Cryptography and Architectures for Computer Security - Cheat Sheet

Information Theory

```
\begin{array}{l} Pr(C=c) = \sum_{k:c \in \{\mathbb{E}_k(m), \forall m \in \mathcal{M}\}} Pr(K=k) Pr(P=\mathbb{D}_k(c)) \\ \textbf{Perfect secrecy} \ Pr(P=m|C=c) = Pr(P=m) \implies |\mathcal{K}| = |\mathcal{C}| = |\mathcal{P}| \\ \textbf{Entropy} \ H(X) = -\sum_{i=1}^n p_i \log_2 p_i \quad (p_i \log_2 p_i = 0 \ \text{for} \ p_i = 0) \\ H(X,Y) = -\sum_{i=1}^n \sum_{j=1}^m Pr(X=x_i,Y=y_j) \log_2 Pr(X=x_i,Y=y_j) \\ H(X|Y=y) = -\sum_{i=1}^n \sum_{j=1}^m Pr(X=x_i|Y=y) \log_2 Pr(X=x_i|Y=y) \\ H(X|Y) = -\sum_{i=1}^n \sum_{j=1}^m Pr(Y=y_j) Pr(X=x_i,Y=y_j) \log_2 Pr(X=x_i|Y=y_j) \\ H(X) + H(Y) \geqslant H(X,Y); \ H(X,Y) = H(Y) + H(X|Y); \ H(X|Y) \leqslant H(X) \\ \textbf{Key equivocation} \ H(K|C) = H(P) + H(K) - H(C) \\ \textbf{Language redundancy} \ R_L = 1 - \frac{H_L}{\log_2 |\mathcal{M}|} \\ \textbf{Spurious keys} \ \bar{s_n} \geqslant \frac{|\mathcal{K}|}{|\mathcal{M}|^{nR_L}} - 1 \\ \textbf{Unicity distance} \ n_0 \approx \frac{\log_2 |\mathcal{K}|}{R_L \log_2 |\mathcal{M}|} \\ \end{array}
```

Symmetric Ciphers

Modes of Operation

ECB
$$c_i = \mathbb{E}_k(m_i)$$

CBC $c_0 = IV$, $c_i = \mathbb{E}_k(m_i \oplus c_{i-1})$
CFB/OFB $ISR_0 = IV$, $OSR_i = \mathbb{E}_k(ISR_{i-1})$, $c_i = m_i \oplus \text{ j-th leftmost bits of } OSR_i$
CTR $ctr_i = IV + i$, $t_i = \mathbb{E}_k(ctr_i)$, $c_i = t_i \oplus m_i$

Cryptanalysis

Pile-up lemma
$$Pr(Z_1 \oplus \cdots \oplus Z_n = 0) = \frac{1}{2} + 2^{n-1} \prod_{i=1}^n \varepsilon_i$$

Hash Functions

First preimage
$$Pr(m_i|d=h(m_i)) \approx \frac{q}{|D|}$$

Second preimage $Pr(h(m_i)=h(m)) = \frac{q-1}{|D|}$
Collision $Pr(\text{no collisions}) = e^{-\frac{q(q-1)}{2|D|}} \implies q \leqslant 1.774\sqrt{|D|}$

Algebraic Structures

Elliptic Curves

Public Key Cryptosystems

RSA

Keys
$$k_{pub} = (n, e), k_{priv} = (p, q, \varphi(n), d)$$

 $n = p \cdot q, gcd(e, \varphi(n)) = 1, d = e^{-1} \mod \varphi(n)$

$$c = m^{e \mod \varphi(n)} \mod n, \ m = c^{d \mod \varphi(n)} \mod n$$

$$\mathbf{CRT} \ m_p \equiv_p c^{d \mod p-1}, \ m_q \equiv_q c^{d \mod q-1}, \ m \equiv_n m_p q(q^{-1} \mod p) + m_q p(p^{-1} \mod p)$$

Montgomery Multiplication

Number Theoretical Cryptanalysis

Primality test

Fermat n is composite $\implies a^{n-1} \not\equiv_n 1$ with probability $> \frac{1}{2}$ Miller-Rabin $n-1=d2^s: a^d \not\equiv_n \pm 1$ and $a^{d2^r} \not\equiv -1 \implies n$ is composite

Factoring

Fermat $x = \lceil \sqrt{n} \rceil$, $y = x^2 - n$, until y is a perfect square y = y + 2x + 1, x = x + 1, then the factors are $x \pm \sqrt{y}$ Pollard's ρ pick a, b at random (e.g $x_0 = 2, x_i = x_{i-1}^2 + 1 \mod n$), if $\gcd(a - b, n) \neq 1$ the result is a factor Pollard's p-1 p B-power-smooth, $a = 2^{B!}$, so $p = \gcd(a - 1, n)$

DLog

Polig-Hellman for each prime factor $\eta = g^{\frac{n}{p}}$, $\gamma_i = \gamma_{i-1}g^{l_{i-1}p^{i-1}}$, $\delta_i = (\beta\gamma_i^{-1})^{\frac{n}{p^{i+1}}}$, $l_i = \log_{\eta}\delta_i$

Misc