functional analysis study note

Zehao Li

September 2025

Definition 1 (Seminorm). Let X be a vector space over \mathbb{C} . A seminorm is a function $\|\cdot\|: X \to [0,\infty)$ such that for all $x,y \in X$ and $\lambda \in \mathbb{C}$:

$$\|\lambda x\| = |\lambda| \|x\|,$$

 $\|x + y\| \le \|x\| + \|y\|.$

The difference between a seminorm and a norm is that for a norm we additionally require

$$||x|| = 0 \iff x = 0.$$

Definition 2 (Normed Space). If $\|\cdot\|$ is a norm on X, then $(X, \|\cdot\|)$ is called a normed space. Equipped with the metric

$$d(x,y) = ||x - y||,$$

the norm induces a metric space structure on X.

A normed space $(X, \|\cdot\|)$ is called a Banach space if it is complete with respect to this metric.

Definition 3 (Banach Algebra). Let A be a complex algebra. If $(A, \|\cdot\|)$ is a Banach space and

$$||xy|| \le ||x|| \, ||y|| \quad for \ all \ x, y \in A,$$

then A is called a Banach algebra.

If A is a unital, then ||I|| = 1.

Definition 4 (Involutive Banach Algebra). If A is a Banach algebra with involution *, then $(A, \|\cdot\|, *)$ is called an involutive Banach algebra.

The involution * satisfies:

- 1. $(a^*)^* = a$,
- 2. $(\lambda a + b)^* = \overline{\lambda}a^* + b^*$,
- 3. $(ab)^* = b^*a^*$.

In addition, if $||x^*x|| = ||x||^2$ for any x, then A is called a C^* -algebra. In this case, $||a^*|| = ||a||$.

Examples:

1. $A = M_n(\mathbb{C})$ with involution being the T^* of a matrix $T \in M_n(\mathbb{C})$ and the norm is the square root of the eigenvalue of T^*T .

(It is unital: $||I_n|| = 1$). For n = 1, $A = \mathbb{C}$, $||\lambda|| = |\lambda|$, $\lambda^* = \overline{\lambda}$.

2. Let X be a locally compact Hausdorff space, then

 $C_0(X) = \{ f : X \to \mathbb{C} \mid f \text{ is continuous and vanishes at } \infty \}.$

Recall: f vanishes at ∞ if for any $\varepsilon>0$, there exists a compact set $K\subset X$ such that

$$|f(x)| < \varepsilon$$
 for all $x \in X \setminus K$.

The norm and involution are

$$||f||_{\infty} = \sup |f(x)|, \quad f^*(x) = \overline{f(x)}.$$

Then $(C_0(X), \|\cdot\|_{\infty}, *)$ is a C^* -algebra.

If X is compact Hausdorff, then

$$C(X) = \{ f : X \to \mathbb{C} \mid f \text{ continuous} \}$$

is a unital C^* -algebra with respect to the same norm $\|\cdot\|$ and $f^* = \overline{f}$.

Remark:

- (a) One can show every abelian C^* -algebra is isomorphic to C(X) or $C_0(X)$ for a locally compact Hausdorff space.
- (b) Let X,Y be compact Hausdorff spaces, then $X\simeq Y$ iff C(X) is isomorphic to C(Y).
- 3. $L^1(\mathbb{R}^n)$ with Lebesgue measure:

Involution: $f^*(x) = \overline{f(-x)}$.

Convolution: for $f, g \in L^1(\mathbb{R}^n)$

$$(f * g)(t) = \int_{\mathbb{R}^n} f(x)g(t - x) dx.$$

We have $||f * g||_1 \le ||f||_1 ||g||_1$, so $(L^1, +, *, *)$ is a Banach algebra, but not a C^* -algebra since $||f^*f|| \ne ||f||^2$.

4. (X, Σ, μ) is a measure space:

 $L^p(X,\Sigma,\mu) = \{f: X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_p = (\int_X |f|^p \, d\mu)^{1/p} < \infty\}.$

Define $f \sim g$ if f = g a.e.

If $p \geq 1$, we have the Minkowski inequality:

$$||f + g||_p \le ||f||_p + ||g||_p,$$

hence $L^p(X, \Sigma, \mu)$ is a normed space (Banach space).

Definition 5 (Semi-finite Measure). Assume μ is semi-finite if for any $E \in \Sigma$ with $\mu(E) = \infty$, there exists $A \subset E$, $A \in \Sigma$, such that

$$0 < \mu(A) < \infty$$
.

Definition 6 (σ -finite Measure). μ is σ -finite if there exists a sequence $\{A_n\} \subset \Sigma$ such that

$$\mu(A_n) < \infty \quad \text{for all } n \in \mathbb{N}, \quad \text{and} \quad \bigcup_{n=1}^{\infty} A_n = X.$$

Definition 7 (L^{∞} Space).

$$L^{\infty}(X, \Sigma, \mu) = \{ f : X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_{\infty} < \infty \},$$

where the norm can be defined as

$$||f||_{\infty} = \sup |f(x)|,$$

or equivalently,

$$||f||_{\infty} = \inf\{c \ge 0 \mid \mu(\{x \in X \mid |f(x)| > c\}) = 0\}.$$

Two functions are considered equal in L^{∞} if and only if they are equal almost everywhere (a.e.):

$$f = g \text{ in } L^{\infty} \iff f = g \text{ a.e.}$$

Remark 1. Then $L^{\infty}((X,\Sigma,\mu),+,*,-,* \|\cdot\|_{\infty})$ is a C^* -algebra.

Note: $f \in L^{\infty}$ if and only if there exists a measurable function g such that g = f μ -a.e., for example

$$g = f \cdot \chi_E, \quad E = \{x \in X \mid |f(x)| \le ||f||_{\infty}\}.$$

This allows every element of L^{∞} to be represented by a strictly bounded measurable function.

Normed Spaces and Equivalent Norms

Definition 8 (Equivalent Norms). Let X be a vector space. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on X are called equivalent if there exist constants $c_1, c_2 > 0$ such that

$$c_1||x||_1 \le ||x||_2 \le c_2||x||_1$$
, for all $x \in X$.

Remark 2. Recall that if $(X, \|\cdot\|)$ is a normed space, then

$$d(x,y) = ||x - y||$$

defines a metric on X, and the associated metric space topology is called the norm topology on X.

Proposition 1. Equivalent norms generate the same topology. Conversely, if two norms generate the same topology, then they are equivalent.

Convergence of Series in Normed Spaces

Definition 9 (Convergence of Series). Let $(X, \|\cdot\|)$ be a normed space, and let $\{x_n\} \subset X$. We say that the series $\sum_{n=1}^{\infty} x_n$ converges to $x \in X$ if the sequence of partial sums

$$S_N = \sum_{n=1}^N x_n$$

satisfies

$$\lim_{N \to \infty} S_N = x.$$

Definition 10 (Absolute Convergence). The series $\sum_{n=1}^{\infty} x_n$ converges absolutely if

$$\sum_{n=1}^{\infty} ||x_n|| < \infty.$$

Theorem 1. Let $(X, \|\cdot\|)$ be a normed space. Then X is complete (i.e., a Banach space) if and only if every absolutely convergent series in X converges.

Proof. Forward direction: Suppose $\sum_{n=1}^{\infty} ||x_n|| < \infty$, and let $S_N = \sum_{n=1}^N x_n$. For any $\varepsilon > 0$, there exists $N_0 \in \mathbb{N}$ such that for all $N > M > N_0$,

$$||S_N - S_M|| = \left\| \sum_{n=M+1}^N x_n \right\| \le \sum_{n=M+1}^N ||x_n|| < \varepsilon.$$

Thus, $\{S_N\}$ is a Cauchy sequence and converges in X since X is complete.

Converse direction: Suppose $\{x_n\} \subset X$ is a Cauchy sequence. Fix $\varepsilon = 2^{-k}$; then there exists $N_k > 0$ such that for all $n > m > N_k$,

$$||x_n - x_m|| < 2^{-k}.$$

Hence, we can choose a subsequence x_{n_1}, x_{n_2}, \ldots such that

$$||x_{n_{w+1}} - x_{n_w}|| < 2^{-w}.$$

Let $y_w = x_{n_{w+1}} - x_{n_w}$. Then

$$\sum_{w=1}^{\infty} \|y_w\| \le \sum_{w=1}^{\infty} 2^{-w} < \infty,$$

so $\sum_{w=1}^{\infty} y_w$ converges absolutely.

Moreover, for partial sums:

$$y_1 + y_2 + \dots + y_w = (x_{n_2} - x_{n_1}) + \dots + (x_{n_{w+1}} - x_{n_w}) = x_{n_{w+1}} - x_{n_1} \to y,$$

since absolute convergence implies convergence of partial sums.

Thus, the subsequence x_{n_w} converges, and since $\{x_n\}$ is Cauchy, the whole sequence converges in X.

Bounded Linear Operators

Definition 11 (Bounded Linear Operator). Let X and Y be normed spaces, and let $T: X \to Y$ be a linear map. We say that T is bounded if there exists a $constant \ c > 0 \ such \ that$

$$||T(x)|| \le c ||x||$$
, for all $x \in X$.

Theorem 2. For a linear operator $T: X \to Y$ between normed spaces, the following statements are equivalent:

- 1. T is continuous on X.
- 2. T is continuous at 0.
- 3. T is bounded.

Proof. $1 \implies 2$: Obvious.

2 \Longrightarrow **3:** Let $V = \{y \in Y \mid ||y|| < 1\}$. Since T(0) = 0 and T is continuous at 0, the set

$$T^{-1}(V)$$

is an open neighborhood of 0 in X.

Hence, there exists $\delta > 0$ such that

$$B_{\delta}(0) := \{ x \in X \mid ||x|| \le \delta \} \subset T^{-1}(V),$$

which implies that $T(B_{\delta}(0)) \subset V$.

For any $x \neq 0$, write

$$||T(x)|| = \left| |T\left(\frac{\delta x}{||x||} \cdot \frac{||x||}{\delta}\right) \right| \le \frac{1}{\delta} ||x|| \left| |T\left(\frac{\delta x}{||x||}\right) \right| \le \frac{1}{\delta} ||x||,$$

since $\frac{\delta x}{\|x\|} \in B_{\delta}(0) \subset T^{-1}(V)$ and thus $\|T(\frac{\delta x}{\|x\|})\| \le 1$. **3** \implies **1:** If T is bounded, say $\|T(x)\| \le C\|x\|$, then for any $x_1, x_2 \in X$,

$$||T(x_1) - T(x_2)|| = ||T(x_1 - x_2)|| \le C||x_1 - x_2||,$$

so T is Lipschitz continuous, hence continuous.