Project #1

Part I:

Consider the *FitzHugh-Nagumo oscillator model* which is a two-dimensional simplification of the *Hodgkin-Huxley model* of spike generation in neurons.

$$\dot{x} = \alpha \left[y + x - \frac{x^3}{3} + z \right]$$

$$\dot{y} = -\frac{1}{\alpha} \left[\omega^2 x - \alpha + by \right]$$

Where x is the excitability variable, \P is the refractoriness variable, and extstyle extsty

Choose a=0.7, b=0.8 and ω^2 =1

(a) Investigate the intrinsic frequency of the oscillator output by plotting it as a function of "stimulus z=constant=k" for the special case $\alpha=3$.

Part II:

Consider two bidirectionally coupled FitzHugh-Nagumo oscillators.

(b) Investigate the phase coherence index "R" of the coupled oscillators as a function of their percentage intrinsic frequency difference and symmetric coupling strength.

Hints:

- For bidirectional coupling use $z_1=k_1+c$ x_2 and $z_2=k_2+c$ x_1 where "k₁" and "k₂" are associated with intrinsic frequency of oscillators #1&2 respectively, and "c" is the symmetric coupling strength.
- The intrinsic frequency is estimated from Part I when c=0.
- Use response maps to indicate different regions of system behaviour, in your investigations of coupled oscillators in Parts II and III.

Part III:

(c) Investigate two *complexity measures* the maximum Lyapunov exponent " λ_{max} " and the correlation dimension " D_c ", using the oscillator output time series $x_1(t)$ & $x_2(t)$, for each grid point in the depicted response map.

Hints:

- This will produce 6 response maps (3 for each oscillator).
- Use a Rosenstein's algorithm to compute " λ_{max} " from short time series data.
- \bullet Use a Grassberger-Procaccia algorithm to compute "D $_{\!c}$ ".