Задание 14. Арифметичесая иерархия.

Пусть Σ_n^{ρ} (Π_n^{ρ}) — множество всех предикатов, определимых в \mathbb{N} Σ_n формулами (Π_n -формулами) сигнатуры ρ , состоящей из всех рекурсивных предикатов. Эти множества называются уровнями арифметической иерархии. Предикаты из $\bigcup_n \Sigma_n^{\rho}$ называются арифметическими.

1. Докажите, что:

$$\Sigma_n^{\rho} \cup \Pi_n^{\rho} \subseteq \Sigma_{n+1}^{\rho} \cap \Pi_{n+1}^{\rho} = \Delta_{n+1}^{\rho};$$

$$A \in \Sigma_n^{\rho} \Leftrightarrow \overline{A} \in \Pi_n^{\rho};$$

$$A \in \Sigma_n^{\rho} \Leftrightarrow \overline{A} \in \Pi_n^{\rho};$$

$$A \leq_m B \in \Sigma_n^{\rho} \Rightarrow A \in \Sigma_n^{\rho};$$

 Σ_n^{ρ} совпадает со множеством предикатов вида $\exists y_1 \forall y_2 \cdots Q y_n R(\bar{x}, \bar{y}),$ где R — рекурсивный предикат.

2. Докажите, что:

множества Σ_n^{ρ} и Π_n^{ρ} замкнуты относительно $\wedge, \vee,$ и ограниченных кванторов;

множества из Σ_1^{ρ} — это в точности РП множества.

- 3. Докажите, что $B \leq_T A \in \Sigma_1^{\rho} \Rightarrow B \in \Sigma_2^{\rho}$.
- 4. Пусть $\emptyset^{(0)} = \emptyset$ и $\emptyset^{(n+1)} = (\emptyset^{(n)})'$, и $\emptyset^{(\omega)} = \{\langle n, x \rangle \mid x \in \emptyset^{(n)} \}$. Докажите, что $\emptyset^{(n)} <_T \emptyset^{(n+1)} <_T \emptyset^{(\omega)}$ для любого n.
- 5. Докажите, что для любых $A\subseteq \mathbb{N}$ и $n\geq 1$ справедливы соотношения $A \in \Sigma_n^{\rho} \Leftrightarrow A \leq_m \emptyset^{(n)}$ и $A \in \Delta_n^{\rho} \Leftrightarrow A \leq_T \emptyset^{(n-1)}$.