

FIG. 1 PRIOR ART

FIG. 2 PRIOR ART

FIG. 3 PRIOR ART

FIG. 4 PRIOR ART

FIG. 5 PRIOR ART

FIG. 6 PRIOR ART

FIG. 7 PRIOR ART

FIG.8

FIG. 10

FIG. 11

FIG. 12

RMAINI: i-TH WORD LINE DRIVER RADDI: i-TH ROW ADDRESS DECODER

RDECADS: WORD LINE DRIVER SELECTING SIGNAL

i=1.2.3.4. · · ·

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

PROGRAM OF EVEN PAGE DATA

FIG. 21

PROGRAM OF ODD PAGE DATA

FIG. 22

FIG. 23

FIG. 24

READ OF EVEN PAGE DATA

FIG. 25

FIG. 26

READ OF ODD PAGE DATA

FIG. 27

PROGRAM OPERATION OF EVEN PAGE DATA

FIG. 28

PROGRAM WHEN LSB, WLs NEIGHBORING SELECTED WL SET Vss PROGRAM COMPLETION DETECTION IS OPERATED TOO IN PERIOD CCLK1~10

FIG. 29

PROGRAM OF EVEN PAGE DATA (SUPPLY PROGRAM PULSE)

FIG. 30

FIG. 31

PROGRAM OF EVEN PAGE DATA ("10" VERIFY READ)

FIG. 32

PROGRAM COMPLETION DETECTION

PERIOD CCLK5~9 IS OMITTED IN EVEN PAGE(NOTES:CCLK5=CCLK9)
PERIOD CCLK5~9 IS OPERATED IN ODD PAGE

FIG. 33

PROGRAM OF EVEN PAGE DATA (PROGRAM COMPLETION DETECTION)

FIG. 34

FIG. 35

INTERNAL DATA LOAD 1ST/3RD QUARTER CASE OF ODD PAGE PROGRAMMING --1ST QUARTER -3RD QUARTER **RCLK** SCLK **ILCLK** 13 15 17/1 16| 101112;14 SGD iVread iii CG_unselect iVcgr10i i CG_select SGS **BLCRL** BLe iVss i t BLo **CELSRC BIASe BIASo** Vsghh<u>iiii i</u> **BLSe** Vsghh Vss : **BLSo** VcImp Vsence **BLCLMP** Vdd **BLPRE** BLC ¦Vsg **nPRST** SEN LAT REG1 iVss REG2 DTG1 าีVsg DTG2 **BOOT CAPCRG VREG** COMHn **BSTON VRDEC** ¦VsgHH TransferG1, 2 VsgHH **ROWGATE** Vdd i i Vss i i ROWERASE1, 2 ROWPROG1, ROWERASE3n FIG. 36

PROGRAM OF ODD PAGE DATA (INTERNAL DATA LOAD 1ST QUARTER) 2 DRAM CELL LATCH ←Nbij CAP2ij CIRCUIT DLN(C2), TN2 FLOATING **←**Naij LATCH1 (4) DRAM CELL CAP1 i j DLN(C1), TN5 FLOATING DTNij(NAij) 1 Vread-Vcgr 10—IIL (SELECTED CELL) --> MOVEMENT OF ODD PAGE DATA Vread-→ MOVEMENT OF EVEN PAGE DATA Vread-Vss EVEN PAGE DATA "1" "0"

FIG. 38

DTNij(Naij)

PROGRAM OF ODD PAGE DATA (INTERNAL DATA LOAD 2ND QUARTER)

FIG. 39

PROGRAM OF ODD PAGE DATA (INTERNAL DATA LOAD 3RD QUARTER)

FIG. 40

PROGRAM OF ODD PAGE DATA (INTERNAL DATA LOAD 4TH QUARTER)

FIG. 41

FIG. 42

PROGRAM OF ODD PAGE DATA ("01" VERIFY READ)

```
• "11", "10"-PROGRAMMING-→"H"(ODD PAGE DATA "1")
     • "00", "01"—PROGRAMMING (DEFICIENT) → "L"(ODD PAGE DATA "0")
     • "01"-PROGRAMMING (SUFFICIENT)\rightarrow"H"(ODD PAGE DATA "0"\rightarrow"1")
     * "00"-PROGRAMMING (SUFFICIENT) → "10"-PROGRAMMING
       (ODD PAGE DATA "O"→"1")
                            COM i
                                                      LATCH
              FLOATING
                          CAP2ijDRAM CELL
                                   DLN(C2), TN2
                                                      CIRCUIT
                   TN1
                                                      LATCH1
                           CAP1ijDRAM CELL
                                  DLN(C1), TN5
                                   DTNij(Naij)
       Vread #
   Vcgv 01—IIC (SELECTED CELL)
     Vread --- |
       Vread-
              Vss
            "11", "10"-
                          "00"-PROGRAMM I NG
                                                  "01"-PROGRAMMING
           PROGRAMMING
             "11", "10"
 STATE OF
                           "00"
                                       "00"
                                                   "01"
                                                               "01"
                        DEFICIENT SUFFICIENT DEFICIENT SUFFICIENT
 SELECTED
 CELL
 BIT LINE
                                                                 Н
                L
                                        L
                            L
DTNij(Naij)
                Н
                                         Н
                           NO DATA CHANGE
                                                        CHANGE OF ODD
                                                        PAGE DATA
                                                        "0"→"1"
                                          TO LATCH CIRCUIT LATCH1 -
```

FIG. 43

FIG. 44

```
PROGRAM OF ODD PAGE DATA ("00" VERIFY READ)
      • "11", "10"-PROGRAMMING--"H" (ODD PAGE DATA "1")
      • "00", "01"-PROGRAMMING (DEFICIENT) → "L" (ODD PAGE DATA "0")
      • "00"-PROGRAMMING (SUFFICIENT)-→"H"(ODD PAGE DATA "0"-→"1")
     *"01"-PROGRAMMING (SUFFICIENT) →"11"-PROGRAMMING
        (ODD PAGE DATA "O"→"1")
                     Vdd
                         COMi
          CAPCRG
                          CAP2ii
                                     DRAM CELL
                                                          LATCH
      Vss•
                                     DLN(C2), TN2
                                                          CIRCUIT
            TN4
                                                          LATCH1
                          CAP1 i j
                                     DRAM CELL
          TN3~
                                     DLN(C1), TN5
                        IFREG2
                 REG1
                       "11". "01"—PROGRAMMING→"H"(EVEN PAGE DATA"1")
"10", "00"—PROGRAMMING→"L"(EVEN PAGE DATA"0")
                                        DTNij(Naij)
    Vread <del>∥</del>
Vcgv 00 <del>IIC</del> (SELECTED CELL)
  Vread-IIE
    Vread<del>-I</del>
           Vss
             "11", "10"-
            PROGRAMM I NG
                            "00"-PROGRAMMING
                                                      "01"-PROGRAMMING
              "11", "10"
 STATE OF
                             "00"
                                          "00"
                                                       "01"
                                                                    "01"
  SELECTED
                         DEFICIENT SUFFICIENT DEFICIENT SUFFICIENT
 CELL
 BIT LINE
                     L
                                           H
                                                     H OR L
                                                                     H
    DTNij
   PERIOD '
                     L
                                           Н
                                                                     L
  REG1="H"/
    DTNij
   PERIOD \
                  Н
                                           Н
  REG2="H"
                NO DATA CHANGE
                                    CHANGE OF ODD
                                                       NO DATA CHANGE
                                    PAGE DATA
                                                               TO LATCH
                                    "0"→"1"
                                                               CIRCUIT
                                FIG. 45
                                                               LATCH1
```


FIG. 46

ERASE VERIFY READ

VERIFY OF EVEN COLUMN→ALL DETECTION→DETECTION OF FAIL CELL NUMBER(Y—SCAN)→VERIFY OF ODD COLUMN→ALL DETECTION→DETECTION OF FAIL CELL NUMBER(Y—SCAN)

ERASE COMPLETION DETECTION **CCLK** 1 2 Vss SGD CG unselect Vss Vss CG select SGS Vss **BLCRL** Vss Vss Ble Vss BLo **CELSRC** Vss Vdd Vdd **BLASe** Vss **BLASo** Vss **BLSe BLSo** Vss Vss **BLCLMP BLPRE** Vss **BLC** Vsg **nPRST** Vdď Vdd SEN Vdd LAT Vss REG1 REG2-0 REG2-1 REG2-3 DTG1 Vss Vss DTG2 Vdd **BOOT** Vsg **CAPCRG VREG** COMHn **NCOML COLPRE** LOCAL CLOCK DCLK1 2 3 0.10.3

FIG. 48

DRAM BURN-IN OPERATION

FIG. 49

REFRESH

FIG. 50

FIG. 52

FIG. 53

FIG. 54

FIG. 56

FIG. 57

FIG. 58

FIG. 59

F16.6

FIG. 62

FIG. 63

FIG. 64

FIG. 65

SUPPLY OF PROGRAM PULSE

FIG. 66

FIG. 67

SUPPLY OF PROGRAM PULSE Vss TGA_ TGC Vss Vss TGD_ Vss PREA Vss PREB. PREC Vsg Vsg PRED Vpgm CG1U_ CG2U~ CG1<u>6U</u> **V**pass Vdd SG1U_ Vss SG2U BLC Vdd ("1"-PROGRAMM ING) Vdd **BLA** Tpr4Tpr5Tpr6 (Tpr1 Tpr2Tpr3 Vss("0"-PROGRAMMING)

FIG. 68

TRANSFER OF PROGRAM DATA

FIG. 69

FIG. 70

SUPPLY OF PROGRAM PULSE Vss TGB_____ Vss TGC_____ Vss TGD_____ Vss **PREA** Vss PREB_ Vsg PREC PRED Vsg Vpgm CG1L_ CG2L~ CG1<u>6L</u> **V**pass Vdd SG1L_ Vss SG2L Vdd Vdd ("1"-PROGRAMMING) BLD BLB. Tpr4Tpr5Tpr6 Tpr2Tpr3 Tpr1 Vss ("0"-PROGRAMMING)

FIG. 71

FIG. 72

FIG. 73

FIG. 74

	STEP1-1	STEP1-2	STEP1-3	STEP1-4	STEP1-5	STEP1-1 STEP1-2 STEP1-3 STEP1-4 STEP1-5 STEP1-6 STEP1-7	TEP1-7
TrNA1	NO	0FF	0FF	NO	OFF	OFF	0FF
TrNA2	OFF	NO	OFF	OFF	NO	NO	0FF
TrNA3	OFF	0FF	NO	0FF	OFF	OFF	OFF
TrNB1	0FF→0N	0FF	OFF	0FF→0N	OFF	OFF	NO
TrNB2	OFF.	0FF→0N	OFF	OFF	0FF-→0N	NO	OFF
TrNB3	9FF	H-0	0FF→0N	0FF	OFF	- 0FF	0FF
CellA1	DATA LOA	DAT,	ENT I ON	REFRESI	PR	OGRAMMING-	DATA LOAD BETENTION REFRESH PROGRAMMINGFROM BLB1 TO DL
CellA2		DATA LOA	DBATA	NT I ON F	REFRESH	PROGRAMMIN	DATA LOADBETENTIONREFRESHPROGRAMMINGBETENTION
CellA3			DATA LOAI	D DATA	NT I ONP	POGRAMM I NO	DATA LOAD DATA DATA DATA LOAD RETENTION

DL : DATA LATCH (LATCH CIRCUIT IN DATA CIRCUIT)

FIG. 75

		STEP1-8	STEP1-9	STEP1-10	STEP1-11	STEP1-12
TrNA1		ON	OFF	0FF	OFF	0FF
TrNA2		OFF	0FF	ON	0FF	OFF
TrNA3		0FF	0FF	0FF	0FF	ON \
TrNB1		OFF→ON	0FF	0FF	0FF	OFF
TrNB2	$\ $	0FF	ON	OFF-→ON	0FF	OFF
TrNB3		0FF	0FF	0FF	ON	OFF→ON
CellA1		VERIFY -		DATA RE	TENTION	
CellA2		ATA ETENTION	LKAM RFR	2VERIFY -	DATA RETEI	NTION
CellA3		DATA RETENTION	TO DL		DATA TRANSFER FROM BLB: TO DL	

DL : DATA LATCH (LATCH CIRCUIT IN DATA CIRCUIT)

FIG. 76

		STEP1-13	STEP1-14	STEP1-15	STEP1-16	STEP1-17	7
TrNA1		0FF	ON	0FF	0FF	0FF	
TrNA2		OFF	0FF	0FF	ON	ON	
TrNA3		OFF	0FF	0FF	0FF	0FF	
TrNB1		ON	0FF	0FF	0FF	0FF	/
TrNB2		0FF	0FF	ON	0FF	ON	
TrNB3			0FF	0FF	0FF	0FF	\
CellA1		ATA RANSFER ROM BLB1 O DL	DATA TRANSFER FROM DL TO BLA1	DATA		PROGRAMMI	NG
CellA2	$\left\ \cdot \right\ $	DATA RETENTI	ا ON F	RANSFER FROM BLB2 O DL	DATA TRANSFER FROM DL TO BLA2	PROGRAMMII	NG
CellA3			D T.			- PROGRAMMIN	٧G

DL : DATA LATCH (LATCH CIRCUIT IN DATA CIRCUIT)

FIG. 77

FIG. 78