Fizika 1 – Druge demonstrature 2013./2014.

- 1. Zadatak: Dekanski ispitni rok, 2013.
 - 3. Tunera (na slici) u Bakarskom zaljevu ima masu m_ℓ = 600 kg i čini kut α = 45° s horizontalnom ravninom. Uzmite da na vrhu sjedi čovjek mase m_ℓ = 100 kg i da konop čini kut β = 10° s horizontalnom ravninom. Ako je konop pričvršćen na udaljenosti 1/4 duljine tunere od njenog vrha, kolika je sila napetosti konopa? (7 bodova)

- 2. Zadatak: Međuispit, 2011.
- Na kosini kuta β=37° nalaze se tijela masa m₁=2kg i m₂=4kg tako da se tijelo mase m₂ naslanja na tijelo mase m₁ (m₂ je na kosini iznad m₁). Faktori trenja između podloge i tijela su μ₁=0,3 i μ₂=0,1.
 - a) Kolika je akceleracija tijela masa m_1 i m_2 uz pretpostavku da u početnom trenutku tijela miruju?
 - b) Kolika je sila međudjelovanja?
 - c) Odredite najmanji kut β₀ pri kojem dolazi do klizanja.
 - (6 bodova)
- 3. Zadatak: Bolesnički međuispit 2008/2009
- 2. Tri tijela, međusobno spojena nitima gibaju se po podlozi uz djelovanje sile trenja. Nadite napetosti niti T_1 i T_2 ako je $T_3 = 24 N$, $m_2 / m_1 = 2$, $m_3 / m_1 = 3$. (3 boda)

4. Zadatak: Međuispit 2005/2006 (sličnost sa MI 2011)

2 Zadatak: Dva tijela povezana su s niti i klize niz kosinu tako da se tijelo 1 giba ispred tijela 2. Mase tijela su $m_1=5$ kg i $m_2=7$ kg, a koeficijenti trenja su $\mu_1=0.1$ i $\mu_2=0.2$. Nagib kosine podešen je tako da se tijela gibaju stalnom brzinom. Kolika je napetost niti? (ubrzanje gravitacijske sile $g=9.81~\mathrm{m\,s^{-2}}$)

5. Zadatak: Dekanski ispitni rok, 2012.

- 1. Top mase 125 kg napunjen je eksplozivom (zanemarive mase) i granatom mase 10 kg, te stavljen na tračnice bez trenja. Cijev topa čini kut 15° sa tlom. Nakon ispaljivanja granate, top se giba po tračnici brzinom v = 7 m/s. Kolikom brzinom je ispaljena granata?
 (4 boda)
- 6. Zadatak: Jesenski ispitni rok, 2013.
- 2. Na glatkoj vodoravnoj površini leži kugla mase m₂=4,5 kg spojena preko opruge konstante k=125 N/m s čvrstim zidom. Metak mase m₁=10 g i brzine v₁=2160 km/h zabija se u kuglu i ostaje u njoj. Koliko se stisne opruga? (6 bodova)
- 7. Zadatak: Ljetni ispitni rok, 2013.
- 2. Drveni blok mase 2 kg miruje na podlozi. Koeficijent trenja jest μ = 0,3. Na blok nalijeće metak mase 20 g koji se pri sudaru zabije u drveni blok. Pronađite ulaznu brzinu metka ako znate da se drveni blok nakon pogotka odskliže d = 1 m. (7 bodova)
- 8. Zadatak: Međuispit, 2011.
- 3. Kuglica mase m₁=0,2 kg nalijeće na kuglicu mase m₂=0,1 kg koja miruje i nakon elastičnog sudara se obje gibaju u istom smjeru. Brzina prve kuglice nakon sudara je v'₁=2 m/s. Izračunajte omjer kinetičkih energija druge kuglice nakon sudara i prve kuglice prije sudara? (6 bodova)

9. Zadatak: Međuispit, 2013.

3. Dvije glinene kugle mase 0,3 kg i 0,2 kg ovješene su na nitima jednake duljine l i vise jedna tik do druge. Kugle su zatim otklonjene iz položaja ravnoteže tako da se teža kugla otkloni ulijevo za 50°, a lakša kugla se otkloni udesno za 25°. Kugle se zatim puste, tako da se savršeno neelastičan sraz dogodi točno u položaju ravnoteže. Nakon sudara pronađite maksimalni kut otklona tako slijepljenih kugli! (6 bodova)

10. Zadatak: Ponovljeni međuispit 2008/2009

3. Čestica mase m₁=0,20 kg nalazi se u blizini jednog kraja povišenja pravokutnog oblika, a čestica mase n se nalazi u blizini drugog kraja povišenja. Prva čestica je dobila brzinu u smjeru druge čestice i nakon prelaska preko povišenja bez trenja sudari se s njom. Nakon elastičnog sudara prva čestica se odbije prema prvom kraju i odleti preko ruba uzvisine i udari na horizontalnu površinu na udaljenosti 2d od podnožja uzvisine. Druga čestica odleti preko drugog kraja povišenja i udari na horizontalnu površinu na udaljenosti d od podnožja uzvisine. Kolika je masa druge čestice? (4 boda)

11. Zadatak: Ponovljeni međuispit 2009/2010

3. Promatramo sudar dvije lopte, jedna mase m₁ koja je puno teža od druge, mase m₂ = m₁/100, nakon što ih istovremeno ispustimo s visine h = 1 m (lakša se nalazi na težoj). Treba izračunati visinu H koju će lakša lopta dosegnuti nakon sudara s tešom loptom. Pretpostavite da je sudar elastičan. (Napomena: Pretpostavite da se prva lopta, teška, odmah nakon elastičnog sudara s tlom sudara s lakšom loptom koja se nalazi tik iznad nje. Zanemarite dimenzije obje lopte.) (3 boda)

12. Zadatak: Međuispit 2008/2009

Na jednom kraju stisnute elastične opruge nalazi se masa m_A, a na drugom kraju opruge nalazi se masa m_B.
Kada dopustimo da se opruga otpusti, mase odlete u suprotnim smjerovima. Ako je m_A dvostruko veća od m_B, te ako se otpuštanjem opruge oslobodi energija od 60 J, pronadite kinetičke energije masa. (3 boda)

13. Zadatak: Međuispit 2005/2006

3 Zadatak: Čestica mase m₁ sustiže drugu česticu mase m₂ koja se giba duž istog pravca, u istome smjeru, pet puta manjom brzinom. Nakon (savršeno) elastičnog sudara čestica m₁ je u mirovanju. Odredi vrijednost omjera m₁/m₂.

14. Zadatak: Dekanski ispitni rok 2013.

2. U trenutku polijetanja, avion mora imati brzinu od 100 km/h. Masa aviona je 2 t, zaletna staza je duga 100 m, a koeficijent trenja je 0,3. Kolika mora biti minimalna snaga motora da bi avion poletio? Brzina gibanja tijekom zaleta je proporcionalna vremenu. (6 bodova)

15. Zadatak: Dekanski ispitni rok, 2012.

1. Automobil mase m=1500 kg se giba brzinom $v_0=200$ km/h, nakon čega se ugasi motor. Izračunajte za koliko se vremena automobil zaustavi ako pri zaustavljanju na njega djeluje stalna sila trenja $F_{tr}=150$ N i sila otpora zraka $F_{op}=S\rho C_d v^2$, gdje je v brzina automobila, a S=2,5 m², $\rho=1,15$ kg/m³, $C_d=0,25$.

Naputak: Integral
$$\int \frac{dx}{A + Bx^2} = \frac{1}{\sqrt{AB}} \arctan(\sqrt{\frac{B}{A}}x)$$
.

(8 bodova)

16. Zadatak: Jesenski ispitni rok, 2013.

2. Čovjek gura kutiju silom koja opada s udaljenošću na slijedeći način: F(x) = A (D - x)², gdje je x udaljenost od početnog položaja izražena u metrima, a D = 5 m i A = 100 N/m². Koliki rad je obavio čovjek dok je gurao kutiju iz početnog položaja do x = D? (6 bodova)

17. Zadatak: Jesenski ispitni rok, 2013.

3. Puni valjak čiji se centar mase giba brzinom 1 m/s počinje se kotrljati bez klizanja uz kosinu nagiba 30°. Nakon koliko vremena će se valjak zaustaviti? (6 bodova)

18. Zadatak: Međuispit 2010/2011.

Tijelo mase m gurnuto je brzinom v₀ = 10 m/s tako da se kliže po horizontalnoj podlozi koeficijenta trenja μ. Na udaljenosti x₁ od početnog položaja nalazi se kraj opruge konstante elastičnosti k. Tijelo pri sudaru steže oprugu na putu x₂ te se vraća natrag po istom pravcu i zaustavlja prešavši put x₂ + x₃. Odredite koeficijent trenja μ ako je ukupni prijeđeni put tijela do zaustavljanja jednak D = x₁ + 2x₂ + x₃ = 20 m.
 (3 boda)

19. Zadatak: Ponovljeni međuispit 2009/2010

2. Tijelo mase 3,20 kg koje početno miruje, skliže se uzduž kosine bez trenja nagiba 30° i nakon što pređe udaljenost d uzduž kosine udari o jedan kraj nerastegnute opruge koja je na drugom kraju učvršćena za dno kosine. Konstanta opruge je 431 N/m. Nakon udara o kraj opruge tijelo se kliže komprimirajući oprugu još 20,0 cm dok se ne zaustavi. Kolika je udaljenost između točke udara o gornji kraj opruge do točke gdje je brzina tijela najveća? (4 boda)

20. Zadatak: Ljetni ispitni rok, 2012.

2. Satelit GPS sustava za pozicioniranje se giba oko Zemlje po kružnici tako da obiđe Zemlju dva puta u jednom danu. Na kojoj visini iznad površine Zemlje satelit kruži? G_N=6,67·10⁻¹¹ m³kg⁻¹s⁻¹, M_z=5,97·10⁻²⁴ kg, R_z=6378 km.
(6 bodova)

21. Zadatak: Zadaci za vježbu, 2. Dio, 2013

2 Zadatak: Sitno tijelo mase $m=1\,\mathrm{kg}$ obješeno je s pomoću tanke bezmasene niti o čvrsto uporište, otklonjeno je iz ravnotežnog položaja tako da nit zatvara kut $\alpha_0=45^\circ$ s uspravnim pravcem, te je pušteno u gibanje iz mirovanja (njihanje). Odredi napetost niti u trenutku u kojem tijelo prolazi ravnotežnim položajem. (Ubrzanje gravitacijske sile $q=9.81\,\mathrm{m~s^{-2}}$.)

Rj:
$$T = mg(3 - 2\cos\alpha_0) \simeq 15.56 \text{ N}$$

22. Zadatak: Zadaci za vježbu, 2. Dio, 2013

5 Zadatak: Tijelo mase $m=1~{\rm kg}$ leži na vodoravnoj podlozi s kojom ima koeficijent trenja $\mu=0.1~{\rm i}$ vodoravnom oprugom konstante $k=100~{\rm N}~{\rm m}^{-1}$ je pričvršćeno za uporište. Tijelo puštamo u gibanje iz mirovanja iz točke u kojoj je opruga sabijena tako da djeluje silom iznosa $F_0=10~{\rm N}$. Odredi duljinu puta koji će tijelo prevaliti do trenutka u kojem je pušteno u gibanje do trenutka u kojem će se ono po prvi puta zaustaviti. (Ubrzanje gravitacijske sile $g=9.81~{\rm m\,s}^{-2}$.)

Rj:
$$s = (2/k)(F_0 - \mu mg) \simeq 0.180 \,\mathrm{m}$$

23. Zadatak: Zadaci za vježbu, 2. Dio, 2013

3 Zadatak: Sitno tijelo klizi bez trenja niz kosinu koja u svom podnožju prelazi u kružnu petlju polumjera zakrivljenosti R. Po ulasku u petlju tijelo nastavlja kliziti po njenoj unutrašnjoj strani. Odredi najmanju visinu u odnosu na najnižu točku petlje s koje valja pustiti tijelo da klizi niz kosinu želimo li da pri prolasku kroz najvišu točku petlje ono ne izgubi kontakt s podlogom (stropom).

Rj: $H_{\min} = 5R/2$.

24. Zadatak: Zadaci za vježbu, 2. Dio, 2013

6 Zadatak: Na vodoravnu transportnu traku koja se kreće stalnom brzinom iznosa $v_0=0.6\,\mathrm{m\,s^{-1}}$ odozgo sipi pijesak stalnim masenim tokom $\mu=30\,\mathrm{kg\,s^{-1}}$. Odredi snagu motora potrebnu za održavanje trake u gibanju zanemarujući sve sile otpora.

Rj: $P = \mu v_0^2 \simeq 10.8 \,\text{W}.$

25. Zadatak: Zadaci za vježbu, 2. Dio, 2013

7 Zadatak: Vlak mase $m=500\,\mathrm{t}$ se u početnom trenutku gibao brzinom iznosa $v_0=10\,\mathrm{km}\,\mathrm{h}^{-1}$, a narednih ga je $\Delta t=30\,\mathrm{s}$ lokomotiva ubrzavala duž vodoravne pruge djelujući stalnom snagom $P=2\,\mathrm{MW}$. Odredi duljinu prevaljenog puta u tom intervalu vremena te iznos konačne brzine. Učinak svih sila otpora smatramo zanemarivim.

$$\textbf{Rj:} \quad s = (m/3P)((v_0^2 + (2P/m)\Delta t)^{3/2} - v_0^3) \simeq 323.1\,\text{m}, \ v_1 = (v_0^2 + (2P/m)\Delta t)^{1/2} \simeq 56.7\,\text{km}\,\text{h}^{-1}$$

26. Zadatak: Zadaci za vježbu, 2. Dio, 2013

8 Zadatak: Dvije čestice se gibaju duž dva usporedna pravca razmaknuta a u suprotnim smjerivima. Mase čestica su m_1 i m_2 , a iznosi njihovih brzina su v_1 i v_2 . Odredi iznos ukupne kutne količine gibanja čestica u referentnom sustavu središta mase.

Rj:
$$L_{\Sigma}^* = m_1 m_2 a(v_1 + v_2)/(m_1 + m_2)$$

27. Zadatak: Zadaci za vježbu, 2. Dio, 2013

9 Zadatak: Dva jednaka svemirska broda čije su mase $m=100\,\mathrm{t}$ povezana su užetom zanemarive mase i kruže oko njihova središta mase brzinama iznosa $v=10\,\mathrm{m\,s^{-1}}$ (napetost užeta brodovima osigurava centripetalnu silu). Odredi rad koji posade brodova moraju obaviti ako polaganim zatezanjem užeta žele prepoloviti udaljenost među brodovima.

Rj:
$$W = 3mv^2 = 30 \,\text{MJ}$$