

Minimum jumps with fee

We'll cover the following

- Problem Statement
- Basic Solution
- Top-down Dynamic Programming with Memoization
- Bottom-up Dynamic Programming
 - Code
- Fibonacci number pattern

Problem Statement

Given a staircase with 'n' steps and an array of 'n' numbers representing the fee that you have to pay if you take the step. Implement a method to calculate the minimum fee required to reach the top of the staircase (beyond the top-most step). At every step, you have an option to take either 1 step, 2 steps, or 3 steps. You should assume that you are standing at the first step.

Example 1:

```
Number of stairs (n): 6
Fee: {1,2,5,2,1,2}
Output: 3
Explanation: Starting from index '0', we can reach the top through: 0->3->top
The total fee we have to pay will be (1+2).
```

Example 2:

```
Number of stairs (n): 4
Fee: {2,3,4,5}
Output: 5
Explanation: Starting from index '0', we can reach the top through: 0->1->top
The total fee we have to pay will be (2+3).
```

Let's first start with a recursive brute-force solution.

Basic Solution #

At every step, we have three option: either jump 1 step, 2 steps, or 3 steps. So our algorithm will look like:


```
2
      return find_min_fee_recursive(fee, 0)
 3
 4
 5
    def find_min_fee_recursive(fee, currentIndex):
      n = len(fee)
 6
 7
      if currentIndex > n - 1:
 8
        return 0
 9
10
      # if we take 1 step, we are left with 'n-1' steps;
      take1Step = find_min_fee_recursive(fee, currentIndex + 1)
11
12
      # similarly, if we took 2 steps, we are left with 'n-2' steps;
      take2Step = find_min_fee_recursive(fee, currentIndex + 2)
13
14
      # if we took 3 steps, we are left with 'n-3' steps;
15
      take3Step = find_min_fee_recursive(fee, currentIndex + 3)
16
17
      _min = min(take1Step, take2Step, take3Step)
18
19
      return _min + fee[currentIndex]
20
21
22
    def main():
23
24
      print(find_min_fee([1, 2, 5, 2, 1, 2]))
25
      print(find_min_fee([2, 3, 4, 5]))
26
27
   main()
\triangleright
                                                                                   []
```

The time complexity of the above algorithm is exponential $O(3^n)$. The space complexity is O(n) which is used to store the recursion stack.

Top-down Dynamic Programming with Memoization

To resolve overlapping subproblems, we can use an array to store the already solved subproblems. Here is the code:

```
👙 Java
            (§) JS
                        🦆 Python3
                                      G C++
 1 def find_min_fee(fee):
       dp = [0 \text{ for } x \text{ in range(len(fee))}]
 2
       return find_min_fee_recursive(dp, fee, 0)
 3
 4
 5
    def find_min_fee_recursive(dp, fee, currentIndex):
 6
       n = len(fee)
 7
 8
       if currentIndex > n-1:
 9
         return 0
10
11
       if dp[currentIndex] == 0:
         # if we take 1 step, we are left with 'n-1' steps
12
         take1Step = find_min_fee_recursive(dp, fee, currentIndex + 1)
13
         # similarly, if we took 2 steps, we are left with 'n-2' steps
14
15
         take2Step = find_min_fee_recursive(dp, fee, currentIndex + 2)
         # if we took 3 steps, we are left with 'n-3' steps
16
17
         take3Step = find_min_fee_recursive(dp, fee, currentIndex + 3)
```

```
18
19
         dp[currentIndex] = fee[currentIndex] + \
                              min(take1Step, take2Step, take3Step)
20
21
       return dp[currentIndex]
22
23
24
    def main():
25
26
27
       print(find_min_fee([1, 2, 5, 2, 1, 2]))
       print(find_min_fee([2, 3, 4, 5]))
28
29
30
31 main()
\triangleright
                                                                                         \leftarrow
                                                                                                      :3
```

Bottom-up Dynamic Programming #

Let's try to populate our dp[] array from the above solution, working in a bottom-up fashion. As we saw in the above code, every findMinFeeRecursive(n) is the minimum of the three recursive calls; we can use this fact to populate our array.

Code

Here is the code for our bottom-up dynamic programming approach:

```
(S) JS
                         🤁 Python3
                                      G C++
👙 Java
 1 def find_min_fee(fee):
       n = len(fee)
       dp = [0 \text{ for } x \text{ in range}(n+1)] \# +1 \text{ to handle the 0th step}
 3
       dp[0] = 0 # if there are no steps, we don't have to pay any fee
       dp[1] = fee[0] # only one step, so we have to pay its fee
 5
       # for 2 steps, since we start from the first step, so we have to pay its fee
 7
       # and from the first step we can reach the top by taking two steps, so
 8
       # we don't have to pay any other fee.
 9
      dp[2] = fee[0]
10
       # please note that dp[] has one extra element to handle the 0th step
11
12
       for i in range(2, n):
         dp[i + 1] = min(fee[i] + dp[i],
13
14
                          fee[i - 1] + dp[i - 1],
                          fee[i - 2] + dp[i - 2])
15
16
       return dp[n]
17
18
19
20
    def main():
21
22
       print(find_min_fee([1, 2, 5, 2, 1, 2]))
23
       print(find_min_fee([2, 3, 4, 5]))
24
25
26
   main()
27
```


The above solution has time and space complexity of O(n).

Fibonacci number pattern

We can clearly see that this problem follows the Fibonacci number pattern. The only difference is that every Fibonacci number is a sum of the two preceding numbers, whereas in this problem every number (total fee) is the minimum of previous three numbers.

