### Question 1:



Figure shows block 1 of mass  $0.200\ kg$  sliding to the right over a frictionless elevated surface at a speed of  $8.00\ m/s$ . The block undergoes an elastic collision with stationary block 2, which is attached to a spring of spring constant  $1208.5\ N/m$ . (Assume that the spring does not affect the collision.) After the collision, block 2 oscillates in SHM with a period of  $0.140\ s$ , and block 1 slides off the opposite end of the elevated surface, landing a distance d from the base of that surface after falling height  $h=4.90\ m$ . What is the value of d?

### Question 2:



What is the equal charge on the  $C_3$ ? What is the equal charge on the  $C_3$ ?

### Question 3:



In earlier days, horses pulled barges down canals in the manner shown in figure. Suppose the horse pulls on the rope with a force of 7900~N at an angle of  $\theta=18^\circ$  to the direction of motion of the barge, which is headed straight along the positive direction of an x axis. The mass of the barge is 9500~kg, and the magnitude of its acceleration is  $0.12~m/s^2$ . What is direction (relative to positive x) of the force on the barge from the water?

### Question 4:



A fiber-optic cable consists of a thin cylindrical core with thickness d made of a material with index of refraction  $n_1$ , surrounded by cladding made of a material with index of refraction  $n_2 < n_1$ . Light rays traveling within the core remain trapped in the core provided they do not strike the corecladding interface at an angle larger than the critical angle for total internal reflection. How much longer would it take light to travel 1.00 km through the cable than 1.00 km in air?

### Question 5:



A heat engine takes 0.350 mol of a diatomic ideal gas around the cycle shown in the pV-diagram of figure. Process  $1\to 2$  is at constant volume, process  $2\to 3$  is adiabatic, and process  $3\to 1$  is at a constant pressure of 1.00 atm. The value of  $\gamma$  for this gas is 1.40. Find the net work done by the gas in the cycle.

# Question 6:



What is the electric potential at the point indicated with the dot? What is the electric potential at the point indicated with the dot?

# Question 7:



The metal wire in figure moves with speed v parallel to a straight wire that is carrying current I. The distance between the two wires is d. Find an expression for the potential difference between the two ends of the moving wire.

A. 
$$(\mu v_0 I/\pi) \ln[(d+l)/d]$$

B. 
$$(\mu v_0 I/3\pi) \ln[(d+l)/d]$$

C. 
$$(\mu v_0 I/2\pi) \ln[(d+l)/d]$$

D. 
$$(\mu v_0 I/6\pi) \ln[(d+l)/d]$$

### **Question 8:**



A fish and a sailor look at each other through a  $5.0\ cm$ -thick glass porthole in a submarine. There happens to be an air bubble right in the center of the glass. How far behind the surface of the glass does the air bubble appear to the fish?

### Question 9:



A steel tank of cross-sectional area  $3\,\mathrm{m}^2$  and height  $16\,\mathrm{m}$  weighs  $10\,000\,\mathrm{kg}$  and is open at the top, as shown in figure. We want to float it in the ocean so that it is positioned  $10\,\mathrm{m}$  straight down by pouring concrete into its bottom. How much concrete should we use?

# Question 10:



A  $3.0~\mathrm{m}$ -long ladder leans against a frictionless wall at an angle of  $60^\circ$ . The coefficient of static friction with the ground, that prevents the ladder from slipping. What is the minimum value of  $\mu_s$ ?

### Question 11:



Figure shows 1.0- $\mu m$ -diameter dust particles ( $m=1.0\times 10^{-15}~kg$ ) in a vacuum chamber. The dust particles are released from rest above a 1.0- $\mu m$ -diameter hole, fall through the hole (there's just barely room for the particles to go through), and land on a detector at distance d below. Quantum effects would be noticeable if the detection-circle diameter increased by 10\% to  $1.1~\mu m$ . At what distance d would the detector need to be placed to observe this increase in the diameter?

### Question 12:



Consider an infinite square well potential with walls at x=0 and x=L; that is, V(x)=0 for 0 < x < L;  $V(x)=\infty$  otherwise. Now impose a perturbation on this potential of the form  $H'=LV_0\delta(x-L/2)$ , where  $\delta(x)$  is the Dirac delta function. Now consider the case where we impose a perturbation on the infinite square well potential as shown in figure, with  $\varepsilon$  a small number. Calculate the first-order correction to the energy of the ground state of the infinite well.

- A. 0
- B.  $V_0$
- C.  $3V_0$
- D.  $2V_0$

# Question 13:



A heat engine's high temperature  $T_H$  could be ambient temperature, because liquid nitrogen at  $77\,\mathrm{K}$  could be  $T_L$  and is cheap. The Carnot engine made use of heat transferred from air at room temperature  $(293\,\mathrm{K})$  to the liquid nitrogen fuel (figure). What would be the efficiency of a Carnot engine?

### **Question 14**:





A common device for entertaining a toddler is a jump seat that hangs from the horizontal portion of a doorframe via elastic cords. Assume that only one cord is on each side in spite of the more realistic arrangement shown. When a child is placed in the seat, they both descend by a distance  $d_s$  as the cords stretch (treat them as springs). Then the seat is pulled down an extra distance  $d_m$  and released, so that the child oscillates vertically, like a block on the end of a spring. Suppose you are the safety engineer for the manufacturer of the seat. You do not want the magnitude of the child's acceleration to exceed 0.20g for fear of hurting the child's neck. If  $d_m=10$  cm, what value of  $d_s$  corresponds to that acceleration magnitude?

#### Question 15:



A helium--neon laser can produce a green laser beam instead of a red one. Figure shows the transitions involved to form the red beam and the green beam. After a population inversion is established, neon atoms make a variety of downward transitions in falling from the state labeled  $E_4^*$  down eventually to level  $E_1$  (arbitrarily assigned the energy  $E_1=0$ ). The atoms emit both red light with a wavelength of 632.8 nm in a transition  $E_4^*-E_3$  and green light with a wavelength of 543 nm in a competing transition  $E_4^*-E_2$ . What is the energy  $E_2$ ? Assume the atoms are in a cavity between mirrors designed to reflect the green light with high efficiency but to allow the red light to leave the cavity immediately. Then stimulated emission can lead to the buildup of a collimated beam of green light between the mirrors having a greater intensity than that of the red light. To constitute the radiated laser beam, a small fraction of the green light is permitted to escape by transmission through one mirror. The mirrors forming the resonant cavity can be made of layers of silicon dioxide (index of refraction n=1.458) and titanium dioxide (index of refraction varies between 1.9 and 2.6).

- A. 24.16 eV
- B.  $22.01 \mathrm{~eV}$
- C. 15.31 eV
- D.  $18.37 \; eV$

### **Question 16:**



Two radio antennas radiating in phase are located at points A and B, 200 m apart (figure). The radio waves have a frequency of 5.80 MHz. A radio receiver is moved out from point B along a line perpendicular to the line connecting A and B (line BC shown in figure). At what distances from B will there be destructive interference?

### Question 17:



Figure shows the kinetic energy K of a simple pendulum versus its angle  $\theta$  from the vertical. The vertical axis scale is set by  $K_s=10.0~mJ$ . The pendulum bob has mass 0.200~kg. What is the length of the pendulum?

# Question 18:



A heat engine using a diatomic gas follows the cycle shown in figure. Its temperature at point 1 is 20  $^{\circ}$ C. What is the power output of the engine if it runs at  $500\,\mathrm{rpm}$ ?