Cats and a Mouse

Two cats named A and B are standing at integral points on the x-axis. Cat A is standing at point x and cat B is standing at point y. Both cats run at the same speed, and they want to catch a mouse named C that's hiding at integral point z on the x-axis. Can you determine who will catch the mouse?

You are given q queries in the form of x, y, and z. For each query, print the appropriate answer on a new line:

- If cat A catches the mouse first, print Cat A.
- If cat \boldsymbol{B} catches the mouse first, print $\operatorname{\mathsf{Cat}} \mathsf{B}$.
- If both cats reach the mouse at the same time, print Mouse C as the two cats fight and mouse escapes.

Input Format

The first line contains a single integer, q, denoting the number of queries.

Each of the q subsequent lines contains three space-separated integers describing the respective values of x (cat A's location), y (cat B's location), and z (mouse C's location).

Constraints

- $1 \le q \le 100$
- $1 \le x, y, z \le 100$

Output Format

On a new line for each query, print $Cat\ A$ if $cat\ A$ catches the mouse first, $Cat\ B$ if $cat\ B$ catches the mouse first, or $Cat\ B$ if $Cat\$

Sample Input 0

```
3
123
132
213
```

Sample Output 0

```
Cat B
Mouse C
Cat A
```

Explanation 0

Query 0: The positions of the cats and mouse are shown below:

Cat \boldsymbol{B} will catch the mouse first, so we print $\operatorname{Cat} \boldsymbol{B}$ on a new line.

Query 1: In this query, cats A and B reach mouse C at the exact same time:

Because the mouse escapes, we print Mouse C on a new line.