試験名:学群編入学試験 【情報学群 情報科学類・情報メディア創成学類】

試験名:学群	編入学試験【情報学群 情報科学類・情報メディア創成学類】
区 分	標 準 的 な 解 答 例 又 は 出 題 意 図
問題1 (数学(1))	出題意図 変数変換, 偏微分, 重積分による体積計算に関する知識を問う.
	解答例
	(1) $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = 2r \cos \theta$ より.
	$J = \begin{pmatrix} \partial x/\partial r & \partial x/\partial \theta & \partial x/\partial \varphi \\ \partial y/\partial r & \partial y/\partial \theta & \partial y/\partial \varphi \\ \partial z/\partial r & \partial z/\partial \theta & \partial z/\partial \varphi \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi \\ 2\cos\theta & -2r\sin\theta & 0 \end{pmatrix}$
	$(2) J = 2r^2 \sin \theta$
	(3) 領域 D 内の点 (x, y, z) は
	$x^{2} + y^{2} + \frac{1}{4}z^{2} \le 1$, $0 \le x$, $0 \le y$, $0 \le z$
	を満たすので、(r, θ, φ) の取りうる範囲は以下のようになる.
	$0 \le r \le 1$, $0 \le \theta \le \frac{\pi}{2}$, $0 \le \varphi \le \frac{\pi}{2}$
	領域 D の体積を V とすると、
	$V = \int_0^1 \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} 2r^2 \sin \theta dr d\theta d\phi = 2 \cdot \int_0^1 r^2 dr \cdot \int_0^{\frac{\pi}{2}} \sin \theta d\theta \cdot \int_0^{\frac{\pi}{2}} d\phi$
	$= 2 \cdot \left[\frac{r^3}{3} \right]_0^1 \cdot \left[-\cos \theta \right]_0^{\frac{\pi}{2}} \cdot \frac{\pi}{2} = 2 \times \frac{1}{3} \times 1 \times \frac{\pi}{2} = \frac{\pi}{3}$

試験名:学群編入学試験【情報学群 情報科学類・情報メディア創成学類】

武教 1 子研稿 八子 武教 【 同報子 研		
区分	標 準 的 な 解 答 例 又 は 出 題 意 図	
問題2 (数学(2))	出題意図 2次形式,固有値,固有ベクトルに関する知識を問う.	
	解答例	
	(1) 行列 A を求めなさい.	
	解答例	
	$f(x,y,z) = x^2 + y^2 + z^2 + 2axy + 2ayz$ $\begin{cases} 1 & a & 0 \\ \end{pmatrix} \begin{cases} x \\ \end{pmatrix}$	
	$= \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$	
and the state of t	よって, /1 a 0\	
	$A = \begin{pmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{pmatrix}$	
	(2) 行列 A の固有値をすべて求めなさい.	
	解答例	
	固有値を λ とすると固有方程式 $ A-\lambda E =0$ より,	
	$\begin{vmatrix} 1 - \lambda & a & 0 \\ a & 1 - \lambda & a \\ 0 & a & 1 - \lambda \end{vmatrix} = (1 - \lambda) \{ (1 - \lambda)^2 - a^2 \} - a \{ a(1 - \lambda) \}$	
****	$= (1 - \lambda) \{ (1 - \lambda)^2 - 2a^2 \}$ $= (1 - \lambda) (1 - \lambda + \sqrt{2}a) (1 - \lambda - \sqrt{2}a) = 0$	
La Ada Pala Antonia de Partir de La Carta	よって、 $\lambda = 1$ 、 $1 + \sqrt{2}a$ 、 $1 - \sqrt{2}a$	
	(3) $f(x,y,z)=1$ が楕円面となるための a の条件を求めなさい. 解答例	
	楕円面となるには標準形 $\lambda_1 u^2 + \lambda_2 v^2 + \lambda_3 w^2 = 1$ への変換から,すべての固有値が正 $(\lambda_i > 0)$ であればよい. (2) の解から, $1 + \sqrt{2}a > 0$ および $1 - \sqrt{2}a > 0$ である. $a > 0$ であるので,楕円面となる条件は,	
	$0 < a < \frac{1}{\sqrt{2}}$	

(4) $|\lambda_1|$, $|\lambda_2|$, $|\lambda_3|$ のうち最も値が大きいものが $\frac{3}{2}$ となるとき,a および行列 B を求めなさい.

解答例

a>0 から、絶対値が最大となる固有値は $\lambda=1+\sqrt{2}a$ であるため、 $1+\sqrt{2}a=\frac{3}{2}$ となる、よって、

$$a = \frac{1}{2\sqrt{2}}$$

また, f(x,y,z) を $\lambda_1 u^2 + \lambda_2 v^2 + \lambda_3 w^2$ の形に変換するためには, B^TAB が対角 行列となるような B をもとめればよい.

Aの固有ベクトルは、

• $\lambda = 1 - \sqrt{2}a = \frac{1}{2}$ のとき,

$$\frac{1}{2\sqrt{2}} \begin{pmatrix} \sqrt{2} & 1 & 0 \\ 1 & \sqrt{2} & 1 \\ 0 & 1 & \sqrt{2} \end{pmatrix} \mathbf{v} = \mathbf{o} \quad \rightarrow \quad \begin{aligned} \sqrt{2}v_1 + v_2 &= 0 \\ v_1 + \sqrt{2}v_2 + v_3 &= 0 \\ v_2 + \sqrt{2}v_3 &= 0 \end{aligned}$$

よって固有ベクトルvおよびそれを正規化したベクトルvは、

$$m{v} = egin{pmatrix} 1 \ -\sqrt{2} \ 1 \end{pmatrix}, \quad \hat{m{v}} = rac{1}{2} egin{pmatrix} 1 \ -\sqrt{2} \ 1 \end{pmatrix}$$

• $\lambda = 1$ のとき,

$$\frac{1}{2\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} v = 0 \quad \rightarrow \quad \begin{aligned} v_2 &= 0 \\ v_1 + v_3 &= 0 \\ v_2 &= 0 \end{aligned}$$

よって固有ベクトルvおよびそれを正規化したベクトル \hat{v} は、

$$\boldsymbol{v} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \hat{\boldsymbol{v}} = \frac{1}{2} \begin{pmatrix} \sqrt{2} \\ 0 \\ -\sqrt{2} \end{pmatrix}$$

• $\lambda = 1 + \sqrt{2}a = \frac{3}{2}$ のとき,

$$\frac{1}{2\sqrt{2}} \begin{pmatrix} -\sqrt{2} & 1 & 0\\ 1 & -\sqrt{2} & 1\\ 0 & 1 & -\sqrt{2} \end{pmatrix} \boldsymbol{v} = \boldsymbol{0} \quad \rightarrow \quad \begin{aligned} & -\sqrt{2}v_1 + v_2 = 0\\ & v_1 - \sqrt{2}v_2 + v_3 = 0\\ & v_2 - \sqrt{2}v_3 = 0 \end{aligned}$$

よって固有ベクトルvおよびそれを正規化したベクトル \hat{v} は、

$$v = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}, \quad \hat{v} = \frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$$

これら固有ベクトルを列に持つ行列が直交行列 B となる (列の順は任意、かつ、任意の列に-1 をかけたものでもよい).

$$B = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{2} & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & -\sqrt{2} & 1 \end{pmatrix}$$

試験名: 学群編入学試験 【情報学群 情報科学類・情報メディア創成学類】

1442V. H · 1 414	編入字試験 【情報字群 情報科字類・情報メナイア創成字類】
区 分	標 準 的 な 解 答 例 又 は 出 題 意 図
問題3 (情報基礎(1))	出 題意図 数理アルゴリズムを理解し、プログラムとして正しく記述できるかを問う。
	解答例 (1) (ア) z>0 (イ) return 1;
	(2) (ウ) z+= w[i] * x[i]; (エ) step_function(z+bias);
	(3) (才) weights[i] += LEARNING_RATE * error * X_in[k][i]; (力) bias += LEARNING_RATE * error;
	(4) (0,0)の入力に対して 0、(0,1)(1,0)(1,1)の入力に対して 1 を出力するように学習 データが与えられているため、OR 演算を学習している。
	N,M,Eに対して線形であり、 $O(NME)$ で表される。

試験名:学群編入学試験【情報学群 情報科学類・情報メディア創成学類】

区 分	標準的な解答例又は出題意図
問題4 (情報基礎(2))	出題意図 整列アルゴリズムとデータ構造に関する知識や理解、C 言語プログラムコードの 読解力・作成力の有無を問う.
	解答例 (1) (ア) this_queue->rear (イ) this_queue->front (ウ) this_queue->front == this_queue->rear (エ) q_enq(&b[a[i]], a[i]) (オ) a[j] = q_deq(&b[i])
	(2) このバケットソートは、配列の先頭要素から1つずつ順にキューで実現されたバケットにデータを格納しているため、 同じ値のデータが複数存在する場合はインデックスの小さいデータから順にエンキューする. そして、小さい値に対応するバケットから順番に中身を取り出す際に、同じ値のデータを複数格納しているバケットからはエンキューされた順番でデータが取り出されるため、元の配列における同じ値のデータの並び順とバケットから取り出して構築した配列における同じ値のデータの並び順は変化しない. したがって、安定な整列アルゴリズムである.
	(3) (カ) a[idx_d]/m (キ) q_enq(&b[radix], a[idx_d]) (ク) q_is_empty(&b[idx_q])!= 1 (ケ) a[idx_d] = q_deq(&b[idx_q])
	(4) 322 522 143 123 563 514 755 246 514 322 522 123 143 246 755 563 123 143 246 322 514 522 563 755
	(5)基数ソートの時間計算量は k と n の積のオーダーとなり, n 個のデータが全て 異なる整数であるために k≒log ₁₀ n と表せるとすると, 基数ソートの時間計算量 は
	O(n・log ₁₀ n) となる.