CS 480 – Introduction to Artificial Intelligence

TOPIC: MAKING SIMPLE DECISIONS

CHAPTER: 16

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- Goal-based agent of Chapter 3
 - Fully observable & deterministic
- Now Chapter 16
 - The world might be partially observable
 - The actions might be non-deterministic

We discuss "how an agent should make decisions so that it gets what it wants— on average, at least."

UTILITY-BASED AGENT

UTILITY

- - The probability of ending up in state s' after taking action a, given that we have so far observed e
- The agent's preferences are captured by a utility function U(s)
- Expected utility of an action a given evidence e, $EU(a \mid e)$, is the average utility of the possible outcomes weighted by their probabilities

$$EU(a \mid \boldsymbol{e}) = \sum_{s'} P(RESULT(a) = s' \mid a, \boldsymbol{e}) \times U(s')$$

MAXIMUM EXPECTED UTILITY PRINCIPLE (MEU)

Choose action that maximizes the expected utility

$$action = \arg \max_{a} EU(a \mid e)$$

ONE ACTION EXAMPLE

Two Actions Example

Utility Theory – Rational Preferences

- Notation
 - A > B: the agent prefers A over B
 - A ~ B: the agent is indifferent between A and B
 - $A \ge B$: the agent prefers A over B or is indifferent between them
- Lottery: *n* possible outcomes with probabilities
 - $[p_1, S_1; p_2, S_2; \dots p_n, S_n]$
 - Each S_i can be an atomic state or another lottery

AXIOMS OF UTILITY THEORY

1. Orderability

• A>B, B>A, or A ~ B

2. Transitivity

• A > B and $B > C \Rightarrow A > C$

3. Continuity

• $A > B > C \Rightarrow \exists p \ [p, A; (1-p), C] \sim B$

AXIOMS OF UTILITY THEORY

4. Substitutability

- $A \sim B \Rightarrow [p, A; (1-p), C] \sim [p, B; (1-p), C]$
- $A > B \Rightarrow [p, A; (1-p), C] > [p, B; (1-p), C]$

5. Monotonicity

• $A > B \Rightarrow (p > q \Leftrightarrow [p, A; (1-p), B] > [q, A; (1-q), B])$

6. Decomposibility

• $[p, A; (1-p), [q, B; (1-q), C]] \sim [p, A; (1-p)q, B; (1-p)(1-q), C]$

Preferences lead to utility

Existence of utility

- If an agent's preferences obey the axioms of utility, then there exists a function such that
 - $U(A) > U(B) \Leftrightarrow A > B$, and
 - $U(A) = U(B) \Leftrightarrow A \sim B$.

Expected utility of a lottery

• $U([p_1, S_1; p_2, S_2; \dots p_n, S_n]) = p_1 U(S_1) + p_2 U(S_2) + \dots + p_n U(S_n)$

RATIONALITY

- If an agent's preferences do not obey the axioms of utility theory, then that agent can be made to behave irrationally
- For e.g., if an agent's preferences do not obey transitivity for three or more products, then the agent can be tricked to pay money in a cyclic manner indefinitely (or till the agent runs out of money)

EXAMPLE: VIOLATING TRANSITIVITY

- \circ A > B
- \circ B > C
- Transitivity requires A>C,
 but instead assume the
 agent prefers C over A, i.e,
 C>A
- Then the agent can be stripped of all of its money through cyclic transactions

RATIONALITY

- An agent is rational if its preferences obey the axioms of utility theory, not matter how odd its preferences are
- An agent might have completely different preferences from another agent and both can still be rational, if and only if, their individual preferences obey the axioms of utility theory

UTILITY ≠ MONEY

- Most agents prefer more money to less money,
 - Thus it obeys the monotonicity constraint,
 - But this does not mean money behaves as a utility function
- For example, which lottery would you prefer
 - L₁: [1, \$1 Million]
 - L₂: [0.5, \$0; 0.5, \$2.5 Million]
- If money served as a utility function, then you'd prefer L_2 no matter what, but the answer *often* depends on how much money you currently have
 - The utility of money depends on what you <u>prefer</u>
 - If you are short on cash, a little more certain money can help
 - o If you are already billionaire, you might take the risk
 - o Or if you are swimming in debt, you might like to gamble

UTILITY ≠ MONEY

- \bullet Let's say you currently have \$k and let S_k represent the state of having \$k
- $\bullet EU(L_1) = U(S_{k+1M})$
- \bullet EU(L₂) = 0.5*U(S_k) + 0.5*U(S_{k+2.5M})
- The rational choice depends on your preferences for S_k , S_{k+1M} , and $S_{k+2.5M}$
 - i.e, it depends on the values of $U(S_k)$, $U(S_{k+1M})$, and $U(S_{k+2.5M})$
- U(S_i) does not have to be a linear function of i, and for people it often is not
 - However, U(.) has to obey the six axioms

DECISION NETWORKS

- Builds on Bayesian networks
- In addition to the chance nodes (ovals), decision networks have
 - Decision nodes square
 - Represents actions
 - Utility nodes diamond
 - Represents utilities for possible states and actions

 $U(drill, \sim oil) = -100$

U(drill, oil) = 1000

DECISION NETWORKS - APPLICATIONS

Used for

- What action to take
- What information to gather
- How much to pay for a piece of information

• For example:

- Medical diagnosis: which test to perform, which treatment to prescribe, ...
- Marketing: which project to invest in, how much to spend on marketing, how much to spend on user surveys, ...

EVALUATING DECISION NETWORKS

- Set evidence nodes **E** to their values **e**
- For each choice **a** of action **A**
 - Set **A**=**a**
 - Compute the posterior probability of the <u>parent chance</u> nodes of the <u>utility node</u>; i.e., compute P(Pa(Utility) | e,
 a)
 - Compute expected utility using the utility node and the probability distribution P(Pa(Utility) | e, a)
- Choose action **a** with the maximum expected utility

- Take Umbrella = take
 - Compute P(Umbrella, Rain | take)
 - Compute expected utility
- Take umbrella = ~take
 - Compute P(Umbrella, Rain | ~take)
 - Compute expected utility
- MEU principle: choose the action with the highest expected utility

take/don't take

U(~umb, ~rain) = 100 U(~umb, rain) = 0 U(umb, ~rain) = 20 U(umb, rain) = 70

Take Umbrella = take

Umb	Rain	P(Umb, Rain take)
~umb	~rain	$0 \times 0.7 = 0$
~umb	rain	$0 \times 0.3 = 0$
umb	~rain	$1 \times 0.7 = 0.7$
umb	rain	1 x 0.3 = 0.3

Expected Utility = $0 \times 100 + 0 \times 0 + 0.7 \times 20 + 0.3 \times 70 = 35$

Take Umbrella = ~take

Umb	Rain	P(Umb, Rain ~take)
~umb	~rain	$1 \times 0.7 = 0.7$
~umb	rain	$1 \times 0.3 = 0.3$
umb	~rain	$0 \times 0.7 = 0$
umb	rain	$0 \times 0.3 = 0$

Expected Utility = $0.7 \times 100 + 0.3 \times 0 + 0.0 \times 20 + 0.0 \times 70 = 70$

MEU Principle: Don't take it.

VALUE OF INFORMATION

- If I am allowed to observe the value of a chance node, how much valuable is that information to me?
- Value of information
 - Expected utility after the information is acquired
 Minus
 - Expected utility before the information is acquired
- There is one catch: we do not know the content of the information before we acquire it
 - Solution: take an expectation over the possible outcomes

How much is the Test worth?

DRILL

drill/don't drill

$$P(oil) = 0.01$$

- U(~drill, ~oil) = 100 U(~drill, oil) = -500 U(drill, ~oil) = -100 U(drill, oil) = 1000
- P(positive | oil) = 0.9 P(positive | \sim oil) = 0.05

- 1. Compute MEU before Test
- 2. Compute MEU
 - a. Assuming Test = positive
 - b. Assuming Test = negative
- 3. VOI(Test) =

$$P(Test = pos)*(MEU \mid Test = pos) +$$

$$P(Test = neg)*(MEU \mid Test = neg) -$$

MEU before Test

$$P(oil) = 0.01$$

$$U(\sim drill, \sim oil) = 100$$

 $U(\sim drill, oil) = -500$
 $U(drill, \sim oil) = 100$

$$U(drill, \sim oil) = -100$$

 $U(drill, oil) = 1000$

P(positive | oil) =
$$0.9$$

P(positive | \sim oil) = 0.05

MEU before Test

Drill = drill
$$\Rightarrow$$

EU = P(o | d) * U(d, o) + P(\sim o | d)*U(d, \sim o)
= 0.01 * 1000 + 0.99 * -100
= 10 - 99
= -89

Drill =
$$\sim$$
drill \Rightarrow
EU = P(o | \sim d) * U(\sim d, o) + P(\sim o | \sim d)*U(\sim d, \sim o)
= 0.01 * -500 + 0.99 * 100
= -5 + 99
= 94

$$MEU$$
 before $Test = 94$

drill/don't drill

U(drill, oil) = 1000

 $U(\sim drill, \sim oil) = 100$ $P(positive \mid oil) = 0.9$ $U(\sim drill, oil) = -500$ $P(positive \mid \sim oil) = 0.05$ $U(drill, \sim oil) = -100$

$MEU ext{ if } Test = pos$

Drill = ~drill \Rightarrow
EU = P(o | p, ~d) * U(~d, o) + P(~o | p, ~d)*U(~d, ~o)
= ? * -500 + ? * 100
= ?
= ?

 $MEU \mid pos = ?$

drill/don't drill

$$P(oil) = 0.01$$

$U(\sim drill, \sim oil) = 100$ $P(positive \mid oil) = 0.9$ $U(\sim drill, oil) = -500$ $P(positive \mid \sim oil) = 0.05$ $U(drill, \sim oil) = -100$

$$U(drill, \sim 011) = -100$$

 $U(drill, oil) = 1000$

$MEU ext{ if Test} = neg$

$$MEU \mid neg = ?$$

VOI(Test)

drill/don't drill

$$P(oil) = 0.01$$

 $U(\sim drill, \sim oil) = 100$ $U(\sim drill, oil) = -500$ $U(drill, \sim oil) = 100$

 $U(drill, \sim oil) = -100$ U(drill, oil) = 1000 P(positive | oil) = 0.9

P(positive $\mid \sim \text{oil}) = 0.05$