Isomérie Stéréo-isomérie

Formule brute : indique le rapport entre les différents atomes C_2H_4OCI

Formule de constitution ou formule plane : indique l'enchaînement des liaisons qui relient les atomes entre eux

$$CI \xrightarrow{H} C \xrightarrow{H} CI$$
 ou $CI \xrightarrow{C} C \xrightarrow{H} CI$

Représentation simplifiée

Représentation de Newman :

Représentation de Cram:

Représentation cavalière :

Représentation de Fisher :

- 6

Isomères : composés ayant même formule brute mais formule développée différente

- Isomères de constitution
- Isomères de position
- Tautomères

1) Isomères de constitution

Même formule brute Groupement fonctionnel différent Propriétés physiques et chimiques différentes

$$C_4H_8O_2$$

CH₃-CH₂-COOH acide

CH₂OH-CH=CH-CH₂OH di-alcool

CH₃-CHOH-CH₂-CHO aldéhyde - alcool

2) Isomères de position

Même formule brute
Même groupement fonctionnel
Propriétés chimiques voisines
Propriétés physiques différentes

CH₃-CH₂-CH₂OH Alcool 1aire

CH₃-CH₂OH-CH₃ Alcool 2aire

8

3) Tautomères

2 isomères de constitution en équilibre I 'un avec I 'autre

Composés qui ont même constitution moléculaire mais qui différent par la disposition de certains de leurs atomes dans l'espace.

- Isomères de conformation
- Isomères de configuration

1) Conformères

- Pour une molécule donnée, les conformères se différencient par des rotations autour des liaisons σ
- Barrière énergétique faible
- Conformation préférentielle est celle dans laquelle:
- les forces de répulsion entre les atomes sont les plus faibles
 - les tensions angulaires les plus réduites

1) Conformères

Composés linéaires

Rotation autour d'une liaison simple n'est pas complètement libre. Existence de barrière d'énergie

Cas de l'éthane : 2 conformations extrêmes

Cas de l'éthane:

Cas de l'éthane:

Cas du butane

Composés cycliques

Cyclopropane $\alpha = 60^{\circ}$

Cyclobutane $\alpha = 90^{\circ}$

Cyclopentane $\alpha = 108^{\circ}$

Cyclohexane $\alpha = 120^{\circ}$

Cyclohexane

Forme chaise

Forme bateau

2) Isomères optiques

- mêmes propriétés physiques
- mêmes propriétés chimiques
- pouvoir rotatoire différent

Propriété due à la chiralité des molécules

- Une molécule est chirale lorsque son image dans un miroir ne lui est pas superposable
- Une molécule chirale ne possède aucun élément de symétrie, ni centre, ni axe, ni plan de symétrie
- Une molécule possédant un carbone asymétrique (carbone sp³ avec 4 substituants différents) est chirale

Molécule chirale

Ces deux configurations sont des énantiomères

Une molécule chirale :

- peut exister sous deux formes, images l'une de l'autre par rapport à un plan, appelées énantiomères
- est « active optiquement », elle dévie la lumière polarisée

Deux énantiomères ont toutes leurs propriétés physiques et chimiques identiques à l'exception de leur pouvoir rotatoire

Pouvoir rotatoire : mesuré avec un polarimètre

Pouvoir rotatoire : Loi de BIOT

$$\left[\alpha\right]_{20}^{D} = \frac{\alpha}{1.C}$$

[α] = pouvoir rotatoire spécifique (°.cm³.dm⁻¹.g⁻¹)

 α = pouvoir rotatoire ou angle de déviation de la lumière (°)

I = longueur de la cellule contenant la substance (dm)

C = concentration de la substance (g/cm³)

$$\alpha = 1 \Sigma [\alpha]_{i}C_{i}$$

Pouvoir rotatoire:

Un énantiomère qui dévie le plan de polarisation de la lumière vers la droite est dit dextrogyre précédé du signe + ou d

Un énantiomère qui dévie le plan de polarisation de la lumière vers la gauche est dit lévogyre et sera précédé du signe - ou ℓ

Mélange racémique : mélange constitué de 50 % de chaque énantiomère $\Rightarrow \alpha = 0$

Pénicilline G

Isomères inactifs de la pénicilline G

bêta-bloquant

HO

Configuration absolue : règle de Cahn, Ingold et Prelog

- 1 Classement des substituants par ordre de priorité décroissante en fonction de leur numéro atomique
- 2 Un atome est prioritaire sur un autre atome si son numéro atomique est plus élevé.
- 3 Lorsque deux atomes ont le même numéro atomique on considère les atomes suivants jusqu'à atteindre une différence
- 4 Les liaisons doubles ou triples sont considérées comme si chaque liaison était indépendante.
- 5 On regarde la molécule dans I 'axe C-substituant le moins prioritaire et on examine les 3 autres substituants par ordre de priorité décroissante

Configuration absolue : règle de Cahn, Ingold et Prelog

- Si les 3 substituants se présentent dans le sens des aiguilles d'une montre, la configuration est dite R (Rectus)
- Si les 3 substituants se présentent en inverse sens des aiguilles d'une montre, la configuration est dite S (Sinister)

il n'y a aucune relation entre la configuration absolue et le pouvoir rotatoire.

$$\begin{array}{c}
 & HO (1) \\
 & \downarrow (2) \\
 & HOOC \\
 & H_3C (3)
\end{array}$$
(4)

Configuration S

3) Composés avec plusieurs Carbones Chiraux

HOH₂C-C*HOH-C*HOH-CHO 2,3,4hydroxybutanal

n C* ⇒ 2 n stéréo-isomères

3) Composés avec plusieurs Carbones Chiraux

3) Composés avec plusieurs Carbones Chiraux

Les stéréoisomères de molécules comportant plusieurs C* ne sont pas obligatoirement chiraux (existence parfois d'un plan de symétrie)

4) Molécules à doubles liaisons (C sp²)

A prioritaire par rapport à B

D prioritaire par rapport à E

Isomère Z (cis)

Isomère E (trans)

4) Molécules à deux doubles liaisons avec C sp

