Tarefa 2: Escolher/Deliberar

Resgate de Vítimas de Catástrofes Naturais, Desastres ou Grandes Acidentes

1 Objetivo da tarefa

O socorrista (A_s) tem um tempo T_s dado como parâmetro de entrada para salvar as vítimas localizadas pelo A_l (chamado de vasculhador na tarefa 1). Nesta tarefa, o A_s deve apenas escolher quais vítimas irá salvar buscando maximizar o valor acumulado da gravidade das vítimas selecionadas. O A_s , nesta tarefa, não necessita se deslocar até as vítimas para salválas. Assumir que:

- apenas o tempo de acesso associado a cada vítima i denominado t_i consome o tempo $T_{\rm S}$;
- t_i é um dado de entrada fornecido junto com o enunciado;
- uma vítima é considerada salva se for escolhida pelo A_s .

1.1 Desempenho

Considere as variáveis abaixo nas fórmulas de cálculo de desempenho:

- v_s: número total de vítimas salvas pelo socorrista
- t_s: tempo efetivamente gasto pelo socorrista
- V: número total de vítimas dispersas no ambiente
- Valor acumulado dos g_i das vítimas escolhidas para salvamento.

$$\circ$$
 $G = \sum_{j=1}^{v_s} g_j$ respeitando $\sum_{j=1}^{v_s} t_j \leq T_s$

Número de vítimas salvas pelo tempo gasto

o
$$S = v_s/t_s$$
 respeitando $t_s \le T_s$

 Número de vítimas salvas em 5 extratos de gravidade pelo tempo gasto
 Esta medida retrata a capacidade do agente em salvar vítimas em estado mais grave por unidade de tempo

- v_{s_1} : sem gravidade ou leve se $g_i \in]0, .2]$
- 0 -
- v_{s_5} : estado gravíssimo se $g_i \in [.8, 1]$

$$S_{e} = \frac{5v_{s_{g5}} + 4v_{s_{g4}} + 3v_{s_{g3}} + 2v_{s_{g2}} + v_{s_{g1}}}{t_{s}(5V_{g5} + 4V_{g4} + 3V_{g3} + 2V_{g2} + V_{g1})}$$

1.2 Arquivos de entrada

1.2.1 Arquivo config.txt

O programa deve ser sensível a diferentes configurações de entrada em tempo de execução a partir da leitura de um arquivo texto (config.txt) que contém os parâmetros de configuração da Tabela 1.

Parâmetro	Significado
maxLin	Número máximo de linhas do ambiente
maxCol	Número máximo de colunas do ambiente
V	Número de vítimas – contado na leitura das coordenadas
	das vítimas que estão no ambiente.
T_l	Tempo (minutos) dado ao A_l para localizar vítimas e
	construir um mapa do ambiente.
T _s	Tempo (minutos) dado ao A _s para socorrer as vítimas
K _s	Capacidade de carga de pacotes do A _s em unidades

Tabela 1: parâmetros de entrada

Arquivo config.txt

Contém a configuração do tamanho labirinto e dos parâmetros de tempo de vasculhamento, de salvamento e a capacidade do agente.

```
maxLin=<int>
maxCol=<int>
Tl=<int>
Ts=<int>
Ks=<int>
```

1.2.2 Arquivo ambiente.txt

Composto por diversas linhas onde cada uma inicia por uma das palavras-chaves ∈ {Agente, Objetivo, Parede, Vitima}. Observar a grafia destas palavras que iniciam por maiúsculas e não têm acentuação.

As coordenadas são listas de pares *x,y* sem espaços (x é a linha, y a coluna). Uma coordenada é separada da outra por espaço simples (não colocar nova linha se houver muitas coordenadas).

Agente: uma única coordenada que indica a posição inicial do agente (sempre 0,0)

Objetivo: uma única coordenada que indica o estado objetivo do agente (não é obrigatório)

Parede: lista de coordenadas x,y de cada quadrado que representa uma parede (ou obstáculo)

Vitima: lista de coordenadas x,y de cada uma das vítimas

```
Agente x<sub>0</sub>,y<sub>0</sub>
Parede x<sub>1</sub>,y<sub>1</sub> x<sub>2</sub>,y<sub>2</sub> x<sub>3</sub>,y<sub>3</sub> ... x<sub>n</sub>,y<sub>n</sub>
Vitima x<sub>1</sub>,y<sub>1</sub> x<sub>2</sub>,y<sub>2</sub> x<sub>3</sub>,y<sub>3</sub> ... x<sub>V</sub>,y<sub>V</sub>
```

1.2.3 Arquivo sinaisvitais.txt

Contém os dados de sinais vitais de cada uma das vítimas. Cada linha representa uma vítima e o número de linhas deve coincidir com o número de vítimas dispersas no ambiente.

Para uma vítima i qualquer temos 5 sinais vitais (s_1 até s_5) que permitem calcular a gravidade g_i da vítima. Todos os valores são números reais.

$$s_{i1}\,s_{i2}\,s_{i3}\,s_{i4}\,s_{i5}\,{\color{red}g_i}$$

Nesta tarefa, você utilizará apenas o valor de g_i . Os valores $s_{i1} \dots s_{i5}$ devem ser desprezados. Ao carregar este arquivo, o programa deve contar o número total de vítimas (V) e, também, o número de vítimas por extrato de gravidade $V_{g1}, V_{g2}, \dots, V_{g5}$

1.2.4 Arquivo difacesso.txt

Contém os dados de dificuldade de acesso às vítimas. Cada linha representa uma vítima e o número de linhas deve coincidir com o número de vítimas dispersas no ambiente.

Para uma vítima i qualquer temos 5 características (d_1 até d_5) que permitem calcular a dificuldade de acesso d_i . Também será fornecido o tempo de acesso à vítima t_i . Todos os valores são números reais.

$$d_{i1} \, d_{i2} \, d_{i3} \, d_{i4} \, d_{i5} \, d_{i} \, t_{i}$$

Nesta tarefa, você utilizará apenas t_i que será fornecido. Os valores $d_{i1} \dots d_{i5}$ devem ser desprezados.

2 ENTREGA

- 1) Os códigos fonte
- 2) Um artigo PDF de até 6 páginas no formato da SBC com a estrutura abaixo

2.1 Estrutura do artigo

Introdução: dentro do problema como um todo, quais subproblemas atacará e por quais razões: quais são as motivações e justificativas para resolvê-los.

Fundamentação Teórica: tipos de busca vistas até o momento

Metodologia: caracterize o problema com seus estados e tamanho do espaço de estados, as estratégias de busca candidatas e a escolhida com a justificativa (por que esta e não as outras?). Descreva a modelagem.

Resultados e análise: mostrar os resultados numéricos e fazer uma análise deles. O ideal é comparar duas técnicas distintas que resolvem o mesmo problema. Se não implementar duas técnicas distintas, comparar configurações diferentes da mesma técnica.

Conclusões: o que pode ser melhorado, o que poderia ser feito no futuro para completar a solução, há problemas éticos na solução – como ela afeta a vida das pessoas envolvidas? A solução é neutra? A solução é enviesada?

---- até aqui 6 páginas no máximo ---

Referências bibliográficas

Apêndice: instruções claras de como executar o código (deve respeitar os formatos de arquivos de entrada e de configuração), print das telas se desejar (não colocar print das telas no corpo do artigo).