Health and Economic Growth

Econ 30250 Bill Evans Spring 2020

Preston Curve

- Suggestive of a causal link greater economic success increases life expectancy
- Could also suggest health is key to development
 economies grow with a healthy population
- Belief by many that poor health is holding back the development of many countries – especially in Africa

Many interesting questions

- Role of rising incomes?
- What do those rising incomes purchase that allows mortality to fall?
- Can you "jump start" the change in mortality?
- Q we are going to consider is a little different does health detract from growth and can a healthier population improve economic returns?
 - Some suggestive evidence from previous section

Case study: Malaria

- Burden
 - 300-500 million cases per year
 - 1 -3 million fatalities, mostly children
 - 90% of malaria mortality in Africa
- · Centered on tropics
 - Transmission less likely when temp <18°C (64.4)
 - Parasite dies at 16°C (60.8)
- Has been successfully eradicated in the US

Jeff Sachs

 "...malaria not only takes an enormous human toll in Africa, but also contributes to an enormous economic loss and is a barrier to economic growth. Investments in malaria control thus offer an enormous return in lives saved and in economic benefits for Africa."

What we do in this lecture

- Isolate pathways through which health can impact growth. Provide:
 - Theoretical link
 - Empirical evidence for each of these links
 - Emphasis on historical data
- Some examples rapid changes in mortality does it impact health?

Bloom and Canning

4 pathways linking health to growth

- 1. Productivity
- 2. Education
- 3. Investments in Physical Capita
- 4. Demographic dividend

10

Health and productivity

- Many good papers demonstrate a link between heath shocks and productivity later in life
- Much from developing country
- One quick example from the US -- 1918 Flu epidemic

1918 Flu Epidemic

- Spanish flu
- World wide epidemic
 - Killed 30-50 million, 675K in the US
- Those particularly vulnerable
 - Children
 - Compromised immune system
 - Pregnant women

Bloom and Canning

4 pathways linking health to growth

- 1. Productivity
- 2. Education
- 3. Investments in Physical Capital
- 4. Demographic dividend

Income C D

\$0

A Invest of PV(A+B)<PV(C)
Invest of PV(A+B)<PV(C+D)

18 22 55 65

Evidence: Rise of Crack Cocaine

- Crack enters in 1982 on coasts spreads to the center of the country
- Devastating to young black males
 - $-2x\uparrow$ murder rate
 - $-4x \uparrow$ in incarceration rates
- Human capital models should see \(\) investment
 - − ↓ life expectancy
 - – ↓ job prospects (due to prison records)
 - ↑ "outside" option

22

When Crack Arrives

- 1982: NY, LA, Miami
- 1983: Atlanta, Riverside, SF
- 1984: Seattle, Tampa, San Jose, Ft. Lauderdale
- 1985: Detroit, Houston, KC, Orange Co., Philly, DC
- 1986: Boston, Chicago, Cleveland, Indy, Memphis, MSP, New Orleans, Newark, Sacramento
- 1987: Dallas, Portland, Milwaukee, Hartford, Newark, Providence, Greesnboro/WS

Are there other situations where there are rapid changes in mortality that one can use in the same manor?

Some facts

- Drug deaths
 - **-** 1983: 6,445
 - **2017: 72,000**
 - M&T Bank Stadium: 71,008
- Peak deaths/year for other epidemics
 - HIV/AIDS: 41,669 in 1995
 - Motor vehicle fatalities: 51,903 in 1978
 - Murder: 24,530 in 1993

31

Some facts

- 704,000 drug poisoning deaths between 1999 2017
 - Military deaths Spanish American War through now -- 702,000
- 400,000 opioid deaths since 1999
 - -# of US deaths in WW II

Table 1. All-Cause Mortality for White Non-Hispanics with High School or Less and All Black Non-Hispanics by Five-Year Age Cohort, 1999 and 2015

	1999		2015			
Age	White non-Hispanics, high school or less	Blacks, all	White non-Hispanics, high school or less	Blacks, all		
25-29	145.7	169.8	266.2	154.6		
30-34	176.8	212.0	335.5	185.5		
35-39	228.8	301.4	362.8	233.6		
40-44	332.2	457.4	471.4	307.2		
45-49	491.2	681.6	620.1	446.6		
50-54	722.0	945.4	927.4	703.1		
55-59	1,087.6	1,422.8	1,328.3	1,078.9		
60-64	1,558.4	1,998.3	1,784.6	1,571.1		

Sources: National Vital Statistics System; authors' calculations.

White 25-29: 82% increase Black 25-29: 8% decline

White 30-34: 90% increase Black 30-34: 12.5% decline

33

Bloom and Canning

4 pathways linking health to growth

- 1. Productivity
- 2. Education
- 3. Investments in Physical Capital
- 4. Demographic dividend

Bloom and Canning

4 pathways linking health to growth

- 1. Productivity
- 2. Education
- 3. Investments in Physical Capital
- 4. Demographic dividend

Alternate hypothesis: Black Plague

- Plague strikes Europe 1348-1350
- Carried by flees living on black rats
- Shipping routes spread the disease quickly
- Kills 75 200 million
- Reduces pre-plague population in England by 50%

41

Table I. Population of selected European countries, 1300–1800 (in thousands)

	1300	1400	1500	1600	1700	1800
England and Wales	5,750	3,000	3,500	4,450	5,450	9,250
Netherlands	800	600	950	1,500	1,950	2, 100
Belgium	1,250	1,000	1,400	1,600	2,000	2,900
Italy	12,500	8,000	9,000	13,300	13,500	18, 100
Spain	5,500	4,500	5,000	6,800	7,400	11,000
Total Europe	94, 200	67,950	82,950	107,350	114,950	192,230

Source: Paolo Malanima (unpublished manuscript).

Consequences

- Europe in 1300s was mired in stagnant wages and high population
- Massive decline in population increased value of labor
- Jump-started income growth in Europe
- Young: "Gift of Dying." Argues the same for Africa and AIDS

45

Acemoglu and Johnson (JPE)

- International epidemiological transition
 - Began in 1940
 - Large improvements world wide in life expectancy
- Three factors
 - Drugs (mass production of penicillin, antibiotics), vaccines (polio, measles, etc.), DDT
 - WHC
 - Change in universal values encouraged spread of changes to poor countries

- IDT was "technology" based
- Therefore it impacted poor countries the most (impacted those most in need)
- Exogenous change in mortality
- Since it impacted poor countries the most, we should see a greater change in GDP for this group if health has an impact on the economy

Explaining results

- Drop in mortality increases population
- Should increase output
- BUT -- because capital is fixed
 - Capital used more intensely
 - Productivity declines, reduces wages
- Growth in output from more people is not enough to compensate for loss in productivity per worker
- Black plague argument

	WHOLE WORLD	Base S	Sample	Low- and Middle- Income Countries Only	Base Sample	LOW- AND MIDDLE- INCOME COUNTRIES ONLY
	(1)	(2)	(3)	(4)	(5)	(6)
		A. De	ependent Var	riable: Log Pop	oulation	
	Just 1960 and 2000	Just 1960 and 2000	Just 1940 and 1980	Just 1940 and 1980	Just 1940 and 2000	Just 1940 and 2000
Log life expectancy	1.60 (.30)	1.75 (.40)	1.62 (.19)	1.86 (.26)	2.01 (.22)	2.25 (.32)
Number of countries	120	59	47	36	47	36

			STIMATES				
	WHOLE WORLD: Just 1960 and 2000 (1)	Base Sample		LOW- AND MIDDLE- INCOME COUNTRIES ONLY:	BASE SAMPLE:	LOW- AND MIDDLE- INCOME COUNTRIES ONLY:	
		Just 1960 and 2000 (2)	Just 1940 and 1980 (3)	Just 1940 and 1980 (4)	Just 1940 and 2000 (5)	Just 1940 and 2000 (6)	
	A. Dependent Variable: Log GDP						
Log life expectancy Number of countries	1.17 (.56) 120	1.55 (.35) 59	.78 (.33) 47	.65 (.42) 36	.85 (.28) 47	.43 (.38) 36	
Number of countries	120			ole: Log GDP 1		50	
Log life expectancy	42 (.58)	19 (.54)	81 (.26)	-1.17 (.38)	-1.14 (.27)	-1.79 (.41)	
Number of countries	120	59	47	36	47	36	

Cutler et al., Malaria Eradication in India

- Will reductions in Malaria necessarily lead to higher education?
- What are definitive predictions about outcomes?
 - Income/consumption
 - education?

53

Malaria Eradication in India

- National Malaria Control Program launched April of 1953
- · Heavy use of DDT
 - Effective, nontoxic for humans, cheap
 - Eradicated malaria in Taiwan, Caribbean, Balkans, parts of North Africa, north Australia, large parts of South Pacific
- Prior to program, 75 million annual cases in India and 800K annual deaths (~350 million people)

54

- Two annual rounds of spraying
 - 1/3 of country initially part of program
 - Program reformulated in 1958
 - Whole country part of program in 1960-61
- Strategy Difference-in-Difference
 - Compare outcomes of groups some born before and after eradication program
 - Variation in timing of program across regions
 - Some areas had higher pre-treatment malaria rates so allow treatment to vary

Model

 $y_{icd} = x_{icd}\gamma + POST_cxMalaria_d\beta + \delta_d + \alpha_c + \varepsilon_{icd}$

i = person, c = cohort, d = district

y = outcome

x = cov ariates

 $POST_c = 1$ if cohort was born after eradication program $Malaria_d = malaria$ incidence rate prior to program

 $\alpha_d = district \ effects$

 $\delta_c = cohort \ effects$

	Literacy (ages 15–75)				Primary school (ages 15–75)			
Dependent variable:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
A2. Districts classified by aver	age malaria cate	gory						
$Post \times malaria \ index$	-0.017 (0.006)***	0.004 (0.005)	-0.001 (0.006)	0.008 (0.011)	-0.016 (0.007)**	0.002 (0.006)	-0.005 (0.008)	0.009
Observations	111,139	111,139	111,139	111,139	111,139	111,139	111,139	111,139
State × post fixed effects		X				X		
Region × post fixed effects			X	X			X	X
District-specific linear trends				X				X
B2. Districts classified by avera	ge malaria categ	gory						
Post × malaria index	0.005 (0.006)	0.011 (0.006)*	-0.006 (0.006)	0.008 (0.010)	-0.004 (0.007)	0.005 (0.006)	-0.012 (0.008)	0.002 (0.007)
Observations	107,472	107,472	107,472	107,472	107,472	107,472	107,472	107,472
State × post fixed effects		X				X		
Region × post fixed effects			X	X			X	X
District-specific linear trends				X				X

	Log per capita household expenditure (ages 20-60)						
Dependent variable:	(1)	(2)	(3)	(4)			
A2. Districts classified by average ma	laria category						
Post × malaria index	0.008 (0.004)**	0.011 (0.005)**	0.019 (0.006)***	0.008 (0.011)			
Observations	75,230	75,230	75,230	75,230			
State × post fixed effects Region×post fixed effects District-specific linear trends		X	X	X X			
B2. Districts classified by average mal	aria category						
Post × malaria index	-0.003 (0.004)	-0.003 (0.004)	0.004 (0.005)	0.011 (0.014)			
Observations	75,212	75,212	75,212	75,212			
State × post fixed effects Region × post fixed effects District-specific linear trends		X	X	X X			