Capital Bikeshare 2011-2012: an Analysis, Visualization, and Prediction

Samuel Joslin 12/15/2018

The Capital Bikeshare provides the means for renting bicycicles through a number of automated kiosks throughout the metro DC area. People are able to rent, use, and return bicycles at different locations at their convience.

I plan to explore data from the Washington DC Capital Bikeshare through multiple visualizations and estimators. Ultimately, I create a predictive model (Stochastic Gradient Boosting and Linear Regression) to predict the number of bikes that will be rented in the future.

```
library(dplyr, quietly = T)
library(ggplot2, quietly = T)
library(caret, quietly = T)
library(lubridate, quietly = T)
library(sqldf, quietly = T)
library(Metrics, quietly = T)
#Read in the bikesharing data set
train <- read.csv("train.csv", header = T,</pre>
                 stringsAsFactors = F)
test <- read.csv("test.csv", header = T,</pre>
                 stringsAsFactors = F)
train %>% str
## 'data.frame':
                    10886 obs. of 12 variables:
                       "2011-01-01 00:00:00" "2011-01-01 01:00:00" "2011-01-01 02:00:00" "2011-01-01 03
##
   $ datetime : chr
   $ season
               : int
                      1 1 1 1 1 1 1 1 1 1 ...
  $ holiday
                : int
                       0 0 0 0 0 0 0 0 0 0 ...
##
   $ workingday: int
                       0 0 0 0 0 0 0 0 0 0 ...
##
   $ weather
              : int 1 1 1 1 1 2 1 1 1 1 ...
##
  $ temp
                : num 9.84 9.02 9.02 9.84 9.84 ...
##
                       14.4 13.6 13.6 14.4 14.4 ...
   $ atemp
                : num
##
   $ humidity : int
                       81 80 80 75 75 75 80 86 75 76 ...
##
   $ windspeed : num  0 0 0 0 0 ...
   $ casual
                : int 3853002118...
   $ registered: int 13 32 27 10 1 1 0 2 7 6 ...
                : int 16 40 32 13 1 1 2 3 8 14 ...
Understanding the data The "train" data frame, as shown above, has columns that can be interpreted in
```

this way:

```
datetime - hourly date + timestamp
season - 1 = \text{spring}, 2 = \text{summer}, 3 = \text{fall}, 4 = \text{winter}
holiday - whether the day is considered a holiday (0 for non-holiday, 1 for holiday)
workingday - whether the day is neither a weekend nor holiday
```

```
weather - 1: Clear, Few clouds, Partly cloudy, Partly cloudy
2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
temp - temperature in Celsius
atemp - "feels like" temperature in Celsius
humidity - relative humidity
windspeed - wind speed
casual - number of non-registered user rentals initiated
registered - number of registered user rentals initiated
count - number of total rentals
```

The "test" data frame has the same coulmn data as "train", except without "casual", "registered", and "count"

Putting the data in a usable form My goal in the section is to put the data into a useable form such that my analysis portion runs smoothly and clearly. Fortunately, the data has no missing values and clearly labeled. However, I would like to sepretately add an "hour and"day of the week" coulmn and to transform the "temp" from Celsius to Ferenheit. In addition, I will turn four of the integer coulmns into factors for the model prediction section, and remove the "causal" and "registered" coulmns becuse "count" = "casual" + "registered". Since we have the two data frames, "train" and "test", I generalize this process in two functions.

```
##### convert celcius to ferenheit #####
cTOf <- function(int){
  fer <- rep(NA,length(int))</pre>
  for (i in 1:length(int)){
    ci <- int[i]</pre>
    cel <- ci*(9/5)
    fer[i] <- cel+32
  }
  return(fer)
}
clean data <- function(data frame){</pre>
  #Create a hour coulmn
  data_frame$hour <- substr(data_frame$datetime, 12, 20) %% as.factor
  #create day of week column
  data_frame$weekday <- data_frame$datetime %>% as.Date %>% weekdays %>% as.factor
  #turn temps in to ferenheit
  data_frame$temp <- cTOf(data_frame$temp)</pre>
  data_frame$season <- as.factor(data_frame$season)</pre>
  data_frame$holiday <- as.factor(data_frame$holiday)</pre>
  data_frame$workingday <- as.factor(data_frame$workingday)</pre>
  data_frame$weather <- as.factor(data_frame$weather)</pre>
  data frame$casual <- NULL
  data_frame$registered <- NULL
```

```
return(data_frame)
}

train <- clean_data(train)
test <- clean_data(test)</pre>
```

Understanding the data through visualizations and estimators

I seek to answer the question: "How does bikeshare rentals vary over the course of the year?" I approach this question by plotting the "month/day" days on the x-axis and an aggregate count on the y-axis for all given years. Additionally, I highlight the temperature on the given day to show the relationship between the number bikes rented on the day and the temperature.

```
plot_year_nRent <- function(unfactored){</pre>
  rows <- nrow(unfactored)
  mon_day <- rep(NA,rows)</pre>
  for(i in 1:rows){
    cd <- as.character(unfactored$datetime[i])</pre>
    month <- strsplit(cd,"\\- |\\-| ")[[1]][2]
    day <- strsplit(cd,"\\- |\\-| ")[[1]][3]</pre>
    mon_day[i] <- paste(month,day, sep = "/")</pre>
  }
  unfactored$mon_day <- mon_day
  cl <- length(unique(unfactored$mon_day))</pre>
  nRent <- rep(NA, cl)
  avg_temp <- rep(NA, cl)</pre>
  for (i in 1:cl){
    uni_day <-unique(unfactored$mon_day)</pre>
    cd <- uni day[i]
    df_filt <- dplyr::filter(unfactored, mon_day == cd)</pre>
    nRent[i] <- sum(df_filt$count)</pre>
    avg_temp[i] <- df_filt$temp %>% as.numeric %>% mean
  }
  temp <- cTOf(avg_temp)</pre>
  uni_day <- unique(unfactored$mon_day)</pre>
  dayCount <- data.frame(uni_day,nRent,temp)</pre>
  p <- ggplot(aes(uni_day, nRent, color = temp), data = dayCount)</pre>
  p <- p + geom_point() + theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 7))+scale_colo.
    ggtitle("Bikes Rented over the year")
  return (print(p))
}
plot_year_nRent(train)
```

Bikes Rented over the year

The left most x-axis tick represends 01/01 and the right most is 12/31. It is no suprise that more bikes are rented in the summer months than the winter, but something that I found interesting is that it appears that there is more variability in the count on the warmer days than the colder days. To further investigate this idea, I plan, later on, the assess the standard deviation by season. I want to assess the validity of the statement "There is less variablity in the count when the temperature cold than when the temperature is hot."

Below is a function that accepts a data frame and season and returns the standard deviation of that season's count.

```
sd_seasons <- function(traindf, season){

if(season == "Spring"){
    season2 <- 1
}
if(season == "Summer"){
    season2 <- 2
}
if(season == "Fall"){
    season2 <- 3
}
if(season == "Winter"){
    season2 <- 4
}

df_filt <- filter(traindf, season == season2)
sd <- df_filt$count %>% sd
return(sd)
```

```
sd_seasons(train, "Summer")%>% print

## [1] 192.0078

sd_seasons(train, "Fall")%>% print

## [1] 197.151

sd_seasons(train, "Winter")%>% print

## [1] 177.6224

sd_seasons(train, "Spring")%>% print
```

[1] 125.274

It appears that there is less variation in the spring than in the other months, which suggests that people more consistently rent bikes in the spring.

I would also like to investigate the question: "How many bikes are rented per hour over on different days of the week". I will visualize this question by plotting the "hours" on the x-axis and the "count" on the y-axis and have a line represent the different days of the week.

```
plot_Days_Count <- function(data_frame){
   day_hour <- sqldf::sqldf('select weekday, hour, avg(count) as count from data_frame group by weekday,

   p <-ggplot(train, aes(x=hour, y=count, color=weekday))+
        geom_line(data =day_hour, aes(group = weekday))+
        ggtitle("Bikes Rented By Weekday")+ theme(axis.text.x = element_text(angle = 90, hjust = 1, size = return(print(p)))
}

plot_Days_Count(train)</pre>
```

Bikes Rented By Weekday

It appears that on the weekdays people mostly use the bikes in the morning and in the afternoon, probably in accordace with a work schedule. On the weekends it apears that people steady increase the useage, peaking the afternoon.

Regresssion and count prediction

Given the relationships we have seen in the visualizations above, it would be interesting if we could provide some sort of prediction through a model on how many bikes are rented given certain time and weather conditions. I plan to create two models to assist the predict process, Stochastic Gradient Boosting and Linear Regression. Stochastic Gradient Boosting is a decision tree based model that consists of an ensemble of weak prediction to form one strong prediction model. Linear regression provides a simple scalar relationship between the dependent and independent variables. I will evaluate the model's accuracy using the Root Mean Squared Log Error.

Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
"bernoulli", : variable 8: weather4 has no variation.

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	31059.6147	nan	0.0500	_
##	2	29805.9755	nan	0.0500	
##	3	28709.4415	nan	0.0500	1031.9113
##	4	27642.3276	nan	0.0500	1129.9421
##	5	26676.8505	nan	0.0500	939.3728
##	6	25750.1999	nan	0.0500	914.9669
##	7	24932.0435	nan	0.0500	834.2625
##	8	24143.5202	nan	0.0500	763.3250
##	9	23370.2015	nan	0.0500	770.8170
##	10	22681.2949	nan	0.0500	690.3468
##	20	17307.2113	nan	0.0500	396.1854
##	40	11783.6438	nan	0.0500	198.9375
##	60	9304.2288	nan	0.0500	41.4277
##	80	8001.9804	nan	0.0500	37.2588
##	100	7173.1600	nan	0.0500	22.3287
##	120	6661.6692	nan	0.0500	8.8488
##	140	6268.7995	nan	0.0500	7.3683
##	160	5967.2323	nan	0.0500	3.8765
##	180	5758.4124	nan	0.0500	-4.4834
##	200	5563.3825	nan	0.0500	3.2273
##	220	5409.8655	nan	0.0500	-0.4730
##	240	5263.3595	nan	0.0500	-4.0573
##	260	5130.6885	nan	0.0500	-1.0004
##	280	5001.6212	nan	0.0500	-0.8368
##	300	4895.0530	nan	0.0500	-5.7753
##	320	4791.1030	nan	0.0500	-0.2971
##	340	4684.2769	nan	0.0500	-2.2857
##	360	4589.4750	nan	0.0500	-2.0791
##	380	4511.2551	nan	0.0500	-2.5979
##	400	4434.5989	nan	0.0500	1.3360
##	420	4356.4956	nan	0.0500	-0.7038
##	440	4286.2452	nan	0.0500	-0.4053
##	460	4212.5553	nan	0.0500	-2.6373
##	480	4149.0213	nan	0.0500	-1.5456
##	500	4095.5028	nan	0.0500	-3.0213
##	T+	Ti-Di	ValidDeviance	C+ C :	T
##	Iter	TrainDeviance		StepSize	Improve
##	1	31153.9895	nan	0.0500	
##	2	29951.3644	nan	0.0500	1185.3219
## ##	3	28811.4353	nan	0.0500	1123.6020
	4	27737.3592	nan	0.0500	1056.8432
## ##	5 6	26802.0427 25932.0516	nan	0.0500	942.8468 875.6669
##	7	24971.5997	nan	0.0500	843.6513
##	8	24209.5624	nan	0.0500	731.1394
##	9		nan		
##	9	23475.3540	nan	0.0500	678.4202

```
t_out_gbm %>% print
## Stochastic Gradient Boosting
##
## 8166 samples
##
      9 predictor
##
## No pre-processing
## Resampling: Cross-Validated (6 fold, repeated 6 times)
## Summary of sample sizes: 6805, 6805, 6806, 6804, 6806, 6804, ...
## Resampling results:
##
##
     RMSE
               Rsquared
                           MAE
##
     74.83737 0.8293206 53.74274
##
## Tuning parameter 'n.trees' was held constant at a value of 500
## Tuning parameter 'shrinkage' was held constant at a value of
## 0.05
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
t_out_lm %>% print
## Linear Regression
##
## 8166 samples
##
      9 predictor
##
## No pre-processing
## Resampling: Cross-Validated (6 fold, repeated 6 times)
## Summary of sample sizes: 6805, 6804, 6805, 6804, 6806, 6806, ...
## Resampling results:
##
               Rsquared
##
     RMSE
                           MAE
##
     110.3013 0.6293517 79.67259
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
A prediction is only valuable if it has a low error. Below I wrote a function that will show the Root Mean
Squared Log Error.
prediction_error <- function(model, validation){</pre>
  pred1 <- predict(model, validation)</pre>
  pred1[pred1<0] <- 0</pre>
  error <- Metrics::rmsle(validation$count,pred1)</pre>
 return(error)
}
prediction_error(t_out_gbm, validation) %>% print
## [1] 0.756579
prediction_error(t_out_lm, validation) %>% print
```

[1] 1.045073

As expected the Stochastic Gradient Boosting model has a lower error than the Linear Regression. So, I will

use the Stochastic Gradient Boosting for the prediction. Below is a function that makes predictions.

```
makePrediction <- function (model, test) {
   pred <- predict(model, test)
   pred <- round(pred)
   pred[pred<0] <- 0
   df <- data.frame(test$datetime, c(count=pred))
   names(df) <- c("datetime", "count")
   return(df)
}
makePrediction(t_out_gbm, test) %>% head %>% print
```

```
## count1 2011-01-20 00:00:00 52
## count2 2011-01-20 01:00:00 4
## count3 2011-01-20 02:00:00 0
## count4 2011-01-20 03:00:00 0
## count5 2011-01-20 04:00:00 0
## count6 2011-01-20 05:00:00 0
```

In the future, I would like to use higher number of repeated CV to improve the model's accuracy as well as comparing these models to other methods.

As an end note, I must cite Kaggle for providing the data set, the Caret Package introduction https://topepo.github.io/caret/index.html, and Stackoverflow for providing me with information on tuning models and how to use new r functions and packages.