Programas Cálculo

Luis Eduardo Galindo Amaya

3 de enero de $2022\,$

$\mathbf{\acute{I}ndice}$

1.	Conversión Entre Sistemas De Coordenadas	2
	1.1. Rectangulares a Cilíndxricas (o Polares)	2
	1.2. Rectangulares a Esféricas	4
	1.3. Cilíndricas a Rectangulares	5
	1.4. Cilíndricas a Esféricas	6
	1.5. Esfericas a Rectangulares	7
	1.6. Esfericas a Cilidnricas	8
2.	Modulo del Vector	9
	2.1. Modulo	9
	2.2. Modulo del Vector Fuera Del Origen	9
	2.3. Producto Punto	9
	2.4. Producto Cruz	9
	2.5. Producto Mixto	10
3.	Aplicaciones De Vectores	10
	3.1. Vector Unitario	10
		10
	3.3. Angulos Directores	10
	3.4. Área De Un Paralelogramo	11
		11
		11
	3.7. Volumen De Un Tetraedro	11
4.	* Derivadas Multivariables	12
	4.1. Derivadas Parciales	12
	4.2. Gradiente	12
	4.3. Matriz Jacobiana	12
	4.4. Matriz Hessiana	12
		13
		13
		13

1. Conversión Entre Sistemas De Coordenadas

1.1. Rectangulares a Cilíndxricas (o Polares)

```
# Sustituye el valor de 'x', 'y' y 'z'.
x = 1
y = 0
z = 0
# Añadir 1*10^-100 para evitar la divicion entre 0
# 'and' regresa 1 = True y 0 = False
x = x + and(x=0)*float(10^{-100})
r = sqrt(x^2+y^2)
theta = arctan(y/x)
# determinar la cantidad de ángulo faltante
# 'and' regresa 1 = True y 0 = False
ajuste(x,y) = (
   and(x>0,y>0) * 0
   and(x <= 0, y > 0) * pi + # II
   and(x<0,y<=0) * pi + # III
   and(x>0,y<0) * 2*pi # IV
)
# sumamos los grados faltantes
theta = theta+ajuste(x,y)
"Rectangular (x,y,z):"
float((x,y,z))
"Cilindrica (r,theta,z):"
float((r,theta,z))
x = -1
y = 0
r = sqrt(x^2+y^2)
theta = arccos(x/r)
"Rectangular"
float((x,y))
```

"Cilindrica"
float((r,theta))

1.2. Rectangulares a Esféricas

```
# Sustituye el valor de 'x', 'y' y 'z'.
x = 4
y = -5
z = 2
# Añadir 1*10^-100 para evitar la divicion entre 0
# 'and' regresa 1 = True y 0 = False
x = x + and(x=0)*float(10^{-100})
rho = sqrt(x^2+y^2+z^2)
theta = arctan(y/x)
phi = arccos(z/rho)
# determinar la cantidad de ángulo faltante
# 'and' regresa 1 = True y 0 = False
ajuste(x,y) = (
   and(x>0, y>0) * 0
                        + # I
   and(x <= 0, y > 0) * pi + # II
   and(x<0 ,y<=0) * pi + # III
   and(x>0,y<0) * 2*pi # IV
)
# sumamos los grados faltantes
theta = theta+ajuste(x,y)
"Rectangular (x,y,z):"
float((x,y,z))
"Esféricas (rho,theta,phi):"
float((rho,theta,phi))
```

1.3. Cilíndricas a Rectangulares

```
# Sustituye el valor de 'r', 'theta' y 'z'.

r = 4
theta = 2
z = 4

x = r * cos(theta)
y = r * sin(theta)
z = z

"Cilíndrica (r,theta,z):"
float((r,theta,z))

"Rectangular (x,y,z):"
float((x,y,z))
```

1.4. Cilíndricas a Esféricas

```
# Sustituye el valor de 'r', 'theta' y 'z'
# theta es el angulo de los ejes 'x' y 'y'
r = 1
theta = 1
z = 1

rho = sqrt(r^2+z^2)
theta = theta
phi = arccos(z/rho)

"Cilindrica (r,theta,z):"
float((r,theta,z))

"Esferica (rho,theta,phi):"
float((rho,theta,phi))
```

1.5. Esfericas a Rectangulares

```
# Sustituye el valor de 'rho', 'theta' y 'phi'
# theta es el angulo de los ejes 'x' y 'y'
# phi es el angulo del eje 'z'

rho = 1
theta = 1
phi = 1

x = rho * sin(phi) * cos(theta)
y = rho * sin(phi) * sin(theta)
z = rho * cos(phi)

"Esferica (rho,theta,phi):"
float((rho,theta,phi)):"
float((rho,theta,phi)):"
```

1.6. Esfericas a Cilidnricas

```
# Sustituye el valor de 'rho', 'theta' y 'phi'
# theta es el angulo de los ejes 'x' y 'y'
# phi es el angulo del eje 'z'

rho = 1
theta = 1
phi = 1

r = rho * sin(phi)
theta = theta
z = rho * cos(phi)

"Esferica (rho,theta,phi):"
float((rho,theta,phi))

"Cilindrica (r,theta,z):"
float((r,theta,z))
```

2. Modulo del Vector

2.1. Modulo

```
# Sustituye los valores por los de tu vector (x,y,z). v = (1,3,5) abs(v)
```

2.2. Modulo del Vector Fuera Del Origen

```
# Sustituye 'v' por los valores por los de tu vector.
# Sustituye 'g' los valores por los de el origen.

v = (1,3,5) # Vector
g = (0,0,0) # Origen

abs(v-g)
```

2.3. Producto Punto

```
# Reemplaza 'A' y 'B' con tus vectores
A = (1,2,3)
B = (1,2,3)
dot(A,B)
```

2.4. Producto Cruz

```
# Reemplaza 'A' y 'B' con tus vectores
A = (1,2,3)
B = (1,2,3)
cross(A,B)
```

2.5. Producto Mixto

```
# Reemplaza 'A', 'B' y 'C' con tus vectores
A = (3,-2,5)
B = (2,2,-1)
C = (-4,3,2)

dot(A,cross(B,C)))
float
```

3. Aplicaciones De Vectores

3.1. Vector Unitario

```
# Sustituye 'v' por los valores por los de tu vector.
v = (1,3,5) # Vector

vu = v/abs(v)

"Vector unitario:"
float(vu)
```

3.2. Angulo Entre Vectores

```
# Reemplaza 'A' y 'B' con tus vectores
A = (1,2,3)
B = (1,2,3)
arccos(dot(A,B)/(abs(A)*abs(B)))
```

3.3. Angulos Directores

```
# Reemplaza 'A' con tu vector
A = (1,2,2)
alpha = float(arccos(A[1]/abs(A)))
beta = float(arccos(A[2]/abs(A)))
gamma = float(arccos(A[3]/abs(A)))
```

```
"Angulos Directores (rad):"
alpha
beta
gamma
```

3.4. Área De Un Paralelogramo

```
# Reemplaza 'A' y 'B' con tus vectores
A = (3,1,-1)
B = (2,3,4)

"Area Paralelogramo"
float( abs(cross(A,B)) )

3.5. Área Del Triangulo
# Reemplaza 'A' y 'B' con tus vectores
A = (3,1,-1)
B = (2,3,4)

"Area Paralelogramo"
float( 1/2 * abs(cross(A,B)) )
```

3.6. Volumen De Un Paralelepípedo

```
# Reemplaza 'A', 'B' y 'C' con tus vectores
A = (3,-2,5)
B = (2,2,-1)
C = (-4,3,2)

"Volumen paralelepípedo"
float(dot(A,cross(B,C)))
```

3.7. Volumen De Un Tetraedro

Reemplaza 'A', 'B' y 'C' con tus vectores

```
A = (3,-2,5)
B = (2,2,-1)
C = (-4,3,2)

"Volumen paralelepipedo"
float( 1/6 * dot(A,cross(B,C)))
```

4. * Derivadas Multivariables

4.1. Derivadas Parciales

```
# cambia f por tu funcion
f = 2*x*y

d(f,x)
d(f,y)
```

4.2. Gradiente

```
# cambia f por tu funcion
f = 3x^4-y^3+x^2*y^2+5

# puedes añadir mas variables
d(f,(x,y))
```

4.3. Matriz Jacobiana

```
# cambia f por tus funciones
f = (
   12x^3 + 2x*y^2,
   2x^2y - 3y^2
)
```

d(f,(x,y))

4.4. Matriz Hessiana

```
# cambia f por tu funcion
f = 12x^3 + 2x*y^2
"gradiente"
d(f,(x,y))
```

```
"Hessiano"
d(last,(x,y))
      Divergencia
4.5.
F = (
 x^2*z^2,
 -2*y^2*z^2,
 x*y^2*z
b = d(F,(x,y,z))
c = b * unit(3)
contract(c)
4.6. Razón De Cambio Derivada Direccional (Formula 1)
f = x^2*y^3-4*y
v = (2,5)
x0 = (1,2)
dot(d(f,(x,y)), v)
eval(last,x,x0[1],y,x0[2])
float
      Razón De Cambio Derivada Direccional (Formula 2)
f = x^2*y^3-4*y
v = (2,5)
x0 = (1,2)
a = x0 + t*v
eval(f,x,a[1],y,a[2])
d(last,t)
eval(last,t,0)
```

float