Course Code	18CSE345T	Course Name	INTERN	ET OF THINGS	ARCHITEC	TURE AND PROTOCOLS	_	ourse tegory	Е				Pr	ofessi	ional E	Elective					L 3	T 0	P 0	C 3
Pre-requisite Courses Nil Co-requisite Courses Nil Progressive Cour				Courses	Ni	1																		
Course O	ffering Department			CSE		Data Book / Codes/Standards	Nil	Nil																
Course L	earning Rationale (CL	R): The p	ourpose of learning	ng this course is to	:			Learni	ing						Progr	ram Ou	ıtcon	nes (F	PO)					
CLR-1 :	Understand Data an	l Knowledge	Management an	d use of Devices in	n IoT Techno	ology.				1	2	3	4	5	6	7	8	9	1	1	1 2			
CLR-2	Understand State of	the Art – Arc	hitecture in IoT.							Eng	Proble	Design	Anal	Modern	Soci	Envi	Ethics	Indi	Соп	Project	Life			
CLR-3	CLR-3 To Understand the Architectural Overview of IoT					-	Engineering	olem Aı	&	Analysis, D	lem To	Society & Culture	ironme	8	Individual & Team	Communication	ect Mgt.	Life Long I						
CLR-4 :	CLR-4 Understand the IoT Reference Architecture and RealWorld Design Constraints				Blooms Level (1-6)		g Knov	ıalysis	Development	Design, Research	Tool Usage	Sulture	Environment & Sustainability		& Tean	ation	t. & Finance	Learning	PSO -	PSO	PSO			
CLR-5	CLR-5 To Understand the various IoT Protocols (Datalink, Network, Transport, Session, Service)			6) 6)		I evel	Knowledge		oment	Resear					n Work		nance	QiQ.	- 1	1	- 3			
CLR-6	Understand and app	y IoT protoc	ols appropriately	r									말			bility								
Course O	utcomes (CO):	At th	e end of this cou	arse, learners will b	e able to:																			
CO-1: Interpret the vision of IoT architecture from a global context.			2		3	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
CO-2:						3		3	-	2	-	-	-	-	-	-	-	-	-	-	-	-		
CO-3: Compare and Contrast the use of Devices, Gateways and Data Management in IoT.					4		3	1	-	2	-	-	-	-	-	-	-	-	-	-	-			
CO-4:						otocols wherever applicable		2		3	-	3	2	-	-	-	-	-	-	-	-	-	-	-
	CO-5: Apply the protocols and Techniques towards integration in relevant areas of IoT Product development					5		3	-	3	-	2	-	-	-	-	-	-	-	-	-			
CO-6:	0-6: Choose appropriate protocols for various layers (Datalink, Network, Transport, Session, Service)					2		3	2	-	2	-	-	-	<u> </u>	-	-	-	-	-	-			

	ration nour)	9	9	9	9	9
S-	SLO- M2M and IoT- Relevance and Transition		Data Management- Introduction	Introduction to RFID	Transport Layer Protocols - Introduction	Service Layer Protocols- Introduction
1	SLO- 2	Building an architecture	Managing M2M data: Data generation,	Introduction to NFC	TCP	oneM2M
S-	SLO- 1	Main design principles and needed capabilities	Data acquisition, Data validation	WSN(Large topic),	MPTCP	ETSI M2M
2	SLO- 2	IoT architecture outline	Data storage, Data processing	Narrow band IoT (NbIOT)	UDP	OMA
S-	SLO- 1	M2M and IoT Technology Fundamentals	Data remanence, Data analysis	WiFi	DCCP	BBF
3	SLO- 2	Devi ces and Gateways-Introduction	Data management,	PLC Communication Protocols: A comparison	SCT	Understanding Security and Interoperability
S-	SLO-	Basic Devices	Business processes in IoT	Popular radio protocols and its security drawbacks	TLS	Modes of attack: DoS, Getting Access, Guess, Man in Middle, Sniff, Post Scan
4	SLO-	Gateways	Everything as a Service (XaaS)	802.15.4 in depth	DTLS	Modes of attack: Web Crawl, Search Features and Wild Cards, Breaking Cipher

S-	SLO-	Advanced devices	M2M and IoT Analytics	Network Layer Protocols- Introduction	Session Layer-HTTP	Tools for achieving Security: VPN, X.509, Authentication,
5	SLO-	Need for networking	Knowledge Management	IPv4	CoAP	Tools for achieving Security: User names and Passwords, Message Brokers,
S-	SLO-	State of the art-ETSI M2M	Data Link Layer Protocols: PHY/MAC Layer:3GPP MTC	IPv6	Implementation demo of CoAP	Tools for achieving Security: Provisioning servers, Centralization versus decentralization,
6	SLO-	IoT Reference model-IoT Domain model	IEEE 802.11	6LoWPAN in depth	MQTT	The need for interoperability:
S-	SLO-	Information model	IEEE 802.15	6TiSCH	Implementation demo of MQTT	Combining Security and Interoperability
7	SLO-	Functional model	Wireless HART	ND	MQTT-SN	Need for Security in IoT Protocols – Introduction
S-	SLO-	Communication model	Z-Wave	DHCP	Implementation demo of MQTT-SN	Security in IoT Protocols :MAC 802.15.4
8	SLO-	Safety, privacy, trust, security model	Bluetooth, Bluetooth Low Energy	ICMP	XMPP	Security in IoT Protocols :6LoWPAN,
S-	SLO-	Introduction to Protocols- Physical, Data Link	Zigbee, Zigbee Smart Energy	RPL	AMQP	Security in IoT Protocols :RPL
9	SLO-	Introduction to Protocols- Network, Transport, Application	DASH7	CORPL, CARP	Introduction to Contiki- Practical demo	Security in IoT Protocols: Application Layer

	1.	Uckelmann, D., Harrison, M., & Michanelles, F. (Eds.). Architecting the internet of
		Things.doi:10.1007/978-3-642-19157-2, 2011
Learning	2.	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things by
U		Rob Barton, Gonzalo Salgueiro, David Hanes, Publisher: Cisco Press, Release Date: June 2017, ISBN:
Resource		9780134307091 (https://www.oreilly.com/library/view/iot-fundamentals-networking/9780134307091/)
S	3.	Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle,
		"From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st
		Edition, Academic Press, 2014

- Peter Waher, "Learning Internet of Things", PACKT publishing, BIRMINGHAM MUMBAI
 Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publications

Learning As	Learning Assessment											
	D1		Continuous Learning Assessment (50% weightage)									
	Bloom's Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4 (10%)		Final Examination	(30 % weightage)	
	Level of Tilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	-	15%	-	15%	-	-	-	15%	-	
Level 2	Understand	20%	-	25%	-	25%	-	-	-	25%	-	
Level 3	Apply	45%	-	40%	-	40%	-	40%	-	30%	-	
Level 4	Analyze	15%	-	20%	-	20%	-	30%	-	20%	-	
Level 5	Evaluate	-	-	-	-	-	-	30%	-	10%	-	
Level 6	Create	-	-	-	-	-	-	-	-	-	-	
	Total	10	0 %	10	0 %	100	0 %	100	0 %	100	%	

#CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. Vinay Solanki, Head IoT, Lenovo (APAC & MEA)	Dr.Zayaraj, Professor / CSE, PEC, Pondicherry	Dr. S.Babu, SRMIST
Dr. Paventhan Arumugum, Director (R&D), ERNET India	Dr.Vijalakshmi Associate Professor / CSE, PEC, Pondicherry	Dr.Kayalvizhi Jayavel, SRMIST
Shiv Kumar Ganesh, Full Stack Developer, Altimetrik	Dr.P.Yogesh, Professor/IT, Anna University, Chennai.	Mr.V.Haribaabu, SRMIST