Интегралы

Первообразная и неопределенный интеграл

1. С помощью линейности интеграла и таблицы основных интегралов при $x \in \mathbb{R}$ найдите первообразную функции

$$x^{3} + 2x^{2} + 3x + 4 + 5\sin x + 6 \cdot 7^{x} + \frac{8}{x^{2} + 9}$$

обращающуюся в 0 при
$$x=0$$
.
$$Omsem: \frac{x^4}{4} + \frac{2x^3}{3} + \frac{3x^2}{2} + 4x - 5\cos x + \frac{6\cdot 7^x}{\ln 7} + \frac{8}{3}\arctan\left(\frac{x}{3}\right) + 5 - \frac{6}{\ln 7}.$$

Решение. С помощью линейности и таблицы интегралов сразу находим первообразную $F(x) = \frac{x^4}{4} + \frac{2x^3}{3} + \frac{3x^2}{2} + 4x - 5\cos x + \frac{6\cdot 7^x}{\ln 7} + \frac{8}{3}\arctan\left(\frac{x}{3}\right)$. Для того чтобы сделать из нее ту, которая в нуле будет обращаться в ноль, нужно просто вычесть $F(0) = -5 + \frac{6}{\ln 7}$. Откуда и получим ответ.

2. Даны множества функций $A = \{x, 2x, 3x, x^2\}$ и $B = \{x+1, 2x+1, x^2\}$. Найдите множества A + B, 2A и 3B. В ответе приведите разделенные пробелами количества элементов в этих множествах.

Ответ: 10 4 3

Решение. Перечислим элементы получившихся множеств, исключив совпадающие:

$$A+B = \{x+x+1, 2x+x+1, 3x+x+1, x^2+x+1, x+2x+1, 2x+2x+1, 3x+2x+1, x^2+2x+1, x+x^2, 2x+x^2, 3x+x^2, x^2+x^2\} =$$

$$= \{2x+1, 3x+1, 4x+1, x^2+x+1, 5x+1, x^2+2x+1, x+x^2, 2x+x^2, 3x+x^2, 2x^2\},$$

$$2A = \{2x, 4x, 6x, 2x^2\},$$

$$3B = \{3x+3, 6x+3, 3x^2\}.$$

Действия с неопределенными интегралами

1. Сделав подходящую замену переменной, найдите интеграл $\int \frac{1}{x \ln x} dx$ при $x \in (1, +\infty)$. В ответе укажите ту первообразную, которая обращается в 0 в точке e.

Omeem: $\ln(\ln x)$

Pewenue. Сделаем замену $y = \ln x$, тогда dy = dx/x.

$$\int \frac{1}{x \ln x} dx = \int \frac{1}{y} dy = \ln y + C = \ln(\ln x) + C, C \in \mathbb{R}.$$

Из условия $0 = \ln(\ln e) + C$ получим C = 0.

2. Сделав подходящую замену переменной, найдите интеграл $\int \frac{\cos x}{\sqrt{\sin x}} dx$ при $x \in (0, \pi)$. В ответе укажите ту первообразную, которая обращается в 0 в точке $\pi/2$.

Omeem: $2\sqrt{\sin x} - 2$

Pewehue. Сделаем замену $y = \sin x$, тогда $dy = \cos x \, dx$.

$$\int \frac{\cos x}{\sqrt{\sin x}} dx = \int \frac{1}{\sqrt{y}} dy = 2\sqrt{y} + C = 2\sqrt{\sin x} + C, \quad C \in \mathbb{R}.$$

Из условия $0 = 2\sqrt{\sin(\pi/2)} + C$ получим C = -2.

3. С помощью линейности и подходящих замен переменных найдите интеграл $\int \left(\frac{x}{\sqrt{x^2+1}} + \frac{\cos(\ln x)}{x}\right) dx \ x \in (0,+\infty). \ B \ \text{ответе укажите ту первообразную, которая обращается в } \sqrt{2} \ \text{в точке 1.}$

Omsem: $\sqrt{x^2+1} + \sin(\ln x)$

Решение. Запишем интеграл суммы как сумму интегралов и сделаем замены переменных

$$y = x^2 + 1 \implies dy = 2x dx; \ z = \ln x \implies dz = \frac{dx}{x}.$$

Тогда

$$\int \left(\frac{x}{\sqrt{x^2 + 1}} + \frac{\cos(\ln x)}{x}\right) dx = \int \frac{x}{\sqrt{x^2 + 1}} dx + \int \frac{\cos(\ln x)}{x} dx = \int \frac{1}{2\sqrt{y}} dy + \int \cos z \, dz = \int \frac{1}{2\sqrt{y}} dx + \int \frac{1}$$

Из условия $\sqrt{2} = \sqrt{1^2 + 1} + \sin(\ln 1) + C$ получим C = 0.

4. С помощью формулы интегрирования по частям найдите интеграл $\int (\arcsin x + \arctan x) dx$. В ответе укажите ту первообразную, которая обращается в 0 в точке 0.

Omsem: $x \arcsin x + \sqrt{1 - x^2} + x \arctan (x^2 + 1)/2 - 1$

Pemenue. Применим формулу интегрирования по частям:

$$\int (x)' (\arcsin x + \arctan x) dx = x (\arcsin x + \arctan x) - \int x (\arcsin x + \arctan x)' dx =$$

$$= x (\arcsin x + \arctan x) - \int x \left(\frac{1}{\sqrt{1 - x^2}} + \frac{1}{1 + x^2}\right) dx.$$

Вычислим отдельно:

$$\int \frac{x}{\sqrt{1-x^2}} dx = -\int \frac{1}{2\sqrt{y}} dy = -\sqrt{y} + C = -\sqrt{1-x^2} + C, \quad C \in \mathbb{R},$$
$$\int \frac{x}{1+x^2} dx = \int \frac{1}{2z} dz = \frac{\ln z}{2} + C = \frac{\ln(1+x^2)}{2} + C, \quad C \in \mathbb{R}.$$

Следовательно,

$$\int \left(\arcsin x + \arctan x\right) dx = x \left(\arcsin x + \arctan x\right) + \sqrt{1 - x^2} - \frac{\ln(1 + x^2)}{2} + C, \quad C \in \mathbb{R}.$$

Из условия
$$0=0\cdot \left(\arcsin 0+ \arctan 0\right)+\sqrt{1-0^2}-\frac{\ln (1+0^2)}{2}+C$$
 получим $C=-1.$

5. С помощью формулы интегрирования по частям найдите интеграл $\int x^2 \arctan x \, dx$. В ответе укажите ту первообразную, которая обращается в 0 в точке 0. $Omsem: \frac{x^3}{3} \arctan x - \frac{x^2}{6} + \frac{1}{6} \ln(x^2 + 1)$

Решение

$$\int x^2 \arctan x \, dx = \int \left(\frac{x^3}{3}\right)' \arctan x \, dx = \frac{x^3}{3} \arctan x - \frac{1}{3} \int x^3 (\arctan x)' \, dx =$$

$$= \frac{x^3}{3} \arctan x - \frac{1}{3} \int \frac{x^3}{1+x^2} \, dx \stackrel{\text{Замена}}{=} \frac{x^3}{3} \arctan x - \frac{1}{3} \int \frac{y-1}{2y} \, dy =$$

$$= \frac{x^3}{3} \arctan x - \frac{1}{3} \int \left(\frac{1}{2} - \frac{1}{2y}\right) \, dy = \frac{x^3}{3} \arctan x - \frac{1}{3} \left(\frac{y}{2} - \frac{\ln y}{2}\right) + C =$$

$$= \frac{x^3}{3} \arctan x - \frac{x^2+1}{6} + \frac{\ln(x^2+1)}{6} + C, \quad C \in \mathbb{R}.$$

Из условия $0 = \frac{0^3}{3} \arctan 0 - \frac{0^2 + 1}{6} + \frac{\ln(0^2 + 1)}{6} + C$ получим C = 1/6.

Площади и определенный интеграл

1. С помощью определения вычислите интеграл $\int_{1}^{6} |x-3| \, dx$. Как обычно, ответ укажите в виде десятичной дроби.

Omeem: 6, 5

Решение. Построим график функции y = |x - 3| и заметим, что искомая величина равна сумме площадей двух прямоугольных треугольников (с вершинами в точках (1, 2), (1, 0), (3, 0) и (3, 0), (6, 0), (6, 3), соответственно). Значит,

$$\int_{1}^{6} |x - 3| \, dx = 2 + 4, 5 = 6, 5.$$

2. Вычислите интеграл $\int\limits_0^a \sqrt{1-x^2}\,dx$ при $0\leqslant a\leqslant 1$ с помощью определения и сведений из элементарной геометрии.

Omeem:
$$\frac{1}{2}a\sqrt{1-a^2} + \frac{1}{2}\arcsin a$$

Решение.

График подынтегральной функции является четвертью окружности с центром в точке (0,0) и радиусом 1. Искомая величина равна площади заштрихованной области, т.е. суммы площади сектора AOB и прямо-угольного треугольника AOH с гипотенузой 1 и катетом a. Площадь треугольника равна $\frac{1}{2}a\sqrt{1-a^2}$, поскольку его второй катет равен $\sqrt{1-a^2}$. Площадь сектора равна половине его угла, т. е. $\frac{1}{2}\left(\frac{\pi}{2}-\arccos a\right)$, поскольку $\cos \angle AOH=a$. Таким образом,

$$\int_{0}^{a} \sqrt{1 - x^{2}} \, dx = \frac{1}{2} \left(\frac{\pi}{2} - \arccos a \right) + \frac{1}{2} a \sqrt{1 - a^{2}}.$$

3. При каком $c \in (a, b)$ выполняется равенство $\int_{a}^{b} e^{3x} dx = e^{3c}(b-a)$?

Omeem:
$$\frac{1}{3} \ln \left(\frac{\exp(3b) - \exp(3a)}{3(b-a)} \right)$$

Решение. Вычислим интеграл

$$\int_{a}^{b} e^{3x} \, dx = \frac{e^{3b} - e^{3a}}{3}.$$

Тогда

$$\frac{e^{3b}-e^{3a}}{3}=e^{3c}(b-a) \ \Rightarrow \ e^{3c}=\frac{e^{3b}-e^{3a}}{3(b-a)} \ \Rightarrow \ c=\frac{1}{3}\ln\frac{e^{3b}-e^{3a}}{3(b-a)}.$$

4. Расставьте приведенные числа в порядке возрастания.

$$\int_{0}^{1} \frac{x \sin x}{2+x} \, dx < \int_{0}^{1} \frac{x^{2}}{1+2x} \, dx < \int_{0}^{1} \frac{x}{1+2x} \, dx < \int_{0}^{1} \frac{x}{\sqrt[3]{1+x}} \, dx < \frac{1}{2} < \int_{0}^{1} \frac{e^{x^{100}}}{2} \, dx$$

Решение. Представим число 1/2 в виде интеграла:

$$\frac{1}{2} = \int\limits_{0}^{1} x \, dx.$$

По свойству монотонности интеграла нам достаточно сравнить сами подынтегральные функции на [0,1]:

$$\frac{x\sin x}{2+x} \leqslant \frac{x^2}{1+2x} \leqslant \frac{x}{1+2x} \leqslant \frac{x}{\sqrt[3]{1+x}} \leqslant x.$$

Первое неравенство верно, так как на указанном промежутке $\sin x \leqslant x$ и $1+x \geqslant 2x$. Второе неравенство верно, так как на указанном промежутке $x^2 \leqslant x$. Третье неравенство верно, поскольку по неравенству Бернулли (ну или в данном случае можно обойтись простым раскрытием скобок) $(1+2x)^3 \geqslant 1+3\cdot 2x \geqslant 1+x$. Четвертое же неравенство очевидно. Причем все функции различны, поэтому при интегрировании неравенства преврятятся в строгие.

Для сравнения с 1/2 оставшегося интегрла воспользуемся другим представлением:

$$\frac{1}{2} = \int_{0}^{1} \frac{1}{2} dx.$$

Но $\frac{1}{2} \leqslant \frac{e^{x^{100}}}{2}$, поэтому по свойству монотонности интеграла

$$\frac{1}{2} < \int_{0}^{1} \frac{e^{x^{100}}}{2} \, dx.$$

Теорема Барроу и формула Ньютона-Лейбница

1. Найдите производную функции $f(x) = \int_{1}^{x^2} \frac{\sin t}{t} dt$ при x > 1.

 $Omeem: 2\sin(x^2)/x$

Peшение. Функция f является композицией двух функций. Внешняя функция это интеграл с переменным верхним пределом

$$F(x) = \int_{1}^{x} \frac{\sin t}{t} dt,$$

а внутренняя — x^2 . Следовательно, по теореме Барроу

$$\left(\int_{1}^{x^{2}} \frac{\sin t}{t} dt\right)' = (F(x^{2}))' = F'(x^{2}) \cdot 2x = \frac{\sin x^{2}}{x^{2}} \cdot 2x = \frac{2\sin x^{2}}{x}.$$

2. Найдите точки экстремума функции $F(x) = \int\limits_0^x \frac{\cos(\pi t)}{t^2} \, dt$ при $x \in (0,5)$ (и определите, какие из них максимумы, а какие — минимумы).

Ответ: Точки минимума 1,5 и 3,5; точки максимума 0,5,2,5 и 4,5.

Peшение. Найдем нули производной функции F и исследуем ее знаки на интервале (0,5):

$$F'(x) = \frac{\cos(\pi x)}{x^2} = 0 \implies x = \frac{1}{2} + k, \ k \in \mathbb{Z}.$$

Производная неотрицательна на (0;0,5], [1,5;2,5], [3,5;4,5], следовательно, функция возрастает на каждом из этих промежутков. Производная неположительна на [0,5;1,5], [2,5;3,5], [4,5;5), следовательно, функция убывает на каждом из этих промежутков. Таким образом, минимумы функции в точках 1,5 и 3,5, а максимумы в точках 0,5;2,5 и 4,5.

3. Найдите предел

$$\lim_{x \to +\infty} \frac{\left(\int_{0}^{x} (t^5 + 1)^{3/5} dt\right)^2}{\int_{0}^{x} (t^5 + 1)^{7/5} dt}.$$

Omeem: 0,5

Peшение. Воспользуемся правилом Лопиталя дважды, чтобы избавиться от неопределенности вида ∞/∞ .

$$\lim_{x \to +\infty} \frac{\left(\int_{0}^{x} (t^{5}+1)^{3/5} dt\right)^{2}}{\int_{0}^{x} (t^{5}+1)^{7/5} dt} = \lim_{x \to +\infty} \frac{\left(\left(\int_{0}^{x} (t^{5}+1)^{3/5} dt\right)^{2}\right)'}{\left(\int_{0}^{x} (t^{5}+1)^{7/5} dt\right)'} = \lim_{x \to +\infty} \frac{2\int_{0}^{x} (t^{5}+1)^{3/5} dt \cdot (x^{5}+1)^{3/5}}{(x^{5}+1)^{7/5}} = \lim_{x \to +\infty} \frac{2\left(\int_{0}^{x} (t^{5}+1)^{3/5} dt\right)'}{(x^{5}+1)^{4/5}} = \lim_{x \to +\infty} \frac{2\left(\int_{0}^{x} (t^{5}+1)^{3/5} dt\right)'}{((x^{5}+1)^{4/5})'} = \lim_{x \to +\infty} \frac{2(x^{5}+1)^{3/5}}{4x^{4}(x^{5}+1)^{-1/5}} = \frac{1}{2} \lim_{x \to +\infty} \frac{(x^{5}+1)^{4/5}}{x^{4}} = \lim_{x \to +\infty} \left(1 + \frac{1}{x^{5}}\right)^{4/5} = \frac{1}{2}.$$

4. С помощью формулы Ньютона–Лейбница вычислите интеграл $\int_{2}^{4} \frac{e^{x}}{e^{x}-1} dx$.

Peшение. Сначала посчитаем неопределенный интеграл $\int \frac{e^x}{e^x-1} \, dx$. Для этого сделаем замену переменных $y=e^x$, тогда $dy=e^x \, dx$ и

$$\int \frac{e^x}{e^x - 1} dx = \int \frac{1}{y - 1} dy = \ln|y - 1| = \ln(e^x - 1).$$

Следоватлеьно,

$$\int_{2}^{4} \frac{e^{x}}{e^{x} - 1} dx = \ln(e^{x} - 1) \Big|_{2}^{4} = \ln(e^{4} - 1) - \ln(e^{2} - 1) = \ln\left(\frac{e^{4} - 1}{e^{2} - 1}\right) = \ln(e^{2} + 1).$$

Пользуясь формулой замены переменной в определенном интеграле можно было проделать те же действия еще быстрее: если сделать замену переменных $y=e^x$, то $dy=e^x\,dx$, а границы интегрирования $y\in[e^2,e^4]$. Тогда

$$\int_{2}^{4} \frac{e^{x}}{e^{x} - 1} dx = \int_{e^{2}}^{e^{4}} \frac{1}{y - 1} dy = \ln(y - 1) \Big|_{e^{2}}^{e^{4}} = \ln\left(\frac{e^{4} - 1}{e^{2} - 1}\right) = \ln(e^{2} + 1).$$

5. Вычислите интеграл $\int_{0}^{20\pi} \sqrt{1-\cos 2x} \, dx.$

Peшение. Заметим, что функция $\sqrt{1-\cos 2x}=|\sin x|$ периодическая с периодом $\pi.$ Тогда

$$\int_{0}^{20\pi} \sqrt{1 - \cos 2x} \, dx = \int_{0}^{20\pi} |\sin x| \, dx = 20 \cdot \int_{0}^{\pi} \sin x \, dx = 20 \cdot (-\cos x) \Big|_{0}^{\pi} = 40.$$

6. Касательная к графику дважды дифференцируемой функции $f:[0,3] \to \mathbb{R}$ в точке с абсциссой 0 составляет с осью абсцисс (с положительным направлением) угол $\pi/6$, а в точке с абсциссой 3 — угол $\pi/4$. Вычислите $\int\limits_0^3 f''(x)\,dx$.

Решение. Поскольку угловой коэффициент касательной в точке a равен f'(a), из имеем $f'(0)=\operatorname{tg}\frac{\pi}{6}=1/\sqrt{3}$ и $f'(3)=\operatorname{tg}\frac{\pi}{4}=1$. Тогда

$$\int_{0}^{3} f''(x) dx = (f') \Big|_{0}^{3} = f'(3) - f'(0) = 1 - \frac{1}{\sqrt{3}}.$$

7. Докажите равенство

$$\int_{0}^{1} \frac{\operatorname{arctg} x}{x} \, dx = \frac{1}{2} \int_{0}^{\pi/2} \frac{x}{\sin x} \, dx.$$

Указание. Сделайте подходящую замену переменной.

Решение. Сделаем в левом интеграле замену $y=2\arctan x$. Тогда $x=\operatorname{tg}(y/2)$ и $dx=(\operatorname{tg}(y/2))'\,dy=\frac{1}{2\cos^2(y/2)}\,dy$. А кроме того y меняется от $2\arctan g=0$ до $2\arctan g=\pi/2$. Следовательно,

$$\int_{0}^{1} \frac{\arctan x}{x} \, dx = \int_{0}^{\pi/2} \frac{y}{4\cos^{2}(y/2) \cdot \lg(y/2)} \, dy = \int_{0}^{\pi/2} \frac{y}{4\cos(y/2)\sin(y/2)} \, dy = \int_{0}^{\pi/2} \frac{y}{2\sin y} \, dy.$$

8. Функция $f:[0,1] \to \mathbb{R}$ дифференцируема, а ее производная непрерывна. Докажите, что существует такое $\theta \in (0,1),$ что

$$\int_{0}^{1} f(x) \, dx = f(0) + \frac{f'(\theta)}{2}.$$

Указание. Какое утверждение из прошлого модуля напоминает нужное равенство? А если еще и воспользоваться теоремой Барроу?

Решение. Рассмотрим интеграл с переменным верхним пределом $F(y) = \int\limits_0^y f(x)\,dx$. Тогда F'(y) = f(y) и, значит, функция F(y) будет дважды дифференцируемой. Напишем для нее формулу Тейлора при y=0 с остатком в форме Лагранжа: существует такое $\theta_y\in(0,1)$, что

$$F(y) = F(0) + F'(0)y + F''(\theta_y) \cdot \frac{y^2}{2} = 0 + f(0) + f(\theta_y) \cdot \frac{y^2}{2}.$$

Осталось лишь подставить в получившуюся формулу y = 1.

Интегральные суммы

1. Отметьте функции, являющиеся равномерно непрерывными.

Решение.

 \Box f(x) = 1/x на интервале (0,1)

Возьмем, например, $x=\frac{1}{n}$ и $y=\frac{1}{n+1}$. Тогда $|x-y|=\frac{1}{n(n+1)}$, но |f(x)-f(y)|=1, что противоречит условию равномерной непрерывности для $\varepsilon=1$.

 $\Box f(x) = \ln x$ на интервале (0,1)

Возьмем, например, $x=\frac{1}{n}$ и $y=\frac{1}{2n}$. Тогда $|x-y|=\frac{1}{2n}$, но $|f(x)-f(y)|=\ln 2$, что противоречит условию равномерной непрерывности для $\varepsilon=\ln 2$.

Поскольку $\sin^2 x = \frac{1}{2}(1 - \cos 2x),$

$$|f(x) - f(y)| = \frac{|\cos 2y - \cos 2x|}{2} \le \frac{|2y - 2y|}{2} = |x - y|,$$

поэтому в определении равномерной непрерывности можно взять $\delta = \varepsilon$.

 $f(x) = 1/\sqrt{x}$ на луче $(1, +\infty)$

Заметим, что

$$\left| \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} \right| = \frac{|\sqrt{y} - \sqrt{x}|}{\sqrt{x}\sqrt{y}} = \frac{|x - y|}{\sqrt{x}\sqrt{y}(\sqrt{x} + \sqrt{y})} \leqslant \frac{|x - y|}{2}.$$

Поэтому в определении равномерной непрерывности можно взять $\delta=2\varepsilon$.

 $f(x) = \operatorname{ctg} x$ на интервале $(0, \pi/2)$

Заметим, что $\cot x - \cot y = \frac{\sin(x-y)}{\sin x \sin y}$, поэтому, если $x = \frac{1}{n}$ и $y = \frac{1}{2n}$, то $\cot x - \cot y = \frac{1}{\sin(1/n)} \sim n$. С другой стороны $x - y = \frac{1}{2n}$, что противоречит условию равномерной непрерывности для $\varepsilon = 1$.

 \mathbf{Z} $f(x) = x + \sin x$ на вещественной прямой

Ясно, что $|f(x) - f(y)| \le |x - y| + |\sin x - \sin y| \le 2|x - y|$, поэтому в определении равномерной непрерывности можно взять $\delta = \varepsilon/2$.

 \Box $f(x)=\sin\frac{1}{x}$ на интервале (0,1) Возьмем, например, $x=\frac{1}{2\pi n}$ и $y=\frac{1}{\pi(2n+1/2)}$. Тогда f(x)=0 и f(y)=1, а значит, f(y)-f(x)=1. С другой стороны $x-y=\frac{1}{\pi(8n+2)}$, что противоречит условию равномерной непрерывности для $\varepsilon = 1$.

Возьмем, например, x = n + 1/n и y = n. Тогда $f(x) - f(y) = 2^n (2^{1/n} - 1) \sim 2^n/n \to +\infty$. С другой стороны $x-y=\frac{1}{n}$, что противоречит условию равномерной непрерывности для

- **2.** Отметьте разбиения отрезка [0,1], ранг которых стремится к нулю при $n \to \infty$.
- $x_k = k/n$, где $k = 0, 1, 2, \dots, n$

Верно, так как $|x_{k+1} - x_k| = 1/n$ при всех k.

otag $x_k=2^{k/n}-1$, где $k=0,1,2,\ldots,n$ Верно, так как $x_{k+1}-x_k=2^{(k+1)/n}-2^{k/n}=2^{k/n}(2^{1/n}-1)\leqslant 2\cdot(2^{1/n}-1)\to 0$.

 $\square x_0 = 0, x_k = \frac{1}{n+1-k}, \text{ где } k = 1, 2, \dots, n$

Неверно, так как $\max_{1 \le k \le n} \left| \frac{1}{n+1-k} - \frac{1}{n+1-(k-1)} \right| = \max_{1 \le k \le n} \left| \frac{1}{(n+1-k)(n-k+2)} \right| = \frac{1}{2}$ при k=n.

 \mathbf{Z} $x_k = k/2^n$, где $k = 0, 1, 2, \dots, 2^n$

Верно, так как $|x_{k+1} - x_k| = 1/2^n$ при всех k.

 \square $x_0 = 0, x_k = 2^{k-n}$, где $k = 1, 2, \dots, n$ Неверно, так как $\max_{1 \le k \le n} \left| 2^{k-n} - 2^{k-1-n} \right| = \max_{1 \le k \le n} \left| 2^{k-n} (1 - \frac{1}{2}) \right| = \frac{1}{2}$ при k = n.

3. Для функции f(x) = x напишите интегральные суммы, соответствующие разбиениям

•
$$x_0=0$$
 и $\xi_k=x_k=rac{k}{n}$ при $k=1,2,\ldots,n$

•
$$x_0 = 0$$
 и $\xi_k = x_k = 2^{k-n}$ при $k = 1, 2, \dots, n$

Найдите пределы получившихся интегральных сумм при $n \to \infty$. Чем объясняется получившийся результат?

Ответ: 1/2 и 2/3.

Решение. Рассмотрим первое разбиение.

$$S_n = \sum_{k=1}^n \left(\frac{k}{n} - \frac{k-1}{n} \right) \frac{k}{n} = \frac{1}{n} \sum_{k=1}^n \frac{k}{n} = \frac{1+2+\ldots+n}{n^2} = \frac{\frac{1+n}{2} \cdot n}{n^2} = \frac{n^2+n}{2n^2}.$$

Тогда $\lim_{n \to \infty} S_n = \frac{1}{2}$. Рассмотрим второе разбиение.

$$S_n = \sum_{k=1}^n \left(2^{k-n} - 2^{k-1-n} \right) 2^{k-n} = \frac{1}{2} \sum_{k=1}^n \left(2 - 1 \right) 2^{2(k-n)} = \frac{1}{2} \sum_{k=1}^n 4^{k-n} = \frac{1}{2 \cdot 4^n} \sum_{k=1}^n 4^k = \frac{1}{2 \cdot 4^n} \cdot \frac{4 \cdot (4^n - 1)}{4 - 1} = 2 \cdot \frac{1 - \frac{1}{4^n}}{3}.$$

Тогда $\lim_{n\to\infty} S_n=\frac{2}{3}.$ Пределы получаются разными, поскольку ранг второго разбиения не стремится к нулю.

4. Запишите выражение $S_n = n \sum_{k=1}^n \frac{1}{(n+3k)^2}$ в виде интегральной суммы и найдите предел $\lim_{n \to \infty} S_n.$ Omsem: 1/4

Решение. Заметим, что

$$S_n = n \sum_{k=1}^n \frac{1}{(n+3k)^2} = n \sum_{k=1}^n \frac{1}{n^2(1+3\cdot\frac{k}{n})^2} = \frac{1}{n} \sum_{k=1}^n \frac{1}{(1+3\cdot\frac{k}{n})^2}.$$

Но это интегральная сумма для функции $\frac{1}{(1+3x)^2}$ с $\xi_k=x_k=\frac{k}{n}$. Кроме того, $0\leqslant\frac{k}{n}\leqslant 1$. Тогда

$$\lim_{n \to \infty} S_n = \int_0^1 \frac{1}{(1+3x)^2} \, dx = -\frac{1}{3(1+3x)} \Big|_0^1 = -\frac{1}{12} + \frac{1}{3} = \frac{1}{4}.$$

Связь между суммами и интегралами

1. С помощью интегрального признака сходимости установите сходимость или расходимость указанных рядов. Отметьте сходящиеся ряды.

Монотонное убывание очевидно, $\Phi(x) = \frac{1}{\ln 2} - \frac{1}{\ln x} \to \frac{1}{\ln 2}$.

 $\square \sum_{n=5}^{\infty} \frac{1}{n \ln n \ln(\ln n)}$ Монотонное убывание очевидно, $\Phi(x) = \frac{1}{\ln \ln 5} - \frac{1}{\ln \ln x} \to \frac{1}{\ln \ln 5}.$

Функция монотонно убывает, поскольку $\left(\frac{\ln x}{x}\right)' = \frac{1 - \ln x}{x^2} < 0$, но $\Phi(x) = \frac{1}{2} \ln^2 x \to +\infty$.

Функция монотонно убывает, поскольку $\left(\frac{\ln x}{x\sqrt{x}}\right)'=\frac{2-3\ln x}{2x^2\sqrt{x}}<0$ при $x\geqslant 3.$ Кроме того $\Phi(x) = 4 - \frac{2\ln x + 4}{\sqrt{x}} \to 4.$

Функция монотонно убывает, поскольку $(x^3e^{-x})'=(3-x)x^2e^{-x}<0$ при $x\geqslant 3$. Кроме того $\Phi(x)=38e^{-2}-e^{-x}(6-6x-3x^2-x^3)\to 38e^{-2}$.

- **2.** Сравнив приведенные ряды с рядом вида $\sum_{n=1}^{\infty} \frac{c}{n^p}$ при подходящем p, установите какие из рядов сходятся, а какие расходятся. Отметьте сходящиеся ряды.
- $\square \sum_{n=1}^{\infty} \frac{1}{\sqrt{(n+1)(2n+1)}}$ $\frac{1}{\sqrt{(n+1)(2n+1)}} \geqslant \frac{1/\sqrt{2}}{n+1}.$
- $\square \sum_{n=1}^{\infty} \frac{3n-1}{(2n+1)^2} \frac{3n-1}{(2n+1)^2} \ge \frac{1/2}{n+1}$
- \mathbf{Z} $\sum_{n=1}^{\infty} \sqrt[3]{n} \sin^2\left(\frac{1}{2n-1}\right)$ $\sqrt[3]{n}\sin^2\left(\frac{1}{2n-1}\right) \leqslant \sqrt[3]{n}\left(\frac{1}{2n-1}\right)^2 \leqslant \frac{\sqrt[3]{n}}{n^2} = \frac{1}{n^{5/3}}.$
- $1 - \cos\left(\frac{\pi}{n}\right) = 2\sin^2\left(\frac{\pi}{2n}\right) \leqslant 2\left(\frac{\pi}{2n}\right)^2 = \frac{\pi^2/2}{n^2}.$
- $\frac{\arctan n}{2n^2 - 1} \leqslant \frac{\pi/2}{n^2}.$

$$\square \sum_{n=1}^{\infty} \frac{\ln n}{3n-1}$$
$$\frac{\ln n}{3n-1} \geqslant \frac{1}{2n} \text{ при } n \geqslant 3.$$
$$\square \sum_{n=1}^{\infty} \left(e^{1/n} - 1\right)$$
$$e^{1/n} - 1 \geqslant \frac{1}{n}.$$

3. Докажите, что при $n \to \infty$

$$1 \cdot \ln 1 + 2 \cdot \ln 2 + 3 \cdot \ln 3 + \ldots + n \cdot \ln n \sim \frac{n^2 \ln n}{2}$$
.

Указание. Замените сумму на интеграл, оцените разность между суммой и интегралом, вычислите получившийся интеграл.

Peшение. Пусть $f(x) = x \ln x$. Тогда по доказанному в лекциях утверждению

$$\left| \int_{1}^{n} x \ln x \, dx - \sum_{k=1}^{n} k \ln k \right| = \left| \int_{1}^{n} f(x) \, dx - \sum_{k=1}^{n} f(k) \right| \le \max\{f(1), f(n)\} = n \ln n.$$

Посчитаем интеграл

$$\int_{1}^{n} x \ln x \, dx = \frac{1}{2} \int_{1}^{n} (x^{2})' \ln x \, dx = \frac{1}{2} \left(x^{2} \ln x \Big|_{1}^{n} - \int_{1}^{n} x^{2} (\ln x)' \, dx \right) = \frac{n^{2} \ln n}{2} - \frac{1}{2} \int_{1}^{n} x \, dx = \frac{n^{2} \ln n}{2} - \frac{x^{2}}{4} \Big|_{1}^{n} = \frac{n^{2} \ln n}{2} - \frac{n^{2} - 1}{4}.$$

Следовательно,

$$\frac{n^2 \ln n}{2} - \frac{n^2 - 1}{4} - n \ln n \leqslant \sum_{k=1}^n k \ln k \leqslant \frac{n^2 \ln n}{2} - \frac{n^2 - 1}{4} + n \ln n.$$

Поделим неравенство на $n^2 \ln n$ и получим

$$\frac{1}{2} - \frac{1}{\ln n} - \frac{1}{4n^2 \ln n} - \frac{1}{n} \leqslant \frac{1}{n^2 \ln n} \sum_{k=1}^{n} k \ln k \leqslant \frac{1}{2} - \frac{1}{\ln n} - \frac{1}{4n^2 \ln n} + \frac{1}{n}.$$

Но по теореме о двух милиционерах нижняя и верхняя оценки стремятся к $\frac{1}{2}$, поэтому к $\frac{1}{2}$ стремится и $\frac{1}{n^2 \ln n} \sum_{k=1}^n k \ln k$.

3. Отметьте верные утверждения.

 \blacksquare Для непрерывных функций $f,g:[1,3]\to\mathbb{R}$ имеет место равенство $\int\limits_1^3 \left(f(x)-g(x)\right)dx=\int\limits_1^3 f(x)\,dx-\int\limits_1^3 g(x)\,dx.$

Верно, поскольку интеграл линеен.

Для непрерывных функций $f,g:[2,4]\to\mathbb{R}$ имеет место равенство $\int\limits_2^4 f(x)g(x)\,dx=\int\limits_2^4 f(x)\,dx\int\limits_2^4 g(x)\,dx.$

Неверно. Например, при f(x)=g(x)=x левая часть равна $x^3/3\big|_2^4=18\frac{2}{3}$, а правая часть равна $\left(x^2/2\big|_2^4\right)^2=36$.

	Для непрерывной функций $f:[-1,1] \to \mathbb{R}$ имеет место равенство $\int\limits_{-1}^1 x f(x) dx =$
$x\int_{-\infty}^{\infty}$	$\int_{1}^{1} f(x) dx$.
	Неверно. Слева написано число, справа функция.
✓	Для непрерывной функций $f:[0,3] \to \mathbb{R}$ имеет место равенство $\int\limits_0^3 4f(x)dx = 4\int\limits_0^3 f(x)dx.$
	Верно, поскольку интеграл линеен.
Z	Если функция $f:[2,5] \to \mathbb{R}$ дифференцируема и ее производная непрерывна, то
$\int_{2}^{5} f$	f'(x) dx = f(5) - f(2).
	Верно по формуле Ньютона-Лейбница.
/	Любая непрерывная функция имеют первообразную. Верно.
	$\int_{-2}^{3} \frac{dx}{x^3} = \frac{5}{72}.$
нег	Неверно. Формула Ньютона—Лейбница неприменима, поскольку функция не является прерывной. Ну и вообще интеграл в левой части неопределен.
	Если функция $f:[0,1] \to \mathbb{R}$ непрерывна и $\int\limits_0^1 f(x)dx=0$, то $f(x)=0$ при всех $x\in[0,1]$.
	Неверно. Например, для $f(x) = x - \frac{1}{2}$.
✓	Если функция $f:[3,4] \to \mathbb{R}$ непрерывна, то $\int\limits_3^4 f(x)dx = f(c)$ для некоторой точки $c\in$
[3,	4]. Верно по интегральной теореме о среднем.
	Если функция $f:[2,5] \to \mathbb{R}$ непрерывна, то $\left(\int\limits_{2}^{5}f(x)dx\right)'=f(x).$
	Неверно. Слева написана производная от константы, т.е. ноль, а справа произвольная

функция.