(Pages: 4)

P - 2482

Reg. No.	:		
----------	---	--	--

Name :

Fifth Semester B.Sc. Degree Examination, December 2022 First Degree Programme under CBCSS

Mathematics

Core Course

MM 1544 : VECTOR ANALYSIS

(2014 – 2017 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all questions from this section. Each question carries 1 mark.

- 1. Define the divergence of \overline{F} .
- 2. Find the directional derivative of $f(x,y,z) = x^2y yz^3 + z$ at (1, -2, 0) in the direction of the vector $2\hat{i} + \hat{j} 2\hat{k}$.
- 3. Find the gradient of $\overline{F}(x,y,z) = e^z \ln(x^2 + y^2)$.
- 4. State Gauss theorem.
- 5. Define curl of a vector field.
- 6. Find the divergence of $\overline{F} = 6x^2z\hat{i} + 2x^2y\hat{j} yz^2\hat{k}$.
- 7. Show that $\overline{F} = yz\hat{i} + xz\hat{j} + xy\hat{k}$ is solenoidal.

- 8. A vector that is perpendicular to both the vectors \vec{A} and \vec{B} is ———.
- 9. Calculate the curl of the vector field \overline{F} , $\overline{F}(x,y) = (x^2 2y)\hat{i} + (xy y^2)\hat{j}$.
- 10. Div $(\overline{F} \times \overline{G}) = \underline{\hspace{1cm}}$

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight from the following. Each question carries 2 marks.

- 11. Find the curl \overline{F} , $\overline{F} = x^2 z \hat{i} 2y^3 z^2 \hat{j} + xy^2 z \hat{k}$ at (1, 1, 1).
- 12. Find the directional derivative of $f(x, y, z) = x^3 xy^2 z$ at (1, 1, 0) in the direction of $A = 2\hat{i} 3\hat{j} + 6\hat{k}$.
- 13. Define inverse square field. State Gauss law of inverse square field.
- 14. Show that $\overline{F} = (2x 3)\hat{i} z\hat{j} + (\cos z)\hat{k}$ is not conservative.
- 15. Prove that if ϕ is a scalar function *curl* (*grad* ϕ) = 0.
- 16. Let $\vec{F}(x,y) = 2x\hat{i} + 3y\hat{j} + 4z\hat{k}$. Find the potential function.
- 17. Evaluate $\oint_C (x-y)dx + x dy$, where C is the unit circle $\overline{r}(t) = \cos t \hat{i} + \sin t \hat{j}$, $0 \le t \le 2\pi$.
- 18. Find the gradient field of $f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$.
- 19. Evaluate $\int_{c} (xy + y + z) ds$ along the curve $\bar{r}(t) = 2t\hat{i} + t\hat{j} + (2 2t)\hat{k}$ $0 \le t \le 1$.
- 20. Find the workdone by $\overline{F} = (y x^2)\hat{i} + (z y^2)\hat{j} + (x z^2)\hat{k}$ over the curve $\overline{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}$, $0 \le t \le 1$, from (0, 0, 0) to (1, 1, 1).
- 21. Find the circulation of the field $\overline{F} = (x y)\hat{i} + x\hat{j}$ around the circle $x^2 + y^2 = 1$.
- 22. Prove that $div(curl \overline{F}) = 0$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six from the following. Each question carries 4 marks.

- 23. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 24. A fluids velocity field is $\overline{F} = x\hat{i} + z\hat{j} + y\hat{k}$. Find the flow along the helix $\overline{r}(t) = \cos t\hat{i} + \sin t\hat{j} + t\hat{k}$, $0 \le t \le \frac{\pi}{2}$.
- 25. Evaluate $\int_{c}^{d} x^{2}y \, dx + (y + xy^{2}) \, dy$, where C is the region enclosed by $y = x^{2}$, $x = y^{2}$.
- 26. Find the potential function of $\overline{F} = x^2 y \hat{i} + 5xy^2 \hat{j}$.
- 27. Evaluate $\iint_{S} (7x\hat{i} z\hat{k}) \cdot \overline{n} d\sigma$ over the sphere $x^2 + y^2 + z^2 = 4$ using divergence theorem.
- 28. Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$, where $F = (x^2 + y^2)\hat{i} 2xy\hat{j}$, C is the rectangle in the XY plane bounded by x = 0, x = a, y = 0, y = a.
- 29. Prove that $div(f\overline{V}) = f \cdot div \overline{V} + \overline{V} \cdot grad f$, where f is a scalar function.
- 30. Find the flux of $\overline{F} = xy\hat{i} + yz\hat{j} + xz\hat{k}$ outward through the surface of cube cut from first octant by planes x = 1, y = 1, z = 1.
- 31. If $\overline{F} = (3x^2 + 6y)\hat{i} 14yz\hat{j} + 20xz^2\hat{k}$. Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$, where C is the straight line joining (0, 0, 0) and (1, 0, 0).

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two from the following. Each question carries 15 marks.

- 32. (a) State Stoke's theorem.
 - (b) Verify Stokes theorem for $F = y\hat{i} x\hat{j}$ for the hemisphere $S: x^2 + y^2 + z^2 = 9$, $z \ge 0$, its bounding circle $C: x^2 + y^2 = 9$, z = 0.
- 33. Evaluate the surface integral $\iint_{\sigma} x^2 ds$ over the sphere $x^2 + y^2 + z^2 = 1$.
- 34. Prove that
 - (a) $\operatorname{div}(\phi \overline{F}) = \operatorname{grad} \phi \overline{F} + \phi \operatorname{div} \overline{F}$
 - (b) $\operatorname{curl}(\phi \overline{F}) = (\operatorname{grad} \phi) \times \overline{F} + \phi \operatorname{curl} \overline{F}$
- 35. Verify divergence theorem for the function $\overline{F} = (x, y, z) = x\hat{i} + y\hat{j} + z\hat{k}$, where σ is the spherical surface $x^2 + y^2 + z^2 = 1$.

 $(2 \times 15 = 30 \text{ Marks})$