

Niels Henrik Abel 1802-1829

Niels Henrik Abel 1802-1829

Abel's Theorem: There are no formulas for finding the roots of generic polynomial of degree greater than 4.

Power Method and its Variations

Let $A \in \mathbb{C}^{n \times n}$ be diagonalizable with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$ satisfying

$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$$

and let $v_1, \ldots, v_n \in \mathbb{C}^n \setminus \{0\}$ such that $Av_i = \lambda_i v_i, i = 1, 2, \ldots n$. λ_1 is called the dominant eigenvalue of A and v_1 a corresponding dominant eigenvector.

Let $x \in \mathbb{C}^n$ such that $x = c_1 v_1 + \cdots + c_n v_n$ with $c_1 \neq 0$. Then,

$$\frac{\left\|A^{j}(x)/\lambda_{1}^{j}-c_{1}v_{1}\right\|\rightarrow0\text{ as }j\rightarrow\infty.}{\frac{A}{\lambda_{1}}}, \frac{A^{2}\lambda_{1}^{j}}{\frac{\lambda_{1}a}}$$

Let $A \in \mathbb{C}^{n \times n}$ be diagonalizable with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$ satisfying

$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$$

and let $v_1, \ldots, v_n \in \mathbb{C}^n \setminus \{0\}$ such that $Av_i = \lambda_i v_i, i = 1, 2, \ldots n$. λ_1 is called the dominant eigenvalue of A and v_1 a corresponding dominant eigenvector.

Let $x \in \mathbb{C}^n$ such that $x = c_1 v_1 + \cdots + c_n v_n$ with $c_1 \neq 0$. Then,

$$\left\| \mathcal{A}^{j}(x)/\lambda_{1}^{j}-c_{1}v_{1}
ight\|
ightarrow0$$
 as $j
ightarrow\infty$.

Moreover, if $c_2 \neq 0$ and $|\lambda_2| > |\lambda_3|$, then the convergence is linear at the rate $|\lambda_2|/|\lambda_1|$, i.e.,

$$\lim_{j \to \infty} \frac{\left\| A^{(j+1)}(x) / \lambda_1^{(j+1)} - c_1 v_1 \right\|}{\left\| A^j(x) / \lambda_1^j - c_1 v_1 \right\|} = \frac{|\lambda_2|}{|\lambda_1|}$$

(Ex: Prove the above limit!)


```
Let x=[x_1,x_2,\cdots x_n]^T\in\mathbb{C}^n\setminus\{0\} be arbitrarily chosen. Set q_0=x/s_0 where s_0=x_i such that |x_i|=\|x\|_\infty. for j=1,2,\ldots Set \hat{q}_j=A(q_{j-1}) Find s_j=\hat{q}_j(i) such that |\hat{q}_j(i)|=\|\hat{q}_j\|_\infty. Set q_i=\hat{q}_i/s_i.
```

Let $x=[x_1,x_2,\cdots x_n]^T\in\mathbb{C}^n\setminus\{0\}$ be arbitrarily chosen. Set $q_0=x/s_0$ where $s_0=x_i$ such that $|x_i|=\|x\|_\infty$. for $j=1,2,\ldots$ $Set\ \hat{q}_j=A(q_{j-1})$ $Find\ s_j=\hat{q}_j(i)\ such\ that\ |\hat{q}_j(i)|=\|\hat{q}_j\|_\infty.$ $Set\ q_j=\hat{q}_j/s_j.$

(i) $\lim_{\substack{j\to\infty\\ \text{for }some}}q_j=\hat{v_1}$, where $A\hat{v_1}=\lambda_1\hat{v_1}$, with $\|\hat{v_1}\|_{\infty}=1$, and $\hat{v_1}(j)=1$ for $some\ 1\leq j\leq n$.

If $x = c_1 v_1 + \cdots + c_n v_n$ with with $c_1 \neq 0$, then

(ii) $\lim_{j\to\infty} s_j = \lambda_1$.

Let $x = [x_1, x_2, \cdots x_n]^T \in \mathbb{C}^n \setminus \{0\}$ be arbitrarily chosen. Set $q_0 = x/s_0$ where $s_0 = x_i$ such that $|x_i| = \|x\|_{\infty}$. for $j = 1, 2, \ldots$ Set $\hat{q}_j = A(q_{j-1})$ Find $s_j = \hat{q}_j(i)$ such that $|\hat{q}_j(i)| = \|\hat{q}_j\|_{\infty}$. Set $q_j = \hat{q}_j/s_j$.

(i) $\lim_{j\to\infty}q_j=\hat{v_1}$, where $A\hat{v_1}=\lambda_1\hat{v_1}$, with $\|\hat{v_1}\|_{\infty}=1$, and $\hat{v_1}(j)=1$ for some $1\leq j\leq n$.

If $x = c_1 v_1 + \cdots + c_n v_n$ with with $c_1 \neq 0$, then

(ii) $\lim_{j\to\infty} s_j = \lambda_1$.

(Ex: Prove these!)

Further, if $c_1, c_2 \neq 0$ and $|\lambda_1| > |\lambda_2| > |\lambda_3|$, then $\{q_j\}$ converges to \hat{v}_1 linearly at the rate $\frac{|\lambda_2|}{|\lambda_1|}$, that is,

$$\lim_{j\to\infty}\frac{\|q_{j+1}-\hat{v_1}\|}{\|q_j-\hat{v_1}\|}=\frac{|\lambda_2|}{|\lambda_1|},$$

Further, if $c_1, c_2 \neq 0$ and $|\lambda_1| > |\lambda_2| > |\lambda_3|$, then $\{q_j\}$ converges to \hat{v}_1 linearly at the rate $\frac{|\lambda_2|}{|\lambda_1|}$, that is,

$$\lim_{j \to \infty} \frac{\|q_{j+1} - \hat{v_1}\|}{\|q_j - \hat{v_1}\|} = \frac{|\lambda_2|}{|\lambda_1|},$$

(Ex: Prove this!)

Further, if $c_1, c_2 \neq 0$ and $|\lambda_1| > |\lambda_2| > |\lambda_3|$, then $\{q_j\}$ converges to \hat{v}_1 linearly at the rate $\frac{|\lambda_2|}{|\lambda_1|}$, that is,

$$\lim_{j \to \infty} \frac{\|q_{j+1} - \hat{v_1}\|}{\|q_j - \hat{v_1}\|} = \frac{|\lambda_2|}{|\lambda_1|},$$

(Ex: Prove this!)

The Power Method is used to compute a dominant eigenvector of the massive non-negative Google Matrix in Google's PageRank Algorithm. For details see:

K. Bryan and T. Leise. *The \$25,000,000,000 Eigenvector: The Linear Algebra behind Google.* SIAM Rev., 48(3), 569-581.

Shift and Invert Method

Best idea: Find a permutation matrix P, a unit lower triangular matrix L and upper triangular matrix U such that

$$P(A - \rho I) = LU$$

```
\begin{split} &\textit{for } j=1,2,\dots\\ &\textit{Set } b=\textit{P} q_{j-1}\\ &\textit{Solve } \textit{Ly} = \textit{b for } \textit{y} \quad \textit{(Costs } \textit{n}^2 \textit{ flops)}\\ &\textit{Solve } \textit{U} \hat{q}_j = \textit{y for } \hat{q}_j \quad \textit{(Costs } \textit{n}^2 \textit{ flops)}\\ &\textit{Find } s_j = \hat{q}_j(i) \textit{ such that } |\hat{q}_j(i)| = \|\hat{q}_j\|_{\infty}.\\ &\textit{Set } q_j = \hat{q}_j/s_j. \end{split}
```