# Linux Operating System and Applications Linux Overview

# History

## **History of Unix**

- □ Origins at Bell Labs (1969–1971):
  - UNIX was created in 1969 at AT&T's Bell Labs by Ken Thompson,
     Dennis Ritchie, and others.
  - It started as a side project after the failure of the ambitious Multics operating system.
  - Written in assembly at first, UNIX introduced a new philosophy:
     simplicity, modularity, and reusability with tools that do one thing well.
- Portability Breakthrough (1973):
  - UNIX was rewritten in the C programming language, also developed at Bell Labs.
  - This made UNIX highly portable, meaning it could be adapted to run on different hardware — a revolutionary idea at the time.

## **History of Unix**

- **□** Early Expansion and Forks (1970s–1980s):
  - Version 6 UNIX (1975) became widely adopted in universities, especially at UC Berkeley, where it evolved into BSD UNIX (Berkeley Software Distribution).
  - AT&T continued developing its own versions (e.g., System III, System V).
  - Different organizations created their own variants, leading to the "UNIX wars" of the 1980s.
- □ Commercialization and Standards (1980s–1990s):
  - UNIX became the basis for many commercial operating systems, such as:
    - SunOS/Solaris (Sun Microsystems)
    - AIX (IBM)
    - HP-UX (Hewlett-Packard)
  - Industry standards like POSIX and The Single UNIX Specification were created to unify different versions.

## **History of Unix**

#### ☐ Influence on Linux and Modern Systems:

- UNIX inspired Linux, which started in 1991 as a UNIX-like system using GNU tools.
- macOS, FreeBSD, and many embedded systems are UNIX or UNIX-like.
- The UNIX philosophy shaped software engineering and operating system design.

#### UNIX Today:

- While traditional commercial UNIX systems have declined, UNIX's legacy lives on through:
  - Linux
  - BSD variants (FreeBSD, OpenBSD)
  - macOS (based on BSD UNIX)
- The principles of UNIX simplicity, composability, and transparency continue to influence modern computing.

## **History of Linux**

#### 1. Origins (Early 1990s):

- In 1991, Linus Torvalds, a Finnish computer science student, began developing a free, Unix-like operating system kernel as a personal project.
- He announced his work on a Usenet newsgroup, asking for feedback and contributions.
- The kernel was combined with GNU software (developed by the Free Software Foundation) to form a complete operating system: GNU/Linux.

#### 2. Growth of Open Source Community:

- The project gained rapid support from developers worldwide due to its open-source license (GNU General Public License).
- Contributions came in the form of code, bug fixes, drivers, and utilities.

#### 3. First Major Distributions (Mid 1990s):

- Distributions like Slackware (1993), Debian (1993), and Red Hat (1994) made Linux easier to install and use.
- These distros packaged the Linux kernel with system tools, GUIs, and software.

## **History of Linux**

#### 4. Adoption in Servers and Enterprises (2000s):

- Linux became popular for running web servers, databases, and enterprise applications due to its stability, performance, and cost-effectiveness.
- Companies like IBM and Oracle began supporting Linux.

#### 5. Rise of Ubuntu and User-Friendliness (Mid 2000s):

 Ubuntu (2004) focused on ease of use, bringing Linux to desktops and making it accessible to a broader audience.

#### 6. Cloud, Containers, and DevOps (2010s-Present):

- Linux became dominant in cloud computing, DevOps, and containerization (e.g., Docker, Kubernetes).
- Most cloud services (AWS, Google Cloud, Azure) use Linux as the base operating system.

#### 7. Linux Today:

- Linux powers a wide range of systems: from supercomputers, web servers, and mobile devices (Android) to IoT devices and automotive systems.
- It is maintained by a global community, with support from companies like Red Hat (IBM),
   Canonical, Google, and others.

#### **Linux distro**

- ☐ Derbian
  - Ubuntu
  - Knoppix
  - ☐ Raspbian/Raspberry Pi
- Red Hat (IBM)
  - □ Fedora
  - ☐ Red Hat Enterprise Linux
  - ☐ CentOS
- openSUSE
  - ☐ SUSE Linux Enterprise
- ☐ Arch Linux
- Slackware
- Gentoo (Novel)
  - Chrome OS





























## **Discussion**



#### □ Open Source and Free

- No licensing fees you can download, modify, and use it freely.
- Full access to the source code gives developers control and transparency.
- Encourages a global community of contributors and innovators.

#### ■ Stability and Reliability

- Linux systems can run for years without rebooting.
- It's the top choice for servers, supercomputers, and critical infrastructure because of its uptime and fault tolerance.

#### Security

- Designed with multi-user architecture and permission controls.
- Fewer vulnerabilities and faster security patches compared to many proprietary systems.
- Preferred in cybersecurity and penetration testing fields.

#### ☐ Performance and Efficiency

- Low system requirements make it ideal for both modern hardware and older machines.
- Frequently used in data centers, cloud platforms, and embedded devices for its performance-to-cost ratio.

#### ☐ Flexibility and Customization

- You can choose from hundreds of distributions, each tailored for a specific purpose (e.g., Ubuntu for desktops, CentOS for servers, Kali for security).
- Highly configurable: you can build a minimal system or a full-featured desktop environment.

#### ■ Development-Friendly

- Supports a wide range of programming languages and tools.
- Ideal for software development, DevOps, and cloud-native application development.
- Powers containers (Docker), orchestration tools (Kubernetes), and CI/CD pipelines.

- **□** Community Support
  - Extensive documentation and forums.
  - Active user and developer communities provide troubleshooting help and updates.
- Ubiquity in Technology
  - Runs on everything: phones (Android), TVs, routers, cars, smart appliances, and more.
  - Dominates the cloud, web servers, and supercomputing industries.

## **Companies that use Linux (Tech)**

| Company            | How They Use Linux                                                                            |  |
|--------------------|-----------------------------------------------------------------------------------------------|--|
| Google             | Runs on custom Linux servers and Android (a Linux-based OS)                                   |  |
| Amazon             | AWS uses Linux extensively (Amazon Linux, EC2, etc.)                                          |  |
| Facebook<br>(Meta) | Backend infrastructure is powered by Linux                                                    |  |
| Microsoft          | Azure supports Linux VMs; contributes to the Linux kernel                                     |  |
| IBM                | Invested in Linux (owns Red Hat), uses Linux across enterprise solutions                      |  |
| Netflix            | Uses Linux servers for streaming content globally                                             |  |
| Twitter            | Runs its entire infrastructure on Linux                                                       |  |
| Tesla              | In-car systems and backend services use Linux                                                 |  |
| Intel              | Develops and tests hardware with Linux support                                                |  |
| Apple              | While macOS is based on BSD Unix, Linux is widely used internally for testing and development |  |

## **Companies that use Linux**

#### Financial & Enterprise

| Company         | Use Case                                     |
|-----------------|----------------------------------------------|
| Goldman Sachs   | Uses Linux for trading platforms and servers |
| JP Morgan Chase | Relies on Linux for secure, scalable systems |
| Deutsche Bank   | Uses Linux in cloud-based financial services |
| CitiBank        | Utilizes Linux for backend operations        |

#### **Telecom & Networking**

| Company | Use Case                                      |
|---------|-----------------------------------------------|
| Cisco   | Networking hardware and routers run Linux     |
| Verizon | Uses Linux in its telecom infrastructure      |
| AT&T    | Runs on Linux-based platforms in its networks |

## What Can Linux Be Used For?

- Servers: Web, database, mail, and file servers
- Development: Programming, testing, and deployment
- Networking: System administration, firewalls, DNS, SSH
- Cybersecurity: Ethical hacking and security tools (e.g., Kali Linux)
- Cloud & DevOps: Containers, CI/CD, cloud infrastructure
- Embedded Systems: Routers, IoT devices, smart appliances
- **Desktops**: Personal computing, education, and multimedia

## **Books and Learning Resources**

#### Books

- The Linux Command Line William Shotts
- Linux for Beginners Jason Cannon
- How Linux Works Brian Ward
- UNIX & Linux System Admin Handbook Nemeth et al.

#### Websites

- <u>LinuxJourney.com</u> Interactive learning
- <u>LinuxCommand.org</u> Shell tutorials
- <u>DigitalOcean Community</u> Real-world guides
- OverTheWire.org Linux wargames
- <u>Linux Foundation</u> Courses & certs
- <u>Server-Word.info</u> Linux services tutorials

### **Tools**

- ☐ Linux: CentOS, Ubuntu
- VMware Workstation, Virtual Box
- ☐ Visual CertExam Manager
- ☐ Testking/ Pass4sure

# Q&A