Math 523 HW 4

Morgan Gribbins

Section 2.1

Use the rules for differentiation to find the derivatives of (2) and (4).

- (2) $z^2 + 10z$
- (4) $[\cos(z^2)]^3$

For each function f listed in Exercises (8) and (10), find an analytic function F with F' = f.

- (8) f(z) = z 2
- (10) $f(z) = \sin z \cos z$

(14) Let $P(z) = A(z - z_1)...(z - z_n)$, where A and $z_1,...z_n$ are complex numbers and $A \neq 0$. Show that

$$\frac{P'(z)}{P(z)} = \sum_{j=1}^{n} \frac{1}{z - z_j}, \ z \neq z_1, ..., z_n.$$

- (16) Find the derivative of the linear fractional transformation T(z) = (az+b)/(cz+d), $ad \neq bc$. In what way does the condition $ad bc \neq 0$ enter? Conclude that T'(z) is never zero, $z \neq -d/c$.
- (18) Show that $h(z) = \bar{z}$ is not analytic on any domain. (Hint: check the Cauchy-Riemann equations.)

1

- (20) Let f = u + iv be analytic. In each of the following, find v given u.
- (20a) $u = x^2 y^2$
- (20b) $u = \frac{x}{x^2 + y^2}$

Section 2.2

In exercises (2) and (4), use Theorem 2 or Example 4 to find the radius of convergence of the following power series.

(2)
$$\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!} (z-2)^k$$

(4)
$$\sum_{k=0}^{\infty} (-1)^k z^{2k}$$

In exercises (8) and (10), find the power series about the origin for the given function. (8) $z^2\cos z$

(10)
$$\frac{1+z}{1-z}$$
, $|z| < 1$

In exercises (14), (16), and (18), find a "closed form" (that is, a simple expression) for each of the given power series.

(14)
$$\sum_{n=0}^{\infty} \frac{z^{2n}}{n!}$$

(16)
$$\sum_{n=1}^{\infty} n(z-1)^{n-1}$$

(18)
$$\sum_{n=2}^{\infty} n(n-1)z^n$$

(22)

(22a) If $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ has radius of convergence R > 0 and if f(z) = 0 for all $z, |z-z_0| < r \le R$, show that $a_0 = a_1 = \dots = 0$.

(22b) If $F(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ and $G(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$ are equal on some disc $|z - z_0| < r$, show that $a_n = b_n$ for all n.