Quiz-5 answers and solutions

Coursera. Stochastic Processes

June 7, 2019

5 week quiz

1. Let λ be a non-zero constant. Does a stochastic process with the covariance function $K(t,s) = \sin(\lambda(t-s))$ exist?

No, because the function K is not positively semi-definite.

2. Let Y_n be a stochastic process which is defined as follows: $Y_{n+1} = \alpha Y_n + X_n$, $n = 0, 1, \dots$ Assume $Y_0 = 0$, $|\alpha| < 1$ and X_n is a sequence of i.i.d. standard normal random variables for $n = 0, 1, 2, \dots$ Determine whether Y_n is stationary and find its mean and variance:

Answer: Y_n is non-stationary, $\mathbb{E}Y_n = 0$, $VarY_n = \frac{1 - \alpha^{2n}}{1 - \alpha^2}$

Solution: The key for solution lies in the finding the covariance function:

$$K(t,s) = Cov(Y_t; Y_s)$$

$$= Cov(\alpha^{t-1}X_0 + \dots + \alpha^0 X_{t-1}; \alpha^{s-1}X_0 + \dots + \alpha^0 X_{s-1})$$

$$= \alpha^{t-1}\alpha^{s-1} + \alpha^{t-2}\alpha^{s-2} + \dots + \alpha^{t-s+1}\alpha + \alpha^{t-s}\alpha$$

$$= \alpha^{t-s}(\alpha^{2s-2} + \alpha^{2s-4} + \dots + 1)$$

$$= \alpha^{t-s} \frac{1 - \alpha^{2s}}{1 - \alpha^2}.$$

3. Let W_t be a Brownian Motion and define $X_t = (1-t)W_{t/(1-t)}$ for $t \in (0,1)$. Choose all correct statements.

Solution:

Let's find the covariance function:

$$\begin{split} K(t,s) &= Cov(X_t;X_s) \\ &= (1-t)(1-s)Cov(W_{t/(1-t)};W_{s/(1-s)}) \\ &= (1-t)(1-s)Cov(W_{t/(1-t)}-W_{s/(1-s)}+W_{s/(1-s)};W_{s/(1-s)}-W_0) \\ &= (1-t)(1-s)Var(W_{s/(1-s)}) \\ &= s(1-t) \\ &\neq \gamma(t-s). \end{split}$$

Hence, X_t is not weakly (and strictly) stationary.

4. Let W_t be a Brownian Motion and h > 0 be a fixed number. Find a covariance function of the process $X_t = W_{t+h} - W_t$.

Answer:
$$K(t,s) = \begin{cases} h - |t-s|, & if |t-s| \leq h \\ 0, & if |t-s| > h \end{cases}$$

Solution:
$$K(t,s) = Cov(W_{t+h} - W_t; W_{s+h} - W_s) =$$

$$\begin{aligned} & \text{Solution: } K(t,s) = Cov(W_{t+h} - W_t; W_{s+h} - W_s) = \\ & \begin{cases} 0, & \text{if} \quad t > s + h \\ Cov(W_{t+h} - W_{s+h} + W_{s+h} - W_t; W_{s+h} - W_s), & \text{if} \quad t \leq s + h \end{cases} \\ & \begin{cases} 0, & \text{if} \quad t > s + h \\ Cov(W_{s+h} - W_t; W_{s+h} - W_t + W_t - W_s), & \text{if} \quad t \leq s + h \end{cases} \\ & \begin{cases} 0, & \text{if} \quad t > s + h \\ Var(W_{s+h} - W_t), & \text{if} \quad t \leq s + h \end{cases} \\ & \begin{cases} 0, & \text{if} \quad t > s + h \\ s + h - t, & \text{if} \quad t \leq s + h \end{cases} \end{aligned}$$

$$\begin{cases} 0, & if \quad t > s + h \\ Cov(W_{s+h} - W_t; W_{s+h} - W_t + W_t - W_s), & if \quad t \le s + h \end{cases}$$

$$\begin{cases} 0, & if \quad t > s + h \\ V & (W, w, W) \end{cases}$$

$$\begin{cases} 0, & if \quad t > s + h \\ s + h - t, & if \quad t < s + h \end{cases}$$

5. Let X_t is a process with independent and stationary increments and h is a positive constant. Moreover, $\mathbb{E}X_t = 0$ and $\mathbb{E}X_t^2 < \infty$. Is $Y_t = X_{t+h} - X_t$ a wide-sense stationary process?

Answer: Yes

Hint: If increments of the process X_t are stationary, then X_t is also stationary.

6. Let X_t be a wide-sense stationary process with autocovariance function γ , such that $\gamma(0) = 2$, $\gamma(1) = \gamma(-1) = 1$ and $\gamma(n) = 0$ for all other n. Find the spectral density $g_X(u)$ of this process.

Answer: $g_X(u) = \frac{1 + cos(u)}{\pi}$

Solution: Let the covariance function of some stochastic process X_t be

$$\gamma_X(u) = \begin{cases} 2, & u = 0 \\ 1, & u = \pm 1 \\ 0, & else \end{cases}$$

$$g_X(u) = \frac{1}{2\pi}(2 + e^{-iu} + e^{iu}) = \frac{1}{2\pi}(2 + 2\cos(u)).$$

7. Let the autocovariance function of some stochastic process X_t be $\gamma_X(u) =$

$$\int 3, \quad u = 0$$

 $\begin{cases} 1, & u = \pm 2 \end{cases}$. Find the spectral density of $Y_t = 3X_t + 2X_{t-1} + X_{t-2}$.

$$g_X(u) = \frac{1}{2\pi}(3 + e^{-2iu} + e^{2iu}) = \frac{1}{2\pi}(3 + 2\cos(2u)).$$

$$g_Y(u) = g_X(u)|\mathcal{F}[\rho](u)|^2$$

where
$$\rho(h) = \begin{cases} 3, & h = 0 \\ 2, & h = 1 \\ 1, & h = 2 \\ 0, & else \end{cases}$$
.

Therefore, $\mathcal{F}[\rho](u) = e^{2iu} + 2e^{iu} + 3$ (some complex number). $|\mathcal{F}[\rho](u)|^2 = \mathcal{F} \times \bar{\mathcal{F}} = (e^{2iu} + 2e^{iu} + 3) \times (e^{-2iu} + 2e^{-iu} + 3) = 9 + 4 + 1 + 8(e^{iu} + e^{-iu}) + 3(e^{2iu} + e^{-2iu}) = 14 + 3 \cdot 2cos(2u) + 8 \cdot 2cos(u).$ $g_Y(u) = \frac{1}{2\pi}(3 + 2cos(2u))(14 + 3 \cdot 2cos(2u) + 8 \cdot 2cos(u))$