}, \, \binom{\operatorname{Func}(X, K) \to K}{f \mapsto f(x)} (x \in X).$$

Мн.-во изоморфизмов: $\operatorname{Iso}(V,Y) = \operatorname{Hom}(V,Y) \cap \operatorname{Bij}(V,Y)$. Изоморфные вект. простр.-ва: $V \cong Y \Leftrightarrow \operatorname{Iso}(V,Y) \neq \varnothing$; примеры: $K^n \cong K_n$, $\operatorname{Mat}(p,n,K) \cong K^{np}$, $K[x] \cong \operatorname{FinFunc}(\mathbb{N},K)$. $\operatorname{End}(V)$ — кольцо относ. +, 0, -, \circ , id_V (дистрибутивность: $\forall a,a',b,b' \in \operatorname{End}(V),v \in V$ ($((a+a')\circ b)(v)=(a\circ b+a'\circ b)(v) \wedge (a\circ (b+b'))(v)=a(b(v)+b'(v))=(a\circ b+a\circ b')(v)$)).

• Подпространство $(U \subseteq V)$: $U \le V \Leftrightarrow U + U \subseteq U \land 0 \in U \land KU \subseteq U$. Подпространство, порожденное мн.-вом D: $\langle D \rangle$ — наименьшее относит.-но \subseteq подпр.-во в V, содержащее D.

Легко видеть, что $U \leq V \Leftrightarrow \forall u, u' \in U, c, c' \in K \left(cu + c'u' \in U\right) \land U \neq \varnothing$. Пример из математическ. анализа: для любых $k \in \mathbb{N}_0$ и таких $\alpha, \beta \in \mathbb{R} \cup \{-\infty, \infty\}$, что

 $\begin{array}{l} \alpha<\beta, \text{ обозначим } \mathrm{C}^k((\alpha;\beta),\mathbb{R})=\{f\in\mathrm{Func}((\alpha;\beta),\mathbb{R})\mid f^{(k)}\text{ существует и непрерывна}\}\text{ и } \mathrm{C}^\infty((\alpha;\beta),\mathbb{R})=\bigcap_{k\in\mathbb{N}}\mathrm{C}^k((\alpha;\beta),\mathbb{R}); \text{ тогда } \mathrm{C}^0((\alpha;\beta),\mathbb{R})>\mathrm{C}^1((\alpha;\beta),\mathbb{R})>\ldots>\mathrm{C}^\infty((\alpha;\beta),\mathbb{R}). \end{array}$

- $\langle D \rangle$ наименьший элемент мн.-ва $\{U \leq V \mid D \subseteq U\}$, поэтому $\langle D \rangle$ определ. однозначно.
- Линейн. комбинация эл.-в мн.-ва D $(f_1,\ldots,f_m\in K)$: $f_1d_1+\ldots+f_md_m=\sum_{d\in D}f(d)d$ (где $f\in \mathrm{FinFunc}(D,K)$). Утверждение: $\langle D\rangle=\left\{\sum_{d\in D}f(d)d\mid f\in \mathrm{FinFunc}(D,K)\right\}$.
- * Пусть $L = \left\{\sum_{d \in D} f(d)d \mid f \in \operatorname{FinFunc}(D,K)\right\}$; тогда $L \leq V \ (\Leftarrow \forall f,f' \in \operatorname{FinFunc}(D,K), c,c' \in K \ (c \sum_{d \in D} f(d)d + c' \sum_{d \in D} f'(d)d = \sum_{d \in D} (cf + c'f')(d)d)), \ D \subseteq L \ (\Leftarrow \forall d \in D \ (d = \sum_{t \in D} \delta_d(t)t))$ и легко видеть, что $\forall U \leq V \ (D \subseteq U \Rightarrow L \subseteq U)$, поэтому $L = \langle D \rangle$.

ullet Ядро и образ линейн. оператора a $(a\in {
m Hom}(V,Y))$: ${
m Ker}\, a=a^{-1}(0)$ и ${
m Im}\, a;\ 0_V\in {
m Ker}\, a$ и $0_Y\in {
m Im}\, a.$ Утверждение: ${
m Ker}\, a\le V$ и ${
m Im}\, a\le Y.$ Теорема о слоях и ядре линейного оператора.

$$\begin{array}{l} \star \ u,u' \in \operatorname{Ker} a \ \wedge \ c,c' \in K \Rightarrow a(cu+c'u') = ca(u)+c'a(u') = 0 \Rightarrow cu+c'u' \in \operatorname{Ker} a \ \mathsf{u} \\ x = a(v),x' = a(v') \in \operatorname{Im} a \ \wedge \ c,c' \in K \Rightarrow cx+c'x' = ca(v)+c'a(v') = a(cv+c'v') \in \operatorname{Im} a. \end{array}$$

Теорема о слоях и ядре линейного оператора. Пусть K — поле, V, Y — вект. пространства над K и $a \in \mathrm{Hom}(V,Y)$; тогда

- (1) для любых $y \in Y$ и $v_0 \in a^{-1}(y)$ выполнено $a^{-1}(y) = v_0 + \operatorname{Ker} a$;
- (2) a инъекция, если и только если ${\rm Ker}\, a = \{0\}.$

Доказательство.

- (1) Для любых $v \in V$ имеем $v \in a^{-1}(y) \Leftrightarrow a(v) = y = a(v_0) \Leftrightarrow a(v v_0) = 0 \Leftrightarrow v \in v_0 + \operatorname{Ker} a$. (2) $a \in \operatorname{Inj}(V,Y) \Leftrightarrow \forall v \in V \left(a^{-1}(a(v)) = \{v\}\right) \Leftrightarrow \forall v \in V \left(v + \operatorname{Ker} a = \{v\}\right) \Leftrightarrow \operatorname{Ker} a = \{0\}$.
 - ullet Система из p линейных уравнений от n переменных ($a\in \mathrm{Mat}(p,n,K),\ v\in K^n,\ y\in K^p$):

$$\begin{cases} a_1^1v^1+\ldots+a_n^1v^n=y^1\\ \vdots\\ a_1^pv^1+\ldots+a_n^pv^n=y^p \end{cases} \Leftrightarrow \begin{pmatrix} a_1^1&\ldots&a_n^1\\ \vdots&\ddots&\vdots\\ a_1^p&\ldots&a_n^p \end{pmatrix} \cdot \begin{pmatrix} v^1\\ \vdots\\ v^n \end{pmatrix} = \begin{pmatrix} y^1\\ \vdots\\ y^p \end{pmatrix} \Leftrightarrow a\cdot v=y. \text{ Однородная система: } a\cdot v=0.$$

Пусть $a\cdot v_0=y$; тогда по теор. о слоях и ядре лин. операт. имеем $\{v\in K^n\mid a\cdot v=y\}=\{v\in K^n\mid \mathrm{lm}_a(v)=y\}=\mathrm{lm}_a^{-1}(y)=v_0+\mathrm{Ker}\,\mathrm{lm}_a=v_0+\{w\in K^n\mid a\cdot w=0\}.$

ullet Аффинные операторы: $v\mapsto a(v)+z$, где $a\in \mathrm{Hom}(V,Y)$. Аффинные подпр.-ва: v+U, где $U\le V$; U — направляющее подпр. для S=v+U ($\forall\,s\in S\ ig(S-s=Uig)$ и S-S=U).

Обозначим $G=\mathrm{AGL}(V)=\left\{egin{pmatrix} V\to V \\ v\mapsto a(v)+z \end{pmatrix}|\ a\in\mathrm{GL}(V),z\in V\right\}$ — аффинная группа простр.-ва $V,\ F=\left\{(v\mapsto v+z)\ |\ z\in V\right\}$ и $H=\mathrm{GL}(V)$; тогда $F,H\leq G,\ F\cap H=\{\mathrm{id}_V\},\ G=F\circ H,\ \forall\ h\in H\ (h\circ F\circ h^{-1}\subseteq F)$ и $F\cong V^+,$ поэтому $G\cong F\leftthreetimes H\cong V^+\leftthreetimes\mathrm{GL}(V).$

§ 4.2 Независимые множества, порождающие множества, базисы

Далее K — поле, V — векторное пространство над K и $B,C,D\subseteq V$.

- C независимое множество: $\forall f \in \mathrm{FinFunc}(C,K) \left(\sum_{c \in C} f(c)c = 0 \Rightarrow f = 0 \right)$. D порождающее множество: $V = \langle D \rangle$. Базис независимое и порождающее множ.-во.
- Примеры: Ø и $\{v\}$, где $v \in V \setminus \{0\}$, независимые мн.-ва, и V порождающее мн.-во. (C независ. мн.-во) $\Leftrightarrow \forall m \in \mathbb{N}_0, c_1, \ldots, c_m \in C, f_1, \ldots, f_m \in K \ \big((c_1, \ldots, c_m \text{ попарно различны} \land f_1 c_1 + \ldots + f_m c_m = 0 \big) \Rightarrow f_1 = \ldots = f_m = 0 \big)$, а также (D порождающее множество) $\Leftrightarrow \forall v \in V \ \exists \ m \in \mathbb{N}_0, d_1, \ldots, d_m \in D, f_1, \ldots, f_m \in K \ \big(v = f_1 d_1 + \ldots + f_m d_m \big)$.

Упрощение в случае конечных множеств $(n \in \mathbb{N}_0 \text{ и } e_1, \ldots, e_n \in V)$: (набор e_1, \ldots, e_n независим (то есть e_1, \ldots, e_n попарно различны и $\{e_1, \ldots, e_n\}$ — независимое мн.-во)) $\Leftrightarrow \forall f_1, \ldots, f_n \in K$ $(f_1e_1 + \ldots + f_ne_n = 0 \Rightarrow f_1 = \ldots = f_n = 0)$, а также $(\{e_1, \ldots, e_n\}$ — порождающее множество) $\Leftrightarrow \forall v \in V \ \exists \ f_1, \ldots, f_n \in K \ (v = f_1e_1 + \ldots + f_ne_n)$.

ullet Стандартные базисы пространств K^n , K_n и $\mathrm{Mat}(p,n,K)$: $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$, $\{\mathbf{e}^1,\ldots,\mathbf{e}^n\}$ и $\{\mathbf{e}_1^1,\ldots,\mathbf{e}_1^n,\ldots,\mathbf{e}_p^1,\ldots,\mathbf{e}_p^n\}$. Утверждение: $\left(B-\mathsf{завис.}\ \mathsf{мн.-во}\right)\Leftrightarrow\exists\,b\in B\,\big(b\in\langle B\setminus\{b\}\rangle\big)$.

Примеры: $\{1,x,x^2,\ldots\}$ — базис пр.-ва K[x], $\{\delta_b\mid b\in B\}$ — базис пр.-ва $\operatorname{FinFunc}(B,K)$. \star (B — зависимое мн.-во) $\Leftrightarrow \exists\, f\in \operatorname{FinFunc}(B,K), b\in B\left(\sum_{c\in B}f(c)c=0\, \wedge\, f(b)\neq 0\right) \Leftrightarrow \exists\, f\in \operatorname{FinFunc}(B,K), b\in B\left(\sum_{c\in B\setminus\{b\}}\frac{f(c)}{f(b)}c+b=0\, \wedge\, f(b)\neq 0\right) \Leftrightarrow \exists\, b\in B\left(b\in \langle B\setminus\{b\}\rangle\right).$

- Теорема о свойствах базиса. В сделанных выше предположен. след. утв.-я эквивалентны: (у1) B базис пространства V;
- (у2) отображение $\binom{\operatorname{FinFunc}(B,K) o V}{f \mapsto \sum_{b \in B} f(b)b}$ изоморфизм векторн. пространств; (у3) для любых $v \in V$ существует единств. такая $f \in \operatorname{FinFunc}(B,K)$, что $v = \sum_{b \in B} f(b)b$;

- (у4) B максимальное независимое множество (то есть B независимое множество и для любых $v \in V \setminus B$ множество $B \cup \{v\}$ не является независимым);
- (y5) B минимальное порождающее множество (то есть B порождающее множество и для любых $b \in B$ множество $B \setminus \{b\}$ не является порождающим).

Пусть φ — отображение из (у2); легко видеть, что φ — линейный оператор. $(y1) \Leftrightarrow (y2) \Leftrightarrow (y3). (B - базис) \Leftrightarrow \{f \in FinFunc(B, K) \mid \sum_{b \in B} f(b)b = 0\} = \{0\} \land f(b) \Leftrightarrow (y3) \Leftrightarrow$ $\land \{\sum_{b \in B} f(b)b \mid f \in \text{FinFunc}(B, K)\} = V \Leftrightarrow \text{Ker } \varphi = \{0\} \land \text{Im } \varphi = V \Leftrightarrow$ $\Leftrightarrow (\varphi - \mathsf{изоморфизм}) \Leftrightarrow (\varphi - \mathsf{биекция}) \Leftrightarrow \forall v \in V \exists ! f \in \mathrm{FinFunc}(B,K) (v = \sum_{b \in B} f(b)b).$ $(y1) \Leftrightarrow (y4)$. Пусть B — независимое множество; докажем, что B — порождающее множество, если и только если $\forall v \in V \setminus B \ (B \cup \{v\} - \text{зависимое множество}).$ Если B — порожд. мн.-во и $v \in V \setminus B$, то $v = \sum_{b \in B} f(b)b$ для некотор. $f \in \mathrm{FinFunc}(B,K)$,

поэтому $v-\sum_{b\in B}f(b)b=0$ и, значит, $B\cup\{v\}$ — зависимое множество.

Если $\forall v \in V \setminus B$ $(B \cup \{v\}$ — зависимое множество) и $v \in V$, то в случае $v \in B$ получаем $v \in \langle B
angle$ и в случае $v \in V \backslash B$ имеем следующие факты: $\sum_{b \in B} f(b)b + f(v)v = 0$ для некотор. $f \in \text{FinFunc}(B \cup \{v\}, K) \setminus \{0\}$; здесь $f(v) \neq 0$ (иначе B — зависимое множество), поэтому $v = -\sum_{b \in B} \frac{f(b)}{f(v)} b$ и, значит, $v \in \langle B \rangle$; в итоге B — порождающее множество. (у1) \Leftrightarrow (у5). Пусть B — порождающее множество, то есть $V = \langle B \rangle$; докажем, что

B — независимое множество, если и только если $\forall\,b\in B\,ig(Backslash\{b\}$ — непорождающее множество), а это эквивалентно доказательству того, что B — зависимое множество, если и только если $\exists \, b \in B \, (B \setminus \{b\} \, - \,$ порождающее множество); далее используем доказанное выше утверждение $(B - \mathsf{зависимое} \ \mathsf{множество}) \Leftrightarrow \exists b \in B \ (b \in \langle B \setminus \{b\} \rangle).$

(B — зависимое множество) $\Leftrightarrow \exists b \in B \ (b \in \langle B \setminus \{b\} \rangle) \Leftrightarrow \exists b \in B \ (\langle B \rangle = \langle B \setminus \{b\} \rangle) \Leftrightarrow$ $\Leftrightarrow \exists b \in B \ (V = \langle B \setminus \{b\} \rangle) \Leftrightarrow \exists b \in B \ (B \setminus \{b\} -$ порождающее множество).

В случае, когда $|B|=n<\infty$ и $B=\{e_1,\dots,e_n\}$, из теоремы о св.-вах базиса получаем, что след. утв.-я эквивалентны: (у1) $\{e_1,\dots,e_n\}$ — базис пространства V, (у2) отображ.-е $\begin{pmatrix} \operatorname{Func}(\{1,\dots,n\},K)\to V \\ f\mapsto f(1)e_1+\dots+f(n)e_n \end{pmatrix}$ — изоморфизм векторных пространств, (у3) для любых $v\in V$ существ. единств. такие $f_1,\dots,f_n\in K$, что $v=f_1e_1+\dots+f_ne_n$.

ullet Теорема о порядках независимых и порождающих множеств. Пусть K — поле, V — вект. пространство над K, C, $D\subseteq V$ и $|D|<\infty$; тогда, если C — независимое множество и $C\subseteq\langle D \rangle$, то $|C|\leq |D|$, и, если C и D — базисы пространства V, то |C|=|D|.

Доказательство.

Пусть n=|D|; докажем, что, если $C\subseteq \langle D \rangle$ и |C|>n, то C — зависимое множество (это теорема о линейной зависимости линейных комбинаций). Воспользуемся индукцией по n. База: n=0 — ясно. Проведем индукцион. переход. Пусть $n\geq 1$; зафиксируем $b\in C$, где b
eq 0, и разложение $b = f_{b,1}d_1 + \ldots + f_{b,n}d_n$, где $f_{b,1},\ldots,f_{b,n} \in K$ и d_1,\ldots,d_n — такое перечисление элементов множества D, что $f_{b,n} \neq 0$. Для каждого $c \in C \setminus \{b\}$ зафиксируем разлож.-е $c=f_{c,1}d_1+\ldots+f_{c,n}d_n$, где $f_{c,1},\ldots,f_{c,n}\in K$; заметим, что для любых $c\in C$ выполнено $c-rac{f_{c,n}}{f_{b,n}}b=(f_{c,1}-rac{f_{c,n}}{f_{b,n}}f_{b,1})d_1+\ldots+(f_{c,n-1}-rac{f_{c,n}}{f_{b,n}}f_{b,n-1})d_{n-1}$, поэтому $\widetilde{C} = \{c - rac{f_{c,n}}{f_{b,n}}b \mid c \in C \setminus \{b\}\} \subseteq \langle D \setminus \{d_n\} \rangle$. Если $\exists \, c,c' \in C \setminus \{b\} \, \left(c - rac{f_{c,n}}{f_{b,n}}b = c' - rac{f_{c',n}}{f_{b,n}}b \, \wedge \, c' \in C \setminus \{b\} \, \left(c - rac{f_{c,n}}{f_{b,n}}b = c' - rac{f_{c',n}}{f_{b,n}}b \, \wedge \, c' \in C \setminus \{b\} \, \right)$ $\land \ c \neq c')$, то C — зависимое мн.-во; иначе $|\widetilde{C}| = |C| - 1 > n - 1$; тогда по предположению индукции получаем, что \widetilde{C} — зависимое мн.-во и, значит, существует такой $c \in C \backslash \{b\}$, что $c-rac{f_{c,n}}{f_{b,n}}b\in\langle\widetilde{C}\backslash\{c-rac{f_{c,n}}{f_{b,n}}b\}
angle$, поэтому $c\in\langle C\backslash\{c\}
angle$, то есть C — зависимое множество. Пусть C и D — базисы пространства V; тогда C — независимое множество и $C\subseteq \langle D \rangle$, поэтому $|C| \leq |D| < \infty$, и D — независимое множество и $D \subseteq \langle C \rangle$, поэтому $|D| \leq |C|$.

Факт без доказательства: все базисы любого векторного пространства равномощны.

- Теорема о существовании базиса. Пусть K поле, V векторное пространство над K, C независимое подмножество в V и D порождающее подмножество в V, а также в V существует конечное порождающее подмножество; тогда
- (1) существует такой базис B пространства V, что $C\subseteq B$ (и, значит, дополняя до базиса множество \varnothing , получаем, что в V существует базис);
- (2) существует такой базис B пространства V, что $B\subseteq D$ (и, значит, выделяя базис из множества V, получаем, что в V существует базис).

Пусть T — конечное порождающее подмнож.-во в V (то есть $T\subseteq V$, $V=\langle T\rangle$ и $|T|<\infty$).

- (1) Обозначим $\mathrm{Indep}_C = \{E \subseteq V \mid C \subseteq E \land E \text{независимое множество}\};$ из теоремы о порядках независимых и порождающих множеств следует, что $\{|E| \mid E \in \mathrm{Indep}_C\} \mathrm{непустое}$ подмножество в $\{|C|,\ldots,|T|\}$, поэтому существует такое $B \in \mathrm{Indep}_C$, что $|B| = \max\{|E| \mid E \in \mathrm{Indep}_C\};$ из теоремы о свойствах базиса следует, что $B \mathrm{базис}.$
- (2) Построим такое $\widetilde{D}\subseteq D$, что $V=\langle\widetilde{D}\rangle$ и $|\widetilde{D}|<\infty$. Из того, что $V=\langle D\rangle$, следует, что $\forall t\in T\ \exists\ D_t\subseteq D\ (t\in\langle D_t\rangle\wedge|D_t|<\infty)$; положим $\widetilde{D}=\bigcup_{t\in T}D_t$; тогда $V=\langle T\rangle=\langle\widetilde{D}\rangle$ и $|\widetilde{D}|\leq |T|\cdot\max\{|D_t|\ |\ t\in T\}<\infty$. Обозначим $\mathrm{Gener}_{\widetilde{D}}=\{E\subseteq\widetilde{D}\ |\ V=\langle E\rangle\}$; тогда $\{|E|\ |\ E\in\mathrm{Gener}_{\widetilde{D}}\}$ непуст. подмн.-во в $\{0,\ldots,|\widetilde{D}|\}$, поэтому существ. такое $B\in\mathrm{Gener}_{\widetilde{D}}$, что $|B|=\min\{|E|\ |\ E\in\mathrm{Gener}_{\widetilde{D}}\}$; из теоремы о свойствах базиса следует, что B— базис.

Факт без доказательства: в любом векторном пространстве существует базис.

Далее K — поле, V,Y — векторные пространства над K и B — базис пространства V.

• Теорема об универсальности базиса. В сделанных выше предположениях для любых $\alpha\in \overline{\mathrm{Func}(B,Y)}$ существует единственный такой $a\in \mathrm{Hom}(V,Y)$, что $a|_B=\alpha$ (и, значит, отображение $\binom{\mathrm{Hom}(V,Y)\to \mathrm{Func}(B,Y)}{a\mapsto a|_B}$ — изоморфизм векторных пространств).

Существование оператора a. Пусть $v \in V$; тогда $\exists ! f \in \mathrm{FinFunc}(B,K) \left(v = \sum_{b \in B} f(b)b\right)$; положим $a(v) = \sum_{b \in B} f(b)\alpha(b).$ Далее докажем, что $a \in \mathrm{Hom}(V,Y)$ и $a|_B = \alpha$:

$$\begin{array}{l} \forall \, v = \sum_{b \in B} f(b)b, v' = \sum_{b \in B} f'(b)b \in V, c, c' \in K \left(a(cv+c'v') = \sum_{b \in B} (cf+c'f')(b)\alpha(b) = c \sum_{b \in B} f(b)\alpha(b) + c' \sum_{b \in B} f'(b)\alpha(b) = ca(v) + c'a(v') \right) \text{ in } \forall \, b \in B \left(a(b) = \alpha(b) \right). \end{array}$$

Единственность оператора a. Пусть $a, a' \in \operatorname{Hom}(V, Y)$ и $a|_B = a'|_B$; тогда для любых $v \in V$ имеем следующие факты: $\exists ! \ f \in \operatorname{FinFunc}(B, K) \ (v = \sum_{b \in B} f(b)b)$ и, значит, $a(v) = a(\sum_{b \in B} f(b)b) = \sum_{b \in B} f(b)a(b) = \sum_{b \in B} f(b)a'(b) = a'(\sum_{b \in B} f(b)b) = a'(v)$.

- ullet Теорема о базисах и линейных операторах. В сделанных выше предположениях для любых $a\in {
 m Hom}(V,Y)$ имеем следующие факты:
- (1) a инъекция, если и только если все a(b), где $b\in B$, попарно различны и a(B) независимое множество (то есть набор векторов a(b), где $b\in B$, независим);
- (2) a сюръекция, если и только если a(B) порождающее множество;
- (3) a изоморфизм, если и только если все a(b), где $b\in B$, попарно различны и a(B) базис (то есть набор векторов a(b), где $b\in B$, является базисом).

Доказательство.

Из того, что B — базис пространства V, следует, что $\operatorname{Ker} a = \{\sum_{b \in B} f(b)b \mid f(b, b)\}$

 $\begin{array}{l} f \in \operatorname{FinFunc}(B,K) \wedge a(\sum_{b \in B} f(b)b) = 0 \big\} \cong \{ f \in \operatorname{FinFunc}(B,K) \mid \sum_{b \in B} f(b)a(b) = 0 \} \text{ M} \\ \operatorname{Im} a = \{ a(\sum_{b \in B} f(b)b) \mid f \in \operatorname{FinFunc}(B,K) \} = \big\{ \sum_{b \in B} f(b)a(b) \mid f \in \operatorname{FinFunc}(B,K) \big\} = \langle a(B) \rangle. \end{array}$

- $(1) a \in \{a(\sum_{b \in B} f(b)b) \mid f \in \text{FinFunc}(B, K)\} = \{\sum_{b \in B} f(b)a(b) \mid f \in \text{FinFunc}(B, K)\} = \{a(B)\}$ $(1) a \in \text{Inj}(V, Y) \Leftrightarrow \text{Ker } a = \{0\} \Leftrightarrow \{f \in \text{FinFunc}(B, K) \mid \sum_{b \in B} f(b)a(b) = 0\} = \{0\} \Leftrightarrow \{f \in \text{FinFunc}(B, K) \mid f \in \text{FinFunc}(B, K)\}$
- \Leftrightarrow (все a(b), где $b\in B$, попарно различны и a(B) независимое множество).
- (2) $a \in \operatorname{Surj}(V,Y) \Leftrightarrow \operatorname{Im} a = Y \Leftrightarrow \langle a(B) \rangle = Y \Leftrightarrow \big(a(B) \operatorname{порождающее}$ множество).
- (3) $a\in \mathrm{Iso}(V,Y)\Leftrightarrow a\in \mathrm{Inj}(V,Y)\wedge a\in \mathrm{Surj}(V,Y)\Leftrightarrow \big(\mathrm{все}\ a(b),\ \mathrm{rge}\ b\in B,\ \mathrm{попарно}\ \mathrm{разл}.\ \mathrm{u}$ a(B) независимое и порождающее множество, то есть базис $\big).$

§ 4.3 Размерность, координаты, замена координат

ullet Размерность $\dim V$ вект. пространства V — порядок (мощность) базиса пространства V. Примеры (K — поле): $\dim K^n = \dim K_n = n$, $\dim \operatorname{Mat}(p,n,K) = np$ и $\dim K[x] = \infty$.

Корректность определения: пусть в V существует конечное порождающее подмножество; тогда в V существует базис, и все базисы пространства V имеют одинаковый порядок. Размерность аффинного подпространства $(U \le V \text{ и } v \in V)$: $\dim(v+U) = \dim U$.

- ullet Теорема о свойствах размерности. Пусть K- поле, V- векторное пространство над K и $\dim V < \infty$; тогда
- (1) для любого независимого подмножества C в V выполнено $|C| \leq \dim V$ и, если
- $|C| = \dim V$, то C базис пространства V;
- (2) для любого порождающего подмножества D в V выполнено $|D| \geq \dim V$ и, если
- $|D| = \dim V$, то D базис пространства V;
- (3) для любого подпр.-ва U в V выполн. $\dim U \leq \dim V$ и, если $\dim U = \dim V$, то U = V. Доказательство.
- $(1) \ \exists \ B \subseteq V \ \big(B \mathsf{базиc} \ \mathsf{B} \ V \ \land \ C \subseteq B \big), \ \mathsf{поэтомy} \ |C| \le |B| = \dim V \ \mathsf{u} \ |C| = |B| \Rightarrow C = B.$
- (2) $\exists B \subseteq V \ (B \mathsf{Gasuc} \ \mathsf{B} \ V \land B \subseteq D)$, noэтому $|D| \geq |B| = \dim V \ \mathsf{u} \ |D| = |B| \Rightarrow D = B$.
- (3) Обозначим $\mathrm{Indep}(U) = \{E \subseteq U \mid E \text{независ. мн.-во}\};$ тогда $\{|E| \mid E \in \mathrm{Indep}(U)\} \mathrm{непустое}$ подмножество в $\{0,\dots,\dim V\}$, поэтому существует такое $A \in \mathrm{Indep}(U)$, что $|A| = \max\{|E| \mid E \in \mathrm{Indep}(U)\};$ тогда $A \mathrm{базис}$ в U. В итоге имеем $\dim U = |A| \leq \dim V$ и, если $\dim U = \dim V$, то $|A| = \dim V$, поэтому $A \mathrm{базис}$ в V и, значит, $U = \langle A \rangle = V$.
- ullet Теорема о размерности и линейных операторах. Пусть K поле, V,Y векторные пространства над K и $\dim V,\dim V<\infty$; тогда
- (1) $\operatorname{Inj}(V,Y) \cap \operatorname{Hom}(V,Y) \neq \emptyset$, если и только если $\dim V \leq \dim Y$;
- (2) $\mathrm{Surj}(V,Y)\cap\mathrm{Hom}(V,Y)\neq\varnothing$, если и только если $\dim V\geq\dim Y$;

- (3) $V \cong Y$, если и только если $\dim V = \dim Y$;
- (4) если $\dim V = \dim Y$, то $\operatorname{Inj}(V,Y) \cap \operatorname{Hom}(V,Y) = \operatorname{Surj}(V,Y) \cap \operatorname{Hom}(V,Y) = \operatorname{Iso}(V,Y)$ (это принцип Дирихле для линейных операторов), а также для любых $a \in \operatorname{Hom}(V,Y)$ и $b \in \operatorname{Hom}(Y,V)$ выполнено $b \circ a = \operatorname{id}_V \Rightarrow b = a^{-1}$.

Пусть $n=\dim V$, $p=\dim Y$, $\{e_1,\ldots,e_n\}$, $\{h_1,\ldots,h_p\}$ — базисы в V и Y соответственно.

- (1) Если $a\in {\rm Inj}(V,Y)\cap {\rm Hom}(V,Y)$, то $|\{a(e_1),\dots,a(e_n)\}|=n$ и $\{a(e_1),\dots,a(e_n)\}-$ независимое мн.-во; отсюда по теореме о св.-вах размерности (для Y) следует, что $n\le p$. Если $n\le p$, то продолжим отобр. $e_1\mapsto h_1,\dots,e_n\mapsto h_n$ до лин. оператора $a\in {\rm Hom}(V,Y)$ (используем универсальность базиса); тогда $a(e_1),\dots,a(e_n)$ попарно различны и $\{a(e_1),\dots,a(e_n)\}$ независимое множество, поэтому $a\in {\rm Inj}(V,Y)\cap {\rm Hom}(V,Y)$.
- (2) Если $a\in \mathrm{Surj}(V,Y)\cap \mathrm{Hom}(V,Y)$, то $|\{a(e_1),\dots,a(e_n)\}|\leq n$ и $\{a(e_1),\dots,a(e_n)\}-$ порождающ. мн.-во; отсюда по теореме о св.-вах размерности (для Y) следует, что $n\geq p$. Если $n\geq p$, то продолжим отобр.-е $e_1\mapsto h_1,\dots,e_p\mapsto h_p,e_{p+1}\mapsto h_1,\dots,e_n\mapsto h_1$ до лин. операт. $a\in \mathrm{Hom}(V,Y)$ (используем универсальность базиса); тогда $\{a(e_1),\dots,a(e_n)\}-$ базис и, значит, порождающее множество, поэтому $a\in \mathrm{Surj}(V,Y)\cap \mathrm{Hom}(V,Y)$.
- (3) Если $V\cong Y$, то $\mathrm{Inj}(V,Y)\cap\mathrm{Surj}(V,Y)\cap\mathrm{Hom}(V,Y)\neq\varnothing$, поэтому n=p.

Если n=p, то продолжим отобр. $e_1\mapsto h_1,\dots,e_n\mapsto h_n$ до лин. оператора $a\in \mathrm{Hom}(V,Y)$; тогда $a(e_1),\dots,a(e_n)$ попарно разл. и $\{a(e_1),\dots,a(e_n)\}$ — базис, поэтому $a\in \mathrm{Iso}(V,Y)$. (4) Далее n=p. Если $a\in \mathrm{Ini}(V,Y)\cap \mathrm{Hom}(V,Y)$, то $|\{a(e_1),\dots,a(e_n)\}|=n=p$ и

 $\{a(e_1),\dots,a(e_n)\} \ - \ \text{независимое множество, поэтому} \ a(e_1),\dots,a(e_n) \ \text{ попарно различны и} \ \{a(e_1),\dots,a(e_n)\} \ - \ \text{базис, и, значит, } a \in \operatorname{Iso}(V,Y). \ \text{Если} \ a \in \operatorname{Surj}(V,Y) \cap \operatorname{Hom}(V,Y), \ \text{то} \ |\{a(e_1),\dots,a(e_n)\}| \le n = p \ \text{и} \ \{a(e_1),\dots,a(e_n)\} \ - \ \text{порождающее множество, поэтому} \ a(e_1),\dots,a(e_n) \ \text{ попарно различны и} \ \{a(e_1),\dots,a(e_n)\} \ - \ \text{базис, и, значит, } a \in \operatorname{Iso}(V,Y). \ b \circ a = \operatorname{id}_V \Rightarrow a \in \operatorname{Inj}(V,Y) \cap \operatorname{Hom}(V,Y) \Rightarrow a \in \operatorname{Iso}(V,Y) \Rightarrow b = (b \circ a) \circ a^{-1} = a^{-1}.$

Далее K — поле, V — векторное пространство над K и $n=\dim V<\infty$.

ullet Мн.-во упорядоченных базисов: $\mathrm{OB}(V) = \{(e_1,\ldots,e_n) \in V^n \mid \{e_1,\ldots,e_n\} - \mathsf{базис} \ \mathsf{B} \ V\}.$

Столбец коорд.-т вектора $(e \in \mathrm{OB}(V))$: v^e . Утверждение: $v = e \cdot v^e$. Изоморфизм $\binom{V \to K^n}{v \mapsto v^e}$.

Пример: если n=2, то $\mathrm{OB}(V)=\{(e_1,e_2)\mid e_1\in V\setminus\{0\}\ \land\ e_2\in V\setminus\langle e_1\rangle\}.$ Координаты в K^n : обозначим $\mathbf{e}=(\mathbf{e}_1,\ldots,\mathbf{e}_n)$; тогда $\mathbf{e}\in\mathrm{OB}(K^n)$ и $\forall\,v\in K^n$ $(v^\mathbf{e}=v).$

* Для любых $v\in V$ выполнено $v=(v^e)^1e_1+\ldots+(v^e)^ne_n=(e_1\ \ldots\ e_n)\cdot\begin{pmatrix} (v^e)^1\\ \vdots\\ (v^e)^n\end{pmatrix}=e\cdot v^e.$ $\begin{pmatrix} V\to K^n\\ v\mapsto v^e \end{pmatrix}$ и $\begin{pmatrix} K^n\to V\\ v\mapsto v^1e_1+\ldots+v^ne_n \end{pmatrix}$ — взаимно обр. изоморфизмы вект. простр.-в.

Далее Y — векторное пространство над K, $p=\dim Y<\infty$, $e\in \mathrm{OB}(V)$ и $h\in \mathrm{OB}(Y)$.

ullet Матрица линейного оператора a $(a\in \mathrm{Hom}(V,Y))$: $a_e^h=\left(a(e_1)^h\ldots a(e_n)^h\right)$. Теорема о матрице линейного оператора. Изоморфизм вект. пр.-в и колец $\binom{\mathrm{End}(V) o \mathrm{Mat}(n,K)}{a\mapsto a_e^e}$.

$$a_e^h = egin{pmatrix} (a(e_1)^h)^1 & \dots & (a(e_n)^h)^1 \\ \vdots & \ddots & \vdots \\ (a(e_1)^h)^p & \dots & (a(e_n)^h)^p \end{pmatrix}$$
 — матрица лин. операт. a относит. упоряд. базисов e и h .

Пример: пусть $a\in \mathrm{Mat}(p,n,K)$, е и \mathbf{h} — стандартные упорядоченные базисы в K^n и K^p соответст.; тогда $(\mathrm{lm}_a)_{\mathbf{e}}^{\mathbf{h}}=a$ (так как $(\mathrm{lm}_a)_{\mathbf{e}}^{\mathbf{h}}=\left((a\cdot\mathbf{e}_1)^{\mathbf{h}}\ldots(a\cdot\mathbf{e}_n)^{\mathbf{h}}\right)=\left(a_1^{\bullet}\ldots a_n^{\bullet}\right)=a\right)$. Кроме того, из доказанной далее теоремы в случае, когда $V=K^n,Y=K^p,\,e=\mathbf{e},\,h=\mathbf{h},$ следует, что $\left(\mathrm{Hom}(K^n,K^p)\to\mathrm{Mat}(p,n,K)\atop a\mapsto a_n^{\mathbf{h}}\right)$ и $\left(\mathrm{Mat}(p,n,K)\to\mathrm{Hom}(K^n,K^p)\atop a\mapsto \mathrm{lm}_a\right)$ —

взаимно обратные изоморфизмы векторных пространств.

Теорема о матрице линейного оператора. Пусть K — поле и V, X, Y, Z — векторные пространства над K; тогда

(1) если $n=\dim V<\infty$, $p=\dim Y<\infty$, $e\in \mathrm{OB}(V)$ и $h\in \mathrm{OB}(Y)$, то

$$orall a \in \operatorname{Hom}(V,Y), v \in V\left(a(v)^h = a_e^h \cdot v^e
ight)$$
, а также отобр. $\left(egin{array}{c} \operatorname{Hom}(V,Y) o \operatorname{Mat}(p,n,K) \\ a \mapsto a_e^h \end{array} \right)$

изоморфизм векторных пространств (и, значит, $\dim \operatorname{Hom}(V,Y)=np$);

(2) если $\dim V, \dim X, \dim Z < \infty$, $e \in \mathrm{OB}(V)$, $f \in \mathrm{OB}(X)$ и $g \in \mathrm{OB}(Z)$, то $\forall \, a \in \mathrm{Hom}(V,X), \, b \in \mathrm{Hom}(X,Z) \, \big((b \circ a)_e^g = b_f^g \cdot a_e^f \big).$

Доказательство.

$$(1) \ a(v)^h = a((v^e)^1 e_1 + \dots + (v^e)^n e_n)^h = ((v^e)^1 a(e_1) + \dots + (v^e)^n a(e_n))^h = \\ = (v^e)^1 a(e_1)^h + \dots + (v^e)^n a(e_n)^h = (a_e^h)_1^{\bullet} (v^e)^1 + \dots + (a_e^h)_n^{\bullet} (v^e)^n = a_e^h \cdot v^e.$$

Пусть φ — отображение из пункта (1); легко видеть, что φ — линейный оператор.

Инъективность оператора φ : пусть $a\in \mathrm{Hom}(V,Y)$ и $a_e^h=0$; тогда a=0 (так как $\forall\,v\in V$ $\big(a(v)^h=0\cdot v^e=0\big)$). Сюръективность оператора φ : пусть $a\in \mathrm{Mat}(p,n,K)$; тогда матрица

лин. оператора
$$\binom{V o Y}{v \mapsto (a \cdot v^e)^1 h_1 + \ldots + (a \cdot v^e)^p h_p}$$
 относительно e и h равна матрице a (так так $\forall j \in \{1,\ldots,n\}$ $(((a \cdot e_i^e)^1 h_1 + \ldots + (a \cdot e_i^e)^p h_p)^h = (a_i^1 h_1 + \ldots + a_i^p h_p)^h = a_i^{\bullet})).$

$$((a \cdot e_j^e)^p h_p)^n = (a_j^e h_1 + \ldots + a_j^e h_p)^n = (a_j^e h_1 + \ldots + a_j^e h_p)^n = a_j^e)).$$

(2)
$$n = \dim V \Rightarrow (b \circ a)_e^g = (b(a(e_1))^g \dots b(a(e_n))^g) = (b_f^g \cdot a(e_1)^f \dots b_f^g \cdot a(e_n)^f) = b_f^g \cdot a_e^f$$

$$ig(rac{\operatorname{End}(V) o \operatorname{Mat}(n,K)}{a \mapsto a_e^e} ig)$$
 — изоморфизм вект. простр.-в и колец (так как $orall \, a,b \in \operatorname{End}(V)$

$$\big((b\circ a)_e^e=b_e^e\cdot a_e^e\big) \text{ if } (\mathrm{id}_V)_e^e=\mathrm{id}_n\big) \text{ if, } \exists \mathsf{Hayut, } \forall\, a\in\mathrm{End}(V)\,\big(a\in\mathrm{GL}(V)\Leftrightarrow a_e^e\in\mathrm{GL}(n,K)\big).$$

Следствия о матрицах из теории о линейных операторах (далее $a,b,g\in \mathrm{Mat}(n,K)$): $\star b\cdot a=\mathrm{id}_n\Leftrightarrow \mathrm{lm}_{b\cdot a}=\mathrm{id}_{K^n}\Leftrightarrow \mathrm{lm}_b\circ \mathrm{lm}_a=\mathrm{id}_{K^n}\Leftrightarrow \mathrm{lm}_b=\mathrm{lm}_a^{-1}\Leftrightarrow \mathrm{lm}_b=\mathrm{lm}_{a^{-1}}\Leftrightarrow b=a^{-1};$

 $\star g \in GL(n,K) \Leftrightarrow \operatorname{lm}_g \in GL(K^n) \Leftrightarrow (\operatorname{lm}_g(\mathbf{e}_1),\ldots,\operatorname{lm}_g(\mathbf{e}_n)) \in OB(K^n) \Leftrightarrow$ $\Leftrightarrow (g_{\bullet}^{\bullet}, \dots, g_{\bullet}^{\bullet}) \in \mathrm{OB}(K^n)$ u $g \in \mathrm{GL}(n, K) \Leftrightarrow g^{\mathsf{T}} \in \mathrm{GL}(n, K) \Leftrightarrow (g_{\bullet}^{\mathsf{T}}, \dots, g_{\bullet}^{n}) \in \mathrm{OB}(K_n)$.

Далее K — поле, V — векторное пространство над K, $n=\dim V<\infty$ и $e,\widetilde{e}\in \mathrm{OB}(V)$.

- ullet Матрица замены координат: $\mathbf{c}_e^{\widetilde{e}}=(\mathrm{id}_V)_e^{\widetilde{e}}=(e_1^{\widetilde{e}}\,\ldots\,e_n^{\widetilde{e}}).$ Пример: если $e=(e_1,\ldots,e_n)\in$ $\in \mathrm{OB}(K^n)$, то $\mathbf{c}_e^{\mathbf{e}} = (e_1 \ldots e_n)$. Утверждение: $\forall \widetilde{\widetilde{e}} \in \mathrm{OB}(V) \left(\mathbf{c}_{\widetilde{e}}^{\widetilde{e}} \cdot \mathbf{c}_{e}^{\widetilde{e}} = \mathbf{c}_{e}^{\widetilde{e}} \right)$ и $\mathbf{c}_{\widetilde{e}}^{e} = (\mathbf{c}_{e}^{\widetilde{e}})^{-1}$.
- $\star \ c_{\widetilde{e}}^{\widetilde{\widetilde{e}}} \cdot c_{\widetilde{e}}^{\widetilde{e}} = (\mathrm{id}_V)_{\widetilde{e}}^{\widetilde{\widetilde{e}}} \cdot (\mathrm{id}_V)_{\widetilde{e}}^{\widetilde{e}} = (\mathrm{id}_V \circ \mathrm{id}_V)_{\widetilde{e}}^{\widetilde{\widetilde{e}}} = c_{\widetilde{e}}^{\widetilde{\widetilde{e}}} \ \mathsf{w} \ c_{\widetilde{e}}^{e} \cdot c_{\widetilde{e}}^{\widetilde{e}} = c_{e}^{e} = \mathrm{id}_n \Rightarrow c_{\widetilde{e}}^{e} = (c_{\widetilde{e}}^{\widetilde{e}})^{-1}.$
- ullet Преобразование столбца координат вектора ($v\in V$): $v^{\widetilde{e}}=c_{e}^{\widetilde{e}}\cdot v^{e}$; покомпонентная запись $(i \in \{1,\dots,n\})$: $v^{\widetilde{i}} = \sum_{i} (e_k)^{\widetilde{i}} v^k$. Преобраз.-е базиса: $\widetilde{e} = e \cdot c_{\widetilde{e}}^e$ ($c_{\widetilde{e}}^e$ — матрица перехода).

Выше используется обозначение: $\forall\,v\in V, i\in\{1,\ldots,n\}\, \big(v^i=(v^e)^i\,\wedge\,v^{\widetilde{i}}=(v^{\widetilde{e}})^i\big).$ $\star \ v^{\widetilde{e}} = (\mathrm{id}_V(v))^{\widetilde{e}} = (\mathrm{id}_V)^{\widetilde{e}}_e \cdot v^e = c^{\widetilde{e}}_e \cdot v^e \text{ in } v^{\widetilde{i}} = (v^{\widetilde{e}})^i = (c^{\widetilde{e}}_e \cdot v^e)^i = \sum_{1 \leq k \leq n} (c^{\widetilde{e}}_e)^i_k (v^e)^k = \sum_{1 \leq k \leq n} (e_k)^{\widetilde{i}} v^k.$

$$t=(R_V(e))=(R_V)_e$$
 $t=c_e$ t t $t=(e)$ $t=(e)$

 \star Для любых $i\in\{1,\ldots,n\}$ имеем $e_{\widetilde{i}}=\widetilde{e}_i=\sum\limits_{1\leq k\leq n}(e_{\widetilde{i}})^ke_k=\sum\limits_{1\leq k\leq n}e_k(\mathbf{c}_{\widetilde{e}}^e)_i^k$, и, значит, $\widetilde{e}=e\cdot\mathbf{c}_{\widetilde{e}}^e$.

Далее Y — векторное пространство над K, $\dim Y < \infty$ и $h, \widetilde{h} \in \mathrm{OB}(Y)$.

ullet Преобразов.-е матрицы лин. оператора $(a\in \mathrm{Hom}(V,Y))$: $a_{\widetilde{e}}^{\widetilde{h}}=c_h^{\widetilde{h}}\cdot a_e^h\cdot c_{\widetilde{e}}^e$; случай V=Y, e=h и $\widetilde{e}=\widetilde{h}$: $a_{\widetilde{e}}^{\widetilde{e}}=\mathrm{c}_{\widetilde{e}}^{\widetilde{e}}\cdot a_{e}^{e}\cdot \mathrm{c}_{\widetilde{e}}^{e}$; покомпон. запись $(i,j\in\{1,\dots,n\})$: $a_{\widetilde{j}}^{\widetilde{i}}=\sum\limits_{1< k,l< n}(e_{k})^{\widetilde{i}}(e_{\widetilde{j}})^{l}a_{l}^{k}.$

Выше используется обознач.-е: $\forall\,a\in\mathrm{End}(V), i,j\in\{1,\ldots,n\}$ $\left(a^i_j=(a^e_e)^i_j\wedge a^i_{\widetilde{i}}=(a^{\widetilde{e}}_{\widetilde{e}})^i_j\right)$.

 $\star a_{\widetilde{e}}^{\widetilde{h}} = (\mathrm{id}_Y \circ a \circ \mathrm{id}_V)_{\widetilde{e}}^{\widetilde{h}} = (\mathrm{id}_Y)_h^{\widetilde{h}} \cdot a_e^h \cdot (\mathrm{id}_V)_{\widetilde{e}}^e = c_h^{\widetilde{h}} \cdot a_e^h \cdot c_{\widetilde{e}}^e$ и, если V = Y, e = h и $\widetilde{e} = \widetilde{h}$, то $a_{\widetilde{j}}^{\widetilde{i}} = (a_{\widetilde{e}}^{\widetilde{e}})_{j}^{i} = (c_{\widetilde{e}}^{\widetilde{e}} \cdot a_{e}^{e} \cdot c_{\widetilde{e}}^{e})_{j}^{i} = \sum_{1 \leq k, l \leq n} (c_{\widetilde{e}}^{\widetilde{e}})_{i}^{i} (a_{e}^{e})_{l}^{k} (c_{\widetilde{e}}^{e})_{j}^{l} = \sum_{1 \leq k, l \leq n} (e_{k})^{\widetilde{i}} (e_{\widetilde{j}})^{l} a_{l}^{k}.$

§ 4.4 Факторпространства, прямая сумма векторных пространств, двойственное пространство

Далее K — поле, V — векторное пространство над K и $U \leq V$.

ullet Факторпр.-во: $V/U=\{v+U\mid v\in V\}$ (мн.-во классов смежности) с фактороперациями. Корректность опред.-я. Теорема о гомоморфизме. Коразмерность: $\operatorname{codim}_V U=\dim V/U$.

Структура векторн. пространства на V/U: $\forall \, v, v' \in V, \, c, c' \in K \left(c(v+U) + c'(v'+U) = (cv+c'v') + U \right)$; корректность: $\forall \, v, v', \check{v}, \check{v}' \in V, \, c, c' \in K \left(v+U=\check{v}+U \wedge v'+U=\check{v}'+U \Rightarrow c(v-\check{v}) + c'(v'-\check{v}') \in U \Rightarrow (cv+c'v') + U = (c\check{v}+c'\check{v}') + U \right)$; ясно, что V/U — вект. пр.-во.

 Теорема о гомоморфизме. Пусть K — поле, V,Y — векторные пространства над K и $a\in \mathrm{Hom}(V,Y);$ тогда $V/\mathrm{Ker}\,a\cong \mathrm{Im}\,a.$

Доказательство.

Отобр.-е $\binom{V/\operatorname{Ker} a o \operatorname{Im} a}{v+\operatorname{Ker} a \mapsto a(v)}$ опред. корректно и является изоморфизмом вект. простр.-в (проверка линейности указанного отображения: для любых $v,v' \in V$ и $c,c' \in K$ выполнено $c(v+\operatorname{Ker} a)+c'(v'+\operatorname{Ker} a)=(cv+c'v')+\operatorname{Ker} a\mapsto a(cv+c'v')=ca(v)+c'a(v')).$

Пример: пусть $\lambda\in \mathrm{Hom}(V,K)$, $\lambda\neq 0$ и $U=\mathrm{Ker}\,\lambda$; тогда $K\geq \mathrm{Im}\,a\neq \{0\}$, поэтому $V/U\cong K$ и, значит, $\mathrm{codim}_V U=1$ (то есть U — гиперплоскость в V).

- Теорема о факторпространстве. В сделанных выше предположениях имеем след. факты: (1) если A базис пространства U, B базис пространства V и $A \subseteq B$, то все b+U,
- где $b \in B \backslash A$, попарно различны и $\{b+U \mid b \in B \backslash A\}$ базис пространства V/U;
- (1') если $\dim V < \infty$, то $\dim V/U = \dim V \dim U$;
- (2) если $\dim V < \infty$, Y векторное пространство над K и $a \in \mathrm{Hom}(V,Y)$, то $\dim \mathrm{Ker}\, a + \dim \mathrm{Im}\, a = \dim V$ (это теорема о размерностях ядра и образа).

- (1) Все b+U, где $b\in B\backslash A$, попарно различны и $\{b+U\mid b\in B\backslash A\}$ независимое мн.-во, так как для любых $f\in \mathrm{FinFunc}(B\backslash A,K)$ выполнено $\sum_{b\in B\backslash A}f(b)(b+U)=0_{V/U}=U\Rightarrow \Rightarrow \sum_{b\in B\backslash A}f(b)b\in U\Rightarrow \exists\,g\in \mathrm{FinFunc}(A,K)\left(\sum_{b\in B\backslash A}f(b)b=\sum_{a\in A}g(a)a\right)\Rightarrow f=0.$ $\{b+U\mid b\in B\backslash A\}$ порождающее множество, так как для любых $v\in V$ выполнено $\exists\,f\in \mathrm{FinFunc}(B,K)\left(v+U=\sum_{b\in B}f(b)b+U=\sum_{b\in B}f(b)(b+U)=\sum_{b\in B\backslash A}f(b)(b+U)\right).$
- (1') Пусть A базис в U; тогда $\exists\, B\subseteq V\ \big(B$ базис в $V\wedge A\subseteq B\big)$; отсюда по пункту (1) следует, что $\dim V/U=|\{b+U\mid b\in B\backslash A\}|=|B|-|A|=\dim V-\dim U.$
- (2) $V/\operatorname{Ker} a \cong \operatorname{Im} a \Rightarrow \dim(V/\operatorname{Ker} a) = \dim \operatorname{Im} a \Rightarrow \dim V \dim \operatorname{Ker} a = \dim \operatorname{Im} a.$

 $\dim \operatorname{Ker} a + \dim \operatorname{Im} a = \dim V \Rightarrow$ второе док.-во принципа Дирихле для лин. операторов. Далее K — поле, $k \in \mathbb{N}_0$ и U, W, V_1, \ldots, V_k — векторные пространства над K.

ullet Прямая сумма $U\oplus W\colon U imes W$ с покомпонентными операциями. Операторы вложения и проекции $(i\in\{1,\dots,k\})\colon egin{pmatrix} V_i\to V_1\oplus\dots\oplus V_k \ v_i\mapsto (0,\dots,0,v_i,0,\dots,0) \end{pmatrix}$ и $egin{pmatrix} V_1\oplus\dots\oplus V_k\to V_i \ (v_1,\dots,v_k)\mapsto v_i \end{pmatrix}$.

Структура векторного пространства на $U\oplus W\colon \forall\, u,u'\in U,w,w'\in W,c,c'\in K$ $\big(c(u,w)+c'(u',w')=(cu+c'u',cw+c'w')\big);$ ясно, что $U\oplus W$ — векторное пространство; аналогичным образом определяется структура векторного пространства на $V_1\oplus\ldots\oplus V_k$.

• Теорема о прямой сумме. Пусть K — поле, V — векторн. пространство над K, $k \in \mathbb{N}_0$ и $V_1, \dots, V_k \leq V$; обозначим через add лин. операт. $\binom{V_1 \oplus \dots \oplus V_k \to V}{(v_1, \dots, v_k) \mapsto v_1 + \dots + v_k}$; тогда (1) если B_1, \dots, B_k — базисы пространств V_1, \dots, V_k соотв., то $\{(b_1, 0, \dots, 0) \mid b_1 \in B_1\} \cup \dots \cup \{(0, \dots, 0, b_k) \mid b_k \in B_k\}$ — базис пространства $V_1 \oplus \dots \oplus V_k$ (и, значит, если дополнительно add — изоморфизм, то $B_1 \cup \dots \cup B_k$ — базис пространства V);

- (1') если $\dim V_1, \ldots, \dim V_k < \infty$, то $\dim(V_1 \oplus \ldots \oplus V_k) = \dim V_1 + \ldots + \dim V_k$;
- (2) следующие утверждения эквивалентны: (у1) $add \in Iso(V_1 \oplus \ldots \oplus V_k, V)$, (у2) $\forall \, v \in V \, \exists ! \, v_1 \in V_1, \ldots, v_k \in V_k \, (v = v_1 + \ldots + v_k)$, (у3) для любых $i \in \{1, \ldots, k\}$
- выполнено $V_i \cap (V_1 + \ldots + V_{i-1} + V_{i+1} + \ldots + V_k) = \{0\}$ и $V = V_1 + \ldots + V_k$;
- (3) если $\dim V < \infty$, то в пункте (2) условие « $V = V_1 + \ldots + V_k$ » можно заменить на условие « $\dim V = \dim V_1 + \ldots + \dim V_k$ »:

(4) если $U,W \leq V$ и $\dim U,\dim W < \infty$, то $\dim(U\cap W) + \dim(U+W) = \dim U + \dim W$ (это формула Грассмана). Доказательство.

(1) $\{(b_1,0,\ldots,0)\mid b_1\in B_1\}\cup\ldots\cup\{(0,\ldots,0,b_k)\mid b_k\in B_k\}$ — независимое множество, так как для любых $f_1 \in \operatorname{FinFunc}(B_1, K), \dots, f_k \in \operatorname{FinFunc}(B_k, K)$ выполнено $\sum_{b_1 \in B_1} f_1(b_1)(b_1, 0, \dots, 0) + \dots + \sum_{b_k \in B_k} f_k(b_k)(0, \dots, 0, b_k) = 0_{V_1 \oplus \dots \oplus V_k} = (0, \dots, 0) \Rightarrow$ $\Rightarrow (\sum_{b_1 \in B_1} f_1(b_1)b_1, \dots, \sum_{b_k \in B_k} f_k(b_k)b_k) = (0, \dots, 0) \Rightarrow f_1 = 0, \dots, f_k = 0.$ $\{(b_1,0,\ldots,0)\mid b_1\in B_1\}\cup\ldots\cup\{(0,\ldots,0,b_k)\mid b_k\in B_k\}$ — порождающее множество, так

как для любых $v_1 \in V_1, \ldots, v_k \in V_k$ выполнено $\exists f_1 \in \operatorname{FinFunc}(B_1, K), \ldots, f_k \in \operatorname{FinFunc}(B_k, K)$ $((v_1,\ldots,v_k)=(v_1,0,\ldots,0)+\ldots+(0,\ldots,0,v_k)=(\sum_{b_1\in B_1}f_1(b_1)b_1,0,\ldots,0)+\ldots+$

 $+(0,\ldots,0,\sum_{b_{k}\in B_{k}}f_{k}(b_{k})b_{k})=\sum_{b_{1}\in B_{1}}f_{1}(b_{1})(b_{1},0,\ldots,0)+\ldots+\sum_{b_{k}\in B_{k}}f_{k}(b_{k})(0,\ldots,0,b_{k}).$ Ясно, что $\operatorname{add}(\{(b_1,0,\ldots,0)\mid b_1\in B_1\}\cup\ldots\cup\{(0,\ldots,0,b_k)\mid b_k\in B_k\})=B_1\cup\ldots\cup B_k$,

поэтому, если add — изоморфизм, то $B_1 \cup \ldots \cup B_k$ — базис пространства V. (1') Пусть B_1,\ldots,B_k — базисы в V_1,\ldots,V_k соответственно; тогда $\dim(V_1\oplus\ldots\oplus V_k)=$ $= |\{(b_1, 0, \dots, 0) \mid b_1 \in B_1\} \cup \dots \cup \{(0, \dots, 0, b_k) \mid b_k \in B_k\}| = \dim V_1 + \dots + \dim V_k.$

(2) $(add - изоморфизм) \Leftrightarrow (add - биекция) \Leftrightarrow \forall v \in V \exists! v_1 \in V_1, \dots, v_k \in V_k$ $(v = v_1 + \ldots + v_k) \Leftrightarrow \operatorname{Ker} \operatorname{add} = \{0\} \wedge \operatorname{Im} \operatorname{add} = V \Leftrightarrow \operatorname{Ker} \operatorname{add} = \{0\} \wedge V = V_1 + \ldots + V_k.$ Далее докажем, что $\operatorname{Ker} \operatorname{add} = \{0\}$, если и только если для любых $i \in \{1, \dots, k\}$ выполнено $V_i \cap (V_1 + \ldots + V_{i-1} + V_{i+1} + \ldots + V_k) = \{0\}.$

Если $\operatorname{Ker} \operatorname{add} = \{0\}$, то пусть $i \in \{1,\dots,k\}$ и $v \in V_i \cap (V_1+\dots+V_{i-1}+V_{i+1}+\dots+V_k);$ тогда $v = v_1+\dots+v_{i-1}+v_{i+1}+\dots+v_k$ для некоторых $v_1 \in V_1,\dots,v_{i-1} \in V_{i-1},$ $v_{i+1} \in V_{i+1},\dots,v_k \in V_k$, поэтому $\operatorname{add}(v_1,\dots,v_{i-1},-v,v_{i+1},\dots,v_k) = 0$ и, значит, v = 0. Если $\forall i \in \{1,\dots,k\}$ $(V_i \cap (V_1+\dots+V_{i-1}+V_{i+1}+\dots+V_k) = \{0\})$, то пусть $(v_1,\dots,v_k) \in \operatorname{Ker} \operatorname{add};$ тогда $v_1+\dots+v_k = 0$, поэтому $v_1 \in V_1 \cap (V_2+\dots+V_k)$ и, значит, $v_1 = 0$; далее $v_2+\dots+v_k = 0$ и аналогично $v_2 = 0$; в итоге $(v_1,\dots,v_k) = (0,\dots,0)$.

- (3) Используем принцип Дирихле для линейных операторов и пункт (2): $(\text{add} \text{изоморфизм}) \Leftrightarrow \text{Ker add} = \{0\} \land \dim(V_1 \oplus \ldots \oplus V_k) = \dim V \Leftrightarrow \forall i \in \{1, \ldots, k\}$ $(V_i \cap (V_1 + \ldots + V_{i-1} + V_{i+1} + \ldots + V_k) = \{0\}) \land \dim V = \dim V_1 + \ldots + \dim V_k.$
- (4) Обозначим через a линейный оператор $\binom{U \oplus W \to V}{(u,w) \mapsto u+w}$; тогда $\operatorname{Ker} a = \{(v,-v) \mid v \in U \cap W\} \cong U \cap W$ и $\operatorname{Im} a = U+W$, поэтому $\dim(U \cap W) + \dim(U+W) = \dim \operatorname{Ker} a + \dim \operatorname{Im} a = \dim(U \oplus W) = \dim U + \dim W$.
- Внутренняя прямая сумма: $V = V_1 \oplus \ldots \oplus V_k \Leftrightarrow \operatorname{add} \in \operatorname{Iso}(V_1 \oplus \ldots \oplus V_k, V)$. Лемма об инвариантном подпространстве. Прямая сумма квадратных матриц: $a' \oplus a'' = \begin{pmatrix} a' & 0 \\ 0 & a'' \end{pmatrix}$.

Примеры $(n \in \mathbb{N}_0)$: если $\operatorname{char} K \neq 2$, то $\operatorname{Mat}(n,K) = \operatorname{SMat}(n,K) \oplus \operatorname{AMat}(n,K)$; если $\operatorname{char} K$ не делит n, то $\operatorname{Mat}(n,K) = K \operatorname{id}_n \oplus \{a \in \operatorname{Mat}(n,K) \mid \operatorname{tr} a = 0\}$.

Лемма об инвариантном подпространстве. Пусть K — поле, V — векторное пространство над K, $n=\dim V<\infty$, $a\in \mathrm{End}(V)$, $U\le V$ и $a(U)\subseteq U$ (то есть U — a-инвариантное подпространство в V), а также $n'=\dim U$ и n''=n-n'; тогда

- (1) $\exists e \in \mathrm{OB}(V), a' \in \mathrm{Mat}(n', K), a'' \in \mathrm{Mat}(n'', K), b \in \mathrm{Mat}(n', n'', K) \left(a_e^e = \begin{pmatrix} a' & b \\ 0 & a'' \end{pmatrix}\right);$
- (2) если $W \leq V$, $V = U \oplus W$ и $a(W) \subseteq W$ (то есть W a-инвариантное подпространство в V), то $\exists \, e \in \mathrm{OB}(V), \, a' \in \mathrm{Mat}(n',K), \, a'' \in \mathrm{Mat}(n'',K) \left(a_e^e = \left(\begin{smallmatrix} a' & 0 \\ 0 & a'' \end{smallmatrix}\right)\right).$

Пусть $(e_1, \ldots, e_{n'}) \in \mathrm{OB}(U)$; тогда $a(e_1), \ldots, a(e_{n'}) \in U$.

 $\begin{array}{l} \text{(1)} \ \mathsf{Дополним} \ (e_1,\dots,e_{n'}) \ \mathsf{дo} \ (e_1,\dots,e_n) \in \mathsf{OB}(V) \ \mathsf{и} \ \mathsf{пусть} \ e = (e_1,\dots,e_n); \ \mathsf{тогдa} \\ a_e^e = \left(a(e_1)^e \ \dots \ a(e_{n'})^e \ a(e_{n'+1})^e \ \dots \ a(e_n)^e\right) = \left(\begin{smallmatrix} a' & b \\ 0 & a'' \end{smallmatrix}\right), \ \mathsf{rge} \ a' = \left(a|_{U \to U}\right)^{(e_1,\dots,e_{n'})}_{(e_1,\dots,e_{n'})} \in \\ \in \mathrm{Mat}(n',K) \ \mathsf{u} \ \left(\begin{smallmatrix} b \\ a'' \end{smallmatrix}\right) = \left(a|_{\langle e_{n'+1},\dots,e_n \rangle}\right)^e_{(e_{n'+1},\dots,e_n)} \in \mathrm{Mat}(n,n'',K). \end{array}$

 $(2) \ \mathsf{Пусть} \ (e_{n'+1}, \dots, e_n) \in \mathrm{OB}(W) \ \mathsf{u} \ e = \underbrace{(e_1, \dots, e_n)}; \ \mathsf{тогда} \ e \in \mathrm{OB}(V) \ (\Leftarrow V = U \oplus W) \ \mathsf{u}$ $a(e_{n'+1}), \dots, a(e_n) \in W, \ \mathsf{поэтомy} \ a_e^e = \Big(a(e_1)^e \ \dots \ a(e_{n'})^e \ a(e_{n'+1})^e \ \dots \ a(e_n)^e\Big) = \Big(\begin{smallmatrix} a' & 0 \\ 0 & a'' \end{smallmatrix}\Big),$ $\mathsf{rge} \ a' = \Big(a|_{U \to U}\Big)_{(e_1, \dots, e_{n'})}^{(e_1, \dots, e_{n'})} \in \mathrm{Mat}(n', K) \ \mathsf{u} \ a'' = \Big(a|_{W \to W}\Big)_{(e_{n'+1}, \dots, e_n)}^{(e_{n'+1}, \dots, e_n)} \in \mathrm{Mat}(n'', K).$

Пример: пусть $a\in \operatorname{End}(V)$, $a^2=a$, $U=\operatorname{Ker}(a-\operatorname{id}_V)=\{v\in V\mid a(v)=v\}$ и $W=\operatorname{Ker} a$; тогда $U\cap W=\{0\}$ и V=U+W (так как $\forall\,v\in V\left(a(v)\in U\wedge v-a(v)\in W\right)$), поэтому $V=U\oplus W$, а также, если $\dim V<\infty$, $(e_1,\ldots,e_m)\in\operatorname{OB}(U)$ и $(e_{m+1},\ldots,e_n)\in\operatorname{OB}(W)$, то $e=(e_1,\ldots,e_n)\in\operatorname{OB}(V)$ и $a_e^e=\left(\begin{smallmatrix} \operatorname{id}_m & 0 \\ 0 \end{smallmatrix}\right)$ (геометрический смысл: оператор a является проектором на подпространство U вдоль подпространства W).

Далее K — поле и V — векторное пространство над K.

ullet Двойственное пространство: $V^* = \operatorname{Hom}(V,K)$. Двойственный базис $(n = \dim V < \infty, (n + 1))$

$$e \in \mathrm{OB}(V)) \colon e^* = \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} = \begin{pmatrix} v \mapsto (v^e)^1 \\ \vdots \\ v \mapsto (v^e)^n \end{pmatrix}; \ (e^1, \dots, e^n) \in \mathrm{OB}(V^*). \ \mathsf{Строка} \ \mathsf{коорд.-T} \ \mathsf{ковекторa:} \ \lambda_e.$$

* $\dim V^* = n$ и $\{e^1, \dots, e^n\}$ — порождающее множество (так как для любых $\lambda \in V^*$ имеем $\forall v \in V \left(\lambda(v) = (v^e)^1 \lambda(e_1) + \dots + (v^e)^n \lambda(e_n) = (\lambda(e_1)e^1 + \dots + \lambda(e_n)e^n)(v)\right)$ и, значит, $\lambda = \lambda(e_1)e^1 + \dots + \lambda(e_n)e^n$), поэтому $(e^1, \dots, e^n) \in \mathrm{OB}(V^*)$.

 $\forall \lambda \in V^* \left(\lambda_e = \left(\lambda(e_1) \ \dots \ \lambda(e_n)\right) = \lambda_e^{(1)}\right) \left(\lambda_e^{(1)} - \mathsf{матрица} \ \mathsf{линейного} \ \mathsf{onepatopa} \ \lambda\right).$

Далее $n=\dim V<\infty$, $e,\widetilde{e}\in \mathrm{OB}(V)$ и $\lambda\in V^*$.

ullet Утверждение: $\lambda=\lambda_e\cdot e^*$ и $orall v\in V\left(\lambda(v)=\lambda_e\cdot v^e
ight)$. Изоморфизм $inom{V^* o K_n}{\lambda\mapsto\lambda_e}$. Преобр.-я при замене базиса $(j\in\{1,\dots,n\})$: $\lambda_{\widetilde e}=\lambda_e\cdot c_{\widetilde e}^e$ и $\lambda_{\widetilde j}=\sum\limits_{1\le l\le n}(e_{\widetilde j})^l\lambda_l$, а также $\widetilde e^*=c_{\widetilde e}^{\widetilde e}\cdot e^*$.

$$\star \ \lambda = \left(\lambda(e_1) \ \dots \ \lambda(e_n)\right) \cdot \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} = \lambda_e \cdot e^* \text{ in } \lambda(v) = \left(\lambda(e_1) \ \dots \ \lambda(e_n)\right) \cdot \begin{pmatrix} (v^e)^1 \\ \vdots \\ (v^e)^n \end{pmatrix} = \lambda_e \cdot v^e.$$

Выше используется обозначение: $\forall \lambda \in V^*, j \in \{1, \dots, n\} \ (\lambda_j = (\lambda_e)_j \ \land \ \lambda_{\widetilde{j}} = (\lambda_{\widetilde{e}})_j).$

$$\star \ \lambda_{\widetilde{e}} = \lambda_{\widetilde{e}}^{(1)} = \mathbf{c}_{(1)}^{(1)} \cdot \lambda_{e}^{(1)} \cdot \mathbf{c}_{\widetilde{e}}^{e} = \lambda_{e} \cdot \mathbf{c}_{\widetilde{e}}^{e} \ \text{if} \ \lambda_{\widetilde{j}} = (\lambda_{\widetilde{e}})_{j} = (\lambda_{e} \cdot \mathbf{c}_{\widetilde{e}}^{e})_{j} = \sum_{1 \leq l \leq n} (\lambda_{e})_{l} (\mathbf{c}_{\widetilde{e}}^{e})_{j}^{l} = \sum_{1 \leq l \leq n} (e_{\widetilde{j}})^{l} \lambda_{l}.$$

 \star Для любых $j \in \{1,\dots,n\}$ имеем $e^{\widetilde{j}} = \widetilde{e}^j = \sum\limits_{1 \leq l \leq n} (e^{\widetilde{j}})_l \, e^l = \sum\limits_{1 \leq l \leq n} (c^{\widetilde{e}}_e)^j_l e^l$, и, значит, $\widetilde{e}^* = c^{\widetilde{e}}_e \cdot e^*$.

Далее K — поле и V,Y — векторные пространства над K.

ullet Двойственный оператор для a ($a\in \mathrm{Hom}(V,Y)$): $a^*=\begin{pmatrix} Y^* o V^* \\ \theta\mapsto \theta\circ a \end{pmatrix}\in \mathrm{Hom}(Y^*,V^*).$

Утверждение: если $\dim V < \infty$, то $\binom{V o V^{**}}{v \mapsto (\lambda \mapsto \lambda(v))}$ — изоморфизм вект. пространств.

Легко видеть, что $(a\mapsto a^*)$ — линейный оператор, а также, если X,Z — векторные пространства над K, то $\forall\,a\in \mathrm{Hom}(V,X),b\in \mathrm{Hom}(X,Z)\,\big((b\circ a)^*=a^*\circ b^*\big).$

Если $\dim V, \dim V < \infty, \ e \in \mathrm{OB}(V)$ и $h \in \mathrm{OB}(Y)$, то $\forall \ \theta \in Y^* \left(a^*(\theta)_e = (\theta \circ a)_e = \theta_h \cdot a_e^h \right).$ \star Легко видеть, что $\left(v \mapsto (\lambda \mapsto \lambda(v)) \right)$ — линейный оператор, и это биекция, так как, если $n = \dim V$, то $n = \dim V^{**}$, и $\mathrm{Ker} \left(v \mapsto (\lambda \mapsto \lambda(v)) \right) = \{0\}$ (если $v \in V, \ \forall \ \lambda \in V^* \left(\lambda(v) = 0 \right)$ и $e \in \mathrm{OB}(V)$, то $\forall \ i \in \{1, \dots, n\}$ $\left((v^e)^i = e^i(v) = 0 \right)$ и, значит, v = 0).