Homework 1 Honors Analysis I

Homework 1

ALECK ZHAO

September 1, 2017

Chapter 1: Calculus Review

- 3. Let A be a nonempty subset of \mathbb{R} that is bounded above. Prove that $s = \sup A$ if and only if
 - (i) s is an upper bound for A
 - (ii) for every $\varepsilon > 0$, there is an $a \in A$ such that $a > s \varepsilon$.

State and prove the corresponding result for the infimum of a nonempty subset of \mathbb{R} that is bounded

- 7. If a < b, then there is also an irrational $x \in \mathbb{R} \setminus \mathbb{Q}$ with a < x < b. (Hint: Find an irrational of the form
- 15. Show that a Cauchy sequence with a convergent subsequence actually converges.
- 17. Given real numbers a and b, establish the following formulas:

$$-|a+b| \le |a| + |b|$$

$$- ||a| - |b|| \le |a - b|$$

$$-\max\{a,b\} = \frac{1}{2}(a+b+|a-b|)$$

$$- \min\{a, b\} = \frac{1}{2}(a + b - |a - b|)$$

37. If (E_n) is a sequence of subsets of a fixed set S, we define

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} E_k \right)$$
$$\liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_k \right)$$

$$\liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_k \right)$$

Show that

$$- \liminf_{n \to \infty} E_n \subset \limsup_{n \to \infty} E_n$$

$$- \liminf_{n \to \infty} (E_n^c) = \left(\limsup_{n \to \infty} E_n \right)^c$$

- 45. Let $f:[a,b]\to\mathbb{R}$ be continuous and suppose that f(x)=0 whenever x is rational. Show that f(x)=0for every x in [a, b].
- 46. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous.
 - (a) If f(0) > 0, show that f(x) > 0 for all x in some open interval (-a, a).
 - (b) If f(x) > 0 for every rational x, show that f(x) > 0 for all real x. Will this result hold with x > 0replaced by > 0? Explain.