Arithmetic I Exercises

Boyang Guo

October 22, 2022

Contents

1	Rudiments	2
2	Algebraic Structures	8
3	Ring-theoretic Constructions	15
4	Linear Algebra	16
5	Finite Fields and Reciprocity	17
6	p-adic Numbers	18
7	Hilbert Symbol	19

Rudiments

— —WEEK 1— —

Suppose we have a family of sets \mathcal{C} . If for each pair of elements $X,Y\in\mathcal{C}$, we have either X=Y or $X\cap Y=\varnothing$, then we say that \mathcal{C} is a disjoint family of sets or a non-intersecting family of sets. The union of all sets in \mathcal{C} is denoted by

$$\bigsqcup_{X\in\mathcal{C}}X$$

We'll make the assumption that the notation \bigsqcup is only used for a non-intersecting family of sets. That is

$$Y = \bigsqcup_{X \in \mathcal{C}} X$$

if and only if

$$\begin{cases} Y = \bigcup_{X \in \mathcal{C}} X \\ ((\forall X_1, X_2 \in \mathcal{C}), X_1 \cap X_2 \neq \varnothing) \Rightarrow (X_1 = X_2) \end{cases}$$

For any set X, we use the notation 2^X to denote the set of all subsets of X. That is

$$2^X = \{Y | Y \subset X\}$$

1.1

Suppose $f: X \to Y$ is a mapping. Prove that

$$X = \bigsqcup_{y \in Y} f^{-1}(\{y\})$$

1.2

Let $f: X \to Y, g: Y \to X$ be two mappings. Prove that if $gf = \mathrm{id}_X$, then f is injective and g is surjective.

Use 1.3 to prove that: f is invertible $\Leftrightarrow f$ is bijective.

1.4

Consider the mapping $f: X \to X$ where X is a finite set. Prove that the following six properties are equivalent.

f is injective f is surjective f is bijective f is left-invertible f is right-invertible f is invertible

1.5

Suppose X_1, X_2, \dots, X_n are countable (infinite) sets, prove that their Cartesian product

$$X_1 \times X_2 \times \cdots \times X_n$$

is a countable (infinite) set.

1.6

Suppose \sim is a equivalence relation on X. For every $x \in X$, define a set [x] to be

$$[x] = \{y \in X | x \sim y\} (= \{y \in X | y \sim x\})$$

Prove that

1. Given $x_1, x_2 \in X$, we must have $[x_1] = [x_2]$ or $[x_1] \cap [x_2] = \emptyset$

$$2. \bigcup_{x \in X} [x] = X$$

(In other words, we have $X = \bigsqcup_{x \in X} [x]$)

We define the **quotient set of** X **under the relation** \sim to be

$$(X/\sim) = \{[x] | x \in X\}$$

Apparently, we have $(X/\sim) \subset 2^X$.

A partition \mathcal{C} of a set X is defined to be a subset of 2^X such that every element $W \in \mathcal{C}$ is nonempty and

$$X = \bigsqcup_{W \in \mathcal{C}} W$$

Prove that (X/\sim) is a partition of X.

Denote the set of all equivalence relations on X by ER(X). Denote the set of all partitions of X by Par(X). For any equivalence relation $\sim \in ER(X)$, we define a partition $\pi_X(\sim) \in Par(X)$ by

$$\pi_X(\sim) = (X/\sim) = \{[x] | x \in X\}, \text{ where } [x] = \{y \in X | x \sim y\}$$

- 1. Prove that $\mathrm{ER}(X) \subset 2^{(X^2)}$
- 2. Prove that $Par(X) \subset 2^{(2^X)}$
- 3. Prove that π_X is a bijection

We will denote the inverse of π_X by ρ_X . Prove that if $\mathcal{C} \in \operatorname{Par}(X)$, then $(x_1, x_2) \in \rho_X(\mathcal{C})$ if and only if there exists $W \in \mathcal{C}$ such that $x_1, x_2 \in W$.

Remark.

Sets ER(X) and Par(X) have the same cardinality. When Card(X) = n, we have $Card(ER(X)) = Card(Par(X)) = B_n$, where B_n is the *n*-th Bell number.

1.8

Suppose $\sim \in ER(X)$, we define a mapping $p_{\sim}: X \to \pi_X(\sim)$ by

$$p_{\sim}(x) = [x]$$

Suppose $f: X \to Y$ is a mapping such that $fx_1 = fx_2$ whenever $x_1 \sim x_2$. Prove that there exists exactly one mapping $f_{\sim}: \pi_X(\sim) \to Y$ such that

$$f = \left(X \xrightarrow{p_{\sim}} \pi_X(\sim) \xrightarrow{f_{\sim}} Y \right)$$

The mapping f_{\sim} is called the induced mapping of f by \sim .

1.9

Suppose $f: X \to Y$ is a mapping, we define a relation \sim_f on X by

$$x_1 \sim_f x_2$$
 if and only if $fx_1 = fx_2$

Prove that \sim_f is an equivalence relation on X and

$$\pi_X(\sim_f) = \{f^{-1}(\{y\}) | y \in \text{Im} f\}$$

Prove that the induced mapping of f by \sim_f is injective, and it is surjective if and only if f is surjective. Conclude that every mapping is a composition of a projection and an injection.

In this exercise, we only consider positive integers

- 1. Prove that gcd(n,m)|n, gcd(n,m)|m
- 2. Prove that n|lcm(n,m), m|lcm(n,m)
- 3. Suppose d|n,d|m, prove that $d|\gcd(n,m)$
- 4. Suppose n|D, m|D, prove that lcm(n, m)|D

1.11

Let $a \in \mathbf{Z}, b \in \mathbf{N}$. Prove that there exists $q, r \in \mathbf{Z}$ where $0 \le r < b$ such that a = bq + r. Show that q, r are **uniquely** determined by a, b.

1.12

Show that if $n, m \in \mathbf{Z}$

$${an + bm | a, b \in \mathbf{Z}} = \gcd(n, m)\mathbf{Z}$$

1.13

Prove that $\{4k+1|k \in \mathbf{N}\} \cap \mathbf{P}$ and $\{4k-1|k \in \mathbf{N}\} \cap \mathbf{P}$ are infinite sets.

1.14

The Euler totient function $\varphi : \mathbf{N} \to \mathbf{N}$ is defined by the following:

$$\varphi(n) = \operatorname{Card}(\{m \in \mathbf{N} | 1 \le m \le n, \gcd(n, m) = 1\})$$

For example, $\varphi(1)=1, \varphi(2)=1, \varphi(3)=2, \varphi(4)=2, \varphi(5)=4$. Show that

$$\frac{\varphi(n)}{n} = \prod_{v_p(n)>0} \left(1 - \frac{1}{p}\right)$$

1.15

Suppose (X, *) is a magma, where for every $a, b \in X$ we have

$$(a*b)*b = a, a*(a*b) = b$$

Prove that a*b=b*a for every $a,b\in X$.

Remark 1

Suppose $r \in \mathbf{Q}$ is a non-zero rational number, then we can write is as $r = \pm \frac{q}{Q}$ where $q, Q \in \mathbf{N}$. The *p*-adic valuation of r is defined by

$$v_p(r) = v_p(q) - v_p(Q)$$

Notice that this definition is well-defined and is an extension of the original v_p . We define the support set of r to be

$$\operatorname{Supp}(r) = \{ p \in \mathbf{P} | v_p(r) \neq 0 \}$$

This set is always finite. For example,

$$\operatorname{Supp}\left(\frac{9}{14}\right) = \{2, 3, 7\}$$

Use this notion, we have

$$\frac{\varphi(n)}{n} = \prod_{p \in \text{Supp}(n)} \left(1 - \frac{1}{p}\right)$$

We devide the set Support(r) into two non-intersecting subsets:

$$\text{Supp}^+(r) = \{ p \in \mathbf{P} | v_p(r) > 0 \}$$

$$\text{Supp}^{-}(r) = \{ p \in \mathbf{P} | v_{p}(r) < 0 \}$$

If $r \in \mathbf{Z}_{\neq 0}$, then $\operatorname{Supp}(r) = \operatorname{Supp}^+(r)$. We define

$$\mathbf{Z}_{(p)} = \{ r \in \mathbf{Q} | p \notin \mathrm{Supp}^{-}(r) \}$$

Remark 2

This may be boring, but if $r \in \mathbf{Q}_{\neq 0}$, then we have

$$|r| = \prod_{p \in \text{Supp}(r)} p^{v_p(r)}$$

Or, equivalently,

$$\ln|r| = \sum_{p \in \text{Supp}(r)} v_p(r) \ln p$$

We define a function $|\cdot|_p: \mathbf{Q} \to \mathbf{R}_{\geq 0}$ by

$$|r|_p = \begin{cases} p^{-v_p(r)}, & r \neq 0\\ 0, & r = 0 \end{cases}$$

Then we have

- $|r_1 r_2|_p = 0$ if and only if $r_1 = r_2$
- $|r_1r_2|_p = |r_1|_p |r_2|_p$
- $|r_1 r_2|_p + |r_2 r_3|_p \ge |r_1 r_3|_p$

Let m be an odd natural number, prove that

$$\frac{\sin mx}{\sin x} = (-4)^{\frac{m-1}{2}} \prod_{j=1}^{\frac{m-1}{2}} \left(\sin^2 x - \sin^2 \frac{2\pi j}{m} \right)$$

1.17

Suppose we have a system of sets and mappings:

$$A_1 \stackrel{\phi_2}{\longleftarrow} A_2 \stackrel{\phi_3}{\longleftarrow} A_3 \stackrel{\phi_4}{\longleftarrow} A_4 \leftarrow \cdots$$

where every A_n is a non-empty finite set. Prove that we can find a sequence of elements $x_1 \in A_1, x_2 \in A_2, \dots, x_n \in A_n, \dots$, such that

$$\phi_2 x_2 = x_1, \phi_3 x_3 = x_2, \dots$$

1.18

Show that 1.17 is wrong if we do not acquire every A_n to be finite.

1.19

Let p be a prime number, and $n \in \mathbf{Z}$ such that gcd(p, n) = 1. Prove that

$$p|(n^{p-1}-1)$$

1.20

Let p be a prime number, and 0 < n < p is an integer. Prove that

$$p|\mathbf{C}_p^n$$

where $C_p^n = \frac{p!}{n!(p-n)!}$

1.21

Let B_n be the *n*-th Bell number. Let p be a prime number. Show that

$$p|(B_{n+p} - B_{n+1} - B_n)$$

Algebraic Structures

— —WEEK 4— —

Groups

2.1

Let (M,*) be a semigroup, if $N \subset M$ is a subset such that for all $a,b \in N$ we have $a*b \in N$, then we say that $N \subset_* M$, or N is a sub-semigroup of M. Prove or disprove:

- If M is a monoid, then N is a monoid
- If M does not have an identity, then N does not have an identity
- \bullet If M and N are monoids, then their identities are the same one

2.2

Let M be a monoid (which is by definition a semigroup), and denote the set of all invertible elements of M by $\mathrm{U}(M)$, show that $\mathrm{U}(M)$ is a sub-semigroup of M and itself is even a group. We call it the group of units of M.

2.3

Let Ω be a set, and $M(\Omega)=\{f:\Omega\to\Omega\}$ be the set of mappings, together with the composition operation \circ .

- Show that $\mathrm{U}(M(\Omega))$ is the set of all bijective mappings.
- If $\Omega = \{1, 2, ..., n\}$, we denote $U(M(\Omega))$ by S_n . Show that $Card(S_n) = n!$

Let (G,*) be a group (which is by definition a semigroup), and $H \subset_* G$ is a sub-semigroup of G. Show that if

- 1. the identity $e \in H$
- 2. for all $h \in H$ we have $h^{-1} \in H$

Then H is not only a semigroup, it is a group.

2.5

Let (G,*) be a group (which is by definition a semigroup), and $H \subset_* G$ is a sub-semigroup of G. Show that if H is a group, then

- 1. the identity $e \in H$
- 2. for all $h \in H$ we have $h^{-1} \in H$

2.6

Show that H is a subgroup of G if and only if H is a nonempty subset of G and for all $h_1, h_2 \in H$ we have $h_1^{-1}h_2 \in H$.

2.7

Show that if $\varphi: G_1 \to G_2$ is an isomorphism, then $f(e_1)$ is the identity of G_2 , where e_1 is the identity of G_1 .

2.8

Show that if $\varphi: G_1 \to G_2$ is an isomorphism, then $f(a^{-1}) = (f(a))^{-1}$.

2.9

Let G be a group, we define a new magma $(G^{op}, *)$ by x * y = yx. Show that $(G^{op}, *)$ is actually a group, called the opposite group of G.

2.10

Show that G and G^{op} are isomorphic (=find an isomorphism between them).

Show that if $\varphi: G_1 \to G_2$ is an isomorphism, then the inverse mapping φ^{-1} is an isomorphism. Show that if $\varphi: G \to H$ and $\psi: H \to K$ are isomorphisms, then their composition

$$\psi \circ \varphi : G \to K$$

is an isomorphism.

2.12

An automorphism of a group G is an isomorphism from G to G. Denote the set of all automorphisms of G by $\operatorname{Aut}(G)$. Show that $\operatorname{Aut}(G)$ is a subgroup of $\operatorname{Perm}(G) = \operatorname{U}(M(G))$. (Hint: Use **2.7**)

2.13

Give an example of two non-isomorphic groups of cardinality 4.

2.14

Write down the Cayley table for S_3 and for $Aut(S_3)$. Are these two groups isomorphic?

2.15

Let G be a group, we define SG(G) to be the sets of all subgroups of G. Suppose $S \subset G$ is a **subset**, we define

$$\langle S \rangle = \bigcap_{S \subset H \in \mathrm{SG}(G)} H$$

- 1. Prove that $\mathrm{SG}(G)$ is closed under arbitrary intersection.
- 2. Deduce that $\langle S \rangle \in SG(G)$, which is called the subgroup generated by S. If $G = \langle S \rangle$, we say that G is generated by S.

2.16

Show that S_4 can be generated by $\{(12), (13), (14)\}$. Show that S_4 can be generated by $\{(12), \theta\}$, here θ is the mapping $\theta(1) = 2, \theta(2) = 3, \theta(3) = 4, \theta(4) = 1$.

Find all subgroups of S_4 .

2.18

 S_n is called the *n*-th symmetric group. We write down some of its elements:

$$(12) = \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 1 \\ 3 \mapsto 3 \\ \vdots \\ n \mapsto n \end{cases}, (13) = \begin{cases} 1 \mapsto 3 \\ 2 \mapsto 2 \\ 3 \mapsto 1 \\ \vdots \\ n \mapsto n \end{cases}, \dots, (1n) = \begin{cases} 1 \mapsto n \\ 2 \mapsto 2 \\ 3 \mapsto 3 \\ \vdots \\ n \mapsto 1 \end{cases}, \theta = \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 4 \\ \vdots \\ n-1 \mapsto n \\ n \mapsto 1 \end{cases}$$

- 1. Prove that S_n is generated by $\{(12), (13), \ldots, (1n)\}.$
- 2. Prove that S_n is generated by $\{(12), \theta\}$.
- 3. Prove the Cayley's theorem: every finite group of cardinality n is isomorphic to some subgroup of S_n .

2.19

Construct a non-abelian group of cardinality 8.

2.20

For n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, classify all groups of cardinality n.

2.21

Suppose $\varphi: G_1 \to G_2$ is a group homomorphism, show that the image and the kernel of φ

$$\operatorname{im}\varphi = \{ \gamma \in G_2 : \exists g \in G_1, \varphi g = \gamma \}$$

 $\operatorname{ker}\varphi = \{ g \in G_1 : \varphi g = e \}$

are subgroups of G_1 and G_2 .

2.22

Suppose $\varphi: G_1 \to G_2$ is a group homomorphism, show that φ is injective if and only if $\ker \varphi = 1$, and φ is surjective if and only if $\operatorname{im} \varphi = G_2$.

Show that if $\varphi: G_1 \to G_2$ is a group homomorphism, then

$$\varphi(x) = \varphi(y) \Leftrightarrow xy^{-1} \in \ker \varphi$$

2.24

The kernel of a group homomorphism is not only a subgroup: it is a **normal** subgroup. To be precise, a subgroup H of G is normal, if and only if for all $h \in H, g \in G$ we have

$$ghg^{-1} \in H$$

Show that the kernel of a group homomorphism $G_1 \to G_2$ is a normal subgroup of G_1 .

2.25

Suppose H is a subgroup of G. For any $g \in G$, we define

$$gH = \{gh : h \in H\}$$

Show that $\{gH: g \in G\}$ is a partition of G, and g_1H, g_2H have the same cardinality for any two g_1, g_2 .

Conclude that if G is finite, then Card(H) is a divisor of Card(G).

2.26

Let G be a group, we define SG(G) to be the sets of all subgroups of G. Suppose $S \subset G$ is a **subset**, we define

$$\langle S \rangle = \bigcap_{S \subset H \in SG(G)} H$$

- 1. Elements of the form $s_1^{\epsilon_1} s_2^{\epsilon_2} \cdots s_n^{\epsilon_n}$ where $s_i \in S$, $\epsilon_i \in \mathbf{Z}$ are called S-words. Prove that every element of $\langle S \rangle$ is a S-word.
- 2. Suppose $S = \{a\}$ contains one element, we also write $\langle a \rangle$ for $\langle \{a\} \rangle$. This group is automatically a cyclic subgroup of G.

Suppose $a, b \in G$ with ab = ba, and that $\langle a \rangle$ is a finite group of order n, $\langle b \rangle$ is a finite group of order m where gcd(n, m) = 1.

Prove that $\langle \{a,b\} \rangle$ is a cyclic group of order nm.

3. Consider $a = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ (as elements of $SL_2(\mathbf{Z})$ if you want). Prove that these two are elements of finite order, such that ab is an element of infinite order. Also, calculate $\langle \{a,b\} \rangle$.

- 1. Prove that every finite group is a subgroup of some bi-generated group (=group that can be generated by only two elements).
- 2. Recall that there is a group homomorphism $\sigma_G: G \to \operatorname{Aut}(G)$ for every group G, defined by

$$\left(G \xrightarrow{\sigma_G(a)} G\right) = \left(g \mapsto aga^{-1}\right)$$

Prove that if $G = S_n$ where $n \neq 2, 6$, then σ_G is an isomorphism.

- 3. Prove that there is only one epimorphism from S_n to S_2 (where $n \geq 2$).
- 4. Prove that S_n has only one subgroup, of order $\frac{1}{2}\operatorname{Card}(S_n)$. This subgroup is called the *n*-th alternating group, denoted by A_n .

2.28

In this exercise, we study the arithmetics of cyclic groups.

- 1. Suppose G is a cyclic group, and H is a subgroup of G. Prove that H is also a cyclic group.
- 2. Suppose G is a cyclic group of infinite order, and H is a non-trivial subgroup of G. Prove that H is also a cyclic group of infinite order.
- 3. Suppose G is a cyclic group of order n, and H is a subgroup of G. Prove that the order of H divides n.
- 4. Suppose G is a cyclic group of order n, and m is a natural number dividing n. Prove that G has a unique subgroup of order m.
- 5. Let G be a cyclic group of order n. An element $g \in G$ is called a generator of G if $G = \langle g \rangle$. Prove that the number of generators of G is $\varphi(n)$.
- 6. Prove that $\sum_{d|n} \varphi(d) = n$. (Hint: How many elements of C_n , the cyclic group of order n, generates a (cyclic) group of order d?)
- 7. For any group G, we define

$$\mathbf{u}_d(G) = \{g \in G | g^d = 1\}, u_d(G) = \operatorname{Card}(\mathbf{u}_d(G))$$

Let G be a cyclic group of order n, and let d|n. Prove that $u_d(G) = d$.

8. Prove the following cyclic-forcing theorem: Suppose G is finite, and $u_d(G) \leq d$ for all $d \in \mathbb{N}$. Prove that G is cyclic.

Rings and Fields

Ring-theoretic Constructions

Linear Algebra

Finite Fields and Reciprocity

Chapter 6 p-adic Numbers

Hilbert Symbol