CENTRO TECNOLÓGICO POSITIVO CURSO SUPERIOR DE TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

CARLOS EDUARDO FONTES DE ASSIS DIOGGINES RAPHAEL DA SILVA PATRICIA DELLA MATTA TIAGO PAVLOSKI

SISTEMA DE GERENCIAMENTO PARA PROFISSIONAIS DA SEGURANÇA DO TRABALHO

CURITIBA 2017

CARLOS EDUARDO FONTES DE ASSIS DIOGGINES RAPHAEL DA SILVA PATRICIA DELLA MATTA TIAGO PAVLOSKI

SISTEMA DE GERENCIAMENTO PARA PROFISSIONAIS DA SEGURANÇA DO TRABALHO

Trabalho de Conclusão de Curso apresentado ao Programa de Aplicação Profissional do Curso de Tecnologia em Análise e desenvolvimento de sistemas, do Centro Tecnológico Positivo.

Orientador: Diogo Deconto.

CURITIBA

SUMÁRIO

1	IN	ITRO	DDUÇÃO3
1.1		TEN	ла3
1	l.1.'	1	Delimitação do Tema5
1.2	2	PRO	DBLEMAS E PREMISSAS5
			JETIVOS6
	1.3.		Objetivo Geral6
1	1.3.2	2	Objetivos Específicos6
1.4	ļ	JUS	STIFICATIVA6
2	PF	ROC	CEDIMENTOS METODOLÓGICOS7
2.1		TIP	OS DE PESQUISA7
3	RI	EFE	RENCIAL TEÓRICO8
3.1		CIC	LO DE VIDA DO PROJETO8
3.2	<u> </u>	DIA	GRAMAS9
3	3.2.	1	Diagrama de caso de uso9
3	3.2.2	2	Diagrama de classes10
3.3	3	PAF	RADIGMA DA ORIENTAÇÃO A OBJETOS11
	3.3. [′]		Atributos12
3	3.3.2	2	Interface e Encapsulamento12
3	3.3.		Herança12
3	3.3.4	4	Polimorfismo13
3.4	ļ	LIN	GUAGEM DE DESENVOLVIMENTO13
3	3.4. ⁻	1	ASP.NET MVC13
3.5	5	ARC	QUITETURA14
3	3.5.	1	loc – Injeção de controle (Ninject)14
3	3.5.5	2	AutoMapper14

	3.5.3	Data Annotations	14					
	3.5.4	Entity Framework	14					
	3.5.5	Code First	14					
	3.5.6	Pattern unit of work	14					
	3.5.7	Web Api	14					
^	0 (4.5					
3.		GERENCIADOR DE BANCO DE DADOS E SERVIDOR						
	3.6.1	•						
	3.6.2	Azure	15					
3.	7 F	FERRAMENTAS	15					
	3.7.1	Visual Studio 2015	15					
	3.7.2	BitBucket	15					
	3.7.3	Astah community	15					
	3.7.4	Google Drive	15					
4	ES	TRUTURA DO TRABALHO	16					
4.	1 (Capítulo 1 - Introdução	16					
ᅻ.	1	Sapitulo 1 - Introdução	10					
4.	2 (Capítulo 2 – Fundamentação Teórica	16					
1	2 (Capítulo 3 – Organização Cliente	16					
4.	3 (Zapitulo 3 – Organização Cilente	10					
4.	4 (Capítulo 4 - Diagnóstico do Ambiente	17					
			4-					
4.	5 (Capítulo 5 – Objetivos	17					
4.	6 (Capítulo 6 – Desenvolvimento	17					
4.	7 (Capitulo 7 - Considerações Finais	18					
4.	8 (Capitulo 8 – Referências	18					
4.	9 (Capitulo 9 – Anexos	18					
F	~		40					
5	CK	ONOGRAMA	19					
R	REFERÊNCIAS20							
								

1 INTRODUÇÃO

1.1 TEMA

Segurança do Trabalho no Brasil – O que mudou de 1978 até hoje.

A Segurança e Medicina do trabalho, se iniciou através das NR's - Normas Regulamentadoras, popularmente conhecidas nas empresas. Essas NR's foram criadas a partir da Portaria 3.214 em 1978, se tornaram o marco na história da legislação da Segurança, Higiene e Medicina do Trabalho, em nosso país. Porém, cumprir a legislação, não é fácil. A fiscalização do cumprimento dessas normas, é feito pela DRT- Delegacia Regional do Trabalho, e por possuírem deficiência no número de funcionários que precisam atender a demanda para fiscalizar, não é atingido uma eficiência nos trabalhos. Este órgão pode ser acionado, em casos de denúncia por parte de trabalhadores, sindicatos e até de pessoas comuns, que zelam pelo ambiente seguro de trabalho e pela manutenção da saúde das pessoas numa maneira geral.

Houveram muitas alterações nas normas regulamentadoras, no decorrer dos anos e o Ministério do Trabalho passou a se adequar ao cumprimento de determinações da Organização Internacional do Trabalho – OIT, pela criação das Comissões Tripartites, formada esta pelos, representantes do governo, empresas e trabalhadores, aos quais se reúnem para definir as atualizações e melhoramentos das Normas Regulamentadoras que temos hoje.

Um dos assuntos em destaque é a prevenção dos riscos existentes no ambiente de trabalho, dependendo do tipo de exposição que o colaborador sofre, não possuindo os mecanismos de controle da exposição aos agentes, são consideradas atividades perigosas ou insalubres, havendo consequência de adicional no salário, sendo as insalubres, de 10%, 20% ou 40% de acréscimo no salário do funcionário, e 30% para atividades periculosas, isto se faz, através de laudos específicos das condições do ambiente de trabalho, primordialmente, medindo os agentes e tempo de exposição. Então a NR-15 e NR-16 nos apresentam essas atividades ou operações perigosas e insalubres. Estamos tratando de pessoas e seus direitos à segurança, saúde e a vida no ambiente de trabalho, reconhecidos e previstos hoje por várias legislações, como exemplo, as Normas Regulamentadoras (Portaria 3.214/78), RTP – Recomendações Técnicas de Procedimentos (Fundacentro), ABNT – Associação Brasileira de Normas Técnicas. NTP – Norma de Procedimento Técnico (Bombeiros

Militares), NT – Notas Técnicas (Ministério do Trabalho), CLT – Consolidação das Leis do Trabalho - Constituição Federal de 1988, entre outras.

Como podemos perceber, a Segurança e Saúde no Trabalho evoluiu muito nos últimos anos, pois a partir de uma série de leis, representada por apenas um livro, surgiram muitas outras, inclusive as internacionais, utilizadas e aplicadas também no Brasil, em decorrência desses fatos, aumentaram as punições das empresas que não cumprem o exigido por lei, prevendo evitar os acidentes de trabalho.

"Baseando-se em dados divulgados pelo Instituto Nacional de Seguro Social (INSS) para trabalhadores segurados entre 2000 e 2007, verifica-se que o número de óbitos por acidente de trabalho (AT) decresceu nesse período, passando de 3.094 óbitos em 2000 para 2.804 em 2007, queda de 9,3%. Isso ocorreu tanto para os homens (8,2%) como entre as mulheres (25,1%)."

Fonte: Edição nº1 do Boletim Acidentes Fatais 2000-2010 – Abril 2011 http://www.fundacentro.gov.br/arquivos/projetos/estatistica/boletins/acidentes-fatais.pdf

Figura 1: Coeficiente de mortalidade anual por acidente de trabalho (CMx100.000), por região. Fonte: MPAS/Coordenação Geral de Estatística e Atuária – CGEA/DATAPREV, RIPSA. IDB-2009.

O ideal seria que nenhum empregado fosse submetido a trabalhar em condições que colocassem sua segurança em risco eminente, e mesmo algumas condições sendo inevitáveis, deve acontecer o controle das atividades de risco, durante a sua jornada de trabalho, pois a mesma deverá estar plenamente preservada pelos âmbitos legais. Embora, o quadro cultural das empresas esteja mudando gradativamente, desenvolvendo a visão dos benefícios à prevenção, os acidentes ainda acontecem e com índices altos. Quando ocorre um acidente de trabalho fatal, podem acontecer paralizações na produção, multas e indenizações aos familiares, aumento nos encargos sociais da empresa, determinadas pelo Fundo de Amparo ao Trabalhador – FAT, podendo ir ao máximo de até 3% em cima da alíquota.

Com o aprimoramento da legislação da Segurança e Saúde no Trabalho e aumento das exigências no atendimento das mesmas, observou-se a necessidade da prevenção das anomalias no trabalho, porém se exigiu-se uma gestão mais criteriosa para evitar acidentes.

1.1.1 Delimitação do Tema

Desenvolver ferramentas WEB e Mobile que permitam a empresa CONSENTRA gerenciar as principais tarefas no âmbito tecnológico, na parte de consultoria e construção de documentos regulamentadores de segurança de trabalho nas empresas a qual presta serviço. As tarefas que atualmente são feitas manualmente e se tornarão um processo semi-automatizado são: Todo o sistema de manipulação de dados necessários para a geração de documentos de Identificação e mapeamento de riscos ambientais por função, PPRA, PCMSO, emissão de certificados de treinamento e relatórios gerenciais, um módulo de elaboração de mapa de risco, um sistema de ordem de serviço, agenda e um módulo financeiro.

1.2 PROBLEMAS E PREMISSAS

Atualmente a empresa tem uma grande parcela do tempo de consultoria e treinamento obtendo informações e gerando documentos de texto e visuais além de ter um acervo fragmentado de documentos gerados, encontrando problemas na organização de dados, no controle financeiro e tendo serviço repetitivo.

Como a tecnologia pode ajudar na organização e automação da empresa?

1.3 OBJETIVOS

1.3.1 Objetivo Geral

Este estudo é focado em atender a necessidade da empresa para gerar uma solução completa que absorva as tarefas fragmentadas, resolvendo os problemas que a empresa passa atualmente no método que utiliza para executar em sua atividade.

1.3.2 Objetivos Específicos

- Identificar as regras de negócio;
- Verificar as tarefas da empresa;
- Identificar as dificuldades atuais;
- Listar processos que podem ser automatizados.

1.4 JUSTIFICATIVA

Percebeu-se falhas por falta de estruturas e suportes de softwares de gestão de Segurança do Trabalho que o mercado possui e tem limitações em oferecer, porém as empresas tem restrições a investir. Em média são poucas empresas que oferecem plataformas de gestão, e as existentes são deficientes, que normalmente não atende completamente a necessidade ou oferecendo um nível alto de complexidade para os usuários, tornando ineficientes ou inviáveis. E diante desse cenário encontra-se uma boa oportunidade de desenvolver uma ferramenta completa para gestão da segurança do trabalho.

2 PROCEDIMENTOS METODOLÓGICOS

A metodologia define o caminho que será seguido durante a realização da pesquisa, bem como auxilia no entendimento da mesma.

Segundo Rampazzo (2005, p. 13), "a metodologia científica é, pois, aquela disciplina que ensina o "caminho", quer dizer, as normas técnicas que devem ser seguidas na pesquisa científica".

2.1 TIPOS DE PESQUISA

Quanto a abordagem da pesquisa a metodologia aplicada foi qualitativa com o intuito de representar as informações referente a qualidade do processo. Fonseca (2002, p. 20) diz que: "A pesquisa qualitativa se preocupa com aspectos da realidade que não podem ser quantificados, centrando-se na compreensão e explicação da dinâmica das relações sociais".

A fonte de dados utilizadas pode ser definida como Secundária, onde, buscouse dados e informações em fontes como: livros, bibliografias, teses e dissertações, manuais e artigos. Segundo Gustin (2006, p. 92) "São secundários, por derivarem de estudos e análises já realizados por intermediários entre o pesquisador e o objeto de investigação"

A respeito da natureza da pesquisa, a metodologia utilizada será do tipo básica, visto que a pesquisa irá gerar conhecimento aos integrantes. E quanto ao objetivo será prescritiva, que tem como finalidade propor soluções diretas aos problemas. Bonat (2009, p.12) entende que "A pesquisa prescritiva tem como objetivo a proposição de soluções, as quais fornecem respostas diretas ao problema levantado", tendo assim, seu grau de complexidade maior em relação à pesquisa descritiva, que segundo a mesma autora: "A pesquisa descritiva não tem como objetivo a proposição de soluções, mas sim a descrição do fenômeno".

3 REFERENCIAL TEÓRICO

Nesse capítulo serão abordados todas as tecnologias e metodologias utilizadas pela equipe durante o desenvolvimento do projeto, bem como os motivos pelos quais escolhemos cada uma delas.

3.1 CICLO DE VIDA DO PROJETO

O ciclo de vida do projeto diz nada mais é do que um modelo de processo prescritivo, que segundo PRESSMAN (2016. p. 41) "Concentra-se em estruturar e ordenar o desenvolvimento de software. As atividades e tarefas ocorrem sequencialmente, com diretrizes de progresso definidas".

Dentre os vários modelos de ciclos de vida, o que será utilizado nesse projeto é o modelo incremental, PRESSMAN (2016. p.48) diz que" O modelo incremental aplica sequencias lineares de forma escalonada à medida que o tempo vai avançando. Cada sequência linear produz 'incrementos' entregáveis do software".

Esse modelo é ideal para esse projeto pois, permite entregas parciais, de funcionalidades para o cliente, para que ele possa utilizar e, caso necessário, solicitar ajustes ou até mesmo, novos requisitos com base no que já foi entregue.

BEZERRA (2015. p.34) descreve que: "A abordagem incremental incentiva a participação o usuário nas atividades de desenvolvimento do sistema, o que diminuí em muito a probabilidade de interpretações erradas em relação aos requisitos levantados". Uma outra vantagem levantada pelo mesmo autor é que "os riscos do projeto podem ser mais bem gerenciados", evitando assim, prejuízos ou até mesmo retrabalho.

Além do que foi citado, o modelo incremental ainda facilita o controle de versionamento do sistema, onde, cada entrega para o cliente, pode ser tratada como uma versão fechada e testada, tendo assim, um controle muito maior do andamento do projeto.

Figura 1 – Modelo incremental Fonte: PRESSMAN (2016. p.48)

3.2 DIAGRAMAS

Existem diversas formas de realizar análise e levantar requisitos para um software, a forma que utilizaremos neste projeto será o padrão UML, padrão esse que é muito utilizado em desenvolvimento de softwares orientados a objeto.

"A UML é uma linguagem constituída de elementos gráficos (visuais) utilizados na modelagem que permitem representar os conceitos do paradigma da orientação a objetos." (BEZERRA,2015, p. 6). Um ponto forte da UML, é que ela pode ser aplicada em projetos independente da linguagem da programação e da forma de desenvolvimento que será adotada.

Neste projeto, utilizaremos os seguintes diagramas:

3.2.1 Diagrama de caso de uso

Segundo PRESSMAN (2016. p.875) "o diagrama de caso de uso ajuda a determinar a funcionalidade e as características do software sob o ponto de vista do usuário." Um caso de uso tem como finalidade descrever como o usuário irá interagir com o sistema, definindo assim, o passo a passo necessário para que um determinado objetivo seja cumprido.

O diagrama UML de caso de uso, fornece uma visão geral de todos os casos de uso do sistema e a relação entre eles, o detalhe de cada um é realizado na

especificação do caso de uso. Na figura 2 podemos observar um exemplo de caso de uso, onde o Ator (usuário) pode interagir com as funcionalidades do sistema (elipses com o nome do caso de uso da funcionalidade).

Figura 2 – Diagrama de caso de uso Fonte: PRESSMAN (2016. p.876)

3.2.2 Diagrama de classes

Para realizar a modelagem das classes, a UML tem o diagrama de classes. Ele fornece uma visão estrutural do sistema como um todo. O principal elemento desse diagrama são as caixas, ou seja, retângulos usados para representar as classes com seus atributos e operações. Todos os atributos e operações podem ter um nome, um tipo e um nível de visibilidade. Também é possível identificar se o atributo é estático ou de classe.

O diagrama de classe pode exibir também a relação entre as classes do sistema, relações essas que podem ser: herança, implementação ou até mesmo uma relação de acesso, para identificar que determinada classe tem acesso a outra. Conforme figura 3.

Figura 3 – Diagrama de classes Fonte: PRESSMAN (2016. p.871)

3.3 PARADIGMA DA ORIENTAÇÃO A OBJETOS

Segundo BEZERRA (2015. p.6) "O paradigma de orientação a objetos é uma forma de abordar um problema". Forma essa, que ficou muito popular por ser extremamente parecida com a forma que nós, os seres humanos, resolvemos nossos problemas cotidianos.

O paradigma da orientação a objetos visualiza um sistema de software como uma coleção de agentes interconectados chamados objetos. Cada objeto é responsável por realizar tarefas específicas. Para cumprir com algumas tarefas sob sua responsabilidade, um objeto pode ter que interagir com outros objetos. É pela interação entre objetos que uma tarefa computacional é realizada. (BEZERRA,2015, p. 6).

Um termo bastante comum em orientação a objetos é a Classe, que segundo PRESSMAN (2016. P.892) "Classe é uma descrição generalizada que descreve uma coleção de objetos similares."

Outra definição de classe, de acordo com BEZERRA (2015, p.7) é que:" Classe é uma abstração das características de um grupo de coisas do mundo real". Como não há como abstrair toda as características do mundo real, ao realizar a modelagem do sistema, pegamos apenas as características relevantes do mundo real.

3.3.1 Atributos

Atributos são as características dos objetos, eles servem para descrever a classe, esses atributos geralmente têm seu tipo de dado definido, como String (texto) Integer (numérico inteiro), Double (numérico real) entre outros.

Em alguns casos, o atributo também pode ser um outro objeto, vindos de uma outra classe, com seus próprios atributos.

3.3.2 Interface e Encapsulamento

Pode ser considerada a base desse paradigma, Segundo BEZERRA (2015. p.9) "O encapsulamento é uma forma de restringir o acesso ao comportamento interno de um objeto." Restringir de forma que, uma classe não tenha acesso direto as propriedades de outra, sendo necessário o intermédio de uma terceira classe, para realiza a ponte entre elas. Essa classe, tem o nome de interface. Ainda de acordo com BEZERRA (2015. p.9) "A interface de um objeto define os serviços que ele pode realizar e consequentemente as mensagens que ele recebe".

Os objetos apenas enviam mensagens a outros objetos, para realizarem determinadas tarefas, sem se importar com os detalhes de como essas tarefas serão realizadas.

3.3.3 Herança

É o grande diferencial entre os sistemas convencionais e os orientados a objetos, PRESSMAN (2016. p.894) descreve o funcionamento básico de herança.

Uma subclasse Y herda todos os atributos e operações associados a uma superclasse X. Isso significa que todas as estruturas de dados e algoritmos originalmente projetados e implementados para X ficam imediatamente disponíveis para Y –nenhum trabalho adicional precisa ser feito. A reutilização foi conseguida diretamente.

Essa funcionalidade é bastante útil quando há a necessidade de alteração nos atributos e métodos no sistema, é necessário altera-las apenas na superclasse, e imediatamente as alterações serão propagadas para as subclasses que herdam da classe alterada. Conforme exemplificado na figura 4.

Figura 4 – Principio de generalização(Herança)

Fonte: BEZERRA (2015. p.11)

3.3.4 Polimorfismo

Segundo BEZERRA (2015. p.10) "O polimorfismo indica a capacidade de abstrair várias implementações diferentes em uma única interface". Ou seja, um objeto pode enviar a mesma mensagem, para objetos semelhantes, mas que irão implementar a interface de formas diferentes, de acordo com as características desejadas.

PRESSMAN (2016. P.896) diz que: "O polimorfismo permite que várias operações diferentes tenham o mesmo nome. Isso por sua vez, desacopla os objetos uns dos outros, tornando-os mais independentes".

3.4 LINGUAGEM DE DESENVOLVIMENTO

3.4.1 ASP.NET MVC

É um framework da Microsoft que possibilita o desenvolvimento de aplicações web. Criado em 2002, utilizando como base o .NET, é uma linguagem que pode ser escrita em C# ou Visual Basic, de código compilado, não mais interpretado, como era o seu antecessor .NET.

O MVC – *Model* - *View* - *Controller* – é uma arquitetura que divide a aplicação em três partes onde a *Model* fica responsável pela manutenção dos dados, e definição das classes, a *View* é a camada de interação com o usuário, interfaces gráficas e por

último a *Controller* é onde será implementada a lógica da aplicação e as regras de negócio.

3.5 ARQUITETURA

3.5.1 loc – Injeção de controle (Ninject)

É um *design pattern* para realizar a inversão de controle. Onde os Módulos de alto nível não devem depender de módulos de baixo nível, ambos devem depender de abstrações.

O *Ninject* é um framework de código aberto que realiza essa injeção de dependência via código de uma maneira simplificada, em plataformas .NET

3.5.2 AutoMapper

Biblioteca de código aberto para realizar o mapeamento de relação entre as entidades do sistema (*View-Model e Interface-Classe*).

3.5.3 Data Annotations

Utilizado para validação dos dados diretamente nas classes.

3.5.4 Entity Framework

É uma ferramenta de mapeamento de objeto relacional (ORM), permite que as classes geradas pelo desenvolvedor sejam convertidas automaticamente em tabelas e campos no banco de dados, realiza também toda a interação com o banco de dados (consultas, inserções, exclusões etc.).

3.5.5 Code First

Utilizado para escrever classes utilizando a metodologia POCO, para que o banco de dados seja gerado a partir dessas classes.

3.5.6 Pattern unit of work

Padrão que pode ser considerado um contexto, onde acompanhará modificações das entidades de negócio no momento da transação.

3.5.7 Web Api

Framework para construir serviços HTTP possibilitando que uma grande variedade de dispositivos possam acessá-los e consumi-los de forma direta.

3.6 GERENCIADOR DE BANCO DE DADOS E SERVIDOR

3.6.1 Sql Server

Gerenciador de banco de dados relacional, utilizado para armazenar os dados gerados pela aplicação.

3.6.2 Azure

Servidor em nuvem, utilizado para hospedar o gerenciador de banco de dados, a aplicação e os demais aplicativos e ferramentas utilizados no projeto.

3.7 FERRAMENTAS

3.7.1 Visual Studio 2015

Ambiente de desenvolvimento integrado da Microsoft, a ser utilizado para realizar a codificação do software.

3.7.2 BitBucket

Serviço de hospedagem de projetos, controle de versões e gerenciamento de branches.

3.7.3 Astah community

Ferramenta para desenvolvimento dos diagramas de caso de uso e classes.

3.7.4 Google Drive

Serviço de hospedagem de arquivos, para gerenciamento geral dos documentos.

4 ESTRUTURA DO TRABALHO

Pretende-se neste trabalho o desenvolvimento dos seguintes capítulos:

Intervenção Profissional / Inovação Tecnológica (com organização-cliente)

- 1. Introdução
- 2. Referencial Teórico
- 3. Organização-Cliente
- 4. Diagnóstico do Ambiente
- 5. Desenvolvimento
- 6. Considerações Finais
- 7. Referenciais
- 8. Apêndices
- 9. Anexos

4.1 Capítulo 1 - Introdução

Será delimitado o assunto de forma breve e sucinta, descrevendo o projeto proposto de forma global e apresentando os problemas destacados pela empresa/cliente, para então, apresentar a solução proposta pela equipe com o desenvolvimento do software.

4.2 Capítulo 2 – Fundamentação Teórica

Neste item será apresentado a tomada de decisão da equipe referente as tecnologias a serem utilizadas no projeto, será descrito um breve embasamento teórico sobre a plataforma a ser utilizada, citando a linguagem de programação, SGBD e padrão de modelagem utilizados no desenvolvimento do software.

4.3 Capítulo 3 – Organização Cliente

O projeto a ser desenvolvido se elege na categoria Intervenção profissional, por isto, será descrito os dados abaixo da "organização-cliente" a ser utilizada para o desenvolvimento do trabalho.

- Nome fantasia
- Razão social
- Endereço
- Endereço eletrônico
- Telefone profissional para contato/função
- Tipos de negócio
- Área de atuação
- Histórico

4.4 Capítulo 4 - Diagnóstico do Ambiente

Nesta fase exploratória será apresentado amplamente o problema enfrentado pela "organização-cliente", citando os processos problemáticos e falhos, que necessitam de melhorias e/ou soluções, para assim, modelar uma solução para este.

4.5 Capítulo 5 – Objetivos

A partir do diagnóstico do ambiente, será explicado de forma mais detalhada a solução proposta, descrevendo de forma clara e sucinta o escopo do projeto de atuação da solução, apresentando suas macro funções, e destacando os principais módulos do sistema e seus objetivos de acordo com as necessidades do cliente.

O desenvolvimento do projeto será dividido em fases, englobando a análise, programação, testes e implantação, que serão apresentadas em um cronograma de trabalho a ser seguido pela equipe.

4.6 Capítulo 6 – Desenvolvimento

No item de desenvolvimento será apresentado com detalhamento a fase de análise do projeto, portanto, será apresentado os itens abaixo:

- Especificação dos Requisitos do Projeto
- Funcionalidade
- Usabilidade:

- Confiabilidade;
- Eficiência;
- Portabilidade;
- Manutenibilidade;
- Modelagem
- Diagramas de Casos de Uso
- Diagramas dos principais Casos de Uso do projeto;
- Documentação dos Casos de Uso;
- Protótipo de telas associadas aos Casos de Uso
- Diagrama de Classes
- Diagrama de Implantação
- Modelo Físico de Dados

4.7 Capitulo 7 - Considerações Finais

Será relatadas as experiências da equipe referentes ao tratamento com a empresa/cliente, ocorrências no processo de desenvolvimento, reflexo das decisões tomadas referentes às tecnologias adotadas, resultados obtidos, projetos futuros entre outros.

4.8 Capitulo 8 – Referências

Será referenciado todo material utilizado no desenvolvimento do documento, sejam estes bibliográficos ou digitais.

4.9 Capitulo 9 – Anexos

Momento em que será possível documentar, esclarecer, provar ou confirmar as ideias expressas no texto.

5 CRONOGRAMA

Para a realização deste trabalho propõem-se o seguinte cronograma de realização das atividades:

ANO				2017								
Etapa	Responsável	Data	Mês 03	Mês 04	Mês 05	Mês 06	Mês 07	Mês 08	Mês 09	Mês 10	Mês 11	Mês 12
01 - Protocolo de Ficha de Inscrição	Dióggines	05/06/17 até 06/06/17										
02 - Elaboração do Pré- Projeto	Todos	07/06/17 até 27/06/17										
03 - Levantamento de informações da empresa	Todos	28/06/17 até 01/08/17										
04 - Fundamentação teórica	Todos	28/06/17 até 01/08/17										
05 - Entrega do Projeto Parcial 1	Dióggines	31/07/17 até 01/08/17										
06 - Elaboração de estratégias	Todos	02/08/17 até 29/08/17										
06 - Elaboração de plano de ação e itens de controle	Todos	02/08/17 até 29/08/17										
07 - Conclusões e recomendações	Todos	02/08/17 até 29/08/17										
08 - Entrega do Projeto Parcial 2	Dióggines	28/08/17 até 29/08/17										
09 - Elaboração de Apresentação para Banca de Qualificação	Todos	30/08/17 até 18/10/17										
10 – Protocolo do Projeto de Qualificação	Dióggines	25/09/17 até 26/09/17										
11 - Banca de Qualificação	Todos	04/10/17 até 18/10/17										
12 - Ajustes indicados pela Banca de Qualificação	Todos	19/10/17 até 05/11/17										
13 - Protocolo do Projeto Final	Dióggines	06/11/17 até 07/11/17										
14 - Elaboração de Apresentação para Banca Final	Todos	06/11/17 até 24/11/17										
15- Defesa do Projeto Final	Todos	25/11/17 até 27/11/17										

REFERÊNCIAS

BEZERRA, Eduardo. **Princípios de análise e projetos de sistemas com UML**. 3 ed. Rio de Janeiro: Elsevier Editora, 2015. Livro online disponível em:http://zip.net/bhtLmj. Acesso em: 24 de junho, 2017.

BONAT Debora. **Metodologia da Pesquisa**, 3ª ed. Curitiba: IESDE Brasil S.A, 2009. Livro online disponível em:http://zip.net/bmlbJv. Acesso em 24 de junho, 2017.

FONSECA, João José da. **Apostila Metodologia Da Pesquisa Cientifica**, Ceara, 2002. Livro online disponível em:< http://zip.net/bxtL1H>. Acesso em: 24 de junho, 2017.

GUSTIN, Miracy Barbosa de Sousa. (**Re)pensando a pesquisa jurídica**. 2 ed. Belo Horizonte: Del Rey, 2006. Livro online disponível em:< http://zip.net/bttLVH >. Acesso em: 24 de junho, 2017.

PRESSMAN, Roger S. **Engenharia de Software**. 8 ed. São Paulo: AMGH Editora, 2016. Livro online disponível em:< http://zip.net/bctK6H>. Acesso em: 24 de junho, 2017.

RAMPAZZO, Lino. **Metodologia Cientifica**. 3 ed. São Paulo: Edições Loyola, 2005. Livro online disponível em:< http://zip.net/btlccH >. Acesso em: 24 de junho, 2017.