

ERICSSON RESEARCH

WORKING ON RESEARCH: EXPECTATION

WORKING ON RESEARCH: REALITY

CIRCA 18 YEARS OF IOT STANDARDS

	<u>IETF</u>	W3C		
LWIG	CORE	ACE	<u>OMA</u>	
√ 6LoWPAN	CBOR	COSE ✓	LWM2M	
6Lo	T2TRG	DICE <	IPSO	
6TiSCH		SUIT new	<u>OCF</u>	
LPWAN	Applications	TEEP new		
ROLL		Security	•••	
Connectivity				

Routing

CIRCA 18 YEARS OF IOT STANDARDS

RFC	RFC	RFC	RFC	RFC	RFC	RFC
2689	3485	3544	3819	3940	3941	4629
RFC	RFC	RFC	RFC	RFC	RFC	RFC
4919	4944	5049	5401	5740	5856	5857
RFC	RFC	RFC	RFC	RFC	RFC	RFC
5858	6282	6469	6568	6606	6775	6690
RFC	RFC	RFC	RFC	RFC	RFC	RFC
7049	7228	7252	7388	7390	7400	7641
RFC	RFC	RFC	RFC	RFC	RFC	RFC
7668	7744	7925	7959	8075	8132	8152
RFC	RFC	RFC	RFC		and mara	

8392

...and more

8307

8323

8376

WEB FOR IOT AND CONSTRAINED DEVICES

- Stack-wide interoperability
- Full functional support
 - Security, dev mgmt, apps
 - S/w upgrades, bootstrap

- Common extensible semantic model
 - Applications
 - Management

- > Well-proven technologies
- Openly standardized
- Driven and adopted by major industry leaders

NETWORK VENDOR OVERVIEW

Telecom infrastructure providers

- Ericsson, Nokia, Huawei, Cisco/Jasper.
- Experience from connectivity management. Focus on 5G.

Cloud Players

- Microsoft, Google, Cumulocity
- Strong at providing generic platforms.

System Integrators

- Accenture, IBM
- Strong at system integration and custom solutions.

Operators

- AT&T, Verizon, Vodafone, Telia,
 DT, Telefonica and Orange.
- Homegrown IoT platform solutions.

 Telecom infrastructure providers trying to get out of the "datapipe" role into higher value segments.

> How

 Creating IOT platforms that manage the devices, collect the device data and make it available for other applications.

2014 - YANZI NETWORKS

The challenge

Creating smart buildings and tracking. Lack of interoperability at network, application and semantics.

The solution

Using common standards (802.15.4, IPv6, RPL, CoAP, IPSO). Use of Open Source (Contiki).

- Very connected to research with RISE (Research Institutes of Sweden) and the Contiki developers.
- Focus on simple and quick device deployment as well as security.
- Acquired (control stock) for roughly 50M€ this July.

2015 - SMART ROCKBOLT

The challenge

Structural damages in mines. Lack of adequate alert systems and of measuring capabilities. No interest in reinventing the wheel.

The solution

Collaboration btw companies, Luleå University (PIMM project). Use of wellknown standards.

- Smart Rockbolt providing visual cues about the cave status.
 Gathering of telemetry from the bolt creating a "Digitalized mining Area".
- Thingwave company as spinoff (8 people team).

2015 - VERSASENSE (MICROPNP)

The challenge

Industrial sensing solutions require efforts in terms of development, installation, integration, and management. In particular PnP type of deployments. Don't fall in vendor lock-in.

The solution

Use of open standards for the most part (802.15.4, 6LoWPAN, IPSO, CoAP...). Add differentiation on some of the features.

The result

- Added their improved mesh reliability mechanism to differenciate (SmartMesh).
 Participate in IoT competitions to gain publicity.
- Spinoff MicroPnP/Versasense automatically identifies all connected embedded devices.
- Built by original postdoc team at KU Leuven in Belgium.

develop on any device.

Plug & Play

Actuators

2016 - HUSQVARNA GARDENA

The challenge

New generation of "smart mowers" and "smart gardening" solutions. Management of devices.

The solution

Common R&D project between few companies. Looking into state-ofthe-art protocols (LWM2M) and Open Source (Contiki) technologies.

The result

- Part of the Gardena portfolio uses these standards and technologies.
- New IoT product market segment validated last month via stock crash (19%) of other unit.
 - "exit from low price point product segments and brands, particularly in petrol powered lawnmowers and garden tractors."
 - "To focus on future premium product and service offerings under the core brands of Husqvarna and Gardena."

Swedish Chainsaw Massacre Hits Husqyarna

By Niklas Magnusson

July 17, 2018, 11:08 AM GMT+3 Updated on July 17, 2018, 11:31 AM GMT+

- ► Shares fall the most since Husqvarna was listed in June 2006
- ► Company to restructure Consumer Brands Division, exit segments

2016 - ACKLIO

The challenge

- Low-Power WirelessAccess (LPWA)compression.
- Compatibility problems between radio technologies.

The solution

Open Standards (LPWAN, 6Lo, CoRE, CBOR...).
Work started while at Télécom Bretagne engineering school R&D.

The result

- Acklio, a company focusing on LPWAN networking.
- Contribute to Static Context Header Compression (SCHC), chairing LPWAN, contribute to CoRE.
- Take advantage of slow 3GPP standard process (no NB-IoT at the time).

CISCO

2016 - IOTEROP

The challenge

Hard to integrate constrained device management. Hard to manage devices.

The solution

Used Open standards (CoAP, IPSO) and LwM2M.

Build an abstraction layer for simpler integration.

- Quitted employer and built IoTerop.
- Focus on design (HW design to integrate with devices) and software (LwM2M implementation) catering to the Telco side of IoT.
- Active contribution to OMA.

2017 - IKEA TRÅDFI

The challenge

Smart lighting control is expensive and complex.

The solution

Hire experienced consultants.
Used Open Standards (802.15.4, CoAP, IPSO) and LwM2M.

The result

- Build IKEA Trådfri on state-of-the-art standards.
- Proves that there is no need to ask for permission to the community at large... nobody knew about this. Found out because of IPSO TLV format:

{"5850":1,"5851":127,"5707":0,"5708":0,"57 09":24930,"5710":24694,"9003":0,"5711":250 ,"5706":"f5faf6"}

2017 - "PRECISION ENVIRONMENTAL MONITORING COMPANY"

The challenge

- Continue being a segment leader with 1500 people, >300m€ revenue, 22m€ income.
- New technologies keep appearing. Complexity of managing devices.

The solution

Move from in-house solution to open standards. Build a PoC with other industry leaders in the area.

- Selected a set of Open Standards after validating through the PoC to build next iteration of product line.
- Consider contributing back to the Open Source community.

2018 - "TWO UTILITY COMPANIES"

The challenge

Smart metering software largely built on DLMS and COSEM.

PLC is unreliable when appliances are on.

The solution

Look into state-of-the-art network and device management standards. Look into other potential radio technologies.

- Selected a set of Open Standards (CoAP, IPSO) to build next iteration of product line.
- As a result, new study on security properties needed.
- PoC to use NB-IoT in progress.

2018 - RUUVI TAG

The challenge

Complexity and cost of environmental monitoring. Lack of open source hardware development.

The solution

Create an open-source to avoid future vendor lockins, save money and simplify prototyping. Benefit from larger community.

RUUVITAG+ (3-PACK, 23€/UNIT)

3 x RuuviTag+ sensor beacons with all the sensors (temperature, air humidity, air pressure, acceleration).

69.00€

- RuuviTag open-source sensor beacon platform.
- Becomes an generic IoT Platform for telemetry.
- Benefits from its community to get ideas and be used on other applications (Kaltiot tracker, ColdChain monitoring, Zephyr...),

PERFECTION VS VERSATILITY

