Variational Inference in the Poisson lognormal model

Application to multivariate analysis of count data

Julien Chiquet, MIA Paris

joint work with M. Mariadasou, S. Robin

joint Exposome/LMAP seminaries, Anglet, June, 28 2018

J.C., Mahendra Mariadassou, Stéphane Robin,

Variational inference for probabilistic Poisson PCA https://arxiv.org/abs/1703.06633 (to appear in the Ann

https://arxiv.org/abs/1703.06633 (to appear in the Annals of Applied Statistics)

J.C., Mahendra Mariadassou, Stéphane Robin,

Variational inference for sparse network reconstruction from count data https://arxiv.org/abs/1806.03120 (submitted)

PLNmodels package, development version on github

devtools::install github("ichiquet/PLNmodels", build vignettes=TRUE)

Motivations: oak powdery mildew pathobiome

Metabarcoding data from [JFS⁺16]

▶ n = 116 leaves, p = 114 species (66 bacteria, 47 fungies + E. alphitoides)

lacktriangledown d = 8 covariates (tree susceptibility, distance to trunk, orientation, ...)

▶ Sampling effort in each sample (bacteria ≠ fungi)

Problematic & Basic formalism

Data tables:
$$\mathbf{Y} = (Y_{ij}), n \times p; \mathbf{X} = (X_{ik}), n \times d; \mathbf{O} = (O_{ij}), n \times p \text{ where}$$

- $Y_{ij} = \text{abundance (read counts) of species } j \text{ in sample } i$
- $ightharpoonup X_{ik} = ext{value of covariate } k ext{ in sample } i$
- $ightharpoonup O_{ij} = ext{offset (sampling effort) for species } j ext{ in sample } i$

Need for multivariate analysis to help deciphering the pathobiome

- exhibit patterns of diversity
 - \rightarrow summarize the information from Y (PCA, clustering, ...)
- understand between-species interactions
 - → 'network' inference (variable/covariance selection)
- correct for technical and confounding effects
 - → account for covariables and sampling effort
- → need a generic framework to model dependences between count variables

Models for multivariate count data

If we were in a Gaussian world, the general linear model would be appropriate

For each sample $i = 1, \ldots, n$, it explains

- lacktriangle the abundances of the p species (\mathbf{Y}_i)
- lacktriangle by the values of the d covariates ${f X}_i$ and the p offsets ${f O}_i$

+ null covariance ⇔ independence → uncorrelated species do not interact

But we are not, and there is no generic model for multivariate counts

- ▶ Data transformation $(\log, \sqrt{})$: quick and dirty
- ▶ Non-Gaussian multivariate distributions: do not scale to data dimension yet
- ▶ Latent variable models: interaction occur in a latent (unobserved) layer

Models for multivariate count data

If we were in a Gaussian world, the general linear model would be appropriate

For each sample i = 1, ..., n, it explains

- ▶ the abundances of the p species (\mathbf{Y}_i)
- lacktriangle by the values of the d covariates ${f X}_i$ and the p offsets ${f O}_i$

$$\mathbf{Y}_i = \underbrace{\mathbf{X}_i \mathbf{B}}_{ ext{account for}} + \underbrace{\mathbf{O}_i}_{ ext{account for}} + \varepsilon_i, \; \varepsilon_i \sim \mathcal{N}(\mathbf{0}_p, \underbrace{\mathbf{\Sigma}}_{ ext{dependence}})$$
 $\mathbf{S}_i = \mathbf{S}_i \mathbf{B}_i + \mathbf{S}_i \mathbf{B}_i \mathbf{$

+ null covariance ⇔ independence → uncorrelated species do not interact

But we are not, and there is no generic model for multivariate counts

- ▶ Data transformation $(\log, \sqrt{})$: quick and dirty
- ▶ Non-Gaussian multivariate distributions: do not scale to data dimension yet
- Latent variable models: interaction occur in a latent (unobserved) layer

Poisson-log normal (PLN) distribution

A latent Gaussian model

Originally proposed by Atchisson [AH89]

$$\mathbf{Z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

$$\mathbf{Y}_i \mid \mathbf{Z}_i \sim \mathcal{P}(\exp{\{\mathbf{O}_i + \mathbf{X}_i^{\mathsf{T}} \mathbf{B} + \mathbf{Z}_i\}})$$

Interpretation

- lacktriangle Dependency structure encoded in the latent space (i.e. in Σ)
- Additional effects are fixed
- Conditional Poisson distribution = noise model

Properties

- + over-dispersion
- + covariance with arbitrary signs
- maximum likelihood via EM algorithm is limited to a couple of variables

Geometrical view

Outline

Variational inference of PLN models

Probabilistic PCA for counts

Network inference for count data

Discriminant Analysis

Outline

Variational inference of PLN models

Illustration: the oak powdery mildew data set

Probabilistic PCA for counts

Network inference for count data

Discriminant Analysis

Intractable EM

Aim of the inference:

- estimate $\theta = (\beta, \Sigma)$
- ightharpoonup predict the \mathbf{Z}_i

Maximum likelihood

PLN is an incomplete data model: try EM

$$\log p_{\theta}(\mathbf{Y}) = \mathbb{E}[\log p_{\theta}(\mathbf{Y}, \mathbf{Z}) \mid \mathbf{Y}] + \mathcal{H}[p_{\theta}(\mathbf{Z} \mid \mathbf{Y})]$$

EM requires to evaluate (some moments of)

$$p(\mathbf{Z} \,|\, \mathbf{Y}) = \prod_i p(\mathbf{Z}_i \,|\, \mathbf{Y}_i)$$

but no close form for $p(\mathbf{Z}_i \mid \mathbf{Y}_i)$.

- ► [Kar05] resorts to numerical or Monte-Carlo integration.
- ▶ Variational approach [WJ08]: use a proxy of $p(\mathbf{Z} \mid \mathbf{Y})$.

Variational EM

Variational approximation: choose a class of distribution $\mathcal Q$

$$Q = \left\{ \tilde{p} : \quad \tilde{p}(\mathbf{Z}) = \prod_{i} \tilde{p}_{i}(\mathbf{Z}_{i}), \quad \tilde{p}_{i}(\mathbf{Z}_{i}) = \mathcal{N}(\mathbf{Z}_{i}; \tilde{\mathbf{m}}_{i}, \tilde{\mathbf{s}}_{i}) \right\}$$

and maximize the lower bound $(\tilde{\mathbb{E}} = \mathsf{expectation} \ \mathsf{under} \ ilde{p})$

$$J(\theta, \tilde{p}) = \log p_{\theta}(\mathbf{Y}) - KL[\tilde{p}(\mathbf{Z}) || p_{\theta}(\mathbf{Z} | \mathbf{Y})] = \tilde{\mathbb{E}}[\log p_{\theta}(\mathbf{Y}, \mathbf{Z})] + \mathcal{H}[\tilde{p}(\mathbf{Z})]$$

Variational EM

▶ VE step: find the optimal \tilde{p} :

$$\tilde{p}^h = \arg\max_{\tilde{p} \in \mathcal{Q}} J(\boldsymbol{\theta}^h, \tilde{p}) = \arg\min_{\tilde{p} \in \mathcal{Q}} KL[\tilde{p}(\mathbf{Z}) \mid\mid p_{\boldsymbol{\theta}^h}(Z \mid Y)]$$

ightharpoonup M step: update $\hat{\theta}$

$$\hat{\boldsymbol{\theta}}^h = \arg\max J(\boldsymbol{\theta}, \tilde{p}^h) = \arg\max_{\boldsymbol{\theta}} \tilde{\mathbb{E}}[\log p_{\boldsymbol{\theta}}(\mathbf{Y}, \mathbf{Z})]$$

Variational EM

Variational approximation: choose a class of distribution $\mathcal Q$

$$Q = \left\{ \tilde{p} : \quad \tilde{p}(\mathbf{Z}) = \prod_{i} \tilde{p}_{i}(\mathbf{Z}_{i}), \quad \tilde{p}_{i}(\mathbf{Z}_{i}) = \mathcal{N}(\mathbf{Z}_{i}; \tilde{\mathbf{m}}_{i}, \tilde{\mathbf{s}}_{i}) \right\}$$

and maximize the lower bound $(\tilde{\mathbb{E}} = \mathsf{expectation} \ \mathsf{under} \ ilde{p})$

$$J(\theta, \tilde{p}) = \log p_{\theta}(\mathbf{Y}) - KL[\tilde{p}(\mathbf{Z}) || p_{\theta}(\mathbf{Z} | \mathbf{Y})] = \tilde{\mathbb{E}}[\log p_{\theta}(\mathbf{Y}, \mathbf{Z})] + \mathcal{H}[\tilde{p}(\mathbf{Z})]$$

Variational EM.

▶ VE step: find the optimal \tilde{p} :

$$\tilde{p}^h = \arg \max J(\boldsymbol{\theta}^h, \tilde{p}) = \arg \min_{\tilde{p} \in \mathcal{Q}} KL[\tilde{p}(\mathbf{Z}) || p_{\boldsymbol{\theta}^h}(Z | Y)]$$

ightharpoonup M step: update $\hat{m{ heta}}$

$$\hat{\boldsymbol{\theta}}^h = \arg\max J(\boldsymbol{\theta}, \tilde{p}^h) = \arg\max_{\boldsymbol{\theta}} \tilde{\mathbb{E}}[\log p_{\boldsymbol{\theta}}(\mathbf{Y}, \mathbf{Z})]$$

Variational EM

Property: The lower $J(\boldsymbol{\theta}, \tilde{p})$ is bi-concave, i.e.

- lacktriangledown wrt $ilde{p}=(ilde{\mathbf{M}}, ilde{\mathbf{S}})$ for given $oldsymbol{ heta}$
- ightharpoonup wrt $oldsymbol{ heta}=(oldsymbol{\Sigma},oldsymbol{eta})$ for given $ilde{p}$

but not jointly concave in general.

Optimization: projected gradient ascent for the complete parameter $(\tilde{\mathbf{m}}, \tilde{\mathbf{s}}, \boldsymbol{\theta})$

- ▶ algorithm: conservative convex separable approximations [Sva02]
- ▶ implementation: NLopt nonlinear-optimization package [Joh11]
- ▶ initialization: LM after log-trasnformation applied independently on each variables + concatenation of the regression coefficients + Pearson residuals

PLNmodels R-package:

https://github.com/jchiquet/PLNmodels

Outline

Variational inference of PLN models
Illustration: the oak powdery mildew data set

Probabilistic PCA for counts

Network inference for count data

Discriminant Analysis

Fit the PLN model

Load the package

```
library(PLNmodels)
```

Fit the model with offsets

```
##
## Adjusting the standard PLN model.
## user system elapsed
## 22.112 0.016 5.844
```

Now the model with offsets and the 'tree' covariate

```
PLN_tree <- PLN(Y ~ 1 + covariates$tree + offset(log(0)))

##

## Adjusting the standard PLN model.
```

Model with offsets

Plot the model parameters

PLN_offset\$plot(type = "model")

Model with offsets and covariates

A large part of the variance is explained by the covariates

PLN_tree\$plot(type = "model")

PLN: natural extensions for multivariate analysis

Idea(s)

Put some additional constraint on the residual variance.

PCA: constraint the rank of Σ .

LDA: a 'supervised' version of PCA

Network: put sparsity constraint on $\Omega = \Sigma^{-1}$.

Challenges

- → a variant of the variational algorithm is required for each model
- → interpretation is not exactly like in the "usual" Gaussian world

Outline

Variational inference of PLN models

Probabilistic PCA for counts

Illustration: the oak powdery mildew data set

Network inference for count data

Discriminant Analysis

Probabilistic PCA

Dimension reduction. Typical task in multivariate analysis

Model: Probabilistic PCA (pPCA):

$$\begin{split} \mathbf{Z}_i & \text{iid} \sim \mathcal{N}_p(\mathbf{0}_p, \mathbf{\Sigma}), \\ \mathbf{Y}_i & | \mathbf{Z}_i \sim \mathcal{P}(\exp\{\mathbf{O}_i + \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i\}) \end{split} \qquad \qquad \text{rank}(\mathbf{\Sigma}) = q \ll p$$

 $\mathsf{Recall\ that:\ rank}(\mathbf{\Sigma}) = q \quad \Leftrightarrow \quad \exists \mathbf{B}(p \times q) : \Sigma = \mathbf{B}\mathbf{B}^\intercal.$

pPCA in the PLN model. Variational inference:

$$\text{maximize } J(\pmb{\theta}, \tilde{p})$$

ightharpoonup Still bi-concave in $m{ heta}=(\mathbf{B},m{eta})$ and $(\tilde{\mathbf{M}},\tilde{\mathbf{S}})$

Model selection

Number of components q needs to be chosen.

Penalized 'likelihood'.

- $ightharpoonup \log p_{\hat{m{ heta}}}(\mathbf{Y})$ intractable: replaced with $J(\hat{m{ heta}}, \tilde{p})$
- $\blacktriangleright \ \operatorname{BIC} \leadsto \operatorname{B\widetilde{I}C}_q = J(\hat{\pmb{\theta}}, \tilde{p}) \tfrac{1}{2} p(d+q) \log(n)$
- ▶ ICL \leadsto I $\tilde{\mathsf{CL}}_q = \mathsf{B}\tilde{\mathsf{IC}}_q \mathcal{H}(\tilde{p})$

Chosen rank:

$$\hat{q} = \arg\max_{q} \mathsf{B\tilde{I}C}_{q} \qquad \text{or} \qquad \hat{q} = \arg\max_{q} \mathsf{I\tilde{C}L}_{q}$$

Visualization

PCA: Optimal subspaces nested when q increases.

PLN-pPCA: Non-nested subspaces.

- \rightsquigarrow For the selected dimension dimension \hat{q} :
 - $lackbox{ }$ Compute the estimated latent positions $\mathbb{E}_{ ilde{p}}(\mathbf{Z}_i) = ilde{\mathbf{M}}\hat{\mathbf{B}}^{ op}$
 - ▶ Perform PCA on the $\tilde{\mathbf{M}}\hat{\mathbf{B}}^{\top}$
 - ▶ Display result in any dimension $q \leq \hat{q}$

Goodness of fit

pPCA: Cumulated sum of the eigenvalues = % of variance preserved on the first q components.

PLN-pPCA: Deviance based criterion.

- $lackbox{ Compute } ilde{\mathbf{Z}}^{(q)} = \mathbf{O} + \mathbf{X} \hat{oldsymbol{eta}}^{ op} + ilde{\mathbf{M}}^{(q)} \left(\hat{\mathbf{B}}^{(q)}
 ight)^{ op}$
- ▶ Take $\lambda_{ij}^{(q)} = \exp\left(\tilde{Z}_{ij}^{(q)}\right)$
- lacksquare Define $\lambda_{ij}^{\min} = \exp(ilde{Z}_{ij}^0)$ and $\lambda_{ij}^{\max} = Y_{ij}$
- $lackbox{ Compute the Poisson log-likelihood } \ell_q = \log \mathbb{P}(\mathbf{Y}; \lambda^{(q)})$

Pseudo- R^2 :

$$R_q^2 = \frac{\ell_q - \ell_{\min}}{\ell_{\max} - \ell_{\min}}$$

Outline

Variational inference of PLN models

Probabilistic PCA for counts
Illustration: the oak powdery mildew data set

Network inference for count data

Discriminant Analysis

Fit the PLNPCA models

Fit the model with offsets, and various covariates

```
Qmax = 30; Q <- 1:Qmax;

## Model with offset
PLN_offset <- PLNPCA(Y ~ 1 + offset(log(0)), ranks=Q)

## Models with offset and covariates (tree + orientation)
formula <- Y ~ 1 + covariates$tree + covariates$orientation + offset(log(0))
PLN_tree_orientation <- PLNPCA(formula, ranks=Q)

## model at initialization: log of count + LM
logLM_tree_orientation <-
PLNPCA(
    formula, ranks=Q,
    control.main=list(inception="LM", maxeval=1),
    control.init=list(inception="LM", maxeval=1)
)</pre>
```

Models selection criteria

```
PLN_offset$plot()
PLN_tree_orientation$plot()
```


Figure: offset only: $\hat{q} = 24$

offset + covariates: $\hat{q} = 21$

PCA: vizualization I

PLN PCA separates well the kind of tree

```
myModel_offset <- PLN_offset$getBestModel("ICL")
myModel_offset$plot_individual_map(cols.ind = covariates$tree, axes=c(1,2))
myModel_covariates <- PLN_tree_orientation$getBestModel("ICL")
myModel_covariates$plot_individual_map(cols.ind = covariates$tree, axes=c(1,2))</pre>
```


Figure: offset only offset + covariates

PCA: vizualization II

basic transformation + LM fails at exhibiting basic structure in the data

```
myModel <- logLM_tree_orientation$getBestModel("ICL")
myModel$plot_individual_map(cols.ind = covariates$tree)</pre>
```


Figure: offset only offset + covariates

PCA: vizualization III

Introduction of covariates unravel hidden patterns

```
myModel_offset <- models.offset$getBestModel("ICL")
myModel_offset$plot_individual_map(cols.ind = covariates$distoToground, axes=c(1,2))
myModel_covariates <- models.tree.orientation$getBestModel("ICL")
myModel_covariates$plot_individual_map(cols.ind = covariates$distoToground, axes=c(1,2))</pre>
```


Figure: offset only offset + covariates

PCA: vizualization IV

Introduction of covariates unravel different groups of species

```
myModel_offset <- models.offset$getBestModel("ICL")
myModel_offset$plot_correlation_circle(cols = out.family, axes=c(1,2))
myModel_covariates <- models.tree.orientation$getBestModel("ICL")
myModel_covariates$plot_correlation_circle(cols = out.family, axes=c(1,2))</pre>
```


Figure: offset only offset + covariates

Outline

Variational inference of PLN models

Probabilistic PCA for counts

Network inference for count data

Illustration: the oak powdery mildew data set

Discriminant Analysis

Background on Gaussian Graphical Models

Suppose
$$\mathbf{Y}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{\Omega}^{-1} = \mathbf{\Sigma})$$

Conditional independence structure

$$(i,j) \notin \mathcal{E} \Leftrightarrow Y_i \perp Y_j | Y_{\setminus \{i,j\}} \Leftrightarrow \mathbf{\Omega}_{ij} = 0.$$

Graphical interpretation

Graphical-Lasso [BDE08,YL08,FHT07]

Network reconstruction is (roughly) a variable selection problem

$$\hat{\boldsymbol{\Omega}}_{\lambda} = \operatorname*{arg\ max}_{\boldsymbol{\Theta} \in \mathbb{S}_{+}} \ell(\boldsymbol{\Omega}; \mathbf{Y}) - \lambda \|\boldsymbol{\Theta}\|_{1}$$

PLN network model

Model:

$$\mathbf{Z}_i \; \mathsf{iid} \sim \mathcal{N}_p(\mathbf{0}_p, \mathbf{\Omega}^{-1}),$$
 $\mathbf{\Omega} \; \mathsf{sparse}$ $\mathbf{Y}_i \, | \, \mathbf{Z}_i \sim \mathcal{P}(\exp\{\mathbf{O}_i + \mathbf{X}_i^{ op} \boldsymbol{\beta} + \mathbf{Z}_i\})$

Interest: Similar to Gaussian graphical model (GGM) inference

Sparsity-inducing regularization: graphical lasso

$$\log p_{\boldsymbol{\theta}}(\mathbf{Y}) - \lambda \|\mathbf{\Omega}\|_{1,\mathsf{off}}$$

Cheat: Use the PLN model and infer the graphical model of ${\it Z}$

Graphical model of $Z \neq Graphical$ model of Y

PLN network graphical model: examples I

Figure: Left: joint distribution of $p(Z_i, Y_i)$. Right: marginal distribution $p(Y_i)$. The graph on the right is a clique because the graph of the Z_i 's on the left is connected.

PLN network graphical model: examples II

Figure: Left: joint distribution of $p(Z_i, Y_i)$. Right: marginal distribution $p(Y_i)$.

Variational inference

Same problem: $\log p_{\boldsymbol{\theta}}(\mathbf{Y})$ is intractable

Variational approximation: maximize

$$J(\boldsymbol{\theta}, \tilde{p}) - \lambda \|\boldsymbol{\Omega}\|_{1, \text{off}} = \tilde{\mathbb{E}}[\log p_{\boldsymbol{\theta}}(\mathbf{Y}, \mathbf{Z})] + \mathcal{H}[\tilde{p}(\mathbf{Z})] - \lambda \|\boldsymbol{\Omega}\|_{1, \text{off}}$$

taking $\tilde{p} \in \mathcal{Q}$.

Note: Still bi-concave in $m{ heta}=({f \Omega},{m eta})$ and $\tilde p=(\check{\bf M},\check{\bf S}).$ Ex:

$$\hat{\mathbf{\Omega}} = rg \max_{\mathbf{\Omega}} \, rac{n}{2} \left(\log \mid \mathbf{\Omega} \mid - \operatorname{tr}(\hat{\mathbf{\Sigma}}\mathbf{\Omega})
ight) - \lambda \lVert \mathbf{\Omega}
Vert_{1, \mathsf{off}} : \quad \mathsf{gLasso} \; \mathsf{problem}$$

Model selection

Alternative to model selection criteria

Sparsity level λ needs to be chosen.

Stability-based approach for Network by resampling: StARS

- 1. Infers B networks $\Omega^{(b,\lambda)}$ on subsamples of size m for varying λ .
- 2. Frequency of inclusion of each edges $e=i\sim j$ is estimated by

$$p_e^{\lambda} = \#\{b : \Omega_{ij}^{(b,\lambda)} \neq 0\}/B$$

- 3. Variance of inclusion of edge e is $v_e^\lambda=p_e^\lambda(1-p_e^\lambda).$
- 4. Network stability is $\mathrm{stab}(\lambda)=1-2\bar{v}^\lambda$ where \bar{v}^λ is the average of the v_e^λ .
- \leadsto StARS¹ selects the smallest λ (densest network) for which $\mathrm{stab}(\lambda) \geq 1 2\beta$

 $^{^1}$ [LRW10] suggest using $2\beta=0.05$ and $m=\lfloor 10\sqrt{n} \rfloor$ based on theoretical results.

Simulation study

Figure: Compositional model used for data generation

- i) Draw (unreachable) abundances $\mathbf{a}_i : \log(\mathbf{a}_i) \sim \mathcal{N}(\mathbf{XB}, \mathbf{\Omega}^{-1})$
 - ▶ X accounts for some covariates
 - lacktriangledown Ω is the latent network between species
- ii) Transform abundances \mathbf{a}_i to proportions $oldsymbol{\pi}_i$ with logistic-transform
- iii) Draw observed counts $Y_i \sim \mathcal{M}(N_i, \pi_i)$ with random N_i the sampling effort

Simulation results Non-compositional methods fail

Variance of the sampling effort

Figure: Effect of the variability of the sampling effort on the quality of the reconstruction of 50-node random networks (100 simulations.)

Simulation results

Accounting for covariates effect does matter

		area under the ROC			area under the PR		
covar.	method	$\overline{\mathbf{n}=\mathbf{p}/2}$	$\mathbf{n} = \mathbf{p}$	n = 2p	$\overline{\mathbf{n} = \mathbf{p}/2}$	$\mathbf{n} = \mathbf{p}$	n = 2p
			scale-f	ree network			
small	PLNnetwork	.66 (0.05)	. 78 (0.05)	.91 (0.03)	.11 (0.04)	.25 (0.07)	.49 (0.08)
	sparCC	.66 (0.05)	.73 (0.05)	.79 (0.05)	.09 (0.03)	.16 (0.05)	.24 (0.07)
	SPiEC-Easi	.67 (0.04)	.77 (0.05)	.85 (0.04)	.10 (0.03)	.17 (0.05)	.27 (0.07)
medium	PLNnetwork	.62 (0.05)	.73 (0.05)	.85 (0.05)	.09 (0.03)	.18 (0.06)	.34 (0.08)
	sparCC	.55 (0.05)	.57 (0.05)	.58 (0.05)	.05 (0.01)	.05 (0.01)	.06 (0.01)
	SPiEC-Easi	.61 (0.04)	.66 (0.04)	.71 (0.03)	.06 (0.01)	.06 (0.01)	.07 (0.01)
large	PLNnetwork	.58 (0.05)	.67 (0.05)	. 78 (0.05)	.07 (0.03)	.12 (0.04)	.23 (0.07)
	sparCC	.52 (0.04)	.53 (0.04)	.53 (0.05)	.04 (0.01)	.04 (0.01)	.04 (0.01)
	SPiEC-Easi	.57 (0.04)	.60 (0.03)	.65 (0.03)	.05 (0.01)	.05 (0.01)	.05 (0.01)

Table: Areas under the ROC curve and Areas under the Precision-Recall curve of the compositional methods (PLNnetwork, sparCC and SPiEC-Easi) in various settings, averaged over 100 simulations, with standard errors.

Simulation results

Accounting for covariates effect does matter

		area under the ROC			area under the PR		
covar.	method	$\overline{\mathbf{n}=\mathbf{p}/2}$	$\mathbf{n} = \mathbf{p}$	$\mathbf{n} = \mathbf{2p}$	$\overline{\mathbf{n} = \mathbf{p}/2}$	$\mathbf{n} = \mathbf{p}$	n = 2p
			rando	m network			
small	PLNnetwork	.77 (0.07)	.90 (0.04)	.96 (0.01)	.14 (0.07)	.36 (0.11)	.64 (0.09)
	sparCC	.76 (0.06)	.83 (0.06)	.89 (0.04)	.11 (0.05)	.23 (0.09)	.36 (0.11)
	SPiEC-Easi	.78 (0.05)	.87 (0.04)	.92 (0.03)	.11 (0.05)	.23 (0.09)	.36 (0.11)
medium	${\tt PLNnetwork}$.72 (0.06)	.85 (0.05)	.94 (0.02)	.09 (0.04)	.24 (0.09)	.49 (0.10)
	sparCC	.59 (0.06)	.61 (0.07)	.62 (0.06)	.03 (0.01)	.04 (0.02)	.04 (0.02)
	SPiEC-Easi	.67 (0.05)	.74 (0.05)	.77 (0.03)	.04 (0.01)	.05 (0.02)	.05 (0.01)
large	PLNnetwork	.64 (0.07)	.78 (0.06)	.88 (0.04)	.06 (0.03)	.14 (0.07)	.29 (0.09)
	sparCC	.54 (0.05)	.53 (0.06)	.54 (0.06)	.02 (0.01)	.02 (0.01)	.03 (0.01)
	SPiEC-Easi	.61 (0.05)	.65 (0.04)	.68 (0.03)	.03 (0.00)	.03 (0.00)	.03 (0.01)

Table: Areas under the ROC curve and Areas under the Precision-Recall curve of the compositional methods (PLNnetwork, sparCC and SPiEC-Easi) in various settings, averaged over 100 simulations, with standard errors.

Simulation results

Accounting for covariates effect does matter

		area under the ROC			area under the PR					
covar.	method	$\overline{\mathbf{n}=\mathbf{p}/2}$	$\mathbf{n} = \mathbf{p}$	$\mathbf{n} = \mathbf{2p}$	$\overline{\mathbf{n} = \mathbf{p}/2}$	$\mathbf{n} = \mathbf{p}$	n = 2p			
community network										
small	PLNnetwork sparCC	.60 (0.04) .62 (0.04)	.69 (0.04) .66 (0.04)	. 78 (0.05) .70 (0.04)	.17 (0.03) .16 (0.02)	.26 (0.04) .21 (0.04)	.38 (0.05) .26 (0.04)			
	SPiEC-Easi	.62 (0.04)	.70 (0.04)	.77 (0.04)	.17 (0.02)	.24 (0.04)	.31 (0.04)			
medium	PLNnetwork sparCC SPiEC-Easi	.57 (0.03) .55 (0.03) .58 (0.03)	.65 (0.04) .56 (0.04) .63 (0.03)	.73 (0.05) .56 (0.03) .67 (0.03)	.15 (0.02) .11 (0.02) .13 (0.02)	.22 (0.03) .12 (0.02) .14 (0.02)	.31 (0.05) .12 (0.02) .15 (0.02)			
large	PLNnetwork sparCC SPiEC-Easi	.55 (0.03) .52 (0.03) .55 (0.03)	.60 (0.04) .52 (0.03) .58 (0.03)	.67 (0.04) .52 (0.03) .62 (0.03)	.13 (0.02) .10 (0.02) .11 (0.01)	.17 (0.03) .10 (0.02) .11 (0.02)	.24 (0.04) .10 (0.02) .12 (0.01)			

Table: Areas under the ROC curve and Areas under the Precision-Recall curve of the compositional methods (PLNnetwork, sparCC and SPiEC-Easi) in various settings, averaged over 100 simulations, with standard errors.

Outline

Variational inference of PLN models

Probabilistic PCA for counts

Network inference for count data Illustration: the oak powdery mildew data set

Discriminant Analysis

PLNnetwork models: consensus or tree-specific networks?

We consider 3 setups

- 1. resistant samples, with covariates
- 2. susceptible samples, with covariates
- 3. both samples samples, with covariates + tree effect and interactions

Network inference

PLNnetwork + 'StARS' for model selection

- ▶ 100 resamplings
- ▶ high level of stability (edges frequencies > 0.995)

PLNnetwork models: resistant

Trees resistant to mildew (E. Alphitoïdes)

PLNnetwork models: susceptible

Trees susceptibles to mildew (E. Alphitoïdes)

PLNnetwork models: consensus Both Trees

Outline

Variational inference of PLN models

Probabilistic PCA for counts

Network inference for count data

Discriminant Analysis

Illustration: the oak powdery mildew data set

Background on (Gaussian) LDA

Model

Let k(i) be the *i*th sample in group k. Suppose $\mathbf{Z}_{k(i)}$ independent with

$$\mathbf{Z}_{k(i)} \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}).$$

Let $F^j := F(Z^j)$ be the Fisher statistics for species j:

$$F(Z^j) = \frac{1}{K-1} \sum_{k} n_k (\mathbf{Z}_{k\bullet}^j - \mathbf{Z}_{\bullet\bullet}^j)^2 / \frac{1}{n-q} \sum_{k,i} (\mathbf{Z}_{ki}^j - \mathbf{Z}_{k\bullet}^j)^2$$

Aim of LDA. Find the linear combination $\mathbf{Z}u$ ($u \in \mathbb{R}^p$) maximizing $F(\mathbf{Z}u)$. Solution. u is the first eigenvector of $\mathbf{W}^{-1}\mathbf{B}$ where

- ightharpoonup W is 'within' variance matrix, i.e. the unbiased estimated of Σ :
- ▶ **B** is 'between' variance matrix

 \leadsto Further discriminative components are defined based on the second, third, ... eigenvectors of $\mathbf{W}^{-1}\mathbf{B}$.

PINIDA

Model:

$$\begin{split} &\mathbf{Z}_{k(i)} \text{ iid}, \quad \mathbf{Z}_{k(i)} \sim \mathcal{N}(\mathbf{0}_p, \boldsymbol{\Sigma}) \\ &\mathbf{Y}_{k(i)} \text{ indep.} | \mathbf{Z}, \quad \mathbf{Y}_{k(i)} \sim \mathcal{P}(\exp(\mathbf{O}_{k(i)} + \boldsymbol{\mu}_k + \mathbf{Z}_{k(i)})) \end{split} \tag{1}$$

Proposed analysis: fit PLN Model (1) then

1. Compute the between variance matrix as

$$\mathbf{B} = \frac{1}{K-1} \sum_{k} n_k (\hat{\boldsymbol{\mu}}_k - \hat{\boldsymbol{\mu}}_{\bullet}) (\hat{\boldsymbol{\mu}}_k - \hat{\boldsymbol{\mu}}_{\bullet})^{\mathsf{T}}$$

- 2. Diagonalize $\hat{\mathbf{\Sigma}}^{-1}\mathbf{B} = \mathbf{U}^\intercal \Lambda \mathbf{U}$ and get the K-1 first eigenvectors. Graphical representation.
 - 1. Compute the estimated latent position $\mathbf{\tilde{Z}} = G\hat{\mu} + \mathbf{\tilde{M}}$, center
 - 2. Compute the estimated coordinates along the discriminant axes

$$\tilde{\mathbf{Z}}^{LDA} = \tilde{\mathbf{Z}} \mathbf{U} \Lambda^{1/2}$$

²G is the design matrix of the grouping

Outline

Variational inference of PLN models

Probabilistic PCA for counts

Network inference for count data

Discriminant Analysis

Illustration: the oak powdery mildew data set

Fit the PLNLDA models

find the linear combinaison that separates the grouping

Fit the model with offsets, and various covariates

```
mvLDA tree <- PLNLDA(Y, grouping = treeStatus, 0 = log(0))
##
##
    Initialization...
    Adjusting the standard PLN model.
##
    Performing Discriminant Analysis...
##
##
    DONE!
myLDA_branch <- PLNLDA(Y, grouping = covariates$branch, 0 = log(0))
##
##
  Initialization...
    Adjusting the standard PLN model.
    Performing Discriminant Analysis...
    DONE
##
```

```
myLDA_tree$plot_LDA()
myLDA_branch$plot_LDA()
```

LDA on tree status

Axes contribution

axis 1:78.37% axis 2:21.63%

classification

a intermediate

a resistant

a susceptible

LDA on branch effect

Discussion

Summary

- ▶ PLN = generic model for multivariate count data analysis
- Allows for covariates
- Flexible modeling of the covariance structure
- Efficient VEM algorithm
- ▶ PLNmodels package: https://github.com/jchiquet/PLNmodels

Extensions

- Model selection criterion for network inference
- Other covariance structures (spatial, time series, ...)
- Mixture model in the latent space
- Confidence interval and tests for the regular PLN

Statistical properties of variational estimates

General properties of VEM inference.

- VEM stationary point ≠ log-likelihood stationary point
- ▶ Some consistency results, typically when $p(Z \mid Y)$ asymptotically belongs to \mathcal{Q} (SBM, Bayesian logistic regression).

Using VEM output as a starting point for regular inference:

▶ Get maximum-(composite-)likelihood estimates starting from $\tilde{\boldsymbol{\theta}}_{VEM}$ (proposed internship)

→ Hopefully: few iterations are needed

Thanks to you for your patience and to my co-workers

References

John Aitchison and CH Ho.

The multivariate poisson-log normal distribution. Biometrika, 76(4):643–653, 1989.

B. Jakuschkin, V. Fievet, L. Schwaller, T. Fort, C. Robin, and C. Vacher.

Deciphering the pathobiome: Intra-and interkingdom interactions involving the pathogen Erysiphe alphitoides. Microbial ecology, pages 1–11, 2016.

Steven G Johnson.

The NLopt nonlinear-optimization package, 2011.

D. Karlis.

EM algorithm for mixed Poisson and other discrete distributions.

Astin bulletin, 35(01):3-24, 2005.

Han Liu, Kathryn Roeder, and Larry Wasserman.

Stability approach to regularization selection (stars) for high dimensional graphical models.

In Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 2, NIPS'10, pages 1432–1440, USA, 2010. Curran Associates Inc.

Krister Svanberg.

A class of globally convergent optimization methods based on conservative convex separable approximations SIAM journal on optimization, 12(2):555-573, 2002.

M. J. Wainwright and M. I. Jordan.

Graphical models, exponential families, and variational inference.

Found. Trends Mach. Learn., 1(1-2):1-305, 2008.