Some Interesting Formulas Involving the GCD

John D Mangual

Sometimes, when I read a String Theory paper, I try to find a verifiable statement. Here is one I found in a paper:

$$I^{\mathcal{N}=1^*}(N,1,0) = N \sum_{d|N} 1 = N\sigma_0(N)$$

This number is called a **superconformal index** and it also equals:

$$I^{\mathcal{N}=1^*}(N, N, n) = \sum_{d|N} \sum_{l=1}^{N} \gcd(d, l)$$

I was heckled on MathOverflow for posting such an elementary formula. It's not mine, it's his.

Perhaps the general formula can show us the pattern:

$$I^{\mathcal{N}=1^*}(N,m,n) = \frac{N}{m} \sum_{d|N} \sum_{l=1}^{\gcd(d,m)} \gcd\left(\gcd(d,m), n + \frac{ld}{\gcd(d,m)}\right)$$

This formula is later shown to be equal to:

$$I^{\mathcal{N}=1^*}(N, m, n) = \sum_{d|N} \sum_{t=0}^{d-1} \gcd\left(N\frac{d}{m}, N\frac{m}{d}, N\left(\frac{t}{m} + \frac{m}{d}\right)\right)$$

In order for this equation to make sense, I eventually found m|N and d|N - I hope I guessed correctly.

By **Möbius inversion** we should have:

$$\frac{N}{m} \sum_{l=1}^{\gcd(d,m)} \gcd\left(\gcd(d,m), n + \frac{ld}{\gcd(d,m)}\right) = \sum_{t=0}^{d-1} \gcd\left(N\frac{d}{m}, N\frac{m}{d}, N\left(\frac{t}{m} + \frac{ld}{m}\right)\right)$$

These seem rather tedious to verify and their meaning unclear.

A starting point could be the Bezout theorem that:

$$\gcd(a,b) = \min_{(x,y)\in\mathbb{Z}\setminus(0,0)} |ax + by|$$

Buried in the paper is his original statements about lattices when explain the appearance of **GCD** everywhere.

The inputs seem to be a Lie algebra (such as $\mathfrak{so}(N)$) plus a 4-manifold such as \mathbb{R}^4 or $\mathbb{R}^3 \times S^1$

Algebra	Theory	On \mathbb{R}^4	On $\mathbb{R}^3 \times S^1$
\mathfrak{a}_{N-1}	$(SU(N)/\mathbb{Z}_m)_n$	N	$I^{\mathcal{N}=1}(N, m, n)$
	Spin(2N + 1)		2N - 1
$\mathfrak{b}_{N\geq 2}$	$SO(2N+1)_{+}$	2N - 1	2(2N-1)
	$SO(2N + 1)_{-}$		2N - 1
	Sp(2N)		N+1
$\mathfrak{c}_{N\geq 2}$	$(Sp(2N)/\mathbb{Z}_2)_+$	N+1	$\begin{cases} 2(N+1) & \text{for even } N \\ 3(N+1) & \text{for even } N \end{cases}$
			$\int_{-2}^{3} (N+1) \text{for odd } N$
	$(Sp(2N)/\mathbb{Z}_2)$		$\begin{cases} N+1 & \text{for even } N \\ \frac{3}{2}(N+1) & \text{for odd } N \end{cases}$
	Spin(2N)		$\frac{(\frac{1}{2}(N+1)) \text{ for odd } N}{2(N-1)}$
3	$SO(2N)_{+}$	2(N-1)	2(N-1) 4(N-1)
$\mathfrak{d}_{N\geq 3}$	SO(2N)_	2(11 - 1)	2(N-1)
$\mathfrak{d}_{N \text{ odd}}$	$(\operatorname{Spin}(2N)/\mathbb{Z}_4)_n$	2(N-1)	4(N-1)
VN odd	$Sc(2N)_{\pm}$ and $Ss(2N)_{\pm}$	2(11 1)	3(N-1)
	$(SO(2N)/\mathbb{Z}_2)_{00}^{00}$		5(N-1)
$\mathfrak{d}_{N\equiv 2 \mod 4}$	$(SO(2N)/\mathbb{Z}_2)_{11}^{00}$	2(N-1)	3(N-1)
	$(SO(2N)/\mathbb{Z}_2)_{10}^{11}$, ,	4(N-1)
	1 00		` ′
	$(SO(2N)/\mathbb{Z}_2)_{\substack{01\\11}}$		2(N-1)
	$Sc(2N)_+$ and $Ss(2N)_+$		4(N-1)
	$Sc(2N)_{-}$ and $Ss(2N)_{-}$		2(N-1)
$\mathfrak{d}_{N\equiv 0 \mod 4}$	$(SO(2N)/\mathbb{Z}_2)_{00}$	2(N-1)	5(N-1)
- 1v = 0 mod 4	$(SO(2N)/\mathbb{Z}_2)_{11}^{13}$	_(-, -)	3(N-1)
	$(SO(2N)/\mathbb{Z}_2)_{\substack{01\\00}}^{11}$		3(N-1)
	$(SO(2N)/\mathbb{Z}_2)_{\substack{00\\10}}^{00}$		3(N-1)
¢-	E_6	12	12
e ₆	$(E_6/\mathbb{Z}_3)_n$	12	20
e ₇	E_7	18	18
	$(E_7/\mathbb{Z}_2)_n$		27
e ₈	E_8	30	30
f4	F_4	9	9
\mathfrak{g}_2	G_2	4	4

Table 2. The Pure $\mathcal{N} = 1$ Indices on a Circle. The notations are as in [9].

What is a **Theory**?

There are too many inputs to define $\mathcal{N}=1^*$ Supersymmetric Yang-Mills Theory with Lie group SU(N) on manifold $\mathbb{R}^3\times S^1$, and to classify the "Line Operators"...

What is a reasonable minimum amount of information to describe the Theories discussed here?

What is **S-duality**?

Many of the quantities discussed here are not $SL(2,\mathbb{Z})$ invariant. Instead they transform "nicely" under actions of $z\mapsto z+1$ and $z\mapsto -1/z$. This is called a **group action**.

References

- (1) arXiv:1606.01022 The Arithmetic of Supersymmetric Vacua. Antoine Bourget, Jan Troost. physics.hep-th.
- (2) arXiv:1511.03116 On the N=1* Gauge Theory on a Circle and Elliptic Integrable Systems. Antoine Bourget, Jan Troost. physics.hep-th.
- (3) arXiv:1506.03222 Counting the Massive Vacua of N=1* Super Yang-Mills Theory. Antoine Bourget, Jan Troost. physics.hep-th.
- (4) arXiv:1305.0318 Reading between the lines of four-dimensional gauge theories. Ofer Aharony, Nathan Seiberg, Yuji Tachikawa. WIS/03/13-APR-DPPA, UT-13-15, IPMU13-0081. physics.hep-th.