Elektronik Aygıtlar

BÖLÜM 5 BJT TRANSISTÖRLERIN AC ANALIZI

BMB2012 – Elektronik Devreler ve Aygıtlar Ders Notları Bursa Uludağ Üniversitesi Bilgisayar Mühendisliği Bölümü 2023-2024 Bahar Yarıyılı

Çeviren ve Düzenleyen: Prof. Dr. Kemal FİDANBOYLU

BJT Transistör Modellemesi (1)

- Model, transistörün AC özelliklerini temsil eden eşdeğer bir devredir.
- Bir model, transistörün davranışına yaklaşan devre elemanlarını kullanır.
- Bir transistörün küçük sinyal AC analizinde yaygın olarak kullanılan iki tür model vardır:
 - r_e modeli
 - Hibrit eşdeğer modeli

BJT Transistör Modellemesi (2)

- Bir transistör devresinin ac eşdeğeri modelini elde etmek için aşağıdaki adımlar uygulanır:
 - Tüm dc kaynaklarını sıfırlayıp, kısa devre eşdeğeri ile değiştirin.
 - Tüm kapasitörleri kısa devre eşdeğeri ile değiştirin.
 - Adım 1 ve 2'deki kısa devre eşdeğerleri tarafından baypas edilen elemanları kaldırın.
 - Devreyi daha uygun ve mantıklı bir biçimde yeniden çizin.

BJT Transistör Modellemesi (3)

BJT Transistör Modellemesi (4)

r_e Transistör Modeli (1) Ortak-Emitör Konfigürasyonu

• BJT'ler temel olarak akım kontrollü cihazlardır; bu nedenle $r_{\rm e}$ modeli, transistörün davranışını modellemek için bir diyot ve bir akım kaynağı kullanır.

 Bu modelin bir dezavantajı, DC değerlerine olan duyarlılığıdır. Bu model belirli devre koşulları için

tasarlanmıştır.

Z = R + jS Z = Empedans R = RezistansS = Admittans

r_e Transistör Modeli (2) Z=Giri Ortak-Emitör Konfigürasyonu

r Av= Voltaj kazancı Z= Giri empedansı Z= Çıkı empedansı

$$Z_i = \frac{V_i}{I_b} = \frac{V_{be}}{I_b}$$

$$V_{be} = I_e r_e = (I_c + I_b) r_e = (\beta I_b + I_b) r_e$$

$$= (\beta + 1) I_b r_e$$

$$Z_i = \frac{V_{be}}{I_b} = \frac{(\beta + 1) I_b r_e}{I_b}$$

$$Z_i = (\beta + 1)r_e \cong \beta r_e$$

Ortak-Emitör konfigürasyonu için, giriş ve çıkış gerilimleri Alt simgeler küçük AC arasında 180°'lik bir faz kayması vardır.

r_e Transistör Modeli (3) Ortak-Emitör Konfigürasyonu

$$r_o = \frac{\Delta V}{\Delta I} = \frac{V_A + V_{CE_Q}}{I_{C_Q}}$$

$$r_o = rac{\Delta V_{CE}}{\Delta I_C} \left| r_o \cong rac{V_A}{I_{C_Q}}
ight|$$

 r_e model for the common-emitter transistor configuration including effects of r_o .

r_e Transistör Modeli (4) Ortak-Baz Konfigürasyonu

 Ortak-Baz konfigürasyonu için giriş ve çıkış gerilimleri arasında faz kayması yoktur.

Ortak-Emitör Sabit Polarlama Konfigürasyonu (1)

Demonstrating the 180° phase shift between input and output waveforms.

Ortak-Emitör Sabit Polarlama Konfigürasyonu (2)

Giriş Empedansı *Z*_i:

$$Z_i = R_B \|\beta r_e$$

Eğer $R_B \ge 10\beta r_e$ ise:

$$Z_i \cong \beta r_e$$

$$R_B \ge 10\beta r_e$$

Çıkış Empedansı Z_0 :

$$Z_o = R_C \| r_o$$

Eğer $r_o \ge 10R_C$ ise:

$$\boxed{Z_o \cong R_C}$$

$$r_o \ge 10R_C$$

$$V_o = -\beta I_b(R_C \| r_o)$$

$$I_b = \frac{V_i}{\beta r_e}$$

$$V_o = -\beta \left(\frac{V_i}{\beta r_e}\right) (R_C \| r_o)$$

$$V_o = -\beta \left(\frac{V_i}{\beta r_e} \right) (R_C \| r_o)$$
 $A_v = \frac{V_o}{V_i} = -\frac{(R_C \| r_o)}{r_e}$

Eğer $r_o \ge 10R_C$ ise:

$$A_v = -\frac{R_C}{r_e}$$

$$r_o \ge 10R_C$$

Ortak-Emitör Sabit Polarlama Konfigürasyonu (3)

- Örnek 1: Şekil 25'teki devre için aşağıdakileri hesaplayın: (a) r_e ; (b) Z_i ($r_o = \infty$ için); (c) Z_o ($r_o = \infty$ için); (d) A_v ($r_o = \infty$ için); (e) $r_o = 50$ k Ω için (c) ve (d) şıklarını yeniden hesaplayın ve sonuçları karşılaştırın.
- Çözüm:

Ortak-Emitör Sabit Polarlama Konfigürasyonu (4)

- Örnek 1: (Devamı)
- DC Analizi:

a.
$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 \text{ V} - 0.7 \text{ V}}{470 \text{ k}\Omega} = 24.04 \,\mu\text{A}$$

$$I_E = (\beta + 1)I_B = (101)(24.04 \,\mu\text{A}) = 2.428 \,\text{mA}$$

$$r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{2.428 \,\text{mA}} = \mathbf{10.71 \,\Omega}$$

b.
$$\beta r_e = (100)(10.71 \ \Omega) = 1.071 \ k\Omega$$

 $Z_i = R_B \|\beta r_e = 470 \ k\Omega \|1.071 \ k\Omega = 1.07 \ k\Omega$

c.
$$Z_o = R_C = 3 \,\mathrm{k}\Omega$$

d.
$$A_v = -\frac{R_C}{r_e} = -\frac{3 \text{ k}\Omega}{10.71 \Omega} = -280.11$$

e.
$$Z_o = r_o \| R_C = 50 \,\mathrm{k}\Omega \| 3 \,\mathrm{k}\Omega = 2.83 \,\mathrm{k}\Omega \,\mathrm{vs.} \, 3 \,\mathrm{k}\Omega$$

$$A_v = -\frac{r_o \| R_C}{r_e} = \frac{2.83 \text{ k}\Omega}{10.71 \Omega} = -264.24 \text{ vs.} -280.11$$

Ortak-Emitör Voltaj Bölücü Polarlama Konfigürasyonu (1)

Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 26.

• Şekil 27'den Z_i 'nin bulunması:

$$R' = R_1 \| R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$Z_i = R' \| \beta r_e$$

Ortak-Emitör Voltaj Bölücü Polarlama Konfigürasyonu (2)

• Şekil 27'de V_i = 0 V olarak alırsak, I_b = 0 mA ve βI_b = 0 mA olur. Böylece, Zo aşağıdaki gibi bulunur:

$$Z_o = R_C \| r_o$$

$$Z_o = R_C \| r_o$$
 • Eğer $r_o \ge 10 R_C$ ise: $Z_o \cong R_C$ $r_o \ge 10 R_C$

• A_{ν} 'nin bulunması için, R_{C} ve r_{o} dirençlerinin paralel olduğuna dikkat edersek:

$$V_o = -(\beta I_b)(R_C || r_o)$$

$$I_b = \frac{V_i}{\beta r_e}$$

$$V_o = -\beta \left(\frac{V_i}{\beta r_e}\right)(R_C || r_o)$$

$$A_v = \frac{V_o}{V_i} = \frac{-R_C || r_o}{r_e}$$

• Eğer
$$r_o \ge 10R_C$$
 ise: $A_v = \frac{V_o}{V_i} \cong -\frac{R_C}{r_e}$ $r_o \ge 10R_C$

• Negatif işaret, V_o ve V_i arasında 180°'lik bir faz kaymasını gösterir.

Ortak-Emitör Voltaj Bölücü Polarlama Konfigürasyonu (3)

- Örnek 2: Şekil 28'teki devre için aşağıdakileri hesaplayın: (a) r_e ; (b) Z_i ; (c) Z_o ($r_o = \infty$ için); (d) A_v ($r_o = \infty$ için); (e) $r_o = 50 \text{ k}\Omega$ için (c) ve (d) şıklarını yeniden hesaplayın ve sonuçları karşılaştırın.
- Çözüm:

Ortak-Emitör Voltaj Bölücü Polarlama Konfigürasyonu (4)

- Örnek 2: (Devamı)
- DC Analizi:

a. Test:
$$\beta R_E > 10 R_2$$
,
$$(90)(1.5 \, \mathrm{k}\Omega) > 10(8.2 \, \mathrm{k}\Omega)$$

$$135 \, \mathrm{k}\Omega > 82 \, \mathrm{k}\Omega \; \; \text{Sağlandı}.$$

Yaklaşık yaklaşımı kullanarak aşağıdaki sonuçları elde ederiz:

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} = \frac{(8.2 \text{ k}\Omega)(22 \text{ V})}{56 \text{ k}\Omega + 8.2 \text{ k}\Omega} = 2.81 \text{ V}$$

$$V_E = V_B - V_{BE} = 2.81 \text{ V} - 0.7 \text{ V} = 2.11 \text{ V}$$

$$I_E = \frac{V_E}{R_E} = \frac{2.11 \text{ V}}{1.5 \text{ k}\Omega} = 1.41 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{1.41 \text{ mA}} = 18.44 \Omega$$

Ortak-Emitör Voltaj Bölücü Polarlama Konfigürasyonu (5)

Örnek 2: (Devamı)

b.
$$R' = R_1 \| R_2 = (56 \text{ k}\Omega) \| (8.2 \text{ k}\Omega) = 7.15 \text{ k}\Omega$$

 $Z_i = R' \| \beta r_e = 7.15 \text{ k}\Omega \| (90)(18.44 \Omega) = 7.15 \text{ k}\Omega \| 1.66 \text{ k}\Omega$
 $= 1.35 \text{ k}\Omega$
c. $Z_o = R_C = 6.8 \text{ k}\Omega$
d. $A_v = -\frac{R_C}{r_e} = -\frac{6.8 \text{ k}\Omega}{18.44 \Omega} = -368.76$
e. $Z_i = 1.35 \text{ k}\Omega$
 $Z_o = R_C \| r_o = 6.8 \text{ k}\Omega \| 50 \text{ k}\Omega = 5.98 \text{ k}\Omega \text{ vs. } 6.8 \text{ k}\Omega$
 $A_v = -\frac{R_C \| r_o}{r_e} = -\frac{5.98 \text{ k}\Omega}{18.44 \Omega} = -324.3 \text{ vs. } -368.76$

- Z_o ve A_v için sonuçlarda ölçülebilir bir fark vardır, çünkü r_o ≥ 10R_C koşulu karşılanmadı.
- $oldsymbol{eta}$ 'nin varyasyonunda bir bağımsızlık gösteren $A_{
 u}$ denkleminde $oldsymbol{eta}$ 'nin olmadığına dikkat edin.

Ortak-Emitör Emitör Polarlama Konfigürasyonu (1)

Ortak-Emitör Emitör Polarlama Konfigürasyonu (2)

$$V_i = I_b \beta r_e + I_e R_E$$

 $V_i = I_b \beta r_e + (\beta + I) I_b R_E$ $Z_b = \frac{V_i}{I_b} = \beta r_e + (\beta + 1) R_E$ $Z_b = \beta r_e + (\beta + 1) R_E$

$$Z_b = \frac{V_i}{I_b} = \beta r_e + (\beta + 1)R_E$$

$$Z_b = \beta r_e + (\beta + 1)R_E$$

- β normalde 1'den çok daha büyük olduğundan, yaklaşık denklem şu şekildedir: $Z_b \cong \beta(r_e + R_E)$
- R_F genellikle r_e 'den büyük olduğu için Z_b şu şekilde yazılabilir: $Z_b \cong \beta R_E$
- Şekil 30'dan Z_i şu şekilde yazılabilir: $|Z_i = R_B|Z_b$

$$Z_i = R_B \| Z_b$$

• V_i sıfıra eşit olduğunda, $I_b = 0$ ve βI_b bir açık devre eşdeğeri ile değiştirilebilir. Dolayısıyla Z_o şu şekilde yazılabilir: $Z_o = R_C$

transistor with an unbypassed emitter resistor.

$$I_b = \frac{V_i}{Z_b}$$
 $V_o = -I_o R_C = -\beta I_b R_C = -\beta \left(\frac{V_i}{Z_b}\right) R_C$

• $Z_b \approx \beta (r_e + R_E)$ ikame
$$A_v = \frac{V_o}{V_i} \cong -\frac{R_C}{r_e + R_E}$$

$$A_v = \frac{V_o}{V_i} = -\frac{\beta R_C}{Z_b}$$

Z_b ≈ β(r_e + R_E) ikamesi şunu verir:

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{R_{C}}{r_{e} + R_{E}}$$

Z_b ≈ βR_F ikamesi şunu verir:

$$A_{\nu} = \frac{V_o}{V_i} \cong -\frac{R_C}{R_E}$$

Defining the input impedance of a

Ortak-Emitör Emitör Polarlama Konfigürasyonu (3)

r_o'nun etkisi:

$$Z_i$$
 $Z_b = \beta r_e + \left[\frac{(\beta + 1) + R_C/r_o}{1 + (R_C + R_E)/r_o} \right] R_E$

 R_C > r_o oranı her zaman (β + 1)'den çok daha küçük olduğu için, Z_b aşağıdaki gibi yazılabilir:

$$Z_b \cong \beta r_e + \frac{(\beta + 1)R_E}{1 + (R_C + R_E)/r_o}$$

• $r_o \ge 10(R_C + R_E)$ durumu için, Z_b aşağıdaki gibi yazılabilir:

$$Z_b \cong \beta r_e + (\beta + 1)R_E$$

β + 1 ≈ β durumu için, Z_b aşağıdaki gibi yazılabilir:

$$Z_b \cong \beta(r_e + R_E)$$
 $r_o \ge 10(R_C + R_E)$

Ortak-Emitör Emitör Polarlama Konfigürasyonu (4)

r_o'nun etkisi:

$$Z_o = R_C \left\| \left[r_o + \frac{\beta(r_o + r_e)}{1 + \frac{\beta r_e}{R_E}} \right] \right\|$$

 $r_o >> r_e$ olduğuna göre, Z_o aşağıdaki gibi yazılabilir:

$$Z_o = R_C \| \left[r_o + \frac{\beta(r_o + r_e)}{1 + \frac{\beta r_e}{R_E}} \right]$$

$$Z_o \approx R_C \| r_o \left[1 + \frac{\beta}{1 + \frac{\beta r_e}{R_E}} \right] \approx R_C \| r_o \left[1 + \frac{1}{\frac{1}{\beta} + \frac{r_e}{R_E}} \right]$$

 Tipik olarak 1/β ve r_ε/R_ε birden küçüktür ve toplam genellikle birden küçüktür. Sonuç, r_o 'nın birden büyük bir sayıyla çarpılmasını içerir. Dolayısıyla, Z_o aşağıdaki gibi

tahmin edilebilir:

$$Z_o \cong R_C$$
 Any level of r_o

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{-\frac{\beta R_{C}}{Z_{b}} \left[1 + \frac{r_{e}}{r_{o}}\right] + \frac{R_{C}}{r_{o}}}{1 + \frac{R_{C}}{r_{o}}} \quad \text{of } r_{e}/r_{o} << 1 \text{ olduğuna göre,} \\ A_{v} \text{ şu şekilde yazılabilir:} \quad A_{v} = \frac{V_{o}}{V_{i}} \cong \frac{-\frac{\beta R_{C}}{Z_{b}} + \frac{R_{C}}{r_{o}}}{1 + \frac{R_{C}}{r_{o}}}$$

$$A_{v} = \frac{V_{o}}{V_{i}} \cong \frac{-\frac{\beta R_{C}}{Z_{b}} + \frac{R_{C}}{r_{o}}}{1 + \frac{R_{C}}{r_{o}}}$$

•
$$r_o \ge 10R_C$$
 durumu için, A_v şu şekilde yazılabilir:
$$A_v = \frac{V_o}{V_i} \cong -\frac{\beta R_C}{Z_b}$$
$$r_o \ge 10R_C$$

Ortak-Emitör Emitör Polarlama Konfigürasyonu (5)

- Örnek 3: Şekil 32'deki devre için aşağıdakileri hesaplayın (C_E kapasitörü olmadan): (a) r_e; (b) Z_i; (c) Z_o; (d) A_v.
- Çözüm:
- DC Analizi:

a.
$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{20 \text{ V} - 0.7 \text{ V}}{470 \text{ k}\Omega + (121)0.56 \text{ k}\Omega} = 35.89 \,\mu\text{A}$$

$$I_E = (\beta + 1)I_B = (121)(35.89 \,\mu\text{A}) = 4.34 \,\text{mA}$$

$$r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{4.34 \,\text{mA}} = 5.99 \,\Omega$$

Ortak-Emitör Emitör Polarlama Konfigürasyonu (6)

Örnek 3: (Devamı)

b. Test:
$$r_o \ge 10(R_C + R_E)$$
, $40 \text{ k}\Omega \ge 10(2.2 \text{ k}\Omega + 0.56 \text{ k}\Omega)$ $40 \text{ k}\Omega \ge 10(2.76 \text{ k}\Omega) = 27.6 \text{ k}\Omega$ Sağlandı. $Z_b \cong \beta(r_e + R_E) = 120(5.99 \Omega + 560 \Omega)$ $= 67.92 \text{ k}\Omega$ $Z_i = R_B \|Z_b = 470 \text{ k}\Omega \|67.92 \text{ k}\Omega$ $= 59.34 \text{ k}\Omega$

c.
$$Z_o = R_C = 2.2 \text{ k}\Omega$$

d. Test: $r_o \ge 10(R_C + R_E)$,
 $40 \text{ k}\Omega \ge 10(2.2 \text{ k}\Omega) = 22 \text{ k}\Omega$ Sağlandı.
 $A_v = \frac{V_o}{V_i} \cong -\frac{\beta R_C}{Z_b} = -\frac{(120)(2.2 \text{ k}\Omega)}{67.92 \text{ k}\Omega}$
 $= -3.89$

• Yaklaşık olarak: $A_v \cong -R_C/R_E = -3.93$

Ortak-Emitör Emitör Polarlama Konfigürasyonu (7)

- Örnek 4: Örnek 3'ü C_E kapasitörü R_E direncine paralel olarak bağlı olarak tekrar edin.
- Çözüm:
 - a. DC Analizi Örnek 3'te olduğu gibidir. Böylece, r_e 'nin değeri 5.99 Ω olur.
 - b. R_E , ac analizi için C_E tarafından "kısa devre" edilir. Böylelikle,

$$Z_i = R_B \| Z_b = R_B \| \beta r_e = 470 \text{ k}\Omega \| (120)(5.99 \Omega)$$

= $470 \text{ k}\Omega \| 718.8 \Omega \cong 717.70 \Omega$
c. $Z_o = R_C = 2.2 \text{ k}\Omega$
d. $A_v = -\frac{R_C}{r_e}$
= $-\frac{2.2 \text{ k}\Omega}{5.99 \Omega} = -367.28$ (Örnek 3'e göre önemli bir artış)

Ortak-Emitör Emitör Polarlama Konfigürasyonu (8)

 Örnek 5: Şekil 33'deki devre için uygun

yaklaşımları kullanarak

aşağıdakileri hesaplayın (C_E

kapasitörü olmadan) : (a) $r_{\rm e}$;

(b) Z_i ; (c) Z_o ; (d) A_v .

• ÇÖZÜM: V_i V_i

Ortak-Emitör Emitör Polarlama Konfigürasyonu (9)

Örnek 5: (Devamı)

a. Test:
$$\beta R_E > 10R_2$$
, $(210)(0.68 \text{ k}\Omega) > 10(10 \text{ k}\Omega)$ $142.8 \text{ k}\Omega > 100 \text{ k}\Omega$ (Sağlandı)
$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} = \frac{10 \text{ k}\Omega}{90 \text{ k}\Omega + 10 \text{ k}\Omega} (16 \text{ V}) = 1.6 \text{ V}$$
 $V_E = V_B - V_{BE} = 1.6 \text{ V} - 0.7 \text{ V} = 0.9 \text{ V}$ $I_E = \frac{V_E}{R_E} = \frac{0.9 \text{ V}}{0.68 \text{ k}\Omega} = 1.324 \text{ mA}$ $r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{1.324 \text{ mA}} = 19.64 \Omega$

b. AC eşdeğer devresi Şekil 34'te verilmiştir. Ortaya çıkan konfigürasyon, Şekil 30'dan yalnızca şu gerçeğiyle farklıdır:

$$R_B = R' = R_1 || R_2 = 9 \,\mathrm{k}\Omega$$

Ortak-Emitör Emitör Polarlama Konfigürasyonu (10)

- Örnek 5: (Devamı)
- $r_o \ge 10(R_C + R_E)$ ve $r_o \ge 10R_C$ test koşulları sağlanmıştır. Uygun yaklaşımların kullanılması aşağıdaki sonucu verir:

$$Z_b \cong \beta R_E = 142.8 \text{ k}\Omega$$
 $Z_i = R_B \| Z_b = 9 \text{ k}\Omega \| 142.8 \text{ k}\Omega$
 $= 8.47 \text{ k}\Omega$
c. $Z_o = R_C = 2.2 \text{ k}\Omega$
d. $A_v = -\frac{R_C}{R_E} = -\frac{2.2 \text{ k}\Omega}{0.68 \text{ k}\Omega} = -3.24$

Ortak-Emitör Emitör Polarlama Konfigürasyonu (11)

- Örnek 6: Örnek 5'i C_E kapasitörü R_E direncine paralel olarak bağlı olarak tekrar edin.
- Çözüm:
 - a. DC Analizi Örnek 5'te olduğu gibidir. Böylece, $r_{\rm e}$ 'nin değeri 19.64 Ω olur.

b.
$$Z_b = \beta r_e = (210)(19.64 \,\Omega) \cong 4.12 \,\mathrm{k}\Omega$$
 $Z_i = R_B \| Z_b = 9 \,\mathrm{k}\Omega \| 4.12 \,\mathrm{k}\Omega$ $= \mathbf{2.83 \,k}\Omega$ c. $Z_o = R_C = \mathbf{2.2 \,k}\Omega$ d. $A_v = -\frac{R_C}{r_e} = -\frac{2.2 \,\mathrm{k}\Omega}{19.64 \,\Omega} = -\mathbf{112.02}$ (Örnek 5'e göre önemli bir artış)

Ortak-Emitör Emitör Polarlama Konfigürasyonu (12)

Emitör polarlama konfigürasyonunun başka bir varyasyonu Şekil 35'te gösterilmektedir. DC analizi için, Şekil 29'a ait ilgili denklemlerde emitör direnci R_E yerine R_{E1} + R_{E2} konacak. AC analizi için ise, Şekil 29'a ait ilgili denklemlerde emitör direnci R_E yerine R_{E1} konacak, çünkü R_{E2} direnci C_E kapasitörü ile baypas edildiğinden dolayı kısa devre olacak.

Emitör-Sürücü Konfigürasyonu (1)

Bazdan emitöre olan düşüş nedeniyle çıkış voltajı her zaman giriş sinyalinden biraz daha düşüktür, ancak $A_v \approx 1$ kabul edilebilir. V_o 'nun V_i 'nin büyüklüğünü eş fazlı bir ilişkiyle "takip etmesi", emitör sürücü adının nereden geldiğini açıklar.

Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 36.

FIG. 37

Emitör-Sürücü Konfigürasyonu (2)

$$Z_i = R_B \| Z_b$$

$$Z_b = \beta r_e + (\beta + 1) R_E$$

$$Z_b \cong \beta (r_e + R_E)$$

$$Z_b \cong \beta R_E$$

$$R_E \gg r_e$$

$$I_b = \frac{V_i}{Z_b} \quad I_e = (\beta + 1)I_b = (\beta + 1)\frac{V_i}{Z_b} \quad I_e = \frac{(\beta + 1)V_i}{\beta r_e + (\beta + 1)R_E} \quad I_e = \frac{V_i}{[\beta r_e/(\beta + 1)] + R_E}$$

$$(\beta + 1) \cong \beta$$
 $\frac{\beta r_e}{\beta + 1} \cong \frac{\beta r_e}{\beta} = r_e$ $I_e \cong \frac{V_i}{r_e + R_E}$ $Z_o = R_E \| r_e \|$ $Z_o \cong r_e$

$$A_{\mathbf{v}}$$
 $V_o = \frac{R_E V_i}{R_E + r_e}$ $A_v = \frac{V_o}{V_i} = \frac{R_E}{R_E + r_e}$ $A_v = \frac{V_o}{V_i} \cong 1$

• Emitör-Sürücü konfigürasyonu için, Vo ve Vi aynı fazdadır.

Emitör-Sürücü Konfigürasyonu (3)

r_o'nun etkisi:

$$Z_{i} = \beta r_{e} + \frac{(\beta + 1)R_{E}}{1 + \frac{R_{E}}{r_{o}}}$$

$$Z_{b} \cong \beta(r_{e} + R_{E}) \qquad r_{o} \geq 10R_{E}$$

$$Z_o = r_o \|R_E\| \frac{\beta r_e}{(\beta + 1)}$$

$$Z_o = r_o \|R_E\| r_e$$

$$Z_o \cong R_E \|r_e\|$$
Any r_o

$$A_{\nu} = \frac{(\beta + 1)R_E/Z_b}{1 + \frac{R_E}{r_o}} \qquad A_{\nu} \cong \frac{\beta R_E}{Z_b} \qquad Z_b \cong \beta(r_e + R_E)$$

$$A_{\nu} \cong \frac{\beta R_E}{\beta (r_e + R_E)}$$

$$A_{\nu} \cong \frac{R_E}{r_e + R_E}$$
 $r_o \ge 10R_E$

Emitör-Sürücü Konfigürasyonu (4)

• Örnek 7: Şekil 39'daki devre için aşağıdakileri hesaplayın (a) r_e ; (b) Z_i ; (c) Z_o ; (d) A_v ; (e) $r_o = 25 \text{ k}\Omega$ için (b), (c) ve (d) şıklarını yeniden hesaplayın ve sonuçları karşılaştırın.

Çözüm:

a.
$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$

 $= \frac{12 \text{ V} - 0.7 \text{ V}}{220 \text{ k}\Omega + (101)3.3 \text{ k}\Omega} = 20.42 \,\mu\text{A}$
 $I_E = (\beta + 1)I_B$
 $= (101)(20.42 \,\mu\text{A}) = 2.062 \,\text{mA}$
 $r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{2.062 \,\text{mA}} = 12.61 \,\Omega$

 Genel olarak, r_o ≥ 10R_E koşulu sağlanmasa bile, Z_o ve A_v için sonuçlar aynıdır, Z_i yalnızca biraz daha azdır. Sonuçlar, çoğu uygulama için, bu konfigürasyon için r_o'nun etkilerini basitçe göz ardı ederek iyi bir yaklaşım elde edilebileceğini gösterir.

Emitör-Sürücü Konfigürasyonu (5)

Örnek 7: (Devamı)

b.
$$Z_b = \beta r_e + (\beta + 1)R_E$$

= $(100)(12.61 \Omega) + (101)(3.3 k\Omega)$
= $1.261 k\Omega + 333.3 k\Omega$
= $334.56 k\Omega \cong \beta R_E$
 $Z_i = R_B || Z_b = 220 k\Omega || 334.56 k\Omega$
= $132.72 k\Omega$

c.
$$Z_o = R_E || r_e = 3.3 \text{ k}\Omega || 12.61 \Omega$$

= **12.56** $\Omega \cong r_e$

d.
$$A_v = \frac{V_o}{V_i} = \frac{R_E}{R_E + r_e} = \frac{3.3 \text{ k}\Omega}{3.3 \text{ k}\Omega + 12.61 \Omega}$$

= **0.996** \cong 1

e. Test:
$$r_o \ge 10R_E$$
, $25 \text{ k}\Omega \ge 10(3.3 \text{ k}\Omega) = 33 \text{ k}\Omega$ (Sağlanmadı)

$$Z_b = \beta r_e + \frac{(\beta + 1)R_E}{1 + \frac{R_E}{r_o}} = (100)(12.61 \Omega) + \frac{(100 + 1)3.3 \text{ k}\Omega}{1 + \frac{3.3 \text{ k}\Omega}{25 \text{ k}\Omega}} = 1.261 \text{ k}\Omega + 294.43 \text{ k}\Omega = 295.7 \text{ k}\Omega$$

$$Z_i = R_B \| Z_b = 220 \,\mathrm{k}\Omega \| 295.7 \,\mathrm{k}\Omega = 126.15 \,\mathrm{k}\Omega \,\mathrm{vs.}\, 132.72 \,\mathrm{k}\Omega$$

$$Z_o = R_E \| r_e = 12.56 \Omega$$

$$A_{v} = \frac{(\beta + 1)R_{E}/Z_{b}}{\left[1 + \frac{R_{E}}{r_{o}}\right]} = \frac{(100 + 1)(3.3 \text{ k}\Omega)/295.7 \text{ k}\Omega}{\left[1 + \frac{3.3 \text{ k}\Omega}{25 \text{ k}\Omega}\right]}$$

$$= 0.996 \cong 1$$

Ortak-Baz Konfigürasyonu (1)

 Ortak-Baz konfigürasyonu, nispeten düşük bir giriş ve yüksek bir çıkış empedansına ve 1'den az bir akım kazancına sahiptir.
 Bununla birlikte, voltaj kazancı oldukça büyük olabilir.

Ortak-Baz Konfigürasyonu (2)

$$Z_i = R_E \| r_e$$

$$Z_o = R_C$$

$$A_{\nu}$$

$$V_o = -I_o R_C = -(-I_c)R_C = \alpha I_e R_C$$

$$I_e = \frac{V_i}{r_e}$$

$$V_o = \alpha \left(\frac{V_i}{r_e}\right) R_C$$

$$V_o = -I_o R_C = -(-I_c) R_C = \alpha I_e R_C \qquad I_e = \frac{V_i}{r_e} \qquad V_o = \alpha \left(\frac{V_i}{r_e}\right) R_C \qquad A_v = \frac{V_o}{V_i} = \frac{\alpha R_C}{r_e} \cong \frac{R_C}{r_e}$$

$$R_E \gg r_e$$

$$I_e = I_i$$

$$I_o = -\alpha I_e = -\alpha I_i$$

$$R_E \gg r_e$$
 olduğunu varsayarsak: $I_e = I_i$ $I_o = -\alpha I_e = -\alpha I_i$ $A_i = \frac{I_o}{I_i} = -\alpha \cong -1$

- **Faz ilişkisi**: A_{ν} 'nin pozitif bir sayı olması, ortak-baz konfigürasyonu için V_{o} ve V_{i} 'nin aynı fazda olduğunu gösterir.
- r_o 'nun etkisi: Ortak-baz konfigürasyonu için $r_o = 1/h_{ob}$ megaohm seviyesindedir ve R_C 'den büyüktür. Böylelikle, $r_o || R_C \approx R_C$ yaklaşık olarak alınabilir.

Ortak-Baz Konfigürasyonu (3)

- Örnek 8: Şekil 44'deki devre için aşağıdakileri hesaplayın: (a) r_e ; (b) Z_i ; (c) Z_o ; (d) A_v ; (e) A_i .
- Çözüm:

a.
$$I_E = \frac{V_{EE} - V_{BE}}{R_E} = \frac{2 \text{ V} - 0.7 \text{ V}}{1 \text{ k}\Omega} = \frac{1.3 \text{ V}}{1 \text{ k}\Omega} = 1.3 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{1.3 \text{ mA}} = 20 \Omega$$

b.
$$Z_i = R_E || r_e = 1 \text{ k}\Omega || 20 \Omega$$

= **19.61** $\Omega \cong r_e$

c.
$$Z_o = R_C = 5 \,\mathrm{k}\Omega$$

d.
$$A_v \cong \frac{R_C}{r_e} = \frac{5 \text{ k}\Omega}{20 \Omega} = 250$$

e.
$$A_i = -0.98 \cong -1$$

Kolektör Geri Besleme Konfigürasyonu (1)

Kolektör Geri Besleme Konfigürasyonu (2)

$$I_o = I' + \beta I_b$$
 $I' = \frac{V_o - V_i}{R_E}$ $V_o = -I_o R_C = -(I' + \beta I_b) R_C$ $V_i = I_b \beta r_e$

$$I' = -\frac{(I' + \beta I_b)R_C - I_b\beta r_e}{R_F} = -\frac{I'R_C}{R_F} - \frac{\beta I_bR_C}{R_F} - \frac{I_b\beta r_e}{R_F} I' \left(1 + \frac{R_C}{R_F}\right) = -\beta I_b \frac{(R_C + r_e)}{R_F}$$

$$I' = -\beta I_b \frac{(R_C + r_e)}{R_C + R_F} \qquad I_i = I_b - I' = I_b + \beta I_b \frac{(R_C + r_e)}{R_C + R_F} \qquad I_i = I_b \left(1 + \beta \frac{(R_C + r_e)}{R_C + R_F} \right)$$

$$Z_{i} = \frac{V_{i}}{I_{i}} = \frac{I_{b}\beta r_{e}}{I_{b}\left(1 + \beta \frac{(R_{C} + r_{e})}{R_{C} + R_{F}}\right)} = \frac{\beta r_{e}}{1 + \beta \frac{(R_{C} + r_{e})}{R_{C} + R_{F}}}$$

$$R_C \gg r_e$$
 olduğunu göre:

$$Z_i = \frac{\beta r_e}{1 + \frac{\beta R_C}{R_C + R_E}}$$

$$Z_i = \frac{\beta r_e}{1 + \frac{\beta R_C}{R_C + R_F}} \qquad Z_i = \frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_C + R_F}}$$

Kolektör Geri Besleme Konfigürasyonu (3)

 Z_0 'yu bulmak için V_i 'yi sıfıra eşitlersek, devre Şekil 47'deki gibi görünür. Böylece, βr_e 'nin etkisi ortadan kalkar ve R_F , R_C 'ye paralel olur.

$$Z_o \cong R_C \| R_F$$

 A_{ν}

$$V_{o} = -I_{o}R_{C} = -(I' + \beta I_{b})R_{C}$$

$$= -\left(-\beta I_{b}\frac{(R_{C} + r_{e})}{R_{C} + R_{F}} + \beta I_{b}\right)R_{C}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{-\beta V_{b}\left(1 - \frac{(R_{C} + r_{e})}{R_{C} + R_{F}}\right)R_{C}}{\beta r_{e}V_{b}}$$

$$V_{o} = -\beta I_{b}\left(1 - \frac{(R_{C} + r_{e})}{R_{C} + R_{F}}\right)R_{C}$$

$$= -\left(1 - \frac{(R_{C} + r_{e})}{R_{C} + R_{F}}\right)\frac{R_{C}}{r_{e}}$$

$$A_{v} = -I_{o}R_{C} = -(I' + \beta I_{b})R_{C}$$

$$= -\left(-\beta I_{b}\frac{(R_{C} + r_{e})}{R_{C} + R_{F}} + \beta I_{b}\right)R_{C}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{-\beta V_{b}\left(1 - \frac{(R_{C} + r_{e})}{R_{C} + R_{F}}\right)R_{C}}{\beta r_{e}V_{b}}$$

$$= -\beta I_{b}\left(1 - \frac{(R_{C} + r_{e})}{R_{C} + R_{F}}\right)R_{C}$$

$$= -\left(1 - \frac{(R_{C} + r_{e})}{R_{C} + R_{F}}\right)\frac{R_{C}}{r_{e}}$$

$$A_{\nu} = -\left(1 - \frac{R_C}{R_C + R_F}\right) \frac{R_C}{r_e}$$

$$R_C \gg r_e$$
 olduğunu varsayarsak: $A_v = -\left(1 - \frac{R_C}{R_C + R_F}\right) \frac{R_C}{r_e}$ $A_v = -\frac{(R_C + R_F - R_C)R_C}{R_C + R_F}$

$$A_v = -\left(\frac{R_F}{R_C + R_F}\right)\frac{R_C}{r_e}$$
 $R_F \gg R_C$ olduğunu varsayarsak: $A_v \simeq -\frac{R_C}{r_e}$

$$R_F \gg R_C$$

$$A_v \, \cong \, -\frac{R_C}{r_e}$$

Kolektör Geri Besleme Konfigürasyonu (4)

r_o'nun etkisi:

$$Z_{i} = \frac{1 + \frac{R_{C} \| r_{o}}{R_{F}}}{\frac{1}{\beta r_{e}} + \frac{1}{R_{F}} + \frac{R_{C} \| r_{o}}{\beta r_{e} R_{F}} + \frac{R_{C} \| r_{o}}{R_{F} r_{e}}}$$

$$r_o \ge 10R_C$$

$$r_o \ge 10R_C \quad \text{olduğunu varsayarsak:} \quad Z_i = \frac{1 + \frac{R_C}{R_F}}{\frac{1}{\beta r_e} + \frac{1}{R_F} + \frac{R_C}{\beta r_e R_F} + \frac{R_C}{R_F r_e}} = \frac{r_e \left[1 + \frac{R_C}{R_F}\right]}{\frac{1}{\beta} + \frac{1}{R_F} \left[r_e + \frac{R_C}{\beta} + R_C\right]}$$

$$R_C \gg r_e$$

olduğunu göre:

$$Z_{i} \simeq \frac{r_{e} \left[1 + \frac{R_{C}}{R_{F}}\right]}{\frac{1}{\beta} + \frac{R_{C}}{R_{F}}} = \frac{r_{e} \left[\frac{R_{F} + R_{C}}{R_{F}^{c}}\right]}{\frac{R_{F} + \beta R_{C}}{\beta R_{F}^{c}}} = \frac{r_{e}}{\frac{1}{\beta} \left(\frac{R_{F}}{R_{F} + R_{C}}\right) + \frac{R_{C}}{R_{C} + R_{F}}}$$

Kolektör Geri Besleme Konfigürasyonu (5)

$$R_F + R_C \cong R_F \text{ ve } \frac{R_F}{R_E + R_C} = 1$$

$$Z_i$$
 $R_F \gg R_C$ olduğunu göre: $R_F + R_C \cong R_F$ ve $\frac{R_F}{R_F + R_C} = 1$ $Z_i \cong \frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_C + R_F}}$

$$Z_o = r_o \|R_C\|R_F$$

 $r_o \ge 10R_C$ olduğunu varsayarsak: $Z_o \cong R_C \| R_F \|_{r_o \ge 10R_C}$

$$Z_o \cong R_C \| R_F$$
 $r_o \ge 10R_C$

$$R_F \gg R_C$$
 olduğunu göre: $Z_o \cong R_C$ $r_o \ge 10R_C, R_F \gg R_C$

$$A_{v} = -\left(\frac{R_{F}}{R_{C} \| r_{o} + R_{F}}\right) \frac{R_{C} \| r_{o}}{r_{e}}$$

$$r_o \ge 10R_C$$
 olduğunu varsayarsak: $A_v \cong -\left(\frac{R_F}{R_C + R_F}\right)\frac{R_C}{r_e}$ $r_o \ge 10R_C$

$$R_F \gg R_C$$
 olduğunu göre: $A_v \simeq -\frac{R_C}{r_e}$ $r_o \ge 10R_C, R_F \ge R_C$

Kolektör Geri Besleme Konfigürasyonu (6)

- Örnek 9: Şekil 48'deki devre için aşağıdakileri hesaplayın: (a) r_e ; (b) Z_i ; (c) Z_o ; (d) A_v ; (e) $r_o = 20 \text{ k}\Omega$ için (b), (c) ve (d) şıklarını yeniden hesaplayın ve sonuçları karşılaştırın.
- Çözüm:

a.
$$I_B = \frac{V_{CC} - V_{BE}}{R_F + \beta R_C} = \frac{9 \text{ V} - 0.7 \text{ V}}{180 \text{ k}\Omega + (200)2.7 \text{ k}\Omega}$$

 $= 11.53 \,\mu\text{A}$
 $I_E = (\beta + 1)I_B = (201)(11.53 \,\mu\text{A}) = 2.32 \,\text{mA}$
 $r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{2.32 \,\text{mA}} = 11.21 \,\Omega$

b.
$$Z_i = \frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_C + R_F}} = \frac{11.21 \ \Omega}{\frac{1}{200} + \frac{2.7 \ k\Omega}{182.7 \ k\Omega}}$$

= $\frac{11.21 \ \Omega}{0.005 + 0.0148} = \frac{11.21 \ \Omega}{0.0198} =$ **566.16** Ω

c.
$$Z_o = R_C \| R_F = 2.7 \text{ k}\Omega \| 180 \text{ k}\Omega = 2.66 \text{ k}\Omega$$

d. $A_v = -\frac{R_C}{r_e} = -\frac{2.7 \text{ k}\Omega}{11.21 \Omega} = -240.86$

Kolektör Geri Besleme Konfigürasyonu (7)

Örnek 9: (Devamı)

$$r_o \ge 10R_C$$
 koşulu sağlanmadığı için:

$$Z_{i} = \frac{1 + \frac{R_{C} \| r_{o}}{R_{F}}}{\frac{1}{\beta r_{e}} + \frac{1}{R_{F}} + \frac{R_{C} \| r_{o}}{\beta r_{e} R_{F}} + \frac{R_{C} \| r_{o}}{R_{F} r_{e}}} = \frac{1 + \frac{2.7 \text{ k}\Omega \| 20 \text{ k}\Omega}{180 \text{ k}\Omega}}{\frac{1}{(200)(11.21)} + \frac{1}{180 \text{ k}\Omega} + \frac{2.7 \text{ k}\Omega \| 20 \text{ k}\Omega}{(200)(11.21 \Omega)(180 \text{ k}\Omega)} + \frac{2.7 \text{ k}\Omega \| 20 \text{ k}\Omega}{(180 \text{ k}\Omega)(11.21 \Omega)}}{\frac{1 + \frac{2.38 \text{ k}\Omega}{180 \text{ k}\Omega}}{0.45 \times 10^{-3} + 0.006 \times 10^{-3} + 5.91 \times 10^{-6} + 1.18 \times 10^{-3}}} = \frac{1 + 0.013}{1.64 \times 10^{-3}} = 617.7 \Omega}{1.64 \times 10^{-3}}$$

$$Z_o$$
:
 $Z_o = r_o ||R_C||R_F = 20 \text{ k}\Omega ||2.7 \text{ k}\Omega ||180 \text{ k}\Omega ||$
= 2.35 kΩ vs. 2.66 kΩ above

$$Z_{o} = r_{o} \| R_{C} \| R_{F} = 20 \text{ k}\Omega \| 2.7 \text{ k}\Omega \| 180 \text{ k}\Omega$$

$$= 2.35 \text{ k}\Omega \text{ vs. } 2.66 \text{ k}\Omega \text{ above}$$

$$= -\left(\frac{R_{F}}{R_{C} \| r_{o} + R_{F}}\right) \frac{R_{C} \| r_{o}}{r_{e}} = -\left[\frac{180 \text{ k}\Omega}{2.38 \text{ k}\Omega + 180 \text{ k}\Omega}\right] \frac{2.38 \text{ k}\Omega}{11.21}$$

$$= -\left[0.987\right] 212.3$$

$$= -209.54$$

Kolektör DC Geri Besleme Konfigürasyonu (1)

Kolektör DC Geri Besleme Konfigürasyonu (2)

$$Z_i = R_{F_1} \| \beta r_e$$

$$Z_o = R_C \|R_{F_2}\| r_o$$

$$r_o \ge 10R_C$$

 $Z_o = R_C \|R_{F_2}\|_{F_o}$ $r_o \ge 10R_C$ olduğunu varsayarsak: $Z_o \cong R_C \|R_{F_2}\|_{F_0}$

$$Z_o \cong R_C \| R_{F_2} \|_{r_o \ge 10R_C}$$

$$A_{\nu}$$

$$R' = r_o \|R_{F_2}\| R_C$$

$$V_o = -\beta I_b R'$$

$$I_b = \frac{V_i}{\beta r_e}$$

$$R' = r_o \|R_{F_2}\|R_C$$
 $V_o = -\beta I_b R'$ $I_b = \frac{V_i}{\beta r_e}$ $V_o = -\beta \frac{V_i}{\beta r_e} R'$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{r_{o} \|R_{F_{2}}\|R_{C}}{r_{e}}$$

$$r_o \ge 10R_C$$

 $r_o \ge 10R_C$ olduğunu varsayarsak:

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{R_{F_{2}} \| R_{C}}{r_{e}}$$

$$r_{o} \geq 10R_{C}$$

Kolektör DC Geri Besleme Konfigürasyonu (3)

Örnek 10: Şekil 52'deki devre için aşağıdakileri hesaplayın: (a) r_e; (b) Z_i; (c) Z_o; (d) A_v; (e) V_i = 2 mV için, V_o'nun değeri.

Çözüm:

Kolektör DC Geri Besleme Konfigürasyonu (4)

Örnek 10: (Devamı)

a. DC Analizi:

$$I_B = \frac{V_{CC} - V_{BE}}{R_F + \beta R_C}$$

$$= \frac{12 \text{ V} - 0.7 \text{ V}}{(120 \text{ k}\Omega + 68 \text{ k}\Omega) + (140)3 \text{ k}\Omega}$$

$$= \frac{11.3 \text{ V}}{608 \text{ k}\Omega} = 18.6 \,\mu\text{A}$$

$$I_E = (\beta + 1)I_B = (141)(18.6 \,\mu\text{A})$$

$$= 2.62 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{2.62 \text{ mA}} = 9.92 \,\Omega$$

e.
$$|A_v| = 289.3 = \frac{V_o}{V_i}$$

 $V_o = 289.3V_i = 289.3(2 \text{ mV}) = \mathbf{0.579 V}$

b. AC eşdeğer devresi Şekil 53'te görülmektedir.

$$\beta r_e = (140)(9.92 \ \Omega) = 1.39 \ k\Omega$$

 $Z_i = R_{F_1} \| \beta r_e = 120 \ k\Omega \| 1.39 \ k\Omega$
 $\cong 1.37 \ k\Omega$

c. Test:
$$r_o \ge 10R_C$$
, $30 \text{ k}\Omega \ge 10(3 \text{ k}\Omega) = 30 \text{ k}\Omega$ (Sağlandı) $Z_o \cong R_C \| R_{F_2} = 3 \text{ k}\Omega \| 68 \text{ k}\Omega = \mathbf{2.87 k}\Omega$

d. $r_o \ge 10R_C$ olduğunu varsayarsak:

$$A_{\nu} \simeq -\frac{R_{F_2} \| R_C}{r_e} = -\frac{68 \text{ k}\Omega \| 3 \text{ k}\Omega}{9.92 \Omega} \simeq -\frac{2.87 \text{ k}\Omega}{9.92 \Omega} \simeq -289.3$$

R_L ve R_S Dirençlerinin Etkisi (1) Sabit Polarlama Konfigürasyonu

Amplifier configurations: (a) unloaded; (b) loaded; (c) loaded with a source resistance.

R_L ve R_S Dirençlerinin Etkisi (2) Sabit Polarlama Konfigürasyonu

- Kaynak direnci yerindeyken elde edilen kazanç, kaynak direnci boyunca uygulanan voltajın düşmesi nedeniyle her zaman yüklü veya yüksüz koşullar altında elde edilenden daha az olacaktır.
- Aynı konfigürasyon için: $A_{VNL} > A_{VL} > A_{VS}$.
- Belirli bir tasarım için, R_L seviyesi ne kadar büyük olursa, ac kazancı seviyesi de o kadar yüksek olur.
- Belirli bir yükselteç için, sinyal kaynağının iç direnci ne kadar küçükse, genel kazanç o kadar büyük olur.
- Şekil 54'te gösterilenler gibi kuplaj kapasitörlerine sahip herhangi bir devre için, kaynak ve yük direnci dc polarlama seviyelerini etkilemez.

R, ve R_S Dirençlerinin Etkisi (3) Sabit Polarlama Konfigürasyonu

$$R'_{L} = r_{o} \| R_{C} \| R_{L} \cong R_{C} \| R_{L}$$

$$V_{o} = -\beta I_{b} R'_{L} = -\beta I_{b} (R_{C} \| R_{L})$$

$$I_{b} = \frac{V_{i}}{\beta r_{e}}$$

$$V_{o} = -\beta \left(\frac{V_{i}}{\beta r_{e}}\right) (R_{C} \| R_{L})$$

$$A_{v_L} = \frac{V_o}{V_i} = -\frac{R_C \| R_L}{r_e}$$
 $V_i = \frac{Z_i V_s}{Z_i + R_s}$ $\frac{V_i}{V_s} = \frac{Z_i}{Z_i + R_s}$

$$Z_i = R_B \| \beta r_e$$

$$Z_o = R_C \| r_o$$

$$V_i = \frac{Z_i V_s}{Z_i + R_s} \qquad \frac{V_i}{V_s} =$$

$$A_{v_S} = \frac{V_o}{V_s} = \frac{V_o}{V_i} \cdot \frac{V_i}{V_s} = A_{v_L} \frac{Z_i}{Z_i + R_s}$$

$$A_{v_S} = \frac{Z_i}{Z_i + R_s} A_{v_L}$$

R_L ve R_S Dirençlerinin Etkisi (4)

• Örnek 10: $R_L = 4.7 \text{ k}\Omega \text{ ve } R_S = 0.3 \text{ k}\Omega \text{ ile Örnek}$ 1'deki sabit polarlamalı konfigürasyon için verilen parametre değerlerini kullanarak, aşağıdakileri bulun ve yüksüz değerlerle karşılaştırın: : (a) A_{vL} ; (b) A_{vS} ; (c) Z_i ; (d) Z_o .

Çözüm:

a.
$$A_{v_L} = -\frac{R_C \| R_L}{r_e} = -\frac{3 \text{ k}\Omega \| 4.7 \text{ k}\Omega}{10.71 \Omega} = -\frac{1.831 \text{ k}\Omega}{10.71 \Omega} = -170.98$$

Bu değer, -280.11'lik yüksüz kazançtan önemli ölçüde daha azdır.

b.
$$A_{\nu_s} = \frac{Z_i}{Z_i + R_s} A_{\nu_L}$$
 Örnek 1'den Z_i = 1.07 kΩ değerini kullanırsak,

$$A_{\nu_s} = \frac{1.07 \,\mathrm{k}\Omega}{1.07 \,\mathrm{k}\Omega + 0.3 \,\mathrm{k}\Omega} (-170.98) = -133.54$$

Bu değer yine A_{vNL} veya A_{vL} 'den önemli ölçüde daha düşüktür.

- c. $Z_i = 1.07 \,\mathrm{k}\Omega$ yüksüz durum için elde edildiği gibi.
- d. $Z_o = R_C = 3 \, \mathrm{k}\Omega$ yüksüz durum için elde edildiği gibi. Bu örnek $A_{vNL} > A_{vL} > A_{vS}$ olduğunu açıkça göstermektedir.

R_L ve R_S Dirençlerinin Etkisi (5) Voltaj Bölücü Polarlama Konfigürasyonu

$$A_{v_L} = \frac{V_o}{V_i} = -\frac{R_C \| R_L}{r_e}$$

$$Z_i = R_1 \| R_2 \| \beta r_e$$

$$Z_o = R_C \| r_o$$

R_L ve R_S Dirençlerinin Etkisi (6) Emitör-Sürücü Konfigürasyonu

$$A_{v_L} = \frac{V_o}{V_i} = \frac{R_E \| R_L}{R_E \| R_L + r_e}$$

$$Z_i = R_B \| Z_b$$

$$Z_b \cong \beta(R_E || R_L)$$

$$Z_o \cong r_e$$

Akım Kazancının Belirlenmesi

 Her transistör konfigürasyonu için, akım kazancı doğrudan voltaj kazancı, tanımlanan yük ve giriş empedansından belirlenebilir.

$$A_i = rac{I_o}{I_i}$$
 $I_i = rac{V_i}{Z_i}$ $I_o = -rac{V_o}{R_L}$

$$A_{i_L} = \frac{I_o}{I_i} = \frac{-\frac{V_o}{R_L}}{\frac{V_i}{Z_i}} = -\frac{V_o}{V_i} \cdot \frac{Z_i}{R_L}$$

$$A_{i_L} = -A_{\nu_L} \frac{Z_i}{R_L}$$

Özet Tablolar (1)

TABLE 1 Unloaded BJT Transistor Amplifiers

Özet Tablolar (2)

TABLE 1 Unloaded BJT Transistor Amplifiers

Özet Tablolar (3)

TABLE 1Unloaded BJT Transistor Amplifiers

Configuration	Z_i	Z_o	A_{v}	A_i
Common-base:	Low (20 Ω)	Medium (2 k Ω)	High (200)	Low (-1)
$ \begin{array}{c c} I_i \\ V_i & Z_i \\ \hline \end{array} $ $ \begin{array}{c c} R_E \\ \hline \end{array} $ $ \begin{array}{c c} V_{CC} \\ \hline \end{array} $	$= \boxed{R_E \ r_e}$ $\cong \boxed{r_e}$ $(R_E \gg r_e)$	$=$ R_C	$\cong \boxed{rac{R_C}{r_e}}$	≅ -1
Collector	Medium (1 kΩ)	Medium (2 kΩ)	High (-200)	High (50)
feedback: $ \begin{array}{c c} I_o & & & \\ \hline R_F & & & \\ \hline Z_o & V_o \end{array} $	$= \boxed{\frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_F}}}$ $(r_o \ge 10R_C)$	$\cong \boxed{R_C \ R_F}$ $(r_o \ge 10R_C)$	$\cong \boxed{-\frac{R_C}{r_e}}$ $(r_o \ge 10R_C)$ $(R_F \gg R_C)$	$= \boxed{\frac{\beta R_F}{R_F + \beta R_C}}$ $\cong \boxed{\frac{R_F}{R_C}}$

Özet Tablolar (4)

TABLE 2 BJT Transistor Amplifiers Including the Effect of R_s and R_L			
Configuration	$A_{v_L} = V_o/V_i$	Z_i	Z_o
$\begin{array}{c c} V_{CC} \\ R_s \\ V_i \\ V_s \\ - \\ \downarrow \\ Z_i \\ \end{array}$	$\frac{-(R_L \ R_C)}{r_e}$	$R_B \ eta r_e$	R_C
	Including r_o : $-\frac{(R_L R_C r_o)}{r_e}$	$R_B \ oldsymbol{eta} r_e$	$R_C \ r_o$
V_{CC} R_1 R_2 R_2 R_1 R_2 R_2 R_2 R_2 R_2 R_2 R_3 R_4 R_5 R_5 R_6 R_7 R_8	$\frac{-(R_L \ R_C)}{r_e}$	$R_1 \ R_2 \ eta r_e$	R_C
	Including r_o : $\frac{-(R_L \ R_C\ r_o)}{r_e}$	$R_1 \ R_2\ eta r_e$	$R_C \ r_o$

Özet Tablolar (5)

Configuration	$A_{v_L} = V_o/V_i$	Z_i	Z_o
$ \begin{array}{c c} V_{CC} \\ R_1 \\ R_2 \\ R_E \\ R_L \end{array} $	$\cong 1$ Including r_o : $\cong 1$	$R'_E = R_L \ R_E$ $R_1 \ R_2 \ \beta(r_e + R'_E)$ $R_1 \ R_2 \ \beta(r_e + R'_E)$	$R_s' = R_s R_1 R_2$ $R_E \left(\frac{R_s'}{\beta} + r_e\right)$ $R_E \left(\frac{R_s'}{\beta} + r_e\right)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\cong \frac{-(R_L \ R_C)}{r_e}$ Including r_o : $\cong \frac{-(R_L \ R_C \ r_o)}{r_e}$	$R_E \ r_e$ $R_E \ r_e$	R_C

Özet Tablolar (6)

TABLE 2BJT Transistor Amplifiers Including the Effect of R_s and R_L			
Configuration	$A_{v_L} = V_o/V_i$	Z_i	Z_o
V_{CC} R_s V_i Z_i R_2 R_E R_L	$\frac{-(R_L \ R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_e + R_E)$	R_C
	Including r_o : $\frac{-(R_L \ R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_e + R_e)$	$\cong R_C$
V_{CC} R_B R_C V_i V_i V_i V_i	$\frac{-(R_L \ R_C)}{R_{E_1}}$	$R_B \ eta(r_e + R_{E_1})$	R_C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Including r_o : $\frac{-(R_L R_C)}{R_{E_t}}$	$R_B \ \beta(r_e + R_E)$	$\cong R_C$

Özet Tablolar (7)

 TABLE 2

 BJT Transistor Amplifiers Including the Effect of R_s and R_L

DIT Transision Ampagiers meaturing the Lipect of K _s and K _L			
Configuration	$A_{v_L} = V_o/V_i$	Z_i	Z_o
$\begin{array}{c c} V_{CC} \\ R_F \\ R_C \\ R_L \\ \hline Z_i \\ \end{array}$	$\frac{-(R_L \ R_C)}{r_e}$	$eta r_e \ rac{R_F}{ A_v }$	R_C
	Including r_o : $\frac{-(R_L \ R_C\ r_o)}{r_e}$	$eta r_e \ rac{R_F}{ A_ u }$	$R_C \ R_F\ r_o$
V_{CC} R_F R_C R_C R_C	$\frac{-(R_L \ R_C)}{R_E}$	$eta R_E \ rac{R_F}{ A_ u }$	$\cong R_C R_F$
$\begin{array}{c c} R_s & V_i \\ V_s & & \\ \end{array}$	Including r_o : $\cong \frac{-(R_L R_C)}{R_E}$	$\cong \beta R_E \ \frac{R_F}{ A_v }$	$\cong R_C R_F$

Hibrit Eşdeğer Modeli

- Transistörün modellenmesi için hibrit parametreler geliştirilmiş ve kullanılmıştır. Bu parametreler, bir transistörün teknik özellikler sayfasında bulunabilir:
 - h_i = giriş direnci
 - h_r = ters transfer voltaj orani $(V/V_0) \cong 0$
 - h_f = ileri transfer akım oranı (I_o/I_i)
 - $h_o = \varsigma_i k_i \varsigma_i iletkenli \check{\varsigma}_i$

Basitleştirilmiş Genel h-Parametre Modeli

- h_i = giriş direnci
- h_f = ileri transfer akım oranı (I_o/I_i)

r_e Modelinin h-Parametre Modeli ile Karşılaştırması

Ortak-Emitör

$$h_{ie} = eta r_e$$

 $h_{fe} = eta_{ac}$

Ortak-Baz

$$h_{ib} = r_{e}$$
 $h_{fb} = -\alpha \cong -1$

Arıza Tespit Yaklaşımları

- DC polarlamasını kontrol edin:
 - Doğru değilse, güç kaynağını, dirençleri, transistörü kontrol edin. Ayrıca yükselteç aşamaları arasındaki kuplaj kapasitörünü de kontrol edin.
- AC voltajlarını kontrol edin:
 - Doğru değilse transistörü, kapasitörleri ve bir sonraki aşamanın yükleme etkisini kontrol edin.