SPEC-00-STR-SYS-WORMHOLE-SAFETY-0001-wormhole-safety-and-hazard-mitigations-EVOL-00-D127m-EN-DE-v0.1.0-DRAFT

SPEC-00-STR-SYS-WORMHOLE-SAFETY-0001 — Wormhole Safety & Hazard Mitigations (EVOL-00, \emptyset 127 m) — v0.1.0 DRAFT

Status: Draft · **Geltung:** Earth ONE (EVOL-00) · **Objekt:** DECK 000 "Wormhole" (axialer Mikro-g-Korridor, OD 22 m / ID 20 m, mit Inconel-Docking-Ringen & Fenstersegmenten)

0. Summary / Kurzfassung (EN/DE)

EN (one-pager): This spec defines the constructive safety architecture for the axial "Wormhole" corridor (DECK 000). The design uses **segmented pressure/fire bulkheads**, **blast-tolerant docking rings**, **inert-gas fire suppression**, **fast shutters/MDPS for window segments**, plus **dedicated vent & blow-out routes to space** near the hull. Hazard cases covered: **ship explosion at bay**, **fire on docked ship**, **vehicle collision within the Wormhole**, **solar particle events**, **micrometeoroid transverse & axial penetrations**. Acceptance is via closure-time, vent-capacity and isolation-integrity tests per station-wide safety framework.

DE (Kurz): Festgelegt werden konstruktive Schutzebenen für DECK 000: **Sektorisierung über Ring-/Sektor-Schotts**, **blastfähige Docking-Ringe**, **Inertgas-Brandunterdrückung**, **Schnell-Außenschotts/MDPS** an Fenstersegmenten, **gezielte VENT/BOP-Entlastung ins All**. Abgedeckte Szenarien: **Explosion am Andockbay**, **Brand am angedockten Schiff**, **Kollision im Wormhole**, **Sonnenwind-/Strahlungs-Ereignisse**, **Meteoritendurchschlag quer/längs**. Verifikation über Schließzeiten, Vent-Kapazitäten und Dichtheits-/Isolationsnachweise gemäß Stationsstandard.

1. Scope & References

Scope: Konstruktive Schutzmaßnahmen und Auslegungsregeln für DECK 000 inkl. Schnittstellen zu DECK 001/Schotts/VENT/BOP. **Nicht-Ziel:** OPS-Prozeduren (separates Dokument).

Baseline-Verankerung: • Geometrie/Materialien/Wormhole-Ringe/Fenstersegmente (DECK 000). • Station-weite Sektorisierung, Türen/Schotts, Inertisierung, VENT/BOP (DECK 013–015 Muster; Systemstandard). • Safety & Hazard Protocols (Feuer, Strahlung, MMOD – Grundprinzipien). • Fenster/MDPS/Cupola-Shutters – Referenzlinks in der Global-SPEC.

2. Baseline & Interfaces (recap)

- Wormhole (DECK 000): Axialer Mikro-g-Korridor, OD 22 m / ID 20 m; alternierende Docking-Ringe (10 m Halsweite, Inconel) und Fenster-Tuben mit multilayer Fensterstacks; Ring-Abstände ≈ 20 m. Jeder Ring = isolierbares Kompartiment (Druck-/Brandschottfunktion integriert).
- **Schnittstellen:** Drucktüren/Schleusen zu DECK 001, Red/Blue-Comms, duale DC-Busse, Inertgas-Ringleitungen, VENT/BOP-Anbindung hull-nah.

3. Design Objectives (Safety Envelope)

- 1. **Containment:** Ereignisse lokal halten (Ring-zu-Ring Sektorisierung, PT-A/PT-B/AL-C).
- 2. **Energy Management:** Druck/Impuls zielgerichtet **radial ins All** entlasten (VENT/BOP hull-nah; keine tangentiale Führung).
- 3. **No Single Point of Failure:** Redundante Türen/Strom/Comms; fail-safe geschlossen.
- 4. **Human Factors:** Safe-hold-Nodes pro Ring, klare Gegenstrom-Trennung Ankunft/Abflug, schnelle Shutter-Schließung.

4. Threat Cases (Design Cases)

E1 — **Explodierendes Schiff am Docking-Ring** Bemessungsfälle (lastfall-agnostisch): Druckstoß + Trümmer, Nahfeld am Ring-Hals. Ziele: Ring-Kompartiment hält; Impuls wird radial abgeführt; Fenster/Tuben vorgelagert durch Shutter geschützt.

E2 — **Brand am angedockten Schiff** Rauch/Hitze/Flammen-Übergang in Ring-Kompartiment; Ziel: **Inertisierung** im Sektor, Andockadapter/Leitungen feuerfest, schnelle Trennung/Abwurf.

E3 — **Kollision von Fahrzeugen im Wormhole** Lineare Relativkollision in der Achse; Ziel: Vermeidung (Traffic-Separation/Interlocks) + **Energieabsorption** an Ring-Hals (Opfer-Strukturen).

E4 — **Sonnenwind/Solar Particle Event (SPE)** Kurzfristig erhöhte Strahlung; Ziel: **Shutter-Down**, Umsiedeln in stärker geschirmte Decks/Schutzringe, Minimierung Aufenthaltszeit in Fenster-Tuben.

E5 — **Meteorit quer (seitlicher Einschlag in Tuben/Ringe)** MMOD-Durchschlag lateral; Ziel: Stuffed-Whipple/Spall-Liner + Sektor-Isolation + VENT nach außen.

E6 — **Meteorit längs (axial entlang der Röhre)** Axialer Strike durch Fenster-Tubus/Offen-Ring; Ziel: Shutter-Schließung + interne Fänger-/Spall-Liner-Zonen zwischen Ringen.

5. Constructive Measures (Layered)

5.1 Compartmentation & Doors

- Ring-zu-Ring-Sektorisierung: Jeder Docking-Ring ist druckfest isolierbar; PT-A (Hauptschott motorisch/manuell), PT-B (Service-Tür), AL-C (Airlock, Δp-/O₂-/Rauch-/Temp-Dualsensorik). Fail-safe "zu", Fernentriegelung nur freigabepflichtig.
- **Schließzeiten (Targets):** PT-A ≤ 3 s lokal, ≤ 8 s kaskadiert; AL-C Interlock auf Crew-Präsenz. (Nachweis über Systemtests, s. § 8.)

5.2 Vent & Blow-Out (to space)

- **VENT-Stränge pro Ring-Sektor** mit Rückstromsperren; **BOP-Zonen** hull-nah als Soll-Scherfugen für rasches Druck-/Rauch-Abblasen nach außen; keine tangentiale Entlastung.
- Dimensionales Prinzip: Auslegung auf choked flow (kritischer Ausströmung) mit $\dot{m} = C_d \, A \, P_0 \, \sqrt{\frac{\gamma}{RT}} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}; \text{ Acceptance "uber Mindest-A je Ring-Volumen und vorgegebene Entlastungszeit (siehe § 6.1). (Formel-Framework, Implementierung stationsweit einheitlich).}$

5.3 Fire & Atmosphere

- Inertgas-Suppression (Ar/N₂): Segmentiert pro Ring; automatischer Trigger (Flamme/Rauch/ΔT), manuelle Override-Option; O₂-Absenkung kontrolliert.
- **Materialien:** SiC-Verbund, Inconel an Hot-Spots; nicht brennbare Innenverkleidungen; Leitungsdurchführungen mit Feuerschotts.

5.4 Windows / MDPS / Shutters

• Fenster-Segmente: Multilayer-Stacks + Schnell-Shutters (ISS-Cupola-Prinzip); MDPS/MMOD-Shades außen. Ziel-Zeit t shutter ≤ 0,5 s vom Alarm.

5.5 Blast-Tolerant Docking

- Ring-Hals als Blast-Cradle: Energieabsorbierende Sandwich-Kragen, Soll-Verformungszonen, frangible Attachments, die Impuls in BOP-Routen koppeln. Ring kann autark dicht gesetzt werden.
- **Jettison/Quick-Release:** Pyro-/Mechanik-Trennsysteme für kontaminiertes/brandbetroffenes Schiff, mit autom. Rückzugs-Shutter. (Interface in § 9.)

5.6 Collision Prevention & Mitigation

- **Traffic-Separation:** Nord = Arrivals, Süd = Departures; **Segment-Freigabe**: nur **ein** Fahrzeug zwischen zwei Ringen (Occupancy-Interlock); Speed-Limit & Autopilot-Beacons an iedem Ring.
- **Bumper-Rails & Catch-Nets** in Fenster-Tuben; weiche Führung, Verformungsenergie-Aufnahme.

5.7 Radiation (Solar Wind / SPE)

• **Storm-Mode:** Shutter-Down + Verlagerung Crew in **wasser/poly-geschirmte** Decks/Sektoren (DECK 013/014-Schnittstellen): **EX-Zonen priorisierte VENT**.

5.8 Micrometeoroids (quer/längs)

- Quer: Stuffed-Whipple Gürtel um Wormhole-Tuben + Spall-Liner innen; ringweise Isolation
 + VENT
- Längs: Shutter-Kaskade ringweise, Fänger-Lamellen im Tubus, um Sekundärtrümmer zu brechen.

6. Sizing Rules (Engineering)

6.1 Vent/Blow-Out Capacity

- **Design-Ziel:** $t_{\rm relief}$ bis $p \leq p_{\rm safe}$ in $\Delta t_{\rm max}$ (Programmwert), unter Annahme choked outflow (Formel § 5.2).
- **Akzeptanz:** pro Ring-Kompartiment $A_{\text{VENT}}^* \geq A_{\min}(V, T, P_0, \gamma)$; Nachweis im Funktions-Test mit simuliertem Hot-Gas-Release. *(Stationsweit einheitliche Rechenblätter).*

6.2 Door/Compartment Closure

• **PT-A Schließzeit** ≤ 3 s lokal; Kaskade ≤ 8 s (E1/E2-Trigger). **Dichtheitstest**: Δp-Haltezeit ≥ Programmwert.

6.3 Shutter Timing

• t_shutter ≤ 0,5 s auf E5/E6/E4-Trigger (MMOD Radar/Optik, SPE-Alert). Nachweis: End-to-End-Test pro Fenster-Segment.

6.4 Inert-Gas Dose

Ar/N₂-Masse pro Ring nach Volumen & Leck-Annahme; Soll-O₂-Setpoint ≤ 12-15 Vol-% in ≤ N Sekunden; Doppelt redundant gespeist.

7. Operations & Human Factors (Schnittstellen)

- **Safe-Hold-Nodes** an jedem Ring (Masken, Comms, Med-Kit), farbcodierte Wege, klare Gegenstrom-Kennung Ankunft/Abflug.
- EX-Markierungen & Dekon-Routen in Richtung DECK 001/013-L.

8. Verification & Acceptance (V&V)

- 1. Dry-Run E1/E2/E3: Tür-/Schott-Schließtests, Occupancy-Interlocks, lettison-Sim.
- 2. **VENT/BOP-Test:** Öffnungslogik, Durchfluss-Nachweis (kalte Gas-Trials + CFD/Analytik).
- 3. **Shutter-Kaskade:** Sensor-→ Aktor-End-to-End mit High-speed-Logging (E4/E5/E6).
- 4. Inertisierung: Dichtheit, Setpoint-Zeit, Wiederbelüftung.

9. ICD & Naming

- Doors: PT-A/PT-B/AL-C je Ring-Segment.
- Relief: VENT-000-, BOP-000- (hull-nah).
- **Comms/Power:** Red/Blue-Fiber; DC-Bus-A/B + USV an Safety-Aktoren.

10. Open Parameters (TBD/TBC)

- Exakte Blast-Lastfälle (Skalierung/Impuls); Ring-Hals-Opfer-Geometrie (FEA).
- Final **VENT/BOP-Areal** je Ring-Volumen & Prozess-Gase.
- **Shutter-Antrieb** (Common-Line vs. Segment-lokal) Feinspezifikation.
- Quick-Release-Interfaces zu Dock-Adaptern (mechanisch/elektrisch).

11. References

- DECK 000 Wormhole Baseline Geometry/Systems.
- Global Geometry & Safety/Windows/MDPS (Refs & Links).
 Safety & Hazard Protocols (Feuer, Strahlung, MMOD).
- Schotts/VENT/BOP Layout-Prinzipien (014/015 Muster).