		Report			Cycles	Regs		SM Frequency	CC Process	· ·	
400	rrent seline 1	ree1 remile		 753.44 msecond 30.94 msecond 	1,039,830,114 42,699,894	24		1.38 cycle/nsecond 1.38 cycle/nsecond			
								A STATE OF THE PROPERTY OF			
		d Of Ligh view of the			nd memory reso	irces of	the GPLL For each u	unit, the throughput rep	All	ed nercentage o	of utilization
with re	espect to	the theore	tical ma	aximum. Breakdowr	s show the throu	ighput f	or each individual s	ub-metric of Compute presented as a roofline	and Memory to		
		Throughp	out [%]			8 (+0.0					(+2,335.27%)
		ighput [%] Throughp	ut [%]			2 (-34.6 3 (-34.5				1,039,830,114(24,731,742.63(
		ughput [%	l			2 (-34.6	,	y [cycle/nsecond]		1.38	(-0.00%)
DRAN	/I Through	nput [%]				1 (-74.2		ency [cycle/nsecond]		6.79	(-0.00%)
(1)	High T	hroughp	ut pe	erformance, work wi ompute Workload A	I likely need to be nalysis section.	e shifted	I from the most utili	e or memory performar zed to another unit. Sta this device is 32:1. The	art by analyzing	workloads in t	he <u>•</u>
Δ	peak performance and 26% of its fp64 peak performance. If Compute Workload Analysis determines that the							s that this kern	el is fp64		
Δ	FP64/32 Utilization The achieved fp64 performance is 59% lower than the fp64 pipeline utilization. Check the Instruction Statistics section to see if using fused instructions can benefit this kernel.						<u>n Statistics</u>	Θ			
		Workload						All	Santa Sa		Ω
				resources of the st very high utilization				achieved instructions	per clock (IPC) a	nd the utilization	on of each
		lapsed [in:		1		08 (-1.8		100			.32 (+0.16%)
		ctive [inst/ ve [inst/cy				08 (-1.7 08 (-1.7		ısy [%]		1.	.93 (-1.75%)
A	Very High Utilization FP64 is the highest-utilized pipeline (85.3%) based on active cycles, taking into account the rates of its different instructions. It executes 64-bit floating point operations. The pipeline is over-utilized and likely a performance bottleneck. Based on the number of executed instructions, the highest utilized pipeline (85.3%) is FP64. It executes 64-bit floating point operations. Comparing the two, the overall pipeline utilization appears to be caused by frequent, low-latency instructions. See the Kernel Profiling Guide or hover over the pipeline name to understand the workloads handled by each pipeline. The Instruction Statistics section shows the mix of executed instructions in this kernel.									64- ow-	
► M	emory W	orkload/	Analys	sis							Ω
hardw	are units	(Mem Bus	sy), exha		e communication	bandw	ridth between those	the overall kernel perfo units (Max Bandwidth)			
Memory Throughput [Mbyte/sec				ond]	24.40	(-74.2	2%) Mem Busy [%]	I		0.0	02 (-34.70%)
L1/TEX Hit Rate [%] L2 Hit Rate [%]					87.80 99.07	(+50.4 (-0.1					02 (-34.65%) 02 (+0.11%)
		atistics			77.07	(5	z ey mem r ipeo z	20) [10]		21	
			ation us	sed to launch the ke	rnel. The launch	configu	ration defines the si	ze of the kernel grid, the	e division of the	grid into block	s, and the
		needed to	execute	the kernel. Choosii				tes device utilization.			5 (11)
Grid S Regis		Thread [reg	jister/th	read]		2 (+0.0 4 (+0.0		he Configuration Memory Per Block [byt		ferNone (Cache	0 (+0.00%)
Block		all.				4 (+0.0		red Memory Per Block			0 (+0.00%)
	ds [threa s Per SM					8 (+0.0 7 (+0.0		Memory Per Block [byt ory Configuration Size		32.	0 (+0.00%) .77 (+0.00%)
▶ 00	cupanc	у				35.00					<u>Β</u> Ω
percer occup	ntage of t ancy alw	he hardwa ays reduce	are's abi es the al	lity to process warp	s that is actively es, resulting in o	in use. I rerall pe	Higher occupancy de rformance degradat	er of possible active wa oes not always result in tion. Large discrepanci	n higher perform	nance, however,	low
		cupancy [9			100			egisters [block]			2 (+0.00%)
		tive Warps pancy [%]		[warp]	32 48.90	(+0.0 (+15.2		nared Mem [block] 'arps [block]			16 (+0.00%) 1 (+0.00%)
		e Warps P		warp]		(+15.2					16 (+0.00%)
A	Occup	ancy Lim	iters	and measured ach the kernel executio	ieved occupancy n. Load imbalan	(48.9% ces can) can be the result o	ck limit. The difference f warp scheduling over os within a block as we nizing occupancy.	heads or worklo	ad imbalances	during
▶ Sc	ource Co	unters							All		Ω
indica		warps were						g metrics are periodica otion of all stall reason			
		tions [inst			364,832,223 (4					99.89	, ,
A		tions Ratio		ccesses total 4-	464016 sectors).	Check t	obal accesses result the L2 Theoretical Se	it Branches ing in a total of 37174 ectors Global Excessive dditional information o	table for the pri	ctors (83% of th imary source	U
					L2 Theoreti	cal S	ectors Global	Excessive			
Locat		10 in man	dol kon	nel 3				Value			Value (%)
		10 in man b0 in man						3,670,016 47,422			99) 1 [
		Still m	issing d	ata? Collect the ful	/ <u>metric set,</u> enab	le indivi	dual sections or lear	rn how to select individ	ual metrics for o	collection.	

Result: 0 - 517 - mandel_kernel Add Baseline Apply Rules Occupancy Calculator

Page: Details

Save as PDF ▼