

Indice

1	Inti	roduzione
	1.1	Terminologia
	1.2	
2	Sta	ndard e Concetti base
	2.1	Standard
	2.2	Reference Monitor Model - RMM
	2.3	Definizioni
	2.4	Sfide della sicurezza informatica
	2.5	Principi fondamentali di progettazione della sicurezza
	2.6	Superificie di attacco
		2.6.1 Categorie di attacco
	2.7	Albero di attacco
	2.8	Tipi di attacco
	2.9	Implementazione della sicurezza

Capitolo 1

Introduzione

1.1 Terminologia

Un **sistema** può essere visto come (anche una combinazione di):

- hw
- 811
- $\bullet\,$ persone che lavorano con hwe sw
- clienti

Un attore può essere:

- una persona che interagisce con il sistema
- un dispositivo che interagisce con il sistema
- un ruolo (cliente)
- un ruolo complesso (Alice che finge di essere Bob)

Una rete è una configurazione di individui interconnessi. Una **rete di computer** può essere vista sotto due punti di vista:

- \bullet *Fisico:* una infrastruttura hw che connette diversi dispositivi
- *Logico*: un sistema che facilita lo scambio di informazioni tra applicazioni che non condividono uno spazio di memoria

1.2 Sicurezza

La sicurezza può essere intesa come il **raggiungimento di un obiettivo in presenza di un attacco**; è difficile da assicurare perché l'obiettivo è *negativo*:

- dimostrare che Alice può accedere ad un file è facile
- dimostrare che nessuno oltre ad Alice può accedervi è molto più difficile

Di norma si raggiunge con un processo **iterativo**:

- si cerca di trovare l'anello debole nel sistema
- si adottano delle contromisure
- si continua a fare analisi in cerca di nuove vulnerabilità

Il concetto di *sicurezza perfetta* non è raggiungibile; per discutere di sicurezza si deve definire:

- Politica di sicurezza: definizione di regole di sicurezza che il sistema deve rispettare
- Modello di minaccia: assunzioni su cosa possa fare l'avversario per penetrare nel sistema; devo comprendere la potenza dell'avversario
- **Meccanismi:** sw o hw che cercano di assicuare che la politica sia rispettata, finché l'attaccante segue il modello di minaccia

Le reti di computer sono sistemi insicuri: abbiamo un sistema complesso (com-puter) in un sistema complesso (rete) \rightarrow è difficile prevedere da quale punto arriveranno gli attacchi e quali vettori verranno sfruttati.

Ad oggi, le motivazioni dietro agli attacchi sono principalmente:

- economiche
- politiche / militari
- attivismo

Capitolo 2

Standard e Concetti base

2.1 Standard

Ci sono diverse organizzazioni che si occupano di standard:

- NIST (National Institute of Standars and Technology)
- ISOC (Internet Society)
- ITU-T (International Telecommunicatin Union)
- ISO (International Organization for Standardization)
 - 27001: documento a cui fare riferimento per costruire un sistema di gestione della sicurezza delle informazioni che possa essere certificato da un ente indipendente
 - 27002: non è certificabile, è una raccolta di $best\ practices$ per soddisfarre i requisiti della 27001

2.2 Reference Monitor Model - RMM

Il reference monitor è un sistema dotato di una politica di controllo degli accessi. Si occupa di:

- autenticare chi vuole accedere
- autorizzare o meno le operazioni richieste in base ai permessi
- fare $audit \rightarrow tenere$ un log delle azioni compiute

2.3 Definizioni

- La sicurezza informatica è l'insieme di strumenti, politiche, linee guida ... che possono essere utilizzate per proteggere l'ambiente e le risorse dell'organizzazione e degli utenti del cyberspazio
- I beni dell'organizzazione e degli utenti comprendono i dispositivi informatici connessi, personale, infrastrutture e la totalità delle informazioni trasmesse e/o archiviate nel cyberspazio
- Gli **obiettivi** generali di sicurezza comprendono disponibilità, integrità e confidenzialità
- Sottoinsiemi della sicurezza informatica:
 - Sicurezza delle informazioni: conservazione della CIA delle informazioni
 - Sicurezza delle reti: protezione delle reti e del loro servizio da modifiche non autorizzate e garanzia che la rete svolga correttamente le sue funzioni critiche

2.4 Sfide della sicurezza informatica

- Non è semplice; può avere requisiti semplici ma meccanismi di implementazione complessi
- Nello sviluppo di un meccanismo di sicurezza, si deve sempre **considerare potenziali attacchi**
- Le procedure utilizzate per fornire particolari servizi possono essere controintuitive poiché complesse
- Bisogna decidere **dove utilizzare i meccanismi di sicurezza**, sia a livello logico che a livello fisico
- I meccanismi di sicurezza in genere coinvolgono più di un algoritmo o protocollo
- Una battaglia continua tra attaccante e difensore

2.5 Principi fondamentali di progettazione della sicurezza

- Fail-safe default: nel caso in cui il sistema vada in default, deve rimanere in uno stato protetto
- Economia di meccanismo: i meccanismi devono essere il più semplice possibile
- Mediazione completa: tutti gli accessi devono essere controllati per assicurarsi che siano consentiti; solitamente accade che solo la prima interazione è controllata
- Design aperto: la sicurezza non deve dipendere dalla segretezza della sua progettazione o implementazione
- Seperazione dei privilegi: un sistema non dovrebbe concedere l'autorizzazione in base a *una singola* condizione
- Minimi privilegi: devono essere concessi il minor numero possibile di privilegi ad ogni soggetto; eventuali permessi addizionali devono essere concesso per il tempo minimo possibile
- Accettabilità psicologica: i meccanismi di sicurezza non dovrebbero rendere l'accesso ad una risorsa più difficile
- Isolamento
- Incapsulamento
- Modularità
- Stratificazione (layering)
- Minima sorpresa: evitare che l'utente si trovi davanti a situazioni inaspettate che potrebbero portarlo a seguire comportamenti scorretti

2.6 Superificie di attacco

Una superficie di attacco è costituita dalle vulnerabilità raggiungibili e sfruttabili in un sistema, come ad esempio:

- porte aperte verso l'esterno
- interfacce web
- dipendente con accesso a dati sensibili
- . . .

 \rightarrow è necessario **ridurre al minimo** la superificie di attacco

2.6.1 Categorie di attacco

- Superificie di attacco di **rete**: sono incluse vulnerabilità del protocollo di rete, che possono portare a DoS, interruzione dei collegamenti di comunicazioni ed altri attacchi intrusivi
- Superficie di attacco **software**: vulnerabilità nel codice delle applicazioni; un focus particolare è il software per server web
- Superificie di attacco **umano**: vulnerabilità create dal personale o da estranei, come *social engeneering*, errore umano o intrusi

2.7 Albero di attacco

Un albero di attacco è un modo ti **rappresentare le possibilità di attacco**, e quindi di progettare le **contromisure**.

2.8 Tipi di attacco

- Passivi: non alterano le informazioni in transito; lo scopo è ottenere informazioni sui messaggi trasmessi
- Attivi: modificano il flusso delle informazioni
 - Attacco di replay: l'attaccante osserva le informazioni e le riutilizza in un secondo momento per creare una nuova sessione di comunicazione
 → ci si tutela con numeri casuali e timestamp per, rispettivamente, controllare che i messaggi non siano già stati scambiati o che siano ancora validi
 - DoS e DDoS

— . . .

2.9 Implementazione della sicurezza

Quattro linee d'azione complementari:

- Prevenzione
- Rilevamento
- Risposta in modo da fermare un attacco e prevenire ulteriori danni
- Ripristino con sistemi di backup in caso l'integrità dei dati sia compromessa