Systems Analysis and Control

Matthew M. Peet Illinois Institute of Technology

Lecture 19: Drawing Bode Plots, Part 1

Overview

In this Lecture, you will learn:

Drawing Bode Plots

Drawing Rules

Simple Plots

- Constants
- Real Zeros

Review

Recall from last lecture: Frequency Response

Input:

$$u(t) = M\sin(\omega t + \phi)$$

Output: Magnitude and Phase Shift

$$y(t) = |G(i\omega)|M\sin(\omega t + \phi + \angle G(i\omega))|$$

Frequency Response to $\sin \omega t$ is given by $G(\imath \omega)$

We know $G(i\omega)$ determines the frequency response.

How to plot this information?

- 1 independent Variable: ω
- 2 Dependent Variables: $Re(G(\imath\omega))$ and $Im(G(\imath\omega))$

Figure: The Obvious Choice

Really 2 plots put together.

M. Peet Lecture 19: Control Systems 4 / 30

An Alternative is to plot Polar Variables

• 1 independent Variable: ω

 \bullet 2 Dependent Variables: $\angle G(\imath \omega)$ and $|G(\imath \omega)|$

- Advantage: All Information corresponds to physical data.
 - ► Can be found directly using a frequency sweep.

If we only want a single plot we can use ω as a parameter.

A plot of $Re(G(\imath\omega))$ vs. $Im(G(\imath\omega))$ as a function of ω .

- Advantage: All Information in a single plot.
- AKA: Nyquist Plot

We focus on Option 2.

Definition 1.

The Bode Plot is a pair of log-log and semi-log plots:

- 1. Magnitude Plot: $20\log_{10}|G(\imath\omega)|$ vs. $\log_{10}\omega$
- 2. Phase Plot: $\angle G(\imath \omega)$ vs. $\log_{10} \omega$

 $20\log_{10}|G(\imath\omega)|$ is units of **Decibels (dB)**

- Used in Power and Circuits.
- $10\log_{10}|\cdot|$ in other fields.

Note that by \log , we mean \log base 10 (\log_{10})

• In Matlab, log means natural logarithm.

Example

Lets do a simple pole

$$G(s) = \frac{1}{s+1}$$

We need

- Magnitude of $G(\imath \omega)$
- Phase of $G(\imath\omega)$

Recall that

$$|G(s)| = \frac{|s - z_1| \cdots |s - z_m|}{|s - p_1| \cdots |s - p_n|}$$

So that

$$|G(\imath\omega)| = \frac{1}{|\imath\omega + 1|} = \frac{1}{\sqrt{1 + \omega^2}}$$

Example

How to Plot $|G(i\omega)| = \frac{1}{\sqrt{1+\omega^2}}$? We are actually want to plot

$$20\log|G(\imath\omega)| = 20\log\frac{1}{\sqrt{1+\omega^2}} = 20\log(1+\omega^2)^{-\frac{1}{2}} = -10\log(1+\omega^2)$$

Three Cases:

Case 1: $\omega \ll 1$

• Approximate $1 + \omega^2 \cong 1$

$$20 \log |G(i\omega)| = -10 \log(1 + \omega^2)$$

$$\cong -10 \log 1 = 0$$

Case 2: $\omega = 1$

$$20 \log |G(i\omega)| = -10 \log(1 + \omega^2)$$
$$= -10 \log(1 + \omega^2)$$
$$= -3.01$$

Example

Case 3: $\omega >> 1$

• Approximate:
$$1 + \omega^2 \cong \omega^2$$

$$20 \log |G(\imath \omega)| = -10 \log (1 + \omega^2)$$

$$\cong -10 \log \omega^2$$

$$= -20 \log \omega$$

But we use a $\log - \log$ plot.

- x-axis is $x = \log \omega$
- y-axis is $y = 20 \log |G(\imath \omega)| = -20 \log \omega = -20 x$

Conclusion: On the log-log plot, when $\omega >> 1$,

- Plot is Linear
- Slope is -20 dB/Decade!

Example

Of course, we need to connect the dots.

Compare to the Real Thing:

Example: Phase

Now lets do the phase. Recall:

$$\angle G(s) = \sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i)$$

In this case,

$$\angle G(\imath\omega) = -\angle(\imath\omega + 1)$$
$$= -\tan^{-1}(\omega)$$

Again, 3 cases:

Case 1: $\omega << 1$

- $\tan(\angle G(\imath\omega)) \cong 0$
- $\tan(\angle G(\imath\omega)) \cong \angle G(\imath\omega) \cong 0$

Example: Phase

Case 2: $\omega = 1$

- $tan(\angle G(\imath\omega)) = 1$
- $\angle G(\imath\omega) \cong 45^{\circ}$

Case 3: $\omega >> 1$

- $\tan(\angle G(\imath\omega)) \cong \frac{1}{0}$
- $\angle G(\imath\omega) \cong -90^{\circ}$
- Fixed at -90° for large $\omega!$

Example

We need to connect the dots somehow.

Compare to the real thing:

Methodology

So far, drawing Bode Plots seems pretty intimidating.

- Solving tan^{-1}
- dB and log-plots
- Lots of trig

The process can be Greatly Simplified:

• Use a few simple rules.

Example: Suppose we have

$$G(s) = G_1(s)G_2(s)$$

Then

$$|G(\imath\omega)| = |G_1(\imath\omega)||G_2(\imath\omega)|$$

and

$$\log |G(\imath\omega)| = \log |G_1(\imath\omega)| + \log |G_2(\imath\omega)|$$

Rule # 1

Rule # 1: Magnitude Plots Add in log-space.

For
$$G(s) = G_1(s)G_2(s)$$
,

$$20\log|G(\imath\omega)| = 20\log|G_1(\imath\omega)| + 20\log|G_2(\imath\omega)|$$

Decompose G into bite-size chunks:

$$G(s) = \frac{1}{s+3}(s+1)\frac{1}{s^2+3s+1} = G_1(s)G_2(s)G_3(s)$$

M. Peet

Rule #2

Rule # 2: Phase Plots Add.

For
$$G(s) = G_1(s)G_2(s)$$
,

$$\angle G(\imath\omega) = \angle G_1(\imath\omega) + \angle G_2(\imath\omega)$$

Approach

Our Approach is to Decompose G(s) into simpler pieces.

- Plot the phase and magnitude of each component.
- · Add up the plots.

Step 1: Decompose G into all its poles and zeros

$$G(s) = \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

Then for magnitude

$$20 \log |G(\imath\omega)| = \sum_{i} 20 \log |\imath\omega - z_{i}| + \sum_{i} 20 \log \frac{1}{|\imath\omega - p_{i}|}$$
$$= \sum_{i} 20 \log |\imath\omega - z_{i}| - \sum_{i} 20 \log |\imath\omega - p_{i}|$$

And for phase:

$$\angle G(\imath \omega) = \sum_{i} \angle (\imath \omega - z_i) - \sum_{i} \angle (\imath \omega - p_i)$$

But how to plot $\angle(\imath\omega-z_i)$ and $20\log|\imath\omega-z_i|$?

M. Peet Lecture 19: Control Systems 18 / 30

The Constant

Before rushing in, lets make sure we don't forget the constant term. If

$$G(s) = c \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

Magnitude: $G_1(s) = c$

- $|G_1(\imath\omega)| = |c|$
- $20 \log |G_1(i\omega)| = 20 \log |c|$

Conclusion: Magnitude is Constant for all ω

M. Peet Lecture 19: Control Systems 19 / 30

The Constant

Phase:
$$G_1(s) = c$$

$$\angle G_1(\imath\omega) = \angle c = \begin{cases} 0^{\circ} & c > 0\\ 180^{\circ} & c < 0 \end{cases}$$

Conclusion: phase is 0° if c > 0, otherwise 180° .

M. Peet

A "Pure" Zero

Lets start with a zero at the origin: $G_1(s) = s$.

Magnitude: $G_1(s) = s$

•
$$|G_1(\imath\omega)| = |\imath\omega| = |\omega|$$

•
$$20 \log |G_1(\imath \omega)| = 20 \log |\omega|$$

Our x-axis is $\log \omega$.

- Plot is Linear for all ω
- Slope is +20 dB/Decade!
- Need a point: $\omega = 1$

$$20 \log |G_1(i\omega)||_{\omega=1} = 20 \log 1 = 0$$

• Passes through 0 dB at $\omega = 1$

High Gain at High Frequency

- A pure zero means u'(t)
- The faster the input, The larger the output

A "Pure" Zero: Phase

Phase: $G_1(s) = s$

•
$$\angle G_1(\imath\omega) = \angle \imath\omega = 90^\circ$$

• Always 90°!

Always 90° out of phase. Why?

A "Pure" Zero: Multiple Zeros

What happens if there are multiple pure zeros

Just what you would expect.

Magnitude:
$$G_1(s) = s^k$$

•
$$|G_1(\imath\omega)| = |\imath\omega|^k = |\omega|^k$$

$$20 \log |G_1(i\omega)| = 20 \log |\omega|^k$$
$$= 20k \log |\omega|$$

Slope is +20k dB/Decade!

Need a Point

• At $\omega = 1$:

$$20 \log |G_1(i\omega)||_{\omega=1} = 20k \log 1 = 0$$

• Still Passes through 0dB at $\omega=1$

k pure zeros added together.

A "Pure" Zero: Multiple Zeros

And phase for multiple pure zeros?

Phase: $G_1(s) = s^k$

•
$$\angle G_1(\imath\omega) = \angle(\imath\omega)^k = k\angle\imath\omega = 90^\circ k$$

• Always $90^{\circ}k$

k pure zeros added together.

Plotting Normal Zeros

A zero at the origin is a line with slope $+20^{\circ}/\mathrm{Decade}$.

- What if the zero is not at the origin?
 - We did one example already $(\frac{1}{s+1})$.

Change of Format: to simplify steady-state response, we use

$$G_1(s) = (\tau s + 1)$$

- Pole is at $s=-\frac{1}{\tau}$
- Also put poles in this form

Rewrite G(s): $(s+p) \rightarrow p(\frac{1}{n}s+1)$.

$$G(s) = k \frac{(s+z_1)\cdots(s+z_m)}{(s+p_1)\cdots(s+p_n)}$$

$$= k \frac{z_1\cdots z_m}{p_1\cdots p_n} \frac{(\frac{1}{z_1}s+1)\cdots(\frac{1}{z_m}s+1)}{(\frac{1}{p_1}s+1)\cdots(\frac{1}{p_n}s+1)}$$

$$= c \frac{(\tau_{z_1}s+1)\cdots(\tau_{z_m}s+1)}{(\tau_{p_1}s+1)\cdots(\tau_{p_n}s+1)}$$

Where

•
$$au_{zi} = \frac{1}{z_i}$$

$$\bullet \ \tau_{pi} = \frac{1}{p_i}$$

$$\bullet \ c = k \frac{z_1 \cdots z_m}{p_1 \cdots p_n}$$

Assume z_i and p_i are Real.

Plotting Normal Zeros

$$G(s) = c \frac{(\tau_{z1}s + 1) \cdots (\tau_{zm}s + 1)}{(\tau_{p1}s + 1) \cdots (\tau_{pn}s + 1)}$$

The advantage of this form is that steady-state response to a step is

$$y_{ss} = \lim_{s \to 0} G(s) = G(0) = c$$

Low Frequency Response is given by the constant term, c.

M. Peet

Plotting Normal Zeros

$$G_1(s) = (\tau s + 1)$$
$$|G_1(i\omega)| = |i\omega\tau + 1| = \sqrt{1 + \tau^2\omega^2}$$

Magnitude:

$$20\log|G_1(i\omega)| = 20\log(1+\omega^2\tau^2)^{\frac{1}{2}} = 10\log(1+\omega^2\tau^2)$$

Case 1: $\omega \tau \ll 1$

- Approximate $1 + \omega^2 \tau^2 \cong 1$ $20 \log |G(\imath \omega)| = 20 \log(1 + \omega^2 \tau^2)$ $\cong 20 \log 1 = 0$
- Case 2: $\omega \tau = 1$ $20 \log |G(\imath \omega)| = 10 \log(1 + \omega^2 \tau^2)$ $= 10 \log 2 = 3.01$

Example

Case 3: $\omega \tau >> 1$

• Approximate
$$1 + \omega^2 \tau^2 \cong \omega^2 \tau^2$$

$$\begin{aligned} 20 \log |G(\imath \omega)| &= 20 \log \sqrt{1 + \omega^2 \tau^2} \\ &\cong 10 \log \omega^2 \tau^2 \\ &= 20 \log \omega \tau \\ &= 20 \log \omega + 20 \log \tau \end{aligned}$$

Conclusion: When $\omega >> 1$.

- Plot is Linear
- Slope is +20 dB/Decade!
- inflection at $\omega = \frac{1}{\tau}$

Plotting Normal Zeros

Compare this to the magnitude plot of

$$G_1(s) = s + a$$

This is why we use the format $G_1(s) = \tau s + 1$

• We want 0dB (no gain) at low frequency.

M. Peet

Summary

What have we learned today?

Drawing Bode Plots

• Drawing Rules

Simple Plots

- Constants
- Real Zeros

Next Lecture: More Bode Plotting