Unitatea de învățare 6 – 2 ore

Calcul matriceal - continuare

- 6.1. Valori și vectori proprii.
- 6.2. Inversarea matricelor. Definiții.
- 6.3. Metode de calcul prin transformarea matricei A în matrice unitate.

Cunoștințe și deprinderi

La finalul parcurgerii acestei unități de învățare vei cunoaște:

- noţiunile de vectori şi valori proprii, precum şi aceea de polinom caracteristic;
- metodele de calcul ale matricei inverse;
- algoritmul de calcul al matricei inverse bazat pe bordarea matricei A cu matricea unitate.

În această unitate de învățare sunt prezentate noțiunile de vectori și valori proprii pentru o matrice, modul de determinare a acestora, definițiile matricei inverse, precum și metodele de calcul ale acesteia împreună cu implementarea algoritmilor corespunzători.

6.1. Valori și vectori proprii

Valorile şi vectorii proprii sunt introduşi prin extinderea problemei privind rezolvarea sistemelor de ecuatii omogene. Un asemenea sistem de ecuaţtii omogene este definit prin

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots & \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \end{cases}$$
(6.1)

Fie sistemul particular

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 0 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 0 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = 0 \end{cases}$$
(6.2)

Acesta poate fi scris sub forma matriceală

$$A'x = 0, (6.3)$$

matricea A având expresia

$$A' = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

Sistemul (3.32) admite şi soluţii nebanale atunci când

$$\det A' = 0. {(6.4)}$$

Se presupune că matricea \mathbf{A} depinde de parametrul λ prin relația

$$A' = A - \lambda I . ag{6.5}$$

Combinând relaţiile (6.3) şi (6.5) se obţine

$$(A - \lambda I)x = 0, (6.6)$$

respectiv

$$Ax = \lambda x. ag{6.7}$$

Parametrul λ se numește valoare proprie a matricei \boldsymbol{A} , iar \boldsymbol{x} – vector propriu al matricei \boldsymbol{A} asociat valorii proprii λ .

<u>Polinomul caracteristic</u> al matricei **A** reprezintă polinomul $p(\lambda)$, definit prin

$$\det(\mathbf{A} - \lambda \mathbf{I}) = p(\lambda) = \mathbf{0} , \qquad (6.8)$$

Relaţia (6.8) este cunoscută sub denumirea de ecuaţie caracteristică. Polinomul $p(\lambda)$ are gradul n şi coeficienţi reali.

Matricea ${\bf A}$ are n valori proprii $\lambda_i, i=1,\dots,n$, în general complexe şi nu neaparat distincte, valori ce coincid cu cele n rădăcini ale polinomului caracteristic $p(\lambda)$. Valorile proprii complexe apar în perechi complexe conjugate.

<u>Exemplul 2.1.</u> Să se determine valorile şi vectorii proprii pentru matricea

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

<u>Rezolvare.</u> Sistemul bazat pe matricea **A** admite şi soluţii nebanale atunci când det A' = 0, respectiv

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = \boldsymbol{0} .$$

În formă dezvoltată se obţine

$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 3 \\ 1 & 4 - \lambda \end{bmatrix} = 0;$$
$$\lambda^2 - 6\lambda + 5 = 0.$$

ecuație caracteristică a cărei soluții sunt

$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = 5 \end{cases}.$$

În consecință, valorile proprii ale matricei **A** sunt: $\lambda_1 = 1$ și $\lambda_2 = 5$.

Pentru calculul vectorilor proprii se procedează în modul următor:

• Pentru $\lambda_1 = 1$ se aplică relaţia (6.8) rezultând succesiv:

$$\begin{bmatrix} 2-1 & 3 \\ 1 & 4-1 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0;$$
$$\begin{cases} x_1 + 3x_2 = 0 \\ x_1 + 3x_2 = 0 \end{cases};$$

$$x_1 = -3x_2$$
.

Notand $x_1 = a$, $a \in \Re$, se obţine vectorul propriu

$$x_1 = \begin{bmatrix} a \\ -3a \end{bmatrix}$$
.

• Pentru $\lambda_2 = 5$ se aplică relatia (3.38) rezultând:

$$\begin{bmatrix} 2-5 & 3 \\ 1 & 4-5 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0;$$
$$\begin{cases} -3x_1 + 3x_2 = 0 \\ x_1 - x_2 = 0 \end{cases};$$

$$x_1 = x_2$$
.

Notand $x_1 = b$, $b \in \Re$, se obţine vectorul propriu

$$x_2 = \begin{bmatrix} b \\ b \end{bmatrix}$$
.

În consecință, valorile proprii ale matricei $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ sunt $\begin{cases} \lambda_1 = 1 \\ \lambda_2 = 5 \end{cases}$ iar vectorii proprii asociați fiecărei valori proprii sunt: $\mathbf{x}_1 = \begin{bmatrix} a \\ -3a \end{bmatrix}$ și $\mathbf{x}_2 = \begin{bmatrix} b \\ b \end{bmatrix}$.

Baza proprie asociată matricei \boldsymbol{A} este definită de vectorii proprii \boldsymbol{X}_i ai matricei \boldsymbol{A} .

Forma canonică diagonală a matricei A reprezintă matricea

$$\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n). \tag{6.9}$$

Dacă se reunesc cele *n* relaţii (3.37)

$$Ax_i = \lambda_i x_i, \quad i = 1, \dots, n \tag{6.10}$$

sub forma

$$AX = X\Lambda$$

se obține

$$\boldsymbol{X}^{-1}\boldsymbol{A}\boldsymbol{X} = \boldsymbol{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}.$$
 (6.11)

<u>Matrice ortogonal asemenea</u>. Două matrice, $A,B\in\Re^{n\times n}$ sunt numite ortogonal asemenea dacă există o matrice ortogonală $\mathbf{\mathcal{Q}}\in\Re^{n\times n}$ astfel încât

$$B = Q^{T} A Q$$
; $A = Q B Q^{-1} = Q B Q^{T}$. (6.12)

Matricele ortogonal asemenea **A** și **B** au aceleași valori proprii, iar vectorii proprii asociați verifică relația

$$X_1 = QX_2. ag{6.13}$$

<u>Forma canoniă Schur</u>. Pentru o matrice oarecare $A \in \mathfrak{R}^{n \times n}$ există o matrice ortogonală $\widetilde{Q} \notin \mathfrak{R}^{n \times n}$ astfel încât matricea **S**, definită cu ajutorul relatiei

$$S = \widetilde{Q}^T A \widetilde{Q} \tag{6.14}$$

este cvasi superior triunghiulară. Aceasta înseamnă că matricea **S** este bloc superior triunghiulară cu blocuri pe diagonală de ordin cel mult doi, fiecare bloc de ordin doi având valori proprii complexe conjugate.

Matricea **S** este cunoscută sub denumirea de forma canonică Schur reală a matricei **A**. Aceasta prezintă un interes aparte în calculul valorilor şi vectorilor proprii, deoarece pe diagonala matricei se găsesc valorile proprii reale ale matricei **A** iar blocurile de ordinul doi conţin valorile proprii complex conjugate.

Forma canonică Schur a matricei **A**, şi implicit valorile proprii ale matricei **A**, se determină cu algoritmul **QR**, algoritm deosebit de performant.

Test de autoevaluare

- 1. Să se definească noțiunile de vector și valori proprii.
- 2. Ce este polinomul caracteristic?
- 3. Definitti forma canonică diagonală.

6.2. Inversarea matricelor. Definiții

<u>Definiția matematică</u>. Fie matricea $A \in \mathfrak{R}^{n \times n}$. Prin inversa matricei A se înțelege o matrice, notată cu A^{-1} , care are proprietățile

$$A A^{-1} = A^{-1} A = I (6.15)$$

$$\det A^{-1} = \frac{1}{\det A}, \quad \det A \neq 0,$$
 (6.16)

în care I este matricea unitate cu dimensiunile $n \times n$.

<u>Metodele de calcul</u> a matricei inverse se pot clasifica în două categorii:

- a) metoda de calcul utilizând definiţia matematică sau *metoda* algebrică;
- b) metoda de calcul prin transformarea matricei A în matrice unitate.

<u>Metoda de calcul utilizând definiția matematică</u>. Fie matricea $A \in \Re^{n \times n}$. Dacă $\det A \neq 0$, atunci

$$\boldsymbol{A}^{-1} = \left(\frac{1}{\det \boldsymbol{A}}\right) \times \boldsymbol{B} , \qquad (6.17)$$

în care b_{ii} reprezintă complementul algebric al elementului a_{ii}

$$b_{ii} = (-1)^{i+j} * \Delta_{ii}, \quad i = 1, ..., n, \ j = 1, ..., n,$$
 (6.18)

unde Δij este minorul elementului a_{ij} . Această metodă este prohibitivă pentru matricele cu n > 4.

6.3. Metode de calcul prin transformarea matricei A în matrice unitate

Din cadrul acestei clase de metode se studiază doi algoritmi:

- a) algoritm bazat pe bordarea matricei *A* cu matricea unitate şi transformarea acesteia în matrice unitate;
- b) algoritm bazat pe transformarea matricei *A* in matrice unitate.

6.3.1. Algoritmul bazat pe bordarea matricei A cu matricea unitate.

Această metodă generează o nouă matrice \boldsymbol{B} , obţinută prin bordarea matricei unitate la matricea A

$$\boldsymbol{B} = \boldsymbol{A} : \boldsymbol{I} , \qquad (6.19)$$

dimensiunea matricei ${\bf \it B}$ fiind $n\times 2n$. Înmulţind la stânga cu ${\bf \it A}^{-1}$ matricea ${\bf \it B}$, se obţine

$$A^{-1}B = A^{-1}(A : I) = (A^{-1}A : A^{-1} : I) = (I : A^{-1}).$$
(6.20)

Transformarea matricei **A** în matrice unitate este realizată utilizând algoritmul Gauss-Jordan. Forma generala a matricei **B** este

$$\begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} & 1 & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & b_{2n} & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nn} & 0 & 0 & \dots & 1 \end{bmatrix}.$$
 (6.21)

Pentru iteraţia k, k = 1,...,n, etapele algoritmului sunt următoarele:

• Se împarte fiecare element din matrice situat pe linia k şi coloana j, j = k,...,2n la elementul de pe diagonală

$$b_{kj}^{(k)} = \frac{b_{kj}^{(k-1)}}{b_{kk}^{(k-1)}}, \quad j = k, ..., 2n.$$
 (6.22)

Prin aceasta se formează 1 în pozitia pivotului b_{kk} .

 Se scade din elementul curent b_{ij} elementul corespunzator din linia k şi coloana j

$$b_{ij}^{(k)} = b_{ij}^{(k-1)} - b_{ik}^{(k-1)} * \frac{b_{kj}^{(k-1)}}{b_{kk}^{(k-1)}}, \quad i = 1, ..., n, \ j = 1, ..., 2n, \ i \neq k, \ j \neq k.$$
 (6.23)

Prin aceasta se formează 0 pe coloana k, mai puţin pivotul b_{k} .

După realizarea transformărilor din iterația k, matricea \boldsymbol{B} are forma

$$\begin{bmatrix} 1 & \dots & 0 & b_{1,k+1}^{(k)} & \dots & b_{1n}^{(k)} & b_{1,n+1}^{(k)} & \dots & b_{1,n+k+1}^{(k)} & 0 & \dots & 0 \\ \dots & \dots \\ 0 & \dots & 1 & b_{k,k+1}^{(k)} & \dots & b_{kn}^{(k)} & b_{k,n+1}^{(k)} & \dots & b_{k,n+k+1}^{(k)} & 0 & \dots & 0 \\ 0 & \dots & 0 & b_{k+1,k+1}^{(k)} & \dots & b_{k+1,n+1}^{(k)} & \dots & b_{k+1,n+k+1}^{(k)} & 1 & \dots & 0 \\ \dots & \dots \\ 0 & \dots & 0 & b_{n,k+1}^{(k)} & \dots & b_{nn1}^{(k)} & b_{n,n+1}^{(k)} & \dots & b_{n,n+k+1}^{(k)} & 0 & \dots & 1 \end{bmatrix}$$

$$(6.24)$$

La finalul celor n transformări se obține

$$\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & b_{1,n+1}^{(n)} & b_{1,n+2}^{(n)} & \dots & b_{1,2n}^{(n)} \\ 0 & 1 & 0 & \dots & 0 & b_{2,n+1}^{(n)} & b_{2,n+2}^{(n)} & \dots & b_{2,2n}^{(n)} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & b_{n,n+1}^{(n)} & b_{n,n+2}^{(n)} & \dots & b_{nn}^{(n)} \end{bmatrix},$$
(6.25)

matricea A^{-1} avand expresia

$$\boldsymbol{A}^{-1} = \begin{bmatrix} b_{1,n+1}^{(n)} & b_{1,n+2}^{(n)} & \dots & b_{1,2n}^{(n)} \\ b_{2,n+1}^{(n)} & b_{2,n+2}^{(n)} & \dots & b_{2,2n}^{(n)} \\ \dots & \dots & \dots & \dots \\ b_{n,n+1}^{(n)} & b_{n,n+2}^{(n)} & \dots & b_{n,2n}^{(n)} \end{bmatrix}.$$
(6.25)

<u>Exemplul 4.1.</u> Se consideră matricea A de dimensiuni 3×3 , avand elementele

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

Să se calculeze matricea inversă A⁻¹.

 $\underline{\textit{Rezolvare}}$. Se bordează matricea A cu matricea unitate, obținându-se matricea extinsă B

$$\boldsymbol{B} = \begin{bmatrix} 2 & 1 & 3 & 1 & 0 & 0 \\ 3 & 3 & 2 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

Deoarece n = 3 se vor realiza 3 iterații de calcul.

Iteraţia 1. Pentru k = 1 se obţine succesiv:

• Împărţirea liniei 1 la pivotul $b_{11}^{(0)}$, $b_{1j}^{(1)}=\frac{b_{1j}^{(0)}}{b_{11}^{(0)}}, \quad j=1,\dots,2n$

$$\boldsymbol{B}^{(1a)} = \begin{bmatrix} 1 & 0.5 & 1.5 & 0.5 & 0 & 0 \\ 3 & 3 & 2 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

• Obţinerea elementelor nule pe coloana pivotului

$$\boldsymbol{B}^{(1b)} = \begin{bmatrix} 1 & 0.5 & 1.5 & 0.5 & 0 & 0 \\ 0 & 1.5 & -2.5 & -1.5 & 1 & 0 \\ 0 & 1.5 & -0.5 & -0.5 & 0 & 1 \end{bmatrix}.$$

Iterația 2. Pentru k = 2 se obține:

• Împărţirea liniei 2 la pivotul $b_{22}^{(1)}$, $b_{2j}^{(2)}=\frac{b_{2j}^{(1)}}{b_{22}^{(1)}}, \quad j=1,\ldots,2n$

$$\boldsymbol{B}^{(2a)} = \begin{bmatrix} 1 & 0.5 & 1.5 & 0.5 & 0 & 0 \\ 0 & 1 & -1.66 & -1 & 0.66 & 0 \\ 0 & 1.5 & -0.5 & -0.5 & 0 & 1 \end{bmatrix}.$$

• Obţinerea elementelor nule pe coloana pivotului

•

$$\boldsymbol{B}^{(2b)} = \begin{bmatrix} 1 & 0 & 2,33 & 1 & -0,33 & 0 \\ 0 & 1 & -1,66 & -1 & 0,66 & 0 \\ 0 & 0 & 2 & 1 & -1 & 1 \end{bmatrix}.$$

Iteraţia 3. Pentru k = 3 se obţine:

• Împărţirea liniei 3 la pivotul $b_{33}^{(2)}$, $b_{3j}^{(3)}=\frac{b_{3j}^{(2)}}{b_{22}^{(2)}}, \quad j=1,\dots,2n$.

$$\boldsymbol{B}^{(3a)} = \begin{bmatrix} 1 & 0 & 2,33 & 1 & -0,33 & 0 \\ 0 & 1 & -1,66 & -1 & 0,66 & 0 \\ 0 & 0 & 1 & 0,5 & -0,5 & 0,5 \end{bmatrix}.$$

• Obţinerea elementelor nule pe coloana pivotului

$$\boldsymbol{B}^{(3b)} = \begin{bmatrix} 1 & 0 & 0 & -0.166 & -0.833 & -1.166 \\ 0 & 1 & 0 & -0.166 & -0.166 & 0.833 \\ 0 & 0 & 1 & 0.5 & -0.5 & 0.5 \end{bmatrix}.$$

La finalul iteraţiei 3 se obţine matricea inversă

$$A^{-1} = \begin{bmatrix} -0.166 & -0.833 & -1.166 \\ -0.166 & -0.166 & 0.833 \\ 0.5 & -0.5 & 0.5 \end{bmatrix}.$$

18. W

Test de autoevaluare

- 1. Să se precizeze metodele de calcul a matricei inverse .
- 2. Care sunt etapele pentru calculul matricei inverse în cazul utilizării algoritmului bazat pe bordarea matricei A cu matricea unitate?

Lucrare de verificare

- 1. Să se determine valorile și vectorii proprii pentru matricea $A = \begin{bmatrix} 5 & 6 \\ -2 & -4 \end{bmatrix}$.
- 2. Se consideră matricea A de dimensiuni 3×3 , avand elementele

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 2 & 4 & 3 \\ 1 & 2 & 3 \end{bmatrix}.$$

Să se calculeze matricea inversă A^{-1} .