MONITORAMENTO DE SEGURANÇA POR IMAGENS

Execução:

Alan Petrônio Pinheiro

Coordenador do projeto – UFU/LRI

Execução e pesquisa:

GABRIEL ALVES CAIXETA CUSTÓDIO MATEUS HONORATO DE ALMEIDA

1. DATA VERSÃO ORIGINAL 23-3-2024	2. DATA ÚLTIMA ATUALIZAÇÃO 23-4-2024	3. DATA COBERTA JAN/24 ATÉ MAI/24
4. TÍTULO DESTE DOCUMENTO DETECÇÃO DE PESSOAS POR CÂME	RAS	5a. PROCESSO SEI DO P&D
		5b. NÚMERO PROJETO P&D 00123456789
6. AUTOR(ES) GABRIEL ALVES CAIXETA CUSTÓD:	0	5c. ETAPA DO PROJETO TODAS
MATEUS HONORATO DE ALMEIDA		5d. TIPO DE PRODUTO DOCUMENTAÇÃO TÉCNICA DE SOFTWARE DE DISCIPLINA STR
7. ENDEREÇO		8. NÚMERO DO DOCUMENTO
AV. JOÃO NAVES DE ÁVILA, 2121,	BLOCO 3N - UBERLANDIA - MG	
		TR-01
9. DISTRIBUIÇÃO DESTE DOCUMEN DISTRIBUIÇÃO ABERTA A TODOS (

11. RESUMO

ESTE DOCUMENTO DESCREVE A MODELAGEM DOS ELEMENTOS DA APLICAÇÃO MU QUE GERA PACOTES DE DADOS PARA OUTROS ELEMENTOS DE SOFTWARE RETRATADO POR OUTROS REPORTES TÉCNICOS. TODOS MÓDULOS CONSTITUEM UM SISTEMA SUPERVISÓRIO PARA O SETOR ELÉTRICO.

12. PALAVRAS-CHAVE

10. NOTAS COMPLEMENTARES

P&D; IOT; SISTEMA EM TEMPO REAL, SISTEMA SUPERVISÓRIO, DETECÇÃO DE OBJETOS.

	13. CLASSIFICAÇÃO SEGURANÇA: ABERTA	14. NUMERO DE PÁGINAS	15. NOME DO RESPONSAVEL PRINCIPAL E CONTATO ALAN PETRÔNIO PINHEIRO. EMAIL: alan_petronio@yahoo.com.br. TELEFONE: (34)3239-4701
Į			

HISTÓRICO DE VERSÕES DESTE TR

Tabela 1 – Histórico de versões deste reporte técnico.

Versão	Data	Modificações		
1.0	abril/2024	 Principais elementos de projeto Requerimentos básicos Modelagem de pacotes e fluxo de pacotes 		

SUMÁRIO

RESUMO GERAL	4
1 – Introdução: visão geral da solução	5
1.1 – Propósito e escopo	5
1.2 – Produto: perspectivas e funções	6
1.3 – Restrições do produto e considerações	7
2 — Requisitos	8
2.1 – Cenários de uso	8
2.2 – Requisitos e validação	11
2.3 – Versionamento	12
2.4 – Elementos de projeto	12
2.4.1 – Máquina de estados	12
2.4.2 – Interfaces de usuário	13
3 – Modelagem	14
3.1 – Blocos de elementos principais	14
3.2 – Fluxo geral de mensagens	16
3.4 – Modelagem detalhada dos recursos	16
3.4.1 – Envio de imagens da câmera	16
3.4.2 – Envio de SMS	18

RESUMO GERAL

O sistema projetado é uma solução integrada de segurança e monitoramento que utiliza duas câmeras IP para capturar imagens em tempo real, identificar a presença de humanos e, caso detecte tal presença, enviar um SMS de alerta para um número de telefone previamente cadastrado. A plataforma é destinada a melhorar a segurança de propriedades residenciais, comerciais ou industriais, permitindo uma resposta rápida a qualquer invasão ou atividade suspeita detectada pelas câmeras.

Componentes do Sistema

1. Câmeras IP com RTSP:

- As câmeras IP estão equipadas com a capacidade de transmitir vídeo usando o protocolo RTSP (Real Time Streaming Protocol), que permite a transmissão eficiente de vídeo ao vivo através de redes IP. Cada câmera é configurada para monitorar áreas específicas e capturar movimentos ou atividades em tempo real.

2. Detecção de Presença Humana:

- Utilizando algoritmos avançados de visão computacional, o sistema analisa os frames capturados pelas câmeras para detectar a presença de humanos. Essa detecção é feita em tempo real, com o sistema priorizando a rápida identificação para minimizar atrasos na resposta a uma invasão.

3. Envio de SMS:

- Em caso de detecção de presença humana, o sistema automaticamente dispara um alerta via SMS para números de telefone cadastrados. Este alerta informa o destinatário sobre a detecção, permitindo uma verificação rápida e, se necessário, ações subsequentes como contato com as autoridades.

4. Interface de Usuário:

- A interface de usuário é projetada para ser intuitiva e acessível, permitindo aos usuários cadastrarem e gerenciarem os números de telefone que receberão os alertas SMS. Além disso, a interface pode oferecer visualização ao vivo das câmeras, controle de configurações e revisão de logs de eventos.

5. Banco de Dados:

- Um banco de dados robusto armazena informações críticas, incluindo os números de telefone cadastrados, logs de eventos e configurações do sistema. Esse banco de dados é essencial para a operação eficiente do sistema, assegurando que todos os dados necessários para o envio de alertas e a gestão de usuários estejam disponíveis e seguros.

Funcionalidades e Operação

- Robustez e Resiliência: O sistema é projetado para ser robusto e operar de forma contínua, com medidas para garantir que permaneça funcional mesmo durante interrupções temporárias de rede. As câmeras tentam reconectar automaticamente e continuar a transmissão de dados assim que a rede estiver disponível novamente.

1 - Introdução: visão geral da solução

1.1 – Propósito e escopo

O propósito da solução é fazer o monitoramento de uma área com câmeras, de forma constante ou programada, realizando a detecção de pessoas, e enviando uma sinalização via SMS quando ocorrer um evento, no caso, a própria detecção. Este sistema visa o monitoramento, segurança e proteção de um ambiente de possíveis agentes que possam agir contra o zelo deste, comunicando com o proprietário sobre o ocorrido em tempo real. A principal possível aplicação desta solução é em sistemas de segurança residenciais.

Figura 1.1.1: Visão geral de escopo.

Desta maneira, o escopo da solução abrange:

- 1) Recebimento e Processamento de Dados: O sistema deve ser capaz de receber imagens das câmeras em uma certa frequência de frames por segundo. A taxa deve ser suficiente para que ocorra a detecção de um ser humano. Ao escalar o projeto, utilizando mais de uma câmera, faz-se necessário o uso de threads.
- 2) **Identificação de objetos:** O sistema deve identificar a existência de um objeto específico (ser humano) em cada frame recebido pelas câmeras.
- 3) **Envio de sinalização:** No caso de detecção (trigger), o sistema, por meio de API, deve enviar uma sinalização SMS para o usuário.

Desta maneira, o sistema funcionará acerca destas três funções principais, projetado para funcionar em uma única rede, sendo visado para a segurança residencial, porém lidando com uma grande quantidade de frames por segundo, recebidos por mais de uma câmera.

1.2 - Produto: perspectivas e funções

Como apresentado anteriormente, a função deste sistema é o monitoramento e alerta de segurança de ambientes com câmeras, emitindo uma sinalização de alerta com base em um evento detectado em tempo real. Para o funcionamento correto do sistema, é necessário que todos os módulos se comuniquem adequadamente para que haja maior sincronia e menor latência possível entre a detecção do evento e a emissão do sinal. O sistema tem como principais funções:

- 1) Monitoramento por câmera (recebimento de dados em frames de imagens);
- 2) Enviar frames pela rede ao host do programa;
- 3) Tratamento dos frames recebidos pela câmera;
- 4) Detectar evento trigger (detectar objeto, no caso, ser humano);
- 5) Enviar alerta via SMS.

Figura 1.2.1: Principais elementos de projeto.

Para entender o sistema, comecemos a análise observando a **Figura 1.3.1**. Com base nisto, descreve-se os elementos:

- **Módulo hardware aquisição:** no caso deste projeto, são as câmeras, que fazem a captura das imagens em tempo real e enviam para a rede.
- Módulo Reconhecimento de Objetos: recebe os frames enviados pelas câmeras através da rede, por meio do endereço de IP de cada uma. Os frames são tratados pela biblioteca YOLO, que faz o reconhecimento de objetos com base em aprendizado de máquina (já inserido e treinado na biblioteca).

- Módulo detecção de ser humano: funciona como trigger para o envio de SMS, recebe o
 reconhecimento feito pelo módulo anterior e realiza o tratamento adequado, selecionando os
 frames em que houve o reconhecimento de ser humano e evitando o flood de muitos sinais
 de frames subsequentes para o módulo de envio de SMS.
- Módulo de envio de SMS: este módulo recebe sinalização do módulo de detecção para poder prosseguir com o envio de mensagem de alerta. Faz o tratamento da mensagem a ser enviada e a comunicação com a API do servidor do Twilio, o qual enviará a mensagem de fato, com uma conta, token, e o número pelo qual será enviado o SMS. Por fim, procura por números de celulares cadastrados em um banco de dados e faz o envio para cada um deles.

A divisão das etapas do projeto foi feita da seguinte maneira, Mateus Honorato ficou encarregado da parte de detecção de humano, e Gabriel do módulo de envio de SMS, porém, a integração e ajustes dos dois módulos foi feita de forma conjunta.

1.3 – Restrições do produto e considerações

A solução foi testada em apenas algumas condições, e, pelos testes, foram identificadas restrições e limitações detalhadas aqui:

Tabela 1.3.1: Restrições e limitações previstas para sistema.

N o	Restrição/limitação	Descrição/detalhamento
1	Dependente da latência da rede	Dependendo da latência da rede, há um atraso significativo no recebimento dos frames para o reconhecimento. A etapa de reconhecimento das imagens tem um atraso estimado entre 10 e 30 segundos entre o envio dos frames pela câmera até o reconhecimento.
2	Dependente da latência do sistema de processamento dos frames	Dependendo da capacidade da máquina hospedeira da solução, pode ocorrer atraso no processamento da detecção de um ser humano e envio do sinal para o módulo SMS.
3	Necessário limitação do número de frames que enviarão sinal para o módulo SMS	O módulo de Detecção de Ser Humano deve impedir que frames subsequentes solicitem envio de SMS. Sem a limitação, como há detecção em cada um dos frames, todos eles solicitarão um novo envio de SMS, mesmo que a diferença de tempo entre dois frames em sequência esteja na ordem de milissegundos.
4	Necessário uso de uma máquina ligada	Na implementação atual do projeto, é necessário que haja um computador sempre ligado rodando o programa para que funcione.
5	Novos números cadastrados necessitam de verificação	A versão gratuita do servidor e API do twilio permite a verificação de apenas um número tanto para enviar quanto para receber mensagens. Para contornar esta limitação, é possível utilizar mais de uma conta, assim, cada número que receberá um SMS deverá ter seu próprio account_sid, auth_token e número de envio

		twilio. Com a versão paga, isto é completamente solucionado,
		sendo necessário apenas um account_sid, auth_token e número
		twilio para todos os números que receberão SMS.
	Dependência de Threads para Multiprocessamento	Ao se utilizar mais de uma câmera para a detecção do ser
6		humano, é imprescindível o uso de Threads, para que o
		programa possa atuar sobre as duas em paralelo.

2 - Requisitos

2.1 - Cenários de uso

Os seguintes cenários foram identificados para este sistema.

 a) Cenário 1 – Condições Normais sem Detecção Humana: Neste cenário, a câmera apenas continua capturando a imagem do ambiente e o módulo de reconhecimento recebe os frames, sem repassá-los.

Figura 2.1.1: Cenário de aplicação.

U

b) **Cenário 2 – Falha na Captura dos Frames**: Este cenário ocorre por uma falha de comunicação com duração curta entre o sistema de reconhecimento e o recebimento dos frames da câmera

Figura 2.1.2: Cenário de aplicação.

c) Cenário 3 – Câmera não detectada: O sistema reconhece que não há câmeras na rede em que ele está, ou houve falha na procura. Nos dois casos, a solução é encerrada, sem acionar os demais módulos.

Figura 2.1.3: Cenário de aplicação.

d) Cenário 4 – Detecção Humana sem limitação de sinalização dos frames: O sistema reconhece pessoas pela câmera, através da biblioteca YOLO, e o módulo de detecção aciona o módulo de envio de SMS para cada frame em que houve detecção humana. O módulo de SMS obtém as informações de número de recebimento, número do twilio, sid da conta e token de autorização do banco de dados e envia um SMS pela API do twilio para cada vez que é acionado.

CENÁRIO 4 - Detecção Humana sem limitação de sinalização dos frames:

Figura 2.1.4: Cenário de aplicação.

e) Cenário 5 – Detecção Humana com limitação de sinalização dos frames: O sistema reconhece pessoas pela câmera, através da biblioteca YOLO, e o módulo de detecção faz o tratamento da limitação dos frames, impedindo que frames subsequentes acionem o módulo SMS, dessa forma, ocorrerá apenas um acionamento para cada conjunto de frames. Esta limitação é então redefinida assim que não ocorre mais detecção de um ser humano no frame enviado pela câmera, permitindo outra detecção e acionamento em um intervalo de tempo diferente. O módulo de SMS obtém as informações de número de recebimento, número do twilio, sid da conta e token de autorização do banco de dados e envia um SMS pela API do twilio para cada vez que é acionado.

Figura 2.1.5: Cenário de aplicação.

f) Cenário 6 – Detecção Humana com mais de uma câmera: Em um cenário com mais de uma câmera, são utilizadas mais de uma threads, uma para cada câmera, onde o programa irá rodar em cada uma delas. Quando ocorre um reconhecimento, seguido de detecção e acionamento, o módulo SMS reconhecerá a qual câmera pertence o acionamento, e na mensagem enviada, estará exibida explicitamente essa diferenciação.

Figura 2.1.6: Cenário de aplicação.

2.2 – Requisitos e validação

Com base nas avaliações de cenário de uso, desenvolveu-se na sequência a seguinte lista de requerimentos, vista na tabela da sequência.

Tabela 2.2.1: *Mapa de requerimentos*

Classe/ Compo nente	Nº req.	Requisito	Origem requisito	Prio	Tipo validação	Divisão do projeto
	1.1	Capturar frames usando RTSP de duas câmeras IP.	Funcionalidad e do sistema	1	Testar conectividade com câmeras IP usando o protocolo RTSP em diferentes condições de rede.	Mateus
1 - Funcional	1.2	Detectar presença humana nos frames capturados.	Necessidade do usuário	1	Implementar algoritmo de detecção de presença humana e validar com diferentes cenários e condições de iluminação.	Mateus
	1.3	Enviar SMS ao detectar presença humana.	Requisito de alerta	1	Integrar com API do Twilio e testar o envio de SMS em tempo real ao detectar presença.	Gabriel
2-Interfac e	2.1	Interface de usuário para cadastro de números de telefone.	Facilidade de uso	2	Desenvolver e validar interface de usuário para garantir facilidade no cadastro e gestão de números.	Gabriel

3-Banco de dados

Aqui está uma tabela de requisitos e validação modificada para um sistema de duas câmeras IP que usa o protocolo RTSP para capturar frames, detectar presença humana e, caso detecte, enviar um SMS para um número de telefone cadastrado. O sistema também inclui uma interface de usuário para o cadastro de telefones e um banco de dados para armazenar esses dados.

Explicação dos Requisitos

- 1.1 Captura de Frames: O sistema precisa estabelecer uma conexão estável com as câmeras IP usando RTSP para garantir a captura contínua de frames.
- 1.2 Detecção de Presença: Um algoritmo de visão computacional será utilizado para analisar os frames e detectar a presença humana.
- 1.3 Envio de SMS: Integração com a API do Twilio para enviar alertas via SMS quando uma presença for detectada.
- 2.1 Interface de Usuário: Uma interface simples e clara para permitir ao usuário cadastrar e gerenciar os números de telefone para recebimento de alertas.
- 3.1 Banco de Dados: Segurança e integridade dos dados são cruciais, pois o sistema depende da precisão dos números de telefone cadastrados para enviar os alertas.

2.3 - Versionamento

Os recursos do software são distribuídos em versões conforme estimado pela tabela na sequência.

Tabela 2.3.1: *Tabela de recursos do sistema e versão.*

Versão	Recurso
1.0	■ O sistema ser capaz de reconhecer seres humanos pela câmera
	□ O sistema deve ser capaz de manipular corretamente os frames recebidos
(abr/24)	□ O sistema deve ser capaz de enviar adequadamente a mensagem SMS para os celulares do banco de dados

2.4 - Elementos de projeto

2.4.1 – Máquina de estados

Baseado nos cenários identificados e requerimentos construídos, tem-se a seguinte proposição para a máquina de estados da solução, considerando o cenário 6, que é o cenário ideal de funcionamento do sistema.

Figura 2.4.1.1: Máquina de estados de uma MU.

2.4.2 - Interfaces de usuário

Para fins de caracterização do sistema, a figura na sequência ilustra a interface desta aplicação indicando alguns de seus recursos previstos.

Figura 2.4.2.1: Interfacecadastro de Usuário

Figura 2.4.2.2: Interface da câmera

A primeira interface serve apenas para cadastrar novos números no banco de dados. É uma interface simples e fácil de entender, ao clicar no botão de inserir, o número escrito na lacuna de cima é adicionado ao banco, no bloco abaixo, são exibidos todos os números cadastrados no banco. Na versão apresentada, como usamos apenas um número devido à limitação do twlio, ela não foi necessária.

A segunda interface é gerada pelo frame com detecção humana captada pela biblioteca YOLO, constantemente os frames das câmeras são mostrados na tela do computador, e quando há detecção e reconhecimento humano, este frame é mostrado em uma aba diferente, possibilitando o usuário salvar a imagem capturada.

3 – Modelagem

3.1 – Blocos de elementos principais

Na sequência é mostrado um conjunto de diagramas de blocos para exemplificar a arquitetura do sistema. Cada bloco é um objeto e estes são os principais objetivos previstos na solução. As setas indicam o fluxo das informações.

Figura 3.1.1: Diagrama de blocos

3.2 - Fluxo geral de mensagens

A figura na sequência ilustra resumidamente as mensagens que são transmitidas em todas etapas da aplicação

Figura 3.2.1: Fluxo geral das mensagens

Como visto anteriormente, as câmeras fazem a captura das imagens e geram os frames, que serão enviados para a rede, onde o computador que hospeda o sistema irá capturar os pacotes dos frames, comunicando utilizando o protocolo RTSP, que é tratado pela biblioteca YOLO, podendo ser transportado sobre TCP ou UDP.

Assim como também foi visto, a aplicação faz o tratamento e manipulação dos frames, acionando e limitando o envio de SMS quando necessário. Quando acionado, a aplicação faz a busca em um banco de dados para a obtenção dos elementos necessários para o envio da mensagem (já citados anteriormente). A comunicação com a plataforma de envio Twilio é feita com o protocolo https sobre TCP para a garantia de entrega dos dados da mensagem.

Para entender melhor esta dinâmica, elas são tratadas individualmente com mais detalhes nas próximas subseções.

3.4 - Modelagem detalhada dos recursos

3.4.1 – Envio de imagens da câmera

A figura na sequência ilustra como deve ser o comportamento do fluxo dos frames entre a câmera e aplicação:

Figura 3.4.1.1: Diagrama pacotes e eventos associados à captura das imagens e reconhecimento de humano

Com base no diagrama mostrado na figura anterior, descreve-se agora a detecção de ser humano pelos frames e seu tratamento.

Tabela 3.4.1.1: Algoritmos equivalentes aos eventos vistos na Figura 3.4.1.1.

Evento/Ação	Algoritmo	
Evento 1	Receber frames enviados pela câmera por RTSP #Utilizar threads para o uso de múltiplas câmeras	

(Reconhecimento e detecção Humana

- 2) Realizar o reconhecimento de Objetos (YOLO)
 - i. Inicializar contagem de frames com detecção humana em 0:
 - ii. Inicializar limitador de acionamento do módulo SMS em 1 (liberar acionamento)
 - iii. Inicializar número mínimo de frames para acionamento do SMS em n (arbitrário).
 - Case Estado.E6 (Detectou humano):
 - i. Incrementar contagem em 1.
 - b. Case Estado.E5 (Não Detectou humano):
 - i. Resetar contagem
 - ii. Resetar limitador de acionamento
- 3) Case contagem de frames > número mínimo de frames:
 - i. limitar o acionamento = 0
 - ii. acionar o módulo de SMS
 - #Printar/Salvar frame com detecção (opcional)

3.4.2 - Envio de SMS

A figura na sequência ilustra como deve ser o fluxo da montagem até o envio do SMS...

Figura 3.4.2.1: Diagrama pacotes e do envio de SMS

É de extrema importância ressaltar que este é o diagrama desejado quando temos vários celulares cadastrados. Como não foi possível utilizar uma conta twilio a não ser a trial, a versão apresentada envia a mensagem apenas para um celular, eliminando a necessidade de uma busca em um banco de dados, desta forma, com apenas um número, há apenas o envio de uma requisição pela API o twilio e apenas um SMS.

Com base no diagrama mostrado na figura anterior, descreve-se agora o algoritmo da montagem do sms. É importante ressaltar também, que neste sistema, o host da aplicação é o mesmo do banco de dados.

Tabela 3.4.2.1: Algoritmos equivalentes aos eventos vistos na Figura 3.4.2.1.

Evento/Ação	Algoritmo			
Evento 2 (envio de mensagens)	 Solicita dados dos números de telefone Com os dados recebidos, monta uma mensagem com a identificação da câmera e manipula os valores auth_token, account_sid, twilio_number e phone_number Para cada número, envia uma comunicação HTTPS pela API do servidor Twilio Servidor Twilio é encarregado de entregar os pacotes SMS para 			

Os parâmetros necessários para o envio das mensagens, já citados anteriormente são:

- account_sid
- auth_token
- twilio_number
- phone_number
- message

No escopo da mensagem, é a mensagem que o usuário irá receber por SMS.

A API do Twlio pode ser utilizada via biblioteca do python ou por comando curl, realizando uma conexão HTTPS. A URL da API é :

https://api.twilio.com/2010-04-01/Accounts/AC181d5aa4483d49b433293e0ecd022abf/Messages.json e por ela enviamos as mensagens e os parâmetros para que o processo ocorra. O comando, no Windows, onde devemos substituir cada valor, é o seguinte:

curl {url} -X POST {phone_number} {twilio_number} {message} {account_sid}:{auth_token}

Tabela 3.4.2.2: Elementos necessários para o envio do SMS

Campo	Valores	Significado	
account_sid	String	Identificador de conta do Twilio	
auth_token	String	Token necessário para autenticação no servidor	
phone_number	String	Número que receberá mensagem	
twilio_number	String	Número pelo qual o Twilio enviará a mensagem	
message	String	Mensagem a ser enviada por SMS	
url	String	URL da API	