

Memory Management

Suresh Jamadagni

Department of Computer Science

Virtual Memory

Suresh Jamadagni

Department of Computer Science

Slides Credits for all the PPTs of this course

- The slides/diagrams in this course are an adaptation,
 combination, and enhancement of material from the following resources and persons:
- 1. Slides of Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne 9th edition 2013 and some slides from 10th edition 2018
- 2. Some conceptual text and diagram from Operating Systems Internals and Design Principles, William Stallings, 9th edition 2018
- 3. Some presentation transcripts from A. Frank P. Weisberg
- 4. Some conceptual text from Operating Systems: Three Easy Pieces, Remzi Arpaci-Dusseau, Andrea Arpaci Dusseau

Page and Frame Replacement Algorithms

- Frame-allocation algorithm determines
 - How many frames to give each process
 - Which frames to replace
- Page-replacement algorithm
 - Want lowest page-fault rate on both first access and re-access
- Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string
 - String is just page numbers, not full addresses
 - Repeated access to the same page does not cause a page fault
 - Results depend on number of frames available
- In all our examples, the reference string of referenced page numbers is
 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Graph of Page Faults Versus The Number of Frames

First-In-First-Out (FIFO) Algorithm

- Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
- 3 frames (3 pages can be in memory at a time per process)

- Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
 - Adding more frames can cause more page faults!
 - 4 Belady's Anomaly
- How to track ages of pages?
 - Just use a FIFO queue

FIFO Illustrating Belady's Anomaly

Optimal Algorithm

PES UNIVERSITY

- Replace page that will not be used for longest period of time
 - 9 is optimal for the example
- How do you know this?
 - Can't read the future
- Used for measuring how well your algorithm performs

Least Recently Used (LRU) Algorithm

- Use past knowledge rather than future
- Replace page that has not been used in the most amount of time
- Associate time of last use with each page

- 12 faults better than FIFO but worse than OPT
- Generally good algorithm and frequently used
- But how to implement?

LRU Algorithm (Cont.)

- Counter implementation
 - Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter
 - When a page needs to be changed, look at the counters to find smallest value
 - 4 Search through table needed
- Stack implementation
 - Keep a stack of page numbers in a double link form:
 - Page referenced:
 - 4 move it to the top
 - 4 requires 6 pointers to be changed
 - But each update more expensive
 - No search for replacement
- LRU and OPT are cases of stack algorithms that don't have Belady's Anomaly

Use Of A Stack to Record Most Recent Page References

- LRU and OPT are cases of stack algorithms that don't have Belady's Anomaly
- Use Of A Stack to Record Most Recent Page References

THANK YOU

Suresh Jamadagni
Department of Computer Science Engineering
sureshjamadagni@pes.edu