Dispense del corso Teoria Analitica dei Numeri B

Riccardo Zanotto

7 ottobre 2019

Indice

Indice			ii
1	Introduzione		
	1.1	Il problema di Erdos	1
	1.2	Il problema di Waring	2
	1.3	Il problema di Goldbach	3
	1.4	Il metodo di Hardy-Littlewood	4
2	Il p	roblema di Goldbach	5
	2.1	Richiami sui numeri primi	5
	2.2	Il teorema di Vinogradov	6

Introduzione

In questo corso tratteremo prevalentemente la teoria analitica additiva; in particolare useremo il metodo del cerchio di Hardy-Littlewood per approcciarci ai seguenti problemi:

- problema di Waring
- problema di Goldbach
- problema di Erdos, Roth, Szemeredi

1.1 Il problema di Erdos

L'ultimo problema è stato proposto da Erdos nella seguente forma:

Congettura 1.1.1 (Erdos). Sia $E \subset \mathbb{N}$ un insieme tale che $\overline{d}(E) = \limsup_{N \to \infty} \frac{\#E \cap [1,N]}{N} > 0$. Allora esistono tre elementi di E in progressione aritmetica.

Il problema in questa forma venne risolto da Roth nel 1953; in seguito venne mostrato il seguente

Teorema 1.1.2 (Szemeredi, 1975). Sia $E \subset \mathbb{N}$ un insieme tale che $\overline{d}(E) > 0$. Allora esistono segmenti di progressioni aritmetiche arbitrariamente lunghi.

Negli ultimi anni si è arrivati anche al seguente risultato

Teorema 1.1.3 (Green e Tao, 2004). L'insieme dei numeri primi contiene progressioni aritmetiche arbitrariamente lunghe

2 Introduzione

1.2 Il problema di Waring

Un risultato molto importante nella teoria elementare dei numeri è il famoso "teorema dei quattro quadrati", ovvero

Teorema 1.2.1 (Lagrange, 1770). Ogni intero positivo si può scrivere come somma di al più quattro quadrati.

Nello stesso anno, Waring propose la seguente generalizzazione:

Congettura 1.2.2 (Waring, 1770). Ogni intero positivo si scrive come somma di al più 9 cubi, 19 potenze quarte, e così via...

Questa frase ci porta a definire il nostro oggetto di studio:

Definizione 1.2.3. Fissato k, sia g(k) il minimo intero (eventualmente infinito) tale che ogni $n \in \mathbb{N}$ si può scrivere come somma di g(k) potenze k-esime.

Uno dei primi risultati su g(k) è un bound dal basso:

Proposizione 1.2.4 (Eulero).
$$g(k) \ge 2^k + \left| \left(\frac{3}{2} \right)^k \right| - 2$$

Dimostrazione. Sia $n_k = 2^k \cdot \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 1$; si vede facilmente che $n_k < 3^k$. Quindi per scriverlo come somma di potenze k-esime possiamo usare solamente $1^k, 2^k$.

Tuttavia $2^k \cdot \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor > n_k$, perciò possiamo usare al più $\left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 1$ volte il 2^k .

Rimane poi $n_k - 2^k \cdot \left(\left\lfloor \left(\frac{3}{2} \right)^k \right\rfloor - 1 \right) = 2^k - 1$, per cui possiamo usare solo gli 1^k , e ce ne servono $2^k - 1$.

Sommando le due quantità otteniamo ul bound cercato.

Osservazione. Sebbene questo sembri un bound banale, in realtà è molto forte: se calcoliamo il valore del bound per 2, 3, 4 otteniamo 4, 9, 19 che sono esattamente i valori congetturati da Waring.

Nell'ultimo secolo si è infatti dimostrato che

Teorema 1.2.5 (Mahler, 1957). $g(k) = 2^k + \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 2$, tranne al più un numero finito di k.

Un importante risultato di inizio secolo è il seguente

Teorema 1.2.6 (Hilbert, 1909). Il numero g(k) esiste finito per ogni intero k.

Dato che lo studio di g(k) è quasi completamente risolto, si è iniziata a studiare un'altra quantità

Definizione 1.2.7. Si indica con G(k) il minimo intero s tale che ogni intero sufficientemente grande è scrivibile come somma di s potenze k-esime.

Osservazione. Vale ovviamente $G(k) \leq g(k)$ e quindi anche G(k) è finito $\forall k$.

Lo studio di questa funzione è molto più difficile di quello di g(k). Alcuni dei risultati che si hanno sono

Teorema 1.2.8 (Davenport, 1939). G(4) = 16

Teorema 1.2.9 (Vaughan e Wooley). $G(k) \le k \log k + k \log \log k + Ck$

1.3 Il problema di Goldbach

Questo è uno dei problemi più famosi della matematica, data la semplicità dell'enunciato:

Congettura 1.3.1 (Goldbach, 1742).

- Forma forte: Ogni intero pari è esprimibile come somma di due primi.
- Forma debole: Ogni intero è scrivibile come somma di al più tre primi.

Un risultato parziale è il seguente

Teorema 1.3.2 (Helfgott, 2013). Ogni intero dispari $n \geq 7$ si scrive come somma di tre primi dispari.

Ci sono metodi "probabilistici" per vedere che asintoticamente molti numeri soddisfano la congettura.

Ad esempio, Hardy e Littlewood dimostrarono che il numero di rappresentazioni come somma di k primi è asintotico a $c_k \frac{n^2}{\log^3 n}$; tuttavia $c_2 = 0$, quindi la parte principale è un'altra. Abbiamo poi il seguente

Teorema 1.3.3. Ogni intero positivo, tranne al più un insieme E, è somma di 2 primi; con $E \cap [1, N] = O\left(\frac{N}{\log^{\alpha} N}\right)$ per ogni α .

Un'altra strada è attraverso metodi di crivello, giungendo a risultati del tipo

Teorema 1.3.4 (Chen, 1973). Ogni intero positivo sufficientemente grande è somma di un primo e di un semiprimo (ovvero di un prodotto di al più due primi).

4 Introduzione

1.4 Il metodo di Hardy-Littlewood

Sia a_m una successione crescente di interi; siamo interessati a studiare il comportamento della quantità $R_s(n)$ che è il numero di rappresentazioni di n come somma di s termini della successione.

Introduciamo allora la serie di potenze $F(z) = \sum_{m \geq 0} z^{a_m}$. Vale allora

$$F^s(z) = \sum_{n \ge 0} z^n \cdot R_s(n)$$

Dato che F è olomorfa in |z| < 1, possiamo usare il teorema di Cauchy per ottenere

$$R_s(n) = \oint_{|z|=\rho} \frac{F^s(z)}{z^{n+1}} dz$$

Notazione. Definiamo $e(\alpha) = e^{2\pi i \alpha}$. Diciamo che $f \ll g$ se f = O(g).

Una variante del metodo, che permette di integrare sul cerchio unitario, si ottiene considerando somme parziali del tipo $S(\alpha) = \sum_{m \leq N} e(\alpha a_m)$ in modo da ottenere

$$S^{s}(\alpha) = \sum_{m \le N \cdot s} R_{s}(m, N) e(\alpha m)$$

dove $R_s(m,n)$ indica il numero di modi di scrivere m come somma di s elementi della successione, ognuno $\leq N$.

Usando allora l'ortogonalità delle funzioni $e(\alpha k)$, possiamo ricavare che

$$R_s(m,N) = \int_0^1 S^s(\alpha)e(-\alpha m)d\alpha$$

Il problema di Goldbach

Approcciamo ora le congetture di Goldbach, dimostrandone una forma debole.

2.1 Richiami sui numeri primi

Ci serviranno alcuni risultati classici, stile PNT.

Definizione 2.1.1. La funzione Λ di von Mangoldt è data da

$$\Lambda(n) = \begin{cases} \log p & \text{se } n = p^a \\ 0 & \text{altrimenti} \end{cases}$$

Sia poi $\psi(x) = \sum_{n \leq x} \Lambda(n)$ la funzione ψ di Chebycheff. Infine definiamo la θ di Chebycheff: $\theta(x) = \sum_{p \leq x} \log p$ dove la somma è fatta sui primi.

Proposizione 2.1.2. Si verificano facilmente le seguenti proprietà:

- $e^{\psi(N)} = mcm(1, 2, \dots, N).$
- $\psi(x) = \sum_{i=1}^{\lfloor \log_2(x) \rfloor} \theta(x^{1/i}).$

Un teorema classico è il seguente

Teorema 2.1.3. $x \ll \psi(x), \theta(x) \ll x$.

che raffinato diventa il teorema dei numeri primi

Teorema 2.1.4 (PNT). $\psi(x) \sim \theta(x) \sim x$.

2.2Il teorema di Vinogradov

L'oggetto di studio di questa sezione è la seguente funzione

Definizione 2.2.1. Dato
$$N \geq 2$$
, sia $r(N) = \sum_{k_1+k_2+k_3=N} \Lambda(k_1) \cdot \Lambda(k_2) \cdot \Lambda(k_3)$

L'obiettivo finale sarà dimostrare il

Teorema 2.2.2 (Vinogradov, 1930). Per ogni A > 0 vale

$$r(N) = \frac{1}{2}\sigma(N) \cdot N^2 + O\left(\frac{N^2}{(\log N)^A}\right)$$

dove
$$\sigma(N) = \prod_{p|N} \left(1 - \frac{1}{(p-1)^2}\right) \cdot \prod_{p\nmid N} \left(1 + \frac{1}{(p-1)^3}\right)$$

Osservazione. Se N è pari, allora $\sigma(N) = 0$, quindi la parte principale svanisce e occorre studiare meglio il resto.

Vediamo intanto come il teorema risolve la congettura di Goldbach sui dispari.

Detta $r^*(N) = \sum_{p_1+p_2+p_3=N} \log(p_1) \log(p_2) \log(p_3)$, si può vedere che è molto vicina lla r(N) che stiamo studiando.

Infatti, consideriamo i termini di r(N) in cui almeno un k_i (diciamo k_1) è una potenza di un primo con esponente almeno 2; ma allora deve essere $k_1 \leq \sqrt{N}$ e quindi si ricava $r(N) - r^*(N) \le \sum_{k_1 \le \sqrt{N}} \Lambda(k_1) \cdot \sum_{k_2 + k_3 \le N} \Lambda(k_2) \Lambda(k_3)$.

Il primo fattore è esattamente $\psi(\sqrt{N})$, che per il PNT è $\ll \sqrt{N}$; il secondo fattore può essere maggiorato con $\sum_{k_2 \le N} \Lambda(k_2) \cdot \log N$, ovvero $\psi(N) \log N$ che di nuovo è $\ll N \log N$.

Concludiamo cioè che $r(N) = r^*(N) + O(N^{3/2} \log N)$.

Abbiamo allora il

Corollario 2.2.3. Ogni intero dispari N sufficientemente grande è somma di 3 primi in almeno $c \frac{N^2}{\log^3 N}$ modi, con c > 0.

Dimostrazione. Per il teorema di Vinogradov e la stima appena vista, la parte principale di $r^*(N)$ è cN^2 .

Inoltre
$$r^*(N) = \sum_{p_1+p_2+p_3=N} \log(p_1) \log(p_2) \log(p_3) \le \sum_{p_1+p_2+p_3=N} \log^3(N)$$
, cioè il numero di modi di scrivere N come somma di 3 primi è almeno $\frac{r^*(N)}{\log^3(N)}$. \square

Per la dimostrazione del teorema di Vinogradov ci serviranno un po' di lemmi.

L'idea comunque è di considerare la funzione $S(\alpha,N)=\sum_{k\leq N}\Lambda(k)e(\alpha k)$, da cui $S^3(\alpha,N)=\sum_{l\leq 3N}e(\alpha l)r(l,N)$. Quindi per inversione di Fourier possiamo scrivere

$$r(N) = \int_0^1 S^3(\alpha, N) e(-\alpha N) d\alpha$$

Dividiamo in archi principali e secondari...