(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 11. Oktober 2001 (11.10.2001)

(10) Internationale Veröffentlichungsnummer WO 01/74753 A1

- C07C 69/94, (51) Internationale Patentklassifikation7: 65/105, C07D 333/28. A61K 31/235, 31/44, 31/381, A61P 43/00, C07D 213/30, 307/54, 307/80, 213/55, 233/54, 213/20, 215/14, 215/10, 217/24, 213/74, 231/16, 249/08, 239/54, 239/26, 213/64, 261/10, 265/06, 311/16, 311/92, 317/60, 277/32, 277/42, 333/24
- (21) Internationales Aktenzeichen:

PCT/DE01/01264

(22) Internationales Anmeldedatum:

30. März 2001 (30.03.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 100 15 525.1

30. März 2000 (30.03.2000)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): DEUTSCHES KREBSFORSCHUNGSZEN-TRUM STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE]; Im Neuenheimer Feld 280, 69120 Heidelberg
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): GERHÄUSER, Clarissa [DE/DE]; Langgewann 28, 69121 Heidelberg (DE), EICHER, Theophil [DE/DE]; Am Botanischen Garten 1, 66123 Saarbrücken (DE). PICK, Rigobert [DE/DE]; Hauptstrasse 19, 66606 St. Wedel (DE).

- (74) Anwalt: SCHÜSSLER, Andrea; Huber & Schüssler, Truderinger Str. 246, 81825 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgahe der PCT-Gazette verwiesen.

(54) Title: SYNTHETIC DERIVATIVES OF LUNULARIC ACID, MEDICAMENTS CONTAINING SAID COMPOUNDS, METHOD FOR PRODUCING THE LUNULARIC ACID DERIVATIVES AND THE USE THEREOF

(54) Bezeichnung: SYNTHETISCHE DERIVATE VON LUNULARSÄURE, ARZNEIMITTEL ENTHALTEND DIESE VER-BINDUNGEN, VERFAHREN ZUR HERSTELLUNG DER LUNULARSÄUREDERIVATE SOWIE DEREN VERWENDUNG

- (57) Abstract: The invention relates to lunularic acid derivatives which are suitable as chemopreventive agents.
- (57) Zusammenfassung: Die Erfindung betrifft Lunularsäurederivate, die sich als chemopräventive Agentien eignen.

WO 01/74753 PCT/DE01/01264

Synthetische Derivate von Lunularsäure, Arzneimittel enthaltend diese Verbindungen, Verfahren zur Herstellung der Lunularsäurederivate sowie deren Verwendung

Die Erfindung betrifft synthetische Derivate von Lunularsäure, Arzneimittel enthaltend diese Verbindungen, Verfahren zur Herstellung der Lunularsäurederivate sowie deren Verwendung als chemopräventive Agentien gegen Krebserkrankungen.

Da Krebs eine Erkrankung ist, die heute aus verschiedensten Gründen (z.B. Älterwerden der Bevölkerung, negative Umwelteinflüsse usw.) schon ein Drittel der Bevölkerung von Industriestaaten betrifft und noch mit einer weiteren Zunahme der Erkrankungen zu rechnen ist, gibt es Bemühungen Stoffe herauszufinden, welche frühzeitig angewendet, einen Schutz vor dem Entstehen von Krebs geben (Krebsprophylaxe). Es gibt deshalb eine ausgedehnte Forschungsrichtung, die sich mit der Identifikation neuer chemopräventiver Agentien beschäftigt, um den dringenden Bedarf der Krebsverhütung zu decken.

Die Aufgabe der vorliegenden Erfindung besteht in der Identifikation neuer chemopräventiver Agentien, die einfach und nebenwirkungsfrei anzuwenden sind.

Gelöst wird diese Aufgabe durch die Gegenstände der Patentansprüche.

Von den Erfindern wurde bereits früher gefunden, daß Lunularsäure (2-Hydroxy-6-[2-(4-hydroxy-phenyl)]ethylbenzoesäure) und Lunularin, die aus Leberblümchen, welche zur Kategorie der Moose gehören, isoliert werden können, eine chemopräventive Wirkung haben.

Lunularsäure: R = COOH

Lunularin: R = H

Jetzt wurde weiter herausgefunden, daß bestimmte Derivate der Lunularsäure eine noch weit über Lunularsäure und Lunularin hinausgehende positive Wirkung haben und selbst in geringen Dosen noch gegen Stoffwechselprozesse schützen, die für eine Krebsentstehung verantwortlich gemacht werden können. Gegenstand der Erfindung sind daher Verbindungen der allgemeinen Formel (I), (III) oder (IV)

COOR₂

(II)

$$R_3$$
 $COOR_2$
 OR_1
 (\mathbf{r})

worin X ein beliebiger mono- oder polycyclischer (Hetero)Arylrest, der ggf. substituiert ist, ist. Beispiele hierfür sind ein carbocyclischer, monocyclischer Rest,

beispielsweise die Phenylgruppe, ein heterocyclischer, monocyclischer Rest, beispielsweise die Gruppen Thienyl, Thiophenyl, Furyl, Furanyl, Pyranyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Pyridyl, Pyridinyl, Pyrrolidinyl, Pyrazinyl, Pyrimidinyl, Pyrazolonyl, Pyridazinyl, Purinyl, Thiazolyl, Oxazolyl, Indolyl, Furazannyl, Pyrrolinyl, Imidazolinyl, Pyrazolinyl, Thiazolinyl, Triazolyl, Tetrazolyl, sowie die Positionsisomeren des oder der Heteroatome, die diese Gruppen umfassen können, ein Rest bestehend aus carbocyclischen kondensierten Ringen, beispielsweise die Naphthylgruppe oder die Phenanthrenylgruppe, ein Rest bestehend aus kondensierten heterocyclischen Ringen, beispielsweise Benzofuranyl, Benzothienyl, Benzimidazolyl, Benzothiazolyl, Naphtho[2,3b]thienyl, Thianthrenyl, Isobenzofuranyl, Chromenyl, Xanthenyl, Phenoxathiinyl, Indolizinyl, Isoindolyl, 3H-Indolyl, Indolyl, Indazolyl, Purinyl, Chinolizinyl, Isochinolyl, Chinolyl, Phthalzinyl, Naphthyridinyl, Chinoxalinyl, Chinazolinyl, Chinolinyl, Pteridinyl, Carbazolyl, ß-Carbolinyl, Cinnolinyl, Acridinyl, Phenazinyl, Phenothiazinyl, Phenoxazinyl, Indolinyl, Isoindolinyl, Imidazopyridyl, Imidazopyridmidinyl oder auch die kondensierten polycyclischen Systeme bestehend aus heterocyclischen Monozyklen, wie beispielsweise vorstehend definiert, wie beispielsweise Thionaphthenyl, Furo[2,3b]pyrrol oder Thieno[2,3-b]furan, und insbesondere die Phenyl-, Furylgruppen, wie 2-Furyl, Imidazolyl, wie 2-Imidazolyl, Pyridyl, wie 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, Pyrimidinyl, wie Pyridmid-2-yl, Thiazolyl, wie Thiazol-2-yl, Thiazolinyl, wie Thiazolin-2-yl, Triazolyl, wie Triazolyl-2yl, Tetrazolyl, wie Tetrazol-2-yl, Benzimidazolyl, wie Benzimidazol-2-yl, Benzothiazolyl, Benzothiazol-2-yl, Purinyl, wie Purin-7-yl, oder Chinolyl, wie 4-Chinolyl.

In den obigen Formeln können R_1 und R_2 jeweils unabhängig voneinander Wasserstoff, einen geraden oder verzweigten Alkylrest mit 1 bis 30 Kohlenstoffatomen, einen geraden oder verzweigten Alkenylrest mit 2 bis 30 Kohlenstoffatomen, einen mono- oder polyzyklischen Alkylrest mit 3 bis 30 Kohlenstoffatomen, einen mono- oder polyzyklischen Alkenylrest mit 4 bis 30 Kohlenstoffatomen, oder einen mono- oder polyzyklischen

aromatischen Rest bedeuten, wobei diese Reste gegebenenfalls durch einen oder mehrere Substituenten substituiert sein können. R_1 und R_2 können gleich oder verschieden sein.

Es kann für R_1 und/oder R_2 jeder beliebige gerade oder verzweigte C_{1-30} -Alkylrest verwendet werden. Beispiele hierfür sind Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, tert.-Butyl-, n-Butyl-, n-Hexyl-, 2-Methylpentyl-, 2,3-Dimethylbutyl-, n-Heptyl-, 2-Methylhexyl-, 2,2-Dimethylpentyl-, 3,3-Dimethylpentyl-, 3-Ethylpentyl-, n-Octyl-, 2,2-Dimethylhexyl-, 3,3-Dimethylhexyl-, 3-Methyl-3-ethylpentylgruppen. Bevorzugt sind wegen der besseren Löslichkeit kurze Alkylketten, wie Methyl-, Ethyl-, Propyl- und Isopropyl-. Bevorzugt sind R_1 und R_2 gerade C_{1-10} -Alkylreste oder $C_{3\cdot14}$ -Cycloalkylreste. Besonders bevorzugt stehen R_1 und R_2 für H, CH_3 oder CH_3CH_2 .

Es kann für R_1 und/oder R_2 jeder beliebige gerade oder verzweigte C_{2-30} -Alkenylrest verwendet werden. Beispiele hierfür sind Vinyl-, Propenyl-, Isopropenyl-, Allyl-, 2-Methylallyl-, Butenyl- oder Isobutenyl-, Hexenyl- oder Isohexenyl-, heptenyl- oder Isoheptenyl-, Octenyl- oder Isooctenylgruppen. Bevorzugt sind Vinyl-, Propenyl- und Isopropenyl-.

So kann R_1 und/oder R_2 jeder beliebige Cycloalkylrest sein. Beispiele hierfür sind eine Cyclopropyl-, Cyclobutyl-, Cyclopentyl- oder Cyclohexyl-, Cycloheptyl-, Cxclooctyl-, Cyclononyl- oder Cyclodecylgruppen. Bevorzugt sind Cyclopropyl-, Cyclobutyl-, Cyclopentyl- und Cyclohexyl-.

Der für R₁ und/oder R₂ verwendbare Cycloalkenylrest mit 4 bis 30 Kohlenstoffatomen kann jeder beliebige Cycloalkenylrest sein. Beispiele hierfür sind eine Cyclobutenyl-, Cyclopentenyl- oder Cyclohexenyl-, Cycloheptenyl-, Cyclononenyl- oder Cyclodecenylgruppen. Bevorzugt sind Cyclobutenyl-, Cyclopentenyl- oder Cyclohexenyl. Beispiele für polyzyklische Alkyl- bzw. Alkenylreste umfassen Norbornan, Adamantan oder Benzvalen.

Vorzugsweise vorhandene Substituenten der verschiedenen vorstehend angegebenen Reste X, R_1 und/oder R_2 sowie des Grundgerüsts als Substituent R_3 können aus der folgenden Gruppe ausgewählt werden:

- Halogen: Fluor, Chlor, Brom, Iod,
- Amino, Alkylamino, Dimethylamino oder Ethylamino, Dialkylamino, wie Dimethylamino, Diethylamino, Methylethylamino, wobei jeder dieser Dialkylaminoreste gegebenenfalls in Oxidform vorliegt,
- Aminoalkyl, wie Aminomethyl oder Aminoethyl,
- Dialkylaminoalkyl, wie Dimethylaminomethyl oder ethyl,
- Dialkylaminoalkyloxy, wie Dimethylaminoethyloxy,
- Hydroxyl,
- freie, veresterte Carboxylgruppe, wie Alkoxycarbonyl, beispielsweise Methoxycarbonyl oder Ethoxycarbonyl, oder in ein Salz, beispielsweise durch ein Natriumoder Kaliumatom überführt,
- Alkyl mit 1 bis 8 Kohlenstoffatomen, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert.-Butyl, gegebenenfalls durch ein oder mehrere Halogenatom(e) substituiert, beispielsweise durch Fluor, wie Trifluormethyl,
- Oxo, Cyano, Nitro, Formyl,
- Acyl, wie Acetyl, Propionyl, Butyryl, Benzoyl,
- Acyloxy, wie Acetoxy oder ein Rest der Formel: $-0-CO-(CH_2)_nCO_2H$, worin n = 1 bis 5,
- Alkoxy, wie Methoxy, Ethoxy, Propyloxy, Isopropyloxy, Butyloxy,
- Alkylthio, wie Methylthio, Ethylthio, Propylthio, Isopropylthio, Butylthio,
- Carbamoyl,
- Alkenyl, wie Vinyl, Propenyl,
- Alkinyl, wie Ethinyl, Propinyl und
- Aryl, wie Phenyl, Furyl, Thienyl.

Als Beispiele für derartige substituierte Reste können ein durch ein oder mehrere Halogenatom(e) substituierter Alkyl-

rest, wie die Trifluormethyl-, Trifluorbutyl-, Pentafluorpropyl-, Pentafluorbutyl-, Pentafluorpentyl-, Heptafluorbutyloder Nonafluorbutylgruppe oder 2-Chlorethyl- genannt werden.

Verbindungen der obigen Formeln (I), (II), (III) und (IV) werden im weiteren mit dem Begriff "Lunularsäurederivate" beschrieben.

Bevorzugte Verbindungen sind:

$$R_1$$
, $R_2 = H$, C_2H_5 , CH_3
 R_3 - $R_5 = H$, OH , OR , Br , Cl , AcO
 R_3 - R_5 - R_4
 R_3 - R_5 - R_6 - R_6 - R_7 - R_8 - R_9 - R_9

In den Tabellen 3 und 4 sind eine Reihe weiterer bevorzugter Verbindungen aufgelistet.

Erfindungsgemäß ganz bevorzugte Verbindungen sind:

Vorzugsweise werden die Verbindungen der obigen Formeln (I) und (II) gemäß dem in Fig. 1 gezeigten Syntheseschema hergestellt. Verbindungen der obigen Formeln (III) und (IV) sind analog den Vorschriften in Cullmann et al., Z. Naturforsch. 54c, S. 147-150 (1999) und Cullmann et al., Phytochemistry, Vol. 45, Nr. 6, S. 1235-1247 (1997) herstellbar.

Die vorstehend genannten erfindungsgemäßen Verbindungen eignen sich zur Prävention von Krebserkrankungen aller Art, indem sie einerseits bestimmte Stoffwechselprozesse hemmen, bei denen Stoffe entstehen, die die Krebsentstehung fördern, und andererseits bestimmte Stoffwechselprozesse fördern, die beispielsweise karzinogene Substanzen abfangen. Die Modulation von Enzymen, die bei der metabolischen Aktivierung und Freisetzung von Carcinogenen beteiligt sind, ist einer der am besten untersuchten Mechanismen für chemoprotektive Agentien. Phase 1-Enzyme (Cytochrome P450) aktivieren Xenobiotika durch das Einfügen von funktionellen Gruppen, die diese Verbindungen

besser wasserlöslich machen. Obwohl diese Funktionalisierung über Phase 1-Enzyme für die komplette Detoxifizierung von Substanzen notwendig ist, kann die Induktion von Phase 1-Enzymen das Risiko erhöhen, Carcinogene zu produzieren, die mit DNA reagieren können und Carcinogenese initiieren. Phase 2-Enzyme konjugieren die aktivierten Verbindungen an endogene Liganden, wie Glutathion oder Glucuron-, Essig- oder Schwefelsäure, wodurch die Freisetzung der Verbindungen in Form dieser Konjugate vermehrt wird. Allgemein stellt die Inhibierung von Phase 1-Enzymen gleichzeitig mit der Induktion Phase 2 Enzymen eine logische Strategie bei der Chemoprävention dar, was besonders vorteilhaft in frühen Stadien der Carcinogenese ist. Um Modulatoren des Arzneimittel-Metabolismus zu identifizieren und damit eine Aussage über chemopräventive Agentien zu erhalten, werden beispielsweise die inhibitorischen Effekte auf die Phase 1 CyplA Aktivität und auf die Induktion der Phase 2 NAD(P)H:Chinonreduktase (QR) Aktivität bestimmt. Dazu werden beispielsweise ß-Naphthoflavon-induzierte Rattenhepatomzellen als Quelle von Cyp1A verwendet. Die zeitabhängige Dealkylierung von 3-Cyano-7-ethoxycumarin (CEC) zu 3-Cyano-7hydroxycumarin kann fluorometrisch in 96-Loch-Platten verfolgt werden (Crespi et al., Anal. Biochem. (1997), 248 (1): 188-190). Die Induktion von QR-Aktivität als Modell-Phase 2-Enzym wird beispielsweise colorimetrisch in kultivierten Hepa 1clc7-Zellen gemessen. Dazu wird die NADPH-abhängige Menadiolvermittelte Reduktion von MTT (3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyltetrazoliumbromid) in blaues Formazan untersucht (Prochaska et al., Anal. Biochem. 1988, 169(2): 328-336).

Stoffe mit chemopräventiven Eigenschaften zeichnen sich somit durch manigfaltige Wirkungsmechanismen aus: (1) gewünschter Fremdstoff-Metabolismus (z.B. gemessen als Induktion von NAD(P)H-Chinonreduktase und Hemmung von Cyp1A), (2) entzündungshemmende Mechanismen (z.B. gemessen als Hemmung der Induktion von iNOS und Hemmung von COX-1), (3) antioxidative Mechanismen verbunden mit Radikalfängereigenschaften (z.B. gemessen mittels Reaktion mit Diphenylpikrylradikalen) und (4)

anti-Tumor promovierende und anti-proliferative Eigenschaften (z.B. gemessen als Hemmung der Phorbolester-vermittelten Induktion der Ornithin-Decarboxylase oder gemessen anhand des Maus-Brustdrüsenmodells)

Die Verbindungen der obigen Formeln sind gut verträglich und können im Rahmen eines Arzneimittels zur Prävention von Krebserkrankungen verabreicht werden.

Das erfindungsgemäße Arzneimittel kann auf verschiedenen Wegen verabreicht werden, z.B. oral, parenteral, kutan, subkutan, intravenös, intramuskulär oder rektal. Bevorzugt ist die nicht-invasive, d.h. orale, kutane oder rektale, Verabreichung. Das Arzneimittel wird einem Patienten über einen vom Arzt zu bestimmenden Zeitraum oder wird stetig über lange Zeiträume verabreicht. Das Arzneimittel kann sowohl Menschen als auch Säugern verabreicht werden. Das Arzneimittel bietet sich auch an als Unterstützungsmedikation vor, während oder nach einer Tumortherapie (Operation, Bestrahlung und/oder Chemotherapie) an.

Die Dosierung der erfindungsgemäßen Verbindung wird vom Arzt anhand der patientenspezifischen Parameter wie z.B. Alter, Gewicht, Geschlecht, Schwere der Erkrankung, etc. bestimmt.

Entsprechend der Art der Verabreichung wird das Arzneimittel in geeigneter Weise formuliert, z.B. in Form von einfachen oder dragierten Tabletten, Hart- oder Weichgelatinekapseln, Pulver zur Rekonstitution vor Gebrauch, Granulaten, Suppositorien, Ovula, Injektionspräparaten, Infusionslösungen, Pomaden, Cremes, Gels, Mikrosphären, Implantaten, die nach üblichen galenischen Verfahren hergestellt werden.

Die erfindungsgemäßen Verbindungen können gegebenenfalls zusammen mit weiteren Wirkstoffen und mit in pharmazeutischen
Zusammensetzungen üblichen Exzipientien formuliert werden,
z.B. je nach herzustellendem Präparat Talk, Gummi arabicum,
Lactose, Stärke, Magnesiumstearat, Kakaobutter, wäßrige und

nichtwäßrige Träger, Fettkörper mit tierischem oder pflanzlichem Ursprung, Paraffinderivate, Glykole (insbesondere Polyethylenglykol), verschiedene Weichmacher, Dispergiermittel oder Emulgatoren, Konservierungsstoffe.

Zur Herstellung flüssiger Präparate können Additive wie Natriumchloridlösung, Ethanol, Sorbit, Glycerin, Olivenöl, Mandelöl, Propylenglycol oder Ethylenglycol verwendet werden.

Es können auch Infusions- oder Injektionslösungen hergestellt werden. Diese sind bevorzugt wäßrige Lösungen oder Suspensionen, wobei es möglich ist, diese vor Gebrauch herzustellen, beispielsweise aus lyophilisierten Präparaten, die den Wirkstoff alleine oder zusammen mit einem Träger, wie Mannit, Lactose, Glucose, Albumin und dergleichen, enthalten. Die gebrauchsfertigen Lösungen werden sterilisiert und gegebenenfalls mit Hilfsmitteln vermischt, beispielsweise mit Konservierungsstoffen, Stabilisatoren, Emulgatoren, Lösungsvermittlern, Puffern und/oder Salzen zur Regulierung des osmotischen Drucks. Die Sterilisierung kann durch Sterilfiltration durch Filter mit einer kleinen Porengröße erzielt werden, wonach die Zusammensetzung gegebenenfalls lyophilisiert werden kann. Geringe Mengen an Antibiotika können auch zugesetzt werden, um die Beibehaltung der Sterilität zu unterstützen.

Vorteilhaft ist die Bereitstellung des erfindungsgemäßen Arzneimittels in einer Dosis-Einheits-Form zur Verabreichung an einen Säuger.

Die Erfindung betrifft auch Arzneimittel bzw. pharmazeutische Zusammensetzungen, die eine therapeutisch wirksame Menge des aktiven Inhaltsstoffs (erfindungsgemäße Verbindung der obigen Formeln) zusammen mit organischen oder anorganischen inerten festen oder flüssigen pharmazeutisch verträglichen Trägern bzw. Verdünnungsmitteln, die für die beabsichtigte Verabreichung geeignet sind, und die mit den aktiven Inhaltsstoffen nicht nachteilig wechselwirken, enthalten.

Die Erfindung betrifft auch ein Verfahren zur Produktion einer pharmazeutischen Zusammensetzung, die dadurch gekennzeichnet ist, daß die erfindungsgemäße Verbindung mit einem pharmazeutisch verträglichen Träger vermischt wird.

Unter den erfindungsgemäßen Medikamenten können insbesondere die im experimentellen Teil beschriebenen Verbindungen und ganz besonders die Verbindungen, bei denen in der obigen Formel (I) oder (II) Rl und/oder R2, die gleich oder verschieden sein können, eine Methyl-, Ethyl-, Propyl- oder Isoproylgruppe ist, genannt werden.

Die erfindungsgemäßen Arzneimittel bzw. pharmazeutischen Zusammensetzungen umfassen als Wirkstoff mindestens einen wie vorstehend definierten Wirkstoff. Gegebenenfalls können noch weitere pharmazeutische Wirkstoffe in die Zusammensetzung aufgenommen werden, wie z.B.

- Antioxidantien [z.B. red. Gluthathion, N-Acetylcystein, natürliche Polyphenole wie Grüntee(Epigallcate-chingallat und andere Catechine) oder
 Rotweinbestandteile (Resveratrol), Anthocyanidine,
 Flavonoide, Procyanidine),
- Vitamine [z.B. hochdosiertes Vitamin C, Vitamin E,
 Vitamin A, Vitamin D],
- Mineralstoffe [z.B. Magnesium, Zink, Calcium],
- Spurenelemente [z.B. Selen],
- Entzündungshemmer [z.B. Cyclooxygenase 1 oder 2 Hemmer (Nichtsteroidale Entzündungshemmer NSAIDs, wie ASS etc.), Lipoxygenasehemmer oder Hemmstoffe der induzierbaren Stickstoffoxidsynthese],
- Hormonmodulatoren [z.B. Antiöstrogene (z.B. Tamoxifen, Genistein) oder Aromatasehemmer],
- Angiogenesehemmer [z.B. Genistein],
- Modulatoren der Signalübertragung [z.B. Proteinkinasehemmer (z.B. Curcumin oder Ras-Farnesylierungshemmer, wie Perillylalkohol oder Limonen)],
- Proliferationshemmer,
- Ornithin-Decarboxylase-Hemmer [z.B. DFMO]

- Apoptose-Induktoren
- Ballaststoffe (auch als Vorstufen von kurzkettigen Fettsäuren)
- Induktoren von Zellproliferationsprozessen [z.B.
 Natriumbutyrat]

Die Erfindung wird weiter anhand der Figur erläutert:

Fig. 1: Syntheseschema

Fig. 2: Dosis-abhängige Inhibierung der präneoplastischen Läsionsbildung in einem MMOC-Modell durch EC-252

Die Erfindung wird anhand der nachstehenden Beispiele näher erläutert.

Beispiel 1

Verfahren zur Herstellung von E-6-(ω -Styryl)salicylsäuremethylester (EC-9)

Zu einer Lösung von Natriummethanolat in Methanol (bereitet durch Auflösen von 9,20 g (400 mMol) Natrium in 300 ml wasserfreiem Methanol) gibt man 56,3 g (100 mMol) (3-Acetoxy-2-methoxycarbonyl)benzyl-triphenyl-phosphoniumbromid (Eicher et al., Synthesis 1988, S. 525) und rührt 30 Min. bei +20°C. Danach fügt man 10,6 g (100 mMol) Benzaldehyd (käufliches Produkt frisch destilliert) zu und erhitzt das Reaktionsgemisch 4 Std. unter Rückfluß. Danach kühlt man auf Raumtemperatur ab, neutralsiert durch Zugabe von Eisessig und entfernt das Solvens im Vakuum. Man nimmt den Rückstand in 300 ml Chloroform auf, wäscht zweimal mit je 100 ml Wasser, trocknet die organische Phase über MgSO4, filtriert sie über 200 g Kieselgel (Nachelution mit wenig CHCl3) und entfernt das Solvens im Vakuum. Man erhält ein farbloses Öl, das in ca. 150

ml Petrolether (40-60°C) aufgenommen und bei -30°C (15 h) zur Kristallisation gebracht wird. Man erhält 23,6 g (93%) farblose Nadeln, E/Z-Gemisch, Smp. 51-52°C. Aus dem E/Z-Gemisch kann durch Erhitzen in Toluol (30 Std. unter Rückfluß) in Gegenwart von Iod (einige mg) das reine E-konfigurierte Produkt quantitativ erhalten werden (Smp.: 56-57°C).

Beispiel 2

Verfahren zur Herstellung von 6-(2-Phenylethyl)salicylsäuremethylester (EC-1)

22,0 g (86,3 mMol) des Produkts aus Beispiel 1 werden in 300 ml Essigester gelöst. Man fügt 2,0 g Palladium auf Aktivkohle (5%) als Katalysator zu und hydriert in einer konventionellen Hydrierapparatur (Fa. Parr) bei 5 bar Wasserstoff-Überdruck. Nach ca. 4 Std. ist die Wasserstoff-Aufnahme beendet. Man filtriert vom Katalysator ab, entfernt das Solvens im Vakuum, nimmt den Rückstand in Chloroform auf und filtriert die CHCl₃-Lösung über 300 g Kieselgel (Nachelution mit wenig CHCl₃). Das Filtrat wird im Vakuum vom Solvens befreit und der Rückstand aus Petrolether (40-60°C) umkristallisiert. Man erhält 19,9 g (90%) des Produkts, farblose Prismen, Smp. 55-56°C.

Beispiel 3

Verfahren zur Herstellung von E-1-(5-Bromthieny1)-2-[(2-ethoxycarbony1-3-methoxy)pheny1]ethen (EC-252)

Zu einer Lösung von Natriummethanolat in Methanol (bereitet durch Auflösen von 0,30 g (13,0 mMol) Natrium in 50 ml wasserfreiem Methanol) gibt man 5,63 g (10,0 mMol) (2-Ethoxycarbonyl-3-methoxy)benzyl-triphenyl-phosphoniumbromid (Eicher et al., Synthesis 1988, S. 525) und rührt 30 Min. bei +20°C. Danach fügt man 1,91g (10,0 mMol) 5-Bromthiophen-2-carbaldehyd (Fa. Acros Organics, Geel, Belgien) zu und rührt das Reaktionsgemisch 24 Std. bei +20°C. Das auskristallisierte Produkt wird abgesaugt und in 50 ml Chloroform gelöst. Die Lösung wird über 50 g Kieselgel filtriert (Nachelution mit wenig CHCl₃). Das Solvens wird im Vakuum abdestilliert und der Rückstand [2,90 g (79%) E/Z-Gemisch] zweimal aus Ethanol umkristallsiert. Man erhält 1,84 g (50%) des Produkts, gelbliche Nadeln, Smp. 93-94°C.

Beispiel 4

Bestimmung der chemopräventiven Aktivität ausgewählter Lunularsäurederivate

Hepalc1c7-Zellen (ATCC American Type Culture Collection, Rockville, Maryland, USA) sät man in einer 96-Lochplatte in einer Dichte von 2 x 10^4 Zellen/ml (200 μ l pro Loch) in α -MEM enthaltend 100 Einheiten/ml Penicillin G-Na, 100 Einheiten/ml Streptomycinsulfat und 250 ng/ml Amphotericin B (Gibco BRL, Grand Island, NY) ergänzt mit 10% fötalem Kälberserum aus und kultiviert bei 37°C in einer 5%igen CO2 -Atmosphäre. Nach einer Präinkubationszeit von 24 Stunden wurde das Medium erneuert, die Testverbindungen gelöst in 10% DMSO (10 μ l, Endkonzentration 0,5%) zugegeben und die Platten für weitere 48 Stunden inkubiert. Die QR-Aktivität wurde durch Messen der NADPH-abhängigen Menadiol-vermittelten Reduktion von MTT (3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyltetrazoliumbromid) blauem Formazan gemessen (Prochaska et al., Anal. Biochem. 1988, 169(2): 328-336). Die Proteine wurden durch Kristallviolett-Färbung eines identischen Satzes von Platten bestimmt. Die Induktion der QR-Aktivität wurde aus dem Verhältnis der spezifischen Enzymaktiviäten der mit den Verbindungen behandelten Zellen zu einer Lösungsmittelkontrolle berechnet. Die CD-Werte (benötigte Konzentration in μ M, um die spezifische Enzymaktivität zu verdoppeln) wurden erzeugt. Die CD-Werte wurden mit den IC50-Werten (halbmaximale inhibitorische Konzentration der Zell-Lebensfähigkeit in μM) ins Verhältnis gesetzt, um den chemopräventiven Index CI zu erhalten. Zusätzliche Tests wurden in einer von Hepa 1c1c7-Zellen abgeleiteten Mutanten-Zelllinie (BP^rcl) unternommen, welche unfähig ist, den Ah Rezeptor-Ligandenkomplex in den Kern zu translocieren.

Für chemopräventiv wirkende Verbindungen ist eine Induktion von OR bei kleinen Konzentrationen wünschenswert.

Tabelle 1: Induktion von NAD(P)H : Chinonoxidoreduktase (QR) durch ausgewählte Bibenzyle (alle Daten in μ M)

	Hepalc1c7			BP ^r c1
٠	CD/CQ	IC50	CI	CD
A	51,4/n.d	> 93,5	> 1,8	n.I
В	20,4/n.d.	> 50	2,5	n.I
EC-1	0,22/6,8	31,3	171	n.I
EC-252	0,06/0,24	7,8	129	n.I
EC-9	0,03/0,16	7,2	223	n.I

CD/CQ = Konzentration, um die spezifische Aktiviät von QR zu verdoppeln/zu vervierfachen

IC50 = halbmaximale inhibitorische Konzentration

CI = Chemopräventiver Index ; Verhältnis von IC50 und CD

n.d. = nicht bestimmt

n.I. keine Induktion

A = Lunularin (Kontrolle)

B = Lunularsäure (Kontrolle)

Nachfolgend wurde die Dosis-abhängige Induktion von Cypla-Aktivität in kultivierten Hepalclc7 bestimmt. Die Hepalclc7-Zellen wurden analog wie oben beschrieben für 24 Stunden mit 0,5 µM ß-Naphthoflavon, einem klassischen bifunktionellen Induktor von Arzneimittel-metabolisierenden Enzymen, behandelt. Zum Vergleich des induzierenden Potentials wurden die für die 10-fache Anhebung der Cypla-Aktivität erforderlichen Konzentrationen ermittelt. Da die Induktion von Cypla zu der Aktivierung von Procarcinogenen führen kann, wurde weiter das Potential, um Cypla-Aktivität zu inhibieren, getestet. Diese Untersuchungen wurden an Lysaten von ß-Naphthoflavon-induzierten H4IIE Rattenhepatoma-Zellen und CEC

als Substrat gemacht. H4IIE-Zellen (ATCC American Type Culture Collection, Rockville, Maryland, USA) werden dazu in 10 cm Zellkulturplatten mit einer Dichte von 1x106 Zellen in 10 ml MEME-Medium mit den gleichen Zusätzen, wie vorstehend für das $\alpha\text{-MEM-Medium}$ angegeben, ausgesät und für 24 Stunden bei 37°C, 5% CO, Atmosphäre kultiviert. Danach wird das Medium erneuert und die Zellen für 38 Std. mit 10 μ M ß-Naphthoflavon zur Induktion von Cyp1A induziert. Anschließend werden die Zellen dreimal mit phosphatgepufferter Kochsalzlösung (PBS) gewaschen, durch Abschaben in 1 ml 200 mM Kaliumphosphatpuffer, pH 7,4 mit 10 mM MgCl₂ (Puffer 1) geerntet und sofort in flüssigem Stickstoff eingefroren. Zur Aktivitätsbestimmung wird das Zellhomogenat bei Raumtemperatur aufgetaut, zur Lyse durch eine Kanüle Nr. 20 gedrückt und mit Puffer 1 auf 10 ml verdünnt. 90 μ l dieser Lösung (ca. 5-25 μ g Protein) werden in 96-Lochplatten zu einer Mischung aus 10µl der Testsubstanz in DMSO und 100 μ l Reaktionsgemisch (2-fach konzentriert) enthaltend 2,6 mM NADP, 6,6 mM Glucose-6-Phospaht, 10 μ M 3-Cyano-7-Ethoxycumarin (CEC) und 0,5 Einheiten Glucose-6-phosphatdehydrogenase gegeben. Der Ansatz wird kurz gemischt. Die Kinetik der zeitabhängigen Dealkylierung von CEC wird 45 Min. lang bei Mikrotiterplattenfluorimeter mit einer Anregungswellenlänge von 409 nm und einer Emissionswellenlänge von 460 nm aufgenommen (vgl. Crespi et al., Anal. Biochem. (1997), 248 (1), S. 188-190).

Die Induktion der Cypla-Aktivität ist als negativ zu bewerten, da diese Aktivität zu einer Aktivierung von Karzinogenen führen kann. Für chemopräventiv wirkende Verbindungen ist deshalb eine geringe Induktion von Cypla wünschenswert (am besten gar keine Cypla-Induktion) sowie eine Hemmung von Cypla bei kleinen Konzentrationen.

Tabelle 2: Modulation von Cyp1A-Aktivität durch ausgewählte Bibenzyle (alle Daten in μM)

	CyplA-Induktion	Cyp1A-Inhibierung
	C _{10-fach}	IC50
A		3,7
B.	8,0	8,3
EC-1	2,1	0,99
EC-252	0,225	0,11
EC-9	< 0,13	0,08

C_{10-fach}: Konzentration resultierend in einer 10-fachen

Induktion der CyplA-Aktivität

IC50: Halbmaximale inhibitorische Konzentration

A : Lunularin (Kontrolle)

B : Lunularsäure (Kontrolle)

Desweiteren wurden alle Verbindungen der Tabelle 3 analog wie vorstehend beschrieben hinsichtlich der QR- und CyplA-Aktivität getestet. Die Auswertung ergab, daß einige der getesteten Verbindungen bessere Eigenschaften haben als andere. Verbindungen mit Werten, die diese als gute Chemopräventiva qualifizieren, sind in Tabelle 4 zusammengestellt.

Desweiteren wurden die Verbindungen der Tabelle 3 hinsichtlich der Hemmung der Lipopolysaccharid-induzierten Expression der iNOS in Maus-Makrophagen getestet (NO2). Die Inhibition der Lipopolysaccharid (LPS)-vermittelten iNOS-Induktion in Maus Raw 246.7-Makrophagen wurde mittels der Griess-Reaktion (Ding et al., J. Immunol. (1988), 141(7), S. 2407-2412) bestimmt. Dazu wurden Maus-Makrophagen in DMEM-Medium enthaltend 100 Einheiten/ml Penicillin G-Na, 100 Einheiten/ml Streptomycinsulfat und 250 ng/ml Amphotericin B ergänzt mit 10

% fötalem Kälberserum bei 37°C in einer 5% CO2 -Atmosphäre kultiviert. Die Zellen wurden mit einer Dichte von 1x 105 Zellen/Loch in DMEM in 96-Lochplatten kultiviert. Nach einer Präinkubationszeit von 24 Stunden wurde das Medium durch 170 μ l serumfreies DMEM ersetzt. Die Testverbindungen (10 μ l in 10% DMSO, 8 serielle 2-fach Verdünnungen, Endkonzentrationsbereich 0,8 bis 50 μM) wurden hinzugefügt. iNOS wurde durch Zusatz von 20 µl LPS-Lösung (500 ng/ml in serumfreiem DMEM) induziert. Nach 24 Stunden wurde die iNOS-Aktivität über die Quantitierung der Nitritlevel in 100 μ l Zellkulturüberständen gemäß der Griess-Reaktion bestimmt und mit einer Nitrit-Standardkurve verglichen. Um die zytotoxischen Effekte der Testverbindungen zu bestimmen, wurde das restliche Zellkulturmedium entfernt und die Zellen wurden bei 4°C für 30 Minuten mit 50 μ l eiskalter 10%-iger wässriger Trichloressigsäure-Lösung fixiert, fünfmal mit Wasser gewaschen und kurz getrocknet. Die Zellzahlen wurden durch Sulforhodamin B-Färbung bestimmt (Skehan et al., J. Natl. Cancer Inst. (1990), 82(13), S. 1107-1112). Im allgemeinen wurden die Verbindungen in nicht-toxischen Konzentrationen getestet (Zellanfärbung > 50% der LPS-behandelten Kontrollzellen).

Für chemopräventiv wirkende Verbindungen ist eine Hemmung der Induktion der iNOS bei kleinen Konzentrationen wünschenswert. Die Ergebnisse der Tests sind in Tabelle 4 zusammengefaßt.

Desweiteren wurden die Verbindungen der Tabelle 3 auf ihre antioxidativen Eigenschaften hin getestet. Dafür wurde das vermeintliche Potential der erfindungsgemäßen Verbindungen zum Abfangen von Diphenyl-picryl-hydrazyl-Radikalen (DPPH) ausgewählt. Dies erfolgte durch photometrisches Verfolgen der Reaktion mit 1,1-Diphenyl-2-picrylhydrazyl (DPPH) freien Radikalen in einem Mikroplatten-Format bei 515 nm (van Amsterdam et al., Free Radical Biol. Med. (1992), 12, S. 183-187). Dazu wurden die in DMSO gelösten Testverbindungen mit einer Lösung von 100 μ M DPPH in Ethanol für 30 Minuten bei 37°C behandelt. Das Radikalfänger-Potential wurde mit einer Lösungsmittel-Kontrolle (0% Radikalfängereigenschaften) und

Ascorbinsäure (250 μ M Endkonzentration, 100% Radikalfängereigenschaften) verglichen. Die halbmaximale Radikalfängerkonzentration SC₅₀ wurde generiert, die in einem Endkonzentrationsbereich von 2-250 μ M gewonnen wurden. Hier ist eine Hemmung von DPPH bei kleinen Konzentrationen der Testverbindungen erwünscht. Die Ergebnisse der Tests sind in Tabelle 4 gezeigt.

Ein weiterer Parameter, um die antioxidativen Eigenschaften der erfindungsgemäßen Verbindungen zu ermitteln, ist die Ermittlung der Hemmung des Phorbolester-vermittelten Superoxidbursts in differenzierten HL-60 Zellen. Die Inhibierung der Tetradecanoylphorbolacetat (TPA)-induzierten Superoxid-Radikalbildung in menschlichen HL-60 promyelocytischen Leukämiezellen, die zu Granulocyten differenziert waren, wurde durch photometrische Bestimmung der Cytochrom c-Reduktion bestimmt (Takeuchi et al., Cancer Res. (1994), 54(22), S. 5837-5840, Pick und Mizel, J. Immunol. Meth. (1981), 46(2), S. 211-226). Dazu wurden HL-60 Zellen bei einer Dichte von 2 x 10⁵ Zellen/ml mit 1,3% DMSO in RPMI 1640 Medium enthaltend 100 Einheiten/ml Penicillin G-Na und 100 Einheiten/ml Streptomycinsulfat ergänzt mit 10% fötalem Kälberserum bei 37°C in einer 5% $\rm CO_2$ Atmosphäre für vier Tage behandelt, um die terminale Differenzierung zu Granulocyten zu induzieren. Die Zellen wurden durch Zentrifugation geerntet, zweimal mit "Hanks balanced salt solution" enthaltend 30 mM HEPES, pH 7,8 gewaschen und auf eine Dichte von 2 x 10^6 / ml eingestellt. 2 x 10^5 Zellen/Loch (100 μ l) werden mit den Testverbindungen (25 μ l, in 10% DMSO) für 5 Minuten vor der Zugabe von 75 μ l Cytochrom c-Lösung in HHBSS (5 mg/ml, 1,25 mg/ml Endkonzentration) präinkubiert. 25 µl Superoxid-Dismutase (600 U/ml in HHBS, 12 U/Loch Endkonzentration) wurden als Positivkontrolle verwendet, alle anderen Löcher erhielten 25 μ l HHBSS. Die Superoxidanion-Radikal-Bildung wurde durch Zugabe von 25 μ l TPA (0,55 mg/ml in HHBSS, 55 ng/ml Endkonzentration) gestartet. Die Platten wurden leicht geschüttelt. Nach einer Inkubationszeit von 30 Minuten bei 37°C wurde die Reaktion durch Kaltstellen der Platten auf Eis für

15 Minuten gestoppt. Danach wurden die Platten zentrifugiert und die Cytochrom c Reduktion im Überstand wurde bei 550 nm unter Verwendung eines Mikroplattenlesegerätes (Spectramax 340, Molecular Devices) bestimmt. Das Zellpellet wurde zweimal mit PBS gewaschen und die Zellwachstumsfähigkeit wurde fluorometrisch durch enzymatische Hydrolyse des fluorogenen Esterase-Substrats Calcein AM (250 nM in PBS, 100 μ l/Loch) bei 37°C in einem Cytofluor 4000 Mikroplattenfluoreszenzlesegeräts (PE Applied Biosystems, Anregung 485 nm, Emission 620 nm) bestimmt. Unter Verwendung dieser Methode konnten unspezifische Effekte von reduzierenden Testverbindungen vermieden werden. Die Reaktion war linear für mindestens 30 Minuten. IC,0 - Werte (halbmaximale inhibitorische Konzentration von TPA-induzierter Superoxid-Entstehung) wurden generiert. Hier ist eine Inhibierung der Entstehung von Superoxid-Radikalen bei kleinen Konzentrationen der Testverbindungen erwünscht. Die Ergebnisse der Tests sind in Tabelle 4 gezeigt.

Desweiteren wurden die Verbindungen der Tabelle 3 auf die TPAinduzierte ODC (Ornithin-Decarboxylase)-Aktivität in kultivierten Maus 308-Zellen untersucht. Die Kultivierung der Maus 308-Zellen, die Behandlung der Zellen mit den in seriellen Verdünnungen in DMSO (0,5% DMSO-Endkonzentration) zugefügten Testverbindungen und die Bestimmung der ODC-Aktivität wurde durchgeführt wie in Gerhäuser et al., Nat. Med. (1995), 1(3), S. 260-266 beschrieben. Der Proteingehalt der Zellysate unter Verwendung von Rinderserumalbumin as Standard wurde gemäß Bradford (Analyt: Biochem. (1976), 72(1-2), S. 248-254) gemessen und verwendet, um die ODC-spezifische Aktivität (pmol 14CO2/mg Protein/Std.) zu berechnen. IC50 -Werte (halbmaximale inhibitorische Konzentration von TPAinduzierter ODC-Aktivität in μ g/ml) wurden berechnet. Hier ist eine Inhibierung der Induktion von ODC bei kleinen Konzentrationen der Testverbindungen erwünscht. Die Ergebnisse der Tests sind in Tabelle 4 gezeigt.

Die Verbindungen der Tabelle 3 wurden auch auf eine

inhibitorische Wirkung auf die Cyclooxygenase (COX)-Aktivität getestet (Jang et al., Science (1997), 275, S. 218-220; Van der Ouderaa et al., Meth. Enzymol. (1982), 86, S. 60-68). Die COX-Aktivität wurde bei 37°C unter Aufzeichnen des Sauerstoff-Verbrauchs während der Umwandlung von Arachidonsäure in Prostaglandine in einer 1,0 ml Inkubationszelle einer Sauerstoff-Elektroden-Einheit (Hansatech DW, basierend auf einer O2 - Elektrode vom Clark-Typ) gemessen. Das Reaktionsgemisch enthaltend Natrium/Kaliumphosphatpuffer, pH 7,4, 1 mM Hydrochinon, 0,01 mM Hemin und ungefähr 0,2 U COX-1 in 100 μ l Mikrosomen-Fraktion erhalten aus Hammelsamenblasen als Ausgangsquelle für COX-1 (spezifische Aktivität 0,2 - 1 U/mg Protein) wurde mit 10 μ l DMSO (Negativkontrolle) oder Testsubstanzlösung (10 mM in DMSO) für 90 Sek. inkubiert. Die Reaktion wurde durch Zugabe von 2 μ l 50 mM Arachidonsäure in Ethanol (100 μ M Endkonzentration) gestartet und der Sauerstoffverbrauch wurde für 20 Sek. aufgezeichnet. Für die Berechnung wurde die Rate des O₂ - Verbrauchs mit der DMSO-Kontrolle (100 % Aktivität) verglichen. Die Ergebnisse der Tests sind in Tabelle 4 gezeigt.

Beispiel 5:

Nachweis der chemopräventiven Aktivität erfindungsgemäßer Verbindungen im Maus-Brustdrüsenmodell (MMOC)

Mit diesem Modell können Testverbindungen daraufhin getestet werden, ob sie die Entstehung Carcinogen-induzierter präneoplastischer Läsionen in Maus-Brustdrüsen-Organkultur hemmen. Dies ist ein wichtiger Hinweis auf eine chemopräventive Wirkung im Tiermodell.

Ein Nachteil von in-vitro Untersuchungen ist, daß die glatte Übertragbarkeit auf die in-vivo Situation oft nicht gegeben ist. Es wurde jedoch jetzt ein Organkulturmodell entwickelt,

das als Klammer zwischen Kurzzeit-in vitro-Versuchen und Langzeit-in vivo-Carcinogenesemodellen dienen kann. Dies ist das Maus-Brustdrüsenmodell (mouse mammary glands, MMOC; Mehta et al., Carcinogenesis 1995, 16(2), S. 399-404). Dieses System kombiniert die Vorteile eines in-vitro-Modells (Einfachheit, Handhabbarkeit, Dauer) mit den komplexen zellulären, metabolischen und Entwicklungsbedingungen in einem Organismus.

3 bis 4 Wochen alte jungfräuliche weibliche BALB/c Mäuse wurden durch tägliche subkutane Injektionen mit 1 μ g Östradiol 17ß und 1 mg Progesteron für 9 Tage vorbereitet. Am Tag 10 werden die Tiere durch zervikale Dislokation getötet und das thorikale Brustdrüsenpaar entnommen, das auf ein Seidengewebe gelegt wird. Diese Gewebepräparationen wurden 10 Tage in serumfreiem Waymouth MB752/I-Medium (5 Drüsen/5 ml Medium/Platte) inkubiert. Das Medium ist ergänzt mit 2 mM Glutamin, Antibiotika (Penicillin und Streptomycin, jeweils 100 Einheiten/ml Lösung) und wachstumsfördernden Hormonen, 5 μ g Insulin, 5 μ g Prolaktin, 1 μ g Aldosteron und 1 μ g Hydrocortison pro ml Medium. Das Carcinogen DMBA (2 μg/ml) wird dem Medium für 24 Stunden zwischen den Tagen 3 und 4 zugesetzt. Dieses Zeitinterval stellt den Zeitraum der DNA-Synthese dar. Kontrollplatten wurden mit DMSO (DMBA-Lösungsmittel) behandelt. Nach 10 Tagen Inkubation wurden die Drüsen für weitere 14 in einem Medium gehalten, das nur Insulin (5 μ g/ml) enthielt. Während der gesamten Kulturdauer wurden die Drüsen bei 37°C in einer 5% CO₂ Atmosphäre gehalten.

Die erfindungsgemäße Verbindungen EC-252 (Testagenz) wurde in verschiedenen Konzentration zu dem Medium für die Tage 0-10 gegeben (10-15 Drüsen pro Konzentration). Carcinogenbehandelte Drüsen ohne Testagenz dienten als Positivkontrolle. Am Ende des Experiments nach 24 Tagen wurden die Drüsen in 10% Formalin fixiert, mit Alauncarmin gefärbt und morphokologisch das Vorhandensein von Drüsenläsionen untersucht. Das Auftreten (Inzidenz) von gebildeten Läsionen (Prozentsatz der Drüsen mit Läsionen bezüglich der Gesamtanzahl der Drüsen pro Gruppe) in der mit EC-252 behandelten Gruppe wird mit den Läsionen in der

nur mit DMBA-behandelten Gruppe (unbehandelte Gruppe = DMBA-Kontrolle) verglichen und daraus der Prozentsatz der Inhibierung berechnet. Das Ergebnis ist in Fig. 2 gezeigt.

Desweiteren wurden ausgewählte Verbindungen der Tabelle 3 analog wie vorstehend beschrieben im Maus-Brustdrüsenmodell getestet. Die Auswertung ergab, daß einige der getesteten Verbindungen bessere Eigenschaften haben als andere. Verbindungen mit Werten, die diese als gute Chemopräventiva qualifizieren, sind in Tabelle 4 zusammengestellt.

Weitere Ergebnisse der getesteten Verbindungen sind Tabelle 5 zu entnehmen.

Beispiel 6:

Nachweis der östrogenen bzw. antiöstrogenen Effekte der erfindungsgemäßen Verbindungen in der Ishikawa humanen Endometriumkrebs-Zelllinie

Die Messung der Förderung von alkalischer Phosphatase (AP)-Aktivität in der Ishikawa humanen Endometrium-Adenocarcinoma-Zellinie (Department of Biochemistry, University of Montreal) erlaubt die Abschätzung der instrinsischen östrogenen Aktivität der Testverbindungen gemäß Tabelle 3. Anti-östrogene Effekte wurden durch Co-Behandlung mit ß-Östradiol und Inhibitoren bestimmt. Die Zellkulturbedingungen waren gemäß Littlefield et al., Endocrinology (1990), 127(6), S. 2757-2762.

Die Ishikawa-Zellen wurden routinemäßig in α -MEM Medium enthaltend 100 Einheiten/ml Penicillin G-Na, 100 Einheiten/ml Streptomycinsulfat und 250 ng/ml Amphotericin B ergänzt mit 10% Aktivkohle-gereinigtem fötalem Kälberserum bei 37°C in einer 5% $\rm CO_2$ - Atmosphäre gehalten. Einen Tag vor Start des

Experiments wurde das Medium in ein Östrogen- und Phenolrotfreies D-MEM/F-12-Gemisch (1:1) enthaltend L-Glutamat und Pyridoxin-HCl (Fa. Gibco BRL) ergänzt mit 100 Einheiten/ml Penicillin G-Na, 100 Einheiten/ml Streptomycinsulfat und 250 ng/ml Amphotericin B und 5% Aktivkohle-gereinigtem fötalem Kälberserum gewechselt. Für die Bestimmung der östrogenen/anti-östrogenen Aktivität wurden die Zellen mit 0,25% Phenolrot-freiem Trypsin/EDTA trypsiniert und durch eine Injektionsnadel Nr. 18 gepreßt, um eine Einzelzellsuspension zu erhalten. Diese wurde in einer 96-Loch Mikroplatte in einer Dichte von 2 x $10^4/\text{Loch}$ in 200 μl EFM plattiert. Nach einer Vorinkubationsphase von 24 Stunden wurde das Medium durch 170 μ l frisches EFM ersetzt. Die Testverbindungen gemäß Tabelle 3 (10 μ l in 10% DMSO, Endkonzentrationsbereich 0,8-50 μ M), 10 μ l 10% DMSO (als Negativkontrolle, Endkonzentration 0,5%) oder 10 μ l Tamoxifen (in 10% DMSO, Endkonzentration 0,5 μ M, als positives Antiöstrogen) und entweder 20 μ l EFM (für östrogene Aktivität) oder 20 μ 1 50 nM ß-Östradiol in EFM (für antiöstrogene Aktivität) wurden auf ein Endvolumen von 200 μ l zu den Platten hinzugefügt. Die Platten wurden bei 37°C in einer feuchten 5% CO,-Atmosphäre für 72 Stunden inkubiert. Um die Wirkungen der Testverbindungen auf die Zellproliferation zu bestimmen, wurde die Zellwachstumsfähigkeit durch Calcein AM Hydrolyse fluorometrisch bestimmt. Dazu wurden die Platten dreimal mit PBS (vorgewärmt auf 37°C) gewaschen und 100 μ l 250 nM Calcein AM in vorgewärmtem PBS wurde zu jedem Loch hinzugefügt. Die Fluoreszenz wurde für 10 Minuten bei 37°C in einem Cytofluor 4000 Mikroplatten-Fluoreszenzlesegerät (PE Applied Biosystems, Anregung 485 nm, Emission 620 gemessen. Die Calceinlösung wurde sofort entfernt und 50 μ l/Loch 0,5% Triton X in PBS wurde hinzugefügt. Die Platten wurden über Nacht bei -80°C aufbewahrt. Um die AP-Aktivität zu bestimmen, wurden die Platten bei 37°C innerhalb von 2 Minuten aufgetaut und 100 μ l/Loch 15 μ M 4-Methyl-Umbelliferylphosphat (MUP) in 1 M Diethanolaminpuffer, pH 9,8 enthaltend 0,24 mM MgCl₂ wurden hinzugefügt. Die Platten wurden 5 Minuten auf einem Mikroplattenschüttler geschüttelt. Die Dephosphorylierung von MUP zu dem fluorescenten 4-Methyl-7hydroxy-coumarin (4-Methylumbelliferon) wurden für 45 Minuten bei 37°C (Anregung 360 nm, Emission 460 nm) beobachtet. Die AP-Aktivität und das Zellwachstum wurden aus den Raten der Produktbildung (in Fluoreszenzeinheiten/min) bestimmt. Das Verhältnis beider Raten wurde als ein Maß der relativen spezifischen AP-Aktivität berechnet. Die relative Vergrößerung der AP-Aktivität, die indikativ für eine östrogene Aktivität ist, wurde durch Vergleich mit einer DMSO-Lösungsmittelkontrolle berechnet. Für die Kalkulation der anti-östrogenen Wirkung wurden die Ergebnisse als Prozentsätze im Vergleich zu einer mit DMSO und ß-Östradiol behandelten Kontrollprobe ausgedrückt. Tamoxifen wurden als Positivkontrollsubstanz verwendet und produzierte eine Inhibition von > 50% bei einer Testkonzentration von 0,5 μM.

Testverbindungen mit Werten, die diese als gute Chemopräventiva qualifizieren, sind in Tabelle 4 zusammengestellt.

Tabelle 3

Name	Struktur	Molekulargewicht
		256.30
Ei 1	COOCH3	·
Ei 2	OH C ₂₀ H ₁₆ O ₃	304.35
Ei 7	COOCH ₃ C ₂₀ H ₁₆ O ₃	304.35
Ei 9	COOCH ₃ C ₁₆ H ₁₄ O ₃	254.3
Ei 10	OH C ₁₃ H ₁₃ O ₃ Br	333.2

27a

Tabelle 3 (Forts.)

Ei 12	COOCH ₃	280
Ei 15	OH COOC₂H₅	302
Ei 21	COOCH ₃ C ₁₇ H ₂₄ O ₃	276.4
Ei 26	7 auch analog 21 vorhand.	318

Ei 33	T. T	286.3
	COOCH ₃ C ₁₇ H ₁₈ O ₄	032.2
Еі 36В	COOC ₂ H ₅	272.3
Ei 37	COOCH ₃ C ₁₅ H ₁₄ O ₃ S	288.36
Ei 39	COOCH ₃	255
Ei 249	CI_N CO ₂ Et	323.5
Ei 251	CI N CI CO ₂ Et	358
Ei 252	CO ₂ Et OCH ₃	366.9
Ei 253	CL N Et	394.5

Ei 254	CO ₂ EI	442
Ei 255	CO ₂ Et H	272
Ei 256	OCH ₃	514
Ei 257	x 2 HCl	483
Еі 260	SCH.	483
Ei 261	осн ₅	694
El 262	x 2 HCl	483
Ei 263	8CH ₃	410

Ei 264	© CH ₂ O CH ₃	699.6
Еі 265	CH ₁	583
Ei 266		510
Еі 267	H,C' CH,	793.8
Ei 268	HO COL	542
Ei 273	884.	483
Ei 274	B 17 0 0 5 5	693.8
Еі 275	CO ₂ CH ₃ NHCH ₃	300
Ei 276	CO ₂ CH ₃ NHCH ₃	298

WO 01/74753

Ei 277		298 -
	N	
	CO2CH3 NHCH3	
	OCH3	
Ei 278	H ₃ C Ph	361
	СНЗ	
	содсн3	
	осн _з	299/313
Ei 279 (Gemisch)	H ₃ C CH ₃	299/313
	CH ₃	
	CO ₂ CH ₃	,
22.1000	осн,	384
Ei 280	H ₃ CN	304
:	N-Ph	
	CO2CH3 CI	
Ei 281	OCH ₃	421
Li 201	N-Ph HC	
	CO2CH3 CI	
	осн,	396.5
Ei 282	H ₃ C	390.3
·		
	осн, соосн,сн,	
Ei 283	H ₂ C = H	382.5
. ,		
	осн,	
Ei 284	CH,	419
	CO ² CH ² CO HO	
Ei 285	H ₃ C N HC	419
	N-Ph.	
	CO ₂ CH ₃ CI	
Ei 286	N−N,	337
	Ph	
	CO ₂ CH ₃ "	
	00113	

	-	
Еі 287	N-N N N Ph CO ₂ CH ₃ OCH ₃ E/Z-Gemisch	335
Ei 288	N-N N N Ph	335
Ei 289	CO ₂ CH ₃ N N N OCH ₃	293
Ei 298	OCH ₃	302
Ei 299	CO ₂ CH ₃	304
Еі 300	CO2CH3	270
Ei 301	CO ₂ CH ₃	
Ei 302	CO ₂ CH ₃	272

Ęi 303	CI CH ₃	349.5
	со ₂ сн ₃ о	341
Еі 304	CO ₂ CH ₃	
Ei 305	CO ₂ CH ₃	343
Еі 306	Ph N CI CO ₂ CH ₃	369.5
Еі 307	Ph N N CH ₃	406
Ei 308	Ph N CH ₃ CO ₂ CH ₃	408
Ei 324	COOH	292
Ei 325	ОН	274

D: 22/		200
Ei 326	соосн ₃	308
Ei 327	COOCH ₃	310
Ei 328	COOCH3	409.5
Ei 329	COOCH ₃ N-C ₂ H ₅ C ₂ H ₅	457.5
Ei 330	COOCH ₃ N C ₂ H ₅ OCH ₃ C ₂ H ₅	459.5
Ei 331	COOCH ₃	353.2
Ei 332	COOH OCH3	339.2
Ei 333	COOCH ₃	308.8

	35	
Ei 334	S CI	387.7
	Br COOC ₂ H ₅	
Ei 335	H,CC00 S CI	408.9
E: 226	оосси,	324.5
Ei 336	HO S CI	
Ei 337	HO S CI	482
Ei 1001	HO COOE!	318.3
Ei 1002	COOCH ³	302.3
Ei 1003	AcO S Br	453.3
Ei 1004	HO S Br	369.2
Ei 1005	H ₃ CCOO ₂ H ₄ COOC ₁ H ₄ COCCH ₃ · C ₁₃ H ₁₇ KO ₄ S	500.30
Ei 1006	COOCH ₃ COCH ₃ C ₁₅ H ₁₃ IO ₃ S	400.23

		416.22
Ei 1007	HO S COOC, H ₆	416.23
	OH C15H131O4S	
Ei 1008	C C C H	416.27
	OH C C2115	2/0.27
Ei 1009	OH C O C 2H5 C 16H17BrO3S	369.27
Ei 1010	C-CH ₃ C ₁₀ H ₁₉ IO ₄ S	458.31
Ei 1011	C C C C C C C C C C C C C C C C C C C	411.31
Ei 1012	COOCH ₃ C ₁₉ H ₁₂ O ₃	294.35
Ei 1013		298.38
	COOCH ₃ C ₁₉ H ₂₂ O ₃	
Ei 1014	COOCH ₃ C ₁₈ H ₁₆ O ₃	280.32
Ei 1015	COOCH ₃ C ₁₈ H ₂₀ O ₃	284.35

	37	
Ei 1016	H ² C00C OH	328.32 _
	COOCH ₃ OH C ₁₈ H ₁₆ O ₆	
Ei 1017	Соон ОСН ₃ С ₁₇ Н ₁₈ О ₃	270.32
Ei 1018	COOH C18H20O3	284.35
Ei 1019	COOC ₂ H ₅ C ₁₉ H ₂₂ O ₃	298.38
Ei 1020	COOCH ₃ C ₁₇ H ₁₈ O ₃	270.32
Ei 1021	OH C ₁₇ H ₁₆ O ₄	284.31
Ei 1022	COOCH ₃ OCH ₃ C ₁₇ H ₁₆ O ₃	268.31
Ei 1023	COOCH ₃ C ₁₇ H ₁₉ O ₄	286.32
Ei 1024	COOC ₂ H ₅ C-CH ₃ C ₁₉ H ₁₆ O ₅	326.34

Ei 1025	COOCH ₃ OH C ₁₆ H ₁₄ O ₄	270.28
Ei 1026	OH C00CH ₃ C ₁₆ H ₁₆ O ₄	272.30
Ei 1027	COOH OH C ₁₅ H ₁₄ O ₄	258.27
Ei 1028	COOCH3 C10H18O5	314.33
Ei 1029	COOCH ₃ C ₁₅ H ₁₅ CiO ₃ S	310.79
Ei 1030	OCH ₃ H ₃ COOC COOCH ₃ COOCH ₃ C ₂₀ H ₂₂ O ₆	358.39
Ei 1031	E/Z Gemisch (ca.2:3) S Br COOCH ₃ C ₁₅ H ₁₃ BrO ₃ S	353.23

		356.36
Ei 1032	OH OH	256.25
	OH C ₁₅ H ₁₂ O ₄	
Ei 1033	ŏ ,	326.34
	COOC ₂ H ₅	
	O C-CH ₃ C ₁₉ H ₁₈ O ₅	
Ei 1034		354.4
	COOC ₂ H ₅	
	о с-сн, с ₂₀ н ₁₈ О ₆	
Ei 1035	О С − С + С + С + С + С + С + С + С + С +	426.42
	COOC2H3 C22H22O9	
Ei 1036		312.32
	COOC₂H₅ OH	
	C18H16O5	
Ei 1037	OH	300.31
	COOC ₂ H ₆ OH C ₁₇ H ₁₆ O ₅	
Ei 1038	о-с-сн,	384.38
·	Соосн ₃ С ₂₁ Н ₂₁ О ₂	,
L	l	<u> </u>

Tabelle 4

Namos		QR		CYP 1A1	Cyp.	Ind.		NO2	DPPH	Antiox.
Namen	CONCO (MA)	ICSG (JAIT)	G	1C50 (µM)	Rva Rold and	ICSO tot	ICSS Hom. (JM)	ICSE TOI (JAM)	6C80 (J.44)	% Hem.
Į.										
EC-1 = Ei-1										
	0.22/6.8	MW: 31.25	171	<1.22	<0.04	41,000	~50	>50	>390.6	
EC-9 = Ei-9							.50	-50	. 250	
	<0.4/0.74	>50	>125	0,087	<0.04	>5	>50	>50	>250	
Ei-15		·								
	n.l.	42,90	n.d.	0.500	25.30	>50				
Ei-37										
	1.75/7.8	44.50	25	0,727	1,34	>5	34,3	>50	>250	
EC-252 = Ei-252			•		•					
	0.06/0.24	7.75 (st?)	129	0,082	<0.4	>5	>50	>50	>250	
Ei-260 (x2HC1)				-				20.00	- 050	
	6,30	5,55	n.d.	0,058	n.l.	>5	1,9	22,90	>250	
Ei-300										
	n.i.	`>50	n.d.	0,934	9,10	>50	>50	>50	>250	
Ei-302	0.1	>50	n.d.	>5	34,90	>50	>50	>50	>250	
	n.l.	230	11.0.		54,50			100	- 200	
Ei-325	n.l.	>50	n.đ.	>5	36,70	>50	>50	>50	>250	
	19.1.	- 50			55,1.0					
Ei-331	<0.4/<0.4	11,00	28	0,292	<0.4	>50	>50	>50	>250	
	J-U.4/5U.4	11,00		0,252	~~.~		1 - 30	, - 50	- 230	

Tabelle 4 (Forts. quer)

	Antiox.	ODC		COX-1	1	MMOC			ISHIKAW	
Namen	KSO DAT	icso (per)		C80 847+/-40		Conc.	% Inh.	+E IC84	4 CD	tox ICSO
	-	1								
EC-1 =	I	1	i	.						-
Ei-1	ļ		-	· ·						ĺ
C1-1			2							
	4,8									
	i							. '		
EC-9 =	,						ŀ		1	1
Ei-9									l	>50
	>100		31			1	40	5,5	n.l.	-30
- 45						l			1	
Ei-15						1				
			94	8	1	1 1	0			
	>100		- 94							
-						1		1	ነ	
Ei-37			ļ	l		f	1		!	1
	. 400		32		Į	1				
	>100		32							
EC-252 :	-		İ	Ì		1		1		1
Ei-252	-			1	l .		1	ļ		1
E1-252							1			1
	>100	>10	18		Ĭ	DR	0-60	2,8	n.t.	>50
	- 100	 				1		1		1
Ei-260	•	1	ļ	1	1	1	1		ì	1
(x2HC1)		ì		<u> </u>	1	ľ		1		
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3,4	10	1					<u> </u>	
	15,4	1 3,4	1	 	1					
		1						1	1	1
Ei-300		1		1	Ì	1		1	1	
			ļ.		İ	ĺ		1	\	
	>100	>10	5		<u> </u>	- 	 	 	-	
					1	1		1		1
		1				1	1			1
Ei-302			1				1			
	>100	>10	2	1						
				1	1			1		
		-	1		1				-[İ
Ei-325		1	1	1	1			1		
				34	4	1		Ì	1	
	>100	>10	87	 34	 	 				
				1		1	1	1		
Ei-331					1					
C1 001			1	1	-	ļ				·
	>100	>10_	13					ـــــــــــــــــــــــــــــــــــ		

Tabelle 4 (Forts. quer)

		00	r	CYP 1A1	Cyplr	nd.		NO2	DPPH	Antiox.	Antiox.
Namen		QR	CI	IC30 Jumi	two lots and	IC 50 101.	1050 Hors. (MF)	ICSD Tex (UM)	1C60 (JM)	% Hom	ICIO [AI]
	CO/CO M/3	IC86 (hW)								ļ	
				l	1		ļ				
Ei-1001			1	i					. 250		>100
	14,10	19,00	1	1.100	11.80	>50	13,7	48,90	>250		
							.			Ì	1 1
	1 1										
Ei-1004		45.00	190	0,300	<0.4	>50	>50	>50	>250	<u> </u>	>100
	0.08/0.93	15,20	180	0,000				1		ł	}
				ļ			1			1	1 1
Ei-1009				1				20.70	>250	0%	>100
	0.043/0.229	0,43	10	0,050	<<0.04	1,530	>29.7	29.70	>250	1 02	1 - 100
						<u> </u>	1	1		1]]
				1			.			1	26,80
Ei-1021	6,20	25,70	4	0,003	0,48	>5	37,4	>50	202.00	 	20,00
				}	ļ	ļ				i	
_	1					i		1		00/	>100
Ei-1022	<0.4	29,10	73	0,059	0,13	>5	>50	>50	>250	0%	7100
						i	1	1	İ	1	1
			ł			ļ .	j			1	
Ei-1024	0.6/6.2	44,70	75	0,005	<<0.04	>5	>50	>50	>250		22,60
	0.070.2					1	1	ļ	1	1	
Ei-1026	\			}		1	}	1		1	
E1-1050	İ							>50	>250	71%	65,4
	45,00	47.80	1	0,390	n.t.	>50	>50	30	7230	1111	
				1.	ļ					1	
Ei-1027			1		1	1	1				
	n.t.	>50	n.d	>5	n.i.	>50	>50	>50	>250	6%	>100
	- ''.''							1	ļ	- }	
5: 4004	İ	1]		İ				l l		
Ei-1034	10.4	>50	125	0,005	<<0.04	>5	>50	>50	>250	51%	30,4
	<0.4		1				-	l		i	
- L 400F						1				-	l l
Ei-1035		}			-	\			0 >250	26%	>100
	n.l.	7,30	n.d.	0,023	n.l.	>5	24.5	34.1	250		
							1			1	
Ei-1037				- (_		n 0 0%	>100
51-103/	n.t.	8,20	n.d.	0,057	n.l.	>5	15.	5 >50	>25	1 09	. 1 - 100

Tabelle 4 (Forts. quer)

					MMC	<u> </u>		ISHII	KAW	
Namen	ODC		COX-1			% inh.	+€ 1¢80	4	CO bo	x 60
	ICEO [JAK]	% Hom.	IC80 BAN1+1-80		Conc.	T				
Ei-1001	7,6	C1: 95	4	1	11_	0				
Ei-1004	>10_	C1: 64	39	3	11	50				
Ei-1009	`: >10	35								
Ei-1021	4,7	C1: 98	7	0	1	1	7	_		
Ei-1022	1,6	26			-					
Ei-1024	6,4	68	18_	1			_			
Ei-1026	4,0	39								
Ei-1027										
Ei-1034								8,6	n.l.	>50
Ei-1035								5	n.l.	26,4
Ei-1037	>10							8.7	դ.Լ.	38,8

Zur Tabelle 4 (Alle Angaben in μ M bzw. %):

FREMDSTOFF-METABOLISMUS

Gewünscht:

Induktion von QR bei kleinen Konzentrationen, Hemmung von Cyp1A bei kleinen Konzentrationen, keine Induktion von Cyp1A.

QR steht für Induktion der NAD(P)H:Chinon Reduktase in Hepelc1c7 Maus Hepatomzellen CD = Konzentration die eine Verdopplung der spezifischen Aktivität der QR bewirkt. IC₅₀ = halbmaximale Hemmkonzentration der Zellviabilität CI = chemopräventiver Index (IC₅₀/CD)n.l. no Induction: Keine Induktion n.d. not determined: nicht bestimmt st.: Hinweis auf Cytostatische Wirkung?

Cyp1A = Hemmung der Cyp1A Enzymaktivität unter Verwendung von 3-Cyano-7-ethoxycoumarin. Als Enzymquelle wurden β-Naphthoflavon induzierte H4IIE Ratten Hepatomzellen verwendet. IC₅₀ = halbmaximale Hemmkonzentration

CyplA Ind. = Induktion der CyplA Enzymaktivität in Hepelclc7 Maus Hepatomzellen Dieser Effekt ist negativ zu bewerten, kann zu einer Aktivierung von Karzinogenen führen! Wird aus mechanistischen Gründen mitbestimmt. Fünffache Induktion = Konzentration die eine Verfünffachung der spezifischen Aktivität von Cyp1A bewirkt. IC₅₀ = halbmaximale Hemmkonzentration der Zellviabilität

ENTZÜNDUNGSHEMMENDE MECHANISMEN

Gewünscht:

Hemmung der Induktion der iNOS bei kleinen Konzentrationen, Hemmung von Cox-1 bei kleinen Konzentrationen

NO2: Hemmung der LPS-induzierten Expression der iNOS in Maus Makrophagen IC50 Hem. = halbmaximale Hemmung der Nitrit (NO) Produktion IC₅₀ Tox. = Halbmaximale Hemmung des Zellwachstums CI s.o. n.d. not determined: nicht bestimmt

Cox-1: Hemmung der Cyclooxygenase 1 Aktivität % Hemm.: Prozentuale Hemmung bei einer Testkonzentration von 100μM IC_{50} = halbmaximale Hemmkonzentration

Anti-oxidative Mechanismen und Radikalfängereigenschaften

Gewünscht:

Hemmung bei kleinen Konzentrationen

DPPH: Reaktion mit Diphenylpikrylradikalen IC₅₀ = halbmaximale Hemmkonzentration

43

NXO: Abfangen von Superoxidradikal Anionen im Xanthin/Xanthinoxidase System. IC₅₀ = halbmaximale Hemmkonzentration

Antiox: Hemmung des Phorbolester-vermittelten Superoxidbursts in differenzierten HL-60 Zellen Nachweis über Reduktion von Cytochrom c.

% Hemm.: Prozentuale Hemmung bei einer Testkonzentration von 100μM

IC₅₀ = halbmaximale Hemmkonzentration

ANTI-TUMOR PROMOVIERENDE UND ANTI-PROLIFERATIVE EIGENSCHAFTEN:

Gewünscht:

Hemmung der Induktion von ODC bei kleinen Konzentrationen, Hemmung der DNA Polymerase a bei kleinen Konzentrationen, anti-östrogene Eigenschaften bei kleinen Konzentrationen, keine östrogenen Eigenschaften, Hemmung der Entstehung von Läsionen im MMOC bei kleinen Konzentrationen

ODC: Hemmung der Phorbolester-vermittelten Induktion der Ornithin Decarboxylase in Maus Keratinozyten (Zellinie Nr. 308) IC₅₀ = halbmaximale Hemmkonzentration

α-Poly: Hemmung der humanen DNA Polymerase α % Hemm.: Prozentuale Hemmung bei einer Testkonzentration von 500 bzw. 100μM IC_{50} = halbmaximale Hemmkonzentration

Ishikawa: östrogene (-E) bzw. antiöstrogene (+E) Effekte in der Ishikawa humanen Endometriumkrebs Zellinie

(+E) IC₅₀ = halbmaximale Hemmkonzentration für ant-iöstrogene Effekte

(-E) C₅ = Konzentration die eine Verfünffachung der spezifischen Aktivität der alkalischen Phosphatase bewirkt (Maß für östrogene Aktivität)

tox IC₅₀: Halbmaximale Hemmung des Zellwachstums

n.I. no Induction: keine Induktion

Nur für eine Auswahl bestimmt (siehe Tabelle Auswahl)

MMOC: Maus mammary organ culture

Hemmung der Entstehung Carcinogen-induzierter prä-neoplastischer Läsionen in Maus Brustdrüsen Organkultur

Wichtiger Hinweis auf chemopräventive Wirkung im Tiermodell

Konz.: Testkonzentration in µM

% Inh.: Prozentuale Hemmung im Vergleich zur DMBA-Kontrolle

44
TABELLE 5

Inhibierung von DMBA-induzierten präneoplastischen Läsionen in Maus-Brustdrüsen-Organkultur

Behandlungsgruppe	Konzentration (μM)	%-Inzidenz	Inhibierung (normalisiert auf die DMBA-Kontrolle
DMBA	Keine	81 (13/16)	n.d.
Ei-9	1	50/4/8	40
DMBA	Keine	72 (13/18)	n.d.
Ei-15	1	80 (8/10)	0
	10	55 (6/11)	25
DMBA	Keine	71 (12/17)	n.d.
Ei-252	10	20 (2/10)	72
2. 2. 2	1	30 (3/10)	58
	0.1	44 (4/9)	38
•	0.01	55 6/11)	23
	0.001	100 (9/9)	0
DMBA	Keine	71 (12/17)	n.d.
DIVIDIT.	1	58 (7/12)	17
	10	20 (2/10)	72
DMBA	Keine	66 (12/18)	n.d.
EI-1001	1	88 (8/9)	0
EI-1004	1	33 (3/9)	50

n.d. nicht bestimmt

Resveratrol diente als interne Positivkontrolle in allen Experimenten. Bei einer Konzentration von $5\mu M$ inhibierte Resveratrol $52,4\pm7,4$ % der DMBA-indzierten präneoplastischen Läsionen.

PATENTANSPRÜCHE

$$R_3$$
 $COOR_2$
 OR_1
 OR_4
 OR_4
 OR_5
 OR_4
 OR_5
 OR_4
 OR_5
 OR_4
 OR_5
 OR_4
 OR_5
 OR_5
 OR_5
 OR_6
 OR_7
 OR_8
 OR_8
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9
 OR_9

worin X einen mono- oder polycyclischen (Hetero)Arylrest bedeutet. R1 und/oder R2 jeweils unabhängig voneinander einen

geraden oder verzweigten Alkylrest mit 1 bis 30 Kohlenstoffatomen, einen geraden oder verzweigten Alkenylrest mit 2 bis 30 Kohlenstoffatomen, einen mono- oder polyzyklischen Alkylrest mit 3 bis 30 Kohlenstoffatomen, einen mono- oder polyzyklischen Alkenylrest mit 4 bis 30 Kohlenstoffatomen, oder einen mono- oder polyzyklischen aromatischen Rest mit 6 bis 30 Kohlenstoffatomen bedeuten,

wobei die Reste X, R1, R2 gegebenenfalls durch einen oder mehrere Substituenten substituiert sein können, wobei diese Substituenten und/oder R3 ausgewählt sind

aus:

- Halogen: Fluor, Chlor, Brom, Iod,
- Amino, Alkylamino, Dimethylamino oder Ethylamino, Dialkylamino, wie Dimethylamino, Diethylamino, Methylethylamino, wobei jeder dieser Dialkylaminoreste gegebenenfalls in Oxidform vorliegt,
- Aminoalkyl, wie Aminomethyl oder Aminoethyl,
- Dialkylaminoalkyl, wie Dimethylaminomethyl oder ethyl,
- Dialkylaminoalkyloxy, wie Dimethylaminoethyloxy,
- Hydroxyl,
- freie, veresterte Carboxylgruppe, wie Alkoxycarbonyl, beispielsweise Methoxycarbonyl oder Ethoxycarbonyl, oder in ein Salz, beispielsweise durch ein Natrium- oder Kaliumatom überführt,
- Alkyl mit 1 bis 8 Kohlenstoffatomen, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert.-Butyl, gegebenenfalls durch ein oder mehrere Halogenatom(e) substituiert, beispielsweise durch Fluor, wie Trifluormethyl,
- Oxo, Cyano, Nitro, Formyl,
- Acyl, wie Acetyl, Propionyl, Butyryl, Benzoyl,
- Acyloxy, wie Acetoxy oder ein Rest der Formel: $-0-CO-\left(CH_2\right)_nCO_2H, \text{ worin } n=1 \text{ bis 5},$
- Alkoxy, wie Methoxy, Ethoxy, Propyloxy, Isopropyloxy, Butyloxy,
- Alkylthio, wie Methylthio, Ethylthio, Propylthio, Isopropylthic, Butylthio,
- Carbamoyl,
- Alkenyl, wie Vinyl, Propenyl,
- Alkinyl, wie Ethinyl, Propinyl und
- Aryl, wie Phenyl, Furyl, Thienyl.

2) Lunularsäurederivat nach Anspruch 1 gekennzeichnet durch Formel (V) oder (VI):

$$R_{1}$$
, $R_{2} = H$, $C_{2}H_{5}$, CH_{3}
 R_{3} - $R_{5} = H$, OH , OR , Br , Cl , AcO
 $3,4$ -
 $3,5$ -
 $2,6$
 R_{1} , $R_{2} = H$, $C_{2}H_{5}$, CH_{3}
 R_{3} - $R_{5} = H$, OH , OR , Br , Cl , AcO
 R_{3} - $R_{5} = H$, OH , OR , Br , Cl , AcO
 R_{3} - $R_{5} = H$, OH , OR , Br , Cl , AcO
 A_{3} - A_{5} -

3) Lunularsäurederivat nach Anspruch 1 oder 2 mit der Formel (VII), (VIII), (IX), (X) oder (XI):

- Arzneimittel gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der allgemeinen Formel (I), (II), (III), (IV), (V), (VI), (VII), (VIII), (IX), (X) oder (XI).
- Arzneimittel nach einem der Ansprüche 1-4, umfassend zusätzlich Vitamine, Mineralstoffe, Antioxidantien, Spurenelemente, Entzündungshemmer, Hormonmodulatoren, Angiogenesehemmer, Modulatoren der Signalübertragung, Proliferationshemmer, Ornithindecarboxylasehemmer, Apoptose-Induktoren, Ballaststoffe und/oder Induktoren von Zellproliferationsprozessen.
- 6) Arzneimittel nach einem der Ansprüche 1-5 bereitgestellt in einer Dosis-Einheits-Form zur Verabreichung an einen Säuger.
- 7) Arzneimittel nach einem der Ansprüche 1-6 umfassend weiter einen pharmazeutisch verträglichen inerten Träger oder ein Verdünnungsmittel.
- 8) Verwendung eines Arzneimittels gemäß einem der Ansprüche 1-8 zur Prävention einer Krebserkrankung.
- 9) Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß die Verbindung gemäß Formel (I), (II), (III) oder (IV) mit einem pharmazeutisch verträglichen Träger oder Verdünnungsmittel vermischt wird.

Syntheseschema

Fig. 1

Fig. 2

Ir. ational Application No PCT/DE 01/01264

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C07C69/94 C07C65/1 A61K31/381 A61P43/0	O CO7D213/30	A61K31/235 C07D307/54	
	CO7D213/55 CO7D233/		CO7D215/14	C07D215/10
	o International Patent Classification (IPC) or SEARCHED	to Doin national classification a	ing IPC	
	ocumentation searched (classification system CO7C CO7D A61K	n followed by classification syr	nbois)	
Documenta	tion searched other than minimum document	lation to the extent that such d	ocuments are included in	the fields searched
	lata base consulted during the international s	search (name of data base an	d, where practical, search	terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with Indication, whe	re appropriate, of the relevant	passages	Relevant to claim No.
X	US 5 371 062 A (ROLA 6 December 1994 (199 column 7, line 15 - column 9, line 23 - column 15; example 2	4-12-06) line 20 line 36		1-3
X Fur	ther documents are listed in the continuation	of box C. X	Patent family member	rs are listed in annex.
'A' docum consi 'E' earlier filling 'L' docum which citatic 'O' docum other	ategories of cited documents: uent defining the general state of the art whice dered to be of particular relevance document but published on or after the inter- date ent which may throw doubts on priority claim is cited to establish the publication date of a on or other special reason (as specified) ment referring to an oral disclosure, use, exhi- means ent published prior to the international filing- than the priority date claimed	th is not rnational 'X' (n(s) or nother 'Y' (bition or date but	or priority date and not in cited to understand the pr invention locument of particular rele cannot be considered nov involve an inventive step vidocument of particular rele cannot be considered to it document is combined will	offer the international filing date conflict with the application but inciple or theory underlying the evance; the claimed invention reter cannot be considered to when the document is taken alone evance; the claimed invention involve an inventive step when the thone or more other such docubeling obvious to a person skilled same patent family
	actual completion of the international search		Date of mailing of the inter	rnational search report
	mailing address of the ISA European Patent Office, P.B. 5818 Patent NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 ep	entlaan 2	Authorized officer Kinzinger,	J

In. ational Application No PCT/DE 01/01264

				DE 01/01204
A. CLASSIFICATION OF SUBJETPC 7 C07D217/24 C07D239/26 C07D311/92 According to International Patent C B. FIELDS SEARCHED Minimum documentation searched	C07D213/74 C07D213/64 C07D317/60 Classification (IPC) or to both n	C07D261/10 C07D277/32 national classification ar	d IPC	
Documentation searched other that Electronic data base consulted du				
C. DOCUMENTS CONSIDERED Category Citation of documen	TO BE RELEVANT I, with indication, where appro	opriate, of the relevant p	assages	Relevant to claim No.
the Reduce Derivative Substitute 2,3-Dimete JOURNAL CONTRANSACTION 1995, page 263.	ages 261-266, XP SOCIETY. LETCHW 72-7781 dungen 27-29 * , right-hand colu , left-hand colu	f Pyrogallol lectrophilic of SOCIETY, PER 002174711 ORTH., GB	(IN	1,2
X Further documents are list	ed in the continuation of box C	Σ . χ	Patent family member	s are listed in annex.
Special categories of cited docur A* document defining the general considered to be of particular E* earlier document but publisher filing date L* document which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which may throw defining the comment which we can be commended to the comment which we can be comment which we can be commended to the comment which we can be commended to the comment which we can be commended to the comm	al state of the art which is not ar relevance of on or after the international coubts on priority claim(s) or e publication date of another on (as specified) disclosure, use, exhibition or the international filing date but aimed	'X' do	r priority date and not in a ided to understand the pri current of particular relea annot be considered now tooke an inventive step current of particular relea annot be considered to in ocurrent is combined with	
Name and mailing address of the European Patent NL - 2280 HV R	ISA Office, P.B. 5818 Patentlaan 2 ijswijk 3-2040, Tx. 31 651 epo nl,		uthorized officer Kinzinger,	J

In. ational Application No PCT/DE 01/01264

	TO DE CELEVANT	PC1/DE 01/01264		
Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT legory © Citation of document, with indication where appropriate, of the relevant passages Relevant to claim No.				
gory °	Charlon of document, with indication, where appropriate, or the resevant passages			
	NAOKI TAKEUCHI ET AL.: "Annelation Reactions of Enaminones with Ethyl Acetoacetate.Studies on the beta-Carbonyl Compounds Connected with the beta-Polyketides.XI." CHEMICAL AND PHARMACEUTICAL BULLETIN., vol. 39, no. 7, July 1991 (1991-07), pages 1655-1658, XPO02174712 PHARMACEUTICAL SOCIETY OF JAPAN. TOKYO.,	1,2		
	JP ISSN: 0009-2363 * Verbindung 19 * page 1657 page 1658, right-hand column, paragraph 3			
	NAOKI TAKEUCHI ET AL.: "Biogenetic-type Synthesis of 3,4-Dihydro-8-hydroxy-3-phenylisocoumarin (Studies on the beta-Carbonyl Compounds connected with the beta-Polyketides. V) "CHEMICAL AND PHARMACEUTICAL BULLETIN., vol. 28, no. 10, October 1980 (1980-10), pages 3007-3012, XP002174713 PHARMACEUTICAL SOCIETY OF JAPAN. TOKYO., JP ISSN: 0009-2363 * Verbindungen 9,10,21 * page 3008	1,2		
(page 3012, paragraph 3 CHEMICAL ABSTRACTS, vol. 125, no. 5, 29 July 1996 (1996-07-29) Columbus, Ohio, US; abstract no. 51414v, NAKAYAMA TAKATO ET AL.: "Inhibiting effects of lunularic acid analogs on the growth of liverwort, watercress, and timothy grass" page 403; column r; XP002174714 abstract & BIOSCI., BIOTECHNOL., BIOCHEM., vol. 60, no. 5, 1996, pages 862-865, * 2-methoxy-6-styryl-benzoesäure und äthylester, 2-methoxy-6-phenäthyl-benzoesäu re äthylester			
A	EP 0 539 326 A (SANDOZ LTD) 28 April 1993 (1993-04-28) the whole document	4		

6

INFORMATION CONTINUED FROM PCT/ISA/210

Continuation of box 1.2

Claims Nos.: 1-9 (partially)

Present patent claims 1 to 9 relate to a disproportionately large number of possible compounds. They relate to such a large number of possible choices, variables, possible permutations and/or restrictions that they lack clarity (and/or conciseness) according to the terms of Article 6 PCT to such an extent that a meaningful search seems impossible. Also, the clarity of claim 1 seems doubtful as it does not include the possibility of R1 and R2 = H (hydrogen) although this possibility is expressly mentioned in the description and in claims 2 and 3. The search yielded in the initial phase a very large number of novelty-destroying documents. These documents are so numerous that it is impossible to establish for what subject matter protection could be justifiably sought for the totality of the claims. Therefore, the search was directed to those parts of the claims that are considered clear (and/or concise), namely to the compounds of formulae VII, VIII and IX as they are indicated in the working examples. The other compounds encompassed by the claims are further not supported by corresponding examples in the description.

The applicant's attention is drawn to the fact that claims, or parts of claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). EPO policy, when acting as an International Preliminary Examining Authority, is normally not to carry out a preliminary examination on matter which has not been searched. This is the case, irrespective of whether or not the claims are amended following receipt of the search report (Article 19 PCT) or during any Chapter II procedure whereby the applicant provides new claims.

Information on patent family members

In. .ational Application No PCT/DE 01/01264

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5371062 A	06-12-1994	DE 4211610 A	14-10-1993
		BR 9301464 A	13-10-1993
		CA 2093291 A	08-10-1993
		EP 0564920 A	13-10-1993
		JP 6049040 A	22-02-1994
EP 539326 A	28-04-1993	AT 136536 T	15-04-1996
		AU 653441 B	29-09-1994
		AU 2704492 A	22-04-1993
		CA 2080555 A	17-04-1993
		CZ 282473 B	16-07-1997
		DE 69209771 D	15-05-1996
Ì		DK 539326 T	20-05-1996
		ES 2087499 T	16-07-1996
		FI 924657 A	17-04-1993
		GR 3019856 T	31-08-1996
		HK 146696 A	09-08-1996
		HU 215151 B	28-12-1998
		HU 211233 B	28-11-1995
		IL 103417 A	10-01-1997
		JP 2543298 B	16-10-1996
		JP 5213828 A	24-08-1993
		MX 9205921 A	01-04-1993
		NO 178540 B	08-01-1996
		NZ 244730 A	26-10-1994
		RO 111074 B	28-06-1996
		RU 2118311 ·C	27-08-1998
		SG 50542 A	23-05-2000
		SK 312592 A	08-03-1995
		US 5488135 A	30-01-1996
		ZA 9208021 A	18-04-1994

In sationales Aktenzeichen PCT/DE 01/01264

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07C69/94 C07C65/105 C07D333/28 A61K31/235 A61K31/44
A61K31/381 A61P43/00 C07D213/30 C07D307/54 C07D307/80
CO7D213/55 CO7D233/54 CO7D213/20 CO7D215/14 CO7D215/10
Nach der Internationalen Palentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK
B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07C C07D A61K
Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen
Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
BEILSTEIN Data
C. ALS WESENTLICH ANGESEHENE UNTERLAGEN
Kategone® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr.
X US 5 371 062 A (ROLAND ANDREEE) 6. Dezember 1994 (1994-12-06) Spalte 7, Zeile 15 - Zeile 20 Spalte 9, Zeile 23 - Zeile 36 Spalte 15; Beispiel 2
_/
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
*Besondere Kategorien von angegebenen Veröffentlichungen : "T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatu oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der
aber nicht als besonders bedeutsam anzusehen ist Erlindung zugrundellegenden Prinzips oder der ihr zugrundellegend Er älteres Dokument, das jedoch erst am oder nach dem internationalen Erlindung zugrundellegenden Prinzips oder der ihr zugrundellegend Theorie angegeben ist
Anmeldedatum veröffentlicht worden ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erling *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- *Kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf
scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer erfinderischer Tätigkeit beruhend betrachtet werden anderen im Recherchenbericht genannten Veröffentlichung belegt werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfinderischer Tätigkeit beruhend betrachtet werden **P* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfinderischer Tätigkeit beruhend betrachtet werden **P* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfinderischer Tätigkeit beruhend betrachtet werden **P* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfinderischer Tätigkeit beruhend betrachtet werden **P* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfinderischer Bedeutung von besonderer Bedeutung; die beanspruchte Erfinderischer Bedeutung von besonderer Bedeutung; die beanspruchte Erfinderischer Bedeutung von besonderer Bedeutung von Bedeut
soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderer
O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht diese Verbindung für einen Fachmann naheliegend isl
P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
Datum des Abschlusses der Internationalen Recherche Absendedatum des internationalen Recherchenberichts
16. August 2001 30/08/2001
Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2
Europaiscres Faternami, 1.5. 3010 / atemican E

In. lationales Aktenzeichen PCT/DE 01/01264

A. KLASSII IPK 7	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07D217/24 C07D213/74 C07D231/	16 CO7D249/08 CO7D2	239/54	
1110 /	CO7D239/26 CO7D213/64 CO7D261/			
	CO7D311/92 CO7D317/60 CO7D277/		333/24	
Nach der Int	ternationalen Patentklassilikation (IPK) oder nach der nationalen Klas			
	RCHIERTE GEBIETE			
	ner Mindestprüfstoff (Klassilikationssystem und Klassifikationssymbol	le)		
11001010101	Tel Militigaspraision (Massimanorissystem and Massimanorissymbol	,		
Recherchie	de aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	weil diese unter die recherchierten Gebiete	fallen	
		Delanta in and analysis of	Such has swiff a)	
Während de	er internationalen Recherche konsultierte elektronische Datenbank (Na	ame der Datenbank und evil. Verweildete S	suchbegrine)	
CALSWE	SENTLICH ANGESEHENE UNTERLAGEN			
	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Hetracht kommenden Teile	Betr. Anspruch Nr.	
Kategorie*	Bezeichnung der Vertinenmentung, soweit errordenkortonier Angabe	der ar betraem kommenden vene	Dell. Mispiger 14.	
Х	UGO AZZENA ET AL.: "Regioselecti		1,2	
	the Reductive Cleavage of Pyrogal			
	Derivatives: Reductive Electrophi	lic	, i	
	Substitution of Acetals of			
	2,3-Dimethoxyphenol"			
]	JOURNAL OF THE CHEMICAL SOCIETY,	PERKIN		
	TRANSACTIONS 1.,			
	1995, Seiten 261-266, XP002174711			
	CHEMICAL SOCIETY. LETCHWORTH., GB			
i	ISSN: 1472-7781			
ľ	* Verbindungen 27-29 *			
	Seite 263, rechte Spalte			
	Seite 266, linke Spalte, Absatz 2	! - Absatz		
	j ⁻ 3	•		
			'	
	-	·/ 		
	1		•	
			·	
8				
	5.10	Cists Ashara Batantia		
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu nehmen	X Siehe Anhang Patentfamilie		
Besonder	e Kategorien von angegebenen Veröffentlichungen :	*T* Spätere Veröffentlichung, die nach den	internationalen Anmeldedatum	
A Veröffe	entlichung, die den allgemeinen Stand der Technik definiert,	oder dem Prioritätsdatum veröffentlich Anmeldung nicht kollidiert, sondern nu		
1	nicht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen	Erfindung zugrundeliegenden Prinzips Theorie angegeben ist		
	eldedatum veröffentlicht worden ist	*X* Veröffentlichung von besonderer Beder		
"L" Veröffe	entlichung, die geeignet ist, einen. Prioritätsanspruch zweifelhaft er- nen zu lassen, oder durch die das Veröffentlichungsdatum einer	kann allein aufgrund dieser Veröffentli erfinderischer Tätigkeit beruhend betra		
ander	ren im Recherchenbericht genannten Veröffentlichung belegt werden	"Y" Veröffentlichung von besonderer Bede	utung; die beanspruchte Erfindung	
ausge	der die aus einem anderen besonderen Grund angegeben ist (wie eführt)	kann nicht als auf erfinderischer Fätigl werden, wenn die Veröffentlichung mit		
"O" Veröffi	entlichung, die sich auf eine mündliche Offenbarung, Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	Veröftentlichungen dieser Kategorie in diese Verbindung für einen Fachmann	Verbindung gebracht wird und	
P Veröffe	entlichung, die vor dem internationalen. Anmeldedatum, aber nach	*&* Veröffentlichung, die Mitglied derselbei	=	
	beanspruchten Prioritätsdalum veröffentlicht worden ist	Absendedatum des Internationalen Re		
Datum des	Abschlusses der internationalen Recherche	Choquendring des infamationaisti Life		
.	6 August 2001			
L'	6. August 2001			
Name und	Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter		
	Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk			
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	Kinzinger, J		

in. ationales Aktenzeichen
PCT/DE 01/01264

	PCT/DE 01/0126					
C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN						
Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile	Betr. Anspruch Nr.			
X	NAOKI TAKEUCHI ET AL.: "Annelation Reactions of Enaminones with Ethyl Acetoacetate.Studies on the beta-Carbonyl Compounds Connected with the beta-Polyketides.XI." CHEMICAL AND PHARMACEUTICAL BULLETIN., Bd. 39, Nr. 7, Juli 1991 (1991-07), Seiten 1655-1658, XP002174712 PHARMACEUTICAL SOCIETY OF JAPAN. TOKYO., JP ISSN: 0009-2363 * Verbindung 19 * Seite 1657 Seite 1658, rechte Spalte, Absatz 3		1,2			
X	NAOKI TAKEUCHI ET AL.: "Biogenetic-type Synthesis of 3,4-Dihydro-8-hydroxy-3-phenylisocoumarin (Studies on the beta-Carbonyl Compounds connected with the beta-Polyketides. V) "CHEMICAL AND PHARMACEUTICAL BULLETIN., Bd. 28, Nr. 10, Oktober 1980 (1980-10), Seiten 3007-3012, XP002174713 PHARMACEUTICAL SOCIETY OF JAPAN. TOKYO., JP ISSN: 0009-2363 * Verbindungen 9,10,21 * Seite 3008 Seite 3012, Absatz 3		1,2			
X	CHEMICAL ABSTRACTS, vol. 125, no. 5, 29. Juli 1996 (1996-07-29) Columbus, Ohio, US; abstract no. 51414v, NAKAYAMA TAKATO ET AL.: "Inhibiting effects of lunularic acid analogs on the growth of liverwort, watercress, and timothy grass" Seite 403; Spalte r; XP002174714 Zusammenfassung & BIOSCI., BIOTECHNOL., BIOCHEM., Bd. 60, Nr. 5, 1996, Seiten 862-865, * 2-methoxy-6-styryl-benzoesäure und āthylester, 2-methoxy-6-phenāthyl-benzoesäu re äthylester					
Α	EP 0 539 326 A (SANDOZ LTD) 28. April 1993 (1993-04-28) das ganze Dokument		4			

WEITERE ANGABEN

PCT/ISA/ 210

Die geltenden Patentansprüche 1-9 beziehen sich auf eine

Fortsetzung von Feld I.2

Beschreibung unterstützt.

Ansprüche Nr.: 1-9 teilweise

unverhältnismäßig große Zahl möglicher Verbindungen. In der Tat umfassen sie so viele Wahlmöglichkeiten, Veränderliche, mögliche Permutationen und/oder Einschränkungen, daß sie im Sinne von Art. 6 PCT in einem solchen Maße unklar (und/oder zu weitläufig gefasst) erscheinen, als daß sie eine sinnvolle Recherche ermöglichten. Ausserdem ist die Klarheit von Anspruch 1 zweifelhaft, da dieser die Möglichkeit von R1 und R2 = H (Wasserstoff) nicht einschliesst obwohl in der Beschreibung und den Ansprüchen 2 und 3 diese Möglichkeit aussdrücklich beschrieben ist. Die Recherche ergab in der Anfangsphase eine sehr grosse Zahl neuheitsschädlicher Dokumente.Diese Zahl ist so gross, dass sich unmöglich feststellen lässt, für was in der Gesamtheit der Patentansprüche eventuell nach zu Recht Schutz begehrt werden könnte. Daher wurde die Recherche auf die Teile der Patentansprüche gerichtet, die als klar (und/oder knapp gefaßt) gelten können, nämlich Verbindungen der Formel VII, VIII und IX wie diese in den Ausführungsbeispielen angegeben sind. Die anderen durch die Patentansprüche erfassten Verbindungen sind ausserdem nicht durch entsprechende Beispiele in der

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

In. .alionales Aktenzeichen
PCT/DE 01/01264

Im Recherchenbericht angeführtes Patentdokume	ent	Datum der Veröffentlichung		itglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5371062	A	06-12-1994	DE BR CA EP JP	4211610 A 9301464 A 2093291 A 0564920 A 6049040 A	14-10-1993 13-10-1993 08-10-1993 13-10-1993 22-02-1994
EP 539326	A	28-04-1993	AT AU AU CA CZ DE BK ES FI GR HU IL JP MX NO NZ RO RU SG SK US ZA	136536 T 653441 B 2704492 A 2080555 A 282473 B 69209771 D 539326 T 2087499 T 924657 A 3019856 T 146696 A 215151 B 211233 B 103417 A 2543298 B 5213828 A 9205921 A 178540 B 244730 A 111074 B 2118311 C 50542 A 312592 A 5488135 A 9208021 A	15-04-1994 29-09-1994 22-04-1993 17-04-1993 16-07-1997 15-05-1996 20-05-1996 16-07-1996 17-04-1993 31-08-1996 09-08-1996 28-12-1998 28-11-1995 10-01-1997 16-10-1996 24-08-1993 01-04-1993 08-01-1996 26-10-1994 28-06-1996 27-08-1998 23-05-2000 08-03-1995 30-01-1996 18-04-1994