COMP207 Database Development

2019-20 Rasmus Ibsen-Jensen

Acknowledgments

These slides are based on André Hernich slides, who taught this module two years ago.

Questions during lectures

- If you have a question during a lecture, pick one:
 - 1. Put up your hand
 - 2. Write it in the thread for the lecture on the forum
 - 3. Ask the question after the lecture

Attendance checking

Will be in the lab sessions only (starts in week 3)!

Kortext trial

- Running a trial
- In essence, you get two free e-book in this course
 - Access to Database Systems The Complete Book this year
 - Access to Fundamentals of Database Systems might be removed

What is a database?

- Reflects an updated aspect of the real world
- Consists of a logical collection of data
- Has been build for a specific purpose

Databases are everywhere

... and are valuable

The Economist

Topics **∨**

Current edition

More **✓**

Subscribe

Regulating the internet giants

The world's most valuable resource is no longer oil, but data

The data economy demands a new approach to antitrust rules

Print edition | Leaders >

May 6th 2017

Online store

Social media site

Airline/train/hotel reservation

– many more –

9

> 1.13 billion users daily

loading the homepage of a user requires accessing 100s of servers

Databases Drives Businesses

- Banking: debit/credit card transactions
 - E.g., in stores/super markets, at ATMs, etc.
- Stock market
- Big companies & organisations:
 - Employees, customers, products, sales, schedules, logistics, clients, etc.
 - Purposes:
 - Some are worthwhile directly
 - Management, data analytics and decision making

Databases in Science & Public Service

- Science: for data management and data analysis in
 - Astronomy
 - Human Genome
 - Biochemists exploring properties of proteins
 - Biology and life sciences
 - Geology
- Medicine/NHS:
 - Patient records
 - Diseases and their relationships, treatments, etc.
 - Decision making
- Many others

Early Data Management

```
class Student {
   String name;
   int number;
   String programme;
   ...
}

Vector<Student> students;
...

External data file
Anna, 20181989, G402
John, 20184378, G702
...

External data file
```

- Early DBMS of the 1960's were based on this idea
- Disadvantages:
 - difficult to program
 - not very robust, especially when dealing with updates to data by many users in parallel
 - Hard to add fields or new efficient queries

Relational Databases to the Rescue...

- Modern database management systems (DBMSs) are based on 40+ years of database research
 - Very sophisticated tools
 - Can manage very large amounts of data over a long period of time
 - Highly efficient, flexible, robust

Relational Model (Reminder)

Data organised as relations ("tables")

Student		Module		
		code	name	lecturer
name	number	COMP207	Database Development	R. Ibsen-Jensen
Anna	20181989	COMP219	Artificial Intelligence	F. Oliehoek
John	20184378			

- Data is queried/modified at a high level (e.g. via SQL)
 No need to know how data is stored and where
- Introduced in 1970, most dominant model by 1990

"Relational DBMS are one of the biggest success stories in computer science."

a colleague, 2012

Also: one of the most complex pieces of software...

Relational DBMS Components

(Simplified)

Beyond Plain Relational DBMS

- Lectures 17-18:
 - Distributed DBMSs
- Lecture 19: MapReduce
- Lectures 20-26: Beyond relational data
 - Object-relational databases
 - Semi-structured databases: XML
 - NoSQL databases
- Lectures 27-30:
 - Data warehouses
 - Data analysis/mining

What you should know at the end (Learning Outcomes)

- Transaction management:
 - Identification & application of the principles underpinning transaction management within DBMS
- Advanced SQL:
 - SQL from COMP107 extended with indexes, transactions, query optimisation
 - Application in problem solving
- Object-relational models:
 - Identification of principles
- Web technologies:
 - Illustrate issues related to web technologies as a semi-structured data representation formalism
- Data warehouses and data mining:
 - Interpret the main concepts and security aspects in data warehousing
 - Interpret the main concepts of data mining

If you care, what can you become?

Data analysts:

- Writing high-performant queries requires understanding of how these systems work
- Same as programming in Java

Database administrators:

- Even more so
- Need to design and tune system so that typical SQL statements are executed fast and deciding who is allowed to access the database
- System analysts/software developers:
 - Should be familiar with the full range of capabilities of DBMS
 - Writes reuseable queries for end users

Research:

DBMS are still evolving, especially now: "NoSQL", "big data", ...

Topics We Will Not Cover

- No modelling of databases, but see...
 - COMP107/CSE103
 - 2nd year group project and COMP283
- No administration of DBMS
- No implementation of database system components

Some words on logistics...

Resources

- Course page on Vital:
 - Announcements, slides, stream lectures, course work, discussion board, etc.
 - Let me know if you don't have access
- Textbooks (any is fine):
 - Garcia-Molina, Ullman and Widom:
 Database Systems The Complete Book,
 Pearson Education
 - Free e-book because we participate in a trial
 - Elmasri and Navathe: Fundamentals of Database Systems, Pearson Education
 - Also free e-book, but that might be removed
 - Connolly and Begg: Database Systems, Addison Wesley
- Your own notes + the web

Lectures & Labs/Tutorials

- 30 lectures in total (week 1-10; might be longer)
- 10 weeks of labs (starts in week 3)
 - You should be assigned to one of the lab sessions
 - If not: let me know as soon as possible.

Interaction

- Use lectures, labs, discussion board, and office hours
- Discussion board on Vital:
 - For all questions, comments, etc. regarding COMP207
 - I will try not to give complete answers to questions
 - I might provide hints that you can use to answer questions,
 either yourself or with the help of others
 - Try to answer others' questions (also benefits yourself)
 - Anonymous posts are activated, but try to not use this as the default mode
- For messages that should not be shared with others:
 r.ibsen-jensen@liverpool.ac.uk

Assessment

- 20% continuous assessment:
 - 2 assignments
 - Each 10% of the final mark
- 80% final exam:
 - Multiple-choice questions
 - 120 minutes
- There'll be a mock exam towards the end

Private Study

- Invest ~ 6 hours of private study per week
- Study actively, not passively
 - Work through (don't just read) lecture notes, book chapters, online resources, etc.
 - Work through examples and experiment with these (e.g., modify them and try to see what happens)
 - Engage with other students, if only on the discussion board
 - Discuss/explain material to others
 (extremely good to see if you understood it)
- Start now & study regularly don't start the night before the exam (this won't work)

Summary

- Database systems
 - Success story...
- Understanding how they work is important
 - For practitioners and researchers alike
 - This is what this course is about
- For next lecture:
 - Familiarise yourself with the Vital course page
 - Review relevant material from COMP107/CSE103:
 - Relational model, theory of decentralised DBs, DBMS
 - SQL
 - Keep checking timetables for first few weeks