

PARTIAL ENGLISH TRANSLATION OF JP-A-61-171737

page 2, upper, left col. line 9 ~ page 2, upper, right col. line 13
[Means for solving the Problem] and 「Function」

The present invention relates to a process for crosslinking an elastomer, where the elastomer is crosslinked by subjecting rubber to primary crosslinking by sulfur or a sulfur-based compound, and then to secondary crosslinking by radio active rays.

Crosslinkable elastomer includes natural rubber or synthetic rubber, for example, styrene-butadiene rubber, acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, chloroprene rubber, epichlorohydrin rubber, ethylene-propylene rubber, active chlorine-containing acrylic rubber, chlorosulfonated polyethylene, chlorinated polyethylene, butyl rubber, silicone rubber, active halogen-containing fluororubber, etc., as crosslinked by sulfur or a sulfur-based compound.

The sulfur-based compound for use in primary crosslinking like sulfur includes imidazoles typically, e.g. 2-mercaptoimidazole, thioureas typically, e.g. N,N' -diethylthiourea, thiazoles typically, e.g. mercaptobenzothiazole, and dibenzylthiazyl disulfide, dicarbamic acid salts, thiurams, and their mixtures. Primary crosslinking can be carried out by the sulfur-based crosslinking agent under the ordinary crosslinking conditions.

 \cdot page 2, lower, left col. line 3 from the bottom \sim page 3, lower, right col. line 2 from the bottom

[EXAMPLES]

The present invention will be described below, referring to Examples.

COMPARATIVE EXAMPLES 1 AND 2

	Comp.	Comp.
Compounding component	Ex. 1	Ex. 2
Hidrogenated acrylonitrile-butadiene rubber	100	100
(Zetpol 2020, a product of Japan Zeon Co.)		
Zinc oxide	3	3
Magnesium oxide	7	7
Stearic acid	2	2
FEF carbon black	50	50
2-mercaptobenzoimidazole	2	2
Di-t-butylperoxydiisopropylbenzene (concentration: 40%)	. —	6
Triallyl isocyanurate (concentration: 70%)	_	2
Tetramethylthiuram disulfide	1.5	. –
Tetraethylthiuram disulfide	1.0	
Mercaptobenzothiazole	0.5	
Sulfur	0.5	<u></u>

Compositions in the foregoing compounding proportions (parts by weight) was subjected to primary crosslinking at 180°C for 5 minutes, and then to secondary crosslinking at 150° for 3 hours. Primary crosslinking products and secondary crosslinking products of Comparative Example 1 (sulfur-based crosslinking) and Comparative Example 2 (peroxide-based crosslinking) were each subjected to determination of physical properties according to JIS K-8301.

EXAMPLE 1

In Comparative Example 1, the secondary crosslinking was carried out by irradiation of 20-megarad γ -rays of Co 60.

Results of determination obtained in the foregoing Comparative

Examples and Example are shown in the following Table 1.

Table 1

	14010 I				
Item of dete	ermination	Comp. Ex.1	Comp.	Ex.2	Ex.1
[Primary crosslinking	products]				
Hardness	(degree)	75	7	7	78
Tensile strength	(MPa)	26.2	26.	8	26.2
Elongation	(%)	461	28	3	461
[Secondary crosslinkii	ng products]	•			
Hardness	(degree)	81	. 8	0	82
Tensile strength	(MPa)	24.6	27.	2	27.0
Elongation	(%)	269	240	6	185
Compression set (150	0°C for 70 hrs) (%)	83	2	8	32
COMPARATIVE	EXAMPLES 3 AND	4			,
Compoundin	g components	Comp	. Ex.3	Comp	. Ex.4
Ethylene-propylene-d	iene terpolymer rubb	er 1	.00		100
(EPT 1070, a produc	t of Mitsui Petrochem	ical Co.)			
FEF carbon black			80		80
Wax			2		2
Synthetic polyterpene	e resin		6		6
Zinc oxide		•	5		_
Substituted diphenyl	amine		_		2
2,2,4-trimethyl-1,2-di	ihydroquinoline polyn	ner	2		
Dicumyl peroxide	•		_	•	5
Triallyl isocyanurate	(concentration: 70%)		_		3
Sulfur			1.5		_
Tetramethylthiuram	disulfide		1.5		_
2-mercaptobenzothia	zole		0.3		_

Compositions in the foregoing compounding proportions (parts by weight) were subjected to primary crosslinking at 180°C for 5 minutes, and then to secondary crosslinking at 150°C for 5 hours. Primary crosslinking products and secondary crosslinking products of Comparative Example 3 (sulfur-based crosslinking) and Comparative Example 4 (peroxide-based crosslinking) were each subjected to determination of physical properties according to JIS K-8301 and also to determination of percent changes in physical properties, when heated at 120°C or 150°C for 280 hours as a measure of heat resistance of the secondary crosslinking products.

EXAMPLE 2

In Comparative Example 3, the secondary crosslinking was carried out by 15-megarad γ -rays of Co 60.

Results of determination obtained in Comparative Examples 3 and 4, and Example 2 are shown in the following Table 2.

Table 2

Item of determ	ination	Comp. Ex.3	Comp. Ex.4	Ex. 2
[Primary crosslinking p	roducts]			
Hardness	(degree)	7 5	76	75
Tensile strength	(MPa)	9.5	11.4	9.6
Elongation	. (%)	350 .	240	350
[Secondary crosslinking	g products]	•		
Hardness	(degree)	81	78	79
Tensile strength	(MPa)	13.2	13.5	12 .5
Elongation	(%)	220	210	180
Compression set (150°	C for 70 hrs) (%)	42	15	18
[Heat resistance: 120°	for 280 hrs]			
Hardness change	(degree)	,+ 5	+3	+3

Tensile strength change	(%)	+2	+3	+5
Elongation change	(%)	-20	-15	-15
[Heat resistance: 150℃ fe	or 280 hrs]		•	
Hardness change	(degree)	+8	+5	+5
Tensile strength change	(%)	+10	. +7	+6
Elongation change	(%)	-35	-25	-30

COMPARATIVE EXAMPLE 5

•	Parts by weight
Active chlorine-containing acrylic rubber	100
(Noxtite PA-402, a product of Nippon Mectron Co.)
FEF carbon black	60
Stearic acid	. 1
Substituted diphenyl amine	2
Sodium stearate	4
Sulfur	0.3
Trimethylolpropane trimethacrylate	2

Composition in the foregoing compounding proportions was subjected to primary crosslinking at 180°C for 5 minutes, and then to secondary crosslinking at 150°C for 5 hours. The resulting secondary crosslinking product was subjected to determination of physical properties according to JIS K-8301.

EXAMPLE 3

In Comparative Example, the secondary crosslinking was carried out by irradiation of 25-megarad γ rays of Co 60.

Results of determination obtained in Comparative Example 5 and Example 3 are shown in the following Table 3.

Table 3

Item of determination		Comp. Ex. 5	Ex. 3
Hardness	(degree)	70	72
Tensile strength	(MPa)	13.2	14.3
Elongation	(%)	180	150
Compression set (150°C	for 70 hrs) (%)	35	28