데이터베이스시스템

02. 관계형 데이터베이스

나홍석 교수

2 LESSON

관계형 데이터베이스

학습 목표

- 1 DBMS의 구조와 역할을 이해하고, 제공하는 기능을 설명할 수 있다.
- 2 관계형 데이터베이스의 구조를 이해하고 특징을 설명할 수 있다.

학습 내용

- 1 데이터베이스 관리 시스템(DBMS)
- 2 관계형 데이터베이스 모델

<u>Chapter 01</u> 데이터베이스 관리 시스템(DBMS)

DBMS(Database Management System)

A database management system (DBMS) is a software package with computer programs that control the creation, maintenance, and use of a database.

It allows organizations to conveniently develop databases for various applications by database administrators(DBAs) and other specialists.

- wikipedia -

데이터베이스 관리 시스템 개요

목적 #1

➡ 응용프로그램과 데이터베이스의 중재자

데이터베이스 관리 시스템 개요

목적 #2

▲ 파일 시스템에서 야기된 데이터의 종속성과 중복성 문제

데이터 종속성 (data dependency)

데이터 중복성 (data redundancy)

- 응용 프로그램과 데이터 간의 상호 의존 관계
- 데이터가 저장되어 있는 파일의 구조가 바뀜에 따라 응용 프로그램이 바뀌어야 한다면 데이터 종속성이 있다고 말함
- 여러 응용 프로그램들이 별도로 데이터 파일을 관리함으로 인해서
 - 한 시스템 내에서 같은 데이터가 중복되게 저장 관리되는 것
- 데이터의 불일치가 일어나 일관성이 없어짐

1 데이터베이스 관리 시스템 개요

데이터베이스 관리 시스템 역할

- ☑ 데이터 공유
- ☑ 데이터 무결성 강화
- ☑ 데이터 표준화
- ☑ 보안 강화
- ☑ 프로그램 수정과 유지보수용이
- ☑ 효율적 데이터 관리
- ☑ 성능 향상

2 DBMS의 필수 기능

정의(definition) 기능

☑ 데이터의 논리적 구조, 물리적 구조, 제약조건 등을 정의

- 모든 응용프로그램들이 요구하는 데이터 구조를 지원할 수 있게끔 데이터베이스의 논리적 구조와 그 특성을 데이터 모델로 기술해야 한다.
- 데이터베이스를 물리적 저장 장치에 저장하는데 필요한 명세를 포함하여야 한다.
- 데이터의 논리적 구조와 물리적 구조 사이에 변환이 가능하도록 이 두 구조 사이의 사상(mapping)을 명세하여야 한다.

2 DBMS의 필수 기능

조작(manipulation) 기능

- ☑ 사용자와 데이터베이스 사이의 인터페이스를 위한 수단
- ☑ 데이터의 검색, 수정, 삽입, 삭제 등 데이터베이스 연산을 지원하는 도구(언어)를 통해서 구현
 - 사용하기 쉽고 자연스러워야 한다.
 - 명확하고 완전해야 한다.
 - 효율적이어야 한다.

제어(Control) 기능

- ☑ 데이터베이스의 내용에 대해 항상 정확성과 안전성을 유지
- ☑ 스키마 관리, 디스크관리, 사용자관리, 백업, 복제 등

- 갱신, 삽입, 삭제 작업 수행에 있어 데이터 무결성(Data Integrity)이 파괴되지 않도록 제어할 수 있어야 한다.
- 정당한 사용자가 허가된 데이터만 접근할 수 있게끔 보안(security)을 유지하고 권한(authority)을 검사할 수 있어야 한다.
- 여러 사용자가 데이터베이스를 동시에 접근하여 데이터를 처리할 때 데이터 베이스와 처리 결과가 항상 정확성을 유지하도록 해야 한다.

2 DBMS의 필수 기능

- 4 DBMS 구조
 - ☑ 데이터저장소
 - ☑ 쿼리처리기
 - ☑ 시스템카탈로그
 - ☑ 트랜잭션처리부
 - ☑ 병행처리
 - ☑ 백업/복구

1 DBMS 종류 #1

DBMS 종류 #2

DBMS SW	저작권	라이센스	용도
ORACLE	Oracle	상용	대규모 시스템
IBM DB2	IBM	상용	대규모 시스템
MS-SQL	Microsoft	상용	윈도우기반 기업용
MySQL	Oracle	GPL2.0 또는 상용	소규모 시스템
MariaDB	MariaDB재단	GPL2.0	오픈소스
SQLite	Lichard Hipp	퍼블릭도메인	안드로이드, iOS
MongoDB	MongoDB	AGPL	문서 구조 비정형데이터
Redis	Salvatore	BSD 키-값 구조 비정형더	

1 DBMS 종류 #3

DBMS 특징

데이터 무결성 🖊 적절하고 정확한 데이터만 저장

데이터 일관성

삽입, 삭제, 수정 후에도 저장된 데이터가 변함없이 일정

데이터 회복성

▶ 장애 발생 시 원래 상태로 복구

데이터 보안성

▶ 불법적인 노출, 변경, 손실로부터 보호

데이터 효율성

🦴 응답시간, 저장공간 활용 등이 최적화

DBMS 장단점

DBMS 장점

- 데이터 중복의 최소화
- 데이터의 공용
- 데이터의 일관성 유지
- 데이터의 무결성 유지
- 데이터의 보안 보장
- 표준화
- 전체 데이터에 대한 요구의 조정

DBMS 단점

- 운영비의 증대
- 자료처리의 복잡화
- 복잡한 예비와 회복
- 시스템 집중화로 인한 취약성

Chapter 02 관계형 데이터베이스 모델

데이터베이스 발전 과정

1963년 6월 📦 제1차 심포지움

"Development and Management of a Computer-centered Data base"

1960s Navigational DBMS

- 1970s relational DBMS
- Late-1970s SQL DBMS
- 1980s object-oriented databases
- 21st century NoSQL databases

Navigational Data Model

네이터를 어떤 구조로 표현하고 저장할 것인가?

Hierarchical Data Model

Network Data model

Navigational Data Model - 장단점

구분	Hierarchical Data Model	Network Data model	
장점 □ 간단한 구조로 구현이 용이함 □ 접근 속도가 빠름		■ 데이터간 의 연결성이 높음 ■ 계층형 보다 유연함	
단점	■ 변화되는 프로그램에 대한 적응성이 낮음 ■ 삽입과 삭제의 어려움 ■ M:N 관계를 직접 표현하기 어려움	■ 설계가 복잡함 ■ 데이터 간의 종속이 많이 발생함	
대표 제품	IMS(IBM)System2000(SAS)	IDS(GE)IDMS(CA)TOTAL(Cincom Systems)	

Relational Data Model - 예제#1

☞ 고려사이버대학교 데이터베이스 - 학생, 교수, 과목, 수강, 담당

■ 학생

학번	이름	성별	주소	휴대전화	생년	학과
ST001	최현주	여	서울	010-1234-1234	1973	SE
ST002	강하늘	山	서울	010-2222-2344	1990	BZ
ST003	이성민	山	서울	010-3293-9345	1978	SE
ST004	박정수	여	경기	010-8323-8342	2000	EE
ST005	홍민호	남	대전	010-2342-6547	1985	BZ

Relational Data Model - 예제#2

☞ 고려사이버대학교 데이터베이스 - 학생, 교수, <mark>과목</mark>, 수강, 담당

■ 과목

과목번호	과목명	학점	이수구분	담당교수
SE0101	컴퓨터학 개론	3	전공	나홍석
BZ0011	경영학 원론	3	전공	박남기
SE0102	자바언어	3	전공	김수영
BZ0013	이비즈니스	3	전공	최정원
GE0011	디자인씽킹	3	교양	한성욱

Relational Data Model - 예제#3

학생이 수강하는 정보는 어떻게 표현할까요?

수강

과목명
컴퓨터학 개론
경영학 원론
자바언어
컴퓨터학 개론
디자인씽킹
자바언어
자바언어
이비즈니스
디자인씽킹

수강

학번	과목번호
ST001	SE0101
ST001	BZ0011
ST002	SE0102
ST002	SE0101
ST002	GE0011
ST002	SE0102
ST003	SE0102
ST003	BZ0013
ST004	GE0011

Relational Data Model - 고려사이버대학교 데이터베이스

학생

학번	이름	성별	주소	휴대전화	생년	학과
ST001	최현주	여	서울	010-1234-1234	1973	SE
ST002	강하늘	山	서울	010-2222-2344	1990	BZ
ST003	이성민	山	서울	010-3293-9345	1978	SE
ST004	박정수	여	경기	010-8323-8342	2000	EE
ST005	홍민호	남	대전	010-2342-6547	1985	BZ

수강

과목번호
SE0101
BZ0011
SE0102
SE0101
GE0011
SE0102
SE0102
BZ0013
GE0011

과목

과목번호	과목명	학점	이수구분	담당교수
SE0101	컴퓨터학 개론	3	전공	나홍석
BZ0011	경영학 원론	3	전공	박남기
SE0102	자바언어	3	전공	김수영
BZ0013	이비즈니스	3	전공	최정원
GE0011	디자인씽킹	3	교양	한성욱

2 관계 모델

1 개요

- ☑ 1970년 IBM 연구소의 "A Relational Model for Large Shared Data Banks" 라는 논문에서 처음으로 소개
- ☑ 수학적 릴레이션(Mathmatical relation)의 개념을 사용해서 테이블의 형태로 표현
- ☑ 현재 대부분의 상업용 DBMS에서 지원

예) ORACLE, SQL Server, MySQL, IBM DB2 등

관계모델 정의

▲ 관계 모델에서는 데이터베이스를 다음과 같이 정의

(관계형) 데이터베이스 = 릴레이션(테이블)의 집합

릴레이션 구조

테이블 형태로 데이터를 저장

2 관계 모델

4 용어 정의

용어	정의	
릴레이션(Relation)	■ 2차원 형태의 행과 열로 구성된 테이블	
애트리뷰트(Attribute) ■ 릴레이션에서 최소 데이터의 단위 ■ 혼자 존재할 때에는 그 의미를 가질 수 없음		
튜플(Tuple)	 릴레이션의 행 튜플은 속성들이 모여 구성된 것으로서, 의미를 제공(저장) 하는 최소 단위 	
도메인(Domain) ■ 속성이 가질 수 있는 값의 범위 또는 값의 집합		
차수(Degree)	■ 릴레이션에서의 속성의 개수	
카디날러티(Cardinality)	lity) ■ 릴레이션을 구성하는 튜플의 수	

2 관계 모델

5 릴레이션의 특징

- 1 집합이론(Set theory)에 기초한다.
- 2 한 릴레이션에 포함된 튜플들은 모두 상이하다.
- 3 모든 애트리뷰트 값은 원자값(Atomic value)이다.
- 4 한 릴레이션을 구성하는 튜플과 애트리뷰트 사이에는 순서가 없다.

학습 정리

🜏 데이터베이스 관리시스템

- 데이터 공유
- 데이터 무결성 강화
- 데이터 표준화
- 보안 강화
- 프로그램 수정과 유지보수 용이
- 효율적 데이터 관리
- 성능 향상

정리

데이터 모델

■ 데이터를 어떤 구조로 표현하고 저장할 것인가?

Hierarchical **Data Model**

Network Data model

Relational **Data Model**

학습 정리

관계형 데이터 모델

■ 테이블 형태로 데이터를 저장

참고 문헌

데이터베이스 시스템 7판, Ramez Elmasri, Shamkant B. Navathe 지음, 황규영 등 옮김, 홍릉과학출판사, 2018년 8월

www.wikipedia.org

