IN THE CLAIMS

Please amend the claims as indicated:

WHAT IS CLAIMED IS:

1	1.	(currently amended) An apparatus for use on a bottom hole assembly (BHA) for	
2		conveying in a borehole in an earth formation, the apparatus comprising:	
3		(a) an orientation sensor making measurements indicative of a toolface angle	
4		of said BHA during rotation of the BHA;	
5	,	(b) at least one resistivity directionally sensitive formation evaluation sensor	
6		for making measurements of a resistivity property of said earth formation	
7		during said continued rotation; and	
8		(c) a processor for determining which estimates from said resistivity	
9		directionally sensitive measurements and said orientation sensor	
10		measurements a apparent dip angle between an axis of said borehole and	
11		an interface in local spatial characteristic of said earth formation	
12		wherein said BHA has a non-uniform rate of rotation.	
13			
1	2.	(currently amended) The apparatus of claim 1 wherein said local spatial	
2		characteristic comprises interface is a dip of a bed boundary.	
3			
1	3.	(currently amended) The apparatus of claim 1 wherein said local spatial	
2	414-29	characteristic comprises a dip of interface is an oil-water contact.	
		2	

3

414-29494USCP

having a plurality of transmitter-receiver spacings and further comprises circuitry

3

P.05

ŀ		for measuring at least one of (1) an amplitude difference, and, (11) a phase
j		difference of signals measured at said plurality of spacings.
5		
Į	10.	(original) The apparatus of claim 1 wherein said orientation sensor is associated
2		with a first processor and said at least one resistivity sensor is associated with a
3		second processor, said first and second processors being on a common bus.
1		
l	11.	(currently amended) The apparatus of claim 1 wherein said orientation sensor
2		comprises at least one of (i) a magnetometer, (ii) an accelerometer, and, (iii) a
3		дугьосоре.
4		
1	12.	canceled
2		
1	13.	(currently amended) The apparatus of claim 1 further comprising a gyroscope
2		sensor for providing a measurement indicative of an inclination and azimuth of
3		said borehole.
4		
1	14.	(original) The apparatus of claim 1 wherein said processor further determines a
2		bias in said orientation measurements.
3		
1	15.	(canceled)
2		AAA AY TO CID

i	16.	(currently amended) The apparatus of claim I wherein said <u>at least one</u>
2		directionally sensitive formation evaluation comprises a resistivity sensor is
3		mounted on one of (i) a pad, (ii) a rib, and, (iii) a stabilizer.
4		
1	17.	(currently amended) The apparatus of claim 1 wherein said processor further
2		constructs and corrects an image of said borehole.
3		
1	18.	(currently amended) The apparatus of claim 1 wherein said a processor further
2 .		controls a drilling direction of said borehole based on said apparent dip angle
3		local spatial characteristic of said earth formation.
4		
1	19.	(currently amended) The apparatus of claim 1 wherein said processor determine
2		said apparent dip angle local spatial characteristic of said earth formation based
3		on an apparent rate of penetration.
4		
1	20.	(currently amended) A method of determining estimating a dip local spatial
2		characteristic of an earth formation, the method comprising:
3	•	(a) conveying a bottom hole assembly (BHA) into a borehole in an earth
4		formation;
5		(b) using an orientation sensor on said BHA for making measurements
6		indicative of a toolface angle of said BHA during rotation of the
7		вна;
	414-29	494USCP 5

Fax:7132668510 -

8		(c)	using at least one resistivity a first directionally sensitive formation
9			valuation sensor on said BHA for making measurements indicative of a-
10	٠		tivity of said local spatial characteristic of said earth formation during said
11			continued rotation; and
12		(d)	determining estimating from said resistivity measurements of said
13			directionally sensitive formation evaluation sensor and said orientation
14			sensor measurements said dip local spatial characteristic of said earth
15		1	formation, said determination estimation correcting for a non-uniform rate
16			of rotation of said BHA.
17			
1	21.	(curre	ntly amended) The method of claim 20 further comprising using said
2		determ	nined dip local spatial characteristic for controlling a drilling direction of
3	•	said b	orehole.
4			
1	22.	(curre	ntly amended) The method of claim 20 wherein said dip local spatial
2		charac	teristic comprises a apparent dip angle between an axis of said borehole and
3		a bed	boundary in said earth formation.
4			
1	23.	(curre	ntly amended) The method of claim 20 wherein determining said dip
2		charac	cteristic further comprises using measurements from an additional resistivity
3		a seco	and directionally sensitive formation evaluation sensor spaced apart axially
4	414-29	from s	said at least one resistivity first directionally sensitive formation evaluation

,		Seliger.
6		
1	24.	(currently amended) The method of claim 20 wherein the at least one first
2		resistivity directionally sensitive formation evaluation sensor comprises a
3		galvanic sensor.
4		
1	25.	(original) The method of claim 24 wherein said galvanic sensor comprises a
2		focused sensor.
3		
1	26.	(currently amended) The method of claim 20 wherein said at least one resistivity
2		first directionally sensitive formation evaluation sensor comprises an induction
3		sensor.
4		
ì	27.	(currently amended) The method of claim 26 wherein said induction sensor
2		comprises a sensor having a coil with an axis inclined to an axis of said BHA.
3		
ı	28.	(currently amended) The method of claim 20 wherein said resistivity first
2		directionally sensitive formation evaluation sensor comprises a resistivity sensor
3		with a plurality of transmitter-receiver spacings, and using said resistivity sensor
4		further comprises a making measurements of at least one of (i) and amplitude
5		difference, and, (ii) a phase difference of signals measured at said plurality of
6	414-2	spacings.

7		
1	29.	(currently amended) The method of claim 20 further comprising coupling a first
2		processor associated with said orientation sensor and a second processor
3.		associated with the at least one resistivity first directionally sensitive formation
4		evaluation sensor to a common bus.
5		
1	30.	(currently amended) The method of claim 20 wherein said orientation sensor
2		comprises is selected from the group consisting of: (i) a magnetometer, (ii) an
3		accelerometer, and, (iii) a gyroscope.
4		·
1	31.	canceled
2		
1	32.	(currently amended) The method of claim 20 further comprising using a
2		gyroscope an additional sensor for providing a measurement indicative of an
3		inclination and azimuth of said borehole.
4		
1	33.	(original) The method of claim 20 further comprising determining a bias in said
2		orientation measurements.
3		
1	34.	canceled
2		
1	35. 414-29	(currently amended) The method claim 20 wherein said resistivity first

Z		directionally sensitive formation evaluation sensor is mounted on one of (i) a
3		pad, (ii) a rib, and, (iii) a stabilizer.
4		
1	36.	(original) The method of claim 20 further comprising obtaining an image of said
2		borehole.
3		
1	37.	(original) The method of claim 36 further comprising correcting said image.
2		
1	38.	(original) The method of claim 36 further comprising identifying tool face angles
2		associated with a sticking of the BHA.
3		
1	39.	(new) The apparatus of claim 1 wherein said directionally sensitive formation
2	•	evaluation sensor is selected from the group consisiting of (i) a resistivity sensor,
3		and, (ii) a nuclear sensor.
4		
1	40.	(new) The apparatus of claim 1 wherein said local spatial characteristic of said
2		earth formation is selected from the group consisting of (i) a dip of an interface in
3		said earth formation, and, (ii) an image of a wall of said borehole.
4		
1	41.	(new) The apparatus of claim 4 further comprising a processor for determining
2		from measurements made by said two directionally sensitive formation evaluation
3	414-29	sensors a rate of penetration of said BHA.

4		
1	42.	(new) The apparatus of claim 13 wherein said sensor for providing a measurement
2		indicative of an inclination and azimuth of said borehole comprises a gyroscope.
3		
1	43.	(new) The method of claim 20 wherein said directionally sensitive formation
2		evaluation sensor is selected from the group consisiting of (i) a resistivity sensor,
3		and, (ii) a nuclear sensor.
4		
1	44.	(new) The apparatus of claim 20 wherein said local spatial characteristic of said
2		earth formation is selected from the group consisting of (i) a dip of an interface in
3		said earth formation, and, (ii) an image of a wall of said borehole.
4		
1	45.	(new) The apparatus of claim 1 wherein said alters a direction of drilling of said
2		BHA based at least in part on said estimated local spatial characteristic of said
3		earth formation.
4		
	46.	(new) The method of claim further comprising altering a direction of drilling of
		said BHA based at least in part on said estimated local spatial characteristic of

REMARKS

414-29494USCP

said earth formation.