In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. Programs were mostly entered using punched cards or paper tape. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Many applications use a mix of several languages in their construction and use. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" – a series of pasteboard cards with holes punched in them. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Programming languages are essential for software development. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Techniques like Code refactoring can enhance readability. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form.