Universality of the Local Marginal Polytope

Daniel Průša and Tomáš Werner

Center for Machine Perception Czech Technical University Prague, Czech Republic

Microsoft Research Machine Learning Summit April 22-24, 2013 Paris

LP relaxation of min-sum problem

Pairwise min-sum problem with graph (V, E) and label set K:

$$\min_{\mathbf{k}\in K^{V}}\Big[\sum_{u\in V}f_{u}(k_{u})+\sum_{\{u,v\}\in E}f_{uv}(k_{u},k_{v})\Big].$$

All weights $f_u(k)$, $f_{uv}(k, \ell) \in \mathbb{R} \cup \{\infty\}$ form a vector \mathbf{f} . Problem instance is defined by (V, E, K, \mathbf{f}) .

LP relaxation = linear optimization over local marginal polytope:

$$\langle \mathbf{f}, \boldsymbol{\mu} \rangle o \min$$

$$\sum_{\ell \in \mathcal{K}} \mu_{uv}(k, \ell) = \mu_{u}(k), \quad \{u, v\} \in E, \ k \in \mathcal{K}$$

$$\sum_{k \in \mathcal{K}} \mu_{u}(k) = 1, \qquad u \in V$$

$$\boldsymbol{\mu} \geq \mathbf{0}$$

where in scalar product $\langle \mathbf{f}, \boldsymbol{\mu} \rangle$ we define $\infty \cdot 0 = 0$. Components $\mu_u(\mathbf{k})$ and $\mu_{uv}(\mathbf{k}, \ell)$ of $\boldsymbol{\mu}$ are pseudomarginals.

Main result

Theorem (Průša-Werner-CVPR2013)

Any linear program can be reduced in linear time to the LP relaxation of a pairwise min-sum problem with 3 labels.

Some consequences:

- Finding an efficient algorithm to solve LP relaxation of min-sum problem might be as hard as improving the complexity of the best known algorithm for LP.
- ▶ LP relaxation of min-sum problem with 3+ labels is inherently more complex than for 2 labels (because for 2 labels, it reduces in linear time to max-flow).
- When solving LP relaxation of min-sum problem by the simplex method, finding a pivot rule that prevents stalling would mean that the rule applies to any LP.

Elementary min-sum problems

The reduction is done by combining elementary min-sum problems.

- ▶ They perform simple operations on unary pseudomarginals.
- ▶ Depicting a pair $\{u, v\} \in E$ with |K| = 3 labels:

$$p + q + r = a$$
$$a + b + c = 1$$

Visible edges have weights $f_{uv}(k,\ell) = 0$. Invisible edge have weights $f_{uv}(k,\ell) = \infty$, implying $\mu_{uv}(k,\ell) = 0$.

Elementary min-sum problem COPY

Enforces a = d.

Precisely:

Given any feasible unary pseudomarginals a, b, c, d, e, f, feasible pairwise pseudomarginals exist if and only if a = d.

Elementary min-sum problem ADDITION

Enforces c = a + b.

Elementary min-sum problem EQUALITY

Enforces a = b.

shorthand

Elementary min-sum problem Powers

Constructs unary pseudomarginals with values $2^{i}a$ for i = 0, ..., d, where d is the depth of the problem.

Elementary min-sum problem NEGPOWERS

Constructs unary pseudomarginals with values 2^{-i} for i = 0, ..., d.

Example of combining elementary min-sum problems

Constructs a unary pseudomarginal with value $5/8 = 5 \cdot 2^{-d}$. Similarly, we can construct any multiple of 2^{-d} (not greater than 1).

The input LP

The input of the reduction is the LP

$$\min\{\langle \mathbf{c}, \mathbf{x} \rangle \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}$$

where $\mathbf{A} \in \mathbb{Z}^{m \times n}$, $\mathbf{b} \in \mathbb{Z}^m$, $\mathbf{c} \in \mathbb{Z}^n$, $m \le n$.

Before reduction, the system Ax = b is rewritten as

$$\mathbf{A}^{+}\mathbf{x} = \mathbf{A}^{-}\mathbf{x} + \mathbf{b}$$

where all entries of \mathbf{A}^+ , \mathbf{A}^- , \mathbf{b} are non-negative and $\mathbf{A} = \mathbf{A}^+ - \mathbf{A}^-$.

Bounding the variable ranges

Lemma

Let **x** be a vertex of the polyhedron $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \}$. Then each component x_j of **x** satisfies either $x_j = 0$ or $M^{-1} \leq x_j \leq M$, where

$$M = m^{m/2}(B_1 \times \dots \times B_{n+1})$$

 $B_j = \max\{1, |a_{1j}|, \dots, |a_{mj}|\}, \quad j = 1, \dots, n$
 $B_{n+1} = \max\{1, |b_1|, \dots |b_m|\}.$

Lemma

Let the polyhedron $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \}$ be bounded. Then for any \mathbf{x} from the polyhedron, each component of $\mathbf{A}^+\mathbf{x}$ and $\mathbf{A}^-\mathbf{x} + \mathbf{b}$ is not greater than $N = M(B_1 + \cdots + B_{n+1})$.

Initializing the reduction

The reduction algorithm:

- lts input is (A, b, c), assuming w.l.o.g. that the polyhedron $\{x \mid Ax = b, x \geq 0\}$ is bounded.
- ▶ Its output will be a min-sum problem (V, E, K, \mathbf{f}) with $V = \{1, ..., |V|\}$ and $K = \{1, 2, 3\}$.

The algorithm is initialized as follows:

- 1 For each variable x_j in the input LP, introduce a new object j into V and set $f_j(1) = c_j$. (Pseudomarginal $\mu_j(1)$ will represent variable x_j .)
- **2** For each such object $j \in V$, build POWERS with the depth $d_j = \lfloor \log_2 B_j \rfloor$ based on label 1.
- **3** Build NegPowers with the depth $d = \lceil \log_2 N \rceil$.

Encoding the equality constraints

Each equation

$$a_{i1}^+ x_1 + \dots + a_{in}^+ x_n = a_{i1}^- x_1 + \dots + a_{in}^- x_n + b_i$$

of the system $A^+x = A^-x + b$ is encoded as follows:

- **1** Construct pseudomarginals with values $a_{ij}^+ x_j$ and $a_{ij}^- x_j$ by summing selected values from the Powers.
- 2 Construct a pseudomarginal with value $2^{-d}b_i$ by summing selected values from the NEGPOWERS. (The number 2^{-d} plays the rôle of the unit.)
- **3** Sum the terms on each side of the equation by repetitively applying ADDITION and COPY.
- ${\color{red} \bullet}$ Enforce equality of the two sides of the equation by ${\rm Copy.}$

Finally, set $f_i(k) = 0$ for all i > n or k > 1.

Complexity of the reduction

Let L be the number of bits of the binary representation of $(\mathbf{A}, \mathbf{b}, \mathbf{c})$. Want to prove that the reduction time is $\mathcal{O}(L)$.

This is easy:

- ▶ Let the output of the reduction be (V, E, K, \mathbf{f}) .
- ▶ Clearly, the reduction time is $\mathcal{O}(|E|)$.
- ightharpoonup Clearly, $|E| = \mathcal{O}(|V|)$.
- ▶ Thus we need to prove $|V| = \mathcal{O}(L)$.
- ▶ For that, it suffices to prove that the numbers $d_j = \lceil \log_2 B_j \rceil$ and $d = \lceil \log_2 N \rceil$ are $\mathcal{O}(L)$.

Other results

Corollary

Every polytope is (up to scale) a coordinate-erasing projection of a face of a local marginal polytope with 3 labels, whose description can be computed from the description of the original polytope in linear time.

If only finite weights are allowed $(f_u(k), f_{uv}(k, \ell) \in \mathbb{R})$ then:

Theorem

Any linear program can be reduced in time and space $\mathcal{O}(L(L+L'))$ to a linear optimization over a local marginal polytope with 3 labels, where L' is the length of the binary representation of \mathbf{c} .