Convex Functions

Daniel P. Palomar

Hong Kong University of Science and Technology (HKUST)

ELEC5470 - Convex Optimization

Fall 2017-18, HKUST, Hong Kong

Outline of Lecture

- Definition convex function
- Examples on \mathbf{R} , \mathbf{R}^n , and $\mathbf{R}^{n \times n}$
- Restriction of a convex function to a line
- First- and second-order conditions
- Operations that preserve convexity
- Quasi-convexity, log-convexity, and convexity w.r.t. generalized inequalities

(Acknowledgement to Stephen Boyd for material for this lecture.)

Definition of Convex Function

• A function $f: \mathbf{R}^n \longrightarrow \mathbf{R}$ is said to be **convex** if the domain, dom f, is convex and for any $x, y \in \text{dom } f$ and $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

- f is strictly convex if the inequality is strict for $0 < \theta < 1$.
- f is concave if -f is convex.

Examples on \mathbf R

Convex functions:

- affine: ax + b on \mathbf{R}
- powers of absolute value: $|x|^p$ on \mathbf{R} , for $p \ge 1$ (e.g., |x|)
- powers: x^p on \mathbf{R}_{++} , for $p \ge 1$ or $p \le 0$ (e.g., x^2)
- ullet exponential: e^{ax} on ${f R}$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

Concave functions:

- affine: ax + b on \mathbf{R}
- powers: x^p on \mathbf{R}_{++} , for $0 \le p \le 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbb{R}^n

- Affine functions $f(x) = a^T x + b$ are convex and concave on \mathbf{R}^n .
- Norms ||x|| are convex on \mathbf{R}^n (e.g., $||x||_{\infty}$, $||x||_1$, $||x||_2$).
- Quadratic functions $f(x) = x^T P x + 2q^T x + r$ are convex \mathbf{R}^n if and only if $P \succeq 0$.
- The **geometric mean** $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on \mathbf{R}_{++}^n .
- The **log-sum-exp** $f(x) = \log \sum_i e^{x_i}$ is convex on \mathbf{R}^n (it can be used to approximate $\max_{i=1,\ldots,n} x_i$).
- Quadratic over linear: $f(x,y) = x^2/y$ is convex on $\mathbf{R}^n \times \mathbf{R}_{++}$.

Examples on $\mathbf{R}^{n \times n}$

Affine functions: (prove it!)

$$f(X) = \mathsf{Tr}(AX) + b$$

are convex and concave on $\mathbf{R}^{n\times n}$.

• Logarithmic determinant function: (prove it!)

$$f(X) = \mathsf{logdet}(X)$$

is concave on $\mathbf{S}^n = \{X \in \mathbf{R}^{n \times n} \mid X \succeq 0\}.$

• Maximum eigenvalue function: (prove it!)

$$f(X) = \lambda_{\max}(X) = \sup_{y \neq 0} \frac{y^T X y}{y^T y}$$

is convex on S^n .

Epigraph

• The **epigraph** of f if the set

$$\operatorname{epi} f = \left\{ (x, t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \le t \right\}.$$

• Relation between convexity in sets and convexity in functions:

f is convex \iff epi f is convex

Restriction of a Convex Function to a Line

• $f: \mathbf{R}^n \longrightarrow \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \longrightarrow \mathbf{R}$

$$g(t) = f(x + tv), \quad \text{dom } g = \{t \mid x + tv \in \text{dom } f\}$$

is convex for any $x \in \text{dom } f, v \in \mathbf{R}^n$.

- In words: a function is convex if and only if it is convex when restricted to an arbitrary line.
- Implication: we can check convexity of f by checking convexity of functions of one variable!
- Example: concavity of logdet (X) follows from concavity of log (x).

Example: concavity of logdet (X):

$$\begin{split} g\left(t\right) &= \mathsf{logdet}\left(X + tV\right) &= \mathsf{logdet}\left(X\right) + \mathsf{logdet}\left(I + tX^{-1/2}VX^{-1/2}\right) \\ &= \mathsf{logdet}\left(X\right) + \sum_{i=1}^{n} \log\left(1 + t\lambda_{i}\right) \end{split}$$

where λ_i 's are the eigenvalues of $X^{-1/2}VX^{-1/2}$.

The function g is concave in t for any choice of $X \succ 0$ and V; therefore, f is concave.

First and Second Order Condition

• **Gradient** (for differentiable f):

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} & \cdots & \frac{\partial f(x)}{\partial x_n} \end{bmatrix}^T \in \mathbf{R}^n.$$

• **Hessian** (for twice differentiable f):

$$\nabla^2 f(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right)_{ij} \in \mathbf{R}^{n \times n}.$$

• Taylor series:

$$f(x + \delta) = f(x) + \nabla f(x)^{T} \delta + \frac{1}{2} \delta^{T} \nabla^{2} f(x) \delta + o(\|\delta\|^{2}).$$

ullet First-order condition: a differentiable f with convex domain is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \quad \forall x, y \in \text{dom } f(y)$$

- Interpretation: first-order approximation if a global underestimator.
- ullet Second-order condition: a twice differentiable f with convex domain is convex if and only if

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in \mathsf{dom}\, f$$

Examples

• Quadratic function: $f(x) = (1/2) x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

is convex if $P \succeq 0$.

• Least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

is convex.

• Quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix} \succeq 0$$

is convex for y > 0.

Operations that Preserve Convexity

How do we establish the convexity of a given function?

- 1. Applying the definition.
- 2. With first- or second-order conditions.
- 3. By restricting to a line.
- 4. Showing that the functions can be obtained from simple functions by operations that preserve convexity:
 - nonnegative weighted sum
 - composition with affine function (and other compositions)
 - pointwise maximum and supremum, minimization
 - perspective

- Nonnegative weighted sum: if f_1, f_2 are convex, then $\alpha_1 f_1 + \alpha_2 f_2$ is convex, with $\alpha_1, \alpha_2 \geq 0$.
- Composition with affine functions: if f is convex, then f(Ax + b) is convex (e.g., ||y Ax|| is convex, ||y Ax|| is convex, ||y Ax|| is convex, ||y Ax|| is convex.
- Pointwise maximum: if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1, \ldots, f_m\}$ is convex.

Example: sum of r largest components of $x \in \mathbf{R}^n$: $f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$ where $x_{[i]}$ is the ith largest component of x.

Proof: $f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}.$

• Pointwise supremum: if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex.

Example: distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} ||x - y||.$$

Example: maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{y \neq 0} \frac{y^T X y}{y^T y}.$$

• Composition with scalar functions: let $g: \mathbf{R}^n \longrightarrow \mathbf{R}$ and $h: \mathbf{R} \longrightarrow \mathbf{R}$, then the function f(x) = h(g(x)) satisfies:

 $f\left(x
ight)$ is convex if $egin{array}{c} g \ {
m convex}, \ h \ {
m convex} \ {
m nondecreasing} \\ g \ {
m concave}, \ h \ {
m convex} \ {
m nonincreasing} \end{array}$

• **Minimization**: if f(x,y) is convex in (x,y) and C is a convex set, then

$$g\left(x\right) = \inf_{y \in C} f\left(x, y\right)$$

is convex (e.g., distance to a convex set).

Example: distance to a set C:

$$f(x) = \inf_{y \in C} ||x - y||$$

is convex if C is convex.

• **Perspective**: if f(x) is convex, then its perspective

$$g\left(x,t\right)=tf\left(x/t\right),\quad \operatorname{dom}g=\left\{ (x,t)\in\mathbf{R}^{n+1}\mid x/t\in\operatorname{dom}f,\,t>0\right\}$$
 is convex.

Example: $f(x) = x^T x$ is convex; hence $g(x,t) = x^T x/t$ is convex for t > 0.

Example: the negative logarithm $f(x) = -\log x$ is convex; hence the relative entropy function $g(x,t) = t\log t - t\log x$ is convex on \mathbf{R}^2_{++} .

Quasi-Convexity Functions

• A function $f: \mathbf{R}^n \longrightarrow \mathbf{R}$ is quasi-convex if dom f is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \text{dom } f \mid f(x) \le \alpha \}$$

are convex for all α .

 \bullet f is quasiconcave if -f is quasiconvex.

Examples:

- $\sqrt{|x|}$ is quasiconvex on ${f R}$
- $\operatorname{ceil}(x) = \inf \{ z \in \mathbf{Z} \mid z \ge x \}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- the linear-fractional function

$$f\left(x\right) = \frac{a^Tx + b}{c^Tx + d}, \qquad \operatorname{dom} f = \left\{x \mid c^Tx + d > 0\right\}$$

is quasilinear

Log-Convexity

ullet A positive function f is log-concave is $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$.

- f is log-convex if $\log f$ is convex.
- Example: x^a on \mathbf{R}_{++} is log-convex for $a \le 0$ and log-concave for a > 0
- Example: many common probability densities are log-concave

Convexity w.r.t. Generalized Inequalities

• $f: \mathbf{R}^n \longrightarrow \mathbf{R}^m$ is K-convex if $\mathrm{dom}\, f$ is convex and for any $x,y \in \mathrm{dom}\, f$ and $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta) y) \leq_K \theta f(x) + (1 - \theta) f(y).$$

• Example: $f: \mathbf{S}^m \longrightarrow \mathbf{S}^m$, $f(X) = X^2$ is \mathbf{S}^m_+ -convex.

References

Chapter 3 of

• Stephen Boyd and Lieven Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge University Press, 2004.

http://www.stanford.edu/~boyd/cvxbook/