1. Assume a value for $\underline{I_1}$ in Fig.1 to calculate $\frac{\underline{V_1}}{\underline{V}}$ (15%) and $\frac{\underline{V}}{\underline{I}}$ (15%) in polar form when R=6 Ω and $\underline{I_X} = 2I_1$.

2. For the circuit shown in Fig.2, find i_1 , i_2 and v_a using mesh analysis. (15%)

Fig. 2

3. The circuit shown in Fig.3 has two loads and a switch. (a). When the switch is open (i.e., not connected), $\underline{I} = 100A(rms) \angle 0^{\circ}$. Find the real power and power factor of load #1. (10%) (b). When the switch is closed, $\underline{I} = 125A(rms) \angle -30^{\circ}$. Find the reactive power of load #2. (5%)

Fig. 3

4. For the circuit shown in Fig.4 and

Fig. 4

- (a) Show that critical damping in a parallel CRL circuit corresponds to $Q_{par}=0.5$,
- where Q_{par} is the quality factor for parallel resonance. (6%) (b) Find expressions for the initial value and slope at $t=0^+$ for v_c , i_c and i_L in Fig.4 when

$$i_s = \begin{cases} I_1 & , t < 0 \\ I_2 & , t > 0 \end{cases}$$
 (6%)

(c) Find the transient response of i_L when $R = 3\Omega$, $C = \frac{1}{24}F$, L = 2H, and

$$i_s = \begin{cases} 2 A, t < 0 \\ -1 A, t > 0 \end{cases}$$
 (6%)

- (d) Suppose that $C = \frac{1}{24}F$, L = 2H, determine the three different ranges of R $(R \ge 0)$ in which overdamping, critical damping, and underdamping occur.
- (e) Explain why the natural responses of i_c and i_R satisfy the same second order differential equation as i_L . (3%)

5. For the circuit shown in Fig.5, find i(t) for t>0 given that $i_s(t)=4\cos 10t$ A. (16%)

Fig. 5