Table 1: Common distributions and densities.

Distribution	Notation	Density
Bernoulli	Bernoulli(p)	$P(X = k) = p^{k}(1-p)^{1-k}$; $k = 0, 1, 0 \le p \le 1$
Binomial	Binomial(n,p)	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}; \ k = 0, 1, \dots, n, 0 \le p \le 1$
Discrete Uniform	Discrete Uniform(N)	$P(X = x) = \frac{1}{N}; x = 1, 2, \dots, N$
Geometric	Geometric(p)	$P(X = x) = (1 - p)^{x-1}p; x = 1, 2, 3, 0 \le p \le 1$
Negative Binomial	Negative Binomial(r,p)	$P(X = x) = {\binom{x-1}{r-1}} (1-p)^{x-r} p^r; \ x = r, r+1, r+2, \dots, 0 \le p \le 1$
Poisson	$Poisson \lambda$	$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}; x = 0, 1, 2, \dots, \lambda \ge 0$
Continuous Uniform	Uniform(a,b)	$f(x) = \frac{1}{b-a}; \ a \le x \le b$
Exponential	$Exponential(\lambda)$	$f(x) = \lambda e^{-\lambda x}; \ \lambda > 0, \ 0 \le x < \infty$
		$\begin{pmatrix} -(x-\mu)^2/(2\sigma^2) \end{pmatrix}$
Normal	$Normal(\mu, \sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{\left(-(x-\mu)^2/(2\sigma^2)\right)}; -\infty < \mu < \infty, \ \sigma > 0, \ -\infty < x < \infty$
Gamma	$Gamma(lpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}; \ \alpha > 0, \ \lambda > 0, \ 0 \le x < \infty$
Beta	Beta(lpha,eta)	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}; \ \alpha > 0, \ \beta > 0, \ 0 \le x \le 1$