Transcriptomics of symptomatic hosts, potato and mint, and asymptomatic host, mustard, during infection with host-adapted isolates of $Verticillim\ dahliae$

Authors: David Linnard Wheeler | Jeness Scott | Jeremiah Kam Sung Dung | Dennis Johnson

Table of Contents:

- Objectives
- Hypotheses
- · Experimental design
- · Material and Methods
- Open data
- · Curate data
- Summary statistics
- Exploratory data analyses
- Diagnostics
- Parametric analyses: differential expression analysis
- Visualization
- Export data
- Graveyard
- Resources

Objectives

Back to Table of Contents

• Characterize the differentially expressed genes involved in symptomatic (potato and mint) and asymptomatic interactions (mustard) between hosts and *Verticillium dahliae*

Hypotheses

Back to Table of Contents

• Science H_o 1: There are no differentially expressed genes (i) between symptomatic and asymptomatic hosts, (ii) between isolates within a host, and (iii) between hosts within an isolate.

- Science H_o 2: Symptomatic and asymptomatic hosts exhibit similar responses to $V.\ dahliae$ infection
- Science H_o 3: Gene expression of V. dahliae does not differ accross fungal strains or between asymptomatic and symptomatic hosts
- Statistical H_o :
 - Observed variation in DEG across treatments represents random variation, not systematic
 effects of hosts or isolates Variation in the DEG is unrelated to variation in the hosts and
 isolates and is no greater than expected by chance or sampling error.
 - More formally:

$$K_{ij} \sim NB(\mu_{ij}, \alpha_i)$$

where the counts, K_{ij} for each gene, i, and sample, j, follow a negative binomial with the mean, μ_{ij} , and dispersion parameter for each gene, α_i . The dispersion parameter, α_i , describes the relationship between variance of an observed count and its mean value- the expected distance of the observed count from its mean. The mean, μ_{ij} , can be decomposed into a sample-specific size factor, s_j , and a parameter, q_{ij} , that is proportional to the expected concentation of transcripts for sample j:

$$\mu_{ij} = s_j q_{ij}$$

Log2 fold changes for gene i in each column of the model matrix, X, are provided by the coefficients, β_i :

$$log_2(q_{ij}) = x_{j.}\beta_i$$

In short, the effect sizes between the groups are 0.

Experimental design

Back to Table of Contents

- Treatment structure: 2 way factorial
 - Independent variables:
 - 3 cultivars:
 - 1. Potato
 - 2. Mint
 - 3. Mustard
 - 3 fungi:
 - 1. Verticillium dahliae 653
 - 2. Verticillium dahliae 111
 - 3. Non-inoculated control
 - 1 time point:
 - 10 days after inoculation
 - 3 replicates
 - Dependent variables:

- Constructs:
 - Gene expression
- Variables:
 - Counts of RNA transcripts
- Design structure: randomized complete block design
- Observational unit: plant
 Experimental unit: plant
 Samples: whole plants
- Data:
 - RNA quantity and quality
 - Counts of RNA transcripts
- Analysis:
 - Differential gene expression analyses

Materials and Methods

Back to Table of Contents

Inoculum preparation for root dips (3.5"pot):

- Grow Verticillium dahliae 653 and 111 on separate plates of PDA agar at room temperature/
- Harvest 0.5 cm cores from each plate.
- Add one core per one 200 ml flask filled with 125ml of PDA broth.
- Incubate cultures at room temp/22 C for 7-10 days in the dark.
 - Spin at 125 RPM.
- Filter inoculum through two layers of sterilized cheesecloth with vacuum filter.
- · Quantify inoculum with hemocytometer.
- Dilute inoculum to 10⁶ conidia/mL with sterilized diH20.
- · Inoculate via root drench.
 - Pour 100 mL of 10⁶ conidia/mL inoculum over the soil/turface surface.
 - I did this mostly in lieu of watering. For example, if you normally give the plants 100 mL of water/day, give them 0 mL of water and inoculate; if you normally give the plants 200 mL of water/day, give them 100mL of water and inoculate.
- Inoculum for isolates 653 and 111:
 - 180 plants/3 isolates = 60 plants/isolate * 100 ml/plant (Dung et al. 2010) = 6000 ml = 6 L inoculum
 - 6 L of 10⁶ conidia/ml inoculum is needed
 - 6 L/200 ml/flask = 30 flasks
- Trial one planted: 5/1/2018
- Trial one inoculated: 5/19/2018
- First Harvest: potato, mint, and mustards harvested @ 10 dpi on 5/29/2018

Open data

Install and invoke packages

```
In [1]: if (!requireNamespace("BiocManager", quietly = TRUE))
            install.packages("BiocManager")
        BiocManager::install("DEFormats", version = "3.8")
        Bioconductor version 3.8 (BiocManager 1.30.4), R 3.5.2 (2018-12-20)
        Installing package(s) 'DEFormats'
        The downloaded binary packages are in
                /var/folders/8c/7fwkqlvd4ps rj6zf9lr xcw0000gn/T//RtmptF4nug/down
        loaded packages
        Update old packages: 'annotate', 'assertthat', 'BiocInstaller', 'callr',
          'colorspace', 'gtable', 'highr', 'knitr', 'lazyeval', 'openssl', 'pkgbu
          'processx', 'purrr', 'Rcpp', 'RcppArmadillo', 'readxl', 'rgdal', 'rlan
        g',
          'rmarkdown', 'rstudioapi', 'spam', 'sys', 'tibble', 'tinytex', 'XML',
          'diffobj', 'e1071', 'fs', 'git2r', 'Matrix', 'mgcv', 'zoo'
In [2]: if (!requireNamespace("BiocManager", quietly = TRUE))
            install.packages("BiocManager")
        BiocManager::install("apeglm", version = "3.8")
        Bioconductor version 3.8 (BiocManager 1.30.4), R 3.5.2 (2018-12-20)
        Installing package(s) 'apeglm'
        The downloaded binary packages are in
                /var/folders/8c/7fwkqlvd4ps rj6zf9lr xcw0000gn/T//RtmptF4nuq/down
        loaded packages
        Update old packages: 'annotate', 'assertthat', 'BiocInstaller', 'callr',
          'colorspace', 'gtable', 'highr', 'knitr', 'lazyeval', 'openssl', 'pkqbu
        ild',
          'processx', 'purrr', 'Rcpp', 'RcppArmadillo', 'readxl', 'rgdal', 'rlan
           rmarkdown', 'rstudioapi', 'spam', 'sys', 'tibble', 'tinytex', 'XML',
          'diffobj', 'e1071', 'fs', 'git2r', 'Matrix', 'mgcv', 'zoo'
```

```
In [10]: library("data.table")
         library("tibble")
         library("eulerr")
         library("apeglm")
         library("DESeq2")
         library("edgeR")
         library("DEFormats")
         library("dplyr")
         library("ggplot2")
         library("reshape2")
         library("pheatmap")
         library("RColorBrewer")
         library("PoiClaClu")
         library("ggbeeswarm")
         library("EnhancedVolcano")
         library("devtools")
         library("gridExtra")
         library("grid")
         library("cowplot")
         library("genefilter")
         library("viridis")
         library("VennDiagram")
         library("prob")
         library("seqinr")
         library("stringr")
         Loading required package: S4Vectors
         Loading required package: stats4
         Loading required package: BiocGenerics
         Loading required package: parallel
         Attaching package: 'BiocGenerics'
         The following objects are masked from 'package:parallel':
             clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
             clusterExport, clusterMap, parApply, parCapply, parLapply,
             parLapplyLB, parRapply, parSapplyLB
         The following objects are masked from 'package:stats':
             IQR, mad, sd, var, xtabs
         The following objects are masked from 'package:base':

    Grab working directory

In [11]: getwd()
```

'/Users/davidwheeler/Desktop/RESEARCH/Data/TRANSCRIPTOMICS/SCRIPTS'

Set working directory

In [12]: setwd("/Users/davidwheeler/Desktop/RESEARCH/Data/TRANSCRIPTOMICS/DATA/R_FII

· Open data

Fragments

```
In [13]: DF = read.csv("Mentha_reads.csv", header=T)
```

Gene names

```
In [15]: names(gnDF)[2]<-"id"
    names(gnDF)[3]<-"Comparison"
    names(gnDF)[6]<-"KO.Name"
    names(gnDF)[10]<-"Hitl_acc"</pre>
```

Sequences

Gene ontology

Curate data

Back to Table of Contents

Set first column to index

```
In [25]: DF_1 <- data.frame(DF[,-1], row.names = DF[,1])</pre>
```

In [26]: head(DF_1)

	S2_3_2_1	S2_3_2_9	S2_3_2_4	S2_1_2_1	S2_1_2_4	S2_1_2_5	S2_2_2_2	S2_2_5	S
Cluster- 67248.142691	4.03	0.00	0.00	3.72	2.16	1.92	0.00	8.79	
Cluster- 67248.107952	106.65	67.52	77.12	161.88	114.64	188.30	176.11	144.88	
Cluster- 58782.0	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	
Cluster- 67248.152869	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Cluster- 67248.17374	143.91	112.02	101.26	253.87	162.03	236.01	226.94	263.46	
Cluster- 67248.56631	2.31	7.86	6.27	11.81	3.72	0.00	4.92	0.00	

• Rounds floats/decimals to integer counts: since these data were generated $de\ novo$ decimals are abound

- Create DGEList Object
 - · Convert dataframe to matrix

```
In [28]: df = data.matrix(DF)
```

· Vector for column/treatment names

```
In [29]: group = rep(c("Control", "653", "111"), each = 3)
In [30]: dge = DGEList(df, group = group)
```

In [31]: dge

\$counts

	S2_3_2_1	S2_3_2_9	S2_3_2_4	S2_1_2_1	S2_1_2_4	S2_1_2_5	S2_2_2_2	S2_2_5	S2
Cluster- 67248.142691	4	0	0	4	2	2	0	9	
Cluster- 67248.107952	107	68	77	162	115	188	176	145	
Cluster- 58782.0	0	1	0	0	0	0	0	0	
Cluster- 67248.152869	0	0	0	0	0	0	0	0	
Cluster- 67248.17374	144	112	101	254	162	236	227	263	
Cluster- 67248.56631	2	8	6	12	4	0	5	0	
Cluster-	0	3	0	7	6	6	0	3	

Coerce DGElist to DESeqDataSet

In [32]: dds = as.DESeqDataSet(dge)

converting counts to integer mode

it appears that the last variable in the design formula, 'group',

has a factor level, 'Control', which is not the reference level. we recommend

to use factor(\dots ,levels= \dots) or relevel() to set this as the reference level

before proceeding. for more information, please see the 'Note on factor levels'

in vignette('DESeq2').

In [33]: dds

class: DESeqDataSet

dim: 266009 9

metadata(1): version

assays(1): counts

rownames(266009): Cluster-67248.142691 Cluster-67248.107952 ...

Cluster-67248.27096 Cluster-67248.132887

rowData names(0):

colnames(9): S2_3_2_1 S2_3_2_9 ... S2_2_2_5 S2_2_2_9

colData names(3): group lib.size norm.factors

Gene names data

Subset data

```
In [34]: gnDF = gnDF[,c("id","Comparison","KO.Name","Hit1_acc")]
```

Summary Statistics

Back to Table of Contents

Tabulate DEG data (Comparison - basemean -direction of regulation - log_2 -fold change - p-value - adjusted p-value - gene name - function)

DEGs from 653 vs Control

```
In [514]: Cv653_gn = subset(Cv653_GeneNames, Comparison == "Cv653")
```

· Order genes by fold change

```
In [515]: table_cv6 <- (Cv653_gn[order((-Cv653_gn$log2FoldChange)),c(8,1,2,3,6,7,10)]</pre>
```

· Round digits

```
In [516]: table_cv6$baseMean <- round(table_cv6$baseMean, 1)
   table_cv6$log2FoldChange <- round(table_cv6$log2FoldChange, 1)
   table_cv6$pvalue <- round(table_cv6$pvalue, 7)
   table_cv6$padj <- round(table_cv6$padj, 7)</pre>
```

- Format columns
 - Comparison

```
In [517]: table_cv6$Comparison = "control vs 653"
```

Host

```
In [518]: table_cv6$Host = "Mentha x piperita"
```

· Gene function

```
In [519]: | table_cv6$Function = NA

    Sequence

In [520]:
           table_cv6$Sequence = NA
             · Reorder columns
In [521]:
           table_cv6 = table_cv6[,c(8,1,3:7,2,9:10)]
             · Grab top 5 genes
In [522]: Up_cv6 = head(table_cv6, n=5)
                   · Add column for regulation status
In [523]: Up_cv6$Regulation = "up"

    Grab botton 5 genes

In [524]: Down_cv6 = tail(table_cv6, n=5)
                   · Add column for regulation status
In [525]: Down_cv6$Regulation = "down"
             • Table for control vs 653
In [526]: Table_cv6 = rbind(Up_cv6,Down_cv6)
```

In [527]: Table_cv6

	Host	Comparison	baseMean	log2FoldChange	pvalue	padj	Hit1_acc	
1006	Mentha x piperita	control vs 653	124.3	3.5	0e+00	0.0000000	FB30_ARATH	C 67248.
1411	Mentha x piperita	control vs 653	41.0	3.5	0e+00	0.0000001	PMTK_ARATH	C 67248.
738	Mentha x piperita	control vs 653	121.8	3.4	0e+00	0.0000000	CO1A1_HUMAN	C 67248.
764	Mentha x piperita	control vs 653	20.3	2.8	3e-07	0.0002652	-	C 67248.1
1821	Mentha x piperita	control vs 653	21.3	2.3	0e+00	0.0000221	-	C 71
1747	Mentha x piperita	control vs 653	19.3	-3.2	0e+00	0.000004	CB21_SINAL	C 67248.
544	Mentha x piperita	control vs 653	90.7	-3.6	0e+00	0.0000000	ARP3_ARATH	C 67248.1
49	Mentha x piperita	control vs 653	28.4	-3.8	0e+00	0.0000000	RBS2_BRANA	C (
1017	Mentha x piperita	control vs 653	114.4	-6.1	0e+00	0.0000000	RBS2_BRANA	C 67248
1174	Mentha x piperita	control vs 653	203.0	-6.3	0e+00	0.0000000	CNGC5_ARATH	C 67248.

• Rearrange columns

In [528]: Table_cv6 = Table_cv6[,c(1:2,11,3:10)]

In [529]: Table_cv6

	Host	Comparison	Regulation	baseMean	log2FoldChange	pvalue	padj	Hit1_ŧ
1006	Mentha x piperita	control vs 653	up	124.3	3.5	0e+00	0.0000000	FB30_AR/
1411	Mentha x piperita	control vs 653	up	41.0	3.5	0e+00	0.0000001	PMTK_AR/
738	Mentha x piperita	control vs 653	up	121.8	3.4	0e+00	0.0000000	CO1A1_HUM
764	Mentha x piperita	control vs 653	up	20.3	2.8	3e-07	0.0002652	
1821	Mentha x piperita	control vs 653	up	21.3	2.3	0e+00	0.0000221	
1747	Mentha x piperita	control vs 653	down	19.3	-3.2	0e+00	0.0000004	CB21_SIN
544	Mentha x piperita	control vs 653	down	90.7	-3.6	0e+00	0.0000000	ARP3_AR/
49	Mentha x piperita	control vs 653	down	28.4	-3.8	0e+00	0.0000000	RBS2_BRA
1017	Mentha x piperita	control vs 653	down	114.4	-6.1	0e+00	0.0000000	RBS2_BRA
1174	Mentha x piperita	control vs 653	down	203.0	-6.3	0e+00	0.0000000	CNGC5_AR/

· Rename column headers

```
In [530]: names(Table_cv6)[4] = "Base mean"
    names(Table_cv6)[5] = "Log2 fold change"
    names(Table_cv6)[6] = "p-value"
    names(Table_cv6)[7] = "adjusted p-value"
    names(Table_cv6)[8] = "Gene name"
    names(Table_cv6)[9] = "Gene ID"
    names(Table_cv6)[10] = "Function"
    names(Table_cv6)[11] = "Sequence"
```

In [531]: Table_cv6

	Host	Comparison	Regulation	Base mean	Log2 fold change	p- value	adjusted p-value	Gene name	Gen
1006	Mentha x piperita	control vs 653	up	124.3	3.5	0e+00	0.0000000	FB30_ARATH	Clu 67248.4
1411	Mentha x piperita	control vs 653	up	41.0	3.5	0e+00	0.0000001	PMTK_ARATH	Clu 67248.8 ²
738	Mentha x piperita	control vs 653	up	121.8	3.4	0e+00	0.0000000	CO1A1_HUMAN	Clu 67248.10
764	Mentha x piperita	control vs 653	up	20.3	2.8	3e-07	0.0002652	-	Clu 67248.142
1821	Mentha x piperita	control vs 653	up	21.3	2.3	0e+00	0.0000221	-	Clu 719
1747	Mentha x piperita	control vs 653	down	19.3	-3.2	0e+00	0.0000004	CB21_SINAL	Clu 67248.98
544	Mentha x piperita	control vs 653	down	90.7	-3.6	0e+00	0.0000000	ARP3_ARATH	Clu 67248.12
49	Mentha x piperita	control vs 653	down	28.4	-3.8	0e+00	0.0000000	RBS2_BRANA	Clu 62
1017	Mentha x piperita	control vs 653	down	114.4	-6.1	0e+00	0.0000000	RBS2_BRANA	Clu 67248.
1174	Mentha x piperita	control vs 653	down	203.0	-6.3	0e+00	0.0000000	CNGC5_ARATH	Clu 67248.6{

DEGs from 111 vs Control

```
In [532]: Cv111_gn = subset(Cv111_GeneNames, Comparison == "Cv111")
```

• Order genes by fold change

```
In [533]: table_cv1 <- (Cv111_gn[order((-Cv111_gn$log2FoldChange)),c(8,1,2,3,6,7,10)]</pre>
```

• Round digits

```
In [534]:
           table_cv1$baseMean <- round(table_cv1$baseMean, 1)</pre>
           table cv1$log2FoldChange <- round(table cv1$log2FoldChange, 1)
           table cv1$pvalue <- round(table cv1$pvalue, 7)</pre>
           table_cv1$padj <- round(table_cv1$padj, 7)</pre>
             · Format columns

    Comparisons

In [535]:
           table_cv1$Comparison = "control vs 111"

    Host

In [536]: table_cv1$Host = "Mentha x piperita"

    Gene function

In [537]: table cv1$Function = NA

    Sequence

           table_cv1$Sequence = NA
In [538]:

    Reorder columns

In [539]: table_cv1 = table_cv1[,c(8,1,3:7,2,9:10)]

    Grab top 5 DEGs

In [540]: Up_cv1 = head(table_cv1, n=5)

    Column for regulation status
```

```
In [541]: Up_cv1$Regulation = "up"
```

• Grab bottom 5 DEGs

```
In [542]: Down_cv1 = tail(table_cv1, n=5)
```

• Column for regulation status

```
In [543]: Down_cv1$Regulation = "down"
```

• Table for control vs 111

```
In [544]: Table_cv1 = rbind(Up_cv1,Down_cv1)
```

In [545]: Table_cv1

	Host	Comparison	baseMean	log2FoldChange	pvalue	padj	Hit1_acc	
1005	Mentha x piperita	control vs 111	124.3	3.4	0.0e+00	0.0000000	FB30_ARATH	67248
739	Mentha x piperita	control vs 111	121.8	3.4	0.0e+00	0.0000000	CO1A1_HUMAN	67248
862	Mentha x piperita	control vs 111	51.3	2.5	0.0e+00	0.0000000	IFRH_ARATH	(67248.
395	Mentha x piperita	control vs 111	18.6	2.5	1.5e-06	0.0001704	EGL1_ARATH	(67248.
447	Mentha x piperita	control vs 111	79.7	2.4	0.0e+00	0.0000000	PER45_ARATH	(67248.
1746	Mentha x piperita	control vs 111	19.3	-3.2	0.0e+00	0.0000000	CB21_SINAL	67248
1046	Mentha x piperita	control vs 111	55.2	-3.5	0.0e+00	0.0000000	PNSB3_ARATH	67248
50	Mentha x piperita	control vs 111	28.4	-3.8	0.0e+00	0.0000001	RBS2_BRANA	(
1016	Mentha x piperita	control vs 111	114.4	-5.9	0.0e+00	0.0000000	RBS2_BRANA	(6724
1175	Mentha x piperita	control vs 111	203.0	-6.6	0.0e+00	0.0000000	CNGC5_ARATH	(67248

• Rearrange columns

In [546]: Table_cv1 = Table_cv1[,c(1:2,11,3:10)]

In [547]: Table_cv1

	Host	Comparison	Regulation	baseMean	log2FoldChange	pvalue	padj	Hit1_
1005	Mentha x piperita	control vs 111	up	124.3	3.4	0.0e+00	0.0000000	FB30_AF
739	Mentha x piperita	control vs 111	up	121.8	3.4	0.0e+00	0.0000000	CO1A1_HUI
862	Mentha x piperita	control vs 111	up	51.3	2.5	0.0e+00	0.0000000	IFRH_AF
395	Mentha x piperita	control vs 111	up	18.6	2.5	1.5e-06	0.0001704	EGL1_AF
447	Mentha x piperita	control vs 111	up	79.7	2.4	0.0e+00	0.0000000	PER45_AF
1746	Mentha x piperita	control vs 111	down	19.3	-3.2	0.0e+00	0.0000000	CB21_SI
1046	Mentha x piperita	control vs 111	down	55.2	-3.5	0.0e+00	0.0000000	PNSB3_AF
50	Mentha x piperita	control vs 111	down	28.4	-3.8	0.0e+00	0.0000001	RBS2_BR
1016	Mentha x piperita	control vs 111	down	114.4	-5.9	0.0e+00	0.0000000	RBS2_BR
1175	Mentha x piperita	control vs 111	down	203.0	-6.6	0.0e+00	0.0000000	CNGC5_AF

· Rename column headers

```
In [548]: names(Table_cv1)[4] = "Base mean"
    names(Table_cv1)[5] = "Log2 fold change"
    names(Table_cv1)[6] = "p-value"
    names(Table_cv1)[7] = "adjusted p-value"
    names(Table_cv1)[8] = "Gene name"
    names(Table_cv1)[9] = "Gene ID"
    names(Table_cv1)[10] = "Function"
    names(Table_cv1)[11] = "Sequence"
```

In [549]: Table_cv1

	Host	Comparison	Regulation	Base mean	Log2 fold change	p-value	adjusted p-value	Gene name	Gı
1005	Mentha x piperita	control vs 111	up	124.3	3.4	0.0e+00	0.0000000	FB30_ARATH	C 67248.
739	Mentha x piperita	control vs 111	up	121.8	3.4	0.0e+00	0.0000000	CO1A1_HUMAN	C 67248.
862	Mentha x piperita	control vs 111	up	51.3	2.5	0.0e+00	0.0000000	IFRH_ARATH	C 67248.1
395	Mentha x piperita	control vs 111	up	18.6	2.5	1.5e-06	0.0001704	EGL1_ARATH	C 67248.1
447	Mentha x piperita	control vs 111	ир	79.7	2.4	0.0e+00	0.0000000	PER45_ARATH	C 67248.1
1746	Mentha x piperita	control vs 111	down	19.3	-3.2	0.0e+00	0.0000000	CB21_SINAL	C 67248.
1046	Mentha x piperita	control vs 111	down	55.2	-3.5	0.0e+00	0.0000000	PNSB3_ARATH	C 67248.
50	Mentha x piperita	control vs 111	down	28.4	-3.8	0.0e+00	0.0000001	RBS2_BRANA	C
1016	Mentha x piperita	control vs 111	down	114.4	-5.9	0.0e+00	0.0000000	RBS2_BRANA	C 6724{
1175	Mentha x piperita	control vs 111	down	203.0	-6.6	0.0e+00	0.0000000	CNGC5_ARATH	C 67248.

DEGs from 653 vs 111

```
In [550]: i653v111_gn = subset(i653v111_GeneNames, Comparison == "653v111")
```

• Order genes by fold change

```
In [551]: table_6v1 <- (i653v111_gn[order((-i653v111_gn$log2FoldChange)),c(8,1,2,3,6,</pre>
```

• Round Digits

```
In [552]:
           table_6v1$baseMean <- round(table_6v1$baseMean, 1)</pre>
           table 6v1$log2FoldChange <- round(table 6v1$log2FoldChange, 1)
           table_6v1$pvalue <- round(table_6v1$pvalue, 7)</pre>
           table_6v1$padj <- round(table_6v1$padj, 7)</pre>
             · Format columns

    By Columns

          table_6v1$Comparison = "653 vs 111"
In [553]:

    Host

In [554]: table_6v1$Host = "Mentha x piperita"
                    · Gene function
In [555]: table_6v1$Function = NA

    Sequence

In [556]: table_6v1$Sequence = NA

    Reorder columns

In [557]: table_6v1 = table_6v1[,c(8,1,3:7,2,9:10)]
             · Grab top 5 genes
In [558]: Up_6v1 = head(table_6v1, n=5)

    Column for regulation
```

```
In [559]: Up_6v1$Regulation = "up"
```

· Grab bottom 5 DEGs

```
In [560]: Down_6v1 = tail(table_6v1, n=5)
```

· Column for regulation

```
In [561]: Down_6v1$Regulation = "down"
```

• Table 653 vs 111

```
In [562]: Table_6v1 = rbind(Up_6v1,Down_6v1)
```

· Rearrange columns

```
In [563]: Table_6v1 = Table_6v1[,c(1:2,11,3:10)]
```

In [564]: Table_6v1

	Host	Comparison	Regulation	baseMean	log2FoldChange	pvalue	padj	Hit1_acc
1412	Mentha x piperita	653 vs 111	up	41.0	3.7	0	0.00e+00	PMTK_ARATH
765	Mentha x piperita	653 vs 111	up	20.3	3.1	0	3.00e-07	-
1460	Mentha x piperita	653 vs 111	up	23.3	2.4	0	4.00e-06	P2C14_ARATH
694	Mentha x piperita	653 vs 111	up	24.2	2.3	0	1.59e-05	PSL4_ARATH
1484	Mentha x piperita	653 vs 111	up	30.3	2.0	0	3.46e-05	-
1263	Mentha x	653 vs 111	down	15.0	-2.2	0	4.92e-05	SBT16_ARATH

· Rename column headers

```
In [565]: names(Table_6v1)[4] = "Base mean"
    names(Table_6v1)[5] = "Log2 fold change"
    names(Table_6v1)[6] = "p-value"
    names(Table_6v1)[7] = "adjusted p-value"
    names(Table_6v1)[8] = "Gene name"
    names(Table_6v1)[9] = "Gene ID"
    names(Table_6v1)[10] = "Function"
    names(Table_6v1)[11] = "Sequence"
```

In [566]: Table_6v1

	Host	Comparison	Regulation	Base mean	Log2 fold change	p- value	adjusted p-value	Gene name	Gene I
1412	Mentha x piperita	653 vs 111	up	41.0	3.7	0	0.00e+00	PMTK_ARATH	Cluste 67248.8424
765	Mentha x piperita	653 vs 111	ир	20.3	3.1	0	3.00e-07	-	Cluste 67248.14209
1460	Mentha x piperita	653 vs 111	up	23.3	2.4	0	4.00e-06	P2C14_ARATH	Cluste 67248.8757
694	Mentha x piperita	653 vs 111	up	24.2	2.3	0	1.59e-05	PSL4_ARATH	Cluste 67248.13295
1484	Mentha x piperita	653 vs 111	up	30.3	2.0	0	3.46e-05	-	Cluste 67248.8852
1263	Mentha x piperita	653 vs 111	down	15.0	-2.2	0	4.92e-05	SBT16_ARATH	Cluste 67248.7534
823	Mentha x piperita	653 vs 111	down	27.8	-2.4	0	2.60e-06	PIF1_XENLA	Cluste 67248.14950
1289	Mentha x piperita	653 vs 111	down	24.4	-2.5	0	2.80e-06	C3H53_ORYSJ	Cluste 67248.7685
394	Mentha x piperita	653 vs 111	down	18.6	-2.7	0	6.65e-05	EGL1_ARATH	Cluste 67248.11220
545	Mentha x piperita	653 vs 111	down	90.7	-4.0	0	0.00e+00	ARP3_ARATH	Cluste 67248.12197

Combine all tables

```
In [567]: table_all = rbind(Table_cv6, Table_cv1, Table_6v1)
```

In [568]: table_all

	Host	Comparison	Regulation	Base mean	Log2 fold change	p-value	adjusted p-value	Gene name	Gı
1006	Mentha x piperita	control vs 653	up	124.3	3.5	0.0e+00	0.0000000	FB30_ARATH	C 67248.
1411	Mentha x piperita	control vs 653	up	41.0	3.5	0.0e+00	0.0000001	PMTK_ARATH	C 67248.
738	Mentha x piperita	control vs 653	up	121.8	3.4	0.0e+00	0.0000000	CO1A1_HUMAN	C 67248.
764	Mentha x piperita	control vs 653	up	20.3	2.8	3.0e-07	0.0002652	-	C 67248.1
1821	Mentha x piperita	control vs 653	up	21.3	2.3	0.0e+00	0.0000221	-	C 7
1747	Mentha x piperita	control vs 653	down	19.3	-3.2	0.0e+00	0.000004	CB21_SINAL	C 67248.
544	Mentha x piperita	control vs 653	down	90.7	-3.6	0.0e+00	0.0000000	ARP3_ARATH	C 67248.1
49	Mentha x piperita	control vs 653	down	28.4	-3.8	0.0e+00	0.0000000	RBS2_BRANA	C
1017	Mentha x piperita	control vs 653	down	114.4	-6.1	0.0e+00	0.0000000	RBS2_BRANA	C 67248
1174	Mentha x piperita	control vs 653	down	203.0	-6.3	0.0e+00	0.0000000	CNGC5_ARATH	C 67248.
1005	Mentha x piperita	control vs 111	up	124.3	3.4	0.0e+00	0.0000000	FB30_ARATH	C 67248.
739	Mentha x piperita	control vs 111	up	121.8	3.4	0.0e+00	0.0000000	CO1A1_HUMAN	C 67248.
862	Mentha x piperita	control vs 111	up	51.3	2.5	0.0e+00	0.0000000	IFRH_ARATH	C 67248.1
395	Mentha x piperita	control vs 111	up	18.6	2.5	1.5e-06	0.0001704	EGL1_ARATH	C 67248.1
447	Mentha x piperita	control vs 111	up	79.7	2.4	0.0e+00	0.0000000	PER45_ARATH	C 67248.1
1746	Mentha x piperita	control vs 111	down	19.3	-3.2	0.0e+00	0.0000000	CB21_SINAL	C 67248.

	Host	Comparison	Regulation	Base mean	Log2 fold change	p-value	adjusted p-value	Gene name	Gı
1046	Mentha x piperita	control vs 111	down	55.2	-3.5	0.0e+00	0.0000000	PNSB3_ARATH	C 67248.
50	Mentha x piperita	control vs 111	down	28.4	-3.8	0.0e+00	0.0000001	RBS2_BRANA	C
1016	Mentha x piperita	control vs 111	down	114.4	-5.9	0.0e+00	0.0000000	RBS2_BRANA	C 67248
1175	Mentha x piperita	control vs 111	down	203.0	-6.6	0.0e+00	0.0000000	CNGC5_ARATH	C 67248.
1412	Mentha x piperita	653 vs 111	up	41.0	3.7	0.0e+00	0.0000000	PMTK_ARATH	C 67248.
765	Mentha x piperita	653 vs 111	up	20.3	3.1	0.0e+00	0.0000003	-	C 67248.1
1460	Mentha x piperita	653 vs 111	up	23.3	2.4	0.0e+00	0.0000040	P2C14_ARATH	C 67248.
694	Mentha x piperita	653 vs 111	up	24.2	2.3	0.0e+00	0.0000159	PSL4_ARATH	C 67248.1
1484	Mentha x piperita	653 vs 111	up	30.3	2.0	0.0e+00	0.0000346	-	C 67248.
1263	Mentha x piperita	653 vs 111	down	15.0	-2.2	0.0e+00	0.0000492	SBT16_ARATH	C 67248.
823	Mentha x piperita	653 vs 111	down	27.8	-2.4	0.0e+00	0.0000026	PIF1_XENLA	C 67248.1
1289	Mentha x piperita	653 vs 111	down	24.4	-2.5	0.0e+00	0.0000028	C3H53_ORYSJ	C 67248.
394	Mentha x piperita	653 vs 111	down	18.6	-2.7	0.0e+00	0.0000665	EGL1_ARATH	C 67248.1
545	Mentha x piperita	653 vs 111	down	90.7	-4.0	0.0e+00	0.0000000	ARP3_ARATH	C 67248.1

Insert sequences

• First, subset the target sequences from the fasta file

```
In [569]: seqs = fastafile[names(fastafile) %in% table_all[,9]]
```

Sanity checks

```
In [570]:
           length(seqs)
            20
In [571]:
           length(seqs) == length(table_all[,9])
            FALSE
In [572]:
           sum(abs(length(seqs) - length(table_all[,9])))
            10
                    • There are 10 duplicates
In [573]:
           sum(duplicated(table_all[,9]))
            10
             · Extract gene IDs
In [574]: names(seqs)
            'Cluster-67248.98511' 'Cluster-67248.87571' 'Cluster-67248.4354' 'Cluster-67248.65881'
            'Cluster-67248.112206' 'Cluster-67248.149503' 'Cluster-67248.84245' 'Cluster-67248.50623'
            'Cluster-67248.75344'
                                 'Cluster-71973.0' 'Cluster-67248.155958' 'Cluster-67248.76854'
            'Cluster-67248.41609'
                                 'Cluster-67248.132953' 'Cluster-67248.13909' 'Cluster-6227.0'
            'Cluster-67248.115536' 'Cluster-67248.142094' 'Cluster-67248.121974'
            'Cluster-67248.88523'
```

• Match names of gene IDs from fasta file with column in table

```
In [575]: # For every row in the "Gene ID" column
          for (i in seq(table_all[,9])){
          # For every entry in the list of sequences
              for (j in seq(names(seqs))){
                  # If the row matches the sequence
                  if (table_all[i,9] == names(seqs[j])){
                      # Grab the gene ID
                      y = names(seqs[j])
                      # Grab the sequence
                      x = (seqs[j]) # unlist
                       \# x = (str split(x, "''"))
                       # Add gene ID to table
                      table_all[i,12] = y
                       # Add sequence to table
                      table_all[i,11] = x
               }
           }
           }
```

Table

In [576]: table_all

	Host	Comparison	Regulation	Base mean	Log2 fold change	p-value	adjusted p-value	Gene name	Ge
1006	Mentha x piperita	control vs 653	up	124.3	3.5	0.0e+00	0.0000000	FB30_ARATH	C 67248.
1411	Mentha x piperita	control vs 653	up	41.0	3.5	0.0e+00	0.0000001	PMTK_ARATH	C 67248.
738	Mentha x piperita	control vs 653	up	121.8	3.4	0.0e+00	0.0000000	CO1A1_HUMAN	C 67248.
764	Mentha x piperita	control vs 653	up	20.3	2.8	3.0e-07	0.0002652	-	C 67248.1
1821	Mentha x piperita	control vs 653	up	21.3	2.3	0.0e+00	0.0000221	-	C 7
1747	Mentha x piperita	control vs 653	down	19.3	-3.2	0.0e+00	0.0000004	CB21_SINAL	C 67248.
544	Mentha x piperita	control vs 653	down	90.7	-3.6	0.0e+00	0.0000000	ARP3_ARATH	C 67248.1
49	Mentha x piperita	control vs 653	down	28.4	-3.8	0.0e+00	0.0000000	RBS2_BRANA	C
1017	Mentha x piperita	control vs 653	down	114.4	-6.1	0.0e+00	0.0000000	RBS2_BRANA	C 67248
1174	Mentha x piperita	control vs 653	down	203.0	-6.3	0.0e+00	0.0000000	CNGC5_ARATH	C 67248.
1005	Mentha x piperita	control vs 111	up	124.3	3.4	0.0e+00	0.0000000	FB30_ARATH	C 67248.
739	Mentha x piperita	control vs 111	up	121.8	3.4	0.0e+00	0.0000000	CO1A1_HUMAN	C 67248.
862	Mentha x piperita	control vs 111	up	51.3	2.5	0.0e+00	0.0000000	IFRH_ARATH	C 67248.1
395	Mentha x piperita	control vs 111	up	18.6	2.5	1.5e-06	0.0001704	EGL1_ARATH	C 67248.1
447	Mentha x piperita	control vs 111	up	79.7	2.4	0.0e+00	0.0000000	PER45_ARATH	C 67248.1
1746	Mentha x piperita	control vs 111	down	19.3	-3.2	0.0e+00	0.0000000	CB21_SINAL	C 67248.

	Host	Comparison	Regulation	Base mean	Log2 fold change	p-value	adjusted p-value	Gene name	Ge
1046	Mentha x piperita	control vs 111	down	55.2	-3.5	0.0e+00	0.0000000	PNSB3_ARATH	C 67248.
50	Mentha x piperita	control vs 111	down	28.4	-3.8	0.0e+00	0.0000001	RBS2_BRANA	C
1016	Mentha x piperita	control vs 111	down	114.4	-5.9	0.0e+00	0.0000000	RBS2_BRANA	C 6724{
1175	Mentha x piperita	control vs 111	down	203.0	-6.6	0.0e+00	0.0000000	CNGC5_ARATH	C 67248.
1412	Mentha x piperita	653 vs 111	up	41.0	3.7	0.0e+00	0.0000000	PMTK_ARATH	C 67248.
765	Mentha x piperita	653 vs 111	up	20.3	3.1	0.0e+00	0.0000003	-	C 67248.1
1460	Mentha x piperita	653 vs 111	up	23.3	2.4	0.0e+00	0.0000040	P2C14_ARATH	C 67248.
694	Mentha x piperita	653 vs 111	up	24.2	2.3	0.0e+00	0.0000159	PSL4_ARATH	C 67248.1
1484	Mentha x piperita	653 vs 111	ир	30.3	2.0	0.0e+00	0.0000346	-	C 67248.
1263	Mentha x piperita	653 vs 111	down	15.0	-2.2	0.0e+00	0.0000492	SBT16_ARATH	C 67248.
823	Mentha x piperita	653 vs 111	down	27.8	-2.4	0.0e+00	0.0000026	PIF1_XENLA	C 67248.1
1289	Mentha x piperita	653 vs 111	down	24.4	-2.5	0.0e+00	0.0000028	C3H53_ORYSJ	C 67248.
394	Mentha x piperita	653 vs 111	down	18.6	-2.7	0.0e+00	0.0000665	EGL1_ARATH	C 67248.1
545	Mentha x piperita	653 vs 111	down	90.7	-4.0	0.0e+00	0.0000000	ARP3_ARATH	C 67248.1

· Sanity checks

• Do the names match?

- Do the sequence lengths match?
- · Reorder sequence names first

```
ordered_seqs = seqs[order(match(names(seqs), table_all[,9]))]
In [578]:
In [579]:
           nchar(ordered_seqs) == nchar(unique(table_all[,11]))
               Cluster-67248.41609
                                   TRUE
               Cluster-67248.84245
                                   TRUE
               Cluster-67248.13909
                                   TRUE
             Cluster-67248.142094
                                   TRUE
                   Cluster-71973.0
                                   TRUE
               Cluster-67248.98511
                                   TRUE
             Cluster-67248.121974
                                   TRUE
                    Cluster-6227.0
                                   TRUE
                Cluster-67248.4354
                                   TRUE
               Cluster-67248.65881
                                   TRUE
             Cluster-67248.155958
                                   TRUE
             Cluster-67248.112206
                                   TRUE
             Cluster-67248.115536
                                   TRUE
               Cluster-67248.50623
                                   TRUE
               Cluster-67248.87571
                                   TRUE
             Cluster-67248.132953
                                   TRUE
               Cluster-67248.88523
                                   TRUE
               Cluster-67248.75344
                                   TRUE
             Cluster-67248.149503
                                   TRUE
               Cluster-67248.76854
                                   TRUE
```

· Export file

```
In [580]: write.csv(table_all[,c(1:5,8,11)], file = "Mentha_table.csv", row.names=FAI
```

Add column for Gene Ontology

• Grab only the GO data for the gene IDs of interest

· Subset method 1

```
In [581]: GO_df = subset(GO, as.character(GO$Gene.ID) %in% table_all[,9])
```

• Subset method 2

```
In [582]: GO_DF = setDT(GO)[as.character(GO$Gene.ID) %chin% table_all[,9]]
```

• Sanity check- are the data the same?

Gene.ID	Gene.Ontology.Biological.Pathway	BP.Description	Gene.Ontology.Molecular.Function	MF.Desc
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	
TRUE	TRUE	TRUE	TRUE	

• Which DEGs are in GO?

```
In [584]:
           unique(table_all[,9][table_all[,9] %in% as.character(GO df$Gene.ID)])
            'Cluster-67248.84245' 'Cluster-67248.13909'
                                                    'Cluster-67248.142094' 'Cluster-67248.121974'
           'Cluster-67248.65881'
                                'Cluster-67248.155958'
                                                      'Cluster-67248.112206'
           'Cluster-67248.115536'
                                 'Cluster-67248.50623'
                                                      'Cluster-67248.87571' 'Cluster-67248.132953'
            'Cluster-67248.149503'
                                 'Cluster-67248.76854'
             • Which DEGs are not in GO?
In [585]:
           unique(table_all[,9][!(table_all[,9] %in% GO_df$Gene.ID)])
            'Cluster-67248.41609' 'Cluster-71973.0' 'Cluster-67248.98511' 'Cluster-6227.0'
           'Cluster-67248.4354' 'Cluster-67248.88523'
                                                   'Cluster-67248.75344'
In [586]:
           length(unique(table_all[,9][table_all[,9] %in% as.character(GO_df$Gene.ID)]
           13
           length(unique(table_all[,9][!(table_all[,9] %in% GO_df$Gene.ID)]))
           7
             · How many total DEGs?
In [588]: length(unique(table_all[,9][table_all[,9] %in% as.character(GO_df$Gene.ID)]
           20
```

· Add GO to dataframe

```
In [589]: # For every row in the "Gene ID" column
          for (i in seq(table all[,9])){
          # For every entry in the list of sequences
              for (j in seq(as.character(GO_DF$Gene.ID))){
                  # If the row matches the sequence
                  if (table all[i,9] == (as.character(GO DF$Gene.ID[j]))){
                      # Grab the gene ID
                      y = (as.character(GO_DF$Gene.ID[j]))
                      # Grab the molecular function column
                      x = (as.character(GO DF$MF.Description[j])) # unlist
                      # Add gene ID to table
                      table_all[i,12] = y
                      # Add molecular function to table
                      table all[i,10] = x
              }
           }
           }
```

· Sanity checks

· Do the names match?

· Remove excessive columns

```
In [593]: names(table_all)
          'Host' 'Comparison' 'Regulation' 'Base mean' 'Log2 fold change' 'p-value'
          'adjusted p-value' 'Gene name' 'Gene ID' 'Function' 'Sequence' 'V12' 'Source'
In [594]: table_all = table_all[,c(1:5,8:10,13,11)]
            · Add functional data from other sources
In [621]: table all$Function = ifelse(table all[,7] == 'Cluster-67248.41609',
                                        'F-box and associated interaction domains-conta
                                        ,table all$Function)
          table_all$Source = ifelse(table_all[,7] == 'Cluster-67248.41609',
                                     'Blast NR', table all$Source)
In [623]: table all$Function = ifelse(table all[,7] == 'Cluster-71973.0',
                                        'PREDICTED: Solanum tuberosum uncharacterized I
                                        table all $Function)
          table all$Source = ifelse(table all[,7] == 'Cluster-71973.0',
                                     'Blast NT', table all$Source)
In [626]: table_all$Function = ifelse(table_all[,7] == 'Cluster-67248.98511',
                                        'light-harvesting complex II chlorophyll a/b bi
                                       table all $Function)
          table all$Source = ifelse(table all[,7] == 'Cluster-67248.98511',
                                     'Blast NT, KO', table all$Source)
In [628]: table all$Function = ifelse(table all[,7] == 'Cluster-6227.0',
                                        'Carbon fixation in photosynthetic organisms: r
                                       table all $Function)
          table all$Source = ifelse(table all[,7] == 'Cluster-6227.0',
                                     'Blast NT, KO', table all$Source)
In [630]: table all$Function = ifelse(table all[,7] == 'Cluster-67248.4354',
                                        'Carbon metabolism: ribulose-bisphosphate carbo
                                       table all$Function)
          table all$Source = ifelse(table all[,7] == 'Cluster-67248.4354',
                                     'Blast NT, KO', table all$Source)
In [632]: table all$Function = ifelse(table all[,7] == 'Cluster-67248.75344',
                                        'hypothetical protein PHAVU 011G034700g [Phased
                                       table all $Function)
          table all$Source = ifelse(table all[,7] == 'Cluster-67248.75344',
                                     '', table all$Source)
```

In [633]: table_all

	Host	Comparison	Regulation	Base mean	Log2 fold change	Gene name	Gene ID	
								F-bo domains
	Maratha							cacao]>gi 590t F-bo domains
1006	Mentha x piperita	control vs 653	up	124.3	3.5	FB30_ARATH	Cluster- 67248.41609	cacao]>gi 50 box and asso containin
								cacao]>gi 50 box and asso containin
1411	Mentha x piperita	control vs 653	up	41.0	3.5	PMTK_ARATH	Cluster- 67248.84245	
738	Mentha x piperita	control vs 653	up	121.8	3.4	CO1A1_HUMAN	Cluster- 67248.13909	protein
764	Mentha x piperita	control vs 653	ир	20.3	2.8	-	Cluster- 67248.142094	
1821	Mentha x piperita	control vs 653	up	21.3	2.3	-	Cluster- 71973.0	PRED unch
1747	Mentha x piperita	control vs 653	down	19.3	-3.2	CB21_SINAL	Cluster- 67248.98511	light-harvestir
544	Mentha x piperita	control vs 653	down	90.7	-3.6	ARP3_ARATH	Cluster- 67248.121974	
49	Mentha x piperita	control vs 653	down	28.4	-3.8	RBS2_BRANA	Cluster- 6227.0	Carb organi
1017	Mentha x piperita	control vs 653	down	114.4	-6.1	RBS2_BRANA	Cluster- 67248.4354	C bisphosph
1174	Mentha x piperita	control vs 653	down	203.0	-6.3	CNGC5_ARATH	Cluster- 67248.65881	ion cha

	Host	Comparison	Regulation	Base mean	Log2 fold change	Gene name	Gene ID	
								F-bo domains
	Mentha							cacao]>gi 590{ F-bo domains
1005	x piperita	control vs 111	ир	124.3	3.4	FB30_ARATH	Cluster- 67248.41609	cacao]>gi 50 box and asso containin
								cacao]>gi 50 box and asso containin
739	Mentha x piperita	control vs 111	up	121.8	3.4	CO1A1_HUMAN	Cluster- 67248.13909	protein
862	Mentha x piperita	control vs 111	ир	51.3	2.5	IFRH_ARATH	Cluster- 67248.155958	oxido
395	Mentha x piperita	control vs 111	up	18.6	2.5	EGL1_ARATH	Cluster- 67248.112206	
447	Mentha x piperita	control vs 111	ир	79.7	2.4	PER45_ARATH	Cluster- 67248.115536	heme
1746	Mentha x piperita	control vs 111	down	19.3	-3.2	CB21_SINAL	Cluster- 67248.98511	light-harvestin
1046	Mentha x piperita	control vs 111	down	55.2	-3.5	PNSB3_ARATH	Cluster- 67248.50623	iron-sulfur clu:
50	Mentha x piperita	control vs 111	down	28.4	-3.8	RBS2_BRANA	Cluster- 6227.0	Carb organi
1016	Mentha x piperita	control vs 111	down	114.4	-5.9	RBS2_BRANA	Cluster- 67248.4354	C bisphosph
1175	Mentha x piperita	control vs 111	down	203.0	-6.6	CNGC5_ARATH	Cluster- 67248.65881	ion chaı
1412	Mentha x piperita	653 vs 111	up	41.0	3.7	PMTK_ARATH	Cluster- 67248.84245	
765	Mentha x piperita	653 vs 111	up	20.3	3.1	-	Cluster- 67248.142094	
1460	Mentha x piperita	653 vs 111	up	23.3	2.4	P2C14_ARATH	Cluster- 67248.87571	

	Host	Comparison	Regulation	Base mean	Log2 fold change	Gene name	Gene ID	
694	Mentha x piperita	653 vs 111	ир	24.2	2.3	PSL4_ARATH	Cluster- 67248.132953	hydr anhydride anhydrid binding//nu
1484	Mentha x piperita	653 vs 111	ир	30.3	2.0	-	Cluster- 67248.88523	
1263	Mentha x piperita	653 vs 111	down	15.0	-2.2	SBT16_ARATH	Cluster- 67248.75344	PHAVL vulgaris]>gi 5 PHAVL vulgaris]
823	Mentha x piperita	653 vs 111	down	27.8	-2.4	PIF1_XENLA	Cluster- 67248.149503	nucleotide pho free binding//n activ bin binding/
1289	Mentha x piperita	653 vs 111	down	24.4	-2.5	C3H53_ORYSJ	Cluster- 67248.76854	binding//ŗ
394	Mentha x piperita	653 vs 111	down	18.6	-2.7	EGL1_ARATH	Cluster- 67248.112206	
545	Mentha x piperita	653 vs 111	down	90.7	-4.0	ARP3_ARATH	Cluster- 67248.121974	

Write file

```
In [636]: setwd('/Users/davidwheeler/Desktop/RESEARCH/Data/TRANSCRIPTOMICS/DATA/R_FII
In [637]: write.csv(table_all, file = "Mentha_table.csv", row.names=FALSE)
```

Exploratory data analyses

Back to Table of Contents

- Transform data for pattern recognition
- · Raw, untransformed data are used for inference downstream
- Filter out counts <1 to reduce dataset dimensions & expedite analysis

 Stabilize variance (since it is related to the mean) with variance stabilizing transformation (VST)

```
In [37]: vsd <- vst(dds, blind = FALSE)

-- note: fitType='parametric', but the dispersion trend was not well capt
ured by the
    function: y = a/x + b, and a local regression fit was automatically su
bstituted.
    specify fitType='local' or 'mean' to avoid this message next time.</pre>
```

Stabilize variance with regularized-logarithm transformation (rlog)

```
In [38]: rld <- rlog(dds, blind = FALSE)</pre>
```

· Inspect the transformed data

```
VST
```

```
In [39]: head(assay(vsd), 3)
```

	S2_3_2_1	S2_3_2_9	S2_3_2_4	S2_1_2_1	S2_1_2_4	S2_1_2_5	S2_2_2_2	S2_2_2_5	5
Cluster- 67248.142691	5.635508	5.433058	5.433058	5.561595	5.535468	5.520594	5.433058	5.689746	5
Cluster- 67248.107952	7.265288	6.946230	7.119010	7.095979	7.161691	7.474105	7.370777	7.078834	7
Cluster- 58782.0	5.433058	5.506769	5.433058	5.433058	5.433058	5.433058	5.433058	5.433058	5

```
rlog
```

In [40]: head(assay(rld), 3)

	S2_3_2_1	S2_3_2_9	S2_3_2_4	S2_1_2_1	S2_1_2_4	S2_1_2_5	S2_2_2_2	S2
Cluster- 67248.142691	1.771567	1.6816257	1.682194	1.7318188	1.7194922	1.7120304	1.6777742	1.80
Cluster- 67248.107952	7.039000	6.7659611	6.915980	6.8921934	6.9509049	7.2132424	7.1280055	6.8
Cluster- 58782.0	-0.914685	-0.8935841	-0.912875	-0.9164012	-0.9160391	-0.9162232	-0.9162492	-0.9

• Visualize effect of transformation on data

```
In [41]: dds <- estimateSizeFactors(dds)

df <- bind_rows(
    as_data_frame(log2(counts(dds, normalized=TRUE)[, 1:2]+1)) %>%
        mutate(transformation = "log2(x + 1)"),
    as_data_frame(assay(vsd)[, 1:2]) %>% mutate(transformation = "vst"),
    as_data_frame(assay(rld)[, 1:2]) %>% mutate(transformation = "rlog"))

colnames(df)[1:2] <- c("x", "y")

ggplot(df, aes(x = x, y = y)) + geom_hex(bins = 80) +
    coord_fixed() + facet_grid(. ~ transformation)</pre>
```

Warning message:

"`as_data_frame()` is deprecated, use `as_tibble()` (but mind the new sem antics).

This warning is displayed once per session."

• Compute Euclidean sample distances

• Transpose dataset & coerce into matrix

```
In [42]:
         sampleDists <- dist(t(assay(vsd)))</pre>
         sampleDists
                   S2_3_2_1 S2_3_2_9 S2_3_2_4 S2_1_2_1 S2_1_2_4 S2_1_2_5 S2_1_2_5
         2 2 2
         S2_3_2_9 167.28496
         S2 3 2 4 104.57038 162.75034
         S2_1_2_1 104.13654 160.54175 104.33672
         S2_1_2_4 126.75408 163.34956 120.17469 93.91661
         S2 1 2 5 110.18749 169.81285 118.84469 94.13099 107.49950
         S2 2 2 2 136.08553 167.08227 136.59572 105.99619 103.36629 109.92072
         S2 2 2 5 121.31476 171.43671 128.65036 97.71853 107.58663
                                                                      95.84291 105.
         08904
         S2_2_2_9 138.30702 177.54195 138.01094 108.78442 110.23610 116.27587 112.
         14574
                   S2_2_2_5
         S2_3_2_9
         S2_3_2_4
         S2 1 2 1
         S2_1_2_4
         S2_1_2_5
         S2 2 2 2
         S2_2_2_5
         S2_2_2_9 107.05215
```

· Visualize sample distances with heatmap using Euclidean distances

• Compute Poisson distances (Witten 2011)

Distances

```
In [44]: poisd <- PoissonDistance(t(counts(dds)))</pre>
```

Visualize sample distances with heatmap using Poisson distances

• Visualize sample-to-sample differences with pricipal components analysis (PCA)

• PCA with DESeq2

In [46]: plotPCA(vsd, intgroup = c("group"))

• PCA with ggplot2

View PCs

```
In [47]: pcaData <- plotPCA(vsd, intgroup = c( "group"), returnData = TRUE)
pcaData</pre>
```

	PC1	PC2	group	group.1	name
S2_3_2_1	-6.646067	-17.2333967	Control	Control	S2_3_2_1
S2_3_2_9	58.586935	0.4998174	Control	Control	S2_3_2_9
S2_3_2_4	-6.029665	-15.9366397	Control	Control	S2_3_2_4
S2_1_2_1	-7.783224	-3.7150135	653	653	S2_1_2_1
S2_1_2_4	-6.452647	3.5560928	653	653	S2_1_2_4
S2_1_2_5	-9.011399	8.3241647	653	653	S2_1_2_5
S2_2_2_2	-4.222302	11.2345655	111	111	S2_2_2_2
S2_2_5	-8.588481	5.7921773	111	111	S2_2_5
S2_2_2_9	-9.853150	7.4782322	111	111	S2_2_2_9

• Express variation explained to percentage

```
In [48]: percentVar <- round(100 * attr(pcaData, "percentVar"))</pre>
```

• Plot data

```
In [49]: ggplot(pcaData, aes(x = PC1, y = PC2, color = group)) +
    geom_point(size =3) +
    xlab(paste0("PC1: ", percentVar[1], "% variance")) +
    ylab(paste0("PC2: ", percentVar[2], "% variance")) +
    coord_fixed()
```


• Visualize sample-to-sample differences with multidimensional scaling (MDS)

VSD data

· Poisson data

Diagnostics

Back to Table of Contents

In []:

Parametric analysis: differential expression analysis

Back to Table of Contents

· Identify differentially expressed genes with raw count data

```
In [52]: dds <- DESeq(dds)</pre>
```

using pre-existing size factors estimating dispersions gene-wise dispersion estimates mean-dispersion relationship final dispersion estimates fitting model and testing

- Tabulate results, set $\alpha = 0.05$
- Adjust p-values with Benjamini & Hochberg (1995) to account for false discoveries
- Shrink/deflate effect sizes (Log fold change estimates)
 - Contrast control vs 653

using 'normal' for LFC shrinkage, the Normal prior from Love et al (2014).

additional priors are available via the 'type' argument, see ?lfcShrink f or details

Summary

```
In [54]: summary(Cv653)
```

```
out of 246300 with nonzero total read count
adjusted p-value < 0.001
LFC > 0 (up) : 73, 0.03%
LFC < 0 (down) : 111, 0.045%
outliers [1] : 2543, 1%
low counts [2] : 138421, 56%
(mean count < 6)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

· Contrast control vs 111

```
In [56]: summary(Cv111)
```

out of 246300 with nonzero total read count
adjusted p-value < 0.001
LFC > 0 (up) : 378, 0.15%
LFC < 0 (down) : 1173, 0.48%
outliers [1] : 2543, 1%
low counts [2] : 133688, 54%
(mean count < 5)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>

Contrast 653 vs 111

using 'normal' for LFC shrinkage, the Normal prior from Love et al (2014). additional priors are available via the 'type' argument, see ?lfcShrink for details

• Summary

7/17/2019

```
.ipynb
In [58]:
          summary(i653v111)
          out of 246300 with nonzero total read count
          adjusted p-value < 0.001
          LFC > 0 (up)
                                : 84, 0.034%
          LFC < 0 (down)
                                : 14, 0.0057%
          outliers [1]
                                : 2543, 1%
          low counts [2]
                               : 152475, 62%
          (mean count < 8)
          [1] see 'cooksCutoff' argument of ?results
          [2] see 'independentFiltering' argument of ?results

    Subset gene with > or < log 2 fold change and q value < 0.05 (p value post FDR</li>

              adjustment)

    First define the cutoffs for log2 fold differences and the q value

In [59]: log2cutoff = 2
          qvaluecutoff = 0.001

    Concatenate results that are differentially expressed (>log2) and adjusted p-

                     values < q = 0.001
In [60]: diffXGenes <- unique(c(</pre>
            rownames(subset(Cv653, padj<=qvaluecutoff & abs(log2FoldChange)>=log2cuto
            rownames(subset(Cv111, padj <= qvaluecutoff & abs(log2FoldChange) >= log2cuto
            rownames(subset(i653v111, padj<=qvaluecutoff & abs(log2FoldChange)>=log2c
```

Build assay object

```
In [61]: heat <- assay(rld)[diffXGenes,]</pre>
          Check for unique genes between two datasets
In [85]: diffXGenes[!(diffXGenes %in% DEGS$Gene ID)]
```

Isolate genes for each comparison and sort by the log2 fold change estimates

• Down-regulated genes

```
resSig Cv653 = subset(Cv653, padj < 0.001)# control vs 653
In [63]:
In [64]: head(resSig Cv653[ order(resSig Cv653$log2FoldChange), ])
         log2 fold change (MAP): group 653 vs Control
         Wald test p-value: group 653 vs Control
         DataFrame with 6 rows and 6 columns
                                                   log2FoldChange
                                      baseMean
                                                                              lfcSE
                                      <numeric>
                                                        <numeric>
                                                                          <numeric>
         Cluster-67248.65881 202.951197945512 -6.28646721243566 0.321043460493498
         Cluster-67248.4354
                              114.361793332159 -6.10139058349401 0.324703217984243
         Cluster-6227.0
                               28.413370682172 -3.81566588608497 0.364050345593477
         Cluster-67248.121974 90.6587676924926 -3.64539680421656 0.338107941310253
         Cluster-67248.98511 19.2627686051595 -3.18336169460425 0.366931856249029
         Cluster-7595.0
                              18.0599056187062 -3.13211673429244 0.366926109301981
                                            stat
                                                               pvalue
                                      <numeric>
                                                            <numeric>
         Cluster-67248.65881 -11.6826157068244 1.56407165592058e-31
         Cluster-67248.4354
                              -9.22015418935383 2.96673297884751e-20
         Cluster-6227.0
                              -7.10607300633044 1.19391276197536e-12
         Cluster-67248.121974 -7.68644909581806 1.5127483451757e-14
                               -6.4482580684916 1.13142991747744e-10
         Cluster-67248.98511
         Cluster-7595.0
                              -6.38722903844587 1.68918547510571e-10
                                               padj
                                          <numeric>
         Cluster-67248.65881
                               1.6475305194805e-26
         Cluster-67248.4354
                              1.04167928353294e-15
         Cluster-6227.0
                              1.04801662246197e-08
         Cluster-67248.121974 2.65578099479047e-10
         Cluster-67248.98511 4.25643934955012e-07
         Cluster-7595.0
                              5.70727227013363e-07
In [65]:
         summary(resSig Cv653)
         out of 184 with nonzero total read count
         adjusted p-value < 0.001
         LFC > 0 (up)
                            : 73, 40%
         LFC < 0 (down)
                            : 111, 60%
         outliers [1]
                            : 0, 0%
         low counts [2]
                            : 0, 0%
         (mean count < 6)
         [1] see 'cooksCutoff' argument of ?results
         [2] see 'independentFiltering' argument of ?results
In [66]:
         resSig Cv111 = subset(Cv111, padj < 0.001)# control vs 111
```

```
In [67]: head(resSig_Cv111[ order(resSig_Cv111$log2FoldChange), ])
         log2 fold change (MAP): group 111 vs Control
         Wald test p-value: group 111 vs Control
         DataFrame with 6 rows and 6 columns
                                                  log2FoldChange
                                     baseMean
                                                                             lfcSE
                                                       <numeric>
                                    <numeric>
                                                                         <numeric>
         Cluster-67248.65881 202.951197945512 -6.55892034953777 0.326410632489976
         Cluster-67248.4354 114.361793332159 -5.86374025346785 0.316705178166855
         Cluster-6227.0
                              28.413370682172 -3.76118027552175 0.363723663894864
         Cluster-67248.50623 55.2010260797926 -3.45561826424811 0.360606210708655
         Cluster-67248.98511 19.2627686051595 -3.19922469856714 0.367038778951685
         Cluster-7595.0
                             18.0599056187062 -3.07729077888003 0.367181471384888
                                          stat
                                                              pvalue
         padj
                                     <numeric>
                                                           <numeric>
                                                                                <nu
         meric>
         Cluster-67248.65881 -9.87466391769537 5.36123751216411e-23 3.105821324875
         74e-19
         Cluster-67248.4354 -10.8839277483815 1.37507301949253e-27 1.681699024250
         26e-23
         Cluster-6227.0
                             -6.39886290937604 1.56538307394028e-10 7.491310850675
         34e-08
         Cluster-67248.50623 -7.5734168754873 3.63533356619918e-14 5.065032029088
         33e-11
         Cluster-67248.98511 -6.49184279953414 8.47927119486211e-11 4.423245977001
         32e-08
         Cluster-7595.0
                             -5.70215111106775 1.18304878101351e-08 2.925388058689
         15e-06
In [68]: resSig 653v111 = subset(i653v111, padj < 0.001)# 653 vs 111
```

```
In [69]:
         head(resSig_653v111[ order(resSig_653v111$log2FoldChange), ])
         log2 fold change (MAP): group 653 vs 111
         Wald test p-value: group 653 vs 111
         DataFrame with 6 rows and 6 columns
                                                   log2FoldChange
                                      baseMean
                                                                              lfcSE
                                                        <numeric>
                                     <numeric>
                                                                          <numeric>
         Cluster-67248.121974 90.6587676924926 -3.9589940802961 0.336368110261914
         Cluster-67248.112206 18.5626354004593 -2.69648250849936 0.366845367519375
         Cluster-67248.76854 24.3571393865261 -2.53083331116833 0.361370461597882
         Cluster-67248.149503 27.8249871261726 -2.38866086700844 0.364384606107117
         Cluster-67248.75344 15.0449546991255 -2.15398576339566 0.364284669558007
         Cluster-67248.148461 9.72151122225922 -1.81687736592331 0.345862164163721
                                           stat
                                                               pvalue
                                      <numeric>
                                                            <numeric>
         Cluster-67248.121974 -7.99585298827209 1.28679849746251e-15
         Cluster-67248.112206 -5.50382972112057 3.71628503530835e-08
         Cluster-67248.76854 -6.18707077234617 6.12924522094512e-10
         Cluster-67248.149503 -6.2069334740323 5.40284555384753e-10
         Cluster-67248.75344 -5.56746651963085 2.58469719742434e-08
         Cluster-67248.148461 -4.98768053367799 6.11085072523991e-07
                                              padj
                                          <numeric>
         Cluster-67248.121974 1.46826925556716e-11
         Cluster-67248.112206 6.65156726652974e-05
         Cluster-67248.76854 2.79744881129156e-06
         Cluster-67248.149503 2.59569762024374e-06
         Cluster-67248.75344 4.91534019948517e-05
         Cluster-67248.148461 0.000633875768069715
```

Up-regulated genes

```
head(resSig_Cv653[ order(resSig_Cv653$log2FoldChange, decreasing = TRUE),
In [70]:
         log2 fold change (MAP): group 653 vs Control
         Wald test p-value: group 653 vs Control
         DataFrame with 6 rows and 6 columns
                                                 log2FoldChange
                                      baseMean
                                                                             lfcSE
                                                      <numeric>
                                     <numeric>
                                                                         <numeric>
         Cluster-67248.41609 124.279390389592 3.52725893385813 0.345570734128572
         Cluster-67248.84245
                              40.9703792977569 3.4955170912277 0.366553535763028
         Cluster-67248.13909
                               121.78368924237 3.42970727154396 0.299340298106147
                                               2.7908748658698 0.366388606928481
         Cluster-67248.142094 20.2956372731499
         Cluster-71973.0
                              21.3301738242477 2.29032146110244 0.365199165612169
                                                 2.288392884457 0.359349809555629
         Cluster-67248.115536 79.6526611339483
                                          stat
                                                             pvalue
         padj
                                     <numeric>
                                                           <numeric>
                                                                                <nu
         meric>
         Cluster-67248.41609
                              7.64229899956177 2.13376951603116e-14 3.210896367723
         69e-10
                             6.77707740483589 1.22631195264817e-11 7.176377546897
         Cluster-67248.84245
         06e-08
         Cluster-67248.13909 10.0175098153321 1.27679313466229e-23 6.724614081639
         37e-19
         Cluster-67248.142094 5.1099591792728 3.22228426089691e-07 0.000265173855
         395185
         Cluster-71973.0
                              5.68570176100883 1.3027657593149e-08 2.213357000374
         11e-05
         Cluster-67248.115536 6.60449100950853 3.9888541638035e-11 2.000809248563
         83e-07
```

```
head(resSig_Cv111[ order(resSig_Cv111$log2FoldChange, decreasing = TRUE),
log2 fold change (MAP): group 111 vs Control
Wald test p-value: group 111 vs Control
DataFrame with 6 rows and 6 columns
                                        log2FoldChange
                             baseMean
                                                                    lfcSE
                                             <numeric>
                            <numeric>
                                                                <numeric>
Cluster-67248.41609
                     124.279390389592 3.38418634239652 0.345620815354031
Cluster-67248.13909
                      121.78368924237 3.38307889682002 0.299295325657117
Cluster-67248.155958 51.2696932074041 2.48054331596675 0.367824731695813
Cluster-67248.112206 18.5626354004593 2.46892943178247 0.365128892872883
Cluster-67248.115536 79.6526611339483 2.43904926524883 0.359223108777017
Cluster-67248.76854 24.3571393865261 2.43072270277489 0.358678709538164
                                 stat
                                                    pvalue
padj
                            <numeric>
                                                 <numeric>
                                                                       <nu
meric>
Cluster-67248.41609
                       7.496106389997 6.57414375079722e-14 8.824505225689
02e-11
Cluster-67248.13909 9.90931903031448 3.7922199806499e-23 2.608786631563
46e-19
Cluster-67248.155958 6.54049508941158 6.13155106650027e-11 3.29216436262
74e - 08
Cluster-67248.112206 4.80749394072171 1.52834049779145e-06 0.000170438612
210139
Cluster-67248.115536 6.88865925610933 5.63206601016873e-12 4.132772491155
08e-09
Cluster-67248.76854 5.70729105119387 1.14788402827629e-08 2.858516902903
69e-06
```

```
In [72]: head(resSig_653v111[ order(resSig_653v111$log2FoldChange, decreasing = TRUF
         log2 fold change (MAP): group 653 vs 111
         Wald test p-value: group 653 vs 111
         DataFrame with 6 rows and 6 columns
                                      baseMean
                                                  log2FoldChange
                                                                             lfcSE
                                     <numeric>
                                                       <numeric>
                                                                         <numeric>
         Cluster-67248.84245 40.9703792977569 3.70463793051371 0.36669338917001
         Cluster-67248.142094 20.2956372731499 3.14473703586671 0.367133239478846
         Cluster-67248.87571
                              23.3408647625934 2.36391076747395 0.364787539610653
         Cluster-67248.132953 24.1723390703805 2.25356877582255 0.357912134362856
         Cluster-67248.88523 30.3263718816141 2.03338159861437 0.362475626984758
         Cluster-67248.50623 55.2010260797926 1.97704579017896 0.361559396776706
                                           stat
                                                              pvalue
         padj
                                     <numeric>
                                                           <numeric>
                                                                                <nu
         meric>
         Cluster-67248.84245
                                7.342528006312
                                                2.0959664603159e-13 1.913240104305
         56e-09
                                6.552319395312 5.66502129690468e-11 2.872858189022
         Cluster-67248.142094
         52e-07
         Cluster-67248.87571
                              6.10019355209696 1.05940104359915e-09 4.029343585909
         08e-06
         Cluster-67248.132953 5.80984050003217 6.25323892095124e-09 1.585578208839
         64e-05
         Cluster-67248.88523 5.64312893998592 1.66987190358004e-08 3.464301070513
         49e - 05
         Cluster-67248.50623 5.93363419791334 2.96301598160793e-09 9.015667494437
         84e-06
```

Build Table of DEGs

Bind all DEGs from each comparisons, by rows

IDs

Bind DEGs and IDs by column

```
In [75]: DEGS=data.frame(as.character(DEGs),ID)
```

Rename Columns

```
colnames(DEGS) = c("Gene_ID", "Comparison")
          Sanity checks
In [77]:
          length(DEGs)
          1833
In [78]:
          length(ID)
          1833
In [79]:
          length(resSig Cv653@rownames)
          184
In [80]:
          length(resSig_Cv111@rownames)
          1551
In [81]:
         length(resSig_653v111@rownames)
          98
In [82]:
          length(resSig Cv653@rownames)+length(resSig Cv111@rownames)+length(resSig
          1833
          write data into table
In [68]: write.csv(DEGS,
                     file="Mentha DEGs.csv")
          Merge Gene Names with DEGs
          Create column with rownames
In [83]:
         Cv653$id <- rownames(Cv653)</pre>
          Cv111$id <- rownames(Cv111)</pre>
          i653v111$id <- rownames(i653v111)</pre>
          Merge data tables
In [84]: Cv653_GeneNames <- merge(as(Cv653, "data.frame"), gnDF, by="id")</pre>
          Cv111_GeneNames <- merge(as(Cv111, "data.frame"), gnDF, by="id")</pre>
          i653v111 GeneNames <- merge(as(i653v111, "data.frame"), gnDF, by="id")
```

Visualization

Back to Table of Contents

MA plot

· Control vs. 653

In [55]: setwd("/Users/davidwheeler/Desktop/RESEARCH/Data/TRANSCRIPTOMICS/FIGURES")

Control vs. 653

• 111 vs control

Control vs. 111

• 111 vs. 653

111 vs 653

Histograms of p-values

Control vs. 653

Control vs. 111

653 vs. 111

Volcano plots

653 vs control

```
In [69]: Cv653_gn = subset(Cv653_GeneNames, Comparison == "Cv653")
```

• Order genes by fold change values

```
In [76]: Cv653_gn = (Cv653_gn[order(-abs(Cv653_gn$log2FoldChange)),])
```

Convert 10 DEG gene names from factors to vectors

'CNGC5_ARATH' 'RBS2_BRANA' 'RBS2_BRANA' 'ARP3_ARATH' 'FB30_ARATH' 'PMTK_ARATH' 'CO1A1_HUMAN' 'CB21_SINAL' 'CB5_ARATH' 'TEX10_HUMAN' 'BCA1_ARATH' 'CB1C_ARATH' '-' 'CA4_ARATH' 'RCA_ARATH' 'G3PA2_ARATH' 'PIF1_XENLA' '-' 'PER45_ARATH' 'PLST1_ARATH'

```
In [123]: Cv6=EnhancedVolcano(Cv653_GeneNames,
              lab = NA,
              x = 'log2FoldChange',
              y = 'pvalue',
              title = "653 versus control",
              legend=c("NS","Log2 fold-change","p-value",
               "p-value & Log2 fold-change"),
              legendPosition = "top",
              legendLabSize = 14,
              legendIconSize = 2.0,
              pCutoff = 0.001,
              FCcutoff = 1.0,
              transcriptPointSize = 1.75,
              transcriptLabSize = 3.0,
              colAlpha = 0.7,
              border = "full",
              gridlines.major = FALSE,
              gridlines.minor = FALSE,
              xlim = c(-6, 6),
              ylim = c(0, min(log10(Cv653$pvalue))),
              col=c("black", "darkgoldenrod1", "gray38", "orangered1"))
          Cv6 + scale_color_manual(
            values=c(
              NS="black",
              FC="darkgoldenrod1",
              P="gray38",
              FC P="orangered1"),
            labels=c(
              NS='NS',
              FC=expression(Log[2]~fold~change),
              P="p-value",
              FC P=expression(p-value-and-log[2]-fold-change)))
```

Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.

653 versus control

Bioconductor package EnhancedVolcano

• NS • Log₂ fold change • p-value • p - value and log₂ fold change

Total = 1833 variables

111 vs control

```
In [125]: Cv1=EnhancedVolcano(Cv111,
              lab = NA,
              x = 'log2FoldChange',
              y = 'pvalue',
              title = "111 versus control",
              legend=c("NS","Log2 fold-change","p-value",
               "p-value & Log2 fold-change"),
              legendPosition = "top",
              legendLabSize = 14,
              legendIconSize = 2.0,
              pCutoff = 0.001,
              FCcutoff = 1.0,
              transcriptPointSize = 1.75,
              transcriptLabSize = 3.0,
              colAlpha = 0.8,
              border = "full",
              gridlines.major = FALSE,
              gridlines.minor = FALSE,
              xlim = c(-6, 6),
              ylim = c(0, min(log10(Cv111$pvalue))),
              col=c("black", "darkgoldenrod1", "gray38", "orangered1"))
          Cv1 + scale_color_manual(
            values=c(
              NS="black",
              FC="darkgoldenrod1",
              P="gray38",
              FC P="orangered1"),
            labels=c(
              NS='NS',
              FC=expression(Log[2]~fold~change),
              P="p-value",
              FC_P=expression(p-value-and-log[2]-fold-change)))
```

Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.

111 versus control

Bioconductor package EnhancedVolcano

NS • Log₂ fold change • p-value • p – value and log₂ fold change

Total = 246300 variables

```
In [126]: tiff("Mint_VP_Cv111.tiff", width=10, height=10, units='in', res=300)
Cv1
dev.off()
```

pdf: 2

• 653 vs. 111

```
In [127]: | i6vi1=EnhancedVolcano(i653v111,
               lab = NA,
              x = 'log2FoldChange',
              y = 'pvalue',
              title = "653 versus 111",
              legend=c("NS","Log2 fold-change","p-value",
               "p-value & Log2 fold-change"),
              legendPosition = "top",
              legendLabSize = 14,
              legendIconSize = 2.0,
              pCutoff = 0.001,
              FCcutoff = 1.0,
              transcriptPointSize = 1.75,
              transcriptLabSize = 3.0,
              colAlpha = 0.8,
              border = "full",
              gridlines.major = FALSE,
              gridlines.minor = FALSE,
              xlim = c(-6, 6),
              ylim = c(0, min(log10(i653v111$pvalue))),
              col=c("black", "darkgoldenrod1", "gray38", "orangered1"))
          i6vi1 + scale_color_manual(
            values=c(
              NS="black",
              FC="darkgoldenrod1",
              P="gray38",
              FC P="orangered1"),
            labels=c(
              NS='NS',
              FC=expression(Log[2]~fold~change),
              P="p-value",
              FC_P=expression(p-value-and-log[2]-fold-change)))
```

Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.

653 versus 111

Bioconductor package EnhancedVolcano

NS • Log₂ fold change • p-value • p – value and log₂ fold change

Total = 246300 variables

pdf: 2

Cluster Genes

Object for heatmap

```
In [70]: heat <- assay(vsd)[diffXGenes,]</pre>
```

Convert to dataframe

```
In [71]: hmDF = data.frame(heat)
```

Extract subset of genenames that are differentially expressed

First, make new column of character gene IDs

```
gnDF["ID"] = as.character(gnDF$id)
In [72]:
        · Differentially expressed genes
       degs = subset(gnDF, gnDF$ID %in% rownames(hmDF))
In [73]:
        · Use only unique/non duplicated rows
       degs = degs[!duplicated(degs$ID),]
In [74]:
        · Sanity checks
In [75]:
       length(degs$ID) == length(rownames(hmDF))
       TRUE
       class(degs$ID) == class(rownames(hmDF))
In [76]:
       TRUE
        · Reorder rows of both dataframes to align with each other
       hmDF <- hmDF(with(hmDF, order(rownames(hmDF))), ]</pre>
In [77]:
       degs <- degs[with(degs, order(degs$ID)), ]</pre>
In [78]:
        · Sanity check
In [79]:
      rownames(hmDF) == degs$ID
       TRUE TRUE TRUE TRUE
                             TRUE TRUE TRUE TRUE TRUE TRUE
```

Convert dataframe to matrix

TRUE TRUE TRUE TRUE

```
In [80]: hmdf = as.matrix(hmDF)
```

Replace rownames in heatmap object with gene names

```
In [81]: rownames(hmdf) <- degs$Hit1_acc</pre>
```

Order row labels to italicize

```
In [179]: ord_row_labs = rownames(hmdf)[(ord_row_labs = rownames(hmdf)[(Mint_DEGs$tre]
In [180]: ord_row_labs = cat(paste0('"', paste(ord_row_labs, collapse="\", \""), '"')

"ARP3_ARATH", "HF101_ARATH", "PKL_ARATH", "-", "UPL1_ARATH", "6GPD3_ARAT
H", "PNSB3_ARATH", "FL3H_MALDO", "-", "FL3H_PETCR", "CALS3_ARATH", "SRP40
    _YEAST", "ACC1_ARATH", "RBS2_BRANA", "CNGC5_ARATH", "MPK9_ARATH", "PHYLO_
ARATH", "C01A1_HUMAN", "FB30_ARATH", "IFRH_ARATH", "PER45_ARATH", "IRE1A_
ARATH", "PLST1_ARATH", "-", "PMTK_ARATH", "SGO2_ARATH", "P2C14_ARATH", "-
    ", "PSL4_ARATH", "-", "RBS2_BRANA", "VIP1_MOUSE", "RCA_ARATH", "CA4_ARATH", "G3PA2_ARATH", "BCA1_ARATH", "CB1C_ARATH", "TEX10_HUMAN", "CB21_SINA_
L", "CB5_ARATH", "RVE6_ARATH", "-", "-", "YQGF_RHOCB", "IAN9_ARATH", "-",
    "PRO1_NEUCR", "-", "ASOL_BRANA", "-", "-", "TIR1_ARATH", "BH106_ARATH",
    "EGL1_ARATH", "C3H53_ORYSJ", "PIF1_XENLA", "SBT16_ARATH", "IN01_SESIN",
```

"APR3_ARATH", "GRDP1_ARATH", "APR3_ARATH", "APR1_ARATH", "SUT33_ARATH",

Visualize heatmap

"APR1_ARATH", "-"

```
In [192]: Mint_DEGs=pheatmap(hmdf,
                   color= (rainbow(96, start=0.0, end=0.74, alpha=1)), #, s=1, v=0.6, start=0
                   border color = NA,
                   show_colnames = TRUE,
                   show_rownames = TRUE,
                   labels col=paste0(c("control"," "," ", "653"," "," ", "111"," "," "
                   angle col=0)
                     labels row=expression(italic(c("ARP3 ARATH", "HF101 ARATH", "PKL
           #
                                                      "UPL1_ARATH", "6GPD3_ARATH", "PNSE
           #
                                                      "FL3H MALDO", "-", "FL3H PETCR",
           #
           #
                                                      "SRP40 YEAST", "ACC1 ARATH", "RBS2
                                                      "MPK9_ARATH", "PHYLO_ARATH", "CO1A
           #
                                                      "IFRH ARATH", "PER45 ARATH", "IRE1
           #
                                                      "-", "PMTK ARATH", "SGO2 ARATH",
           #
                                                      "PSL4_ARATH", "-", "RBS2_BRANA",
           #
                                                      "CA4 ARATH", "G3PA2 ARATH", "BCA1
           #
                                                      "TEX10_HUMAN", "CB21_SINAL", "CB5_
           #
                                                      "-", "-", "YQGF RHOCB", "IAN9 ARA1
           #
                                                      "-", "ASOL_BRANA", "-", "-", "TIR1
           #
                                                      "EGL1_ARATH", "C3H53_ORYSJ", "PIF1
           #
                                                      "INO1 SESIN", "APR3 ARATH", "GRDP1
           #
                                                      "APR1 ARATH", "SUT33 ARATH", "APR1
           #
```


setwd('/Users/davidwheeler/Desktop/RESEARCH/Data/TRANSCRIPTOMICS/FIGURES//M tiff("Mint_HeatMap_1.tiff", width = 5, height =10, units = 'in', res = 300) In [231]: Mint DEGs dev.off()

pdf: 2


```
In [234]: tiff("Mint_HeatMap_2.tiff", width = 5, height =10, units = 'in', res = 300)
Mint_DEGs
dev.off()
```

pdf: 2

Venn Diagram

Control vs 653

```
In [65]: resSig_Cv653 = subset(Cv653, padj < 0.001)
resSig_Cv653_fragments = row.names(resSig_Cv653)</pre>
```

Control vs 111

```
In [66]: resSig_Cv111 = subset(Cv111, padj < 0.001)
resSig_Cv111_fragments = row.names(resSig_Cv111)</pre>
```

653 vs 111

```
In [67]: resSig_653v111 = subset(i653v111, padj < 0.001)
resSig_653v111_fragments = row.names(resSig_653v111)</pre>
```

Build common dataframe

Compare

```
In [69]: resSig_Cv653_fragments.2 <- vdDF %in% resSig_Cv653_fragments
    resSig_Cv111_fragments.2 <- vdDF %in% resSig_Cv111_fragments
    resSig_653v111_fragments.2 <- vdDF %in% resSig_653v111_fragments</pre>
```

Compute venn diagram counts

```
In [70]: counts = cbind(resSig_Cv653_fragments.2, resSig_Cv111_fragments.2, resSig_6
vdcounts = vennCounts(counts)
```

Plot

Venn Diagram in Python

```
In [ ]: !pip install matplotlib-venn
```

Export data

Back to Table of Contents

· Control vs. 653

Graveyard

Back to Table of Contents

```
In [ ]: # For each sample/row in the sample column
for (row in DF$Sample){
    # Split the sample by the underscore
    sample = strsplit(row,"_")
    # If sample contains S2,
    if (grepl("S2",sample)){
    }
}
```

Resources

Back to Table of Contents

R kernel installation: https://irkernel.github.io/installation/)

• DESeq2 installation: https://anaconda.org/bioconda/bioconductor-deseq2 (https://anaconda.org/bioconda/bioconductor-deseq2)

• DESeq2 data curation:

https://www.bioconductor.org/packages/devel/bioc/vignettes/DEFormats/inst/doc/DEFormats.ht (https://www.bioconductor.org/packages/devel/bioc/vignettes/DEFormats/inst/doc/DEFormats.h

• DESeq2 vignette:

http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html (http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html) http://master.bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnas (http://master.bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnas

- Volcano plots: https://rdrr.io/github/kevinblighe/EnhancedVolcano/f/README.md
 (https://rdrr.io/github/kevinblighe/EnhancedVolcano/f/README.md
 - https://www.bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/l (https://www.bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/l

Type $\emph{Markdown}$ and LaTeX: $lpha$	2
--	---

In []:		