TELE303/404 Wireless Communications Lecture 4 — Signal Encoding

Jeremiah Deng TELE Programme / InfoSci University of Otago, 2016

Outline

- Basic forms of "encoding"
- What is a good encoding?
- Encoding schemes in a nutshell

Encoding Techniques in Wireless

- Digital-to-analog
 - o Digital data and digital signals must be converted to analog signals for wireless transmission
- Analog-to-analog
 - Baseband signals must be modulated onto a higher-frequency carrier for transmission.
- Analog-to-digital
 - Digitising analog signals for digital transmission so as to improve quality and take advantage of TDM schemes.
- Digital-to-digital

Signal Encoding Criteria

- What determines how successful a receiver will be in interpreting an incoming signal?
 - o Signal-to-noise ratio
 - o Data rate
 - o Bandwidth
- ⊕ An increase in data rate increases bit error rate
- ② An increase in SNR decreases bit error rate
- ② An increase in bandwidth allows an increase in data rate

$D \rightarrow A$

Digital data to analog signal

- Basic encodings
 - o Amplitude-shift keying (ASK)
 - Amplitude difference of carrier frequency
 - o Frequency-shift keying (FSK)
 - Frequency difference near carrier frequency
 - o Phase-shift keying (PSK)
 - Phase of carrier signal shifted

6

7

(a) ASK (b) BFSK (c) BPSK

Fig. 6.2 Modulation of Analog Signals for Digital Data

Amplitude-Shift Keying (ASK)

- One binary digit represented by presence of carrier, at constant amplitude
- Other binary digit represented by absence of carrier

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

- where the carrier signal is $A\cos(2\pi f_c t)$
- Susceptible to sudden gain changes
- Inefficient modulation technique

Binary Frequency-Shift Keying (BFSK)

• Two binary digits represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

- where f_1 and f_2 are offset from carrier frequency f_c by equal but opposite amounts
- Less susceptible to error than ASK
- Used for high-frequency (3 to 30 MHz) radio transmission

Using Multiple Frequencies (MFSK)

- More than two frequencies are used in FSK
- · More bandwidth efficient
- Used for *frequency hopping* in spread spectrum

$$s_i(t) = A\cos 2\pi f_i t$$
 $1 \le i \le M$

Fig. 6.4 MFSK Frequency Use (M=4)

11

Phase-Shift Keying (PSK)

- Two-level PSK (BPSK)
 - o Uses two phases to represent binary digits

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ A\cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$

- Differential PSK (DPSK)
 - o Phase shift with reference to previous bit
 - Binary 0 signal burst of same phase as previous signal burst
 - Binary 1 signal burst of opposite phase to previous signal burst

Phase-Shift Keying (PSK)

- Four-level PSK (QPSK)
 - o Each element represents two bits
 - \circ Phase shift in multiples of $\pi/4$

$$S(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

- OQPSK: Introducing a time-delay
 - o Phase change less than $\pi/2$
 - o Therefore less interference

QPSK & OQPSK Diagram

QPSK & OQPSK Example

Fig. 7.8

Quadrature Amplitude Modulation

- QAM is a combination of ASK and PSK
 - o Two different signals sent simultaneously on the same carrier frequency

$$s(t) = d_1(t)\cos 2\pi f_c t + d_2(t)\sin 2\pi f_c t$$

Modulation of QAM

Figure 6.20 QAM Demodulator

Reasons for Analog Modulation

- Modulation of digital signals
 - When only analog transmission facilities are available; digital to analog conversion required
- Modulation of analog signals
 - A higher frequency may be needed for effective transmission
 - o Modulation permits frequency division multiplexing

19

Analog Modulation

18

Analog data to digital signal

- Basic modulation methods
 - o Pulse code modulation (PCM)
 - o Delta modulation (DM)
- Once analog data have been converted to digital signals, the digital data
 - o can be transmitted e.g. using NRZ-L
 - o can be converted back to an analog signal

22

Pulse Code Modulation

- Based on the sampling theorem
- Each analog sample is assigned a binary code
 - Analog samples are referred to as pulse amplitude modulation (PAM) samples
- The digital signal consists of block of *n* bits, where each *n*-bit number is the amplitude of a PCM pulse

Pulse Code Modulation

- By quantizing the PAM pulse, original signal is only approximated
- Leads to quantizing noise
- Signal-to-noise ratio for quantizing noise
- Each additional bit typically increases SNR by 6 dB, or a factor of 4.
- SNR ratio can be improved by nonlinear encoding such as non-uniform quantization.

Delta Modulation (DM)

- In DM, analog input is approximated by staircase function
 - o Moves up or down by one quantization level (δ) at each sampling interval
- The bit stream approximates derivative of analog signal (rather than amplitude)
 - o 1 is generated if function goes up
 - o 0 otherwise
- Two important parameters
 - Size of step assigned to each binary digit (δ)
 - o Sampling rate
- Accuracy improved by increasing sampling rate
 - o However, this increases the data rate

- Advantage of DM over PCM is the simplicity of its implementation.
- Used for audio signal encoding in Bluetooth.
- PCM exhibits better SNR at the same data rate.

- Signal encoding
- Basic encoding techniques
 - o Analog to analog
 - o Digital to analog
 - $\circ\,$ Analog to digital
- Coming next:
 - o Spread Spectrum
 - o Lab THIS week