Liam Hardiman MATH 235C

The LLL Algorithm

1 Motivation

The rows of the following matrix form a basis for a lattice L in \mathbb{R}^4 :

$$X = \begin{bmatrix} -2 & 7 & 7 & -5 \\ 3 & -2 & 6 & -1 \\ 2 & -8 & -9 & -7 \\ 8 & -9 & 6 & -4 \end{bmatrix}.$$

One can check that the rows of the following matrix also form a basis for the same lattice:

$$Y = \begin{bmatrix} -13071 & -5406 & -9282 & -2303 \\ -20726 & -8571 & -14772 & -3651 \\ -2867 & -1186 & -2043 & -505 \\ -14338 & -5936 & -10216 & -2525 \end{bmatrix}.$$

Intuitively, the rows of Y seem to be a "worse" basis for L than those of X. Here we make precise the notion of a "nice" basis and introduce a polynomial time algorithm that transforms a "bad" basis into a "good" one.

2 Lattices in \mathbb{R}^n

Definition 2.1. Let $n \ge 1$ and let x_1, \ldots, x_n be a basis of \mathbb{R}^n . The **lattice** with dimension n and basis x_1, \ldots, x_n is the set L of all linear combinations of the basis vectors with integral coefficients:

$$L = \mathbb{Z}x_1 + \mathbb{Z}x_2 + \dots + \mathbb{Z}x_n = \left\{ \sum_{i=1}^n a_i x_i : a_1, \dots, a_n \in \mathbb{Z} \right\}.$$

Let X be the matrix whose rows are the basis vectors x_1, \ldots, x_n . The **determinant** of the lattice L is

$$\det(L) = |\det(X)|.$$