This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-089133

(43) Date of publication of application: 27.03.2002

(51)Int.CI.

B60J E05F 15/18 E05F 15/20 G01P 13/04 H₀₂P 5/06 H02P

(21)Application number: 2000-281466

(71)Applicant : AISIN SEIKI CO LTD

(22)Date of filing:

18.09.2000

(72)Inventor: OKAMOTO KIYOSHI

(54) OPENING AND CLOSING CONTROLLER FOR LINING MEMBER FOR OPENING

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an opening and closing controller for a lining member for an opening capable of permitting a high accuracy position detection by a simple treatment by adopting only a rotation sensor. SOLUTION: Pulse signals ICa and ICb with different phases generated by two Hall IC's based on the revolutions of an electric motor driving the lining member for opening are input simultaneously, and the turning direction of the electric motor is judged by the other signal level when one side detects an edge. For example, when ICa: rise and ICb: LO, or ICa: fall and ICb: HI, the electric motor is positive rotation (turning direction CW), in the case of ICa: rise and ICb: HI, or ICa: fall and ICb: LO, the electric motor is reverse rotation (turning direction CCW). By accumulating the revolutions of the electric motor in each direction, the position of the lining member for opening can be detected.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-89133

(P2002-89133A)

平成14年3月27日(2002.3.27) (43)公開日

(51) Int. Cl. 7	識別記号	F I			
E05F 15/16		E05F 15/16 2E052			
B60J 7/057		B60J 7/057 Q 2F034			
E05F 15/18		E05F 15/18 2F063			
15/20		. 15/20 2F077			
G01B 7/00		G01B 7/00 C 5H571			
	審査請求	未請求 請求項の数3 〇L (全14頁) 最終頁に続く			
(21)出願番号	特願2000-281466(P2000-281466)	(71)出願人 000000011			
(31) [24]		アイシン精機株式会社			
(22)出願日	平成12年9月18日(2000.9.18)	愛知県刈谷市朝日町2丁目1番地			
		(72)発明者 岡本 清			
		愛知県刈谷市朝日町2丁目1番地 アイシ			
		ン精機株式会社内			
	•	(74)代理人 100097009			
		弁理士 富澤 孝 (外3名)			
	`				
		最終頁に続く			

(54) 【発明の名称】開口覆材の開閉制御装置

(57)【要約】

回転数センサを用いるだけで、簡単な処理に 【課題】 よって高精度の位置検出が可能となる開口覆材の開閉制 御装置を提供すること。

【解決手段】 開口覆材を駆動する電動モータの回転数 に基づいて2つのホールICによって生成される位相の 異なるパルス信号ICa、ICbを同時に入力し、一方 がエッジを検出したときの他方の信号レベルによって電 動モータの回転方向を判断する。例えば、ICa:上昇 かつICb:LO、または、ICa:下降かつICb: HIでは、電動モータは正回転(回転方向CW)であ り、ICa:上昇かつICb:HI、または、ICa: 下降かつICb:LOでは、電動モータは逆回転(回転 方向CCW)である。各方向への電動モータの回転数を 累積することで開口覆材の位置を検出する。

【特許請求の範囲】

開口を開閉する覆材を駆動する電動モー 【請求項1】

前記電動モータの回転数に基づいて位相の異なるパルス 信号を生成する少なくとも一対の回転数センサと、

前記一対の回転数センサの各々から入力した2つのパル ス信号を基に前記覆材の移動方向を判定すると共に該覆 材の位置を検出する位置検出手段とを備え、

前期位置検出手段は、一方の前記回転数センサがエッジ を検出したときの他方の前記回転数センサの信号レベル 10 により前記電動モータの回転方向を判断することを特徴 とする開口覆材の開閉制御装置。

【請求項2】 前期位置検出手段は、判断された前記回 転方向が反転を複数回繰り返したとき前記回転数センサ の異常と判断することを特徴とする請求項1に記載の開 口覆材の開閉制御装置。

【請求項3】 前記パルス信号の周期を計時する計時手 段を備え、

前記位置検出手段は、前記計時手段により計時された前 記周期が所定周期より小さいときそのパルス信号はノイ 20 ズであると判断することを特徴とする請求項1又は請求 項2に記載の開口覆材の開閉制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、例えば自動車の 窓等の開口に設けられるサンルーフやパワーウインドウ 等の覆材の開閉制御を行う開口覆材の開閉制御装置に関 するものである。

[0002]

【従来の技術】従来、例えば自動車の窓等の開口に設け 30 られるサンルーフやパワーウインドウ等の開口覆材を、 運転者のスイッチ操作に応じて開閉制御する開口覆材の 開閉制御装置を備えるものがある。例えば、特公平5-25686号公報にはサンルーフをチルト開閉およびス ライド開閉するサンルーフ開閉制御装置が提案されてい る。このようなサンルーフでは、電動モータとドライブ ユニットによってチルト開閉及びスライド開閉を順次行 うようにされており、完全に閉じた状態の全閉位置を中 心に、電動モータを一方向に回転させることでチルト開 方向、逆方向へ回転させることでスライド開方向へとサ 40 ンルーフは制御される。

【0003】また、近年では、サンルーフやパワーウイ ンドウに人や物が挟み込まれたことを検知し、その開閉 動作を停止又は反転させる挟み込み防止機能を備えたも のもある。この種の開閉制御装置では、サンルーフやパ ワーウインドウ等の覆材が停止又は反転した状態から次 の動作に移るために開閉制御する上で、覆材の位置検出 が必要である。上記のような電動モータによる開閉制御 装置では、所定位置を基準とした電動モータの回転方向 及び回転数を順次検出して計数することで、覆材の位置 50

を検出することができる。

【0004】従来、覆材の位置検出方法としては、例え ば、モータの回転軸に取り付けた磁石を検出するホール IC(回転数センサ)を使用し、ホールICから入力さ れるパルス信号のエッジを計数して覆材の位置を検出す。 るものがあった。この位置検出方法では、サンルーフの 開閉方向の判定はモータの正転・逆転・停止を制御する リレーのオン/オフ状態を見て行い、モータの停止や回 転方向の切り替わりを把握しながら位置カウンタの計数 処理を行っていた。

[0005]

【発明が解決しようとする課題】しかしながら、上記従 来の位置検出方法は、モータの停止や反転のタイミング をリレーのオン/オフ状態から判断していたため、モー タの停止や反転を判定してからも、実際にはモータはわ ずかな期間は惰性回転しており、この惰性回転分が位置 カウンタに計数されない場合があった。また、パルス信 号に乗ったノイズを誤って計数する計数エラーも心配さ れていた。

【0006】このため、ホールIC等のパルス信号を生 成するセンサの他に、サンルーフの絶対位置を検出する 位置検出スイッチを設け、位置カウンタの計数値(サン ルーフ位置) を位置検出スイッチの検知信号を基に補正 するようにしていた。特に、位置検出スイッチなどの位 置補正用センサはモータおよび制御ユニットの配設位置 から離れた位置に配置される場合も多く、位置検出スイ ッチが増えるだけでなく長いハーネス等が必要であっ た。このように従来装置では、ホールIC等のセンサと は別に位置補正用センサを設けなければならなかったた め、センサ類の組付点数の増加(ハーネス等も増加)に よる装置の複雑化および大型化、制御内容の複雑化、組 み立て工数増加による製造効率低下などの不都合を招き やすいという問題点があった。

[0007] これに対して、本出願人は特願2000-70339号において、位置検出スイッチを使用せず、 互いに位相の異なる2つ(あるいはそれ以上)の回転数 センサを使用することで、回転方向によって2つのセン サの入力順序が異なることを利用して回転方向を決定す る方法を提案している。これは、第1センサと第2セン サに現れるエッジの方向(上昇あるいは下降)とそのタ イミングの順序によって回転方向を決定するものであ り、例えば、第1センサ→第2センサの順で共に上昇エ ッジが現れたら正回転等というように、第1センサの前 回エッジ方向と第2センサの今回エッジ方向の順番によ り回転方向を決定する。さらに、決定された各回転方向 へのエッジの数をカウントすることで各方向へのモータ の回転量を把握できるので、これによって覆材の絶対位 置を判定するものである。

[0008]しかしながら、例えば、挟み込みが発生し て急激な停止あるいは反転が行われた場合等の記憶が曖

る。 【0014】上記目的を達成するために、請求項3に記

昧となった状況では、前回のエッジ方向が特定できなく なるおそれがある。上記の方法では前回のエッジ方向を 利用して回転方向を決定しているので、このような場合 に今回最初に検出したエッジの処理が定義できず、位置 ずれの要因となってしまう。さらに、回転方向検出、位 置カウントの増減およびセンサの異常判定を同時に成立 させるには、複雑な条件分析が必要となるので処理が煩 雑であるという問題点があった。

載の発明は、請求項1又は請求項2に記載の開口覆材の 開閉制御装置において、パルス信号の周期を計時する計 時手段を備え、位置検出手段は、計時手段により計時さ れた周期が所定周期より小さいときそのパルス信号はノ イズであると判断することを特徴とするものである。

【0009】この発明は上記の事情に鑑みてなされたも のであって、その目的は、回転数センサを用いるだけ で、簡単な処理によって高精度の位置検出が可能となる 開口覆材の開閉制御装置を提供することにある。

【0015】上記の発明の構成によれば、計時手段によ ってパルス信号の周期が計時され、その周期が所定周期 より小さいときそのパルス信号はノイズであると判断さ れる。モータにはそれぞれ所定範囲の回転数があり、そ れを大きく越えて回転することはあり得ない。つまり、 モータの回転周期が所定周期範囲より小さいことはあり 得ないので、所定周期より小さい周期でパルス信号が発 生している場合は、その信号はノイズによるものと判断 できる。従って、余計なノイズを回転数としてカウント することがないので、さらに高精度に覆材の位置検出が 可能となる。

[0 0 1 0]

[0016]

【課題を解決するための手段】上記目的を達成するため に、請求項1に記載の発明は、開口を開閉する覆材を駆 動する電動モータと、電動モータの回転数に基づいて位 相の異なるパルス信号を生成する少なくとも一対の回転 数センサと、一対の回転数センサの各々から入力した2 つのパルス信号を基に覆材の移動方向を判定すると共に 該覆材の位置を検出する位置検出手段とを備え、位置検 20 出手段は、一方の回転数センサがエッジを検出したとき の他方の回転数センサの信号レベルにより電動モータの 回転方向を判断することを特徴とするものである。

【発明の実施の形態】以下、本発明の開口覆材の開閉制 御装置を具体化した一実施の形態を図面を参照して詳細 に説明する。図1は、本実施の形態に係るサンルーフ開 閉制御装置1の概略構成を示すプロック図である。

【0011】上記の発明の構成によれば、少なくとも一 対の回転数センサが生成する位相の異なるパルス信号に よって電動モータの回転方向が判断される。その際、過 去のエッジを使用せず、エッジと同時に検出できる他方 のセンサの信号レベルを利用するだけでよいので、例え ば、挟み込みが発生して急激な停止あるいは反転が行わ れた場合等の過去の記憶が曖昧である状況でも即座に回 30 転方向が判断できる。従って、回転方向が常に正確に判 断できるので回転数の誤差が発生せず、高精度に覆材の 位置検出が可能となる。

【0017】図1に示すように、ドライブユニット2 は、図示しないサンルーフを開閉する電動モータ20と 電動モータ20の駆動を制御する制御装置3から構成さ れる。さらに、ドライブユニット2には、自動車に搭載 されたパッテリ21、イグニション(IG)スイッチ2 2、操作スイッチ23等が接続され、パッテリ21のプ ラス電位や各スイッチ22、23の信号が入力されてい る。制御装置3は、マイクロコンピュータ(マイコン) 10を中心として、マイコン10に電圧を供給する電源 回路11、操作スイッチ23からの信号を入力する入力 インターフェース (I/F) 回路12、電動モータ20 を駆動するためのリレー駆動回路13とリレー14、1 5、電動モータ20の回転を検出するためのホールIC 16、17と入力I/F回路18、19が接続されてい。 る。また、マイコン10には計時手段としてのタイマや 記憶手段としてのメモリ等が内蔵されている。

【0012】上記目的を達成するために、請求項2に記 載の発明は、請求項1に記載の開口覆材の開閉制御装置 において、位置検出手段は、判断された回転方向が反転 を複数回繰り返したとき回転数センサの異常と判断する ことを特徴とするものである。

> 【0018】操作スイッチ23は、自動車の室内に設け られて使用者がサンルーフの開閉操作をするためのもの であり、その操作方向に応じてオープン/ダウンあるい はクローズ/アップが入力されるか、あるいは中立位置 では共に入力されない。ここで、オーブン及びクローズ はスライド開閉に関する指示であり、ダウン及びアップ はチルト開閉に関する指示である。このサンルーフ開閉 制御装置1では、電動モータ20と図示しないギヤユニ ットとが一体に組み立てられ、ギヤユニットの出力軸が スライド機構及びチルト機構と作動連結されている。本 50 実施形態では、サンルーフが完全に閉止した全閉状態か

【0013】上記の発明の構成によれば、位置検出手段 によって判断されたモータの回転方向が反転を複数回繰 40 り返したとき回転数センサの異常と判断する。例えば、 一対の回転数センサのうちの一つが断線、ショート等の 異常により信号レベルが変化しない場合、上記の位置検 出方法によればエッジを検出する度にモータの回転方向 の反転と判断される。しかし、エッジ検出のタイミング でモータが複数回反転を繰り返すことは実際にはあり得 ないので、このような場合には回転数センサの異常と判 断する。従って、回転数センサの一つに異常が発生した 場合においても、即座に異常と判断されるので回転数の 誤差が発生せず、髙精度に覆材の位置検出が可能とな

40

50

5

ら、モータ20が正回転駆動されるとスライドオープンし、逆回転駆動されるとチルトアップする。すなわち、チルトアップ全開位置からモータ20の正回転駆動によって、チルトダウン→全閉→スライドオープンの順で移動し、スライドオープン全開位置からモータ20の逆回転駆動によって、スライドクローズ→全閉→チルトアップの順で移動する。操作スイッチ23は、オープン/ダウンによってモータ20の正回転駆動を、クローズ/アップによってモータ20の逆回転駆動を指示することとなる。

【0019】また、基準位置からの各方向へのモータ20の回転数は、ギヤユニットを介してサンルーフの移動距離に一対一に対応している。このことから、例えば全閉位置を原点として、正回転駆動を+方向、逆回転駆動を一方向としてモータ20の回転数を累積することで、原点(全閉)からのサンルーフの移動距離、すなわち、サンルーフの絶対位置が判断できる。つまり、サンルーフが基準位置にあるときのモータ20の回転数を基準として、モータ20の回転にしたがって回転数を累積して記憶しておくことで、その時のサンルーフの絶対位置が20把握できる。

[0020] 操作スイッチ23の信号は入力 I / F回路 12を介してマイコン10に入力され、マイコン10は この信号に応じてリレー駆動回路13を介してリレー1 4、15を駆動し、モータ20を駆動制御する。モータ 20の回転軸20aにはマグネット30が取り付けられ ており、モータ20の回転によってホールIC16、1 7を横切る磁束が変化する。この変化をホール I C 1 6、17で検出した出力が、入力 I / F 回路 18、19 を介してパルス信号としてマイコン10に入力される。 【0021】このパルス信号の例を図2に示す。ここで は、ホールIC16の出力信号をICa、ホールIC1 7の出力信号を I C b、上記の正回転を回転方向 C W、 逆回転を回転方向CCWと表記している。図2(a) は、ICaとICbのレベルの変化を示すグラフであ り、回転方向CWでは時間と共にこのグラフの左から右 へと各信号が変化し、回転方向CCWでは右から左へと 変化する。2つのホールIC16、17はその出力が図 2 (a) のようにエッジ位置がずれて検知されるように 配置され、図中の各数字1~6 および①~⑦は、I C a がエッジを検出したタイミングである。

[0022] また、図2(b)と(c)は、各回転方向でのICaエッジ位置におけるICa、ICbのレベルを表にしたものである。図2(b)の表40に示すように、回転方向CWでは、タイミング1~6でICaにエッジが検出され、タイミング1、3、5は上昇エッジ、タイミング2、4、6は下降エッジである。それらの時のICbは表40に示すとおりであり、ICaが上昇エッジの時にICbはHIレベルを検出する。同様に、図2

(c)の表41に示すように、回転方向CCWでは、タイミング②~⑦でエッジが検出され、タイミング③、⑥、⑦は上昇エッジ、タイミング②、④、⑥は下降エッジである。それらの時のICbは表41に示すとおりであり、ICaが上昇エッジの時にHIレベル、ICbが下降エッジの時にLOレベルを検出する。すなわち、ICaがエッジを検出したとき、そのエッジの方向と同時点でのICbのレベルを検出することにより、回転方向がCWであるかCCWであるかが判断できる。

【0023】従って、2つのホールIC16、17の出力から、その一方のエッジの方向と他方の信号レベルを同時に検出することで、即時にモータ20の回転方向が判断される。モータ20の回転方向の一方、ここでは回転方向CWを+方向として出現したエッジの回数を累積し、表40、41のカウント欄に示すように位置カウントとする。この位置カウントにより、モータ20の基準位置からの回転数がわかり、従って、サンルーフの絶対位置が把握できる。モータ20が回転方向CCWへ回転したときは、表41のカウント欄に示すようにそのエッジの回数を累積した位置カウントから減算していけばよい。

【0024】次に、図3にモータ20の回転方向が途中で変化した場合のホールIC16、17の信号の様子を示す。タイミング50までは回転方向CWであり、その後CCWに変化している。図3に示すように、タイミング51では、ICa:上昇、ICb:LOなので回転方向CWであり、次にエッジが検出されるタイミング52では、ICa:下降、ICb:LOとなって回転方向CCWであることがわかる。したがって、位置カウント値30はタイミング51までエッジ毎に+1し、タイミング52以降はエッジ毎に-1とすればよく、回転方向が途中で変化した場合でも位置カウントが正しく得られる。

【0025】次に、ホールIC16, 17のいずれかに 異常が発生した場合について、図4、図5を使用して説 明する。ホールIC16、17に、例えばショート、断 線等の異常が発生すると、そのICが発生する信号はH IまたはLOのままで変化しなくなる。図4に示したの は、ホールIC17の信号ICbがLOのままとなった 場合である。ICa、ICbは図4(a)のグラフに示 すようになり、図中各タイミング1~11での各信号レ ベルを図4(b)の表60に示す。この場合、表60に 示すように、タイミング1、5、9ではICa:下降、 ICb:LOなので回転方向CCW、タイミング3、 7、11ではICa:上昇、ICb:LOなので回転方 向CWと判断される。すなわち、エッジ毎に回転方向が 反転していることになる。実際には、このように頻繁に 回転方向が反転することはあり得ないので、反転の起き た回数をカウントして反転が所定回数連続したらホール IC17の異常と判断できる。

【0026】同様に、ホールIC16が異常である場合

を図5に示す。図5(a)に示すように、ICaがLOのままである。このとき、ICaのエッジは検出されないので、フローチャートを用いて後述するようにICbのエッジを利用する。すると、図5(b)に示すように、各エッジにおいて回転方向が反転したと判断され、したがって、ホールIC16の異常であることが、直ちに分かる。

【0027】次に、2つのホール I C16、17の信号 I Ca、I Cbのレベルを使用してその時のモータ 20 の回転方向を判断するための回転方向検出処理のフロー 10 fvートを図 6~14に示す。この回転方向検出処理 は、各信号 I Ca、I Cbが入力される度にマイコン 10 で実行されるものである。

【0028】図6に示すように、回転方向検出処理が実行されるとマイコン10は、まず、各ホールIC16、17の信号であるICa、ICbを入力I/F18、19を介して入力し(S101)、それらの値をマイコン10内に備えられる記憶装置に記憶する(S102)。続いて、ICaレベルがLOであるかHIであるかを判断して(S103)、LOであればICaレベルLO処20理を実行する(S104)。あるいは、HIであればICaレベルHI処理を実行する(S105)。

【0029】図7にICaレベルLO処理のフローチャートを示す。このICaレベルLO処理が実行されるとマイコン10はまず、内蔵する記憶装置から前回記憶したICaレベルを読み出す。読み出されたICa前回レベルがHIであるかどうかを判断し(S201)、HIであれば(S201:YES)、さらに前回記憶されたICaのエッジ方向を読み出し、上昇エッジであるかどうかを判断する(S202)。ICa前回エッジが上昇30であれば(S202:YES)、さらに既にカウントされたエッジ回数があるかどうかを判断する(S203:NO)、エッジ回数を1とする(S206)。

【0030】初めてのエッジでなければ(S203:Y ES)、周期カウントが所定の値(Ts)より大きいか どうかを判断する(S204)。周期カウントとはエッ ジとエッジの間の時間のことであり、この期間があまり に短い場合はノイズによるエッジと判断される。モータ 20の回転数には上限があり、上限を越えて速い回転は 40 あり得ないからである。周期カウントが所定の値Tsよ り大きい場合には(S204:YES)、正常なエッジ と判断されるので、その時の周期カウントをエッジ期間 として記憶し(S205)、エッジ回数を+1とする (S206)。さらに、今回のエッジはHI→LOと変 化しているので下降エッジであり(S207)、正常な エッジを検出したので周期カウントをクリアし(S20 8)、次のエッジまでの間隔を測定できるようにする。 【0031】次に、同時に入力されたICbレベルを調 ペ (S 2 0 9) 、H I であれば (S 2 0 9 : Y E S) 、

I Ca: 下降かつ ICb: H I なので前記したようにこの時のモータ 20 の回転方向は CW と判断される。従って、モータ 20 の累積回転数に相当するモータ回転カウントを +1 し(S210)、 ICa モータ回転を CW とする(S211)。ここで ICa モータ回転としたのは、 ICa のエッジを基準として判断されるモータ 20 の回転方向という意味である。続いて、図 9 に示す ICa の回転 CW 処理を実行する(S212)。

【0033】一方、I C a 前回レベルがL O である場合 (S 2 0 1:NO)、I C a 前回エッジが下降である場合 (S 2 0 2:NO)、周期カウントが所定値T s より大きくない場合 (S 2 0 4)の何れかの場合には、I C a はエッジでないと判断される。従って、マイコン10はI C b レベルに関する処理を行うために、I C b レベルがL O であるかどうかを判断する (S 2 1 6)。I C b レベルがL O であれば図11に示すI C b レベルL O 処理を実行し (S 2 1 7)、I C b レベルがH I であれば図12に示すI C b レベルH I 処理を実行する (S 2 1 8)。いずれも、これらの処理が終了したら、I C a レベルL O 処理を終了する。

【0034】つぎに、図6のメインルーチンにおいてI CaレベルがHIであった場合には(S103:N O)、図8に示すI CaレベルHI 処理が実行される。この処理は、I CaレベルL O処理とエッジ方向が逆であるだけでほぼ同様なので、簡単に説明する。

【0035】まず、I C a 前回レベルL O であり(S 3 01:YES)、I C a 前回エッジが下降であり(S 3 02:YES)、周期カウントがT s より大であれば(S 3 0 4)、エッジ回数を+1し(S 3 0 6)、上昇エッジとする(S 3 0 7)。さらに、I C b レベルに従ってI C a モータ回転方向を決定し(S 3 0 9)、I C a 回転C C W 処理(S 3 1 2)又は、I C a 回転C W 処理(S 3 1 5)を実行する。I C a がエッジでないと判断されたときは(S 3 0 1:NO、S 3 0 2:NO、S 3 0 4:NO)、I C b レベルによってI C b レベルL O 処理(S 3 1 7)又は、I C b レベルH I 処理(S 3 1 8)を実行する。

 $[0\ 0\ 3\ 6]$ 次に、ICa レベルLO処理(図7)、ICa レベルHI 処理(図8)においてICa モータ回転がCW と判断された場合に実行されるICa 回転CW 処理を図9 のフローチャートに従って説明する。

【0037】 I Ca回転 CW 処理が実行されると、マイ コン10は、まず、記憶装置に記憶されている前回の I Caモータ回転方向がCWであったかどうかを判断する (S401)。前回が今回と同じ回転CWであった場合 は(S401:YES)、反転していないのでICaモ ータ反転カウントをクリアする(S402)。前回が回 転CWでなかった場合は(S401:NO)、今回回転 方向の反転が起こったと判断できるので、反転カウント を+1する(S403)。

【0038】次に、操作スイッチ23による指示に従っ 10 イマは、図9のICa回転CW処理のものと共通であ てモータ20を駆動するために、マイコン10がリレー 駆動回路13を介してリレー14、15に出力している モータ20の回転方向がCWであるかどうかを判断する (S404)。リレー駆動回路13への出力がCWであ れば(S404:YES)、ICaにより判断された回 転方向と同じであり、従って、ICaモータ回転方向の 異常はないと判断されるのでICaモータ回転方向異常 タイマをクリアする(S405)。一方、リレー駆動回 路13への出力がCWでない場合(S404:NO)、 ICaモータ回転方向と結果が食い違っている。しか し、挟み込みの検出などによって急にモータ20の停止 あるいは反転が行われた場合等には、惰性によってモー タ20がある程度回転を続けるため、即座に異常である と判断することはできない。従って、とりあえずICa モータ回転方向異常タイマを+1し(S406)、しば らく様子を見る。

【0039】ICaによるエッジがカウントされ、この ICa回転CW処理が実行される度に回転方向異常と判 断されると上記のICaモータ回転方向異常タイマが蓄 積される。そこで、ICaモータ回転方向異常タイマが 30 所定の閾値TAを越えているかどうかを判断する(S4 07)。TAを越えていれば(S407:YES)、回 転方向異常が続いているということであり、異常処理を 行う(S408)。

[0040] また、S403でカウントされるICaモ ータ反転カウントも、このICa回転CW処理が実行さ れる度に蓄積されることがある。つまり、ICaのエッ ジ毎に回転方向が反転していると判断された場合であ り、図4で示したようにICbレベルの変化がない場合 である。従って、ICaモータ反転カウントが所定の閾 40 値NRを越えていれば(S409:YES)、ICbの 異常であると判断されるので、ICb異常処理を行う (S410)。一方、ICaモータ回転方向異常タイマ もICaモータ反転カウントも蓄積していなくて、いず れも異常でないと判断された場合は(S407:NO、 S409:NO)、何もせずにこのICa回転CW処理 を終了する。

【0041】次に、ICaレベルLO処理(図7)、I CaレベルHI処理(図8)においてICaモータ回転 がCCWと判断された場合に実行されるICa回転CC 50 ICaレベルがLOであれば(S605:YES)、I

W処理を図10のフローチャートに従って説明する。こ の処理は回転方向が異なるのみで図9のICa回転方向 CW処理とほぼ同様であるので、ごく簡単に説明する。 【0042】前回のICaモータ回転方向がCCWでな ければ(S501:NO)、ICaモータ反転カウント を+1する(S503)。また、モータ20への出力が CCWでなければ(S504:NO)、ICaモータ回 転方向異常タイマを+1する(S506)。この、IC a モータ反転カウント及び I C a モータ回転方向異常タ る。さらに、これらの値がそれぞれの閾値を越えた場合 には(S507:YES、S509:YES)、それぞ れ異常処理を行う(S508、S510)

【0043】次に、ICaレベルLO処理(図7)、I CaレベルHI処理(図8)においてICaがエッジで なかった場合に、ICbレベルに応じて実行されるIC bレベルLO処理、ICbレベルHI処理を図11、図 12のフローチャートに従って説明する。

【0044】図11に示すように、ICbレベルLO処 20 理が実行されると、マイコン10は内蔵する記憶装置に 記憶されている前回のICbレベルを読み出し、そのI Cb前回レベルがHIであるかどうかを判断する(S6 01)。HIであれば (S601:YES)、さらに、 ICb前回エッジが上昇であるかどうかを判断する(S 602)。上昇であれば(S602:YES)、前回か ら今回のICbレベル(HI→LO)は、下降エッジで あると判断される(S603)。ICb前回レベルがし Oであるか(S601:NO)、ICb前回エッジが下 降であるか (S602:NO) の場合は、今回の I C b レベルはエッジではないと判断されるので、周期カウン トを+1して(S604)、このICbレベルLO処理 を終了する。この周期カウントは、ICaレベルLO処 理(図7)のS204またはICaレベルHI処理(図 8) のS304で閾値と比較して判断されるものであ り、ICaとICbがともにエッジではない信号の回数 を表している。

【0045】今回のICbレベルが下降エッジであると されたときには、続いてICaレベルがLOであるかど うかを判断する(S605)。ここまでは、ICaエッ ジを利用してモータ20の回転方向を判断する方法を説 明したが、ICbレベルのエッジを利用しても同様に回 転方向を判断することができる。つまり、ICbエッジ の時のICaレベルによってモータ20の回転方向を判 断することもできる。図2のグラフからわかるように、 ICb:上昇かつICa:HI、またはICb:下降か つICa:LOの時にCW回転、ICb:上昇かつIC a:LO、またはICb:下降かつICa:HIの時に CCW回転と判断できる。

【0046】ここではICbエッジが下降であるので、

C b エッジによって判断されるモータ 2 0 の回転方向は C W 回転となる。そこで、モータ回転カウントを+1し (S 6 0 6)、I C b エッジによって判断されたモータ 2 0 の回転方向である I C b モータ回転を C W とし (S 6 0 7)、I C b 回転 C W 処理を実行して (S 6 0 8)、この処理を終了する。ここで、S 6 0 6を破線で表しているのは、I C a エッジによってモータ回転カウントがカウントされている場合には (図 7 の 2 1 0、2 1 3、図 8 の 3 1 0、3 1 3)、ここでカウントすると 2 重にカウントしてしまうので、この S 6 0 6 は実行さ 10 れないことを表している。I C a エッジによってカウントされていない場合にはここでカウントする。

【0048】次に、ICbレベルHI処理を図12のフローチャートに示す。これは、ICbレベルLO処理(図11)と、ICbレベルとICbのエッジ方向が異なるのみで同様の処理であり、図12のS701~S711は図11のS601~S611に対応しているので説明を省略する。

【0049】さらに、ICbVベルLO処理(図11)、ICbVベルHI処理(図12)において実行されるICb回転CW処理とICb回転CCW処理のフローチャートを図13と図14に示す。これらは、それぞれICa回転CW処理(図9)、ICa回転CCW処理 30(図10)と判断の基となった信号が $ICa \rightarrow ICb$ 、 $ICb \rightarrow ICa$ と変更されただけで全く同様の処理である。従って、図11の $S801 \sim S810$ は図9の $S401 \sim S410$ に、図12の $S901 \sim S910$ は図10の $S501 \sim S510$ に対応しているので説明を省略する。

【0050】以上詳細に説明したように、この実施の形態によれば、一対のホールIC16、17から同時に入力された信号ICa、ICbによって、何れかがエッジを示したときの他方のレベルに従ってモータ20の回転 40方向が判断される。これにより、過去のエッジの履歴が万一失われた場合でも、即座に回転方向が判断できる。また、挟み込み等によって、急激に停止、反転する等によりモータ20の回転方向が変化した場合においてもエッジが発生すると同時に回転方向が判断できるので、累積した回転数に誤差が発生しない。従って、高精度にサンルーフの絶対位置が検出される。

【0051】また、ホールIC16、17の何れかに異常が発生した場合においては、その出力信号のレベルが変化しなくなることから、回転方向の反転の繰り返しと 50

判断される。従って、回転方向の反転をカウントしておき、その繰り返し回数が所定の閾値NRより大きくなった場合にホールIC16あるいは17の異常と判断することができる。これにより、ホールIC16、17の異常がすばやく容易に発見できる。

【0052】また、モータ20の回転数には上限があるので、ICa、ICbのエッジ間隔には下限がある。そこで、ICa、ICbのエッジの間隔を周期カウントとし、周期カウントが所定の閾値Ts以下である場合には、ノイズであってエッジではないと判断している。これにより、あり得ない間隔のエッジを除くことができ、累積した回転数の誤差が発生しない。従って、さらに高精度にサンルーフの絶対位置が検出される。

【0053】尚、この発明は前記実施の形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で変更して実施することができる。

[0054]

【発明の効果】請求項1に記載の発明の構成によれば、少なくとも一対の回転数センサが生成する位相の異なるパルス信号によって、過去のエッジを使用せず、エッジと同時に検出できる他方のセンサの信号レベルを利用するだけで電動モータの回転方向が判断される。従って、回転方向が常に正確に判断できるので回転数の誤差が発生せず、高精度に覆材の位置検出が可能となる。

【0055】請求項2に記載の発明の構成によれば、位置検出手段によって判断されたモータの回転方向が反転を複数回繰り返したとき回転数センサの異常と判断する。従って、回転数センサの一つに異常が発生した場合においても、即座に異常と判断されるので回転数の誤差が発生せず、高精度に覆材の位置検出が可能となる。

【0056】請求項3に記載の発明の構成によれば、計時手段によってパルス信号の周期が計時され、その周期が所定周期より小さいときそのパルス信号はノイズであると判断される。従って、余計なノイズを回転数としてカウントすることがないので、さらに高精度に覆材の位置検出が可能となる。

【図面の簡単な説明】

【図1】本実施の形態に係るサンルーフ開閉制御装置の 概略構成を示すブロック図である。

【図2】2つのホールICの信号を示すグラフと表である。

【図3】モータの回転方向が変化した場合のホール I C の信号を示すグラフである。

【図4】1つのホールICに異常が発生した場合のホールICの信号を示すグラフと表である。

【図5】1つのホールICに異常が発生した場合のホールICの信号を示すグラフと表である。

【図6】回転方向検出処理を示すフローチャートである。

【図7】ICaレベルL〇処理を示すフローチャートで

ある。

【図8】ICaレベルHI処理を示すフローチャートで ある。

【図9】 ICa回転CW処理を示すフローチャートである。

【図10】 I Ca回転CCW処理を示すフローチャートである。

【図11】ICbレベルLO処理を示すフローチャート である

【図12】 I C b レベルH I 処理を示すフローチャート 10 である。

【図13】 ICb回転CW処理を示すフローチャートである。

【図14】 I C b 回転 C C W 処理を示すフローチャートである。

【符号の説明】

- 1 サンルーフ開閉制御装置
- 3 制御装置
- 10 マイクロコンピュータ
- 16 ホールIC
- 17 ホールIC
- 20 電動モータ

【図1】

[図2]

回転方向CW→

[図6]

[図3]

【図4】

異常かりと

[図5]

[図7]

[図8]

(10)

[図9]

【図10】

[図11]

[図12]

【図13】

I C P 回徑 C M 於理

前回ICbモータ 回転:CW

YES /

-夕出力:CW回転

YĘs (

1 C bモータ回転方向 異常タイマ: 0

【Cbモータ回転方向 異常タイマ>TA

YES -

回転方向異常

1 C b モータ反転 カウント>NR

ICa異常

RETURN

YES __ \$810

ICbモータ 反転カウント:0

ICa異常

RETURN

フロントページの続き

(51) Int. Cl. '	識別記号	FΙ			テーマコート	(参考)
GOID 5/245	102	G01D 5/245	102	Α		
			102	Ð		
GO1P 13/04		G01P 13/04		Α		
HO2P 5/06		H02P 5/06		M		
				S		
7/06	•	7/06		G		•

Fターム(参考) 2E052 AA09 BA02 EA14 EA15 GA10 GB06 GB12 GD03 GD09 HA01 KA13

2F034 AA09 EA01 EA04 EA12 EA21

2F063 AA02 AA50 BB10 BC04 BD01

BD16 CAO2 CAO3 DAO1 DAO5

DD03 GA52 JA10 KA02 LA01

LA02 LA15 LA19 LA22 LA29

2F077 AA03 AA37 AA49 CC02 JJ08

PP12 QQ05 TT06 TT52 TT57

TT72

5H571 AA03 CC02 EE02 FF09 HA04

LL01 LL31 LL39