\aleph_0 Weekly Problem

Ravi Dayabhai Conrad Warren 2024-10-01

Problem

Each of the numbers 1 to 10^6 is repeatedly replaced by its digital sum until we reach 10^6 one-digit numbers. Will these have more 1's or 2's?

Solution

Repeatedly taking the digital sum of a positive integer k is equivalent to taking k's digital root, which equals $k \pmod 9$ unless $k \equiv 0 \pmod 9$, in which case the digital root is 9.

Since $10^6 \equiv 1 \pmod{9}$ and there are as many integers congruent to 1 as to 2 modulo 9 in the range 1 to $10^6 - 1$ (inclusive), there is one more 1 than 2 in the final sequence of one-digit numbers. Hence, there are more 1's than 2's.