Speakers apply morphological dependencies in the inflection of novel forms

Guy Tabachnick

New York University

University of Connecticut LingLunch, April 18, 2023

Introduction

Theories of morphology must account for stems inflecting in *different*, often *arbitrary* ways

- irregulars: English plural oxen, sheep, syllabi
- inflection classes: Russian nouns in class I-IV

Introduction

Theories of morphology must account for stems inflecting in *different*, often *arbitrary* ways

- irregulars: English plural oxen, sheep, syllabi
- inflection classes: Russian nouns in class I-IV

Arbitrary inflection of lexical items must be somehow *grammatically marked*

Hungarian wug test explores one aspect of arbitrary inflection: correlations *between* inflected forms of a word (e.g. Ackerman et al., 2009; Ackerman and Malouf, 2013)

Hungarian wug test explores one aspect of arbitrary inflection: correlations *between* inflected forms of a word (e.g. Ackerman et al., 2009; Ackerman and Malouf, 2013)

• If a Hungarian noun has -pk in the plural, it is likely to have -p in the possessive

Hungarian wug test explores one aspect of arbitrary inflection: correlations *between* inflected forms of a word (e.g. Ackerman et al., 2009; Ackerman and Malouf, 2013)

- If a Hungarian noun has -pk in the plural, it is likely to have -p in the possessive
- Participants observed this gradient lexical tendency in the selection of novel forms

Hungarian wug test explores one aspect of arbitrary inflection: correlations *between* inflected forms of a word (e.g. Ackerman et al., 2009; Ackerman and Malouf, 2013)

- If a Hungarian noun has -**pk** in the plural, it is likely to have -**p** in the possessive
- Participants observed this gradient lexical tendency in the selection of novel forms

Gradient patterns and productivity

Productive extension of gradient lexical patterns

• Previous work: speakers extend phonological generalizations in wug tests, for example:

Gradient patterns and productivity

Productive extension of gradient lexical patterns

- Previous work: speakers extend phonological generalizations in wug tests, for example:
 - Hayes and Londe (2006); Hayes et al. (2009): certain vowels in Hungarian more likely to trigger back vs. front harmony for ambiguous words
 - Gouskova et al. (2015): Russian masculine nouns ending in consonant clusters form diminutives with -ik, not -ok or t^βik

Gradient patterns and productivity

Productive extension of gradient lexical patterns

- Previous work: speakers extend phonological generalizations in wug tests, for example:
 - Hayes and Londe (2006); Hayes et al. (2009): certain vowels in Hungarian more likely to trigger back vs. front harmony for ambiguous words
 - Gouskova et al. (2015): Russian masculine nouns ending in consonant clusters form diminutives with -ik, not -ok or tfik
- Correlations between inflected forms can be handled using the same grammatical tools

Inflectional structure in morphological theory

Generative morphology has focused on *syncretism* and *inflection* classes

Inflectional structure in morphological theory

Generative morphology has focused on *syncretism* and *inflection* classes

- Syncretism: identity between realizations of different morphosyntactic features (e.g. Müller, 2004; Kramer, 2016; Caha, 2021)
 - Grammar induces identity, e.g. through shared structure, underspecification, impoverishment
 - Ex: Russian agreement doesn't show gender distinctions in the plural \rightarrow rule deletes gender features in the context of PL

Inflectional structure in morphological theory

Generative morphology has focused on *syncretism* and *inflection* classes

- Syncretism: identity between realizations of different morphosyntactic features (e.g. Müller, 2004; Kramer, 2016; Caha, 2021)
 - Grammar induces identity, e.g. through shared structure, underspecification, impoverishment
 - \bullet Ex: Russian agreement doesn't show gender distinctions in the plural \to rule deletes gender features in the context of PL
- Inflection class: lexical items "whose members each select for the same set of inflectional realizations" (Aronoff, 1994: 64)
 - Often assumed as discrete units of analysis, e.g. Russian "class I" (Corbett and Fraser, 1993; Müller, 2004; Caha, 2021)
 - These "macroclasses" often hide overlaps and complexities in inflectional patterns (Cameron-Faulkner and Carstairs-McCarthy, 2000; Finkel and Stump, 2007; Ackerman et al., 2009; Ackerman and Malouf, 2013; Bonami and Beniamine, 2016; Parker and Sims, 2020)

Main takeaway

Correlations between inflected forms exist outside of syncretism and inflectional macroclasses, and speakers apply them productively

Main takeaway

Correlations between inflected forms exist outside of syncretism and inflectional macroclasses, and speakers apply them productively

- Not a new insight (see Wurzel, 1989), but rarely discussed in generative work (rare exception: Halle and Marantz (2008))
- Well-established in lexicon (e.g. Ackerman et al., 2009; Ackerman and Malouf, 2013), but rarely if ever tested experimentally (rare exception: Bybee and Moder (1983))
- Theoretical work done by "inflection classes" can be shifted from hard-coded grammar to gradient pattern generalization

Main takeaway

Correlations between inflected forms exist outside of syncretism and inflectional macroclasses, and speakers apply them productively

- Not a new insight (see Wurzel, 1989), but rarely discussed in generative work (rare exception: Halle and Marantz (2008))
- Well-established in lexicon (e.g. Ackerman et al., 2009; Ackerman and Malouf, 2013), but rarely if ever tested experimentally (rare exception: Bybee and Moder (1983))
- Theoretical work done by "inflection classes" can be shifted from hard-coded grammar to gradient pattern generalization

These patterns can be learned as phonotactics

Outline

Background: morphological features and inflection class

- 2 Experiment: Hungarian possessive and plural
- 3 Discussion

Morphological arbitrariness

- Arbitrary inflection of exceptional lexical items must be grammatically marked
- One common approach: *morphological features* (e.g. Lieber, 1980; Corbett and Baerman, 2006) that are attached as *diacritics* to lexical entries

Morphological arbitrariness

- Arbitrary inflection of exceptional lexical items must be grammatically marked
- One common approach: morphological features (e.g. Lieber, 1980; Corbett and Baerman, 2006) that are attached as diacritics to lexical entries
- Common subtype: *inflection class features*, which group together lexical items "whose members each select for the same set of inflectional realizations" (Aronoff, 1994: 64)

Inflection class features: the case of Russian

Russian feminine nouns: class II and III (Corbett and Baerman, 2006)

class	II	III
example	'newspaper'	'bone'
nominative	gazet-a	kost ^j
dative	gazet-e	kost ^j -i
instrumental	gazet-oj	kost ^j -ju

Inflection class features: the case of Russian

Russian feminine nouns: class II and III (Corbett and Baerman, 2006)

class	II	III
example	'newspaper'	'bone'
nominative	gazet- <mark>a</mark>	kost ^j -Ø
dative	gazet-e	kost ^j -i
instrumental	gazet- <mark>oj</mark>	kost ^j -ju

Feature-based analysis of Russian

The features II and III are each referenced in *multiple* (DM-style) vocabulary insertion rules (see Halle and Marantz, 1993; Müller, 2004; Embick and Marantz, 2008)

(I)Vocabulary insertion rules for Russian cases

```
a. NOM \leftrightarrow a / II ___ d. NOM \leftrightarrow 0 / III
```

b. dat
$$\leftrightarrow$$
 e / II ___ e. dat \leftrightarrow i / III ___ c. ins \leftrightarrow 0j / II ___ f. ins \leftrightarrow ju / III ___

c. INS
$$\leftrightarrow$$
 oj / II ___ f. INS \leftrightarrow ju / III ___

Feature-based analysis of Russian

The features II and III are each referenced in *multiple* (DM-style) *vocabulary insertion rules* (see Halle and Marantz, 1993; Müller, 2004; Embick and Marantz, 2008)

(1) Vocabulary insertion rules for Russian cases

```
a. Nom \leftrightarrow a / II ___ d. Nom \leftrightarrow Ø / III ___
```

b. dat
$$\leftrightarrow$$
 e / II ___ e. dat \leftrightarrow i / III ___

c. Ins
$$\leftrightarrow$$
 oj / II ___ f. Ins \leftrightarrow ju / III ___

Feature-based analysis of Russian

The features II and III are each referenced in *multiple* (DM-style) *vocabulary insertion rules* (see Halle and Marantz, 1993; Müller, 2004; Embick and Marantz, 2008)

(1) Vocabulary insertion rules for Russian cases

```
a. NOM \leftrightarrow a / II __  d. NOM \leftrightarrow \emptyset / III ___
```

b. dat
$$\leftrightarrow$$
 e / II ___ e. dat \leftrightarrow i / III ___

```
c. Ins \leftrightarrow oj / II ___ f. Ins \leftrightarrow ju / III ___
```

- (2) Lexical entries for Russian nouns
 - a. II: /gazet_{II}/ 'newspaper', /tʃert_{II}/ 'characteristic', /dol^j_{II}/ 'portion', ...
 - b. III: /kost^jIII/ 'bone', /tetrad^jIII/ 'notebook', /ploç:ad^jIII/ 'square', ...

Novel dative [grid^j-i] 'princely retinue', **what's the instrumental**?

• Dative $[i] \rightarrow \text{rule } (7e)$

(7e) DAT
$$\leftrightarrow$$
 i / III ____

- Dative $[i] \rightarrow \text{rule } (7e)$
 - (7e) Dat \leftrightarrow i / III ____
- ullet Rule (7e) ightarrow III in noun's lexical entry
 - (3) /grid^j_{III}/

- Dative $[i] \rightarrow \text{rule } (7e)$
 - (7e) DAT \leftrightarrow i / III ____
- ullet Rule (7e) ightarrow III in noun's lexical entry
 - (3) /grid^jIII/
- III in noun's lexical entry \rightarrow rule (7f)
 - (7f) INS \leftrightarrow ju / III ____

- Dative $[i] \rightarrow \text{rule } (7e)$
 - (7e) DAT \leftrightarrow i / III ____
- ullet Rule (7e) ightarrow III in noun's lexical entry
 - (3) /grid^jIII/
- ullet III in noun's lexical entry \to rule (7f)
 - (7f) INS \leftrightarrow ju / III ____
- Rule (7f) \rightarrow instrumental [ju]
 - (4) [grid^j-ju]

Novel dative [grid^j-i] 'princely retinue', **what's the instrumental**?

- Dative $[i] \rightarrow \text{rule } (7e)$
 - (7e) DAT \leftrightarrow i / III ____
- ullet Rule (7e) ightarrow III in noun's lexical entry
 - (3) /grid^jIII/
- III in noun's lexical entry \rightarrow rule (7f)
 - (7f) INS \leftrightarrow ju / III ____
- Rule (7f) \rightarrow instrumental [ju]
 - (4) [grid^j-ju]

The structure of the grammar, with features used in multiple rules, facilitates inference of new forms!

Narrowly tailored features: the case of Hungarian

Russian feminine nouns: class II and III (Corbett and Baerman, 2006)

class	II	III
example	'newspaper'	'bone'
nominative	gazet- <mark>a</mark>	kost ^j -Ø
dative	gazet- <mark>e</mark>	kost ^j -i
instrumental	gazet- <mark>oj</mark>	kost ^j -ju

Narrowly tailored features: the case of Hungarian

Russian feminine nouns: class II and III (Corbett and Baerman, 2006)

class	II	III
example	'newspaper'	'bone'
nominative	gazet- <mark>a</mark>	kost ^j -Ø
dative	gazet- <mark>e</mark>	kost ^j -i
instrumental	gazet- <mark>oj</mark>	kost ^j -ju

Hungarian plural (-ok/- ν k) and possessive (- ν /- ν): all four possible combinations (Rácz and Rebrus, 2012)

		"lowering stems"		
noun	dɒl	t∫ont	va:l:	hold
gloss	'song'	'bone'	'shoulder'	'moon'
plural	dɒl-ok	t∫ont-ok	va:l:-pk	hold-pk
possessive	dɒl-ɒ	t∫ont-jɒ	va:l:-p	hold-jp

Narrowly tailored features: the case of Hungarian

Russian feminine nouns: class II and III (Corbett and Baerman, 2006)

class	II	III
example	'newspaper'	'bone'
nominative	gazet- <mark>a</mark>	kost ^j -Ø
dative	gazet-e	kost ^j -i
instrumental	gazet- <mark>oj</mark>	kost ^j -ju

Hungarian plural (-ok/- ν k) and possessive (- ν /- ν): all four possible combinations (Rácz and Rebrus, 2012)

			"lowering stems"	
noun	dɒl	t∫ont	va:l:	hold
gloss	'song'	'bone'	'shoulder'	'moon'
plural	dpl-ok	t∫ont- <mark>ok</mark>	va:l:-pk	hold-pk
possessive	dpl-p	t∫ont-jɒ	va:l:-p	hold-jp

Feature-based analysis of Hungarian

Features for the possessive ($[\pm i]$) and plural ([lower]) are each referenced in *one rule* (see Siptár and Törkenczy (2000) for an alternate analysis)

Vocabulary insertion rules for Hungarian plural and possessive (5)

a.
$$PL \leftrightarrow Dk / [lower] __$$
 c. $POSS \leftrightarrow \frac{jD}{D} / [+j] __$

c. Poss
$$\leftrightarrow$$
 jp / [+j] _

b.
$$PL \leftrightarrow ok$$

$$d. \quad \text{poss} \leftrightarrow \textbf{D} \ / \ [-j] \ ___$$

Feature-based analysis of Hungarian

Features for the possessive ($[\pm i]$) and plural ([lower]) are each referenced in *one rule* (see Siptár and Törkenczy (2000) for an alternate analysis)

Vocabulary insertion rules for Hungarian plural and possessive (5)

$$PL \leftrightarrow pk / [lower]$$
 c. $POSS \leftrightarrow jp / [+j]$

b.
$$PL \leftrightarrow ok$$

d. Poss
$$\leftrightarrow p$$
 / $[-j]$ ____

Feature-based analysis of Hungarian

Features for the possessive ($[\pm i]$) and plural ([lower]) are each referenced in *one rule* (see Siptár and Törkenczy (2000) for an alternate analysis)

- Vocabulary insertion rules for Hungarian plural and possessive (5)
 - - $PL \leftrightarrow pk / [lower]$ c. $POSS \leftrightarrow jp / [+j]$
 - h. $PL \leftrightarrow ok$

- d. $poss \leftrightarrow p / [-i]$
- (6)Lexical entries for Hungarian nouns
 - a. [lower]: /va:l:_[lower,-i] / 'shoulder', /hold_[lower,-i] / 'moon', /ja:r_[lower,-i] / 'factory', /na:r_[lower,+i]/ 'poplar', ...
 - b. [+j]: /t[ont_[+j]/ 'bone', /hold_[lower,+j]/ 'moon', /pa:r_[+j]/ 'pair', /na:r_{flower,+il}/ 'poplar', ...
 - c. [-j]: $\langle dol_{[-j]} \rangle$ 'song', $\langle va:l:_{[lower,-j]} \rangle$ 'shoulder', $\langle ka:r_{[-j]} \rangle$ 'damage', /a:r_[lower.-i]/ 'factory', ...

- Vocabulary insertion rules for Hungarian plural and possessive (5)
 - - $PL \leftrightarrow pk / [lower]$ c. $POSS \leftrightarrow jp / [+j]$
 - h. $PL \leftrightarrow Ok$

- d. $poss \leftrightarrow p / [-i]$
- (6)Lexical entries for Hungarian nouns
 - a. [lower]: /va:l:_[lower,-i] / 'shoulder', /hold_[lower,+i] / 'moon', /_ja:r_[lower,-i] / 'factory', /na:r_[lower,+i]/ 'poplar', ...
 - b. [+j]: /tfont $_{[+i]}$ / 'bone', $/hold_{[lower,+i]}$ / 'moon', $/pa:r_{[+i]}$ / 'pair', /na:r_{flower,+il}/ 'poplar', ...
 - c. [-j]: /dpl_[-j]/ 'song', <mark>/va:l:_[lower,-j]/ 'shoulder'</mark>, /ka:r_[-j]/ 'damage', /a:r_[lower.-i]/ 'factory', ...

- Vocabulary insertion rules for Hungarian plural and possessive (5)
 - - $PL \leftrightarrow pk / [lower]$ c. $POSS \leftrightarrow jp / [+j]$
 - h. $PL \leftrightarrow Ok$

- d. $poss \leftrightarrow p / [-i]$
- (6)Lexical entries for Hungarian nouns
 - a. [lower]: /va:l:_[lower,-i]/ 'shoulder', /hold_[lower,+i]/ 'moon', /a:r_[lower,-i]/ 'factory', /na:r_[lower,+i]/ 'poplar', ...
 - b. [+j]: /tfont_[+j]/ 'bone', /hold_{flower,+j]}/ 'moon', /pa:r_[+j]/ 'pair', /na:r_{flower,+il}/ 'poplar', ...
 - c. [-j]: $\langle dol_{[-j]} \rangle$ 'song', $\langle va:l:_{[lower,-j]} \rangle$ 'shoulder', $\langle ka:r_{[-j]} \rangle$ 'damage', /a:r_[lower.-i]/ 'factory', ...

- Vocabulary insertion rules for Hungarian plural and possessive (5)
 - - $PL \leftrightarrow pk / [lower]$ c. $POSS \leftrightarrow jp / [+j]$
 - h. $PL \leftrightarrow ok$

- d. $poss \leftrightarrow p / [-i]$
- (6)Lexical entries for Hungarian nouns
 - a. [lower]: /va:l:_[lower,-i]/ 'shoulder', /hold_[lower,+i]/ 'moon', /ja:r_[lower,-i]/ 'factory', /pa:r_[lower,+j] / 'poplar', ...
 - b. [+j]: /t[ont_[+j]/ 'bone', /hold_[lower,+j]/ 'moon', /pa:r_[+j]/ 'pair', /na:r_{flower,+il}/ 'poplar', ...
 - c. [-j]: $\langle dol_{[-j]} \rangle$ 'song', $\langle va:l:_{[lower,-j]} \rangle$ 'shoulder', $\langle ka:r_{[-j]} \rangle$ 'damage', /a:r_[lower.-i]/ 'factory', ...

- Vocabulary insertion rules for Hungarian plural and possessive (5)
 - - $PL \leftrightarrow pk / [lower]$ c. $POSS \leftrightarrow jp / [+j]$
 - h. $PL \leftrightarrow Ok$

- d. $poss \leftrightarrow p / [-i]$
- (6)Lexical entries for Hungarian nouns
 - a. [lower]: /va:l:_[lower,-i] / 'shoulder', /hold_[lower,+i] / 'moon', /_ja:r_[lower,-i] / 'factory', /na:r_[lower,+i]/ 'poplar', ...
 - b. [+j]: /t[ont_[+j]/ 'bone', /hold_[lower,+j]/ 'moon', /pa:r_[+j]/ 'pair', /na:r_{flower.+il}/ 'poplar', ...
 - c. [-j]: $\langle dol_{[-j]} \rangle$ 'song', $\langle va:l:_{[lower,-j]} \rangle$ 'shoulder', $\langle ka:r_{[-j]} \rangle$ 'damage', /a:r_[lower.-i]/ 'factory', ...

Novel plural [ma:l-pk] 'belly furs', what's the possessive?

Novel plural [ma:l-pk] 'belly furs', what's the possessive?

• Plural $[bk] \rightarrow rule (5a)$

(5a)
$$PL \leftrightarrow pk / [lower] _$$

Novel plural [ma:l-pk] 'belly furs', what's the possessive?

• Plural $[bk] \rightarrow rule (5a)$

(5a)
$$PL \leftrightarrow pk / [lower] _$$

• Rule (5a) \rightarrow [lower] in noun's lexical entry

Novel plural [ma:l-pk] 'belly furs', what's the possessive?

- Plural $[bk] \rightarrow rule (5a)$
 - (5a) $PL \leftrightarrow pk / [lower] _$
- Rule $(5a) \rightarrow [lower]$ in noun's lexical entry
 - (7) /ma:l_[lower]/
- [lower] in noun's lexical entry → ...
 - (5c) POSS \leftrightarrow jp / [+j] ____
 - (5d) Poss $\leftrightarrow p$ / [-j] ____

Novel plural [ma:l-pk] 'belly furs', what's the possessive?

- Plural $[bk] \rightarrow rule (5a)$
 - (5a) $PL \leftrightarrow pk / [lower] _$
- Rule (5a) → [lower] in noun's lexical entry
 - (7) /ma:l_[lower]/
- [lower] in noun's lexical entry → ...
 - (5c) POSS \leftrightarrow jp / [+j] ____
 - (5d) Poss $\leftrightarrow p$ / [-j] ____

Unlike in Russian, the structure of the grammar, with each feature used in a single rule, **does not** facilitate inference of new forms.

In the lexicon (Rácz and Rebrus, 2012):

In the lexicon (Rácz and Rebrus, 2012):

- Irregular nouns (including lowering stems) usually take -p
- Some alveolar-final lowering stems do take -jp

In the lexicon (Rácz and Rebrus, 2012):

- Irregular nouns (including lowering stems) usually take -p
- Some alveolar-final lowering stems do take -jp

Results:

In the lexicon (Rácz and Rebrus, 2012):

- Irregular nouns (including lowering stems) usually take -p
- Some alveolar-final lowering stems do take -jp

Results:

 Speakers are more likely to assign possessive -p to nonce lowering stems

In the lexicon (Rácz and Rebrus, 2012):

- Irregular nouns (including lowering stems) usually take -p
- Some alveolar-final lowering stems do take -jp

Results:

 Speakers are more likely to assign possessive -p to nonce lowering stems

Outline

Background: morphological features and inflection class

- Experiment: Hungarian possessive and plural
- 3 Discussion

Stimulus presented twice in frame sentence

Stimulus presented twice in frame sentence

- bare: lufon
- plural: lufonok (regular stem)

Stimulus presented twice in frame sentence

- bare: lufpn
- plural: lufpnok (regular stem)

Participants see another frame sentence, select possessive from drop-down menu

Stimulus presented twice in frame sentence

- bare: lufpn
- plural: lufpnok (regular stem)

Participants see another frame sentence, select possessive from drop-down menu

• [lufono / lufonjo]

Stimulus presented twice in frame sentence

- bare: lufpn
- plural: lufonok (regular stem)

Participants see another frame sentence, select possessive from drop-down menu

• [lufono / lufonjo]

Stimulus presented twice in frame sentence

- bare: lufpn
- plural: lufpnpk (lowering stem)

Participants see another frame sentence, select possessive from drop-down menu

• [lufono / lufonjo]

Stats

- 90 participants
- 35-50 trials per participant
- ...of which 8–12 lowering stem trials
- 81 stimuli (57 target, 24 filler)
- 2,398 total target trials

Baseline: phonological model trained on corpus of monomorphemic words from Papp (1969)

Baseline: phonological model trained on corpus of monomorphemic words from Papp (1969)

- Given word, predicts odds of -jp as coefficient phon_odds
- final C manner + final C place + harmony class + final V height + final V length + final coda complexity + word length

Baseline: phonological model trained on corpus of monomorphemic words from Papp (1969)

- Given word, predicts odds of -jp as coefficient phon_odds
- final C manner + final C place + harmony class + final V height + final V length + final coda complexity + word length

Baseline: phonological model trained on corpus of monomorphemic words from Papp (1969)

- Given word, predicts odds of -jp as coefficient phon_odds
- final C manner + final C place + harmony class + final V height + final V length + final coda complexity + word length

- Given nonce word phonology and participant, predicts odds of
 -jp
- (I | participant) + phon_odds

Baseline: phonological model trained on corpus of monomorphemic words from Papp (1969)

- Given word, predicts odds of -jp as coefficient phon_odds
- final C manner + final C place + harmony class + final V height + final V length + final coda complexity + word length

- Given nonce word phonology and participant, predicts odds of
 -jp
- (I | participant) + **phon_odds**

Baseline: the phonological model predicts experimental rate of possessives for *individual nonce words* quite well

UConn LingLunch, April 18, 2023

Baseline: the phonological model predicts experimental rate of possessives for *individual nonce words* quite well

UConn LingLunch, April 18, 2023

Baseline: phonological model trained on corpus of monomorphemic words from Papp (1969)

- Given word, predicts odds of -jp as coefficient phon_odds
- final C manner + final C place + harmony class + final V height + final V length + final coda complexity + word length

- Given nonce word phonology and participant, predicts odds of
 -jp
- (I | participant) + phon_odds

Baseline: phonological model trained on corpus of monomorphemic words from Papp (1969)

- Given word, predicts odds of -jp as coefficient phon_odds
- final C manner + final C place + harmony class + final V height + final V length + final coda complexity + word length

Then: predict experimental results from phonological model **and stem class**

- Given nonce word phonology and participant, predicts odds of
 -jp
- (I | participant) + phon_odds

Baseline: phonological model trained on corpus of monomorphemic words from Papp (1969)

- Given word, predicts odds of -jp as coefficient phon_odds
- final C manner + final C place + harmony class + final V height + final V length + final coda complexity + word length

Then: predict experimental results from phonological model **and stem class**

- Given nonce word phonology and plural and participant, predicts odds of -jp
- (I | participant) + phon_odds

Baseline: phonological model trained on corpus of monomorphemic words from Papp (1969)

- Given word, predicts odds of -jp as coefficient phon_odds
- final C manner + final C place + harmony class + final V height + final V length + final coda complexity + word length

Then: predict experimental results from phonological model **and stem class**

- Given nonce word phonology and plural and participant, predicts odds of -jp
- (I | participant) + phon_odds + plural

Results: sensitivity to morphology

Target condition: most nonce words had a *lower* rate of -jp when presented as <u>lowering stems</u>

predicted: jo:so:tok, jo:so:tjp > jo:so:tpk, jo:so:tjp actual: jo:so:tok, jo:so:tjp > jo:so:tpk, jo:so:tjp

predicted: ro:rok, ro:rjp > ro:rok, ro:rjp actual: ro:rok, ro:rjp > ro:rok, ro:rjp

predicted: om:orok, om:orjp > om:orpk, om:orjp actual: om:orok, om:orjp < om:orpk, om:orjp

Target condition: most nonce words had a *lower* rate of -jp when presented as <u>lowering stems</u>

Results: summary

 Participants matched the phonological distribution of -jp and -p in the lexicon

Results: summary

- Participants matched the phonological distribution of -jp and -p in the lexicon
- ...Taking this into account, they also assigned -p more to nonce words with plural -pk

Outline

Background: morphological features and inflection class

- Experiment: Hungarian possessive and plural
- 3 Discussion

Rácz and Rebrus (2012) and others: -jp is the productive default for most words

- recent loans and neologisms take -jp
- ... unless they end in palatals and sibilants, in which case, they take -p

Rácz and Rebrus (2012) and others: -jp is the productive default for most words

- recent loans and neologisms take -jp
- ... unless they end in palatals and sibilants, in which case, they take -p

My results: speakers used -jp and -p on the same words

gradient patterns extended from the lexicon

Rácz and Rebrus (2012) and others: -jp is the productive default for most words

- recent loans and neologisms take -jp
- ... unless they end in palatals and sibilants, in which case, they take -p

My results: speakers used -jp and -p on the same words

gradient patterns extended from the lexicon

No obvious explanation for difference, but ...

Rácz and Rebrus (2012) and others: -jp is the productive default for most words

- recent loans and neologisms take -jp
- ... unless they end in palatals and sibilants, in which case, they take -p

My results: speakers used -jp and -p on the same words

• gradient patterns extended from the lexicon

No obvious explanation for difference, but ...

- clear that speakers have and can apply generalizations over the distribution of -jp and -p in the lexicon
- these generalizations are both *phonological* and *morphological*

Existing formal models for productively learning phonological generalizations (e.g. Albright and Hayes, 2003; Hayes et al., 2009; Gouskova et al., 2015)

• speakers learn gradient phonological patterns as *weighted constraints* over portions of the lexicon (Hayes and Wilson, 2008; Gouskova et al., 2015)

- speakers learn gradient phonological patterns as weighted constraints over portions of the lexicon (Hayes and Wilson, 2008; Gouskova et al., 2015)
 - Hungarian nouns ending in sibilants always take -p ([-j])
 - Hungarian nouns ending in vowels always take -jp ([+j])
 - for [+j] words: *[+strident]# (weight: 5)
 - for [-j] words: *[+syllabic]# (weight: 5)

- speakers learn gradient phonological patterns as *weighted constraints* over portions of the lexicon (Hayes and Wilson, 2008; Gouskova et al., 2015)
 - Hungarian nouns ending in sibilants always take - \mathbf{p} ([- \mathbf{j}])
 - Hungarian nouns ending in vowels always take -jp ([+j])
 - for [+j] words: *[+strident]# (weight: 5)
 - for [-j] words: *[+syllabic]# (weight: 5)
- if inflectional patterns are marked with lexical diacritic features, weighted constraints can handle morphological dependencies as well

- speakers learn gradient phonological patterns as *weighted constraints* over portions of the lexicon (Hayes and Wilson, 2008; Gouskova et al., 2015)
 - Hungarian nouns ending in sibilants always take -b ([-j])
 - Hungarian nouns ending in vowels always take -jp ([+j])
 - for [+j] words: *[+strident]# (weight: 5)
 - for [-j] words: *[+syllabic]# (weight: 5)
- if inflectional patterns are marked with lexical diacritic features, weighted constraints can handle morphological dependencies as well
 - Hungarian nouns with plural -pk ([lower]) usually take -p ([-j])
 - for [+j] words: *[lower] (weight: 1)

To generate the possessive of a novel word, speakers evaluate it on the constraints for [+j] and [-j] words

To generate the possessive of a novel word, speakers evaluate it on the constraints for [+j] and [-j] words

Ex: speaker has seen plurals [rupps-pk] and [fu:za:t-pk]

To generate the possessive of a novel word, speakers evaluate it on the constraints for [+j] and [-j] words

Ex: speaker has seen plurals [rupps-pk] and [fu:za:t-pk]

 ${\color{red} \bullet}$ evaluate /rupos $_{[lower]}$ / and /fu:za:t $_{[lower]}$ / as [+j] words

constraint	*[+strident]#	*[lower]	total
weight	5	I	totai
runps _[lower]	-5	-I	-6
fu:za:t _[lower]	0	-I	-1

To generate the possessive of a novel word, speakers evaluate it on the constraints for [+j] and [-j] words

Ex: speaker has seen plurals [rupps-pk] and [fu:za:t-pk]

 ${\color{red} \bullet}$ evaluate /rupps $_{[lower]}$ / and /fu:za:t $_{[lower]}$ / as [+j] words

constraint	*[+strident]#	*[lower]	total
weight	5	I	totai
runps _[lower]	-5	-I	-6
fu:za:t _[lower]	0	-I	$-\mathbf{I}$

evaluate $/\text{rupps}_{[lower]} / \text{ and } /\text{fu:za:t}_{[lower]} / \text{ as } [-j] \text{ words }$

[101101]	[101101]	
constraint	*[+syllabic]#	total
weight	5	totai
runps _[lower]	0	0
fuːzaːt _[lower]	0	0

To generate the possessive of a novel word, speakers evaluate it on the constraints for [+j] and [-j] words

Ex: speaker has seen plurals [rupps-pk] and [fu:za:t-pk]

 ${\color{red} \bullet}$ evaluate /rupps $_{[lower]}$ / and /fu:za:t $_{[lower]}$ / as [+j] words

constraint	*[+strident]#	*[lower]	total
weight	5	I	totai
runps _[lower]	-5	-I	-6
fu:za:t _[lower]	0	-I	$-\mathbf{I}$

• evaluate /rupps_[lower] / and /fu:za:t_[lower] / as [-j] words

constraint	*[+syllabic]#	total
weight	5	totai
runps _[lower]	0	0
fu:za:t _[lower]	0	0

③ stochastically assign [+j] or [-j] (maximum entropy (Hayes and Wilson, 2008): for outcome x with score H(x), $P(x) \propto e^{H(x)}$)

Ex: speaker has seen plurals [rupps-pk] and [fu:za:t-pk]

 ${\color{red} \bullet}$ evaluate /rupps $_{[lower]}$ / and /fu:za:t $_{[lower]}$ / as [+j] words

constraint	*[+strident]#	*[lower]	total
weight	5	I	totai
runps _[lower]	-5	-I	-6
fu:za:t _[lower]	0	-I	$-\mathbf{I}$

evaluate /rupps_[lower] / and /fu:za:t_[lower] / as [-j] words

constraint	*[+syllabic]#	total
weight	5	totai
runps _[lower]	0	0
fu:za:t _[lower]	0	0

③ stochastically assign [+j] or [−j] (maximum entropy (Hayes and Wilson, 2008): for outcome x with score H(x), $P(x) \propto e^{H(x)}$)

•
$$P(/\text{fu:za:t}_{[\text{lower}, |-|-|]}/) = \frac{e^{H(|-|-|)}}{e^{H(|-|-|)} + e^{H(|-|-|)}} = \frac{e^{-1}}{e^{-1} + e^0} = .269 = 26.9\%$$

Weighted constraint models and their uses

Maximum entropy grammars with weighted constraints are useful across phonological and morphological domains

Weighted constraint models and their uses

Maximum entropy grammars with weighted constraints are useful across phonological and morphological domains

- *phonotactics*: grammar for the entire lexicon defines phonotactically good and bad words (Hayes and Wilson, 2008)
- generalizations over lexically conditioned allomorphy: grammar for morphologically defined sublexicons defines good and bad words for a lexically exceptional class (Gouskova et al., 2015)
- morphological dependencies: since morphological features like [+j] and [lower] are present in underlying forms, they can also define good and bad words for a different lexical class

Weighted constraint models and their uses

Maximum entropy grammars with weighted constraints are useful across phonological and morphological domains

- *phonotactics*: grammar for the entire lexicon defines phonotactically good and bad words (Hayes and Wilson, 2008)
- generalizations over lexically conditioned allomorphy: grammar for morphologically defined sublexicons defines good and bad words for a lexically exceptional class (Gouskova et al., 2015)
- morphological dependencies: since morphological features like [+j] and [lower] are present in underlying forms, they can also define good and bad words for a different lexical class

Phonological and morphological effects are evaluated together, in a single analysis

We can handle morphological dependencies using independently necessary general phonological mechanisms

Previously: Russian and Hungarian are categorically distinct

Previously: Russian and Hungarian are categorically distinct

(5) Vocabulary insertion rules for Hungarian plural and possessive

```
a. PL \leftrightarrow pk / [lower] 
b. PL \leftrightarrow ok 
c. POSS \leftrightarrow jp / [+j] 
d. POSS \leftrightarrow p / [-j]
```

(1) Vocabulary insertion rules for Russian cases

```
a. Nom \leftrightarrow a / II ___ d. Nom \leftrightarrow Ø / III ___
```

b. dat
$$\leftrightarrow$$
 e / II ___ e. dat \leftrightarrow i / III ___

c. Ins
$$\leftrightarrow$$
 oj / II ___ f. Ins \leftrightarrow ju / III ___

Previously: Russian and Hungarian are categorically distinct

- (5) Vocabulary insertion rules for Hungarian plural and possessive
 - a. $PL \leftrightarrow pk / [lower]$ b. $PL \leftrightarrow ok$ c. $POSS \leftrightarrow jp / [+j]$ d. $POSS \leftrightarrow p / [-j]$
- (1) Vocabulary insertion rules for Russian cases
 - a. Nom \leftrightarrow a / II ___ d. Nom \leftrightarrow Ø / III ___
 - b. dat \leftrightarrow e / II ___ e. dat \leftrightarrow i / III ___
 - c. Ins \leftrightarrow 0j / II ___ f. Ins \leftrightarrow ju / III ___

Ackerman et al. (2009); Baerman et al. (2017) and others: Russian and Hungarian differ in *degree* of cohesion, not kind (indeed, actual Russian inflection is messier than the oversimplified four-class analysis (Parker and Sims, 2020))

Previously: Russian and Hungarian are categorically distinct

- (5) Vocabulary insertion rules for Hungarian plural and possessive
 - a. $PL \leftrightarrow pk / [lower]$ ___ c. $POSS \leftrightarrow jp / [+j]$ ___
 - b. $pl \leftrightarrow ok$ d. $poss \leftrightarrow p / [-j]$ ____
- (1) Vocabulary insertion rules for Russian cases
 - a. Nom \leftrightarrow a / II ___ d. Nom \leftrightarrow Ø / III ___
 - b. dat \leftrightarrow e / II ___ e. dat \leftrightarrow i / III ___
 - c. Ins \leftrightarrow 0j / II ___ f. Ins \leftrightarrow ju / III ___

Ackerman et al. (2009); Baerman et al. (2017) and others: Russian and Hungarian differ in *degree* of cohesion, not kind (indeed, actual Russian inflection is messier than the oversimplified four-class analysis (Parker and Sims, 2020))

- We need separate generalizations to capture Hungarian morphological dependency between -pk and -p
- Maybe Russian-style "inflection classes" are just very strong morphological generalizations

Alternate Russian analysis

Alternate Russian analysis

(1') Vocabulary insertion rules for Russian cases

```
a. Nom \leftrightarrow a / [N:a] ___ d. Nom \leftrightarrow Ø / [N:Ø] ___ b. dat \leftrightarrow e / [D:e] ___ e. dat \leftrightarrow i / [D:i] ___
```

c. Ins \leftrightarrow oj / [I:oj] ___ f. Ins \leftrightarrow ju / [I:ju] ___

Alternate Russian analysis

Vocabulary insertion rules for Russian cases

```
a. Nom \leftrightarrow a / [N:a] ___ d. Nom \leftrightarrow Ø / [N:Ø] ___
```

b. dat
$$\leftrightarrow$$
 e / [D:e] ___ e. dat \leftrightarrow i / [D:i] ___ c. ins \leftrightarrow oj / [I:oj] ___ f. ins \leftrightarrow ju / [I:ju] ___

- (2') Lexical entries for Russian nouns
 - a. II: $\frac{|\text{gazet}_{[\text{N:a},\text{D:e},\text{I:oi}]}}{|\text{mewspaper'}}$, $\frac{|\text{fert}_{[\text{N:a},\text{D:e},\text{I:oi}]}}{|\text{mewspaper'}}$ 'characteristic', /dol^j_[N:a,D:e,I:oi]/ 'portion', ...
 - b. III: /kost^j_[N:Ø,D:i,I:ju] / 'bone', /tetrad^j_[N:Ø,D:i,I:ju] / 'notebook', /ploç:ad^j_[N:Ø,D:i,I:ju] / 'square', ...

Alternate Russian analysis

(1') Vocabulary insertion rules for Russian cases

```
a. NOM \leftrightarrow a / [N:a] ___ d. NOM \leftrightarrow \emptyset / [N:\emptyset] ___ b. DAT \leftrightarrow e / [D:e] ___ e. DAT \leftrightarrow i / [D:i] ___
```

```
c. INS \leftrightarrow oj / [I:oi] f. INS \leftrightarrow ju / [I:ju]
```

(2') Lexical entries for Russian nouns

```
a. II: /gazet_{[N:a,D:e,I:oj]}/ 'newspaper', /tfert_{[N:a,D:e,I:oj]}/ 'characteristic', /dol^j_{[N:a,D:e,I:oj]}/ 'portion', ...
```

```
b. III: /kost<sup>j</sup><sub>[N:Ø,D:i,I:ju]</sub>/ 'bone', /tetrad<sup>j</sup><sub>[N:Ø,D:i,I:ju]</sub>/ 'notebook', /ploç:ad<sup>j</sup><sub>[N:Ø,D:i,I:ju]</sub>/ 'square', . . .
```

(8) Heavily weighted constraints for sublexicons

```
a. for [N:a] nouns: *[D:i] c. for [N:Ø] nouns: *[D:e]
```

b. for [N:a] nouns: *[I:ju] d. for [N:Ø] nouns: *[I:oj]

.

Summary

- Hungarian speakers productively apply correlations between inflected forms in the lexicon
- These cases are not well-suited for an "inflection class" analysis
- We need a way to account for gradient correlations between narrowly targeted inflectional features
- Gradient constraint-based phonotactic models can be easily extended to do this
- Inflection classes can be recast as *emergent* clusters of strong correlations between narrowly targeted features

References L

- Ackerman, F., Blevins, J. P., and Malouf, R. (2009). Parts and wholes: Implicative patterns in inflectional paradigms. In Blevins, J. P. and Blevins, J., editors, Analogy in Grammar: Form and Acquisition, chapter 3, pages 54-82, Oxford University Press, Oxford.
- Ackerman, F. and Malouf, R. (2013). Morphological organization: The low conditional entropy conjecture. Language, 89(3):429-464.
- Albright, A. and Haves, B. (2003). Rules vs. analogy in English past tenses: a computational/experimental study. Cognition, 90(2):119-161.
- Aronoff, M. (1994). Morphology by Itself: Stems and Inflectional Classes. Number 22 in Linguistic Inquiry Monographs, MIT Press, Cambridge.
- Baerman, M., Brown, D., and Corbett, G. G. (2017). Morphological Complexity. Number 153 in Cambridge Studies in Linguistics. Cambridge University Press, Cambridge.
- Bermel, N. and Knittl, L. (2012). Morphosyntactic variation and syntactic constructions in Czech nominal declension: corpus frequency and native-speaker judgements. Russian Linguistics, 36(1):91-119.
- Bonami, O. and Beniamine, S. (2016). Joint predictiveness in inflectional paradigms. Word Structure, 9(2):156-182.
- Bybee, J. L. and Moder, C. L. (1983). Morphological classes as natural categories. *Language*, 59(2):251–270.
- Caha, P. (2021). Modeling declensions without declension features: The case of Russian. Acta Linguistica Academica, 68(4):385-425.
- Cameron-Faulkner, T. and Carstairs-McCarthy, A. (2000). Stem alternants as morphological stigmata: Evidence from blur avoidance in Polish nouns. Natural Language and Linguistic Theory, 18:813-835.
- Corbett, G. G. and Baerman, M. (2006). Prolegomena to a typology of morphological features. *Morphology*, 16:231-246.
- Corbett, G. G. and Fraser, N. M. (1993). Network Morphology: a DATR account of Russian nominal inflection. Journal of Linguistics, 29(1):113-142.
- Embick, D. and Marantz, A. (2008). Architecture and blocking. Linguistic Inquiry, 39(1):1-53.
- Finkel, R. and Stump, G. (2007). Principal parts and morphological typology. Morphology, 17:39-75.

References II

- Gouskova, M., Newlin-Łukowicz, L., and Kasyanenko, S. (2015). Selectional restrictions as phonotactics over sublexicons. *Lingua*, 167:41–81.
- Guzmán Naranjo, M. and Bonami, O. (2021). Overabundance and inflectional classification: Quantitative evidence from Czech. *Glossa: a journal of general linguistics*, 6(1):88. 1–31.
- Halle, M. and Marantz, A. (1993). Distributed morphology and the pieces of inflection. In Hale, K. and Keyser, S. J., editors, The View from Building 20: Essays in Linguistics in Honor of Sylvain Bromberger, number 24 in Current Studies in Linguistics, chapter 3, pages 111-176. MIT Press, Cambridge.
- Halle, M. and Marantz, A. (2008). Clarifying "Blur": Paradigms, defaults, and inflectional classes. In Bachrach, A. and Nevins, A., editors, *Inflectional Identity*, number 18 in Oxford Studies in Theoretical Linguistics, chapter 3, pages 55–72. Oxford University Press, Oxford.
- Hayes, B. and Londe, Z. C. (2006). Stochastic phonological knowledge: the case of Hungarian vowel harmony. *Phonology*, 23:59–104.
- Hayes, B. and Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic learning. Linguistic Inquiry, 39(3):379-440.
- Hayes, B., Zuraw, K., Siptár, P., and Londe, Z. (2009). Natural and unnatural constraints in Hungarian vowel harmony. *Language*, 85(4):822–863.
- Kramer, R. (2016). Syncretism in paradigm function morphology and distributed morphology. In Siddiqi, D. and Harley, H., editors, *Morphological Metatheory*, number 229 in Linguistic Aktuell/Linguistics Today, pages 95–120. John Benjamins, Amsterdam, Philadelphia.
- Křen, M., Cvrček, V., Hnátková, M., Jelínek, T., Kocek, J., Kováříková, D., Křivan, J., Milička, J., Petkevič, V., Procházka, P., Skoumalová, H., Šindlerová, J., and Škrabal, M. (2022). Korpus SYN, verze 11 z 14.12.2022. www.korpus.cz.
- Lieber, R. (1980). On the Organization of the Lexicon. PhD thesis, Massachusetts Institute of Technology, Cambridge.

References III

- Müller, G. (2004). On decomposing inflection class features: Syncretism in Russian noun inflection. In Müller, G., Gunkel, L., and Zifonun, G., editors, *Explorations in Nominal Inflection*, number 10 in Interface Explorations, pages 189–227. Mouton de Gruyter, Berlin.
- Papp, F. (1969). A magyar nyelv szóvégmutató szótára. Akadémiai Kiadó, Budapest.
- Parker, J. and Sims, A. D. (2020). Irregularity, paradigmatic layers, and the complexity of inflection class systems: A study of Russian nouns. In Arkadiev, P. and Gardani, F., editors, *The Complexities of Morphology*, chapter 2, pages 23–51. Oxford University Press, Oxford.
- Rácz, P. and Rebrus, P. (2012). Variation in the possessive allomorphy of Hungarian. In Kiefer, F., Ladányi, M., and Siptár, P., editors, Current Issues in Morphological Theory: (Ir)regularity, analogy and frequency: Selected papers from the 14th International Morphology Meeting, Budapest, 13–16 May 2010, number 322 in Current Issues in Linguistic Theory, pages 51–64, Amsterdam, Philadelphia. John Benjamins.
- Siptár, P. and Törkenczy, M. (2000). *The Phonology of Hungarian*. The Phonology of the World's Languages. Oxford University Press, Oxford, New York.
- Wurzel, W. U. (1989). Inflectional Morphology and Naturalness. Kluwer, Dordrecht.

Sample trial (regular plural)

Sample trial (regular plural)

In 1997, the **lufon** entered into the competition for flowery **lufonok** for the first time.

Please select the word's plural form: [lufonøk / lufonøk / lufonøk / lufonøk]

Sample trial (regular plural)

In 1997, the **lufon** entered into the competition for flowery **lufonok** for the first time.

Please select the word's plural form: [lufpnøk / lufpnøk / lufpnøk / lufpnøk]

Sample trial (regular plural)

In 1997, the **lufon** entered into the competition for flowery **lufonok** for the first time.

Please select the word's plural form: [lufonøk / lufonøk / lufonøk / lufonøk]

That's correct! Now select the word in the appropriately inflected form according to you.

My [lufonom / lufonom / lufonom] couldn't sing well, however my husband's [lufon ϵ / lufon ϵ / lufono ϵ / lufono ϵ] sang brilliantly.

Sample trial (regular plural)

In 1997, the **lufon** entered into the competition for flowery **lufonok** for the first time.

Please select the word's plural form: [lufpnøk / lufpnøk / lufpnøk / lufpnøk]

That's correct! Now select the word in the appropriately inflected form according to you.

My [lufonom / lufonom / lufonom] couldn't sing well, however my husband's [lufon ϵ / lufon ϵ / lufono ϵ / lufono ϵ] sang brilliantly.

Sample trial (regular plural)

In 1997, the **lufon** entered into the competition for flowery **lufonok** for the first time.

Please select the word's plural form: [lufpnøk / lufpnøk / lufpnøk / lufpnøk]

That's correct! Now select the word in the appropriately inflected form according to you.

My [lufonom / lufonom / lufonom] couldn't sing well, however my husband's [lufonε / lufonjε / lufono / lufonjo] sang brilliantly.

Sample trial (lowering stem)

In 1997, the **lufon** entered into the competition for flowery **lufonok** for the first time.

Please select the word's plural form: [lufɒnøk / lufɒnøk / lufɒnøk / lufɒnøk / lufɒnøk]

That's correct! Now select the word in the appropriately inflected form according to you.

My [lufonom / lufonom / lufonom] couldn't sing well, however my husband's [lufone / lufonje / lufono / lufonjo] sang brilliantly.

Phonological model of lexicon

	β coef	SE	Wald z	p
Intercept	3.02	.32	9.55	<.0001
C Manner (default: plosive)				
fricative	-1.44	•39	-3.73	.0002
sibilant	-10.69	.80	-13.36	<.0001
nasal	-1.95	.27	-7.16	<.0001
approximant	-4.08	.30	-13.47	<.0001
C Place (default: alveolar)				
labial	-2.02	.26	-7.94	<.0001
palatal	-8.88	1.10	-8.06	<.0001
velar	-3.26	.29	-10.96	<.0001
Harmony (default: back)				
front	-2.03	.18	-10.96	<.0001
variable	2.26	.97	2.33	.0197
V Height (default: mid)				
high	1.73	.22	7.89	<.0001
low	.28	.19	1.50	.1342
V Length (default: short)				
long	1.40	.17	7.98	<.0001
Coda (default: singleton)				
geminate	2.47	.40	6.25	<.0001
cluster	.04	.21	0.18	.8602
Syllables (default: monosyllabic)				
polysyllabic	1.15	.17	6.67	<.0001

Phonological model of experimental results

Phon_odds	•34	.01	22.76	<.0001
Intercept	.67	.10	7.03	<.0001
Fixed effects	β coef	SE	Wald z	p
Participant	·55	.74		
Random effect	variance	SD		

Phonological and morphological model of experimental results

Random effect	variance	SD		
Participant	·54	.74		
Fixed effects	β coef	SE	Wald z	p
Intercept	•74	.10	7.48	<.0001
Phon_odds	•34	.02	22.77	<.0001
Plural (default: -ok)				
-pk	33	.13	-2.62	.0086

Czech genitive (-u/-a) and locative $(-u/-\epsilon)$: all four possible combinations (for *masculine inanimate hard-stem* nouns)

noun	proble:m	za:pas	vεt∫εr	kostel
gloss	'problem'	'match'	'evening'	'church'
genitive	problɛːm-u	zaːpas-u	vεt∫εr-a	kostɛl-a
locative	proble:m-u	za:pas-ε	vεt∫εr-u	kostεl-ε

Czech genitive (-u/-a) and locative $(-u/-\epsilon)$: all four possible combinations (for *masculine inanimate hard-stem* nouns)

noun	proble:m	za:pas	vεt∫εr	kostel
gloss	'problem'	'match'	'evening'	'church'
genitive	proble:m- <mark>u</mark>	zaːpas- <mark>u</mark>	vεt∫εr- <mark>a</mark>	kostel-a
locative	proble:m-u	za:pas-ɛ	vεt∫εr- <mark>u</mark>	kostel- <mark>e</mark>

Czech genitive (-u/-a) and locative $(-u/-\epsilon)$: all four possible combinations (for *masculine inanimate hard-stem* nouns)

noun	proble:m	za:pas	vεt∫εr	kostel
gloss	'problem'	'match'	'evening'	'church'
genitive	proble:m-u	za:pas-u	vεt∫εr- <mark>a</mark>	kostel-a
locative	proble:m-u	za:pas- _E	vεt∫εr- <mark>u</mark>	kostel- <mark>e</mark>

Historically: innovative -u has pushed out original -a and - ϵ in both cases

Czech genitive (-u/-a) and locative $(-u/-\epsilon)$: all four possible combinations (for *masculine inanimate hard-stem* nouns)

noun	proble:m	za:pas	vεt∫εr	kostel
gloss	'problem'	'match'	'evening'	'church'
genitive	proble:m-u	za:pas-u	vεt∫εr- <mark>a</mark>	kostel-a
locative	proble:m-u	za:pas- _E	vεt∫εr- <mark>u</mark>	kostel- <mark>e</mark>

Historically: innovative -u has pushed out original -a and - ϵ in both cases

- Today -u is much more common
- Morphological dependency: nouns that take genitive -a also tend to take locative -&

Most nouns that take genitive -a or locative -ε do so *variably* (Bermel and Knittl, 2012; Guzmán Naranjo and Bonami, 2021)

Most nouns that take genitive -a or locative -ε do so *variably* (Bermel and Knittl, 2012; Guzmán Naranjo and Bonami, 2021)

• *lexically conditioned*: variable nouns have different rates of -ε: [most] 'bridge' prefers -ε, while [u:rad] 'office' prefers -u

Most nouns that take genitive -a or locative -ε do so *variably* (Bermel and Knittl, 2012; Guzmán Naranjo and Bonami, 2021)

- *lexically conditioned*: variable nouns have different rates of -ε: [most] 'bridge' prefers -ε, while [u:rad] 'office' prefers -u
- *syntactically conditioned*: "canonical" locative prepositions like [v] 'in' prefer -ε relative to less "canonical" prepositions like [o] 'about'

Most nouns that take genitive -a or locative -ε do so *variably* (Bermel and Knittl, 2012; Guzmán Naranjo and Bonami, 2021)

- lexically conditioned: variable nouns have different rates of -ε:
 [most] 'bridge' prefers -ε, while [u:rad] 'office' prefers -u
- syntactically conditioned: "canonical" locative prepositions like [v] 'in' prefer -ε relative to less "canonical" prepositions like [o] 'about'

	in	about
bridge	v mosc-e >	> o mosc- _E
	V	\vee
office	v uːr̞aɟ-ɛ >	> o uːr̞aɟ-ε

Most nouns that take genitive -a or locative -ε do so *variably* (Bermel and Knittl, 2012; Guzmán Naranjo and Bonami, 2021)

- *lexically conditioned*: variable nouns have different rates of -ε: [most] 'bridge' prefers -ε, while [u:rad] 'office' prefers -u
- *syntactically conditioned*: "canonical" locative prepositions like [v] 'in' prefer -ε relative to less "canonical" prepositions like [o] 'about'

	in	about
bridge	v mosc-e >	> o mosc- _E
	V	V
office	v uːr̞aɟ-ɛ >	> o uːr̞aɟ- <mark>ɛ</mark>

For variable nouns, a higher rate of genitive -a corresponds to a higher rate of locative - ϵ

Stimulus presented twice in frame sentence

Stimulus presented twice in frame sentence

- bare: cis
- prep + genitive: z cisu ([z] 'out of')

Stimulus presented twice in frame sentence

- bare: cis
- prep + genitive: z cɪsu ([z] 'out of')

Participants see another frame sentence, select genitive and locative from drop-down menus

Stimulus presented twice in frame sentence

- bare: cis
- prep + genitive: z cɪsu ([z] 'out of')

Participants see another frame sentence, select genitive and locative from drop-down menus

- prep + genitive: [do cisu / do cisa] ([do] 'into')
- prep + locative: [na cisu / na cise] ([na] 'on')

Stimulus presented twice in frame sentence

- bare: cis
- prep + genitive: z cisa ([z] 'out of')

Participants see another frame sentence, select genitive and locative from drop-down menus

- prep + genitive: [do cisu / do cisa] ([do] 'into')
- prep + locative: [na cisu / na cise] ([na] 'on')

Stats

- 88 participants
- 50 trials per participant
- ...of which 12 shown with genitive -a
- 82 stimuli
- 4,397 total target trials

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

- Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε
- Given word, predicts odds of -ε as coefficient phon_odds
- final C place + final C manner + final coda complexity + final V length + final V front + final V height + word length

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

- Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε
- Given word, predicts odds of -ε as coefficient phon_odds
- final C place + final C manner + final coda complexity + final V length + final V front + final V height + word length
- Phonology has a *much smaller effect* than in Hungarian $(R^2 = .09)$
- In part because the data are so skewed (94% of nouns take -u)

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

- Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε
- Given word, predicts odds of -ε as coefficient phon_odds
- final C place + final C manner + final coda complexity + final V length + final V front + final V height + word length
- Phonology has a *much smaller effect* than in Hungarian $(R^2 = .09)$
- In part because the data are so skewed (94% of nouns take -u)

Then: predict experimental results from phonological model

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

- Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε
- Given word, predicts odds of -ε as coefficient phon_odds
- final C place + final C manner + final coda complexity + final V length + final V front + final V height + word length
- Phonology has a *much smaller effect* than in Hungarian $(R^2 = .09)$
- In part because the data are so skewed (94% of nouns take -u)

Then: predict experimental results from phonological model

- Given nonce word phonology, syntactic context, and participant, predicts odds of $-\epsilon$
- (I | participant) + phon_odds + preposition

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

- Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε
- Given word, predicts odds of -ε as coefficient phon_odds
- final C place + final C manner + final coda complexity + final V length + final V front + final V height + word length
- Phonology has a *much smaller effect* than in Hungarian $(R^2 = .09)$
- In part because the data are so skewed (94% of nouns take -u)

Then: predict experimental results from phonological model

- Given nonce word phonology, syntactic context, and participant, predicts odds of $-\epsilon$
- (I | participant) + **phon_odds** + preposition

Results: phonological frequency matching

Baseline: the phonological model is slightly predictive of experimental rate of locatives for *individual nonce words*

Results: phonological frequency matching

Results: phonological frequency matching

UConn LingLunch, April 18, 2023

Results: phonological frequency matching

Baseline: the phonological model is slightly predictive of experimental rate of locatives for *individual nonce words*

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

- Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε
- Given word, predicts odds of -ε as coefficient phon_odds
- final C place + final C manner + final coda complexity + final V length + final V front + final V height + word length
- Phonology has a *much smaller effect* than in Hungarian $(R^2 = .09)$
- In part because the data are so skewed (94% of nouns take -u)

Then: predict experimental results from phonological model

- Given nonce word phonology, syntactic context, and participant, predicts odds of - ϵ
- (I | participant) + phon_odds + preposition

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

- Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε
- Given word, predicts odds of -e as coefficient phon_odds
- final C place + final C manner + final coda complexity + final V length + final V front + final V height + word length
- Phonology has a *much smaller effect* than in Hungarian $(R^2 = .09)$
- In part because the data are so skewed (94% of nouns take -u)

Then: predict experimental results from phonological model **and genitive**

- Given nonce word phonology, syntactic context, and participant, predicts odds of - ϵ
- (I | participant) + phon_odds + preposition_

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

- Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε
- Given word, predicts odds of -e as coefficient phon_odds
- final C place + final C manner + final coda complexity + final V length + final V front + final V height + word length
- Phonology has a *much smaller effect* than in Hungarian $(R^2 = .09)$
- In part because the data are so skewed (94% of nouns take -u)

Then: predict experimental results from phonological model **and genitive**

- Given nonce word phonology, syntactic context, **genitive**, and participant, predicts odds of -ε
- (I | participant) + phon_odds + preposition

Baseline: phonological model trained on noun tokens from the Czech National Corpus (Křen et al., 2022)

- Nouns binned as categorical (> 99% of tokens) locative -u vs. variable/categorical -ε
- Given word, predicts odds of -e as coefficient phon_odds
- final C place + final C manner + final coda complexity + final V length + final V front + final V height + word length
- Phonology has a *much smaller effect* than in Hungarian $(R^2 = .09)$
- In part because the data are so skewed (94% of nouns take -u)

Then: predict experimental results from phonological model **and genitive**

- Given nonce word phonology, syntactic context, **genitive**, and participant, predicts odds of -ε
- (I | participant) + phon_odds + preposition + genitive

Target condition: most nonce words had a *much higher* rate of $-\varepsilon$ when also assigned genitive as -a

predicted: sliplu, sliple < slipla, sliple actual: sliplu, sliple < slipla, sliple

predicted: katopu, katopjɛ < katopa, katopjɛ actual: katopu, katopjɛ < katopa, katopjɛ

Target condition: most nonce words had a *much higher* rate of $-\varepsilon$ when also assigned genitive as -a

Results: summary

• Participants (very loosely) matched the phonological distribution of -u and -ε in the lexicon

Results: summary

- Participants (very loosely) matched the phonological distribution of -u and -ε in the lexicon
- Not shown: syntactic context (preposition) also closely mirrored the lexicon

Results: summary

- Participants (very loosely) matched the phonological distribution of -u and -ε in the lexicon
- Not shown: syntactic context (preposition) also closely mirrored the lexicon
- They assigned -ɛ much more to nonce words with genitive -a