Paul Gustafson

Texas A&M University - Math 620

Instructor: Frank Sottile

HW 4

B-3 p67 Let n, d > 0 and

$$A = \{ \alpha = (\alpha_0, \dots, \alpha_n) \in \mathbb{N}^{n+1} | \alpha_i \ge 0 \text{ and } \sum_{i=0}^n \alpha_i = d \}.$$

We note that $|A| = \binom{n+d}{d}$. We set |A| = N + 1. The cardinality of the support of $\alpha \in A$ is called the breadth of α .

Consider distinct integers $i, j \in [0, n]$. We denote by (i, j) (resp. (i)) the element $\alpha \in A$ defined by $\alpha_k = 0$ for $k \neq i, j$; $\alpha_i = d - 1$; $\alpha_j = 1$ (resp. $\alpha_k = 0$ for $k \neq i$ and $\alpha_i = d$).

If X_0, \ldots, X_n are variables, then for any $\alpha \in A$ we set $X^{\alpha} = X_0^{\alpha_0} \cdots X_n^{\alpha_n}$. We consider the map $\phi : \mathbb{P}^n \to \mathbb{P}^N$ defined by the formula

$$\phi(x_0,\ldots,x_n)=(x^\alpha)_{\alpha\in A}.$$

1) Prove that ϕ is an injective map.

Proof. Suppose
$$\phi(x) = \phi(y)$$
.

2) Consider the ring homomorphism

$$\theta: k[(Y_{\alpha})]_{\alpha \in A} \to k[X_0, \dots X_n]$$

defined by $\theta(Y_{\alpha}) = X^{\alpha}$. Set $I = \ker \theta$ and consider $V = V_{P}(I)$ (the Veronese variety). Prove that I is a homogeneous ideal and $\phi(\mathbb{P}^n) \subset V$.

- 3) Consider $\alpha, \beta, \gamma, \delta \in A$. We assume $\alpha + \beta = \gamma + \delta$. Prove that $Y_{\alpha}Y_{\beta} Y_{\gamma}Y_{\delta}$ is in the ideal I.
- 4) Prove that the open sets $D^+(Y_{(i)})$ cover V. (Hint in book).
- 5) We define $\psi: D^+(Y_{(i)}) \cap V \to D^+(X_i)$ by the formula

$$\psi((y_{\alpha})) = (y_{(i,0)}, y_{(i,1)}, \dots, y_{(i)}, \dots, y_{(i,n)}).$$

Prove that ϕ and ψ are mutually inverse morphisms on the open sets in question.

6) Prove that ϕ gives an isomorphism from \mathbb{P}^n to the Veronese variety V.