

III. CLAIM AMENDMENTS

1. (Currently Amended) A method of loading at least one file—(F_i) or a part ("clip")—(C_i) thereof from a unit—(FU) comprising files—(F_i) or clips—(C_i) thereof over an interface—(IF) to a data-processing unit—(DU), the method comprising:

determining joint probabilities—(JP_i) of at least two files—(F_i)—or clips—(C_i) thereof, which joint probabilities express probabilities with which one moves to said files—(F_i)—or clips—(C_i) thereof;

characterized by

determining energy consumptions—(W_i)—caused by the loading of said at least two files—(F_i) or clips—(C_i) thereof over the interface—(IF);

forming a loading order for said files—(F_i) or clips—(C_i) thereof as a function of said joint probabilities—(JP_i);

determining a value for maximum energy consumption—(EC_{MAX}), the value expressing the greatest allowed energy consumption caused by said loading; and

loading files—(F_i) or clips—(C_i) thereof in said loading order and determining total energy consumption—(ΣW_i) caused by the loading until the value of said total energy consumption—(ΣW_i)—exceeds the value of the maximum energy consumption—(EC_{MAX}).

2. (Currently Amended) A method according to claim 1,

~~characterized by~~the method further comprising:

determining loading probabilities— (LP_{\pm}) of said files— (F_{\pm}) or clips— (C_{\pm}) thereof as a function of said joint probabilities— (JP_{\pm}) .

3. (Currently Amended) A method according to claim 2,

~~characterized by~~the method further comprising:

determining loading probability functions— (fLP_{\pm}) of said files— (F_{\pm}) —or clips thereof as a function of the loading probabilities— (LP_{\pm}) .

4. (Currently Amended) A method according to claim 2,

~~characterized by~~the method further comprising:

determining loading probability functions— (fLP_{\pm}) of said files— (F_{\pm}) —or clips— (C_{\pm}) thereof as a function of the loading probabilities— (LP_{\pm}) and the energy consumptions— (W_{\pm}) caused by the loading.

5. (Currently Amended) A method according to any one of the preceding claimsclaim 1,

~~characterized by~~the method comprising:

redetermining the value of said energy consumptions—(W_i), maximum energy consumption—(EC_{MAX}) and joint probabilities (JP_i)—periodically.

6. (Currently Amended) A method according to ~~any one of the preceding claims~~claim 1,

~~characterized by~~the method comprising:

redetermining the values of said maximum energy consumption (EC_{MAX})—according to the interface—(IF) in question.

7. (Currently Amended) A method according to claim 35 or 6,

~~characterized by~~the method comprising:

updating the values of said loading probabilities—(LP_i) and loading probability functions—(fLP_i) as a response to said determination.

8. (Currently Amended) A method according to ~~any one of the preceding claims~~claim 1,

~~characterized by~~the method comprising:

loading at least one file—(F_i) or a clip—(C_i) thereof over said interface—(IF) alternatively from a server—(S) to a terminal—(T) or from a first memory component—(100) to a second memory component—(102).

9. (Currently Amended) A method according to any one of the preceding claimsclaim 1,

~~characterized by~~the method comprising:

loading at least one file (F_i) or a clip (C_i) thereof over said interface (IF) alternatively from a first terminal (T_1) to a second terminal (T_2) over a local network interface (LIF) .

10. (Currently Amended) A method according to any one of the preceding claimsclaim 1,

~~characterized by~~the method comprising:

loading at least one file (F_i) or a clip (C_i) thereof from a mass memory component (830) to another memory component (836) over an internal interface.

11. (Currently Amended) A method of loading at least one file (F_i) or a clip (C_i) thereof from a unit (FU) comprising files (F_i) or clips (C_i) thereof over an interface (IF) to a data-processing unit (DU) , the method comprising:

determining joint probabilities (JP_i) of at least two files (F_i) or clips (C_i) thereof, which joint probabilities express probabilities with which one moves to said files (F_i) or clips (C_i) thereof;

~~characterized by~~

forming a loading order for said files—(F_‡) or clips—(C_‡) thereof as a function of said joint probabilities—(JP_‡);

determining a threshold value—(TH), which expresses a value, which the value determined as a function of the joint probability of the file—(F_‡) or a clip—(C_‡) thereof must at least reach in order for the file—(F_‡) or a clip—(C_‡) thereof to be loaded; and

loading files—(F_‡) or clips—(C_‡) thereof in said loading order and comparing the values determined as functions of the joint probabilities of the files—(F_‡) or clips—(C_‡) thereof with the threshold value—(TH) until the value determined as the function of the joint probability—(JP_‡) of the file—(F_‡) or a clip—(C_‡) thereof is smaller than the threshold value—(TH).

12. (Currently Amended) A system for loading at least one file—(F_‡) or a clip—(C_‡) thereof from a unit—(FU) comprising files—(F_‡) or clips—(C_‡) thereof over an interface—(IF) to a data-processing unit—(DU), wherein the system comprisescomprising:

means for determining joint probabilities—(JP_‡) of at least two files—(F_‡) or clips—(C_‡) thereof, which joint probabilities express probabilities with which one moves to said files—(F_‡) or clips thereof—(C_‡);

~~characterized in that the system comprises~~

means for determining the energy consumption (W_i)—caused by the loading of said at least two files (F_i)—or clips (C_i) thereof;

means for determining the loading order of said files (F_i)—or clips (C_i)—thereof as a function of said joint probabilities (JP_{ij});

means for determining the value of maximum energy consumption (EC_{MAX}), which expresses the greatest allowed energy consumption caused by said loading; and

means for loading files (F_i)—or clips (C_i)—thereof and determining the total energy consumption (ΣW_i)—caused by the loading of the files (F_i)—or clips (C_i)—thereof, the means being arranged to load files (F_i)—or clips (C_i)—thereof until the value of the total energy consumption (ΣW_i) exceeds the value of the maximum energy consumption—(EC_{MAX}).

13. (Currently Amended) A system according to claim 12, wherein

~~characterized in that~~

at least part of said means is executed as a program code of a driver—(DR) comprised by the system.

14. (Currently Amended) A device for loading at least one file (F_i) or a clip—(C_i) thereof from a unit—(FU) comprising files (F_i) or clips—(C_i) thereof over an interface—(IF), wherein the device comprisessing:

means for determining joint probabilities— (JP_{\pm}) of at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof, which joint probabilities express probabilities with which one moves to said files— (F_{\pm}) or clips— (C_{\pm}) thereof;

~~characterized in that the device comprises~~

means for determining the energy consumptions— (W_{\pm}) caused by the loading of said at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof;

means for determining the loading order of said files— (F_{\pm}) or clips— (C_{\pm}) thereof as a function of said joint probabilities (JP_{\pm}) ;

means for determining the value of maximum energy consumption (EC_{MAX}) , which expresses the greatest allowed energy consumption caused by said loading; and

means for requesting files— (F_{\pm}) or clips— (C_{\pm}) thereof and determining the total energy consumption— (ΣW_{\pm}) caused by the loading, the means being arranged configured to load files— (F_{\pm}) or clips— (C_{\pm}) thereof until the value of said total energy consumption— (ΣW_{\pm}) exceeds the value of the maximum energy consumption— (EC_{MAX}) .

15. (Currently Amended) A device for forming the loading order of at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof for loading functionality performed over an interface— (IF) , wherein

~~characterized in that the device comprises:~~

means for determining the energy consumption—(W_i) caused by the loading of said at least two files—(F_i) or clips—(C_i) thereof, and

means for determining the loading order of said files—(F_i) or clips—(C_i) thereof as a function of said joint probabilities (JP_i).

16. (Currently Amended) A device for controlling the loading of at least two files—(F_i) or clips—(C_i) thereof performed over an interface—(IF), wherein

~~characterized~~ in that the device comprises:

means for determining the value of maximum energy consumption (EC_{MAX}), which expresses the greatest allowed energy consumption caused by said loading, and for determining the total energy consumptions—(ΣW_i) caused by the loading of said files—(F_i) or clips—(C_i) thereof until the value of said total energy consumption—(ΣW_i) exceeds the value of the maximum energy consumption—(EC_{MAX}).

17. (Currently Amended) A device according to any of claims 14—16 claim 14,

~~characterized~~ in that the device further comprises:

proxy functionality, which is configured arranged to transmit at least one file—(F_i) or a clip—(C_i) thereof to another

data-processing unit—(DU)—as a response to a request from the data-processing unit—(DU).

18. (Currently Amended) A software product for loading at least one file—(F_±) or a clip—(C_±) thereof from a unit—(FU) comprising files—(F_±) or clips—(C_±)—thereof over an interface—(IF) to a data-processing unit—(DU), wherein the software product comprises:ing:

a software code for determining joint probabilities—(JP_±) of at least two files—(F_±) or clips—(C_±) thereof, with which probabilities one moves to said files—(F_±) or clips—(C_±) thereof,

~~characterized~~ in that said software product comprises:

a software code for determining the energy consumptions—(W_±) caused by said at least two files—(F_±) or clips—(C_±) thereof,

a software code for forming the loading order of said files—(F_±)—or clips—(C_±)—thereof as a function of said joint probabilities—(JP_±);

a software code for determining the value of the maximum energy consumption—(EC_{MAX}), which expresses the greatest allowed energy consumption caused by said loading; and

a software code for loading files—(F_±) or clips—(C_±) thereof and determining the total energy consumption—(ΣW_{\pm}) caused by the loading of said files—(F_±) or clips—(C_±) thereof until

the value of said total energy consumption—(ΣW_i) exceeds the value of the maximum energy consumption—(EC_{MAX}).

19. (Currently Amended) A software product for forming the loading order of at least two files—(F_i) or clips—(G_i) thereof for loading functionality to be performed over an interface—(IF), wherein

~~characterized~~ in that said software product comprises:

a software code for determining the energy consumptions—(W_i) of said at least two files—(F_i) or clips—(G_i) thereof; and

a software code for forming the loading order of said files—(F_i)—or clips—(G_i)—thereof as a function of said joint probabilities—(JP_i).

20. (Currently Amended) A software product for controlling the loading of at least two files—(F_i) or clips—(G_i) thereof to be performed over an interface—(IF), wherein

~~characterized~~ in that the software product comprises:

a software code for determining the value of the maximum energy consumption—(EC_{MAX}), which expresses the greatest allowed energy consumption caused by said loading; and

a software code for loading files—(F_i) or clips—(G_i) thereof and determining the total energy consumption—(ΣW_i) caused by the loading of said files—(F_i) or clips—(G_i) thereof until

the value of said total energy consumption—(ΣW_i) exceeds the value of the maximum energy consumption—(EC_{MAX}).

21. (New) A method according to claim 4, the method comprising:

updating the values of said loading probabilities and loading probability functions as a response to said determination.