Northeastern University, Department of Mathematics

MATH 5110: Applied Linear Algebra and Matrix Analysis

• Instructor: **He Wang** Email: **he.wang@northeastern.edu**

§3. Linear Spaces over Fields

Contents

1.	Linear Spaces	2
2.	Subspaces	S
3.	Linear transformations	6
4.	Kernel and Image	8
5.	Quotient spaces.	S
6.	Sum and direct sum of subspaces	10
7.	Linear transformations and matrices	11
8.	Tensor product of spaces and Kronecker product of matrices	13

1. Linear Spaces

Definition 1. Let \mathbb{F} be a field. A **vector space** over \mathbb{F} is any nonempty set V with two **closed** operations,

- Sum. $\vec{u} + \vec{v} \in V$
- Scalar product. $c \cdot \vec{u} \in V$

 $F \times V \longrightarrow V$

(V, sun) abelia grup

subject to axioms:

- 1.) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.
- $2(\vec{u} + \vec{v}) + \vec{w} = \vec{v} + (\vec{u} + \vec{w}).$
- 3.) \exists a zero vector $\vec{0} \in V$ s.t. $\vec{u} + \vec{0} = \vec{u}$
- 4.) $\forall \vec{u} \in V, \exists \text{ a vector } (\vec{u}) \in V \text{ s.t.} (\vec{u} + (\vec{u})) = 0.$
- 5.) $c \cdot (\vec{u} + \vec{v}) = c \cdot \vec{u} + c \cdot \vec{v}$.
- $(6.) (c+d) \cdot \vec{u} = c \cdot \vec{u} + d \cdot \vec{v}.$
- 7.) $c(d \cdot \vec{u}) = (cd)\vec{u}$.
- $(8.) (1) \cdot \vec{u} = \vec{u}.$

Proposition 2. (1) Zero vector is unique.

(2) For any \vec{u} , the inverse vector $-\vec{u}$ is unique.

Proposition 3. $0 \cdot \vec{u} = \vec{0}$

$$\vec{O} = \vec{u} + (\vec{u}) = |\vec{u} + (\vec{u})| = (o+1)\cdot\vec{u} + (\vec{u}) = (o+1)\cdot\vec{u} + (o+1)\cdot\vec{u$$

Proposition 4. $c \cdot \vec{0} = \vec{0}$

$$= o.\vec{u} + (\vec{u} + (-\vec{u}))$$

Proposition 5. $(-\vec{u}) = (-1)\vec{u}$.

Proposition 9. $\{\vec{0}\}$ is a subspace of linear space V, called zero space.

- 2. Let P be the set of all polynomials. Vector space
- 3. Let H be the set of all polynomials of degree exactly 3. O4. The set $D_{n\times n}$ of all $n\times n$ diagonal matrices with real entries.
- 5. The set of all $n \times n$ invertible matrices with real entries. $\overline{O} \not\leftarrow$
- 6. The union of the first and second quadrants in the xy-plane:

$$W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| y \ge 0 \right\}$$

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 + y_2 \end{bmatrix} \in W$$

Tox:
$$\vec{v}_1 = e^{x}$$
 $\vec{v}_2 = shx$
 $Span\{\vec{v}_1, \vec{v}_3\} = \{a_1 e^{x} + a_2 shx | sll q; qr\}$ Vector g_1

Definition 11. A *linear combination* of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ in V is a vector in V defined as

$$c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_m\vec{v}_m$$

The **span** of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ is the set of all linear combinations

Theorem 12. Then Span $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m)$ is a <u>subspace</u> of V.

Proof. We prove the theorem by verifying the definition.

- 1. Choose all $c_i = 0$ so $\vec{0} \in \text{Span}(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_m)$
- 2. For any two vectors $c_1\vec{v}_1+c_2\vec{v}_2+\cdots+c_m\vec{v}_m$ and $d_1\vec{v}_1+d_2\vec{v}_2+\cdots+d_m\vec{v}_m$ in $\mathrm{Span}(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_m)$, the sum

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_m \vec{v}_m + d_1 \vec{v}_1 + d_2 \vec{v}_2 + \dots + d_m \vec{v}_m = (c_1 + d_1) \vec{v}_1 + (c_2 + d_2) \vec{v}_2 + \dots + (c_m + d_m) \vec{v}_m$$

is an element in $\mathrm{Span}(\vec{u}_1,\vec{u}_2,\ldots,\vec{u}_m)$.

3. For any vector $c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_m\vec{v}_m$ in $\operatorname{Span}(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_m)$ and any $k \in \mathbb{F}$, the scalar product

$$k(c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_m\vec{v}_m) = kc_1\vec{v}_1 + kc_2\vec{v}_2 + \dots + kc_m\vec{v}_m$$

is an element in $\mathrm{Span}(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_m)$.

Proposition 13. Any subspace U of V can be written as span of some vectors in V.(= Sponsing) = Spond smellese

If a vector space V can be written as a span of finite number of vectors in V, then V is called a **finite-dimensional** vector space.

(et) sum salar puel

Let V and W be vector spaces over a field \mathbb{F} . A transformation T from V to W is a rule

$$T \colon V \to W$$

Definition 14. A transformation $T: V \to W$ is called *linear* if

$$T(\vec{\omega}+\vec{v})=T(\vec{\omega})+T(\vec{v})$$

are
$$T(c\overline{u}) = cT(\overline{u})$$

Proposition 15. If $T: \underline{V} \to W$ is a linear transformation, then

$$OT(c_1\vec{v}_1 + c_1\vec{v}_2) = c_1T(\vec{v}_1) + c_1T(\vec{v}_2)$$

$$\Theta$$
 $T(\vec{c}) = \vec{c}$

Example 16. 1. Zero map is linear transformation.

2. Identity map id : $V \to V$ is a linear transformation.

Example 17. Is $T: \mathbb{R}^3 \to \mathbb{R}^2$, defined as $T(\vec{x}) = \begin{bmatrix} x_1 + 2x_2 + 1 \\ x_2 - x_3 \end{bmatrix}$ a linear transformation? $\left(\underbrace{S(\vec{v} + \vec{v}) - S(\vec{v})}_{\text{CO}} - \underbrace{S(\vec{v})}_{\text{CO}} - \underbrace{S(\vec{v})}_{\text{CO}}$

$$\frac{S(\overrightarrow{UH}) - S(\overrightarrow{U}) - S(\overrightarrow{U})}{= 0} = 0$$

Proposition 18. If $T: X \Rightarrow Y$ is linear and has a inverse S, then S is linear. $T(\vec{u}+\vec{v})=T(\vec{u}+\vec{v})=T(\vec{v}+\vec{v$

Definition 19. Two vector spaces V and W are called (isomorphic) denoted as

$$V \cong W$$

if there is an invertible (linear) transformation $T: V \to W$.

bijethe

Definition 22. The vector space $V^* := \mathcal{L}(V, \mathbb{R})$ is called the **dual space** of the vector space V.

$$\frac{\mathbb{E}_{X}}{\mathbb{E}_{X}} : V = \mathbb{R}^{2}$$

4. Kernel and Image

Vector Spaces $T\colon V\to W.$

The image of T if defined as

$$\operatorname{im}(T) := \{ T(\vec{x}) \mid \text{ all } \vec{x} \in V \}$$

The **kernel** of T is defined as

$$\ker(T) := \{ \vec{x} \in V \mid T(\vec{x}) = \vec{0} \}$$

 $(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ $T(c\overline{w}) = cT(u)$

TOPET has 9+ max one she for 87y

CENT

Proposition 24. $T: V \to W$ is injective if and only if $\ker(T) = \{\vec{0}\}$.

 $T \colon V \to W$ is surjective if and only if $\operatorname{im}(T) = W$

Suppose
$$T(\vec{u})=\vec{b}$$
, then $T(\vec{u})=T(\vec{v})$ \iff $T(\vec{u})=\vec{o}$ \implies $\vec{u}-\vec{v}=\vec{o}$

Theorem 25. Let $T: V \to W$ be a linear transformation. Then $\operatorname{im}(T)$ is a subspace of W and $\ker(T)$ is a subspace of V.

$$\frac{1}{N} = \left\{ \begin{array}{c} \left[\begin{array}{c} y \in \mathbb{R} \\ \end{array} \right] \cong \left[\begin{array}{c} x \in \mathbb{R} \\ \end{array} \right] \cong \left[\begin{array}{c} (a) := a + 2\mathbb{Z} \\ = \left[\begin{array}{c} a + 2n \\ \end{array} \right] \\ = \left[\begin{array}{c} a + 2n \\ \end{array} \right] \end{array} \right\}$$

$$[a] := a + 27$$

$$= \left\{ a + 2n \mid n \in \mathbb{Z} \right\}$$

Ex:
$$V = \mathbb{R}^2$$
 $N = x - axis$

$$=\left\{ \begin{bmatrix} 0 \\ x \end{bmatrix} \in \mathbb{R}^{r} \right\}$$

5. Quotient spaces.

An equivalent relation \sim on a set V is a binary relation such that for any $\vec{u}, \vec{v}, \vec{w} \in V$,

- $\vec{v} \sim \vec{v}$.
- If $\vec{v} \sim \vec{w}$, then $\vec{w} \sim \vec{v}$.
- If $\vec{u} \sim \vec{v}$ and $\vec{v} \sim \vec{w}$, then $\vec{u} \sim \vec{w}$.

Let V be a vector space over a field \mathbb{F} . Let W be a subspace of V) We can define an equivalence relation on V by defining that

$$\overrightarrow{v} \sim \overrightarrow{w}$$
 if and only if $\overrightarrow{v} - \overrightarrow{w} \in N$

The equivalence class (or, called the coset) of \vec{v} is defined

$$[\vec{v}] := \vec{v} + N = \{\vec{v} + \vec{a} \mid \vec{a} \in N\}$$

Definition 26. The **quotient space** V/N is a the <u>set</u> of all cosets. Sum and scalar product are defined as

- $\bullet \ [\vec{v}] + [\vec{w}] = [\vec{v} + \vec{w}].$
- $c[\vec{v}] = [c\vec{v}].$

Proposition 27. Quotient space V/N is a vector space.

Kenork:

There is a natural epimorphism from $p: V \to V/N$ defined by $p(\vec{v}) = [\vec{v}]$. The kernel is ker p = N. There exists a **short exact sequence**

$$0 \to \underbrace{N} \hookrightarrow V \xrightarrow{\longrightarrow} V/N \to 0$$

Here, exact means ker=im at each connecting place.

N= 18- 6x9

Remark: The idea of quotient is used in almost all mathematics, e.g., quotient group, quotient ring, quotient field, quotient module, quotient algebra, quotient space in topology, etc.

UNWis a subspect

Let U and V be subspaces of a vector space V

Definition 28. The sum of U and W is defined as

$$\underline{U + W} := \underbrace{\operatorname{Spen} \left\{ \overrightarrow{x} \mid \overrightarrow{x} \in U \circ W \right\}} = \operatorname{Spen} \left(U \circ W \right)$$

$$:= \underbrace{\left\{ \overrightarrow{u} + \overrightarrow{w} \right\} \mid \overrightarrow{x} \in U \mid \overrightarrow{w} \in W \right\}}$$

 $\vec{u} \in \mathcal{L}$

Proposition 29. U + W is a subspace of V.

Definition 30. A sum $\mathfrak{F} = U + W$ is called the **direct sum** of U and W, denoted by

if each
$$v \in \mathcal{G}$$
 can be **uniquely** written as $\vec{v} = \vec{u} + \vec{w}$.

Example 31.
$$U = \{w(y, z)\} \subset \mathbb{R}^3 \text{ and } V = \{0, y, z\} \subset \mathbb{R}^3, \text{ then } U + V \stackrel{\subseteq}{=} \mathbb{R}^3.$$

However, \mathbb{R}^3 is not a direct sum of U and V.

$$\begin{cases} \begin{array}{c} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ y \\ z \end{bmatrix} \\ = \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ y \\ z \end{bmatrix} \end{cases}$$

Example 32. \mathbb{R}^3 is a direct sum of $U = \{x, 0, 0\} \subset \mathbb{R}^3$ and $V = \{0, y, z\} \subset \mathbb{R}^3$ \mathbb{R}^3 .

Proposition 33. Let
$$V = U + W$$
. If $\vec{0} = \vec{u} + \vec{w}$ implies $\vec{u} = \vec{w} = \vec{0}$,

$$V = U \oplus W$$

• For each
$$\partial \in V$$
, suppose $\vec{U} = \vec{u} + \vec{u} = \vec{u} + \vec{u}'$ $\vec{u}, \vec{u}' \in V$

$$\Rightarrow (\vec{u} - \vec{u}') + (\vec{v} - \vec{u}') = \vec{\sigma} \qquad \Rightarrow \vec{u} - \vec{u}' = \vec{u}' = \vec{u} + \vec{u}' = \vec{u}' = \vec{u}' + \vec{u}' + \vec{u}' = \vec{u}' + \vec{u}' + \vec{u}' = \vec{u}' + \vec{u}' +$$

Theorem 35. Given an $m \times n$ matrix A. There is a linear transformation $T: \mathbb{F}^n \to \mathbb{F}^m$ defined as

$$\overrightarrow{x} \longrightarrow A\overrightarrow{x}$$
 $T(\overrightarrow{x}) := A\overrightarrow{x}$

Denote $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_m$ be the column vectors of the identity matrix I_m . We call them the standard vectors in \mathbb{F}^m .

$$\vec{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad \cdots \qquad \vec{e_m} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

The next theorem is very effective for finding the matrix for a given linear transformation.

Theorem 36 (Transformation matrix). Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation.

There exists an $m \times n$ matrix A such that $T(\vec{x}) = A\vec{x}$. Further more, the matrix of T is given by

$$A = [T(\vec{e}_1) \quad T(\vec{e}_2) \quad \cdots \quad T(\vec{e}_n)].$$

Theorem 37. An $n \times n$ matrix A is invertible if and only if the linear transformation T_A is injective; if and only if T_A is surjective.

Theorem 38. Let A be an $m \times n$ matrix and B be a $n \times p$ matrix. Then the product AB is the matrix of the transformation composition $T_A \circ T_B$.

Corollary 39. An $n \times n$ matrix A is invertible if and only if T_A is invertible. Moreover, $(T_A)^{-1} = T_{A^{-1}}$.

8.	TENSOR	PRODUCT	OF	SPACES AND KRONECKER MATRICES	PRODUCT OF