Lecture 8.1: Functions of n variables

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Derivative / Gradient

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x)$$

Derivative at $x \in \mathbb{R}$:

$$f'(x) \in \mathbb{R}$$

$$f: \mathbb{R}^n \to \mathbb{R}$$
 $x \mapsto f(x) = f(x_1, \dots, x_n)$

Gradient at $x \in \mathbb{R}^n$:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x}(x) \end{pmatrix} \in \mathbb{R}^n$$

Gradient and contour lines

Hessian matrix

What is the equivalent of the second derivative for function of n variables ?

$$f: \mathbb{R}^n \to \mathbb{R}$$
 $x \mapsto f(x) = f(x_1, \dots, x_n)$

Hessian at $x \in \mathbb{R}^n$:

$$H_{f}(x) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(x) \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Example

Schwarz's Theorem

Theorem

If $f:\mathbb{R}^n\to\mathbb{R}$ is «twice differentiable», then for all $x\in\mathbb{R}^n$ and all $i,j\in\{1,\dots,n\}$ we have:

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (x) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (x).$$