MOOC Statistique pour ingénieur Thème 4 : Régression linéaire

Vidéo 3 : Tests, prévision

Anca Badea

Institut Mines-Télécom Mines Saint-Étienne

Sommaire

Tests statistiques

2 Prévision

Sommaire

Tests statistiques

2 Prévision

Tests sur β_i

et si le paramètre β_i était nul ?

- $H_0: \beta_i = 0$ $H_1: \beta_i \neq 0$
- statistique de test : $T_{\hat{eta}_i} = rac{\hat{eta}_i}{s_{\hat{eta}_i}} \sim \mathcal{T}(\mathsf{n}-2)$
- fixer le risque α
- décision : rejet ou pas de H_0 en fonction de l'appartenance de la valeur de la statistique de test à la région critique $]-\infty,-t_{\alpha/2}[\;\cup\;]t_{\alpha/2},\infty[\;$ ou pas

Tests sur β_i

et si le paramètre β_i était nul ?

- $H_0: \beta_i = 0$ $H_1: \beta_i \neq 0$
- fixer le risque α
- statistique de test : $T_{\hat{eta}_i} = rac{\hat{eta}_i}{s_{\hat{eta}_i}} \sim \mathcal{T}(\mathsf{n}-2)$
- décision : rejet ou pas de H_0 en fonction de la p-valeur si $p_{val} \leq \alpha \rightarrow$ rejet avec $p_{val} = \mathbb{P}_{H_0}(|T_{\hat{g}_i}| \geq |t_{\hat{g}_i}|)$

Test de Fisher

significativité de la régression en utilisant l'analyse de la variance

- $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$
- statistique de test : $F = \frac{\sum_{i=1}^{n} (\widehat{Y}_i \overline{Y})^2 / 1}{\sum_{i=1}^{n} (Y_i \widehat{Y}_i)^2 / (n-2)} \sim \mathcal{F}_{1,n-2}$
- fixer le risque α
- décision : rejet ou pas de H_0 en fonction de l'appartenance de la valeur de la statistique de test à la région critique $]f_{\alpha}, \infty[$ ou pas $[avec\ f_{\alpha}\]a\ valeur\ telle que\ \mathbb{P}(F < f_{\alpha}) = 1 \alpha]$

ou en fonction de la p-valeur : si $p_{val} \leq \alpha \longrightarrow \text{rejet} (p_{val} = \mathbb{P}_{H_0}(F \geq f))$

Exemple alligators

$$t_{\widehat{eta}_1}=rac{\widehat{eta}_1}{s_{\widehat{eta}_1}}=25,8$$
, $t_{\widehat{eta}_0}=rac{\widehat{eta}_0}{s_{\widehat{eta}_0}}=-16,93$ décisions tests : rejet de H_0 pour les tests sur eta_0 et eta_1

Variable	Coefficient	Ecart-type	t	p_{val}
Intercept	-8,48	0, 5	-16,93	3 e-10
lnLength	3,43	0, 13	25, 8	1e-12

$\widehat{\sigma}^*$	ddl	R^2	R_{adj}^2
0, 12	13	0,9808	0,9794

F-statistique : 666	sur 1 et 13 ddl	p-val : 1e-12
---------------------	-----------------	---------------

Importance du test

- $H_0: \beta_1 = 0$ _ $H_1: \beta_1 \neq 0$
- il n'y a pas de relation linéaire entre x et y

si on ne peut pas rejeter H_0

x n'explique pas la variabilité de y

la meilleure prédiction de y est \bar{y}

Commentaires

Si on rejette H_0 :

x a une certaine importance pour expliquer la variabilité de y

- soit le modèle de régression simple est adéquat,
- soit, bien que l'effet linéaire est présent, des meilleurs résultats pourraient être obtenus en rajoutant des termes d'ordre plus élevés

Sommaire

Tests statistiques

2 Prévision

Estimer $\mathbb{E}(Y|x_0) = \beta_0 + \beta_1 x_0$ pour une valeur particulière x_0 (x_0 comprise dans la plage de variation de x)

- estimateur : $\widehat{Y}_0 = \widehat{\beta}_0 + \widehat{\beta}_1 x_0$
- ullet estimation ponctuelle : $\widehat{ extit{y}}_0 = \widehat{eta}_0 + \widehat{eta}_1 extit{x}_0$
- estimation par intervalle de confiance
 - loi de \widehat{Y}_0 : loi normale (car CL des Y_i)
 - espérance : $\mathbb{E}(\widehat{\beta}_0 + \widehat{\beta}_1 x_0) = \beta_0 + \beta_1 x_0$
 - variance :

$$\mathbb{V}(\widehat{\beta}_0 + \widehat{\beta}_1 x_0) = \mathbb{V}(\overline{Y} + \widehat{\beta}_1 (x_0 - \overline{x})) = \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{n \, s_x^2} \right]$$

$$\operatorname{car} \mathbb{C}ov(\overline{Y}, \widehat{\beta}_1) = 0$$

$$\boxed{\frac{\widehat{Y}_0 - (\beta_0 + \beta_1 \mathbf{x}_0)}{\widehat{\sigma}^* \sqrt{\frac{1}{n} + \frac{(\mathbf{x}_0 - \overline{\mathbf{x}})^2}{n \, s_{\mathbf{x}}^2}}} \sim \mathcal{T}(n-2)}$$

loi de Student à n-2 degrés de libertés

$$\begin{split} & Ic_{1-\alpha}(\beta_0+\beta_1 x_0) = \\ & \left[\widehat{\beta}_0+\widehat{\beta}_1 x_0 - t_{\alpha/2}\widehat{\sigma}^* \sqrt{\left[\frac{1}{n} + \frac{(x_0-\overline{x})^2}{n \, s_x^2}\right]}, \ \widehat{\beta}_0+\widehat{\beta}_1 x_0 + t_{\alpha/2}\widehat{\sigma}^* \sqrt{\left[\frac{1}{n} + \frac{(x_0-\overline{x})^2}{n \, s_x^2}\right]}\right] \end{split}$$

- la largeur dépend de x_0 :
 - minimum pour $x_0 = \overline{x}$
 - augmente pour des valeurs croissantes de $|x_0 \overline{x}|$.
- meilleures prévisions seront pour des valeurs de x proches de \overline{x}
- la précision se détériore vers des extrémités de la plage de *x*

Exemple alligators

$$n=15$$
, $\bar{\mathbf{x}} \approx 3,76$, $s_{\mathbf{x}}^2 \approx 0,06$, $\widehat{\beta}_1 \approx 3,43$, $\widehat{\beta}_0 \approx -8,48$ $\widehat{\sigma}^{*2} \approx 0,02$ $t_{0.025}=2,16$

$$x_0 = 4$$

$$\widehat{\mathbf{y}}_0 \approx -8,48+3,43\times 4=5,25$$

 $Ic_{0,95}(\beta_0+\beta_1\mathbf{x}_0)\approx [5,15\;;\;5,35]$

Estimer $Y_0 = \beta_0 + \beta_1 x_0 + \varepsilon$ pour une valeur particulière x_0 (x_0 comprise dans la plage de variation de x)

- estimateur : $\widehat{Y}_0 = \widehat{\beta}_0 + \widehat{\beta}_1 x_0$
- calculons la variance de $Y_0 \widehat{Y}_0$

$$\mathbb{V}(Y_0 - \widehat{Y}_0) = \sigma^2 \left[1 + \frac{1}{n} + \frac{(\mathsf{x}_0 - \overline{\mathsf{x}})^2}{n \, \mathsf{s}_\mathsf{x}^2} \right]$$

car Y_0 et \widehat{Y}_0 sont indépendantes

Intervalle de prévision pour des nouvelles observations

$$Ic_{1-\alpha}(y_0) = \left[\widehat{y}_0 - t_{\alpha/2}\widehat{\sigma}^* \sqrt{\left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{n \, s_x^2}\right]}, \, \widehat{y}_0 + t_{\alpha/2}\widehat{\sigma}^* \sqrt{\left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{n \, s_x^2}\right]}\right]$$

l'intervalle de prédiction est toujours plus large que l'intervalle de confiance

Exemple alligators

$$n=15$$
, $\overline{x}\approx 3,76$, $s_{x}^{2}\approx 0,06$, $\widehat{\beta}_{1}\approx 3,43$, $\widehat{\beta}_{0}\approx -8,48$ $\widehat{\sigma}^{*2}\approx 0,02$ $t_{0.025}=2,16$

$$x_0 = 4$$

$$\widehat{y}_0 \approx -8,48+3,43 \times 4 = 5,25$$
 $lc_{0,95}(\beta_0 + \beta_1 x_0) \approx [5,15;5,35]$

