EE360C: Algorithms

Graphs
Part 2/3

Summer 2019

Department of Electrical and Computer Engineering University of Texas at Austin

Paths and Connectivity

Definition: Path

A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k$ with the property that each consecutive pair $v_i, v_i + 1$ is joined by an edge in E.

Definition: Simple Path

A path *P* is simple if all nodes in *P* are distinct.

Definition: A Connected Undirected Graph

An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Definition: Cycle

A cycle is a path $v_1, v_2, \dots v_{k-1}, v_k$ in which $v_1 = v_k, k > 2$, and the first k-1 nodes are all distinct.

cycle =
$$1 - 2 - 4 - 5 - 3 - 1$$

Trees

Definition: Tree

An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem

Let *G* be an undirected graph on *n* nodes. Any two of the following statements imply the third:

- G is connected
- G does not contain a cycle
- G has n − 1 edges

Rooted Trees

Definition: Rooted Tree

Given a tree T, choose a root node r and orient each edge away from r. This enables one to model hierarchical structure.

An Example Tree: Phylogeny Tree

http://en.wikipedia.org/wiki/File:Phylogenetic_Tree_of_Life.png

Another Example Tree: Object Oriented Class Architecture

http://www.clear.rice.edu/comp310/JavaResources/GUI/

Graph Traversal

Connectivity

s-t Connectivity Problem

Given two nodes *s* and *t*, is there a path between *s* and *t*?

s - t Shortest Path Problem

Given two nodes s and t, what is the length of the shortest path between s and t?

Applications

- Social network connections (e.g., Kevin Bacon numb
- Maze traversal
- Fewest number of hops in a communication network

Connected Components

A Related Problem: Finding Connected Components

Find all nodes that are reachable from s.

R will consist of nodes to which s has a path Initially $R=\{s\}$ While there is an edge (u,v) where $u\in R$ and $v\not\in R$ Add v to R Endwhile

Theorem

Upon termination, *R* is the connected component containing *s*.

Proof

??

Connected Components: Practically

Flood Fill

Given a lime green pixel in an image, change the color of the entire blob of neighboring lime pixels to blue.

• Node: pixel

Edge: two neighboring lime pixels

Blob: connected component of lime pixels

Breadth First Search

The Problem

Given a graph G = (V, E) and a specific source vertex s, what vertices can be reached from s?

Not only is this problem pretty pervasive (e.g., in task scheduling), it is also a basis for other more advanced graph algorithms.

The basic idea is to systematically explore the edges of *G* to "discover" each node reachable from *s*.

- this works for both directed and undirected graphs
- the name of BFS comes from the fact that it expands the search for new nodes uniformly across the "frontier" of discovered nodes

Breadth-First Search Conceptually

Breadth First Search (BFS)

In a BFS, you can think of all nodes as being colored either white, gray, or black. Initially, all nodes are white.

- a node is "discovered" the first time the BFS encounters it;
 at this point BFS colors the node gray
- the complete set of gray nodes is the "frontier"
- to proceed, BFS looks at each of the gray nodes, examines each of its outgoing edges, to see if they're connected to any white (undiscovered) nodes
 - if so, color that node gray and insert this node at the end of the queue of the frontier vertices
 - when we've examined all of a node's outgoing edges, remove it from the frontier queue and color it black

Breadth-First Search in Layers

BFS Intuition

Explore from s in all possible directions, adding nodes a "layer" at a time

BFS Algorithm

- $L_0 = \{s\}$
- L_1 = all neighbors of L_o
- L₂ = all nodes that do not belong to L₀ or L₁ and that have an edge to a node in L₁
- L_{i+1} = all nodes that do not belong to an earlier layer and that have an
 edge to a node in L_i

Theorem

For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t if and only iff t appears in some layer.

Breadth First Search and Adjacency

Theorem

Let T be a breadth first search tree, let x and y be nodes in T belonging to layers L_i and L_j respectively, and let (x, y) be an edge of G. Then i and j differ by at most 1.

Proof

??

Breadth First Search Analysis

Assume that we use adjacency litts to store the graph, a queue to keep track of frontier nodes, and an array to keep track of which nodes were "discovered" (for each node: 0 or 1).

- O(n) time to initialize the array indicating discovered or not.
- each node is discovered at most once; queue operations are O(1) at most; at most O(m) time is spent interacting with the queue
- each adjacency list is scanned at most once (when the node is explored); so the total time spent looking at adjacency lists is O(2m) = O(m)

So the total running time of breadth first search is O(n + m), or linear in size to the adjacency list representation.

BFS and Shortest Paths

The level of a node in a breadth first search is the *distance* computed by the breadth first search algorithm from s to u. We define the **shortest-path distance**, d(s, v) from s to v as the minimum number of edges in any path from s to v

• if there is no path from s to v, then $d(s, v) = \infty$

It is a non-trivial fact that the levels computed in breadth first search are the shortest distances from s to any node u. We'll revisit this problem in Chapter 4.

Depth-First Search

Depth First Search (DFS)

An alternative to exploring across the entire frontier at the same time is to explore a single path as far as it can go, then explore a different one.

- depth-first search explores "deeper" into the graph whenever possible
- edges are explored out of the most recently discovered vertex (v) until there are no more
- then the search backtracks, exploring other paths out of v's parent

```
DFS(u):
   Mark u as "Explored" and add u to R
   For each edge (u, v) incident to u
        If v is not marked "Explored" then
        Recursively invoke DFS(v)
        Endif
Endfor
```

Theorem

Let T be a depth-first search tree, let x and y be nodes in T, and let (x, y) be an edge of G that is not an edge of T. Then one of x or y is an ancestor of the other in T.

Proof

opyright ??

. . .

Hint

In a given recursive call DFS(u), all nodes marked "Explored" within this recursive call are descendants of u in T.

19/22

Comparing BFS and DFS

Comparing BFS and DFS

Similarities

- Both build the strongly connected component of G that contains s.
- Both have similar efficiency

Differences

- They explore the vertices of G in very different orders.
- They result in trees rooted at s that have very different structure (bushy vs. tall)

Questions