## **ESc201: Introduction to Electronics**

**Digital Circuits-1** 

Dr. Y. S. Chauhan

Dept. of Electrical Engineering

IIT Kanpur

#### **Numbers**

Every number system is associated with a base or radix

A positional notation is commonly used to express numbers

$$(a_5a_4a_3a_2a_1a_0)_r = a_5r^5 + a_4r^4 + a_3r^3 + a_2r^2 + a_1r^1 + a_0r^0$$

The decimal system has a base of 10 and uses symbols (0,1,2,3,4,5,6,7,8,9) to represent numbers

$$(2009)_{10} = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 9 \times 10^0$$

$$(123.24)_{10} = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 2 \times 10^{-1} + 4 \times 10^{-2}$$

#### **Numbers**

An octal number system has a base 8 and uses symbols (0,1,2,3,4,5,6,7)

$$(2007)_8 = 2 \times 8^3 + 0 \times 8^2 + 0 \times 8^1 + 7 \times 8^0$$

What decimal number does it represent?

$$(2007)_8 = 2 \times 512 + 0 \times 64 + 0 \times 8^1 + 7 \times 8^0 = 1033$$

$$(2007)_8 = (1033)_{10}$$

## **Numbers**

A hexadecimal system has a base of 16

$$(2BC9)_{16} = 2 \times 16^3 + B \times 16^2 + C \times 16^1 + 9 \times 16^0$$

How do we convert it into decimal number?

$$(2BC9)_{16} = 2 \times 4096 + 11 \times 256 + 12 \times 16^{1}$$
  
 $+ 9 \times 16^{0} = 11209$ 

$$(2BC9)_{16} = (11209)_{10}$$

| Number | Symbol     |
|--------|------------|
| 0      | 0          |
| 1      | 1          |
| 2      | 2          |
| 3      | 3          |
| 4      | 4          |
| 5      | 5          |
| 6      | 6          |
| 7      | 7          |
| 8      | 8          |
| 9      | 9          |
| 10     | Α          |
| 11     | В          |
| 12     | С          |
| 13     | D          |
| 14     | E          |
| 15     | <b>F</b> 4 |
|        |            |

A Binary system has a base 2 and uses only two symbols 0, 1

to represent all the numbers

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Which decimal number does this correspond to ?

$$(1101)_2 = 1 \times 8 + 1 \times 4 + 0 \times 2^1 + 1 \times 2^0 = 13$$



| <b>2</b> <sup>0</sup>  | 1          |
|------------------------|------------|
| <b>2</b> <sup>1</sup>  | 2          |
| <b>2</b> <sup>2</sup>  | 4          |
| <b>2</b> <sup>3</sup>  | 8          |
| <b>2</b> <sup>4</sup>  | 16         |
| <b>2</b> <sup>5</sup>  | 32         |
| <b>2</b> <sup>6</sup>  | 64         |
| <b>2</b> <sup>7</sup>  | 128        |
| <b>2</b> <sup>8</sup>  | 256        |
| <b>2</b> <sup>9</sup>  | 512        |
| <b>2</b> <sup>10</sup> | 1024(K)    |
| <b>2</b> <sup>20</sup> | 1048576(M) |

| <b>2</b> -1 | 2-2  | 2-3   | 2-4    | <b>2</b> -5 | <b>2</b> <sup>-6</sup> |
|-------------|------|-------|--------|-------------|------------------------|
| 0.5         | 0.25 | 0.125 | 0.0625 | 0.03125     | 0.015625               |

## **Developing Fluency with Binary Numbers**

$$11001 = ?$$
 25

$$1100001 = ?$$
  $64+32+1=97$ 

$$0.101 = ?$$
  $0.5+0.125=0.625$ 

$$11.001 = ?$$
  $3+0.125=3.125$ 

### Converting decimal to binary number

Convert 45 to binary number

$$(45)_{10} = b_n b_{n-1} \dots b_0$$

$$45 = b_n 2^n + b_{n-1} 2^{n-1} \dots + b_1 2^1 + b_0$$

Divide both sides by 2

$$\frac{45}{2} = 22.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots + b_1 2^0 + b_0 \times 0.5$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots + b_1 2^0 + b_0 \times 0.5$$

$$\Rightarrow b_0 = 1$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots + b_1 2^0 + b_0 \times 0.5 \implies b_0 = 1$$

$$22 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots + b_2 2^1 + b_1 2^0$$

Divide both sides by 2

$$\frac{22}{2} = 11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} + \dots + b_2 2^0 + b_1 \times 0.5 \implies b_1 = 0$$

$$11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} \dots + b_3 2^1 + b_2 2^0$$

$$5.5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots + b_3 2^0 + 0.5 b_2 \implies b_2 = 1$$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots + b_4 2^1 + b_3 2^0$$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots + b_4 2^1 + b_3 2^0$$

$$2.5 = b_n 2^{n-4} + b_{n-1} 2^{n-5} + \dots + b_4 2^0 + 0.5b_3 \implies b_3 = 1$$

$$2 = b_n 2^{n-4} + b_{n-1} 2^{n-5} \dots + b_5 2^1 + b_4 2^0$$

$$1 = b_n 2^{n-5} + b_{n-1} 2^{n-6} \dots + b_5 2^0 + 0.5b_4 \implies b_4 = 0$$

$$\Rightarrow b_5 = 1$$

$$(45)_{10} = b_5 b_4 b_3 b_2 b_1 b_0 = 101101$$

### Converting decimal to binary number

Method of successive division by 2



## Convert (153)<sub>10</sub> to octal number system

$$(153)_{10} = (b_n b_{n-1} \dots b_0)_8$$

$$(153)_{10} = b_n 8^n + b_{n-1} 8^{n-1} \dots b_1 8^1 + b_0$$

#### Divide both sides by 8

$$\frac{153}{8} = 19.125 = b_n 8^{n-1} + b_{n-1} 8^{n-2} \dots b_1 8^0 + \frac{b_0}{8} \implies \frac{b_0}{8} = 0.125$$

$$\Rightarrow \frac{b_0}{8} = 0.125$$

$$\Rightarrow b_0 = 1$$

$$153 = (231)_8$$

### Converting decimal to binary number

Convert  $(0.35)_{10}$  to binary number

$$(0.35)_{10} = 0.b_{-1}b_{-2}b_{-3}.....b_{-n}$$

$$0.35 = 0 + b_{-1}2^{-1} + b_{-2}2^{-2} + \dots b_{-n}2^{-n}$$

How do we find the b<sub>-1</sub> b<sub>-2</sub> ... coefficients?

Multiply both sides by 2

$$0.7 = b_{-1} + b_{-2} 2^{-1} + \dots b_{-n} 2^{-n+1} \implies b_{-1} = 0$$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

Multiply both sides by 2

$$1.4 = b_{-2} + b_{-3} 2^{-1} + \dots b_{-n} 2^{-n+2} \implies b_{-2} = 1$$

$$\Rightarrow b_{-2} = 1$$

Note that  $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dots$ <1

$$0.4 = b_{-3}2^{-1} + b_{-4}2^{-2} \dots b_{-n}2^{-n+2}$$

$$0.8 = b_{-3} + b_{-4} 2^{-1} \dots b_{-n} 2^{-n+3}$$
  $\Rightarrow b_{-3} = 0$ 

$$\Rightarrow b_{-3} = 0$$

### Converting decimal to binary number

$$0.125 = ?$$

$$\begin{array}{rcl}
0 & 125 \\
\hline
0 & 25 \\
x2 \\
0.125 & x2 \\
\hline
0.125 & 0
\end{array}$$

$$0.125 = (.001)_{2}$$

$$0.8125 = ?$$

$$0.8125 = ?$$

$$1. 625 \times 2$$

$$1. 25 \times 2$$

$$0.8125 = (.1101)_{2} \quad 0. \quad 5$$

$$1. \quad 0$$





## **Binary Addition/Subtraction**





101 \_110 1011

## Complement of a number

Decimal system:

9's complement

10's complement

9's complement of n-digit number x is 10<sup>n</sup> -1 -x

10's complement of n-digit number x is 10<sup>n</sup> -x

9's complement of 85?

$$10^2 - 1 - 85$$

$$10^2 - 1 - 85 \qquad 99 - 85 = 14$$

9's complement of 123 = 999 - 123 = 876

10's complement of 123 = 9's complement of 123+1=877

## Complement of a binary number



1's complement of n-bit number x is 2<sup>n</sup> -1 -x

2's complement of n-bit number x is  $2^n$  -x

1's complement of 1011 ? 
$$2^4 - 1 - 1011$$
  $1111 - 1011 = 0100$ 

1's complement is simply obtained by flipping a bit (changing 1 to 0 and 0 to 1)

0110010

2's complement of 
$$1010 = 1$$
's complement of  $1010+1$   
=  $0101+1=0110$ 

2's complement of 110010 =

Leave all least significant 0's as they are, leave first 1 unchanged and then flip all subsequent bits

001110

 $1011 \rightarrow 0101$ 

 $101101100 \rightarrow 010010100$ 

## Advantages of using 2's complement



$$10 - 6 = ?$$
  $10_{10} \Rightarrow (1010)_2$ 

$$6_{10} \Rightarrow (0110)_2$$

# 2's complement of 0110=1010

1010 +1010 10100

If Carry is 1; then number you get is positive

$$(0100)_2 \Longrightarrow 4_{10}$$

**Answer is +4** 

## Advantages of using 2's complement



$$6 - 10 = ?$$

$$6_{10} \Longrightarrow (0110)_2$$

$$10_{10} \Longrightarrow (1010)_2$$

# 2's complement of 1010=0110

0110 +0110 01100 If Carry is 0; then number you get is negative

Take the 2's complement of number

2's complement of 1100=0100

$$(0100)_2 \Longrightarrow 4_{10}$$

**Answer is -4** 

## **Example**



## **Example**



It makes sense to use adder as a subtractor as well provided additional circuit required for carrying out 2's complement is simple

#### Representing positive and negative binary numbers

One extra bit is required to carry sign information. Sign bit = 0 represents positive number and Sign bit = 1 represents negative number

| decimal | Signed<br>Magnitude |
|---------|---------------------|
| 0       | 0000                |
| 1       | 0001                |
| 2       | 0010                |
| 3       | 0011                |
| 4       | 0100                |
| 5       | 0101                |
| 6       | 0110                |
| 7       | 0111                |
| -0      | 1000                |
| -1      | 1001                |
| -2      | 1010                |
| -3      | 1011                |
| -4      | 1100                |
| -5      | 1101                |
| -6      | 1110                |
| -7      | 1111                |

| decimal | Signed 1's complement |
|---------|-----------------------|
| -1      | 1110                  |
| -2      | 1101                  |
| -3      | 1100                  |
| -4      | 1011                  |
| -5      | 1010                  |
| -6      | 1001                  |
| -7      | 1000                  |

| decimal | Signed 2's complement |
|---------|-----------------------|
| -1      | 1111                  |
| -2      | 1110                  |
| -3      | 1101                  |
| -4      | 1100                  |
| -5      | 1011                  |
| -6      | 1010                  |
| -7      | 1001                  |

#### **Example**

2's complement is 
$$011 = 3$$



2's complement is 111 = 7

### **Example**

$$\begin{array}{rrr} + & 6 & 00000110 \\ +13 & 00001101 \\ +19 & 00010011 \end{array}$$

$$\begin{array}{rrr} - & 6 & 111111010 \\ + & 13 & 00001101 \\ + & 7 & 00000111 \end{array}$$

$$\begin{array}{rrr} + & 6 & 00000110 \\ \hline -13 & 11110011 \\ \hline -7 & 11111001 \end{array}$$

$$\begin{array}{rrr}
-6 & 11111010 \\
-13 & 11110011 \\
-19 & 11101101
\end{array}$$

2's complement is 11111001:

00000111 = 7

#### **Boolean Algebra**

Algebra on Binary numbers

A variable x can take two values {0,1} 0



#### **Basic operations:**

AND: 
$$y = x_1 . x_2$$



y is 1 if and only if both  $x_1$  and  $x_2$  are 1, otherwise zero

#### **Basic operations:**

OR: 
$$y = x_1 + x_2$$

y is 1 if either  $x_1$  or  $x_2$  is 1. y=0 if and only if both variables are

zero

NOT: 
$$y = \overline{x}$$

# **Boolean Algebra**

# **Basic Postulates**

P1.a: 
$$x + 0 = x$$
 P1.b:  $x \cdot 1 = x$ 

$$x + 0 = x$$
 P1.b: x.

$$x \cdot 1 = x$$

P2.a: 
$$x + y = y + x$$

$$= y$$

P2.b: 
$$x \cdot y = y \cdot x$$
 Commutative  
P3.b:  $x+y \cdot z = (x+y) \cdot (x+z)$  Distributive

P3.a: 
$$x.(y+z) = x.y+x.z$$

P4.b: 
$$x \cdot x = 0$$

P4.a: 
$$x + x = 1$$

# **Basic Theorems**

T1.a: 
$$x + x = x$$

T1.b: 
$$x \cdot x = x$$

T2.a: 
$$x + 1 = 1$$

T2.b: 
$$x \cdot 0 = 0$$

30

$$(\mathbf{y} + \mathbf{z}) = \mathbf{x}$$

$$0 = 0$$

T3.a: 
$$(\bar{x}) = x$$

T4.b: 
$$x \cdot (y.z) = (x.y).z$$

T4.a: 
$$(x) - x$$
  
T4.a:  $x + (y+z) = (x+y)+z$ 

T6.a: 
$$x + x \cdot y = x$$

T5.a: 
$$\frac{x + (y+z) = (x+y)+z}{(x+y) = x}$$
.  $\frac{-}{y}$  (DeMorgan T6.a:  $\frac{x + x + y}{x + x + y} = x$  T6.b:  $\frac{-}{x}$  T6.b:  $\frac{-$ 

# Proving Theorems P1.a: x + 0 = x

a: 
$$x + 0 = x$$

P1.b: 
$$x \cdot 1 = x$$

P2.a: 
$$x + y = y + x$$
 P2.b:  $x \cdot y = y \cdot x$ 

$$2.b: x . y = y$$

$$12.a. \quad x + y - y + x$$

$$12.0. \quad X \cdot y = y \cdot X$$

P3.a: 
$$x.(y+z) = x.y+x.z$$
 P3.b:  $x+y.z = (x+y).(x+z)$ 

P3.b: 
$$x+y.z = (x+y).(x+z)$$

P4.a: 
$$x + \bar{x} = 1$$

P4.b: 
$$x \cdot \bar{x} = 0$$

# Prove T1.a: x + x = x

Prove T1.b: 
$$x \cdot x = x$$

$$x + x = (x+x). 1 (P1.b)$$

$$x \cdot x = x \cdot x + 0$$
 (P1.a)

$$= (x+x). (x+x) (P4.a)$$

$$= x.x + x.x \quad (P4.b)$$

$$= x + x.\overline{x} \quad (P3.b)$$

$$= x \cdot (x+x)$$
 (P3.a)

$$= x + 0$$
 (P4.b)

$$= x . 1 (P4.a)$$

$$= x$$
 (P1.a)

$$= x (P1.b)$$

Proving Theorems P1.a: 
$$x + 0 = x$$
  
P2.a:  $x + y = x$ 

$$) = x$$

P1.b: 
$$x \cdot 1 = x$$

$$X + O - X$$

P2.a: 
$$x + y = y + x$$

P2.b: 
$$x \cdot y = y \cdot x$$

$$\mathbf{x} \cdot (\mathbf{v} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{v} + \mathbf{z}$$

P3.b: 
$$x+y.z = (x+y).(x+z)$$

P3.a: 
$$x.(y+z) = x.y+x.z$$

P4.b: 
$$x \cdot \bar{x} = 0$$

P4.a: 
$$x + x = 1$$

Prove : 
$$x + 1 = 1$$

$$x + 1 = x + (x + \overline{x})$$

$$= (x+x) + \overline{x}$$

$$= x + \overline{x}$$

$$x + x \cdot y = x$$
 $= x \cdot 1 + x \cdot y$ 
 $= x \cdot (1 + y)$ 
 $= x \cdot 1$ 
 $= x$ 



# **DeMorgan's Theorem**

= 1

$$\overline{(x_1 + x_2 + x_3 + ....)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$
.

$$\overline{(x_1. x_2. x_3....)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} + ..._3.)$$

### Simplification of Boolean expressions

$$\overline{(x_1 + x_2 + x_3 + ...)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$
.

$$\overline{(x_1, x_2, x_3, ...)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} + ....)$$

$$(\overline{x}_1.x_2 + \overline{x}_2.x_3) = ?$$

$$=(\overline{x_1}, x_2), (\overline{x_2}, x_3)$$

$$=(\overline{x_1} + \overline{x_2}) \cdot (\overline{x_2} + \overline{x_3})$$

$$=(x_1 + \overline{x_2}) \cdot (x_2 + \overline{x_3})$$

$$= x_1. x_2 + x_2.x_2 + x_1 . x_3 + x_2. x_3$$

$$= x_1. x_2 + x_1. \overline{x_3} + \overline{x_2}. \overline{x_3}$$

#### **Function of Boolean variables**



y = 1 when  $x_1$  is 0 and  $x_2$  is 1

$$y = \overline{x_1} \cdot x_2$$

Boolean expression

## Obtaining Boolean expressions from truth Table





$$y = \overline{x_1} \cdot \overline{x_2} + x_1 \cdot x_2$$

### Obtaining Boolean expressions from truth Table

$$\begin{array}{c|cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$y = \overline{x_1} \cdot x_2 + x_1 \cdot \overline{x_2}$$

Instead of writing expressions as sum of terms that make y equal to 1, we can also write expressions using terms that make y equal to 0



| <b>X</b> <sub>1</sub> | $X_2$ | У |
|-----------------------|-------|---|
| 0                     | 0     | 0 |
| 0                     | 1     | 1 |
| 1                     | 0     | 1 |
| 1                     | 1     | 1 |

$$y = x_1 + x_2$$

$$\mathbf{x}_1 + \mathbf{x}_2$$

$$y = (x_1 + x_2).(x_1 + x_2)$$

$$\frac{\phantom{0}}{x_1} + \frac{\phantom{0}}{x_2}$$

## Obtaining Boolean expressions from truth Table



#### **Implementing Boolean expressions**

#### **Elementary Gates**

AND: 
$$y = x_1 \cdot x_2$$



Why call it a gate?

$$x_1$$
 AND  $y = 0$  Gate is closed

$$x_1$$
AND
 $y = x_1$ 
Gate is open

OR: 
$$y = x_1 + x_2$$

NOT: 
$$y = \bar{x}$$





NAND: 
$$y = \bar{x}_1 . x_2 |_{x_2}$$



NOR: 
$$y = x_1 + x_2$$



$$X_1$$
 $X_2$ 
NOR
 $y$ 

**XOR:** 
$$y = x_1 \oplus x_2 = x_1 \cdot x_2 + x_1 \cdot x_2$$

y is 1 if only one variable is 1 and the other is zero

$$\begin{array}{c|c}
x_1 \\
\hline
x_2 \\
\hline
\end{array}$$



## **Gates with more than 2 inputs**

AND: 
$$y = x_1. x_2. x_3...$$



OR: 
$$y = x_1 + x_2 + x_3 + \dots$$

$$X_1$$
 $X_2$ 
 $X_3$ 
 $X_3$ 

XOR: 
$$y = x_1 \oplus x_2 \oplus x_3 = x_1 \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_1} \cdot x_2 \cdot \overline{x_3} + \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_2} \cdot \overline{x_3} + \overline{x_2}$$

y = 1 only if odd number of inputs is 1

#### Implementing Boolean expressions using gates



$$S = \overline{x.y.z} + \overline{x.y.z} + x.y.z + x.y.z$$

$$C = x.y + x.z + y.z$$





## Representation of Boolean Expressions

| X | у | f <sub>1</sub> |
|---|---|----------------|
| 0 | 0 | 0              |
| 0 | 1 | 1              |
| 1 | 0 | 1              |
| 1 | 1 | 0              |

$$f_1 = \overline{x}. y + x. \overline{y}$$
  $f_1 = m_1 + m_2$   $f_1 = \sum (1, 2)$ 

$$\mathbf{f}_1 = m_1 + m_2$$

$$f_1 = \sum (1,2)$$

$$f_2 = \sum (0, 2, 3) = ?$$

$$f_2 = \sum (0, 2, 3) = ?$$
  $f_2 = \overline{x} \cdot \overline{y} + x \cdot \overline{y} + x \cdot y$ 

A minterm is a product that contains all the variables used in a function

#### Three variable functions

$$f_2 = \sum (1, 4, 7) = ?$$

$$f_2 = x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot z$$

## **Product of Sum Terms Representation**

| X | y | f <sub>1</sub> |
|---|---|----------------|
| 0 | 0 | 0              |
| 0 | 1 | 1              |
| 1 | 0 | 1              |
| 1 | 1 | 0              |

$$\mathbf{f}_1 = (x + y) \cdot (\overline{x} + \overline{y})$$

$$\mathbf{f}_1 = \boldsymbol{M}_0 \cdot \boldsymbol{M}_3$$

$$\mathbf{f}_1 = \prod \left( \boldsymbol{M}_0, \boldsymbol{M}_3 \right)$$

$$f_1 = \Pi(1,5,7) = ?$$

$$f_2 = (x + y + \overline{z}).(\overline{x} + y + \overline{z}).(\overline{x} + \overline{y} + \overline{z})$$

# **Simplification**



Simplification of Boolean expression yields :  $y = x_3$ !! which does not require any gates at all!

#### **Goal of Simplification**

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$



Goal of simplification is to reduce the complexity of gate circuit. This requires that we minimize the number of gates.



This circuit is simpler not just because it uses 4 gates instead of 5 but also because circuit-2 uses one 2-input and three 3-input gates as compared to five 3-input gates used in circuit-1