(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 8 February 2001 (08.02.2001)

PCT

(10) International Publication Number WO 01/09286 A1

- (51) International Patent Classification⁷: C12N 1/20, 1/21, C12P 13/04, C12R 1/13, 1/15, 1/19
- (21) International Application Number: PCT/US00/20979
- (22) International Filing Date: 2 August 2000 (02.08.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/146,379

2 August 1999 (02.08.1999) US

- (71) Applicant: ARCHER-DANIELS-MIDLAND COM-PANY [US/US]; 4666 Faries Parkway, Decatur, IL 62525 (US).
- (72) Inventors: RAYAPATI, P., John; 949 Pine Hill Drive, Decatur, IL 62521 (US). CRAFTON, Corey, M.; 1371 W. Pershing Road, Decatur, IL 62526 (US).
- (74) Agents: LUDWIG, Steven, R. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS. MW, MZ, SD, SL, SZ. TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METABOLIC ENGINEERING OF AMINO ACID PRODUCTION

(57) Abstract: The present invention is directed towards the fermentative production of amino acids, providing microorganisms, methods and processes useful therefor. Microorganisms of the invention are capable of converting glucose to amino acids other than L-isoleucine, L-leucine and L-valine with greater efficiency than the parent strain. The invention provides microorganisms that are made auxotrophic or bradytrophic for the synthesis of one or more branched chain amino acids by mutagenesis and selected for their ability to produce higher percent yields of the desired amino acid than the parental strain. Preferred microorganisms are Corynebacterium, Brevibacterium or Escherichia coli producing L-lysine. Mutagenesis is performed by classical techniques or through rDNA methodology. Methods of the invention are designed to increase the production of an amino acid by mutagenizing a parental strain, selecting cells auxotrophic or bradytrophic for the synthesis of one or more branched chain amino acids and selecting branched chain amino acid auxotrophs or bradytrophs that produce a higher percent yield from dextrose of the desired amino acid than the parental strain. Processes of the invention are designed for the production of an amino acid comprising culturing in a medium a microorganism obtained by mutagenizing a parent strain and selecting variants that are capable of converting glucose to amino acids other than L-isoleucine, L-leucine and L-valine with greater efficiency than the parent strain.

PHODOGID, ING.

WO 01/09286 PCT/US00/20979

Metabolic Engineering of Amino Acid Production

Background of the Invention

Field of the Invention

The invention relates to the areas of microbial genetics and recombinant DNA technology. More specifically, the present invention relates to the fermentative production of amino acids. The invention provides microorganisms useful for the production of amino acids, methods to increase the production of amino acids and processes for the production of amino acids.

Related Art

The production of amino acids through fermentation enables inexpensive production from cheap carbon sources such as molasses, acetic acid and ethanol. Following the recognition that *Corynebacteria* were useful for the industrial production of amino acids (S. Kinoshita et al., Proceedings of the International Symposium on Enzyme Chemistry 2: 464-468 (1957)), commercial production of amino acids by fermentative processes was made more possible with the isolation of mutant strains. Microorganisms employed in microbial processes for amino acid production may be divided into 4 classes: wild-type strain, auxotrophic mutant, regulatory mutant and auxotrophic regulatory mutant (K. Nakayama et al., in NUTRITIONAL IMPROVEMENT OF FOOD AND FEED PROTEINS, M. Friedman, ed., (1978), pp. 649-661). The stereospecificity of the amino acids produced by fermentation makes the process advantageous compared with synthetic processes; amino acids produced by microbial process are generally the L-form.

L-lysine is one example of an amino acid produced by industrial fermentation. Commercial production of this essential amino acid is principally done utilizing the gram positive Corynebacterium glutamicum, Brevibacterium flavum and Brevibacterium lactofermentum (Kleemann, A., et. al., Amino Acids,

25

5

10

15

in Ullmann's Encyclopedia of Industrial Chemistry, vol. A2, pp.57-97, Weinham: VCH-Verlagsgesellschaft (1985)); cumulatively, these three organisms presently account for the approximately 250,000 tons of L-lysine produced annually.

5

10

Given the economic importance of L-lysine production by fermentive processes, it would be beneficial to increase the total amount produced while simultaneously decreasing production costs. To that end, the biochemical pathway for L-lysine synthesis has been intensively investigated in Corynebacterium (recently reviewed by Sahm et al., Ann. N. Y. Acad. Sci. 782: 25-39 (1996)). Entry into the lysine pathway begins with L-aspartate (see Figure 1), which itself is produced by transamination of oxaloacetate. A special feature of C. glutamicum is its ability to convert the lysine intermediate piperideine 2,6-dicarboxylate to diaminopimelate by two different routes, i.e. by reactions involving succiny lated intermediates or by the single reaction of diaminopimelate dehydrogenase. Overall, carbon flux into the pathway is regulated at two points: first, through feedback inhibition of aspartate kinase by the levels of both Lthreonine and L-lysine; and second through the control of the level of dihydrodipicolinate synthase. Therefore, increased production of L-lysine may be obtained in Corynebacteria by deregulating and increasing the activity of these two enzymes.

20

15

In addition to the biochemical pathway leading to L-lysine synthesis, recent evidence indicates that consideration of lysine transport out of cells into the media is another condition to be considered in the development of lysine over-producing strains of *C. glutamicum*. Studies by Krämer and colleagues indicate that passive transport out of the cell, as the result of a leaky membrane, is not the sole explanation for lysine efflux; their data suggest a specific carrier with the following properties: (1) the transporter possesses a rather high Km value for lysine (20mM); (2) the transporter is an OH symport system (uptake systems are H antiport systems); and (3) the transporter is positively charged, and membrane potential stimulates secretion (S. Bröer and R. Krämer, *Eur. J. Biochem. 202*: 137-143 (1991).

30

10

15

20

Several fermentation processes utilizing various strains isolated for auxotrophic or resistance properties are known in the art for the production of L-lysine: U.S. Patent No. 2,979,439 discloses mutants requiring homoserine (or methionine and threonine); U.S. Patent No. 3,700,557 discloses mutants having a nutritional requirement for threonine, methionine, arginine, histidine, leucine, isoleucine, phenylalanine, cystine, or cysteine; U.S. Patent No. 3,707,441 discloses a mutant having a resistance to a lysine analog; U.S. Patent No. 3,687,810 discloses a mutant having both an ability to produce L-lysine and a resistance to bacitracin, penicillin G or polymyxin; U.S. Patent No. 3,708,395 discloses mutants having a nutritional requirement for homoserine, threonine, threonine and methionine, leucine, isoleucine or mixtures thereof and a resistance to lysine, threonine, isoleucine or analogs thereof; U.S. Patent No. 3,825,472 discloses a mutant having a resistance to a lysine analog; U.S. Patent No. 4,169,763 discloses mutant strains of Corynebacterium that produce L-lysine and are resistant to at least one of aspartic analogs and sulfa drugs; U.S. Patent No. 5,846,790 discloses a mutant strain able to produce L-glutamic acid and L-lysine in the absence of any biotin action-surpressing agent; and U.S. Patent No. 5,650,304 discloses a strain belonging to the genus Corynebacterium or Brevibacterium for the production of L-lysine that is resistant to 4-N-(D-alanyl)-2,4-diamino-2,4-dideoxy-L-arabinose 2,4-dideoxy-L-arabinose or a derivative thereof.

More recent developments in the area of L-lysine fermentive production in *Corynebacteria* involve the use of molecular biology techniques to augment lysine production. The following examples are provided as being exemplary of the art: U. S. Patent Application Nos. 4,560,654 and 5,236,831 disclose an L-lysine producing mutant strain obtained by transforming a host *Corynebacterium* or *Brevibacterium* microorganism which is sensitive to S-(2-aminoethyl)-cysteine with a recombinant DNA molecule wherein a DNA fragment conferring both resistance to S-(2-aminoethyl)-cysteine and lysine producing ability is inserted into a vector DNA; U. S. Patent Application No. 5,766,925 discloses a mutant strain produced by integrating a gene coding for aspartokinase, originating from coryneform bacteria, with desensitized feedback inhibition by L-lysine and

30

10

15

20

25

L-threonine, into chromosomal DNA of a *Coryneform* bacterium harboring leaky type homoserine dehydrogenase or a *Coryneform* bacterium deficient in homoserine dehydrogenase gene.

In addition to L-lysine, Corynebacterium and related organisms are useful for the production of other amino acids, for example the branched chain amino acids L-leucine, L-isoleucine and L-valine. The biochemical pathways leading to branched chain amino acid biosynthesis are also well studied. Carbon flux into the aspartate pathway may be funneled onto the production of L-lysine or L-threonine, which may be utilized for the production of L-isoleucine (Figure 1B). L-isoleucine is produced from L-threonine in five reactions; the enzymes catalyzing these reactions include: (1) threonine dehydratase; (2) acetohydoxy acid synthase; (3) isomeroreductase; (4) dihydroxy acid dehydratase; and (5) transaminase B. Threonine dehydratase is the only enzyme in this pathway unique to isoleucine synthesis; the other four enzymes are also utilized in the production of the other branched chain amino acids, valine and leucine. Carbon flux from threonine to isoleucine is controlled by threonine dehydratase and acetohydoxy acid synthase (AHAS). With the cloning of genes encoding the enzymes of the isoleucine pathway (ilvA, ilvB, ilvC, ilvD and ilvE) in Corynebacterium (C. Cordes et al., Gene 112: 113-116 (1992); B. Möckel et al., J. Bacteriology 174: 8065-8072 (1992); and C. Keilhauer et al., J. Bacteriology 175: 5595-5603 (1993)), recombinant DNA techniques may be applied to generate novel strains.

Improvements in the production of the amino acids L-isoleucine, L-leucine and L-valine by increasing the activity of enzymes in the branched chain amino acid biosynthetic pathway have been described. Additionally, improvements in the production of branched chain amino acids by improving the acetohydroxy acid synthase (AHAS) activity encoded by the ilvBN operon have been described. (see generally H. Sahm *et al.*, *Ann. N. Y. Acad. Sci.* 782: 25-39 (1996)).

Exemplary processes for the production of branched chain amino acids include the following: U.S. Patent No. 5,188,948 discloses a fermentation process for producing L-valine utilizing a microorganism is resistant to a polyketide: U.S.

10

15

20

25

Patent No. 5,521,074 discloses a process for producing L-valine utilizing a microorganism which belongs to the genus Corynebacterium or Brevibacterium, which exhibits a) an ability to produce L-valine, b) resistance to L-valine in a medium containing acetic acid as a sole carbon source, and c) sensitivity to a pyruvic acid analog in a medium containing glucose as a sole carbon source; U.S. Patent No. 4,601,983 discloses a genetic sequence coding for the production of a protein having the activity of homoserine dehydrogenase capable of replication in coryneform bacteria and used to produce L-threonine and L-isoleucine; U.S. Patent No. 4,442,208 discloses a fermentation process for the production of L-isoleucine utilizing a Brevibacterium or Corynebacterium strain obtained by recombinant DNA techniques that is resistant to α -amino- β -hydroxy valeric acid; U.S. Patent No. 4,656,135 discloses a process for producing L-isoleucine, which comprises culturing a microorganism belonging to the genus Brevibacterium or the genus Corynebacterium which has a methyllysine resistance or α-ketomalonic acid resistance and which is capable of producing L-isoleucine in a liquid medium, and obtaining the accumulated L-isoleucine from said medium; U.S. Patent No. 5,118,619 discloses a method for the fermentative production of L-isoleucine from D,L-α-hydroxybutyrate by means of mutants that utilize D-lactate; U.S. Patent No. 5,763,231 discloses a process for producing L-leucine, which includes incubating a strain of the genus Corynebacterium, Escherichia, Brevibacterium, or Microbacterium in a culture medium and reacting the resulting cells with saccharides and acetic acid or its salt to form and accumulate L-leucine in the reaction solution; and U.S. Patent No. 3,970,519 discloses strains that resist feedback inhibition by leucine or its analogs and require at least one of isoleucine, threonine or methionine as a growth nutriment to produce L-leucine.

Improvements in the production of amino acids by decreasing the production of valine have not been described.

Improvements in the production of amino acids by decreasing AHAS activity have not been described.

Summary of the Invention

It is an object of the present invention to provide microorganisms that are capable of converting glucose to amino acids other than L-isoleucine, L-leucine and L-valine with greater efficiency than the parent strain. The efficiency of conversion may be quantified by the formula:

[(g amino acid produced/ g dextrose consumed)*100] = % Yield and expressed as yield from dextrose.

In one embodiment, the invention provides microorganisms that are made auxotrophic for the synthesis of one or more branched chain amino acids by mutagenesis and selected for their ability to produce higher percent yields of the desired amino acid than the parental strain

In a more specific embodiment of the invention provides microorganisms obtained by subjecting a parental strain to random chemical mutagenesis, isolating a mutagenized variant that is auxotrophic for branched chain amino acid synthesis and selecting variants that are capable of converting glucose to amino acids other than L-isoleucine, L-leucine and L-valine with greater efficiency than the parent strain. Another specific embodiment of the invention provides microorganisms obtained by utilizing rDNA methodologies to introduce a change (*i.e.*, a mutation) in the nucleic acid sequence of the ilvBN operon, isolating a mutagenized variant that is auxotrophic or bradytrophic for branched chain amino acid synthesis and selecting variants that are capable of converting glucose to amino acids other than L-isoleucine, L-leucine and L-valine with greater efficiency than the parent strain.

In a preferred embodiment, the microorganisms of the invention produce L-lysine. Another preferred embodiment of the invention is drawn to Corynebacterium microorganisms, or Brevibacterium microorganisms, and particularly preferred microorganisms are Corynebacterium or Brevibacterium microorganisms that produce L-lysine. In a most preferred embodiment, the microorganisms have the identifying characteristics of NRRL No. B-30149 (also known as LC10) or NRRL No. B-30150 (also known as BF100-1030), strains

10

5

15

20

deposited on June 29, 1999 with the Agricultural Research Service Culture Collection (NRRL), 1815 North University Street, Peoria, Illinois 61604 USA.

Another object of the invention provides methods to increase the production of an amino acid by mutagenizing a parental strain, selecting cells auxotrophic for the synthesis of one or more branched chain amino acids and selecting branched chain amino acid auxotrophs that produce a higher percent yield from dextrose of the desired amino acid than the parental strain.

In a preferred embodiment, the method is drawn to increasing the yield from dextrose of the amino acid L-lysine obtained by culturing *Corynebacterium* which, through random chemical mutagenesis or recombinant DNA (rDNA) technology, is made to be auxotrophic or bradytrophic for one or more of the branched chain amino acids leucine, isoleucine and valine.

In one specific embodiment, branched chain amino acid auxotrophy is the result of chemical mutangensis of *Corynebacterium*. In an alternative specific embodiment, branched chain amino acid auxotrophy is the result of mutatgenesis of the ilvBN operon by rDNA techniques.

Another object of the invention is to provide processes for the production of an amino acid from microorganisms that are capable of converting glucose to amino acids other than L-isoleucine, L-leucine and L-valine with greater efficiency than the parent strain.

In one embodiment, the invention provides a process for producing an amino acid comprising culturing in a medium a microorganism obtained by mutagenizing a parent strain to be auxotrophic or bradytrophic for branched chain amino acid synthesis and selecting variants that are capable of converting glucose to amino acids other than L-isoleucine, L-leucine and L-valine with greater efficiency than the parent strain.

In a preferred embodiment for the process, the microorganism utilized in fermentation is obtained by subjecting the parent strain to random chemical mutagenesis, isolating a mutagenized variant that is auxotrophic for branched chain amino acid synthesis and selecting variants that are capable of converting glucose to amino acids other than L-isoleucine, L-leucine and L-valine with

10

5

15

20

25

greater efficiency than the parent strain. In another preferred embodiment for the process, the microorganism utilized in fermentation is obtained by altering (i.e., introducing a mutation) the nucleotide sequence of the ilvBN operon by rDNA methodology, isolating a mutagenized variant that is auxotrophic or bradytrophic for branched chain amino acid synthesis and selecting variants that are capable of converting glucose to amino acids other than L-isoleucine, L-leucine and L-valine with greater efficiency than the parent strain.

It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide further explanation of the invention as claimed.

Brief Description of the Figures

Figure 1. (A) A schematic presentation of the biochemical pathway leading to L-lysine production in *Corynebacterium*; (B) A schematic presentation of the biochemical pathway leading to L-isoleucine production in *Corynebacterium*.

Figure 2. A-B) Presentation of the nucleotide sequence of the ilvBN operon of *Corynebacterium* (SEQ ID NO:1); C) Presentation of the amino acid sequence of the ilvBN operon of *Corynebacterium* (SEQ ID NO:2).

Figure 3. A-B) Presentation of the nucleotide sequence for the ilvBN deletion mutant in the plasmid pAL203 Δ (SEQ ID NO:3); C) Presentation of the amino acid sequence for the ilvBN deletion mutant in the plasmid pAL203 Δ (SEQ ID NO:4).

Figure 4. A-C) Presentation of the nucleotide sequence of the pRV1B5 allele (SEQ ID NO:5); D) Presentation of the amino acid sequence of the pRV1B5 allele (SEQ ID NO:6).

5

Detailed Description of the Preferred Embodiments

1. Definitions

In order to provide a clear and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided.

Auxotroph: As used herein, the term auxotroph refers to a strain of microorganism requiring for growth an external source of a specific metabolite that cannot be synthesized because of an acquired genetic defect.

Amino Acid Supplement: As used herein, the term "Amino Acid Supplement" refers to an amino acid required for growth and added to minimal media to support auxotroph growth.

Bradytroph: As used herein, the term bradytroph refers to a strain of microorganism that exhibits retarded growth in the absence of an external source of a specific metabolite. A bradytroph can synthesize the metabolite, but because of an acquired genetic defect, the rate of synthesis is less than the parent strain's rate of synthesis of the same metabolite.

Branched Amino Acid: As used herein, the term refers to those amino acids in which the R group possesses a branched carbon structure, such as leucine, isoleucine and valine.

Carbon Flux: As used herein, the term refers to the movement of carbon between amphibolic, catabolic and/or anabolic biochemical pathways of an organism.

Chromosomal Integration: As used herein, the term refers to the insertion of an exogeneous DNA fragment into the chromosome of a host organism; more particularly, the term is used to refer to homologous recombination between an exogenous DNA fragment and the appropriate region of the host cell chromosome.

10

5

15

20

High Yield Derivative: As used herein, the term refers to strain of microorganism that produces a higher yield from dextrose of a specific amino acid when compared with the parental strain from which it is derived.

Mutation: As used herein, the term refers to a single base pair change, insertion or deletion in the nucleotide sequence of interest.

Operon: As used herein, the term refers to a unit of bacterial gene expression and regulation, including the structural genes and regulatory elements, in DNA. Examples of regulatory elements that are encompassed within the operon include, but are not limited to, promoters and operators.

Parental Strain: As used herein, the term refers to a strain of microorganism subjected to some form of mutagenesis to yield the microorganism of the invention.

Percent Yield From Dextrose: As used herein, the term refers to the yield of amino acid from dextrose defined by the formula [(g amino acid produced/g dextrose consumed)*100] = % Yield.

Phenotype: As used herein, the term refers to observable physical characteristics dependent upon the genetic constitution of a microorganism.

Relative Growth: As used herein, the term refers to a measurement providing an assessment of growth by directly comparing growth of a parental strain with that of a progeny strain over a defined time period and with a defined medium.

Mutagenesis: As used herein, the term refers to a process whereby a mutation is generated in DNA. With "random" mutatgenesis, the exact site of mutation is not predictable, occurring anywhere in the genome of the microorganism, and the mutation is brought about as a result of physical damage caused by agents such as radiation or chemical treatment. rDNA mutagenesis is directed to a cloned DNA of interest, and it may be random or site-directed.

10

5

15

20

2. Microorganisms of the Invention Based On Decreased Carbon Flow To Branched Chain Amino Acid Synthesis And Increased Production of NonBranched Amino Acids

The invention provides generally for the creation of microorganisms that are auxotrophic for the branched chain amino acid synthesis in order to direct carbon flux to non-branched chain amino acid synthesis. More specifically, by selecting for a specific auxotrophic phenotype requiring one or more of the branched chain amino acids leucine, isoleucine or valine (e.g., isoleucine and valine) or designing mutations in the ilvBN operon that decrease the flow of carbon to isoleucine, leucine and valine synthesis, carbon flux in the system may then become available for other metabolic pathways (e.g., L-lysine synthesis).

In one specific embodiment, the invention provides a microorganism C that produces amino acid X, wherein said microorganism C is obtained by the following method:

- (a) selecting a parental microorganism A that produces said amino acid from dextrose in percent yield Y;
- (b) mutagenizing said parental microorganism A to produce microorganism B by a method selected from the group consisting of:
 - (i) random chemical mutagenesis; and
 - (ii) rDNA mutagenesis of the ilvBN operon;
- (c) selecting from step (b) at least one mutagenized microorganism B that is auxotrophic or bradytrophic for one or more of the branched chain amino acids leucine, isoleucine and valine; and
- (d) selecting from step (c) at least one microorganism C which produces said amino acid X from dextrose in percent yield Z, wherein said percent yield Z is greater than said percent yield Y.

The percent yield from dextrose is preferably calculated using the formula [(g amino acid/L/(g dextrose consumed/L)]*100.

15

10

5

20

Parental microorganisms may be selected from any microorganism known in the art that can produce amino acid X. Particularly favored parental microorganisms *Corynebacterium* and *Brevibacterium*.

The strains of the invention may be prepared by any of the methods and 5 techniques known and available to those skilled in the art. Illustrative examples of suitable methods for constructing the inventive bacterial strains include but are not limited to the following: mutagenesis using suitable agents such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG); gene integration techniques, mediated by transforming linear DNA fragments and homologous recombination; and 10 transduction mediated by a bacteriophage. These methods are well known in the art and are described, for example, in J.H. Miller, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1972); J.H. Miller, A Short Course in Bacterial Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1992); M. Singer and P. Berg, 15 Genes & Genomes, University Science Books, Mill Valley, California (1991); J. Sambrook, E.F. Fritsch and T. Maniatis, Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989); P.B. Kaufman et al., Handbook of Molecular and Cellular Methods in Biology and Medicine, CRC Press, Boca Raton, Florida (1995); Methods in 20 Plant Molecular Biology and Biotechnology, B.R. Glick and J.E. Thompson, eds., CRC Press, Boca Raton, Florida (1993); and P.F. Smith-Keary, Molecular Genetics of Escherichia coli, The Guilford Press, New York, NY (1989).

A. Construction of Branched Chain Amino Acid Auxotrophs by Random Mutagenesis

25

One specific preferred embodiment of the invention provides that modification of an enzymatic step common to L-isoleucine, L-leucine and L-valine biosynthesis can increase the percent yield of L-lysine from dextrose.

In a most preferred embodiment, the invention provides for the production of microorganisms that are auxotrophic for branched chain amino acid synthesis by means of random mutagenesis of a parental strain followed by selection of the

10

15

20

specific phenotype. The parental strain chosen for mutagenesis may be any strain known to produce the amino acid of interest. Preferred organisms include Corynebacterium strains and Brevibacterium strains, and most preferred organisms include Corynebacterium strains and Brevibacterium strains that produce L-lysine.

The parental strain may be mutagenized using any random mutagenesis technique known in the art, including, but not limited to, radiation and chemical procedures. Particularly preferred is random chemical mutagenesis, and most preferable is the alkylating agent method described by J. H. Miller (J. H. Miller, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory (1972).

By way of example, chemical mutagenesis was conducted as follows. A culture of lysine-producing Corynebacterium strain was grown in rich medium at 30°C up to an optical density of 6.0. Cells were washed with minimal medium and resuspended in minimal medium containing 100 micrograms per mL of NTG. Cells were exposed to the mutagen for 30 minutes at 30°C. Cells were washed with minimal medium and plated onto rich medium. Colonies from rich medium were replica-plated to rich and minimal medium. Colonies that grew on rich medium but did not grow on minimal medium were classified as auxotrophs. Auxotroph mutants were replica-plated onto minimal medium and minimal medium containing 10 mM L-isoleucine and 10 mM L-valine. Colonies that were rescued by the isoleucine and valine were classified as valine auxotrophs. Strain B4B is a valine auxotroph generated by chemical mutagenesis.

B. Construction of Branched Chain Amino Acid Auxotrophs by Mutagenesis Through rDNA Methodology

strain to produce mutant strains that are auxotrophic for branched chain amino

Another specific preferred embodiment of the invention utilizes recombinant DNA technology to effect *in vitro* and *in vivo* mutagenesis of cloned DNA sequences that encode proteins important for the biosynthesis of branched chain amino acids. The mutated DNA may then be used to modify the parental

10

15

20

acid synthesis and that produce a higher yield from dextrose of non-branched chain amino acids than the parental strain.

In one specific preferred embodiment, the cloned DNA of interest may be mutated through recombinant DNA technology by any means known in the that art. As one skilled in the art would know, the mutations in the cloned DNA may constitute single nucleotide changes (point mutations), multiple nucleotide changes, nucleotide deletions or insertions. General methods for recombinant DNA technology are known to those skilled in the art and may be found in a number of common laboratory manuals that describe fundamental techniques, such as nucleic acid purification, restriction enzyme digestion, ligation, gene cloning, gene sequencing, polymerase chain amplification (PCR) of gene sequences, and the like. (see e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989); Current Protocols in Molecular Biology. Ausubel et al. eds., John Wiley & Sons, New York, (1994); PCR Protocols, Innis et al., eds., Academic Press, Inc., New York, pp. 407-415 (1990)).

In addition, references that specifically teach *in vitro* mutatgenesis of cloned DNA are known to those skilled in the art. For example, strategies such as site-directed mutatgenesis, oligonucleotide-directed mutatgenesis, linker scanning mutatgenesis, random chemical mutatgenesis *in vitro*, cassette mutatgenesis, PCR mutatgenesis and others are detailed in *Directed Mutagenesis:* A Practical Approach, M. J. McPherson, ed., Oxford University Press, New York, (1991).

In another specific preferred embodiment, the cloned DNA of interest may be mutated *in vivo* in a host cell. This type of "*in vivo* mutagenesis" includes processes of generating random mutations in any cloned DNA of interest by the propagation of the DNA in a strain of *E. coli* that carries mutations in one or more of the DNA repair pathways. These "mutator" strains have a higher random mutation rate than that of a wild-type parent. Propagating the DNA in one of these strains will generate random mutations within the DNA. Systems designed to accomplish this are known to those skilled in the art and are available

commercially. For example, Stratagene, Inc. provides a system utilizing the XL1 Red Strain of *E. coli* which has had its DNA repair genes (MutH, MutL and MutS) deleted such that many different mutations occur in a short time. Up to 10,000 mutations may take place within a 30 hour time span such that an entire mutated DNA library may be prepared from mutated DNA by procedures known in the art.

The cloned DNA selected for mutation may be any sequence known in the art to be important for branched chain amino acid synthesis, including but not limited to, sequences encoding one or more enzymes important for synthesis or one or more protein products important for transport and excretion. Most preferred is the cloned sequence for the ilvBN operon of *Corynebacterium* or *Brevibacterium*. *Corynebacterium* genes involved in branched chain amino acid synthesis have been cloned; for example, gene sequences are available for the isoleucine pathway (ilvA, ilvB, ilvC, ilvD and ilvE) (C. Cordes *et al.*, *Gene* 112: 113-116 (1992); B. Möckel *et al.*, *J. Bacteriology* 174: 8065-8072 (1992); and C. Keilhauer *et al.*, *J. Bacteriology* 175: 5595-5603 (1993)).

L-isoleucine is produced from L-threonine in five reactions; the enzymes catalyzing these reactions include: (1) threonine dehydratase (ilvA); (2) acetohydoxy acid synthase (ilvBN); (3) isomeroreductase (ilvC); (4) dihydroxy acid dehydratase (ilvD); and (5) transaminase B (ilvE). Threonine dehydratase is the only enzyme in this pathway unique to isoleucine synthesis; the other four enzymes are also utilized in the production of the other branched chain amino acids, valine and leucine. The enzymatic pathway involved in isoleucine biosynthesis in *Corynebacterium* strains is presented in Figure 2.

25

30

5

10

15

20

Acetohydroxy acid synthase (AHAS) and isomeroreductase (IR) catalyze subsequent reactions in the flux of metabolites towards isoleucine, valine, leucine, and pantothenate. As in other bacteria, the AHAS of Corynecacterium strains is encoded by two genes, ilvB and ilvN. Gene disruption verified that these genes encode the single AHAS activity in C. glutamicum (Keilhauer, C., et al., J. Bacteriology 175:5595-5603 (1973)). Three transcripts of 3.9, 2.3, and 1.1 kb were identified in vivo by Northern Blot analysis, which correspond to ilvBNC,

ilvNC, and ilvC messages, respectively. The ilvC transcript (encoding IR) is the most abundant transcript from the ilv operon of *C. glutamicum*. Additional analysis indicates that three promoters are active in this operon; the steady-state levels of the ilvBNC and ilvNC messages contribute significantly to the total activity of the single AHAS.

In a most preferred invention embodiment, a mutation may be generated by way of restriction enzyme digestion to create a deletion in the cloned ilvBN operon DNA sequence. The mutated ilvBN sequence may then be sustituted for the wild type sequence by homologous recombination and screened for branched chain amino acid auxotrophy.

Another embodiment of the invention is drawn to a microorganism Corynebacterium having the following that is auxotrophic for the one or more of the branched chain amino acids isoleucine, leucine and valine and produces a percent yield from dextrose of the an amino acid of interest that is greater than the parental strain percent yield. In a particularly favored embodiment, the amino acid produced is L-lysine.

Other highly preferred embodiments of the invention are drawn to microorganisms having substantially all of the characteristics of NRRL Deposit No. B-30149 or NRRL Deposit No. B-30150.

3. Methods of Increasing the Production of an Amino Acid

A further object of the invention provides methods to increase the production of an amino acid. The invention provides generally for a method to increase the production of an amino acid X, comprising:

- (a) selecting a parental microorganism A that produces said amino acid from dextrose in percent yield Y;
- (b) mutagenizing said parental microorganism A to produce microorganism B by a method selected from the group consisting of:
 - (i) random chemical mutagenesis; and

5

10

15

20

- (ii) rDNA mutagenesis of the ilvBN operon;
- (c) selecting from step (b) at least one mutagenized microorganism B that is auxotrophic for one or more of the branched chain amino acids leucine, isoleucine and valine; and

(d) selecting from step (c) at least one microorganism C which produces said amino acid X from dextrose in percent yield Z, wherein said percent yield Z is greater than said percent yield Y.

In one particular preferred embodiment, any strain known in the art may be selected as a parental strain that produces the amino acid of interest at a determined percent yield from dextrose. The percent yield from dextrose may be easily calculated using the following formula: [(g amino acid/L / (g dextrose consumed/L)] *100.

After selecting the organism and determining the percent yield from dextrose of the amino acid, the microorganism is preferably subjected to mutagenesis either by random mutagenesis techniques directed at the entire genome of the organism or by rDNA techniques directed towards cloned DNA of interest. Regardless of the particular method of mutagenesis employed, mutated organisms are screened and selected on the basis of auxotrophy for branched chain amino acid synthesis. Auxotrophs selected may then be screened to determine which strains produce a higher percent yield of the desired amino acid from dextrose than the parental strain.

Various embodiments of the invention include methods to increase the production of an amino acid of interest from the organisms *Corynebacterium*, *Brevibacterium*, and *E. coli*. Additionally, depending upon the particular embodiment, the invention provides methods to increase the production of non-branched amino acids, such as glycine; alanine; methionine; phenylalanine; tryptophan; proline; serine; threonine; cysteine; tyrosine; asparagine; glutamine; aspartic acid; glutamic acid; lysine; arginine; and histidine.

In a favored embodiment, the invention provides methods to increase nonbranched chain amino acid production by creating auxotrophs for branched chain amino acid synthesis and diverting carbon flux from the synthesis of leucine,

5

10

15

20

25

isoleucine and valine. A particularly favored embodiment is drawn to a method of increasing the production of an amino acid by selecting from a mutagenized parental strain a strain that is auxotrophic for valine and isoleucine synthesis.

The invention further provides various preferred embodiments for methods to increase the production of an amino acid wherein the parental strain may be mutagenized either by random mutagenesis techniques (e.g., radiation or chemical mutagenesis) or mutagenesis of the ilvBN operon by rDNA techniques. In one particular preferred embodiment, the parental strain may be mutagenized by random chemical mutagenesis. In another particular preferred embodiment, the parental strain is mutagenized by rDNA techniques directed at the cloned ilvBN operon nucleotide sequence.

4. Processes for the Production of an Amino Acid

A further object of the invention provides processes for the production of an amino acid. The invention provides generally for a process for producing an amino acid X comprising:

- (a) culturing a microorganism C in a medium, wherein said microorganism C is obtained by the following method:
 - (i) selecting a parental microorganism A that produces said amino acid from dextrose in percent yield Y;
 - (ii) mutagenizing said parental microorganism A to produce microorganism B by a method selected from the group consisting of:
 - (1) random chemical mutagenesis; and
 - (2) rDNA mutagenesis of the ilvBN operon;

(iii) selecting from step (b) at leat one mutagenized microorganism B that is auxotrophic for one or more of the branched chain amino acids leucine, isoleucine and valine; and

20

15

5

10

- (iv) selecting from step (c) at least one microorganism C which
 produces said amino acid X from dextrose in percent yield
 Z, wherein said percent yield Z is greater than said percent
 yield Y; and
- (b) recovering said amino acid X that is produced from said microorganism C.

Preferred embodiments of the invention are drawn to processes in which the cultured microorganism is selected from the group that includes Corynebacterium, Brevibacterium, and E. coli. Particularly preferred are process drawn to the organisms of the genus Corynebacterium. Microorganisms selected for the processes of the invention are those that produce an amino acid of interest, particularly non-branched chain amino acids. More particularly preferred microorganisms are microorganisms that produce glycine; alanine; methionine; phenylalanine; tryptophan; proline; serine; threonine; cysteine; tyrosine; asparagine; glutamine; aspartic acid; glutamic acid; lysine; arginine; and histidine. The level of production of the amino acid of choice may conveniently determined by the following formula to calculate the percent yield from dextrose: [(g amino acid/L/(g dextrose consumed/L)]*100.

Microorganisms used in the processes of the invention are preferably obtained by mutatgenesis of the chosen parental strain. Preferred embodiments of the invention include processes in which the chosen parental strains are subjected either to random mutagenesis directed at the entire genome or to rDNA mutagenesis of cloned DNA of interest.

Particularly preferred embodiments of the invention wherein the parental strain is subjected to random mutagenesis include but are not limited to, mutagenesis by radiation treatment or chemical treatment. A more particularly preferred embodiment is drawn to random chemical mutagenesis of the parental strain.

Another particularly preferred embodiment of the invention provides for rDNA mutagenesis of the parental strain. A more particularly preferred embodiment is drawn to rDNA mutagenesis of the ilvBN operon *in vitro* or *in*

5

10

15 .

20

25

vivo. Mutated forms of the ilvBN operon, or fragments thereof, may then be substituted for wild-type ilvBN operon sequence through homologous recombination techniques that are well known to those skilled in the art (see Example 6).

5

However the selected parental strains or cloned DNA sequences are mutagenized, the resultant progeny are screened and selected for auxotrophy for branched chain amino acid synthesis (i.e., leucine, isoleucine or valine). The selection of such mutants is well with in the skill of those in the art. A particularly preferred embodiment is drawn to strains that are auxotrophic for valine and isoleucine biosynthesis.

10

Ultimately, selection of the microorganisms of the processes of the invention is dependent upon production of the amino acid of choice. Utilizing the formula [(g amino acid/L / (g dextrose consumed/L)] *100 to determine the percent yield from dextrose, the desired microorganisms are selected on the basis of having a higher percent yield from dextrose of the amino acid of choice than the parental strain.

15

Other embodiments of the invention are drawn to processes that vary by way of the specific method of culturing the microorganisms of the invention. Thus, a variety of fermentation techniques are known in the art which may be employed in processes of the invention drawn to the production of amino acids.

20

Illustrative examples of suitable carbon sources include, but are not limited to: carbohydrates, such as glucose, fructose, sucrose, starch hydrolysate, cellulose hydrolysate and molasses; organic acids, such as acetic acid, propionic acid, formic acid, malic acid, citric acid, and fumaric acid; and alcohols, such as glycerol.

25

Illustrative examples of suitable nitrogen sources include, but are not limited to: ammonia, including ammonia gas and aqueous ammonia; ammonium salts of inorganic or organic acids, such as ammonium chloride, ammonium phosphate, ammonium sulfate and ammonium acetate; and other nitrogencontaining, including meat extract, peptone, corn steep liquor, casein hydrolysate, soybean cake hydrolysate and yeast extract.

10

15

20

Generally, amino acids may be commercially produced from the invention in fermentation processes such as the batch type or of the fed-batch type. In batch type fermentations, all nutrients are added at the beginning of the fermentation. In fed-batch or extended fed-batch type fermentations one or a number of nutrients are continuously supplied to the culture, right from the beginning of the fermentation or after the culture has reached a certain age, or when the nutrient(s) which are fed were exhausted from the culture fluid. A variant of the extended batch of fed-batch type fermentation is the repeated fed-batch or fill-and-draw fermentation, where part of the contents of the fermenter is removed at some time, for instance when the fermenter is full, while feeding of a nutrient is continued. In this way a fermentation can be extended for a longer time.

Another type of fermentation, the continuous fermentation or chemostat culture, uses continuous feeding of a complete medium, while culture fluid is continuously or semi-continuously withdrawn in such a way that the volume of the broth in the fermenter remains approximately constant. A continuous fermentation can in principle be maintained for an infinite time.

In a batch fermentation an organism grows until one of the essential nutrients in the medium becomes exhausted, or until fermentation conditions become unfavorable (e.g. the pH decreases to a value inhibitory for microbial growth). In fed-batch fermentations measures are normally taken to maintain favorable growth conditions, e.g. by using pH control, and exhaustion of one or more essential nutrients is prevented by feeding these nutrient(s) to the culture. The microorganism will continue to grow, at a growth rate dictated by the rate of nutrient feed. Generally a single nutrient, very often the carbon source, will become limiting for growth. The same principle applies for a continuous fermentation, usually one nutrient in the medium feed is limiting, all other nutrients are in excess. The limiting nutrient will be present in the culture fluid at a very low concentration, often unmeasurably low. Different types of nutrient limitation can be employed. Carbon source limitation is most often used. Other examples are limitation by the nitrogen source, limitation by oxygen, limitation by a specific nutrient such as a vitamin or an amino acid (in case the microorganism is

30

auxotrophic for such a compound), limitation by sulphur and limitation by phosphorous.

The amino acid may be recovered by any method known in the art. Exemplary procedures are provided in the following: Van Walsem, H.J. & Thompson, M.C., *J. Biotechnol.* 59:127-132 (1997), and U.S. Patent No. 3,565,951, both of which are incorporated herein by reference.

All patents and publications referred to herein are expressly incorporated by reference.

Examples

10

15

5

Example 1

Chemical Mutagenesis and Selection of Valine Auxotrophs

A lysine producing Corynebacterium strain BF100 was mutagenized with an alkylating agent as described in Miller, J.H. 1972 (Miller, J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor Laboratory). Colonies were replical plated onto minimal medium (MM). Those that did not grow on MM but grew on complete medium (CM) were identified as auxotrophs. Those auxotrophs that were capable of growth on MM when supplemented with L-valine and L-isoleucine were selected for lysine yield analysis.

20

MM consisted of 20 g D-glucose, 10 g ammonium sulfate, 2.5 g urea, 1 g KH2PO4, 0.4 g MgSO4.7H20, 1 g NaCl, 0.01 g MnSO4.H20, 0.01 g FeSO4.7H20, 10 mg pantothenate, 50 mg biotin, 200 mg thiamine, and 50 mg niacinamide per liter at pH 7.2. When L-amino acids were used to supplement MM, 50 mg/L of each was used. MMIV was MM with isoleucine and valine added.

25

The growth pattern of a parent strain and a high yield-derivative produced by chemical mutagenesis on minimal agar plates supplemented with three amino acids is presented in Table 1. Supplements are at 50mg/L L-amino acids. Growth is presented as relative colony size after 3 days at 30C.

Example 2

Production of Branched Chain Auxotrophs with rDNA Technology

1. Preparation of a Deleted ilvB Gene

The ilvBN operon of Corynebacterium lactofermentum (ATCC 21799) was amplified by PCR and cloned into pCR-Script to make pAL203. The ilvB gene contains a 390 bp region separated by 2 EcoNI restriction sites. EcoNI does not cut the plasmid pCR-Script. The ilvB deletion allele was designed by cutting the plasmid pAL203 with EcoNI followed by selfligation to yield pAL203delta.

2. Homologous Recombination of a Modified ilvBN Allele Into the Corynebacterium Chromosome

A vector for allele exchange by double crossover was constructed as described by Maloy et al. 1996 (Maloy S.R., Stewart V. J., and Taylor R. K. 1996 Genetic Analysis of Pathogenic Bacteria: A Laboratory Manual, Cold Spring Harbor Press). ATCC 37766 was the source of pK184 a plasmid that replicates in *E. coli* but not in *Corynebacterium*. A sacB gene was subcloned into its SspI site to give pJC3. pJC3 cannot replicate in *Corynebacterium*. Any kanamycin resistant colonies will have the vector integrated into the chromosome by homologous recombination at a site within the cloned gene. Lethal expression of the sacB gene on the integrated vector prevents growth in the presence of sucrose. Growth in the presence of sucrose requires a second cross over to occur along an homologous region of the cloned insert. If the first and second crossovers flank a modification (deletion, site mutation), then the modified allele of ilvBN will be exchanged for the allele present on the chromosome of the host strain.

The modified allele of the ilvBN operon from pAL203 Δ was subcloned into the integration vector pJC3 and electroporated into the BF100 strain of Corynebacterium and plated on rich medium plates lacking sucrose but having kanamycin (DMK). Colonies were picked and grown in rich broth lacking sucrose and kanamycin for 48 hrs. Cultures were streaked onto rich plates lacking

10

5

15

20

kanamycin but having sucrose. Single colonies were picked from sucrose plates and replica plated on DMK, SM1, MM and MMIV. Strains that had no kanamycin resistance, could grow on sucrose, and could not grow on MM but could grow on MMIV were selected for shake flask experiments. LC10 is a BF100-derived auxotroph.

The growth pattern of a parent strain and a high yield-derivative produced with recombinant DNA methods on a series of minimal agar plates supplemented with three amino acids is presented in Table 2. Supplements are at 50mg/L L-amino acids. Growth is presented as relative colony size after 3 days at 30C.

Example 3

Shake Flask Determination of L-lysine Yield From Valine Auxotroph Strain
Produced by Random Chemical Mutagenesis

B4B inoculum was prepared by picking a single colony from an SM1 plate and transferring to SM1 broth. SM1 was made by combining 50g sucrose, 3 g K2HP04, 3 g urea, 0.5 g MgSO4.7H20, 20 g polypeptone, 5 g beef extract, 0.9 mg D-biotin, 3 mg thiamine, 125 mg niacinamide, 0.5 g L-methionine, 0.25 g L-threonine, 0.5 g Lalanine per liter of water and adjusting the pH to 7.3. Plates included 20 g/L agar. After 16 hr growth of cultures in SM1 broth, an equal volume of 30% glycerol was added and cultures were frozen at -80C.

20

25

15

5

10

Baffled 250 mL seed shake flasks with 20 mL of SFM were inoculated with 0.1 mL of thawed inoculum. Seed medium (SFM) consisted of 60 g D-glucose, 3 g K2HP04, 3 g urea, 0.5 g MgSO4.7H20, 20 g polypeptone, 5 g beef extract, 3 mg D-biotin, 125 mg niacinamide, 0.5 g L-methionine, 0.25 g L threonine, and 0.5 g L-alanine per liter of water with pH adjusted to 7.3. Cultures were grown at 30C for 16 hrs and aerated at 240 rpm with a 2 inch displacement. Two mL of seed culture was used to inoculate 21 mL of fermentation medium (FM4). FM4 medium was made by mixing 16 mL of main medium with 5 mL of dextrose stock. Dextrose stock was 180 g D-glucose plus 500 mL water. Main medium contained 0.083 g MnSO4, 0.4 mg D-biotin, cornsteep liquor, raffinate and 50 g CaCO3 per liter. Cornsteep was added so

that the final volume of FM4 was 4% dry solids. Raffinate was added so that the final volume of FM4 had 5% ammonium sulfate. Cultures were grown for 48 hrs at 30C in 250 mL baffled shake flasks and aerated at 240 rpms with a 2 inch displacement.

5

10

Table 3 presents data on the production of L-lysine in shake flasks by Corynebacterium strain improved by selection for valine and isoleucine requirement.

Example 4

Shake Flask Determination of L-lysine Yield From Valine Auxotroph Strain Produced by rDNA Methodology

Table 4 presents data on the production of L-lysine in shake flasks by Corynebacterium strains improved by deleting 390 bases of DNA sequence from the chromosomal copy of the i1vBN operon (see Example 2). Cultures were grown and analyzed as described in Example 3.

15

Example 5

Microfermenation Determination of Lysine Yield by Valine Auxotroph

Inoculum was grown in 500 mL SM1 in a 2 L baffled shake flask for 18 hrs. 3.1 L of FM4 medium was used in 4 L microfermentors. Temperature and pH were maintained at 32C and 7.2, respectively. Agitation was increased from 700 rpms to 950 rpms at 20 hrs. Air was fed at 4.5 LPM. Dextrose was maintained at 3 g/L. Fermentation time was 48 hrs.

20

Table 5 presents data on the production of L-lysine in 4 liter fermentors using a strains of *Corynebacterium* which cannot synthesize L-isoleucine and L-valine.

10

15

20

-26-

Example 6

L-Lysine Production by Bradytroph Produced by In Vivo Mutagenesis of Cloned ILVBN

1. Preparation of a Defective ilvBN Operon that Produces a Functional AHAS Enzyme

The i1vBN operon of pAL203 was subcloned into the shuttle vector pM2 to give pVAL1. pM2 can replicate in both *E. coli* and *Corynebacterium*. pVal1 was transformed into the mutagenic strain XL1RED from the Stratagene Co. Mutagenized plasmid was prepared according to the XL1RED kit instructions and electroporated into a valine auxotroph, *Corynebacterium*. A valine auxotroph is unable to grow on MM plates without supplementation by isoleucine and valine or genetic complementation with a functional ilvBN operon.

Kanamycin resistant transformants were selected from SM1 plates and replica plated on to MM plates. Those colonies that grew on MM plates showed functional complementation of the ilvB deletion. Colonies that were smaller than the colonies of the valine auxotroph with the parent plasmid (pVAL1) were selected for the valine auxotroph activity assays. pRV1B5 is a plasmid derived from pVAL1 that can replicate in *E. coli* and *Corynebacterium*. In the valine auxotroph strain, it produced AHAS activity at less than 1% of the specific activity of AHAS produced by pVAL1. The ilvBN operon of this construct has leaky AHAS activity.

2. Homologous Recombinantion into Corynebacterium Chromosomal DNA

The RV1B5 leaky allele of the ilvBN operon was subcloned into the integration vector pJC3 and used to exchange the leaky allele for the deletion allele in a valine auxotroph by homologous recombination as done in Example 2. BF100-1030 is a valine bradytroph constructed with the RV1B5 allele. Table 6 presents data showing that BF100-1030 makes less valine in shake flasks than its parent strain. Table 7 shows that BF100-1030 bradytroph has improved growth

BNSDOCID: <WO 0109286A1 1 :

over the auxotrophs in Table 5. Table 7 also shows that the bradytroph produces less valine in microfermentors than the parent strain.

Tables

Data presented in the following tables are discussed in the Examples section. Note that the term "Growth" refers to the optical density measured at 660 nm; the term "Titre" refers to the grams of amino acid per liter; the term "Yield" is defined by the following formula: [(g lysine/L / (g dextrose consumed/L)] *100; B4B = a valine autotroph constructed with chemical mutagenesis; LC10 = a valine autotroph constructed by replacing the chromosomal ilvB gene with the ilvB deletion allele of pAL203 Δ ; BF100-1030 = a valine bradytroph constructed by replacing the chromosomal ilvB gene with the RV1B5 leaky allele.

Table 1
Valine Auxotroph Selection Following Chemical Mutagenesis

	Amin	o Acid Suppl	Relative Growth		
Agar Plate	ile	leu	val	BF100	B4B
MM	-	-	-	5	0
MM	+	+	-	5	0
MM	+	•	+	5	2
MM	-	+	+	5	0
MM	+	+	+	5	. 5

15

5

10

Table 2
Auxotroph Selection Following rDNA Modification

	Amin	o Acid Supp	Relative Growth		
Agar Plate	ile	leu	val	BF100	LC10
MM	_	-	-	3	0
MM	+	+	-	3	0
MM	+	-	+	3	1
MM	•	+	+	3	0
MM	+	+	+	3	3

Table 3
Shake Flask Determination of L-lysine Yield From a Valine Auxotroph
Strain Produced by Random Chemical Mutagenesis

Strain	Growth	Lysine Titre	% Yield
Parent-1	33	18	32
B4B	33	17	44

Table 4
Shake Flask Determination of L-lysine Yield From a Valine Auxotroph
Strain Produced by rDNA Methodology

Strain	Growth	Lysine Titre	% Yield
BF100	35	25	38
LC10	35	28	43

Table 5
Microfermenation Determination of Lysine Yield

Strain	Growth	Lysine Titre	% Yield	Valine Titre
BF100	90	113	37	8.9
LC10	63	86	50	1.1
B4B	70	91	51	

20

5

10

15

Table 6

Shake Flask Determination of Decreased L-Valine Titre from a Valine Bradytroph Strain Produced by Integrating the RV1B5 allele of ilvB into the Chromosome

Strain	Growth	Lysine Titre	% Yield	Valine Titre
BF100	36	27	29	5.2
BF100-1030	42	22	25	3.3

Table 7
Microfermentation Determination of Decreased L-Valine Titre from a
Valine Bradytroph Strain Produced by Integrating the RV1B5 Allele of ilvB
into the Chromosome

Strain	Growth	Lysine Titre	% Yield	Valine Titre
BF100	89	134	43	9
BF100-1030	78	123	44	6

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM (PCT Rule 13bis)

A. The indications made below relate to the microorganism	m referred to in the description on page 5, line 28.
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depository institution	
Agricultural Research Culture Collection (NRRL	.)
Address of depository institution (including postal code and cour	ntry)
1815 N. University Street Peoria, Illinois 61604 United States of America	
Date of deposit June 29, 1999	Accession Number NRRL B-30149
C. ADDITIONAL INDICATIONS (leave blank if not app	licable) This information is continued on an additional sheet
Corynebacterium glutamicum LC10	
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	e blank if not applicable)
The indications listed below will be submitted to the international "Accession Number of Deposit")	Bureau later (specify the general nature of the indications, e.g.,
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	☐ This sheet was received by the International Bureau on:
Authorized officer Bal Jaunley	Authorized officer

Form PCT/RO/134 (July 1992)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM (PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page 5, line 29.						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depository institution						
Agricultural Research Culture Collection (NRRI	_)					
Address of depository institution (including postal code and cou	ntry)					
1815 N. University Street Peoria. Illinois 61604 United States of America						
Date of deposit June 29, 1999	Accession Number NRRL B-30150					
C. ADDITIONAL INDICATIONS (leave blank if not app	olicable) This information is continued on an additional sheet					
Corynebacterium glutamicum BF100-1030						
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (lea	we blank if not applicable)					
The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
onice use only	1 of membersal buleau use only					
This sheet was received with the international application	☐ This sheet was received by the International Bureau on:					
Authorized officer Hal Jamely	Authorized officer					

Form PCT/RO/134 (July 1992)

10

15

20

25

What Is Claimed Is:

what is C	iaime	<i>u</i> 15.
1.	A mi	icroorganism C that produces amino acid X, wherein said
microorgani	sm C is	obtained by the following method:
	(a)	selecting a parental microorganism A that produces said
amino acid f	rom de	ktrose in percent yield Y;
	(b)	mutagenizing said parental microorganism A to produce
microorgani	sm B by	a method selected from the group consisting of:
		(i) random chemical mutagenesis; and
		(ii) rDNA mutagenesis of the ilvBN operon;
	(c)	selecting from step (b) at least one mutagenized
microorgani	sm B th	nat is auxotrophic or bradytrophic for one or more of the
branched cha	ain amir	no acids leucine, isoleucine and valine; and
	(d)	selecting from step (c) at least one microorganism C which
produces said	d amino	acid X from dextrose in percent yield Z, wherein said percent
yield Z is gro	eater tha	an said percent yield Y.
2.	Then	nicroorganism C of Claim 1, wherein amino acid X is selected
from the gro	up cons	isting of:
	(a)	glycine;
	(b)	alanine;
	(c)	methionine;
	(d)	phenylalanine;
	(e)	tryptophan;
	(f)	proline;
	(g)	serine;
	(h)	threonine;
	(i)	cysteine;

tyrosine;

asparagine;

glutamine;

(j) (k)

(1)

		(m)	asparti	c acid;
		(n)	glutan	ic acid;
		(o)	lysine	
		(p)	arginii	ne; and
5		(p)	histidi	ne.
	3.	The i	nicroorg	anism C of Claim 2, wherein microorganism A is
	selected from	the gr	oup cons	isting of:
		(a)	Coryn	ebacterium;
		(b)	Brevil	pacterium; and
10		(c)	E. coli	i.
	4.	The	microorg	anism C of Claim 3, wherein microorganism B is
	auxotrophic o	or brad	ytrophic	for valine and isoleucine.
	5.	The	microorg	anism C of Claim 3, wherein step (ii) mutagenesis is
	random chem	nical m	utagenes	is.
15	6.	The	microorg	anism C of Claim 3, wherein step (ii) mutagenesis is
	site-specific	mutage	enesis of	the ilvBN operon.
	7.	A st	rain of	the microorganism Corynebacterium having the
	following ch	aracter	istics:	
		(a)	auxot	rophy or bradytrophy for the one or more of the
20	branched cha	in ami	no acids	isoleucine, leucine and valine; and
		(b)	when	cultured in a medium, produces an amino acid
	selected fron	n the g	roup cons	sisting of:
			(i)	glycine;
			(ii)	alanine;
25			(iii)	methionine;
			(iv)	phenylalanine;

	(v)	tryptophan;
	(vi)	proline;
	(vii)	serine;
	(viii)	threonine;
5	(ix)	cysteine;
	(x)	tyrosine;
	(xi)	asparagine;
	(xii)	glutamine;
	(xiii)	aspartic acid;
10	(xiv)	glutamic acid;
	(xv)	lysine;
	(xvi)	arginine; and
	(xvii)	histidine;

and

15

- (c) produces a percent yield from dextrose of the amino acid of step (b) of at least about 30 percent.
 - 8. The microorganism of Claim 7, further characterized by a mutation in the ilvBN operon.
- 9. The microorganism of Claim 8, wherein the ilvBN operon mutation is a deletion, insertion or point mutation.
 - 10. The microorganism of Claim 9, wherein the ilvBN operon mutation is characterized by the sequence of SEQ ID NO:3 or SEQ ID NO:5.
 - 11. A strain of the microorganism Corynebacterium having the identifying characteristics of NRRL Deposit No. B-30149.
- 25 12. A strain of the microorganism Corynebacterium having the identifying characteristics of NRRL Deposit No. B-30150.

10

15

20

25

13.	A me	thod to increase the production of an amino acid X,
comprising:		
	(a)	selecting a parental microorganism A that produces said
amino acid fro	om dext	rose in percent yield Y;
•	(b)	mutagenizing said parental microorganism A to produce
microorganism	n B by	a method selected from the group consisting of:
		(i) random chemical mutagenesis; and
		(ii) rDNA mutagenesis of the ilvBN operon;
	(c)	selecting from step (b) at least one mutagenized
microorganisi	n B tha	at is auxotrophic or bradytrophic for one or more of the
branched chai	n amin	o acids leucine, isoleucine and valine; and
	(d)	selecting from step (c) at least one microorganism C which
produces said	amino a	cid X from dextrose in percent yield Z, wherein said percent
yield Z is grea	ater thai	n said percent yield Y.
14.	The m	ethod of Claim 13, wherein amino acid X is selected from
the group con	sisting	of:
	(a)	glycine;
	(b)	alanine;
	(c)	methionine;
	(d)	phenylalanine;
	(e)	tryptophan;
	(f)	proline;
	(g)	serine;
	(h)	threonine;
	(i)	cysteine;
	(j)	tyrosine;
	(k)	asparagine;
	(1)	glutamine;
	(m)	aspartic acid;

		(n)	glutamic acid;	
		(o)	lysine;	
		(p)	arginine; and	
		(p)	histidine.	
5	15.	Ther	method of claim 14, wherein microorganism A is selected from	n
	the group con	nsisting	g of:	
		(a)	Corynebacterium;	
		(b)	Brevibacterium; and	
		(c)	E. coli.	
10	16.	Then	method of Claim 15, wherein microorganism B is auxotrophi	ic
	or bradytropl	hic for v	valine and isoleucine.	
	17.	Ther	method of Claim 15, wherein step (b) mutagenesis is randor	m
	chemical mu	tagenes	sis.	
	18.	The i	method of Claim 15, wherein step (b) mutagenesis is site	e-
15	specific muta	agenesi	is of the ilvBN operon.	
	19.	A pro	ocess for producing an amino acid X comprising:	
		(a)	culturing a microorganism C in a medium, wherein said	d
	microorganis	sm C is	obtained by the following method:	
			(i) selecting a parental microorganism A that produce	:s
20	a percent yie	ld Y fro	om dextrose of said amino acid;	
			(ii) mutagenizing said parental microorganism A to	0
	produce mici	roorgan	nism B by a method selected from the group consisting of:	
			(1) random chemical mutagenesis; and	

(2)

rDNA mutagenesis of the ilvBN operon;

			(iii)	selecting from step (b) at least one mutagenized
	microorganism	n B that	is auxotı	ophic for one or more of the branched chain amino
	acids leucine,	isoleuci	ine and v	valine; and
			(iv)	selecting from step (c) at least one microorganism
5	C which is an a	auxotrop	oh that p	roduces said amino acid X from dextrose in percent
	yield Z, where	ein said	percent	yield Z is greater than said percent yield Y; and
		(b)	recover	ing said amino acid X that is produced from said
	microorganism	n C.		
	20.	_	ocess of	claim 19, wherein amino acid X is selected from the
10	group consists	ing of:		
		(a)	glycine	
		(b)	alanine	•
		(c)	methio	
		(d)	phenyl	alanine;
15		(e)	tryptop	han;
		(f)	proline	;
		(g)	serine;	
		(h)	threoni	ne;
		(i)	cystein	e;
20		(j)	tyrosin	e;
		(k)	asparag	gine;
		(1)	glutam	ine;
		(m)	asparti	e acid;
		(n)	glutam	ic acid;
25		(o)	lysine;	
		(p)	arginin	e; and
		(q)	histidir	ne.

21. The process of claim 20, wherein microorganism A is selected from the group consisting of:

5

- (a) Corynebacterium;
- (b) Brevibacterium; and
- (c) E. coli.
- 22. The process of Claim 21, wherein microorganism B is auxotrophic or bradytrophic for valine and isoleucine.
 - 23. The process of Claim 21, wherein step (ii) mutagenesis is random chemical mutagenesis.
 - 24. The process of Claim 21, wherein step (ii) mutagenesis is site-specific mutagenesis of the ilvBN operon.

PCT/US00/20979

- 1000000 ANO 0100000A

3/12

WILD-TYPE ILVB NUCLEOTIDE SEQUENCE

10 20 30 4	
ggagccagaaagtcgtgaatgtggcagcttctcaacagcc	
cacteeegecaeggttgeaageegtggtegateegeege	
cctgagcggatgacaggtgcaaaggcaattgttcgatcgc	
tcgaggagcttaacgccgacatcgtgttcggtattcctgg	
tggtgcggtgctaccggtgtatgacccgctctattcctcc	
210 220 230 24	0
acaoaggtgcgccacgtcttggtgcgccacgagcagggcg	240
caggccacgcagcaaccggctacgcgcaggttactggacg	
cgitggcgtcigcattgcaacttiggcccaggagcaacc	
aactiggitaccccaatcgctgatgcaaactiggactccg	•
ttcccatggttgccatcaccggccaggtcggaagtggcct	400
recourgerige occordance	100
410 420 430 44	0
	
gctgggtaccgacgctttccaggaagccgatatccgcggc	440
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacacttcatggtcacca	440 480
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacaacttcatggtcaccaaccctaacgacattccacaggcattggctgaggcattcca	440 480 520
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacacttcatggtcaccaaccttcacgacattccacaggcattggctgaggcattccacctcgcgattactggtcgccctgtctggtggat	440 480 520 560
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacaacttcatggtcaccaaccctaacgacattccacaggcattggctgaggcattcca	440 480 520
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacacttcatggtcaccaaccttcacgacattccacaggcattggctgaggcattccacctcgcgattactggtcgccctgtctggtggat	440 480 520 560
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacaacttcatggtcaccaacctaacgacattccacaggcattccacagcattccacggattccacacctcacgattactggtcgccctggccctgttctggtggatatcctaaggatgccagaacttccaggattccagaacttccatggtcgcctgattctggtggatatcctaaggatgtccagaacgctgaattggatttcgtct	440 480 520 560 600
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacaacttcatggtcaccaacca	440 480 520 560 600
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacaacttcatggtcaccaacctaacgacattccacaggcattggctgaggcattccacctcgcgattactggtcgccctggcctgttctggtggatatcctaaggatgtccagaacgctgaattggattcgtct 610 620 630 64 ggccaccaaagatcgacctgccaggctaccgcccagttc	440 480 520 560 600
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacaacttcatggtcaccaacca	440 480 520 560 600 0
gctgggtaccgacgtttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacaacttcatggtcaccaacca	440 480 520 560 600 0 640 680 720
gctgggtaccgacgctttccaggaagccgatatccgcggcatcaccatgccagtgaccaagcacaacttcatggtcaccaacca	440 480 520 560 600 0

FIG.2A

4/12 WILD-TYPE ILVB NUCLEOTIDE SEQUENCE

WILD	11 L 1L4	D NOCE	LOTIDE SE	-QULI	106
	10	820	830	840)
			ليبيليب		940
gerrigggr	octitece	agagicica	icgagetgea	cargg	840
			tccgctgtt		880
			ictatoggoti		920
tttgatgac	cgcgtcac	cggtgacgt	tgacacctto	egege	960
ctgacgcca	agatcatt	cacgccgac	attgatcct	gccga	1000
	•		•	-	
10	110	1020	1030	1040	1
ں، بینیلینی		1020	-1000 	1040 	,
aatcaacaa	antcoogc	agattaga	ttccaatcgl	agac	1040
			gctggaaac		1080
			atctccgagl		1120
			gtttcccgcg		1160
					1200
Lacyacyay	ragecayy	cgatetget	ggcaccacag	icity	1200
12	10	1220	1230	1240)
			ىلىسىلىس		
tcattgaaa	cctgtcc	aaggaagt t	ggccccgacg	coat	1240
ttactgcgcd	eggegttg	gccagcacc	aaatgtggga	agat	1280
			cacciggeta		1320
			gcagticctg		1360
			acaaggaagt		1400
		,-,,		55	
1.4	10	1420	1470	1440	1
14 <u></u>	10	1420	1430	1440	
gctatcgac					1440
ooctcocca					1480
					1520
cgcactaata	.uucuucyi	accessors	gcarygricy	ccoo	1560
tggcagacca					
aacttcgtaa	iccagggc	jagtacatg	cccgactitg	ttac	1600
16	10	1620	1630	1640	
لىبىلىبىد			علىبىلىب		40.0
cctttctgag					1640
aaagcggagg					1680
agatcaacga	ccgcccag	togtcotc	gacttcatcg	tcgg	1720
tgoogocgco					1760
tccoactccg					1800
			JJ:3-5-		
40.	10	1000	1070	1040	
18 ئىيىلىنىد		1820	1830	1840	
tctttgatgg					1840
					1880
cattcacgaa			rgccgccgt	Lyuu	1000
tegacegagg					
		7 7	LD .		

5/12

WILD-TYPE ILVB AMINO ACID SEQUENCE

	10	20	30	40	
			TGAKATVRSL		40
			HVLVRHEQGA		80
TGYAQVT	GRVGVCIATS	SGPGATNLVT	PIADANLDSV	PMVA	120
ITGQVGS(GLLGTDAFQE	ADIRGITMPY	VTKHNFMVTN	PNDI	160
PQALAEA	FHLAITGRP(SPVLVDIPKD	VONAELDFVW	PPK [200
	210	220	230	240	
			بليسليب		040
			KKPVLYVGGG		240
			FPESHELHMG		280
HGTVSAV	GALQRSDLL I	AIGSRFDDR'	VTGDVDTFAP	DAKI	320
IHAD I DP	AE IGK IKQVE	VP I VGDARE V	VLARLLETTK	ASKA	360
ETEDISE	WVDYLKGLKA	ARFPRGYDEQ	PGDLLAPQFV	IETL	400
	410	420	430	440	
			يلىيىلىي		
			FEKPRTWLNS		440
TMGYAVP.	aalgakagaf	PDKEVWAIDGI	DGCFQMTNQEI	LTTA	480
AVEGFPI	KIALINNGNL	.GMVRQWQTLI	FYEGRYSNTK	LRNQ	520
GEYMPDF	VTLSEGLGC\	/AIRVTKAEE	VLPA I QKARË	INDR	560
PWIDF I	VGEDAQVWPN	NSAGSSNSD	IQYALGLRPFI	FDGD	600
	610	620	630	640	
			سلسسك	шЬ_	
ESAALDP	authlavsdi	DAAVESTEA.	. 627		

FIG.2C

6/12 AL 203Δ NUCLEOTIDE SEQUENCE

10	20	70	40	
10 		30 	40 LL	
ggagccagaaagtcg	tgaatgtgg	cagcttctca	ocagee 40	
cactcccgccacggt	tgcaagccg	tggtcgatcc	gccgcc 80	
cctgagcggatgaca)
legaggagettaacg				1
tggtgcggtgctacc	ggtgtatga	cccgctctat	lcctcc 200	
210	220	230	240	
22222222	<u></u>	سيلسب	ماد	
acaaaggtgcgccac				
cattaggatetagat				
cgttggcgtctgcat				
oacttggttacccca	cassages	gcoooci i ggi	ictccg 360	
ttcccatggttgccal	cuccyycci	uggreggaagi	ggcct 400	
440			_	
410 	420	430	440	
gctgggtaccgacgct	ttccaggad	agccgatatco	gcggc 440	
gctgggtaccgacgct atcaccatgccagtga	ttccaggad accaagcacd	igccgatatco iacttcatggt	gcggc 440 cacca 480	-
gctgggtaccgacgct atcaccatgccagtga accctaacgacattca	ttccaggad accaagcacd acaggcatt	igccgatatco iacttcatggt iggctgaggca	gcggc 440 cacca 480 ttcca 520	
gctgggtaccgacgct atcaccatgccagtga accetaacgacattcc cctcgcgattactggt	ttccaggad accaagcacd acaggcatt .cgccctggd	ogcegatated oactteatggt ogctgaggea occtgttetgg	gcggc 440 cacca 480 ttcca 520 tggat 560	
gctgggtaccgacgct atcaccatgccagtga accctaacgacattca	ttccaggad accaagcacd acaggcatt .cgccctggd	ogcegatated oactteatggt ogctgaggea occtgttetgg	gcggc 440 cacca 480 ttcca 520 tggat 560	
gctgggtaccgacgct atcaccatgccagtga accetaacgacattcc cctcgcgattactggt	ttccaggad accaagcacd acaggcatt .cgccctggd	ogccgatatco oacttcatggt ogctgaggca cctgttctgg oattggattt	gcggc 440 cacca 480 ttcca 520 tggat 560 cgtct 600	
gctgggtaccgacgct atcaccatgccagtga accctaacgacattac cctcgcgattactggt attcctaaggatgtca	ttccaggad accaagcact cacaggcatt cgccctggd agaacgctg	agccgatatco acttcatggt agctgaggca cctgttctgg aattggattt	gcggc 440 cacca 480 ttcca 520 tggat 560 cgtct 600	
gctgggtaccgacgct atcaccatgccagtga accctaacgacattcc cctcgcgattactggt attcctaaggatgtca	ttccaggad accaagcact acaggcatt .cgccctgga agaacgctg 620 	agccgatatco acttcatggt agctgaggca actgttctgg aattggattt 630 actaccgccca	gcggc 440 cacca 480 ttcca 520 tggat 560 cgtct 600	
gctgggtaccgacgctactaccactaccgcgattactggtattactaggattactggtattactaggatgtcc	ttccaggad accaggcatt acgccctggd agaacgctg 620 actgccagg	agccgatatco pacttcatggt ggctgaggca cctgttctgg paattggattt 630 ctaccgccca caggcagtca	gcggc 440 cacca 480 ttcca 520 tggat 560 cgtct 600 640 gtttc 640 agctg 680	
gctgggtaccgacgctactgcaccctaacgactactggtattactggtattactggtattactggtattactggtattactaaggatgtcaccacacaagatcgaacaccacatgctcgcatcggtgaggccaaga	ttccaggad accaggcatt cgccctggd agaacgctg 620 	agccgatatco acttcatggt agctgaggca cctgttctgg aattggattt 630 	gcggc 440 cacca 480 ttcca 520 tggat 560 cgtct 600 640 gtttc 640 agctg 680 tggtg 720	
gctgggtaccgacgctactaccactaccgcgattactggtattactaggattactggtattactaggatgtcc	ttccaggac eccaggcatt eccaggcatt egcectggc eagaacgctg 620 	agccgatatco pacttcatggt aggctgaggca cctgttctgg pattggattt 630 ctaccgccca caggcagtca tttacgttgg	gcggc 440 cacca 480 ttcca 520 tggat 560 cgtct 600 640 gtttc 640 agctg 680 tggtg 720 agcgtt 760	

FIG.3A

7/12 AL 203 Δ NUCLEOTIDE SEQUENCE

	810	820	830	840	
	سلبببلب				
	glactiticce				840
gtatgco	aggcatgcat	ggcactgtgt	.ccgctgttgg	tgc	880
actgcag	gcgcagcgacc	tgctgattgc	tatoggotoc	cgc	920
tttgatg	occgcgt cac	cggtgacgtt	gacaccttcg	cgc	960
ctgacga	caagatcatt	cacgccgaca	ittgatcctgc	cga	1000
	_	- •		7,	
	1010	1020	1030	1040	
بالبييا	1010 <u>111111111</u>	1020			
	aogat caage				1040
	:gcgaagttct				1080
	caaggcagag				1120
	ctcaagggcc				1160
-	agcagccagg				1200
,,	,-3339	-30-99	900000091	5	, 200
	4040	4000	1070	4040	
1	1210 	1220	1230	1240	
	ooccctgtct				1240
	accaaagcgg				1280
	:gagagat caa				1320
					1360
	cggtgaagac				1400
rycryyu	tcatccaact	ccyatatica	grucycucic	yyu	טטדו
	1410	1420	1430	1440	•
					1440
	cattetttgal				1440
	cgacat t cac			ıgc	1480
cgccgtt	gaatcgaccga	aggcataa T	202		

FIG.3B

8/12 AL 203Δ AMINO ACID SEQUENCE

10 20 30 MNVAASQQPTPATVASRGRSAAPERMTGAKAIVRSLEELN 40 ADIVFGIPGGAVLPVYDPLYSSTKVRHVLVRHEQGAGHAA 80 TGYAQVTGRVGVCIATSGPGATNLVTPIADANLDSVPMVA 120 ITGQVGSGLLGTDAFQEADIRGITMPVTKHNFMVTNPNDI 160 PQALAEAFHLAITGRPGPVLVDIPKDVQNAELDFVWPPKI 200 210 220 230 240 DLPGYRPVSTPHARQIEQAVKLIGEAKKPVLYVGGGVIKA 240 DAHEELRAFAEYTGIPVVTTLMALGTFPESHELHMGMPGM 280 HGTVSAVGALQRSDLLIAIGSRFDDRVTGDVDTFAPDAKI 320 IHADIDPAEIGKIKQVEVPIVGDAREVLARLLETTKASKA 360 ETEDISEWVDYLKGLKARFPRGYDEQPGDLLAPQFVIETL 400 410 420 440 SEGLGCVAIRVTKAEEVLPAIQKAREINDRPVVIDFIVGE 440

FIG.3C

DAQVWPMVSAGSSNSDIQYALGLRPFFDGDESAAEDPADI 480

HEAVSDIDAAVESTEA. 497

9/12 RV1B5 NUCLEOTIDE SEQUENCE

•	10	20	30	40	
			GCAGCTTCTC		40
			GTGGTCGATC		80
			GCCAATTGTT		120
			GTGTTCGGTA		160
			ACCCGCTCTA		200
0.00.00					200
	040	000	070	040	
	210	220	230 L	240	
			GCGCCACGAG		240
			GCGCAGGTTA		280
			CTGGCCCAGG		320
			TGCAAACTTG		360
			CAGGTCGGAA		400
	410	420	430	440	
بيليب	410	420	430 <u>Luuluul</u>		
TGCTGGG	TACCGATO	CTTTCCAGG	AAGCCGATAT(CCCCCC	440
			CAACTTCATGO		480
AACCCCA	ACGACAT1	CCACAGGCA	TTGGCTGAGG	CATTCC	520
ACCTCGC	GATTACTO	GTCGCCCTG(STCCTGTTCTA	GTGGA	560
TATCCCC	AAGGATG1	TCAGAACGC	TGAATTGGAT 1	TCGTC	600
	610	620	630	640	
بيلينيد			ليتنكينينا		
			GCTACCGCCC		640
			AGCAGGCTGTO		680
			CCTTTACGTTC		720
CCCCTTA	ፐ ሮል አርሮሮ1	CATCCCCAC	GAAGAGCTTCC	TOOT	760
			TTGTCACCACA		800

FIG.4A

10/12 RV1B5 NUCLEOTIDE SEQUENCE

810	820	830	840)
GGCGCTGGGAACCTT	CCCAGAGT	CCACGAGCTGC	ACATG	840
GGTATGCCAGGCATG	CATGGCACT	GTGTCCGCTGT	TGGTG	880
CACTGCAGCGCAGCG	ACCTGCTG/	ATTGCTATCGGC	TCCCG	920
CTTTGATGACCGCGT				960
CCTGATGCCAAGATC				1000
			10000	1000
1010	1020	1030	1040)
استاستاسيا	بيبليين	ليتنانيينا	لنب	,
AAATCGCCAAGATCA				1040
CGATGCCCGCGAGGT	TCTTGCTCG	TCTGCTCGAAA	CCACC	1080
AAGGCAAGCAAGGCA(1120
TTGACTACCTCAAGG	SCCTCAAGG	CACGTTTCCCAC	CGTGG	1160
CTACGACGAGCAGCC/	AGGCGATCT	GCTGGCACCAC	V GTTT	1200
1210	1220	1230	1240)
GTCATTGAAACCCTGT		CTTCCCCCAC	<u> </u>	1240
				1240
TTTACTGCGCCGGCGT			-	1280
TCAGTTCGTTGACTTC				1320
TCCGGTGGACTGGGCA				1360
CTCTTGGAGCAAAGGC	IGGUGUAU	CIGACAAGGAAG	icig	1400
1410	1420	1430	1440	
				4440
GGCTATCGACGGCGAC				1440
GAACTCACCACCGCCG				1480
TCGCACTAATCAACAA		_		1520
ATGGCAGACCCTATTC				1560
AAACTTCGTAACCAGG	GCGAG LACA	AIGCCCGACTIT	GTTA	1600
1610	1620	1630	1640	
CCCTTTCTGAGGGACT				1640
CAAAGCGGAGGAAGTA				1680
GAGATCAACGACCGCC				1720
GTGAAGACGCACAGGT.				1760
ATCCAACTCCGATATC	CAGTACGCA	CTCGGATTGCG	CCCA	1800

FIG.4B

11/12 RV1B5 NUCLEOTIDE SEQUENCE

1810	1820	1830	1840	
TTCTTTGATGGTGATG				1840
CATTCACGAAGCCGTC	AGCGACATTO	SATGCCGCCG	TTGAA	1880
TCGACCGAGGCATAAG	GAGAGACCCA	VAGATGGCTA	ATTCT	1920
GACGTCACCCGCCACA	TCCTGTCCG1	FACTCGTTCA	GGACG	1960
TAGACGGAATCATTTC	CCGCGTATCA	GGTATGTTC	ACCCG	2000
2010	2020	2030	- 2040	
<u> </u>				0040
ACCCCCATTCAACCTC				2040
GAAACACTCGGCATCA				2080
CCGACGAGCTCAACAT				2120
CAAGCTGATCCCCGTG				2160
GAGACCACTATCGCCC	GCGCAATCAT	IGCTGGTTAA	GGTTT .	2200
2210		2230	2240	
272222424444444444444444444444444444444				0040
CTGCGGACAGCACCAA				2240
GAACATCTTCCGCGCC				2280
TCTGTGGTTATTGAAT				2320
GCGCACTGCTTGACGT				2360
ACTGATCCAATCCGGA	CAGATTGCAC	CTCAACCGCG	GTCCG :	2400
2410		2430	2440	
111111111111111111111111111111111111111			حليب	
AAGACCATGGCTCCGG	CCAAGATCTA	VA 242/		

FIG.4C

12/12 RV1B5 AMINO ACID SEQUENCE

10 20 30 40	
MANUAL COORTINATIVE COORTINATIVE CONTRACT TO THE COORTINATIVE COORTINA	
MNVAASQQPTPATVASRGRSAAPERMTGAQAIVRSLEELN 40	
ADIVFGIPGGAVLPVYDPLYSSTKVRHVLVRHEQGAGHAA 80	
TGYAQVTGRVGVCIATSGPGATNLVTPIADANLDSVPMVA 12	-
ITGQVGSSLLGTDAFQEADIRGITMPVTKHNFMVTNPNDI 16	0
PQALAEAFHLAITGRPGPVLVDIPKDVQNAELDFVWPPKI 20	0
210 220 230 240	
210 220 230 240	
DLPGYRPVSTPHARQIEQAVKLIGESKKPVLYVGGGVIKA 24	0
DAHEELRAFAEHTGIPVVTTLMALGTFPESHELHMGMPGM 28	ñ
HGTVSAVGALQRSDLLIAIGSRFDDRVTGDVDTFAPDAKI 32	_
IHADIDPAEIGKIKQVEVPIVGDAREVLARLLETTKASKA 36	-
ESEDISEWVDYLKGLKARFPRGYDEQPGDLLAPQFVIETL 40	-
COEDIOLIADIENOLIAMI I NOTOLUI ODELAI UI VILTE 40	U
410 420 430 440	
CKENCEDA INCACNO UNA MA ACEL DE LA DELLA D	
SKEVGPDAIYCAGVGQHQMWAAQFVDFEKPRTWLNSGGLG 44	•
TMGYAVPAALGAKAGAPDKEVWA1DGDGCFQMTNQELTTA 48	-
AVEGFSIKIALINNGNLGMVRQWQTLFYEGRYSNTKLRNQ 52	_
GEYMPDFVTLSEGLGCVAIRVTKAEEVLPAIQKAREINDR 56	_
PVVIDFIVGEDAQVWPMVSAGSSNSDIQYALGLRPFFDGD 60)
610 620 630 640	
materila de la contrata del contrata de la contrata del contrata de la contrata del contrata de la contrata de la contrata de la contrata del contrata de la contrata del contrata de la contrata del co	
ESAAEDLPTFTKPSATLMPPLNRPRHKERPKMANSDVTRH 640)
ILSVLVQDVDGIISRVSGMFTRRAFNLVSLVSAKTETLGI 680)
NRITVVVDADELNIEQITKQLNKLIPVLKVVRLDEETTIA 720)
RAIMLVKVSADSTNRPQIVDAANIFRARVVDVAPDSVVIE 760)
STGTPGKLRALLDVMEPFGIRELIOSGQIALNRGPKTMAP 800	
	-
810 820 830 840	
414444444444444444444444444444444444444	
AKI. 804	

FIG.4D

-1-

SEQUENCE LISTING

```
<110> Archer-Daniels-Midland Company
     Rayapati, P. John
      Crafton, Corey M.
<120> Metabolic Engineering of Amino Acid Production
<130> 1503.074PC01
<140>
<141>
<150> US 60/146,379
<151> 1999-08-02
<160> 6
<170> PatentIn Ver. 2.1
<210> 1
<211> 1895
<212> DNA
<213> Corynebacterium sp.
<400> 1
ggagccagaa agtcgtgaat gtggcagctt ctcaacagcc cactcccgcc acggttgcaa 60
gccgtggtcg atccgccgcc cctgagcgga tgacaggtgc aaaggcaatt gttcgatcgc 120
tegaggaget taacgeegae ategtgtteg gtatteetgg tggtgeggtg etaceggtgt 180
atgacceget ctattectee acaaaggtge gecaegtett ggtgegecae gageagggeg 240
caggecaege ageaacegge tacgegeagg ttactggaeg egttggegte tgcattgcaa 300
cetetggece aggageaace aacttggtta ceccaatege tgatgeaaac ttggaeteeg 360
ttcccatggt tgccatcacc ggccaggtcg gaagtggcct gctgggtacc gacgctttcc 420
aggaageega tateegegge ateaceatge cagtgaceaa geacaaette atggteacea 480
accetaacga cattecacag geattggetg aggeatteca cetegegatt actggtegee 540
ctggccctgt tctggtggat attcctaagg atgtccagaa cgctgaattg gatttcgtct 600
ggccaccaaa gatcgacctg ccaggctacc gcccagtttc aacaccacat gctcgccaga 660
tcgagcaggc agtcaagctg atcggtgagg ccaagaagcc cgtcctttac gttggtggtg 720
gegtaatcaa ggetgaegea cacgaagage ttegtgegtt egetgagtae aceggeatee 780
cagttgtcac caccttgatg gctttgggta ctttcccaga gtctcacgag ctgcacatgg 840
gtatgccagg catgcatggc actgtgtccg ctgttggtgc actgcagcgc agcgacctgc 900
tgattgctat cggctcccgc tttgatgacc gcgtcaccgg tgacgttgac accttcgcgc 960
ctgacgccaa gatcattcac gccgacattg atcctgccga aatcggcaag atcaagcagg 1020
ttgaggttcc aatcgtgggc gatgcccgcg aagttcttgc tcgtctgctg gaaaccacca 1080
aggcaagcaa ggcagagacc gaggacatct ccgagtgggt tgactacctc aagggcctca 1140
aggeaegttt eeegegtgge tacgaegage ageeaggega tetgetggea ceacagtttg 1200
tcattgaaac cctgtccaag gaagttggcc ccgacgcaat ttactgcgcc ggcgttggcc 1260
agcaccaaat gtgggcagct cagttcgttg actttgaaaa gccacgcacc tggctcaact 1320
ceggtggact gggcaccatg ggctacgcag ttcctgcggc ccttggagca aaggctggcg 1380
cacctgacaa ggaagtctgg gctatcgacg gcgacggctg tttccagatg accaaccagg 1440
aactcaccac cgccgcagtt gaaggtttcc ccattaagat cgcactaatc aacaacggaa 1500
acctgggcat ggttcgccaa tggcagaccc tattctatga aggacggtac tcaaatacta 1560
aacttegtaa ceagggegag tacatgeeeg actttgttae cetttetgag ggaettgget 1620
gtgttgccat ccgcgtcacc aaagcggagg aagtactgcc agccatccaa aaggctcgag 1680
agatcaacga cegeccagta gteategact teategtegg tgaagaegea caggtatgge 1740
caatggtgte tgetggatea tecaacteeg atatecagta egeactegga ttgegeecat 1800
tetttgatgg tgatgaatet geageagaag ateetgeega catteaegaa geegteageg 1860
acattgatgc cgccgttgaa tcgaccgagg cataa
```

<210> 2

<211> 626 <212> PRT <213> Corynebacterium sp.

Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 300 295

Asp 305	Arg	Val	Thr	Gly	Asp 310	Val	Asp	Thr	Phe	Ala 315	Pro	Asp	Ala	Lys	11e 320
Ile	His	Ala	Asp	Ile 325	Asp	Pro	Ala	Glu	Ile 330	Gly	Lys	Ile	Lys	Gln 335	Val
Glu	Val	Pro	Ile 340	Val	Gly	Asp	Ala	Arg 345	Glu	Val	Leu	Ala	Arg 350	Leu	Leu
Glu	Thr	Thr 355	Lys	Ala	Ser	Lys	Ala 360	Glu	Thr	Glu	Asp	Ile 365	Ser	Glu	Trp
Val	Asp 370	Tyr	Leu	Lys	Gly	Leu 375	Lys	Ala	Arg	Phe	Pro 380	Arg	Gly	Tyr	Asp
Glu 385	Gln	Pro	Gly	Asp	Leu 390	Leu	Ala	Pro	Gln	Phe 395	Val	Ile	Glu	Thr	Leu 400
Ser	Lys	Glu	Val	Gly 405	Pro	Asp	Ala	Ile	Tyr 410	Cys	Ala	Gly	Val	Gly 415	Gln
His	Gln	Met	Trp 420	Ala	Ala	Gln	Phe	Val 425	Asp	Phe	Glu	Lys	Pro 430	Arg	Thr
Trp	Leu	Asn 435	Ser	Gly	Gly	Leu	Gly 440	Thr	Met	Gly	Tyr	Ala 445	Val	Pro	Ala
Ala	Leu 450	Gly	Ala	Lys	Ala	Gly 455	Ala	Pro	Asp	Lys	Glu 460	Val	Trp	Ala	Ile
Asp 465	Gly	Asp	Gly	Cys	Phe 470	Gln	Met	Thr	Asn	Gln 475	Glu	Leu	Thr	Thr	Ala 480
Ala	Val	Glu	Gly	Phe 485	Pro	Ile	Lys	Ile	Ala 490	Leu	Ile	Asn	Asn	Gly 495	Asn
Leu	Gly	Met	Val 500	Arg	Gln	Trp	Gln	Thr 505	Leu	Phe	Tyr	Glu	Gly 510	Arg	Tyr
Ser	Asn	Thr 515	Lys	Leu	Arg	Asn	Gln 520	Gly	Glu	Tyr	Met	Pro 525	Asp	Phe	Val
Thr	Leu 530	Ser	Glu	Gly	Leu	Gly 535	Cys	Val	Ala	Ile	Arg 540	Val	Thr	Lys	Ala
Glu 545	Glu	Val	Leu	Pro	Ala 550	Ile	Gln	Lys	Ala	Arg 555	Glu	Ile	Asn	Asp	Arg 560
Pro	Val	Val	Ile	Asp 565	Phe	Ile	Val	Gly	Glu 570	Asp	Ala	Gln	Val	Trp 575	Pro
Met	Val	Ser	Ala 580	Gly	Ser	Ser	Asn	Ser 585	Asp	Ile	Gln	Tyr	Ala 590	Leu	Gly
Leu	Arg	Pro 595	Phe	Phe	Asp	Gly	Asp 600	Glu	Ser	Ala	Ala	Glu 605	Asp	Pro	Ala
Asp	Ile 610	His	Glu	Ala	Val	Ser 615	Asp	Ile	Asp	Ala	Ala 620	Val	Glu	Ser	Thr
Glu 625	Ala														

<210> 3

-4-

```
<211> 1505
<212> DNA
<213> Corynebacterium sp.
<400> 3
ggagecagaa agtegtgaat gtggeagett eteaacagee caeteeegee aeggttgeaa 60
geogtggteg atcegeegee cetgagegga tgacaggtge aaaggeaatt gttegatege 120
tegaggaget taacgeegae ategtgtteg gtatteetgg tggtgeggtg etaceggtgt 180
atgacceget ctattectee acaaaggtge gecaegtett ggtgegeeac gageagggeg 240
caggecaege ageaacegge taegegeagg ttaetggaeg egttggegte tgeattgeaa 300
cctctggccc aggagcaacc aacttggtta ccccaatcgc tgatgcaaac ttggactccg 360
ttcccatggt tgccatcacc ggccaggtcg gaagtggcct gctgggtacc gacgctttcc 420 aggaagccga tatccgcggc atcaccatgc cagtgaccaa gcacaacttc atggtcacca 480
accetaacga cattecacag geattggetg aggeatteca cetegegatt actggtegee 540
ctggccctgt tctggttggat attcctaagg atgtccagaa cgctgaattg gatttcgtct 600
ggccaccaaa qatcgacctg ccaggctacc gcccagtttc aacaccacat gctcgccaga 660
tcqaqcaqqc aqtcaaqctq atcqqtqaqq ccaaqaaqcc cgtcctttac gttgqtqgtg 720
gegtaateaa ggetgaegea caegaagage ttegtgegtt egetgagtae aeeggeatee 780
cagttgtcac caccttgatg gctttgggta ctttcccaga gtctcacgag ctgcacatgg 840
gtatgccagg catgcatggc actgtgtccg ctgttggtgc actgcagcgc agcgacctgc 900
tgattgctat cggctcccgc tttgatgacc gcgtcaccgg tgacgttgac accttcgcgc 960
ctgacgccaa gatcattcac gccgacattg atcctgccga aatcggcaag atcaagcagg 1020
ttgaggttcc aatcgtgggc gatgcccgcg aagttcttgc tcgtctgctg gaaaccacca 1080
aggcaagcaa ggcagagacc gaggacatct ccgagtgggt tgactacctc aagggcctca 1140
aggeacgttt cccgcgtggc tacgacgagc agccaggcga tctgctggca ccacagtttg 1200
tcattgaaac cctgtctgag ggacttggct gtgttgccat ccgcgtcacc aaagcggagg 1260
aagtactgcc agccatccaa aaggctcgag agatcaacga ccgcccagta gtcatcgact 1320
tcatcgtcgg tgaagacgca caggtatggc caatggtgtc tgctggatca tccaactccg 1380
atatecagta egeactegga ttgegeceat tetttgatgg tgatgaatet geageagaag 1440
atcctgccga cattcacgaa gccgtcagcg acattgatgc cgccgttgaa tcgaccgagg 1500
cataa
<210> 4
<211> 496
<212> PRT
<213> Corynebacterium sp.
<400> 4
Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser
Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Lys Ala Ile
Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro
Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys
Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala
Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr
Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn
             100
                                 105
                                                      110
```

Leu	Asp	Ser 115	Val	Pro	Met	Val	Ala 120	Ile	Thr	Gly	Gln	Val 125	Gly	Ser	Gl
Leu	Leu 130	Gly	Thr	Asp	Ala	Phe 135	Gln	Glu	Ala	Asp	Ile 140	Arg	Gly	Ile	Th:
Met 145	Pro	Val	Thr	Lys	His 150	Asn	Phe	Met	Val	Thr 155	Asn	Pro	Asn	Asp	I16
Pro	Gln	Ala	Leu	Ala 165	Glu	Ala	Phe	His	Leu 170	Ala	Ile	Thr	Gly	Arg 175	Pro
Gly	Pro	Val	Leu 180	Val	Asp	Ile	Pro	Lys 185	Asp	Val	Gln	Asn	Ala 190	Glu	Let
Asp	Phe	Val 195	Trp	Pro	Pro	Lys	Ile 200	Asp	Leu	Pro	Gly	Tyr 205	Arg	Pro	Va.
Ser	Thr 210	Pro	His	Ala	Arg	Gln 215	Ile	Glu	Gln	Ala	Val 220	Lys	Leu	Ile	Gly
Glu 225	Ala	Lys	Lys	Pro	Val 230	Leu	Tyr	Val	Gly	Gly 235	Gly	Val	Ile	Lys	Ala 240
Asp	Ala	His	Glu	Glu 245	Leu	Arg	Ala	Phe	Ala 250	Glu	Tyr	Thr	Gly	Ile 255	Pro
Val	Val	Thr	Thr 260	Leu	Met	Ala	Leu	Gly 265	Thr	Phe	Pro	Glu	Ser 270	His	Glu
Leu	His	Met 275	Gly	Met	Pro	Gly	Met 280	His	Gly	Thr	Val	Ser 285	Ala	Val	Gl
Ala	Leu 290	Gln	Arg	Ser	Asp	Leu 295	Leu	Ile	Ala	Ile	Gly 300	Ser	Arg	Phe	Asp
Asp 305	Arg	Val	Thr	Gly	Asp 310	Val	Asp	Thr	Phe	Ala 315	Pro	Asp	Ala	Lys	11e 320
Ile	His	Ala	Asp	11e 325	Asp	Pro	Ala	Glu	11e 330	Gly	Lys	Ile	Lys	Gln 335	Val
Glu	Val	Pro	Ile 340	Val	Gly	Asp	Ala	Arg 345	Glu	Val	Leu	Ala	Arg 350	Leu	Leu
Glu	Thr	Thr 355	Lys	Ala	Ser	Lys	Ala 360	Glu	Thr	Glu	Asp	Ile 365	Ser	Glu	Trp
Val	Asp 370	Tyr	Leu	Lys	Gly	Leu 375	Lys	Ala	Arg	Phe	Pro 380	Arg	Gly	Tyr	Asp
Glu 385	Gln	Pro	Gly	Asp	Leu 390	Leu	Ala	Pro	Gln	Phe 395	Val	Ile	Glu	Thr	Leu 400
Ser	Glu	Gly	Leu	Gly 405	Cys	Val	Ala	Ile	Arg 410	Val	Thr	Lys	Ala	Glu 415	Glu
Val	Leu	Pro	Ala 420	Ile	Gln	Lys	Ala	Arg 425	Glu	Ile	Asn	Asp	Arg 430	Pro	Val
Val	Ile	Asp 435	Phe	Ile	Val		Glu 440		Ala	Gln	Val	Trp 445	Pro	Met	Val

-6-

Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly Leu Arg 450 Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala Asp Ile 480 His Glu Ala Val Ser Asp Ile Asp Ala Ala 490 Val Glu Ser Thr Glu Ala

<210> 5 <211> 2427 <212> DNA <213> Corynebacterium sp.

aggagecaga aagtegtgaa tgtggeaget teteaacage ceaetecege caeggttgea 60 ageogtggtc gatecgeege ceetgagegg atgacaggtg cacaggeaat tgttcgateg 120 ctcgaggagc ttaacgccga catcgtgttc ggtattcctg gtggtgcggt gctaccggtg 180 tatgaccege tetatteete cacaaaggtg egecaegtee tagtgegeea egageaggge 240 gcaggccacg cagcaaccgg ctacgcgcag gttactggac gcgttggcgt ctgcattgca 300 acctetggce caggegeaac caacttggtt acceeaateg etgatgeaaa ettggactee 360 gttcccatgg ttgccatcac cggccaggtc ggaagtagcc tgctgggtac cgatgctttc 420 caggaageeg atateegegg cateaceatg ceagtgacea ageacaactt catggtcace 480 aaccccaacg acattccaca ggcattggct gaggcattcc acctcgcgat tactggtcgc 540 cctggtcctg ttctagtgga tatccccaag gatgttcaga acgctgaatt ggatttcgtc 600 tggccaccaa agatcgacct gccaggctac cgcccagttt caacaccgca tgctcgacag 660 attgagcagg ctgtcaaact gatcggtgag tctaagaagc ctgtccttta cgttggcggc 720 ggcgttatca aggctgatgc ccacgaagag cttcgtgcgt tcgctgagca caccggcatt 780 ccagttgtca ccacattgat ggcgctggga accttcccag agtcccacga gctgcacatg 840 ggtatgccag gcatgcatgg cactgtgtcc gctgttggtg cactgcagcg cagcgacctg 900 ctgattgcta teggeteceg etttgatgae egegteaceg gtgaegttga eaetttegea 960 cctgatgcca agatcattca cgccgacatt gatcctgccg aaatcggcaa gatcaagcag 1020 gttgaggttc caatcgtggg cgatgcccgc gaggttcttg ctcgtctgct cgaaaccacc 1080 aaggcaagca aggcagagtc tgaggacatc tccgagtggg ttgactacct caagggcctc 1140 aaggcacgtt tcccacgtgg ctacgacgag cagccaggcg atctgctggc accacagttt 1200 gtcattgaaa ccctgtccaa ggaagttggc cccgacgcaa tttactgcgc cggcgttggc 1260 cagcaccaga tgtgggcagc tcagttcgtt gacttcgaaa agccacgcac ctggctcaac 1320 teeggtggae tgggeaceat gggetaegea gtteetgegg etettggage aaaggetgge 1380 gcacctgaca aggaagtctg ggctatcgac ggcgacggct gtttccagat gaccaaccag 1440 gaactcacca ccgccgcagt tgaaggtttc tccattaaga tcgcactaat caacaacgga 1500 aacctgggta tggttcgcca atggcagacc ctattctatg aaggacggta ctcaaatact 1560 aaacttcgta accagggcga gtacatgccc gactttgtta ccctttctga gggacttggc 1620 tgtgttgcca tccgcgtcac caaagcggag gaagtactgc cagccatcca aaaggctcga 1680 gagatcaacg accgcccagt agtcatcgac ttcatcgtcg gtgaagacgc acaggtatgg 1740 ccaatggtgt ctgctggatc atccaactcc gatatccagt acgcactcgg attgcgccca 1800 ttctttgatg gtgatgaatc tgcagcagaa gatctgccga cattcacgaa gccgtcagcg 1860 acattgatgc cgccgttgaa tcgaccgagg cataaggaga gacccaagat ggctaattct 1920 gacgtcaccc gccacatcct gtccgtactc gttcaggacg tagacggaat catttcccgc 1980 gtatcaggta tgttcacccg acgcgcattc aacctcgtgt ccctcgtgtc tgcaaagacc 2040 gaaacactcg gcatcaaccg catcacggtt gttgtcgacg ccgacgagct caacattgag 2100 cagatcacca agcagetcaa caagetgate eeegtgetea aagtegtgeg aettgatgaa 2160 gagaccacta tcgcccgcgc aatcatgctg gttaaggttt ctgcggacag caccaaccgt 2220 cegeagateg tegacgeege gaacatette egegeeegag tegtegaegt ggeteeagae 2280 tctgtggtta ttgaatccac aggcacccca ggcaagctcc gcgcactgct tgacgtgatg 2340 gaaccattcg gaatccgcga actgatccaa tccggacaga ttgcactcaa ccgcggtccg 2400 2427 aagaccatgg ctccggccaa gatctaa

<210> 6

<211> 803

<212> PRT

<213> Corynebacterium sp.

<400> 6

Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15

Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30

Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45

Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys
50 55 60

Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80

Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr
85 90 95

Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110

Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Ser 115 120 125

Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140

Met Pro Val Thr Lys His Asn Phe Met Val Thr Asn Pro Asn Asp Ile 145 150 155 160

Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175

Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190

Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205

Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220

Glu Ser Lys Lys Pro Val Leu Tyr Val Gly Gly Val Ile Lys Ala 225 230 235 240

Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu His Thr Gly Ile Pro 245 250 255

Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270

Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280

Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300

Asp 305	Arg	Val	Thr	Gly	Asp 310	Val	Asp	Thr	Phe	Ala 315	Pro	Asp	Ala	Lys	11e 320
Ile	His	Ala	Asp	Ile 325	Asp	Pro	Ala	Glu	Ile 330	Gly	Lys	Ile	Lys	Gln 335	Val
Glu	Val	Pro	Ile 340	Val	Gly	Asp	Ala	Arg 345	Glu	Val	Leu	Ala	Arg 350	Leu	Leu
Glu	Thr	Thr 355	Lys	Ala	Ser	Lys	Ala 360	Glu	Ser	Glu	Asp	11e 365	Ser	Glu	Trp
Val	Asp 370	Tyr	Leu	Lys	Gly	Leu 375	Lys	Ala	Arg	Phe	Pro 380	Arg	Gly	Tyr	Asp
Glu 385	Gln	Pro	Gly	Asp	Leu 390	Leu	Ala	Pro	Gln	Phe 395	Val	Ile	Glu	Thr	Leu 400
Ser	Lys	Glu	Val	Gly 405	Pro	Asp	Ala	Ile	Tyr 410	Cys	Ala	Gly	Val	Gly 415	Gln
His	Gln	Met	Trp 420	Ala	Ala	Gln	Phe	Val 425	Asp	Phe	Glu	Lys	Pro 430	Arg	Thr
Trp	Leu	Asn 435	Ser	Gly	Gly	Leu	Gly 440	Thr	Met	Gly	Tyr	Ala 445	Val	Pro	Ala
Ala	Leu 450	Gly	Ala	Lys	Ala	Gly 455	Ala	Pro	Asp	Lys	Glu 460	Val	Trp	Ala	Ile
Asp 465	Gly	Asp	Gly	Cys	Phe 470	Gln	Met	Thr	Asn	Gln 475	Glu	Leu	Thr	Thr	Ala 480
Ala	Val	Glu	Gly	Phe 485	Ser	Ile	Lys	Ile	Ala 490	Leu	Ile	Asn	Asn	Gly 495	Asn
Leu	Gly	Met	Val 500	Arg	Gln	Trp	Gln	Thr 505	Leu	Phe	Tyr	Glu	Gly 510	Arg	Tyr
Ser	Asn	Thr 515	Lys	Leu	Arg	Asn	Gln 520	Gly	Glu	Tyr	Met	Pro 525	Asp	Phe	Val
Thr	Leu 530	Ser	Glu	Gly	Leu	Gly 535	Cys	Val	Ala	Ile	Arg 540	Val	Thr	Lys	Ala
Glu 545	Glu	Val	Leu	Pro	Ala 550	Ile	Gln	Lys	Ala	Arg 555	Glu	Ile	Asn	Asp	Arg 560
Pro	Val	Val	Ile	Asp 565		Ile	Val	Gly	Glu 570	Asp	Ala	Gln	Val	Trp 575	Pro
Met	Val	Ser	Ala 580	Gly	Ser	Ser	Asn	Ser 585	Asp	Ile	Gln	Tyr	Ala 590	Leu	Gly
Leu	Arg	Pro 595	Phe	Phe	Asp	Gly	Asp 600	Glu	Ser	Ala	Ala	Glu 605	Asp	Leu	Pro
Thr	Phe 610	Thr	Lys	Pro	Ser	Ala 615	Thr	Leu	Met	Pro	Pro 620	Leu	Asn	Arg	Pro
Arg 625	His	Lys	Glu	Arg	Pro 630	Lys	Met	Ala	Asn	Ser 635	Asp	Val	Thr	Arg	His 640

WO 01/09286 PCT/US00/20979

-9-

Ile	Leu	Ser	Val	Leu 645	Val	Gln	Asp	Val	Asp 650	Gly	Ile	Ile	Ser	Arg 655	Va.
Ser	Gly	Met	Phe 660	Thr	Arg	Arg	Ala	Phe 665	Asn	Leu	Val	Ser	Leu 670	Val	Sei
Ala	Lys	Thr 675	Glu	Thr	Leu	Gly	Ile 680	Asn	Arg	Ile	Thr	Val 685	Val	Val	Asp
Ala	Asp 690	Glu	Leu	Asn	Ile	Glu 695	Gln	Ile	Thr		Gln 700	Leu	Asn	Lys	Leu
Ile 705	Pro	Val	Leu	Lys	Val 710	Val	Arg	Leu	Asp	Glu 715	Glu	Thr	Thr	Ile	Ala 720
Arg	Ala	Ile	Met	Leu 725	Val	Lys	Val	Ser	Ala 730	Asp	Ser	Thr	Asn	Arg 735	Pro
Gln	Ile	Val	Asp 740	Ala	Ala	Asn	Ile	Phe 745	Arg	Ala	Arg	Val	Val 750	Asp	Val
Ala	Pro	Asp 755	Ser	Val	Val	Ile	Glu 760	Ser	Thr	Gly	Thr	Pro 765	Gly	Lys	Let
Arg	Ala 770	Leu	Leu	Asp	Val	Met 775	Glu	Pro	Phe	Gly	Ile 780	Arg	Glu	Leu	Ile
Gln 785	Ser	Gly	Gln	Ile	Ala 790	Leu	Asn	Arg	Gly	Pro 795	Lys	Thr	Met	Ala	Pro 800
Ala	T.VS	Tle													

INTERNATIONAL SEARCH REPORT

tional Application No.

PCT/US 00/20979 a. classification of subject matter IPC 7 C12N1/20 C12N1/21 C12P13/04 C12R1/13 C12R1/15 C12R1/19 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C12P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BIOSIS, MEDLINE C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X US 3 700 557 A (NAKAYAMA KIYOSHI ET AL) 1-3,5,7, 24 October 1972 (1972-10-24) 13-15, 17, cited in the application 19-21,23 column 1, line 68 -column 2, line 19 X EP 0 780 476 A (DEGUSSA) 1-3,5,7, 25 June 1997 (1997-06-25) 13-15. 17, 19-21,23 page 1, line 49 - line 53 X US 3 527 672 A (KUBOTA KOJI ET AL) 1-5 8 September 1970 (1970-09-08) 13-17, 19-23 column 1, line 32 - line 40 -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. X 'Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) " document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18 October 2000 25/10/2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

Bilang, J

1

INTERNATIONAL SEARCH REPORT

Inte ional Application No PCT/US 00/20979

		PCT/US 00/20979
.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Jalegory 3	Gitation of document, with indication, where appropriate, of the relevant passages	nerevarii (o ciaim No.
K	EP 0 205 849 A (TORAY INDUSTRIES) 30 December 1986 (1986-12-30) page 2, paragraph 4 -page 9, paragraph 2; table 8	1,2,13, 14,19,20
X	JP 63 173592 A (MITSUI TOATSU CHEM INC) 18 July 1988 (1988-07-18) abstract	1,2,13, 14,19,20
X	EIKMANNS B J ET AL: "MOLECULAR ASPECTS OF LYSINE, THREONINE, AND ISOLEUCINE BIOSYNTHESIS IN CORYNEBACTERIUM GLUTAMICUM" ANTONIE VAN LEEUWENHOEK,DORDRECHT,NL, vol. 64, no. 2, 1993, pages 145-163, XP000918559	1-3,5,7, 13-15, 17, 19-21,23
Y	page 153, left-hand column, paragraph 2	6,8,9, 18,24
x	BROEER S ET AL: "STRAINS OF CORYNEBACTERIUM GLUTAMICUM WITH DIFFERENT LYSINE PRODUCTIVITIES MAY HAVE DIFFERENT LYSINE EXCRETION SYSTEMS" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, US, WASHINGTON, DC, vol. 59, no. 1, 1993, pages 316-321, XP000675845 ISSN: 0099-2240 page 316, right-hand column, paragraph 3	1-3,5,7, 13-15, 17, 19-21,23
Y	KEILHAUER C ET AL: "ISOLEUCINE SYNTHESIS IN CORYNEBACTERIUM GLUTAMICUM: MOLECULAR ANALYSIS OF THE ILVB-ILVN-ILVC OPERON" JOURNAL OF BACTERIOLOGY, US, WASHINGTON, DC, vol. 175, no. 17, 1 September 1993 (1993-09-01), pages 5595-5603, XP000611312 ISSN: 0021-9193 page 5597, left-hand column, paragraph 4	6,8,9, 18,24

INTERNATIONAL SEARCH REPORT

information on patent family members

Intel onal Application No PCT/US 00/20979

	itent document I in search report	t	Publication date	1	Patent family member(s)	Publication date		
US	3700557	A	24-10-1972	BE	683933 A	16-12-1966		
				CH	481217 A	15-11-1969		
				DE	1517823 A	14-05-1969		
				DK	112441 B	16-12-1968		
				GB	1118719 A			
				NL	6609694 A	15-09-1967		
				SE	316737 B	03-11-1969		
EP	0780476	Α	25-06-1997	DE	19547361 A	26-06-1997		
				บร	5840551 A	24-11-1998		
US	3527672	Α	08-09-1970	GB	1180104 A	04-02-1970		
EP	0205849	A	30-12-1986	JP	1945776 C	23-06-1995		
			•	JP	6073460 B	21-09-1994		
				JP	62198397 A	02-09-1987		
				JP	1429138 C	09-03-1988		
				JP	61260891 A	19-11-1986		
				JP	62035759 B	04-08-1987		
				DE	3682709 A	16-01-1992		
				US	5098835 A	24-03-1992		
JP	63173592	Α	18-07-1988	JP	1918033 C	07-04-1995		
				JP	6044872 B	15-06-1994		