密码学第一次作业

1.

(a)

1. shift:

Gen: chooses a uniform k depend on security parameter

Enc: $c_i = (m_i + k) \mod 256$

Dec: $m_i = (c_i - k) \ mod \ 256$

2. Vigenere ciphers

Gen: Choose a random period: this can be chosen uniformly in a fixed set of some size, or it can be chosen according to some valid probability distribution over the integers (e.g., assign the length 5+i with probability 2^{-i}). Denote the chosen period by t. For i=0,...,t-1 choose uniform k_i in $\{1,...,255\}$. Output the key $k=k_0,...k_{t-1}$

Enc: Given a plaintext $p=p_0,...,p_n$ and a key $k=k_0,...,k_{t-1}$,set $c_i:=[p_i+k_i \ mod \ t] \ mod \ 256]$. Output $c_0,...c_n$.

Dec: Given a ciphertext $c_0,...c_n$ and a key , set $p_i:=[c_i-k_i \ mod \ t] \ mod \ 256]$. Output $p=p_0,...,p_n$

(b)

1. shift:

Ask for the encryption of any plaintext character p and let c be the ciphertext character returned; the key is simply $k:=[c-p \ mod \ 256].$

2. Vigenere ciphers

If the period t is known then the encryption of a plaintext of length t (consecutive) suffices to recover the entire key.

2.

Encryption scheme Π is perfectly secret, so Π is indistinguishable.

Thus, we have Pr[M=m|C=c]=Pr[M=m] and Pr[M=m'|C=c]=Pr[M=m']

every message $m,m'\in M$,we can get Pr[M=m]=Pr[M=m']

So
$$Pr[M=m|C=c]=Pr[M=m'|C=c]$$

3.

(a)

Perfect security equals $Pr[Enc_K(M=m)=c]=Pr[Enc_K(M=m')=c]$

If the message is 0, then the ciphertext is 0 if and only if $k \in 0, 5$. So $Pr[Enc_K(0) = 0] = 1/3$. If the message is 1, then the ciphertext is 0 if and only if k = 4. So $Pr[Enc_K(1) = 0] = 1/6 \neq Pr[Enc_K(0) = 0]$

(b)

Prove that this is perfectly secret by analogy with the one-time pad.

4.

- (a) Define A as follows: A outputs $m_0=aab$ and $m_1=abb$. When given a ciphertext c, it outputs 0 if the first character of c is the same as the second character of c, and outputs 1 otherwise. Compute $Pr[PrivK_{A,\Pi}^{eav}=1]$.
- (b) Construct and analyze an adversary A' for which $Pr[PrivK^{eav}_{A',\Pi}=1]$ is greater than your answer from part (a).

5

If $s=0^n$, then $G(s)=0^{2n}$, while $TRG(s)=\{0,1\}^{2n}$, for the attacker, it is no indistinguishable . so it is no a pseudorandom genenerator.

6

- (a) F' is a pseudorandom function. A formal proof is omitted, but relies on the observation that distinct queries to F'_k result in distinct queries to F_k
- (b) F' is not a pseudorandom function. To see this, consider queryingon the two inputs 0^{n-1} and $0^{n-2}1$. We have

$$F_k'(0^{n-1}) = F_k(0^n) ||F_k(0^{n-1}1)||$$

and

$$F'_k(0^{n-2}1) = F_k(0^{n-1}1)||F_k(0^{n-2}1^2)|$$

note that the second half of $F_k'(0^{n-1})$ is equal to the first half of $F_k'(0^{n-2}1)$.

Formally, define the following attacker A given 1^n and access to some function g:

 $A^{g}(1^{n})$:

- Query $y_0 = g(0^{n-1})$ and $y_1 = g(0^{n-2}1)$
- Output 1 if and only if the second half of y_0 is equal to the first half of y_1

As shown above, we have $Pr_{k\leftarrow\{0,1\}^n}[A^{F_k'(\cdot)}(1^n)=1]=1$. But when g is a random function then y_0 and y_1 are independent, uniform strings of length 2n, and so the probability that the secondhalf of y_0 is equal to the first half of y_1 is exactly 2^{-n} . Thus, $Pr_{f\leftarrow Func}[A^{f(\cdot)}(1^n)=1]=2^{-n}$, and the difference

$$|Pr_{k \leftarrow \{0,1\}^n}[A^{F_k'(\cdot)}(1^n) = 1] - Pr_{f \leftarrow Func}[A^{f(\cdot)}(1^n) = 1]|$$

is not negligible.

7

- (a) This scheme does not even have indistinguishable encryptions in the presence of an eavesdropper because the ciphertext doesn't depend on the key. An eavesdropper can easily compute m from $c=\langle r,s\rangle$ by computing $m:=G(r)\oplus s$.
- (b) This scheme has indistinguishable encryptions in the presence of an eavesdropper. To see this, note that $F_k(0^n)$ is pseudorandom and so a proof of this fact follows from the proof of Theorem 3.18. The scheme is not CPA-secure because encryption is deterministic
- (c) This scheme is CPA-secure. A proof of this is very similar to the proof of Theorem 3.31 except that Repeat denotes the event that r-1,r or r+1 is chosen in another ciphertext.