Bicreteria path problem minimizing the cost and minimizing the number of labels

Master Parisien de Recherche Opérationnelle

Marta Pascoal - M. Eugénia Captivo - João Clímaco - Ana Laranjeira **Julien Khamphousone**

Article published: 9 March 2013 - https://doi.org/10.1007/

Translated from French to English in July 2024

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Julien Khamphousone

Table of Contents

- 1. Problem Overview
- 2. Enumeration Algorithm
- 3. Enumeration algorithm with upper bounds
- 4. Algorithm with pre-calculation of shortest paths
- 5. Performance

Table of Contents

- 1. Problem Overview
- 2. Enumeration Algorithm
- 3. Enumeration algorithm with upper bounds
- 4. Algorithm with pre-calculation of shortest paths
- 5. Performance

► Composed by two sub-problems

Julien Khamphousone

► Composed by two sub-problems

► Composed by two sub-problems

► Composed by two sub-problems

Complexity 1st subproblem

► Shortest path problem

 $\mathcal{P} = \{ \mathsf{path} \; \mathsf{from} \; s \; \mathsf{to} \; t \}$

$$c^* = \min_{p \in \mathcal{P}} c(p)$$

▶ Polynomial: c* can be calculated in polynomial time

Complexity of the 2nd subproblem

▶ Path problem minimizing the number of labels used

 $\mathcal{P} = \{ \text{path from } s \text{ to } t \}$

- $I^* = \min_{p \in \mathcal{P}} I(p)$
- NP − hard: I* cannot be calculated in polynomial time [Wirth (2001)]

Problem studied: MCLPP

 Bi-objective path problem with minimum cost and minimizing the number of labels


```
\mathcal{P} = \{ \text{path from } s \text{ to } t \}
\min_{p \in \mathcal{P}} c(p)
\min_{p \in \mathcal{P}} l(p)
```


► Already studied in the case of spanning trees [Clímaco et al. (2010)], we consider here paths

Problem studied: MCLPP

 Bi-objective path problem with minimum cost and minimizing the number of labels

 $\mathcal{P} = \{ \text{path from } s \text{ to } t \}$ $\min_{p \in \mathcal{P}} c(p)$ $\min_{p \in \mathcal{P}} l(p)$

► Already studied in the case of spanning trees [Clímaco et al. (2010)], we consider here paths

Applications

Transport

- Least cost route between two points on a map;
- ► Labels: different modes of transport (taxi, pedestrian, bus, trains, etc.).

Telecommunications

- Shortest path between two nodes of a network (internet, electricity, etc.);
- ► Labels: different technologies or operators.

Applications

Transport

- Least cost route between two points on a map;
- ► Labels: different modes of transport (taxi, pedestrian, bus, trains, etc.).

Telecommunications

- Shortest path between two nodes of a network (internet, electricity, etc.);
- ► Labels: different technologies or operators.

Efficient path and dominance

Definition: efficient path

A path $p \in \mathcal{P}$ is said **efficient** $\iff \nexists p' \in \mathcal{P}$ such that:

- $ightharpoonup c(p') \le c(p)$ and ;
- $I(p') \leq I(p) ;$
- At least one of the two inequalities is strict.

Definition: dominance

For $p \in \mathcal{P}$, if there exists $p' \in \mathcal{P}$ such that:

- $ightharpoonup c(p') \leq c(p)$;
- $I(p') \leq I(p)$;
- At least one of the two inequalities is strict;

We will say that (c(p'), l(p')) dominates (c(p), l(p)).

Efficient path and dominance

Definition: efficient path

A path $p \in \mathcal{P}$ is said **efficient** $\iff \nexists p' \in \mathcal{P}$ such that:

- $ightharpoonup c(p') \le c(p)$ and ;
- $\blacktriangleright \ l(p') \leq l(p) ;$
- At least one of the two inequalities is strict.

Definition: dominance

For $p \in \mathcal{P}$, if there exists $p' \in \mathcal{P}$ such that:

- $ightharpoonup c(p') \leq c(p)$;
- $I(p') \leq I(p) ;$
- At least one of the two inequalities is strict;

We will say that (c(p'), l(p')) dominates (c(p), l(p)).

Purpose of the article

Compute a set $\bar{\mathcal{P}}$ of efficient paths of minimum cardinality

- ightharpoonup Calculate $\bar{\mathcal{P}}$ such that:
 - $\forall (p, p') \in \bar{\mathcal{P}}^2 : p \neq p', p \text{ and } p' \text{ have different images, i.e.}$ $c(p) \neq c(p') \text{ or } l(p) \neq l(p') \text{ ;}$
 - For any non-dominated pair (\bar{c}, \bar{l}) , there exists a path $p \in \bar{P}$ such that $(c(p), l(p)) = (\bar{c}, \bar{l})$

Possible MCLPP images

- images de chemins efficaces images d'autres
- chemins

Plan

- 1. Problem Overview
- 2. Enumeration Algorithm
- 3. Enumeration algorithm with upper bounds
- 4. Algorithm with pre-calculation of shortest paths
- 5. Performance

- ► Algorithm to construct \bar{P} ;
- ▶ $\forall k = 1, ..., l(p^*)$, where p^* is the shortest path of our graph without restriction on labels;
 - Calculate the shortest path having k labels and add it to $\bar{\mathcal{P}}$;
 - Remove dominated paths from $\bar{\mathcal{P}}$.

- ▶ Algorithm to construct $\bar{\mathcal{P}}$;
- $\forall k = 1, ..., l(p^*)$, where p^* is the shortest path of our graph without restriction on labels;
 - Calculate the shortest path having k labels and add it to $\bar{\mathcal{P}}$;
 - Remove dominated paths from $\bar{\mathcal{P}}$.

- ► Step 1: initialization
- ► Calculate the shortest path without restriction on labels

labels: $\{1, 2, 3\}$

$$c(\langle s, A, B, t \rangle) = 7$$

- ► Step 1: initialization
- ▶ Calculate the shortest path without restriction on labels $\longrightarrow I(p^*) = 3$

$$\bar{\mathcal{P}} = \{ \langle s, A, B, t \rangle \}$$

labels :
$$\{1, 2\}$$

 $c(< s, A, C, t >) = 13$

- $\bar{\mathcal{P}} = \{ \langle s, A, B, t \rangle \}$
 - ► Step 2:
 - ► Calculate shortest paths with at most 2 labels

labels :
$$\{1, 2\}$$

 $c(< s, A, C, t >) = 13$
labels : $\{1, 3\}$
 $c(< s, A, t >) = 21$

$$\bar{\mathcal{P}} = \{ \langle s, A, B, t \rangle \}$$

- ► Step 2:
- Calculate shortest paths with at most 2 labels

labels:
$$\{1, 2\}$$

 $c(< s, A, C, t >) = 13$
labels: $\{1, 3\}$
 $c(< s, A, t >) = 21$
labels: $\{2, 3\}$
 $c(< s, C, t >) = 14$

$$\bar{\mathcal{P}} = \{\langle s, A, B, t \rangle\}$$

- ▶ Step 2:
- Calculate shortest paths with at most 2 labels

labels:
$$\{1, 2\}$$

 $c(< s, A, C, t >) = 13$
labels: $\{1, 3\}$
 $c(< s, A, t >) = 21$
labels: $\{2, 3\}$
 $c(< s, C, t >) = 14$

- $\bar{\mathcal{P}} = \{ \langle s, A, B, t \rangle \}$
 - ► Step 2:
 - ► Calculate shortest paths with at most 2 labels

$$\bar{P} \leftarrow \bar{P} \cup \{ \langle s, A, C, t \rangle \} = \{ \langle s, A, B, t \rangle, \langle s, A, C, t \rangle \}$$

$$\bar{P} = \{ \langle s, A, B, t \rangle, \langle s, A, C, t \rangle \}$$

- ► Step 3:
- Calculate shortest paths with 1 label

labels : $\{1\}$ c(< s, A, t >) = 21

$$\bar{P} = \{ \langle s, A, B, t \rangle, \langle s, A, C, t \rangle \}$$

- ► Step 3:
- ► Calculate shortest paths with 1 label

labels :
$$\{1\}$$

 $c(< s, A, t >) = 21$
labels : $\{2\}$
 $c(< s, C, t >) = 14$

labels :
$$\{1\}$$

 $c(< s, A, t >) = 21$
labels : $\{2\}$
 $c(< s, C, t >) = 14$
labels : $\{3\}$
Pas de solutions

- $\bar{P} = \{ \langle s, A, B, t \rangle, \langle s, A, C, t \rangle \}$
 - ► Step 3:
 - ► Calculate shortest paths with 1 label

$$\bar{\mathcal{P}} \leftarrow \bar{\mathcal{P}} \cup \{ \langle s, C, t \rangle \} = \{ \langle s, A, B, t \rangle, \langle s, A, C, t \rangle, \langle s, C, t \rangle \}$$

Finally, the algorithm returns:

$$ar{\mathcal{P}} = \{ < s, A, B, t > \ (3 \ labels), \ < s, A, C, t > \ (2 \ labels), \ < s, C, t > \ (1 \ label) \}$$

Algorithms proposed in the article

Construction of $\bar{\mathcal{P}}$ with 5 algorithms

- ► Enumeration algorithm V1
 - Algorithm V2 which improves V1 by comparing the new shortest paths with those previously calculated
 - Algorithm V3 which further improves V2
- Algorihtm BFS1 with a depth scan
- ▶ Algorithm BFS2 variant of BFS1 with reoptimization of shortest paths

Plan

- 1. Problem Overview
- 2. Enumeration Algorithm
- 3. Enumeration algorithm with upper bounds
- 4. Algorithm with pre-calculation of shortest paths
- 5. Performance

Enumeration algorithm with upper bounds: Principle

- ▶ V1 + vector $CostUB_k$ of size $1, ..., I(p^*)$;
- At a given iteration, $\forall k = 1, ..., l(p^*)$ $CostUB_k$: cost of the best shortest path having k labels among all previous iterations;
- ▶ If when calculating the shortest path with *k* labels, the intermediate cost at a node *j* included on the path from *s* to *t* is greater than CostUB_k, we stop the calculation.

Enumeration Algorithm with Upper Bounds

V2: iteration with 2 labels

We place ourselves during iteration (step 2) where:

$$\bar{\mathcal{P}} = \{ \langle s, A, B, t \rangle, \quad \text{(2 labels)} \}$$

(□ > 4♂ > 4 ≥ > 4 ≥ > ≥ ∽ Q ↔

Enumeration Algorithm with Upper Bounds

V2: iteration with 2 labels

We place ourselves during iteration (step 2) where:

We will now save in $CostUB_2$, 2 because 2 labels, the cost of $\{\langle s, A, B, t \rangle\}$ equals to 5

|ロト 4回 ト 4 E ト 4 E ト | E | かく()

Enumeration Algorithm with Upper Bounds

V2: iteration with 2 labels

► The algorithm must now calculate the other shortest path with 2 labels knowing that $CostUB_2 = 5$

Julien Khamphousone

Enumeration Algorithm with Upper Bounds

V2: iteration with 2 labels

► The algorithm must now calculate the other shortest path with 2 labels knowing that $CostUB_2 = 5$

Julien Khamphousone

Enumeration Algorithm with Upper Bounds

V2: iteration with 2 labels

► The algorithm must now calculate the other shortest path with 2 labels knowing that $CostUB_2 = 5$

Julien Khamphousone

Enumeration Algorithm with Upper Bounds

V2: iteration with 2 labels

► Here the labeling algorithm which calculates the shortest path stops because $\pi_D = 5$, cost of the path from s to D is such that $\pi_D + c_{D,B} = 6 > CostUB_2 = 5$.

ロトオ部トオミトオミト ミ めので

Plan

- 1. Problem Overview
- Enumeration Algorithm
- 3. Enumeration algorithm with upper bounds
- 4. Algorithm with pre-calculation of shortest paths
- 5. Performance

In order to improve V2:

- ▶ for any node v of the graph, calculate the shortest path from v to the well t denoted π_v^t ;
- ▶ Use the cost tree of these shortest paths in addition to *CostUB*.

$$\bar{\mathcal{P}} = \langle s, A, B, t \rangle$$
 $CostUB_2 = 5$

Julien Khamphousone

$$\bar{\mathcal{P}} = \langle s, A, B, t \rangle$$

$$CostUB_2 = 5$$

$$3, 1$$

$$1, 1$$

$$C - 4, 1 > D$$

$$1, 2$$

- $\pi_s + c_{s,C} + \pi_i^t = 0 + 1 + 6$
- $ightharpoonup \pi_s + c_{s,C} + \pi_i^t = 7 > CostUB_2$

Plan

- 1. Problem Overview
- Enumeration Algorithm
- 3. Enumeration algorithm with upper bounds
- 4. Algorithm with pre-calculation of shortest paths
- 5. Performance

Graphs tested

Random Graphs	Grid Graphs
▶ $n \in \{100, 200, \dots, 1000\}$	▶ $[1; q] \times [1; q]$ ▶ $q \in \{10, 20,, 50\}$ ▶ $n = q^2$
$c \in \{1,2,\ldots,100\}$	$labels \in \{5, 10, 20\}$
▶ $m \in \{5n, 10n, 20n\}$	m = 4(2q-1)(q-1)
source and sink generated randomly	► s (t respectively) node lower left (upper right) corner of the grid

Comparison of algorithm execution times

Random Graphs	Grid Graphs
1st V3	1st V3
2e V2	<mark>2e</mark> V2
3e BFS2	3e V1
4e V1	4e BFS2
5e BFS1	5e BFS1

Perspective

► Add a 3rd cost function which would penalize too many transitions, i.e. change of label between two arcs

Thanks!