模电复习

1. 在图 (1) 所示电路中, $V_{\rm o}=$ (),I= ()。

2. 在图(2)电路中,已知 $U_{\mathrm{Z1}}=5\mathrm{V}$, $U_{\mathrm{Z2}}=8\mathrm{V}$, $R=300\Omega$,则 $I_{\mathrm{R}}=$ (

$$I_{\rm Z1} =$$
 (), $I_{\rm Z2} =$ ().

3. 判断图(3)晶体管的类型及管脚。

图 (3) 图 (4)

- 4. 在图(4)所示电路中,回答下列问题:
- (1) 用万用表测量 $U_{\rm CE}$ = 0.3V,晶体管 τ 工作于 (),此时 $I_{\rm C}$ = ()。
- (2) $U_{\rm C1} =$ (), $U_{\rm C2} =$ (
- (3) 当 $R_{\rm B}=0$ 时,电路出现什么情况? $R_{\rm C}=0$ 时,电路出现什么情况?
- (4) 当电路出现截止失真时, U_{CE} = (),消除失真的方法是(
- (5) 此电路的缺点是()。

5. 在图(5)所示电路中,已知 $V_{\rm CC}$ = 12V, $eta_{\rm l}=eta_{\rm 2}=50$, $r_{\rm bel}=r_{\rm be2}={\rm lk}\Omega$,

 $U_{\rm BE1} = U_{\rm BE2} = 0.6 \rm V \; , \; \textit{R}_{B_1} = 60 \rm k\Omega , \; \textit{R}_{B_2} = 20 \rm k\Omega , \; \textit{R}_{C} = 3 \rm k\Omega , \; \textit{R}_{E1} = 2 \rm k\Omega , \; \textit{R}_{B3} = 200 \rm k\Omega , \; \textit{R}_{E2} = 3 \rm k\Omega . \;$

试求: (1) 两级放大电路的静态工作点。(2) 画出放大电路的微变等效电路;

- (3) 求电压放大倍数 A_{u} ;
- (4) 放大电路的输入电阻 r_i ;
- (5) 放大电路的输出电阻 $r_{\rm o}$; (6) $R_{\rm E1}$ 、 $R_{\rm E2}$ 起什么作用?
- (7) 若 C_{E} 开路, R_{E1} 又起什么作用?(8)后级采用射极输出器有什么好处?

6. 求图 (6) 电路中的 u_0 和静态平衡电阻 R_6 。

图 (6)

7. 已知电路如图(7)所示。求输出电压 $u_{\rm o}$

(– *)*

图 (7)

8. 在图 (8) 所示电路中,已知输入为直流信号, $u_{i1}=u_{i2}=u_{i2}=u_{i2}=1$ V,运算放大器的工作电压为±12V。试求: (1) u_{o1} 和 u_{o} ; (2) 第二级电路是什么电路? (3) 静态平衡电阻 R_2 。

9. 按以下输出电压与输入电压的关系,用一个集成运放和电阻、电容设计出最简的电路。要求画出电路图,确定电路的参数。

(1)
$$u_{\rm o} = 0.5u_{\rm i}$$

(2)
$$u_o = 2(u_{i2} - u_{i1})$$

(3)
$$u_o = -10 \int u_{i1} dt - 5 \int u_{i2} dt$$
 ($C = 1 \mu F$)

10. 在图(9)所示电路中,已知 $u_i=2\sqrt{2}\sin\omega t {
m V}$, $U_{
m R}=-1{
m V}$ 。稳压管 $D_{
m Z}$ 为理想元件,

其稳压值 $U_Z=5V$;集成运放的工作电压为 $\pm 12V$ 。试求:(1)画出 u_o' 和 u_o 的波形;(2)画出电压传输特性;(3)稳压管 D_Z 和电阻R起什么作用?

