The Probabilistic and Combinatorial Interpretations of the Bernoulli Symbol ${\cal B}$

Lin JIU

CMS Winter Conference 2017 @ University of Waterloo Department of Mathematics and Statistics, Dalhousie University Joint work with Diane Yahui Shi, Tianjin University

December 10th, 2017

Outlines

Bernoulli Symbol and Umbral Calculus

Probabilistic Aspect

Combinatorial Interpretation

Future Work

The Bernoulli numbers $(B_n)_{n=0}^{\infty}$ and Bernoulli polynomials $(B_n(x))_{n=0}^{\infty}$ can be defined by

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!} \text{ and } \frac{t e^{\mathsf{x} t}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(\mathsf{x}) \frac{t^n}{n!}$$

The Bernoulli numbers $(B_n)_{n=0}^{\infty}$ and Bernoulli polynomials $(B_n(x))_{n=0}^{\infty}$ can be defined by

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!} \text{ and } \frac{t e^{\times t}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}$$

with the relation

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_{n-k} x^k.$$

The Bernoulli numbers $(B_n)_{n=0}^{\infty}$ and Bernoulli polynomials $(B_n(x))_{n=0}^{\infty}$ can be defined by

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!} \text{ and } \frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}$$

with the relation

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_{n-k} x^k.$$

The Bernoulli symbol ${\cal B}$ satisfies the evaluation rule that

$$\mathcal{B}^n = B_n$$
.

The Bernoulli numbers $(B_n)_{n=0}^{\infty}$ and Bernoulli polynomials $(B_n(x))_{n=0}^{\infty}$ can be defined by

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!} \text{ and } \frac{t e^{\times t}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}$$

with the relation

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_{n-k} x^k.$$

The Bernoulli symbol ${\cal B}$ satisfies the evaluation rule that

$$\mathcal{B}^n = B_n$$
.

Treat $t = \partial_x$, and

$$\frac{t}{e^t - 1} \bullet x^n = B_n(x)$$

The Bernoulli numbers $(B_n)_{n=0}^{\infty}$ and Bernoulli polynomials $(B_n(x))_{n=0}^{\infty}$ can be defined by

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!} \text{ and } \frac{t e^{\times t}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}$$

with the relation

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_{n-k} x^k.$$

The Bernoulli symbol ${\cal B}$ satisfies the evaluation rule that

$$\mathcal{B}^n = B_n$$
.

Treat $t = \partial_x$, and

$$\frac{t}{e^t - 1} \bullet x^n = B_n(x)$$

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} \mathcal{B}^{n-k} x^k = (\mathcal{B} + x)^n.$$

 $B_{n}'(x) = nB_{n-1}(x)$

•

$$B'_{n}(x) = nB_{n-1}(x) \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}x}(\mathcal{B} + x)^{n} = n(\mathcal{B} + x)^{n-1}.$$

$$B'_{n}(x) = nB_{n-1}(x) \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}x}(\mathcal{B} + x)^{n} = n(\mathcal{B} + x)^{n-1}.$$

•

$$e^{\mathcal{B}t} = \frac{t}{e^t - 1}$$

$$B'_{n}(x) = nB_{n-1}(x) \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}x}(\mathcal{B} + x)^{n} = n(\mathcal{B} + x)^{n-1}.$$

$$e^{\mathcal{B}t} = \frac{t}{e^t - 1} \Rightarrow e^{-\mathcal{B}t} = \frac{-t}{e^{-t} - 1} = \frac{te^t}{e^t - 1} = e^{(\mathcal{B}+1)t}$$

 $\Rightarrow -\mathcal{B} = \mathcal{B} + 1$

 $B_{n}'(x) = nB_{n-1}(x) \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}x}(\mathcal{B} + x)^{n} = n(\mathcal{B} + x)^{n-1}.$

$$e^{\mathcal{B}t} = \frac{t}{e^t - 1} \quad \Rightarrow \quad e^{-\mathcal{B}t} = \frac{-t}{e^{-t} - 1} = \frac{te^t}{e^t - 1} = e^{(\mathcal{B}+1)t}$$
$$\Rightarrow \quad -\mathcal{B} = \mathcal{B} + 1$$
$$\Rightarrow \quad (-1)^n B_n (-x) = (-1)^n (\mathcal{B} - x)^n = B_n (x + 1)$$

 $B_{n}'(x) = nB_{n-1}(x) \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}x}(\mathcal{B} + x)^{n} = n(\mathcal{B} + x)^{n-1}.$

$$e^{\mathcal{B}t} = \frac{t}{e^t - 1} \quad \Rightarrow \quad e^{-\mathcal{B}t} = \frac{-t}{e^{-t} - 1} = \frac{te^t}{e^t - 1} = e^{(\mathcal{B}+1)t}$$
$$\Rightarrow \quad -\mathcal{B} = \mathcal{B} + 1$$
$$\Rightarrow \quad (-1)^n B_n (-x) = (-1)^n (\mathcal{B} - x)^n = B_n (x + 1)$$

A. Dixit et al. show that let $L\sim \frac{\pi}{2}\,{\rm sech}^2\left(\pi t\right)$ and $\mathcal{B}\sim \imath L-\frac{1}{2}$, then

A. Dixit et al. show that let $L \sim \frac{\pi}{2} \operatorname{sech}^2(\pi t)$ and $\mathcal{B} \sim iL - \frac{1}{2}$, then

$$B_n = \mathbb{E}\left[\mathcal{B}^n\right] = \frac{\pi}{2} \int_{\mathbb{R}} \left(\imath t - \frac{1}{2}\right)^n \operatorname{sech}^2\left(\pi t\right) \mathrm{d}t$$

A. Dixit et al. show that let $L \sim \frac{\pi}{2} \operatorname{sech}^2(\pi t)$ and $\mathcal{B} \sim iL - \frac{1}{2}$, then

$$B_n = \mathbb{E}\left[\mathcal{B}^n\right] = \frac{\pi}{2} \int_{\mathbb{R}} \left(\imath t - \frac{1}{2}\right)^n \operatorname{sech}^2\left(\pi t\right) dt$$

and

$$B_n(x) = \frac{\pi}{2} \int_{\mathbb{R}} \left(x + it - \frac{1}{2} \right)^n \operatorname{sech}^2(\pi t) dt = \mathbb{E}\left[\left(\mathcal{B} + x \right)^n \right].$$

A. Dixit et al. show that let $L \sim \frac{\pi}{2} \operatorname{sech}^2(\pi t)$ and $\mathcal{B} \sim iL - \frac{1}{2}$, then

$$B_n = \mathbb{E}\left[\mathcal{B}^n\right] = \frac{\pi}{2} \int_{\mathbb{R}} \left(\imath t - \frac{1}{2}\right)^n \operatorname{sech}^2\left(\pi t\right) dt$$

and

$$B_n(x) = \frac{\pi}{2} \int_{\mathbb{R}} \left(x + it - \frac{1}{2} \right)^n \operatorname{sech}^2(\pi t) dt = \mathbb{E}\left[(\mathcal{B} + x)^n \right].$$

By omitting expectation operator \mathbb{E} , we have

$$B_n = \mathcal{B}^n$$
 and $B_n(x) = (\mathcal{B} + x)^n$.

A. Dixit et al. show that let $L \sim \frac{\pi}{2} \operatorname{sech}^2(\pi t)$ and $\mathcal{B} \sim iL - \frac{1}{2}$, then

$$B_n = \mathbb{E}\left[\mathcal{B}^n\right] = \frac{\pi}{2} \int_{\mathbb{R}} \left(\imath t - \frac{1}{2}\right)^n \operatorname{sech}^2\left(\pi t\right) \mathrm{d}t$$

and

$$B_n(x) = \frac{\pi}{2} \int_{\mathbb{R}} \left(x + it - \frac{1}{2} \right)^n \operatorname{sech}^2(\pi t) dt = \mathbb{E}\left[\left(\mathcal{B} + x \right)^n \right].$$

By omitting expectation operator \mathbb{E} , we have

$$B_n = \mathcal{B}^n$$
 and $B_n(x) = (\mathcal{B} + x)^n$.

Namely

$$\frac{t}{e^t - 1} \bullet = \mathbb{E}\left[\bullet\right]$$

For independent random variables X and Y, if $\mathbb{E}\left[e^{tX}\right] = F\left(x\right)$ and $\mathbb{E}\left[e^{tY}\right] = G\left(x\right)$, then

$$\mathbb{E}\left[e^{t(X+Y)}\right] = F\left(x\right)G\left(x\right).$$

For independent random variables X and Y, if $\mathbb{E}\left[e^{tX}\right] = F\left(x\right)$ and $\mathbb{E}\left[e^{tY}\right] = G\left(x\right)$, then

$$\mathbb{E}\left[e^{t(X+Y)}\right] = F(x) G(x).$$

Choose X = x and $Y = \mathcal{B}$, then

$$\mathbb{E}\left[e^{tX}
ight]=e^{tx} ext{ and } \mathbb{E}\left[e^{t\mathcal{B}}
ight]=rac{t}{e^{t}-1}$$

For independent random variables X and Y, if $\mathbb{E}\left[e^{tX}\right] = F\left(x\right)$ and $\mathbb{E}\left[e^{tY}\right] = G\left(x\right)$, then

$$\mathbb{E}\left[e^{t(X+Y)}\right] = F(x) G(x).$$

Choose X = x and $Y = \mathcal{B}$, then

$$\mathbb{E}\left[e^{tX}\right] = e^{tx} \text{ and } \mathbb{E}\left[e^{t\mathcal{B}}\right] = \frac{t}{e^t - 1}$$

$$\mathbb{E}\left[e^{t(x+\mathcal{B})}\right] = \frac{te^{tx}}{e^t - 1} = \sum_{n=0}^{\infty} \frac{\mathbb{E}\left[\left(x + \mathcal{B}\right)^n\right]}{n!} t^n.$$

For independent random variables X and Y, if $\mathbb{E}\left[e^{tX}\right] = F\left(x\right)$ and $\mathbb{E}\left[e^{tY}\right] = G\left(x\right)$, then

$$\mathbb{E}\left[e^{t(X+Y)}\right] = F(x) G(x).$$

Choose X = x and $Y = \mathcal{B}$, then

$$\mathbb{E}\left[e^{tX}
ight]=e^{tx} ext{ and } \mathbb{E}\left[e^{t\mathcal{B}}
ight]=rac{t}{e^{t}-1}$$

$$\mathbb{E}\left[e^{t(x+\mathcal{B})}\right] = \frac{te^{tx}}{e^t - 1} = \sum_{n=0}^{\infty} \frac{\mathbb{E}\left[\left(x + \mathcal{B}\right)^n\right]}{n!} t^n.$$

$$B_n(x) = \mathbb{E}\left[\left(\mathcal{B} + x\right)^n\right] = \frac{\left[t^n\right]e^{\mathcal{B}t}e^{xt}}{n!} = \frac{\left[t^n\right]\frac{te^{xt}}{e^t - 1}}{n!}.$$

Generalization

► Bernoulli:

$$\frac{t}{e^t - 1}e^{tx} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} \Leftrightarrow B_n(x) = (x + \mathcal{B})^n$$

► Nörlund:

$$\left(\frac{t}{e^t-1}\right)^{\rho}e^{tx}=\sum_{n=0}^{\infty}B_n^{(\rho)}(x)\frac{t^n}{n!}\Leftrightarrow B_n^{(\rho)}(x)=(x+\mathcal{B}_1+\cdots+\mathcal{B}_{\rho})^n$$

▶ Bernoulli-Barnes: for $\mathbf{a} = (a_1, \dots, a_k)$.

$$e^{tx}\prod_{i=1}^{k}\frac{t}{e^{a_{i}t}-1}=\sum_{n=0}^{\infty}B_{n}\left(\mathbf{a};x\right)\frac{t^{n}}{n!}$$

$$\Leftrightarrow B_n(\mathbf{a}; x) = \frac{1}{|\mathbf{a}|} \left(x + \mathbf{a} \cdot \vec{\mathcal{B}} \right)^n, \text{ where } \begin{cases} \mathbf{a} = (a_1, \dots, a_k) \\ \vec{\mathcal{B}} = (\mathcal{B}, \dots, \mathcal{B}_k) \end{cases}$$
$$\mathbf{a} \cdot \vec{\mathcal{B}} = \sum_{l=1}^k a_l \mathcal{B}_l$$
$$|\mathbf{a}| = \prod_{l=1}^k a_l$$

Several Results

Bernoulli-Barnes

$$e^{tx} \prod_{i=1}^{k} \frac{t}{e^{a_i t} - 1} = \sum_{n=0}^{\infty} B_n(\mathbf{a}; x) \frac{t^n}{n!} \Leftrightarrow B_n(\mathbf{a}; x) = \frac{1}{|\mathbf{a}|} \left(x + \mathbf{a} \cdot \vec{\mathcal{B}} \right)^n$$

Theorem[L. Jiu, V. Moll and C. Vignat]

$$f\left(x - \mathbf{a} \cdot \vec{\mathcal{B}}\right) = \sum_{\ell=0}^{n} \sum_{|L|=\ell} |\mathbf{a}|_{L^{\bullet}} f^{(n-\ell)} \left(x + \left(\mathbf{a} \cdot \vec{\mathcal{B}}\right)_{L}\right).$$

The multiple zeta function

$$\zeta_r(n_1,\ldots,n_r) = \sum_{0 < k_1 < \cdots < k_r} \frac{1}{k_1^{n_1} \cdots k_r^{n_r}} = \sum_{k_1,\ldots,k_r=1}^{\infty} \frac{1}{k_1^{n_1} (k_1 + k_2)^{n_2} \cdots (k_1 + \cdots + k_r)^{n_r}}$$

Theorem[L. Jiu, V. Moll and C. Vignat]

$$\zeta_r(-n_1,\ldots,-n_r)=\prod_{k=1}^r(-1)^{n_k}C_{1,\ldots,k}^{n_k+1},$$

where

$$C_1^n = \frac{\mathcal{B}_1^n}{n}, C_{1,2}^n = \frac{(C_1 + \mathcal{B}_2)^n}{n}, \dots, C_{1,\dots,k+1}^n = \frac{(C_{1,\dots,k} + \mathcal{B}_{k+1})^n}{n}$$

 $\mathcal{B} \sim iL - \frac{1}{2}$.

$$\mathcal{B} \sim \imath L - rac{1}{2}.$$
 Define $ar{B}_n := \left| B_n \left(rac{1}{2}
ight)
ight|$, then

$$\bar{B}_n = \frac{\pi}{2} \int_{\mathbb{R}} t^n \operatorname{sech}^2(\pi t) dt.$$

$$\mathcal{B} \sim \imath L - rac{1}{2}.$$
 Define $ar{B}_n := \left| B_n \left(rac{1}{2}
ight)
ight|$, then

$$\bar{B}_n = \frac{\pi}{2} \int_{\mathbb{R}} t^n \operatorname{sech}^2(\pi t) dt. \left(\frac{x/2}{\sin(x/2)} = \sum_{n=0}^{\infty} \bar{B}_n \frac{x^n}{n!} \right)$$

$$\mathcal{B} \sim \imath L - rac{1}{2}.$$
 Define $ar{B}_n := \left| B_n \left(rac{1}{2}
ight)
ight|$, then

$$\bar{B}_n = \frac{\pi}{2} \int_{\mathbb{R}} t^n \operatorname{sech}^2(\pi t) dt. \left(\frac{x/2}{\sin(x/2)} = \sum_{n=0}^{\infty} \bar{B}_n \frac{x^n}{n!} \right)$$

Theorem

 $\frac{\pi}{2}\operatorname{sech}^2(\pi t)\operatorname{d} t$ is the UNIQUE density on $\mathbb R$ for $\left(\bar{\mathcal B}_n\right)_{n=0}^\infty$.

$$\mathcal{B} \sim \imath L - rac{1}{2}.$$
 Define $ar{B}_n := \left|B_n\left(rac{1}{2}
ight)
ight|$, then

$$\bar{B}_n = \frac{\pi}{2} \int_{\mathbb{R}} t^n \operatorname{sech}^2(\pi t) dt. \left(\frac{x/2}{\sin(x/2)} = \sum_{n=0}^{\infty} \bar{B}_n \frac{x^n}{n!} \right)$$

Theorem

 $\frac{\pi}{2}\operatorname{sech}^2\left(\pi t\right)\mathrm{d}t$ is the UNIQUE density on $\mathbb R$ for $\left(\bar{B}_n\right)_{n=0}^\infty.$

Proof.

$$(-1)^{n+1} B_{2n} \sim \frac{2(2n)!}{(2\pi)^{2n}}.$$

Lemma

Uniqueness is equivalent to existence of constants C and D, such that

$$|\bar{B}_n| \leq CD^n n!$$
.

$$K(t) := \sum_{n=1}^{\infty} \kappa_n \frac{t^n}{n!} = \log \mathbb{E}\left[e^{tX}\right] = \log\left(\sum_{n=0}^{\infty} \frac{\mathbb{E}\left[X^n\right]}{n!} t^n\right).$$

$$K(t) := \sum_{n=1}^{\infty} \kappa_n \frac{t^n}{n!} = \log \mathbb{E}\left[e^{tX}\right] = \log\left(\sum_{n=0}^{\infty} \frac{\mathbb{E}\left[X^n\right]}{n!} t^n\right).$$

Theorem

[Faà di Bruno's formula] For moments $(m_n)_{n=0}^{\infty}$ and cumulants $(\kappa_n)_{n=1}^{\infty}$ it holds that

$$m_n = Y_n(\kappa_1, \dots, \kappa_n)$$
 and $\kappa_n = \sum_{k=1}^n (-1)^{k-1} (k-1)! Y_{n,k}(m_1, \dots, m_{n-k+1})$,

where, the partial or incomplete exponential Bell polynomial is given by

$$Y_{n,k} \left(x_1, \dots, x_{n-k+1} \right) := \sum_{ \substack{j_1 + \dots + j_{n-k+1} = k \\ j_1 + 2j_2 + \dots + (n-k+1)j_{n-k+1} = n }} \frac{n!}{j_1! \cdots j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \cdots \left(\frac{x_{n-k+1}}{(n-k+1)!} \right)^{j_{n-k+1}} ,$$

and the nth complete exponential Bell polynomial is given by the sum

$$Y_{n}\left(x_{1},\ldots,x_{n}\right):=\sum_{k=1}^{n}Y_{n,k}\left(x_{1},\ldots,x_{n-k+1}\right)=\sum_{k=\left(\underbrace{1,\ldots,1}_{k_{1}},\ldots,\underbrace{n,\ldots,n}_{k_{n}}\right)\vdash n}\frac{n!}{k_{1}!\cdots k_{n}!}\left(\frac{x_{1}}{1!}\right)^{k_{1}}\cdots\left(\frac{x_{n}}{n!}\right)^{k_{n}}.$$

Theorem

$$B_n\left(\frac{1}{2}\right) = Y_n\left(0, -\frac{B_2}{2}, -\frac{B_3}{3}, \dots, -\frac{B_n}{n}\right),$$

and

$$B_n = -n \sum_{k=1}^n (-1)^{k-1} (k-1)! Y_{n,k} \left(B_0 \left(\frac{1}{2} \right), \dots, B_{n-k+1} \left(\frac{1}{2} \right) \right).$$

Theorem

$$B_n\left(\frac{1}{2}\right)=Y_n\left(0,-\frac{B_2}{2},-\frac{B_3}{3},\ldots,-\frac{B_n}{n}\right),$$

and

$$B_n = -n \sum_{k=1}^n \left(-1\right)^{k-1} \left(k-1\right)! \, Y_{n,k} \left(B_0 \left(\frac{1}{2}\right), \ldots, B_{n-k+1} \left(\frac{1}{2}\right)\right).$$

$$Y_k\left(-\frac{B_2\cdot 1!}{2\cdot 2!},\ldots,-\frac{B_{2k}\cdot k!}{(2k)\cdot (2k)!}\right)=\frac{k!B_{2k}\left(\frac{1}{2}\right)}{(2k)!}=\frac{k!}{(2k)!}\cdot \left(2^{2k-1}-1\right)B_{2k}.$$

Theorem

$$B_n\left(\frac{1}{2}\right) = Y_n\left(0, -\frac{B_2}{2}, -\frac{B_3}{3}, \dots, -\frac{B_n}{n}\right),$$

and

$$B_n = -n \sum_{k=1}^n \left(-1\right)^{k-1} \left(k-1\right)! \, Y_{n,k} \left(B_0 \left(\frac{1}{2}\right), \ldots, B_{n-k+1} \left(\frac{1}{2}\right)\right).$$

$$Y_k\left(-\frac{B_2\cdot 1!}{2\cdot 2!},\ldots,-\frac{B_{2k}\cdot k!}{(2k)\cdot (2k)!}\right)=\frac{k!B_{2k}\left(\frac{1}{2}\right)}{(2k)!}=\frac{k!}{(2k)!}\cdot \left(2^{2k-1}-1\right)B_{2k}.$$

[M. Hoffman]

$$Y_k\left(\frac{B_2\cdot 1!}{2\cdot 2!},\frac{B_4\cdot 2!}{4\cdot 4!},\ldots,\frac{B_{2k}\cdot k!}{(2k)\cdot (2k)!}\right)=\frac{k!}{2^{2k}(2k+1)!}.$$

Theorem

$$B_n\left(\frac{1}{2}\right) = Y_n\left(0, -\frac{B_2}{2}, -\frac{B_3}{3}, \dots, -\frac{B_n}{n}\right),$$

and

$$B_n = -n\sum_{k=1}^n \left(-1\right)^{k-1} \left(k-1\right)! \, Y_{n,k} \left(B_0\left(\frac{1}{2}\right), \ldots, B_{n-k+1}\left(\frac{1}{2}\right)\right).$$

$$Y_k\left(-\frac{B_2\cdot 1!}{2\cdot 2!},\ldots,-\frac{B_{2k}\cdot k!}{(2k)\cdot (2k)!}\right)=\frac{k!B_{2k}\left(\frac{1}{2}\right)}{(2k)!}=\frac{k!}{(2k)!}\cdot \left(2^{2k-1}-1\right)B_{2k}.$$

[M. Hoffman]

$$Y_k\left(\frac{B_2 \cdot 1!}{2 \cdot 2!}, \frac{B_4 \cdot 2!}{4 \cdot 4!}, \dots, \frac{B_{2k} \cdot k!}{(2k) \cdot (2k)!}\right) = \frac{k!}{2^{2k} (2k+1)!}.$$

Remark

The first one is a special result of B. Robinstein: https://arxiv.org/abs/0911.3069.

Consider different moment generating function

$$M_{Y}(t) = \mathbb{E}\left[e^{tY}\right] = \frac{\sinh\frac{t}{2}}{\frac{t}{2}}$$

Theorem

It also holds that

$$B_n = n \sum_{k=1}^n (-1)^{k-1} (k-1)! Y_{n,k} \left(0, \frac{1}{4 \cdot 3}, 0, \dots, \frac{1 + (-1)^{n-k+2}}{2^{n-k+2} (n-k+2)} \right).$$

Consider different moment generating function

$$M_Y(t) = \mathbb{E}\left[e^{tY}\right] = \frac{\sinh\frac{t}{2}}{\frac{t}{2}}$$

Theorem

It also holds that

$$B_n = n \sum_{k=1}^{n} (-1)^{k-1} (k-1)! Y_{n,k} \left(0, \frac{1}{4 \cdot 3}, 0, \dots, \frac{1 + (-1)^{n-k+2}}{2^{n-k+2} (n-k+2)} \right).$$

$$Y_k\left(-\frac{B_2 \cdot 1!}{2 \cdot 2!}, \dots, -\frac{B_{2k} \cdot k!}{(2k) \cdot (2k)!}\right) = \frac{k!}{(2k)!} \cdot (2^{2k-1} - 1) B_{2k}$$

$$Y_k\left(\frac{B_2 \cdot 1!}{2 \cdot 2!}, \frac{B_4 \cdot 2!}{4 \cdot 4!}, \dots, \frac{B_{2k} \cdot k!}{(2k) \cdot (2k)!}\right) = \frac{k!}{2^{2k} (2k+1)!}$$

$$Y_k\left(-\frac{B_2 \cdot 1!}{2 \cdot 2!}, \dots, -\frac{B_{2k} \cdot k!}{(2k) \cdot (2k)!}\right) = \frac{k!}{(2k)!} \cdot (2^{2k-1} - 1) B_{2k}$$

$$Y_k\left(\frac{B_2 \cdot 1!}{2 \cdot 2!}, \frac{B_4 \cdot 2!}{4 \cdot 4!}, \dots, \frac{B_{2k} \cdot k!}{(2k) \cdot (2k)!}\right) = \frac{k!}{2^{2k} (2k+1)!}$$

and

$$Y_{k}\left(-\frac{B_{2} \cdot 1!}{2 \cdot 2!}, \dots, -\frac{B_{2k} \cdot k!}{(2k) \cdot (2k)!}\right) = \frac{k!}{(2k)!} \cdot (2^{2k-1} - 1) B_{2k}$$

$$Y_{k}\left(\frac{B_{2} \cdot 1!}{2 \cdot 2!}, \frac{B_{4} \cdot 2!}{4 \cdot 4!}, \dots, \frac{B_{2k} \cdot k!}{(2k) \cdot (2k)!}\right) = \frac{k!}{2^{2k} (2k+1)!}$$

$$f(x) := \sum_{k=0}^{\infty} \frac{B_{2k} k!}{(2k) (2k)!} = \log\left(\frac{e^{x} - 1}{x}\right) - \frac{x}{2}$$

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{2^{2k} (2k+1)!} = \frac{\sinh\left(\frac{x}{2}\right)}{\frac{x}{2}} = e^{f(x)}.$$

$$(m_n)_{n=0}^{\infty} \sim m_n = \int_{\mathbb{R}} x^n d\mu(x)$$

$$(m_n)_{n=0}^{\infty} \sim m_n = \int_{\mathbb{R}} x^n d\mu(x) \quad \stackrel{?}{\Rightarrow} \quad (P_n(x))_{n=1}^{\infty} \sim \int_{\mathbb{R}} P_n(x) P_m(x) d\mu(x) = C_n \delta_{m,n}$$

$$(m_{n})_{n=0}^{\infty} \sim m_{n} = \int_{\mathbb{R}} x^{n} d\mu(x) \quad \stackrel{?}{\Rightarrow} \quad (P_{n}(x))_{n=1}^{\infty} \sim \int_{\mathbb{R}} P_{n}(x) P_{m}(x) d\mu(x) = C_{n} \delta_{m,n}$$

$$\Rightarrow \quad P_{n+1}(x) = (x + s_{n}) P_{n}(x) - t_{n} P_{n-1}(x)$$

$$\Rightarrow \quad \sum_{n=0}^{\infty} m_{n} x^{n} = \frac{m_{0}}{1 - s_{0} x - \frac{t_{1} x^{2}}{1 - s_{1} x - \frac{t_{2} x^{2}}{1 - s_{1}}}$$

$$(m_{n})_{n=0}^{\infty} \sim m_{n} = \int_{\mathbb{R}} x^{n} d\mu(x) \quad \stackrel{?}{\Rightarrow} \quad (P_{n}(x))_{n=1}^{\infty} \sim \int_{\mathbb{R}} P_{n}(x) P_{m}(x) d\mu(x) = C_{n} \delta_{m,n}$$

$$\Rightarrow \quad P_{n+1}(x) = (x + s_{n}) P_{n}(x) - t_{n} P_{n-1}(x)$$

$$\Rightarrow \quad \sum_{n=0}^{\infty} m_{n} x^{n} = \frac{m_{0}}{1 - s_{0} x - \frac{t_{1} x^{2}}{1 - s_{1} x - \frac{t_{2} x^{2}}{1}}}$$

Theorem [J. Touchard]

The polynomial sequence (ϕ_n) , define by

$$\phi_{n+1}(z) = \left(z + \frac{1}{2}\right)\phi_n(z) + \omega_n\phi_{n-1}(z)$$

satisfies for any $0 \le r < n$, $\mathcal{B}^r \phi_n(\mathcal{B}) = 0$, where

$$\omega_n = \frac{n^4}{4(2n+1)(2n-1)}.$$

$$\psi_1(z) := \psi'(z) := (\log(\Gamma(z)))''$$

$$\psi_1(z) := \psi'(z) := (\log (\Gamma(z)))''$$

$$\sum_{n=0}^{\infty} \frac{B_n}{z^{n+1}} \sim \psi_1(z+1) = \frac{1}{z + \frac{1}{2} + \frac{\omega_1}{z + \frac{1}{2} + \frac{\omega_2}{z + \frac{1}{2} + \dots}}}$$

$$\psi_1(z) := \psi'(z) := (\log (\Gamma(z)))''$$

$$\sum_{n=0}^{\infty} \frac{B_n}{z^{n+1}} \sim \psi_1(z+1) = \frac{1}{z + \frac{1}{2} + \frac{\omega_1}{z + \frac{1}{2} + \frac{\omega_2}{z + \frac{1}{2} + \cdots}}}$$
$$\psi(z+x) \sim \log(z) - \sum_{n=1}^{\infty} \frac{(-1)^n B_n(x)}{nz^n}$$

$$\psi_1(z) := \psi'(z) := (\log (\Gamma(z)))''$$

$$\sum_{n=0}^{\infty} \frac{B_n}{z^{n+1}} \sim \psi_1(z+1) = \frac{1}{z + \frac{1}{2} + \frac{\omega_1}{z + \frac{1}{2} + \frac{\omega_2}{z + \frac{1}{2} + \dots}}}$$

$$\psi(z+x) \sim \log(z) - \sum_{n=1}^{\infty} \frac{(-1)^n B_n(x)}{nz^n}$$

A. Dixit et al. showed

$$\log (\mathcal{B} + z) = \psi \left(\left| z - \frac{1}{2} \right| + \frac{1}{2} \right).$$

$$\psi_1(z) := \psi'(z) := (\log (\Gamma(z)))''$$

$$\sum_{n=0}^{\infty} \frac{B_n}{z^{n+1}} \sim \psi_1\left(z+1\right) = \frac{1}{z + \frac{1}{2} + \frac{\omega_1}{z + \frac{1}{2} + \frac{\omega_2}{z + \frac{1}{2} + \dots}}}$$

$$\psi(z+x) \sim \log(z) - \sum_{n=1}^{\infty} \frac{(-1)^n B_n(x)}{nz^n}$$

A. Dixit et al. showed

$$\log (\mathcal{B} + z) = \psi \left(\left| z - \frac{1}{2} \right| + \frac{1}{2} \right).$$

Theorem

$$\varphi_{n+1}(z,x) := \left(z + \frac{1}{2} - x\right) \varphi_n(z,x) + \omega_n \varphi_{n-1}(z,x)$$

$$\psi_1(z) := \psi'(z) := (\log (\Gamma(z)))''$$

$$\sum_{n=0}^{\infty} \frac{B_n}{z^{n+1}} \sim \psi_1(z+1) = \frac{1}{z + \frac{1}{2} + \frac{\omega_1}{z + \frac{1}{2} + \frac{\omega_2}{z + \frac{1}{2} + \cdots}}}$$

$$\psi(z+x) \sim \log(z) - \sum_{n=1}^{\infty} \frac{(-1)^n B_n(x)}{nz^n}$$

A. Dixit et al. showed

$$\log (\mathcal{B} + z) = \psi \left(\left| z - \frac{1}{2} \right| + \frac{1}{2} \right).$$

Theorem

$$\varphi_{n+1}(z,x) := \left(z + \frac{1}{2} - x\right) \varphi_n(z,x) + \omega_n \varphi_{n-1}(z,x)$$

$$z^r \varphi_n(z,x) \Big|_{z=\mathcal{B}+r} = (\mathcal{B}+x)^r \varphi_n(\mathcal{B}+x,x) = 0, \ \forall 0 \le r < n.$$

$$M_{n+1,k} = M_{n,k-1} + \frac{s_k}{s_k} M_{n,k} + \frac{t_{k+1}}{s_{k+1}} M_{n,k+1}$$

$$M_{n+1,k} = M_{n,k-1} + \frac{s_k}{s_k} M_{n,k} + \frac{t_{k+1}}{s_{k+1}} M_{n,k+1}$$

$$M_{n+1,k} = M_{n,k-1} + s_k M_{n,k} + t_{k+1} M_{n,k+1}$$

$$S_k$$

$$t_k$$

$$M_{n+1,k} = M_{n,k-1} + s_k M_{n,k} + t_{k+1} M_{n,k+1}$$

$$S_k$$

$$\sum_{n=0}^{\infty} M_{n,0} z^n = \frac{1}{1 - s_0 z - \frac{t_1 z^2}{1 - s_1 z - \frac{t_2 z^2}{1 - s_1 z - \frac{t_2 z^2}{2}}}$$

Combinatorial Interpretation

Theorem Define $\left(M_{n,k}^{\mathsf{x},\omega}\right)_{n,k=0}^{\infty}$, by $M_{0,0}^{\mathsf{x},\omega}=1$, $M_{n,k}^{\mathsf{x},\omega}=0$ if k>n, and the recurrence $M_{n+1,k}^{\mathsf{x},\omega}=M_{n,k-1}^{\mathsf{x},\omega}+x_kM_{n,k}^{\mathsf{x},\omega}-\omega_{k+1}M_{n,k+1}^{\mathsf{x},\omega}$,

where
$$\mathbf{x} = (x_n)_{n=0}^{\infty}$$
 is given by $x_n = x - \frac{1}{2}$, and $\omega = (\omega_n)_{n=1}^{\infty}$ by $\omega_n = \frac{n^4}{4(2n+1)(2n-1)}$. Then, $M_{n,0}^{\mathbf{x},\omega} = B_n(\mathbf{x})$.

Combinatorial Interpretation

Theorem

Define $\left(M_{n,k}^{\mathbf{x},\omega}\right)_{n,k=0}^{\infty}$, by $M_{0,0}^{\mathbf{x},\omega}=1$, $M_{n,k}^{\mathbf{x},\omega}=0$ if k>n, and the recurrence

$$M_{n+1,k}^{\mathsf{x},\omega} = M_{n,k-1}^{\mathsf{x},\omega} + x_k M_{n,k}^{\mathsf{x},\omega} - \omega_{k+1} M_{n,k+1}^{\mathsf{x},\omega},$$

where $\mathbf{x} = (x_n)_{n=0}^{\infty}$ is given by $x_n = x - \frac{1}{2}$, and $\omega = (\omega_n)_{n=1}^{\infty}$ by $\omega_n = \frac{n^4}{4(2n+1)(2n-1)}$. Then, $M_{n,0}^{\mathsf{x},\omega} = B_n(x)$. In addition, the lattice path interpretation allows us to define the infinite-dimensional matrix

$$R_{\mathbf{x},\omega} := \begin{pmatrix} x - \frac{1}{2} & -\omega_1 & 0 & 0 & \cdots & 0 & \cdots \\ 1 & x - \frac{1}{2} & -\omega_2 & 0 & \cdots & 0 & \cdots \\ 0 & 1 & x - \frac{1}{2} & \ddots & \ddots & \vdots & \cdots \\ 0 & 0 & 1 & \ddots & -\omega_n & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & x - \frac{1}{2} & -\omega_{n+1} & \cdots \\ 0 & 0 & 0 & \ddots & 1 & \ddots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \ddots \end{pmatrix}.$$

Matrix Computation

Direct computations shows

$$R_{\mathbf{x},\omega,4} = \begin{pmatrix} x - 1/2 & -\frac{1}{12} & 0 & 0\\ 1 & x - 1/2 & -\frac{4}{15} & 0\\ 0 & 1 & x - 1/2 & -\frac{81}{140}\\ 0 & 0 & 1 & x - 1/2 \end{pmatrix}$$

Matrix Computation

Direct computations shows

$$R_{\mathbf{x},\omega,\mathbf{4}} = \begin{pmatrix} x - 1/2 & -\frac{1}{12} & 0 & 0\\ 1 & x - 1/2 & -\frac{4}{15} & 0\\ 0 & 1 & x - 1/2 & -\frac{81}{140}\\ 0 & 0 & 1 & x - 1/2 \end{pmatrix}$$

and

Matrix Computation

Direct computations shows

$$R_{\mathbf{x},\omega,\mathbf{4}} = \left(\begin{array}{cccc} x - 1/2 & -\frac{1}{12} & 0 & 0 \\ 1 & x - 1/2 & -\frac{4}{15} & 0 \\ 0 & 1 & x - 1/2 & -\frac{81}{140} \\ 0 & 0 & 1 & x - 1/2 \end{array} \right)$$

and

where noting

$$B_4(x) = x^4 - 2x^3 + x^2 - \frac{1}{30}.$$

Definition

Euler numbers $(E_n)_{n=0}^{\infty}$ and Euler polynomials $(E_n(x))_{n=0}^{\infty}$

$$\mathrm{sech}\,(t) = \frac{2e^t}{e^{2t}+1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!} \ \ \mathrm{and} \ \ \frac{2e^{xt}}{e^t+1} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}.$$

Definition

Euler numbers $(E_n)_{n=0}^{\infty}$ and Euler polynomials $(E_n(x))_{n=0}^{\infty}$

$$\mathrm{sech}\,(t) = \frac{2e^t}{e^{2t}+1} = \sum_{n=0}^\infty E_n \frac{t^n}{n!} \ \ \mathrm{and} \ \ \frac{2e^{\times t}}{e^t+1} = \sum_{n=0}^\infty E_n\,(x)\,\frac{t^n}{n!}.$$

In addition,

$$E_n(x) = \int_{\mathbb{R}} \left(x - \frac{1}{2} + it\right)^n \operatorname{sech}(\pi t) dt.$$

Definition

Euler numbers $(E_n)_{n=0}^{\infty}$ and Euler polynomials $(E_n(x))_{n=0}^{\infty}$

$$\mathrm{sech}\,(t) = \frac{2e^t}{e^{2t}+1} = \sum_{n=0}^\infty E_n \frac{t^n}{n!} \ \ \mathrm{and} \ \ \frac{2e^{xt}}{e^t+1} = \sum_{n=0}^\infty E_n\,(x)\,\frac{t^n}{n!}.$$

In addition,

$$E_n(x) = \int_{\mathbb{R}} \left(x - \frac{1}{2} + it\right)^n \operatorname{sech}(\pi t) dt.$$

$$E_n = 2^n E_n \left(\frac{1}{2}\right)$$

Definition

Euler numbers $(E_n)_{n=0}^{\infty}$ and Euler polynomials $(E_n(x))_{n=0}^{\infty}$

$$\mathrm{sech}\left(t\right) = \frac{2e^t}{e^{2t}+1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!} \quad \mathrm{and} \quad \frac{2e^{xt}}{e^t+1} = \sum_{n=0}^{\infty} E_n\left(x\right) \frac{t^n}{n!}.$$

In addition,

$$E_n(x) = \int_{\mathbb{R}} \left(x - \frac{1}{2} + it\right)^n \operatorname{sech}(\pi t) dt.$$

 $E_n=2^nE_n\left(rac{1}{2}
ight)$ \Rightarrow $\mathcal{E}\sim 2\imath L_E$, where L_E has its density function sech (πt) .

Definition

Euler numbers $(E_n)_{n=0}^{\infty}$ and Euler polynomials $(E_n(x))_{n=0}^{\infty}$

$$\mathrm{sech}\,(t) = \frac{2e^t}{e^{2t}+1} = \sum_{n=0}^\infty E_n \frac{t^n}{n!} \ \ \mathrm{and} \ \ \frac{2e^{xt}}{e^t+1} = \sum_{n=0}^\infty E_n\,(x)\,\frac{t^n}{n!}.$$

In addition,

$$E_n(x) = \int_{\mathbb{R}} \left(x - \frac{1}{2} + it\right)^n \operatorname{sech}(\pi t) dt.$$

 $E_n=2^nE_n\left(rac{1}{2}
ight)$ \Rightarrow $\mathcal{E}\sim 2\imath L_E$, where L_E has its density function sech (πt) .

$$\mathcal{E}^n := \mathbb{E}\left[\mathcal{E}^n\right] = \mathcal{E}_n$$

Conversely, it holds that $\mathbb{E}\left[L_E^n\right] = \left(\frac{\imath}{2}\right)^n E_n$ and $\mathbb{E}\left[e^{tL_E}\right] = \sec\left(\frac{t}{2}\right)$.

▶ Uniqueness of sech (πt) for L_E

▶ Uniqueness of sech (πt) for $L_E \checkmark$

▶ Uniqueness of sech (πt) for $L_E \checkmark (-1)^n E_{2n} \sim 8\sqrt{n/\pi} (4n/\pi/e)^{2n}$

- ▶ Uniqueness of sech (πt) for $L_E \checkmark (-1)^n E_{2n} \sim 8\sqrt{n/\pi} (4n/\pi/e)^{2n}$
- ► Faà di Bruno's formula:

- ▶ Uniqueness of sech (πt) for $L_E \sqrt{(-1)^n} E_{2n} \sim 8\sqrt{n/\pi} (4n/\pi/e)^{2n}$
- Faà di Bruno's formula:

$$\begin{cases} E_{2n} = 1 - \sum_{k=1}^{n} {2n \choose 2k-1} \frac{2^{2k} (2^{2k} - 1) B_{2k}}{2k} \\ B_{2n} = \frac{2n}{2^{2n} (2^{2n} - 1)} \sum_{k=0}^{n-1} {2n-1 \choose 2k} E_{2k} \end{cases}$$

- ▶ Uniqueness of sech (πt) for $L_E \checkmark (-1)^n E_{2n} \sim 8\sqrt{n/\pi} \left(4n/\pi/e\right)^{2n}$
- ► Faà di Bruno's formula:

$$\begin{cases} E_{2n} = 1 - \sum_{k=1}^{n} {2n \choose 2k-1} \frac{2^{2k} (2^{2k}-1)B_{2k}}{2k} \\ B_{2n} = \frac{2n}{2^{2n} (2^{2n}-1)} \sum_{k=0}^{n-1} {2n-1 \choose 2k} E_{2k} \end{cases}$$

Orthogonal polynomials, Motzkin number, continued fractions

- ▶ Uniqueness of sech (πt) for $L_E \checkmark (-1)^n E_{2n} \sim 8 \sqrt{n/\pi} (4n/\pi/e)^{2n}$
- ► Faà di Bruno's formula:

$$\begin{cases} E_{2n} = 1 - \sum_{k=1}^{n} {2n \choose 2k-1} \frac{2^{2k} (2^{2k}-1) B_{2k}}{2k} \\ B_{2n} = \frac{2n}{2^{2n} (2^{2n}-1)} \sum_{k=0}^{n-1} {2n-1 \choose 2k} E_{2k} \end{cases}$$

Orthogonal polynomials, Motzkin number, continued fractions

$$2\beta\left(\frac{s+1}{2}\right) \sim \sum_{i=1}^{\infty} \frac{E_j}{s^{j+1}}$$

Possible Extension to Nörlund Polynomials

$$\left(\frac{t}{e^t-1}\right)^p e^{xt} = \sum_{n=0}^{\infty} B_n^{(p)}(x) \frac{t^n}{n!} \Leftrightarrow B_n^{(p)}(x) = \left(\mathcal{B}_1 + \dots + \mathcal{B}_p + x\right)^n.$$

Possible Extension to Nörlund Polynomials

$$\left(\frac{t}{e^t - 1}\right)^p e^{xt} = \sum_{n=0}^{\infty} B_n^{(p)}(x) \frac{t^n}{n!} \Leftrightarrow B_n^{(p)}(x) = \left(\mathcal{B}_1 + \dots + \mathcal{B}_p + x\right)^n.$$

$$\frac{\Gamma(z + x)}{\Gamma(z + x + 1 - p) z^p} \sim \sum_{n=0}^{\infty} \frac{(p - n)_n}{n!} B_n^{(p)}(x) \frac{1}{z^{n+1}}$$
where $(a)_n = a(a + 1) \cdots (a + n - 1).$

Possible Extension to Nörlund Polynomials

$$\left(\frac{t}{e^t - 1}\right)^p e^{xt} = \sum_{n=0}^{\infty} B_n^{(p)}(x) \frac{t^n}{n!} \Leftrightarrow B_n^{(p)}(x) = (\mathcal{B}_1 + \dots + \mathcal{B}_p + x)^n.$$

$$\frac{\Gamma(z + x)}{\Gamma(z + x + 1 - p) z^p} \sim \sum_{n=0}^{\infty} \frac{(p - n)_n}{n!} B_n^{(p)}(x) \frac{1}{z^{n+1}}$$
where $(a)_n = a(a + 1) \cdots (a + n - 1).$

$$\log (\mathcal{B}_1 + \dots + \mathcal{B}_p + z) = -H_{p-1} + \frac{\mathrm{d}^{p-1}}{\mathrm{d}z^{p-1}} \left[{z-1 \choose p-1} \psi \left(z - \lfloor \frac{p}{2} \rfloor \right) \right]$$

where $H_n := 1 + 1/2 + \cdots + 1/n$, is the *n*-th harmonic number and $\lfloor \rfloor$ is the floor function.

End

Thank you