

Deep Learning Programming: The Finer Details

Girish Varma

Step 1: Data Loading

Data Normalization

Data Augmentation or Jittering

A trick to increase the training data

a. No augmentation (= 1 image)

b. Flip augmentation (= 2 images)

224x224

c. Crop+Flip augmentation (= 10 images)

224x224

+ flips

Step 2: Model Definition

Weight Initialization

Need to pick a starting point for gradient descent: an initial set of weights

Zero is a very bad idea!

- Zero is a critical point
- Error signal will not propagate
- Gradients will be zero: no progress

Constant value also bad idea:

Need to break symmetry

Use small random values:

E.g. zero mean Gaussian noise with constant variance

Ideally we want inputs to activation functions (e.g. sigmoid, tanh, ReLU) to be mostly in the linear area to allow larger gradients to propagate and converge faster.

Weight Initialization

$$W \sim U \Big[-\frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}} \Big]$$

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." *International conference on artificial intelligence and statistics*. 2010.

Step 3: Specify Loss and Training Algo

Optimization Algorithms

SGD

Learning_rate (learning_schedule)

momentum

Adam

https://distill.pub/2017/momentum/

Optimization Algorithms

Regularizer

If neural network weights are unconstrained, it can over fit the data.

Regularizers

Regularization ensures that the weights take only a small range of values

L1 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$

L2 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2$$
Loss function Regularization
Term

Batch Norm Layer

Apply normalization to hidden space


```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```


Dropout

Another way of preventing overfitting.

Cons:

Training can take longer.

Dropout

Another way of preventing overfitting.

Cons:

Training can take longer.

(b) After applying dropout.

Summary

- Data Normalization
- Data Augmentation
- Weight Initialization
- Optimization Algorithms
- Regularizer
- Batch Norm (Layer)
- Dropout (Layer)

CPU vs GPU

My computer

Spot the CPU!

(central processing unit)

This image is licensed under CC-BY 2.0

Spot the GPUs!

(graphics processing unit)

This image is in the public domain

CPU vs GPU

	# Cores	Clock Speed	Memory	Price
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.4 GHz	Shared with system	\$339
CPU (Intel Core i7-6950X)	10 (20 threads with hyperthreading)	3.5 GHz	Shared with system	\$1723
GPU (NVIDIA Titan Xp)	3840	1.6 GHz	12 GB GDDR5X	\$1200
GPU (NVIDIA GTX 1070)	1920	1.68 GHz	8 GB GDDR5	\$399

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

Example: Matrix Multiplication

Programming GPUs

- CUDA (NVIDIA only)
 - Write C-like code that runs directly on the GPU
 - Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc
- OpenCL
 - Similar to CUDA, but runs on anything
 - Usually slower :(

CPU vs GPU in practice

(CPU performance not well-optimized, a little unfair)

CPU / GPU Communication

Model is here

Data is here

CPU / GPU Communication

Model is here

Data is here

If you aren't careful, training can bottleneck on reading data and transferring to GPU!

Solutions:

- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to prefetch data