Rates and Free Energies

	expt*	TIS	TIS / expt
Kwc→HG (s ⁻¹)	14.2 ± 1.03	742	~52
k _{HG} →wc (s ⁻¹)	3670 ± 200	1.6·10 ⁵	~43
ΔG (k _B T)	5.5	5.4	

at 26.0°C

at 300K

$$\frac{\Delta G}{k_{\rm B}T} = -\ln\left(\frac{k_{\rm WC\to HG}}{k_{\rm HG\to WC}}\right)$$

^{*}Nikolova et. al. Nature 470, 498 (2011).

Conclusions

- Background: Hoogsteen base pairs are significant, and may play a role in biology
- Mechanisms: We see both the "inside" and "outside" mechanism, although there might be more preference for "outside"
- Rates and Free Energies: We overestimate the rates, but in a consistent manner. The free energy difference between the states is in very good agreement.
- Interesting remaining questions:
 - Motions correlated with each of the mechanisms?
 - Role of specific sequence?
 - Paths based on leaving via minor groove?