無機化学

6.3 一酸化二窒素(笑気ガス) 11

目次			6.4	一酸化窒素	
第Ⅰ部	非金属元素	2	6.6	硝酸	12 13
1	水素	2	7.1	リン	13
1.1	性質	2	7.2	十酸化四リン	13
1.2	同位体	2	7.3	リン酸	13
1.3	製法	2			
1.4	反応	2	8	炭素	14
			8.1	炭素	14
2	貴ガス	2	8.2	一酸化炭素	14
2.1	性質	2	8.3	二酸化炭素	14
2.2	生成	2	9	ケイ素	15
2.3	ヘリウム	2	9.1	ケイ素	15
2.4	ネオン	2	9.2	二酸化ケイ素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.5	アルゴン	2			
3	ハロゲン	3	第Ⅱ部	3 典型金属	17
3.1	単体	3	/	D — 央主並属	11
3.2	ハロゲン化水素	4	10	アルカリ金属	17
3.3	ハロゲン化銀	5	10.1	単体	17
3.4	次亜塩素酸塩	5	10.2	水酸化ナトリウム(苛性ソーダ)	17
3.5	水素酸カリウム	5	10.3	炭酸ナトリウム・炭酸水素ナトリウム	18
4	平价丰	c	10.4	酸化カルシウム(生石灰)	19
4.1	酸素 酸素原子	6 6	10.5	水酸化カルシウム	20
4.1	酸素	6	10.6	炭酸カルシウム(石灰石)	20
4.3	オゾン	6	10.7	塩化マグネシウム・塩化カルシウム	20
4.4	酸化物	7	10.8	硫酸カルシウム・硫酸バリウム	21
4.5	水	7	11	2 族元素	21
1.0	7,	·		単体	21
5	硫黄	8			
5.1	硫黄	8	松 ロ ウ		22
5.2	硫化水素	8	弗Ⅲ市	B APPENDIX	22
5.3	二酸化硫黄(亜硫酸ガス)	9	12	気体の乾燥剤	22
5.4	硫酸	10			
5.5	チオ硫酸ナトリウム(ハイポ)	10			
5.6	重金属の硫化物・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11			
6	窒素	11			
6.1	窒素	11			
6.2	アンモニア・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11			

無機化学

第I部

非金属元素

1 水素

1.1 性質

- ①無色②無臭の③気体
- 最も4軽い
- 水に溶け(5)にくい

1.2 同位体

 1 H 99% 以上 2 H (6D)0.015% 3 H (7T) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- <u>8赤熱したコークス</u>に <u>9水蒸気</u>を吹き付ける 工業的製法

 $C + H_2O \longrightarrow H_2 + CO$

- 10水 (11水酸化ナトリウム水溶液) の電気分解 $2 H_2 O \longrightarrow 2 H_2 + O_2$
- 12 イオン化傾向 が 13 H₂ より大きい 金属と希薄強酸

 \mathfrak{P} Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow

• 水酸化ナトリウムと水 $NaH + H_2O \longrightarrow NaOH + H_2$

1.4 反応

• 水素と酸素 (爆鳴気の燃焼)

 $2 H_2 + O_2 \longrightarrow H_2O$

• 加熱した酸化銅(II)と水素 $CuO + H_2 \longrightarrow Cu + H_2O$

2 貴ガス

(14)He, (15)Ne, (16)Ar, (17)Kr, Xe, Rn

2.1 性質

- <u>18無</u>色<u>19無</u>臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が 20 極めて小さい
- 電気陰性度が[21]<mark>定義されない</mark>

2.2 牛成

 40 K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式:Ar N_2 , O_2 に次いで 3 番目に空気中での存在量が 多い (約 1%)。

無機化学

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	I_2
分子量	小			大
分子間力	弱			強
反応性	強			
沸点・融点	低			
常温での状態	22)気体_	23]気体_	24)液体_	25 固体
色	26 淡黄 色	27黄緑 色	28]赤褐_色	29 <u>黒紫</u> 色
特徴	30 特異 臭	31 刺激 臭	揮発性	32]昇華 性
H ₂ との反応	33)冷暗所 でも	34 常温 でも 35 光 で	<u>36加熱</u> して	高温で平衡状態
112 C V /X // L,	爆発的に反応	爆発的に反応	37 <u>触媒</u> により反応	38加熱 して39触媒 により一部原
水との反応	水を酸化して酸素と	(41)一部とけて反応	(42)一部とけて反応	43 反応しない
/八 C V / X / L ·	<u>40)激しく</u> 反応	(41) BPC1) CIXIIU	(42)— <u>a</u> p C +) C X IU	[44]Klaq には可溶
用途	保存が困難	<u>45 CIO⁻</u> による	C=C ♣	47]ヨウ素デンプン 反応で
用处	Kr や Xe と反応	[46] <mark>殺菌・漂白</mark> 作用	C≡C の検出	48)青紫_色

3.1.2 製法

 ● フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液 の電気分解 工業的製法

 $KHF_2 \longrightarrow KF + HF$

- $\boxed{49}$ 塩化ナトリウム の電気分解 塩素 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH}$
- <u>50酸化マンガン(IV)</u>に <u>51)濃硫酸</u> を加えて加熱 塩素

 $MnO_2 + 4 HCl \xrightarrow{\Lambda} MnCl_2 + Cl_2 \uparrow + 2 H_2O$

- 52高度さらし粉 と 53 塩酸 塩素 ${\rm Ca(ClO)_2 \cdot 2\, H_2O} + 4\, {\rm HCl} \longrightarrow {\rm CaCl_2} + 2\, {\rm Cl_2} \uparrow + 4\, {\rm H_2O}$
- 54 さらし粉 と 55 塩酸 塩素 $CaCl(ClO) \cdot H_2O + 2 HCl \longrightarrow CaCl_2 + Cl_2 \uparrow + 2 H_2O$
- 臭化マグネシウムと塩素 臭素 $MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$
- ヨウ化カリウムと塩素 ョウ素 $2 \, \mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2 \, \mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

● フッ素と水素

 $H_2+F_2 \xrightarrow{$ 常温で爆発的に反応 2HF

• 塩素と水素

 $\mathrm{H}_2 + \mathrm{Cl}_2 \xrightarrow{\mathfrak{K}$ を当てると爆発的に反応 $2\,\mathrm{HCl}$

● 臭素と水素

 $H_2 + Br_2 \xrightarrow{\overline{A} \\ a} 2 HBr$

● ヨウ素と水素

 $m H_2 + I_2 \stackrel{\overline{Ala} \circ \Psi}{=} 2 \, HI$

• フッ素と水

 $2\,F_2 + 2\,H_2O \longrightarrow 4\,HF + O_2$

• 塩素と水

 $Cl_2 + H_2O \Longrightarrow HCl + HClO$

• 臭素と水

 $Br_2 + H_2O \Longrightarrow HBr + HBrO$

● ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応

 $I_2 + I^- \longrightarrow I_3^-$

無機化学 3/22

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}\ \mathrm{Cl_2,HCl,H_2O}$ \downarrow 56 水 に通す(HCl の除去) $\mathrm{Cl_2,H_2O}$ \downarrow 57 濃硫酸 に通す(H_2O の除去) $\mathrm{Cl_2}$

3.1.5 塩素のオキソ酸

オキソ酸・・・ 58酸素を含む酸性物質

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HBr	HI				
色・臭い		67 <u>無</u> 色 68 刺激 臭						
沸点	20°C	−85°C	−67°C	−35°C				
水との反応	69よく溶ける							
水溶液	70フッ化水素酸	[71]塩酸	72 臭化水素酸	73 ヨウ化水素酸				
(強弱)	74]弱酸	≪ 75強酸 < 7	6]強酸 < [77]	<u>強酸</u>				
用途	78 ガラス と反応	[79] <mark>アンモニア</mark> の検出	半導体加工	インジウムスズ				
加处	⇒ ポリエチレン瓶	各種工業	一等件加工	酸化物の加工				

3.2.2 製法

- 80 ホタル石 (81) 濃硫酸 を加えて加熱((82) 弱酸遊離) フッ化水素 $\text{CaF}_2 + \text{H}_2 \text{SO}_4 \longrightarrow \text{CaSO}_4 + 2 \, \text{HF}$ \uparrow
- 83水素 と 84塩素 塩化水素 工業的製法
 H₂ + Cl₂ → 2 HCl↑

• 85 <u>塩化ナトリウム</u> に 86 <u>濃硫酸</u> に加えて加熱 <u>塩化水素</u> (87 <u>弱</u> 酸・88 <u>揮発性</u> 酸の追い出し) NaCl + H $_2$ SO $_4$ \longrightarrow NaHSO $_4$ + HCl \uparrow

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $SiO_2 + 4HF(g) \longrightarrow SiF_4 \uparrow + 2H_2O$
- フッ化水素酸(水溶液)がガラスを侵食する反応 SiO_2+6 HF (aq) \longrightarrow H $_2SiF_6 \uparrow + 2$ H $_2O$
- 89<u>塩化水素</u> による 90 アンモニア の検出 $HCl + NH_3 \longrightarrow NH_4Cl$

無機化学 4/22

3.3 ハロゲン化銀 3 ハロゲン

3.3 ハロゲン化銀

3.3.1 性質

化学式	卢式 AgF		AgBr	AgI	
固体の色	91)黄褐 色	92 白 色	93 淡黄 色	94黄色	
水との反応	95よく溶ける	96 ほとんど溶けない			
光との反応	97感光	感光性 (→ 98 Ag_)			

3.3.2 製法

• 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮

$$\rm Ag_2O + 2\,HF \longrightarrow 2\,AgF + H_2O$$

● ハロゲン化水素イオンを含む水溶液と 99 硝酸銀水溶液

$$Ag^+ + X^- \longrightarrow AgX \downarrow$$

3.4 次亜塩素酸塩

3.4.1 性質

[100]酸化 剤として反応([101]殺菌 ・ [102]漂白 作用)
$$ClO^- + 2H^+ + 2e^- \longrightarrow Cl^- + H_2O$$

3.4.2 製法

• 水酸化ナトリウム水溶液と塩素

$$2\,\mathrm{NaOH} + \mathrm{Cl_2} \longrightarrow \mathrm{NaCl} + \mathrm{NaClO} + \mathrm{H_2O}$$

• 水酸化カルシウムと塩素

$$\mathrm{Ca}(\mathrm{OH})_2 + \mathrm{Cl}_2 \longrightarrow \mathrm{Ca}\mathrm{Cl}(\mathrm{ClO}) \cdot \mathrm{H}_2\mathrm{O}$$

3.5 水素酸カリウム

化学式: [103]KCIO₃

3.5.1 性質

```
egin{aligned} \hline egin{aligned} egin{aligned} \hline egin{aligned} \hline 104] \hline egin{aligned} \hline egin{aligned} \hline 2 \, KClO_3 & rac{MnO_2}{\Delta} \\ \hline \end{pmatrix} & 2 \, KClO + 2 \, O_2 \\ \end{pmatrix} \end{aligned}
```

無機化学 5/22

4 酸素

4.1 酸素原子

同(106)位 体:酸素 (O_2) 、(107)オゾン (O_3) 地球の地殻に(108)最も多く 存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式:O2

4.2.1 性質

- [121]無 色[122]無 臭の[123]気体
- 沸点 -183°C

4.2.2 製法

- 124 液体空気の分留 工業的製法
- <u>[125]水</u> (<u>126]水酸化ナトリウム水溶液</u>) の <u>[127]電気分解</u>

 $2\,H_2O \longrightarrow 2\,H_2\,\uparrow + O_2\,\uparrow$

- 128 過酸化水素水 (129 オキシドール) の分解 $2 H_2 O_2 \xrightarrow{\operatorname{MnO}_2} O_2 \uparrow + 2 H_2 O$
- 130 塩素酸カリウム 0 熱分解 $2 \text{ KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KClO} + 3 \text{ O}_2 \uparrow$

4.2.3 反応

[131]酸化 剤としての反応 $O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$

4.3 オゾン

化学式: 132 03

4.3.1 性質

- (133)ニンニク 臭((134)特異 臭)を持つ(135)淡青 色の(136)気体 (常温)
- 水に(137)少し溶ける
- 138 <mark>殺菌</mark>・139 脱臭 作用

オゾンにおける酸素原子の運動 -

4.3.2 製法

酸素中で $\boxed{146 \underline{\texttt{m = km}}}$ /強い $\boxed{147 \underline{\texttt{紫 h } \$}}$ を当てる $3\,\mathrm{O}_2 \longrightarrow 2\,\mathrm{O}_3$

4.3.3 反応

- $\boxed{148]$ 酸化 剤としての反応 $O_3 + 2 \, \mathrm{H}^+ + 2 \, \mathrm{e}^- \longrightarrow O_2 + \mathrm{H}_2\mathrm{O}$
- 湿らせた (149) ヨウ化カリウムでんぷん紙 を (150) 青色
 に変色

$$O_3 + 2 KI + H_2O \longrightarrow I_2 + O_2 + 2 KOH$$

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酸化物	両性酸化物	酸性酸化物
元素	[151]陽性の大きい金属 元素	[152]陽性の小さい金属 元素	[153] <mark>非金属</mark> 元素
水との反応	[154]塩基性	[155]ほとんど溶けない	[156]酸性 ([157]オキソ酸)
中和	[158]酸 と反応	[159]酸・塩基 と反応	[160] <mark>塩基</mark> と反応

両性酸化物 · · · (161)アルミニウム (162)AI) , (163)亜鉛 (164)Zn) , (165)スズ (166)Sn) , (167)鉛 (168)Pb)*1

- $\bigcirc M$ $CO_2 + H_2O \longrightarrow H_2CO_3$
- $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$
- $\bigcirc 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}_3$

4.4.1 反応

● 酸化銅(Ⅱ)と塩化水素

 $CuO + 2HCl \longrightarrow CuCl_2 + H_2O$

• 酸化アルミニウムと硫酸

 $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O$

 酸化アルミニウムと水酸化ナトリウム水溶液 Al₂O₃ + 2 NaOH → 3 H₂O + 2 Na[Al(OH)⁺]

4.5 水

4.5.1 性質

- 169 極性 分子
- 周りの4つの分子と 170 水素 結合
- 異常に 171 高い 沸点
- 172 隙間の多い 結晶構造(密度:固体 173 < 液体)
- 特異な (174) 融解曲線

4.5.2 反応

● 酸化カルシウムと水

 $CaO + H_2O \longrightarrow Ca(OH)_2$

• 二酸化窒素と水

 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$

無機化学 7/22

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	〔175〕 <mark>斜方</mark> 硫黄	[176] 単斜 硫黄	[177]ゴム状 硫黄
化学式	178 S ₈	179 S ₈	[180]S _x
色	<u>[181]黄</u> 色	<u>182</u> 黄 色	<u>[183]黄</u> 色
構造	184) 塊状 結晶	185)針状 結晶	<u>186</u> 不定形 固体
融点	113°C	119°C	不定
構造	S S	S S S S	
CS ₂ との反応	[187] 溶ける	[188] <mark>溶ける</mark>	[189]溶けない

 CS_2 ··· 無色・芳香性・揮発性 \Rightarrow 190 無極性 触媒

5.1.2 反応

● 高温で多くの金属(Au、Pt を除く)との反応

$$Fe + S \longrightarrow FeS$$

• 空気中で[191] 青 色の炎を上げて燃焼

$$S + O_2 \longrightarrow SO_2$$

5.2 硫化水素

化学式: 192 H₂S

5.2.1 性質

- [193]無 色[194]腐卵 臭
- 195 弱酸 性

$$\begin{cases} \boxed{196} \text{H}_2\text{S} &\Longrightarrow \text{H}^+ + \text{HS}^- \\ \boxed{197} \text{HS}^- &\Longrightarrow \text{H}^+ + \text{S}^{2-} \end{cases} \qquad K_1 = 9.5 \times 10^{-8} \text{ mol/L}$$

$$K_2 = 1.3 \times 10^{-14} \text{ mol/L}$$

● [198]還元 剤としての反応

$$H_2S \longrightarrow S + 2H^+ + 2e^-$$

● 重金属イオン M₂⁺ と (199) 難容性の塩 を生成

$$M_2^+ + S^{2-} \Longrightarrow MS \downarrow$$

5.2.2 製法

● 酸化鉄(Ⅱ)と希塩酸

$$FeS + 2 HCl \longrightarrow FeCl_2 + H_2S \uparrow$$

● 酸化鉄(Ⅱ)と希硫酸

$$\mathrm{FeS} + \mathrm{H_2SO_4} \longrightarrow \mathrm{FeSO_4} + \mathrm{H_2S} \!\uparrow$$

5.2.3 反応

• 硫化水素とヨウ素

$$H_2S+I_2 \longrightarrow S+2\,HI$$

酢酸鉛(Ⅱ)水溶液と硫化水素(200)H₂S の検出)
 (CH₃COO)₂Pb + H₂S → 2 CH₃COOH + PbS ↓

5.3 二酸化硫黄(亜硫酸ガス)

化学式: <u>201</u> SO₂ 電子式: : O: S:: O

5.3.1 性質

- [202]無 色、[203]刺激 臭の[204]気体
- 水に (205)溶けやすい
- 206 弱酸 性

207SO₂ + H₂O \implies H⁺ + HSO₃⁻ $K_1 = 1.4 \times 10^{-2} \text{ mol/L}$

• 208 還元 剤 (209 漂白 作用)

 $SO_2 + 2 H_2 O \longrightarrow SO_4^{2-} + 4 H^+ + 2 e^-$

②10)酸化 剤(②11)H₂S などの強い還元剤に対して)

 $SO_2 + 4H^+ + 4e^- \longrightarrow S + 2H_2O$

5.3.2 製法

・ 硫黄や硫化物の (212)燃焼 工業的製法

$$2\,\mathrm{H_2S} + 3\,\mathrm{O_2} \longrightarrow 2\,\mathrm{SO_2} + 2\,\mathrm{H_2O}$$

• [213] 亜硫酸ナトリウム と希硫酸

$$Na_{2}SO_{3} + H_{2}SO_{4} \xrightarrow{\Delta} NaHSO_{4} + SO_{2} \uparrow + H_{2}O$$

● [214]銅 と [215]熱濃硫酸

$$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2H_2O$$

5.3.3 反応

• 二酸化硫黄の水への溶解

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

• 二酸化硫黄と硫化水素

$$SO_2 + 2H_2S \longrightarrow 3S + 3H_2O$$

• 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

$$2\,\mathrm{KMnO_4} + 5\,\mathrm{SO_2} + 2\,\mathrm{H_2O} \longrightarrow 2\,\mathrm{MnSO_4} + 2\,\mathrm{H_2SO_4} + \mathrm{K_2SO_4}$$

無機化学 9/22

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- 216無 色 217無 臭の 218液体
- 水に 219 非常によく溶ける
- 溶解熱が 220 非常に大きい
- 221 水に濃硫酸 を加えて希釈
- <u>[222]不揮発</u>性で密度が <u>[223]大き</u> く、<u>[224]粘度</u>が大きい <u>濃硫酸</u>
- [225]<mark>吸湿</mark> 性・[226]脱水 作用 濃硫酸
- 227 強酸性 希硫酸

(228)H₂SO₄ \Longrightarrow H⁺ + HSO₄⁻ $K_1 > 10^8$ mol/L

- [229] <u>弱酸性</u> <u>濃硫酸</u> ([230] 水が少なく 、[231] H₃O⁺ の濃度が小さい)
- 232 酸化 剤として働く 熱濃硫酸

 $(233)H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_4 + 2H_2O$

234)アルカリ性土類金属 (235)Ca , 236)Be)、(237)Pb と難容性の塩を生成 希硫酸)

5.4.2 製法

238 接触 法工業的製法

1. 黄鉄鉱 FeS₂ の燃焼

$$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \longrightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$$

(S + O₂ \longrightarrow SO₂)

- 2. 239酸化バナジウム 触媒で酸化 $2 SO_2 + O_2 \xrightarrow{V_2O_5} 2 SO_3$
- 3. 240 濃硫酸 に吸収させて 241 発煙硫酸 とした 後、希硫酸を加えて希釈 $SO_3 + H_2O \longrightarrow H_2SO_4$

5.4.3 反応

- 硝酸カリウムに濃硫酸を加えて加熱 ${
 m KNO_3 + H_2SO_4 \longrightarrow HNO_3 + KHSO_4}$
- 水酸化ナトリウムと希硫酸 ${\rm H_2SO_4 + 2\,NaOH \longrightarrow Na_2SO_4 + 2\,H_2O}$
- 銀と熱濃硫酸

$$2\,\mathrm{Ag} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Ag}_2\mathrm{SO}_4 + \mathrm{SO}_2 + 2\,\mathrm{H}_2\mathrm{O}$$

塩化バリウム水溶液と希硫酸
 BaCl₂ + H₂SO₄ →→ BaSO₄ ↓ + 2 HCl

5.5 チオ硫酸ナトリウム (ハイポ)

化学式:[242]Na₂S₂O₃

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- [245]還元 剤として反応

例水道水の脱塩素剤 (カルキ抜き)

$$(246)2 S_2 O_3^{2-} \longrightarrow S_4 O_6 + 2 e^-$$

$$\begin{array}{c} : \overset{\circ}{\mathrm{O}} : & : \overset{\circ}{\mathrm{O}} : \\ \vdots \overset{\circ}{\mathrm{O}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{O}} : \\ \vdots \overset{\circ}{\mathrm{O}} : & : \overset{\circ}{\mathrm{O}} : & \vdots \overset{\circ}{\mathrm{O}} : \\ & & \overset{\circ}{\mathrm{O}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{O}} : + 2\,\mathrm{e}^{-} \\ & \vdots \overset{\circ}{\mathrm{O}} : & \vdots \overset{\circ}{\mathrm{O}} : \\ \end{array}$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱 $Na_2SO_4 + S_n \longrightarrow Na_2S_2O_3$

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム $I_2+2\operatorname{Na}_2\operatorname{S}_2\operatorname{O}_3 \longrightarrow 2\operatorname{NaI}+\operatorname{Na}_2\operatorname{S}_4\operatorname{O}_6$

5.6 重金属の硫化物

	酸性でも沈澱(全液性で沈澱)						主・塩基性で沈	:澱(酸性では	溶解)
Ag_2S	$_{ m HgS}$	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
247黒 色	248黒 色	249黒 色	250黒 色	251 褐 色	252黒 色	253黒 色	254]黒 色	255 白 色	256)淡赤

[257]低

イオン化傾向

[258] 高

[259]極小 塩の溶解度積 (K_{sp}) [260]小

6 窒素

6.1 窒素

化学式:N₂

6.1.1 性質

- (261)無 色(262)無 臭の(263)気体
- 空気の 78% を占める
- 水に溶け(264)にくい (265)無極性 分子)
- 常温で (266) 不活性 (食品などの (267) 酸化防止)
- 高エネルギー状態([268]高温 · [269]放電)では反応

6.1.2 製法

- 270 液体窒素の分留 工業的製法
- 271 亜硝酸アンモニウム の 272 熱分解 $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

6.1.3 反応

• 窒素と酸素

$$N_2 + 2 O_2 \longrightarrow 2 NO_2$$
 $\left\{ \begin{array}{c} N_2 + O_2 \longrightarrow 2 NO \\ 2 NO + O_2 \longrightarrow 2 NO_2 \end{array} \right.$

• 窒素とマグネシウム $3 \operatorname{Mg} + \operatorname{N}_2 \longrightarrow \operatorname{Mg}_3 \operatorname{N}_2$

6.2 アンモニア

化学式: [273]NH₃

6.2.1 性質

- [274]無 色[275]刺激 臭の[276]気体
- [277]水素 結合
- 水に (278) 非常によく溶ける (279) 上方 置換)
- (280)塩基 性 ($281)NH_3 + H_2O \Longrightarrow NH_4^+ + OH^ K_1 = 1.7 \times 10^{-5} \text{ mol/L}$
- [282]塩素 の検出
- 高温・高圧で二酸化炭素と反応して、 283 尿素 を 生成

6.2.2 製法

284 ハーバーボッシュ法 工業的製法

[285]低温 [286]高圧で、 [287]四酸化三鉄 (

[288]Fe₃O₄) 触媒

 $N_2 + 3 H_2 \Longrightarrow 2 NH_3$

• [289]塩化アンモニウム と [290]水酸化カルシウム を混 ぜて加熱

 $2 \text{ NH}_4 \text{Cl} + \text{Ca}(\text{OH})_2 \longrightarrow 2 \text{ NH}_3 \uparrow + \text{Ca}(\text{Cl}_2 + 2 \text{ H}_2\text{O})$

6.2.3 反応

• 硫酸とアンモニア

 $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \longrightarrow (\text{NH}_4)_2 \text{SO}_4$

● 塩素の検出

 $NH_3 + HCl \longrightarrow NH_4Cl \downarrow$

• アンモニアと二酸化炭素

 $2 \text{ NH}_3 + \text{CO}_2 \longrightarrow (\text{NH}_2)_2 \text{CO} + \text{H}_2 \text{O}$

6.3 一酸化二窒素(笑気ガス)

化学式: [291]N₂O

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- 292 麻酔 効果

6.3.2 製法

[293]硝酸アンモニウム の熱分解 $NH_4NO_2 \xrightarrow{\Lambda} N_2O + 2H_2O$

6.4 一酸化窒素

化学式:[294]NO

6.4.1 性質

- [295]無 色[296]無 臭の[297]気体
- 中性で水に溶けにくい
- 空気中では 298 酸素 とすぐに反応

6.5 二酸化窒素 6 窒素

• 血管拡張作用·神経伝達物質

6.4.2 製法

299銅 と 300 希硝酸

 $3 \operatorname{Cu} + 8 \operatorname{HNO}_3 \longrightarrow 3 \operatorname{Cu}(\operatorname{NO}_3)_2 + 2 \operatorname{NO} + 4 \operatorname{H}_2 \operatorname{O}$

6.4.3 反応

酸素と反応

 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$

6.5 二酸化窒素

化学式: 301 NO₂

6.5.1 性質

- 302 赤褐 色 303 刺激 臭の 304 気体
- ・ 水と反応して(305)強酸 性((306)酸性雨 の原因)
- 常温では <u>307四酸化二窒素</u> (<u>308)無</u>色)と <u>309)平衡状態</u>

 $2 \text{ NO}_2 \Longrightarrow \text{N}_2 \text{O}_4$

• 140°C 以上で熱分解 $2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{ O}_2$

6.5.2 製法

(310)銅 と (311)濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$

6.6 硝酸

化学式: [312] HNO₃

6.6.1 性質

- 313無 色 314刺激 臭で 315 揮発 性の 316 液体
- 水に(317)よく溶ける
- [318]強酸 性

(319)HNO₃ \Longrightarrow H⁺ + NO₃⁻ $K_1 = 6.3 \times 10^1$ mol/L)

- 320 褐色瓶 に保存(321)光分解)
- [322]酸化 剤としての反応 希硝酸

 $HNO_3 + H^+ + e^- \longrightarrow NO_2 + H_2O$

323酸化 剤としての反応 濃硝酸
 HNO₃ + 3 H⁺ + 3 e⁻ → NO + 2 H₂O

- イオン化傾向が小さい Cu、Hg、Ag も溶解
- 324AI , 325Cr , 326Fe , 327Co , 328Ni は
 329酸化皮膜 が生じて不溶 濃硝酸
 = 330不動態
- <u>331]王水</u> (<u>332]濃塩酸</u>:1 <u>333]濃硝酸</u>=3:1) は、 Pt,Au も溶解

12/22

• NO₃ - は 334 沈殿を作らない ⇒ 335 <mark>褐輪反応</mark>で検出

6.6.2 製法

336 オストワルト法

 $NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$

- 1. 337 <u>白金</u> 触媒で338 アンモニア を 339 酸化 $4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{O}$
- 2. 340 空気酸化

 $2\,\mathrm{NO} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{NO}_2$

- 3. $\boxed{341$ 水 と反応 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$
- 342 硝酸塩 に343 濃硫酸 を加えて加熱 $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3 \uparrow$

6.6.3 反応

- アンモニアと硝酸 $NH_3 + HNO_3 \longrightarrow NH_4NO_3$
- 硝酸の光分解 $4 \, \text{HNO}_3 \xrightarrow{\mathcal{H}} 4 \, \text{NO}_2 + 2 \, \text{H}_2 \text{O} + \text{O}_2$
- 亜鉛と希硝酸 ${\rm Zn} + 2\,{\rm HNO_3} \longrightarrow {\rm Zn}({\rm NO_3})_2 + {\rm H_2} \uparrow$
- 銀と濃硝酸Ag + 2 HNO₃ → AgNO₃ + H₂O + NO₂↑

無機化学

7 リン

7.1 リン

化学式:[344]P₄O₁₀

7.1.1 性質

三種類の同(345)素 体がある

	1		
名称	(346)黄 リン	<u>347</u> リン	黒リン
化学式	(348)P ₄	$(349)P_x$	P_4
融点	44°C	590°C*2	610°C
発火点	35°C	260°C	
光八点	350 <mark>水中</mark> に保存	351マッチの側薬	-
密度	$1.8 \mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7 \mathrm{g/cm^3}$
毒性	352)猛毒	353)微毒	354)微毒
構造	P P	$\cdots P \stackrel{P}{\rightleftharpoons} P - P \stackrel{P}{\rightleftharpoons} P \cdots$	略
CS ₂ への溶解	355)溶ける	(356)溶けない	357)溶けない

7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 <u>黄リン</u> 工業的製法
- ・ 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200°C、1.2 × 10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: (358)P₄O₁₀_

7.2.1 性質

- 白色で昇華性のある固体
- 359 **潮解性** (水との親和性が 360 非常に高い)
- 乾燥剤
- 水を加えて加熱すると反応(361)加水分解)

7.2.2 製法

362 リンの燃焼

7.2.3 反応

水を加えて加熱

7.3 リン酸

化学式: [363] H₃PO₄

7.3.1 性質

364)中酸性

7.3.2 反応

- リン酸カルシウムとリン酸が反応して重過リン酸石 灰が生成
- リン酸カルシウムと硫酸が反応して過リン酸石灰が 生成

8 炭素

8.1 炭素

8.1.1 性質

炭素の同<u>366</u>素 体は、<u>367ダイアモンド</u>、<u>368</u>黒鉛 (<u>369)グラファイト</u>) etc...

名称	370ダイアモンド	371 黒鉛
特徴	372 <u>無</u> 色 373 透明 で屈折率が大きい固体	374黒 色で 375 光沢 がある固体
密度	$3.5\mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	376 <u>正四面体</u> 方向の <u>377 共有結合</u> 結晶	378 ズレた層状 構造
電気伝導性	(379 <mark>なし</mark>	(380) <mark>あり</mark>
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式: [381]CO 電子式:

8.2.1 性質

- 382 無 色 383 無 臭で 384 有毒 な気体
- ・ 赤血球のヘモグロビンの [385] Fe²⁺ に対して強い [386] 酸化結合
- 387中 性で水に溶け 388 にくい。(389 水上 置換)
- 390 可燃 性、高温で 391 <u>還元</u>性 (392)鉄 との親和性が非常に高い)

8.2.2 製法

- 393 赤熱したコークス に394 水蒸気 を吹き付ける 工業的製法 $C + H_2O \longrightarrow CO + H_2$
- 炭素の 395 不完全燃焼

$$2C + O_2 \longrightarrow 2CO$$

• 396 <u>ギ酸</u> に 397 <u>濃硫酸</u> を加えて加熱 $HCOOH \xrightarrow{H_2SO_4} CO\uparrow + H_2O$

398シュウ酸 に (399) 濃硫酸 を加えて加熱
 (COOH)₂ → CO + CO₂ + H₂O

8.2.3 反応

• 燃焼

 $CO + O_2 \longrightarrow 2CO_2$

• 鉄の精錬

$$Fe_2O_3 + 3 CO \longrightarrow 2 Fe + 3 CO_2 \begin{cases} Fe_2O_3 + CO \longrightarrow 2 FeO + CO_2 \\ 2 \times FeO + CO \longrightarrow Fe + CO_2 \end{cases}$$

8.3 二酸化炭素

8.3.1 性質

- [400]無 色[401]無 臭で[402]昇華 性(固体は[403]ドライアイス)
- 大気の 0.04% を占める
- 水に 404 少し溶ける

無機化学 14/22

8.3.2 製法

(407)炭酸カルシウム
 を強熱
 CaCO₂ → CaO + CO₂

• $\boxed{408$ 希塩酸 と $\boxed{409}$ 石灰石 ${\rm CaCO_3} + 2\,{\rm HCl} \longrightarrow {\rm CaCl_2} + {\rm H_2O} + {\rm CO_2}$

• $\boxed{410}$ 炭酸水素ナトリウム の熱分解 $2 \, \mathrm{NaHCO_3} \longrightarrow \mathrm{Na_2CO_3} + \mathrm{CO_2} + \mathrm{H_2O}$

8.3.3 反応

- $CO_2 + 2 NaOH \longrightarrow Na_2CO_3^+ H_2O$
- $\boxed{411$ 石灰水 に通じると $\boxed{412}$ 白濁 しさらに通じると $\boxed{413}$ 白濁が消える ${\rm Ca(OH)_2 + CO_2} \Longrightarrow {\rm CaCO_3} \downarrow + {\rm H_2O}$ ${\rm CaCO_3 + CO_2 + H_2O} \Longrightarrow {\rm Ca(HCO_3)_2}$

9 ケイ素

9.1 ケイ素

9.1.1 性質

- 414 <u>灰</u> 色で 415 <u>光沢</u> がある 416 <u>共有結合</u> 結晶
- 417 硬いがもろい
- (418) 半導体 に使用 (高純度のケイ素)*3
 高温にしたり微小の他電子を添加すると電気伝導性が(419) 上昇 (金属は高温で電気伝導性が(420)降下)

9.1.2 製法

• $\boxed{421}$ ケイ砂 と $\boxed{422}$ <u>一酸化炭素</u> を混ぜて強熱 工業的製法 $\mathrm{SiO}_2 + 2\,\mathrm{C} \longrightarrow \mathrm{Si} + 2\,\mathrm{CO}$

• $\boxed{423$ ケイ砂 と $\boxed{424}$ マグネシウム 粉末を混ぜて加熱 $\mathrm{SiO}_2 + 2\,\mathrm{Mg} \longrightarrow \mathrm{Si} + 2\,\mathrm{MgO}$

9.2 二酸化ケイ素

化学式: [425]SiO₂_

9.2.1 性質

- (426)無 色(427)透明 の(428)共有結合 結晶
- [429]硬い
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- [430]酸性 酸化物

無機化学 15/22

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

9.2 二酸化ケイ素 9.7 ケイ素

9.2.2 反応

• シリカゲルの製法

無機化学 16/22

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で [431]柔らかい 金属
- 全体的に反応性が高く、 (432) <u>灯油</u> 中に保存
- 原子一個粗利の自由電子が (433)1 個((434)弱 い (435)金属 結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$

化学式	Li	Na	K	Rb	Cs	
融点	181°C	98°C	64°C	39°C	28°C	
密度	0.53	0.97	0.86	1.53	1.87	
構造	(436)体心立方 格子((437) <mark>軽金属</mark>)					
イオン化エネルギー	大					
反応力	小 —				二 大	
炎色反応	438)赤 色	<u>(439)黄</u> 色	[440]赤紫 色	(441) <mark>深赤</mark> 色	<u>[442]青紫</u> 色	
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)	

10.1.2 製法

水酸化物や塩化物の 443 溶融塩電解 (444 ダウンズ 法) 工業的製法

[445] CaCl₂ 添加([446] 凝固点降下)

 $2\,\mathrm{NaCl} \longrightarrow 2\,\mathrm{Na} + \mathrm{Cl}_2\,\!\uparrow$

10.1.3 反応

• ナトリウムと酸素

 $4 \operatorname{Na} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Na}_2 \operatorname{O}$

• ナトリウムと塩素

 $2\,\mathrm{Na} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{NaCl}$

ナトリウムと水

 $2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{NaOH} + \mathrm{H}_2\!\uparrow$

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: [447]NaOH_

10.2.1 性質

- 448 白 色の固体
- [449]潮解 性
- 水によくとける (水との親和性が[450]非常に高い)
- 451 乾燥 剤

無機化学 17/22

• 強塩基性

$$(452)$$
NaOH \Longrightarrow Na⁺ + OH⁻ $K_1 = 1.0 \times 10^{-1}$ mol/L

• 空気中の (453) 二酸化炭素 と反応して、純度が不明
 酸の標準溶液 ((454)シュウ酸) を用いた中和滴定で濃度決定
 ((COOH)₂ + 2 NaOH → (COONa)₂ + 2 H₂O)

10.2.2 製法

(455)水酸化ナトリウム水溶液 0 (456)電気分解 (474)交換膜法) 工業的製法 $2 \text{NaCl} + 2 \text{H}_2 \text{O} \longrightarrow 2 \text{NaOH} + \text{H}_2 \uparrow + \text{Cl}_2 \uparrow$

10.2.3 反応

塩酸と水酸化ナトリウム HCl+NaOH → NaCl+H₂O

塩素と水酸化ナトリウム2 NaOH + Cl₂ → NaCl + NaClO + H₂O

• 二酸化硫黄と水酸化ナトリウム $SO_2 + 2 NaOH \longrightarrow Na_2SO_3 + H_2O$

• 酸化亜鉛と水酸化ナトリウム水溶液 ${
m ZnO} + 2\,{
m NaOH} + {
m H_2O} \longrightarrow {
m Na_2}[{
m Zn(OH)_4}]$

• 二酸化炭素と水酸化ナトリウム $2 \operatorname{NaOH} + \operatorname{CO}_2 \longrightarrow \operatorname{Na_2CO_3} + \operatorname{H_2O}$

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム
化学式	457 Na ₂ CO ₃	458 NaHCO ₃
色	<u>(459)</u> 色	460 白 色
融点	850°C	(461) <mark>熱分解</mark>
液性	<u>462)塩基</u> 性	463 弱塩基 性
用途	[464] <mark>ガラス</mark> や石鹸の原料	胃腸薬・ふくらし粉

無機化学 18/22

10.3.2 製法

10.3.3 反応

• Na₂CO₃
$$\boxed{489 \text{CO}_3^{2-} + \text{H}_2\text{O} \Longrightarrow \text{HCO}_3^{-} + \text{OH}^{-}}$$
 $K_1 = 1.8 \times 10^{-4}$
• NaHCO₃ $\begin{cases} \boxed{490 \text{HCO}_3^{-} + \text{H}^{+} \Longrightarrow \text{CO}_3^{2-}}$ $K_1 = 5.6 \times 10^{-11}$
 $\boxed{491 \text{HCO}_3^{-} + \text{H}_2\text{O} \Longrightarrow \text{CO}_2 + \text{OH}^{-} + \text{H}_2\text{O}}$ $K_2 = 2.3 \times 10^{-8}$

10.4 酸化カルシウム(生石灰)

化学式: [492] CaO

10.4.1 性質

- [493] 白 色
- 494水 との親和性が 495 非常に高い (496 乾燥剤)
- 497 塩基性 酸化物
- 水との反応熱が [498] 非常に大きい ([499] 加熱剤)

10.4.2 製法

[500]炭酸カルシウム の[501]熱分解

無機化学 19/22

10.5 水酸化カルシウム 10 アルカリ金属

10.4.3 反応

• コークスを混ぜて強熱すると、 $\boxed{502}$ 炭化カルシウム ($\boxed{503}$ カーバイド) が生成 $\boxed{\text{CaO} + 3\text{ C} \longrightarrow \text{CaC}_2 + \text{CO} \uparrow}$ $\boxed{504}$ 水 と反応して $\boxed{505}$ アセチレン が生成 $\boxed{\text{CaC}_2 + 2\text{ H}_2\text{O} \longrightarrow \text{CaH}_2 \uparrow + \text{Ca}(\text{OH}_2)_2}$

10.5 水酸化カルシウム

化学式: [506]CaOH

10.5.1 性質

- [507] 白 色
- 水に[508]少し溶ける 固体
- 509強塩基 $\left\{ \begin{array}{c} 510 \text{Ca}(\text{OH})_2 \iff \text{Ca}(\text{OH})^+ + \text{OH}^- \end{array} \right.$ $K_1 = 5.0 \times 10^{-2}$
- 水溶液は 511 石灰水

10.5.2 製法

[512]酸化カルシウム と [513]水 工業的製法

10.5.3 反応

- ・ 塩素と反応して、514 さらし粉 が生成
- 580°C 以上で 515 熱分解

10.6 炭酸カルシウム(石灰石)

化学式: [516] CaCO₃

10.6.1 性質

- [517]白 色で、水に[518]溶けにくい
- 519 鍾乳洞 の形成

10.6.2 反応

- 800°C 以上で **520 熱分解**
- [521]二酸化炭素 を多く含む水に [522]溶解

10.7 塩化マグネシウム・塩化カルシウム

化学式: [523] MgCl₂ ・ [524] CaCl₂

無機化学 20/22

10.7.1 性質

10.7.2 製法

- 海水から得た (525) にがり を濃縮 工業的製法
- [526]アンモニアソーダ法 ([527]ソルベー法 工業的製法

10.8 硫酸カルシウム・硫酸バリウム

化学式: 528 CaSO₄ · 529 BaSO₄

10.8.1 性質

11 2 族元素

11.1 単体

11.1.1 性質

化学式	530 Be	[531]Mg	532)Ca	533 <mark>Sr</mark>	(534)Ba	
融点	1282°C	649°C	839°C	769°C	729°C	
密度 (g/cm ³)	1.85	1.74	1.55	2.54	3.59	
535 還元 力		小 ——	大			
水との反応	536 反応しない	[537] <mark>熱水</mark> と反応	538冷水 と反応	539 冷水 と反応	540冷水 と反応	
M(OH) ₂ の水溶性	541 難溶 性(542 弱塩基 性)	性) <u>543 可溶</u> 性(<u>544)強塩基</u> 性)			
難溶性の塩	(545) ^N	MCO ₃		546 MCO ₃ , MSO ₄		
炎色反応	(547)示さない	[548]示さない	[549]橙赤	550 <u>紅</u>	[551]黄緑	
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター	

11.1.2 製法

塩化物の [552]溶融塩電解 工業的製法

11.1.3 反応

- マグネシウムの燃焼
 - $2 \,\mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2 \,\mathrm{MgO}$
- マグネシウムと二酸化炭素
 - $2 \,\mathrm{Mg} + \mathrm{CO}_2 \longrightarrow 2 \,\mathrm{MgO} + \mathrm{C}$
- カルシウムと水

 $Ca + 2 H_2O \longrightarrow Ca(OH)_2 + H_2 \uparrow$

無機化学 21/22

第Ⅲ部

APPENDIX

12 気体の乾燥剤

固体の乾燥剤は[553] U字管 につめて、液体の乾燥剤は[554]洗気瓶 に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)
酸性	(555)十酸化四リン	556)P ₄ O ₁₀	酸性・中性	塩基性の気体([<u>557]NH₃</u>)
	558) 濃硫酸	(559)H ₂ SO ₄		+ [560] H ₂ S_ ([561] 還元剤_)
中性	562 塩化カルシウム	563 CaCl ₂	ほとんど全て	564)NH ₃
	565シリカゲル	566SiO ₂ · n H ₂ O		特になし
塩基性	567酸化カルシウム	568 CaO	中性・塩基性	酸性の気体
	569ソーダ石灰	570 CaO と NaOH		571]Cl ₂ , 572]HCl , 573]H ₂ S , 574]SO ₂ , 575]CO ₂ , 576]N

無機化学 22/22