CONTEÚDOS ACADÊMICOS UNIP EAD **BIBLIOTECAS** MURAL DO ALUNO **TUTORIAIS**

ARQUITETURA DE REDES DE COMPUTADORES 7936-30_43701_R_E1_20241

CONTEÚDO

Revisar envio do teste: QUESTIONÁRIO UNIDADE II

Usuário	
Curso	ARQUITETURA DE REDES DE COMPUTADORES
Teste	QUESTIONÁRIO UNIDADE II
Iniciado	
Enviado	
Status	
Resultado da tentativa	
Tempo decorrido	
	Todas as respostas, Respostas enviadas, Respostas corretas, Comentários, Perguntas respondidas incorretamente

Pergunta 1 0,5 em 0,5 pontos

A camada de rede executa diversas atividades no processo de comunicação da informação entre a 🗹 origem e o destino. Um destes processos consiste na determinação do melhor caminho para um pacote. Qual é o nome dado a este processo?

Resposta Selecionada: 🕜 c. Roteamento.

Respostas:

a. Encaminhamento.

_{b.} Comutação.

🗸 c. Roteamento.

d. Encapsulamento.

e. Modulação.

Comentário da Resposta: C

resposta:

Comentário: o roteamento consiste na determinação do melhor caminho para um pacote. O objetivo principal deste processo é encontrar a melhor rota

(relacionadas em uma tabela), que pode ser definida a partir de um algoritmo de roteamento ou estabelecida de forma estática por um administrador da rede.

Pergunta 2

Encontramos diversos protocolos de roteamento e um deles é o RIP que atua baseado na contagem 🇹 de saltos como métrica. Como podemos classificar este protocolo de roteamento?

Resposta Selecionada: 👩 a. Vetor distância.

Respostas:

🗸 a. Vetor distância.

h. Sistema autônomo.

c. Estado de enlace.

d. Link state.

_{e.} Protocolo de borda.

Comentário da

Resposta: A

resposta:

Comentário: o RIP é considerado um protocolo de roteamento de vetor distância

ou distance vector e utiliza a contagem de saltos como métrica para a

determinação do melhor caminho para um pacote.

Pergunta 3 0,5 em 0,5 pontos

Um dos algoritmos de roteamento mais conhecidos é o Dijkstra. Ele trabalha com uma visão global 🧹 do roteamento (contrastando com o vetor de distância que trabalha apenas com a visão de vizinhos). Qual das alternativas a seguir apresenta um protocolo de roteamento baseado no algoritmo Dijkstra?

Resposta Selecionada: 👩 d. OSPF.

Respostas:

a. RIP.

b. EIGRP.

c. IGRP.

ospf.

e. DHCP.

Comentário da

Resposta: D

resposta:

Comentário: um dos algoritmos mais conhecidos em protocolos de roteamento por estado de enlace é o Dijkstra, que é utilizado pelo OSPF (Open Shortest Path

First - Protocolo Aberto de Menor Rota Primeiro).

O protocolo de internet (IP - Internet Protocol) provocou uma grande evolução na conectividade das 🗹 redes. Analise as afirmativas a seguir sobre a versão 4 do IP:

I – O IPv4 está totalmente ultrapassado desde a década de 1990, sendo descontinuado no início deste século.

II - Na operação do IPv4, cada pacote recebe tratamento isolado durante todo o seu percurso na rede, podendo trilhar caminhos diferentes uns dos outros.

III - O IPv4 é um protocolo não orientado à conexão e seus pacotes são tratados e avaliados a cada

É correto o que se afirma em:

Resposta Selecionada: 🔥 c. II e III, apenas.

Respostas:

a. I e II, apenas.

b. I e III, apenas.

🗸 c. ll e lll, apenas.

d. I, apenas.

e. II, apenas.

Comentário da

Resposta: C

resposta:

Comentário: o IPv4 tem sido utilizado concomitantemente com a versão 6 do

protocolo e ainda não foi descontinuado.

Pergunta 5 0,5 em 0,5 pontos

Considerando que o endereço IPv4 de um host é 192.168.1.5/30, qual seria o seu endereço de 🌠 broadcast da rede em que este host está situado?

Resposta Selecionada: _{b.} 192.168.1.7/30.

Respostas:

a. 192.168.1.3/30.

ob. 192.168.1.7/30.

192.168.1.31/30.

d. 192.168.1.127/30.

e. 192.168.1.255/30.

Comentário da

resposta:

Comentário: utilizando os cálculos com a máscara de rede, podemos afirmar

que o endereço IPv4 192.168.1.5/30 está inserido na rede cujo endereço de

broadcast é 192.168.1.7/30.

Ao fazer o planejamento de uma topologia de redes, resolveu-se utilizar o endereço 192.168.10.0/24 A 🇹 em um processo de divisão em sub-redes contendo em cada uma delas no máximo 30 hosts. Quantos bits devem ser emprestados de host para rede, de forma a atender esta demanda, considerando desperdício mínimo de hosts?

Resposta Selecionada: _{b.} 3.

Respostas:

a. ².

ر 4.

d. ⁵.

e. 6.

Comentário da Resposta: B

resposta:

Comentário: ao emprestar 3 bits de host para sub-rede, restam apenas 5 bits para hosts. Sendo assim, temos a partir destes 5 bits um total de 32 combinações. Excluindo o endereço de rede e de broadcast, sobram 30 hosts, atendendo assim à demanda com desperdício mínimo de hosts.

Pergunta 7 0,5 em 0,5 pontos

O pacote IPv4 possui diversos campos. O segmento oriundo da camada de transporte é inserido 🕯 dentro do campo de dados e o restante do pacote tem os seus campos integrando o cabeçalho. Analise as afirmativas a seguir sobre os componentes do cabeçalho IPv4:

I – Deslocamento: indica o deslocamento dos dados do pacote em relação ao campo de dados do pacote original (antes da fragmentação).

II – TTL (Tempo de Vida): representa a quantidade de segundos por onde um pacote pode trafegar. Cada ativo de rede que roteia este pacote diminui o TTL de 15 microssegundos, sendo descartado quando este valor chega a zero.

III - Flags: campo de 3 bits que identifica se o pacote pode ser fragmentado no caminho até o destino e também se já ocorreu fragmentação.

São consideradas proposições corretas:

Resposta Selecionada: 👝 b. l e III, apenas.

Respostas:

a. I e II, apenas.

💍 b. l e III, apenas.

. Il e III, apenas.

d. I, apenas.

e. II, apenas.

Comentário da

Resposta: B

resposta:

Comentário: o tempo de vida de um pacote é contabilizado em saltos e não em microssegundos, como apresenta a proposição II. Os outros dois campos estão corretamente mencionados.

Pergunta 8 0,5 em 0,5 pontos

A camada de transporte é caracterizada pela existência de dois protocolos que muito se destacam e têm características antagônicas. Qual das opções a seguir apresenta estes dois protocolos?

Resposta Selecionada: ob. TCP e UDP.

Respostas:

a. SNMP e UDP.

ob. TCP e UDP.

c. IP e TCP.

d. DNS e IP.

e. IP e SNMP.

Comentário da

Resposta: B

resposta:

Comentário: os principais protocolos que operam na camada de transporte

são: UDP e TCP.

Pergunta 9 0,5 em 0,5 pontos

Qual dos serviços a seguir oferecidos na camada de aplicação é utilizado para estabelecer conexão 🛂 on-line com uma máquina remota?

Resposta Selecionada: 👩 d. Telnet.

Respostas:

a. HTTP.

b. TCP.

c. UDP.

od. Telnet.

e. DNS.

Comentário da

Resposta: D

Comentário: o Telnet é utilizado para estabelecer conexão on-line com uma resposta:

máquina remota. O cliente Telnet é chamado de máquina local, e um servidor Telnet é chamado de máquina remota.

Pergunta 10 0,5 em 0,5 pontos

Considerando os conceitos básicos de segurança da informação, podemos afirmar que brechas que 🛂 podem representar portas de entrada para a concretização de um incidente ou ataque à segurança da informação são chamadas de:

Resposta Selecionada: ob. Vulnerabilidades.

a. Ameaças. Respostas:

🗸 b. Vulnerabilidades.

c. Riscos.

d. Acidentes.

e. Impactos.

Comentário da Resposta: B

Comentário: as vulnerabilidades são brechas que podem representar portas de resposta:

entrada para a concretização de um incidente ou ataque à segurança da

informação, possivelmente causando impactos ao negócio.