Ames Housing Data and Kaggle Challenge

•••

Matthew Burrell 07/10/2022

Problem Statement

- Challenge is to create a regression model to predict sale price of a home
- What type of features are controllable that can increase the sale price of a home
- The model to develop is a OLS Ordinary Least squared
- OLS is a white box model meaning the coefficients gauge what effect sale price

Ames Data

- The Dataset is exceptionally detailed
- It has 80 columns of data ranging from
 - Square feet of the first and second floor
 - To fireplace quality

EDA and **Data** Cleaning

- Missing variables mostly where from house without certain features
 - For example, an NaN in the fence column ment there was no fence
 - Replaced most missing futures with the missing feature
- One missing electrical entry
 - Replaced that with the most frequent electrical system: Standard Circuit Breakers
- All data types where correct
- Selected features
 - '1st Flr SF', '2nd Flr SF', 'Total Bsmt SF', 'Lot Area', 'Garage Area', 'Garage Type', 'Garage Cars', 'Fireplaces', 'Fireplace Qu', 'Fence', 'Paved Drive', 'Street', 'Central Air'

Feature Engineering

- Square footage
 - A lot of house did not have a 2nd floor
 - Some did not have a basement
- Combined all square footages into one total square footage variable
- Also, squared the total square footage

Feature Engineering cont

- Scale overall quality and condition
 - 10 very excellent
 - o 9 excellent
 - 8 very good
 - o 7 good
 - o 6 above average
 - o 5 average
 - 4 below average
 - o 3 fair
 - o 2 poor
 - o 1 very poor

Feature Engineering cont

- Recategorized both quality and condition
- For quality
 - Above 9 excellent
 - 8 and 7 good
 - o 6 and 5 is average
 - o 5 to 3 fair
 - o Below 3 poor
- For condition
 - Above 9 excellent
 - o 8 to 6 good
 - o 5 is average
 - 5 to 3 fair
 - o Below 3 poor

Preprocessing and Modeling

- Distribution of Sale price is skew right
- For OLS to work better, the target variable should be normally distributed
- Took the natural log to fix issue

Pre and Mod cont.

- Multicollinearity
 - Total square footage is highly correlated with total square footage squared of 0.92
 - Dropped square footage
 - Garage area was highly correlated with garage cars
 - Dropped Garage area

Preprocessing and Modeling

- Split train set
 - Used 20%
 - And a random state of 42
- Trained on a OLS model
- Model r2 results
 - o train score 0.8442
 - o test score 0.8487
 - o cross val score 0.8222

Evaluation and Conceptual Understanding

Evaluation and Conceptual Understanding cont

Evaluation and Conceptual Understanding cont

- Mean absolute error 0.10917104843581744
- Mean Squared Error 0.025904298623425002
- Root Mean Squared Error 0.16094812401337583

Explaining some coefficient metrics

- For homes that are in excellent condition, there are 10.2% more valuable than a home with an average score for condition, while holding all else constant.
- For homes that are in good condition, there are 2.7% more valuable than a home with an average score for condition, while holding all else constant.
- For homes that are in fair condition, there are 15.7% less valuable then a home with an average score for condition, while holding all else constant.
- For homes that are in fair condition, there are 22% less valuable then a home with an average score for condition, while holding all else constant.

A funny coefficient

- Holding all else constant, a home that has an ben franklin Stove is 0.09% less valuable, then a home without a fireplace.
- Someone would rather have no fireplace then have this thing in their home

Conclusion

- The OLS model does a fair job with predicting sale prices of homes
 - train score 0.8442
 - test score 0.8487
 - o cross val score 0.8222
- To increase the price of a home the best bet is to improve condition of the home
 - homes that are in excellent condition, there are 10.2% more valuable
- Next steps to improve the model
 - o adding more features from ames data
 - Scale features
 - Using other machine learning models like lasso or ridge regression