Chapter 5 Multivariate Probability Distributions

5.1 Expectations and Covariance

• Definition: Expectation under Bivariate Joint Distribution.

Let $g: \Omega_{XY} \to \mathbb{R}$ be a real-valued measurable function, where Ω_{XY} is the support of (X, Y). Then the expectation of g(X, Y) is defined as

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) dF_{XY}(x,y)$$

$$= \begin{cases} \sum_{(x,y) \in \Omega_{XY}} g(x,y) f_{XY}(x,y) & \text{for d.r.v.,} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dx dy, & \text{for c.r.v..} \end{cases}$$

We say that E[g(X,Y)] exists if $E[g(X,Y)] < \infty$.

• Remarks:

- When g(X,Y) = X, $E[g(X,Y)] = E(X) = \mu_X$ is the mean of X.
- When $g(X,Y) = X^k$, $E[g(X,Y)] = E(X^k)$ is the k-th moment of X.
- When $g(X,Y) = X^r Y^s$, $E[g(X,Y)] = E(X^r Y^s)$ is called the r-th and s-th product moment of X and Y.
- When $g(X,Y) = (X \mu_X)^2$, $E[g(X,Y)] = E(X \mu_X)^2 = \sigma_X^2$ is the variance of X.
- When $g(X,Y) = (X \mu_X)(Y \mu_Y)$, $\operatorname{Cov}(X,Y) \stackrel{\triangle}{=} E[g(X,Y)] = E[(X - \mu_X)(Y - \mu_Y)]$

is called the *covariance* of X and Y.

• **Definition:** Product Moments. The r-th and s-th order product moment of (X, Y) about the origin is define as

$$E(X^{r}Y^{s}) = \begin{cases} \sum_{x \in \Omega_{X}} \sum_{y \in \Omega_{Y}} x^{r}y^{s} f_{XY}(x, y) & \text{for d.r.v.,} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{r}y^{s} f_{XY}(x, y) \, dx dy, & \text{for c.r.v..} \end{cases}$$

Similarly, the rth and sth central product moment is defined as

$$E\{(X - EX)^r (Y - EY)^s\}$$

$$= \begin{cases} \sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} (x - \mu_X)^r (y - \mu_Y)^s f_{XY}(x, y) & \text{for d.r.v.,} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)^r (y - \mu_Y)^s f_{XY}(x, y) dx dy, & \text{for c.r.v..} \end{cases}$$

• **Definition: Covariance.** Suppose $E(X^2) < \infty$ and $E(Y^2) < \infty$. Then the covariance between two variables X and Y is defined as

$$cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) dF_{XY}(x,y).$$

• **Theorem.** Suppose (X,Y) have finite second moments. Then,

$$cov(X,Y) = E(XY) - \mu_X \mu_Y.$$

$$-\operatorname{Cov}(X,X) = \sigma_X^2.$$

$$-\operatorname{Cov}(X,Y) = E(XY) - \mu_X \mu_Y.$$

$$-E(X - \mu_X)^3 = \text{Cov}[X - \mu_X, (X - \mu_X)^2].$$

$$-E(X - \mu_X)^4 = \text{Cov}[(X - \mu_X)^2, (X - \mu_X)^2].$$

$$-\operatorname{Cov}(aX + b, Y) = a\operatorname{Cov}(X, Y).$$

• Covariance.

- The covariance is a measure of the degree of co-movement between X and Y.
- Suppose there is a high probability that large values of X tend to be observed with large values of Y, and small values of X with small values of Y, then Cov(X,Y) > 0.
- On the other hand, suppose there is a high probability that large values of X tend to be observed with small values of Y, and small values of X tend to be observed with large values of Y, then Cov(X,Y) < 0.
- When Cov(X, Y) = 0, we call X and Y are uncorrelated.

• **Definition:** The correlation coefficient between X and Y is defined as

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$$

- The correlation coefficient is the *standardized* covariance.
- $-|\rho_{XY}| \le 1$, because quadratic function $\sigma_X^2 z^2 2\text{Cov}(X, Y)z + \sigma_Y^2 \ge 0$ for all $z \in \mathbb{R}$. (**Theorem**)
- $-|\rho_{XY}|=1$ if and only if there is a perfect linear relationship between X and Y, i.e., X=aY+b. (**Theorem**)
- $-\rho_{XY}$ may not capture some nonlinear relationship in X and Y.

- Theorem: $|\rho_{XY}| \leq 1$.
- **Theorem:** Suppose Y = a + bX, $b \neq 0$, where $\sigma_X^2 = var(X)$ exists. Then $\rho_{XY} = 1$ if b > 0, and $\rho_{XY} = -1$ if b < 0.
- **Example:** Suppose $X \sim N(0, \sigma^2)$ and $Y = X^2$. Then

$$cov(X,Y) = E(XY) - \mu_X \mu_Y$$

$$= E(X^3) = \int_{-\infty}^{\infty} x^3 \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-x^2/(2\sigma^2)} dx$$

$$= 0.$$

• Linear Regression Model.

$$Y = a + bX + \varepsilon,$$

where ε is a r.v. with $E(\varepsilon) = 0$, $var(\varepsilon) = \sigma_{\varepsilon}^2$, $E(X\varepsilon) = 0$. It can be shown that

$$\rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{b}{\sqrt{b^2 + \sigma_\varepsilon^2 / \sigma_X^2}}.$$

• Best Linear Least Squares Prediction. Suppose X and Y are two random variables with finite second moments. Consider a linear regression function $\alpha + \beta X$ to predict Y. The Mean squared error criterion is defined as

$$MSE(\alpha, \beta) = E[Y - \alpha - \beta X]^2.$$

• Best Linear Least Squares Prediction (continued.) Then the optimal coefficients (α^*, β^*) that minimizes the mean squared error is

$$\beta^* = \frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)} = \rho_{XY} \sqrt{\frac{\operatorname{var}(Y)}{\operatorname{var}(X)}},$$

$$\alpha^* = \mu_Y - \beta^* \mu_X.$$

Define the prediction error as $\varepsilon = Y - (\alpha^* + \beta^* X)$. Then $E(X\varepsilon) = 0$.

• Example: Capital Asset Pricing Model. Let R_{pt} be the return on a portfolio during a certain time period t, r_{ft} is the risk-free interest rate, R_{mt} is the return on the market portfolio (i.e., return on S&P500 index) in the same time period. The capital asset pricing model is

$$R_{pt} - r_{ft} = \beta_p (R_{mt} - r_{ft}) + \varepsilon_{pt}.$$

• Remark.

- $-R_{pt}-r_{ft}$ is called the excess return on the portfolio in the time period;
- $-R_{mt}-r_{ft}$ is the excess return on the market portfolio in the same period;
- $-\varepsilon_{pt}$ represents the idiosyncratic risk peculiar to the portfolio.
- Example: Investment Beta. In the CAPM, usually it is assumed that $R_{mt} r_{ft}$ and ε_{pt} are independent. The *investment beta* is

$$\beta = \frac{\operatorname{Cov}(R_p - r_f, R_m - r_f)}{\operatorname{Var}(R_m - r_f)}.$$

- If $\beta = 1$, the portfolio is equally risky to the market portfolio.
- If $\beta > 1$, the portfolio is more risky than the market portfolio.
- If β < 1, the portfolio is less risky than the market portfolio.

• **Theorem:** Suppose Z = aX + bY + c, then

(1)
$$E(Z) = aE(X) + bE(Y) + c$$
.

(2)
$$\operatorname{Var}(Z) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y).$$

• **Theorem.** Suppose $Y = a_0 + \sum_{i=1}^n a_i X_i$, where a_i are constants. Then

(1)
$$E(Y) = a_0 + \sum_{i=1}^n a_i E(X_i)$$
.

(2)
$$\operatorname{var}(Y) = \sum_{i=1}^{n} a_i^2 \operatorname{var}(X_i) + 2 \sum_{i < j} a_i a_j \operatorname{cov}(X_i, X_j).$$

• **Theorem.** Suppose two random variables (X, Y) follow a bivariate normal distribution $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Then the correlation coefficient $\rho_{XY} = \rho$.

• **Theorem.** Suppose (X, Y) follows bivariate Normal distribution $N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2, \rho)$, *i.e.*,

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right)\left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\},$$

then the correlation coefficient between X and Y is

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sigma_1 \sigma_2} = \rho.$$

5.2 Joint Moment Generating Function

• Definition: Joint Moment Generating Function. The joint MGF of (X, Y) is defined as

$$M_{XY}(t_1, t_2) = E[\exp(t_1X + t_2Y)]. - \infty < t_1, t_2 < \infty,$$

provided the expectation exists for (t_1, t_2) in some neighborhood of (0, 0).

- The joint MGF may not exist for some joint distributions.
- When $M_{XY}(t_1, t_2)$ exists in a neighborhood of (0, 0), it can be used to uniquely characterize the joint distribution of (X, Y).
- $-M_X(t_1) = M_{XY}(t_1, 0), M_Y(t_2) = M_{XY}(0, t_2).$

5.2 Joint Moment Generating Function

• More generally, for *n*-dimensional random vector (X_1, X_2, \dots, X_n) , we can define the joint MGF

$$M(t_1, \dots, t_n) = E\left[exp\left(\sum_{i=1}^n t_i X_i\right)\right].$$

• **Theorem:** Suppose $M_{XY}(t_1, t_2)$ exists in a neighborhood of (0, 0). Then

$$E(X^{k}Y^{l}) = \frac{\partial^{k+l}}{\partial t_{1}^{k} \partial t_{2}^{l}} M_{XY}(0,0) = M_{XY}^{(k,l)}(0,0), \quad k, l \ge 0,$$

and

$$cov(X^k, Y^l) = M_{XY}^{(k,l)}(0,0) - M_X^{(k)}(0)M_Y^{(l)}(0).$$

In particular, $cov(X, Y) = M_{XY}^{(1,1)}(0,0) - M_X^{(1)}(0)M_Y^{(1)}(0)$.

5.3 Independence

Independence on Expectations

• **Theorem:** Suppose X and Y are independent, then

$$E[h(X)q(Y)] = E[h(X)]E[q(Y)].$$

Equivalently,

$$cov[h(X), q(Y)] = 0.$$

- Uncorrelated (orthogonal) random variables may not be independent.
- Suppose $X \sim N(0, \sigma^2)$, $Y = X^2$. Then Cov(X, Y) = 0, but X and Y are not independent.

5.3 Implications of Independence on Expectations

• Example: If (X,Y) are jointly normally distributed, that is,

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right)\left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\}.$$

Then Cov(X, Y) = 0 if and only if X and Y are independent.

• **Remark:** The joint distribution of two normal random variables may not be normal.

5.3 Independence

Independence and Moment Generating Functions.

• Corollary. If X and Y are independent, and their MGF's exist in a neighborhood of 0. Let Z = X + Y, then

$$M_Z(t) = M_X(t)M_Y(t)$$

exists in a neighborhood of 0.

• **Remark.** This property of MGF is useful in characterizing the distribution for the sum of independent random variables.

5.3 Independence and Moment Generating Functions

• Example: Suppose $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ and X, Y are independent. Then

$$X \pm Y \sim N(\mu_1 \pm \mu_2, \sigma_1^2 + \sigma_2^2).$$

- Proof.
 - The mgfs of X and Y are

$$M_X(t) = e^{\mu_1 t + \frac{\sigma_1^2}{2}t^2}$$

$$M_Y(t) = e^{\mu_2 t + \frac{\sigma_2^2}{2}t^2}$$

$$M_Y(t) = e^{\mu_2 t + \frac{\sigma_2}{2}t^2}$$

$$-M_{X+Y}(t) = M_X(t)M_Y(t) = e^{(\mu_1 + \mu_2)t + \frac{\sigma_1^2 + \sigma_2^2}{2}t^2}.$$

$$-X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

5.3 Independence and Moment Generating Functions

- **Example:** Suppose X_1, \dots, X_n are independent following Poisson distributions with parameters $\lambda_1, \dots, \lambda_n$, respectively. Find the distribution of $Y = \sum_{i=1}^n X_i$.
- Solution: Because $M_Y(t) = \prod_{i=1}^n M_{X_i}(t) = \prod_{i=1}^n e^{\lambda_i(e^t-1)}$, Y follows Poisson distributions with parameter $\lambda = \sum_{i=1}^n \lambda_i$.
- **Example:** Suppose X_1, \dots, X_n are independent random variables having exponential distributions with the same parameter θ . Find the distribution of $Y = \sum_{i=1}^{n} X_i$.
- Solution: $M_Y(t) = \prod_{i=1}^n M_{X_i}(t) = (1 \theta t)^{-n}$. This implies that $Y \sim \operatorname{Gamma}(n, \theta)$

5.3 Independence

Independence and Uncorrlelatedness

- Corollary: If X and Y are independent, then cov(X, Y) = 0.
- **Theorem.** Suppose (X, Y) are jointly normally distributed. Then cov(X, Y) = 0 if and only if X and Y are independent.
- **Theorem.** Suppose $X \sim \text{Bernoulli}(p_1)$ and $Y \sim \text{Bernoulli}(p_2)$. Then X and Y are independent if and only if cov(X,Y) = 0.

5.3 Independence and Uncorrelatedness

• **Problem:** Suppose for any measurable functions $h(\cdot)$ and $q(\cdot)$, we have

$$E[h(X)q(Y)] = E[h(X)]E[q(Y)].$$

Are X and Y independent?

• Solution: For any $a, b \in \mathbb{R}$, let $h(x) = I(x \in (-\infty, a]), g(y) = I(y \in (-\infty, b])$, where $I(\cdot)$ is the indicator function. Then

$$F_{XY}(a,b) = E[h(X)g(Y)] = E[h(X)]E[g(Y)] = F_X(a)F_Y(b).$$

X and Y are independent.

5.3 Independence and Uncorrelatedness

• **Theorem:** Suppose $M_{XY}(t_1, t_2)$ exists in a neighborhood of (0, 0). Then (X, Y) are independent if and only if

$$M_{XY}(t_1, t_2) = M_X(t_1)M_Y(t_2)$$

for all (t_1, t_2) in the neighborhood of (0, 0).

• **Theorem:** Suppose $M_{XY}(t_1, t_2)$ exists in a neighborhood of (0, 0). Then (X, Y) are independent if and only if

$$\sigma_{XY}(t_1, t_2) \stackrel{\triangle}{=} \operatorname{Cov}(e^{t_1 X}, e^{t_2 Y}) = 0$$

for all (t_1, t_2) in the neighborhood of (0, 0).

• Remark: $\sigma_{XY}(t_1, t_2)$ can be considered as a covariance generating function because $\sigma_{XY}^{(k,l)}(0,0) = \text{Cov}(X^k, Y^l)$.

5.3 Independence and Uncorrelatedness

• **Theorem.** Suppose $M_{XY}(t_1, t_2)$ exists for (t_1, t_2) in a neighborhood of (0, 0). Then

$$cov(X,Y) = \frac{\partial^2 cov(e^{t_1X}, e^{t_2Y})}{\partial t_1 t_2}|_{t=(0,0)}.$$

Moreover, for any positive integers r, s,

$$cov(X^r, Y^s) = \frac{\partial^{r+s}cov(e^{t_1X}, e^{t_2Y})}{\partial t_1^r t_2^s}|_{t=(0,0)}.$$

• **Theorem.** Suppose X and Y have bounded supports. Then $cov(X^r, Y^s) = 0$ for all r, s > 0 if and only if X and Y are independent.

• Definition: Conditional Expectation. The conditional expectation of g(X, Y) given X = x is defined as

$$E[g(X,Y) \mid X = x] = \begin{cases} \sum_{y} g(x,y) f_{Y|X}(y \mid x) & \text{for d.r.v.,} \\ \int_{-\infty}^{\infty} g(x,y) f_{Y|X}(y \mid x) dy & \text{for c.r.v..} \end{cases}$$

- The conditional expectation $E[g(X,Y) \mid X=x]$ can be considered as a function of x.
- $-E[g(X,Y) \mid X]$ is a random variable, which is a function of X.
- $-E[g(X,Y) + h(X,Y) \mid X] = E[g(X,Y) \mid X] + E[h(X,Y) \mid X].$
- $-E[g(X,Y)q(X) \mid X] = q(X)E[g(X,Y) \mid X].$
- If X and Y are independent, then $E[h(Y) \mid X = x] \equiv E[h(Y)]$.

• Theorem: Law of Iterated Expectations.

$$E[g(X,Y)] = E_X \{ E[g(X,Y) \mid X] \}$$

= $E_Y \{ E[g(X,Y) \mid Y] \}.$

- The inside "E" stands for the conditional expectation.
- The law of iterated expectations provides a two stage procedure to compute an unconditional expectation.

• **Definition: Conditional Mean.** The *conditional mean* of Y given X = x is

$$E[Y \mid X = x] = \begin{cases} \sum_{y} y f_{Y|X}(y \mid x) & \text{for d.r.v.,} \\ \int_{-\infty}^{\infty} y f_{Y|X}(y \mid x) dy & \text{for c.r.v..} \end{cases}$$

- $-E[Y \mid X=x]$ is the average value of Y conditional on X=x.
- $-E[Y \mid X=x]$ is a function of x.
- **Example:** Let X=Gender: X = 0 for female and X = 1 for male, and let Y be the wage. Then $E[Y \mid X = 0]$ is the average wage of the female, and $E[Y \mid X = 1]$ is the average wage of the male.

• Theorem: Mean Squared Error (MSE) Criterion.

$$E(Y \mid X) = \arg\min_{g(\cdot)} E[Y - g(X)]^2,$$

where the minimization is over all measurable and square-integrable functions of X.

• Proof. Because

$$E[Y - g(X)]^{2} = E[Y - E(Y \mid X)]^{2} + E[E(Y \mid X) - g(X)]^{2} + 2\{[Y - E(Y \mid X)][E(Y \mid X) - g(X)]\}$$

$$= E[Y - E(Y \mid X)]^{2} + E[E(Y \mid X) - g(X)]^{2}$$

$$\geq E[Y - E(Y \mid X)]^{2}.$$

• Remarks:

- The theorem shows that the best predictor of Y in terms of MSE is the conditional mean $E(Y \mid X)$.
- In many cases, one may try to solve the constrained minimization problem

$$\min_{g \in A} E[Y - g(X)]^2,$$

where

$$A = \{g(x) : g(x) = \alpha + \beta x\}.$$

This is called *linear least square* approximation. The optimal solution is $g^*(x) = \alpha^* + \beta^* x$, where

$$\beta^* = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)},$$

$$\alpha^* = \mu_Y - \beta^* \mu_X.$$

• Remarks:

- -X and Y are independent $\Rightarrow E(Y \mid X) = E(Y) \Rightarrow Cov(X,Y) = 0$.
- Not conversely.
- Theorem: Regression Identify. Suppose that $E(Y \mid X)$ exists. Then there is a random variable ε such that

$$Y = E(Y \mid X) + \varepsilon$$

and

$$E(\varepsilon \mid X) = 0.$$

Here $\varepsilon = Y - E(Y \mid X)$ is called the regression disturbance or regression error.

- Lemma: Suppose $Y = a + bX + \varepsilon$. Then $E(X\varepsilon) = 0$.
- **Remark:** There is an important difference between $E(\varepsilon|X) = 0$ and $E(X\varepsilon) = 0$. Although $E(\varepsilon|X) = 0$ implies $E(X\varepsilon) = 0$, the converse is not true.
- **Example.** Suppose $\varepsilon = (X^2 1) + u$, where X and u are independent N(0,1) r.v.'s. Then, $E(\varepsilon|X) = X^2 1 + E(u|X) = X^2 1$, where E(u|X) = E(u) = 0. On the other hand, $E(X\varepsilon) = E(X^3 X + Xu) = 0$.
- **Example.** Let the joint pdf of (X,Y) be $f_{XY}(x,y) = e^{-y}$ for $0 < x < y < \infty$. Find $E(Y \mid X = x)$.

• Example: Efficient Market Hypothesis(EMH). Let $Y_t = P_t - P_{t-1}$ be the asset return at time t, and I_{t-1} is the information available at time t-1. EMH assumes

$$E(Y_t \mid I_{t-1}) = E(Y_t).$$

• Example: Expected Shortfall and Financial Risk Management. The value of risk $V_t(\alpha)$ at level α is

$$P[X_t < -V_t(\alpha)|I_{t-1}] = \alpha,$$

where X_t is the return on the portfolio in time period t, and I_{t-1} is the information available at time t-1. The expected shortfall

$$E[X_t|X_t < -V_t(\alpha)],$$

at level α is the expected loss given a crisis has occurred.

• **Definition: Conditional Variance.** The conditional variance of Y given X is defined as

$$var(Y \mid X = x) = E\{[Y - E(Y \mid x)]^2 \mid x\}$$
$$= \int [y - E(Y \mid x)]^2 dF_{Y|X}(y \mid x).$$

- $-\operatorname{var}(Y \mid x) = E(Y^2 \mid x) E^2(Y \mid x).$
- If $\operatorname{var}(Y \mid X) = \sigma^2$ is a constant independent of X, then $\varepsilon = Y E(Y \mid X)$ is is called a *conditionally homoskedastic disturbance* (homoskedasticity).
- Otherwise, it is called a *conditionally heteroskedastic disturbance* (heteroskedasticity).

• Example: Let the joint pdf of (X,Y) be $f_{XY}(x,y) = e^{-y}$ for $0 < x < y < \infty$. Find $\text{var}(Y \mid X = x)$.

• Solution:

- The marginal pdf of X is $f_X(x) = \int_x^\infty e^{-y} dy = e^{-x}$ for x > 0.
- The conditional pdf is $f_{Y|X}(y \mid x) = e^{x-y}$ for $0 < x < y < \infty$.
- $-E(Y \mid X = x) = \int_{x}^{\infty} y e^{x-y} dy = 1 + x \text{ for } x > 0.$
- $-E(Y^2 \mid X = x) = \int_x^\infty y^2 e^{x-y} dy = 2 + 2x + x^2 \text{ for } x > 0.$
- $-\operatorname{var}(Y \mid X = x) = E(Y^2 \mid X = x) E^2(Y \mid X = x) = 1 \text{ for } x > 0.$
- Example: ARCH Model. Large volatility of an asset price today tends to be followed by another large volatility tomorrow (Volatility Clustering). Engle(1982) AutoRegressive Conditional Heteroskedasticity (ARCH) model. ARCH(1)

$$var(Y_t|I_{t-1}) = \alpha + \beta Y_{t-1}^2,$$

where $\alpha, \beta > 0$ and I_{t-1} contains information on all past returns.

- **Theorem.** $var(Y \mid X) = E(Y^2 \mid X) E^2(Y \mid X)$.
- **Example.** Suppose $Y = Z\sqrt{1 + X^2}$, where Z is a r.v. with mean 0 and variance 1, and is independent of X. Find (1) E(Y|X); (2) var(Y|X).
- Solution:

(1)
$$E(Y|X) = E(Z\sqrt{1+X^2}|X) = \sqrt{1+X^2}E(Z|X)$$

= $\sqrt{1+X^2}E(Z) = 0 = E(Y)$.

(2)
$$var(Y|X) = E(Y^2|X) - [E(Y|X)]^2 = E(Y^2|X)$$

= $(1 + X^2)E(Z^2|X) = (1 + X^2)E(Z^2) = 1 + X^2$.

• Theorem: Variance Decomposition. For any two random variables X and Y with finite second moments,

$$var(Y) = E[var(Y \mid X)] + var[E(Y \mid X)].$$

• Remark: This theorem implies

$$var(Y) \ge var[E(Y \mid X)].$$

- Higher order conditional moments: Let $\varepsilon = Y E(Y \mid X)$.
 - Conditional Skewness:

$$S(Y \mid X) = \frac{E(\varepsilon^3 \mid X)}{[\operatorname{var}(\varepsilon \mid X)]^{3/2}}.$$

- Conditional Kurtosis:

$$K(Y \mid X) = \frac{E(\varepsilon^4 \mid X)}{[var(\varepsilon \mid X)]^2}.$$

• **Example:** Suppose (X,Y) follow a bivariate normal distribution

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right)\left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\}$$

•
$$-f_{X|Y}(x \mid y) \sim N\left(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(y - \mu_2), \sigma_1^2(1 - \rho^2)\right).$$

 $-E(X \mid y) = \mu_1 + \rho \frac{\sigma_1}{\sigma_2}(y - \mu_2).$
 $-\operatorname{Var}(X \mid y) = \sigma_1^2(1 - \rho^2).$
 $-S(X \mid y) = 0.$
 $-K(X \mid y) = 3.$

• Example: Mixture Normal Distribution Consider a case where X = i with probability p_i , $i = 1, \dots, n$. The condition probability density function $f_{Y|X}(y \mid X = i) = f_i(y) \sim N(\mu_i, \sigma_i^2)$. Then the pdf of Y is

$$f_Y(y) = \sum_i p_i f_i(y).$$

The distribution of Y is called *mixture normal* distribution. We have

$$\operatorname{Var}(Y) = E[\operatorname{Var}(Y \mid X)] + \operatorname{Var}[E(Y \mid X)]$$
$$= \sum_{i=1}^{n} p_{i}\sigma^{2} + \sum_{i=1}^{n} p_{i}(\mu_{i} - \overline{\mu})^{2},$$

where $\overline{\mu} = \sum_{i=1}^{n} p_i \mu_i$.

• THE END