Метод коллокации и наименьших квадратов (МКНК)

Выполнила: Ворончихина Елизавета Вячеславовна, группа 24151.

Описание задания: рассматривается краевая задача Дирихле для уравнения четвертого порядка на отрезке [0, 1] в одномерном случае.

$$\frac{d^4w(x)}{dx^4} = f(x),\tag{1}$$

$$w(0) = g_1(0), (2)$$

$$w(l) = g_1(l), (3)$$

$$w_x(0) = g_2(0), (4)$$

$$w_x(l) = g_2(l), (5)$$

где w(x) — искомая функция, $g_1(x)$ и $g_2(x)$ — заданные функции.

В каждой j-ой ячейке сетки приближенное решение ищется в виде линейной комбинации с неопределенными коэффициентами полиномов Чебышева 4 степени. В МКНК для определения неизвестных N+1 коэффициентов в каждой ячейке выписывается переопределенная «локальная» СЛАУ. Уравнения коллокации в каждой j-ой ячейке, $j=1,\ldots,K$, выписываются в N+1 точке — корнях полинома Чебышева N+1 степени. Глобальная СЛАУ решалась методом итераций по подобластям.

Программа написана на языке С++.

Результаты.

Таблица 1. Результаты численных экспериментов в случае реализации метода итераций по подобластям.

K	$\ E_a\ _{\infty}$	R	$\ E_r\ _{\infty}$	R	N _{iter}	$\mu(A_b)$	$\mu(A_i)$	t_{sol}
5	6.90e-03	_	6.50e-02	_	78	4.7e+02	7.9e+02	0.12
10	1.70e-03	2.02	1.60e-02	2.02	261	4.7e+02	7.9e+02	0.48
20	4.20e-04	2.02	4.00e-03	2.00	1004	4.7e+02	7.9e+02	3.6
40	1.10e-04	1.98	9.90e-04	2.01	4032	4.7e+02	7.9e+02	28.2
80	2.60e-05	2.08	2.50e-04	1.99	16144	4.7e+02	7.9e+02	220.2
160	6.60e-06	1.98	6.20e-05	2.01	60672	4.7e+02	7.9e+02	1211.8

Приведены графики точного и приближённого решений в зависимости от количества ячеек.

Рисунок 1. График данных и их приближений для К=5

Рисунок 2. График данных и их приближений для К=10

Рисунок 3. График данных и их приближений для К=20

Вывод:

Арифметическая сложность метода итераций по подобластям: в данном алгоритме используется QR-декомпозиция методом Гивенса, трудоёмкость которого $3(N+1)^2(N+5)-(N+1)^3=O(N^3)$. Рассмотрим некоторую итерацию. Для каждой ячейки строим локальную матрицу, выполняем QR-декомпозицию, далее используется метод Гаусса, трудоёмкость которого $O(N^2)$. Следовательно, общая трудоёмкость $N_{iter}*O(KN^2)+O(N^3)$.

Число обусловленности внутренних СЛАУ на каждой сетке одинакова, так как матрица СЛАУ одинакова на каждой сетке, отличаются только правые части.

Рисунок 4. Псевдопогрешность

Ускорение по Крылову

Исследована зависимость количества итераций от количества невязок в методе ускорения Крылова для МКНК.

II		1.		Γ.
число	невязок	к	=	5:

K	$\ E_a\ _{\infty}$	R	$\ E_r\ _{\infty}$	R	N _{iter} (Крылов)	N _{iter}	t_{sol}
5	6.90e-03	_	6.50e-02	_	25	78	0.04
10	1.70e-03	2.02	1.60e-02	2.02	139	261	0.3
20	4.20e-04	2.02	4.00e-03	2.00	21961	1004	77.00

Число невязок k = 10:

K	$ E_a _{\infty}$	R	$\ E_r\ _{\infty}$	R	N _{iter} (Крылов)	N _{iter}	t_{sol}
5	6.90e-03	_	6.50e-02	_	12	78	0.015635
10	1.70e-03	2.02	1.60e-02	2.02	56	261	0.136799
20	4.20e-04	2.02	4.00e-03	2.00	1596	1004	5.67449

Число невязок k = 20:

K	$ E_a _{\infty}$	R	$\ E_r\ _{\infty}$	R	N _{iter} (Крылов)	N _{iter}	t_{sol}
5	6.90e-03	_	6.50e-02	_	22	78	0.027311
10	1.70e-03	2.02	1.60e-02	2.02	22	261	0.059162
20	4.20e-04	2.02	4.00e-03	2.00	211	1004	0.794954
40	1.10e-04	1.98	9.90e-04	2.01	95887	4032	660.282

Число невязок k = 40:

K	$ E_a _{\infty}$	R	$ E_r _{\infty}$	R	N _{iter} (Крылов)	N _{iter}	t_{sol}
5	6.90e-03	_	6.50e-02	_	42	78	0.054165
10	1.70e-03	2.02	1.60e-02	2.02	42	261	0.094845
20	4.20e-04	2.02	4.00e-03	2.00	83	1004	0.31936
40	1.10e-04	1.98	9.90e-04	2.01	985	4032	6.92237

Число невязок k = 80:

K	$\ E_a\ _{\infty}$	R	$\ E_r\ _{\infty}$	R	N _{iter}	N _{iter}	t_{sol}
					(Крылов)		
5	6.90e-03	_	6.50e-02	_	78	78	0.085784
10	1.70e-03	2.02	1.60e-02	2.02	82	261	0.387516
20	4.20e-04	2.02	4.00e-03	2.00	105	1004	0.392877
40	1.10e-04	1.98	9.90e-04	2.01	487	4032	3.74108
80	2.60e-05	2.08	2.50e-04	1.99	71853	16144	1014.66

Число невязок k = 160:

K	$\ E_a\ _{\infty}$	R	$ E_r _{\infty}$	R	N _{iter} (Крылов)	N _{iter}	t _{sol}
5	6.90e-03	_	6.50e-02	_	78	78	0.076389
10	1.70e-03	2.02	1.60e-02	2.02	162	261	0.362185
20	4.20e-04	2.02	4.00e-03	2.00	162	1004	0.630355
40	1.10e-04	1.98	9.90e-04	2.01	323	4032	2.51622
80	2.60e-05	2.08	2.50e-04	1.99	3221	16144	47.3428

Рисунок 4. График данных и их приближений для числа ячеек K=10

Рисунок 5. График данных и их приближений для числа ячеек K=20

Рисунок 6. График зависимости числа невязок от числа итераций для числа ячеек K=20

Рисунок 7. График зависимости ошибки от числа итераций для числа ячеек K=20

Рисунок 8. Псевдопогрешность

Выводы:

Из таблиц для числа невязок k=5,...,160 видно, что при выборе определенного числа невязок для каждого числа ячеек K можно уменьшить количество итераций.