ScorpioFS Κατανεμημένο ομότιμο σύστημα αρχείων

Αντώνης Κουζούπης

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής

10 Οκτωβρίου 2012

Τι είναι το ScorpioFS

- Σύστημα αποθήκευσης αντιγράφων ασφαλείας
 Παρέχει στο χρήστη ένα τοπικά προσαρτημένο σύστημα αρχείων το οποίο αποθηκεύει τα περιεχόμενά του στο δίκτυο.
- Δίκτυο ομότιμα συνδεδεμένων υπολογιστών
 Αποτελεί ένα δίκτυο υπολογιστών που παρέχουν στην υπηρεσία μία τοπική αποθήκη καθώς και μία λειτουργία αντιγραφής των αρχείων μεταξύ των κόμβων για την εξασφάλιση της διαθεσιμότητας των δεδομένων. Όλοι οι κόμβοι στο δίκτυο είναι ομότιμα συνδεδεμένοι (peer-to-peer).
- Κατανεμημένο σύστημα
 Το σύστημα αποθήκευσης αρχείων είναι πλήρως αποχεντρωμένο.
 Όλοι οι κόμβοι στο δίκτυο έχουν ισότιμα δικαιώματα. Κληρονομεί τα πλεονεκτήματα και τα μειονεκτήματα των κατανεμημένων

Τι είναι το ScorpioFS

- Σύστημα αποθήκευσης αντιγράφων ασφαλείας
 Παρέχει στο χρήστη ένα τοπικά προσαρτημένο σύστημα αρχείων το οποίο αποθηκεύει τα περιεχόμενά του στο δίκτυο.
- Δίκτυο ομότιμα συνδεδεμένων υπολογιστών
 Αποτελεί ένα δίκτυο υπολογιστών που παρέχουν στην υπηρεσία μία τοπική αποθήκη καθώς και μία λειτουργία αντιγραφής των αρχείων μεταξύ των κόμβων για την εξασφάλιση της διαθεσιμότητας των δεδομένων. Όλοι οι κόμβοι στο δίκτυο είναι ομότιμα συνδεδεμένοι (peer-to-peer).
- Κατανεμημένο σύστημα
 Το σύστημα αποθήκευσης αρχείων είναι πλήρως αποκεντρωμένο.
 Όλοι οι κόμβοι στο δίκτυο έχουν ισότιμα δικαιώματα. Κληρονομεί τα πλεονεκτήματα και τα μειονεκτήματα των κατανεμημένων

Τι είναι το ScorpioFS

- Σύστημα αποθήκευσης αντιγράφων ασφαλείας
 Παρέχει στο χρήστη ένα τοπικά προσαρτημένο σύστημα αρχείων το οποίο αποθηκεύει τα περιεχόμενά του στο δίκτυο.
- Δίκτυο ομότιμα συνδεδεμένων υπολογιστών
 Αποτελεί ένα δίκτυο υπολογιστών που παρέχουν στην υπηρεσία μία τοπική αποθήκη καθώς και μία λειτουργία αντιγραφής των αρχείων μεταξύ των κόμβων για την εξασφάλιση της διαθεσιμότητας των δεδομένων. Όλοι οι κόμβοι στο δίκτυο είναι ομότιμα συνδεδεμένοι (peer-to-peer).
- Κατανεμημένο σύστημα
 Το σύστημα αποθήκευσης αρχείων είναι πλήρως αποκεντρωμένο.
 Όλοι οι κόμβοι στο δίκτυο έχουν ισότιμα δικαιώματα. Κληρονομεί τα πλεονεκτήματα και τα μειονεκτήματα των κατανεμημένων συστημάτων.

Τα μέρη του ScorpioFS (Chord)(Σκατά Τίτλος!!!)

Το μέρος του ScorpioFS που υλοποιεί το Chord πρωτόχολλο. Είναι υπεύθυνο για την εύρεση των κόμβων που είναι αποθηκευμένα τα δεδομένα, την εισαγωγή και τη διαγραφή ενός κόμβου από το δίκτυο και για την αντιγραφή των αρχείων. Γενικά είναι υπεύθυνο για το δικτυακό κομμάτι.

Τα μέρη του ScorpioFS (Fuse)(Σκατά Τίτλος!!!)

Υλοποιεί το τοπικό σύστημα αρχείων που αντιλαμβάνεται ο χρήστης. Υλοποιεί τις περισσότερες λειτουργίες ενός συστήματος αρχείων όπως δημιουργία, διαγραφή, επεξεργασία, αντιγραφή κτλ. Χωρίζει μεγάλα αρχεία σε μικρότερα του 1MB και επικοινωνεί με το Chord κομμάτι για την αποστολή και αποδοχή δεδομένων.

Τα μέρη του ScorpioFS (Console)(Σκατά Τίτλος!!!)

Κονσόλα διαχείρισης των κόμβων του δικτύου. Εκτελεί διάφορες λειτουργίες μαζικά στους κόμβους όπως δημιουργία ή καταστροφή, περισυλλογή των στατιστικών. Λειτουργεί ανεξάρτητα από το Chord και Fuse κομμάτι και επιτελεί επικουρικό ρόλο στο σύστημα.

Σχεδιάγραμμα Δικτύου

Αντώνης Κουζούπης corpio FS

Το πρωτόχολλο Chord

- University of California, Berkeley & MIT Laboratory for Computer Science – SIGCOMM'01
- Επεκτάσιμο πρωτόκολλο για αναζήτηση σε ένα δυναμικό peer-to-peer σύστημα με συχνές αφίξεις και αναχωρήσεις κόμβων.
- Αποθηκεύει ζευγάρια key/data στον κατάλληλο κόμβο.
- Δοθέντος ενός κλειδιού το αντιστοιχίζει σε ένα κόμβο.
- Consistent hashing για εξισορρόπηση του φόρτου εργασίας, κάθε κόμβος είναι υπεύθυνος για περίπου τον ίδιο αριθμό κλειδιών, ελάχιστες μετακινήσεις κλειδιών όταν ένας κόμβος μπαίνει ή βγαίνει από το σύστημα.

Το πρωτόχολλο Chord

- Σε ένα σύστημα με N κόμβους, κάθε κόμβος κρατάει πληροφορία για μόνο $\bigcirc(\log N)$ άλλους κόμβους.
- Επιλύει όλες τις αναζητήσεις μέσω $\bigcirc(\log N)$ μηνυμάτων προς άλλους κόμβους.
- Το πρωτόχολλο παρέχει μία lookup(key) συνάρτηση που βρίσκει την IP διεύθυνση του κόμβου που είναι υπεύθυνος για το κλειδί.
- Το Chord ενημερώνει τους κόμβους για τις αλλαγές των κλειδιών που είναι υπεύθυνοι.
- Όταν ο N-οστός κόμβος έρθει ή φύγει από το σύστημα μόνο $\bigcap (\frac{1}{N})$ κλειδιά μετακινούνται.

Χαρακτηριστικά του Chord

- Load balance Το Chord λειτουργεί σαν κατανεμημένη συνάρτηση κατακερματισμού διαμοιράζοντας τα κλειδιά σε όλους τους κόμβους.
- Decentralization Κανένας κόμβος δεν είναι πιο σημαντικός από τους άλλους. Κατάλληλο για χαλαρά συνδεδεμένες peer-to-peer εφαρμογές.
- Scalability Το κόστος μιας αναζήτησης αυξάνεται λογαριθμικά σε σχέση με το πλήθος των κόμβων.
- Availability Ρυθμίζει αυτόματα το δίκτυο ώστε να "κρύψει" από την εφαρμογή τις αποχωρήσεις και τις αφίξεις νέων κόμβων.
- Flexible naming Δεν θέτει κάποιο περιορισμό στη μορφή των κλειδιών.

Consistent Hashing

Ένα κλειδί κ ανατίθεται στο πρώτο κόμβο που το αναγνωριστικό του ισούται ή ακολουθεί το κ . Ο κόμβος αυτός ονομάζεται successor κόμβος του κλειδιού κ .

Κάθε κόμβος n κρατάει ένα πίνακα δρομολόγησης με $m(\bigcirc(logN))$ εγγραφές που ονομάζεται finger table. Το i-οστό στοιχείο του πίνακα περιέχει το αναγνωριστικό του πρώτου κόμβου που επιτυγχάνει τον n κατά λιγότερο 2^{i-1} .

Το πρώτο στοιχείο στον πίνακα του κόμβου 8 είναι ο κόμβος 14 αφού είναι ο πρώτος κόμβος που έπεται το $(8+2^0)$ mod $2^6=9$. Αντίστοιχα, το τελευταίο στοιχείο του πίνακα είναι ο κόμβος 42, καθώς είναι ο πρώτος κόμβος που έπεται του $(8+2^5)$ mod $2^6=40$.

- Κάθε κόμβος κρατάει πληροφορία για ένα μικρό αριθμό κόμβων. Επίσης αυτοί οι κόμβοι είναι οι πιο κοντινοί του.
- Γενικά το finger table ενός κόμβου δεν περιέχει αρκετή πληροφορία ώστε να καθορίσει τον successor ενός τυχαίου κλειδιού k.
- Η διαδικασία για την εύρεση ενός successor μπορεί να γίνει αναδρομικά και στους κόμβους του finger table ενός κόμβου n, εάν το κλειδί προς αναζήτηση είναι πιο μακρυά από τον τελευταίο κόμβο στο finger table του κόμβου n.
- Καθώς κάθε κόμβος έχει εγγραφές σε διαστήματα της δύναμης του δύο, μπορεί να προωθήσει μία ερώτηση τουλάχιστον στο μισό δρόμο.

Εάν υποθέσουμε ότι ο κόμβος 8 θέλει να βρει τον successor για το κλειδί 54. Αφού η μεγαλύτερη εγγραφή στο finger table του κόμβου 8 που προηγείται του 54 είναι ο κόμβος 42, ο κόμβος 8 θα ρωτήσει τον κόμβο 42 να εξυπηρετήσει την ερώτηση.

Ο χόμβος 42 βρίσκει ότι η μεγαλύτερη εγγραφή που προηγείται του 54 είναι ο χόμβος 51. Ο χόμβος 51 θα βρει ότι ο successor του 54 είναι ο χόμβος 56. Τελικά ο χόμβος 51 θα επιστρέψει στον χόμβο 8 ότι ο successor του κλειδιού 54 είναι ο χόμβος 56.

Εισαγωγή Κόμβου

Ένας νέος κόμβος η εισέρχεται στο σύστημα:

- 1. Ο κόμβος *n* καλεί όποιο κόμβο γνωρίζει και του ζητάει να του βρει τον successor του.
- 2. Ο κόμβος n αντιγράφει όσα στοιχεία από το finger table του successor του είναι μικρότερα από n.
- 3. Ανά τακτά διαστήματα γίνεται "stabilize" στο δίκτυο. Ο τρέχοντας κόμβος ρωτάει τον successor του, για τον predecessor του successor του. Με αυτό τον τρόπο ένας νέος κόμβος γίνεται γνωστός στο δίκτυο.
- 4. Κάθε κόμβος ελέγχει περιοδικά τον predecessor του για ενημερώσει τυχών λανθασμένες εγγραφές.

Εισαγωγή Κόμβου

Ο κόμβος 26 εισέρχεται στο σύστημα μεταξύ των κόμβων 21 και 32. Ο κόμβος 26 βρίσκει τον successor του (κόμβος 32). Ο κόμβος 26 αντιγράφει όλα τα κλειδιά του successor του που είναι μικρότερα από 26. Με τη διαδικασία του "stabilize" ενημερώνεται ο κόμβος 21, ότι ο successor του είναι ο κόμβος 26

Να scan-aro και να βάλω το παράδειγμα από το paper.

Αποχώρηση Κόμβου

Για να αυξηθεί η διαθεσιμότητα του συστήματος, κάθε κόμβος κρατάει μία λίστα από successors $(\Omega(\log N))$ και όχι μόνο έναν. Εάν μία κλήση προς ένα successor αποτύχει, τότε γίνεται κλήση στον αμέσως επόμενο. Θα πρέπει να αποτύχουν όλοι οι κόμβοι για να υπάρχει δυσλειτουργία.

Ένας κακόβουλος χρήστης θα μπορούσε κάνει ορισμένους κόμβους να αποτύχουν αλλά όχι συγκεκριμένους κατ' επιλογή κόμβους.

Αποχώρηση Κόμβου

Η εφαρμογή που χρησιμοποιεί το Chord πρωτόχολλο, ScorpioFS, αντιγράφει τα δεδομένα και σε άλλους κόμβους. Έτσι για τα ίδια δεδομένα είναι υπεύθυνοι παραπάνω από ένας κόμβοι αλλά με άλλο κλειδί.

Μία οιχειοθελής αποχώρηση μπορεί να χειριστεί σαν μία αποτυχία του κόμβου.

