# HIGH SCHOOL TRICONIE TRICONIE

CURTISS AND MOULION





Class QA531

Book C96

Copyright No. 1928

COPYRIGHT DEPOSER





# HIGH SCHOOL TRIGONOMETRY

BY

DAVID RAYMOND CURTISS

AND

ELTON JAMES MOULTON

PROFESSORS OF MATHEMATICS, NORTHWESTERN
UNIVERSITY

WITH TABLES

D. C. HEATH AND COMPANY

BOSTON ATLANTA NEW YORK
SAN FRANCISCO
LONDON

CHICAGO DALLAS

QA531 ,C96 1928

COPYRIGHT, 1927 AND 1928
By D. C. HEATH AND COMPANY

2 C 8



PRINTED IN U.S.A.

APR -7 1928 Octation 9647

# PREFACE

In preparing a text on Plane Trigonometry adapted to the needs of high schools, the authors have had especially in mind classes reciting from three to five times a week for a half year. The material is so presented as to make it easy to lay out courses of varying length.

A distinguishing feature of this book is its fulness of explanation. The majority of texts, prepared primarily for college classes, have been so brief that the instructor has had to supply many details of proof and practically all illustrative material. Such abbreviated treatments have been designed to answer the needs of courses where less than a full semester is given to trigonometry, but the expedient of cutting out explanation in order to shorten a course is a doubtful one. Especially in high school classes, the instructor can better employ the recitation period in other ways than in supplementing the text. The authors of the present volume have therefore included an ample amount of explanatory material including many illustrative exercises. They have, however, endeavored to avoid diffuseness and the inclusion of unnecessary detail.

If starred sections are omitted the text can easily be covered in from 50 to 60 recitation periods. Classes meeting daily can include the starred sections. In assigning lessons an instructor who has used briefer texts should bear in mind that, on account of the greater amount of explanatory material in this book, five or six pages here often correspond to two or three in the hundred page style of presentation.

Briefer courses. A survey course of fifteen lessons, including the solution of right and of oblique triangles by natural functions, is afforded by the first three chapters.

In a course of thirty lessons including the theory of logarithms and their use in the solution of triangles, the time may be divided as follows: Chapters I and II, eight lessons; Chapters IV, V, VI, ten or twelve lessons; Chapters VIII and IX (with the first four sections of Chapter III), ten or twelve lessons.

Another course of thirty lessons which includes all prerequisites for analytic geometry and the calculus, but does not use logarithms, would cover nearly all the ground of the first six or seven chapters, omitting starred sections except in Chapter III. Of these thirty lessons from twelve to fifteen should be devoted to the first three chapters. The omission of computation by means of logarithms, as contemplated in this program, would be in accord with the growing tendency to calculate with slide rules, machines, and multiplication tables.

Early use of coördinates and the general angle. Instead of beginning with acute angles, the definitions of the first chapter apply to angles of any magnitude. This saves time and in the end proves less confusing to the student. Coordinates, both rectangular and polar, are used in these definitions for three reasons. The first is that the problem of locating a position by its coördinates is a practical one giving a natural approach to the consideration of the trigonometric functions. In the second place the use of coordinates distinctly simplifies and clarifies the definitions of the functions. Finally such a treatment tends to unify trigonometry with algebra and analytic geometry.

Generality of proofs. Proofs are given so as to apply to all cases. The formulas for  $\sin (\alpha + \beta)$  and  $\cos (\alpha + \beta)$  are proved first for the simplest cases, and in a later starred

section it is pointed out that the same proof, properly understood, is of universal application.

Tables. In Chapter II the use of four-place tables of squares and of natural functions is explained. Chapter III makes further use of these tables. In Chapter VIII there is an unusually full explanation of logarithms and of computation with both four and five place tables. If it is desired to use, for example, only four place tables, much explanatory material (chiefly examples worked out in full) relating to five place computation may be omitted.

Illustrative examples. This book contains far more illustrative examples, worked out in part or in full, than do the briefer texts. Almost all important topics are here represented. Such examples, judiciously chosen, with enough detail but not too much, often impart more valuable instruction than does a discussion confined to generalities.

Exercises. It is hoped that the exercises are sufficiently numerous for longer as well as for shorter courses. They have been chosen with care, and are roughly graded according to difficulty so that the harder ones are toward the end of each set. In general, when an exercise is subdivided this has been done so that it will be natural to give the whole exercise as part of a lesson and not one subdivision of one exercise, another of a second, and so on.

In the last two chapters there are sets of exercises in which it is required that four place tables be used, and other sets for five place tables. This separation of material makes it easy to use either sort of tables, or both kinds. The authors have tried to be explicit and clear in their statements, so that the student may know just what is required in each exercise.

Significant figures. Chapter II contains a brief discussion of the question of the number of significant figures that should be retained in computation. This may be omitted in a brief course, though the matter is one of much practical im-

portance. The number of figures to be retained is indicated in exercises on applications.

The authors wish here to express their obligation to Mr. M. J. Newell of the Evanston (Ill.) High School for helpful suggestions and advice.

# CONTENTS

#### CHAPTER I

## THE SIX TRIGONOMETRIC FUNCTIONS

| SEC | TION |                                                 | PAGE |
|-----|------|-------------------------------------------------|------|
|     | 1.   | Angles in plane geometry                        | 1    |
|     | 2.   | Angles generated by a rotating ray              | 1    |
|     | 3.   | The general angle in trigonometry               | 2    |
|     | 4.   | Measurement of angles                           | 2    |
|     | 5.   | The protractor                                  | 3    |
|     | 6.   | Directions measured from a line of reference    | 6    |
|     | 7.   | Location of a point by distance and direction   | 6    |
|     | 8.   | Polar coördinates                               | 7    |
|     | 9.   | Directed lines                                  | 9    |
|     | 10.  | Projection                                      | 9    |
|     | 11.  | Location of a point by rectangular coördinates  | 10   |
|     | 12.  | Quadrants                                       | 11   |
|     | 13.  | Changing from rectangular to polar coördinates  | 13   |
|     | 14.  | Changing from polar to rectangular coördinates  | 15   |
|     | 15.  | The six trigonometric functions                 | 17   |
|     | 16.  | Algebraic signs of the functions                | 18   |
|     | 17.  | Values of the functions by measurement          | 21   |
|     | 18.  | Applications                                    | 22   |
|     | 19.  | Functions of 45°, 135°, 225° and 315°           | 24   |
|     | 20.  | Functions of 30°, 60° and 120°                  | 25   |
|     | 21.  | Functions of 0°, 180° and 90°                   | 27   |
|     | 22.  | Problems in which a function is given           | 29   |
| *   | 23.  | Projections on coördinate axes                  | 31   |
| *   | 24.  | Vectors. Components. Resultants                 | 32   |
|     |      | ·                                               |      |
|     |      | CHAPTER II                                      |      |
|     |      | RIGHT TRIANGLES                                 |      |
|     | 25.  | The problem of solving a triangle               | 35   |
|     | 26.  | Functions of an acute angle of a right triangle | 35   |
|     | 27.  | Functions of complementary angles               | 36   |

#### CONTENTS

| SEC | TION |                                                                   | PAGE |
|-----|------|-------------------------------------------------------------------|------|
|     | 28.  | Tables of values of functions of acute angles                     | 37   |
|     | 29.  | Interpolation                                                     | 39   |
|     | 30.  | Solution of typical right triangles                               | 41   |
|     | 31.  | Checking a solution                                               | 43   |
|     | 32.  | Squares of numbers                                                | 44   |
|     | 33.  | Square roots                                                      | 45   |
| *   | 34.  | Approximations. Significant figures                               | 46   |
|     | 35.  | Isosceles triangles                                               | 51   |
|     | 36.  | Regular polygons                                                  | 52   |
|     | 37.  | Applications to heights and distances                             | 52   |
|     |      |                                                                   |      |
|     |      | CHAPTER III                                                       |      |
|     |      | OBLIQUE TRIANGLES                                                 |      |
|     |      |                                                                   | 57   |
|     | 38.  | General statement                                                 | 58   |
|     | 39.  | Sine and cosine of obtuse angles                                  | 59   |
|     | 40.  | The law of sines                                                  | 60   |
|     | 41.  | The law of cosines                                                | 63   |
| *   | 42.  | Another cosine formula                                            | 64   |
| *   | 43.  | Case I. Given two angles and one side                             | 0.1  |
| *   | 44.  | them                                                              | 66   |
| 4   | 15   | Case III. Given two sides and the included angle                  | 71   |
| 7   | 46.  |                                                                   | 74   |
| _   | 40.  | Case IV. Civeli dillocataca.                                      |      |
|     |      | CHAPTER IV                                                        |      |
|     |      |                                                                   | ~    |
|     | RE   | EDUCTION FORMULAS. LINE VALUES. GRAPHS                            | S    |
|     | 47.  | Functions of $180^{\circ} - \theta \dots \dots \dots$             | 79   |
|     | 48.  | Functions of $180^{\circ} + \theta \dots \dots \dots$             | 81   |
|     | 49.  | Functions of $360^{\circ} - \theta$ and of $-\theta$              | 82   |
|     | 50.  | General rule for $n \cdot 180^{\circ} \pm \theta \dots$           | 83   |
|     | 51.  | Functions of $90^{\circ} \pm \theta \dots$                        | 86   |
|     | 52.  | Functions of $270^{\circ} \pm \theta \dots \cdots$                | 88   |
|     | 53.  | General rule for $n \cdot 90^{\circ} \pm \theta$ , where n is odd | 89   |
|     | 54.  | Line values                                                       | 90   |
|     | 55.  | Variation of $\sin \theta$ and $\tan \theta$                      | 92   |
| *   | 56.  |                                                                   | 94   |
| *   | 57.  | Graphs of the trigonometric functions                             | 96   |

# CHAPTER V

## FUNDAMENTAL IDENTITIES

| SEC | TION |                                                                  | PAGE |
|-----|------|------------------------------------------------------------------|------|
|     | 58.  | Trigonometric identities:                                        | 99   |
|     | 59.  | Formulas involving one angle                                     | 99   |
| *   | 60.  |                                                                  | 101  |
| *   | 61.  | Simplification of expressions involving trigonometric            |      |
|     |      | functions                                                        | 103  |
|     | 62.  | Proofs of identities                                             | 104  |
|     | 63.  | Addition formulas                                                | 107  |
|     | 64.  | Formulas for $\sin (\alpha + \beta)$ and $\cos (\alpha + \beta)$ | 108  |
| *   | 65.  | Cases where $\alpha$ and $\beta$ are not both between 0° and 90° | 110  |
|     | 66.  | Formulas for $\sin (\alpha - \beta)$ and $\cos (\alpha - \beta)$ | 112  |
|     | 67.  | Formulas for $\tan (\alpha + \beta)$ and $\tan (\alpha - \beta)$ | 114  |
|     | 68.  | Formulas for the double angle                                    | 116  |
|     | 69.  | Formulas for the half-angle                                      | 117  |
|     | 70.  | Products which are equal to sums or differences of two           |      |
|     |      | sines or cosines                                                 | 121  |
|     |      |                                                                  |      |
|     |      | CHAPTER VI                                                       |      |
|     |      | RADIAN MEASURE. INVERSE FUNCTIONS                                |      |
|     | 71.  | The radian                                                       | 126  |
|     | 72.  | Relations between radians and degrees                            | 127  |
|     | 73.  | Length of circular arc                                           | 129  |
| *   | 74.  | Areas of segment and sector of a circle                          | 132  |
| *   | 75.  | Velocity of a point moving in a circle                           | 133  |
|     | 76.  | Inverse trigonometric functions. Principal values                | 135  |
|     | 77.  | Determination of all values of an inverse trigonometric          |      |
|     |      | function                                                         | 137  |
| *   | 78.  | Graphs of inverse functions                                      | 140  |
| *   | 79.  | Identities involving inverse functions                           | 141  |
|     |      |                                                                  |      |
|     |      | CHAPTER VII                                                      |      |
|     |      | TRIGONOMETRIC EQUATIONS                                          |      |
|     | 80.  | Definitions                                                      | 144  |
|     | 81.  | Simple examples                                                  | 145  |
|     | 82.  | Factorable equations                                             | 146  |

| SEC | CTION |                                                        | PAGE |
|-----|-------|--------------------------------------------------------|------|
|     | 83.   | Equations reducible to quadratic form                  | 147  |
| *   | 84.   | The type $a \sin x + b \cos x = c \dots$               | 150  |
| *   |       | Approximate solutions                                  | 151  |
| •   |       |                                                        |      |
|     |       | CHAPTER VIII                                           |      |
|     |       | LOGARITHMS                                             |      |
|     | 86.   | Exponents                                              | 154  |
|     | 87.   | Expressing numbers as powers of 10                     | 156  |
|     | 88.   | Definition of the logarithm of a number                | 157  |
|     |       | Fundamental laws of logarithms                         | 159  |
|     | 90.   |                                                        | 162  |
|     | 91.   | Finding logarithms from a table                        | 164  |
|     | 92.   | Finding a number whose logarithm is given              | 167  |
| •   | 93.   | Products and quotients found by use of logarithms      | 169  |
| 4   | 94.   | Cologarithms                                           | 170  |
|     | 95.   | Powers and roots                                       | 171  |
| +   | 96.   | Computations involving negative numbers                | 172  |
|     | 97.   | Logarithms of trigonometric functions                  | 174  |
| +   | 98.   | Angles near 0° or 90°                                  | 177  |
|     | 99.   | Change of base of logarithms                           | 181  |
|     | 100.  | The logarithmic scale                                  | 182  |
| •   | 101.  | The slide rule                                         | 183  |
|     | 2000  |                                                        |      |
|     |       | CHAPTER IX                                             |      |
|     |       | SOLUTION OF TRIANGLES BY LOGARITHMS                    |      |
|     | 102.  | Solution of right triangles                            | 185  |
|     | 103.  | The law of tangents                                    | 189  |
|     | 104.  | Solving oblique triangles by logarithms                | 190  |
|     | 105.  | Case I. Given two angles and one side                  | 191  |
|     | 106.  | Case II. Given two sides and an angle opposite to one. | 193  |
|     | 107.  | Case III. Given two sides and the included angle       | 198  |
| *   | 108.  | The half-angle formulas. First proof                   | 200  |
|     | 109.  |                                                        | 201  |
|     | 110.  | Case IV. Given three sides                             | 203  |
|     | 111.  | Area of a triangle                                     | 205  |
| *   | 112.  | Radii of inscribed and circumscribed circles           | 205  |
|     | 113.  |                                                        | 207  |
| Fo  | )RMU  | LAS                                                    | 214  |

# TRIGONOMETRY

#### CHAPTER I

#### THE SIX TRIGONOMETRIC FUNCTIONS

In this chapter we shall give definitions of certain expressions called the trigonometric functions which are of constant use in trigonometry. We lead up to these definitions by a description of several ways of locating the positions of objects in a plane, and by discussion of certain related problems. Following the definitions we consider a number of special examples. The principal applications of the trigonometric functions will be given in succeeding chapters.

1. Angles in plane geometry. The reader is familiar with the idea of angles as described in plane geometry. We have

two lines AB and AC each extending indefinitely in one direction from a point A. The figure BAC is called the angle A or the angle BAC.

A Fig. 1

A line, such as AB or AC, extending in only one direction from a point is often called a ray. The angle BAC then consists of the two rays AB and AC, which are sometimes called the sides of the angle.

2. Angles generated by a rotating ray. It is useful to consider an angle BAC as being generated by rotating a ray from the side AB to the side AC; the former is called the initial side, the latter the terminal side.

Thus a hand of a clock or a spoke of a rotating wheel generates an angle in any given length of time.

3. The general angle in trigonometry. In trigonometry we shall consider angles generated by rotating rays. We note that a ray may make one or more complete revolutions



about the point A. An angle BAC may, for example, be generated by a rotation through a part of one revolution, as indicated by the arrow in Figure 2, or by a revolution and a part of another as indicated by the arrow in Figure 3.

In fact there may be any number of whole revolutions added to the part of a revolution. In Figure 4 an angle of more than three complete revolutions is shown.



In drawing figures the distinction between these angles is most easily made by use of curved arrows as shown, the arrowhead being located at the terminal side.

We shall also distinguish between *directions* of rotation of the ray. This is most easily done by use of positive and negative signs, just as directions on a line are indicated in algebra.

We shall agree to call an angle *positive* which is generated by counterclockwise rotation; that is, rotation in the direction opposite to that in which the hands of a clock move. An angle generated by a clockwise rotation will be called *negative*.

The angles in Figures 3 and 4 are positive, but those in Figures 5 and 6 are negative.

4. Measurement of angles. The reader is familiar with the measurement of angles in terms of degrees, minutes, and seconds. The general angle adds no difficulty. Thus in Figure 7 the measure of the first angle is 90°, of the second is  $585^{\circ}$ , and of the third is  $-225^{\circ}$ . In trigonometry we use angles of 0° and of any positive or negative number of degrees.



We recall that a degree is divided into 60 equal parts called minutes, and a minute into sixty equal parts called seconds.

Thus

1 right angle =  $90^{\circ}$ ,  $1^{\circ} = 60'$ , 1' = 60''.

Other units of measure for angles are in general use. Thus in some European countries, a right angle is divided into 100 equal parts called *grades*, these into 100 equal parts called *minutes*, and these in turn into 100 equal parts called *seconds*. In a later chapter we shall discuss still other methods of measuring angles.

5. The protractor. A given angle may be measured roughly by use of a *protractor*. This instrument is also useful in drawing an angle of given magnitude.

In Figure 8 a protractor is shown in position to measure a given angle AOB, which is seen to be an angle of  $27^{\circ}$ . This figure also makes it clear how to draw a line OB making an angle of  $27^{\circ}$  with OA, or to draw OC making an angle of  $-153^{\circ}$  with OA.



#### **EXERCISES**

- 1. Draw a triangle and measure the three angles. Find their sum.
- **2.** Draw angles of 90°, 270°, 450°, 540°, -270°, -180°, 405°, -1080°, 855°, -675°.
- 3. Draw angles whose magnitudes measured in right angles are 2, 4, 7, -5, 0,  $3\frac{1}{2}$ ,  $7\frac{1}{2}$ ,  $-6\frac{1}{2}$ ,  $-2\frac{1}{2}$ , -13.
- 4. With a protractor construct the following angles: 5°; 72°; -88°; 130°; 170°; -212°; 260°; -325°; 487°; -120°.
- 5. With a protractor construct the following angles:  $60^{\circ}$ ;  $100^{\circ}$ ;  $-30^{\circ}$ ;  $210^{\circ}$ ;  $60^{\circ}$ ;  $-385^{\circ}$ ;  $-170^{\circ}$ ;  $350^{\circ}$ ;  $-5^{\circ}$ ;  $-80^{\circ}$ .

6. Estimate the measure in degrees of the following angles, then measure with a protractor:



7. With a protractor measure the following angles in degrees:



- 8. An auto goes ahead far enough so that a wheel makes ten revolutions. As viewed from the left side of the car, through what angle does a spoke of a wheel turn? As viewed from the right?
- 9. Through what angle does the hour hand of a watch turn in 10 hours? The minute hand? The second hand?
- 10. The earth goes around the sun in a year. Through what angle does the line from the sun to the earth turn in seven months? In  $2\frac{1}{2}$  years? Consider the angles positive.

6. Directions measured from a line of reference. There are several methods in common use for describing a direction. All depend on determining the angle that a line having the given direction makes with some fixed line, which we call a line of reference. Let us explain a few methods which we shall use in this book.

The one which we shall employ most takes as line of reference a horizontal line, or one running from left to right,



and uses the general angle of trigonometry to describe the angle. Thus the direction from O to P in Figure 9 is said to make an angle with OA of  $-67\frac{1}{2}^{\circ}$ , or  $292\frac{1}{2}^{\circ}$ , or any angle differing from these by a multiple of  $360^{\circ}$ . The direction from O to Q is  $157\frac{1}{2}^{\circ}$ , or  $517\frac{1}{2}^{\circ}$ , or

 $-202\frac{1}{2}^{\circ}$ , as measured from the line of reference OA.

In surveying, the common practice is to use the North-South line as the line of reference, and state in degree measure the acute angle which a ray in the given direction makes with this line. Thus the direction of P from O in Figure 9, called the bearing of P from O, is South  $22\frac{1}{2}^{\circ}$  East, which is written S  $22\frac{1}{2}^{\circ}$  E. The bearing of Q from O is N  $67\frac{1}{2}^{\circ}$  W.

In the U.S. Navy angles are measured from the North around through the East in the clockwise direction, in degrees up to 360°. Thus the direction, or bearing, of P from O is  $157\frac{1}{2}$ °, and of Q from O is  $292\frac{1}{2}$ °.

7. Location of a point by distance and direction. A point in a plane can be located by giving its distance and direction from some given point. For example, surveyors can locate an object by saying that it is 100 ft. N 20° E from a certain stake. A sailor can locate a rock by stating that it has a bearing of 50° from a certain lighthouse, and is 1 mile from it.

This is a very simple idea which is obviously of great practical importance and is used extensively in mathematics and its applications. In the next section we explain the exact form in which it will be employed.

8. Polar coördinates. We choose a point O, called the *pole*, and a line of reference, OA, called the *polar axis*. Then a point P is located by two numbers, r and  $\theta$ ,\* the first giving the length, the second the direction of OP. These two numbers are called *polar coördinates* of P. Distances and angles are measured in terms of appropriate units.

If the unit of distance is the inch, then the polar coördinates of P in Figure 10 are  $(1, 30^{\circ})$ . It is customary to

write them in parentheses, the distance first and the angle second. The unit of angular measurement is often indicated but the unit of distance is generally not specified.

 $O \xrightarrow{\gamma_{\theta}} P$ Polar Axis
Fig. 10

It is to be noted that a point may be located by different angles in polar coördinates. The point P in Figure 10 has, for example, polar coördinates  $(1,390^{\circ}), (1,750^{\circ}), (1,-330^{\circ}).$ 

It is sometimes convenient to use the idea of negative directions in measuring distances. We locate the same point P by going in the direction 210° a distance -1. When this plan is followed, the point P has also the polar coördinates  $(-1, 210^{\circ})$ ,  $(-1, 570^{\circ})$ ,  $(-1, -150^{\circ})$ .

#### **EXERCISES**

A direction may be described in the three ways stated in § 6, which we may call (a) the Surveyor method, (b) the Navy method, and (c) the Polar Coördinate method. In the following tables each direction is described by some one method. For polar coördinates we assume that the East direction is taken as the polar axis. Fill in the description by the other methods.

<sup>\*</sup>  $\theta$  is the Greek letter "theta." In this book we shall also use the Greek letters  $\alpha$  (alpha),  $\beta$  (beta) and  $\gamma$  (gamma).

1.

|                   | Surveyor | Navy | Polar Coördinate |
|-------------------|----------|------|------------------|
| (a)<br>(b)<br>(c) | N 45° E  | 135° | -135°            |

2.

|                   | Surveyor | Navy                              | Polar Coördinate          |
|-------------------|----------|-----------------------------------|---------------------------|
| (a)<br>(b)<br>(c) | S 22½° E | 281 <sup>1</sup> / <sub>4</sub> ° | $-348\frac{3}{4}^{\circ}$ |

3.

|                   | Surveyor                             | Navy                     | Polar Coördinate          |
|-------------------|--------------------------------------|--------------------------|---------------------------|
| (a)<br>(b)<br>(c) | S 11 <sup>1</sup> / <sub>4</sub> ° E | $202\frac{1}{2}^{\circ}$ | $-202\frac{1}{2}^{\circ}$ |

4.

|                                                    | Surveyor | Navy                    | Polar Coördinate |
|----------------------------------------------------|----------|-------------------------|------------------|
| $ \begin{array}{c} (a) \\ (b) \\ (c) \end{array} $ | N 33¾° W | $78\frac{3}{4}^{\circ}$ | 922½°            |

On a sheet of paper draw a polar axis OA, choose a convenient unit of length, and locate the following points:

5.  $A(4,45^{\circ});$   $B(3,180^{\circ});$   $C(2,300^{\circ});$   $D(5,-90^{\circ});$   $E(2,-120^{\circ}).$ 

6.  $A(2,60^{\circ});$   $B(3,135^{\circ});$   $C(4,270^{\circ});$   $D(1,405^{\circ});$   $E(2,-45^{\circ}).$ 

7.  $A(-1,70^{\circ}); B(-2,135^{\circ}); C(-1,180^{\circ}); D(-2,-360^{\circ}); E(-3,-750^{\circ}).$ 

8.  $A(-2,0^{\circ}); B(-3,-90^{\circ}); C(-4,-30^{\circ}); D(-1,900^{\circ}); E(-1,-585^{\circ}).$ 

9. Directed lines. In the last paragraph we recalled the use of positive and negative directions on a line. We shall need to go a little further with that idea now.

If on a given line we decide to call segments of lines measured in one direction positive, and in the opposite direction negative, we call the line a directed line. Let AB be a directed line. Then if we consider the segment CD (Fig. 11)

measured from C to D positive, and DC measured from D to C negative, we shall



refer to the direction AB as the positive direction of the line. It is understood that all segments measured in the same direction on AB have the same sign. Thus PQ, PC, CQ, and DQ are all positive in the figure, while QP, CP, QC, and QD are negative. It is convenient to indicate the positive direction on a directed line by an arrowhead.

When a unit of measure has been chosen, then the segments on a directed line are measured by positive and negative numbers. Thus in Figure 11, if CD is the unit of



length the measure of CQ is 2, of CP is -1, of QP is -3.

10. Projection. If we drop a perpendicular from a given point P to a given line AB, the foot of the perpendicular M is called the projection of P on AB. If we have a segment PQ of a directed line, and project P

and Q on a directed line AB so that M and N are the projections of the respective points, then the projection of PQ on AB is MN. This is briefly written

Proj. on 
$$AB$$
 of  $PQ = MN$ .

The segment MN is a directed quantity and may be either

positive or negative, or if PQ is perpendicular to AB the

projection is zero.

11. Location of a point by rectangular coördinates. We discussed in §§ 7, 8 (pp. 6, 7) one method of locating a point in a plane. We now give a second method with which the student has probably already become familiar in drawing graphs in earlier mathematics.

Draw two directed lines of reference X'X and Y'Y mutually perpendicular, intersecting at a point O, as shown in Figure 13. The lines are called the x-axis and the y-axis, the point O the origin.

Having chosen a convenient unit of length, we now locate any point P of the plane as follows. Project P on the



two axes, calling the respective projections M and N. If x is the measure of the segment OM and y of ON, then the numbers x and y locate P and are its rectangular coördinates. We call x the abscissa, and y the ordinate of P. If we regard MP as a segment whose positive direction is upward, we may write

$$x = OM, \quad y = MP,$$

and call OM the abscissa, and MP the ordinate of the point P. It is to be noted that x and y may have either sign and that either or both may be zero.

Thus in Figure 14,

the coördinates of P are x = 2, y = 1, the coördinates of P' are x = -1, y = 2, the coördinates of P'' are x = -3, y = -1, the coördinates of P''' are x = 1, y = -2, the coördinates of A are x = 3, y = 0, the coördinates of O are x = 0, y = 0.

It is customary to write the coördinates of a point in parentheses, giving the x value first. Thus we would write the preceding more briefly: P(2, 1); P'(-1, 2); P''(-3, -1); P'''(1, -2); A(3, 0); O(0, 0).

An example of a use of rectangular coördinates would lie in a surveyor's description of the loca-



tion of a point as 40 yd. E and 20 yd. N of a given point. In effect this given point is the origin, the x-axis is the West-East line, the y-axis the South-North line, and the coördinates are x = 40, y = 20.

12. Quadrants. The axes of coördinates divide the plane into four parts, called quadrants. They are ordinarily



numbered as shown in Figure 15. Thus the point P(2, 1) of Figure 14 lies in the first quadrant, the point P'(-1, 2) in the second and so on.

The quadrants are distinguished by the signs of the coördinates of points lying in them. For example, in the second quadrant, the abscissa is negative and the ordinate is positive, but in the third quadrant both

are negative. In Figure 15 the signs are shown in parentheses for each quadrant, the sign of x preceding that of y.

We shall have frequent occasion to draw angles with OX as the initial line and the origin O as vertex. Then if the terminal line falls in the first quadrant, as it does for the angle  $\alpha$  in Figure 16, we shall say that the angle terminates in the first quadrant. If the terminal line falls in the second quadrant, as it does for  $\alpha'$ , we say that the angle terminates



in the second quadrant. The angle  $\alpha''$  terminates in the third quadrant,  $\alpha'''$  in the fourth. Angles which are multiples of 90° do not terminate in any quadrant; they are sometimes called *quadrantal angles*.

It should be emphasized that whenever we speak of an angle as terminating in a quadrant, it is assumed that the vertex is at O and OX is the initial line.

#### **EXERCISES**

Choose a rectangular coördinate system and locate the following points, designating each point both by letter and by coördinates:

- **1.** A(3, 1); B(1, 3); C(-1, 3); D(-3, 1); E(-3, -1); F(-1, -3); G(1, -3); H(3, -1); I(0, 5); J(-5, 0).
- **2.** A(4,3); B(3,-4); C(3,4); D(-3,4); E(-4,-3); F(-3,-4); G(-4,3); H(4,-3); I(5,0); J(0,-5).
  - 3. In which quadrant does each point of Exercise 1 lie?
  - 4. In which quadrant does each point of Exercise 2 lie?

- **5.** How could a surveyor describe by coördinates the location of the following points whose distances are all measured from a given point O? A is 40 yd. E and 50 yd. E from E0; E1 is 50 yd. E2 and 40 yd. E3 and 40 yd. E4 from E5 is 50 rd. E6 is 300 yd. E7 and 10 rd. E7 from E7.
- 6. Proceed as in Exercise 5 for the points described as follows:

A is 20 rd. E and 40 rd. N from O; B is 50 rd. S from O; C is 30 rd. S and 50 rd. W from O; D is 20 rd. N and 30 rd. W from O; E is 1 mi. W and 2 mi. N from O.

With the ray OX of a rectangular coördinate system as initial line, draw the following angles, and state the quadrant in which each terminates:

- 7.  $60^{\circ}$ ;  $240^{\circ}$ ;  $-185^{\circ}$ ;  $810^{\circ}$ ;  $-1100^{\circ}$ .
- 8.  $-30^{\circ}$ ;  $150^{\circ}$ ;  $660^{\circ}$ ;  $-630^{\circ}$ ;  $1000^{\circ}$ .

13. Changing from rectangular to polar coördinates. It is not difficult to see that it will be desirable to have a simple method of solving the following problem: Given the rectangular coördinates of a point, what are its polar coördinates? A surveyor must solve such a problem when he

knows that a point B is 500 ft. East and 300 ft. North from a point A, and wishes to find the direction and length of AB. Let us see how such a problem may be solved.

We assume that the pole O of polar coördinates is the origin of rectangular coördinates and that the polar axis and the



positive x-axis coincide. As shown in Figure 17,  $(r,\theta)$  are polar coördinates and (x,y) are rectangular coördinates of the point P.

The problem is, given the values of x and y, to find the values of r and  $\theta$ .

To find r is simple, for it is the length of the hypotenuse of a right triangle whose other sides are known. Hence, by the theorem of Pythagoras,

$$r^2=x^2+y^2,$$

and therefore

$$r = \pm \sqrt{x^2 + y^2}.$$

The positive sign is to be used when r is positive as shown in Figure 17; the negative sign when r is negative as shown in Figure 18.

To find  $\theta$  is a little more difficult. We notice that  $\theta$  can have the same value for all points, P, P', P'', etc., on the



line OP, but must have a different value for any point S not on the line, as illustrated in Figure 19. Also, for these points P, P', P'' on the line OP, the ratio of the ordinate to the abscissa is always the same; that is,

$$\frac{MP}{OM} = \frac{M'P'}{OM'} = \frac{M''P''}{OM''} \cdot *$$

But for any point S not on the line OP the corresponding ratio is different; that is,

$$\frac{MP}{OM}$$
 is not equal to  $\frac{RS}{OR}$ .

\* Note that both M''P'' and OM'' are negative, and their ratio is positive.

We see then that the angle  $\theta$  is determined by the ratio of the ordinate of any point on its terminal side to the abscissa of that point, or briefly, by y/x. If some one were to construct a table showing what angle corresponds to each value of the ratio y/x, it would be possible to find  $\theta$  when y and x are given; for we could calculate the ratio and look in the table for the corresponding angle. Mathematicians have constructed tables for this purpose. We shall not make a thorough study of the methods by which such tables are made, but shall in the following chapters see how they are used.

The ratio y/x depends on  $\theta$  for its value, and is, therefore, in mathematical language, a function of  $\theta$ . It is called the tangent of  $\theta$ , which is written in abbreviated form  $\tan \theta$ . Thus, by definition,

$$\tan \theta = \frac{y}{x} = \frac{\text{ordinate}}{\text{abscissa}}.$$

The origin of the name "tangent of  $\theta$ " may be seen as follows. Draw a circle with center at O and unit radius. Let the point of

intersection of the circle and the positive x-axis be A (Fig. 20). Draw a line AC tangent to the circle at A. Let T be the point of intersection of the terminal side of  $\theta$  with the tangent line AC. Then if P(x,y) is any point of the terminal side,

$$\tan \theta = \frac{y}{x} = \frac{MP}{OM} = \frac{AT}{OA} = AT,$$

since OA = 1. Hence the tangent of  $\theta$ 



is the measure of the length of the segment cut off on the tangent line AC by the terminal side of  $\theta$ . The directed segment AT is called the line value of  $\tan \theta$ . We shall discuss line values in Chapter IV, § 54.

14. Changing from polar to rectangular coördinates. We have just indicated how, by introducing the trigono-

metric function  $\tan \theta$ , we may calculate the polar coördinates  $(r,\theta)$  of a point P when its rectangular coördinates (x,y) are given. We shall now see how the problem of calculating x and y when r and  $\theta$  are given leads to the introduction of two new trigonometric functions.

We start by observing that for all points on the line OP, such as P, P', P'' (Fig. 19) the ratio of ordinate to distance is the same; that is,

$$\frac{MP}{OP} = \frac{M'P'}{OP'} = \frac{M''P''}{OP''} \cdot *$$

For a point S not on the line the corresponding ratio RS/OS has in general a different value. The ratio of ordinate to distance is thus a function of  $\theta$ , and is called *sine of*  $\theta$ , which is written  $\sin \theta$ . Thus

(1) 
$$\sin \theta = \frac{y}{r} = \frac{\text{ordinate}}{\text{distance}}.$$

Mathematicians have made tables from which we can obtain the value of  $\sin \theta$  when  $\theta$  is given. When r is also given we can therefore find y from the equation,

$$y = r \sin \theta$$
,

which is equivalent to (1).

The ratio of abscissa to distance is also a function of  $\theta$ . It is called *cosine of*  $\theta$ , and is written  $\cos \theta$ . Thus

(2) 
$$\cos \theta = \frac{x}{r} = \frac{\text{abscissa}}{\text{distance}}.$$

Tables for this function are available, so that when  $\theta$  is given  $\cos \theta$  may be found. Hence when r and  $\theta$  are known, we find x by the formula

$$x = r \cos \theta$$

which is equivalent to (2).

<sup>\*</sup> Note that M''P'' and OP'' are both negative.

15. The six trigonometric functions. We have defined three functions of an angle  $\theta$ . To restate the definitions, let a line through the origin make an angle  $\theta$  with the positive x-axis and let P be any point on the line. If the rectangular coördinates of P are (x,y), and the polar coördinates are  $(r,\theta)$ , then



sine of 
$$\theta = \sin \theta = \frac{y}{r} = \frac{\text{ordinate}}{\text{distance}}$$
, cosine of  $\theta = \cos \theta = \frac{x}{r} = \frac{\text{abscissa}}{\text{distance}}$ , tangent of  $\theta = \tan \theta = \frac{y}{x} = \frac{\text{ordinate}}{\text{abscissa}}$ .

These three functions and their reciprocals are known as the six trigonometric functions. The reciprocals are:

cotangent of 
$$\theta = \cot \theta = \frac{x}{y} = \frac{abscissa}{ordinate}$$
, secant of  $\theta = \sec \theta = \frac{r}{x} = \frac{distance}{abscissa}$ , cosecant of  $\theta = \csc \theta = \frac{r}{y} = \frac{distance}{ordinate}$ .

In using these definitions it is generally most convenient to choose P so that r is positive. We shall hereafter assume that this is done except where noted.

The preceding definitions should be thoroughly memo-

rized, for trigonometry is essentially a study of these functions and their applications.

Three other functions are sometimes encountered in applications of trigonometry. These are called the *versed sine*, *coversed sine*, and *haversine* of  $\theta$ , written *vers*  $\theta$ , *covers*  $\theta$ , and *havers*  $\theta$ , respectively. They are defined by the relations

vers 
$$\theta = 1 - \cos \theta$$
,  
covers  $\theta = 1 - \sin \theta$ ,  
havers  $\theta = \frac{1 - \cos \theta}{2}$ .

It is at once apparent that for two angles which differ by  $360^{\circ}$ ,  $720^{\circ}$  or any other positive or negative multiple of  $360^{\circ}$ , the values of the trigonometric functions will be exactly the same, since the same point P may be used for both angles (see Fig. 22).

16. Algebraic signs of the functions. It is to be noted that x and y may be either positive or negative, depending



upon the angle  $\theta$ . It follows that a function is positive for some angles and negative for others.

Consider, for example, an angle  $\theta$  terminating in the second quadrant (Fig. 23). We have agreed to choose P so that r is positive; then x is negative and y positive.

Hence

$$\sin \theta = \frac{y}{r} = \frac{+}{+} = +,$$

$$\cos \theta = \frac{x}{r} = \frac{-}{+} = -,$$

$$\tan \theta = \frac{y}{r} = \frac{+}{-} = -.$$

That is,  $\sin \theta$  is the ratio of two positive numbers and is therefore positive;  $\cos \theta$  is the ratio of a negative to a positive and is therefore negative; and similarly for  $\tan \theta$ .

The signs of the functions depend upon the quadrant in which the angle terminates. A discussion like the preceding gives results indicated in Figure 24.

$$Y \mid Sin \} + All + Others - O X$$
 $Tan \} + Cos \} + Cos \} + Others - Others - Fig. 24$ 

#### **EXERCISES**

The rectangular coördinates of the following points are given; find for each the value of r,  $\sin \theta$ ,  $\cos \theta$ , and  $\tan \theta$ . Draw a figure for each point.

**1.** 
$$A(3,4)$$
;  $B(-3,4)$ ;  $C(-4,-3)$ ;  $D(4,-3)$ ;  $E(-1,0)$ .

**2.** 
$$A(5, 12)$$
;  $B(-12, 5)$ ;  $C(-12, -5)$ ;  $D(3, -4)$ ;  $E(3, 0)$ .

For each of several points the distance r is 10. Find the rectangular coördinates of each when  $\sin \theta$  and  $\cos \theta$  are given as follows. Draw a figure for each point.

| $n \theta$ | 3/5         | -4/5  | -5/13  | 0 | -1 |
|------------|-------------|-------|--------|---|----|
| os θ       | 4/5         | 3/5   | -12/13 | 1 | 0  |
|            | n θ<br>os θ | 4 / 5 |        |   |    |

4. Point 
$$A$$
  $B$   $C$   $D$   $E$   $\sin \theta$   $5/13$   $-3/5$   $5/13$   $0$   $1$   $\cos \theta$   $12/13$   $-4/5$   $-12/13$   $-1$   $0$ 

- 5. Find the values of the six trigonometric functions of  $\theta$  when the point A(6,8) is on the terminal line. Likewise for each of the following points: B(-7,24); C(-8,-15); D(21,-20); E(33,56).
- 6. Proceed as in Exercise 5 for the points: A(16, 12); B(-8, 15); C(-21, -20); D(28, -45); E(11, 60).
- 7. Write out the discussion of signs of the functions for angles terminating in the third quadrant.
- 8. Write out the discussion of signs of the functions for angles terminating in the fourth quadrant.



Fig. 25

17. Values of the functions by measurement. Approximate values of the trigonometric functions of an angle can be found by construction of the angle, measurement of coordinates of a point on the terminal line, and calculation of the ratios. By taking a succession of angles and proceeding in this way, we can make a table of values of the functions. While this method is not used by mathematicians in making a table, it gives an instructive exercise.

In Figure 25 we have a circle of radius 50 mm. graduated to 5° intervals. To find, for example, the functions of 20° we take P as the point of intersection of the 20° line and the circle. The vertical and the horizontal lines are 2 mm. apart; then from the figure we read x = 47, y = 17, r = 50. Hence

$$\sin 20^{\circ} = \frac{17}{50} = .34,$$
  $\csc 20^{\circ} = \frac{50}{17} = 2.9,$   $\cos 20^{\circ} = \frac{47}{50} = .94,$   $\sec 20^{\circ} = \frac{50}{47} = 1.1,$   $\tan 20^{\circ} = \frac{17}{47} = .36,$   $\cot 20^{\circ} = \frac{47}{17} = 2.8.$ 

The results are given to two significant figures, which is all that should be used since measurements of x, y, and r are no more accurate. (See § 34, p. 46.)

By repeated use of this method we make the table given on the next page.

To illustrate how to read the table let us find cos 55°. We go down the column headed "Angle" to 55°, then across the row to the column headed "Cos"; we find .57 which is the value of cos 55°.

No value is given for cot 0° since 50/0 has no value (no number multiplied by 0 gives 50). A similar remark applies to csc 0°, tan 90°, and sec 90°.

| Angle              | Sin                 | Cos                 | Tan                                                 | Cot                                                                   | Sec                                               | Csc                                                                   |
|--------------------|---------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|
| 0°<br>5°<br>10°    | .00<br>.09<br>.17   | 1.00<br>1.00<br>.98 | .00<br>.09<br>.18                                   | 11.4<br>5.67                                                          | 1.00<br>1.00<br>1.02                              | 11.5<br>5.76                                                          |
| 15°<br>20°<br>25°  | .26<br>.34<br>.42   | .97<br>.94<br>.91   | .27<br>.36<br>.47                                   | $   \begin{array}{c}     3.73 \\     2.75 \\     2.14   \end{array} $ | 1.04<br>1.06<br>1.10                              | 3.86<br>2.92<br>2.37                                                  |
| 30°<br>35°<br>40°  | .50<br>.57<br>.64   | .87<br>.82<br>.77   | .58<br>.70<br>.84                                   | 1.73<br>1.43<br>1.19                                                  | 1.15 $1.22$ $1.31$                                | $egin{array}{c} 2.00 \ 1.74 \ 1.56 \ \end{array}$                     |
| 45°<br>50°<br>55°  | .71<br>.77<br>.82   | .71<br>.64<br>.57   | 1.00<br>1.19<br>1.43                                | 1.00<br>.84<br>.70                                                    | $egin{array}{c} 1.41 \ 1.56 \ 1.74 \ \end{array}$ | $   \begin{array}{c}     1.41 \\     1.31 \\     1.22   \end{array} $ |
| 60°<br>65°<br>70°  | .87<br>.91<br>.94   | .50<br>.42<br>.34   | 1.73 $2.14$ $2.75$                                  | .58<br>.47<br>.36                                                     | $2.00 \\ 2.37 \\ 2.92$                            | $1.15 \\ 1.10 \\ 1.06$                                                |
| 75°<br>80°<br>85°  | .97<br>.98<br>1.00  | .26<br>.17<br>.09   | $\begin{array}{c} 3.73 \\ 5.67 \\ 11.4 \end{array}$ | .27<br>.18<br>.09                                                     | $3.86 \\ 5.76 \\ 11.5$                            | 1.04<br>1.02<br>1.00                                                  |
| 90°<br>95°<br>100° | 1.00<br>1.00<br>.98 | .00<br>09<br>17     | $\begin{bmatrix} -11.4 \\ -5.67 \end{bmatrix}$      | .00<br>09<br>18                                                       | -11.5<br>-5.76                                    | 1.00<br>1.00<br>1.02                                                  |

18. Applications. By use of the preceding table extended up to 360° we can get approximate solutions of certain problems. Later we shall see how more accurate results can be obtained.

Examples. — 1. The rectangular coördinates of a point are (11, 60). Find the polar coördinates.

$$x = 11,$$
  $y = 60,$   $r = \sqrt{x^2 + y^2} = 61,$   $\tan \theta = \frac{y}{x} = 5.45.$ 

In the table, in the "Tan" column we do not find 5.45 but a near value is 5.67, which occurs in the row with the angle 80°. Hence  $\theta = 80^{\circ}$  approximately.

The polar coördinates as thus determined are (61, 80°).

2. Polar coördinates of a point are (70, 100°). Find the rectangular coördinates.

Since

$$\sin \theta = \frac{y}{r}, \qquad \cos \theta = \frac{x}{r},$$

we have

$$y = r \sin \theta, \qquad x = r \cos \theta.$$

From the table,  $\sin 100^{\circ} = .98$ ,  $\cos 100^{\circ} = -.17$ . Hence

$$y = 70 \times .98 = 68.6, \quad x = 70 \times (-.17) = -11.9.$$

To two significant figures the rectangular coördinates are (-12, 69).

#### **EXERCISES**

Verify by measurement and calculation the values given in the table in § 17 for the following angles, using Figure 25:

- 10°, 40°, and 70°.
   30°, 50°, and 80°.
- 3. 0°, 60°, and 100°. 4. 45°, 90°, and 95°.
- 5. Extend the Sin and Cos columns of the table in § 17, using angles 120°, 135°, 150°, 165°, 180°, 195°, 210°, 225°, 240°, 255°, 270°, 285°, 300°, 315°, 330°, 345°, 360°, 375°.
- 6. Extend the Sin and Cos columns of the table in § 17, using angles which are multiples of 10° up to 400°. (Much work may be saved by comparing values of functions of angles terminating in other quadrants with those of angles terminating in the first quadrant.)

Find the polar coördinates (approximate) from the given rectangular coördinates, for the points:

- 7. A(3,4); B(-5,12); C(-16,12).
- 8. A(4,3); B(-8,15); C(-11,60).

Find the rectangular coördinates (approximate) from the given polar coördinates for the points:

- **9.**  $A(10, 20^{\circ}); B(55, 80^{\circ}); C(35, 100^{\circ}).$
- **10.**  $A(20, 15^{\circ}); B(30, 75^{\circ}); C(40, 95^{\circ}).$

- 11. A boat is sailing a course (p. 6) of 350°. When it is at a point A, a rock R bears due West, when at B due South. The distance from A to B is 3 mi. How far is the boat from the rock when at A and when at B?
- 12. A surveyor measured a line diagonally across a rectangular field; the bearing of the line (p. 6) was N 30° E; its length was 300 yd. The sides of the field ran due East and due North respectively. What was the perimeter of the field?
- 13. A surveyor runs a line due East 200 yd. from A to B then due North 300 yd. from B to C. How far is it from A to C, and what is the direction?
- 14. A navigator wishes to sail from A to B. From the differences in longitudes of A and B he knows that B is 40 mi. West of A; and from the difference in latitudes he knows that B is 25 mi. North of A. What is the distance and direction from A to B, assuming the surface of the water to lie in a plane?

# 19. Functions of 45°, 135°, 225°, and 315°. There are



some angles for which the exact values of the functions can be found by direct use of propositions of y=1 geometry. They are of enough importance to receive special attention.

For a 45° angle choose a point P such that x = 1. It is then readily shown that y = 1, and by the theorem of Pythagoras  $r = \sqrt{2}$ . Hence

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2},$$
  $\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2},$   
 $\tan 45^{\circ} = 1,$   $\cot 45^{\circ} = 1,$   $\cot 45^{\circ} = 1,$   
 $\sec 45^{\circ} = \sqrt{2},$   $\csc 45^{\circ} = \sqrt{2}.$ 

For an angle of 135°, take P such that x = -1; then we see (Fig. 27) that y = 1,  $r = \sqrt{2}$ , and hence

$$\sin 135^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}, \qquad \cos 135^{\circ} = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2},$$
 $\tan 135^{\circ} = -1, \qquad \cot 135^{\circ} = -1,$ 
 $\sec 135^{\circ} = -\sqrt{2}, \qquad \csc 135^{\circ} = \sqrt{2}.$ 



Fig. 27

Similarly for 225° we find

$$\sin 225^{\circ} = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2},$$
  $\cos 225^{\circ} = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2},$   
 $\tan 225^{\circ} = 1,$   $\cot 225^{\circ} = 1,$   
 $\sec 225^{\circ} = -\sqrt{2},$   $\csc 225^{\circ} = -\sqrt{2}.$ 

20. Functions of 30°, 60°, and 120°. Let ABC be an equilateral triangle, whose sides are each of length 2 (Fig. 28).

Drop a perpendicular from C to AB; let D be the foot; then D bisects AB. The angles of the triangle ADC are 30°, 60°, 90° (Why?). The sides opposite those angles are respectively 1,  $\sqrt{3}$ , 2 (Why?). A triangle with angles 30°, 60°, 90° occurs in each of the following figures. To find



Fig. 28

the values of the functions of 30°, we draw Figure 29. From the definitions of the functions, we have



Fig. 29

$$\sin 30^{\circ} = \frac{1}{2},$$
  $\cos 30^{\circ} = \frac{\sqrt{3}}{2},$   
 $\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3},$   $\cot 30^{\circ} = \sqrt{3},$   
 $\sec 30^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3},$   $\csc 30^{\circ} = 2.$ 

From Figure 30, we have



For the angle 120°, we have from Figure 31,

$$\sin 120^{\circ} = \frac{\sqrt{3}}{2}$$
,  $\cos 120^{\circ} = -\frac{1}{2}$ ,  
 $\tan 120^{\circ} = -\sqrt{3}$ ,  $\cot 120^{\circ} = -\frac{\sqrt{3}}{3}$ ,  
 $\sec 120^{\circ} = -2$ ,  $\csc 120^{\circ} = \frac{2\sqrt{3}}{3}$ .

The student may draw figures similarly for 150°, 210°, 240°, 300°, and 330°, and thus derive exact values of the functions of these angles.

21. Functions of  $0^{\circ}$ ,  $180^{\circ}$ , and  $90^{\circ}$ . For an angle of  $0^{\circ}$  the terminal line coincides with the initial line; there has been no rotation. A point P on the terminal line lies on the x-axis

Hence  $x = r, \quad y = 0.$   $\sin 0^{\circ} = \frac{0}{r} = 0,$   $\cos 0^{\circ} = \frac{r}{r} = 1,$   $\tan 0^{\circ} = \frac{0}{r} = 0, \quad \cot 0^{\circ} = \frac{r}{0}, \text{ impossible,}$   $\sec 0^{\circ} = \frac{r}{r} = 1, \quad \csc 0^{\circ} = \frac{r}{0}, \text{ impossible.}$ 

and we have

Two of the definitions, those for cot  $0^{\circ}$  and csc  $0^{\circ}$ , lead to division by zero; but since no number times zero gives r, there is no value for these functions of  $0^{\circ}$ .

In § 55 we shall discuss values of functions of angles near 0°; for such angles the cotangent and cosecant are very large.

For 180° we have (Fig. 33)

$$x = -r, \qquad y = 0.$$

Hence

$$\sin 180^\circ = \frac{0}{r} = 0, \qquad \cos 180^\circ = \frac{-r}{r} = -1,$$

$$\tan 180^\circ = \frac{0}{r} = 0, \qquad \cot 180^\circ = \frac{-r}{0}, \text{ impossible,}$$

$$\sec 180^\circ = \frac{r}{-r} = -1, \qquad \csc 180^\circ = \frac{r}{0}, \text{ impossible.}$$





For 90° we have (Fig. 34)

$$x = 0, \qquad y = r.$$

Hence

$$\sin 90^\circ = \frac{r}{r} = 1,$$
  $\cos 90^\circ = \frac{0}{r} = 0,$   $\tan 90^\circ = \frac{r}{0}$ , impossible,  $\cot 90^\circ = \frac{0}{r} = 0,$   $\sec 90^\circ = \frac{r}{0}$ , impossible,  $\csc 90^\circ = \frac{r}{r} = 1.$ 

#### **EXERCISES**

From suitable figures find the exact values of the functions of the following angles:

**2.** 
$$-45^{\circ}$$
;  $210^{\circ}$ ;  $300^{\circ}$ ;  $-90^{\circ}$ ;  $540^{\circ}$ .

3. 
$$-135^{\circ}$$
;  $-60^{\circ}$ ;  $690^{\circ}$ ;  $-225^{\circ}$ ;  $720^{\circ}$ .

5. Show that 1/2 is the exact value of

 $\sin 60^{\circ} \cos 330^{\circ} + \cos 60^{\circ} \sin 330^{\circ}$ .

- 6. Show that  $\sqrt{3}/2$  is the exact value of  $\cos 150^{\circ} \cos 240^{\circ} \sin 150^{\circ} \sin 240^{\circ}$ .
- 7. Find the exact value of  $\sin 30^{\circ} \cos 150^{\circ} \cos 30^{\circ} \sin 150^{\circ}$ .
- 8. Find the exact value of  $\cos 45^{\circ} \cos 210^{\circ} + \sin 45^{\circ} \sin 210^{\circ}$ .
- 22. Problems in which a function is given. We give three illustrations of types of problems in which the value of a function of an angle is given.

Examples. — 1. Given  $\sin \theta = 3/5$ ; construct possible angles  $\theta$  and find values of the other functions of  $\theta$ .

We have y/r = 3/5. We locate a point P for which y = 3, r = 5 (y = 6, r = 10 would serve as well). To do this draw first

a circle with center at O and radius 5; at every point of this circle, r=5. Draw next a line parallel to the x-axis, 3 units above it; at every point of this line, y=3. At the points of intersection of the line and the circle we have y=3, r=5. Call these points  $P_1$  and  $P_2$ . Draw  $OP_1$  and  $OP_2$ ; either of these lines may serve as terminal line of the angle  $\theta$ . There are two such angles which are positive and less than 360°. Call them  $\theta_1$  and  $\theta_2$  (Fig. 35). Since



$$x^2 + y^2 = r^2,$$

we have 
$$x = \pm 4$$
; for  $P_1$ ,  $x = 4$ ; for  $P_2$ ,  $x = -4$ . Then  $\sin \theta_1 = 3/5$ ,  $\cos \theta_1 = 4/5$ ,  $\cot \theta_1 = 4/3$ ,  $\sec \theta_1 = 5/4$ ,  $\csc \theta_1 = 5/3$ , and  $\sin \theta_2 = 3/5$ ,  $\cos \theta_2 = -4/5$ ,  $\cot \theta_2 = -4/3$ ,  $\sec \theta_2 = -5/4$ ,  $\csc \theta_2 = 5/3$ .

Are there solutions other than  $\theta_1$  and  $\theta_2$ ? The answer is in the negative, if we restrict ourselves to positive angles less than 360°. For, taking r positive, we must have y positive, and  $\theta$  must terminate in the first or the second quadrant; and it is easy to see that for any point P not on  $OP_1$  or  $OP_2$  the ratio y/r cannot be 3/5.

2. Given  $\tan \theta = 5/12$ ; construct possible angles  $\theta$ , and find values of all functions of  $\theta$ .



Since  $\tan \theta = y/x$ , we locate  $P_1$  and  $P_2$  where x = 12, y = 5, and where x = -12, y = -5, respectively. Then either  $OP_1$  or  $OP_2$  may serve as terminal line for  $\theta$ . Let  $\theta_1$  have the terminal line  $OP_1$  and  $\theta_2$  the terminal line  $OP_2$ . Since

$$r^2 = x^2 + y^2,$$

we have r = 13. The values of the functions of  $\theta_1$  and  $\theta_2$  may now be written at once; we leave this to the reader.



3. Express all of the trigonometric functions in terms of  $\sin \theta$ .

Take r = 1,  $y = \sin \theta$ , and proceed as in Example 1. Since

$$x^2 + y^2 = r^2,$$

we have

$$x^{2} = 1 - \sin^{2}\theta,$$

$$x = \pm \sqrt{1 - \sin^{2}\theta}$$

If we assume that  $\sin \theta$  is positive, we see that there is an angle  $\theta_1$  terminating in the first quadrant, for which  $x = \sqrt{1 - \sin^2 \theta}$ , and another angle  $\theta_2$  terminating in the second quadrant for which  $x = -\sqrt{1 - \sin^2 \theta}$ . From Figure 37, we have

$$\sin \theta_1 = \sin \theta,$$
  $\cos \theta_1 = \sqrt{1 - \sin^2 \theta},$   $\tan \theta_1 = \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}},$   $\cot \theta_1 = \frac{\sqrt{1 - \sin^2 \theta}}{\sin \theta},$   $\sec \theta_1 = \frac{1}{\sqrt{1 - \sin^2 \theta}},$   $\csc \theta_1 = \frac{1}{\sin \theta}.$ 

For the functions of  $\theta_2$  a negative sign is placed before the radical in each corresponding formula for  $\theta_1$ .

If  $\sin \theta$  were negative the angles  $\theta_1$  and  $\theta_2$  would terminate in the fourth and third quadrants respectively, but the preceding equations would still be true.

#### **EXERCISES**

Find the values of the other functions of  $\theta$ , when it is given that:

1. 
$$\cos \theta = 12/13$$
.2.  $\cot \theta = 8/15$ .3.  $\sec \theta = -25/7$ .4.  $\csc \theta = -17/8$ .5.  $\tan \theta = -21/20$ .6.  $\sin \theta = -35/37$ .7.  $\cos \theta = -1/3$ .8.  $\cot \theta = -4/7$ .9.  $\sec \theta = -1$ .10.  $\csc \theta = 2$ .

Express all of the trigonometric functions in terms of the following:

**11.**  $\cos \theta$ . **12.**  $\tan \theta$ . **13.**  $\cot \theta$ . **14.**  $\sec \theta$ .

 $\star 23$ . Projection on coördinate axes. Consider a directed line AB which makes an angle  $\theta$  with the x-axis of a system of rectangular coördinates, and let CD be a segment of AB (Fig. 38). On a directed line through O making the angle  $\theta$  with the x-axis, take OP = CD. Then the projection

C'D' of CD on the x-axis equals OM, the projection of OP on the x-axis. This may be written

$$\operatorname{Proj}_x CD = \operatorname{Proj}_x OP = OM.$$



Since  $\cos \theta = OM/OP$ , we have

$$OM = OP \cos \theta;$$

hence

$$\operatorname{Proj}_x CD = OP \cos \theta,$$

or

(1) 
$$\operatorname{Proj}_{\mathbf{x}} CD = CD \cos \theta$$
.

Similarly

(2) 
$$\operatorname{Proj}_{y} CD = CD \sin \theta$$
.

The student should verify these formulas not only for the angle of Figure 38 but also for that of Figure 39 and other figures.

★24. Vectors. Components. Resultants. A quantity which may be represented by a directed line segment CD is often called a vector quantity. Thus force, velocity, and acceleration are vector quantities. The pro-



jections of a vector quantity on the x- and y-axes are called components of the vector.

If F is the magnitude of a force which makes an angle  $\theta$  with the x-axis, and if  $F_x$  and  $F_y$  are the components of the force, then, by formulas (1) and (2) of § 23,

$$F_x = F \cos \theta, \qquad F_y = F \sin \theta.$$

Similar formulas hold for velocity and acceleration.

If the components  $F_x$  and  $F_y$  are given, the vector F is called the *resultant*. It is seen that the magnitude of F is  $\sqrt{F_x^2 + F_y^2}$ . The direction of F is given by the angle  $\theta$ , where  $\tan \theta = F_y/F_x$ .

If two forces, represented in magnitude and direction by AB and AC, act on a particle at A, they are equivalent to a single force, called the *resultant force*, acting on the particle.



The magnitude and direction of this resultant are represented by the diagonal AD of the parallelogram of which AB and AC are two sides. This principle is known as the Parallelogram Law of Forces. A similar law holds for velocities and accelerations.

Example. — A force of 20 lb. acts at an angle of 40° with the horizontal. What two forces, one horizontal, the other vertical, would be equivalent?

In the vertical plane of the force, let the x-axis be horizontal, the y-axis vertical. Then

$$F_x = 20 \cos 40^\circ$$
,  $F_y = 20 \sin 40^\circ$ .

Using the table on page 22, we have

$$\cos 40^{\circ} = .77$$
,  $\sin 40^{\circ} = .64$ .

Hence

$$F_x = 15.4 \text{ lb.}, \qquad F_y = 12.8 \text{ lb.}$$

These values are of course approximations.



#### **EXERCISES**

1. Draw a figure similar to those in § 23, making  $\theta$  an angle terminating in the second quadrant, and verify formulas (1) and (2). Note that the signs as well as the magnitudes are correct.

2. Proceed as in Exercise 1, making  $\theta$  an angle terminating

in the fourth quadrant.

3. If a boat is traveling N.E. with a speed of 20 mi. per hr., what is the component of its velocity in the Eastward direction? In the Northward direction?

4. If a boat is making 30 knots per hour on a course of 70° (see § 6, p. 6), what are its components of velocity in the Eastward and the Northward directions respectively?

5. A swimmer in crossing a stream puts forth efforts which in still water would carry him directly across at 3 mi. per hr. If the current is 4 mi. per hr. what is the actual direction and speed of the swimmer?

6. An airplane heads West, running so that in still air it would have a speed of 100 mi. per hr. There is a wind from the South blowing with a speed of 40 mi. per hr. What

is the actual direction and speed of the airplane?

7. A force of 12 lb. acts vertically upward and another of 20 lb. acts horizontally on a particle. What are the magnitude and the direction of the single force equivalent to the two?

- 8. A force of 2 tons acts horizontally, another of 5 tons acts vertically on a particle. What are the magnitude and the direction of the resultant force?
- 9. A boat sails on a course of 130° (§ 6, p. 6) with a speed of 12 knots per hour. What are the Eastward and Northward components of its velocity?
- 10. A surveyor runs a line 600 yd. N 10° W from A to B. How far East and how far North is B from A?

# CHAPTER II

# RIGHT TRIANGLES

25. The problem of solving a triangle. The three sides and three angles of a triangle are called its six parts. If some of the six parts are given it may be possible to calculate the others. To do so is to solve the triangle.

In the present chapter we shall discuss the solving of triangles one of whose angles is a right angle, or in other words, the solving of right triangles.

26. Functions of an acute angle of a right triangle. We shall make use of the trigonometric functions defined in

§ 15 (p. 17) but we shall find it convenient here to word the definitions somewhat differently.

Let ABC be a right triangle, with C the right angle. Let a, b, c be the sides opposite the angles A, B, C, respectively. For the angle A we



shall call the side a the opposite side, and b the adjacent side.

From the definitions of § 15, we see that

$$\sin A = \frac{a}{c} = \frac{\text{opposite side}}{\text{hypotenuse}},$$
 $\cos A = \frac{b}{c} = \frac{\text{adjacent side}}{\text{hypotenuse}},$ 
 $\tan A = \frac{a}{b} = \frac{\text{opposite side}}{\text{adjacent side}},$ 
 $\cot A = \frac{b}{a} = \frac{\text{adjacent side}}{\text{opposite side}},$ 

sec 
$$A = \frac{c}{b} = \frac{\text{hypotenuse}}{\text{adjacent side}}$$
, csc  $A = \frac{c}{a} = \frac{\text{hypotenuse}}{\text{opposite side}}$ .

These formulas should be memorized.

27. Functions of complementary angles. For the angle B, the side b is the opposite side, and a the adjacent side. Hence

$$\sin B = \frac{b}{c},$$
  $\cos B = \frac{a}{c},$   
 $\tan B = \frac{b}{a},$   $\cot B = \frac{a}{b},$   
 $\sec B = \frac{c}{a},$   $\csc B = \frac{c}{b}.$ 

By comparing with the formulas of § 26, we see that

(1) 
$$\sin B = \cos A, \qquad \cos B = \sin A,$$
$$\tan B = \cot A, \qquad \cot B = \tan A,$$
$$\sec B = \csc A, \qquad \csc B = \sec A.$$

The angle B is the complement of the angle A, that is,  $B = 90^{\circ} - A$ ; it might be written co. A. The first of these equations could be written

$$\sin \cos A = \cos A$$
,

the others similarly.

If we call the following pairs of functions cofunctions of each other:

sine and cosine, tangent and cotangent, secant and cosecant,

then the six formulas (1) are given by the rule:

A function of the complement of an acute angle equals the cofunction of the angle.

For example, since 30° and 60° are complements, we have  $\sin 30^{\circ} = \cos 60^{\circ}$ ,  $\cos 30^{\circ} = \sin 60^{\circ}$ .

These relations are verified by reference to the values given in §20 (p. 25).

28. Tables of values of functions of acute angles. To solve right triangles we must know the values of functions of acute angles. A small table of values was worked out in § 17. The values were given only approximately—to two or three figures. On page 4 of the Tables, more accurate values are given, and values for more angles. Let us see how the Tables are read.

Angles 10' apart are given from 0° up to 45° in the first column of pages 4–8, and from 90° down to 45° in the last column. The values of the functions are given in successive columns. For angles given at the *left*, we read the name of the function at the *top* of the columns; for angles at the *right*, we read the functions at the *bottom* of the columns. It will be observed that the arrangement of the Tables is such that the value of a function of an angle may also be read as the value of the cofunction of the complementary angle.

Examples. — 1. To find  $\sin 4^{\circ} 40'$  we look on page 4, go down the left-hand column headed "Degrees" to  $4^{\circ} 40'$  and across to the column headed "Sin"; the entry is 814, which means that  $\sin 4^{\circ} 40'$  = .0814, the first digit, in this case 0, being given only at intervals in this table.

- 2. To find  $\cot 14^{\circ} 10'$  we turn to page 5, go down the first column to  $14^{\circ} 10'$ , across to the column headed "Cot" and read 3.962. Thus  $\cot 14^{\circ} 10' = 3.962$ .
- 3. To find  $\cos 66^{\circ} 20'$ , turn to page 6, go up the last column to  $66^{\circ} 20'$ , across to the column with "Cos" at the *bottom*, and read .4014. That is,  $\cos 66^{\circ} 20' = .4014$ .
- 4. Given that  $\tan A = .7954$ ; to find A. Look down the column headed "Tan" to entry .7954; go across to the first column and find  $A = 38^{\circ} 30'$ .

5. Given that  $\sin A = .9080$ ; to find A. This number is not found in a column with "Sin" at the top, but on page 6 with "Sin" at the bottom we find values near .9080. This number lies between two given in the Table, namely .9075 and .9088, being nearer the former. Hence, going across to the last column, we find that A is nearly  $65^{\circ}$  10'.

## **EXERCISES**

Find values of the following:

```
1. sin 33° 40'; cos 17° 20';
tan 18° 0'; cot 42° 50';
sec 12° 10'; csc 8° 20'.
```

Find the angle A in each of the following equations:

```
5. \sin A = .5616; \cos A = .8141; \cot A = .1110; \cot A = 10.71.
```

6. 
$$\sin A = .1132$$
;  $\cos A = .8526$ ;  $\tan A = .9490$ ;  $\cot A = 1.327$ .

7. 
$$\sin A = .7826$$
;  $\cos A = .6225$ ;  $\cot A = .2773$ .

8. 
$$\sin A = .9613$$
;  $\cos A = .2278$ ;  $\tan A = 4.705$ ;  $\cot A = .2679$ .

Find A to the nearest 10' in each of the following:

9. 
$$\sin A = .2538$$
;  $\cos A = .9953$ ;  $\tan A = 3.598$ ;  $\cot A = .1222$ .

10. 
$$\sin A = .9904$$
;  $\cos A = .2692$ ;  $\tan A = .5180$ ;  $\cot A = .9413$ .

29. Interpolation. In finding the value of a function of an angle, such as 17° 23′, which is not given in the Table but lies between two angles that appear, we use the method of *interpolation*, as illustrated in Examples 1 and 2 below. In Examples 3 and 4 the method is applied in finding the angle when the value of one of its functions is given.

Examples. -1. To find sin 17° 23′.

The given angle, 17° 23′, is three-tenths of the way from 17° 20′ to 17° 30′. We assume that sin 17° 23′ is three-tenths of the way from sin 17° 20′ to sin 17° 30′. The sine of 17° 23′ will then be obtained by taking 3/10 of the amount by which sin 17° 30′ exceeds sin 17° 20′, and adding this *correction* to sin 17° 20′. Hence

$$\sin 17^{\circ} 23' = \sin 17^{\circ} 20' + 3/10 (\sin 17^{\circ} 30' - \sin 17^{\circ} 20')$$
  
=  $.2979 + 3/10 (.0028) = .2979 + .00084$   
=  $.2987$  approximately.

Since the Tables give values to only four places, we give only four places in our value of sin 17° 23′. This amounts to calling the correction .0008 instead of .00084. We would have used .0008 for any correction greater than .00075 and less than .00085. It is customary to disregard the decimal point in the tabulated values and call the tabular difference 28 instead of .0028, and the correction 8 instead of .0008.

Another way to explain the preceding interpolation is to state that we have assumed that when an angle increases, its sine increases proportionally; or, in other words, that differences between angles are proportional to differences between their sines. For the examples just solved the accompanying small table indicates these differences. We thus have

$$\frac{x}{28} = \frac{3}{10}.$$
Then  $x = 8.4 = 8$  approximately;  $10 \begin{bmatrix} 3 \begin{bmatrix} 17^{\circ} 20' \\ 17^{\circ} 23' \\ 17^{\circ} 30' \end{bmatrix} \begin{bmatrix} 2879 \end{bmatrix} x \end{bmatrix}$  28 and  $17^{\circ} 23' = .2979 + .0008 = .2987.$ 

The assumption just made that differences between angles are proportional to differences between the values of a function of those angles is not exactly true, but it gives rise to errors which are negligible when the differences involved are small.

2. To find cot 17° 15′.

From the little table at the right we have
$$x = 5/10 \times 33 = 16.5.$$
Angle
$$10 \begin{bmatrix} 5 \\ 17^{\circ} & 10' \\ 17^{\circ} & 15' \\ 17^{\circ} & 20' \end{bmatrix} \begin{bmatrix} 3.237 \\ 3.204 \end{bmatrix} x \end{bmatrix} 33$$

The correction x could be called either 16 or 17. In all such cases we shall arbitrarily use the even number; here we take x = 16. We note that the cotangent decreases when we go from 17° 10′ to 17° 20′; hence the correction, which should take us 5/10 of the way from cot 17° 10′ to cot 17° 20′, must be subtracted from the former. We have

$$\cot 17^{\circ} 15' = 3.237 - .016 = 3.221.$$

# 3. Given $\tan A = .4361$ . To find A.

We find that the angle A lies between  $23^{\circ}30'$  and  $23^{\circ}40'$ , as shown to the right. By the principle of proportional differences

Angle

Tan

ciple of proportional differences we have 
$$x = \frac{13}{35} \times 10 = \frac{130}{35} = 3.7.$$
 
$$10 \begin{bmatrix} x \begin{bmatrix} 23 & 30' \\ A \\ 23 & 40' \end{bmatrix} & .4348 \\ .4361 \end{bmatrix} 13 \end{bmatrix} 35$$

Hence

$$A = 23^{\circ} 30' + 4' = 23^{\circ} 34'$$
.

4. Given  $\cos A = .4100$ . To find A.

Proceeding as before we have  $x = \frac{20}{26} \times 10 = 8.$  $10 \begin{bmatrix} x \begin{bmatrix} 65^{\circ} & 40' \\ A \\ 65^{\circ} & 50' \end{bmatrix} & .4120 \\ .4100 \end{bmatrix} 20$ Hence  $A = 65^{\circ} 48'$ .

### **EXERCISES**

By interpolation find values of the following:

1. sin 32° 27′; cos 22° 31′; tan 18° 47′.

2. sin 5° 14′; cot 42° 8′; sec 22° 33′.

sin 72° 15'; tan 61° 18'; csc 82° 12'.
 tan 81° 9'; sec 54° 54'; cot 67° 8'.

Use interpolation to find the value of A to the nearest minute in the following equations:

 $\cot A = 3.460.$ 5.  $\sin A = .5306$ ;

 $\cot A = 2.380.$   $\tan A = .5000.$ 6.  $\tan A = .6530$ ;

7.  $\cos A = .8300;$ 

8.  $\sin A = .1200$ ;  $\cos A = .9601$ .

9.  $\sin A = .9926$ ;  $\cot A = .7302$ .

10.  $\sin A = .7671$ ;  $\cos A = .2581.$ 

**11.**  $\tan A = 1.314$ ;  $\cot A = .7040$ .

**12.**  $\tan A = 6.923$ ;  $\cos A = .5610$ .

30. Solution of typical right triangles. In the present section we shall consider triangles with sides and angles lettered as in § 26 (p. 35). We note that  $C = 90^{\circ}$ .

When numerical values are given for two of the parts A, B, a, b, c, if one at least is a side it is possible with the aid of Tables I and II to solve the triangle.\* We use the formulas of § 26, together with the propositions of geometry expressed by the formulas

$$(1) a^2 + b^2 = c^2,$$

(2) 
$$A + B = 90^{\circ}.$$

<sup>\*</sup> In § 102 (p. 185), right triangles will be solved by means of logarithms.

Examples. — 1. Given  $A = 40^{\circ} 20'$ , c = 25. To find B, a, b.

From (2) we have

$$B = 90^{\circ} - A = 49^{\circ} 40'$$
.

Since  $\sin A = a/c$ , we have

$$a = c \sin A = 25 \times .6472 = 16.18$$
.

And since  $\cos A = b/c$ , we have

$$b = c \cos A = 25 \times .7623 = 19.06.$$

2. Given  $A = 31^{\circ} 30'$ , b = 2.5. To find B, a, c.

From (2) we have

$$B = 90^{\circ} - A = 58^{\circ} 30'$$
.

Since  $\tan A = a/b$ , we have

$$a = b \tan A = 2.5 \times .6128 = 1.532.$$

And since  $\sec A = c/b$ , we have

$$c = b \sec A = 2.5 \times 1.173 = 2.932.$$

Instead of sec A we might have used  $\cos A$  to find c. Since  $\cos A = b/c$ , we have

$$c = \frac{b}{\cos A} = \frac{2.5}{.8526} = 2.932.$$

This calculation is a little longer than the other, the division taking more time than the multiplication.

3. Given a = 100, b = 49.5. To find A, B, c.

We may use either  $\tan A = a/b$  or  $\cot A = b/a$  to find A. The latter gives the easier calculation. We have

$$\cot A = \frac{49.5}{100} = .4950.$$

Hence, from the Tables,  $A=63^{\circ}40'$ ; and from (2),  $B=26^{\circ}20'$ . To find c we may use either

$$c^{2} = a^{2} + b^{2}$$
 or  $\csc A = \frac{c}{a}$ 
 $c = \sqrt{a^{2} + b^{2}}$   $c = a \csc A$ 
 $= \sqrt{10,000 + 2450}$   $= 100 \times 1.116$ 
 $= \sqrt{12,450}$   $= 111.6$ .

31. Checking a solution. Since errors are very likely to occur in solving a triangle, one should *check* the work. To do this, select a formula which has not already been used and which involves at least two of the parts of the triangle that were unknown. In this formula substitute the calculated values. If the formula is verified, at least to a very close approximation, the solution *checks*; if not, there is probably an error in the work, and the solution should be gone over in an attempt to find the error.

To check Example 1 of § 30 we select

$$\tan B = \frac{b}{a},$$

a formula which has not been used in the solution, and which involves all three unknowns. From the Table,

$$\tan B = \tan 49^{\circ} 40' = 1.178.$$

By division,

$$\frac{b}{a} = \frac{19.06}{16.18} = 1.178.$$

The two results are the same; the solution checks.

Another formula which could have been selected to check the solution is

$$c^2 = a^2 + b^2$$
.

The calculation involved in using this formula is simplified by the aid of a Table of Squares, which we shall explain in the next section.

#### **EXERCISES**

Solve the following triangles, and check your solution. In every case  $C = 90^{\circ}$ . The other two given parts are:

1. 
$$A = 14^{\circ} 20', c = 75$$
.

3. 
$$B = 26^{\circ} 33'$$
,  $a = 25$ .

5. 
$$B = 24^{\circ} 21', b = 35.$$

7. 
$$a = .23, b = .41$$
.

9. 
$$b = 621, c = 985.$$

**11.** 
$$a = 3.03, c = 5.05.$$

**13.** 
$$a = 55.12, b = 36.82.$$

**15.** 
$$a = 3.684, c = 5.111.$$

17. 
$$A = 77^{\circ} 9', a = 654.3.$$

**19.** 
$$A = 18^{\circ} 8', b = 399.$$

2. 
$$A = 38^{\circ} 50', c = 4.5$$
.

4. 
$$B = 61^{\circ} 27'$$
,  $a = 55$ .

6. 
$$B = 78^{\circ} 18', b = .48$$
.

8. 
$$a = 290, b = 150.$$

10. 
$$b = .072, c = .123.$$

12. 
$$a = 250, b = 350.$$

**14.** 
$$a = 1.250, b = 2.500.$$

**16.** 
$$a = 5.810, c = 7.952.$$

18. 
$$A = 9^{\circ} 27'$$
,  $a = 36.17$ .

**20.** 
$$A = 83^{\circ} 4', b = 36.7.$$

32. Squares of numbers. In Table I at the end of the book we find the approximate values of the squares of numbers from 1.00 to 9.99. Its use is illustrated in the following examples.

Example 1. — To find  $(5.92)^2$ . On page 3, go down the column headed N to 5.9, then across to the column headed 2. The approximate value required is found to be 35.05.

2. To find (5.925)<sup>2</sup>. We interpolate with the aid of the adjacent

table (it should be done mentally after a little practice) and obtain the correction,

$$x = 5/10 \times 11 = 5.5 = 6$$

approximately. We then have the approximation,

$$\begin{array}{c|cccc}
 & N & N^2 \\
\hline
 & 5.920 & 35.05 \\
 & 5.925 & - 35.16
\end{array} \end{bmatrix} x \\
11$$

$$(5.925)^2 = 35.05 + .06 = 35.11.$$

3. To find (59.25)2. We have

$$59.25 = 10 \times 5.925;$$

$$(59.25)^2 = 10^2 \times (5.925)^2 = 100 \times 35.11$$
, from Example 2, = 3511.

Similarly,

$$(592.5)^2 = 100^2 \times (5.925)^2 = 351,100;$$
  
 $(.5925)^2 = .3511;$   
 $(.05925)^2 = .003511.$ 

It should now be clear how the approximate value of the square of any number whatever is found. We may formulate the rule: For a given number, shift the decimal point to the right (or left) k places to obtain a number between 1 and 10. Find the square of this from the Table. Shift the decimal point in this result 2k places to the left (or right) to get the required square.

33. Square roots. The square root of a number n in the interior of Table I is given by the corresponding number N read off from the left of the row and the top of the column in which n lies. We may, therefore, use the Table of Squares for the extraction of square roots.

We note that the interior numbers lie between 1 and 100. We get the square roots of numbers in this range directly, though interpolation may be needed. Thus

$$\sqrt{3.496} = 1.870, \qquad \sqrt{34.96} = 5.912.$$

A number which does not lie between 1 and 100 can be expressed as the product of such a number by a power of 10 whose square root is simple. Thus

$$349.6 = 100 \times 3.496,$$
  $.3496 = .01 \times 34.96,$   $.03496 = .01 \times 3.496,$   $.03496 = .01 \times 3.496,$   $.003496 = .001 \times 34.96.$ 

Hence

$$\sqrt{349.6} = \sqrt{100} \times \sqrt{3.496},$$
  $\sqrt{.3496} = \sqrt{.01} \times \sqrt{34.96},$   
 $= 10 \times 1.870,$   $= .1 \times 5.912,$   
 $= 18.70,$   $= .5912,$   
 $\sqrt{3496}. = 59.12,$   $\sqrt{.03496} = .1870,$   
 $\sqrt{34960}. = 187.0.$   $\sqrt{.003496} = .05912.$ 

It should now be clear how the approximate square root of any number whatever can be found by use of the Table. A rule may be formulated as follows: For a given number shift the decimal point an even number of places, say 2k, to the right (or left) to get a number between 1 and 100. Find the square root of this number from the Tables. In this square root shift the decimal point k places to the left (or right) to get the required number.

## **EXERCISES**

Find the values of the squares of the following numbers to four places by use of the Table of Squares:

| 1. | 3.418; | 782.4;  | .06193;  | .2613.   |
|----|--------|---------|----------|----------|
| 2. | 4.872; | 51.32;  | .6666;   | .001818. |
| 3. | 5.555; | 3892;   | .002468; | .9876.   |
| 4. | 3.142; | 642.50; | .02992;  | .3333.   |

Find the square roots of the following numbers to four places by use of the Table of Squares:

| 5.  | 6.742; | 38.18; | .05932;  | .00342. |
|-----|--------|--------|----------|---------|
| 6.  | 4.884; | 989.8; | .004614; | .01111. |
| 7.  | 3.333; | 7777;  | .05678;  | .217.   |
| 8.  | 2.222; | 81.81; | .9999;   | .00045. |
| 9.  | 3.629; | 48.19; | 574.2;   | .08765. |
| 10. | 5.678; | 68.24; | 3693;    | .5791.  |

★34. Approximations. Significant figures. In applications of trigonometry we employ approximations to the exact values of lengths and angles; and, as we have already stated, the tabulated values of the functions are not exact. It is often of importance to know what accuracy we can expect from our calculations under these circumstances.

In discussing this, let us first remark that the values given in the Tables are as nearly exact as they could be made by using the given number of digits.\* Hence when we find that  $\sin 17^{\circ} 20' = .2979$  we may feel sure that the exact value lies between .29785 and .29795, or in other words, that the error is less than .00005. When a value is found by interpolation the error may be a little larger, but when the differences involved are small this error is in general less than 1 in the last place. Thus when we find by interpolation that  $\sin 17^{\circ} 23' = .2987$ , we can feel confident that this value is in error by less than .0001.

It will be assumed in this book when we give a measurement of a length that the error is less than 1 in the last place where a digit other than zero occurs. Thus if we have given a = 3.12 m., we understand that the error is less than .01 m.; or if a = 3120 m., that it is less than 10 m. However, if one or more zeros are written after the decimal point at the end of a given value, they are to be considered significant, and the error is (presumably) less than 1 in the place of the final zero. For example, if we have a = 3.1200 m., it is to be inferred that the error is less than .0001 m. It is thus seen that 3.12 m. and 3.1200 m. have slightly different meanings.

If a given number ends with one or more zeros that do not follow a decimal point, those digits are not to be considered significant unless the contrary is stated. For example, if we are given a=31200 m., we are to assume that the final zeros are not significant digits, and that the error is something less than 100 m. The same measure could have been expressed without final zeros as a=31.2 km. If it is given that "a=31200 m. to four significant figures," the first zero is considered significant, and precisely the same thing would be meant by a=31.20 km., — the error is less than 10 m., or 0.01 km.

We may now define the significant figures (or digits) of a number as its digits beginning with the first that is not zero,

<sup>\*</sup> The digits are the numbers  $0, 1, 2, \ldots, 8, 9$ .

and ending in general with the last that is not zero. Exceptional cases where final zeros are significant are those indicated in the preceding paragraphs.

To turn from measurement of lengths to that of angles, we first consider an example. We find from the Tables that

$$\sin 14^{\circ} = .2419$$
,  $\sin 15^{\circ} = .2588$ .

Thus a change of 1° in the angle corresponds to a change in the second figure of its sine. A glance at the Tables shows that in general the sine and cosine change about 1 in the second figure when the angle changes by 1°. It turns out, as might be inferred from considerations such as these, that the accuracy of the measurement of an angle to the nearest degree corresponds roughly to that of the measurement of a length to two significant figures. Measurements to the nearest 10′ correspond roughly to three significant figures, to the nearest 1′ to four, and to the nearest 5″ to five significant figures in measurements of length.

Consider now the accuracy of results obtained by calculations with approximate values. Suppose, for illustration, that

$$a = 316.2, \quad b = 13.15,$$

are correct to four significant figures. Then

$$a + b = 329.35;$$

but there may be an error of nearly .1 in a, hence the final 5 in a + b is not to be relied upon. Since the error in the value of a + b cannot be much greater than .1, we accept the 3 in the tenths place as significant, but reject the final 5. In general, when two numbers are added, if their last significant figures occur in the same decimal place, the final significant figure of their sum occurs in that place. But if in one the final figure which is significant is in an earlier decimal place than in the other, the final significant figure in their sum

occurs in that earlier place. It should be noted that the error in a sum may be larger than the errors in the separate numbers, for the errors may accumulate. Thus the error in a sum may be larger than 1 in the final significant figure.

The discussion for the difference of two approximate values is very similar to the preceding.

In the case of multiplication the conclusions are somewhat different. Suppose

$$a = 316.2, b = .15,$$

then

$$ab = 47.430.$$

But how many of these figures are to be retained? Assuming only that a lies between 316.1 and 316.3, and b between .14 and .16, we can conclude only that ab lies between

$$.14 \times 316.1 = 44.254$$
 and  $.16 \times 316.3 = 50.608$ .

It is seen that only two figures of the product ab should be retained. Accordingly we write ab = 47 and recognize that the last digit may be in error. In general, the number of significant figures in a product should be the same as that of the factor having the fewer such figures; or if both factors have the same number p of such figures there should also be p in the product. Similar statements hold for a quotient. The error may be greater than 1 in the final place.

In a computation requiring several operations the errors may accumulate to much more than 1 in the last significant figure, but as a rule errors tend to counteract each other and the final result is likely to have only a small error in that figure.

A slightly greater accuracy is usually obtained in the computed value if at each step in the calculation we retain more figures than the preceding rules would allow. At the end of the computation, however, we should retain only as

many significant figures as those rules, if applied at each step, would permit.

Example. — In a right triangle we have

$$a = 4.27,$$
  $c = 10.21,$ 

these values being approximate. Find A and b.

We use the formulas

$$\sin A = \frac{a}{c}, \qquad b = \sqrt{c^2 - a^2}.$$

In calculating a/c, we retain four figures for slightly greater accuracy, although a has only three, and according to our rules a/c should have no more. We find

$$\sin A = .4182.$$

Hence, to the appropriate number of significant figures, that is, to the nearest 10',  $A = 24^{\circ} 40'$ . From the Tables,

$$c^2 = 104.2, \qquad a^2 = 18.23;$$

hence,

$$b = \sqrt{c^2 - a^2} = \sqrt{85.97} = 9.27.$$

We have here retained only the justifiable number of significant figures for b. To check our work, we use the formula

$$b = c \cos A$$
.

We have

$$c \cos A = 10.21 \times .9088 = 9.279$$

to four figures. Since we had b = 9.27, the check is satisfactory.

#### **EXERCISES**

How many significant figures are there in each of the following numbers considered as approximations?

- 1. (a) 3817.2; (b) .00214; (c)  $3.812 \times 10^3$ ; (d)  $2.70 \times 10^{-4}$ ; (e) 93,000,000.
- **2.** (a) 21.12; (b) .01010; (c)  $2.0 \times 10^2$ ; (d)  $2.777 \times 10^{-6}$ ; (e) 240,000.

- 3. With an ordinary foot-rule try to measure the length of a table to the nearest hundredth of an inch. Repeat the measurement four times. How large an error do you think is likely in your measurements? How many significant figures should you retain in your approximate value of the length?
- 4. With an ordinary foot-rule try to measure the length of a page of this book to a hundredth of an inch. Repeat the measurement several times. Answer the questions of Exercise 3 for these measurements.
- 5. If we have the measured values a = 36.2, b = 81.5, find limits between which the exact value of ab must lie. Similarly for a/b.
  - 6. Proceed as in Exercise 5 for a = 3.624, b = 81.5.

Solve the following right triangles and retain the appropriate number of significant figures, assuming that the data are measurements:

- 7.  $A = 31^{\circ} 20', c = 65.0.$
- 8.  $A = 59^{\circ}$  to the nearest minute, and b = 41.00.
- 35. Isosceles triangles. If in an isosceles triangle ABC, where AC = BC, we drop a perpendicular from C to AB,

we get two equal right triangles ADC and BDC. This fact may be used in solving an isosceles triangle.

Example. — Solve the isosceles triangle, where the base is 21.25 ft. and the angle at the vertex is 37° 26′.



In the triangle ADC we have

$$D = 90^{\circ}, \qquad AD = \frac{21.25}{2} = 10.62,$$
 
$$\angle ACD = \frac{37^{\circ} 26'}{2} = 18^{\circ} 43'.$$

52

Then

$$AC = AD \csc \angle ACD$$
,  
=  $10.62 \times 3.116 = 33.09 = BC$ ,  
 $A = 90^{\circ} - \angle ACD = 71^{\circ} 17' = B$ .



36. Regular polygons. If lines are drawn from the center of a regular polygon to its vertices, it is divided into equal isosceles triangles. If the polygon has n sides the angle at the vertex of each of these triangles is  $360^{\circ}/n$ . If a side AB, a radius AC, or an apothem CD is given, the other parts can be found by solving a right triangle.

### **EXERCISES**

In the following Exercises retain the appropriate number of significant figures in each answer. The notation of Figure 44 is used in Exercises 1 to 5.

1. Given  $A = 50^{\circ} 12'$ , c = 4826. Find C, a, and b.

**2.** Given  $C = 22^{\circ} 46'$ , c = 5164. Find A, a, and b.

3. Given a = 3846, c = 2354. Find A, C, and b.

4. Given  $A = 12^{\circ} 16'$ , a = 6891. Find C, c, and b.

5. Given  $C = 88^{\circ} 52'$ , a = 8686. Find A, c, and b.

6. In a regular octagon, the length of a side is 2.32 in. Find the radius of the circumscribed circle and the apothem.

7. In a regular hexagon, the apothem is 4.86 in. Find the

perimeter.

8. A regular decagon is inscribed in a circle whose radius is 10.00 in. Find the perimeter and the area of the decagon.

37. Applications to heights and distances. Trigonometry undoubtedly had its origin in attempts to find certain angles, heights, and distances by indirect measurement. It is said that Thales of Miletus (about 600 B.C.) showed how to find the height of a pyramid, or the distance from the shore

to a ship at sea, by a method which is essentially that of trigonometry.

At the present time surveyors and navigators make constant use of trigonometry in finding directions, distances, and heights. Let us see how a few such problems may be solved.

Suppose a surveyor wishes to find the distance between two trees A and B on opposite sides of a stream. He can measure on one shore along a line perpendicular to AB a convenient distance AC (Fig. 46), measure the angle ACB, and find



the required distance by solving the right triangle ACB.

Suppose he wishes to find the distance from a position A to a flagpole BC of known height (Fig. 47) without leaving the position A. Assuming that A and B are in the same horizontal plane, and that BC is vertical, he may measure the angle BAC, which is called the *angle of elevation* of C for the

observer at A, and solve the right triangle ABC for the required distance AB.

Suppose a navigator on board ship wishes to find how far he is from a certain rock R on shore at the water's edge. If he sights



with the appropriate instrument from A and observes that the line AR (Fig. 48) is depressed below the horizontal line AH by a certain amount, called the *angle of depression* of R as observed from A, and if he knows the height AB of his in-

strument above the water, he may solve the right triangle ABR and find the required distance. (We observe that the angle of depression of R for an observer at A equals the angle ARB, which is the angle of elevation of A for an observer at R.)

At the end of this section we shall give a number of exercises more or less like those we have just presented. It will be helpful for the student to adopt the following method of procedure:

(1) Read the problem carefully, then draw a figure to some convenient scale which will show those lines and angles which are given and those to be found.

(2) Draw auxiliary lines if necessary, and decide on the

simplest plan for solving the problem.

(3) Write down all necessary formulas.

(4) Carry out the numerical calculations, retaining the appropriate number of significant figures in each answer.

(5) Check the results.

### **EXERCISES**

1. At a point 256 ft. from a flagpole, and on a level with the base, the angle of elevation of the top is 18° 20′. How tall is the pole?

2. A stick 10.5 ft. long stands vertically and casts a shadow 12.8 ft. long in a horizontal plane. What is the angle of

elevation of the sun?

3. A sailor at sea level observes that the angle of elevation of the top of a rock 290 ft. high is 22°. How far is he from the top of the rock? How far from the point at sea level directly under the top of the rock?

4. A boy observes that the angle of elevation of his kite is 35° when 220 yd. of string are out. Assuming that the

string is straight, how high is the kite?

5. From the deck of a boat 45 ft. above water level the

angle of depression of a stone on the beach, at the water's edge, is 5°. How far away is the stone from the observer?

- 6. From a window ledge almost exactly 40 ft. above a level street the angle of depression of the base of a building across the street is 21°, and the angle of elevation of its top is 62°. Find the height of the building.
- 7. Two points A and B are on opposite sides of a lake. A line from A to C running due West is 392.2 yd. long. A line from B to C running due South is 521.4 yd. long. How far is it from A to B?
- 8. To find the distance across a river from A to B, a surveyor ran a line along one shore from A to C perpendicular to AB and of length 350 ft. He measured the angle ACB; it was 52° 30′. Find the width AB.
- 9. A navigator sailed a course of 211° (see p. 6) for 2 hr. 25 min. at 22.2 mi. per hr. Assuming that the surface of the water was a plane, how far South and how far West was his final position from his initial position?
- 10. One port is 61 mi. East and 37 mi. South of another. What is the direction (or course) from the first to the second port? Assume that the surface of the earth is a plane.
- 11. Two observers at A and B in a horizontal plane observe a captive balloon C. The points A, B, and C lie in a vertical plane, with C above a point between A and B. The distance AB is 1570 yd. At A the angle of elevation of C is 25° 20′, at B it is 34° 30′. How high is the balloon above the plane of the observers?
- 12. From a ship running on a course N 5° E along a shore the bearing of a rock is observed to be N 32° E. After running 350 yd. the bearing of the rock is N 51° E. If the ship continues on its course, how close will it come to the rock?
- 13. The angle of elevation of the top of a spire from a point A in a horizontal plane is  $22^{\circ} 23'$ ; from a point B 100.0 ft. nearer it in the same plane the angle of elevation is  $35^{\circ} 12'$ . How high is the top of the spire above the plane?

- 14. A tunnel into the earth descends at an angle of depression of 14°. When a man has descended 350 ft. along the tunnel how far is he below the level of his starting point?
- 15. The planet Venus goes around the sun in an orbit which is practically circular, its distance from the sun being about  $67 \times 10^6$  mi. The earth's orbit is also nearly circular, the distance from the earth to the sun being about  $93 \times 10^6$  mi. What is the maximum value for the angle between the line from the earth to the sun, and the line from the earth to Venus? Will Venus ever be seen in the East in the evening?

16. A surveyor starts at a point A, goes N 18° E 782 ft. to B, then S 47° E 691 ft. to C, then S 11° W 388 ft. to D. Find the direction and distance from D to the starting point A.

17. A sailor sails a course of  $63^{\circ}$  20' for 21.37 mi. from A to B, then a course of  $192^{\circ}$  50' for 31.21 mi. from B to C. Find the bearing and distance of A from C.

## CHAPTER III

# **OBLIQUE TRIANGLES\***

38. General statement. In the preceding chapter we saw how a right triangle is solved. Let us now consider oblique triangles.

In the first place, we may ask how many of the six parts (three sides, a, b, c, and three angles, A, B, C) of a triangle need to be given in order to determine the triangle. If we recall certain propositions of plane geometry we shall remember that it is possible to construct a triangle when three of its parts are given in each of the following cases:

Case I. When one side and two angles are given.

Case II. When two sides and an angle opposite one of them is given (there is a possible ambiguity in this case; see § 44).

Case III. When two sides and the included angle are given.

Case IV. When three sides are given.

It thus appears that any three parts of a triangle, provided they are not all angles, determine the triangle. It will be found desirable to take up solutions under each of these four cases separately.

In order to solve a triangle we need relations among the parts in the form of equations from which we can obtain the value of each unknown part in terms of those that are given. It turns out that the following relations are sufficient for the purpose:

<sup>\*</sup> In a brief course it may be desirable to omit all of this chapter except §§ 38-41; in this case these sections should be deferred until Chapter VIII has been completed.

- (1) The formula  $A + B + C = 180^{\circ}$ .
- (2) The law of sines (§ **40**).
- (3) The law of cosines (§ **41**).

We shall find that another cosine formula is convenient for checking computations.

Some of the calculations, when a high degree of accuracy is required, are tedious on account of the amount of arithmetic involved. In a later chapter (Chapter IX) we shall take up simplifications that are made possible through the use of logarithms.

39. Sine and cosine of obtuse angles. The Tables give values of the trigonometric functions for acute angles only.



Since an obtuse angle may occur in an oblique triangle, we must see how values of the functions of such angles can be found.

Let  $\theta$  be an obtuse angle; then  $180^{\circ} - \theta$ , its supplement, is acute. Referring to the defini-

tions of § 15, we draw Figure 49. We choose P and P' so that r = r'.

It is not difficult to show that the triangles OMP and OM'P' are congruent. Hence, taking due account of the signs of each quantity, we have,

$$y = MP = M'P' = y',$$
  

$$x = OM = -OM' = -x'.$$

We therefore have

$$\sin \theta = \frac{y}{r} = \frac{y'}{r'} = \sin (180^{\circ} - \theta),$$
  
 $\cos \theta = \frac{x}{r} = -\frac{x'}{r'} = -\cos (180^{\circ} - \theta).$ 

Thus, the sine of an obtuse angle equals the sine of the supplementary angle (which is acute); and the cosine of an obtuse angle is the negative of the cosine of the supplementary angle.

As examples, we have

$$\sin 121^{\circ} 12' = \sin 58^{\circ} 48' = .8554,$$
  
 $\cos 121^{\circ} 12' = -\cos 58^{\circ} 48' = -.5180.$ 

40. The law of sines. The formula known by this name is derived as follows.

In a triangle ABC let a, b, c be the sides opposite the angles A, B, C, respectively. From the vertex C drop a



perpendicular upon the side AB (produced if necessary), calling the foot of the perpendicular D. Then we have

$$\sin A = \frac{DC}{b}, \quad \sin B = \frac{DC}{a}.$$

It is to be noted (Fig. 50) that these equations hold whether the angles A and B are both acute, or A is acute and B obtuse, or A obtuse and B acute. The student may draw figures in which either A or B is a right angle and verify that the formulas still are true.

On dividing these equations member by member, we obtain, with a change of order,

(1) 
$$\frac{a}{b} = \frac{\sin A}{\sin B}.$$

Since any two sides of a given triangle may be called a and b, the formula may be stated in words thus: Any two

sides of a triangle are to each other as the sines of the opposite angles. This is known as the law of sines.

For a given lettering of the triangle, it follows that we have, in addition to equation (1),

$$\frac{a}{c} = \frac{\sin A}{\sin C}, \qquad \frac{b}{c} = \frac{\sin B}{\sin C}.$$

The last three equations are equivalent to each of the following continued equations:

(2) 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C},$$
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

### **EXERCISES**

Find the numerical values of the following functions by use of the Tables:

- 1. sin 102° 20′; sin 168° 14′.
- 2. sin 121° 30′; sin 175° 12′.
- 3. cos 98° 50′; cos 155° 17′.
- 4. cos 112° 30′; cos 167° 11′.

Find all possible values of the angle A, acute or obtuse, which satisfy each of the following equations 5 to 8:

- 5.  $\sin A = .9088$ ;  $\sin A = .4362$ .
- 6.  $\sin A = .4041$ ;  $\sin A = .9055$ .
- 7.  $\cos A = .8689$ ;  $\cos A = -.5997$ .
- 8.  $\cos A = .9407$ ;  $\cos A = -.8270$ .
- 9. Draw the appropriate figure for the proof of the law of sines for the case  $A = 90^{\circ}$ , and verify the formula.
  - 10. Proceed as in Exercise 9 for the case  $B = 90^{\circ}$ .
  - 11. Prove from figures that

$$\frac{a}{c} = \frac{\sin A}{\sin C}.$$

'41. The law of cosines. This extension to oblique triangles of the Pythagorean theorem expresses any side, a, in terms of the other sides b and c and the opposite angle A. As a formula it is written

(1) 
$$a^2 = b^2 + c^2 - 2 bc cos A.$$

We shall give two proofs. In the first we employ the methods of elementary geometry; in the second the methods of coördinate geometry.

First method. We use Figure 50. We have in every case, from the right triangles BDC and ADC,

$$a^2 = \overline{DC}^2 + \overline{DB}^2$$
,  $\overline{DC}^2 = b^2 - \overline{AD}^2$ ,

and hence

$$(2) a^2 = b^2 - \overline{AD}^2 + \overline{DB}^2.$$

In the first two triangles of Figure 50, where the angle A is acute, we have respectively

$$\overline{DB} = c - \overline{AD}, \quad \overline{DB} = \overline{AD} - c.$$

In either case

$$\overline{DB^2} = c^2 - 2 c \overline{AD} + \overline{AD^2}.$$

We see from the triangles that in either case

$$\overline{AD} = b \cos A$$
.

On substituting these last two equations in (2) and simplifying we have formula (1).

In the third triangle of Figure 50, where the angle A of the triangle ABC is obtuse, we observe that

$$\overline{DB} = c + \overline{AD},$$

whence

$$\overline{DB}^2 = c^2 + 2 c \overline{AD} + \overline{AD}^2.$$

We also have

$$\overline{AD} = b \cos \angle DAC$$
.

The substitution of these last two equations in (2) gives on simplification

$$a^2 = b^2 + c^2 + 2bc \cos \angle DAC.$$

Since  $\angle DAC$  is the supplement of the angle A of the given triangle ABC, we have from § 38,

$$\cos A = -\cos \angle DAC$$

and hence the preceding equation is equivalent to formula (1).

The student may readily verify that the formula (1) is true when  $A = 90^{\circ}$  or  $B = 90^{\circ}$ . It will then have been proven for all cases.

Second method. We take A as the origin of a system of rectangular coördinates, the positive x-axis extending along



AB (Fig. 51). Let the coördinates of the vertex C be (x,y). Then in every case we have

$$a^2 = y^2 + \overline{DB}^2,$$
  

$$y^2 = b^2 - x^2,$$

and hence

$$a^2 = b^2 - x^2 + \overline{DB}^2.$$

When we give due regard to signs we have in every case

$$\overline{DB} = c - x.$$

Substituting this in the preceding equation we get

$$a^2 = b^2 + c^2 - 2 cx.$$

And since in every case

$$x = b \cos A$$

the formula (1) follows at once.

Since a was any side of the triangle, it follows that formulas similar to (1) hold when the letters are changed. We thus have

(3) 
$$b^2 = a^2 + c^2 - 2 ac cos B$$
,

(4) 
$$c^2 = a^2 + b^2 - 2 ab \cos C$$
.

**¥42.** Another cosine formula. From Figures 51 of § 41, we find that in every case, when due regard is paid to signs,

$$AD = b \cos A$$
,  $DB = a \cos B$ ,  
 $c = AD + DB$ .

Hence, in every case,

$$c = b \cos A + a \cos B.$$

Similarly,

$$b = a \cos C + c \cos A,$$

$$(3) a = b \cos C + c \cos B.$$

#### **EXERCISES**

- 1. Draw the appropriate figure and prove formula (1), § 41, in case  $B = 90^{\circ}$ .
- 2. Proceed as in Exercise 1 in case  $A = 90^{\circ}$ . Also in case  $C = 90^{\circ}$ .
- 3. Show that in case  $B = 90^{\circ}$ , each of the three formulas (1), (3), (4) of § 41 is equivalent to the formula  $a^2 = b^2 c^2$ .
- 4. Draw the appropriate figures and prove formula (3), § 41.
  - 5. Proceed as in Exercise 4 for formula (4), § 41.
  - 6. Proceed as in Exercise 4 for formula (2), § 42.
  - 7. Prove the law of cosines (equation (1), § 41) from

equations (1), (2), (3) of § 42, by multiplying them respectively by -c, -b, and a, then adding and simplifying.

8. Prove equation (3), § 41, by a method similar to that suggested in Exercise 7.

¥43. Case I. Given two angles and one side. ample will suffice to indicate how any problem coming under this case is solved.

Example. — Given a = 262,  $A = 36^{\circ} 20'$ ,  $B = 75^{\circ} 50'$ . To find C, b, c.

We draw Figure 52, letting 1 cm. represent 100 units, and estimate



law of sines, written in the form

therefrom b = 430, c = 410,  $C = 70^{\circ}$ .

In the numerical calculation of the unknowns we determine the unknown angle from the formula  $A + B + C = 180^{\circ}$ , from which we have

(1) 
$$C = 180^{\circ} - (A + B)$$
.

To find the side b, we need a formula containing that unknown but no other. We see that the

$$\frac{b}{a} = \frac{\sin B}{\sin A},$$

will suffice. Solving for the unknown we have

$$(2) b = \frac{a \sin B}{\sin A}.$$

Similarly, to find c we have

$$\frac{c}{a} \doteq \frac{\sin C}{\sin A},$$

and hence

(3) 
$$c = \frac{a \sin C}{\sin A}.$$

As a check we may use the formula

$$(4) a = c \cos B + b \cos C,$$

which contains the three parts which were unknown.

On substituting the given values in these solution-formulas (1), (2) and (3), we have

$$C = 180^{\circ} - (36^{\circ} 20' + 75^{\circ} 50') = 180^{\circ} - 112^{\circ} 10' = 67^{\circ} 50',$$

$$b = \frac{262 \sin 75^{\circ} 50'}{\sin 36^{\circ} 20'} = \frac{262}{.5925} \times .9696 = 442.2 \times .9696 = 428.8,$$

$$c = \frac{262 \sin 67^{\circ} 50'}{\sin 36^{\circ} 20'} = \frac{262}{.5925} \times .9261 = 442.2 \times .9261 = 409.5.$$

Our calculated values check roughly with the estimated values found from the figure. To get a more accurate check we substitute our values in the right-hand member of (4). We have

$$c \cos B + b \cos C = 409.5 \cos 75^{\circ} 50' + 428.8 \cos 67^{\circ} 50'$$
  
=  $(409.5 \times .2447) + (428.8 \times .3773)$   
=  $100.2 + 161.8 = 262.0$ .

Since we had given a = 262, the check is excellent.

If the given values are exact, the use of four-place values found from the Tables gives us four significant figures in the answer. But if the given values for this problem are merely approximate, then only three figures in our results are retained as significant, since each term of the calculation has that accuracy. Our results should then be written

$$C = 67^{\circ} 50', \quad b = 429, \quad c = 410.$$

#### **EXERCISES**

Solve the following triangles, and check your answers. results to four significant figures:

1. 
$$A = 32^{\circ}$$
,  $C = 67^{\circ}$ ,  $b = 120$ .

**2.** 
$$B = 46^{\circ}$$
,  $C = 65^{\circ}$ ,  $a = 3.5$ .

3. 
$$A = 15^{\circ}$$
,  $B = 33^{\circ}$ ,  $a = 25$ .

**4.** 
$$A = 112^{\circ}$$
,  $C = 18^{\circ}$ ,  $c = 6.6$ .

**4.** 
$$A = 112^{\circ}$$
,  $C = 18^{\circ}$ ,  $c = 6.6$ .  
**5.**  $B = 66^{\circ} 20'$ ,  $C = 71^{\circ} 10'$ ,  $b = 12.5$ .

- 6.  $A = 52^{\circ} 30'$ ,  $B = 82^{\circ} 50'$ , b = 75.5.
- 7.  $A = 22^{\circ} 40'$ ,  $B = 131^{\circ} 50'$ , a = .824.
- 8.  $B = 100^{\circ} 10'$ ,  $C = 45^{\circ} 40'$ , c = 6120. 9.  $A = 44^{\circ} 44'$ ,  $C = 66^{\circ} 22'$ , c = 51.67.
- **10.**  $B = 101^{\circ} 13', \quad C = 41^{\circ} 27', \quad b = .02183.$

★44. Case II. Given two sides and the angle opposite one of them. Geometrical discussion. Suppose the given parts of the triangle are A, a and b. To construct the triangle (Figs. 53-56) we first draw the angle A, and lay off the length b on one side, locating the vertex C. To locate the vertex B, we draw a circle K with a as radius and C as center. The vertex B must lie on this circle and on the second side of the angle A. At this step we find that there are several possibilities, which we shall take up in succession.

First, suppose that the angle A is acute. Let D be the foot of the perpendicular from C to the second side of the angle A. The length of CD is  $b \sin A$ . We have four sub-cases:

(1) If the given side a is shorter than CD the circle Kdoes not intersect the second side of the angle A (Fig. 53), and there can be no triangle with the given parts.



Fig. 53

(2) If a = CD, the circle is tangent to AD at D (Fig. 53), and the right triangle ADC is the required triangle.

(3) If the side a is longer than CD but shorter than b, the circle K cuts AD at two points  $B_1$  and  $B_2$  (Fig. 54), either of which may be the third vertex; hence there are two triangles,  $AB_1C$  and  $AB_2C$ , which have the given parts A, a and b. We note that the angle  $B_2$  of the one triangle,  $AB_2C$ , is the supplement of the angle  $B_1$  of the other triangle,  $AB_1C$ .

(4) If the side a is at least as long as b (Fig. 55), the circle K cuts AD in only one point B on the side AD of the angle A, and hence one and only one triangle is possible.



Second, suppose that the angle A is a right angle or obtuse. Then

- (1) If the side a is not longer than b (Fig. 56), there is no triangle.
- (2) If the side a is longer than b (Fig. 56), there is exactly one triangle.

Hence in Case II there may be no solution, one solution, or two solutions. We note that the unknown angle B opposite the known side b is acute when there is just one solution; but that there are two angles, one acute, the other obtuse, supplements of each other, when there are two solutions.

For solving a triangle which comes under Case II it is desirable to construct a figure first, at least roughly, to see whether there will be no triangle, one triangle, or two triangles.

Because there is a possibility of two triangles, Case II is sometimes called the *ambiguous case*.

Trigonometrical solution. Suppose a, b, and A are given. To find the angle B, we may use the law of sines in the form

$$\frac{\sin B}{h} = \frac{\sin A}{a}.$$

We have

$$\sin B = \frac{b \sin A}{a}.$$

If  $a < b \sin A$ , we see that  $\sin B > 1$ , which is impossible. Hence there is no solution.

If  $a = b \sin A$ , we have  $\sin B = 1$ ; hence  $B = 90^{\circ}$ . The problem may be solved as one in right triangles.

If  $a > b \sin A$ , we have  $\sin B < 1$ , and B may have either of two values — an acute angle  $B_1$  which is given in the Tables, or its supplement  $B_2$  (see § 39). We write down both angles and proceed on the assumption that two triangles are possible — a triangle  $AB_1C$  and a triangle  $AB_2C$ . The same method is used for the solution of each. If the angles at C in the two triangles are  $C_1$  and  $C_2$  respectively, we have

(2) 
$$C_1 = 180^{\circ} - (A + B_1), \quad C_2 = 180^{\circ} - (A + B_2).$$

It may happen that  $A + B_2 > 180^{\circ}$ , in which case  $C_2$  is an impossible angle for a triangle and there can be only one triangle,  $AB_1C$ . The side  $c_1$  is determined from the relation

$$\frac{c_1}{a} = \frac{\sin C_1}{\sin A},$$

whence

$$(3) c_1 = \frac{a \sin C_1}{\sin A}.$$

If the second triangle exists, we find  $c_2$  by the similar formula

$$(4) c_2 = \frac{a \sin C_2}{\sin A}.$$

The solutions are checked by the relations

$$a = b \cos C_1 + c_1 \cos B_1,$$
  
 $a = b \cos C_2 + c_2 \cos B_2,$ 

respectively. It is noted that the check formulas have not previously been used in the solution, and that they relate all three of the computed parts.

Examples. — 1. Given a = 25, b = 33,  $A = 44^{\circ}$ . To find c, B, and C.

By construction, letting 1 cm. represent 10 units, we find that there are two triangles  $AB_1C$  and  $AB_2C$ . Let  $c_1$ ,  $B_1$ ,  $C_1$  be the

unknown parts of the first triangle, and  $c_2$ ,  $B_2$ ,  $C_2$  those of the second triangle.

Our estimates by measurements are:

$$c_1 = 33,$$
  $B_1 = 67^{\circ},$   $C_1 = 70^{\circ};$   $c_2 = 15,$   $B_2 = 111^{\circ},$   $C_2 = 24^{\circ}.$ 

The equations to be used in solving are (1), (2), (3), and (4). We have first



Fig. 57

$$\sin B = \frac{b \sin A}{a} = \frac{33 \times .6947}{25} = \frac{22.925}{25} = .9170.$$

Hence

$$B = 66^{\circ} 29'$$
 or  $180^{\circ} - 66^{\circ} 29' = 113^{\circ} 31'$ .

The first angle is  $B_1$ , the second  $B_2$ ;

$$B_1 = 66^{\circ} 29', \qquad B_2 = 113^{\circ} 31'.$$

Solving the triangle  $AB_1C$ , we have

$$C_1 = 180^{\circ} - (44^{\circ} + 66^{\circ} 29') = 69^{\circ} 31';$$

then

$$c_1 = \frac{a \sin C_1}{\sin A} = \frac{25 \times .9368}{.6947} = 33.71.$$

To check, we find

$$a = b \cos C_1 + c_1 \cos B_1 = (33 \times .3499) + (33.71 \times .3990) = 25.00;$$

since a = 25, the check is excellent.

Solving the triangle  $AB_2C_2$ , we have

$$C_2 = 180^{\circ} - (44^{\circ} + 113^{\circ} 31') = 22^{\circ} 29'$$

and

$$c_2 = \frac{a \sin C_2}{\sin A} = \frac{25 \times .3824}{.6947} = 13.76.$$

To check, we have

$$b \cos C_2 + c_2 \cos B_2 = (33 \times .9240) + (13.76 \times -.3990) = 25.005,$$

which agrees well with the given value a=25. To find  $\cos B_2$  we used the relation  $\cos 113^{\circ} 31' = -\cos 66^{\circ} 29'$  (see § 39).

If the given values are regarded as exact, the calculations, in which approximate values to four significant figures are used, give results with that number of significant figures. But if the data are regarded as values given by measurements our answers should be written

$$B_1 = 66^{\circ},$$
  $C_1 = 70^{\circ},$   $c_1 = 34;$   $B_2 = 114^{\circ},$   $C_2 = 22^{\circ},$   $c_2 = 14.$ 

2. Given 
$$a = 33$$
,  $b = 25$ ,  $A = 136^{\circ}$ . To find  $B$ ,  $C$ , and  $c$ .

In this example we shall illustrate only one step of the solution. From the equation

$$\sin B = \frac{b \sin A}{a} = \frac{25 \times .6947}{33} = .5263,$$

we find

$$B_1 = 31^{\circ} 45'$$
,  $B_2 = 180^{\circ} - 31^{\circ} 45' = 148^{\circ} 15'$ .

Then

$$C_1 = 180^{\circ} - (A + B_1) = 180^{\circ} - 167^{\circ} 45' = 12^{\circ} 15',$$
  
 $C_2 = 180^{\circ} - (A + B_2) = 180^{\circ} - 284^{\circ} 15', \text{ impossible.}$ 

There is therefore only one solution for this example.

3. Given 
$$a = 22.9$$
,  $b = 33$ ,  $A = 44$ . To find  $B$ ,  $C$ , and  $c$ .

The construction in this case would leave one in doubt as to the number of solutions. We have

$$\sin B = \frac{33 \times .6947}{22.9} = \frac{22.93}{22.9}$$

which is greater than 1. Since there is no angle whose sine is

greater than 1, there is no triangle having the given parts. We have the case  $a < b \sin A$ , illustrated in Figure 53.

### **EXERCISES**

Construct a figure for each of the following sets of data, tell how many triangles are possible, and estimate the values of the unknown parts:

1. 
$$A = 30^{\circ}$$
,  $a = 40$ ,  $b = 100$ .

**2.** 
$$A = 60^{\circ}$$
,  $a = 60$ ,  $b = 100$ .

**3.** 
$$A = 30^{\circ}$$
,  $a = 50$ ,  $b = 100$ .

**4.** 
$$A = 60^{\circ}$$
,  $a = 87$ ,  $b = 100$ .

5. 
$$A = 30^{\circ}$$
,  $a = 60$ ,  $b = 100$ .

**6.** 
$$A = 60^{\circ}$$
,  $a = 95$ ,  $b = 100$ .

7. 
$$A = 30^{\circ}$$
,  $a = 120$ ,  $b = 100$ .

8. 
$$A = 60^{\circ}$$
,  $a = 150$ ,  $b = 100$ .

**9**. 
$$A = 120^{\circ}$$
,  $a = 60$ ,  $b = 100$ .

**10.** 
$$A = 150^{\circ}$$
,  $a = 70$ ,  $b = 100$ .

**10.** 
$$A = 150^{\circ}$$
,  $a = 70$ ,  $b = 100$ .  
**11.**  $A = 120^{\circ}$ ,  $a = 120$ ,  $b = 100$ .

**12.** 
$$A = 150^{\circ}$$
,  $a = 150$ ,  $b = 100$ .

Solve the following triangles, having given:

**13.** 
$$B = 50^{\circ}$$
,  $b = 36$ ,  $c = 55$ .

**14.** 
$$B = 75^{\circ}$$
,  $b = 80$ ,  $a = 78$ .  
**15.**  $C = 13^{\circ}$ ,  $b = 62$ ,  $c = 45$ .

**15.** 
$$C = 13^{\circ}$$
,  $b = 62$ ,  $c = 45$ .

**16.** 
$$C = 62^{\circ}$$
,  $b = 10.0$ ,  $c = 75$ .

**17.** 
$$C = 125^{\circ}$$
,  $b = 1.25$ ,  $c = 2.36$ .  
**18.**  $A = 140^{\circ}$ ,  $c = 2.57$ ,  $a = 2.18$ .

**18.** 
$$A = 140^{\circ}, \quad c = 2.57, \quad a = 2.18.$$

**19.** 
$$A = 34^{\circ} 21'$$
,  $a = 3.007$ ,  $b = 4.153$ .

**20.** 
$$A = 66^{\circ} 43'$$
,  $a = 518.0$ ,  $b = 612.9$ .

¥45. Case III. Given two sides and the included angle. We shall give two methods for solving a triangle which comes under this case. The first is convenient if no great accuracy is desired, and especially if only the third side is required, not the two unknown angles. The second is shorter when great accuracy is desired, and all unknown parts are to be found.

First method. An example will suffice to make the method clear. Suppose we are given b = 15, c = 21,  $A = 35^{\circ}$ .

In constructing a figure let a length of 1 cm. represent 10 units.

We estimate the unknowns as follows:

$$A \xrightarrow{b} C \\ C \\ D \\ B$$
Fig. 58

$$a = 12, \qquad B = 47^{\circ}, \qquad c = 99^{\circ}.$$

To compute a we may use the law of cosines, § 41,

$$a^2 = b^2 + c^2 - 2 bc \cos A,$$

since a is the only unknown part in this formula. The use of a Table of Squares simplifies the calculation. The angle B may be found from another form of the law of cosines,

$$b^2 = a^2 + c^2 - 2 ac \cos B,$$

whence

$$\cos B = \frac{a^2 + c^2 - b^2}{2 \, ac}.$$

Finally, we have  $C = 180^{\circ} - (A + B)$ . We may check by the law of sines, written in a form containing the computed side a and the last angle found, which was C. We write it, for simplicity of calculation,

$$a \sin C = c \sin A$$
.

The computation follows:

$$a^2 = 225 + 441 - 630 (.8192) = 149.9$$
  $\therefore a = 12.24$ .  
 $\cos B = \frac{149.9 + 441 - 225}{514.1} = .7117$   $\therefore B = 44^{\circ} 42'$ .  
 $C = 180^{\circ} - (A + B) = 180^{\circ} - (79^{\circ} 42') = 100^{\circ} 18'$ .

For the check we have

$$a \sin C = 12.24 \times .9839 = 12.04$$
  
 $c \sin A = 21 \times .5736 = 12.05$ .

Second method (by right triangles). If A, b, and c are the given parts, we drop a perpendicular CD from C to the side

AB (produced if necessary). In the right triangle ADC thus obtained, we solve for AD and DC. In the right triangle BDC we then have DC, and BD is easily found. We may therefore solve this triangle for the side a and the angle DBC. In case D falls outside of B on AB produced (see the third of Fig. 59) the required angle B of the triangle ABC is the supplement of the angle DBC; in other cases it equals



that angle. The angle C is found from the relation that the sum of A, B, and C is 180°.

In the example worked out by the first method we would use the formulas (Fig. 58)

$$DC = b \sin A$$
  $AD = b \cos A$   
 $DB = c - AD$   $\tan B = \frac{DC}{DB}$   
 $a = \frac{DC}{\sin B}$  or  $a^2 = \overline{DC}^2 + \overline{DB}^2$ .  
 $C = 180^\circ - (A + B)$ 

and the check  $a \sin C = c \sin A$ .

Having b = 15, c = 21,  $A = 35^{\circ}$ , we find

$$DC = 15 \times .5736 = 8.604$$
  
 $AD = 15 \times .8192 = 12.29$   
 $DB = 21 - 12.29 = 8.71$   
 $\tan B = \frac{8.604}{8.71} = .9878 \therefore B = 44^{\circ} 39'$   
 $a = \sqrt{74.03 + 75.86} = \sqrt{149.89} = 12.24$   
 $C = 180^{\circ} - 79^{\circ} 39' = 100^{\circ} 21'$ .

For the check we have

$$a \sin C = 12.24 \times .9838 = 12.04$$
  
 $c \sin A = 21 \times .5736 = 12.05$ ,

If our data were approximate measurements we could abbreviate our calculations by using only three significant figures, and avoiding interpolations. The results would then be written

$$B = 45^{\circ}$$
,  $a = 12$ ,  $C = 100^{\circ}$ .

**¥46.** Case IV. Given three sides. Triangles coming under this case can always be solved by the law of cosines. One form of this,

$$\cos A = \frac{b^2 + c^2 - a^2}{2 b c},$$

enables us to compute the angle A. Likewise from

$$\cos B = \frac{a^2 + c^2 - b^2}{2 \, ac},$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2 a b},$$

we may compute B and C. As a check we may use

$$A + B + C = 180^{\circ}$$
.

Example. — Given 
$$a = 51$$
,  $b = 65$ ,  $c = 20$ .

We construct a figure, letting 1 cm. represent 20 units, and estimate the angles:  $A = 38^{\circ}$ ;  $B = 126^{\circ}$ ;  $C = 14^{\circ}$ . The calculation follows:

$$C \qquad a^2 = 2601 \qquad 2 \ ab = 6630$$

$$b^2 = 4225 \qquad 2 \ bc = 2600$$

$$c^2 = 400 \qquad 2 \ ac = 2040$$

$$\cos A = \frac{2024}{2600} = .7785 \quad \therefore A = 38^{\circ} 53'$$

$$\cos B = \frac{-1224}{2040} = -.6000 \quad \therefore B = 126^{\circ} 52'$$

$$\cos C = \frac{6426}{6630} = .9692 \quad \therefore C = 14^{\circ} 16'$$

$$\operatorname{Check} : A + B + C = 180^{\circ} 1'.$$

If only two significant figures are desired in the answers, we can shorten the work by using only three significant figures in the calculations, and by omitting interpolations.

It is obvious that if the sides are given to five or more significant figures and corresponding accuracy is required in the angles, the calculation will be very long. In Chapter IX we shall give a shorter computation by use of logarithms.

## **EXERCISES**

In each of the following triangles find the unknown side, having given:

1. 
$$a = 84$$
,  $c = 72$ ,  $B = 69^{\circ}$ .

**2.** 
$$a = 67$$
,  $b = 81$ ,  $C = 58^{\circ}$ .

**3.** 
$$b = 63.2$$
,  $c = 18.4$ ,  $A = 122^{\circ} 30'$ .

**4.** 
$$a = 189$$
,  $c = 524$ ,  $B = 132^{\circ} 40'$ .

**5.** 
$$a = 26.12$$
,  $b = 31.72$ ,  $C = 132^{\circ} 52'$ .

6. 
$$b = 38.15$$
,  $c = 71.10$ ,  $A = 121^{\circ} 34'$ .

In each of the following triangles find the two unknown angles, having given:

7. 
$$b = 362$$
,  $c = 471$ ,  $A = 58^{\circ} 30'$ .

8. 
$$a = .182$$
,  $c = .261$ ,  $B = 112^{\circ} 20'$ .

Solve and check the following triangles, having given:

9. 
$$b = 28$$
,  $c = 47$ ,  $A = 29^{\circ}$ .

**10.** 
$$c = 28$$
,  $b = 47$ ,  $A = 151^{\circ}$ .

**11.** 
$$b = 48.2$$
,  $c = 61.9$ ,  $A = 102^{\circ} 10'$ .

**12.** 
$$b = .501$$
,  $c = .236$ ,  $A = 61^{\circ} 20'$ .

13. 
$$a = 36$$
,  $b = 46$ ,  $c = 56$ .

**14.** 
$$a = 7.4$$
,  $b = 6.2$ ,  $c = 4.1$ .

**15.** 
$$a = 581$$
,  $b = 781$ ,  $c = 1081$ .

**16.** 
$$a = 409$$
,  $b = 236$ ,  $c = 295$ .

17. 
$$a = 576$$
,  $b = 817$ ,  $c = 311$ .

18. 
$$a = 8.247$$
,  $b = 7.631$ ,  $c = 6.848$ .

**19.** 
$$a = 363.4$$
,  $b = 317.2$ ,  $c = 491.6$ .

**20.** 
$$A = 28^{\circ} 4'$$
,  $b = 88.71$ ,  $c = 63.48$ .

**20.** 
$$A = 28^{\circ} 4'$$
,  $b = 88.71$ ,  $c = 63.48$ .  
**21.**  $a = .2413$ ,  $B = 121^{\circ} 12'$ ,  $c = .8124$ .

**22.** 
$$a = 6.819$$
,  $b = 5.241$ ,  $C = 158^{\circ} 27'$ .

# MISCELLANEOUS EXERCISES

In the following problems the student should note the implied accuracy of measurements and retain the appropriate number of significant figures (p. 46) in the results.

- 1. From a ship a lighthouse had a bearing (p. 6) of 123°; after the ship had gone due East 1.3 mi., the lighthouse had a bearing of 158°. Find the distance from the ship to the lighthouse in each position.
- 2. An observer on board a ship notes the bearing of a rock to be 26° 30′. After traveling due North 750 ft., he finds the bearing to be 45° 00′. If he continues on the course how close will he get to the rock?
- 3. A surveyor running a line due East from A encounters a swamp which he must go around. He wishes to continue



the line on the other side of the swamp. At a point B on his line he changes his direction to N 36° 00′ E for 335 yd., to C, then turns to S 57° 00′ E. How far should he continue on

this course to reach a point D on the continuation of AB? How far is D from B?

- 4. Two circles whose radii are 27 in. and 32 in. intersect. The angle between the tangents at a point of intersection is 37°. Find the distance between the centers.
- 5. To find the distance between two points A and C which are separated by an impassable barrier, a man measures a line from A to B of length 120 yd., then from B to C of length 95 yd. If



the angle CAB is 45°, how far is it from A to C?

6. Two sides and a diagonal of a parallelogram are of lengths 34 in., 22 in., and 17 in., respectively. Find the angles at the vertices of the parallelogram.

**7.** To find the distance between two inaccessible points P and Q, a line AB lying in a plane with PQ and the angles  $\alpha$ ,  $\alpha'$ , of Figure 63 are measured. Find PQ if

$$AB = 525 \text{ yd.}$$
  $\alpha = 55^{\circ} 20',$   $\alpha' = 102^{\circ} 10',$   $\beta = 48^{\circ} 30',$   $\beta' = 97^{\circ} 50'.$ 

8. To find the length h of a line PQ, a distance AB = d is measured on a line AP perpendicular to PQ; and the angles  $\alpha$  and  $\beta$  (Fig. 64) are observed. Let the distance BP = x.



Show that h and x are given by the formulas

$$h = \frac{d}{\cot \alpha - \cot \beta}, \qquad x = \frac{d \tan \beta}{\cot \alpha - \cot \beta}$$

(*Hint*. Write down equations for cot  $\alpha$  and cot  $\beta$ , and solve for h and x.)

- 9. Show that if  $\alpha = 21^{\circ}$ , and  $\beta = 32^{\circ}$ , the formula for h in Exercise 8 becomes h = d. If  $\alpha = 26^{\circ} 30'$ , what value of  $\beta$  makes h = d? For these latter values of  $\alpha$  and  $\beta$ , what is the value of x? A navigator who is traveling a course AB can easily measure the angle corresponding to  $\alpha$  at any time and the distance d traveled between two observations. How could he use these results if he wishes to know how far abeam (distance PQ) he will pass a rock Q if he continues his course AB?
- 10. If the height of a statue on top of a building is 15 ft., and at an unknown distance m from the foot of the building in a horizontal line the angles of elevations of the top and

bottom of the statue are  $40^{\circ}$  and  $32^{\circ}$  respectively, what is the value of m?

11. In Figure 65, the angles  $\alpha$  and  $\beta$  are measured. If m is also known, show that h is given by the formula

$$h = m (\tan \beta - \tan \alpha).$$

12. In Figure 66, the point P is above a horizontal plane ABC, PC being vertical.



Fig. 65



The line AB is measured, AB = a; and the angles  $\alpha$ ,  $\alpha'$ ,  $\beta$ ,  $\beta'$ , are observed. Show that the height hof P above the plane ABC is

$$h = \frac{a \sin \beta \tan \alpha'}{\sin (\alpha + \beta)} = \frac{a \sin \alpha \tan \beta'}{\sin (\alpha + \beta)}.$$

- 13. If in Exercise 12 there is a balloon at P, and if a = 4500 ft.,  $\alpha = 30^{\circ}$ ,  $\beta = 75^{\circ}$ ,  $\alpha' = 40^{\circ}$ , how high is the balloon? What should  $\beta'$  be in this case?
- 14. The earth and the planet Venus move around the sun in orbits which are approximately circles with the sun at the center, the radii being 92,800,000 mi. and 66,800,000 mi. respectively. When an astronomer observes the angle between the line from the earth to the sun and the line from the earth to Venus to be 27° 40′, how far is Venus from the earth?

# CHAPTER IV

# REDUCTION FORMULAS. LINE VALUES. GRAPHS

Trigonometric tables enable us to find the values of functions of acute angles. We now consider the problem of reducing a function of an angle that is not acute to a function of an angle that is given in the Tables. A first simplification is effected in certain cases by adding to or subtracting from the given angle a multiple of 360°; according to the last paragraph of § 15 (p. 18) the functions of the new angle are the same as those of the old. Thus we have

$$\sin 735^{\circ} = \sin (735^{\circ} - 720^{\circ}) = \sin 15^{\circ},$$
  
 $\tan (-190^{\circ}) = \tan (-190^{\circ} + 360^{\circ}) = \tan 170^{\circ}.$ 

It remains to develop formulas which will, for example, prove that  $\tan 170^{\circ}$  is equal to  $-\tan 10^{\circ}$ . We shall find that such reduction formulas are valid even when the reduced angle is not acute.

When we have thus obtained formulas that enable us to compute the values of functions of any angle, we shall find it useful to represent the functions graphically. This will be accomplished by means of figures employing *line values*, and by graphs in rectangular coördinates.

47. Functions of  $180^{\circ} - \theta$ . An angle between 90° and  $180^{\circ}$  can always be expressed as  $180^{\circ} - \theta$ , where  $\theta$  is a suitably chosen acute angle. We now develop formulas which express each of the six functions of  $180^{\circ} - \theta$  in terms of functions of  $\theta$ . In the case of the sine and cosine these formulas are closely related to those of § 39 (p. 58).

In Figure 67a the length OP' = r' on the terminal side of the angle  $180^{\circ} - \theta$  is taken equal to OP = r on the terminal

side of angle  $\theta$ . The right triangles OMP and OM'P' will then be equal, since their angles at O are equal and we have OP = OP' by construction. It follows that each side of one triangle is of the same length as the corresponding side of



the other, but when we interpret this statement in terms of coördinates we must take account of plus and minus signs. While r' and r are both positive, and y' and y are of the same sign, x' and x are of opposite sign. Thus we have

(1) 
$$x' = -x, \quad y' = y, \quad r' = r.$$

These equations, together with the definitions of the trigonometric functions, give the following identities:

(2) 
$$\sin (180^{\circ} - \theta) = \frac{y'}{r'} = \frac{y}{r} = \sin \theta;$$

$$\cos (180^{\circ} - \theta) = \frac{x'}{r'} = \frac{-x}{r} = -\cos \theta;$$

$$\tan (180^{\circ} - \theta) = \frac{y'}{x'} = \frac{y}{-x} = -\tan \theta;$$

$$\cot (180^{\circ} - \theta) = \frac{x'}{y'} = \frac{-x}{y} = -\cot \theta;$$

$$\sec (180^{\circ} - \theta) = \frac{r'}{x'} = \frac{r}{-x} = -\sec \theta;$$

$$\csc (180^{\circ} - \theta) = \frac{r'}{y'} = \frac{r}{y} = \csc \theta.$$

The preceding relations hold also when  $\theta$  is an angle terminating in the second, third, or fourth quadrants, as illustrated in Figures 67b, 67c, 67d. An inspection of each case will show that equations (1) are always true, and that the identities (2) are therefore still valid.

Examples. — 1. Find the value of  $\tan (-237^{\circ})$ .

By adding 360° to -237° we obtain the angle 123°, whose functions are the same as those of -237°. We then express 123° as  $180^{\circ} - 57^{\circ}$  and use the identity for tan  $(180^{\circ} - \theta)$ , substituting  $\theta = 57^{\circ}$ . Thus we have

$$\tan (-237^{\circ}) = \tan (123^{\circ}) = \tan (180^{\circ} - 57^{\circ}) = -\tan 57^{\circ}.$$

2. Find an angle  $\theta$  terminating in the second quadrant and such that  $\cos \theta = -0.5736$ .

We first use the tables to find the acute angle  $\alpha$  such that  $\cos \alpha = 0.5736$ ; the value of  $\alpha$  is 55°. From the second of identities (2),

$$\cos (180^{\circ} - \alpha) = -\cos \alpha = -0.5736$$

so that a solution of our problem is

$$\theta = 180^{\circ} - \alpha = 125^{\circ}.$$

We shall see later (p. 93) that there can be no other solution between 90° and 180°.

48. Functions of  $180^{\circ} + \theta$ . An angle between  $180^{\circ}$  and  $270^{\circ}$  can be expressed in the form  $180^{\circ} + \theta$ , where  $\theta$  is an acute angle. In Figure 68a we take the angle XOP equal to  $\theta$ 

and XOP' equal to  $180^{\circ} + \theta$ , with OP' equal to OP. The right triangles OM'P' and OMP are equal; hence

$$x' = -x, \qquad y' = -y, \qquad r' = r.$$

It follows that

$$\sin (180^{\circ} + \theta) = \frac{y'}{r'} = \frac{-y}{r} = -\sin \theta,$$

$$\cos (180^{\circ} + \theta) = \frac{x'}{r'} = \frac{-x}{r} = -\cos \theta,$$

$$\tan (180^{\circ} + \theta) = \frac{y'}{x'} = \frac{-y}{-x} = \frac{y}{x} = \tan \theta.$$



We prove similarly the formulas

$$\cot (180^{\circ} + \theta) = \cot \theta,$$
  

$$\sec (180^{\circ} + \theta) = -\sec \theta,$$
  

$$\csc (180^{\circ} + \theta) = -\csc \theta.$$

From Figure 68b, where  $\theta$  terminates in the second quadrant, the same equations and identities could be deduced. They are also true when  $\theta$  is an angle terminating in the third or the fourth quadrant. Thus the six identities just obtained hold true for *all* angles  $\theta$ .

49. Functions of  $360^{\circ} - \theta$  and of  $-\theta$ . According to a statement made at the beginning of this chapter, the functions of  $360^{\circ} - \theta$  are the same as those of  $-\theta$ .

Any angle between  $-90^{\circ}$  and  $0^{\circ}$  can be expressed as  $-\theta$ , where  $\theta$  is a positive acute angle. In Figure 69a, the angle XOP is equal to  $\theta$ , and XOP' is  $-\theta$ . We take OP' = OP,



so that triangles OM'P' and OMP are equal, and

$$x' = x, \qquad y' = -y, \qquad r' = r.$$

It follows that

$$\sin (-\theta) = \frac{y'}{r'} = \frac{-y}{r} = -\sin \theta,$$

$$\cos (-\theta) = \frac{x'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\tan (-\theta) = \frac{y'}{x'} = \frac{-y}{x} = -\tan \theta.$$

Similarly

$$\cot (-\theta) = -\cot \theta,$$
  

$$\sec (-\theta) = \sec \theta,$$
  

$$\csc (-\theta) = -\csc \theta.$$

Using Figure 69b for an angle  $\theta$  terminating in the second quadrant, and additional figures for angles  $\theta$  terminating in the third and fourth quadrants, the student should prove that the preceding identities are true for all angles  $\theta$ .

50. General rule for  $n \cdot 180^{\circ} \pm \theta$ . By means of the formulas of the three preceding sections we can reduce a function of an angle  $540^{\circ} \pm \theta = 3 \cdot 180^{\circ} \pm \theta$  to a function

of  $\theta$  by subtracting 360° from the angle and using an identity of § 47 or § 48. Similarly,  $-180^{\circ} \pm \theta = -1 \cdot 180^{\circ} \pm \theta$  may be treated by adding 360°. Functions of  $-360^{\circ} \pm \theta = -2 \cdot 180^{\circ} \pm \theta$  reduce to those of  $\pm \theta$ . By such means we can express functions of  $n \cdot 180^{\circ} \pm \theta$ , where n is zero or any positive or negative integer, in terms of functions of  $\theta$ . The results are summarized in the following working rule:

Any given function of an angle  $n \cdot 180^{\circ} \pm \theta$  is equal either (a) to the same function of  $\theta$ , or else (b) to the negative of that function:

Given function of  $(n \cdot 180^{\circ} \pm \theta) = \pm$  same function of  $\theta$ . The + sign is to be taken on the right side of this formula if, when  $\theta$  is acute, the angle  $n \cdot 180^{\circ} \pm \theta$  terminates in a quadrant for which the given function of that angle is positive; the - sign if the given function of that angle is negative when  $\theta$  is acute.

Examples. — 1. Prove that  $\cos (-1176^{\circ}) = -\cos 84^{\circ}$ .

The angle  $-1176^{\circ}$  can be written as  $-7 \cdot 180^{\circ} + 84^{\circ}$ ; hence  $\cos{(-1176^{\circ})}$  is equal either (a) to  $+\cos{84^{\circ}}$  or (b) to  $-\cos{84^{\circ}}$ . Since  $-1176^{\circ}$  terminates in the third quadrant its cosine is negative, hence statement (b) is the correct one. We could also have started by adding  $4 \cdot 360^{\circ}$  to  $-1176^{\circ}$ .

2. Find the value of  $\sin (-137^{\circ})$ .

Since  $\sin(-137^\circ) = \sin(-180^\circ + 43^\circ)$ , and since  $-137^\circ$  terminates in the third quadrant, we have

$$\sin (-137^\circ) = -\sin 43^\circ = -.6820.$$

3. Find an angle  $\theta$  terminating in the fourth quadrant and such that  $\tan \theta = -2$ .

We first find the acute angle  $\alpha$  such that  $\tan \alpha = 2$ . By interpolation we obtain  $\alpha = 63^{\circ} 26'$ . Since

$$\tan (360^{\circ} - \alpha) = -\tan \alpha = -2,$$

it follows that one solution is

$$\theta = 360^{\circ} - \alpha = 316^{\circ} 34'.$$

Any angle differing from this by a multiple of 360° is also a solution.

# **EXERCISES**

- 1. By reference to the rule of § 50, prove the following relations:
  - (a)  $\sin 123^{\circ} = \sin 57^{\circ}$ ; (c)  $\tan 325^{\circ} = \tan 145^{\circ}$ ;
  - (b)  $\cos (-123^\circ) = -\cos 57^\circ$ ; (d)  $\cot 500^\circ = -\cot 40^\circ$ .

Reduce each expression in the following Exercises 2 to 5 to a function of an acute angle, using the rule of § 50:

- **2.** (a)  $\sin 150^{\circ}$ ; (b)  $\cos 235^{\circ}$ ; (c)  $\tan 320^{\circ}$ ;
  - (d)  $\cos (-20^{\circ})$ ; (e)  $\cot (-140^{\circ})$ ; (f)  $\csc (-230^{\circ})$ .
- **3**. (a) tan 170°; (b) cos 215°; (c) sin 280°;
  - (d)  $\tan (-35^{\circ})$ ; (e)  $\sec (-140^{\circ})$ ; (f)  $\cot (-325^{\circ})$ .
- 4. (a) cos 459°; (b) tan 117° 38′; (c) sin 316° 21′; (d) cot 1039°20′; (e) sec (-700°); (f) csc 582° 28′.
- **5.** (a) cos 128° 23′; (b) cot 342° 15′; (c) sin 714°;
  - (d)  $\sec 1280^{\circ}13'$ ; (e)  $\tan (-1000^{\circ})$ ; (f)  $\csc 478^{\circ} 43'$ .
- 6. By means of the Tables, find the value of each expression in Exercise 4.
- 7. By means of the Tables, find the value of each expression in Exercise 5.
- 8. Find an angle  $\theta$  terminating in the second quadrant and such that  $\sin \theta = .3090$ .
- 9. Find an angle  $\theta$  terminating in the second quadrant and such that  $\cos \theta = -.9205$ .
- 10. Find an angle  $\theta$  terminating in the fourth quadrant and such that  $\tan \theta = -.6100$ .
- 11. Find an angle terminating in the fourth quadrant and such that  $\cos \theta = .3821$ .
- 12. Find the angles  $\theta$  terminating in the third quadrant and such that  $\cot \theta = .9192$ .
- 13. Find the angles  $\theta$  terminating in the third quadrant and such that  $\sin \theta = -.7287$ .
- 14. Find the rectangular coördinates of the points whose polar coördinates are: (a) (10, 120°); (b) (2, 225°); (c)  $(\frac{1}{2}, -35^{\circ})$ ; (d)  $(5, 143^{\circ} 22')$ .

15. Find the rectangular coördinates of the points whose polar coördinates are: (a)  $(1, 240^{\circ})$ ; (b)  $(5, 135^{\circ})$ ; (c)  $(20, -136^{\circ})$ ; (d)  $(.3, 327^{\circ} 14')$ .

16. Find the polar coördinates of the points whose rectangular coördinates are: (a) (-1, 1); (b) (3, -3);

(c) (-4, -1); (d) (-5, 7).

17. Find the polar coördinates of the points whose rectangular coördinates are: (a)  $(-\sqrt{3}, 1)$ ; (b)  $(-2, -2\sqrt{3})$ ; (c) (-3, 10); (d) (3.3, -4.8).

18. By reference to the rules of § 50, prove the formulas:

- (a)  $\sin (\theta 360^{\circ}) = \sin \theta$ ; (c)  $\tan (540^{\circ} \theta) = -\tan \theta$ ;
- (b)  $\sin (\theta 180^{\circ}) = -\sin \theta$ ; (d)  $\cos (-180^{\circ} \theta) = -\cos \theta$ .
- 19. Construct figures to illustrate § 48 for cases where  $\theta$  terminates in the third and fourth quadrants, and prove for these cases the formulas for cot  $(180^{\circ} + \theta)$ , sec  $(180^{\circ} + \theta)$ .
- 20. Construct the additional figures suggested in § 49 and prove the formulas  $\cot(-\theta) = -\cot\theta$ ,  $\sec(-\theta) = \sec\theta$ ,  $\csc(-\theta) = -\csc\theta$ , for the corresponding cases.
- 51. Functions of 90°  $\pm$  0. In § 27 (p. 36) we have shown that each function of an acute angle  $\theta$  is equal to the corresponding cofunction of the complementary angle 90°  $-\theta$ . Figure 70a illustrates a proof similar to those of the preceding sections. In this figure OP = OP' by construction, and the angle MOP is equal to the angle M'P'O. It follows that

and 
$$x' = y, \qquad y' = x, \qquad r' = r,$$

$$\sin (90^{\circ} - \theta) = \frac{y'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\cos (90^{\circ} - \theta) = \frac{x'}{r'} = \frac{y}{r} = \sin \theta,$$

$$\tan (90^{\circ} - \theta) = \frac{y'}{x'} = \frac{x}{y} = \cot \theta.$$

Similarly,

$$\cot (90^{\circ} - \theta) = \tan \theta,$$
  

$$\sec (90^{\circ} - \theta) = \csc \theta,$$
  

$$\csc (90^{\circ} - \theta) = \sec \theta.$$



Figure 70b indicates how to show that the preceding identities hold also for angles  $\theta$  that terminate in the second quadrant. The formulas are, in fact, true for *all* angles  $\theta$ .



For functions of 90°+ $\theta$ , Figures 71a and 71b illustrate cases where  $\theta$  terminates in the first and fourth quadrants respec-

tively. As in the preceding sections we take OP = OP'; the triangles OMP and OM'P' are then equal, with angle MOP equal to angle M'P'O. It follows that

$$x' = -y, \qquad y' = x, \qquad r' = r.$$

We readily deduce the identities

$$\sin (90^{\circ} + \theta) = \cos \theta,$$
  $\cos (90^{\circ} + \theta) = -\sin \theta,$   
 $\tan (90^{\circ} + \theta) = -\cot \theta,$   $\cot (90^{\circ} + \theta) = -\tan \theta,$   
 $\sec (90^{\circ} + \theta) = -\csc \theta,$   $\csc (90^{\circ} + \theta) = \sec \theta.$ 

52. Functions of  $270^{\circ} \pm \theta$ . In Figures 72 and 73 we illustrate only cases where  $\theta$  is acute. The identities that follow are true for all angles  $\theta$ , no matter in what quadrant



they terminate. We take OP = OP' and observe that in all cases angle MOP is equal to angle M'P'O.

For the angle  $270^{\circ} - \theta$  (Fig. 72) we have

$$x' = -y, \qquad y' = -x, \qquad r' = r,$$

and from these relations we conclude that

$$\sin (270^{\circ} - \theta) = -\cos \theta, \qquad \cos (270^{\circ} - \theta) = -\sin \theta,$$

$$\tan (270^{\circ} - \theta) = \cot \theta, \qquad \cot (270^{\circ} - \theta) = \tan \theta,$$

$$\sec (270^{\circ} - \theta) = -\csc \theta, \qquad \csc (270^{\circ} - \theta) = -\sec \theta.$$

Similarly, for  $270^{\circ} + \theta$  (Fig. 73) we have

$$x' = y, \qquad y' = -x, \qquad r' = r,$$

$$\sin (270^{\circ} + \theta) = -\cos \theta,$$
  $\cos (270^{\circ} + \theta) = \sin \theta,$   
 $\tan (270^{\circ} + \theta) = -\cot \theta,$   $\cot (270^{\circ} + \theta) = -\tan \theta,$   
 $\sec (270^{\circ} + \theta) = \csc \theta,$   $\csc (270^{\circ} + \theta) = -\sec \theta.$ 

53. General rule for  $n \cdot 90^{\circ} \pm \theta$ , where n is odd. In § 50 we can replace  $n \cdot 180^{\circ} \pm \theta$  by  $n \cdot 90^{\circ} \pm \theta$  provided n in this last expression is restricted to be zero or a positive or negative even number. Sections 51 and 52 yield a corresponding rule for  $n \cdot 90^{\circ} \pm \theta$  where n is odd. When n is equal to 1 or 3 the preceding sections give the results directly, while cases where n has other positive or negative odd integral values reduce to those where n = 1 or 3 if we add or subtract suitable multiples of 360°.

Our working rule is:

Any given function of an angle  $n \cdot 90^{\circ} \pm \theta$ , where n is odd, is equal either (a) to the corresponding cofunction of  $\theta$ , or else (b) to the negative of that cofunction:

Given function of  $(n \cdot 90^{\circ} \pm \theta) = \pm \text{cofunction of } \theta \text{ (n odd)}$ . The + sign is to be taken on the right side of this formula if, when  $\theta$  is acute, the angle  $n \cdot 90^{\circ} \pm \theta$  terminates in a quadrant for which the given function of that angle is positive; the - sign if the given function of that angle is negative when  $\theta$  is acute.

Example. — Express  $\cos (-500^{\circ})$  in terms of a function of an acute angle.

The angle  $-500^{\circ}$  is equal to  $-5 \cdot 90^{\circ} - 50^{\circ}$ , hence its cosine is equal either to  $\sin 50^{\circ}$  or  $-\sin 50^{\circ}$ . Since  $-500^{\circ}$  terminates in the third quadrant its cosine is negative, hence  $\cos (-500^{\circ}) = -\sin 50^{\circ}$ . We could also have proceeded as follows:

$$\cos (-500^{\circ}) = \cos (-500^{\circ} + 720^{\circ}) = \cos 220^{\circ}$$
  
=  $\cos (270^{\circ} - 50^{\circ}) = -\sin 50^{\circ}$ ,

or

$$\cos (-500^\circ) = \cos (-3 \cdot 180^\circ + 40^\circ) = -\cos 40^\circ$$
  
=  $-\sin 50^\circ$ .

### **EXERCISES**

- 1. By reference to the rule of § 53, prove the following relations:
  - (a)  $\cos 115^{\circ} = -\sin 25^{\circ}$ ; (c)  $\cot (-40^{\circ}) = -\tan 50^{\circ}$ ;
  - (b)  $\sin 460^{\circ} = \cos 10^{\circ}$ ; (d)  $\sec (-1000^{\circ}) = \csc 10^{\circ}$ .
- 2. Express as a function of an acute angle, using the rule of § 53, each function of an angle in Exercise 2 (p. 85).
- 3. Express as a function of an acute angle, using the rule of § 53, each function of an angle in Exercise 3 (p. 85).
  - 4. Solve Exercise 14 (p. 85), using the rule of § 53.
  - 5. Solve Exercise 15 (p. 86), using the rule of § 53.
  - 6. Prove the following relations, using the rule of § 53:
    - (a)  $\sin (-90^{\circ} \theta) = -\cos \theta;$
    - (b)  $\tan (\theta 90^{\circ}) = -\cot \theta$ ;
    - (c)  $\cos(-270^{\circ} \theta) = \sin \theta$ ;
    - (d)  $\cot (\theta 270^\circ) = -\tan \theta$ .
- 7. Prove the first six formulas of § 51, using figures where  $\theta$  terminates in the third and fourth quadrants.
- 8. Prove the last six formulas of § 51, using figures where  $\theta$  terminates in the second and third quadrants.
- 54. Line values. We now describe the construction of a figure in which the value of each function of an angle  $\theta$  is given by the length of a directed line-segment. These segments are called the *line values* of the functions. Such a representation is more convenient for certain purposes than the ratio definitions (§ 15, p. 17).

First draw the familiar figure in which  $\theta$  is the angle XOP and the triangle OMP has the side MP perpendicular to the x-axis; take OP so that it is one unit long. Draw a circle about O with radius OP, which we shall call the unit circle. Let it intersect the positive x-axis at A, and the positive y-axis at B (Fig. 74). It follows that OA = OB = 1. At A and B draw tangents to the circle intersecting OP (prolonged) in points T and T' respectively. According to the

usual conventions regarding directed line-segments, one along a horizontal line and directed to the right is positive and one directed to the left is negative, while one pointing



vertically upward is positive and one pointing downward is negative. It has been agreed (§ 8, p. 7) that on OP segments having the direction OP are positive and those having the opposite direction are negative.

For an acute angle  $\theta$ , as shown in Figure 74a, we have,

(1) 
$$\sin \theta = \frac{MP}{OP} = \frac{MP}{1} = MP,$$

(2) 
$$\cos \theta = \frac{OM}{OP} = \frac{OM}{1} = OM,$$

also, since triangles OMP, OAT, and OBT' are similar,

(3) 
$$\tan \theta = \frac{MP}{OM} = \frac{AT}{OA} = \frac{AT}{1} = AT,$$

(4) 
$$\cot \theta = \frac{OM}{MP} = \frac{BT'}{OB} = \frac{BT'}{1} = BT',$$

(5) 
$$\sec \theta = \frac{OP}{OM} = \frac{OT}{OA} = \frac{OT}{1} = OT,$$

(6) 
$$\csc \theta = \frac{OP}{MP} = \frac{OT'}{OB} = \frac{OT'}{1} = OT'.$$

The line segment indicated at the extreme right of each of the above formulas is called the *line value* of the corresponding function. All the equations we have written above are also true when  $\theta$  terminates in the second, third, or fourth quadrants (Fig. 74b, 74c, and 74d), the lengths of the segments being taken positive or negative as we have already indicated. To prove this statement we first note that the equations for  $\sin \theta$  and  $\cos \theta$  hold in all cases, by our definitions of these functions. For the other four functions, their expressions



as ratios of the sides of the triangle OMP also follow definitions previously made. From the similarity of triangles OMP, OAT, and OBT' our equations remain true except, possibly, that negative signs might need to be introduced. That this is not the case may be verified by inspecting the figures, which show, for example, that in each case when  $\tan \theta$  is positive the same is true for AT, and when  $\tan \theta$  is negative, AT is negative. The student should prove that a similar statement is true for each of the other functions.

In all cases, therefore, equations (1) to (6) give the line values of the six trigonometric functions.

55. Variation of  $\sin \theta$  and  $\tan \theta$ . By means of line values we may easily note how the value of a function changes when the angle increases. Thus Figures 74 make it evident that when OP is rotated about O from the position OA to the position OB, that is, when the angle  $\theta$  increases from  $0^{\circ}$  to  $90^{\circ}$ ,

 $M\dot{P} = \sin\theta$  increases steadily from the value 0 to the value 1. Similarly, when  $\theta$  increases from 90° to 180°,  $\sin\theta$  remains positive but decreases steadily from 1 to 0; when  $\theta$  increases from 180° to 270°,  $\sin\theta$  is negative and decreases steadily from 0 to -1; and when  $\theta$  increases from 270° to 360°,  $\sin\theta$  is negative and increases from -1 to 0.

We could proceed similarly with each of the other functions but it will be sufficient to state the facts for tan  $\theta = AT$ . As  $\theta$  increases from 0° the point T rises, and AT can be made as large as we please by taking  $\theta$  sufficiently near 90°. This is equivalent to the statements that  $tan \theta$  is positive and increases steadily as  $\theta$  increases from 0° toward 90°, and that  $\tan \theta$  becomes infinite as  $\theta$  approaches 90°. Similarly, by taking account of changes in AT we see that when  $\theta$  increases from 90° to 180°, tan  $\theta$  is negative and steadily increases from extremely large negative values to zero. A brief way of indicating these facts is to say that tan  $\theta$  increases from 0 to  $+\infty$  (read "infinity") as  $\theta$  increases from 0° to 90° and that it increases from  $-\infty$  to 0 as  $\theta$  increases from 90° to 180°. It is also true that tan  $\theta$  increases from 0 to  $+\infty$  as  $\theta$ increases from 180° to 270°, and from  $-\infty$  to 0 as  $\theta$  increases from 270° to 360°.

From the fact that when  $\theta$  increases from its value at the beginning of a quadrant to its value at the end of that quadrant, each trigonometric function of  $\theta$  either increases steadily or else decreases steadily, we infer that no trigonometric function can have the same value for two different angles terminating in the same quadrant unless these angles differ by a multiple of 360°.

We can further conclude by following the variation of the functions that there are at most two angles between 0° and 360° for which a function has a given value. Thus the equation  $\sin \theta = a$ , where a is a positive number between 0 and 1, is satisfied by one value of  $\theta$  between 0° and 90°, by one value between 90° and 180°, and by no other value between 0° and

360°. If a were between 0 and -1 there would be one solution for  $\theta$  between 180° and 270°, one between 270° and 360°, and no others between 0° and 360°. The equation  $\tan \theta = a$ has two solutions between  $0^{\circ}$  and  $360^{\circ}$  for every number a, positive or negative. If a is positive there is one solution  $\theta$  between 0 and 90°, one between 180° and 270°, and no others between  $0^{\circ}$  and  $360^{\circ}$ ; if a is negative there is one solution between 90° and 180°, one between 270° and 360°, and no others between 0° and 360°.

## **EXERCISES**

1. Indicate which of the line values are positive and which are negative in Figures 74b, 74c, 74d, and thus verify the statement that each correctly represents the corresponding function of  $\theta$ .

Describe the variation of the following functions:

2.  $\cos \theta$ .

3.  $\cot \theta$ .

4. sec  $\theta$ .

5.  $\csc \theta$ .

By using line values, with suitable figures, prove the following identities:

6.  $\sin (180^{\circ} - \theta) = \sin \theta$ . 7.  $\tan (90^{\circ} + \theta) = -\cot \theta$ .

8.  $\cos (180^{\circ} + \theta) = -\cos \theta$ . 9.  $\sec (90^{\circ} - \theta) = \csc \theta$ .

Find all the values of  $\theta$  between  $0^{\circ}$  and  $360^{\circ}$  that satisfy the following equations. Use tables where necessary.

 $10. \tan \theta = \frac{1}{\sqrt{3}}.$ 

**11.**  $\cos \theta = \frac{1}{\sqrt{2}}$ .

12.  $\sin \theta = 1$ .

**13.**  $\tan \theta = 0$ .

**14.** sec  $\theta = -2$ .

**15.**  $\cot \theta = 2$ .

16.  $\sin \theta = -.2025$ .

17.  $\cos \theta = .8297$ .

18.  $\tan \theta = -2.4378$ .

19.  $\csc \theta = 2.5300$ .

**★56.** Graphs in rectangular coördinates. In this section we recall the method of representing the variation of a quantity by a graph in algebra. In the following section we shall apply this method to trigonometric functions.

Consider, for example, the algebraic function 2x - 3. We form the equation y = 2x - 3, give to x various values, and compute the corresponding values of y. Thus if x = 0, we have  $y = 2 \cdot 0 - 3 = -3$ ; likewise if x = 1, we have  $y = 2 \cdot 1 - 3 = -1$ . We tabulate a number of these pairs of values below.

When the points (-4, -11), (-3, -9) and the others given by the preceding table are plotted, it is seen that they all lie on a straight line, as shown in Figure 75. This straight

line is called the graph of the algebraic

function 2x - 3.

Among the many purposes that are served by graphs we note two. First, by measuring coördinates of points on the graph we can find approximate values of the function for given values of x without any algebraic computation. Thus for x = 1.3 we could find the value of 2x - 3 by setting a ruler so that its edge is perpendicular to the x-axis at x = 1.3 and measuring the distance from the x-axis to the point



Fig. 75

where the ruler's edge intersects the graph. In the second place, the graph shows how the function increases or decreases as x increases. Thus the graph of 2x - 3 shows that this function always increases when x increases, that we can give 2x - 3 a negative value which is numerically as large as we please by assigning to x a sufficiently large negative value, and that we can give 2x - 3 as large a positive value as we please by assigning to x a sufficiently large positive value.

Sometimes this is put more briefly by saying that 2x - 3 increases steadily from  $-\infty$  to  $+\infty$  when x increases from  $-\infty$  to  $+\infty$ .

As another example we consider the graph of  $1 - x^2$ . We form the equation  $y = 1 - x^2$ , give a succession of values to x, and compute the corresponding values of y. Thus for x = 2, we have  $y = 1 - 2^2 = -3$ . We give a table of values below:

When the points (-3, -8), (-2, -3), etc., have been plotted, a smooth curve is drawn through them, as shown in

Figure 76, and this we call the graph of  $1 - x^2$ .



Fig. 76

From this graph we see that the algebraic function  $1 - x^2$  increases steadily from  $-\infty$  to 1 as x increases from  $-\infty$  to 0, and that it decreases from 1 to  $-\infty$  as x increases from 0 to  $+\infty$ .

 $\star$  57. Graphs of the trigonometric functions. In order to obtain a graph of the function  $\sin x$  we first represent angles

by points on the x-axis, as shown in Figure 77. In the equation  $y = \sin x$ , accordingly, we give to x a succession of values and compute y. In the following table corresponding values of x and y are shown:

If x is a negative angle or is greater than 90° we use the reduction formulas of § 47 to § 53 (p. 89) in finding the values of y. When our table has been sufficiently extended and we have plotted the corresponding points, we draw a smooth curve through them and obtain the graph of  $\sin x$  (Fig. 77).

From this graph we read off results already noted regarding the variation of  $\sin x$ . Thus when x increases from 0° to 90°, the ordinate of the graph, which gives the value of  $\sin x$ , increases from 0 to 1. The student may similarly trace the further variation of  $\sin x$ .

It will be noted that the curve in Figure 77 is composed of arches above and below the x-axis which are alternately



Fig. 77



Fig. 78

symmetrical and congruent. The graph also shows that the value of y at  $x = a \pm 360^{\circ}$  is equal to its value at x = a, where a is any angle whatsoever. This property of  $\sin x$  is

expressed by saying that it has the *period* 360°. The graph repeats itself at intervals of 360°.

In Figure 78 we show a graph of  $\tan x$ , from which we easily trace the variation of  $\tan x$  and note that this function has the period 180°. This graph clearly indicates the behavior of  $\tan x$  when x approaches 90° or 270°.

#### **EXERCISES**

Draw graphs of the following functions and discuss the variation of the functions by means of the figures:

- **1.**  $\cos x$ . **2.**  $\cot x$ . **3.**  $\sec x$ . **4.**  $\csc x$ .
- 5. Draw the graph of  $\sin x \cos x$ . Is there a period?
- 6. Draw the graph of  $\sin x + \cos x$ . Is there a period?
- 7. Show by means of the graph of  $\sin x$  that an equation  $\sin x = a$  has either no solution or else infinitely many solutions. Show also by means of the graph that if a is numerically less than 1, the equation  $\sin x = a$  has two and only two solutions in the interval  $0^{\circ} \le x < 360^{\circ}$ , and that both of these are in the interval  $0^{\circ} < x < 180^{\circ}$  if a is positive.
- 8. Discuss in the manner indicated in Exercise 7 the equation  $\tan \theta = a$ , where a is any number (positive negative, or zero).

## CHAPTER V

## FUNDAMENTAL IDENTITIES

58. Trigonometric identities. In algebra an equation in one or more unknowns is called an identity if it holds for all values of the unknowns. Similarly an equation in terms of trigonometric functions of one or more angles is an identity if it holds when the angle or angles take on all possible values. By the phrase "all possible values" we mean all values except those for which a function in the identity is undefined,\* or a denominator is zero.

The reduction formulas of the preceding chapter are examples of relations between trigonometric functions of an angle  $\theta$  and of a related angle which are true for all values of the angle  $\theta$  for which the functions are defined. In this chapter we shall first consider a still simpler class of identities involving functions of a single angle  $\theta$ . We shall next develop the addition formulas which express functions of the sum and of the difference of two angles in terms of functions of those angles. Further identities will be deduced as corollaries of the addition formulas.

59. Formulas involving one angle. From the definitions of the six trigonometric functions in terms of each other and of x, y, and r (§ 15, p. 17), certain identities are immediately deduced. For example, in the section just referred to, the functions  $\cot \theta$ ,  $\sec \theta$ , and  $\csc \theta$  are defined as reciprocals of  $\tan \theta$ ,  $\cos \theta$ , and  $\sin \theta$  respectively:

$$\cot \theta = \frac{1}{\tan \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \csc \theta = \frac{1}{\sin \theta};$$

$$\tan \theta = \frac{1}{\cot \theta}, \quad \cos \theta = \frac{1}{\sec \theta}, \quad \sin \theta = \frac{1}{\csc \theta}.$$

\* It will be recalled that tan 90° and csc 180°, for example, have no meaning.

Two more identities express  $\tan \theta$  and  $\cot \theta$  in terms of  $\sin \theta$  and  $\cos \theta$ . The first arises from the relation

$$\tan \theta = \frac{y}{x} = \frac{\frac{y}{r}}{\frac{x}{r}} = \frac{\sin \theta}{\cos \theta}.$$

The other comes from the expression of  $\cot \theta$  as the reciprocal of  $\tan \theta$ . These identities are

(2) 
$$\tan \theta = \frac{\sin \theta}{\cos \theta}, \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}.$$

Another set of identities consists of corollaries of the law of right triangles which states that the square of the hypotenuse is equal to the sum of the squares of the other two sides.

In the x, y, r triangle (see Fig. 21, p. 17) the square of the base is  $x^2$ , whether x is positive or negative; for in the latter case the length of the base is -x, and its square is  $(-x)^2 = x^2$ . Similarly, the square of the altitude is  $y^2$ , and the square of the hypotenuse is  $r^2$ . We have, then, in all cases,

$$x^2 + y^2 = r^2$$
.

Let us divide this identity through by  $r^2$  and interpret the result in terms of trigonometric functions. This gives us

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1,$$

$$\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1,$$

$$(\sin \theta)^2 + (\cos \theta)^2 = 1.$$

It is customary to write this

$$\sin^2\theta + \cos^2\theta = 1.$$

Similarly, if we divide by  $x^2$  we have

$$1 + \left(\frac{y}{x}\right)^2 = \left(\frac{r}{x}\right)^2,$$
  
$$1 + \tan^2 \theta = \sec^2 \theta.$$

If we divide by  $y^2$ , changing the order of terms,

$$1 + \left(\frac{x}{y}\right)^2 = \left(\frac{r}{y}\right)^2,$$
  
$$1 + \cot^2 \theta = \csc^2 \theta.$$

We have thus obtained the three identities

(3) 
$$\sin^2 \theta + \cos^2 \theta = 1,$$
$$1 + \tan^2 \theta = \sec^2 \theta,$$
$$1 + \cot^2 \theta = \csc^2 \theta.$$

The formulas of groups (1), (2), and (3) are of great importance in trigonometry, and must be memorized.

 $\star$ 60. Formulas expressing the functions in terms of a single function. The identities of the preceding section furnish another method of solving such problems as that of Example 3 of § 22 (p. 30) where it was required to express all of the trigonometric functions in terms of  $\sin \theta$ . In order to solve the problem just referred to, we note that the first identity of group (3) can be solved for  $\cos \theta$  as follows:

$$\cos^2 \theta = 1 - \sin^2 \theta,$$
$$\cos \theta = \pm \sqrt{1 - \sin^2 \theta}.$$

The ambiguous sign before the radical here indicates that there are two possible solutions for  $\cos \theta$ , of which only one is correct for a given angle  $\theta$ . If  $\theta$  terminates in either the first or the fourth quadrant the function  $\cos \theta$  is positive, while for the other quadrants it is negative. In the former case we have

$$\sin \theta = \sin \theta, \qquad \cos \theta = +\sqrt{1 - \sin^2 \theta}, 
\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sin \theta}{+\sqrt{1 - \sin^2 \theta}}, \qquad \cot \theta = \frac{1}{\tan \theta} = \frac{+\sqrt{1 - \sin^2 \theta}}{\sin \theta}, 
\sec \theta = \frac{1}{\cos \theta} = \frac{1}{+\sqrt{1 - \sin^2 \theta}}, \qquad \csc \theta = \frac{1}{\sin \theta}.$$

If  $\theta$  terminates in the second or the third quadrant, the only change to be made in the above formulas is to replace the + sign before each radical by a - sign.

The problem of expressing all functions in terms of the cosecant is solved by replacing  $\sin \theta$  by its equal  $1/\csc \theta$  wherever the former occurs on the right of the formulas given in the last paragraph. The procedure for obtaining expressions in terms of  $\cos \theta$  and  $\sec \theta$  is similar to that which we have just indicated for  $\sin \theta$  and  $\csc \theta$ . If we can solve the similar problem for  $\tan \theta$ , the modification for  $\cot \theta$  is obvious. Let us, therefore, examine this remaining case, that of expressing the functions in terms of  $\tan \theta$ . From the second of the identities (3) we have

$$\sec \theta = \pm \sqrt{1 + \tan^2 \theta},$$

where the + sign is taken if  $\theta$  terminates in the first or the fourth quadrant, and the - sign if in either of the other quadrants. We then have

$$\cos\theta = \frac{1}{\sec\theta} = \frac{1}{\pm\sqrt{1+\tan^2\theta}}.$$

The first of identities (2), written in the form

$$\sin \theta = \cos \theta \tan \theta$$
,

now gives us

$$\sin \theta = \cos \theta \tan \theta = \frac{\tan \theta}{\pm \sqrt{1 + \tan^2 \theta}}.$$

The remaining functions,  $\cot \theta$  and  $\csc \theta$ , are reciprocals of  $\tan \theta$  and of the preceding expression for  $\sin \theta$  respectively.

The formulas obtained in this section give a new way also for solving such problems as those of Examples 1 and 2 of § 22 (p. 29), where we are to find the values of all functions of  $\theta$  when the value of one is given. A better method is perhaps to use the identities of the preceding section directly.

Thus if  $\tan \theta = 5/12$ , as in Example 2 of § 22, we have

$$\sec^{2}\theta = 1 + \tan^{2}\theta = 1 + (\frac{5}{12})^{2} = \frac{169}{144},$$

$$\sec\theta = \pm \frac{1}{12},$$

$$\cos\theta = \frac{1}{\sec\theta} = \pm \frac{12}{13},$$

$$\sin\theta = \cos\theta \tan\theta = \pm \frac{12}{13} \times \frac{5}{12} = \pm \frac{5}{13},$$

$$\cot\theta = \frac{1}{\tan\theta} = \frac{12}{5},$$

$$\csc\theta = \frac{1}{\sin\theta} = \pm \frac{13}{5},$$

where the + sign is to be retained if  $\theta$  is acute, and the - sign if  $\theta$  terminates in the third quadrant.

**★61.** Simplification of expressions involving trigonometric functions. From the foregoing section it is evident that an expression involving one or more trigonometric functions can be transformed into an expression in terms of any single function. It is often advantageous to choose this last function so as to avoid the introduction of radicals. Thus the transformation

$$\frac{\sin \theta}{1 - \cos^2 \theta} = \frac{\sin \theta}{\sin^2 \theta} = \frac{1}{\sin \theta}$$

avoids radicals, while one is introduced in the following, with the attendant disadvantage of an ambiguous sign:

$$\frac{\sin \theta}{1 - \cos^2 \theta} = \frac{\pm \sqrt{1 - \cos^2 \theta}}{1 - \cos^2 \theta} = \frac{1}{\pm \sqrt{1 - \cos^2 \theta}}.$$

Some expressions, such as  $\sin \theta + \cos \theta$ , cannot be given in terms of a single function of  $\theta$  without radicals, but it is to be noted that we can express each trigonometric function rationally in terms of any two that are not reciprocals of each other. Thus, if we choose these two as  $\sin \theta$  and  $\cos \theta$ , their quotients are equal to  $\tan \theta$  and  $\cot \theta$ , and their reciprocals are  $\sec \theta$  and  $\csc \theta$ . It is evident, therefore, that an

expression in three or more functions can be reduced to one in no more than two functions without introducing radicals that were not originally present.

- 62. Proofs of identities. From the formulas of § 59 an unlimited number of identities can be deduced. A set is given at the end of this section, and the student is required to prove them as exercises. We will illustrate three methods of procedure.
- (a) We can transform one side of the identity into the other by means of algebraic processes and the formulas of § 59. Thus, to prove

$$\frac{\sin \theta}{1 - \cos^2 \theta} = \csc \theta$$

we could write

$$\frac{\sin \theta}{1 - \cos^2 \theta} = \frac{\sin \theta}{\sin^2 \theta} = \frac{1}{\sin \theta} = \csc \theta.$$

(b) We can transform both sides into one expression. Thus we prove (1) by the relations expressed in parallel columns:

$$\frac{\sin \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin \theta}{\sin^2 \theta}$$

$$= \frac{1}{\sin \theta}$$

$$\cos \theta$$

(c) By working with the identity as a whole we may reduce it to one in which the expression on one side coincides with that on the other, or we may reduce the identity to one of the formulas of § 59. Thus (1) is an identity provided it is true that

$$\sin\theta = (1 - \cos^2\theta) \csc\theta,$$

which is true if

$$\sin\theta = \sin^2\theta \frac{1}{\sin\theta},$$

which is true if

$$\sin \theta = \sin \theta$$
.

It is customary to omit the connecting phrases and write only the equations in this style of proof.

As one more example we show that

$$\sec^2 A + \csc^2 A = \sec^2 A \csc^2 A.$$

We first express the equation in terms of sines and cosines,

$$\frac{1}{\cos^2 A} + \frac{1}{\sin^2 A} = \frac{1}{\cos^2 A} \cdot \frac{1}{\sin^2 A}.$$

Clearing of fractions, we have

$$\sin^2 A + \cos^2 A = 1.$$

It is a good rule to avoid radicals. When some other procedure is not clearly indicated, a reduction to sines and cosines is usually effective.

#### **EXERCISES**

Find the values of the other five functions of  $\theta$ , by means of the formulas of § 59, when a function of  $\theta$  and the quadrant in which  $\theta$  terminates are given as follows:

- 1.  $\sin \theta = \frac{1}{2}$ , first quadrant.
- 2.  $\sin \theta = \frac{1}{\sqrt{2}}$ , first quadrant.
- 3.  $\cos \theta = \frac{3}{5}$ , fourth quadrant.
- 4.  $\cos \theta = \frac{5}{13}$ , fourth quadrant.
- 5. sec  $\theta = -\frac{1}{5}$ , second quadrant.
- 6.  $\sec \theta = -\frac{5}{4}$ , second quadrant.
- 7.  $\tan \theta = \frac{8}{15}$ , third quadrant.
- 8.  $\tan \theta = \frac{5}{12}$ , third quadrant.
- 9.  $\cos \theta = .7$ , first quadrant.
- 10.  $\cos \theta = \frac{1}{3}$ , first quadrant.

Express the other five functions of  $\theta$  in terms of the following:

**11.**  $\cos \theta$ . **12.**  $\cot \theta$ . **13.**  $\sec \theta$ . **14.**  $\csc \theta$ .

Reduce the following expressions to others containing but one function as indicated. Simplify the results by algebraic means where this is possible.

- **15.** Express  $\sin^2 \theta + \cos \theta$  in terms of  $\cos \theta$  only.
- **16**. Express  $\cos \theta \tan \theta$  in terms of  $\sin \theta$  only.
- 17. Express  $\frac{\cos \theta}{\cos \theta \sin \theta} + \frac{\sin \theta}{\cos \theta + \sin \theta}$  in terms of  $\tan \theta$  only.
  - 18. Express  $\cot \alpha + \frac{\sin \alpha}{1 + \cos \alpha}$  in terms of  $\sin \alpha$  only.

Reduce the following expressions to others containing no other functions than sines and cosines, and simplify by algebraic means where this is possible:

19. 
$$\cos \theta \tan \theta + \sin \theta \cot \theta$$
. 20.  $\frac{1 + \tan^2 \theta}{1 + \cot^2 \theta}$ 

**21.** 
$$\frac{\tan x}{1 - \cot x} + \frac{\cot x}{1 - \tan x}$$
 **22.**  $\frac{\tan A + \sec A - 1}{\tan A - \sec A + 1}$ .

Prove the following identities:

23. 
$$\tan \theta + \cot \theta = \sec \theta \csc \theta$$
.

$$24. \quad \frac{1-\cos\theta}{\sin\theta} = \frac{\sin\theta}{1+\cos\theta}.$$

25. 
$$\sin^2 x \sec^2 x + 1 = \sec^2 x$$
.

26. 
$$\frac{\cos^2 A}{1 - \sin A} = 1 + \sin A$$
.

$$27. \sec A - \cos A = \tan A \sin A.$$

28. 
$$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = 2 \csc x$$
.

29. 
$$\csc \alpha \cot \alpha = \frac{\cot \alpha + \csc \alpha}{\sin \alpha + \tan \alpha}$$

30. 
$$\cot \alpha + \cos \alpha = \frac{\cot^2 \alpha \cos^2 \alpha}{\cot \alpha - \cos \alpha}$$
.

31. 
$$(\csc \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$$
.

32. 
$$\cot \theta \cos \theta - \csc \theta (1 - 2\sin^2 \theta) = \sin \theta$$
.

33. 
$$\left( \frac{\sec \alpha + \csc \alpha}{1 + \tan \alpha} \right)^2 = \frac{\tan \alpha + \cot \alpha}{\tan \alpha}.$$

34. 
$$\frac{1-\sin\alpha}{1+\sin\alpha}=(\sec\alpha-\tan\alpha)^2.$$

35. 
$$\sec^4 y - \tan^4 y = 1 + 2 \tan^2 y$$
.

**36.** 
$$\sin y (1 + \tan y) + \cos y (1 + \cot y) = \sec y + \csc y.$$

37. 
$$\frac{\sin^2 A}{\cot^2 A} + \frac{\cos^2 A}{\tan^2 A} = \tan^2 A + \cot^2 A - 1.$$

38. 
$$\cot^2 A - \cos^2 A = \cot^2 A \cos^2 A$$
.

**39.** 
$$(1 - \sin C - \cos C)^2 = 2(1 - \sin C)(1 - \cos C)$$
.

63. Addition formulas. It is easy to show that the sine of the sum of two angles,  $\alpha$  and  $\beta$ , is not identically equal to  $\sin \alpha + \sin \beta$ . Thus if  $\alpha = 60^{\circ}$ ,  $\beta = 30^{\circ}$ , we have

$$\sin (\alpha + \beta) = \sin (60^{\circ} + 30^{\circ}) = \sin 90^{\circ} = 1,$$

while

$$\sin \alpha + \sin \beta = \sin 60^{\circ} + \sin 30^{\circ} = \frac{\sqrt{3}}{2} + \frac{1}{2}$$

It is not so simple a matter to infer what the correct formulas are which express functions of  $\alpha + \beta$  in terms of functions of  $\alpha$  and functions of  $\beta$ . We shall obtain such addition formulas, together with corresponding formulas for functions of  $\alpha - \beta$ , in the following sections. For convenience of reference we here list these identities, which should be memorized:

- (1)  $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ .
- (2)  $\sin (\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$ .
- (3)  $\cos (\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$ .
- (4)  $\cos (\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ .

(5) 
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

(6) 
$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$
.

64. Formulas for  $\sin (\alpha + \beta)$  and  $\cos (\alpha + \beta)$ . We shall now prove formulas (1) and (3) of the preceding section for all positive acute angles  $\alpha$  and  $\beta$ . In Figure 79 we illustrate the case where  $\alpha + \beta$  is an angle terminating in the first quadrant, and in Figure 80 the case where  $\alpha + \beta$  terminates in the second quadrant. The reader should observe that the directions for making the construction apply equally well to both figures, and that the proof does not distinguish one case from the other.

Figures 79 and 80 are to be constructed as follows. First draw coördinate axes OX, OY, and a new set  $OX_1$ ,  $OY_1$  with the same origin O and such that angle  $XOX_1 = \alpha$ , angle



 $XOY_1 = 90^{\circ} + \alpha$ . Construct the angle  $X_1OP = \beta$ . From a point P on the terminal side of  $\beta$  drop PQ perpendicular to  $OX_1$ , and draw perpendiculars PM and QN to OX. Through Q take axes  $QX_2$ ,  $QY_2$ , having the same directions as OX and OY respectively. Let R be the intersection of  $QX_2$  with MP.

Figures thus constructed give the coördinates of P in the XOY system, in the  $X_1OY_1$  system, and in the  $X_2QY_2$  system. The directed segments OM, MP, are the x and y coördinates of P in the XOY system, and from the definitions of the sine and cosine we have

(1) 
$$\sin (\alpha + \beta) = \frac{MP}{OP}, \quad \cos (\alpha + \beta) = \frac{OM}{OP}.$$

These ratios are to be expressed in terms of sines and cosines of  $\alpha$  and  $\beta$ .

Since NQ and ON, QP and OQ, RP and QR are also coördinates in the systems XOY,  $X_1OY_1$ , and  $X_2QY_2$ , respectively,

(2) 
$$\sin \alpha = \frac{NQ}{OQ}, \qquad \cos \alpha = \frac{ON}{OQ},$$

(3) 
$$\sin \beta = \frac{QP}{OP}, \qquad \cos \beta = \frac{OQ}{OP}.$$

Moreover,

(4) 
$$\sin (90^{\circ} + \alpha) = \frac{RP}{QP}, \quad \cos (90^{\circ} + \alpha) = \frac{QR}{QP},$$

from which

(5) 
$$\cos \alpha = \frac{RP}{QP}, \quad -\sin \alpha = \frac{QR}{QP}.$$

The first equation of (1) may now be written

(6) 
$$\sin (\alpha + \beta) = \frac{MP}{OP} = \frac{MR + RP}{OP} = \frac{NQ + RP}{OP} = \frac{NQ}{OP} + \frac{RP}{OP}$$

The first term of the right member is expressed in terms of  $\sin \alpha$  and  $\cos \beta$  if we multiply the first equation of (2) by the second of (3). This gives

$$\sin \alpha \cos \beta = \frac{NQ}{OQ} \cdot \frac{OQ}{OP} = \frac{NQ}{OP},$$

and similarly the product of the first equation of (5) and the first of (3) gives

$$\cos \alpha \sin \beta = \frac{RP}{OP}.$$

By substituting these values for  $\frac{NQ}{OP}$  and  $\frac{RP}{OP}$  in (6) we obtain

formula (1) of § 63,

$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.$$

In order to treat the second of equations (1) in the same way we express OM as ON + NM, which is seen to be correct when the lengths of the directed segments are given their proper positive or negative signs. We thus have

$$\cos (\alpha + \beta) = \frac{OM}{OP} = \frac{ON + NM}{OP} = \frac{ON}{OP} + \frac{QR}{OP}$$
$$= \frac{ON}{OQ} \cdot \frac{OQ}{OP} + \frac{QR}{QP} \cdot \frac{QP}{OP}$$
$$= \cos \alpha \cos \beta - \sin \alpha \sin \beta.$$

 $\star$  65. Cases where  $\alpha$  and  $\beta$  are not both between 0° and 90°. It remains to show that the formulas and proofs of



the preceding section apply without change for all angles  $\alpha$  and  $\beta$ , whether positive or negative, no matter in what quadrants they terminate. Figures 81 and 82 are drawn according to the specifications of § **64**. In Figure 81 the angle  $\alpha$  is between 90° and 180°,  $\beta$  is between 180° and 270°,

and  $\alpha + \beta$  terminates in the fourth quadrant. In Figure 82 we illustrate a case where  $\beta$  is a negative angle.

If equations (1), (2), (3), and (4) of § 64 are true in all cases the rest of the proof will clearly hold good. As to equations (1) there is no difficulty. There is also no difficulty regarding equations (2) for Figure 82; but in Figure 81 the triangle ONQ presents an unfamiliar way of defining the functions of  $\alpha$ . However, if the reader will refer to § 14 (p. 15), he will observe that the point whose coördinates serve to define the sine and cosine of an angle may be taken on either the positive or the negative side of the terminal line. Thus in Figure 19 (p. 14) the sine of  $\theta$  is defined by the ratio of M''P'' to OP'' as well as by the ratio of MP to OP. In Figure 81 the point Q is on the negative side of  $OX_1$ , the terminal line of  $\alpha$ , but  $\sin \alpha$  and  $\cos \alpha$  are still defined by equations (2).

There is no difficulty with equations (3), since OP is always positive. With equations (4) we must again take account of cases where the denominator QP is negative. This occurs in both Figures 81 and 82, where QP has a negative length on account of the fact that it is an ordinate in the  $X_1OY_1$  system.\* The positive direction of the line on which QP lies must always be taken as that of  $OY_1$ , which makes an angle of  $90^{\circ} + \alpha$  with the OX-axis, and therefore with the  $OX_2$ -axis. It follows that equations (4) remain correct.

Thus even in cases where OQ or QP is negative, or both are negative, the formulas and proofs of § **64** remain valid. The student should convince himself of this fact by drawing figures for various types of angles.

The only cases where our proof is open to objection are those where either OQ or QP is zero. When this happens  $\beta$  is one of the quadrantal angles 0°, 90°, 180°, etc. If we substitute each of these values for  $\beta$  our formulas will be

<sup>\*</sup> This becomes clear if the page is turned so that  $OX_1$  is horizontal and  $OY_1$  extends upward.

found to hold, agreeing with the reduction formulas of

Chapter IV.

66. Formulas for sin  $(\alpha - \beta)$  and cos  $(\alpha - \beta)$ . We easily deduce formulas (2) and (4) of § 63 from (1) and (3), which we have shown to hold for all values of  $\alpha$  and  $\beta$ . Thus, since formula (1) holds whether  $\beta$  is positive or negative, we can substitute  $-\beta$  for  $\beta$ , so that we have

$$\sin (\alpha + (-\beta)) = \sin \alpha \cos (-\beta) + \cos \alpha \sin (-\beta).$$

From § 49 (p. 83)

$$\cos(-\beta) = \cos \beta, \quad \sin(-\beta) = -\sin \beta,$$

and by making these substitutions in the preceding identity we obtain the desired formula (2) of § 63 (p. 107).

$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.$$

Similarly, from

$$\cos (\alpha + (-\beta)) = \cos \alpha \cos (-\beta) - \sin \alpha \sin (-\beta),$$
  
we obtain

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta.$$

## **EXERCISES**

By using the addition formula (1) of § 63 we have

$$\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$
$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{1}{4} (\sqrt{6} + \sqrt{2}).$$

By similar use of formulas (1) to (4) of § 63, but without using the Tables, find the values of the following:

1. 
$$\cos 75^{\circ}$$
. 2.  $\cos 15^{\circ}$ . 3.  $\sin 15^{\circ}$ . 4.  $\sin (-15^{\circ})$ .

Apply the addition formulas to the following expressions and reduce to numerical values, checking results:

5. (a) 
$$\sin (60^{\circ} + 30^{\circ})$$
; (b)  $\cos (45^{\circ} + 45^{\circ})$ ; (c)  $\cos (60^{\circ} - 60^{\circ})$ .

6. (a) 
$$\sin (90^{\circ} - 30^{\circ});$$
 (b)  $\sin (180^{\circ} + 30^{\circ});$  (c)  $\cos (90^{\circ} + 45^{\circ}).$ 

7. (a) 
$$\sin (270^{\circ} - 45^{\circ})$$
; (b)  $\cos (180^{\circ} - 30^{\circ})$ ; (c)  $\cos (270^{\circ} + 60^{\circ})$ .

8. Apply the appropriate addition formula to  $\sin (180^{\circ} + \theta)$ and show that the result agrees with the reduction formula for  $\sin (180^{\circ} + \theta)$ .

Proceed as indicated in Exercise 8 with the following:

9. 
$$\cos (90^{\circ} + \theta)$$
.

10. 
$$\sin (180^{\circ} - \theta)$$
.

11. 
$$\cos (180^{\circ} + \theta)$$
.

**12.** 
$$\sin (270^{\circ} - \theta)$$
.

- 13. Given that  $\alpha$  and  $\beta$  are positive acute angles for which  $\cos \alpha = \frac{3}{5}$  and  $\sin \beta = \frac{5}{13}$ , find  $\sin (\alpha + \beta)$  and  $\cos (\alpha - \beta)$ .
- 14. Given that  $\alpha$  and  $\beta$  are positive acute angles for which  $\sin \alpha = \frac{8}{17}$  and  $\cos \beta = \frac{4}{5}$ , find the values of  $\cos (\alpha + \beta)$ and  $\sin (\alpha - \beta)$ .
- 15. By use of the Tables find the approximate numerical difference between

(a) 
$$\sin (47^{\circ} - 32^{\circ})$$
 and  $\sin 47^{\circ} - \sin 32^{\circ}$ ,

(b) 
$$\cos (47^{\circ} + 32^{\circ})$$
 and  $\cos 47^{\circ} + \cos 32^{\circ}$ .

Prove the identities:

$$\mathbf{16.} \ \sin \left(45^{\circ} - \theta\right) = \frac{\cos \theta - \sin \theta}{\sqrt{2}}.$$

17. 
$$\cos (60^{\circ} + \theta) = \frac{\cos \theta - \sqrt{3} \sin \theta}{2}$$
.

$$\mathbf{18.} \quad \sin (30^\circ + \theta) = \frac{\cos \theta + \sqrt{3} \sin \theta}{2}.$$

**19.** 
$$\cos (45^{\circ} + \theta) = \frac{\cos \theta - \sin \theta}{\sqrt{2}}$$
.

**20.** 
$$\sin (A + B) \cos B - \cos (A + B) \sin B = \sin A$$
.

**21.** 
$$\cos (A - B) \cos B - \sin (A - B) \sin B = \cos A$$
.

22. 
$$\sin (x + y + z) = \sin x \cos y \cos z + \cos x \sin y \cos z + \cos x \cos y \sin z - \sin x \sin y \sin z$$
.

- 23.  $\cos (x + y + z) = \cos x \cos y \cos z \sin x \sin y \cos z \sin x \cos y \sin z \cos x \sin y \sin z$ .
- **24.** Prove the formulas for  $\sin (\alpha + \beta)$  and  $\cos (\alpha + \beta)$ , drawing the figure, when  $\alpha$  and  $\beta$  are each angles between 90° and 180°, and  $\alpha + \beta$  is less than 270°.
- **25**. Prove the formulas for  $\sin (\alpha \beta)$  and  $\cos (\alpha \beta)$ , drawing the figure, when  $\alpha$  is between 90° and 135°, and  $\beta$  is between 45° and 90°.
- **26.** If x, y are the coördinates of P in the XOY system, and  $x_1$ ,  $y_1$  its coördinates in the  $X_1OY_1$  system as described in § **64**, prove that

$$x = x_1 \cos \alpha - y_1 \sin \alpha, \qquad y = x_1 \sin \alpha + y_1 \cos \alpha.$$

67. Formulas for tan  $(\alpha + \beta)$  and tan  $(\alpha - \beta)$ . From formula (2) of § 59, and formulas (1) and (3) of § 63, we have

$$\tan (\alpha + \beta) = \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}.$$

We can express the last fraction in terms of  $\tan \alpha$  and  $\tan \beta$  if we divide both numerator and denominator by  $\cos \alpha \cos \beta$ . We thus obtain

$$\tan (\alpha + \beta) = \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{1 - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}}$$
$$= \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}}.$$

From this identity we at once derive formula (5) of § 63 (p. 107),

(1) 
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}.$$

If we treat in the same way the identity

$$\tan (\alpha - \beta) = \frac{\sin (\alpha - \beta)}{\cos (\alpha - \beta)} = \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\cos \alpha \cos \beta + \sin \alpha \sin \beta},$$

we obtain formula(6) of § 63,

$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}.$$

#### **EXERCISES**

By expressing the given angles as sums or differences of 45° and 30° and using formulas (5) and (6) of § 63, but without using the Tables, find the values of the following:

- 1. tan 75°.
- 2. tan 15°.
- 3. Apply the addition formulas to the following expressions and reduce to numerical values, checking results:

(a) 
$$\tan (60^{\circ} + 60^{\circ});$$
 (b)  $\tan (60^{\circ} - 60^{\circ});$  (c)  $\tan (180^{\circ} - 30^{\circ}).$ 

4. By means of the formulas of the preceding section obtain the reduction formulas for

(a) 
$$\tan (180^{\circ} + \theta)$$
; (b)  $\tan (180^{\circ} - \theta)$ ; (c)  $\tan (360^{\circ} - \theta)$ .

- 5. If  $\tan x = \frac{3}{4}$ ,  $\cos y = \frac{12}{13}$ , and x and y are positive acute angles, find the values of  $\tan (x + y)$  and  $\tan (x y)$ .
- 6. If  $\sin x = \frac{4}{5}$ ,  $\tan y = \frac{1}{5}^2$ , and x and y are positive acute angles, find the values of  $\tan (x + y)$  and  $\tan (x y)$ .
- 7. Show by comparing values taken from the Tables that  $\tan 40^{\circ} + \tan 20^{\circ}$  is not equal to  $\tan (40^{\circ} + 20^{\circ})$ .
- 8. Show by comparing values taken from the Tables that  $\tan 70^{\circ} \tan 30^{\circ}$  is not equal to  $\tan (70^{\circ} 30^{\circ})$ .

Prove the identities:

9. 
$$\tan (45^{\circ} + \theta) = \frac{1 + \tan \theta}{1 - \tan \theta}$$
.

**10.** 
$$\tan (45^{\circ} - \theta) = \frac{1 - \tan \theta}{1 + \tan \theta}$$

11. 
$$\tan (30^{\circ} + A) = \frac{1 + \sqrt{3} \tan A}{\sqrt{3} - \tan A}$$
.

12. 
$$\tan (A - 60^{\circ}) = \frac{\tan A - \sqrt{3}}{1 + \sqrt{3} \tan A}$$
.

13. 
$$\frac{\tan (x + y) - \tan y}{1 + \tan (x + y) \tan y} = \tan x$$
.

**14.** 
$$\frac{\tan (x - y) + \tan y}{1 - \tan (x - y) \tan y} = \tan x.$$

**15.** 
$$\cot (\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}$$

16. 
$$\cot (\alpha - \beta) = -\frac{\cot \alpha \cot \beta + 1}{\cot \alpha - \cot \beta}$$
.

68. Formulas for the double angle. When  $\beta$  is taken equal to  $\alpha$  in the formulas for  $\sin (\alpha + \beta)$ ,  $\cos (\alpha + \beta)$ ,  $\tan (\alpha + \beta)$ , we obtain identities which express functions of  $2 \alpha$  in terms of functions of  $\alpha$ .

For example,

$$\cos (\alpha + \alpha) = \cos \alpha \cos \alpha - \sin \alpha \sin \alpha$$

is equivalent to

$$\cos 2 \alpha = \cos^2 \alpha - \sin^2 \alpha.$$

The double angle formulas thus obtained are (1), (2a), and (3) of the following set. Formula (2b) is derived from (2a) by the substitution  $\sin^2 \alpha = 1 - \cos^2 \alpha$ ; formula (2c) by the substitution  $\cos^2 \alpha = 1 - \sin^2 \alpha$ .

(1) 
$$\sin 2 \alpha = 2 \sin \alpha \cos \alpha$$
.

(2a) 
$$\cos 2 \alpha = \cos^2 \alpha - \sin^2 \alpha$$
.

(2b) 
$$\cos 2 \alpha = 2 \cos^2 \alpha - 1.$$

(2c) 
$$\cos 2 \alpha = 1 - 2 \sin^2 \alpha.$$

(3) 
$$\tan 2 \alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}.$$

Example. — Find the sine, cosine, and tangent of 120° by means of the double angle formulas.

$$\sin (120^\circ) = \sin (2 \times 60^\circ) = 2 \sin 60^\circ \cos 60^\circ$$

$$= 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2} \cdot$$

$$\cos (120^\circ) = \cos^2 60^\circ - \sin^2 60^\circ = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2} \cdot$$

$$\tan (120^\circ) = \frac{2 \tan 60^\circ}{1 - \tan^2 60^\circ} = \frac{2\sqrt{3}}{1 - 3} = -\sqrt{3}.$$

69. Formulas for the half-angle. Since the angle  $2\alpha$  in the preceding formulas is any angle whatever of which  $\alpha$  is half, the formulas are equally true when  $\alpha$  is replaced consistently by any other symbol denoting an angle. If, for example, we replace  $\alpha$  by  $2\alpha$  in identity (1) of the preceding section, we have

$$\sin 4 \alpha = 2 \sin 2 \alpha \cos 2 \alpha.$$

Results of especial interest are obtained by replacing  $\alpha$  by  $\alpha/2$  in formulas (1), (2b), (2c) of § 68. These formulas then become

(1) 
$$\sin \alpha = 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2},$$

$$\cos \alpha = 2 \cos^2 \frac{\alpha}{2} - 1,$$

(3) 
$$\cos \alpha = 1 - 2\sin^2 \frac{\alpha}{2}.$$

If we solve (3) for  $\sin (\alpha/2)$  and (2) for  $\cos (\alpha/2)$  we obtain the first two of the following formulas for the half-angle, the third being obtained by dividing the expression for  $\sin (\alpha/2)$  by the expression for  $\cos (\alpha/2)$ :

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}.$$

(5) 
$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}.$$

(6a) 
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}.$$

Whether the positive or negative sign is to be taken in each case depends on the quadrant in which the angle  $\alpha/2$  terminates. For example, if  $\alpha = 420^{\circ}$  the angle  $\alpha/2$  terminates in the third quadrant; its sine and cosine are negative and its tangent is positive. Formula (4) gives

$$\sin 210^{\circ} = -\sqrt{\frac{1 - \cos 420^{\circ}}{2}} = -\sqrt{\frac{1 - \cos 60^{\circ}}{2}} = -\sqrt{\frac{1 - .5}{2}} = -\frac{1}{2},$$

and the other formulas would similarly give numerical values for cos 210° and tan 210°.

The following are better formulas, for some purposes, than (6a):

(6b) 
$$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha},$$

(6c) 
$$\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha}.$$

The former of these identities is easily verified if we substitute in the expression on its right the values of  $\sin \alpha$  and  $\cos \alpha$  given by (1) and (3). We thus have

$$\frac{1-\cos\alpha}{\sin\alpha} = \frac{1-\left(1-2\sin^2\frac{\alpha}{2}\right)}{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{2\sin^2\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{\sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}} = \tan\frac{\alpha}{2}.$$

To prove (6c), substitute in its right member the values of  $\sin \alpha$  and  $\cos \alpha$  given by formulas (1) and (2) (see also Exercise 24, p. 106).

Examples. — 1. Find the sine, cosine, and tangent of  $\alpha/2$  if  $\alpha$  is an angle between 360° and 450° for which  $\tan \alpha = 2$ .

Here  $\alpha$  terminates in the first quadrant, and  $\alpha/2$  in the third. This determines the sign of  $\cos \alpha$  and of the functions of  $\alpha/2$ . We have

$$\cos \alpha = \frac{1}{\sec \alpha} = \frac{1}{+\sqrt{1 + \tan^2 \alpha}} = +\frac{1}{\sqrt{5}},$$

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{2}{\sqrt{5}},$$

$$\sin \frac{\alpha}{2} = -\sqrt{\frac{1 - \cos \alpha}{2}} = -\sqrt{\frac{1 - \frac{1}{\sqrt{5}}}{2}} = \sqrt{\frac{5 - \sqrt{5}}{10}},$$

$$\cos \frac{\alpha}{2} = -\sqrt{\frac{1 + \cos \alpha}{2}} = -\sqrt{\frac{5 + \sqrt{5}}{10}},$$

$$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{1 - \frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}} = \frac{\sqrt{5} - 1}{2}.$$

2. Prove the identity 
$$\frac{1 - \cos 2A}{1 + \cos 2A} = \tan^2 A$$
.

Of the many possible proofs we shall give two. First, we observe that the angle in the left member is 2A, in the right A. Hence we use formulas to express each in terms of the same angle. Formula (2a), (2b) or (2c) will serve to change the angle from 2A to A in the left member. If we use (2c) in the numerator and (2b) in the denominator the first terms cancel; we have

$$\frac{1 - \cos 2 A}{1 + \cos 2 A} = \frac{1 - (1 - 2\sin^2 A)}{1 + (2\cos^2 A - 1)}$$
$$= \frac{2\sin^2 A}{2\cos^2 A}$$
$$= \tan^2 A.$$

A second method is suggested if we observe that the identity resembles formula (6a). Let us substitute  $A = \alpha/2$ ; we are to prove that

$$\frac{1-\cos\alpha}{1+\cos\alpha}=\tan^2\frac{\alpha}{2}.$$

This follows at once from (6a), by interchanging members in that formula and squaring.

In proving identities it is usually desirable to express all angles in terms of one angle, and all functions in terms of one or two functions. It is best to avoid radicals when possible.

### **EXERCISES**

- 1. Find the values of  $\sin 2 \alpha$ ,  $\cos 2 \alpha$ ,  $\tan 2 \alpha$ ,  $\sin \alpha/2$ ,  $\cos \alpha/2$ ,  $\tan \alpha/2$ , without using the Tables, from the following data:
  - (a)  $\alpha$  is between 0° and 90°, and  $\sin \alpha = \frac{3}{5}$ .
  - (b)  $\alpha$  is between 450° and 540°, and  $\tan \alpha = -\frac{8}{15}$ .
  - 2. Proceed as in Exercise 1, with the following data:
    - (a)  $\alpha$  is between 0° and 90°, and  $\cos \alpha = \frac{12}{13}$ .
    - (b)  $\alpha$  is between 540° and 630°, and cot  $\alpha = \frac{12}{5}$ .
- 3. Substitute  $\alpha = 30^{\circ}$  in the double angle formulas and thus obtain the numerical values of sin 60°, cos 60°, tan 60°.
- 4. Substitute  $\alpha = 45^{\circ}$  in the formulas for  $\sin 2 \alpha$  and  $\cos 2 \alpha$ , and thus obtain the numerical values of  $\sin 90^{\circ}$  and  $\cos 90^{\circ}$ .
- 5. Substitute  $\alpha = 30^{\circ}$  in the formulas for the half-angle and thus obtain the numerical values of the functions of  $15^{\circ}$ .
- 6. Substitute  $\alpha = 45^{\circ}$  in the formulas for the half-angle and thus find the numerical values of the functions of  $22\frac{1}{2}^{\circ}$ .

Prove the identities:

- 7.  $(\sin\theta + \cos\theta)^2 = 1 + \sin 2\theta.$
- 8.  $\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$ .

9. 
$$\sec \alpha = \frac{\sec^2 \frac{\alpha}{2}}{2 - \sec^2 \frac{\alpha}{2}}$$

10. 
$$\frac{1 + \tan x}{1 - \tan x} = \frac{1 + \sin 2x}{\cos 2x}.$$

11.  $1 + \tan A \tan 2 A = \sec 2 A$ .

12. 
$$\tan\left(45^{\circ} + \frac{\theta}{2}\right) = \sec\theta + \tan\theta$$
.

13.  $\cos \theta + \sin 2\theta \cot \theta = 1 + \cos \theta + \cos 2\theta$ .

14. 
$$2 \cot \theta = \left(\cot \frac{\theta}{2} - \tan \frac{\theta}{2}\right)$$
.

15.  $\cos^3 x + \sin^3 x = (1 - \frac{1}{2}\sin 2x)(\cos x + \sin x)$ .

**16.** 
$$1 + \cos 2 x = \frac{2}{\left(1 + \tan x \tan \frac{x}{2}\right)^2}$$

17. 
$$\tan \frac{\alpha - \beta}{2} = \frac{\sin \alpha - \sin \beta}{\cos \alpha + \cos \beta}$$
.

18. 
$$\sin 3 \alpha = \sin (2 \alpha + \alpha) = 3 \sin \alpha - 4 \sin^3 \alpha$$
.

19. 
$$\cos 3 \alpha = \cos (2 \alpha + \alpha) = 4 \cos^3 \alpha - 3 \cos \alpha$$
.

20. 
$$\tan 3 \alpha = \tan (2 \alpha + \alpha) = \frac{3 \tan \alpha - \tan^3 \alpha}{1 - 3 \tan^2 \alpha}$$

**21.** 
$$\sin 2A = 4\sin\frac{A}{2}\cos\frac{A}{2} - 8\sin^3\frac{A}{2}\cos\frac{A}{2}$$
.

**22.** 
$$\cos 2A = 1 - 8\sin^2\frac{A}{2} + 8\sin^4\frac{A}{2}$$
.

23. Prove that the area of a right triangle with right angle at C is  $\frac{1}{4} c^2 \sin 2 A$ .

24. For the right triangle of Exercise 23, prove that

$$\tan\frac{A}{2} = \frac{a}{b+c}.$$

70. Products which are equal to sums or differences of two sines or two cosines. From the addition formulas of § 63 we obtain, by addition and subtraction,

(1) 
$$\sin (\alpha + \beta) + \sin (\alpha - \beta) = 2 \sin \alpha \cos \beta$$
,

(2) 
$$\sin (\alpha + \beta) - \sin (\alpha - \beta) = 2 \cos \alpha \sin \beta$$
,

(3) 
$$\cos (\alpha + \beta) + \cos (\alpha - \beta) = 2 \cos \alpha \cos \beta$$
,

(4) 
$$\cos (\alpha + \beta) - \cos (\alpha - \beta) = -2 \sin \alpha \sin \beta$$
.

If we read these formulas from right to left they express products of a sine or cosine of one angle by the sine or cosine of another as equal to one-half of sums or differences of sines or cosines.

For purposes of computation it is often more convenient to deal with products of functions than with their sums. The four formulas express sums as products, but a change of notation is advantageous. Let us make the substitutions

$$A = \alpha + \beta, \qquad B = \alpha - \beta.$$

By adding and subtracting these equations we obtain

$$2\alpha = A + B,$$
  $2\beta = A - B;$   $\alpha = \frac{A + B}{2},$   $\beta = \frac{A - B}{2}.$ 

When  $\alpha$  and  $\beta$  are replaced by these values, formulas (1) to (4) become

(5) 
$$\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$$
,

(6) 
$$\sin A - \sin B = 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$$
,

(7) 
$$\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$$
,

(8) 
$$\cos A - \cos B = -2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$$
.

A good way to memorize these identities is to put them in words. Thus formula (5) is equivalent to the statement: The sum of the sines of two angles is equal to twice the sine

of half the sum of the angles, multiplied by the cosine of half the difference.

Examples. — 1. Prove that  $\sin 40^{\circ} + \sin 20^{\circ} = \sin 80^{\circ}$ .

By formula (5),

$$\sin 40^{\circ} + \sin 20^{\circ} = 2 \sin \frac{40^{\circ} + 20^{\circ}}{2} \cos \frac{40^{\circ} - 20^{\circ}}{2}$$

$$= 2 \sin 30^{\circ} \cos 10^{\circ}$$

$$= 2 \cdot \frac{1}{2} \cdot \cos 10^{\circ}$$

$$= \cos 10^{\circ} = \sin 80^{\circ}.$$

2. Prove that 
$$\frac{\sin A - \sin B}{\cos A - \cos B} = -\cot \frac{A + B}{2}$$
.

By formulas (6) and (7),

$$\frac{\sin A - \sin B}{\cos A - \cos B} = \frac{2\cos\frac{A+B}{2}\sin\frac{A-B}{2}}{-2\sin\frac{A+B}{2}\sin\frac{A-B}{2}}$$
$$= \frac{-\cos\frac{A+B}{2}}{\sin\frac{A+B}{2}}$$
$$= -\cot\frac{A+B}{2}.$$

#### **EXERCISES**

- 1. Prove the following relations without using the Tables, then check by referring to the Tables:
  - (a)  $\sin 30^{\circ} + \sin 60^{\circ} = \sqrt{2} \cos 15^{\circ}$ .
  - (b)  $\cos 40^{\circ} \cos 20^{\circ} = -\cos 80^{\circ}$ .
  - (c)  $\sin 75^{\circ} \sin 15^{\circ} = \cos 45^{\circ}$ .
  - (d)  $\cos 75^{\circ} + \cos 45^{\circ} = \cos 15^{\circ}$ .

- 2. Express  $2 \sin 3 \theta \cos \theta$  as the sum of two sines.
- 3. Express  $2 \cos 8 \theta \sin \theta$  as the difference of two sines.
- 4. Express  $\sin 5 A \sin 2 A$  as half the difference of two cosines.
  - 5. Express  $\cos 2 A \cos 3 A$  as half the sum of two cosines.

Prove the following identities:

- 6.  $\sin 3 \theta \sin \theta = 2 \cos 2 \theta \sin \theta$ .
- 7.  $\cos 7 \theta + \cos 5 \theta = 2 \cos 6 \theta \cos \theta$ .
- 8.  $\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \frac{A + B}{2}$
- 9.  $\frac{\sin A + \sin B}{\sin A \sin B} = \tan \frac{A + B}{2} \cot \frac{A B}{2}.$
- 10.  $\frac{\cos 2 \alpha \cos \alpha}{\sin \alpha \sin 2 \alpha} = \tan \frac{3 \alpha}{2}.$
- 11.  $\cos \alpha (\cos \alpha \cos 3 \alpha) = \sin \alpha (\sin \alpha + \sin 3 \alpha)$ .
- 12.  $\sin A + \cos B = 2\sin\left(45^{\circ} + \frac{A B}{2}\right)\cos\left(\frac{A + B}{2} 45^{\circ}\right)$ .

Hint. Express  $\cos B$  as  $\sin (90^{\circ} - B)$ .

- 13.  $\sin A \cos B = -2 \cos \left( 45^{\circ} + \frac{A B}{2} \right) \sin \left( 45^{\circ} \frac{A + B}{2} \right)$
- **14.**  $\sin x + \sin 2x + \sin 3x = \sin 2x (1 + 2\cos x).$
- **15.**  $\cos (45^{\circ} + \alpha) + \cos (45^{\circ} \alpha) = \sqrt{2} \cos \alpha.$
- **16.**  $\sin (60^{\circ} + \alpha) \sin (30^{\circ} \alpha) = \sqrt{2} \sin (15^{\circ} + \alpha).$
- 17.  $\frac{\cos{(\alpha \beta)}}{\cos{(\alpha + \beta)}} = \frac{1 + \tan{\alpha} \tan{\beta}}{1 \tan{\alpha} \tan{\beta}}.$
- **18.**  $\cot \frac{x}{2} 2 \cos^2 \frac{x}{2} \cot x = \sin x.$
- 19.  $\tan \frac{1}{2} \theta = \csc \theta \cot 2 \theta \csc 2 \theta$ .
- **20.**  $\cos 2\theta = 3 + 4\sin \theta 2\left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right)^4$
- 21.  $\sin A \sin 2A + \sin 3A = 4 \sin \frac{1}{2} A \cos A \cos \frac{3}{2} A$ .
- **22.**  $\tan \frac{1}{2} A = \frac{1 + \sin A \cos A}{1 + \sin A + \cos A}$
- 23.  $8 \sin^3 \alpha \cos \alpha = 2 \sin 2 \alpha \sin 4 \alpha$ .

Prove that if A, B, C are angles of a triangle, the following identities hold:

- 24.  $\sin A + \sin B + \sin C = 4 \cos \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C$ . Hint.  $C = 180^{\circ} - (A + B)$ .
- **25.**  $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$ .
- **26.**  $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$ .
- 27. In a triangle ABC the line AD is drawn perpendicular to BC, and D falls between B and C. If angle  $DAB = \alpha$ , angle  $CAD = \beta$ , AD = h, prove that

$$BC = h \frac{\sin (\alpha + \beta)}{\cos \alpha \cos \beta}.$$

Does this formula hold if D does not fall between B and C?

28. An observer sees from a point A that the angle of elevation of the top, B, of a flagpole BC is  $\alpha$ . He travels backward in the plane ABC, and from a point D on the same horizontal level as A observes that the angle of elevation of B is  $\beta$ . If AD = a, prove that the height h of the top of the flagpole above the horizontal level of A is given by the for-

$$h = \frac{a \sin \alpha \sin \beta}{\sin (\alpha - \beta)}.$$

mula

# CHAPTER VI

# RADIAN MEASURE. INVERSE FUNCTIONS

71. The radian. So far we have used only degrees, minutes, and seconds in measuring angles. Another unit, the radian, is more convenient in certain problems which will



be considered in the following sec-

tions.

In defining  $\sin \theta$  and  $\cos \theta$  we noted

(§ 14, p. 16) that the ratio of MP to OP would be the same no matter how long OP was taken; and similarly for

the ratio of OM to OP. In Figure 83, for example, we have, by similar triangles,

$$\frac{M_1P_1}{OP_1} = \frac{M_2P_2}{OP_2}, \qquad \frac{OM_1}{OP_1} = \frac{OM_2}{OP_2}.$$

According to a proposition of plane geometry, it is also true that

$$\frac{\operatorname{arc} A_1 P_1}{O P_1} = \frac{\operatorname{arc} A_2 P_2}{O P_2},$$

where the two circular arcs have their centers at O. In other words, for an angle whose vertex is at the center of a circle the ratio of subtended arc to radius is the same no matter how long we make the radius; it can be considered an additional function of the angle.

Though sine and cosine determine an angle, they do not serve to measure it as degrees, minutes, and seconds do; when we double an angle we double its degree measure, but we do not, in general, double its sine or cosine. However, the ratio of arc to radius does have the property of being directly proportional to the angle. This follows from the proposition of plane geometry which states that angles whose vertices are at the center of a given circle are proportional to the intercepted arcs. It follows that if we double  $\theta$  in Figure 83 we shall double arc  $A_1P_1$ , and we shall therefore

have doubled the ratio of arc  $A_1P_1$  to

the radius  $OP_1$ .

The ratio of arc  $A_1P_1$  to the radius  $OP_1$  is called the radian measure of the angle  $A_1OP_1$ .

The angle whose radian measure is 1 is called the radian. The arc which subtends it has a length equal to that of a radius. The radian measure of



Fig. 84

an angle is the number of radians it contains; for, in Figure 84.

(1) radian measure of 
$$\theta = \frac{s}{r} = \frac{\text{arc }BC}{\text{arc }AP} = \frac{\angle BOC}{\angle AOP}$$
  
= number of times the radian is contained in angle  $BOC$ .

72. Relations between radians and degrees. By means of equation (1) at the end of the preceding paragraph we can compare measurements in radians and degrees. Thus if  $\theta$ subtends a semicircumference we have  $\theta = 180^{\circ}$ . On the other hand, since  $s = \pi r$ , we have from equation (1),

$$\theta = \frac{\pi r}{r} = \pi \text{ radians.}$$

By comparing these two values of  $\theta$  we obtain the relation

(1) 
$$180^{\circ} = \pi \text{ radians.}$$

It follows that

(2) 
$$1^{\circ} = \frac{\pi}{180} \text{ radians} = .017 4533 \text{ radians},$$

and

(3) 
$$1 \text{ radian} = \frac{180^{\circ}}{\pi} = 57.29578^{\circ}$$
$$= 57^{\circ} 17' 45'',$$

these results being correct to the number of figures given.

Hereafter, if the measure of an angle is given as n we will understand that this means n radians, unless the contrary is clearly indicated.\*

In the second column of each page of Table II will be found the radian equivalent of the degrees and minutes in the first column. By the use of this Table, with interpolation, we can convert the measure of an angle from degrees and minutes into radians with four-place accuracy; and vice versa we can change four-place radian measure into degrees and minutes. It will be useful, however, to consider examples in which formulas (2) and (3) are used directly.

Examples. — 1. To express 5 radians in degrees and minutes.

We have from (3),

5 radians = 
$$5 \times (57^{\circ} 17' 45'')$$
  
=  $285^{\circ} + 85' + 225''$   
=  $285^{\circ} + (1^{\circ} 25') + 4'$  (approximately)  
=  $286^{\circ} 29'$ .

2. Express  $\pi/6$  radians in degrees.

From (2) we have

$$\frac{\pi}{6}$$
 radians  $=\frac{\pi}{6} \times \frac{180^{\circ}}{\pi} = 30^{\circ}$ .

3. Express 20° 23′ in radians.

We shall give the results in two forms, the first in terms of  $\pi$ , the other a decimal.

\* Some authors use the notation  $n^r$  for n radians, but this is apt to be confused with the symbol for n to the rth power.

(a) 
$$20^{\circ} 23' = \left(20 + \frac{23}{60}\right)^{\circ} = \left(\frac{1223}{60}\right)^{\circ}$$
$$= \frac{1223}{60} \times \frac{\pi}{180}$$
$$= \frac{1223}{10800} \pi \text{ radians.}$$

(b) 
$$20^{\circ} 23' = 20 \times .0174533 + \frac{23}{60} \times .0174533$$
  
=  $.34907 + .00669$   
=  $.3558$  radians (to four places).

Result (b) could have been obtained from Table II by interpolating between the given values

$$20^{\circ} 20' = .3549$$
 radians,  $20^{\circ} 30' = .3578$  radians.

For  $20^{\circ}23'$  the correction which should be added to .3549 would be  $3/10 \times 29 = 9$ , giving .3558 as in (b).

73. Length of circular arc. The equation at the end of § 71 can be written in the form

(1) 
$$s = r\theta$$
.

Note that if  $\theta$  is not given in radian measure, it must be so expressed before this formula is used. When any two of the three quantities in (1) are given, the third is obtained by solving (1).

Examples. — 1. If the radius of a circle is 18 ft., find in terms of  $\pi$  the arc subtending an angle of 15°.

We first reduce 15° to radians.

$$15^{\circ} = 15 \times \frac{\pi}{180} = \frac{\pi}{12} \text{ radians.}$$

Formula (1) then gives

$$s = 18 \times \frac{\pi}{12} = \frac{3}{2}\pi.$$

2. Find the number of degrees and minutes in an angle whose vertex is at the center of a circle if the radius is 2.0000 and the subtending arc is 2.3566.

If we solve (1) for the radian measure  $\theta$  of the required angle, we have

$$\theta = \frac{s}{r} = \frac{2.3566}{2.0000} = 1.1783 \text{ radians.}$$

By means of Table II we reduce this radian measurement to degrees and minutes, and obtain the result

$$\theta = 67^{\circ} 31'$$
.

## **EXERCISES**

1. Express the following in radian measure, giving results in terms of  $\pi$ : (a) 30°; (b) 45°; (c) 180°; (d) 25° 15′; (e) 73° 27′; (f) 169°.

2. Proceed as in Exercise 1 with the following: (a) 60°; (b) 90°; (c) 270°; (d) 37° 45′; (e) 84° 18′; (f) 137°.

3. Reduce the degree measures of each part of Exercise 1 to radian measure in decimal form without using the Tables.

4. Proceed with each part of Exercise 2 according to the directions in Exercise 3.

5. The following are radian measures; reduce them to degrees and minutes without using the Tables: (a)  $\frac{\pi}{3}$ ; (b)  $\frac{\pi}{2}$ ;

(c) 
$$\frac{5\pi}{6}$$
; (d)  $\frac{18\pi}{7}$ ; (e) 2.5; (f) .6250.

6. Proceed as in Exercise 5 with the following radian measures: (a)  $\frac{\pi}{6}$ ; (b)  $\pi$ ; (c)  $\frac{5\pi}{4}$ ; (d)  $\frac{20\pi}{9}$ ; (e) 3.2; (f) .5241.

7. Express the following in radian measure, using the Tables and giving results to four decimal places: (a) 25° 17′; (b) 73° 42′; (c) 143° 24′.

8. Proceed as in Exercise 7 with the following: (a) 16° 29′;
(b) 65° 22′; (c) 169° 17′.

- 9. Express the following radian measures in degrees and minutes, using the Tables: (a) .1200; (b) 1.3027; (c) 2.4050.
- 10. Proceed as in Exercise 9 with the following radian measures: (a) .3030; (b) 1.2452; (c) 3.1080.
- 11. An angle at the center of a circle of 2 ft. radius intercepts an arc of 3 ft. Find the measure of the angle, first in radians, then in degrees and minutes, assuming the measurement of radius and arc to be exact.
- 12. Proceed as in Exercise 11 if the radius is 10 ft. and the intercepted arc is 23 ft.
- 13. The radius of a circle is 1.500 ft. Find the arc which subtends an angle of 65° 0′.
- 14. The radius of a circle is 1.250 ft. Find the arc which subtends an angle of 237° 12′.
- 15. An angle of 2.500 radians at the center of a circle intercepts an arc just 15 in. long. Find the radius.
- 16. An angle of 217° 0′ at the center of a circle intercepts an arc of length 235.0 yd. Find the radius.
- 17. If the earth's radius is 3960 mi., how far is it on the earth's surface from a point in latitude 41° 10′ to the nearest point on the equator?
- 18. Show that if  $\theta$  is the radian measure of a positive acute angle, then  $\sin \theta < \theta$ . Is this true when  $\theta$  is greater than  $\pi/2$ ?
- 19. Show that if  $\theta$  is the radian measure of a positive acute angle, then  $\tan \theta > \theta$ .
- *Hint*. If two points A, B, lie on a circle, and the tangents at A and B intersect at C, then AC + CB is greater than arc AB, provided the latter is less than the semicircumference.
- 20. Two points A and B are on the equator of a globe, and their longitudes are 19° 50′ E and 43° 10′ E respectively. The arc AB is found to be 3.250 in. Find the radius of the globe.
- 21. A belt passes tightly, without crossing, over two wheels which are in line with centers 22 ft. 7.5 in. apart. The

diameter of the larger wheel is 6 ft. 6.0 in., that of the smaller is 2 ft. 4.2 in. Find the length (a) of the part of the belt in contact with the larger wheel; (b) of the part in contact with the smaller wheel; (c) of the whole belt.

22. Give the lengths asked for in Exercise 21, for a belt that is crossed.

 $\star$ 74. Areas of segment and sector of a circle. A radius of a circle revolving from an initial position OA sweeps out a



Fig. 85

sector whose area is directly proportional to the angle AOB through which the radius has turned. Hence, if we compare the area of the sector OACB, whose central angle is  $\theta$  radians, with the area of the semicircle, whose central angle is  $\pi$  radians, we have

$$\frac{area\ of\ sector\ OACB}{area\ of\ semicircle} = \frac{\theta}{\pi}.$$

If the radius is of length r, the area of the semicircle is  $\pi r^2/2$ . The preceding equation, when solved for the area of OACB, has on its right side

$$\frac{\theta}{\pi} \times area \ of \ semicircle = \frac{\theta}{\pi} \cdot \frac{\pi r^2}{2} = \frac{1}{2} r^2 \theta.$$

Hence we have the formula

(1) area of sector 
$$OACB = \frac{1}{2} r^2 \theta$$
.

The area of segment ACB (shaded in Figure 85) is given by the relation

area of segment ACB = area of sector OACB - area of triangle OAB.

If OA is taken as the base of triangle OAB, it is easy to see that the altitude is  $OB \sin \theta$ , and hence,

area of 
$$OAB = \frac{1}{2} OA \cdot OB \cdot \sin \theta = \frac{1}{2} r^2 \sin \theta$$
.

Thus the right side of the expression for the area of the segment becomes

$$\frac{1}{2} r^2 \theta - \frac{1}{2} r^2 \sin \theta = \frac{1}{2} r^2 (\theta - \sin \theta),$$

and we have the formula

(2) area of segment 
$$ACB = \frac{1}{2} r^2 (\theta - \sin \theta)$$
.

In using both formulas (1) and (2), it is important to remember that  $\theta$  is the radian measure of the angle.

\*75. Velocity of a point moving in a circle. A point P is said to move on the circumference of a circle with uniform linear velocity of magnitude v = s/t if it traverses an arc s in time t and the ratio of s to t is constant. The angular velocity of P is  $\theta/t$ , where  $\theta$  is the angle generated by the radius OP when P traverses the arc s. By the angular velocity of OP we mean the same thing as the angular velocity of the point P. It is customary to designate angular velocity by the Greek letter  $\omega$  (omega). We may measure  $\omega$  in units either of degrees, radians, or revolutions per minute or second.

When  $\theta$  and  $\omega$  are given in terms of radians, equation (1) of § 73 yields a formula connecting v with  $\omega$ ; for if both sides of that equation are divided by t, we have

$$\frac{s}{t} = r\frac{\theta}{t},$$

hence

$$v = r\omega$$
.

Example. — A flywheel 10 ft. in diameter makes 100 revolutions per minute. For a point P on its rim find the linear velocity in feet per minute and the angular velocity in radians per minute.

The circumference of the wheel is 10  $\pi$  ft., hence

$$v = \frac{s}{t} = \frac{100 \times 10 \, \pi}{1} = 1000 \, \pi \, ft. \, per \, min.;$$

also, since a radius generates an angle of 2  $\pi$  radians for each revolution,

 $\omega = 100$  revolutions per min. = 200  $\pi$  radians per min.

These results check with the relation  $v = r\omega$ .

#### **EXERCISES**

- 1. Find the area of a sector whose angle is 18°, if the subtending arc is 12 ft. long.
- 2. Find the area of a sector whose angle is 125°, if the subtending arc is 25 ft. long.
- 3. Find the area of a segment whose bounding arc is 16 in. long, in a circle whose radius is 1 ft.
- 4. Find the area of a segment if the chord that forms part of its boundary is 26 in. long, and is 11 in. from the center of the circle.
- 5. A horizontal cylindrical tank, 15 ft. long and 4 ft. in diameter, is partly filled with water so that the greatest depth is 15 in. How many gallons of water are there in the tank if the volume of a gallon is 231 cu. in.?
- 6. Find v in inches per minute and  $\omega$  in radians per second for a point at the end of the minute hand of a clock if the hand is 22.5 in. long.
- 7. Solve the problem of Exercise 6 if the hand is 18.6 in. long.
- 8. A wheel 9.2 ft. in diameter revolves with uniform angular velocity of 3.0 radians per second. Find v in feet per minute for a point on the rim.
- 9. The wheels connected by a belt as described in Exercise 21 of page 131 rotate uniformly so that the angular velocity for the larger wheel is (to three significant figures) 200 revolutions per minute. What is the angular velocity of the smaller wheel in radians per second?
- 10. Prove that formula (2) of § 74 is true when  $\theta$  is greater than  $\pi$ .

76. Inverse trigonometric functions. Principal values. Another way of stating that  $\sin \theta$  is equal to a is to say that  $\theta$  is an angle whose sine is a, or, more briefly, that  $\theta$  is the inverse sine of a. This is written  $\theta = \sin^{-1} a$ .

The two equations

$$\sin \theta = a, \qquad \theta = \sin^{-1} a,$$

mean exactly the same thing.

We define similarly the other inverse functions  $\cos^{-1} a$ ,  $\tan^{-1} a$ ,  $\cot^{-1} a$ ,  $\sec^{-1} a$ ,  $\csc^{-1} a$ . Another notation for these functions is arc  $\sin a$ , arc  $\cos a$ , etc.

The student should be on his guard against interpreting  $\sin^{-1} a$  as the -1 power of  $\sin a$ . Although we write  $\sin^2 a$  for  $(\sin a)^2$ , and similarly for other powers, the -1 power should always be written as  $(\sin a)^{-1}$ ;  $\sin^{-1} a$  always means the inverse sine of a.

The inverse functions are many-valued. For example, since

$$\sin 30^{\circ} = \sin 150^{\circ} = \sin (360^{\circ} + 30^{\circ}) = \cdots = \frac{1}{2}$$

we have

$$\sin^{-1}\frac{1}{2} = 30^{\circ}, 150^{\circ}, 360^{\circ} + 30^{\circ}, \dots$$

The problem of finding the values of  $\sin^{-1} a$  is the same as that of solving for  $\theta$  the equation  $\sin \theta = a$ . If a is between 0 and 1, we have seen in § 55 (p. 92) that there is one and only one solution,  $\theta = \theta_1$ , between 0° and 90°, and one and only one,  $\theta = 180^{\circ} - \theta_1$ , between 90° and 180°; all others are obtained from these two by adding or subtracting multiples of 360°. Among the infinitely many values of  $\sin^{-1} a$ , we distinguish as the *principal value* that one which lies between 0° and 90° when a is between 0 and 1. A convenient way to designate this principal value is to write it  $\sin^{-1} a$  (with the initial S capitalized).

When we consider negative as well as positive values of a, we find that there is one and only one value of  $\sin^{-1} a$  between  $-90^{\circ}$  and  $+90^{\circ}$  for each value of a between -1 and +1.\* We call this the *principal value* and designate it by the notation  $\sin^{-1} a$ ; its range is from  $-90^{\circ}$  to  $+90^{\circ}$ .

To define principal values for the other inverse functions, we specify for each a range of angles in which the principal value must lie. If a is any number for which a given inverse function has a meaning, then the range for that function should be such that one and only one value of the function in that range corresponds to each value of a. We have seen that this is true of the range from  $-90^{\circ}$  to  $+90^{\circ}$  for  $\sin^{-1} a$ . This range would not serve for  $Cos^{-1}$  a, since if a is a negative proper fraction the equation  $\theta = \cos^{-1} a$ , or its equivalent,  $\cos \theta = a$ , is satisfied only by angles terminating in the second or third quadrant. A range from 0° to 180° would, however, be appropriate, and this we adopt. The range for  $Csc^{-1} a$  is taken the same as for  $Sin^{-1} a$ , and for  $Sec^{-1} a$  the same as for  $Cos^{-1} a$ . For  $Tan^{-1} a$  we take the same range as for Sin<sup>-1</sup> a. If we take for Cot<sup>-1</sup> a the same range as for Cos<sup>-1</sup> a, we complete the scheme of the following table in which it will be noted that the range of principal values for three inverse functions is from  $-90^{\circ}$  to  $+90^{\circ}$ , while for the three corresponding cofunctions the range is from 0° to 180°. To the right we indicate the values of a for which each inverse function has a meaning.

<sup>\*</sup> The symbol  $\sin^{-1} a$  has no meaning for us unless a is between -1 and +1 since a is, by definition, the sine of an angle.

77. Determination of all values of an inverse trigonometric function. If a is positive the Tables give us the principal value of each inverse function of a. For example, we would find  $\sin^{-1}.5640$  by looking on page 7 of Table II, where it is given that an angle whose sine is .5640 is  $34^{\circ} 20' = .5992$  radians.

To find the principal value of an inverse function of a negative number -a we may proceed as follows:

Find the principal value  $\theta_1$  of the inverse function of  $+\mathbf{a}$ , using the Tables if necessary; then  $-\theta_1$  is the principal value of the inverse function of  $-\mathbf{a}$  if the function is the inverse sine, tangent, or cosecant; otherwise  $180^{\circ} - \theta_1$  is the value to be used (or  $\pi - \theta_1$ , in radians).

This rule follows from the reduction formulas of Chapter IV and from the definitions of principal values. For example, from the reduction formulas if  $\sin \theta_1 = a$  then  $\sin (-\theta_1) = -a$ ; or if  $\cot \theta_1 = a$  then  $\cot (180^{\circ} - \theta_1) = -a$ . Hence  $-\theta_1 = \sin^{-1}(-a)$ , and  $180^{\circ} - \theta_1 = \cot^{-1}(-a)$ . Finally, these are both principal values since, on account of the fact that  $\theta_1$  is a positive acute angle, they are in the ranges given by formulas (1) of § 76.

Having thus found the principal value  $\theta$  of an inverse function of a, we observe that a secondary value of that inverse function will be:

180° 
$$-\theta$$
 for  $\sin^{-1} a$  and  $\csc^{-1} a$ ;  
 $-\theta$  for  $\cos^{-1} a$  and  $\sec^{-1} a$ ;  
180°  $+\theta$  for  $\tan^{-1} a$  and  $\cot^{-1} a$ .

We can prove that these are values of the inverse functions indicated by using the reduction formulas. For example, since  $\cos(-\theta) = \cos\theta$ , it follows that if  $\cos\theta = a$ , then  $\cos(-\theta) = a$ , and both  $\theta$  and  $-\theta$  are values of  $\cos^{-1}a$ .

When the principal value and the secondary value of an inverse function have been found, all other values of that

inverse function are obtained by adding or subtracting multiples of  $360^{\circ}$  (or  $2 \pi$  radians).

Examples. — 1. Find all values of  $tan^{-1}$  (-2.000), giving results in radians.

We first find from the Tables (with interpolation) that

$$Tan^{-1} 2.000 = 1.1054 + \frac{88}{145} \times .0029 = 1.1072.$$

Hence

$$Tan^{-1}(-2.000) = -1.1072,$$

and the secondary value of  $\tan^{-1}(-2.000)$  is  $-1.1072 + \pi$ . The general solution is

$$\tan^{-1}(-2.000) = -1.1072 
-1.1072 + \pi$$
 $\pm 2 n\pi, (n = 0, 1, 2, ...).$ 

2. Find all values of  $\cos^{-1}$  (.5000) in degrees.

Since

$$Cos^{-1} (.5000) = 60^{\circ},$$

we have

$$\cos^{-1}(.5000) = 60^{\circ} \\
-60^{\circ}$$
 $\pm n \cdot 360^{\circ}, (n = 0, 1, 2, ...).$ 

3. Find the values of  $\sin \tan^{-1} 3$ .

We could solve this problem by finding the principal and secondary values of tan<sup>-1</sup> 3 with the aid of the Tables and again using the Tables to find the sine of each of those angles. Another method consists in writing

$$\alpha = \tan^{-1} 3$$
,  $\tan \alpha = 3$ .

Our problem may now be stated as follows: Find sin  $\alpha$ , when it is given that  $\tan \alpha = 3$ . Problems of this sort have already been solved by the methods of page 29, and page 102. We thus obtain the result, sin  $\tan^{-1} 3 = \pm 3/\sqrt{10}$ , the positive sign corresponding to the principal value  $\tan^{-1} 3$ .

4. Simplify the expressions  $\sin \sin^{-1} x$ ,  $\sin^{-1} \sin x$ , and  $\sin^{-1} \sin x$ .

The expression  $\sin \sin^{-1} x$  denotes the sine of an angle whose sine is x; it can have but one meaning,

$$\sin \sin^{-1} x = x.$$

In the last two of the three given expressions, where x must denote an angle, the form of our answer will depend on whether x is given in degrees or radians; let us suppose here that the latter is the case. The function  $\sin^{-1} \sin x$  is many-valued and its values, in radians, are as follows:

$$\sin^{-1}\sin x = x, \qquad \pi - x,$$

or either of these values  $\pm 2 n\pi$ , where n is any positive integer.

Finally  $\sin^{-1} \sin x$  is equal to x if x is between  $-\pi/2$  and  $+\pi/2$ , otherwise it is equal to the value of  $\sin^{-1} \sin x$  that is so situated.

#### **EXERCISES**

Find all the values of the following expressions without using the Tables; give results both in degrees and in radians:

1. (a) 
$$\sin^{-1}\frac{1}{\sqrt{2}}$$
;

(b) 
$$\cos^{-1} \frac{\sqrt{3}}{2}$$
;

(c) 
$$Tan^{-1}(-1)$$
;

(d) 
$$Sec^{-1}(-2)$$
.

(b) 
$$\sin^{-1}\left(-\frac{1}{2}\right);$$

(c) 
$$Csc^{-1}(-1)$$
;

(d) 
$$\operatorname{Cot}^{-1}\left(-\frac{1}{\sqrt{3}}\right)$$

3. (a) 
$$\sin^{-1}\frac{1}{2}$$
;

(b) 
$$\tan^{-1} \sqrt{3}$$
;

(c) 
$$\cos^{-1}(-1)$$
;

(d) 
$$\cot^{-1} 0$$
.

(b) 
$$\sec^{-1}\frac{2}{\sqrt{3}}$$
;

(c) 
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
;

(d) 
$$\tan^{-1} 0$$
.

Find all the values of the following expressions, using the Tables and giving results both in degrees and in radians:

5. (a) 
$$\sin^{-1} .3000$$
;

(b) 
$$Tan^{-1}.7125$$
;

(c) 
$$Cos^{-1}(-.2300);$$

(d) 
$$Cot^{-1}$$
 (-2.002).

6. (a) 
$$\cos^{-1}.6000$$
; (b)  $\csc^{-1}2.300$ ;  
(c)  $\tan^{-1}(-1.256)$ ; (d)  $\sin^{-1}(-.0630)$ .  
7. (a)  $\sin^{-1}.7200$ ; (b)  $\cos^{-1}.0325$ ;  
(c)  $\sec^{-1}(-2.035)$ ; (d)  $\tan^{-1}(-.0500)$ .  
8. (a)  $\tan^{-1}2.700$ ; (b)  $\sin^{-1}.0750$ ;  
(c)  $\cot^{-1}(-1.125)$ ; (d)  $\csc^{-1}(-4.240)$ .

Find all the values of the following expressions without using the Tables:

(b)  $\sin \sin^{-1} \frac{1}{4}$ ;

(c) 
$$\sin \operatorname{Cos}^{-1} \frac{1}{4}$$
; (d)  $\sin \operatorname{cos}^{-1} \frac{1}{4}$ .  
10. (a)  $\cos \operatorname{Cos}^{-1} \frac{2}{5}$ ; (b)  $\cos \operatorname{cos}^{-1} \frac{2}{5}$ ; (c)  $\cos \operatorname{Sin}^{-1} \frac{2}{5}$ ; (d)  $\cos \sin^{-1} \frac{2}{5}$ .  
11. (a)  $\sin \operatorname{Tan}^{-1} \frac{3}{4}$ ; (b)  $\tan \operatorname{Sec}^{-1} (-\frac{5}{4})$ ; (c)  $\cos \cot^{-1} (-\frac{1}{2})$ ; (d)  $\sec \sin^{-1} (-\frac{2}{3})$ .  
12. (a)  $\tan \operatorname{Sin}^{-1} \frac{4}{5}$ ; (b)  $\sin \operatorname{Sec}^{-1} (-\frac{1}{3})$ ; (c)  $\cot \sin^{-1} (-\frac{5}{13})$ ; (d)  $\cos \tan^{-1} (-\frac{4}{3})$ .

Solve by using the Tables:

9. (a)  $\sin \sin^{-1} \frac{1}{4}$ ;

13. Exercises 11 (a), (b), (c), (d).14. Exercises 12 (a), (b), (c), (d).

Find the values of the following expressions without using the Tables:

15. 
$$\sin (180^{\circ} - \sin^{-1} \frac{1}{3})$$
.  
16.  $\cos (90^{\circ} + \cos^{-1} \frac{3}{5})$ .  
17.  $\tan (180^{\circ} - \sin^{-1} \frac{12}{13})$ .  
18.  $\cot [270^{\circ} - \tan^{-1} (-\frac{2}{3})]$ .  
19.  $\cos [180^{\circ} + \cot^{-1} (-2)]$ .  
20.  $\sin [270^{\circ} - \cos^{-1} (-\frac{1}{4})]$ .

x 78. Graphs of inverse functions. Since the equations  $y = \sin^{-1} x$  and  $x = \sin y$  are equivalent, their graphs are the same. In Figures 77, 78 (p. 97) we have given graphs for the equations  $y = \sin x$ ,  $y = \tan x$ . If we interchange x and y we obtain the graphs of  $\sin^{-1} x$  and  $\tan^{-1} x$ .

In Figure 86 we show a portion of the graph of  $\sin^{-1} x$ , leaving the construction of graphs of other inverse functions as an exercise. Here x is measured in radians. From P to Q we have the graph of  $\sin^{-1} x$ . The figure shows that x

must lie between -1 and +1 if  $y = \sin^{-1} x$  is to have a value; and that if x is so situated then the function  $\sin^{-1} x$  has infinitely many values.

**★79.** Identities involving inverse functions. The following examples will show how to prove identities involving inverse functions by means of substitutions which permit us to express the problem in terms of the ordinary functions.

Examples. — 1. Prove the identity  $\sin^2 \cos^{-1} x = 1 - x^2$ .

To prove this formula, write

$$\cos^{-1} x = \alpha, \qquad \cos \alpha = x.$$



Fig. 86

With this substitution our problem reduces to the following: Prove that  $\sin^2 \alpha = 1 - x^2$  if  $x = \cos \alpha$ . In this form our identity is at once proved, since it reduces to  $\sin^2 \alpha = 1 - \cos^2 \alpha$ .

### 2. Prove the identity

$$\cos (2 \sin^{-1} x) = 1 - 2 x^2.$$

Let

$$\sin^{-1} x = \alpha$$
,  $\sin \alpha = x$ .

Then our identity reduces to

$$\cos 2 \alpha = 1 - 2 x^2 = 1 - 2 \sin^2 \alpha,$$

which is formula (2c) of page 116.

If we express the identity we have just proved in the form

$$2\sin^{-1} x = \cos^{-1} (1 - 2 x^2),$$

it is to be understood in the sense that each value of the inverse

function  $\sin^{-1} x$  corresponds to some value of the inverse function  $\cos^{-1}(1-2x^2)$  by means of this formula, but a principal value of the one may not correspond to a principal value of the other.

### 3. Prove the identity

$$\cos(\sin^{-1} x - \sin^{-1} y) = \sqrt{1 - x^2} \cdot \sqrt{1 - y^2} + xy.$$

Let

$$\sin^{-1} x = \alpha,$$
  $\sin \alpha = x$   $(-90^{\circ} \le \alpha \le 90^{\circ}),$   
 $\sin^{-1} y = \beta,$   $\sin \beta = y$   $(-90^{\circ} \le \beta \le 90^{\circ}).$ 

Then our formula becomes

$$\cos(\alpha - \beta) = \sqrt{1 - \sin^2 \alpha} \cdot \sqrt{1 - \sin^2 \beta} + \sin \alpha \sin \beta.$$

Since  $\alpha$  and  $\beta$  are both between  $-90^{\circ}$  and  $+90^{\circ}$ , their cosines are positive and  $\sqrt{1-\sin^2\alpha}=\cos\alpha$ ,  $\sqrt{1-\sin^2\beta}=\cos\beta$ , so that the identity to be proved reduces to formula (4) of page 107.

If  $\sin^{-1} x$  and  $\sin^{-1} y$  are substituted in the above formula for  $\sin^{-1} x$  and  $\sin^{-1} y$ , we must place the  $\pm$  sign before the first term on the right.

#### **EXERCISES**

Prove the following formulas:

$$1. \tan \cot^{-1} x = \frac{1}{x}.$$

1. 
$$\tan \cot^{-1} x = \frac{1}{x}$$
 2.  $\sec \cos^{-1} x = \frac{1}{x}$ 

3. 
$$\sec^2 \tan^{-1} x = 1 + x^2$$
.

3. 
$$\sec^2 \tan^{-1} x = 1 + x^2$$
. 4.  $\cos^2 \csc^{-1} x = 1 - \frac{1}{x^2}$ .

5. 
$$\cos \sin^{-1} x = \sqrt{1 - x^2}$$
. 6.  $\sin \cos^{-1} x = \sqrt{1 - x^2}$ .

6. 
$$\sin \cos^{-1} x = \sqrt{1 - x^2}$$
.

7. 
$$\cos(2\cos^{-1}x) = 2x^2 - 1$$
.

8. 
$$\tan (2 \tan^{-1} x) = \frac{2 x}{1 - x^2}$$

9. 
$$\tan (\tan^{-1} x - \tan^{-1} y) = \frac{x - y}{1 + xy}$$

10. 
$$\sin (\sin^{-1} x + \sin^{-1} y) = x \sqrt{1 - y^2} + y \sqrt{1 - x^2}$$
.

11. 
$$\sin(\sin^{-1}x - \cos^{-1}y) = xy \pm \sqrt{(1-x^2)(1-y^2)}$$
.

12. 
$$\sin(\frac{1}{2}\cos^{-1}x) = \pm\sqrt{\frac{1-x}{2}}$$
.

13. 
$$\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x$$
.

**14.** Tan<sup>-1</sup> 
$$x = \frac{\pi}{2} - \cot^{-1} x$$
.

**15.** 
$$\operatorname{Tan}^{-1} a = \operatorname{Sin}^{-1} \frac{a}{\sqrt{1+a^2}}$$
.

Prove that the following formulas are true in the sense explained in Example 2, § 79:

**16.** 
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$$

17. 
$$\cos^{-1} x - \cos^{-1} y = \cos^{-1} (xy \pm \sqrt{1 - x^2} \sqrt{1 - y^2}).$$

18. 
$$\frac{1}{2}\cos^{-1}a = \tan^{-1}\left(\pm\sqrt{\frac{1-a}{1+a}}\right)$$
.

Prove that the following equations are true:

19. 
$$\operatorname{Tan}^{-1}\frac{1}{2} + \operatorname{Tan}^{-1}\frac{1}{3} = \frac{\pi}{4}$$

**20.** 
$$\operatorname{Sin}^{-1}\left(-\frac{5}{13}\right) - \operatorname{Sin}^{-1}\frac{12}{13} = -\frac{\pi}{2}$$

21. 
$$2 \operatorname{Tan}^{-1} \frac{2}{3} = \operatorname{Tan}^{-1} \frac{12}{5}$$
.

22. 
$$\sin^{-1} 1 - \sin^{-1} \frac{1}{2} = \sin^{-1} \frac{\sqrt{3}}{2}$$

23. 
$$\operatorname{Sin}^{-1} \frac{3}{5} + \operatorname{Sin}^{-1} \frac{15}{17} = \operatorname{Cos}^{-1} \left( -\frac{13}{85} \right)$$
.

### CHAPTER VII

## TRIGONOMETRIC EQUATIONS

80. Definitions. Equations containing trigonometric functions of unknown angles are called *trigonometric equations*. Examples of such equations with one unknown are

(a) 
$$\cos x = 1$$
, (b)  $\cos 2 x + \sin x = 1$ , (c)  $x = \tan x$ .

We may also have simultaneous trigonometric equations with two unknowns. Thus if (a, b) are the rectangular coordinates of a point we find its polar coördinates (§§ 13, 14, pp. 13–16) by solving for r and  $\theta$  the pair of equations

$$r\cos\theta = a, \qquad r\sin\theta = b.$$

We may simplify a trigonometric equation by the ordinary algebraic processes, such as clearing of fractions, transposing terms, and taking a root or a power of both sides (with the precautions explained in algebras). We may also use trigonometric transformations. Thus in example (b) of the preceding paragraph we would replace  $\cos 2x$  by  $1 - 2\sin^2 x$  in order to reduce the equation to one in a single trigonometric function of x.

A solution of an equation in one unknown, x, is a value of x for which the equation holds true. Thus for the equation  $\cos x = 0$ , solutions (in radians) are

$$x = \frac{\pi}{2}, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \cdots$$

Many trigonometric equations are like this one in possessing an infinite number of solutions, whereas algebraic equations in one unknown which are not identities have only a finite number of solutions. Although  $\cos x = 0$  has an infinite

number of solutions, it is not an identity since it is not true for all values of x in any interval. Throughout the present chapter we shall consider only equations that are not identities.

## 81. Simple examples. The equations

$$\sin x = a$$
,  $\cos x = a$ ,  $\tan x = a$ ,  $\cot x = a$ ,  $\sec x = a$ ,  $\csc x = a$ ,

have already been discussed, particularly in § 77 (p. 137). Here a is a given number, and x is found as an inverse trigonometric function of a. We obtain a principal and a secondary value of x, using the Tables if necessary, and all other solutions are derived from these by adding or subtracting multiples of 360° or  $2\pi$  radians. Certain other equations are easily reduced to this form.

Examples. — 1. Find all the solutions of  $\sin x = \cos x$ .

Divide both sides by  $\cos x$ , first noting that  $\cos x$  cannot be zero if x is to be a solution (Why?). The equation becomes

$$\tan x = 1$$
,

and our solution is  $x = \tan^{-1} 1$ , or

$$x = 45^{\circ} \pm n \cdot 360^{\circ}, \quad 225^{\circ} \pm n \cdot 360^{\circ},$$

where n is zero or any positive integer.

If we had started by squaring both sides, then using the relation  $\cos^2 x = 1 - \sin^2 x$ , we could have proceeded as follows:

$$\sin^2 x = \cos^2 x,$$
  
 $\sin^2 x = 1 - \sin^2 x,$   
 $2\sin^2 x = 1,$   
 $\sin x = \pm \sqrt{\frac{1}{2}}.$ 

This seems to give additional solutions  $x = 135^{\circ}$ ,  $315^{\circ}$ ,  $\cdots$ , but in algebra we learn that squaring both sides of an equation, or multiplying both sides by an expression containing the unknown, is allowable only if we test all solutions of the new equation by substitution in the original equation, retaining only those that satisfy

the latter. In the example we are considering, this test would cause us to reject  $x = 135^{\circ}$ ,  $315^{\circ}$ ,  $\cdots$ , and retain those noted in the preceding paragraph.

2. Find in radians all the solutions of  $2 \sin 2 x = 1$  that lie between 0 and  $2 \pi$ .

We have

$$\sin 2 x = \frac{1}{2},$$

$$2 x = \frac{\pi}{6} + n \cdot 2 \pi, \quad \frac{5 \pi}{6} + n \cdot 2 \pi,$$

$$x = \frac{\pi}{12} + n\pi, \qquad \frac{5 \pi}{12} + n\pi,$$

and the solutions required are obtained by taking n = 0 and n = 1. This gives

$$x = \frac{\pi}{12}, \quad \frac{5 \pi}{12}, \quad \frac{13 \pi}{12}, \quad \frac{17 \pi}{12}.$$

3. Find in degrees and minutes all positive solutions less than 180° of

$$\sin^2 x - 4\cos^2 x + 2 = 0.$$

We use the relation  $\sin^2 x = 1 - \cos^2 x$  and proceed as follows:

$$\sin^2 x - 4\cos^2 x + 2 = 0,$$

$$1 - \cos^2 x - 4\cos^2 x + 2 = 0,$$

$$-5\cos^2 x = -3,$$

$$\cos^2 x = \frac{3}{5} = .6000,$$

$$\cos x = \pm \sqrt{.6000} = \pm .7746.$$

Hence, from Table II, one solution is  $39^{\circ} 14'$ ; the other solution is  $180^{\circ} - 39^{\circ} 14' = 140^{\circ} 46'$ .

82. Factorable equations. As in algebra, we may solve an equation in which one side is the product of two or more expressions and the other side is zero, by equating to zero each factor that contains an unknown. Sometimes one or

more of the identities of Chapter V will serve to reduce an equation to factorable form.

Examples. — 1. Find all solutions of  $2 \sin^2 \theta = \sin \theta$  such that  $0^{\circ} \leq \theta \leq 180^{\circ}$ .

We can write this equation in the forms

$$2 \sin^2 \theta - \sin \theta = 0,$$
  
 
$$\sin \theta (2 \sin \theta - 1) = 0.$$

Both factors give solutions.

It would have been a mistake to cancel the common factor  $\sin \theta$  in the original equation and solve only the equation  $2 \sin \theta = 1$ . The student must be on his guard against thus throwing away solutions. Our problem is now to solve the two equations

$$\sin\theta = 0, \qquad 2\sin\theta - 1 = 0.$$

The solutions required are

$$\theta = 0^{\circ}, 180^{\circ}, 30^{\circ}, 150^{\circ}.$$

2. Find in radians all positive solutions less than  $\pi$  of

$$\cos x + \cos 2 x + \cos 3 x = 0.$$

We begin by using formula (7) of page 122 in order to change the sum  $\cos x + \cos 3x$  into a product:

$$\cos x + \cos 3 x = 2 \cos 2 x \cos x.$$

The given equation is then solved as follows:

$$\cos x + \cos 2 x + \cos 3 x = 0,$$

$$2\cos 2 x \cos x + \cos 2 x = 0,$$

$$\cos 2 x (2\cos x + 1) = 0,$$

$$\cos 2 x = 0, \qquad 2\cos x + 1 = 0,$$

$$x = \frac{\pi}{4}, \quad \frac{3\pi}{4}, \quad \frac{2\pi}{3}.$$

83. Equations reducible to quadratic form. An equation such as  $\sin^2 x - 3 \sin x + 2 = 0$ , which contains but one trigonometric function of the unknown and is of second

degree in that function, can first be solved for the function by factoring or by other algebraic means. The problem is thus reduced to that of solving simple equations of the type  $\sin x = a$ , discussed in § 81.

For example, the equation

$$\sin^2 x - 3\sin x + 2 = 0$$

can be written in factored form

$$(\sin x - 2) (\sin x - 1) = 0.$$

When each factor is put equal to zero we note that  $\sin x - 2 = 0$  has no solutions, while  $\sin x - 1 = 0$  gives

$$x = 90^{\circ} \pm n \, 360^{\circ}$$
.

In many cases an equation may be reduced by algebraic or trigonometric transformations to the type discussed in the preceding paragraph.

Examples. — 1. Find all solutions of

$$\sin \theta + 2\cos \theta = 2$$

such that  $0^{\circ} \leq \theta \leq 180^{\circ}$ .

We reduce this equation to quadratic form by transposing the term  $2\cos\theta$  to the right side, squaring both sides, and replacing  $\sin^2\theta$  by  $1-\cos^2\theta$ . We have

$$\sin \theta + 2 \cos \theta = 2,$$
  
 $\sin \theta = 2 (1 - \cos \theta),$   
 $\sin^2 \theta = 4 (1 - \cos \theta)^2,$   
 $1 - \cos^2 \theta = 4 - 8 \cos \theta + 4 \cos^2 \theta,$   
 $5 \cos^2 \theta - 8 \cos \theta + 3 = 0,$   
 $(\cos \theta - 1) (5 \cos \theta - 3) = 0,$   
 $\cos \theta = 1, \cos \theta = .6,$   
 $\theta = 0^\circ, 53^\circ 8'.$ 

We must, however, test both these values in the original equation since we squared both sides at the second step. It will be found that the two values for  $\theta$  are actually solutions.

### 2. Find all solutions of

$$\cos 2\theta + 6\cos^2\frac{\theta}{2} - 4 = 0$$

that lie between  $-90^{\circ}$  and  $+90^{\circ}$ .

This equation is reduced to a quadratic in  $\cos \theta$  by using formulas given in Chapter V. We proceed as follows:

$$\cos 2\theta + 6\cos^2\frac{\theta}{2} - 4 = 0,$$

$$2\cos^2\theta - 1 + 6\frac{1 + \cos\theta}{2} - 4 = 0,$$

$$2\cos^2\theta + 3\cos\theta - 2 = 0,$$

$$(2\cos\theta - 1)(\cos\theta + 2) = 0,$$

$$\cos\theta = \frac{1}{2},$$

$$\theta = 60^{\circ}, -60^{\circ}.$$

The factor  $\cos \theta + 2$  yields no solution, since  $\cos \theta$  cannot equal -2.

#### **EXERCISES**

Find, both in degrees and in radians, all solutions of the following equations.

1. 
$$2\cos\theta + 1 = 0$$
.

**2**. 
$$1 + 2 \sin \theta = 0$$
.

3. 
$$\tan^2 x - 3 = 0$$
.

4. 
$$3 \tan^2 \theta - 1 = 0$$
.

5. 
$$\sin \theta = 2 \cos \theta$$
.

6. 
$$\cos \theta = 2 \sin \theta$$
.

For the following equations find all solutions such that  $0 \le x \le 360^{\circ}$ .

7. 
$$\sin 2 x = 2 \sin x$$
.

8. 
$$\tan 2x = 2 \tan x$$
.

9. 
$$\sin 2x - \cos x = 0$$
.

10. 
$$\sin x + \cos 2x = 1$$
.

11. 
$$\cos 4x - \cos 2x = 0$$
.

12. 
$$\sin 3x + \sin x = 0$$
.

13. 
$$\sin (x + 60^{\circ}) = \sin x$$
.

14. 
$$\cos(x-30^\circ) + \cos x = 0$$
.

15. 
$$\sin x - \sin 2x + \sin 3x = 0$$
.

16. 
$$\cos 3x + \sin 2x - \cos x = 0$$
.

17. 
$$\tan^2 x + 2 = 3 \tan x$$
.

18. 
$$2\cos^2 x + 3 = 5\cos x$$
.

19. 
$$\csc x - \sin x = \frac{5}{6}$$
.

**20.** 
$$\sec x + 2\cos x = 3$$
.

**21**. 
$$\cos 2x + \cos x + 1 = 0$$
.

22. 
$$\cos 2x - 2\sin x + \frac{1}{2} = 0$$
.

For the following equations find all solutions  $\theta$  such that  $-90^{\circ} \leq \theta \leq 90^{\circ}$ .

23. 
$$\sin \theta + \sin 3 \theta = \cos \theta - \cos 3 \theta$$
.

$$24. \sin 4\theta - \sin 2\theta = \cos 3\theta.$$

**25**. 
$$\sin (\theta - 60^{\circ}) - \sin (\theta + 60^{\circ}) + \frac{1}{2}\sqrt{3} = 0$$
.

**26.** 
$$\sec (\theta + 120^{\circ}) + \sec (\theta - 120^{\circ}) = 2 \cos \theta.$$

**27.** 
$$\tan^2 \theta + 4 \sin^2 \theta = 3$$
. **28.**  $\cot 2\theta = \tan \theta - \cot \theta$ .

**29.** 
$$2\cos\frac{\theta}{2} = -\csc\theta - \cot\theta$$
. **30.**  $\sin^4\theta + \cos^4\theta = \frac{1}{2}$ .

31. 
$$2\cos\theta - \sin\theta = 1$$
. 32.  $2\sin\theta + \cos\theta = 2$ .

31. 
$$2\cos\theta - \sin\theta = 1$$
. 32.  $2\sin\theta + \cos\theta = 2$ . 33.  $8\sin\theta + \cos\theta = 7$ . 34.  $4\sin\theta - 7\cos\theta = 1$ .

**35.** 
$$\cos 3 \theta = 4 \cos^2 \theta$$
. **36.**  $\sin 3 \theta + 4 \sin^2 \theta = 0$ .

 $\Rightarrow$  84. The type a sin  $x + b \cos x = c$ . If we make the substitutions

(1) 
$$a = r \cos \alpha, \quad b = r \sin \alpha,$$

the left side of our equation becomes

$$r\cos\alpha\sin x + r\sin\alpha\cos x = r(\sin x\cos\alpha + \cos x\sin\alpha)$$
  
=  $r\sin(x + \alpha)$ .

We now proceed as follows:

(2) 
$$r \sin (x + \alpha) = c,$$
$$\sin (x + \alpha) = \frac{c}{r},$$
$$x = \sin^{-1} \frac{c}{r} - \alpha.$$

In order to express r and  $\alpha$  in terms of a and b we square and add equations (1) obtaining

$$r^2 = a^2 + b^2,$$
  $r = \sqrt{a^2 + b^2},$   $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}},$   $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}.$ 

These equations determine values of r and  $\alpha$  that are to be used in (2).

Example. — Solve the equation  $4 \sin x - 7 \cos x = 1$  (Ex. 34, p. 150).

Here we have

$$r = \sqrt{4^2 + (-7)^2} = \sqrt{65},$$

$$\cos \alpha = \frac{4}{\sqrt{65}}, \quad \sin \alpha = \frac{-7}{\sqrt{65}}.$$

From the last two equations we see that  $\alpha$  terminates in the fourth quadrant. From (2),

$$x = \sin^{-1} \frac{1}{\sqrt{65}} - \sin^{-1} \frac{-7}{\sqrt{65}}$$
$$= \sin^{-1} \frac{1}{\sqrt{65}} + \sin^{-1} \frac{7}{\sqrt{65}}.$$

Hence

$$x = \operatorname{Sin}^{-1} \frac{1}{\sqrt{65}} + \operatorname{Sin}^{-1} \frac{7}{\sqrt{65}} \pm n \, 360^{\circ}$$
or
$$180^{\circ} - \operatorname{Sin}^{-1} \frac{1}{\sqrt{65}} + \operatorname{Sin}^{-1} \frac{7}{\sqrt{65}} \pm n \, 360^{\circ}$$

$$= 67^{\circ} \, 23' \pm n \, 360^{\circ} \quad \text{or} \quad 233^{\circ} \, 8' \pm n \, 360^{\circ}.$$

**★85.** Approximate solutions. Many equations cannot be solved by the methods of the preceding sections. We can, however, often obtain approximate solutions, either graphically or with the aid of the Tables.

For example, let us find solutions of the equation

$$2x - \tan x = 0$$

such that  $-\frac{\pi}{2} < x < \frac{\pi}{2}$ , x being measured in radians. If we draw the graphs of the equations y = 2x and  $y = \tan x$  (see Fig. 87 (p. 152) where distances on the x-axis represent radians) the abscissas of their points of intersection will furnish solutions. This follows from the fact that if

 $(x_1, y_1)$  is a point of intersection, we shall have  $y_1 = 2 x_1$ and  $y_1 = \tan x_1$ , so that  $2x_1 - \tan x_1 = y_1 - y_1 = 0$ . The fig-



ure shows that there are three such intersection points in the interval we are considering. The corresponding values of x, which are solutions of our equation, can be measured and will be found to be

$$x = 0$$

and the two approximate values

$$x_1 = 1.15, \quad x_2 = -x_1 = -1.15.$$

We could obtain  $x_1$  (and  $x_2$ , which is equal to  $-x_1$ ) more exactly by using the Tables. For we have  $\tan x_1 = 2x_1$ ; thus, we are to find an

angle whose tangent is twice its radian measure. By comparing the radian column of Table II with the tangent column we see that tan x is less than 2 x until x becomes greater than 1.1636. We have, from the Tables,

if 
$$x = 1.1636$$
, then  $2x - \tan x = +.009$ ;  
if  $x = 1.1665$ , then  $2x - \tan x = -.004$ .

The principle of proportional parts would place  $x_1$ , for which  $2x - \tan x$  equals zero, 4/13 of the way from 1.1665 to 1.1636. This gives

$$x_1 = 1.1665 - (\frac{4}{13} \times 29) = 1.1656.$$

#### **EXERCISES**

Solve for all values of  $\theta$  such that  $0^{\circ} \leq \theta \leq 180^{\circ}$ :

**1.** 
$$\sin \theta - 8 \cos \theta = 7$$
. **2.**  $8 \sin \theta + \cos \theta = 7$ .

2. 
$$8\sin\theta + \cos\theta = 7$$

3. 
$$3\sin\theta + 4\cos\theta = 3$$
.

3. 
$$3 \sin \theta + 4 \cos \theta = 3$$
. 4.  $5 \sin \theta - 12 \cos \theta = 9$ .

**5.** 
$$5 \sin \theta - 12 \cos \theta = 13$$
. **6.**  $3 \sin \theta - 4 \cos \theta = 5$ .

6. 
$$3\sin\theta - 4\cos\theta = 5$$
.

In the following equations 7 to 12, x is measured in radians.

Find all solutions such that  $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ .

7. 
$$3x = 2 \tan x$$
.

8. 
$$4x = \tan x$$
.

7. 
$$3x = 2 \tan x$$
.  
8.  $4x = \tan x$ .  
9.  $x + 1 = \tan x$ .  
10.  $3x - 1 = \tan x$ .

10. 
$$3x - 1 = \tan x$$

11. 
$$x - \frac{1}{2}\sin x = \frac{1}{4}$$
.

11. 
$$x - \frac{1}{2}\sin x = \frac{1}{4}$$
. 12.  $2x = \cos x + \frac{\pi}{4}$ .

13. In a circle whose radius is 10 in., how long is a chord that subtends a segment of area 100 sq. in. (§ 74, p. 132)?

14. In a circle whose center is at O, a sector AOB has twice the area of the triangle AOB. Find the angle AOB.

15. An arc of a circle (greater than a semicircumference) is twice as long as its chord. Find the subtended angle.

16. A segment of a circle has an area equal to one-fourth that of the circle. What is the ratio of its arc to the circumference?

### CHAPTER VIII

### LOGARITHMS

When a computation requires a long multiplication or division, the raising of a number to a power, the extraction of a root, or a succession of such operations, the work may be shortened and the probability of an important error lessened by the use of logarithms.

The theory of logarithms rests directly on the theory of exponents. We therefore start our discussion of the former by a brief review of the latter.

86. Exponents. The reader will recall that by definition  $10^2 = 10 \times 10$ ,  $10^3 = 10 \times 10 \times 10$ ,  $10^5 = 10 \times 10 \times 10 \times 10 \times 10$ . It follows that

$$10^2 \times 10^3 = 10^5$$
,  $\frac{10^5}{10^2} = 10^3$ ,  $\frac{10^2}{10^5} = \frac{1}{10^3}$ .

These three equations are examples of the general laws of algebra contained in the formulas

$$a^{m} \times a^{n} = a^{m+n};$$

(2) 
$$\frac{\mathbf{a}^{\mathbf{m}}}{\mathbf{a}^{\mathbf{n}}} = \mathbf{a}^{\mathbf{m}-\mathbf{n}} = \frac{1}{\mathbf{a}^{\mathbf{n}-\mathbf{m}}}.$$

Here and throughout this chapter we shall assume that the base a is positive; the exponents m and n are any real numbers.

It follows from the preceding paragraph that

$$(10^3)^2 = 10^3 \times 10^3 = 10^6;$$
  $(10^5)^3 = 10^{15}.$ 

These are special cases of the general law,

(3) 
$$(a^{m})^{n} = a^{mn}$$
.

We next recall the use of fractional exponents. The definition of a fractional power is to be so made that laws (1), (2), and (3) hold. By (3) we must have  $(10^{1/2})^2 = 10$ ; hence  $10^{1/2}$  must be a square root of 10. The general definition is as follows: If r is a positive integer, then  $(a)^{1/r}$  is the positive rth root of a. This is written

(4) 
$$(a)^{1/r} = \sqrt[r]{a}.$$

Again by (3) we have  $(10^3)^{1/2} = 10^{3/2}$  and  $(10^{1/2})^3 = 10^{3/2}$ ; hence  $10^{3/2}$  may be expressed, by virtue of (4), in either of the forms  $(10^{1/2})^3 = (\sqrt{10})^3$  or  $(10^3)^{1/2} = \sqrt{10^3}$ . The corresponding general formula is

(5) 
$$a^{p/r} = \sqrt[r]{a^p} = (\sqrt[r]{a})^p.$$

The definition of a negative power is guided by equations (2). Taking m = 0 we have

(6) 
$$a^{-n} = \frac{1}{a^n}.$$

A definition of the zero power may be arrived at as follows. By (2),  $10^3/10^3 = 10^0$ ; but a number divided by itself gives 1, so that  $10^3/10^3 = 1$ ; hence  $10^0 = 1$ . The general definition is

$$a^0 = 1.$$

The definition of an irrational power is too complicated to explain here in detail. It will suffice to say that if m is an irrational number which is closely approximated by a rational number m', then  $a^m$  is closely approximated by  $a^{m'}$ . Thus, since  $\sqrt{2} = 1.414 \cdot \cdot \cdot = 1414/1000$  approximately, we have  $a^{\sqrt{2}} = a^{1414/1000}$  approximately.

Example. — Let us find the values of a few powers of 10. We shall take a set of exponents of which the first is 1, and each thereafter is equal to half of its predecessor. Since by (5)

$$a^{p/2} = \sqrt{a^p},$$

each of our numbers will be the square root of the one before it. We have

$$10^{1} = 10,$$

$$10^{.5} = 10^{1/2} = \sqrt{10} = 3.1623,$$

$$10^{.25} = 10^{1/4} = (10^{1/2})^{1/2} = \sqrt{10^{1/2}} = \sqrt{3.1623} = 1.7783,$$

$$10^{.125} = 10^{1/8} = \sqrt{1.7783} = 1.3335,$$

$$10^{.0625} = 10^{1/16} = \sqrt{1.3335} = 1.1548,$$

$$10^{.03125} = 10^{1/32} = \sqrt{1.1548} = 1.0746.$$

The values in the right members are correct to five significant figures.

If from the last result,

$$10^{.03125} = 1.0746,$$

we form successive powers by multiplying each member by itself repeatedly, we get

$$10^{.06250} = 1.1548,$$
  
 $10^{.09375} = 1.2409,$   
 $10^{.12500} = 1.3335,$   
 $10^{.15625} = 1.4330,$ 

and so on. If we continue the process, the thirty-second equation will be  $10^1 = 10$ . We thus have 31 numbers between 1 and 10 expressed as powers of 10. We note that as the numbers on the right increase in these equations the exponents in the left members also increase. Also we remark that the exponents all lie between 0 and 1, and the numbers on the right between 1 and 10.

87. Expressing numbers as powers of 10. A very important fact at the basis of the theory of logarithms is contained in the following statement:

Theorem. Every positive number can be expressed as a power of 10, and there is only one power of 10 which will yield a given number.

A complete proof of this statement cannot be given here. The theorem is made very plausible, however, as follows. In the ex-

ample in § 86, we see how 31 numbers between 1 and 10 are expressed as powers of 10. If we carry out the extraction of square roots in that example for five more steps we will have the value of 10<sup>1/1024</sup>. From this we obtain, on taking successive powers in the manner indicated in the example, 1023 numbers (instead of 31) between 1 and 10 expressed as powers of 10. If we carry out the extraction of square roots to a total of 20 steps and then form successive powers, we have over a million numbers between 1 and 10 expressed as powers of 10. It thus becomes apparent that any number between 1 and 10 can at least be very closely approximated by a power of 10. And since when the numbers increase the corresponding exponents increase, there will be only one exponent which will yield a given number.

As for numbers not between 1 and 10, consider first two typical examples. We may write

$$1154.8 = 1.1548 \times 10^3 = 10^{.0625} \times 10^3 = 10^{3.0625}$$
  
 $.011548 = 1.1548 \div 10^2 = 10^{.0625} \times 10^{-2} = 10^{.0625-2}$ 

Since any positive number can be expressed similarly as the product of an integral power of 10 and a number between 1 and 10, it can likewise be expressed as a power of 10.

88. Definition of the logarithm of a number. If a number N is expressed as a power of 10,

$$N = 10^x,$$

then the exponent, x, is called the logarithm of N (to the base 10); in symbols we write,

$$\log N = x$$
.

Thus by definition

$$10^{\log N} = \mathbf{N}.$$

An immediate consequence of the theorem of the preceding section is the following:

THEOREM. Every positive number N has one and only one logarithm (to the base 10).

Another consequence of the discussion in the preceding section is that if one number is greater than another its logarithm is also greater.

No power of 10 yields a negative number; hence negative numbers do not have logarithms.

As examples of logarithms, we may write the following pairs of equivalent statements:

$$10 = 10^{1}$$
,  $\log 10 = 1$ ;  
 $100 = 10^{2}$ ,  $\log 100 = 2$ ;  
 $1000 = 10^{3}$ ,  $\log 1000 = 3$ ;  
 $1 = 10^{0}$ ,  $\log 1 = 0$ ;  
 $0 = 10^{-1}$ ,  $\log 1 = -1$ ;  
 $0 = 10^{-2}$ ,  $\log .01 = -2$ .

Similarly the final equations of the example in § 86 (p. 156) may be written in the equivalent forms,

$$\log 1.0746 = .03125,$$
  
 $\log 1.1548 = .06250,$   
 $\log 1.2409 = .09375,$   
 $\log 1.3335 = .12500,$   
 $\log 1.4330 = .15625.$ 

Note. It is sometimes useful to replace 10 by some other number in the definition of a logarithm. The more general definition is, if

$$N = a^x$$

then x is the logarithm of N to the base a, and we write

$$\log_a N = x.$$

For computational purposes the base 10 is most convenient. For theoretical purposes in higher mathematics a base called e, where

$$e=2.71828\cdot\cdot\cdot,$$

is simplest to use. Logarithms to the base 10 are called *common* logarithms; to the base *e natural* logarithms.

#### EXERCISES

Find values of the following:

1. 
$$3^2 \times 3^3$$
;  $(3^2)^3$ ;  $(3^2)^{1/2}$ ;  $(8^{1/3})^2$ ;  $8^{-2/3}$ .

**2**. 
$$2^3 \times 2^2$$
;  $(2^3)^2$ ;  $(2^3)^{1/3}$ ;  $(9^{1/2})^3$ ;  $9^{-3/2}$ .

**3.** 
$$10^{.375}$$
. (*Hint*.  $10^{.375} = 10^{.25} \times 10^{.125}$ ; see § **86**.)

- 89. Fundamental laws of logarithms. The great usefulness of logarithms arises from the following fundamental laws, which are proved below:
- I. The logarithm of the product of two numbers equals the sum of the logarithms of the factors. Stated in symbols,

$$\log \mathbf{M} \mathbf{N} = \log \mathbf{M} + \log \mathbf{N}.$$

II. The logarithm of the quotient of two numbers equals the logarithm of the dividend minus the logarithm of the divisor. Symbolically,

(2) 
$$\log \frac{\mathbf{M}}{\mathbf{N}} = \log \mathbf{M} - \log \mathbf{N}.$$

III. The logarithm of the **n**th power of a number equals **n** times the logarithm of the number. That is,

$$\log \mathbf{M}^{n} = n \log \mathbf{M}.$$

IV. The logarithm of the rth root of a number is one rth of the logarithm of the number. Symbolically,

(4) 
$$\log \sqrt[r]{\overline{M}} = \frac{1}{r} \log M.$$

The proofs of these theorems are as follows:

By definition

(5) 
$$M = 10^{\log M}, \qquad N = 10^{\log N},$$

and

$$MN = 10^{\log MN}.$$

But from (5) we have, by the first rule of exponents, (1), § 86 (p. 154),

$$MN = 10^{\log M + \log N}.$$

Since there is only one power of 10 which equals MN, we therefore have

$$\log MN = \log M + \log N,$$

which is Law I.

Similarly, by definition,

$$\frac{M}{N} = 10^{\log \frac{M}{N}}.$$

But from (5) and the second rule of exponents, (2), § 86 (p. 154), we have

$$\frac{M}{N} = \frac{10^{\log M}}{10^{\log N}} = 10^{\log M - \log N}.$$

Hence

$$\log \frac{M}{N} = \log M - \log N,$$

which is Law II.

To prove the third law, we note first that by definition

$$M^n = 10^{\log M^n}.$$

And secondly, from (5) and the third rule of exponents, (3), § 86 (p. 154), we have

$$M^n = (10^{\log M})^n = 10^{n \log M}.$$

Hence

$$\log M^n = n \log M,$$

which is Law III.

The fourth law follows from the third since, by (4), § 86 (p. 155),

$$\sqrt[r]{M} = M^{1/r}.$$

For we have

$$\log \sqrt[r]{M} = \log M^{1/r} = \frac{1}{r} \log M.$$

Note. The preceding laws are true whatever base of logarithms is used. To prove them for a base a, we simply replace 10 by a throughout the argument.

Example. — A very simple application of the first law is the following. We have (p. 158)

$$\log 10 = 1$$
,  $\log 1.433 = .15625$ .

Since

$$14.33 = 10 \times 1.433,$$

it follows that

$$\log 14.33 = \log 10 + \log 1.433 = 1.15625.$$

Similarly

$$\log 143.3 = \log 100 + \log 1.433 = 2.15625,$$
  
 $\log .1433 = \log .1 + \log 1.433 = -1 + .15625,$   
 $\log .01433 = \log .01, + \log 1.433 = -2 + .15625,$   
 $\log .001433 = \log .001 + \log 1.433 = -3 + .15625.$ 

#### **EXERCISES**

Find the values of the following logarithms by use of the values given on page 158:

| <b>1</b> . log 10.746, | <b>2</b> . log 11.548, | <b>3</b> . log 12.409, |
|------------------------|------------------------|------------------------|
| $\log 107.46$ ,        | log 115.48,            | log 124.09,            |
| $\log 1074.6,$         | log 1154.8,            | log 1240.9,            |
| $\log 10746$ ,         | log 11548,             | log 12409,             |
| $\log 107460.$         | log 115480.            | log 124090.            |

 4. log .10746,
 5. log .11548,
 6. log .12409,

 log .010746,
 log .011548,
 log .0124092,

 log .00010746,
 log .00011548,
 log .000124092,

 log .00011548.
 log .000124092.

**7**. (a)  $\log 10.746^3$ ; (b)  $\log \sqrt{107.46}$ . **8**. (a)  $\log 1.1548^{10}$ ; (b)  $\log \sqrt[3]{115.48}$ .

90. Characteristic and mantissa. In this section we shall understand that all numbers are written in decimal form.

As indicated on page 158, the logarithms of the numbers 10, 100, 1000, . . . are the positive integers 1, 2, 3, . . .; the logarithm of 1 is 0; and the logarithms of .1, .01, .001, . . . are the negative integers -1, -2, -3, . . . The logarithm of any other positive number can be expressed as the sum of an integral part and a positive decimal part. The integral part is called the *characteristic*, the decimal part the *mantissa* of the logarithm of the number.

In the example at the end of the last section we had

 $\log 1.433 = 0.15625,$   $\log .1433 = -1 + .15625,$   $\log 14.33 = 1.15625,$   $\log .01433 = -2 + .15625,$   $\log 143.3 = 2.15625,$   $\log .001433 = -3 + .15625.$ 

The characteristics are 0, 1, 2 in the first column, -1, -2, -3 in the second. The mantissas are all the same, .15625.

The logarithm of any number between 1 and 10 lies between log 1 and log 10, that is, between 0 and 1. Hence, the characteristic of the logarithm of any number between 1 and 10 is 0.

To get a general rule for finding the characteristic let us first recall from arithmetic that by *units' place* in a number we mean the first place to the left of the decimal point when the number is written in decimal notation. Thus for each of the numbers 4.2, 34, and 604.71, the digit 4 is in units' place.

Suppose now that, for a given number N, in going from the

first significant figure to units' place we move 4 places to the right; then the number can be expressed as  $10^4 N'$  where N' is a number between 1 and 10. Thus  $14330 = 10^4 \times 1.433$ . Hence

$$\log N = \log 10^4 + \log N' = 4 + \log N';$$

the characteristic of  $\log N$  is 4.

Suppose next that in going from the first significant figure of N to units' place we move 4 places to the left; then the number can be expressed as  $10^{-4} N'$ , where N' is between 1 and 10. Thus  $.0001433 = 10^{-4} \times 1.433$ . Hence

$$\log N = \log 10^{-4} + \log N' = -4 + \log N';$$

the characteristic of  $\log N$  is -4.

The reasoning in the last two paragraphs is obviously general in character. If we replace 4 by k we get the following rule:

To find the characteristic of log N, first find how far it is from the first significant figure of N to units' place. If it is

k places to the right, the characteristic is k, k places to the left, the characteristic is -k.

Thus the characteristic of log 9.3 is 0; of log 93,000,000 is 7; of log .123 is -1; and of log .000005 is -6.

Another rule sometimes used in finding the characteristic is as follows: If in a number N there are n digits to the left of the decimal place, the characteristic of  $\log N$  is n-1. If the number N is less than 1 the characteristic is negative and one greater than the number of zeros between the decimal point and the first significant figure in N.

From the preceding paragraphs we see that the mantissa of  $\log N$  is  $\log N'$  where N' is the number between 1 and 10 which is obtained from N by merely shifting the decimal point to the proper place. Hence the mantissa depends only

on the succession of digits in N, and not at all on the position of the decimal point. Accordingly the decimal point may be ignored when one looks for the mantissa. The mantissa is found from a table of logarithms, as explained in the next section.

When the characteristic is negative care must be taken in writing the logarithm. Thus it would be a mistake to write

$$\log .1433 = -1.15625,$$

for the number in the right member equals -1 - .15625, and not the correct value -1 + .15625. One commonly used way of writing the logarithm is  $\overline{1}.15625$ , it being understood that only the characteristic is affected by the negative sign. Another method is to use such relations as

$$-1 = 9 - 10$$
 or  $-1 = 19 - 20$ ,

and write

$$\log .1433 = 9.15625 - 10 = 19.15625 - 20.$$

In this book we shall adopt the latter system, in which the negative characteristic is expressed as a positive integer minus a multiple of 10.

Note. By reviewing this section it may be seen that if another base of logarithms than 10 were used we would not have such simple rules for finding the characteristic and mantissa. It is because of this relative simplicity that the base 10 is generally used in computation.

91. Finding logarithms from a table. A table of logarithms gives approximate values of the mantissas for a set of numbers. Thus in Table III the mantissas are given correct to four decimal places for the integers from 100 to 999. In Table VII they are given to five places for the integers 1 to 100 and 1000 to 10009. The direct use of the Tables is illustrated in the following examples.

Examples. — 1. To find log 320 to four places.

From the rule we find that the characteristic is 2. For the mantissa turn to Table III. We go down the column headed N to the number 32, across the row to the column headed 0 and find 5051. When the decimal point, which is omitted in the Table for simplicity in printing, is placed ahead of the first 5, this is the mantissa. Hence

 $\log 320 = 2.5051$  to four places.

## 2. To find log 325 to four places.

In this case go across in the row 32 to the column headed 5 and find 119. The first figure of log 320 which occurs at the beginning of the row 32 in column 0 is understood to precede this, so that the mantissa is .5119; hence

$$\log 325 = 2.5119.$$

## 3. To find log .507 to four places.

To go from the first significant figure, 5, to units' place we move one place to the left; hence the characteristic is -1. In Table III, in row 50 go across to column 7, and find \*050; this is *not* to be preceded by the first figure, 6, in log 500; the \* calls attention to a change, and we are to take the first figure, 7, of logarithms in the next row. Thus the mantissa is .7050, and we have

$$\log .507 = 9.7050 - 10.$$

### 4. To find log .06378 to four places.

We may form the little table to the N log N right by reference to Table III. The 637 8041 required logarithm is .8 of the way from 637.8 log 637 toward log 638. Hence we must 638 8048 add .8 of the difference 8048 - 8041 as

a correction to 8041; the correction is therefore  $.8 \times 7 = 5.6 = 6$  approximately. The same correction could be found in the marginal table on the right in row 63 and column 8. We add the correction and put in the decimal point to get the mantissa. The characteristic being -2, we have the result

$$\log .06378 = 8.8047 - 10.$$

## 5. To find log 4680 to five places.

Turn to Table VII (p. 81). In column N go down to row 468 and in column 0 find 67025. The decimal point is to be placed before the 6 to give the mantissa. Since the characteristic is 3 we have

$$\log 4680 = 3.67025.$$

# 6. To find log .4691 to five places.

On page 81 in row 469 and column 1 we find 127. This is to be preceded by the first two digits 67 of  $\log 4680$ , giving 67127. Since the characteristic is -1, we have the result

$$\log .4691 = 9.67127 - 10.$$

## 7. To find log .04679 to five places.

On page 81, in row 467 and column 9 we find \*015. If it were not for the \* we would place the two digits 66 of column 0 before these three, but the \* indicates a change to 67 which occurs in the following row. The characteristic being -2, we have

$$\log .04679 = 8.67015 - 10.$$

## 8. To find log 15897 to five places.

From page 75 of the Tables we form the little table shown to the

| right. We must interpolate. The re-             |        |          |
|-------------------------------------------------|--------|----------|
| quired logarithm is .7 of the way from          | N      | $\log N$ |
| 20112 to 20140. Hence we must add               | 1589.0 | 20112    |
| to the former the correction found by           | 1589.7 |          |
| taking .7 of the difference 20140 -             | 1590.0 | 20140    |
| $20112 = 28$ , that is, $.7 \times 28 = 19.6 =$ |        |          |

20 approximately. This correction could be found by looking in the proportional parts (Prop. Pts.) table on the margin of page 75, in the Tables, in column 28 and row 7, where we find 19.6. The interpolated value of  $\log N$  is therefore 20112 + 20 = 20132. Putting in the decimal point, and observing that the characteristic is 4, we have

 $\log 15897 = 4.20132.$ 

## **EXERCISES**

Find the characteristic of the logarithm of each of the following numbers:

- 1. (a) 2.468; (b) 2468; (c) .2468; (d) .0002; (e)  $4.2 \times 10^{-6}$ .
- **2**. (a) 35.72; (b) 35720; (c) .0357; (d) .0010; (e)  $5.6 \times 10^{-3}$ .
- **3**. (a) 365.1; (b) 25000; (c) .00254; (d) .00003; (e)  $4.9 \times 10^{-9}$ .
- **4.** (a) 17; (b) 231.5; (c) .000444; (d) .31313; (e)  $2.7 \times 10^{-16}$ .

Find the logarithm of each of the following numbers by use of Table III:

- **5**. (a) 36.2; (b) .0961. **6**. (a) 481; (b) .00629.
- **7**. (a) 946; (b) .9468. **8**. (a) 85300; (b) .08532.
- **9.** (a) .002561; (b) 3194. **10.** (a) 798.2; (b) .0006398.

Find the logarithms of each of the following numbers by use of Table VII:

- **11.** (a) 174.4; (b) .8928. **12.** (a) 7477; (b) .01905.
- **13**. (a) 2189; (b) .06769. **14**. (a) 6.459; (b) .002639.
- **15**. (a) 37377; (b) .0089163. **16**. (a) 145.58; (b) .74177.
- **17**. (a) 57.546; (b) .40773. **18**. (a) 45.709; (b) .097736.

Correct the following:

- 19. (a)  $\log 9099 = .9589$ ;
  - (b)  $\log .3382 = 9.5291;$
  - (c)  $\log .004175 = 8.6206 10$ .
- **20**. (a)  $\log 478.85 = 2.67019$ ;
  - (b)  $\log .57598 = 1.76040$ ;
  - (c)  $\log .0033885 = 7.52000$ .
- 92. Finding a number whose logarithm is given. If the logarithm of a number is given and the number is required,

the steps of the preceding section are reversed, as illustrated in the following examples.

Examples. — 1. Given  $\log N = 1.9258$ . To find N.

We look in the four-place logarithm table for the mantissa .9258. On page 11 we find the corresponding number 8430, the final zero indicating that no interpolation is necessary and that the number differs from 8430 by very little, — less than 1. Since the characteristic is 1, units' place is one place to the right of the first significant figure. Hence

$$N = 84.30.$$

# 2. Given $\log N = 5.5011$ . To find N.

The mantissa .5011 is found in row 31 and column 7; it corresponds to the number 3170. Since the characteristic is 5, units' place is 5 places to the right of the 3. Hence

N = 317000 to four significant figures.

# 3. Given $\log N = 8.8080 - 10$ . To find N.

The mantissa .8080 lies between two tabulated values, 8075 and 8082, and hence we interpolate.

The given mantissa is 5/7 of the way from the first to the second of these values in the Tables. The difference of the corresponding numbers 6420 and 6430 in the

Tables is 10. Hence we add the correction  $x = 5/7 \times 10 = 7$  to 6420 and get 6427. Since the characteristic is -2, units' place is two places to the left of the 6. Hence N = .06427.

Instead of interpolating as we did, we could use the marginal table under Prop. Pts. on the right (p. 11). The difference 5 between the value 8075 in the Table and the given value 8080 is found in the row 64 in both columns 7 and 8 of this marginal table. Under the agreement to make the correction even when we have a choice, we take 8 as the fourth digit, and this is to be placed after the number 642 which corresponds to the mantissa 8075, giving 6428. Hence N = .06428.

The values of N found by the methods of the two preceding paragraphs differ by a unit in the last place. Hereafter we shall use the second method.

# 4. Given $\log N = 9.58065 - 10$ , to find N.

We look in the five-place Table for the mantissa .58065. We find

on page 79 that it lies between two tabulated values, 58058 and 58070, being 7/12 of the way from the former to the latter. The desired number is 7/12 of the way from 38070 to 38080; the correction is  $x = 7/12 \times 10 = 6$ , and thus we

$$\begin{array}{ccc}
N & \log N \\
10 \left[ x \begin{bmatrix} 38070 & 58058 \\ 58065 \end{bmatrix} ^7 \\
38080 & 58070 \end{bmatrix} ^7
\end{array}$$

get 38076. Since the characteristic is -1, the decimal point precedes the 3, and we have

$$N = .38076.$$

The interpolation could have been accomplished by use of the proportional parts (Prop. Pts.) table in the margin on page 79. The tabular difference is 58070 - 58058 = 12; the partial difference is 58065 - 58058 = 7. In the Prop. Pts. column headed 12, we find a number as near 7 as possible; it is 7.2; this occurs in row 6, which gives the correction. The interpolation should be done mentally.

93. Products and quotients found by use of logarithms. We are now ready to use the fundamental laws of logarithms (p. 159) in computations. To compute a product we find the logarithms of the factors, add them to get the logarithm of the product, then find in a table the number of which that is the logarithm.

*Examples.*—1. To find  $N=3.728\times.006378$  by use of four-place logarithms.

$$\log 3.728 = 0.5714$$

$$\log .006378 = 7.8047 - 10$$

$$\log N = 8.3761 - 10$$

$$N = .02378.$$

To compute a quotient we use Law II (p. 159). We find the logarithms of the numerator and denominator, and subtract the latter from the former, getting the logarithm of the quotient. The number of which this is the logarithm is found in the Tables; it is the required quotient.

2. To find  $N = \frac{42.73}{3697}$  by use of a four-place table of logarithms.

The characteristic of  $\log 42.73$  is written as 11 - 10 so that the subtraction will be possible without use of a negative sign except with the -10.

$$\log 42.73 = 11.6307 - 10$$

$$\log 3697 = 3.5678$$

$$\log N = 8.0629 - 10$$

$$N = .01156.$$

3. To find  $x = \frac{.38275 \times .048293}{.062191 \times 8346.8}$  by use of a five-place table of logarithms.

Calling the numerator N and the denominator D, we carry out the computation as follows:

**¥94.** Cologarithms. Division may be carried out in a slightly different way. Instead of subtracting the logarithm of the denominator, we may add the negative of that logarithm. When the latter is written so that the decimal part is positive it is called the *cologarithm* of the number. Thus

$$\operatorname{colog} N = -\log N,$$

and the law for division becomes

$$\log \frac{M}{N} = \log M + \operatorname{colog} N.$$

The following examples will show how the cologarithm is found.

Examples. — 1. To find colog 376.4 to four places.

We find  $\log 376.4 = 2.5757$ . We get the cologarithm by adding the negative of this to 10.0000 - 10:

$$-\log 376.4 = \frac{10.0000 - 10}{-2.5757}$$

$$\cos 376.4 = \frac{7.4243 - 10}{7.4243 - 10}$$

2. To find colog .006259 to five places.

$$-\log .006259 = 10.00000 - 10$$

$$-\log .006259 = -7.79650 + 10$$

$$2.20350$$

It is seen that the cologarithm may be found by starting at the left of the logarithm and subtracting each digit from 9 until we come to the last which is different from zero; this one is subtracted from 10 and the subsequent digits of the cologarithm are 0. Using this rule it is easy to write down the cologarithm directly from the Table, care being taken to include the characteristic. This work must be done mentally if cologarithms are to be used to advantage.

Example 3 of the preceding section would be solved by use of cologarithms as follows:

$$\log .38275 = 9.58292 - 10$$

$$\log .048293 = 8.68389 - 10$$

$$\operatorname{colog} .062191 = 1.20627$$

$$\operatorname{colog} 8346.8 = 6.07848 - 10$$

$$\log x = 25.55156 - 30$$

$$x = .000035609$$

95. Powers and roots. The third law of logarithms (p. 159) enables us to find a power of a number. We take the logarithm of the number, multiply it by the exponent, getting the logarithm of the power, and find the number corresponding to that logarithm.

Example. — To find  $x = (.3728)^5$ .

Using a four-place table we have

$$\log .3728 = 9.5714 - 10$$

multiplying by 5 gives

$$\log x = 47.8570 - 50$$
$$x = .007194.$$

The student should also solve this problem by use of five-place tables and obtain

$$x = .0072012.$$

The fourth law of logarithms (p. 159) is used in extracting roots. To find the rth root of a number, take the logarithm of the number, divide it by r to obtain the logarithm of the rth root, and find the corresponding number.

Example. — To find 
$$\sqrt{.3728}$$
;  $\sqrt[3]{.3728}$ .

Using five-place tables we have

$$\log .3728 = 19.57148 - 20;$$

dividing by 2 gives

$$\log \sqrt{.3728} = 9.78574 - 10,$$
$$\sqrt{.3728} = .61057.$$

Also

$$\log .3728 = 29.57148 - 30;$$

dividing by 3 gives

$$\log \sqrt[3]{.3728} = 9.85716 - 10,$$
$$\sqrt[3]{.3728} = .71972.$$

We wrote the negative characteristic in each problem in such a way that after the division the only negative part of the logarithm was -10.

**¥96.** Computations involving negative numbers. We have remarked that negative numbers do not have logarithms. To obtain a product or quotient involving negative numbers, we may find the numerical value by disregarding

the signs, then subsequently prefixing the proper sign to the result. If there was an even number of negative factors, the sign should be +, if an odd number it should be -.

### **EXERCISES**

Find the numbers whose logarithms are:

1. (a) 2.4150; (b) 0.6785; (c) 9.9562 - 10. 2. (a) 1.9031; (b) 0.6866; (c) 8.8222 - 10.

**3**. (a) 1.44091; (b) 3.83715; (c) 8.68024 - 10.

**4.** (a) 2.63144; (b) 0.80441; (c) 9.76020 - 10.

Interpolate to find the numbers whose logarithms are:

**5.** (a) 3.7508; (b) 7.6752 - 10.

**6.** (a) 4.6520; (b) 8.8278 - 10.

7. (a) 4.76010; (b) 8.45356 - 10.

**8.** (a) 7.43701; (b) 7.79010 - 10.

**9**. (a) 5.95266; (b) 7.23008 - 10.

**10**. (a) 2.07100; (b) 9.83672 - 10.

Make use of a four-place table of logarithms to find the values of the following expressions to four significant figures:

11.  $31.8 \times 561$ . 12.  $729 \times 2.45$ .

13.  $820.4 \times .06297$ . 14.  $6.233 \times .8291$ .

48.48 **16**. **15**.  $\overline{1250}$ 6060.

18.  $(3.162)^3$ .  $(1.035)^{10}$ . 17.

**20**.  $\sqrt[3]{.02847}$ . 19.  $\sqrt{375.2}$ .

**22.**  $\sqrt{\frac{.008431}{(.2572)^3}}$ 

Make use of a five-place table of logarithms to find the values of the following expressions to five significant figures:

23.  $48.279 \times .36177$ . **24**.  $828.37 \times .62593$ .

6371.826. 25.

27. 
$$(3.3333)^3$$
. 28.  $(2.7183)^5$ .  
29.  $\sqrt{47.635 \times 823.49}$ . 30.  $\sqrt[3]{\frac{57.214}{123.48}}$ .  
31.  $\frac{-6187. \times 23.46^2}{3847 \times (-31.48)^3}$ . 32.  $\frac{\sqrt[3]{-24} \times \sqrt[6]{.729}}{(-8.17) \times (-2.25)}$ .

97. Logarithms of trigonometric functions. The calculations of trigonometry may be shortened by use of logarithms. For this purpose Tables are given of the logarithms of the sine, cosine, tangent and cotangent\* of angles from 0° to 90°. In case angles outside this range are encountered we apply the formulas of §§47–53 (pp. 79–89) to express the functions in terms of angles within this range, and then use the Tables.

Table IV (p. 12) gives four-place logarithms of the functions at intervals of 10'. For angles from 0° to 45°, which are found in the first column, we read the functions at the top of other columns; for angles from 45° to 90°, found in the last column, we read the functions at the bottom. The third column, which is headed d1' gives the change in the logarithm of the sine (L Sin) for a change of 1' in the angle; this aids in interpolations. The fifth column, headed cd1', shows the common difference of the logarithms of the tangent and the cotangent for a change of 1' in the angle. The next to last column gives the corresponding difference for the logarithm of the cosine.

The characteristic which is printed in the Table must be decreased by 10, the -10 having been omitted for simplicity of printing.

Examples. — 1. To find log sin 23° 52′ to four places.

\* If one needs the logarithm of the secant or cosecant, he may recall that these functions are reciprocals of the cosine and sine respectively and hence use the relations

 $\log \sec A = \log 1/\cos A = -\log \cos A = \operatorname{colog} \cos A,$  $\log \csc A = \log 1/\sin A = -\log \sin A = \operatorname{colog} \sin A.$  On page 15 of the Tables we go down the first column to  $23^{\circ}50'$ , across to the column headed L Sin and read 9.6065. Since the difference for 1' between angles  $23^{\circ}50'$  and  $24^{\circ}00'$  is 2.8, the *correction* for 2' is  $2 \times 2.8 = 6$  approximately. And since the L Sin increases when the angle increases we add the correction. Hence

$$\log \sin 23^{\circ} 52' = 9.6071 - 10.$$

# 2. To find log tan 52° 18′ to four places.

On page 17 of the Tables we find  $52^{\circ} 10'$  in the last column; we go across to the column having L Tan at the bottom, and read 10.1098. The difference for 1' between  $52^{\circ} 10'$  and  $52^{\circ} 20'$  is 2.6. Hence the correction for 8' is  $8 \times 2.6 = 21$  approximately. Since L Tan increases when the angle increases from  $52^{\circ} 10'$  to  $52^{\circ} 20'$ , we add the correction. The final result is

$$\log \tan 52^{\circ} 18' = 10.1119 - 10 = 0.1119.$$

# 3. To find log cos 71° 33′ to four places.

On page 14 we find 71° 30′ in the last column. Going across to the column having L Cos at the bottom we read 9.5015. The difference for 1′ is 3.8 and hence for 3′ it is  $3 \times 3.8 = 11$  approximately. Since L Cos decreases when the angle increases from 71° 30′ to 71° 40′ we subtract the correction. The final result is

$$\log \cos 71^{\circ} 33' = 9.5004 - 10.$$

## 4. To find the acute angle A, given

$$\log \cot A = 8.9843 - 10.$$

On page 13 in the column having L Cot at the bottom, we find 8.9966 and 8.9836. Hence A lies between the corresponding angles  $84^{\circ} 20'$  and  $84^{\circ} 30'$ . The difference in the logarithms is (disregarding the decimal point) 9966 - 9843 = 123; since the difference for 1' is 13.0, the correction to the angle is 123/13.0 = 9'. Hence

$$A = 84^{\circ} 29'$$
.

Table VI is a five-place table of the logarithms of functions, with angles given at intervals of 1'. On each page the number of degrees in the angle is read at the top or bottom,

the number of minutes at the left or right; interpolation is necessary for parts of a minute. The angles 0° to 44° are found at the tops of the pages, 89° to 45° at the bottoms.

5. To find log sin and log cot of the angle 23° 41′ 37″.

On page 50, which has 23° printed at the top, we find  $\log \sin 23^{\circ} 41' = 9.60388$ ,  $\log \sin 23^{\circ} 42' = 9.60417$ .

The required log sin lies between these two, whose difference is 29 (see third column), the decimal point in the values of log sin being disregarded for simplicity in carrying out the interpolation. Since 1' = 60'', the correction for 37'' is 37/60 of 29. This may be found by use of the Prop. Pts. (proportional parts) tables. In the column headed 29 we find the correction for 30'' to be 14.5, and for 7'' to be 3.4; thus the total correction is 14.5 + 3.4 = 18. Since log sin increases as the angle increases from  $23^{\circ}$  41' to  $23^{\circ}$  42' the correction is added. Thus we find

$$\log \sin 23^{\circ} 41' \ 37'' = 9.60406 - 10.$$

Similarly the correction for log cot is 17.0 + 4.0 = 21. Since log cot decreases the correction is subtracted, and we get

$$\log \cot 23^{\circ} 41' 37'' = 10.35770 - 10.$$

6. To find log tan and log cos of the angle 54° 57′ 42″.

On page 62, which has 54° at the bottom, we enter the column having log tan at the bottom, go up to the row having 57 in the last column, and find

$$\log \tan 54^{\circ} 57' = 10.15397.$$

To interpolate, we note that the difference of successive values of log tan is 27. The correction for 40'' is 18.0; for 2'' it is 1/10 of that for 20''; thus for 42'' it is 18.0 + 0.9 = 19. Since log tan increases when the angle increases, this is added and we get

$$\log \tan 54^{\circ} 57' 42'' = 10.15416 - 10.$$

Similarly the correction for  $\log \cos is 12.0 + 0.6 = 13$ ; since  $\log \cos decreases$ , we have

$$\log \cos 54^{\circ} 57' 42'' = 9.75900 - 10.$$

# 7. To find the acute angle A, given

 $\log \cos A = 8.77990 - 10.$ 

On page 28, in the column having log cos at the bottom we find 8.78152 and 8.77943 corresponding to angles  $86^{\circ}32'$  and  $86^{\circ}33'$ . Hence A lies between these angles. The difference 78152 - 77990 = 162; the tabular difference in the third column is 209. Hence the correction to the angle  $86^{\circ}32'$  is 162/209 of 60''. In the Prop. Pts. tables on page 29 we find in the column headed 209 the correction 139.3 in the 40'' row; the difference 162 - 139.3 = 22.7 is nearly equal to the entry in the 7'' row, being nearer to this than to 20.9. Hence by these tables the correction is about 47'' and we have

$$A = 86^{\circ} 32' 47''$$
.

**★98.** Angles near 0° or 90°. A glance at Table VI shows that for small angles, from 0° to 2° or further, the differences in log sin, log tan, and log cot are large. It follows that interpolation will not be very accurate. The same remark applies for angles from 90° to 88° or further, for log cos, log tan, and log cot. On the other hand the differences are so small for log cos when angles are near zero that when the function is given, the angle is not well determined. For example log cos A = 9.99997 - 10 for all angles from 0° 37′ to 0° 43′. On this account, when a small angle is to be found it is desirable to use a formula, if possible, which will give the sine, tangent, or cotangent of the angle. Similarly, to determine an angle near 90° we should avoid a formula which gives its sine, but use one giving its cosine or tangent.

To increase the accuracy of interpolation for angles near 0° or 90° we use the special Table Vb (p. 22). This gives the values of log sin for angles at intervals of 10" from 0° to 3°. For angles from 0° to 3° we can find the values of log cos and log tan from the formulas

$$\log \cos A = 10 - C - 10,$$
  
$$\log \tan A = \log \sin A + C.$$

where C is a correction which is given in the Table. This formula gives an error of at most 1 in the last figure of the mantissa. For an angle from 87° to 90° use the cofunction of the complementary angle.

Examples. — 1. To find  $\log \tan 0^{\circ} 37' 43''$  by use of Table Vb

We find

$$\log \tan 0^{\circ} 37' 40'' = 8.03970 - 10,$$
  
 $\log \tan 0^{\circ} 37' 50'' = 8.04162 - 10.$ 

The difference for 10" is 192; the correction for 3" is

$$3/10 \times 192 = 57.6 = 58$$
 approximately.

Hence

$$\log \tan 0^{\circ} 37' 43'' = 8.04028 - 10.$$

2. To find B, given log tan B = 2.26170.

The angle is near 90°. Let A be its complement,  $A = 90^{\circ} - B$ . Then

$$\log \cot A = 2.26170.$$

Hence

$$\log \tan A = 10 - \log \cot A - 10$$
  
= 7.73830 - 10

From Table Vb,

$$\log \tan 0^{\circ} 18' 40'' = 7.73480 - 10$$
  
 $\log \tan 0^{\circ} 18' 50'' = 7.73866 - 10.$ 

By interpolation we find

$$A = 0^{\circ} 18' 49.07''.$$

Hence

$$B = 89^{\circ} 41' 10.93''.$$

Interpolation in Tables Vb or VI may be avoided and higher accuracy attained by use of Table Va.

3. To find log tan 0° 37′ 43″ by means of Table Va.

We have the formula  $\log \tan A = \log A' + T$  where A' is the number of minutes in the angle; here A' = 37.717. Then, by Table VII,

$$\log A' = 1.57654$$

and by Table Va

$$T = 6.46374 - 10.$$

Hence

$$\log \tan 0^{\circ} 37' 43'' = 8.04028 - 10.$$

4. To find A if  $\log \tan A = 2.26170$ , by Table Va.

The angle is near 90°. We are to use the formula  $\log \cot A =$  $T_1 + \log A_1$ , where  $A_1' = 90^{\circ} - A$  expressed in minutes. We have

$$\log \cot A = 7.73830 - 10.$$

From Table VI,  $A = 89^{\circ} 41'$  approximately. Hence  $A_1' = 19'$ approximately. From Table Va

$$T_1 = 6.46373 - 10.$$

Since

$$\log A_1' = \log \cot A - T_1$$

we have

$$\log A_1' = 1.27457.$$

From Table VII

$$A_1' = 18.818'.$$

Hence

$$A_1 = 18' \, 49.08'',$$
  
 $A = 90^{\circ} - A_1 = 89^{\circ} \, 41' \, 10.92''.$ 

#### **EXERCISES**

Find the following logarithms to four places:

- 1. (a)  $\log \sin 17^{\circ} 30'$ ; (b) log cos 43° 40′.
- (b) log cot 38° 50'. **2.** (a) log tan 18° 10′;
- (b) log cot 72° 40′. 3. (a)  $\log \tan 59^{\circ} 50'$ ;
- 4. (a)  $\log \sin 78^{\circ} 40'$ ; (b)  $\log \cos 69^{\circ} 20'$ .
- (b) log cot 68° 28'. **5**. (a)  $\log \sin 38^{\circ} 57'$ ;
- 6. (a) log tan 44° 44′; (b) log cos 61° 27′.

Find the following logarithms to five places:

- 7. (a) log sin 28° 57′; (b) log cot 78° 28′.
- 8. (a)  $\log \tan 34^{\circ} 44'$ ; (b)  $\log \cos 71^{\circ} 27'$ .
- 9. (a)  $\log \sin 18^{\circ} 27' 35''$ ; (b)  $\log \cos 68^{\circ} 49' 51''$ .

- 10. (a) log tan 75° 37′ 22″; (b) log cot 9° 46′ 57″.
- 11. (a) log sin 84° 13′ 45″; (b) log tan 6° 16′ 16″.
- **12**. (a) log cos 85° 12′ 18″; (b) log cot 4° 21′ 35″.
- **13**. log sec 67° 14′ 21″. **14**. log csc 18° 58′ 13″.

Find the following logarithms (a) by use of Table Va and (b) by use of Table Vb.

- **¥15.**  $\log \sin 1^{\circ} 2' 28''$ . **¥16.**  $\log \tan 0^{\circ} 4' 37''$ . **¥17.**  $\log \cos 88^{\circ} 48' 13.2''$ . **¥18.**  $\log \cot 89^{\circ} 28' 17.4''$ .

Find the acute angle A by use of four-place tables from each of the following equations:

- **19.** (a)  $\log \sin A = 9.4359 10$ ;
  - (b)  $\log \cot A = 9.7958 10$ .
- **20.** (a)  $\log \tan A = 1.2460$ ;
  - (b)  $\log \cos A = 9.8107 10$ .
- **21.** (a)  $\log \tan A = 8.9330 10$ ;
  - (b)  $\log \cot A = 0.4917$ .
- **22.** (a)  $\log \sin A = 8.9960 10$ ;
  - (b)  $\log \cos A = 9.7392 10$ .

Find the acute angle A by use of five-place tables from each of the following equations:

- **23.** (a)  $\log \tan A = 9.94627 10$ ;
  - (b)  $\log \cos A = 9.81250 10$ .
- **24**. (a)  $\log \sin A = 9.87670 10$ ;
  - (b)  $\log \cot A = 0.26360$ .
- (a)  $\log \sin A = 9.61761 10$ ;
  - (b)  $\log \cos A = 8.79602 10$ .
- **26.** (a)  $\log \cot A = 0.23980$ ;
  - (b)  $\log \tan A = 1.15982$ .

Find the acute angle A by use (a) of Table Va, and (b) of Table Vb, from each of the following equations:

- $\star$ 27.  $\log \sin A = 8.56191 10$ .
- $\star$  28.  $\log \tan A = 8.20202 10$ .

**¥29.**  $\log \cos A = 7.87990 - 10.$ 

**★30.**  $\log \cot A = 7.71017 - 10.$ 

 $431. \log \tan A = 2.80808.$ 

 $+32. \log \cot A = 3.10101.$ 

 $\star$  99. Change of base of logarithms. In a note at the end of § 88, we remarked that bases of logarithms other than 10 may be used. How can we find the logarithm of a number N to a base b, if its logarithm to a base a is known? We may arrive at the answer as follows:

By definition

$$b^{\log_b N} = N.$$

Take the logarithm of each number to the base a, using the third law of logarithms, § 89, to simplify the left member. We find that

$$\log_b N \cdot \log_a b = \log_a N.$$

Hence

$$\log_b N = \frac{\log_a N}{\log_a b},$$

which answers our question.

If in this formula we substitute N = a, and observe that  $\log_a a = 1$ , we have

$$\log_b a = \frac{1}{\log_a b}.$$

Hence the preceding formula is equivalent to

$$\log_b N = \log_a N \cdot \log_b a.$$

If we take a = 10, b = e, where e is the base of natural logarithms (p. 158) we have the most important special case,

$$\log_e N = \frac{\log_{10} N}{\log_{10} e} = \frac{\log_{10} N}{.43429} = 2.3026 \log_{10} N.$$

### **EXERCISES**

Find the values of the following logarithms:

- 1.  $\log_2 8$ . 2.  $\log_3 1/27$ . 3.  $\log_5 5$ .
- 4. (a) log<sub>e</sub> 4.278; (b) log<sub>e</sub> 42.78.
  5. (a) log<sub>e</sub> 3.607; (b) log<sub>e</sub> 360.7.
- 6.  $\log_e .07241$ . 7.  $\log_e .82461$ .

 $\star$ 100. The logarithmic scale. The student is familiar with an algebraic scale on a straight line; he will recall attaching numbers to points on the line in such a way that distances from a fixed point A are proportional to those numbers (Fig. 88).

$$-3$$
  $-2$   $-1$  0 1 2 3 4 5 6 7 8

Fig. 88. Algebraic scale.

If numbers are placed on a line so that the distances from a point A are proportional to the logarithms of the numbers, we have a *logarithmic scale* (Fig. 89).



Fig. 89. Logarithmic scale.

Suppose that to the points N and T the numbers  $\hat{n}$  and 10 are attached; then

$$\frac{\log n}{\log 10} = \frac{AN}{AT}.$$

If we take AT as the unit of length, we have, since  $\log 10 = 1$ ,

$$\log n = AN.$$

If the distance from A to the point marked n is designated by  $\overline{An}$ , we have:



$$\overline{A1} = \log 1 = 0;$$
 $\overline{A2} = \log 2 = .301;$ 
 $\overline{A3} = \log 3 = .477;$ 
 $\overline{A4} = \log 4 = .602;$ 
 $\overline{A6} = \log 6 = .778;$ 
 $\overline{A8} = \log 8 = .903;$ 
 $\overline{A10} = \log 10 = 1;$ 
 $\overline{A100} = \log 100 = 2.$ 

The final zero of a number beyond 10 is generally omitted in printing the scale.

★101. The slide rule. This is an instrument devised to facilitate logarithmic calculations in which not more than three-place accuracy is required.\* It consists of two parts shaped like rulers, one of which slides in grooves in the other. On each a logarithmic scale is marked off (scale A and scale B, Fig. 90). Logarithms of numbers are added by sliding one rule along the other. Thus to add log 3 and log 2.5, place the point marked 1 on the B scale opposite the 3 on the A scale; then the 2.5 on the B scale is opposite a point on the Ascale whose distance from point 1 is  $\log 3 + \log 2.5$ . Since the last named point is 7.5, we have

$$\log 7.5 = \log 3 + \log 2.5 = \log 3 \times 2.5$$
,

\* Accuracy to three significant figures is possible on a good slide rule. Special types of slide rules have been invented which give greater accuracy.

hence

$$3 \times 2.5 = 7.5.$$

We read for the same setting opposite 4.7 (B scale) the product  $3 \times 4.7 = 14.1$  (A scale). Other products are found similarly. For quotients the process is reversed.

On the C scale the numbers are twice as far apart as on the B scale. It follows, since  $\log n^2 = 2 \log n$ , that the numbers on the scale B are the squares of opposite numbers on scale C, and those on C are square roots of corresponding ones on B. Scale D is related to A as scale C is to B. On the other side of the slide, for some slide rules, scales for  $\log \sin$  and  $\log \tan$  are found. By their use trigonometric calculations can be made.

For a full description of slide rules with directions for their use see the manuals of instrument makers.

### CHAPTER IX

### SOLUTION OF TRIANGLES BY LOGARITHMS

In Chapters II and III we discussed the solution of triangles. In those chapters calculations were made by elementary arithmetical methods; we are now ready to use logarithms. For right triangles we shall need no new formulas. For oblique triangles, however, we shall replace some of the formulas of Chapter III by others which are better adapted for logarithmic computations.

102. Solution of right triangles. Two triangles will be solved as illustrations. In the first the data are given to four significant figures, and we therefore use four-place logarithms to get requisite accuracy as briefly as possible. In the second, five-place data require the use of five-place logarithms.

It saves time and tends to greater accuracy in computations to outline the solution completely before referring to the Tables or doing any computing. In our plan we should make provision for every number that is to be written, so that the later computation requires only the filling in of the outline. A complete outline includes the formulas, and a place for estimates obtained from a construction of a triangle.

We shall adopt the notation and methods of § 30 (p. 41). Examples. — 1. Given  $C = 90^{\circ}$ ,  $A = 64^{\circ} 13'$ , b = 371.4. To find B, a, c.

The formulas to be used are:

$$B = 90^{\circ} - A$$
,  $a = b \tan A$ ,  $c = \frac{b}{\cos A}$ .

For a check, we select one of the formulas

$$\cos B = \frac{a}{c}, \qquad b^2 = c^2 - a^2 = (c - a)(c + a).$$

The second is the better check since the first would use  $\log a$  and  $\log c$ , and would not check the use of the Table in finding a and c.

A complete outline for the solution is given below. The paragraph following contains explanations.



$$Data$$

$$C = A = b =$$

Construction and estimates

$$c = a = B =$$

Formulas

$$B = 90^{\circ} - A$$
,  $a = b \tan A$ ,  $c = \frac{b}{\cos A}$ .

Check 
$$b^2 = c^2 - a^2 = (c - a) (c + a)$$
.

 $Logarithmic\ formulas$ 

$$\log a = \log b + \log \tan A,$$
$$\log c = \log b - \log \cos A.$$

Check  $2 \log b = \log (c - a) + \log (c + a)$ .

Computation

(1) 
$$A =$$
 (3)  $\log b =$  (2)  $B =$  (5)  $(-)\log \cos A =$  (9)  $c =$  (4)  $\log b =$  (6)  $(+)\log \tan A =$  (10)  $a =$  (8)  $\log a =$ 

(11) 
$$c - a =$$
 (13)  $\log (c - a) =$  (12)  $c + a =$  (14)  $(+) \log (c + a) =$  (15)  $\log (c^2 - a^2) =$  (16)  $2 \log b =$ 

In this outline the numbers in parentheses would be omitted in actually preparing to solve a triangle. These numbers have been inserted to show the order in which the various steps could be taken in the computation if we wish to save time. The symbol (-) placed ahead of  $\log \cos A$  is to indicate that the quantity is subtracted from the one above. The (+) signs in other places similarly indicate additions. The purpose of the arrows is to show that  $\log c$  and  $\log a$  are found before the numbers c and a which occur in the respective lines with them.

For a computer who is familiar with the laws of logarithms the "Logarithmic formulas" are not needed, and we shall omit them in later examples.

The details of the computation follow:

$$A = 64^{\circ} 13'$$

$$B = 25^{\circ} 47'$$

$$c = 854.0$$

$$a = 769.0$$

$$\log b = 12.5699 - 10$$

$$(-) \log \cos A = 9.6384 - 10$$

$$\log c = 2.9315$$

$$\log b = 2.5699$$

$$(+) \log \tan A = 0.3160$$

$$\log a = 2.8859$$

Check

$$c - a = 85.0$$
  $\log (c - a) = 1.9294$   
 $c + a = 1623.0$   $(+) \log (c + a) = 3.2103$   
 $\log (c^2 - a^2) = 5.1397$   
 $2 \log b = 5.1398$ 

The computed values should be checked with the estimates before the logarithmic check is applied; by this means large errors may be detected.

2. Given b = .27946, c = .38072. To find A, B, a.

Construction and Estimates

$$A = 42^{\circ}, \quad B = 48^{\circ}, \quad a = .26.$$

Formulas

$$\cos A = \frac{b}{c}, \quad B = 90^{\circ} - A, \quad a = b \tan A.$$

Check  $b^2 = c^2 - a^2 = (c - a)(c + a).$ 



Fig. 92. 1 cm. = .1

## Computation

The check is rather poor; on going over the computation again no error is detected.

### **EXERCISES**

Write down the complete outline of the logarithmic solution of the right triangles in which the following parts are given (assuming  $C = 90^{\circ}$ ):

1. A and a.

**2**. *B* and *b*.

3. A and c.

**4.** B and c. **5.** a and b.

**6.** a and c.

Solve the following triangles by use of four-place logarithms; in each case  $C = 90^{\circ}$ :

7.  $A = 64^{\circ} 30', a = 4630$ . 8.  $B = 51^{\circ} 10', b = .629$ .

9.  $A = 87^{\circ} 51', c = .4169$ . 10.  $B = 18^{\circ} 37', c = .08192$ .

**11**. a = 8726, b = 3194. **12**. a = 34.65, c = 46.53.

Use five-place logarithms to solve the following triangles; in each case  $C = 90^{\circ}$ :

**13**.  $A = 13^{\circ} 23', a = 58.27$ . **14**.  $B = 76^{\circ} 7', b = .07432$ .

**15**.  $A = 62^{\circ} 27' 50'', c = 2185.7$ .

16.  $B = 88^{\circ} 27' 40'', c = .75437.$ 

**17.** a = 67.534, b = 42.379. **18.** a = .21356, c = .92473.

103. The law of tangents.\* In Chapter III, § 40 (p. 59), we proved the law of sines,

$$\frac{\mathbf{a}}{\mathbf{b}} = \frac{\sin \mathbf{A}}{\sin \mathbf{B}},$$

where a and b are any two sides of a triangle and A and B are the opposite angles. From this we derive another formula useful in the solving of oblique triangles by logarithms.

Subtracting 1 from each member of (1) we obtain

$$\frac{a-b}{b} = \frac{\sin A - \sin B}{\sin B}.$$

Adding 1 similarly gives

$$\frac{a+b}{b} = \frac{\sin A + \sin B}{\sin B}.$$

Dividing the former of these equations by the latter, we have

$$\frac{a-b}{a+b} = \frac{\sin A - \sin B}{\sin A + \sin B}.$$

Apply formulas (6) and (5) of § 70 (p. 122);

$$\frac{a-b}{a+b} = \frac{2\cos\frac{1}{2}(A+B)\sin\frac{1}{2}(A-B)}{2\sin\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)}.$$

Hence

(2) 
$$\frac{a-b}{a+b} = \frac{\tan \frac{1}{2} (A-B)}{\tan \frac{1}{2} (A+B)}.$$

This formula is known as the law of tangents. It may be stated thus: In any triangle the difference of any two sides is to their sum as the tangent of one-half the difference of the opposite angles is to the tangent of one-half their sum.

\* If Chapter III has been omitted, §§ 38-41 should be taken up at this point.

In case a < b it is simpler to write the formula

(3) 
$$\frac{b-a}{b+a} = \frac{\tan\frac{1}{2}(B-A)}{\tan\frac{1}{2}(B+A)},$$

and avoid negative quantities. If the sides are designated by a and c, formula (2) becomes

(4) 
$$\frac{a-c}{a+c} = \frac{\tan\frac{1}{2}(A-C)}{\tan\frac{1}{2}(A+C)}.$$

A similar formula could be written with the letters b and c.

### **EXERCISES**

Prove the following identities, in which a, b, c are the sides and A, B, C the opposite angles of any triangle:

1. 
$$\frac{a-b}{b} = \frac{2\sin\frac{1}{2}C\sin\frac{1}{2}(A-B)}{\sin B}$$
.

2. 
$$\frac{b}{c} = \frac{\sin B}{2 \sin \frac{1}{2} C \cos \frac{1}{2} C}$$
.

3. 
$$\frac{a-b}{c} = \frac{\sin \frac{1}{2} (A-B)}{\cos \frac{1}{2} C}$$
.

4. 
$$\frac{a+b}{c} = \frac{\cos\frac{1}{2}(A-B)}{\sin\frac{1}{2}C}$$
.

Note. The formulas of Ex. 3 and Ex. 4 are called **Mollweide's** equations. They are sometimes used in place of the law of tangents in checking a solution of a triangle.

104. Solving oblique triangles by logarithms. The solving of triangles reduces to four cases:

Case I. Given two angles and one side.

Case II. Given two sides and the angle opposite one of them.

Case III. Given two sides and the included angle.

Case IV. Given three sides.

The logarithmic solution of each of Cases I, II, and III may be carried out and the results checked by use of the following three formulas:

- 1.  $A + B + C = 180^{\circ}$ .
- 2. The law of sines, equation (1), § 103.
- 3. The law of tangents, equation (2), § 103.

Before solving Case IV by use of logarithms new formulas will be developed (§§ 108, 109).

105. Case I. Given two angles and one side. In this case the third angle is found at once from the formula

$$A + B + C = 180^{\circ}.$$

The unknown sides may then be found by using the law of sines twice. The law of tangents in a form involving the two computed sides gives a good check.\*

Example.—Given  $A = 37^{\circ}13'$ ,  $B = 61^{\circ}58'$ , a = 3.467. To find C, b, c.

Construction and Estimates

$$C = 83^{\circ}; \qquad b = 5.0; \qquad c = 5.6$$

Formulas

$$C = 180^{\circ} - (A + B)$$

$$b = \frac{a \sin B}{\sin A}, \quad c = \frac{a \sin C}{\sin A}$$



Fig. 93. 1 cm. = 2.

Check Since c > b, we take the law of tangents in the form

$$\frac{c-b}{c+b} = \frac{\tan\frac{1}{2}(C-B)}{\tan\frac{1}{2}(C+B)}.$$

## Computation

<sup>&</sup>lt;sup>3</sup> Some writers prefer to use one of Mollweide's equations for a check.

Check
$$c - b = 0.600 \qquad \log(c - b) = 9.7782$$

$$c + b = 10.720 \qquad (-)\log(c + b) = \underline{1.0302}$$

$$C - B = 18^{\circ} 51' \qquad L = \log\frac{c - b}{c + b} = 8.7480 - 10$$

$$C + B = 142^{\circ} 47'$$

$$\frac{1}{2}(C - B) = 9^{\circ} 25.5' \qquad \log\tan\frac{1}{2}(C - B) = 9.2201 - 10$$

$$\frac{1}{2}(C + B) = 71^{\circ} 23.5' \qquad (-)\log\tan\frac{1}{2}(C + B) = \underline{0.4728}$$

$$R = \log\frac{\tan\frac{1}{2}(C - B)}{\tan\frac{1}{2}(C + B)} = 8.7473 - 10$$

L and R are the logarithms of the two members of the check formula, and should be equal. The check is rather poor, but on going over the work again we find no error. Since c - b is known to only three significant figures, we cannot expect results to check to more than three figures. When the triangle is solved by use of five-place Tables, the results are

$$C = 80^{\circ} 49', \quad b = 5.0597, \quad c = 5.6588.$$

#### **EXERCISES**

1. Check the solution in the preceding Example by use of Mollweide's formula,

$$\frac{c+b}{a} = \frac{\cos\frac{1}{2}\left(C-B\right)}{\sin\frac{1}{2}A}.$$

2. Give a complete outline of the solution of the oblique triangle when B, C, and b are given.

Use four-place logarithms to solve the triangle and check your results, when the following are given:

**3**. 
$$A = 82^{\circ} 14'$$
,  $B = 31^{\circ} 16'$ ,  $c = 147.1$ .  
**4**.  $A = 58^{\circ} 57'$ ,  $C = 60^{\circ} 46'$ ,  $c = 48.79$ .

4. 
$$A = 58^{\circ} 57'$$
,  $C = 60^{\circ} 46'$ ,  $c = 48.79$ .

**5.** 
$$B = 66^{\circ} 23'$$
,  $C = 19^{\circ} 51'$ ,  $a = 2.146$ .

**5.** 
$$B = 66^{\circ} 23'$$
,  $C = 19^{\circ} 51'$ ,  $a = 2.146$ .  
**6.**  $B = 107^{\circ} 42'$ ,  $C = 62^{\circ} 2'$ ,  $b = .02876$ .

Use five-place logarithms to solve the triangle and check your results when the following are given:

7. 
$$B = 33^{\circ} 42' 5''$$
,  $C = 79^{\circ} 35' 35''$ ,  $a = 9876.3$ .

8. 
$$A = 21^{\circ} 13' 15''$$
,  $B = 82^{\circ} 28' 55''$ ,  $b = 47.218$ .

9. 
$$A = 42^{\circ} 4' 45''$$
,  $C = 18^{\circ} 51' 25''$ ,  $b = .48107$ .

9. 
$$A = 42^{\circ} 4' 45''$$
,  $C = 18^{\circ} 51' 25''$ ,  $b = .48107$ .  
10.  $A = 31^{\circ} 8' 25''$ ,  $B = 114^{\circ} 14' 45''$ ,  $c = .020707$ .

106. Case II. Given two sides and an angle opposite one Suppose the given parts are A, a, and b. The of them.\* angle B can be found by use of the law of sines,

$$\frac{\sin A}{a} = \frac{\sin B}{b},$$

whence

(1) 
$$\sin B = \frac{b \sin A}{a}.$$

It is to be recalled that the sine of an angle is never greater than 1; hence  $\log \sin B$  is at most 0, and in general has a negative characteristic. If formula (1) gives a value larger than 0 for  $\log \sin B$ , there can be no triangle having the given If  $\log \sin B = 0$ , then  $B = 90^{\circ}$ .

If  $\log \sin B$  has a negative characteristic, we must remember that the equation (1) is satisfied both by an acute angle  $B_1$ , found from the Tables, and by the supplement of this angle, that is, by  $B_2 = 180^{\circ} - B_1$ . This follows from the equation

$$\sin B_2 = \sin (180^\circ - B_1) = \sin B_1.$$

We thus face the possibility of having two triangles, which we may call triangles  $AB_1C_1$  and  $AB_2C_2$  (see Fig. 95, p. 195). We designate their unknown parts by  $B_1$ ,  $C_1$ ,  $c_1$ , and  $B_2$ ,  $C_2$ ,  $c_2$ , respectively.

The angle B having been found, we determine C from the equation

(2) 
$$C = 180^{\circ} - (A + B).$$

<sup>\*</sup> A geometrical discussion of this case is given in § 44 (p. 66).

In case we have two possible angles,  $B_1$  and  $B_2$ , we use this formula to determine the corresponding angles  $C_1$  and  $C_2$ :

$$C_1 = 180^{\circ} - (A + B_1),$$
  
 $C_2 = 180^{\circ} - (A + B_2).$ 

It may turn out at this step that  $A + B_2 > 180^{\circ}$ , making  $C_2$  negative; since the angles of a triangle must be positive, we conclude that there is no triangle  $AB_2C_2$ . Hence under these conditions only one triangle exists. But if  $A + B_2 < 180^{\circ}$ , we proceed with the solution of two triangles.

When B and C are found, we get c from the law of sines,

$$\frac{c}{a} = \frac{\sin C}{\sin A},$$

whence

$$(3) c = \frac{a \sin C}{\sin A}.$$

In case there are two triangles we have

$$c_1 = \frac{a \sin C_1}{\sin A_1}, \qquad c_2 = \frac{a \sin C_2}{\sin A_2}.$$

The law of tangents may be employed to check the solution (or solutions, in case there are two); the formula

(4) 
$$\frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(B-C)}{\tan\frac{1}{2}(B+C)}$$

should be used, since it relates all three of the computed parts, B, C, and c. In case c > b, the letters b and c, as well as B and C, should be interchanged in formula (4) in order to avoid negative quantities.

The student will find it helpful to construct a figure before outlining the computation, for by so doing he can usually tell in advance whether there will be no solution, one solution, or two solutions, and can draw up his plan accordingly.

Examples. — 1. Given 
$$A = 47^{\circ} 13'$$
,  $a = .2063$ ,  $b = .7081$ . To find  $B, C, c$ .

Construction and Estimates
No solution.

$$Formula$$

$$\sin B = \frac{b \sin A}{a}$$



## Computation

$$\log b = 9.8501 - 10$$
(+)  $\log \sin A = 9.8657 - 10$ 

$$\log b \sin A = 9.7158 - 10$$
(-)  $\log a = 9.3145 - 10$ 

$$\log \sin B = 0.4013$$

There is no angle B satisfying this equation, and hence no triangle having the given parts.



Fig. 95. 1 cm. = .2.

2. Given 
$$A = 47^{\circ} 13'$$
,  $a = .6063$ ,  $b = .7081$ . To find  $B, C, c$ .

Construction and Estimates

Two solutions:

$$B_1 = 60^{\circ}$$
  $B_2 = 120^{\circ}$   
 $C_1 = 73^{\circ}$   $C_2 = 13^{\circ}$   
 $c_1 = .81$   $c_2 = .17$ 

### Formulas

$$\sin B = \frac{b \sin A}{a}$$
 $C_1 = 180^{\circ} - (A + B_1), \quad C_2 = 180^{\circ} - (A + B_2)$ 
 $c_1 = \frac{a \sin C_1}{\sin A}, \quad c_2 = \frac{a \sin C_2}{\sin A}$ 

Check

$$\frac{c_1 - b}{c_1 + b} = \frac{\tan \frac{1}{2} (C_1 - B_1)}{\tan \frac{1}{2} (C_1 + B_1)}, \qquad \frac{b - c_2}{b + c_2} = \frac{\tan \frac{1}{2} (B_2 - C_2)}{\tan \frac{1}{2} (B_2 + C_2)}$$

## Computation

$$\log b = 9.8501 - 10$$

$$(+) \log \sin A = 9.8657 - 10$$

$$\log b \sin A = 19.7158 - 20$$

$$(-) \log a = 9.7827 - 10$$

$$\log \sin B = 9.9331 - 10$$

$$B_1 = 59^{\circ}0' \qquad B_2 = 180^{\circ} - B_1 = 121^{\circ}0'$$

$$A + B_1 = 106^{\circ}13' \qquad A + B_2 = 168^{\circ}13'$$

$$C_1 = 73^{\circ}47' \qquad C_2 = 11^{\circ}47'$$

$$\log \sin C_1 = 9.9824 - 10 \qquad \log \sin C_2 = 9.3101 - 10$$

$$(+) \log a = 9.7827 - 10 \qquad (+) \log a = 9.7827 - 10$$

$$\log a \sin C_1 = 19.7651 - 20 \qquad (+) \log a = 9.7827 - 10$$

$$\log a \sin C_2 = 9.3101 - 10$$

$$(+) \log a = 9.7827 - 10 \qquad (+) \log a = 9.7827 - 10$$

$$\log a \sin C_2 = 19.0928 - 20$$

$$(-) \log \sin A = 9.8657 - 10 \qquad (-) \log \sin A = 9.8657 - 10$$

$$\log c_1 = 9.8994 - 10 \qquad \log c_2 = 9.2271 - 10$$

$$c_1 = .7932 \qquad c_2 = .1687$$

Check

For brevity designate the left members of the check formulas by  $L_1$  and  $L_2$ , the right by  $R_1$  and  $R_2$ .

$$c_1 = .7932 \qquad b = .7081$$

$$b = .7081 \qquad c_2 = .1687$$

$$c_1 - b = .0851 \qquad b - c_2 = .5394$$

$$c_1 + b = 1.5013 \qquad b + c_2 = .8768$$

$$C_1 - B_1 = 14^{\circ} 47' \qquad B_2 - C_2 = 109^{\circ} 13'$$

$$C_1 + B_1 = 132^{\circ} 47' \qquad B_2 + C_2 = 132^{\circ} 47'$$

$$\frac{1}{2} (C_1 - B_1) = 7^{\circ} 23.5' \qquad \frac{1}{2} (B_2 - C_2) = 54^{\circ} 36.5'$$

$$\frac{1}{2} (C_1 + B_1) = 66^{\circ} 23.5' \qquad \frac{1}{2} (B_2 + C_2) = 66^{\circ} 23.5'$$

$$\log (c_1 - b) = 8.9299 - 10 \qquad \log (b - c_2) = 19.7319 - 20$$

$$\log (c_1 + b) = 0.1765 \qquad \log (b + c_2) = 9.9429 - 10$$

$$\log tan \frac{1}{2} (C_1 - B_1) = 9.1130 - 10$$

$$\log tan \frac{1}{2} (C_1 + B_1) = 9.1130 - 10$$

$$\log tan \frac{1}{2} (C_1 + B_1) = 0.3595 \qquad \log tan \frac{1}{2} (B_2 + C_2) = 0.3595$$

$$\log R_1 = 8.7535 - 10 \qquad \log R_2 = 9.7890 - 10$$

Since  $\log L_1 = \log R_1$  nearly, and  $\log L_2 = \log R_2$ , the solutions check.

3. Given  $A = 132^{\circ} 47'$ , a = .9063, b = .7081. To find the angle C.

Construction and Estimate One solution.  $C = 12^{\circ}$ .

Formulas

$$\sin B = \frac{b \sin A}{a},$$
 $C_1 = 180^{\circ} - (A + B_1),$ 
 $C_2 = 180^{\circ} - (A + B_2).$ 

To find  $\sin A$  we use the relation



Fig. 96. 1 cm. = .2.

$$\sin 132^{\circ} 47' = \sin (180^{\circ} - 132^{\circ} 47') = \sin 47^{\circ} 13'.$$

Computation

$$\log b = 9.8501 - 10$$
(+)  $\log \sin A = 9.8657 - 10$ 

$$\log b \sin A = 19.7158 - 20$$
(-)  $\log a = 9.9573 - 10$ 

$$\log \sin B = 9.7585 - 10$$

$$B_1 = 34^{\circ} 59'$$
  $B_2 = 180^{\circ} - B_1 = 145^{\circ} 1'$   
 $A + B_1 = 167^{\circ} 46'$   $A + B_2 = 277^{\circ} 48'$   
 $C_1 = 12^{\circ} 14'$   $C_2$  impossible

### EXERCISES

Solve the following triangles by use of four-place logarithms, given:

1. 
$$A = 27^{\circ} 10'$$
,  $a = 147.0$ ,  $b = 468.0$ .

**2.** 
$$C = 81^{\circ} 5', \qquad a = 365.4, \quad c = 317.2.$$

**3**. 
$$B = 38^{\circ} 19'$$
,  $a = 5617$ ,  $b = 3863$ .

**4.** 
$$A = 54^{\circ} 12'$$
,  $a = 2.464$ ,  $b = 4.027$ .

**5.** 
$$B = 44^{\circ} 9', \quad b = .3818, \quad c = .3025.$$

**6.** 
$$C = 65^{\circ} 12'$$
,  $a = 18.78$ ,  $c = 19.38$ .

7. 
$$A = 125^{\circ} 11'$$
,  $a = 44.27$ ,  $b = 55.87$ .

8. 
$$B = 136^{\circ} 10'$$
,  $b = 8471$ ,  $c = 9462$ .

9. 
$$C = 147^{\circ} 12'$$
,  $a = 4.129$ ,  $c = 5.681$ .

**10**. 
$$B = 105^{\circ} 5'$$
,  $a = .2076$ ,  $b = .3592$ .

Solve the following triangles by use of five-place logarithms, given:

11. 
$$A = 24^{\circ} 15' 10''$$
,  $a = 12.474$ ,  $b = 25.916$ .

**12.** 
$$B = 78^{\circ} 12' 45''$$
,  $b = 367.29$ ,  $c = 401.28$ .  
**13.**  $C = 42^{\circ} 4' 15''$ ,  $a = 4.9761$ ,  $c = 4.4226$ .

13. 
$$C = 42^{\circ} 4' 15''$$
,  $a = 4.9761$ ,  $c = 4.4226$ .

14. 
$$A = 15^{\circ} 8' 10'', \quad a = 289.87, \quad c = 402.67.$$

**15.** 
$$B = 43^{\circ} 13' 55'', \quad a = .027472, \quad b = .045825.$$

**15**. 
$$B = 43^{\circ} 13' 55''$$
,  $a = .027472$ ,  $b = .045825$ .  
**16**.  $C = 78^{\circ} 12' 20''$ ,  $a = 248.27$ ,  $c = 313.47$ .

17. 
$$A = 157^{\circ} 21' 40''$$
,  $a = .23654$ ,  $b = .48253$ .

**18.** 
$$B = 110^{\circ} 11' 30'', \quad b = 6.5219, \quad c = 7.8261.$$

**19.** 
$$C = 123^{\circ} 4' 35''$$
,  $b = 234.25$ ,  $c = 417.92$ .  
**20.**  $A = 161^{\circ} 29' 5''$ ,  $a = 4.2734$ ,  $b = 2.1494$ .

**20.** 
$$A = 161^{\circ} 29' 5'', \quad a = 4.2734, \quad b = 2.1494.$$

107. Case III. Given two sides and the included angle. Suppose the given parts are a, b, C. By use of the formula

$$A + B = 180^{\circ} - C$$

we find (A + B), then  $\frac{1}{2}(A + B)$ . The law of tangents, written in the form

$$\tan \frac{1}{2} (A - B) = \frac{a - b}{a + b} \tan \frac{1}{2} (A + B),$$

is used to find  $\frac{1}{2}(A-B)$ . By adding  $\frac{1}{2}(A-B)$  and  $\frac{1}{2}(A+B)$  we get A; by subtracting  $\frac{1}{2}(A-B)$  from  $\frac{1}{2}(A+B)$ , we obtain B. The law of sines, in the form

$$c = \frac{a \sin C}{\sin A},$$

enables us to compute c. We use

$$A + B + C = 180^{\circ}$$
 and  $b \sin C = c \sin B$ 

as check formulas.

Example. — Given a = 77.99, b = 83.39,  $C = 72^{\circ} 16'$ . To find c, A, B.

Construction and Estimates
$$c = 93;$$
  $A = 53^{\circ};$   $B = 55^{\circ}.$ 

Formulas
 $A + B = 180^{\circ} - C.$ 

Since b is greater than a we write the law of tangents

$$\tan \frac{1}{2} (B - A) = \frac{b - a}{b + a} \tan \frac{1}{2} (B + A),$$

$$c = \frac{a \sin C}{\sin A}.$$



Check  $A + B + C = 180^{\circ}$ ;  $b \sin C = c \sin B$ .

## Computation

$$\begin{array}{c} b = 83.39 \\ a = 77.99 \\ b - a = \overline{5.40} \\ b + a = 161.38 \\ C = 72^{\circ} 16' \\ B + A = 107^{\circ} 44' \\ \frac{1}{2}(B + A) = 53^{\circ} 52' \\ B = \overline{56^{\circ} 30'} \\ A + B + C = \overline{180^{\circ} 00'} \\ C = 95.26 \\ L = R \text{ nearly.} \\ \end{array} \begin{array}{c} b - a \\ \log b - a \\ \overline{b} + a = 0.7324 \\ (-) \log (b + a) = 2.2078 \\ (-) \log \frac{b - a}{b + a} = 8.5246 - 10 \\ (-) \log \frac{b - a}{b + a} = 8.5246 - 10 \\ (-) \log \frac{b - a}{b + a} = 8.5246 - 10 \\ (-) \log \frac{b - a}{b + a} = 8.5246 - 10 \\ (-) \log \frac{b - a}{b + a} = 8.5246 - 10 \\ (-) \log \sin \frac{a - 0.1366}{a + 0.1366} \\ (-) \log \sin C = 9.9788 - 10 \\ (-) \log \sin C = 9.9788 - 10 \\ (-) \log \sin C = 1.9789 \\ (+) \log \sin C = 9.9788 - 10 \\ (-) \log \sin C = 9.9788 - 10 \\ (-) \log \sin C = 9.9788 - 10 \\ (-) \log \sin C = 9.9788 - 10 \\ (-) \log \sin C = 9.9788 - 10 \\ (-) \log \sin C = 1.8999 \\ (-) \log \cos C = 1.8999 \\ (-) \log \cos$$

#### **EXERCISES**

Solve and check each of the following triangles, using fourplace logarithms:

1. 
$$a = 74.80$$
,  $b = 66.30$ ,  $C = 32^{\circ} 57'$ .

**2.** 
$$b = 218.3$$
,  $c = 127.5$ ,  $A = 52^{\circ} 13'$ .

3. 
$$a = 4571$$
, $c = 2818$ , $B = 46^{\circ} 46'$ .4.  $a = 2.185$ , $b = 4.826$ , $C = 12^{\circ} 18'$ .5.  $b = .3174$ , $c = .1247$ , $A = 62^{\circ} 16'$ .6.  $b = .04171$ , $c = .5421$ , $A = 132^{\circ} 15'$ .7.  $a = 645.7$ , $c = 124.8$ , $a = 154^{\circ} 47'$ .8.  $a = 88.49$ , $a = 9.362$ , $a = 50^{\circ} 11'$ .

Solve and check each of the following triangles, using fiveplace logarithms:

9. 
$$a = 363.82$$
, $b = 459.18$ , $C = 42^{\circ} 15' 35''$ .10.  $b = 89.725$ , $c = 62.318$ , $A = 57^{\circ} 11' 20''$ .11.  $a = 5.7290$ , $c = 8.4732$ , $B = 68^{\circ} 14' 15''$ .12.  $a = .82497$ , $b = .53261$ , $C = 31^{\circ} 18' 55''$ .13.  $b = .071461$ , $c = .099812$ , $A = 12^{\circ} 14' 15''$ .14.  $a = 88.776$ , $b = 14.82$ , $C = 109^{\circ} 18' 30''$ .15.  $b = 462.31$ , $c = 5481.2$ , $A = 3^{\circ} 13' 10''$ .16.  $a = 38.876$ , $c = .24172$ , $B = 168^{\circ} 14' 12''$ .

★108. The half-angle formulas. First proof. Before taking up the logarithmic solution of Case IV, in which the



three sides a, b, c are given, we need to derive some new formulas. Draw the inscribed circle in the triangle, Figure 98, calling its radius r. Then OA bisects the angle A, and we have

$$(1) \quad \tan\frac{A}{2} = \frac{r}{AF}.$$

To express AF in terms of a, b, c, we note that the tangents from A are of equal length; hence AF = AE. Similarly BF = BD, CD = CE. Calling the perimeter of the triangle 2s, we have

$$2 s = a + b + c$$
  
=  $2 AF + 2 BD + 2 CD = 2 AF + 2 (BD + CD),$   
=  $2 AF + 2 a.$ 

Hence

$$AF = s - a$$

and we have

(2) 
$$\tan\frac{A}{2} = \frac{r}{s-a}.$$

To express r in terms of a, b, c, we proceed as follows. The area, S, of the triangle ABC is the sum of the areas of the triangles OAB, OBC, and OCA. Hence

$$S = \frac{1}{2} rc + \frac{1}{2} ra + \frac{1}{2} rb = \frac{1}{2} r (a + b + c).$$

Since a + b + c = 2 s, we get

$$(3) S = rs.$$

From plane geometry we have the formula\*

$$S = \sqrt{s(s-a)(s-b)(s-c)}.$$

Hence, from (3),

(4) 
$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$

Formulas similar to (2) hold for the angles B and C. We thus have the three half-angle formulas

(5) 
$$\tan \frac{1}{2} A = \frac{r}{s-a}$$
,  $\tan \frac{1}{2} B = \frac{r}{s-b}$ ,  $\tan \frac{1}{2} C = \frac{r}{s-c}$ 

where r is given by (4) and s = (a + b + c)/2.

109. The half-angle formulas. Second proof. When the three sides, a, b, c, are given we may determine the angles by use of the law of cosines (§ 41, p. 60). Thus to find A, we have

$$a^2 = b^2 + c^2 - 2bc \cos A$$

\* A proof of this formula is given in § 111.

whence

(1) 
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}.$$

But this formula is not very well adapted to logarithmic calculation. A better formula is obtained as follows.

From the formula (§ 69, p. 118)

$$\tan\frac{A}{2} = \sqrt{\frac{1 - \cos A}{1 + \cos A}},$$

we find by substitution of the value of  $\cos A$  given in (1) and by algebraic reduction,

$$\tan \frac{A}{2} = \sqrt{\frac{2 bc - b^2 - c^2 + a^2}{2 bc + b^2 + c^2 - a^2}}$$

$$= \sqrt{\frac{a^2 - (b^2 - 2 bc + c^2)}{(b^2 + 2 bc + c^2) - a^2}}$$

$$= \sqrt{\frac{[a - (b - c)] [a + (b - c)]}{[(b + c) - a] [(b + c) + a]}}$$

$$= \sqrt{\frac{(a - b + c) (a + b - c)}{(b + c - a) (a + b + c)}}.$$

If we let s be the semi-perimeter of the triangle, then

(2) 
$$2s = a + b + c$$
,  $2s - 2b = a - b + c$ ,  $2s - 2a = b + c - a$ ,  $2s - 2c = a + b - c$ .

Substituting these expressions in the preceding formula, we have

$$\tan \frac{A}{2} = \sqrt{\frac{2(s-b) 2(s-c)}{2(s-a) 2s}}$$
$$= \sqrt{\frac{(s-a) (s-b) (s-c)}{(s-a)^2 s}}.$$

This may be written

(3) 
$$\tan \frac{A}{2} = \frac{r}{s-a}$$

where

(4) 
$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}, s = \frac{a+b+c}{2}.$$

Similarly

(5) 
$$\tan \frac{B}{2} = \frac{r}{s-b}, \quad \tan \frac{C}{2} = \frac{r}{s-c}.$$

These are the half-angle formulas.

110. Case IV. Given three sides. When the three sides are given, we first compute s and r from the relations

(1) 
$$2s = a + b + c$$
,  $r^2 = \frac{(s-a)(s-b)(s-c)}{s}$ ,

and then find the angles A, B, C from the half-angle formulas

(2) 
$$\tan \frac{A}{2} = \frac{r}{s-a}$$
,  $\tan \frac{B}{2} = \frac{r}{s-b}$ ,  $\tan \frac{C}{2} = \frac{r}{s-c}$ .

We check the results by the formula

(3) 
$$A + B + C = 180^{\circ}$$
.

We note that there will be no triangle if one given side is equal to or larger than the sum of the other two. When this impossible case arises, one of the factors in the numerator of the expression for  $r^2$  is negative, and r is imaginary.

Example. — 1. Given a = 513.4, b = 726.8, c = 931.3. To find A, B, C.

Construction and Estimates

$$A = 34^{\circ}, \qquad B = 49^{\circ}, \qquad C = 97^{\circ}.$$

Formulas

Equations (1), (2), (3).



Fig. 99. 1 cm. = 300.

#### Computation

#### **EXERCISES**

Solve the following triangles using four-place logarithms, or show that there will be no triangle:

```
c = 81.9.
1. a = 72.4,
           b = 66.3,
2. a = 3.08, b = 5.02,
                          c = 4.27.
                          c = 9.109.
             b = 9.461,
3. a = 8.256,
4. a = 6239, b = 7350,
                          c = 8765.
                          c = .02887.
5. a = .02457, b = .03176,
                          c = 6.107.
6. a = 3.468, b = 2.816,
7. a = 72.09, b = 35.02, c = 37.07.
8. a = 621.2, b = 187.5, c = 209.6.
```

Solve the following triangles using five-place logarithms, or show that there will be no triangle:

9. 
$$a = 324.61$$
,  $b = 421.72$ ,  $c = 510.23$ .10.  $a = 692.48$ ,  $b = 536.11$ ,  $c = 389.21$ .11.  $a = 8.8762$ ,  $b = 3.4271$ ,  $c = 6.2471$ .12.  $a = .97823$ ,  $b = .86541$ ,  $c = .21332$ .13.  $a = 32.871$ ,  $b = 42.107$ ,  $c = 76.978$ .14.  $a = 393.92$ ,  $b = 292.93$ ,  $c = 776.35$ .

111. Area of a triangle. Let S be the area of triangle ABC. Then, since (Fig. 100)

$$S = \frac{hc}{2}, \qquad h = b \sin A,$$

we have

(1) 
$$S = \frac{1}{2} bc \sin A$$
.



Fig. 100

This gives the area in terms of two sides and the included angle.

The formula of plane geometry used without proof in  $\S$  108 expresses S in terms of the three sides as follows:

(2) 
$$S = \sqrt{s(s-a)(s-b)(s-c)}.$$

This formula can be proved from relations established in §§ 108, 109. From § 109, equations (3) and (4), we have

$$\tan \frac{1}{2} A = \frac{r}{s - a}$$

where r is given algebraically by the equation

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$

In § 108 we showed that the former equation holds when r is interpreted as the radius of the inscribed circle. It follows that the above formula for r gives this radius. In § 108, however, formula (3) is S = rs. Hence

$$S = s\sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = \sqrt{s(s-a)(s-b)(s-c)}.$$

To find the area of a triangle which falls under Case I or II we may first find an unknown side or angle and then apply formula (1).

 $\star$ 112. Radii of inscribed and circumscribed circles. A formula for the radius r of the inscribed circle has been given

in § 111. From equations (5) and (4), § 108, we derive the following additional expressions:

$$r = (s - a) \tan \frac{1}{2} A = (s - b) \tan \frac{1}{2} B = (s - c) \tan \frac{1}{2} C.$$

Let R be the radius of the circumscribed circle (Fig. 101), O its center. Then by geometry  $\angle BOC = 2A$ , so that



Fig. 101

 $A = \angle BOD$ , where OD is the perpendicular bisector of BC. From the triangle BOD we therefore have

$$\sin A = \frac{a/2}{R};$$

hence

$$2R = \frac{a}{\sin A}.$$

Similarly

$$2R = \frac{b}{\sin B}, \qquad 2R = \frac{c}{\sin C}.$$

Equating the expressions in the right members of the last three equations gives us the law of sines.

#### **EXERCISES**

1. By a method similar to that used in § 109 derive the formula

$$\sin\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}.$$

2. In a similar manner prove that

$$\cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}} \cdot$$

3. From the formula  $\sin A = 2 \sin (A/2) \cos (A/2)$ , and formula (1), § 111, prove formula (2), § 111. Use the results of Exercises 1 and 2.

4. Prove that for any triangle

$$S = \frac{abc}{4 R} \cdot$$

Find the areas of the triangles which have the following given parts:

**5**. 
$$a = 10$$
,  $c = 30$ ,  $B = 25^{\circ}$ .

6. 
$$b = 20$$
,  $c = 25$ ,  $A = 55^{\circ}$ .

7. 
$$a = 75$$
,  $b = 95$ ,  $B = 105^{\circ}$ .

7. 
$$a = 75$$
,  $b = 95$ ,  $B = 105^{\circ}$ .  
8.  $b = 128$ ,  $c = 209$ ,  $C = 48^{\circ} 25'$ .

9. 
$$A = 51^{\circ}$$
,  $B = 74^{\circ}$ ,  $a = 372$ .

**10.** 
$$B = 76^{\circ}$$
,  $C = 42^{\circ}$ ,  $a = 208$ .

**11.** 
$$a = 30, b = 40, c = 60.$$

**12.** 
$$a = 212$$
,  $b = 307$ ,  $c = 188$ .

113. Applications. In § 37 (p. 52), we gave some applications of right triangles, and at the end of Chapter III (p. 76) there are a number of miscellaneous exercises involving solutions of oblique triangles. The following set of exercises consists of further problems of these kinds, the first eight requiring the solution of right triangles, the others of oblique triangles.

#### **EXERCISES**

- 1. From a ship sailing a course of 55° (§ 6) at 8.2 mi. per hr., the bearing of a headland at 8:10 A.M. was due North, at 11:20 A.M. due West. How far was the ship from the headland at the latter hour?
- 2. An army officer observes the angle of elevation of an airplane to be 62° 25′, its distance to be 2125 yd. If a bomb drops vertically from the airplane, what is the horizontal distance from the officer to the point where it strikes?
- 3. A surveyor measures the horizontal distance between two benchmarks as 486.32 ft. He finds one point to be 27.375 ft. above the level of the other. Find the angle of

inclination of the line joining the two, and the distance between them.

4. Engineers propose to tunnel under a river, starting from a level 38.64 ft. above the bottom of a horizontal portion of the tunnel which is to be under the river, and giving an angle of inclination of the descent into the tunnel of 14° 30′. How long will one of the two sloping portions of the tunnel



Fig. 102

be? What is the horizontal distance from the beginning of the descent to the beginning of the horizontal portion of the tunnel?

- 5. The radius of a circle is 32.52 mm. Find the angle at the center subtended by a chord of length 27.41 mm.
- 6. Find the length of the circle of latitude that passes through Chicago, 41° 50′ N, if the earth is a sphere of radius 3959 mi. Also the length of the circle of latitude of Manila, 14° 36′ N.
- 7. A man surveying a mine measures a line AB = 175 ft. from the mouth A of the mine due East at a dip of  $14^{\circ} 25'$  into the mine. From B he follows a tunnel BC 224 ft. along a line running due South at a dip of  $25^{\circ} 17'$ . How far is C below the level of A? If D is the point directly above C in the horizontal plane with A, what is the direction from A to D and how long is AD?
- 8. A flagpole 25 ft. tall stands on the corner of a building 132 ft. tall. Find the angle subtended by the flagpole from a point 325 ft. from the corner of the building in a horizontal line through its base.

209

- 10. A tower 140.75 ft. high is situated on a hill. How far from the base of the tower is an object whose angles of depression from the top and the base of the tower are 29° 17′ 30″ and 21° 52′ 45″ respectively?
- 11. From a boat an object A on the shore has the bearing S 41° 23′ W. The boat goes due South at the rate of exactly 3 mi. per hr. At the end of 19 min. and 20 sec. the object at A has the bearing N 72° 45′ W. How far was the boat from A at each observation?
- 12. An observer at A notes that the angle of elevation of an airplane C due North of him is 43° 12′ 25″ at the same moment that an observer at B, 1125.3 ft. due South from A, finds that the elevation of C is 30° 27′ 40″. Find the distances of C from A and B, and the height of C above the ground, assuming the line AB to be horizontal.
- 13. Two points A and B on opposite shores of a lake are at known distances of 2.9661 mi. and 3.0426 mi. respectively from C. An observer at A finds that the angle BAC is 64° 29′ 35″. Find the width of the lake from A to B.
- 14. A triangle ABC is inscribed in a circle. The length of AB is 399.4 in., and that of BC is 415.2 in. The arc AB is exactly one-fifth of the whole circumference. Find the side AC and the angles A and B.
- 15. The distance from A to a point C due West of A is not directly given, but is known to be about a quarter of a mile. Previous measurements from a point B have given BA = 7201.5 ft., BC = 6180.3 ft., and the bearing of B from A is N 48° 45′ 35″ W. Find AC.
- 16. Astronomers knew that at a certain time the distance from the earth to the sun was 92,830,000 mi., and from the sun to Mars was 141,500,000. They observed that the

angle formed at the earth by lines toward the sun and Mars was 68° 29′. How far was Mars from the earth?

- 17. Two sides of a parallelogram are 7.9235 ft. and 4.0312 ft. long respectively, and the angle between them is 79° 21′ 15″. Find the lengths of the diagonals and the angles they make with the sides.
- 18. To go from A's house to B's, A must walk 1675 ft. along one straight street, turn through an angle of 78° 39', and then walk 2056 ft. along another street. How much shorter would have been a straight line from start to finish?
- 19. The hands of a clock are 3.250 ft. and 2.725 ft. long respectively. How far apart are their tips when the time is 2:35?
- 20. A tight wire rope 57.324 ft. long reaches from the ground to a point on a pole. The height of the pole above the point where the rope is attached is 62.736 ft. The angle between pole and rope is 132° 15′ 25″. Find the angle of elevation of the top of the pole from the ground end of the rope.
- 21. The point A is 5.296 mi. due North of B, and the distances from C to A and B respectively are 3.025 mi. and 4.917 mi. What is the bearing of C from B?
- 22. Two buoys, A and B, on a lake are known to be 1210 yd. apart, and one is due North of the other. An observer on a hill-top due North of the buoys observes with a range-finder that the distance to A is 3240 yd. and that the distance to B is 4350 yd. What is the elevation of the observer above the lake, to the nearest ten yards?
- 23. A gas company proposes to build a cylindrical tank on a triangular piece of ground. The measurements of the piece which are most easily made are those of the sides. A surveyor finds that a = 78.369 ft., b = 82.198 ft., c = 110.742 ft. What is the diameter of the tank of largest base which can be constructed on the ground?
  - 24. A boat sailed 372 yd. due East, then turned to the

left at an angle and sailed 571 yd., then turned to the left again and sailed back to the starting point a distance of 418 yd. What was the bearing of each leg of the course?

- 25. Two circles whose radii are 21.65 and 37.29 intersect, the angle between tangents at a point of intersection being 18° 36′. Find the distance between their centers, and the length of their common chord.
- 26. Two chords from a point A on a circle are of length 37.26 and 82.19; the angle between them is 129° 13′. Find the radius of the circle.
- 27. The angles of a triangle are 36°, 82° and 62°. The radius of the circumscribed circle is 25. Find the lengths of the sides.
- 28. The perimeter of a triangle is 72, the radius of the inscribed circle is 12, and one angle is 47°. Find the lengths of the sides.

Hint. Use a half-angle formula and Mollweide's equations.

- 29. Two angles of a triangle are 72° 14′ and 66° 28′; the radius of the inscribed circle is 62.84 in. Find the lengths of the sides of the triangle.
- 30. Two forces of 327.4 lb. and 632.8 lb. act at a point at an angle of 16° 37′ with each other. What are the direction and the magnitude of the resultant force?
- 31. Two forces of 36.2 lb. and 18.4 lb. act at a point A; they are exactly counteracted by a third force of 25.1 lb. Find the angles between the directions of the forces.
- 32. A boat is traveling due East at the rate of 18 mi. per hr. A ball is thrown from the deck with a speed of 120 ft. per sec. at an angle 37° to the right of the ship's course. What is the speed and direction of the ball's motion relative to the water?
- 33. A man in an airplane which is traveling horizontally with a velocity of 165 mi. per hr. at an altitude of 8200 ft. throws a bomb directly downward at a rate of 200 ft. per sec.

Assuming that the velocity of the bomb is constant in magnitude and direction, how far will it strike from the point at which it was thrown? What is the angle of depression of its path? How long is it in the air?

34. To find the height of a mountain top, P, above a horizontal plane ABC (Fig. 103), a base line AB was meas-



ured, AB = 3682 yd., and the angle of elevation of P from A observed to be 21° 13′. The bearing of P from A was S 79° 18′ E, and that of B from A was S 11° 34′ E. The bearing of P from B was N 48° 16′ E. What was the height of the mountain?

- 35. Two sides of a triangle are 121.23 ft. and 197.56 ft. long respectively, and the angle between them is 121° 32′ 15″. Find the lengths of the segments into which the opposite side is cut by the bisector of the angle between the given sides.
- 36. The frontage on the beach AB of a quadrangular lot ABCD cannot be measured directly. The sides BC, CD, DA are found to be 243 ft., 158 ft., 111 ft. respectively. The angles DAC and DBC are 33° 12′ and 28° 40′ respectively. Find the length of AB.
- 37. A battleship starts from port A on a due easterly course at a speed of 18.2 mi. per hr. At the same instant a dispatch boat leaves port B at a speed of 24.3 mi. per hr. The bearing and distance of A from B are N 24° 10′ E and 37.2 mi. respectively. If the two boats continue at uniform speed, what should be the course of the dispatch boat so that it may meet the battleship? When will they meet?
- 38. To find the height CP of a mountain top, P, above a horizontal plane ABC (Fig. 104), a line AD of length a was measured at an angle of inclination  $\alpha$  with the horizontal, D being vertically above B. The angle of elevation of P from A was  $\theta$ ; angle CAB was  $\beta$ , and angle ABC was  $\gamma$ .

Show that

$$CP = \frac{a \cos \alpha \sin \gamma \tan \theta}{\sin (\beta + \gamma)}.$$

39. Devise a scheme for finding the distance between two accessible points A and B if there is no point from which both can be seen. (For example, A and B may lie on opposite sides of an inaccessible mountain.) Assume that two points C and D can be found in a plane with A and B, such that A and D are visible from C, and B from D; also that AC, CD, DB can be measured. Give formulas to be used in finding AB from measured quantities.



40. Two astronomers in the same longitude observe the zenith distance of the center of the moon when it crosses their meridian. Their difference of latitude is 92° 14′ 12″; the observed zenith distances are: A = 44° 54′ 21″ and B = 48° 42′ 57″. Taking the earth's radius to be 3959 mi., find the distance from earth to moon (EM, Fig. 105).

#### **FORMULAS**

#### Definitions of the six functions, p. 17.



#### Reduction formulas, pp. 80-87.

(7) 
$$\sin (-\theta) = -\sin \theta$$
,  $\cos (-\theta) = \cos \theta$ .  
(8)  $\sin (90^{\circ} - \theta) = \cos \theta$ ,  $\cos (90^{\circ} - \theta) = \sin \theta$ .  
(9)  $\sin (90^{\circ} + \theta) = \cos \theta$ ,  $\cos (90^{\circ} + \theta) = -\sin \theta$ .  
(10)  $\sin (180^{\circ} - \theta) = \sin \theta$ ,  $\cos (180^{\circ} - \theta) = -\cos \theta$ .

#### Formulas involving one angle, pp. 99-101.

(11) 
$$\sin \theta = \frac{1}{\csc \theta}$$
,  $\cos \theta = \frac{1}{\sec \theta}$ ,  $\tan \theta = \frac{1}{\cot \theta}$ .  
(12)  $\tan \theta = \frac{\sin \theta}{\cos \theta}$ ,  $\cot \theta = \frac{\cos \theta}{\sin \theta}$ .  
(13)  $\sin^2 \theta + \cos^2 \theta = 1$ .  
(14)  $1 + \tan^2 \theta = \sec^2 \theta$ .

$$(15) \quad 1 + \cot^2 \theta = \csc^2 \theta.$$

## Addition formulas, p. 107.

(16) 
$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
.

(17) 
$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
.

(18) 
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$
.

(19) 
$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$
.

(20) 
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
.

(21) 
$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$
.

### Formulas for the double angle, p. 116.

(22) 
$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$
.

(23) 
$$\cos 2 \alpha = \cos^2 \alpha - \sin^2 \alpha = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha.$$

(24) 
$$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}.$$

#### Formulas for the half-angle, pp. 117, 118.

$$(25) \quad \sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}.$$

$$(26) \quad \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}.$$

(27) 
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$
$$= \frac{1 - \cos \alpha}{\sin \alpha}$$
$$= \frac{\sin \alpha}{1 + \cos \alpha}.$$

#### Sums and differences expressed as products, p. 122.

(28) 
$$\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$$
.

(29) 
$$\sin A - \sin B = 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$$
.

(30) 
$$\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$$
.

(31) 
$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$
.



Radian measure, pp. 126-129.

(32) 
$$\pi \text{ radians} = 180^{\circ}.$$

(33) 
$$s = r\theta$$
 (Fig. 115).

#### Formulas for triangles.

(34) 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
, Law of sines, p. 60.

(35) 
$$a^2 = b^2 + c^2 - 2bc \cos A$$
, Law of cosines, p. 61.

(36) 
$$\frac{a-b}{a+b} = \frac{\tan \frac{1}{2} (A-B)}{\tan \frac{1}{2} (A+B)}$$
, Law of tangents, p. 189.

(37) 
$$\tan \frac{A}{2} = \frac{r}{s-a}$$
, Half-angle formula, pp. 201, 202.   
  $2s = a + b + c$ ,  $r^2 = \frac{(s-a)(s-b)(s-c)}{s}$ .

(38) 
$$S = \frac{1}{2} bc \sin A$$

$$= \sqrt{s(s-a) (s-b) (s-c)}, \text{ Area of triangle, p. 205.}$$

## LOGARITHMIC

#### AND

## TRIGONOMETRIC TABLES

#### CONTENTS

#### FOUR-PLACE TABLES

|                                                    |   |    |   | PAGE |
|----------------------------------------------------|---|----|---|------|
| Table I. Squares of Numbers                        | • |    | • | 2    |
| TABLE II. VALUES OF FUNCTIONS AND RADIANS          | • | •  |   | 4    |
| Table III. Logarithms of Numbers                   | • | ٠. |   | 10   |
| Table IV. Logarithms of Functions                  | • | •  | • | 12   |
| FIVE-PLACE TABLES                                  |   |    |   |      |
| LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS          |   |    |   |      |
| Table Va. Auxiliary Table of $S$ and $T$ .         | • | •  |   | 21   |
| Table Vb. Angles Near $0^{\circ}$ and $90^{\circ}$ | • | •  | • | 22   |
| Table VI. Logarithms of Functions .                | • | •  |   | 25   |
| Table VII. Common Logarithms of Numbers            | • | •  | ٠ | 73   |
| TABLE VIII. NATURAL LOGARITHMS OF NUMBERS          | • | •  | • | 92   |
| TABLE IX. CONSTANTS WITH THEIR LOGARITHMS          | • | •  |   | 94   |
|                                                    |   |    |   |      |

| N                                                      | 0                                                                | 1                                                                     | 2                                | 3                                                          | 4                                                          | 5                                                          | 6                                | 7                                                        | 8                                | 9                                                       |
|--------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------|
| 1.0                                                    | 1.000                                                            | 1.020                                                                 | 1.040                            | 1.061                                                      | 1.082                                                      | 1.103                                                      | 1.124                            | 1.145                                                    | 1.166                            | 1.188                                                   |
| 1.1<br>1.2<br>1.3                                      | 1.210<br>1.440<br>1.690                                          | 1.232<br>1.464<br>1.716                                               | 1.254<br>1.488<br>1.742          | 1.277<br>1.513<br>1.769                                    | 1.300<br>1.538<br>1.796                                    | 1.323<br>1.563<br>1.823                                    | 1.346<br>1.588<br>1.850          | 1.369<br>1.613<br>1.877                                  | 1.392<br>1.638<br>1.904          | 1.416<br>1.664<br>1.932                                 |
| 1.4<br>1.5<br>1.6                                      | $\begin{array}{c} 1.960 \\ 2.250 \\ 2.560 \end{array}$           | 1.988<br>2.280<br>2.592                                               | 2.016 $2.310$ $2.624$            | 2.045 $2.341$ $2.657$                                      | 2.074<br>2.372<br>2.690                                    | 2.103 $2.403$ $2.723$                                      | 2.132<br>2.434<br>2.756          | 2.161<br>2.465<br>2.789                                  | 2.190<br>2.496<br>2.822          | 2.220<br>2.528<br>2.856                                 |
| 1.7<br>1.8<br>1.9                                      | $ \begin{array}{c} 2.890 \\ 3.240 \\ 3.610 \end{array} $         | 2.924<br>3.276<br>3.648                                               | 2.958<br>3.312<br>3.686          | 2.993<br>3.349<br>3.725                                    | 3.028<br>3.386<br>3.764                                    | 3.063<br>3.423<br>3.803                                    | 3.098<br>3.460<br>3.842          | 3.133<br>3.497<br>3.881                                  | 3.168<br>3.534<br>3.920          | 3.204<br>3.572<br>3.960                                 |
| 2.0                                                    | 4.000                                                            | 4.040                                                                 | 4.080                            | 4.121                                                      | 4.162                                                      | 4.203                                                      | 4.244                            | 4.285                                                    | 4.326                            | 4.368                                                   |
| $\begin{bmatrix} 2.1 \\ 2.2 \\ 2.3 \end{bmatrix}$      | 4.410<br>4.840<br>5.290                                          | 4.452<br>4.884<br>5.336                                               | 4.494<br>4.928<br>5.382          | 4.537<br>4.973<br>5.429                                    | 4.580<br>5.018<br>5.476                                    | 4.623 $5.063$ $5.523$                                      | 4.666<br>5.108<br>5.570          | 4.709<br>5.153<br>5.617                                  | 4.752<br>5.198<br>5.664          | 4.796<br>5.244<br>5.712                                 |
| 2.4<br>2.5<br>2.6                                      | 5.760<br>6.250<br>6.760                                          | 5.808<br>6.300<br>6.812                                               | 5.856<br>6.350<br>6.864          | 5.905<br>6.401<br>6.917                                    | 5.954<br>6.452<br>6.970                                    | 6.003 $6.503$ $7.023$                                      | 6.052 $6.554$ $7.076$            | 6.101 $6.605$ $7.129$                                    | 6.150 $6.656$ $7.182$            | 6.200<br>6.708<br>7.236                                 |
| 2.7<br>2.8<br>2.9                                      | 7.290<br>7.840<br>8.410                                          | 7.344<br>7.896<br>8.468                                               | 7.398<br>7.952<br>8.526          | 7.453<br>8.009<br>8.585                                    | 7.508<br>8.066<br>8.644                                    | 7.563<br>8.123<br>8.703                                    | 7.618<br>8.180<br>8.762          | 7.673<br>8.237<br>8.821                                  | 7.728<br>8.294<br>8.880          | 7.784<br>8.352<br>8.940                                 |
| 3.0                                                    | 9.000                                                            | 9.060                                                                 | 9.120                            | 9.181                                                      | 9.242                                                      | 9.303                                                      | 9.364                            | 9.425                                                    | 9.486                            | 9.548                                                   |
| 3.1<br>3.2<br>3.3                                      | 9.610<br>10.24<br>10.89                                          | 9.672<br>10.30<br>10.96                                               | 9.734<br>10.37<br>11.02          | 9.797<br>10.43<br>11.09                                    | 9.860<br>10.50<br>11.16                                    | 9.923 $10.56$ $11.22$                                      | 9.986<br>10.63<br>11.29          | 10.05 $10.69$ $11.36$                                    | $10.11 \\ 10.76 \\ 11.42$        | 10.18<br>10.82<br>11.49                                 |
| 3.4<br>3.5<br>3.6                                      | 11.56<br>12.25<br>12.96                                          | 11.63<br>12.32<br>13.03                                               | 11.70<br>12.39<br>13.10          | 11.76<br>12.46<br>13.18                                    | 11.83<br>12.53<br>13.25                                    | 11.90<br>12.60<br>13.32                                    | 11.97<br>12.67<br>13.40          | 12.04<br>12.74<br>13.47                                  | 12.11<br>12.82<br>13.54          | 12.18<br>12.89<br>13.62                                 |
| 3.7<br>3.8<br>3.9                                      | 13.69<br>14.44<br>15.21                                          | 13.76<br>14.52<br>15.29                                               | 13.84<br>14.59<br>15.37          | 13.91<br>14.67<br>15.44                                    | 13.99<br>14.75<br>15.52                                    | 14.06<br>14.82<br>15.60                                    | 14.14<br>14.90<br>15.68          | 14.21<br>14.98<br>15.76                                  | 14.29<br>15.05<br>15.84          | 14.36<br>15.13<br>15.92                                 |
| 4.0                                                    | 16.00                                                            | 16.08                                                                 | 16.16                            | 16.24                                                      | 16.32                                                      | 16.40                                                      | 16.48                            | 16.56                                                    | 16.65                            | 16.73                                                   |
| $ \begin{array}{ c c } 4.1 \\ 4.2 \\ 4.3 \end{array} $ | 16.81<br>17.64<br>18.49                                          | 16.89<br>17.72<br>18.58                                               | 16.97<br>17.81<br>18.66          | 17.06<br>17.89<br>18.75                                    | 17.14<br>17.98<br>18.84                                    | 17.22<br>18.06<br>18.92                                    | 17.31<br>18.15<br>19.01          | 17.39<br>18.23<br>19.10                                  | 17.47<br>18.32<br>19.18          | 17.56<br>18.40<br>19.27                                 |
| 4.4<br>4.5<br>4.6                                      | 19.36<br>20.25<br>21.16                                          | $ \begin{array}{ c c c } \hline 19.45 \\ 20.34 \\ 21.25 \end{array} $ | 19.54<br>20.43<br>21.34          | $ \begin{array}{c c} 19.62 \\ 20.52 \\ 21.44 \end{array} $ | $ \begin{array}{c c} 19.71 \\ 20.61 \\ 21.53 \end{array} $ | $ \begin{array}{c c} 19.80 \\ 20.70 \\ 21.62 \end{array} $ | 19.89<br>20.79<br>21.72          | 19.98<br>20.88<br>21.81                                  | 20.07<br>20.98<br>21.90          | $\begin{bmatrix} 20.16 \\ 21.07 \\ 22.00 \end{bmatrix}$ |
| 4.7<br>4.8<br>4.9                                      | 22.09<br>23.04<br>24.01                                          | 22.18<br>23.14<br>24.11                                               | 22.28<br>23.23<br>24.21          | 22.37<br>23.33<br>24.30                                    | $ \begin{array}{c c} 22.47 \\ 23.43 \\ 24.40 \end{array} $ | 22.56<br>23.52<br>24.50                                    | 22.66<br>23.62<br>24.60          | $ \begin{array}{c} 22.75 \\ 23.72 \\ 24.70 \end{array} $ | 22.85<br>23.81<br>24.80          | 22.94<br>23.91<br>24.90                                 |
| 5.0                                                    | 25.00                                                            | 25.10                                                                 | 25.20                            | 25.30                                                      | 25.40                                                      | 25.50                                                      | 25.60                            | 25.70                                                    | 25.81                            | 25.91                                                   |
| 5.1<br>5.2<br>5.3<br>5.4                               | $\begin{bmatrix} 26.01 \\ 27.04 \\ 28.09 \\ 29.16 \end{bmatrix}$ | 26.11<br>27.14<br>28.20<br>29.27                                      | 26.21<br>27.25<br>28.30<br>29.38 | 26.32<br>27.35<br>28.41<br>29.48                           | 26.42<br>27.46<br>28.52<br>29.59                           | 26.52<br>27.56<br>28.62<br>29.70                           | 26.63<br>27.67<br>28.73<br>29.81 | 26.73<br>27.77<br>28.84<br>29.92                         | 26.83<br>27.88<br>28.94<br>30.03 | 26.94<br>27.98<br>29.05<br>30.14                        |
| 0.4                                                    | 29.10                                                            | 29.21                                                                 | 20.00                            | 23.10                                                      | 29.09                                                      | 20.10                                                      | 20.01                            | 20.32                                                    | 00.00                            | 50.11                                                   |

| N               | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 5.5             | 30.25 | 30.36 | 30.47 | 30.58 | 30.69 | 30.80 | 30.91 | 31.02 | 31.14 | 31.25 |
| 5.6             | 31.36 | 31.47 | 31.58 | 31.70 | 31.81 | 31.92 | 32.04 | 32.15 | 32.26 | 32.38 |
| 5.7             | 32.49 | 32.60 | 32.72 | 32.83 | 32.95 | 33.06 | 33.18 | 33.29 | 33.41 | 33.52 |
| 5.8             | 33.64 | 33.76 | 33.87 | 33.99 | 34.11 | 34.22 | 34.34 | 34.46 | 34.57 | 34.69 |
| 5.9             | 34.81 | 34.93 | 35.05 | 35.16 | 35.28 | 35.40 | 35.52 | 35.64 | 35.76 | 35.88 |
| 6.0             | 36.00 | 36.12 | 36.24 | 36.36 | 36.48 | 36.60 | 36.72 | 36.84 | 36.97 | 37.09 |
| 6.1             | 37.21 | 37.33 | 37.45 | 37.58 | 37.70 | 37.82 | 37.95 | 38.07 | 38.19 | 38.32 |
| 6.2             | 38.44 | 38.56 | 38.69 | 38.81 | 38.94 | 39.06 | 39.19 | 39.31 | 39.44 | 39.56 |
| 6.3             | 39.69 | 39.82 | 39.94 | 40.07 | 40.20 | 40.32 | 40.45 | 40.58 | 40.70 | 40.83 |
| 6.4             | 40.96 | 41.09 | 41.22 | 41.34 | 41.47 | 41.60 | 41.73 | 41.86 | 41.99 | 42.12 |
| 6.5             | 42.25 | 42.38 | 42.51 | 42.64 | 42.77 | 42.90 | 43.03 | 43.16 | 43.30 | 43.43 |
| 6.6             | 43.56 | 43.69 | 43.82 | 43.96 | 44.09 | 44.22 | 44.36 | 44.49 | 44.62 | 44.76 |
| 6.7             | 44.89 | 45.02 | 45.16 | 45.29 | 45.43 | 45.56 | 45.70 | 45.83 | 45.97 | 46.10 |
| 6.8             | 46.24 | 46.38 | 46.51 | 46.65 | 46.79 | 46.92 | 47.06 | 47.20 | 47.33 | 47.47 |
| 6.9             | 47.61 | 47.75 | 47.89 | 48.02 | 48.16 | 48.30 | 48.44 | 48.58 | 48.72 | 48.86 |
| 7.0             | 49.00 | 49.14 | 49.28 | 49.42 | 49.56 | 49.70 | 49.84 | 49.98 | 50.13 | 50.27 |
| 7.1 $7.2$ $7.3$ | 50.41 | 50.55 | 50.69 | 50.84 | 50.98 | 51.12 | 51.27 | 51.41 | 51.55 | 51.70 |
|                 | 51.84 | 51.98 | 52.13 | 52.27 | 52.42 | 52.56 | 52.71 | 52.85 | 53.00 | 53.14 |
|                 | 53.29 | 53.44 | 53.58 | 53.73 | 53.88 | 54.02 | 54.17 | 54.32 | 54.46 | 54.61 |
| 7.4             | 54.76 | 54.91 | 55.06 | 55.20 | 55.35 | 55.50 | 55.65 | 55.80 | 55.95 | 56.10 |
| 7.5             | 56.25 | 56.40 | 56.55 | 56.70 | 56.85 | 57.00 | 57.15 | 57.30 | 57.46 | 57.61 |
| 7.6             | 57.76 | 57.91 | 58.06 | 58.22 | 58.37 | 58.52 | 58.68 | 58.83 | 58.98 | 59.14 |
| 7.7             | 59.29 | 59.44 | 59.60 | 59.75 | 59.91 | 60.06 | 60.22 | 60.37 | 60.53 | 60.68 |
| 7.8             | 60.84 | 61.00 | 61.15 | 61.31 | 61.47 | 61.62 | 61.78 | 61.94 | 62.09 | 62.25 |
| 7.9             | 62.41 | 62.57 | 62.73 | 62.88 | 63.04 | 63.20 | 63.36 | 63.52 | 63.68 | 63.84 |
| 8.0             | 64.00 | 64.16 | 64.32 | 64.48 | 64.64 | 64.80 | 64.96 | 65.12 | 65.29 | 65.45 |
| 8.1             | 65.61 | 65.77 | 65.93 | 66.10 | 66.26 | 66.42 | 66.59 | 66.75 | 66.91 | 67.08 |
| 8.2             | 67.24 | 67.40 | 67.57 | 67.73 | 67.90 | 68.06 | 68.23 | 68.39 | 68.56 | 68.72 |
| 8.3             | 68.89 | 69.06 | 69.22 | 69.39 | 69.56 | 69.72 | 69.89 | 70.06 | 70.22 | 70.39 |
| 8.4             | 70.56 | 70.73 | 70.90 | 71.06 | 71.23 | 71.40 | 71.57 | 71.74 | 71.91 | 72.08 |
| 8.5             | 72.25 | 72.42 | 72.59 | 72.76 | 72.93 | 73.10 | 73.27 | 73.44 | 73.62 | 73.79 |
| 8.6             | 73.96 | 74.13 | 74.30 | 74.48 | 74.65 | 74.82 | 75.00 | 75.17 | 75.34 | 75.52 |
| 8.7             | 75.69 | 75.86 | 76.04 | 76.21 | 76.39 | 76.56 | 76.74 | 76.91 | 77.08 | 77.26 |
| 8.8             | 77.44 | 77.62 | 77.79 | 77.97 | 78.15 | 78.32 | 78.50 | 78.68 | 78.85 | 79.03 |
| 8.9             | 79.21 | 79.39 | 79.57 | 79.74 | 79.92 | 80.10 | 80.28 | 80.46 | 80.64 | 80.82 |
| 9.0             | 81.00 | 81.18 | 81.36 | 81.54 | 81.72 | 81.90 | 82.08 | 82.26 | 82.45 | 82.63 |
| 9.1             | 82.81 | 82.99 | 83.17 | 83.36 | 83.54 | 83.72 | 83.91 | 84.09 | 84.27 | 84.46 |
| 9.2             | 84.64 | 84.82 | 85.01 | 85.19 | 85.38 | 85.56 | 85.75 | 85.93 | 86.12 | 86.30 |
| 9.3             | 86.49 | 86.68 | 86.86 | 87.05 | 87.24 | 87.42 | 87.61 | 87.80 | 87.98 | 88.17 |
| 9.4             | 88.36 | 88.55 | 88.74 | 88.92 | 89.11 | 89.30 | 89.49 | 89.68 | 89.87 | 90.06 |
| 9.5             | 90.25 | 90.44 | 90.63 | 90.82 | 91.01 | 91.20 | 91.39 | 91.58 | 91.78 | 91.97 |
| 9.6             | 92.16 | 92.35 | 92.54 | 92.74 | 92.93 | 93.12 | 93.32 | 93.51 | 93.70 | 93.90 |
| 9.7             | 94.09 | 94.28 | 94.48 | 94.67 | 94.87 | 95.06 | 95.26 | 95.45 | 95.65 | 95.84 |
| 9.8             | 96.04 | 96.24 | 96.43 | 96.63 | 96.83 | 97.02 | 97.22 | 97.42 | 97.61 | 97.81 |
| 9.9             | 98.01 | 98.21 | 98.41 | 98.60 | 98.80 | 99.00 | 99.20 | 99.40 | 99.60 | 99.80 |

| DEGREES                                   | RADIANS                                       | Sin                                                    | Cos          | Tan                                           | Cot                   | Sec                                          | Csc                   |                                                |                                         |
|-------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--------------|-----------------------------------------------|-----------------------|----------------------------------------------|-----------------------|------------------------------------------------|-----------------------------------------|
| 0° 00′                                    | .0000                                         | .0000                                                  | 1.0000       | .0000                                         |                       | 1.000                                        |                       | 1.5708                                         | 90° 00′                                 |
| 10                                        | 029                                           | 029                                                    | 000          | 029                                           | 343.8                 | 000                                          | 343.8                 | 679                                            | 50                                      |
| 20                                        | 058                                           | 058                                                    | 000          | 058                                           | 171.9                 | 000                                          | 171.9                 | $650 \mid 1.5621 \mid$                         | 40<br>30                                |
| 30<br>40                                  | .0087                                         | 0.0087 $116$                                           | 1.0000       | .0087                                         | 114.6<br>85.94        | 1.000                                        | 114.6<br>85.95        | $\frac{1.5021}{592}$                           | 20                                      |
| 50                                        | 145                                           | 145                                                    | 999          | 145                                           | 68.75                 | 000                                          | 68.76                 | 563                                            | 10                                      |
| 1° 00′                                    | .0175                                         | .0175                                                  | .9998        | .0175                                         | 57.29                 | 1.000                                        | 57.30                 | 1.5533                                         | 89° 00′                                 |
| 10                                        | 204                                           | 204                                                    | 998          | 204                                           | 49.10                 | 000                                          | 49.11                 | 504                                            | 50                                      |
| $\frac{20}{20}$                           | $\begin{array}{c c} 233 \\ .0262 \end{array}$ | $\begin{bmatrix} 233 \\ .0262 \end{bmatrix}$           | 997          | $\begin{array}{c c} 233 \\ .0262 \end{array}$ | 42.96<br>38.19        | 000                                          | 42.98<br>38.20        | $\begin{array}{c c} 475 \\ 1.5446 \end{array}$ | 40<br>30                                |
| 30<br>40                                  | 291                                           | 291                                                    | 996          | 291                                           | 34.37                 | 000                                          | 34.38                 | 417                                            | 20                                      |
| 50                                        | 320                                           | 320                                                    | 995          | 320                                           | 31.24                 | 001                                          | 31.26                 | 388                                            | 10                                      |
| 2° 00′                                    | .0349                                         | .0349                                                  | .9994        | .0349                                         | 28.64                 | 1.001                                        | 28.65                 | 1.5359                                         | 88° 00′                                 |
| 10                                        | 378                                           | 378<br>407                                             | 993<br>992   | $\begin{array}{c c} 378 \\ 407 \end{array}$   | $26.43 \\ 24.54$      | 001<br>001                                   | $26.45 \\ 24.56$      | 330<br>301                                     | 50<br>40                                |
| $\begin{array}{c c} 20 \\ 30 \end{array}$ | .0436                                         | .0436                                                  | .9990        | .0437                                         | $\frac{24.34}{22.90}$ | 1.001                                        | $\frac{24.50}{22.93}$ | 1.5272                                         | 30                                      |
| 40                                        | 465                                           | 465                                                    | 989          | 466                                           | 21.47                 | 001                                          | 21.49                 | 243                                            | 20                                      |
| 50                                        | 495                                           | 494                                                    | 988          | 495                                           | 20.21                 | 001                                          | 20.23                 | 213                                            | 10                                      |
| 3° 00′                                    | .0524                                         | .0523                                                  | .9986<br>985 | .0524                                         | 19.08<br>18.07        | $1.001 \\ 002$                               | 19.11<br>18.10        | $1.5184 \\ 155$                                | <b>87° 00′</b> 50                       |
| $\begin{array}{c c} 10 \\ 20 \end{array}$ | 553<br>582                                    | 552<br>581                                             | 983          | $\begin{array}{c c} 553 \\ 582 \end{array}$   | 17.17                 | 002                                          | 17.20                 | 126                                            | 40                                      |
| 30                                        | .0611                                         | .0610                                                  | .9981        | .0612                                         | 16.35                 | 1.002                                        | 16.38                 | 1.5097                                         | 30                                      |
| 40                                        | 640                                           | 640                                                    | 980          | 641                                           | 15.60                 | 002                                          | 15.64                 | 068                                            | 20<br>10                                |
| 50                                        | 669                                           | 669                                                    | 978          | 670                                           | 14.92                 | $\begin{vmatrix} 002 \\ 1.002 \end{vmatrix}$ | 14.96<br>14.34        | 039                                            | 86° 00′                                 |
| <b>4° 00</b> ′<br>10                      | .0698                                         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | .9976<br>974 | $0699 \\ 729$                                 | 14.30                 | 003                                          | 13.76                 | 981                                            | 50                                      |
| 20                                        | 756                                           | 756                                                    | 971          | 758                                           | 13.20                 | 003                                          | 13.23                 | 952                                            | 40                                      |
| 30                                        | .0785                                         | .0785                                                  | .9969        | .0787                                         | 12.71                 | 1.003                                        | 12.75                 | 1.4923                                         | 30                                      |
| 40 50                                     | 814                                           | 814                                                    | 967<br>964   | 816<br>846                                    | 12.25<br>11.83        | 003                                          | 12.29<br>11.87        | 893<br>864                                     | 20<br>10                                |
| 5° 00′                                    | .0873                                         | .0872                                                  | .9962        | .0875                                         | 11.43                 | 1.004                                        | 11.47                 | 1.4835                                         | 85° 00′                                 |
| 10                                        | 902                                           | 901                                                    | 959          | 904                                           | 11.06                 | 004                                          | 11.10                 | 806                                            | 50                                      |
| 20                                        | 931                                           | 929                                                    | 957          | 934                                           | 10.71                 | 004                                          | 10.76                 | 777                                            | 40                                      |
| 30 40                                     | .0960                                         | 0958                                                   | .9954        | .0963                                         | 10.39                 | 1.005                                        | 10.43                 | $1.4748 \\ 719$                                | $\begin{array}{c} 30 \\ 20 \end{array}$ |
| 50                                        | .1018                                         | .1016                                                  | 948          | .1022                                         | 9.788                 | 005                                          | 9.839                 | 690                                            | 10                                      |
| 6° 00′                                    | .1047                                         | .1045                                                  | .9945        | .1051                                         | 9.514                 | 1.006                                        | 9.567                 | 1.4661                                         | 84° 00′                                 |
| 10                                        | 076                                           | 074                                                    | 942          | 080                                           | 9.255                 | 006                                          | 9.309                 | 632                                            | 50                                      |
| 20 30                                     | 105                                           | 103                                                    | 939          | .1139                                         | 9.010<br>8.777        | 1.006                                        | 9.065<br>8.834        | $\begin{bmatrix} 603 \\ 1.4573 \end{bmatrix}$  | $\frac{40}{30}$                         |
| 40                                        | 164                                           | 161                                                    | 932          | 169                                           | 8.556                 | 007                                          | 8.614                 | 544                                            | 20                                      |
| 50                                        | 193                                           | 190                                                    | 929          | 198                                           | 8.345                 | 007                                          | 8.405                 | 515                                            | 10                                      |
| 7° 00′                                    | .1222                                         | .1219                                                  | .9925        | .1228                                         | 8.144                 | 1.008                                        | 8.206                 | 1.4486                                         | 83° 00′                                 |
| 10 20                                     | 251<br>280                                    | 248 276                                                | 922<br>918   | 257<br>287                                    | 7.953                 | 008                                          | 8.016                 | $\begin{array}{c c} 457 \\ 428 \end{array}$    | 50<br>40                                |
| 30                                        | .1309                                         | .1305                                                  | .9914        | .1317                                         | 7.596                 | 1.009                                        | 7.661                 | 1.4399                                         | 30                                      |
| 40                                        | 338                                           | 334                                                    | 911          | 346                                           | 7.429                 | 009                                          | 7.496                 | 370                                            | 20                                      |
| 50                                        | 367                                           | 363                                                    | 907          | 376                                           | 7.269                 | 009                                          | 7.337                 | 341                                            | 10                                      |
| 8° 00′<br>10                              | .1396                                         | 1.1392                                                 | .9903        | 1.1405                                        | 7.115                 | 1.010                                        | 7.185                 | $\begin{bmatrix} 1.4312 \\ 283 \end{bmatrix}$  | <b>82° 00′</b> 50                       |
| 20                                        | 454                                           | 449                                                    | 894          | 465                                           | 6.827                 | 011                                          | 6.900                 | 254                                            | 40                                      |
| 30                                        | .1484                                         | .1478                                                  | .9890        | .1495                                         | 6.691                 | 1.011                                        | 6.765                 | 1.4224                                         | 30                                      |
| 40 50                                     | 513<br>542                                    | 507                                                    | 886<br>881   | 524 554                                       | 6.561 6.435           | 012                                          | 6.636                 | 195<br>166                                     | 20<br>10                                |
| 9° 00′                                    | .1571                                         | .1564                                                  |              | .1584                                         | 6.314                 | 1.012                                        | 6.392                 | 1.4137                                         | 81° 00′                                 |
| 1                                         |                                               | Cos                                                    | Sin          | Cot                                           | Tan                   | Csc                                          | Sec                   | RADIANS                                        | DEGREES                                 |

II

|                                             | 70                                                     | C:-                                                      | Con                                             | Ton                                               | Cot                                            | Sec                                               | Csc                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |
|---------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| DEGREES                                     | RADIANS                                                | Sin -                                                    | Cos                                             | Tan                                               |                                                |                                                   |                                               | 1.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 700 00/                                   |
| 18° 00′                                     | .3142                                                  | .3090                                                    | .9511                                           | $\begin{array}{c c} .3249 \\ 281 \end{array}$     | 3.078   047                                    | $\begin{array}{c c} 1.051 \\ 052 \end{array}$     | $\begin{bmatrix} 3.236 \\ 207 \end{bmatrix}$  | 1.2566   537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>72° 00′</b> 50                         |
| $\begin{bmatrix} 10 \\ 20 \end{bmatrix}$    | $\begin{array}{c c} 171 \\ 200 \end{array}$            | 145                                                      | 492                                             | 314                                               | 018                                            | 053                                               | 179                                           | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                        |
| 30                                          | .3229                                                  | .3173                                                    | .9483                                           | .3346                                             | 2.989                                          | 1.054                                             | 3.152                                         | 1.2479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                        |
| 40                                          | 258                                                    | 201                                                      | 474                                             | 378                                               | $ \begin{array}{c c} 960 \\ 932 \end{array} $  | $\begin{array}{c c} 056 \\ 057 \end{array}$       | 124<br>098                                    | $\begin{array}{c c} 450 \\ 421 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c c} 20 \\ 10 \end{array}$ |
| 50                                          | 287                                                    | 228                                                      | 465                                             | .3443                                             | $\frac{952}{2.904}$                            | 1.058                                             | 3.072                                         | 1.2392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71° 00′                                   |
| <b>19° 00′</b>                              | $\begin{array}{c c} .3316 \\ 345 \end{array}$          | $\begin{array}{c c} .3256 \\ 283 \end{array}$            | $.9455 \\ 446$                                  | 476                                               | 877                                            | 059                                               | 046                                           | 363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                        |
| 20                                          | 374                                                    | 311                                                      | 436                                             | 508                                               | 850                                            | 060                                               | 021                                           | 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                        |
| 30                                          | .3403                                                  | .3338                                                    | .9426                                           | .3541                                             | 2.824                                          | $\begin{array}{c c} 1.061 & \\ 062 & \end{array}$ | $\begin{bmatrix} 2.996 \\ 971 \end{bmatrix}$  | $\begin{array}{c c} 1.2305 \\ 275 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{vmatrix} 30 \\ 20 \end{vmatrix}$  |
| 40 50                                       | 432<br>462                                             | $\begin{array}{ c c c }\hline 365 \\ 393 \\ \end{array}$ | 417   407                                       | 574   607                                         | 798  <br>773                                   | 063                                               | 947                                           | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                        |
| 20° 00′                                     | .3491                                                  | .3420                                                    | .9397                                           | .3640                                             | 2.747                                          | 1.064                                             | 2.924                                         | 1.2217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70° 00′                                   |
| 10                                          | 520                                                    | 448                                                      | 387                                             | 673                                               | 723                                            | 065                                               | 901                                           | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                        |
| 20                                          | 549                                                    | 475                                                      | 377                                             | 706                                               | 699   2.675                                    | 066   1.068                                       | $\begin{array}{c c} 878 \\ 2.855 \end{array}$ | $\begin{array}{c c} 159 \\ 1.2130 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40<br>30                                  |
| 30 40                                       | .3578                                                  | 3502   529                                               | .9367                                           | $\begin{array}{c c} .3739 & \\ 772 & \end{array}$ | $\frac{2.073}{651}$                            | 069                                               | 833                                           | 1.2130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                        |
| 50                                          | 636                                                    | 557                                                      | 346                                             | 805                                               | 628                                            | 070                                               | 812                                           | 072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                        |
| 21° 00′                                     | .3665                                                  | .3584                                                    | .9336                                           | .3839                                             | 2.605                                          | 1.071                                             | 2.790                                         | 1.2043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69° 00′                                   |
| 10                                          | 694                                                    | 611                                                      | $\begin{array}{c c} 325 \\ 315 \end{array}$     | 872<br>906                                        | 583<br>560                                     | $\begin{array}{c c} 072 \\ 074 \end{array}$       | 769   749                                     | $\begin{array}{c c} 1.2014 \\ 985 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{bmatrix} 50 \\ 40 \end{bmatrix}$  |
| $\begin{array}{c c} 20 \\ 30 \end{array}$   | 723                                                    | 3665                                                     | .9304                                           | .3939                                             | 2.539                                          | 1.075                                             | 2.729                                         | 1.1956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                        |
| 40                                          | 782                                                    | 692                                                      | 293                                             | 973                                               | 517                                            | 076                                               | 709                                           | 926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                        |
| 50                                          | 811                                                    | 719                                                      | 283                                             | .4006                                             | 496                                            | 077                                               | 689                                           | 897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                        |
| 22° 00′                                     | .3840                                                  | 3746                                                     | $ \begin{array}{c c} .9272 \\ 261 \end{array} $ | $0.4040 \\ 0.74$                                  | $\begin{array}{c c} 2.475 \\ 455 \end{array}$  | $\begin{bmatrix} 1.079 \\ 080 \end{bmatrix}$      | $\begin{bmatrix} 2.669 \\ 650 \end{bmatrix}$  | 1.1868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>68° 00′</b>   50                       |
| $\begin{array}{c c} & 10 \\ 20 \end{array}$ | 898                                                    | 800                                                      | $\begin{bmatrix} 201 \\ 250 \end{bmatrix}$      | 108                                               | 434                                            | 081                                               | 632                                           | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                        |
| 30                                          | .3927                                                  | .3827                                                    | .9239                                           | .4142                                             | 2.414                                          | 1.082                                             | 2.613                                         | 1.1781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                        |
| 40                                          | 956                                                    | 854 881                                                  | $\begin{array}{c} 228 \\ 216 \end{array}$       | $\begin{array}{c c} 176 \\ 210 \end{array}$       | 394<br>375                                     | $\begin{array}{c} 084 \\ 085 \end{array}$         | 595<br>577                                    | $egin{array}{c c} 752 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 & 723 $ | $\begin{bmatrix} 20 \\ 10 \end{bmatrix}$  |
| 23° 00′                                     | 985                                                    | .3907                                                    | .9205                                           | .4245                                             | $\begin{vmatrix} 3.75 \\ 2.356 \end{vmatrix}$  | 1.086                                             | 2.559                                         | 1.1694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67° 00′                                   |
| 10                                          | 043                                                    | 934                                                      | 194                                             | 279                                               | 337                                            | 088                                               | 542                                           | 665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                        |
| 20                                          | 072                                                    | 961                                                      | 182                                             | 314                                               | 318                                            | 089                                               | 525                                           | 636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40<br>30                                  |
| 30 40                                       | .4102                                                  | .3987                                                    | $.9171 \\ 159$                                  | .4348                                             | $\begin{vmatrix} 2.300 \\ 282 \end{vmatrix}$   | $\begin{vmatrix} 1.090 \\ 092 \end{vmatrix}$      | $\begin{bmatrix} 2.508 \\ 491 \end{bmatrix}$  | $egin{array}{c c} 1.1606 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 577 & 5$ | $\begin{array}{c c} 30 \\ 20 \end{array}$ |
| 50                                          | 160                                                    | 041                                                      | 147                                             | 417                                               | 264                                            | 093                                               | 475                                           | 548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                        |
| 24° 00′                                     | .4189                                                  | .4067                                                    | .9135                                           | .4452                                             | 2.246                                          | 1.095                                             | 2.459                                         | 1.1519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66° 00′                                   |
| 10                                          | 218                                                    | 094                                                      | $\begin{array}{c} 124 \\ 112 \end{array}$       | 487<br>522                                        | $ \begin{array}{c c} 229 \\ 211 \end{array} $  | 096                                               | 443<br>427                                    | 490<br>461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 50 \\ 40 \end{array}$   |
| $\begin{array}{c c} 20 \\ 30 \end{array}$   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{vmatrix} 120 \\ .4147 \end{vmatrix}$             | .9100                                           | .4557                                             | 2.194                                          | 1.099                                             | 2.411                                         | 1.1432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                        |
| 40                                          | 305                                                    | 173                                                      | 088                                             | 592                                               | 177                                            | 100                                               | 396                                           | 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                        |
| 50                                          | 334                                                    | 200                                                      | 075                                             | 628                                               | 161                                            | 102                                               | 381                                           | 374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                        |
| <b>25° 00′</b>                              | .4363                                                  | $\begin{vmatrix} .4226 \\ 253 \end{vmatrix}$             | $.9063 \\ 051$                                  | .4663                                             | 2.145                                          | 1.103                                             | $\begin{bmatrix} 2.366 \\ 352 \end{bmatrix}$  | $\begin{vmatrix} 1.1345 \\ 316 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>65° 00</b> ′<br>50                     |
| 20                                          | 422                                                    | $\begin{vmatrix} 233 \\ 279 \end{vmatrix}$               | 031                                             | 734                                               | 112                                            | 106                                               | 337                                           | 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                        |
| 30                                          | .4451                                                  | .4305                                                    | .9026                                           | .4770                                             | 2.097                                          | 1.108                                             | 2.323                                         | 1.1257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                        |
| 40 50                                       | 480<br>509                                             | 331 358                                                  | 013 001                                         | 806                                               | 081 066                                        | 109                                               | $\begin{array}{c c} 309 \\ 295 \end{array}$   | $\begin{array}{ c c c }\hline 228\\199\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 20 \\ 10 \end{array}$   |
| 26° 00′                                     |                                                        | .4384                                                    | .8988                                           | .4877                                             | 2.050                                          | 1.113                                             | 2.281                                         | 1.1170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64° 00′                                   |
| 10                                          | 567                                                    | 410                                                      | 975                                             | 913                                               | 035                                            | 114                                               | 268                                           | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                        |
| 20                                          | 596                                                    | 436                                                      | 962                                             | 950                                               | 020                                            | 116                                               | 254 $2.241$                                   | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40<br>30                                  |
| 30 40                                       | .4625                                                  | .4462                                                    | .8949                                           | .4986                                             | $\begin{vmatrix} 2.006 \\ 1.991 \end{vmatrix}$ | 1.117                                             | $\begin{vmatrix} 2.241 \\ 228 \end{vmatrix}$  | 1.1083 054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{vmatrix} 30 \\ 20 \end{vmatrix}$  |
| 50                                          | 683                                                    | 514                                                      | 923                                             | 059                                               | 977                                            | 121                                               | 215                                           | 1.1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                        |
| 27° 00′                                     | .4712                                                  | .4540                                                    | .8910                                           | .5095                                             | 1.963                                          | 1.122                                             | 2.203                                         | 1.0996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63° 00′                                   |
|                                             |                                                        | Cos                                                      | Sin                                             | Cot                                               | Tan                                            | Csc                                               | Sec                                           | RADIANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEGREES                                   |

| DEGREES                                     | RADIANS                                     | Sin                                          | Cos                                       | Tan                                                       | Cot                                             | Sec                                                       | Csc                                                 | 1                                             | 1                                       |
|---------------------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------|
| 27° 00′                                     | .4712                                       | .4540                                        | .8910                                     | .5095                                                     | 1.963                                           | 1.122                                                     |                                                     | 1,0000                                        |                                         |
| 10                                          | 741                                         | 566                                          | 897                                       | 132                                                       | 949                                             | 1.122                                                     | 2.203                                               | 1.0996                                        | <b>63° 00′</b> 50                       |
| $\frac{20}{20}$                             | 771                                         | 592                                          | 884                                       | 169                                                       | 935                                             | 126                                                       | 178                                                 | 937                                           | 40                                      |
| 30<br>40                                    | .4800<br>829                                | .4617<br>643                                 | .8870                                     | .5206                                                     | 1.921                                           | 1.127                                                     | 2.166                                               | 1.0908                                        | 30                                      |
| 50                                          | 858                                         | 669                                          | 857<br>843                                | $   \begin{array}{c c}     243 \\     280   \end{array} $ | 907<br>894                                      | 129<br>131                                                | 154                                                 | 879                                           | 20                                      |
| 28° 00′                                     | .4887                                       | .4695                                        | .8829                                     | .5317                                                     | 1.881                                           | 1.133                                                     | $\begin{array}{ c c }\hline 142\\ 2.130\end{array}$ | 850                                           | 10                                      |
| 10                                          | 916                                         | 720                                          | 816                                       | 354                                                       | 868                                             | 1.133                                                     | 118                                                 | $\begin{vmatrix} 1.0821 \\ 792 \end{vmatrix}$ | <b>62° 00′</b> 50                       |
| 20                                          | 945                                         | 746                                          | 802                                       | 392                                                       | 855                                             | 136                                                       | 107                                                 | 763                                           | 40                                      |
| 30<br>40                                    | .4974                                       | .4772<br>797                                 | .8788                                     | .5430                                                     | 1.842                                           | 1.138                                                     | 2.096                                               | 1.0734                                        | 30                                      |
| 50                                          | 032                                         | 823                                          | $\begin{array}{c} 774 \\ 760 \end{array}$ | 467<br>505                                                | 829<br>816                                      | $140 \\ 142$                                              | $\begin{array}{c} 085 \\ 074 \end{array}$           | 705<br>676                                    | 20                                      |
| 29° 00′                                     | .5061                                       | .4848                                        | .8746                                     | .5543                                                     | 1.804                                           | 1.143                                                     | 2.063                                               | 1.0647                                        | 10<br><b>61° 00</b> ′                   |
| 10                                          | 091                                         | 874                                          | 732                                       | 581                                                       | 792                                             | 145                                                       | 052                                                 | 617                                           | 50                                      |
| $\frac{20}{20}$                             | 120                                         | 899                                          | 718                                       | 619                                                       | 780                                             | 147                                                       | 041                                                 | 588                                           | 40                                      |
| 30<br>40                                    | .5149<br>178                                | .4924   950                                  | .8704                                     | .5658                                                     | 1.767                                           | 1.149                                                     | 2.031                                               | 1.0559                                        | 30                                      |
| 50                                          | 207                                         | $\begin{vmatrix} 950 \\ 975 \end{vmatrix}$   | $689 \\ 675$                              | $\begin{array}{c} 696 \\ 735 \end{array}$                 | 756<br>744                                      | 151<br>153                                                | $020 \\ 010$                                        | 530<br>501                                    | 20<br>10                                |
| 30° 00′                                     | .5236                                       | .5000                                        | .8660                                     | .5774                                                     | 1.732                                           | 1.155                                                     | 2.000                                               | 1.0472                                        | 60° 00′                                 |
| 10                                          | 265                                         | 025                                          | 646                                       | 812                                                       | 720                                             | 157                                                       | 1.990                                               | 443                                           | 50                                      |
| $\frac{20}{20}$                             | 294                                         | 050                                          | 631                                       | 851                                                       | 709                                             | 159                                                       | 980                                                 | 414                                           | 40                                      |
| 30<br>40                                    | $\begin{array}{c} .5323 \\ 352 \end{array}$ | $\begin{bmatrix} .5075 \\ 100 \end{bmatrix}$ | .8616<br>601                              | .5890                                                     | $\begin{vmatrix} 1.698 \\ 686 \end{vmatrix}$    | 1.161                                                     | 1.970                                               | 1.0385                                        | 30                                      |
| 50                                          | 381                                         | 125                                          | 587                                       | 969                                                       | .675                                            | $\begin{array}{c c} 163 \\ 165 \end{array}$               | $961 \\ 951$                                        | $\begin{bmatrix} 356 \\ 327 \end{bmatrix}$    | $\begin{array}{c} 20 \\ 10 \end{array}$ |
| 31° 00′                                     | .5411                                       | .5150                                        | .8572                                     | .6009                                                     | 1.664                                           | 1.167                                                     | 1.942                                               | 1.0297                                        | 59° 00′                                 |
| 10                                          | 440                                         | 175                                          | 557                                       | 048                                                       | 653                                             | 169                                                       | 932                                                 | 268                                           | 50                                      |
| $\frac{20}{30}$                             | 469<br>.5498                                | $\frac{200}{-5225}$                          | $542 \\ .8526$                            | 088                                                       | 643                                             | 171                                                       | 923                                                 | 239                                           | 40                                      |
| 40                                          | 527                                         | $\begin{vmatrix}5225 \\ 250 \end{vmatrix}$   | 511                                       | .6128                                                     | $ \begin{array}{c c} 1.632 \\ 621 \end{array} $ | $1.173 \\ 175$                                            | $1.914 \\ 905$                                      | $\begin{bmatrix} 1.0210 \\ 181 \end{bmatrix}$ | $\begin{array}{c} 30 \\ 20 \end{array}$ |
| 50                                          | 556                                         | 275                                          | 496                                       | 208                                                       | 611                                             | 177                                                       | 896                                                 | 152                                           | 10                                      |
| 32° 00′                                     | .5585                                       | .5299                                        | .8480                                     | .6249                                                     | 1.600                                           | 1.179                                                     | 1.887                                               | 1.0123                                        | 58° 00′                                 |
| $\begin{vmatrix} 10\\20 \end{vmatrix}$      | 614 643                                     | 324                                          | 465                                       | 289                                                       | 590                                             | 181                                                       | 878                                                 | 094                                           | 50                                      |
| 30                                          | .5672                                       | 348                                          | 450<br>.8434                              | 330<br>.6371                                              | $\frac{580}{1.570}$                             | 184<br>1.186                                              | $870 \\ 1.861$                                      | $065 \\ 1.0036$                               | $\frac{40}{30}$                         |
| 40                                          | 701                                         | 398                                          | 418                                       | 412                                                       | 560                                             | 188                                                       | 853                                                 | 1.0007                                        | $\frac{30}{20}$                         |
| 50                                          | 730                                         | 422                                          | 403                                       | 453                                                       | 550                                             | 190                                                       | 844                                                 | 977                                           | 10                                      |
| 33° 00′                                     | .5760                                       | .5446                                        | .8387                                     | .6494                                                     | 1.540                                           | 1.192                                                     | 1.836                                               | .9948                                         | 57° 00′                                 |
| $\begin{array}{c c} & 10 \\ 20 \end{array}$ | 789<br>818                                  | $\begin{array}{c c} 471 \\ 495 \end{array}$  | $\begin{array}{c} 371 \\ 355 \end{array}$ | 536<br>577                                                | 530<br>520                                      | 195<br>197                                                | 828<br>820                                          | 919                                           | 50                                      |
| 30                                          | .5847                                       | $\begin{bmatrix} 495 \\ .5519 \end{bmatrix}$ | .8339                                     | .6619                                                     | 1.511                                           | 1.197                                                     | 1.812                                               | .9861                                         | $\begin{array}{c} 40 \\ 30 \end{array}$ |
| 40                                          | 876                                         | 544                                          | 323                                       | 661                                                       | 501                                             | 202                                                       | 804                                                 | 832                                           | 20                                      |
| 50                                          | 905                                         | 568                                          | 307                                       | 703                                                       | 1.492                                           | 204                                                       | 796                                                 | 803                                           | 10                                      |
| <b>34° 00′</b><br>10                        | .5934<br>963                                | .5592                                        | $.8290 \\ 274$                            | .6745                                                     | 1.483                                           | 1.206                                                     | 1.788                                               | .9774                                         | 56° 00′                                 |
| $\begin{vmatrix} 10 \\ 20 \end{vmatrix}$    | 992                                         | 616                                          | $\begin{array}{c} 274 \\ 258 \end{array}$ | 787<br>830                                                | 473<br>464                                      | $   \begin{array}{c c}     209 \\     211   \end{array} $ | 781<br>773                                          | $\begin{array}{c c} 745 \\ 716 \end{array}$   | 50<br>40                                |
| 30                                          | .6021                                       | .5664                                        | .8241                                     | .6873                                                     | 1.455                                           | 1.213                                                     | 1.766                                               | .9687                                         | 30                                      |
| 40                                          | 050                                         | 688                                          | 225                                       | 916                                                       | 446                                             | 216                                                       | 758                                                 | 657                                           | 20                                      |
| 50                                          | 080                                         | 712                                          | 208                                       | 959                                                       | 437                                             | 218                                                       | 751                                                 | 628                                           | 10                                      |
| 35° 00′<br>10                               | .6109                                       | .5736<br>760                                 | $.8192 \\ 175$                            | 0.7002 $0.46$                                             | 1.428<br>419                                    | $1.221 \\ 223$                                            | 1.743<br>736                                        | .9599<br>570                                  | <b>55° 00′</b><br>50                    |
| 20                                          | 167                                         | 783                                          | 158                                       | 089                                                       | 411                                             | $\begin{array}{c c} 223 \\ 226 \end{array}$               | 729                                                 | 541                                           | 40                                      |
| 30                                          | .6196                                       | .5807                                        | .8141                                     | .7133                                                     | 1.402                                           | 1.228                                                     | 1.722                                               | .9512                                         | 30                                      |
| 40 50                                       | $\begin{array}{c c} 225 \\ 254 \end{array}$ | 831                                          | 124                                       | 177                                                       | .393                                            | 231                                                       | 715                                                 | 483                                           | 20                                      |
| 36° 00′                                     | .6283                                       | .5878                                        | .8090                                     | $\begin{array}{ c c c }\hline 221\\.7265\end{array}$      | 385<br>1.376                                    | $ \begin{array}{c c} 233 \\ 1.236 \end{array} $           | 708<br>1.701                                        | 454 $.9425$                                   | 10<br><b>54° 00</b> ′                   |
|                                             |                                             |                                              |                                           |                                                           |                                                 |                                                           |                                                     |                                               |                                         |
|                                             |                                             | Cos                                          | Sin                                       | Cot                                                       | Tan                                             | Csc                                                       | Sec                                                 | RADIANS                                       | DEGREES                                 |

| DEGREES                                     | RADIANS                                             | Sin                                                            | Cos                                           | Tan                                                       | Cot                                                       | Sec                                           | Csc                                                 |                                                 |                                           |
|---------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------|
| 36° 00′                                     | .6283                                               | .5878                                                          | .8090                                         | .7265                                                     | 1.376                                                     | 1.236                                         | 1.701                                               | .9425                                           | 54° 00′                                   |
| $\frac{10}{20}$                             | 312                                                 | $ \begin{array}{c c} 901 \\ 925 \end{array} $                  | $\begin{bmatrix} 073 \\ 056 \end{bmatrix}$    | $\begin{vmatrix} 310 \\ 355 \end{vmatrix}$                | $\begin{array}{c c} 368 \\ 360 \end{array}$               | $ \begin{array}{c c} 239 \\ 241 \end{array} $ | 695<br>688                                          | $\begin{array}{c c} 396 \\ 367 \end{array}$     | $\begin{array}{c} 50 \\ 40 \end{array}$   |
| $\begin{array}{c} 20 \\ 30 \end{array}$     | $\begin{array}{c c}  & 341 \\  & .6370 \end{array}$ | .5948                                                          | .8039                                         | .7400                                                     | 1.351                                                     | 1.244                                         | 1.681                                               | .9338                                           | 30                                        |
| 40                                          | 400                                                 | 972                                                            | 021                                           | 445                                                       | 343                                                       | 247                                           | 675                                                 | 308                                             | 20                                        |
| 50                                          | 429                                                 | 995                                                            | 004                                           | 490                                                       | 335                                                       | 249                                           | 668                                                 | 279                                             | 10                                        |
| <b>37° 00′</b><br>10                        | $.6458 \\ 487$                                      | $.6018 \ 041$                                                  | .7986<br>969                                  | .7536<br>581                                              | 1.327                                                     | $\begin{array}{c c} 1.252 \\ 255 \end{array}$ | $1.662 \\ 655$                                      | $\begin{array}{c c} .9250 \\ 221 \end{array}$   | <b>53° 00′</b> 50                         |
| $\begin{array}{c c} 10 \\ 20 \end{array}$   | 516                                                 | 065                                                            | 951                                           | 627                                                       | 311                                                       | 258                                           | 649                                                 | 192                                             | 40                                        |
| 30                                          | .6545                                               | .6088                                                          | .7934                                         | .7673                                                     | 1.303                                                     | 1.260                                         | 1.643                                               | .9163                                           | 30                                        |
| 40<br>50                                    | 574<br>603                                          | 111  <br>134                                                   | $ \begin{array}{c c} 916 \\ 898 \end{array} $ | 720 $766$                                                 | $ \begin{array}{c c} 295 \\ 288 \end{array} $             | $\begin{bmatrix} 263 \\ 266 \end{bmatrix}$    | 636<br>630                                          | $\begin{array}{c c} 134 & \\ 105 & \end{array}$ | $\begin{array}{c} 20 \\ 10 \end{array}$   |
| 38° 00′                                     | .6632                                               | .6157                                                          | .7880                                         | .7813                                                     | 1.280                                                     | 1.269                                         | 1.624                                               | .9076                                           | 52° 00′                                   |
| 10                                          | 661                                                 | 180                                                            | 862                                           | 860                                                       | 272                                                       | 272                                           | 618                                                 | 047                                             | 50                                        |
| 20                                          | 690                                                 | $\begin{array}{c c} 202 \\ .6225 \end{array}$                  | .7826                                         | $\frac{907}{.7954}$                                       | $\frac{265}{1.257}$                                       | $\begin{array}{c c} 275 \\ 1.278 \end{array}$ | $\begin{array}{c c} 612 \\ 1.606 \end{array}$       | .9018                                           | 40<br>30                                  |
| 30<br>40                                    | $\begin{array}{c c} .6720 \\ 749 \end{array}$       | 248                                                            | 808                                           | .8002                                                     | $\frac{1.257}{250}$                                       | 281                                           | 601                                                 | 959                                             | $\begin{array}{c c} 30 \\ 20 \end{array}$ |
| 50                                          | 778                                                 | 271                                                            | 790                                           | 050                                                       | 242                                                       | 284                                           | 595                                                 | 930                                             | 10                                        |
| 39° 00′                                     | .6807                                               | .6293                                                          | .7771                                         | .8098                                                     | 1.235                                                     | 1.287                                         | 1.589                                               | .8901                                           | 51° 00′                                   |
| $\begin{array}{c c} & 10 \\ 20 \end{array}$ | 836<br>865                                          | $\begin{vmatrix} 316 \\ 338 \end{vmatrix}$                     | 753  <br>735                                  | $ \begin{array}{c c} 146 \\ 195 \end{array} $             | $   \begin{array}{c c}     228 \\     220   \end{array} $ | $\begin{array}{c c} 290 \\ 293 \end{array}$   | 583<br>578                                          | 872<br>843                                      | 50<br>40                                  |
| 30                                          | .6894                                               | .6361                                                          | .7716                                         | .8243                                                     | $1.\overline{213}$                                        | 1.296                                         | 1.572                                               | .8814                                           | 30                                        |
| 40                                          | 923                                                 | 383                                                            | 698                                           | 292                                                       | 206                                                       | 299                                           | 567                                                 | 785                                             | 20                                        |
| 50                                          | 952                                                 | 406                                                            | .7660                                         | 342                                                       | 199<br>1.192                                              | $302 \\ 1.305$                                | $561 \\ 1.556$                                      | $\begin{array}{c c} 756 \\ .8727 \end{array}$   | 10<br><b>50° 00′</b>                      |
| <b>40° 00′</b> 10                           | .6981                                               | $\begin{bmatrix} .6428 \\ 450 \end{bmatrix}$                   | 642                                           | 441                                                       | 1.192                                                     | $\frac{1.505}{309}$                           | $\frac{1.550}{550}$                                 | 698                                             | 50                                        |
| 20                                          | 039                                                 | 472                                                            | 623                                           | 491                                                       | 178                                                       | 312                                           | 545                                                 | 668                                             | 40                                        |
| 30                                          | .7069                                               | .6494                                                          | .7604                                         | `.8541                                                    | $1.171 \\ 164$                                            | $\begin{vmatrix} 1.315 \\ 318 \end{vmatrix}$  | $1.540 \\ 535$                                      | $.8639 \\ 610$                                  | $\begin{array}{c} 30 \\ 20 \end{array}$   |
| 40<br>50                                    | $098 \\ 127$                                        | 517   539                                                      | 585<br>566                                    | $\begin{array}{c} 591 \\ 642 \end{array}$                 | $154 \\ 157$                                              | $\frac{318}{322}$                             | 529                                                 | 581                                             | $\frac{20}{10}$                           |
| 41° 00′                                     | .7156                                               | .6561                                                          | .7547                                         | .8693                                                     | 1.150                                                     | 1.325                                         | 1.524                                               | .8552                                           | 49° 00′                                   |
| 10                                          | 185                                                 | 583                                                            | 528                                           | 744                                                       | 144                                                       | 328                                           | 519                                                 | 523                                             | 50                                        |
| 20 30                                       | 214 .7243                                           | $\begin{bmatrix} 604 \\ .6626 \end{bmatrix}$                   | 509<br>.7490                                  | 796<br>.8847                                              | 137 $1.130$                                               | $\begin{vmatrix} 332 \\ 1.335 \end{vmatrix}$  | $\begin{array}{c} 514 \\ 1.509 \end{array}$         | $\begin{vmatrix} 494 \\ .8465 \end{vmatrix}$    | $\frac{40}{30}$                           |
| 40                                          | 272                                                 | 648                                                            | 470                                           | 899                                                       | 124                                                       | 339                                           | 504                                                 | 436                                             | 20                                        |
| 50                                          | 301                                                 | 670                                                            | 451                                           | 952                                                       | 117                                                       | 342                                           | 499                                                 | 407                                             | 10                                        |
| <b>42° 00′</b> 10                           | .7330                                               | $\begin{array}{ c c c c } .6691 & \\ \hline 713 & \end{array}$ | .7431<br>412                                  | 0.9004 $0.57$                                             | 1.111                                                     | $\begin{vmatrix} 1.346 \\ 349 \end{vmatrix}$  | 1.494 490                                           | .8378<br>348                                    | <b>48° 00′</b> 50                         |
| 20                                          | 389                                                 | 734                                                            | 392                                           | 110                                                       | 098                                                       | 353                                           | 485                                                 | 319                                             | 40                                        |
| 30                                          | .7418                                               | .6756                                                          | .7373                                         | .9163                                                     | 1.091                                                     | 1.356                                         | 1.480                                               | .8290                                           | 30                                        |
| 40 50                                       | 447 476                                             | 777 799                                                        | 353<br>333                                    | $   \begin{array}{c c}     217 \\     271   \end{array} $ | 085                                                       | $\begin{vmatrix} 360 \\ 364 \end{vmatrix}$    | $\begin{array}{ c c c }\hline 476\\ 471\end{array}$ | $\begin{array}{c c} 261 \\ 232 \end{array}$     | $\begin{array}{c} 20 \\ 10 \end{array}$   |
| 43° 00′                                     | .7505                                               | .6820                                                          | .7314                                         | .9325                                                     | 1.072                                                     | 1.367                                         | 1.466                                               | .8203                                           | 47° 00′                                   |
| 10                                          | 534                                                 | 841                                                            | 294                                           | 380                                                       | 066                                                       | 371                                           | 462                                                 | 174                                             | 50                                        |
| 20 30                                       | 563                                                 | 862                                                            | 274.7254                                      | .9490                                                     | $\begin{vmatrix} 060 \\ 1.054 \end{vmatrix}$              | 375                                           | 457<br>1.453                                        | $\begin{array}{c c} 145 \\ .8116 \end{array}$   | $\frac{40}{30}$                           |
| 40                                          | 621                                                 | 905                                                            | 234                                           | 545                                                       | 048                                                       | 382                                           | 448                                                 | 087                                             | 20                                        |
| 50                                          | 650                                                 | 926                                                            | 214                                           | 601                                                       | 042                                                       | 386                                           | 444                                                 | 058                                             | 10                                        |
| 44° 00′                                     | 7679                                                | .6947                                                          | .7193<br>173                                  | .9657                                                     | 1.036                                                     | 1.390                                         | 1.440                                               | .8029                                           | 46° 00′                                   |
| $\begin{array}{c c} & 10 \\ 20 \end{array}$ | 709                                                 | 988                                                            | 153                                           | 713 770                                                   | $\begin{vmatrix} 030 \\ 024 \end{vmatrix}$                | 394                                           | 431                                                 | 999                                             | 50<br>40                                  |
| 30                                          | .7767                                               | .7009                                                          | .7133                                         | .9827                                                     | 1.018                                                     | 1.402                                         | 1.427                                               | .7941                                           | 30                                        |
| 40 50                                       | 796<br>  825                                        | $\begin{array}{ c c }\hline 030\\050\\ \end{array}$            | $\begin{array}{c c} 112 \\ 092 \end{array}$   | 884 942                                                   | 012 006                                                   | 406                                           | 423 418                                             | 912<br>883                                      | $\begin{array}{c c} 20 \\ 10 \end{array}$ |
| 45° 00′                                     | .7854                                               | .7071                                                          | .7071                                         | 1.000                                                     | 1.000                                                     | 1.414                                         | 1.414                                               | .7854                                           | 45° 00′                                   |
|                                             |                                                     | Cos                                                            | Sin                                           | Cot                                                       | Tan                                                       | Csc                                           | Sec                                                 | RADIANS                                         | DEGREES                                   |

# FOUR-PLACE LOGARITHMS OF NUMBERS

| <u></u>                                                |                                            |                                               |                                                                 |                                               |                                               |                                             |                   |                                           |                                                           |                                           |               |               | PRO           | POR            | TIO                                     | NAL                                      | PA                   | RTS                    |               |
|--------------------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|-------------------|-------------------------------------------|-----------------------------------------------------------|-------------------------------------------|---------------|---------------|---------------|----------------|-----------------------------------------|------------------------------------------|----------------------|------------------------|---------------|
| N                                                      | 0                                          | 1                                             | 2                                                               | 3                                             | 4                                             | 5                                           | 6                 | 7                                         | 8                                                         | 9                                         | $\frac{-}{1}$ | 2             | 3             | 4              | 5                                       | 6                                        | 7                    | 8                      | 9             |
| 1.0                                                    | 0000                                       | 043                                           | 086                                                             | 128                                           | 170                                           | 212                                         | <br>253           | 294                                       | 334                                                       | 374                                       | $\frac{-}{4}$ |               | 12            | 17             | 21                                      | <br>25                                   | nc<br>uc             | for<br>000             |               |
| 1                                                      | 414                                        | 453                                           | 492                                                             | 531                                           | 569                                           | 607                                         | 645               | 682                                       | 719                                                       | 755                                       | $\frac{1}{4}$ | 8             | 11            | 15             | 19                                      | 23                                       | latio                | cy f                   |               |
| 2 3                                                    | 792<br>1139                                | 828<br>173                                    | 864<br>206                                                      | 899<br>239                                    | 934<br>271                                    | 969<br>303                                  | *004<br>335       | *038<br>367                               | *072<br>399                                               | *106<br>430                               | 3             | 7<br>6        | 10<br>10      |                | 17<br>16                                |                                          | erpo                 | accuracy<br>etween 1.0 |               |
| 4<br>1.5                                               | 461<br>761                                 | 492<br>790                                    | 523<br>818                                                      | 553<br>847                                    | 584<br>875                                    | 614<br>903                                  | 644<br>931        | 673<br>959                                | 703<br>987                                                | 732<br>*014                               | 3             | 6             | 9             |                | $\begin{array}{c} 15 \\ 14 \end{array}$ |                                          | direct interpolation | <u>μ</u> "Ω            |               |
| 6                                                      | 2041                                       | 068                                           | 095                                                             | 122                                           | 148                                           | 175                                         | 201               | 227                                       | 253                                                       | 279                                       | 3             | 5             | 8             | 11             | 13<br>12                                | 16                                       | dire                 | greater<br>bers b      | 2.000         |
| 8                                                      | 304<br>553                                 | 330<br>577                                    | 355 601                                                         | 380<br>625                                    | 405<br>648                                    | 430<br>672                                  | 455<br>695        | 480<br>718                                | 504<br>742                                                | 529<br>765                                | 2 2 2         | 5             | 77            | 9              | 12<br>12<br>11                          | 14                                       | 4                    | tor g                  | and 2.000     |
| $\frac{9}{2.0}$                                        | $\frac{788}{3010}$                         | $\frac{810}{032}$                             | $\frac{833}{054}$                                               | $\frac{856}{075}$                             | $\frac{878}{096}$                             | $\frac{900}{118}$                           | $\frac{923}{139}$ | $\frac{945}{160}$                         | $\frac{967}{181}$                                         | $\frac{989}{201}$                         | $\frac{2}{2}$ | $\frac{4}{4}$ | 6             |                | $\frac{11}{11}$                         |                                          | 15                   |                        |               |
| 1                                                      | 222                                        | 243                                           | 263                                                             | 284                                           | 304                                           | 324                                         | 345               | 365                                       | 385                                                       | 404                                       | $\frac{-}{2}$ | 4             | 6             |                | 10                                      |                                          | 14                   |                        |               |
| $\begin{vmatrix} 2\\3 \end{vmatrix}$                   | 424<br>617                                 | 444<br>636                                    | $\begin{array}{c} 464 \\ 655 \end{array}$                       | 483<br>674                                    | 502<br>692                                    | 522<br>711                                  | $\frac{541}{729}$ | 560<br>747                                | 579<br>766                                                | 598<br>784                                | 2             | 4             | 6             | 8 7            | 9                                       | 12<br>11                                 | 14<br>13             | 15                     | 17            |
| 4<br>2.5                                               | 802<br>979                                 | 820<br>997                                    | 838<br>*014                                                     | 856<br>*031                                   | 874<br>*048                                   | 892<br>*065                                 | 909<br>*082       | 927<br>*099                               | 945<br>*116                                               | 962<br>*133                               | $\frac{2}{2}$ | 44            | 5             | 7              |                                         | 11<br>10                                 | 12                   |                        | 16            |
| 6                                                      | 4150                                       | 166                                           | 183                                                             | 200                                           | 216                                           | 232                                         | 249               | 265                                       | 281                                                       | $\frac{298}{456}$                         | $\frac{2}{2}$ | 3             | 5             | 7<br>6         | 8                                       | $\begin{array}{c c} 10 \\ 9 \end{array}$ | 11                   | 13<br>12               | - 1           |
| 8                                                      | 314 472                                    | 330<br>487                                    | 346<br>502                                                      | 362<br>518                                    | 378<br>533                                    | 393<br>548                                  | 409<br>564        | 425<br>579                                | 440<br>594                                                | 609                                       | 2             | 3 3           | 5             | 6              | 8 7                                     | 9                                        | 11 10                | 12                     | 14            |
| $\frac{9}{3.0}$                                        | $\frac{624}{771}$                          | $\frac{639}{786}$                             | $\frac{654}{800}$                                               | $\frac{669}{814}$                             | $\frac{683}{829}$                             | $\frac{698}{843}$                           | $\frac{713}{857}$ | $\frac{728}{871}$                         | $\frac{742}{886}$                                         | $\frac{757}{900}$                         | $\frac{1}{1}$ | $\frac{3}{3}$ | 4             | $\frac{-6}{6}$ | 7                                       | 9                                        |                      | $\frac{12}{11}$        | <u> </u>      |
| 1                                                      | 914                                        | 928                                           | 942                                                             | 955                                           | 969                                           | 983                                         | 997               | *011                                      | *024                                                      | *038                                      | 1             | 3 3           | 4             | 5              | 7                                       | 8                                        |                      | 11                     |               |
| $\begin{vmatrix} 2\\3 \end{vmatrix}$                   | 5051                                       | $\begin{array}{ c c } 065 \\ 198 \end{array}$ | $\begin{array}{c c} 079 \\ 211 \end{array}$                     | $\begin{array}{c} 092 \\ 224 \end{array}$     | $\begin{array}{c} 105 \\ 237 \end{array}$     | 119<br>250                                  | 132<br>263        | 145<br>276                                | 159<br>289                                                | 172<br>302                                | 1             | 3             | 4             | 5<br>5         | 7                                       | 8                                        |                      | 11<br>11               | 12            |
| 3.5                                                    | 315<br>441                                 | 328<br>453                                    | 340<br>465                                                      | 353<br>478                                    | 366<br>490                                    | 378<br>502                                  | 391<br>514        | $\begin{array}{c} 403 \\ 527 \end{array}$ | 416<br>539                                                | 428<br>551                                | 1             | 2 2           | 4 4           | 5<br>5         | 6                                       | 8 7                                      |                      | 10<br>10               | 11<br>11      |
| 6                                                      | 563                                        | 575                                           | 587<br>705                                                      | 599<br>717                                    | 611<br>729                                    | 623<br>740                                  | 635<br>752        | 647<br>763                                | 658<br>775                                                | 670<br>786                                | 1             | 2 2           | 4             | 5<br>5         | 6                                       | 7                                        | 8                    | 10<br>9                | 11            |
| 8                                                      | 682<br>  798                               | 694<br>809                                    | 821<br>933                                                      | 832<br>944                                    | 843<br>955                                    | 855<br>966                                  | 866<br>977        |                                           | 888<br>999                                                | 899                                       | 1             | $\frac{2}{2}$ | 3             | 5 4            | 6<br>5                                  | 7<br>7                                   | 8                    | 9                      | 10<br>10      |
| $\frac{9}{4.0}$                                        | $-\frac{911}{6021}$                        | $\frac{922}{031}$                             | $\left  \begin{array}{c} 933 \\ \hline 042 \end{array} \right $ | 053                                           | $\frac{-955}{064}$                            | $\frac{300}{075}$                           | 085               | 096                                       | $\frac{-333}{107}$                                        | 117                                       | 1             | 2             | 3             | 4              | 5                                       | 6                                        | 8                    |                        | 10            |
| 1                                                      | 128                                        |                                               | 149                                                             | $\frac{160}{263}$                             | $\begin{array}{c} 170 \\ 274 \end{array}$     | $\frac{180}{284}$                           | 191<br>294        | $\begin{array}{c} -201\\ 304 \end{array}$ | $\frac{212}{314}$                                         | $\begin{array}{c} 222 \\ 325 \end{array}$ |               | 2 2           | 3             | 4 4            | 5<br>5                                  | 6                                        | 7                    | 8                      | 9             |
| $\begin{vmatrix} 2\\3 \end{vmatrix}$                   | 232<br>335                                 | 1                                             | 253<br>355                                                      | 365                                           | 375                                           | 385                                         | 395               | 405                                       | 415                                                       | 425                                       | 1             | 2             | 3             | 4              | 5                                       | 6                                        | 7                    | 8                      | 9             |
| 4.5                                                    |                                            | 542                                           | 454<br>  551                                                    | 464<br>561                                    | 474<br>571                                    | 484<br>580                                  | 493<br>590        | 503<br>599                                | 513<br>609                                                | 522<br>618                                | 1             | 2 2           | 3             | 4              | 5<br>5                                  | 6                                        | 77                   | 8                      | 9             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{vmatrix} 628 \\ 721 \end{vmatrix}$ | 637<br>730                                    | 646<br>739                                                      | $\begin{array}{ c c } 656 \\ 749 \end{array}$ | $\begin{array}{ c c } 665 \\ 758 \end{array}$ | 675<br>767                                  | 684<br>776        | 693<br>785                                | $\begin{array}{ c c }\hline 702\\ 794\end{array}$         | 712<br>803                                | 1             | 2 2           | 3             | 4              | 5<br>5                                  | 6                                        | 7                    | 7<br>7                 | 8             |
| 8 9                                                    | 812                                        | 821                                           | 830<br>920                                                      | 839<br>928                                    | 848                                           | 857<br>946                                  | 866<br>955        | 875<br>964                                | 884                                                       |                                           | 1             | $\frac{2}{2}$ | 3             | 4              | 5<br>4                                  | 6<br>5                                   | 7 6                  | 7                      | 8             |
| 5.0                                                    | _                                          | ·]                                            |                                                                 | *016                                          | *024                                          | *033                                        | *042              |                                           | *059                                                      | *067                                      | -             | 2             | 3             | 3              | 4                                       | 5                                        | 6                    | 7                      | 8             |
| $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$                 | 7076<br>160                                |                                               |                                                                 | 101<br>185                                    | 110<br>193                                    | $\begin{array}{c c} 118 \\ 202 \end{array}$ | 126<br>210        | 135<br>218                                | $   \begin{array}{c c}     143 \\     226   \end{array} $ | 152<br>235                                |               | 2 2           | 3             | 3 3            | $\frac{4}{4}$                           | 5<br>5                                   | 6                    | 7                      | 8             |
| 3                                                      | 243                                        | 251                                           | 259                                                             | 267                                           | 275                                           | 284<br>364                                  |                   |                                           | 308                                                       | 316                                       | 1             | $\frac{1}{2}$ | $\frac{2}{2}$ | 3              | 4                                       | 5<br>5                                   | 6 6                  | 6                      | $\frac{7}{7}$ |
| 4<br>  N                                               | -                                          | ·                                             |                                                                 | 348<br>3                                      |                                               | 5                                           | 6                 | 7                                         | 8                                                         | 9                                         | 1             | $\frac{2}{2}$ |               |                | - <del>-</del> 5                        | $\frac{3}{6}$                            | $\frac{0}{7}$        |                        | 9             |
| N                                                      | 0                                          | 1                                             | 2                                                               | 3                                             | 4                                             | J                                           | 0                 | 1                                         | 0                                                         | 3                                         | 1             |               | 0             | T              | - 0                                     | U                                        | 1                    | 0                      | -             |

|                                             |                                                                     |                     | -                                                      | 1                                                 |                                                                    |                                                                                |                                                                    |                                                                    |                                                                              |                      | Ргоро                                                                     | RTIONAL                                                  | Parts                                                                            |
|---------------------------------------------|---------------------------------------------------------------------|---------------------|--------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|
| N                                           | 0                                                                   | 1                   | 2                                                      | 3                                                 | 4                                                                  | 5                                                                              | 6                                                                  | 7                                                                  | 8                                                                            | 9                    | 1 2 3                                                                     | 4 5 6                                                    | 7 8 9                                                                            |
| <b>5.5</b> 6                                | 7404<br>482                                                         | 412<br>490          | 419<br>497                                             | 427<br>505                                        | 435<br>513                                                         | 443<br>520                                                                     | 451<br>528                                                         | 459<br>536                                                         | 466<br>543                                                                   | 474<br>551           | $\begin{array}{c cccc} 1 & 2 & 2 \\ 1 & 2 & 2 \end{array}$                | 3 4 5<br>3 4 5                                           | $\begin{bmatrix} 5 & 6 & 7 \\ 5 & 6 & 7 \end{bmatrix}$                           |
| 7<br>8<br>9                                 | 559<br>634<br>709                                                   | 566<br>642<br>716   | 574<br>649<br>723                                      | 582<br>657<br>731                                 | 589<br>664<br>738                                                  | 597<br>672<br>745                                                              | $604 \\ 679 \\ 752$                                                | $612 \\ 686 \\ 760$                                                | 619<br>694<br>767                                                            | 627 $701$ $774$      | $\begin{array}{c cccc} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{array}$   | 3 4 5<br>3 4 4<br>3 4 4                                  | $   \begin{array}{ccccccccccccccccccccccccccccccccccc$                           |
| 6.0                                         | 782                                                                 | 789                 | 796                                                    | 803                                               | 810                                                                | 818                                                                            | 825                                                                | 832                                                                | 839                                                                          | 846                  | 1 1 2                                                                     | 3 4 4                                                    | 5 6 6                                                                            |
| $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ | 853<br>924<br>993                                                   | 860<br>931<br>*000  | 868<br>938<br>*007                                     | 875<br>945<br>*014                                | 882<br>952<br>*021                                                 | 889<br>959<br>*028                                                             | 896<br>966<br>*035                                                 | 903<br>973<br>*041                                                 | 910<br>980<br>*048                                                           | 917<br>987<br>*055   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                     | 3 3 4<br>3 3 4<br>3 3 4                                  | 5 6 6<br>5 5 6<br>5 6 6                                                          |
| <b>6.5</b> 6                                | $   \begin{array}{r}     8062 \\     129 \\     195   \end{array} $ | $069 \\ 136 \\ 202$ | $075 \\ 142 \\ 209$                                    | 082<br>149<br>215                                 | $089 \\ 156 \\ 222$                                                | $096 \\ 162 \\ 228$                                                            | $102 \\ 169 \\ 235$                                                | 109<br>176<br>241                                                  | 116<br>182<br>248                                                            | 122<br>189<br>254    | 1 1 2<br>1 1 2<br>1 1 2                                                   | 3 3 4<br>3 3 4<br>3 3 4                                  | 5 5 6<br>5 5 6<br>5 5 6                                                          |
| 7<br>8<br>9                                 | 261<br>325<br>388                                                   | 267<br>331<br>395   | 274<br>338<br>401                                      | 280<br>344<br>407                                 | 287<br>351<br>414                                                  | 293<br>357<br>420                                                              | $   \begin{array}{r}     299 \\     363 \\     426   \end{array} $ | $   \begin{array}{r}     306 \\     370 \\     432   \end{array} $ | $     \begin{array}{r}       312 \\       376 \\       439     \end{array} $ | 319<br>382<br>445    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                            |
| 7.0                                         | 451                                                                 | 457                 | 463                                                    | 470                                               | 476                                                                | 482                                                                            | 488                                                                | 494                                                                | 500                                                                          | 506                  | 1 1 2                                                                     | 3 3 4                                                    | 4 5 6                                                                            |
| $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$     | 513<br>573<br>633                                                   | 519<br>579<br>639   | 525<br>585<br>645                                      | 531<br>591<br>651                                 | 537<br>597<br>657                                                  | 543<br>603<br>663                                                              | 549<br>609<br>669                                                  | 555<br>615<br>675                                                  | 561<br>621<br>681                                                            | 567<br>627<br>686    | 1 1 2<br>1 1 2<br>1 1 2                                                   | 3 3 4<br>3 3 4<br>2 3 4                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                            |
| 7.5<br>6                                    | 692<br>751<br>808                                                   | 698<br>756<br>814   | $704 \\ 762 \\ 820$                                    | $710 \\ 768 \\ 825$                               | 716<br>774<br>831                                                  | 722<br>779<br>837                                                              | 727<br>785<br>842                                                  | 733<br>791<br>848                                                  | 739<br>797<br>854                                                            | 745<br>802<br>859    | 1 1 2<br>1 1 2<br>1 1 2                                                   | 2 3 4<br>2 3 3<br>2 3 3                                  | 4 5 5<br>4 5 5<br>4 4 5                                                          |
| 7<br>8<br>9                                 | 865<br>921<br>976                                                   | 871<br>927<br>982   | 876<br>932<br>987                                      | 882<br>938<br>993                                 | 887<br>943<br>998                                                  | 893<br>949<br>*004                                                             | 899<br>954<br>*009                                                 | 904<br>960<br>*015                                                 | $910 \\ 965 \\ *020$                                                         | $915 \\ 971 \\ *025$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                     | 2 3 3<br>2 3 3<br>2 3 3                                  | 4 4 5<br>4 4 5<br>4 4 5                                                          |
| 8.0                                         | 9031                                                                | 036                 | 042                                                    | 047                                               | 053                                                                | 058                                                                            | 063                                                                | 069                                                                | 074                                                                          | 079                  | 1 1 2                                                                     | 2 3 3                                                    | 4 4 5                                                                            |
| 1 2 3                                       | 085<br>138<br>191                                                   | 090<br>143<br>196   | $096 \\ 149 \\ 201$                                    | $101 \\ 154 \\ 206$                               | $   \begin{array}{r}     106 \\     159 \\     212   \end{array} $ | $     \begin{array}{c c}       112 \\       165 \\       217     \end{array} $ | $\begin{array}{c c} 117 \\ 170 \\ 222 \end{array}$                 | 227                                                                | 128<br>180<br>232                                                            | 133<br>186<br>238    | 1 1 2<br>1 1 2<br>1 1 2                                                   | 2 3 3<br>2 3 3<br>2 3 3                                  | 4 4 5<br>4 4 5<br>4 4 5                                                          |
| 8.5<br>6                                    | 243<br>294<br>345                                                   | 299                 | 253<br>304<br>355                                      | $\begin{vmatrix} 258 \\ 309 \\ 360 \end{vmatrix}$ | 263<br>315<br>365                                                  | $\begin{vmatrix} 269 \\ 320 \\ 370 \end{vmatrix}$                              | 375                                                                | 330<br>380                                                         | 284<br>335<br>385                                                            | 390                  | 1 1 2<br>1 1 2<br>1 1 2                                                   | 2 3 3<br>2 3 3<br>2 3 3                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                            |
| 7<br>8<br>9                                 | 395<br>445<br>494                                                   | 450                 | 405<br>455<br>504                                      | $\begin{vmatrix} 410 \\ 460 \\ 509 \end{vmatrix}$ | $ \begin{array}{r} 415 \\ 465 \\ 513 \end{array} $                 | $\begin{array}{ c c c }\hline 420 \\ 469 \\ 518 \\ \hline \end{array}$         | 425<br>474<br>523                                                  | 430<br>479<br>528                                                  | 435<br>484<br>533                                                            | 440<br>489<br>538    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     | 4 4 5<br>3 4 4<br>3 4 4                                                          |
| 9.0                                         | 542                                                                 | 547                 | 552                                                    | 557                                               | _562                                                               | 566                                                                            | 571                                                                | 576                                                                | 581                                                                          | 586                  | 0 1 1                                                                     | $\frac{2\ 2\ 3}{2\ 2\ 2}$                                | 3 4 4                                                                            |
| $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$     | 590<br>638<br>685                                                   | 643<br>689          | 647<br>694                                             | 652<br>699                                        | 609<br>657<br>703                                                  |                                                                                | $\begin{array}{ c c c } 666 \\ 713 \end{array}$                    | 671<br>717                                                         | $\begin{vmatrix} 628 \\ 675 \\ 722 \\ 769 \end{vmatrix}$                     | 633<br>680<br>727    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     | 3 4 4<br>3 4 4<br>3 4 4<br>3 4 4                                                 |
| 9.5<br>6                                    | 731<br>777<br>823                                                   | 782<br>827          | $\begin{array}{ c c }\hline 786 \\ 832 \\ \end{array}$ | 836                                               | 1                                                                  | 800<br>845                                                                     | 805<br>850                                                         | 809<br>854                                                         |                                                                              | 818 863              | $ \begin{array}{c cccc} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array} $ | $\begin{array}{cccc} 2 & 2 & 3 \\ 2 & 2 & 3 \end{array}$ | $\begin{bmatrix} 3 & 4 & 4 \\ 3 & 4 & 4 \\ 3 & 4 & 4 \\ 3 & 4 & 4 \end{bmatrix}$ |
| 7<br>8<br>9                                 |                                                                     | 917                 | 921                                                    | 926                                               |                                                                    | 934                                                                            | 939                                                                | 943                                                                |                                                                              | 952                  |                                                                           | 2 2 3<br>2 2 3<br>2 2 3                                  | 3 3 4 3 3 4                                                                      |
| N                                           | 0                                                                   | 1                   | 2                                                      | 3                                                 | 4                                                                  | 5                                                                              | 6                                                                  | 7                                                                  | 8                                                                            | 9                    | 1 2 3                                                                     | 4 5 6                                                    | 7 8 9                                                                            |

#### TABLE IV

# FOUR-PLACE LOGARITHMS OF TRIGONOMETRIC FUNCTIONS

Note 1.— For simplicity in printing, all characteristics have been increased by 10. Hence 10 must be subtracted from each tabulated value of a logarithm.

Note 2. — To avoid interpolating for angles between 0° and 3° or 87° and 90° use Tables V a or V b.

| Angle | L Sin  | d 1′  | L Tan  | c d 1'                                                | L Cot   | L Cos   | d 1′                  |        |
|-------|--------|-------|--------|-------------------------------------------------------|---------|---------|-----------------------|--------|
| 0° 0′ |        |       |        |                                                       |         | 10.0000 |                       | 90° 0′ |
| 10'   | 7.4637 |       | 7.4637 |                                                       | 12.5363 | .0000   | .0                    | 50′    |
| 20'   | .7648  | 301.1 | .7648  | 301.1                                                 | .2352   | .0000   | .0                    | 40'    |
| 30'   | .9408  | 176.0 | .9409  | 176.1                                                 | .0591   | .0000   | .0                    | 30'    |
| 40'   | 8.0658 | 125.0 | 8.0658 | 124.9                                                 | 11.9342 | .0000   | .0<br>.0              | 20'    |
| 50'   | .1627  | 96.9  | .1627  | 96.9                                                  | .8373   | .0000   |                       | 10'    |
| 1° 0′ | 8.2419 | 79.2  | 8.2419 | 79.2                                                  | 11.7581 | 9.9999  | .1                    | 89° 0′ |
| 10'   | .3088  | 66.9  | .3089  | 67.0                                                  | .6911   | .9999   | .0                    | 50'    |
| 20'   | .3668  | 58.0  | .3669  | 58.0                                                  | .6331   | .9999   | 0.                    | 40'    |
| 30'   | .4179  | 51.1  | .4181  | 51.2                                                  | .5819   | .9999   | .0<br>.1              | 30′    |
| 40'   | .4637  | 45.8  | .4638  | 45.7                                                  | .5362   | .9998   | $\stackrel{\cdot}{0}$ | 20'    |
| 50'   | .5050  | 41.3  | .5053  | 41.5                                                  | .4947   | .9998   | .1                    | 10'    |
| 2° 0′ | 8.5428 | 37.8  | 8.5431 | 37.8                                                  | 11.4569 | 9.9997  | .0                    | 88° 0′ |
| 10'   | .5776  | 34.8  | .5779  | 34.8                                                  | .4221   | .9997   |                       | 50'    |
| 20'   | .6097  | 32.1  | .6101  | 32.2                                                  | .3899   | .9996   | .1                    | 40'    |
| 30'   | .6397  | 30.0  | .6401  | 30.0                                                  | .3599   | .9996   | .0<br>.1              | 30′    |
| 40'   | .6677  | 28.0  | .6682  | 28.1                                                  | .3318   | .9995   | $\stackrel{\cdot}{0}$ | 20'    |
| 50'   | .6940  | 26.3  | .6945  | 26.3                                                  | .3055   | .9995   | .1                    | 10'    |
| 3° 0′ | 8.7188 | 24.8  | 8.7194 | $\begin{array}{ c c }\hline 24.9 \\ 23.5 \end{array}$ | 11.2806 | 9.9994  | .1                    | 87° 0′ |
| 10'   | .7423  | 23.5  | .7429  |                                                       | .2571   | .9993   |                       | 50'    |
| 20'   | .7645  | 22.2  | .7652  | 22.3                                                  | .2348   | .9993   | .0                    | 40'    |
| 30'   | .7857  | 21.2  | .7865  | 21.3                                                  | .2135   | .9992   | .1<br>.1              | 30'    |
| 40'   | .8059  | 20.2  | .8067  | 20.2                                                  | .1933   | .9991   | .1                    | 20'    |
| 50'   | .8251  | 19.2  | .8261  | 19.4<br>18.5                                          | .1739   | .9990   | .1                    | 10     |
| 4° 0′ | 8.8436 | 18.5  | 8.8446 | 17.8                                                  | 11.1554 | 9.9989  | .0                    | 86° 0′ |
| 10'   | .8613  | 17.7  | .8624  |                                                       | .1376   | .9989   |                       | 50′    |
| 20'   | .8783  | 17.0  | .8795  | 17.1                                                  | .1205   | .9988   | .1                    | 40'    |
| 30'   | .8946  | 16.3  | .8960  | 16.5                                                  | .1040   | .9987   | .1                    | 30'    |
| 40'   | .9104  | 15.8  | .9118  | 15.8                                                  | .0882   | .9986   | .1                    | 20′    |
| 50'   | .9256  | 15.2  | .9272  | 15.4                                                  | .0728_  | .9985   | .2                    | 10'    |
| 5° 0′ | 8.9403 | 14.7  | 8.9420 | 14.8                                                  | 11.0580 | 9.9983  |                       | 85° 0′ |
| ,     | L Cos  | d 1'  | L Cot  | c d 1'                                                | L Tan   | L Sin   | d 1′                  | Angle  |

| Angle      | L Sin                                                  | d 1′                | L Tan                   | c d 1'                                        | L Cot                     | L Cos          | d 1′                                    | ,                     |
|------------|--------------------------------------------------------|---------------------|-------------------------|-----------------------------------------------|---------------------------|----------------|-----------------------------------------|-----------------------|
| 5° 0′      | 8.9403                                                 |                     | 8.9420                  |                                               | 11.0580                   | 9.9983         |                                         | 85° 0′                |
| 10'        | .9545                                                  | 14.2                | .9563                   | 14.3                                          | .0437                     | .9982          | .1                                      | 50'                   |
| 20'        | .9682                                                  | 13.7                | .9701                   | 13.8                                          | .0299                     | .9981          | .1                                      | 40'                   |
| 30'        | .9816                                                  | $\frac{13.4}{12.9}$ | .9836                   | $\begin{array}{c c} 13.5 \\ 13.0 \end{array}$ | .0164                     | .9980          | .1<br>.1                                | 30′                   |
| 40'<br>50' | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $12.9 \ 12.5$       | 0.9966 $0.0093$         | 12.7                                          | 0.0034 $10.9907$          | .9979<br>.9977 | .2                                      | 20'<br>10'            |
| 6° 0′      | $\frac{9.0070}{9.0192}$                                | 12.2                | $\frac{9.0093}{9.0216}$ | 12.3                                          | $\frac{10.9907}{10.9784}$ | 9.9976         | .1                                      | 84° 0′                |
| 10'        | $\frac{9.0192}{.0311}$                                 | 11.9                | $\frac{9.0210}{.0336}$  | 12.0                                          | .9664                     | .9975          | .1                                      | 50'                   |
| 20'        | 0.0311 $0.0426$                                        | 11.5                | .0453                   | 11.7                                          | .9547                     | .9973          | .2                                      | 40'                   |
| 30'        | .0539                                                  | 11.3                | .0567                   | 11.4                                          | .9433                     | .9972          | .1                                      | 30'                   |
| 40'<br>50' | .0648                                                  | $10.9 \\ 10.7$      | 0.0678<br>0.0786        | 10.8                                          | .9322 $.9214$             | .9971<br>.9969 | .2                                      | 20'<br>10'            |
| 70 0'      | $\frac{.0755}{9.0859}$                                 | 10.4                | 9.0891                  | 10.5                                          | $\frac{.9214}{10.9109}$   | 9.9968         | .1                                      | 83° 0′                |
|            |                                                        | 10.2                |                         | 10.4                                          |                           | .9966          | .2                                      | 50'                   |
| 10'<br>20' | .1060                                                  | 9.9                 | .1096                   | 10.1                                          | .9005<br>.8904            | .9964          | .2                                      | 40'                   |
| 30'        | .1157                                                  | 9.7                 | .1194                   | 9.8                                           | .8806                     | .9963          | .1                                      | 30'                   |
| 40'        | .1252                                                  | $9.5 \\ 9.3$        | .1291                   | $9.7 \\ 9.4$                                  | .8709                     | .9961          | .2                                      | 20'                   |
| 50'        | .1345                                                  | 9.1                 | .1385                   | 9.3                                           | .8615                     | .9959          | .2                                      | 10'<br><b>82° 0</b> ' |
| 8° 0′      | 9.1436                                                 | 8.9                 | 9.1478                  | 9.1                                           | 10.8522                   | 9.9958         | .2                                      |                       |
| 10'        | .1525                                                  | 8.7                 | .1569                   | 8.9                                           | .8431<br>.8342            | .9956<br>.9954 | .2                                      | 50'<br>40'            |
| 30'        | .1697                                                  | 8.5                 | .1745                   | 8.7                                           | .8255                     | .9952          | .2                                      | 30'                   |
| 40'        | .1781                                                  | 8.4<br>8.2          | .1831                   | 8.6                                           | .8169                     | .9950          | $\begin{array}{c} .2 \\ .2 \end{array}$ | 20′                   |
| 50'        | .1863                                                  | 8.0                 | .1915                   | 8.2                                           | .8085                     | .9948          | .2                                      | 10'<br><b>81° 0</b> ' |
| 9° 0′      | 9.1943                                                 | 7.9                 | 9.1997                  | 8.1                                           | 10.8003                   | 9.9946         | .2                                      |                       |
| 10'        | .2022                                                  | 7.8                 | .2078                   | 8.0                                           | .7922 $.7842$             | .9944<br>.9942 | .2                                      | 50′<br>40′            |
| 30'        | .2176                                                  | 7.6                 | .2236                   | 7.8                                           | .7764                     | .9940          | 1.2                                     | 30'                   |
| 40'        | .2251                                                  | 7.5                 | .2313                   | 7.7 7.6                                       | .7687                     | .9938          | 2.2                                     | 20′                   |
| 50'        | .2324                                                  | 7.3                 | .2389                   | 7.4                                           | .7611                     | .9936          | .2 .2 .2                                | 10′<br><b>80° 0</b> ′ |
| 10° 0′     | 9.2397                                                 | 7.1                 | 9.2463                  | 7.3                                           | 10.7537                   | 9.9934         | .3                                      | <b>80° 0</b> ′ 50′    |
| 10'        | .2468                                                  | 7.0                 | .2536                   | 7.3                                           | .7464<br>.7391            | .9931<br>.9929 | .2                                      | 40'                   |
| 30'        | .2606                                                  | 6.8                 | .2680                   | 7.1                                           | .7320                     | .9927          | .2                                      | 30'                   |
| 40'        | .2674                                                  | 6.8                 | .2750                   | 7.0                                           | .7250                     | .9924          | .2 .3 .2 .3                             | 20'                   |
| 50'        | .2740                                                  | 6.6                 | .2819                   | 6.8                                           | .7181                     | .9922          | .3                                      | 10'<br><b>79° 0</b> ' |
| 11° 0′     | 9.2806                                                 | 6.4                 | 9.2887                  | 6.6                                           | 10.7113                   | 9.9919         | .2                                      | 79° 0'<br>50'         |
| 10'        | .2870                                                  | 6.4                 | .3020                   | 6.7                                           | .7047                     | .9917<br>.9914 | .3                                      | $\frac{30}{40'}$      |
| 30'        | .2997                                                  | 6.3                 | 3085                    | 6.5                                           | .6915                     | .9912          | .2                                      | 30'                   |
| 40'        | .3058                                                  | 6.1                 | .3149                   | 6.4                                           | .6851                     | .9909          | .3                                      | 20'                   |
| 50'        | .3119                                                  | 6.1                 | .3212                   | 6.3                                           | .6788                     | .9907          | .2 .3 .2 .3                             | 10'                   |
| 12° 0′     | 9.3179                                                 | 5.9                 | 9.3275                  | 6.1                                           | 10.6725                   | 9.9904         | .3                                      | 78° 0′                |
| 10'        | .3238                                                  | 5.8                 | .3336                   | 6.1                                           | .6664                     | .9901          |                                         | 50′<br>40′            |
| 20'<br>30' | .3296                                                  | 5.7                 | .3458                   | 6.1                                           | .6542                     | .9896          | .3                                      | 30'                   |
| 40'        | .3410                                                  | 5.7                 | .3517                   | 5.9<br>5.9                                    | .6483                     | .9893          | .3 .3 .3                                | 20'                   |
| 50'        | .3466                                                  | 5.6                 | .3576                   | 5.8                                           | .6424                     | .9890          | .3                                      | 10'<br>77° 0'         |
| 13° 0′     | 9.3521                                                 |                     | 9.3634                  |                                               | 10.6366                   | 9.9887         |                                         | 77° 0′                |
|            | L Cos                                                  | d 1'                | L Cot                   | c d 1'                                        | L Tan                     | L Sin          | d 1'                                    | Angle                 |

| Angle         | L Sin                  | d 1'                                          | L Tan                                           | c d 1'     | L Cot            | L Cos                  | d 1′           |                    |
|---------------|------------------------|-----------------------------------------------|-------------------------------------------------|------------|------------------|------------------------|----------------|--------------------|
| 13° 0′        | 9.3521                 |                                               | 9.3634                                          |            | 10.6366          | 9.9887                 |                | 77° 0′             |
| 10'           | $\frac{3.9521}{.3575}$ | 5.4                                           | .3691                                           | 5.7        | .6309            | .9884                  | .3             | 50′                |
| 20'           | .3629                  | 5.4                                           | .3748                                           | 5.7        | .6252            | .9881                  | .3             | 40'                |
| 30'           | .3682                  | 5.3                                           | .3804                                           | 5.6        | .6196            | .9878                  | .3             | 30′                |
| 40'           | .3734                  | 5.2                                           | .3859                                           | 5.5<br>5.5 | .6141            | .9875                  | , o<br>3       | 20'<br>10'         |
| 50'           | .3786_                 | $\frac{5.2}{5.1}$                             | 3914                                            | 5.4        | .6086            | .9872                  | .3<br>.3<br>.3 |                    |
| 14° 0′        | 9.3837                 | 5.0                                           | 9.3968                                          | 5.3        | 10.6032          | 9.9869                 | .3             | 76° 0′             |
| 10'           | .3887                  | 5.0                                           | .4021                                           | 5.3        | .5979            | .9866                  | .3             | 50′<br>40′         |
| 20'           | .3937                  | 3.0<br>4.9                                    | .4074                                           | 5.3        | $.5926 \\ .5873$ | .9863<br>.9859         | .4             | 30'                |
| 30'           | .3986<br>.4035         | 4.9                                           | .4127<br>.4178                                  | 5.1        | .5822            | .9856                  | .3             | 20'                |
| 40'<br>50'    | .4083                  | 4.8                                           | .4230                                           | 5.2        | .5770            | .9853                  | .3             | 10'                |
| 15° 0′        | $\frac{-1000}{9.4130}$ | 4.7                                           | 9.4281                                          | 5.1        | 10.5719          | 9.9849                 | .4             | 75° 0′             |
| 10'           | $\frac{3.1133}{.4177}$ | 4.7                                           | .4331                                           | 5.0        | .5669            | .9846                  | .3             | 50′                |
| 20'           | $\frac{.4177}{.4223}$  | 4.6                                           | .4381                                           | 5.0        | .5619            | .9843                  | .3             | 40'                |
| 30'           | .4269                  | 4.6                                           | .4430                                           | 4.9        | .5570            | .9839                  | .4             | 30′                |
| 40'           | .4314                  | 4.5                                           | .4479                                           | 4.9        | .5521            | .9836                  | .3             | 20′                |
| 50'           |                        | $\begin{array}{c} 4.5 \\ 4.4 \end{array}$     |                                                 | 4.8        | .5473            | .9832                  | .4             | 10'                |
| 16° 0′        | 9.4403                 | 4.4                                           | 9.4575                                          | 4.7        | 10.5425          | 9.9828                 | .3             | 74° 0′             |
| 10'           | .4447                  | 4.4                                           | .4622                                           | 4.7        | .5378<br>.5331   | .9825 $.9821$          | .4             | 50′<br>40′         |
| 20′           | .4491                  | 4.2                                           | $\begin{array}{c c} .4669 \\ .4716 \end{array}$ | 4.7        | .5284            | .9817                  | .4             | 30'                |
| 30'<br>40     | .4533<br>.4576         | 4.3                                           | .4762                                           | 4.6        | .5238            | .9814                  | .3             | 20'                |
| 50'           | .4618                  | 4.2                                           | .4808                                           | 4.6        | .5192            | .9810                  | .4             | 10'                |
| 17° 0′        | 9.4659                 | 4.1                                           | 9.4853                                          | 4.5        | 10.5147          | 9.9806                 | .4             | 73° 0′             |
| 10'           | .4700                  | 4.1                                           | .4898                                           | 4.5        | .5102            | .9802                  |                | 50′                |
| 20'           | .4741                  | 4.1                                           | .4943                                           | 4.5        | .5057            | .9798                  | .4<br>.4       | 40'                |
| 30′           | .4781                  | $\begin{array}{ c c } 4.0 \\ 4.0 \end{array}$ | .4987                                           | 4.4        | .5013<br>.4969   | .9794<br>.9790         | .4             | 30'<br>20'         |
| 40'<br>50'    | .4821                  | 4.0                                           | .5031                                           | 4.4        | .4909            | .9786                  | .4             | 10'                |
| 18° 0′        | 9.4900                 | 3.9                                           | 9.5118                                          | 4.3        | 10.4882          | $\frac{-9.9782}{}$     | .4             | 72° 0′             |
| 10'           | .4939                  | 3.9                                           | .5161                                           | 4.3        | .4839            | .9778                  | .4             | 50′                |
| 20'           | .4977                  | 3.8                                           | .5203                                           | 4.2        | .4797            | .9774                  | .4             | 40′                |
| 30'           | .5015                  | 3.8                                           | .5245                                           | 4.2        | .4755            | .9770                  | .4             | 30′                |
| 40'           | .5052                  | 3.7                                           | .5287                                           | 4.2        | .4713            | .9765                  | .5<br>.4       | 20′                |
| 50'           | .5090                  | 3.8                                           | .5329                                           | 4.2        | .4671            | .9761                  | .4             | 10'                |
| 19° 0′        | 9.5126                 | 3.7                                           | 9.5370                                          | 4.1        | 10.4630          | 9.9757                 | .5             | 71° 0′             |
| 10'           | .5163                  | 3.6                                           | .5411                                           | 4.0        | .4589            | .9752                  | .4             | 50 <b>′</b><br>40′ |
| 20′           | .5199                  | 3.6                                           | .5451                                           | 4.0        | .4549<br>.4509   | .9748                  | .5             | 30'                |
| 30′           | .5235                  | 3.5                                           | .5491<br>.5531                                  | 4.0        | .4469            | .9739                  | .4<br>.5       | 20'                |
| 50'           | .5306                  | 3.6                                           | .5571                                           | 4.0        | .4429            | .9734                  | .5             | 10'                |
| 20° 0′        | 9.5341                 | 3.5                                           | 9.5611                                          | 4.0        | 10.4389          | 9.9730                 | .4             | 70° 0′             |
| 10'           | .5375                  | 3.4                                           | .5650                                           | 3.9        | .4350            | .9725                  | .5             | 50 <b>′</b>        |
| 20'           | .5409                  | 3.4                                           | .5689                                           | 3.9        | .4311            | .9721                  | .4             | 40′                |
| 30′           | .5443                  | 3.4                                           | .5727                                           | 3.8 3.9    | .4273            | .9716                  | .5             | 30'                |
| 40′           | .5477                  | 3.3                                           | .5766                                           | 3.8        | .4234<br>.4196   | .9711                  | .5             | 20′<br>10′         |
| 50′<br>21° 0′ | $\frac{.5510}{9.5543}$ | 3.3                                           | $\frac{.5804}{9.5842}$                          | 3.8        | 10.4158          | $\frac{.9700}{9.9702}$ | .4             | 69° 0′             |
| 21 0          | -                      |                                               | -                                               |            | ļ                |                        | 3.41           |                    |
|               | L Cos                  | d 1'                                          | L Cot                                           | c d 1'     | L Tan            | L Sin                  | d 1'           | Angle              |

| 21° 0′         9.5543         3.3         9.5842         3.7         10.4158         9.9702           10′         .5576         3.3         .5879         3.8         .4083         .9697           30′         .5641         3.2         .5954         3.7         .4046         .9687           40′         .5673         3.2         .5991         3.7         .4009         .9682           50′         .5704         3.1         .6028         3.7         .3972         .9677           22°         0′         9.5736         3.1         .6100         3.6         .3900         .9667           30′         .5828         3.0         .6136         3.6         .3828         .9656           40′         .5859         3.1         .6208         3.6         .3792         .9651           50′         .5889         3.0         .6243         3.5         .3757         .9646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .                                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5 .5 .5 .5 .5 .6 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5 .5 .5 .6 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5                                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5<br>.5<br>.6<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5<br>.5<br>.6<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5<br>.6<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5                                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5<br>.5<br>.5<br>.5<br>.5                                                          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c c} .5 \\ .5 \\ \end{array}$                                        |
| $  40'   .5859   \frac{3.1}{3.0}   .6208   \frac{3.6}{5.0}   .3792   .9651  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .5 20'                                                                              |
| 50/   5889   3.0   6943   3.5   2757   0646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |
| 300010 360101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .6 10'                                                                              |
| $\begin{vmatrix} 23^{\circ} & 0' &   9.5919 \\ 2.9 &   9.6279 \\ 3.5 &   10.3721 \\   9.9640 \\   \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .5   67° 0′                                                                         |
| 10'   .5948     .6314     .3686   .9635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6   50'.                                                                            |
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                                                                                  |
| 40'   $6036$   $2.9$   $6417$   $3.4$   $3583$   $9618$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .6   20'                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .5 10'                                                                              |
| 1 <b>94</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .5   66° 0′                                                                         |
| 10'   .6121   .6520   .3480   .9602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50'                                                                                 |
| 20   .0110   .0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .6 40′ 30′                                                                          |
| 40'   6205   2.8   .6620   3.3   .3380   .9584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .6 20'                                                                              |
| 50'   6232   2.7   6654   3.4   3346   9579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .5   10'                                                                            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .6 65° 0′                                                                           |
| 10'   .6286   .7   .6720   .3280   .9567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sim$   50'                                                                        |
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .6 40′                                                                              |
| $oxed{30'} egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .6 30'<br>.6 20'<br>.6 10'                                                          |
| 50'   .6392   2.6   .6850   3.3   .3150   .9543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .6 10'                                                                              |
| <b>26° 0′</b> 9.6418 2.6 9.6882 3.2 10.3118 9.9537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .6 64° 0′                                                                           |
| 10'   6444   1   6914   3086   9530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .7 50'                                                                              |
| 20   .0470   .0040   .0041   .0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .6 40'<br>.6 30'                                                                    |
| 00   .04.00   0.00   .00.20   .00.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .6 30'<br>.6 20'                                                                    |
| 50'   6546   2.5   7040   3.1   2960   9505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .7  10'                                                                             |
| <b>27° 0'</b> 9 6570 2.4 9.7072 3.2 10.2928 9.9499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .6 63° 0′                                                                           |
| $\frac{10'}{6505}$ $\frac{2.5}{7103}$ $\frac{3.1}{2897}$ $\frac{9492}{9492}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .7 50'                                                                              |
| 20'   .6620   2.5   .7134   3.1   .2866   .9486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .6 40'                                                                              |
| 30'   .6644   2.4   .7165   3.1   .2835   .9479   .40'   .6668   2.4   .7196   3.1   .2804   .9473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .7 30′                                                                              |
| $oxed{40'} egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .6<br>.7<br>.7<br>.7                                                                |
| 1 980 0/ 1 0 6716 1 1 0 7257 + - 1 10 2743 1 9 9459 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62° 0′                                                                              |
| $\frac{10'}{6740}$ 2.4 $\frac{3.0}{7287}$ 3.0 $\frac{2713}{.9453}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .6                                                                                  |
| 20'   .6763   2.3   .7317   3.0   .2683   .9446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .7 40'                                                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30'                                                                                 |
| 0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   0010   001 | $\begin{bmatrix} .7 \\ .7 \end{bmatrix}$ $\begin{bmatrix} 20' \\ 10' \end{bmatrix}$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .7 61° 0′                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d 1' Angle                                                                          |

| Angle      | L Sin                                          | d 1′                                        | L Tan                  | c d 1'                                            | L Cot                                           | L Cos                  | d 1′           |                    |
|------------|------------------------------------------------|---------------------------------------------|------------------------|---------------------------------------------------|-------------------------------------------------|------------------------|----------------|--------------------|
| 29° 0′     | 9.6856                                         |                                             | 9.7438                 |                                                   | 10.2562                                         | 9.9418                 | .7             | 61° 0′             |
| 10'        | .6878                                          | 2.2                                         | $\frac{7467}{}$        | 2.9                                               | .2533                                           | .9411                  |                | 50'                |
| 20'        | .6901                                          | 2.3                                         | .7497                  | 3.0                                               | .2503                                           | .9404                  | .7             | 40'                |
| 30'        | .6923                                          | 2.2                                         | .7526                  | 2.9                                               | .2474                                           | .9397                  | .7<br>.7       | 30′                |
| 40'        | .6946                                          | $\begin{bmatrix} 2.3 \\ 2.2 \end{bmatrix}$  | .7556                  | $\begin{array}{c c} 3.0 \\ 2.9 \end{array}$       | .2444                                           | .9390                  | .7             | 20'  <br>10'       |
| 50'        | .6968                                          | $\begin{array}{c c} 2.2 \\ 2.2 \end{array}$ |                        | $\begin{bmatrix} 2.9 \\ 2.9 \end{bmatrix}$        | .2415                                           | .9383                  | .8             |                    |
| 30° 0′     | 9.6990                                         | 2.2                                         | 9.7614                 | 3.0                                               | 10.2386                                         | 9.9375                 | .7             | 60° 0′             |
| 10'        | .7012                                          | 2.1                                         | .7644                  | 2.9                                               | .2356                                           | .9368                  | .7             | 50′<br>40′         |
| 20'        | .7033                                          | $\frac{2.1}{2.2}$                           | .7673<br>.7701         | 2.8                                               | $\begin{array}{c c} .2327 \\ .2299 \end{array}$ | .9361 $.9353$          | .8             | 30'                |
| 30' 40'    | .7055<br>.7076                                 | $\overline{2.1}$                            | .7730                  | 2.9                                               | .2270                                           | .9346                  | .7             | 20'                |
| 50'        | .7097                                          | 2.1                                         | .7759                  | 2.9                                               | .2241                                           | .9338_                 | .8<br>.7       | 10′.               |
| 31° 0′     | 9.7118                                         | 2.1                                         | 9.7788                 | 2.9                                               | 10.2212                                         | 9.9331                 | .8             | 59° 0′             |
| 10'        | .7139                                          | 2.1                                         | .7816                  | 1                                                 | .2184                                           | .9323                  | .8             | 50′                |
| 20'        | .7160                                          | $\begin{array}{c c} 2.1 \\ 2.1 \end{array}$ | .7845                  | $\begin{bmatrix} 2.9 \\ 2.8 \end{bmatrix}$        | .2155                                           | .9315                  | .7             | 40'<br>30'         |
| 30′        | .7181                                          | $\frac{2.1}{2.0}$                           | .7873<br>.7902         | $\begin{array}{c c} 2.0 \\ 2.9 \end{array}$       | $\begin{array}{c c} .2127 \\ .2098 \end{array}$ | .9308<br>.9300         | .8             | 20'                |
| 40'<br>50' | $egin{array}{c} .7201 \\ .7222 \\ \end{array}$ | 2.1                                         | .7930                  | 2.8                                               | .2070                                           | .9292                  | .8             | 10'                |
| 32° 0′     | $\frac{.7222}{9.7242}$                         | 2.0                                         | 9.7958                 | 2.8                                               | 10.2042                                         | 9.9284                 | .8             | 58° 0′             |
| 10'        | .7262                                          | 2.0                                         | .7986                  | 2.8                                               | .2014                                           | .9276                  |                | 50′                |
| 20'        | 7282                                           | 2.0                                         | .8014                  | 2.8                                               | .1986                                           | .9268                  | .8             | 40'                |
| 30'        | .7302                                          | $\frac{2.0}{2.0}$                           | .8042                  | $\begin{array}{ c c } 2.8 \\ 2.8 \end{array}$     | .1958                                           | .9260                  | .8             | 30'                |
| 40′        | .7322                                          | $\frac{2.0}{2.0}$                           | .8070<br>.8097         | $\begin{bmatrix} 2.3 \\ 2.7 \end{bmatrix}$        | .1930<br>.1903                                  | $.9252 \\ .9244$       | .8<br>.8<br>.8 | 20'<br>10'         |
| 33° 0′     | $\frac{.7342}{9.7361}$                         | 1.9                                         | $\frac{.8097}{9.8125}$ | 2.8                                               | $\frac{.1305}{10.1875}$                         | $\frac{.9211}{9.9236}$ | .8             | 57° 0′             |
| 10'        | $\frac{9.7301}{.7380}$                         | 1.9                                         | .8153                  | 2.8                                               | .1847                                           | .9228                  | .8             | 50'                |
| 20'        | .7400                                          | 2.0                                         | .8180                  | 2.7                                               | .1820                                           | .9219                  | .9             | 40'                |
| 30'        | .7419                                          | 1.9                                         | .8208                  | $\begin{array}{ c c } 2.8 \\ 2.7 \end{array}$     | .1792                                           | .9211                  | ,0<br>8        | 30′                |
| 40′        | .7438                                          | $\frac{1.9}{1.9}$                           | .8235                  | $\begin{bmatrix} 2.7 \\ 2.8 \end{bmatrix}$        | $.1765 \\ .1737$                                | .9203<br>.9194         | .8<br>.9<br>.8 | 20'<br>10'         |
| 34° 0′     | $\frac{.7457}{9.7476}$                         | 1.9                                         | $\frac{.8263}{9.8290}$ | 2.7                                               | 10.1710                                         | $\frac{.9134}{9.9186}$ |                | 56° 0′             |
|            |                                                | 1.8                                         | .8317                  | 2.7                                               | .1683                                           | .9177                  | .9             | 50'                |
| 10'        | .7494                                          | 1.9                                         | .8344                  | 2.7                                               | .1656                                           | .9169                  | .8             | 40'                |
| 30'        | .7531                                          | 1.8                                         | .8371                  | 2.7                                               | .1629                                           | .9160                  | .9             | 30'                |
| 40'        | .7550                                          | 1.9<br>1.8                                  | .8398                  | $\begin{array}{ c c }\hline 2.7\\ 2.7\end{array}$ | .1602                                           | .9151                  | .9             | 20′<br>10′         |
| 50'        | .7568                                          | 1.8                                         | .8425                  | $\frac{2.7}{2.7}$                                 | .1575                                           | $\frac{.9142}{0.0124}$ | .9             | 55° 0′             |
| 35° 0′     | 9.7586                                         | 1.8                                         | 9.8452                 | 2.7                                               | 10.1548                                         | $\frac{9.9134}{.9125}$ | .9             | 50'                |
| 10'        | .7604                                          | 1.8                                         | .8479                  | 2.7                                               | .1521 $.1494$                                   | .9125                  | .9             | 40'                |
| 30'        | .7640                                          | 1.8                                         | .8533                  | 2.7                                               | .1467                                           | .9107                  | .9             | 30'                |
| 40'        | .7657                                          | 1.7                                         | .8559                  | $\frac{2.6}{2.7}$                                 | .1441                                           | .9098                  | .9             | 20′                |
| 50'        | .7675                                          | 1.8                                         | .8586                  | 2.7                                               | .1414                                           | .9089                  | 9              | 10'<br>54° 0'      |
| 36° 0′     | 9.7692                                         | 1.8                                         | 9.8613                 | 2.6                                               | 10.1387                                         | $\frac{9.9080}{0.070}$ | 1.0            | <b>54° 0</b> ′ 50′ |
| 10′ 20′    | .7710<br>.7727                                 | 1.7                                         | .8639                  | 2.7                                               | .1361                                           | .9070                  | .9             | 40'                |
| 30'        | .7744                                          | 1.7                                         | .8692                  | 2.6                                               | .1308                                           | .9052                  | .9             | 30'                |
| 40'        | .7761                                          | 1.7                                         | .8718                  | $\frac{2.6}{2.7}$                                 | .1282                                           | .9042                  | 1.0            | 20′                |
| 50'        | .7778                                          | 1.7                                         | .8745                  | $\begin{array}{c c} 2.7 \\ 2.6 \end{array}$       | .1255                                           | .9033                  | 1.0            | 10'                |
| 37° 0′     | 9.7795                                         |                                             | 9.8771                 |                                                   | 10.1229                                         | 9.9023                 |                | 53° 0′             |
|            | L Cos                                          | d 1′                                        | L Cot                  | c d 1'                                            | L Tan                                           | L Sin                  | d 1'           | Angle              |

| Angle      | L Sin                  | d 1′                                      | L Tan                  | c d 1'                                                 | L Cot                                       | L Cos                                         | d 1'                                        |             |
|------------|------------------------|-------------------------------------------|------------------------|--------------------------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------------|-------------|
| 37° 0′     | 9.7795                 |                                           | 9.8771                 |                                                        | 10.1229                                     | 9.9023                                        |                                             | 53° 0′      |
| 10'        | .7811                  | 1.6                                       | .8797                  | 2.6                                                    | .1203                                       | .9014                                         | .9                                          | 50'         |
| 20'        | .7828                  | 1.7                                       | .8824                  | 2.7                                                    | .1176                                       | .9004                                         | 1.0                                         | 40'         |
| 30'        | .7844                  | $\begin{array}{c} 1.6 \\ 1.7 \end{array}$ | .8850                  | 2.6                                                    | .1150                                       | .8995                                         | .9                                          | 30′         |
| 40′<br>50′ | .7861                  | 1.6                                       | .8876                  | $\begin{array}{ c c }\hline 2.6 \\ 2.6 \\ \end{array}$ | .1124                                       | .8985                                         | 1.0                                         | 20′         |
|            |                        | 1.6                                       | .8902                  | $\begin{bmatrix} 2.6 \\ 2.6 \end{bmatrix}$             | .1098                                       | .8975                                         | $\begin{array}{c c} 1.0 \\ 1.0 \end{array}$ | 10'         |
| 38° 0′     | 9.7893                 | 1.7                                       | 9.8928                 | 2.6                                                    | 10.1072                                     | 9.8965                                        | 1.0                                         | 52° 0'      |
| 10'        | .7910                  | 1.6                                       | .8954                  | 2.6                                                    | .1046                                       | .8955                                         |                                             | 50′         |
| 20'<br>30' | $.7926 \\ .7941$       | 1.5                                       | .8980<br>.9006         | $\begin{bmatrix} 2.0 \\ 2.6 \end{bmatrix}$             | .1020                                       | .8945                                         | 1.0<br>1.0                                  | 40'         |
| 40'        | .7957                  | 1.6                                       | .9032                  | 2.6                                                    | .0994 $.0968$                               | .8935 $.8925$                                 | 1.0                                         | 30'<br>20'  |
| 50'        | .7973                  | 1.6                                       | .9058                  | 2.6                                                    | .0942                                       | .8915                                         | 1.0                                         | 10'         |
| 39° 0′     | 9.7989                 | 1.6                                       | 9.9084                 | 2.6                                                    | 10.0916                                     | 9.8905                                        | 1.0                                         | 51° 0′      |
| 10'        | .8004                  | 1.5                                       | .9110                  | 2.6                                                    | .0890                                       | .8895                                         | 1.0                                         | 50 <b>′</b> |
| 20'        | .8020                  | 1.6                                       | .9135                  | 2.5                                                    | .0865                                       | .8884                                         | 1.1                                         | 40'         |
| 30'        | .8035                  | $\begin{array}{c} 1.5 \\ 1.5 \end{array}$ | .9161                  | $\begin{bmatrix} 2.6 \\ 2.6 \end{bmatrix}$             | .0839                                       | .8874                                         | 1.0                                         | 30'         |
| 40′<br>50′ | .8050                  | 1.6                                       | .9187                  | $\begin{bmatrix} 2.0 \\ 2.5 \end{bmatrix}$             | .0813                                       | .8864                                         | $egin{array}{c c} 1.0 \\ 1.1 \end{array}$   | 20′         |
| 40° 0′     | $\frac{.8066}{9.8081}$ | 1.5                                       | .9212                  | $\begin{bmatrix} 2.6 \\ 2.6 \end{bmatrix}$             | .0788                                       | .8853                                         | 1.0                                         | 10'         |
| 10'        |                        | 1.5                                       | 9.9238                 | 2.6                                                    | 10.0762                                     | 9.8843                                        | 1.1                                         | 50° 0′ (    |
| 20'        | .8096<br>.8111         | 1.5                                       | .9264 $.9289$          | 2.5                                                    | $\begin{array}{c} .0736 \\0711 \end{array}$ | .8832<br>.8821                                | 1.1                                         | 50'<br>40'  |
| 30'        | .8125                  | 1.4                                       | .9315                  | $\begin{bmatrix} 2.6 \end{bmatrix}$                    | .0685                                       | .8810                                         | 1.1                                         | 30'         |
| 40'        | .8140                  | 1.5                                       | .9341                  | 2.6                                                    | .0659                                       | .8800                                         | 1.0                                         | 20'         |
| 50'        | .8155                  | $\begin{array}{c} 1.5 \\ 1.4 \end{array}$ | .9366                  | $\begin{bmatrix} 2.5 \\ 2.6 \end{bmatrix}$             | .0634                                       | .8789                                         | $\begin{array}{c c} 1.1 \\ 1.1 \end{array}$ | 10'         |
| 41° 0′     | 9.8169                 | 1.5                                       | 9.9392                 | $\begin{vmatrix} 2.0 \\ 2.5 \end{vmatrix}$             | 10.0608                                     | 9.8778                                        | 1.1                                         | 49° 0'      |
| 10'        | .8184                  | 1.4                                       | .9417                  |                                                        | .0583                                       | .8767                                         |                                             | 50'         |
| 20'<br>30' | .8198<br>.8213         | 1.4 $1.5$                                 | .9443                  | $\begin{bmatrix} 2.6 \\ 2.5 \end{bmatrix}$             | .0557                                       | .8756                                         | $\begin{array}{c c} 1.1 \\ 1.1 \end{array}$ | 40'         |
| 40'        | .8213                  | 1.4                                       | .9468<br>.9494         | $\begin{bmatrix} 2.6 \\ 2.6 \end{bmatrix}$             | .0532 $.0506$                               | .8745 $.8733$                                 | 1.2                                         | 30'<br>20'  |
| 50'        | .8241                  | 1.4                                       | .9519                  | 2.5                                                    | .0481                                       | .8722                                         | 1.1                                         | 10'         |
| 42° 0′     | 9.8255                 | 1.4                                       | 9.9544                 | $\begin{vmatrix} 2.5 \end{vmatrix}$                    | 10.0456                                     | 9.8711                                        | 1.1                                         | 48° 0′      |
| 10'        | .8269                  | 1.4                                       | .9570                  | 2.6                                                    | .0430                                       | .8699                                         | 1.2                                         | 50′         |
| 20'        | .8283                  | 1.4                                       | .9595                  | 2.5                                                    | .0405                                       | .8688                                         | 1.1                                         | 40'         |
| 30'        | .8297                  | $\begin{array}{c} 1.4 \\ 1.4 \end{array}$ | .9621                  | $\begin{array}{ c c } 2.6 \\ 2.5 \end{array}$          | .0379                                       | .8676                                         | 1.2<br>1.1                                  | 30'         |
| 40'<br>50' | .8311<br>.8324         | $1.4 \\ 1.3$                              | .9646<br>.9671         | $\begin{bmatrix} 2.5 \\ 2.5 \end{bmatrix}$             | .0354 $.0329$                               | $\begin{array}{c} .8665 \\ .8653 \end{array}$ | 1.1                                         | 20'<br>10'  |
| 43° 0′     | $\frac{.8324}{9.8338}$ | 1.4                                       | $\frac{.9671}{9.9697}$ | $\begin{bmatrix} 2.6 \\ 2.6 \end{bmatrix}$             | $\frac{.0329}{10.0303}$                     | $\frac{.8033}{9.8641}$                        | 1.2                                         | 47° 0′      |
| 10'        | .8351                  | 1.3                                       | $\frac{9.9097}{.9722}$ | 2.5                                                    | $\frac{10.0303}{.0278}$                     | .8629                                         | 1.2                                         | 50'         |
| 20'        | .8365                  | 1.4                                       | .9747                  | 2.5                                                    | .0278                                       | .8618                                         | 1.1                                         | 40'         |
| 30'        | .8378                  | 1.3                                       | .9772                  | 2.5                                                    | .0228                                       | .8606                                         | 1.2                                         | 30'         |
| 40'        | .8391                  | 1.3                                       | .9798                  | 2.6                                                    | .0202                                       | .8594                                         | 1.2                                         | 20′         |
| 50'        | .8405                  | 1.4<br>1.3                                | .9823                  | $\begin{array}{c c} 2.5 \\ 2.5 \end{array}$            | .0177                                       | .8582                                         | 1.2<br>1.3                                  | 10'         |
| 44° 0′     | 9.8418                 | 1.3                                       | 9.9848                 | 2.6                                                    | 10.0152                                     | 9.8569                                        | 1.2                                         | 46° 0′      |
| 10'        | .8431                  | 1.3                                       | .9874                  | 2.5                                                    | .0126                                       | .8557                                         | 1.2                                         | 50'<br>40'  |
| 20'<br>30' | .8444                  | 1.3                                       | .9899<br>.9924         | $\begin{vmatrix} 2.5 \\ 2.5 \end{vmatrix}$             | .0101 $.0076$                               | .8545 $.8532$                                 | $\begin{vmatrix} 1.2 \\ 1.3 \end{vmatrix}$  | 30'         |
| 40'        | .8469                  | 1.2                                       | .9949                  | 2.5                                                    | .0076                                       | .8520                                         | 1.2                                         | 20'         |
| 50'        | .8482                  | 1.3                                       | .9975                  | 2.6                                                    | .0025                                       | .8507                                         | 1.3                                         | 10'         |
| 45° 0′     | 9.8495                 | 1.3                                       | 10.0000                | 2.5                                                    | 10.0000                                     | 9.8495                                        | 1.2                                         | 45° 0′      |
|            | L Cos                  | d 1'                                      | L Cot                  | c d 1'                                                 | L Tan                                       | L Sin                                         | d 1'                                        | Angle       |



# FIVE-PLACE TABLES



#### TABLE V

# FIVE-PLACE LOGARITHMS OF THE

#### TRIGONOMETRIC FUNCTIONS

OF

# ANGLES BETWEEN 0° AND 3° AND BETWEEN 87° AND 90°

Note. — For angles between 0° and 3° and between 87° and 90° Table Va or Table Vb may be used to avoid interpolation in Table IV or in ordinary five-place tables; the results thus obtained are more accurate. Errors of interpolation in Table Vb correspond to differences of angle of less than 1"; Table Va gives still more accurate results.

#### Va. AUXILIARY TABLE OF S AND T FOR A IN MINUTES

For angles near 0°:  $\log \sin A = S + \log A'$  and  $\log \tan A = T + \log A'$ . For angles near 90°:  $\log \cos A = S_1 + \log A'_1$  and  $\log \cot A = T_1 + \log A'_1$  where  $A'_1$  is the number of minutes in 90° -A and  $S_1$  and  $T_1$  are corresponding values of S and T.

| S + 10                                                 |
|--------------------------------------------------------|
| 6.46 373<br>372<br>371                                 |
| 6.46 370<br>369<br>368                                 |
| 6.46 367<br>366<br>365                                 |
| 6.46 364<br>363<br>362                                 |
| $\begin{array}{c} 6.46\ 361 \\ 360 \\ 359 \end{array}$ |
| 6.46 358<br>357<br>356                                 |
| 6.46 355<br>354<br>353                                 |
|                                                        |

| A'                                                                    | T + 10   | A'                                                                                         | <b>T</b> + 10 |
|-----------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------|---------------|
| $ \begin{array}{c c} 0' - 26' \\ 27' - 39' \\ 40' - 48' \end{array} $ | 6.46 373 | 131' - 133'                                                                                | 6.46 394      |
|                                                                       | 374      | 134' - 136'                                                                                | 395           |
|                                                                       | 375      | 137' - 139'                                                                                | 396           |
| $ \begin{array}{r} 49' - 56' \\ 57' - 63' \\ 64' - 69' \end{array} $  | 6.46 376 | 140' - 142'                                                                                | 6.46 397      |
|                                                                       | 377      | 143' - 145'                                                                                | 398           |
|                                                                       | 378      | 146' - 148'                                                                                | 399           |
| 70' - 74'                                                             | 6.46 379 | $   \begin{array}{r}     149' - 150' \\     151' - 153' \\     154' - 156'   \end{array} $ | 6.46 400      |
| 75' - 80'                                                             | 380      |                                                                                            | 401           |
| 81' - 85'                                                             | 381      |                                                                                            | 402           |
| 86' - 89'                                                             | 6.46 382 | 157' - 158'                                                                                | 6.46 403      |
| 90' - 94'                                                             | 383      | 159' - 161'                                                                                | 404           |
| 95' - 98'                                                             | 384      | 162' - 163'                                                                                | 405           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                | 6.46 385 | 164' - 166'                                                                                | 6.46 406      |
|                                                                       | 386      | 167' - 168'                                                                                | 407           |
|                                                                       | 387      | 169' - 171'                                                                                | 408           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                | 6.46 388 | 172' - 173'                                                                                | 6.46 409      |
|                                                                       | 389      | 174' - 175'                                                                                | 410           |
|                                                                       | 390      | 176' - 178'                                                                                | 411           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                | 6.46 391 | 179' - 180'                                                                                | 6.46 412      |
|                                                                       | 392      | 181' - 182'                                                                                | 413           |
|                                                                       | 393      | 183' - 184'                                                                                | 414           |

ANGLES NEAR 0° AND 90°

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10; except for $\cos(90^{\circ} - B)$ ;                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(C_{B}^{c} - B)$ ;                                                                      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (cept for B)                                                                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kcept                                                                                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                                                                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PY (C)                                                                                   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ;<br>(9)                                                                                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                       |
| 9' 7.41 797 7.42 594 7.43 376 7.44 145 7.44 900 7.45 643 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 11                                                                                     |
| <b>0° 10′</b> 7.46 373 7.47 090 7.47 797 7.48 491 7.49 175 7.49 849 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CBB                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O -<br>Sin                                                                               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>⊣</b>                                                                                 |
| $ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = :                                                                                      |
| 14'   7.60 985   7.61 499   7.62 007   7.62 509   7.63 006   7.63 496   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\cos A =$ relations                                                                     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cos<br>relat                                                                             |
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Log<br>the r                                                                             |
| 18'   7.71 900   7.72 300   7.72 697   7.73 090   7.73 479   7.73 865   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10; I use t                                                                              |
| 7.70 470 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 680 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7. | 900                                                                                      |
| 22'   7.80 615   7.80 942   7.81 268   7.81 591   7.81 911   7.82 229   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 G                                                                                      |
| 23'   7.82 545   7.82 859   7.83 170   7.83 479   7.83 786   7.84 091   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tan A                                                                                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90 C C                                                                                   |
| 26'   7.87 870   7.88 147   7.88 423   7.88 697   7.88 969   7.89 240   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Log<br>2n 87<br>- B).                                                                    |
| $oxed{27'} oxed{7.89\ 509} oxed{7.89\ 776} oxed{7.90\ 041} oxed{7.90\ 305} oxed{7.90\ 568} oxed{7.90\ 829} oxed{1} oxed{1} \ oxed{28'} oxed{7.91\ 346} oxed{7.91\ 602} oxed{7.91\ 857} oxed{7.92\ 110} oxed{7.92\ 362} oxed{1} oxed{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '%ee                                                                                     |
| $ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>(90)                                                                               |
| 0° 30′         7.94 084         7.94 325         7.94 564         7.94 802         7.95 039         7.95 274         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Log cot $A = 10 - \text{Lo}$<br>ons of angles between 8; cos $B = \sin (90^{\circ} - B)$ |
| 31' 7 95 508 7 95 741 7 95 973 7 96 203 7 96 432 7 96 660 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b A agle                                                                                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | col<br>B :                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | So So Sos                                                                                |
| 35' 8.00 779 8.00 985 8.01 190 8.01 395 8.01 598 8.01 801 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion;                                                                                     |
| 36'   8.02 002   8.02 203   8.02 402   8.02 601   8.02 799   8.02 996   2<br>37'   8.03 192   8.03 387   8.03 581   8.03 775   8.03 967   8.04 159   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C C B)                                                                                   |
| 38'   8.04 350   8.04 540   8.04 729   8.04 918   8.05 105   8.05 292   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + int                                                                                    |
| 39'   8.05 478   8.05 663   8.05 848   8.06 031   8.06 214   8.06 396   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sin A + C$ ; LoFor functions $(90^{\circ} - B)$ ; co                                   |
| 0° 40′         8.06 578         8.06 758         8.06 938         8.07 117         8.07 295         8.07 473         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = Log sin A<br>place. For 3<br>= tan (90°                                                |
| 41'     8.07 650     8.07 826     8.08 002     8.08 176     8.08 350     8.08 524     3       42'     8.08 696     8.08 868     8.09 040     8.09 210     8.09 380     8.09 550     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = Log<br>place.<br>= tan                                                                 |
| 43' 8.09 718 8.09 886 8.10 054 8.10 220 8.10 386 8.10 552 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 1<br>olac<br>= t                                                                       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A<br>st r<br>B                                                                           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an<br>Ia:<br>ot                                                                          |
| 47' 8.13 581 8.13 735 8.13 888 8.14 041 8.14 193 8.14 344 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g tu<br>the<br>; c                                                                       |
| 48'       8.14 495       8.14 646       8.14 796       8.14 945       8.15 094       8.15 243       4         49'       8.15 391       8.15 538       8.15 685       8.15 832       8.15 978       8.16 123       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Log tan $A$ in the last $B$ ; cot $B$                                                    |
| 45         8.16 351         8.15 358         8.16 413         8.16 557         8.16 700         8.16 843         8.16 986         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
| 51' 8 17 128 8 17 270 8 17 411 8 17 552 8 17 692 8 17 832 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | See Note, p. 21. t possible error of 1 an $B = \cot (90^{\circ} -$                       |
| 52'   8.17 971   8.18 110   8.18 249   8.18 387   8.18 524   8.18 662   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rro<br>(9                                                                                |
| 53'   8.18 798   8.18 935   8.19 071   8.19 206   8.19 341   8.19 476   5<br>54'   8.19 610   8.19 744   8.19 877   8.20 010   8.20 143   8.20 275   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ote,<br>e e:<br>cot                                                                      |
| 55'   8.20 407   8.20 538   8.20 669   8.20 800   8.20 930   8.21 060   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N<br>ldi<br>=                                                                            |
| 56' 8.21 189 8.21 319 8.21 447 8.21 576 8.21 703 8.21 831 6<br>57' 8.21 958 8.22 085 8.22 211 8.22 337 8.22 463 8.22 588 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See<br>Oss<br>B                                                                          |
| 58'   8.22 713   8.22 838   8.22 962   8.23 086   8.23 210   8.23 333   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a p<br>tan                                                                               |
| 59' 8.23 456   8.23 578   8.23 700   8.23 822   8.23 944   8.24 065   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          |

ANGLES NEAR 0° AND 90°

| Angle           |                          |                      | Log Sin                  | A + 10               |                      |                      | C                                             | T                                                                   |
|-----------------|--------------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|-----------------------------------------------|---------------------------------------------------------------------|
| A               | 0′′                      | 10"                  | 20′′                     | 30′′                 | 40"                  | 50"                  | .0000                                         |                                                                     |
| 1° 0′           | 8.24 186                 | 8.24 306             | 8.24 426                 | 8.24 546             | 8.24 665             | 8.24 785             | 7                                             |                                                                     |
| 1'              | 8.24 903                 | 8.25 022             | 8.25 140                 | 8.25 258             | 8.25 375             | 8.25 493             | 7                                             | for B);                                                             |
| $\frac{2'}{3'}$ | 8.25 609                 | 8.25 726             | 8.25 842                 | 8.25 958             | 8.26 074             | 8.26 189             | 7                                             | ot i                                                                |
| 4'              | 8.26 304<br>8.26 988     | 8.26 419<br>8.27 101 | 8.26 533<br>8.27 214     | 8.26 648<br>8.27 326 | 8.26 761<br>8.27 438 | 8.26 875<br>8.27 550 | 7                                             | ; except                                                            |
| 5'              | 8.27 661                 | 8.27 773             | 8.27 883                 | 8.27 994             | 8.28 104             | 8.28 215             | 8 8                                           | ex                                                                  |
| 6'              | 8.28 324                 | 8.28 434             | 8.28 543                 | 8.28 652             | 8.28 761             | 8.28 869             | 8                                             | 10;<br>cos(                                                         |
| 7'<br>8'        | 8.28 977<br>8.29 621     | 8.29 085<br>8.29 727 | 8.29 193<br>8.29 833     | 8.29 300             | 8.29 407             | 8.29 514             | 9                                             |                                                                     |
| 9'              | 8.30 255                 | 8.30 359             | 8.30 464                 | 8.29 939<br>8.30 568 | 8.30 044<br>8.30 672 | 8.30 150<br>8.30 776 | 9 9                                           | B C                                                                 |
| 1° 10′          | 8.30 879                 | 8.30 983             | 8.31 086                 | 8.31 188             | 8.31 291             | 8.31 393             | 9                                             | 0 - 0                                                               |
| 11'             | 8.31 495                 | 8.31 597             | 8.31 699                 | 8.31 800             | 8.31 901             | 8.32 002             | 9                                             | 10                                                                  |
| 12'<br>13'      | $8.32\ 103 \\ 8.32\ 702$ | 8.32 203             | 8.32 303                 | 8.32 403             | 8.32 503             | 8.32 602             | .00010                                        |                                                                     |
| 14'             | 8.33 292                 | 8.32 801<br>8.33 390 | 8.32 899<br>8.33 488     | 8.32 998<br>8.33 585 | 8.33 096<br>8.33 682 | 8.33 195<br>8.33 779 | 10                                            | A Lion                                                              |
| 15'             | 8.33 875                 | 8.33 972             | 8.34 068                 | 8.34 164             | 8.34 260             | 8.34 355             | 10                                            | $\cos A =$ relations:                                               |
| 16'             | 8.34 450                 | 8.34 546             | 8.34 640                 | 8.34 735             | 8.34 830             | 8.34 924             | 11                                            | 50 d                                                                |
| 17'<br>18'      | 8.35 018<br>8.35 578     | 8.35 112<br>8.35 671 | 8.35 206<br>8.35 764     | 8.35 299<br>8.35 856 | 8.35 392             | 8.35 485             | 11                                            | Log<br>the                                                          |
| 19'             | 8.36 131                 | 8.36 223             | 8.36 314                 | 8.36 405             | 8.35 948<br>8.36 496 | 8.36 040<br>8.36 587 | $\begin{array}{c c} & 11 \\ & 12 \end{array}$ | se.                                                                 |
| 1° 20′          | 8.36 678                 | 8.36 768             | 8.36 858                 | 8.36 948             | 8.37 038             | 8.37 128             | 12                                            | - 10<br>90° u                                                       |
| 21'             | 8.37 217                 | 8.37 306             | 8.37 395                 | 8.37 484             | 8.37 573             | 8.37 662             | 12                                            | 16                                                                  |
| 22'<br>23'      | 8.37 750<br>8.38 276     | 8.37 838<br>8.38 363 | 8.37 926<br>8.38 450     | 8.38 014             | 8.38 101             | 8.38 189             | 12                                            | 45                                                                  |
| 24'             | 8.38 796                 | 8.38 882             | 8.38 968                 | 8.38 537<br>8.39 054 | 8.38 624<br>8.39 139 | 8.38 710<br>8.39 225 | 13<br>13                                      | tan<br>7° ar<br>).                                                  |
| 25'             | 8.39 310                 | 8.39 395             | 8.39 480                 | 8.39 565             | 8.39 649             | 8.39 734             | 13                                            | 8).                                                                 |
| 26'             | 8.39 818                 | 8.39 902             | 8.39 986                 | 8.40 070             | 8.40 153             | 8.40 237             | 14                                            | en L                                                                |
| 27'<br>28'      | 8.40 320<br>8.40 816     | 8.40 403<br>8.40 898 | 8.40 486<br>8.40 980     | 8.40 569<br>8.41 062 | 8.40 651<br>8.41 144 | 8.40 734<br>8.41 225 | $\begin{array}{c c} 14 \\ 15 \end{array}$     | ) « Me                                                              |
| 29'             | 8.41 307                 | 8.41 388             | 8.41 469                 | 8.41 550             | 8.41 631             | 8.41 711             | 15                                            | 10 - Log<br>between 87<br>(90° - B).                                |
| 1° 30′          | 8.41 792                 | 8.41 872             | 8.41 952                 | 8.42 032             | 8.42 112             | 8.42 192             | 15                                            | ot $A = $ angles $S = \sin$                                         |
| 31'             | 8.42 272                 | 8.42 351             | 8.42 430                 | 8.42 510             | 8.42 589             | 8.42 667             | 15                                            | A ngl = ;                                                           |
| 32'<br>33'      | 8.42 746<br>8.43 216     | 8.42 825<br>8.43 293 | 8.42 903<br>8.43 371     | 8.42 982<br>8.43 448 | 8.43 060<br>8.43 526 | 8.43 138<br>8.43 603 | 16<br>16                                      | cot<br>f ar<br>B =                                                  |
| 34'             | 8.43 680                 | 8.43 757             | 8.43 834                 | 8.43 910             | 8.43 987             | 8.44 063             | 16                                            | ; cos B                                                             |
| 35'             | 8.44 139                 | 8.44 216             | 8.44 292                 | 8.44 367             | 8.44 443             | 8.44 519             | 17                                            | Jones                                                               |
| 36'<br>37'      | 8.44 594<br>8.45 044     | 8.44 669<br>8.45 119 | 8.44 745<br>8.45 193     | 8.44 820<br>8.45 267 | 8.44 895<br>8.45 341 | 8.44 969<br>8.45 415 | 17<br>17                                      | B)                                                                  |
| 38'             | 8.45 489                 | 8.45 563             | 8.45 637                 | 8.45 710             | 8.45 784             | 8.45 857             | 18                                            | + C;<br>functi<br>- B)                                              |
| 39'             | 8.45 930                 | 8.46 003             | 8.46 076                 | 8.46 149             | 8.46 222             | 8.46 294             | 18                                            | A 70°                                                               |
| 1° 40′          | 8.46 366                 | 8.46 439             | 8.46 511                 | 8.46 583             | 8.46 655             | 8.46 727             | 18                                            | Log sin A<br>ace. For<br>tan (90°                                   |
| 41'<br>42'      | 8.46 799<br>8.47 226     | 8.46 870<br>8.47 297 | 8.46 942<br>8.47 368     | 8.47 013<br>8.47 439 | 8.47 084<br>8.47 509 | 8.47 155<br>8.47 580 | 19<br>19                                      | = Log s<br>place.                                                   |
| 43'             | 8.47 650                 | 8.47 720             | 8.47 790                 | 8.47 860             | 8.47 930             | 8.48 000             | 20                                            | lac<br>= t                                                          |
| 44'             | 8.48 069                 | 8.48 139             | 8.48 208                 | 8.48 278             | 8.48 347             | 8.48 416             | 20                                            | t pli = B                                                           |
| 45'<br>46'      | 8.48 485<br>8.48 896     | 8.48 554<br>8.48 965 | 8.48 622<br>8.49 033     | 8.48 691<br>8.49 101 | 8.48 760<br>8.49 169 | 8.48 828<br>8.49 236 | $\begin{bmatrix} 20 \\ 20 \end{bmatrix}$      | n A<br>las:                                                         |
| 47'             | 8.49 304                 | 8.49 372             | 8.49 439                 | 8.49 506             | 8.49 574             | 8.49 641             | $\begin{bmatrix} 20 \\ 21 \end{bmatrix}$      | tai<br>he j                                                         |
| 48'             | 8.49 708                 | 8.49 775             | 8.49 842                 | 8.49 908             | 8.49 975             | 8.50 042             | 21                                            | Log tan $A$ :    in the last                                        |
| 49'             | 8.50 108                 | 8.50 174             | 8.50 241                 | 8.50 307             | 8.50 373             | 8.50 439             | $\frac{22}{22}$                               | 1 ii                                                                |
| 1° 50′<br>51′   | 8.50 504                 | 8.50 570             | 8.50 636                 | 8.50 701             | 8.50 767             | 8.50 832<br>8.51 222 | $\frac{23}{23}$                               | See Note, p. 21. a possible error of 1 tan $B = \cot (90^{\circ} -$ |
| 52'             | 8.50 897<br>8.51 287     | 8.50 963<br>8.51 351 | 8.51 028<br>8.51 416     | 8.51 092<br>8.51 480 | 8.51 157<br>8.51 544 | 8.51 222             | 23                                            | p. (9(                                                              |
| 53'             | 8.51 673                 | 8.51 737             | 8.51 801                 | 8.51 864             | 8.51 928             | 8.51 992             | 23                                            | eri<br>ot                                                           |
| 54'             | 8.52 055                 | 8.52 119             | 8.52 182                 | 8.52 245             | 8.52 308             | 8.52 371             | 24                                            | Not<br>ole                                                          |
| 55'<br>56'      | 8.52 434<br>8.52 810     | 8.52 497<br>8.52 872 | $8.52\ 560 \\ 8.52\ 935$ | 8.52 623<br>8.52 997 | 8.52 685<br>8.53 059 | 8.52 748<br>8.53 121 | $\begin{bmatrix} 24 \\ 25 \end{bmatrix}$      | e De Basik                                                          |
| 57'             | 8.53 183                 | 8.53 245             | 8.53 306                 | 8.53 368             | 8.53 429             | 8.53 491             | 25                                            | Door n                                                              |
| 58'             | 8.53 552                 | 8.53 614             | 8.53 675                 | 8.53 736             | 8.53 797             | $8.53858 \\ 8.54222$ | $\begin{bmatrix} 26 \\ 26 \end{bmatrix}$      | ta<br>ta                                                            |
| 59'             | 8.53 919                 | 8.53 979             | 8.54 040                 | 8.54 101             | 8.54 161             | 0.04 444             | 20                                            |                                                                     |

ANGLES NEAR 0° AND 90°

| Angle                                                  |                                                        |                                                        | Log Sin                                                | A + 10                        |                      |                           | C                                         |                                                                                      |
|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------|----------------------|---------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|
| Å                                                      | 0''                                                    | 10"                                                    | 20′′                                                   | 30′′                          | 40′′                 | 50′′                      | .000                                      |                                                                                      |
| 2° 0′                                                  | 8.54 282                                               | 8.54 342                                               | 8.54 402                                               | 8.54 462                      | 8.54 522             | 8.54 582                  | 27                                        | 7. 15                                                                                |
| 1'                                                     | 8.54 642                                               | 8.54 702                                               | 8.54 762                                               | 8.54 821                      | 8.54 881             | 8.54 940                  | 27                                        | for B);                                                                              |
| 2'<br>3'                                               | 8.54 999<br>8.55 354                                   | 8.55 059<br>8.55 413                                   | $8.55\ 118 \\ 8.55\ 471$                               | 8.55 177<br>8.55 530          | 8.55 236<br>8.55 589 | 8.55 295<br>8.55 647      | 28<br>28                                  | except<br>(90° – j                                                                   |
| 4'                                                     | 8.55 705                                               | 8.55 764                                               | 8.55 822                                               | 8.55 880                      | 8.55 938             | 8.55 996                  | 29                                        | o xce                                                                                |
| 5'                                                     | 8.56 054                                               | 8.56 112                                               | 8.56 170                                               | 8.56 227                      | 8.56 285             | 8.56 342                  | 29                                        | (3 e                                                                                 |
| 6'<br>7'                                               | 8.56 400                                               | 8.56 457<br>8.56 800                                   | 8.56 515<br>8.56 857                                   | 8.56 572<br>8.56 914          | 8.56 629<br>8.56 970 | 8.56 686<br>8.57 027      | 29<br>30                                  | 10;<br>cos                                                                           |
| 8'                                                     | 8.56 743<br>8.57 084                                   | 8.57 140                                               | 8.57 196                                               | 8.57 253                      | 8.57 309             | 8.57 365                  | 30                                        | Lц                                                                                   |
| 9'                                                     | 8.57 421                                               | 8.57 477                                               | 8.57 533                                               | 8.57 589                      | 8.57 645             | 8.57 701                  | 31                                        | BC                                                                                   |
| 2° 10′                                                 | 8.57 757                                               | 8.57 812                                               | 8.57 868                                               | 8.57 927                      | 8.57 979             | 8.58 034                  | $\frac{31}{32}$                           | 0.0 –<br>sin                                                                         |
| 11'<br>12'                                             | 8.58 089<br>8.58 419                                   | 8.58 144<br>8.58 474                                   | 8.58 200<br>8.58 529                                   | 8.58 255<br>8.58 583          | 8.58 310<br>8.58 638 | 8.58 364<br>8.58 693      | $\begin{vmatrix} 32 \\ 32 \end{vmatrix}$  | = 10<br>3: sj                                                                        |
| 13'                                                    | 8.58 747                                               | 8.58 801                                               | 8.58 856                                               | 8.58 910                      | 8.58 964             | 8.59 018                  | 33                                        | Log $\cos A = 1$ the relations:                                                      |
| 14'                                                    | 8.59 072                                               | 8.59 126                                               | 8.59 180                                               | 8.59 234                      | 8.59 288             | $8.59\ 341 \\ 8.59\ 662$  | 33<br>34                                  | s A                                                                                  |
| 15'<br>16'                                             | 8.59 395<br>8.59 715                                   | 8.59 448<br>8.59 768                                   | $8.59502 \\ 8.59821$                                   | 8.59 555<br>8.59 874          | $8.59609 \\ 8.59927$ | 8.59 980                  | 35                                        | co<br>rel                                                                            |
| 17'                                                    | 8.60 033                                               | 8.60 086                                               | 8.60 139                                               | 8.60 191                      | 8.60 244             | 8.60 296                  | 35                                        | log<br>he                                                                            |
| 18'                                                    | 8.60 349                                               | 8.60 401                                               | 8.60 454                                               | 8.60 506                      | 8.60 558<br>8.60 870 | $8.60610 \\ 8.60922$      | $\begin{array}{c} 35 \\ 36 \end{array}$   | i t                                                                                  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\frac{8.60\ 714}{8.61\ 025}$                          | $\frac{8.60766}{8.61077}$                              | $\frac{8.60\ 818}{8.61\ 128}$ | 8.61 180             | $\frac{8.60922}{8.61231}$ | $\frac{36}{36}$                           | - 10;<br>90° use                                                                     |
| 21'                                                    | 8.61 282                                               | 8.61 334                                               | 8.61 385                                               | 8.61 436                      | 8.61 487             | 8.61 538                  | 37                                        | 1,06                                                                                 |
| 22'                                                    | 8.61 589                                               | 8.61 640                                               | 8.61 691                                               | 8.61 742                      | 8.61 792             | 8.61 843                  | 37                                        | l マロ                                                                                 |
| 23'                                                    | 8.61 894                                               | 8.61 944                                               | 8.61 995<br>8.62 297                                   | 8.62 045<br>8.62 347          | 8.62 096<br>8.62 397 | 8.62 146<br>8.62 447      | 38<br>38                                  | tan<br>° a                                                                           |
| 24'<br>25'                                             | 8.62 196<br>8.62 497                                   | 8.62 246<br>8.62 546                                   | 8.62 596                                               | 8.62 646                      | 8.62 696             | 8.62 745                  | 39                                        | Log tan<br>en 87° an<br>B).                                                          |
| 26'                                                    | 8.62 795                                               | 8.62 844                                               | 8.62 894                                               | 8.62 943                      | 8.62 993             | 8.63 042                  | 39                                        | L G B B B B B B B B B B B B B B B B B B                                              |
| 27' 28'                                                | 8.63 091<br>8.63 385                                   | 8.63 140<br>8.63 434                                   | 8.63 189<br>8.63 483                                   | 8.63 238<br>8.63 532          | 8.63 288<br>8.63 580 | 8.63 336<br>8.63 629      | $\begin{array}{c c} 40 \\ 41 \end{array}$ | (%)                                                                                  |
| 29'                                                    | 8.63 678                                               | 8.63 726                                               | 8.63 775                                               | 8.63 823                      | 8.63 871             | 8.63 920                  | 41                                        | 10<br>bet                                                                            |
| 2° 30′                                                 | 8.63 968                                               | 8.64 016                                               | 8.64 064                                               | 8.64 112                      | 8.64 160             | 8.64 208                  | 42                                        | $\cot A = 10 - \text{Log}$ f angles between $\mathbb{E}$ = $\sin (90^{\circ} - B)$ . |
| 31'<br>32'                                             | 8.64 256<br>8.64 543                                   | 8.64 304<br>8.64 590                                   | 8.64 352<br>8.64 638                                   | 8.64 400<br>8.64 685          | 8.64 448<br>8.64 733 | 8.64 495<br>8.64 780      | 42<br>43                                  | ot 7                                                                                 |
| 33'                                                    | 8.64 827                                               | 8.64 875                                               | 8.64 922                                               | 8.64 969                      | 8.65 016             | 8.65 063                  | 43                                        | C; Log cot actions of an $C$ ; cos $C$ = $C$                                         |
| 34'                                                    | 8.65 110                                               | 8.65 157                                               | 8.65 204                                               | 8.65 251                      | 8.65 298             | 8.65 344                  | 44                                        | Log<br>ns<br>s I                                                                     |
| 35'<br>36'                                             | 8.65 391 8.65 670                                      | 8.65 438<br>8.65 717                                   | 8.65 484<br>8.65 763                                   | 8.65 531<br>8.65 809          | 8.65 577<br>8.65 855 | 8.65 624<br>8.65 901      | 44 45                                     | tion of                                                                              |
| 37'                                                    | 8.65 947                                               | 8.65 994                                               | 8.66 040                                               | 8.66 085                      | 8.66 131             | 8.66 177                  | 46                                        | 4 + C<br>func<br>- B);                                                               |
| 38'                                                    | 8.66 223                                               | 8.66 269                                               | 8.66 314                                               | 8.66 360<br>8.66 633          | 8.66 406<br>8.66 678 | 8.66 451<br>8.66 724      | $\begin{array}{c c} 46 \\ 47 \end{array}$ | A - A - Dr fu                                                                        |
| 39'<br>2° 40'                                          | 8.66 497                                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 8.66 904                      | 8.66 949             | 8.66 994                  | 47                                        | Ho.                                                                                  |
| 41'                                                    | 8.67 039                                               | 8.67 084                                               | 8.67 129                                               | 8.67 174                      | 8.67 219             | 8.67 263                  | 48                                        | Log sin A lace. For f tan(90° –                                                      |
| 42'                                                    | 8.67 308                                               | 8.67 353                                               | 8.67 397                                               | 8.67 442                      | 8.67 486             | 8.67 531                  | 48                                        | Loace                                                                                |
| 43'                                                    | 8.67 575<br>8.67 841                                   | 8.67 619<br>8.67 885                                   | 8.67 664<br>8.67 929                                   | 8.67 708<br>8.67 973          | 8.67 752<br>8.68 017 | 8.67 796<br>8.68 060      | 49<br>49                                  | 1 2 1                                                                                |
| 45'                                                    | 8.68 104                                               | 8.68 148                                               | 8.68 192                                               | 8.68 236                      | 8.68 279             | 8.68 323                  | 50                                        | ast<br>B                                                                             |
| 46'                                                    | 8.68 367                                               | 8.68 410                                               | 8.68 454                                               | 8.68 497                      | 8.68 540             | 8.68 584                  | 51                                        | tan<br>le 1<br>sot                                                                   |
| 47'                                                    | 8.68 627<br>8.68 886                                   | 8.68 670<br>8.68 929                                   | 8.68 714<br>8.68 972                                   | 8.68 757<br>8.69 015          | 8.68 800<br>8.69 058 | 8.68 843<br>8.69 101      | $\begin{array}{c} 51 \\ 52 \end{array}$   | og th                                                                                |
| 49'                                                    | 8.69 144                                               | 8.69 187                                               | 8.69 229                                               | 8.69 272                      | 8.69 315             | 8.69 357                  | 53                                        | Log tan $A$ lin the last $B$ ; cot $B$ =                                             |
| 2° 50′                                                 | 8.69 400                                               | 8.69 442                                               | 8.69 485                                               | 8.69 527                      | 8.69 570             | 8.69 612                  | 53                                        | See Note, p. 21. a possible error of 1 tan $B = \cot(90^{\circ} -$                   |
| 51'                                                    | 8.69 654                                               | 8.69 697                                               | 8.69 739<br>8.69 991                                   | 8.69 781<br>8.70 033          | 8.69 823<br>8.70 075 | 8.69 865<br>8.70 117      | 54<br>55                                  | or 6                                                                                 |
| 52'<br>53'                                             | 8.69 907<br>8.70 159                                   | 8.69 949 8.70 201                                      | 8.70 242                                               | 8.70 033                      | 8.70 326             | 8.70 367                  | 55                                        | err                                                                                  |
| 54'                                                    | 8.70 409                                               | 8.70 451                                               | 8.70 492                                               | 8.70 534                      | 8.70 575             | 8.70 616                  | 56                                        | loto<br>le o                                                                         |
| 55'<br>56'                                             | 8.70 658<br>8.70 905                                   | 8.70 699<br>8.70 946                                   | 8.70 740<br>8.70 987                                   | 8.70 781 8.71 028             | 8.70 823<br>8.71 069 | 8.70 864<br>8.71 110      | 56<br>57                                  | N Sision                                                                             |
| 57'                                                    | 8.71 151                                               | 8.71 192                                               | 8.71 232                                               | 8.71 273                      | 8.71 314             | 8.71 355                  | 58                                        | Sec<br>pos<br>n B                                                                    |
| 58'                                                    | 8.71 395                                               | 8.71 436                                               | 8.71 476                                               | 8.71 517                      | 8.71 557             | 8.71 598                  | 58                                        | a l                                                                                  |
| 59'                                                    | 8.71 638                                               | 8.71 679                                               | 8.71 719                                               | 8.71 759                      | 8.71 800             | 8.71 840                  | 59                                        |                                                                                      |

| ′                          | L Sin                                                    | L Tan                                                    | L Cot                                                         | L Cos                                                         |                            | Prop. Pts.                                       |
|----------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------|--------------------------------------------------|
| 0<br>1<br>2<br>3<br>4      | 6.46 373<br>6.76 476<br>6.94 085<br>7.06 579             | 6.46 373<br>6.76 476<br>6.94 085<br>7.06 579             | 13.53 627<br>13.23 524<br>13.05 915<br>12.93 421              | 10.00 000<br>10.00 000<br>10.00 000<br>10.00 000<br>10.00 000 | 59<br>58<br>57<br>56       |                                                  |
| 5<br>6<br>7<br>8<br>9      | 7.16 270<br>7.24 188<br>7.30 882<br>7.36 682<br>7.41 797 | 7.16 270<br>7.24 188<br>7.30 882<br>7.36 682<br>7.41 797 | 12.83 730<br>12.75 812<br>12.69 118<br>12.63 318<br>12.58 203 | 10.00 000<br>10.00 000<br>10.00 000<br>10.00 000<br>10.00 000 | 55<br>54<br>53<br>52<br>51 |                                                  |
| 10<br>11<br>12<br>13<br>14 | 7.46 373<br>7.50 512<br>7.54 291<br>7.57 767<br>7.60 985 | 7.46 373<br>7.50 512<br>7.54 291<br>7.57 767<br>7.60 986 | 12.53 627<br>12.49 488<br>12.45 709<br>12.42 233<br>12.39 014 | 10.00 000<br>10.00 000<br>10.00 000<br>10.00 000<br>10.00 000 | 50<br>49<br>48<br>47<br>46 |                                                  |
| 15<br>16<br>17<br>18<br>19 | 7.63 982<br>7.66 784<br>7.69 417<br>7.71 900<br>7.74 248 | 7.63 982<br>7.66 785<br>7.69 418<br>7.71 900<br>7.74 248 | 12.36 018<br>12.33 215<br>12.30 582<br>12.28 100<br>12.25 752 | 10.00 000<br>10.00 000<br>9.99 999<br>9.99 999<br>9.99 999    | 45<br>44<br>43<br>42<br>41 | e page 21.<br>hms.                               |
| 20<br>21<br>22<br>23<br>24 | 7.76 475<br>7.78 594<br>7.80 615<br>7.82 545<br>7.84 393 | 7.76 476<br>7.78 595<br>7.80 615<br>7.82 546<br>7.84 394 | 12.23 524<br>12.21 405<br>12.19 385<br>12.17 454<br>12.15 606 | 9.99 999<br>9.99 999<br>9.99 999<br>9.99 999                  | 39<br>38<br>37<br>36       | . See Note page<br>s of logarithms.              |
| 25<br>26<br>27<br>28<br>29 | 7.86 166<br>7.87 870<br>7.89 509<br>7.91 088<br>7.92 612 | 7.86 167<br>7.87 871<br>7.89 510<br>7.91 089<br>7.92 613 | 12.13 833<br>12.12 129<br>12.10 490<br>12.08 911<br>12.07 387 | 9.99 999<br>9.99 999<br>9.99 999<br>9.99 998                  | 35<br>34<br>33<br>32<br>31 | Table V $a$ or V $b$ . tabulated values          |
| 30<br>31<br>32<br>33<br>34 | 7.94 084<br>7.95 508<br>7.96 887<br>7.98 223<br>7.99 520 | 7.94 086<br>7.95 510<br>7.96 889<br>7.98 225<br>7.99 522 | 12.05 914<br>12.04 490<br>12.03 111<br>12.01 775<br>12.00 478 | 9.99 998<br>9.99 998<br>9.99 998<br>9.99 998<br>9.99 998      | 30<br>29<br>28<br>27<br>26 |                                                  |
| 35<br>36<br>37<br>38<br>39 | 8.00 779<br>8.02 002<br>8.03 192<br>8.04 350<br>8.05 478 | 8.00 781<br>8.02 004<br>8.03 194<br>8.04 353<br>8.05 481 | 11.99 219<br>11.97 996<br>11.96 806<br>11.95 647<br>11.94 519 | 9.99 998<br>9.99 998<br>9.99 997<br>9.99 997<br>9.99 997      | 25<br>24<br>23<br>22<br>21 | avoid interpolation use<br>Must subtract 10 from |
| 40<br>41<br>42<br>43<br>44 | 8.06 578<br>8.07 650<br>8.08 696<br>8.09 718<br>8.10 717 | 8.06 581<br>8.07 653<br>8.08 700<br>8.09 722<br>8.10 720 | 11.93 419<br>11.92 347<br>11.91 300<br>11.90 278<br>11.89 280 | 9.99 997<br>9.99 997<br>9.99 997<br>9.99 996                  | 20<br>19<br>18<br>17<br>16 | To avoid in<br>Must su                           |
| 45<br>46<br>47<br>48<br>49 | 8.11 693<br>8.12 647<br>8.13 581<br>8.14 495<br>8.15 391 | 8.11 696<br>8.12 651<br>8.13 585<br>8.14 500<br>8.15 395 | 11.88 304<br>11.87 349<br>11.86 415<br>11.85 500<br>11.84 605 | 9.99 996<br>9.99 996<br>9.99 996<br>9.99 996<br>9.99 996      | 15<br>14<br>13<br>12<br>11 |                                                  |
| 50<br>51<br>52<br>53<br>54 | 8.16 268<br>8.17 128<br>8.17 971<br>8.18 798<br>8.19 610 | 8.16 273<br>8.17 133<br>8.17 976<br>8.18 804<br>8.19 616 | 11.83 727<br>11.82 867<br>11.82 024<br>11.81 196<br>11.80 384 | 9.99 995<br>9.99 995<br>9.99 995<br>9.99 995<br>9.99 995      | 10<br>9<br>8<br>7<br>6     |                                                  |
| 55<br>56<br>57<br>58<br>59 | 8.20 407<br>8.21 189<br>8.21 958<br>8.22 713<br>8.23 456 | 8.20 413<br>8.21 195<br>8.21 964<br>8.22 720<br>8.23 462 | 11.79 587<br>11.78 805<br>11.78 036<br>11.77 280<br>11.76 538 | 9.99 994<br>9.99 994<br>9.99 994<br>9.99 994                  | 5<br>4<br>3<br>2<br>1      |                                                  |
| 60                         | 8.24 186<br>L Cos                                        | 8.24 192<br>L Cot                                        | 11.75 808<br>L Tan                                            | 9.99 993<br>L Sin                                             | 0                          | Prop. Pts.                                       |

|                                                              |                      |                      |                                                           | -                    |                                         |                                                           |
|--------------------------------------------------------------|----------------------|----------------------|-----------------------------------------------------------|----------------------|-----------------------------------------|-----------------------------------------------------------|
| ′                                                            | L Sin                | L Tan                | L Cot                                                     | L Cos.               |                                         | Prop. Pts.                                                |
| 0                                                            | 8.24 186<br>8.24 903 | 8.24 192<br>8.24 910 | 11.75 808<br>11.75 090                                    | 9.99 993<br>9.99 993 | <b>60</b> 59                            |                                                           |
| 2                                                            | 8.25 609             | 8.25 616             | 11.74 384                                                 | 9.99 993             | 58<br>57                                |                                                           |
| 3 4                                                          | 8.26 304<br>8.26 988 | 8.26 312<br>8.26 996 | 11.73 688<br>11.73 004                                    | 9.99 993<br>9.99 992 | 56_                                     |                                                           |
| 5 6                                                          | 8.27 661<br>8.28 324 | 8.27 669<br>8.28 332 | 11.72 331<br>11.71 668                                    | 9.99 992<br>9.99 992 | 55<br>54                                |                                                           |
| 7                                                            | 8.28 977             | 8.28 986             | 11.71 014                                                 | 9.99 992<br>9.99 992 | 53<br>52                                |                                                           |
| 8 9                                                          | 8.29 621<br>8.30 255 | 8.29 629<br>8.30 263 | $11.70\ 371$ $11.69\ 737$                                 | 9.99 991             | _51_                                    |                                                           |
| 10<br>11                                                     | 8.30 879<br>8.31 495 | 8.30 888<br>8.31 505 | 11.69 112<br>11.68 495                                    | 9.99 991<br>9.99 991 | <b>50</b><br>49                         |                                                           |
| 12                                                           | 8.32 103             | 8.32 112             | 11.67 888<br>11.67 289                                    | 9.99 990<br>9.99 990 | 48<br>47                                |                                                           |
| 13                                                           | 8.32 702<br>8.33 292 | 8.32 711<br>8.33 302 | 11.66 698                                                 | 9.99 990             | 46                                      |                                                           |
| 15<br>16                                                     | 8.33 875<br>8.34 450 | 8.33 886<br>8.34 461 | 11.66 114<br>11.65 539                                    | 9.99 990<br>9.99 989 | 45<br>44                                | 21.                                                       |
| 17                                                           | 8.35 018             | 8.35 029             | 11.64971                                                  | 9.99 989<br>9.99 989 | 43<br>42                                | age                                                       |
| 18<br>19                                                     | 8.35 578<br>8.36 131 | 8.35 590<br>8.36 143 | 11.64 410<br>11.63 857                                    | 9.99 989             | 41                                      | See Note page<br>arithms.                                 |
| <b>20</b> 21                                                 | 8.36 678<br>8.37 217 | 8.36 689<br>8.37 229 | 11.63 311<br>11.62 771                                    | 9.99 988<br>9.99 988 | <b>40</b><br>39                         | $\frac{N}{m}$                                             |
| 22                                                           | 8.37 750             | 8.37 762             | 11.62 238                                                 | 9.99 988<br>9.99 987 | 38<br>37                                | see<br>rith                                               |
| 23<br>24                                                     | 8.38 276<br>8.38 796 | 8.38 289<br>8.38 809 | 11.61 711<br>11.61 191                                    | 9.99 987             | 36_                                     | O<br>99                                                   |
| $\begin{array}{ c c } \hline 25 \\ 26 \\ \hline \end{array}$ | 8.39 310<br>8.39 818 | 8.39 323<br>8.39 832 | 11.60 677<br>11.60 168                                    | 9.99 987<br>9.99 986 | 35<br>34                                | $\begin{array}{c} \mathrm{Vb} \\ \mathrm{of} \end{array}$ |
| 27                                                           | 8.40 320             | 8.40 334             | 11.59 666                                                 | 9.99 986<br>9.99 986 | 33<br>32                                | or                                                        |
| 28<br>29                                                     | 8.40 816<br>8.41 307 | 8.40 830<br>8.41 321 | $11.59\ 170 \\ 11.58\ 679$                                | 9.99 985             | 31                                      |                                                           |
| <b>30</b><br>31                                              | 8.41 792<br>8.42 272 | 8.41 807<br>8.42 287 | 11.58 193<br>11.57 713                                    | 9.99 985<br>9.99 985 | <b>30</b><br>29                         | use Table<br>tabulated                                    |
| 32 33                                                        | 8.42 746<br>8.43 216 | 8.42 762<br>8.43 232 | 11.57 238<br>11.56 768                                    | 9.99 984<br>9.99 984 | 28<br>27                                | E T souls                                                 |
| 34                                                           | 8.43 680             | 8.43 696             | 11.56 304                                                 | 9.99 984             | _26                                     | r use                                                     |
| 35<br>36                                                     | 8.44 139<br>8.44 594 | 8.44 156<br>8.44 611 | 11.55 844<br>11.55 389                                    | 9.99 983<br>9.99 983 | $\begin{array}{c} 25 \\ 24 \end{array}$ | rpolation t                                               |
| 37 38                                                        | 8.45 044<br>8.45 489 | 8.45 061<br>8.45 507 | 11.54 939<br>11.54 493                                    | 9.99 983<br>9.99 982 | 23<br>22                                | oola<br>10 f                                              |
| 39                                                           | 8.45 930             | 8.45 948             | 11.54 052                                                 | 9.99 982             | _21_                                    | terr<br>(ct ]                                             |
| <b>40</b><br>41                                              | 8.46 366<br>8.46 799 | 8.46 385<br>8.46 817 | 11.53 615<br>11.53 183                                    | 9.99 982<br>9.99 981 | <b>20</b> 19                            | l in<br>btr:                                              |
| 42 43                                                        | 8.47 226<br>8.47 650 | 8.47 245<br>8.47 669 | 11.52 755<br>11.52 331                                    | 9.99 981<br>9.99 981 | 18<br>17                                | voice                                                     |
| 44                                                           | 8.48 069             | 8.48 089             | 11.51 911                                                 | 9.99 980             | 16                                      | To avoid inter<br>Must subtract                           |
| 45<br>46                                                     | 8.48 485<br>8.48 896 | 8.48 505<br>8.48 917 | 11.51 495<br>11.51 083                                    | 9.99 980<br>9.99 979 | 15<br>14                                | FA                                                        |
| 47 48                                                        | 8.49 304<br>8.49 708 | 8.49 325<br>8.49 729 | $\begin{array}{c} 11.50 \ 675 \\ 11.50 \ 271 \end{array}$ | 9.99 979<br>9.99 979 | 13<br>12                                |                                                           |
| 49                                                           | 8.50 108             | 8.50 130             | 11.49 870                                                 | 9.99 978             | 11                                      |                                                           |
| <b>50</b> 51                                                 | 8.50 504<br>8.50 897 | 8.50 527<br>8.50 920 | 11.49 473<br>11.49 080                                    | 9.99 978<br>9.99 977 | <b>10</b> 9                             |                                                           |
| 52<br>53                                                     | 8.51 287<br>8.51 673 | 8.51 310<br>8.51 696 | 11.48 690<br>11.48 304                                    | 9.99 977<br>9.99 977 | 8 7                                     |                                                           |
| 54                                                           | 8.52 055             | 8.52 079             | 11.47 921                                                 | 9.99 976             | 6                                       |                                                           |
| 55<br>56                                                     | 8.52 434<br>8.52 810 | 8.52 459<br>8.52 835 | 11.47 541<br>11.47 165                                    | 9.99 976<br>9.99 975 | 5<br>4                                  |                                                           |
| 57<br>58                                                     | 8.53 183<br>8.53 552 | 8.53 208<br>8.53 578 | 11.46 792<br>11.46 422                                    | 9.99 975<br>9.99 974 | 3 2                                     |                                                           |
| 59                                                           | 8.53 919             | 8.53 945             | 11.46 055                                                 | 9.99 974             | 1                                       |                                                           |
| 60                                                           | 8.54 282             | 8.54 308             | 11.45 692                                                 | 9.99 974             | 0                                       | Dean Dia                                                  |
|                                                              | L Cos                | L Cot                | L Tan                                                     | L Sin                |                                         | Prop. Pts.                                                |

| ,                                                                                                                               | L Sin                                                                          | L Tan                                                                     | L Cot                                                                                 | L Cos                                                                 |                                                                          | Prop. Pts.                                              |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|
| <b>0</b> 1 2                                                                                                                    | 8.54 282<br>8.54 642<br>8.54 999                                               | 8.54 308<br>8.54 669                                                      | 11.45 692<br>11.45 331                                                                | 9.99 974<br>9.99 973                                                  | <b>60</b> 59                                                             | 2101.2100                                               |
| $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$                                                                                          | 8.55 354<br>8.55 705                                                           | 8.55 027<br>8.55 382<br>8.55 734                                          | 11.44 973<br>11.44 618<br>11.44 266                                                   | 9.99 973<br>9.99 972<br>9.99 972                                      | 58<br>57<br>56                                                           |                                                         |
| 5<br>6<br>7                                                                                                                     | 8.56 054<br>8.56 400<br>8.56 743                                               | 8.56 083<br>8.56 429<br>8.56 773                                          | 11.43 917<br>11.43 571<br>11.43 227                                                   | 9.99 971<br>9.99 971<br>9.99 970                                      | 55<br>54<br>53                                                           |                                                         |
| 8<br>9<br>10                                                                                                                    | $ \begin{array}{r} 8.57 \ 084 \\ 8.57 \ 421 \\ \hline 8.57 \ 757 \end{array} $ | $\begin{array}{r} 8.57\ 114 \\ 8.57\ 452 \\ \hline 8.57\ 788 \end{array}$ | $ \begin{array}{r} 11.42886 \\ 11.42548 \\ \hline 11.42212 \end{array} $              | $ \begin{array}{r} 9.99970 \\ 9.99969 \\ \hline 9.99969 \end{array} $ | 52<br>51<br><b>50</b>                                                    |                                                         |
| 11<br>12<br>13                                                                                                                  | 8.58 089<br>8.58 419<br>8.58 747                                               | 8.58 121<br>8.58 451<br>8.58 779                                          | 11.41 879<br>11.41 549<br>11.41 221                                                   | 9.99 968<br>9.99 968<br>9.99 967                                      | 49<br>48<br>47                                                           |                                                         |
| $ \begin{array}{r} 14 \\ 15 \\ 16 \\ 17 \end{array} $                                                                           | 8.59 072<br>8.59 395<br>8.59 715<br>8.60 033                                   | 8.59 105<br>8.59 428<br>8.59 749                                          | $ \begin{array}{r} 11.40895 \\ \hline 11.40572 \\ 11.40.251 \\ 11.20022 \end{array} $ | 9.99 967<br>9.99 966<br>9.99 966                                      | $\begin{array}{ c c }\hline 46 \\ \hline 45 \\ 44 \\ \hline \end{array}$ | 21.                                                     |
| 18<br>19                                                                                                                        | $8.60349 \\ 8.60662$                                                           | 8.60 068<br>8.60 384<br>8.60 698                                          | 11.39 932<br>11.39 616<br>11.39 302                                                   | 9.99 966<br>9.99 965<br>9.99 964                                      | 43<br>42<br>41                                                           | page.                                                   |
| 20<br>21<br>22<br>23<br>24                                                                                                      | 8.60 973<br>8.61 282<br>8.61 589<br>8.61 894                                   | 8.61 009<br>8.61 319<br>8.61 626<br>8.61 931                              | 11.38 991<br>11.38 681<br>11.38 374<br>11.38 069                                      | 9.99 964<br>9.99 963<br>9.99 963<br>9.99 962                          | <b>40</b><br>39<br>38<br>37                                              | See Note<br>garithms.                                   |
| $ \begin{array}{r r}     \hline         & 25 \\         & 26 \\         & 27 \\         & 28 \\         & 29 \\   \end{array} $ | 8.62 196<br>8.62 497<br>8.62 795<br>8.63 091<br>8.63 385<br>8.63 678           | 8.62 234<br>8.62 535<br>8.62 834<br>8.63 131<br>8.63 426<br>8.63 718      | 11.37 766<br>11.37 465<br>11.37 166<br>11.36 869<br>11.36 574<br>11.36 282            | 9.99 962<br>9.99 961<br>9.99 960<br>9.99 960<br>9.99 959              | 36<br>35<br>34<br>33<br>32<br>31                                         | Õ                                                       |
| 30<br>31<br>32<br>33<br>34                                                                                                      | 8.63 968<br>8.64 256<br>8.64 543<br>8.64 827<br>8.65 110                       | 8.64 009<br>8.64 298<br>8.64 585<br>8.64 870<br>8.65 154                  | 11.35 991<br>11.35 702<br>11.35 415<br>11.35 130<br>11.34 846                         | 9.99 959<br>9.99 958<br>9.99 958<br>9.99 957<br>9.99 956              | 30<br>29<br>28<br>27<br>26                                               | Table                                                   |
| 35<br>36<br>37<br>38<br>39                                                                                                      | 8.65 391<br>8.65 670<br>8.65 947<br>8.66 223<br>8.66 497                       | 8.65 435<br>8.65 715<br>8.65 993<br>8.66 269<br>8.66 543                  | 11.34 565<br>11.34 285<br>11.34 007<br>11.33 731<br>11.33 457                         | 9.99 956<br>9.99 955<br>9.99 955<br>9.99 954<br>9.99 954              | 25<br>24<br>23<br>22<br>21                                               | To avoid interpolation use<br>Must subtract 10 from tab |
| 40<br>41<br>42<br>43<br>44                                                                                                      | 8.66 769<br>8.67 039<br>8.67 308<br>8.67 575<br>8.67 841                       | 8.66 816<br>8.67 087<br>8.67 356<br>8.67 624<br>8.67 890                  | 11.33 184<br>11.32 913<br>11.32 644<br>11.32 376<br>11.32 110                         | 9.99 953<br>9.99 952<br>9.99 952<br>9.99 951<br>9.99 951              | 20<br>19<br>18<br>17<br>16                                               | avoid intust subtract                                   |
| 45<br>46<br>47<br>48<br>49                                                                                                      | 8.68 104<br>8.68 367<br>8.68 627<br>8.68 886<br>8.69 144                       | 8.68 154<br>8.68 417<br>8.68 678<br>8.68 938<br>8.69 196                  | 11.31 846<br>11.31 583<br>11.31 322<br>11.31 062<br>11.30 804                         | 9.99 950<br>9.99 949<br>9.99 949<br>9.99 948<br>9.99 948              | 15<br>14<br>13<br>12<br>11                                               | ŢX                                                      |
| 50<br>51<br>52<br>53<br>54                                                                                                      | 8.69 400<br>8.69 654<br>8.69 907<br>8.70 159<br>8.70 409                       | 8.69 453<br>8.69 708<br>8.69 962<br>8.70 214<br>8.70 465                  | 11.30 547<br>11.30 292<br>11.30 038<br>11.29 786<br>11.29 535                         | 9.99 947<br>9.99 946<br>9.99 946<br>9.99 945<br>9.99 944              | 10<br>9<br>8<br>7<br>6                                                   |                                                         |
| 55<br>56<br>57<br>58<br>59                                                                                                      | 8.70 658<br>8.70 905<br>8.71 151<br>8.71 395<br>8 71 638                       | 8.70 714<br>8.70 962<br>8.71 208<br>8.71 453<br>8.71 697                  | 11.29 286<br>11.29 038<br>11.28 792<br>11.28 547<br>11.28 303                         | 9.99 944<br>9.99 943<br>9.99 942<br>9.99 942<br>9.99 941              | 5<br>4<br>3<br>2<br>1                                                    |                                                         |
| 60                                                                                                                              | 8.71 880                                                                       | 8.71 940                                                                  | 11.28 060                                                                             | 9.99 940                                                              | 0                                                                        |                                                         |
|                                                                                                                                 | L Cos                                                                          | L Cot                                                                     | L Tan                                                                                 | L Sin                                                                 |                                                                          | Prop. Pts.                                              |

|                                          |                                                                                            |                                             |                               | 4                                                         | T.G.                                                        | T. C                      |                                                    | Drop Dto            |
|------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|---------------------------|----------------------------------------------------|---------------------|
|                                          | L Sin                                                                                      | d                                           | L Tan                         | c d                                                       | L Cot                                                       | L Cos                     |                                                    | Prop. Pts.          |
| 0                                        | 8.71 880<br>8.72 120                                                                       | 240                                         | $8.71940 \\ 8.72181$          | 241                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$      | 9.99 940<br>9.99 940      | <b>60</b><br>59                                    |                     |
| $\begin{vmatrix} 1\\2 \end{vmatrix}$     | 8.72 359                                                                                   | 239                                         | 8.72 420                      | 239                                                       | 11.27 580                                                   | 9.99 939                  | 58                                                 |                     |
| 3                                        | 8.72.597                                                                                   | $\begin{array}{c} 238 \\ 237 \end{array}$   | $8.72\ 659 \ 8.72\ 896$       | $\begin{array}{c} 239 \\ 237 \end{array}$                 | 11.27 341 11.27 104                                         | 9.99938 $9.99938$         | 57<br>56                                           |                     |
| $\left  -\frac{4}{5} \right $            | $\frac{8.72834}{8.73069}$                                                                  | 235                                         | 8.73 132                      | 236                                                       | 11.26 868                                                   | 9.99 937                  | 55                                                 |                     |
| 6                                        | 8.73 303                                                                                   | 234                                         | 8.73 366                      | $\begin{array}{c} 234 \\ 234 \end{array}$                 | 11.26 634                                                   | 9.99 936                  | 54                                                 |                     |
| 8                                        | 8.73 535<br>8.73 767                                                                       | $\begin{array}{c} 232 \\ 232 \end{array}$   | $8.73\ 600 \\ 8.73\ 832$      | $\frac{234}{232}$                                         | 11.26 400<br>11.26 168                                      | 9.99 936<br>9.99 935      | 53<br>52                                           |                     |
| 9                                        | 8.73 997                                                                                   | 230                                         | 8.74 063                      | $\begin{array}{c} 231 \\ 229 \end{array}$                 | 11.25 937                                                   | 9.99 934                  | 51                                                 |                     |
| 10                                       | 8.74 226                                                                                   | 229<br>228                                  | 8.74 292                      | 229                                                       | 11.25 708                                                   | 9.99 934<br>9.99 933      | <b>50</b> 49                                       |                     |
| 11 12                                    | 8.74 454<br>8.74 680                                                                       | 226                                         | 8.74 521<br>8.74 748          | 227                                                       | $\begin{array}{c c} 11.25 \ 479 \\ 11.25 \ 252 \end{array}$ | 9.99932                   | 48                                                 |                     |
| 13                                       | 8.74 906                                                                                   | $\begin{array}{c} 226 \\ 224 \end{array}$   | 8.74 974                      | $\begin{array}{c} 226 \\ 225 \end{array}$                 | 11.25 026                                                   | 9.99 932                  | 47<br>46                                           |                     |
| 14                                       | 8.75 130                                                                                   | 223                                         | $\frac{8.75\ 199}{8.75\ 423}$ | 224                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$      | $\frac{9.99931}{9.99930}$ | 45                                                 |                     |
| 15<br>16                                 | 8.75 353<br>8.75 575                                                                       | 222                                         | 8.75 645                      | 222                                                       | 11.24 355                                                   | 9.99929                   | 44                                                 |                     |
| 17                                       | 8.75 795                                                                                   | $\begin{array}{c} 220 \\ 220 \end{array}$   | 8.75 867                      | $\frac{222}{220}$                                         | 11.24 133                                                   | 9.999929 $9.99928$        | $\begin{array}{ c c }\hline 43\\ 42\\ \end{array}$ |                     |
| 18<br>19                                 | $\begin{bmatrix} 8.76\ 015 \\ 8.76\ 234 \end{bmatrix}$                                     | 219                                         | 8.76 087<br>8.76 306          | 219                                                       | 11.23 913<br>11.23 694                                      | 9.99 928                  | 41                                                 |                     |
| 20                                       | 8.76 451                                                                                   | 217                                         | 8.76 525                      | $\begin{array}{c} 219 \\ 217 \end{array}$                 | 11.23 475                                                   | 9.99 926                  | 40                                                 | m <sup>*</sup>      |
| 21 22                                    | 8.76 667<br>8.76 883                                                                       | $\begin{array}{c} 216 \\ 216 \end{array}$   | 8.76 742<br>8.76 958          | 216                                                       | 11.23 258 11.23 042                                         | 9.99926 $9.99925$         | 39<br>38                                           | art                 |
| $\begin{vmatrix} 22 \\ 23 \end{vmatrix}$ | 8.77 097                                                                                   | 214                                         | 8.77 173                      | 215                                                       | 11.22 827                                                   | 9.99924                   | 37                                                 | A A                 |
| 24                                       | 8.77 310                                                                                   | $\begin{array}{c} 213 \\ 212 \end{array}$   | 8.77 387                      | $\begin{array}{c} 214 \\ 213 \end{array}$                 | 11.22 613                                                   | 9.99923                   | $\frac{36}{25}$                                    | Proportional Parts. |
| 25<br>26                                 | 8.77 522<br>8.77 733                                                                       | 211                                         | 8.77 600<br>8.77 811          | 211                                                       | 11.22 400<br>11.22 189                                      | 9.99923 $9.99922$         | $\begin{array}{c} 35 \\ 34 \end{array}$            | rtio                |
| 27                                       | 8.77 943                                                                                   | 210                                         | 8.78 022                      | $   \begin{array}{c c}     211 \\     210   \end{array} $ | 11.21 978                                                   | 9.99 921                  | 33                                                 | Dod                 |
| 28<br>29                                 | 8.78 152<br>8.78 360                                                                       | $\begin{array}{c} 209 \\ 208 \end{array}$   | 8.78 232<br>8.78 441          | 209                                                       | 11.21 768<br>11.21 559                                      | 9.99 920<br>9.99 920      | $\begin{array}{c} 32 \\ 31 \end{array}$            | Pro                 |
| 30                                       | 8.78 568                                                                                   | 208                                         | 8.78 649                      | 208                                                       | 11.21 351                                                   | 9.99 919                  | 30                                                 | for ]               |
| 31                                       | 8.78 774                                                                                   | $\begin{array}{c c} 206 \\ 205 \end{array}$ | 8.78 855                      | $\begin{array}{c} 206 \\ 206 \end{array}$                 | 11.21 145<br>11.20 939                                      | 9.99 918<br>9.99 917      | 29<br>28                                           | e f                 |
| 32                                       | 8.78 979<br>8.79 183                                                                       | 204                                         | 8.79 061<br>8.79 266          | 205                                                       | 11.20 734                                                   | 9.99 917                  | 27                                                 | 9a<br>8             |
| 34                                       | 8.79 386                                                                                   | $\begin{array}{c c} 203 \\ 202 \end{array}$ | 8.79 470                      | $\begin{array}{c} 204 \\ 203 \end{array}$                 | 11.20 530                                                   | 9.99916                   | $\frac{26}{25}$                                    | opposite page       |
| 35<br>36                                 | 8.79 588<br>8.79 789                                                                       | 201                                         | 8.79 673<br>8.79 875          | 202                                                       | 11.20 327<br>11.20 125                                      | 9.99915 $9.99914$         | $\begin{array}{c} 25 \\ 24 \end{array}$            | osi                 |
| 37                                       | 8.79 990                                                                                   | 201                                         | 8.80 076                      | 201<br>201                                                | 11.19 924                                                   | 9.99 913                  | 23                                                 | dda                 |
| 38 39                                    | 8.80 189<br>8.80 388                                                                       | 199<br>199                                  | 8.80 277<br>8.80 476          | 199                                                       | 11.19 723<br>11.19 524                                      | 9.99913 $9.99912$         | 22<br>21                                           | d)                  |
| 40                                       | 8.80 585                                                                                   | 197                                         | 8.80 674                      | 198                                                       | 11.19 326                                                   | 9.99 911                  | 20                                                 | $\tilde{\Omega}$    |
| 41                                       | 8.80 782                                                                                   | 197<br>196                                  | 8.80 872                      | 198<br>196                                                | 11.19 128                                                   | 9.99 910<br>9.99 909      | 19<br>18                                           |                     |
| 42 43                                    | 8.80 978<br>8.81 173                                                                       | 195                                         | 8.81 068<br>8.81 264          | 196                                                       | 11.18 932<br>11.18 736                                      | 9.99 909                  | 17                                                 |                     |
| 44                                       | 8.81 367                                                                                   | 194<br>193                                  | 8.81 459                      | $\begin{array}{c} 195 \\ 194 \end{array}$                 | 11.18 541                                                   | 9.99 908                  | 16                                                 |                     |
| 45                                       | 8.81 560<br>8.81 752                                                                       | 192                                         | 8.81 653<br>8.81 846          | 193                                                       | 11.18 347<br>11.18 154                                      | 9.99 907<br>9.99 906      | $\begin{array}{c} 15 \\ 14 \end{array}$            |                     |
| 46 47                                    | 8.81 944                                                                                   | 192                                         | 8.82 038                      | 192                                                       | 11.17 962                                                   | 9.99 905                  | 13                                                 |                     |
| 48                                       | 8.82 134<br>8.82 324                                                                       | 190<br>190                                  | 8.82 230<br>8.82 420          | 192<br>190                                                | 11.17 770<br>11.17 580                                      | 9.99 904<br>9.99 904      | 12<br>11                                           |                     |
| <b>4</b> 9 <b>50</b>                     | $\frac{8.82\ 524}{8.82\ 513}$                                                              | 189                                         | 8.82 610                      | 190                                                       | 11.17 390                                                   | $\frac{9.99903}{9.99903}$ | 10                                                 |                     |
| 51                                       | 8.82 701                                                                                   | 188                                         | 8.82 799                      | 189<br>188                                                | 11.17 201                                                   | 9.99902                   | 9                                                  |                     |
| 52 53                                    | 8.82 888 8.83 075                                                                          | 187<br>187                                  | 8.82 987<br>8.83 175          | 188                                                       | 11.17 013<br>11.16 825                                      | 9.99 901<br>9.99 900      | 8 7                                                |                     |
| 54                                       | 8.83 261                                                                                   | 186                                         | 8.83 361                      | 186<br>186                                                | 11.16 639                                                   | 9.99 899                  | 6                                                  | •                   |
| 55                                       | 8.83 446                                                                                   | 185<br>184                                  | 8.83 547                      | 185                                                       | 11.16 453                                                   | 9.99 898                  | 5                                                  |                     |
| 56<br>57                                 | 8.83 630<br>8.83 813                                                                       | 183                                         | 8.83 732<br>8.83 916          | 184                                                       | 11.16 268<br>11.16 084                                      | 9.99 898<br>9.99 897      | 3                                                  |                     |
| 58                                       | 8.83 996                                                                                   | 183<br>181                                  | 8.84 100                      | 184<br>182                                                | 11.15 900                                                   | 9,99 896                  | $\frac{2}{1}$                                      |                     |
| 59<br><b>60</b>                          | $\begin{array}{ c c c c c c }\hline 8.84 & 177 \\ \hline 8.84 & 358 \\ \hline \end{array}$ | 181                                         | 8.84 282<br>8.84 464          | 182                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$      | $\frac{9.99895}{9.99894}$ | $-\frac{1}{0}$                                     |                     |
| -00                                      | L Cos                                                                                      | d                                           | L Cot                         | c d                                                       | L Tan                                                       | L Sin                     |                                                    | Prop. Pts.          |
|                                          | L Cos                                                                                      | u                                           | 7 001                         | - C u                                                     | D I an                                                      | 2 0111                    |                                                    | 2 20 p. 2 co.       |

Proportional Parts for 3°

| "                                              | 241                                                                     | 240                                                                     | 239                                                                     | 238                                                                     | 237                                                                     | 236                                                                     | 235                                                                     | 234                                                                     | 232                                                                     | 231                                                                     | 230                                                                                                   |
|------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 6<br>7<br>8<br>9<br>10<br>20                   | 24.1 $28.1$ $32.1$ $36.2$ $40.2$                                        | 24.0 $28.0$ $32.0$ $36.0$ $40.0$                                        | 23.9<br>27.9<br>31.9<br>35.8<br>39.8                                    | 23.8<br>27.8<br>31.7<br>35.7<br>39.7                                    | 23.7<br>27.6<br>31.6<br>35.6<br>39.5                                    | 23.6<br>27.5<br>31.5<br>35.4<br>39.3<br>78.7                            | 23.5<br>27.4<br>31.3<br>35.2<br>39.2                                    | 23.4<br>27.3<br>31.2<br>35.1<br>39.0                                    | 23.2<br>27.1<br>30.9<br>34.8<br>38.7                                    | 23.1<br>27.0<br>30.8<br>34.7<br>38.5                                    | 23.0<br>26.8<br>30.7<br>34.5<br>38.3                                                                  |
| 20<br>30<br>40<br>50                           | 80.3<br>120.5<br>160.7<br>200.8                                         | 80.0<br>120.0<br>160.0<br>200.0                                         | 79.7 $119.5$ $159.3$ $199.2$                                            | 79.3<br>119.0<br>158.7<br>198.3                                         | 79.0<br>118.5<br>158.0<br>197.5                                         | 78.7<br>118.0<br>157.3<br>196.7                                         | 78.3<br>117.5<br>156.7<br>195.8                                         | 78.0 $117.0$ $156.0$ $195.0$                                            | 77.3<br>116.0<br>154.7<br>193.3                                         | $ \begin{array}{c c} 77.0 \\ 115.5 \\ 154.0 \\ 192.5 \end{array} $      | 76.7<br>115.0<br>153.3<br>191.7                                                                       |
| "                                              | 229                                                                     | 228                                                                     | 227                                                                     | 226                                                                     | 225                                                                     | 224                                                                     | 223                                                                     | 222                                                                     | 220                                                                     | 219                                                                     | 217                                                                                                   |
| 6<br>7<br>8<br>9<br>10<br>20<br>30<br>40<br>50 | 22.9<br>26.7<br>30.5<br>34.4<br>38.2<br>76.3<br>114.5<br>152.7<br>190.8 | 22.8<br>26.6<br>30.4<br>34.2<br>38.0<br>76.0<br>114.0<br>152.0<br>190.0 | 22.7<br>26.5<br>30.3<br>34.0<br>37.8<br>75.7<br>113.5<br>151.3<br>189.2 | 22.6<br>26.4<br>30.1<br>33.9<br>37.7<br>75.3<br>113.0<br>150.7<br>188.3 | 22.5<br>26.2<br>30.0<br>33.8<br>37.5<br>75.0<br>112.5<br>150.0<br>187.5 | 22.4<br>26.1<br>29.9<br>33.6<br>37.3<br>74.7<br>112.0<br>149.3<br>186.7 | 22.3<br>26.0<br>29.7<br>33.4<br>37.2<br>74.3<br>111.5<br>148.7<br>185.8 | 22.2<br>25.9<br>29.6<br>33.3<br>37.0<br>74.0<br>111.0<br>148.0<br>185.0 | 22.0<br>25.7<br>29.3<br>33.0<br>36.7<br>73.3<br>110.0<br>146.7<br>183.3 | 21.9<br>25.6<br>29.2<br>32.9<br>36.5<br>73.0<br>109.5<br>146.0<br>182.5 | 21.7<br>25.3<br>28.9<br>32.6<br>36.2<br>72.3<br>108.5<br>144.7<br>180.8                               |
| "                                              | 216                                                                     | 215                                                                     | 214                                                                     | 213                                                                     | 212                                                                     | 211                                                                     | 210                                                                     | 209                                                                     | 208                                                                     | 206                                                                     | 205                                                                                                   |
| 6<br>7<br>8<br>9<br>10<br>20<br>30<br>40<br>50 | 21.6<br>25.2<br>28.8<br>32.4<br>36.0<br>72.0<br>108.0<br>144.0<br>180.0 | 21.5<br>25.1<br>28.7<br>32.2<br>35.8<br>71.7<br>107.5<br>143.3<br>179.2 | 21.4<br>25.0<br>28.5<br>32.1<br>35.7<br>71.3<br>107.0<br>142.7<br>178.3 | 21.3<br>24.9<br>28.4<br>32.0<br>35.5<br>71.0<br>106.5<br>142.0<br>177.5 | 21.2<br>24.7<br>28.3<br>31.8<br>35.3<br>70.7<br>106.0<br>141.3<br>176.7 | 21.1<br>24.6<br>28.1<br>31.6<br>35.2<br>70.3<br>105.5<br>140.7<br>175.8 | 21.0<br>24.5<br>28.0<br>31.5<br>35.0<br>70.0<br>105.0<br>140.0<br>175.0 | 20.9<br>24.4<br>27.9<br>31.4<br>34.8<br>69.7<br>104.5<br>139.3<br>174.2 | 20.8<br>24.3<br>27.7<br>31.2<br>34.7<br>69.3<br>104.0<br>138.7<br>173.3 | 20.6<br>24.0<br>27.5<br>30.9<br>34.3<br>68.7<br>103.0<br>137.3<br>171.7 | 20.5<br>23.9<br>27.3<br>30.8<br>34.2<br>68.3<br>102.5<br>136.7<br>170.8                               |
| "                                              | 204                                                                     | 203                                                                     | 202                                                                     | 201                                                                     | 199                                                                     | 198                                                                     | 197                                                                     | 196                                                                     | 195                                                                     | 194                                                                     | 193                                                                                                   |
| 6<br>7<br>8<br>9<br>10<br>20<br>30<br>40<br>50 | 20.4<br>23.8<br>27.2<br>30.6<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 20.3<br>23.7<br>27.1<br>30.4<br>33.8<br>67.7<br>101.5<br>135.3<br>169.2 | 20.2<br>23.6<br>26.9<br>30.3<br>33.7<br>67.3<br>101.0<br>134.7<br>168.3 | 20.1<br>23.4<br>26.8<br>30.2<br>33.5<br>67.0<br>100.5<br>134.0<br>167.5 | 19.9<br>23.2<br>26.5<br>29.8<br>33.2<br>66.3<br>99.5<br>132.7<br>165.8  | 19.8<br>23.1<br>26.4<br>29.7<br>33.0<br>66.0<br>99.0<br>132.0<br>165.0  | 19.7<br>23.0<br>26.3<br>29.6<br>32.8<br>65.7<br>98.5<br>131.3<br>164.2  | 19.6<br>22.9<br>26.1<br>29.4<br>32.7<br>65.3<br>98.0<br>130.7<br>163.3  | 19.5<br>22.8<br>26.0<br>29.2<br>32.5<br>65.0<br>97.5<br>130.0<br>162.5  | 19.4<br>22.6<br>25.9<br>29.1<br>32.3<br>64.7<br>97.0<br>129.3<br>161.7  | 19.3<br>22.5<br>25.7<br>29.0<br>32.2<br>64.3<br>96.5<br>128.7<br>160.8                                |
| "                                              | 192                                                                     | 190                                                                     | 189                                                                     | 188                                                                     | 187                                                                     | 186                                                                     | 185                                                                     | 184                                                                     | 183                                                                     | 182                                                                     | 181                                                                                                   |
| 6<br>7<br>8<br>9<br>10<br>20<br>30<br>40<br>50 | 19.2<br>22.4<br>25.6<br>28.8<br>32.0<br>64.0<br>96.0<br>128.0<br>160.0  | 19.0<br>22.2<br>25.3<br>28.5<br>31.7<br>63.3<br>95.0<br>126.7<br>158.3  | 18.9<br>22.1<br>25.2<br>28.4<br>31.5<br>63.0<br>94.5<br>126.0<br>157.5  | 18.8<br>21.9<br>25.1<br>28.2<br>31.3<br>62.7<br>94.0<br>125.3<br>156.7  | 18.7<br>21.8<br>24.9<br>28.1<br>31.2<br>62.3<br>93.5<br>124.7<br>155.8  | 18.6<br>21.7<br>24.8<br>27.9<br>31.0<br>62.0<br>93.0<br>124.0<br>155.0  | 18.5<br>21.6<br>24.7<br>27.8<br>30.8<br>61.7<br>92.5<br>123.3<br>154.2  | 18.4<br>21.5<br>24.5<br>27.6<br>30.7<br>61.3<br>92.0<br>122.7<br>153.3  | 18.3<br>21.4<br>24.4<br>27.4<br>30.5<br>61.0<br>91.5<br>122.0<br>152.5  | 18.2<br>21.2<br>24.3<br>27.3<br>30.3<br>60.7<br>91.0<br>121.3<br>151.7  | $\begin{array}{c} 18.1 \\ 21.1 \\ 24.1 \\ 27.2 \\ 30.2 \\ 60.3 \\ 90.5 \\ 120.7 \\ 150.8 \end{array}$ |

|                            |                                                          |                                        |                                                          |                                        | T                                                                                                    |                                                                      |                            |                     |
|----------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|---------------------|
| ,                          | L Sin                                                    | d                                      | L Tan                                                    | · c d                                  | L Cot                                                                                                | L Cos                                                                |                            | Prop. Pts.          |
| <b>0</b> 1 2 3 4           | 8.84 358<br>8.84 539<br>8.84 718<br>8.84 897<br>8.85 075 | 181<br>179<br>179<br>178               | 8.84 464<br>8.84 646<br>8.84 826<br>8.85 006<br>8.85 185 | 182<br>180<br>180<br>179               | 11.15 536<br>11.15 354<br>11.15 174<br>11.14 994<br>11.14 815                                        | 9.99 894<br>9.99 893<br>9.99 892<br>9.99 891<br>9.99 891             | <b>60</b> 59 58 57 56      |                     |
| 5<br>6<br>7<br>8<br>9      | 8.85 252<br>8.85 429<br>8.85 605<br>8.85 780<br>8.85 955 | 177<br>177<br>176<br>175<br>175        | 8.85 363<br>8.85 540<br>8.85 717<br>8.85 893<br>8.86 069 | 178<br>177<br>177<br>176<br>176<br>176 | 11.14 637<br>11.14 460<br>11.14 283<br>11.14 107<br>11.13 931                                        | 9.99 890<br>9.99 889<br>9.99 888<br>9.99 887<br>9.99 886             | 55<br>54<br>53<br>52<br>51 |                     |
| 10<br>11<br>12<br>13<br>14 | 8.86 128<br>8.86 301<br>8.86 474<br>8.86 645<br>8.86 816 | 173<br>173<br>173<br>171<br>171<br>171 | 8.86 243<br>8.86 417<br>8.86 591<br>8.86 763<br>8.86 935 | 174<br>174<br>174<br>172<br>172<br>171 | 11.13 757<br>11.13 583<br>11.13 409<br>11.13 237<br>11.13 065                                        | 9.99 885<br>9.99 884<br>9.99 883<br>9.99 882<br>9.99 881             | 50<br>49<br>48<br>47<br>46 |                     |
| 15<br>16<br>17<br>18<br>19 | 8.86 987<br>8.87 156<br>8.87 325<br>8.87 494<br>8.87 661 | 169<br>169<br>169<br>167<br>168        | 8.87 106<br>8.87 277<br>8.87 447<br>8.87 616<br>8.87 785 | 171<br>170<br>169<br>169<br>168        | 11.12 894<br>11.12 723<br>11.12 553<br>11.12 384<br>11.12 215                                        | 9.99 880<br>9.99 879<br>9.99 879<br>9.99 878<br>9.99 877             | 45<br>44<br>43<br>42<br>41 |                     |
| 20<br>21<br>22<br>23<br>24 | 8.87 829<br>8.87 995<br>8.88 161<br>8.88 326<br>8.88 490 | 166<br>166<br>165<br>164<br>164        | 8.87 953<br>8.88 120<br>8.88 287<br>8.88 453<br>8.88 618 | 167<br>167<br>166<br>165<br>165        | 11.12 047<br>11.11 880<br>11.11 713<br>11.11 547<br>11.11 382                                        | 9.99 876<br>9.99 875<br>9.99 874<br>9.99 873<br>9.99 872             | 40<br>39<br>38<br>37<br>36 | nal Parts.          |
| 25<br>26<br>27<br>28<br>29 | 8.88 654<br>8.88 817<br>8.88 980<br>8.89 142<br>8.89 304 | 163<br>163<br>162<br>162<br>160        | 8.88 783<br>8.88 948<br>8.89 111<br>8.89 274<br>8.89 437 | 165<br>163<br>163<br>163<br>161        | $\begin{array}{c} 11.11\ 217 \\ 11.11\ 052 \\ 11.10\ 889 \\ 11.10\ 726 \\ 11.10\ 563 \\ \end{array}$ | 9.99 871<br>9.99 870<br>9.99 869<br>9.99 868<br>9.99 867             | 35<br>34<br>33<br>32<br>31 | Proportional Parts. |
| 30<br>31<br>32<br>33<br>34 | 8.89 464<br>8.89 625<br>8.89 784<br>8.89 943<br>8.90 102 | 161<br>159<br>159<br>159<br>158        | 8.89 598<br>8.89 760<br>8.89 920<br>8.90 080<br>8.90 240 | 162<br>160<br>160<br>160<br>159        | 11.10 402<br>11.10 240<br>11.10 080<br>11.09 920<br>11.09 760                                        | 9.99 866<br>9.99 865<br>9.99 864<br>9.99 863<br>9.99 862             | 30<br>29<br>28<br>27<br>26 | opposite page for   |
| 35<br>36<br>37<br>38<br>39 | 8.90 260<br>8.90 417<br>8.90 574<br>8.90 730<br>8.90 885 | 157<br>157<br>156<br>155<br>155        | 8.90 399<br>8.90 557<br>8.90 715<br>8.90 872<br>8.91 029 | 158<br>158<br>157<br>157<br>156        | 11.09 601<br>11.09 443<br>11.09 285<br>11.09 128<br>11.08 971                                        | 9.99 861<br>9.99 860<br>9.99 859<br>9.99 858<br>9.99 857             | 25<br>24<br>23<br>22<br>21 | See opposit         |
| 40<br>41<br>42<br>43<br>44 | 8.91 040<br>8.91 195<br>8.91 349<br>8.91 502<br>8.91 655 | 155<br>154<br>153<br>153<br>152        | 8.91 185<br>8.91 340<br>8.91 495<br>8.91 650<br>8.91 803 | 155<br>155<br>155<br>153<br>154        | 11.08 815<br>11.08 660<br>11.08 505<br>11.08 350<br>11.08 197                                        | 9.99 856<br>9.99 855<br>9.99 854<br>9.99 853<br>9.99 852             | 20<br>19<br>18<br>17<br>16 | <b>3</b> 2          |
| 45<br>46<br>47<br>48<br>49 | 8.91 807<br>8.91 959<br>8.92 110<br>8.92 261<br>8.92 411 | 152<br>151<br>151<br>150<br>150        | 8.91 957<br>8.92 110<br>8.92 262<br>8.92 414<br>8.92 565 | 153<br>152<br>152<br>151<br>151        | 11.08 043<br>11.07 890<br>11.07 738<br>11.07 586<br>11.07 435                                        | 9.99 851<br>9.99 850<br>9.99 848<br>9.99 847<br>9.99 846             | 15<br>14<br>13<br>12<br>11 |                     |
| 50<br>51<br>52<br>53<br>54 | 8.92 561<br>8.92 710<br>8.92 859<br>8.93 007<br>8.93 154 | 149<br>149<br>148<br>147<br>147        | 8.92 716<br>8.92 866<br>8.93 016<br>8.93 165<br>8.93 313 | 150<br>150<br>149<br>148<br>149        | 11.07 284<br>11.07 134<br>11.06 984<br>11.06 835<br>11.06 687                                        | 9.99 845<br>9.99 844<br>9.99 843<br>9.99 842<br>9.99 841             | 9<br>8<br>7<br>6           |                     |
| 55<br>56<br>57<br>58<br>59 | 8.93 301<br>8.93 448<br>8.93 594<br>8.93 740<br>8.93 885 | 147<br>146<br>146<br>145<br>145        | 8.93 462<br>8.93 609<br>8.93 756<br>8.93 903<br>8.94 049 | 147<br>147<br>147<br>146<br>146        | 11.06 538<br>11.06 391<br>11.06 244<br>11.06 097<br>11.05 951<br>11.05 805                           | 9.99 840<br>9.99 839<br>9.99 838<br>9.99 837<br>9.99 836<br>9.99 834 | 5<br>4<br>3<br>2<br>1<br>0 |                     |
| 60                         | 8.94 030<br>L Cos                                        |                                        | 8.94 195<br>L Cot                                        | c d                                    | L Tan                                                                                                | L Sin                                                                |                            | Prop. Pts.          |
|                            |                                                          | 1                                      | 1                                                        |                                        |                                                                                                      |                                                                      |                            |                     |

Proportional Parts for 4°

| "                                  | 182                                                                 | 181                                                     | 180                                                     | 179                                                                   | 178                                                         | 177                                                 | 176                                                     |
|------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| 6<br>7<br>8<br>9<br>10             | $\begin{bmatrix} 18.2 \\ 21.2 \\ 24.3 \end{bmatrix}$                | $18.1 \\ 21.1 \\ 24.1$                                  | $18.0 \\ 21.0 \\ 24.0$                                  | 17.9 $20.9$ $23.9$                                                    | $17.8 \\ 20.8 \\ 23.7$                                      | 17.7 $20.6$ $23.6$                                  | $17.6 \\ 20.5 \\ 23.5$                                  |
| 9                                  | $\frac{27.3}{30.3}$                                                 | $\begin{array}{c} 27.2 \\ 30.2 \end{array}$             | $\frac{27.0}{30.0}$                                     | $\begin{array}{c} 26.8 \\ 29.8 \end{array}$                           | $\frac{26.7}{29.7}$                                         | $ \begin{array}{c} 26.6 \\ 29.5 \end{array} $       | $\begin{array}{c} 26.4 \\ 29.3 \end{array}$             |
| $\frac{20}{30}$                    | $\begin{array}{c c} 60.7 \\ 91.0 \end{array}$                       | 60.3<br>90.5                                            | 60.0<br>90.0                                            | 59.7<br>89.5                                                          | 59.3<br>89.0                                                | 59.0<br>88.5                                        | 58.7<br>88.0<br>117.3                                   |
| 40<br>50                           | 121.3<br>151.7                                                      | 120.7<br>150.8                                          | 120.0<br>150.0                                          | 119.3<br>149.2                                                        | 118.7<br>148.3                                              | 118.0<br>147.5                                      | 117.3                                                   |
| "                                  | 175                                                                 | 174                                                     | 173                                                     | 172                                                                   | 171                                                         | 170                                                 | 169                                                     |
| 6                                  | $\begin{array}{c} 17.5 \\ 20.4 \end{array}$                         | $\frac{17.4}{20.3}$                                     | $\begin{array}{c} 17.3 \\ 20.2 \end{array}$             | $\begin{array}{c} 17.2 \\ 20.1 \end{array}$                           | $\begin{array}{c} 17.1 \\ 20.0 \end{array}$                 | $\frac{17.0}{19.8}$                                 | 16.9<br>19.7                                            |
| 6<br>7<br>8<br>9<br>10             | $\begin{array}{c} 23.3 \\ 26.2 \end{array}$                         | $23.2 \\ 26.1$                                          | $\frac{23.1}{26.0}$                                     | $22.9 \\ 25.8 \\ 28.7$                                                | 22.8<br>25.6                                                | $\begin{array}{c} 22.7 \\ 25.5 \\ 28.3 \end{array}$ | 22.5<br>25.4                                            |
| $\frac{10}{20}$                    | $\frac{29.2}{58.3}$                                                 | 29.0<br>58.0                                            | 28.8<br>57.7<br>86.5                                    | 28.7<br>57.3<br>86.0                                                  | 28.5<br>57.0<br>85.5                                        | 28.3<br>56.7<br>85.0                                | 28.2<br>56.3<br>84.5                                    |
| 20<br>30<br>40<br>50               | 87.5 $116.7$ $145.8$                                                | $\begin{array}{c} 87.0 \\ 116.0 \\ 145.0 \end{array}$   | $115.3 \\ 144.2$                                        | 114.7<br>143.3                                                        | $\begin{array}{c} 33.5 \\ 114.0 \\ 142.5 \end{array}$       | 113.3<br>141.7                                      | 112.7<br>140.8                                          |
|                                    |                                                                     |                                                         |                                                         |                                                                       |                                                             |                                                     |                                                         |
| "                                  | 168                                                                 | 167                                                     | 166                                                     | 165                                                                   | 164                                                         | 163                                                 | 162                                                     |
| 6<br>7<br>8<br>9<br>10<br>20<br>30 | $\begin{array}{c} 16.8 \\ 19.6 \end{array}$                         | 16.7<br>19.5                                            | $16.6 \\ 19.4 \\ 22.1$                                  | $16.5 \\ 19.2 \\ 22.0$                                                | $16.4 \\ 19.1 \\ 21.9$                                      | $16.3 \\ 19.0 \\ 21.7$                              | $ \begin{array}{c c} 16.2 \\ 18.9 \\ 21.6 \end{array} $ |
| 8<br>9                             | $22.4 \\ 25.2 \\ 28.0$                                              | $\begin{array}{c} 22.3 \\ 25.0 \\ 27.8 \end{array}$     | $22.1 \\ 24.9 \\ 27.7$                                  | $24.8 \\ 27.5$                                                        | $21.9 \\ 24.6 \\ 27.3$                                      | $24.4 \\ 27.2$                                      | $ \begin{array}{c c} 21.0 \\ 24.3 \\ 27.0 \end{array} $ |
| 20<br>30                           | 56.0<br>84.0                                                        | 55.7<br>83.5                                            | 55.3<br>83.0                                            | $\begin{array}{c} 55.0 \\ 82.5 \end{array}$                           | $   \begin{array}{c c}     54.7 \\     82.0   \end{array} $ | 54.3<br>81.5                                        | 54.0<br>81.0                                            |
| 40<br>50                           | 112.0<br>140.0                                                      | 111.3<br>139.2                                          | 110.7<br>138.3                                          | $\begin{array}{c c} 110.0 \\ 137.5 \end{array}$                       | 109.3<br>136.7                                              | 108.7<br>135.8                                      | 108.0<br>135.0                                          |
| ,,                                 | 161                                                                 | 160                                                     | 159                                                     | 158                                                                   | 157                                                         | 156                                                 | 155                                                     |
| 6                                  | 16.1                                                                | 16.0<br>18.7                                            | 15.9<br>18.6                                            | 15.8<br>18.4                                                          | 15.7<br>18.3                                                | $15.6 \\ 18.2$                                      | 15.5<br>18.1                                            |
| 6<br>7<br>8<br>9<br>10<br>20<br>30 | 18.8<br>21.5<br>24.2                                                | $21.3 \\ 24.0$                                          | $\frac{21.2}{23.8}$                                     | $\begin{array}{c c} 21.1 \\ 23.7 \end{array}$                         | $20.9 \\ 23.6$                                              | $\begin{array}{c} 20.8 \\ 23.4 \end{array}$         | 20.7                                                    |
| $\frac{10}{20}$                    | 24.2<br>26.8<br>53.7                                                | 26.7<br>53.3                                            | $\begin{bmatrix} 26.5 \\ 53.0 \end{bmatrix}$            | $ \begin{array}{c c} 26.3 \\ 52.7 \end{array} $                       | $ \begin{array}{c} 26.2 \\ 52.3 \end{array} $               | $\begin{array}{c} 26.0 \\ 52.0 \end{array}$         | $25.8 \\ 51.7$                                          |
| 40                                 | $ \begin{array}{c c} 80.5 \\ 107.3 \end{array} $                    | 80.0<br>106.7                                           | 79.5<br>106.0                                           | $ \begin{array}{c c}     79.0 \\     105.3 \\     131.7 \end{array} $ | 78.5<br>104.7<br>130.8                                      | $78.0 \\ 104.0 \\ 130.0$                            | 77.5 $103.3$ $129.2$                                    |
| 50                                 | 134.2                                                               | 133.3                                                   | 132.5                                                   | 131.7                                                                 | 130.0                                                       | 130.0                                               |                                                         |
| "                                  | 154                                                                 | 153                                                     | 152                                                     | 151                                                                   | 150                                                         | 149                                                 | 148                                                     |
| 6                                  | 15.4<br>18.0                                                        | 15.3<br>17.8                                            | 15.2<br>17.7                                            | 15.1<br>17.6                                                          | 15.0<br>17.5                                                | 14.9<br>17.4                                        | 14.8<br>17.3                                            |
| 6<br>7<br>8<br>9                   | $20.5 \\ 23.1$                                                      | $\begin{vmatrix} 20.4 \\ 23.0 \end{vmatrix}$            | $\begin{array}{c} 20.3 \\ 22.8 \end{array}$             | 20.1<br>22.6                                                          | 20.0                                                        | 19.9<br>22.4                                        | 19.7<br>22.2<br>24.7                                    |
| $\frac{10}{20}$                    | 25.7<br>51.3                                                        | 25.5<br>51.0                                            | 25.3<br>50.7                                            | 25.2<br>50.3<br>75.5                                                  | 25.0<br>50.0<br>75.0                                        | 24.8<br>49.7<br>74.5                                | 49.3<br>74.0                                            |
| 30<br>40<br>50                     | $\begin{array}{c c}     77.0 \\     102.7 \\     128.3 \end{array}$ | $\begin{array}{c c} 76.5 \\ 102.0 \\ 127.5 \end{array}$ | $\begin{array}{c c} 76.0 \\ 101.3 \\ 126.7 \end{array}$ | 100.7<br>125.8                                                        | 100.0<br>125.0                                              | 99.3<br>124.2                                       | 98.7                                                    |

For **147**, **146**, and **145** see page 32.

|                                                    | L Sin                                                                                      | d                                                               | L Tan                                                                                    | c d                                                               | L Cot                                                      | L Cos                                                    |                                           | Prop. Pts.                                                                                                          |
|----------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 0                                                  | 8.94 030                                                                                   | 144                                                             | 8.94 195                                                                                 | 145                                                               | 11.05 805                                                  | 9.99 834                                                 | 60                                        | "   147   146   145   144                                                                                           |
| $\begin{vmatrix} 1\\2 \end{vmatrix}$               | 8.94 174<br>8.94 317                                                                       | 143                                                             | 8.94 340<br>8.94 485                                                                     | 145                                                               | $11.05\ 660$ $11.05\ 515$                                  | 9.99 833<br>9.99 832                                     | 59<br>58                                  | $\left  \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                       |
| 3                                                  | 8.94 461                                                                                   | $\begin{array}{c c} 144 \\ 142 \end{array}$                     | 8.94 630                                                                                 | $\frac{145}{143}$                                                 | 11.05 370                                                  | 9.99831                                                  | 57                                        | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| $\left  -\frac{4}{5} \right $                      | 8.94 603<br>8.94 746                                                                       | 143                                                             | 8.94 773<br>8.94 917                                                                     | 144                                                               | $\frac{11.05\ 227}{11.05\ 083}$                            | 9.99 830 9.99 829                                        | 56<br><b>55</b>                           | 10   24.5   24.3   24.2   24.0                                                                                      |
| 6                                                  | 8.94 887                                                                                   | 141                                                             | 8.95 060                                                                                 | 143                                                               | 11.04 940                                                  | 9.99 828                                                 | 54                                        | $\left  \begin{array}{c cccc} 20 & 49.0 & 48.7 & 48.3 & 48.0 \\ 30 & 73.5 & 73.0 & 72.5 & 72.0 \end{array} \right $ |
| 7 8                                                | $8.95\ 029 \ 8.95\ 170$                                                                    | $\begin{array}{c c} 142 \\ 141 \end{array}$                     | 8.95 202<br>8.95 344                                                                     | $\begin{array}{c} 142 \\ 142 \end{array}$                         | 11.04 798<br>11.04 656                                     | 9.99827 $9.99825$                                        | 53<br>52                                  | $oxed{40} oxed{98.0} oxed{97.3} oxed{96.7} oxed{96.0} \ oxed{122.5} oxed{121.7} oxed{120.8} oxed{120.0}$            |
| 9                                                  | 8.95 310                                                                                   | 140                                                             | 8.95 486                                                                                 | 142                                                               | 11.04 536                                                  | 9.99 824                                                 | 51                                        | "   143   142   141   140                                                                                           |
| 10                                                 | 8.95 450                                                                                   | 140<br>139                                                      | 8.95 627                                                                                 | 141<br>140                                                        | 11.04 373                                                  | 9.99 823                                                 | <b>50</b> 49                              | $\left \begin{array}{c c c c c c c c c c c c c c c c c c c$                                                         |
| 11 12                                              | $\begin{bmatrix} 8.95\ 589 \end{bmatrix}$                                                  | 139                                                             | 8.95 767<br>8.95 908                                                                     | 141                                                               | $\begin{vmatrix} 11.04 & 233 \\ 11.04 & 092 \end{vmatrix}$ | 9.99822 $9.99821$                                        | 48                                        | 8   19.1   18.9   18.8   18.7                                                                                       |
| 13                                                 | 8.95 867                                                                                   | 139<br>138                                                      | 8.96 047<br>8.96 187                                                                     | $\begin{array}{c} 139 \\ 140 \end{array}$                         | 11.03 953<br>11.03 813                                     | 9.99 820<br>9.99 819                                     | 47                                        | 10   23.8   23.7   23.5   23.3                                                                                      |
| 14<br>15                                           | 8.96 005<br>8.96 143                                                                       | 138                                                             | $\frac{8.96\ 325}{8.96\ 325}$                                                            | 138                                                               | $\frac{11.03\ 675}{11.03\ 675}$                            | $\frac{9.99813}{9.99817}$                                | 45                                        | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| 16                                                 | 8.96 280                                                                                   | 137<br>137                                                      | 8.96 464                                                                                 | $\begin{array}{c} 139 \\ 138 \end{array}$                         | 11.03 536                                                  | 9.99 816                                                 | 44                                        | $ \begin{vmatrix} 40 & 95.3 & 94.7 & 94.0 & 93.3 \\ 50 & 119.2 & 118.3 & 117.5 & 116.7 \end{vmatrix} $              |
| 17 18                                              | 8.96 417<br>8.96 553                                                                       | 136                                                             | 8.96 602<br>8.96 739                                                                     | 137                                                               | 11.03 398<br>11.03 261                                     | 9.99 815<br>9.99 814                                     | 43<br>42                                  | "   139   138   137   136                                                                                           |
| 19                                                 | 8.96 689                                                                                   | 136<br>136                                                      | 8.96 877                                                                                 | 138<br>136                                                        | 11.03 123                                                  | 9.99 813                                                 | 41                                        | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| <b>20</b> 21                                       | 8.96 825<br>8.96 960                                                                       | 135                                                             | 8.97 013<br>8.97 150                                                                     | 137                                                               | 11.02 987<br>11.02 850                                     | 9.99 812<br>9.99 810                                     | <b>40</b> 39                              | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| 22                                                 | 8.97 095                                                                                   | 135<br>134                                                      | 8.97 285                                                                                 | $\begin{array}{c} 135 \\ 136 \end{array}$                         | 11.02 715                                                  | 9.99 809                                                 | 38                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                               |
| 23 24                                              | 8.97 229<br>8.97 363                                                                       | 134                                                             | 8.97 421<br>8.97 556                                                                     | 135                                                               | 11.02 579<br>11.02 444                                     | 9.99 808<br>9.99 807                                     | 37<br>36                                  | 30   69.5   69.0   68.5   68.0                                                                                      |
| 25                                                 | 8.97 496                                                                                   | 133<br>133                                                      | 8.97 691                                                                                 | 135<br>134                                                        | 11.02 309                                                  | 9.99 806                                                 | 35                                        | $\left[ egin{array}{c c} 40 & 92.7 & 92.0 & 91.3 & 90.7 \ 50 & 115.8 & 115.0 & 114.2 & 113.3 \end{array}  ight]$    |
| 26<br>27                                           | 8.97 629<br>8.97 762                                                                       | 133                                                             | 8.97 825<br>8.97 959                                                                     | 134                                                               | 11.02 175<br>11.02 041                                     | 9.99 804 9.99 803                                        | 34 33                                     | "   135   134   133   132                                                                                           |
| 28                                                 | 8.97 894                                                                                   | $\begin{array}{c c} 132 \\ 132 \end{array}$                     | 8.98 092                                                                                 | 133<br>133                                                        | 11.01 908                                                  | 9.99802                                                  | 32                                        | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| <b>30</b>                                          | $\begin{array}{ c c c c c c }\hline 8.98 & 026 \\ \hline 8.98 & 157 \\ \hline \end{array}$ | 131                                                             | $\begin{array}{ c c c c c }\hline 8.98 \ 225 \\ \hline 8.98 \ 358 \\ \hline \end{array}$ | 133                                                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$     | 9.99801 $9.99800$                                        | $\frac{31}{30}$                           | $\left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                       |
| 31                                                 | 8.98 288                                                                                   | 131<br>131                                                      | 8.98 490                                                                                 | $\begin{array}{c c} 132 \\ 132 \end{array}$                       | 11.01 510                                                  | 9.99 798                                                 | 29                                        | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                |
| 32 33                                              | 8.98 419<br>8.98 549                                                                       | 130                                                             | 8.98 622<br>8.98 753                                                                     | 131                                                               | 11.01 378<br>11.01 247                                     | 9.99 797<br>9.99 796                                     | 28<br>27                                  | $\left  \begin{array}{c cccc} 30 & 67.5 & 67.0 & 66.5 & 66.0 \\ 40 & 90.0 & 89.3 & 88.7 & 88.0 \end{array} \right $ |
| 34                                                 | 8.98 679                                                                                   | $\begin{array}{ c c c }\hline 130 \\ 129 \\ \hline \end{array}$ | 8.98 884                                                                                 | 131<br>131                                                        | 11.01 116                                                  | 9.99 795                                                 | 26_                                       | 50 112.5 111.7 110.8 110.0                                                                                          |
| <b>35</b> 36                                       | 8.98 808<br>8.98 937                                                                       | 129                                                             | 8.99 015<br>8.99 145                                                                     | 130                                                               | 11.00 985<br>11.00 855                                     | 9.99 793<br>9.99 792                                     | <b>25</b> 24                              | "   <b>131</b>   <b>130</b>   <b>129</b>   <b>128</b>   13.1   13.0   12.9   12.8                                   |
| 37                                                 | 8.99 066                                                                                   | $\begin{vmatrix} 129 \\ 128 \end{vmatrix}$                      | 8.99 275                                                                                 | 130<br>130                                                        | 11.00 725                                                  | 9.99 791                                                 | 23                                        | 7   15.3   15.2   15.0   14.9                                                                                       |
| 38                                                 | 8.99 194<br>8.99 322                                                                       | 128                                                             | 8.99 405<br>8.99 534                                                                     | 129                                                               | 11.00 595                                                  | 9.99 790<br>9.99 788                                     | $\begin{array}{c c} 22 \\ 21 \end{array}$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| 40                                                 | 8.99 450                                                                                   | 128                                                             | 8.99 662                                                                                 | 128                                                               | 11.00 338                                                  | 9.99 787                                                 | 20                                        | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| $\begin{array}{ c c }\hline 41\\ 42\\ \end{array}$ | 8.99 577<br>8.99 704                                                                       | 127<br>127                                                      | 8.99 791<br>8.99 919                                                                     | $129 \\ 128$                                                      | 11.00 209 11.00 081                                        | 9.99 786<br>9.99 785                                     | 19<br>18                                  | $\left  egin{array}{c c c c c c c c c c c c c c c c c c c $                                                         |
| 43                                                 | 8.99 830                                                                                   | 126<br>126                                                      | 9.00 046                                                                                 | $\begin{vmatrix} 127 \\ 128 \end{vmatrix}$                        | 10.99 954                                                  | 9.99 783                                                 | 17                                        | 50  109.2 108.3 107.5 106.7                                                                                         |
| 44                                                 | $\begin{array}{ c c c c c c }\hline 8.99 & 956 \\ \hline 9.00 & 082 \\ \hline \end{array}$ | 126                                                             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                   | 127                                                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$     | $\begin{array}{r} 9.99782 \\ \hline 9.99781 \end{array}$ | 16<br>15                                  | ''   <b>127   126   125   124</b><br>  6   12.7   12.6   12.5   12.4                                                |
| 46                                                 | 9.00 207                                                                                   | $   \begin{array}{c c}     125 \\     125   \end{array} $       | 9.00 427                                                                                 | $\frac{126}{126}$                                                 | 10.99 573                                                  | 9.99 780                                                 | 14                                        | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| 47 48                                              | 9.00 332 9.00 456                                                                          | 124                                                             | 9.00 553 9.00 679                                                                        | 126                                                               | 10.99 447 10.99 321                                        | 9.99 778<br>9.99 777                                     | 13<br>12                                  | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| 49                                                 | 9.00 581                                                                                   | $\begin{array}{c c} 125 \\ 123 \end{array}$                     | 9.00 805                                                                                 | $   \begin{array}{c c}     126 \\     125   \end{array} $         | 10.99 195                                                  | 9.99 776                                                 | 11                                        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                              |
| <b>50</b> 51                                       | 9.00 704 9.00 828                                                                          | 124                                                             | 9.00 930<br>9.01 055                                                                     | 125                                                               | 10.99 070<br>10.98 945                                     | 9.99 775<br>9.99 773                                     | <b>10</b> 9                               | 40   84.7   84.0   83.3   82.7                                                                                      |
| 52                                                 | 9.00 951                                                                                   | 123<br>123                                                      | 9.01 179                                                                                 | 124<br>124                                                        | 10.98 821                                                  | 9.99 772                                                 | 8                                         | 50  105.8 105.0 104.2 103.3<br>"   <b>123</b>   <b>122</b>   <b>121</b>   <b>120</b>                                |
| 53 54                                              | 9.01 074 9.01 196                                                                          | 122                                                             | 9.01 303 9.01 427                                                                        | 124                                                               | 10.98 697<br>10.98 573                                     | 9.99 771 9.99 769                                        | $\begin{bmatrix} 7 \\ 6 \end{bmatrix}$    | 6   12.3   12.2   12.1   12.0                                                                                       |
| 55                                                 | 9.01 318                                                                                   | 122                                                             | 9.01 550                                                                                 | 123                                                               | 10.98 450                                                  | 9.99 768                                                 | 5                                         | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| 56 57                                              | 9.01 440 9.01 561                                                                          | 122<br>121                                                      | 9.01 673 9.01 796                                                                        | $     \begin{array}{c c}       123 \\       123     \end{array} $ | 10.98 327<br>10.98 204                                     | 9.99 767<br>9.99 765                                     | $\begin{vmatrix} 4\\3 \end{vmatrix}$      | $\left[ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                        |
| 58                                                 | 9.01 682                                                                                   | 121<br>121                                                      | 9.01 918                                                                                 | $\begin{array}{c} 122 \\ 122 \end{array}$                         | 10.98 082                                                  | 9.99 764                                                 | 2                                         | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             |
| 59<br>  <b>60</b>                                  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                     | 121                                                             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                   | 122                                                               | $\frac{10.97\ 960}{10.97\ 838}$                            | $\frac{9.99763}{9.99761}$                                | $\frac{1}{0}$                             | 40   82.0   81.3   80.7   80.0   50   102.5   101.7   100.8   100.0                                                 |
| -00                                                | L Cos                                                                                      | d                                                               | L Cot                                                                                    | c d                                                               | L Tan                                                      | L Sin                                                    |                                           | Prop. Pts.                                                                                                          |
|                                                    | 1 L COS                                                                                    | u                                                               | L Cot                                                                                    | cu                                                                | L Lau                                                      | D OIL                                                    |                                           | riop. rts.                                                                                                          |

|                                                                  | L Sin                                                                                        | d                                                 | L Tan                                                                                        | c d                                           | L Cot                                                                                                                     | L Cos                                                                 |                                                         | Prop. Pts.                                                                                                                                                                                                                                          |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4                                            | 9.01 923<br>9.02 043<br>9.02 163<br>9.02 283<br>9.02 402                                     | 120<br>120<br>120<br>119<br>118                   | 9.02 162<br>9.02 283<br>9.02 404<br>9.02 525<br>9.02 645                                     | 121<br>121<br>121<br>120<br>121               | 10.97 838<br>10.97 717<br>10.97 596<br>10.97 475<br>10.97 355                                                             | 9.99 761<br>9.99 760<br>9.99 759<br>9.99 757<br>9.99 756              | <b>60</b> 59 58 57 56                                   | "     121     120     119       6     12.1     12.0     11.9       7     14.1     14.0     13.9       8     16.1     16.0     15.9                                                                                                                  |
| 5<br>6<br>7<br>8<br>9                                            | $\begin{array}{c} 9.02\ 520 \\ 9.02\ 639 \\ 9.02\ 757 \\ 9.02\ 874 \\ 9.02\ 992 \end{array}$ | 119<br>118<br>117<br>118<br>117                   | 9.02 766<br>9.02 885<br>9.03 005<br>9.03 124<br>9.03 242                                     | 119<br>120<br>119<br>118<br>119               | 10.97 234<br>10.97 115<br>10.96 995<br>10.96 876<br>10.96 758                                                             | 9.99 755<br>9.99 753<br>9.99 752<br>9.99 751<br>9.99 749              | 55<br>54<br>53<br>52<br>51                              | $ \begin{vmatrix} 9 & 18.2 & 18.0 & 17.8 \\ 10 & 20.2 & 20.0 & 19.8 \\ 20 & 40.3 & 40.0 & 39.7 \\ 30 & 60.5 & 60.0 & 59.5 \\ 40 & 80.7 & 80.0 & 79.3 \\ 50 & 100.8 & 100.0 & 99.2 \end{vmatrix} $                                                   |
| 10<br>11<br>12<br>13                                             | $ \begin{vmatrix} 9.03 & 109 \\ 9.03 & 226 \\ 9.03 & 342 \\ 9.03 & 458 \end{vmatrix} $       | 117<br>116<br>116                                 | $egin{array}{c} 9.03\ 361 \ 9.03\ 479 \ 9.03\ 597 \ 9.03\ 714 \ \end{array}$                 | 118<br>118<br>117                             | 10.96 639<br>10.96 521<br>10.96 403<br>10.96 286                                                                          | 9.99748 $9.99747$ $9.99745$ $9.99744$                                 | <b>50</b><br>49<br>48<br>47                             | "   118   117   116<br>6   11.8   11.7   11.6                                                                                                                                                                                                       |
| $ \begin{array}{r r}     \hline                                $ | 9.03 574<br>9.03 690<br>9.03 805<br>9.03 920<br>9.04 034<br>9.04 149                         | 116<br>116<br>115<br>115<br>114<br>115<br>113     | 9.03 832<br>9.03 948<br>9.04 065<br>9.04 181<br>9.04 297<br>9.04 413                         | 118<br>116<br>117<br>116<br>116<br>116<br>115 | $\begin{array}{c} 10.96\ 168 \\ \hline 10.96\ 052 \\ 10.95\ 935 \\ 10.95\ 819 \\ 10.95\ 703 \\ 10.95\ 587 \\ \end{array}$ | 9.99 742<br>9.99 741<br>9.99 740<br>9.99 738<br>9.99 737<br>9.99 736  | 46<br>45<br>44<br>43<br>42<br>41                        | $ \begin{bmatrix} 7 & 13.8 & 13.6 & 13.5 \\ 8 & 15.7 & 15.6 & 15.5 \\ 9 & 17.7 & 17.6 & 17.4 \\ 10 & 19.7 & 19.5 & 19.3 \\ 20 & 39.3 & 39.0 & 38.7 \\ 30 & 59.0 & 58.5 & 58.0 \\ 40 & 78.7 & 78.0 & 77.3 \\ 50 & 98.3 & 97.5 & 96.7 \end{bmatrix} $ |
| 20<br>21<br>22<br>23<br>24                                       | 9.04 262<br>9.04 376<br>9.04 490<br>9.04 603<br>9.04 715                                     | 114<br>114<br>113<br>112<br>113                   | 9.04 528<br>9.04 643<br>9.04 758<br>9.04 873<br>9.04 987                                     | 115<br>115<br>115<br>114<br>114               | 10.95 472<br>10.95 357<br>10.95 242<br>10.95 127<br>10.95 013                                                             | 9.99 734<br>9.99 733<br>9.99 731<br>9.99 730<br>9.99 728              | <b>40</b> 39 38 37 36                                   | "   115   114   113<br>6   11.5   11.4   11.3<br>7   13.4   13.3   13.2<br>8   15.3   15.2   15.1                                                                                                                                                   |
| 25<br>26<br>27<br>28<br>29                                       | 9.04 828<br>9.04 940<br>9.05 052<br>9.05 164<br>9.05 275                                     | 112<br>112<br>112<br>112<br>111<br>111            | $\begin{array}{c} 9.05\ 101 \\ 9.05\ 214 \\ 9.05\ 328 \\ 9.05\ 441 \\ 9.05\ 553 \end{array}$ | 114<br>113<br>114<br>113<br>112<br>113        | 10.94 899<br>10.94 786<br>10.94 672<br>10.94 559<br>10.94 447                                                             | 9.99 727<br>9.99 726<br>9.99 724<br>9.99 723<br>9.99 721              | 35<br>34<br>33<br>32<br>31                              | $ \begin{bmatrix} 8 & 15.3 & 15.2 & 15.1 \\ 9 & 17.2 & 17.1 & 17.0 \\ 10 & 19.2 & 19.0 & 18.8 \\ 20 & 38.3 & 38.0 & 37.7 \\ 30 & 57.5 & 57.0 & 56.5 \\ 40 & 76.7 & 76.0 & 75.3 \\ 50 & 95.8 & 95.0 & 94.2 \end{bmatrix} $                           |
| 30<br>31<br>32                                                   | 9.05 386<br>9.05 497<br>9.05 607                                                             | 111 110                                           | $egin{array}{c} 9.05\ 666\ 9.05\ 778\ 9.05\ 890 \end{array}$                                 | 112<br>112                                    | 10.94 334<br>10.94 222<br>10.94 110                                                                                       | $\begin{array}{c} 9.99720 \\ 9.99718 \\ 9.99717 \end{array}$          | 30<br>29<br>28                                          | "   112   111   110                                                                                                                                                                                                                                 |
| 33<br>34                                                         | 9.05 717<br>9.05 827                                                                         | 110<br>110                                        | $9.06\ 002$ $9.06\ 113$                                                                      | 112<br>111                                    | 10.93 998<br>10.93 887                                                                                                    | 9.99 716<br>9.99 714                                                  | 27<br>26                                                | $\begin{bmatrix} 6 & 11.2 & 11.1 & 11.0 \\ 7 & 13.1 & 13.0 & 12.8 \\ 8 & 14.9 & 14.8 & 14.7 \end{bmatrix}$                                                                                                                                          |
| 35<br>36<br>37<br>38<br>39                                       | 9.05 937<br>9.06 046<br>9.06 155<br>9.06 264<br>9.06 372                                     | 110<br>109<br>109<br>109<br>108<br>109            | 9.06 224<br>9.06 335<br>9.06 445<br>9.06 556<br>9.06 666                                     | 111<br>111<br>110<br>111<br>110<br>109        | 10.93 776<br>10.93 665<br>10.93 555<br>10.93 444<br>10.93 334                                                             | 9.99 713<br>9.99 711<br>9.99 710<br>9.99 708<br>9.99 707              | 25<br>24<br>23<br>22<br>21                              | $ \begin{bmatrix} 8 & 14.9 & 14.8 & 14.7 \\ 9 & 16.8 & 16.6 & 16.5 \\ 10 & 18.7 & 18.5 & 18.3 \\ 20 & 37.3 & 37.0 & 36.7 \\ 30 & 56.0 & 55.5 & 55.0 \\ 40 & 74.7 & 74.0 & 73.3 \\ 50 & 93.3 & 92.5 & 91.7 \end{bmatrix} $                           |
| 41<br>42                                                         | 9.06 481<br>9.06 589<br>9.06 696                                                             | 108<br>107                                        | 9.06 775<br>9.06 885<br>9.06 994                                                             | 110<br>109                                    | 10.93 225<br>10.93 115<br>10.93 006                                                                                       | 9.99 705<br>9.99 704<br>9.99 702                                      | 20<br>19<br>18                                          | "   109   108   107                                                                                                                                                                                                                                 |
| 43 44                                                            | 9.06 804<br>9.06 911                                                                         | 108<br>107<br>107                                 | $9.07\ 103$ $9.07\ 211$                                                                      | 109<br>108<br>109                             | 10.92 897 10.92 789                                                                                                       | 9.99 701 9.99 699                                                     | 17<br>16                                                | $\begin{bmatrix} 6 & 10.9 & 10.8 & 10.7 \\ 7 & 12.7 & 12.6 & 12.5 \\ 8 & 14.5 & 14.4 & 14.3 \end{bmatrix}$                                                                                                                                          |
| 45<br>46<br>47<br>48<br>49                                       | 9.07 018<br>9.07 124<br>9.07 231<br>9.07 337<br>9.07 442                                     | 106<br>107<br>106<br>105<br>106                   | 9.07 320<br>9.07 428<br>9.07 536<br>9.07 643<br>9.07 751                                     | 108<br>108<br>107<br>108<br>107               | 10.92 680<br>10.92 572<br>10.92 464<br>10.92 357<br>10.92 249                                                             | 9.99 698<br>9.99 696<br>9.99 695<br>9.99 693<br>9.99 692              | 15<br>14<br>13<br>12<br>11                              | $ \begin{vmatrix} 9 & 16.4 & 16.2 & 16.0 \\ 10 & 18.2 & 18.0 & 17.8 \\ 20 & 36.3 & 36.0 & 35.7 \\ 30 & 54.5 & 54.0 & 53.5 \\ 40 & 72.7 & 72.0 & 71.3 \\ 50 & 90.8 & 90.0 & 89.2 \end{vmatrix} $                                                     |
| 50<br>51<br>52                                                   | 9.07 548<br>9.07 653<br>9.07 758                                                             | 105<br>105                                        | 9.07 858<br>9.07 964<br>9.08 071                                                             | 106<br>107                                    | 10.92 142<br>10.92 036<br>10.91 929                                                                                       | 9.99 690<br>9.99 689<br>9.99 687                                      | 9<br>8                                                  | "   106   105   104                                                                                                                                                                                                                                 |
| 53<br>54                                                         | 9.07 863<br>9.07 968                                                                         | $\begin{vmatrix} 105 \\ 105 \\ 104 \end{vmatrix}$ | $9.08\ 177 \ 9.08\ 283$                                                                      | 106<br>106<br>106                             | $ \begin{array}{r rrrr} 10.91 & 823 \\ 10.91 & 717 \\ \hline 10.91 & 611 \end{array} $                                    | $ \begin{array}{r} 9.99686 \\ 9.99684 \\ \hline 9.99683 \end{array} $ | $\begin{bmatrix} 7 \\ 6 \\ 5 \end{bmatrix}$             | $ \begin{bmatrix} 6 & 10.6 & 10.5 & 10.4 \\ 7 & 12.4 & 12.2 & 12.1 \\ 8 & 14.1 & 14.0 & 13.9 \end{bmatrix} $                                                                                                                                        |
| 55<br>56<br>57<br>58<br>59                                       | 9.08 072<br>9.08 176<br>9.08 280<br>9.08 383<br>9.08 486                                     | 104<br>104<br>103<br>103<br>103                   | $ \begin{vmatrix} 9.08389 \\ 9.08495 \\ 9.08600 \\ 9.08705 \\ 9.08810 \\ \hline 9.08914 $    | 106<br>105<br>105<br>105<br>104               |                                                                                                                           | 9.99 683<br>9.99 681<br>9.99 680<br>9.99 678<br>9.99 677<br>9.99 675  | $\begin{bmatrix} 3\\4\\3\\2\\1\\\hline 0 \end{bmatrix}$ | $ \begin{bmatrix} 9 & 15.9 & 15.8 & 15.6 \\ 10 & 17.7 & 17.5 & 17.3 \\ 20 & 35.3 & 35.0 & 34.7 \\ 30 & 53.0 & 52.5 & 52.0 \\ 40 & 70.7 & 70.0 & 69.3 \\ 50 & 88.3 & 87.5 & 86.7 \end{bmatrix} $                                                     |
| 60                                                               | 9.08 589<br>L Cos                                                                            | d                                                 | L Cot                                                                                        | c d                                           | L Tan                                                                                                                     | L Sin                                                                 | ,                                                       | Prop. Pts.                                                                                                                                                                                                                                          |
|                                                                  | 1 000                                                                                        |                                                   | 1 2 000                                                                                      |                                               |                                                                                                                           |                                                                       | 1                                                       |                                                                                                                                                                                                                                                     |

**7**°

| ' LS  0 9.08 1 9.08 2 9.08 3 9.08 4 9.08 5 9.09                                     | 589                                                                                                                                                 | L Tan                                                                | c d                                    | L Cot                                                                                                                                          | L Cos                                                    |                            |                                                                                          | Prot                                                 | . Pts                                                |                                                      |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 1 9.08<br>9.08<br>9.08<br>9.08<br>4 9.08<br>5 9.09                                  |                                                                                                                                                     | 0 00 014                                                             |                                        |                                                                                                                                                |                                                          |                            |                                                                                          |                                                      |                                                      |                                                      |
|                                                                                     | $     \begin{array}{c c}                                    $                                                                                       | 9.08 914<br>9.09 019<br>9.09 123<br>9.09 227<br>9.09 330             | 105<br>104<br>104<br>103               | 10.91 086<br>10.90 981<br>10.90 877<br>10.90 773<br>10.90 670                                                                                  | 9.99 675<br>9.99 674<br>9.99 672<br>9.99 670<br>9.99 669 | 59<br>58<br>57<br>56       | 6<br>7<br>8                                                                              | 105<br>10.5<br>12.3<br>14.0<br>15.8                  | 10.4<br>12.1<br>13.9<br>15.6                         | 103<br>10.3<br>12.0<br>13.7                          |
| 6   9.09<br>7   9.09<br>8   9.09<br>9   9.09                                        | $ \begin{array}{c cccc} 202 & 101 \\ 304 & 102 \\ 405 & 101 \end{array} $                                                                           | 9.09 434<br>9.09 537<br>9.09 640<br>9.09 742<br>9.09 845             | 104<br>103<br>103<br>102<br>103<br>102 | 10.90 566<br>10.90 463<br>10.90 360<br>10.90 258<br>10.90 155                                                                                  | 9.99 667<br>9.99 666<br>9.99 664<br>9.99 663<br>9.99 661 | 55<br>54<br>53<br>52<br>51 | 9<br>10<br>20<br>30<br>40<br>50                                                          | 17.5<br>35.0<br>52.5<br>70.0<br>87.5                 | 17.3 $34.7$ $52.0$ $69.3$                            | 17.2<br>34.3<br>51.5<br>68.7                         |
| 10   9.09<br>11   9.09<br>12   9.09<br>13   9.09<br>14   9.10                       | $           \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                   | 9.09 947<br>9.10 049<br>9.10 150<br>9.10 252<br>9.10 353             | 102<br>101<br>102<br>101               | 10.90 053<br>10.89 951<br>10.89 850<br>10.89 748<br>10.89 647                                                                                  | 9.99 659<br>9.99 658<br>9.99 656<br>9.99 655<br>9.99 653 | 50<br>49<br>48<br>47<br>46 | 6<br>7<br>8                                                                              | 102<br>10.2<br>11.9<br>13.6                          | 101<br>10.1<br>11.8<br>13.5                          | 100<br>10.0<br>11.7<br>13.3                          |
| 15 9.10<br>16 9.10<br>17 9.10<br>18 9.10<br>19 9.10                                 | $     \begin{array}{c cccc}       205 & 99 \\       304 & 99 \\       402 & 98 \\       501 & 99 \\       \hline       08 & 99 \\     \end{array} $ | 9.10 454<br>9.10 555<br>9.10 656<br>9.10 756<br>9.10 856             | 101<br>101<br>101<br>100<br>100<br>100 | 10.89 546<br>10.89 445<br>10.89 344<br>10.89 244<br>10.89 144                                                                                  | 9.99 651<br>9.99 650<br>9.99 648<br>9.99 647<br>9.99 645 | 45<br>44<br>43<br>42<br>41 | $ \begin{array}{c}     9 \\     10 \\     20 \\     30 \\     40 \\     50 \end{array} $ | 15.3<br>17.0<br>34.0<br>51.0<br>68.0<br>85.0         | 15.2<br>16.8<br>33.7<br>50.5<br>67.3<br>84.2         | 15.0<br>16.7<br>33.3<br>50.0<br>66.7<br>83.3         |
| 20   9.10<br>21   9.10<br>22   9.10<br>23   9.10<br>24   9.10                       | 599<br>697 98<br>795 98<br>893 98<br>990 97                                                                                                         | 9.10 956<br>9.11 056<br>9.11 155<br>9.11 254<br>9.11 353             | 100<br>99<br>99<br>99                  | 10.89 044<br>10.88 944<br>10.88 845<br>10.88 746<br>10.88 647                                                                                  | 9.99 643<br>9.99 642<br>9.99 640<br>9.99 638<br>9.99 637 | 40<br>39<br>38<br>37<br>36 | 6 7                                                                                      | 99<br>9.9<br>11.6<br>13.2                            | 98<br>9.8<br>11.4<br>13.1                            | 97<br>9.7<br>11.3<br>12.9                            |
| 25 9.11<br>26 9.11<br>27 9.11<br>28 9.11<br>29 9.11                                 | $egin{array}{c c} \hline 087 \\ 184 \\ 281 \\ 377 \\ 474 \\ \hline \end{array} egin{array}{c} 97 \\ 96 \\ 97 \\ \hline \end{array}$                 | 9.11 452<br>9.11 551<br>9.11 649<br>9.11 747<br>9.11 845             | 99<br>99<br>98<br>98<br>98             | 10.88 548<br>10.88 449<br>10.88 351<br>10.88 253<br>10.88 155                                                                                  | 9.99 635<br>9.99 633<br>9.99 632<br>9.99 630<br>9.99 629 | 35<br>34<br>33<br>32<br>31 | 8<br>9<br>10<br>20<br>30<br>40<br>50                                                     | 13.2<br>14.8<br>16.5<br>33.0<br>49.5<br>66.0<br>82.5 | 14.7<br>16.3<br>32.7<br>49.0<br>65.3<br>81.7         | 14.6<br>16.2<br>32.3<br>48.5<br>64.7<br>80.8         |
| 30 9.11<br>31 9.11<br>32 9.11<br>33 9.11<br>34 9.11                                 | $egin{array}{c c} 666 & 96 \ 761 & 95 \ 857 & 96 \ \end{array}$                                                                                     | 9.11 943<br>9.12 040<br>9.12 138<br>9.12 235<br>9.12 332             | 98<br>97<br>98<br>97<br>97             | 10.88 057<br>10.87 960<br>10.87 862<br>10.87 765<br>10.87 668                                                                                  | 9.99 627<br>9.99 625<br>9.99 624<br>9.99 622<br>9.99 620 | 30<br>29<br>28<br>27<br>26 | 6 7                                                                                      | 96<br>9.6<br>11.2                                    | 95<br>9.5<br>11.1                                    | 94<br>9.4<br>11.0                                    |
| 35 9.12<br>36 9.12<br>37 9.12<br>38 9.12<br>39 9.12                                 | 95<br>047<br>142<br>236<br>331<br>425<br>94<br>94                                                                                                   | 9.12 428<br>9.12 525<br>9.12 621<br>9.12 717<br>9.12 813             | 96<br>97<br>96<br>96<br>96<br>96       | 10.87 572<br>10.87 475<br>10.87 379<br>10.87 283<br>10.87 187                                                                                  | 9.99 618<br>9.99 617<br>9.99 615<br>9.99 613<br>9.99 612 | 25<br>24<br>23<br>22<br>21 | 8<br>9<br>10<br>20<br>30<br>40<br>50                                                     | 12.8<br>14.4<br>16.0<br>32.0<br>48.0<br>64.0         | 12.7<br>14.2<br>15.8<br>31.7<br>47.5<br>63.3<br>79.2 | 12.5<br>14.1<br>15.7<br>31.3<br>47.0<br>62.7         |
| 40     9.12       41     9.12       42     9.12       43     9.12       44     9.12 | 519<br>612 93<br>706 94<br>799 93<br>892 93                                                                                                         | 9.12 909<br>9.13 004<br>9.13 099<br>9.13 194<br>9.13 289             | 95<br>95<br>95<br>95                   | 10.87 091<br>10.86 996<br>10.86 901<br>10.86 806<br>10.86 711                                                                                  | 9.99 610<br>9.99 608<br>9.99 607<br>9.99 605<br>9.99 603 | 20<br>19<br>18<br>17<br>16 | "  <br>6  <br>7                                                                          | 93<br>9.3<br>10.9                                    | 92<br>9.2<br>10.7                                    | 91<br>9.1<br>10.6                                    |
| 45 9.12<br>46 9.13<br>47 9.13<br>48 9.13<br>49 9.13                                 | $egin{array}{c c} 078 & 93 \\ 171 & 93 \\ 263 & 92 \\ 355 & 92 \\ 02 & 02 \\ \end{array}$                                                           | 9.13 384<br>9.13 478<br>9.13 573<br>9.13 667<br>9.13 761             | 95<br>94<br>95<br>94<br>94<br>93       | 10.86 616<br>10.86 522<br>10.86 427<br>10.86 333<br>10.86 239                                                                                  | 9.99 601<br>9.99 600<br>9.99 598<br>9.99 596<br>9.99 595 | 15<br>14<br>13<br>12<br>11 | 8<br>9<br>10<br>20<br>30<br>40<br>50                                                     | 12.4<br>14.0<br>15.5<br>31.0<br>46.5<br>62.0<br>77.5 | 12.3<br>13.8<br>15.3<br>30.7<br>46.0<br>61.3<br>76.7 | 12.1<br>13.6<br>15.2<br>30.3<br>45.5<br>60.7<br>75.8 |
| 50 9.13<br>51 9.13<br>52 9.13<br>53 9.13<br>54 9.13<br>55 9.13                      | $\begin{bmatrix} 447 \\ 539 \\ 630 \\ 722 \\ 813 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ $                                                     | 9.13 854<br>9.13 948<br>9.14 041<br>9.14 134<br>9.14 227<br>9.14 320 | 94<br>93<br>93<br>93<br>93             | 10.86 146<br>10.86 052<br>10.85 959<br>10.85 866<br>10.85 773<br>10.85 680                                                                     | 9.99 593<br>9.99 591<br>9.99 589<br>9.99 586<br>9.99 586 | 10<br>9<br>8<br>7<br>6     | 6 7                                                                                      | 90<br>9.0<br>10.5<br>12.0                            | 2<br>0.2<br>0.2<br>0.3                               | 1<br>0.1<br>0.1<br>0.1                               |
| 56 9.13<br>57 9.14<br>58 9.14<br>59 9.14<br><b>60</b> 9.14                          | $     \begin{array}{c cccc}       994 & 90 \\       085 & 91 \\       175 & 90 \\       266 & 91 \\       00 & 91 \\     \end{array} $              | 9.14 412<br>9.14 504<br>9.14 597<br>9.14 688<br>9.14 780             | 92<br>92<br>93<br>91<br>92             | $   \begin{array}{c}     10.85 \ 588 \\     10.85 \ 496 \\     10.85 \ 403 \\     10.85 \ 312 \\     \hline     10.85 \ 220 \\   \end{array} $ | 9.99 584<br>9.99 582<br>9.99 581<br>9.99 579<br>9.99 577 | 3<br>2<br>1<br>0           | 8<br>9<br>10<br>20<br>30<br>40<br>50                                                     | 13.5<br>15.0<br>30.0<br>45.0<br>60.0                 | 0.3<br>0.3<br>0.7<br>1.0<br>1.3<br>1.7               | 0.1<br>0.2<br>0.2<br>0.3<br>0.5<br>0.7<br>0.8        |
| L C                                                                                 |                                                                                                                                                     | L Cot                                                                | c d                                    | L Tan                                                                                                                                          | L Sin                                                    | -                          |                                                                                          | Prop.                                                | Pts.                                                 |                                                      |

| /                          | L Sin                                                                                          | A                                | I To-                                                    | - d                              | T. Cct                                                        | T Con                                                    |                            |                                                                | Descri                                             | . D4-                                              |                                                    |
|----------------------------|------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
|                            |                                                                                                | <u>d</u>                         | L Tan                                                    | c d                              | L Cot                                                         | L Cos                                                    |                            |                                                                | Prop                                               | Pts.                                               |                                                    |
| 0<br>1<br>2<br>3<br>4      | $ \begin{array}{c} 9.14\ 356 \\ 9.14\ 445 \\ 9.14\ 535 \\ 9.14\ 624 \\ 9.14\ 714 \end{array} $ | 89<br>90<br>89<br>90<br>89       | 9.14 780<br>9.14 872<br>9.14 963<br>9.15 054<br>9.15 145 | 92<br>91<br>91<br>91             | 10.85 220<br>10.85 128<br>10.85 037<br>10.84 946<br>10.84 855 | 9.99 575<br>9.99 574<br>9.99 572<br>9.99 570<br>9.99 568 | 59<br>58<br>57<br>56       | "<br>6                                                         | <b>92</b> 9.2                                      | <b>91</b><br>9.1                                   | <b>90</b><br>9.0                                   |
| 5<br>6<br>7<br>8<br>9      | 9.14 803<br>9.14 891<br>9.14 980<br>9.15 069<br>9.15 157                                       | 88<br>89<br>89<br>88             | 9.15 236<br>9.15 327<br>9.15 417<br>9.15 508<br>9.15 598 | 91<br>91<br>90<br>91<br>90       | 10.84 764<br>10.84 673<br>10.84 583<br>10.84 492<br>10.84 402 | 9.99 566<br>9.99 565<br>9.99 563<br>9.99 561<br>9.99 559 | 55<br>54<br>53<br>52<br>51 | 7<br>8<br>9<br>10<br>20<br>30                                  | 10.7<br>12.3<br>13.8<br>15.3<br>30.7<br>46.0       | 10.6<br>12.1<br>13.6<br>15.2<br>30.3<br>45.5       | 10.5 $12.0$ $13.5$ $15.0$ $30.0$ $45.0$            |
| 10<br>11<br>12<br>13<br>14 | 9.15 245<br>9.15 333<br>9.15 421<br>9.15 508<br>9.15 596                                       | 88<br>88<br>88<br>87<br>88       | 9.15 688<br>9.15 777<br>9.15 867<br>9.15 956<br>9.16 046 | 90<br>89<br>90<br>89<br>90       | 10.84 312<br>10.84 223<br>10.84 133<br>10.84 044<br>10.83 954 | 9.99 557<br>9.99 556<br>9.99 554<br>9.99 552<br>9.99 550 | 50<br>49<br>48<br>47<br>46 | 40<br>50                                                       | 61.3                                               | 60.7                                               |                                                    |
| 15<br>16<br>17<br>18<br>19 | 9.15 683<br>9.15 770<br>9.15 857<br>9.15 944<br>9.16 030                                       | 87<br>87<br>87<br>87<br>86<br>86 | 9.16 135<br>9.16 224<br>9.16 312<br>9.16 401<br>9.16 489 | 89<br>89<br>88<br>89<br>88       | 10.83 865<br>10.83 776<br>10.83 688<br>10.83 599<br>10.83 511 | 9.99 548<br>9.99 546<br>9.99 545<br>9.99 543<br>9.99 541 | 45<br>44<br>43<br>42<br>41 | 6<br>7<br>8<br>9                                               | 8.9<br>10.4<br>11.9<br>13.4<br>14.8                | 88<br>10.3<br>11.7<br>13.2<br>14.7                 | 8.7<br>10.2<br>11.6<br>13.0<br>14.5                |
| 20<br>21<br>22<br>23<br>24 | 9.16 116<br>9.16 203<br>9.16 289<br>9.16 374<br>9.16 460                                       | 87<br>86<br>85<br>86<br>85       | 9.16 577<br>9.16 665<br>9.16 753<br>9.16 841<br>9.16 928 | 88<br>88<br>88<br>87<br>88       | 10.83 423<br>10.83 335<br>10.83 247<br>10.83 159<br>10.83 072 | 9.99 539<br>9.99 537<br>9.99 535<br>9.99 533<br>9.99 532 | 40<br>39<br>38<br>37<br>36 | 20<br>30<br>40<br>50                                           | 29.7<br>44.5<br>59.3<br>74.2                       | 29.3<br>44.0<br>58.7<br>73.3                       | 29.0<br>43.5<br>58.0<br>72.5                       |
| 25<br>26<br>27<br>28<br>29 | 9.16 545<br>9.16 631<br>9.16 716<br>9.16 801<br>9.16 886                                       | 86<br>85<br>85<br>85<br>84       | 9.17 016<br>9.17 103<br>9.17 190<br>9.17 277<br>9.17 363 | 87<br>87<br>87<br>86<br>87       | 10.82 984<br>10.82 897<br>10.82 810<br>10.82 723<br>10.82 637 | 9.99 530<br>9.99 528<br>9.99 526<br>9.99 524<br>9.99 522 | 35<br>34<br>33<br>32<br>31 | "<br>6<br>7<br>8                                               | 86<br>8.6<br>10.0<br>11.5                          | 8.5<br>9.9<br>11.3                                 | 8.4<br>9.8<br>11.2                                 |
| 30<br>31<br>32<br>33<br>34 | 9.16 970<br>9.17 055<br>9.17 139<br>9.17 223<br>9.17 307                                       | 85<br>84<br>84<br>84             | 9.17 450<br>9.17 536<br>9.17 622<br>9.17 708<br>9.17 794 | 86<br>86<br>86<br>86             | 10.82 550<br>10.82 464<br>10.82 378<br>10.82 292<br>10.82 206 | 9.99 520<br>9.99 518<br>9.99 517<br>9.99 515<br>9.99 513 | 30<br>29<br>28<br>27<br>26 | $\begin{array}{c} 9 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array}$ | 12.9<br>14.3<br>28.7<br>43.0<br>57.3<br>71.7       | 12.8<br>14.2<br>28.3<br>42.5<br>56.7<br>70.8       | 12.6 $14.0$ $28.0$ $42.0$ $56.0$ $70.0$            |
| 35<br>36<br>37<br>38<br>39 | 9.17 391<br>9.17 474<br>9.17 558<br>9.17 641<br>9.17 724                                       | 84<br>83<br>84<br>83<br>83       | 9.17 880<br>9.17 965<br>9.18 051<br>9.18 136<br>9.18 221 | 85<br>86<br>85<br>85             | 10.82 120<br>10.82 035<br>10.81 949<br>10.81 864<br>10.81 779 | 9.99 511<br>9.99 509<br>9.99 507<br>9.99 505<br>9.99 503 | 25<br>24<br>23<br>22<br>21 | "                                                              | 83                                                 | 82                                                 | 81                                                 |
| 40<br>41<br>42<br>43<br>44 | 9.17 807<br>9.17 890<br>9.17 973<br>9.18 055<br>9.18 137                                       | 83<br>83<br>83<br>82<br>82<br>82 | 9.18 306<br>9.18 391<br>9.18 475<br>9.18 560<br>9.18 644 | 85<br>84<br>85<br>84<br>84       | 10.81 694<br>10.81 609<br>10.81 525<br>10.81 440<br>10.81 356 | 9.99 501<br>9.99 499<br>9.99 497<br>9.99 495<br>9.99 494 | 20<br>19<br>18<br>17<br>16 | 6<br>7<br>8<br>9<br>10<br>20<br>30                             | 8.3<br>9.7<br>11.1<br>12.4<br>13.8<br>27.7<br>41.5 | 8.2<br>9.6<br>10.9<br>12.3<br>13.7<br>27.3<br>41.0 | 8.1<br>9.4<br>10.8<br>12.2<br>13.5<br>27.0<br>40.5 |
| 45<br>46<br>47<br>48<br>49 | 9.18 220<br>9.18 302<br>9.18 383<br>9.18 465<br>9.18 547                                       | 82<br>81<br>82<br>82<br>82<br>81 | 9.18 728<br>9.18 812<br>9.18 896<br>9.18 979<br>9.19 063 | 84<br>84<br>83<br>84<br>83       | 10.81 272<br>10.81 188<br>10.81 104<br>10.81 021<br>10.80 937 | 9.99 492<br>9.99 490<br>9.99 488<br>9.99 486<br>9.99 484 | 15<br>14<br>13<br>12<br>11 | 40<br>50                                                       | 55.3<br>  69.2<br>  <b>80</b>                      | 54.7<br>68.3                                       | 54.0<br>67.5                                       |
| 50<br>51<br>52<br>53<br>54 | 9.18 628<br>9.18 709<br>9.18 790<br>9.18 871<br>9.18 952                                       | 81<br>81<br>81<br>81<br>81       | 9.19 146<br>9.19 229<br>9.19 312<br>9.19 395<br>9.19 478 | 83<br>83<br>83<br>83<br>83       | 10.80 854<br>10.80 771<br>10.80 688<br>10.80 605<br>10.80 522 | 9.99 482<br>9.99 480<br>9.99 478<br>9.99 476<br>9.99 474 | 10<br>9<br>8<br>7<br>6     | 6<br>7<br>8<br>9                                               | 8.0<br>9.3<br>10.7<br>12.0<br>13.3                 | 0.2<br>0.2<br>0.3<br>0.3<br>0.3                    | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.3             |
| 55<br>56<br>57<br>58<br>59 | 9.19 033<br>9.19 113<br>9.19 193<br>9.19 273<br>9.19 353                                       | 80<br>80<br>80<br>80<br>80       | 9.19 561<br>9.19 643<br>9.19 725<br>9.19 807<br>9.19 889 | 82<br>82<br>82<br>82<br>82<br>82 | 10.80 439<br>10.80 357<br>10.80 275<br>10.80 193<br>10.80 111 | 9.99 472<br>9.99 470<br>9.99 468<br>9.99 466<br>9.99 464 | 5<br>4<br>3<br>2<br>1      | 20<br>30<br>40<br>50                                           | 26.7<br>40.0<br>53.3<br>66.7                       | 0.7<br>1.0<br>1.3<br>1.7                           | 0.3<br>0.5<br>0.7<br>0.8                           |
| 60                         | 9.19 433                                                                                       |                                  | 9.19 971                                                 |                                  | 10.80 029                                                     | 9.99 462                                                 | 0                          |                                                                | Dros                                               | . Pts.                                             |                                                    |
|                            | L Cos                                                                                          | d                                | L Cot                                                    | c d                              | L Tan                                                         | L Sin                                                    |                            |                                                                | Proj                                               | . Pts.                                             |                                                    |

| ′                          | L Sin                                                    | d                                | L Tan                                                    | c d                              | L Cot                                                         | L Cos                                                    |                            | Pro                                                                                                       | p. Pts.                                                                                                |                                              |
|----------------------------|----------------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <b>0</b> 1 2 3 4           | 9.19 433<br>9.19 513<br>9.19 592<br>9.19 672<br>9.19 751 | 80<br>79<br>80<br>79             | 9.19 971<br>9.20 053<br>9.20 134<br>9.20 216<br>9.20 297 | 82<br>81<br>82<br>81             | 10.80 029<br>10.79 947<br>10.79 866<br>10.79 784<br>10.79 703 | 9.99 462<br>9.99 460<br>9.99 458<br>9.99 456<br>9.99 454 | <b>60</b> 59 58 57 56      |                                                                                                           |                                                                                                        |                                              |
| 5<br>6<br>7<br>8<br>9      | 9.19 830<br>9.19 909<br>9.19 988<br>9.20 067<br>9.20 145 | 79<br>79<br>79<br>79<br>78<br>78 | 9.20 378<br>9.20 459<br>9.20 540<br>9.20 621<br>9.20 701 | 81<br>81<br>81<br>81<br>80<br>81 | 10.79 622<br>10.79 541<br>10.79 460<br>10.79 379<br>10.79 299 | 9.99 452<br>9.99 450<br>9.99 448<br>9.99 446<br>9.99 444 | 55<br>54<br>53<br>52<br>51 | "   <b>80</b> 6   8. 7   9. 8   10.                                                                       | $\begin{vmatrix} 3 & 9.2 \\ 7 & 10.5 \end{vmatrix}$                                                    | 7.8<br>9.1<br>10.4                           |
| 10<br>11<br>12<br>13<br>14 | 9.20 223<br>9.20 302<br>9.20 380<br>9.20 458<br>9.20 535 | 79<br>78<br>78<br>77<br>78       | 9.20 782<br>9.20 862<br>9.20 942<br>9.21 022<br>9.21 102 | 80<br>80<br>80<br>80<br>80       | 10.79 218<br>10.79 138<br>10.79 058<br>10.78 978<br>10.78 898 | 9.99 442<br>9.99 440<br>9.99 438<br>9.99 436<br>9.99 434 | 50<br>49<br>48<br>47<br>46 | $\begin{array}{c cccc} 9 & 12. \\ 10 & 13. \\ 20 & 26. \\ 30 & 40. \\ 40 & 53. \\ 50 & 66. \end{array}$   | $egin{array}{c c} 3 & 13.2 \\ 7 & 26.3 \\ 0 & 39.5 \\ 3 & 52.7 \\ \hline \end{array}$                  | 11.7<br>13.0<br>26.0<br>39.0<br>52.0<br>65.0 |
| 15<br>16<br>17<br>18<br>19 | 9.20 613<br>9.20 691<br>9.20 768<br>9.20 845<br>9.20 922 | 78<br>77<br>77<br>77<br>77       | 9.21 182<br>9.21 261<br>9.21 341<br>9.21 420<br>9.21 499 | 79<br>80<br>79<br>79<br>79       | 10.78 818<br>10.78 739<br>10.78 659<br>10.78 580<br>10.78 501 | 9.99 432<br>9.99 429<br>9.99 427<br>9.99 425<br>9.99 423 | 45<br>44<br>43<br>42<br>41 | ″   <b>77</b>                                                                                             | 76                                                                                                     | 75                                           |
| 20<br>21<br>22<br>23<br>24 | 9.20 999<br>9.21 076<br>9.21 153<br>9.21 229<br>9.21 306 | 77<br>77<br>76<br>77<br>76       | 9.21 578<br>9.21 657<br>9.21 736<br>9.21 814<br>9.21 893 | 79<br>79<br>78<br>79<br>78       | 10.78 422<br>10.78 343<br>10.78 264<br>10.78 186<br>10.78 107 | 9.99 421<br>9.99 419<br>9.99 417<br>9.99 415<br>9.99 413 | <b>40</b> 39 38 37 36      | $\begin{array}{c cccc} 6 & 7. \\ 7 & 9. \\ 8 & 10. \\ 9 & 11. \\ 10 & 12. \\ 20 & 25. \end{array}$        | $egin{array}{c c} 0 & 8.9 \\ 3 & 10.1 \\ 6 & 11.4 \\ 8 & 12.7 \\ \hline \end{array}$                   | 7.5<br>8.8<br>10.0<br>11.2<br>12.5<br>25.0   |
| 25<br>26<br>27<br>28<br>29 | 9.21 382<br>9.21 458<br>9.21 534<br>9.21 610<br>9.21 685 | 76<br>76<br>76<br>75<br>76       | 9.21 971<br>9.22 049<br>9.22 127<br>9.22 205<br>9.22 283 | 78<br>78<br>78<br>78<br>78       | 10.78 029<br>10.77 951<br>10.77 873<br>10.77 795<br>10.77 717 | 9.99 411<br>9.99 409<br>9.99 407<br>9.99 404<br>9.99 402 | 35<br>34<br>33<br>32<br>31 | $\begin{array}{c cccc} 20 & 29. \\ 30 & 38. \\ 40 & 51. \\ 50 & 64. \end{array}$                          | $\begin{bmatrix} 5 & 38.0 \\ 3 & 50.7 \end{bmatrix}$                                                   | 37.5<br>50.0<br>62.5                         |
| 30<br>31<br>32<br>33<br>34 | 9.21 761<br>9.21 836<br>9.21 912<br>9.21 987<br>9.22 062 | 75<br>76<br>75<br>75<br>75       | 9.22 361<br>9.22 438<br>9.22 516<br>9.22 593<br>9.22 670 | 77<br>78<br>77<br>77<br>77       | 10.77 639<br>10.77 562<br>10.77 484<br>10.77 407<br>10.77 330 | 9.99 400<br>9.99 398<br>9.99 396<br>9.99 394<br>9.99 392 | 30<br>29<br>28<br>27<br>26 | "   <b>74</b>                                                                                             |                                                                                                        | <b>72</b><br>7.2                             |
| 35<br>36<br>37<br>38<br>39 | 9.22 137<br>9.22 211<br>9.22 286<br>9.22 361<br>9.22 435 | 74<br>75<br>75<br>74<br>74       | 9.22 747<br>9.22 824<br>9.22 901<br>9.22 977<br>9.23 054 | 77<br>77<br>76<br>77<br>76       | 10.77 253<br>10.77 176<br>10.77 099<br>10.77 023<br>10.76 946 | 9.99 390<br>9.99 388<br>9.99 385<br>9.99 383<br>9.99 381 | 25<br>24<br>23<br>22<br>21 | $\begin{array}{c cccc} 7 & 8 & 9 & \\ 8 & 9 & 11 & \\ 10 & 12 & \\ 20 & 24 & \\ 30 & 37 & \\ \end{array}$ | $\begin{array}{c cccc} 6 & 8.5 \\ 9 & 9.7 \\ 1 & 11.0 \\ 3 & 12.2 \\ 7 & 24.3 \\ 0 & 36.5 \end{array}$ | 8.4 $9.6$ $10.8$ $12.0$ $24.0$ $36.0$        |
| 40<br>41<br>42<br>43<br>44 | 9.22 509<br>9.22 583<br>9.22 657<br>9.22 731<br>9.22 805 | 74<br>74<br>74<br>74<br>74<br>73 | 9.23 130<br>9.23 206<br>9.23 283<br>9.23 359<br>9.23 435 | 76<br>77<br>76<br>76<br>76       | 10.76 870<br>10.76 794<br>10.76 717<br>10.76 641<br>10.76 565 | 9.99 379<br>9.99 377<br>9.99 375<br>9.99 372<br>9.99 370 | 20<br>19<br>18<br>17<br>16 | 40   49.<br>50   61.                                                                                      | 3 48.7<br>7 60.8                                                                                       | 48.0<br>60.0                                 |
| 45<br>46<br>47<br>48<br>49 | 9.22 878<br>9.22 952<br>9.23 025<br>9.23 098<br>9.23 171 | 74<br>73<br>73<br>73<br>73       | 9.23 510<br>9.23 586<br>9.23 661<br>9.23 737<br>9.23 812 | 76<br>75<br>76<br>75<br>75       | 10.76 490<br>10.76 414<br>10.76 339<br>10.76 263<br>10.76 188 | 9.99 368<br>9.99 366<br>9.99 364<br>9.99 362<br>9.99 359 | 15<br>14<br>13<br>12<br>11 | "   <b>71</b> 6   7 7   8 8   9                                                                           | $\begin{bmatrix} 1 & 0.3 \\ 3 & 0.4 \\ 5 & 0.4 \end{bmatrix}$                                          | 2<br>0.2<br>0.2<br>0.3                       |
| 50<br>51<br>52<br>53<br>54 | 9.23 244<br>9.23 317<br>9.23 390<br>9.23 462<br>9.23 535 | 73<br>73<br>72<br>73<br>72       | 9.23 887<br>9.23 962<br>9.24 037<br>9.24 112<br>9.24 186 | 75<br>75<br>75<br>74<br>75       | 10.76 113<br>10.76 038<br>10.75 963<br>10.75 888<br>10.75 814 | 9.99 357<br>9.99 355<br>9.99 353<br>9.99 351<br>9.99 348 | 10<br>9<br>8<br>7<br>6     | $\begin{array}{c cccc} 9 & 10 \\ 10 & 11 \\ 20 & 23 \\ 30 & 35 \\ 40 & 47 \\ 50 & 59 \end{array}$         | $\begin{array}{c c} 8 & 0.5 \\ 7 & 1.0 \\ 5 & 1.5 \\ 3 & 2.0 \end{array}$                              | 0.3<br>0.3<br>0.7<br>1.0<br>1.3<br>1.7       |
| 55<br>56<br>57<br>58<br>59 | 9.23 607<br>9.23 679<br>9.23 752<br>9.23 823<br>9.23 895 | 72<br>73<br>71<br>72<br>72       | 9.24 261<br>9.24 335<br>9.24 410<br>9.24 484<br>9.24 558 | 74<br>75<br>74<br>74<br>74       | 10.75 739<br>10.75 665<br>10.75 590<br>10.75 516<br>10.75 442 | 9.99 346<br>9 99 344<br>9.99 342<br>9.99 340<br>9.99 337 | 5<br>4<br>3<br>2<br>1      |                                                                                                           |                                                                                                        |                                              |
| 60                         | 9.23 967<br>L Cos                                        | d                                | 9.24 632<br>L Cot                                        | c d                              | 10.75 368<br>L Tan                                            | 9.99 335<br>L Sin                                        | /                          | Pr                                                                                                        | op. Pts.                                                                                               |                                              |
| <u></u>                    | 1 2000                                                   |                                  |                                                          | 1                                | 1                                                             | !                                                        | 1                          |                                                                                                           |                                                                                                        |                                              |

10°

| ′                          | L Sin                                                    | d                          | L Tan                                                    | c d                              | L Cot                                                                                             | L Cos                                                    |                            |                                                                     | Prop                                                                             | . Pts.                                            |                                                                              |
|----------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4      | 9.23 967<br>9.24 039<br>9.24 110<br>9.24 181<br>9.24 253 | 72 $71$ $71$ $72$          | 9.24 632<br>9.24 706<br>9.24 779<br>9.24 853<br>9.24 926 | 74<br>73<br>74<br>73             | 10.75 368<br>10.75 294<br>10.75 221<br>10.75 147<br>10.75 074                                     | 9.99 335<br>9.99 333<br>9.99 331<br>9.99 328<br>9.99 326 | <b>60</b> 59 58 57 56      |                                                                     |                                                                                  |                                                   |                                                                              |
| 5<br>6<br>7<br>8<br>9      | 9.24 324<br>9.24 395<br>9.24 466<br>9.24 536<br>9.24 607 | 71<br>71<br>71<br>70<br>71 | 9.25 000<br>9.25 073<br>9.25 146<br>9.25 219<br>9.25 292 | 74<br>73<br>73<br>73<br>73       | 10.75 000<br>10.74 927<br>10.74 854<br>10.74 781<br>10.74 708                                     | 9.99 324<br>9.99 322<br>9.99 319<br>9.99 317<br>99.9 315 | 55<br>54<br>53<br>52<br>51 | 6<br>7<br>8<br>9                                                    | 74<br>7.4<br>8.6<br>9.9<br>11.1                                                  | 73<br>7.3<br>8.5<br>9.7<br>11.0                   | 7.2<br>8.4<br>9.6<br>10.8                                                    |
| 10<br>11<br>12<br>13<br>14 | 9.24 677<br>9.24 748<br>9.24 818<br>9.24 888<br>9.24 958 | 70<br>71<br>70<br>70<br>70 | 9.25 365<br>9.25 437<br>9.25 510<br>9.25 582<br>9.25 655 | 73<br>72<br>73<br>72<br>73       | 10.74 635<br>10.74 563<br>10.74 490<br>10.74 418<br>10.74 345                                     | 9.99 313<br>9.99 310<br>9.99 308<br>9.99 306<br>9.99 304 | 50<br>49<br>48<br>47<br>46 | 10<br>20<br>30<br>40<br>50                                          | 12.3<br>24.7<br>37.0<br>49.3<br>61.7                                             | 12.2<br>24.3<br>36.5<br>48.7<br>60.8              | 12.0<br>24.0<br>36.0<br>48.0<br>60.0                                         |
| 15<br>16<br>17<br>18<br>19 | 9.25 028<br>9.25 098<br>9.25 168<br>8.25 237<br>9.25 307 | 70<br>70<br>70<br>69<br>70 | 9.25 727<br>9.25 799<br>9.25 871<br>9.25 943<br>9.26 015 | 72<br>72<br>72<br>72<br>72       | 10.74 273<br>10.74 201<br>10.74 129<br>10.74 057<br>10.73 985                                     | 9.99 301<br>9.99 299<br>9.99 297<br>9.99 294<br>9.99 292 | 45<br>44<br>43<br>42<br>41 | 11                                                                  | <b>71</b>                                                                        | <b>7</b> 0                                        | 69                                                                           |
| 20<br>21<br>22<br>23<br>24 | 9.25 376<br>9.25 445<br>9.25 514<br>9.25 583<br>9.25 652 | 69<br>69<br>69<br>69<br>69 | 9.26 086<br>9.26 158<br>9.26 229<br>9.26 301<br>9.26 372 | 71<br>72<br>71<br>72<br>71<br>71 | 10.73 914<br>10.73 842<br>10.73 771<br>10.73 699<br>10.73 628                                     | 9.99 290<br>9.99 288<br>9.99 285<br>9.99 283<br>9.99 281 | 40<br>39<br>38<br>37<br>36 | $\begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 20 \end{array}$         | 7.1<br>8.3<br>9.5<br>10.6<br>11.8<br>23.7                                        | 7.0<br>8.2<br>9.3<br>10.5<br>11.7<br>23.3         | 6.9<br>8.0<br>9.2<br>10.4<br>11.5<br>23.0                                    |
| 25<br>26<br>27<br>28<br>29 | 9.25 721<br>9.25 790<br>9.25 858<br>9.25 927<br>9.25 995 | 69<br>68<br>69<br>68       | 9.26 443<br>9.26 514<br>9.26 585<br>9.26 655<br>9.26 726 | 71<br>71<br>71<br>70<br>71<br>71 | $\begin{array}{c} 10.73\ 557 \\ 10.73\ 486 \\ 10.73\ 415 \\ 10.73\ 345 \\ 10.73\ 274 \end{array}$ | 9.99 278<br>9.99 276<br>9.99 274<br>9.99 271<br>9.99 269 | 35<br>34<br>33<br>32<br>31 | 30<br>40<br>50                                                      | 35.5<br>47.3<br>59.2                                                             | 35.0<br>46.7<br>58.3                              | 34.5<br>46.0<br>57.5                                                         |
| 30<br>31<br>32<br>33<br>34 | 9.26 063<br>9.26 131<br>9.26 199<br>9.26 267<br>9.26 335 | 68<br>68<br>68<br>68       | 9.26 797<br>9.26 867<br>9.26 937<br>9.27 008<br>9.27 078 | 70<br>70<br>71<br>70             | 10.73 203<br>10.73 133<br>10.73 063<br>10.72 992<br>10.72 922                                     | 9.99 267<br>9.99 264<br>9.99 262<br>9.99 260<br>9.99 257 | 30<br>29<br>28<br>27<br>26 | "                                                                   | 68                                                                               | 67                                                | 66                                                                           |
| 35<br>36<br>37<br>38<br>39 | 9.26 403<br>9.26 470<br>9.26 538<br>9.26 605<br>9.26 672 | 68<br>67<br>68<br>67<br>67 | 9.27 148<br>9.27 218<br>9.27 288<br>9.27 357<br>9.27 427 | 70<br>70<br>70<br>69<br>70       | 10.72 852<br>10.72 782<br>10.72 712<br>10.72 643<br>10.72 573                                     | 9.99 255<br>9.99 252<br>9.99 250<br>9.99 248<br>9.99 245 | 25<br>24<br>23<br>22<br>21 | 6<br>7<br>8<br>9<br>10<br>20<br>30                                  | $\begin{array}{c} 6.8 \\ 7.9 \\ 9.1 \\ 10.2 \\ 11.3 \\ 22.7 \\ 34.0 \end{array}$ | 6.7<br>7.8<br>8.9<br>10.0<br>11.2<br>22.3<br>33.5 | 6.6<br>7.7<br>8.8<br>9.9<br>11.0<br>22.0<br>33.0                             |
| 40<br>41<br>42<br>43<br>44 | 9.26 739<br>9.26 806<br>9.26 873<br>9.26 940<br>9.27 007 | 67<br>67<br>67<br>67       | 9.27 496<br>9.27 566<br>9.27 635<br>9.27 704<br>9.27 773 | 69<br>70<br>69<br>69             | 10.72 504<br>10.72 434<br>10.72 365<br>10.72 296<br>10.72 227                                     | 9.99 243<br>9.99 241<br>9.99 238<br>9.99 236<br>9.99 233 | 20<br>19<br>18<br>17<br>16 | 40<br>50                                                            | 45.3<br>56.7                                                                     | 44.7                                              | 44.0                                                                         |
| 45<br>46<br>47<br>48<br>49 | 9.27 073<br>9.27 140<br>9.27 206<br>9.27 273<br>9.27 339 | 66<br>67<br>66<br>67<br>66 | 9.27 842<br>9.27 911<br>9.27 980<br>9.28 049<br>9.28 117 | 69<br>69<br>69<br>69<br>68       | 10.72 158<br>10.72 089<br>10.72 020<br>10.71 951<br>10.71 883                                     | 9.99 231<br>9.99 229<br>9.99 226<br>9.99 224<br>9.99 221 | 15<br>14<br>13<br>12<br>11 | 6                                                                   | 6.5                                                                              | <b>3</b>                                          | 0.2                                                                          |
| 50<br>51<br>52<br>53<br>54 | 9.27 405<br>9.27 471<br>9.27 537<br>9.27 602<br>9.27 668 | 66<br>66<br>65<br>66       | 9.28 186<br>9.28 254<br>9.28 323<br>9.28 391<br>9.28 459 | 69<br>68<br>69<br>68<br>68       | 10.71 814<br>10.71 746<br>10.71 677<br>10.71 609<br>10.71 541                                     | 9.99 219<br>9.99 217<br>9.99 214<br>9.99 212<br>9.99 209 | 9<br>8<br>7<br>6           | $\begin{bmatrix} 7 \\ 8 \\ 9 \\ 10 \\ 20 \\ 30 \\ 40 \end{bmatrix}$ | 7.6<br>8.7<br>9.8<br>10.8<br>21.7<br>32.5<br>43.3                                | $0.4 \\ 0.4 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0$          | $\begin{array}{c} 0.2 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.7 \\ 1.0 \\ 1.3 \end{array}$ |
| 55<br>56<br>57<br>58<br>59 | 9.27 734<br>9.27 799<br>9.27 864<br>9.27 930<br>9.27 995 | 66<br>65<br>66<br>65       | 9.28 527<br>9.28 595<br>9.28 662<br>9.28 730<br>9.28 798 | 68<br>68<br>67<br>68<br>68       | 10.71 473<br>10.71 405<br>10.71 338<br>10.71 270<br>10.71 202                                     | 9.99 207<br>9.99 204<br>9.99 202<br>9.99 200<br>9.99 197 | 5<br>4<br>3<br>2<br>1      | 50                                                                  | 54.2                                                                             | 2.5                                               | 1.7                                                                          |
| 60                         | 9.28 060                                                 | 65<br>d                    | 9.28 865<br>L Cot                                        | 67<br>c d                        | 10.71 135<br>L Tan                                                                                | 9.99 195<br>L Sin                                        | 0                          |                                                                     | Pro                                                                              | . Pts.                                            | ,                                                                            |
|                            | L Cos                                                    | u                          | 1 200                                                    |                                  |                                                                                                   | 1                                                        | -                          |                                                                     |                                                                                  |                                                   |                                                                              |

11°

| ,                          | L Sin                                                    | d                          | L Tan                                                    | c d                        | L Cot                                                         | L Cos                                                    |                            |                               | Prop                                                                    | . Pts.                                                                  |                                                                         |
|----------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------|-------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4      | 9.28 060<br>9.28 125<br>9.28 190<br>9.28 254<br>9.28 319 | 65<br>65<br>64<br>65       | 9.28 865<br>9.28 933<br>9.29 000<br>9.29 067<br>9.29 134 | 68<br>67<br>67<br>67       | 10.71 135<br>10.71 067<br>10.71 000<br>10.70 933<br>10.70 866 | 9.99 195<br>9.99 192<br>9.99 190<br>9.99 187<br>9.99 185 | <b>60</b> 59 58 57 56      |                               | ٠                                                                       |                                                                         |                                                                         |
| 5<br>6<br>7<br>8<br>9      | 9.28 384<br>9.28 448<br>9.28 512<br>9.28 577<br>9.28 641 | 65<br>64<br>64<br>65<br>64 | 9.29 201<br>9.29 268<br>9.29 335<br>9.29 402<br>9.29 468 | 67<br>67<br>67<br>66       | 10.70 799<br>10.70 732<br>10.70 665<br>10.70 598<br>10.70 532 | 9.99 182<br>9.99 180<br>9.99 177<br>9.99 175<br>9.99 172 | 55<br>54<br>53<br>52<br>51 | 6 7 8 9                       | 68<br>6.8<br>7.9<br>9.1<br>10.2                                         | 6.7<br>7.8<br>8.9<br>10.0                                               | 6.6<br>7.7<br>8.8<br>9.9                                                |
| 10<br>11<br>12<br>13<br>14 | 9.28 705<br>9.28 769<br>9.28 833<br>9.28 896<br>9.28 960 | 64<br>64<br>63<br>64       | 9.29 535<br>9.29 601<br>9.29 668<br>9.29 734<br>9.29 800 | 67<br>66<br>67<br>66<br>66 | 10.70 465<br>10.70 399<br>10.70 332<br>10.70 266<br>10.70 200 | 9.99 170<br>9.99 167<br>9.99 165<br>9.99 162<br>9.99 160 | 50<br>49<br>48<br>47<br>46 | 10<br>20<br>30<br>40<br>50    | 11.3<br>22.7<br>34.0<br>45.3<br>56.7                                    | 11.2<br>22.3<br>33.5<br>44.7<br>55.8                                    | 11.0 $22.0$ $33.0$ $44.0$ $55.0$                                        |
| 15<br>16<br>17<br>18<br>19 | 9.29 024<br>9.29 087<br>9.29 150<br>9.29 214<br>9.29 277 | 64<br>63<br>64<br>63       | 9.29 866<br>9.29 932<br>9.29 998<br>9.30 064<br>9.30 130 | 66<br>66<br>66<br>66       | 10.70 134<br>10.70 068<br>10.70 002<br>10.69 936<br>10.69 870 | 9.99 157<br>9.99 155<br>9.99 152<br>9.99 150<br>9.99 147 | 45<br>44<br>43<br>42<br>41 | ″                             | <b>65</b>                                                               | 64                                                                      | 63                                                                      |
| 20<br>21<br>22<br>23<br>24 | 9.29 340<br>9.29 403<br>9.29 466<br>9.29 529<br>9.29 591 | 63<br>63<br>63<br>62       | 9.30 195<br>9.30 261<br>9.30 326<br>9.30 391<br>9.30 457 | 65<br>66<br>65<br>66<br>65 | 10.69 805<br>10.69 739<br>10.69 674<br>10.69 609<br>10.69 543 | 9.99 145<br>9.99 142<br>9.99 140<br>9.99 137<br>9.99 135 | <b>40</b> 39 38 37 36      | 6<br>7<br>8<br>9<br>10        | 6.5<br>7.6<br>8.7<br>9.8<br>10.8<br>21.7                                | $\begin{array}{c} 6.4 \\ 7.5 \\ 8.5 \\ 9.6 \\ 10.7 \\ 21.3 \end{array}$ | $\begin{array}{c} 6.3 \\ 7.4 \\ 8.4 \\ 9.4 \\ 10.5 \\ 21.0 \end{array}$ |
| 25<br>26<br>27<br>28<br>29 | 9.29 654<br>9.29 716<br>9.29 779<br>9.29 841<br>9.29 903 | 63<br>62<br>63<br>62<br>62 | 9.30 522<br>9.30 587<br>9.30 652<br>9.30 717<br>9.30 782 | 65<br>65<br>65<br>65       | 10.69 478<br>10.69 413<br>10.69 348<br>10.69 283<br>10.69 218 | 9.99 132<br>9.99 130<br>9.99 127<br>9.99 124<br>9.99 122 | 35<br>34<br>33<br>32<br>31 | 20<br>30<br>40<br>50          | 32.5<br>43.3<br>54.2                                                    | 32.0<br>42.7<br>53.3                                                    | 31.5<br>42.0<br>52.5                                                    |
| 30<br>31<br>32<br>33<br>34 | 9.29 966<br>9.30 028<br>9.30 090<br>9.30 151<br>9.30 213 | 63<br>62<br>62<br>61<br>62 | 9.30 846<br>9.30 911<br>9.30 975<br>9.31 040<br>9.31 104 | 64<br>65<br>64<br>65<br>64 | 10.69 154<br>10.69 089<br>10.69 025<br>10.68 960<br>10.68 896 | 9.99 119<br>9.99 117<br>9.99 114<br>9.99 112<br>9.99 109 | 30<br>29<br>28<br>27<br>26 | "                             | 62                                                                      | 61                                                                      | 60                                                                      |
| 35<br>36<br>37<br>38<br>39 | 9.30 275<br>9.30 336<br>9.30 398<br>9.30 459<br>9.30 521 | 62<br>61<br>62<br>61<br>62 | 9.31 168<br>9.31 233<br>9.31 297<br>9.31 361<br>9.31 425 | 64<br>65<br>64<br>64<br>64 | 10.68*832<br>10.68 767<br>10.68 703<br>10.68 639<br>10.68 575 | 9.99 106<br>9.99 104<br>9.99 101<br>9.99 099<br>9.99 096 | 25<br>24<br>23<br>22<br>21 | 6<br>7<br>8<br>9<br>10<br>20  | 6.2<br>7.2<br>8.3<br>9.3<br>10.3<br>20.7                                | 6.1<br>7.1<br>8.1<br>9.2<br>10.2<br>20.3                                | 6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>20.0                                |
| 40<br>41<br>42<br>43<br>44 | 9.30 582<br>9.30 643<br>9.30 704<br>9.30 765<br>9.30 826 | 61<br>61<br>61<br>61<br>61 | 9.31 489<br>9.31 552<br>9.31 616<br>9.31 679<br>9.31 743 | 64<br>63<br>64<br>63<br>64 | 10.68 511<br>10.68 448<br>10.68 384<br>10.68 321<br>10.68 257 | 9.99 093<br>9.99 091<br>9.99 088<br>9.99 086<br>9.99 083 | 20<br>19<br>18<br>17<br>16 | 30<br>40<br>50                | 31.0<br>41.3<br>51.7                                                    | 30.5<br>40.7<br>50.8                                                    | 40.0                                                                    |
| 45<br>46<br>47<br>48<br>49 | 9.30 887<br>9.30 947<br>9.31 008<br>9.31 068<br>9.31 129 | 61<br>60<br>61<br>60<br>61 | 9.31 806<br>9.31 870<br>9.31 933<br>9.31 996<br>9.32 059 | 63<br>64<br>63<br>63<br>63 | 10.68 194<br>10.68 130<br>10.68 067<br>10.68 004<br>10.67 941 | 9.99 080<br>9.99 078<br>9.99 075<br>9.99 072<br>9.99 070 | 15<br>14<br>13<br>12<br>11 | "<br>6                        | <b>59</b>   5.9                                                         | <b>3</b> 0.3                                                            | <b>2</b><br>0.2                                                         |
| 50<br>51<br>52<br>53<br>54 | 9.31 189<br>9.31 250<br>9.31 310<br>9.31 370<br>9.31 430 | 60<br>61<br>60<br>60       | 9.32 122<br>9.32 185<br>9.32 248<br>9.32 311<br>9.32 373 | 63<br>63<br>63<br>62       | 10.67 878<br>10.67 815<br>10.67 752<br>10.67 689<br>10.67 627 | 9.99 067<br>9.99 064<br>9.99 062<br>9.99 059<br>9.99 056 | 10<br>9<br>8<br>7<br>6     | 7<br>8<br>9<br>10<br>20<br>30 | $\begin{array}{c} 6.9 \\ 7.9 \\ 8.8 \\ 9.8 \\ 19.7 \\ 29.5 \end{array}$ | $0.4 \\ 0.4 \\ 0.5 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0$                         | $\begin{array}{c} 0.2 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.7 \\ 1.0 \end{array}$   |
| 55<br>56<br>57<br>58<br>59 | 9.31 490<br>9.31 549<br>9.31 609<br>9.31 669<br>9.31 728 | 60<br>59<br>60<br>60<br>59 | 9.32 436<br>9.32 498<br>9.32 561<br>9.32 623<br>9.32 685 | 63<br>62<br>63<br>62<br>62 | 10.67 564<br>10.67 502<br>10.67 439<br>10.67 377<br>10.67 315 | 9.99 054<br>9.99 051<br>9.99 048<br>9.99 046<br>9.99 043 | 5<br>4<br>3<br>2<br>1      | 40<br>50                      | 39.3<br>49.2                                                            | 2.0<br>2.5                                                              | 1.3<br>1.7                                                              |
| 60                         | 9.31 788<br>L Cos                                        | d                          | 9.32 747<br>L Cot                                        | 62<br>c d                  | 10.67 253<br>L Tan                                            | 9.99 040<br>L Sin                                        | 0                          |                               | Pror                                                                    | . Pts.                                                                  |                                                                         |
|                            | L Cos                                                    | u                          | T COL                                                    | cu                         | Lian                                                          | I D DIII                                                 |                            |                               | 1101                                                                    | , I ts                                                                  |                                                                         |

12°

| ′                          | L Sin                                                      | d                                | L Tan                                                    | c d                              | L Cot                                                         | L Cos                                                    |                            | Pr                                                                                                        | op. P                                                            | ts.                                                       |
|----------------------------|------------------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4      | 9.31 788<br>9.31 847<br>9.31 907<br>9.31 966<br>9.32 025   | 59<br>60<br>59<br>59             | 9.32 747<br>9.32 810<br>9.32 872<br>9.32 933<br>9.32 995 | 63<br>62<br>61<br>62             | 10.67 253<br>10.67 190<br>10.67 128<br>10.67 067<br>10.67 005 | 9.99 040<br>9.99 038<br>9.99 035<br>9.99 032<br>9.99 030 | 60<br>59<br>58<br>57<br>56 |                                                                                                           |                                                                  |                                                           |
| 5<br>6<br>7<br>8<br>9      | 9.32 084<br>9.32 143<br>9.32 202<br>9.32 261<br>9.32 319   | 59<br>59<br>59<br>59<br>58<br>59 | 9.33 057<br>9.33 119<br>9.33 180<br>9.33 242<br>9.33 303 | 62<br>62<br>61<br>62<br>61<br>62 | 10.66 943<br>10.66 881<br>10.66 820<br>10.66 758<br>10.66 697 | 9.99 027<br>9.99 024<br>9.99 022<br>9.99 019<br>9.99 016 | 55<br>54<br>53<br>52<br>51 | $\begin{bmatrix} 7 & 7 \\ 8 & 8 \\ 9 & 9 \end{bmatrix}$                                                   | .3 6<br>.4 7<br>.4 8<br>.4 9                                     | 5.2 6.1<br>7.1 7.1<br>8.3 8.1<br>9.2                      |
| 10<br>11<br>12<br>13<br>14 | 9.32 378<br>9.32 437<br>9.32 495<br>9.32 553<br>9.32 612   | 59<br>58<br>58<br>59<br>58       | 9.33 365<br>9.33 426<br>9.33 487<br>9.33 548<br>9.33 609 | 61<br>61<br>61<br>61             | 10.66 635<br>10.66 574<br>10.66 513<br>10.66 452<br>10.66 391 | 9.99 013<br>9.99 011<br>9.99 008<br>9.99 005<br>9.99 002 | 50<br>49<br>48<br>47<br>46 | $\begin{array}{c cccc}  & 10 & 10 \\  & 20 & 21 \\  & 30 & 31 \\  & 40 & 42 \\  & 50 & 52 \\ \end{array}$ | $ \begin{array}{c c} .0 & 20 \\ .5 & 31 \\ .0 & 41 \end{array} $ | 0.7   20.3<br>.0   30.5<br>.3   40.7                      |
| 15<br>16<br>17<br>18<br>19 | 9.32 670<br>9.32 728<br>9.32 786<br>9.32 844<br>9.32 902   | 58<br>58<br>58<br>58             | 9.33 670<br>9.33 731<br>9.33 792<br>9.33 853<br>9.33 913 | 61<br>61<br>60                   | 10.66 330<br>10.66 269<br>10.66 208<br>10.66 147<br>10.66 087 | 9.99 000<br>9.98 997<br>9.98 994<br>9.98 991<br>9.98 989 | 45<br>44<br>43<br>42<br>41 | ″   <b>6</b> 0                                                                                            | 59                                                               | )   58                                                    |
| 20<br>21<br>22<br>23<br>24 | 9.32 960<br>9.33 018<br>9.33 075<br>9.33 133<br>9.33 190   | 58<br>58<br>57<br>58<br>57<br>58 | 9.33 974<br>9.34 034<br>9.34 095<br>9.34 155<br>9.34 215 | 61<br>60<br>61<br>60<br>60<br>61 | 10.66 026<br>10.65 966<br>10.65 905<br>10.65 845<br>10.65 785 | 9.98 986<br>9.98 983<br>9.98 980<br>9.98 978<br>9.98 975 | 40<br>39<br>38<br>37<br>36 | $egin{array}{c ccc} 7 & 7 & 7 \\ 8 & 8 \\ 9 & 9 \\ 10 & 10 \\ \end{array}$                                | .0 6<br>.0 7<br>.0 8<br>.0 9                                     | 5.8<br>6.9<br>6.8<br>7.7<br>6.8<br>8.7<br>9.7<br>10.2     |
| 25<br>26<br>27<br>28<br>29 | 9.33 248<br>9.33 305<br>9.33 362<br>9.33 420<br>9.33 477   | 57<br>57<br>58<br>57             | 9.34 276<br>9.34 336<br>9.34 396<br>9.34 456<br>9.34 516 | 60<br>60<br>60                   | 10.65 724<br>10.65 664<br>10.65 604<br>10.65 544<br>10.65 484 | 9.98 972<br>9.98 969<br>9.98 967<br>9.98 964<br>9.98 961 | 35<br>34<br>33<br>32<br>31 | $\begin{bmatrix} 20 & 20 \\ 30 & 30 \\ 40 & 50 \end{bmatrix} $                                            | $\begin{array}{c c} .0 & 29 \\ .0 & 39 \end{array}$              | $\begin{array}{c c} 0.5 & 29.0 \\ 0.3 & 38.7 \end{array}$ |
| 30<br>31<br>32<br>33<br>34 | 9.33 534<br>9.33 591<br>9.33 647<br>9.33 704<br>9.33 761   | 57<br>57<br>56<br>57<br>57       | 9.34 576<br>9.34 635<br>9.34 695<br>9.34 755<br>9.34 814 | 60<br>59<br>60<br>60<br>59       | 10.65 424<br>10.65 365<br>10.65 305<br>10.65 245<br>10.65 186 | 9.98 958<br>9.98 955<br>9.98 953<br>9.98 950<br>9.98 947 | 30<br>29<br>28<br>27<br>26 | ″ <sub> </sub> 57                                                                                         | 1                                                                |                                                           |
| 35<br>36<br>37<br>38<br>39 | 9.33 \$18<br>9.33 \$74<br>9.33 931<br>9.33 987<br>9.34 043 | 57<br>56<br>57<br>56<br>56       | 9.34 874<br>9.34 933<br>9.34 992<br>9.35 051<br>9.35 111 | 59<br>59<br>59<br>60             | 10.65 126<br>10.65 067<br>10.65 008<br>10.64 949<br>10.64 889 | 9.98 944<br>9.98 941<br>9.98 938<br>9.98 936<br>9.98 933 | 25<br>24<br>23<br>22<br>21 | $egin{array}{c c c} 7 & 6 \\ 8 & 7 \\ 9 & 8 \\ 10 & 9 \\ 20 & 19 \\ \end{array}$                          | .6 6<br>.6 7<br>.6 8<br>.5 9<br>.0 18                            | 5.5<br>6.4<br>7.3<br>4 8.2<br>9.2<br>7.3<br>18.3          |
| 40<br>41<br>42<br>43<br>44 | 9.34 100<br>9.34 156<br>9.34 212<br>9.34 268<br>9.34 324   | 57<br>56<br>56<br>56<br>56       | 9.35 170<br>9.35 229<br>9.35 288<br>9.35 347<br>9.35 405 | 59<br>59<br>59<br>59<br>58       | 10.64 830<br>10.64 771<br>10.64 712<br>10.64 653<br>10.64 595 | 9.98 930<br>9.98 927<br>9.98 924<br>9.98 921<br>9.98 919 | 20<br>19<br>18<br>17<br>16 | 30   28<br>40   38<br>50   47                                                                             | .0  37                                                           | 27.5<br>36.7<br>45.8                                      |
| 45<br>46<br>47<br>48<br>49 | 9.34 380<br>9.34 436<br>9.34 491<br>9.34 547<br>9.34 602   | 56<br>56<br>55<br>56<br>55       | 9.35 464<br>9.35 523<br>9.35 581<br>9.35 640<br>9.35 698 | 59<br>59<br>58<br>59<br>58       | 10.64 536<br>10.64 477<br>10.64 419<br>10.64 360<br>10.64 302 | 9.98 916<br>9.98 913<br>9.98 910<br>9.98 907<br>9.98 904 | 15<br>14<br>13<br>12<br>11 | 6                                                                                                         | <b>3</b> 0.3                                                     | <b>2</b><br>0.2                                           |
| 50<br>51<br>52<br>53<br>54 | 9.34 658<br>9.34 713<br>9.34 769<br>9.34 824<br>9.34 879   | 56<br>55<br>56<br>55<br>55       | 9.35 757<br>9.35 815<br>9.35 873<br>9.35 931<br>9.35 989 | 59<br>58<br>58<br>58<br>58       | 10.64 243<br>10.64 185<br>10.64 127<br>10.64 069<br>10.64 011 | 9.98 901<br>9.98 898<br>9.98 896<br>9.98 893<br>9.98 890 | 10<br>9<br>8<br>7<br>6     | 7<br>8<br>9<br>10<br>20<br>30                                                                             | 0.4<br>0.4<br>0.5<br>0.5<br>1.0<br>1.5                           | 0.2<br>0.3<br>0.3<br>0.3<br>0.7<br>1.0                    |
| 55<br>56<br>57<br>58<br>59 | 9.34 934<br>9.34 989<br>9.35 044<br>9.35 099<br>9.35 154   | 55<br>55<br>55<br>55<br>55       | 9.36 047<br>9.36 105<br>9.36 163<br>9.36 221<br>9.36 279 | 58<br>58<br>58<br>58<br>58       | 10.63 953<br>10.63 895<br>10.63 837<br>10.63 779<br>10.63 721 | 9.98 887<br>9.98 884<br>9.98 881<br>9.98 878<br>9.98 875 | 5<br>4<br>3<br>2<br>1      | 40<br>50                                                                                                  | 2.0   2.5                                                        | 1.3<br>1.7                                                |
| 60                         | 9.35 209                                                   | 55                               | 9.36 336                                                 | 57                               | 10.63 664                                                     | 9.98 872                                                 | 0                          |                                                                                                           | or D                                                             | ta                                                        |
|                            | L Cos                                                      | d                                | L Cot                                                    | c d                              | L Tan                                                         | L Sin                                                    | ' '                        | Pr.                                                                                                       | op. P                                                            | ts.                                                       |

13°

| ′                                | L Sin                                                                                                                            | d                                | L Tan                                                                                                                     | c d                              | L Cot                                                                                                                                               | L Cos                                                                                     |                                                         | Prop. Pts.                                                                                                                                                                                                                                                                          |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4            | 9.35 209<br>9.35 263<br>9.35 318<br>9.35 373<br>9.35 427                                                                         | 54<br>55<br>55<br>54             | 9.36 336<br>9.36 394<br>9.36 452<br>9.36 509<br>9.36 566                                                                  | 58<br>58<br>57<br>57             | 10.63 664<br>10.63 606<br>10.63 548<br>10.63 491<br>10.63 434                                                                                       | 9.98 872<br>9.98 869<br>9.98 867<br>9.98 864<br>9.98 861                                  | <b>60</b> 59 58 57 56                                   |                                                                                                                                                                                                                                                                                     |
| 5<br>6<br>7<br>8<br>9            | 9.35 481<br>9.35 536<br>9.35 590<br>9.35 644<br>9.35 698                                                                         | 54<br>55<br>54<br>54<br>54<br>54 | 9.36 624<br>9.36 681<br>9.36 738<br>9.36 795<br>9.36 852                                                                  | 58<br>57<br>57<br>57<br>57<br>57 | 10.63 376<br>10.63 319<br>10.63 262<br>10.63 205<br>10.63 148                                                                                       | 9.98 858<br>9.98 855<br>9.98 852<br>9.98 849<br>9.98 846                                  | 55<br>54<br>53<br>52<br>51                              | "         58         57         56           6         5.8         5.7         5.6           7         6.8         6.6         6.5           8         7.7         7.6         7.5           9         8.7         8.6         8.4           10         9.7         9.5         9.3 |
| 10<br>11<br>12<br>13<br>14       | 9.35 752<br>9.35 806<br>9.35 860<br>9.35 914<br>9.35 968                                                                         | 54<br>54<br>54<br>54<br>54       | 9.36 909<br>9.36 966<br>9.37 023<br>9.37 080<br>9.37 137                                                                  | 57<br>57<br>57<br>57<br>57       | 10.63 091<br>10.63 034<br>10.62 977<br>10.62 920<br>10.62 863                                                                                       | 9.98 843<br>9.98 840<br>9.98 837<br>9.98 834<br>9.98 831                                  | 50<br>49<br>48<br>47<br>46                              | 20   19.3   19.0   18.7<br>30   29.0   28.5   28.0<br>40   38.7   38.0   37.3<br>50   48.3   47.5   46.7                                                                                                                                                                            |
| 15<br>16<br>17<br>18<br>19       | 9.36 022<br>9.36 075<br>9.36 129<br>9.36 182<br>9.36 236                                                                         | 53<br>54<br>53<br>54<br>53       | $\begin{array}{r} 9.37 \ 193 \\ 9.37 \ 250 \\ 9.37 \ 306 \\ 9.37 \ 363 \\ 9.37 \ 419 \\ \hline \end{array}$               | 57<br>56<br>57<br>56<br>57       | $ \begin{array}{r} 10.62807\\ 10.62750\\ 10.62694\\ 10.62637\\ 10.62581\\ \hline 10.62524 \end{array} $                                             | 9.98 828<br>9.98 825<br>9.98 822<br>9.98 819<br>9.98 816                                  | 45<br>44<br>43<br>42<br>41<br><b>40</b>                 | ''   55   54   53                                                                                                                                                                                                                                                                   |
| 20<br>21<br>22<br>23<br>24<br>25 | 9.36 289<br>9.36 342<br>9.36 395<br>9.36 449<br>9.36 502<br>9.36 555                                                             | 53<br>53<br>54<br>53<br>53       | $\begin{array}{c} 9.37\ 476 \\ 9.37\ 532 \\ 9.37\ 588 \\ 9.37\ 644 \\ 9.37\ 700 \\ \hline 9.37\ 756 \end{array}$          | 56<br>56<br>56<br>56<br>56       | $ \begin{array}{c} 10.62 \ 324 \\ 10.62 \ 468 \\ 10.62 \ 412 \\ 10.62 \ 356 \\ 10.62 \ 300 \\ \hline 10.62 \ 244 \end{array} $                      | 9.98 810<br>9.98 807<br>9.98 804<br>9.98 801<br>9.98 798                                  | 39<br>38<br>37<br>36<br>35                              | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                             |
| 26<br>27<br>28<br>29<br>30       | $\begin{array}{r} 9.36 \ 533 \\ 9.36 \ 608 \\ 9.36 \ 660 \\ 9.36 \ 713 \\ 9.36 \ 766 \\ \hline \hline 9.36 \ 819 \\ \end{array}$ | 53<br>52<br>53<br>53<br>53       | $\begin{array}{c} 9.37 \ 812 \\ 9.37 \ 868 \\ 9.37 \ 924 \\ \hline 9.37 \ 980 \\ \hline \hline 9.38 \ 035 \\ \end{array}$ | 56<br>56<br>56<br>56<br>55       | $   \begin{array}{r}     10.62 \ 188 \\     10.62 \ 132 \\     10.62 \ 076 \\     10.62 \ 020 \\     \hline     10.61 \ 965   \end{array} $         | 9.98 795<br>9.98 792<br>9.98 789<br>9.98 786<br>9.98 783                                  | 34<br>33<br>32<br>31<br>30                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                              |
| 31<br>32<br>33<br>34             | 9.36 871<br>9.36 924<br>9.36 976<br>9.37 028                                                                                     | 52<br>53<br>52<br>52<br>52<br>53 | 9.38 091<br>9.38 147<br>9.38 202<br>9.38 257<br>9.38 313                                                                  | 56<br>56<br>55<br>55<br>56       | $   \begin{array}{c}     10.61\   909 \\     10.61\   853 \\     10.61\   798 \\     10.61\   743 \\     \hline     10.61\   687 \\   \end{array} $ | 9.98 780<br>9.98 777<br>9.98 774<br>9.98 771<br>9.98 768                                  | 29<br>28<br>27<br>26<br>25                              | "   <b>52</b>   <b>51</b>   <b>4</b>   5.2   5.1   0.4                                                                                                                                                                                                                              |
| 35<br>36<br>37<br>38<br>39       | 9.37 081<br>9.37 133<br>9.37 185<br>9.37 237<br>9.37 289                                                                         | 52<br>52<br>52<br>52<br>52<br>52 | 9.38 368<br>9.38 423<br>9.38 479<br>9.38 534                                                                              | 55<br>55<br>56<br>55<br>55       | $ \begin{array}{c} 10.61 \ 632 \\ 10.61 \ 577 \\ 10.61 \ 521 \\ 10.61 \ 466 \\ \hline 10.61 \ 411 \end{array} $                                     | $\begin{array}{c} 9.98765 \\ 9.98762 \\ 9.98759 \\ 9.98756 \\ \hline 9.98753 \end{array}$ | 24<br>23<br>22<br>21<br><b>20</b>                       | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                             |
| 40<br>41<br>42<br>43<br>44       | 9.37 341<br>9.37 393<br>9.37 445<br>9.37 497<br>9.37 549                                                                         | 52<br>52<br>52<br>52<br>52<br>51 | 9.38 589<br>9.38 644<br>9.38 699<br>9.38 754<br>9.38 808                                                                  | 55<br>55<br>55<br>54<br>55       | $ \begin{array}{c} 10.61 \ 411 \\ 10.61 \ 356 \\ 10.61 \ 301 \\ 10.61 \ 246 \\ 10.61 \ 192 \\ \hline 10.61 \ 137 \end{array} $                      | 9.98 750<br>9.98 746<br>9.98 743<br>9.98 740<br>9.98 737                                  | 19<br>18<br>17<br>16<br>15                              | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                |
| 45<br>46<br>47<br>48<br>49       | 9.37 600<br>9.37 652<br>9.37 703<br>9.37 755<br>9.37 806                                                                         | 52<br>51<br>52<br>51<br>52<br>51 | 9.38 863<br>9.38 918<br>9.38 972<br>9.39 027<br>9.39 082                                                                  | 55<br>54<br>55<br>55<br>54       | $ \begin{array}{c} 10.61 \ 137 \\ 10.61 \ 082 \\ 10.61 \ 028 \\ 10.60 \ 973 \\ 10.60 \ 918 \\ \hline 10.60 \ 864 \end{array} $                      | 9.98 734<br>9.98 731<br>9.98 728<br>9.98 725<br>9.98 722                                  | 13<br>13<br>12<br>11<br>10                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                               |
| 50<br>51<br>52<br>53<br>54       | 9.37 858<br>9.37 909<br>9.37 960<br>9.38 011<br>9.38 062                                                                         | 51<br>51<br>51<br>51<br>51       | 9.39 136<br>9.39 190<br>9.39 245<br>9.39 299<br>9.39 353                                                                  | 54<br>55<br>54<br>54<br>54       | $  \begin{array}{c cccccccccccccccccccccccccccccccccc$                                                                                              | 9.98 722<br>9.98 719<br>9.98 715<br>9.98 709<br>9.98 709                                  | 9<br>8<br>7<br>6<br>-5                                  | $ \begin{vmatrix} 8 & 0.4 & 0.3 \\ 9 & 0.4 & 0.3 \\ 10 & 0.5 & 0.3 \\ 20 & 1.0 & 0.7 \\ 30 & 1.5 & 1.0 \\ 40 & 2.0 & 1.3 \end{vmatrix} $                                                                                                                                            |
| 55<br>56<br>57<br>58<br>59       | 9.38 113<br>9.38 164<br>9.38 215<br>9.38 266<br>9.38 317                                                                         | 51<br>51<br>51<br>51<br>51       | 9.39 407<br>9.39 461<br>9.39 515<br>9.39 569<br>9.39 623<br>9.39 677                                                      | 54<br>54<br>54<br>54<br>54       | $ \begin{array}{c} 10.60593\\ 10.60539\\ 10.60485\\ 10.60431\\ 10.60377\\ \hline 10.60323 \end{array} $                                             | 9.98 700<br>9.98 703<br>9.98 700<br>9.98 697<br>9.98 694<br>9.98 690                      | $\begin{bmatrix} 3\\4\\3\\2\\1\\\hline 0 \end{bmatrix}$ | 50   2.5   1.7                                                                                                                                                                                                                                                                      |
| 60                               | 9.38 368<br>L Cos                                                                                                                | d                                | L Cot                                                                                                                     | c d                              | L Tan                                                                                                                                               | L Sin                                                                                     | ,                                                       | Prop. Pts.                                                                                                                                                                                                                                                                          |

14°

| ′                                                                                          | L Sin                                                                                                              | d                          | L Tan                                                    | c d                        | L Cot                                                         | L Cos                                                    |                                                                    | P                                                          | Prop. Pts.                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4                                                                           | 9.38 368<br>9.38 418<br>9.38 469<br>9.38 519<br>9.38 570                                                           | 50<br>51<br>50<br>51       | 9.39 677<br>9.39 731<br>9.39 785<br>9.39 838<br>9.39 892 | 54<br>54<br>53<br>54       | 10.60 323<br>10.60 269<br>10.60 215<br>10.60 162<br>10.60 108 | 9.98 690<br>9.98 687<br>9.98 684<br>9.98 681<br>9.98 678 | 59<br>58<br>57<br>56                                               |                                                            |                                                                                                                                                                                 |
| 5<br>6<br>7<br>8<br>9                                                                      | 9.38 620<br>9.38 670<br>9.38 721<br>9.38 771<br>9.38 821                                                           | 50<br>50<br>51<br>50<br>50 | 9.39 945<br>9.39 999<br>9.40 052<br>9.40 106<br>9.40 159 | 53<br>54<br>53<br>54<br>53 | 10.60 055<br>10.60 001<br>10.59 948<br>10.59 894<br>10.59 841 | 9.98 675<br>9.98 671<br>9.98 668<br>9.98 665<br>9.98 662 | 55<br>54<br>53<br>52<br>51                                         | 6<br>7<br>8<br>9                                           | 4         53         52           5.4         5.3         5.2           6.3         6.2         6.1           7.2         7.1         6.9           8.1         8.0         7.8 |
| 10<br>11<br>12<br>13<br>14                                                                 | 9.38 871<br>9.38 921<br>9.38 971<br>9.39 021<br>9.39 071                                                           | 50<br>50<br>50<br>50<br>50 | 9.40 212<br>9.40 266<br>9.40 319<br>9.40 372<br>9.40 425 | 53<br>54<br>53<br>53<br>53 | 10.59 788<br>10.59 734<br>10.59 681<br>10.59 628<br>10.59 575 | 9.98 659<br>9.98 656<br>9.98 652<br>9.98 649<br>9.98 646 | 50<br>49<br>48<br>47<br>46                                         | $\begin{bmatrix} 20 & 1 \\ 30 & 2 \\ 40 & 3 \end{bmatrix}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                           |
| 15<br>16<br>17<br>18<br>19                                                                 | 9.39 121<br>9.39 170<br>9.39 220<br>9.39 270<br>9.39 319                                                           | 50<br>49<br>50<br>50<br>49 | 9.40 478<br>9.40 531<br>9.40 584<br>9.40 636<br>9.40 689 | 53<br>53<br>53<br>52<br>53 | 10.59 522<br>10.59 469<br>10.59 416<br>10.59 364<br>10.59 311 | 9.98 643<br>9.98 640<br>9.98 636<br>9.98 633<br>9.98 630 | 45<br>44<br>43<br>42<br>41                                         | <i>''</i> ∣ 5                                              | 1   50   49                                                                                                                                                                     |
| 20<br>21<br>22<br>23<br>24                                                                 | 9.39 369<br>9.39 418<br>9.39 467<br>9.39 517<br>9.39 566                                                           | 50<br>49<br>49<br>50<br>49 | 9.40 742<br>9.40 795<br>9.40 847<br>9.40 900<br>9.40 952 | 53<br>53<br>52<br>53<br>52 | 10.59 258<br>10.59 205<br>10.59 153<br>10.59 100<br>10.59 048 | 9.98 627<br>9.98 623<br>9.98 620<br>9.98 617<br>9.98 614 | 40<br>39<br>38<br>37<br>36                                         | 6<br>7<br>8<br>9<br>10                                     | 5.1 5.0 4.9 6.8 6.7 6.5 7.6 7.5 7.4 8.5 8.3 8.2                                                                                                                                 |
| $ \begin{array}{r}     \hline     25 \\     26 \\     27 \\     28 \\     29 \end{array} $ | 9.39 615<br>9.39 664<br>9.39 713<br>9.39 762<br>9.39 811                                                           | 49<br>49<br>49<br>49       | 9.41 005<br>9.41 057<br>9.41 109<br>9.41 161<br>9.41 214 | 53<br>52<br>52<br>52<br>53 | 10.58 995<br>10.58 943<br>10.58 891<br>10.58 839<br>10.58 786 | 9.98 610<br>9.98 607<br>9.98 604<br>9.98 601<br>9.98 597 | 35<br>34<br>33<br>32<br>31                                         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$     | 7.0   16.7   16.3<br>5.5   25.0   24.5<br>4.0   33.3   32.7<br>2.5   41.7   40.8                                                                                                |
| 30<br>31<br>32<br>33<br>34                                                                 | 9.39 860<br>9.39 909<br>9.39 958<br>9.40 006<br>9.40 055                                                           | 49<br>49<br>49<br>48<br>49 | 9.41 266<br>9.41 318<br>9.41 370<br>9.41 422<br>9.41 474 | 52<br>52<br>52<br>52<br>52 | 10.58 734<br>10.58 682<br>10.58 630<br>10.58 578<br>10.58 526 | 9.98 594<br>9.98 591<br>9.98 588<br>9.98 584<br>9.98 581 | 30<br>29<br>28<br>27<br>26                                         | "                                                          | 48   47                                                                                                                                                                         |
| 35<br>36<br>37<br>38<br>39                                                                 | 9.40 103<br>9.40 152<br>9.40 200<br>9.40 249<br>9.40 297                                                           | 48<br>49<br>48<br>49<br>48 | 9.41 526<br>9.41 578<br>9.41 629<br>9.41 681<br>9.41 733 | 52<br>52<br>51<br>52<br>52 | 10.58 474<br>10.58 422<br>10.58 371<br>10.58 319<br>10.58 267 | 9.98 578<br>9.98 574<br>9.98 571<br>9.98 568<br>9.98 565 | 25<br>24<br>23<br>22<br>21                                         | 6<br>7<br>8<br>9<br>10                                     | 4.8 4.7<br>5.6 5.5<br>6.4 6.3<br>7.2 7.0<br>8.0 7.8<br>16.0 15.7<br>24.0 23.5                                                                                                   |
| 40<br>41<br>42<br>43<br>44                                                                 | 9.40 346<br>9.40 394<br>9.40 442<br>9.40 490<br>9.40 538                                                           | 49<br>48<br>48<br>48<br>48 | 9.41 784<br>9.41 836<br>9.41 887<br>9.41 939<br>9.41 990 | 51<br>52<br>51<br>52<br>51 | 10.58 216<br>10.58 164<br>10.58 113<br>10.58 061<br>10.58 010 | 9.98 561<br>9.98 558<br>9.98 555<br>9.98 551<br>9.98 548 | 20<br>19<br>18<br>17<br>16                                         | 30<br>40<br>50                                             | 24.0   23.5  <br>  32.0   31.3  <br>  40.0   39.2                                                                                                                               |
| 45<br>46<br>47<br>48<br>49                                                                 | 9.40 586<br>9.40 634<br>9.40 682<br>9.40 730<br>9.40 778                                                           | 48<br>48<br>48<br>48<br>48 | 9.42 041<br>9.42 093<br>9.42 144<br>9.42 195<br>9.42 246 | 51<br>52<br>51<br>51<br>51 | 10.57 959<br>10.57 907<br>10.57 856<br>10.57 805<br>10.57 754 | 9.98 545<br>9.98 541<br>9.98 538<br>9.98 535<br>9.98 531 | $ \begin{array}{r} 15 \\ \hline 14 \\ 13 \\ 12 \\ 11 \end{array} $ | ,,<br>6                                                    | <b>4</b>   <b>3</b>   0.3                                                                                                                                                       |
| 50<br>51<br>52<br>53<br>54                                                                 | 9.40 825<br>9.40 873<br>9.40 921<br>9.40 968<br>9.41 016                                                           | 47<br>48<br>48<br>47<br>48 | 9.42 297<br>9.42 348<br>9.42 399<br>9.42 450<br>9.42 501 | 51<br>51<br>51<br>51<br>51 | 10.57 703<br>10.57 652<br>10.57 601<br>10.57 550<br>10.57 499 | 9.98 528<br>9.98 525<br>9.98 521<br>9.98 518<br>9.98 515 | 10<br>9<br>8<br>7<br>6                                             | 6<br>7<br>8<br>9<br>10<br>20<br>30                         | $ \begin{vmatrix} 0.5 & 0.4 \\ 0.5 & 0.4 \\ 0.6 & 0.4 \\ 0.7 & 0.5 \\ 1.3 & 1.0 \\ 2.0 & 1.5 \end{vmatrix} $                                                                    |
| 55<br>56<br>57<br>58<br>59                                                                 | $\begin{array}{ c c c c c c }\hline 9.41\ 063\\ 9.41\ 111\\ 9.41\ 158\\ 9.41\ 205\\ 9.41\ 252\\ \hline\end{array}$ | 47<br>48<br>47<br>47<br>47 | 9.42 552<br>9.42 603<br>9.42 653<br>9.42 704<br>9.42 755 | 51<br>51<br>50<br>51<br>51 | 10.57 448<br>10.57 397<br>10.57 347<br>10.57 296<br>10.57 245 | 9.98 511<br>9.98 508<br>9.98 505<br>9.98 501<br>9.98 498 | 5<br>4<br>3<br>2<br>1                                              | 40<br>50                                                   | 2.7   2.0   3.3   2.5                                                                                                                                                           |
| 60                                                                                         | 9.41 300                                                                                                           | 48<br>-d                   | 9.42 805<br>L Cot                                        | 50<br>c d                  | 10.57 195<br>L Tan                                            | 9.98 494<br>L Sin                                        | 0                                                                  | P                                                          | Prop. Pts.                                                                                                                                                                      |
|                                                                                            | L Cos                                                                                                              | u                          | 1 LOU                                                    | - u                        | 13 Lan                                                        | 1                                                        |                                                                    |                                                            | •                                                                                                                                                                               |

15°

| ,                                                    | L Sin                         | d                                         | L Tan                                                  | c d                                      | L Cot                                                     | L Cos                   | d                                      |                                           | Prop. Pts.                                                                                          |
|------------------------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------------------------|------------------------------------------|-----------------------------------------------------------|-------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 0                                                    | 9.41 300                      | 47                                        | 9.42 805                                               | 51                                       | 10.57 195                                                 | 9.98 494<br>9.98 491    | 3                                      | <b>60</b> 59                              |                                                                                                     |
| $\begin{vmatrix} 1\\2 \end{vmatrix}$                 | 9:41 347<br>9.41 394          | 47                                        | 9.42856 $9.42906$                                      | 50                                       | $\begin{array}{c} 10.57\ 144 \\ 10.57\ 094 \end{array}$   | 9.98 488                | 3                                      | 58                                        |                                                                                                     |
| $\frac{1}{3}$                                        | 9.41 441                      | 47<br>47                                  | 9.42 957                                               | 51<br>50                                 | 10.57 043                                                 | 9.98 484                | $\begin{vmatrix} 4\\3 \end{vmatrix}$   | 57                                        |                                                                                                     |
| 4                                                    | 9.41 488                      | 47                                        | $9.43\ 007$                                            | 50                                       | 10.56 993                                                 | 9.98 481                | 4                                      | 56                                        | ′′  51   50   <b>49</b>                                                                             |
| 5 6                                                  | $9.41\ 535 \ 9.41\ 582$       | 47                                        | $9.43\ 057$ $9.43\ 108$                                | 51                                       | $\begin{array}{c} 10.56 \ 943 \\ 10.56 \ 892 \end{array}$ | 9.98477 $9.98474$       | 3                                      | 55<br>54                                  |                                                                                                     |
| 7                                                    | 9.41628                       | 46                                        | 9.43 158 -                                             | 50                                       | 10.56 842                                                 | 9.98471                 | 3                                      | 53                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 8                                                    | 9.41 675                      | 47<br>47                                  | 9.43 208                                               | 50<br>50                                 | $\begin{array}{c} 10.56\ 792 \\ 10.56\ 742 \end{array}$   | 9.98 467<br>9.98 464    | 3                                      | 52<br>51                                  | $ \begin{vmatrix} 7 & 6.0 & 5.8 & 5.7 \\ 8 & 6.8 & 6.7 & 6.5 \\ 9 & 7.7 & 7.5 & 7.4 \end{vmatrix} $ |
| 9                                                    | $\frac{9.41\ 722}{9.41\ 768}$ | 46                                        | $\frac{9.43\ 258}{9.43\ 308}$                          | 50                                       | $\frac{10.56742}{10.56692}$                               | 9.98464 $9.98460$       | 4                                      | 50                                        | 10  8.5  8.3  8.2                                                                                   |
| 10<br>11                                             | 9.41 708                      | 47                                        | $9.43\ 358$                                            | 50                                       | 10.56 642                                                 | 9.98 457                | 3                                      | 49                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                              |
| 12                                                   | 9.41 861                      | 46<br>47                                  | 9.43 408                                               | 50<br>50                                 | 10.56 592                                                 | 9.98 453                | 3                                      | 48                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 13<br>14                                             | 9.41 908<br>9.41 954          | 46                                        | 9.43 458<br>9.43 508                                   | 50                                       | $\begin{array}{c} 10.56\ 542 \\ 10.56\ 492 \end{array}$   | 9.98450 $9.98447$       | 3                                      | $\begin{array}{c} 47 \\ 46 \end{array}$   | 00 12.0[11.7]10.0                                                                                   |
| 15                                                   | $\frac{9.42\ 001}{}$          | 47                                        | 9.43 558                                               | 50                                       | 10.56 442                                                 | 9.98 443                | 4                                      | 45                                        |                                                                                                     |
| 16                                                   | 9.42 047                      | 46<br>46                                  | $9.43\ 607$                                            | 49<br>50                                 | 10.56 393                                                 | 9.98 440                | 3 4                                    | 44                                        |                                                                                                     |
| 17<br>18                                             | $oxed{9.42\ 093} \ 9.42\ 140$ | 47                                        | $9.43\ 657 \\ 9.43\ 707$                               | 50                                       | $\begin{array}{c} 10.56\ 343 \\ 10.56\ 293 \end{array}$   | 9.98 436<br>9.98 433    | 3                                      | 43<br>42                                  |                                                                                                     |
| 19                                                   | $9.42 \ 186$                  | 46                                        | 9.43 756                                               | 49                                       | 10.56 244                                                 | 9.98 429                | $\begin{vmatrix} 4 \\ 3 \end{vmatrix}$ | 41                                        | ''  48   47   46                                                                                    |
| 20                                                   | 9.42 232                      | 46<br>46                                  | 9.43 806                                               | 50<br>49                                 | 10.56 194                                                 | 9.98 426                | 4                                      | 40                                        | 6 4.8 4.7 4.6                                                                                       |
| $\begin{array}{ c c }\hline 21 \\ 22 \\ \end{array}$ | $9.42\ 278 \ 9.42\ 324$       | 46                                        | 9.43855 $9.43905$                                      | 50                                       | 10.56 145<br>10.56 095                                    | $9.98\ 422$ $9.98\ 419$ | 3                                      | 39<br>38                                  | 7   5.6   5.5   5.4                                                                                 |
| 23                                                   | 9.42324 $9.42370$             | 46                                        | 9.43954                                                | 49                                       | 10.56 046                                                 | 9.98 415                | 4                                      | 37                                        | 9 7.2 7.0 6.9                                                                                       |
| 24                                                   | 9.42 416                      | 46<br>45                                  | 9.44 004                                               | 50<br>49                                 | 10.55 996                                                 | 9.98 412                | 3 3                                    | 36                                        | $egin{array}{c c c c c c c c c c c c c c c c c c c $                                                |
| 25                                                   | $9.42\ 461$ $9.42\ 507$       | 46                                        | $9.44\ 053 \\ 9.44\ 102$                               | 49                                       | 10.55 947<br>10.55 898                                    | 9.98 409<br>9.98 405    | 4                                      | 35<br>34                                  | 30 24.0 23.5 23.0                                                                                   |
| 26 27                                                | $9.42\ 507$ $9.42\ 553$       | 46                                        | 9.44 151                                               | 49                                       | 10.55 849                                                 | 9.98402                 | 3                                      | 33                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 28                                                   | $9.42\ 599$                   | $\begin{array}{c c} 46 \\ 45 \end{array}$ | $9.44\ 201$                                            | 50<br>49                                 | 10.55 799                                                 | 9.98 398                | $\begin{vmatrix} 4 \\ 3 \end{vmatrix}$ | 32                                        |                                                                                                     |
| 29                                                   | 9.42644 $9.42690$             | 46                                        | $\frac{9.44\ 250}{9.44\ 299}$                          | 49                                       | $\frac{10.55750}{10.55701}$                               | $9.98\ 395$ $9.98\ 391$ | 4                                      | 31<br>30                                  |                                                                                                     |
| <b>30</b> 31                                         | $9.42\ 090$ $9.42\ 735$       | 45                                        | 9.44 299                                               | 49                                       | 10.55 652                                                 | 9.98 388                | 3                                      | 29                                        |                                                                                                     |
| 32                                                   | 9.42781                       | 46<br>45                                  | 9.44 397                                               | $\begin{vmatrix} 49 \\ 49 \end{vmatrix}$ | 10.55 603                                                 | 9.98 384                | 4 3                                    | 28                                        |                                                                                                     |
| 33 34                                                | $oxed{9.42\ 826} \ 9.42\ 872$ | 46                                        | $9.44 \ 446 \ 9.44 \ 495$                              | 49                                       | $\begin{array}{c c} 10.55\ 554 \\ 10.55\ 505 \end{array}$ | 9.98 381<br>9.98 377    | 4                                      | $\begin{bmatrix} 27 \\ 26 \end{bmatrix}$  | '' 45   44                                                                                          |
| 35                                                   | 9.42917                       | 45                                        | 9.44 544                                               | 49                                       | 10.55 456                                                 | 9.98 373                | 4                                      | 25                                        | 6 4.5 4.4                                                                                           |
| 36                                                   | 9.42 962                      | 45<br>46                                  | 9.44 592                                               | 48<br>49                                 | $\begin{array}{c} 10.55\ 408 \\ 10.55\ 359 \end{array}$   | 9.98 370                | $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ | 24                                        | $egin{array}{c cccc} 7 & 5.3 & 5.1 \\ 8 & 6.0 & 5.9 \end{array}$                                    |
| 37 38                                                | 9.43 008<br>9.43 053          | 45                                        | 9.44641 $9.44690$                                      | 49                                       | 10.55 310                                                 | 9.98 366<br>9.98 363    | 3                                      | $\begin{array}{c c} 23 \\ 22 \end{array}$ | $egin{array}{c c} 9 & 6.8 & 6.6 \\ 10 & 7.5 & 7.3 \\ \hline \end{array}$                            |
| 39                                                   | 9.43 098                      | 45<br>45                                  | 9.44 738                                               | 48<br>49                                 | 10.55 262                                                 | 9.98 359                | $\begin{vmatrix} 4 \\ 3 \end{vmatrix}$ | _21_                                      | 20 15.0 14.7                                                                                        |
| 40                                                   | 9.43 143                      | 45                                        | 9.44 787                                               | 49                                       | 10.55 213                                                 | 9.98 356                | 4                                      | 20                                        | $ \begin{array}{c c} 30 22.5 22.0 \\ 40 30.0 29.3 \\ 50 37.5 36.7 \end{array} $                     |
| $\begin{array}{ c c }\hline 41\\ 42\\ \end{array}$   | 9.43 188 9.43 233             | 45                                        | 9.44 836<br>9.44 884                                   | 48                                       | 10.55 164<br>10.55 116                                    | $9.98\ 352 \ 9.98\ 349$ | 3                                      | 19<br>18                                  | 50 37.5 36.7                                                                                        |
| 43                                                   | 9.43 278                      | 45<br>45                                  | 9.44 933                                               | 49<br>48                                 | 10.55 067                                                 | 9.98 345                | 3                                      | 17                                        |                                                                                                     |
| 44                                                   | 9.43323                       | 44                                        | 9.44981 $9.45029$                                      | 48                                       | $\frac{10.55\ 019}{10.54\ 971}$                           | $9.98\ 342$ $9.98\ 338$ | 4                                      | $\frac{16}{15}$                           |                                                                                                     |
| 45 46                                                | 9.43 367<br>9.43 412          | 45                                        | 9.45029 $9.45078$                                      | 49                                       | 10.54922                                                  | 9.98 334                | 4                                      | 14                                        |                                                                                                     |
| 47                                                   | 9.43 457                      | 45<br>45                                  | $9.45\ 126$                                            | 48<br>48                                 | 10.54 874                                                 | 9.98331                 | 3 4                                    | 13                                        | ″  4   3                                                                                            |
| 48 49                                                | 9.43 502<br>9.43 546          | 44                                        | $egin{array}{c} 9.45\ 174 \ 9.45\ 222 \ \end{array}$   | 48                                       | $10.54826 \\ 10.54778$                                    | $9.98327 \\ 9.98324$    | 3                                      | 12<br>11                                  |                                                                                                     |
| 50                                                   | 9.43 591                      | 45                                        | 9.45 271                                               | 49                                       | 10.54 729                                                 | 9.98 320                | 4                                      | 10                                        | 7 0.5 0.4                                                                                           |
| 51                                                   | 9.43 635                      | 44 45                                     | 9.45 319                                               | 48<br>48                                 | 10.54 681                                                 | 9.98 317                | 3 4                                    | 9                                         | $egin{array}{c c c} 8 & 0.5 & 0.4 \\ 9 & 0.6 & 0.5 \\ \hline \end{array}$                           |
| 52<br>53                                             | 9.43 680<br>9.43 724          | 44                                        | $9.45\ 367 \\ 9.45\ 415$                               | 48                                       | 10.54 633<br>10.54 585                                    | 9.98 313<br>9.98 309    | 4                                      | 8<br>7                                    | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                |
| 54                                                   | 9.43 769                      | 45                                        | 9.45 463                                               | 48                                       | 10.54 537                                                 | 9.98 306                | 3 4                                    | 6_                                        | 30   2.0   1.5                                                                                      |
| 55                                                   | 9.43 813                      | 44                                        | 9.45 511                                               | 48                                       | 10.54 489                                                 | 9.98 302                | 3                                      | 5                                         | $egin{array}{c c c} 40 & 2.7 & 2.0 \\ 50 & 3.3 & 2.5 \\ \hline \end{array}$                         |
| 56 57                                                | 9.43 857 9.43 901             | 44                                        | 9.45559 $9.45606$                                      | 47                                       | 10.54 441<br>10.54 394                                    | 9.98 299<br>9.98 295    | 4                                      | 4 3                                       |                                                                                                     |
| 58                                                   | 9.43 946                      | 45                                        | 9.45 654                                               | 48                                       | 10.54 346                                                 | 9.98 291                | 4 3                                    | 2                                         |                                                                                                     |
| 59                                                   | 9.43 990                      | 44                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 48                                       | 10.54 298                                                 | 9.98 288                | 4                                      | $\frac{1}{0}$                             |                                                                                                     |
| 60                                                   | 9.44 034                      |                                           |                                                        |                                          | 10.54 250                                                 | 9.98 284                |                                        |                                           |                                                                                                     |
|                                                      | L Cos                         | d                                         | L Cot                                                  | c d                                      | L Tan                                                     | L Sin                   | d                                      | ′                                         | Prop. Pts.                                                                                          |

16°

| ′                                                    | L Sin                                                             | d               | L Tan                               | c d                                                | L Cot                                                       | L Cos                           | d                                                      |                                          | Prop. Pts.                                                                         |
|------------------------------------------------------|-------------------------------------------------------------------|-----------------|-------------------------------------|----------------------------------------------------|-------------------------------------------------------------|---------------------------------|--------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------|
| 0                                                    | 9.44 034<br>9.44 078                                              | 44              | 9.45 750<br>9.45 797                | 47                                                 | 10.54 250<br>10.54 203                                      | 9.98 284<br>9.98 281            | 3                                                      | <b>60</b> 59                             |                                                                                    |
| 2                                                    | 9.44 122                                                          | 44              | 9.45 845                            | 48 47                                              | 10.54 155                                                   | 9.98 277                        | 4                                                      | 58                                       |                                                                                    |
| 3 4                                                  | 9.44 166<br>9.44 210                                              | 44              | 9.45 892 9.45 940                   | 48                                                 | 10.54 108                                                   | 9.98 273<br>9.98 270            | 3                                                      | 57 56                                    |                                                                                    |
| 5                                                    | 9.44 253                                                          | 43              | 9.45 987                            | 47                                                 | 10.54 013                                                   | 9.98 266                        | 4                                                      | 55                                       | ′′  48   47   46                                                                   |
| 6                                                    | 9.44 297                                                          | 44              | 9.46 035                            | 48                                                 | 10.53 965                                                   | 9.98 262                        | 4                                                      | 54                                       |                                                                                    |
| 8                                                    | 9.44 341<br>9.44 385                                              | 44              | 9.46 082<br>9.46 130                | 47                                                 | 10.53 918<br>10.53 870                                      | 9.98 259<br>9.98 255            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 53                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |
| 9                                                    | 9.44 428                                                          | 43              | 9.46 177                            | 47                                                 | 10.53 823                                                   | $9.98\ 251$                     | 4                                                      | 52 51                                    | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                             |
| 10                                                   | 9.44 472                                                          | 44              | 9.46 224                            | 47                                                 | 10.53 776                                                   | 9.98 248                        | 3                                                      | 50                                       | 10 8.0 7.8 7.7                                                                     |
| 11 12                                                | 9.44 516<br>9.44 559                                              | 44 43           | 9.46 271<br>9.46 319                | 47<br>48                                           | 10.53 729                                                   | 9.98 244                        | 4                                                      | 49                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |
| 13                                                   | 9.44 602                                                          | 43              | 9.46 366                            | 47                                                 | 10.53 681<br>10.53 634                                      | 9.98 240<br>9.98 237            | 3                                                      | 48 47                                    | $\begin{bmatrix} 40 & 32.0 & 31.3 & 30.7 \\ 50 & 40.0 & 39.2 & 38.3 \end{bmatrix}$ |
| 14                                                   | 9.44 646                                                          | 44 43           | 9.46 413                            | 47 47                                              | 10.53 587                                                   | 9.98 233                        | $\begin{array}{ c c }\hline 4 \\ 4 \end{array}$        | 46                                       | , , , , , , , , , , , , , , , , , , , ,                                            |
| 15<br>16                                             | 9.44 689                                                          | 44              | 9.46 460                            | 47                                                 | 10.53 540                                                   | 9.98 229                        | 3                                                      | 45                                       |                                                                                    |
| $\begin{vmatrix} 10 \\ 17 \end{vmatrix}$             | 9.44 733<br>9.44 776                                              | 43              | 9.46507 $9.46554$                   | 47                                                 | 10.53 493<br>10.53 446                                      | $9.98226 \\ 9.98222$            | 4                                                      | $\begin{bmatrix} 44 \\ 43 \end{bmatrix}$ |                                                                                    |
| 18                                                   | 9.44 819                                                          | 43<br>43        | 9.46 601                            | 47<br>47                                           | $10.53\ 399$                                                | 9.98 218                        | 4                                                      | 42                                       |                                                                                    |
| $\frac{19}{20}$                                      | 9.44 862                                                          | 43              | 9.46 648                            | 46                                                 | 10.53 352                                                   | 9.98 215                        | $\frac{3}{4}$                                          | 41                                       | " 45   44   43                                                                     |
| 21                                                   | 9.44 905<br>9.44 948                                              | 43              | 9.46694 $9.46741$                   | 47                                                 | $\begin{array}{c} 10.53\ 306 \\ 10.53\ 259 \end{array}$     | 9.98 211<br>9.98 207            | 4                                                      | <b>40</b> 39                             | $6 \mid 4.5 \mid 4.4 \mid 4.3$                                                     |
| 22                                                   | 9.44 992                                                          | 44              | 9.46 788                            | 47                                                 | $10.53\ 212$                                                | 9.98 204                        | 3                                                      | 38                                       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                             |
| $\begin{array}{ c c }\hline 23 \\ 24 \\ \end{array}$ | $9.45\ 035 \ 9.45\ 077$                                           | 43<br>42        | 9.46 835<br>9.46 881                | $egin{array}{c c} 47 \\ 46 \\ \end{array}$         | $\begin{array}{c} 10.53\ 165 \\ 10.53\ 119 \end{array}$     | 9.98 200<br>9.98 196            | $\frac{4}{4}$                                          | $\begin{bmatrix} 37 \\ 36 \end{bmatrix}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |
| $\frac{21}{25}$                                      | 9.45 120                                                          | 43              | 9.46 928                            | 47                                                 | 10.53 072                                                   | 9.98 192                        | 4                                                      | $\frac{30}{35}$                          | 20 15.0 14.7 14.3                                                                  |
| 26                                                   | $9.45\ 163$                                                       | 43              | 9.46975                             | 47                                                 | 10.53 025                                                   | 9.98 189                        | 3                                                      | 34                                       | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                 |
| $\begin{array}{ c c } 27 \\ 28 \end{array}$          | $egin{array}{c} 9.45\ 206 \ 9.45\ 249 \ \end{array}$              | 43<br>43        | $9.47\ 021 \\ 9.47\ 068$            | $\begin{array}{ c c }\hline 46\\ 47\\ \end{array}$ | $\begin{array}{c} 10.52\ 979 \\ 10.52\ 932 \end{array}$     | 9.98 185<br>9.98 181            | 4 4                                                    | 33   32                                  | 50 37.5 36.7 35.8                                                                  |
| $\begin{vmatrix} 20 \\ 29 \end{vmatrix}$             | 9.45 292                                                          | 43              | 9.47 114                            | 46                                                 | 10.52 886                                                   | 9.98 177                        | 4                                                      | $\begin{vmatrix} 32 \\ 31 \end{vmatrix}$ |                                                                                    |
| 30                                                   | 9.45 344                                                          | 42<br>43        | 9.47 160                            | 46<br>47                                           | 10.52 840                                                   | 9.98 174                        | 3                                                      | 30                                       |                                                                                    |
| $\begin{vmatrix} 31 \\ 32 \end{vmatrix}$             | $egin{array}{c} 9.45\ 377 \ 9.45\ 419 \ \end{array}$              | 42              | $9.47\ 207\ 9.47\ 253$              | 46                                                 | 10.52 793<br>10.52 747                                      | 9.98 170<br>9.98 166            | 4                                                      | 29<br>28                                 |                                                                                    |
| 33                                                   | $9.45\ 462$                                                       | 43              | 9.47 299                            | 46                                                 | 10.52701                                                    | 9.98 162                        | 4                                                      | $\begin{bmatrix} 26 \\ 27 \end{bmatrix}$ | "  42   41                                                                         |
| 34                                                   | 9.45 504                                                          | 42<br>43        | 9.47 346                            | $\begin{array}{ c c } 47 \\ 46 \end{array}$        | 10.52 654                                                   | 9.98 159                        | $\frac{3}{4}$                                          | _26_                                     |                                                                                    |
| 35<br>36                                             | $egin{array}{c} 9.45\ 547\ 9.45\ 589 \end{array}$                 | 42              | 9.47 392<br>9.47 438                | 46                                                 | $\begin{array}{c} 10.52\ 608 \\ 10.52\ 562 \end{array}$     | 9.98 155<br>9.98 151            | 4                                                      | $\begin{bmatrix} 25 \\ 24 \end{bmatrix}$ | 6 4.2 4.1<br>7 4.9 4.8                                                             |
| 37                                                   | 9.45 632                                                          | 43              | 9.47 484                            | 46                                                 | $10.52\ 516$                                                | 9.98 147                        | 4                                                      | 23                                       | 7 4.9 4.8<br>8 5.6 5.5<br>9 6.3 6.2                                                |
| 38<br>39                                             | 9.45 674                                                          | 42<br>42        | 9.47530 $9.47576$                   | 46<br>46                                           | $\begin{array}{c} 10.52\ 470 \\ 10.52\ 424 \end{array}$     | 9.98 144<br>9.98 140            | $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$                 | $\begin{bmatrix} 22 \\ 21 \end{bmatrix}$ | 10 7.0 6.8                                                                         |
| 40                                                   | $\frac{9.45\ 716}{9.45\ 758}$                                     | $\overline{42}$ | $\frac{9.47}{9.47} \frac{570}{622}$ | 46                                                 | $\frac{10.52424}{10.52378}$                                 | $\frac{9.98 \ 140}{9.98 \ 136}$ | 4                                                      | $\frac{21}{20}$                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |
| 41                                                   | 9.45 801                                                          | 43              | 9.47 668                            | 46                                                 | 10.52 332                                                   | 9.98 132                        | 4                                                      | 19                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |
| 42   43                                              | $egin{array}{c c} 9.45 & 843 \\ 9.45 & 885 \\ \hline \end{array}$ | 42<br>42        | 9.47714 $9.47760$                   | 46<br>46                                           | $\begin{array}{c c} 10.52 \ 286 \\ 10.52 \ 240 \end{array}$ | $9.98\ 129 \ 9.98\ 125$         | $\begin{array}{c c} 3 \\ 4 \end{array}$                | 18<br>17                                 | 7 7                                                                                |
| 44                                                   | $9.45\ 927$                                                       | 42              | 9.47 806                            | 46                                                 | 10.52 240                                                   | 9.98 121                        | 4                                                      | 16                                       |                                                                                    |
| 45                                                   | 9.45 969                                                          | 42              | 9.47 852                            | 46                                                 | 10.52 148                                                   | 9.98 117                        | 4                                                      | 15                                       |                                                                                    |
| 46 47                                                | $9.46\ 011 \ 9.46\ 053$                                           | 42<br>42        | 9.47 897<br>9.47 943                | 45<br>46                                           | $\begin{array}{c c} 10.52 \ 103 \\ 10.52 \ 057 \end{array}$ | 9.98 113<br>9.98 110            | $\frac{4}{3}$                                          | $\begin{vmatrix} 14 \\ 13 \end{vmatrix}$ |                                                                                    |
| 48                                                   | 9.46095                                                           | 42              | 9.47 989                            | 46                                                 | 10.52 011                                                   | 9.98 106                        | 4                                                      | 12                                       | " 4 3                                                                              |
| 49                                                   | 9.46 136                                                          | 41<br>42        | 9.48 035                            | 46<br>45                                           | 10.51 965                                                   | 9.98 102                        | $\begin{array}{c c} 4 \\ 4 \end{array}$                | 11                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |
| <b>50</b> 51                                         | $egin{array}{c c} 9.46 & 178 \\ 9.46 & 220 \\ \hline \end{array}$ | 42              | 9.48 080<br>9.48 126                | 46                                                 | 10.51 920<br>10.51 874                                      | 9.98 098<br>9.98 094            | 4                                                      | <b>10</b> 9                              | 8 0.5 0.4                                                                          |
| 52                                                   | 9.46 262                                                          | 42              | 9.48 171                            | 45                                                 | 10.51 829                                                   | 9.98 090                        | 4                                                      | 8                                        | 10 0.7 0.5                                                                         |
| 53<br>54                                             | 9.46 303                                                          | 41<br>42        | $9.48\ 217$ $9.48\ 262$             | 46<br>45                                           | 10.51 783<br>10.51 738                                      | 9.98 087<br>9.98 083            | $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$                 | $\begin{bmatrix} 7 \\ 6 \end{bmatrix}$   | $\begin{array}{c c c c} 20 & 1.3 & 1.0 \\ 30 & 2.0 & 1.5 \end{array}$              |
| $\frac{54}{55}$                                      | $\frac{9.46\ 345}{9.46\ 386}$                                     | 41              | $\frac{9.48\ 202}{9.48\ 307}$       | 45                                                 | 10.51 755                                                   | $\frac{9.98\ 033}{9.98\ 079}$   | 4                                                      | $\frac{5}{5}$                            | 40 2.7   2.0                                                                       |
| 56                                                   | 9.46 428                                                          | 42              | 9.48 353                            | 46                                                 | 10.51 647                                                   | 9.98 075                        | 4                                                      | 4                                        | 50   3.3   2.5                                                                     |
| 57                                                   | 9.46 469                                                          | 41<br>42        | 9.48 398                            | 45<br>45                                           | $\begin{array}{c c} 10.51 \ 602 \\ 10.51 \ 557 \end{array}$ | $9.98071 \\ 9.98067$            | $\frac{4}{4}$                                          | $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$   |                                                                                    |
| 58<br>59                                             | $egin{array}{c} 9.46\ 511 \ 9.46\ 552 \ \end{array}$              | 41              | 9.48 443<br>9.48 489                | 46                                                 | 10.51 557                                                   | 9.98 063                        | 4                                                      | $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$   |                                                                                    |
| 60                                                   | 9.46 594                                                          | 42              | 9.48 534                            | 45                                                 | 10.51 466                                                   | 9.98 060                        | 3                                                      | 0                                        |                                                                                    |
|                                                      | L Cos                                                             | d               | L Cot                               | c d                                                | L Tan                                                       | L Sin                           | d                                                      | ′                                        | Prop. Pts.                                                                         |

17°

| ,                                                                                                                  | L Sin                                                                                                                    | d                          | L Tan                                                                                                           | c d                        | L Cot                                                                                                                             | L Cos                                                                                                            | d                     |                                                                            | Prop. Pts.                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4                                                                                              | 9.46 594<br>9.46 635<br>9.46 676<br>9.46 717<br>9.46 758                                                                 | 41<br>41<br>41<br>41       | 9.48 534<br>9.48 579<br>9.48 624<br>9.48 669<br>9.48 714                                                        | 45<br>45<br>45<br>45       | 10.51 466<br>10.51 421<br>10.51 376<br>10.51 331<br>10.51 286                                                                     | 9.98 060<br>9.98 056<br>9.98 052<br>9.98 048<br>9.98 044                                                         | 4<br>4<br>4<br>4      | <b>60</b> 59 58 57 56                                                      |                                                                                                                                                                                                                          |
| 5<br>6<br>7<br>8                                                                                                   | 9.46 800<br>9.46 841<br>9.46 882<br>9.46 923                                                                             | 42<br>41<br>41<br>41<br>41 | 9.48 759<br>9.48 804<br>9.48 849<br>9.48 894                                                                    | 45<br>45<br>45<br>45<br>45 | 10.51 241<br>10.51 196<br>10.51 151<br>10.51 106<br>10.51 061                                                                     | 9,98 040<br>9,98 036<br>9,98 032<br>9,98 029<br>9,98 025                                                         | 4<br>4<br>4<br>3<br>4 | 55<br>54<br>53<br>52<br>51                                                 | "   <b>45</b>   <b>44</b>   <b>43</b><br>6   4.5   4.4   4.3<br>7   5.3   5.1   5.0<br>8   6.0   5.9   5.7<br>9   6.8   6.6   6.4                                                                                        |
| 9<br>10<br>11<br>12<br>13                                                                                          | 9.46 964<br>9.47 005<br>9.47 045<br>9.47 086<br>9.47 127                                                                 | 41<br>40<br>41<br>41<br>41 | 9.48 939<br>9.48 984<br>9.49 029<br>9.49 073<br>9.49 118                                                        | 45<br>45<br>44<br>45<br>45 | 10.51 016<br>10.50 971<br>10.50 927<br>10.50 882                                                                                  | 9.98 021<br>9.98 017<br>9.98 013<br>9.98 009                                                                     | 4<br>4<br>4<br>4<br>4 | 50<br>49<br>48<br>47<br>46                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |
| $ \begin{array}{ c c c } \hline 14 \\ \hline 15 \\ 16 \\ 17 \\ 18 \\ 10 \end{array} $                              | 9.47 168<br>9.47 209<br>9.47 249<br>9.47 290<br>9.47 330                                                                 | 41<br>40<br>41<br>40<br>41 | 9.49 163<br>9.49 207<br>9.49 252<br>9.49 296<br>9.49 341                                                        | 44<br>45<br>44<br>45<br>44 | $ \begin{array}{r} 10.50 837 \\ \hline 10.50 793 \\ 10.50 748 \\ 10.50 704 \\ 10.50 659 \\ 10.50 615 \end{array} $                | $\begin{array}{c} 9.98\ 005 \\ \hline 9.98\ 001 \\ 9.97\ 997 \\ 9.97\ 993 \\ 9.97\ 989 \\ 0.07\ 086 \end{array}$ | 4<br>4<br>4<br>3      | 45<br>44<br>43<br>42                                                       |                                                                                                                                                                                                                          |
| 19<br>20<br>21<br>22<br>23                                                                                         | $ \begin{array}{r} 9.47 \ 371 \\ \hline 9.47 \ 411 \\ 9.47 \ 452 \\ 9.47 \ 492 \\ 9.47 \ 533 \\ 9.47 \ 533 \end{array} $ | 40<br>41<br>40<br>41<br>40 | $\begin{array}{r} 9.49\ 385 \\ \hline 9.49\ 430 \\ 9.49\ 474 \\ 9.49\ 519 \\ 9.49\ 563 \\ 240\ 697 \end{array}$ | 45<br>44<br>45<br>44<br>44 | $ \begin{array}{r} 10.50 \ 615 \\ \hline 10.50 \ 570 \\ 10.50 \ 526 \\ 10.50 \ 481 \\ 10.50 \ 437 \\ 10.50 \ 303 \\ \end{array} $ | 9.97 986<br>9.97 982<br>9.97 978<br>9.97 974<br>9.97 970                                                         | 4 4 4 4               | 41<br>40<br>39<br>38<br>37                                                 | "   42   41<br>6   4.2   4.1<br>7   4.9   4.8<br>8   5.6   5.5<br>9   6.3   6.2<br>10   7.0   6.2                                                                                                                        |
| $ \begin{array}{ c c c } \hline 24 \\ \hline 25 \\ 26 \\ 27 \\ 28 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$ | 9.47 573<br>9.47 613<br>9.47 654<br>9.47 694<br>9.47 734                                                                 | 40<br>41<br>40<br>40<br>40 | 9.49 607<br>9.49 652<br>9.49 696<br>9.49 740<br>9.49 784                                                        | 45<br>44<br>44<br>44<br>44 | 10.50 393<br>10.50 348<br>10.50 304<br>10.50 260<br>10.50 216                                                                     | $\begin{array}{r} 9.97\ 966 \\ \hline 9.97\ 962 \\ 9.97\ 958 \\ 9.97\ 954 \\ 9.97\ 950 \\ 0.07\ 046 \end{array}$ | 4<br>4<br>4<br>4<br>4 | 36<br>35<br>34<br>33<br>32                                                 | $\begin{array}{c cccc} 10 & 7.0 & 6.8 \\ 20 & 14.0 & 13.7 \\ 30 & 21.0 & 20.5 \\ 40 & 28.0 & 27.3 \\ 50 & 35.0 & 34.2 \end{array}$                                                                                       |
| 30<br>31<br>32<br>33                                                                                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                   | 40<br>40<br>40<br>40<br>40 | 9.49 828<br>9.49 872<br>9.49 916<br>9.49 960<br>9.50 004                                                        | 44<br>44<br>44<br>44<br>44 | $\begin{array}{r} 10.50\ 172 \\ \hline 10.50\ 128 \\ 10.50\ 084 \\ 10.50\ 040 \\ 10.49\ 996 \\ \end{array}$                       | $\begin{array}{r} 9.97\ 946 \\ \hline 9.97\ 942 \\ 9.97\ 938 \\ 9.97\ 934 \\ 9.97\ 930 \\ \end{array}$           | 4<br>4<br>4<br>4<br>4 | 31<br>30<br>29<br>28<br>27                                                 | ′′   <b>4</b> 0   39                                                                                                                                                                                                     |
| 34<br>35<br>36<br>37<br>38<br>39                                                                                   | 9.47 974<br>9.48 014<br>9.48 054<br>9.48 094<br>9.48 133<br>9.48 173                                                     | 40<br>40<br>40<br>39<br>40 | 9.50 048<br>9.50 092<br>9.50 136<br>9.50 180<br>9.50 223<br>9.50 267                                            | 44<br>44<br>44<br>43<br>44 | $\begin{array}{r} 10.49\ 952 \\ \hline 10.49\ 908 \\ 10.49\ 864 \\ 10.49\ 820 \\ 10.49\ 777 \\ 10.49\ 733 \\ \end{array}$         | 9.97 926<br>9.97 922<br>9.97 918<br>9.97 914<br>9.97 910<br>9.97 906                                             | 4<br>4<br>4<br>4<br>4 | $ \begin{array}{c c} 26 \\ \hline 25 \\ 24 \\ 23 \\ 22 \\ 21 \end{array} $ |                                                                                                                                                                                                                          |
| 40<br>41<br>42<br>43<br>44                                                                                         | 9.48 213<br>9.48 252<br>9.48 292<br>9.48 332<br>9.48 371                                                                 | 40<br>39<br>40<br>40<br>39 | 9.50 207<br>9.50 311<br>9.50 355<br>9.50 398<br>9.50 442<br>9.50 485                                            | 44<br>44<br>43<br>44<br>43 | 10.49 689<br>10.49 645<br>10.49 602<br>10.49 558<br>10.49 515                                                                     | 9.97 902<br>9.97 898<br>9.97 894<br>9.97 890<br>9.97 886                                                         | 4<br>4<br>4<br>4      | 20<br>19<br>18<br>17<br>16                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |
| 45<br>46<br>47<br>48<br>49                                                                                         | 9.48 411<br>9.48 450<br>9.48 490<br>9.48 529<br>9.48 568                                                                 | 40<br>39<br>40<br>39<br>39 | 9.50 529<br>9.50 572<br>9.50 616<br>9.50 659<br>9.50 703                                                        | 44<br>43<br>44<br>43<br>44 | 10.49 471<br>10.49 428<br>10.49 384<br>10.49 341<br>10.49 297                                                                     | 9.97 882<br>9.97 878<br>9.97 874<br>9.97 870<br>9.97 866                                                         | 4 4 4 4               | 15<br>14<br>13<br>12<br>11                                                 | "   <b>5</b>   <b>4</b>   <b>3</b>   0.3                                                                                                                                                                                 |
| 50<br>51<br>52<br>53<br>54                                                                                         | 9.48 607<br>9.48 647<br>9.48 686<br>9.48 725<br>9.48 764                                                                 | 39<br>40<br>39<br>39<br>39 | 9.50 746<br>9.50 789<br>9.50 833<br>9.50 876<br>9.50 919                                                        | 43<br>43<br>44<br>43<br>43 | 10.49 254<br>10.49 211<br>10.49 167<br>10.49 124<br>10.49 081                                                                     | 9.97 861<br>9.97 857<br>9.97 853<br>9.97 849<br>9.97 845                                                         | 5<br>4<br>4<br>4<br>4 | 10<br>9<br>8<br>7<br>6                                                     | $ \begin{array}{c} 0.3 & 0.4 & 0.3 \\ 70.6 & 0.5 & 0.4 \\ 80.7 & 0.5 & 0.4 \\ 90.8 & 0.6 & 0.5 \\ 100.8 & 0.7 & 0.5 \\ 201.7 & 1.3 & 1.0 \\ 302.5 & 2.0 & 1.5 \\ 403.3 & 2.7 & 2.0 \\ 504.2 & 3.3 & 2.5 \\ \end{array} $ |
| 55<br>56<br>57<br>58<br>59                                                                                         | 9.48 803<br>9.48 842<br>9.48 881<br>9.48 920<br>9.48 959                                                                 | 39<br>39<br>39<br>39<br>39 | 9.50 962<br>9.51 005<br>9.51 048<br>9.51 092<br>9.51 135                                                        | 43<br>43<br>43<br>44<br>43 | 10.49 038<br>10.48 995<br>10.48 952<br>10.48 908<br>10.48 865                                                                     | 9.97 841<br>9.97 837<br>9.97 833<br>9.97 829<br>9.97 825                                                         | 4 4 4 4               | $\begin{bmatrix} -5 \\ 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}$                     | $\begin{array}{c c} 40 & 3.3 & 2.7 & 2.0 \\ 50 & 4.2 & 3.3 & 2.5 \end{array}$                                                                                                                                            |
| 60                                                                                                                 | 9.48 998                                                                                                                 | 39                         | 9.51 178                                                                                                        | 43                         | 10.48 822                                                                                                                         | 9.97 821                                                                                                         | 4                     | 0                                                                          |                                                                                                                                                                                                                          |
|                                                                                                                    | L Cos                                                                                                                    | d                          | L Cot                                                                                                           | c d                        | L Tan                                                                                                                             | L Sin                                                                                                            | d                     |                                                                            | Prop. Pts.                                                                                                                                                                                                               |

18°

| /                                         | L Sin                                                             | d               | L Tan                                                  | c d                                      | L Cot                                                         | L Cos                                                   | d                                      | 1                                         | Drop Dt                                                                                    |
|-------------------------------------------|-------------------------------------------------------------------|-----------------|--------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------|
| 0                                         | 9.48 998                                                          |                 | 9.51 178                                               |                                          |                                                               |                                                         |                                        |                                           | Prop. Pts.                                                                                 |
| 1                                         | 9.49 037                                                          | 39              | 9.51 221                                               | 43                                       | 10.48 822 10.48 779                                           | 9.97 821 9.97 817                                       | 4                                      | 60                                        |                                                                                            |
| 2                                         | 9.49 076                                                          | 39              | 9.51 264                                               | 43                                       | 10.48 736                                                     | 9.97 812                                                | 5                                      | 59<br>58                                  |                                                                                            |
| 3                                         | 9.49 115                                                          | 39<br>38        | 9.51 306                                               | 42                                       | 10.48 694                                                     | 9.97 808                                                | 4                                      | 57                                        |                                                                                            |
| 4                                         | 9.49 153                                                          | 39              | 9.51 349                                               | 43                                       | 10.48 651                                                     | 9.97 804                                                | 4                                      | 56                                        |                                                                                            |
| 5                                         | 9.49 192                                                          | 39              | 9.51 392                                               | 43                                       | 10.48 608                                                     | 9.97 800                                                | 4                                      | 55                                        |                                                                                            |
| $\begin{array}{c} 6 \\ 7 \end{array}$     | $9.49\ 231 \\ 9.49\ 269$                                          | 38              | 9.51 435<br>9.51 478                                   | 43                                       | 10.48 565                                                     | 9.97 796                                                | 4                                      | 54                                        |                                                                                            |
| 8                                         | 9.49 308                                                          | 39              | 9.51 478                                               | 42                                       | 10.48 522<br>10.48 480                                        | 9.97 792                                                | 4                                      | 53                                        | "   43   42   41                                                                           |
| 9                                         | 9.49 347                                                          | 39              | 9.51 563                                               | 43                                       | 10.48 480                                                     | 9.97 788<br>9.97 784                                    | 4                                      | 52                                        |                                                                                            |
| 10                                        | 9.49 385                                                          | 38              | 9.51 606                                               | 43                                       | 10.48 394                                                     |                                                         | 5                                      | 51                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      |
| 11                                        | 9.49 424                                                          | 39              | 9.51 648                                               | 42                                       | 10.48 352                                                     | 9.97 779<br>9.97 775                                    | 4                                      | 50                                        | 8 5.7 5.6 5.5                                                                              |
| 12                                        | 9.49 462                                                          | 38              | 9.51 691                                               | 43                                       | 10.48 309                                                     | 9.97 771                                                | 4                                      | 49                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      |
| 13                                        | 9.49 500                                                          | $\frac{38}{39}$ | 9.51 734                                               | $\begin{vmatrix} 43 \\ 42 \end{vmatrix}$ | $10.48\ 266$                                                  | 9.97 767                                                | 4                                      | $\frac{10}{47}$                           | $\begin{bmatrix} 20 & 14.3 & 14.0 & 13.7 \\ 30 & 21.5 & 21.0 & 20.5 \end{bmatrix}$         |
| 14                                        | 9.49 539                                                          | 38              | 9.51 776                                               | 43                                       | 10.48 224                                                     | 9.97763                                                 | 4                                      | 46                                        | $\begin{vmatrix} 30 & 21.5 & 21.0 & 20.5 \\ 40 & 28.7 & 29.0 & 27.3 \end{vmatrix}$         |
| 15                                        | 9.49 577                                                          | 38              | 9.51 819                                               | 42                                       | 10.48 181                                                     | 9.97 759                                                | 4                                      | 45                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      |
| 16<br>17                                  | 9.49615 $9.49654$                                                 | 39              | 9.51861 $9.51903$                                      | 42                                       | 10.48 139                                                     | 9.97 754                                                | 5<br>4                                 | 44                                        | 2 0 0 0 2 1 2                                                                              |
| 18                                        | 9.49 692                                                          | 38              | 9.51 903                                               | 43                                       | 10.48 097<br>10.48 054                                        | 9.97 750                                                | 4                                      | 43                                        |                                                                                            |
| 19                                        | 9.49 730                                                          | 38              | 9.51 988                                               | 42                                       | 10.48 012                                                     | $9.97746 \\ 9.97742$                                    | 4                                      | 42<br>41                                  |                                                                                            |
| 20                                        | 9.49 768                                                          | 38              | 9.52 031                                               | 43                                       | 10.47 969                                                     | 9.97 738                                                | 4                                      | 40                                        |                                                                                            |
| 21                                        | 9.49 806                                                          | 38              | $9.52\ 073$                                            | 42                                       | 10.47 927                                                     | 9.97 734                                                | 4                                      | 39                                        |                                                                                            |
| 22                                        | 9.49 844                                                          | 38<br>38        | $9.52\ 115$                                            | 42                                       | 10.47 885                                                     | 9.97729                                                 | 5                                      | 38                                        |                                                                                            |
| $\begin{bmatrix} 23 \\ 24 \end{bmatrix}$  | 9.49 882                                                          | 38              | 9.52 157                                               | $\begin{vmatrix} 42 \\ 43 \end{vmatrix}$ | 10.47 843                                                     | 9.97725                                                 | 4                                      | 37                                        |                                                                                            |
|                                           | 9.49920                                                           | 38              | $\frac{9.52\ 200}{0.53\ 240}$                          | 42                                       | 10.47 800                                                     | 9.97721                                                 | $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ | 36                                        |                                                                                            |
| 25<br>26                                  | 9.49 958<br>9.49 996                                              | 38              | 9.52 242                                               | 42                                       | 10.47 758                                                     | 9.97 717                                                | 1                                      | 35                                        |                                                                                            |
| $\begin{bmatrix} 20 \\ 27 \end{bmatrix}$  | $9.50\ 034$                                                       | 38              | $9.52\ 284 \ 9.52\ 326$                                | 42                                       | $\begin{array}{c c} 10.47\ 716 \\ 10.47\ 674 \end{array}$     | 9.97 713                                                | 4<br>5                                 | 34                                        | ″   39   38   3 <b>7</b>                                                                   |
| $\frac{1}{28}$                            | $9.50\ 072$                                                       | 38              | 9.52 368                                               | 42                                       | 10.47 632                                                     | $egin{array}{c} 9.97\ 708\ 9.97\ 704 \end{array}$       | 4                                      | $\begin{array}{c c} 33 \\ 32 \end{array}$ | 6 3.9 3.8 3.7                                                                              |
| 29                                        | 9.50 110                                                          | 38              | 9.52410                                                | 42                                       | 10.47 590                                                     | 9.97 700                                                | 4                                      | $3\overline{1}$                           | 7   4.6   4.4   4.3                                                                        |
| 30                                        | 9.50 148                                                          | 38              | 9.52452                                                | 42                                       | 10.47 548                                                     | 9.97 696                                                | 4                                      | 30                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      |
| 31                                        | 9.50 185                                                          | 37<br>38        | 9.52494                                                | 42                                       | 10.47 506                                                     | 9.97 691                                                | 5                                      | 29                                        | 10   6.5   6.3   6.2                                                                       |
| 32   33                                   | 9.50 223                                                          | 38              | 9.52 536                                               | $\begin{vmatrix} 42 \\ 42 \end{vmatrix}$ | 10.47 464                                                     | 9.97 687                                                | 4                                      | 28                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      |
| $\begin{array}{c c} 33 \\ 34 \end{array}$ | $oxed{9.50\ 261} \ oxed{9.50\ 298}$                               | 37              | $9.52\ 578 \ 9.52\ 620$                                | 42                                       | $ \begin{array}{c c} 10.47 & 422 \\ 10.47 & 380 \end{array} $ | 9.97 683                                                | $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ | $\frac{27}{20}$                           | 40 26.0 25.3 24.7                                                                          |
| $\frac{35}{35}$                           | $\frac{9.50\ 236}{9.50\ 336}$                                     | 38              | $\frac{9.52\ 620}{9.52\ 661}$                          | 41                                       |                                                               | 9.97 679                                                | 5                                      | 26                                        | 50 32.5 31.7 30.8                                                                          |
| $\frac{36}{36}$                           | $9.50\ 374$                                                       | 38              | 9.52703                                                | 42                                       | 10.47 339<br>10.47 297                                        | $9.97\ 674 \ 9.97\ 670$                                 | 4                                      | $\begin{bmatrix} 25 \\ 24 \end{bmatrix}$  |                                                                                            |
| 37                                        | 9.50 411                                                          | 37              | 9.52745                                                | 42                                       | 10.47 255                                                     | 9.97 666                                                | 4                                      | $\begin{bmatrix} 24 \\ 23 \end{bmatrix}$  |                                                                                            |
| 38                                        | 9.50 449                                                          | 38<br>37        | 9.52 787                                               | 42                                       | 10.47 213                                                     | 9.97 662                                                | 4                                      | $\frac{20}{22}$                           |                                                                                            |
| 39                                        | 9.50 486                                                          | 37              | 9.52 829                                               | $\begin{bmatrix} 42 \\ 41 \end{bmatrix}$ | 10.47 171                                                     | 9.97 657                                                | 5                                      | 21                                        |                                                                                            |
| 40                                        | 9.50 523                                                          | 38              | 9.52 870                                               | 42                                       | 10.47 130                                                     | 9.97 653                                                | 4                                      | 20                                        |                                                                                            |
| 41 42                                     | $egin{array}{c c} 9.50 & 561 \\ 9.50 & 598 \\ \hline \end{array}$ | 37              | 9.52912                                                | 41                                       | 10.47 088                                                     | 9.97 649                                                | $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ | 19                                        |                                                                                            |
| 43                                        | 9.50 598                                                          | 37              | $9.52953 \\ 9.52995$                                   | 42                                       | $\begin{array}{c c} 10.47 \ 047 \\ 10.47 \ 005 \end{array}$   | 9.97645 $9.97640$                                       | 5                                      | 18<br>17                                  |                                                                                            |
| 44                                        | 9.50 673                                                          | 38              | $9.53\ 037$                                            | 42                                       | 10.46 963                                                     | 9.97636                                                 | 4                                      | 16                                        |                                                                                            |
| 45                                        | 9.50 710                                                          | 37              | 9.53 078                                               | 41                                       | 10.46 922                                                     | 9.97 632                                                | 4                                      | 15                                        | "   36   5   4                                                                             |
| 46                                        | 9.50 747                                                          | 37              | 9.53 120                                               | 42                                       | 10.46 880                                                     | 9.97 628                                                | 4                                      | 14                                        |                                                                                            |
| 47                                        | 9.50 784                                                          | 37<br>37        | 9.53 161                                               | 41                                       | 10.46 839                                                     | 9.97 623                                                | 5                                      | 13                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      |
| 48 49                                     | 9.50 821                                                          | 37              | 9.53 202                                               | $\begin{vmatrix} 41 \\ 42 \end{vmatrix}$ | 10.46 798                                                     | 9.97 619                                                | $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ | 12                                        | 8 4.8 0.7 0.5                                                                              |
|                                           | 9.50 858                                                          | 38              | $9.53\ 244$                                            | 41                                       | 10.46 756                                                     | 9.97 615                                                | 5                                      | 11                                        | 9 5.4 0.8 0.6                                                                              |
| <b>50</b> 51                              | $9.50896 \\ 9.50933$                                              | 37              | $oxed{9.53\ 285} \ 9.53\ 327$                          | 42                                       | $10.46715 \\ 10.46673$                                        | 9.97 610                                                | 4                                      | 10                                        | $egin{array}{c c c c} 10 & 6.0 & 0.8 & 0.7 \\ 20 & 12.0 & 1.7 & 1.3 \\ \hline \end{array}$ |
| 52                                        | 9.50955                                                           | 37              | 9.53 368                                               | 41                                       | 10.46 632                                                     | $ \begin{array}{c c} 9.97 606 \\ 9.97 602 \end{array} $ | 4                                      | 9 8                                       | 30 18.0 2.5 2.0                                                                            |
| 53                                        | 9.51 007                                                          | 37              | 9.53 409                                               | 41                                       | 10.46 591                                                     | 9.97 597                                                | 5                                      | 7                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      |
| 54                                        | 9.51 043                                                          | 36              | 9.53 450                                               | 41                                       | 10.46 550                                                     | 9.97 593                                                | 4                                      | 6                                         | 55,15.5, 2.2, 5.6                                                                          |
| 55                                        | 9.51 080                                                          | 37              | 9.53 492                                               | 42                                       | 10.46 508                                                     | 9.97 589                                                | 4                                      | 5                                         |                                                                                            |
| 56                                        | 9.51 117                                                          | 37<br>37        | 9.53 533                                               | 41                                       | 10.46 467                                                     | 9.97 584                                                | $\frac{5}{4}$                          | 4                                         |                                                                                            |
| 57<br>58                                  | 9.51 154                                                          | 37              | 9.53 574                                               | 41<br>41                                 | 10.46 426                                                     | 9.97 580                                                | $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ | 3                                         |                                                                                            |
| 59<br>59                                  | $oxed{9.51\ 191\ 9.51\ 227}$                                      | 36              | $egin{array}{c} 9.53 \ 615 \ 9.53 \ 656 \ \end{array}$ | 41                                       | 10.46 385<br>10.46 344                                        | $oxed{9.97\ 576} \ oxed{9.97\ 571}$                     | 5                                      | $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$    |                                                                                            |
| 60                                        | $\frac{9.51\ 227}{9.51\ 264}$                                     | 37              | $\frac{9.53\ 690}{9.53\ 697}$                          | 41                                       | 10.46 303                                                     | $\frac{9.97\ 571}{9.97\ 567}$                           | 4                                      | 0                                         |                                                                                            |
|                                           |                                                                   |                 |                                                        |                                          |                                                               |                                                         |                                        |                                           |                                                                                            |
|                                           | L Cos                                                             | d               | L Cot                                                  | c d                                      | L Tan                                                         | L Sin                                                   | d                                      | ′                                         | Prop. Pts.                                                                                 |

19°

| 1 1                                                                              | L Sin                                                                                                             | d                          | L Tan                                                                                                       | c d                                                        | L Cot                                                                                                 | L Cos                                                                                                                       | d                     |                                                                              | Prop. Pts.                                                                                                                   |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                | 9.51 264<br>9.51 301                                                                                              | 37<br>37                   | 9.53 697<br>9.53 738                                                                                        | 41 41                                                      | 10.46 303<br>10.46 262<br>10.46 221                                                                   | 9.97 567<br>9.97 563<br>9.97 558                                                                                            | 4 5                   | <b>60</b> 59 58                                                              |                                                                                                                              |
| 2<br>3<br>4                                                                      | 9.51 338<br>9.51 374<br>9.51 411                                                                                  | 36<br>37<br>36             | 9.53 779<br>9.53 820<br>9.53 861                                                                            | 41<br>41<br>41                                             | 10.46 180<br>10.46 139                                                                                | $ \begin{array}{r} 9.97554 \\ 9.97550 \\ \hline 9.97545 \end{array} $                                                       | 4<br>4<br>5           | 57<br>56<br>55                                                               |                                                                                                                              |
| 5<br>6<br>7<br>8                                                                 | 9.51 447<br>9.51 484<br>9.51 520<br>9.51 557                                                                      | 37<br>36<br>37             | 9.53 902<br>9.53 943<br>9.53 984<br>9.54 025                                                                | 41<br>41<br>41                                             | 10.46 098<br>10.46 057<br>10.46 016<br>10.45 975                                                      | 9.97 541<br>9.97 536<br>9.97 532                                                                                            | 4<br>5<br>4           | 54<br>53<br>52                                                               | "   41   40   39                                                                                                             |
| 9<br>10<br>11                                                                    | 9.51 593<br>9.51 629<br>9.51 666                                                                                  | 36<br>36<br>37             | 9.54 065<br>9.54 106<br>9.54 147                                                                            | 40<br>41<br>41                                             | 10.45 935<br>10.45 894<br>10.45 853                                                                   | $\begin{array}{r} 9.97\ 528 \\ \hline 9.97\ 523 \\ 9.97\ 519 \end{array}$                                                   | 4<br>5<br>4           | 51<br>50<br>49                                                               | 6   4.1   4.0   3.9<br>7   4.8   4.7   4.6<br>8   5.5   5.3   5.2<br>9   6.2   6.0   5.9                                     |
| 12<br>13<br>14                                                                   | 9.51 702<br>9.51 738<br>9.51 774                                                                                  | 36<br>36<br>36             | 9.54 187<br>9.54 228<br>9.54 269                                                                            | 40<br>41<br>41<br>40                                       | $\begin{array}{c} 10.45813 \\ 10.45772 \\ 10.45731 \end{array}$                                       | 9.97 515<br>9.97 510<br>9.97 506                                                                                            | 4<br>5<br>4<br>5      | 48<br>47<br>46                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                        |
| 15<br>16<br>17<br>18                                                             | 9.51 811<br>9.51 847<br>9.51 883<br>9.51 919                                                                      | 37<br>36<br>36<br>36       | 9.54 309<br>9.54 350<br>9.54 390<br>9.54 431                                                                | 41<br>40<br>41                                             | 10.45 691<br>10.45 650<br>10.45 610<br>10.45 569                                                      | 9.97 501<br>9.97 497<br>9.97 492<br>9.97 488                                                                                | 4<br>5<br>4<br>4      | 45<br>44<br>43<br>42                                                         | 50 34.2 33.3 32.5                                                                                                            |
| 19<br>20<br>21<br>22                                                             | 9.51 955<br>9.51 991<br>9.52 027<br>9.52 063                                                                      | 36<br>36<br>36<br>36       | 9.54 471<br>9.54 512<br>9.54 552<br>9.54 593                                                                | 40<br>41<br>40<br>41                                       | $ \begin{array}{r} 10.45 529 \\ \hline 10.45 488 \\ 10.45 448 \\ 10.45 407 \end{array} $              | $\begin{array}{r} 9.97\ 484 \\ \hline 9.97\ 479 \\ 9.97\ 475 \\ 9.97\ 470 \\ \end{array}$                                   | 5<br>4<br>5<br>4      | 41<br>40<br>39<br>38                                                         |                                                                                                                              |
| $ \begin{array}{ c c } \hline 23 \\ 24 \\ \hline 25 \end{array} $                | $ \begin{array}{r} 9.52\ 099 \\ 9.52\ 135 \\ \hline 9.52\ 171 \end{array} $                                       | 36<br>36<br>36             | 9.54 633<br>9.54 673<br>9.54 714                                                                            | 40<br>40<br>41                                             | $   \begin{array}{r}     10.45 \ 367 \\     10.45 \ 327 \\     \hline     10.45 \ 286   \end{array} $ | $ \begin{array}{r} 9.97 \ 466 \\ 9.97 \ 461 \\ \hline 9.97 \ 457 \end{array} $                                              | 5<br>4<br>4           | 37<br>36<br>35                                                               | 07 . 06 . 05                                                                                                                 |
| 26<br>27<br>28<br>29                                                             | 9.52 207<br>9.52 242<br>9.52 278<br>9.52 314                                                                      | 36<br>35<br>36<br>36       | 9.54 754<br>9.54 794<br>9.54 835<br>9.54 875                                                                | 40<br>40<br>41<br>40                                       | 10.45 246<br>10.45 206<br>10.45 165<br>10.45 125                                                      | 9.97 453<br>9.97 448<br>9.97 444<br>9.97 439                                                                                | 5<br>4<br>5<br>4      | 34<br>33<br>32<br>31                                                         | "   37   36   35<br>6   3.7   3.6   3.5<br>7   4.3   4.2   4.1<br>8   4.9   4.8   4.7                                        |
| 30<br>31<br>32<br>33                                                             | 9.52 350<br>9.52 385<br>9.52 421<br>9.52 456                                                                      | 36<br>35<br>36<br>35       | 9.54 915<br>9.54 955<br>9.54 995<br>9.55 035                                                                | 40<br>40<br>40<br>40                                       | 10.45 085<br>10.45 045<br>10.45 005<br>10.44 965                                                      | 9.97 435<br>9.97 430<br>9.97 426<br>9.97 421                                                                                | 5 4 5 4               | 30<br>29<br>28<br>27<br>26                                                   | 9   5.6   5.4   5.3<br>10   6.2   6.0   5.8<br>20   12.3   12.0   11.7<br>30   18.5   18.0   17.5<br>40   24.7   24.0   23.3 |
| $ \begin{array}{r}     34 \\     \hline     35 \\     36 \\     37 \end{array} $ | 9.52 492<br>9.52 527<br>9.52 563<br>9.52 598                                                                      | 36<br>35<br>36<br>35       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                      | $\begin{vmatrix} 40 \\ 40 \\ 40 \\ 40 \\ 40 \end{vmatrix}$ | 10.44 925<br>10.44 885<br>10.44 845<br>10.44 805                                                      | $ \begin{array}{r} 9.97  417 \\ \hline 9.97  412 \\ 9.97  408 \\ 9.97  403 \\ 9.97  200 \end{array} $                       | 5<br>4<br>5<br>4      | 25<br>24<br>23<br>22                                                         | 50 30.8 30.0 29.2                                                                                                            |
| 38<br>39<br><b>40</b>                                                            | $\begin{array}{ c c c c c }\hline 9.52 & 634 \\ 9.52 & 669 \\ \hline 9.52 & 705 \\ \hline \end{array}$            | 36<br>35<br>36<br>35       | $ \begin{array}{r} 9.55 \ 235 \\ 9.55 \ 275 \\ \hline 9.55 \ 315 \end{array} $                              | $\begin{array}{c c} 40 \\ 40 \\ 40 \\ 40 \end{array}$      | $ \begin{array}{r} 10.44\ 765 \\ 10.44\ 725 \\ \hline 10.44\ 685 \end{array} $                        | $\begin{array}{r} 9.97\ 399 \\ 9.97\ 394 \\ \hline 9.97\ 390 \\ 9.97\ 385 \\ \end{array}$                                   | 5 4 5                 | 21<br>20<br>19                                                               |                                                                                                                              |
| 41<br>42<br>43<br>44                                                             | $ \begin{vmatrix} 9.52740 \\ 9.52775 \\ 9.52811 \\ 9.52846 \end{vmatrix} $                                        | 35<br>36<br>35             | 9.55 355<br>9.55 395<br>9.55 434<br>9.55 474                                                                | 40<br>39<br>40                                             | 10.44 645<br>10.44 605<br>10.44 566<br>10.44 526                                                      | 9.97 381<br>9.97 376<br>9.97 372                                                                                            | 4<br>5<br>4<br>5      | 18<br>17<br>16                                                               |                                                                                                                              |
| 45<br>46<br>47<br>48                                                             | 9.52 881<br>9.52 916<br>9.52 951<br>9.52 986                                                                      | 35<br>35<br>35<br>35<br>35 | 9.55 514<br>9.55 554<br>9.55 593<br>9.55 633                                                                | 40<br>40<br>39<br>40<br>40                                 | 10.44 486<br>10.44 446<br>10.44 407<br>10.44 367<br>10.44 327                                         | 9.97 367<br>9.97 363<br>9.97 358<br>9.97 353<br>9.97 349                                                                    | 4<br>5<br>5<br>4      | 15<br>14<br>13<br>12<br>11                                                   | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                      |
| 50<br>51<br>52<br>53                                                             | $\begin{array}{ c c c c c }\hline 9.53&021\\\hline 9.53&056\\ 9.53&092\\ 9.53&126\\ 9.53&161\\\hline \end{array}$ | - 35<br>36<br>34<br>35     | 9.55 673<br>9.55 712<br>9.55 752<br>9.55 791<br>9.55 831                                                    | 39<br>40<br>39<br>40                                       | 10.44 288<br>10.44 248<br>10.44 209<br>10.44 169                                                      | 9.97 344<br>9.97 340<br>9.97 335<br>9.97 331                                                                                | 5<br>4<br>5<br>4<br>5 | 10<br>9<br>8<br>7                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                        |
| 54<br>55<br>56                                                                   | $ \begin{array}{r} 9.53 \ 196 \\ \hline 9.53 \ 231 \\ 9.53 \ 266 \end{array} $                                    | 35<br>35<br>35             | $ \begin{array}{ c c c c c c } \hline 9.55 & 870 \\ \hline 9.55 & 910 \\ 9.55 & 949 \\ \hline \end{array} $ | 39 40 39                                                   | 10.44 130<br>10.44 090<br>10.44 051                                                                   | $ \begin{array}{r} 9.97\ 326 \\ \hline 9.97\ 322 \\ 9.97\ 317 \end{array} $                                                 | 5 5 5                 | $ \begin{array}{ c c c } \hline 6 \\ \hline 5 \\ 4 \\ \hline 3 \end{array} $ |                                                                                                                              |
| 57<br>58<br>59                                                                   | 9.53 301<br>9.53 336<br>9.53 370                                                                                  | 34                         | 9.55 989<br>9.56 028<br>9.56 067                                                                            | 40<br>39<br>39<br>- 40                                     | $ \begin{array}{r} 10.44\ 011\\ 10.43\ 972\\ 10.43\ 933\\ \hline 10.43\ 893 \end{array} $             | $\begin{array}{ c c c c c c }\hline 9.97 & 312 \\ 9.97 & 308 \\ 9.97 & 303 \\\hline \hline 9.97 & 299 \\\hline \end{array}$ | 4<br>5<br>4           | $\begin{bmatrix} 3\\2\\1\\- \end{bmatrix}$                                   |                                                                                                                              |
| 60                                                                               | 9.53 405<br>L Cos                                                                                                 | _ d                        | 9.56 107<br>L Cot                                                                                           | c d                                                        | L Tan                                                                                                 | L Sin                                                                                                                       | d                     | ,                                                                            | Prop. Pts.                                                                                                                   |

**20**°

| ′                                                                                        | L Sin                                                                                     | d                                | L Tan                                                                                                  | c d                              | L Cot                                                                                                                     | L Cos                                                                                                | d                          |                                                                                 | Prop. Pts.                                                                                                                         |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4                                                                    | 9.53 405<br>9.53 440<br>9.53 475<br>9.53 509<br>9.53 544                                  | 35<br>35<br>34<br>35             | 9.56 107<br>9.56 146<br>9.56 185<br>9.56 224<br>9.56 264                                               | 39<br>39<br>39<br>40             | 10.43 893<br>10.43 854<br>10.43 815<br>10.43 776<br>10.43 736                                                             | 9.97 299<br>9.97 294<br>9.97 289<br>9.97 285<br>9.97 280                                             | 5<br>5<br>4<br>5           | <b>60</b> 59 58 57 56                                                           |                                                                                                                                    |
| 5<br>6<br>7<br>8                                                                         | 9.53 578<br>9.53 613<br>9.53 647<br>9.53 682                                              | 34<br>35<br>34<br>35<br>34       | 9.56 303<br>9.56 342<br>9.56 381<br>9.56 420                                                           | 39<br>39<br>39<br>39             | 10.43 697<br>10.43 658<br>10.43 619<br>10.43 580                                                                          | 9.97 276<br>9.97 271<br>9.97 266<br>9.97 262                                                         | 4<br>5<br>5<br>4<br>5      | 55<br>54<br>53<br>52                                                            | . <b>''   40   39</b> 6 4.0 3.9 7 4.7 4.6 8 5.3 5.2 9 6 6 5 5                                                                      |
| 9<br>10<br>11<br>12<br>13                                                                | $\begin{array}{r} 9.53716 \\ \hline 9.53751 \\ 9.53785 \\ 9.53819 \\ 9.53854 \end{array}$ | 35<br>34<br>34<br>35             | 9.56 459<br>9.56 498<br>9.56 537<br>9.56 576<br>9.56 615                                               | 39<br>39<br>39<br>39             | 10.43 541<br>10.43 502<br>10.43 463<br>10.43 424<br>10.43 385                                                             | 9.97 257<br>9.97 252<br>9.97 248<br>9.97 243<br>9.97 238                                             | 5<br>4<br>5<br>5<br>4      | 51<br>50<br>49<br>48<br>47                                                      | 9   6.0   5.9<br>10   6.7   6.5<br>20   13.3   13.0<br>30   20.0   19.5<br>40   26.7   26.0<br>50   33.3   32.5                    |
| 14<br>15<br>16<br>17<br>18                                                               | 9.53 888<br>9.53 922<br>9.53 957<br>9.53 991<br>9.54 025                                  | 34<br>34<br>35<br>34<br>34       | 9.56 654<br>9.56 693<br>9.56 732<br>9.56 771<br>9.56 810                                               | 39<br>39<br>39<br>39<br>39       | $ \begin{array}{r} 10.43\ 346 \\ \hline 10.43\ 307 \\ 10.43\ 268 \\ 10.43\ 229 \\ 10.43\ 190 \end{array} $                | $\begin{array}{r} 9\ 97\ 234 \\ \hline 9.97\ 229 \\ 9.97\ 224 \\ 9.97\ 220 \\ 9.97\ 215 \end{array}$ | 5<br>4<br>5                | 46<br>45<br>44<br>43<br>42                                                      | -                                                                                                                                  |
| 19<br>20<br>21<br>22<br>23                                                               | 9.54 059<br>9.54 093<br>9.54 127<br>9.54 161<br>9.54 195                                  | 34<br>34<br>34<br>34<br>34       | 9.56 849<br>9.56 887<br>9.56 926<br>9.56 965<br>9.57 004                                               | 39<br>38<br>39<br>39<br>39       | $ \begin{array}{r} 10.43 \ 151 \\ \hline 10.43 \ 113 \\ 10.43 \ 074 \\ 10.43 \ 035 \\ 10.42 \ 996 \end{array} $           | 9.97 210<br>9.97 206<br>9.97 201<br>9.97 196<br>9.97 192                                             | 5<br>4<br>5<br>4           | 41<br>40<br>39<br>38<br>37                                                      | "   38   37<br>6   3.8   3.7<br>7   4.4   4.3<br>8   5.1   4.9<br>9   5.7   5.6                                                    |
| $ \begin{array}{ c c } \hline 24 \\ \hline 25 \\ 26 \\ 27 \\ 28 \\ \hline \end{array} $  | 9.54 229<br>9.54 263<br>9.54 297<br>9.54 331<br>9.54 365                                  | 34<br>34<br>34<br>34<br>34<br>34 | $\begin{array}{r} 9.57\ 042 \\ \hline 9.57\ 081 \\ 9.57\ 120 \\ 9.57\ 158 \\ 9.57\ 197 \\ \end{array}$ | 38<br>39<br>39<br>38<br>39<br>38 | 10.42 958<br>10.42 919<br>10.42 880<br>10.42 842<br>10.42 803                                                             | 9.97 187<br>9.97 182<br>9.97 178<br>9.97 173<br>9.97 168                                             | 5<br>5<br>4<br>5<br>5<br>5 | 36<br>35<br>34<br>33<br>32                                                      | $\begin{array}{c cccc} 10 & 6.3 & 6.2 \\ 20 & 12.7 & 12.3 \\ 30 & 19.0 & 18.5 \\ 40 & 25.3 & 24.7 \\ 50 & 31.7 & 30.8 \end{array}$ |
| 30<br>31<br>32<br>33                                                                     | 9.54 399<br>9.54 433<br>9.54 466<br>9.54 500<br>9.54 534                                  | 34<br>33<br>34<br>34<br>34<br>33 | 9.57 235<br>9.57 274<br>9.57 312<br>9.57 351<br>9.57 389                                               | 39<br>38<br>39<br>38<br>39       | $\begin{array}{c} 10.42\ 765 \\ \hline 10.42\ 726 \\ 10.42\ 688 \\ 10.42\ 649 \\ 10.42\ 611 \\ 10.42\ 572 \end{array}$    | 9.97 163<br>9.97 159<br>9.97 154<br>9.97 149<br>9.97 145<br>9.97 140                                 | 5<br>5<br>4<br>5           | 31<br>30<br>29<br>28<br>27<br>26                                                | ′′   35   3 <u>4</u>                                                                                                               |
| 34<br>35<br>36<br>37<br>38                                                               | 9.54 567<br>9.54 601<br>9.54 635<br>9.54 668<br>9.54 702                                  | 34<br>34<br>33<br>34<br>33       | 9.57 428<br>9.57 466<br>9.57 504<br>9.57 543<br>9.57 581                                               | 38<br>38<br>39<br>38<br>38       | $\begin{array}{r} 10.42\ 372 \\ \hline 10.42\ 534 \\ 10.42\ 496 \\ 10.42\ 457 \\ 10.42\ 419 \\ 10.42\ 381 \\ \end{array}$ | 9.97 135<br>9.97 130<br>9.97 126<br>9.97 121<br>9.97 116                                             | 5<br>4<br>5<br>5           | $ \begin{array}{c}     25 \\     24 \\     23 \\     22 \\     21 \end{array} $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              |
| 39<br>40<br>41<br>42<br>43                                                               | 9.54 735<br>9.54 769<br>9.54 802<br>9.54 836<br>9.54 869                                  | 34<br>33<br>34<br>33<br>34       | 9.57 619<br>9.57 658<br>9.57 696<br>9.57 734<br>9.57 772                                               | 39<br>38<br>38<br>38<br>38       | 10.42 342<br>10.42 304<br>10.42 266<br>10.42 228<br>10.42 190                                                             | 9.97 111<br>9.97 107<br>9.97 102<br>9.97 097<br>9.97 092                                             | 5<br>4<br>5<br>5<br>5      | 20<br>19<br>18<br>17<br>16                                                      | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                 |
| $ \begin{array}{ c c c } \hline 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ \hline \end{array} $ | 9.54 903<br>9.54 936<br>9.54 969<br>9.55 003<br>9.55 036<br>9.55 069                      | 33<br>33<br>34<br>33<br>33       | 9.57 810<br>9.57 849<br>9.57 887<br>9.57 925<br>9.57 963<br>9.58 001                                   | 39<br>38<br>38<br>38<br>38       | 10.42 151<br>10.42 151<br>10.42 113<br>10.42 075<br>10.42 037<br>10.41 999                                                | 9.97 032<br>9.97 087<br>9.97 083<br>9.97 078<br>9.97 073<br>9.97 068                                 | 5<br>4<br>5<br>5<br>5      | 15<br>14<br>13<br>12<br>11                                                      | "   <b>33   5   4</b><br>6   3.3   0.5   0.4                                                                                       |
| 50<br>51<br>52<br>53<br>54                                                               | 9.55 102<br>9.55 136<br>9.55 169<br>9.55 202<br>9.55 235                                  | 33<br>34<br>33<br>33<br>33       | 9.58 039<br>9.58 077<br>9.58 115<br>9.58 153<br>9.58 191                                               | 38<br>38<br>38<br>38<br>38       | 10.41 961<br>10.41 923<br>10.41 885<br>10.41 847<br>10.41 809                                                             | 9.97 063<br>9.97 059<br>9.97 054<br>9.97 049<br>9.97 044                                             | 5<br>4<br>5<br>5<br>5      | 10<br>9<br>8<br>7<br>6                                                          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             |
| 55<br>56<br>57<br>58<br>59                                                               | 9.55 268<br>9.55 301<br>9.55 334<br>9.55 367<br>9.55 400                                  | 33 33 33 33                      | 9.58 229<br>9.58 267<br>9.58 304<br>9.58 342<br>9.58 380                                               | 38<br>38<br>37<br>38<br>38<br>38 | 10.41 771<br>10.41 733<br>10.41 696<br>10.41 658<br>10.41 620                                                             | 9.97 039<br>9.97 035<br>9.97 030<br>9.97 025<br>9.97 020                                             | 5 5 5 5                    | 5<br>4<br>3<br>2<br>1                                                           | 40 22.0 3.3 2.7<br>50 27.5 4.2 3.3                                                                                                 |
| 60                                                                                       | 9.55 433<br>L Cos                                                                         | 33<br>d                          | 9.58 418<br>L Cot                                                                                      | c d                              | 10.41 582<br>L Tan                                                                                                        | 9.97 015<br>L Sin                                                                                    | d                          | 0                                                                               | Prop. Pts.                                                                                                                         |

21°

| (                                 | L Sin                                                                                                                             | d                                                             | L Tan                                                                                                  | c d                        | L Cot                                                                                                                                                                      | L Cos                                                                                                                          | d                     |                                                                                                                                | Prop. Pts.                                                                                                                                   |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4             | 9.55 433<br>9.55 466<br>9.55 499<br>9.55 532<br>9.55 564                                                                          | 33<br>33<br>33<br>32<br>33                                    | 9.58 418<br>9.58 455<br>9.58 493<br>9.58 531<br>9.58 569                                               | 37<br>38<br>38<br>38<br>37 | 10.41 582<br>10.41 545<br>10.41 507<br>10.41 469<br>10.41 431                                                                                                              | 9.97 015<br>9.97 010<br>9.97 005<br>9.97 001<br>9.96 996                                                                       | 5<br>5<br>4<br>5      | 59<br>58<br>57<br>56                                                                                                           |                                                                                                                                              |
| 5<br>6<br>7<br>8<br>9             | 9.55 597<br>9.55 630<br>9.55 663<br>9.55 695<br>9.55 728                                                                          | 33<br>33<br>32<br>33<br>33                                    | 9.58 606<br>9.58 644<br>9.58 681<br>9.58 719<br>9.58 757                                               | 38<br>37<br>38<br>38<br>38 | 10.41 394<br>10.41 356<br>10.41 319<br>10.41 281<br>10.41 243                                                                                                              | 9.96 991<br>9.96 986<br>9.96 981<br>9.96 876<br>9.96 971                                                                       | 5<br>5<br>5<br>5<br>5 | 55<br>54<br>53<br>52<br>51                                                                                                     | "   <b>38</b>   <b>37</b>   <b>36</b><br>6   3.8   3.7   3.6<br>7   4.4   4.3   4.2                                                          |
| 10<br>11<br>12<br>13<br>14        | 9,55 761<br>9,55 793<br>9,55 826<br>9,55 858<br>9,55 891                                                                          | 32<br>33<br>32<br>33<br>32                                    | 9.58 794<br>9.58 832<br>9.58 869<br>9.58 907<br>9.58 944                                               | 38<br>37<br>38<br>37<br>37 | 10.41 206<br>10.41 168<br>10.41 131<br>10.41 093<br>10.41 056                                                                                                              | 9.96 966<br>9.96 962<br>9.96 957<br>9.96 952<br>9.96 947                                                                       | 4<br>5<br>5<br>5<br>5 | 50<br>49<br>48<br>47<br>46                                                                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                        |
| 15<br>16<br>17<br>18<br>19        | 9.55 923<br>9.55 956<br>9.55 988<br>9.56 021<br>9.56 053                                                                          | 33<br>32<br>33<br>32<br>32                                    | 9.58 981<br>9.59 019<br>9.59 056<br>9.59 094<br>9.59 131<br>9.59 168                                   | 38<br>37<br>38<br>37<br>37 | $    \begin{array}{c} 10.41\ 019 \\ 10.40\ 981 \\ 10.40\ 944 \\ 10.40\ 906 \\ 10.40\ 869 \\ \hline                                  $                                      | $\begin{array}{c} 9.96\ 942 \\ 9.96\ 937 \\ 9.96\ 932 \\ 9.96\ 927 \\ \hline 9.96\ 922 \\ \hline \hline 9.96\ 917 \end{array}$ | 5<br>5<br>5<br>5      | 45<br>44<br>43<br>42<br>41<br><b>40</b>                                                                                        | 50 31.7 30.8 30.0                                                                                                                            |
| 20<br>21<br>22<br>23<br>24<br>25  | $\begin{array}{c} 9.56\ 085 \\ 9.56\ 118 \\ 9.56\ 150 \\ 9.56\ 182 \\ \hline 9.56\ 215 \\ \hline \hline 9.56\ 247 \\ \end{array}$ | 33<br>32<br>32<br>33<br>33                                    | $\begin{array}{c} 9.59\ 108 \\ 9.59\ 205 \\ 9.59\ 243 \\ 9.59\ 317 \\ \hline 9.59\ 354 \end{array}$    | 37<br>38<br>37<br>37<br>37 | $   \begin{array}{r}     10.40 \ 832 \\     10.40 \ 795 \\     10.40 \ 757 \\     10.40 \ 720 \\     \underline{10.40 \ 683} \\     \hline     10.40 \ 646   \end{array} $ | 9.96 917<br>9.96 912<br>9.96 907<br>9.96 903<br>9.96 898<br>9.96 893                                                           | 5<br>4<br>5<br>5      | 39<br>38<br>37<br>36<br>35                                                                                                     |                                                                                                                                              |
| 26<br>27<br>28<br>29<br><b>30</b> | $ \begin{array}{r} 9.56 \ 247 \\ 9.56 \ 279 \\ 9.56 \ 311 \\ 9.56 \ 343 \\ 9.56 \ 375 \\ \hline 9.56 \ 408 \end{array} $          | 32<br>32<br>32<br>32<br>32<br>33                              | $\begin{array}{r} 9.59\ 391 \\ 9.59\ 429 \\ 9.59\ 466 \\ 9.59\ 503 \\ \hline 9.59\ 540 \\ \end{array}$ | 37<br>38<br>37<br>37<br>37 | $   \begin{array}{c}     10.40 \ 609 \\     10.40 \ 571 \\     10.40 \ 534 \\     10.40 \ 497 \\     \hline     10.40 \ 460   \end{array} $                                | 9.96 888<br>9.96 883<br>9.96 878<br>9.96 873<br>9.96 868                                                                       | 5<br>5<br>5<br>5<br>5 | 34<br>33<br>32<br>31<br>30                                                                                                     | "   33   32   31<br>6   3.3   3.2   3.1<br>7   3.9   3.7   3.6<br>8   4.4   4.3   4.1<br>9   5.0   4.8   4.6                                 |
| 31<br>32<br>33<br>34<br>35        | 9.56 440<br>9.56 472<br>9.56 504<br>9.56 536<br>9.56 568                                                                          | 32<br>32<br>32<br>32<br>32<br>32                              | $\begin{array}{c} 9.59\ 577 \\ 9.59\ 614 \\ 9.59\ 651 \\ 9.59\ 688 \\ \hline 9.59\ 725 \end{array}$    | 37<br>37<br>37<br>37<br>37 | $   \begin{array}{r}     10.40423 \\     10.40386 \\     10.40349 \\     10.40312 \\     \hline     10.40275   \end{array} $                                               | 9.96 863<br>9.96 858<br>9.96 853<br>9.96 848<br>9.96 843                                                                       | 5<br>5<br>5<br>5<br>5 | 29<br>28<br>27<br>26<br>25                                                                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                        |
| 36<br>37<br>38<br>39<br>40        | 9.56 599<br>9.56 631<br>9.56 663<br>9.56 695<br>9.56 727                                                                          | 31<br>32<br>32<br>32<br>32<br>32                              | 9.59 762<br>9.59 799<br>9.59 835<br>9.59 872<br>9.59 909                                               | 37<br>37<br>36<br>37<br>37 | $ \begin{array}{c} 10.40 \ 238 \\ 10.40 \ 201 \\ 10.40 \ 165 \\ 10.40 \ 128 \\ \hline 10.40 \ 091 \end{array} $                                                            | 9.96 838<br>9.96 833<br>9.96 828<br>9.96 823<br>9.96 818                                                                       | 5<br>5<br>5<br>5<br>5 | 24<br>23<br>22<br>21<br><b>20</b>                                                                                              |                                                                                                                                              |
| 41<br>42<br>43<br>44<br>45        | 9.56 759<br>9.56 790<br>9.56 822<br>9.56 854<br>9.56 886                                                                          | 32<br>31<br>32<br>32<br>32                                    | 9.59 946<br>9.59 983<br>9.60 019<br>9.60 056<br>9.60 093                                               | 37<br>37<br>36<br>37<br>37 | $\begin{bmatrix} 10.40 & 0.54 \\ 10.40 & 0.17 \\ 10.39 & 981 \\ 10.39 & 944 \\ \hline 10.39 & 907 \end{bmatrix}$                                                           | 9.96 813<br>9.96 808<br>9.96 803<br>9.96 798<br>9.96 793                                                                       | 5 5 5 5 5             | $     \begin{array}{r}       19 \\       18 \\       17 \\       \hline       16 \\       \hline       15 \\     \end{array} $ | ″   6   <b>5</b>   <b>4</b>                                                                                                                  |
| 46<br>47<br>48<br>49<br><b>50</b> | $\begin{array}{c} 9.56\ 917 \\ 9.56\ 949 \\ 9.56\ 980 \\ 9.57\ 012 \\ \hline 9.57\ 044 \\ \end{array}$                            | $ \begin{array}{c c} 31 \\ 32 \\ 31 \\ 32 \\ 32 \end{array} $ | 9.60 130<br>9.60 166<br>9.60 203<br>9.60 240<br>9.60 276                                               | 37<br>36<br>37<br>37<br>36 | $ \begin{array}{c} 10.39870\\ 10.39834\\ 10.39797\\ 10.39760\\ \hline 10.39724 \end{array} $                                                                               | 9.96 788<br>9.96 783<br>9.96 778<br>9.96 772<br>9.96 767                                                                       | 5<br>5<br>5<br>6<br>5 | 14<br>13<br>12<br>11<br>10                                                                                                     | $\begin{array}{c} 6 \ 0.6 \ 0.5 \ 0.4 \\ 7 \ 0.7 \ 0.6 \ 0.5 \\ 8 \ 0.8 \ 0.7 \ 0.5 \\ 9 \ 0.9 \ 0.8 \ 0.6 \\ 101.0 \ 0.8 \ 0.7 \end{array}$ |
| 51<br>52<br>53<br>54<br>55        | $\begin{array}{c} 9.57 \ 0.57 \\ 9.57 \ 0.75 \\ 9.57 \ 107 \\ 9.57 \ 138 \\ 9.57 \ 169 \\ \hline 9.57 \ 201 \\ \end{array}$       | 31<br>32<br>31<br>31<br>32                                    | 9.60 313<br>9.60 349<br>9.60 386<br>9.60 422<br>9.60 459                                               | 37<br>36<br>37<br>36<br>37 | $\begin{bmatrix} 10.39 & 687 \\ 10.39 & 651 \\ 10.39 & 614 \\ 10.39 & 578 \\ \hline 10.39 & 541 \end{bmatrix}$                                                             | $\begin{array}{c} 9.96\ 762 \\ 9.96\ 757 \\ 9.96\ 752 \\ 9.96\ 747 \\ \hline 9.96\ 742 \\ \end{array}$                         | 5<br>5<br>5<br>5<br>5 | 9<br>8<br>7<br>6<br>5                                                                                                          | $\begin{array}{c} 20 & 2.0 & 1.7 & 1.3 \\ 30 & 3.0 & 2.5 & 2.0 \\ 40 & 4.0 & 3.3 & 2.7 \\ 50 & 5.0 & 4.2 & 3.3 \end{array}$                  |
| 56<br>57<br>58<br>59<br><b>60</b> | 9.57 201<br>9.57 232<br>9.57 264<br>9.57 295<br>9.57 326<br>9.57 358                                                              | 31<br>32<br>31<br>31<br>32                                    | $\begin{array}{c} 9.60495 \\ 9.60495 \\ 9.60532 \\ 9.60568 \\ \hline 9.60605 \\ \hline \end{array}$    | 36<br>37<br>36<br>37<br>36 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                     | $\begin{array}{c} 9.96\ 737 \\ 9.96\ 732 \\ 9.96\ 727 \\ 9.96\ 722 \\ \hline \hline 9.96\ 717 \end{array}$                     | 5<br>5<br>5<br>5<br>5 | 3<br>2<br>1<br><b>0</b>                                                                                                        | ,                                                                                                                                            |
| -                                 | L Cos                                                                                                                             | d                                                             | L Cot                                                                                                  | c d                        | L Tan                                                                                                                                                                      | L Sin                                                                                                                          | d                     | ,                                                                                                                              | Prop. Pts.                                                                                                                                   |

22°

| ′                                                    | L Sin                                                  | d                                           | L Tan                                                  | c d        | L Cot                                                       | L Cos                         | d             |                                                        | Prop. Pts.                                                                          |
|------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|------------|-------------------------------------------------------------|-------------------------------|---------------|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| 0                                                    | 9.57 358                                               | 31                                          | 9.60 641                                               | 36         | 10.39 359                                                   | 9.96 717                      | 6             | <b>60</b> 59                                           |                                                                                     |
| $\begin{vmatrix} 1\\2 \end{vmatrix}$                 | $9.57\ 389 \ 9.57\ 420$                                | 31                                          | 9.60677 $9.60714$                                      | 37         | $\begin{array}{c} 10.39\ 323 \\ 10.39\ 286 \end{array}$     | 9.96 711<br>9.96 706          | 5             | 58                                                     |                                                                                     |
| $\begin{vmatrix} 3 \\ 4 \end{vmatrix}$               | $9.57\ 451 \\ 9.57\ 482$                               | $\begin{array}{c} 31 \\ 31 \end{array}$     | 9.60750 $9.60786$                                      | 36<br>36   | $\begin{array}{c} 10.39\ 250 \\ 10.39\ 214 \end{array}$     | 9.96 701<br>9.96 696          | 5<br>5        | 57<br>56                                               |                                                                                     |
| 5                                                    | $\frac{9.57  432}{9.57  514}$                          | 32                                          | 9.60 823                                               | 37         | $\frac{10.33\ 211}{10.39\ 177}$                             | 9.96 691                      | 5             | 55                                                     |                                                                                     |
| 6                                                    | $9.57\ 545$                                            | 31<br>31                                    | 9.60859                                                | 36<br>  36 | 10.39 141                                                   | 9.96686                       | 5<br>5        | 54                                                     |                                                                                     |
| 7 8                                                  | $egin{array}{c} 9.57\ 576\ 9.57\ 607 \end{array}$      | 31                                          | 9.60895 $9.60931$                                      | 36         | $\begin{array}{c} 10.39\ 105 \\ 10.39\ 069 \end{array}$     | 9.96 681<br>9.96 676          | 5             | 53<br>52                                               |                                                                                     |
| 9                                                    | 9.57 638                                               | $\begin{array}{c c} 31 \\ 31 \end{array}$   | 9.60 967                                               | 36<br>37   | 10.39 033                                                   | 9.96 670                      | 6<br>5        | 51                                                     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                              |
| 10<br>11                                             | 9.57 669<br>9.57 700                                   | 31                                          | $9.61\ 004 \\ 9.61\ 040$                               | 36         | $10.38996 \\ 10.38960$                                      | 9.96 665<br>9.96 660          | 5             | <b>50</b> 49                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                               |
| 12                                                   | 9.57 731                                               | 31<br>31                                    | 9.61076                                                | 36<br>36   | 10.38 924                                                   | 9.96 655                      | 5<br>5        | 48                                                     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                              |
| 13 14                                                | 9.57762 $9.57793$                                      | 31                                          | $egin{array}{c} 9.61\ 112 \ 9.61\ 148 \ \end{array}$   | 36         | $10.38888 \\ 10.38852$                                      | 9.96650 $9.96645$             | 5             | $\begin{vmatrix} 47 \\ 46 \end{vmatrix}$               | 30 18.5 18.0 17.5                                                                   |
| 15                                                   | 9.57 824                                               | 31                                          | 9.61 184                                               | 36         | 10.38 816                                                   | 9.96 640                      | 5             | 45                                                     | $\begin{array}{c c} 40 & 24.7 & 24.0 & 23.3 \\ 50 & 30.8 & 30.0 & 29.2 \end{array}$ |
| 16                                                   | 9.57 855<br>9.57 885                                   | 31<br>30                                    | $9.61\ 220 \ 9.61\ 256$                                | 36<br>36   | 10.38 780<br>10.38 744                                      | 9.96634 $9.96629$             | 6<br>5        | 44 43                                                  |                                                                                     |
| 18                                                   | 9.57 916                                               | 31<br>31                                    | $9.61\ 292$                                            | 36         | 10.38 708                                                   | 9.96624                       | 5<br>5        | 42                                                     |                                                                                     |
| $\frac{19}{20}$                                      | $\frac{9.57\ 947}{9.57\ 978}$                          | 31                                          | $\frac{9.61\ 328}{9.61\ 364}$                          | 36<br>36   | $\frac{10.38\ 672}{10.38\ 636}$                             | 9.96619 $9.96614$             | 5             | $\frac{41}{40}$                                        |                                                                                     |
| 21                                                   | 9.57 978                                               | 30                                          | 9.61 400                                               | 36         | 10.38 600                                                   | 9.96 608                      | 6             | 39                                                     |                                                                                     |
| 22                                                   | $9.58\ 039 \ 9.58\ 070$                                | 31<br>31                                    | $9.61\ 436 \ 9.61\ 472$                                | 36<br>36   | $\begin{array}{c} 10.38\ 564 \\ 10.38\ 528 \end{array}$     | 9.96 603<br>9.96 598          | 5<br>5        | 38<br>37                                               |                                                                                     |
| 23 24                                                | 9.58 101                                               | 31                                          | 9.61 508                                               | 36         | 10.38 492                                                   | 9.96 593                      | 5<br>5        | 36                                                     |                                                                                     |
| 25                                                   | 9.58 131                                               | 30                                          | 9.61 544                                               | 36<br>35   | 10.38 456                                                   | 9.96 588<br>9.96 582          | 6             | $\frac{35}{34}$                                        | //   32   31   30                                                                   |
| 26 27                                                | $oxed{9.58162} \ 9.58192$                              | 30                                          | $oxed{9.61\ 579} \ 9.61\ 615$                          | 36         | $\begin{array}{c c} 10.38\ 421 \\ 10.38\ 385 \end{array}$   | $9.96\ 577$                   | 5             | 33                                                     |                                                                                     |
| 28                                                   | 9.58 223                                               | 31<br>30                                    | 9.61 651<br>9.61 687                                   | 36<br>  36 | 10.38 349<br>10.38 313                                      | 9.96572 $9.96567$             | 5<br>5        | 32<br>31                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                               |
| <b>30</b>                                            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 31                                          | $\frac{9.01\ 037}{9.61\ 722}$                          | 35         | $\frac{10.38313}{10.38278}$                                 | $\frac{9.96\ 561}{9.96\ 562}$ | 5             | 30                                                     | 9 4.8 4.6 4.5                                                                       |
| 31                                                   | 9.58 314                                               | $\begin{vmatrix} 30 \\ 31 \end{vmatrix}$    | 9.61758                                                | 36<br>36   | 10.38 242                                                   | $9.96\ 556$                   | 6<br>5        | 29<br>28                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                               |
| 32 33                                                | 9.58 345<br>9.58 375                                   | 30                                          | 9.61 794<br>9.61 830                                   | 36         | 10.38 206<br>10.38 170                                      | $9.96551 \\ 9.96546$          | 5             | $\begin{vmatrix} 20 \\ 27 \end{vmatrix}$               | $\begin{array}{c} 30 \ 16.0 \ 15.5 \ 15.0 \\ 40 \ 21.3 \ 20.7 \ 20.0 \end{array}$   |
| 34                                                   | 9.58 406                                               | 31 30                                       | 9.61 865                                               | 35<br>36   | 10.38 135                                                   | 9.96541                       | $\frac{5}{6}$ | 26                                                     | 50 26.7 25.8 25.0                                                                   |
| 35 36                                                | 9.58 436<br>9.58 467                                   | 31                                          | 9.61 901<br>9.61 936                                   | 35         | $\begin{array}{c c} 10.38 \ 099 \\ 10.38 \ 064 \end{array}$ | 9.96 535<br>9.96 530          | 5             | $\begin{array}{c c} 25 \\ 24 \end{array}$              |                                                                                     |
| 37                                                   | 9.58 497                                               | 30                                          | 9.61 972                                               | 36<br>36   | 10.38 028                                                   | $9.96\ 525$                   | 5<br>5        | 23                                                     |                                                                                     |
| 38 39                                                | 9.58 527<br>9.58 557                                   | 30<br>30                                    | $9.62\ 008 \ 9.62\ 043$                                | 35         | $\begin{array}{c c} 10.37 \ 992 \\ 10.37 \ 957 \end{array}$ | 9.96520 $9.96514$             | 6             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                                                                     |
| 40                                                   | 9.58 588                                               | 31                                          | 9.62 079                                               | 36         | 10.37 921                                                   | 9.96 509                      | 5             | 20                                                     |                                                                                     |
| 41 42                                                | 9.58618 $9.58648$                                      | 30<br>30                                    | $9.62\ 114$ $9.62\ 150$                                | 35<br>36   | 10.37 886<br>10.37 850                                      | 9.96504 $9.96498$             | 5<br>6        | 19<br>18                                               |                                                                                     |
| 43                                                   | 9.58 678                                               | 30                                          | $9.62\ 185$                                            | 35<br>36   | 10.37 815                                                   | 9.96493                       | 5<br>5        | 17                                                     |                                                                                     |
| 44                                                   | $\frac{9.58709}{0.58730}$                              | 31<br>30                                    | $\frac{9.62\ 221}{9.62\ 256}$                          | 35         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$      | $\frac{9.96488}{9.96483}$     | 5             | $\frac{16}{15}$                                        | "   <b>29</b>   6   5                                                               |
| 45 46                                                | 9.58 739<br>9.58 769                                   | 30                                          | $9.62\ 292$                                            | 36         | 10.37 708                                                   | 9.96477                       | 6             | 14                                                     | 6 2.9 0.6 0.5                                                                       |
| 47                                                   | 9.58 799                                               | 30                                          | $9.62\ 327$ $9.62\ 362$                                | 35<br>35   | 10.37 673<br>10.37 638                                      | $9.96\ 472$ $9.96\ 467$       | 5<br>5        | 13<br>12                                               | 7 2 4 0 7 0 6                                                                       |
| 48 49                                                | 9.58 829<br>9.58 859                                   | 30                                          | 9.62302 $9.62398$                                      | 36         | 10.37 602                                                   | 9.96 461                      | 6<br>5        | 11                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                               |
| 50                                                   | 9.58 889                                               | 30                                          | 9.62 433                                               | 35<br>35   | 10.37 567                                                   | 9.96 456                      | 5             | <b>10</b> 9                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                               |
| $\begin{array}{ c c c }\hline 51\\ 52\\ \end{array}$ | 9.58 919 9.58 949                                      | 30                                          | $9.62\ 468$ $9.62\ 504$                                | 36         | 10.37 532<br>10.37 496                                      | 9.96451 $9.96445$             | 6             | 8                                                      | 40 19.3 4.0 3.3                                                                     |
| 53                                                   | 9.58 979                                               | 30                                          | $9.62\ 539$                                            | 35<br>35   | 10.37 461                                                   | 9.96440 $9.96435$             | 5<br>5        | $\begin{bmatrix} 7 \\ 6 \end{bmatrix}$                 | 50 24.2 5.0 4.2                                                                     |
| $\frac{54}{55}$                                      | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 30                                          | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 35         | $\frac{10.37\ 426}{10.37\ 391}$                             | $\frac{9.96435}{9.96429}$     | 6             | $\frac{6}{5}$                                          |                                                                                     |
| 56                                                   | 9.59 069                                               | 30                                          | 9.62 645                                               | 36         | 10.37 355                                                   | 9.96424                       | 5<br>5        | 4                                                      |                                                                                     |
| 57 58                                                | 9.59 098<br>9.59 128                                   | $\begin{array}{ c c } 29 \\ 30 \end{array}$ | 9.62 680<br>9.62 715                                   | 35<br>35   | 10.37 320<br>10.37 285                                      | 9.96419 $9.96413$             | 6             | $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$                 |                                                                                     |
| 59                                                   | 9.59 158                                               | 30<br>30                                    | 9.62 750                                               | 35<br>35   | 10.37 250                                                   | 9.96 408                      | 5<br>5        | 1                                                      |                                                                                     |
| 60                                                   | 9.59 188                                               |                                             | 9.62 785                                               |            | 10.37 215                                                   | 9.96 403                      |               | 0                                                      |                                                                                     |
|                                                      | L Cos                                                  | d                                           | L Cot                                                  | c d        | L Tan                                                       | L Sin                         | d             | ′                                                      | Prop. Pts.                                                                          |

23°

| /                                       | L Sin                                                                                                                                    | d                                | L Tan                                                                                                                             | c d                        | L Cot                                                                                                                                                          | L Cos                                                                                                    | d                     |                                                                                                | Prop. Pts.                                                                                                   |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4                   | 9.59 188<br>9.59 218<br>9.59 247<br>9.59 277<br>9.59 307                                                                                 | 30<br>29<br>30<br>30             | 9.62 785<br>9.62 820<br>9.62 855<br>9.62 890<br>9.62 926                                                                          | 35<br>35<br>35<br>36<br>35 | 10.37 215<br>10.37 180<br>10.37 145<br>10.37 110<br>10.37 074                                                                                                  | 9.96 403<br>9.96 397<br>9.96 392<br>9.96 387<br>9.96 381                                                 | 6<br>5<br>5<br>6<br>5 | 60<br>59<br>58<br>57<br>56                                                                     |                                                                                                              |
| 5<br>6<br>7<br>8<br>9                   | 9.59 336<br>9.59 366<br>9.59 396<br>9.59 425<br>9.59 455                                                                                 | 29<br>30<br>30<br>29<br>30<br>29 | 9.62 961<br>9.62 996<br>9.63 031<br>9.63 066<br>9.63 101                                                                          | 35<br>35<br>35<br>35<br>34 | 10.37 039<br>10.37 004<br>10.36 969<br>10.36 934<br>10.36 899                                                                                                  | 9.96 376<br>9.96 370<br>9.96 365<br>9.96 360<br>9.96 354                                                 | 6<br>5<br>5<br>6<br>5 | 55<br>54<br>53<br>52<br>51                                                                     | "   <b>36</b>   <b>35</b>   <b>34</b><br>6   3.6   3.5   3.4<br>7   4.2   4.1   4.0                          |
| 10<br>11<br>12<br>13<br>14              | 9.59 484<br>9.59 514<br>9.59 543<br>9.59 573<br>9.59 602                                                                                 | 30<br>29<br>30<br>29<br>30       | 9.63 135<br>9.63 170<br>9.63 205<br>9.63 240<br>9.63 275                                                                          | 35<br>35<br>35<br>35<br>35 | 10.36 865<br>10.36 830<br>10.36 795<br>10.36 760<br>10.36 725                                                                                                  | 9.96 349<br>9.96 343<br>9.96 338<br>9.96 333<br>9.96 327                                                 | 6<br>5<br>5<br>6<br>5 | 50<br>49<br>48<br>47<br>46                                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                        |
| 15<br>16<br>17<br>18<br>19              | 9.59 632<br>9.59 661<br>9.59 690<br>9.59 720<br>9.59 749                                                                                 | 29<br>29<br>30<br>29<br>29       | 9.63 310<br>9.63 345<br>9.63 379<br>9.63 414<br>9.63 449                                                                          | 35<br>34<br>35<br>35<br>35 | 10.36 690<br>10.36 655<br>10.36 621<br>10.36 586<br>10.36 551                                                                                                  | 9.96 322<br>9.96 316<br>9.96 311<br>9.96 305<br>9.96 300                                                 | 6<br>5<br>6<br>5      | 45<br>44<br>43<br>42<br>41                                                                     | 50 30.0 29.2 28.3                                                                                            |
| 20<br>21<br>22<br>23<br>24<br>25        | 9.59 778<br>9.59 808<br>9.59 837<br>9.59 866<br>9.59 895<br>9.59 924                                                                     | 30<br>29<br>29<br>29<br>29       | 9.63 484<br>9.63 519<br>9.63 553<br>9.63 588<br>9.63 623<br>9.63 657                                                              | 35<br>34<br>35<br>35<br>34 | 10.36 516<br>10.36 481<br>10.36 447<br>10.36 412<br>10.36 377<br>10.36 343                                                                                     | 9.96 294<br>9.96 289<br>9.96 284<br>9.96 278<br>9.96 273<br>9.96 267                                     | 5<br>5<br>6<br>5<br>6 | 40<br>39<br>38<br>37<br>36                                                                     |                                                                                                              |
| 26<br>27<br>28<br>29<br>30              | $\begin{array}{c} 9.59 \ 9.24 \\ 9.59 \ 954 \\ 9.59 \ 983 \\ 9.60 \ 012 \\ \hline 9.60 \ 041 \\ \hline \hline 9.60 \ 070 \\ \end{array}$ | 30<br>29<br>29<br>29<br>29       | 9.63 692<br>9.63 726<br>9.63 761<br>9.63 796<br>9.63 830                                                                          | 35<br>34<br>35<br>35<br>34 | $   \begin{array}{c}     10.36 \ 343 \\     10.36 \ 308 \\     10.36 \ 274 \\     10.36 \ 239 \\     10.36 \ 204 \\     \hline     10.36 \ 170   \end{array} $ | 9.96 262<br>9.96 256<br>9.96 251<br>9.96 245<br>9.96 240                                                 | 5<br>6<br>5<br>6<br>5 | 34<br>33<br>32<br>31<br>30                                                                     | "   30   29   28<br>6   3.0   2.9   2.8<br>7   3.5   3.4   3.3<br>8   4.0   3.9   3.7<br>9   4.5   4.4   4.2 |
| 31<br>32<br>33<br>34<br>35              | $\begin{array}{c} 9.60\ 070 \\ 9.60\ 099 \\ 9.60\ 128 \\ 9.60\ 157 \\ 9.60\ 186 \\ \hline 9.60\ 215 \end{array}$                         | 29<br>29<br>29<br>29,<br>29      | 9.63 865<br>9.63 899<br>9.63 934<br>9.63 968<br>9.64 003                                                                          | 35<br>34<br>35<br>34<br>35 | $   \begin{array}{c}     10.36 \ 135 \\     10.36 \ 101 \\     10.36 \ 066 \\     10.36 \ 032 \\     \hline     10.35 \ 997   \end{array} $                    | 9.96 234<br>9.96 229<br>9.96 223<br>9.96 218<br>9.96 212                                                 | 6<br>5<br>6<br>5<br>6 | $   \begin{array}{c}     29 \\     28 \\     27 \\     26 \\     \hline     25   \end{array} $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                        |
| 36<br>37<br>38<br>39<br>40              | 9.60 244<br>9.60 273<br>9.60 302<br>9.60 331<br>9.60 359                                                                                 | 29<br>29<br>29<br>29<br>28       | $\begin{array}{c} 9.64\ 035 \\ 9.64\ 037 \\ 9.64\ 072 \\ 9.64\ 106 \\ \hline 9.64\ 140 \\ \hline \hline 9.64\ 175 \\ \end{array}$ | 34<br>35<br>34<br>34<br>35 | $\begin{array}{c} 10.35 \ 963 \\ 10.35 \ 963 \\ 10.35 \ 928 \\ 10.35 \ 894 \\ 10.35 \ 860 \\ \hline \hline 10.35 \ 825 \\ \end{array}$                         | 9.96 207<br>9.96 201<br>9.96 196<br>9.96 190<br>9.96 185                                                 | 5<br>6<br>5<br>6<br>5 | 24<br>23<br>22<br>21<br><b>20</b>                                                              |                                                                                                              |
| 41<br>42<br>43<br>44                    | 9.60 339<br>9.60 388<br>9.60 417<br>9.60 446<br>9.60 474<br>9.60 503                                                                     | 29<br>29<br>29<br>28<br>29       | 9.64 209<br>9.64 243<br>9.64 278<br>9.64 312<br>9.64 346                                                                          | 34<br>34<br>35<br>34<br>34 | $   \begin{array}{c}     10.35 823 \\     10.35 791 \\     10.35 757 \\     10.35 722 \\     10.35 688 \\     \hline     10.35 654   \end{array} $             | $\begin{array}{c} 9.96 \ 183 \\ 9.96 \ 179 \\ 9.96 \ 174 \\ 9.96 \ 168 \\ \hline 9.96 \ 157 \end{array}$ | 6<br>5<br>6<br>6<br>5 | 19<br>18<br>17<br>16<br>15                                                                     | <b>"   6   5</b>                                                                                             |
| 45<br>46<br>47<br>48<br>49<br><b>50</b> | 9.60 503<br>9.60 532<br>9.60 561<br>9.60 589<br>9.60 618<br>9.60 646                                                                     | 29<br>29<br>28<br>29<br>28       | 9.64 340<br>9.64 381<br>9.64 415<br>9.64 449<br>9.64 483<br>9.64 517                                                              | 35<br>34<br>34<br>34<br>34 | 10.35 619<br>10.35 585<br>10.35 551<br>10.35 517<br>10.35 483                                                                                                  | 9.96 151<br>9.96 146<br>9.96 140<br>9.96 135<br>9.96 129                                                 | 6<br>5<br>6<br>5      | 14<br>13<br>12<br>11<br>10                                                                     | 6 0.6 0.5<br>7 0.7 0.6<br>8 0.8 0.7<br>9 0.9 0.8                                                             |
| 51<br>52<br>53<br>54<br>55              | $\begin{array}{r} 9.60646 \\ 9.60675 \\ 9.60704 \\ 9.60732 \\ 9.60761 \\ \hline 9.60789 \end{array}$                                     | 29<br>29<br>28<br>29<br>28       | $\begin{array}{c} 9.64\ 517 \\ 9.64\ 552 \\ 9.64\ 586 \\ 9.64\ 620 \\ \hline 9.64\ 654 \\ \hline 9.64\ 688 \\ \end{array}$        | 35<br>34<br>34<br>34<br>34 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                         | 9.96 123<br>9.96 118<br>9.96 112<br>9.96 107<br>9.96 101                                                 | 6<br>5<br>6<br>5<br>6 | 9<br>8<br>7<br>6<br>-5                                                                         | 10 1.0 0.8<br>20 2.0 1.7<br>30 3.0 2.5<br>40 4.0 3.3<br>50 5.0 4.2                                           |
| 56<br>57<br>58<br>59<br><b>60</b>       | 9.60 789<br>9.60 818<br>9.60 846<br>9.60 875<br>9.60 903<br>9.60 931                                                                     | 29<br>28<br>29<br>28<br>28       | $\begin{array}{c} 9.04\ 088 \\ 9.64\ 722 \\ 9.64\ 756 \\ 9.64\ 790 \\ 9.64\ 824 \\ \hline 9.64\ 858 \end{array}$                  | 34<br>34<br>34<br>34<br>34 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                         | 9.96 095<br>9.96 090<br>9.96 084<br>9.96 079<br>9.96 073                                                 | 6<br>5<br>6<br>5      | $\begin{bmatrix} 4\\3\\2\\-1\\0 \end{bmatrix}$                                                 |                                                                                                              |
| -                                       | L Cos                                                                                                                                    | d                                | L Cot                                                                                                                             | c d                        | L Tan                                                                                                                                                          | L Sin                                                                                                    | d                     | <del>,</del>                                                                                   | Prop. Pts.                                                                                                   |

24°

|                                                          | L Sin                                         | đ               | L Tan                                                  | c d                                                | L Cot                                                  | L Cos                         | d                                           |                                                    | Prop. Pts.                                                                        |
|----------------------------------------------------------|-----------------------------------------------|-----------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|
| 0                                                        | 9.60 931<br>9.60 960                          | 29              | 9.64 858<br>9.64 892                                   | 34                                                 | 10.35 142<br>10.35 108                                 | 9.96 073                      | 6                                           | 60                                                 |                                                                                   |
| 2                                                        | 9.60 988                                      | 28              | 9.64926                                                | 34                                                 | 10.35 108                                              | $9.96\ 067$ $9.96\ 062$       | 5                                           | 59<br>58                                           |                                                                                   |
| $\begin{vmatrix} 3 \\ 4 \end{vmatrix}$                   | $egin{array}{c} 9.61\ 0.61\ 0.61 \end{array}$ | 28<br>29        | 9.64 960                                               | $\begin{vmatrix} 34 \\ 34 \end{vmatrix}$           | 10.35 040                                              | 9.96 056                      | 6<br>6                                      | 57                                                 |                                                                                   |
| 5                                                        | $9.61\ 073$                                   | 28              | $\frac{9.64\ 994}{9.65\ 028}$                          | 34                                                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 9.96 050                      | 5                                           | 56                                                 |                                                                                   |
| 6                                                        | 9.61 101                                      | 28              | 9.65028 $9.65062$                                      | 34                                                 | 10.34 972                                              | 9.96 045<br>9.96 039          | 6                                           | 55<br>54                                           |                                                                                   |
| 7                                                        | 9.61 129                                      | 28<br>29        | 9.65 096                                               | $\begin{array}{ c c }\hline 34\\ 34\\ \end{array}$ | 10.34 904                                              | 9.96 034                      | 5                                           | 53                                                 | ″ <b>  34</b>   33                                                                |
| 8 9                                                      | 9.61 158<br>9.61 186                          | 28              | $9.65\ 130$ $9.65\ 164$                                | 34                                                 | 10.34 870<br>10.34 836                                 | $9.96\ 028$ $9.96\ 022$       | 6                                           | 52                                                 |                                                                                   |
| 10                                                       | $9.61\ 214$                                   | 28              | $\frac{9.65  101}{9.65  197}$                          | 33                                                 | 10.34 803                                              | $\frac{9.96\ 022}{9.96\ 017}$ | 5                                           | 51<br><b>50</b>                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                             |
| 11                                                       | 9.61 242                                      | 28<br>28        | $9.65\ 231$                                            | 34 34                                              | 10.34 769                                              | 9.96 011                      | 6                                           | 49                                                 | $egin{array}{c cccc} 8 & 4.5 & 4.4 \\ 9 & 5.1 & 5.0 \\ \hline \end{array}$        |
| 12 13                                                    | $9.61\ 270$ $9.61\ 298$                       | 28              | $9.65\ 265 \ 9.65\ 299$                                | 34                                                 | 10.34 735<br>10.34 701                                 | 9.96 005<br>9.96 000          | 6<br>5                                      | 48                                                 | 10 5.7 5.5                                                                        |
| 14                                                       | 9.61 326                                      | 28              | 9.65 333                                               | 34                                                 | 10.34 667                                              | 9.95994                       | 6                                           | $\begin{array}{ c c }\hline 47\\ 46\\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                             |
| 15                                                       | 9.61 354                                      | 28<br>28        | 9.65 366                                               | 33                                                 | 10.34 634                                              | 9.95 988                      | 6                                           | 45                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                             |
| 16<br>17                                                 | $9.61\ 382$ $9.61\ 411$                       | $\frac{28}{29}$ | 9.65400 $9.65434$                                      | 34 34                                              | 10.34 600<br>10.34 566                                 | 9.95 982                      | 6<br>5                                      | 44                                                 |                                                                                   |
| 18                                                       | 9.61 438                                      | 27              | 9.65 467                                               | 33                                                 | 10.34 500                                              | 9.95977 $9.95971$             | 6                                           | 43 42                                              |                                                                                   |
| 19                                                       | 9.61 466                                      | 28<br>28        | 9.65 501                                               | 34                                                 | 10.34 499                                              | 9.95 965                      | 6<br>5                                      | 41                                                 |                                                                                   |
| <b>20</b> 21                                             | 9.61494 $9.61522$                             | 28              | 9.65 535<br>9.65 568                                   | 33                                                 | 10.34 465<br>10.34 432                                 | 9.95 960                      | 6                                           | 40                                                 |                                                                                   |
| 22                                                       | 9.61 550                                      | 28              | 9.65 602                                               | 34                                                 | 10.34 432                                              | 9.95954 $9.95948$             | 6                                           | 39<br>38                                           |                                                                                   |
| $\begin{array}{ c c c }\hline 23\\ 24\\ \end{array}$     | 9.61 578                                      | 28<br>28        | 9.65 636                                               | 34 33                                              | 10.34 364                                              | 9.95 942                      | 6<br>5                                      | 37                                                 |                                                                                   |
| $\frac{24}{25}$                                          | $9.61\ 606$ $9.61\ 634$                       | 28              | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 34                                                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 9.95 937                      | 6                                           | 36                                                 |                                                                                   |
| 26                                                       | 9.61 662                                      | 28              | 9.65 736                                               | 33                                                 | 10.34 264                                              | 9.95931 $9.95925$             | 6                                           | 35<br>34                                           | ″   29   28   27                                                                  |
| 27                                                       | 9.61 689                                      | 27<br>28        | 9.65 770                                               | 34                                                 | 10.34 230                                              | 9.95920                       | 5<br>6                                      | 33                                                 |                                                                                   |
| 28 29                                                    | 9.61 717<br>9.61 745                          | 28              | 9.65 803<br>9.65 837                                   | 34                                                 | 10.34 197 10.34 163                                    | 9.95 914<br>9.95 908          | 6                                           | $\begin{vmatrix} 32 \\ 31 \end{vmatrix}$           | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                              |
| 30                                                       | 9.61 773                                      | 28              | 9.65 870                                               | 33                                                 | 10.34 130                                              | $\frac{0.05000}{9.95902}$     | 6                                           | 30                                                 | 8  3.9  3.7  3.6                                                                  |
| 31                                                       | 9.61 800                                      | 27<br>28        | 9.65 904                                               | 34 33                                              | 10.34 096                                              | 9.95 897                      | 5                                           | 29                                                 | 10 4.8 4.7 4.5                                                                    |
| $\begin{array}{ c c c }\hline & 32 \\ 33 \\ \end{array}$ | 9.61 828<br>9.61 856                          | 28              | 9.65937 $9.65971$                                      | 34                                                 | 10.34 063<br>10.34 029                                 | 9.95 891<br>9.95 885          | 6                                           | 28<br>27                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                             |
| 34                                                       | 9.61 883                                      | 27<br>28        | 9.66 004                                               | 33 34                                              | 10.33 996                                              | 9.95 879                      | 6                                           | 26                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                             |
| 35                                                       | 9.61 911                                      | 28              | 9.66 038                                               | 33                                                 | 10.33 962                                              | 9.95 873                      | $\begin{array}{c c} 6 \\ 5 \end{array}$     | 25                                                 |                                                                                   |
| 36 37                                                    | 9.61 939 9.61 966                             | 27              | 9.66 071<br>9.66 104                                   | 33                                                 | 10.33 929 10.33 896                                    | 9.95868 $9.95862$             | 6                                           | 24 23                                              |                                                                                   |
| 38                                                       | 9.61 994                                      | 28 27           | 9.66 138                                               | 34                                                 | 10.33 862                                              | 9.95 856                      | 6                                           | 22                                                 |                                                                                   |
| 39                                                       | 9.62 021                                      | 28              | 9.66 171                                               | 33                                                 | 10.33 829                                              | 9.95 850                      | 6                                           | 21                                                 |                                                                                   |
| 40                                                       | 9.62 049 9.62 076                             | 27              | 9.66 204<br>9.66 238                                   | 34                                                 | 10.33 796 10.33 762                                    | 9.95 844<br>9.95 839          | 5                                           | <b>20</b> 19                                       |                                                                                   |
| 42                                                       | 9.62 104                                      | 28<br>27        | 9.66 271                                               | 33                                                 | 10.33 729                                              | 9.95 833                      | 6                                           | 18                                                 |                                                                                   |
| 43                                                       | 9.62 131 9.62 159                             | 28              | 9.66 304<br>9.66 337                                   | 33                                                 | 10.33 696<br>10.33 663                                 | 9.95 827<br>9.95 821          | 6                                           | 17<br>16                                           |                                                                                   |
| 45                                                       | 9.62 186                                      | 27              | 9.66 371                                               | 34                                                 | 10.33 629                                              | $\frac{9.95821}{9.95815}$     | 6                                           | 15                                                 | ″   6   <b>5</b>                                                                  |
| 46                                                       | 9.62 214                                      | 28 27           | 9.66 404                                               | 33                                                 | 10.33 596                                              | 9.95 810                      | 5<br>6                                      | 14                                                 | 6 0.6 0.5                                                                         |
| 47                                                       | 9.62 241<br>9.62 268                          | 27              | 9.66 437<br>9.66 470                                   | 33                                                 | 10.33 563<br>10.33 530                                 | 9.95 804<br>9.95 798          | 6                                           | 13<br>12                                           | 7 0.7 0.6                                                                         |
| 49                                                       | 9.62 296                                      | 28              | 9.66 503                                               | 33 34                                              | 10.33 497                                              | 9.95 792                      | 6                                           | 11                                                 | $\begin{array}{c c} 8 & 0.8 & 0.7 \\ 9 & 0.9 & 0.8 \end{array}$                   |
| 50                                                       | 9.62 323                                      | 27 27           | 9.66 537                                               | 33                                                 | 10.33 463                                              | 9.95 786                      | $\begin{array}{ c c c } 6 \\ 6 \end{array}$ | 10                                                 | $\begin{array}{c} 10   1.0   0.8 \\ 20   2.0   1.7 \\ 30   3.0   2.5 \end{array}$ |
| 51 52                                                    | 9.62350 $9.62377$                             | 27              | 9.66 570<br>9.66 603                                   | 33                                                 | 10.33 430<br>10.33 397                                 | 9.95 780<br>9.95 775          | 5                                           | 9 8                                                | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                |
| 53                                                       | 9.62 405                                      | 28              | 9.66 636                                               | 33                                                 | 10.33 364                                              | 9.95 769                      | 6                                           | 7                                                  | $50\ 5.0\ 4.2$                                                                    |
| 54                                                       | 9.62 432                                      | 27 27           | 9.66 669                                               | 33                                                 | 10.33 331                                              | 9.95 763                      | $\begin{array}{ c c c } 6 \\ 6 \end{array}$ | $\left  \frac{6}{\epsilon} \right $                |                                                                                   |
| 55<br>56                                                 | 9.62 459<br>9.62 486                          | 27              | 9.66 702<br>9.66 735                                   | 33                                                 | 10.33 298<br>10.33 265                                 | 9.95 757<br>9.95 751          | 6                                           | 5<br>4                                             |                                                                                   |
| 57                                                       | 9.62 513                                      | 27<br>28        | 9.66 768                                               | 33                                                 | 10.33 232                                              | 9.95 745                      | 6                                           | 3                                                  |                                                                                   |
| 58<br>59                                                 | 9.62 541 9.62 568                             | 28 27           | 9.66 801<br>9.66 834                                   | 33                                                 | 10.33 199<br>10.33 166                                 | 9.95 739<br>9.95 733          | 6                                           | $\begin{array}{c c} 2 \\ 1 \end{array}$            |                                                                                   |
| 60                                                       | 9.62 595                                      | 27              | 9.66 867                                               | 33                                                 | 10.33 133                                              | 9.95 728                      | 5                                           | 0                                                  |                                                                                   |
| 1-                                                       | L Cos                                         | d               | L Cot                                                  | c d                                                | L Tan                                                  | L Sin                         | d                                           | ,                                                  | Prop. Pts.                                                                        |

 $25^{\circ}$ 

| , 1                                            | L Sin                                                  | d                                                      | L Tan                                                | c d                                                | L Cot                                                       | L Cos                                                           | d                                                      |                                                        | Prop. Pts.                                                                                          |
|------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                |                                                        |                                                        |                                                      |                                                    | 10.33 133                                                   | $\frac{2 \text{ Gos}}{9.95  728}$                               |                                                        | 60                                                     | •                                                                                                   |
| $\left \begin{array}{c}0\\1\end{array}\right $ | $9.62\ 595 \\ 9.62\ 622$                               | 27                                                     | 9.66 867<br>9.66 900                                 | 33                                                 | 10.33 100                                                   | 9.95722                                                         | 6                                                      | 59                                                     |                                                                                                     |
| $\frac{1}{2}$                                  | $9.62\ 649$                                            | 27                                                     | 9.66 933                                             | 33                                                 | 10.33 067                                                   | 9.95 716                                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 58                                                     |                                                                                                     |
| 3                                              | 9.62676                                                | $\begin{array}{c c} 27 \\ 27 \end{array}$              | 9.66 966<br>9.66 999                                 | 33<br>33                                           | 10.33 034<br>10.33 001                                      | $oxed{9.95\ 710} \ 9.95\ 704$                                   | 6                                                      | 57<br>56                                               |                                                                                                     |
| 4                                              | $\frac{9.62\ 703}{0.62\ 730}$                          | $\frac{27}{27}$                                        | $\frac{9.66999}{9.67032}$                            | 33                                                 | $\frac{10.33\ 001}{10.32\ 968}$                             | 9.95 698                                                        | 6                                                      | $\frac{55}{55}$                                        |                                                                                                     |
| 5 6                                            | $9.62730 \\ 9.62757$                                   | 27                                                     | $9.67\ 0.032$ $9.67\ 0.005$                          | 33                                                 | 10.32 935                                                   | $9.95\ 692$                                                     | 6                                                      | 54                                                     |                                                                                                     |
| 7                                              | 9.62 784                                               | 27                                                     | 9.67 098                                             | 33<br>33                                           | 10.32 902                                                   | 9.95 686                                                        | $\begin{array}{c c} 6 \\ 6 \end{array}$                | 53                                                     | ″   33   32                                                                                         |
| 8                                              | $egin{array}{c} 9.62\ 811\ 9.62\ 838 \end{array}$      | $\begin{bmatrix} 27 \\ 27 \end{bmatrix}$               | $9.67\ 131 \ 9.67\ 163$                              | $\frac{33}{32}$                                    | 10.32 869<br>10.32 837                                      | $\left[ egin{array}{c} 9.95\ 680\ 9.95\ 674 \end{array}  ight]$ | 6                                                      | 52 $51$                                                | 6 3.3 3.2                                                                                           |
| $\frac{9}{10}$                                 | $\frac{9.02838}{9.62865}$                              | 27                                                     | 9.67 196                                             | 33                                                 | 10.32 804                                                   | 9.95 668                                                        | 6                                                      | 50                                                     | $egin{array}{c cccc} 7 & 3.8 & 3.7 \\ 8 & 4.4 & 4.3 \\ \end{array}$                                 |
| 11                                             | 9.62892                                                | 27                                                     | $9.67\ 229$                                          | 33                                                 | 10.32 771                                                   | 9.95 663                                                        | 5<br>6                                                 | 49                                                     | 8 5.0 4.8                                                                                           |
| 12                                             | 9.62 918                                               | 26<br>27                                               | $9.67\ 262$                                          | 33<br>33                                           | 10.32 738<br>10.32 705                                      | $oxed{9.95\ 657\ 9.95\ 651}$                                    | 6                                                      | 48<br>47                                               | $egin{array}{c c} 10 & 5.5 & 5.3 \ 20 & 11.0 & 10.7 \end{array}$                                    |
| 13<br>14                                       | $9.62945 \\ 9.62972$                                   | 27                                                     | $9.67\ 295 \ 9.67\ 327$                              | 32                                                 | 10.32 673                                                   | 9.95 645                                                        | 6                                                      | 46                                                     | 30   16.5   16.0                                                                                    |
| 15                                             | $\frac{9.62999}{9.62999}$                              | 27                                                     | 9.67 360                                             | 33                                                 | 10.32 640                                                   | 9.95 639                                                        | 6                                                      | 45                                                     | $\begin{array}{c} 40 \ 22.0 \ 21.3 \\ 50 \ 27.5 \ 26.7 \end{array}$                                 |
| 16                                             | 9.63 026                                               | 27                                                     | $9.67\ 393$                                          | 33<br>33                                           | 10.32 607                                                   | 9.95 633                                                        | 6                                                      | 44                                                     |                                                                                                     |
| 17                                             | $oxed{9.63\ 052} \ 9.63\ 079$                          | $\begin{bmatrix} 26 \\ 27 \end{bmatrix}$               | $egin{array}{c} 9.67\ 426 \ 9.67\ 458 \ \end{array}$ | $\frac{33}{32}$                                    | $\begin{array}{c c} 10.32\ 574 \\ 10.32\ 542 \end{array}$   | $oxed{9.95\ 627} \ 9.95\ 621$                                   | 6                                                      | 43 42                                                  |                                                                                                     |
| 18 19                                          | 9.63 106                                               | 27                                                     | 9.67498 $9.67491$                                    | 33                                                 | 10.32 509                                                   | 9.95 615                                                        | 6                                                      | 41_                                                    |                                                                                                     |
| 20                                             | 9.63 133                                               | 27                                                     | 9.67 524                                             | 33                                                 | 10.32 476                                                   | 9.95 609                                                        | 6                                                      | 40                                                     |                                                                                                     |
| 21                                             | 9.63 159                                               | $\begin{array}{ c c } 26 \\ 27 \end{array}$            | 9.67 556                                             | 32<br>33                                           | $\begin{array}{c c} 10.32 \ 444 \\ 10.32 \ 411 \end{array}$ | 9.95 603<br>9.95 597                                            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 39<br>38                                               |                                                                                                     |
| 22 23                                          | 9.63 186<br>9.63 213                                   | 27                                                     | $egin{array}{c} 9.67\ 589 \ 9.67\ 622 \ \end{array}$ | 33                                                 | 10.32 378                                                   | 9.95 591                                                        | 6                                                      | 37                                                     |                                                                                                     |
| 24                                             | 9.63 239                                               | 26                                                     | 9.67 654                                             | $\begin{vmatrix} 32 \\ 33 \end{vmatrix}$           | 10.32 346                                                   | $9.95\ 585$                                                     | $\begin{array}{c c} 6 \\ 6 \end{array}$                | 36_                                                    |                                                                                                     |
| $\overline{25}$                                | 9.63 266                                               | $\begin{vmatrix} 27 \\ 26 \end{vmatrix}$               | 9.67 687                                             | $\begin{vmatrix} 33 \\ 32 \end{vmatrix}$           | 10.32 313                                                   | 9.95 579                                                        | 6                                                      | 35                                                     |                                                                                                     |
| 26 27                                          | $9.63\ 292$ $9.63\ 319$                                | $\frac{20}{27}$                                        | $egin{array}{c} 9.67\ 719 \ 9.67\ 752 \ \end{array}$ | 33                                                 | $\begin{array}{c c} 10.32 \ 281 \\ 10.32 \ 248 \end{array}$ | $9.95\ 573$ $9.95\ 567$                                         | 6                                                      | 34                                                     | ′′   27   26                                                                                        |
| $\frac{27}{28}$                                | 9.63 345                                               | 26                                                     | 9.67 785                                             | 33                                                 | $10.32\ 215$                                                | $9.95\ 561$                                                     | 6                                                      | 32                                                     | $egin{array}{c c} 6 & 2.7 & 2.6 \\ 7 & 3.2 & 3.0 \\ \end{array}$                                    |
| 29                                             | 9.63 372                                               | $\begin{vmatrix} 27 \\ 26 \end{vmatrix}$               | 9.67 817                                             | 32<br>33                                           | 10.32 183                                                   | 9.95 555                                                        | $\begin{array}{c c} 6 \\ 6 \end{array}$                | 31                                                     | 8 3.6 3.5                                                                                           |
| 30                                             | 9.63 398                                               | 27                                                     | $9.67850 \\ 9.67882$                                 | 32                                                 | $\begin{array}{c c} 10.32 \ 150 \\ 10.32 \ 118 \end{array}$ | $9.95\ 549 \ 9.95\ 543$                                         | 6                                                      | <b>30</b> 29                                           | $egin{array}{c c} 9 & 4.0 & 3.9 \\ 10 & 4.5 & 4.3 \\ \end{array}$                                   |
| 31 32                                          | $9.63\ 425$ $9.63\ 451$                                | 26                                                     | 9.67 915                                             | 33                                                 | 10.32 085                                                   | 9.95 537                                                        | 6                                                      | 28                                                     | $egin{array}{c c} 20 & 9.0 & 8.7 \ 30 & 13.5 & 13.0 \ \end{array}$                                  |
| 33                                             | 9.63 478                                               | $\begin{array}{ c c c }\hline 27 \\ 26 \\ \end{array}$ | 9.67 947                                             | $\begin{vmatrix} 32 \\ 33 \end{vmatrix}$           | 10.32 053                                                   | 9.95 531                                                        | $\begin{array}{c c} 6 \\ 6 \end{array}$                | 27                                                     | 40 18.0 17.3                                                                                        |
| $\frac{34}{25}$                                | 9.63 504                                               | 27.                                                    | 9.67 980                                             | $\begin{vmatrix} 35 \\ 32 \end{vmatrix}$           | 10.32 020                                                   | $\begin{array}{r} 9.95\ 525 \\ \hline 9.95\ 519 \end{array}$    | 6                                                      | $\frac{26}{25}$                                        | 50 22.5 21.7                                                                                        |
| 35 36                                          | 9.63 531<br>9.63 557                                   | 26                                                     | $9.68\ 012 \\ 9.68\ 044$                             | 32                                                 | $\begin{array}{c} 10.31\ 988 \\ 10.31\ 956 \end{array}$     | 9.95513                                                         | 6                                                      | 24                                                     |                                                                                                     |
| 37                                             | 9.63 583                                               | 26                                                     | 9.68077                                              | $\begin{array}{ c c }\hline 33\\ 32\\ \end{array}$ | 10.31 923                                                   | 9.95  507                                                       | $\begin{bmatrix} 6 \\ 7 \end{bmatrix}$                 | 23                                                     |                                                                                                     |
| 38                                             | 9.63 610                                               | $\begin{vmatrix} 27 \\ 26 \end{vmatrix}$               | $oxed{9.68109} \ 9.68142$                            | 33                                                 | 10.31 891<br>10.31 858                                      | 9.95 500<br>9.95 494                                            | 6                                                      | $ \begin{array}{c c} 22 \\ 21 \end{array} $            |                                                                                                     |
| 39<br><b>40</b>                                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 26                                                     | $\frac{9.68142}{9.68174}$                            | 32                                                 | 10.31 826                                                   | 9.95 488                                                        | 6                                                      | 20                                                     |                                                                                                     |
| 41                                             | 9.63 689                                               | 27                                                     | 9.68 206                                             | 32                                                 | 10.31 794                                                   | 9.95482                                                         | 6                                                      | 19                                                     |                                                                                                     |
| 42                                             | 9.63 715                                               | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$               | 9.68 239<br>9.68 271                                 | $\begin{array}{c c} 33 \\ 32 \end{array}$          | $10.31\ 761$ $10.31\ 729$                                   | $9.95476 \\ 9.95470$                                            | $\begin{array}{c c} 6 \\ 6 \end{array}$                | 18<br>17                                               |                                                                                                     |
| 43 44                                          | $\begin{vmatrix} 9.63741 \\ 9.63767 \end{vmatrix}$     | 26                                                     | 9.68 271                                             | 32                                                 | 10.31 729                                                   | 9.95 464                                                        | 6                                                      | 16                                                     |                                                                                                     |
| 45                                             | 9.63 794                                               | 27                                                     | 9.68 336                                             | 33                                                 | 10.31 664                                                   | 9.95 458                                                        | 6                                                      | 15                                                     | "   7   6   5                                                                                       |
| 46                                             | 9.63 820                                               | 26<br>26                                               | 9.68 368                                             | $\begin{array}{ c c }\hline 32\\ 32\\ \end{array}$ | 10.31 632<br>10.31 600                                      | 9.95452 $9.95446$                                               | $\begin{bmatrix} 6 \\ 6 \end{bmatrix}$                 | 14<br>13                                               | 6 0.7 0.6 0.5                                                                                       |
| 47 48                                          | 9.63 846 9.63 872                                      | 26                                                     | 9.68 400<br>9.68 432                                 | 32                                                 | 10.31 568                                                   | 9.95 440                                                        | 6                                                      | 12                                                     | 7 0.8 0.7 0.6                                                                                       |
| 49                                             | 9.63 898                                               | 26                                                     | 9.68 465                                             | 33 32                                              | 10.31 535                                                   | 9.95 434                                                        | 6 7                                                    | 11                                                     | $\begin{array}{c c} 3 & 0.3 & 0.3 & 0.7 \\ 9 & 1.0 & 0.9 & 0.8 \\ 10 & 1.2 & 1.0 & 0.8 \end{array}$ |
| 50                                             | 9.63 924                                               | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$               | 9.68 497                                             | 32                                                 | 10.31 503                                                   | 9.95 427                                                        | 6                                                      | <b>10</b> 9                                            | $\begin{array}{c} 10 1.2 1.0 0.8\\ 20 2.3 2.0 1.7\\ 30 3.5 3.0 2.5 \end{array}$                     |
| 51 52                                          | 9.63 950 9.63 976                                      | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$               | 9.68 529 9.68 561                                    | 32                                                 | 10.31 471 10.31 439                                         | 9.95421 $9.95415$                                               | 6                                                      | 8                                                      | $\begin{array}{c c} 30 & 3.5 & 3.0 & 2.5 \\ 40 & 4.7 & 4.0 & 3.3 \end{array}$                       |
| 53                                             | 9.64 002                                               | 26                                                     | 9.68 593                                             | 32                                                 | 10.31 407                                                   | 9.95 409                                                        | 6                                                      | 7                                                      | $\begin{array}{c c}  & 40 & 4.7 & 4.0 & 3.3 \\  & 50 & 5.8 & 5.0 & 4.2 \end{array}$                 |
| 54                                             | 9.64 028                                               | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$               | 9.68 626                                             | 33 32                                              | 10.31 374                                                   | 9.95 403                                                        | 6                                                      | $\frac{6}{5}$                                          |                                                                                                     |
| 55<br>56                                       | 9.64 054<br>9.64 080                                   | 26                                                     | 9.68 658<br>9.68 690                                 | 32                                                 | $10.31\ 342$ $10.31\ 310$                                   | 9.95 397<br>9.95 391                                            | 6                                                      | 5 4                                                    |                                                                                                     |
| 57                                             | 9.64 106                                               | 26                                                     | 9.68 722                                             | 32                                                 | 10.31 278                                                   | 9.95 384                                                        | 7                                                      | 3                                                      |                                                                                                     |
| 58                                             | 9.64 132                                               | $\begin{array}{ c c c } 26 \\ 26 \end{array}$          | 9.68 754                                             | $\begin{array}{ c c }\hline 32\\ 32\\ \end{array}$ | 10.31 246<br>10.31 214                                      | 9.95378 $9.95372$                                               | $\begin{vmatrix} 6 \\ 6 \end{vmatrix}$                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                                                                                     |
| 59                                             | 9.64 158                                               | 26                                                     | 9.68 786 9.68 818                                    | 32                                                 | $\frac{10.31\ 214}{10.31\ 182}$                             | 9.95372 $9.95366$                                               | 6                                                      | $-\frac{1}{0}$                                         |                                                                                                     |
| 60                                             | 9.64 184                                               | -                                                      |                                                      |                                                    |                                                             |                                                                 |                                                        | <del>-,</del>                                          | D D/-                                                                                               |
|                                                | L Cos                                                  | d                                                      | L Cot                                                | c d                                                | L Tan                                                       | L Sin                                                           | d                                                      | 1                                                      | Prop. Pts.                                                                                          |

26°

| ′                                                                        | L Sin                                                                                             | d                                | L Tan                                                                | c d                              | L Cot                                                                      | L Cos                                                    | d                     |                            | Prop. Pts.                                                                                                                        |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|-----------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4                                                    | 9.64 184<br>9.64 210<br>9.64 236<br>9.64 262<br>9.64 288                                          | 26<br>26<br>26<br>26<br>26       | 9.68 818<br>9.68 850<br>9.68 882<br>9.68 914<br>9.68 946             | 32<br>32<br>32<br>32<br>32       | 10.31 182<br>10.31 150<br>10.31 118<br>10.31 086<br>10.31 054              | 9.95 366<br>9.95 360<br>9.95 354<br>9.95 348<br>9.95 341 | 6<br>6<br>6<br>7      | <b>60</b> 59 58 57 56      |                                                                                                                                   |
| 5<br>6<br>7<br>8<br>9                                                    | 9.64 313<br>9.64 339<br>9.64 365<br>9.64 391<br>9.64 417                                          | 25<br>26<br>26<br>26<br>26       | 9.68 978<br>9.69 010<br>9.69 042<br>9.69 074<br>9.69 106             | 32<br>32<br>32<br>32<br>32<br>32 | 10.31 022<br>10.30 990<br>10.30 958<br>10.30 926<br>10.30 894              | 9.95 335<br>9.95 329<br>9.95 323<br>9.95 317<br>9.95 310 | 6<br>6<br>6<br>7      | 55<br>54<br>53<br>52<br>51 | ,<br>"  <mark>32</mark>   <mark>31</mark><br>6   3.2   3.1                                                                        |
| 10<br>11<br>12<br>13                                                     | 9.64 442<br>9.64 468<br>9.64 494<br>9.64 519                                                      | 25<br>26<br>26<br>25<br>26       | 9.69 138<br>9.69 170<br>9.69 202<br>9.69 234                         | 32<br>32<br>32<br>32<br>32<br>32 | 10.30 862<br>10.30 830<br>10.30 798<br>10.30 766<br>10.30 734              | 9.95 304<br>9.95 298<br>9.95 292<br>9.95 286<br>9.95 279 | 6<br>6<br>6<br>7      | 50<br>49<br>48<br>47<br>46 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             |
| 14<br>15<br>16<br>17<br>18                                               | 9.64 545<br>9.64 571<br>9.64 596<br>9.64 622<br>9.64 647<br>9.64 673                              | 26<br>25<br>26<br>25<br>26       | 9.68 266<br>9.69 298<br>9.69 329<br>9.69 361<br>9.69 393<br>9.69 425 | 31<br>32<br>32<br>32<br>32<br>32 | 10.30 734<br>10.30 702<br>10.30 671<br>10.30 639<br>10.30 607<br>10.30 575 | 9.95 273<br>9.95 267<br>9.95 261<br>9.95 254<br>9.95 248 | 6<br>6<br>6<br>7<br>6 | 45<br>44<br>43<br>42<br>41 | 40 21.3 20.7<br>50 26.7 25.8                                                                                                      |
| 19<br>20<br>21<br>22<br>23<br>24                                         | 9.64 678<br>9.64 698<br>9.64 724<br>9.64 749<br>9.64 775<br>9.64 800                              | 25<br>26<br>25<br>26<br>25       | 9.69 425<br>9.69 457<br>9.69 488<br>9.69 520<br>9.69 552<br>9.69 584 | 32<br>31<br>32<br>32<br>32<br>32 | 10.30 573<br>10.30 543<br>10.30 512<br>10.30 480<br>10.30 448<br>10.30 416 | 9.95 242<br>9.95 236<br>9.95 229<br>9.95 223<br>9.95 217 | 6<br>6<br>7<br>6<br>6 | 40<br>39<br>38<br>37<br>36 |                                                                                                                                   |
| $ \begin{array}{ c c c } \hline 25 \\ 26 \\ 27 \\ 28 \\ 29 \end{array} $ | 9.64 826<br>9.64 851<br>9.64 877<br>9.64 902<br>9.64 927                                          | 26<br>25<br>26<br>25<br>25       | 9.69 615<br>9.69 647<br>9.69 679<br>9.69 710<br>9.69 742             | 31<br>32<br>32<br>31<br>32       | 10.30 385<br>10.30 353<br>10.30 321<br>10.30 290<br>10.30 258              | 9.95 211<br>9.95 204<br>9.95 198<br>9.95 192<br>9.95 185 | 6<br>7<br>6<br>6<br>7 | 35<br>34<br>33<br>32<br>31 | "  <b>26</b>   <b>25</b>   <b>24</b><br>6 2.6 2.5 2.4<br>7 3.0 2.9 2.8<br>8 3.5 3.3 3.2                                           |
| 30<br>31<br>32<br>33<br>34                                               | 9.64 953<br>9.64 978<br>9.65 003<br>9.65 029<br>9.65 054                                          | 26<br>25<br>25<br>26<br>25       | 9.69 774<br>9.69 805<br>9.69 837<br>9.69 868<br>9.69 900             | 32<br>31<br>32<br>31<br>32       | 10.30 226<br>10.30 195<br>10.30 163<br>10.30 132<br>10.30 100              | 9.95 179<br>9.95 173<br>9.95 167<br>9.95 160<br>9.95 154 | 6<br>6<br>7<br>6      | 30<br>29<br>28<br>27<br>26 | 8 3.5 3.3 3.2<br>9 3.9 3.8 3.6<br>10 4.3 4.2 4.0<br>20 8.7 8.3 8.0<br>30 13.0 12.5 12.0<br>40 17.3 16.7 16.0<br>50 21.7 20.8 20.0 |
| 35<br>36<br>37<br>38<br>39                                               | 9.65 079<br>9.65 104<br>9.65 130<br>9.65 155<br>9.65 180                                          | 25<br>25<br>26<br>25<br>25       | 9.69 932<br>9.69 963<br>9.69 995<br>9.70 026<br>9.70 058             | 32<br>31<br>32<br>31<br>32       | 10.30 068<br>10.30 037<br>10.30 005<br>10.29 974<br>10.29 942              | 9.95 148<br>9.95 141<br>9.95 135<br>9.95 129<br>9.95 122 | 6<br>7<br>6<br>6<br>7 | 25<br>24<br>23<br>22<br>21 | 00 2111 20.0 20.0                                                                                                                 |
| 40<br>41<br>42<br>43<br>44                                               | 9.65 205<br>9.65 230<br>9.65 255<br>9.65 281<br>9.65 306                                          | 25<br>25<br>25<br>26<br>26<br>25 | 9.70 089<br>9.70 121<br>9.70 152<br>9.70 184<br>9.70 215             | 31<br>32<br>31<br>32<br>31       | 10.29 911<br>10.29 879<br>10.29 848<br>10.29 816<br>10.29 785              | 9.95 116<br>9.95 110<br>9.95 103<br>9.95 097<br>9.95 090 | 6<br>6<br>7<br>6<br>7 | 20<br>19<br>18<br>17<br>16 |                                                                                                                                   |
| 45<br>46<br>47<br>48<br>49                                               | 9.65 331<br>9.65 356<br>9.65 381<br>9.65 406<br>9.65 431                                          | 25<br>25<br>25<br>25<br>25<br>25 | 9.70 247<br>9.70 278<br>9.70 309<br>9.70 341<br>9.70 372             | 32<br>31<br>31<br>32<br>31       | 10.29 753<br>10.29 722<br>10.29 691<br>10.29 659<br>10.29 628              | 9.95 084<br>9.95 078<br>9.95 071<br>9.95 065<br>9.95 059 | 6<br>7<br>6<br>6      | 15<br>14<br>13<br>12<br>11 | "  <b>7</b>   <b>6</b><br>6 0.7 0.6<br>7 0.8 0.7<br>8 0.9 0.8<br>9 1.0 0.9                                                        |
| 50<br>51<br>52<br>53<br>54                                               | $\begin{array}{r} 9.65 \ 456 \\ 9.65 \ 481 \\ 9.65 \ 506 \\ 9.65 \ 531 \\ 9.65 \ 556 \end{array}$ | 25<br>25<br>25<br>25<br>25<br>25 | 9.70 404<br>9.70 435<br>9.70 466<br>9.70 498<br>9.70 529             | 32<br>31<br>31<br>32<br>31       | 10.29 596<br>10.29 565<br>10.29 534<br>10.29 502<br>10.29 471              | 9.95 052<br>9.95 046<br>9.95 039<br>9.95 033<br>9.95 027 | 7<br>6<br>7<br>6<br>6 | 10<br>9<br>8<br>7<br>6     | 8 0.8 0.8<br>9 1.0 0.9<br>10 1.2 1.0<br>20 2.3 2.0<br>30 3.5 3.0<br>40 4.7 4.0<br>50 5.8 5.0                                      |
| 55<br>56<br>57<br>58<br>59                                               | 9.65 580<br>9.65 605<br>9.65 630<br>9.65 655<br>9.65 680                                          | 24<br>25<br>25<br>25<br>25<br>25 | 9.70 560<br>9.70 592<br>9.70 623<br>9.70 654<br>9.70 685             | 31<br>32<br>31<br>31<br>31       | 10.29 440<br>10.29 408<br>10.29 377<br>10.29 346<br>10.29 315              | 9.95 020<br>9.95 014<br>9.95 007<br>9.95 001<br>9.94 995 | 7<br>6<br>7<br>6<br>6 | 5<br>4<br>3<br>2<br>1      |                                                                                                                                   |
| 60                                                                       | 9.65 705                                                                                          | 25                               | 9.70 717                                                             | 32                               | 10.29 283                                                                  | 9.94 988                                                 | d d                   | 0                          | Prop. Pts.                                                                                                                        |
|                                                                          | L Cos                                                                                             | d                                | L Cot                                                                | c d                              | L Tan                                                                      | L Sin                                                    | u                     |                            | 7 10p. 1 to.                                                                                                                      |

27°

| /                                       | L Sin                                                                                                                  | d                                                                | L Tan                                                                                                                             | c d                              | L Cot                                                                                                                                                          | L Cos                                                                                                                     | d                          |                                                       | Prop. Pts.                                                                                                                       |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4                   | 9.65 705<br>9.65 729<br>9.65 754<br>9.65 779<br>9.65 804                                                               | 24<br>25<br>25<br>25<br>25                                       | 9.70 717<br>9.70 748<br>9.70 779<br>9.70 810<br>9.70 841                                                                          | 31<br>31<br>31<br>31             | 10.29 283<br>10.29 252<br>10.29 221<br>10.29 190<br>10.29 159                                                                                                  | 9.94 988<br>9.94 982<br>9.94 975<br>9.94 969<br>9.94 962                                                                  | 6<br>7<br>6<br>7           | <b>60</b> 59 58 57 56                                 |                                                                                                                                  |
| 5<br>6<br>7<br>8<br>9                   | 9.65 828<br>9.65 853<br>9.65 878<br>9.65 902<br>9.65 927                                                               | 24<br>25<br>25<br>24<br>25                                       | 9.70 873<br>9.70 904<br>9.70 935<br>9.70 966<br>9.70 997                                                                          | 32<br>31<br>31<br>31<br>31       | 10.29 127<br>10.29 096<br>10.29 065<br>10.29 034<br>10.29 003                                                                                                  | 9.94 956<br>9.94 949<br>9.94 943<br>9.94 936<br>9.94 930                                                                  | 6<br>7<br>6<br>7<br>6      | 55<br>45<br>53<br>52<br>51                            | "   <b>32</b>   <b>31</b>   <b>30</b>   6   3.2   3.1   3.0   7   3.7   3.6   3.5                                                |
| 10<br>11<br>12<br>13<br>14              | 9.65 952<br>9.65 976<br>9.66 001<br>9.66 025<br>9.66 050                                                               | 25<br>24<br>25<br>24<br>25                                       | 9.71 028<br>9.71 059<br>9.71 090<br>9.71 121<br>9.71 153                                                                          | 31<br>31<br>31<br>31<br>32       | 10.28 972<br>10.28 941<br>10.28 910<br>10.28 879<br>10.28 847                                                                                                  | 9.94 923<br>9.94 917<br>9.94 911<br>9.94 904<br>9.94 898                                                                  | 7<br>6<br>6<br>7<br>6<br>7 | 50<br>49<br>48<br>47<br>46                            | 7 3.7 3.6 3.5<br>8 4.3 4.1 4.0<br>9 4.8 4.6 4.5<br>10 5.3 5.2 5.0<br>20 10.7 10.3 10.0<br>30 16.0 15.5 15.0<br>40 21.3 20.7 20.0 |
| 15<br>16<br>17<br>18<br>19              | 9.66 075<br>9.66 099<br>9.66 124<br>9.66 148<br>9.66 173                                                               | $egin{array}{c} 25 \\ 24 \\ 25 \\ 24 \\ 25 \\ 24 \\ \end{array}$ | 9.71 184<br>9.71 215<br>9.71 246<br>9.71 277<br>9.71 308                                                                          | 31<br>31<br>31<br>31<br>31<br>31 | 10.28 816<br>10.28 785<br>10.28 754<br>10.28 723<br>10.28 692                                                                                                  | 9.94 891<br>9.94 885<br>9.94 878<br>9.94 871<br>9.94 865                                                                  | 6<br>7<br>7<br>6<br>7      | 45<br>44<br>43<br>42<br>41                            | 50 26.7 25.8 25.0                                                                                                                |
| 20<br>21<br>22<br>23<br>24              | 9.66 197<br>9.66 221<br>9.66 246<br>9.66 270<br>9.66 295                                                               | 24<br>25<br>24<br>25<br>24<br>25<br>24                           | 9.71 339<br>9.71 370<br>9.71 401<br>9.71 431<br>9.71 462                                                                          | 31<br>31<br>30<br>31<br>31       | 10.28 661<br>10.28 630<br>10.28 599<br>10.28 569<br>10.28 538                                                                                                  | 9.94 858<br>9.94 852<br>9.94 845<br>9.94 839<br>9.94 832                                                                  | 6<br>7<br>6<br>7           | 40<br>39<br>38<br>37<br>36                            |                                                                                                                                  |
| 25<br>26<br>27<br>28<br>29              | 9.66 319<br>9.66 343<br>9.66 368<br>9.66 392<br>9.66 416                                                               | 24<br>25<br>24<br>24<br>25                                       | 9.71 493<br>9.71 524<br>9.71 555<br>9.71 586<br>9.71 617                                                                          | 31<br>31<br>31<br>31<br>31       | 10.28 507<br>10.28 476<br>10.28 445<br>10.28 414<br>10.28 383                                                                                                  | 9.94 826<br>9.94 819<br>9.94 813<br>9.94 806<br>9.94 799                                                                  | 7<br>6<br>7<br>7<br>6      | 35<br>34<br>33<br>32<br>31<br><b>30</b>               | "   25   24   23<br>6   2.5   2.4   2.3<br>7   2.9   2.8   2.7<br>8   3.3   3.2   3.1<br>9   3.8   3.6   3.4                     |
| 30<br>31<br>32<br>33<br>34              | 9.66 441<br>9.66 465<br>9.66 489<br>9.66 513<br>9.66 537                                                               | 24<br>24<br>24<br>24<br>25                                       | 9.71 648<br>9.71 679<br>9.71 709<br>9.71 740<br>9.71 771                                                                          | 31<br>30<br>31<br>31<br>31       | 10.28 352<br>10.28 321<br>10.28 291<br>10.28 260<br>10.28 229                                                                                                  | 9.94 793<br>9.94 786<br>9.94 780<br>9.94 773<br>9.94 767<br>9.94 760                                                      | 7<br>6<br>7<br>6<br>7      | 29<br>28<br>27<br>26<br>25                            | 9 3.8 3.6 3.4<br>10 4.2 4.0 3.8<br>20 8.3 8.0 7.7<br>30 12.5 12.0 11.5<br>40 16.7 16.0 15.3<br>50 20.8 20.0 19.2                 |
| 35<br>36<br>37<br>38<br>39              | 9.66 562<br>9.66 586<br>9.66 610<br>9.66 634<br>9.66 658                                                               | 24<br>24<br>24<br>24<br>24<br>24                                 | 9.71802 $9.71833$ $9.71863$ $9.71894$ $9.71925$                                                                                   | 31<br>30<br>31<br>31<br>30       | 10.28 198<br>10.28 167<br>10.28 137<br>10.28 106<br>10.28 075<br>10.28 045                                                                                     | 9.94 760<br>9.94 753<br>9.94 747<br>9.94 740<br>9.94 734<br>9.94 727                                                      | 7<br>6<br>7<br>6<br>7      | 24<br>23<br>22<br>21<br><b>20</b>                     |                                                                                                                                  |
| 40<br>41<br>42<br>43<br>44              | 9.66 682<br>9.66 706<br>9.66 731<br>9.66 755<br>9.66 779                                                               | 24<br>25<br>24<br>24<br>24<br>24                                 | $ \begin{vmatrix} 9.71 & 955 \\ 9.71 & 986 \\ 9.72 & 017 \\ 9.72 & 048 \\ 9.72 & 078 \\ \hline 9.72 & 109 \end{vmatrix} $         | 31<br>31<br>31<br>30<br>31       | $   \begin{array}{c}     10.28 \ 044 \\     10.28 \ 014 \\     10.27 \ 983 \\     10.27 \ 952 \\     10.27 \ 922 \\     \hline     10.27 \ 891   \end{array} $ | 9.94 720<br>9.94 714<br>9.94 707<br>9.94 700<br>9.94 694                                                                  | 7<br>6<br>7<br>7<br>6      | 19<br>18<br>17<br>16<br>15                            | ″   <b>7</b>   6                                                                                                                 |
| 45<br>46<br>47<br>48<br>49              | 9.66 803<br>9.66 827<br>9.66 851<br>9.66 875<br>9.66 899<br>9.66 922                                                   | 24<br>24<br>24<br>24<br>23                                       | $\begin{array}{r} 9.72\ 109 \\ 9.72\ 140 \\ 9.72\ 170 \\ 9.72\ 201 \\ \hline 9.72\ 231 \\ \hline \hline 9.72\ 262 \\ \end{array}$ | 31<br>30<br>31<br>30<br>31       | $ \begin{array}{c} 10.27891\\ 10.27860\\ 10.27830\\ 10.27769\\ \hline 10.27738 \end{array} $                                                                   | $\begin{array}{c} 9.94 \ 694 \\ 9.94 \ 687 \\ 9.94 \ 674 \\ \hline 9.94 \ 667 \\ \hline \hline 9.94 \ 660 \\ \end{array}$ | 7<br>7<br>6<br>7<br>7      | 13<br>14<br>13<br>12<br>11<br><b>10</b>               | 6 0.7 0.6<br>7 0.8 0.7<br>8 0 9 0 8                                                                                              |
| 50<br>51<br>52<br>53<br>54              | 9.66 946<br>9.66 970<br>9.66 994<br>9.67 018<br>9.67 042                                                               | 24<br>24<br>24<br>24<br>24<br>24                                 | $ \begin{vmatrix} 9.72 & 202 \\ 9.72 & 293 \\ 9.72 & 323 \\ 9.72 & 354 \\ 9.72 & 384 \\ \hline 9.72 & 415 \end{vmatrix} $         | 31<br>30<br>31<br>30<br>31       | $ \begin{array}{r} 10.27 \ 738 \\ 10.27 \ 707 \\ 10.27 \ 677 \\ 10.27 \ 646 \\ 10.27 \ 616 \\ \hline 10.27 \ 585 \end{array} $                                 | $\begin{array}{c} 9.94\ 600 \\ 9.94\ 654 \\ 9.94\ 647 \\ \hline 9.94\ 634 \\ \hline \hline 9.94\ 627 \end{array}$         | 6<br>7<br>7<br>6<br>7      | 9<br>8<br>7<br>6<br>-5                                | 9 1.0 0.9<br>10 1.2 1.0<br>20 2.3 2.0<br>30 3.5 3.0<br>40 4.7 4.0<br>50 5.8 5.0                                                  |
| 55<br>56<br>57<br>58<br>59<br><b>60</b> | $\begin{array}{c} 9.67 \ 042 \\ 9.67 \ 066 \\ 9.67 \ 090 \\ 9.67 \ 113 \\ 9.67 \ 137 \\ \hline 9.67 \ 161 \end{array}$ | 24<br>24<br>23<br>24<br>24                                       | $\begin{array}{r} 9.72415 \\ 9.72445 \\ 9.72476 \\ 9.72506 \\ 9.72537 \\ \hline 9.72567 \end{array}$                              | 30<br>31<br>30<br>31<br>30       | $ \begin{array}{r} 10.27 \ 585 \\ 10.27 \ 555 \\ 10.27 \ 524 \\ 10.27 \ 494 \\ 10.27 \ 463 \\ \hline 10.27 \ 433 \end{array} $                                 | 9.94 620<br>9.94 614<br>9.94 607<br>9.94 600<br>9.94 593                                                                  | 7<br>6<br>7<br>7           | $\begin{bmatrix} 4\\3\\2\\1\\ \hline 0 \end{bmatrix}$ |                                                                                                                                  |
| 1                                       | L Cos                                                                                                                  | d                                                                | L Cot                                                                                                                             | c d                              | L Tan                                                                                                                                                          | L Sin                                                                                                                     | đ                          | ,                                                     | Prop. Pts.                                                                                                                       |

28°

| 1                                                                                     | L Sin                                                    | d                                | L Tan                                                                                                       | c d                              | L Cot                                                                                                                                                                        | L Cos                                                                                                  | d                     |                                                                      | Prop. Pts.                                                                                               |
|---------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4                                                                 | 9.67 161<br>9.67 185<br>9.67 208<br>9.67 232<br>9.67 256 | 24<br>23<br>24<br>24             | 9.72 567<br>9.72 598<br>9.72 628<br>9.72 659<br>9.72 689                                                    | 31<br>30<br>31<br>30             | 10.27 433<br>10.27 402<br>10.27 372<br>10.27 341<br>10.27 311                                                                                                                | 9.94 593<br>9.94 587<br>9.94 580<br>9.94 573                                                           | 6<br>7<br>7<br>6      | <b>60</b> 59 58 57                                                   |                                                                                                          |
| 5<br>6<br>7<br>8                                                                      | 9.67 280<br>9.67 303<br>9.67 327<br>9.67 350             | 24<br>23<br>24<br>23             | 9.72 720<br>9.72 750<br>9.72 780<br>9.72 811                                                                | 31<br>30<br>30<br>31             | 10.27 280<br>10.27 250<br>10.27 220<br>10.27 189                                                                                                                             | 9.94 567<br>9.94 560<br>9.94 553<br>9.94 546<br>9.94 540                                               | 7<br>7<br>7<br>6      | 56<br>55<br>54<br>53<br>52                                           | ′′ <sub> </sub> 31 <sub> </sub> 30 <sub> </sub> 29                                                       |
| 9<br>10<br>11<br>12<br>13                                                             | 9.67 374<br>9.67 398<br>9.67 421<br>9.67 445<br>9.67 468 | 24<br>24<br>23<br>24<br>23       | $\begin{array}{r} 9.72\ 841 \\ \hline 9.72\ 872 \\ 9.72\ 902 \\ 9.72\ 932 \\ 9.72\ 963 \end{array}$         | 30<br>31<br>30<br>30<br>31       | 10.27 159<br>10.27 128<br>10.27 098<br>10.27 068<br>10.27 037                                                                                                                | 9.94 533<br>9.94 526<br>9.94 519<br>9.94 513<br>9.94 506                                               | 7<br>7<br>7<br>6<br>7 | 51<br>50<br>49<br>48<br>47                                           | 6 3.1 3.0 2.9<br>7 3.6 3.5 3.4<br>8 4.1 4.0 3.9<br>9 4.6 4.5 4.4<br>10 5.2 5.0 4.8<br>20 10.3 10.0 9.7   |
| 14<br>15<br>16<br>17<br>18                                                            | 9.67 492<br>9.67 515<br>9.67 539<br>9.67 562<br>9.67 586 | 24<br>23<br>24<br>23<br>24       | 9.72 993<br>9.73 023<br>9.73 054<br>9.73 084<br>9.73 114                                                    | 30<br>30<br>31<br>30<br>30       | 10.27 007<br>10.26 977<br>10.26 946<br>10.26 916<br>10.26 886                                                                                                                | 9.94 499<br>9.94 492<br>9.94 485<br>9.94 479<br>9.94 472                                               | 7<br>7<br>7<br>6<br>7 | 46<br>45<br>44<br>43<br>42                                           | 30   15.5   15.0   14.5<br>40   20.7   20.0   19.3<br>50   25.8   25.0   24.2                            |
| 19<br>20<br>21<br>22<br>23                                                            | 9.67 609<br>9.67 633<br>9.67 656<br>9.67 680<br>9.67 703 | 23<br>24<br>23<br>24<br>23       | $\begin{array}{r} 3.73 \ 144 \\ \hline 0.73 \ 175 \\ 9.73 \ 205 \\ 9.73 \ 235 \\ 9.73 \ 265 \\ \end{array}$ | 30<br>31<br>30<br>30<br>30       | $   \begin{array}{r}     10.26 \ 856 \\     \hline     10.26 \ 825 \\     10.26 \ 795 \\     10.26 \ 765 \\     10.26 \ 735 \\   \end{array} $                               | 9.94 465<br>9.94 458<br>9.94 451<br>9.94 445<br>9.94 438                                               | 7<br>7<br>7<br>6<br>7 | 41<br>40<br>39<br>38<br>37                                           |                                                                                                          |
| $ \begin{array}{ c c c } \hline 24 \\ \hline 25 \\ 26 \\ 27 \\ 28 \\ \end{array} $    | 9.67 726<br>9.67 750<br>9.67 773<br>9.67 796<br>9.67 820 | 23<br>24<br>23<br>23<br>24       | 9.73 295<br>9.73 326<br>9.73 356<br>9.73 386<br>9.73 416                                                    | 30<br>31<br>30<br>30<br>30       | $   \begin{array}{r}     10.26735 \\     10.26705 \\     \hline     10.26674 \\     10.26644 \\     10.26614 \\     10.26584 \\   \end{array} $                              | 9.94 431<br>9.94 424<br>9.94 417<br>9.94 410<br>9.94 404                                               | 7<br>7<br>7<br>7<br>6 | 36<br>35<br>34<br>33<br>32                                           | "   <b>24</b>   <b>23</b>   <b>22</b>   2.4   2.3   2.2                                                  |
| 30<br>31<br>32<br>33                                                                  | 9.67 843<br>9.67 866<br>9.67 890<br>9.67 913<br>9.67 936 | 23<br>23<br>24<br>23<br>23       | $\begin{array}{r} 9.73 \ 416 \\ 9.73 \ 446 \\ \hline 9.73 \ 507 \\ 9.73 \ 537 \\ 9.73 \ 567 \end{array}$    | 30<br>30<br>31<br>30<br>30       | $   \begin{array}{r}     10.26 \ 554 \\     \hline     10.26 \ 554 \\     \hline     10.26 \ 524 \\     10.26 \ 493 \\     10.26 \ 463 \\     10.26 \ 433   \end{array} $    | 9.94 397<br>9.94 390<br>9.94 383<br>9.94 376<br>9.94 369                                               | 7<br>7<br>7<br>7      | 31<br>30<br>29<br>28<br>27                                           | 7 2.8 2.7 2.6<br>8 3.2 3.1 2.9<br>9 3.6 3.4 3.3<br>10 4.0 3.8 3.7<br>20 8.0 7.7 7.3<br>30 12.0 11.5 11.0 |
| $ \begin{array}{ c c c c } \hline 34 \\ \hline 35 \\ 36 \\ 37 \\ \hline \end{array} $ | 9.67 959<br>9.67 982<br>9.68 006<br>9.68 029             | 23<br>23<br>24<br>23<br>23       | 9.73 597<br>9.73 627<br>9.73 657<br>9.73 687<br>9.73 717                                                    | 30<br>30<br>30<br>30<br>30       | $   \begin{array}{r}     10.26 & 403 \\     \hline     10.26 & 403 \\     \hline     10.26 & 373 \\     10.26 & 343 \\     10.26 & 313 \\     10.26 & 283 \\   \end{array} $ | 9.94 362<br>9.94 355<br>9.94 349<br>9.94 342<br>9.94 335                                               | 7<br>7<br>6<br>7      | $ \begin{array}{c c} 26 \\ \hline 25 \\ 24 \\ 23 \\ 22 \end{array} $ | 40 16.0 15.3 14.7<br>50 20.0 19.2 18.3                                                                   |
| 38<br>39<br><b>40</b><br>41<br>42                                                     | 9.68 052<br>9.68 075<br>9.68 098<br>9.68 121<br>9.68 144 | 23<br>23<br>23<br>23<br>23<br>23 | 9.73 747<br>9.73 777<br>9.73 807<br>9.73 837                                                                | 30<br>30<br>30<br>30<br>30       | $ \begin{array}{r} 10.26 \ 253 \\ 10.26 \ 253 \\ \hline 10.26 \ 223 \\ 10.26 \ 193 \\ 10.26 \ 163 \\ 10.26 \ 133 \end{array} $                                               | 9.94 328<br>9.94 321<br>9.94 314<br>9.94 307                                                           | 7 7 7 7 7             | 21<br>20<br>19<br>18<br>17                                           | "                                                                                                        |
| 43<br>44<br>45<br>46<br>47                                                            | 9.68 167<br>9.68 190<br>9.68 213<br>9.68 237<br>9.68 260 | 23<br>23<br>24<br>23<br>23       | 9.73 867<br>9.73 897<br>9.73 927<br>9.73 957<br>9.73 987                                                    | 30<br>30<br>30<br>30<br>30       | 10.26 103<br>10.26 073<br>10.26 043<br>10.26 013                                                                                                                             | 9.94 300<br>9.94 293<br>9.94 286<br>9.94 279<br>9.94 273                                               | 7<br>7<br>7<br>6<br>7 | $ \begin{array}{c c} 16 \\ \hline 15 \\ 14 \\ 13 \end{array} $       | "   7   6<br>6   0.7   0.6<br>7   0.8   0.7<br>8   0.9   0.8                                             |
| 48<br>49<br><b>50</b><br>51<br>52                                                     | 9.68 283<br>9.68 305<br>9.68 328<br>9.68 351<br>9.68 374 | 22<br>23<br>23<br>23<br>23<br>23 | 9.74 017<br>9.74 047<br>9.74 077<br>9.74 107<br>9.74 137                                                    | 30<br>30<br>30<br>30<br>30<br>29 | $ \begin{array}{r} 10.25 983 \\ 10.25 953 \\ \hline 10.25 923 \\ 10.25 893 \\ 10.25 863 \\ 10.25 834 \end{array} $                                                           | 9.94 266<br>9.94 259<br>9.94 252<br>9.94 245<br>9.94 238                                               | 7<br>7<br>7<br>7      | 12<br>11<br>10<br>9<br>8<br>7                                        | $\begin{array}{c} 9 1.0 0.9\\ 10 1.2 1.0\\ 20 2.3 2.0\\ 30 3.5 3.0\\ 40 4.7 4.0 \end{array}$             |
| 53<br>54<br>55<br>56<br>57                                                            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   | 23<br>23<br>23<br>23             | 9.74 166<br>9.74 196<br>9.74 226<br>9.74 256<br>9.74 286                                                    | 30<br>30<br>30<br>30             | $ \begin{array}{r} 10.25 834 \\ 10.25 804 \\ \hline 10.25 774 \\ 10.25 744 \\ 10.25 714 \end{array} $                                                                        | $\begin{array}{c} 9.94\ 231 \\ 9.94\ 224 \\ \hline 9.94\ 217 \\ 9.94\ 210 \\ 9.94\ 203 \\ \end{array}$ | 7<br>7<br>7<br>7      | $\begin{bmatrix} -6 \\ 5 \\ 4 \\ 3 \end{bmatrix}$                    | 50   5.8   5.0                                                                                           |
| 58<br>59<br><b>60</b>                                                                 | 9.68 512<br>9.68 534<br>9.68 557<br>L Cos                | 23<br>22<br>23<br><b>d</b>       | 9.74 316<br>9.74 345<br>9.74 375<br>L Cot                                                                   | 30<br>29<br>30<br>c d            | 10.25 684<br>10.25 655<br>10.25 625<br>L Tan                                                                                                                                 | 9.94 196<br>9.94 189<br>9.94 182<br>L Sin                                                              | 7<br>7<br>d           | 2<br>1<br>0                                                          | Prop. Pts.                                                                                               |

29°

| ,                          | L Sin                                                    | d                                      | L Tan                                                                                             | c d                              | L Cot                                                                      | L Cos                                                                | d                     |                             | Prop. Pts.                                                                                                                                                              |
|----------------------------|----------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>0</b> 1 2 3 4           | 9.68 557<br>9.68 580<br>9.68 603<br>9.68 625<br>9.68 648 | 23<br>23<br>22<br>23                   | 9.74 375<br>9.74 405<br>9.74 435<br>9.74 465<br>9.74 494                                          | 30<br>30<br>30<br>29             | 10.25 625<br>10.25 595<br>10.25 565<br>10.25 535<br>10.25 506              | 9.94 182<br>9.94 175<br>9.94 168<br>9.94 161<br>9.94 154             | 7<br>7<br>7<br>7      | <b>60</b> 59 58 57 56       |                                                                                                                                                                         |
| 5<br>6<br>7<br>8<br>9      | 9.68 671<br>9.68 694<br>9.68 716<br>9.68 739<br>9.68 762 | 23<br>23<br>22<br>23<br>23             | 9.74 524<br>9.74 554<br>9.74 583<br>9.74 613<br>9.74 643                                          | 30<br>30<br>29<br>30<br>30<br>30 | 10.25 476<br>10.25 446<br>10.25 417<br>10.25 387<br>10.25 357              | 9.94 147<br>9.94 140<br>9.94 133<br>9.94 126<br>9.94 119             | 7<br>7<br>7<br>7      | 55<br>54<br>53<br>52<br>51  | "   30   29<br>6 3.0 2.9<br>7 3.5 3.5                                                                                                                                   |
| 10<br>11<br>12<br>13<br>14 | 9.68 784<br>9.68 807<br>9.68 829<br>9.68 852<br>9.68 875 | 22<br>23<br>22<br>23<br>23<br>22       | 9.74 673<br>9.74 702<br>9.74 732<br>9.74 762<br>9.74 791                                          | 29<br>30<br>30<br>29<br>30       | 10.25 327<br>10.25 298<br>10.25 268<br>10.25 238<br>10.25 209              | 9.94 112<br>9.94 105<br>9.94 098<br>9.94 090<br>9.94 083             | 7<br>7<br>8<br>7      | 50<br>49<br>48<br>47<br>46  | $ \begin{vmatrix} 8 & 4.0 & 3.9 \\ 9 & 4.5 & 4.4 \\ 10 & 5.0 & 4.8 \\ 20 & 10.0 & 9.7 \\ 30 & 15.0 & 14.5 \\ 40 & 20.0 & 19.3 \end{vmatrix} $                           |
| 15<br>16<br>17<br>18<br>19 | 9.68 897<br>9.68 920<br>9.68 942<br>9.68 965<br>9.68 987 | 23<br>22<br>23<br>22<br>23<br>22       | 9.74 821<br>9.74 851<br>9.74 880<br>9.74 910<br>9.74 939                                          | 30<br>29<br>30<br>29<br>30       | 10.25 179<br>10.25 149<br>10.25 120<br>10.25 090<br>10.25 061              | 9.94 076<br>9.94 069<br>9.94 062<br>9.94 055<br>9.94 048             | 7<br>7<br>7<br>7      | 45<br>44<br>43<br>42<br>41  | 50 25.0 24.2                                                                                                                                                            |
| 20<br>21<br>22<br>23<br>24 | 9.69 010<br>9.69 032<br>9.69 055<br>9.69 077<br>9.69 100 | 22<br>23<br>22<br>23<br>22<br>23<br>22 | 9.74 969<br>9.74 998<br>9.75 028<br>9.75 058<br>9.75 087                                          | 29<br>30<br>30<br>29<br>30       | 10.25 031<br>10.25 002<br>10.24 972<br>10.24 942<br>10.24 913              | 9.94 041<br>9.94 034<br>9.94 027<br>9.94 020<br>9.94 012             | 7<br>7<br>7<br>8<br>7 | 40<br>39<br>38<br>37<br>36  |                                                                                                                                                                         |
| 25<br>26<br>27<br>28<br>29 | 9.69 122<br>9.69 144<br>9.69 167<br>9.69 189<br>9.69 212 | 22<br>23<br>22<br>23<br>22<br>23       | 9.75 117<br>9.75 146<br>9.75 176<br>9.75 205<br>9.75 235                                          | 29<br>30<br>29<br>30<br>29       | 10.24 883<br>10.24 854<br>10.24 824<br>10.24 795<br>10.24 765              | 9.94 005<br>9.93 998<br>9.93 991<br>9.93 984<br>9.93 977             | 7<br>7<br>7<br>7      | 35<br>34<br>33<br>32<br>31  | "   23   22<br>6   2.3   2.2<br>7   2.7   2.6<br>8   3.1   2.9                                                                                                          |
| 30<br>31<br>32<br>33<br>34 | 9.69 234<br>9.69 256<br>9.69 279<br>9.69 301<br>9.69 323 | 22<br>23<br>22<br>22<br>22<br>22       | 9.75 264<br>9.75 294<br>9.75 323<br>9.75 353<br>9.75 382                                          | 30<br>29<br>30<br>29<br>29       | 10.24 736<br>10.24 706<br>10.24 677<br>10.24 647<br>10.24 618              | 9.93 970<br>9.93 963<br>9.93 955<br>9.93 948<br>9.93 941             | 7<br>8<br>7<br>7      | 30<br>29<br>28<br>27<br>26  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                   |
| 35<br>36<br>37<br>38<br>39 | 9.69 345<br>9.69 368<br>9.69 390<br>9.69 412<br>9.69 434 | 23<br>22<br>22<br>22<br>22<br>22       | $\begin{array}{c} 9.75 \ 411 \\ 9.75 \ 441 \\ 9.75 \ 470 \\ 9.75 \ 500 \\ 9.75 \ 529 \end{array}$ | 30<br>29<br>30<br>29<br>29       | 10.24 589<br>10.24 559<br>10.24 530<br>10.24 500<br>10.24 471              | 9.93 934<br>9.93 927<br>9.93 920<br>9.93 912<br>9.93 905             | 7<br>7<br>8<br>7      | 25<br>24<br>23<br>22<br>21  |                                                                                                                                                                         |
| 40<br>41<br>42<br>43<br>44 | 9.69 456<br>9.69 479<br>9.69 501<br>9.69 523<br>9.69 545 | 23<br>22<br>22<br>22<br>22<br>22       | 9.75 558<br>9.75 588<br>9.75 617<br>9.75 647<br>9.75 676                                          | 30<br>29<br>30<br>29<br>29       | 10.24 442<br>10.24 412<br>10.24 383<br>10.24 353<br>10.24 324              | 9.93 898<br>9.93 891<br>9.93 884<br>9.93 876<br>9.93 869             | 7<br>7<br>8<br>7      | 20<br>19<br>18<br>17<br>16  | "                                                                                                                                                                       |
| 45<br>46<br>47<br>48<br>49 | 9.69 567<br>9.69 589<br>9.69 611<br>9.69 633<br>9.69 655 | 22<br>22<br>22<br>22<br>22<br>22       | $ \begin{array}{c} 9.75705 \\ 9.75735 \\ 9.75764 \\ 9.75793 \\ 9.75822 \\ \hline $                | 30<br>29<br>29<br>29<br>29<br>30 | 10.24 295<br>10.24 265<br>10.24 236<br>10.24 207<br>10.24 178              | 9.93 862<br>9.93 855<br>9.93 847<br>9.93 840<br>9.93 833             | 7<br>8<br>7<br>7      | 15<br>14<br>13<br>12<br>11  | "   8   7<br>6   0.8   0.7<br>7   0.9   0.8<br>8   1.1   0.9<br>9   1.2   1.0<br>10   1.3   1.2<br>20   2.7   2.3<br>30   4.0   3.5<br>40   5.3   4.7<br>50   6.7   5.8 |
| 50<br>51<br>52<br>53<br>54 | 9.69 677<br>9.69 699<br>9.69 721<br>9.69 743<br>9.69 765 | 22<br>22<br>22<br>22<br>22<br>22       |                                                                                                   | 29<br>29<br>29<br>30<br>29       | 10.24 148<br>10.24 119<br>10.24 090<br>10.24 061<br>10.24 031              | 9.93 826<br>9.93 819<br>9.93 811<br>9.93 804<br>9.93 797             | 7<br>8<br>7<br>7<br>8 | 10<br>9<br>8<br>7<br>6<br>5 | 20 2.7 2.3<br>30 4.0 3.5<br>40 5.3 4.7<br>50 6 7 5.8                                                                                                                    |
| 55<br>56<br>57<br>58<br>59 | 9.69 787<br>9.69 809<br>9.69 831<br>9.69 853<br>9.69 875 | 22<br>22<br>22<br>22<br>22<br>22       | 9.75 998<br>9.76 027<br>9.76 056<br>9.76 086<br>9.76 115<br>9.76 144                              | 29<br>29<br>30<br>29<br>29       | 10.24 002<br>10.23 973<br>10.23 944<br>10.23 914<br>10.23 885<br>10.23 856 | 9.93 789<br>9.93 782<br>9.93 775<br>9.93 768<br>9.93 760<br>9.93 753 | 7<br>7<br>7<br>8<br>7 | 3<br>2<br>1<br>0            |                                                                                                                                                                         |
| 60                         | 9.69 897<br>L Cos                                        | d                                      | L Cot                                                                                             | c d                              | L Tan                                                                      | L Sin                                                                |                       | ,                           | Prop. Pts.                                                                                                                                                              |

**30**°

| ,                                                                                          | L Sin                                                                                         | d                                      | L Tan                                                                                                  | c d                              | L Cot                                                                                                                     | L Cos                                                                                     | d                     |                                                                                                        | Prop. Pts.                                                                                                                             |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| <b>0</b> 1 2 3                                                                             | 9.69 897<br>9.69 919<br>9.69 941<br>9.69 963                                                  | 22<br>22<br>22<br>21                   | 9.76 144<br>9.76 173<br>9.76 202<br>9.76 231                                                           | 29<br>29<br>29                   | 10.23 856<br>10.23 827<br>10.23 798<br>10.23 769                                                                          | 9.93 753<br>9.93 746<br>9.93 738<br>9.93 731                                              | 7<br>8<br>7           | <b>60</b> 59 58 57                                                                                     |                                                                                                                                        |
| $\begin{array}{c} 4\\ \hline 5\\ 6\\ 7 \end{array}$                                        | $\begin{array}{r} 9.69\ 984 \\ \hline 9.70\ 006 \\ 9.70\ 028 \\ 9.70\ 050 \\ \end{array}$     | 21<br>22<br>22<br>22                   | $\begin{array}{r} 9.76\ 261 \\ \hline 9.76\ 290 \\ 9.76\ 319 \\ 9.76\ 348 \end{array}$                 | 30<br>29<br>29<br>29             | $ \begin{array}{r} 10.23739 \\ \hline 10.23710 \\ 10.23681 \\ 10.23652 \end{array} $                                      | $\begin{array}{r} 9.93\ 724 \\ \hline 9.93\ 717 \\ 9.93\ 709 \\ 9.93\ 702 \\ \end{array}$ | 7<br>8<br>7           | 56<br>55<br>54<br>53                                                                                   | ''   30   29   28                                                                                                                      |
| 8<br>9<br>10<br>11                                                                         | $\begin{array}{c} 9.70\ 072 \\ 9.70\ 093 \\ \hline 9.70\ 115 \\ 9.70\ 137 \end{array}$        | 22<br>21<br>22<br>22                   | $\begin{array}{r} 9.76\ 377 \\ 9.76\ 406 \\ \hline 9.76\ 435 \\ 9.76\ 464 \end{array}$                 | 29<br>29<br>29<br>29             | $ \begin{array}{r} 10.23 \ 623 \\ 10.23 \ 594 \\ \hline 10.23 \ 565 \\ 10.23 \ 536 \end{array} $                          | 9.93 695<br>9.93 687<br>9.93 680<br>9.93 673                                              | 8<br>7<br>7           | 52<br>51<br><b>50</b><br>49                                                                            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                 |
| $   \begin{array}{r}     12 \\     13 \\     14 \\     \hline     15   \end{array} $       | $\begin{array}{r} 9.70\ 159 \\ 9.70\ 180 \\ 9.70\ 202 \\ \hline \hline 9.70\ 224 \end{array}$ | 22<br>21<br>22<br>22                   | $\begin{array}{r} 9.76 \ 493 \\ 9.76 \ 522 \\ 9.76 \ 551 \\ \hline 9.76 \ 580 \end{array}$             | 29<br>29<br>29<br>29             | $   \begin{array}{r}     10.23 \ 507 \\     10.23 \ 478 \\     10.23 \ 449 \\     \hline     10.23 \ 420   \end{array} $  | $\begin{array}{r} 9.93\ 665 \\ 9.93\ 658 \\ 9.93\ 650 \\ \hline 9.93\ 643 \end{array}$    | 8<br>7<br>8<br>7      | $   \begin{array}{r}     48 \\     47 \\     46 \\     \hline     45   \end{array} $                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                  |
| 16<br>17<br>18<br>19                                                                       | $\begin{array}{c} 9.70\ 245 \\ 9.70\ 267 \\ 9.70\ 288 \\ 9.70\ 310 \end{array}$               | 21<br>22<br>21<br>22<br>22             | $\begin{array}{c} 9.76\ 609 \\ 9.76\ 639 \\ 9.76\ 668 \\ 9.76\ 697 \end{array}$                        | 29<br>30<br>29<br>29<br>28       | 10.23 391<br>10.23 361<br>10.23 332<br>10.23 303                                                                          | 9.93 636<br>9.93 628<br>9.93 621<br>9.93 614                                              | 8<br>7<br>7<br>8      | 44<br>43<br>42<br>41                                                                                   |                                                                                                                                        |
| 20 -<br>21<br>22<br>23<br>24                                                               | 9.70 332<br>9.70 353<br>9.70 375<br>9.70 396<br>9.70 418                                      | 21<br>22<br>21<br>22                   | 9.76 725<br>9.76 754<br>9.76 783<br>9.76 812<br>9.76 841                                               | 29<br>29<br>29<br>29             | 10.23 275<br>10.23 246<br>10.23 217<br>10.23 188<br>10.23 159                                                             | 9.93 606<br>9.93 599<br>9.93 591<br>9.93 584<br>9.93 577                                  | 7<br>8<br>7<br>7<br>8 | <b>40</b> 39 38 37 36                                                                                  |                                                                                                                                        |
| 25<br>26<br>27<br>28<br>29                                                                 | 9.70 439<br>9.70 461<br>9.70 482<br>9.70 504<br>9.70 525                                      | 21<br>22<br>21<br>22<br>21             | 9.76 870<br>9.76 899<br>9.76 928<br>9.76 957<br>9.76 986                                               | 29<br>29<br>29<br>29<br>29       | 10.23 130<br>10.23 101<br>10.23 072<br>10.23 043<br>10.23 014                                                             | 9.93 569<br>9.93 562<br>9.93 554<br>9.93 547<br>9.93 539                                  | 7<br>8<br>7<br>8      | 35<br>34<br>33<br>32<br>31                                                                             | "   <b>22</b>   <b>21</b><br>6   2.2   2.1<br>7   2.6   2.4<br>8   2.9   2.8                                                           |
| 30<br>31<br>32<br>33                                                                       | 9.70 547<br>9.70 568<br>9.70 590<br>9.70 611                                                  | 22<br>21<br>22<br>21<br>22             | 9.77 015<br>9.77 044<br>9.77 073<br>9.77 101<br>9.77 130                                               | 29<br>29<br>29<br>28<br>29       | 10.22 985<br>10.22 956<br>10.22 927<br>10.22 899<br>10.22 870                                                             | 9.93 532<br>9.93 525<br>9.93 517<br>9.93 510<br>9.93 502                                  | 7<br>7<br>8<br>7<br>8 | 30<br>29<br>28<br>27<br>26                                                                             | 8 2.9 2.8<br>9 3.3 3.2<br>10 3.7 3.5<br>20 7.3 7.0<br>30 11.0 10.5<br>40 14.7 14.0<br>50 18.3 17.5                                     |
| $ \begin{array}{r}     34 \\     \hline     35 \\     36 \\     37 \\     38 \end{array} $ | 9.70 633<br>9.70 654<br>9.70 675<br>9.70 697<br>9.70 718                                      | 21<br>21<br>22<br>21<br>21             | 9.77 159<br>9.77 188<br>9.77 217<br>9.77 246                                                           | 29<br>29<br>29<br>29<br>29<br>28 | 10.22 841<br>10.22 812<br>10.22 783<br>10.22 754                                                                          | 9.93 495<br>9.93 487<br>9.93 480<br>9.93 472                                              | 7<br>8<br>7<br>8<br>7 | 25<br>24<br>23<br>22<br>21                                                                             | 00 10.0 11.0                                                                                                                           |
| 39<br>40<br>41<br>42<br>43                                                                 | 9.70 739<br>9.70 761<br>9.70 782<br>9.70 803<br>9.70 824                                      | 22<br>21<br>21<br>21<br>21             | $\begin{array}{r} 9.77\ 274 \\ \hline 9.77\ 303 \\ 9.77\ 332 \\ 9.77\ 361 \\ 9.77\ 390 \\ \end{array}$ | 29<br>29<br>29<br>29             | $\begin{array}{c} 10.22726 \\ \hline 10.22697 \\ 10.22668 \\ 10.22639 \\ 10.22610 \\ \end{array}$                         | 9.93 465<br>9.93 457<br>9.93 450<br>9.93 442<br>9.93 435                                  | 8<br>7<br>8<br>7<br>8 | 20<br>19<br>18<br>17                                                                                   |                                                                                                                                        |
| $ \begin{array}{ c c c } \hline 44 \\ 45 \\ 46 \\ 47 \\ 48 \end{array} $                   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                        | 22<br>21<br>21<br>21<br>21<br>22<br>21 | 9.77 418<br>9.77 447<br>9.77 476<br>9.77 505<br>9.77 533<br>9.77 562                                   | 28<br>29<br>29<br>29<br>28<br>29 | $\begin{array}{c} 10.22\ 582 \\ \hline 10.22\ 553 \\ 10.22\ 524 \\ 10.22\ 495 \\ 10.22\ 467 \\ 10.22\ 438 \\ \end{array}$ | 9.93 427<br>9.93 420<br>9.93 412<br>9.93 405<br>9.93 397<br>9.93 390                      | 7<br>8<br>7<br>8<br>7 | $ \begin{array}{c c}     16 \\     \hline     15 \\     14 \\     13 \\     12 \\     11 \end{array} $ | "   8   7<br>6   0.8   0.7<br>7   0.9   0.8<br>8   1.1   0.9<br>9   1.2   1.0                                                          |
| 50<br>51<br>52<br>53<br>54                                                                 | 9.70 952<br>9.70 973<br>9.70 994<br>9.71 015<br>9.71 036<br>9.71 058                          | 21<br>21<br>21<br>21<br>21<br>22       | 9.77 502<br>9.77 591<br>9.77 619<br>9.77 648<br>9.77 677<br>9.77 706                                   | 29<br>28<br>29<br>29<br>29       | 10.22 409<br>10.22 381<br>10.22 352<br>10.22 323<br>10.22 294                                                             | 9.93 382<br>9.93 375<br>9.93 367<br>9.93 360<br>9.93 352                                  | 8<br>7<br>8<br>7<br>8 | 10<br>9<br>8<br>7<br>6                                                                                 | $\begin{array}{c} 9 & 1.2 & 1.0 \\ 10 & 1.3 & 1.2 \\ 20 & 2.7 & 2.3 \\ 30 & 4.0 & 3.5 \\ 40 & 5.3 & 4.7 \\ 50 & 6.7 & 5.8 \end{array}$ |
| 55<br>56<br>57<br>58<br>59                                                                 | 9.71 079<br>9.71 100<br>9.71 121<br>9.71 142<br>9.71 163                                      | 21<br>21<br>21<br>21<br>21<br>21       | 9.77 734<br>9.77 763<br>9.77 791<br>9.77 820<br>9.77 849                                               | 28<br>29<br>28<br>29<br>29       | 10.22 266<br>10.22 237<br>10.22 209<br>10.22 180<br>10.22 151                                                             | 9.93 344<br>9.93 337<br>9.93 329<br>9.93 322<br>9.93 314                                  | 7<br>8<br>7<br>8      | 5<br>4<br>3<br>2<br>1                                                                                  |                                                                                                                                        |
| 60                                                                                         | 9.71 184                                                                                      | 21                                     | 9.77 877                                                                                               | 28                               | 10.22 123                                                                                                                 | 9.93 307                                                                                  |                       | 0                                                                                                      | Dron Dia                                                                                                                               |
|                                                                                            | L Cos                                                                                         | d                                      | L Cot                                                                                                  | c d                              | L Tan                                                                                                                     | L Sin                                                                                     | d                     |                                                                                                        | Prop. Pts.                                                                                                                             |

31°

|                            |                                                                                                   |                                                            |                                                          |                            |                                                               |                                                          |                       | -                          | D D:                                                                                                |
|----------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------------------------|-----------------------|----------------------------|-----------------------------------------------------------------------------------------------------|
|                            | L Sin                                                                                             | d                                                          | L Tan                                                    | c d                        | L Cot                                                         | L Cos                                                    | d<br>                 |                            | Prop. Pts.                                                                                          |
| 0<br>1<br>2<br>3<br>4      | 9.71 184<br>9.71 205<br>9.71 226<br>9.71 247<br>9.71 268                                          | 21<br>21<br>21<br>21                                       | 9.77 877<br>9.77 906<br>9.77 935<br>9.77 963<br>9.77 992 | 29<br>29<br>28<br>29       | 10.22 123<br>10.22 094<br>10.22 065<br>10.22 037<br>10.22 008 | 9.93 307<br>9.93 299<br>9.93 291<br>9.93 284<br>9.93 276 | 8<br>8<br>7<br>8<br>7 | 59<br>58<br>57<br>56       |                                                                                                     |
| 5<br>6<br>7<br>8<br>9      | 9.71 289<br>9.71 310<br>9.71 331<br>9.71 352<br>9.71 373                                          | 21<br>21<br>21<br>21<br>21                                 | 9.78 020<br>9.78 049<br>9.78 077<br>9.78 106<br>9.78 135 | 28<br>29<br>28<br>29<br>29 | 10.21 980<br>10.21 951<br>10.21 923<br>10.21 894<br>10.21 865 | 9.93 269<br>9.93 261<br>9.93 253<br>9.93 246<br>9.93 238 | 8<br>8<br>7<br>8      | 55<br>54<br>53<br>52<br>51 | "   <b>29</b>   <b>28</b>   2.8                                                                     |
| 10<br>11<br>12<br>13<br>14 | 9.71 393<br>9.71 414<br>9.71 435<br>9.71 456<br>9.71 477                                          | 20<br>21<br>21<br>21<br>21<br>21                           | 9.78 163<br>9.78 192<br>9.78 220<br>9.78 249<br>9.78 277 | 28<br>29<br>28<br>29<br>28 | 10.21 837<br>10.21 808<br>10.21 780<br>10.21 751<br>10.21 723 | 9.93 230<br>9.93 223<br>9.93 215<br>9.93 207<br>9.93 200 | 8<br>7<br>8<br>8<br>7 | 50<br>49<br>48<br>47<br>46 | 7 3.4 3.3<br>8 3.9 3.7<br>9 4.4 4.2<br>10 4.8 4.7<br>20 9.7 9.3<br>30 14.5 14.0                     |
| 15<br>16<br>17<br>18<br>19 | $\begin{array}{r} 9.71 \ 498 \\ 9.71 \ 519 \\ 9.71 \ 539 \\ 9.71 \ 560 \\ 9.71 \ 581 \end{array}$ | 21<br>21<br>20<br>21<br>21                                 | 9.78 306<br>9.78 334<br>9.78 363<br>9.78 391<br>9.78 419 | 29<br>28<br>29<br>28<br>28 | 10.21 694<br>10.21 666<br>10.21 637<br>10.21 609<br>10.21 581 | 9.93 192<br>9.93 184<br>9.93 177<br>9.93 169<br>9.93 161 | 8 7 8 8               | 45<br>44<br>43<br>42<br>41 | $egin{array}{c c} 40 & 19.3 & 18.7 \\ \hline 50 & 24.2 & 23.3 \end{array}$                          |
| 20<br>21<br>22<br>23<br>24 | 9.71 602<br>9.71 622<br>9.71 643<br>9.71 664<br>9.71 685                                          | 21<br>20<br>21<br>21<br>21                                 | 9.78 448<br>9.78 476<br>9.78 505<br>9.78 533<br>9.78 562 | 29<br>28<br>29<br>28<br>29 | 10.21 552<br>10.21 524<br>10.21 495<br>10.21 467<br>10.21 438 | 9.93 154<br>9.93 146<br>9.93 138<br>9.93 131<br>9.93 123 | 7<br>8<br>8<br>7<br>8 | 40<br>39<br>38<br>37<br>36 |                                                                                                     |
| 25<br>26<br>27<br>28<br>29 | 9.71 705<br>9.71 726<br>9.71 747<br>9.71 767<br>9.71 788                                          | 20<br>21<br>21<br>20<br>21                                 | 9.78 590<br>9.78 618<br>9.78 647<br>9.78 675<br>9.78 704 | 28<br>28<br>29<br>28<br>29 | 10.21 410<br>10.21 382<br>10.21 353<br>10.21 325<br>10.21 296 | 9.93 115<br>9.93 108<br>9.93 100<br>9.93 092<br>9.93 084 | 8 7 8 8 8 7           | 35<br>34<br>33<br>32<br>31 | $ \begin{array}{c cccc}  & 21 & 20 \\ 6 & 2.1 & 2.0 \\ 7 & 2.4 & 2.3 \\ 8 & 2.8 & 2.7 \end{array} $ |
| 30<br>31<br>32<br>33<br>34 | 9.71 809<br>9.71 829<br>9.71 850<br>9.71 870<br>9.71 891                                          | 21<br>20<br>21<br>20<br>21                                 | 9.78 732<br>9.78 760<br>9.78 789<br>9.78 817<br>9.78 845 | 28<br>28<br>29<br>28<br>28 | 10.21 268<br>10.21 240<br>10.21 211<br>10.21 183<br>10.21 155 | 9.93 077<br>9.93 069<br>9.93 061<br>9.93 053<br>9.93 046 | 7<br>8<br>8<br>8<br>7 | 30<br>29<br>28<br>27<br>26 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 35<br>36<br>37<br>38<br>39 | 9.71 911<br>9.71 932<br>9.71 952<br>9.71 973<br>9.71 994                                          | $egin{array}{c} 20 \\ 21 \\ 20 \\ 21 \\ 21 \end{array}$    | 9.78 874<br>9.78 902<br>9.78 930<br>9.78 959<br>9.78 987 | 29<br>28<br>28<br>29<br>28 | 10.21 126<br>10.21 098<br>10.21 070<br>10.21 041<br>10.21 013 | 9.93 038<br>9.93 030<br>9.93 022<br>9.93 014<br>9.93 007 | 8<br>8<br>8<br>7      | 25<br>24<br>23<br>22<br>21 |                                                                                                     |
| 40<br>41<br>42<br>43<br>44 | 9.72 014<br>9.72 034<br>9.72 055<br>9.72 075<br>9.72 096                                          | $egin{array}{c} 20 \\ 20 \\ 21 \\ 20 \\ 21 \\ \end{array}$ | 9.79 015<br>9.79 043<br>9.79 072<br>9.79 100<br>9.79 128 | 28<br>28<br>29<br>28<br>28 | 10.20 985<br>10.20 957<br>10.20 928<br>10.20 900<br>10.20 872 | 9.92 999<br>9.92 991<br>9.92 983<br>9.92 976<br>9.92 968 | 8<br>8<br>7<br>8      | 20<br>19<br>18<br>17<br>16 |                                                                                                     |
| 45<br>46<br>47<br>48<br>49 | 9.72 116<br>9.72 137<br>9.72 157<br>9.72 177<br>9.72 198                                          | 20<br>21<br>20<br>20<br>21                                 | 9.79 156<br>9.79 185<br>9.79 213<br>9.79 241<br>9.79 269 | 28<br>29<br>28<br>28<br>28 | 10.20 844<br>10.20 815<br>10.20 787<br>10.20 759<br>10.20 731 | 9.92 960<br>9.92 952<br>9.92 944<br>9.92 936<br>9.92 929 | 8<br>8<br>8<br>7<br>8 | 15<br>14<br>13<br>12<br>11 | "   8   7<br>6   0.8   0.7<br>7   0.9   0.8<br>8   1.1   0.9<br>9   1.2   1.0<br>10   1.3   1.2     |
| 50<br>51<br>52<br>53<br>54 | 9.72 218<br>9.72 238<br>9.72 259<br>9.72 279<br>9.72 299                                          | 20<br>20<br>21<br>20<br>20                                 | 9.79 297<br>9.79 326<br>9.79 354<br>9.79 382<br>9.79 410 | 28<br>29<br>28<br>28<br>28 | 10.20 703<br>10.20 674<br>10.20 646<br>10.20 618<br>10.20 590 | 9.92 921<br>9.92 913<br>9.92 905<br>9.92 897<br>9.92 889 | 8<br>8<br>8<br>8      | 10<br>9<br>8<br>7<br>6     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 55<br>56<br>57<br>58<br>59 | 9.72 320<br>9.72 340<br>9.72 360<br>9.72 381<br>9.72 401                                          | 21<br>20<br>20<br>21<br>20                                 | 9.79 438<br>9.79 466<br>9.79 495<br>9.79 523<br>9.79 551 | 28<br>28<br>29<br>28<br>28 | 10.20 562<br>10.20 534<br>10.20 505<br>10.20 477<br>10.20 449 | 9.92 881<br>9.92 874<br>9.92 866<br>9.92 858<br>9.92 850 | 7<br>8<br>8<br>8      | 5<br>4<br>3<br>2<br>1      |                                                                                                     |
| 60                         | 9.72 421                                                                                          | 20                                                         | 9.79 579                                                 | 28                         | 10.20 421                                                     | 9.92 842                                                 |                       | 0                          |                                                                                                     |
|                            | L Cos                                                                                             | d                                                          | L Cot                                                    | c d                        | L Tan                                                         | L Sin                                                    | d                     | ′                          | Prop. Pts.                                                                                          |

32°

| ′                                                      | L Sin                                                  | d                                         | L Tan                         | c d      | L Cot                                                     | L Cos                     | d   |                 | Prop. Pts.                                                                                                                                                                                                                      |
|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------|----------|-----------------------------------------------------------|---------------------------|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                      | 9.72 421                                               | 20                                        | 9.79 579                      | 28       | 10.20 421                                                 | 9.92 842                  |     | 60              |                                                                                                                                                                                                                                 |
| $\begin{bmatrix} 1\\2 \end{bmatrix}$                   | $9.72\ 441 \\ 9.72\ 461$                               | 20                                        | 9.79 607<br>9.79 635          | 28       | $\begin{array}{c} 10.20\ 393 \\ 10.20\ 365 \end{array}$   | 9.92 834<br>9.92 826      | 8   | 59<br>58        |                                                                                                                                                                                                                                 |
| 3                                                      | 9.72482                                                | 21                                        | 9.79 663                      | 28       | 10.20 337                                                 | 9.92 818                  | 8   | 57              |                                                                                                                                                                                                                                 |
| 4                                                      | $9.72\ 502$                                            | $\begin{bmatrix} 20 \\ 20 \end{bmatrix}$  | 9.79 691                      | 28<br>28 | 10.20 309                                                 | 9.92 810                  | 8 7 | 56              |                                                                                                                                                                                                                                 |
| 5 6                                                    | 9.72522 $9.72542$                                      | 20                                        | 9.79 719                      | 28       | 10.20 281                                                 | 9.92 803                  | 8   | 55              |                                                                                                                                                                                                                                 |
| 7                                                      | 9.72542 $9.72562$                                      | 20                                        | 9.79 747<br>9.79 776          | 29       | $\begin{array}{c} 10.20\ 253 \\ 10.20\ 224 \end{array}$   | 9.92 795<br>9.92 787      | 8   | 54 53           |                                                                                                                                                                                                                                 |
| 8                                                      | $9.72\ 582$                                            | 20                                        | 9.79 804                      | 28       | 10.20 196                                                 | 9.92 779                  | 8   | 52              | ″ 29   28   27                                                                                                                                                                                                                  |
| 9                                                      | 9.72 602                                               | $\begin{bmatrix} 20 \\ 20 \end{bmatrix}$  | 9.79 832                      | 28<br>28 | 10.20 168                                                 | 9.92 771                  | 8   | 51              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                           |
| <b>10</b> 11                                           | 9.72622 $9.72643$                                      | 21                                        | 9.79 860<br>9.79 888          | 28       | 10.20 140<br>10.20 112                                    | 9.92 763                  | 8   | 50              | 8   3.9   3.7   3.6                                                                                                                                                                                                             |
| 12                                                     | 9.72 663                                               | 20                                        | 9.79 916                      | 28       | 10.20 112                                                 | 9.92 755<br>9.92 747      | 8   | 49 48           | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                          |
| 13                                                     | 9.72 683                                               | $\begin{vmatrix} 20 \\ 20 \end{vmatrix}$  | 9.79 944                      | 28 28    | $10.20\ 056$                                              | 9.92 739                  | 8   | 47              | 20 9.7 9.3 9.0                                                                                                                                                                                                                  |
| $\frac{14}{15}$                                        | 9.72 703                                               | $\begin{vmatrix} 20 \\ 20 \end{vmatrix}$  | 9.79 972                      | 28       | 10.20 028                                                 | 9.92 731                  | 8   | 46              | $\begin{bmatrix} 30 & 14.5 & 14.0 & 13.5 \\ 40 & 19.3 & 18.7 & 18.0 \end{bmatrix}$                                                                                                                                              |
| 16                                                     | 9.72723 $9.72743$                                      | 20                                        | 9.80 000<br>9.80 028          | 28       | $\begin{array}{c} 10.20\ 000 \\ 10.19\ 972 \end{array}$   | 9.92 723<br>9.92 715      | 8   | 45<br>44        | 50 24.2 23.3 22.5                                                                                                                                                                                                               |
| 17                                                     | 9.72 763                                               | 20                                        | 9.80 056                      | 28       | 10.19 944                                                 | 9.92 707                  | 8   | 43              |                                                                                                                                                                                                                                 |
| 18                                                     | 9.72 783                                               | 20 20                                     | 9.80 084                      | 28<br>28 | 10.19 916                                                 | 9.92 699                  | 8   | 42              |                                                                                                                                                                                                                                 |
| 20                                                     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 20                                        | $\frac{9.80\ 112}{9.80\ 140}$ | 28       | $\frac{10.19888}{10.19860}$                               | 9.92691 $9.92683$         | 8   | $\frac{41}{40}$ |                                                                                                                                                                                                                                 |
| 21                                                     | 9.72 843                                               | 20                                        | 9.80 140                      | 28       | 10.19 832                                                 | 9.92 675                  | 8   | 39              |                                                                                                                                                                                                                                 |
| 22                                                     | 9.72 863                                               | $\begin{vmatrix} 20 \\ 20 \end{vmatrix}$  | 9.80 195                      | 27 28    | 10.19 805                                                 | 9.92 667                  | 8   | 38              |                                                                                                                                                                                                                                 |
| $\begin{array}{ c c c }\hline 23 \\ 24 \\ \end{array}$ | 9.72 883<br>9.72 902                                   | 19                                        | 9.80 223<br>9.80 251          | 28       | 10.19 777<br>10.19 749                                    | 9.92 659<br>9.92 651      | 8   | 37<br>36        |                                                                                                                                                                                                                                 |
| $\frac{21}{25}$                                        | 9.72 922                                               | 20                                        | 9.80 279                      | 28       | 10.19 721                                                 | 9.92 643                  | 8   | 35              |                                                                                                                                                                                                                                 |
| 26                                                     | 9.72 942                                               | 20                                        | 9.80 307                      | 28       | 10.19 693                                                 | $9.92\ 635$               | 8   | 34              | "  21   20   19                                                                                                                                                                                                                 |
| 27 28                                                  | 9.72962 $9.72982$                                      | $\begin{vmatrix} 20 \\ 20 \end{vmatrix}$  | 9.80 335<br>9.80 363          | 28 28    | 10.19 665 10.19 637                                       | 9.92 627<br>9.92 619      | 8   | 33 32           | 6 2.1 2.0 1.9                                                                                                                                                                                                                   |
| 29                                                     | 9.73 002                                               | 20                                        | 9.80 391                      | 28       | 10.19 609                                                 | 9.92 611                  | 8   | 31              | 7 2.4 2.3 2.2                                                                                                                                                                                                                   |
| 30                                                     | 9.73 022                                               | 20                                        | 9.80 419                      | 28       | 10.19 581                                                 | 9.92 603                  | 8   | 30              | 6 2.1 2.0 1.9<br>7 2.4 2.3 2.2<br>8 2.8 2.7 2.5<br>9 3.2 3.0 2.8                                                                                                                                                                |
| 31                                                     | 9.73 041                                               | 19 20                                     | 9.80 447                      | 28 27    | 10.19 553                                                 | 9.92 595                  | 8   | 29              | 10  3.5  3.3  3.2                                                                                                                                                                                                               |
| 32 33                                                  | 9.73 061<br>9.73 081                                   | 20                                        | 9.80 474<br>9.80 502          | 28       | 10.19 526 10.19 498                                       | 9.92 587<br>9.92 579      | 8   | 28<br>27        | 30 10.5 10.0 9.5                                                                                                                                                                                                                |
| 34                                                     | 9.73 101                                               | 20                                        | 9.80 530                      | 28       | 10.19 470                                                 | 9.92 571                  | 8   | 26              | $ \begin{vmatrix} 40 & 14.0 & 13.3 & 12.7 \\ 50 & 17.5 & 16.7 & 15.8 \end{vmatrix} $                                                                                                                                            |
| 35                                                     | 9.73 121                                               | 20<br>19                                  | 9.80 558                      | 28 28    | 10.19 442                                                 | 9.92 563                  | 8   | 25              |                                                                                                                                                                                                                                 |
| 36 37                                                  | 9.73 140<br>9.73 160                                   | 20                                        | 9.80 586<br>9.80 614          | 28       | 10.19 414 10.19 386                                       | 9.92 555<br>9.92 546      | 9   | 24<br>23        |                                                                                                                                                                                                                                 |
| 38                                                     | 9.73 180                                               | 20                                        | 9.80 642                      | 28       | 10.19 358                                                 | 9.92 538                  | 8   | 22              |                                                                                                                                                                                                                                 |
| 39                                                     | 9.73 200                                               | 20<br>19                                  | 9.80 669                      | 27 28    | 10.19 331                                                 | 9.92 530                  | 8   | 21              |                                                                                                                                                                                                                                 |
| 40                                                     | 9.73 219<br>9.73 239                                   | 20                                        | 9.80 697<br>9.80 725          | 28       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$    | 9.92 522<br>9.92 514      | 8   | <b>20</b> 19    |                                                                                                                                                                                                                                 |
| 42                                                     | 9.73 259                                               | 20                                        | 9.80 753                      | 28       | 10.19 247                                                 | 9.92 506                  | 8   | 18              |                                                                                                                                                                                                                                 |
| 43                                                     | 9.73 278                                               | 19<br>20                                  | 9.80 781                      | 28 27    | 10.19 219                                                 | 9.92 498<br>9.92 490      | 8 8 | 17<br>16        |                                                                                                                                                                                                                                 |
| $\frac{44}{45}$                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 20                                        | 9.80808 $9.80836$             | 28       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$    | $\frac{9.92490}{9.92482}$ | 8   | $\frac{10}{15}$ | " 9 8 7                                                                                                                                                                                                                         |
| 46                                                     | 9.73 337                                               | 19                                        | 9.80 864                      | 28       | 10.19 136                                                 | 9.92 473                  | 9   | 14              |                                                                                                                                                                                                                                 |
| 47                                                     | 9.73 357                                               | $\begin{array}{c c} 20 \\ 20 \end{array}$ | 9.80 892                      | 28<br>27 | 10.19 108                                                 | 9.92 465                  | 8   | 13              | $\begin{array}{c c} 6 & 0.9 & 0.8 & 0.7 \\ 7 & 1.0 & 0.9 & 0.8 \end{array}$                                                                                                                                                     |
| 48 49                                                  | 9.73 377<br>9.73 396                                   | 19                                        | 9.80 919<br>9.80 947          | 28       | 10.19 081<br>10.19 053                                    | 9.92 457<br>9.92 449      | 8   | 12<br>11        | 8 1.2 1.1 0.9                                                                                                                                                                                                                   |
| 50                                                     | 9.73 416                                               | 20                                        | $\frac{9.80\ 975}{9.80\ 975}$ | 28       | 10.19 025                                                 | 9.92 441                  | 8   | 10              | $\begin{array}{c} 0.0.3 & 0.5 & 0.7 \\ 7.1.0 & 0.9 & 0.8 \\ 8.1.2 & 1.1 & 0.9 \\ 9.1.4 & 1.2 & 1.0 \\ 10.1.5 & 1.3 & 1.2 \\ 20.3.0 & 2.7 & 2.3 \\ 30.4.5 & 4.0 & 3.5 \\ 40.6.0 & 5.3 & 4.7 \\ 50.7 & 5.6 & 7.5 & 8 \end{array}$ |
| 51                                                     | 9.73 435                                               | 19                                        | 9.81 003                      | 28       | 10.18 997                                                 | 9.92 433                  | 8   | 9               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                           |
| 52 53                                                  | 9.73 455<br>9.73 474                                   | 20                                        | 9.81 030<br>9.81 058          | 27<br>28 | $\begin{array}{c c} 10.18\ 970 \\ 10.18\ 942 \end{array}$ | 9.92 425 9.92 416         | 9   | 8 7             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                          |
| 54                                                     | 9.73 474                                               | 20                                        | 9.81 086                      | 28       | 10.18 914                                                 | 9.92 408                  | 8   | 6               | 00 110 011 010                                                                                                                                                                                                                  |
| 55                                                     | 9.73 513                                               | 19                                        | 9.81 113                      | 27       | 10.18 887                                                 | 9.92 400                  | 8 8 | 5               |                                                                                                                                                                                                                                 |
| 56 57                                                  | 9.73 533                                               | 20<br>19                                  | 9.81 141                      | 28 28    | 10.18 859<br>10.18 831                                    | 9.92 392 9.92 384         | 8   | 3               |                                                                                                                                                                                                                                 |
| 58                                                     | 9.73552 $9.73572$                                      | 20.                                       | 9.81 169<br>9.81 196          | 27       | 10.18 804                                                 | 9.92376                   | 8   | 2               |                                                                                                                                                                                                                                 |
| 59                                                     | 9.73 591                                               | 19<br>20                                  | 9.81 224                      | 28 28    | 10.18 776                                                 | 9.92 367                  | 9 8 | 1               |                                                                                                                                                                                                                                 |
| 60                                                     | 9.73 611                                               |                                           | 9.81 252                      |          | 10.18 748                                                 | 9.92 359                  |     | 0               |                                                                                                                                                                                                                                 |
|                                                        | L Cos                                                  | d                                         | L Cot                         | c d      | L Tan                                                     | L Sin                     | d   | ′               | Prop. Pts.                                                                                                                                                                                                                      |

33°

| 1                                 | L Sin                                                                                                                                   | d                                | L Tan                                                                                                                                   | c d                              | L Cot                                                                                                                               | L Cos                                                                                                                          | d                     |                                         | Prop. Pts.                                                                                                                                                                         |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4             | 9.73 611<br>9.73 630<br>9.73 650<br>9.73 669<br>9.73 689                                                                                | 19<br>20<br>19<br>20             | 9.81 252<br>9.81 279<br>9.81 307<br>9.81 335<br>9.81 362                                                                                | 27<br>28<br>28<br>27             | 10.18 748<br>10.18 721<br>10.18 693<br>10.18 665<br>10.18 638                                                                       | 9.92 359<br>9.92 351<br>9.92 343<br>9.92 335<br>9.92 326                                                                       | 8<br>8<br>8<br>9<br>8 | 60<br>59<br>58<br>57<br>56              |                                                                                                                                                                                    |
| 5<br>6<br>7<br>8<br>9             | 9.73 708<br>9.73 727<br>9.73 747<br>9.73 766<br>9.73 785                                                                                | 19<br>19<br>20<br>19<br>19<br>20 | 9.81 390<br>9.81 418<br>9.81 445<br>9.81 473<br>9.81 500                                                                                | 28<br>28<br>27<br>28<br>27<br>28 | 10.18 610<br>10.18 582<br>10.18 555<br>10.18 527<br>10.18 500                                                                       | 9.92 318<br>9.92 310<br>9.92 302<br>9.92 293<br>9.92 285                                                                       | 8<br>8<br>9<br>8      | 55<br>54<br>53<br>52<br>51              | "   <b>28   27   20</b> 6   2.8   2.7   2.0 7   3.3   3.2   2.3                                                                                                                    |
| 10<br>11<br>12<br>13<br>14        | 9.73 805<br>9.73 824<br>9.73 843<br>9.73 863<br>9.73 882                                                                                | 19<br>19<br>20<br>19             | 9.81 528<br>9.81 556<br>9.81 583<br>9.81 611<br>9.81 638                                                                                | 28<br>27<br>28<br>27<br>28       | 10.18 472<br>10.18 444<br>10.18 417<br>10.18 389<br>10.18 362                                                                       | 9.92 277<br>9.92 269<br>9.92 260<br>9.92 252<br>9.92 244                                                                       | 8<br>9<br>8<br>8      | 50<br>49<br>48<br>47<br>46              | $ \begin{bmatrix} 8 & 3.7 & 3.6 & 2.7 \\ 9 & 4.2 & 4.0 & 3.0 \\ 10 & 4.7 & 4.5 & 3.3 \\ 20 & 9.3 & 9.0 & 6.7 \\ 30 & 14.0 & 13.5 & 10.0 \\ 40 & 18.7 & 18.0 & 13.3 \end{bmatrix} $ |
| 15<br>16<br>17<br>18<br>19        | 9.73 901<br>9.73 921<br>9.73 940<br>9.73 959<br>9.73 978                                                                                | 20<br>19<br>19<br>19<br>19       | 9.81 666<br>9.81 693<br>9.81 721<br>9.81 748<br>9.81 776                                                                                | 27<br>28<br>27<br>28<br>27       | 10.18 334<br>10.18 307<br>10.18 279<br>10.18 252<br>10.18 224                                                                       | 9.92 235<br>9.92 227<br>9.92 219<br>9.92 211<br>9.92 202                                                                       | 8<br>8<br>8<br>9<br>8 | 45<br>44<br>43<br>42<br>41              | 50 23.3 22.5 16.7                                                                                                                                                                  |
| 20<br>21<br>22<br>23<br>24<br>25  | 9.73 997<br>9.74 017<br>9.74 036<br>9.74 055<br>9.74 074<br>9.74 093                                                                    | 20<br>19<br>19<br>19<br>19       | 9.81 803<br>9.81 831<br>9.81 858<br>9.81 886<br>9.81 913<br>9.81 941                                                                    | 28<br>27<br>28<br>27<br>28       | 10.18 197<br>10.18 169<br>10.18 142<br>10.18 114<br>10.18 087<br>10.18 059                                                          | $\begin{array}{c} 9.92\ 194 \\ 9.92\ 186 \\ 9.92\ 177 \\ 9.92\ 169 \\ \hline 9.92\ 161 \\ \hline \hline 9.92\ 152 \end{array}$ | 8<br>9<br>8<br>8      | 39<br>38<br>37<br>36<br>35              |                                                                                                                                                                                    |
| 26<br>27<br>28<br>29<br>30        | 9.74 113<br>9.74 132<br>9.74 151<br>9.74 170<br>9.74 189                                                                                | 20<br>19<br>19<br>19<br>19       | 9.81 968<br>9.81 996<br>9.82 023<br>9.82 051<br>9.82 078                                                                                | 27<br>28<br>27<br>28<br>27       | $ \begin{array}{c} 10.18 \ 039 \\ 10.18 \ 032 \\ 10.18 \ 004 \\ 10.17 \ 977 \\ \underline{10.17 \ 949} \\ 10.17 \ 922 \end{array} $ | 9.92 134<br>9.92 136<br>9.92 127<br>9.92 119<br>9.92 111                                                                       | 8<br>8<br>9<br>8<br>8 | 34<br>33<br>32<br>31<br>30              | " 19 18<br>6 1.9 1.8<br>7 2.2 2.1<br>8 2.5 2.4<br>9 2.9 2.7                                                                                                                        |
| 31<br>32<br>33<br>34<br>35        | $\begin{array}{c} 9.74 \ 189 \\ 9.74 \ 208 \\ 9.74 \ 227 \\ 9.74 \ 246 \\ \hline 9.74 \ 265 \\ \hline \hline 9.74 \ 284 \\ \end{array}$ | 19<br>19<br>19<br>19<br>19       | 9.82 106<br>9.82 133<br>9.82 161<br>9.82 188<br>9.82 215                                                                                | 28<br>27<br>28<br>27<br>27       | $   \begin{array}{c cccc}                                 $                                                                         | 9.92 102<br>9.92 094<br>9.92 086<br>9.92 077<br>9.92 069                                                                       | 9<br>8<br>8<br>9<br>8 | 29<br>28<br>27<br>26                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                              |
| 36<br>37<br>38<br>39<br>40        | 9.74 303<br>9.74 322<br>9.74 341<br>9.74 360                                                                                            | 19<br>19<br>19<br>19<br>19       | 9.82 243<br>9.82 270<br>9.82 298<br>9.82 325                                                                                            | 28<br>27<br>28<br>27<br>27       | 10.17 757<br>10.17 730<br>10.17 702<br>10.17 675                                                                                    | 9.92 060<br>9.92 052<br>9.92 044<br>9.92 035                                                                                   | 9<br>8<br>8<br>9<br>8 | 23<br>24<br>23<br>22<br>21<br><b>20</b> |                                                                                                                                                                                    |
| 41<br>42<br>43<br>44<br>45        | $\begin{array}{c} 9.74\ 379 \\ 9.74\ 398 \\ 9.74\ 417 \\ 9.74\ 436 \\ 9.74\ 455 \\ \hline \end{array}$                                  | 19<br>19<br>19<br>19<br>19       | 9.82 352<br>9.82 380<br>9.82 407<br>9.82 435<br>9.82 462<br>9.82 489                                                                    | 28<br>27<br>28<br>27<br>27       | 10.17 648<br>10.17 620<br>10.17 593<br>10.17 565<br>10.17 538                                                                       | 9.92 027<br>9.92 018<br>9.92 010<br>9.92 002<br>9.91 993                                                                       | 9<br>8<br>8<br>9<br>8 | 19<br>18<br>17<br>16<br>15              | <i>(</i> (, 0, 1, 9)                                                                                                                                                               |
| 46<br>47<br>48<br>49<br><b>50</b> | $ \begin{vmatrix} 9.74 & 474 \\ 9.74 & 493 \\ 9.74 & 512 \\ 9.74 & 531 \\ 9.74 & 549 \\ \hline 9.74 & 568 \end{vmatrix} $               | 19<br>19<br>19<br>18<br>19       | 9.82 489<br>9.82 517<br>9.82 544<br>9.82 571<br>9.82 599<br>9.82 626                                                                    | 28<br>27<br>27<br>28<br>28<br>27 | $ \begin{array}{c} 10.17 \ 511 \\ 10.17 \ 483 \\ 10.17 \ 456 \\ 10.17 \ 401 \\ \hline 10.17 \ 374 \end{array} $                     | 9.91 985<br>9.91 976<br>9.91 968<br>9.91 959<br>9.91 951<br>9.91 942                                                           | 9<br>8<br>9<br>8<br>9 | 13<br>13<br>12<br>11<br>10              | $ \begin{array}{c cccc}  & 9 & 8 \\ 6 & 0.9 & 0.8 \\ 7 & 1.0 & 0.9 \\ 8 & 1.2 & 1.1 \\ 9 & 1.4 & 1.2 \\ 10 & 1.5 & 1.3 \end{array} $                                               |
| 51<br>52<br>53<br>54<br>55        |                                                                                                                                         | 19<br>19<br>19<br>19<br>19       | $\begin{array}{c} 9.82 \ 020 \\ 9.82 \ 653 \\ 9.82 \ 681 \\ 9.82 \ 708 \\ \hline 9.82 \ 735 \\ \hline \hline 9.82 \ 762 \\ \end{array}$ | 27<br>28<br>27<br>27<br>27       | $ \begin{array}{c} 10.17 \ 374 \\ 10.17 \ 347 \\ 10.17 \ 319 \\ 10.17 \ 292 \\ \underline{10.17 \ 265} \\ 10.17 \ 238 \end{array} $ | 9.91 942<br>9.91 934<br>9.91 925<br>9.91 917<br>9.91 908<br>9.91 900                                                           | 8<br>9<br>8<br>9<br>8 | 9<br>8<br>7<br>6<br>-5                  | $\begin{array}{c} 10 & 1.5 & 1.3 \\ 20 & 3.0 & 2.7 \\ 30 & 4.5 & 4.0 \\ 40 & 6.0 & 5.3 \\ 50 & 7.5 & 6.7 \end{array}$                                                              |
| 56<br>57<br>58<br>59<br><b>60</b> | $\begin{array}{c} 9.74\ 602 \\ 9.74\ 681 \\ 9.74\ 700 \\ 9.74\ 719 \\ \hline 9.74\ 737 \\ \hline \hline 9.74\ 756 \end{array}$          | 19<br>19<br>19<br>18<br>19       | 9.82 790<br>9.82 817<br>9.82 844<br>9.82 871<br>9.82 899                                                                                | 28<br>27<br>27<br>27<br>27<br>28 | 10.17 210<br>10.17 183<br>10.17 156<br>10.17 129<br>10.17 101                                                                       | $\begin{array}{c} 9.91800 \\ 9.91891 \\ 9.91883 \\ 9.91874 \\ \hline 9.91866 \\ \hline 9.91857 \end{array}$                    | 9<br>8<br>9<br>8      | 3<br>2<br>1<br><b>0</b>                 | ,                                                                                                                                                                                  |
|                                   | L Cos                                                                                                                                   | d                                | L Cot                                                                                                                                   | c d                              | L Tan                                                                                                                               | L Sin                                                                                                                          | d                     |                                         | Prop. Pts.                                                                                                                                                                         |

**34**°

| ′                          | L Sin                                                    | d                          | L Tan                                                    | c d                                    | L Cot                                                         | L Cos                                                    | d                          |                            | Prop. Pts.                                                                                       |
|----------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------|----------------------------|--------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4      | 9.74 756<br>9.74 775<br>9.74 794<br>9.74 812<br>9.74 831 | 19<br>19<br>18<br>19       | 9.82 899<br>9.82 926<br>9.82 953<br>9.82 980<br>9.83 008 | 27<br>27<br>27<br>28                   | 10.17 101<br>10.17 074<br>10.17 047<br>10.17 020<br>10.16 992 | 9.91 857<br>9.91 849<br>9.91 840<br>9.91 832<br>9.91 823 | 8<br>9<br>8<br>9           | <b>60</b> 59 58 57 56      |                                                                                                  |
| 5<br>6<br>7<br>8<br>9      | 9.74 850<br>9.74 868<br>9.74 887<br>9.74 906<br>9.74 924 | 19<br>18<br>19<br>19<br>18 | 9.83 035<br>9.83 062<br>9.83 089<br>9.83 117<br>9.83 144 | 27<br>27<br>27<br>28<br>27             | 10.16 965<br>10.16 938<br>10.16 911<br>10.16 883<br>10.16 856 | 9.91 815<br>9.91 806<br>9.91 798<br>9.91 789<br>9.91 781 | 8<br>9<br>8<br>9<br>8      | 55<br>54<br>53<br>52<br>51 | "   <mark>28   27   26</mark> 6   2.8   2.7   2.6                                                |
| 10<br>11<br>12<br>13<br>14 | 9.74 943<br>9.74 961<br>9.74 980<br>9.74 999<br>9.75 017 | 19<br>18<br>19<br>19<br>18 | 9.83 171<br>9.83 198<br>9.83 225<br>9.83 252<br>9.83 280 | 27<br>27<br>27<br>27<br>28             | 10.16 829<br>10.16 802<br>10.16 775<br>10.16 748<br>10.16 720 | 9.91 772<br>9.91 763<br>9.91 755<br>9.91 746<br>9.91 738 | 9<br>9<br>8<br>9<br>8      | 50<br>49<br>48<br>47<br>46 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                            |
| 15<br>16<br>17<br>18<br>19 | 9.75 036<br>9.75 054<br>9.75 073<br>9.75 091<br>9.75 110 | 19<br>18<br>19<br>18<br>19 | 9.83 307<br>9.83 334<br>9.83 361<br>9.83 388<br>9.83 415 | 27<br>27<br>27<br>27<br>27             | 10.16 693<br>10.16 666<br>10.16 639<br>10.16 612<br>10.16 585 | 9.91 729<br>9.91 720<br>9.91 712<br>9.91 703<br>9.91 695 | 9<br>9<br>8<br>9<br>8      | 45<br>44<br>43<br>42<br>41 | 40 18.7 18.0 17.3<br>50 23.3 22.5 21.7                                                           |
| 20<br>21<br>22<br>23<br>24 | 9.75 128<br>9.75 147<br>9.75 165<br>9.75 184<br>9.75 202 | 18<br>19<br>18<br>19<br>18 | 9.83 442<br>9.83 470<br>9.83 497<br>9.83 524<br>9.83 551 | 27<br>28<br>27<br>27<br>27             | 10.16 558<br>10.16 530<br>10.16 503<br>10.16 476<br>10.16 449 | 9.91 686<br>9.91 677<br>9.91 669<br>9.91 660<br>9.91 651 | 9<br>9<br>8<br>9           | 40<br>39<br>38<br>37<br>36 |                                                                                                  |
| 25<br>26<br>27<br>28<br>29 | 9.75 221<br>9.75 239<br>9.75 258<br>9.75 276<br>9.75 294 | 19<br>18<br>19<br>18<br>18 | 9.83 578<br>9.83 605<br>9.83 632<br>9.83 659<br>9.83 686 | 27<br>27<br>27<br>27<br>27             | 10.16 422<br>10.16 395<br>10.16 368<br>10.16 341<br>10.16 314 | 9.91 643<br>9.91 634<br>9.91 625<br>9.91 617<br>9.91 608 | 8<br>9<br>9<br>8<br>9      | 35<br>34<br>33<br>32<br>31 | "   19   18<br>6   1.9   1.8<br>7   2.2   2.1<br>8   2.5   2.4<br>9   2.8   2.7                  |
| 30<br>31<br>32<br>33<br>34 | 9.75 313<br>9.75 331<br>9.75 350<br>9.75 368<br>9.75 386 | 19<br>18<br>19<br>18<br>18 | 9.83 713<br>9.83 740<br>9.83 768<br>9.83 795<br>9.83 822 | 27<br>27<br>28<br>27<br>27             | 10.16 287<br>10.16 260<br>10.16 232<br>10.16 205<br>10.16 178 | 9.91 599<br>9.91 591<br>9.91 582<br>9.91 573<br>9.91 565 | 9 8 9 9 8                  | 30<br>29<br>28<br>27<br>26 | 8 2.5 2.4<br>9 2.8 2.7<br>10 3.2 3.0<br>20 6.3 6.0<br>30 9.5 9.0<br>40 12.7 12.0<br>50 15.8 15.0 |
| 35<br>36<br>37<br>38<br>39 | 9.75 405<br>9.75 423<br>9.75 441<br>9.75 459<br>9.75 478 | 19<br>18<br>18<br>18<br>19 | 9.83 849<br>9.83 876<br>9.83 903<br>9.83 930<br>9.83 957 | 27<br>27<br>27<br>27<br>27             | 10.16 151<br>10.16 124<br>10.16 097<br>10.16 070<br>10.16 043 | 9.91 556<br>9.91 547<br>9.91 538<br>9.91 530<br>9.91 521 | 9 9 9 8 9                  | 25<br>24<br>23<br>22<br>21 | 33/13/3                                                                                          |
| 40<br>41<br>42<br>43<br>44 | 9.75 496<br>9.75 514<br>9.75 533<br>9.75 551<br>9.75 569 | 18<br>18<br>19<br>18<br>18 | 9.83 984<br>9.84 011<br>9.84 038<br>9.84 065<br>9.84 092 | 27<br>27<br>27<br>27<br>27             | 10.16 016<br>10.15 989<br>10.15 962<br>10.15 935<br>10.15 908 | 9.91 512<br>9.91 504<br>9.91 495<br>9.91 486<br>9.91 477 | 9<br>8<br>9<br>9           | 20<br>19<br>18<br>17<br>16 |                                                                                                  |
| 45<br>46<br>47<br>48<br>49 | 9.75 587<br>9.75 605<br>9.75 624<br>9.75 642<br>9.75 660 | 18<br>18<br>19<br>18<br>18 | 9.84 119<br>9.84 146<br>9.84 173<br>9.84 200<br>9.84 227 | 27<br>27<br>27<br>27<br>27<br>27<br>27 | 10.15 881<br>10.15 854<br>10.15 827<br>10.15 800<br>10.15 773 | 9.91 469<br>9.91 460<br>9.91 451<br>9.91 442<br>9.91 433 | 8<br>9<br>9<br>9<br>9<br>8 | 15<br>14<br>13<br>12<br>11 | "   9   8<br>6   0.9   0.8<br>7   1.0   0.9<br>8   1.2   1.1<br>9   1.4   1.2<br>10   1.5   1.3  |
| 50<br>51<br>52<br>53<br>54 | 9.75 678<br>9.75 696<br>9.75 714<br>9.75 733<br>9.75 751 | 18<br>18<br>18<br>19<br>18 | 9.84 254<br>9.84 280<br>9.84 307<br>9.84 334<br>9.84 361 | 26<br>27<br>27<br>27<br>27             | 10.15 746<br>10.15 720<br>10.15 693<br>10.15 666<br>10.15 639 | 9.91 425<br>9.91 416<br>9.91 407<br>9.91 398<br>9.91 389 | 9<br>9<br>9<br>9           | 10<br>9<br>8<br>7<br>6     | $\begin{array}{c} 10 1.5 1.3\\ 20 3.0 2.7\\ 30 4.5 4.0\\ 40 6.0 5.3\\ 50 7.5 6.7 \end{array}$    |
| 55<br>56<br>57<br>58<br>59 | 9.75 769<br>9.75 787<br>9.75 805<br>9.75 823<br>9.75 841 | 18<br>18<br>18<br>18<br>18 | 9.84 388<br>9.84 415<br>9.84 442<br>9.84 469<br>9.84 496 | 27<br>27<br>27<br>27<br>27<br>27<br>27 | 10.15 612<br>10.15 585<br>10.15 558<br>10.15 531<br>10.15 504 | 9.91 381<br>9.91 372<br>9.91 363<br>9.91 354<br>9.91 345 | 8<br>9<br>9<br>9<br>9      | 5<br>4<br>3<br>2<br>1      |                                                                                                  |
| 60                         | 9.75 859<br>L Cos                                        | 18<br>d                    | 9.84 523<br>L Cot                                        | $\frac{27}{\text{c d}}$                | 10.15 477<br>L Tan                                            | 9.91 336<br>L Sin                                        | -d                         | 0                          | Prop. Pts.                                                                                       |

35°

| ′                          | L Sin                                                    | d                          | L Tan                                                    | c d                              | L Cot                                                         | L Cos                                                    | d                      |                            | Prop. Pts.                                                                                                                  |
|----------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4      | 9.75 859<br>9.75 877<br>9.75 895<br>9.75 913<br>9.75 931 | 18<br>18<br>18<br>18<br>18 | 9.84 523<br>9.84 550<br>9.84 576<br>9.84 603<br>9.84 630 | 27<br>26<br>27<br>27<br>27       | 10.15 47.<br>10.15 450<br>10.15 424<br>10.15 397<br>10.15 370 | 9.91 336<br>9.91 328<br>9.91 319<br>9.91 310<br>9.91 301 | 8<br>9<br>9<br>9       | 59<br>58<br>57<br>56       |                                                                                                                             |
| 5<br>6<br>7<br>8<br>9      | 9.75 949<br>9.75 967<br>9.75 985<br>9.76 003<br>9.76 021 | 18<br>18<br>18<br>18<br>18 | 9.84 657<br>9.84 684<br>9.84 711<br>9.84 738<br>9.84 764 | 27<br>27<br>27<br>26<br>27       | 10.15 343<br>10.15 316<br>10.15 289<br>10.15 262<br>10.15 236 | 9.91 292<br>9.91 283<br>9.91 274<br>9.91 266<br>9.91 257 | 9<br>9<br>8<br>9       | 55<br>54<br>53<br>52<br>51 | "   <b>27   26   18</b> 6   2.7   2.6   1.8 7   3.2   3.0   2.1                                                             |
| 10<br>11<br>12<br>13<br>14 | 9.76 039<br>9.76 057<br>9.76 075<br>9.76 093<br>9.76 111 | 18<br>18<br>18<br>18<br>18 | 9.84 791<br>9.84 818<br>9.84 845<br>9.84 872<br>9.84 899 | 27<br>27<br>27<br>27<br>27<br>26 | 10.15 209<br>10.15 182<br>10.15 155<br>10.15 128<br>10.15 101 | 9.91 248<br>9.91 239<br>9.91 230<br>9.91 221<br>9.91 212 | 9 9 9                  | 50<br>49<br>48<br>47<br>46 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                       |
| 15<br>16<br>17<br>18<br>19 | 9.76 129<br>9.76 146<br>9.76 164<br>9.76 182<br>9.76 200 | 17<br>18<br>18<br>18<br>18 | 9.84 925<br>9.84 952<br>9.84 979<br>9.85 006<br>9.85 033 | 27<br>27<br>27<br>27<br>27<br>26 | 10.15 075<br>10.15 048<br>10.15 021<br>10.14 994<br>10.14 967 | 9.91 203<br>9.91 194<br>9.91 185<br>9.91 176<br>9.91 167 | 9<br>9<br>9<br>9       | 45<br>44<br>43<br>42<br>41 | 50   22.5   21.7   15.0                                                                                                     |
| 20<br>21<br>22<br>23<br>24 | 9.76 218<br>9.76 236<br>9.76 253<br>9.76 271<br>9.76 289 | 18<br>17<br>18<br>18<br>18 | 9.85 059<br>9.85 086<br>9.85 113<br>9.85 140<br>9.85 166 | 27<br>27<br>27<br>26<br>27       | 10.14 941<br>10.14 914<br>10.14 887<br>10.14 860<br>10.14 834 | 9.91 158<br>9.91 149<br>9.91 141<br>9.91 132<br>9.91 123 | 9<br>8<br>9<br>9       | 40<br>39<br>38<br>37<br>36 |                                                                                                                             |
| 25<br>26<br>27<br>28<br>29 | 9.76 307<br>9.76 324<br>9.76 342<br>9.76 360<br>9.76 378 | 17<br>18<br>18<br>18<br>18 | 9.85 193<br>9.85 220<br>9.85 247<br>9.85 273<br>9.85 300 | 27<br>27<br>26<br>27<br>27       | 10.14 807<br>10.14 780<br>10.14 753<br>10.14 727<br>10.14 700 | 9.91 114<br>9.91 105<br>9.91 096<br>9.91 087<br>9.91 078 | 9<br>9<br>9<br>9       | 34<br>33<br>32<br>31<br>30 | "   17   10<br>6   1.7   1.0<br>7   2.0   1.2<br>8   2.3   1.3                                                              |
| 30<br>31<br>32<br>33<br>34 | 9.76 395<br>9.76 413<br>9.76 431<br>9.76 448<br>9.76 466 | 18<br>18<br>17<br>18<br>18 | 9.85 327<br>9.85 354<br>9.85 380<br>9.85 407<br>9.85 434 | 27<br>26<br>27<br>27<br>27<br>26 | 10.14 673<br>10.14 646<br>10.14 620<br>10.14 593<br>10.14 566 | 9.91 069<br>9.91 060<br>9.91 051<br>9.91 042<br>9.91 033 | 9<br>9<br>9<br>9       | 29<br>28<br>27<br>26       | 9 2.6 1.5<br>10 2.8 1.7<br>20 5.7 3.3<br>30 8.5 5.0<br>40 11.3 6.7<br>50 14.2 8.3                                           |
| 35<br>36<br>37<br>38<br>39 | 9.76 484<br>9.76 501<br>9.76 519<br>9.76 537<br>9.76 554 | 17<br>18<br>18<br>17<br>18 | 9.85 460<br>9.85 487<br>9.85 514<br>9.85 540<br>9.85 567 | 27<br>27<br>26<br>27<br>27       | 10.14 540<br>10.14 513<br>10.14 486<br>10.14 460<br>10.14 433 | 9.91 023<br>9.91 014<br>9.91 005<br>9.90 996<br>9.90 987 | 9 9 9                  | 25<br>24<br>23<br>22<br>21 |                                                                                                                             |
| 40<br>41<br>42<br>43<br>44 | 9.76 572<br>9.76 590<br>9.76 607<br>9.76 625<br>9.76 642 | 18<br>17<br>18<br>17<br>18 | 9.85 594<br>9.85 620<br>9.85 647<br>9.85 674<br>9.85 700 | 26<br>27<br>27<br>26<br>27       | 10.14 406<br>10.14 380<br>10.14 353<br>10.14 326<br>10.14 300 | 9.90 978<br>9.90 969<br>9.90 960<br>9.90 951<br>9.90 942 | 9<br>9<br>9<br>9       | 20<br>19<br>18<br>17<br>16 |                                                                                                                             |
| 45<br>46<br>47<br>48<br>49 | 9.76 660<br>9.76 677<br>9.76 695<br>9.76 712<br>9.76 730 | 17<br>18<br>17<br>18<br>17 | 9.85 727<br>9.85 754<br>9.85 780<br>9.85 807<br>9.85 834 | 27<br>26<br>27<br>27<br>26       | 10.14 273<br>10.14 246<br>10.14 220<br>10.14 193<br>10.14 166 | 9.90 933<br>9.90 924<br>9.90 915<br>9.90 906<br>9.90 896 | 9<br>9<br>9<br>10<br>9 | 15<br>14<br>13<br>12<br>11 | "   9   8<br>6   0.9   0.8<br>7   1.0   0.9<br>8   1.2   1.1<br>9   1.4   1.2<br>10   1.5   1.3                             |
| 50<br>51<br>52<br>53<br>54 | 9.76 747<br>9.76 765<br>9.76 782<br>9.76 800<br>9.76 817 | 18<br>17<br>18<br>17<br>18 | 9.85 860<br>9.85 887<br>9.85 913<br>9.85 940<br>9.85 967 | 27<br>26<br>27<br>27<br>27<br>26 | 10.14 140<br>10.14 113<br>10.14 087<br>10.14 060<br>10.14 033 | 9.90 887<br>9.90 878<br>9.90 869<br>9.90 860<br>9.90 851 | 9<br>9<br>9<br>9       | 9<br>8<br>7<br>6           | $\begin{array}{c} 1.1.5 \\ 1.3 \\ 20 \\ 3.0 \\ 2.7 \\ 30 \\ 4.5 \\ 4.0 \\ 40 \\ 6.0 \\ 5.3 \\ 50 \\ 7.5 \\ 6.7 \end{array}$ |
| 55<br>56<br>57<br>58<br>59 | 9.76 835<br>9.76 852<br>9.76 870<br>9.76 887<br>9.76 904 | 17<br>18<br>17<br>17<br>17 | 9.85 993<br>9.86 020<br>9.86 046<br>9.86 073<br>9.86 100 | 27<br>26<br>27<br>27<br>27<br>26 | 10.14 007<br>10.13 980<br>10.13 954<br>10.13 927<br>10.13 900 | 9.90 842<br>9.90 832<br>9.90 823<br>9.90 814<br>9.90 805 | 10<br>9<br>9<br>9      | 5<br>4<br>3<br>2<br>1      |                                                                                                                             |
| 60                         | 9.76 922<br>L Cos                                        | d                          | 9.86 126<br>L Cot                                        | c d                              | 10.13 874<br>L Tan                                            | 9.90 796<br>L Sin                                        | d                      | ,                          | Prop. Pts.                                                                                                                  |

36°

| ,                                                   | L Sin                                                    | d                                                | L Tan                                                  | c d                                                  | L Cot                                                              | L Cos                                             | d                                      |                 | Prop. Pts.                                                                                        |
|-----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|----------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|
| 0                                                   | 9.76 922<br>9.76 939                                     | 17                                               | 9.86 126<br>9.86 153                                   | 27                                                   | 10.13 874<br>10.13 847                                             | 9.90 796<br>9.90 787                              | 9                                      | <b>60</b> 59    |                                                                                                   |
| 2                                                   | 9.76957                                                  | 18<br>17                                         | 9.86 179                                               | $\begin{array}{c c} 26 \\ 27 \end{array}$            | 10.13 821                                                          | 9.90 777                                          | 10<br>9                                | 58              |                                                                                                   |
| 3 4                                                 | 9.76 974<br>9.76 991                                     | 17                                               | $9.86\ 206 \ 9.86\ 232$                                | 26                                                   | 10.13 794<br>10.13 768                                             | 9.90 768<br>9.90 759                              | 9                                      | 57<br>56        |                                                                                                   |
| 5                                                   | 9.77 009                                                 | 18                                               | 9.86 259                                               | 27                                                   | 10.13 741                                                          | 9.90 750                                          | 9                                      | 55              |                                                                                                   |
| 6 7                                                 | $9.77\ 026 \ 9.77\ 043$                                  | 17<br>17                                         | $9.86\ 285 \ 9.86\ 312$                                | $\begin{bmatrix} 26 \\ 27 \end{bmatrix}$             | 10.13 715<br>10.13 688                                             | $9.90741 \\ 9.90731$                              | $\frac{9}{10}$                         | 54<br>53        |                                                                                                   |
| 8                                                   | $9.77\ 061$                                              | 18                                               | 9.86 338                                               | $\begin{bmatrix} 26 \\ 27 \end{bmatrix}$             | $10.13\ 662$                                                       | 9.90722                                           | 9                                      | 52              | "   27   26   18                                                                                  |
| 9<br>10                                             | $\frac{9.77\ 078}{0.77\ 005}$                            | $\begin{array}{ c c }\hline 17\\17\\\end{array}$ | 9.86 365                                               | 27                                                   | 10.13 635                                                          | 9.90 713                                          | 9                                      | 51              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             |
| 11                                                  | $9.77 095 \\ 9.77 112$                                   | 17                                               | 9.86 392<br>9.86 418                                   | 26                                                   | $\begin{array}{c} 10.13\ 608 \\ 10.13\ 582 \end{array}$            | 9.90704 $9.90694$                                 | 10                                     | <b>50</b><br>49 | $egin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 12 13                                               | 9.77 130<br>9.77 147                                     | 18<br>17                                         | 9.86 445<br>9.86 471                                   | $\begin{bmatrix} 27 \\ 26 \end{bmatrix}$             | 10.13 555<br>10.13 529                                             | 9.90 685<br>9.90 676                              | 9                                      | 48<br>47        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             |
| 14                                                  | 9.77 164                                                 | 17                                               | 9.86 498                                               | 27                                                   | 10.13 502                                                          | 9.90 667                                          | 9                                      | 46              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             |
| 15                                                  | 9.77 181                                                 | 17<br>18                                         | 9.86 524                                               | $oxed{26}$                                           | 10.13 476                                                          | 9.90 657                                          | 10                                     | 45              | 50 22.5 21.7 15.0                                                                                 |
| 16<br>17                                            | $\begin{vmatrix} 9.77 & 199 \\ 9.77 & 216 \end{vmatrix}$ | 17                                               | 9.86551 $9.86577$                                      | 26                                                   | $\begin{array}{c c} 10.13 \ 449 \\ 10.13 \ 423 \end{array}$        | 9.90648 $9.90639$                                 | 9                                      | 44 43           |                                                                                                   |
| 18                                                  | 9.77 233                                                 | 17<br>17                                         | 9.86 603                                               | $\begin{bmatrix} 26 \\ 27 \end{bmatrix}$             | 10.13 397                                                          | 9.90 630                                          | $\frac{9}{10}$                         | 42              |                                                                                                   |
| 19<br><b>20</b>                                     | $\frac{9.77\ 250}{9.77\ 268}$                            | 18                                               | 9.86630 $9.86656$                                      | 26                                                   | $\begin{array}{c c} 10.13 \ 370 \\ \hline 10.13 \ 344 \end{array}$ | 9.90620 $9.90611$                                 | 9                                      | $\frac{41}{40}$ |                                                                                                   |
| 21                                                  | 9.77 285                                                 | 17                                               | 9.86 683                                               | $\begin{bmatrix} 27 \\ 26 \end{bmatrix}$             | 10.13 317                                                          | 9.90 602                                          | 9<br>10                                | 39              |                                                                                                   |
| $\begin{array}{ c c c }\hline 22\\23\\ \end{array}$ | 9.77 302<br>9.77 319                                     | 17<br>17                                         | 9.86 709<br>9.86 736                                   | 27                                                   | $10.13\ 291$ $10.13\ 264$                                          | 9.90592 $9.90583$                                 | 9                                      | 38<br>37        |                                                                                                   |
| 24                                                  | 9.77 336                                                 | 17<br>17                                         | 9.86 762                                               | $\begin{bmatrix} 26 \\ 27 \end{bmatrix}$             | 10.13 238                                                          | 9.90 574                                          | 9                                      | _36             |                                                                                                   |
| 25<br>26                                            | 9.77 353<br>9.77 370                                     | 17                                               | 9.86 789<br>9.86 815                                   | 26                                                   | 10.13 211<br>10.13 185                                             | $9.90\ 565$ $9.90\ 555$                           | 10                                     | 35<br>34        | "   <b>17</b>   <b>16</b>                                                                         |
| 27                                                  | 9.77 387                                                 | 17<br>18                                         | 9.86 842                                               | 27<br>26                                             | 10.13 158                                                          | 9.90 546                                          | 9                                      | 33              |                                                                                                   |
| 28<br>29                                            | $9.77\ 405 \\ 9.77\ 422$                                 | 17                                               | 9.86 868<br>9.86 894                                   | 26                                                   | 10.13 132<br>10.13 106                                             | $egin{array}{c} 9.90\ 537\ 9.90\ 527 \end{array}$ | 10                                     | 32<br>31        | $\begin{array}{c cccc} 6 & 1.7 & 1.6 \\ 7 & 2.0 & 1.9 \end{array}$                                |
| 30                                                  | 9.77 439                                                 | 17                                               | 9.86 921                                               | 27                                                   | 10.13 079                                                          | 9.90 518                                          | 9                                      | 30              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             |
| 31 32                                               | 9.77 456<br>9.77 473                                     | 17<br>17                                         | 9.86 947<br>9.86 974                                   | 26<br>27                                             | $\begin{array}{c} 10.13\ 053 \\ 10.13\ 026 \end{array}$            | 9.90 509<br>9.90 499                              | 9<br>10                                | 29<br>28        | $egin{array}{c ccc} 10 & \overline{2}.8 & \overline{2}.7 \\ 20 & 5.7 & 5.3 \\ \hline \end{array}$ |
| 33                                                  | 9.77 490                                                 | 17<br>17                                         | 9.87 000                                               | 26<br>27                                             | 10.13 000                                                          | 9.90 490                                          | $\begin{array}{c} 9 \\ 10 \end{array}$ | 27              | $egin{array}{c c} 30 & 8.5 & 8.0 \ 40 & 11.3 & 10.7 \ \end{array}$                                |
| $\frac{34}{35}$                                     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   | 17                                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 26                                                   | $\frac{10.12\ 973}{10.12\ 947}$                                    | 9.90480 $9.90471$                                 | 9                                      | $\frac{26}{25}$ | 50 14.2 13.3                                                                                      |
| 36                                                  | 9.77 541                                                 | 17                                               | 9.87 079                                               | 26                                                   | 10.12 921                                                          | $9.90\ 462$                                       | 9                                      | 24              |                                                                                                   |
| 37 38                                               | 9.77 558<br>9.77 575                                     | 17                                               | 9.87 106<br>9.87 132                                   | $\begin{array}{ c c }\hline 27 \\ 26 \\ \end{array}$ | 10.12 894<br>10.12 868                                             | 9.90452 $9.90443$                                 | 10                                     | 23<br>22        |                                                                                                   |
| 39                                                  | 9.77 592                                                 | 17                                               | 9.87 158                                               | 26<br>27                                             | 10.12 842                                                          | 9.90 434                                          | 9                                      | 21              | ·                                                                                                 |
| 40                                                  | 9.77 609                                                 | 17<br>17                                         | 9.87 185<br>9.87 211                                   | 26                                                   | 10.12 815<br>10.12 789                                             | 9.90 424<br>9.90 415                              | 9                                      | <b>20</b> 19    |                                                                                                   |
| 41 42                                               | 9.77 626<br>9.77 643                                     | 17                                               | 9.87 238                                               | 27                                                   | 10.12 762                                                          | 9.90 405                                          | 10                                     | 18              |                                                                                                   |
| 43                                                  | 9.77 660<br>9.77 677                                     | 17                                               | 9.87 264<br>9.87 290                                   | 26<br>26                                             | 10.12 736<br>10.12 710                                             | 9.90 396<br>9.90 386                              | 9<br>10                                | 17<br>16        |                                                                                                   |
| $\frac{44}{45}$                                     | 9.77 694                                                 | 17                                               | 9.87 317                                               | 27                                                   | 10.12 683                                                          | 9.90 377                                          | 9                                      | 15              | "   10  9                                                                                         |
| 46                                                  | 9.77 711                                                 | 17<br>17                                         | 9.87 343<br>9.87 369                                   | 26<br>26                                             | 10.12 657<br>10.12 631                                             | 9.90 368<br>9.90 358                              | 9                                      | 14<br>13        | 6 1.0 0.9                                                                                         |
| 47 48                                               | 9.77 728<br>9.77 744                                     | 16                                               | 9.87 396                                               | 27                                                   | 10.12 604                                                          | 9.90 349                                          | 9                                      | 12              | $7 \begin{vmatrix} 1.2 \end{vmatrix} 1.0 \\ 8 \begin{vmatrix} 1.3 \end{vmatrix} 1.2$              |
| 49                                                  | 9.77 761                                                 | 17                                               | 9.87 422                                               | 26<br>26                                             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$             | $9.90\ 339$ $9.90\ 330$                           | 9                                      | 11<br>10        | $9 1.5 1.4 \\ 10 1.7 1.5$                                                                         |
| 50<br>51                                            | 9.77 778<br>9.77 795                                     | 17                                               | 9.87 448<br>9.87 475                                   | 27                                                   | 10.12 525                                                          | 9.90 320                                          | 10                                     | 9               | $\begin{array}{c c} 20 & 3.3 & 3.0 \\ 30 & 5.0 & 4.5 \end{array}$                                 |
| 52                                                  | 9.77 812                                                 | 17<br>17                                         | 9.87 501<br>9.87 527                                   | 26<br>26                                             | 10.12 499<br>10.12 473                                             | 9.90 311 9.90 301                                 | 9<br>10                                | 8 7             | $\begin{array}{c} 40 \ 6.7 \ 6.0 \\ 50 \ 8.3 \ 7.5 \end{array}$                                   |
| 53 54                                               | 9.77 829<br>9.77 846                                     | 17                                               | 9.87 554                                               | 27                                                   | 10.12 446                                                          | 9.90 292                                          | 9<br>10                                | 6               | 0.010.011.0                                                                                       |
| 55                                                  | 9.77 862                                                 | 16<br>17                                         | 9.87 580                                               | 26<br>26                                             | 10.12 420<br>10.12 394                                             | 9.90 282<br>9.90 273                              | 9                                      | $\frac{5}{4}$   |                                                                                                   |
| 56 57                                               | 9.77 879<br>9.77 896                                     | 17                                               | 9.87 606<br>9.87 633                                   | 27                                                   | 10.12 367                                                          | 9.90 263                                          | 10                                     | 3               |                                                                                                   |
| 58                                                  | 9.77 913                                                 | 17                                               | 9.87 659<br>9.87 685                                   | 26<br>26                                             | $10.12\ 341$ $10.12\ 315$                                          | 9.90 254 9.90 244                                 | 9                                      | $\frac{2}{1}$   |                                                                                                   |
| <b>60</b>                                           | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   | 16                                               | 9.87 711                                               | 26                                                   | 10.12 289                                                          | $9.90\ 235$                                       | 9                                      | 0               |                                                                                                   |
|                                                     | L Cos                                                    | d                                                | L Cot                                                  | c d                                                  | L Tan                                                              | L Sin                                             | d                                      | ,               | Prop. Pts.                                                                                        |
|                                                     | 2 000                                                    |                                                  |                                                        | 1                                                    |                                                                    |                                                   |                                        |                 |                                                                                                   |

37°

| ,                                                 | L Sin                                                  | d                                                 | L Tan                                                  | c d                                         | L Cot                                                                               | L Cos                                                   | d                                        |                                           | Prop. Pts.                                                                  |
|---------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|
|                                                   | 9.77 946                                               |                                                   | 9.87 711                                               |                                             | 10.12 289                                                                           | 9.90 235                                                |                                          | 60                                        |                                                                             |
| 1                                                 | 9.77 963                                               | 17<br>17                                          | 9.87 738                                               | 27<br>26                                    | 10.12 262                                                                           | $9.90\ 225$                                             | 10                                       | 59<br>50                                  |                                                                             |
| $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$            | $9.77980 \\ 9.77997$                                   | 17                                                | 9.87 764<br>9.87 790                                   | 26                                          | 10.12 236<br>10.12 210                                                              | $9.90\ 216$ $9.90\ 206$                                 | 10                                       | 58<br>57                                  |                                                                             |
| 4                                                 | 9.78 013                                               | 16<br>17                                          | 9.87 817                                               | $\begin{bmatrix} 27 \\ 26 \end{bmatrix}$    | 10.12 183                                                                           | 9.90 197                                                | 9<br>10                                  | 56                                        |                                                                             |
| 5 6                                               | $9.78\ 030$ $9.78\ 047$                                | 17                                                | 9.87 843<br>9.87 869                                   | 26                                          | $\begin{array}{c} 10.12\ 157 \\ 10.12\ 131 \end{array}$                             | 9.90 187<br>9.90 178                                    | 9                                        | 55<br>54                                  |                                                                             |
| 7                                                 | 9.78 063                                               | 16                                                | 9.87 895                                               | 26                                          | 10.12 105                                                                           | 9.90 168                                                | 10                                       | 53                                        |                                                                             |
| 8 9                                               | 9.78 080<br>9.78 097                                   | $\begin{bmatrix} 17 \\ 17 \end{bmatrix}$          | 9.87 922<br>9.87 948                                   | $\begin{bmatrix} 27 \\ 26 \end{bmatrix}$    | $\begin{array}{c c} 10.12 \ 078 \\ 10.12 \ 052 \end{array}$                         | 9.90 159<br>9.90 149                                    | 9<br>10                                  | 52<br>51                                  |                                                                             |
| 10                                                | $\frac{9.78 \ 0.97}{9.78 \ 113}$                       | 16                                                | 9.87 974                                               | 26                                          | $\frac{10.12\ 002}{10.12\ 026}$                                                     | 9.90 139                                                | 10                                       | 50                                        |                                                                             |
| 11                                                | 9.78 130                                               | 17<br>17                                          | 9.88 000                                               | $\begin{bmatrix} 26 \\ 27 \end{bmatrix}$    | 10.12 000                                                                           | 9.90 130                                                | 9<br>10                                  | 49                                        |                                                                             |
| $\begin{array}{ c c }\hline 12\\13\\ \end{array}$ | 9.78 147<br>9.78 163                                   | 16                                                | 9.88 027<br>9.88 053                                   | 26                                          | 10.11 973<br>10.11 947                                                              | 9.90 120<br>9.90 111                                    | 9                                        | 48<br>47                                  |                                                                             |
| 14                                                | 9.78 180                                               | 17<br>17                                          | 9.88 079                                               | $\begin{bmatrix} 26 \\ 26 \end{bmatrix}$    | 10.11 921                                                                           | 9.90 101                                                | 10<br>10                                 | 46                                        | "   27   26   17                                                            |
| 15<br>16                                          | $9.78\ 197\ 9.78\ 213$                                 | 16                                                | 9.88 105<br>9.88 131                                   | 26                                          | 10.11 895<br>10.11 869                                                              | $9.90\ 091$ $9.90\ 082$                                 | 9'                                       | 45<br>44                                  | $egin{array}{c cccc} 6 & 2.7 & 2.6 & 1.7 \ 7 & 3.2 & 3.0 & 2.0 \end{array}$ |
| 17                                                | 9.78 230                                               | 17                                                | 9.88 158                                               | 27                                          | 10.11 842                                                                           | 9.90 072                                                | 10                                       | 43                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                       |
| 18<br>19                                          | $9.78\ 246$ $9.78\ 263$                                | $\begin{array}{c c} 16 \\ 17 \end{array}$         | 9.88 184<br>9.88 210                                   | $egin{array}{c c} 26 \\ 26 \\ \end{array}$  | 10.11 816<br>10.11 790                                                              | $9.90\ 063$ $9.90\ 053$                                 | $\begin{vmatrix} 9\\10 \end{vmatrix}$    | $\begin{vmatrix} 42 \\ 41 \end{vmatrix}$  | 10 4.5 4.3 2.8                                                              |
| 20                                                | $\frac{9.78\ 203}{9.78\ 280}$                          | 17                                                | 9.88 236                                               | 26                                          | 10.11 764                                                                           | 9.90 043                                                | 10                                       | 40                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                       |
| 21                                                | 9.78 296                                               | $\begin{array}{ c c }\hline 16\\17\\ \end{array}$ | 9.88262                                                | $\begin{bmatrix} 26 \\ 27 \end{bmatrix}$    | 10.11 738<br>10.11 711                                                              | 9.90 034                                                | $\begin{vmatrix} 9 \\ 10 \end{vmatrix}$  | 39<br>38                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                       |
| 22 23                                             | 9.78 313<br>9.78 329                                   | 16                                                | 9.88 289<br>9.88 315                                   | 26                                          | 10.11 685                                                                           | 9.90 024<br>9.90 014                                    | 10                                       | 37                                        |                                                                             |
| 24                                                | 9.78 346                                               | $egin{array}{c c} 17 \\ 16 \\ \end{array}$        | 9.88 341                                               | $egin{array}{c c} 26 \ 26 \end{array}$      | 10.11 659                                                                           | 9.90 005                                                | $\begin{vmatrix} 9\\10 \end{vmatrix}$    | 36                                        |                                                                             |
| $\begin{vmatrix} 25\\26 \end{vmatrix}$            | 9.78 362<br>9.78 379                                   | 17                                                | 9.88 367<br>9.88 393                                   | 26                                          | 10.11 633<br>10.11 607                                                              | 9.89 995<br>9.89 985                                    | 10                                       | 35<br>34                                  |                                                                             |
| 27                                                | 9.78 395                                               | 16                                                | 9.88 420                                               | $\begin{array}{c c} 27 \\ 26 \end{array}$   | 10.11 580                                                                           | 9.89 976                                                | $\begin{vmatrix} 9\\10 \end{vmatrix}$    | 33                                        |                                                                             |
| 28 29                                             | 9.78 412<br>9.78 428                                   | 17<br>16                                          | 9.88446 $9.88472$                                      | 26                                          | 10.11554 $10.11528$                                                                 | 9.89 966<br>9.89 956                                    | 10                                       | $\begin{array}{c} 32 \\ 31 \end{array}$   |                                                                             |
| 30                                                | 9.78 445                                               | 17                                                | 9.88 498                                               | 26                                          | 10.11 502                                                                           | 9.89 947                                                | 9                                        | 30                                        |                                                                             |
| 31 32                                             | 9.78 461<br>9.78 478                                   | 16<br>17                                          | 9.88 524<br>9.88 550                                   | 26<br>26                                    | 10.11 476<br>10.11 450                                                              | 9.89 937<br>9.89 927                                    | 10                                       | 29<br>28                                  |                                                                             |
| 33                                                | 9.78 494                                               | 16                                                | 9.88 577                                               | 27                                          | 10.11 423                                                                           | 9.89 918                                                | 9                                        | 27                                        |                                                                             |
| 34                                                | 9.78 510                                               | 16<br>17                                          | 9.88 603                                               | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$    | 10.11 397                                                                           | 9.89 908                                                | $\begin{vmatrix} 10 \\ 10 \end{vmatrix}$ | 26                                        |                                                                             |
| 35<br>36                                          | 9.78 527<br>9.78 543                                   | 16                                                | 9.88 629<br>9.88 655                                   | 26                                          | 10.11 371<br>10.11 345                                                              | 9.89 898<br>9.89 888                                    | 10                                       | $\begin{array}{c} 25 \\ 24 \end{array}$   |                                                                             |
| 37                                                | 9.78 560                                               | 17                                                | 9.88 681                                               | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$    | 10.11 319                                                                           | 9.89 879                                                | 9                                        | 23                                        |                                                                             |
| 38 39                                             | 9.78 576<br>9.78 592                                   | 16                                                | 9.88 707<br>9.88 733                                   | 26                                          | 10.11 293<br>10.11 267                                                              | 9.89 869<br>9.89 859                                    | 10                                       | $\begin{array}{c c} 22 \\ 21 \end{array}$ | "   16   10   9                                                             |
| 40                                                | 9.78 609                                               | 17                                                | 9.88 759                                               | $\begin{vmatrix} 26 \\ 27 \end{vmatrix}$    | 10.11 241                                                                           | 9.89 849                                                | 10 9                                     | 20                                        | 6 1.6 1.0 0.9                                                               |
| 41 42                                             | 9.78 625<br>9.78 642                                   | 16<br>17                                          | 9.88 786<br>9.88 812                                   | 26                                          | 10.11 214 10.11 188                                                                 | 9.89 840<br>9.89 830                                    | 10                                       | 19<br>18                                  | $7 \mid 1.9 \mid 1.2 \mid 1.0 \\ 8 \mid 2 \mid 1 \mid 1.3 \mid 1 \mid 2$    |
| 43                                                | 9.78 658                                               | 16<br>16                                          | 9.88 838                                               | 26<br>26                                    | 10.11 162                                                                           | 9.89 820                                                | 10                                       | 17                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                       |
| $\frac{44}{45}$                                   | 9.78674                                                | 17                                                | $\frac{9.88864}{9.88890}$                              | $\frac{26}{26}$                             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                              | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 9                                        | $\frac{16}{15}$                           | 20  5.3 3.3 3.0                                                             |
| 46                                                | 9.78 691<br>9.78 707                                   | 16                                                | 9.88 916                                               | 26                                          | 10.11 084                                                                           | 9.89 791                                                | 10                                       | 14                                        | 40110.710.710.0                                                             |
| 47                                                | 9.78 723                                               | 16                                                | 9.88 942<br>9.88 968                                   | $\begin{array}{ c c } 26 \\ 26 \end{array}$ | $\begin{array}{ c c c c c c }\hline 10.11\ 058 \\ 10.11\ 032 \\ \hline \end{array}$ | 9.89 781<br>9.89 771                                    | 10                                       | 13<br>12                                  | 50 13.3 8.3 7.5                                                             |
| 48 49                                             | 9.78 739<br>9.78 756                                   | 17                                                | 9.88 994                                               | 26                                          | 10.11 032                                                                           | 9.89 761                                                | 10                                       | 11                                        |                                                                             |
| 50                                                | 9.78 772                                               | 16<br>16                                          | 9.89 020                                               | 26<br>26                                    | 10.10 980                                                                           | 9.89 752                                                | 9 10                                     | 10                                        |                                                                             |
| 51 52                                             | 9.78 788 9.78 805                                      | 17                                                | 9.89 046<br>9.89 073                                   | 27                                          | 10.10 954<br>10.10 927                                                              | 9.89 742<br>9.89 732                                    | 10                                       | 9 8                                       |                                                                             |
| 53                                                | 9.78 821                                               | 16<br>16                                          | 9.89 099                                               | $\begin{array}{ c c } 26 \\ 26 \end{array}$ | 10.10 901                                                                           | 9.89 722                                                | 10                                       | 7                                         |                                                                             |
| $\frac{54}{55}$                                   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 16                                                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 26                                          | 10.10 875                                                                           | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$  | 10                                       | $\frac{6}{5}$                             |                                                                             |
| 56                                                | 9.78 869                                               | 16                                                | 9.89 177                                               | 26                                          | 10.10 823                                                                           | 9.89 693                                                | 9                                        | 4                                         |                                                                             |
| 57 58                                             | 9.78 886 9.78 902                                      | 17<br>  16                                        | 9.89 203<br>9.89 229                                   | 26                                          | 10.10 797                                                                           | 9.89 683<br>9.89 673                                    | 10                                       | $\begin{vmatrix} 3 \\ 2 \end{vmatrix}$    |                                                                             |
| 59                                                | 9.78 918                                               | 16                                                | 9.89 255                                               | 26<br>26.                                   | 10.10 745                                                                           | 9.89 663                                                | 10                                       | 1_                                        |                                                                             |
| 60                                                | 9.78 934                                               | - 10                                              | 9.89 281                                               |                                             | 10.10 719                                                                           | 9.89 653                                                |                                          | 0                                         |                                                                             |
|                                                   | L Cos                                                  | d                                                 | L Cot                                                  | c d                                         | L Tan                                                                               | L Sin                                                   | d                                        | 1 '                                       | Prop. Pts.                                                                  |

38°

| ′             | L Sin                                                    | d                                         | L Tan                   | c d                                                         | L Cot                                                       | L Cos                    | d                                        |                 | Prop. Pts.                                                                                     |
|---------------|----------------------------------------------------------|-------------------------------------------|-------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------|------------------------------------------|-----------------|------------------------------------------------------------------------------------------------|
| 0             | 9.78 934<br>9.78 950                                     | 16                                        | 9.89 281<br>9.89 307    | 26                                                          | 10.10 719                                                   | 9.89 653                 | 10                                       | 60              |                                                                                                |
| $\frac{1}{2}$ | 9.78950                                                  | 17                                        | 9.89 333                | 26                                                          | 10.10 693<br>10.10 667                                      | 9.89 643<br>9.89 633     | 10                                       | 59<br>58        |                                                                                                |
| 3             | 9.78 983                                                 | 16                                        | $9.89\ 359$             | 26                                                          | 10.10 641                                                   | 9.89 624                 | 9                                        | 57              |                                                                                                |
| 4             | 9.78 999                                                 | 16<br>16                                  | 9.89 385                | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$                    | 10.10 615                                                   | 9.89 614                 | 10<br>10                                 | 56              |                                                                                                |
| 5             | 9.79 015                                                 | 16                                        | 9.89 411                | 26                                                          | 10.10 589                                                   | 9.89 604                 | 10                                       | 55              | ''   26   25                                                                                   |
| 6 7           | $\begin{vmatrix} 9.79 & 031 \\ 9.79 & 047 \end{vmatrix}$ | 16                                        | $9.89\ 437$ $9.89\ 463$ | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$                    | 10.10 563<br>10.10 537                                      | 9.89 594<br>9.89 584     | 10                                       | 54              | 6 2.6 2.5                                                                                      |
| 8             | 9.79 063                                                 | 16                                        | 9.89 489                | 26                                                          | 10.10 537                                                   | 9.89 574                 | 10                                       | 53<br>52        | 7 3.0 2.9                                                                                      |
| 9             | 9.79 079                                                 | $\begin{array}{c c} 16 \\ 16 \end{array}$ | 9.89 515                | $\begin{array}{c c} 26 \\ 26 \end{array}$                   | 10.10 485                                                   | 9.89 564                 | 10                                       | 51              | 9 3.9 3.8                                                                                      |
| 10            | 9.79 095                                                 | 16                                        | 9.89 541                | 26                                                          | 10.10 459                                                   | 9.89 554                 | 10                                       | 50              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                          |
| 11 12         | 9.79 111<br>9.79 128                                     | 17                                        | 9.89 567<br>9.89 593    | 26                                                          | 10.10 433<br>10.10 407                                      | 9.89 544<br>9.89 534     | 10<br>10                                 | 49              | 30 13.0 12.5                                                                                   |
| 13            | 9.79 144                                                 | 16                                        | 9.89 619                | 26                                                          | 10.10 381                                                   | 9.89 524                 | 10                                       | 48<br>47        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                          |
| 14            | 9.79 160                                                 | 16                                        | 9.89 645                | 26                                                          | 10.10 355                                                   | 9.89 514                 | 10                                       | 46              | 33,221,12013                                                                                   |
| 15            | 9.79 176                                                 | 16                                        | 9.89 671                | 26                                                          | 10.10 329                                                   | 9.89 504                 | 10                                       | 45              |                                                                                                |
| 16<br>17      | 9.79 192<br>9.79 208                                     | 16<br>16                                  | 9.89697 $9.89723$       | 26<br>26                                                    | 10.10 303                                                   | 9.89 495                 | 9                                        | 44              |                                                                                                |
| 18            | $9.79\ 208$ $9.79\ 224$                                  | 16                                        | 9.89 723                | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$                    | $\begin{array}{c} 10.10\ 277 \\ 10.10\ 251 \end{array}$     | 9.89485 $9.89475$        | 10                                       | 43<br>42        |                                                                                                |
| 19            | 9.79 240                                                 | 16                                        | 9.89 775                | 26                                                          | 10.10 225                                                   | 9.89 465                 | 10                                       | 41              | ″   17   16                                                                                    |
| 20            | 9.79 256                                                 | 16                                        | 9.89 801                | 26                                                          | 10.10 199                                                   | 9.89 455                 | 10                                       | 40              |                                                                                                |
| 21            | 9.79 272                                                 | 16<br>16                                  | 9.89 827                | $\begin{array}{ c c } 26 \\ 26 \end{array}$                 | 10.10 173                                                   | 9.89 445                 | 10<br>10                                 | 39              | $\begin{array}{c cccc} 6 & 1.7 & 1.6 \\ 7 & 2.0 & 1.9 \end{array}$                             |
| 22 23         | 9.79 288<br>9.79 304                                     | 16                                        | 9.89 853<br>9.89 879    | 26                                                          | $\begin{array}{c} 10.10\ 147 \\ 10.10\ 121 \end{array}$     | 9.89435 $9.89425$        | 10                                       | 38<br>37        | $8 \mid 2.3 \mid 2.1 \mid$                                                                     |
| 24            | 9.79 319                                                 | 15                                        | 9.89 905                | 26                                                          | 10.10 095                                                   | 9.89 415                 | 10                                       | 36              | $egin{array}{c c} 9 & \overline{2.6} & \overline{2.4} \\ 10 & 2.8 & 2.7 \\ \hline \end{array}$ |
| 25            | 9.79 335                                                 | 16                                        | 9.89 931                | 26                                                          | 10.10 069                                                   | 9.89 405                 | 10                                       | 35              | $egin{array}{c c} 20 & 5.7 & 5.3 \\ 30 & 8.5 & 8.0 \\ \end{array}$                             |
| 26            | 9.79 351                                                 | 16<br>16                                  | 9.89 957                | $\begin{array}{ c c c }\hline 26 \\ 26 \\ \end{array}$      | 10.10 043                                                   | 9.89 395                 | 10<br>10                                 | 34              | 40 11.3 10.7                                                                                   |
| 27 28         | 9.79 367<br>9.79 383                                     | 16                                        | 9.89 983 9.90 009       | 26                                                          | 10.10 017<br>10.09 991                                      | 9.89 385<br>9.89 375     | 10                                       | 33 32           | 50 14.2 13.3                                                                                   |
| 29            | 9.79 399                                                 | 16                                        | 9.90 035                | 26                                                          | 10.09 965                                                   | 9.89 364                 | 11                                       | $\frac{32}{31}$ |                                                                                                |
| 30            | 9.79 415                                                 | 16                                        | 9.90 061                | 26                                                          | 10.09 939                                                   | 9.89 354                 | 10                                       | 30              |                                                                                                |
| 31            | 9.79 431                                                 | 16<br>16                                  | 9.90 086                | $\begin{array}{ c c }\hline 25 \\ 26 \\ \hline \end{array}$ | 10.09 914                                                   | 9.89 344                 | 10<br>10                                 | 29              |                                                                                                |
| 32 33         | 9.79 447<br>9.79 463                                     | 16                                        | 9.90 112<br>9.90 138    | 26                                                          | 10.09 888<br>10.09 862                                      | $9.89\ 334 \\ 9.89\ 324$ | 10                                       | 28<br>27        |                                                                                                |
| 34            | 9.79 478                                                 | 15                                        | 9.90 164                | 26                                                          | 10.09 836                                                   | 9.89 314                 | 10                                       | $\frac{27}{26}$ | "   15   11                                                                                    |
| 35            | 9.79 494                                                 | 16                                        | 9.90 190                | 26                                                          | 10.09 810                                                   | 9.89 304                 | 10                                       | $\frac{}{25}$   | 6   1.5   1.1                                                                                  |
| 36            | 9.79 510                                                 | 16<br>16                                  | 9.90 216                | 26<br>26                                                    | 10.09 784                                                   | 9.89 294                 | $\begin{vmatrix} 10 \\ 10 \end{vmatrix}$ | 24              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                          |
| 37 38         | 9.79526 $9.79542$                                        | 16                                        | 9.90 242<br>9.90 268    | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$                    | $10.09758 \\ 10.09732$                                      | $9.89\ 284$ $9.89\ 274$  | 10                                       | 23<br>22        | 9 2.2 1.6                                                                                      |
| 39            | 9.79 558                                                 | 16                                        | 9.90 294                | 26                                                          | 10.09 706                                                   | 9.89 264                 | 10                                       | $\frac{22}{21}$ | 20   5.0   3.7                                                                                 |
| 40            | 9.79 573                                                 | 15                                        | 9.90 320                | 26                                                          | 10.09 680                                                   | 9.89 254                 | 10                                       | 20              | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                             |
| 41            | 9.79 589                                                 | 16<br>16                                  | 9.90 346                | $\begin{array}{c c} 26 \\ 25 \end{array}$                   | 10.09 654                                                   | 9.89 244                 | 10<br>11                                 | 19              | 50 12.5 9.2                                                                                    |
| 42 43         | 9.79 605<br>9.79 621                                     | 16                                        | 9.90 371 9.90 397       | 26                                                          | $10.09629 \\ 10.09603$                                      | $9.89\ 233$ $9.89\ 223$  | 10                                       | 18<br>17        |                                                                                                |
| 44            | 9.79 636                                                 | 15                                        | 9.90 423                | 26                                                          | 10.09 503                                                   | 9.89 213                 | 10                                       | 16              |                                                                                                |
| 45            | 9.79 652                                                 | 16                                        | 9.90 449                | 26                                                          | 10.09 551                                                   | 9.89 203                 | 10                                       | 15              |                                                                                                |
| 46            | 9.79 668                                                 | 16<br>16                                  | 9.90 475                | 26<br>26                                                    | 10.09 525                                                   | 9.89 193                 | 10<br>10                                 | 14              |                                                                                                |
| 47 48         | 9.79 684 9.79 699                                        | 15                                        | 9.90 501<br>9.90 527    | $\frac{26}{26}$                                             | $10.09499 \ 10.09473$                                       | 9.89 183<br>9.89 173     | 10                                       | 13<br>12        | "   10  9                                                                                      |
| 49            | 9.79 715                                                 | 16                                        | 9.90 553                | 26                                                          | 10.09 447                                                   | 9.89 162                 | 11                                       | 11              | 6 1.0 0.9                                                                                      |
| 50            | 9.79 731                                                 | 16                                        | 9.90 578                | 25                                                          | 10.09 422                                                   | 9.89 152                 | 10                                       | 10              | 7 1.2 1.0                                                                                      |
| 51            | 9.79 746                                                 | 15                                        | 9.90 604                | 26<br>26                                                    | 10.09 396                                                   | 9.89 142                 | 10<br>10                                 | 9               | 7   1.2   1.0<br>8   1.3   1.2<br>9   1.5   1.4<br>10   1.7   1.5                              |
| 52 53         | 9.79 762<br>9.79 778                                     | 16<br>16                                  | 9.90 630<br>9.90 656    | $\frac{26}{26}$                                             | 10.09 370<br>10.09 344                                      | 9.89 132<br>9.89 122     | 10                                       | 8               | $\begin{array}{c c} 10 & 1.7 & 1.5 \\ 20 & 3 & 3 & 3 \end{array}$                              |
| 54            | 9.79 778                                                 | 15                                        | 9.90 682                | 26                                                          | 10.09 344                                                   | 9.89 112                 | 10                                       | 6               | $\begin{array}{c c} 20 & 3.3 & 3.0 \\ 30 & 5.0 & 4.5 \end{array}$                              |
| 55            | 9.79 809                                                 | 16                                        | 9.90 708                | 26                                                          | 10.09 292                                                   | 9.89 101                 | 11                                       | 5               | $egin{array}{c c} 40 & 6.7 & 6.0 \ 50 & 8.3 & 7.5 \end{array}$                                 |
| 56            | 9.79 825                                                 | 16                                        | 9.90 734                | 26<br>25                                                    | 10.09 266                                                   | 9.89 091                 | 10<br>10                                 | 4               | 33,0.0,1.10                                                                                    |
| 57 58         | 9.79 840<br>9.79 856                                     | 15<br>16                                  | 9.90 759<br>9.90 785    | $\frac{25}{26}$                                             | $\begin{array}{c c} 10.09 \ 241 \\ 10.09 \ 215 \end{array}$ | 9.89 081<br>9.89 071     | 10                                       | $\frac{3}{2}$   |                                                                                                |
| 59            | 9.79 872                                                 | 16                                        | 9.90 783                | 26                                                          | 10.09 189                                                   | 9.89 060                 | 11                                       | 1               |                                                                                                |
| 60            | 9.79 887                                                 | 15                                        | 9.90 837                | 26                                                          | 10.09 163                                                   | 9.89 050                 | 10                                       | 0               |                                                                                                |
|               | L Cos                                                    | d                                         | L Cot                   | c d                                                         | L Tan                                                       | L Sin                    | d                                        | ′               | Prop. Pts.                                                                                     |

39°

| ,                                        | L Sin                                              | d                                         | L Tan                         | c d                                                           | L Cot                                                       | L Cos                                                 | d                                         |                                           | Prop. Pts.                                                         |
|------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|
|                                          |                                                    |                                           | 9.90 837                      |                                                               | 10.09 163                                                   | 9.89 050                                              |                                           | 60                                        |                                                                    |
| 0                                        | $\begin{bmatrix} 9.79887 \\ 9.79903 \end{bmatrix}$ | 16                                        | 9.90 863                      | 26                                                            | 10.09 103                                                   | 9.89 040                                              | 10                                        | 59                                        |                                                                    |
| 2                                        | 9.79 918                                           | 15                                        | 9.90 889                      | 26                                                            | 10.09 111                                                   | 9.89 030                                              | 10<br>10                                  | 58                                        |                                                                    |
| 3                                        | 9.79 934                                           | $\begin{array}{c c} 16 \\ 16 \end{array}$ | 9.90914 $9.90940$             | $\begin{bmatrix} 25 \\ 26 \end{bmatrix}$                      | $\begin{array}{c} 10.09\ 086 \\ 10.09\ 060 \end{array}$     | 9.89 020<br>9.89 009                                  | 11                                        | 57<br>56                                  |                                                                    |
| $\frac{4}{5}$                            | $\frac{9.79\ 950}{9.79\ 965}$                      | 15                                        | 9.90 966                      | 26                                                            | 10.09 034                                                   | 9.88 999                                              | 10                                        | 55                                        |                                                                    |
| $\frac{3}{6}$                            | 9.79 981                                           | 16                                        | 9.90 992                      | 26                                                            | 10.09 008                                                   | 9.88 989                                              | 10                                        | 54                                        |                                                                    |
| 7                                        | 9.79996                                            | 15                                        | $9.91\ 018$                   | $\begin{bmatrix} 26 \\ 25 \end{bmatrix}$                      | 10.08 982                                                   | 9.88 978                                              | $\begin{array}{c c} 11 \\ 10 \end{array}$ | 53                                        | ''   26   25                                                       |
| $\begin{bmatrix} 8 \\ 9 \end{bmatrix}$   | $oxed{9.80\ 012} \ 9.80\ 027$                      | $\begin{array}{c c} 16 \\ 15 \end{array}$ | $9.91\ 043 \ 9.91\ 069$       | 26                                                            | 10.08 957<br>10.08 931                                      | 9.88 968<br>9.88 958                                  | 10                                        | $\begin{array}{c c} 52 \\ 51 \end{array}$ | 6 2.6 2.5                                                          |
| 10                                       | 9.80 027                                           | 16                                        | $\frac{9.91\ 003}{9.91\ 095}$ | 26                                                            | 10.08 905                                                   | 9.88 948                                              | 10                                        | 50                                        | 7 3.0 2.9                                                          |
| 11                                       | 9.80 058                                           | 15                                        | 9.91 121                      | 26                                                            | 10.08 879                                                   | 9.88937                                               | 11                                        | 49                                        | 9 3.9 3.8                                                          |
| 12                                       | 9.80 074                                           | $\begin{array}{c} 16 \\ 15 \end{array}$   | 9.91 147                      | $\begin{bmatrix} 26 \\ 25 \end{bmatrix}$                      | 10.08 853                                                   | 9.88 927                                              | · 10                                      | 48<br>47                                  | $egin{array}{c c} 10 & 4.3 & 4.2 \ 20 & 8.7 & 8.3 \ \end{array}$   |
| 13<br>14                                 | $oxed{9.80\ 089} \ 9.80\ 105$                      | 16                                        | $9.91\ 172 \ 9.91\ 198$       | $\frac{26}{26}$                                               | 10.08 828<br>10.08 802                                      | 9.88917 $9.88906$                                     | 11                                        | 46                                        | 30 13.0 12.5                                                       |
| 15                                       | $\frac{9.80\ 100}{9.80\ 120}$                      | 15                                        | $\frac{9.91\ 224}{}$          | 26                                                            | 10.08 776                                                   | 9.88 896                                              | 10                                        | 45                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$              |
| 16                                       | 9.80 136                                           | 16                                        | $9.91\ 250$                   | 26                                                            | 10.08 750                                                   | 9.88 886                                              | 10<br>11                                  | 44                                        | 7. 7                                                               |
| 17                                       | 9.80 151                                           | $\begin{array}{c c} 15 \\ 15 \end{array}$ | 9.91 276                      | $egin{array}{c c} 26 \ 25 \end{array}$                        | 10.08 724                                                   | $9.88875 \\ 9.88865$                                  | 10                                        | 43<br>42                                  |                                                                    |
| 18<br>19                                 | $oxed{9.80\ 166} \ 9.80\ 182$                      | 16                                        | $oxed{9.91\ 301} \ 9.91\ 327$ | 26                                                            | 10.08 699<br>10.08 673                                      | 9.88 855                                              | 10                                        | 41                                        |                                                                    |
| 20                                       | $\frac{9.80 \ 192}{9.80 \ 197}$                    | 15                                        | 9.91 353                      | 26                                                            | 10.08 647                                                   | 9.88 844                                              | 11                                        | 40                                        |                                                                    |
| 21                                       | 9.80 213                                           | 16<br>15                                  | $9.91\ 379$                   | $\begin{bmatrix} 26 \\ 25 \end{bmatrix}$                      | 10.08 621                                                   | 9.88 834                                              | 10<br>10                                  | 39                                        |                                                                    |
| 22<br>23                                 | $9.80\ 228 \ 9.80\ 244$                            | 16                                        | $9.91\ 404$ $9.91\ 430$       | $\begin{vmatrix} 25 \\ 26 \end{vmatrix}$                      | 10.08 596<br>10.08 570                                      | $oxed{9.88824} \ 9.88813$                             | 11                                        | 38<br>37                                  |                                                                    |
| $\begin{vmatrix} 25 \\ 24 \end{vmatrix}$ | 9.80 259                                           | 15                                        | 9.91 456                      | 26                                                            | 10.08 544                                                   | 9.88 803                                              | 10                                        | 36                                        |                                                                    |
| $\overline{25}$                          | 9.80 274                                           | 15                                        | 9.91 482                      | 26                                                            | 10.08 518                                                   | 9.88 793                                              | 10<br>11                                  | 35                                        |                                                                    |
| 26                                       | 9.80 290                                           | 16<br>15                                  | 9.91 507<br>9.91 533          | $\begin{bmatrix} 25 \\ 26 \end{bmatrix}$                      | 10.08 493<br>10.08 467                                      | $ \begin{array}{c c} 9.88782 \\ 9.88772 \end{array} $ | 10                                        | 34<br>33                                  | "   16   15                                                        |
| 27<br>28                                 | $9.80\ 305 \ 9.80\ 320$                            | 15                                        | 9.91 559                      | 26                                                            | 10.08 441                                                   | 9.88 761                                              | 11                                        | $\frac{33}{32}$                           | $\begin{array}{c cccc} 6 & 1.6 & 1.5 \\ 7 & 1.9 & 1.8 \end{array}$ |
| $\begin{bmatrix} 29 \\ 29 \end{bmatrix}$ | 9.80 336                                           | 16                                        | 9.91 585                      | $egin{array}{c} 26 \ 25 \end{array}$                          | 10.08 415                                                   | 9.88 751                                              | 10<br>10                                  | 31                                        | 8 2.1 2.0                                                          |
| 30                                       | 9.80 351                                           | 15<br>15                                  | 9.91 610                      | 26                                                            | 10.08 390                                                   | 9.88 741                                              | 11                                        | 30                                        | $egin{array}{c c} 9 & 2.4 & 2.2 \\ 10 & 2.7 & 2.5 \end{array}$     |
| $\begin{vmatrix} 31 \\ 32 \end{vmatrix}$ | 9.80 366<br>9.80 382                               | 16                                        | $oxed{9.91636} \ 9.91662$     | 26                                                            | 10.08 364<br>10.08 338                                      | $egin{array}{c} 9.88730 \ 9.88720 \ \end{array}$      | 10                                        | 29<br>28                                  | 20 5.3 5.0                                                         |
| 33                                       | 9.80 397                                           | 15                                        | 9.91 688                      | 26                                                            | 10.08 312                                                   | 9.88 709                                              | 11                                        | 27                                        | $\begin{bmatrix} 30 & 8.0 & 7.5 \\ 40 & 10.7 & 10.0 \end{bmatrix}$ |
| 34                                       | 9.80 412                                           | 15<br>16                                  | 9.91 713                      | $egin{array}{c} 25 \ 26 \ \end{array}$                        | 10.08 287                                                   | 9.88 699                                              | 10<br>11                                  | 26                                        | 50 13.3 12.5                                                       |
| 35                                       | 9.80 428<br>9.80 443                               | 15                                        | 9.91739 $9.91765$             | 26                                                            | $\begin{array}{c c} 10.08 \ 261 \\ 10.08 \ 235 \end{array}$ | 9.88688 $9.88678$                                     | 10                                        | $\begin{array}{c c} 25 \\ 24 \end{array}$ |                                                                    |
| 36                                       | 9.80 443                                           | 15                                        | 9.91 791                      | 26                                                            | 10.08 209                                                   | 9.88 668                                              | 10                                        | 23                                        |                                                                    |
| 38                                       | 9.80 473                                           | 15<br>16                                  | 9.91 816                      | $\begin{bmatrix} 25 \\ 26 \end{bmatrix}$                      | 10.08 184                                                   | 9.88 657                                              | 11<br>10                                  | 22                                        |                                                                    |
| 39                                       | 9.80 489                                           | 15                                        | 9.91 842                      | 26                                                            | 10.08 158                                                   | $\frac{9.88\ 647}{9.88\ 636}$                         | 11                                        | $\frac{21}{20}$                           |                                                                    |
| <b>40</b> 41                             | 9.80 504<br>9.80 519                               | 15                                        | 9.91 868<br>9.91 893          | 25                                                            | 10.08 132<br>10.08 107                                      | 9.88 626                                              | 10                                        | 19                                        |                                                                    |
| 42                                       | 9.80 534                                           | 15                                        | 9.91 919                      | 26<br>26                                                      | 10.08 081                                                   | 9.88 615                                              | 11<br>10                                  | 18                                        |                                                                    |
| 43                                       | 9.80 550<br>9.80 565                               | 16<br>15                                  | 9.91945 $9.91971$             | $\begin{vmatrix} 26 \\ 26 \end{vmatrix}$                      | 10.08 055<br>10.08 029                                      | $9.88\ 605 \ 9.88\ 594$                               | 11                                        | 17<br>16                                  |                                                                    |
| $\frac{44}{45}$                          | 9.80 580                                           | 15                                        | $\frac{9.91971}{9.91996}$     | 25                                                            | 10.08 023                                                   | 9.88 584                                              | 10                                        | $\frac{10}{15}$                           | "   11   10                                                        |
| 46                                       | 9.80 595                                           | 15                                        | 9.92 022                      | 26                                                            | 10.07 978                                                   | 9.88 573                                              | 11                                        | 14                                        |                                                                    |
| 47                                       | 9.80 610                                           | 15<br>15                                  | $9.92\ 048$ $9.92\ 073$       | $\begin{array}{ c c c }\hline 26 \\ 25 \\ \hline \end{array}$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$      | 9.88563 $9.88552$                                     | $egin{array}{c} 10 \\ 11 \end{array}$     | 13<br>12                                  | $7 \begin{vmatrix} 1.1 \\ 1.3 \end{vmatrix} 1.2$                   |
| 48 49                                    | 9.80 625 9.80 641                                  | 16                                        | 9.92 073                      | 26                                                            | 10.07 927                                                   | 9.88 542                                              | 10                                        | 11                                        | $ \begin{array}{c c} 8 1.5 1.3 \\ 9 1.6 1.5 \end{array} $          |
| 50                                       | 9.80 656                                           | 15                                        | 9.92 125                      | 26                                                            | 10.07 875                                                   | 9.88 531                                              | 11                                        | 10                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$              |
| 51                                       | 9.80 671                                           | 15<br>15                                  | 9.92 150                      | $\begin{array}{ c c }\hline 25 \\ 26 \\ \end{array}$          | 10.07 850                                                   | 9.88 521                                              | $\begin{array}{c c} 10 \\ 11 \end{array}$ | 9                                         | $\begin{array}{c c} 20 & 3.7 & 3.3 \\ 30 & 5.5 & 5.0 \end{array}$  |
| 52<br>53                                 | 9.80 686 9.80 701                                  | 15                                        | 9.92 176<br>9.92 202          | 26                                                            | 10.07 824 10.07 798                                         | 9.88 510<br>9.88 499                                  | 11                                        | 8 7                                       | $egin{array}{c c} 40 & 7.3 & 6.7 \ 50 & 9.2 & 8.3 \end{array}$     |
| 54                                       | 9.80 716                                           | 15                                        | 9.92 227                      | 25                                                            | 10.07 773                                                   | 9.88 489                                              | 10                                        | 6                                         | 55[0.2]5.6                                                         |
| 55                                       | 9.80 731                                           | 15                                        | 9.92 253                      | 26                                                            | 10.07 747                                                   | 9.88 478                                              | 11<br>10                                  | 5                                         |                                                                    |
| 56<br>57                                 | 9.80 746<br>9.80 762                               | 15<br>16                                  | 9.92 279 9.92 304             | 26<br>  25                                                    | 10.07 721 10.07 696                                         | 9.88 468<br>9.88 457                                  | 11                                        | $\begin{vmatrix} 4\\ 3 \end{vmatrix}$     |                                                                    |
| 58                                       | 9.80 762                                           | 15                                        | 9.92 304                      | 26                                                            | 10.07 670                                                   | 9.88 447                                              | 10                                        | 2                                         |                                                                    |
| 59                                       | 9.80 792                                           | 15<br>15                                  | 9.92 356                      | 26<br>25                                                      | 10.07 644                                                   | 9.88 436                                              | 11<br>11                                  | 1                                         |                                                                    |
| 60                                       | 9.80 807                                           |                                           | 9.92 381                      |                                                               | 10.07 619                                                   | 9.88 425                                              |                                           | 0                                         |                                                                    |
|                                          | L Cos                                              | d                                         | L Cot                         | c d                                                           | L Tan                                                       | L Sin                                                 | d                                         | ′                                         | Prop. Pts.                                                         |

40°

| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ′                    | L Sin                                        | d                          | L Tan                                        | c d                                                             | L Cot,                                           | L Cos                                                    | d                          |                      | Prop. Pts.                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|----------------------------|----------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|----------------------------|----------------------|----------------------------------------------------------------------------------------|
| 6         9.80 887         15         9.92 530         25         10.07 495         9.88 362         10         53           7         9.80 912         15         9.92 537         26         10.07 495         9.88 362         11         53           8         9.80 927         15         9.92 587         26         10.07 413         9.88 340         11         53           10         9.80 942         15         9.92 683         26         10.07 381         9.88 340         10         52           11         9.80 972         15         9.92 683         26         10.07 382         9.88 381         11         50         8         2.5         3.3           12         9.80 972         15         9.92 689         26         10.07 381         9.88 387         11         40         11         50         8         2.5         3.3           13         9.81 002         15         9.92 740         25         10.07 234         9.88 296         10         44         9.82 261           14         9.81 007         15         9.92 740         26         10.07 234         9.88 255         11         47         20         2.81         14         43<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>3          | 9.80 822<br>9.80 837<br>9.80 852             | 15<br>15<br>15             | $9.92\ 407$ $9.92\ 433$ $9.92\ 458$          | $   \begin{array}{c}     26 \\     25 \\     26   \end{array} $ | 10.07 593<br>10.07 567<br>10.07 542              | 9.88 415<br>9.88 404<br>9.88 394                         | 11<br>10<br>11             | 59<br>58<br>57       |                                                                                        |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6<br>7<br>8          | 9.80 897<br>9.80 912<br>9.80 927             | 15<br>15<br>15<br>15       | 9.92 535<br>9.92 561<br>9.92 587             | 25<br>26<br>26<br>25                                            | $10.07 \ 465$ $10.07 \ 439$ $10.07 \ 413$        | 9.88 362<br>9.88 351<br>9.88 340                         | 10<br>11<br>11<br>10       | 54<br>53<br>52       |                                                                                        |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>11<br>12<br>13 | 9.80 957<br>9.80 972<br>9.80 987<br>9.81 002 | 15<br>15<br>15             | 9.92 638<br>9.92 663<br>9.92 689<br>9.92 715 | 25<br>26<br>26                                                  | 10.07 362<br>10.07 337<br>10.07 311<br>10.07 285 | 9.88 319<br>9.88 308<br>9.88 298<br>9.88 287             | 11<br>10<br>11             | 50<br>49<br>48<br>47 | 8   3.5   3.3<br>9   3.9   3.8<br>10   4.3   4.2<br>20   8.7   8.3<br>30   13.0   12.5 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15<br>16<br>17<br>18 | 9.81 032<br>9.81 047<br>9.81 061<br>9.81 076 | 15<br>15<br>14<br>15       | 9.92 766<br>9.92 792<br>9.92 817<br>9.92 843 | 26<br>26<br>25<br>26                                            | 10.07 234<br>10.07 208<br>10.07 183<br>10.07 157 | 9.88 266<br>9.88 255<br>9.88 244<br>9.88 234             | 11<br>11<br>10             | 45<br>44<br>43<br>42 | $egin{array}{c} 40 17.3 16.7 \ 50 21.7 20.8 \end{array}$                               |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>21<br>22<br>23 | 9.81 106<br>9.81 121<br>9.81 136<br>9.81 151 | 15<br>15<br>15<br>15       | 9.92 894<br>9.92 920<br>9.92 945<br>9.92 971 | 26<br>26<br>25<br>26                                            | 10.07 106<br>10.07 080<br>10.07 055<br>10.07 029 | 9.88 212<br>9.88 201<br>9.88 191<br>9.88 180             | 11<br>11<br>10<br>11       | 40<br>39<br>38<br>37 |                                                                                        |
| 30   9.81 254   14   9.93 150   26   10.06 850   9.88 105   9.22   2.1   10.06 825   9.88 094   11   29   10   2.5   2.3   32   9.81 284   15   9.93 201   26   10.06 799   9.88 083   11   28   30   7.5   7.0   33   9.81 299   15   9.93 227   26   10.06 773   9.88 072   11   27   40   10.09   9.3   32   34   9.81 314   14   9.93 252   25   10.06 6748   9.88 061   11   26   30   7.5   7.0   33   9.81 288   38   15   9.93 278   26   10.06 6748   9.88 061   11   26   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7.0   30   7.5   7 | 25<br>26<br>27<br>28 | 9.81 180<br>9.81 195<br>9.81 210<br>9.81 225 | 14<br>15<br>15<br>15       | 9.93 022<br>9.93 048<br>9.93 073<br>9.93 099 | 26<br>26<br>25<br>26                                            | 10.06 978<br>10.06 952<br>10.06 927<br>10.06 901 | 9.88 158<br>9.88 148<br>9.88 137<br>9.88 126             | 11<br>10<br>11<br>11<br>11 | 35<br>34<br>33<br>32 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                  |
| 35         9.81 328         14         9.93 278         26         10.06 722         9.88 051         10         25           36         9.81 343         15         9.93 303         25         10.06 697         9.88 040         11         24           37         9.81 358         15         9.93 329         26         10.06 671         9.88 029         11         23           38         9.81 372         14         9.93 354         25         10.06 646         9.88 018         11         22           40         9.81 402         15         9.93 481         25         10.06 569         9.87 996         11         21           41         9.81 417         14         9.93 482         26         10.06 569         9.87 995         10           42         9.81 461         15         9.93 482         25         10.06 543         9.87 995         11         19           44         9.81 461         15         9.93 558         26         10.06 467         9.87 995         11         16           45         9.81 475         14         9.93 559         26         10.06 449         9.87 991         11         15           48         9.81 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30<br>31<br>32<br>33 | 9.81 254<br>9.81 269<br>9.81 284<br>9.81 299 | 14<br>15<br>15<br>15       | 9.93 150<br>9.93 175<br>9.93 201<br>9.93 227 | 26<br>25<br>26<br>26                                            | 10.06 850<br>10.06 825<br>10.06 799<br>10.06 773 | 9.88 105<br>9.88 094<br>9.88 083<br>9.88 072             | 11<br>11<br>11<br>11       | 30<br>29<br>28<br>27 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                  |
| 40         9.81 402<br>41         15<br>9.81 417<br>42         9.83 401<br>9.83 431<br>43         26<br>9.93 481<br>9.81 446<br>15<br>9.93 482<br>25<br>10.06 569<br>9.87 985<br>10.06 543<br>9.87 975<br>10.06 518<br>9.87 975<br>10.06 518<br>9.87 975<br>10.06 518<br>9.87 975<br>11<br>11<br>17<br>16<br>17<br>18<br>11<br>17<br>18<br>11<br>17<br>18<br>11<br>17<br>18<br>11<br>19<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35<br>36<br>37<br>38 | 9.81 328<br>9.81 343<br>9.81 358<br>9.81 372 | 14<br>15<br>15<br>14<br>15 | 9.93 278<br>9.93 303<br>9.93 329<br>9.93 354 | 25<br>26<br>25<br>26                                            | 10.06 722<br>10.06 697<br>10.06 671<br>10.06 646 | 9.88 051<br>9.88 040<br>9.88 029<br>9.88 018             | 11<br>11<br>11<br>11       | 25<br>24<br>23<br>22 | 00-12-0 11-11                                                                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40<br>41<br>42<br>43 | 9.81 402<br>9.81 417<br>9.81 431<br>9.81 446 | 15<br>14<br>15             | 9.93 406<br>9.93 431<br>9.93 457<br>9.93 482 | 25<br>26<br>25                                                  | 10.06 594<br>10.06 569<br>10.06 543<br>10.06 518 | 9.87 996<br>9.87 985<br>9.87 975<br>9.87 964             | 11<br>10<br>11<br>11       | 20<br>19<br>18<br>17 |                                                                                        |
| 52       9.81 578       14       9.93 712       26       10.06 262       9.87 855       11       11       7         53       9.81 694       15       9.93 763       25       10.06 262       9.87 855       11       11       7         55       9.81 636       14       9.93 814       25       10.06 186       9.87 833       11       11       6         57       9.81 651       15       9.93 840       26       10.06 186       9.87 811       11       3         58       9.81 665       14       9.93 865       25       10.06 135       9.87 800       11       1       3         59       9.81 680       15       9.93 891       26       10.06 109       9.87 789       11       1       1         60       9.81 694       15       9.93 916       25       10.06 084       9.87 778       11       1       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45<br>46<br>47<br>48 | 9.81 475<br>9.81 490<br>9.81 505<br>9.81 519 | 14<br>15<br>15<br>14<br>15 | 9.93 533<br>9.93 559<br>9.93 584<br>9.93 610 | 26<br>25<br>26<br>26                                            | 10.06 467<br>10.06 441<br>10.06 416<br>10.06 390 | 9.87 942<br>9.87 931<br>9.87 920<br>9.87 909<br>9.87 898 | 11<br>11<br>11<br>11       | 15<br>14<br>13<br>12 | 6 1.1 1.0                                                                              |
| 55         9.81 622         15         9.93 789         26         10.06 211         9.87 833         11         5           9.81 636         14         9.93 814         25         10.06 186         9.87 822         11         4           57         9.81 651         14         9.93 840         26         10.06 160         9.87 811         11         3           58         9.81 680         15         14         9.93 891         26         10.06 135         9.87 800         11         11         2           10.06 109         9.87 789         11         11         1         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50<br>51<br>52<br>53 | 9.81 549<br>9.81 563<br>9.81 578<br>9.81 592 | 14<br>15<br>14<br>15       | 9.93 661<br>9.93 687<br>9.93 712<br>9.93 738 | 26<br>25<br>26<br>25                                            | 10.06 339<br>10.06 313<br>10.06 288<br>10.06 262 | 9.87 877<br>9.87 866<br>9.87 855                         | 10<br>11<br>11<br>11       | 9<br>8<br>7<br>6     | 40 7.3 0.7                                                                             |
| 60 9.81 694 14 9.93 916 25 10.06 084 9.87 778 1 0 Prop. Ptg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55<br>56<br>57<br>58 | 9.81 622<br>9.81 636<br>9.81 651<br>9.81 665 | 14<br>15<br>14<br>15       | 9.93 789<br>9.93 814<br>9.93 840<br>9.93 865 | 25<br>26<br>25<br>26                                            | 10.06 186<br>10.06 160<br>10.06 135              | 9.87 822<br>9.87 811<br>9.87 800<br>9.87 789             | 11<br>11<br>11<br>11       | 4<br>3<br>2<br>1     |                                                                                        |
| L Cos d L Cot cd L Tan L Sin d / Prop. Pts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                   |                                              |                            | 9.93 916<br>L Cot                            | c d                                                             | 10.06 084<br>L Tan                               | 9.87 778<br>L Sin                                        | d                          | 0                    | Prop. Pts.                                                                             |

41°

| ,                                                      | L Sin                                                  | d        | L Tan                                                  | cd                                       | L Cot                                                     | L Cos                                                                         | d                                         |                                                    | Prop. Pts.                                                                                        |
|--------------------------------------------------------|--------------------------------------------------------|----------|--------------------------------------------------------|------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 0                                                      | 9.81 694                                               |          | 9.93 916                                               |                                          | 10.06 084                                                 | 9.87 778                                                                      |                                           | 60                                                 |                                                                                                   |
| 1                                                      | 9.81 709                                               | 15<br>14 | 9.93942                                                | 26<br>25                                 | 10.06 058<br>10.06 033                                    | 9.87 767<br>9.87 756                                                          | 11<br>11                                  | 59<br>58                                           |                                                                                                   |
| 3                                                      | $oxed{9.81\ 723} \ 9.81\ 738$                          | 15       | 9.93 967<br>9.93 993                                   | 26                                       | 10.06 007                                                 | 9.87 745                                                                      | 11                                        | 57                                                 |                                                                                                   |
| 4                                                      | 9.81 752                                               | 14<br>15 | 9.94 018                                               | $\begin{vmatrix} 25 \\ 26 \end{vmatrix}$ | 10.05 982                                                 | 9.87 734                                                                      | 11<br>11                                  | 56_                                                |                                                                                                   |
| 5                                                      | 9.81 767                                               | 14       | 9.94 044                                               | 25                                       | 10.05 956<br>10.05 931                                    | 9.87 723<br>9.87 712                                                          | 11                                        | 55<br>54                                           |                                                                                                   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 9.81 781<br>9.81 796                                   | 15       | 9.94 069<br>9.94 095                                   | 26                                       | 10.05 905                                                 | 9.87 701                                                                      | 11                                        | 53                                                 | ″  26   25                                                                                        |
| 8                                                      | 9.81 810                                               | 14<br>15 | 9.94 120                                               | $\begin{vmatrix} 25 \\ 26 \end{vmatrix}$ | $\begin{array}{c} 10.05880 \\ 10.05854 \end{array}$       | $9.87690 \\ 9.87679$                                                          | 11<br>11                                  | $\begin{array}{ c c }\hline 52\\ 51\\ \end{array}$ | 6   2.6   2.5                                                                                     |
| 9                                                      | 9.81 825                                               | 14       | $\frac{9.94\ 146}{9.94\ 171}$                          | $\begin{bmatrix} 25 \\ 25 \end{bmatrix}$ | $\frac{10.05834}{10.05829}$                               | 9.87 668                                                                      | 11                                        | 50                                                 | 7 3.0 2.9                                                                                         |
| 10<br>11                                               | 9.81 839<br>9.81 854                                   | 15       | 9.94 197                                               | 26                                       | 10.05 803                                                 | 9.87 657                                                                      | 11<br>11                                  | 49                                                 | 9[3.9]3.8                                                                                         |
| 12                                                     | 9.81 868                                               | 14<br>14 | $9.94\ 222$ $9.94\ 248$                                | $\begin{vmatrix} 25 \\ 26 \end{vmatrix}$ | $\begin{array}{c} 10.05\ 778 \\ 10.05\ 752 \end{array}$   | $9.87\ 646$ $9.87\ 635$                                                       | -11                                       | 48<br>47                                           | $egin{array}{c c} 10 & 4.3 & 4.2 \ 20 & 8.7 & 8.3 \end{array}$                                    |
| 13                                                     | 9.81 882<br>9.81 897                                   | 15       | 9.94 248                                               | 25                                       | 10.05 727                                                 | 9.87 624                                                                      | 11<br>11                                  | 46                                                 | $egin{array}{c} 30   13.0   12.5 \ 40   17.3   16.7 \end{array}$                                  |
| 15                                                     | 9.81 911                                               | 14       | 9.94 299                                               | 26<br>25                                 | 10.05 701                                                 | 9.87 613                                                                      | 12                                        | 45                                                 | 50 21.7 20.8                                                                                      |
| 16<br>17                                               | 9.81 926<br>9.81 940                                   | 15<br>14 | $9.94\ 324$ $9.94\ 350$                                | 26                                       | 10.05 676<br>10.05 650                                    | $9.87\ 601$ $9.87\ 590$                                                       | 11                                        | 44 43                                              |                                                                                                   |
| 18                                                     | 9.81 955                                               | 15       | 9.94 375                                               | 25                                       | 10.05 625                                                 | 9.87 579                                                                      | 11<br>11                                  | 42                                                 |                                                                                                   |
| 19                                                     | 9.81 969                                               | 14<br>14 | 9.94 401                                               | 26<br>25                                 | $\frac{10.05\ 599}{10.05\ 574}$                           | $\frac{9.87\ 568}{9.87\ 557}$                                                 | 11                                        | 41 40                                              |                                                                                                   |
| <b>20</b> 21                                           | 9.81 983<br>9.81 998                                   | 15       | $9.94\ 426 \\ 9.94\ 452$                               | 26                                       | 10.05 548                                                 | 9.87 546                                                                      | 11                                        | 39                                                 |                                                                                                   |
| 22                                                     | 9.82 012                                               | 14       | 9.94 477                                               | 25<br>26                                 | 10.05 523                                                 | $9.87\ 535$                                                                   | 11<br>11                                  | 38<br>37                                           |                                                                                                   |
| 23 24                                                  | $9.82\ 026$ $9.82\ 041$                                | 14<br>15 | 9.94503 $9.94528$                                      | 25                                       | $\begin{array}{c} 10.05\ 497 \\ 10.05\ 472 \end{array}$   | $egin{array}{c} 9.87\ 524 \ 9.87\ 513 \end{array}$                            | 11                                        | 36                                                 |                                                                                                   |
| $\frac{24}{25}$                                        | 9.82 055                                               | 14       | 9.94 554                                               | 26                                       | 10.05 446                                                 | 9.87 501                                                                      | 12                                        | 35                                                 |                                                                                                   |
| 26                                                     | 9.82 069                                               | 14<br>15 | 9.94 579                                               | 25<br>25                                 | $\begin{array}{c} 10.05\ 421 \\ 10.05\ 396 \end{array}$   | 9.87 490<br>9.87 479                                                          | 11<br>11                                  | 34<br>33                                           | ″  15   14                                                                                        |
| 27 28                                                  | 9.82 084<br>9.82 098                                   | 14       | 9.94 604<br>9.94 630                                   | 26                                       | 10.05 370                                                 | 9.87 468                                                                      | 11                                        | 32                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             |
| 29                                                     | 9.82 112                                               | 14       | 9.94 655                                               | $\begin{bmatrix} 25 \\ 26 \end{bmatrix}$ | 10.05 345                                                 | 9.87 457                                                                      | 11<br>11                                  | 31                                                 | $egin{array}{c cccc} 6 & 1.5 & 1.4 \ 7 & 1.8 & 1.6 \ 8 & 2.0 & 1.9 \ 9 & 2.2 & 2.1 \ \end{array}$ |
| 30                                                     | 9.82 126<br>9.82 141                                   | 15       | 9.94 681<br>9.94 706                                   | 25                                       | 10.05 319<br>10.05 294                                    | 9.87446 $9.87434$                                                             | 12                                        | <b>30</b> 29                                       | 10 2.5 2.3                                                                                        |
| 31                                                     | 9.82 155                                               | 14       | 9.94 732                                               | 26                                       | 10.05268                                                  | 9.87 423                                                                      | 11<br>11                                  | 28                                                 | $egin{array}{c c} 20 & 5.0 & 4.7 \ 30 & 7.5 & 7.0 \ \end{array}$                                  |
| 33                                                     | 9.82 169                                               | 14<br>15 | 9.94 757 9.94 783                                      | $\begin{vmatrix} 25 \\ 26 \end{vmatrix}$ | $10.05\ 243$ $10.05\ 217$                                 | $9.87\ 412$ $9.87\ 401$                                                       | 11                                        | 27<br>26                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             |
| $\frac{34}{35}$                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 14       | 9.94 808                                               | 25                                       | 10.05 192                                                 | 9.87 390                                                                      | 11                                        | $\frac{-25}{25}$                                   | 00/12.0/11.7                                                                                      |
| 36                                                     | 9.82 212                                               | 14       | 9.94 834                                               | 26<br>25                                 | 10.05 166                                                 | 9.87 378                                                                      | 12<br>11                                  | 24                                                 |                                                                                                   |
| 37 38                                                  | 9.82 226<br>9.82 240                                   | 14       | 9.94 859<br>9.94 884                                   | 25                                       | 10.05 141<br>10.05 116                                    | $9.87\ 367$ $9.87\ 356$                                                       | 11                                        | $\begin{bmatrix} 23 \\ 22 \end{bmatrix}$           |                                                                                                   |
| 39                                                     | 9.82 255                                               | 15       | 9.94 910                                               | 26                                       | 10.05 090                                                 | 9.87 345                                                                      | 11<br>11                                  | 21                                                 |                                                                                                   |
| 40                                                     | 9.82 269                                               | 14       | 9.94 935                                               | $\begin{vmatrix} 25 \\ 26 \end{vmatrix}$ | 10.05 065                                                 | $     \begin{array}{r}       9.87 \ 334 \\       9.87 \ 322     \end{array} $ | 12                                        | <b>20</b><br>19                                    |                                                                                                   |
| 41 42                                                  | 9.82 283 9.82 297                                      | 14       | 9.94 961 9.94 986                                      | 25                                       | $\begin{array}{c c} 10.05\ 039 \\ 10.05\ 014 \end{array}$ | 9.87 311                                                                      | 11                                        | 18                                                 |                                                                                                   |
| 43                                                     | 9.82 311                                               | 14 15    | 9.95 012                                               | 26<br>25                                 | 10.04 988<br>10.04 963                                    | 9.87 300<br>9.87 288                                                          | $\begin{array}{c c} 11 \\ 12 \end{array}$ | 17<br>16                                           |                                                                                                   |
| $\frac{44}{45}$                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 14       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 25                                       | $\frac{10.04903}{10.04938}$                               | $\frac{9.87\ 288}{9.87\ 277}$                                                 | 11                                        | $\frac{10}{15}$                                    | "  <b>12</b>   <b>11</b>                                                                          |
| 45                                                     | 9.82 354                                               | 14       | 9.95 088                                               | 26                                       | 10.04 912                                                 | 9.87 266                                                                      | 11<br>11                                  | 14                                                 | 6 1.2 1.1                                                                                         |
| 47                                                     | 9.82 368                                               | 14       | 9.95 113 9.95 139                                      | 25<br>26                                 | 10.04 887                                                 | 9.87 255<br>9.87 243                                                          | 12                                        | 13<br>12                                           | $\begin{array}{c} 7 & 1.2 & 1.3 \\ 7 & 1.4 & 1.3 \\ 8 & 1.6 & 1.5 \\ 9 & 1.8 & 1.6 \end{array}$   |
| 48 49                                                  | 9.82 382 9.82 396                                      | 14       | 9.95 164                                               | 25                                       | 10.04 836                                                 | 9.87 232                                                                      | 11<br>11                                  | 11_                                                | 9 1.8 1.6                                                                                         |
| 50                                                     | 9.82 410                                               | 14       | 9.95 190                                               | 26<br>25                                 | 10.04 810                                                 | 9.87 221                                                                      | 12                                        | <b>10</b> 9                                        | 20   4.0   3.7                                                                                    |
| 51<br>52                                               | 9.82 424<br>9.82 439                                   | 15       | 9.95 215 9.95 240                                      | 25                                       | 10.04 785                                                 | 9.87 209<br>9.87 198                                                          | 11                                        | 8                                                  | $egin{array}{c c} 30 & 6.0 & 5.5 \ 40 & 8.0 & 7.3 \ \end{array}$                                  |
| 53                                                     | 9.82 453                                               | 14       | 9.95 266                                               | 26<br>25                                 | 10.04 734                                                 | 9.87 187                                                                      | 11 12                                     | 7                                                  | 50 10.0 9.2                                                                                       |
| 54                                                     | 9.82 467                                               | 14       | 9.95 291                                               | 26                                       | 10.04 709                                                 | $\frac{9.87\ 175}{9.87\ 164}$                                                 | 11                                        | $\left  \frac{6}{5} \right $                       |                                                                                                   |
| 55<br>56                                               | 9.82 481<br>9.82 495                                   | 14       | 9.95 317<br>9.95 342                                   | 25                                       | 10.04 658                                                 | 9.87 153                                                                      | 11                                        | 4                                                  |                                                                                                   |
| 57                                                     | 9.82 509                                               | 14       | 9.95 368                                               | 26<br>25                                 | 10.04 632                                                 | 9.87 141                                                                      | 12                                        | 3 2                                                |                                                                                                   |
| 58 59                                                  | 9.82 523<br>9.82 537                                   | 14       | 9.95 393<br>9.95 418                                   | 25                                       | 10.04 607 10.04 582                                       | 9.87 130<br>9.87 119                                                          | 11                                        | 1                                                  |                                                                                                   |
| 60                                                     | 9.82 551                                               | - 14     | 9.95 444                                               | 26                                       | 10.04 556                                                 | 9.87 107                                                                      | 12                                        | 0                                                  |                                                                                                   |
|                                                        | L Cos                                                  | d        | L Cot                                                  | c d                                      | L Tan                                                     | L Sin                                                                         | d                                         | ,                                                  | Prop. Pts.                                                                                        |
|                                                        | 1                                                      | 1        |                                                        |                                          |                                                           |                                                                               |                                           | `                                                  | <del></del>                                                                                       |

**42**°

| ′                                                                                         | L Sin                                                                                                  | d                          | L Tan                                                                                                  | c d                        | L Cot                                                                                                                                       | L Cos                                                                                                      | d                          |                                                                    | Prop. Pts.                                                                                                                   |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3                                                                          | 9.82 551<br>9.82 565<br>9.82 579<br>9.82 593                                                           | 14<br>14<br>14<br>14       | 9.95 444<br>9.95 469<br>9.95 495<br>9.95 520                                                           | 25<br>26<br>25<br>25       | 10.04 556<br>10.04 531<br>10.04 505<br>10.04 480                                                                                            | 9.87 107<br>9.87 096<br>9.87 085<br>9.87 073                                                               | 11<br>11<br>12<br>11       | <b>60</b> 59 58 57                                                 |                                                                                                                              |
| $\begin{bmatrix} -\frac{4}{5} \\ 6 \\ 7 \\ 8 \end{bmatrix}$                               | $\begin{array}{r} 9.82\ 607 \\ \hline 9.82\ 621 \\ 9.82\ 635 \\ 9.82\ 649 \\ 9.82\ 663 \end{array}$    | 14<br>14<br>14<br>14<br>14 | $\begin{array}{r} 9.95\ 545 \\ \hline 9.95\ 571 \\ 9.95\ 596 \\ 9.95\ 622 \\ 9.95\ 647 \end{array}$    | 26<br>25<br>26<br>25<br>25 | 10.04 455<br>10.04 429<br>10.04 404<br>10.04 378<br>10.04 353                                                                               | $\begin{array}{r} 9.87\ 062 \\ \hline 9.87\ 050 \\ 9.87\ 039 \\ 9.87\ 028 \\ 9.87\ 016 \\ \end{array}$     | 11<br>12<br>11<br>11<br>12 | 56<br>55<br>54<br>53<br>52                                         | ′′  26   25                                                                                                                  |
| 9<br>10<br>11<br>12                                                                       | 9.82 677<br>9.82 691<br>9.82 705<br>9.82 719                                                           | 14<br>14<br>14<br>14       | 9.95 672<br>9.95 698<br>9.95 723<br>9.95 748                                                           | 25<br>26<br>25<br>25       | $\begin{array}{r} 10.04\ 328 \\ \hline 10.04\ 302 \\ 10.04\ 277 \\ 10.04\ 252 \\ \end{array}$                                               | 9.87 005<br>9.86 993<br>9.86 982<br>9.86 970                                                               | 11<br>12<br>11<br>12       | 51<br>50<br>49<br>48                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                         |
| $ \begin{array}{ c c c } \hline 13 \\ 14 \\ \hline 15 \\ 16 \\ 17 \\ \hline \end{array} $ | $\begin{array}{r} 9.82\ 733 \\ 9.82\ 747 \\ \hline 9.82\ 761 \\ 9.82\ 775 \\ 9.82\ 788 \\ \end{array}$ | 14<br>14<br>14<br>14<br>13 | $\begin{array}{r} 9.95\ 774 \\ 9.95\ 799 \\ \hline 9.95\ 825 \\ 9.95\ 850 \\ 9.95\ 875 \\ \end{array}$ | 26<br>25<br>26<br>25<br>25 | $\begin{array}{c} 10.04\ 226 \\ 10\ 04\ 201 \\ \hline 10.04\ 175 \\ 10.04\ 150 \\ 10.04\ 125 \\ \end{array}$                                | 9.86 959<br>9.86 947<br>9.86 936<br>9.86 924<br>9.86 913                                                   | 11<br>12<br>11<br>12<br>11 | $ \begin{array}{r} 47 \\ 46 \\ \hline 45 \\ 44 \\ 43 \end{array} $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                        |
| 18<br>19<br><b>20</b><br>21                                                               | 9.82 802<br>9.82 816<br>9.82 830<br>9.82 844                                                           | 14<br>14<br>14<br>14       | $\begin{array}{r} 9.95\ 901 \\ 9.95\ 926 \\ \hline 9.95\ 952 \\ 9.95\ 977 \end{array}$                 | 26<br>25<br>26<br>25       | $   \begin{array}{r}     10.04\ 099 \\     10.04\ 074 \\ \hline     10.04\ 048 \\     10.04\ 023   \end{array} $                            | 9.86 902<br>9.86 890<br>9.86 879<br>9.86 867                                                               | 11<br>12<br>11<br>12       | 42<br>41<br>40<br>39                                               |                                                                                                                              |
| $ \begin{array}{c c} 22 \\ 23 \\ 24 \\ \hline 25 \\ 26 \end{array} $                      | 9.82 858<br>9.82 872<br>9.82 885<br>9.82 899<br>9.82 913                                               | 14<br>14<br>13<br>14<br>14 | $\begin{array}{c} 9.96\ 002 \\ 9.96\ 028 \\ 9.96\ 053 \\ \hline 9.96\ 078 \\ 9.96\ 104 \end{array}$    | 25<br>26<br>25<br>25<br>26 | $   \begin{array}{r}     10.03 \ 998 \\     10.03 \ 972 \\     10.03 \ 947 \\     \hline     10.03 \ 922 \\     10.03 \ 896   \end{array} $ | 9.86 855<br>9.86 844<br>9.86 832<br>9.86 821<br>9.86 809                                                   | 12<br>11<br>12<br>11<br>12 | 38<br>37<br>36<br>35<br>34                                         | ″  14   13                                                                                                                   |
| 27<br>28<br>29<br>30                                                                      | $\begin{array}{r} 9.82\ 927 \\ 9.82\ 941 \\ 9.82\ 955 \\ \hline \hline 9.82\ 968 \end{array}$          | 14<br>14<br>14<br>13       | $\begin{array}{r} 9.96\ 129 \\ 9.96\ 155 \\ 9.96\ 180 \\ \hline 9.96\ 205 \end{array}$                 | 25<br>26<br>25<br>25       | $   \begin{array}{r}     10.03871 \\     10.03845 \\     10.03820 \\     \hline     10.03795   \end{array} $                                | $\begin{array}{r} 9.86798 \\ 9.86786 \\ 9.86775 \\ \hline 9.86763 \end{array}$                             | 11<br>12<br>11<br>12       | 33<br>32<br>31<br>30                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                        |
| $ \begin{array}{ c c c } 31 \\ 32 \\ 33 \\ 34 \\ \hline 25 \end{array} $                  | 9.82 982<br>9.82 996<br>9.83 010<br>9.83 023                                                           | 14<br>14<br>14<br>13<br>14 | 9.96 231<br>9.96 256<br>9.96 281<br>9.96 307                                                           | 26<br>25<br>25<br>26<br>25 | 10.03 769<br>10.03 744<br>10.03 719<br>10.03 693<br>10.03 668                                                                               | $\begin{array}{c} 9.86\ 752 \\ 9.86\ 740 \\ 9.86\ 728 \\ 9.86\ 717 \\ \hline \hline 9.86\ 705 \end{array}$ | 11<br>12<br>12<br>11<br>11 | 29<br>28<br>27<br>26<br>25                                         | $\begin{array}{c cccc} 10 & 2.3 & 2.2 \\ 20 & 4.7 & 4.3 \\ 30 & 7.0 & 6.5 \\ 40 & 9.3 & 8.7 \\ 50 & 11.7 & 10.8 \end{array}$ |
| 35<br>36<br>37<br>38<br>39                                                                | 9.83 037<br>9.83 051<br>9.83 065<br>9.83 078<br>9.83 092                                               | 14<br>14<br>13<br>14<br>14 | 9.96 332<br>9.96 357<br>9.96 383<br>9.96 408<br>9.96 433                                               | 25<br>26<br>25<br>25<br>26 | $\begin{array}{c} 10.03\ 608 \\ 10.03\ 643 \\ 10.03\ 617 \\ 10.03\ 592 \\ 10.03\ 567 \end{array}$                                           | 9.86 694<br>9.86 682<br>9.86 670<br>9.86 659                                                               | 11<br>12<br>12<br>11<br>12 | 24<br>23<br>22<br>21                                               |                                                                                                                              |
| 40<br>41<br>42<br>43<br>44                                                                | 9.83 106<br>9.83 120<br>9.83 133<br>9.83 147<br>9.83 161                                               | 14<br>13<br>14<br>14       | 9.96 459<br>9.96 484<br>9.96 510<br>9.96 535<br>9.96 560                                               | 25<br>26<br>25<br>25       | 10.03 541<br>10.03 516<br>10.03 490<br>10.03 465<br>10.03 440                                                                               | 9.86 647<br>9.86 635<br>9.86 624<br>9.86 612<br>9.86 600                                                   | 12<br>11<br>12<br>12       | 20<br>19<br>18<br>17<br>16                                         |                                                                                                                              |
| 45<br>46<br>47<br>48<br>49                                                                | 9.83 174<br>9.83 188<br>9.83 202<br>9.83 215<br>9.83 229                                               | 13<br>14<br>14<br>13<br>14 | 9.96 586<br>9.96 611<br>9.96 636<br>9.96 662<br>9.96 687                                               | 26<br>25<br>25<br>26<br>25 | 10.03 414<br>10.03 389<br>10.03 364<br>10.03 338<br>10.03 313                                                                               | 9.86 589<br>9.86 577<br>9.86 565<br>9.86 554<br>9.86 542                                                   | 11<br>12<br>12<br>11<br>12 | 15<br>14<br>13<br>12<br>11                                         | "   12   11<br>6   1.2   1.1<br>7   1.4   1.3<br>8   1.6   1.5<br>9   1.8   1.6                                              |
| 50<br>51<br>52<br>53<br>54                                                                | 9.83 242<br>9.83 256<br>9.83 270<br>9.83 283<br>9.83 297                                               | 13<br>14<br>14<br>13<br>14 | 9.96 712<br>9.96 738<br>9.96 763<br>9.96 788<br>9.96 814                                               | 25<br>26<br>25<br>25<br>26 | 10.03 288<br>10.03 262<br>10.03 237<br>10.03 212<br>10.03 186                                                                               | 9.86 530<br>9.86 518<br>9.86 507<br>9.86 495<br>9.86 483                                                   | 12<br>12<br>11<br>12<br>12 | 10<br>9<br>8<br>7<br>6                                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                        |
| 55<br>56<br>57<br>58                                                                      | 9.83 310<br>9.83 324<br>9.83 338<br>9.83 351                                                           | 13<br>14<br>14<br>13<br>14 | 9.96 839<br>9.96 864<br>9.96 890<br>9.96 915                                                           | 25<br>25<br>26<br>25<br>25 | 10.03 161<br>10.03 136<br>10.03 110<br>10.03 085                                                                                            | 9.86 472<br>9.86 460<br>9.86 448<br>9.86 436<br>9.86 425                                                   | 11<br>12<br>12<br>12<br>12 | 5<br>4<br>3<br>2<br>1                                              |                                                                                                                              |
| 59<br><b>60</b>                                                                           | 9.83 365<br>9.83 378                                                                                   | 13                         | 9.96 940                                                                                               | 26                         | 10.03 060 10.03 034                                                                                                                         | 9.86 413                                                                                                   | 12                         | 0                                                                  |                                                                                                                              |
|                                                                                           | L Cos                                                                                                  | d                          | L Cot                                                                                                  | c d                        | L Tan                                                                                                                                       | L Sin                                                                                                      | d                          | ′                                                                  | Prop. Pts.                                                                                                                   |

43°

| ,                          | L Sin                                                    | d                                | L Tan                                                    | c d                              | L Cot                                                         | L Cos                                                    | d                                      |                            | Prop. Pts.                                                                                                                            |
|----------------------------|----------------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4           | 9.83 378<br>9.83 392<br>9.83 405<br>9.83 419<br>9.83 432 | 14<br>13<br>14<br>13             | 9.96 966<br>9.96 991<br>9.97 016<br>9.97 042<br>9.97 067 | 25<br>25<br>26<br>25             | 10.03 034<br>10.03 009<br>10.02 984<br>10.02 958<br>10.02 933 | 9.86 413<br>9.86 401<br>9.86 389<br>9.86 377<br>9.86 366 | 12<br>12<br>12<br>12<br>11             | <b>60</b> 59 58 57 56      |                                                                                                                                       |
| 5<br>6<br>7<br>8<br>9      | 9.83 446<br>9.83 459<br>9.83 473<br>9.83 486<br>9.83 500 | 14<br>13<br>14<br>13<br>14       | 9.97 092<br>9.97 118<br>9.97 143<br>9.97 168<br>9.97 193 | 25<br>26<br>25<br>25<br>25       | 10.02 908<br>10.02 882<br>10.02 857<br>10.02 832<br>10.02 807 | 9.86 354<br>9.86 342<br>9.86 330<br>9.86 318<br>9.86 306 | 12<br>12<br>12<br>12<br>12<br>12<br>11 | 55<br>54<br>53<br>52<br>51 | "   <b>26   25</b> 6   2.6   2.5 7   3.0   2.9                                                                                        |
| 10<br>11<br>12<br>13<br>14 | 9.83 513<br>9.83 527<br>9.83 540<br>9.83 554<br>9.83 567 | 13<br>14<br>13<br>14<br>13<br>14 | 9.97 219<br>9.97 244<br>9.97 269<br>9.97 295<br>9.97 320 | 26<br>25<br>25<br>26<br>25<br>25 | 10.02 781<br>10.02 756<br>10.02 731<br>10.02 705<br>10.02 680 | 9.86 295<br>9.86 283<br>9.86 271<br>9.86 259<br>9.86 247 | 12<br>12<br>12<br>12<br>12             | 50<br>49<br>48<br>47<br>46 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                 |
| 15<br>16<br>17<br>18<br>19 | 9.83 581<br>9.83 594<br>9.83 608<br>9.83 621<br>9.83 634 | 13<br>14<br>13<br>13<br>14       | 9.97 345<br>9.97 371<br>9.97 396<br>9.97 421<br>9.97 447 | 26<br>25<br>25<br>26<br>25       | 10.02 655<br>10.02 629<br>10.02 604<br>10.02 579<br>10.02 553 | 9.86 235<br>9.86 223<br>9.86 211<br>9.86 200<br>9.86 188 | 12<br>12<br>11<br>12<br>12             | 45<br>44<br>43<br>42<br>41 | 50 21.7 20.8                                                                                                                          |
| 20<br>21<br>22<br>23<br>24 | 9.83 648<br>9.83 661<br>9.83 674<br>9.83 688<br>9.83 701 | 13<br>13<br>14<br>13<br>14       | 9.97 472<br>9.97 497<br>9.97 523<br>9.97 548<br>9.97 573 | 25<br>26<br>25<br>25<br>25       | 10.02 528<br>10.02 503<br>10.02 477<br>10.02 452<br>10.02 427 | 9.86 176<br>9.86 164<br>9.86 152<br>9.86 140<br>9.86 128 | 12<br>12<br>12<br>12<br>12             | 40<br>39<br>38<br>37<br>36 |                                                                                                                                       |
| 25<br>26<br>27<br>28<br>29 | 9.83 715<br>9.83 728<br>9.83 741<br>9.83 755<br>9.83 768 | 13<br>13<br>14<br>13<br>13       | 9.97 598<br>9.97 624<br>9.97 649<br>9.97 674<br>9.97 700 | 26<br>25<br>25<br>26<br>26       | 10.02 402<br>10.02 376<br>10.02 351<br>10.02 326<br>10.02 300 | 9.86 116<br>9.86 104<br>9.86 092<br>9.86 080<br>9.86 068 | 12<br>12<br>12<br>12<br>12             | 35<br>34<br>33<br>32<br>31 | "   14   13   6   1.4   1.3   7   1.6   1.5   8   1.9   1.7                                                                           |
| 30<br>31<br>32<br>33<br>34 | 9.83 781<br>9.83 795<br>9.83 808<br>9.83 821<br>9.83 834 | 14<br>13<br>13<br>13<br>14       | 9.97 725<br>9.97 750<br>9.97 776<br>9.97 801<br>9.97 826 | 25<br>26<br>25<br>25<br>25<br>25 | 10.02 275<br>10.02 250<br>10.02 224<br>10.02 199<br>10.02 174 | 9.86 056<br>9.86 044<br>9.86 032<br>9.86 020<br>9.86 008 | $12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$     | 30<br>29<br>28<br>27<br>26 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                 |
| 35<br>36<br>37<br>38<br>39 | 9.83 848<br>9.83 861<br>9.83 874<br>9.83 887<br>9.83 901 | 13<br>13<br>13<br>14<br>14       | 9.97 851<br>9.97 877<br>9.97 902<br>9.97 927<br>9.97 953 | 26<br>25<br>25<br>26<br>26<br>25 | 10.02 149<br>10.02 123<br>10.02 098<br>10.02 073<br>10.02 047 | 9.85 996<br>9.85 984<br>9.85 972<br>9.85 960<br>9.85 948 | 12<br>12<br>12<br>12<br>12             | 25<br>24<br>23<br>22<br>21 |                                                                                                                                       |
| 40<br>41<br>42<br>43<br>44 | 9.83 914<br>9.83 927<br>9.83 940<br>9.83 954<br>9.83 967 | 13<br>13<br>14<br>13             | 9.97 978<br>9.98 003<br>9.98 029<br>9.98 054<br>9.98 079 | 25<br>26<br>25<br>25<br>25<br>25 | 10.02 022<br>10.01 997<br>10.01 971<br>10.01 946<br>10.01 921 | 9.85 936<br>9.85 924<br>9.85 912<br>9.85 900<br>9.85 888 | 12<br>12<br>12<br>12<br>12             | 20<br>19<br>18<br>17<br>16 |                                                                                                                                       |
| 45<br>46<br>47<br>48<br>49 | 9.83 980<br>9.83 993<br>9.84 006<br>9.84 020<br>9.84 033 | 13<br>13<br>13<br>14<br>13<br>13 | 9.98 104<br>9.98 130<br>9.98 155<br>9.98 180<br>9.98 206 | 26<br>25<br>25<br>26<br>26<br>25 | 10.01 896<br>10.01 870<br>10.01 845<br>10.01 820<br>10.01 794 | 9.85 876<br>9.85 864<br>9.85 851<br>9.85 839<br>9.85 827 | 12<br>13<br>12<br>12<br>12             | 15<br>14<br>13<br>12<br>11 | "   12   11<br>6   1.2   1.1<br>7   1.4   1.3<br>8   1.6   1.5<br>9   1.8   1.6<br>10   2.0   1.8<br>20   4.0   3.7<br>30   6.0   5.5 |
| 50<br>51<br>52<br>53<br>54 | 9.84 046<br>9.84 059<br>9.84 072<br>9.84 085<br>9.84 098 | 13<br>13<br>13<br>13<br>14       | 9.98 231<br>9.98 256<br>9.98 281<br>9.98 307<br>9.98 332 | 25<br>25<br>26<br>26<br>25<br>25 | 10.01 769<br>10.01 744<br>10.01 719<br>10.01 693<br>10.01 668 | 9.85 815<br>9.85 803<br>9.85 791<br>9.85 779<br>9.85 766 | 12<br>12<br>12<br>12<br>13<br>12       | 10<br>9<br>8<br>7<br>6     | $\begin{array}{c cccc} 10 & 2.0 & 1.8 \\ 20 & 4.0 & 3.7 \\ 30 & 6.0 & 5.5 \\ 40 & 8.0 & 7.3 \\ 50 & 10.0 & 9.2 \end{array}$           |
| 55<br>56<br>57<br>58<br>59 | 9.84 112<br>9.84 125<br>9.84 138<br>9.84 151<br>9.84 164 | 13<br>13<br>13<br>13<br>13       | 9.98 357<br>9.98 383<br>9.98 408<br>9.98 433<br>9.98 458 | 26<br>25<br>25<br>25<br>26       | 10.01 643<br>10.01 617<br>10.01 592<br>10.01 567<br>10.01 542 | 9.85 754<br>9.85 742<br>9.85 730<br>9.85 718<br>9.85 706 | 12<br>12<br>12<br>12<br>12<br>13       | 5<br>4<br>3<br>2<br>1      |                                                                                                                                       |
| 60                         | 9.84 177<br>L Cos                                        | d                                | 9.98 484<br>L Cot                                        | c d                              | 10.01 516<br>L Tan                                            | 9.85 693<br>L Sin                                        |                                        | 0                          | Prop. Pts.                                                                                                                            |
|                            | L COS                                                    | ) u                              | 1 2 001                                                  | , o a                            | Lan                                                           | 2 0111                                                   | -                                      |                            |                                                                                                                                       |

44°

| ′                          | L Sin                                                    | d                          | L Tan                                                    | c d                              | L Cot                                                         | L Cos                                                    | d                                |                            | Prop. Pts.                                                                                           |
|----------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------|----------------------------|------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4      | 9.84 177<br>9.84 190<br>9.84 203<br>9.84 216<br>9.84 229 | 13<br>13<br>13<br>13       | 9.98 484<br>9.98 509<br>9.98 534<br>9.98 560<br>9.98 585 | 25<br>25<br>26<br>25<br>25       | 10.01 516<br>10.01 491<br>10.01 466<br>10.01 440<br>10.01 415 | 9.85 693<br>9.85 681<br>9.85 669<br>9.85 657<br>9.85 645 | 12<br>12<br>12<br>12<br>12       | <b>60</b> 59 58 57 56      |                                                                                                      |
| 5<br>6<br>7<br>8<br>9      | 9.84 242<br>9.84 255<br>9.84 269<br>9.84 282<br>9.84 295 | 13<br>13<br>14<br>13<br>13 | 9.98 610<br>9.98 635<br>9.98 661<br>9.98 686<br>9.98 711 | 25<br>25<br>26<br>25<br>25       | 10.01 390<br>10.01 365<br>10.01 339<br>10.01 314<br>10.01 289 | 9.85 632<br>9.85 620<br>9.85 608<br>9.85 596<br>9.85 583 | 13<br>12<br>12<br>12<br>13       | 55<br>54<br>53<br>52<br>51 |                                                                                                      |
| 10<br>11<br>12<br>13<br>14 | 9.84 308<br>9.84 321<br>9.84 334<br>9.84 347<br>9.84 360 | 13<br>13<br>13<br>13<br>13 | 9.98 737<br>9.98 762<br>9.98 787<br>9.98 812<br>9.98 838 | 26<br>25<br>25<br>25<br>26       | 10.01 263<br>10.01 238<br>10.01 213<br>10.01 188<br>10.01 162 | 9.85 571<br>9.85 559<br>9.85 547<br>9.85 534<br>9.85 522 | 12<br>12<br>12<br>13<br>12       | 50<br>49<br>48<br>47<br>46 | ''  26   25   14                                                                                     |
| 15<br>16<br>17<br>18<br>19 | 9.84 373<br>9.84 385<br>9.84 398<br>9.84 411<br>9.84 424 | 13<br>12<br>13<br>13<br>13 | 9.98 863<br>9.98 888<br>9.98 913<br>9.98 939<br>9.98 964 | 25<br>25<br>25<br>26<br>25       | 10.01 137<br>10.01 112<br>10.01 087<br>10.01 061<br>10.01 036 | 9.85 510<br>9.85 497<br>9.85 485<br>9.85 473<br>9.85 460 | 12<br>13<br>12<br>12<br>13       | 45<br>44<br>43<br>42<br>41 | 6 2.6 2.5 1.4<br>7 3.0 2.9 1.6<br>8 3.5 3.3 1.9<br>9 3.9 3.8 2.1<br>10 4.3 4.2 2.3<br>20 8.7 8.3 4.7 |
| 20<br>21<br>22<br>23<br>24 | 9.84 437<br>9.84 450<br>9.84 463<br>9.84 476<br>9.84 489 | 13<br>13<br>13<br>13<br>13 | 9.98 989<br>9.99 015<br>9.99 040<br>9.99 065<br>9.99 090 | 25<br>26<br>25<br>25<br>25       | 10.01 011<br>10.00 985<br>10.00 960<br>10.00 935<br>10.00 910 | 9.85 448<br>9.85 436<br>9.85 423<br>9.85 411<br>9.85 399 | 12<br>12<br>13<br>12<br>12       | <b>40</b> 39 38 37 36      | 30   13.0   12.5   7.0<br>40   17.3   16.7   9.3<br>50   21.7   20.8   11.7                          |
| 25<br>26<br>27<br>28<br>29 | 9.84 502<br>9.84 515<br>9.84 528<br>9.84 540<br>9.84 553 | 13<br>13<br>13<br>12<br>13 | 9.99 116<br>9.99 141<br>9.99 166<br>9.99 191<br>9.99 217 | 26<br>25<br>25<br>25<br>26       | 10.00 884<br>10.00 859<br>10.00 834<br>10.00 809<br>10.00 783 | 9.85 386<br>9.85 374<br>9.85 361<br>9.85 349<br>9.85 337 | 13<br>12<br>13<br>12<br>12       | 35<br>34<br>33<br>32<br>31 |                                                                                                      |
| 30<br>31<br>32<br>33<br>34 | 9.84 566<br>9.84 579<br>9.84 592<br>9.84 605<br>9.84 618 | 13<br>13<br>13<br>13<br>13 | 9.99 242<br>9.99 267<br>9.99 293<br>9.99 318<br>9.99 343 | 25<br>25<br>26<br>25<br>25       | 10.00 758<br>10.00 733<br>10.00 707<br>10.00 682<br>10.00 657 | 9.85 324<br>9.85 312<br>9.85 299<br>9.85 287<br>9.85 274 | 13<br>12<br>13<br>12<br>13       | 30<br>29<br>28<br>27<br>26 |                                                                                                      |
| 35<br>36<br>37<br>38<br>39 | 9.84 630<br>9.84 643<br>9.84 656<br>9.84 669<br>9.84 682 | 12<br>13<br>13<br>13<br>13 | 9.99 368<br>9.99 394<br>9.99 419<br>9.99 444<br>9.99 469 | 25<br>26<br>25<br>25<br>25<br>25 | 10.00 632<br>10.00 606<br>10.00 581<br>10.00 556<br>10.00 531 | 9.85 262<br>9.85 250<br>9.85 237<br>9.85 225<br>9.85 212 | 12<br>12<br>13<br>12<br>13       | 25<br>24<br>23<br>22<br>21 | ″  <b>13</b>   <b>12</b>                                                                             |
| 40<br>41<br>42<br>43<br>44 | 9.84 694<br>9.84 707<br>9.84 720<br>9.84 733<br>9.84 745 | 12<br>13<br>13<br>13<br>12 | 9.99 495<br>9.99 520<br>9.99 545<br>9.99 570<br>9.99 596 | 26<br>25<br>25<br>25<br>26       | 10.00 505<br>10.00 480<br>10.00 455<br>10.00 430<br>10.00 404 | 9.85 200<br>9.85 187<br>9.85 175<br>9.85 162<br>9.85 150 | 12<br>13<br>12<br>13<br>12       | 20<br>19<br>18<br>17<br>16 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 45<br>46<br>47<br>48<br>49 | 9.84 758<br>9.84 771<br>9.84 784<br>9.84 796<br>9.84 809 | 13<br>13<br>13<br>12<br>13 | 9.99 621<br>9.99 646<br>9.99 672<br>9.99 697<br>9.99 722 | 25<br>25<br>26<br>25<br>25       | 10.00 379<br>10.00 354<br>10.00 328<br>10.00 303<br>10.00 278 | 9.85 137<br>9.85 125<br>9.85 112<br>9.85 100<br>9.85 087 | 13<br>12<br>13<br>12<br>13       | 15<br>14<br>13<br>12<br>11 | 30 6.5 6.0<br>40 8.7 8.0<br>50 10.8 10.0                                                             |
| 50<br>51<br>52<br>53<br>54 | 9.84 822<br>9.84 835<br>9.84 847<br>9.84 860<br>9.84 873 | 13<br>13<br>12<br>13<br>13 | 9.99 747<br>9.99 773<br>9.99 798<br>9.99 823<br>9.99 848 | 25<br>26<br>25<br>25<br>25       | 10.00 253<br>10.00 227<br>10.00 202<br>10.00 177<br>10.00 152 | 9.85 074<br>9.85 062<br>9.85 049<br>9.85 037<br>9.85 024 | 13<br>12<br>13<br>12<br>13       | 10<br>9<br>8<br>7<br>6     |                                                                                                      |
| 55<br>56<br>57<br>58<br>59 | 9.84 885<br>9.84 898<br>9.84 911<br>9.84 923<br>9.84 936 | 12<br>13<br>13<br>12<br>13 | 9.99 874<br>9.99 899<br>9.99 924<br>9.99 949<br>9.99 975 | 26<br>25<br>25<br>25<br>26       | 10.00 126<br>10.00 101<br>10.00 076<br>10.00 051<br>10.00 025 | 9.85 012<br>9.84 999<br>9.84 986<br>9.84 974<br>9.84 961 | 12<br>13<br>13<br>12<br>13<br>12 | 5<br>4<br>3<br>2<br>1      |                                                                                                      |
| 60                         | 9.84 949<br>L Cos                                        | 13<br>d                    | 0.00 000<br>L Cot                                        | 25<br>c d                        | 10.00 000<br>L Tan                                            | 9.84 949<br>L Sin                                        | d                                | 0                          | Prop. Pts.                                                                                           |



#### TABLE VII

# COMMON LOGARITHMS OF NUMBERS FROM 1 TO 10000

ТО

### FIVE DECIMAL PLACES

1-100

| N  | Log       | N  | Log       | N  | Log       | N  | Log       | N   | Log       |
|----|-----------|----|-----------|----|-----------|----|-----------|-----|-----------|
| 0  |           | 20 | 1. 30 103 | 40 | 1. 60 206 | 60 | 1. 77 815 | 80  | 1. 90 309 |
| 1  | 0. 00 000 | 21 | 1. 32 222 | 41 | 1. 61 278 | 61 | 1. 78 533 | 81  | 1. 90 849 |
| 2  | 0. 30 103 | 22 | 1. 34 242 | 42 | 1. 62 325 | 62 | 1. 79 239 | 82  | 1. 91 381 |
| 3  | 0. 47 712 | 23 | 1. 36 173 | 43 | 1. 63 347 | 63 | 1. 79 934 | 83  | 1. 91 908 |
| 4  | 0. 60 206 | 24 | 1. 38 021 | 44 | 1. 64 345 | 64 | 1. 80 618 | 84  | 1. 92 428 |
| 5  | 0. 69 897 | 25 | 1. 39 794 | 45 | 1. 65 321 | 65 | 1. 81 291 | 85  | 1. 92 942 |
| 6  | 0. 77 815 | 26 | 1. 41 497 | 46 | 1. 66 276 | 66 | 1. 81 954 | 86  | 1. 93 450 |
| 7  | 0. 84 510 | 27 | 1. 43 136 | 47 | 1. 67 210 | 67 | 1. 82 607 | 87  | 1. 93 952 |
| 8  | 0. 90 309 | 28 | 1. 44 716 | 48 | 1. 68 124 | 68 | 1. 83 251 | 88  | 1. 94 448 |
| 9  | 0. 95 424 | 29 | 1. 46 240 | 49 | 1. 69 020 | 69 | 1. 83 885 | 89  | 1. 94 939 |
| 10 | 1. 00 000 | 30 | 1. 47 712 | 50 | 1. 69 897 | 70 | 1. 84 510 | 90  | 1. 95 424 |
| 11 | 1. 04 139 | 31 | 1. 49 136 | 51 | 1. 70 757 | 71 | 1. 85 126 | 91  | 1. 95 904 |
| 12 | 1. 07 918 | 32 | 1. 50 515 | 52 | 1. 71 600 | 72 | 1. 85 733 | 92  | 1. 96 379 |
| 13 | 1. 11 394 | 33 | 1. 51 851 | 53 | 1. 72 428 | 73 | 1. 86 332 | 93  | 1. 96 848 |
| 14 | 1. 14 613 | 34 | 1. 53 148 | 54 | 1. 73 239 | 74 | 1. 86 923 | 94  | 1. 97 313 |
| 15 | 1. 17 609 | 35 | 1. 54 407 | 55 | 1. 74 036 | 75 | 1. 87 506 | 95  | 1. 97 772 |
| 16 | 1. 20 412 | 36 | 1. 55 630 | 56 | 1. 74 819 | 76 | 1. 88 081 | 96  | 1. 98 227 |
| 17 | 1. 23 045 | 37 | 1. 56 820 | 57 | 1. 75 587 | 77 | 1. 88 649 | 97  | 1. 98 677 |
| 18 | 1. 25 527 | 38 | 1. 57 978 | 58 | 1. 76 343 | 78 | 1. 89 209 | 98  | 1. 99 123 |
| 19 | 1. 27 875 | 39 | 1. 59 106 | 59 | 1. 77 085 | 79 | 1. 89 763 | 99  | 1. 99 564 |
| 20 | 1. 30 103 | 40 | 1. 60 206 | 60 | 1. 77 815 | 80 | 1. 90 309 | 100 | 2. 00 000 |

100-150

| N          | L 0                   | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 | 7                                           | 8                         | 9           | Prop. Pts.                                                                                                |
|------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------------------------------|---------------------------|-------------|-----------------------------------------------------------------------------------------------------------|
| 100        | 00 000                | 043               | 087               | 130               | 173               | 217               | 260               | 303                                         | 346                       | 389         |                                                                                                           |
| 101        | 432                   | 475               | 518               | 561               | 604               | 647               | 689               | 732                                         | 775                       | 817         |                                                                                                           |
| 102        | 860<br>01 284         | 903               | 945               | 988<br>410        | *030<br>452       | *072<br>494       | *115<br>536       | *157<br>578                                 | *199<br>620               | *242<br>662 | 44   43   42                                                                                              |
| 104        | 703                   | 745               | 787               | 828               | 870               | 912               | 953               | 995                                         | *036                      | *078        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     |
| 105        | 09 110                | 160               | 202               | 243               | 284               | 325               | 366               | 407                                         | 449                       | 490         | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                   |
| 105<br>106 | $02\ 119\ 531$        | 572               | 612               | 653               | 694               | 735               | 776               | 816                                         | 857                       | 898         | $\begin{array}{ c c c c c c }\hline & 4 &  17.6 17.2 16.8 \\ & 5 &  22.0 21.5 21.0 \\ \hline \end{array}$ |
| 107        | 938                   | 979               | *019              | *060              | *100              | *141              | *181              | *222                                        | *262                      | *302        | 5   22.0   21.5   21.0   6   26.4   25.8   25.2   7   30.8   30.1   29.4                                  |
| 108<br>109 | 03 342<br>743         | 383<br>782        | 423<br>822        | 463<br>862        | 503<br>902        | 543               | 583<br>981        | 623<br>*021                                 | *060                      | 703<br>*100 | 1 8 35.2 34.4 33.6                                                                                        |
| \          | <u> </u>              |                   |                   |                   |                   |                   | 376               | 415                                         |                           | 493         | 9   39.6   38.7   37.8                                                                                    |
| 110        | $\frac{04\ 139}{532}$ | $\frac{179}{571}$ | $\frac{218}{610}$ | $\frac{258}{650}$ | $\frac{297}{689}$ | $\frac{336}{727}$ | $\frac{376}{766}$ | 805                                         | <u>.454</u><br><u>844</u> | 883         |                                                                                                           |
| 112        | 922                   | 961               | 999               | *038              | *077              | *115              | *154              | *192                                        | *231                      | *269        | 41   40   39                                                                                              |
| 113        | 05 308                | 346               | 385               | 423               | 461               | 500               | 538               | 576                                         | 614                       | 652         | 1 4.1 4.0 3.9                                                                                             |
| 114        | 690                   | 729               | 767               | 805               | 843               | 881               | 918               | 956                                         | 994                       | *032        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                    |
| 115        | 06 070                | 108               | 145               | 183               | 221               | 258               | 296               | 333                                         | 371                       | 408         | 1 4  16.4 16.0 15.6                                                                                       |
| 116        | 446<br>819            | 483<br>856        | 521<br>893        | 558<br>930        | 595<br>967        | 633<br>*004       | 670<br>*041       | 707<br>*078                                 | 744<br>*115               | 781<br>*151 | 5 20.5 20.0 19.5<br>6 24.6 24.0 23.4<br>7 28.7 28.0 27.3                                                  |
| 118        | 07 188                | 225               | 262               | 298               | 335               | 372               | 408               | 445                                         | 482                       | 518         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                    |
| 119        | 555                   | 591               | 628               | 664               | 700               | 737               | 773               | 809                                         | 846                       | 882         | 9  36.9  36.0  35.1                                                                                       |
| 120        | 918                   | 954               | 990               | *027              | *063              | *099              | *135              | *171                                        | *207                      | *243        |                                                                                                           |
| 121<br>122 | 08 279<br>636         | 314<br>672        | 350<br>707        | 386<br>743        | 422<br>778        | 458<br>814        | 493<br>849        | 529<br>884                                  | 565<br>920                | 600<br>955  | 38   37   36                                                                                              |
| 123        | 991                   | *026              | *061              | *096              | *132              | *167              | *202              | *237                                        | *272                      | *307        | 1 3.8 3.7 3.6                                                                                             |
| 124        | 09 342                | 377               | 412               | 447               | 482               | 517               | 552               | 587                                         | 621                       | 656         | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                   |
| 125        | 691                   | 726               | 760               | 795               | 830               | 864               | 899               | 934                                         | 968                       | *003        | 4 15.2 14.8 14.4                                                                                          |
| 126        | 10 037                | 072               | 106               | 140               | 175               | 209               | 243               | 278                                         | 312                       | 346         | 5 19.0 18.5 18.0<br>6 22.8 22.2 21.6                                                                      |
| 127<br>128 | 380<br>721            | 415<br>755        | 449<br>789        | 483<br>823        | 517<br>857        | 551<br>890        | 585<br>924        | 619<br>958                                  | 653<br>992                | 687<br>*025 | 7   26.6   25.9   25.2<br>8   30.4   29.6   28.8                                                          |
| 129        | 11 059                | 093               | 126               | 160               | 193               | 227               | 261               | 294                                         | 327                       | 361         | 9 34.2 33.3 32.4                                                                                          |
| 130        | 394                   | 428               | 461               | 494               | 528               | 561               | 594               | 628                                         | 661                       | 694         |                                                                                                           |
| 131        | 727                   | 760               | 793               | 826               | 860               | 893               | 926               | 959                                         | 992                       | *024        | 35   34   33                                                                                              |
| 132<br>133 | 12 057<br>385         | 090               | 123<br>450        | 156<br>483        | 189<br>516        | 222<br>548        | 254<br>581        | 287<br>613                                  | 320<br>646                | 352<br>678  | 1 3.5 3.4 3.3                                                                                             |
| 134        | 710                   | 743               | 775               | 808               | 840               | 872               | 905               | 937                                         | 969                       | *001        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                    |
| 135        | 13 033                | 066               | 098               | 130               | 162               | 194               | 226               | 258                                         | 290                       | 322         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                    |
| 136        | 354                   | 386               | 418               | 450               | 481               | 513               | 545               | 577                                         | 609                       | 640         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                    |
| 137<br>138 | 672<br>988            | 704<br>*019       | 735<br>*051       | 767<br>*082       | 799<br>*114       | 830<br>*145       | 862<br>*176       | 893<br>*208                                 | 925<br>*239               | 956<br>*270 | 6  21.0 20.4 19.8<br>7  24.5 23.8 23.1<br>8  28.0 27.2 26.4<br>9  31.5 30.6 29.7                          |
| 139        | 14 301                | 333               | 364               | 395               | 426               | 457               | 489               | 520                                         | 551                       | 582         | 9  31.5 30.6 29.7                                                                                         |
| 140        | 613                   | 644               | 675               | 706               | 737               | 768               | 799               | 829                                         | 860                       | 891         |                                                                                                           |
| 141        | 922                   | 953               | 983               | *014              | *045              | *076              | *106              | *137                                        | *168                      | *198        | 32   31   30                                                                                              |
| 142<br>143 | 15 229<br>534         | 259<br>564        | 290<br>594        | 320<br>625        | 351<br>655        | 381<br>685        | 412<br>715        | 442<br>746                                  | 473<br>776                | 503<br>806  | 1 3.2 3.1 3.0                                                                                             |
| 144        | 836                   | 866               | 897               | 927               | 957               | 987               | *017              | *047                                        | *077                      | *107        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     |
| 145        | 16 137                | 167               | 197               | 227               | 256               | 286               | 316               | 346                                         | 376                       | 406         | $egin{array}{c cccc} 4 &  12.8 12.4 12.0 \ 5 &  16.0 15.5 15.0 \end{array}$                               |
| 146        | 435                   | 465               | 495               | 524               | 554               | 584               | 613               | 643                                         | 673                       | 702         | $\begin{bmatrix} 6 & 19.2 & 18.6 & 18.0 \\ 7 & 22.4 & 21.7 & 21.0 \end{bmatrix}$                          |
| 147        | 732<br>17 026         | 761 056           | 791 085           | 820               | 850<br>143        | 879<br>  173      | 909 202           | 938                                         | 967 260                   | 997         | 8 25.6 24.8 24.0                                                                                          |
| 148<br>149 | 319                   | 348               | 377               | 406               | 435               | 464               | 493               | $\begin{array}{c c} 231 \\ 522 \end{array}$ | 551                       | 580         | 9  28.8   27.9   27.0                                                                                     |
| 150        | 609                   | 638               | 667               | 696               | 725               | 754               | 782               | 811                                         | 840                       | 869         |                                                                                                           |
| N          | L O                   | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 | 7                                           | 8                         | 9           | Prop. Pts.                                                                                                |
|            | 1                     | 1                 |                   | 1                 |                   | 1                 |                   |                                             |                           | 4           | •                                                                                                         |

| N          | L 0                                             | 1          | 2                                           | 3                                           | 4                                           | 5                | 6                                                 | 7                 | 8                 | 9                                           | Prop. Pts.                                                                                          |
|------------|-------------------------------------------------|------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|------------------|---------------------------------------------------|-------------------|-------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 150        | 17 609                                          | 638        | 667                                         | 696                                         | 725                                         | 754              | 782                                               | 811               | 840               | 869                                         |                                                                                                     |
| 151        | 898                                             | 926        | 955                                         | 984                                         | *013                                        | *041             | *070                                              | *099              | *127              | *156                                        |                                                                                                     |
| 152<br>153 | 18 184<br>469                                   | 213<br>498 | $\begin{array}{c c} 241 \\ 526 \end{array}$ | $\begin{array}{c c} 270 \\ 554 \end{array}$ | 298<br>583                                  | 327<br>611       | 355<br>639                                        | 384<br>667        | 412<br>696        | $\begin{array}{c c} 441 \\ 724 \end{array}$ | 29   28                                                                                             |
| 154        | 752                                             | 780        | 808                                         | 837                                         | 865                                         | 893              | 921                                               | 949               | 977               | *005                                        | 1 2.9 2.8                                                                                           |
| 1          | 10.000                                          | 0.01       | 000                                         | 117                                         | 145                                         | 170              | 001                                               |                   |                   | 005                                         | $egin{array}{c cccc} 1 & 2.9 & 2.8 \ 2 & 5.8 & 5.6 \ 3 & 8.7 & 8.4 \ 4 & 11.6 & 11.2 \ \end{array}$ |
| 155<br>156 | $\begin{vmatrix} 19 & 033 \\ 312 \end{vmatrix}$ | 061<br>340 | $\frac{089}{368}$                           | 117<br>396                                  | $\begin{array}{c c} 145 \\ 424 \end{array}$ | 173<br>451       | $\begin{array}{ c c }\hline 201\\ 479\end{array}$ | 229<br>507        | 257<br>535        | 285<br>562                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 157        | 590                                             | 618        | 645                                         | 673                                         | 700                                         | 728              | 756                                               | 783               | 811               | 838                                         | 6   17.4   16.8                                                                                     |
| 158        | 866                                             | 893        | 921                                         | 948                                         | 976                                         | *003             | *030                                              | *058              | *085              | *112                                        | 7 20.3 19.6                                                                                         |
| 159        | 20 140                                          | 167        | 194                                         | 222                                         | 249                                         | 276              | 303                                               | 330               | 358               | 385                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 160        | 412                                             | 439        | 466                                         | 493                                         | 520                                         | 548              | 575                                               | 602               | 629               | 656                                         |                                                                                                     |
| 161<br>162 | 683<br>952                                      | 710<br>978 | 737<br>*005                                 | 763<br>*032                                 | 790<br>*059                                 | 817<br>*085      | 844<br>*112                                       | 871<br>*139       | 898<br>*165       | 925<br>*192                                 | 27   26                                                                                             |
| 163        | 21 219                                          | 245        | 272                                         | 299                                         | 325                                         | 352              | 378                                               | 405               | 431               | 458                                         |                                                                                                     |
| 164        | 484                                             | 511        | 537                                         | 564                                         | 590                                         | 617              | 643                                               | 669               | 696               | 722                                         | $egin{array}{c c c} 1 & 2.7 & 2.6 \ 2 & 5.4 & 5.2 \ \end{array}$                                    |
| 165        | 748                                             | 775        | 801                                         | 827                                         | 854                                         | 880              | 906                                               | 932               | 958               | 985                                         | $egin{array}{c c c} 2 & 5.4 & 5.2 \\ 3 & 8.1 & 7.8 \\ 4 & 10.8 & 10.4 \\ \end{array}$               |
| 166        | 22 011                                          | 037        | 063                                         | 089                                         | 115                                         | 141              | 167                                               | 194               | 220               | 246                                         | 5 [13.5]13.0                                                                                        |
| 167        | 272                                             | 298        | 324                                         | 350                                         | 376                                         | 401              | 427                                               | 453               | 479               | 505                                         | 5   13.5   13.0<br>6   16.2   15.6<br>7   18.9   18.2<br>8   21.6   20.8                            |
| 168<br>169 | 531<br>789                                      | 557<br>814 | 583<br>840                                  | 608<br>866                                  | 634<br>891                                  | 660 917          | 686 943                                           | 712 968           | 737 994           | 763<br>*019                                 | $egin{array}{c c} 8 & 21.6 & 20.8 \\ 9 & 24.3 & 23.4 \\ \hline \end{array}$                         |
| 170        | 23 045                                          | 070        | 096                                         | $\frac{-000}{121}$                          | $\frac{-001}{147}$                          | $\frac{1}{172}$  | 198                                               | 223               | 249               | 274                                         | J  21.5 25.1                                                                                        |
| 171        | 300                                             | 325        | $\frac{050}{350}$                           | $\frac{121}{376}$                           | 401                                         | 426              | $\frac{158}{452}$                                 | $\frac{223}{477}$ | $\frac{243}{502}$ | 528                                         | . 05                                                                                                |
| 172        | 553                                             | 578        | 603                                         | 629                                         | 654                                         | 679              | 704                                               | 729               | 754               | 779                                         | 25                                                                                                  |
| 173        | 805                                             | 830        | 855                                         | 880                                         | 905                                         | 930              | 955                                               | 980<br>229        | *005<br>254       | *030<br>279                                 | $\begin{array}{c c} 1 & 2.5 \\ 2 & 5.0 \end{array}$                                                 |
| 174        | 24 055                                          | 080        | 105                                         | 130                                         | 155                                         | 180              | 204                                               | 229               | 204               | 219                                         | 3   7.5                                                                                             |
| 175        | 304                                             | 329        | 353                                         | 378                                         | 403                                         | 428              | 452                                               | 477               | 502               | 527                                         | $\begin{array}{c c} 4 & 10.0 \\ 5 & 12.5 \end{array}$                                               |
| 176<br>177 | 551<br>797                                      | 576<br>822 | 601<br>846                                  | 625<br>871                                  | 650<br>895                                  | 674<br>920       | 699                                               | 724<br>969        | 748 993           | 773<br>*018                                 | $\begin{array}{c c} 6 & 15.0 \\ 7 & 17.5 \end{array}$                                               |
| 178        | 25 042                                          | 066        | 091                                         | 115                                         | 139                                         | 164              | 188                                               | 212               | 237               | 261                                         | $\begin{array}{c c} 8 & 20.0 \\ 9 & 22.5 \end{array}$                                               |
| 179        | 285                                             | 310        | 334                                         | 358                                         | 382                                         | 406              | 431                                               | 455               | 479               | 503                                         | 9 22.5                                                                                              |
| 180        | 527                                             | 551        | 575                                         | 600                                         | 624                                         | 648              | 672                                               | 696               | 720               | 744                                         | . 04 . 00                                                                                           |
| 181<br>182 | 768<br>26 007                                   | 792<br>031 | 816<br>055                                  | 840 079                                     | 864<br>102                                  | 888<br>126       | 912                                               | 935<br>174        | 959<br>198        | 983<br>221                                  | 24   23                                                                                             |
| 183        | 245                                             | 269        | 293                                         | 316                                         | 340                                         | 364              | 387                                               | 411               | 435               | 458                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 184        | 482                                             | 505        | 529                                         | 553                                         | 576                                         | 600              | 623                                               | 647               | 670               | 694                                         | $3 \mid 7.2 \mid 6.9$                                                                               |
| 185        | 717                                             | 741        | 764                                         | 788                                         | 811                                         | 834              | 858                                               | 881               | 905               | 928                                         | $egin{array}{c cccc} 4 & 9.6 & 9.2 \\ 5 & 12.0 & 11.5 \\ \hline \end{array}$                        |
| 186        | 951                                             | 975        | 998                                         | *021                                        | *045                                        | *068             | *091                                              | *114              | *138              | *161                                        | $egin{array}{c cccc} 6 & 14.4 & 13.8 \\ 7 & 16.8 & 16.1 \\ \hline \end{array}$                      |
| 187<br>188 | 27 184 416                                      | 207<br>439 | 231<br>462                                  | 254 485                                     | 508                                         | 300 531          | 323<br>554                                        | 346 577           | 370 600           | 393<br>623                                  | 8   19.2   18.4                                                                                     |
| 189        | 646                                             | 669        | 692                                         | 715                                         | 738                                         | 761              | 784                                               | 807               | 830               | 852                                         | 9  21.6  20.7                                                                                       |
| 190        | 875                                             | 898        | 921                                         | 944                                         | 967                                         | 989              | *012                                              | *035              | *058              | *081                                        |                                                                                                     |
| 191        | 28 103                                          | 126        | 149                                         | 171                                         | 194                                         | $\overline{217}$ | 240                                               | 262               | 285               | 307                                         | 22   21                                                                                             |
| 192        | 330                                             | 353        | 375                                         | 398                                         | 421                                         | 443              | 466                                               | 488 713           | 511<br>735        | 533<br>758                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 193<br>194 | 556<br>780                                      | 578<br>803 | 601<br>825                                  | 623 847                                     | 646<br>870                                  | 668              | 691 914                                           | 937               | 959               | 981                                         | $\bar{3}$   6.6   6.3                                                                               |
|            |                                                 |            |                                             |                                             |                                             |                  |                                                   |                   |                   |                                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 195        | 29 003 226                                      | 026 248    | 048 270                                     | 070 292                                     | 092                                         | 115              | 137<br>358                                        | 159<br>380        | 181 403           | 203<br>425                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |
| 196<br>197 | 447                                             | 469        | 491                                         | 513                                         | 535                                         | 557              | 579                                               | 601               | 623               | 645                                         | 8 17.6 16.8                                                                                         |
| 198        | 667                                             | 688        | 710                                         | 732                                         | 754                                         | 776              | 798                                               | 820<br>*038       | 842<br>*060       | 863<br>*081                                 | 9  19.8 18.9                                                                                        |
| 199        | 885                                             | 907        | 929                                         | 951                                         | 973                                         | 994              | *016                                              |                   | 276               | 298                                         |                                                                                                     |
| 200        | 30 103                                          | 125        | 146                                         | 168                                         | 190                                         | 211              | 233                                               | 255               |                   |                                             | 7 7:                                                                                                |
| N          | L 0                                             | 1          | 2                                           | 3                                           | 4                                           | 5                | 6                                                 | 7                 | 8                 | 9                                           | Prop. Pts.                                                                                          |

| N                                         | L 0                                           | 1                                                         | 2           | 3           | 4                 | 5           | 6           | 7           | 8           | 9                                          | Prop. Pts.                                                                                                                                 |
|-------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|-------------|-------------|-------------------|-------------|-------------|-------------|-------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 200                                       | 30 103                                        | 125                                                       | 146         | 168         | 190               | 211         | 233         | 255         | 276         | 298                                        |                                                                                                                                            |
| 201                                       | 320                                           | 341                                                       | 363         | 384         | 406               | 428         | 449         | 471         | 492         | 514                                        |                                                                                                                                            |
| 202                                       | 535                                           | 557                                                       | 578         | 600         | 621               | 643         | 664         | 685         | 707         | 728                                        | 22   21                                                                                                                                    |
| 203                                       | 750<br>963                                    | 771<br>984                                                | 792<br>*006 | 814<br>*027 | 835<br>*048       | 856<br>*069 | 878<br>*091 | 899<br>*112 | 920<br>*133 | 942<br>*154                                | 1 2.2 2.1                                                                                                                                  |
| 204                                       | 900                                           | 304                                                       | 1000        | 1021        | 1040              | .009        | .091        | 1112        | .199        | .104                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                      |
| 205                                       | 31 175                                        | 197                                                       | 218         | 239         | 260               | 281         | 302         | 323         | 345         | 366                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                      |
| 206                                       | 387                                           | 408                                                       | 429         | 450         | 471               | 492         | 513         | 534         | 555         | 576                                        | 5 11.0 10.5                                                                                                                                |
| 207                                       | 597                                           | 618<br>827                                                | 639         | 660<br>869  | 681<br>890        | 702 911     | 723<br>931  | 744<br>952  | 765<br>973  | 785<br>994                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                      |
| 208<br>209                                | $\begin{array}{c} 806 \\ 32\ 015 \end{array}$ | 035                                                       | 848         | 077         | 098               | 118         | 139         | 160         | 181         | 201                                        | 8  17.6   16.8                                                                                                                             |
|                                           |                                               |                                                           |             |             |                   |             |             |             |             |                                            | 9   19.8   18.9                                                                                                                            |
| 210                                       | 222                                           | 243                                                       | 263         | 284         | 305               | 325         | 346         | 366         | 387         | 408                                        |                                                                                                                                            |
| 211                                       | 428                                           | 449                                                       | 469<br>675  | 490         | 510               | 531<br>736  | 552<br>756  | 572<br>777  | 593<br>797  | 613<br>818                                 | 20                                                                                                                                         |
| 212<br>213                                | 634<br>838                                    | 654<br>858                                                | 879         | 695<br>899  | 715               | 940         | 960         | 980         | *001        | *021                                       |                                                                                                                                            |
| 214                                       | 33 041                                        | 062                                                       | 082         | 102         | 122               | 143         | 163         | 183         | 203         | 224                                        | $egin{array}{c c} 1 & 2.0 \\ 2 & 4.0 \end{array}$                                                                                          |
|                                           |                                               |                                                           |             |             |                   |             |             |             |             | 40.                                        | $\begin{bmatrix} 3 & 6.0 \\ 6.0 \end{bmatrix}$                                                                                             |
| 215                                       | $\begin{bmatrix} 244 \\ 445 \end{bmatrix}$    | $   \begin{array}{c c}     264 \\     465   \end{array} $ | 284<br>486  | 304<br>506  | 325<br>526        | 345<br>546  | 365<br>566  | 385<br>586  | 405 606     | $\begin{vmatrix} 425 \\ 626 \end{vmatrix}$ | $\begin{array}{c cccc} 2 & 4.0 \\ 3 & 6.0 \\ 4 & 8.0 \\ 5 & 10.0 \\ 6 & 12.0 \\ 7 & 14.0 \\ 8 & 16.0 \\ 9 & 18.0 \end{array}$              |
| 216<br>217                                | $\begin{array}{c} 445 \\ 646 \end{array}$     | 666                                                       | 686         | 706         | $\frac{520}{726}$ | 746         | 766         | 786         | 806         | 826                                        | 6 12.0                                                                                                                                     |
| 218                                       | 846                                           | 866                                                       | 885         | 905         | 925               | 945         | 965         | 985         | *005        | *025                                       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                     |
| 219                                       | 34 044                                        | 064                                                       | 084         | 104         | 124               | 143         | 163         | 183         | 203         | 223                                        | 9 18.0                                                                                                                                     |
| 220                                       | 242                                           | 262                                                       | 282         | 301         | 321               | 341         | 361         | 380         | 400         | 420                                        |                                                                                                                                            |
| 221                                       | 439                                           | 459                                                       | 479         | 498         | 518               | 537         | 557         | 577         | 596         | 616                                        | 19                                                                                                                                         |
| $\begin{array}{c} 222 \\ 223 \end{array}$ | 635<br>830                                    | 655<br>850                                                | 674<br>869  | 694         | 713 908           | 733 928     | 753 947     | 967         | 792<br>986  | 811<br>*005                                | 1 1.9                                                                                                                                      |
| $\begin{array}{c} 223 \\ 224 \end{array}$ | 35 025                                        | 044                                                       | 064         | 083         | 102               | 122         | 141         | 160         | 180         | 199                                        | $\begin{bmatrix} 1 & 1.9 \\ 2 & 3.8 \end{bmatrix}$                                                                                         |
|                                           |                                               |                                                           |             |             |                   |             |             |             |             |                                            | $\begin{array}{c cccc} 1 & 1.9 \\ 2 & 3.8 \\ 3 & 5.7 \\ 4 & 7.6 \\ 5 & 9.5 \\ 6 & 11.4 \\ 7 & 13.3 \\ 8 & 15.2 \\ 9 & 17.1 \\ \end{array}$ |
| $\begin{array}{c} 225 \\ 226 \end{array}$ | 218<br>411                                    | 238<br>430                                                | 257 449     | 276<br>468  | 295<br>488        | 315 507     | 334<br>526  | 353<br>545  | 372<br>564  | 392<br>583                                 | 5 9.5                                                                                                                                      |
| $\begin{array}{c} 220 \\ 227 \end{array}$ | 603                                           | 622                                                       | 641         | 660         | 679               | 698         | 717         | 736         | 755         | 774                                        | $\begin{array}{c c} 6 & 11.4 \\ 7 & 13.3 \end{array}$                                                                                      |
| 228                                       | 793                                           | 813                                                       | 832         | 851         | 870               | 889         | 908         | 927         | 946         | 965                                        | 8 15.2                                                                                                                                     |
| 229                                       | 984                                           | *003                                                      | *021        | *040        | *059              | *078        | *097        | *116        | *135        | *154                                       | 9  17.1                                                                                                                                    |
| 230                                       | 36 173                                        | 192                                                       | 211         | 229         | 248               | 267         | 286         | 305         | 324         | 342                                        | . 40                                                                                                                                       |
| $\begin{array}{c} 231 \\ 232 \end{array}$ | 361<br>549                                    | 380<br>568                                                | 399<br>586  | 418 605     | 436 624           | 455<br>642  | 474<br>661  | 493<br>680  | 511<br>698  | 530<br>717                                 | 18                                                                                                                                         |
| 233                                       | 736                                           | 754                                                       | 773         | 791         | 810               | 829         | 847         | 866         | 884         | 903                                        | $\frac{1}{2} \left  \frac{1.8}{2.6} \right $                                                                                               |
| 234                                       | 922                                           | 940                                                       | 959         | 977         | 996               | *014        | *033        | *051        | *070        | *088                                       | $egin{array}{c c} 2 & 3.6 \ 3 & 5.4 \end{array}$                                                                                           |
| 235                                       | 37 107                                        | 125                                                       | 144         | 162         | 181               | 199         | 218         | 236         | 254         | 273                                        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                     |
| $\frac{236}{236}$                         | 291                                           | 310                                                       | 328         | 346         | 365               | 383         | 401         | 420         | 438         | 457                                        | 6 10.8                                                                                                                                     |
| 237                                       | 475                                           | 493                                                       | 511         | 530         | 548               | 566         | 585         | 603         | 621         | 639                                        | 7 12.6<br>8 14.4                                                                                                                           |
| 238                                       | 658                                           | 676                                                       | 694         | 712         | 731               | 749         | 767         | 785         | 803         | 822                                        | 9 16.2                                                                                                                                     |
| 239                                       | 840                                           | 858                                                       | 876         | 894         | 912               | 931         | 949         | 967         | 985         | *003                                       |                                                                                                                                            |
| 240                                       | 38 021                                        | 039                                                       | 057         | 075         | 093               | 112         | 130         | 148         | 166         | 184                                        | 17                                                                                                                                         |
| $\begin{array}{c} 241 \\ 242 \end{array}$ | 202<br>382                                    | 220<br>399                                                | 238<br>417  | 256<br>435  | 274<br>453        | 292<br>471  | 310<br>489  | 328<br>507  | 346<br>525  | 364<br>543                                 |                                                                                                                                            |
| $\frac{242}{243}$                         | 561                                           | 578                                                       | 596         | 614         | 632               | 650         | 668         | 686         | 703         | 721                                        | $\begin{array}{ c c c c c }\hline 1 & 1.7 \\ 2 & 3.4 \\ \hline \end{array}$                                                                |
| 244                                       | 739                                           | 757                                                       | 775         | 792         | 810               | 828         | 846         | 863         | 881         | 899                                        | $\begin{bmatrix} 3 & 5.1 \\ 4 & 6.8 \end{bmatrix}$                                                                                         |
| 245                                       | 917                                           | 934                                                       | 952         | 970         | 987               | *005        | *023        | *041        | *058        | *076                                       | $5 \mid 8.5$                                                                                                                               |
| $\frac{240}{246}$                         | 39 094                                        | 111                                                       | 129         | 146         | 164               | 182         | 199         | 217         | 235         | 252                                        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                     |
| 247                                       | 270                                           | 287                                                       | 305         | 322         | 340               | 358         | 375         | 393         | 410         | 428                                        | 8 13.6                                                                                                                                     |
| $\frac{248}{249}$                         | 445<br>620                                    | 463 637                                                   | 480 655     | 498 672     | 515 690           | 533         | 550 724     | 568         | 585<br>759  | 602                                        | 9 15.3                                                                                                                                     |
| 250                                       | 794                                           | 811                                                       | 829         | 846         | 863               | 881         | 898         | 915         | 933         | 950                                        |                                                                                                                                            |
|                                           |                                               |                                                           | 2           |             |                   |             |             | -           |             | 9                                          | Dron Dt-                                                                                                                                   |
| N                                         | L 0                                           | 1                                                         | Z           | 3           | 4                 | 5           | 6           | 7           | 8           | 9                                          | Prop. Pts.                                                                                                                                 |

250-300

| 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N                                          | L 0    | 1    | 2    | 3    | 4                 | 5          | 6    | 7    | 8           | 9          | Prop. Pts.                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|------|------|------|-------------------|------------|------|------|-------------|------------|--------------------------------------------------------------------------------|
| 252   40   140   157   175   192   209   226   243   221   278   205   238   234   234   249   466   248   254   248   350   518   535   552   569   586   603   620   637   1   1.8   255   256   524   584   584   585   875   522   569   586   603   620   637   2   3.6   3.6   255   256   524   584   584   585   875   892   909   926   943   960   976   47.2   257   993   *9010   *9027   *944   *961   *9078   *958   *9111   *128   *145   482   258   41162   179   196   212   229   246   263   280   226   313   77   12.6   229   246   263   280   226   313   77   12.6   229   246   263   280   226   313   77   12.6   229   246   263   280   226   313   77   12.6   229   246   263   280   226   313   77   12.6   226   243   229   246   481   9   16.2   229   246   228   248   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   249   245   245   245   245   245   245   245   245   245   245   245 |                                            |        |      | 1    |      | 863               | 881        | 898  | 915  | 933         | 950        |                                                                                |
| 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |        |      |      |      |                   |            |      |      |             |            |                                                                                |
| 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{bmatrix} 252 \\ 253 \end{bmatrix}$ | 312    |      |      |      | 381               |            |      |      |             | 295<br>466 | 18                                                                             |
| 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 254                                        | 483    |      |      | 535  | 552               |            |      |      |             |            | 1   1.8                                                                        |
| 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 255                                        | 651    | 671  | 600  | 705  | 700               | 720        | 750  | 770  | <b>=</b> 00 | 00-        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          |
| 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 824    |      |      |      |                   |            |      |      |             |            | $\frac{4}{5}$ $\begin{vmatrix} 7.\overline{2} \\ 7.\overline{2} \end{vmatrix}$ |
| 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 257                                        | 993    | *010 | *027 | *044 | *061              | *078       | *095 | *111 | *128        | *145       | $\begin{array}{c c} 5 & 9.0 \\ 6 & 10.8 \end{array}$                           |
| 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 41 162 |      |      |      | $\frac{229}{307}$ |            |      |      |             | 313        | 7 12.6                                                                         |
| \$\begin{array}{c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |        |      |      |      |                   |            |      |      |             |            | 9 16.2                                                                         |
| 262         830         847         863         880         896         913         929         946         963         979         11         127         144           264         42 160         177         193         210         226         243         259         275         292         308         1         1.7           265         325         341         357         374         390         406         423         439         455         472         4         6.8           266         488         504         521         537         553         570         586         602         619         635         5.8.5         8.5           266         488         504         521         537         553         570         586         602         619         635         5.8.5         8.5           268         813         830         846         862         878         894         911         927         943         959         7         11.9         11.9         11.9         13.9         959         7         11.9         11.9         14.0         14.0         14.0         14.0         14.0         14.0 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |        |      |      |      |                   |            |      |      |             |            |                                                                                |
| 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 262                                        | 830    |      |      |      |                   | 913        |      |      |             |            | 17                                                                             |
| 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |        |      |      |      |                   |            | *095 | *111 | *127        | *144       | 1 17                                                                           |
| 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 264                                        | 42 160 | 177  | 193  | 210  | 226               | 243        | 259  | 275  | 292         | 308        | $\frac{1}{2} \left  \frac{1.7}{3.4} \right $                                   |
| 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |        |      |      |      | 390               | 406        | 423  | 439  | 455         | 472        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          |
| 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 266                                        | 488    |      |      |      | 553               |            | 586  | 602  | 619         | 635        | $\begin{array}{c c} 5 & 8.5 \\ 6 & 10.2 \end{array}$                           |
| 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 813    |      |      | 862  | 878               | 732<br>894 |      |      |             |            | 7 11.9                                                                         |
| \$\begin{array}{ c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | 975    |      |      |      |                   |            |      |      |             |            | $\begin{array}{c c} 8 & 13.6 \\ 9 & 15.3 \end{array}$                          |
| 16   277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 270                                        | 43 136 | 152  | 169  | 185  | 201               | 217        | 233  | 249  | 265         | 281        |                                                                                |
| 273         616         632         648         664         680         696         712         727         743         759         1         1.6           274         775         791         807         823         838         854         870         886         902         917         2         3.2           275         933         949         965         981         996         *012         *028         *044         *059         *075         4         6.4           276         44 091         107         122         138         154         170         185         201         217         232         5         8.0           277         248         264         279         295         311         326         342         358         373         389         7         11.2           278         404         420         436         451         467         483         498         514         529         545         8         12.8           279         560         576         592         607         623         638         654         669         685         700         914.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 271                                        | 297    |      | 329  |      | 361               |            |      |      | 425         | 441        | 1 16                                                                           |
| 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 272                                        | 457    | 473  |      |      |                   |            |      |      | 584         |            |                                                                                |
| 280         716         731         747         762         778         793         809         824         840         855           281         871         886         902         917         932         948         963         979         994         *010           282         45 025         040         056         071         086         102         117         133         148         163           284         332         347         362         378         393         408         423         439         454         469         3         4.5           285         484         500         515         530         545         561         576         591         606         621         5         7.5           286         637         652         667         682         697         712         728         743         758         773         6         9.0           287         788         803         818         834         849         864         879         894         909         924         8         10.5           289         46 090         105         120         135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{273}{274}$                          | 775    |      |      |      |                   | 854        |      |      | 902         |            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          |
| 280         716         731         747         762         778         793         809         824         840         855           281         871         886         902         917         932         948         963         979         994         *010           282         45 025         040         056         071         086         102         117         133         148         163           284         332         347         362         272         240         255         271         286         301         317         1         1.5           285         484         500         515         530         545         561         576         591         606         621         5         7.5           286         637         652         667         682         697         712         728         743         758         773         6         9.0           287         788         803         818         834         849         864         879         894         909         924         8         10.5           288         939         954         969         984         ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |        |      |      |      |                   |            |      |      |             |            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          |
| 280         716         731         747         762         778         793         809         824         840         855           281         871         886         902         917         932         948         963         979         994         *010           282         45 025         040         056         071         086         102         117         133         148         163           284         332         347         362         378         393         408         423         439         454         469         3         4.5           285         484         500         515         530         545         561         576         591         606         621         5         7.5           286         637         652         667         682         697         712         728         743         758         773         6         9.0           287         788         803         818         834         849         864         879         894         909         924         8         10.5           289         46 090         105         120         135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | 933    |      |      |      |                   |            |      |      |             | *075       | 5 8.0                                                                          |
| 280         716         731         747         762         778         793         809         824         840         855           281         871         886         902         917         932         948         963         979         994         *010           282         45 025         040         056         071         086         102         117         133         148         163           284         332         347         362         378         393         408         423         439         454         469         3         4.5           285         484         500         515         530         545         561         576         591         606         621         5         7.5           286         637         652         667         682         697         712         728         743         758         773         6         9.0           287         788         803         818         834         849         864         879         894         909         924         8         10.5           289         46 090         105         120         135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 277                                        | 248    | 264  | 279  | 295  | 311               | 326        | 342  |      | 373         | 389        | $\begin{array}{c c} 6 & 9.6 \\ 7 & 11.2 \end{array}$                           |
| 280         716         731         747         762         778         793         809         824         840         855           281         871         886         902         917         932         948         963         979         994         *010           282         45 025         040         056         071         086         102         117         133         148         163           284         332         347         362         272         240         255         271         286         301         317         1         1.5           285         484         500         515         530         545         561         576         591         606         621         5         7.5           286         637         652         667         682         697         712         728         743         758         773         6         9.0           287         788         803         818         834         849         864         879         894         909         924         8         10.5           288         939         954         969         984         ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |        |      |      |      |                   | 483        |      |      | 529         | 545        | 8 12.8                                                                         |
| 281         871         886         902         917         932         948         963         979         994         **010         15           282         45 025         040         056         071         086         102         117         133         148         163           283         179         194         209         225         240         255         271         286         301         317         1         1.5         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |        | .    |      |      |                   | ·          | l    |      |             | <u> </u>   | 9  14.4                                                                        |
| 282         45 025         040         056         071         086         102         117         133         148         163         1         1         1.5         283         179         194         209         225         240         255         271         286         301         317         1         1.5         3.0         284         332         347         362         378         393         408         423         439         454         469         2         3.0         3.4.5         460         22         3.0         4.5         460         286         637         652         667         682         697         712         728         743         758         773         6         9.0         287         788         803         818         834         849         864         879         894         909         924         7         10.5         289         289         46 090         105         120         135         150         165         180         195         210         225         25         270         285         300         315         330         345         359         374         34         29         13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |        |      |      |      | t                 |            |      |      |             | 1          | . 45                                                                           |
| 283         179         194         209         225         240         255         271         286         301         317         362         3.0         378         393         408         423         439         454         469         3         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{281}{282}$                          | 45 025 |      | 056  |      |                   |            |      |      |             |            |                                                                                |
| 285         484         500         515         530         545         561         576         591         606         621         5         7.5         7.5         286         637         652         667         682         697         712         728         743         758         773         6         9.0         287         788         803         818         834         849         864         879         894         909         924         7         10.5         288         939         954         969         984         *000         *015         *030         *045         *060         *075         10.5         8         12.0         10.5         8         12.0         10.5         8         12.0         10.5         8         12.0         10.5         8         12.0         10.5         8         12.0         10.5         8         12.0         10.5         8         12.0         10.5         4         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 283                                        | 179    | 194  | 209  | 225  | 240               | 255        | 271  | 286  | 301         | 317        | $\begin{array}{c c} 1 & 1.5 \\ 2 & 3.0 \end{array}$                            |
| 285         484         500         515         530         545         561         576         591         606         621         5         7.5           286         637         652         667         682         697         712         728         743         758         773         6         9.0           287         788         803         818         834         849         864         879         894         909         924         77         10.5           288         939         954         969         984         *000         *015         *030         *045         *060         *075         8         12.0           289         46 090         105         120         135         150         165         180         195         210         225           290         240         255         270         285         300         315         330         345         359         374           291         389         404         419         434         449         464         479         494         509         523           291         538         553         568         583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 284                                        | 332    | 347  | 362  | 378  | 393               | 408        | 423  | 439  | 454         | 469        | 3 4.5                                                                          |
| 289         46 090         105         120         135         150         165         180         195         210         225           290         240         255         270         285         300         315         330         345         359         374           291         389         404         419         434         449         464         479         494         509         523           292         538         553         568         583         598         613         627         642         657         672         1         1.4           293         687         702         716         731         746         761         776         790         805         820         2         2.8           294         835         850         864         879         894         909         923         938         953         967         3         4.2           295         982         997         *012         *026         *041         *056         *070         *085         *100         *114         5         7.0         6         8.4           296         47 129         144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 285                                        | 484    |      | 515  | 530  |                   | 561        |      |      | 606         | 621        | 5 7.5                                                                          |
| 289         46 090         105         120         135         150         165         180         195         210         225           290         240         255         270         285         300         315         330         345         359         374           291         389         404         419         434         449         464         479         494         509         523           292         538         553         568         583         598         613         627         642         657         672         1         1.4           293         687         702         716         731         746         761         776         790         805         820         2         2.8           294         835         850         864         879         894         909         923         938         953         967         3         4.2           295         982         997         *012         *026         *041         *056         *070         *085         *100         *114         5         7.0         6         8.4           296         47 129         144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 637    |      |      |      |                   |            |      |      |             |            | $\begin{bmatrix} 6 & 9.0 \\ 7 & 10.5 \end{bmatrix}$                            |
| 289         46 090         105         120         135         150         165         180         195         210         225           290         240         255         270         285         300         315         330         345         359         374           291         389         404         419         434         449         464         479         494         509         523           292         538         553         568         583         598         613         627         642         657         672         1         1.4           293         687         702         716         731         746         761         776         790         805         820         2         2.8           294         835         850         864         879         894         909         923         938         953         967         3         4.2           295         982         997         *012         *026         *041         *056         *070         *085         *100         *114         5         7.0         6         8.4           296         47 129         144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 288                                        | 939    |      |      |      |                   |            |      | *045 | *060        |            | 8 12.0                                                                         |
| 291         389         404         419         434         449         464         479         494         509         523           292         538         553         568         583         598         613         627         642         657         672           293         687         702         716         731         746         761         776         790         805         820           294         835         850         864         879         894         909         923         938         953         967           295         982         997         *012         *026         *041         *056         *070         *085         *100         *114         5         7.0           296         47 129         144         159         173         188         202         217         232         246         261         7         9.8           297         276         290         305         319         334         349         363         378         392         407         8         11.2           298         422         436         451         465         480         494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 289                                        |        |      |      |      |                   |            |      |      |             |            | 5 [10.0                                                                        |
| 291         538         404         419         434         449         404         479         494         509         523         523         1         1.4         1.4         293         687         702         716         731         746         761         776         790         805         820         2         2.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8         22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |        |      |      |      |                   |            |      |      |             | 1          | 114                                                                            |
| 293         687         702         716         731         746         761         776         790         805         820         2         2.8           294         835         850         864         879         894         909         923         938         953         967         3         4.2         4         5.6           295         982         997         *012         *026         *041         *056         *070         *085         *100         *114         5         7.0         6         8.4         202         217         232         246         261         7         9.8         8.4         297         276         290         305         319         334         349         363         378         392         407         8         11.2         298         422         436         451         465         480         494         509         524         538         553         9         12.6           300         712         727         741         756         770         784         799         813         828         842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 291                                        | 389    |      | 419  | 434  |                   |            | 479  |      |             | 523        |                                                                                |
| 294         835         850         864         879         894         909         923         938         953         967         3   4.2   4.56           295         982         997         *012         *026         *041         *056         *070         *085         *100         *114         5   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0                                                                                                                                                                                                                                                    |                                            | 687    |      |      |      |                   |            |      |      | 805         | 820        | $\begin{bmatrix} 1 & 1.4 \\ 2 & 2.8 \end{bmatrix}$                             |
| 298     422     436     451     465     480     494     509     524     538     553       299     567     582     596     611     625     640     654     669     683     698       300     712     727     741     756     770     784     799     813     828     842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | 835    |      | 864  |      |                   |            |      |      |             |            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                         |
| 298     422     436     451     465     480     494     509     524     538     553       299     567     582     596     611     625     640     654     669     683     698       300     712     727     741     756     770     784     799     813     828     842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 295                                        | 982    | 997  | *012 | *026 | *041              | *056       | *070 | *085 | *100        | *114       | 5 7.0                                                                          |
| 298     422     436     451     465     480     494     509     524     538     553       299     567     582     596     611     625     640     654     669     683     698       300     712     727     741     756     770     784     799     813     828     842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 296                                        | 47 129 | 144  | 159  | 173  | 188               | 202        | 217  | 232  | 246         | 261        | 7 9.8                                                                          |
| 299     567     582     596     611     625     640     654     669     683     698       300     712     727     741     756     770     784     799     813     828     842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | 276    |      |      |      |                   |            |      |      |             |            | 8 11.2                                                                         |
| <b>300</b> 712 727 741 756 770 784 799 813 828 842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |        |      |      |      |                   |            |      |      | 683         |            | 0 12.0                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |        | -    |      |      |                   |            | 799  | 813  | 828         | 842        |                                                                                |
| N L 0 1 2 3 4 5 6 7 8 9 Prop. Pts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                          | -      | 1-   | - /  | 3    | 4                 | 5          | 6    | 7    | 8           | 9          | Prop. Pts.                                                                     |

 $\log e = .43429$ 

300-350

| N          | L 0                | 1                                                                     | 2                                          | 3           | 4                 | 5                                                                  | 6                 | 7                 | 8                 | 9                                           | Prop. Pts.                                                                                                                        |
|------------|--------------------|-----------------------------------------------------------------------|--------------------------------------------|-------------|-------------------|--------------------------------------------------------------------|-------------------|-------------------|-------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 300        | 47 712             | 727                                                                   | 741                                        | 756         | 770               | 784                                                                | 799               | 813               | 828               | 842                                         |                                                                                                                                   |
| 301 302    | 857                | 871                                                                   | 885                                        | 900         | 914<br>058        | 929<br>073                                                         | 943<br>087        | 958<br>101        | 972<br>116        | 986<br>130                                  |                                                                                                                                   |
| 302        | 48 001<br>144      | 015<br>159                                                            | $\begin{bmatrix} 029 \\ 173 \end{bmatrix}$ | 044<br>187  | 202               | 216                                                                | 230               | 244               | 259               | 273                                         |                                                                                                                                   |
| 304        | 287                | 302                                                                   | 316                                        | 330         | 344               | 359                                                                | 373               | 387               | 401               | 416                                         | 15                                                                                                                                |
| 305        | 430                | 444                                                                   | 458                                        | 473         | 487               | 501                                                                | 515               | 530               | 544               | 558                                         | $\begin{array}{c c}1&1.5\\2&3.0\end{array}$                                                                                       |
| 306        | 572                | 586<br>728                                                            | $601 \\ 742$                               | 615<br>756  | 629<br>770        | 643                                                                | 657<br>799        | 671<br>813        | 686<br>827        | 700<br>841                                  | $3 \mid 4.5$                                                                                                                      |
| 307        | 714<br>855         | 869                                                                   | 883                                        | 897         | 911               | 926                                                                | 940               | 954               | 968               | 982                                         | $egin{array}{c c} 4 & 6.0 \ 5 & 7.5 \end{array}$                                                                                  |
| 309        | 996                | *010                                                                  | *024                                       | *038        | *052              | *066                                                               | *080              | *094              | *108              | *122                                        | $\begin{array}{c c} 6 & 9.0 \\ 7 & 10.5 \end{array}$                                                                              |
| 310        | 49 136             | 150                                                                   | 164                                        | 178         | 192               | 206                                                                | 220               | 234               | 248               | 262                                         | $ \begin{array}{c c} 8 & 12.0 \\ 9 & 13.5 \end{array} $                                                                           |
| 311        | 276                | 290                                                                   | 304<br>443                                 | 318<br>457  | 332<br>471        | 346<br>485                                                         | 360<br>499        | 374<br>513        | 388<br>527        | $\begin{array}{c c} 402 \\ 541 \end{array}$ | 0 (10.0                                                                                                                           |
| 312<br>313 | 415<br>554         | 429<br>  568                                                          | 582                                        | 596         | 610               | 624                                                                | 638               | 651               | 665               | 679                                         |                                                                                                                                   |
| 314        | 693                | 707                                                                   | 721                                        | 734         | 748               | 762                                                                | 776               | 790               | 803               | 817                                         |                                                                                                                                   |
| 315        | 831                | 845                                                                   | 859                                        | 872         | 886               | 900                                                                | 914               | 927               | 941               | 955                                         | 14                                                                                                                                |
| 316        | 969<br>50 106      | 982                                                                   | 996<br>133                                 | *010<br>147 | *024<br>161       | *037<br>174                                                        | *051<br>188       | *065<br>202       | *079<br>215       | *092<br>229                                 | 1 1.4                                                                                                                             |
| 317        | 243                | 256                                                                   | $\begin{vmatrix} 133 \\ 270 \end{vmatrix}$ | 284         | 297               | 311                                                                | 325               | 338               | 352               | 365                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             |
| 319        | 379                | 393                                                                   | 406                                        | 420         | 433               | 447                                                                | 461               | 474               | 488               | 501                                         | $\begin{array}{c c} 3 & 4.2 \\ 4 & 5.6 \\ \end{array}$                                                                            |
| 320        | 515                | 529                                                                   | 542                                        | 556         | 569               | 583                                                                | 596               | 610               | 623               | 637                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             |
| 321<br>322 | 651<br>786         | 664 799                                                               | 678<br>813                                 | 691<br>826  | 705<br>840        | 718<br>853                                                         | 732<br>866        | 745<br>880        | 759<br>893        | 772<br>907                                  | 7   9.8<br>8   11.2                                                                                                               |
| 323        | 920                | 934                                                                   | 947                                        | 961         | 974               | 987                                                                | *001              | *014              | *028              | *041                                        | 9  12.6                                                                                                                           |
| 324        | 51 055             | 068                                                                   | 081                                        | 095         | 108               | 121                                                                | 135               | 148               | 162               | 175                                         |                                                                                                                                   |
| 325        | 188                | 202                                                                   | 215                                        | 228         | 242               | 255                                                                | 268               | 282               | 295               | 308                                         |                                                                                                                                   |
| 326<br>327 | 322<br>455         | 335 468                                                               | 348<br>481                                 | 362<br>495  | 375<br>508        | 388<br>521                                                         | 402<br>534        | 415 548           | 428<br>561        | 441<br>574                                  | . 10                                                                                                                              |
| 328        | 587                | 601                                                                   | 614                                        | 627         | 640               | 654                                                                | 667               | 680               | 693               | 706                                         | 13                                                                                                                                |
| 329        | 720                | 733                                                                   | 746                                        | 759         | 772               | 786                                                                | 799               | 812               | 825               | 838                                         | $egin{array}{c c} 1 & 1.3 \\ 2 & 2.6 \end{array}$                                                                                 |
| 330        | 851                | 865                                                                   | 878                                        | 891         | 904               | 917                                                                | 930<br>*061       | 943<br>*075       | 957<br>*088       | $\frac{970}{*101}$                          | 2   2.6<br>3   3.9<br>4   5.2<br>5   6.5<br>6   7.8<br>9.1<br>8   10.4                                                            |
| 331<br>332 | 983<br>52 114      | 996<br>127                                                            | *009<br>140                                | *022<br>153 | *035<br>166       | *048<br>179                                                        | 192               | 205               | 218               | 231                                         | $egin{array}{c c} ar{5} & ar{6.5} \ ar{7.8} \end{array}$                                                                          |
| 333        | 244                | 257                                                                   | 270                                        | 284         | 297               | 310                                                                | 323               | 336               | 349               | 362<br>492                                  | 7 9.1<br>8 10.4                                                                                                                   |
| 334        | 375                | 388                                                                   | 401                                        | 414         | 427               | 440                                                                | 453               | 466               | 479               |                                             | 9 11.7                                                                                                                            |
| 335        | 504                | 517                                                                   | 530                                        | 543         | 556               | 569 699                                                            | 582               | 595               | 608               | $\begin{vmatrix} 621 \\ 750 \end{vmatrix}$  |                                                                                                                                   |
| 336<br>337 | 634<br>763         | 647                                                                   | 660 789                                    | 673 802     | 686               | 827                                                                | 840               | 853               | 866               | 879                                         |                                                                                                                                   |
| 338        | 892                | 905                                                                   | 917                                        | 930         | 943               | 956 084                                                            | 969 097           | 982               | 994               | *007<br>135                                 |                                                                                                                                   |
| 339        | 53 020             | 033                                                                   | 046                                        | 058         | 071               |                                                                    |                   |                   |                   | 263                                         | 12                                                                                                                                |
| 340<br>341 | $\frac{148}{275}$  | $\begin{array}{ c c } \hline 161 \\ \hline 288 \\ \hline \end{array}$ | 173<br>301                                 | 186<br>314  | $\frac{199}{326}$ | $\begin{array}{ c c c }\hline 212\\\hline 339\\\hline \end{array}$ | $\frac{224}{352}$ | $\frac{237}{364}$ | $\frac{250}{377}$ | $\frac{203}{390}$                           | $egin{array}{c c} 1 & 1.2 \\ 2 & 2.4 \end{array}$                                                                                 |
| 342        | 403                | 415                                                                   | 428                                        | 441         | 453               | 466                                                                | 479               | 491               | 504               | 517                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             |
| 343        | 529                | 542                                                                   | 555 681                                    | 567 694     | 580 706           | 593                                                                | 605               | 618               | 631 757           | 643                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             |
| 344        | 656                | 668                                                                   |                                            |             |                   |                                                                    | 1                 |                   |                   |                                             | $egin{array}{c cccc} 2 & 2.4 \\ 3 & 3.6 \\ 4 & 4.8 \\ 5 & 6.0 \\ 6 & 7.2 \\ 7 & 8.4 \\ 8 & 9.6 \\ 9 & 10.8 \\ \hline \end{array}$ |
| 345        | 782<br>908         | 794 920                                                               | 807 933                                    | 820<br>945  | 832<br>958        | 845 970                                                            | 857<br>983        | 870 995           | 882<br>*008       | 895<br> *020                                | $\begin{smallmatrix}8&9.6\\9&10.8\end{smallmatrix}$                                                                               |
| 347        | 54 033             | 045                                                                   | 058                                        | 070         | 083               | 095                                                                | 108               | 120               | 133               | 145                                         |                                                                                                                                   |
| 348        | 158<br>283         | 170 295                                                               | 183                                        | 195<br>320  | 208<br>332        | 220<br>345                                                         | 233 357           | 245<br>370        | 258<br>  382      | 270<br>394                                  |                                                                                                                                   |
| 350        | $-\frac{263}{407}$ | $\frac{255}{419}$                                                     | 432                                        | 444         | 456               | 469                                                                | 481               | 494               | 506               | 518                                         |                                                                                                                                   |
| N          | L 0                | 1                                                                     | 2                                          | 3           | 4                 | 5                                                                  | 6                 | 7                 | 8                 | 9                                           | Prop. Pts.                                                                                                                        |
| 1          | 12                 | N.                                                                    |                                            |             |                   | 1                                                                  |                   | 7.7 -             |                   | 1                                           |                                                                                                                                   |

 $\log \pi = .49715$ 

| N          | L 0                   | 1                                                                  | 2                 | 3                 | 4                                           | 5                                                                          | 6                                                                  | 7                                                    | 8                                                    | 9                                                  | Prop. Pts.                                                                                                                             |
|------------|-----------------------|--------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 350        | 54 407                | 419                                                                | 432               | 444               | 456                                         | 469                                                                        | 481                                                                | 494                                                  | 506                                                  | 518                                                |                                                                                                                                        |
| 351<br>352 | 531<br>654            | 543<br>667                                                         | 555<br>679        | 568<br>691        | 580<br>704                                  | 593<br>716                                                                 | 605<br>728                                                         | $\begin{array}{c} 617 \\ 741 \end{array}$            | 630                                                  | 642                                                |                                                                                                                                        |
| 353        | 777                   | 790                                                                | 802               | 814               | 827                                         | 839                                                                        | 851                                                                | 864                                                  | 753<br>876                                           | 765<br>888                                         |                                                                                                                                        |
| 354        | 900                   | 913                                                                | 925               | 937               | 949                                         | 962                                                                        | 974                                                                | 986                                                  | 998                                                  | *011                                               | 13                                                                                                                                     |
| 355        | 55 023                | 035                                                                | 047               | 060               | 072                                         | 084                                                                        | 096                                                                | 108                                                  | 121                                                  | 133                                                | $egin{array}{c c} 1 & 1.3 \\ 2 & 2.6 \\ 3 & 3.9 \end{array}$                                                                           |
| 356<br>357 | 145<br>267            | 157<br>279                                                         | 169<br>291        | 182 303           | 194<br>315                                  | 206<br>  328                                                               | 218<br>340                                                         | $\begin{array}{ c c }\hline 230\\ 352\\ \end{array}$ | 242<br>364                                           | $\frac{255}{376}$                                  | $4 \mid 5.2 \mid$                                                                                                                      |
| 358        | 388                   | 400                                                                | 413               | 425               | 437                                         | 449                                                                        | 461                                                                | 473                                                  | 485                                                  | 497                                                | $5 \mid 6.5 \mid$                                                                                                                      |
| 359<br>360 | 630                   | $\begin{array}{ c c c }\hline 522\\\hline 642\\\hline \end{array}$ | $\frac{534}{654}$ | 546<br>666        | 558<br>678                                  | $\begin{array}{ c c c c c }\hline 570 \\ \hline 691 \\ \hline \end{array}$ | $\begin{array}{ c c c }\hline 582\\\hline 703\\\hline \end{array}$ | 594<br>715                                           | $\frac{606}{727}$                                    | 618                                                | $\begin{bmatrix} 7 & 9.1 \\ 8 & 10.4 \end{bmatrix}$                                                                                    |
| 361        | 751                   | $\frac{042}{763}$                                                  | 775               | 787               | 799                                         | 811                                                                        | 823                                                                | 835                                                  | 847                                                  | 739<br>859                                         | 9  11.7                                                                                                                                |
| 362        | 871                   | 883                                                                | 895               | 907               | 919                                         | 931                                                                        | 943                                                                | 955                                                  | 967                                                  | 979                                                |                                                                                                                                        |
| 363<br>364 | 991 56 110            | *003<br>122                                                        | *015<br>134       | *027<br>146       | *038<br>158                                 | *050<br>170                                                                | *062<br>182                                                        | *074<br>194                                          | *086<br>205                                          | *098<br>217                                        |                                                                                                                                        |
| 365        | 229                   | 241                                                                | 253               | 265               | 277                                         | 289                                                                        | 301                                                                | 312                                                  | 324                                                  | 336                                                | i <b>12</b>                                                                                                                            |
| 366        | 348                   | 360                                                                | 372               | 384               | 396                                         | 407                                                                        | 419                                                                | 431                                                  | 443                                                  | 455                                                |                                                                                                                                        |
| 367<br>368 | 467<br>585            | 478<br>597                                                         | 490<br>608        | 502<br>620        | $\begin{array}{c c} 514 \\ 632 \end{array}$ | $\begin{array}{c c} 526 \\ 644 \end{array}$                                | 538<br>656                                                         | 549<br>667                                           | 561<br>679                                           | 573<br>691                                         | $\begin{array}{c c} 1 & 1.2 \\ 2 & 2.4 \end{array}$                                                                                    |
| 369        | 703                   | 714                                                                | 726               | 738               | 750                                         | 761                                                                        | 773                                                                | 785                                                  | 797                                                  | 808                                                | $egin{array}{c c} 3 & 3.6 \\ 4 & 4.8 \end{array}$                                                                                      |
| 370        | 820                   | 832                                                                | 844               | 855               | 867                                         | 879                                                                        | 891                                                                | 902                                                  | 914                                                  | 926                                                | $\begin{array}{c cccc} 1 & 1.2 \\ 2 & 2.4 \\ 3 & 3.6 \\ 4 & 4.8 \\ 5 & 6.0 \\ 6 & 7.2 \\ 7 & 8.4 \end{array}$                          |
| 371<br>372 | 937<br>57 054         | 949<br>066                                                         | 961<br>078        | 972<br>089        | 984<br>101                                  | 996<br>113                                                                 | *008<br>124                                                        | *019<br>136                                          | *031<br>148                                          | *043<br>159                                        | $egin{array}{c c} 7 & 8.4 \\ 8 & 9.6 \\ 9 & 10.8 \\ \end{array}$                                                                       |
| 373        | 171                   | 183                                                                | 194               | 206               | 217                                         | 229                                                                        | 241                                                                | 252                                                  | 264                                                  | 276                                                | 9  10.8                                                                                                                                |
| 374        | 287                   | <b>2</b> 99                                                        | 310               | 322               | 334                                         | 345                                                                        | 357                                                                | 368                                                  | 380                                                  | 392                                                |                                                                                                                                        |
| 375<br>376 | 403<br>519            | 415<br>530                                                         | 426<br>542        | 438               | 449<br>565                                  | 461<br>576                                                                 | 473                                                                | 484                                                  | 496                                                  | 507                                                |                                                                                                                                        |
| 377        | 634                   | 646                                                                | 657               | 553<br>669        | 680                                         | 692                                                                        | 588<br>703                                                         | $600 \\ 715$                                         | $\begin{array}{ c c }\hline 611\\ 726\\ \end{array}$ | 623<br>738                                         | 11                                                                                                                                     |
| 378<br>379 | 749<br>864            | 761<br>875                                                         | 772<br>887        | 784<br>898        | 795<br>910                                  | $807 \\ 921$                                                               | 818<br>933                                                         | 830<br>944                                           | 841<br>955                                           | 852<br>967                                         | 1 1.1                                                                                                                                  |
| 380        | 978                   | 990                                                                | *001              | *013              | *024                                        | *035                                                                       | *047                                                               | *058                                                 | *070                                                 | *081                                               | $\begin{bmatrix} 2 & 2.2 \\ 3 & 3.3 \end{bmatrix}$                                                                                     |
| 381        | 58 092                | 104                                                                | 115               | 127               | 138                                         | $\frac{-000}{149}$                                                         | 161                                                                | 172                                                  | 184                                                  | 195                                                | $egin{array}{c c} 4 & 4.4 \\ 5 & 5.5 \\ \hline \end{array}$                                                                            |
| 382<br>383 | 206<br>320            | 218<br>331                                                         | $\frac{229}{343}$ | $\frac{240}{354}$ | $\frac{252}{365}$                           | $\frac{263}{377}$                                                          | $\begin{array}{c} 274 \\ 388 \end{array}$                          | $\frac{286}{399}$                                    | 297<br>410                                           | $\begin{array}{c c} 309 \\ 422 \end{array}$        | $\begin{bmatrix} 6 & 6.6 \\ 7 & 7.7 \end{bmatrix}$                                                                                     |
| 384        | 433                   | 444                                                                | 456               | 467               | 478                                         | 490                                                                        | 501                                                                | 512                                                  | 524                                                  | 535                                                | 2   2.2<br>3   3.3<br>4   4.4<br>5   5.5<br>6   6.6<br>7   7.7<br>8   8.8<br>9   9.9                                                   |
| 385        | 546                   | 557                                                                | 569               | 580               | 591                                         | 602                                                                        | 614                                                                | 625                                                  | 636                                                  | 647                                                |                                                                                                                                        |
| 386<br>387 | 659<br>771            | 670<br>782                                                         | 681<br>794        | 692<br>805        | 704<br>816                                  | $\begin{array}{c} 715 \\ 827 \end{array}$                                  | 726<br>838                                                         | 737<br>850                                           | 749<br>861                                           | 760<br>872                                         |                                                                                                                                        |
| 388        | 883                   | 894                                                                | 906               | 917               | 928                                         | 939                                                                        | 950                                                                | 961                                                  | 973                                                  | 984                                                |                                                                                                                                        |
| 389        | 995                   | *006                                                               | *017              | *028              | *040                                        | *051                                                                       | *062                                                               | *073                                                 | *084                                                 | *095                                               | 10                                                                                                                                     |
| 390        | $\frac{59\ 106}{218}$ | $\frac{118}{229}$                                                  | $\frac{129}{240}$ | $\frac{140}{251}$ | $\frac{151}{262}$                           | $\frac{162}{273}$                                                          | $\frac{173}{284}$                                                  | $\frac{184}{295}$                                    | $\frac{195}{306}$                                    | $\begin{array}{c c} 207 \\ \hline 318 \end{array}$ | $\begin{array}{c c} 1 & 1.0 \\ 2 & 2.0 \end{array}$                                                                                    |
| 391<br>392 | 329                   | 340                                                                | 351               | 362               | 373                                         | 384                                                                        | 395                                                                | 406                                                  | 417                                                  | 428                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                  |
| 393<br>394 | 439<br>550            | 450<br>561                                                         | 461<br>572        | 472<br>583        | 483<br>594                                  | 494<br>605                                                                 | 506<br>616                                                         | 517<br>627                                           | 528<br>638                                           | 539<br>649                                         | 5   5.0                                                                                                                                |
|            |                       |                                                                    |                   |                   |                                             |                                                                            |                                                                    |                                                      |                                                      |                                                    | $\begin{array}{c cccc} 1 & 1.0 \\ 2 & 2.0 \\ 3 & 3.0 \\ 4 & 4.0 \\ 5 & 5.0 \\ 6 & 6.0 \\ 7 & 7.0 \\ 8 & 8.0 \\ 9 & 9.0 \\ \end{array}$ |
| 395<br>396 | 660<br>770            | 671 780                                                            | 682<br>791        | 693<br>802        | 704<br>813                                  | $\begin{array}{c} 715 \\ 824 \end{array}$                                  | 726<br>835                                                         | 737<br>846                                           | 748<br>857                                           | 759<br>868                                         | $ \begin{array}{c c} 8 & 8.0 \\ 9 & 9.0 \end{array} $                                                                                  |
| 397        | 879                   | 890                                                                | 901               | 912               | 923                                         | 934                                                                        | 945                                                                | 956                                                  | 966                                                  | 977                                                |                                                                                                                                        |
| 398<br>399 | 988                   | 999<br><b>108</b>                                                  | *010<br>119       | *021<br>130       | *032<br>141                                 | *13<br>152                                                                 | *054<br>163                                                        | *065<br>173                                          | *076<br>184                                          | *086<br>195                                        |                                                                                                                                        |
| 400        | 206                   | 217                                                                | 228               | 239               | 249                                         | 260                                                                        | 271                                                                | 282                                                  | 293                                                  | 304                                                |                                                                                                                                        |
| N          | L 0                   | 1                                                                  | 2                 | 3                 | 4                                           | 5                                                                          | 6                                                                  | 7                                                    | 8                                                    | 9                                                  | Prop. Pts.                                                                                                                             |
|            | 1                     |                                                                    |                   |                   |                                             |                                                                            |                                                                    |                                                      |                                                      |                                                    |                                                                                                                                        |

400-450

| N                                                    | L 0                                                                              | 1                                                                          | 2                                           | 3                                         | 4                                                                        | 5                                                      | 6                 | 7                                                                  | 8                                                                    | 9                                                        | Prop. Pts.                                                                                                                              |
|------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|-------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 400                                                  | 60 206                                                                           | 217                                                                        | 228                                         | 239                                       | 249                                                                      | 260                                                    | 271               | 282                                                                | 293                                                                  | 304                                                      |                                                                                                                                         |
| 401                                                  | 314                                                                              | 325                                                                        | 336                                         | 347                                       | 358                                                                      | 369                                                    | 379               | 390                                                                | 401<br>509                                                           | 412<br>520                                               |                                                                                                                                         |
| $\begin{array}{ c c }\hline 402\\ 403\\ \end{array}$ | $\frac{423}{531}$                                                                | $\begin{array}{c c} 433 \\ 541 \end{array}$                                | $\begin{array}{c c} 444 \\ 552 \end{array}$ | $\begin{array}{c} 455 \\ 563 \end{array}$ | $\begin{array}{c} 466 \\ 574 \end{array}$                                | 477<br>584                                             | 487<br>595        | 498<br>606                                                         | 617                                                                  | $\begin{array}{ c c c }\hline 520 \\ 627 \\ \end{array}$ |                                                                                                                                         |
| 404                                                  | 638                                                                              | 649                                                                        | 660                                         | 670                                       | 681                                                                      | 692                                                    | 703               | 713                                                                | 724                                                                  | 735                                                      |                                                                                                                                         |
| 405                                                  | 746                                                                              | 756                                                                        | 767                                         | 778                                       | 788                                                                      | 799                                                    | 810               | 821                                                                | 831                                                                  | 842                                                      |                                                                                                                                         |
| 406                                                  | 853                                                                              | 863                                                                        | 874                                         | 885                                       | 895                                                                      | 906                                                    | 917               | 927                                                                | 938<br>*045                                                          | 949                                                      | 11                                                                                                                                      |
| 407<br>408                                           | $959 \\ 61\ 066$                                                                 | 970<br>077                                                                 | 981<br>087                                  | 991<br>098                                | *002<br>109                                                              | *013<br>119                                            | *023<br>130       | *034<br>140                                                        | 151                                                                  | *055<br>162                                              | 1 1.1                                                                                                                                   |
| 409                                                  | 172                                                                              | 183                                                                        | 194                                         | 204                                       | 215                                                                      | 225                                                    | 236               | 247                                                                | 257                                                                  | 268                                                      | $\begin{bmatrix} 2 & 2.2 \\ 3 & 3.3 \end{bmatrix}$                                                                                      |
| 410                                                  | 278                                                                              | 289                                                                        | 300                                         | 310                                       | 321                                                                      | 331                                                    | 342               | 352                                                                | 363                                                                  | 374                                                      | $egin{array}{c cccc} 1 & 1.1 \\ 2 & 2.2 \\ 3 & 3.3 \\ 4 & 4.4 \\ 5 & 5.5 \\ 6 & 6.6 \\ 7 & 7.7 \\ 8 & 8.8 \\ 9.9 \\ \hline \end{array}$ |
| 411                                                  | 384                                                                              | 395                                                                        | 405                                         | 416                                       | 426                                                                      | 437                                                    | 448               | 458                                                                | 469                                                                  | 479                                                      | $\begin{bmatrix} 6 & 6.6 \\ 7 & 7.7 \end{bmatrix}$                                                                                      |
| 412<br>413                                           | $\frac{490}{595}$                                                                | 500<br>606                                                                 | $\begin{array}{c c} 511 \\ 616 \end{array}$ | $\frac{521}{627}$                         | 532<br>637                                                               | 542<br>648                                             | 553<br>658        | 563<br>669                                                         | 574<br>679                                                           | 584<br>690                                               | 8 8.8 9.9                                                                                                                               |
| 414                                                  | 700                                                                              | 711                                                                        | 721                                         | 731                                       | 742                                                                      | 752                                                    | 763               | 773                                                                | 784                                                                  | 794                                                      | 9   9.9                                                                                                                                 |
| 415                                                  | 805                                                                              | 815                                                                        | 826                                         | 836                                       | 847                                                                      | 857                                                    | 868               | 878                                                                | 888                                                                  | 899                                                      |                                                                                                                                         |
| 416                                                  | 909                                                                              | $920 \\ 024$                                                               | $\begin{bmatrix} 930 \\ 034 \end{bmatrix}$  | $941 \\ 045$                              | 951<br>055                                                               | $962 \\ 066$                                           | 972<br>076        | 982<br>086                                                         | 993                                                                  | *003<br>107                                              |                                                                                                                                         |
| 417<br>418                                           | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                           | 128                                                                        | 138                                         | 149                                       | 159                                                                      | 170                                                    | 180               | 190                                                                | $\begin{vmatrix} 097 \\ 201 \end{vmatrix}$                           | 211                                                      |                                                                                                                                         |
| 419                                                  | 221                                                                              | 232                                                                        | 242                                         | 252                                       | 263                                                                      | 273                                                    | 284               | 294                                                                | 304                                                                  | 315                                                      |                                                                                                                                         |
| 420                                                  | 325                                                                              | 335                                                                        | 346                                         | 356                                       | 366                                                                      | 377                                                    | 387               | 397                                                                | 408                                                                  | 418                                                      |                                                                                                                                         |
| $\begin{vmatrix} 421 \\ 422 \end{vmatrix}$           | 428<br>531                                                                       | 439<br>542                                                                 | 449<br>552                                  | 459<br>562                                | 469<br>572                                                               | 480<br>583                                             | 490<br>593        | 500<br>603                                                         | 511 613                                                              | $\begin{bmatrix} 521 \\ 624 \end{bmatrix}$               | 10                                                                                                                                      |
| 423                                                  | 634                                                                              | 644                                                                        | 655                                         | 665                                       | 675                                                                      | 685                                                    | 696               | 706                                                                | 716                                                                  | 726                                                      | $\begin{array}{c c} 1 & 1.0 \\ 2 & 2.0 \end{array}$                                                                                     |
| 424                                                  | 737                                                                              | 747                                                                        | 757                                         | 767                                       | 778                                                                      | 788                                                    | 798               | 808                                                                | 818                                                                  | 829                                                      | 3   3.0                                                                                                                                 |
| 425                                                  | 839                                                                              | 849                                                                        | 859                                         | 870                                       | 880                                                                      | 890                                                    | 900               | 910                                                                | 921                                                                  | 931                                                      | $egin{array}{c c} 4 & 4.0 \\ 5 & 5.0 \end{array}$                                                                                       |
| 426<br>427                                           | 941 63 043                                                                       | 951<br>053                                                                 | 961 063                                     | 972<br>073                                | 982<br>083                                                               | 992 094                                                | *002<br>104       | *012<br>114                                                        | *022<br>124                                                          | *033<br>134                                              | $egin{array}{c c} 6 & 6.0 \\ 7 & 7.0 \end{array}$                                                                                       |
| 428                                                  | 144                                                                              | 155                                                                        | 165                                         | 175                                       | 185                                                                      | 195                                                    | 205               | 215                                                                | 225                                                                  | 236                                                      | 8 8.0                                                                                                                                   |
| 429                                                  | 246                                                                              | 256                                                                        | 266                                         | 276                                       | 286                                                                      | 296                                                    | 306               | 317                                                                | 327                                                                  | 337                                                      | 9   9.0                                                                                                                                 |
| 430                                                  | 347                                                                              | 357                                                                        | 367                                         | 377                                       | 387                                                                      | 397                                                    | 407               | 417                                                                | 428                                                                  | 438                                                      |                                                                                                                                         |
| 431 432                                              | 448<br>548                                                                       | 458<br>558                                                                 | 468<br>568                                  | 478<br>579                                | 488<br>589                                                               | 498<br>599                                             | 508<br>609        | 518<br>619                                                         | 528<br>629                                                           | 538<br>639                                               |                                                                                                                                         |
| 433                                                  | 649                                                                              | 659                                                                        | 669                                         | 679                                       | 689                                                                      | 699                                                    | 709               | 719                                                                | 729                                                                  | 739                                                      |                                                                                                                                         |
| 434                                                  | 749                                                                              | 759                                                                        | 769                                         | 779                                       | 789                                                                      | 799                                                    | 809               | 819                                                                | 829                                                                  | 839                                                      |                                                                                                                                         |
| 435                                                  | 849                                                                              | 859                                                                        | 869                                         | 879                                       | 889                                                                      | 899                                                    | 909               | 919<br>*018                                                        | 929                                                                  | 939                                                      |                                                                                                                                         |
| 436 437                                              | 949 64 048                                                                       | 959                                                                        | 969 068                                     | 979                                       | 988<br>088                                                               | 998                                                    | *008<br>108       | 118                                                                | *028<br>128                                                          | *038<br>137                                              | 9                                                                                                                                       |
| 438                                                  | 147                                                                              | 157                                                                        | 167                                         | 177                                       | 187                                                                      | 197                                                    | 207               | 217                                                                | 227                                                                  | 237                                                      | 1 0.9                                                                                                                                   |
| 439                                                  | 246                                                                              | 256                                                                        | 266                                         | 276                                       | 286                                                                      | 296                                                    | 306               | 316                                                                | 326                                                                  | 335                                                      | $egin{array}{c c} 2 & 1.8 \\ 3 & 2.7 \\ 4 & 3.6 \end{array}$                                                                            |
| 440                                                  | $\begin{array}{ c c c c c c }\hline & 345 \\ \hline & 444 \\ \hline \end{array}$ | $\begin{array}{ c c c c c }\hline 355 \\ \hline 454 \\ \hline \end{array}$ | $\frac{365}{464}$                           | $\frac{375}{473}$                         | $\begin{array}{ c c c c }\hline 385 \\ \hline 483 \\ \hline \end{array}$ | $\frac{395}{493}$                                      | $\frac{404}{503}$ | $\begin{array}{ c c c }\hline 414\\\hline 513\\\hline \end{array}$ | $\begin{array}{ c c c }\hline 424\\ \hline 523\\ \hline \end{array}$ | $\frac{434}{532}$                                        | 5   4.5                                                                                                                                 |
| 442                                                  | 542                                                                              | 552                                                                        | 562                                         | 572                                       | 582                                                                      | 591                                                    | 601               | 611                                                                | 621                                                                  | 631                                                      | $egin{array}{c c} 6 & 5.4 \\ 7 & 6.3 \\ \end{array}$                                                                                    |
| 443                                                  | 640 738                                                                          | 650 748                                                                    | 660                                         | 670 768                                   | 680                                                                      | 689<br>787                                             | 699               | 709<br>807                                                         | 719 816                                                              | 729<br>826                                               | $egin{array}{c c} 8 & 7.2 \\ 9 & 8.1 \end{array}$                                                                                       |
|                                                      |                                                                                  | 1                                                                          |                                             |                                           |                                                                          |                                                        |                   |                                                                    |                                                                      |                                                          | 5 ( 0.2                                                                                                                                 |
| 445                                                  | 836<br>933                                                                       | 846                                                                        | 856<br>953                                  | 865<br>963                                | 875<br>972                                                               | 885<br>982                                             | 895 992           | 904<br>*002                                                        | 914                                                                  | 924<br>*021                                              |                                                                                                                                         |
| 447                                                  | 65 031                                                                           | 040                                                                        | 050                                         | 060                                       | 070                                                                      | 079                                                    | 089               | 099                                                                | 108                                                                  | 118                                                      |                                                                                                                                         |
| 448                                                  | $\begin{vmatrix} 128 \\ 225 \end{vmatrix}$                                       | 137 234                                                                    | 147<br>244                                  | 157<br>254                                | 167<br>263                                                               | $\begin{array}{ c c }\hline 176 \\ 273 \\ \end{array}$ | 186<br>283        | 196<br>292                                                         | $\begin{vmatrix} 205 \\ 302 \end{vmatrix}$                           | $\begin{array}{ c c }\hline 215\\ 312\\ \end{array}$     |                                                                                                                                         |
| 450                                                  | 321                                                                              | 331                                                                        | 341                                         | 350                                       | 360                                                                      | 369                                                    | 379               | 389                                                                | 398                                                                  | 408                                                      |                                                                                                                                         |
| N                                                    | L 0                                                                              | 1                                                                          | 2                                           | 3                                         | 4                                                                        | 5                                                      | 6                 | 7                                                                  | 8                                                                    | 9                                                        | Prop. Pts.                                                                                                                              |
|                                                      |                                                                                  |                                                                            |                                             |                                           |                                                                          |                                                        |                   |                                                                    |                                                                      |                                                          | Liop. Lts.                                                                                                                              |

450-500

|                                               |                                           |                                             |                   |                                             |                    |                                            | i                                           |                   |                   |                   |                                                                                                                                          |
|-----------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------|---------------------------------------------|--------------------|--------------------------------------------|---------------------------------------------|-------------------|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| N                                             | L 0                                       | 1                                           | 2                 | 3                                           | 4                  | 5                                          | 6                                           | 7                 | 8                 | 9                 | Prop. Pts.                                                                                                                               |
| 450                                           | 65 321                                    | 331                                         | 341               | 350                                         | 360                | 369                                        | 379                                         | 389               | 398               | 408               |                                                                                                                                          |
| 451                                           | 418                                       | 427                                         | 437               | 447                                         | 456                | 466                                        | 475                                         | 485               | 495               | 504               |                                                                                                                                          |
| 452<br>453                                    | 514<br>610                                | $\begin{bmatrix} 523 \\ 619 \end{bmatrix}$  | 533<br>629        | 543<br>639                                  | 552<br>648         | 562<br>658                                 | 571<br>667                                  | 581<br>677        | 591<br>686        | 600<br>696        |                                                                                                                                          |
| 454                                           | 706                                       | 715                                         | 725               | 734                                         | 744                | 753                                        | 763                                         | 772               | 782               | 792               |                                                                                                                                          |
| 455                                           | 801                                       | 811                                         | 820               | 830                                         | 839                | 849                                        | 858                                         | 868               | 877               | 887               |                                                                                                                                          |
| 456                                           | 896                                       | 906                                         | 916               | 925                                         | 935                | 944                                        | 954                                         | 963               | 973               | 982               | 10                                                                                                                                       |
| 457                                           | 992                                       | *001                                        | *011              |                                             | *030               | *039                                       | *049                                        | *058              | *068              | *077              |                                                                                                                                          |
| $\begin{array}{ c c } 458 \\ 459 \end{array}$ | 66 087<br>181                             | $\begin{array}{c c} 096 \\ 191 \end{array}$ | $\frac{106}{200}$ | $\begin{array}{c c} 115 \\ 210 \end{array}$ | $\frac{124}{219}$  | $\begin{vmatrix} 134 \\ 229 \end{vmatrix}$ | $\begin{array}{c c} 143 \\ 238 \end{array}$ | $\frac{153}{247}$ | $\frac{162}{257}$ | 172<br>266        | $\begin{array}{c c}1&1.0\\2&2.0\end{array}$                                                                                              |
| 460                                           | 276                                       | 285                                         | 295               | 304                                         | 314                | 323                                        | 332                                         | 342               | 351               | 361               | $\begin{array}{c cccc} 2 & 2.0 \\ 3 & 3.0 \\ 4 & 4.0 \\ 5 & 5.0 \\ 6 & 6.0 \\ 7 & 7.0 \\ 8 & 8.0 \\ 9 & 9.0 \end{array}$                 |
| 461                                           | 370                                       | 380                                         | 389               | 398                                         | $\frac{-314}{408}$ | $\frac{323}{417}$                          | $\frac{332}{427}$                           | 436               | 445               | 455               | $\begin{array}{c c} 5 & 5.0 \\ 6 & 6.0 \end{array}$                                                                                      |
| 462                                           | 464                                       | 474                                         | 483               | 492                                         | 502                | 511                                        | 521                                         | 530               | 539               | 549               | 6 6.0                                                                                                                                    |
| $\frac{463}{464}$                             | $\begin{array}{c} 558 \\ 652 \end{array}$ | 567<br>661                                  | 577<br>671        | 586<br>680                                  | 596<br>689         | 605                                        | 614                                         | 624               | 633<br>727        | 642               | $\begin{array}{c c} 8 & 8.0 \\ 9 & 9.0 \end{array}$                                                                                      |
|                                               |                                           |                                             |                   |                                             |                    | 699                                        | 708                                         | 717               |                   | 736               |                                                                                                                                          |
| $\frac{465}{466}$                             | 745<br>839                                | 755<br>848                                  | 764<br>857        | 773<br>867                                  | 783<br>876         | 792                                        | 801                                         | 811               | 820<br>913        | 829               |                                                                                                                                          |
| 467                                           | 932                                       | 941                                         | 950               | 960                                         | 969                | 885<br>978                                 | 894<br>987                                  | 904<br>997        | *006              | 922<br>*015       |                                                                                                                                          |
| 468                                           | 67 025                                    | 034                                         | 043               | 052                                         | 062                | 071                                        | 080                                         | 089               | 099               | 108               |                                                                                                                                          |
| 469                                           | 117                                       | 127                                         | 136               | 145                                         | 154                | 164                                        | 173                                         | 182               | 191               | 201               |                                                                                                                                          |
| 470                                           | 210                                       | 219                                         | 228               | $\frac{237}{330}$                           | 247                | $\frac{256}{248}$                          | $\frac{265}{257}$                           | 274               | 284               | $\frac{293}{385}$ |                                                                                                                                          |
| 471<br>472                                    | $\frac{302}{394}$                         | 311<br>403                                  | 321<br>413        | $\frac{330}{422}$                           | 339<br>431         | 348<br>440                                 | 357<br>449                                  | $\frac{367}{459}$ | 376<br>468        | 477               | 9                                                                                                                                        |
| 473                                           | 486                                       | 495                                         | 504               | 514                                         | 523                | 532                                        | 541                                         | 550               | 560               | 569               | 1 0.9                                                                                                                                    |
| 474                                           | 578                                       | 587                                         | 596               | 605                                         | 614                | 624                                        | 633                                         | 642               | 651               | 660               | $egin{array}{c c} 1 & 0.9 \\ 2 & 1.8 \\ 3 & 2.7 \\ 4 & 3.6 \\ 5 & 4.5 \\ 6 & 5.4 \\ 7 & 6.3 \\ 8 & 7.2 \\ 9 & 8.1 \\ \hline \end{array}$ |
| 475                                           | 669                                       | 679                                         | 688               | 697                                         | 706                | 715                                        | 724                                         | 733               | 742               | 752               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                    |
| 476                                           | 761<br>852                                | 770 861                                     | 779<br>870        | 788<br>879                                  | 797<br>888         | 806<br>897                                 | 815<br>906                                  | 825<br>916        | 834<br>925        | 843<br>934        | $\begin{array}{c c}6 & 5.4 \\ 7 & 6.3\end{array}$                                                                                        |
| 478                                           | 943                                       | 952                                         | 961               | 970                                         | 979                | 988                                        | 997                                         | *006              | *015              | *024              | $\begin{array}{c c} 8 & 7.2 \\ 9 & 8.1 \end{array}$                                                                                      |
| 479                                           | 68 034                                    | 043                                         | 052               | 061                                         | 070                | 079                                        | 088                                         | 097               | 106               | 115               | 9   8.1                                                                                                                                  |
| 480                                           | 124                                       | 133                                         | 142               | 151                                         | 160                | 169                                        | 178                                         | 187               | 196               | 205               |                                                                                                                                          |
| 481<br>482                                    | 215<br>305                                | 224<br>314                                  | 233<br>323        | 242<br>332                                  | $251 \\ 341$       | $\frac{260}{350}$                          | 269<br>359                                  | 278<br>368        | 287<br>377        | 296<br>386        |                                                                                                                                          |
| 483                                           | 395                                       | 404                                         | 413               | 422                                         | 431                | 440                                        | 449                                         | 458               | 467               | 476               |                                                                                                                                          |
| 484                                           | 485                                       | 494                                         | 502               | 511                                         | 520                | 529                                        | 538                                         | 547               | 556               | 565               |                                                                                                                                          |
| 485                                           | 574                                       | 583                                         | 592               | 601                                         | 610                | 619                                        | 628                                         | 637               | 646               | 655               | •                                                                                                                                        |
| 486                                           | 664                                       | 673 762                                     | 681 771           | 690                                         | 699<br>789         | 708                                        | 717<br>806                                  | 726<br>815        | 735<br>824        | 744<br>833        | 8                                                                                                                                        |
| 487<br>488                                    | 753<br>842                                | 851                                         | 860               | 869                                         | 878                | 886                                        | 895                                         | 904               | 913               | 922               | 1 0.8                                                                                                                                    |
| 489                                           | 931                                       | 940                                         | 949               | 958                                         | 966                | 975                                        | 984                                         | 993               | *002              | *011              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                    |
| 490                                           | 69 020                                    | 028                                         | 037               | 046                                         | 055                | 064                                        | 073                                         | 082               | 090               | 099               | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                   |
| 491                                           | 108                                       | 117                                         | 126               | 135                                         | 144                | 152                                        | 161                                         | 170               | 179<br>267        | 188<br>276        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                    |
| 492                                           | 197<br>285                                | $\begin{vmatrix} 205 \\ 294 \end{vmatrix}$  | 302               | 223                                         | 232<br>320         | $\frac{241}{329}$                          | 249<br>338                                  | 258<br>346        | 355               | 364               | $\begin{bmatrix} 7 & 5.6 \\ 8 & 6.4 \end{bmatrix}$                                                                                       |
| 494                                           | 373                                       | 381                                         | 390               | 399                                         | 408                | 417                                        | 425                                         | 434               | 443               | 452               | $\begin{array}{c c} 8 & 6.4 \\ 9 & 7.2 \end{array}$                                                                                      |
| 495                                           | 461                                       | 469                                         | 478               | 487                                         | 496                | 504                                        | 513                                         | 522               | 531               | 539               |                                                                                                                                          |
| 496                                           | 548                                       | 557                                         | 556               | 574 662                                     | 583 671            | 592<br>679                                 | 601                                         | 609               | 618 705           | 627               |                                                                                                                                          |
| 497                                           | 636 723                                   | 644 732                                     | 653 740           | 749                                         | 758                | 767                                        | 775                                         | 784               | 793               | 801               |                                                                                                                                          |
| 499                                           | 810                                       | 819                                         | 827               | 836                                         | 845                | 854                                        | 862                                         | 871               | 880               | 888               |                                                                                                                                          |
| 500                                           | 897                                       | 906                                         | 914               | 923                                         | 932                | 940                                        | 949                                         | 958               | 966               | 975               |                                                                                                                                          |
| N                                             | L O                                       | 1                                           | 2                 | 3                                           | 4.                 | 5                                          | 6                                           | 7                 | 8                 | 9                 | Prop. Pts.                                                                                                                               |
| 1                                             |                                           |                                             | 1                 | 1                                           |                    |                                            |                                             |                   |                   |                   |                                                                                                                                          |

500-550

| _N                                          | L 0                                                     | 1                                         | 2                                                   | 3                                          | 4                                         | 5                                           | 6                                                    | 7          | 8                                                      | 9                                           | Prop. Pts.                                                                                                                                  |
|---------------------------------------------|---------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------------------------------|------------|--------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 500                                         | 69 897                                                  | 906                                       | 914                                                 | 923                                        | 932                                       | 940                                         | 949                                                  | 958        | 966                                                    | 975                                         |                                                                                                                                             |
| 501                                         | 984                                                     | 992                                       | *001                                                | *010                                       | *018                                      | *027                                        | *036                                                 | *044       | *053                                                   | *062                                        |                                                                                                                                             |
| 502                                         | 70 070                                                  | 079                                       | 088                                                 | 096                                        | 105                                       | 114                                         | 122                                                  | 131        | 140                                                    | 148                                         |                                                                                                                                             |
| 503<br>504                                  | $\begin{array}{c} 157 \\ 243 \end{array}$               | $\begin{array}{c} 165 \\ 252 \end{array}$ | $\begin{array}{c c} 174 \\ 260 \end{array}$         | 183<br>269                                 | 191<br>278                                | 200 286                                     | 209<br>295                                           | 303        | 226<br>  312                                           | 234<br>  321                                |                                                                                                                                             |
| 004                                         | 230                                                     | 202                                       | 200                                                 | 209                                        | 210                                       | 200                                         | 290                                                  | 000        | 012                                                    | 521                                         |                                                                                                                                             |
| 505                                         | 329                                                     | 338                                       | 346                                                 | 355                                        | 364                                       | 372                                         | 381                                                  | 389        | 398                                                    | 406                                         |                                                                                                                                             |
| 506                                         | 415                                                     | 424                                       | 432                                                 | 441                                        | 449                                       | 458                                         | 467                                                  | 475        | 484                                                    | 492                                         | 9                                                                                                                                           |
| 507<br>508                                  | 501<br>586                                              | 509<br>595                                | 518<br>603                                          | 526<br>612                                 | 535 621                                   | 544<br>629                                  | 552                                                  | 561 646    | 569 655                                                | 578                                         |                                                                                                                                             |
| 509                                         | 672                                                     | 680                                       | 689                                                 | 697                                        | 706                                       | 714                                         | 638 723                                              | 731        | 740                                                    | 663 749                                     | $egin{array}{ c c c c c }\hline &1&0.9\\2&1.8 \\\hline \end{array}$                                                                         |
|                                             |                                                         |                                           |                                                     |                                            |                                           |                                             |                                                      |            |                                                        |                                             | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                      |
| 510                                         | 757                                                     | 766                                       | 774                                                 | 783                                        | 791                                       | 800                                         | 808                                                  | 817        | 825                                                    | 834                                         | $\begin{bmatrix} 4 & 3.0 \\ 5 & 4.5 \end{bmatrix}$                                                                                          |
| 511<br>512                                  | $   \begin{array}{r}     842 \\     927   \end{array} $ | 851<br>935                                | 859<br>944                                          | 868<br>952                                 | 876<br>961                                | 885<br>969                                  | 893<br>978                                           | 902 986    | 910 995                                                | 919<br>*003                                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                      |
| 513                                         | 71 012                                                  | 020                                       | 029                                                 | 037                                        | 046                                       | 054                                         | 063                                                  | 071        | 079                                                    | 088                                         | 7 6.3<br>8 7.2<br>9 8.1                                                                                                                     |
| 514                                         | 096                                                     | 105                                       | 113                                                 | 122                                        | 130                                       | 139                                         | 147                                                  | 155        | 164                                                    | 172                                         | 9   8.1                                                                                                                                     |
| 515                                         | 181                                                     | 189                                       | 198                                                 | 206                                        | 214                                       | 223                                         | 231                                                  | 240        | 248                                                    | 257                                         |                                                                                                                                             |
| 516                                         | $\frac{161}{265}$                                       | 273                                       | 282                                                 | 290                                        | 299                                       | 307                                         | 315                                                  | 324        | 332                                                    | 341                                         |                                                                                                                                             |
| 517                                         | 349                                                     | 357                                       | 366                                                 | 374                                        | 383                                       | 391                                         | 399                                                  | 408        | 416                                                    | 425                                         |                                                                                                                                             |
| 518                                         | 433                                                     | 441                                       | 450                                                 | 458                                        | 466                                       | 475                                         | 483                                                  | 492        | 500                                                    | 508                                         |                                                                                                                                             |
| 519                                         | 517                                                     | 525                                       | 533                                                 | 542                                        | 550                                       | 559                                         | 567                                                  | 575        | 584                                                    | 592                                         |                                                                                                                                             |
| 520                                         | 600                                                     | 609                                       | 617                                                 | 625                                        | 634                                       | 642                                         | 650                                                  | 659        | 667                                                    | 675                                         |                                                                                                                                             |
| 521                                         | 684                                                     | 692                                       | 700                                                 | 709                                        | 717                                       | 725                                         | 734                                                  | 742        | 750                                                    | 759                                         | 8                                                                                                                                           |
| 522<br>523                                  | 767<br>850                                              | 775<br>858                                | 784<br>867                                          | 792<br>875                                 | 800<br>883                                | 809<br>892                                  | 817<br>900                                           | 825<br>908 | 834<br>917                                             | 842                                         |                                                                                                                                             |
| 524                                         | 933                                                     | 941                                       | 950                                                 | 958                                        | 966                                       | 975                                         | 983                                                  | 991        | 999                                                    | 925<br>*008                                 | $egin{array}{c c} 1 & 0.8 \\ 2 & 1.6 \end{array}$                                                                                           |
|                                             |                                                         |                                           |                                                     |                                            |                                           |                                             |                                                      |            |                                                        |                                             | $3 \mid 2.4$                                                                                                                                |
| $\frac{525}{526}$                           | $\begin{array}{c} 72\ 016 \\ 099 \end{array}$           | $024 \\ 107$                              | 032                                                 | 041                                        | 049                                       | 057                                         | 066                                                  | 074        | 082                                                    | 090                                         | $egin{array}{c c} ar{4} & ar{3}.ar{2} \\ ar{5} & 4.0 \end{array}$                                                                           |
| 520 $527$                                   | 181                                                     | 189                                       | 115<br>198                                          | $\begin{vmatrix} 123 \\ 206 \end{vmatrix}$ | $\begin{array}{c} 132 \\ 214 \end{array}$ | $\begin{array}{c c} 140 \\ 222 \end{array}$ | $\begin{array}{c c} 148 \\ 230 \end{array}$          | 156<br>239 | $\begin{array}{ c c }\hline 165 \\ 247 \\ \end{array}$ | $\begin{array}{c} 173 \\ 255 \end{array}$   | $\frac{6}{6} \mid \frac{4.8}{6}$                                                                                                            |
| 528                                         | $2\overline{63}$                                        | 272                                       | $\frac{180}{280}$                                   | 288                                        | 296                                       | 304                                         | 313                                                  | 321        | 329                                                    | 337                                         | $\begin{array}{c c} 7 & 5.6 \\ 8 & 6.4 \end{array}$                                                                                         |
| 529                                         | 346                                                     | 354                                       | 362                                                 | 370                                        | 378                                       | 387                                         | 395                                                  | 403        | 411                                                    | 419                                         | $9 \mid 7.2$                                                                                                                                |
| 530                                         | 428                                                     | 436                                       | 444                                                 | 452                                        | 460                                       | 469                                         | 477                                                  | 485        | 493                                                    | 501                                         |                                                                                                                                             |
| $\begin{array}{c c} 531 \\ 532 \end{array}$ | 509<br>591                                              | 518<br>599                                | 526<br>607                                          | 534<br>616                                 | $\begin{array}{c} 542 \\ 624 \end{array}$ | 550                                         | 558                                                  | 567        | 575                                                    | 583                                         |                                                                                                                                             |
| 533                                         | 673                                                     | 681                                       | 689                                                 | 697                                        | 705                                       | $\begin{array}{c} 632 \\ 713 \end{array}$   | $\begin{array}{ c c }\hline 640\\ 722\\ \end{array}$ | 648<br>730 | 656<br>738                                             | 665<br>746                                  |                                                                                                                                             |
| 534                                         | 754                                                     | 762                                       | 770                                                 | 779                                        | 787                                       | 795                                         | 803                                                  | 811        | 819                                                    | 827                                         |                                                                                                                                             |
| 535                                         | 835                                                     | 843                                       | 852                                                 | 860                                        | 868                                       | 200                                         |                                                      |            |                                                        |                                             |                                                                                                                                             |
| 536                                         | 916                                                     | 925                                       | 933                                                 | 941                                        | 949                                       | 876<br>957                                  | 884<br>965                                           | 892<br>973 | 900<br>981                                             | 908<br>989                                  |                                                                                                                                             |
| 537                                         | 997                                                     | *006                                      | *014                                                | *022                                       | *030                                      | *038                                        | *046                                                 | *054       | *062                                                   | *070                                        | 7                                                                                                                                           |
| 538                                         | 73 078                                                  | 086                                       | 094                                                 | 102                                        | 111                                       | 119                                         | 127                                                  | 135        | 143                                                    | 151                                         | 1 0.7                                                                                                                                       |
| 539                                         | 159                                                     | 167                                       | 175                                                 | 183                                        | 191                                       | 199                                         | 207                                                  | 215        | 223                                                    | 231                                         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                      |
| 540                                         | 239                                                     | 247                                       | 255                                                 | 263                                        | 272                                       | 280                                         | 288                                                  | 296        | 304                                                    | 312                                         | $egin{array}{c cccc} 1 & 0.7 \\ 2 & 1.4 \\ 3 & 2.1 \\ 4 & 2.8 \\ 5 & 3.5 \\ 6 & 4.2 \\ 7 & 4.9 \\ 8 & 5.6 \\ 9 & 6.3 \\ \hline \end{array}$ |
| 541                                         | 320                                                     | 328                                       | 336                                                 | 344                                        | 352                                       | 360                                         | 368                                                  | 376        | 384                                                    | 392                                         | $egin{array}{c c} ar{5} & ar{3}.ar{5} \ 6 & 4.2 \end{array}$                                                                                |
| 542<br>543                                  | 400<br>480                                              | 408<br>488                                | $\begin{array}{ c c }\hline 416 \\ 496 \end{array}$ | 424<br>504                                 | 432<br>512                                | $\begin{array}{c c} 440 \\ 520 \end{array}$ | $\frac{448}{528}$                                    | 456<br>536 | 464<br>544                                             | 472                                         | $\begin{array}{c c} 7 & 4.9 \\ \hline \end{array}$                                                                                          |
| 544                                         | 560                                                     | 568                                       | 576                                                 | 584                                        | 592                                       | 600                                         | 608                                                  | 616        | 624                                                    | $\begin{array}{c c} 552 \\ 632 \end{array}$ | $egin{array}{c c} 8 & 5.6 \ 9 & 6.3 \end{array}$                                                                                            |
| 545                                         | 640                                                     | 648                                       | 656                                                 |                                            |                                           |                                             |                                                      |            |                                                        |                                             |                                                                                                                                             |
| 546                                         | 719                                                     | $\frac{048}{727}$                         | 735                                                 | 664<br>743                                 | 672<br>751                                | 679<br>759                                  | 687<br>767                                           | 695<br>775 | 703<br>783                                             | 711<br>791                                  |                                                                                                                                             |
| 547                                         | 799                                                     | 807                                       | 815                                                 | 823                                        | 830                                       | 838                                         | 846                                                  | 854        | 862                                                    | 870                                         |                                                                                                                                             |
| 548                                         | 878                                                     | 886                                       | 894                                                 | 902                                        | 910                                       | 918                                         | 926                                                  | 933        | 941                                                    | 949                                         |                                                                                                                                             |
| 549                                         | 957                                                     | 965                                       | 973                                                 | 981                                        | 989                                       | 997                                         | *005                                                 | *013       | *020                                                   | *028                                        |                                                                                                                                             |
| 550                                         | 74 036                                                  | 044                                       | 052                                                 | 060                                        | 068                                       | 076                                         | 084                                                  | 092        | 099                                                    | 107                                         |                                                                                                                                             |
| N                                           | L 0                                                     | 1                                         | 2                                                   | 3                                          | 4                                         | 5                                           | 6                                                    | 7          | 8                                                      | 9                                           | Prop. Pts.                                                                                                                                  |

550-600

| N                                         | L 0                                                       | 1                                                      | 2                                                         | 3                                          | 4                                                         | 5                  | 6                 | 7                                          | 8                 | 9                                                                      | Pi | rop. Pts.                                                                            |  |
|-------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|--------------------|-------------------|--------------------------------------------|-------------------|------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------|--|
| 550                                       | 74 036                                                    | 044                                                    | 052                                                       | 060                                        | 068                                                       | 076                | 084               | 092                                        | 099               | 107                                                                    |    |                                                                                      |  |
| 551                                       | 115                                                       | 123                                                    | 131                                                       | 139                                        | 147                                                       | 155                | 162               | 170                                        | 178               | 186                                                                    |    |                                                                                      |  |
| 552                                       | 194                                                       | 202                                                    | 210                                                       | 218                                        | 225                                                       | 233                | 241               | $\begin{vmatrix} 249 \\ 327 \end{vmatrix}$ | 257               | 265                                                                    |    |                                                                                      |  |
| 553<br>554                                | $   \begin{array}{c}     273 \\     351   \end{array} $   | $\begin{array}{c c}280\\359\end{array}$                | $   \begin{array}{c c}     288 \\     367   \end{array} $ | 296<br>374                                 | $\frac{304}{382}$                                         | 312<br>390         | $\frac{320}{398}$ | 406                                        | 335   414         | 343<br>421                                                             |    |                                                                                      |  |
|                                           |                                                           |                                                        |                                                           |                                            |                                                           |                    | i                 |                                            |                   |                                                                        |    |                                                                                      |  |
| 555                                       | 429                                                       | 437                                                    | 445<br>523                                                | 453<br>531                                 | 461<br>539                                                | 468<br>547         | 476<br>554        | 484<br>562                                 | 492  <br>570      | 500<br>578                                                             |    |                                                                                      |  |
| 556<br>557                                | 507<br>586                                                | 515<br>593                                             | 601                                                       | 609                                        | 617                                                       | 624                | $\frac{534}{632}$ | 640                                        | 648               | 656                                                                    |    |                                                                                      |  |
| 558                                       | 663                                                       | 671                                                    | 679                                                       | 687                                        | 695                                                       | 702                | 710               | 718                                        | 726               | 733                                                                    |    |                                                                                      |  |
| 559                                       | 741                                                       | 749                                                    | 757                                                       | 764                                        | 772                                                       | 780                | 788               | 796                                        | 803               | 811                                                                    |    |                                                                                      |  |
| 560                                       | 819                                                       | 827                                                    | 834                                                       | 842                                        | 850                                                       | 858                | 865               | 873                                        | 881               | 889                                                                    |    |                                                                                      |  |
| 561                                       | 896                                                       | 904                                                    | 912                                                       | 920                                        | 927                                                       | 935                | 943               | 950                                        | 958               | 966                                                                    |    | 8                                                                                    |  |
| $\begin{array}{c} 562 \\ 563 \end{array}$ | 974<br>75 051                                             | 981<br>059                                             | 989   066                                                 | $997 \\ 074$                               | *005<br>082                                               | *012<br>089        | *020<br>097       | *028<br>105                                | *035  <br>113     | *043                                                                   |    | 0.8                                                                                  |  |
| 564                                       | 128                                                       | 136                                                    | 143                                                       | 151                                        | 159                                                       | 166                | 174               | 182                                        | 189               | 197                                                                    |    | $egin{array}{c c} 2 & 1.6 \ 3 & 2.4 \end{array}$                                     |  |
| E 6 E                                     | 905                                                       | 012                                                    | 220                                                       | 228                                        | 236                                                       | 243                | 251               | 259                                        | 266               | 274                                                                    |    | 2   1.6<br>3   2.4<br>4   3.2<br>5   4.0<br>6   4.8<br>7   5.6<br>8   6.4<br>9   7.2 |  |
| 565<br>566                                | $   \begin{array}{c c}     205 \\     282   \end{array} $ | $\begin{array}{ c c }\hline 213 \\ 289 \\ \end{array}$ | $\begin{array}{c c} 220 \\ 297 \end{array}$               | 305                                        | 312                                                       | $\frac{245}{320}$  | $\frac{231}{328}$ | 335                                        | 343               | 351                                                                    |    | 6 4.8                                                                                |  |
| 567                                       | 358                                                       | 366                                                    | 374                                                       | 381                                        | 389                                                       | 397                | 404               | 412                                        | 420               | 427                                                                    |    | 7 5.6                                                                                |  |
| 568<br>569                                | 435                                                       | 442<br>519                                             | 450<br>526                                                | 458<br>534                                 | $\begin{array}{c} 465 \\ 542 \end{array}$                 | 473<br>549         | 481<br>557        | 488<br>565                                 | $\frac{496}{572}$ | 504<br>580                                                             |    | $egin{array}{c c} 8 & 6.4 \\ 9 & 7.2 \end{array}$                                    |  |
|                                           | 511                                                       |                                                        |                                                           |                                            |                                                           |                    |                   |                                            |                   |                                                                        |    |                                                                                      |  |
| 570                                       | 587                                                       | 595                                                    | $\frac{603}{679}$                                         | $\frac{610}{686}$                          | $\frac{618}{694}$                                         | $\frac{626}{702}$  | $\frac{633}{709}$ | $\frac{641}{717}$                          | $\frac{648}{724}$ | $\begin{array}{ c c c }\hline 656 \\ \hline 732 \\ \hline \end{array}$ |    |                                                                                      |  |
| 571<br>572                                | 664<br>740                                                | 671<br>747                                             | 755                                                       | 762                                        | 770                                                       | 778                | 785               | 793                                        | 800               | 808                                                                    |    |                                                                                      |  |
| 573                                       | 815                                                       | 823                                                    | 831                                                       | 838                                        | 846                                                       | 853                | 861               | 868                                        | 876               | 884                                                                    |    |                                                                                      |  |
| 574                                       | 891                                                       | 899                                                    | 906                                                       | 914                                        | 921                                                       | 929                | 937               | 944                                        | 952               | 959                                                                    |    |                                                                                      |  |
| 575                                       | 967                                                       | 974                                                    | 982                                                       | 989                                        | 997                                                       | *005               | *012              | *020                                       | *027              | *035                                                                   |    |                                                                                      |  |
| 576                                       | 76 042                                                    | 050                                                    | 057                                                       | 065                                        | 072                                                       | 080<br>155         | 087<br>163        | 095                                        | 103<br>178        | 110<br>185                                                             |    |                                                                                      |  |
| 577<br>578                                | 118<br>193                                                | 125 200                                                | 133<br>208                                                | $\begin{vmatrix} 140 \\ 215 \end{vmatrix}$ | $   \begin{array}{c c}     148 \\     223   \end{array} $ | $\frac{135}{230}$  | 238               | 245                                        | 253               | 260                                                                    |    |                                                                                      |  |
| 579                                       | 268                                                       | 275                                                    | 283                                                       | 290                                        | 298                                                       | 305                | 313               | 320                                        | 328               | 335                                                                    |    |                                                                                      |  |
| 580                                       | 343                                                       | 350                                                    | 358                                                       | 365                                        | 373                                                       | 380                | 388               | 395                                        | 403               | 410                                                                    |    |                                                                                      |  |
| 581                                       | 418                                                       | 425                                                    | 433                                                       | 440                                        | 448                                                       | 455                | 462               | 470                                        | 477               | 485                                                                    |    | 1 7                                                                                  |  |
| 582<br>583                                | 492<br>567                                                | 500 574                                                | 507 582                                                   | 515<br>589                                 | 522<br>597                                                | 530 604            | 537 612           | 545                                        | 552<br>626        | 559<br>634                                                             |    |                                                                                      |  |
| 584                                       | 641                                                       | 649                                                    | 656                                                       | 664                                        | 671                                                       | 678                | 686               | 693                                        | 701               | 708                                                                    |    | $ \begin{array}{c cccc} 1 & 0.7 \\ 2 & 1.4 \end{array} $                             |  |
| E0E                                       | 716                                                       | 723                                                    | 730                                                       | 738                                        | 745                                                       | 753                | 760               | 768                                        | 775               | 782                                                                    |    | 2   1.4<br>3   2.1<br>4   2.8<br>5   3.5<br>6   4.2<br>7   4.9                       |  |
| 585                                       | 716<br>790                                                | 797                                                    | 805                                                       | 812                                        | 819                                                       | 827                | 834               | 842                                        | 849               | 856                                                                    |    | 4 2.8<br>5 3.5                                                                       |  |
| 587                                       | 864                                                       | 871                                                    | 879                                                       | 886                                        | 893                                                       | 901                | 908               | 916                                        | 923               | 930<br>*004                                                            |    | 6 4.2 4.9                                                                            |  |
| 588<br>589                                | 938                                                       | 945                                                    | 953                                                       | 960                                        | 867                                                       | 975                | 982 056           | 989 063                                    | 997               | 078                                                                    |    | 8   5.6   6.3                                                                        |  |
| l                                         | -                                                         | -                                                      | 100                                                       | 107                                        | 115                                                       | 122                | 129               | 137                                        | 144               | 151                                                                    |    | 0 , 0.0                                                                              |  |
| <b>590</b> 591                            | $\begin{array}{c c} & 085 \\ \hline & 159 \end{array}$    | $\frac{093}{166}$                                      | $\frac{100}{173}$                                         | 181                                        | 188                                                       | $-\frac{122}{195}$ | $\frac{123}{203}$ | $\frac{100}{210}$                          | 217               | $\frac{101}{225}$                                                      |    |                                                                                      |  |
| 592                                       | 232                                                       | 240                                                    | 247                                                       | 254                                        | 262                                                       | 269                | 276               | 283                                        | 291               | 298                                                                    |    |                                                                                      |  |
| 593                                       | 305                                                       | 313                                                    | 320                                                       | 327                                        | 335                                                       | 342                | 349 422           | 357                                        | 364               | 371 444                                                                |    |                                                                                      |  |
| 594                                       | 379                                                       | 386                                                    | 393                                                       | 401                                        | 408                                                       | 415                |                   |                                            |                   |                                                                        |    |                                                                                      |  |
| 595                                       | 452                                                       | 459                                                    | 466                                                       | 474                                        | 481                                                       | 488                | 495 568           | 503                                        | 510 583           | 517<br>590                                                             |    |                                                                                      |  |
| 596<br>597                                | 525<br>597                                                | 532 605                                                | 539 612                                                   | 546 619                                    | 554 627                                                   | 634                | 641               | 648                                        | 656               | 663                                                                    |    |                                                                                      |  |
| 598                                       | 670                                                       | 677                                                    | 685                                                       | 692                                        | 699                                                       | 706                | 714               | 721                                        | 728               | 735                                                                    |    |                                                                                      |  |
| 599                                       | 743                                                       | 750                                                    | 757                                                       | 764                                        | 772                                                       | 779                | 786               | 793                                        | 801               | 808                                                                    |    |                                                                                      |  |
| 600                                       | 815                                                       | 822                                                    | 830                                                       | 837                                        | 844                                                       | 851                | 859               | 866                                        | 873               | 880                                                                    |    |                                                                                      |  |
| N                                         | L 0                                                       | 1                                                      | 2                                                         | 3                                          | 4                                                         | 5                  | 6                 | 7                                          | 8                 | 9                                                                      | F  | Prop. Pts.                                                                           |  |

600-650

| N                                          | L 0             | 1                                         | 2                                           | 3                                             | 4                                          | 5                                         | 6                                           | 7                                                                          | 8                                                                | 9                                           | Prop. Pts.                                                                                                                                  |
|--------------------------------------------|-----------------|-------------------------------------------|---------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 600                                        | 77 815          | 822                                       | 830                                         | 837                                           | 844                                        | 851                                       | 859                                         | 866                                                                        | 873                                                              | 880                                         |                                                                                                                                             |
| 601                                        | 887             | 895                                       | 902                                         | 909                                           | 916                                        | 924                                       | 931                                         | 938                                                                        | 945                                                              | 952                                         |                                                                                                                                             |
| 602                                        | 960             | 967                                       | 974                                         | 981                                           | 988                                        | 996                                       | *003                                        | *010                                                                       | *017<br>089                                                      | *025<br>097                                 |                                                                                                                                             |
| 603                                        | 78 032          | 039<br>111                                | $\begin{array}{c c} 046 \\ 118 \end{array}$ | $ \begin{array}{c c} 053 \\ 125 \end{array} $ | $061 \\ 132$                               | $068 \\ 140$                              | $\begin{array}{c c} 075 \\ 147 \end{array}$ | $\begin{array}{c} 082 \\ 154 \end{array}$                                  | 161                                                              | 168                                         |                                                                                                                                             |
| 604                                        | 104             | 111                                       | 110                                         | 120                                           | 102                                        |                                           |                                             |                                                                            |                                                                  |                                             |                                                                                                                                             |
| 605                                        | 176             | 183                                       | 190                                         | 197                                           | 204                                        | 211                                       | 219                                         | 226                                                                        | 233                                                              | 240                                         |                                                                                                                                             |
| 606                                        | 247             | 254                                       | 262<br>333                                  | $\begin{vmatrix} 269 \\ 340 \end{vmatrix}$    | $\begin{bmatrix} 276 \\ 347 \end{bmatrix}$ | $\begin{array}{c} 283 \\ 355 \end{array}$ | $\frac{290}{362}$                           | $\frac{297}{369}$                                                          | 305<br>376                                                       | 312<br>383                                  | 8                                                                                                                                           |
| 607<br>608                                 | 319<br>390      | 326<br>398                                | 405                                         | 412                                           | 419                                        | 426                                       | 433                                         | 440                                                                        | 447                                                              | 455                                         | 1 0.8                                                                                                                                       |
| 609                                        | 462             | 469                                       | 476                                         | 483                                           | 490                                        | 497                                       | 504                                         | 512                                                                        | 519                                                              | 526                                         | $egin{array}{c c} 2 & 1.6 \\ 3 & 2.4 \end{array}$                                                                                           |
| 610                                        | 533             | 540                                       | $\frac{-}{547}$                             | 554                                           | 561                                        | 569                                       | 576                                         | 583                                                                        | 590                                                              | 597                                         | $\begin{array}{c cccc} 2 & 1.6 \\ 3 & 2.4 \\ 4 & 3.2 \\ 5 & 4.0 \\ 6 & 4.8 \\ 7 & 5.6 \\ 8 & 6.4 \\ 9 & 7.2 \end{array}$                    |
| 611                                        | $\frac{-604}{}$ | 611                                       | 618                                         | -625                                          | 633                                        | 640                                       | 647                                         | 654                                                                        | 661                                                              | 668                                         | $\begin{array}{c c}  & 4.0 \\  & 4.8 \end{array}$                                                                                           |
| 612                                        | 675             | 682                                       | 689                                         | 696                                           | 704                                        | 711                                       | 718                                         | 725                                                                        | 732                                                              | 739                                         | 7   5.6                                                                                                                                     |
| 613                                        | 746             | 753                                       | 760                                         | 767                                           | 774                                        | 781                                       | 789<br>859                                  | 796<br>866                                                                 | 803<br>873                                                       | 810<br>880                                  | $egin{array}{c c} 8 & 6.4 \\ 9 & 7.2 \end{array}$                                                                                           |
| 614                                        | 817             | 824                                       | 831                                         | 838                                           | 845                                        | 852                                       | 009                                         |                                                                            |                                                                  |                                             |                                                                                                                                             |
| 615                                        | 888             | 895                                       | 902                                         | 909                                           | 916                                        | 923                                       | 930                                         | 937                                                                        | 944                                                              | 951                                         |                                                                                                                                             |
| 616                                        | 958             | 965                                       | 972                                         | 979                                           | 986<br>057                                 | $\frac{993}{064}$                         | *000<br>071                                 | *007<br>078                                                                | *014<br>085                                                      | *021<br>092                                 |                                                                                                                                             |
| 617<br>618                                 | 79 029<br>099   | $\begin{array}{c} 036 \\ 106 \end{array}$ | 043                                         | $ \begin{array}{c c} 050 \\ 120 \end{array} $ | 127                                        | 134                                       | 141                                         | 148                                                                        | 155                                                              | 162                                         |                                                                                                                                             |
| 619                                        | 169             | 176                                       | 183                                         | 190                                           | 197                                        | 204                                       | 211                                         | 218                                                                        | 225                                                              | 232                                         |                                                                                                                                             |
| 620                                        | 239             | 246                                       | 253                                         | 260                                           | 267.                                       | 274                                       | 281                                         | 288                                                                        | 295                                                              | 302                                         |                                                                                                                                             |
| 621                                        | 309             | 316                                       | 323                                         | 330                                           | 337                                        | 344                                       | 351                                         | 358                                                                        | 365                                                              | 372                                         | 7                                                                                                                                           |
| 622                                        | 379             | 386                                       | 393                                         | 400                                           | 407<br>477                                 | 414 484                                   | 421<br>491                                  | 428<br>498                                                                 | 435<br>505                                                       | 442<br>511                                  |                                                                                                                                             |
| $623 \\ 624$                               | 449<br>518      | 456<br>525                                | 463<br>532                                  | 470<br>539                                    | 546                                        | 553                                       | 560                                         | 567                                                                        | 574                                                              | 581                                         | $\begin{array}{c c} 1 & 0.7 \\ 2 & 1.4 \end{array}$                                                                                         |
| •                                          |                 |                                           |                                             |                                               |                                            |                                           |                                             |                                                                            | 0.4.4                                                            | 050                                         | $\begin{array}{c cccc} 1 & 0.7 \\ 2 & 1.4 \\ 3 & 2.1 \\ 4 & 2.8 \\ 5 & 3.5 \\ 6 & 4.2 \\ 7 & 4.9 \\ 8 & 5.6 \\ 9 & 6.3 \\ \end{array}$      |
| 625                                        | 588             | 595                                       | 602                                         | 609<br>678                                    | 616<br>685                                 | $623 \\ 692$                              | 630<br>699                                  | 637<br>706                                                                 | 644 713                                                          | $\begin{array}{c c} 650 \\ 720 \end{array}$ | $egin{array}{c c} \hline 5 & 3.5 \ 6 & 4.2 \end{array}$                                                                                     |
| 626<br>627                                 | $657 \\ 727$    | 664 734                                   | 741                                         | 748                                           | 754                                        | 761                                       | 768                                         | 775                                                                        | 782                                                              | 789                                         | $\begin{array}{c c} 0 & 4.2 \\ 7 & 4.9 \end{array}$                                                                                         |
| 628                                        | 796             | 803                                       | 810                                         | 817                                           | 824                                        | 831                                       | 837                                         | 844                                                                        | 851                                                              | 858                                         | $ \begin{array}{c c} 8 & 5.6 \\ 9 & 6.3 \end{array} $                                                                                       |
| 629                                        | 865             | 872                                       | 879                                         | 886                                           | 893                                        | .900                                      | 906                                         | 913                                                                        | 920                                                              | 927                                         | 9   0.5                                                                                                                                     |
| 630                                        | 934             | 941                                       | 948                                         | 955                                           | 962                                        | 969                                       | 975                                         | 982                                                                        | 989                                                              | 996                                         |                                                                                                                                             |
| 631                                        | 80 003          | 010                                       | 017                                         | 024                                           | 030                                        | $\begin{array}{c} 037 \\ 106 \end{array}$ | 044                                         | $051 \\ 120$                                                               | $058 \\ 127$                                                     | 065<br>134                                  |                                                                                                                                             |
| 632<br>633                                 | 072<br>140      | 079                                       | 085                                         | 092                                           | 099                                        | 175                                       | 182                                         | 188                                                                        | 195                                                              | 202                                         |                                                                                                                                             |
| 634                                        | 209             | 216                                       | 223                                         | 229                                           | 236                                        |                                           | 250                                         | 257                                                                        | 264                                                              | 271                                         |                                                                                                                                             |
|                                            | 277             | 284                                       | 291                                         | 298                                           | 305                                        | 312                                       | 318                                         | 325                                                                        | 332                                                              | 339                                         |                                                                                                                                             |
| 635                                        | 346             | 353                                       | 359                                         | 366                                           | 373                                        | 380                                       | 387                                         | 393                                                                        | 400                                                              | 407                                         |                                                                                                                                             |
| 637                                        | 414             | 421                                       | 428                                         | 434                                           | 441                                        | 448                                       | 455                                         | 462                                                                        | 468                                                              | 475                                         | 6                                                                                                                                           |
| 638                                        | 482             | 489 557                                   | 496<br>564                                  | 502                                           | 509<br>577                                 | 516                                       | 523 591                                     | 530<br>598                                                                 | 536                                                              | 543<br>611                                  | $egin{array}{c c} 1 & 0.6 \\ 2 & 1.2 \end{array}$                                                                                           |
| 639                                        | 550             | .]                                        |                                             | l                                             | l                                          |                                           |                                             | ·                                                                          |                                                                  |                                             | 3 1.8                                                                                                                                       |
| 640                                        | 618             | 625                                       | 632                                         | 638                                           | 645                                        | 652                                       | $\frac{659}{726}$                           | $\begin{array}{ c c c c c c }\hline 665\\ \hline 733\\ \hline \end{array}$ | $\begin{array}{ c c }\hline 672\\\hline 740\\\hline \end{array}$ | $\frac{679}{747}$                           | $egin{array}{c cccc} 1 & 0.6 \\ 2 & 1.2 \\ 3 & 1.8 \\ 4 & 2.4 \\ 5 & 3.0 \\ 6 & 3.6 \\ 7 & 4.2 \\ 8 & 4.8 \\ 9 & 5.4 \\ \hline \end{array}$ |
| $\begin{bmatrix} 641 \\ 642 \end{bmatrix}$ | 686<br>754      | 693<br>760                                | 699 767                                     | 706<br>774                                    | 713<br>781                                 | 720<br>787                                | 794                                         | 801                                                                        | 808                                                              | 814                                         | $egin{array}{c c} 6 & 3.6 \ 7 & 4.2 \end{array}$                                                                                            |
| 643                                        | 821             | 828                                       | 835                                         | 841                                           | 848                                        | 855                                       | 862                                         | 868                                                                        | 875                                                              | 882                                         | 8 4.8                                                                                                                                       |
| 644                                        | 889             | 895                                       | 902                                         | 909                                           | 916                                        | 922                                       | 929                                         | 936                                                                        | 943                                                              | 949                                         | 9   5.4                                                                                                                                     |
| 645                                        | 956             | 963                                       | 969                                         | 976                                           | 983                                        | 990                                       | 996                                         | *003                                                                       | *010                                                             | *017                                        |                                                                                                                                             |
| 646                                        | 81 023          | 030                                       | 037                                         | 043                                           | 050                                        | 057                                       | 064                                         | 070                                                                        | 077                                                              | 084                                         |                                                                                                                                             |
| 647                                        | 090<br>158      | 097                                       | 104                                         | 111 178                                       | 117                                        | 124                                       | 131                                         | 137 204                                                                    | 144 211                                                          | 218                                         |                                                                                                                                             |
| 648 649                                    | 224             | 231                                       | 238                                         | 245                                           | 251                                        | 258                                       | 265                                         | 271                                                                        | 278                                                              | 285                                         |                                                                                                                                             |
| 650                                        | 291             | 298                                       | 305                                         | 311                                           | 318                                        | 325                                       | 331                                         | 338                                                                        | 345                                                              | 351                                         |                                                                                                                                             |
| N                                          | L 0             | 1                                         | 2                                           | 3                                             | 4                                          | 5                                         | 6                                           | 7                                                                          | 8                                                                | 9                                           | Prop. Pts.                                                                                                                                  |
|                                            |                 | 1                                         | 1                                           | 1                                             |                                            |                                           | l                                           | 1                                                                          | 1                                                                | <u> </u>                                    |                                                                                                                                             |

650-700

| 650<br>651<br>652<br>653<br>654<br>655<br>656<br>657<br>658<br>659<br>660<br>661<br>662<br>663<br>664<br>665<br>666<br>667<br>668 | 81 291<br>358<br>425<br>491<br>558<br>624<br>690<br>757<br>823<br>889<br>954<br>82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607<br>672           | 298<br>365<br>431<br>498<br>564<br>631<br>697<br>763<br>829<br>895<br>961<br>027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549<br>614 | 305<br>371<br>438<br>505<br>571<br>637<br>704<br>770<br>836<br>902<br>968<br>033<br>099<br>164<br>230<br>295<br>360<br>426<br>491<br>556 | 311<br>378<br>445<br>511<br>578<br>644<br>710<br>776<br>842<br>908<br>974<br>040<br>105<br>171<br>236<br>302<br>367<br>432<br>497 | 318<br>385<br>451<br>518<br>584<br>651<br>717<br>783<br>849<br>915<br>981<br>046<br>112<br>178<br>243<br>308<br>373<br>430 | 325<br>391<br>458<br>525<br>591<br>657<br>723<br>790<br>856<br>921<br>987<br>053<br>119<br>184<br>249<br>315 | 331<br>398<br>465<br>531<br>598<br>664<br>730<br>796<br>862<br>928<br>994<br>060<br>125<br>191<br>256 | 338<br>405<br>471<br>538<br>604<br>671<br>737<br>803<br>869<br>935<br>*000<br>066<br>132<br>197<br>263 | 345<br>411<br>478<br>544<br>611<br>677<br>743<br>809<br>875<br>941<br>*007<br>073<br>138<br>204<br>269 | 351<br>418<br>485<br>551<br>617<br>684<br>750<br>816<br>882<br>948<br>*014<br>079<br>145<br>210<br>276 | $ \begin{vmatrix} 7 \\ 1 \\ 2 \\ 1.4 \\ 3 \\ 2.1 \\ 4 \\ 2.8 \\ 5 \\ 3.5 \\ 6 \\ 4.2 \\ 4.9 \\ 5.6 \end{vmatrix} $ |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 651<br>652<br>653<br>654<br>655<br>656<br>657<br>658<br>659<br>660<br>661<br>662<br>663<br>664<br>665<br>666<br>667               | 358<br>425<br>491<br>558<br>624<br>690<br>757<br>823<br>889<br>954<br>82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607                            | 365<br>431<br>498<br>564<br>631<br>697<br>763<br>829<br>895<br>961<br>027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549               | 371<br>438<br>505<br>571<br>637<br>704<br>770<br>836<br>902<br>968<br>033<br>099<br>164<br>230<br>295<br>360<br>426<br>491               | 378<br>445<br>511<br>578<br>644<br>710<br>776<br>842<br>908<br>974<br>040<br>105<br>171<br>236<br>302<br>367<br>432               | 385<br>451<br>518<br>584<br>651<br>717<br>783<br>849<br>915<br>981<br>046<br>112<br>178<br>243                             | 391<br>458<br>525<br>591<br>657<br>723<br>790<br>856<br>921<br>987<br>053<br>119<br>184<br>249               | 398<br>465<br>531<br>598<br>664<br>730<br>796<br>862<br>928<br>994<br>060<br>125<br>191<br>256        | 405<br>471<br>538<br>604<br>671<br>737<br>803<br>869<br>935<br>*000<br>066<br>132<br>197               | 411<br>478<br>544<br>611<br>677<br>743<br>809<br>875<br>941<br>*007<br>073<br>138<br>204               | 418<br>485<br>551<br>617<br>684<br>750<br>816<br>882<br>948<br>*014<br>079<br>145<br>210               |                                                                                                                    |
| 652<br>653<br>654<br>655<br>656<br>657<br>658<br>659<br>660<br>661<br>662<br>663<br>664<br>665<br>666<br>667                      | 425<br>491<br>558<br>624<br>690<br>757<br>823<br>889<br>954<br>82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607<br>672                            | 431<br>498<br>564<br>631<br>697<br>763<br>829<br>895<br>961<br>027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549                      | 438<br>505<br>571<br>637<br>704<br>770<br>836<br>902<br>968<br>033<br>099<br>164<br>230<br>295<br>360<br>426<br>491                      | 445<br>511<br>578<br>644<br>710<br>776<br>842<br>908<br>974<br>040<br>105<br>171<br>236<br>302<br>367<br>432                      | 451<br>518<br>584<br>651<br>717<br>783<br>849<br>915<br>981<br>046<br>112<br>178<br>243                                    | 458<br>525<br>591<br>657<br>723<br>790<br>856<br>921<br>987<br>053<br>119<br>184<br>249                      | 531<br>598<br>664<br>730<br>796<br>862<br>928<br>994<br>060<br>125<br>191<br>256                      | 538<br>604<br>671<br>737<br>803<br>869<br>935<br>*000<br>066<br>132<br>197                             | 544<br>611<br>677<br>743<br>809<br>875<br>941<br>*007<br>073<br>138<br>204                             | 551<br>617<br>684<br>750<br>816<br>882<br>948<br>*014<br>079<br>145<br>210                             |                                                                                                                    |
| 654<br>655<br>656<br>657<br>658<br>659<br>660<br>661<br>662<br>663<br>664<br>665<br>666<br>667                                    | 558<br>624<br>690<br>757<br>823<br>889<br>954<br>82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607                                                 | 564<br>631<br>697<br>763<br>829<br>895<br>961<br>027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549                                    | 571<br>637<br>704<br>770<br>836<br>902<br>968<br>033<br>099<br>164<br>230<br>295<br>360<br>426<br>491                                    | 578<br>644<br>710<br>776<br>842<br>908<br>974<br>040<br>105<br>171<br>236<br>302<br>367<br>432                                    | 584<br>651<br>717<br>783<br>849<br>915<br>981<br>046<br>112<br>178<br>243                                                  | 591<br>657<br>723<br>790<br>856<br>921<br>987<br>053<br>119<br>184<br>249                                    | 598<br>664<br>730<br>796<br>862<br>928<br>994<br>060<br>125<br>191<br>256                             | 604<br>671<br>737<br>803<br>869<br>935<br>*000<br>066<br>132<br>197                                    | 611<br>677<br>743<br>809<br>875<br>941<br>*007<br>073<br>138<br>204                                    | 617<br>684<br>750<br>816<br>882<br>948<br>*014<br>079<br>145<br>210                                    |                                                                                                                    |
| 655<br>656<br>657<br>658<br>659<br>660<br>661<br>662<br>663<br>664<br>665<br>666<br>667                                           | 624<br>690<br>757<br>823<br>889<br>954<br>82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607                                                        | 631<br>697<br>763<br>829<br>895<br>961<br>027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549                                           | 637<br>704<br>770<br>836<br>902<br>968<br>033<br>099<br>164<br>230<br>295<br>360<br>426<br>491                                           | 644<br>710<br>776<br>842<br>908<br>974<br>040<br>105<br>171<br>236<br>302<br>367<br>432                                           | 651<br>717<br>783<br>849<br>915<br>981<br>046<br>112<br>178<br>243                                                         | 657<br>723<br>790<br>856<br>921<br>987<br>053<br>119<br>184<br>249                                           | 664<br>730<br>796<br>862<br>928<br>994<br>060<br>125<br>191<br>256                                    | 671<br>737<br>803<br>869<br>935<br>*000<br>066<br>132<br>197                                           | 677<br>743<br>809<br>875<br>941<br>*007<br>073<br>138<br>204                                           | 684<br>750<br>816<br>882<br>948<br>*014<br>079<br>145<br>210                                           |                                                                                                                    |
| 656<br>657<br>658<br>659<br>660<br>661<br>662<br>663<br>664<br>665<br>666<br>667                                                  | 690<br>757<br>823<br>889<br>954<br>82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607                                                               | 697<br>763<br>829<br>895<br>961<br>027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549                                                  | 704<br>770<br>836<br>902<br>968<br>033<br>099<br>164<br>230<br>295<br>360<br>426<br>491                                                  | 710<br>776<br>842<br>908<br>974<br>040<br>105<br>171<br>236<br>302<br>367<br>432                                                  | 717<br>783<br>849<br>915<br>981<br>046<br>112<br>178<br>243                                                                | 723<br>790<br>856<br>921<br>987<br>053<br>119<br>184<br>249                                                  | 730<br>796<br>862<br>928<br>994<br>060<br>125<br>191<br>256                                           | 737<br>803<br>869<br>935<br>*000<br>066<br>132<br>197                                                  | 743<br>809<br>875<br>941<br>*007<br>073<br>138<br>204                                                  | 750<br>816<br>882<br>948<br>*014<br>079<br>145<br>210                                                  |                                                                                                                    |
| 657<br>658<br>659<br>660<br>661<br>662<br>663<br>664<br>665<br>666<br>667                                                         | 757<br>823<br>889<br>954<br>82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607                                                                      | 763<br>829<br>895<br>961<br>027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549                                                         | 770<br>836<br>902<br>968<br>033<br>099<br>164<br>230<br>295<br>360<br>426<br>491                                                         | 776<br>842<br>908<br>974<br>040<br>105<br>171<br>236<br>302<br>367<br>432                                                         | 783<br>849<br>915<br>981<br>046<br>112<br>178<br>243<br>308<br>373                                                         | 790<br>856<br>921<br>987<br>053<br>119<br>184<br>249                                                         | 796<br>862<br>928<br>994<br>060<br>125<br>191<br>256                                                  | 803<br>869<br>935<br>*000<br>066<br>132<br>197                                                         | 809<br>875<br>941<br>*007<br>073<br>138<br>204                                                         | 816<br>882<br>948<br>*014<br>079<br>145<br>210                                                         |                                                                                                                    |
| 658<br>659<br>660<br>661<br>662<br>663<br>664<br>665<br>666<br>667                                                                | 823<br>889<br>954<br>82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607                                                                             | 829<br>895<br>961<br>027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549                                                                | 968<br>033<br>099<br>164<br>230<br>295<br>360<br>426<br>491                                                                              | 974<br>974<br>040<br>105<br>171<br>236<br>302<br>367<br>432                                                                       | 981<br>981<br>046<br>112<br>178<br>243<br>308<br>373                                                                       | 987<br>053<br>119<br>184<br>249                                                                              | 862<br>928<br>994<br>060<br>125<br>191<br>256                                                         | 869<br>935<br>*000<br>066<br>132<br>197                                                                | $ \begin{array}{r} 875 \\ 941 \\ \hline *007 \\ \hline 073 \\ 138 \\ 204 \end{array} $                 | 882<br>948<br>*014<br>079<br>145<br>210                                                                |                                                                                                                    |
| 659<br>660<br>661<br>662<br>663<br>664<br>665<br>666<br>667                                                                       | 954<br>82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607<br>672                                                                                    | 961<br>027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549                                                                              | 968<br>033<br>099<br>164<br>230<br>295<br>360<br>426<br>491                                                                              | 974<br>040<br>105<br>171<br>236<br>302<br>367<br>432                                                                              | 981<br>046<br>112<br>178<br>243<br>308<br>373                                                                              | 987<br>053<br>119<br>184<br>249                                                                              | 994<br>060<br>125<br>191<br>256                                                                       | *000<br>066<br>132<br>197                                                                              | *007<br>073<br>138<br>204                                                                              | *014<br>079<br>145<br>210                                                                              |                                                                                                                    |
| 661<br>662<br>663<br>664<br>665<br>666<br>667                                                                                     | 82 020<br>086<br>151<br>217<br>282<br>347<br>413<br>478<br>543<br>607<br>672                                                                                           | 027<br>092<br>158<br>223<br>289<br>354<br>419<br>484<br>549                                                                                     | 033<br>099<br>164<br>230<br>295<br>360<br>426<br>491                                                                                     | 040<br>105<br>171<br>236<br>302<br>367<br>432                                                                                     | 046<br>112<br>178<br>243<br>308<br>373                                                                                     | 053<br>119<br>184<br>249                                                                                     | 060<br>125<br>191<br>256                                                                              | 066<br>132<br>197                                                                                      | $     \begin{array}{r}       073 \\       138 \\       204     \end{array} $                           | 079<br>145<br>210                                                                                      |                                                                                                                    |
| 662<br>663<br>664<br>665<br>666<br>667                                                                                            | $ \begin{array}{r} 086 \\ 151 \\ 217 \end{array} $ $ \begin{array}{r} 282 \\ 347 \\ 413 \\ 478 \\ 543 \end{array} $ $ \begin{array}{r} 607 \\ \hline 672 \end{array} $ | 092<br>158<br>223<br>289<br>354<br>419<br>484<br>549                                                                                            | 099<br>164<br>230<br>295<br>360<br>426<br>491                                                                                            | 105<br>171<br>236<br>302<br>367<br>432                                                                                            | 112<br>178<br>243<br>308<br>373                                                                                            | 119<br>184<br>249                                                                                            | 125<br>191<br>256                                                                                     | $\begin{array}{c c} 132 \\ 197 \end{array}$                                                            | 138<br>204                                                                                             | 145<br>210                                                                                             |                                                                                                                    |
| 663<br>664<br>665<br>666<br>667                                                                                                   | 151<br>217<br>282<br>347<br>413<br>478<br>543<br>607<br>672                                                                                                            | 158<br>223<br>289<br>354<br>419<br>484<br>549                                                                                                   | 164<br>230<br>295<br>360<br>426<br>491                                                                                                   | 171<br>236<br>302<br>367<br>432                                                                                                   | 178<br>243<br>308<br>373                                                                                                   | 184<br>249                                                                                                   | 191<br>256                                                                                            | 197                                                                                                    | 204                                                                                                    | 210                                                                                                    | $\begin{array}{c c} 1 & 0.7 \\ 2 & 1.4 \\ 2 & 2.1 \end{array}$                                                     |
| 664<br>665<br>666<br>667                                                                                                          | 217<br>282<br>347<br>413<br>478<br>543<br>607<br>672                                                                                                                   | 223<br>289<br>354<br>419<br>484<br>549                                                                                                          | 230<br>295<br>360<br>426<br>491                                                                                                          | 236<br>302<br>367<br>432                                                                                                          | 243<br>308<br>373                                                                                                          | 249                                                                                                          | 256                                                                                                   |                                                                                                        |                                                                                                        |                                                                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                              |
| 665<br>666<br>667                                                                                                                 | 282<br>347<br>413<br>478<br>543<br>607<br>672                                                                                                                          | 289<br>354<br>419<br>484<br>549                                                                                                                 | 295<br>360<br>426<br>491                                                                                                                 | 302<br>367<br>432                                                                                                                 | 373                                                                                                                        | 315                                                                                                          |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                        | 3 4.1                                                                                                              |
| 666                                                                                                                               | $ \begin{array}{r} 347 \\ 413 \\ 478 \\ 543 \\ \hline 607 \\ \hline 672 \end{array} $                                                                                  | 354<br>419<br>484<br>549                                                                                                                        | 360<br>426<br>491                                                                                                                        | 367<br>432                                                                                                                        | 373                                                                                                                        | 213                                                                                                          | 201                                                                                                   | 328                                                                                                    | 334                                                                                                    | 341                                                                                                    | $\begin{array}{c c} 4 & 2.8 \\ 5 & 3.5 \end{array}$                                                                |
| 667                                                                                                                               | $ \begin{array}{r} 413 \\ 478 \\ 543 \\ \hline 607 \\ 672 \end{array} $                                                                                                | 419<br>484<br>549                                                                                                                               | 426<br>491                                                                                                                               | 432                                                                                                                               |                                                                                                                            | 380                                                                                                          | $\frac{321}{387}$                                                                                     | 393                                                                                                    | 400                                                                                                    | 406                                                                                                    | $\begin{array}{c c} 6 & 4.2 \\ 7 & 4.9 \end{array}$                                                                |
|                                                                                                                                   | $ \begin{array}{r} 478 \\ 543 \\ \hline 607 \\ 672 \end{array} $                                                                                                       | 484<br>549                                                                                                                                      |                                                                                                                                          | 107                                                                                                                               | 439                                                                                                                        | 445                                                                                                          | 452                                                                                                   | 458                                                                                                    | 465                                                                                                    | 471                                                                                                    | 8 5.6                                                                                                              |
| 000                                                                                                                               | 607<br>672                                                                                                                                                             |                                                                                                                                                 | 990                                                                                                                                      | 562                                                                                                                               | 504<br>569                                                                                                                 | 510<br>575                                                                                                   | 517<br>582                                                                                            | 523<br>588                                                                                             | 530<br>595                                                                                             | 536   601                                                                                              | 9   6.3                                                                                                            |
| 669                                                                                                                               | 672                                                                                                                                                                    | 614                                                                                                                                             |                                                                                                                                          |                                                                                                                                   |                                                                                                                            |                                                                                                              |                                                                                                       |                                                                                                        | 659                                                                                                    | 666                                                                                                    |                                                                                                                    |
| 670                                                                                                                               |                                                                                                                                                                        |                                                                                                                                                 | 620                                                                                                                                      | 627                                                                                                                               | 633                                                                                                                        | 640                                                                                                          | $\frac{646}{711}$                                                                                     | $\frac{653}{718}$                                                                                      | $\frac{-059}{724}$                                                                                     | $\frac{-000}{730}$                                                                                     |                                                                                                                    |
| 671 672                                                                                                                           | 1/2/                                                                                                                                                                   | 679<br>743                                                                                                                                      | 685<br>750                                                                                                                               | 692<br>756                                                                                                                        | 698<br>763                                                                                                                 | 705<br>769                                                                                                   | 776                                                                                                   | 782                                                                                                    | 789                                                                                                    | 795                                                                                                    |                                                                                                                    |
| 673                                                                                                                               | 737<br>802                                                                                                                                                             | 808                                                                                                                                             | 814                                                                                                                                      | 821                                                                                                                               | 827                                                                                                                        | 834                                                                                                          | 840                                                                                                   | 847                                                                                                    | 853                                                                                                    | 860                                                                                                    |                                                                                                                    |
| 674                                                                                                                               | 866                                                                                                                                                                    | 872                                                                                                                                             | 879                                                                                                                                      | 885                                                                                                                               | 892                                                                                                                        | 898                                                                                                          | 905                                                                                                   | 911                                                                                                    | 918                                                                                                    | 924                                                                                                    |                                                                                                                    |
| 675                                                                                                                               | 930                                                                                                                                                                    | 937                                                                                                                                             | 943                                                                                                                                      | 950                                                                                                                               | 956                                                                                                                        | 963                                                                                                          | 969                                                                                                   | 975                                                                                                    | 982                                                                                                    | 988                                                                                                    |                                                                                                                    |
| 676                                                                                                                               | 995                                                                                                                                                                    |                                                                                                                                                 |                                                                                                                                          | *014                                                                                                                              | *020                                                                                                                       | *027<br>091                                                                                                  | *033<br>097                                                                                           | *040<br>104                                                                                            | *046                                                                                                   | *052<br>117                                                                                            |                                                                                                                    |
| 677                                                                                                                               | $83\ 059 \\ 123$                                                                                                                                                       | $\begin{array}{ c c c c }\hline 065 \\ 129 \end{array}$                                                                                         | $\begin{array}{c c} 072 \\ 136 \end{array}$                                                                                              | $\begin{array}{c c} 078 \\ 142 \end{array}$                                                                                       | $085 \\ 149$                                                                                                               | 155                                                                                                          | 161                                                                                                   | 168                                                                                                    | 174                                                                                                    | 181                                                                                                    |                                                                                                                    |
| 679                                                                                                                               | 187                                                                                                                                                                    | 193                                                                                                                                             | 200                                                                                                                                      | 206                                                                                                                               | 213                                                                                                                        | 219                                                                                                          | 225                                                                                                   | 232                                                                                                    | 238                                                                                                    | 245                                                                                                    |                                                                                                                    |
| 680                                                                                                                               | 251                                                                                                                                                                    | 257                                                                                                                                             | 264                                                                                                                                      | 270                                                                                                                               | 276                                                                                                                        | 283                                                                                                          | 289                                                                                                   | 296                                                                                                    | 302                                                                                                    | 308                                                                                                    |                                                                                                                    |
| 681                                                                                                                               | 315                                                                                                                                                                    | 321                                                                                                                                             | 327                                                                                                                                      | 334<br>398                                                                                                                        | 340<br>404                                                                                                                 | 347<br>410                                                                                                   | 353<br>417                                                                                            | 359<br>423                                                                                             | 366<br>429                                                                                             | 372<br>436                                                                                             | 6                                                                                                                  |
| 682 683                                                                                                                           | 378<br>442                                                                                                                                                             | 385<br>448                                                                                                                                      | 391<br>455                                                                                                                               | 461                                                                                                                               | 467                                                                                                                        | 474                                                                                                          | 480                                                                                                   | 487                                                                                                    | 493                                                                                                    | 499                                                                                                    | 1 0.6                                                                                                              |
| 684                                                                                                                               | 506                                                                                                                                                                    | 512                                                                                                                                             | 518                                                                                                                                      | 525                                                                                                                               | 531                                                                                                                        | 537                                                                                                          | 544                                                                                                   | 550                                                                                                    | 556                                                                                                    | 563                                                                                                    |                                                                                                                    |
| 005                                                                                                                               | 569                                                                                                                                                                    | 575                                                                                                                                             | 582                                                                                                                                      | 588                                                                                                                               | 594                                                                                                                        | 601                                                                                                          | 607                                                                                                   | 613                                                                                                    | 620                                                                                                    | 626                                                                                                    | 4   2.4                                                                                                            |
| 685<br>686                                                                                                                        | 632                                                                                                                                                                    | 639                                                                                                                                             | 645                                                                                                                                      | 651                                                                                                                               | 658                                                                                                                        | 664                                                                                                          | 670                                                                                                   | 677                                                                                                    | 683                                                                                                    | 689                                                                                                    | $\begin{bmatrix} \bar{5} & \bar{3.0} \\ 6 & \bar{3.6} \end{bmatrix}$                                               |
| 687                                                                                                                               | 696                                                                                                                                                                    | 702                                                                                                                                             | 708                                                                                                                                      | 715                                                                                                                               | 721<br>784                                                                                                                 | 727 790                                                                                                      | 734 797                                                                                               | 740 803                                                                                                | 746<br>809                                                                                             | 753<br>816                                                                                             | 7 4.2                                                                                                              |
| 688                                                                                                                               | 759<br>822                                                                                                                                                             | 765<br>828                                                                                                                                      | 771<br>835                                                                                                                               | 778<br>  841                                                                                                                      | 847                                                                                                                        | 853                                                                                                          | 860                                                                                                   | 866                                                                                                    | 872                                                                                                    | 879                                                                                                    | 8 4.8 9 5.4                                                                                                        |
| 1                                                                                                                                 | 885                                                                                                                                                                    | 891                                                                                                                                             | 897                                                                                                                                      | 904                                                                                                                               | 910                                                                                                                        | 916                                                                                                          | 923                                                                                                   | 929                                                                                                    | 935                                                                                                    | 942                                                                                                    |                                                                                                                    |
| <b>690</b> 691                                                                                                                    | 948                                                                                                                                                                    | $\frac{-351}{954}$                                                                                                                              | 960                                                                                                                                      | 967                                                                                                                               | 973                                                                                                                        | 979                                                                                                          | 985                                                                                                   | 992                                                                                                    | 998                                                                                                    | *004                                                                                                   |                                                                                                                    |
| 692                                                                                                                               | 84 011                                                                                                                                                                 | 017                                                                                                                                             | 023                                                                                                                                      | 029                                                                                                                               | 036                                                                                                                        | 042                                                                                                          | 048                                                                                                   | 055                                                                                                    | $\begin{array}{ c c }\hline 061\\ 123\\ \end{array}$                                                   | 067<br>130                                                                                             |                                                                                                                    |
| 693                                                                                                                               | 073                                                                                                                                                                    | 080                                                                                                                                             | 086                                                                                                                                      | 092                                                                                                                               | 098                                                                                                                        | 105                                                                                                          | 173                                                                                                   | 180                                                                                                    | 186                                                                                                    | 192                                                                                                    |                                                                                                                    |
| 694                                                                                                                               | 136                                                                                                                                                                    |                                                                                                                                                 |                                                                                                                                          |                                                                                                                                   | 1                                                                                                                          |                                                                                                              |                                                                                                       |                                                                                                        | 248                                                                                                    | 255                                                                                                    |                                                                                                                    |
| 695                                                                                                                               | 198                                                                                                                                                                    | 205                                                                                                                                             | 211                                                                                                                                      | 217 280                                                                                                                           | 223<br>286                                                                                                                 | $\begin{vmatrix} 230 \\ 292 \end{vmatrix}$                                                                   | 236<br>298                                                                                            | 242<br>305                                                                                             |                                                                                                        | 317                                                                                                    |                                                                                                                    |
| 696                                                                                                                               | 261<br>323                                                                                                                                                             | $\begin{array}{ c c c }\hline 267\\ 330\\ \end{array}$                                                                                          | 273                                                                                                                                      | 342                                                                                                                               | 348                                                                                                                        | 354                                                                                                          | 361                                                                                                   | 367                                                                                                    | 373                                                                                                    | 379                                                                                                    |                                                                                                                    |
| 698                                                                                                                               | 386                                                                                                                                                                    | 392                                                                                                                                             | 398                                                                                                                                      | 404                                                                                                                               | 410                                                                                                                        | 417                                                                                                          |                                                                                                       |                                                                                                        |                                                                                                        | 442 504                                                                                                |                                                                                                                    |
| 699                                                                                                                               | 448                                                                                                                                                                    | 454                                                                                                                                             | 460                                                                                                                                      | 466                                                                                                                               | 473                                                                                                                        | 479                                                                                                          | _                                                                                                     | _                                                                                                      |                                                                                                        | 566                                                                                                    | -                                                                                                                  |
| 700                                                                                                                               | 510                                                                                                                                                                    | 516                                                                                                                                             | 522                                                                                                                                      | 528                                                                                                                               | 535                                                                                                                        |                                                                                                              | _                                                                                                     | _                                                                                                      |                                                                                                        |                                                                                                        |                                                                                                                    |
| N                                                                                                                                 | L 0                                                                                                                                                                    | 1                                                                                                                                               | 2                                                                                                                                        | 3                                                                                                                                 | 4                                                                                                                          | 5                                                                                                            | 6                                                                                                     | 7                                                                                                      | 8                                                                                                      | 9                                                                                                      | Prop. Pts.                                                                                                         |

700-750

| N                                         | L 0                                                     | 1                                             | 2                                           | 3                                           | 4                                         | 5                                           | 6                                               | 7                                           | 8                                                    | 9                                                        | Prop. Pts.                                                                                                               |
|-------------------------------------------|---------------------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 700                                       | 84 510                                                  | 516                                           | 522                                         | 528                                         | 535                                       | 541                                         | 547                                             | 553                                         | 559                                                  | 566                                                      |                                                                                                                          |
| 701                                       | 572                                                     | 578                                           | 584                                         | 590                                         | 597                                       | 603                                         | 609                                             | 615                                         | 621                                                  | 628                                                      |                                                                                                                          |
| 702                                       | 634                                                     | 640                                           | 646                                         | 652                                         | 658                                       | 665                                         | 671                                             | 677                                         | 683                                                  | 689                                                      |                                                                                                                          |
| $\begin{array}{c} 703 \\ 704 \end{array}$ | 696<br>757                                              | 702<br>763                                    | 708<br>770                                  | 714 776                                     | 720 782                                   | 726 788                                     | 733 794                                         | 739 800                                     | 745<br>  807                                         | 751 813                                                  |                                                                                                                          |
| 104                                       | 101                                                     | 105                                           | 110                                         | 110                                         | 102                                       | 100                                         | 101                                             | 300                                         | 307                                                  | 010                                                      |                                                                                                                          |
| 705                                       | 819                                                     | 825                                           | 831                                         | 837                                         | 844                                       | 850                                         | 856                                             | 862                                         | 868                                                  | 874                                                      |                                                                                                                          |
| 706<br>707                                | 880<br>942                                              | 887<br>948                                    | 893<br>954                                  | 899<br>960                                  | 905 967                                   | 911 973                                     | 917 979                                         | 924 985                                     | 930 991                                              | 936                                                      | 7                                                                                                                        |
| 708                                       | 85 003                                                  | 009                                           | 016                                         | 022                                         | 028                                       | 034                                         | 040                                             | 046                                         | $\begin{vmatrix} 951 \\ 052 \end{vmatrix}$           | 058                                                      | 1 0.7                                                                                                                    |
| 709                                       | 065                                                     | 071                                           | 077                                         | 083                                         | 089                                       | 095                                         | 101                                             | 107                                         | 114                                                  | 120                                                      | $egin{array}{c c} 2 & 1.4 \ 3 & 2.1 \end{array}$                                                                         |
| 710                                       | 126                                                     | 132                                           | 138                                         | 144                                         | 150                                       | 156                                         | 163                                             | 169                                         | 175                                                  | 181                                                      | $\begin{array}{ c c c c c }\hline & 2 & 1.4 \\ 3 & 2.1 \\ 4 & 2.8 \\ 5 & 3.5 \\ \hline \end{array}$                      |
| 711                                       | 187                                                     | 193                                           | 199                                         | 205                                         | 211                                       | 217                                         | 224                                             | 230                                         | 236                                                  | 242                                                      | 6 + 4.2                                                                                                                  |
| $712 \\ 713$                              | $\frac{248}{309}$                                       | $\begin{bmatrix} 254 \\ 315 \end{bmatrix}$    | $\frac{260}{321}$                           | $\frac{266}{327}$                           | 272<br>333                                | 278<br>339                                  | $\begin{array}{ c c c } 285 \\ 345 \end{array}$ | 291<br>  352                                | 297<br>  358                                         | $\begin{array}{ c c c }\hline 303 \\ 364 \\ \end{array}$ | $egin{array}{c c} 7 & 4.9 \ 8 & 5.6 \end{array}$                                                                         |
| 714                                       | $\frac{309}{370}$                                       | 376                                           | $\frac{321}{382}$                           | 388                                         | 394                                       | 400                                         | 406                                             | 412                                         | 418                                                  | $\frac{304}{425}$                                        | $\left \begin{array}{c c}8&5.6\\9&6.3\end{array}\right $                                                                 |
| 715                                       | 431                                                     | 437                                           | 443                                         | 449                                         | 455                                       | 461                                         | 467                                             | 473                                         | 479                                                  | 485                                                      |                                                                                                                          |
| 716                                       | 491                                                     | 497                                           | 503                                         | 509                                         | 516                                       | 522                                         | 528                                             | 534                                         | 540                                                  | 546                                                      |                                                                                                                          |
| 717                                       | 552                                                     | 558                                           | 564                                         | 570                                         | 576                                       | 582                                         | 588                                             | 594                                         | 600                                                  | 606                                                      |                                                                                                                          |
| 718<br>719                                | $\begin{bmatrix} 612 \\ 673 \end{bmatrix}$              | $\begin{array}{c} 618 \\ 679 \end{array}$     | $\begin{array}{c} 625 \\ 685 \end{array}$   | $631 \\ 691$                                | 637<br>697                                | 643                                         | 649 709                                         | 655                                         | $\begin{vmatrix} 661 \\ 721 \end{vmatrix}$           | 667<br>727                                               |                                                                                                                          |
| 720                                       | 733                                                     | 739                                           | $\frac{-035}{745}$                          | $\frac{-051}{751}$                          | 757                                       | 763                                         | 769                                             | $\frac{713}{775}$                           | 781                                                  | 788                                                      |                                                                                                                          |
| $\frac{720}{721}$                         | 794                                                     | 800                                           | $\frac{745}{806}$                           | $\frac{731}{812}$                           | 818                                       | $\frac{703}{824}$                           | 830                                             | $\frac{773}{836}$                           | 842                                                  | 848                                                      |                                                                                                                          |
| 722                                       | 854                                                     | 860                                           | 866                                         | 872                                         | 878                                       | 884                                         | 890                                             | 896                                         | 902                                                  | 908                                                      | 6                                                                                                                        |
| 723                                       | 914                                                     | 920                                           | 926                                         | 932                                         | 938                                       | 944                                         | 950                                             | 956                                         | 962                                                  | 968                                                      | 1 0.6                                                                                                                    |
| 724                                       | 974                                                     | 980                                           | 986                                         | 992                                         | 998                                       | *004                                        | *010                                            | *016                                        | *022                                                 | *028                                                     | $\begin{array}{c cccc} 2 & 1.2 \\ 3 & 1.8 \\ 4 & 2.4 \\ 5 & 3.0 \\ 6 & 3.6 \\ 7 & 4.2 \\ 8 & 4.8 \\ 9 & 5.4 \end{array}$ |
| 725                                       | 86 034                                                  | 040                                           | 046                                         | 052                                         | 058                                       | 064                                         | 070                                             | 076                                         | 082                                                  | 088                                                      | $egin{array}{c c} 4 & 2.4 \ 5 & 3.0 \end{array}$                                                                         |
| $\frac{726}{727}$                         | 094<br>153                                              | 100<br>159                                    | $\begin{array}{c c} 106 \\ 165 \end{array}$ | $\frac{112}{171}$                           | 118<br>177                                | 124<br>183                                  | 130<br>189                                      | 136<br>195                                  | $\begin{array}{c c} 141 \\ 201 \end{array}$          | $\begin{bmatrix} 147 \\ 207 \end{bmatrix}$               | $\frac{6}{3}$                                                                                                            |
| 728                                       | 213                                                     | 219                                           | $\begin{vmatrix} 105 \\ 225 \end{vmatrix}$  | 231                                         | 237                                       | 243                                         | 249                                             | $\begin{array}{c} 195 \\ 255 \end{array}$   | $\begin{bmatrix} 261 \\ 261 \end{bmatrix}$           | $\begin{vmatrix} 267 \\ 267 \end{vmatrix}$               | $egin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                      |
| 729                                       | 273                                                     | 279                                           | 285                                         | 291                                         | 297                                       | 303                                         | 308                                             | 314                                         | 320                                                  | 326                                                      | $9 \mid 5.4$                                                                                                             |
| 730                                       | 332                                                     | 338                                           | 344                                         | 350                                         | 356                                       | 362                                         | 368                                             | 374                                         | 380                                                  | 386                                                      |                                                                                                                          |
| 731<br>732                                | $   \begin{array}{r}     392 \\     451   \end{array} $ | 398<br>457                                    | 404<br>463                                  | $\frac{410}{469}$                           | $\begin{array}{c} 415 \\ 475 \end{array}$ | 421<br>481                                  | 427                                             | 433                                         | 439                                                  | 445                                                      |                                                                                                                          |
| 733                                       | 510                                                     | 516                                           | 522                                         | 528                                         | 534                                       | 540                                         | $\frac{487}{546}$                               | $\frac{493}{552}$                           | $\begin{array}{ c c }\hline 499\\ 558\\ \end{array}$ | 504<br>564                                               |                                                                                                                          |
| 734                                       | 570                                                     | 576                                           | 581                                         | 587                                         | 593                                       | 599                                         | 605                                             | 611                                         | 617                                                  | 623                                                      |                                                                                                                          |
| 735                                       | 629                                                     | 635                                           | 641                                         | 646                                         | 652                                       | 658                                         | 664                                             | 670                                         | 676                                                  | 682                                                      |                                                                                                                          |
| 736                                       | 688                                                     | 694                                           | 700                                         | 705                                         | 711                                       | 717                                         | 723                                             | 729                                         | 735                                                  | 741                                                      | 5                                                                                                                        |
| 737<br>738                                | 747<br>806                                              | $\begin{array}{c c} 753 \\ 812 \end{array}$   | 759  <br>817                                | 764<br>823                                  | 770<br>829                                | 776<br>835                                  | 782<br>841                                      | 788<br>847                                  | 794<br>853                                           | 800<br>859                                               |                                                                                                                          |
| 739                                       | 864                                                     | 870                                           | 876                                         | 882                                         | 888                                       | 894                                         | 900                                             | 906                                         | 911                                                  | 917                                                      | $egin{array}{c c} 1 & 0.5 \\ 2 & 1.0 \end{array}$                                                                        |
| 740                                       | 923                                                     | 929                                           | 935                                         | 941                                         | 947                                       | 953                                         | 958                                             | 964                                         | 970                                                  | 976                                                      | $\begin{array}{c cccc} 2 & 1.0 \\ 3 & 1.5 \\ 4 & 2.0 \\ 5 & 2.5 \\ 6 & 3.0 \\ 7 & 3.5 \\ 8 & 4.0 \\ 9 & 4.5 \end{array}$ |
| 741                                       | 982                                                     | 988                                           | 994                                         | 999                                         | *005                                      | *011                                        | *017                                            | *023                                        | *029                                                 | *035                                                     | $egin{array}{c c} 5 & 2.5 \ 6 & 3.0 \end{array}$                                                                         |
| 742<br>743                                | 87 040<br>099                                           | $ \begin{array}{c c} 046 \\ 105 \end{array} $ | $\begin{array}{c c} 052 \\ 111 \end{array}$ | $\begin{array}{c c} 058 \\ 116 \end{array}$ | $\begin{array}{c} 064 \\ 122 \end{array}$ | $\begin{array}{c} 070 \\ 128 \end{array}$   | $\begin{array}{c} 075 \\ 134 \end{array}$       | $\begin{array}{c c} 081 \\ 140 \end{array}$ | $\begin{bmatrix} 087 \\ 146 \end{bmatrix}$           | 093   151                                                | $\begin{array}{c c} 7 & 3.5 \\ 8 & 4.0 \end{array}$                                                                      |
| 744                                       | 157                                                     | 163                                           | 169                                         | 175                                         | 181                                       | 186                                         | 192                                             | 198                                         | $\begin{vmatrix} 140 \\ 204 \end{vmatrix}$           | 210                                                      | $\begin{array}{c c} 8 & 4.0 \\ 9 & 4.5 \end{array}$                                                                      |
| 745                                       | 216                                                     | 221                                           | 227                                         | 233                                         | 239                                       | 245                                         | 251                                             | 256                                         | 262                                                  | 268                                                      |                                                                                                                          |
| 746                                       | 274                                                     | 280                                           | 286                                         | 291                                         | 297                                       | 303                                         | 309                                             | 315                                         | 320                                                  | 326                                                      |                                                                                                                          |
| 747<br>748                                | 332<br>390                                              | 338<br>396                                    | 344<br>402                                  | 349<br>408                                  | $\begin{array}{c} 355 \\ 413 \end{array}$ | $\begin{array}{c c} 361 \\ 419 \end{array}$ | $\begin{array}{c} 367 \\ 425 \end{array}$       | 373<br>431                                  | 379<br>437                                           | 384<br>442                                               |                                                                                                                          |
| 749                                       | 448                                                     | 454                                           | 460                                         | 466                                         | 471                                       | $\frac{1}{477}$                             | 483                                             | 489                                         | 495                                                  | 500                                                      |                                                                                                                          |
| 750                                       | 506                                                     | 512                                           | 518                                         | 523                                         | 529                                       | 535                                         | 541                                             | 547                                         | 552                                                  | 558                                                      |                                                                                                                          |
| N                                         | L O                                                     | 1                                             | 2                                           | 3                                           | 4                                         | 5                                           | 6                                               | 7                                           | 8                                                    | 9                                                        | Prop. Pts.                                                                                                               |
|                                           |                                                         |                                               |                                             |                                             |                                           |                                             |                                                 |                                             |                                                      |                                                          |                                                                                                                          |

750-800

| N          | L 0                                        | 1                                           | 2                 | 3                                           | 4                                                         | 5                                         | 6                                                        | 7                 | 8                 | 9                                                      | Prop. Pts.                                                                                                         |
|------------|--------------------------------------------|---------------------------------------------|-------------------|---------------------------------------------|-----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|-------------------|-------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 750        | 87 506                                     | 512                                         | 518               | 523                                         | 529                                                       | 535                                       | 541                                                      | 547               | 552               | 558                                                    |                                                                                                                    |
| 751        | 564                                        | 570                                         | 576               | 581                                         | 587                                                       | 593                                       | 599                                                      | 604               | 610               | 616                                                    |                                                                                                                    |
| 752<br>753 | 622<br>679                                 | 628<br>685                                  | 633<br>691        | 639<br>697                                  | $\begin{array}{c} 645 \\ 703 \end{array}$                 | 651<br>708                                | $\begin{array}{ c c c }\hline 656 \\ 714 \\ \end{array}$ | 662<br>720        | 668<br>726        | 674<br>731                                             |                                                                                                                    |
| 754        | 737                                        | 743                                         | 749               | 754                                         | 760                                                       | 766                                       | 772                                                      | 777               | 783               | 789                                                    |                                                                                                                    |
| 755        | 705                                        | 200                                         | 206               | 812                                         | 010                                                       | 000                                       | 829                                                      | 835               | 0/1               | 846                                                    |                                                                                                                    |
| 755<br>756 | $\begin{array}{c} 795 \\ 852 \end{array}$  | 800<br>858                                  | 806<br>864        | 869                                         | 818<br>875                                                | 823<br>881                                | 887                                                      | 892               | 841 898           | 904                                                    |                                                                                                                    |
| 757        | 910                                        | 915                                         | 921               | 927                                         | 933                                                       | 938                                       | 944                                                      | 950               | 955               | 961                                                    |                                                                                                                    |
| 758<br>759 | $967 \\ 88\ 024$                           | 973<br>030                                  | 978<br>036        | $\begin{array}{c c} 984 \\ 041 \end{array}$ | $   \begin{array}{c c}     990 \\     047   \end{array} $ | 996<br>053                                | *001<br>058                                              | *007<br>064       | *013<br>070       | *018  <br>  076                                        |                                                                                                                    |
|            |                                            |                                             |                   |                                             |                                                           |                                           |                                                          |                   |                   |                                                        |                                                                                                                    |
| 760        | 081                                        | 087                                         | $\frac{093}{150}$ | $\frac{098}{156}$                           | $\frac{104}{161}$                                         | $\frac{110}{167}$                         | $\frac{116}{173}$                                        | $\frac{121}{178}$ | $\frac{127}{184}$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 6                                                                                                                  |
| 761<br>762 | 138<br>195                                 | $\begin{array}{c c} 144 \\ 201 \end{array}$ | $\frac{150}{207}$ | $\frac{150}{213}$                           | 218                                                       | $\frac{107}{224}$                         | 230                                                      | 235               | 241               | $\begin{array}{c c} 190 \\ 247 \end{array}$            |                                                                                                                    |
| 763        | 252                                        | 258                                         | 264               | 270                                         | 275                                                       | 281                                       | 287                                                      | 292               | 298               | 304                                                    | $egin{array}{c c} 1 & 0.6 \\ 2 & 1.2 \end{array}$                                                                  |
| 764        | 309                                        | 315                                         | 321               | 326                                         | 332                                                       | 338                                       | 343                                                      | 349               | 355               | 360                                                    | $\begin{array}{c cccc} 2 & 1.2 \\ 3 & 1.8 \\ 4 & 2.4 \\ 5 & 3.0 \\ 6 & 3.6 \\ 7 & 4.2 \\ 8 & 4.8 \end{array}$      |
| 765        | 366                                        | 372                                         | 377               | 383                                         | 389                                                       | 395                                       | 400                                                      | 406               | 412               | 417                                                    | $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ |
| 766        | 423                                        | 429                                         | 434               | $\begin{array}{c c} 440 \\ 497 \end{array}$ | $\begin{array}{c} 446 \\ 502 \end{array}$                 | 451<br>508                                | 457<br>513                                               | 463<br>519        | 468<br>525        | 474<br>530                                             | $\begin{array}{c c} 6 & 3.6 \\ 7 & 4.2 \end{array}$                                                                |
| 767<br>768 | 480<br>536                                 | $\begin{array}{c c} 485 \\ 542 \end{array}$ | $\frac{491}{547}$ | 553                                         | 559                                                       | 564                                       | 570                                                      | 576               | 581               | 587                                                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                             |
| 769        | 593                                        | 598                                         | 604               | 610                                         | 615                                                       | 621                                       | 627                                                      | 632               | 638               | 643                                                    | 0 1 0.1                                                                                                            |
| 770        | 649                                        | 655                                         | 660               | 666                                         | 672                                                       | 677                                       | 683                                                      | 689               | 694               | 700                                                    |                                                                                                                    |
| 771        | 705                                        | 711                                         | 717               | 722<br>779                                  | $728 \\ 784$                                              | 734<br>790                                | 739<br>795                                               | 745<br>801        | 750<br>807        | 756<br>812                                             |                                                                                                                    |
| 772<br>773 | 762<br>818                                 | 767<br>824                                  | 773<br>829        | 835                                         | 840                                                       | 846                                       | 852                                                      | 857               | 863               | 868                                                    |                                                                                                                    |
| 774        | 874                                        | 880                                         | 885               | 891                                         | 897                                                       | 902                                       | 908                                                      | 913               | 919               | 925                                                    |                                                                                                                    |
| 775        | 930                                        | 936                                         | 941               | 947                                         | 953                                                       | 958                                       | 964                                                      | 969               | 975               | 981                                                    |                                                                                                                    |
| 776        | 986                                        | 992                                         | 997               | *003                                        | *009                                                      | *014                                      | *020                                                     | *025              | *031              | *037                                                   |                                                                                                                    |
| 777<br>778 | 89 042<br>098                              | $048 \\ 104$                                | $053 \\ 109$      | $\begin{array}{c c} 059 \\ 115 \end{array}$ | $064 \\ 120$                                              | $\begin{array}{c} 070 \\ 126 \end{array}$ | 076                                                      | 081<br>137        | 087               | 092<br>148                                             |                                                                                                                    |
| 779        | 154                                        | 159                                         | 165               | 170                                         | 176                                                       | 182                                       | 187                                                      | 193               | 198               | 204                                                    |                                                                                                                    |
| 780        | 209                                        | ${215}$                                     | 221               | 226                                         | 232                                                       | 237                                       | 243                                                      | 248               | 254               | 260                                                    |                                                                                                                    |
| 781        | 265                                        | 271                                         | 276               | 282                                         | 287                                                       | 293                                       | 298                                                      | 304               | 310               | 315                                                    | 5                                                                                                                  |
| 782        | 321<br>376                                 | $\begin{vmatrix} 326 \\ 382 \end{vmatrix}$  | 332<br>387        | 337<br>393                                  | 343<br>398                                                | 348<br>404                                | 354 409                                                  | 360<br>415        | $\frac{365}{421}$ | 371<br>426                                             |                                                                                                                    |
| 783<br>784 | 432                                        | 437                                         | 443               | 448                                         | 454                                                       | 459                                       | 465                                                      | 470               | 476               | 481                                                    | $egin{array}{c c} 1 & 0.5 \\ 2 & 1.0 \\ 3 & 1.5 \\ \end{array}$                                                    |
| 785        | 487                                        | 492                                         | 498               | 504                                         | 509                                                       | 515                                       | 520                                                      | 526               | 531               | 537                                                    | $4 \mid 2.0$                                                                                                       |
| 786        | 542                                        | 548                                         | 553               | 559                                         | 564                                                       | 570                                       | 575                                                      | 581               | 586               | 592                                                    | $egin{array}{c c} 5 & \overline{2.5} \\ 6 & 3.0 \end{array}$                                                       |
| 787        | 597                                        | 603                                         | 609<br>664        | 614 669                                     | 620<br>675                                                | 625                                       | 631                                                      | 636<br>691        | 642 697           | $\begin{array}{ c c }\hline 647\\702\\ \end{array}$    | $ \begin{array}{c c} 7 & 3.5 \\ 8 & 4.0 \end{array} $                                                              |
| 788<br>789 | 653<br>708                                 | 713                                         | 719               | 724                                         | 730                                                       | 735                                       | 741                                                      | 746               | 752               | 757                                                    | 9 4.5                                                                                                              |
| 790        | 763                                        | 768                                         | 774               | 779                                         | 785                                                       | 790                                       | 796                                                      | 801               | 807               | 812                                                    |                                                                                                                    |
| 791        | 818                                        | 823                                         | 829               | 834                                         | 840                                                       | 845                                       | 851                                                      | 856               | 862               | 867                                                    |                                                                                                                    |
| 792        | 873                                        | 878                                         | 883               | 889                                         | 894<br>949                                                | 900 955                                   | 905                                                      | 911 966           | 916 971           | $\begin{vmatrix} 922 \\ 977 \end{vmatrix}$             |                                                                                                                    |
| 793<br>794 | 927<br>982                                 | 933                                         | 938<br>993        | 944 998                                     | *004                                                      | *009                                      | *015                                                     | *020              | *026              | *031                                                   |                                                                                                                    |
|            |                                            |                                             |                   |                                             | 059                                                       | 064                                       | 069                                                      | 075               | 080               | 086                                                    |                                                                                                                    |
| 795        | 90 037 091                                 | 042 097                                     | 048               | 053                                         | 113                                                       | 119                                       | 124                                                      | 129               | 135               | 140                                                    |                                                                                                                    |
| 797        | 146                                        | 151                                         | 157               | 162                                         | 168                                                       | 173                                       | 179                                                      | 184               | 189               | 195                                                    |                                                                                                                    |
| 798        | $\begin{vmatrix} 200 \\ 255 \end{vmatrix}$ | 206 260                                     | 211<br>266        | 217 271                                     | 222<br>276                                                | 227 282                                   | 233 287                                                  | 238<br>293        | 244 298           | 304                                                    |                                                                                                                    |
| 799        | 309                                        | $\frac{200}{314}$                           | 320               | $\frac{271}{325}$                           | 331                                                       | 336                                       | 342                                                      | 347               | 352               | 358                                                    |                                                                                                                    |
| 800        |                                            |                                             |                   |                                             |                                                           |                                           | -                                                        | 7                 | 8                 | 9                                                      | Prop. Pts.                                                                                                         |
| N          | L 0                                        | 1                                           | 2                 | 3                                           | 4                                                         | 5                                         | 6                                                        |                   | 0                 | 9                                                      | 1100. 1 to                                                                                                         |

800-850

| N                               | L 0                                       | 1                                                                     | 2                               | 3                                                                      | 4                               | 5                               | 6                               | 7                                                                          | 8                               | 9                               | Prop. Pts.                                                                                     |
|---------------------------------|-------------------------------------------|-----------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------------------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------------------------------|
| 800                             | 90 309                                    | 314                                                                   | 320                             | 325                                                                    | 331                             | 336                             | 342                             | 347                                                                        | 352                             | 358                             |                                                                                                |
| 801                             | 363                                       | 369                                                                   | 374                             | 380                                                                    | 385                             | 390                             | 396                             | 401                                                                        | 407<br>461                      | 412<br>466                      |                                                                                                |
| 802<br>803                      | $\begin{array}{c} 417 \\ 472 \end{array}$ | $\begin{array}{ c c }\hline 423 \\ 477 \end{array}$                   | 428<br>482                      | 434<br>488                                                             | 439<br>493                      | 445<br>499                      | 450<br>504                      | 455<br>509                                                                 | 515                             | 520                             |                                                                                                |
| 804                             | 526                                       | 531                                                                   | 536                             | 542                                                                    | 547                             | 553                             | 558                             | 563                                                                        | 569                             | 574                             |                                                                                                |
| 805<br>806<br>807               | 580<br>634<br>687                         | 585<br>639<br>693                                                     | 590<br>644<br>698               | 596<br>650<br>703                                                      | 601<br>655<br>709               | 607<br>660<br>714               | 612<br>666<br>720               | 617<br>671<br>725                                                          | 623<br>677<br>730               | 628<br>682<br>736               |                                                                                                |
| 808<br>809                      | 741<br>795                                | 747<br>800                                                            | 752<br>806                      | 757<br>811                                                             | 763<br>816                      | 768<br>822                      | 773<br>827                      | 779<br>832                                                                 | 784<br>838                      | 789<br>843                      |                                                                                                |
| 810                             | 849                                       | 854                                                                   | 859                             | 865                                                                    | 870                             | 875                             | 881                             | 886                                                                        | 891                             | 897                             |                                                                                                |
| 811                             | 902                                       | 907                                                                   | 913                             | 918                                                                    | 924                             | 929                             | 934                             | 940                                                                        | 945                             | 950                             | 6                                                                                              |
| 812                             | 956                                       | 961 014                                                               | 966<br>020                      | $\begin{array}{c c} 972 \\ 025 \end{array}$                            | 977<br>030                      | 982<br>036                      | $988 \\ 041$                    | 993<br>046                                                                 | $998 \\ 052$                    | *004<br>057                     | $egin{array}{c c} 1 & 0.6 \\ 2 & 1.2 \end{array}$                                              |
| 813<br>814                      | $91\ 009\ 062$                            | 068                                                                   | 073                             | 078                                                                    | 084                             | 089                             | 094                             | 100                                                                        | 105                             | 110                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                          |
| 815<br>816<br>817<br>818<br>819 | 116<br>169<br>222<br>275<br>328           | 121<br>174<br>228<br>281<br>334                                       | 126<br>180<br>233<br>286<br>339 | 132<br>185<br>238<br>291<br>344                                        | 137<br>190<br>243<br>297<br>350 | 142<br>196<br>249<br>302<br>355 | 148<br>201<br>254<br>307<br>360 | 153<br>206<br>259<br>312<br>365                                            | 158<br>212<br>265<br>318<br>371 | 164<br>217<br>270<br>323<br>376 | 2   1.2<br>3   1.8<br>4   2.4<br>5   3.0<br>6   3.6<br>7   4.2<br>8   4.8<br>9   5.4           |
| 820                             | 381                                       | 387                                                                   | 392                             | 397                                                                    | 403                             | 408                             | 413                             | 418                                                                        | 424                             | 429                             |                                                                                                |
| 821                             | 434                                       | 440                                                                   | 445                             | 450                                                                    | 455                             | 461                             | 466                             | 471                                                                        | 477                             | 482                             |                                                                                                |
| 822<br>823<br>824               | 487<br>540<br>593                         | 492<br>545<br>598                                                     | 498<br>551<br>603               | 503<br>556<br>609                                                      | 508<br>561<br>614               | 514<br>566<br>619               | 519<br>572<br>624               | 524<br>577<br>630                                                          | 529<br>582<br>635               | 535<br>587<br>640               |                                                                                                |
| 825                             | 645<br>698                                | 651<br>703                                                            | 656<br>709                      | 661<br>714                                                             | 666<br>719                      | 672                             | 677<br>730                      | 682<br>735                                                                 | 687<br>740                      | 693<br>745                      |                                                                                                |
| 826<br>827                      | 751                                       | 756                                                                   | 761                             | 766                                                                    | 772                             | 724<br>777                      | 782                             | 787                                                                        | 793                             | 798                             |                                                                                                |
| 828                             | 803                                       | 808                                                                   | 814                             | 819                                                                    | 824                             | 829<br>882                      | 834                             | 840                                                                        | 845                             | 850<br>903                      |                                                                                                |
| 829                             | 908                                       | $\begin{array}{ c c } \hline 861 \\ \hline 913 \\ \hline \end{array}$ | $\frac{866}{918}$               | $\begin{array}{ c c c }\hline 871 \\ \hline 924 \\ \hline \end{array}$ | 876.<br>929                     | 934                             | 939                             | $\begin{array}{ c c c c c }\hline 892 \\ \hline 944 \\ \hline \end{array}$ | $\frac{-397}{950}$              | 955                             |                                                                                                |
| 831                             | 960                                       | 965                                                                   | $\frac{971}{}$                  | 976                                                                    | 981                             | 986                             | 991                             | 997                                                                        | *002                            | *007                            |                                                                                                |
| 832                             | 92 012                                    | 018                                                                   | 023                             | 028                                                                    | 033                             | 038                             | 044                             | 049                                                                        | 054                             | 059                             | 5                                                                                              |
| 833<br>834                      | 065<br>117                                | 070<br>122                                                            | 075                             | 080                                                                    | 085                             | 091                             | 096                             | 101<br>153                                                                 | 106<br>158                      | 111<br>163                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                          |
| 835                             | 169                                       | 174                                                                   | 179                             | 184                                                                    | 189                             | 195                             | 200                             | 205                                                                        | 210<br>262                      | 215<br>267                      | $\begin{bmatrix} 3 & 1.5 \\ 4 & 2.0 \\ 5 & 2.5 \\ 6 & 3.0 \\ 7 & 3.5 \\ 8 & 4.0 \end{bmatrix}$ |
| 836                             | 221 273                                   | 226 278                                                               | 231 283                         | 236<br>288                                                             | 241<br>293                      | 247<br>298                      | 252<br>  304                    | 257<br>  309                                                               | 314                             | 319                             | $\begin{bmatrix} 6 & \overline{3.0} \\ \overline{7} & \overline{2.5} \end{bmatrix}$            |
| 838                             | 324                                       | 330                                                                   | 335                             | 340                                                                    | 345                             | 350                             | 355                             | 361                                                                        | 366                             | 371                             | 7   3.5   4.0                                                                                  |
| 839                             | 376                                       | 381                                                                   | 387                             | 392                                                                    | 397                             | 402                             | 407                             | 412                                                                        | 418                             | 423                             | 9   4.5                                                                                        |
| 840                             | 428                                       | 433                                                                   | 438                             | 443                                                                    | 449                             | 454                             | 459                             | 464                                                                        | 469                             | 474                             |                                                                                                |
| 841 842                         | 480<br>531                                | 485 536                                                               | 490 542                         | 495<br>547                                                             | 500 552                         | 505<br>557                      | 511 562                         | 516 567                                                                    | 521<br>572                      | 526<br>578                      |                                                                                                |
| 842                             | 583                                       | 588                                                                   | 593                             | 598                                                                    | 603                             | 609                             | 614                             | 619                                                                        | 624                             | 629                             |                                                                                                |
| 844                             | 634                                       | 639                                                                   | 645                             | 650                                                                    | 655                             | 660                             | 665                             | 670                                                                        | 675                             | 681                             |                                                                                                |
| 845                             | 686<br>737                                | 691 742                                                               | 696 747                         | 701 752                                                                | 706 758                         | 711 763                         | 716 768                         | 722                                                                        | 727 778                         | 732<br>783                      |                                                                                                |
| 846 847                         | 788                                       | 793                                                                   | 799                             | 804                                                                    | 809                             | 814                             | 819                             | 824                                                                        | 829                             | 834                             |                                                                                                |
| 848                             | 840<br>891                                | 845<br>896                                                            | 850<br>901                      | 855<br>906                                                             | 860 911                         | 865 916                         | 870<br>921                      | 875<br>927                                                                 | 881 932                         | 886                             |                                                                                                |
| 849<br><b>850</b>               | $-\frac{391}{942}$                        | 947                                                                   | 952                             | 957                                                                    | 962                             | 967                             | 973                             | 978                                                                        | 983                             | 988                             |                                                                                                |
| N                               | L 0                                       | 1                                                                     | 2                               | 3                                                                      | 4                               | 5                               | 6                               | 7                                                                          | 8                               | 9                               | Prop. Pts.                                                                                     |
| 14                              | 1 0                                       | 1                                                                     | -                               |                                                                        |                                 |                                 |                                 |                                                                            |                                 |                                 |                                                                                                |

850-900

| N                               | L 0                             | 1                               | 2                                                                      | 3                               | 4                                                                             | 5                                                                       | 6                               | 7                               | 8                               | 9                               | Prop. Pts.                                                                                                                                       |
|---------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 850                             | 92 942                          | 947                             | 952                                                                    | 957                             | 962                                                                           | 967                                                                     | 973                             | 978                             | 983                             | 988                             |                                                                                                                                                  |
| 851<br>852<br>853<br>854        | 993<br>93 044<br>095<br>146     | 998<br>049<br>100<br>151        | *003<br>054<br>105<br>156                                              | *008<br>059<br>110<br>161       | *013<br>064<br>115<br>166                                                     | *018<br>069<br>120<br>171                                               | *024<br>075<br>125<br>176       | *029<br>080<br>131<br>181       | *034<br>085<br>181<br>186       | *039<br>090<br>141<br>192       |                                                                                                                                                  |
| 855<br>856<br>857<br>858<br>859 | 197<br>247<br>298<br>349<br>399 | 202<br>252<br>303<br>354<br>404 | 207<br>258<br>308<br>359<br>409                                        | 212<br>263<br>313<br>364<br>414 | 217<br>268<br>318<br>369<br>420                                               | 222<br>273<br>323<br>374<br>425                                         | 227<br>278<br>328<br>379<br>430 | 232<br>283<br>334<br>384<br>435 | 237<br>288<br>339<br>389<br>440 | 242<br>293<br>344<br>394<br>445 | 1 0.6<br>2 1.2<br>3 1.8                                                                                                                          |
| 860                             | 450                             | 455                             | 460                                                                    | 465                             | 470                                                                           | 475                                                                     | 480                             | 485                             | 490                             | 495                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                            |
| 861<br>862<br>863<br>864        | 500<br>551<br>601<br>651        | 505<br>556<br>606<br>656        | 510<br>561<br>611<br>661                                               | 515<br>566<br>616<br>666        | 520<br>571<br>621<br>671                                                      | 526<br>576<br>626<br>676                                                | 531<br>581<br>631<br>682        | 536<br>586<br>636<br>687        | 541<br>591<br>641<br>692        | 546<br>596<br>646<br>697        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                            |
| 865<br>866<br>867<br>868<br>869 | 702<br>752<br>802<br>852<br>902 | 707<br>757<br>807<br>857<br>907 | 712<br>762<br>812<br>862<br>912                                        | 717<br>767<br>817<br>867<br>917 | 722<br>772<br>822<br>872<br>922                                               | 727<br>777<br>827<br>827<br>877<br>927                                  | 732<br>782<br>832<br>882<br>932 | 737<br>787<br>837<br>887<br>937 | 742<br>792<br>842<br>892<br>942 | 747<br>797<br>847<br>897<br>947 |                                                                                                                                                  |
| 870                             | 952                             | 957                             | 962                                                                    | 967                             | 972                                                                           | 977                                                                     | 982                             | 987                             | 992                             | 997                             |                                                                                                                                                  |
| 871<br>872<br>873<br>874        | 94 002<br>052<br>101<br>151     | 007<br>057<br>106<br>156        | $\begin{array}{ c c c }\hline 012 \\ 062 \\ 111 \\ 161 \\ \end{array}$ | 017<br>067<br>116<br>166        | $ \begin{array}{ c c c c c } \hline 022 \\ 072 \\ 121 \\ 171 \\ \end{array} $ | $ \begin{array}{ c c } \hline 027 \\ 077 \\ 126 \\ 176 \\ \end{array} $ | 032<br>082<br>131<br>181        | 037<br>086<br>136<br>186        | 042<br>091<br>141<br>191        | 047<br>096<br>146<br>196        | 5<br>1 0.5<br>2 1.0<br>3 1.5                                                                                                                     |
| 875<br>876<br>877<br>878<br>879 | 201<br>250<br>300<br>349<br>399 | 206<br>255<br>305<br>354<br>404 | 211<br>260<br>310<br>359<br>409                                        | 216<br>265<br>315<br>364<br>414 | 221<br>270<br>320<br>369<br>419                                               | 226<br>275<br>325<br>374<br>424                                         | 231<br>280<br>330<br>379<br>429 | 236<br>285<br>335<br>384<br>433 | 240<br>290<br>340<br>389<br>438 | 245<br>295<br>345<br>394<br>443 | $ \begin{array}{ c c c c c } \hline 2 & 1.0 \\ 3 & 1.5 \\ 4 & 2.0 \\ 5 & 2.5 \\ 6 & 3.0 \\ 7 & 3.5 \\ 8 & 4.0 \\ 9 & 4.5 \\ \hline \end{array} $ |
| 880                             | 448                             | 453                             | 458                                                                    | 463                             | 468                                                                           | 473                                                                     | 478                             | 483                             | 488                             | 493                             |                                                                                                                                                  |
| 881<br>882<br>883<br>884        | 498<br>547<br>596<br>645        | 503<br>552<br>601<br>650        | 507<br>557<br>606<br>655                                               | 512<br>562<br>611<br>660        | 517<br>567<br>616<br>665                                                      | 522<br>571<br>621<br>670                                                | 527<br>576<br>626<br>675        | 532<br>581<br>630<br>680        | 537<br>586<br>635<br>685        | 542<br>591<br>640<br>689        |                                                                                                                                                  |
| 885<br>886<br>887<br>888<br>889 | 694<br>743<br>792<br>841<br>890 | 699<br>748<br>797<br>846<br>895 | 704<br>753<br>802<br>851<br>900                                        | 709<br>758<br>807<br>856<br>905 | 714<br>763<br>812<br>861<br>910                                               | 719<br>768<br>817<br>866<br>915                                         | 724<br>773<br>822<br>871<br>919 | 729<br>778<br>827<br>876<br>924 | 734<br>783<br>832<br>880<br>929 | 738<br>787<br>836<br>885<br>934 | 1 0.4<br>2 0.8<br>3 1.2                                                                                                                          |
| 890                             | 939                             | 944                             | 949                                                                    | 954                             | 959                                                                           | 963                                                                     | 968                             | 973                             | 978                             | 983                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                            |
| 891<br>892<br>893<br>894        | 988<br>95 036<br>085<br>134     | 993<br>041<br>090<br>139        | 998<br>046<br>095<br>143                                               | *002<br>051<br>100<br>148       | *007<br>056<br>105<br>153                                                     | *012<br>061<br>109<br>158                                               | *017<br>066<br>114<br>163       | *022<br>071<br>119<br>168       | *027<br>075<br>124<br>173       | *032<br>080<br>129<br>177       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                           |
| 895<br>896<br>897<br>898<br>899 | 182<br>231<br>279<br>328<br>376 | 187<br>236<br>284<br>332<br>381 | 192<br>240<br>289<br>337<br>386                                        | 197<br>245<br>294<br>342<br>390 | 202<br>250<br>299<br>347<br>395                                               | 207<br>255<br>303<br>352<br>400                                         | 211<br>260<br>308<br>357<br>405 | 216<br>265<br>313<br>361<br>410 | 221<br>270<br>318<br>366<br>415 | 226<br>274<br>323<br>371<br>419 |                                                                                                                                                  |
| 900                             | 424                             | 429                             | 434                                                                    | 439                             | 444                                                                           | 448                                                                     | 453                             | 458                             | 463                             | 468                             |                                                                                                                                                  |
| N                               | L O                             | 1                               | 2                                                                      | 3                               | 4                                                                             | 5                                                                       | 6                               | 7                               | 8                               | 9                               | Prop. Pts.                                                                                                                                       |

900-950

| 900<br>901<br>902<br>903 | $\frac{95424}{472}$                                       | 429                                        |                                                        |                   |                                             |                                            |                   |                                           |                                            |                                           |                                                                                             |
|--------------------------|-----------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|-------------------|---------------------------------------------|--------------------------------------------|-------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|
| 901<br>902               |                                                           | 440                                        | 434                                                    | 439               | 444                                         | 448                                        | 453               | 458                                       | 463                                        | 468                                       |                                                                                             |
|                          |                                                           | 477                                        | 482                                                    | 487               | 492                                         | 497                                        | 501               | 506                                       | 511                                        | 516                                       |                                                                                             |
|                          | 521                                                       | 525                                        | 530                                                    | 535<br>583        | 540<br>588                                  | 545<br>593                                 | 550<br>598        | $\begin{array}{c} 554 \\ 602 \end{array}$ | 559<br>607                                 | $\begin{array}{c} 564 \\ 612 \end{array}$ |                                                                                             |
| 904                      | $   \begin{array}{r}     569 \\     617   \end{array} $   | $\begin{array}{c} 574 \\ 622 \end{array}$  | $\begin{bmatrix} 578 \\ 626 \end{bmatrix}$             | 631               | 636                                         | 641                                        | 646               | 650                                       | 655                                        | 660                                       |                                                                                             |
|                          |                                                           | , i                                        |                                                        |                   |                                             |                                            |                   |                                           | 700                                        | 700                                       |                                                                                             |
| 905<br>906               | $665 \\ 713$                                              | $\begin{bmatrix} 670 \\ 718 \end{bmatrix}$ | $\begin{array}{ c c }\hline 674 \\ 722 \\ \end{array}$ | 679<br>727        | $\begin{array}{c} 684 \\ 732 \end{array}$   | 689<br>737                                 | 694<br>742        | $\frac{698}{746}$                         | 703<br>751                                 | $\begin{array}{c} 708 \\ 756 \end{array}$ |                                                                                             |
| 907                      | 761                                                       | 766                                        | 770                                                    | 775               | 780                                         | 785                                        | 789               | 794                                       | 799                                        | 804                                       |                                                                                             |
| 908                      | 809                                                       | 813                                        | 818                                                    | 823               | 828                                         | 832                                        | 837               | 842                                       | 847                                        | 852                                       |                                                                                             |
| 909                      | 856                                                       | 861                                        | 866                                                    | 871               | 875                                         | 880                                        | 885               | 890                                       | 895                                        | 899                                       |                                                                                             |
| 910                      | 904                                                       | 909                                        | 914                                                    | 018               | 923                                         | 928                                        | 933               | 938                                       | 942                                        | 947                                       |                                                                                             |
| 911                      | 952                                                       | 957                                        | 961                                                    | 966               | 971                                         | 976                                        | 980               | 985                                       | 990<br>*038                                | 995<br>*042                               | 5                                                                                           |
| $912 \\ 913$             | 999<br>96 047                                             | *004<br>052                                | *009<br>057                                            | *014<br>061       | *019<br>066                                 | *023<br>071                                | *028<br>076       | *033<br>080                               | 085                                        | 090                                       | $\frac{1}{2}$ 0.5                                                                           |
| 914                      | 095                                                       | 099                                        | 104                                                    | 109               | 114                                         | 118                                        | 123               | 128                                       | 133                                        | 137                                       | $egin{array}{c c} 2 & 1.0 \ 3 & 1.5 \end{array}$                                            |
|                          | 149                                                       | 147                                        | 152                                                    | 156               | 161                                         | 166                                        | 171               | 175                                       | 180                                        | 185                                       | 4 + 2.0                                                                                     |
| $915 \\ 916$             | $\begin{array}{c c} 142 \\ 190 \end{array}$               | 194                                        | $\begin{vmatrix} 152 \\ 199 \end{vmatrix}$             | $\frac{130}{204}$ | $\frac{101}{209}$                           | 213                                        | 218               | 223                                       | 227                                        | 232                                       | $\begin{bmatrix} 5 & 2.5 \\ 6 & 3.0 \end{bmatrix}$                                          |
| 917                      | 237                                                       | 242                                        | 246                                                    | 251               | 256                                         | 261                                        | 265               | 270                                       | 275                                        | 280                                       | $egin{array}{c c} 7 & 3.5 \\ 8 & 4.0 \end{array}$                                           |
| 918<br>919               | $   \begin{array}{c c}     284 \\     332   \end{array} $ | 289<br>336                                 | 294<br>341                                             | $\frac{298}{346}$ | 303<br>350                                  | $\begin{array}{c} 308 \\ 355 \end{array}$  | 313<br>360        | $\begin{array}{c} 317 \\ 365 \end{array}$ | 322<br>369                                 | $\begin{array}{c} 327 \\ 374 \end{array}$ | $9 \mid \overline{4.5}$                                                                     |
|                          |                                                           |                                            |                                                        | 393               |                                             | 402                                        | 407               | $\frac{-300}{412}$                        | $\frac{-300}{417}$                         | $\frac{-3.2}{421}$                        |                                                                                             |
| <b>920</b><br>921        | $\frac{379}{426}$                                         | $\frac{384}{431}$                          | $\frac{388}{435}$                                      | $\frac{393}{440}$ | $\frac{398}{445}$                           | $\frac{402}{450}$                          | $\frac{407}{454}$ | $\frac{412}{459}$                         | $\frac{117}{464}$                          | $\frac{468}{468}$                         |                                                                                             |
| $921 \\ 922$             | 473                                                       | 478                                        | 483                                                    | 487               | 492                                         | 497                                        | 501               | 506                                       | 511                                        | 515                                       |                                                                                             |
| 923                      | 520                                                       | 525                                        | 530                                                    | 534               | 539                                         | 544                                        | 548               | 553                                       | $\begin{bmatrix} 558 \\ 605 \end{bmatrix}$ | 562<br>609                                |                                                                                             |
| 924                      | 567                                                       | 572                                        | 577                                                    | 581               | 586                                         | 591                                        | 595               | 600                                       |                                            |                                           |                                                                                             |
| 925                      | 614                                                       | 619                                        | 624                                                    | 628               | 633                                         | 638                                        | 642               | 647                                       | 652                                        | 656                                       |                                                                                             |
| $926 \\ 927$             | 661<br>708                                                | 666                                        | 670                                                    | 675<br>722        | $\begin{array}{c c} 680 \\ 727 \end{array}$ | 685<br>731                                 | 689<br>736        | $694 \\ 741$                              | $\begin{array}{c} 699 \\ 745 \end{array}$  | 703<br>750                                |                                                                                             |
| 927 $928$                | 755                                                       | 759                                        | 764                                                    | 769               | 774                                         | 778                                        | 783               | 788                                       | 792                                        | 797                                       |                                                                                             |
| 929                      | 802                                                       | 806                                        | 811                                                    | 816               | 820                                         | 825                                        | 830               | 834                                       | 839                                        | 844                                       |                                                                                             |
| 930                      | 848                                                       | 853                                        | 858                                                    | 862               | 876                                         | 872                                        | 876               | 881                                       | 886                                        | 890                                       |                                                                                             |
| 931                      | 895                                                       | 900                                        | 904                                                    | 909               | 914                                         | 918<br>965                                 | 923<br>970        | $928 \\ 974$                              | 932<br>979                                 | 937<br>984                                | 4                                                                                           |
| 932<br>933               | 942<br>988                                                | 946 993                                    | 951 997                                                | 956<br>*002       | 960<br>*007                                 | *011                                       | *016              | *021                                      | *025                                       | *030                                      |                                                                                             |
| 934                      | 97 035                                                    | 039                                        | 044                                                    |                   | 053                                         | 058                                        | 063               | 067                                       | 072                                        | 077                                       | $egin{array}{c c} 1 & 0.4 \\ 2 & 0.8 \end{array}$                                           |
| 935                      | 081                                                       | 086                                        | 090                                                    | 095               | 100                                         | 104                                        | 109               | 114                                       | 118                                        | 123                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                       |
| 936                      | 128                                                       | 132                                        | 137                                                    | 142               | 146                                         | 151                                        | 155               | 160                                       | 165                                        | 169                                       | $\begin{array}{c c} \hat{5} & \hat{2}.\check{0} \\ \hat{c} & \hat{2}.\check{0} \end{array}$ |
| 937                      | 174                                                       | 179                                        | 183                                                    | 188               | 192                                         | 197                                        | 202               | 206                                       | 211                                        | $\begin{array}{c} 216 \\ 262 \end{array}$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                          |
| 938                      | 220<br>267                                                | 225 271                                    | 230 276                                                | 234<br>280        | 239<br>285                                  | $\begin{vmatrix} 243 \\ 290 \end{vmatrix}$ | 248<br>294        | $\frac{253}{299}$                         | $\begin{bmatrix} 257 \\ 304 \end{bmatrix}$ | 308                                       | $\begin{array}{c c} 8 & 3.2 \\ 9 & 3.6 \end{array}$                                         |
| 940                      | 313                                                       | 317                                        | 322                                                    | 327               | 331                                         | 336                                        | 340               | 345                                       | 350                                        | 354                                       |                                                                                             |
| 941                      | 359                                                       | 364                                        | $\frac{322}{368}$                                      | $\frac{327}{373}$ | $\frac{331}{377}$                           | $\frac{380}{382}$                          | 387               | 391                                       | 396                                        | $\frac{-301}{400}$                        |                                                                                             |
| 942                      | 405                                                       | 410                                        | 414                                                    | 419               | 424                                         | 428                                        | 433               | 437                                       | 442                                        | 447                                       |                                                                                             |
| 943                      | 451                                                       | 456                                        | 460                                                    | 465               | 470                                         | 474                                        | 479               | 483                                       | 488                                        | 493<br>539                                |                                                                                             |
| 944                      | 497                                                       | 502                                        | 506                                                    | 511               | 516                                         | 520                                        | 525               | 529                                       | 534                                        |                                           |                                                                                             |
| 945                      | 543                                                       | 548                                        | 552                                                    | 557               | 562                                         | 566                                        | 571               | 575                                       | 580                                        | 585                                       |                                                                                             |
| 946 947                  | 589<br>635                                                | 594 640                                    | 598                                                    | 603               | 607                                         | 612<br>658                                 | 617 663           | 621 667                                   | 626                                        | 630<br>676                                |                                                                                             |
| 948                      | 681                                                       | 685                                        | 690                                                    | 695               | 699                                         | 704                                        | 708               | 713                                       | 717                                        | 722                                       |                                                                                             |
| 949                      | 727                                                       | 731                                        | 736                                                    | 740               | 745                                         | 749                                        | 754               | 759                                       | 763                                        | 768                                       |                                                                                             |
| 950                      | 772                                                       | 777                                        | 782                                                    | 786               | 791                                         | 795                                        | 800               | 804                                       | 809                                        | 813                                       |                                                                                             |
| N                        | L 0                                                       | 1                                          | 2                                                      | 3                 | 4                                           | 5                                          | 6                 | 7                                         | 8                                          | 9                                         | Prop. Pts.                                                                                  |

| N                               | L 0                                | 1                               | 2                               | 3                                | 4                                | 5                                                              | 6                                | 7                                | 8                                | 9                                | Prop. Pts.                                                                                         |
|---------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------|
| 950                             | 97 772                             | 777                             | 782                             | 786                              | 791                              | 795                                                            | 800                              | 804                              | 809                              | 813                              |                                                                                                    |
| 951<br>952<br>953<br>954        | 818<br>864<br>909<br>955           | 823<br>868<br>914<br>959        | 827<br>873<br>918<br>964        | 832<br>877<br>923<br>968         | 836<br>882<br>928<br>973         | 841<br>886<br>932<br>978                                       | 845<br>891<br>937<br>982         | 850<br>896<br>941<br>987         | 855<br>900<br>946<br>991         | 859<br>905<br>950<br>996         |                                                                                                    |
| 955<br>956<br>957<br>958<br>959 | 98 000<br>046<br>091<br>137<br>182 | 005<br>050<br>096<br>141<br>186 | 009<br>055<br>100<br>146<br>191 | 014<br>059<br>105<br>150<br>195  | 019<br>064<br>109<br>155<br>200  | $\begin{array}{c} 023 \\ 068 \\ 114 \\ 159 \\ 204 \end{array}$ | 028<br>073<br>118<br>164<br>209  | 032<br>078<br>123<br>168<br>214  | 037<br>082<br>127<br>173<br>218  | 041<br>087<br>132<br>177<br>223  |                                                                                                    |
| 960                             | 227                                | ${232}$                         | 236                             | $\frac{-}{241}$                  | ${245}$                          | 250                                                            | 254                              | 259                              | 263                              | 268                              |                                                                                                    |
| 961<br>962<br>963<br>964        | 272<br>318<br>363<br>408           | 277<br>322<br>367<br>412        | 281<br>327<br>372<br>417        | 286<br>331<br>376<br>421         | 290<br>336<br>381<br>426         | 295<br>340<br>385<br>430                                       | 299<br>345<br>390<br>435         | 304<br>349<br>394<br>439         | 308<br>354<br>399<br>444         | 313<br>358<br>403<br>448         | $\begin{array}{c cccc} & 5 & & \\ 1 & 0.5 & \\ 2 & 1.0 & \\ 3 & 1.5 & \\ 4 & 2.0 & \\ \end{array}$ |
| 965<br>966<br>967<br>968<br>969 | 453<br>498<br>543<br>588<br>632    | 457<br>502<br>547<br>592<br>637 | 462<br>507<br>552<br>597<br>641 | 466<br>511<br>556<br>601<br>646  | 471<br>516<br>561<br>605<br>650  | 475<br>520<br>565<br>610<br>655                                | 480<br>525<br>570<br>614<br>659  | 484<br>529<br>574<br>619<br>664  | 489<br>534<br>579<br>623<br>668  | 493<br>538<br>583<br>628<br>673  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                               |
| 970                             | 677                                | 682                             | 686                             | 691                              | 695                              | 700                                                            | 704                              | 709                              | 713                              | 717                              |                                                                                                    |
| 971<br>972<br>973<br>974        | 722<br>767<br>811<br>856           | 726<br>771<br>816<br>860        | 731<br>776<br>820<br>865        | 735<br>780<br>825<br>869         | 740<br>784<br>829<br>874         | 744<br>789<br>834<br>878                                       | 749<br>793<br>838<br>883         | 753<br>798<br>843<br>887         | 758<br>802<br>847<br>892         | 762<br>807<br>851<br>896         |                                                                                                    |
| 975<br>976<br>977<br>978<br>979 | 900<br>945<br>989<br>99 034<br>078 | 905<br>949<br>994<br>038<br>083 | 909<br>954<br>998<br>043<br>087 | 914<br>958<br>*003<br>047<br>092 | 918<br>963<br>*007<br>052<br>096 | 923<br>967<br>*012<br>056<br>100                               | 927<br>972<br>*016<br>061<br>105 | 932<br>976<br>*021<br>065<br>109 | 936<br>981<br>*025<br>069<br>114 | 941<br>985<br>*029<br>074<br>118 |                                                                                                    |
| 980                             | 123                                | 127                             | 131                             | 136                              | 140                              | 145                                                            | 149                              | 154                              | 158                              | 162                              |                                                                                                    |
| 981<br>982<br>983<br>984        | 167<br>211<br>255<br>300           | 171<br>216<br>260<br>304        | 176<br>220<br>264<br>308        | 180<br>224<br>269<br>313         | 185<br>229<br>273<br>317         | 189<br>233<br>277<br>322                                       | 193<br>238<br>282<br>326         | 198<br>242<br>286<br>330         | 202<br>247<br>291<br>335         | 207<br>251<br>295<br>339         | $\begin{array}{c c} & 4 \\ 1 & 0.4 \\ 2 & 0.8 \\ 3 & 1.2 \end{array}$                              |
| 985<br>986<br>987<br>988<br>989 | 344<br>388<br>432<br>476<br>520    | 348<br>392<br>436<br>480<br>524 | 352<br>396<br>441<br>484<br>528 | 357<br>401<br>445<br>489<br>533  | 361<br>405<br>449<br>493<br>537  | 366<br>410<br>454<br>498<br>542                                | 370<br>414<br>458<br>502<br>546  | 374<br>419<br>463<br>506<br>550  | 379<br>423<br>467<br>511<br>555  | 383<br>427<br>471<br>515<br>559  | 2 0.8<br>3 1.2<br>4 1.6<br>5 2.0<br>6 2.4<br>7 2.8<br>8 3.2<br>9 3.6                               |
| 990                             | 564                                | 568                             | 572                             | 577                              | 581                              | 585                                                            | 590                              | 594                              | 599                              | 603                              |                                                                                                    |
| 991<br>992<br>993<br>994        | 607<br>651<br>695<br>739           | 612<br>656<br>699<br>743        | 616<br>660<br>704<br>747        | 621<br>664<br>708<br>752         | 625<br>669<br>712<br>756         | 629<br>673<br>717<br>760                                       | 634<br>677<br>721<br>765         | 638<br>682<br>726<br>769         | 642<br>686<br>730<br>774         | 647<br>691<br>734<br>778         |                                                                                                    |
| 995<br>996<br>997<br>998<br>999 | 782<br>826<br>870<br>913<br>957    | 787<br>830<br>874<br>917<br>961 | 791<br>835<br>878<br>922<br>965 | 795<br>839<br>883<br>926<br>970  | 800<br>843<br>887<br>930<br>974  | 804<br>848<br>891<br>935<br>978                                | 808<br>852<br>896<br>939<br>983  | 813<br>856<br>900<br>944<br>987  | 817<br>861<br>904<br>948<br>991  | 822<br>865<br>909<br>952<br>996  | •                                                                                                  |
| 1000                            | 00 000                             | 004                             | 009                             | 013                              | 017                              | 022                                                            | 026                              | 030                              | 035                              | 039                              |                                                                                                    |
| N                               | L 0                                | 1                               | 2                               | 3                                | 4                                | 5                                                              | 6                                | 7                                | 8                                | 9                                | Prop. Pts.                                                                                         |

#### TABLE VIII

#### NATURAL LOGARITHMS OF NUMBERS

BASE e = 2.71828...Note. —  $\log_e 10 N = \log_e N + \log_e 10$   $\log_e \frac{N}{10} = \log_e N - \log_e 10$   $\log_e 10 = 2.30259$ For example:  $\log_e 27 = \log_e 2.7 + \log_e 10$  = 0.99325 + 2.30259 = 3.29584  $\log_e .27 = \log_e 2.7 - \log_e 10$ = 0.99325 - 2.30259 = 8.69066 - 10

| N   | 0                                                             | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8      | 9     |
|-----|---------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| 1.0 | 0.0 0000                                                      | 0995  | 1980  | 2956  | 3922  | 4879  | 5827  | 6766  | 7696   | 8618  |
| 1.1 | 9531                                                          | *0436 | *1333 | *2222 | *3103 | *3976 | *4842 | *5700 | *6551  | *7395 |
| 1.2 | 0.1 8232                                                      | 9062  | 9885  | *0701 | *1511 | *2314 | *3111 | *3902 | *4686  | *5464 |
| 1.3 | 0.2 6236                                                      | 7003  | 7763  | 8518  | 9267  | *0010 | *0748 | *1481 | *2208  | *2930 |
| 1.4 | $\begin{array}{c} 0.3\ 3647 \\ 0.4\ 0547 \\ 7000 \end{array}$ | 4359  | 5066  | 5767  | 6464  | 7156  | 7844  | 8526  | 9204   | 9878  |
| 1.5 |                                                               | 1211  | 1871  | 2527  | 3178  | 3825  | 4469  | 5108  | 5742   | 6373  |
| 1.6 |                                                               | 7623  | 8243  | 8858  | 9470  | *0078 | *0682 | *1282 | *1879  | *2473 |
| 1.7 | $0.5\ 3063\ 8779\ 0.6\ 4185$                                  | 3649  | 4232  | 4812  | 5389  | 5962  | 6531  | 7098  | 7661   | 8222  |
| 1.8 |                                                               | 9333  | 9884  | *0432 | *0977 | *1519 | *2078 | *2594 | *3127  | *3658 |
| 1.9 |                                                               | 4710  | 5233  | 5752  | 6269  | 6783  | 7294  | 7803  | 8310   | 8813  |
| 2.0 | 9315                                                          | 9813  | *0310 | *0804 | *1295 | *1784 | *2271 | *2755 | *3237  | *3716 |
| 2.1 | 0.7 4194                                                      | 4669  | 5142  | 5612  | 6081  | 6547  | 7011  | 7473  | 7932   | 8390  |
| 2.2 | 8846                                                          | 9299  | 9751  | *0200 | *0648 | *1093 | *1536 | *1978 | *2418  | *2855 |
| 2.3 | 0.8 3291                                                      | 3725  | 4157  | 4587  | 5015  | 5442  | 5866  | 6289  | 6710   | 7129  |
| 2.4 | $\begin{array}{c} 7547 \\ 0.9 \ 1629 \\ 5551 \end{array}$     | 7963  | 8377  | 8789  | 9200  | 9609  | *0016 | *0422 | *0826  | *1228 |
| 2.5 |                                                               | 2028  | 2426  | 2822  | 3216  | 3609  | 4001  | 4391  | 4779   | 5166  |
| 2.6 |                                                               | 5935  | 6317  | 6698  | 7078  | 7456  | 7833  | 8208  | 8582   | 8954  |
| 2.7 | $\begin{array}{c} 9325 \\ 1.0\ 2962 \\ 6471 \end{array}$      | 9695  | *0063 | *0430 | *0796 | *1160 | *1523 | *1885 | *2245  | *2604 |
| 2.8 |                                                               | 3318  | 3674  | 4028  | 4380  | 4732  | 5082  | 5431  | 5779   | 6126  |
| 2.9 |                                                               | 6815  | 7158  | 7500  | 7841  | 8181  | 8519  | 8856  | 9192   | 9527  |
| 3.0 | 9861                                                          | *0194 | *0526 | *0856 | *1186 | *1514 | *1841 | *2168 | *2493  | *2817 |
| 3.1 | 1.1 3140                                                      | 3462  | 3783  | 4103  | 4422  | 4740  | 5057  | 5373  | 5688   | 6002  |
| 3.2 | 6315                                                          | 6627  | 6938  | 7248  | 7557  | 7865  | 8173  | 8479  | 8784   | 9089  |
| 3.3 | 9392                                                          | 9695  | 9996  | *0297 | *0597 | *0896 | *1194 | *1491 | *1788  | *2083 |
| 3.4 | 1.2 2378                                                      | 2671  | 2964  | 3256  | 3547  | 3837  | 4127  | 4415  | 4703   | 4990  |
| 3.5 | 5276                                                          | 5562  | 5846  | 6130  | 6413  | 6695  | 6976  | 7257  | 7536   | 7815  |
| 3.6 | 8093                                                          | 8371  | 8647  | 8923  | 9198  | 9473  | 9746  | *0019 | *0291  | *0563 |
| 3.7 | 1.3 0833                                                      | 1103  | 1372  | 1641  | 1909  | 2176  | 2442  | 2708  | 2972   | 3237  |
| 3.8 | 3500                                                          | 3763  | 4025  | 4286  | 4547  | 4807  | 5067  | 5325  | 5584   | 5841  |
| 3.9 | 6098                                                          | 6354  | 6609  | 6864  | 7118  | 7372  | 7624  | 7877  | 8128   | 8379  |
| 4.0 | 8629                                                          | 8879  | 9128  | 9377  | 9624  | 9872  | *0118 | *0364 | *0610  | *0854 |
| 4.1 | 1.4 1099                                                      | 1342  | 1585  | 1828  | 2070  | 2311  | 2552  | 2792  | 3031   | 3270  |
| 4.2 | 3508                                                          | 3746  | 3984  | 4220  | 4456  | 4692  | 4927  | 5161  | 5395   | 5629  |
| 4.3 | 5862                                                          | 6094  | 6326  | 6557  | 6787  | 7018  | 7247  | 7476  | 7705   | 7933  |
| 4.4 | 8160                                                          | 8387  | 8614  | 8840  | 9065  | 9290  | 9515  | 9739  | 9962   | *0185 |
| 4.5 | 1.5 0408                                                      | 0630  | 0851  | 1072  | 1293  | 1513  | 1732  | 1951  | 2170   | 2388  |
| 4.6 | 2606                                                          | 2823  | 3039  | 3256  | 3471  | 3687  | 3902  | 4116  | 4330   | 4543  |
| 4.7 | 4756                                                          | 4969  | 5181  | 5393  | 5604  | 5814  | 6025  | 6235  | * 6444 | 6653  |
| 4.8 | 6862                                                          | 7070  | 7277  | 7485  | 7691  | 7898  | 8104  | 8309  | 8515   | 8719  |
| 4.9 | 8924                                                          | 9127  | 9331  | 9534  | 9737  | 9939  | *0141 | *0342 | *0543  | *0744 |
| 5.0 | 1.6 0944                                                      | 1144  | 1343  | 1542  | 1741  | 1939  | 2137  | 2334  | 2531   | 2728  |
| N   | 0                                                             | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8      | 9     |

|              | 0                                                 | 1                                                         | 2                                               | 3                                               | 4                   | 5                   | 6              | 7              | 8                                               | 9                   |
|--------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------|---------------------|----------------|----------------|-------------------------------------------------|---------------------|
| 5.0          | 1.6 0944                                          | 1144                                                      | 1343                                            | 1542                                            | 1741                | 1939                | ?137           | 2334           | 2531                                            | 2728                |
| 5.1          | 2924                                              | 3120                                                      | 3315                                            | 3511                                            | 3705                | 3900                | 4094           | 4287           | 4481                                            | 4673                |
| 5.2<br>5.3   | 4866<br>6771                                      | 5058<br>6959                                              | $5250 \\ 7147$                                  | 5441<br>7335                                    | 5632<br>7523        | 5823<br>7710        | 6013<br>7896   | 6203<br>8083   | 6393<br>8269                                    | 6582<br>8455        |
| 5.4          | 8640                                              | 8825                                                      | 9010                                            | 9194                                            | 9378                | 9562                | 9745           | 9928           | *0111                                           | *0293               |
| 5.5          | 1.7 0475                                          | 0656                                                      | 0838                                            | 1019                                            | 1199                | 1380                | 1560           | 1740           | 1919<br>3695                                    | $\frac{2098}{3871}$ |
| 5.6          | 2277                                              | 2455                                                      | 2633                                            | 2811                                            | 2988                | 3166                | 3342           | 3519           |                                                 |                     |
| 5.7<br>5.8   | $\begin{array}{c c} & 4047 \\ & 5786 \end{array}$ | 4222<br>5958                                              | 4397  <br>6130                                  | $\begin{array}{c c} 4572 \\ 6302 \end{array}$   | 4746<br>6473        | 4920<br>6644        | 5094<br>6815   | 5267<br>6985   | 5440<br>7156                                    | 5613<br>7326        |
| 5.9          | 7495                                              | 7665                                                      | 7834                                            | 8002                                            | 8171                | 8339                | 8507           | 8675           | 8842                                            | 9009                |
| 6.0          | 9176                                              | 9342                                                      | 9509                                            | 9675                                            | 9840                | *0006               | *0171          | *0336          | *0500                                           | *0665               |
| 6.1          | 1.8 0829                                          | 0993                                                      | 1156                                            | 1319                                            | 1482                | 1645                | 1808           | 1970           | $ \begin{array}{c c} 2132 \\ 3737 \end{array} $ | 2294<br>3896        |
| 6.2<br>6.3   | $\begin{bmatrix} 2455 \\ 4055 \end{bmatrix}$      | $ \begin{array}{c c} 2616 \\ 4214 \end{array} $           | 2777<br>4372                                    | 2938<br>4530                                    | 3098<br>4688        | $\frac{3258}{4845}$ | 3418<br>5003   | 3578<br>5160   | 5317                                            | 5473                |
| 6.4          | 5630                                              | 5786                                                      | 5942                                            | 6097                                            | 6253                | 6408                | 6563           | 6718           | 6872                                            | 7026                |
| 6.5          | 7180                                              | 7334                                                      | 7487                                            | 7641                                            | 7794                | 7947                | 8099           | 8251           | 8403                                            | 8555                |
| 6.6          | 8707                                              | 8858                                                      | 9010                                            | 9160                                            | 9311                | 9462                | 9612           | 9762           | 9912                                            | *0061               |
| 6.7          | 1.9 0211                                          | 0360                                                      | 0509                                            | 0658                                            | 0806                | 0954                | 1102           | 1250           | 1398<br>2862                                    | $\frac{1545}{3007}$ |
| 6.8          | 1692<br>3152                                      | $   \begin{array}{r}     1839 \\     3297   \end{array} $ | $ \begin{array}{c c} 1986 \\ 3442 \end{array} $ | 2132<br>3586                                    | $\frac{2279}{3730}$ | $\frac{2425}{3874}$ | 2571 - 4018    | $2716 \\ 4162$ | 4305                                            | 4448                |
| 7.0          | 4591                                              | 4734                                                      | 4876                                            | 5019                                            | 5161                | 5303                | 5445           | 5586           | 5727                                            | 5869                |
| 7.1          | 6009                                              | 6150                                                      | 6291                                            | 6431                                            | 6571                | 6711                | 6851           | 6991           | 7130                                            | 7269                |
| 7.2          | 7408                                              | 7547                                                      | 7685                                            | 7824                                            | 7962<br>9334        | 8100<br>9470        | 8238<br>9606   | $8376 \\ 9742$ | 8513<br>9877                                    | 8650<br>*0013       |
| 7.3          | 8787                                              | 8924                                                      | 9061                                            | 9198                                            |                     |                     |                |                | 1223                                            | 1357                |
| 7.4          | 2.0 0148 1490                                     | $0283 \\ 1624$                                            | 0418<br>1757                                    | 0553<br>1890                                    | $0687 \\ 2022$      | $0821 \\ 2155$      | $0956 \\ 2287$ | 1089<br>2419   | 2551                                            | 2683                |
| 7.6          | 2815                                              | 2946                                                      | 3078                                            | 3209                                            | 3340                | 3471                | 3601           | 3732           | 3862                                            | 3992                |
| 7.7          | 4122                                              | 4252                                                      | 4381                                            | 4511                                            | 4640                | 4769                | 4898           | 5027           | 5156                                            | 5284                |
| 7.8          | 5412                                              | 5540<br>6813                                              | 5668<br>6939                                    | 5796<br>7065                                    | 5924 $7191$         | 6051<br>7317        | 6179           | 6306           | 6433                                            | 6560<br>7819        |
| 7.9          | 6686                                              |                                                           |                                                 |                                                 |                     |                     | 8691           | 8815           | 8939                                            | 9063                |
| 8.0          | $\frac{7944}{9186}$                               | $\frac{8069}{9310}$                                       | $\frac{8194}{9433}$                             | $\frac{8318}{9556}$                             | $\frac{8443}{9679}$ | $\frac{8567}{9802}$ | 9924           | *0047          | *0169                                           | *0291               |
| 8.1          | 2.1 0413                                          | 0535                                                      | 0657                                            | 0779                                            | 0900                | 1021                | 1142           | 1263           | 1384                                            | 1505                |
| 8.3          | 1626                                              | 1746                                                      | 1866                                            | 1986                                            | 2106                | 2226                | 2346           | 2465           | 2585                                            | 2704                |
| 8.4          | 2823                                              | 2942                                                      | 3061                                            | 3180                                            | 3298                | 3417                | 3535<br>4710   | 3653<br>4827   | 3771<br>4943                                    | 3889<br>5060        |
| 8.5          | 4007<br>5176                                      | 4124<br>5292                                              | 4242<br>5409                                    | $4359 \\ 5524$                                  | 4476<br>5640        | 4593<br>5756        | 5871           | 5987           | 6102                                            | 6217                |
| 8.7          | 6332                                              | 6447                                                      | 6562                                            | 6677                                            | 6791                | 6905                | 7020           | 7134           | 7248                                            | 7361                |
| 8.8          | 7475                                              | 7589                                                      | 7702                                            | 7816                                            | 7929                | 8042                | 8155           | 8267           | 8380                                            | 8493                |
| 8.9          | 8605                                              | 8717                                                      | 8830                                            | 8942                                            | 9054                | 9165                | 9277           | 9389           | 9500                                            | 9611                |
| 9.0          | 9722                                              | 9834                                                      | 9944                                            | *0055                                           | *0166               | *0276               | *0387          | *0497<br>1594  | *0607<br>1703                                   | *0717               |
| $9.1 \\ 9.2$ | 2.2 0827<br>1920                                  | 0937<br>2029                                              | 1047<br>2138                                    | $ \begin{array}{c c} 1157 \\ 2246 \end{array} $ | $1266 \\ 2354$      | 1375<br>2462        | 1485<br>2570   | 2678           | 2786                                            | 2894                |
| 9.3          | 3001                                              | 3109                                                      | 3216                                            | 3324                                            | 3431                | 3538                | 3645           | 3751           | 3858                                            | 3965                |
| 9.4          | 4071                                              | 4177                                                      | 4284                                            | 4390                                            | 4496                | 4601                | 4707           | 4813           | 4918                                            | 5024                |
| 9.5          | 5129                                              | 5234                                                      | 5339<br>6384                                    | 5444<br>6488                                    | 5549<br>6592        | 5654 6696           | 5759 6799      | 5863 6903      | 5968<br>7006                                    | 6072<br>7109        |
| 9.6          | 6176                                              | 6280                                                      |                                                 |                                                 |                     |                     | 7829           | 7932           | 8034                                            | 8136                |
| 9.7 9.8      | 7213<br>8238                                      | 7316<br>8340                                              | 7419<br>8442                                    | 7521<br>8544                                    | 7624<br>8646        | 7727<br>8747        | 8849           | 8950           | 9051                                            | 9152                |
| 9.9          | 9253                                              | 9354                                                      | 9455                                            | 9556                                            | 9657                | 9757                | 9858           | 9958           | *0058                                           | *0158               |
| 10.0         | 2.3 0259                                          | 0358                                                      | 0458                                            | 0558                                            | 0658                | 0757                | 0857           | 0956           | 1055                                            | 1154                |
| N            | 0                                                 | 1                                                         | 2                                               | 3                                               | 4                   | 5                   | 6              | 7              | 8                                               | 9                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | Number                                                       | Logarithm                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Base of Naperian logar<br>Modulus of common log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | garithms · · ·              | u = 0.43429440                                               | 0.4342945<br>9.6377843-10                                                               |
| Reciprocal of modulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | $\frac{1}{u} = 2.30258509$                                   |                                                                                         |
| Circumference of a circumferenc | le in minutes le in seconds | $\begin{array}{cccc} . & . & . & . & . & . & . & . & . & . $ | 2.5563025<br>4.3344538<br>6.1126050<br>1.7581226<br>3.5362739<br>5.3144251<br>0.4971499 |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Logarithm<br>0.7981799      | $\pi^2 = 9.86960440$                                         | 0.9942997                                                                               |
| $2\pi = 6.28318531$ $4\pi = 12.56637061$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0992099                   | $\frac{1}{\pi^2} = 0.10132118$                               | 9.0057003-10                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1961199                   | $\frac{\pi^2}{\sqrt{\pi}} = 1.77245385$                      | 0.2485749                                                                               |
| $\frac{\pi}{2} = 1.57079633$ $\frac{\pi}{3} = 1.04719755$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0200286                   | $\frac{1}{\sqrt{\pi}} = 0.56418958$                          | 9.7514251-10                                                                            |
| $\frac{4\pi}{3}=4.18879020$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6220886                   | $\sqrt{\frac{3}{\pi}} = 0.97720502$                          | 9.9899857-10                                                                            |
| $\frac{\pi}{4} = 0.78539816$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.8950899-10                | $\sqrt{\frac{4}{\pi}} = 1.12837917$                          | 0.0524551                                                                               |
| $\frac{\pi}{6} = 0.52359878$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.7189986-10                | $\sqrt[3]{\pi} = 1.46459189$                                 | 0.1657166                                                                               |
| $\frac{1}{\pi} = 0.31830989$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5028501-10                | $\frac{1}{\sqrt[3]{\pi}} = 0.68278406$                       | 9.8342834-10                                                                            |
| $\frac{1}{2\pi} = 0.15915494$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.2018201-10                | $\sqrt[3]{\pi^2} = 2.14502940$                               | 0.3314332                                                                               |
| $\frac{3}{\pi} = 0.95492966$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.9799714-10                | $\sqrt{\frac{3}{4\pi}} = 0.62035049$                         | 9.7926371-10                                                                            |
| $\frac{4}{\pi} = 1.27323954$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1049101                   | $\sqrt[3]{\frac{\pi}{6}} = 0.80599598$                       | 9.9063329-10                                                                            |
| If the radius $r = 1$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the length of the ar        | re is                                                        |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for 1 degree =              | $\frac{\pi}{180} = 0.01745329$                               | 8.2418774-10                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | $\frac{\pi}{10800} = 0.00029089$                             | 6.4637261-10                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for 1 second =              | $\frac{\pi}{648000} = 0.00000485$                            | 4.6855749-10                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | $\sin 1'' = 0.00000485$                                      | 4.6855749-10                                                                            |







| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |         |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
| ित भी में स्वापादिक से स्वापाद |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |         |  |  |  |
| <ul> <li>・ まま 1827年27日 1871<br/>計 対発する 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | Te land |  |  |  |