Worksheet #3: Counting periodic orbits

Consider the logistic function G(x) = 4x(1-x). Plot $G^2(x)$, $G^3(x)$ and $G^4(x)$.

X=3-periodic pts. 0=original fixedpts.

((x) X= periodic fixed pt 0 = original fixed pt.

(4(X) o=original
fixed pts.

o=2-periodic
fixed pts. x = newfixed pt

(1) How many fixed points of G^3 should there be?

(2) How many fixed points of G^3 are in 1-period orbits? 2-period orbits? [Hint: which lower periods give fixed points of G^3 ?

2 - are fixed pts of Gus. o-are fied pts of GUX

(3) So how many period 3 orbits are there?

8-2 = 2 - 3-period or bits.

(4) How many fixed points of G^k are there?

Zh fixedpts. I you get to provethis in the homework.

Complete the periodic table.

Complete	one periodic dabie.		
period-k	# of fixed points of G^k	# of fixed pts due to lower periods	# of k -periodic orbits
.1	2	0	2
2	4	2	1
3	23 =8	2.	2
4	24 = 16	2(#P-1) + 2(#P-2)=4	16-4/4 = 3
5	25 = 32	a	3015 = 6
6	26 = 64	2(#P) + 2(#P-3) + 30(#P-3) =10	54/6 = 9
7	2+=128	2	126/4 = 18

R Zk

mottiples of R.

of Yorbits . Yo

SV 7 = MU

where 28.3 = multiples of the