Homework 4

Page 95, Chinese textbook

Question 12

Considering a three-phase bridge fully-controlled rectifier circuit under a resistive load, if one thyristor cannot be conducted, what does the rectifier voltage waveform u_d look like? If one thyristor has been broken down and is a short circuit now, what is the influence on the other thyristors?

Question 13

Considering a three-phase bridge fully-controlled rectifier circuit with $U_2 = 100V$, under a resistive and inductive load with $R = 5\Omega$ and very large inductance, when $\alpha = 60^{\circ}$:

- 1) Draw the waveform of u_d , i_d and i_{VT_1} ;
- 2) Calculate U_d , I_d , I_{dVT} , and I_{VT} .

Question 15

Considering a three-phase half-wave controlled rectifier circuit connected to a EMF load with resistor and inductor, when $U_2=100$ V, $R=1\Omega$, $L=\infty$, $L_B=1$ mH, $\alpha=30^\circ$, E=50V, calculate the value of U_d , I_d , γ and draw the waveform of u_d , i_{VT_1} , i_{VT_2} .

Question 16

Considering a three-phase bridge uncontrolled rectifier circuit connected to a resistive and inductive load, with $R=2\Omega$, $L=\infty$, $U_2=100$ V, $X_B=0.1\Omega$, calculate the value of U_d , I_d , I_{VD} , I_2 and γ , and draw the waveform of u_d , i_{VD} , and i_2 .

Answer 3.12

Supposing the VT_1 isn't turned on, the waveform of rectified voltage u_d is

If the VT_1 is broken down to become short circuit and the thyristor VT_3 and VT_5 is turned on, power is shorted-circuited, which will make the VT_3 and VT_5 break down.

Answer 3.13

(1) The waveform of u_d , i_d and i_{VTI} :

(2) The result of U_d , I_d , I_{dVT} , and I_{VT} .

$$U_d = 2.34 U_2 \cos \frac{\pi}{3} = 2.34 \times 100 \times \cos \frac{\pi}{3} V = 117 V$$

$$I_d=rac{U_d}{R}=rac{117V}{5arOmega}=23.4A$$

$$I_{ extit{DVT}} = rac{I_d}{3} = rac{23.4A}{3} = 7.8A$$

$$I_{VT}\!=\!rac{I_d}{\sqrt{3}}=rac{23.4A}{\sqrt{3}}=\!13.51A$$

Answer 3.15

the waveform of u_d , i_{VT_1} , i_{VT_2} :

Given that $L_B = 1$ mH, it's known that

$$\left\{egin{aligned} U_d = 1.17 U_2 \cos lpha - \Delta U_d \ \Delta U_d = rac{3 X_B I_d}{2\pi} \ I_d = rac{(U_d - E)}{R} \end{aligned}
ight.$$

Solutions of equations are:

$$\left\{egin{aligned} U_d = 94.3V \ \Delta U_d = 6.7V \ I_d = 44.63A \end{aligned}
ight.$$

We can get the relationship that

$$\begin{cases} \alpha = \frac{\pi}{6} \\ \gamma = 11.28^{\circ} \end{cases}$$

for the reason that

$$\cos lpha - \cos (lpha + \gamma) = rac{2I_d X_B}{\sqrt{6}\,U_2}$$

Answer 3.16

The waveform of u_d , i_{VD} , and i_2 :

A three-phase bridge uncontrolled rectifier circuit is equivalent to A three-phase bridge controlled rectifier circuit with $\alpha = 0$.

$$\left\{egin{aligned} U_d = 2.34 U_2 \cos lpha - \Delta U_d \ \Delta U_d = rac{3 X_B I_d}{\pi} \ I_d = rac{U_d}{R} \end{aligned}
ight.$$

Solutions of equations are:

$$\left\{egin{aligned} U_d = 486.9V \ \Delta U_d = 97.38A \end{aligned}
ight.$$

We can get the relationship that

$$\gamma = 26.93^{\circ}$$

for the reason that

$$\cos lpha - \cos (lpha + \gamma) = rac{2I_d X_B}{\sqrt{6}\,U_2}$$

Therefore, the RMS value of the current of diode and the secondary winding of transformer is

$$I_{VD} = \frac{I_d}{3} = \frac{97.38A}{3} = 32.46A$$

$$I_2\!=\!\sqrt{rac{2}{3}}\,I_d\!=\!\sqrt{rac{2}{3}}\! imes\!97.38A\!=\!79.5104A$$