69. Алгебраические и трансцендентные числа. Существование трансцендентных чисел (из соображения мощности). Теорема Лиувилля (б/д). Конструкция трансцендентного числа с помощью цепной дроби и теоремы Лиувилля. Сводка результатов о трансцендентности: $e, \pi, e+$ $\pi, \pi + e^{\pi}, \alpha^{\beta}$ (теорема Гельфонда), вывод про e^{π} из теоремы Гельфонда.

Определение. α - алгебраическое число, если существует многочлен с целыми коэффициентами, корнем которого служит α .

Определение. Степень алгебраического числа - это минимальная степень уравнения, корнем которого является это число.

А - множество алгебраических чисел.

Заметим, что А - счётное множество (доказывалось на матлогике), но С континуально. Отсюда следует, что есть не алгебраические числа.

Определение. $\alpha \in \mathbb{C}$ - *трансцендентное*, если оно не является алгебраическим.

Теорема.(Лиувилль) Пусть α - алгебраическое степени d. Тогда $\exists c = c(\alpha)$, что неравенство $|\alpha - \frac{p}{a}| \leq \frac{c}{a^d}$ имеет лишь конечное число решений в $\frac{p}{a}$. (Если уменьшить c, то вообще не будет решений)

Конструкция трансцендентного числа с помощью цепной дроби и теоремы Лиувилля: **Теорема.** $\forall \psi(q) \to +\infty \ \exists \alpha$: неравенство $|\alpha - \frac{p}{q}| \le \frac{1}{q\psi(q)}$ имеет б.м. решений в $\frac{p}{q}$.

Как пример можно взять $\psi(q)=e^q$. Из предыдущей теоремы возьмём число α . Предположим α - алгебраическое число, тогда $\exists d \in \mathbb{N} : |\alpha - \frac{p}{q}| > \frac{c}{q^d}$ выполняется для $\forall p,q$. Что противоречит предыдущей теореме (неравенство $|\alpha - \frac{p}{q}| \leq \frac{1}{q\psi(q)}$ имеет б.м. решений в $\frac{p}{q}$). То есть мы совершенно явно, с помощью аппарата цепных дробей, построили транс-

цендентное число α .

Сведения о некоторых числах: $e, \pi, \pi + e^{\pi}$ являются трансцендентными. Про $e + \pi$ на данный момент ничего неизвестно.

Теорема.(Гельфонд) Пусть α, β алгебраические, при этом β иррациональное, а $\alpha \notin$ $\{0,1\}$. Тогда α^{β} трансцендентно.

Утверждение. e^{π} трансцендентно.

\Delta Предположим противное: e^{π} - алгебраическое. Заметим, что i - алгебраическое. Пусть $\alpha=e^{\pi}, \beta=i=\sqrt{-1} \Rightarrow \alpha^{\beta}=e^{i\pi}$, но $\alpha^{\beta}=e^{i\pi}=-1 \Rightarrow \alpha^{\beta}$ - алгебраическое. Противоречие с теоремой Гельфонда.