关于栈: 定义

- 栈是一种由若干个按线性次序排列的元素所构成的复合数据;
- 插入或删除栈元素只能在栈的一端进行,成为栈顶;
 - 栈只能实施两种操作: 进栈push和退栈pop
 - 两个操作必须在栈的同一端(栈顶)进行;

栈的顺序存储实现——基础

- 栈的存储: 依赖数组
 - 数组可以在任何位置插入和删除元素,因此需要在数组基础上做限定(这个限定是由程序员来实现的!)
- 为何把栈考虑成结构体
 - 栈的两个要素: 栈顶指针和栈存储体
 - 栈顶指针:不是真指针,它仅指示栈顶位置(元素的 处理位置),
 - 栈存储体: 使用数组, 且使用栈顶指针限定范围
 - const int STACK_SIZE=100;
 struct Stack {
 - 3. int top;
 - int buffer[STACK_SIZE];
 - 5. },

栈实现两种方案比较

基于过程抽象	数据抽象和封装
侧重: 函数	采用类, 将数据和操作封装在一起
函数是独立的	将函数纳为类的成员函数
	成员函数访问私有成员; 对象来调用成员函数

对象生灭

讨论:

构造函数和析构函数

吴清锋

2022年春

实际:

- 1、对象是如何初始化的
- 2、如何把类设计的更好

回忆: 结构体的初始化

- 什么是初始化?定义对象(变量)的同时给初始值。
- 例:
 struct Complex {
 double real;
 double image; };
 struct Complex s1={12,23};
- 为何?
 在main函数中,是可以直接访问结构体变量中各个成员

回忆: string的初始化

对用户而言,多种初始化的形式。现在从程序员角度考虑是如何实现"多种初始化"?

string s1;	默认构造函数,s1为空串
string s2(s1);	复制构造函数,将s2初始化为s1的一个副本(s1可以是字符数组或string)
	个副本(s1可以是字符数组或string)
string s3("value");	将s3初始化为一个字符串字面值副本
string s4(n,'c');	将s4初始化为字符'c'的n个副本

- 对象创建过程一定伴随着构造函数的自动调用;
- 鉴于构造函数的运行时间特殊,常用于:对象初始化;
- 多种初始化形式表明构造函数的重载;

导引:对象的生灭与自动执行函数

在对象创建(无论显示或是隐式)或是销毁过程,都会有对应函数(构造函数、析构函数)自动执行。

- 构造函数是特殊的成员函数,只要创建类类型的新对象,都要执行构造函数;
- 在对象销毁的时候,会有析构函数自动执行。

提纲

- 对象的创建与初始化
- 构造函数概述——特性与分析
- 如何写构造函数
- 使用默认参数的构造函数
- 默认构造函数
- 构造函数的重载
- 构造函数初始化列表
 - 形式
 - 需要构造函数初始化列表的情形
- 经常被误解的构造函数
- 析构函数
- 构造函数与析构函数的关系

对象的创建与初始化

- C++提供了构造函数,用户可通过构造函数来完成期望在创建对象时需要完成的事情。比如, 在创建来处理对象的初始化
 - 什么是初始化?定义对象(变量)的同时给初始值。
 - 初始化必要性
 - 初始化方式思考
 - 1、能否借鉴结构体初始化的模式
 - 2、之前代码是如何运行的?能否真的实现初始化

构造函数的特性

- 构造函数:
 - 是一种特殊的成员函数,与其他成员函数不同,不需要 用户来调用,而是在**建立对象时**自动执行
 - 建立的对象: 有名称的对象或是未命名的对象显示定义的对象或隐式生成的对象
 - 自动执行: 也无需通过"对象…."
 - 构造函数的名字必须与类名同名,而不能由用户任意命名
 - 它不具有任何类型,不返回任何值;

要从特性反思对编程实现的贡献!

构造函数的分类

默认构造函数

隐式默认构造函数

构造函数是C++提供的,没有参数,函数体是空 的,可能什么都不处理;

• 用户自定义构造函数

函数功能由程序员定义:程序员根据初始化要求 设计函数体和函数参数,如赋刊值,值的有效性校验

等。 带参数的构造函数

• 不带参数的构造函数

一旦用户自定义了构造函数,隐式默认构造函数 就不会执行。

隐式默认构造函数

- 例子: 对象创建
 - Time t1,t2; //对象创建,自动伴随构造函数
- 类的描述

```
    class Time {
        private:
        int hour;
        int minute;
        int second;
        public:
        void SetTime(int h,int m,int s);
        void Myprin();
    };
```


如何写构造函数: 例子及分析

• 带参数的构造函数

• 不带参数的构造函数

思考:

- 1函数是否带参数,这取决于什么?
- 2函数是否带参数,对初始化的影响?

不带参数的构造函数

- 不带参数的构造函数
 - 若构造函数不带参数,在函数体中对各数据成员赋值, 此类方式使该类的每一个对象都得到同一组初值。

```
class Time {
                     ● Time t1,t2;
   private:
                     t1和t2中的私有成员均为11,12,13
    int hour;
    int minute;
    int second;
                                   有别于:
   public:
                                       class Time {
             //不带参数的构造函数
     Time()
                                        private:
                                         int hour=1;
          hour=11;
          minute=12;
                                         int minute=1;
                                         int second=1;
          second=13;
                                       }; //ERROR
```

};//构造函数没有返回值,函数名与类名一致

带参数的构造函数

- 带参数的构造函数
 - 能对不同的对象赋予不同的初值
 - 对象在生成时,通过自动调用构造函数,从外面将不同的数据传递给构造函数,以实现不同的初始化
 - 模型表示 main函数中

Date d1(2020,3,15);

1 d1对象创建,与此同时,就会自动调用构造函数 2 2020,3,15是实参

```
Date::Date (int x,int y,int z)
{
    year=x;
    month=y;
    day=z;
    即类名
}
```

- 1 设置形参,才能接收用户传递过来的实时的信息
- 2 函数体,用接收信息的形参处理数据成员。

带参数的构造函数的定义

- 定义过程:构造函数的首部的一般格式: 构造函数名(类型1 形参1,类型2 形参2,...)
- 使用过程:实参是在定义对象时给出 类名 对象名(实参1,实参2,....)

```
类的
声明
和构
的
和构
int hour;
int minute;
int second;
数定
义
Time(int,int);
};
```

```
Time::Time(int x,int y,int z)
{ hour=x;
 minute=y;
 second=z;
}
```

对象 创建

Time t1(13,12,20);

深入探究问题

- 参数中带有默认值
- 默认构造函数
- 构造函数的重载

使用默认参数的构造函数(1)

- 构造函数中参数的值可以通过实参传递,也可以指定为某些默认值,即用户不指定实参值,编译系统就使用默认值;
- 在调用构造函数时若没有提供实参值,此时将 按照默认的参数值对对象进行初始化。尤其适 用于对每一个对象都有同样的初始化值时;
- 注意:
 - 需要遵循函数带默认参数的要求
 - 如果在类定义中仅包含函数的声明,则默认的参数值 应该放在声明中,而不能放在函数定义中;

例子


```
#include <iostream>
using namespace std;
class Tc {
 public:
 Tc(int a=4,int b=18);
 int Acout() {return A;}
 int Bcout() {return B;}
private:
 int A,B;
```

```
Tc::Tc(int a,int b) {
    A=a;B=b;
} //带默认参数的构造函数,不给出默认值
```

main函数中: Tc c1,c2(9),c3(17,22);

思考:

c1、c2和c3私有成员值?

使用默认参数的构造函数(2)

- 问题更复杂: 带默认参数的构造函数与构造函数重载
 - 没有带参数的构造函数与全部为默认参数的构造 函数 ×

原因: 定义了多个默认构造函数(或对重载函数调用不明确)

没有带参数的构造函数与部分为默认参数的构造 函数 √

例子


```
#include <iostream>
using namespace std;
class Tc {
 public:
 Tc(int a=4,int b=18);
 Tc();
 int Acout() {return A;}
 int Bcout() {return B;}
private:
 int A,B;
```

```
Tc::Tc(int a,int b) {
A=a;B=b;
 //带默认参数的构造函
 数,不给出默认值
Tc::Tc() {
 A=40; B=180;
} //两个构造函数的重载
main函数中:
```

```
main函数中:
Tc c1;
编译器抉择困难
```

默认构造函数(1)

- C++有一个定义: 默认构造函数
 - 隐式默认构造函数
 - 自定义的构造函数
 - 不带参数的自定义构造函数
 - 带默认参数的自定义构造函数

默认构造函数定义的必要性

- 如果为类已经定义了一个带参数的构造函数【C++免费。
 送的隐式默认构造函数就不起作用】,若想要使用Time
 t1,则必须定义自己的"默认构造函数";
- 途径1: 不带参数
- 途径2:全部默认值 class Time { private:

int hour; int second; public: Time(int x,int y):hour(x) { }

那么,执行:

Time X; //调用默认构造函数,注意:不需要添加括号 会提示:

no appropriate default constructor available

再次强调:程序员定义了构造函数,那么C++"送的"默认构造函数就不会起作用;为了支撑Time t1【此时,对象的创建需要一个默认构造函数】,就需要自行定义

Time(int x=1,int y=100):hour(x) { } //默认构造函数

Time(double y):hour(y) { }
void display(){ cout<<hour; }</pre>

构造函数的重载:

Time(int,int); Time(double);

};

构造函数的重载(1)

- 回顾一个现象: string对象的多种初始化思考,为何能支持这么多种的初始化形式? 构造函数重载
- 回顾:什么是重载?多个功能目标相同的函数,其函数名字一致。
- 【编程思考】通过函数重载,提供不同的构造 函数。这就允许用户指定不同的方式来初始 化数据成员;

构造函数的重载:具有相同的函数名字,而参数的个数或参数的类型或位置不相同;

构造函数的重载(2)

- 构造函数重载的注意事项:
 - 尽管构造函数同名,系统根据函数调用的 形式(实参)去确定将选用的构造函数;
 - 应当警惕:编译器选择的困惑 没有带参数的构造函数与全部为默认参数 的构造函数同时出现(重载)
 - 若在建立对象时选用的是无参构造函数, 应注意正确书写定义对象的语句,尤其避 免写括号!
 - 例子: Sales_item empty; //使用默认构 造函数

构造函数的初始化列表

- 在构造函数中,可以用显式的赋值语句来初始化对象的成员,还可以使用"构造函数初始化列表"
 - 这是一种值得推荐的方式
- 例子:

Time::Time(int h,int m,int s):hour(h),minute(m),second(s) { }

- 形式
 - 初始化列表以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个数据成员后面跟一个放在圆括号中的初始化式;
 - 构造函数初始化式只在构造函数的定义中而不是声明中指定;

成员初始化的次序

- 构造函数初始化列表,仅给出用于初始化成员的各个值,并未对初始化成员执行的次序进行指定;
- 成员被初始化的次序依赖于成员在类中定义的次序;

```
    例子
        class Time
        { private:
            int second;
            int hour;
            int hour;
            int hour;
            public:
                 Time():hour(1),second(hour) { } //会有莫名的值
            void display(){cout<<second<<" "<<hour;}
        };</li>
```

只能使用构造函数的初始化列表

- 很多时候,初始化列表可以转化为通过在函数体内对数据成员赋值来实现。
- 但是,在某些情况下,只能使用初始化列表:
 - 某个类中的类成员,没有默认构造函数;
 - 反思:若没有为类成员提供初始化式,则编译器会隐式地使用类成员的默认构造函数。而该类成员若恰好没有默认构造函数,那么编译器尝试使用默认构造函数就会失败;
 - 某个类中有const成员;
 - 某个类中有引用类型的成员;
 - 如果类存在继承关系,派生类必须在其初始化列表中调用基类的构造函数
- 例子

某个类中有const成员

```
#include <iostream>
using namespace std;
class A {
  public:
    A(int size) : SIZE(size) {
    private:
```


 •在类中声明成员为const类型,但 是不可以初始化

•const常量的初始化必须在构造函数初始化列表中初始化,而不可以在构造函数函数体内初始化


```
某个类中有引用类型成员
class A {
  public:
    A(int &v) : i(v), p(v), j(v) { }
    void print val() {
      cout << "hello:" << i << " " << j << endl;}
  private:
    const int i;
    int p;
    int &j; //j与谁绑定?
 int main() { int r= 45; A b(r); b.print val(); }
```

类的特殊成员:类成员

- 类定义中有数据成员和成员函数,数据成员可以是内部数据类型的变量实体,也可以是对象实体;
 - 若类的数据成员部分有其他类的对象实体的声明。此时,构造函数是如何工作的?
- 例子

```
#include <iostream>
class Base {
 public: Base(int a) : val(a) { }
 private: int val;
                                 此时b是个对象,
                                 创建的时候, 要调
                                  用Base的构造函
class A {
                                 数,将v作为实参
                                       给a
 public:
   A(int v): p(v) b(v)
   void print_val() {cout << "hello:" << p << endl;}
 private:
                       int p1 \neq 45;
  int p;
                       A f(p1);
  Base b;
                       f.print_val();
```

经常被误解的构造函数

- 构造函数经常用来做初始化工作
- 但是: 构造函数的功能 ≠ 初始化工作
- 还可以有: new创建空间即: 数据成员中指针出现 (这是一个神奇的问题!)

```
Student s1;
class Student {
                            Student s2(8410,"Zhang hua",95)
 public:
                            s2.modify(90);
   Student(int pid,char *pname,float s);
                             Student::Student(int pid,char
   Student();
                               *pname,float s) {
   void modify(float s);
                              id=pid;
                              name=new char[strlen(pname)+1];
   void display();
                              strcpy(name,pname);
 ~Student();
                              score=s;
private:
                             Student::Student() {
  int id;
                              id=0;
                              name=new char[11];
  char *name;
                              strcpy(name,"No name");
  float score;
                              socre=0;
                             void Student::modify(float s) {score=s; }
```

对象的模型

存在风险? 内存泄漏

```
Student s1;
Student s2(8410,"Zhang hua",95);
s2.modify(90);
```

```
Student::Student(int pid,char
  *pname,float s) {
 id=pid;
 name=new char[strlen(pname)+1];
 strcpy(name,pname);
 score=s;
Student::Student() {
 id=0;
 name=new char[11];
 strcpy(name,"No name");
 socre=0;
void Student::modify(float s) {score=s; }
```

析构函数

- 当对象消亡时,在系统收回它所占的内存空间。之前,对象类的析构函数会被自动调用。
- 析构函数分类
 - 隐式析构函数
 - 用户自定义析构函数
- 例子
 - 执行过程

```
class A {
 private: int x;
 public:
  A();
  ~A(); //析构函数
 };
void f( ) {
 A a; //自动调用构造函数
} //自动调用析构函数
```


- 对象空间(本体空间)是由操作系统撤销的;
- 若程序执行过程,对象有申请资源,则需要有 析构函数来进行资源的回收
 - 例如: 若类的声明中有数据成员是指针关系时

```
Student::~Student() {
    delete [] name;
}
```


• 在对象的生灭过程中,实际是一个函数关于 栈的调用过程

关于局部对象(不是全局对象),调用构造函数与定义对象的顺序相同,而调用析构函数的次序正好与创建的顺序相反。

若有类成员出现时,构造函数调用遵循"尊老爱幼":类成员就是"幼";析构函数调用遵循栈。

```
#include <iostream>
   using namespace std;
2.
   class Base {
3.
   private:
     int b;
   public:
       Base(){cout<<"Base的构造函数\n";}
       ~Base() {cout<<"Base的析构函数\n";}
8.
10. class A {
11. private:
     int a1;
12.
     Base a2;
13.
   public:
14.
       A(){cout<<"大类A的构造函数\n";}
15.
       ~A() {cout<<"大类A的xigou函数\n";}
16.
17. }:
```



```
主函数:
int main()
{
        A x1;
        return 0;
}
```

Base的构造函数 大类A的构造函数 大类A的析构函数 Base的析构函数

- 通过构造函数和析构函数来描述的是对象的生和灭
- 对构造函数和析构函数的认识,便于设计出更好的类,如:对于构造函数
 - A具有初始化功能
 - B 具有多种初始化形式(重载)

感谢!

对象初始化必要性

- 在建立一个对象时,由于对象反映了客观事物的属性,应该有确定的值,因此需要作某些初始化的工作,如对数据成员赋初值。
 - 例子: box类的对象需要有具体的长宽高等信息
- 而如果一个数据成员未被赋值,则它的值是不可预知的,因为在系统为它分配内存时,保留了这些存储单元的原状,这些将成为这些数据成员的初始值。但是这不符合人们对于对象的期望;
- 例子

创建对象时私有空间的随机性

- class Time {
- 2. private:
- 3. int hour, minute, second;
- 4. public:
- 5. void disp();
- 6. };
- 7. void Time::disp()
- 8. { cout<<hour<<"小时"<<minute<<"分钟"<<second<<" 秒"<<endl:
- 9.
- 10. void main()
- 11. { Time time1;
- 12. time1.disp();
- 13.

定义了一个对象time1,分配的内存空间保持原样,故为随机数。由于对象的意义表达现实世界的实体,该有具体的意义。因此,期望在对象创建的时候,该对象就应该确保它的数据成员都是有意义的初始值。

对象初始化方式

- 类的数据成员不能在声明类时初始化
 - 类并不是一个实体,而是一种抽象类型,不占存储空间。
 - 例子 class Time
 { int hour=0;
 int minute=0;
 int sec=0;
 };
- 如果一个类中所有的成员都是公用的,则可以在定义 对象时对数据成员进行初始化。类似结构体各数据成 员。
 - 例子
- 但是如果数据成员是私有的,意味程序不能直接访问此类数据成员,则不能用这种方法初始化。

例子: 公有成员的初始化

• 若一个类中所有成员都是公有的


```
class Time
 { public: //声明为公有成员
   int hour;
   int minute;
   int sec;
Time t1=\{14,56,30\};
注:与结构体变量的初始化类似,在一个花括号
内顺序列出各公用数据成员的值,两个值之间
用逗号分隔
```

一种进行对象"伪"初始化的方式

- •程序只能通过成员函数来访问私有成员;
- 类中提供一个普通成员函数来"初始化",但是会造成使用上的不便(使用对象前必须显式调用该函数)和不安全(未调用初始化函数就使用对象)。

• 例子

其中的set_date()就是这样一种函数

例子:对象的伪初始化


```
class Tdate
  public:
   void Setdate(int m,int d,int y) // 置日期值
    month=m; day=d; year=y;
  private:
   int month;
   int day;
   int year;
```

例子: 构造函数的定义

注意:

- 不要误认为是在声明类时直接对程序数据成员赋初值,赋值语句是写在构造函数函数体中,只有在调用构造函数时才执行这些赋值语句,为当前的对象中的数据成员赋值;
- 例题中是在类内定义构造函数,也可以只在类内对构造函数进行声明而在类外定义构造函数。此时,需要加上类名和域限定符;
- 构造函数没有返回值,因此不需要再定义构造函数时声明类型 (别画蛇添足加void)
- 构造函数不需用户调用,也不能被用户调用。下面用法错误 t1.Time(); //不能用调用一般成员函数的方法调用构造函数
- 如果用户没有定义构造函数,则C++系统会自动生成一个构造函数,只是该构造函数的函数体是空的,也没有参数,不执行初始化操作

- 合成的默认构造函数,将使用与变量初始化相 同的规则来初始化成员:
 - 类成员通过运行各自的默认构造函数来实现初始化;
 - 内置或复合类型的成员,若对象定义在全局作用域中,才初始化;而若对象定义在局部作用域中时,不进行初始化;
 - 鉴于该原则,建议: 若类中包含内置或复合类型的成员,则该类不应该依赖于合成的默认构造函数, 而应该定义自己的构造函数来初始化这些成员。
- 使用默认构造函数,不要画蛇添足,额外添加了();

类的特殊成员:类成员

- 类定义中有数据成员和成员函数,数据成员可以是内部数据类型的变量实体,也可以是对象实体;
 - 若类的数据成员部分有其他类的对象实体的声明。此时,构造函数是如何工作的?
- 例子
- 分析: 当学生类对象被构造时,一个学号对象也创建了,而且学号类的构造函数先于学生类对象的构造函数体的执行而执行;
- 含有对象成员的类对象构造时,内部执行次序分析:
 - 空间的分配上,先分配学生类对象s的空间,调用Student构造函数;
 - 在Student构造函数尚未执行,由于看到类的对象成员id,转调用StudentID的构造函数,即:StudentID id;
 - 执行完StudentID类的构造函数后,返回Student构造函数;
 - 执行Student构造函数;