Ejercicios Conceptuales

Ejercicio Conceptual 4.1:

Ordenar según el orden de la inclusión (desde el objeto más grande, que contiene a los otros, al objeto más pequeño) a:

Página

Extent

Dispositivo

Orden

- 1. **Dispositivo:** medio físico de almacenamiento que puede contener varios archivos de datos de una base de datos.
- 2. Extent: conjunto de 8 páginas físicamente contiguas.
- 3. **Página:** es la unidad más pequeña de almacenamiento en una base de datos y es el bloque básico que contiene los datos

Ejercicio conceptual 4.2:

Discuta las ventajas y desventajas de aumentar el tamaño de la página

Ventajas de aumentar el tamaño de la página

- Reducción de la fragmentación: Con páginas más grandes, se pueden almacenar más datos contiguos, lo que puede reducir la fragmentación y mejorar la eficiencia de las operaciones de lectura y escritura.
- 2. **Eficiencia en lectura secuencial**: Las consultas que implican la lectura de grandes volúmenes de datos pueden beneficiarse de un tamaño de página mayor, ya que se puede leer más información en cada operación de E/S (entrada/salida).
- Reducción del overhead de administración: Menos páginas significan menos encabezados y metadatos asociados a cada página, lo que puede reducir el overhead administrativo.
- 4. **Mejor uso de la memoria caché**: Las páginas más grandes pueden resultar en un uso más eficiente de la memoria caché, ya que se almacena más información en cada entrada de caché.

Desventajas de aumentar el tamaño de la página

- 1. **Mayor uso de memoria**: Las páginas más grandes consumen más memoria, lo que puede ser un problema en sistemas con recursos limitados.
- 2. **Ineficiencia en lectura de pequeños datos**: Si las consultas frecuentemente acceden a pequeños volúmenes de datos, las páginas más grandes pueden resultar en una mayor latencia, ya que se carga más información de la necesaria.
- 3. **Mayor overhead de E/S**: Las operaciones de E/S que afectan a páginas completas pueden ser menos eficientes si las páginas contienen una gran cantidad de datos irrelevantes para la consulta específica.
- 4. **Incremento de lock contention**: Páginas más grandes pueden llevar a una mayor contención de bloqueos (lock contention) en entornos con múltiples transacciones concurrentes, ya que más datos están agrupados en cada página.

Ejercicio conceptual 4.3:

Discuta las ventajas y desventajas de contar con varios dispositivos:

- 1. Repartidos entre distintos discos
- Dentro del mismo disco

Repartidos entre distintos discos

Ventajas:

- Mejora del rendimiento: Al repartir la carga entre varios discos, las operaciones de lectura y escritura pueden realizarse en paralelo, mejorando el rendimiento general del sistema.
- 2. **Tolerancia a fallos**: Si uno de los discos falla, los datos en los otros discos pueden seguir siendo accesibles, lo que aumenta la confiabilidad del sistema.
- 3. **Aumento de la capacidad**: Utilizar múltiples discos permite una mayor capacidad total de almacenamiento, ya que se pueden agregar más discos según sea necesario.
- 4. **Reducción de la contención de E/S**: La carga de trabajo de E/S se distribuye entre varios discos, lo que puede reducir la contención y los cuellos de botella.

Desventajas:

- 1. **Costo adicional**: Repartir datos entre varios discos puede requerir una inversión adicional en hardware.
- 2. **Complejidad de gestión**: Administrar múltiples discos puede ser más complejo en términos de configuración y mantenimiento.
- 3. Consumo de energía: Más discos significan un mayor consumo de energía, lo que

puede ser un problema en sistemas con restricciones de energía.

Dentro del mismo disco

Ventajas:

- 1. Costo más bajo: No se necesita hardware adicional, lo que puede reducir los costos.
- 2. **Simplificación de gestión**: Administrar un solo disco es más sencillo en términos de configuración y mantenimiento.
- 3. **Menor consumo de energía**: Un solo disco consume menos energía en comparación con múltiples discos.

Desventajas:

- 1. **Rendimiento limitado**: Todas las operaciones de lectura y escritura se realizan en un solo disco, lo que puede limitar el rendimiento y crear cuellos de botella.
- 2. **Mayor riesgo de fallo**: Si el disco único falla, todos los datos almacenados se vuelven inaccesibles, lo que reduce la tolerancia a fallos.
- Capacidad limitada: La capacidad de almacenamiento total está limitada por el tamaño del disco único, lo que puede no ser suficiente para grandes volúmenes de datos.
- 4. **Contención de E/S**: Todas las operaciones de E/S compiten por los mismos recursos, lo que puede aumentar la contención y reducir el rendimiento.

Ejercicio Conceptual 4.4

Discuta la utilidad de las transacciones

Utilidades de las Transacciones

1. Atomicidad (Atomicity):

- Descripción: Las transacciones garantizan que una serie de operaciones se realice de manera completa o no se realice en absoluto. Si alguna parte de la transacción falla, toda la transacción se revierte a su estado original.
- Ventaja: Esto asegura la consistencia de la base de datos y evita estados incompletos o corruptos.

2. Consistencia (Consistency):

- Descripción: Las transacciones aseguran que la base de datos pase de un estado consistente a otro estado consistente. Esto significa que las reglas de integridad y los requisitos de la base de datos se mantienen siempre.
- Ventaja: Previene la corrupción de datos y asegura que todas las restricciones se apliquen correctamente.

3. Aislamiento (Isolation):

- Descripción: El aislamiento garantiza que las transacciones concurrentes no interfieran entre sí. Cada transacción opera como si fuera la única en el sistema, hasta que se completa.
- Ventaja: Minimiza problemas como las lecturas sucias, la lectura no repetible y las lecturas fantasmas, garantizando la consistencia en un entorno multiusuario.

4. Durabilidad (Durability):

- Descripción: Una vez que una transacción se ha completado y confirmado (committed), sus cambios son permanentes y sobreviven a fallos del sistema.
- Ventaja: Esto garantiza que los datos no se pierdan incluso en caso de fallos del sistema, proporcionando confiabilidad.