Week 2: Correctness and Asymptotic Runtime

Agenda:

- ► Loop Invariants (CLRS p.18-20)
- ► Asymptotic Growth of Functions (CLRS Ch.3)
 - ▶ Big-O, Big- Ω , Θ , little-o, little- ω

Why Prove Correctness

- Once you developed an algorithm, you at least need to show it does what it is supposed to do (and never errs!)
- ▶ What is the difference between *testing* and proving?
- ► To prove a program is correct, we start by wording correctness formally:

Claim: For any instance I (satisfying _____), Algorithm-name(I) returns _____

▶ E.g., For any two non-negative integers a and b, Multiply (a, b) returns the product $a \times b$.

Basic Proofs

- ► For simple statements, just reason with the effect of code (using logic).
- $\begin{array}{c} {\color{red} \blacktriangleright} \ \, \underline{ procedure} \ \, \underline{ Swap(a,b)} \\ \hline temp \leftarrow a \\ a \leftarrow b \\ b \leftarrow temp \end{array}$
- ▶ Claim: for any two pointers a and b, Swap(a, b) indeed assigns a the element that b pointed to originally, and assigns b the element that a pointed to originally.
- Proof: Assume that initially a points to object x and b points to object y. The first line creates a new pointer temp that also points to x. The
 - second line sets a to point to y (just like b). Finally the last line sets b to point to the same object as temp, i.e. x. So, at the end of the execution, a points to y and b points to x, as required. \Box

Proving Correctness using Loop Invariants

- ▶ If a code is written using recursion, prove correctness using induction.
- ► For code written using loops, prove correctness by the loop invariant method.
- ▶ A **loop-invariant** is an assertion about the state of the code that is always true at the beginning of each loop-iteration.
- Not any assertion, but an assertion that *accurately* describes the *cumulative effect* of repeatedly iterating through the loop; an assertion we can also use to prove the correctness of the code.
- ► Step 1: Identify the loop invariant
 - ▶ Q1: Do I understand what the loop does?
 - Q2: Do I understand the cumulative effect of the loop?
 - Q3: Can I word exactly the cumulative effect of the loop?
- ► Step 2: Prove the loop invariant for
 - Initialization
 - Maintenance
 - ► Termination #1: Does the loop halt eventually?
 - ► Termination #2: How do I prove correctness from the LI?

Step #1: Identifying and Rigorously Stating the Loop Invariant

$$lacktriangle$$
 Example procedure FindSum (A,n)

$$sum \leftarrow A[1]$$
 $j \leftarrow 2$
while $(j \le n)$
 $sum \leftarrow sum + A[i]$

while
$$(j \le n)$$

$$sum \leftarrow sum + A[j]$$

$$j \leftarrow j + 1$$

$$j \leftarrow j+1$$
 return sum

- ightharpoonup Returns the sum of all elements in A[1..n]. How do we prove it?
- ightharpoonup Q1: What does the loop do? A: Adds A[j] to sum and increments j▶ Q2: So what is always true at the beginning of each loop
 - iteration? A: sum holds the summation of A[1] + A[2] + ... + A[j-1]

How would that lead to desired conclusion when loop terminate?
A: The loop exits at
$$j = n + 1$$
, and we have $sum = A[1] + ... + A[n]$.

So, the loop-invariant is:

"At the beginning of each loop iteration
$$sum = \sum_{j=1}^{j-1} sum_j = \sum_{j=1}^{j-$$

"At the beginning of each loop iteration, $sum = \sum_{i=1}^{j-1} A[i]$ "

J=2 Sum = A[1] J=3 Sum = A[1] +A[2] J=4 Sum = A[1] +A[2] +A[]

Step #1: Identifying and Rigorously Stating the Loop Invariant

- ► The same loop-invariant can be written in many equivalent forms
 - At the beginning of each loop iteration, sum = A[1] + A[2] + ... + A[j-1]"
 - At the beginning of each loop iteration sum is the summation of the elements in A[1,...,j-1]"
 - lacktriangle "At the beginning of each loop iteration sum is the summation of the first i-1 elements in A"
 - or any other equivalent form

Step #1: Identifying and Rigorously Stating the Loop Invariant

- ► It DOES matter that the loop invariant is stated correctly and in a way that will give the correctness of the overall algorithm
 - lacktriangle "At the beginning of each loop iteration sum = A[j]" WRONG
 - At the beginning of each loop iteration sum is the summation of the elements in A[1,...,j]" WRONG
 - lacktriangle "At the beginning of each loop iteration j>0" UNINFORMATIVE
 - lacktriangle "At the beginning of each loop iteration $sum = sum^{\mathrm{previous_iteration}} + A[j-1]$ " UNINFORMATIVE
- ▶ To make sure you don't mess with the indices check it! Plug-in values of j (j = 1, j = 2, ..., j = n) and check.

Step #2: Proving Loop Invariants

- ▶ Once we have identified and stated the LI, it is time to prove it and to use it to prove the correctness of the entire code.
- Proving LI means proving the following 4 parts
- ► Initialization:
 - ▶ Does LI hold before the loop starts?
- ► Maintenance:
 - If LI holds at the beginning of j'-th iteration, does it hold also at the beginning of the (j'+1)-th iteration?
- ► Termination #1:
 - ► Does the loop terminate?
- ► Termination #2:
 - ▶ When the loop terminates, does it prove the correctness of the overall algorithm / the claim we were making?

Step #2: Proving Loop Invariant

- Our loop-invariant: "At the beginning of each loop iteration, $sum = \sum_{i=1}^{j-1} A[i]$ "
- ▶ Initially: Before the loop begins sum = A[1] = A[1,...,(2-1)]
- Maintenance: Suppose that at the beginning of iteration j (the (j-1)-th iteration), $sum = \sum_{i=1}^{j-1} A[i]$.

Then, at the beginning of iteration j + 1 (j-th iteration),

$$sum^{\text{after}} = sum^{\text{before}} + A[j] \stackrel{\text{LI}}{=} \sum_{i=1}^{j-1} A[i] + A[j] = \sum_{i=1}^{j} A[i] = \sum_{i=1}^{j^{\text{after}}-1} A[i]$$

- ▶ Termination #1: The loop terminates as we only increment j, so eventually we would have j > n
- ▶ Termination #2: When the while-loop terminates, j=n+1, in which case the LI implies $sum = \sum_{i=1}^n A[i]$. We return $sum/n = \frac{1}{n} \sum_{i=1}^n A[i]$ which by definition is the average of all elements in A[1,...,n]

for
$$(j \text{ from } 2 \text{ to } n)$$

$$key \leftarrow A[j] \quad ** \text{insert } A[j] \text{ into sorted sublist } A[1..j-1]$$

$$i \leftarrow j-1$$

$$\text{while } (i>0 \text{ and } A[i]>key)$$

$$A[i+1] \leftarrow A[i]$$

$$i \leftarrow i-1$$

 $A[i+1] \leftarrow key$

Loop Invariants Example

- ➤ To prove correctness use two loop invariants, one *nested* inside another.
- ▶ What is the loop invariant of the for-loop?
- ▶ LI1: "At the beginning of each for-loop iteration A[1, ..., j-1] contains the same elements that were there initially, only in order."
- ▶ Initialization: j = 2 and clearly A[1] is a sorted array of size 1.
- ► Maintenance: TBD
- ► Termination #1: We don't alter j at the body of the loop + Termination of the while-loop (TBD)
- ▶ Termination #2: When the loop terminates, j = n + 1 so A[1, ...n] (which is the whole array) is sorted.

More Loop Invariants Examples

- ► To prove the maintenance property of the LI for the for-loop we actually use a LI for the while-loop
- ▶ LI2: Let $A^{\text{before}}[1..j]$ denote the array before we started iterating through the while loop. Then at the beginning of each iteration of the while loop:
 - (i) $A[1..i+1] = A^{\text{before}}[1..i+1]$
 - (ii) $A[i+2..j] = A^{\text{before}}[i+1..j-1]$
- ► Initialization / maintenance / termination #1 of LI2:
 - ► HW

More Loop Invariants Examples

- ► To prove the maintenance property of the LI for the for-loop we actually use a LI for the while-loop
 - LI2: Let $A^{\text{before}}[1..j]$ denote the array before we started iterating through the while loop. Then at the beginning of each iteration of the while loop: (i) $A[1..i+1] = A^{\text{before}}[1..i+1]$ (ii) $A[i+2..i] = A^{\text{before}}[i+1..i-1]$
- ► The termination #2 of LI2 is how to derive the maintenance property of LI from the termination of the while-loop.
- ► Termination #2: At the end of while loop, i is the largest entry in $\{1, 2, 3, ..., j-1\}$ for which $A[i] \leq key$ (or 0, if no such entry exists). So LI2 together with putting key at A[i+1], we have that

$$A[1,..j] = \left[A^{\text{before}}[1,..,i], key, A^{\text{before}}[i+1,..,j-1]\right]$$

As $A^{\text{before}}[1,..j-1]$ was sorted & by definition of $i \Rightarrow A[1,..j]$ is sorted.

Loop Invariants

Loop invariant vs. Mathematical induction

- Arguing correctness
 - ▶ When recursion is involved, use induction
 - ► When loop is involved, use loop invariant (and induction)
- Common points
 - ▶ initialization vs. base step
 - maintenance vs. inductive step
- Difference
 - termination vs. infinite

Week 2: Loop Invariant, Asymptotic Notations

Asymptotic notation for Growth of Functions: Motivations

- ► Analysis of algorithms becomes analysis of functions
- ▶ The (WC) running time of InsertionSort is characterized by a quadratic function $f(n) = an^2 + bn + c$
- For some sort algorithms (e.g., mergeSort, later) the running time is $g(n) = cn \log n$.
- Which algorithm runs faster? In what sense?

Asymptotic notation for Growth of Functions: Motivations

- ➤ To simplify algorithm analysis, want function notation which indicates *rate of growth* (a.k.a., *order* of complexity), and denotes a set of functions
- \triangleright O(f(n)) read as "big O of f(n)" h un $) \leq 0 \leq f(n)$
- $ightharpoonup \Omega(f(n))$ read as "big Omega of f(n)" hun) $< \Omega(f(n))$
- ▶ $\Theta(f(n))$ read as "Theta of f(n)" hh) $\xi \theta < f(h)$
- ightharpoonup o(f(n)) read as "little o of f(n)"
- $ightharpoonup \omega(f(n))$ read as "little omega of f(n)"

Big-O **Notation**: O(f(n))

 \triangleright (Roughly) The set of functions which, as n gets large, grow no faster than a constant times f(n).

exist constants c>0 and $n_0\in\mathbb{N}$ such that for all $n\geq n_0$ it holds

Definition: A function $h(n): \mathbb{N} \to \mathbb{R}$ belongs to O(f(n)) if there

 $482n^2 \in O(n^2) 482n^2 \in O(n^3)$

$$482n^2 \in O(n^2) \tag{482}n^2$$

$$482n^{2} \in O(n^{2.5})$$

$$482n^{2} \in O(n^{2.001})$$

that $0 \le h(n) \le cf(n)$ (we can omit " $0 \le$ " in the sequel).

$$n^{3} + 255n^{2} + n^{2.999} \in O(n^{3})$$
$$h(n) = \begin{cases} 5^{n}, & n \le 10^{120} \\ n^{2}, & n > 10^{120} \end{cases} \in O(n^{2})$$

Big-O **Notation:** O(f(n))

Inverse: A function $h(n) \notin O(f(n))$ if no matter what c > 0 and $n_0 \in \mathbb{N}$ we choose, we can always find a large enough $n > n_0$ s.t. h(n) > cf(n). That is, h is NOT upper bounded by f within a constant factor.

► [Examples:]

$$482n^{2} \notin O(n) \qquad \frac{1}{482}n^{2} \notin O(n^{1.99999})$$

$$n^{2} \notin O(n^{p}) \text{ for any } p < 2$$

$$n^{3} + 255n^{2} + n^{2.999} \notin O(n^{2.99999})$$

$$h(n) = \begin{cases} n^{2}, & n \text{ is even} \\ n^{3}, & n \text{ is odd} \end{cases} \notin O(n^{2})$$

▶ The class of constant functions is expressed by O(1). The notation comes from $O(n^0)$ for degree-0 polynomial.

$$2n^{2} = O(h^{2})$$
 $h^{1}_{2} = O(n^{2})$
 $fo(h^{2})$

Definitions

- ightharpoonup O(f(n)) is the set of functions h(n) that
 - roughly, grow no faster than f(n)
 - Formally: $h(n) \in O(f(n))$ if $\exists c > 0, n_0 \in \mathbb{N}$, such that for all $n \geq n_0$ we have $h(n) \leq cf(n)$.
- $ightharpoonup \Omega(f(n))$ is the set of functions h(n) that
 - ightharpoonup roughly, grow at least as fast as f(n)
 - Formally: $h(n) \in \Omega(f(n))$ if $\exists c > 0, n_0 \in \mathbb{N}$, such that for all $n > n_0$ we have h(n) > cf(n).
 - $lackbox{ } h(n) \in \Omega(f(n)) \text{ if and only if } f(n) \in O(h(n))$
- $ightharpoonup \Theta(f(n))$ is the set of functions h(n) that
 - roughly, grow at the same rate as f(n)
 - Formally: $h(n) \in \Theta(f(n))$ if $\exists c_0 > 0, c_1 > 0, n_0 \in N$, such that for all $n \geq n_0$ we have $c_0 f(n) \leq h(n) \leq c_1 f(n)$.
 - $ightharpoonup \Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$

Definitions (Cont'd):

- ightharpoonup o(f(n)) is the set of functions h(n) that
 - roughly, grow strictly slower than f(n)
 - ▶ Formally: $h(n) \in o(f(n))$ if $\lim_{n\to\infty} \frac{h(n)}{f(n)} = 0$
 - ▶ I.e. for every $\epsilon > 0$, there exists $n_{\epsilon} \in \mathbb{N}$ such that for every $n \geq n_{\epsilon}$ it holds that $\frac{h(n)}{f(n)} < \epsilon$
 - ▶ Subset of O(f(n))
- \blacktriangleright $\omega(f(n))$ is the set of functions h(n) that
 - ightharpoonup roughly, grow strictly <u>faster</u> than f(n)
 - ► Formally: $h(n) \in \omega(f(n))$ if $\lim_{n\to\infty} \frac{h(n)}{f(n)} = \infty$
 - ▶ I.e. for every M > 0, there exists $n_M \in \mathbb{N}$ such that for all $n \ge n_M$ it holds that $\frac{h(n)}{f(n)} > M$.
 - ▶ Subset of $\Omega(f(n))$
 - $lackbox{} h(n) \in \omega(f(n))$ if and only if $f(n) \in o(h(n))$

Note:

- ▶ the textbook overloads "="
 - ▶ Textbook uses g(n) = O(f(n))
 - \blacktriangleright But we define O(f(n)) as a *set* of functions.
 - ► Both are by now correct
 - ▶ My advice: use $g(n) \in O(f(n))$.

Examples:

- ▶ Which of the following belongs to $O(n^3)$, $\Omega(n^3)$, $\Theta(n^3)$, $o(n^3)$, $\omega(n^3)$?
 - 1. $f_1(n) = 19n$
 - 2. $f_2(n) = 77n^2$
 - 3. $f_3(n) = 6n^3 + n^2 \log n$
 - 4. $f_4(n) = 11n^4$

Answers:

- ▶ $f_1, f_2, f_3 \in O(n^3)$ $f_1(n) \le 19n^3$, for all $n \ge 0$ — $c_0 = 19$, $n_0 = 0$ $f_2(n) \le 77n^3$, for all $n \ge 0$ — $c_0 = 77$, $n_0 = 0$ $f_3(n) < 6n^3 + n^2 \cdot n$, for all n > 1, since $\log n < n$
- ▶ $f_3, f_4 \in \Omega(n^3)$ $f_3(n) \geq 6n^3$, for all $n \geq 1$, since $n^2 \log n \geq 0$ $f_4(n) \geq 11n^3$, for all $n \geq 0$

Answers (Cont'd):

- $ightharpoonup f_3 \in \Theta(n^3)$ (why?)
- $f_1, f_2 \in o(n^3)$
- $f_1(n)$: $\lim_{n\to\infty} \frac{19n}{n^3} = \lim_{n\to\infty} \frac{19}{n^2} = 0$

$$f_2(n)$$
: $\lim_{n\to\infty} \frac{77n^2}{n^3} = \lim_{n\to\infty} \frac{77}{n} = 0$

$$f_2(n)$$
: $\lim_{n\to\infty} \frac{77n^2}{n^3} = \lim_{n\to\infty} \frac{77}{n} = 0$

$$f_3(n)$$
: $\lim_{n\to\infty} \frac{6n^3 + n^2 \log n}{n^3} = \lim_{n\to\infty} 6 + \frac{\log n}{n} = 6$

$$f_4(n)$$
: $\lim_{n\to\infty} \frac{11n^4}{n^3} = \lim_{n\to\infty} 11n = \infty$

$$f_4 \in \omega(n^3)$$

More big-O Notation Properties

- ▶ Reflexivity: For any function f it holds that $f(n) \in O(f(n))$ (the same goes for $\Omega(\cdot), \Theta(\cdot)$)
- ▶ Additivity: If $f(n),g(n) \in O(h(n))$ then $f(n)+g(n) \in O(h(n))$ (same goes for all other notations; the same holds for any constant number of functions)
- $\qquad \qquad \textbf{BUT doesn't hold for} \ \underbrace{f(n) + f(n) + \ldots + f(n)}_{g(n)}$
- ▶ Multiplicative: If $f_1(n) \in O(f_2(n))$ and $g_1(n) \in O(g_2(n))$ and all functions take *only positive values*, then $f_1(n) \cdot g_1(n) \in O(f_2 \cdot g_2)$ (same goes for all other notations)

(same goes for all other notations!)

BUT if $f(n) \in O(h(n))$ and $g(n) \in O(h(n))$ then f and g may not be

▶ Transitivity: if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$

▶ BUT if $f(n) \in O(h(n))$ and $g(n) \in O(h(n))$ then f and g may not be comparable...

Logarithm Review (CLRS : p56)

For any b > 1 and n > 0 we define

- ▶ Definition of $\log_b(n)$: $b^{\log_b n} = n$
- $ightharpoonup \log_b n$ as a function in n: increasing, one-to-one
- $ightharpoonup \ln n = \log_e n$ (natural logarithm)
- $ightharpoonup \lg n = \log_2 n$ (base 2, binary)
- $\log_b 1 = 0$
- For any x and any p, $\log_b x^p = p \log_b x$
- For any x and any y, $\log_b(xy) = \log_b x + \log_b y$
- For any x and any y, $x^{\log_b y} = y^{\log_b x}$
- For any x and any c > 1, $\log_b x = (\log_b c)(\log_c x)$
- For any b > 1 we have $\Theta(\log_b n) = \Theta(\log n)$
- $lackbox{(log }n)^k \in o(n^{\epsilon})$, for any fixed positives k and ϵ

Handy 'big O' tips:

- ▶ $h(n) \in O(f(n))$ if and only if $f(n) \in \Omega(h(n))$
- ▶ $h(n) \in o(f(n))$ if and only if $f(n) \in \omega(h(n))$
- limit rules: if $\lim_{n\to\infty}\frac{h(n)}{f(n)}$ exists then
 - ▶ limit = ∞ , then $h \in \Omega(f), \omega(f)$
 - ▶ limit = k for some $0 < k < \infty$, then $h \in \Theta(f)$
 - ▶ limit = 0, then $h \in O(f)$, o(f)
- ▶ L'Hôpital's rules: if $\lim_{n\to\infty} h(n) = \infty$, $\lim_{n\to\infty} f(n) = \infty$, and h'(n), f'(n) exist, then

$$\lim_{n \to \infty} \frac{h(n)}{f(n)} = \lim_{n \to \infty} \frac{h'(n)}{f'(n)}$$

- e.g., $\lim_{n\to\infty} \frac{\ln n}{n} = \lim_{n\to\infty} \frac{1}{n} = 0$
- Cannot always use L'Hôpital's rules. e.g.,
 - $h(n) = \begin{cases} 1, & \text{if } n \text{ even} \\ n^2, & \text{if } n \text{ odd} \end{cases}$
 - $ightharpoonup \lim_{n\to\infty} \frac{h(n)}{n^2}$ does NOT exist (but $\lim_{n\to\infty} \frac{h(n)}{n^3}$ does)
 - ▶ Still, we have $h(n) \in O(n^2)$, $h(n) \in \Omega(1)$, etc.

Handy 'big O' tips:

- ▶ If $f,g:\mathbb{N}\to\mathbb{R}$ are both positive functions then $f(n)\geq g(n)$ iff $2^{f(n)}>2^{g(n)}$.
 - ▶ Hence, because $\forall n, n < 2^n$ then $\forall n > 1$, $\log(n) < n$. So $\log(n) \in O(n)$.
- ▶ It is often useful to write $f(n) = 2^{\log(f(n))}$.
- ▶ Another trick: if $f(n) \ge g(n)$ for all n, then for any function h, $f(h(n)) \ge g(h(n))$
 - Since $n \ge \log(n)$, then $\sqrt{n} \ge \log(\sqrt{n}) = \frac{1}{2}\log(n)$ so $\log(n) \in O(\sqrt{n})$
 - ▶ Similarly, we can show that for any fixed $\epsilon > 0$, $\log(n) \in O(n^{\epsilon})$.
 - Moreover, for any fixed $\epsilon > 0$, we can show $\log(n) \in O(n^{\frac{\epsilon}{2}})$. Since $n^{\frac{\epsilon}{2}} \in o(n^{\epsilon})$ we get $\log(n) \in o(n^{\epsilon})$.
- And if h is a monotone non-decreasing function then we also have h(f(n)) > h(q(n)).
 - So since $\forall n, n \leq n^2$, then $\forall n, \sqrt{n} \leq n$, then $\forall n \geq 1, \sqrt{\log(n)} \leq \log(n)$, then $\forall n \geq 1, 2^{\sqrt{\log(n)}} \leq 2^{\log(n)} = n$ for every n, so $2^{\sqrt{\log(n)}} \in O(n)$.
- \triangleright $O(\cdot), \Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$ JUST useful asymptotic notations

Tower of Exponents

- $\blacktriangleright \ \, \mathsf{Define} \,\, f(n) = 2^{2^{\cdot \cdot \cdot \cdot^2}} \Big\}_{n \,\, \mathrm{times}}$
- ▶ So f(1) = 2, $f(2) = 2^2 = 4$, $f(3) = 2^{2^2} = 2^4 = 16$, $f(4) = 2^{16} = 65,536$, f(5) has more than 19,500 digits!
- ► REALLY fast growing function.

\log^* function (iteraive logarithem)

- ► The inverse of the tower of exponent.
- Alternatively: $\min \left\{ k : \underbrace{\lg \lg \lg \ldots \lg}_k(n) \leq 1 \right\}$: Intuitively, the smallest k s.t. applying log function k times yields a value 1 or under.

Another useful formula is Stirling's Approximation: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Example: The following functions are ordered in increasing order of growth (each is in big-Oh of next one). Those in the same group are in big-Theta of each other.

$$\{n^{1/\log n}, 1\}, \log^*(n), \{\log\log n, \ln\ln n\}, \sqrt{\log n}, \ln n, \log^2 n,$$

$$2^{\sqrt{\log n}}, (\sqrt{2})^{\log n}, 2^{\log n}, \{n\log n, \log(n!)\}, n^2, \{n^3, 8^{\log(n)}\}$$

$$(\log n)!, \{(\log n)^{\log n}, n^{\log\log n}\}, \left(\frac{3}{2}\right)^n,$$

$$2^n, n \cdot 2^n, e^n, n!, (n!)^2, (n^2)!, 2^{2^n}, 2^{2^{n-2}} \}_{n \text{ times}}$$