

SISTEMAS ELÉCTRICOS DE POTENCIA CURSO 2020/2021

Práctica nº 1: Cortocircuitos I

Para la red representada en la figura 1: (For the network represented in Figure 1:)

- a) Obtener los valores por unidad de todos los elementos de la red. (Obtain the per unit values of all components of the network)
- b) Obtener el valor de la corriente de cortocircuito si se produce una falta simétrica en F₁, siendo F₁ un punto de la línea L₄₅ distante una longitud x desde el nudo 4. Representar dicha corriente de falta en función de la variable x. Supóngase una variación de x entre el 10% y el 90% de la longitud total de la línea L₄₅.

 (Determine the fault current in case of a balanced three-phase fault in F₁. F₁ represents a point of the line L₄₅ that have a distance x from the node 4. Show a graph with the variation of the fault current versus x. Suppose a

Práctica nº 2: Cortocircuitos II

variation of x between 10% and 90% of the total length of line L₄₅)

Repetir el apartado b) de la práctica nº1 (Cortocircuitos I), calculando los equivalentes de la red mediante la matriz de impedancia de barras Z_{barras} , obtenida a partir de la matriz admitancia de barras Y_{barras} .

(Repeat paragraph b of Cortocircuitos I, by calculating the grid equivalents from the bus impedance matrix Z_{bus} , calculated from the bus admittance matrix Y_{bus} .)

- c) Repetir el apartado b, suponiendo una falta monofásica. (Repeat paragraph b, but supposing a single line to ground fault)
- d) Obtener el valor de la corriente que circularía por el interruptor I, en el caso de cortocircuito bifásico a tierra en F₂.
 (Determine the current that flow through the circuit breaker I, in case of a double line to ground fault F₂)
- e) Obtener el valor de la corriente de cortocircuito en el caso de una falta monofásica en F₃.

 (Determine the fault current, in case of a single line to ground fault in F₃)

Notas (Notes):

- Se considerará una tensión prefallo de 1,05 pu. (Consider a pre-fault voltage of 1.05 pu)
- Tómese el valor de R_n en ohmios como $R_n=N^\circ$ matrícula/ 10^5 . (*Take the value of* R_n *in ohms as* $R_n=$ *Matriculation No* / 10^5 .)
- Tómese el valor de U_{c3} como $U_{c3} = 2 \cdot N^{\circ}$ matrícula/ 10^4 . (*Take the value of U_{c3} as U_{c3} = 2·Matriculation No/10*⁴.)
- Se tomará una potencia base de $S_{base} = 100 \text{ MVA}$. (Consider a power base value of $S_{base} = 100 \text{ MVA}$)

Figura 1 (Figure 1)