Advanced Game Thoerie

Prof. Dr. Clemens Puppe

(inoffizielles Skript)

Wintersemester 2016/17

Karlsruher Institut für Technologie

Contents

1	Nor	acooperative Games	2
	1.1	Basic Elements of Noncooperative Games	2
	1.2	Rationalisable Strategies	7
	1.3	Nash Equilibrium	12
	1.4	Subgame Perfection in Dynamic Games	13
	1.5	Excercises	14
2	Koo	operative Spiele	21
	2.1	Der Kern	21
	2.2	Der Shapley-Wert	22
	2.3	Einfache Spiele	23
	2.4	Konvexe Spiele	24
	2.5	Übungen	25
3	Evo	olutionäre Spieltheorie	34
	3.1	Spiele in Normalform	34
	3.2	Aufgaben	37

Chapter 1

Noncooperative Games

1.1 Basic Elements of Noncooperative Games

Definition: A game is a formal representation of a situation in which a number of individuals interact in a setting of strategic interdependence.

- The players: Who is involved?
- The rules: Who moves when? What do they know when they move? What can they do?
- The outcomes: For each possible set of actions by the players, what is the outcome of the game?
- The payoffs: What are the players' preferences over the possible outcomes?

Example 1.1 (of simultaneous move games):

a) Matching Pennies

$$\begin{array}{c|cccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$$

b) Meeting in New York

Player 2

		Empire State	Grand Central
Player 1	Empire State	100, 100	0,0
1 layer 1	Grand Central	0,0	100, 100

c) Examples of (simple) dynamic games

Prisoner's Dilemma in Extensive-form

d) Matching Pennies Version C

Definition (Information):

- a) Information Set: A player doesn't know which of the nodes in the information set she is actually at. Therefore, at any decision node in a player's information set, there must be the same possible actions.
- b) **Perfect Information:** A game is said to be of perfect information if each information set contains a single decision node. Otherwise, it is a game of **imperfect** information.

Definition (Extensive Form Game): A game in **extensive form** consists of:

- (i) A finite set of nodes \mathcal{X} , a finite set of possible actions \mathcal{A} , and a finite set of players $\{1,\ldots,l\}$.
- (ii) A funktion p: X → {X∪∅} specifying a single immediate predecessor of each node x;
 p(x) ∈ X expect for one element x₀, the initial node. The immediate successor node of x are s(x) = p⁻¹(x).
 To have a tree structure, a predecessor can never be a successor and vice versa.
 The set of terminal nodes T = {x ∈ X: s(x) = ∅}. All other nodes X \ T are decision nodes.
- (iii) A function $\alpha \colon \mathcal{X} \setminus \{x_0\} \to \mathcal{A}$ giving the action that leads to any non-initial node x from its immediate predecessor p(x) with $x', x'' \in s(x); x' \neq x'' \Rightarrow \alpha(x') \neq \alpha(x'')$. The set of choices at decision node x is $c(x) = \{a \in \mathcal{A} \colon a = \alpha(x') \text{ for some } x' \in s(x)\}$.
- (iv) A collection of information sets \mathcal{H} , and a function $H: \mathcal{X} \to \mathcal{H}$ assigning each decision node x to an information set $H(x) \in \mathcal{H}$ with c(x) = c(x') if H(x) = H(x').

The choices available at information set H can be written as

$$C(H) = \{ a \in \mathcal{A} : a \in c(x) \text{ for } x \in H \}.$$

(v) A function $\iota: \mathcal{H} \to \{0, 1, \dots, l\}$ assigning a player to each information set (i = 0) 'nature').

The collection of player i's information set is denoted by

$$\mathcal{H}_i = \{ H \in \mathcal{H} : i = \iota(H) \}.$$

- (vi) A function $\rho: \mathcal{H}_0 \times \mathcal{A} \to [0,1]$ assigning a probability to each action of nature with $\rho(H,a) = 0$ if $a \notin C(H)$ und $\sum_{a \in C(H)} \rho(H,a) = 1$ for all $H \in \mathcal{H}_0$.
- (vii) A collection of payoff function $u = \{u_1(\cdot), \ldots, u_l(\cdot)\}$, where $u_i : T \to \mathbb{R}$.

A game in extensive form: $\Gamma_E = \{\mathcal{X}, \mathcal{A}, I, p(\cdot), \alpha(\cdot), \mathcal{H}, H(\cdot), \iota(\cdot), \rho(\cdot), u\}.$

Comment: Restrictions of this definition:

- a) Finite set of actions
- b) Finite number of moves
- c) Finite number of players

Definition (Strategy): Let \mathcal{H}_i denote the collection of player i's information sets, \mathcal{A} the set of possible actions in the game, and $C(H) \subset \mathcal{A}$ the set of actions possible at information set H. A **strategy** for player i is a function $s_i \colon \mathcal{H}_i \to \mathcal{A}$ such that $s_i(H) \in C(H)$ for all $H \in \mathcal{H}_i$.

Definition (Normal Form Representation): For a game with I players, the **normal** form representation Γ_N specifies for each player i a set of strategies S_i (with $s_i \in S_i$) and a payoff function $u_i(s_1, \ldots, s_l)$, formally

$$\Gamma_N = [I, \{S_i\}, \{u_i(\cdot)\}].$$

Definition:

- a) $s_i \colon \mathcal{H}_i \to \mathcal{A}$ describes deterministic choices at each $H \in \mathcal{H}_i$ and is called a **pure**strategy
- b) a **mixed strategy** is a probability distribution over all pure strategies $\sigma_i : \mathcal{S}_i \to [0, 1]$, with $\sigma_i(s_i) \geq 0$ and $\sum_{s_i \in \mathcal{S}_i} \sigma_i(s_i) = 1$.
- c) player i's set of possible mixed strategies can be associated with the points of the simplex $\Delta(S_i)$, called the **mixed extension** of S_i .
- d) since we assume that individuals are expected utility maximisers, player i's utility of a profile of mixed strategies $\sigma = (\sigma_i, \dots, \sigma_l)$ is given by

$$u_i(\sigma) = \sum_{s \in S} [\sigma_1(s_1) \cdot \sigma_2(s_2) \cdot \ldots \cdot \sigma_l(s_l)] \cdot u_i(s),$$

where $s = (s_1, ..., s_l)$.

Definition (Behaviour Strategy): Given an extensive form game Γ_E , a **behaviour** strategy for player i specifies for every information set $h \in \mathcal{H}_i$ and action $a \in C(H)$, a probability $\lambda_i(a, H) \geq 0$, with

$$\sum_{a \in C(H)} \lambda_i(a, H) = 1 \text{ for all } H \in \mathcal{H}_i.$$

Definition (Perfect Recall): A player has **perfect recall** if he doesn't "forget" what she once knew, including her own actions.

Theorem 1.2: If Γ_E is an extensive form game with perfect recall, then for any mixed strategy there is an outcome equivalent behaviour strategy and vice versa.

1.2 Rationalisable Strategies

Central question of Game Theory: What should we expect to observe in a game played by rational players? Or more precisely: What should we expect to observe in a game played by rational players who are fully knowledgeable about the structure of the game and each others' rationality?

We first address the above question for simultaneous-move games, which we study using their normal form representation. We use the following notation:

- $\Gamma_N = [I, \{S_i\}, \{u_i(\cdot)\}]$ if we consider pure strategies only, $\Gamma_N = [I, \{\Delta(S_i)\}, \{u_i(\cdot)\}]$ if we allow for mixed strategies
- $s_{-i} = (s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_l) \in \mathcal{S}_{-i}$ where $\mathcal{S}_{-i} = S_1 \times \dots \times S_{i-1} \times S_{i+1} \times \dots \times S_l$
- $\bullet \ \ s = (s_i, s_{-i})$

Example 1.3 (Prisoners' Dilemma):

Player 2

		don't confess	confess
Player 1	don't confess	-2, -2	-10, -1
1 layer 1	confess	-1, -10	-5, -5

What should we expect to observe in the Prisoners' Dilemma?

Definition (Strictly Dominant Strategy): A strategy $s_i \in \mathcal{S}_i$ is **strictly dominant** for player i in game $\Gamma_N =]I, \{\mathcal{S}_i\}, \{u_i(\cdot)\}]$ if for all $s_i' \neq s_i$:

$$u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

for all $s_i \in \mathcal{S}_{-i}$.

Applied to Prisoner's Dilemma: Confess is a strictly dominant strategy for each player.

Definition (Strictly Dominated Strategy): $s_i \in \mathcal{S}_i$ is **strictly dominated** for player i in game Γ_N if there exists another strategy $s_i' \in \mathcal{S}_i$ such that:

$$u_i(s_i', s_{-i}) \ge u_i(s_i, s_{-i})$$

for all $s_{-i} \in \mathcal{S}_{-i}$. In this case we say that s'_i strictly dominates s_i .

Definition (Weakly Dominated Strategy): $s_i S_i$ is **weakly dominated** for player i in game Γ_N if there exists another strategy $s'_i \in S_i$ such that:

$$u_i(s_i', s_{-i}) \ge u_i(s_i, s_{-i})$$

for all $s_{-i} \in \mathcal{S}_{-i}$, with strict inequality for at least one s_{-i} .

Example 1.4:

Example 1.5 (Prisoners' Dilemma – A Variation): Assume Prisoner 1 is the district attorney's brother: If neither player confesses, player 1 is free

Player 2

		don't confess	confess
Player 1	don't confess	0, -2	-10, -1
1 layer 1	confess	-1, -10	-5, -5

 $\Rightarrow D$ is strictly dominated by U and M.

 \Rightarrow Player 1 has no dominant strategy anymore.

In this game, the iterated elimination of strictly dominated strategies still leads to a unique prediction. In general, the order of elimination of strictly dominated strategies does not matter! How about iterated elimination of weakly dominated strategies?

Definition: A strategy $\sigma_i \in \Delta(S_i)$ is strictly dominated for i in game $\Gamma_N = [I, \{\Delta(S_i)\}, \{u_i(\cdot)\}]$ if there exists another strategy $\sigma'_i \in \Delta(S_i)$ such that for all $\sigma_{-i} \in \Pi_{j \neq i} \Delta(S_j)$:

$$u_i(\sigma'_i, \sigma_{-i}) > u_i(\sigma_i, \sigma_{-i}).$$

Proposition 1.6: Player *i*'s pure strategy $s_i \in \mathcal{S}_i$ is strictly dominated in a game $\Gamma_N = [I, \{\Delta(\mathcal{S}_i)\}, \{u_i(\cdot)\}]$ if and only if there exists another strategy $\sigma'_i \in \Delta(\mathcal{S}_i)$ such that

$$u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$$
 for all $s_{-i} \in \mathcal{S}_{-i}$.

Proof: This follows because we can write

$$u_i(\sigma'_i, \sigma_{-i}) - u_i(s_i, \sigma_{-i}) = \sum_{s_{-i} \in S_{-i}} \left[\prod_{k \neq i} \sigma_k(s_k) \right] \left[u_i(\sigma'_i, s_{-i}) - u_i(s_i, s_{-i}) \right].$$

And this expression is positive for all σ_{-i} if and only if $u_i(\sigma'_i, s_{-i}) - u_i(s_i, s_{-i})$ is positive for all s_{-i} .

Example 1.7:

$$\Rightarrow \frac{1}{2}U + \frac{1}{2}D$$
 strictly dominates M .

Definition (Best response): The strategy σ_i is a **best response** for player i to her rivals' strategies σ_{-i} if:

$$u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma_i', \sigma_{-i})$$

for all $\sigma'_i \in \Delta(S_i)$. Strategy σ_i is never a best response if there is no σ_{-i} for which σ_i is a best response.

Definition (Rationalisable Strategies): In game $\Gamma_N = [I, \{\Delta(S_i)\}, \{u_i(\cdot)\}]$, the strategies in $\Delta(S_i)$ that survive the iterated elimination of strategies that are never a best response are known as player i's **rationalisable strategies**.

Example 1.8:

 $\Rightarrow \frac{1}{2}U + \frac{1}{2}D$ strictly dominates M.

 $[\]Rightarrow$ b_4 is never best response for player 2 and then a_4 is never best response for player 1.

 $[\]Rightarrow$ $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ are the rationalisable strategies in this game.

1.3 Nash Equilibrium

1.4 Subgame Perfection in Dynamic Games

1.5 Excercises

Advanced Game Theory - 1. Exercise

Excercise 1.1

It holds that $|S| = \prod_{n=1}^{N} M_n$, while:

$$S = M_1 \times \cdots \times M$$
.

Excercise 1.2

Extensive form game with imperfect information

a) Die Strategieräume sind:

$$S_{1} = \{(L, x, x), (L, x, y), (L, y, x), (L, y, y), \\ (M, x, x), (M, x, y), (M, y, x), (M, y, y), \\ (R, x, x), (R, x, y), (R, y, x), (R, y, y)\} \\ = \{S_{1}^{1}, \dots, S_{1}^{12}\}$$

$$S_{2} = \{(l), (r)\}$$

b) It must hold for $p_i, q_i, r_i \geq 0$ that:

$$p_1 + p_2 + p_3 = 1$$

 $q_1 + q_2 = 1$
 $r_1 + r_2 = 1$

Example of a behaviour strategy: $(p_1L + p_2M + p_3R, q_1x + q_2y, r_1x + r_2y)$ Example of a mixed strategy: $\sum_{i=1}^{12} p_i S_1^i$

For player 2 there is nothing to show.

Probability distribution of the outcomes:

$$p_1, p_2\sigma(l)q_1, p_2\sigma(l)q_2, p_2\sigma(r)q_1, p_2\sigma(r)q_2, \dots$$

The following mixed strategy of player 1 is realisation equivalent

$$\left(p_1S^1 + p_2q_1S_1^5 + p_2q_2S_1^7 + p_3r_1S_1^9 + p_3r_2S_1^{10}\right)$$

z.z.: $1 = p_1 + p_2q_1 + p_2q_2 + p_3r_1 + p_3r_3$. Beweis: klar.

c) Musterlösung im Ilias

Excercise 1.3

Player 2

	LL	L	M,	R
Player 1 U	100, 2	-100, 1	0,0	-100, -100
D D	-100, -100	100, -49	1,0	100, 2

Advanced Game Theory - 2. Exercise

Excercise 2.1

 Σ_i^N set of strategies for player i that remain after N rounds of elimination of never best response strategies.

Suppose $s_1 \in \Sigma_i^N$ is never best response to any strategy in Σ_{-i}^N . Suppose we do not delete s_1 in round N+1. Now s_1 will not be a best response to any strategy in $\Sigma_{-i}^{N+1} \subseteq \Sigma_{-i}^N$. In particular, it will never be a best response to any strategy in Σ_{-i}^{N+k} for $k \geq 1$.

 $\Rightarrow s_1$ will be deleted in a later round.

Excercise 2.2

Suppose $s_i \in S_i$ is stricty dominated by $\sigma_i^* \in \Delta(S_i)$. Suppose further that $\sigma_i \in \Delta(S_i)$ plays s_i^* with positive probability $\sigma_i(s_i^*)$

Claim: σ_i is strictly dominated by $\sigma_i' \in \Delta(S_i)$ which is equivalent to σ_i but puts $\sigma(S_i)$ to σ_i^* .

Proof:

$$u_i(\sigma_i, \sigma_{-i}) = \sum_{s_i \in S_i} \sigma_i(s_i) u_i(s_i, \sigma_{-i})$$

$$= \sum_{s_i \neq s_i^*} \sigma_i(s_i, u_i(s_i, \sigma_i) + \sigma_i(s_i^*) u_i(s_i^*, \sigma_{-i})$$

$$< \sum_{s_i \neq s_i^*} \sigma_i(s_i, u_i(s_i, \sigma_i) + \sigma_i(s_i^*) u_i(\sigma_i^*, \sigma_{-i})$$

$$= u_i(\sigma_i', \sigma_{-i}) \quad \forall \sigma_{-i} \in \Delta(S_{-i})$$

Excercise 2.3

- a) keine
- b) keine
- c) s_1 (by p.g. s_2). Any mixed strategy that contains s_1 (by 2.2).
- d) e) f) Musterlösung im Ilias

Advanced Game Theory - 3. Exercise

Excercise 3.1

Assumption we make: finite number of pure strategies \Rightarrow there exists a Nash-Equilibrium.

When a strategy σ_i is eliminated then so is every strategy that plays σ_i with positive probability.

 S^{∞} : set of strategies that survive iterated elimination of strictly dominated strategies.

$$|S^{\infty}| = 1.$$

Claim: If (s_1^*, \ldots, s_I^*) is a Nash-Equilibrium, then $s^* \in S^{\infty}$.

Proof: Let (s_1^*, \ldots, s_I^*) be a Nash-Equilibrium and assume $s^* \notin S^{\infty}$. Let i be the player whose strategy is eliminated first (in round k).

i.e. $\exists \sigma_i, \sigma'_i \in \Delta(S_i)$:

$$u_i(\sigma_i, s_{-i}) > u_i(\sigma_i', s_{-i}) \quad \forall s_i \in S_{-i}^{k-1}$$

and σ'_i is played with positiv probability in s_i^* .

Let s_i' be derived from s_i^* with replacing σ_i' by σ_i .

$$\Rightarrow u_{i}(s'_{i}, s^{*}_{-i}) = u_{i}(s^{*}_{i}, s^{*}_{-i}) + \underbrace{s^{*}_{i}}_{>0} (\sigma'_{i}) \underbrace{\left[u_{i}(\sigma_{i}, s^{*}_{-i}) - u_{i}(\sigma'_{i}, s^{*}_{-i})\right]}_{>0}$$
$$> u_{i}(s^{*}_{i}, s^{*}_{-i})$$

which contradicts the fact that s^* is a Nash-Equilibrium.

Excercise 3.2

Musterlösung

Excercise 3.3

Player 2 $LL \qquad L \qquad M, \qquad R$ Player 1 $\frac{U}{D} = \begin{bmatrix} 100, 2 & -100, 1 & 0, 0 & -100, -100 \\ -100, -100 & 100, -49 & 1, 0 & 100, 2 \end{bmatrix}$

- a) Play M, todo: explanation
- b) Pure Nash-Equilibria: (U, LL) and (D, R) Mixed Equilibria:
 - (i) Player 1 mixes U and D with probabilities p and 1-p respectively.
 - (ii) Player 2 can mix between: (LL, L), (LL, M), (LL, R), (L, M), (L, R),

$$(M, R), (LL, L, M), (LL, L, R), (LL, M, R), (L, M, R), (LL, L, M, R)$$

Claim: Only (LL, L) will lead to a Nash-Equilibrium.

Proof (Using the Proposition after the Definition of Mixed Strategy NE): Only (LL, L) will lead to a Nash Equilibrium

$$u_2(LL) = u_2(L) \iff 2p - 100(1-p) = p - 49(1-p)$$

$$\iff p = \frac{51}{52}$$

Therefore: $u_2(LL) = u_2(L) = \frac{1}{26}$, $u_2(M) = 0$, $u_2(R) < 0$.

$$u_1(u) = u_1(D) \iff 100q - 100(1 - q) = -100q + 100(1 - q)$$

 $\iff q = \frac{1}{2}$

where q is the probability of Player 2 playing LL.

$$\Rightarrow$$
 Nash Equilibrium: $\left(\frac{51}{52}U + \frac{25}{26}D, \frac{1}{2}LL + \frac{1}{2}L\right)$.

Now we have proven that (LL, L) is a Nash Equilibrium. We will subsequently show that no other Nash Equilibrium exists:

• (LL, M): $u_2(LL) \stackrel{!}{=} u_2(M) = 0 \iff p = \frac{50}{51}$, but then $u_2(L) = \frac{1}{51} > 0$ and hence deviation would result in a higher payout. Therefore (LL, M) is no Nash Equilibrium.

- (LL, R): $u_2(LL) = u_2(R) \iff p = \frac{1}{2}$, but then $u_2(LL) = -49$ and $u_2(M) = 0 > -49$ and again a contradiction to the Nash Equilibrium (LL, R)
- (L, M), (L, R), (M, R), (M, L, R): choosing on of these strategies we can see in the Normalform representation that Player 1 will always play $D \Rightarrow$ Player 2 plays R without mixing it, hence there is no positive probability in playing M or L.
- For the remaining cases four cases the proof follows analogously; we find the necessary probability and show that deviation is enlarging the utility.

- c) M is not part of any Nash Equilibrium. However, M is best response to $\frac{1}{2}U + \frac{1}{2}D$ and therefore rationalisable.
- d) Whenever communication is possible, we can even expect (U, LL) or (D, R) as outcome as both players would profit.

Chapter 2

Kooperative Spiele

2.1 Der Kern

2.2 Der Shapley-Wert

2.3 Einfache Spiele

2.4 Konvexe Spiele

2.5 Übungen

Advanced Game Theory - 4. Exercise

Aufgabe 4.1

Gegeben sei ein Drei-Personen-Abstimmungsspiel $\Gamma_C = [N, v]$ mit $N = \{1, 2, 3\}$, in dem jeder Spieler genau eine Stimme hat und in dem anhand der Einfachen-Mehrheit-Regel über die Aufteilung x eines Kuchens auf die drei Personen entschieden werden soll, wobei $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, $x_i \neq 0$ für alle $i \in N$ und $\sum_i x_i \leq i$. Der individuelle Nutzen eines jeden Spielers ist gleich dem Anteil am Kuchen, den er erhält, d.h. $u_i(x_i) = x_i$ für $i \in N$.

a) Bestimmen Sie die charakteristischen Funktionswerte v(K) aller Koaliationen $K\subseteq N$.

Proof:

$$v(\{1\}) = 0$$
, $v(\{2\}) = 0$, $v(\{3\}) = 0$, $v(\{1, 2, 3\}) = 1$
 $v(\{1, 2\}) = 1$, $v(\{2, 3\}) = 1$, $v(\{1, 3\}) = 1$

b) Bestimmen Sie den Kern $C(\Gamma_C)$ und den Shapley-Wer $\Phi(\Gamma_C)$.

Proof: Den Kern $C(\Gamma_C)$ erhält man, indem man einer Aufteilung x_1, x_2, x_3 das

folgende Gleichungssystem als Randbedingungen mitgibt:

$$x_1 + x_2 + x_3 = 1 = v(\{1, 2, 3\})$$

$$x_1 + x_3 \ge 1 = v(\{1, 3\})$$

$$x_2 + x_3 \ge 1 = v(\{2, 3\})$$

$$x_1 + x_2 \ge 1 = v(\{1, 2\})$$

$$x_3 \ge 0 = v(\{3\})$$

$$x_2 \ge 0 = v(\{2\})$$

$$x_1 \ge 0 = v(\{1\})$$

Setzen wir die Gleichungen 2 - 4 ineinander ein, so erhalten wir:

$$x_1 \ge 1 - x_2, \quad x_3 \ge 1 - x_2$$

$$1 - x_2 + 1 - x_2 \ge 1 \iff x_2 \ge \frac{1}{2}$$

Aus Symmetrie (oder einfach Wiederholung der obigen Schritte für x_1 und x_2) erhalten wir:

$$x_1, x_2, x_3 \ge \frac{1}{2}.$$

Allerdings bedeutet dies:

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \le x_1 + x_2 + x_3 = 1, \qquad \xi$$

d.h. $C(\Gamma_C)=\emptyset$. Für den Shapley-Wert betrachten wir folgendes:

Reihenfolge/Marg. Beitrag	Sp. 1	Sp. 2	Sp. 3
1, 2, 3	0	1	0
1, 3, 2	0	0	1
2,1,3	1	0	0
2, 3, 1	0	0	1
3, 1, 2	1	0	0
3, 2, 1	0	1	0
$\phi_i(\Sigma_C) = \Sigma$	2	2	2

d.h.
$$\Phi(\Sigma_C) = (\frac{2}{6}, \frac{2}{6}, \frac{2}{6}).$$

c) Lösen Sie die Teilaufgaben a) und b) unter der Bedingung, dass Koalitionen, die sowohl Spieler 2 als auch Spieler 3 enthalten, nicht gebildet werden.

Proof: Die Randbedingung ändern sich wie folgender Maßen:

$$x_1 + x_2 + x_3 = 1 = v(\{1, 2, 3\})$$

$$x_1 + x_3 \ge 1 = v(\{1, 3\})$$

$$x_2 + x_3 \ge 0 = v(\{2, 3\})$$

$$x_1 + x_2 \ge 1 = v(\{1, 2\})$$

$$x_3 \ge 0 = v(\{3\})$$

$$x_2 \ge 0 = v(\{2\})$$

$$x_1 \ge 0 = v(\{1\})$$

d.h. die eine/zwei Randbedingungen werden trivial. Der Kern besteht also aus

$$x_3 \ge 1 - x_1, \quad x_2 \ge 1 - x_1$$

$$\Rightarrow x_1 = 1$$

D.h. $C(\Gamma_C) = \{(1,0,0)\}$. Der Shapely-Wert lässt sich wieder über folgendes bestimmen

Reihenfolge/Marg. Beitrag	Sp. 1	Sp. 2	Sp. 3
1, 2, 3	0	1	0
1, 3, 2	0	0	1
2, 1, 3	1	0	0
2, 3, 1	0	0	0
3, 1, 2	1	0	0
3, 2, 1	0	0	0
$\phi_i(\Sigma_C) = \Sigma$	2	1	1

d.h. $\Phi(\Sigma_C) = \left(\frac{2}{c}, \frac{1}{c}, \frac{1}{c}\right)$; die Frage bleibt aber, welchen Wert c annehmen muss. Mein Tipp wäre $\frac{v(N)}{\sum \phi_i(\Sigma_C)}$. Laut Musterlösung gilt c=4 was konsistent mit meiner Vermutung wäre.

d) Lösen Sie die Teilaufgaben a) und b) für das Drei-Personen-Abstimmungsspiel $\Gamma_C = [N,v]$ mit $N = \{1,2,3\}$ in dem Spieler 1 ein Stimmengewicht von 60% und Spieler 2 und 3 von jeweils 20% besitzen und Entscheidungen anhand der Zweidrittel-Mehrheit-Regel (qualifizierte Mehrheit) getroffen werden.

Proof:

(i) Bestimmen Sie die charakteristischen Funktionswerte v(K) aller Koaliationen $K\subseteq N.$

$$v(\{1\}) = 0$$
, $v(\{2\}) = 0$, $v(\{3\}) = 0$, $v(\{1, 2, 3\}) = 1$
 $v(\{1, 2\}) = 1$, $v(\{1, 3\}) = 1$, $v(\{2, 3\}) = 0$

 $^{^1{\}rm Scheint}$ mir nicht ganz konsistent mit der Vorlesung (1/n!) zu sein

(ii) Bestimmen Sie den Kern $C(\Gamma_C)$ und den Shapley-Wer $\Phi(\Gamma_C)$.

Den Kern $C(\Gamma_C)$ erhält man, indem man einer Aufteilung x_1, x_2, x_3 das folgende Gleichungssystem als Randbedingungen mitgibt:

$$x_1 + x_2 + x_3 = 1 = v(\{1, 2, 3\})$$

$$x_1 + x_3 \ge 1 = v(\{1, 3\})$$

$$x_1 + x_2 \ge 1 = v(\{1, 2\})$$

$$x_2 + x_3 \ge 0 = v(\{2, 3\})$$

$$x_3 \ge 0 = v(\{3\})$$

$$x_2 \ge 0 = v(\{2\})$$

$$x_1 \ge 0 = v(\{1\})$$

d.h. $x_3 \ge 1 - x_1, x_2 \ge 1 - x_1$.

$$1 \ge 1 - x_3 + x_2 + x_3 \iff x_2 = 0$$

$$1 > 1 + x_3 + x_2 - x_2 \iff x_3 = 0$$

d.h. $\Phi(\Sigma_C) = (1,0,0)$. Schneller geht das auch, durch das Theorem, dass bei einem Veto-Spieler alle anderen die Auszahlung 0 erhalten müssen. Für den Shapley-Wert betrachten wir:

Reihenfolge/Marg. Beitrag	Sp. 1	Sp. 2	Sp. 3
1, 2, 3	0	1	0
1, 3, 2	0	0	1
2, 1, 3	1	0	0
2, 3, 1	1	0	0
3, 1, 2	1	0	0
3, 2, 1	1	0	0
$\phi_i(\Sigma_C) = \Sigma$	4	1	1

d.h.
$$\Phi(\Sigma_C) = (\frac{4}{c}, \frac{1}{c}, \frac{1}{c}), c = 4(?).$$

Aufgabe 4.2

Gegeben sei folgende Auszahlungstabelle eines Zwei-Personen-Spiels in Normalform

$$\begin{array}{c|cccc} s_{21} & s_{22} \\ s_{11} & 3, 3 & 0, \alpha \\ s_{12} & \alpha, 0 & 1, 1 \end{array}$$

Beschreiben Sie jeweils für $\alpha=5$ und $\alpha=7$ das korrespondierende Koalitionsspiel $\Gamma_C=[N,v]$ und bestimmen Sie den Kern $C(\Gamma_C)$.

Proof: Wir haben das Spiel gegeben durch $N = \{1, 2\}$ und $v \colon P(N) \to \mathbb{R}$.

Angenommen v ist superadditiv, und da wir wissen, dass dieses Spile symmetrisch ist, gilt:

a)
$$\alpha = 5$$

$$v(N) = \max_{i,j,k,j \in N} u(s_{ij}, s_{kj}) = \max_{i,j,k,j \in N} (u_1(s_{ij}, s_{kj}) + u_2(s_{ij}, s_{kj})) = 3 + 3 = 6,$$
$$v(\{1\}) = v(\{2\}) = \min_{i,j,k,j \in N} u_{1/2}(s_{ij}, s_{kj}) = 1$$

Um den Kern zu bestimmen, betrachte:

$$x_1 + x_2 = 6 = v(\{1, 2, 3\})$$

$$x_2 \ge 1 = v(\{2\})$$

$$x_1 \ge 1 = v(\{1\})$$

$$\Rightarrow C(\Gamma_C) = \{x_1, x_2 \colon x_1, x_2 \ge 1, x_1 + x_2 = 6\} \neq \emptyset$$

b)
$$\alpha = 6$$

$$v(N) = \max_{i,j,k,j \in N} u(s_{ij}, s_{kj}) = \max_{i,j,k,j \in N} (u_1(s_{ij}, s_{kj}) + u_2(s_{ij}, s_{kj})) = 7 + 0 = 0 + 7 = 7,$$
$$v(\{1\}) = v(\{2\}) = \min_{i,j,k,j \in N} u_{1/2}(s_{ij}, s_{kj}) = 1$$

Um den Kern zu bestimmen, betrachte:

$$x_1 + x_2 = 7 = v(\{1, 2, 3\})$$

$$x_2 \ge 1 = v(\{2\})$$

$$x_1 \ge 1 = v(\{1\})$$

$$\Rightarrow C(\Gamma_C) = \{x_1, x_2 \colon x_1, x_2 \ge 1, x_1 + x_2 = 7\} \neq \emptyset$$

Aufgabe 4.3

Ein Kleintierzüchterverein hat sieben Mitglieder: zwei Meerschweinchenzüchter M_1 und M_2 , zwei Taubenzüchter T_1 und T_2 und drei Hasenzüchter H_1 , H_2 und H_3 . Entscheidungen werden mit einfacher Mehrheit gefällt.

a) Beschreiben Sie unter der Bedingung, dass die Mitglieder einer Zuchtgruppe stets einheitlich abstimmen, das Koalitionsspiel $\Gamma_C = [N, v]$ für die drei unabhängingen Spieler in Form der drei Zuchtgruppen $M = \{M_1, M_2\}, T = \{T_1, T_2\}$ und $H = \{H_1, H_2, H_3\}$, also $N = \{M, T, H\}$, und berechnen Sie die Shapley-Werte für M, T und H.

Proof: Es gilt
$$\Gamma_C = [N, v]$$
, wobei $N = \{M, T, H\}$ und $v : P(N) \to \mathbb{N}$ mit: $v(N) = 1, \ v(\{M, T\}) = 1, \ v(\{T, H\}) = 1, \ v(\{M, H\}) = 1,$

$$v(\{M\}) = v(\{T\}) = v(\{H\}) = 0.$$

Für den Shapley-Wert betrachten wir:

Reihenfolge/Marg. Beitrag	M	Т	Н
M, T, H	0	1	0
T, H, M	0	0	1
T,M,H	1	0	0
H,T,M	0	1	0
H,M,T	1	0	0
M, H, T	0	0	1
$\phi_i(\Sigma_C) = \Sigma$	2	2	2

d.h.
$$\Phi(\Sigma_C) = (\frac{2}{c}, \frac{2}{c}, \frac{2}{c}), c = 6(?).$$

b) Eines Tages zerstreiten sich die drei Hasenzüchter, was dazu führt, dass sie die Hasenkoalition auflösen und in Abstimmungen einzeln auftreten. Die Meerschweinchenzüchter und Taubenzüchter stimmen weiterhin einheitlich ab. Wie lauten die Ergebnisse von Teilaufgabe a) für die fünf unabhängingen Spieler M, T, H_1, H_2 und H_3 . Vergleichen Sie die Shapley-Werte mit denen von Teilaufgabe a). Was fällt auf?

Proof: Es gilt
$$\Gamma_C = [N, v]$$
, wobei $N = \{M, T, H_1, H_2, H_3\}$ und $v \colon P(N) \to \mathbb{N}$ mit: $v(\{T, H_1, H_2, H_3\}) = 1$, $v(\{M, H_1, H_2, H_3\}) = 1$, $v(\{T, H_i, H_j\}) = 1$, $v(\{M, H_i, H_j\}) = 1$, $v(\{M\}) = v(\{T\}) = v(\{H_i\}) = v(\{H_i, H_j\}) = v(\{H_1, H_2, H_3\}) = 0$. $v(N) = 1$, $v(\{M, T\}) = 1$, $v(\{T, H_i\}) = 0$, $v(\{M, H_i\}) = 0$

Aus Symmetrie-Gründen können wir den Shapley-Wert für z.B. T berechnen über:

Reihenfolge	Marg. Beitrag von T
$M, T, \pi(H_1, H_2, H_3)$	6
$M, H_i, T, \pi(H_j, H_k)$	$3 \cdot 2 = 6$
$H_i, M, T, \pi(H_j, H_k)$	$3 \cdot 2 = 6$
$\pi(H_i, H_j), T, M, H_k$	$3 \cdot 2 = 6$
$\pi(H_i, H_j), T, H_k, M$	$3 \cdot 2 = 6$
$\pi(H_1, H_2, H_3), M, T$	6
$\phi_T(\Sigma_C) = \Sigma$	36

d.h. $\Phi_T(\Sigma_C) = \frac{36}{n!} = \frac{36}{120} = \frac{3}{10}$. Eben aus Symmetrie-Gründen gilt: $\Phi_T(\Sigma_C) = \Phi_M(\Sigma_C)$.

Schließlich gilt wieder aus Symmetriegründen:

$$\Phi_{H_i}(\Sigma_C) = \frac{1 - \Phi_T(\Sigma_C) - \Phi_M(\Sigma_C)}{3} = \frac{1 - 0, \overline{3} - 0, \overline{3}}{3} = 0, 1\overline{3}, \quad \forall i \in \{1, 2, 3\}.$$

Es fällt auf, dass in der Summe die Shapley Werte der Hasen höher ist, als in der a). Dies ist der Kritikpunkt am Shapley-Wert.

Chapter 3

Evolutionäre Spieltheorie

3.1 Spiele in Normalform

Für symmetrische Spiele:

$$A = (a_{ij})$$
 $i = 1, ..., m_i, j = 1, ..., m_j$

d.h.

N: Spielermenge |N| = n

 Σ_i : Menge der reinen Strategien von $i \in N, |\Sigma_i| = m_i, \sigma_i \in \mathcal{E}_i$.

 S_i : Menge der gemischten Strategien von $i \in N$

$$S_i = \{\}.$$

$$s_{ij} = \mathbb{P}(\sigma_{ij}).$$

Definition (Trägermenge): Wir definieren die Trägermenge für jeden Spieler $i \in N$:

$$C(S_i) = \left\{ \sigma_{ij} \in \Sigma_i : s_{ij} > 0 \right\},\,$$

 $als\ die\ Menge\ der\ Strategien\ die\ mit\ positiver\ Wahrscheinlichkeit\ gespielt\ werden.$

Definition (Beste-Antwort-Menge): Sei

$$B_i(s_{-i}) = \left\{ \sigma_j \in \Sigma_i : H(\sigma_{ij}, s_{-i}) = \max_{\sigma_{ik \in \Sigma_i}} H(\sigma_{ik}, s_{-i}) \right\}$$

H bezeichne pay-off-Funktion

$$\hat{H}(s_{-i}) := \max_{\sigma_{il} \in \Sigma_i} H(\sigma_{ik}, s_{-i})$$

Beispiel: $\sigma_{ij} \in B_i(S_{-i})$ und $\sigma_{ik} \in B(S_{-i}) \Rightarrow$ alle $s_i \in S_i$ mit

$$C(S_i) = \{\sigma_{ij}, \sigma_{ik}\}$$

sind auch beste Antwort, denn

$$s_{ij}H(\sigma_j, s_{-i}) + s_{ik}H(\sigma_{ik}, s_{-i}) = (s_{ij} + s_{ik})\hat{H}(s_{-i}) = \hat{H}(s_{-i}).$$

Sei $s^* = (s_1^*, \dots, s_n^*)$ ein Nash-Gleichgewicht. Mit $s_i^* = (s_{i1}^*, \dots s_{im_i}^*)$ gilt

$$C(s_i^*) \subseteq B_i(s_{-i}^*)$$

Hinreichend? Ja! Proposition Slide 36 (AGT Teil 1).

3.1 Grundannahmen der evolutionären Spieltheorie: a) große Population

- b) Population ist monomorph
- c) random matching
- d) Wettstreit (Spiel) ist statisch und symmetrisch
 - $\rightarrow\,$ symmetrisches Spiel in Normalform mit zwei Spielern.
- e) Auszahlung entspricht der "biologischen Fitness" (ϕ Anzahl Nachkommen)
- f) Reproduktion ist asexuell und die von den Eltern gewählt Strategie wird unverändert an die Nachkommen vererbt (nur Selektion, keine Mutation).

3.2 Symmetrisches 2-Personenspiel in Normalform: Spieler müssen nicht unterschieden werden \Rightarrow Strategieraum:

$$S = \{ s \in \mathbb{R}^m : \sum_{i=1}^m s_i = 1, s_i \ge 0, i = 1, \dots, m \}$$

Definition (Evolutionär stabile Strategie, ESS): Eine Strategie $p \in S$ heißt evolutionär stabil, wenn

- a) $H(p,p) \ge H(q,p)$ für alle $q \in S$ (Gleichgewichtsbedingung)
- b) Für alle $q \in S \setminus \{p\}$ mit H(q,p) = H(p,p) gilt: H(p,q) > H(q,q) (Stabilitätsbedingung)

3.3 Eigenschaften von evolutionär stabilen Strategien:

- Ist $p \in S$ eine evolutionär stabile Strategie, dann bildet (p, p) ein symmetrisches Nash-Gleichgewicht
- Jede 2×2 -Matrix $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ mit H(p,p) = p'Ap sodass $a_{11} \neq a_{21}$ und / oder $a_{12} = a_{22}$, besitzt eine ESS Ist (p,p) ein striktes NGG, dann ist p eine ESS. Im strikten NGG (p,p) gilt C(p) = B(p). Ein striktes NGG ist immer ein Gleichgewicht

in reinen Strategien. Beispiel:

$$\begin{array}{c|cccc}
3, 3 & 2, 0 \\
0, 2 & 4, 4
\end{array}$$

- Im Normalformspielen mit $m \times m$ -Matrizen a mit $m \geq 3$ existieren entweder endlich viele ESS keine.
- **3.4 Allgemein gilt:** Ist p ESS $\Rightarrow \neg \exists \sigma \in C(p)$ mit $\sigma \in C(S^*)$ für $s^* \neq q$ ist Nash-Gleichgewicht
- $\Rightarrow \#$ ESS $\leq |\Sigma|$ Gleichheit nur, fall es kein ESS in gemischten Strategien gibt.

3.2 Aufgaben

Aufgabe 5.2

b) Gegeben sei:

$$\begin{array}{c|cc}
\sigma_1 & \sigma_2 \\
\sigma_1 & 0, 0 & 0, 0 \\
\sigma_2 & 0, 0 & 1, 1
\end{array}$$

$$\Rightarrow A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ (Gegenbeispiel)}$$

$$\sigma^* = (\sigma_1, \sigma_1), \sigma^{**} = (\sigma_2, \sigma_2)$$

a) Angenommen $p \in S$ ist ESS und wird von $q \in S$ schwach dominiert

$$\Rightarrow H(q,z) \geq H(p,z) \quad \forall z \in S$$

$${\Rightarrow} H(p,p) = H(q,p)$$
 Bedingung 1: ok

$${\Rightarrow} H(p,q) \leq H(q,q)$$
 Bedingung 2: verletzt

c) klar!

Aufgabe 5.1 (Hawk-Dove-Game / Falke-Taube-Spiel)

$$\begin{array}{c|ccc} F & T \\ \hline F & \frac{v-c}{2}, \frac{v-c}{2} & v, 0 \\ T & v, 0 & \frac{v}{2}, \frac{v}{2} \end{array}$$

$$A = \begin{pmatrix} \frac{v-c}{2} & v \\ 0 & \frac{v}{2} \end{pmatrix}, c > v > 0$$

- es existiert keine dominante Strategie
- es existiert kein symmetrisch Nash-Gleichgewicht in reinen Strategien
- (F,T), (T,F) sind strikte Nash-Gleichgewichte

Interpretation: Recource v, Tauben teilen friedlich, Falken vertielgt Zaube, Falken kämpfen \rightarrow neg, outcome für beide.

$$p = (p_F, p_T)$$

$$H(F,p) \stackrel{!}{=} H(T,p) \stackrel{!}{=} H(p,p)$$

$$H(F,p) = p_F \frac{v-c}{2} + p_T v \} \xrightarrow{p_F + p_T = 1} p_F = \frac{v}{c}, p_T = 1 - \frac{v}{c}$$

ist das einzige symmetrisch Nas-Gleichgewicht, kein triviales Spiel $\Rightarrow \exists ESS$

$$\Rightarrow \left(\frac{v}{2}, 1 - \frac{v}{2}\right)$$
 ist ESS

oder man rechnet nach H(F, p) = H(t, p) = H(p, p)

$$\Rightarrow z.z.H(p,F) > H(F,F), \ H(p,T) > H(T,T)$$

Aufgabe 5.3

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

a) Nash-Gleichgewicht in reinen Strategien:

$$(x,x), (x,y), (y,x), (y,z), (z,y), (z,z)$$

Trivial:
$$C(A) = \{A\}, A \in \{x, y, z\}$$

$$B(x) = \{x, y\}, \ B(y) = \{x, y, z\}, \ B(z) = \{y, z\}$$

$$\Rightarrow C(\cdot) \subset_{\neq} B(\cdot)$$

Nash-Gleichgewicht in gemischten Strategien (nur sym.)

$$S^* = \{(s_x, s_y, 0) : s_x \in (0, 1), s_y = 1 - s_x\} \quad C(S^*) = \{x, y\}$$

$$S^{**} = \{(0, s_y, s_z) : s_y \in (0, 1), s_z = 1 - s_y\} \quad C(S^{**}) = \{y, z\}$$

$$B(S^*) = \{x, y\}, B(S^{**}) = \{y, z\}$$

b) Angenommen $p \in S$ mit $p_x \in [0,1]$ und $p_y = 1 - p_x$ ist ein ESS

Bedingung 1: ✓

Bedingung 2: H(x,p) = H(p,p) = 1 mit $p_x < 1$

$$\Rightarrow H(p,x) > H(x,x)$$
 Widerspruch!

analog in anderen Fällen \Rightarrow ESS existiert nicht.

Erinnerung: Ist $p \text{ ESS} \Rightarrow \neg \exists \sigma \in C(p) \text{ mit } \sigma \in C(S^*) \text{ für } s^* \neq q \text{ ist Nash-Gleichgewicht.}$ $\Rightarrow \# \text{ ESS} \leq |\Sigma|$ - wobei Gleichheit nur gilt, fall es kein ESS in gemischten Strategien gibt.