

S2-BOA: Tailoring of BOA for the Sentinel-2 mission

Dynamic data modelling for business operation analysis for Sentinel-2 mission

S2-BOA release: 0.1.0

Document release: 1.0

Date: February 4, 2021

Revision History

Revision Date Author(s) Description

1.0 12.10.2020 DIBB Document created

Contents

List of Figures

List of Tables

Chapter 1

Introduction

This document describes the tailoring done, based on BOA, for monitoring the mission Sentinel-2.

The tailoring process is reduced just to create ingestion modules and views for the data stored.

Chapter 2

Purpose and scope

The purpose of this document is to explain the tailoring done for S2BOA component, which is based on BOA for monitoring the mission Sentinel-2. The scope will be limited to explain technically the tailoring.

S2BOA uses BOA's infrastructure to store the relevant data received from the external interfaces through the specific ingestion modules and allow its visualization through the specific views.

These are the available specific ingestion modules:

- ingestion_nppf: ingestion module for the planning received from the S2 Mission Planning
- **ingestion_orbpre**: ingestion module for the orbit prediction received from the flight dynamics
- ingestion_station_schedule: ingestion module for the station schedule received from the S2 Mission Planning
- ingestion_dfep_schedule: ingestion module for the DFEP schedule received from the S2 Mission Planning
- ingestion_slot_request_edrs: ingestion module for the EDRS planning received from the S2 Mission Planning
- ingestion_station_acquisition_report: ingestion module for the station acquisition report sent by the station operators
- ingestion_dfep_acquisition: ingestion module for the acquisition analysis sent by the station
- ingestion_edrs_acquisition: ingestion module for the EDRS acquisition analysis sent by the EISP
- ingestion_vgs_acquisition: ingestion module for the station acquisition analysis sent by the EISP
- ingestion_dpc: ingestion module for the processing generation analysis sent by the processor

- ingestion_ophktm: ingestion module for inserting the production information of the package, which contains the housekeeping telemetry received from the satellite, generated by PDGS to be sent to FOS
- ingestion_tlm_req_b: ingestion module for inserting the memory evolution information for the different storages (Nominal and NRT) as well as the last replayed scene information.
- ingestion rep arc: ingestion module for the indexing of products
- ingestion ai: ingestion module for the archiving of products
- ingestion dc: ingestion module for the circulation of products
- ingestion lta: ingestion module for the long-term-archive of products
- ingestion ltas: ingestion module for the long-term-archive of products
- ingestion dam: ingestion module for the data access management of products
- ingestion dhus: ingestion module for the data availability of products to users

These are the available specific views:

- Planning: view for planning study
- **TLE workflow**: view for the study of TLE circulation towards the expected destinations
- Tracking: view for following the S2 constellation
- Acquisition: view for acquisition performance from planning study
- **HKTM workflow**: view for the study of HKTM circulation towards the expected destinations
- Data availability at DHuS: view for the study of the dissemination of production towards DHuS
- Sensing data volumes: view for the study of the volume of data, query driven by sensing timings
- Archive data volumes: view for the study of the volume of data, query driven by archiving timings

Chapter 3

Ingestion modules

S2BOA implements ingestion modules for the areas of data shown in figure ??. This data is received inside files (usually in XML format) from the Sentinel-2 PDGS, stations and FOS.

Figure 1: Areas of data related to the S2 mission

This chapter describes each of the ingestion modules in the following sections. The figure ?? shows the legend for the diagrams, used to represent the data stored.

Figure 2: Legend for the diagrams, used to represent the data stored

3.1 Ingestion module for the MPL NPPF file

This sections describes the ingestion module for inserting the planning of operations commanding the satellite.

The associated ingestion processor is:

• s2boa.ingestions.ingestion nppf.ingestion nppf

This module uses the following DIM signatures:

- NPPF_XXX: data corresponding to the planning of operations commanding the satellite.
- CORRECTED_NPPF_XXX: data corresponding to the planning of operations commanding the satellite corrected by the available orbit prediction data.
- COMPLETENESS_NPPF_XXX: data corresponding to the definition of planning completeness used for analysis. Priority is equal to 10.

Where XXX is the corresponding satellite id.

The figure ?? shows a simplified diagram of the structure of events inserted (associated structure of values not included for simplicity).

Figure 3: Structure of events inserted by the ingestion module for the MPL_NPPF file

Gauge name	Gauge sys-tem	DIM signature	Insertion mode	Description	Start	Stop
PLANNED_ RECORD	XXX	NPPF_XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the recording operation	UTC time associated to command 'MPMMRNOM' or 'MPMMRNRT'	UTC time associated to command 'MPMMRSTP' or 'MPMMRNRT' or 'MPMMRNOM'
PLANNED_ CUT_IMAGING	XXX	NPPF_XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the imaging operation associated to a specific recording operation	UTC time associated to command 'MPMSSCAL' or 'MPMSDASC' or 'MPMSDCLO' or 'MPMSIVIC' or 'MPMSNOBS' or 'MPMSIRAW' or 'MPMSIDTS' or 'MPMMRNOM' or 'MPMMRNOM' or	UTC time associated to command 'MPMSIMID' or 'MPMSIDSB' or 'MPMMRSTP' or 'MPMMRNRT' or 'MPMMRNOM'
PLANNED_ IMAGING	XXX	NPPF_XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the imaging operation covering one or several planned recording operations	UTC time associated to command 'MPMSSCAL' or 'MPMSDASC' or 'MPMSDCLO' or 'MPMSIVIC' or 'MPMSNOBS' or 'MPMSIRAW' or 'MPMSIDTS'	UTC time associated to command 'MPMSIMID' or 'MPMSIDSB' or 'MPMMRSTP'

PLANNED_ PLAYBACK	XXX	NPPF_XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the playback operation	UTC time associated to command 'MPMMPNOM' or 'MPMMPREG' or 'MPMMPBRT' or 'MPMMPNRT'	UTC time associated to command 'MPMMPSTP'
PLANNED_ PLAYBACK_ MEAN	XXX	NPPF_XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the mean of the playback operation	UTC time associated to command 'MPXBSBOP' or 'MPG1STRT' or 'MPG2STRT'	UTC time associated to command 'MPXBOPSB' (when start is associated to command 'MPXBSBOP') or 'MPOCPRY2' (when start is associated to command 'MPXBSBOP') 'MPOCPRY2' (when start is associated to command 'MPG1STRT' or 'MPG2STRT')

PLANNED_ IDLE	XXX	NPPF_XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the idle state	UTC time associated to command 'MPMSIMID' or 'MPMSSBID'	UTC time associated to command 'MPMSSCAL' or 'MPMSDASC' or 'MPMSDCLO' or 'MPMSIVIC' or 'MPMSNOBS' or 'MPMSIRAW' or 'MPMSIDTS' or 'MPMSIDSB'
***_ CORRECTION	XXX	COR- RECTED_ NPPF_XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the planning events corrected using the orbit prediction events	Start of the planned event corrected using the ORBPRE	Stop of the planned event corrected using the ORBPRE
DFEP_ SCHEDULE_ COMPLETE- NESS	XXX	COM- PLETENESS	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the DFEP schedule	Corrected start of the planned playback + 2s (SAD/HKTM) or + 9s (MSI); (if start >stop) Corrected stop of the planned playback - 4s	Start (SAD/HKTM) or Corrected stop of the planned playback - 9s (MSI); (if start >stop) Corrected stop of the planned playback - 3s

STATION_ SCHEDULE_ COMPLETE- NESS	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the Station schedule	Corrected start of the planned playback + 2s (SAD/HKTM) or + 9s (MSI); (if start >stop) Corrected stop of the planned playback - 4s	Start (SAD/HKTM) or Corrected stop of the planned playback - 9s (MSI); (if start >stop) Corrected stop of the planned playback - 3s
PLANNED_ PLAYBACK_ COMPLETE- NESS_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the planned playbacks using the channel 1	Corrected start of the planned playback + 2s (SAD/HKTM) or + 9s (MSI); (if start >stop) Corrected stop of the planned playback - 4s	Start (SAD/HKTM) or Corrected stop of the planned playback - 9s (MSI); (if start >stop) Corrected stop of the planned playback - 3s
PLANNED_ PLAYBACK_ COMPLETE- NESS_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the planned playbacks using the channel 2	Corrected start of the planned playback + 2s (SAD/HKTM) or + 9s (MSI); (if start >stop) Corrected stop of the planned playback - 4s	Start (SAD/HKTM) or Corrected stop of the planned playback - 9s (MSI); (if start >stop) Corrected stop of the planned playback - 3s

PLANNED_ IMAGING_ ISP_COM- PLETENESS_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the planned imaging using the channel 1	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ ISP_COM- PLETENESS_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the planned imaging using the channel 2	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L0	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L1A	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L1A	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s

PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L1B	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L1B	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L1C	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L1C	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L2A	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L2A	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s

Table 1: Table describing the events associated to the ingestion

3.1.1 Ingestion details

This section describes some ingestion details for inserting the data. In particular:

• The correction of the generation time when is greater than the validity start

3.1.1.1 Correction of the generation time

Due to an operation procedure using the S2MP, the generation time could be greater than the validity start. This could result into having deprecated data in the DDBB.

To solve this issue the processor changes the generation time to be the validity start when the first is greater.

3.2 Ingestion module for the MPL ORBPRE file

This sections describes the ingestion module for inserting the orbit prediction of the satellites generated by FOS.

The associated ingestion processor is:

• s2boa.ingestions.ingestion orbpre.ingestion orbpre

This module uses the following DIM signatures:

- **ORBPRE**: data corresponding to the orbit prediction of the satellites generated by FOS used for adjusting the timing of the planning events which are using the operations angle.
- CORRECTED_NPPF_XXX: data corresponding to the planning of operations commanding the satellite corrected by the available orbit prediction data.
- COMPLETENESS_NPPF_XXX: data corresponding to the definition of planning completeness used for analysis. Priority is equal to 20.

Where XXX is the corresponding satellite id.

The figure ?? shows a simplified diagram of the structure of events inserted (associated structure of values not included for simplicity).

Figure 4: Structure of events inserted by the ingestion module for the MPL ORBPRE file

Where YYY is the orbit number.

Gauge name	Gauge sys- tem	DIM signature	Insertion mode	Description	Start	Stop
ORBIT_ PREDICTION	XXX	ORBIT_ PREDIC- TION_ XXX_YYY	EVENT_ KEYS (insert) [KEY: ORBIT_ PREDIC- TION_ XXX_YYY]	Event for representing the orbit predition information of a specific orbit	UTC time related to the ANX of orbit N	UTC time related to the ANX of orbit $N+1$
***_ CORRECTION	XXX	COR- RECTED_ NPPF_XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the planning events corrected using the orbit prediction events	Start of the planned event corrected using the ORBPRE	Stop of the planned event corrected using the ORBPRE
DFEP_ SCHEDULE_ COMPLETE- NESS	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the DFEP schedule	Corrected start of the planned playback + 2s (SAD/HKTM) or + 9s (MSI); (if start >stop) Corrected stop of the planned playback - 4s	Start (SAD/HKTM) or Corrected stop of the planned playback - 9s (MSI); (if start >stop) Corrected stop of the planned playback - 3s

3.2. INGESTION MODULE FOR THE MPL_ORBPRE FILE

STATION_ SCHEDULE_ COMPLETE- NESS	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the Station schedule	Corrected start of the planned playback + 2s (SAD/HKTM) or + 9s (MSI); (if start >stop) Corrected stop of the planned playback - 4s	Start (SAD/HKTM) or Corrected stop of the planned playback - 9s (MSI); (if start >stop) Corrected stop of the planned playback - 3s
PLANNED_ PLAYBACK_ COMPLETE- NESS_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the planned playbacks using the channel 1	Corrected start of the planned playback + 2s (SAD/HKTM) or + 9s (MSI); (if start >stop) Corrected stop of the planned playback - 4s	Start (SAD/HKTM) or Corrected stop of the planned playback - 9s (MSI); (if start >stop) Corrected stop of the planned playback - 3s
PLANNED_ PLAYBACK_ COMPLETE- NESS_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the planned playbacks using the channel 2	Corrected start of the planned playback + 2s (SAD/HKTM) or + 9s (MSI); (if start >stop) Corrected stop of the planned playback - 4s	Start (SAD/HKTM) or Corrected stop of the planned playback - 9s (MSI); (if start >stop) Corrected stop of the planned playback - 3s

PLANNED_ IMAGING_ ISP_COM- PLETENESS_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the planned imaging using the channel 1	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ ISP_COM- PLETENESS_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the planned imaging using the channel 2	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L0	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L1A	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L1A	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s

3.2. INGESTION MODULE FOR THE MPL_ORBPRE FILE

PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L1B	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L1B	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L1C	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L1C	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s
PLANNED_ IMAGING_ PROCESSING_ COMPLETE- NESS_ L2A	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L2A	Corrected start of the planned imaging + 10s; (if start >stop) Corrected stop of the planned imaging - 12s	Corrected stop of the planned imaging - 10s; (if start >stop) Corrected stop of the planned imaging - 6s

Table 2: Table describing the events associated to the ingestion

3.2.1 Ingestion details

This section describes some ingestion details for inserting the data. In particular:

- The algorithm to correct the timing of the planning events
- The correction of the generation time to avoid overriding data used for completeness analysis

3.2.1.1 Algorithm to correct the timing of the planning events

The algorithm to correct the timing of the planning events is as follows:

For every planning event:

- Get satellite ID, start and stop orbits and start and stop angles.
- Get the ANX time from the orbit prediction information covering the previous orbits and the following ones
- Apply the following formula to the start and stop angles (α) using the orbital period (p) and the corresponding ANX timing (t):

```
sin_1 = sin(\alpha)
sin_2 = sin(2 * \alpha)
cos_1 = cos(\alpha)
cos_2 = cos(2 * \alpha)
cos_3 = cos(3 * \alpha)
Adjust angle to a circunference (perfect distribution in 360^{\circ}):
m = \alpha - 0.13175612 - 2*(-0.0001529)*sin_1 - 2*(-0.0660818)*cos_1 - 2*0.16855853*sin_2 - 2*(-0.0007759)*cos_2 - 2*0.0009872*cos_3 - 2*0.00687159*sin_2
Transform angle to \delta time:
s = (m * p)/360.0
UTCtime = t + s
```

3.2.1.2 Correction of the generation time

The validity start of the ORBPRE is almost equal to the generation time. This makes the data extracted to be in priority with respect to the data extracted of other components which would need to be in priority.

To solve this issue the processor changes the generation time to be the generation time minus 1 day.

3.3 Ingestion module for the MPL SP file

This sections describes the ingestion module for inserting the station schedule information received from the S2 Mission Planning.

The associated ingestion processors are:

- s2boa.ingestion_station_schedule.ingestion_station_schedule
 This module uses the following DIM signatures:
 - STATION_SCHEDULE_WWW_XXX: data corresponding to station schedule information associated to a specific station and satellite received from the Mission Planning.
 - COMPLETENESS_NPPF_XXX: data corresponding to the definition of planning completeness used for analysis. Priority is equal to 10.

Where XXX is the corresponding satellite id and WWW to the station ID.

The figure ?? shows a simplified diagram of the structure of events inserted (associated structure of values not included for simplicity).

Figure 5: Structure of events inserted by the ingestion module for the MPL SP file

3.3 3.
INGESTIO
N MODULE
FOR
FOR THE MPL
$SP\ FILE$

Gauge name	Gauge sys- tem	DIM signature	Insertion mode	Description	Start	Stop
STATION_ SCHEDULE	XXX	STATION_ SCHED- ULE_ WWW_ XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the station schedule	UTC value inside the Data_start node	UTC value inside the Data_stop node
STATION_ SCHEDULE_ COMPLETE- NESS	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ERASE	Event for representing the expectation of the Station schedule	UTC value inside the Data_start node	UTC value inside the Data_stop node

Table 3: Table describing the events associated to the ingestion

3.3.1 Ingestion details

This section describes some ingestion details for inserting the data. In particular:

• The correction of the generation time to avoid overriding data used for completeness analysis

3.3.1.1 Correction of the generation time

The generation time of the data extracted is one day before the validity start. This could be a problem as the processor of the ORBPRE files could override this data.

To solve this issue the processor changes the generation time to be the validity start.

3.4 Ingestion module for the MPL FS file

This sections describes the ingestion module for inserting the DFEP schedule information received from the S2 Mission Planning.

The associated ingestion processor is:

• s2boa.ingestions.ingestion dfep schedule.ingestion dfep schedule

This module uses the following DIM signatures:

- DFEP_SCHEDULE_WWW_XXX: data corresponding to DFEP schedule information associated to a specific station and satellite received from the Mission Planning.
- COMPLETENESS_NPPF_XXX: data corresponding to the definition of planning completeness used for analysis. Priority is equal to 30.

Where XXX is the corresponding satellite id and WWW to the station ID.

The figure ?? shows a simplified diagram of the structure of events inserted (associated structure of values not included for simplicity).

Figure 6: Structure of events inserted by the ingestion module for the MPL FS file

	3.4.
ı	
	INGESTION
	$TON\ MODULE$
	-
	FOR
	$OR\ THE\ M$
ı	MPL
	FSF
	TLE

Gauge name	Gauge sys- tem	DIM signature	Insertion mode	Description	Start	Stop
DFEP_ SCHEDULE	XXX	DFEP_ SCHED- ULE_ WWW_ XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the DFEP schedule	UTC value inside the start node	UTC value inside the stop node
DFEP_ SCHEDULE_ COMPLETE- NESS	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ERASE	Event for representing the expectation of the DFEP schedule	UTC value inside the start node	UTC value inside the stop node

Table 4: Table describing the events associated to the ingestion

3.4.1 Ingestion details

This section describes some ingestion details for inserting the data. In particular:

• The correction of the generation time to avoid overriding data used for completeness analysis

3.4.1.1 Correction of the generation time

The generation time of the data extracted is one day before the validity start. This could be a problem as the processor of the ORBPRE files could override this data.

To solve this issue the processor changes the generation time to be the validity start.

3.5 Ingestion module for the SRA file

This sections describes the ingestion module for inserting the SRA information received from the EDRS.

The associated ingestion processor is:

ullet s2boa.ingestions.ingestion_slot_request_edrs.ingestion_slot_request_edrs

This module uses the following DIM signatures:

- SLOT_REQUEST_EDRS: data corresponding to the slot request information associated to the EDRS service.
- COMPLETENESS_NPPF_XXX: data corresponding to the definition of planning completeness used for analysis. Priority is equal to 30.

Where XXX is the corresponding satellite ID.

The figure ?? shows a simplified diagram of the structure of events inserted (associated structure of values not included for simplicity).

Figure 7: Structure of events inserted by the ingestion module for the SRA file

Gauge name	Gauge sys- tem	DIM signature	Insertion mode	Description	Start	Stop
SLOT_ REQUEST_ EDRS	XXX	SLOT_ REQUEST_ EDRS	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the slot request for EDRS	UTC value inside the Start_Time node	UTC value inside the Stop_Time node
STATION_ SCHEDULE_ COMPLETE- NESS	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ERASE	Event for representing the expectation of the Station schedule	UTC value inside the Start_Time node	UTC value inside the Stop_Time node
DFEP_SCHEDULE_COMPLETE-NESS	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ERASE	Event for representing the expectation of the DFEP schedule	UTC value inside the Start_Time node	UTC value inside the Stop_Time node

Table 5: Table describing the events associated to the ingestion

3.5.1 Ingestion details

This section describes some ingestion details for inserting the data. In particular:

• The correction of the generation time to avoid overriding data used for completeness analysis

3.5.1.1 Correction of the generation time

The generation time of the data extracted is one day before the validity start. This could be a problem as the processor of the ORBPRE files could override this data.

To solve this issue the processor changes the generation time to be the validity start.

3.6 Ingestion module for the REP PASS [2|5] file

This sections describes the ingestion module for inserting the DFEP acquisition analysis after reception of data from the satellite.

The associated ingestion processor is:

- s2boa.ingestions.ingestion_dfep_acquisition.ingestion_dfep_acquisition
- This module uses the following DIM signatures:
 - **RECEPTION_XXX**: data corresponding to the acquisition analysis after reception of data from the satellite.
 - COMPLETENESS_NPPF_XXX: data corresponding to the definition of planning completeness used for analysis. Priority is equal to 30.
 - ISP_VALIDITY_PROCESSING_COMPLETENESS_XXX: data corresponding to the definition of ISP processing completeness used for analysis. **Priority** is equal to 10.

Where XXX is the corresponding satellite id, SSS is the station ID and VVV is the VCID number.

The figure ?? shows a simplified diagram of the structure of events inserted (associated structure of values not included for simplicity).

Figure 8: Structure of events inserted by the ingestion module for the REP_PASS_[2|5] file

The table ?? shows the description of the events inserted by the ingestion.

Gauge name	Gauge sys- tem	DIM signature	Insertion mode	Description	Start	Stop
PLAYBACK_ VALIDITY_ VVV	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing the ground acquisition operation	UTC time associated to the start of the reception	UTC time associated to the stop of the reception
PLAYBACK_ GAP	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing a gap in the ground acquisition operation	UTC time associated to the start of the corresponding gap in the reception	UTC time associated to the stop of the corresponding gap in the reception
PLANNED_ PLAYBACK_ COMPLETE- NESS_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for completing the expectation of the planned playbacks through the channel 1	Start of the reception through the channel 1	Stop of the reception through the channel 1
PLANNED_ PLAYBACK_ COMPLETE- NESS_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for completing the expectation of the planned playbacks through the channel 2	Start of the reception through the channel 2	Stop of the reception through the channel 2

PLANNED_ IMAGING_ ISP_COM- PLETENESS_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for completing the expectation of the planned imaging sent through the channel 1	Start of the first received scene thorugh the channel 1 of the corresponding continuous MSI segment	Stop of the last received scene thorugh the channel 1 of the corresponding continuous MSI segment
PLANNED_ IMAGING_ ISP_COM- PLETENESS_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for completing the expectation of the planned imaging sent through the channel 2	Start of the first received scene thorugh the channel 2 of the corresponding continuous MSI segment	Stop of the last received scene thorugh the channel 2 of the corresponding continuous MSI segment
RAW_ISP_ VALIDITY	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing the ground acquisition operation	Start of the first received scene	Stop of the last received scene
ISP_VALIDITY	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing the ground acquisition operation	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment

ISP_GAP	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing a gap in the ground acquisition operation	UTC time associated to the start of the corresponding continuous gap in the received MSI	UTC time associated to the stop of the corresponding continuous gap in the received MSI
PLAYBACK_ ISP_DISTRIBU- TION_ STATUS_ CHANNEL_1	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing a gap in the ground acquisition operation	UTC time associated to the start of the MSI reception	UTC time associated to the stop of the MSI reception
PLAYBACK_ ISP_DISTRIBU- TION_ STATUS_ CHANNEL_2	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing a gap in the ground acquisition operation	UTC time associated to the start of the MSI reception	UTC time associated to the stop of the MSI reception
PLAYBACK_ HKTM_DIS- TRIBUTION_ STATUS_ CHANNEL_1	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing a gap in the ground acquisition operation	UTC time associated to the start of the corresponding gap in the HKTM reception	UTC time associated to the stop of the corresponding gap in the HKTM reception
PLAYBACK_ HKTM_DIS- TRIBUTION_ STATUS_ CHANNEL_2	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing a gap in the ground acquisition operation	UTC time associated to the start of the corresponding gap in the HKTM reception	UTC time associated to the stop of the corresponding gap in the HKTM reception

3.6. INGESTION MODULE FOR THE REP_PASS_[2|5] FILE

DFEP_ ACQUISITION_ VALIDITY	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION-ID]	Event for representing a gap in the ground acquisition operation	UTC time associated to the validity start of the received file	UTC time associated to the validity stop of the received file
ISP_ VALIDITY_ PROCESSING_ COMPLETE- NESS_L0_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISPVALIDITY_PROCESSING_COMPLETE-NESS_L1A_CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment

ISPVALIDITY_PROCESSING_COMPLETE-NESS_L1C_CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment

3.6. INGESTION MODULE FOR THE REP_PASS_[2|5] FILE

ISP	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP_ VALIDITY_ PROCESSING_ COMPLETE- NESS_L1B_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP_ VALIDITY_ PROCESSING_ COMPLETE- NESS_L1C_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment

ISP_ VALIDITY_ PROCESSING_ COMPLETE- NESS_L2A_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
---	-----	-------------------------------------	---	--	---	---

Table 6: Table describing the events associated to the ingestion

3.7 Ingestion module for the REP PASS E file

This sections describes the ingestion module for inserting the EFEP acquisition analysis after reception of data from the satellite.

The associated ingestion processor is:

- s2boa.ingestions.ingestion edrs acquisition.ingestion edrs acquisition
- s2boa.ingestions.ingestion vgs acquisition.ingestion vgs acquisition

This module uses the following DIM signatures:

- **RECEPTION_XXX**: data corresponding to the acquisition analysis after reception of data from the satellite.
- COMPLETENESS_NPPF_XXX: data corresponding to the definition of planning completeness used for analysis. Priority is equal to 30.
- ISP_VALIDITY_PROCESSING_COMPLETENESS_XXX: data corresponding to the definition of ISP processing completeness used for analysis. **Priority** is equal to 10.

Where XXX is the corresponding satellite id, SSS is the station ID and VVV is the VCID number.

The figure ?? shows a simplified diagram of the structure of events inserted (associated structure of values not included for simplicity).

Figure 9: Structure of events inserted by the ingestion module for the REP_PASS_E file

The table ?? shows the description of the events inserted by the ingestion.

Gauge name	Gauge sys- tem	DIM signature	Insertion mode	Description	Start	Stop
PLAYBACK_ VALIDITY_ VVV	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION- ID_ CHANNEL_ [1 2]]	Event for representing the ground acquisition operation	UTC time associated to the start of the reception	UTC time associated to the stop of the reception
PLAYBACK_ GAP	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION- ID_ CHANNEL_ [1 2]]	Event for representing a gap in the ground acquisition operation	UTC time associated to the start of the corresponding gap in the reception	UTC time associated to the stop of the corresponding gap in the reception
PLANNED_ PLAYBACK_ COMPLETE- NESS_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for completing the expectation of the planned playbacks through the channel 1	Start of the reception through the channel 1	Stop of the reception through the channel 1

PLANNED_ PLAYBACK_ COMPLETE- NESS_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for completing the expectation of the planned playbacks through the channel 2	Start of the reception through the channel 2	Stop of the reception through the channel 2
PLANNED_ IMAGING_ ISP_COM- PLETENESS_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for completing the expectation of the planned imaging sent through the channel 1	Start of the first received scene thorugh the channel 1 of the corresponding continuous MSI segment	Stop of the last received scene thorugh the channel 1 of the corresponding continuous MSI segment
PLANNED_ IMAGING_ ISP_COM- PLETENESS_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for completing the expectation of the planned imaging sent through the channel 2	Start of the first received scene thorugh the channel 2 of the corresponding continuous MSI segment	Stop of the last received scene thorugh the channel 2 of the corresponding continuous MSI segment

3.7. INGESTION MODULE FOR THE REP_PASS_E FILE

RAW_ISP_ VALIDITY	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION- ID_ CHANNEL_ [1 2]]	Event for representing the ground acquisition operation	Start of the first received scene	Stop of the last received scene
ISP_VALIDITY	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION- ID_ CHANNEL_ [1 2]]	Event for representing the ground acquisition operation	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP_GAP	SSS	RECEP- TION_ XXX	EVENT_ KEYS (insert) [KEY: SESSION- ID_ CHANNEL_ [1 2]]	Event for representing a gap in the ground acquisition operation	UTC time associated to the start of the corresponding continuous gap in the received MSI	UTC time associated to the stop of the corresponding continuous gap in the received MSI

ISP_ VALIDITY_ PROCESSING_ COMPLETE- NESS_L0_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP_ VALIDITY_ PROCESSING_ COMPLETE- NESS_L1B_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment

3.7. INGESTION MODULE FOR THE REP_PASS_E FILE

ISPVALIDITY_ PROCESSING COMPLETE- NESS_L1C_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP_ VALIDITY_ PROCESSING_ COMPLETE- NESS_L2A_ CHANNEL_1	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP VALIDITY_ PROCESSING_ COMPLETE- NESS_L0_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment

ISP	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
ISP_ VALIDITY PROCESSING_ COMPLETE- NESS_L1C_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment

3.7. INGESTION MODULE FOR THE REP_PASS_E FILE

ISP_ VALIDITY_ PROCESSING_ COMPLETE- NESS_L2A_ CHANNEL_2	XXX	COM- PLETE- NESS_ NPPF_XXX	INSERT_ and_ ERASE_ per_ EVENT_ with_ PRIORITY (insert)	Event for representing the expectation of the processing of the planned imaging for the L0	Start of the first received scene of the corresponding continuous MSI segment	Stop of the last received scene of the corresponding continuous MSI segment
---	-----	-------------------------------------	---	--	---	---

Table 7: Table describing the events associated to the ingestion

3.8 Ingestion module for the OPHKTM file

This sections describes the ingestion module for inserting the production information of the package, which contains the housekeeping telemetry received from the satellite, generated by PDGS to be sent to FOS.

The associated ingestion processors are:

• s2boa.ingestions.ingestion ophktm.ingestion ophktm

This module uses the following DIM signatures:

• **HKTM_PRODUCTION_VGS**: production information of the package, which contains the housekeeping telemetry received from the satellite, generated by PDGS to be sent to FOS.

The table ?? shows the description of the explicit references inserted by the ingestion.

Reference	Description		
HKTM PRODUCT_	Identifier of the package generated by PDGS		
ID	containing the telemetry to be sent to FOS		

Table 8: Table describing the explicit reference associated to the ingestion

The figure ?? shows a simplified diagram of the structure of events inserted (associated structure of values not included for simplicity).

Figure 10: Structure of events inserted by the ingestion module for the OPHKTM file

Where XXX is the corresponding satellite id, SSS is the station and YYY is the orbit number. The table ?? shows the description of the events inserted by the ingestion.

Gauge name	Gauge sys- tem	DIM signature	Insertion mode	Description	Start	Stop
HKTM_ PRODUCTION_ VGS	XXX	HKTM_ PRODUC- TION_ VGS	EVENT_ KEYS (insert) [KEY: PRODUCT_ ID-XXX- WWW-YYY]	Event for representing the generation of the HKTM product	UTC value inside the generation_date node	UTC value inside the generation_date node

Table 9: Table describing the events associated to the ingestion

The figure ?? shows a simplified diagram of the structure of annotations inserted (associated structure of values not included for simplicity).

Figure 11: Structure of annotations inserted by the ingestion module for the OPHKTM file

Where SSS is the station.

The table ?? shows the description of the annotations inserted by the ingestion.

Annotation name	Annotation system	DIM signature	Insertion mode	Description
ACQUISITION_ DETAILS	- SSS	HKTM_ PRODUC- TION_ VGS	SIMPLE_ UP- DATE (insert)	Annotation for representing the acquisition details for the generated HKTM package

Table 10: Table describing the annotations associated to the ingestion

3.9 Ingestion module for the TLM_REQ_B files

This section describes the ingestion module for inserting the telemetry files containing the memory information of the satellite. The associated ingestion processor is

• s2boa.ingestions.ingestion tlm req b.ingestion tlm req b

This module uses the following DIM signatures:

• MEMORY_EVOLUTION_XXX: data containing the evolution of the memory in the different storages (NOMINAL, NRT) for the two channels as well as the last replayed scene to ground for the two channels.

Where XXX is the corresponding satellite id.

The figure ?? shows a simplified diagram of the structure of events inserted (associated structure of values not included for simplicity).

Figure 12: Structure of events inserted by the ingestion module for the TLM_REQ_B file

The table ?? shows the description of the events inserted by the ingestion module.

Gauge name	Gauge sys- tem	DIM signature	Insertion mode	Description	Start	Stop
NOMINAL_ MEMORY_ OCCUPATION	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the NOMINAL memory evolution taking as reference the values for channel 1	UTC time associated to a new engineering_ value	UTC time associated to the last instance of the same enineering_ value
DISCREPANCY_CHANNEL_2_NOMINAL_MEMORY_OCCUPATION	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the discrepancy between the NOMINAL memory occupation of Channel 1 and the NOMINAL memory occupation of Channel 2	UTC time associated to the discrepancy	UTC time associated to the discrepancy
NRT_ MEMORY_ OCCUPATION	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the NRT memory evolution taking as reference the values for channel 1	UTC time associated to a new engineering_ value	UTC time associated to the last instance of the same enineering_ value
DISCREPANCY_ CHANNEL_2_ NRT_ MEMORY_ OCCUPATION	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the discrepancy between the NRT memory occupation of Channel 1 and NRT memory occupation of Channel 2	UTC time associated to the discrepancy	UTC time associated to the discrepancy

LAST_ REPLAYED_ SCENE	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the last replayed scene taking as reference the values for channel 1	UTC time associated to a new engineering_ value	UTC time associated to the last instance of the same enineering_ value
DISCREPANCY_CHANNEL_2_LAST_REPLAYED_SCENE	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the discrepancy between the last replayed scene of Channel 1 and the last replayed scene of Channel 2	UTC time associated to the discrepancy	UTC time associated to the discrepancy
NOMINAL_ MEMORY_ OCCUPATION_ CHANNEL_1_ GAP	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the gaps in the NOMINAL memory occupation of Channel 1 of more than 6 seconds	UTC time associated to the beginning of the gap	UTC time associated to the end of the gap
NOMINAL_ MEMORY_ OCCUPATION_ CHANNEL_2_ GAP	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the gaps in the NOMINAL memory occupation of Channel 2 of more than 6 seconds	UTC time associated to the beginning of the gap	UTC time associated to the end of the gap
NRT_ MEMORY_ OCCUPATION_ CHANNEL_1_ GAP	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the gaps in the NRT memory occupation of Channel 1 of more than 6 seconds	UTC time associated to the beginning of the gap	UTC time associated to the end of the gap

NRT_ MEMORY_ OCCUPATION_ CHANNEL_2_ GAP	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the gaps in the NRT memory occupation of Channel 2 of more than 6 seconds	UTC time associated to the beginning of the gap	UTC time associated to the end of the gap
LAST_ REPLAYED_ SCENE_ CHANNEL_1_ GAP	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the gaps in the last replayed scene data of Channel 1 of more than 6 seconds	UTC time associated to the beginning of the gap	UTC time associated to the end of the gap
LAST_ REPLAYED_ SCENE_ CHANNEL_2_ GAP	XXX	MEMORY_ EVOLU- TION_ XXX	INSERT_ and_ERASE (insert_ and_erase)	Event for representing the gaps in the last replayed scene data of Channel 2 of more than 6 seconds	UTC time associated to the beginning of the gap	UTC time associated to the end of the gap

Table 11: Table describing the events associated to the ingestion

Chapter 4

Ingestion modules code documentation

4.1 Subpackages

4.1.1 s2boa.ingestions package

4.1.1.1 Submodules

4.1.1.2 s2boa.ingestions.ingestion ai.ingestion ai module

Ingestion module for the REP OPAI files of Sentinel2

Written by DEIMOS Space S.L. (femd)

module eboa

 ${\tt s2boa.ingestion_ai.ingestion_ai.process_file} ({\it file_path, engine, query, reception_time})$

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (Engine) Engine instance
- query (*Query*) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.3 s2boa.ingestions.ingestion dam.ingestion dam module

Ingestion module for the REP OPDAM files of Sentinel2

Written by DEIMOS Space S.L. (femd)

module eboa

ti

s2boa.ingestions.ingestion_dam.ingestion_dam.process_file($file_path$, engine, query, reception_time)

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (*Engine*) Engine instance
- query (*Query*) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.4 s2boa.ingestions.ingestion_dfep_acquisition.ingestion_dfep_acquisition module

Ingestion module for the REP PASS 2|5 files of Sentinel2

Written by DEIMOS Space S.L. (dibb)

module eboa

 ${\tt s2boa.ingestions.ingestion_dfep_acquisition.ingestion_dfep_acquisition.process_file({\it fit} actions actio$

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (Engine) Engine instance
- query (Query) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.5 s2boa.ingestions.ingestion_dfep_schedule.ingestion_dfep_schedule module

Ingestion module for the DFEP schedule files of Sentinel2

Written by DEIMOS Space S.L. (dibb)

module eboa

```
s2boa.ingestions.ingestion_dfep_schedule.ingestion_dfep_schedule.process_file(file\_path, en-gine, query, re-ception_time)
```

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (Engine) Engine instance
- query (Query) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.6 s2boa.ingestions.ingestion dhus.ingestion dhus module

Ingestion module for the REP OPDHUS files of Sentinel2

Written by DEIMOS Space S.L. (femd)

module eboa

```
{\tt s2boa.ingestion\_dhus.ingestion\_dhus.process\_file} (file\_path,\ engine,\ query,\ reception\_time)
```

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (Engine) Engine instance
- query (Query) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.7 s2boa.ingestions.ingestion dpc.ingestion dpc module

Ingestion module for the DPC files of Sentinel2

Written by DEIMOS Space S.L. (femd)

ti

module eboa

```
\verb|s2boa.ingestions.ingestion_dpc.ingestion_dpc.process_file|| file_path, engine, query, reception_time, wait_previous_levels=True|| time, time
```

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (Engine) Engine instance
- query (Query) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.8 s2boa.ingestions.ingestion_edrs_acquisition.ingestion_edrs_acquisition module

Ingestion module for the REP PASS E VGS files of Sentinel2

Written by DEIMOS Space S.L. (dibb)

module eboa

s2boa.ingestions.ingestion_edrs_acquisition.ingestion_edrs_acquisition.process_file(fi

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (Engine) Engine instance
- query (Query) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.9 s2boa.ingestions.ingestion lta.ingestion lta module

Ingestion module for the REP OPLTA files of Sentinel2

Written by DEIMOS Space S.L. (femd)

module eboa

```
s2boa.ingestions.ingestion_lta.ingestion_lta.process_file(file\_path, engine, query, reception_time)
```

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (*Engine*) Engine instance
- query (Query) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.10 s2boa.ingestions.ingestion Itas.ingestion Itas module

Ingestion module for the REP OPLTAS files of Sentinel2

Written by DEIMOS Space S.L. (femd)

module eboa

```
s2boa.ingestions.ingestion_ltas.ingestion_ltas.process_file(file\_path, engine, query, reception\_time)
```

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (*Engine*) Engine instance
- query (*Query*) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.11 s2boa.ingestions.ingestion nppf.ingestion nppf module

Ingestion module for the NPPF files of Sentinel2

Written by DEIMOS Space S.L. (dibb)

module eboa

```
s2boa.ingestions.ingestion_nppf.ingestion_nppf.process_file(file\_path, engine, query, reception\_time)
```

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (*Engine*) Engine instance
- query (*Query*) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.12 s2boa.ingestions.ingestion orbpre.ingestion orbpre module

Ingestion module for the ORBPRE files of Sentinel2

Written by DEIMOS Space S.L. (dibb)

module eboa

```
 s2boa.ingestions.ingestion\_orbpre.ingestion\_orbpre.get\_date\_from\_angle (angle, or-bital\_pe-riod, as-cend-ing\_node\_time)
```

```
{\tt s2boa.ingestion\_orbpre.ingestion\_orbpre.process\_file} (file\_path, engine, query, reception\_time)
```

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (*Engine*) Engine instance
- query (*Query*) Query instance

ullet reception_time (str) - time of the reception of the file by the triggering

4.1.1.13 s2boa.ingestions.ingestion_rep_arc.ingestion_rep_arc module

```
Ingestion module for the REP_ARC files of Sentinel2
```

Written by DEIMOS Space S.L. (femd)

module eboa

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (Engine) Engine instance
- query (Query) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.14 s2boa.ingestions.ingestion_slot_request_edrs.ingestion_slot_request_edrs module

Ingestion module for the SRA (Slot request for unit A) files of Sentinel2

Written by DEIMOS Space S.L. (dibb)

module eboa

s2boa.ingestions.ingestion_slot_request_edrs.ingestion_slot_request_edrs.process_file

Function to process the file and insert its relevant information into the DDBB of the

Parameters

- file_path (str) path to the file to be processed
- engine (Engine) Engine instance
- query (Query) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.15 s2boa.ingestions.ingestion_station_acquisition_report.ingestion_station_acquisition_report module

Ingestion module for the Station Acquisition Report files

Written by DEIMOS Space S.L. (femd)

module eboa

s2boa.ingestions.ingestion_station_acquisition_report.ingestion_station_acquisition_r

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (*Engine*) Engine instance
- query (Query) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.16 s2boa.ingestions.ingestion_station_schedule.ingestion_station_schedule module

Ingestion module for the Station schedule files of Sentinel2

Written by DEIMOS Space S.L. (dibb)

module eboa

 ${\tt s2boa.ingestion_station_schedule.ingestion_station_schedule.process_file(\it file_path)} \\ path$

engine
quer
reception

Function to process the file and insert its relevant information into the DDBB of the eboa

Parameters

- file_path (str) path to the file to be processed
- engine (Engine) Engine instance
- query (*Query*) Query instance
- ullet reception_time (str) time of the reception of the file by the triggering

4.1.1.17 s2boa.ingestions.errors module

Errors definition for the ingestions module

Written by DEIMOS Space S.L. (dibb)

module eboa

exception s2boa.ingestions.errors.CentresConfigCannotBeRead(message)

Bases: s2boa.ingestions.errors.Error

Exception raised when the centres configuration file cannot be read.

Attributes: message – explanation of the error

exception s2boa.ingestions.errors.CentresConfigDoesNotPassSchema(message)

Bases: s2boa.ingestions.errors.Error

Exception raised when the centres configuration does not pass the schema.

Attributes: message – explanation of the error

exception s2boa.ingestions.errors.Error

Bases: Exception

Base class for exceptions in this module.

4.1.1.18 s2boa.ingestions.functions module

Helper module for the ingestion functions. of files of Sentinel2

Written by DEIMOS Space S.L. (dibb)

module eboa

```
s2boa.ingestions.functions.LO_L1A_L1B_processing(source, engine, query, granule_timeline, list_ of_events, datastrip, granule_timeline_per_ detector, list_of_operations, system, version, filename, satellite, prior-
```

Method to generate the events for the levels L0 and L1B

Parameters

- source (dict) information of the source
- engine (Engine) object to access the engine of the EBOA
- query (Query) object to access the query interface of the EBOA
- granule_timeline (list) list of granule segments to be processed
- list_of_events (list) list to store the events to be inserted into the eboa
- datastrip (str) datastrip
- ullet granule_timeline_per_detector (dict) dict containing the granule segments per detector
- list_of_operations (list) list of operations to be inserted into EBOA
- level (str) level of the outputs being processed
- system (str) center where data has been processed
- version (str) version of the processor used
- filename name of the processor file

Returns None

```
s2boa.ingestions.functions.L1C\_L2A\_processing(source, engine, query, list\_of\_events, processing\_valid-ity\_events, datastrip, list\_of\_operations, system, version, filename, satellite, priority)\\ Method to generate the events for the levels L1C and L2A
```

Parameters

• source (dict) – information of the source

- engine (Engine) object to access the engine of the EBOA
- query (Query) object to access the query interface of the EBOA
- list_of_events (list) list to store the events to be inserted into the eboa
- processing_validity_events (dict) dict containing the events linked to the sensing date from the datablock analysed
- datastrip (str) datastrip
- list_of_operations (list) list of operations to be inserted into EBOA
- system(str) center where data has been processed
- \bullet version (str) version of the processor used
- filename name of the processor file

Returns None

```
 s2boa.ing estions.functions.associate\_footprints(events, satellite, orbpre\_events=None, return\_poly-gon\_format=False)
```

 $s2boa.ingestions.functions.build_orbpre_file(start_events, stop_events, satellite, orbpre_events=None)\\ Method to generate an orbpre file from data inside the DDBB$

s2boa.ingestions.functions.convert_from_datetime_gps_to_datetime_utc(date)

Method to convert a date in GPS precission to UTC :param date: date in GPS precission and ISO format :type date: str

Returns date coverted in ISO 8601

Return type str

s2boa.ingestions.functions.convert_from_gps_to_utc(date)

Method to convert a date in GPS precission to UTC :param date: date in GPS precission and ISO format :type date: str

Returns date coverted in ISO 8601

Return type str

s2boa.ingestions.functions.correct_footprint(coordinates)

 ${\tt s2boa.ingestions.functions.correct_list_of_coordinates_for_ds({\it list_of_coordinates_for_ds({\it list_of_coordinates)})})}}$

Method to correct the format of a given list of coordinates for a datastrip :param list_of_coordinates: list with coordinates :type list_of_coordinates: list

Returns list of coordinates

Return type str

s2boa.ingestions.functions.correct_list_of_coordinates_for_gr_tl($list_of_coordi-coordi-nates$)

Method to correct the format of a given list of coordinates for a granule or a tile :param list of coordinates: list with coordinates :type list of coordinates: list

Returns list of coordinates

Return type str

s2boa.ingestions.functions.get_apid_numbers()

Method to obtain the APID numbers used

Returns list of APID numbers

Return type list

s2boa.ingestions.functions.get_band_detector(apid)

Method to obtain the band and detector numbers related to the APID number

The detector and the bands are determined from APID

APID RANGE DETECTOR 015 12 1631 11 3247 10 4863 9 6479 8 8095 7

 $256271\ 6\ 272287\ 5\ 288303\ 4\ 304319\ 3\ 320335\ 2\ 336351\ 1$

APID MOD 16 BAND 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 8a 9 9 10 10 11 11 12 12

Parameters apid – APID number

Returns band detector configuration

Return type dict

s2boa.ingestions.functions.get_centre_name_by_alias(alias)

s2boa.ingestions.functions.get_centres_conf()

s2boa.ingestions.functions.get_counter_threshold(band)

Method to obtain the counter threshold related to the band number

BAND COUNTER THRESHOLD METRES 1 23 60 24 143 10 57 71 20 8 143 10 8a 71 20 910 23 60 1112 71 20

Parameters band (str) – band number

Returns counter threshold

Return type int

s2boa.ingestions.functions.get_counter_threshold_from_apid(apid)

Method to obtain the counter threshold related to the apid number

Parameters apid (str) – apid number

Returns counter threshold

Return type int

s2boa.ingestions.functions.get_vcid_apid_configuration(vcid)

Method to obtain the APID configuration related to the VCID number :param vcid: VCID number :type vcid: str

Returns apid configuration

Return type dict

s2boa.ingestions.functions.get_vcid_mode(vcid)

Method to convert the VCID number into the storage mode :param vcid: VCID number :type vcid: str

Returns mode

Return type str

s2boa.ingestions.functions.insert_ingestion_progress(session, progress) source,

 ${\tt s2boa.ingestions.functions.list_of_coordinates_to_str_geometry({\it list_of_coordinates_to_str_geometry({\it list_of_coordinates_to_st$

Method to receive a string of coordinates and return the same list but with a correct format :param list_of_coordinates: list with coordinates :type list_of_coordinates: list

Returns geometry

Return type str

s2boa.ingestions.functions.obtain_polygon_format(footprint)

s2boa.ingestions.functions.three_letter_to_iso_8601(date)

Method to convert a date in three letter format to a date in ISO 8601 format :param date: date in three letter format (DDMMMYYYY HH:MM:SS.sssss) :type date: str

Returns date in ISO 8601 format (YYYYMMDDTHH:MM:SS)

Return type str

4.1.1.19 s2boa.ingestions.xpath functions module

Helper module for the ingestion_functions. of files of Sentinel2 using functions in XPATH Written by DEIMOS Space S.L. (dibb)

module eboa

 $\tt s2boa.ingestions.xpath_functions.dates_difference({\it dummy, minuend, subtra-hend})$

Method to perform the difference between two dates from XPATH :param dummy: parameter not used by lxml :type dummy: None :param minuend: first date in the substruction :type date: str :param subtrahend: second date in the substruction :type date: str

Returns seconds of difference

Return type float

 $s2boa.ingestions.xpath_functions.get_counter_threshold_from_apid(dummy, anid)$

Method to obtain the counter threshold of the related apid :param dummy: parameter not used by lxml :type dummy: None :param apid: apid number :type apid: str

Returns counter_threshold

Return type int

s2boa.ingestions.xpath_functions.three_letter_to_iso_8601(dummy, date)

Method to convert a date in three letter format to a date in ISO 8601 format from XPATH :param dummy: parameter not used by lxml :type dummy: None :param date: date in three letter format (DDMMMYYYY HH:MM:SS.sssss) :type date: str

Returns date in ISO 8601 format (YYYYMMDDTHH:MM:SS)

Return type str

Python Module Index

```
s2boa.ingestions.errors, ??
s2boa.ingestions.functions,??
s2boa.ingestions.ingestion_
      ai.ingestion_ai, ??
s2boa.ingestions.ingestion_
      dam.ingestion_dam, ??
s2boa.ingestions.ingestion_dfep_
      acquisition.ingestion_dfep_
      acquisition, ??
s2boa.ingestions.ingestion_dfep_
      schedule.ingestion_dfep_
      schedule, ??
s2boa.ingestions.ingestion_
      dhus.ingestion_dhus, ??
s2boa.ingestions.ingestion_
      dpc.ingestion_dpc, ??
s2boa.ingestions.ingestion_edrs_
      acquisition.ingestion_edrs_
      acquisition, ??
s2boa.ingestions.ingestion_
      lta.ingestion_lta, ??
s2boa.ingestions.ingestion_
      ltas.ingestion_ltas, ??
s2boa.ingestions.ingestion_
      nppf.ingestion_nppf, ??
s2boa.ingestions.ingestion_
      orbpre.ingestion_orbpre, ??
s2boa.ingestions.ingestion_rep_
      arc.ingestion_rep_arc, ??
s2boa.ingestions.ingestion_slot_
      request_edrs.ingestion_slot_
      request_edrs, ??
s2boa.ingestions.ingestion_station_
      acquisition_report.ingestion_
      station_acquisition_report, ??
s2boa.ingestions.ingestion_station_
      schedule.ingestion_station_
      schedule, ??
s2boa.ingestions.xpath_functions, ??
```

Chapter 5

View modules code documentation

5.1 Subpackages

5.1.1 s2vboa.views package

5.1.1.1 Submodules

5.1.1.2 s2vboa.views.acquisition module

```
Acquistion view for s2boa
Written by DEIMOS Space S.L. (dibb)
module s2vboa
s2vboa.views.acquisition.define_what_to_show_acquisition(show)
```

 $\verb|s2vboa.views.acquisition.query_acquisition_and_render(|start_f|lter=None, |section|)| | |s2vboa.views.acquisition.query_acquisition_and_render(|start_f|lter=None, |section|)| | |s2vboa.views.acquisition.query_acquisition_and_render(|start_f|lter=None, |section|)| | |s2vboa.views.acquisition.query_acquisition_and_render(|start_f|lter=None, |section|)| | |s2vboa.views.acquisition.query_acquisition_and_render(|start_f|lter=None, |section|)| | |s2vboa.views.acquisition_and_render(|start_f|lter=None, |section|)| | |s2vboa.views.acquisition_and_render(|start_f|lter=None, |section|)| | |s2vboa.views.acquisition_and_render(|start_f|lter=None, |section|)| | |s2vboa.views.acquisition_and_render(|start_f|lter=None, |section|)| | |s2vboa.views.acquisition_acqu$

 $stop_filter=None,$ mission=None, show=None, $slid-ing_window=None,$ filters=None, $corrected_$ $planned_playback_$ uuid=None)

 $\verb|s2vboa.views.acquisition.query_acquisition_events(|start_f| |lter=None|,$

stop_filter=None, mission=None, filters=None, corrected_ planned_playback_ uuid=None)

Query planned acquisition events.

s2vboa.views.acquisition.query_acquisition_pages()
Acquisition view for the Sentinel2 mission using pages.

```
s2vboa.views.acquisition.show_acquisition()
     Acquisition view for the Sentinel mission.
s2vboa.views.acquisition.show_sliding_acquisition()
     Acquisition sliding view for the Sentinel 2mission.
s2vboa.views.acquisition.show_sliding_acquisition_parameters()
     Acquisition sliding view for the Sentinel mission.
s2vboa.views.acquisition.show_specific_acquisition(corrected planned
                                                        playback uuid)
     Specific acquisition view for one playback related to the Sentine mission.
5.1.1.3 s2vboa.views.planning module
Planning view definition
Written by DEIMOS Space S.L. (dibb)
module s2vboa
s2vboa.views.planning.define_what_to_show_planning(show)
s2vboa.views.planning.query_planning_and_render(start_filter=None, stop_fil-
                                                    ter=None, \quad mission=None,
                                                    show=None,
                                                                  sliding win-
                                                    dow=None, filters=None)
s2vboa.views.planning.query_planning_events(start filter=None,
                                                                      stop fil-
                                                ter=None,
                                                                mission=None,
                                                filters=None)
     Query planning events.
s2vboa.views.planning.query_planning_pages()
     Planning view for the Sentinel mission using pages.
s2vboa.views.planning.show_planning()
     Planning view for the Sentinel mission.
s2vboa.views.planning.show_sliding_planning()
     Planning view for the Sentinel mission.
s2vboa.views.planning.show_sliding_planning_parameters()
     Planning view for the Sentinel 2mission.
5.1.1.4 s2vboa.views.functions module
Views functions definition
Written by DEIMOS Space S.L. (dibb)
```

window size, mission, filters)

s2vboa.views.functions.get_start_stop_filters(query, current_app, request,

module s2vboa

CHAPTER 5. VIEW MODULES CODE DOCUMENTATION

5.1.1.5 Module contents