

Parent function: sin(6)

- Horizontal stretch by a factor of 2
- Vertical stretch by a factor of 2
- Vertical reflection
- Vertical shift 5 up

 $f(\theta) = \sin(2\theta)$

Prop: Let
$$f(\theta) = r \cos(\theta) + h$$
 and $g(\theta) = r \sin(\theta) + k$. Then $(f(\theta), g(\theta))$ are the coordinates of the point on the circle of radius r centered at (h, k) that has angle θ .

Find
$$(x,y)$$
. $\begin{cases} x = 2 \cos(135^\circ) + 6 \\ y = 2 \sin(135^\circ) + 3 \end{cases}$

Now we need to find cos (135°) and sin (135°).

(cos (135°), sin (135°)) 5; 45°; 135°

$$cos (45^{\circ}) = \frac{\alpha}{1} = \alpha$$

 $sin (45^{\circ}) = \frac{b}{1} = b$

$$45^{\circ}$$
 is a special angle: $\cos(45^{\circ}) = \frac{\sqrt{2}}{2}$ and $\sin(45^{\circ}) = \frac{\sqrt{2}}{2}$.

$$a = \frac{\sqrt{2}}{2} \qquad b = \frac{\sqrt{2}}{2}$$

$$cos(135^{\circ}) = -\frac{\sqrt{2}}{2}$$
 $sin(135^{\circ}) = \frac{\sqrt{2}}{2}$

$$x = 2(-\frac{52}{2}) + 6$$
 $y = 2(\frac{52}{2}) + 3$
 $x = 6 - 52$ $y = 3 + 52$

We know that any point (x,y) on the unit circle satisfies $x^2 + y^2 = 1$. That means we have a system of equations: $(y = \frac{2}{3} \times + \frac{1}{2})$

 $\begin{cases} x^2 + y^2 = 1 \end{cases}$

$$\times^2 + \left(\frac{2}{3} \times + \frac{1}{2}\right)^2 = 1$$

$$x^{2} + \frac{4}{9}x^{2} + \frac{2}{3}x + \frac{1}{4} = 1$$

$$\frac{13}{9} \times^2 + \frac{2}{3} \times - \frac{3}{9} = 0$$

$$x = \frac{-\frac{2}{3} + \sqrt{\frac{4}{9} - 4\left(\frac{13}{9}\right)\left(-\frac{3}{4}\right)}}{2\left(\frac{13}{9}\right)}$$

$$x = -\frac{3}{13} + \frac{3}{26} \sqrt{43} \qquad y = -\frac{2}{13} + \frac{2}{26} \sqrt{43} + \frac{1}{2}$$

$$x = -\frac{3}{13} - \frac{3}{26} \sqrt{43} \qquad y = -\frac{2}{13} - \frac{2}{26} \sqrt{43} + \frac{1}{2}$$

$$= 7 \left(-\frac{3}{13} + \frac{3}{26} \sqrt{43}, -\frac{2}{13} + \frac{2}{26} \sqrt{43} + \frac{1}{2} \right)$$

$$\left(-\frac{3}{13} - \frac{3}{26} \sqrt{43}, -\frac{2}{13} - \frac{2}{26} \sqrt{43} + \frac{1}{2} \right)$$

The Tangent Function

Ex: Find b:

We know that sin (30°) = 5 and cos (30°) = 4, but neither one of these equations lets us solve for b. But,

$$\frac{1}{\sqrt{3}} = \frac{1/2}{\sqrt{3}/2} = \frac{\sin(30^\circ)}{\cos(30^\circ)} = \frac{b/c}{4/c} = \frac{b}{4} \cdot \frac{E}{4} = \frac{b}{4}$$

$$\frac{1}{\sqrt{3}} = \frac{1/2}{\sqrt{3}/2} = \frac{\sin(30^\circ)}{\cos(30^\circ)} = \frac{b/c}{4/c} = \frac{b}{4} \cdot \frac{E}{4} = \frac{b}{4}$$

Def: The tangent of an angle
$$\theta$$
 is $\tan (\theta) = \frac{\sin (\theta)}{\cos (\theta)}$.

Prop. (1) In a right triangle,
$$\tan(\theta) = \frac{\text{opp}}{\text{adj}}$$
.

2) We have the following special angles for tan (θ):

θ	ວ໊	30°	450	60°	90
sin(B)	0	1/2	12/2	13/2	l
(oς (θ)	1	13/2	12/2	1/2	0
tan(0)	O	1/53	1	\ \ \ 3 \ -	undefined!

(3) In a unit circle, tan (0) is the slope of the line from the origin through the point with angle 0.

Midtern 1: Friday
50 minutes
Cameras on

Through 2.4.

Closed book/notes/internet/people Scientific calculator allowed, but not a graphing one

The slope is $tan(40^\circ) = .8391$. So the equation of the line is $y = .8391 \times + 2$.

same slope by going around 180° = 7 period of fan is 180°.

tan is an odd function.

tan(x) has asymptotes at x= 180°n +90° for any integer n.

tan (x) has roots at x=180° n for any integer n.

Since $\tan(x) = \frac{\sin(x)}{\cos(x)}$, the roots of sin and the

asymptotes occor at the roots of cos.

Ex: A ladder is leaning up against a wall. It reaches to feet up the wall and makes an angle of 60° with the ground. Find the distance from the well to the base of the ladder without finding the length of the ladder.

