MTE 203 – Advanced Calculus Homework 4

Normal Vectors, Curvature, and Radius of Curvature

Problem 1 [11.12, Prob. 9]:

Find \widehat{N} and \widehat{B} at the point (5,2,10) on the curve: $x=y^2+1$, z=x+5, directed so that y increases along the curve.

Problem 2 [11.12, Probs. 15, 17]:

Find the curvature and the radius of curvature of the curve (if they exist). Draw each curve.

a.
$$x = t, y = t^3, z = t^2, t \ge 0$$

b.
$$x = t + 1, y = t^2 - 1, z = t + 1, -\infty < t < \infty$$

Problem 3: [11.12, Prob. 23]

Let *C* be the curve x = t, $y = t^2$ in the xy-plane.

- a. At each point on C calculate the unit tangent \widehat{T} vector and the principal normal \widehat{N} . What is \widehat{B} ?
- b. $\vec{F} = t^2 \, \hat{\imath} + t^4 \, \hat{\jmath}$ is a vector that is defined at each point P on C. Denote by F_T and F_N the components of \vec{F} in the directions \hat{T} and \hat{N} respectively. Find F_T and F_N as functions of t.
- c. Express F in terms of \widehat{T} and \widehat{N} .

Tangential and Normal Components of Acceleration

Problem 4: [11.13, Prob. 25]

Calculate the normal component a_N of the acceleration of a particle using equations 11.112 and 11.113 if its position is given by $x = t^2 + 1$, $y = 2t^2 - 1$, $z = t^2 + 5t$, $t \ge 0$, (t being time).

Note:

Equation 11.112 (Trim Book):

$$a_T = a. \hat{T} = \frac{d}{dt} |v|, a_N = a. \hat{N} = |v| \left| \frac{d\hat{T}}{dt} \right|$$

Equation11.113 (Trim Book):

$$a_N = \sqrt{|a|^2 - a_T^2}$$

Extra Practice Problems

Solutions to these problems can be found at the back of your textbook

- 1. S. 11.12, Probs. 18, 24, 26
- 2. S. 11.13, Probs. 14, 18, 24, 38