Denoising Diffusion Probabilistic Models

Jonathan Ho, Ajay Jain, Pieter Abbeel

Noise distribution

Reverse process

Noise distribution

Reverse process

Noise distribution

Reverse process

Samples

Reverse process

Data distribution

Diffused data

Diffusion Probabilistic Model

- Diffusion model aims to learn the reverse of noise generation procedure
 - Forward step: (Iteratively) Add noise to the original sample
 - \rightarrow The sample x_0 converges to the complete noise x_T (e.g., $\sim \mathcal{N}(0, I)$)

$$(\mathbf{x}_T) \longrightarrow \cdots \longrightarrow (\mathbf{x}_t) \xrightarrow{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} (\mathbf{x}_{t-1}) \longrightarrow \cdots \longrightarrow (\mathbf{x}_0)$$

Forward (diffusion) process

Diffusion Probabilistic Model

- Diffusion model aims to learn the reverse of noise generation procedure
 - Forward step: (Iteratively) Add noise to the original sample
 - \rightarrow The sample x_0 converges to the complete noise x_T (e.g., $\sim \mathcal{N}(0, I)$)
 - Reverse step: Recover the original sample from the noise
 - → Note that it is the "generation" procedure

Reverse process

Forward (diffusion) process

Connection with VAE Models

5.2 What is a Markov Chain?

- One special type of discrete-time is called a Markov Chain.
- **Definition:** A discrete-time stochastic process is a **Markov chain** if, for t = 0,1,2... and all states $P(\mathbf{X}_{t+1} = i_{t+1} | \mathbf{X}_t = i_t, \mathbf{X}_{t-1} = i_{t-1},...,\mathbf{X}_1 = i_1, \mathbf{X}_0 = i_0) = P(\mathbf{X}_{t+1} = i_{t+1} | \mathbf{X}_t = i_t)$
- Essentially this says that the probability distribution
 of the state at time t+1 depends on the state at time
 t(i,) and does not depend on the states the chain
 passed through on the way to i, at time t.

$$\text{VLB loss} \qquad \mathbb{E}[-\log p_{\theta}(\mathbf{x}_0)] \leq \mathbb{E}_q \bigg[L_T + \sum_{t>1} D_{\mathrm{KL}} \left(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \mid\mid p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \right) + L_0 \bigg]$$

$$\text{VLB loss} \qquad \mathbb{E}[-\log p_{\theta}(\mathbf{x}_0)] \leq \mathbb{E}_q \left[L_T + \sum_{t>1} D_{\text{KL}} \left(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) \mid \mid p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \right) + L_0 \right]$$

$$\begin{aligned} \text{VLB loss} \quad \mathbb{E}[-\log p_{\theta}(\mathbf{x}_{0})] \leq \mathbb{E}_{q} \bigg[L_{T} + \sum_{t \geq 1} D_{\mathrm{KL}} \left(q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}) \right) + L_{0} \bigg] \\ \downarrow \\ \quad \text{DSM loss} \quad \mathrm{constant} * \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \|^{2} \end{aligned}$$

$$\begin{aligned} \text{VLB loss} \quad \mathbb{E}[-\log p_{\theta}(\mathbf{x}_0)] \leq \mathbb{E}_q \left[L_T + \sum_{t \geq 1} D_{\mathrm{KL}} \left(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \right) + L_0 \right] \\ \downarrow \\ \text{DSM loss} \quad \operatorname{constant} * \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\sqrt{\bar{\alpha}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t \right) \|^2 \end{aligned}$$

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2$$

6: until converged

From variational inference to denoising score matching

Diffusion Probabilistic Model

- Diffusion model aims to learn the reverse of noise generation procedure
 - Network: Use the image-to-image translation (e.g., U-Net) architectures
 - Recall that input is x_t and output is x_{t-1}, both are images
 - It is expensive since both input and output are high-dimensional
 - Note that the denoiser μ_θ(x_t, t) shares weights, but conditioned by step t

Sampling

Shows that Langevin dynamics is the natural sampler for DSM

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x₀

Forward Process:

- The forward process adds noise to the data $x_0 \sim q(x_0)$, for T time steps.

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{\alpha_t} x_{t-1}, (1 - \alpha_t)I)$$
$$q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1})$$

where $\alpha_1, ..., \alpha_t$ is the variance schedule.

- We can sample x_t at any time step t with

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\tilde{\alpha}_t}, (1 - \tilde{\alpha}_t)I)$$
$$\tilde{\alpha}_t = \prod_{s=1}^t \alpha_s$$

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}} \boldsymbol{\epsilon} \quad \text{with } \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{\epsilon}; \mathbf{0}, \mathbf{I})$$
$$\mathbf{x}_{t-1} = \sqrt{\alpha_{t-1}} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t-1}} \boldsymbol{\epsilon} \quad \text{with } \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{\epsilon}; \mathbf{0}, \mathbf{I})$$

$$\mathbf{x}_{t} = \sqrt{\prod_{i=1}^{t} \alpha_{i} \mathbf{x}_{0}} + \sqrt{1 - \prod_{i=1}^{t} \alpha_{i} \boldsymbol{\epsilon}_{0}}$$
$$= \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}_{0}$$
$$\sim \mathcal{N}(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0}, (1 - \bar{\alpha}_{t}) \mathbf{I})$$

Reverse process

- The reverse process removes noise starting at $p(x_T) = \mathcal{N}(x_T; 0, I)$ for T time steps.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$
$$p_{\theta}(x_{0:T}) = p_{\theta}(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)$$
$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \tilde{\alpha_t}}} \epsilon_{\theta}(x_t, t))$$

 θ are the parameters we train.

$$q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) = \frac{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{t-1},\boldsymbol{x}_{0})q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{0})}{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})}$$

$$= \frac{\mathcal{N}(\boldsymbol{x}_{t};\sqrt{\alpha_{t}}\boldsymbol{x}_{t-1},(1-\alpha_{t})\mathbf{I})\mathcal{N}(\boldsymbol{x}_{t-1};\sqrt{\bar{\alpha}_{t-1}}\boldsymbol{x}_{0},(1-\bar{\alpha}_{t-1})\mathbf{I})}{\mathcal{N}(\boldsymbol{x}_{t};\sqrt{\bar{\alpha}_{t}}\boldsymbol{x}_{0},(1-\bar{\alpha}_{t})\mathbf{I})}$$

$$\propto \mathcal{N}(\boldsymbol{x}_{t-1};\underbrace{\frac{\sqrt{\alpha_{t}}(1-\bar{\alpha}_{t-1})\boldsymbol{x}_{t}+\sqrt{\bar{\alpha}_{t-1}}(1-\alpha_{t})\boldsymbol{x}_{0}}_{\mu_{q}(\boldsymbol{x}_{t},\boldsymbol{x}_{0})},\underbrace{\frac{(1-\alpha_{t})(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_{t}}\mathbf{I}}}_{\boldsymbol{\Sigma}_{q}(t)})$$

Diffusion models can generate high quality samples

CelebA-HQ 256x256

CIFAR-10 FID = 3.17 (SOTA)

Diffusion models can generate high quality samples

LSUN 256x256 Bedroom FID = 4.90

Diffusion Model is All We Need?

- Trilemma of generative models: Quality vs. Diversity vs. Speed
 - · Diffusion model produces diverse and high-quality samples, but generations is slow

