

Deep Learning TP5

Sistemas de Inteligencia Artificial 1er Cuatrimestre 2021

Grupo 3: Gonzalo Hirsch - 59089 Florencia Petrikovich - 58637 Juan Martin Oliva - 58664

CONTENIDOS

01

RESUMEN

Resumen del trabajo realizado durante el TP

02

ENFOQUE

Descripción de cómo se construyó el código y cómo enfocamos el trabajo

04

CONCLUSIONES

Conclusiones a partir de los resultados

03

RESULTADOS

Resultados obtenidos en diferentes pruebas

RESUMEN

RESUMEN DEL TRABAJO

Implementación

Implementar diferentes autoencoders para solucionar diferentes tipos de problemas

Problemas

Buscar resolver autoencoder normal, limpieza de ruido y representación del espacio latente

02

ENFOQUE

ENFOQUE DEL TRABAJO

Principalmente:

- Reusar estructura de TP3 para armar autoencoder
- Aprovechar operaciones vectorizadas de librerías
- Aprovechar optimizadores de librerías
- Keras para implementar un VAE y hacer pruebas

RESULTADOS

DIFERENTES ARQUITECTURAS

Probar diferentes
arquitecturas para
encontrar una con error
mínimo

X-Y-Z son la cantidad de perceptrones por capa, la activación es sigmoidea

- 1.500 epochs
- learn. rate = 0.005
- momentum (alpha = 0.8)

ESPACIO LATENTE

Usando arquitectura **35-25-2-25-35**

Mucho espacio entre los diferentes puntos

Se ven conjuntos de **letras** parecidas: F-P, I-T, [-]-J

OPTIMIZADORES - 'L-BFGS-B'

Parece tener tendencia decreciente, pero tiene picos muy grandes en algunos puntos

Error Promedio Mínimo = 8.65

Parámetros:

- Máximo 15.000 evaluaciones

OPTIMIZADORES - 'BFGS'

Tendencia decreciente, pero tiene **picos muy grandes** al principio

Error Promedio Mínimo = 7.19

- Máximo 15.000 evaluaciones
- Máximo 5 iteraciones

OPTIMIZADORES - 'POWELL'

Clara tendencia decreciente, con mucha oscilación en el error

Error Promedio Mínimo = 6.13

- Máximo 15.000 evaluaciones
- Máximo 10 iteraciones

OPTIMIZADORES - 'GRADIENTES CONJUGADAS'

Tendencia decreciente, aunque tiene **picos muy altos** en algunos puntos

Error Promedio Mínimo = 7.10

- Máximo 15.000 evaluaciones
- Máximo 10 iteraciones

OPTIMIZADORES - MÍNIMO ERROR

Mínimo error alcanzado dentro de 15.000 evaluaciones del error

Powell dió los mejores resultados

¿CUÁL ES LA IDEA?

- Entrenar la red con distinta probabilidad de ruido
- Entrenar una misma letra con distinto ruido
- Ver que la red pueda sacarle el ruido a una letra con ruido nueva y predecir correctamente la original.

Ejemplo

Subconjunto de A y B Training set seria 3 letras A con ruido mapeadas a la A, 3 letras B con ruido mapeadas a la B

Nota: Las corridas se hicieron con learning rate 0.001 y 2000 iteraciones

METODOLOGÍA

HALLAR EL SUBCONJUNTO

Se desea encontrar el subconjunto de letras que mejor entrena la red sin ruido.

ANALIZAR PÉRDIDA

Se desea observar la pérdida por letra en base a la probabilidad de ruido.

PREDICCIONES

Se desea analizar si la red logra quitar el ruido a una letra con ruido desconocido y que la original sea mapeada correctamente.

HALLAR EL SUBCONJUNTO

- Se analizaba la pérdida promedio de un subconjunto de 5, 7, y 10 letras random sin ruido.
- No había correlación con el tamaño del subconjunto, sino las letras.
- Mejor subconjunto hallado:

Q]^ZUGXYNP

DATASET: **FONTS**

Espacio latente para las 30 letras (3 con ruido de cada una de las 10 letras)

-1.00 -0.75 -0.50 -0.25 0.00

0.25 0.50

LOSS PROMEDIO CON RUIDO

A **mayor ruido** dentro del input, **mayor pérdida** promedio por letra.

LOSS PROMEDIO CON RUIDO

A **mayor ruido** dentro del input, **mayor pérdida** promedio por letra.

LOSS PROMEDIO CON RUIDO

A **mayor ruido** dentro del input, **mayor pérdida** promedio por letra.

MEJORES PREDICCIONES

PEORES PREDICCIONES

FASHION MNIST

Generación de nuevos componentes dentro del dataset

FASHION MNIST

Representación del espacio latente

FASHION MNIST

Animación con generación de nuevas muestras dentro del conjunto de los datos

ABECEDARIO

Generación de nuevos componentes dentro del dataset provisto por la cátedra

DATASET: **ABECEDARIO**

Representación del espacio latente

ABECEDARIO

Animación con generación de nuevas muestras dentro del conjunto de los datos

CONCLUSIONES

AUTOENCODER

La arquitectura es factor clave en rendimiento, y tiene una muy buena capacidad para aprender características principales

DENOISER

El denoiser pudo extraer ruido, pero se debe encontrar un balance entre la cantidad de ruido y los caracteres usados.

VAE

Provee una capacidad de generación mucho mayor que uno generativo.

¡GRACIAS!

¿Preguntas?

ghirsch@itba.edu.ar fpetrikovich@itba.edu.ar juoliva@itba.edu.ar

