En este punto se analizará la utilización del remuestreo en una señal de AM descrita por la siguiente ecuación:

$$X_c = A_{MAX} \cdot \left[ \frac{1}{2} \cdot \cos(2\pi (1.8f_{in})t) + \cos(2\pi (2f_{in})t) + \frac{1}{2} \cdot \cos(2\pi (2.2f_{in})t) \right]$$
(1)

Lo que se busca con el remuestreo es emular un muestreo ideal, esto se lleva a cabo al utilizar en conjunto el Sample and Hold y la llave analógica, de tal manera que la llave se encuentre cerrada mientras que se encuentra en Hold y abierta durante el Sample. Resulta simple notar, que es equivalente a multiplicar la señal por un tren de deltas y luego convolucionar la señal con un pulso.



Figura 1: Señal senoidal en sus diversas etapas de muestreo.

Luego consideraremos que las señales, dado que  $f_{in}=1.5kHz$ , tendrán una frecuencia  $f_p=3kHz$  y  $f_m=300Hz$  con un m=1, esto define que la máxima frecuencia del sistema será de 3.3kHz, por Nyquist la frecuencia de muestreo debe ser por lo menos de 6.6kHz, se decidió utilizar una  $f_s=15kHz$ . lo cual implica un período de  $34\mu$ s, es de interés saber que el tiempo de adquisición del SH es típicamente de  $6\mu$ s, por seguridad se dejara un margen de error para el sample, dejando para este el  $12\mu s$ , a partir de aquí se puede determinar que debe estar en Sample un  $35\,\%$  y por lo tanto la llave analógica debe tener un Duty cycle del  $65\,\%$ , siendo conscientes de que a mayor Duty cycle mayor será la potencia recuperada de la señal.

Finalmente se grafica la tensión en cada uno de los nodos del sistema dada la entrada AM  $X_c$  tanto en una simulación como con la GUI.



Figura 2: Señal de entrada AM.



Figura 3: Señal de entrada AM spice.



Figura 4: Señal luego del filtro anti alias.



Figura 5: Señal luego del filtro anti alias spice.



Figura 6: Señal luego del Sample and Hold.



Figura 7: Señal luego del Sample and Hold spice.



Figura 8: Señal luego de la llave analógica.



Figura 9: Señal luego de la llave analógica spice.



Figura 10: Señal luego del filtro recuperador.



Figura 11: Señal luego del filtro recuperador spice.

Es apreciable, que el espectro de cada señal corresponde con el de una señal modulada en AM para las figuras (2), (4) y (10) mientras que se ve en las figuras (6) y (8) las replicas del espectro original en el resto del espectro, una observación notable, es que a simple vista los espectros entre el spice y el calculado parecen diferir, es que uno se encuentra en escala logarítmica y el otro lineal.