PRINCIPLES OF QUANTUM MECHANICS

JOE BENTLEY

Date: November 11, 2014.

1. Mixed States

If $\psi_n(x)$ is a solution of the time independent Schrödinger equation, then $\psi_n(x)$ is an eigenfunction of the Hamiltonian operator with an energy eigenvalue. The full time-dependent form of the wavefunction is given by,

$$\Psi_n(x,t) = \psi_n(x)e^{-\frac{iE_nt}{\hbar}}$$

When we find the probability density, multiply the wavefunction by its complex conjugate. Since the exponential is negative when we take the complex conjugate, they cancel to give,

$$\left|\Psi_n\right|^2 = \psi_n^* \psi_n$$

Therefore since ψ_n has no time dependence, neither does the probability density $|\Psi_n|^2$.

Now we consider a mixed state of wavefunctions,

$$\Phi(x,t) = \Psi_m(x,t) + \Psi_n(x,t)$$

By taking the probability density of this,

$$\|\Phi\|^{2} = (\Psi_{m} + \Psi_{n})^{*}(\Psi_{m} + \Psi_{n})$$
$$= \Psi_{m}^{*}\Psi_{m} + \Psi_{n}^{*}\Psi_{n} + \Psi_{m}^{*}\Psi_{n} + \Psi_{n}^{*}\Psi_{m}$$

The two cross terms at the end of the second line we call the interference terms, which we define as z and z^* such that,

$$z = \Psi_m^* \Psi_n = \psi_m^* \psi_n e^{-i(E_n - E_m)t/\hbar}$$
$$z^* = \Psi_m^* \Psi_n = \psi_m^* \psi_n e^{i(E_n - E_m)t/\hbar}$$

We see that this satisfies $z + z^* = 2Re\{z\}$. We can therefore write the probability density as,

$$\|\Phi\|^2 = \|\psi_m\|^2 + \|\psi_n\|^2 + 2\psi_m^*\psi_n \cos\left(\frac{\Delta Et}{\hbar}\right)$$

where $\Delta E = E_n - E_m$. Also the assumption has been made that $\psi_m^* \psi_n$ is a real quantity. We therefore see that the probability density of a mixed state $\Phi(x,t)$ varies with time unlike previous examples where the probability density function is constant in time. The mixed state Φ is an example of a superposition of states. Since Schrödinger's equation is linear, any linear combination of mixed states is also a solution,

$$\Phi = C_m \Psi_m + C_n \Psi_n$$

Note that the time dependent solutions are used here. A mixed state of two time independent solutions, $\phi(x) = \psi_m(x) + \psi_n(x)$ would not be a solution of the time independent Schrödinger equation, as the energy would need to be well defined, which is isn't for a mixed state,

$$\hat{H}\phi = \hat{H}\psi_m + \hat{H}\psi_n = E_m\psi_m + E_n\Psi_n$$

We see that there are two different energies defined, one for each state so this can't be a solution of the time independent Schrödinger equation which has a single well defined energy.

2. Superposition and Measurement

Let $\Psi_i(x,t)$ where $i=1,\ldots,n$ form a complete set of solutions to the Schrödinger equation for a given problem. The general solution is then given by,

$$\Phi(x,t) = \sum_{i=1}^{n} c_i \Psi_i(x,t)$$

where c_i are complex coefficients. We postulate that any valid set of solutions (and thus any valid wavefunction) can be written in this form.

If $\hat{A}\Psi_i = a_i\Psi_i$ then the observable A (which corresponds to the operator \hat{A} and the eigenvalue a_i) is well defined for the state. That is, Ψ_i is an eigenstate of the operator \hat{A} . The real eigenvalues a_i represent all the possible results of measuring the observable A for any state, which must be real as they correspond to an observable A.

The class of operators that always have real eigenvalues are known as Hermitian operators. An operator \hat{o} is Hermitian only if,

$$\int_{-\infty}^{\infty} \Psi_b^* \hat{o} \Psi_a dx = \int_{-\infty}^{\infty} \Psi_a (\hat{o} \Psi_b)^* dx$$

where Ψ_a and Ψ_b are any arbitrary function of (x,t). An operator that this is true for is called a self-adjoint operator,

$$\hat{o} = \hat{o}^{\dagger}$$

A Hermitian matrix is similarly defined,

$$Q = Q^{\dagger}$$
$$Q_{nm} = Q_{mn}^{*}$$

We can show that because Hermitian operators are self-adjoint, that they are required to be real. Consider an arbitrary operator \hat{o} acting on a wavefunction Ψ_a which is an eigenfunction of the operator \hat{o} .

Let
$$\hat{o}\Psi_a = a\Psi_a$$

If the operator \hat{o} is Hermitian, then,

$$\int \Psi_a^* \hat{o} \Psi_a dx = \int \Psi_a (\hat{o} \Psi_a)^* dx$$
$$\int \Psi_a^* a \Psi_a dx = \int \Psi_a (a \Psi_a)^* dx$$
$$a \int \Psi_a^* \Psi_a dx = a^* \int \Psi_a \Psi_a^* dx$$

Assuming the wavefunction Ψ_a is normalized (but even if it isn't, the normalisation constants will cancel anyway),

$$\int \Psi_a^* \Psi_a dx = 1$$

Therefore we come to the conclusion that the Hermitian operator always gives real eigenvalues,

$$a = a^*$$

We postulate that all operators corresponding to observables are Hermitian.

What about the relationship between two different eigenfunctions when the Hermitian is applied? First define Ψ_b as another eigenfunction of \hat{o} , such that,

$$\hat{o}\Psi_b = b\Psi_b$$

The Hermitian operator satisfies,

$$\int \Psi_b^* \hat{o} \Psi_a dx = \int \Psi_a (\hat{o} \Psi_b)^* dx$$

Therefore by applying the operator,

$$a \int \Psi_b^* \Psi_a dx = b \int \Psi_a \Psi_b^* dx$$
$$(a - b) \int \Psi_b^* \Psi_a dx = 0$$

For this to be true we can have two cases. Either a=b and the integral is one, which implies that $\Psi_a = \Psi_b$ or just $\Psi_a = \Psi_a$, or $a \neq b$, which requires that the integral is zero. In this case we say that the eigenfunctions Ψ_a

and Ψ_b are orthogonal, which we can define succinctly using the Kronecker delta,

$$\int \Psi_b^* \Psi_a dx = \delta_{ab}$$