Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 06 du mercredi 10 mars 2021

Exercice 1.

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2y^2 + (x-y)^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$
 (1)

1) Montrer que

$$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = 0. \tag{2}$$

2) Peut-on en déduire que $\lim_{(0,0)} f = 0$?

Solution:

1) Puisque, pour tout $x \in \mathbb{R}^*$, on a

$$\lim_{y \to 0} f(x, y) = \lim_{y \to 0} \frac{y^2}{y^2 + (1 - \frac{y}{x})^2} = 0$$
 (3)

et pour tout $y \in \mathbb{R}^*$, on a $\lim_{x\to 0} f(x,y) = 0$, on a finalement que

$$\lim_{x\to 0} \biggl(\lim_{y\to 0} f(x,y)\biggr) = \lim_{y\to 0} \biggl(\lim_{x\to 0} f(x,y)\biggr) = 0. \tag{4}$$

2) Non: $\lim_{t\to 0} f(t,t) = \lim_{t\to 0} 1 = 1 \neq 0 = f(0,0)$.

Exercice 2.

- 1) Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ et $\boldsymbol{x}_0 \in \mathbb{R}^n$ un point d'accumulation de E. Montrer que $\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} f(\boldsymbol{x}) = \ell$ si et seulement s'il existe R > 0 et une fonction $g:]0, R[\to \mathbb{R}_+$ tels que $\lim_{r \to 0^+} g(r) = 0$ et, pour tout $\boldsymbol{x} \in B(\boldsymbol{x}_0, R) \cap (E \setminus \{\boldsymbol{x}_0\}), |f(\boldsymbol{x}) \ell| \leqslant g(\|\boldsymbol{x} \boldsymbol{x}_0\|)$. Le choix de la norme n'est pas important.
- 2) Utiliser le critère du point 1 pour montrer que les fonctions suivantes, définies de $\mathbb{R}^2 \setminus \{(0,0)\}$ dans \mathbb{R} , ont pour limite 0 en (0,0):

$$f_1(x,y) = \frac{x^3 + y^3}{x^2 + y^2},$$

$$f_2(x,y) = \frac{\sin(xy)}{\sqrt{x^2 + y^2}}.$$

Solution:

- 1) Prouvons séparément chaque implication.
- $\text{$\ll$} \Rightarrow \text{$\%$ Soit $\lim_{\boldsymbol{x}\to\boldsymbol{x}_0}f(\boldsymbol{x})=\ell$ et choisissons $R>0$ tel que $|f(\boldsymbol{x})-\ell|<1$ pour tout $\boldsymbol{x}\in B(\boldsymbol{x}_0,R)\cap(E\backslash\{\boldsymbol{x}_0\})$.}$

Définissons la fonction g par

$$g(r) = \sup \Big\{ |f(\boldsymbol{x}) - \ell|: \, \boldsymbol{x} \in \overline{B}(\boldsymbol{x}_0, r) \cap (E \backslash \{\boldsymbol{x}_0\}) \Big\},$$

qui est ≤ 1 sur]0,R[. Clairement, $\forall \boldsymbol{x} \in B(\boldsymbol{x}_0,R) \cap (E \setminus \{\boldsymbol{x}_0\}), |f(\boldsymbol{x})-\ell| \leqslant g(\|\boldsymbol{x}-\boldsymbol{x}_0\|)$. Montrons que $\lim_{r \to 0^+} g(r) = 0$. On a que

$$\forall \epsilon > 0 \ \exists \delta \in]0, R[: \ \forall \boldsymbol{x} \in E \ \left(0 < \|\boldsymbol{x} - \boldsymbol{x}_0\| \leqslant \delta \Rightarrow |f(\boldsymbol{x}) - \ell| \leqslant \epsilon \right),$$

ce qui implique $|g(r)| \le \epsilon$ pour tout $0 < r \le \delta$ et donc $\lim_{r \to 0^+} g(r) = 0$.

- 2) Pour $(x, y) \neq (0, 0)$, posons $r = \sqrt{x^2 + y^2}$. On a

$$|f_1(x,y)| \leq \frac{r^3 + r^3}{r^2} = 2r := g_1(r)$$

et

$$|f_2(x,y)| \leq \frac{|xy|}{r} \leq \frac{r^2}{r} = r := g_2(r)$$

avec $\lim_{r\to 0^+} g_1(r) = \lim_{r\to 0^+} g_2(r) = 0.$

Exercice 3.

Soit un sous-ensemble non vide $E \subset \mathbb{R}^n$.

- 1) Montrer la caractérisation suivante des fonctions continues. En supposant E ouvert, une fonction $f: E \to \mathbb{R}^m$ est continue (i.e. $f \in C^0(E, \mathbb{R}^m)$) si et seulement si la préimage $f^{-1}(V)$ de chaque ouvert $V \subset \mathbb{R}^m$ est aussi ouverte.
- 2) Montrer que si E est compact et $f: E \to \mathbb{R}^m$ est continue, alors l'image $f(E) \subset \mathbb{R}^m$ est compact.
- 3) Montrer que si E est connexe par arcs et $f: E \to \mathbb{R}^m$ est continue, alors l'image $f(E) \subset \mathbb{R}^m$ est connexe par arcs.

Solution:

- 1) Prouvons l'équivalence en deux étapes.

- « \Leftarrow » Soit $\boldsymbol{x} \in E$. Montrons que f est continue en \boldsymbol{x} . Soit $\varepsilon > 0$. La boule $B(f(\boldsymbol{x}), \varepsilon)$ est ouverte dans \mathbb{R}^m . Ainsi $A = f^{-1}(B(f(\boldsymbol{x}), \varepsilon))$ est ouvert (par hypothèse) et contient \boldsymbol{x} . Par conséquent il existe $\delta > 0$ tel que $B(\boldsymbol{x}, \delta) \subset A$, d'où $f(B(\boldsymbol{x}, \delta)) \subset B(f(\boldsymbol{x}), \varepsilon)$. Ceci s'écrit aussi $\forall z \in B(\boldsymbol{x}, \delta), \|f(z) f(\boldsymbol{x})\| < \varepsilon$.
- 2) Utilisons la caractérisation séquentielle de la compacité. Soit une suite $(\boldsymbol{y}_k)_{k\in\mathbb{N}}\subset f(E)$; prouvons qu'elle admet une sous-suite qui converge vers un élément de f(E). Pour chaque $k\in\mathbb{N}$, choisissons $\boldsymbol{x}_k\in E$ tel que $f(\boldsymbol{x}_k)=\boldsymbol{y}_k$. Puisque E est supposé compact, la suite $(\boldsymbol{x}_k)_{k\in\mathbb{N}}$ admet une sous-suite $(\boldsymbol{x}_{s(k)})_{k\in\mathbb{N}}$ qui converge vers un certain $\boldsymbol{x}\in E$. La continuité de f donne

$$\lim_{k \to +\infty} \boldsymbol{y}_{s(k)} = \lim_{k \to +\infty} f(\boldsymbol{x}_{s(k)}) = f(\boldsymbol{x}) \in f(E)$$
 (5)

et donc la sous-suite $(\boldsymbol{y}_{s(k)})_{k\in\mathbb{N}}$ converge vers $f(\boldsymbol{x})\in f(E)$.

On peut aussi montrer ce resultat en utilisant la caracterisation de la compacité par recouvrements finis. Soit donc $(V_{\alpha})_{\alpha \in A}$ un recouvrement d'ouverts. Puisque f est continue, $U_{\alpha} = f^{-1}(V_{\alpha})$ est un ouvert de \mathbb{R}^n pour tout $\alpha \in A$. Si $x \in E$, alors $f(x) \in f(E)$ et il existe $\beta \in A$ tel que $f(x) \in V_{\beta}$. Donc $x \in U_{\beta}$. Ainsi, $(U_{\alpha})_{\alpha \in A}$ est un recouvrement d'ouverts de E. Puisque E est compact, il existe un sous-recouvrement fini $U_{\alpha_1}, U_{\alpha_2}, \dots U_{\alpha_p}$ de E. Clairement, $V_{\alpha_1}, V_{\alpha_2}, \dots V_{\alpha_p}$ est aussi un recouvrement de f(E). En effet, si $y \in f(E)$, alors il existe $x \in E$ tel que f(x) = y. Il existe $k \in \{1, 2, \dots, p\}$ tel que tel que $x \in U_{\alpha_k}$ et donc $y \in V_{\alpha_k}$.

Finalement, on peut aussi montrer directement que f(E) est borné et fermé.

- a) f(E) borné. Par contradiction, supposons que pour tout $n \in \mathbb{N}$, il existe $\mathbf{y}_n \in f(E)$ tel que $\|\mathbf{y}_n\| \geq n$. Soit $\mathbf{x}_n \in E$ tel que $f(\mathbf{x}_n) = \mathbf{y}_n$. E étant compact, de la suite $\{\mathbf{x}_n\}_{n \in \mathbb{N}}$ on peut extraire une sous-suite $\{\mathbf{x}_{n_i}\}_{i \in \mathbb{N}}$ qui converge vers un certain $\mathbf{x} \in E$. Puisque f est continue, on a $f(\mathbf{x}) = \lim_{i \to \infty} f(\mathbf{x}_{n_i}) = \lim_{i \to \infty} \mathbf{y}_{n_i} = \infty$ ce qui est contradictoire.
- b) f(E) fermé. On va montrer que $\overline{f(E)} \subseteq f(E)$ donc que $\overline{f(E)} = f(E)$. Soit $\mathbf{y} \in \overline{f(E)}$, et $(\mathbf{y}_n)_{n=0}^{\infty} \subset f(E)$ une suite qui converge vers \mathbf{y} ; montrons que $\mathbf{y} \in f(E)$. On sait que $\forall n \in \mathbb{N}$, $\mathbf{y}_n \in f(E)$ donc $\forall n \in \mathbb{N}$ $\exists \mathbf{x}_n \in E$ tq $f(\mathbf{x}_n) = \mathbf{y}_n$. E est borné, d'après le théorème de Bolzano-Weierstrasse dans \mathbb{R}^n , il existe une sous suite $(\mathbf{x}_{n_i})_{i=0}^{\infty}$ qui converge vers $\mathbf{x} \in E$ car E est fermé. Comme f est continue, $f(\mathbf{x}) = f(\lim_{i \to \infty} \mathbf{x}_{n_i}) = \lim_{i \to \infty} f(\mathbf{x}_{n_i}) = \lim_{i \to \infty} \mathbf{y}_{n_i} = \mathbf{y}$. On a donc montré qu'il existe $\mathbf{x} \in E$ tel que $f(\mathbf{x}) = \mathbf{y}$ donc $\mathbf{y} \in f(E)$ et f(E) est fermé.
- 3) Soit $\mathbf{y}_1, \mathbf{y}_2 \in f(E)$; on choisit $\mathbf{x}_1, \mathbf{x}_2 \in E$ tels que $f(\mathbf{x}_1) = \mathbf{y}_1$ et $f(\mathbf{x}_2) = \mathbf{y}_2$. Puisque E est connexe par arcs, il existe un chemin $\gamma \in \mathrm{C}^0([0,1],E)$ tel que $\gamma(0) = \mathbf{x}_1$ et $\gamma(1) = \mathbf{x}_2$. En tant que composition de fonctions continues, $f \circ \gamma \in \mathrm{C}^0([0,1],f(E))$. De plus, $f(\gamma(0)) = \mathbf{y}_1$ et $f(\gamma(1)) = \mathbf{y}_2$. Par conséquent, f(E) est connexe par arcs.