MATA31 - Assignment #3

Satyajit Datta 1012033336

October 1, 2025

Textbook Questions

Question 26.

Determine whether the statement: There exist real numbers x and y such that x + y = 4 is true Justify your answer.

Since this statement uses the phrase "there exists", only one solution is necessary to make this statement true. Let x = 1, y = 3, then:

$$x + y = 4$$
$$\Rightarrow 1 + 3 = 4$$
$$\Rightarrow 4 = 4$$

∴ The statement is true.

Question 50.

Suppose A and B represent logical statements, write the converse and contrapositive of: $\neg A \Rightarrow \neg B$.

 $\neg A \Rightarrow \neg B$

Converse: $\neg B \Rightarrow \neg A$

Contrapositive: $B \Rightarrow A$

Question 62.

Write the converse and contrapositive of: If x < -2, then |x| = -x. Provide counterexamples if the original, the converse, and/or the contrapositive statements are false.

Original: If x < -2, then |x| = -x.

Converse: If |x| = -x, then x < -2.

Contrapositive: If $|x| \neq -x$, then $x \geq -2$.

The original statement is true, since if x < -2, then x is negative, and the absolute value of a negative number is its negation.

The converse is false, since if x = -1, then |x| = -x but $x \le -2$.

The contrapositive is true, since if $|x| \neq -x$, then x is positive or zero, which means $x \geq -2$.

Question 64.

Write the converse and contrapositive of: If x is positive and rational, then x-1 is positive and rational.

Original: If x is positive and rational, then x - 1 is positive and rational.

Converse: If x - 1 is positive and rational, then x is positive and rational.

Contrapositive: If x-1 is not positive or not rational, then x is not positive or not rational.

The original statement is true, since if x is positive and rational, then x - 1 is also positive and rational. The converse is false, since if x - 1 = 0, then x = 1, which is positive and rational, but if x - 1 = -1, then x = 0, which is not positive.

The contrapositive is true, since if x - 1 is not positive, then $x \le 1$, and if x - 1 is not rational, then x is not rational.

Question 86

Using the definition of absolute value and systems of inequalities, prove that for any real numbers x and c, and for any positive real number δ , the statement: $|x-c| < \delta \iff x \in (c-\delta,c+\delta)$

We must prove that $|x-c| < \delta \iff x \in (c-\delta, c+\delta)$,

For all real numbers x, c, and all positive real numbers δ .

Proof.

Let $\delta > 0$ be arbitrary.

(⇒) Assume $|x - c| < \delta$.

$$|x-c| < \delta \equiv -\delta < x-c < \delta$$
 (by properties of absolute values)
$$\equiv c - \delta < x < c + \delta$$
 (by algebra)

Thus $x \in (c - \delta, c + \delta)$.

(\Leftarrow) Assume $x \in (c - \delta, c + \delta)$.

$$x \in (c - \delta, c + \delta) \equiv c - \delta < x < c + \delta$$
 (by definition of open interval)
$$\equiv -\delta < x - c < \delta$$
 (by algebra)
$$\equiv |x - c| < \delta$$
 (by properties of absolute values)

Thus $|x-c| < \delta$.

Since both directions hold, we conclude that

$$|x-c| < \delta \iff x \in (c-\delta,c+\delta).$$

As required to show.

2. Non-textbook Questions

1.A

Prove that $\log_k(ab) = \log_k(a) + \log_k(b), k > 0, k \neq 1$ and a, b are any two positive numbers.

We must prove that $\log_k(ab) = \log_k(a) + \log_k(b)$

For any real positive numbers a, b, and any k, such that $k > 0, k \neq 1$.

Proof.

Let a > 0, b > 0 and $k > 0, k \neq 1$ be arbitrary.

Let $x = \log_k(a)$, and let $y = \log_k(b)$

Then by definitions of logarithms:

$$k^x = a$$
 and $k^y = b$.

Therefore,

$$ab = k^{x} \cdot k^{y}$$
 (Definition of $x = \log_{k}(a)$ and $y = \log_{k}(b)$)
$$= k^{x+y}$$
 (By properties of exponents.)
$$\log_{k}(ab) = \log_{k}\left(k^{x+y}\right)$$
 (By algebra)
$$= x + y$$
 (By properties of logarithms)
$$= \log_{k}(a) + \log_{k}(b)$$
 (Substitute $x = \log_{k}(a)$, $y = \log_{k}(b)$)

As required to show. \blacksquare .

A.2

Provide a counter-example to show that the relation

$$\log_k(a+b) = \log_k(a) + \log_k(b)$$

is not true.

Proof.

Choose a = 625, b = 25, k = 5.

Then,

$$\begin{split} \log_k(a+b) &= \log_5(625+25) &= \log_5(650) \approx 4.02437, \\ \log_k(a) &+ \log_k(b) &= \log_5(625) + \log_5(25) &= 4+2=6. \end{split}$$

Therefore, the relation

$$\log_k(a+b) = \log_k(a) + \log_k(b)$$

is not true, as required to show.

2

Given that $0 \le a \le b$, show that

$$a \leq \sqrt{ab} \leq \tfrac{a+b}{2} \leq b$$

Proof.

Let $0 \le a \le b$

Then:

$$a \le b \equiv a^2 \le ab$$
 (by algebra)
$$\equiv \sqrt{a^2} \le \sqrt{ab}$$
 (by algebra)
$$\equiv a \le \sqrt{ab}$$
 (by algebra)

Note that since \sqrt{x} is a positive increasing function and $a, b \ge 0$, then $\sqrt{ab} \ge 0$, meaning the inequality is preserved.

Next:

$$a \le b \equiv b - a \ge 0$$
 (by algebra)
$$\equiv (b - a)^2 \ge 0$$
 (squaring both sides)
$$\equiv b^2 - 2ab + a^2 \ge 0$$
 (binomial expansion)
$$\equiv b^2 + a^2 \ge 2ab$$
 (by algebra)
$$\equiv b^2 + 2ab + a^2 \ge 4ab$$
 (adding 2ab to both sides)
$$\equiv (a + b)^2 \ge 4ab$$
 (factoring)
$$\equiv \frac{(a + b)^2}{4} \ge ab$$
 (by algebra)
$$\equiv \sqrt{\frac{(a + b)^2}{4}} \ge \sqrt{ab}$$
 (square root of both sides)
$$\equiv \frac{a + b}{2} \ge \sqrt{ab}$$
 (by algebra)
$$\equiv \sqrt{ab} \le \frac{(a + b)}{2}$$

Note that since \sqrt{x} is a positive increasing function and $a, b \ge 0$, then the square root is nonnegative, meaning the inequality is preserved.

Finally:

$$a \le b \equiv a+b \le b+b$$
 (by algebra)
 $\equiv a+b \le 2b$ (by algebra)
 $\equiv \frac{a+b}{2} \le b$ (by algebra)

Given that $a \le \sqrt{ab}$, $\sqrt{ab} \le \frac{(a+b)}{2}$, and $\frac{a+b}{2} \le b$: By properties of inequalities we can state that:

$$a \leq \sqrt{ab} \leq \tfrac{a+b}{2} \leq b$$

As required to prove. \blacksquare .

3.A

Prove or disprove (by counterexample):

Let
$$x, y \in \mathbb{R}$$
. If $x, y \in \mathbb{Q}$, then $x + y \in \mathbb{Q}$

We will prove this statement.

Proof.

Let $x, y \in \mathbb{Q}$.

Then, by definition of rational numbers, there exist integers $a, b, c, d \in \mathbb{Z}$ with $b \neq 0$ and $d \neq 0$ such that

$$x = \frac{a}{b}$$
 and $y = \frac{c}{d}$.

Consider the sum:

$$x + y \equiv \frac{a}{b} + \frac{c}{d}$$
 (substitute x and y)

$$\equiv \frac{ad}{bd} + \frac{bc}{bd}$$
 (algebra)

$$\equiv \frac{ad + bc}{bd}$$
 (algebra)

Since $a, b, c, d \in \mathbb{Z}$, both the numerator ad + bc and the denominator bd are integers, and $bd \neq 0$. Thus, x + y is a ratio of two integers, which means $x + y \in \mathbb{Q}$.

3.E

Prove or disprove (by counterexample):

Let
$$x, y \in \mathbb{R}$$
. If $x \notin \mathbb{Q}$ and $y \notin \mathbb{Q}$, then $x + y \notin \mathbb{Q}$

Proof (by counterexample).

We will disprove the statement by providing a counterexample.

Choose

$$x = \sqrt{2}$$
 and $y = -\sqrt{2}$.

Then,

$$x + y = \sqrt{2} + \left(-\sqrt{2}\right) = 0.$$

Since $0 \in \mathbb{Q}$, the sum x + y is rational.

Therefore, the statement "If $x \notin \mathbb{Q}$ and $y \notin \mathbb{Q}$, then $x + y \notin \mathbb{Q}$ " is not true.

3.C

Prove or disprove (by counterexample):

Let
$$x, y \in \mathbb{R}$$
. If $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$, then $xy \notin \mathbb{Q}$

Proof (by counterexample).

We will disprove the statement by providing a counterexample.

Choose

$$x = 0$$
 and $y = \sqrt{2}$.

Then,

$$xy = (0)\left(\sqrt{2}\right) = 0.$$

Since $0 \in \mathbb{Q}$, the product xy is rational.

Therefore, the statement "If $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$, then $xy \notin \mathbb{Q}$ " is not true.

3.D

Prove or disprove (by counterexample):

Let
$$x, y \in \mathbb{R}$$
. If $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$, then $x + y \notin \mathbb{Q}$

Proof (by contradiction).

Let $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$ be arbitrary.

For the sake of contradiction, assume

By definition of rational numbers, there exist integers $a, b, c, d \in \mathbb{Z}$ with $b \neq 0$ and $d \neq 0$ such that

$$x = \frac{a}{b}$$
 and $x + y = \frac{c}{d}$.

Then, solving for y, we have:

$$y = (x + y) - x$$
 (algebra)
 $= \frac{c}{d} - \frac{a}{b}$ (substitute x and $x + y$)
 $= \frac{bc - ad}{bd}$ (common denominator)

Since $a,b,c,d\in\mathbb{Z}$, both the numerator bc-ad and the denominator bd are integers, and $bd\neq 0$. Hence, $y=\frac{bc-ad}{bd}\in\mathbb{Q}$, which contradicts our assumption that $y\notin\mathbb{Q}$. Therefore, our assumption is false, and the statement

If
$$x \in \mathbb{Q}$$
 and $y \notin \mathbb{Q}$, then $x + y \notin \mathbb{Q}$

is true. ■