Autômato Celular

Uma Breve Historia

- » Do ponto de vista teórico, John von Neumann e Stanislaw Ulam, introduziram os autômatos celulares na década de 40.
 - O Stanislaw estava estudando o crescimento de cristais
 - Neumann trabalhava com foco da auto reprodução
- » Do ponto de vista pratico, no final dos anos 60, o matemático Conway desenvolveu o jogo da vida.
 - Representa um sistema de vida e morte
 - O Jogo da vida ficou amplamente conhecido
 - É um bom exemplo para começar a implementar AC

Definição de AC

- » São modelos matemáticos capazes de representar sistemas e fenômenos observados.
- » ACs são sistema dinâmicas discretos, o significado de discreto é que as variáveis de estados mudam em seus estados em instante de tempo discreto.
- » AC é composto por um conjunto de célula com determinados valores, que interagem entre si em função de uma coleção finita de condições pré-definidas.

Definição de AC

- » Os valores são denominadas de estados que são alterados conforme um conjunto de regras, que dependem da vizinhança (podendo depender de si).
- » É necessário uma configuração inicial de autômato
- » Podemos dividir a modelagem de AC em três partes
 - Uma estrutura ("lattice" (rede de contato), geometria das celulas)
 - Uma vizinhança
 - Regras de transição local, a transição é imposta de forma paralela e sincronizada em todas as células.

AC

- » Podemos representar a composição de uma AC como sendo $U = (L^n, Q, R, f)$, onde:
 - L é o tipo da estrutura
 - Uma celula arbitraria da estrutura por $x,x \in L$, para o caso unidimensional, para duas dimensoes temos $x_{i,j}$
 - Q é o conjunto de estados
 - R a vizinhança de uma determinada célula
 - O estado da célula x no instante t é indicado por x^t e o estado dos vizinhos é dado por R(x^t)
 - f a regra de transição
 - O próximo estado das células é dado por $x^{t+1} = f(R(x^t))$

Dimensão de AC

- » AC pode ser representado por um vetor ou uma matriz de comprimento infinito ou não, e os elementos constituintes são as células, que representa cada posição do vetor ou da matriz
- » A figura abaixo mostra o formato de um AC

Fronteira

- » Um dos problemas é dada pela fronteira, pois tem menos vizinhos do que as outras células, existem três maneiras de se contornar isso
 - O limite periódico é representado quando as células da última linha fazem parte da vizinhança das células da primeira linha (vice-versa) e as células da última coluna fazem parte da vizinhança das células da primeira coluna (vice-versa)

C22	C15	C16	C17	C18	C19	C20	C21	C22	C15
C8	C1	C2	C3	C4	C5	C6	C7	C8	C1
C28	C9							C28	C9
C27	C10							C27	C10
C26	C11							C26	C11
C25	C12							C25	C12
C24	C13							C24	C13
C23	C14							C23	C14
C22	C15	C16	C17	C18	C19	C20	C21	C22	C15
C8	C1	C2	C3	C4	C5	C6	C7	C8	C1

Fronteira

- O limite reflexivo é representado quando cada célula da borda é refletida para ser a utilizada como parte do limite do AC
- O limite fixo é obtido simplesmente descrevendo como serão os estados das células no contorno da matriz, e esses estados serão mantidos durante todo o instante de tempo

		C2					C7		
	C1	C2	C3	C4	C5	C6	C7	C8	
C9	C9							C28	C28
	C10							C27	_
	C11							C26	
	C12							C25	
	C13							C24	
C14	C14							C23	C23
	C15	C16	C17	C18	C19	C20	C21	C22	
		C16				C21		'	
b)									

C1	C2	C3	C4	C5	C6	C7	C8	
C9							C28	
C10							C27	
C11							C26	
C12							C25	
C13							C24	
C14							C23	
C15	C16	C17	C18	C19	C20	C21	C22	
	_			:)				

Vizinhança

- » Para que o AC evolua com o passar do tempo é necessário definir quais são as células vizinhas
 - Newman Não considera as diagonais
 - Moore Todas as células que as tocas
 - Moore extend Mais do que as células que tocam
- » Possiveis vizinhanças na figura abaixo

Vizinhança: a) Vizinhança de von Newmann, b) Vizinhança de Moore e c) Vizinhança de Moore Estendida.

Exemplo 1

» Vamos reproduzir o jogo da vida de Conway

• Rules:

Qualquer celula viva com menos de dois vizinhos vivos morre Qualquer célula viva com dois ou três vizinhos vivos, continua vivo para a próxima iteração

Qualquer celular viva com mias de três vizinhos morre, por superpopulação

Qualquer celular morta com exatamente três vizinhos vivos, "revive", como reprodução

Exemplo 1

- » Vamos reproduzir o jogo da vida de Conway
- » O valor de 0 (branco) é morto e valor 1 (preto) esta vivo
- Foi distribuído aleatoriamente, com probabilidade 0.1 e
 0.9 para morto e vivo, respectivamente.
- » Com tempo de 10

Example 2 - Sugarscape

- Diferente dos outros exemplos, nesse vamos trabalhar tanto com os agentes tanto com o Grid
- Nosso Grid é formado por açúcares e cada espaço tem uma capacidade e uma quantidade inicial distinta de açúcar
- O nosso Agente começa com uma quantidade inicial de açúcar, e para cada agente temos um metabolismo distinto, nesse exemplo foi tentado deixar o mais simples por isso foi dado a visão para cada agente de apenas 1 casa

Example 2 - Sugarscape

- As regras para o agente andar na vizinhança é o vizinho que tem mais açúcar e está inabitado
- Podendo andar apenas para cima, direita, baixo e esquerda, utilizando a vizinhança de Von Newmann

No primeiro caso temos:

- Vai ser utilizado um Grid 51x40, sem o crescimento de açúcar
- Com 51 agentes

Example 2 - Sugarscape

Simulating in R:

In the second case:

 Utilizando o mesmo Grid, porem agora terá crescimento de açúcar no Grid

Exemplo 3 - Problema

- Estudar a adoção de práticas em intensificação de gado de corte no Brasil.
- O governo está investindo em medidas para incentivar a intensificação da bovinocultura:
 - Compromissos voluntários brasileiros na UNFCC (NAMAS, NDCs)
 - Restauração de pasto degradado (Plano ABC)
 - Direta
 - Integração lavoura-pecuária
- Outras medidas com investimento privado
 - Medidas de eficiência animal
 - Como suplementação, confinamento entre outras formas.

Nosso modelo

- Para o nosso problema, o estados das células vão ser o sistema extensivo ou intensivo.
- Criamos na fronteira uma borda constante, logo as células das fronteiras terão menos vizinhos.
- Foi utilizado a vizinhança de Moore com 8 vizinhos.
- Foi usado a ideia de inercia para aumentar a probabilidade de mudar de estado.

Equação

$$f(N_i, E_i) = I_{min} + aux * (1 - e^{-\lambda(\alpha N_i + \beta E_i + \gamma N_i E_i)})$$

$$aux = \frac{(I_{max} - I_{min})}{e^{-\lambda}}$$

- N_i é o numero de vizinhos no estado i
- E_i é a preferencia pelo estado i
- $I_{min} e I_{max}$ são a inercia mínima e máxima, respectivamente
- $\alpha + \beta + \gamma = 1$

Modelagem

- A função $f(N_i, E_i)$, ela necessariamente precisa estar entre 0 e 1
 - Para f(0,0) temos que nossa função seja a Inercia mínima, pois ele não tem nenhum vizinho e preferencia no mesmo sistema que ele
 - Para f(1,1) temos que a nossa função tem que ser a Inercia Maxima, pois todos os vizinhos estão no mesmo sistema e tem uma 100% da preferencia pelo o sistema, para que isso ocorrer foi inserido o aux.
- Além disso podemos a $e^{-\lambda(\alpha N_i + \beta E_i + \gamma N_i E_i)}$ pode ser definida
 - O termo αN_i é a influencia da vizinhança, independente da preferencia, na tomada de decisão
 - O termo βE_i é a influencia da preferencia , independente da vizinhança, pelo sistema na tomada de decisão
 - O termo $\gamma N_i E_i$ é de relação entre a vizinhança e preferencia na tomada de decisão e além disso, caso não tivesse esse termo para termos uma curva "s-shape" seria necessário um dos outros termo tender a 0

Mostrar Código

Exemplo 3

- Vou dividir esse exemplo em dois:
 - no primeiro não teremos células inativas dentro do grid e teremos uma proporção de 95% em sistemas extensivos e 5% no sistema intensivo
 - No segundo colocaremos células inativas, ficando com 50% do grid com células inativas, 45% no sistema extensivo e 5%
- Os valores dos parâmetros será o mesmo para os dois casos
 - $I_{max} = 1, I_{min} = 0.9, \alpha = 0, \beta = 0.1, \gamma = 0.9, \lambda = 0.86 \ e \ Preferencia = 0.7$

Caso 1

Caso 2

Exemplo de Mapa

- Vegetação Florestal
- Natural não florestal
- Corpos d'água
- Vegetação campestre
- Agricultura anual
- Silvicultura
- Agricultura semi-perene
- Pastagem
- Infraestrutura urbana

Um exemplo do mapa final

Mato Grosso

São Paulo

