Minimització d'autòmats i operacions sobre els **Henguatges** regulars

Minimització d'autòmats i operacions sobre els llenguatges regulars

U.D. Computació

DSIC - UPV

Index

Minimització d'autòmats i operacions sobre els llenguatges regulars

Computaci

Operacions d tancament

tancament

Unió

Diferència

Revers

Concatenac

Ciausura

Quocient d'un llenguatge per un

Minimitzaci

Algorisme

l'AFDs Algorisme

- Operacions de tancament
- Minimització d'AFDs

Operacions de tancament

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. Iomputacio

Operacions de tancament

Intersecció Unió

Complementació Diferència Revers

Concatenació Clausura

Homomorfisme Inv Quocient d'un llenguatge per una

Minimitzac d'AFDs

Algorisme Exemple 1 Un conjunt C és tancat respecte d'una operació · si i només si per a qualsevol parell d'elements $x, y \in C$, $x \cdot y \in C$.

Exemple:

Siga $C = \{L \subseteq \Sigma^* \mid L \text{ és finit }\}$, aleshores la unió i la intersecció són operacions de tancament per a C, mentre que l'operació complementari no ho és.

Operacions de tancament

Minimització d'autòmats i operacions sobre els llenguatges regulars

Operacions de

Per a estudiar les operacions de tancament, treballarem sobre els autòmats següents:

AFD A_1 no complet, $L(A_1) = \{(ab)^n \mid n \ge 0\}.$

AFD A_2 complet, $L(A_2) = \{(ab)^n \mid n \ge 0\}.$

Operacions de tancament

Minimització d'autòmats i operacions sobre els llenguatges regulars

Computació

Operacions de tancament

tancamer

Complement

Diferència

ricvers

Homomorfisme Inv

Minimitzaci

Minimitzacio

a AFDS

emple 1

Els llenguatges regulars són tancats respecte d'intersecció.

Siguen $L_1, L_2 \in \mathcal{L}_3$, aleshores existeixen dos AFDs A_1, A_2 tals que $L_1 = L(A_1), L_2 = L(A_2)$, on $A_i = (Q_i, \Sigma, \delta_i, q_i, F_i), i = 1, 2$. Construïm $A' = (Q, \Sigma, \delta, q_0, F)$ on:

- $Q = Q_1 \times Q_2$
- $q_0 = [q_1, q_2]$
- $\blacksquare F = F_1 \times F_2$
- $\delta([p_1, p_2], a) = [\delta_1(p_1, a), \delta_2(p_2, a)],$ $p_1 \in Q_1, \quad p_2 \in Q_2, \quad a \in \Sigma$

$$L(A') = L_1 \cap L_2$$

Intersecció

Minimització d'autòmats i operacions sobre els **Henguatges** regulars

AFD per a $L(A_1) \cap L(A_3)$.

Els llenguatges regulars són tancats respect d'unió.

Siguen $L_1, L_2 \in \mathcal{L}_3$, aleshores existeixen dos AFDs complets A_1, A_2 tals que $L_1 = L(A_1), L_2 = L(A_2)$, on $A_i = (Q_i, \Sigma, \delta_i, q_i, F_i), i = 1, 2.$ Construïm $A' = (Q, \Sigma, \delta, q_0, F)$ on:

- $q_0 = [q_1, q_2]$
- $\blacksquare F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- $\delta([p_1, p_2], a) = [\delta_1(p_1, a), \delta_2(p_2, a)],$ $p_1 \in Q_1$, $p_2 \in Q_2$, $a \in \Sigma$

$$L(A')=L_1\cup L_2$$

Unió

Minimització d'autòmats i operacions sobre els **Henguatges** regulars

AFD per a $L(A_2) \cup L(A_3)$.

Complementació i Diferència

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. Computaci

Operacions de tancament

Interse

Complementaci Diferència

Revers

Clausura
Homomorfisme Inv

Minimització

Algorisme
Exemple 1

Els llenguatges regulars són tancats respecte de complementació.

Siga $L \in \mathcal{L}_3$, aleshores existeix un AFD complet A tal que L = L(A), $A = (Q, \Sigma, \delta, q_0, F)$. Definim l'autòmat $A' = (Q, \Sigma, \delta, q_0, Q - F)$.

$$L(A') = \overline{L}$$

Els llenguatges regulars són tancats respecte de diferència.

Siguen $L_1, L_2 \in \mathcal{L}_3$, noteu que L_1 - $L_2 = L_1 \cap \overline{L_2}$.

Complementació

Minimització d'autòmats i operacions sobre els **Henguatges** regulars

AFD per a $\overline{L(A_2)}$.

Exemple 1

Els llenguatges regulars són tancats respecte de revers.

Siga $L \in \mathcal{L}_3$, aleshores existeix un autòmat (AF λ , en el cas més general) $A = (Q, \Sigma, \delta, q_0, \{q_f\})$ tal que L(A) = L.

Si la talla del conjunt d'estats finals de A és major que 1, es pot modificar l'autòmat per a que tinga un únic estat final.

Construïm $A' = (Q, \Sigma, \delta', q_f, \{q_0\})$ on:

 $q \in \delta'(p, a) \leftrightarrow p \in \delta(q, a), \quad a \in (\Sigma \cup \{\lambda\}), \quad p, q \in Q.$

$$L(A') = L^r$$

Revers

Minimització d'autòmats i operacions sobre els **Henguatges** regulars

Autòmat per a $(\overline{L(A_2)})^r$.

Concatenació

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. Computaci

Operacions de tancament

Intersecció

Unió

Complementacio Diferència Revers

Concatenaci

Homomorfisme Inv Quocient d'un llenguatge per una

Minimització d'AFDs

Algorisme
Exemple 1
Exemple 2

Els llenguatges regulars són tancats respecte de concatenació.

Siguen $L_1, L_2 \in \mathcal{L}_3$, aleshores existeixen dos autòmats A_1, A_2 tals que $L_1 = L(A_1), L_2 = L(A_2)$, on $A_i = (Q_i, \Sigma, \delta_i, q_i, F_i), (i = 1, 2)$ i tals que $Q_1 \cap Q_2 = \emptyset$. Construïm $A' = (Q, \Sigma, \delta', q_1, F_2)$ on:

$$extbf{Q} = Q_1 \cup Q_2$$

$$\delta' = \delta_1 \cup \delta_2 \cup \delta''$$
 on $q_2 \in \delta''(p, \lambda)$, $\forall p \in F_1$
 $L(A') = L_1 \cdot L_2$

Concatenació

Minimització d'autòmats i operacions sobre els **Henguatges** regulars

Autòmat per a $L(A_1) \cdot L(A_3)$.

Clausura

Minimització d'autòmats i operacions sobre els llenguatges regulars

Els llenguatges regulars són tancats respecte de clausura.

Siga $L \in \mathcal{L}_3$, aleshores existeix un autòmat A tal que L = L(A), on $A = (Q, \Sigma, \delta, q_0, F)$.

Construïm $A' = (Q', \Sigma, \delta', q_n, F')$ on:

$$Q' = Q \cup \{q_n\}, \ q_n \notin Q$$

$$\blacksquare F' = F \cup \{q_n\}$$

$$\delta'(p,a) = \delta(p,a), \ \forall p \in Q, \ \forall a \in \Sigma$$

$$q_n \in \delta'(p,\lambda), \forall p \in F$$

$$\delta'(q_n,\lambda) = \{q_0\}$$

$$L(A')=L^*$$

Clausura

Minimització d'autòmats i operacions sobre els **Henguatges** regulars

Autòmat per a $(\overline{L(A_2)})^*$.

Homomorfisme Invers

Minimització d'autòmats i operacions sobre els llenguatges regulars

Els llenguatges regulars són tancats respecte d'homomorfisme invers.

Siga $h: \Sigma \to \Delta^*$ un homomorfisme i $L \subseteq \Delta^*, L \in \mathcal{L}_3$.

Aleshores existeix un AFD A tal que L = L(A),

$$A = (Q, \Delta, \delta, q_0, F).$$

Construïm $A' = (Q, \Sigma, \delta', q_0, F)$ on:

$$\delta'(p, a) = \delta(p, h(a)), \ \forall p \in Q, \ \forall a \in \Sigma$$

$$L(A') = h^{-1}(L)$$

Homomorfisme Invers

Homomorfisme Invers

Minimització d'autòmats i operacions sobre els llenguatges regulars

Siga $h: \{0,1\} \rightarrow \{a,b\}^*$ un homomorfisme tal que h(0) = ab, h(1) = ba. L'autòmat per a $h^{-1}(\overline{L(A_2)})$ és:

Quocient (per la dreta) d'un llenguatge per una cadena

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. Computacio

Operacions de tancament

tancament Intersecció

Intersecció

Complementac Diferència

Revers

Concatenació Clausura

Homomorfisme Inv

Minimitzaci

d'AFDs

Exemple 1

Els llenguatges regulars són tancats respecte del quocient per una cadena.

Siga $u \in \Sigma^*$ i $L \in \mathcal{L}_3$, aleshores existeix un AFD complet A tal que L = L(A) i on $A = (Q, \Sigma, \delta, q_0, F)$. Construïm $A' = (Q, \Sigma, \delta, \delta(q_0, u), F)$ on:

$$L(A') = u^{-1}L$$

Quocient (per la dreta) d'un llenguatge per una cadena

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. Computació

Operacions de

tancament

Unió

Complementaci Diferència

Revers

Concatenac

Homomorfisme

Quocient d'un llenguatge per ur

Minimització

Algorisme

emple 1

 $\Sigma = \{a, b\}, u = aba$. Autòmat per a $u^{-1}L(A_2)$.

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. omputaci

Operacions de tancament

tancament Intersecció

Unió

Diferència Revers

Concatenació Clausura

Homomorfisme In Quocient d'un llenguatge per una cadena

Minimització d'AFDs

Algorisme
Exemple 1

Un AFD $A = (Q, \Sigma, \delta, q_0, F)$ és accessible si per a tot $q \in Q$ existeix una cadena $x \in \Sigma^*$ tal que $\delta(q_0, x) = q$

Relació d'indistingibilitat en Q

Siga $A = (Q, \Sigma, \delta, q_0, F)$ un AFD complet i accessible. Definim la relació d'indistingibilitat \sim en Q com:

$$\forall q, q' \in Q : (q \sim q' \leftrightarrow \forall x \in \Sigma^* (\delta(q, x) \in F \leftrightarrow \delta(q', x) \in F))$$

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. omputaci

Operacions de tancament

tancament Intersecció

Unió Complementa Diferència

Diferència Revers Concatenació

Clausura Homomorfisme Inve Quocient d'un Ilenguatge per una cadena

Minimització d'AFDs

Algorisme Exemple 1 Exemple 2

Autòmat quocient

Siga $A = (Q, \Sigma, \delta, q_0, F)$ un AFD complet i accessible y siga la relació d'indistingibilitat \sim .

Es defineix l'autòmat quocient $A/\sim=(Q',\Sigma,\delta',q_0',F')$ com:

$$\blacksquare q_0'=[q_0]_{\sim}$$

$$\blacksquare F' = \{[q] \mid q \in F\}$$

$$\delta'([q]_{\sim},a) = [\delta(q,a)]_{\sim}$$

Siga $A = (Q, \Sigma, \delta, q_0, F)$ un AFD complet i accessible i siga la relació d'indistingibilitat \sim .

L'autòmat A/\sim és el AFD mínim que accepta L(A).

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. Computacio

Operacions de tancament

tancament

Unió

Diferència

Revers

Concatenaci

Homomorfisme In Quocient d'un llenguatge per una

Minimització

Algorisme
Exemple 1

■ Siga $A = (Q, \Sigma, \delta, q_0, F)$ un AFD complet i accessible i siga un enter $k \ge 0$.

Es defineix la relació de k-indistingibilitat \sim_k com:

$$\forall q, q' \in Q : (q \sim_k q' \leftrightarrow \forall x \in \Sigma^*, |x| \le k, (\delta(q, x) \in F \leftrightarrow \delta(q', x) \in F))$$

- Es compleix que:
 - \blacksquare per a qualsevol $k \geq 0, p \sim_{k+1} q \rightarrow p \sim_k q$
 - \blacksquare per a qualsevol $k \geq 0, p \sim q \rightarrow p \sim_k q$
 - \blacksquare per a qualsevol $k \ge 0$,

$$p \sim_{k+1} q \leftrightarrow p \sim_k q \land \forall a \in \Sigma, \delta(p, a) \sim_k \delta(q, a)$$

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. Iomputacio

Operacions de tancament

Intersecció

Unió

Complementacion Diferència

Revers Concatenació

Homomorfisme In

Minimització

Algorisme
Exemple 1

Algorisme de minimització d'AFD:

- 1. $\pi_0 = \{Q F, F\}$
- 2. Obtenir π_{k+1} a partir de π_k de la manera següent: $B(p, \pi_{k+1}) == B(q, \pi_{k+1})$ sii
 - $B(p,\pi_k) == B(q,\pi_k)$
 - \blacksquare i $\forall a \in \Sigma$, $B(\delta(p, a), \pi_k) == B(\delta(q, a), \pi_k)$
- 3. Si π_{k+1} és distinta de π_k anar a 2

Minimització d'autòmats i operacions sobre els **Henguatges** regulars

Exemple de minimització 1.

			a	Ь
•	B_0	q_0	B_0	B_1
		q_1	B_0	B_0
π_0 :		q ₃	B_1	B_0
		q_5	B_1	B_0
•	B_1	q_2	B_0	B_1
		q_4	B_0	B_0

			a	b
•	B_0	q_0	B_1	<i>B</i> ₃
·	<i>B</i> 1	q_1	B_0	B_2
π_1 :	B2	q 3	<i>B</i> ₃	B ₂ B ₁
		q_5	B_4	B_1
	B_3	q_2	B_2	B_4
	B_4	q_4	B_2	B_0

			a	b
π_2 :	B_0	q_0	B_1	B_4
	<i>B</i> 1	q_1	B_0	B_2
	B2	q_3	B_4	B_3
	В3	q_5	B_5	B_1
	B_4	q_2	B_2	B_5
	B_5	q_4	B_3	B_0

Minimització d'autòmats i operacions sobre els llenguatges regulars

> U.D. Computacio

Operacions de tancament

tancament

Interse

Complementad Diferència

Revers

Clausura

Homomorfisme Quocient d'un

Quocient d'un llenguatge per u cadena

Minimització

Algorisme Exemple 1

emple 1

 $\pi_3 = \pi_2$

Minimització d'autòmats i operacions sobre els **Henguatges** regulars

Exemple de minimització 2.

			а	b
•	B_0	q_1	B_1	B_0
		q 3	B_1	B_0
π_0 :		q_5	B_1	B_0
•	B_1	q_0	B_0	B_1
		q_2	B_0	B_1
		q_4	B_0	B_1

Minimització d'autòmats i operacions sobre els llenguatges regulars

Computaci

Operacions d

tancament

Unió

Diferència

Revers

Concatena

Ciausura

Quocient d'un

Minimitzacio

Algorisme

Exemple

 $\pi_1 = \pi_0$