Sequential Medical Decision-Making with RL

12 July, 2019

Duke/Duke-NUS
Machine Learning Summer School

Matthew Engelhard

Sepsis Management and Artificial Pancreas

TWO ILLUSTRATIVE EXAMPLES

Sequential Medical Decision-Making

An agent

takes actions

based on the state of a system

to maximize reward

Sequential Medical Decision-Making:

Sepsis Management

An agent

takes actions

based on the state of a system

to maximize reward

A clinician

gives fluid and/or vasopressor

based on the patient's physiologic status

to maximize chance of survival

Treating sepsis: the latest evidence

"Uncertainties still exist regarding the optimal type of fluid, the optimal volume, and the best way to monitor the response to therapy."

Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. bmj. 2016 May 23;353(i1585).

Deep Reinforcement Learning for Sepsis Treatment

Raghu A, Komorowski M, Ahmed I, Celi L, Szolovits P, Ghassemi M. arXiv:1711.09602. 2017 Nov 27

- Policy via Deep Q-Learning
- 17,898 patients from MIMIC-III

Independent validation on the Philips eICU Research Institute Database: >3.3 million admissions from 2003–2016 in 459 ICUs across the US

Sequential Medical Decision-Making:

Artificial Pancreas

An agent

takes actions

based on the state of a system

to maximize reward

A computer program

administers insulin

based on blood glucose and recent patient behaviors

to maintain normoglycemia

PUBLISH

ABOUT

BROWSE

RESEARCH ARTICLE

Model-Free Machine Learning in Biomedicine: Feasibility Study in Type 1 Diabetes

Elena Daskalaki, Peter Diem, Stavroula G. Mougiakakou 🖸

Published: July 21, 2016 • https://doi.org/10.1371/journal.pone.0158722

FORMULATING THE PROBLEM AS REINFORCEMENT LEARNING

- A set of states: $S = \{s^1, s^2, ..., s^n\}$
- A set of possible actions: $A = \{a^1, a^2, ..., a^m\}$
- A reward r(s, a, s') for reaching state s' from state s after taking action a
- (sometimes) A model P(s, a, s') that describes the probability of reaching state s' from state s after taking action a

The RL Paradigm

...
$$S_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

- A set of states: $S = \{s^1, s^2, ..., s^n\}$
- A set of possible actions: $A = \{a^1, a^2, ..., a^m\}$
- A reward r(s, a, s') for reaching state s' from state s after taking action a
- (sometimes) A model P(s, a, s') that describes the probability of reaching state s' from state s after taking action a

Defining Actions

...
$$S_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

Actions: Sepsis Management

How much fluid?

Vasopressor dose?

We need a finite set of actions to choose from

Q Learning:

- Q function implemented as a look-up table
- Input: state *s*
- Output: Q(s, a) for each action $a \in A$

We need a finite set of actions to choose from

Q Learning:

- Q function implemented as a look-up table
- Input: state *s*
- Output: Q(s, a) for each action $a \in A$

We need a finite set of actions to choose from

Deep Q Learning:

- Q function implemented as a deep neural network
- Input: state *s*
- Output: Q(s, a) for each action $a \in A$

Actions a_t : Sepsis Management

Five IV fluid quantities: {0, Quartile1, Q2, Q3, Q4}

Five vasopressor doses {0, Quartile1, Q2, Q3, Q4}

- Quartiles are defined based on the training dataset
- Example action:
 (Q2 fluid, 0 vasopressor)
- 25 possible actions

Actions a_t : Artificial Pancreas

Insulin Basal Rate

X

Insulin Bolus Amount

https://time.com/4703099/continuous-glucose-monitor-blood-sugar-diabetes/

Actions a_t : Artificial Pancreas

Insulin Basal Rate

X

Insulin Bolus Amount

X

Glucagon Bolus Amount

https://time.com/4703099/continuous-glucose-monitor-blood-sugar-diabetes/

Must be discretized

- A set of states: $S = \{s^1, s^2, ..., s^n\}$
- A set of possible actions: $A = \{a^1, a^2, ..., a^m\}$
- A reward r(s, a, s') for reaching state s' from state s after taking action a
- (sometimes) A model P(s, a, s') that describes the probability of reaching state s' from state s after taking action a

Defining States

...
$$S_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

Category	Items	Туре
Demographics	Age	Continuous
	Gender	Binary
	Weight	Continuous
	Readmission to intensive care	Binary
	Elixhauser score (premorbid status)	Continuous
Vital signs	Modified SOFA*	Continuous
	SIRS	Continuous
	Glasgow coma scale	Continuous
	Heart rate, systolic, mean and diastolic blood	
	pressure, shock index	Continuous
	Respiratory rate, SpO2	Continuous
	Temperature	Continuous
	Potassium, sodium, chloride	Continuous
	Glucose, BUN, creatinine	Continuous
	Magnesium, calcium, ionized calcium,	Continuous
	carbon dioxide	Continuous
Lab values	SGOT, SGPT, total bilirubin, albumin	Continuous
	Hemoglobin	Continuous
	White blood cells count, platelets count, PTT,	
	PT, INR, pH, PaO2, PaCO2, base excess,	
	bicarbonate, lactate, PaO2/FiO2 ratio	Continuous
Ventilation	Mechanical ventilation	Binary
parameters	FiO2	Continuous
Medications and	Current IV fluid intake over 4h	Continuous
	Maximum dose of vasopressor over 4h	Continuous
fluid balance	Urine output over 4h	Continuous
india balafice	Cumulated fluid balance since admission	
	(includes preadmission data when available)	Continuous

State s_t : Sepsis

State s_t: Artificial Pancreas

Blood Glucose Readings from Continuous Glucose Monitor

https://medium.com/@justin_d_lawler/continuous-glucose-monitoring-the-first-four-weeks-7a6aa5fdb06e

Blood Glucose summary statistics

- time in normo-, hypo-, and hyper-glycemia
- measures of BG variability

Recent patient behaviors

- physical activity
- eating

- A set of states: $S = \{s^1, s^2, ..., s^n\}$
- A set of possible actions: $A = \{a^1, a^2, ..., a^m\}$
- A reward r(s, a, s') for reaching state s' from state s after taking action a
- (sometimes) A model P(s, a, s') that describes the probability of reaching state s' from state s after taking action a

The RL Paradigm

...
$$S_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

The reward quantifies our objectives

Treating sepsis: the latest evidence

"Uncertainties still exist regarding the optimal type of fluid, the optimal volume, and the best way to monitor the response to therapy."

Clinician goals: keep the patient stable.

- central venous pressure (8-12 mm Hg)
- mean arterial pressure (65-90 mm Hg)
- urine output (0.5 mL/kg/h)
- central venous oxygen saturation (70%)

RL goals: optimize the outcome

- prevent death
- prevent organ damage

-> The RL algorithm chooses actions that maximize expected reward over time

Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. bmj. 2016 May 23;353(i1585).

Primary objective: prevent mortality

Should this be the only goal?

 We want to optimize patient outcomes, but follow-up data is not available

Additional Goal: Prevent Organ Dysfunction -> SOFA Score (0-24)

Table 1. The Sequential Organ Failure Assessment (SOFA) Score*

Variables	SOFA Score					
	0	1	2	3	4	
Respiratory Pao ₂ /Fio ₂ , mm Hg	>400	≤400	≤300	≤200†	≤100†	
Coagulation Platelets ×10³/µL‡	>150	≤150	≤100	≤50	≤20	
Liver Bilirubin, mg/dL‡	<1.2	1.2-1.9	2.0-5.9	6.0-11.9	>12.0	
Cardiovascular Hypotension	No hypotension	Mean arterial pressure <70 mm Hg	Dop ≤5 or dob (any dose)§	Dop >5, epi ≤0.1, or norepi ≤0.1§	Dop >15, epi >0.1, or norepi >0.1§	
Central nervous system Glasgow Coma Score Scale	15	13-14	10-12	6-9	<6	
Renal Creatinine, mg/dL or urine output, mL/d	<1.2	1.2-1.9	2.0-3.4	3.5-4.9 or <500	>5.0 or <200	

^{*}Norepi indicates norepinephrine; Dob, dobutamine; Dop, dopamine; Epi, epinephrine; and Fio₂, fraction of inspired oxygen, †Values are with respiratory support.

Ferreira FL, Bota DP, Bross A, Mélot C, Vincent J. Serial Evaluation of the SOFA Score to Predict Outcome in Critically III Patients. *JAMA*. 2001;286(14):1754–1758.

To convert bilirubin from mg/dL to µmol/L, multiply by 17.1.

[§]Adrenergic agents administered for at least 1 hour (doses given are in µg/kg per minute).

To convert creatinine from mg/dL to µmol/L, multiply by 88.4.

Reward r_t : Sepsis Management

$$r(s_t, s_{t+1}) = C_0 \mathbb{1} \left(\left(s_{t+1}^{\text{SOFA}} = s_t^{\text{SOFA}} \right) & \left(s_{t+1}^{\text{SOFA}} > 0 \right) \right) + C_1 \left(s_{t+1}^{\text{SOFA}} - s_t^{\text{SOFA}} \right) + C_2 \tanh \left(s_{t+1}^{\text{Lactate}} - s_t^{\text{Lactate}} \right)$$

If SOFA score is unchanged **Red**eive reward/penal greater than zero, receive penalint of decrease/incre

Receive reward/penalty up to $|C_2|$ for decreases/increases in lactate

 ${}^*C_{0'}$, $C_{1'}$, and C_{2} are negative, so they can be viewed as penalties

Reward r_t : Sepsis Management

$$r(s_t, s_{t+1}) = C_0 \mathbb{1}\left(\left(s_{t+1}^{\text{SOFA}} = s_t^{\text{SOFA}}\right) & \left(s_{t+1}^{\text{SOFA}} > 0\right)\right) + C_1\left(s_{t+1}^{\text{SOFA}} - s_t^{\text{SOFA}}\right) + C_2 \tanh\left(s_{t+1}^{\text{Lactate}} - s_t^{\text{Lactate}}\right)$$

+15 if a patient survived their ICU stay. −15 if not.

Reward r_t : Artificial Pancreas

https://medium.com/@justin_d_lawler/continuous-glucose-monitoring-the-first-four-weeks-7a6aa5fdb06e

RL: LEARNING THROUGH TRIAL AND ERROR

In RL, we typically learn "from scratch":

- Try things and see what works
- Initially our actions are random

Drone Uses AI and 11,500 Crashes to Learn How to Fly

Crashing into objects has taught this drone to fly autonomously, by learning what not to do

By Evan Ackerman

Failing 11,500 times isn't always an option

What are the alternatives?

- 1. Learn from observational data
 - cannot control which actions are taken

- 2. Learn in a simulated environment
 - state transitions may not match reality
- 3. Learn with expert oversight
 - high cost (e.g. clinician time)
 - may prevent algorithm from learning a better policy

Learn Policy from Simulated Environment

Trial to evaluate learned policy

algorithm recommendation

physician approval

Open Questions for RL

1. How can we incorporate existing knowledge to avoid "starting from scratch"?

2. Should we avoid starting from scratch?

Sepsis Management and Artificial Pancreas

EVALUATING PERFORMANCE

Evaluation Measures

- Classification performance?
- Mean Square Error?

GOAL:

Learn a <u>policy</u> $\pi: S \to A$ that assigns each state s to the action a that **maximizes expected reward over time**

HOW?

- experience/try things and record what happens
- reinforce actions that are rewarding
- discourage actions that are expensive or lead to poor outcomes

The RL Paradigm

...
$$S_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

Evaluation Measures

- Classification performance?
- Mean Square Error?

- Ideally, we compare outcomes between competing policies
- In this case, the policy the algorithm is competing against is real physician decision-making
- Physician policy can be directly evaluated, but the learned policy since it was not actually followed can only be indirectly evaluated ("off-policy evaluation")

Sepsis Results: Learned Policy vs Physician Policy

Sepsis Results: Observed Mortality

U curve with naïve baselines

Concerns about Off-Policy Evaluation

- 1) Sicker patients get higher dosages!
- 2) Discretizing dosages by quantile bad.

Slide Credit: Michael Hughes (michaelchughes.com)

Clinical Trials and Self-Experimentation

OTHER DIRECTIONS IN RL FOR MEDICINE

Sequential Decision-Making Problems are Everywhere in Medicine

A reinforcement learning approach to weaning of mechanical ventilation in intensive care units.

Prasad, Niranjani, et al. arXiv:1704.06300 (2017).

Suppose we are evaluating a new drug...

A special case of RL

Application: Optimal Allocation of Clinical Trial Participants

"An explicit assumption is the goal to treat patients effectively, in the trial as well as out. That is controversial (...)"

(Stangl, Inoue and Irony, 2012)

N-of-1 Trial: Identify IBS Triggers

IBS Trigger Foods

Find foods (i.e. "actions") that minimize IBS symptoms (i.e. "reward")

TummyTrials: A Feasibility Study of Using Self-Experimentation to Detect Individualized Food Triggers.

Karkar R, Schroeder J, Epstein DA, et al. SIGCHI Conference 2017;2017:6850-6863.

This time, we track what works for men versus women

Personalized clinical trials can be formulated as RL

THANK YOU!

Questions or ideas? Please contact me at m.engelhard@duke.edu

