Does $\sum_{n=1}^{\infty} \frac{2^n}{3^n}$ diverge, converge absolutely, or converge conditionally?

Solution

$$\sum_{n=1}^{\infty} \frac{2^n}{3^n} = \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n \text{ is a geometric series with } r = \frac{2}{3}. \text{ Since } |r| < 1, \text{ the series } \sum_{n=1}^{\infty} \frac{2^n}{3^n} \text{ converges by the Geometric Series Test.}$$

$$\text{Since } \sum |a_n| = \sum a_n, \text{ the series } \sum_{n=1}^{\infty} \frac{2^n}{3^n} \text{ converges absolutely.}$$

Since
$$\sum |a_n| = \sum a_n$$
, the series $\sum_{n=1}^{\infty} \frac{2^n}{3^n}$ converges absolutely