Assessment Schedule – 2006

Scholarship Mathematics with Calculus (93202)

Evidence Statement

Question	Evidence	Code	Judgement
ONE (a)	The minute hand travels at $\frac{2\pi}{60} = \frac{\pi}{30}$ radians / minute	I	
	Using the cosine rule with $x =$ the distance between the tips of the hands, $x^2 = 8^2 + 6^2 - 2 \times 8 \times 6 \times \cos \alpha$ $= 100 - 96 \cos \alpha$		
	EITHER $2x \frac{dx}{dt} = 96 \sin \alpha \frac{d\alpha}{dt}$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{48\sin\alpha}{\sqrt{100 - 96\cos\alpha}} \frac{\mathrm{d}\alpha}{\mathrm{d}t}$ OR		
	$2x \frac{dx}{d\alpha} = 96 \sin \alpha$ $dx dx d\alpha 96 \sin \alpha d\alpha$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}\alpha} \bullet \frac{\mathrm{d}\alpha}{\mathrm{d}t} = \frac{96\sin\alpha}{2x} \bullet \frac{\mathrm{d}\alpha}{\mathrm{d}t}$ The harm hand to solve $\frac{2\pi}{12}$ π	N	
	The hour hand travels at $\frac{2\pi}{60} = \frac{\pi}{360}$ radians / minute If α is the angle between the hands then $d\alpha = (\pi - \pi) = 11\pi$		
	$\frac{d\alpha}{dt} = \left(\frac{\pi}{30} - \frac{\pi}{360}\right) = \frac{11\pi}{360} \text{ radians / minute}$ At 9am $\alpha = \frac{\pi}{2}$, $x = 10$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{48}{10} \times \frac{11\pi}{360}$		
	$= \frac{11\pi}{75} \text{ cm/min.}$ The rate of change of the distance between the tips of the hands of the clock at		
	9 am is $\frac{11\pi}{75}$ cm/min.		Accept 0.46.

ONE	EITHER:	0	
(b)	Given $ln(1+x) \approx A + Bx + Cx^2$ and assuming equality, for all x,		
	$-1 < x \le 1$		
	Putting $x = 0$ gives $A = 0$ Differentiating wrt x		
	$\frac{1}{1+x} = B + 2Cx \text{ and putting } x = 0, B = 1$		
	Differentiating again wrt x		NB only $x = 0$
	$\frac{-1}{\left(1+x\right)^2} = 2C \text{ and putting } x = 0, \ C = -\frac{1}{2}$	N	acceptable since it removes higher
	OR:		powers of x .
	$\ln(1+x) \approx A + Bx + Cx^2$		
	$\frac{1}{1+x} = B + 2Cx$ and $\frac{-1}{(1+x^2)} = 2C$		
	but $(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots$		
	and equating coefficients $B = 1$, $2C = -1$, $C = -0.5$		
	So $\ln(1+x) \approx x - \frac{1}{2}x^2$ but when $x = 0$, $A = 0$.		
	For $\left(1 + \frac{1}{2n}\right)^{n+3} < \left(1 + \frac{1}{n}\right)^{n-1}$, taking logs of both sides		
	$(n+3)\ln\left(1+\frac{1}{2n}\right) < (n-1)\ln\left(1+\frac{1}{n}\right)$		I If calculated from this line by trial and error etc
	and approximating from the above result		
	$(n+3)\left(\frac{1}{2n} - \frac{1}{2(2n)^2}\right) < (n-1)\left(\frac{1}{n} - \frac{1}{2n^2}\right), 0 < \frac{1}{n} \le 1, n \ge 1$	I	Award N if first result not proven
	$(n+3)\left(\frac{4n-1}{8n^2}\right) < (n-1)\left(\frac{2n-1}{2n^2}\right)$		result not proven
	and since $n > 0$		
	(n+3)(4n-1) < 4(n-1)(2n-1)		
	$8n^2 - 12n + 4 - 4n^2 - 11n + 3 > 0$		
	$4n^2 - 23n + 7 > 0$	\mathbf{S}	
	$n > \frac{23 + \sqrt{529 - 112}}{9}$ since $n \ge 0$	-	
	o		
	$n > \frac{23 + 20.42}{8} = 5.428$, so the least integer is $n = 6$.		

ONE	ρ π	S	
(c)	$Vol, V = \int_{0}^{\pi} \pi x^{2} dy$		
	\mathbf{J}_0		
	$=\pi \int_{0}^{\pi} \left(2a\cos(2y) + b\right)^{2} dy$		
	• 0 • 7		
	$= \pi \int_{-\pi}^{\pi} \left(4a^2 \cos^2(2y) + 4ab \cos(2y) + b^2 \right) dy$		
	0	N	
	$= \pi \int_0^{\pi} \left(2a^2 \cos 4y + 2a^2 + 4ab \cos 2y + b^2 \right) dy$		
	$= \pi \left[\frac{1}{2} a^2 \sin 4y + 2ab \sin 2y + (2a^2 + b^2)y \right]_0^{\pi}$		
	$=\pi\left((2a^2+b^2)\pi\right)$	· I	
	$=\pi^2(2a^2+b^2)$		
	(5)		

TWO (a)	Using $\cos 2\theta = 2\cos^2 \theta - 1$,	S	
()	$\cos\frac{\pi}{4} = 2\cos^2\frac{\pi}{8} - 1$		
	and $2\cos^2\frac{\pi}{8} = 1 + \frac{\sqrt{2}}{2} = \frac{2 + \sqrt{2}}{2}$		
	so $\cos \frac{\pi}{8} = \sqrt{\frac{2+\sqrt{2}}{4}} = \frac{\sqrt{2+\sqrt{2}}}{2}$.	> 7	Treat N and I
	$\frac{1+7i}{-3+4i} = \frac{(1+7i)(-3-4i)}{(-3+4i)(-3-4i)} = \frac{25-25i}{25} = 1-i$	N	lines independently
	EITHER		
	Further $1 - i = \sqrt{2} \operatorname{cis} \left(-\frac{\pi}{4} \right)$		
	Solving $z^2 = \sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right)$,		
	$z = \sqrt[4]{2}\operatorname{cis}\left(-\frac{\pi}{8}\right) \text{ or } \sqrt[4]{2}\operatorname{cis}\left(\frac{7\pi}{8}\right)$	I	Accept degrees and decimals
	Either		here ±1.0987 ± 0.455i or
	So hence since from (i) $\cos \frac{\pi}{8} = \frac{\sqrt{2 + \sqrt{2}}}{2}$,		equivalent I– for one root
	and from $\sin \frac{\pi}{4} = 2 \sin \frac{\pi}{8} \cos \frac{\pi}{8}$		
	$\sin\frac{\pi}{8} = \frac{\frac{\sqrt{2}}{2}}{\sqrt{2+\sqrt{2}}} = \frac{\sqrt{2}}{2\left(\sqrt{2+\sqrt{2}}\right)}$		Decimals NOT allowed here
			Or equivalent
	$y^{2} = 4 - 2 - \sqrt{2} = 2 - \sqrt{2}$ $y = \sqrt{2 - \sqrt{2}}$ $\sqrt{2 + \sqrt{2}}$		
	$z = \sqrt[4]{2}\operatorname{cis}\left(-\frac{\pi}{8}\right) = \sqrt[4]{2}\left(\frac{\sqrt{2+\sqrt{2}}}{2} - i\frac{\sqrt{2-\sqrt{2}}}{2}\right) = \frac{\sqrt{2\sqrt{2}+2}}{2} - i\frac{\sqrt{2\sqrt{2}-2}}{2}$		
	or $\sqrt[4]{2}$ cis $\left(\frac{7\pi}{8}\right) = \sqrt[4]{2}\left(-\frac{\sqrt{2+\sqrt{2}}}{2} + i\frac{\sqrt{2-\sqrt{2}}}{2}\right) = -\frac{\sqrt{2\sqrt{2}+2}}{2} + i\frac{\sqrt{2\sqrt{2}-2}}{2}$ Or		Or equivalent
	OI .		

			1
	$z = \sqrt[4]{2} \operatorname{cis}\left(-\frac{\pi}{8}\right) = \sqrt[4]{2} \left(\frac{\sqrt{2+\sqrt{2}}}{2} - i\frac{\sqrt{2}}{2\left(\sqrt{2+\sqrt{2}}\right)}\right) = \frac{\sqrt{2\sqrt{2}+2}}{2} - i\frac{\sqrt{2\sqrt{2}-2}}{2}$ or $\sqrt[4]{2} \operatorname{cis}\left(\frac{7\pi}{8}\right) = \sqrt[4]{2} \left(-\frac{\sqrt{2+\sqrt{2}}}{2} + i\frac{\sqrt{2}}{2\left(\sqrt{2+\sqrt{2}}\right)}\right) = -\frac{\sqrt{2\sqrt{2}+2}}{2} + i\frac{\sqrt{2\sqrt{2}-2}}{2}$		Or equivalent
	OR		
	Let $z = a + ib$, so $z^2 = a^2 - b^2 + 2abi$		
	So $a^2 - b^2 = 1$ $2ab = -1$.		
	$a^2 - \left(\frac{1}{2a}\right)^2 = 1$		
_	$4a^4 - 4a^2 - 1 = 0$	I	
	$4a^{4} - 4a^{2} - 1 = 0$ $a^{2} = \frac{4 \pm \sqrt{32}}{8} = \frac{1 \pm \sqrt{2}}{2}$		
	$a^2 = \frac{1 + \sqrt{2}}{2} (a^2 > 0)$		
	$a = \pm \sqrt{\frac{1 + \sqrt{2}}{2}}$		
	and $b = -\frac{1}{2a} = \mp \frac{1}{2} \sqrt{\frac{2}{1+\sqrt{2}}} = \mp \frac{1}{2} \sqrt{\frac{2}{1+\sqrt{2}}}$		
	or		
	$b^2 = a^2 - 1$ $b^2 = \frac{1 + \sqrt{2}}{2} - 1 = \frac{\sqrt{2} - 1}{2}$		
	$b = \pm \sqrt{\frac{\sqrt{2} - 1}{2}}$		
	so		
	$z = \pm \sqrt{\frac{\sqrt{2} + 1}{2}} \mp i \sqrt{\frac{\sqrt{2} - 1}{2}}$.		

TWO	Either	0	
(b)	$f'(x) = 3x^2 - 6x - 1$		
	f''(x) = 6x - 6		
	So when $f''(x) = 0$, $x = 1$ and this is a point of inflection $(f'''(x) = 6 \neq 0)$	N	
	x = 1, $f(x) = -1$ and so $(1, -1)$ is a point of inflection.	T	
	Since all cubics have rotational symmetry about their point of inflection we can write that	Ι	
	$g(x) = x^3 - 3x^2 - x + 2, \ x \ge 1$		
	3.00 1.00 -1.50 -1.00 -0.50		
	OR In general (a, b) is mapped to $(2-a, -b-2)$	N	
	Hence		
	g(x) = -f(2-x) - 2	I	
	$= -(2-x)^3 + 3(2-x)^2 + (2-x) - 2 - 2$		
	$= x^{3} - 6x^{2} + 12x - 8 + 3x^{2} - 12x + 12 - x - 2$		
	$= x^3 - 3x^2 - x + 2.$		
	OR		
	Translate f so that $(1, -1)$ goes to the origin		
	$f_1(x) = (x+1)^3 - 3(x+1)^2 - (x+1) + 2 + 1$		
	Then reflect this function in each of the axes to get the rotation (or use $(x,y) \rightarrow (-x,-y)$)	N	
	ie $g_1(x) = -f_1(-x) = -(-x+1)^3 + 3(-x+1)^2 + (-x+1) - 3$		
	And now translate back to (1, -1)		
	$g(x) = -(-(x-1)+1)^{3} + 3(-(x-1)+1)^{2} + (-(x-1)+1) - 3 - 1$		
	$g(x) = -(2-x)^3 + 3(2-x)^2 + (2-x)-4$	I	
	$= x^3 - 6x^2 + 12x - 8 + 12 - 12x + 3x^2 + 2 - x - 4$		

$= x^{3} - 3x^{2} - x + 2, x ≥ 1$ OR Let $g(x) = ax^{3} + bx^{2} + cx + d$ Use symmetry to find 4 points on the graph of $g(x)$. For example, $(1, -1)$ is on the graph of $g(x)$. $(0, 2) \text{ is on } f(x) \text{ so } (2, -4) \text{ is on } g(x)$ $(-1, -1) \text{ is on } f(x) \text{ so } (3, -1) \text{ is on } g(x)$ $(-2, -16) \text{ is on } f(x) \text{ so } (4, 14) \text{ is on } g(x)$	N	x≥1 not required Any 2 correct points Any 4 correct
Substitute into $g(x) = ax^3 + bx^2 + cx + d$ and solve the 4 equations for a , b , c and d (this may require a graphic calculator) to get $a = 1$, $b = -3$, $c = -1$, and $d = 2$.		points

THREE (a)	$y = \sin(\ln x), \qquad x \ge 0$	S	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}\cos(\ln x)$		
	-		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{-1}{x^2} \sin\left(\ln x\right) - \frac{1}{x^2} \cos\left(\ln x\right)$		
	$= \frac{-y}{x^2} - \frac{1}{x} \frac{dy}{dx}$		
	EITHER		
	$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = k$		
	$-y - x\frac{dy}{dx} + x\frac{dy}{dx} + y = k$		
	$dx \qquad dx \qquad \Rightarrow k = 0$	I	
	OR 12	1	
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x \frac{\mathrm{d}y}{\mathrm{d}x} + y = k$		
	$x^{2}\left(\frac{-1}{x^{2}}\sin\left(\ln x\right) - \frac{1}{x^{2}}\cos\left(\ln x\right)\right) + x\left(\frac{1}{x}\cos\left(\ln x\right)\right) + \sin\left(\ln x\right)$		
	$= -\sin(\ln x) - \cos(\ln x) + \cos(\ln x) + \sin(\ln x)$		
	=0		
	$\Rightarrow k = 0$	I	
	When $\frac{d\left(x^2 \frac{dy}{dx}\right)}{dx} = x \frac{dy}{dx} - y + 5$	1	
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2x \frac{\mathrm{d}y}{\mathrm{d}x} = x \frac{\mathrm{d}y}{\mathrm{d}x} - y + 5$		
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 5$		
	So $k = 5$ in the above.		
	EITHER Hence try $y = \sin(\ln x) + 5$ as a solution		Accept $y = \sin(\ln x) + 5$
	LHS = $x^2 \left(\frac{-1}{x^2} \sin(\ln x) - \frac{1}{x^2} \cos(\ln x) \right) + x \left(\frac{1}{x} \cos(\ln x) \right) + \sin(\ln x) + 5$		if just stated.
	$= -\sin(\ln x) - \cos(\ln x) + \cos(\ln x) + \sin(\ln x) + 5 = 5 = RHS$		
	So $y = \sin(\ln x) + 5$ is a solution.		
	OR		
	Hence try $y = \sin(\ln x) + nx^2 + mx + 5$ as a solution		Or with $n = 0$

$x^{2} \left(\frac{-1}{x^{2}} \sin(\ln x) - \frac{1}{x^{2}} \cos(\ln x) + 2n \right) + x \left(\frac{1}{x} \cos(\ln x) + 2nx + m \right) $ $+ \sin(\ln x) + n^{2}x + mx + 5 = 5$	
and	
$-\sin(\ln x) - \cos(\ln x) + 2nx^2 + \cos(\ln x) + 2nx^2 +$	
$mx + \sin(\ln x) + nx^2 + mx = 0$	
and $n = m = 0$	
So $y = \sin(\ln x) + 5$ is a solution.	

$\cos(2\ln(x)) = 0$	
$1 - 2\sin^2(\ln(x)) = 0$ $1 - 2a^2 = 0$	
$1 - 2a^2 = 0$	
$a = \pm \frac{1}{\sqrt{2}}$	

FOUR	For family 1, with $y = f(x)$: $y \frac{dy}{dx} = 2y + x$ or $\frac{dy}{dx} = 2 + \frac{x}{y}$ (= 2 + z)	0	
(b)	$\frac{1}{dx} = \frac{1}{2} + \frac{1}{x} = \frac{1}{2} + \frac{1}{y} = \frac{1}{2} + 1$		
	So for family 2, with $y = g(x)$: $\frac{dy}{dx} = -\frac{y}{2y+x}$	N -	
	EITHER		
	$\frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{2y+x}{y} \qquad y\frac{\mathrm{d}x}{\mathrm{d}y} + x = -2y$		
	Integrating with respect to y		
	$\int \left(y \frac{\mathrm{d}x}{\mathrm{d}y} + x \right) dy = -\int 2y dy$	S	
	$xy = -y^2 + c$	•	
	y(x+y) = c		
	OR $ (2y+x)\frac{dy}{dx} = -y \qquad x\frac{dy}{dx} + y = -2y\frac{dy}{dx} $		
	$\int \left(x \frac{\mathrm{d}y}{\mathrm{d}x} + y \right) dx = -\int 2y \frac{\mathrm{d}y}{\mathrm{d}x} dx$	S	
	$xy = -y^2 + c$	•	
	y(x+y) = c OR		
	If we let $z = \frac{x}{y}$ then $\frac{dy}{dx} = -\frac{y}{2y+x} = -\frac{1}{2+z}$		
	and $\frac{dz}{dx} = \frac{1}{y} - \frac{x}{y^2} \frac{dy}{dx} = \frac{1}{y} \left(1 + z \left(\frac{1}{2+z} \right) \right)$		
	$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{2z}{x} \left(\frac{1+z}{2+z} \right)$	_ S	
	and separating the variables and integrating		
	$\int \frac{2+z}{z(1+z)} dz = 2 \int \frac{1}{x} dx$ using the given result		
	$\int \frac{2}{z} - \frac{1}{z+1} \mathrm{d}z = 2 \int \frac{1}{x} \mathrm{d}x$		
	$2 \ln z - \ln(z+1) = 2 \ln x + C$		
	$ \ln\left(\frac{z^2}{z+1}\right) = \ln\left(kx^2\right) \qquad \text{where } \ln k = C $		

$\frac{z^2}{z+1} = kx^2$ $\frac{x^2}{y(x+y)} = kx^2$	
$\frac{1}{y(x+y)} = k, \ x \neq 0$ $ky(x+y) = 1$	
OR	
$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{y}{2y+x} = -\frac{1}{2+z}$	
$z = \frac{x}{y}$ so $\frac{dz}{dy} = \frac{1}{y}\frac{dx}{dy} - \frac{x}{y^2} = \frac{dz}{dy} = -\frac{1}{y}(2+z) - \frac{z}{y} = -\frac{2(1+z)}{y}$	
$\int \frac{1}{1+z} dz = -2 \int \frac{1}{y} dy$	
$\ln(1+z) = -2\ln(y) + \ln C$	
$1+z=\frac{C}{y^2}$	
$1 + \frac{x}{y} = \frac{C}{y^2} \qquad y^2 + xy = C$	
y(x+y)=C	

FIVE	Since the direction of motion is given by the gradient,	S	
(a)	differentiating $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ wrt x we get		
	$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0 \text{and for } P = \left(a\cos\theta, b\sin\theta\right), \ \frac{dy}{dx} = -\frac{b^2x}{a^2y} = -\frac{b\cos\theta}{a\sin\theta} = -\frac{b}{a}\cot\theta$		Early substitution
	So the gradient of the normal at P is $\frac{a}{b} \tan \theta$	NI	of $\theta = \pi/4$ good
	EITHER Equation of this normal is	IN	
	$y - b\sin\theta = \frac{a}{b}\tan\theta(x - a\cos\theta)$		
	when $x = 0$ and $\theta = \frac{\pi}{4}$		
	$y - b\frac{\sqrt{2}}{2} = \frac{a}{b}\left(-a\frac{\sqrt{2}}{2}\right) \text{ and } y = \frac{\sqrt{2}}{2b}\left(b^2 - a^2\right).$	I	
	So the vertical distance below the level of <i>P</i> is $b\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2b}(b^2 - a^2) = \frac{\sqrt{2}}{2b}(a^2 - b^2 + b^2) = \frac{\sqrt{2}a^2}{2b}.$		
	OR When $\theta = \pi/4$ P		
	Gradient of the normal at P is $\frac{a}{b}$, and $P = \left(\frac{a\sqrt{2}}{2}, \frac{a\sqrt{2}}{2}\right)$		
	The distance required, say k , is given by $ k $		
	$\frac{k}{\left(a\sqrt{2}\right)} = \frac{a}{b} \text{and} k = \frac{a}{b} \left(\frac{a\sqrt{2}}{2}\right) = \frac{\sqrt{2}a^2}{2b}.$		

 \boldsymbol{x}

So Q = $\left(\frac{\pm ab^2 \sin \theta}{\sqrt{a^4 \cos^2 \theta + b^4 \sin^2 \theta}}, \frac{\mp a^2 b \cos \theta}{\sqrt{a^4 \cos^2 \theta + b^4 \sin^2 \theta}}\right)$	Accept ± or ∓
Oneß equivalent solution is	Or equivalent
$Q = \left(\frac{\pm ab^2}{\sqrt{a^4 \cot^2 \theta + b^4}}, \frac{\mp a^2 b \cot \theta}{\sqrt{a^4 \cot^2 \theta + b^4}}\right)$	