Dementia Classification based on Linguistic Analysis

Agenda

- 1 Dataset Introduction
- 2 LSTM without Embedding
- 3 LSTM with Embedding
- 4 Attention Model
- 5 Model Comparison
- 6 Conclusion and Future Research

Dementia affects over 50 million people worldwide, and this number is expected to triple by 2050.

Dementia affects around 10% of people over the age of 65 and approximately 50% of those over 85 years old.

The data in DementiaBank has been annotated with information about the speakers, the tasks performed, and the linguistic features of the data.

About the Dataset

Data source description

- **DementiaBank**: a shared database for the study of communication in dementia.
- Participants are recorded describing given topics.
- Scripts are transcribed by computer with the CLAN program into CHAT format.

https://dementia.talkbank.org/access/English/Pitt.html

Column description

- 1) speech The transcript
- 2) has_dementia If the patient has dementia or not (0 , 1-)

Letters	- G	Example	Meaning	POS
@a	addition	xxx@a	unintelligible	w
@b	babbling	abame@b	-	bab
@c	child-invented form	gumma@c	sticky	chi
@d	dialect form	younz@d	you	dia
@e	echolalia, repetition	want@e more@e	want more	skip
@f	family-specific form	bunko@f	broken	fam
@fp	filled pause	um@fp	use &-um instead	skip
@g	general special form	gongga@g	-	skip
@g @i	interjection, interaction	uhhuh@i	-	со
@k	multiple letters	ka@k	Japanese "ka"	n:let
@l	letter	b@l	letter b	n:let
@lp	letter plural	a@lp	several "a"s	n:let
@n	neologism	breaked@n	broke	neo
@o	onomatopoeia	woofwoof@o	dog barking	on
@p	phonol. consistent form	aga@p	-	phon
@q	metalinguistic use	no if@q-s or but@q-s	when citing words	meta
@s:*	second-language form	istenem@s:hu	Hungarian word	L2
@s\$n	second-language noun	perro@s\$n	Spanish noun	n
@si	singing	lalala@si	singing	sing
@sl	signed language	apple@sl	apple	sign
@sas	sign & speech	apple@sas	apple and sign	sas
@t	test word	wug@t	test	test
@u	Unibet transcription	binga@u	-	uni
@wp	word play	goobarumba@wp	-	wp
@x:*	excluded words	stuff@x	-	unk
@z:xxx	user-defined code	word@z:rtfd	any user code	

Data Cleaning and Preprocessing

	speech	has_dementia
0	the boy is on a stool that is falling while he	0
1	+< oh . [+ exc] +< cat [/] cat . [+ exc]	1
2	I write with a pencil . that was what ? [+	1
3	this little girl <went the="" to=""> [//] &-uh went</went>	1
4	hm . [+ exc] xxx . [+ exc] this little boy	0

total samples: 1287

total control: 247

total dementia: 1040

LSTM Model

- Text_vectorization (top 2000 tokens)
- One_hot encoding layer
- LSTM layer with 32 LSTMs
- EarlyStopping with patience=5
- Dropout with 0.5 dropout rate
- Output with sigmoid activation function
- Binary cross-entropy loss

LSTM with 1D Convolution Layer for Embedding

- Text_vectorization layer (top 2000 tokens)
- One-hot encoding layer
- An embedding layer with a dimension of 8
- A 1D convolutional layer and pooling layer
- A bidirectional LSTM layer
- Output with sigmoid activation function
- Compiled with the RMSprop optimizer and binary cross-entropy loss
- More false positive predictions

Self-Attention Model

- Text_vectorization layer
- Embedding layer with a dimension of 8
- A pairwise dot-product
- Softmax transformation to get the attention weights
- Sum and flatten weights
- Sigmoid activation function
- Adam optimizer and binary cross-entropy loss

epochs=25, batch_size=25

Results Comparison

LSTM Model

• loss: 0.1751

accuracy: 0.9450

val_loss: 0.2275

val_accuracy: 0.9076

LSTM with Embedding

• loss: 0.1038

accuracy: 0.9638

val_loss: 0.2412

val_accuracy: 0.9117

Attention Model

• loss: 0.0879

accuracy: 0.9725

val_loss: 0.2149

val_accuracy: 0.9220

Occusion and Future Work

- Attention model gives the most accurate classification for dementia.
- Our model can help healthcare provider to **diagnose** patients with dementia and allocate resources more efficiently.
- Future works can include:
 - Use audio data to avoid the required training for CLAN softwares.
 - Include more training data of speech from daily dialogs.
 - Leverage the developed model to classify different stages of dementia.

Thank you!

