Глава 15

Линейни изображения. Изоморфизъм на линейни пространства

Определение 15.1. Изображение $\varphi:U\to V$ на линейни пространства U и V над поле F е линейно, ако

 $\varphi(x_1u_1+\ldots+x_nu_n)=x_1\varphi(u_1)+\ldots+x_n\varphi(u_n)$ за всички $u_i\in U$ и $x_i\in F$. Линейно изображение $\varphi:U\to U$ на линейно пространство U в себе си се нарича линеен оператор.

Всяка линейна функция $f:U\to F$ на линейно пространство U над поле F е линейно изображение.

Ако $\mathbb{R}[x]^{(\leq n)}$ е пространството на полиномите $f(x) = \sum_{i=0}^n a_i x^i$ на x от степен $\leq n$ с реални коефициенти, то диференцирането

$$\frac{d}{dx}: \mathbb{R}[x]^{(\leq n)} \longrightarrow \mathbb{R}[x]^{(\leq n-1)}, \quad \frac{d}{dx} \left(\sum_{i=0}^{n} a_i x^i\right) = \sum_{i=1}^{n} i a_i x^{i-1}$$

е линейно изображение в пространството на полиномите на x от степен $\leq n-1$ с реални коефициенти. По-точно, за произволни полиноми $f_i(x) \in \mathbb{R}[x]^{(\leq n)}, 1 \leq i \leq m$ и произволни константи $\lambda_i \in \mathbb{R}$ е в сила

$$\frac{d}{dx}\left(\sum_{i=1}^{m}\lambda_{i}f_{i}(x)\right) = \sum_{i=1}^{m}\frac{d}{dx}(\lambda_{i}f_{i}(x)) = \sum_{i=1}^{m}\lambda_{i}\left[\frac{d}{dx}(f_{i}(x))\right],$$

съгласно $\frac{d}{dx}(g(x)+h(x))=\frac{d}{dx}(g(x))+\frac{d}{dx}(h(x))$ и $\frac{d}{dx}(rg(x))=r\frac{d}{dx}g(x)$ за $g(x),h(x)\in\mathbb{R}[x]^{(\leq n)},\,r\in\mathbb{R}.$ Можем да разглеждаме

$$\frac{d}{dx}: \mathbb{R}[x]^{(\leq n)} \longrightarrow \mathbb{R}[x]^{(\leq n)}$$

като линеен оператор в $\mathbb{R}[x]^{(\leq n)}$.

Нулевото изображение

$$\mathbb{O}:U\longrightarrow V,\;\;\mathbb{O}(u)=\overrightarrow{\mathcal{O}}_{V}\;\;$$
 за всички $\;u\in U$

е линейно, защото

$$x_1 \mathbb{O}(u_1) + \ldots + x_n \mathbb{O}(u_n) = x_1 \overrightarrow{\mathcal{O}}_V + \ldots + x_n \overrightarrow{\mathcal{O}}_V =$$

= $\overrightarrow{\mathcal{O}}_V + \ldots + \overrightarrow{\mathcal{O}}_V = \overrightarrow{\mathcal{O}}_V = \mathbb{O}(x_1 u_1 + \ldots + x_n u_n)$

за произволни $u_i \in U$, $x_i \in F$.

Тъждественото изображение $\mathrm{Id}:U\to U,\,\mathrm{Id}(u)=u,\,\forall u\in U$ на линейно пространство U е линеен оператор, съгласно

$$x_1 \operatorname{Id}(u_1) + \ldots + x_n \operatorname{Id}(u_n) = x_1 u_1 + \ldots + x_n u_n = \operatorname{Id}(x_1 u_1 + \ldots + x_n u_n)$$

за всички $u_i \in U$ и $x_i \in F$.

Твърдение 15.2. Изображение $\varphi: U \to V$ на линейни пространства над поле F е линейно тогава и само тогава, когато $\varphi(u_1+u_2) = \varphi(u_1) + \varphi(u_2)$ и $\varphi(\lambda u_1) = \lambda \varphi(u_1)$ за произволни $u_1, u_2 \in U$, $\lambda \in F$.

Доказателство. Ако $\varphi:U\to V$ е линейно изображение, то по определение

 $\varphi(x_1u_1+\ldots+x_nu_n)=x_1\varphi(u_1)+\ldots+x_n\varphi(u_n)$ за произволни $u_i\in U,\ x_i\in F.$ В частност,

$$\varphi(u_1+u_2)=\varphi(1.u_1+1.u_2)=1.\varphi(u_1)+1.\varphi(u_2)=\varphi(u_1)+\varphi(u_2)\quad \text{и}$$

$$\varphi(\lambda u_1)=\lambda \varphi(u_1)\quad \text{за всички}\quad u_1,u_2\in U,\ 1,\lambda\in F.$$

Обратно, ако $\varphi(u_1+u_2)=\varphi(u_1)+\varphi(u_2)$ и $\varphi(\lambda u_1)=\lambda\varphi(u_1)$ за произволни $u_1,u_2\in U,\,\lambda\in F,$ то с индукция по n ще проверим, че

$$\varphi(x_1u_1+\ldots+x_nu_n)=x_1\varphi(u_1)+\ldots+x_n\varphi(u_n)$$
 за произволни $u_i\in U,\ x_i\in F.$

В случая n=1 имаме $\varphi(x_1u_1)=x_1\varphi(u_1)$ по предположение. В общия случай,

$$\varphi(x_1u_1 + \ldots + x_{n-1}u_{n-1} + x_nu_n) = \varphi(x_1u_1 + \ldots + x_{n-1}u_{n-1}) + \varphi(x_nu_n)$$

от съгласуваността на φ със събирането на вектори. По индукционно предположение,

$$\varphi(x_1u_1 + \ldots + x_{n-1}u_{n-1}) = x_1\varphi(u_1) + \ldots + x_{n-1}\varphi(u_{n-1}).$$

Допуснали сме $\varphi(x_n u_n) = x_n \varphi(u_n)$. Следователно

$$\varphi(x_1u_1+\ldots+x_{n-1}u_{n-1}+x_nu_n)=x_1\varphi(u_1)+\ldots+x_{n-1}\varphi(u_{n-1})+x_n\varphi(u_n),$$
 което доказва твърдението.

Твърдение 15.3. Ако $\varphi: U \to V$ е линейно изображение на линейни пространства над поле F, то:

(i) $\varphi(\overrightarrow{\mathcal{O}}_U) = \overrightarrow{\mathcal{O}}_V$ за нулевите вектори $\overrightarrow{\mathcal{O}}_U$ на U и $\overrightarrow{\mathcal{O}}_V$ на V;

(ii) $\varphi(-u) = -\varphi(u)$ за произволен вектор $u \in U;$

(iii) $\varphi(u-v) = \varphi(u) - \varphi(v)$ за произволни $u, v \in U$;

(iv) ако $u_1, \ldots, u_n \in U$ са линейно зависими, то $\varphi(u_1), \ldots, \varphi(u_n) \in V$ са линейно зависими.

Доказателство. (i) За произволен вектор $u \in U, \ 0 \in F$ и $\overrightarrow{\mathcal{O}}_U \in U$ е изпълнено $0u = \overrightarrow{\mathcal{O}}_U$ съгласно Твърдение 2.4 (iii). Оттук,

$$\varphi(\overrightarrow{\mathcal{O}}_U) = \varphi(0u) = 0\varphi(u) = \overrightarrow{\mathcal{O}}_V,$$

прилагайки още веднъж Твърдение 2.4 (iii), за да получим, че $0\varphi(u) = \overrightarrow{\mathcal{O}}_V$.

(ii) За произволен вектор $u \in U$ и $1, -1 \in F$ е в сила

$$\varphi(-u) = \varphi((-1)u) = (-1)\varphi(u) = -\varphi(u),$$

съгласно -u = (-1)u и $(-1)\varphi(u) = -\varphi(u)$ по Твърдение 2.4 (v).

(iii) По определение, u-v:=u+(-v) и $\varphi(u)-\varphi(v):=\varphi(u)+[-\varphi(v)]$. Съгласно съгласуваността на φ със събирането на вектори и (ii) имаме

$$\varphi(u-v) = \varphi(u+(-v)) = \varphi(u) + \varphi(-v) = \varphi(u) + [-\varphi(v)] = \varphi(u) - \varphi(v).$$

(iv) Heka

$$\lambda_1 u_1 + \ldots + \lambda_i u_i + \ldots + \lambda_n u_n = \overrightarrow{\mathcal{O}}_U$$
 за $\lambda_1, \ldots, \lambda_n \in F$ с поне едно $\lambda_i \neq 0$. (15.1)

Прилагаме φ към двете страни на това равенство и използваме определението за линейност на изображение, както и (i), за да получим, че

$$\overrightarrow{\mathcal{O}}_V = \varphi(\overrightarrow{\mathcal{O}}_U) = \varphi(\lambda_1 u_1 + \ldots + \lambda_i u_i + \ldots + \lambda_n u_n) =$$

$$= \lambda_1 \varphi(u_1) + \ldots + \lambda_i \varphi(u_i) + \ldots + \lambda_n \varphi(u_n)$$

с поне едно $\lambda_i \neq 0$. Следователно $\varphi(u_1), \ldots, \varphi(u_n)$ са линейно зависими. Още повече, ако $u_1, \ldots, u_n \in U$ изпълняват линейна зависимост (15.1) с коефициенти $\lambda_1, \ldots, \lambda_n \in F$, то и $\varphi(u_1), \ldots, \varphi(u_n) \in V$ изпълняват линейната зависимост със същите коефициенти.

Нека $\varphi: U \to V$ е линейно изображение. Свойство (iv) от Твърдение 15.3 налага ограничения върху образите $\varphi(u_1), \ldots, \varphi(u_n) \in V$ на линейно зависима система вектори $u_1, \ldots, u_n \in U$. Следващото твърдение показва, че линейно независими вектори $w_1, \ldots, w_n \in U$ могат да имат произволни образи $\varphi(w_1), \ldots, \varphi(w_n) \in V$.

Твърдение 15.4. (Еднозначно задаване на линейно изображение чрез образите на базис:) Нека e_1, \ldots, e_n е базис на линейно пространство U над поле F, а v_1, \ldots, v_n е произволна система вектори от линейно пространство V над същото поле F. Тогава съществува единствено линейно изображение $\varphi: U \to V$ с $\varphi(e_i) = v_i$ за всички $1 \le i \le n$.

ДОКАЗАТЕЛСТВО. Произволен вектор $u \in U$ има еднозначно определени координати $x_1, \ldots, x_n \in F$ спрямо базиса e_1, \ldots, e_n , така че $u = \sum_{i=1}^n x_i e_i$. От определението за линейност на изображение $f: U \to V$ следва, че

$$f(u) = f\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i f(e_i).$$

Това ни подсказва да разгледаме изображението

$$\varphi: U \longrightarrow V$$
,

$$\varphi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i v_i,$$

което е коректно зададено, защото всеки вектор от U има еднозначно определени координати $x_1, \ldots, x_n \in F$ спрямо базиса e_1, \ldots, e_n на U, а оттам и еднозначно определен образ $\sum_{i=1}^n x_i v_i$.

За произволни $\sum\limits_{i=1}^n x_i e_i, \sum\limits_{i=1}^n y_i e_i \in U$ и $\lambda \in F$ е в сила

$$\varphi\left(\sum_{i=1}^{n} x_{i}e_{i} + \sum_{i=1}^{n} y_{i}e_{i}\right) = \varphi\left(\sum_{i=1}^{n} (x_{i} + y_{i})e_{i}\right) = \sum_{i=1}^{n} (x_{i} + y_{i})v_{i} = \sum_{i=1}^{n} x_{i}v_{i} + y_{i}v_{i} = \sum_{i=1}^{n} x_{i}v_{i} + \sum_{i=1}^{n} y_{i}v_{i} = \varphi\left(\sum_{i=1}^{n} x_{i}e_{i}\right) + \varphi\left(\sum_{i=1}^{n} y_{i}e_{i}\right)$$

И

$$\varphi\left(\lambda\left(\sum_{i=1}^{n} x_{i} e_{i}\right)\right) = \varphi\left(\sum_{i=1}^{n} (\lambda x_{i}) e_{i}\right) = \sum_{i=1}^{n} (\lambda x_{i}) v_{i} =$$

$$= \sum_{i=1}^{n} \lambda(x_{i} v_{i}) = \lambda\left(\sum_{i=1}^{n} x_{i} v_{i}\right) = \lambda\varphi\left(\sum_{i=1}^{n} x_{i} e_{i}\right).$$

Следователно φ е линейно изображение. Освен това, за всяко $1 \leq i \leq n$ е изпълнено

$$\varphi(e_i) = \varphi(0.e_1 + \dots + 0.e_{i-1} + 1.e_i + 0.e_{i+1} + \dots + 0.e_n) =$$

$$= 0.v_1 + \dots + 0.v_{i-1} + 1.v_i + 0.v_{i+1} + \dots + 0.v_n = v_i,$$

така че $\varphi: U \to V$ е линейно изображение с $\varphi(e_i) = v_i$ за всички $1 \le i \le n$. Произволно линейно изображение $\psi: U \to V$ с $\psi(e_i) = v_i$ за всички $1 \le i \le n$ изпълнява равенствата

$$\psi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i \psi(e_i) = \sum_{i=1}^{n} x_i v_i = \varphi\left(\sum_{i=1}^{n} x_i e_i\right)$$

за всички $x_1,\dots,x_n\in F$. Следователно ψ и φ действат по един и същи начин върху всеки вектор $\sum\limits_{i=1}^n x_ie_i\in U$ и $\psi\equiv\varphi$ съвпадат. Това доказва единствеността на линейното изображение φ .

Определение 15.5. Взаимно еднозначните линейни изображения $\varphi:U \to V$ се наричат линейни изоморфизми.

Линейни пространства U и V са изоморфни, ако съществува линеен изоморфизъм $\varphi:U\to V$.

Твърдение 15.6. Ако $\varphi: U \to V$ е изоморфизъм на линейни пространства, то обратното изображение $\varphi^{-1}: V \to U$ е линейно, а оттам и линеен изоморфизъм.

Доказателство. Достатъчно е да проверим, че

$$\varphi^{-1}\left(\sum_{i=1}^{n} x_i v_i\right) = \sum_{i=1}^{n} x_i \varphi^{-1}(v_i)$$
 (15.2)

за произволни $v_i \in V$ и $x_i \in F$. За целта използваме взаимната еднозначност на $\varphi: U \to V$, съгласно която за произволен вектор $v_i \in V$ съществува еднозначно определен вектор $u_i = \varphi^{-1}(v_i) \in U$ с $\varphi(u_i) = v_i$ и доказваме, че

$$\varphi^{-1}\left(\sum_{i=1}^{n} x_i \varphi(u_i)\right) = \sum_{i=1}^{n} x_i u_i \tag{15.3}$$

за произволни $u_i \in U$ и $x_i \in F$. От линейността на φ имаме

$$\varphi\left(\sum_{i=1}^{n} x_i u_i\right) = \sum_{i=1}^{n} x_i \varphi(u_i).$$

Действаме с φ^{-1} върху горното равенство, за да получим

$$\sum_{i=1}^{n} x_i \varphi^{-1}(v_i) = \sum_{i=1}^{n} x_i u_i = \varphi^{-1} \varphi \left(\sum_{i=1}^{n} x_i u_i \right) =$$
$$= \varphi^{-1} \left(\sum_{i=1}^{n} x_i \varphi(u_i) \right) = \varphi^{-1} \left(\sum_{i=1}^{n} x_i v_i \right),$$

което съвпада с (15.3) и да докажем твърдението.

Твърдение 15.7. Крайномерни пространства U и V над поле F са изоморфни тогава и само тогава, когато имат равни размерности $\dim(U) = \dim(V)$.

Доказателство. Нека $\varphi: U \to V$ е линеен изоморфизъм на крайномерни пространства и e_1, \ldots, e_n е базис на U. Достатъчно е да проверим, че $\varphi(e_1), \ldots, \varphi(e_n)$ е базис на V, за да получим, че $\dim(V) = n = \dim(U)$. Всеки вектор на V е от вида $v = \varphi(u)$ за някакъв вектор $u \in U$. Ако $u = \sum_{i=1}^n x_i e_i$, то

$$v = \varphi(u) = \varphi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i \varphi(e_i) \in l(\varphi(e_1), \dots, \varphi(e_n)).$$

Това доказва, че $l(\varphi(e_1), \dots, \varphi(e_n)) = V$. Ако допуснем, че $\varphi(e_1), \dots, \varphi(e_n)$ са линейно зависими, то след прилагане на линейния изоморфизъм

$$\varphi^{-1}: V \to U$$

получаваме линейно зависими вектори $\varphi^{-1}\varphi(e_1)=e_1,\ldots,\varphi^{-1}\varphi(e_n)=e_n$. Това противоречи на линейната независимост на базисните вектори e_1,\ldots,e_n на U и доказва линейната независимост на $\varphi(e_1),\ldots,\varphi(e_n)$. По този начин установихме, че $\varphi(e_1),\ldots,\varphi(e_n)$ е базис на V и $\dim U=\dim V$.

Нека $\dim(U) = \dim(V) = n, e_1, \dots, e_n$ е базис на U и f_1, \dots, f_n е базис на V. Съгласно Твърдение 15.4, съществува еднозначно определено линейно изображение

$$\varphi: U \longrightarrow V, \quad \varphi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i f_i$$

с $\varphi(e_i)=f_i$ за всички $1\leq i\leq n$. Аналогично, съществува еднозначно определеното линейно изображение

$$\psi: V \longrightarrow U, \quad \psi\left(\sum_{i=1}^{n} x_i f_i\right) = \sum_{i=1}^{n} x_i e_i$$

с $\psi(f_i) = e_i$ за всички $1 \le i \le n$. От

$$\psi \varphi \left(\sum_{i=1}^{n} x_i e_i \right) = \psi \left(\sum_{i=1}^{n} x_i f_i \right) = \sum_{i=1}^{n} x_i e_i$$
 и

$$\varphi\psi\left(\sum_{i=1}^{n}x_{i}f_{i}\right) = \varphi\left(\sum_{i=1}^{n}x_{i}e_{i}\right) = \sum_{i=1}^{n}x_{i}f_{i}$$

следва, че $\psi \varphi = \mathrm{Id}_U$ и $\varphi \psi = \mathrm{Id}_V$, така че φ е взаимно еднозначно, $\psi = \varphi^{-1}$ и $\varphi : U \to V$ е линеен изоморфизъм.

Следствие 15.8. За всяко поле F и всяко естествено число $n\in\mathbb{N}$ съществува единствено с точност до изоморфизъм п-мерно линейно пространство над F. По-точно, за произволен базис v_1, \ldots, v_n на nмерно линейно пространство V над F, изображението

$$\varphi: V \to F^n, \quad \varphi\left(\sum_{i=1}^n x_i v_i\right) = (x_1, \dots, x_n),$$
 (15.4)

съпоставящо на вектор $v = x_1v_1 + \ldots + x_nv_n$ наредената n-торка $(x_1,\ldots,x_n)\in F^n$ от координатите му спрямо v_1,\ldots,v_n е линеен изоморфизъм. По тази причина, можем да разглеждаме F^n като модел за n-мерно линейно пространство над F.

Доказателство. Нека v_1,\ldots,v_n е базис на линейно пространство V над Fи

$$e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}), \quad \forall 1 \le i \le n$$

 $e_i=\underbrace{(0,\dots,0}_{i-1},1,\underbrace{0,\dots,0}_{n-i}),\ \ \forall 1\leq i\leq n$ е стандартният базис на $F^n.$ Съгласно втората част на доказателството на Твърдение 15.7, еднозначно определеното линейно изображение $\varphi:V \to F^n$ с $\varphi(v_i)=e_i$ за всички $1\leq i\leq n$ е линеен изоморфизъм. Съгласно

$$\varphi\left(\sum_{i=1}^{n} x_i v_i\right) = x_1 e_1 + \ldots + x_i e_i + \ldots + x_n e_n = (x_1, \ldots, x_n),$$

изображението φ съвпада с (15.4).