II. pn Junction

<u>Symbol</u>	Description	<u>Unit</u>
p_p	Hole concentration in <i>p</i> -type semiconductor (majority carrier)	cm ⁻³
n_p	Electron concentration in <i>p</i> -type semiconductor (minority carrier)	cm ⁻³
p_n	Hole concentration in <i>n</i> -type semiconductor (minority carrier)	cm ⁻³
n_n	Electron concentration in <i>n</i> -type semiconductor (majority carrier)	cm ⁻³
p_{p0}	Hole concentration in p -type semiconductor at thermal equilibrium	cm ⁻³
n_{p0}	Electron concentration in p -type semiconductor at thermal equilibrium	cm ⁻³
p_{n0}	Hole concentration in n -type semiconductor at thermal equilibrium	cm ⁻³
n_{n0}	Electron concentration in <i>n</i> -type semiconductor at thermal equilibrium	cm ⁻³
Δp_n	Excess hole concentration in a <i>n</i> -type semiconductor (minority carrier)	cm ⁻³
Δn_p	Excess electron concentration in a <i>p</i> -type semiconductor (minority carrier)	cm ⁻³
V_o	Built-in voltage of a <i>pn</i> junction	V
W_{dep}	Depletion region width of a pn junction	μm
x_p	Depletion region width on the p-side of a pn junction	μm
x_n	Depletion region width on the <i>n</i> -side of a <i>pn</i> junction	μm
q_{j}	Charge stored in either side of the depletion region of a pn junction	С
\mathcal{E}_{o}	Permittivity of free space (ε_o = 8.854 × 10 ⁻¹⁴ F/cm)	F/cm
\mathcal{E}_r	Relative permittivity (ε_r = 11.7 for Si)	
\mathcal{E}_{S}	Permittivity of semiconductor ($\varepsilon_s = \varepsilon_r \varepsilon_o = 11.7 \times 8.854 \times 10^{-14} \text{ F/cm for Si}$)	F/cm
V_{ZK}	Breakdown (knee) voltage of a pn junction	V
V_Z	Breakdown voltage of a Zener diode	V
L_p	Hole diffusion length	μm
L_n	Electron diffusion length	μm
I_S	Saturation current of a pn junction	Α
n	Exponential factor in the current-voltage relation of a <i>pn</i> junction*	
C_j	Depletion/junction capacitance of a pn junction	F
C_d	Diffusion capacitance of a pn junction	F
m	Grading coefficient of a pn junction	
i_D	Total current of a pn junction = $I_D + i_d$	Α
v_D	Total voltage across a pn junction = $V_D + v_d$	V
I_D	dc current of a <i>pn</i> junction	A
V_D	dc voltage of a <i>pn</i> junction small-signal ac current of a <i>pn</i> junction	V A
i_d v_d	small-signal ac voltage across a pn junction [#]	V
V_{DO}	Turn-on (knee) voltage of the piecewise-linear model of a <i>pn</i> junction	V
r_D	Resistance of the piecewise-linear model of a <i>pn</i> junction	Ω
r_d	Small-signal resistance of a <i>pn</i> junction	Ω
r_s	Series resistance of the neutral regions of a pn junction	Ω

 $^{{}^*}n$ is also used to denote electron concentration

 $^{^{\}sharp}v_{d}$ is also used to denote the drift velocity of charge carriers