5. előadás

VALÓS SOROZATOK 4.

Nevezetes sorozatok 2.

5. Sorozatok nagyságrendje.

1. tétel.

 $\mathbf{1}^o$ Ha $k \in \mathbb{N}$ és a > 1 valós szám, akkor

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0.$$

 $\mathbf{2}^{o}$ Minden $a \in \mathbb{R}$ esetén

$$\lim_{n \to +\infty} \frac{a^n}{n!} = 0.$$

 3^o

$$\lim_{n \to +\infty} \frac{n!}{n^n} = 0.$$

Bizonyítás.

 $\mathbf{1}^o$ Adott $k \in \mathbb{N}$ és a > 1 valós számra értelmezzük az

$$a_n := \frac{n^k}{a^n} \qquad (n \in \mathbb{N}^+)$$

sorozatot. A sorozat alulról korlátos, mert $a_n>0$ minden $n\in\mathbb{N}^+$ esetén. Másrészt

$$(*) a_{n+1} = \frac{(n+1)^k}{a^{n+1}} = \frac{1}{a} \cdot \frac{(n+1)^k}{n^k} \cdot \frac{n^k}{a^n} = \frac{1}{a} \cdot \left(1 + \frac{1}{n}\right)^k \cdot a_n (n \in \mathbb{N}^+).$$

Mivel

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^k = 1 \quad \text{és} \quad a > 1 \qquad \Longrightarrow \qquad \exists \, n_0 \in \mathbb{N}, \, \, \forall \, n > n_0 \colon \left(1 + \frac{1}{n} \right)^k < a,$$

így (*) miatt $\forall n > n_0$: $a_{n+1} < a_n$. Ez azt jelenti, hogy (a_n) egy index után monoton csökkenő. Ha figyelembe vesszük azt is, hogy (a_n) alulról korlátos, akkor azt kapjuk, hogy (a_n) konvergens. Jelölje $A := \lim (a_n)$.

 (a_{n+1}) részsorozata az (a_n) sorozatnak, és ezért $\lim (a_{n+1}) = A$. Ekkor (*) miatt

$$A \leftarrow a_{n+1} = \frac{1}{a} \cdot \underbrace{\left(1 + \frac{1}{n}\right)^k}_{\rightarrow 1} \cdot \underbrace{a_n}_{\rightarrow A} \rightarrow \frac{A}{a}, \quad \text{ha} \quad n \rightarrow +\infty.$$

A határérték egyértelműsége miatt A=A/a, ami csak akkor lehetséges, ha A=0, hiszen $a\neq 1.$

1

 $\mathbf{2}^o$ Adott $a \in \mathbb{R}$ valós számra értelmezzük az

$$a_n := \frac{a^n}{n!} \quad (n \in \mathbb{N}^+) \qquad \text{és a} \qquad b_n := \frac{|a|^n}{n!} \quad (n \in \mathbb{N}^+)$$

sorozatokat. A (b_n) sorozat alulról korlátos, mert $b_n \geq 0$ minden $n \in \mathbb{N}^+$ esetén. Másrészt

$$(**) b_{n+1} = \frac{|a|^{n+1}}{(n+1)!} = \frac{|a|}{n+1} \cdot \frac{|a|^n}{n!} = \frac{|a|}{n+1} \cdot b_n (n \in \mathbb{N}^+).$$

Mivel

$$\lim_{n \to +\infty} \frac{|a|}{n+1} = 0 \qquad \Longrightarrow \qquad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \frac{|a|}{n+1} < 1,$$

így (**) miatt $\forall n > n_0 : b_{n+1} < b_n$. Ez azt jelenti, hogy (b_n) egy index után monoton csökkenő. Ha figyelembe vesszük azt is, hogy (b_n) alulról korlátos, akkor azt kapjuk, hogy (b_n) konvergens. Jelölje $B := \lim (b_n)$.

 (b_{n+1}) részsorozata a (b_n) sorozatnak, ezért $\lim (b_{n+1}) = B$. Ekkor (**) miatt

$$B \leftarrow b_{n+1} = \underbrace{\frac{|a|}{n+1}}_{\to 0} \cdot \underbrace{b_n}_{\to B} \to 0 \cdot B = 0$$
, ha $n \to +\infty$.

A határérték egyértelműsége miatt B=0, tehát (b_n) nullasorozat. Mivel

$$b_n := |a_n| \qquad (n \in \mathbb{N}^+),$$

ezért (a_n) is nullasorozat.

 $\mathbf{3}^o$ Ha $2 \leq n \in \mathbb{N}$, akkor

$$0 < \frac{n!}{n^n} = \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{n}{n} \cdot \frac{1}{n} \le \frac{1}{n}.$$

Mivel $\lim_{n\to+\infty}\frac{1}{n}=0$, ezért a közrefogási szerint $\lim_{n\to+\infty}\frac{n!}{n^n}=0$.

A tételben olyan hányados-sorozatokat látunk, amelyek nullához tartanak, és tagjainak a számlálója és a nevezője pozitívak (a 2. sorozatnál csak a>0 esetén). Ezért a számlálóban lévő sorozat értéke kisebb, mint a nevezőben lévő sorozat értéke "elég nagy" indexekre. Az első sorozatnál például

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0 \qquad \Longrightarrow \qquad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \frac{n^k}{a^n} < 1, \quad \text{azaz} \quad n^k < a^n$$

rögzített $k \in \mathbb{N}$ és a > 1 értékek esetén. Legyen pl. k := 1000 és a := 1,0001. Ekkor a fentiek szerint van olyan n_0 index, hogy ha $n > n_0$, akkor

$$n^{1000} < 1,0001^n$$

teljesül. A már bevezetett szóhasználattal azt mondhatjuk, hogy a fenti egyenlőtlenség majdnem minden n indexre, vagy elég nagy n indexekre teljesül. De a határérték értelmezése szerint ennél erősebb állítás is igaz:

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0 \qquad \Longrightarrow \qquad \forall c > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \frac{n^k}{a^n} < \frac{1}{c}, \quad \text{azaz} \quad c \, n^k < a^n.$$

Tehát (a^n) úgy tart $+\infty$ -hez, hogy elég nagy n indexekre a sorozat tagjai nagyobbak, mint az (n^k) tagjainak akárhányszorosára, bár (n^k) is tart $+\infty$ -hez.

Általában: ha az (a_n) és a (b_n) sorozatnak is $+\infty$ a határértéke, akkor azt mondjuk, hogy (b_n) erősebben (vagy sokkal gyorsabban) tart $+\infty$ -hez, mint (a_n) , ha

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = 0.$$

Ebben az esetben azt is mondjuk, hogy " b_n sokkal nagyobb, mint a_n , ha n elég nagy" (másként fogalmazva: " a_n sokkal kisebb, mint b_n , ha n elég nagy"), és ezt így jelöljük:

$$a_n \ll b_n$$
, ha *n* elég nagy.

A most bevezetett jelöléssel a tétel állításait így fejezhetjük ki: ha a>1 rögzített valós szám és k rögzített pozitív természetes szám, akkor

$$n^k \ll a^n \ll n! \ll n^n$$
, ha n elég nagy.

 $\boxed{\mathbf{6.}}$ Az e szám bevezetése.

2. tétel (Az e szám értelmezése). Az

$$a_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N}^+)$$

sorozat szigorúan monoton növekedő és felülről korlátos, tehát konvergens. Legyen

$$e := \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n.$$

Bizonyítás. Az állítást a számtani és a mértani közép közötti egyenlőtlenség ötletes felhasználásaival bizonyítjuk.

ullet A monotonitás igazolásához az egyenlőtlenséget az (n+1) darab

1,
$$1 + \frac{1}{n}$$
, $1 + \frac{1}{n}$, ..., $1 + \frac{1}{n}$

számra alkalmazzuk. Mivel ezek nem mind egyenlők, ezért

$$\sqrt[n+1]{1 \cdot \left(1 + \frac{1}{n}\right)^n} < \frac{1 + n \cdot \left(1 + \frac{1}{n}\right)}{n+1} = \frac{n+2}{n+1} = 1 + \frac{1}{n+1}.$$

Mindkét oldalt (n + 1)-edik hatványra emelve azt kapjuk, hogy

$$a_n = \left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1} = a_{n+1} \qquad (n \in \mathbb{N}^+),$$

amivel beláttuk, hogy a sorozat szigorúan monoton növekvő.

• A korlátosság bizonyításához most az (n+2) darab

$$\frac{1}{2}$$
, $\frac{1}{2}$, $1 + \frac{1}{n}$, $1 + \frac{1}{n}$, ..., $1 + \frac{1}{n}$

számra alkalmazzuk ismét a számtani és a mértani közép közötti egyenlőtlenséget:

$$\sqrt[n+2]{\frac{1}{2} \cdot \frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)^n} < \frac{2 \cdot \frac{1}{2} + n \cdot \left(1 + \frac{1}{n}\right)}{n+2} = \frac{n+2}{n+2} = 1.$$

Ebből következik, hogy

$$a_n = \left(1 + \frac{1}{n}\right)^n < 4 \qquad (n \in \mathbb{N}^+),$$

ezért a sorozat felülről korlátos.

A monoton sorozatok határértékére vonatkozó tételből következik, hogy a sorozat konvergens.

Megjegyzések.

1º A tétel állítását a sorozat néhány tagjának a kiszámításával illusztráljuk: (lásd például https://www.wolframalpha.com/)

n	1	2	3	4	5	8	100	1 000	10 000
$\left(1+\frac{1}{n}\right)^n$	2	2,25	2,37	2,44	2,49	2,57	2,7048	2,71692	2,71815

 2^o Hiba lenne arra gondolni, hogy mivel $1 + \frac{1}{n} \to 1$, ezért $\left(1 + \frac{1}{n}\right)^n \to 1^n = 1$. Ebben az esetben a szorzat és a határérték kapcsolatára vonatkozó tétel **nem használható**, hiszen

$$\left(1+\frac{1}{n}\right)^n = \underbrace{\left(1+\frac{1}{n}\right)\cdot\left(1+\frac{1}{n}\right)\cdots\left(1+\frac{1}{n}\right)}_{n\text{-gray}},$$

és itt a tényezők száma függ az n-től.

 $\mathbf{3}^{o}$ Általában: 1-hez közeli a_n számok nagy kitevőjű b_n hatványaira az a_n és b_n megválasztásától függően minden eset előfordulhat, ezért ekkor "1+∞" típusú kritikus határértékről beszélünk. Ezt illusztrálják az alábbi példák:

$$a_n := \sqrt[n]{c} \to 1 \quad (c > 0), \qquad b_n := n \to +\infty, \qquad \Longrightarrow \qquad a_n^{b_n} = c,$$

$$a_n := \sqrt[n]{n} \to 1, \qquad b_n := n \to +\infty \qquad \Longrightarrow \qquad a_n^{b_n} = n \to +\infty,$$

$$a_n := \begin{cases} 1, & \text{ha } n = 1, 3, 5, \dots \\ \sqrt[n]{2}, & \text{ha } n = 2, 4, 6, \dots \end{cases} \to 1, \qquad b_n := n \to +\infty, \qquad \Longrightarrow \qquad \nexists \lim \left(a_n^{b_n}\right).$$

- 4^{o} Az e szám a matematika egyik legfontosabb állandója, amit $Leonhard\ Euler\ (1707–1783)$ svájci matematikus vezetett be 1748-ban.
- ${f 5}^o$ Az $\left(\left(1+rac{1}{n}
 ight)^n
 ight)$ sorozat határértékére külön szimbólum bevezetésének indoka a következő: később meg fogjuk mutatni, hogy e irracionális szám, közelítő értéke $e\approx 2,718$.

Az is igaz, hogy e ún. **transzcendens szám**. Ez azt jelenti, hogy nincs olyan egész együtthatós polinom, aminek ez a szám gyöke lenne. ($\sqrt{2}$ például irracionális, de nem transzcendens szám, mert $\sqrt{2}$ gyöke az $x^2 - 2 = 0$ egyenletnek.) Azokat a valós számokat, amelyek valamely egész együtthatós polinomnak a gyökei **algebrai számnak** nevezzük. ($\sqrt{2}$ tehát algebrai szám.)

7. Az $\left(\left(1+\frac{x}{n}\right)^n\right)$ sorozat határértéke.

3. tétel. Ha x tetszőleges racionális szám, akkor

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n = e^x.$$

Bizonyítás. Nélkül.

Megjegyzések.

 ${f 1}^o$ Később általánosítani fogjuk a hatványozást valós kitevőkre is. Igazolható, hogy a tétel állítása minden x valós számra is igaz.

2º Megmutatjuk a

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

határérték egy pénzügyi alkalmazását. Ha x_0 forintot évi p%-os kamatra helyezzük a bankba, akkor egy év után

$$x_0 (1 + p/100)$$

forintot kapunk vissza. Ha havi kamattal számítjuk az évip%-os kamatot, akkor a visszakapott összeg

$$x_0 \left(1 + \frac{p/100}{12} \right)^{12}$$

forint lesz egy év után. Megpróbálhatunk napi kamattal számolni, vagy akár még jobban növelni a kamatfizetési gyakoriságot. Ha a betett összegünk egy évben egyenletesen n-szer kamatozik p%-os évi kamattal, akkor az év végén

$$x_0 \left(1 + \frac{p/100}{n} \right)^n$$

forintot kapunk vissza. Elég nagy n esetén az előbbi képlet helyett használhatjuk az

$$x_0 \cdot e^{p/100}$$

képletet, ami a sorozat határértéke. Ez olyan, mint ha a kamatfizetés technikailag minden időpillanatban történne. Ezért ezt **folytonos kamatozásnak** nevezik. ■

Rekurzív sorozatok határértéke

A monoton sorozatok konvergenciájára vonatkozó tételt egyszerű feltételei miatt már több esetben is alkalmaztuk. A tételt **számos**, rekurzióval megadott sorozatok konvergencia-vizsgálatánál is jól használhatjuk. A módszer alkalmazása során bebizonyítjuk, hogy a sorozat konvergens; a határértékét pedig a rekurzív képletből nyerhető egyenlet gyökeiből választjuk ki. A módszer hatékonyságát mutatja, hogy a sorozatok nagyságrendjéről szóló részben a határértékek kiszámításához két esetben is felírtuk a sorozatot rekurzív alakban.

Most ennek a módszernek a felhasználásával igazoljuk pozitív valós számok *m*-edik gyökének a **létezését**, és egy egyszerű konstruktív eljárást adunk ezek közelítő kiszámítására.

Emlékeztetünk arra, hogy ha A>0 tetszőleges valós szám és $m\geq 2$ természetes szám, akkor az $\sqrt[m]{A}$ szimbólummal jelöljük (és az A szám m-edik gyökének nevezzük) azt a pozitív valós számot, amelynek az m-edik hatványa A azaz $\alpha^m=A$. A következő tétel azt (is) állítja, hogy adott A és m esetén egyértelműen létezik a szóban forgó szám.

- 4. tétel (Newton-féle iterációs eljárás m-edik gyökök keresésére). Legyen A>0 valós szám és $m\geq 2$ természetes szám. Ekkor:
 - 1º Pontosan egy olyan α pozitív valós szám létezik, amelyre $\alpha^m = A$ (α -t az A szám m-edik gyökének nevezzük, és az $\sqrt[m]{A}$ szimbólummal jelöljük).
 - 2^o Ez az α szám az

$$\begin{cases} a_0 > 0 \text{ } tetsz\"{o}leges \text{ } val\'{o}s, \\ a_{n+1} := \frac{1}{m} \left(\frac{A}{a_n^{m-1}} + (m-1)a_n \right) \quad (n \in \mathbb{N}) \end{cases}$$

rekurzióval értelmezett (a_n) (ún. iterációs) sorozat határértéke, azaz

$$\lim_{n \to +\infty} a_n = \alpha = \sqrt[m]{A}.$$

Bizonyítás. Az állítást több lépésben igazoljuk.

- 1. lépés. Az egyértelműség. Mivel $0 < \alpha_1 < \alpha_2 \Longrightarrow \alpha_1^m < \alpha_2^m$, ezért legfeljebb egy olyan pozitív α szám létezik, amelyre $\alpha^m = A$.
- **2.** lépés. Teljes indukcióval igazolható, hogy az (a_n) sorozat "jól definiált" és $a_n > 0$ $(n \in \mathbb{N})$.
- 3. lépés. Igazoljuk, hogy az (a_n) sorozat konvergens. A monoton sorozatok konvergenciájára vonatkozó tételt fogjuk alkalmazni.

A sorozat alulról korlátos, és 0 egy triviális alsó korlát. Most megmutatjuk azt, hogy az (a_n) sorozat a második tagtól kezdve **monoton csökkenő**, azaz

$$(*) a_{n+1} \le a_n \quad \Longleftrightarrow \quad \frac{a_{n+1}}{a_n} \le 1, \quad \text{ha } n = 1, 2, \dots.$$

A rekurzív képlet szerint minden $n \in \mathbb{N}^+$ esetén

$$\frac{a_{n+1}}{a_n} = \frac{1}{m} \cdot \frac{A}{a_n^m} + 1 - \frac{1}{m},$$

ezért a monotonitást jelentő (*) összefüggés azzal ekvivalens, hogy

$$\frac{1}{m} \cdot \frac{A}{a_n^m} + 1 - \frac{1}{m} \le 1 \qquad (n \in \mathbb{N}^+),$$

azaz átrendezés után azzal, hogy

$$(**) A \le a_n^m (n \in \mathbb{N}^+).$$

Ennek igazolására a számtani és a mértani közép közötti egyenlőtlenséget a következő alakban fogjuk alkalmazni: ha x_1, x_2, \ldots, x_m tetszés szerinti nemnegatív valós számok, akkor

$$(\triangle) x_1 \cdot x_2 \cdot \ldots \cdot x_m \le \left(\frac{x_1 + x_2 + \cdots + x_m}{m}\right)^m,$$

és egyenlőség akkor és csak akkor áll fenn, ha $x_1 = x_2 = \cdots = x_m$. Fontos hangsúlyozni, hogy lényegében ezt az alakot igazoltuk gyakorlaton; és csak az m-edik gyök egyértelmű létezése miatt (amit éppen most igazolunk) írhatjuk fel az egyenlőtlenséget a megszokott alakban.

A (**) becslés igazolásához **vegyük észre** azt, hogy a rekurzív képlet jobb oldalán álló összeg az m darab

$$x_1 := \frac{A}{a_n^{m-1}}, \quad x_2 := a_n, \quad x_3 := a_n, \quad \dots, \quad x_m := a_n \quad (n = 0, 1, 2, \dots)$$

pozitív szám számtani közepe. Ezért (\triangle) miatt minden $n \in \mathbb{N}$ indexre

$$A = x_1 \cdot x_2 \cdot \ldots \cdot x_m \le \left(\frac{x_1 + x_2 + \cdots + x_m}{m}\right)^m = \left[\frac{1}{m} \left(\frac{A}{a_n^{m-1}} + (m-1)a_n\right)\right]^m = a_{n+1}^m.$$

Bebizonyítottuk tehát azt, hogy $a_n^m \ge A$ minden $n \in \mathbb{N}^+$ indexre, és ez azt jelenti, hogy az (a_n) sorozat a második tagtól kezdye monoton csökkenő.

Mivel az (a_n) sorozat monoton csökkenő a második tagtól kezdve és alulról korlátos, ezért a monoton sorozatok határértékére vonatkozó tétel alapján (a_n) konvergens.

4. lépés. Kiszámítjuk a sorozat határértékét. Legyen

$$\alpha := \lim (a_n).$$

Az eddigiekből az következik, hogy $\alpha \geq 0$. Fontos észrevétel azonban az, hogy az

$$\alpha > 0$$

egyenlőtlenség is igaz. Ez az állítás a konvergens sorozatok és a műveletek kapcsolatára vonatkozó tételből, valamint a határérték és a rendezés kapcsolatára vonatkozó tételből következik, hiszen

$$a_n \to \alpha, \quad a_n^m \ge A \qquad \Longrightarrow \qquad a_n^m \to \alpha^m \ge A > 0 \qquad \Longrightarrow \qquad \alpha > 0.$$

Az (a_n) sorozatot megadó rekurzív összefüggésben az $n \to +\infty$ határátmenetet véve az α határértékre egy egyenletet kapunk. Valóban, ha alkalmazzuk a konvergens sorozatok és a műveletek kapcsolatára vonatkozó tételeket (itt használjuk az $\alpha > 0$ egyenlőtlenséget), akkor az adódik, hogy

$$a_{n+1} = \frac{1}{m} \left(\frac{A}{a_n^{m-1}} + (m-1)a_n \right) \quad (n \in \mathbb{N})$$

$$\downarrow \qquad n \to +\infty \qquad \downarrow \qquad (\alpha > 0 !)$$

$$\alpha \qquad \frac{1}{m} \left(\frac{A}{\alpha^{m-1}} + (m-1)\alpha \right),$$

ezért a határérték egyértelműsége miatt

$$\alpha = \frac{1}{m} \left(\frac{A}{\alpha^{m-1}} + (m-1) \alpha \right).$$

Innen már egyszerű átrendezéssel azt kapjuk, hogy

$$m \alpha^m = A + (m-1)\alpha^m \implies \alpha^m = A.$$

Így a tétel minden állítását bebizonyítottuk.

Megjegyzések.

- 1º A tételben leírt rekurzió a numerikus analízisben tárgyalt ún. Newton-féle iterációs eljárás egy (igen) speciális esete.
- $\mathbf{2}^o$ Most igazoltuk pozitív számok m-edik gyökének az egyértelmű létezését. Így már teljes joggal alkalmazhatjuk az $\sqrt[m]{A}$ jelölést.
- 3º A 2. lépésben arról volt szó, hogy a tételben rekurzív módon értelmezett sorozat jól definált. Ez pontosan a következőt jelenti: Tekintsük az

$$f: \mathbb{R}^+ \to \mathbb{R}^+, \qquad f(x) := \frac{1}{m} \left(\frac{A}{x^{m-1}} + (m-1)x \right).$$

függvényt. Ekkor a szóban forgó sorozatot így írhatjuk fel:

$$a_0 \in \mathbb{R}^+$$
 tetszőleges, $a_{n+1} := f(a_n) \quad (n \in \mathbb{N}).$

Teljes indukcióval könnyen igazolhatjuk, hogy így minden $n \in \mathbb{N}$ indexhez egyértelműen létezik egy valós szám.

 4^o A tételből egy igen egyszerű konstruktív eljárást kapunk irracionális számok racionális számokkal való megközelítésére. Ez a helyzet például akkor, ha A és a_0 racionális, de $\sqrt[m]{A}$ irracionális.

Alkalmazzuk például az iterációt a $\sqrt{2}$ irracionális szám racionális számokkal való megközelítésére. Induljuk ki az $a_0 := 2$ értékből. Mivel A=2 és m=2, ezért a következő rekurzív formulát kapjuk:

$$a_0 := 2$$
 és $a_{n+1} := \frac{1}{a_n} + \frac{a_n}{2}$ $(n \in \mathbb{N}).$

Világos, hogy $a_n \in \mathbb{Q}$ minden n-re. A tételből következik, hogy (a_n) konvergens és $\sqrt{2}$ a határértéke. Ez azt jelenti, hogy nagy n indexekre a_n közel van $\sqrt{2}$ -höz:

$$a_n \approx \sqrt{2}$$
 $(n \in \mathbb{N}).$

Az iterációs sorozat első 7 tagja:

```
a_0 = 2;

a_1 = 1, 5;

a_2 = 1, 416\,666\dots;

a_3 = 1, 414\,215\dots;

a_4 = 1, 414\,213\,562\,374\,689\dots;

a_5 = 1, 414\,213\,562\,373\,095\,048\,801\,689\,623\dots;

a_6 = 1, 414\,213\,562\,373\,095\,048\,801\,688\,724\dots;
```

Az eredményekből úgy tűnik, hogy a szóban forgó konvergencia "elég gyors". Az $a_n \approx \sqrt{2}$ közelítésre az

$$\left| a_n - \sqrt{2} \right| \le \frac{3}{2^{2^n}} \qquad (n \in \mathbb{N})$$

egyenlőtlenség (az ún. **hibabecslés**) igazolható, és ez bizonyítja is a számítógépes kísérletekből sejthető gyors konvergenciát.

Figyeljük meg, hogy (*) felhasználásával meg tudnánk határozni olyan $N \in \mathbb{N}$ indexet, amelyre a_N és $\sqrt{2}$ (például) első 37 tizedesjegye megegyezik.

 $\mathbf{5}^{o}$ Rekurzív módon megadott (a_n) sorozatok konvergenciájának a vizsgálatánál sokszor (de nem mindig!) használható az előző tétel bizonyításában követett módszer.

Először megmutatjuk azt, hogy (a_n) konvergens. "Szerencsés esetekben" a sorozat monoton és korlátos (ezeket a tulajdonságokat meg lehet sejteni, majd a sejtéseket például teljes indukcióval be lehet bizonyítani), következésképpen (a_n) konvergens.

Ezután a rekurzív képletben vesszük az $n \to +\infty$ határátmenetet. Ekkor a sorozat határértékére egy egyenletet kapunk, aminek több megoldása is lehet. Ezekből egyedi megfontolások alapján (pl. egy pozitív tagú sorozat határértéke nem lehet negatív) választjuk ki az (a_n) sorozat (egyértelműen meghatározott) határértékét.

A Bolzano–Weierstrass-féle kiválasztási tétel és a Cauchy-féle konvergenciakritérium

Most két, elsősorban elméleti szempontból alapvető fontosságú eredményt ismertetünk.

A Bolzano-Weierstrass-féle kiválasztási tétel

5. tétel (A Bolzano–Weierstrass-féle kiválasztási tétel). Minden, korlátos valós sorozatnak van konvergens részsorozata.

Bizonyítás. A tétel az alábbi, már igazolt állítások azonnali következménye:

- minden sorozatnak van monoton részsorozata,
- minden monoton és korlátos sorozat konvergens.

Ha ui. a sorozat korlátos, akkor minden részsorozata is korlátos, így lesz monoton és korlátos részsorozata, következésképpen ez a részsorozat konvergens.

Megjegyzések.

- $\mathbf{1}^o$ A későbbiekben többször alkalmazzuk a következő állítást:
 - Ha [a,b] egy korlátos és zárt intervallum, és $(x_n): \mathbb{N} \to [a,b]$ egy intervallumbeli sorozat, akkor (x_n) -nek van olyan konvergens részsorozata, amelynek határértéke eleme az [a,b] intervallumnak.

Ez azért igaz, mert a Bolzano-Weierstrass-féle kiválasztási tétel garantálja egy konvergens (x_{ν_n}) részsorozat létezését. Ha $\alpha := \lim(x_{\nu_n})$, akkor a határérték és a rendezés kapcsolatára vonatkozó tételből következik, hogy $a \le \alpha \le b$, hiszen $a \le x_{\nu_n} \le b$ minden $n \in \mathbb{N}$ esetén.

- **2**° Nem korlátos sorozatok esetén igazolhatók az alábbi állítások:
 - Ha egy sorozat felülről nem korlátos, akkor van (+∞)-hez tartó monoton növekvő részsorozata.
 - Ha egy sorozat alulról nem korlátos, akkor van (-∞)-hez tartó monoton csökkenő részsorozata.

Cauchy-sorozatok és a Cauchy-féle konvergenciakritérium

A számsorozatokkal kapcsolatos vizsgálatok egyik központi kérdése annak eldöntése, hogy a szóban forgó sorozat konvergens-e. A konvergencia definíciójában azonban szerepel egy, a sorozat tagjain "kívüli" dolog is, nevezetesen: a sorozat határértéke. Ezért a definíció alkalmazásához a határértéket "meg kell sejteni", de ez igen sok esetben nem egyszerű feladat.

Néhány, már megismert eredmény azonban egyszerűsíti a helyzetet. Például, ha egy sorozat nem korlátos, akkor nem konvergens. Ennél lényegesebb a monoton és korlátos sorozatokra vonatkozó tétel. Ebben az esetben tehát akkor is eldönthető egy sorozat konvergenciája, ha nem ismerjük a határértékét. A szóban forgó tétel azonban nem egyenértékű a konvergenciával, annak "csak" egy elégséges feltétele. Ezért alapvető jelentőségű az a tény, hogy a konvergenciára megadható egy olyan szükséges és elégséges feltétel is, amely kizárólag a sorozat tagjainak a segítségével dönt a sorozat konvergens vagy divergens voltáról.

Szemléletesen világos, hogy ha egy sorozat konvergens, és így minden tagja egy pont körül sűrűsödik, akkor a sorozat elég nagy indexű tagjai tetszőlegesen közel kerülnek egymáshoz. Ez utóbbi tulajdonság motiválja az alábbi fogalom bevezetését.

1. definíció. $Az(a_n)$ valós sorozatot Cauchy-sorozatnak nevezzük, ha

$$\forall \varepsilon > 0 \text{-}hoz \ \exists \ n_0 \in \mathbb{N}, \ \forall \ m, n > n_0 \colon |a_n - a_m| < \varepsilon.$$

Megjegyzés. Pongyolán, de szemléletesen fogalmazva: "egy sorozat akkor Cauchy-sorozat, ha az elég nagy indexű tagjai tetszőlegesen közel vannak egymáshoz". Azt is mondhatjuk, hogy: "a sorozat elég nagy indexű tagjainak távolsága kisebb, mint bármely előre megadott kicsi pozitív szám". Látható tehát, hogy a fenti, ún. Cauchy-tulajdonságban kizárólag a sorozat tagjai játszanak szerepet. ■

Példák.

 \bullet Az $a_n:=\frac{1}{n}\ (n\in\mathbb{N}^+)$ harmonikus sorozat Cauchy-sorozat, mert tetszőleges $\varepsilon>0$ esetén

$$\left|\frac{1}{m} - \frac{1}{n}\right| = \frac{|m-n|}{m} \cdot \frac{1}{n} < \frac{1}{n} < \varepsilon, \quad \text{ha } m, n > n_0 := \left[\frac{1}{\varepsilon}\right].$$

- A $\left((-1)^n\right)$ nem Cauchy-sorozat. Valóban, ha (például) $\varepsilon=1$, akkor minden $n\in\mathbb{N}$ esetén $|a_n-a_{n+1}|=|(-1)^n-(-1)^{n+1}|=2>\varepsilon$.
- Az (n) sorozat **nem Cauchy-sorozat**, mert pl. $\varepsilon=1$ esetén minden n indexre $|a_{n+2}-a_n|=2>\varepsilon.$

A következő tétel azt állítja, hogy a Cauchy-tulajdonság szükséges és elégséges feltétele a sorozat konvergenciájának.

6. tétel (A Cauchy-féle konvergenciakritérium). Legyen (a_n) egy valós sorozat. Ekkor

$$(a_n)$$
 konvergens \iff (a_n) Cauchy-sorozat.

Bizonyítás.

 \implies Tegyük fel, hogy (a_n) konvergens, és $A:=\lim(a_n)$ a határértéke. Legyen $\varepsilon>0$ tetszőleges valós szám. A konvergencia definíciója szerint

$$\exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon |a_n - A| < \frac{\varepsilon}{2}.$$

Így $\forall m, n > n_0$ index esetén

$$|a_n - a_m| = \left| (a_n - A) + (A - a_m) \right| \le |a_n - A| + |a_m - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

és ez azt jelenti, hogy (a_n) Cauchy-sorozat.

1. lépés. Igazoljuk, hogy (a_n) korlátos sorozat. Valóban: A Cauchy-sorozat definíciójában $\varepsilon=1$ -hez van olyan $n_1\in\mathbb{N}$ index, hogy

$$\forall m, n > n_1: |a_n - a_m| < 1.$$

Legyen $m = n_1 + 1$. Ekkor minden $n > n_1$ esetén

$$|a_n| = \left| \left(a_n - a_{n_1+1} + a_{n_1+1} \right) \right| \le \left| a_n - a_{n_1+1} \right| + \left| a_{n_1+1} \right| < 1 + \left| a_{n_1+1} \right|.$$

Következésképpen az

$$|a_n| \le \max \{|a_0|, |a_1|, \dots |a_{n_1}|, 1 + |a_{n_1+1}|\}$$

11

egyenlőtlenség már minden $n \in \mathbb{N}$ számra igaz, azaz a sorozat valóban korlátos.

2. lépés. A Bolzano–Weierstrass-féle kiválasztási tételből következik, hogy (a_n) -nek létezik egy (a_{ν_n}) konvergens részsorozata. Legyen

$$A := \lim (a_{\nu_n}) \in \mathbb{R}.$$

3. lépés. Belátjuk, hogy $\lim (a_n) = A$ is igaz.

Legyen $\varepsilon > 0$ tetszőleges. Ekkor A definíciójából következik, hogy

$$\exists n_2 \in \mathbb{N}, \quad n > n_2 : \quad \left| a_{\nu_n} - A \right| < \frac{\varepsilon}{2}.$$

Az (a_n) Cauchy-sorozat, ezért $\varepsilon/2$ -höz

$$\exists n_3 \in \mathbb{N}, \ \forall n, m > n_3 : \ |a_n - a_m| < \frac{\varepsilon}{2}.$$

Mivel $(\nu_n): \mathbb{N} \to \mathbb{N}$ indexsorozat (vagyis (ν_n) szigorúan monoton növekedő), ezért $\nu_n \geq n$ $(n \in \mathbb{N})$, amit teljes indukcióval lehet igazolni.

Ha $n > n_0 := \max\{n_2, n_3\}$, akkor $\nu_n > n_0$, ezért n és $m := \nu_n$ is nagyobb, mint n_2 és n_3 , tehát alkalmazhatók a fenti egyenlőtlenségek. Ekkor

$$|a_n - A| = |(a_n - a_{\nu_n}) + (a_{\nu_n} - A)| \le |a_n - a_m| + |a_{\nu_n} - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

és ez azt jelenti, hogy az (a_n) sorozat valóban konvergens, és $\lim (a_n) = A$.

Megjegyzés. Fontos megjegyezni, hogy az iménti tétel **konvergens** (tehát véges határértékű) sorozatokról szól. Végtelen határértékekre az analóg állítás nem igaz: például az (n) sorozatnak a határértéke $+\infty$, de ez nem Cauchy-sorozat. A sok hasonlóság mellett ez az egyik leglényegesebb különbség a konvergens, ill. a $\pm\infty$ -hez tartó sorozatok között.