Part 1

3.4, Problem 3

(a) Solving the eigenvalues, we find

$$\det\begin{pmatrix} -\lambda & 2\\ -2 & -\lambda \end{pmatrix} = \lambda^2 + 4,$$

so the eigenvalues are $\lambda = \pm 2i$.

- (b) The origin is thus a center as each eigenvalue is pure imaginary.
- (c) Since

$$e^{2it} = \cos(2t) + i\sin(2t),$$

we have that the period of each oscillation is π and the frequency is $\frac{1}{\pi}$.

(d) Solving for the eigenvectors, we have

$$\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2i \begin{pmatrix} x \\ y \end{pmatrix}$$

$$2y = 2ix$$

$$y = ix$$

$$\vec{v}_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$\vec{v}_2 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

$$\vec{Y}(t) = (\cos(2t) + i\sin(2t)) \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$= \begin{pmatrix} \cos(2t) \\ -\sin(2t) \end{pmatrix} + i \left(\sin(2t) \cos(2t) \right)$$

$$\vec{Y}_1(t) = \begin{pmatrix} k_1 \cos(2t) + k_2 \sin(2t) \\ -k_1 \sin(2t) + k_2 \cos(2t) \end{pmatrix} .$$

Solving the initial condition, we get $k_1 = 1$ and $k_2 = 0$, so our solution must be counterclockwise.

(e)

3.4, Problem 4

(a) Solving the eigenvalues, we find

$$\det \begin{pmatrix} 2 - \lambda & 2 \\ -4 & 6 - \lambda \end{pmatrix} = (\lambda^2 - 8\lambda + 12) + 8$$
$$\lambda^2 - 8\lambda + 20 = 0$$
$$\lambda = 4 + 2i$$

- (b) The origin is a spiral source as the real part of λ is positive.
- (c) The period of the oscillations is π , while the frequency is $\frac{1}{\pi}$.
- (d) Finding the eigenvectors, we take

$$\begin{pmatrix} 2 & 2 \\ -4 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (4+2i) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$2x + 2y = (4+2i) x$$

$$2y = (2+2i) x$$

$$y = (1+i) x$$

$$\vec{v} = \begin{pmatrix} 1 \\ 1+i \end{pmatrix}$$

$$\vec{Y}(t) = e^{4t} \left(\cos(2t) + i\sin(2t)\right) \begin{pmatrix} 1 \\ 1+i \end{pmatrix}$$

$$= e^{4t} \begin{pmatrix} \cos(2t) + i\sin(2t) \\ (\cos(2t) + i\sin(2t)) + i\cos(2t) - \sin(2t) \end{pmatrix}$$

$$= e^{4t} \begin{pmatrix} \cos(2t) \\ \cos(2t) - \sin(2t) \end{pmatrix} + ie^{4t} \begin{pmatrix} \sin(2t) \\ \cos(2t) + \sin(2t) \end{pmatrix} .$$

Thus, our general solution is

$$\vec{Y}_{1}(t)=\varepsilon^{4t}\left(k_{1}\begin{pmatrix}\cos{(2t)}\\\cos{(2t)}-\sin{(2t)}\end{pmatrix}+k_{2}\begin{pmatrix}\sin{(2t)}\\\cos{(2t)}+\sin{(2t)}\end{pmatrix}\right).$$

With the initial condition of $\vec{Y}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, we get $k_1 = k_2 = 1$. We find that the oscillations go clockwise.

(e)

3.4, Problem 16

$$\det \begin{pmatrix} a - \lambda & b \\ -b & a - \lambda \end{pmatrix} = (\lambda - a)^2 + b^2$$
$$\lambda = a \pm \sqrt{-b^2}.$$

Thus, $\lambda \in \mathbb{C}$.

3.4, Problem 23

(a) Let $v = \frac{dy}{dt}$. Then, we have

$$\frac{dy}{dt} = v$$

$$\frac{dv}{dt} = -qy - pv.$$

(b) The matrix is

$$A = \begin{pmatrix} 0 & 1 \\ -q & -p \end{pmatrix},$$

meaning that for complex eigenvalues, we must have, for

$$\lambda^2 - p\lambda + q = 0,$$

that $q > \frac{p^2}{4}$.

- (c) If p > 0, and $q > \frac{p^2}{4}$, then the origin is a spiral source. If p < 0 and $q > \frac{p^2}{4}$, then the origin is a spiral sink. If p = 0 and q > 0, then the origin is a center.
- (d) I don't know how to do this problem.

3.5, Problem 3

(a) The eigenvalue is found by

$$\lambda^2 + 6\lambda + 9 = 0$$
$$\lambda = -3.$$

(b) An eigenvector is

$$\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

(c)

(d)

3.5, Problem 4

(a) The eigenvalue is found by

$$\lambda (\lambda + 2) + 1 = 0$$
$$\lambda^2 + 2\lambda + 1 = 0$$
$$\lambda = -1.$$

(b) An eigenvector is

$$y = -x$$

$$\vec{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

(c)

(d)

(e)

3.5, Problem 7

(a) We find the eigenvalue to be

$$\lambda = -3$$
,

with corresponding eigenvector

$$\vec{v} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

The general solution is, thus,

$$\vec{Y}(t) = te^{-t} \begin{pmatrix} -x_0 - y_0 \\ x_0 - 3y_0 \end{pmatrix} + e^{-t} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$

(b) With initial condition $\vec{Y}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, we have

$$\vec{Y}(t) = te^{-t} \begin{pmatrix} -1 \\ 1 \end{pmatrix} + e^{t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

(c)

3.5, **Problem 9**

- (a) If $\beta = \frac{\alpha^2}{4}$, then the quadratic has a double root.
- (b) If $\beta = 0$, then the quadratic has zero as a root.

3.5, Problem 10

- (a) If $\lambda>0$, then $\lim_{t\to\infty}te^{\lambda t}=\infty,$ as both t and $e^{\lambda t}$ are positive.
- (b) If $\lambda < 0$, then $\lim_{t \to \infty} t e^{\lambda t} = 0$ as, while t > 0, $e^{\lambda t}$ decreases at a faster rate than t increases.