Supplementary information

Jhoanata M. Bolivar^{a,b}, Carlos A. Sierra^{a,b}

 a Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany b Research Center on Ecosystems and Global Change Carbono & Bosques, Medellín, Colombia

References

- Blanco, J. F., Estrada, E. a., Ortiz, L. F., Urrego, L. E., 2012. Ecosystem-Wide Impacts of Deforestation in Mangroves: The Urabá Gulf (Colombian Caribbean) Case Study. ISRN Ecology 2012, 1–14.
- Bolivar, J., Yepes, A., Sierra, C. A., Urrego, L., Moreno, F., Monsalve, A., Espinosa, S., Agudelo,
 C., Betancur, S., Posada, J., Herrera, D., Mira, J., Sierra-Correa, P., In preparation. Carbon stock in mangroves of cispatá delta estuarine system., in preparation.
- Carbono & Bosques, 2015. Caracterización de la estructura y contenido de carbono de diez parcelas permanentes establecidas en el área de jurisdicción del consejo comunitario la plata, bahía málaga, valle del cauca. Tech. rep., INVEMAR-Fundación Natura.
- De la Peña, A., Rojas, C. A., De la Peña, M., 2010. Valoración económica del manglar por el almacenamiento de carbono .. Clío America 4 (7), 133–150.
- INVEMAR, 2007. Informe del Estado de los Recursos Marinos y Costeros en Colombia: Año 2006. Tech. rep., Instituto de investigaciones Marinas y Costeras "José Benito Vives de Andréis".
- Lema, L. F., Polanía, J., 2007. Estructura y dinámica del manglar del delta del río Ranchería, Caribe colombiano. Revista de Biología Tropical 55 (1), 11–21.

Table 1: Above ground biomass (AGB) data sources used to estimation of total AGB carbon stock in Colombian mangroves and development of predictive models.

			Coordinates AG		AGB	
Department	Coast	Location	X Y		(Mg ha-1)	Source
a Guajira	Caribbean	Brazo Riito-Ranchería river delta	-72.8931	11.5578	70.98	Lema and Polan
a Guajira	Caribbean	Valle de los cangrejos-Ranchería river	-72.8914	11.5588	26.78	(2007) Lema and Polan
la Guajira	Caribbean	delta	-12.8914	11.5566	20.78	(2007)
Magdalena	Caribbean	CGSM-Rinconada	-74.4938	10.9615	91.40	De la Peña et al. (201
						,
Iagdalena	Caribbean	CGSM-Aguas Negras	-74.6075	10.8089	16.10	De la Peña et al. (201
lagdalena	Caribbean	CGSM-Caño Grande	-74.4814	10.8619	75.80	De la Peña et al. (201
Iagdalena	Caribbean	CGSM-Luna	-74.938	10.9071	13.80	De la Peña et al. (20)
Iagdalena	Caribbean	Chengue bay- Tayrona NNP	-74.1284	11.3178	132.10	INVEMAR (2007)
órdoba	Caribbean	Cispatá bay-Caño Tijó 1	-75.8378	9.3566	147.50	Bolivar et al. (In prep
órdoba	Caribbean	Cispatá bay-Caño Tijó 2	-75.8284	9.3606	186.60	ration) Bolivar et al. (In prep
Córdoba	Caribbean	Cispatá bay-Caño Palermo	-75.8423	9.3525	129.70	ration) Bolivar et al. (In prep
						ration)
Córdoba	Caribbean	Cispatá bay-Caño Grande 1	-75.8505	9.3712	153.20	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-El Claval	-75.7912	9.3874	80.20	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-Caño Garzal 1	-75.8563	9.382	122.80	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-Caño Garzal 2	-75.8588	9.3811	159.30	ration) Bolivar et al. (In prep
~	G 11:	a		0.05	00.40	ration)
Córdoba	Caribbean	Cispatá bay-La Flotante-Caño Nis- peral	-75.8029	9.3906	90.40	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-Vertel-Caño el Nene	-75.8397	9.3823	151.20	Bolivar et al. (In prep
Córdoba	Caribbean	Cispatá bay-Caño Salado 1	-75.8721	9.4155	131.70	ration) Bolivar et al. (In prep
Córdoba	Caribbean	Cispatá bay-Ciénaga Galo	-75.8266	9.3673	101.80	ration) Bolivar et al. (In prep
Córdoba	Caribbean	Cispatá bay-Ostional	-75.8639	9.3961	89.30	ration) Bolivar et al. (In prep
Córdoba	Caribbean	Cianté has La Zana Bineés al milla	75 0904	9.397	72.00	ration)
Cordoba		Cispatá bay-La Zona, Rincón el grillo	-75.8384	9.391	72.00	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-La Camaronera	-75.7914	9.3844	74.00	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-Ciénaga Remediapobres	-75.8435	9.3679	133.20	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-Ciénaga Soledad	-75.8464	9.3407	171.40	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-Caño Garzal 3	-75.8447	9.3954	102.10	Bolivar et al. (In prep
Córdoba	Caribbean	Cispatá bay-Caño Grande 2	-75.854	9.3690	220.80	ration) Bolivar et al. (In prep
Córdoba	Caribbean	Cispatá bay-Jesús Primera	-75.8439	9.3784	128.50	ration) Bolivar et al. (In prep
						ration)
Córdoba	Caribbean	Cispatá bay-Caño Salado 2	-75.8276	9.4183	69.30	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-Angostura	-75.5885	9.4221	246.90	Bolivar et al. (In prepration)
Córdoba	Caribbean	Cispatá bay-Caño el Soldado	-75.8548	9.3557	77.70	Bolivar et al. (In prep
Antioquia	Caribbean	Atrato river delta	-77.1005	8.0508	178.60	ration) Blanco et al. (2012)
ntioquia	Caribbean	Puerto Cesar - Punta Coquito	-76.7407	7.9592	41.60	Blanco et al. (2012)
ntioquia	Caribbean	Punta Yarumal-Punta Las Vacas	-76.7478	8.1111	61.60	Blanco et al. (2012)
ntioquia	Caribbean	Punta Yarumal-Punta Las Vacas 2	-76.7478	8.1111	35.00	Blanco et al. (2012)
ntioquia	Caribbean	Rionegro cove 1	-76.9292	8.5458	21.20	Blanco et al. (2012)
ntioquia	Caribbean	Rionegro cove 2	-76.9292	8.5458	43.80	Blanco et al. (2012)
ntioquia.	Caribbean	Rionegro cove 3	-76.9292	8.5458	30.80	Blanco et al. (2012)
alle del Cauca	Pacific	Málaga bay-Luisico	-77.2148	4.0678	109.60	Carbono & Bosqu (2015)
Valle del Cauca	Pacific	Málaga bay-Luisico-Winul	-77.2055	4.0842	45.30	Carbono & Bosqu
Valle del Cauca	Pacific	Málaga bay-Luisico-Cangrejal	-77.2051	4.0874	295.90	(2015) Carbono & Bosqu
Valle del Cauca	Pacific	Málaga bay-El Morro-Aserrío	-77.1927	4.0506	4.00	(2015) Carbono & Bosqu
Valle del Cauca	Pacific	Málaga bay-Corozal	-77.2678	4.0805	63.40	(2015) Carbono & Bosqu
						(2015)
Valle del Cauca	Pacific	Málaga bay-Gegenera	-77.266	4.0543	51.00	Carbono & Bosqu

Table 2: Statistical regression models for AGB. When log is the natural logarithm; AGB is the above ground biomass (Mg/ha); BIO9 is the mean temperature of driest quarter (°C); BIO10 mean temperature of warmest quarter (°C); BIO11 mean temperature of coldest quarter (°C); BIO16 is the precipitation of the wettest quarter (mm); EVI is the enhanced vegetation index; Lat is the absolute value of latitude (decimal degrees); n is the number of observations; $R_a{}^2$ is the adjusted coefficient of determination; MSE is the mean squared error; F is the F-statistic calculated; AIC is the akaike information criterion

Model	n	R_a^2	MSE	F	AIC
$ \begin{array}{lll} (1)AGB & = & -2.210^{\rm e} + 03 & + 2.946^{\rm e} + 00BIO10 & + 4.687^{\rm e} + 00BIO11 & + \\ 2.108^{\rm e} - 01BIO16 & -2.334^{\rm e} - 01BIO17 & + 2.465^{\rm e} + 02EVI \\ \end{array} $	40	0.04163	4157	1.34	
	43	-0.0278	4338	0.72	
$(3)AGB = -3.260^{e+03} + 1.233^{e+01}BIO1 + 1.61^{e-01}BIO4 + 1.934^{e-02}BIO12 - 3.805^{e+00}BIO15 + 2.835^{e+02}EVI$	40	0.07695	4003	1.65	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	40	0.1288	3779	1.961	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	0.154	3571	2.529	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	43	0.1819	3453	2.868	
$ (7)AGB = -2.219^{e+03} - 7.703^{e+01}Lat + 1.113^{e+00}BIO1 + 1.885^{e-01}BIO4 - 4.071^{e-02}BIO12 - 1.735^{e-01}BIO15 + 1.813^{e+02}EVI $	41	0.1762	3573	2.39	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	43	0.1975	3387	2.72	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	40	0.3627	3369	2.60	
E = -1916.5321 + 7.3424BIO9 + 0.1126BIO17	43	0.1456	3607	4.58	
$(11)AGB = -1.693^{e+03} - 2.897^{e+01}Lat + 7.567^{e+00}BIO9 - 4.108^{e-02}BIO17$	43	0.2072	3346	4.66	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	43	0.1898	3514	3.284	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	40	0.2001	3469	4.25	
$(14)AGB = -3.232^{e+02} + 1.499^{e+00}BIO9 + 5.1442EVI$	40	-0.01318	4394	0.75	
(15)AGB = -1860.211 + 7.958BIO9 - 22.944Lat	43	0.2225	3282	7.01	
(16)AGB = -423.235 + 1.943BIO9	43	0.01697	4149	1.72	
$(17)AGB = -1.1408^{e+03} - 9.370^{e+00}BIO11 + 3.327^{e-02}BIO16 + 1.348^{e+01}BIO9 + 1.065^{e-02}EVI$	40	0.2082	3434	3.56	
$(18)AGB = -2.670^{e+03} + 9.671^{e+00}BIO11 + 1.008^{e-01}BIO16 + 2.298^{e-02}EVI$	40	0.06889	4038	1.96	
(19)AGB = -822.9927 + 3.0227BIO11 + 0.2433BIO16 - 0.4077BIO17	43	0.04791	4019	1.70	
(20)AGB = -835.18954 - 20.28373BIO11 + 0.02986BIO16 + 14.30146BIO9 + 8.635535BIO1 + 0.01895EVI	40	0.2143	3408	3.13	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	40	0.2309	3336	2.95	
$1.476^{\text{e}-05}BIO16^2 + 5.747^{\text{e}-05}BIO17^2 + 2.556^{\text{e}-06}EVI^2$	40	0.04177	4518	0.69	
$(23) \log AGB = -249.0196 + 23.8766 \log BIO10 + 17.2434 \log BIO11 + 1.3926 \log BIO16 + 0.2169 \log BIO17 + 1.5243 \log EVI$	40	0.1954	0.614	2.89	
$(24)AGB = -17786.59 + 1487.86 \log BIO10 + 1428.78 \log BIO11 + 115.81 \log BIO16 + 12.94 \log BIO17 + 87.21 \log EVI$	40	0.08968	3948	1.77	
$(25) \log AGB = -191.3654 + 32.0857 \log BIO9 + 1.1316 \log BIO16 + 1.0113 \log EVI$ $(30) \log AGB = -191.3654 + 32.0857 \log BIO9 + 1.316 \log BIO16 + 1.0113 \log EVI$	40	0.3028	0.532	6.65	
(26) $\log AGB = -94.7756 + 21.9228 \log BIO9 - 3.2190 \log BIO16 + 0.8363 \log EVI - 1.1157 Lat $	40			6.45	
$(27) \log AGB = -18.7623 + 39.9688 \log BIO9 - 3.0771 \log BIO16 + 0.7138 \log EVI - 0.8834 Lat - 32.0563 \log BIO11$	40	0.353	0.493	5.26	
$(28)AGB = 2071.2 - 569777.6 \frac{1}{BIO9} + 20516.4 \frac{1}{BIO16} - 333815.1 \frac{1}{EVI} + 1377.2 \frac{1}{ Lat }$	40	0.2631	3196	4.48	
$\frac{1}{AGB} = 9.895^{\text{e-}01} - 2.836^{\text{e-}03}BIO9 - 4.386^{\text{e-}05}BIO_{16} - 1.638^{\text{e-}05}EVI - 9.419^{\text{e-}03} Lat $	40	0.1415	0.0014	2.61	
$\frac{1}{AGB} = -0.4451 + 154.8629 \frac{1}{BIO9} - 49.9774 \frac{1}{BIO16} + 388.4439 \frac{1}{EVI} - 0.8805 \frac{1}{ Lat }$	40	0.5587	0.0007	13.34	
$(31) \log AGB = -68.661 + 21.023 \log BIO9 - 5.397 \log BIO16 + 1.842 \log EVI - 11.790 \log Lat $ $(32) \log AGB = -2.889^{e+01} + 1.217^{e-01} \log BIO9 + 4.858^{e-04} \log BIO16 + 1.848^{e-04} \log BIO16 $	40	0.4507	0.419	9.00	
$(32) \log AGB = -2.889^{c+0.1} + 1.217^{c-0.1} \log BIO9 + 4.858^{c-0.1} \log BIO16 + 2.457^{c-0.1} \log EVI - 1.613^{c-0.1} Lat $ $(33) AGB = -6880.48 + 1646.40 \log BIO9 - 262.05 \log BIO16 + 4.858^{c-0.1} \log BIO$	40	0.2641	0.561	4.50 4.55	
$(33)AGB = -0880.48 + 1040.40 \log BIO9 - 202.03 \log BIO10 + 98.26 \log EVI - 639.37 \log Lat $ $(34)AGB = -3707.820 + 256.857\sqrt{BIO9} - 1.560\sqrt{BIO16} + 1.600\sqrt{EVI} - 1.600\sqrt{EVI} + 1.600\sqrt{EVI} +$	40	0.2671 0.1981	3179 3478	3.41	
$(34)AGB = -3i0i.820 + 290.83i\sqrt{BIO9} - 1.500\sqrt{BIO16} + 1.000\sqrt{EVI} - 1.66.952\sqrt{Lat}$ $(35)\sqrt{AGB} = -1.202^{e+02} + 4.813^{e-01}BIO9 - 1.923^{e-03}BIO16 + 1.000\sqrt{EVI}$	40	0.1981	8.62	4.30	
(00) v 1102 = -1.202 T 4.010 D109 - 1.925 D1010 +	-20	0.2001	0.02	4.50	

8 131e-04 EVI = 7 431e-01 | Lat