Lecture 1: Mathematical Preliminaries

Shi Pu

School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

Outline

- 1 Spaces, inner products and norms
 - 2 Eigenvalues and eigenvectors
- Basic topological concepts
- 4 Differentiability

Outline

- 1 Spaces, inner products and norms
 - 2 Eigenvalues and eigenvectors
- Basic topological concepts

4 Differentiability

The Space \mathbb{R}^n

■ \mathbb{R}^n - the set of *n*-dimensional column vectors with real components endowed with the component-wise addition operator:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix},$$

and the scalar-vector product

$$\lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}.$$

- $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ standard/canonical basis.
- e and 0 all ones and all zeros column vectors..

Important Subsets of \mathbb{R}^n

■ Nonnegative orthant:

$$\mathbb{R}_{+}^{n} = \{(x_1, x_2, \dots, x_n)^{\top} : x_1, x_2, \dots, x_n \geq 0\}.$$

Positive orthant:

$$\mathbb{R}_{++}^n = \{(x_1, x_2, \dots, x_n)^\top : x_1, x_2, \dots, x_n > 0\}.$$

■ If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the closed line segment between \mathbf{x} and \mathbf{y} is given by

$$[x, y] = \{x + \alpha(y - x) : \alpha \in [0, 1]\}.$$

■ The open line segment (x, y) is similarly defined as

$$(\mathbf{x}, \mathbf{y}) = {\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x}) : \alpha \in (0, 1)}$$

for $\mathbf{x} \neq \mathbf{y}$ and $(\mathbf{x}, \mathbf{x}) = \emptyset$

Unit-simplex:

$$\Delta_n = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \geq 0, \mathbf{e}^{\top} \mathbf{x} = 1 \}.$$

The Space $\mathbb{R}^{m \times n}$

- The set of all real valued matrices is denoted by $\mathbb{R}^{m \times n}$.
- I_n $n \times n$ identity matrix.
- $\mathbf{0}_{m \times n}$ $m \times n$ zeros matrix.

Inner Products

Definition

An inner product on \mathbb{R}^n is a map $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ with the following properties:

- 1. (symmetry) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- 2. (additivity) $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$ for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$.
- 3. (homogeneity) $\langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$ for any $\lambda \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- 4. (positive definiteness) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ for any $\mathbf{x} \in \mathbb{R}^n$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$.

Inner Products

Definition

An inner product on \mathbb{R}^n is a map $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ with the following properties:

- 1. (symmetry) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- 2. (additivity) $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$ for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$.
- 3. (homogeneity) $\langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$ for any $\lambda \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- 4. (positive definiteness) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ for any $\mathbf{x} \in \mathbb{R}^n$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
 - The "dot product"

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^{n} x_{i} y_{i} \text{ for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}.$$

■ The "weighted dot product"

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbf{w}} = \sum_{i=1}^{n} w_i x_i y_i$$
, where $\mathbf{w} \in \mathbb{R}^n_{++}$.

Vector Norms

Definition

An norm $\|\cdot\|$ on \mathbb{R}^n is a function $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ satisfying

- 1. (nonnegativity) $\|\mathbf{x}\| \geq 0$ for any $\mathbf{x} \in \mathbb{R}^n$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- 2. (positive homogeneity) $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ for any $\mathbf{x} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.
- 3. (triangle inequality) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
 - One natural way to generate a norm on \mathbb{R}^n is to take any inner product $\langle \cdot, \cdot \rangle$ defined on \mathbb{R}^n , and define the associated norm

$$\|\mathbf{x}\| \equiv \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}, \text{ for all } \mathbf{x} \in \mathbb{R}^n,$$

■ The norm associated with the dot-product is the so-called Euclidean norm or *l*₂-norm:

$$\|\mathbf{x}\|_2 \equiv \sqrt{\sum_{i=1}^n x_i^2} \text{ for all } \mathbf{x} \in \mathbb{R}^n.$$

I_p -norms

- The I_p -norm $(p \ge 1)$ is defined by $||x||_p \equiv \sqrt[p]{\sum_{i=1}^n |x_i|^p}$.
- The I_{∞} -norm is

$$\|\mathbf{x}\|_{\infty} \equiv \max_{i=1,2,\ldots,n} |x_i|.$$

It can be shown that

$$\|\mathbf{x}\|_{\infty} = \lim_{p \to \infty} \|\mathbf{x}\|_{p}.$$

Example: $I_{1/2}$ is not a norm. why?

The Cauchy-Schwartz Inequality

Lemma

For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$:

$$|\mathbf{x}^{\top}\mathbf{y}| \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|.$$

Proof.

For any $\lambda \in \mathbb{R}$:

$$\|\mathbf{x} + \lambda \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\lambda \langle \mathbf{x}, \mathbf{y} \rangle + \lambda^2 \|\mathbf{y}\|^2$$

Therefore (why?),

$$4\langle \boldsymbol{x},\boldsymbol{y}\rangle^2 - 4\|\boldsymbol{x}\|^2\|\boldsymbol{y}\|^2 \leq 0,$$

establishing the desired result.

Matrix Norms

Definition

A norm $\|\cdot\|$ on $\mathbb{R}^{m\times n}$ is a function $\|\cdot\|:\mathbb{R}^{m\times n}\to\mathbb{R}$ satisfying

- 1. (nonnegativity) $\|\mathbf{A}\| \ge 0$ for any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\|\mathbf{A}\| = 0$ if and only if $\mathbf{A} = \mathbf{0}$.
- 2. (positive homogeneity) $\|\lambda \mathbf{A}\| = |\lambda| \|\mathbf{A}\|$ for any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\lambda \in \mathbb{R}$.
- 3. (triangle inequality) $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$ for any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$.
- 4. (submultiplicativity) $\|\mathbf{AB}\| \le \|\mathbf{A}\| \|\mathbf{B}\|$ for any compatible \mathbf{A}, \mathbf{B} .

Induced Norms

■ Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and two norms $\|\cdot\|_a$ and $\|\cdot\|_b$ on \mathbb{R}^n and \mathbb{R}^m respectively, the induced matrix norm $\|\mathbf{A}\|_{a,b}$ (called (a,b)-norm) is defined by

$$\|\mathbf{A}\|_{a,b} = \max_{\mathbf{x}} \{ \|\mathbf{A}\mathbf{x}\|_b : \|\mathbf{x}\|_a \le 1 \}.$$

Conclusion:

$$\|\mathbf{A}\mathbf{x}\|_{b} \leq \|\mathbf{A}\|_{a,b} \|\mathbf{x}\|_{a}$$

- An induced norm is a norm (satisfies nonnegativity, positive homogeneity and triangle inequality, and submultiplicativity).
- We refer to the matrix-norm $\|\cdot\|_{a,b}$ as the (a,b)-norm. When a=b, we will simply refer to it as an a-norm.

Matrix Norms Contd

■ Spectral norm: If $\|\cdot\|_a = \|\cdot\|_b = \|\cdot\|_2$, the induced (2,2)-norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the maximum singular value of \mathbf{A}

$$\|\mathbf{A}\|_2 = \|\mathbf{A}\|_{2,2} = \sqrt{\lambda_{\mathsf{max}}(\mathbf{A}^{ op}\mathbf{A})} \equiv \sigma_{\mathsf{max}}(\mathbf{A}).$$

■ I_1 -norm: when $\|\cdot\|_a = \|\cdot\|_b = \|\cdot\|_1$, the induced (1,1)-matrix norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by

$$\|\mathbf{A}\|_1 = \max_{j=1,2,...,n} \sum_{i=1}^m |A_{i,j}|.$$

■ I_{∞} -norm: when $\|\cdot\|_a = \|\cdot\|_b = \|\cdot\|_{\infty}$, the induced (∞, ∞) -matrix norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by

$$\|\mathbf{A}\|_{\infty} = \max_{i=1,2,...,m} \sum_{j=1}^{n} |A_{i,j}|.$$

The Frobenius norm

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2}, \ \mathbf{A} \in \mathbb{R}^{m \times n}$$

The Frobenius norm is not an induced norm.

Why is it a norm?

Outline

- 1 Spaces, inner products and norms
- 2 Eigenvalues and eigenvectors
- Basic topological concepts
- 4 Differentiability

Eigenvalues and Eigenvectors

■ Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then a nonzero vector $\mathbf{v} \in \mathbb{R}^n$ is called an eigenvector of \mathbf{A} if there exists a $\lambda \in \mathbb{C}$ for which

$$\mathbf{A}\mathbf{v}=\lambda\mathbf{v}.$$

The scalar λ is the eigenvalue corresponding to the eigenvector \mathbf{v} .

- In general, real-valued matrices can have complex eigenvalues, but when the matrix is *symmetric* the eigenvalues are necessarily *real*.
- The eigenvalues of a symmetric $n \times n$ matrix **A** are denoted by

$$\lambda_1(\mathbf{A}) \geq \lambda_2(\mathbf{A}) \geq \ldots \geq \lambda_n(\mathbf{A}).$$

■ The maximum eigenvalue is also denoted by $\lambda_{\max}(\mathbf{A})(=\lambda_1(\mathbf{A}))$, and the minimum eigenvalue is also denoted by $\lambda_{\min}(\mathbf{A})(=\lambda_n(\mathbf{A}))$.

The Spectral Factorization Theorem

Theorem

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ ($\mathbf{U}^{\top}\mathbf{U} = \mathbf{U}\mathbf{U}^{\top} = \mathbf{I}$) and a diagonal matrix $\mathbf{D} = \operatorname{diag}(d_1, d_2, \dots, d_n)$ for which

$$\mathbf{U}^{\mathsf{T}}\mathbf{A}\mathbf{U}=\mathbf{D}.$$

- The columns of the matrix **U** constitute an orthogonal basis comprising eigenvectors of **A** and the diagonal elements of **D** are the corresponding eigenvalues.
- A direct result is that $\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i(\mathbf{A})$ and $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i(\mathbf{A})$.

Outline

- 1 Spaces, inner products and norms
- 2 Eigenvalues and eigenvectors
- 3 Basic topological concepts
- 4 Differentiability

Basic Topological Concepts

■ The open ball with center $\mathbf{c} \in \mathbb{R}^n$ and radius r:

$$B(\mathbf{c}, r) = {\mathbf{x} : ||\mathbf{x} - \mathbf{c}|| < r}.$$

■ The closed ball with center $\mathbf{c} \in \mathbb{R}^n$ and radius r:

$$B[\mathbf{c},r] = \{\mathbf{x} : \|\mathbf{x} - \mathbf{c}\| \le r\}.$$

Definition

Given a set $U \subseteq \mathbb{R}^n$, a point $\mathbf{c} \in U$ is called an interior point of U if there exists r > 0 for which $B(\mathbf{c}, r) \subseteq U$.

The set of all interior points of a given set U is called the interior of the set and is denoted by int(U):

$$\operatorname{int}(U) = \{ \mathbf{x} \in U : B(\mathbf{x}, r) \subseteq U \text{ for some } r > 0. \}$$

Examples:

$$\operatorname{int}(\mathbb{R}^n_+) = \mathbb{R}^n_{++}, \quad \operatorname{int}(B[\mathbf{c}, r]) = B(\mathbf{c}, r), \quad \operatorname{int}([\mathbf{x}, \mathbf{y}]) = ?$$

Open and Closed Sets I

- An open set is a set that contains only interior points, meaning that U = int(U).
- Examples of open sets are open balls (hence the name...) and the positive orthant \mathbb{R}^n_{++} .

Result: a union of any number of open sets is an open set and the intersection of a finite number of open sets is open.

Open and Closed Sets II

- A set $U \subseteq \mathbb{R}^n$ is closed if it contains all the limits of convergent sequences of vectors in U, that is, if $\{\mathbf{x}_i\}_{i=1}^{\infty} \subseteq U$ satisfies $\mathbf{x}_i \to \mathbf{x}^*$ as $i \to \infty$, then $\mathbf{x}^* \in U$.
- lacksquare A known result states that U is closed iff its complement U^c is open.
- Examples of closed sets are the closed ball $B[\mathbf{c}, r]$, closed lines segments, the nonnegative orthant \mathbb{R}^n_+ and the unit simplex Δ_n .

What about \mathbb{R}^n ? \emptyset ?

Boundary Points

Definition

Given a set $U \subseteq \mathbb{R}^n$, a boundary point of U is a vector $\mathbf{x} \in \mathbb{R}^n$ satisfying the following: any neighborhood of \mathbf{x} contains at least one point in U and at least one point in its complement U^c .

■ The set of all boundary points of a set U is denoted by $\mathrm{bd}(U)$.

Examples:

$$bd(B(\mathbf{c}, r)) = bd(B[\mathbf{c}, r]) = bd(\mathbb{R}_{++}^n) = bd(\mathbb{R}_{+}^n) = bd(\mathbb{R}_{+}^n) = bd(\Delta_n) =$$

Closure

■ The closure of a set $U \subseteq \mathbb{R}^n$ is denoted by $\operatorname{cl}(U)$ and is defined to be the smallest closed set containing U:

$$cl(U) = \bigcap \{T : U \subseteq T, T \text{ is closed } \}$$

■ Another equivalent definition of cl(U) is:

$$\mathrm{cl}(U)=U\cup\mathrm{bd}(U).$$

Examples:

$$\operatorname{cl}(\mathbb{R}^n_{++}) = \\ \operatorname{cl}(\mathcal{B}(\mathbf{c}, r)) = \\ (\mathbf{x} \neq \mathbf{y}), \operatorname{cl}((\mathbf{x}, \mathbf{y})) =$$

Boundedness and Compactness

- A set $U \subseteq \mathbb{R}^n$ is called bounded if there exists M > 0 for which $U \subseteq B(\mathbf{0}, M)$.
- A set $U \subseteq \mathbb{R}^n$ is called compact if it is closed and bounded.
- Examples of compact sets: closed balls, unit simplex, closed line segments.

Outline

- 1 Spaces, inner products and norms
- 2 Eigenvalues and eigenvectors
- Basic topological concepts
- 4 Differentiability

Directional Derivatives and Gradients

Definition

Let f be a function defined on a set $S \subseteq \mathbb{R}^n$. Let $\mathbf{x} \in \text{int}(S)$ and let $\mathbf{d} \in \mathbb{R}^n$. If the limit

$$\lim_{t\to 0^+}\frac{f(\mathbf{x}+t\mathbf{d})-f(\mathbf{x})}{t}$$

exists, then it is called the directional derivative of f at \mathbf{x} along the direction \mathbf{d} and is denoted by $f'(\mathbf{x}; \mathbf{d})$.

■ For any i = 1, 2, ..., n, if the limit

$$\lim_{t\to 0}\frac{f(\mathbf{x}+t\mathbf{e}_i)-f(\mathbf{x})}{t}$$

exists, then its value is called the *i*-th partial derivative and is denoted by $\frac{\partial f}{\partial x}(\mathbf{x})$.

■ If all the partial derivatives of a function f exist at a point $\mathbf{x} \in \mathbb{R}^n$, then the gradient of f at \mathbf{x} is $\nabla f(\mathbf{x}) = (\frac{\partial f}{\partial x_1}(\mathbf{x}), \frac{\partial f}{\partial x_2}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x}))^{\top}$.

Continuous Differentiability

A function f defined on an open set $U \subseteq \mathbb{R}^n$ is called continuously differentiable over U if all the partial derivatives exist and are continuous on U. In that case,

$$f'(\mathbf{x}; \mathbf{d}) = \nabla f(\mathbf{x})^{\top} \mathbf{d}, \quad \mathbf{x} \in U, \mathbf{d} \in \mathbb{R}^n$$

Proposition

Let $f: U \to \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that f is continuously differentiable over U. Then

$$\lim_{\mathbf{d}\to 0} \frac{f(\mathbf{x}+\mathbf{d}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^{\top} \mathbf{d}}{\|\mathbf{d}\|} = 0, \ \forall \mathbf{x} \in U.$$

Another way to write the above result is as follows:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + o(\|\mathbf{y} - \mathbf{x}\|),$$

where $o(\cdot): \mathbb{R}^n_+ \to \mathbb{R}$ is a one-dimensional function satisfying $\frac{o(t)}{t} \to 0$ as $t \to 0^+$.

Twice Differentiability

■ The partial derivatives ∂f are themselves real-valued functions that can be partially differentiated. The (i,j)-partial derivatives of f at $x \in U$ (if exists) is defined by

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}) = \frac{\partial (\frac{\partial f}{\partial x_j})}{\partial x_i}(\mathbf{x}).$$

■ A function f defined on an open set $U \subseteq \mathbb{R}^n$ is called twice continuously differentiable over U if all the second order partial derivatives exist and are continuous over U. In that case, for any $i \neq j$ and any $\mathbf{x} \in U$:

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(\mathbf{x}) = \frac{\partial^2 f}{\partial x_i \partial x_i}(\mathbf{x}).$$

The Hessian

The Hessian of f at a point $\mathbf{x} \in U$ is the $n \times n$ matrix:

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & & \vdots \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

For twice continuously differentiable functions, the Hessian is a symmetric matrix.

Linear Approximation Theorem

Theorem

Let $f: U \to \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that f is twice continuously differentiable over U. Let $\mathbf{x} \in U$ and r > 0 satisfy $B(\mathbf{x}, r) \subseteq U$. Then for any $\mathbf{y} \in B(\mathbf{x}, r)$ there exists $\xi \in [\mathbf{x}, \mathbf{y}]$ such that:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{\top} \nabla^2 f(\xi) (\mathbf{y} - \mathbf{x}).$$

Quadratic Approximation Theorem

Theorem

Let $f: U \to \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that f is twice continuously differentiable over U. Let $\mathbf{x} \in U$ and r > 0 satisfy $B(\mathbf{x}, r) \subseteq U$. Then for any $\mathbf{y} \in B(\mathbf{x}, r)$:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{\top} \nabla^{2} f(\mathbf{x}) (\mathbf{y} - \mathbf{x}) + o(\|\mathbf{y} - \mathbf{x}\|^{2}).$$