FEUILLE D'EXERCICES nº 13

Exercice 1 – On reprend l'exercice 4 de la feuille 11. Soit K un corps de caractéristique nulle. Dans K[x,y] on utilise $\prec = \prec_{\operatorname{grlex}}$, où $y \prec x$. Soient $g = x^3 - 2xy$, $h = x^2y - 2y^2 + x$, $G = \{g,h\}$ et $I = \prec G >$. Soit B la base de Gröbner réduite de I.

- 1) Quels est l'ensemble S des monômes standards de K[x,y]/I pour B? Quelle est la dimension de K[x,y]/I comme K-espace vectoriel?
- 2) Écrire le produit dans K[x,y]/I de chaque couple d'éléments de S en fonction des éléments de S.
- 3) Soit $f = x^5 + y^2 + xy$. Quelle est la forme normale n(f) de f par rapport à B? Écrire f sous la forme f = n(f) + ag + bh.
- 4) Quelle est la base de Gröbner réduite de I pour l'ordre lexicographique, où $y \prec x$? Donner l'ensemble des monômes standards correspondant.

Exercice 2 -

- 1) On reprend l'exercice 5 de la feuille 11. Dans k[x, y, z], soient $f_1 = x z^4$, $f_2 = y z^5$ et $I = \langle f_1, f_2 \rangle$. Quelle est la dimension du k-espace vectoriel k[x, y, z]/I?
- 2) Même question pour le k-espace vectoriel k[x,y]/I, où $I = \langle x^5y + xy^5, x^2y^3 \rangle$.

Exercice 3 – Soit $A=k[x_1,\ldots,x_n]$. Soit I un idéal de A, et soit B la base de Gröbner réduite de I pour un ordre donné sur les monômes. Soient f et g deux éléments de A. Montrer que f+I=g+I si et seulement si f et g ont même forme normale par rapport à B.

Exercice 4 – [SYSTÈMES LINÉAIRES ET BASES DE GRÖBNER] Soient k un corps, n un entier naturel non nul et $A = (a_{i,j})_{i,j}$ une matrice de $M_n(k)$.

Soient $R = k[x_1, \dots, x_n]$ et

$$G_A = \left\{ \sum_{j=1}^n a_{i,j} x_j \in R : 1 \leqslant i \leqslant n \right\}$$

l'ensemble des polynômes linéaires correspondant aux lignes de la matrice A. On note $I_A = \langle G_A \rangle$ l'idéal de R engendré par les éléments de G_A . Soit $V(G_A) = V(I_A) = \operatorname{Ker} A$ l'ensemble des solutions du système Ax = 0.

- 1) Montrer que si $L \in GL_n(k)$, alors $I_{LA} = I_A$.
- 2) On suppose qu'il existe $L \in GL_n(k)$ telle que

$$U = LA = \begin{pmatrix} I_r & V \\ 0 & 0 \end{pmatrix},$$

où $V \in M_{r,n-r}(k)$. Montrer que G_U est une base de Gröbner réduite de I_A pour tout ordre \prec sur les monômes tel que $x_1 \succ x_2 \succ \cdots \succ x_n$.

3) Quelle est la base de Gröbner réduite de I_A dans le cas où A est inversible?