ELEC 3035: Practice problems for part 1

Lecturer: Ivan Markovsky

- 1. Angle between vectors and length of a vector Verify that the triangle in \mathbb{R}^2 with vertexes (1/2, 1/2), (2, -1), and (4,4) is a right triangle and verify that the Pythagorean theorem holds for it.
- 2. Inverse of a 2×2 matrix and related graph Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. Visualize the mapping $u \stackrel{A}{\mapsto} y := Au \stackrel{A^{-1}}{\mapsto} z := A^{-1}y$ by drawing a graph from u_1, u_2 to y_1, y_2 and from y_1, y_2 to z_1, z_2 . Since z = u, the graph from u_1, u_2 to z_1, z_2 is simple: $u_1 \mapsto u_1 \\ u_2 \mapsto u_2$. Think of y := Au as a decoder and of $u = A^{-1}y$ as an encoder. (For larger matrices you have to relay on a computer for doing the coding and decoding operations for you.)
- 3. Distance to a subspace The 2-norm distance from a point $d \in \mathbb{R}^n$ to a set $\mathscr{B} \subset \mathbb{R}^n$ is defined as

$$\operatorname{dist}(d,\mathcal{B}) := \min_{\widehat{d} \in \mathcal{B}} \|d - \widehat{d}\|_{2},\tag{1}$$

i.e., $\operatorname{dist}(d, \mathcal{B})$ is the shortest distance from d to a point \widehat{d} in \mathcal{B} . A vector \widehat{d}^* that achieves the minimum of (1) (it need not be unique) is a point in \mathcal{B} that is closest to d.

Next we consider the special case when \mathcal{B} is a subspace.

(a) Let $\mathscr{B} = \operatorname{image}(a) = \{ \alpha a \mid \alpha \in \mathbb{R} \}$. Explain how to find dist $(d, \operatorname{image}(a))$. Find

$$\operatorname{dist}\left(\begin{bmatrix}1\\0\end{bmatrix},\operatorname{image}\left(\begin{bmatrix}1\\1\end{bmatrix}\right)\right)$$

and sketch the solution. Note that the best approximation \hat{d}^* of d in image(a) is the orthogonal projection of y onto image(a).

- (b) Let $\mathscr{B} = \operatorname{image}(P)$. Explain how to find $\operatorname{dist}(d, \mathscr{S})$. (You can assume that P is full column rank. Argue that this can be done without loss of generality.)
- (c) Let $\mathscr{B} = \ker(R)$. Explain how to find $\operatorname{dist}(d, \mathscr{S})$. (You can assume that R is full row rank. Argue that this can be done without loss of generality.)
- (d) In the case when \mathcal{B} is a subspace, is a solution \hat{d}^* of (1) always unique?
- (e) Prove that when \mathscr{B} is a subspace, $y \widehat{y}^*$ is orthogonal to \mathscr{S} . Is the converse true, *i.e.*, is it true that if for some \widehat{y} , $y \widehat{y}$ is orthogonal to \mathscr{S} , then $\widehat{y} = \widehat{y}^*$?

Solution:

(b) Using the image representation image(P) of the subspace \mathscr{B} , the distance computation problem (1) is equivalent to the standard least squares problem

$$\operatorname{dist}(d,\mathcal{B}) := \min \|d - \widehat{d}\|_2, \quad \text{subject to} \quad \widehat{d} = Pl.$$

Therefore, assuming that P is full column rank, the best approximation is

$$\widehat{d}^* = P(P^\top P)^{-1} P^\top d \tag{2}$$

and (after some work) the distance of d to \mathcal{B} is

$$dist(d,\mathcal{B}) = \|d - d^*\|_2 = \sqrt{d^{\top} (I - P(P^{\top}P)^{-1}P^{\top})d}.$$
 (3)

The assumption that "P is full column rank" can be done without loss of generality because there are aways full column rank P's such that $image(P) = \mathcal{B}$ (choose any basis for \mathcal{B}).

(c) Using the kernel representation $\ker(R)$ of the subspace \mathscr{B} , the distance computation problem (1) is equivalent to the problem

$$\operatorname{dist}(d,\mathcal{B}) := \min \|d - \widehat{d}\|_2$$
, subject to $\widehat{R}d = 0$.

As written, this problem is not a standard problem, however, with the change of variables $\widetilde{d} := d - \widehat{d}$ it can be rewritten as an equivalent ordinary least norm problem

$$\operatorname{dist}(d,\mathscr{B}) := \min \|\widetilde{d}\|_2$$
, subject to $R\widetilde{d} = Rd$.

Therefore, assuming that *R* is full row rank,

$$\widetilde{d}^* = R^{\top} (RR^{\top})^{-1} Rd$$

and

$$\operatorname{dist}(d,\mathscr{B}) = \|\widetilde{d}^*\|_2 = \sqrt{d^\top R^\top (RR^\top)^{-1} R d}.$$
(4)

Again, the assumption that R is full row rank is without loss of generality because there are full row rank matrices R, such that $\ker(R) = \mathcal{B}$.

(a) Substituting $d = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $P = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in (3), we have

$$\operatorname{dist}\left(\begin{bmatrix}1\\0\end{bmatrix},\operatorname{image}\left(\begin{bmatrix}1\\1\end{bmatrix}\right)\right) = \sqrt{\begin{bmatrix}1&0\end{bmatrix}\left(\begin{bmatrix}1&0\\0&1\end{bmatrix} - \begin{bmatrix}1\\1\end{bmatrix}\left(\begin{bmatrix}1&1\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}\right)^{-1}\begin{bmatrix}1&1\end{bmatrix}\right)\begin{bmatrix}1\\0\end{bmatrix}} = \sqrt{\begin{bmatrix}1&0\end{bmatrix}\begin{bmatrix}1/2&-1/2\\-1/2&1/2\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}} = 1/\sqrt{2}$$

- (d) Yes, as shown in part 3b, \hat{d}^* is unique (and can be computed by (2)).
- (e) The vector $d \hat{d}^*$ is orthogonal to the subspace \mathscr{B} if and only if $d \hat{d}^*$ is orthogonal to all vectors of a basis of \mathscr{B} . Using (2) and the basis P, we have

$$(\widehat{d} - d^*)^{\top} P = d^{\top} (I - P(P^{\top} P) P^{\top}) P = 0,$$

which shows that is $d - \hat{d}^*$ is orthogonal to \mathscr{B} .

The converse statement $(d-\widehat{d})$ being orthogonal to \mathscr{B} implies that \widehat{d} is the closest point in \mathscr{B} to d) is true but is more difficult to show. It completes the proof of what is known as the "orthogonality principle"—a point \widehat{d} is an optimal approximation of a point d in a subspace \mathscr{B} if and only if the approximation error $d-\widehat{d}$ is orthogonal to \mathscr{B} .

- 4. Distance to an affine space Consider again the distance $dist(d, \mathcal{B})$ defined in (1). In this problem, we consider the case when \mathcal{B} is an affine set, i.e., $\mathcal{B} = \mathcal{S} + a$, where \mathcal{S} is a subspace and a is a shift.
 - (a) Explain how to reduce the problem of computing the distance from a point to an affine space to an equivalent problem of computing the distance to a subspace.

(b) Find

$$\operatorname{dist}\left(\begin{bmatrix}0\\0\end{bmatrix}, \ker(\begin{bmatrix}1&1\end{bmatrix}) + \begin{bmatrix}1\\2\end{bmatrix}\right)$$

and sketch the solution.

Solution:

• The problem of computing $dist(d, \mathcal{A})$ reduces to an equivalent problem of computing the distance of a point to a subspace by the change of variables d' := d - a

$$\operatorname{dist}(d,\mathscr{B}) = \min_{\widehat{d} \in \mathscr{B}} \|d - \widehat{d}\|_2 = \min_{\widehat{d}' \in \mathscr{L}} \|d' - \widehat{d}'\|_2 = \operatorname{dist}(d',\mathscr{L}).$$

• Using the change of variables argument we have

$$\operatorname{dist}\left(\begin{bmatrix}0\\0\end{bmatrix},\ker(\begin{bmatrix}1&1\end{bmatrix})+\begin{bmatrix}1\\2\end{bmatrix}\right)=\operatorname{dist}\left(-\begin{bmatrix}1\\2\end{bmatrix},\ker(\begin{bmatrix}1&1\end{bmatrix})\right).$$

Then using (4) we have

$$\operatorname{dist}\left(-\begin{bmatrix}1\\2\end{bmatrix},\ker(\begin{bmatrix}1&1\end{bmatrix})\right) = \sqrt{\begin{bmatrix}1&2\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}\left(\begin{bmatrix}1&1\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}\right)^{-1}\begin{bmatrix}1&1\end{bmatrix}\begin{bmatrix}1\\2\end{bmatrix}} = \sqrt{9/2}.$$

5. Hand computation of eigenvalues and eigenvectors of a 2×2 matrix Find the eigenvalues and a set of linearly independent eigenvectors of the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Answer:

Eigenvalues:
$$\lambda_1 = \frac{1+\sqrt{5}}{2} \qquad \lambda_2 = \frac{1-\sqrt{5}}{2}$$
Eigenvectors:
$$v_1 = \alpha \begin{bmatrix} 1 \\ \lambda_1 \end{bmatrix}, \alpha_1 \in \mathbb{R} \quad v_2 = \alpha_2 \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix}, \alpha_2 \in \mathbb{R}$$

6. Fibonacci numbers The Fibonacci numbers $f(0), f(1), f(2), \ldots$ are defined by

$$f(0) = 1$$
, $f(1) = 1$, and $f(t+1) = f(t) + f(t-1)$, for $t = 2, 3, ...$ (FN)

Find the 50th Fibonacci numbers f(50).

Solution:

A polynomial representation of (FN) is $r(\sigma)f = 0$, where $r(z) = z^2 - z - 1$. The general solution is of the form

$$f(t) = c_1 z_1^t + c_2 z_2^t$$

where $z_1 = \frac{1+\sqrt{5}}{2}$ and $z_2 = \frac{1-\sqrt{5}}{2}$ are the roots of r(z) (the poles of the system) and c_1 and c_2 are constants depending on the initial conditions. In order to find c_1 and c_2 , we solve the system

Finally, we have

$$f(50) = \frac{z_2 - 1}{z_2 - z_1} z_1^{50} + \frac{1 - z_1}{z_2 - z_1} z_2^{50},$$

which is an explicit expression (since z_1 and z_2 are known numbers) and can be evaluated to find that

$$f(50) = 20365011074.$$

7. Harmonic oscillator The differential equation defining the behaviour of a harmonic oscillator is

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}y = -ky,$$

where k is a positive constant. (A physical example of a harmonic oscillator is a unit mass attached to a spring, in which case k is the spring constant. You have seen harmonic oscillators also in circuit theory.) Find a state space representation of the harmonic oscillator. Give a formula for the trajectories of the system, starting from a given initial condition.

(See, Lecture 3, page 16.)

8. Feedforward control Given a static system $\mathscr{B}_2 = \{(u,y) \mid y = A_2 u\}$ (the plant), explain how to find a system $\mathscr{B}_1 = \{(r,u) \mid u = A_1 r\}$ (feedforward controller), such that the series connection of \mathscr{B}_1 and \mathscr{B}_2 (the controlled system) matches or is as close as possible to a given system $\mathscr{B}_3 = \{(r,y) \mid y = A_3 r\}$ (reference model). You can assume that the matrix A_2 is full rank.

Solution: The controlled system is

$$\mathcal{B}_{c} = \{ (r,y) \mid \text{ there is } u \text{ such that } (r,u) \in \mathcal{B}_{1} \text{ and } (u,y) \in \mathcal{B}_{2} \}$$

$$= \{ (r,y) \mid \text{ there is } u \text{ such that } u = A_{1}r \text{ and } y = A_{2}u \}$$

$$= \{ (r,y) \mid y = \underbrace{A_{2}A_{1}r} \} = \{ (r,y) \mid y = A_{c}r \}.$$

Then the problem of matching the reference model with the controlled system is equivalent to the problem of solving the linear system of equations

$$A = A_2 A_1$$

for the unknown A_1 . Since A_2 is full rank, solution A_1 exists, for any given A, if and only if the system of equations has as many unknowns as equations or is overdetermined. Let $m = \dim(u)$, $p = \dim(y)$, and $d = \dim(r)$. The number of equations is pd and the number of unknowns is md, so we distinguish the following cases:

- m = p there is a unique solution $A_1 = A_2^{-1}A$,
- m > p there are infinitely many solutions, a particular solution is the least norm one, $A_{1,\ln} = A_2^{\top} (A_2 A_2^{\top})^{-1} A$,
- p > m there is no solution, a least squares approximate solution is, $A_{1,ls} = (A_2^{\top}A_2)^{-1}A_2^{\top}A$.
- 9. Questions on controllability
 - (a) Give an example of uncontrollable first order system (we will call this system \mathcal{B}_1) and an example of uncontrollable second order system (we will call this system \mathcal{B}_2).

- (b) Sketch the controllable subspaces of \mathcal{B}_1 and \mathcal{B}_2 .
- (c) For \mathscr{B}_2 , choose a specific state $x_{\text{des}} \in \mathbb{R}^2$ that is not reachable from the origin (in any number of time steps) and find the closest state \widehat{x}_{des} to x_{des} that is reachable from the origin.
- (d) For \mathcal{B}_2 , derive a control input that transfers x(0) = 0 to $x(2) = \hat{x}_{des}$.
- 10. Questions on observability Consider a given autonomous linear system \mathscr{B} of order n with p outputs and a given trajectory $y_d = (y_d(1), \dots, y_d(T))$ of \mathscr{B} . You can assume that \mathscr{B} is specified by an observable state space representation.
 - (a) Is it always possible to predict the future of y_d from $T \ge n$ samples?
 - (b) Are there cases when the future of y_d can be predicted from T < n samples?
 - (c) In the cases when the future of y_d can not be predicted from the given data, would it help to use future data points $y_d(t_1, ..., t_K)$, $n < t_1 < \cdots < t_K$. If so, how many? Do they need to be sequential, i.e., $t_{i+1} = t_i + 1$?
- 11. [Lue79, Chapter 2, Problem 2] A bank offers 7% annual interest. What would be the overall annual rate if the 7% interest were compounded quarterly?

Solution: Let y(k) denote the amount in the account at the beginning of season k and the bank pays interest at the end of each season. If the 7% interest were compounded quarterly, then the quarter interest is 7/4% and the account balance is governed by

$$y(k+1) = (1+7/4\%)y(k).$$

For an year, suppose y(k) is the amount in the account at the beginning of this year, then y(k+4) is the amount in the account at the beginning of following year. In order to know the overall annual rate, we should specify the relationship between y(k) and y(k+4). We have

$$y(k+4) = (1+7/4\%)y(k+3) = (1+7/4\%)^2y(k+2)$$
$$= (1+7/4\%)^3y(k+1) = (1+7/4\%)^4y(k).$$

Thus, the annual rate is

$$(1+7/4\%)^4 - 1 = 7.1859\%.$$

12. [Lue79, Chapter 2, Problem 5] Find the second order linear homogeneous difference equation which generates the sequence 1, 2, 5, 12, 29, 70, 169. What is the limiting ratio of consecutive terms?

Solution: By observing the sequence we find the relationship among three consecutive terms is

$$5 = 2 \cdot 2 + 1$$

$$12 = 2 \cdot 5 + 2$$

$$29 = 2 \cdot 12 + 5$$

$$70 = 2 \cdot 29 + 12$$

$$169 = 2 \cdot 70 + 29$$

This relation can be written as a second-order linear homogeneous difference equation

$$y(k+2) = 2y(k+1) + y(k)$$
.

By dividing both sides of the equation by y(k+1), the equation becomes

$$\frac{y(k+2)}{y(k+1)} = 2 + \frac{y(k)}{y(k+1)}.$$

Here $\frac{y(k+1)}{y(k)}$ is the ratio of two consecutive term. When $k \to \infty$, the ratio converges to a constant which defines as a. Therefore

$$\frac{y(k+2)}{y(k+1)} = \frac{y(k+1)}{y(k)} = a, \qquad k \to \infty.$$

The limiting ratio a satisfy an equation

$$a=2+\frac{1}{a}$$
 \Longrightarrow $a^2=2a+1$ \Longrightarrow $a=1\pm\sqrt{2}$.

However, all terms of the sequence are positive so that the ratio of consecutive terms is positive. Therefore, the limiting ratio $a = 1 + \sqrt{2}$.

13. [Lue79, Chapter 2, Problem 10] Consider the second order difference equation

$$y(k+2) - 2ay(k+1) + a^2y(k) = 0.$$

Its characteristic polynomial has both roots equal to $\lambda = a$.

(a) Show that both

$$y(k) = a^k$$
 and $y(k) = ka^k$

are solutions.

(b) Find the solutions of this equation that satisfies the auxiliary conditions y(0) = 1 and y(1) = 0.

Solution:

(a) To check $y(k) = a^k$, we note that $y(k+2) = a^{k+2}$ and $y(k+1) = a^{k+1}$

$$a^{k+2} - 2a \cdot a^{k+1} + a^2 \cdot a^k = a^{k+2} - 2a^{k+2} + a^{k+2} = 0.$$

Thus, $y(k) = a^k$ is a solution. Checking $y(k) = ka^k$ we have

$$(k+2)a^{k+2} - 2a(k+1)a^{k+1} + a^2ka^k = (k+2)a^{k+2} - 2(k+1)a^{k+2} + ka^{k+2}$$
$$= (k+2)a^{k+2} - 2k - 2k + ka^{k+2} = 0.$$

Thus, $y(k) = ka^k$ is also a solution.

(b) A second-order linear difference equation has two degrees of freedom in its general solution, *i.e.*, two linearly independent solutions can form a fundamental set of solutions. We have found two solutions a^k and ka^k . It is easy to prove that these two solutions are linear independent. Because we can't find two constant c_1 and c_2 at least one of which is nonzero to satisfy

$$c_1 a^k + c_2 k a^k = 0$$

for all k = 0, 1, 2, ..., N. Thus, any solution y(k) can be expressed as a linear combination of the fundamental set of solutions a^k and ka^k .

$$y(k) = c_1 a^k + c_2 k a^k,$$

where c_1 and c_2 are constant. Using the conditions y(0) = 1 and y(1) = 0, we find c_1 and c_2

$$y(0) = c_1 a^0 = 1 \implies c_1 = 0$$

 $y(1) = c_1 a + c_2 a = a + c_2 a = 0 \implies c_2 = -1.$

Thus, the solution to this equation is

$$y(k) = a^k - ka^k.$$

References

[Lue79] D. G. Luenberger. Introduction to Dynamical Systems: Theory, Models and Applications. John Wiley, 1979.