Implementation of the below circuit using avr-gcc

M Sai Sarath Chandra chandu.4567890@gmail.com FWC22117

IIT Hyderabad-Future Wireless Communication Assignment

March 2023

Contents

1	Problem	2
2	Introduction	2
3	Components	3
4	Hardware	3
5	Software	4

1 Problem

GATE EC-2019

Q.25. In the circuit shown,the clock frequency, i.e.,the frequency of the clock signal ,is 12 KHz. The frequency of the signal at Q2 is KHz.

Figure 1: circuit

2 Introduction

The aim is to implement the above sequential circuit using D flip-flops (IC 7474) and to find out the frequency of the signal at Q2(it is given that the frequency of the clock signal is 12KHz).IC 7474 is a dual positive edge triggered D type flip flop, which means it has two separate flip-flop that are triggered by the rising edge of a clock signal.

In the above circuit Q_1,Q_2 are inputs and D_1,D_2 are outputs. So, from the circuit the expressions of D_1 and D_2 are:

$$D_1 = Q_1' \overline{Q_2'}.$$

$$D_2 = Q_1.$$

Below is the transition table of the above circuit which is as follows:

INF	$^{ m PUT}$	OUTPUT			
Q_1	Q_2	D_1	D_2		
0	0	1			
1	0	0	1		
0	1	0	0		

Table 1: Transition table

3 Components

COMPONENTS							
Component	Value	Quantity					
Resistor	=220 Ohm	1					
Arduino	UNO	1					
Seven Segent Display	Common Anode	1					
Decoder	7447	1					
Flip Flop	7474	1					
Jumper Wires		20					
Breadboard		1					

Table 2: Components

4 Hardware

IC 7474 is a D flip-flop integrated circuit that is commonly used in digital electronics applications. It is a dual positive edge-triggered by the rising edge of a clock signal. Below is the pin diagram of IC 7474:

Figure 2: 7474

The connections between the arduino and IC 7474 is as follows:

	INPUT OUTPUT		CLOCK		VCC					
ARDUINO	D2	D3	D5	D6	D13		5V			
7474	5	9	2	12	3	11	1	4	10	13
7447			1	7				16		

Table 3: connections

5 Software

The code to implement the above circuit is :

```
#include < avr/io.h>
#include <util/delay.h>
#include < stdbool.h>
#define F_CPU 1600000UL
void tone(uint8_t pin, uint16_t frequency, uint16_t duration)
    uint16_t period = F_CPU / (2 * frequency);
    uint16_t cycles = duration * frequency / 1000;
    DDRB |= (1 << PB5);
    for (uint16_t i = 0; i < cycles; i++)</pre>
        PORTB |= (1 << PB5);
        _delay_us(200L);
        PORTB &= ~(1 << PB5);
        _delay_us(200L);
    DDRB &= ~(1 << pin);
int main(void)
bool B,A;
bool Q1=0, Q2=0;
DDRD = 0b01100000;
DDRB = 0b00100000;
PORTD = 0b11000000;
PORTB = 0b00000011;
while(1)
{
    tone(13,12000,10000);
```

```
PORTB = ((1 << PB5));
    _delay_ms(200L);

B=((!Q1) && (!Q2));
A=((Q1) && (!Q2));

PORTD = (A << 5);
PORTD = (B << 6);

Q1 = (PIND & (1 << PIND2)) == (1 << PIND2);
Q2 = (PIND & (1 << PIND3)) == (1 << PIND3);

    PORTB = ((0 << PB5));
    _delay_ms(200L);
}

return 0;
}</pre>
```