Week 11: Tutorial Handout

• A family $\mathcal{F} \subset C(S, \mathbb{R})$ is called **equicontinuous** at $x_0 \in S$ when for $\varepsilon > 0 \ \forall f \in \mathcal{F}$ we have a $\delta_{\mathcal{F}}(x_0, \varepsilon)$ s.t.

$$|x - y| \le \delta_{\mathcal{F}}(x_0, \varepsilon) \Rightarrow |f(x) - f(y)| \le \varepsilon.$$

If there is a global such delta for all $x_0 \in S$, then \mathcal{F} is uniformly equicontinuous in S.

- A family \mathcal{F} is **bounded** if $\forall f \in \mathcal{F}$ we have $||f||_{\infty} < B$ for some B > 0.
- A family \mathcal{F} is **closed** if for all $\{f_n\} \in \mathcal{F}$ we have that $||f_n f||_{\infty} \to 0$ implies $f \in \mathcal{F}$.
- (AA theorem) If $K \subset \mathbb{R}$ is compact, then a family $\mathcal{F} \subset C(K, \mathbb{R})$ is compact iff it is closed, bounded and equicontinuous.

Compactness and Equicontinuity

- 1. Which of the following families are equicontinuous or uniformly equicontinuous? Let $n \ge 1$.
 - $f_n(x) := x^n \text{ in } [0,1].$
 - $f_n(x) := (\frac{x}{2})^n + (\frac{1}{x})^n + x \text{ in } (\frac{5}{4}, \frac{7}{4}).$
 - $f_n(x) := (\frac{x}{2})^n + (\frac{1}{x})^n + x^2 \text{ in } (\frac{5}{4}, \frac{7}{4}).$
- $f_n(x) := n \sin(x/n) + x^{\frac{1}{2}} \ln(x)$ in $[0, \pi]$.
- sequence $f_n(x)$ that are C_n -Lipschitz and $C_n \to C$ in [0,1].
- 2. Which of the following families are compact? Let $n \ge 1$.
 - $\{x^n\} \cup \{0\}$ in [0,1].
 - $\{x^n\} \cup \{0\}$ in $[0, \frac{1}{2}]$.
 - $\{n\sin(x/n) + x^{\frac{1}{2}}\ln(x)\} \cup \{1 + x^{\frac{1}{2}}\ln(x)\}$ and $C_n \to C$ in [0,1]. in $[0, \pi]$.
- $\{e^{x+\frac{1}{n}}\} \cup \{e^x\}$ in $(0, \infty)$.
- sequence $f_n(x)$ that are C_n -Lipschitz and $C_n \to C$ in [0,1].