6. Orthogonality and Least Squares

- 1) Inner Product, Length, orthogonality
- 2) Orthogonal Sets
- 3) Orthogonal Projection
- 4) The Gram-Schmidt Process
- 5) Least Square problem

1. Inner Product, Length, Orthogonality

If
$$\boldsymbol{u}$$
, \boldsymbol{v} is in \mathbb{R}^{n}

$$\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v}^T \boldsymbol{u}$$

: The inner product of $oldsymbol{u}$ and $oldsymbol{v}$

$$oldsymbol{u} = egin{bmatrix} u_1 \ u_2 \ \dots \ u_n \end{bmatrix}$$
 , $oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \ \dots \ v_n \end{bmatrix}$

$$\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v}^T \boldsymbol{u} = \begin{bmatrix} v_1 v_2 \cdots v_n \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \cdots \\ u_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

ex)
$$\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix}$

(2) Property of the inner product

If \boldsymbol{u} , \boldsymbol{v} , \boldsymbol{w} is in R^n and k is a scalar

- ② $(\boldsymbol{u}+\boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u} \cdot \boldsymbol{w} + \boldsymbol{v} \cdot \boldsymbol{w}$
- $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$
- $\textcircled{4} \ \textbf{\textit{u}} \ \bullet \ \textbf{\textit{u}} \geq 0 \,, \ \textbf{\textit{u}} \ \bullet \ \textbf{\textit{u}} = \textbf{0} \ \text{if and only if} \ \textbf{\textit{u}} = \textbf{\textbf{0}}$

2) The length of a Vector

(1) Definition: Length

The length(or norm) of v is the non negative scalar $\parallel v \parallel$

A vector whose length is 1 is called a unit vector

- (2) properties of length
- ② normalizing : divide a nonzero vector ${m v}$ by its length unit vector $\frac{1}{\parallel {m v} \parallel} {m v}$

ex)
$$\mathbf{v} = (1, -2, 2, 0)$$

3) Distance

(1) Definition: distance

If
$$\boldsymbol{u}$$
, \boldsymbol{v} is in \mathbb{R}^{n}

distance between $oldsymbol{u}$ and $oldsymbol{v}$: length of the vector $oldsymbol{u}-oldsymbol{v}$

$$dist(\boldsymbol{u}, \boldsymbol{v}) = \| \boldsymbol{u} - \boldsymbol{v} \|$$

ex)
$$\mathbf{u} = (u_1, u_2, u_3), \ \mathbf{v} = (v_1, v_2, v_3)$$

$$dist(\boldsymbol{u}, \boldsymbol{v}) = \| \boldsymbol{u} - \boldsymbol{v} \|$$

4) Orthogonal Vectors

(1) Definition: Orthogonal Vectors

Two vectors ${\pmb u}$ and ${\pmb v}$ in ${\bf R}^{\rm n}$ are orthogonal if ${\pmb u}\, {ullet}\, {\pmb v} = 0$

the zero vector is orthogonal to every vector in $\boldsymbol{R}^{\boldsymbol{n}}$

(2) Theorem

Two vectors ${\pmb u}$ and ${\pmb v}$ are orthogonal if and only if $\|{\pmb u}+{\pmb v}\|^2=\|{\pmb u}\|^2+\|{\pmb v}\|^2$

5) Orthogonal Complements

(1) Definition: Orthogonal Complements

If a vector \pmb{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \pmb{z} is orthogonal to W. The set of all vectors \pmb{z} that are orthogonal to W is orthogonal complement of W. $W^\perp = \{\pmb{z} | \pmb{z} \cdot \pmb{w} = 0 \text{ for } all \ \pmb{w} \in W\}$

- (2) Theorem
- ① A vector ${m x}$ is in W^\perp if and only if ${m x}$ is orthogonal to every vector in a set that spans W

(2)	W^{\perp}	is	а	subspace	οf	R^n

 $\ \, \ \, \mbox{3}$ Let A be an $m\times n$ matrix. The orthogonal complement of the row space of A is the null space of A

The orthogonal complement of the column space of A is the null space of $A^{\,T}$

$$(RowA)^{\perp} = NulA, \ (ColA)^{\perp} = NulA^T$$

 \P Let W be a subspace of \mathbb{R}^n . then

 $\dim W + \dim W^{\perp} = n$

2. Orthogonal Sets

- 1) Orthogonal Set
- (1) Definition: Orthogonal set

A set of vectors $\{u_1, u_2, \cdots, u_p\}$ in \mathbb{R}^n is an orthogonal set if each pair of distinct vectors from the set is orthogonal,

$$\mathbf{\textit{u}_i} \, \bullet \, \mathbf{\textit{u}_j} = 0 \; \; \text{for all} \; i \neq j$$

$$\text{ex)} \ \, \boldsymbol{u_1} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \ \, \boldsymbol{u_2} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \ \, \boldsymbol{u_3} = \begin{bmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}$$

(2) Theorem

If $S = \{u_1, u_2, \cdots, u_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S

(3) Definition: Orthogonal basis

An orthogonal basis for a subspace W of $\operatorname{R}^{\operatorname{n}}$ is a basis for W that is also an orthogonal set

(4) Theorem

Let $\{u_1, u_2, \cdots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u_1} + \cdots + c_p \mathbf{u_p}$$

and
$$c_j = \frac{\textit{\textbf{y}} ~ \bullet ~ \textit{\textbf{u}}_{\textit{\textbf{j}}}}{\textit{\textbf{u}}_{\textit{\textbf{j}}} ~ \bullet ~ \textit{\textbf{u}}_{\textit{\textbf{j}}}}~(\textit{\textit{\textbf{j}}} = 1, ~ \cdots, ~ p)$$

ex)
$$\mathbf{u_1} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{u_2} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$, $\mathbf{u_3} = \begin{bmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$

2) Orthonormal Set

(1) Definition: Orthonormal Sets

A set $\{u_1,\,u_2,\,\cdots,\,u_p\}$ is an orthonormal set if it is an orthogonal set of unit vectors

ex) Standard basis $\{\pmb{e_1},\,\pmb{e_2},\,\,\cdots\,,\,\pmb{e_n}\}$ for \mathbf{R}^{n}

$$\mathbf{ex}) \quad \pmb{u_1} = \begin{bmatrix} \frac{3}{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \end{bmatrix}, \ \, \pmb{u_2} = \begin{bmatrix} -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \ \, \pmb{u_3} = \begin{bmatrix} -\frac{1}{\sqrt{66}} \\ -\frac{2}{\sqrt{66}} \\ \frac{7}{\sqrt{66}} \end{bmatrix}$$

- (2) Theorem
- ① An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$

- ② Let U be an $m \times n$ matrix with orthonormal columns, and let ${\pmb x}$ and ${\pmb y}$ be in ${\mathbb R}^{\mathrm n}$
- a. $\|U\boldsymbol{x}\| = \|\boldsymbol{x}\|$
- b. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
- c. $(U\boldsymbol{x}) \cdot (U\boldsymbol{y}) = 0$ if and only if $\boldsymbol{x} \cdot \boldsymbol{y} = 0$

(3) Definition: Orthogonal matrix

An orthogonal matrix is a square matrix U such that $U^{-1} = U^T$

Such a matrix has orthonormal columns

(4) Theorem

An orthogonal matrix have orthonormal rows

$$\text{ex) ex)} \quad \pmb{u_1} = \begin{bmatrix} \frac{3}{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \end{bmatrix}, \quad \pmb{u_2} = \begin{bmatrix} -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \quad \pmb{u_3} = \begin{bmatrix} -\frac{1}{\sqrt{66}} \\ -\frac{2}{\sqrt{66}} \\ \frac{7}{\sqrt{66}} \end{bmatrix}$$

3. Orthogonal Projection

- 1) Orthogonal projection
- (1) Purpose: Orthogonal Projection

Given a vector ${\pmb y}$ and a subspace W in ${\mathbb R}^{\mathrm n}$, there is a vector $\hat{{\pmb y}}$ in W such that

- ① $\hat{m{y}}$ is the unique vector in W for which $m{y} \hat{m{y}}$ is orthogonal to W
- ② $\hat{\pmb{y}}$ is the unique vector in W closest to \pmb{y}

(2) How to find $\hat{\pmb{y}}$

When $\{u_1,\,u_2,\,\cdots,\,u_p\}$ is an orthogonal basis for ${\bf R}^{\,{
m n}}$, then the vector ${\pmb y}$ in ${\bf R}^{\,{
m n}}$ can be written as ${\pmb y}={\pmb z}_1+{\pmb z}_2$

 $\pmb{z_1}$ is a linear combination of some of the $\pmb{u_i}$ and $\pmb{z_2}$ is a linear combination of the rest of the $\pmb{u_i}$

Theorem

Lew W be a subspace of \mathbb{R}^n . Then each \pmb{y} in \mathbb{R}^n can be written uniquely in the form $\pmb{y}=\hat{\pmb{y}}+\pmb{z}$

where $\hat{\pmb{y}}$ is in W and \pmb{z} is in W^\perp . In fact, if $\{\pmb{u_1},\pmb{u_2},\ \cdots, \pmb{u_p}\}$ is any orthogonal basis for W, then

$$\hat{y} = rac{u_1 ullet y}{u_1 ullet u_1} u_1 + \, \cdots \, + \, rac{u_p ullet y}{u_p ullet u_p} u_p$$

and $\pmb{z} = \pmb{y} - \hat{\pmb{y}}$

 $\hat{m{y}}$: the orthogonal projection of $m{y}$ onto W : $proj_W m{y}$

ex) Let $\{ \pmb{u_1},\, \pmb{u_2},\, \, \cdots,\, \pmb{u_5} \, \}$ be an orthogonal basis for \mathbf{R}^5 and let

$$\mathbf{y} = c_1 \mathbf{u_1} + \cdots + c_5 \mathbf{u_5}$$

Consider the subspace $\mathit{W} = \mathit{Span} \{ \mathit{u}_{1}, \, \mathit{u}_{2} \}$

$$\text{ex)} \ \, \boldsymbol{u_1} = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \ \, \boldsymbol{u_2} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \ \, \boldsymbol{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ \, \boldsymbol{W} = Span\{\boldsymbol{u_1}, \, \boldsymbol{u_2}\}$$

2) Properties of orthogonal projection

(1) Theorem

Let $\{\pmb{u_1}, \pmb{u_2}, \cdots, \pmb{u_p}\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \pmb{y} in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u_1} + \cdots + c_p \mathbf{u_p}$$

where
$$c_i = \dfrac{u_i \cdot y}{u_i \cdot u_i} u_i$$

In this case, $proj_W \mathbf{y} = \mathbf{y}$

(2) Theorem: The best approximation theorem

Let W be a subspace of \mathbb{R}^n , let \pmb{y} be any vector in \mathbb{R}^n , and let $\hat{\pmb{y}}$ be the orthogonal projection of \pmb{y} onto W. Then $\hat{\pmb{y}}$ is the closest point in W to \pmb{y} , in the sense that

$$\parallel \boldsymbol{y} - \hat{\boldsymbol{y}} \parallel < \parallel \boldsymbol{y} - \boldsymbol{v} \parallel$$

for all $oldsymbol{v}$ in W distinct from $\hat{oldsymbol{y}}$

- (3) notation
- $\hat{\pmb{y}}$: the best approximation to \pmb{y} by elements of W
- $\parallel y v \parallel$: error of using v in place of y
- error is minimized when $\pmb{v} = \hat{\pmb{y}}$
- $\hat{ extbf{ extit{y}}}$ does not depend on the particular orthogonal basis used to compute it

- (4) Theorem
- If $\{\pmb{u_1},\,\pmb{u_2},\,\,\cdots,\,\pmb{u_p}\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\hat{\boldsymbol{y}} = (\boldsymbol{u_1} \cdot \boldsymbol{y}) \boldsymbol{u_1} + \cdots + (\boldsymbol{u_p} \cdot \boldsymbol{y}) \boldsymbol{u_p}$$

If
$$U = \begin{bmatrix} \textit{\textbf{u}}_1 & \textit{\textbf{u}}_2 & \cdots & \textit{\textbf{u}}_p \end{bmatrix}$$
, then

$$proj_{W} {m y} = UU^{T} {m y}$$
 for all ${m y} \in \mathbb{R}^{\mathrm{n}}$

4. The Gram-Schmidt Process

1) The Gram-Schmidt Process

(1) The Gram-Schmidt Process

The Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormal basis

ex) Let
$$W = Span\{\pmb{x_1}, \pmb{x_2}\}$$
, where $\pmb{x_1} = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$, $\pmb{x_2} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $\{\pmb{v_1}, \pmb{v_2}\}$ for W

ex)
$$\mathbf{x_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{x_2} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{x_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, then $\{\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}\}$ is linearly independent and is a basis for a

subspace W for \mathbb{R}^4 . Construct an orthogonal basis for W

(2) Theorem: The Gram-Schmidt Process

Given a basis $\{ {\it x_1}, \; \cdots, {\it x_p} \}$ for a nonzero subspace W of ${\bf R^n}$, define

$$egin{align} v_1 &= x_1 \ v_2 &= x_2 - rac{x_2 \ ullet \ v_1}{v_1 \ ullet \ v_1} \ v_1 \ \ v_3 &= x_3 - rac{x_3 \ ullet \ v_1}{v_1 \ ullet \ v_1} \ v_1 - rac{x_3 \ ullet \ v_2}{v_2 \ ullet \ v_2} \ v_2 \ \end{array}$$

. . .

$$v_p = x_p - \frac{x_p \, \cdot \, v_1}{v_1 \, \cdot \, v_1} \, v_1 - \frac{x_p \, \cdot \, v_2}{v_2 \, \cdot \, v_2} \, v_2 - \, \cdots \, - \frac{x_p \, \cdot \, v_{p-1}}{v_{p-1} \, \cdot \, v_{p-1}} \, v_{p-1}$$

Then $\{ \emph{\emph{v}}_{1}, \emph{\emph{v}}_{2}, \ \cdots, \emph{\emph{v}}_{\emph{\emph{p}}} \}$ is an orthogonal basis for W. In addition

$$Span\{v_1, \cdots, x_k\} = Span\{x_1, \cdots, x_k\} \text{ for } 1 \leq k \leq p$$

(3) Orthonormal Bases

An orthonormal basis is constructed easily from an orthogonal basis $\{\pmb{v_1}, \pmb{v_2}, \, \cdots, \, \pmb{v_p}\}$: simply normalize all the v_k

5. Least-Squares Problems

- 1) Least-Squares Problems
- (1) Least-Squares problem

Consider the system Ax = b that has no solution

When a solution is demanded and none exists, the best one can do is to find an ${\pmb x}$ that makes $A{\pmb x}$ as close as possible to ${\pmb b}$

Think of Ax as an approximation to b. The smaller the distance between b and Ax, given by $\|b - Ax\|$, the better the approximation

The general least-squares problem is to find an $m{x}$ that makes $\| \, m{b} - A \, m{x} \, \|$ as small as possible

(2) Definition: Least-squares solution

If A is $m \times n$ matrix and ${\pmb b}$ is in ${\bf R}^{\bf m}$, a least-squares solution of $A{\pmb x}={\pmb b}$ is an $\hat{{\pmb x}}$ in ${\bf R}^{\bf n}$ such that $\|{\pmb b}-A\hat{{\pmb x}}\| \le \|{\pmb b}-A{\pmb x}\|$

for all \boldsymbol{x} in R^n

point : for all ${\pmb x}$ in ${\bf R}^{\rm n}$, $A{\pmb x}$ is in the ColA - We seek an ${\pmb x}$ that makes $A{\pmb x}$ the closest point in ColA to ${\pmb b}$

(3) How to find the solution

least-squares solution of $A \boldsymbol{x} = \boldsymbol{b}$ is an $\hat{\boldsymbol{x}}$ such that

$$\parallel {\pmb b} - A \, \hat{\pmb x} \parallel \ \le \ \parallel {\pmb b} - A \, {\pmb x} \parallel$$
 for all ${\pmb x}$ in ${\mathbb R}^{\mathrm n}$

Let
$$\hat{m{b}} = proj_{ColA} m{b}$$

then $\hat{\pmb{b}}$ is in the column space A , the equation $A\pmb{x}=\hat{\pmb{b}}$ is consistent, and there is an $\hat{\pmb{x}}$ in \mathbb{R}^n such that

$$A\hat{x} = \hat{b}$$

Since $\hat{\pmb{b}}$ is the closest point in $Col\,A$ to \pmb{b} , a vector $\hat{\pmb{x}}$ is a least-squares solution of $A\,\pmb{x}=\pmb{b}$ Suppose $\hat{\pmb{x}}$ satisfies $A\,\hat{\pmb{x}}=\hat{\pmb{b}}$

By the Orthogonal Decomposition Theorem, the projection $\hat{\pmb{b}}$ has the property that $\pmb{b} - \hat{\pmb{b}}$ is orthogonal to ColA, so $\pmb{b} - A\hat{\pmb{x}}$ is orthogonal to each column of A If $\pmb{a_j}$ is any column of A, then $\pmb{a_j} \cdot (\pmb{b} - A\hat{\pmb{x}}) = 0$, and $\pmb{a_j}^T (\pmb{b} - A\hat{\pmb{x}}) = 0$ since $\pmb{a_j}^T$ is a row of A^T ,

$$A^T(\boldsymbol{b} - A\,\hat{\boldsymbol{x}}) = 0$$

$$A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}$$

Finding the least-squares solution : solve the equation $A^TA\hat{m{x}}=A^Tm{b}$

(4) Theorem

① The set of least-squares solutions of $A \boldsymbol{x} = \boldsymbol{b}$ coincides with the nonempty set of solutions of the normal equation $A^T A \boldsymbol{x} = A^T \boldsymbol{b}$

- ② Let A be an $m \times n$ matrix. The following statements are logically equivalent
- a. The equation Ax = b has a unique least-squares solution for each b in \mathbb{R}^m
- b. The columns of \boldsymbol{A} are linearly independent.
- c. The matrix $A^{\,T}A$ is invertible

When these staements are true, the least-squares solution $\hat{m{x}}$ is given by

$$\hat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b}$$

ex)
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$

2) Application: linear regression

(1) linear regression

given the data set $\left(x_1,y_1\right)$, $\left(x_2,y_2\right)$, ..., $\left(x_n,y_n\right)$, find the line $y=\beta_0+\beta_1x$ that is close to the points Finding β_0 , β_1 : linear regression

(2) Finding β_0 , β_1

$$\text{let } X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

Find the least squares solution of the equation

$$Y = X\beta$$