Monte Carlo Methods

732A90 Computational Statistics

Krzysztof Bartoszek (krzysztof.bartoszek@liu.se)

27 XI 2020 (Zoom)

Department of Computer and Information Science
Linköping University

What is the area of the unit circle?

```
f.circArea < -function(N)
    m.xy<-cbind(runif(N),runif(N))
     4*sum(apply(m.xy,1,function(xy){xy[1]^2+xy})
          [2]^2 < 1))/N
                          3.141 \approx \pi = \int 1 dx
                                      3.20
 0.5
 -0.5
 -1.0
                                      3.05
       -1.0
            -0.5
                       0.5
                            1.0
                  0.0
                  Х
```

Monte Carlo methods: outline

- Monte Carlo methods are a class of computational algorithms that use repeated random sampling to compute their results.
- Monte Carlo methods for random number generation
 - Metropolis–Hastings algorithm
 - Gibbs sampler

- Monte Carlo methods for statistical inference
 - Estimate integrals (we already did!)
 - Variance estimation
 - Variance reduction: importance sampling, control variates

Markov Chain Monte Carlo

Previous lecture: Generate

- univariate distributions (inverse CDF, acceptance/rejection)
- multivariate normal

but general multivariate distribution?

MCMC

Bayesian inference: Recap

A dataset D is obtained by sampling from a distribution $f(\cdot|\theta)$. How to estimate θ ?

• Frequentists: θ is an unknown but fixed parameter, compose likelihood $\mathcal{L}(D|\theta)$ and find θ that maximizes it.

- Bayesians: θ is a random variable with **prior** probability law $p(\theta)$ before observing D
- After observing D, Bayes' theorem gives

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta}$$

Bayesian inference: Recap

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta}$$

We know: $p(D|\theta)$ (the model), $p(\theta)$ (the prior) We need: simulate from $p(\theta|D)$ (the posterior)

- General (multivariate) type distribution
- 2 Integral can be impossible to compute

- MCMC solves this
- 2 Not needed (given D it is constant)

Markov Chains: Recap

- A Markov chain is a sequence X_0, X_1, \ldots of random variables such that the distribution of the next value depends only on the current one (and parameters).
- $P(X_{t+1}|X_t)$ is called a **transition kernel**. Assume it does not depend on t (**time homogeneous**).
- A Markov chain is **stationary**, with stationary distribution Φ , if $\forall_k \ X_k \sim \Phi$
- One shows (not trivial in general) that under *certain* conditions a Markov chain will converge to the stationary distribution in the limit.

Markov Chains: Example

$$X(t+1) = e^{-1}X(t) + \epsilon , \epsilon \sim \mathcal{N}(0, \frac{5}{2} \cdot (1 - e^{-2}))$$

Discard first K-1 samples: burn-in period

MCMC: Example

Linear regression with residual normally/student/etc. distributed

$$Y = \beta X + \epsilon$$

How to find credible interval for β if we know $\text{Var}[\epsilon] = \sigma^2$?

•

$$P(Y|X,\beta) = \prod_{i=1}^{N} f(Y_i|\text{mean} = \beta X_i, \text{var} = \sigma^2)$$

- ② Obtain $P(\beta|Y,X)$ by drawing from $P(Y|X,\beta)P(\beta)$ in a clever way.
- **3** The prior?
- ① Use the MCMC sample to obtain quantiles.

Normal residual: analytical solution

Metropolis-Hastings algorithm

We have

- A PDF $\pi(x)$ that we want to sample from.
- A proposal distribution $q(\cdot|X_t)$ that has a regular form w.r.t. to $\pi(\cdot)$ E.g. $q(\cdot|X_t)$ is normal with mean X_t and given variance
- Regular form: suffices that the proposal has the same support as π .

Metropolis-Hastings Sampler

$$\alpha(X_t, Y) = \min \left\{ 1, \frac{\pi(Y)q(X_t|Y)}{\pi(X_t)q(Y|X_t)} \right\}$$

```
1: Initialize chain to X_0, t = 0
```

2: while
$$t < t_{\text{max}} \text{ do}$$

3: Generate a candidate point
$$Y \sim q(\cdot|X_t)$$

4: Generate
$$U \sim Unif(0,1)$$

5: if
$$U < \alpha(X_t, Y)$$
 then

$$6: X_{t+1} = Y$$

8:
$$X_{t+1} = X_t$$

10:
$$t = t + 1$$

Metropolis-Hastings Sampler: Properties

- Informally: "The chain $(X_t)_{t=0}^{\infty}$ will converge to $\pi(\cdot)$."
- The chain might not move sometimes.
- The values of the chain are dependent.
- If $q(X_t|Y) = q(Y|X_t)$ (i.e. symmetric proposal) we get **Random-walk Monte** Carlo:

$$\alpha(X_t, Y) = \min\left\{1, \frac{\pi(Y)}{\pi(X_t)}\right\}$$

Choice of proposal distribution

• In Random–Walk Monte Carlo

If $\pi(Y) \ge \pi(X)$, the chain moves to the next point, otherwise only with some probability.

Choice of proposal dist.: target:
$$\pi(\cdot) = \mathcal{N}(0, 1)$$

Choice of proposal distribution

q normal with sd: props= 0.5, 0.1 and 20

Gibbs sampler: alternative to Metropolis–Hastings

We want to generate from a distribution on \mathbb{R}^d .

```
1: Initialize chain to X_0 = (X_{0,1}, \dots, X_{0,d}), t = 0

2: while t < t_{\text{max}} do

3: for i = 1, \dots, d do

4: Generate
```

$$X_{t+1,i} \sim f(\cdot|X_{t+1,1},\ldots,\mathbf{X_{t+1,i-1}},\mathbf{X_{t,i+1}},\ldots,X_{t,d})$$

- 5: **end for** 6: t = t + 1
- 7: end while

Gibbs sampler

- At each iteration inside the for loop univariate random numbers are generated.
- Only one element is updated.
- WE NEED TO KNOW THE CONDITIONAL MARGINAL DISTRIBUTIONS.
- Convergence may be slow.
- Can be useful in high dimensions (i.e. proposal density may be difficult to find in another way).

Gibbs sampler: target: d-dim $\mathcal{N}(\mu, \Sigma)$

Gibbs sampler: Example (code: see R scripts)

Generate from

$$\mathcal{N}([1\ 2]^T, \left[\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array}\right])$$

Convergence monitoring

• When should we stop the chain? When are we (nearly) at the stationary distribution?

• Typically such a sample is generated to make further inference.

Convergence monitoring: Gelman–Rubin method

We want to estimate $v(\theta)$.

- Generate k sequences of length n with different starting points.
- 2 Compute between- and within- sequence variances:

$$B = \frac{n}{k-1} \sum_{i=1}^{k} (\overline{v}_{i\cdot} - \overline{v}_{\cdot\cdot})^2 \quad W = \sum_{i=1}^{k} \frac{s_i^2}{k} \quad s_i^2 = \sum_{j=1}^{n} \frac{(\overline{v}_{ij} - \overline{v}_{i\cdot})^2}{n-1}$$

- **3** Overall variance estimate: $\hat{\text{Var}}[v] = \frac{n-1}{n}W + \frac{1}{n}B$
- 4 Gelman–Rubin factor:

$$\sqrt{R} = \sqrt{\frac{\hat{\text{Var}}[v]}{W}}$$

- Values much larger than 1 indicate lack of convergence
- 6 See ?coda::gelman.diag

Gibbs sampler

```
library (coda)
f1 < -mcmc. list(); f2 < -mcmc. list(); n < -100; k < -20
X1 < -matrix(rnorm(n*k), ncol=k, nrow=n)
X2 \leftarrow X1 + (apply(X1, 2, cumsum) * (matrix(rep(1:n,k), ncol=
   k)^2))
for (i in 1:k) { f1 [[i]] <-as.mcmc(X1[,i]); f2 [[i]] <-as
   . mcmc(X2[,i])
print (gelman.diag(f1))
# Potential scale reduction factors:
# Point est. Upper C.I.
\#[1,] 0.999 1.01
print (gelman . diag (f2))
# Potential scale reduction factors:
# Point est. Upper C.I.
#[1,] 1.82 2.38
```

MC for inference

• Estimation of a definite integral

$$\theta = \int_{D} f(x) dx$$
 (recall $\pi = \int_{O} 1 dx$)

• Decompose into:

$$f(x) = g(x)p(x)$$
 where $\int_{D} p(x)dx = 1$

• Then, if $X \sim p(\cdot)$

$$\theta = \mathrm{E}[g(X)] = \int_{\Omega} g(x)p(x)\mathrm{d}x$$

•

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} g(x_i), \quad \forall_i x_i \sim p(\cdot)$$

MC for inference

- Decomposition is not unique, some will be better (lower variance) others worse. $p(x) \propto |f(x)|$: minimal
- Can we easily generate from $p(\cdot)$?
- Bayesian inference: use MCMC samples from $p(\theta|D)$ to obtain a point estimator

$$\theta^* = \int \theta p(\theta|D) \approx \frac{1}{n} \sum_{i=1}^m \theta_i$$

• $\hat{\theta}$ depends on n and g(X), how variable will it be?

$$\widehat{\operatorname{Var}\left[\hat{\theta}\right]} = \frac{1}{n(n-1)} \sum_{i=1}^{n} \left(g(x_i) - \overline{g(x)}\right)^2$$

• MCMC: estimator biases as chain correlated, use longer chain and batch mean instead of x_i .

Decreasing variance

Stratified sampling: Dividing the domain of integration and run separately on each subset.

$$\mathcal{J} = \int_{-\infty}^{\infty} h(x)f(x)\mathrm{d}x$$

with estimator

$$\hat{\mathcal{J}} = \sum_{j=1}^{p} \frac{p_j}{n} \sum_{i=1}^{n} h(Y_i^j),$$

where

$$p_j = \int_{-x_{i-1}}^{x_j} f(x) dx, \ x_0 = -\infty, \ x_p = \infty, \quad (-\infty, \infty) = \bigcup_{j=1}^p \mathcal{X}_j,$$

where for j = 1, ..., p-1 $\mathcal{X}_j = (x_{j-1}, x_j]$ and $\mathcal{X}_p = (x_{p-1}, \infty)$, and $(Y_1^j, ..., Y_n^j)$ is an i.i.d. sample from $f(x)\mathbf{1}_{X_j}(x)$, i.e. f(x) truncated to the interval \mathcal{X}_j .

See C. P. Robert, G. Casella (2004). Monte Carlo Statistical Methods, Springer. Note 4.6.3

Summary

• Generating data from a general multivariate distribution

- Markov Chain Monte Carlo: Metropolis-Hastings algorithm, Gibbs sampling
- Convergence: Gelman–Rubin method
- Estimation of integral