Autor: Daniel Borges

danborges06@hotmail.com.br

BMS

ARQUITETURA E ESQUEMA

Ligação Básica

Arquitetura

Comunicação

Princípio de Medição de Células

Amplificador Diferencial ou Subtrator

$$V_O = \frac{R_2}{R_1} (V_2 - V_1)$$

Circuito Básico

Balanceamento de Carga Passivo

- > Apenas durante o carregamento das baterias
- > Desvia parte da carga das células com menor capacidade (Ah)
- Dissipativo (gera calor)

Referência Teórica:

https://www.coursera.org/learn/battery-pack-balancing-power-estimation/lecture/j79ec/5-1-6-what-kinds-of-circuits-can-be-used-for-passively-balancing-a-battery-pack

Esquema Equivalente do Carregamento

Esquema Equivalente do Balanceamento

Esquema Equivalente do Balanceamento

Implementação Básica (Algoritmo)

A corrente desviada de cada célula é proporcional ao excesso de carga em relação a célula de maior capacidade:

$$\overline{I_{d[i]}} = k \times (V_{Cell[i]} - V_{Cell(menor)})$$

Quanto maior for o desvio, mais rápida será a convergência de equalização, porém será mais vulnerável a ruído e oscilação ele será

Implementação

Diagrama Conceitual

$$\overline{I_d} = D \frac{V_{Cell}}{R_d}$$

Dimensionamento do Resistor

➤ Critério: Máxima potência suportável

$$\overline{P_{Rd}} = V_{Cell} \times I_D \le 10W$$

$$I_D \le \frac{10W}{3,7V} = 2,7A$$

$$R_D = \frac{3.7V}{I_D} \cong 1\Omega$$

Diagrama do Circuito Real

