UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ELETRÔNICA E COMPUTAÇÃO

Arquitetura de Von Neumann

Computador ISA

Professor: André Luís Kirsten, Me. Eng.

- Um computador é composto por:
 - 1. CPU (Unidade Central de Processamento)
 - 1. ULA (Unidade Lógica Aritmética)
 - 2. Unidade de Controle
 - 3. Registradores

- Um computador é composto por:
 - 1. CPU (Unidade Central de Processamento)
 - 2. Memória
 - 1. Registradores
 - 2. Memória Primária
 - 3. Memória Secundária

- Um computador é composto por:
 - 1. CPU (Unidade Central de Processamento)
 - 2. Memória
 - 3. Dispositivos de Entrada e Saída

 O computador é composto de um pequeno conjunto de componentes lógicos básicos (OR, AND, NOT, XOR, ...), que podem ser combinados para executar <u>operações lógicas</u> <u>e aritméticas</u> e <u>armazenar dados</u>.

Revisão (Exemplo)

Shifter: Deslocador de bits para esquerda ou direita

- Função básica de um computador:
 - EXECUTAR PROGRAMAS
 - O que são programas?
 - Uma sequência de instruções que descreve como realizar certa tarefa

 A grande maioria dos computadores atuais são fundamentados na ARQUITETURA de <u>Von Neumann</u>

Arquitetura de Von Neumann

- Dados e instruções são armazenados em uma única memória de leitura e escrita.
- O conteúdo da memória é endereçada pela sua posição.
- A execução de instruções ocorre de modo sequencial (exceto quando ocorre saltos para, por exemplo, sub-rotinas e interrupções).

Registradores Especiais

Instruction Instruction Instruction
Instruction
Instruction
Instruction
•
Data
Data
Data
Data
•
•

PC = Program counter
IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = I/O address register
I/O BR = I/O buffer register

MAR : especifica o endereço de memória da próxima instrução.

MBR: contém o valor a ser gravado na memória ou recebido da memória.

I/O AR: registrador de endereçamento de E/S.

I/O BR: usado na troca de dados entre módulos de E/S e a CPU.

Arquitetura de Von Neumann

Arquitetura de Von Neumann (IAS)

MAR : especifica o endereço de memória da próxima instrução.

MBR: contém o valor a ser gravado na memória ou recebido da memória.

I/O AR: registrador de endereçamento de E/S.

I/O BR: usado na troca de dados entre módulos de E/S e a CPU.

Início A próxima Sim Não $MAR \leftarrow PC$ instrução está no IBR? Não é requerido acesso à memória $MBR \leftarrow M(MAR)$ Ciclo de busca IBR ← MBR (20:39) Sim Não IR ← IBR (0:7) IR ← MBR (20:27) A instrução à esquerda IR ← MBR (0:7) MAR ← MBR (28:39) MAR ← IBR (8:19) é requerida? MAR ← MBR (8:19) PC ← PC + 1 Decodifica instrução no IR Vá para M(X, 0:19) Se AC ≥ 0, então $AC \leftarrow AC + M(X)$ $AC \leftarrow M(X)$ vá para M(X, 0:19) Sim AC ≥ 0? Ciclo de execução PC ← MAR MBR ← M(MAR) $MBR \leftarrow M(MAR)$ Não AC ← AC + MBR AC ← MBR

Arquitetura de Von Neumann (IAS)

MAR : especifica o endereço de memória da próxima instrução.

MBR: contém o valor a ser gravado na memória ou recebido da memória.

M(X) = conteúdo da posição de memória cujo endereço é X

(X : Y) = bits X a Y

Professor André L. Kirsten

Demultiplexador

Demultiplexador

Α	В	S ₀	S ₁	S ₂	S ₃
0	0	Е	0	0	0
0	1	0	Е	0	0
1	0	0	0	Е	0
1	1	0	0	0	Е

Unidade de Controle

Início A próxima Sim Não $MAR \leftarrow PC$ instrução está no IBR? Não é requerido acesso à memória $MBR \leftarrow M(MAR)$ Ciclo de busca IBR ← MBR (20:39) Sim Não IR ← IBR (0:7) IR ← MBR (20:27) A instrução à esquerda IR ← MBR (0:7) MAR ← MBR (28:39) MAR ← IBR (8:19) é requerida? MAR ← MBR (8:19) PC ← PC + 1 Decodifica instrução no IR Vá para M(X, 0:19) Se AC ≥ 0, então $AC \leftarrow AC + M(X)$ $AC \leftarrow M(X)$ vá para M(X, 0:19) Sim AC ≥ 0? Ciclo de execução PC ← MAR MBR ← M(MAR) $MBR \leftarrow M(MAR)$ Não AC ← AC + MBR AC ← MBR

Arquitetura de Von Neumann (IAS)

MAR : especifica o endereço de memória da próxima instrução.

MBR: contém o valor a ser gravado na memória ou recebido da memória.

M(X) = conteúdo da posição de memória cujo endereço é X

(X : Y) = bits X a Y

Professor André L. Kirsten

Ciclo de instruções

Figura 3.3 Ciclo de instrução básico

Figura 3.4 Características de uma máquina hipotética

Exemplo de ciclo de instruções

- Somar conteúdo do endereço 940 com o endereço
 941 e colocar o resultado no endereço 941.
- O PC inicial é 300.
- As instruções e os dados possuem 16 bits.
 - 4 bits de códigos de operação
 - 12 bits de endereços da memória

Lista de Códigos de Operação:

0001: AC \leftarrow M(X)

0010: $M(X) \leftarrow AC$

0101: $AC \leftarrow AC + M(X)$

(a) No interrupts

(b) Interrupts; short I/O wait

(c) Interrupts; long I/O wait

Múltiplas interrupções (processamento sequencial)

Múltiplas interrupções (processamento aninhado)

- Múltiplas Interrupções
 - Definir prioridades
- Exemplo:
 - 3 Dispositivos:
 - Impressora (prioridade 2)
 - Disco rígido (prioridade 4)
 - Comunicação (prioridade 5)

- Objetivo:
 - "Melhorar a eficiência do processador"
- Exemplos:
 - Interrupção de software
 - Resultado indevido de uma instrução
 - Divisão por zero
 - Instrução ilegal
 - Referência de memória fora da faixa

- Exemplos:
 - Interrupção de relógio
 - Gerado por um relógio interno
 - Interrupção de E/S
 - Falha de hardware
 - > Erro de paridade