- 7. Степень диссоциации (α) это понятие, характеризующее долю продиссоциировавшего слабого электролита. Так как от концентрации ионов в растворе зависит электропроводность (Λ), степень диссоциации можно выразить следующим образом: $\alpha = \Lambda/\Lambda_0$, где Λ_0 максимально возможная электропроводность для данного электролита при бесконечном разбавлении.
 - Выведите выражение, связывающее константу кислотности (K_a) очень слабой одноосновной кислоты НА с её концентрацией (c) через электропроводность (при выводе пренебрегите диссоциацией самой кислоты).
 - 2) Используя метод линеаризации (построения искомой зависимости в виде прямой в выбранных координатах), предложите графический способ определения константы кислотности, если известен параметр Λ_0 .
 - 3) Используя экспериментальные данные об электропроводности изучаемых растворов слабой кислоты (см. таблицу), рассчитайте значение K_a , если $\Lambda_0 = 390.7$ см²·моль⁻¹·Ом⁻¹.

с, моль/л	0.1	0.05	0.0125
Λ , cм ² ·моль ⁻¹ ·Oм ⁻¹	5.1	7.3	14.6

4) Рассчитайте рН 0.1 М раствора этой кислоты.

1) Запишем процесс диссоциации слабой кислоты:

$$HA \rightleftharpoons H^+ + A^-$$

Константа равновесия такого процесса будет называться константой кислотности:

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Степень диссоциации в таком случае можно выразить в следующем виде:

$$\alpha = \frac{[H^{+}]}{C} = \frac{[A^{-}]}{C}$$

Т.к. диссоциация мала, равновесную концентрацию кислоты можно выразить как [HA] = C. Подставив равновесные концентрации в выражение для константы кислотности, получим хорошо известное уравнение связи константы диссоциации очень слабой кислоты со степенью диссоциации:

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{(\alpha C)^2}{C} = \alpha^2 C$$

Сделав замену переменной α , как предложено в условии, получим:

$$K_a = \left(\frac{\Lambda}{\Lambda_0}\right)^2 C = \frac{\Lambda^2 C}{\Lambda_0^2}$$

2) Для линеаризации, например, прологарифмируем полученное выражение:

$$\Lambda = \sqrt{\frac{K_a \Lambda_o^2}{C}}$$

$$\log \Lambda = \log(\sqrt{K_a}\Lambda_o) - \frac{1}{2}\log C$$

Преобразуем к виду y(x) = kx + b:

$$y(x) \stackrel{\text{def}}{=} \log \Lambda$$
 $x \stackrel{\text{def}}{=} \log C$ $b \stackrel{\text{def}}{=} \log(\sqrt{K_a}\Lambda_o)$

Тогда, зная Λ_{o} , можно рассчитать K_{a} из отрезка, отсекаемого от оси ординат:

$$K_a = \left(\frac{10^b}{\Lambda_0}\right)^2$$

- 3) Расчет константы кислотности возможен двумя способами.
 - а) Расчет по аналитическому выражению K_a для любой точки

$$K_a = \frac{5.1^2 0.1}{(390.7)^2} = 1.7 \cdot 10^{-5}$$

$$K_a = \frac{14.6^2 \cdot 0.0125}{(390.7)^2} = 1.7 \cdot 10^{-5}$$

Тогда $K_a = 1.5 \cdot 10^{-5}$.

б) графический способ расчета

Тогда

$$K_a = \left(\frac{10^b}{\Lambda_o}\right)^2 = \left(\frac{10^{0.21}}{390.7}\right)^2 = \mathbf{1.7} \cdot \mathbf{10}^{-5}$$

4) Для расчета рН воспользуемся следующей формулой:

$$[H^+] = \alpha C = \sqrt{\frac{K_a}{C}}C = \sqrt{K_a C}$$

Тогда получим, что

$$pH \cong -\log \sqrt{1.7 \cdot 10^{-5} \cdot 0.1} = 2.88$$

Рекомендации к оцениванию:

1.	Получено выражение $K_a = f(\Lambda, C)$	3 балла
2.	Предложена линеаризация искомой зависимости	2 балла
3.	Выведено выражение для графического расчета Ка	2 балла
4.	Рассчитана константа кислотности (любым способом)	2 балла
5.	Рассчитан рН	1 балл

ИТОГО: 10 баллов