IFPE

ELETRONICA BÁSICA 1

PROFESSOR: PEREIRA

AMPLIFICADORES

LIVRO(s): BOYLESTAD. **DISPOSITIVOS ELETRÔNICOS**. www.prenhall.com/boylestad_br

(Boylestad. Introdução à Análise de Circuitos www.prenhall.com/boylestad_br)

AMPLIFICADOR DIFERENCIAL

CONFIGURAÇÕES POSSÍVEIS

- 1. Terminação simples: uma entrada aterrada e a outra com sinal aplicado
- 2. Terminação dupla: dois sinais de entrada de polarização opostas
- 3. Modo comum: mesmo sinal de entrada aplicado em ambas entradas

POLARIZAÇÃO CC

PRINCIPAIS CARACTERÍSTICAS

- a. Ganho muito elevado para sinais opostos aplicados (Ad)
- b. Ganho muito pequeno para entradas comuns (Ac)
- c. Rejeição em modo comum CMRR = Ad/Ac
- \square CMRR = 20log(Ad/Ac) dB

OPERAÇÃO CA DO CIRCUITO

OPERAÇÃO CA DO CIRCUITO

EXERCÍCIO: CALCULE Ie, Ic e Vc.

EXERCÍCIO: CALCULE Ie, Ic e Vc.

- \square Ie =(Vbe Vee)/RE =(- 0,7 (-9))/3k3
- \square Ie = 8,3/3k3 = 2,5 mA
- \square Ic = Ie/2 \approx Ie = 1,25 mA
- □ Vc = Vcc (Ic.Rc) = 9 1,25mA.3,9kΩ
- \square Vc = 9 4,87 = 4,13V

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL

CARACTERÍSTICAS DO AMP-OP

- Ganho muito alto
- Alta impedância de entrada
- Baixa impedância de saída
- Alta rejeição ao modo comum

EQUAÇÕES PRINCIPAIS

$$\square$$
 Vd = V1 - V2

$$\Box$$
 Vc = (V1 + V2)/2

$$\square$$
 Vo = AdVd + AcVc

CONFIGURAÇÃO DARLINGTON

AMPLIFICADOR DARLINGTON

AMPLIFICADOR DE POTÊNCIA

□ Nos circuitos amplificadores de pequenos sinais os fatores principais são a lineridade e o ganho. Nos de grande sinal interessa a transferência de potência e o casamento de impedância.

AMPLIFICADOR DE POTÊNCIA

- Classe A (amplifica 360 graus do sinal)
- Classe B (amplifica 180 graus do sinal)
- Classe AB (amplifica entre 180 e 360 graus do sinal)