23ème congrès annuel de la Société Française de Recherche Opérationnelle et d'Aide à la décision

DE LA RECHERCHE À L'INDUSTRIE

Benchmarking QAOA through Maximum Cardinality matching

Valentin GILBERT¹ (valentin.gilbert@cea.fr), Renaud SIRDEY¹, Stéphane LOUISE¹

¹ Université Paris-Saclay, CEA, List, France

cea

Introduction

- Quantum computing is based on 2 main principles:
 - Quantum superposition
 - Interference
- In 2018 Google announced Quantum Supremacy (gate-based model):
 - "Quantum supremacy using a programmable superconducting processor" F. Arute et al.
- Benchmark of quantum machines:
 - Generic class of problems to study
 - Follow the evolution of quantum machines (gate fidelity and decoherence)
- Overview:
 - The problem
 - Introduction to variational methods
 - Benchmark of QAOA and SA
 - Conclusion

Problem description

Maximum Cardinality Matching Problem

G = (V, E)

V: set of vertices

E: set of edges

M: set of independent edges

Objective: maximize |M|

Complexity of the problem

	Is bipartite	Best classical complexity	Is complex for SA?
SH graph	yes	O(n)	yes
Bipartite graph	yes	$O(n^{5/2})$	no (most of them)
Random graph	no	$O\left(\sqrt{ V }\cdot E \right)$	no (most of them)

Valentin GILBERT, Renaud SIRDEY, Stéphane LOUISE

Implementation of the problem (Minimization form)

Maximization of the number of edges in the matching:

Minimize
$$-\sum_{e \in E} x_e$$
 with $x_e = \begin{cases} 1, & \text{if } e \in M \\ 0, & \text{otherwise} \end{cases}$

Constraint on independent edges:

if
$$e \in M$$
 then $\forall e' \in \Gamma(e), x_e x_{e'} = 0$

Cost function of Maximum Cardinality Matching problem with penalty:

Minimize
$$-\sum_{e \in E} x_e + \lambda \sum_{e \in E} \sum_{e' \in \Gamma(e)} x_e x_{e'}$$

Implementation on Simulated Annealing

Basic Version of QAOA [2]

- Initial state.
- Unitary operator $U_p(\gamma)$ encoding the problem based on the cost function (encoded under the Ising Model).
- Unitary operator $U_{M}(\beta)$ providing transition between subspace of solutions.

Valentin GILBERT, Renaud SIRDEY, Stéphane LOUISE

QAOA, basic implementation

Maximum cardinality matching cost function:

Minimize
$$-\sum_{e \in E} x_e + \lambda \sum_{e \in E} \sum_{e' \in \Gamma(e)} x_e x_{e'}$$

• Implementation of (U_p) unitary encoding the Hamiltonian H_p:

$$\mathcal{H}_P = \sum_{e}^{n} h_e \sigma_e^z + \sum_{e < e'}^{n} J_{ee'} \sigma_e^z \sigma_{e'}^z \text{ with } \sigma_e^z \text{ and } \sigma_{e'}^z \in \{-1, +1\}$$

$$x_e = (1 + \sigma_e^z)/2$$

• Implementation of (U_{M}) unitary encoding the Hamiltonian H_{M} :

H-QAOA [1][3] an implementation reducing the search space

- Principle:
 - Remove the soft constraint from the Hamiltonian H_n.
 - Restrict the transition of states between feasible states by modifying H_M.
- Implementation of (U_p) unitary encoding the Hamiltonian H_n:

$$\mathcal{H}_P = \sum_{e}^{n} h_e \sigma_e^z \text{ with } \sigma_e^z \in \{-1, +1\}$$

Implementation of (U_M) unitary encoding the Hamiltonian H_M with controlled mixers:

Benchmark metrics

Approximation ratio

E: current energy

E_{max}: Maximum of energy (worst solution)

E_{min}: Minimum of energy (best solution)

$$r = \frac{E - E_{max}}{E_{min} - E_{max}}$$

Optimal solution probability

n: amount of simulation

z_i: bitstring

E_{min}: Minimum of energy (best solution)

$$P_{Opt_sol} = \frac{1}{n} \sum_{i}^{n} x_i \text{ where } x_i \begin{cases} 1 \text{ if } C(z_i) = E_{min} \\ 0 \text{ otherwise} \end{cases}$$

Comparison between problem instances

SH Graph constitutes hard instances for SA [4]

Study of specific instances

Influence of λ penalty factor over the approximation ratio and optimal solution probability

QAOA heatmap at p=1 SH-1

• Approximation ratio at p=1:

$$\lambda = 0.5$$

$$\lambda = 1$$

$$\lambda = 2$$

$$\lambda = 3$$

Optimal solution probability

QAOA

Approximation ratio at p=1:

Optimal solution probability

H-QAOA

Approximation ratio at p=1:

Optimal solution probability

Depth comparison

01/06/2022

Quality of the result

$$\lambda = 0.5$$

Valentin GILBERT, Renaud SIRDEY, Stéphane LOUISE

Maximum Cardinality matching seems to be a reasonable benchmark problem

Valentin GILBERT, Renaud SIRDEY, Stéphane LOUISE

- QAOA seems to have similar behavior as SA
- Polynomial problem
- Modifying the penalty factor impact QAOA and SA
 - Decrease the heatmap contrast
 - Increase the amount of local minima on the HeatMap
- Limits met to benchmark the H-QAOA
 - Size of the simulator
 - Depth impacting the time of the simulation

- [1] Sagnik Chatterjee et Debajyoti Bera. "Applying the Quantum Alternating Operator Ansatz to the **Graph Matching Problem**". 2020. eprint : arXiv:2011.11918.
- [2] Edward Farhi, Jeffrey Goldstone et Sam Gutmann. "A Quantum Approximate Optimization Algorithm" 2014. eprint : arXiv:1411.4028.
- [3] Stuart Hadfield et al. "From the Quantum Approximate Optimization Algorithm to a Quantum **Alternating Operator Ansatz**". In: 12.2 (fév. 2019), p. 34. doi: 10.3390/a12020034. url: https://doi.org/10.3390/a12020034.
- [4] Galen H. Sasaki et Bruce Hajek. "The time complexity of maximum matching by simulated annealing". In: 35.2 (avr. 1988), p. 387-403. doi: 10.1145/42282.46160. url: https://doi.org/10.1145/42282.46160.

Valentin GILBERT, Renaud SIRDEY, Stéphane LOUISE

[5] Daniel Vert. "Étude des performances des machines à recuit quantique pour la résolution de problèmes combinatoires". 2021UPASG026. Thèse de doct. 2021. http://www.theses.fr/2021UPASG026/document

Merci de votre attention