Congratulations! You passed!

Grade received 90%

⊘ Correct

Latest Submission Grade 80% **To pass** 80% or higher

Retake the assignment in **20h 26m**

Go to next item

1.	In logistic regression given the input ${f x}$, and parameters $w\in\mathbb{R}^{n_x}$, $b\in\mathbb{R}$, how do we generate the output \hat{y} ?	1/1 point
	$\sigma(W \mathbf{x})$ $\sigma(W \mathbf{x} + b).$ $\tanh(W \mathbf{x} + b)$ $W \mathbf{x} + b$	
	Expand $ \odot \text{ Correct} $ Right, in logistic regression we use a linear function $W\mathbf{x}+b$ followed by the sigmoid function σ , to get an output y , referred to as $\hat{\mathbf{y}}$, such that $0<\hat{y}<1$.	
2.	Which of these is the "Logistic Loss"? $ \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} - \hat{y}^{(i)} \mid \\ \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = max(0,y^{(i)} - \hat{y}^{(i)}) \\ \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} - \hat{y}^{(i)} \mid^2 \\ \otimes \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)})) $	1/1 point
3.		0/1 point
	$x = \text{img.reshape}((3.32^*32))$ $x = \text{img.reshape}((3.32^*32.3))$ $x = \text{img.reshape}((32^*32.3))$ $x = \text{img.reshape}((32^*32^*3.1))$	
	∠ [™] Expand ⊗ Incorrect	
4.	Consider the following random arrays a and b , and c : $a=np.random.randn(2,3) \# a.shape=(2,3)$ $b=np.random.randn(2,1) \# b.shape=(2,1)$ $c=a+b$ What will be the shape of c ?	1/1 point
	The computation cannot happen because the sizes don't match. It's going to be "Error"! c.shape = (2, 1) c.shape = (3, 2) c.shape = (2, 3)	

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of

a = np.random.randn(1,3) # a.shape = (1,3)	
b = np.random.randn(3,3) #b.shape = (3,3)	
c = a * b	
What will be the shape of c ?	
The computation cannot happen because the sizes don't match.	
c.shape = (3, 3)	
c.shape = (1, 3)	
 The computation cannot happen because it is not possible to broadcast more than one dimension. 	
_∠ ^{,7} Expand	
 ✓ Correct Yes. Broadcasting allows row a to be multiplied element-wise with each row of b to from c. 	
. Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}]$. What is the dimension of χ ?	1/1 point
$\bigcirc \ (m,n_x)$	
\bigcirc $(m,1)$	
\bigcirc (1, m)	
∠ ⁷ Expand	
⊘ Correct	
Consider the following array:	1/1 point
a=np.array([[2,1],[1,3]])	
What is the result of $a*a$?	
\bigcirc (4 2)	
$\begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$	
$\bigcirc \begin{pmatrix} 5 & 5 \\ 5 & 10 \end{pmatrix}$	
(1 9) The computation cannot happen because the sizes don't match. It's going to be an	
Expand	
♥ Correct	
Yes, recall that * indicates element-wise multiplication.	
. Consider the following code snippet:	0 / 1 point
a.shape=(3,4)	
b.shape=(4,1)	
for i in range(3):	
for j in range(4):	
c[i][j] = a[i][j] + b[j]	
How do you vectorize this?	
○ c = a + b.T	
○ c = a + b	
○ c = a.T + b	
⊚ c = a.T + b.T	
_e [→] Expand	
⊗ Incorrect	

1/1 point

5. Consider the two following random arrays \boldsymbol{a} and \boldsymbol{b} :

9.	Consider the following of	ode

a=np.random.randn(3,3)

b = np.random.randn(3,1)

$$c = a * b$$

What will be \emph{c} ? (If you're not sure, feel free to run this in python to find out).

- It will lead to an error since you cannot use "" to operate on these two matrices. You need to instead use np.dot(a,b)
- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3.1).
- $\ \ \,$ This will invoke broadcasting, so b is copied three times to become (3,3), and $_{*}$ is an element-wise product so c.shape will be (3, 3)

⊘ Correct

10. Consider the following computational graph.

What is the output of J?

- $\bigcirc \quad (c-1), (a+c)$
- $\bigcirc \quad (a-1), (b+c)$
- $\bigcirc \ ab+bc+ac$

∠⁷ Expand

⊘ Correct

Yes.
$$J=u-v+w=ab-(a+c)+bc=ab-a+bc-c=a\,(b-1)+c\,(b-1)=(a+c)\,(b-1)$$

1/1 point

1/1 point