Intro to Algorithms, COMP-160, Homework #1

Benjamin Tanen, 02/02/2016

2. Same question as 1, different functions.

- (a) $\log_a n$ vs $\log_b n \to \log_a n = \Theta(\log_b n)$ $c_1 \cdot \log_b n \le \log_a n \le c_2 \cdot \log_b n$ $c_1 \le \frac{\log_a n}{\log_b n} = \frac{\log a}{\log n} \cdot \frac{\log n}{\log b} = \frac{\log a}{\log b} \le c_2$ Therefore, $\exists c_1, c_2$ such that $c_1 \cdot \log_b n \le \log_a n \le c_2 \cdot \log_b n$, so $\log_a n = \Theta(\log_b n)$
- (b) $\log(\Theta(1) \cdot n)$ vs $\log n \to \log(\Theta(1) \cdot n) = \Theta(\log n)$ $c_1 \cdot \log n \le \log(\Theta(1) \cdot n) = \log n + \log(\Theta(1)) = \log n + c_n \le c_2 \log n$ Since $\log(\Theta(1)) = c_n \ge 0$, $c_1 \le 1$ Next we want to find a c_2 such that $\log n + \log(\Theta(1)) \le c_2 \cdot \log n$ We can assume that $c_2 + \log n \le c_2 \cdot \log n$, so we can say $\log(\Theta(1)) + \log n \le c_2 + \log n$ We now see that c_2 is valid as long as $\log(\Theta(1)) \le c_2$. Therefore, $\exists c_1, c_2$ such that $c_1 \cdot \log n \le \log(\Theta(1) \cdot n) \le c_2 \cdot \log n$ So $\log(\Theta(1) \cdot n) = \Theta(\log n)$
- (c) $\log n^{\Theta(1)}$ vs $\log n \to \log n^{\Theta(1)} = \Theta(\log n)$ $c_1 \cdot \log n \le \log n^{\Theta(1)} = \Theta(1) \log(n) \le c_2 \cdot \log n$ $c_1 \le \Theta(1) \cdot \frac{\log n}{\log n} = \Theta(1) \le c_2$ Therefore, $\exists c_1, c_2$ such that $c_1 \cdot \log n \le \log n^{\Theta(1)} \le c_2 \cdot \log n$, so $\log n^{\Theta(1)} = \Theta(\log n)$