

FD6288T&Q

3-PHASE BRIDGE DRIVER

Description

FD6288T&Q is an integrated three-span half-bridge gate driver IC designed for high voltage, high speed drive MOSFETs that operate up to +250V. The special HVIC technology can realize stable monolithic structure. Logic inputs are compatible with CMOS or LSTTL outputs, and the logic voltage can be down to 3.3V. The output driver has a high pulse current buffer stage, which aims to achieve a minimum driver impedance. Propagation delays are matched to simplify use in high frequency applications. Floating channel can be used to drive N-channel power MOSFET with high-end configuration, working voltage up to 250V.

Features

- Fully operational to +250V
- Gate driver supply range from 5V to 20V
- Independent Three half-bridge drivers
- 3.3V/5V logic input compatible
- Undervoltage lockout for all channels
- Cross-conduction prevention logic
- Internal set dead-time
- Matched propagation delay for both channels
- Outputs in phase with inputs
- RoHS compliant

Packages

TSSOP-20

QFN-24

Applications

- Motor drives
- DC-AC inverter drives

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air condition.

Definition		Symbol	Min~Max	Units	
High side floating supply voltage		$V_{B1,2,3}$	-0.3~275	V	
High side floating supply offset voltage		$V_{S1,2,3}$	$V_{B1,2,3}$ -25 \sim $V_{B1,2,3}$ +0.3	V	
High side floating output voltage		V _{HO1,2,3}	$V_{S1,2,3}$ -0.3 \sim $V_{B1,2,3}$ +0.3	V	
Low side and logic fixed supply voltage		V_{CC}	-0.3~25	V	
Low side output voltage		$V_{LO1,2,3}$	-0.5~V _{CC} +0.3	V	
Logic input voltage (HIN,LIN)		V_{IN}	-0.5 \sim V_{CC} $+0.3$	V	
Allowable offset supply voltage transient		dV_{S}/dt	≤50	V/ns	
D 1	D	20 lead TSSOP	≤1.25	***	
Package power dissipation @T _A ≤25°C	P_{D}	24 lead QFN	≤3.0	W	
	D	20 lead TSSOP	≤100	000	
Thermal resistance, junction to ambient	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	≤42	°C/W		
Junction temperature		T_{i}	≤150	°C	
Storage temperature		$T_{ m stg}$	-55~150	°C	

Note1: In any case, power dissipation should not exceed P_D.

Note2: Voltages above the absolute maximum ratings may damage the chip.

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at a 15V differential.

Definition	Symbol	Min	Max	Units
High side floating supply voltage	$V_{B1,2,3}$	$V_{S1,2,3}+5$	$V_{S1,2,3}+20$	V
High side floating supply offset voltage	$V_{S1,2,3}$	Note1	250	V
High side floating output voltage	$V_{HO1,2,3}$	V_{S}	$V_{B1,2,3}$	V
Low side and logic fixed supply voltage	V_{CC}	5	20	V
Low side output voltage	$V_{LO1,2,3}$	0	V_{CC}	V
Logic input voltage (HIN,LIN)	V_{IN}	0	V_{CC}	V
Ambient temperature	T_{A}	-40	125	°C

Note1: Logic operational for V_S of (COM – 4V) to (COM + 600V). Logic state held for V_S of (COM – 4V) to (COM – V_{BS}).

Note2: The long-term operation of the chip outside the recommended conditions may affect its reliability. It is not recommended to work in an environment that exceeds the recommended conditions.

REV_1.3 2 / 17 www.fortiortech.com

Static Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS1,2,3}) = 15V$ and $TA = 25^{\circ}C$ unless otherwise specified. All the parameters are referenced to COM.

Definition	Symbol	Test conditions	Min.	Typ.	Max.	Units
Logic "1" input voltage	V_{IH}		2.7	-	1	
Logic "0" input voltage	$V_{\rm IL}$		1	-	0.8	V
High level output voltage, V _{BIAS} - V _O	V_{OH}	I _O =100mA	-	0.6	0.9	v
low level output voltage, Vo	V_{OL}	10-100IIIA	-	0.3	0.45	
Offset supply leakage current	I_{LK}	$V_{B1,2,3} = V_{S1,2,3} = 250V$	-	0.1	5.0	
Quiescent V _{BS} supply current	I_{QBS}	V =0V or 5V	-	180	270	
Quiescent V _{CC} supply current	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	330	500	uA
Logic "1" input bias current	I_{IN+}	V _{IN} =5V	-	25	40	
Logic "0" input bias current	I_{IN-}	$V_{IN}=0V$	1	-	1	
V_{CC} and V_{BS} supply undervoltage positive going threshold	$V_{CCUV+} \ V_{BSUV+}$		4.2	4.6	5.0	V
V_{CC} and V_{BS} supply undervoltage negative going threshold	V _{CCUV} - V _{BSUV} -		3.9	4.3	4.7	v .
Output high short circuit pulsed current	I_{O+}	V _O =0V,PW≤10us	1.1	1.5	1.9	A
Output low short circuit pulsed current	I _{O-}	V _O =15V,PW≤10us	1.3	1.8	2.3	A

Dynamic Electrical Characteristics

 $V_{BIAS}\left(V_{CC},\,V_{BS1,2,3}\right)=15V,\,C_{L}=1000pF,\,\text{and}\,\,TA=25^{\circ}C,\,\text{unless otherwise specified}.$

Definition	Symbol	Test conditions	Min.	Тур.	Max.	Units
Turn on propagation delay	ton	V _{S1,2,3} =0V	ı	300	450	
Turn off propagation delay	toff	$V_{S1,2,3}=250V$	ı	100	160	
Delay matching, HS & LS turn on/off	MT		ı	ı	30	
Turn on rise time	tr		-	12	25	ns
Turn off fall time	tf		ı	12	25	
Deadtime , LS turn-off to HS turn-on & HS turn-off to LS turn-on	DT		100	200	300	

REV_1.3 3 / 17 www.fortiortech.com

Typical Connection

- C1: Power filter capacitor, according to the circuit can choose $1\mu F \sim 10\mu F$, as close to the chip pin as possible.
- R: Gate drive resistor, and the resistance depends on the device being driven.
- D_{BS}: Bootstrap diodes. It should be selected for high reverse breakdown voltage Schottky diodes.
- C_{BS} : Bootstrap capacitors. Ceramic capacitors or tantalum capacitors should be selected, according to the circuit can choose 0. 22 μ F ~ 10 μ F. The capacitor should be as close as possible to the chip pin.

Note:

The above circuits and parameters are for reference only. The actual application circuit should be designed with the measured results in setting the parameters.

REV_1.3 4 / 17 www.fortiortech.com

Functional Block Diagram

Lead Assignments

Lead definitions

Symbol	Description	
V_{CC}	Low side and logic fixed supply	
HIN1,2,3	Logic input for high side gate driver output(HO),in phase	
LIN1,2,3	Logic input for low side gate driver output(LO),in phase	
COM	Low side return	
LO1,2,3	Low side gate drive output	
$V_{S1,2,3}$	High side floating supply return	
HO1,2,3	High side gate drive output	
$V_{B1,2,3}$	High side floating supply	

REV_1.3 6 / 17 www.fortiortech.com

Input/Output Timing Diagram

Switching Time Waveform Definitions

Delay Matching Waveform Definitions and Deadtime Waveform Definitions

REV_1.3 7 / 17 www.fortiortech.com

Figure 1A V_{CC} Supply Current vs Supply Voltage

Figure 1B V_{CC} Supply Current vs Temperature

Figure 2A V_{BS} Supply Current vs Supply Voltage

Figure 2B V_{BS} Supply Current vs Temperature

REV_1.3 8 / 17 www.fortiortech.com

Figure 3A Logic "1" Input Current vs Supply Voltage

Figure 3B Logic "1" Input Current vs Temperature

Figure 4A Logic "0" Input Current vs Supply Voltage

Figure 4B Logic "0" Input Current vs Temperature

Figure 5A V_{CC} Undervoltage Threshold(+) vs Temperature

Figure 5B V_{CC} Undervoltage Threshold(-) vs Temperature

REV_1.3 9 / 17 www.fortiortech.com

Typ. Max. ---- Min. 6 5 4 3 2 1 -25 -40 0 50 75 100 125 25

Figure 6A V_{BS} Undervoltage Threshold(+) vs Temperature

Figure 6B V_{BS} Undervoltage Threshold(-) vs Temperature

Figure 7A Logic "1" Input Voltage vs Supply Voltage

Figure 7B Logic "1" Input Voltage vs Temperature

Figure 8A Logic "0" Input Voltage vs Supply Voltage

Figure 8B Logic "0" Input Voltage vs Temperature

REV_1.3 10 / 17 www.fortiortech.com

Figure 9A High Level Output Voltage vs Supply Voltage

Figure 10A Low Level Output Voltage vs Supply Voltage

Figure 10B Low Level Output Voltage vs Temperature

Figure 11A Offset Supply Current vs Voltage

Figure 11B Offset Supply Current vs Temperature

REV_1.3 11 / 17 www.fortiortech.com

Figure 12A Output Source Current vs Supply Voltage

Figure 12B Output Source Current vs Temperature

Figure 13A Output Sink Current vs Supply Voltage

Figure 14A Turn On Time vs Supply Voltage

Figure 13B Output Sink Current vs Temperature

Figure 14B Turn On Time vs Temperature

Figure 15A Turn Off Time vs Supply Voltage

Figure 15B Turn Off Time vs Temperature

Figure 16A Turn On Rise Time vs Supply Voltage

Figure 16B Turn On Rise Time vs Temperature

Figure 17A Turn Off Fall Time vs Supply Voltage

Figure 17B Turn Off Fall Time vs Temperature

REV_1.3 13 / 17 www.fortiortech.com

Figure 18A Dead Time vs Supply Voltage

Figure 18B Deadtime Time vs Temperature

Figure 19A V_S Negative offset vs Supply Voltage

Figure 19B V_S Negative offset vs Temperature

REV_1.3 14 / 17 www.fortiortech.com

Case outlines

	MIN	NOM	MAX
A		_	1.20
A1	0.05		0.15
A2	0.80	1.00	1.05
b	0.19	_	0.30
b1	0.19	0.22	0.25
С	0.09	_	0.20
c1	0.09	_	0.16
D	6.40	6.50	6.60
Е	6.20	6.40	6.60
E1	4.30	4.40	4.50
e		0.65BSC	
L	0.45	0.60	0.75
L1	1.00BSC		

20 Lead TSSOP

Part Number	Package Type	Marking ID	Package Method	Quantity
FD6288T	TSSOP20	FD6288T	Tape&Reel	3000

Top Vlew

Bottom Vlew

Side View

Cymbol	Dimension	s with mm	Dimension	s with inch
Symbol	Min.	Max.	Min.	Max.
A	0.700/0.800	0.800/0.900	0.028/0.031	0.0031/0.0035
A1	0.000	0.050	0.000	0.002
A3	0.203	BREF	0.008	BREF
D	3.924	4.076	0.154	0.160
Е	3.924	4.076	0.154	0.160
D1	2.600	2.800	0.102	0.110
E1	2.600	2.800	0.102	0.110
K	0.200	0.200MN		8MN
В	0.200	0.300	0.008	0.012
Е	0.500)TYP	0.020TYP	
L	0.324	0.476	0.013	0.019

24 Lead QFN

Part Number	Package Type	Marking ID	Package Method	Quantity
FD6288Q	QFN24	FD6288Q	Tape&Reel	3000

REV_1.3 16 / 17 www.fortiortech.com

Copyright Notice

Copyright by Fortior Technology (Shenzhen) Co., Ltd. All Rights Reserved.

Right to make changes —Fortior Technology (Shenzhen) Co., Ltd reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. The information contained in this manual is provided for the general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of Fortior Technology (Shenzhen) Co., Ltd. to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

This manual is copyrighted by Fortior Technology (Shenzhen) Co., Ltd. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the expressly written permission from Fortior Technology (Shenzhen) Co., Ltd.

Fortior Technology (Shenzhen) Co.,Ltd.

Room203, 2/F, Building No.11, Keji Central Road2,

Software Park, High-Tech Industrial Park, Shenzhen, P.R. China 518057

Tel: 0755-26867710 Fax: 0755-26867715

URL: http://www.fortiortech.com

Contained herein

Copyright by Fortior Technology (Shenzhen) Co., Ltd all rights reserved.

REV_1.3 17 / 17 www.fortiortech.com