

CORRELATION

GyanData Private Limited

Preliminaries

- *n* observations for *x* and *y* variables (x_i, y_i)
- Sample means \bar{x} and \bar{y}

• Sample means
$$x$$
 and y

$$\bar{x} = \frac{\sum x_i}{n} \quad \bar{y} = \frac{\sum y_i}{n}$$
• Sample variances S_{xx} and S_{yy}

$$S_{xx}=rac{1}{n}\sum(x_i-ar{x})^2$$
 $S_{yy}=rac{1}{n}\sum(y_i-ar{y})^2$ • Sample covariance S_{xy}

$$S_{xy} = \frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})$$

Correlation

- Correlation: the strength of association between two variables
- · Correlation does not imply causation
- Visual representation of correlation: Scatter grams

Data Analytics

GyanData Private Limited

Pearson's Correlation

- *n* observations for *x* and *y* variables (x_i, y_i)
- Pearson's product-moment correlation coefficient (r_{xy})

$$r_{xy} = \frac{\Sigma x_i y_i - n\bar{x}\bar{y}}{\sqrt{(\Sigma x_i^2 - n\bar{x}^2)}\sqrt{(\Sigma y_i^2 - n\bar{y}^2)}} = \frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$$

- r_{xy} takes a value between -1 (negative correlation) and 1 (positive correlation)
- r_{xy} = 0 means no correlation

Pearson's Correlation (Cont.)

- Example: Nonlinear
 - x = 125 equally spaced values between $[0, 2\pi]$
 - \circ y = cos(x)
 - $r_{xy} = -0.0536$
- Example: Nonlinear
 - \circ x = 0:0.5:20; y = x²; $r_{xy} = 0.967$
 - $\circ x = -10:0.5:10; y = x^2; r_{xy} = 0.0$

Data Analy

GyanData Private Limited

Spearman Rank Correlation

- Degree of association between two variables
- · Linear or nonlinear association
- · x increases, y increases or decreases monotonically

Ø ® © Data Analy

10

Spearman Rank Correlation

$$r_s = 1 - \frac{6\Sigma d_i^2}{n(n^2 - 1)}$$

• Spearman rank correlation computation for n observations: $r_s = 1 - \frac{6\Sigma d_i^2}{n(n^2-1)}$ d_i is the difference in the ranks given to the two variables values for each item of the data

• Example:

Number	1	2	3	4	5	6	7	8	9	10
X_1	7.	6	4	5	8	7	10	3	9	2
Y_1	5	4	5	6	10	7	9	2	8	1
Rank X1	6.5	5	3	4	8	6.5	10	2	9	1
Rank Y1	4.5	3	4.5	6	10	7	9	2	8	1
d ²	4	4	2.25	4	4	0.25	1	0	1	0

$$r_s = 0.88$$

GyanData Private Limited

Spearman Rank Correlation

- r_s takes a value between -1 (negative association) and 1 (positive association)
- $r_s = 0$ means no association
- Monotonically increasing $r_s = 1$
- Monotonically decreasing $r_s = -1$
- · Can be used when association is nonlinear
- Can be applied for ordinal variables

Kendall rank correlation coefficient

- Correlation coefficient to measure association between two ordinal variables
- Concordant Pair: A pair of observations (x_1, y_1) and (x_2, y_2) that follows the property $x_1 > x_2$ and $y_1 > y_2$ or $x_1 < x_2$ and $y_1 < y_2$
- Discordant Pair: A pair of observations (x_1, y_1) and (x_2, y_2) that follows the property $x_1 > x_2$ and $y_1 < y_2$ or $x_1 < x_2$ and $y_1 > y_2$

Data Analytics

Kendall rank correlation coefficient

• Kendall rank correlation coefficient

$$\tau = \frac{\text{Number of concordant pairs-Number of discordant pairs}}{n(n-1)/2}$$

• The pair for which $x_1=x_2$ and $y_1=y_2$ are not classified as concordant or discordant and are ignored.

Data Analyt

GyanData Private Limited

Kendall rank correlation coefficient

Example: Two experts ranking on food items

	Items	Expert I	Expert 2	1				1				
	1	1	1	2	C							
ń	2	2	3	3	С	С						
	3	3	6	4	С	D	D					
	4	4	2	5	С	С	С	C				
	5	5	7	6	С	С	D	С	D			
	6	6	4	7	С	С	D	C	D	С		
	7	7	5		1	2	3	4	5	6	7	

$$\tau = \frac{15 - 6}{21} = 0.42857$$

