Fundamental Spaces AER^{MXN}

range space $R(A) = \{ 2 \in R^m | 2 = Au \}$ (column space) $v = u_1 d_1 + u_2 d_2 + \dots + u_n d_n$

R(A) is a subspace $v_1, v_2 \in R(A) \Rightarrow u_1, u_2 \leq t$. $v_3 = Au_3$ $v_2 = Au_2$ $d_1 v_1 + \alpha_2 v_2 = A(\alpha_1 u_1 + \alpha_2 u_2)$ $d_2 \in R(A)$

dim (R(A)) = # Unearly indep. columns of A = column rank of A Null Space N(A) = $\{u \in \mathbb{R}^n \mid Au = 0\}$ R(AT) = $\{u \in \mathbb{R}^n \mid u = A^Tv^*, v \in \mathbb{R}^m\}$ N(AT) = $\{v \in \mathbb{R}^m \mid A^Tv = 0\}$

Recap
$$R(A)$$
 $R(A^T) \longrightarrow \mathbb{R}^n$
 $R(A^T) \longrightarrow \mathbb{R}^n$
 $R(A^T) \longrightarrow \mathbb{R}^n$
 $R(A^T) \longrightarrow \mathbb{R}^n$

$$w \in R(A)^{\perp} \iff w^{\top}(Au) = D \quad \forall u$$

$$\overline{v} \in R(A)$$

$$\Rightarrow u^{T}A^{T}w = 0 + u$$
or $u \perp A^{T}w + u$
not possible unless $A^{T}w = 0$

$$w \in \mathcal{N}(A^{T})$$

so
$$R(A)^{\perp} = N(A)$$

 $N(A)^{\perp} = R(A^{\top}) \leftarrow \text{prove this}$

rank (A): dim (R(A)) = dim (R(AT)) = r < m, n

SVD
$$V_1, v_2 ... v_r \in \mathcal{R}(A)$$

$$v_{r+1}, ..., v_m \in \mathcal{N}(A)$$

$$u_1, u_2 ... u_r \in \mathcal{R}(A^T)$$

$$u_{r+1} ... u_n \in \mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$$

Singalar Value Decemposition

$$A = V \geq U^{T} \qquad V^{T}_{V} = V V^{T} = I$$

$$V^{T}_{V} = V V^{T} = I$$

$$A^{T}_{A} = (V \geq U^{T}_{V} \vee V^{T}_{V})$$

$$= U \geq V^{T}_{V} \vee V^{T}_{V}$$

$$(\mathcal{C}_{i}(A))^{2} = \lambda_{i}(A^{T}A)$$
 $i=1...\gamma$
= $\lambda_{i}(AA^{T})$ similarly