Rapport de Projet : Comparaison des Algorithmes d'Intelligence Artificielle

Objectif du projet :

Ce projet vise à analyser et comparer les performances de trois algorithmes d'intelligence artificielle (**Arbre de décision**, **Clustering K-Means**, **Réseau de neurones**) sur une base de données réelle afin d'évaluer leurs forces, leurs faiblesses, et leur adéquation à différentes tâches.

1. Description des données

Base de données utilisée : Bank Marketing Dataset

- Source: UCI Machine Learning Repository.
- Taille:
 - Nombre d'échantillons : 45,211.
 - Nombre de variables : 17 (16 features + 1 target).
- Objectif:
 - Supervisé : Prédire si un client souscrit à un dépôt à terme bancaire ("yes"/"no").
 - Non supervisé : Découvrir des structures cachées dans les données via le clustering.

2. Algorithmes implémentés

2.1. Arbre de décision

- Utilisé pour une tâche de classification supervisée.
- Critère : Gini impurity.
- Hyperparamètres optimisés : profondeur maximale.

2.2. Clustering K-Means

- Utilisé pour la segmentation des clients.
- Nombre de clusters : 2 (déterminé via la méthode Elbow).

2.3. Réseau de neurones (Perceptron multicouche)

- Utilisé pour une tâche de classification supervisée.
- Architecture : 2 couches cachées (100 neurones, 50 neurones), activation ReLU, optimiseur Adam.

3. Résultats

3.1. Résultats globaux

Critères	Arbre de décision	K-Means	Réseau de neurones
Tâche	Classification supervisée	Clustering non supervisé	Classification supervisée
Performance globale	90.0% accuracy (test)	Score de silhouette : 0.23	88.1% accuracy (test)
Interprétabilité	Très bonne	Moyenne	Faible
Complexité	Faible	Faible	Élevée

3.2. Comparaison des performances supervisées (Classification)

Critères	Arbre de décision	Réseau de neurones
Accuracy (test)	90.0%	88.1%
Recall (classe "yes")	35%	46%
F1-Score (classe "yes")	46%	48%
Complexité computationnelle	Faible	Élevée

3.3. Résultats non supervisés (K-Means)

Critères	Valeur
Score de silhouette	0.23 (faible)
Score de Davies-Bouldin	1.96 (moyen)
Clusters détectés	2 clusters
Cluster 0	Clients ayant peu d'activité passée.
Cluster 1	Clients plus actifs, avec plusieurs contacts.

4. Analyse des résultats

4.1. Arbre de décision

• Forces:

- Interprétabilité : La structure de l'arbre permet d'identifier les règles de décision.
- o Bonne précision globale (90% sur le test).

• Limites:

- o Mauvaise détection de la classe minoritaire "yes" (recall de 35%).
- Biais vers la classe majoritaire.

4.2. Clustering K-Means

• Forces:

- o Capacité à segmenter les clients sans supervision.
- Identification de 2 segments : Cluster 0 (clients peu actifs), Cluster 1 (clients plus actifs).

Limites :

- o Faible qualité des clusters (score de silhouette : 0.23).
- o Non adapté pour des données complexes.

4.3. Réseau de neurones

• Forces:

- Haute capacité d'apprentissage, notamment sur l'ensemble d'entraînement (99.5% accuracy).
- Meilleure performance pour la classe "yes" que l'arbre de décision.

• Limites:

- Surapprentissage évident (écart de performance entre entraînement et test).
- o Complexité computationnelle élevée.

5. Recommandations

5.1. Pour des tâches supervisées (classification) :

- L'arbre de décision est recommandé si l'interprétabilité est importante et que les performances légèrement inférieures sont acceptables.
- Le **réseau de neurones** est préférable si des performances maximales sont recherchées et que les ressources computationnelles ne sont pas un problème. Cependant, il nécessite une optimisation pour réduire le surapprentissage.

5.2. Pour des tâches non supervisées (segmentation) :

- Les résultats de **K-Means** indiquent une faible qualité des clusters. Il est recommandé de :
 - o Tester d'autres algorithmes comme DBSCAN ou Gaussian Mixture Models.
 - Effectuer une analyse approfondie des variables pour améliorer les clusters.

5.3. Améliorations possibles :

- Arbre de décision :
 - o Optimiser les hyperparamètres (profondeur, critère).
- Réseau de neurones :
 - Augmenter le nombre d'itérations pour améliorer la convergence.
 - o Ajuster le taux d'apprentissage.
- K-Means
 - Augmenter le nombre de clusters pour explorer plus de segments.
 - Réduire les variables bruitées ou redondantes pour améliorer la qualité des clusters.

6. Conclusion

Chaque algorithme a des forces spécifiques :

- Arbre de décision : Bonne précision et interprétabilité pour les tâches supervisées.
- **Réseau de neurones** : Haute performance brute, mais risque de surapprentissage.
- **K-Means** : Utile pour des tâches exploratoires, mais améliorable pour des résultats exploitables.

Ce projet montre que le choix de l'algorithme dépend du contexte et des besoins spécifiques (interprétabilité, performance brute, complexité).