UCB - CS189 Introduction to Machine Learning Fall 2015

Lecture 3: Support Vector Machines

Isabelle Guyon
ChaLearn

Come to my office hours... Wed 2:30-4:30 Soda 329

Last time

- We represent patterns as vectors x in a space of d dimensions.
- A "discriminant function" f(x) is a function such that f(x) > 0 for one class and f(x) < 0 for the other. f(x)=0 is the equation of the decision boundary.
- Given a weight vector w, f(x)=w.x is a linear discriminant function. The corresponding decision boundary w.x=0 is a hyperplane (a subspace of dimension (d-1).
- Feature transforms $\mathbf{x} \to \Phi(\mathbf{x})$ permit to built nonlinear decision boundaries, while using discriminant linear in \mathbf{w} (NOT in \mathbf{x}).

Come to my office hours... Wed 2:30-4:30 Soda 329

Today

- With linear threshold units ("neurons") we can build:
 - Linear discriminant
 - -Kernel methods

Neural networks

DUAL

NON PARAMETRIC

PARAMETRIC

- The architectural hyper-parameters may include:

 - The kernel

Control the COMPLEXITY

- The number of hidden units.
- "Complex" models are prone to overfitting.

ASTTIME

Separating hyperplane

Separating hyperplane

LAST TIME

Centroid method

The centroid methods can fail!

The Perceptron algorithm

But which one is best?

Safety margin

Support Vector Classifier

New test examples

More "robust" solution

Better "fit"

The "robust" solution has training errors

Fit vs. Robustness tradeoff

Best fit: Zero training error. Based on "marginal" possibly "atypical" examples. Could be outliers.

Best robustness: Based on typical examples or average examples (centroids).

Compromise

Good fit: Allow a few training errors.

Good robustness: Maximize the margin.

"Soft" margin

Soft Margin Compromise

Minimize

(1/Margin) + C Training error

Good robustness

Good fit

Hyper-parameter Selection

- Learning = adjusting:
 parameters (w vector).
 hyper-parameter (C).
- Cross-validation with K-folds:

For various values of **C**:

- Adjust w on a fraction (K-1)/K of training examples *e.g.* 9/10th.
- Test on 1/K remaining examples *e.g.* 1/10th.
- Rotate examples and average test results (CV error).
- Select C to minimize CV error.
- Re-compute w on all training examples using optimal C.

Hyper-parameter Selection

- Learning = adjusting:
 parameters (w vector).
 hyper-parameter (C).
- Cross-validation with K-folds:

For various values of **C**:

- Adjust w on a fraction (K-1)/K of training examples *e.g.* 9/10th.
- Test on 1/K remaining examples *e.g.* 1/10th.
- Rotate examples and average test results (CV error).
- Select C to minimize CV error.
- Re-compute w on all training examples using optimal C.

Non-linear decision boundary

Linear decision boundary in Φ -space

Perceptron

What can Φ features be?

- Hand crafted features
 (lines, crosses, corners).
- Randomly generated functions (sums, products).
- "Dictionary" features
 (little pieces of images).
- Basis functions of transforms (Fourier, Wavelet)

Chessboard problem

Kernel Method

Radial basis functions

$$f(\mathbf{x}) = \sum_{k} \alpha_{k} k(\mathbf{x}^{k}, \mathbf{x}) + b$$

A kernel is:

- a similarity measure
- a dot product in some feature space:

$$k(s, t) = \Phi(s) \cdot \Phi(t)$$

But we do not need to know the Φ representation.

•
$$k(s, t) = \exp(-\|s-t\|^2/\sigma^2)$$

Gaussian kernel

•
$$k(s, t) = 1/||s-t||$$

Potential function

•
$$k(s, t) = (s \cdot t)^q$$

$$([s_1,s_2] \bullet [t_1,t_2])^2 = [s_1^2,s_2^2,\sqrt{2}s_1s_2] \cdot [t_1^2,t_2^2,\sqrt{2}t_1t_2]$$

$$k(\mathbf{s},\mathbf{t}) \qquad \Phi(\mathbf{s}) \qquad \Phi(\mathbf{t})$$

A kernel is:

- a similarity measure
- a dot product in some feature space:

$$k(s, t) = \Phi(s) \cdot \Phi(t)$$

But we do not need to know the Φ representation.

•
$$k(s, t) = \exp(-\|s-t\|^2/\sigma^2)$$

Gaussian kernel

•
$$k(s, t) = 1/||s-t||$$

Potential function

•
$$k(s, t) = (s \cdot t)^q$$

$$([s_1,s_2] \bullet [t_1,t_2])^2 = [s_1^2,s_2^2,\sqrt{2}s_1s_2] \cdot [t_1^2,t_2^2,\sqrt{2}t_1t_2]$$

$$k(s,t) \qquad \Phi(s) \qquad \Phi(t)$$

A kernel is:

- a similarity measure
- a dot product in some feature space:

$$k(s, t) = \Phi(s) \cdot \Phi(t)$$

But we do not need to know the Φ representation.

•
$$k(s, t) = \exp(-\|s-t\|^2/\sigma^2)$$

Gaussian kernel

•
$$k(s, t) = 1/||s-t||$$

Potential function

•
$$k(s, t) = (s \cdot t)^q$$

$$([s_1,s_2] \bullet [t_1,t_2])^2 = [s_1^2,s_2^2,\sqrt{2}s_1s_2] \cdot [t_1^2,t_2^2,\sqrt{2}t_1t_2]$$

$$k(s,t) \qquad \Phi(s) \qquad \Phi(t)$$

A kernel is:

- a similarity measure
- a dot product in some feature space:

$$k(s, t) = \Phi(s) \cdot \Phi(t)$$

But we do not need to know the Φ representation.

•
$$k(s, t) = \exp(-\|s-t\|^2/\sigma^2)$$

Gaussian kernel

•
$$k(s, t) = 1/||s-t||$$

Potential function

•
$$k(s, t) = (s \cdot t + 1)^q$$

$$([s_1,s_2] \bullet [t_1,t_2])^2 = [s_1^2,s_2^2,\sqrt{2}s_1s_2] \cdot [t_1^2,t_2^2,\sqrt{2}t_1t_2]$$

$$k(s,t) \qquad \Phi(s) \qquad \Phi(t)$$

Hebb's Rule

D. Hebb, 1949

$$W_i \leftarrow W_i + y^k x_i^k$$

Hebb's Rule

D. Hebb, 1949

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}^k \, \mathbf{x}^k$$

Hebb's rule

$$W_i \leftarrow W_i + y^k x_i^k$$

$$\mathbf{w}_{i} = \sum_{k} \mathbf{y}^{k} \mathbf{x}^{k}_{i} = \mathbf{y} \cdot \mathbf{x}_{i}$$
$$\mathbf{w} = \sum_{k} \mathbf{y}^{k} \mathbf{x}^{k}$$

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$$

$$= \sum_{i} \mathbf{w}_{i} \mathbf{x}_{i}$$

$$= \sum_{k} \mathbf{y}^{k} \mathbf{x}^{k} \cdot \mathbf{x}$$

$$\sim \mathbf{w}^{[1]} \cdot \mathbf{x} - \mathbf{w}^{[0]} \cdot \mathbf{x}$$

Hebb's rule

$$w_i \leftarrow w_i + y^k x_i^k$$

$$\mathbf{w}_{i} = \sum_{k} \mathbf{y}^{k} \mathbf{x}^{k}_{i} = \mathbf{y} \cdot \mathbf{x}_{i}$$
$$\mathbf{w} = \sum_{k} \mathbf{y}^{k} \mathbf{x}^{k}$$

$$f(x) = \mathbf{W} \cdot \mathbf{X}$$

$$= \sum_{i} \mathbf{W}_{i} \mathbf{X}_{i}$$

$$= \sum_{k} \mathbf{y}^{k} \mathbf{x}^{k} \cdot \mathbf{X}$$

$$\sim \mathbf{W}^{[1]} \cdot \mathbf{X} - \mathbf{W}^{[0]} \cdot \mathbf{X}$$

Kernel "Trick" (for Hebb's rule)

$$\mathbf{w} = \sum_{k} y^{k} \mathbf{x}^{k}$$

Hebb's rule for the Perceptron:

$$\mathbf{w} = \sum_{k} y^{k} \, \Phi(\mathbf{x}_{k})$$
$$\mathbf{f}(\mathbf{x}) = \mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_{k} y^{k} \, \Phi(\mathbf{x}_{k}) \cdot \Phi(\mathbf{x})$$

Define a dot product:

$$k(\mathbf{x}_{i}, \mathbf{x}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x})$$
$$f(\mathbf{x}) = \sum_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x})$$

Kernel "Trick" (for Hebb's rule)

$$\boldsymbol{w} = \sum\nolimits_k y^k \; \boldsymbol{x}^k$$

Hebb's rule for the Perceptron:

$$\mathbf{w} = \sum_{k} y^{k} \, \Phi(\mathbf{x}_{k})$$

$$\mathbf{f}(\mathbf{x}) = \mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_{k} y^{k} \, \Phi(\mathbf{x}_{k}) \cdot \Phi(\mathbf{x})$$
PARAMETRIC

Define a dot product:

$$k(\mathbf{x}_i, \mathbf{x}) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x})$$

NON
$$f(\mathbf{x}) = \sum_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x})$$

Kernel "Trick" (general)

•
$$f(\mathbf{x}) = \sum_{k} \alpha_{k} k(\mathbf{x}^{k}, \mathbf{x})$$

NON PARAMETRIC

• $k(\mathbf{x}^k, \mathbf{x}) = \Phi(\mathbf{x}^k) \bullet \Phi(\mathbf{x})$

Dual forms

• $f(x) = w \cdot \Phi(x)$

PARAMETRIC

•
$$\mathbf{w} = \sum_{k} \alpha_{k} \Phi(\mathbf{x}^{k})$$

Dual learning machines

PARAMETRIC

$f(\mathbf{x}) = \mathbf{w} \cdot \Phi(\mathbf{x})$ $\mathbf{w} = \sum_{k} \alpha_{k} \Phi(\mathbf{x}^{k})$

Hebb's rule

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_k \, \Phi(\mathbf{x}^k)$$

(Hebb 1949)

Perceptron algorithm

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_k \, \Phi(\mathbf{x}^k)$$
 if $\mathbf{y}_k f(\mathbf{x}^k) < 0$ (Rosenblatt 1958)

Minover (optimum margin) $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_k \Phi(\mathbf{x}^k)$ for min $\mathbf{y}^k \mathbf{f}(\mathbf{x}^k)$ (Krauth-Mézard 1987)

NON PARAMETRIC

$$f(\mathbf{x}) = \sum_{k} \alpha_{k} k(\mathbf{x}^{k}, \mathbf{x})$$

$$k(\mathbf{x}^k, \mathbf{x}) = \Phi(\mathbf{x}^k).\Phi(\mathbf{x})$$

Dual Hebb's rule

$$\alpha_k \leftarrow \alpha_k + \gamma_k$$

Potential Function algorithm

$$\alpha_k \leftarrow \alpha_k + y_k$$
 if $y_k f(\mathbf{x}^k) < 0$ (Aizerman et al 1964)

Dual minover

$$\alpha_k \leftarrow \alpha_k + y^k$$
 for min $y_k f(\mathbf{x}^k)$ (ancestor of SVM)

Fit / Robustness Tradeoff

Fit / Robustness Tradeoff

- With linear threshold units ("neurons") we can build:
 - Linear discriminant

- Kernel methods
- Neural networks
- The architectural hyper-parameters may include:
 - The choice of basis functions ϕ (features)
 - The kernel
 - The number of hidden units.
- "Complex" models are prone to overfitting.

- With linear threshold units ("neurons") we can build:
 - Linear discriminant
- **DUAL**

PARAMETRIC

NON PARAMETRIC

Neural networks

Kernel methods

- The architectural hyper-parameters may include:
 - The choice of basis functions ϕ (features)
 - The kernel
 - The number of hidden units.
- "Complex" models are prone to overfitting.

- With linear threshold units ("neurons") we can build:
 - Linear discriminant

PARAMETRIC

NON PARAMETRIC

Neural networks

Kernel methods

- The architectural hyper-parameters may include:
 - The choice of basis functions ϕ (features)
 - The kernel
 - The number of hidden units.
- "Complex" models are prone to overfitting.

- With linear threshold units ("neurons") we can build:
 - Linear discriminant
- 1 DUAL

PARAMETRIC

NON PARAMETRIC

- Kernel methods
- Neural networks
- The architectural hyper-parameters may include:
 - The choice of basis functions ϕ (features)
 - The kernel

Control the COMPLEXITY

- The number of hidden units.
- "Complex" models are prone to overfitting.

Come to my office hours... Wed 2:30-4:30 Soda 329

Next time

How to Train?

- Define a risk functional R[f(x,w)]
- Find a method to optimize it, typically "gradient descent"

$$\mathbf{w_j} \leftarrow \mathbf{w_j} - \eta \ \partial \mathbf{R} / \partial \mathbf{w_j}$$

or any optimization method (mathematical programming, simulated annealing, genetic algorithms, etc.)