electroussafi.ueuo.com 1/5

Bascule D

Exercice 1

1. On a : $Q_{n+1} = D_n = \overline{Q_n}$. Au départ, on a Q = 0 et D = 1. Au 1^{er} front descendant de H, Q passe à 1 et D = 0; au $2^{ième}$ front descendant de H, Q passe à 0 et D = 1. Et ainsi de suite. On a basculement à chaque front descendant de H.

- 2. Soit T_H la période de H et T_Q la période de Q: $T_Q = 2T_H$ la fréquence de Q: $f_Q = 1 / T_Q$ et la fréquence de H: $f_H = 1 / T_H$. $f_Q = 1 / T_Q = 1 / 2T_H$
- **3.** Pour Q_0 , on a basculement à chaque front descendant de H. pour Q_1 , on a basculement à chaque front descendant de Q_0 .

4. $T_{Q1} = 2T_{Q0} = 4T_H \Rightarrow 1 / T_{Q1} = 1 / 2T_{Q0} = 1 / 4T_H$ $f_{Q1} = f_H / 4$

<u>electroussafi.ueuo.com</u> 2/5

Exercice 2

1. Pour la bascule JK, lorsque D = J = K = 1, on a basculement de Q_0 sur front descendant de H. lorsque D = J = K = 0, on a mémorisation (Q_0 ne change pas). pour la bascule D, à chaque front descendant de H, on a : $Q_1 = D$.

On voit qu'on obtient le même signal sur Q_0 et Q_1

2.

J	K	Q		
0	0	Q_0		
0	1	0	Bascule D	
1	0	1	Dascule D	
1	1	$\overline{\mathbb{Q}_0}$		

3. A partir de la table de vérité de la bascule JK, on peut synthétiser une bascule D en prenant :

electroussafi.ueuo.com 3/5

Exercice 3

1. Q bascule à chaque front montant de H.

2.

- Au départ le bouton poussoir n'est pas appuyé et le condensateur C est déchargé (Vc = 0V). Q = 0 et D = 1. Le condensateur se charge et CLK (entrée d'horloge) passe de 0 à 1 (front montant) et Q = 1 et D = 0(la LED s'allume).
- Lorsqu'on appui sur bouton poussoir le condensateur C est court-circuité (Vc = 0V) et CLK passe de 1 à 0 (front descendant), Q ne change pas (Q = 1 et D = 0).
- Lorsqu'on relâche le bouton poussoir, le condensateur se charge et CLK passe de 0
 à 1 (front montant) et Q = 0 et D = 1 (la LED s'éteint).

Donc à chaque fois qu'on appui et on relâche le bouton poussoir, on a un basculement de Q (la LED passe d'un état à l'autre).

electroussafi.ueuo.com 4/5

Exercice 4

1. Pour Q_1 , on a basculement à chaque front montant de H. Pour Q_2 , on a basculement à chaque front descendant de H (inverseur à l'entrée d'horloge).

On obtient, alors, le chronogramme suivant :

2. La période de Q_1 est $T_1 = 2$ x $T_H \Rightarrow 1/f_1 = 2$ x $1/f_H \Rightarrow f_1 = f_H/2$.

De même, la période de Q_2 est T_2 = 2 x $T_H \Rightarrow 1/f_2$ = 2 x $1/f_H \Rightarrow f_2 = f_H/2$.

Donc:
$$T_1 = T_2 = T = 2 \times T_H$$

$$\mathbf{f}_1 = \mathbf{f}_2 = \mathbf{f} = \mathbf{f}_H/2$$

3. Le déphasage entre Q_1 et Q_2 est :

$$t = T_{\rm H}/2 = T/4$$

<u>electroussafi.ueuo.com</u> 5/5

Exercice 5

On voit que toutes les bascules ont la même horloge. Donc, après chaque front montant de l'horloge, ce qui est sur chaque entrée D est recopié sur la sortie Q correspondante.

	Etat	\mathbf{Q}_2	\mathbf{Q}_1	Q_0	$D_2 = Q_1$	$D_1 = Q_0$	$D_0 = Q_1 \oplus Q_2$
\rightarrow	0	1	1	0	1	0	0
	1	1	0	0	0	-0	1
	2	0	0	1	0	1	0
	3	0	1	0	A.	0	1
	4	1	0	1	<u> </u>	1	1
	5	0	1	1	1	1	1
	6	1	1	1	1	1	0
	7	1	1	0	1	0	0

