Chapter 23 Explainable Machine Learning

- 1. Explainable ML
 - a) Local Explanation: Why do you think this image is a cat
 - b) Global Explanation: What do you think a cat looks like
- 2. Why we need Explainable ML
 - a) Curriculum Vitae Filtering
 - b) Financial Decision
 - c) Model Diagnosis
- 3. My Point of View
 - a) Goal of ML Explanation ≠ you completely know how the ML model work
 - b) Human brain is also a black box, but you believe in human
 - c) Goal of ML Explanation is make people (customer, boss, yourself) comfortable
- 4. Interpretable v.s. Powerful
 - a) Some models are intrinsically interpretable, but not very powerful
 - b) Deep network is difficult to interpret, but it is more powerful
- 5. Local Explanation: Explain the Decision
 - a) Basic Idea
 - Removing or modifying the value of the components, observing the change of decision
 - ii) Large decision change -> important component
 - b) Saliency Map

$$\begin{aligned} &\{x_1, \dots, x_n, \dots, x_N\} \ \, \Rightarrow \ \, \{x_1, \dots, x_n + \Delta x, \dots, x_N\} \\ &y_k \ \, \Rightarrow \ \, y_k + \Delta y \\ &\text{Compute} \ \, \left|\frac{\Delta y}{\Delta x}\right| \ \, \Rightarrow \ \, \left|\frac{\partial y_k}{\partial x_n}\right| \end{aligned}$$

- c) Limitation of Gradient-based Approaches : Gradient Saturation To deal with this problem : Integrated gradient, DeepLIFT
- d) Attack Interpretation

The noise is small, and do not change the classification result

- 6. Global Explanation: Explain the whole model
 - a) Activation Maximization
 - i) Find the image that maximizes class probability and also looks like a digit
 - ii) $x^* = \arg \max y_i + R(x)$ $R(x) = \sum_{i,j} |x_{ij}|$
 - iii) With several regularization terms and hyperparameter tuning
 - b) Constraint from Generator

$$x = G(z)$$
 $x^* = \arg\max y_i \implies z^* = \arg\max y_i$
Show image: $x^* = G(z^*)$

- 7. Using a model to explain another
 - a) Some models are easier to interpret
 Using interpretable model to mimic uninterpretable models
 - b) Linear model cannot mimic neural network However, it can mimic a local region

- c) LIME Local Interpretable Model-Agnostic Explanations
 - i) Given a data point you want to explain
 - ii) Sample at the nearby
 - iii) Fit with linear model (or other interpretable models)
 - iv) Interpret the linear model
 - v) Application on Image

Sample at the nearby

Randomly delete some segments

Fit with linear model

$$x_1, \dots, x_m, \dots, x_M$$
 M is the number of segments

$$x_m = 0 \rightarrow \text{segment m is deleted}$$

$$x_m = 1 \rightarrow \text{segment m exists}$$

Interpret the model

$$y = w_1 x_1 + \dots + w_m x_m + \dots + w_M x_M$$

If $w_m \approx 0 \rightarrow \text{segment m}$ is not related to the class

If w_m is positive \rightarrow segment m indicates the image is the class

if w_m is negative \rightarrow segment m indicates the image is not the class

- d) Decision Tree
 - i) Complexity of Decision Tree

 $O(T_{\theta})$: how complex T_{θ} is e.g. average depth of T_{θ}

We don't want the tree to be too large, thus small $O(T_{\theta})$

ii) Tree regularization

Train a network that is easy to be interpreted by decision Tree

$$\theta^* = argminL(\theta) + \lambda O(T_{\theta})$$

The objective function with tree regularization is not differentiable

Solution: https://arxiv.org/pdf/1711.06178.pdf