

Machine Learning Certification Training

Data Wrangling and Manipulation

Learning Objectives

Demonstrate different data wrangling techniques and their significance

Perform data manipulation in python using coercion, merging, concatenation, and joins

Concepts Covered

- Oata acquisition
- Data exploration techniques
- Oata wrangling techniques
- Oata manipulation techniques
- Typecasting

Data Preprocessing Topic 1: Data Exploration

Loading .csv File in Python

Before starting with a dataset, the first step is to load the dataset. Below is the code for the same:

Path to file simplilearn

Loading Data to .csv File

Below is the code for loading the data within an existing csv file:

Path to file

Loading .xlsx File in Python

Below is the code for loading an xlsx file within python:

Loading Data to .xlsx File

Below is the code for loading program data into an existing xlsx file:

df.to_excel("/home/simpy/Datasets/BostonHousing.xlsx")

Demo

Data Exploration

Duration: 5 mins.

Problem Statement: Extract data from the given SalaryGender CSV file and store the data from each column in a separate NumPy array.

Objective: Import the dataset (csv) in/from your Python notebook to local system.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Data Exploration Techniques

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

The shape attribute returns a two-item tuple (number of rows and the number of columns) for the data frame. For a Series, it returns a one-item tuple.

df.shape

Out[12]: (506, 14)

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

You can use the type () in python to return the type of object.

Checking the type of data frame:

type(df)

Out[13]: pandas.core.frame.DataFrame

Checking the type of a column (chas) within a data frame:

df['chas'].dtype

Out[21]: dtype('int64')

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

You can use the : operator with the start index on left and end index on right of it to output the corresponding slice.

<u>Slicing a list:</u> list = [1, 2, 3, 4, 5]

list[1:3]

Out[4]: [2, 3]

Slicing a Data frame (df) using iloc indexer:

df.iloc[:,1:3]

	zn	indus
0	18.0	2.31
1	0.0	7.07
2	0.0	7.07
3	0.0	2.18
4	0.0	2.18
5	0.0	2.18

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Using unique () on the column of interest will return a numpy array with unique values of the column.

Extracting all unique values out of "crim" column:


```
df['crim'].unique()
```

```
Out[23]: array([6.32000e-03, 2.73100e-02, 2.72900e-02, 3.23700e-02, 6.90500e-02, 2.98500e-02, 8.82900e-02, 1.44550e-01, 2.11240e-01, 1.70040e-01, 2.24890e-01, 1.17470e-01, 9.37800e-02, 6.29760e-01, 6.37960e-01, 6.27390e-01, 1.05393e+00, 7.84200e-01, 8.02710e-01, 7.25800e-01, 1.25179e+00, 8.52040e-01, 1.23247e+00, 9.88430e-01, 7.50260e-01, 8.40540e-01, 6.71910e-01, 9.55770e-01, 7.72990e-01, 1.00245e+00, 1.13081e+00, 1.35472e+00, 1.38799e+00, 1.15172e+00, 1.61282e+00,
```

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Using value () on the column of interest will return a numpy array with all the values of the column.

Extracting values out of "crim" column:


```
df['crim'].values()
```

```
Out[34]: array([6.32000e-03, 2.73100e-02, 2.72900e-02, 3.23700e-02, 6.90500e-02, 2.98500e-02, 8.82900e-02, 1.44550e-01, 2.11240e-01, 1.70040e-01, 2.24890e-01, 1.17470e-01, 9.37800e-02, 6.29760e-01, 6.37960e-01, 6.27390e-01, 1.05393e+00, 7.84200e-01, 8.02710e-01, 7.25800e-01, 1.25179e+00, 8.52040e-01, 1.23247e+00, 9.88430e-01, 7.50260e-01, 8.40540e-01, 6.71910e-01, 9.55770e-01, 7.72990e-01, 1.00245e+00, 1.13081e+00, 1.35472e+00, 1.38799e+00, 1.15172e+00, 1.61282e+00, 6.41700e-02, 9.74400e-02, 8.01400e-02, 1.75050e-01, 2.76300e-02,
```

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Using mean() on the data frame will return mean of the data frame across all the columns.

df.mean()

```
Out[35]: crim
                       3.613524
                      11.363636
         zn
         indus
                      11.136779
         chas
                       0.069170
                       0.554695
          nox
         rm
                       6.284634
                      68.574901
         age
         dis
                       3.795043
         rad
                       9.549407
                     408.237154
         tax
                      18.455534
         ptratio
                     356.674032
         lstat
                      12.653063
         medv
                      22.532806
         dtype: float64
```

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Using median() on the data frame will return median values of the data frame across all the columns.

df.median()

```
Out[36]: crim
                       0.25651
                       0.00000
         indus
                       9.69000
         chas
                       0.00000
                       0.53800
         nox
                       6.20850
         rm
                      77.50000
         age
         dis
                       3.20745
         rad
                       5.00000
                     330.00000
         tax
                      19.05000
         ptratio
                     391.44000
         lstat
                      11.36000
         medv
                      21.20000
         dtype: float64
```

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Using mode() on the data frame will return mode values of the data frame across all the columns, rows with axis=0 and axis = 1, respectively.

df.mode(axis=0)

]:															
		crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	med
0)	0.01501	0.0	18.1	0.0	0.538	5.713	100.0	3.4952	24.0	666.0	20.2	396.9	6.36	50.
1		14.33370	NaN	NaN	NaN	NaN	6.127	NaN	NaN	NaN	NaN	NaN	NaN	7.79	Nal
2	2	NaN	NaN	NaN	NaN	NaN	6.167	NaN	NaN	NaN	NaN	NaN	NaN	8.05	Na
3	}	NaN	NaN	NaN	NaN	NaN	6.229	NaN	NaN	NaN	NaN	NaN	NaN	14.10	Na
4	ļ.	NaN	NaN	NaN	NaN	NaN	6.405	NaN	NaN	NaN	NaN	NaN	NaN	18.13	Nal
5	5	NaN	NaN	NaN	NaN	NaN	6.417	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na

Plotting a Heatmap with Seaborn

Below is the code for plotting a heatmap within Python:


```
import matplotlib.pyplot as plt
import seaborn as sns
correlations = df.corr()
sns.heatmap(data = correlations, square = True, cmap = "bwr")

plt.yticks(rotation=0)
plt.xticks(rotation=90)
```

Rectangular dataset (2D dataset that can be coerced into an ndarray)

If True, set the Axes aspect to "equal" so each cell will be square-shaped

Matplotlib colormap name or object, or list of colors

Plotting a Heatmap with Seaborn (Contd.)

Below is the heatmap obtained, where, approaching red colour means maximum correlation and approaching blue means minimal correlation.

Out[33]: (array([0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5]), <a list of 14 Text xticklabel objects>)

Maximum correlation

Minimum correlation

Demo

Data Exploration

Duration: 15 mins.

Problem Statement: Suppose you are a public school administrator. Some schools in your state of Tennessee are performing below average academically. Your superintendent under pressure from frustrated parents and voters approached you with the task of understanding why these schools are under-performing. To improve school performance, you need to learn more about these schools and their students, just as a business needs to understand its own strengths and weaknesses and its customers. The data includes various demographic, school faculty, and income variables.

Objective: Perform exploratory data analysis which includes: determining the type of the data, correlation analysis over the same. You need to convert the data into useful information:

- Read the data in pandas data frame
- Describe the data to find more details
- Find the correlation between 'reduced_lunch' and 'school_rating'

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

simplilearn

Practice

Data Exploration

Duration: 15 mins.

Problem Statement: Mtcars, an automobile company in Chambersburg, United States has recorded the production of its cars within a dataset. With respect to some of the feedback given by their customers they are coming up with a new model. As a result of it they have to explore the current dataset to derive further insights out if it.

Objective: Import the dataset, explore for dimensionality, type and average value of the horsepower across all the cars. Also, identify few of mostly correlated features which would help in modification.

Note: This practice is not graded. It is only intended for you to apply the knowledge you have gained to solve real-world problems.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login

Data Import

The first step is to import the data as a part of exploration.

df1 = pandas.read_csv("mtcars.csv")

Out[35]:

5 :												
•	model	mpg	cyl	disp	hp	drat	wt	qsec	٧s	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

Data Exploration

The shape property is usually used to get the current shape of an array/df.

Dimensionality Check

df1.shape

Code

Type of Dataset

Out[36]: (32, 12)

Identifying mean value

Data Exploration

type(), returns type of the given object.

Dimensionality Check

Type of Dataset

Identifying mean value

type (df1)

Out[37]: pandas.core.frame.DataFrame

Data Exploration

mean() function can be used to calculate mean/average of a given list of numbers.

Dimensionality Check

Type of Dataset

Identifying mean value

Code

df1['hp'].mean()

Out[44]: 146.6875

Identifying Correlation Using a Heatmap

Heatmap function in seaborn is used to plot the correlation matrix.


```
import matplotlib.pyplot as plt
import seaborn as sns
correlations = df1.corr()
sns.heatmap(data = correlations, square = True, cmap = "viridis")

plt.yticks(rotation=0)
plt.xticks(rotation=90)
```

Identifying Correlation Using a Heatmap

Graphical representation of data where the individual values contained in a matrix are represented in colors.

Out[45]: (array([0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5]), <a list of 11 Text xticklabel objects>)

From the adjacent map, you can clearly see that cylinder (cyl) and displacement (disp) are the most correlated features.

Data Preprocessing Topic 2: Data Wrangling Simplifearn. All rights reserved.

Data Wrangling

The process of manually converting or mapping data from one raw format into another format is called data wrangling. This includes munging and data visualization.

simpl_ilearn

Need of Data Wrangling

Following are the problems that can be avoided with wrangled data:

Missing Values in a Dataset

Consider a random dataset given below, illustrating missing values.

							Missingval	ues		
PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	ricket	Fare	Cabin	Embarked
1	0	3	male	22	1	0	A/5 21171	7.15		s
2	1	1	female	38	1	9	PC 17599	71.2.33	C85	С
3	1	3	female	26	0	0	STON/02. 3101282	7.925		s
4	1	1	female	35	1	0	113803	53.1	C123	s
5	0	3	male	35	0	0	373450	8.05	3	s
6	0	3	male		0	0	330877	8.4583		Q

Missing Value Detection

Consider a dataset below, imported as df1 within Python, having some missing values.

	Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
0	5	57.14	34.09	64.38	51.48	52.50
1	8	95.05	105.49	67.50	99.07	68.33
2	8	83.70	83.17	30.00	63.15	48.89
3	7	81.22	96.06	49.38	105.93	80.56
4	8	91.32	93.64	95.00	107.41	73.89
5	7	95.00	92.58	93.12	97.78	68.06
6	8	95.05	102.99	56.25	99.07	50.00
7	7	72.85	86.85	60.00	NaN	56.11
8	8	84.26	93.10	47.50	18.52	50.83

Detecting missing values df1.isna().any()

Out[16]: Prefix False
Assignment False
Tutorial False
Midterm False
TakeHome True
Final False
dtype: bool

Missing Value Treatment

Mean Imputation: Replace the missing value with variable's mean

from sklearn.preprocessing import Imputer
mean_imputer =
Imputer(missing_values=np.nan,strategy='mean',axis=1)
mean_imputer = mean_imputer.fit(df1)
imputed_df = mean_imputer.transform(df1.values)
df1 = pd.DataFrame(data=imputed_df,columns=cols)
df1

Out[75]:		Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
	0	5.0	57.14	34.09	64.38	51.480	52.50
_	1	8.0	95.05	105.49	67.50	99.070	68.33

Missing Value Treatment (Contd.)

Mean Imputation: Replace the missing value with variable's mean

Median Imputation: Replace the missing value with variable's median

from sklearn.preprocessing import Imputer
median_imputer=Imputer(missing_values=np.nan,strategy
='median',axis=1)
median_imputer = median_imputer.fit(df1)
imputed_df = median_imputer.transform(df1.values)
df1 = pd.DataFrame(data=imputed_df,columns=cols)
df1

Out[84]:		Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
	0	5.0	57.14	34.09	64.38	51.480	52.50
	1	8.0	95.05	105.49	67.50	99.070	68.33

Note: Mean imputation/Median imputation is again model dependent and is valid only on numerical data.

Outlier Values in a Dataset

An outlier is a value that lies outside the usual observation of values.

Note: Outliers skew the data when you are trying to do any type of average.

Dealing with an Outlier

Outlier Detection

Outlier Treatment

Detect any outlier in the first column of df1

Code

import seaborn as sns
sns.boxplot(x=df1['Assignment'])

Out[88]: <matplotlib.axes._subplots.AxesSubplot at 0x232d5273da0>

Dealing with an Outlier

Outlier Detection

Outlier Treatment

Create a filter based on the boxplot obtained and apply the filter to the data frame

Code

filter=df1['Assignment'].values>60
df1_outlier_rem=df1[filter]
df1 outlier rem

Out[106]:

		Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
	1	8.0	95.05	105.49	67.50	99.070	68.33
	2	8.0	83.70	83.17	30.00	63.150	48.89
	3	7.0	81.22	96.06	49.38	105.930	80.56
	4	8.0	91.32	93.64	95.00	107.410	73.89
	5	7.0	95.00	92.58	93.12	97.780	68.06
	6	8.0	95.05	102.99	56.25	99.070	50.00
	7	7.0	72.85	86.85	60.00	56.562	56.11

Demo

Data Wrangling

Duration: 15 mins.

Problem Statement: Load the load_diabetes datasets internally from sklearn and check for any missing value or outlier data in the 'data' column. If any irregularities found treat them accordingly.

Objective: Perform missing value and outlier data treatment.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Practice

Data Wrangling

Duration: 5 mins.

Problem Statement: Mtcars, the automobile company in the United States have planned to rework on optimizing the horsepower of their cars, as most of the customers feedbacks were centred around horsepower. However, while developing a ML model with respect to horsepower, the efficiency of the model was compromised. Irregularity might be one of the causes.

Objective: Check for missing values and outliers within the horsepower column and remove them.

Note: This practice is not graded. It is only intended for you to apply the knowledge you have gained to solve real-world problems.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Check for Irregularities

Check for missing values

df1['hp'].isna().any()

Out[114]: False

Outlier Treatment

Data with hp>250 is the outlier data. Therefore, you can filter it accordingly.

```
filter = df1['hp']<250
df1_out_rem = df1[filter]
sns.boxplot(x=df2_out_rem['hp'])</pre>
```

Code

Out[120]: <matplotlib.axes._subplots.AxesSubplot at 0x232d52d6470>

Data Preprocessing Topic 3: Data Manipulation

Functionalities of Data Object in Python

A data object is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in rows and columns.

Head() returns the first n rows of the data structure


```
import pandas as pd
import numpy as np
df=pd.Series(np.arange(1,51))
print(df.head(6))
```

```
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64
```


values() returns the actual data in the series of the array


```
import pandas as pd
import numpy as np

df=pd.Series(np.arange(1,51))
print(df.values)
```

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50]

The Data Frame is grouped according to the 'Team' and 'ICC_Rank' columns

{('Australia', 1): Int64Index([3, 6, 7, 8, 10], dtype='int64'), ('India', 2): Int64Index([2], dtype='int64'), ('Insia', 2): Int64Index([9], dtype='int64'), ('Pakistan', 6): Int64Index([4], dtype='int64'), ('Sri Lanka', 4): Int64Index([5], dtype='int64'), ('West Indies', 7): Int64Index([0], dtype='int64')}

Concatenation combines two or more data structures.

The concatenated output:

	ICC_rank	Points	Team	World_champions_Year	ICC_rank	Points	$\overline{}$
0	2	874	India	2011	1.0	895.0	
1	3	787	Australia	2015	5.0	764.0	
2	7	753	West Indies	1979	9.0	656.0	
3	8	673	Pakistan	1992	NaN	NaN	
4	4	855	Sri Lanka	1996	NaN	NaN	
	Τe	eam					
0	South Africa						
1	New Zealand						
2	Zimbabwe						
3	N	NaN					
4	1	laN					

Merging is the Pandas operation that performs database joins on objects


```
import pandas
champion stats={'Team':['India','Australia','West
Indies', 'Pakistan', 'Sri Lanka'],
           'ICC rank': [2,3,7,8,4],
'World champions Year': [2011, 2015, 1979, 1992, 1996],
            'Points': [874, 787, 753, 673, 855]}
match stats={'Team':['India','Australia','West
Indies', 'Pakistan', 'Sri Lanka'],
              'World cup played': [11,10,11,9,8],
              'ODIs played': [733,988,712,679,662]}
df1=pandas.DataFrame(champion stats)
df2=pandas.DataFrame (match stats)
print(df1)
print(df2)
print(pandas.merge(df1,df2,on='Team'))
```


	ICC_rank	Points	Team	World_champions_Year	ODIs_played	λ
0	2	874	India	2011	733	
1	3	787	Australia	2015	988	
2	7	753	West Indies	1979	712	
3	8	673	Pakistan	1992	679	
4	4	855	Sri Lanka	1996	662	
	World_cup_played					
0		11				
1		10				
2		11				
3		9				
4		8				

The merged object contains all the columns of the data frames merged

Different Types of Joins

Joins are used to combine records from two or more tables in a database. Below are the four most commonly used joins:

Left Join

Right Join

Inner Join

Full Outer Join

Left Join

Left Join

Returns all rows from the **left** table, even if there are no matches in the right table


```
ICC_rank_x Points_x
                            Team World_champions_Year ICC_rank_y
                       Australia
                                                  2015
                                                              NaN
                753 West Indies
                                                 1979
                                                              NaN
                        Pakistan
                                                 1992
                                                              NaN
                      Sri Lanka
                                                 1996
                                                              NaN
Points_y
    NaN
```


Right Join

Right Join

Preserves the unmatched rows from the second (right) table, joining them with a NULL in the shape of the first (left) table


```
ICC_rank_x Points_x
                             Team World_champions_Year ICC_rank_y \
                NaN South Africa
                                                    NaN
                      New Zealand
                                                    NaN
       NaN
                NaN
       NaN
                         Zimbabwe
                                                    NaN
                NaN
Points y
     895
     764
     656
```


Inner Join

Inner Join

Selects all rows from both participating tables if there is a match between the columns

Code

```
Empty DataFrame
Columns: [ICC_rank_x, Points_x, Team, World_champions_Year, ICC_rank_y, Points_y]
Index: []
```


Full Outer Join

Returns all records when there is a match in either left (table1) or right (table2) table records

Full Outer Join

Typecasting

It converts the data type of an object to the required data type.

Int()

Returns an integer object from any number or string.

numeric object or converts any number to string

Returns string from any

string()

float()

Returns a floating-point number from a number or a string

Typecasting Using Int, float and string()

Demo

Data Manipulation

Duration: 10 mins.

Problem Statement: As a macroeconomic analyst at the Organization for Economic Cooperation and Development (OECD), your job is to collect relevant data for analysis. It looks like you have three countries in the north_america data frame and one country in the south_america data frame. As these are in two separate plots, it's hard to compare the average labor hours between North America and South America. If all the countries were into the same data frame, it would be much easier to do this comparison.

Objective: Demonstrate concatenation.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Practice

Data Manipulation

Duration: 10 mins.

Problem Statement: SFO Public Department - referred to as SFO has captured all the salary data of its employees from year 2011-2014. Now in 2018 the organization is facing some financial crisis. As a first step HR wants to rationalize employee cost to save payroll budget. You have to do data manipulation and answer the below questions:

- 1. How much total salary cost has increased from year 2011 to 2014?
- 2. Who was the top earning employee across all the years?

Objective: Perform data manipulation and visualization techniques

Note: This practice is not graded. It is only intended for you to apply the knowledge you have gained to solve real-world problems.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Key Takeaways

Now, you are able to:

- Demonstrate data import and exploration using Python
- Oemonstrate different data wrangling techniques and their significance
- Perform data manipulation in python using coercion, merging, concatenation, and joins

Which of the following plots can be used to detect an outlier?

- a. Boxplot
- b. Histogram
- c. Scatter plot
- d. All of the above

1

Which of the following plots can be used to detect an outlier?

- a. Boxplot
- b. Histogram
- c. Scatter plot
- d. All of the above

The correct answer is d. All of the above

All the above plots can be used to detect an outlier.

2

What is the output of the below Python code?

import numpy as np percentiles = [98, 76.37, 55.55, 69, 88]
first_subject = np.array(percentiles) print first_subject.dtype

- a. float32
- b. float
- c. int32
- d. float64

i m

What is the output of the below Python code?

import numpy as np
percentiles = [98, 76.37, 55.55, 69, 88]
first_subject = np.array(percentiles)
print first subject.dtype

- a. float32
- b. float
- **c.** int32
- d. float64

The correct answer is

d. float64

Float64's can represent numbers much more accurately than other floats and has more storage capacity.

Lesson-End Project

Duration: 20 mins.

Problem Statement: From the raw data below create a data frame:

'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Jacobson', ".", 'Milner', 'Cooze'],

'age': [42, 52, 36, 24, 73], 'preTestScore': [4, 24, 31, ".", "."], 'postTestScore': ["25,000", "94,000", 57, 62, 70]

Objective: Perform data processing on raw data:

- Save the data frame into a csv file as project.csv
- Read the project.csv and print the data frame
- Read the project.csv without column heading
- Read the project.csv and make the index columns as 'First Name' and 'Last Name'
- Print the data frame in a Boolean form as True or False. True for Null/ NaN values and false for non-null values
- Read the data frame by skipping first 3 rows and print the data frame

Access: Click the Labs tab in the left side panel of the LMS. Copy or note the username and password that are generated. Click the Launch Lab button. On the page that appears, enter the username and password in the respective fields and click Login.

simplilearn

Thank You