

Lie bracket of vector fields

In the mathematical field of <u>differential topology</u>, the **Lie bracket of vector fields**, also known as the **Jacobi–Lie bracket** or the **commutator of vector fields**, is an operator that assigns to any two <u>vector</u> fields X and Y on a smooth manifold M a third vector field denoted [X, Y].

Conceptually, the Lie bracket [X, Y] is the derivative of Y along the $\underline{\text{flow}}$ generated by X, and is sometimes denoted $\mathcal{L}_X Y$ ("Lie derivative of Y along X"). This generalizes to the $\underline{\text{Lie derivative}}$ of any $\underline{\text{tensor field}}$ along the flow generated by X.

The Lie bracket is an \mathbf{R} -bilinear operation and turns the set of all smooth vector fields on the manifold M into an (infinite-dimensional) Lie algebra.

The Lie bracket plays an important role in <u>differential geometry</u> and <u>differential topology</u>, for instance in the <u>Frobenius integrability theorem</u>, and is also fundamental in the geometric theory of <u>nonlinear control</u> systems. [1]

Definitions

There are three conceptually different but equivalent approaches to defining the Lie bracket:

Vector fields as derivations

Each smooth vector field $X: M \to TM$ on a manifold M may be regarded as a <u>differential operator</u> acting on smooth functions f(p) (where $p \in M$ and f of class $C^{\infty}(M)$) when we define X(f) to be another function whose value at a point p is the <u>directional derivative</u> of f at p in the direction X(p). In this way, each smooth vector field X becomes a <u>derivation</u> on $C^{\infty}(M)$. Furthermore, any derivation on $C^{\infty}(M)$ arises from a unique smooth vector field X.

In general, the <u>commutator</u> $\delta_1 \circ \delta_2 - \delta_2 \circ \delta_1$ of any two derivations δ_1 and δ_2 is again a derivation, where \circ denotes composition of operators. This can be used to define the Lie bracket as the vector field corresponding to the commutator derivation:

$$[X,Y](f)=X(Y(f))-Y(X(f)) \ \ ext{ for all } f\in C^\infty(M).$$

Flows and limits

Let Φ_t^X be the <u>flow</u> associated with the vector field X, and let D denote the <u>tangent map derivative</u> operator. Then the Lie bracket of X and Y at the point $X \in M$ can be defined as the Lie derivative:

$$[X,Y]_x \ = \ (\mathcal{L}_XY)_x \ := \ \lim_{t o 0} rac{(\mathrm{D}\Phi^X_{-t})Y_{\Phi^X_t(x)} \ - \ Y_x}{t} \ = \ rac{\mathrm{d}}{\mathrm{d}t}ig|_{t=0} (\mathrm{D}\Phi^X_{-t})Y_{\Phi^X_t(x)}.$$

This also measures the failure of the flow in the successive directions X, Y, -X, -Y to return to the point x:

$$[X,Y]_x \;=\; rac{1}{2}rac{\mathrm{d}^2}{\mathrm{d}t^2}\Big|_{t=0}(\Phi^Y_{-t}\circ\Phi^X_{-t}\circ\Phi^Y_{t}\circ\Phi^X_{t})(x)\;=\; rac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}(\Phi^Y_{-\sqrt{t}}\circ\Phi^X_{-\sqrt{t}}\circ\Phi^Y_{\sqrt{t}}\circ\Phi^X_{\sqrt{t}})(x).$$

In coordinates

Though the above definitions of Lie bracket are <u>intrinsic</u> (independent of the choice of coordinates on the manifold M), in practice one often wants to compute the bracket in terms of a specific coordinate system $\{x^i\}$. We write $\partial_i = \frac{\partial}{\partial x^i}$ for the associated local basis of the tangent bundle, so that general vector fields can be written $X = \sum_{i=1}^n X^i \partial_i$ and $Y = \sum_{i=1}^n Y^i \partial_i$ for smooth functions $X^i, Y^i : M \to \mathbb{R}$. Then the Lie bracket can be computed as:

$$[X,Y]:=\sum_{i=1}^n \left(X(Y^i)-Y(X^i)
ight)\partial_i=\sum_{i=1}^n\sum_{j=1}^n \left(X^j\partial_jY^i-Y^j\partial_jX^i
ight)\partial_i.$$

If M is (an open subset of) \mathbb{R}^n , then the vector fields X and Y can be written as smooth maps of the form $X: M \to \mathbb{R}^n$ and $Y: M \to \mathbb{R}^n$, and the Lie bracket $[X,Y]: M \to \mathbb{R}^n$ is given by:

$$[X,Y] := J_Y X - J_X Y$$

where J_Y and J_X are $n \times n$ <u>Jacobian matrices</u> ($\partial_j Y^i$ and $\partial_j X^i$ respectively using index notation) multiplying the $n \times 1$ column vectors X and Y.

Properties

The Lie bracket of vector fields equips the real vector space $V = \Gamma(TM)$ of all vector fields on M (i.e., smooth sections of the tangent bundle $TM \to M$) with the structure of a <u>Lie algebra</u>, which means [•,•] is a map $V \times V \to V$ with:

- R-bilinearity
- $\quad \blacksquare \ \, \text{Anti-symmetry, } [X,Y] = -[Y,X]$
- Jacobi identity, [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.

An immediate consequence of the second property is that [X, X] = 0 for any X.

Furthermore, there is a "product rule" for Lie brackets. Given a smooth (scalar-valued) function f on M and a vector field Y on M, we get a new vector field fY by multiplying the vector Y_X by the scalar f(x) at each point $X \in M$. Then:

where we multiply the scalar function X(f) with the vector field Y, and the scalar function f with the vector field [X, Y]. This turns the vector fields with the Lie bracket into a <u>Lie algebroid</u>.

Vanishing of the Lie bracket of *X* and *Y* means that following the flows in these directions defines a surface embedded in *M*, with *X* and *Y* as coordinate vector fields:

Theorem: $[X,Y] = \mathbf{0}$ iff the flows of X and Y commute locally, meaning $(\Phi_t^Y \Phi_s^X)(x) = (\Phi_s^X \Phi_t^Y)(x)$ for all $x \in M$ and sufficiently small s, t.

This is a special case of the Frobenius integrability theorem.

Examples

For a <u>Lie group</u> G, the corresponding <u>Lie algebra</u> \mathfrak{g} is the tangent space at the identity T_eG , which can be identified with the vector space of <u>left invariant</u> vector fields on G. The Lie bracket of two left invariant $\mathbb{Z}_{\text{odisplaystyle}}$

vector fields is also left invariant, which defines the Jacobi-Lie bracket operation

For a matrix Lie group, whose elements are matrices $g \in G \subset M_{n \times n}(\mathbb{R})$, each tangent space can be represented as matrices: $T_gG = g \cdot T_IG \subset M_{n \times n}(\mathbb{R})$, where \cdot means matrix multiplication and I is the identity matrix. The invariant vector field corresponding to $X \in \mathfrak{g} = T_IG$ is given by $X_g = g \cdot X \in T_gG$, and a computation shows the Lie bracket on \mathfrak{g} corresponds to the usual <u>commutator</u> of matrices:

$$[X,Y] = X \cdot Y - Y \cdot X.$$

Generalizations

As mentioned above, the <u>Lie derivative</u> can be seen as a generalization of the Lie bracket. Another generalization of the Lie bracket (to vector-valued differential forms) is the Frölicher–Nijenhuis bracket.

References

- 1. <u>Isaiah 2009</u>, pp. 20–21, <u>nonholonomic systems</u>; <u>Khalil 2002</u>, pp. 523–530, <u>feedback</u> linearization.
- "Lie bracket" (https://www.encyclopediaofmath.org/index.php?title=Lie_bracket),
 Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Isaiah, Pantelis (2009), "Controlled parking [Ask the experts]", IEEE Control Systems
 Magazine, 29 (3): 17–21, 132, doi:10.1109/MCS.2009.932394 (https://doi.org/10.1109%2FM
 CS.2009.932394), S2CID 42908664 (https://api.semanticscholar.org/CorpusID:42908664)
- Khalil, H.K. (2002), Nonlinear Systems (http://www.egr.msu.edu/~khalil/NonlinearSystems/)
 (3rd ed.), Upper Saddle River, NJ: Prentice Hall, ISBN 0-13-067389-7
- Kolář, I., Michor, P., and Slovák, J. (1993), Natural operations in differential geometry (http://www.emis.de/monographs/KSM/index.html), Berlin, Heidelberg, New York: Springer-Verlag, ISBN 3-540-56235-4 Extensive discussion of Lie brackets, and the general theory of Lie derivatives.
- Lang, S. (1995), *Differential and Riemannian manifolds*, Springer-Verlag, <u>ISBN</u> <u>978-0-387-94338-1</u> For generalizations to infinite dimensions.
- Lewis, Andrew D., *Notes on (Nonlinear) Control Theory* (http://penelope.mast.queensu.ca/m ath890-03/ps/math890.pdf) (PDF)
- Warner, Frank (1983) [1971], Foundations of differentiable manifolds and Lie groups, New York-Berlin: Springer-Verlag, ISBN 0-387-90894-3

Retrieved from "https://en.wikipedia.org/w/index.php?title=Lie_bracket_of_vector_fields&oldid=1182213675"