BLG 336E Analysis of Algorithms II

Lecture 10:

Network Flow I

Min Cut and Karger's Algorithm

Last time

- Dynamic programming is an algorithm design paradigm.
- Basic idea:
 - Identify optimal sub-structure
 - Optimum to the big problem is built out of optima of small sub-problems
 - Take advantage of overlapping sub-problems
 - Only solve each sub-problem once, then use it again and again
 - Keep track of the solutions to sub-problems in a table as you build to the final solution.

Recap

- We saw examples of how to come up with dynamic programming algorithms.
 - Longest Common Subsequence
 - Knapsack two ways
 - (If time) maximal independent set in trees.
- There is a **recipe** for dynamic programming algorithms.

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Knapsack problem

Goal. Pack knapsack so as to maximize total value of items taken.

- There are *n* items: item *i* provides value $v_i > 0$ and weighs $w_i > 0$.
- Value of a subset of items = sum of values of individual items.
- Knapsack has weight limit of W.
- Ex. The subset $\{1, 2, 5\}$ has value \$35 (and weight 10).
- Ex. The subset { 3, 4 } has value \$40 (and weight 11).

Assumption. All values and weights are integral.

Creative Commons Attribution-Share Alike 2.5 by Dake

i	v_i	w_i
1	\$1	1 kg
2	\$6	2 kg
3	\$18	5 kg
4	\$22	6 kg
5	\$28	7 kg

weights and values can be arbitrary positive integers

knapsackinstance (weight limit W= 11)

Which algorithm solves knapsack problem?

- A. Greedy-by-value: repeatedly add item with maximum v_i .
- B. Greedy-by-weight: repeatedly add item with minimum w_i .
- C. Greedy-by-ratio: repeatedly add item with maximum ratio v_i/w_i .
- D. None of the above.

by Dake

i	v_i	W_i
1	\$1	1 kg
2	\$6	2 kg
3	\$18	5 kg
4	\$22	6 kg
5	\$28	7 kg

knapsadkinstance (weight limit W= 11)

Dynamic programming: quiz 3

Which subproblems?

- A. OPT(w) = optimal value of knapsack problem with weight limit w.
- **B**. OPT(i) = optimal value of knapsack problem with items 1, ..., i.
- C. OPT(i, w) = optimal value of knapsack problem with items 1, ..., i subject to weight limit w.
- D. Any of the above.

Dynamic programming: two variables

Def. OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w.

Goal. OPT(n, W).

possibly because $w_i > w_i$

Case 1. OPT(i, w) does not select item i.

• OPT(i, w) selects best of $\{1, 2, ..., i-1\}$ subject to weight limit w.

Case 2. OPT(i, w) selects item i.

optimal substructure property (proof via exchange argument)

- Collect value v_i .
- New weight limit = $w w_i$.
- OPT(i, w) selects best of $\{1, 2, ..., i-1\}$ subject to new weight limit.

Bellman equation.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i - 1, w) & \text{if } w_i > w \\ \max \{ OPT(i - 1, w), \ v_i + OPT(i - 1, w - w_i) \} & \text{otherwise} \end{cases}$$

Knapsack problem: bottom-up dynamic programming

KNAPSACK(
$$n, W, w_1, ..., w_n, v_1, ..., v_n$$
)

FOR
$$w = 0$$
 TO W
$$M[0, w] \leftarrow 0.$$

FOR
$$i = 1$$
 TO n

FOR
$$w = 0$$
 TO W
IF $(w_i > w)$ $M[i, w] \leftarrow M[i-1, w]$.

ELSE

 $M[i, w] \leftarrow \max \{ M[i-1, w], v_i + M[i-1, w-w_i] \}.$

previously computed values

RETURN M[n, W].

$$OPT(i,w) \ = \begin{cases} 0 & \text{if } i=0 \\ OPT(i-1,w) & \text{if } w_i > w \\ \max \left\{ \ OPT(i-1,w), \ v_i + OPT(i-1,w-w_i) \ \right\} & \text{otherwise} \end{cases}$$

Knapsack problem: bottom-up dynamic programming demo

i	v_i	w_i											
1	\$1	1 kg			\int_{0}^{∞}	(0						i	If $i = 0$
2	\$6	2 kg	OPT	(i, w) =	$= \begin{cases} OPT(i-1,w) \end{cases}$						i	if $w_i > u$	
3	\$18	5 kg			$= \begin{cases} 0 \\ OPT(i-1,w) \\ \max \{OPT(i-1,w), v_i + OPT(i-1,w-w_i) \end{cases}$							$\{v_i\}$	otherwis
4	\$22	6 kg			•								
5	\$28	7 kg											
	weight limit w												
		0	1	2	3	4	5	6	7	8	9	10	11
subset of items 1,, i	{}	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	1		6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3	0	1	6	7	7	- 18 ∢	19	24	25	25	25	25
	{ 1, 2, 3, 4	1} 0	1	6	7	7	18	22	24	28	29	29	- 40
	{ 1, 2, 3, 4,	5 } 0	1	6	7	7	18	22	28	29	34	35	40
	OPT(i, w) = opt	imal valu	ıe of kn	apsack	proble	m with	items 1	l,, i, s	ubject	to weig	ht limit	w

JON KLEINBERG • ÉVA TARDOS

SECTION 6.5

6. DYNAMIC PROGRAMMING I

- weighted interval scheduling
- segmented least squares
- knapsack problem
- ► RNA secondary structure

RNA. String $B = b_1b_2...b_n$ over alphabet $\{A, C, G, U\}$.

Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Secondary structure. A set of pairs $S = \{(b_i, b_j)\}$ that satisfy:

■ [Watson-Crick] S is a matching and each pair in S is a Watson-Crick complement: A–U, U–A, C–G, or G–C.

 $S = \{ (b_1, b_{10}), (b_2, b_9), (b_3, b_8) \}$

Ss not asecondary structure (C-A is not avalid Watson-Crick pair)

Secondary structure. A set of pairs $S = \{(b_i, b_i)\}$ that satisfy:

- [Watson-Crick] S is a matching and each pair in S is a Watson-Crick complement: A–U, U–A, C–G, or G–C.
- [No sharp turns] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then i < j 4.

B = AUGGGGCAU $S = \{ (b_1, b_{10}), (b_2, b_9), (b_3, b_8) \}$

Sis not a secondary structure (≤4 intervening bases between Gand C)

Secondary structure. A set of pairs $S = \{(b_i, b_i)\}$ that satisfy:

- [Watson-Crick] S is a matching and each pair in S is a Watson-Crick complement: A–U, U–A, C–G, or G–C.
- [No sharp turns] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_i) \in S$, then i < j 4.
- [Non-crossing] If (b_i, b_j) and (b_k, b_ℓ) are two pairs in S, then we cannot have $i < k < j < \ell$.

B = ACUUGGCCAU $S = \{ (b_1, b_{10}), (b_2, b_8), (b_3, b_9) \}$

Sis not a secondary structure (G-Cand U-A cross)

Secondary structure. A set of pairs $S = \{(b_i, b_i)\}$ that satisfy:

- [Watson-Crick] S is a matching and each pair in S is a Watson-Crick complement: A–U, U–A, C–G, or G–C.
- [No sharp turns] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_i) \in S$, then i < j 4.
- [Non-crossing] If (b_i, b_j) and (b_k, b_ℓ) are two pairs in S, then we cannot have $i < k < j < \ell$.

B = AUGUGGCCAU $S = \{ (b_1, b_{10}), (b_2, b_9), (b_3, b_8) \}$

Sis a secondary structure (with 3 base pairs)

Secondary structure. A set of pairs $S = \{(b_i, b_i)\}$ that satisfy:

- [Watson-Crick] S is a matching and each pair in S is a Watson-Crick complement: A–U, U–A, C–G, or G–C.
- [No sharp turns] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then i < j 4.
- [Non-crossing] If (b_i, b_j) and (b_k, b_ℓ) are two pairs in S, then we cannot have $i < k < j < \ell$.

Free-energy hypothesis. RNA molecule will form the secondary structure with the minimum total free energy.

Goal. Given an RNA molecule $B = b_1b_2...b_n$, find a secondary structure S that maximizes the number of base pairs.

Is the following a secondary structure?

- A. Yes.
- B. No, violates Watson-Crick condition.
- C. No, violates no-sharp-turns condition.

D. No, violates no-crossing condition.

Dynamic programming: quiz 6

Which subproblems?

- A. $OPT(j) = \max \text{ number of base pairs in secondary structure}$ of the substring $b_1b_2...b_j$.
- B. $OPT(j) = \max \text{ number of base pairs in secondary structure}$ of the substring $b_j b_{j+1} \dots b_n$.
- C. Either A or B.
- D. Neither A nor B.

RNA secondary structure: subproblems

First attempt. $OPT(j) = \text{maximum number of base pairs in a secondary structure of the substring } b_1b_2 \dots b_j$.

Goal. OPT(n).

Difficulty. Results in two subproblems (but one of wrong form).

- Find secondary structure in $b_1b_2...b_{t-1}$. \longleftarrow OPT(t-1)
- Find secondary structure in $b_{t+1}b_{t+2}\dots b_{j-1}$. need more subproblems (first base no longer b_1)

Dynamic programming over intervals

Def. OPT(i, j) = maximum number of base pairs in a secondary structure of the substring $b_i b_{i+1} \dots b_{j}$.

Case 1. If $i \ge j - 4$.

• OPT(i, j) = 0 by no-sharp-turns condition.

Case 2. Base b_j is not involved in a pair.

 $^{\bullet}$ *OPT*(*i*, *j*) = OPT(*i*, *j* − 1).

Case 3. Base b_j pairs with b_t for some $i \le t < j - 4$.

Non-crossing condition decouples resulting two subproblems.

 $\text{ $OPT(i, j) = $1 + \max_t \{ \ OPT(i, \ t-1) + OPT(t+1, \ j-1) \ \}. }$ match bases \mathbf{b}_i and \mathbf{b}_t and \mathbf{b}_j are Watson-Crick complements

t

51

In which order to compute OPT(i, j)?

- A. Increasing i, then j.
- B. Increasing j, then i.

- C. Either A or B.
- D. Neither A nor B.

Bottom-up dynamic programming over intervals

- Q. In which order to solve the subproblems?
- A. Do shortest intervals first—increasing order of 🖵 🗓

Theorem. The DP algorithm solves the RNA secondary structure problem in $O(n^3)$ time and $O(n^2)$ space.

Dynamic programming summary

Outline.

typically, only a polynomial number of subproblems

- Define a collection of subproblems.
- Solution to original problem can be computed from subproblems.
 - Natural ordering of subproblems from "smallest" to "largest" that enables determining a solution to a subproblem from solutions to smaller subproblems.

Techniques.

- Binary choice: weighted interval scheduling.
- Multiway choice: segmented least squares.
- Adding a new variable: knapsack problem.
- Intervals: RNA secondary structure.

Top-down vs. bottom-up dynamic programming. Opinions differ.

Today

- Minimum Cuts!
 - Karger's algorithm
 - Karger-Stein algorithm
 - Back to randomized algorithms!

*For today, all graphs are undirected and unweighted.

Recall: cuts in graphs

 A cut is a partition of the vertices into two nonempty parts.

*For today, all graphs are undirected and unweighted.

Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty

This is not a cut

This is a cut

This is a cut

These edges cross the cut.

• They go from one part to the other.

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

Why "global"?

Next time we'll talk about min s-t cuts

Minimum cut which separates a specified vertex s from t

 Today, there are no special vertices, so the minimum cut is "global."

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

Why might we care about global minimum cuts?

One example is image segmentation:

Why might we care about global minimum cuts?

One example is image segmentation:

 We'll see more applications for other sorts of min-cuts next week

weights*

between similar

pixels.

- Finds global minimum cuts in undirected graphs
- Randomized algorithm
- Karger's algorithm might be wrong.
 - Compare to QuickSort, which just might be slow.
- Why would we want an algorithm that might be wrong?
 - With high probability it won't be wrong.
 - Maybe the stakes are low and the cost of a deterministic algorithm is high.

Different sorts of gambling

- QuickSort is a Las Vegas randomized algorithm
 - It is always correct.
 - It might be slow.

Yes, this is a technical term.

Formally:

- For all inputs A, QuickSort(A) returns a sorted array.
- For all inputs A, with high probability over the choice of pivots, QuickSort(A) runs quickly.

Different sorts of gambling

- Karger's Algorithm is a Monte Carlo randomized algorithm
 - It is always fast.
 - It might be wrong.

Formally:

- For all inputs G, with probability at least ____ over the randomness in Karger's algorithm, Karger(G) returns a minimum cut.
- For all inputs G, with probability 1
 Karger's algorithm runs in time no
 more than

- Pick a random edge.
- Contract it.
- Repeat until you only have two vertices left.

Why is this a good idea? We'll see shortly.

The **minimum cut** is given by the remaining super-nodes:

• {a,b,c,d} and {e,h,f,g}

• Does it work?

• Is it fast?

How do we implement this?

- Implementation
 - This maintains a secondary "superGraph" which keeps track of superNodes and superEdges
- Running time?
 - We contract at most n-2 edges
 - Each time we contract an edge we get rid of a vertex, and we get rid of at most n – 2 vertices total.
 - Naively each contraction takes time O(n)
 - Maybe there are about n nodes in the superNodes that we are merging.
 - So total running time O(n²).
 - We can do $O(m \cdot \alpha(n))$ with a union-find data structure, but $O(n^2)$ is good enough for today.

Pseudocode

Let \overline{u} denote the SuperNode in Γ containing u Say $E_{\overline{u},\overline{v}}$ is the SuperEdge between \overline{u} , \overline{v} .

Karger(G=(V,E)):

This slide skipped in class

• return the cut given by the remaining two superNodes.

```
    merge( u, v ): // merge also knows about Γ and the E<sub>ū,v̄</sub> 's
     x̄ = SuperNode( ū ∪ v̄ ) // create a new supernode
    for each w in Γ \ {ū, v̄}:
```

• $E_{\overline{x},\overline{w}} = E_{\overline{u},\overline{w}} \cup E_{\overline{v},\overline{w}}$

• Remove $\overline{\boldsymbol{u}}$ and $\overline{\boldsymbol{v}}$ from Γ and add $\overline{\boldsymbol{x}}$.

total runtime O(n²)

We can do a bit better with fancy data structures, but let's go with this for now.

• Does it work?

• No?

- Is it fast?
 - O(n²)

Why did that work?

- We got really lucky!
- This could have gone wrong in so many ways.

Say we had chosen this edge

Say we had chosen this edge

Now there is **no way** we could return a cut that separates b and e.

Even worse

If the algorithm **EVER** chooses either of **these edges**,

How likely is that?

• For this particular graph, I did it 10,000 times:

That doesn't sound good

 Too see why it's good after all, we'll do a case study of this graph.

• Let's compare Karger's algorithm to the algorithm:

Choose a completely random cut and hope that it's a minimum cut.

The plan:

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

Random cuts

- Suppose that we chose cuts uniformly at random.
 - That is, pick a random way to split the vertices into 2 parts.

Random cuts

- Suppose that we chose cuts uniformly at random.
 - That is, pick a random way to split the vertices into 2 parts.
- The probability of choosing the minimum cut is*...

$$\frac{\text{number of min cuts in that graph}}{\text{number of ways to split 8 vertices in 2 parts}} = \frac{2}{2^8 - 2} \approx 0.008$$

Aka, we get a minimum cut 0.8% of the time.

Karger is better than completely random!

What's going on?

Thing 1: It's unlikely that Karger will hit the min cut since it's so small!

Which is more likely?

A: The algorithm never chooses either of the edges in **the minimum cut**.

B: The algorithm never chooses any of the edges in **this big cut**.

• Neither A nor B are very likely, but A is more likely than B.

What's going on?

Thing 2: By only contracting edges we are ignoring certain really-not-minimal cuts.

A: This cut can be returned by Karger's algorithm.

B: This cut can't be returned by Karger's algorithm!
(Because how would a and g end up in the same super-node?)

This cut actually separates the graph into three pieces, so it's not minimal – either half of it is a smaller cut.

Why does that help?

- Okay, so it's better than random...
- We're still wrong about 80% of the time.
- The main idea: repeat!
 - If I'm wrong 20% of the time, then if I repeat it a few times I'll eventually get it right.

The plan:

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

Thought experiment

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- Q: What is the minimum of a,b,c,d,e?

This is the same calculation we've done a bunch of times:

Number of times

This one we've done less frequently:

• Pr[t times and don't] =
$$(1 - 0.2)^t$$
 ever get the min

• Pr[We push the button 5 times and don't ever get the min] =
$$(1 - 0.2)^5 \approx 0.33$$

• Pr[We push the button 10 times and don't] =
$$(1 - 0.2)^{10} \approx 0.1$$
 ever get the min

In this context

• Run Karger's! The cut size is 6!

Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 2!

• Run Karger's! The cut size is 5!

If the success probability is about 20%, then if you run Karger's algorithm 5 times and take the best answer you get, that will likely be correct!

For this particular graph

- Repeat Karger's algorithm about 5 times, and we will get a min cut with decent probability.
 - In contrast, we'd have to choose a random cut about 1/0.008 = 125 times!

Hang on! This "20%" figure just came from running experiments on this particular graph. What about general graphs? Can we prove this?

Also, we should be a bit more precise about this "about 5 times" statement.

The plan:

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

Questions

To generalize this approach to all graphs

1. What is the probability that Karger's algorithm returns a minimum cut?

- 2. How many times should we run Karger's algorithm to "probably" succeed?
 - Say, with probability 0.99?
 - Or more generally, probability 1δ ?

Answer to Question 1

Claim:

The probability that Karger's algorithm returns a minimum cut is

at least
$$\frac{1}{\binom{n}{2}}$$

In this case, $\frac{1}{\binom{8}{2}} = 0.036$, so we are

guaranteed to win at least 3.6% of the time.

Answers

1. What is the probability that Karger's algorithm returns a minimum cut?

According to the claim, at most
$$\frac{1}{\binom{n}{2}}$$

- 2. How many times should we run Karger's algorithm to "probably" succeed?
 - Say, with probability 0.99?
 - Or more generally, probability 1δ ?

Before we prove the Claim

2. How many times should we run Karger's algorithm to succeed with probability $1-\delta$?

A computation

Punchline: If we repeat $\mathbf{T} = \binom{n}{2} \ln(1/\delta)$ times, we win with probability at least $1 - \delta$.

• Suppose:

- the probability of successfully returning a minimum cut is $p \in [0, 1]$,
- we want failure probability at most $\delta \in (0,1)$.

Independent

- Pr[don't return a min cut in T trials] = $(1-p)^T$
- So p = $1/\binom{n}{2}$ by the Claim. Let's choose T = $\binom{n}{2} \ln(1/\delta)$
- Pr[don't return a min cut in T trials]

$$\bullet = (1 - p)^T$$

•
$$\leq (e^{-p})^T$$

• =
$$e^{-pT}$$

• =
$$e^{-\ln(\frac{1}{\delta})}$$

• =
$$\delta$$

$$1 - p \le e^{-p}$$

Theorem

Assuming the claim about $1/\binom{n}{2}$...

- Suppose G has n vertices.
- Consider the following algorithm:
 - bestCut = None
 - for $t = 1, ..., \binom{n}{2} \ln \left(\frac{1}{\delta}\right)$:
 - candidateCut ← Karger(G)
 - if candidateCut is smaller than bestCut:
 - bestCut ← candidateCut
 - return bestCut
- Then Pr[this doesn't return a min cut] $\leq \delta$.

Answers

1. What is the probability that Karger's algorithm returns a minimum cut?

According to the claim, at most
$$\frac{1}{\binom{n}{2}}$$

- 2. How many times should we run Karger's algorithm to "probably" succeed?
 - Say, with probability 0.99?
 - Or more generally, probability 1δ ?

$$\binom{n}{2}\log\left(\frac{1}{\delta}\right)$$
 times.

What's the running time?

• $\binom{n}{2} \ln \left(\frac{1}{\delta}\right)$ repetitions, and O(n²) per repetition.

• So,
$$O\left(n^2 \cdot {n \choose 2} \ln\left(\frac{1}{\delta}\right)\right) = O(n^4)$$
 Treating δ as constant.

Again we can do better with a union-find data structure. Write pseudocode for—or better yet, implement—a fast version of Karger's algorithm! How fast can you make the asymptotic running time?

Theorem

Assuming the claim about $1/\binom{n}{2}$...

Suppose G has n vertices. Then [repeating Karger's algorithm] finds a min cut in G with probability at least 0.99 in time O(n⁴).

Now let's prove the claim...

Claim

The probability that Karger's algorithm returns a minimum cut is

at least
$$\frac{1}{\binom{n}{2}}$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]
 - = **PR**[e₁ doesn't cross S*]
 - \times PR[e₂ doesn't cross S* | e₁ doesn't cross S*]

• • •

 \times PR[e_{n-2} doesn't cross S* | $e_1,...,e_{n-3}$ don't cross S*]

Focus in on:

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

- Suppose: After j-1 iterations, we haven't messed up yet!
- What's the probability of messing up now?

Focus in on:

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

- Suppose: After j-1 iterations, we haven't messed up yet!
- What's the probability of messing up now?
- Say there are k edges that cross S*
- Every remaining node has degree at least k.
 - Otherwise we'd have a smaller cut.
- Thus, there are at least (n-j+1)k/2 edges total.
 - b/c there are n j + 1 nodes left, each with degree at least k.

So the probability that we choose one of the k edges crossing S* at step j is at most:

$$\frac{k}{\left(\frac{(n-j+1)k}{2}\right)} = \frac{2}{n-j+1}$$

Recall: the **degree** of the vertex is the number of edges coming out of it.

Focus in on:

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

 So the probability that we choose one of the k edges crossing S* at step j is at most:

$$\frac{k}{\left(\frac{(n-j+1)k}{2}\right)} = \frac{2}{n-j+1}$$

 The probability we don't choose one of the k edges is at least:

$$1 - \frac{2}{n-j+1} = \frac{n-j-1}{n-j+1}$$
e,h

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]
 - = **PR**[e₁ doesn't cross S*]
 - \times PR[e₂ doesn't cross S* | e₁ doesn't cross S*]

• • •

 \times **PR**[e_{n-2} doesn't cross S* | e_1 ,..., e_{n-3} don't cross S*]

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{3}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{2}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

$$= \left(\frac{2}{n(n-1)}\right)$$

$$= \frac{1}{\binom{n}{2}}$$

$$PROVED$$

Theorem

Assuming the claim about $1/\binom{n}{2}$...

Suppose G has n vertices. Then [repeating Karger's algorithm] finds a min cut in G with probability at least 0.99 in time O(n⁴).

That proves this Theorem!

What have we learned?

- If we randomly contract edges:
 - It's unlikely that we'll end up with a min cut.
 - But it's not TOO unlikely
 - By repeating, we likely will find a min cut.

Here I chose $\delta = 0.01$ just for concreteness.

- Repeating this process:
 - Finds a global min cut in time O(n4), with probability 0.99.
 - We can run a bit faster if we use a union-find data structure.

^{*}Note, in the lecture notes, we take $\delta = \frac{1}{n}$, which makes the running time O(n⁴log(n)). It depends on how sure you want to be!

More generally

 Whenever we have a Monte-Carlo algorithm with a small success probability, we can **boost** the success probability by repeating it a bunch and taking the best solution.

Can we do better?

- Repeating O(n²) times is pretty expensive.
 - O(n⁴) total runtime to get success probability 0.99.
- The Karger-Stein Algorithm will do better!
 - The trick is that we'll do the repetitions in a clever way.
 - O(n²log²(n)) runtime for the same success probability.
 - Warning! This is a tricky algorithm! We'll sketch the approach here: the important part is the high-level idea, not the details of the computations.

To see how we might save on repetitions, let's run through Karger's algorithm again.

Probability that we didn't mess up:

12/14

There are 14 edges, 12 of which are good to contract.

Probability that we didn't mess up:

11/13

Now there are only 13 edges, since the edge between a and b disappeared.

Probability that we didn't mess up:

10/12

Now there are only 12 edges, since the edge between e and h disappeared.

Probability that we didn't mess up:

9/11

Probability that we didn't mess up:

5/7

Probability that we didn't mess up:

3/5

Now stop!

• There are only two nodes left.

Probability of not messing up

- At the beginning, it's pretty likely we'll be fine.
- The probability that we mess up gets worse and worse over time.

Repeating the stuff from the beginning of the algorithm is wasteful!

In words

- Run Karger's algorithm on G for a bit.
 - Until there are $\frac{n}{\sqrt{2}}$ supernodes left.

- Then split into two independent copies, G₁ and G₂
- Run Karger's algorithm on each of those for a bit.
 - Until there are $\frac{\left(\frac{n}{\sqrt{2}}\right)}{\sqrt{2}} = \frac{n}{2}$ supernodes left in each.
- Then split each of those into two independent copies...

In pseudocode

- KargerStein(G = (V,E)):
 - n ← |V|
 - if n < 4:
 - find a min-cut by brute force

\\ time O(1)

- Run Karger's algorithm on G with independent repetitions until $\left|\frac{n}{\sqrt{2}}\right|$ nodes remain.
- G₁, G₂ ← copies of what's left of G
- $S_1 = KargerStein(G_1)$
- $S_2 = KargerStein(G_2)$
- return whichever of S₁, S₂ is the smaller cut.

Recursion tree

- depth is $\log_{\sqrt{2}}(n) = \frac{\log(n)}{\log(\sqrt{2})} = 2\log(n)$
- number of leaves is $2^{2\log(n)} = n^2$

Two questions

• Does this work?

• Is it fast?

At the jth level

- The amount of work per level is the amount of work needed to reduce the number of nodes by a factor of $\sqrt{2}$.
- That's at most O(n²).
 - since that's the time it takes to run Karger's algorithm once, cutting down the number of supernodes to two.
- Our recurrence relation is...

$$T(n) = 2T(n/\sqrt{2}) + O(n^2)$$

The Master Theorem says...

$$T(n) = O(n^2 \log(n))$$

Jedi Master Yoda

Two questions

• Does this work?

- Is it fast?
 - Yes, O(n²log(n)).

Why $n/\sqrt{2}$?

Suppose the first n-t edges that we choose are

- PR[none of the e_i cross S* (up to the n-t'th)]
 - = **PR**[e₁ doesn't cross S*]
 - \times PR[e₂ doesn't cross S* | e₁ doesn't cross S*]

• • •

 \times PR[e_{n-t} doesn't cross S* | e_1 ,..., e_{n-t-1} don't cross S*]

Suppose we contract n – t edges, until there are t supernodes remaining.

Why $n/\sqrt{2}$?

Suppose the first n-t edges that we choose are

PR[none of the e_i cross S* (up to the n-t'th)]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{t+1}{t+3}\right) \left(\frac{t}{t+2}\right) \left(\frac{t-1}{t+1}\right)$$

$$= \frac{t \cdot (t-1)}{n \cdot (n-1)} \quad \text{Choose } t = n/\sqrt{2}$$

$$= \frac{\frac{n}{\sqrt{2}} \cdot \left(\frac{n}{\sqrt{2}} - 1\right)}{n \cdot (n-1)} \approx \frac{1}{2} \quad \text{when n is large}$$

Probability of success

Is the probability that there's a path from the root to a leaf with no failures.

The problem we need to analyze

- Let T be binary tree of depth 2log(n)
- Each node of T succeeds or fails independently with probability 1/2
- What is the probability that there's a path from the root to any leaf that's entirely successful?

Analysis

- Say the tree has height d.
- Let p_d be the probability that there's a path from the root to a leaf that **doesn't fail**.

• =
$$p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

It's a recurrence relation!

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

- $p_0 = 1$
- We are real good at those.
- In this case, the answer is:
 - Claim: for all d, $p_d \ge \frac{1}{d+1}$

Recurrence relation

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

•
$$p_0 = 1$$

• Claim: for all d,
$$p_d \ge \frac{1}{d+1}$$

- Proof: induction on d.
 - Base case: $1 \ge 1$. YEP.
 - Inductive step: say d > 0.
 - Suppose that $p_{d-1} \ge \frac{1}{d}$.

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

$$\bullet \qquad \geq \frac{1}{d} - \frac{1}{2} \cdot \frac{1}{d^2}$$

$$\begin{array}{ccc}
\bullet & \geq \frac{1}{d} - \frac{1}{2} \cdot \frac{1}{d^2} \\
\bullet & \geq \frac{1}{d} - \frac{1}{d(d+1)} \\
\bullet & = \frac{1}{d+1}
\end{array}$$

$$\bullet \qquad = \frac{1}{d+1}$$

This slide skipped in class

What does that mean for Karger-Stein?

Claim: for all d,
$$p_d \ge \frac{1}{d+1}$$

- For $d = 2\log(n)$
 - that is, d = the height of the tree:

$$p_{2\log(n)} \ge \frac{1}{2\log(n) + 1}$$

aka,

Pr[Karger-Stein is successful] =
$$\Omega\left(\frac{1}{\log(n)}\right)$$

Altogether now

- We can do the same trick as before to amplify the success probability.
 - Run Karger-Stein $O\left(\log(n) \cdot \log\left(\frac{1}{\delta}\right)\right)$ times to achieve success probability $1-\delta$.
- Each iteration takes time $O(n^2 \log(n))$
 - That's what we proved before.
- Choosing $\delta=0.01$ as before, the total runtime is

$$O(n^2 \log(n) \cdot \log(n)) = O(n^2 \log(n)^2)$$

What have we learned?

- Just repeating Karger's algorithm isn't the best use of repetition.
 - We're probably going to be correct near the beginning.
- Instead, Karger-Stein repeats when it counts.
 - If we wait until there are $\frac{n}{\sqrt{2}}$ nodes left, the probability that we fail is close to $\frac{1}{2}$.
- This lets us find a global minimum cut in an undirected graph in time $O(n^2 \log^2(n))$.
 - Notice that we can't do better than n² in a dense graph (we need to look at all the edges), so this is pretty good.

Recap

- Some algorithms:
 - Karger's algorithm for global min-cut
 - Improvement: Karger-Stein
- Some concepts:
 - Monte Carlo algorithms:
 - Might be wrong, are always fast.
 - We can boost their success probability with repetition.
 - Sometimes we can do this repetition very cleverly.

Next time

- Another sort of min-cut:
 - s-t min-cut
 - also max-flow!

NEXT LECTURE

- Network Flow
- Max-Flow, Min-cut
- Ford-Fulkerson Algorithm

Week	Date	Topics
1	22 Feb	Introduction. Some representative problems
2	1 March	Stable Matching
3	8 March	Basics of algorithm analysis.
4	15 March	Graphs (Project 1 announced)
5	22 March	Greedy algorithms I
6	29 March	Greedy algorithms II (Project 2 announced)
7	5 April	Divide and conquer
8	12 April	Midterm
9	19 April	Dynamic Programming I
10	26 April	Dynamic Programming II (Project 3 announced)
11	3 May	BREAK
12	10 May	Network Flow-I
13	17 May	Network Flow II
14	24 May	NP and computational intractability I
15	31 May	NP and computational intractability II