Assignment-4: Pattern Recognition

${\bf Contents}$

1	Isolated Digits 1.1 HMM												2										
	1.1	HMM																					2
	1.2	DTW																					3
	1.3	HMMs	s vei	sus	D	TW	V																3
		mected ndwriti		git	S																		5
	3.1	$_{\rm HMM}$																					5
		3.1.1	Iso	late	$^{\mathrm{d}}$																		5
		3.1.2	Co	$_{ m ntin}$	uo	us																	6
	3.2	DTW																					7

1 Isolated Digits

1.1 HMM

Data: Classes given to us are "1", "5" and "z".

Algorithm: The data is divided into train (70%) and test (30%). The data is quantized using K-means with the number of symbols being equal to the number of means. A left-right HMM is trained on each class. Given a test datapoint, the likelihood of all three HMM-models on this datapoint are obtained. The predicted class is the one having the maximum likelihood.

Experiments: The number of states and the number of symbols are the free variables. Each state-symbol combination corresponds to one experiment. The ROC-DET curves are plotted for all these models.

Performance as a function of symbols

Figure 1: HMM is labelled as < symbols > $_$ < states >

Performance as a function of states

Figure 2: HMM is labelled as < symbols $> _ <$ states >

Figure 3: HMM is labelled as < symbols $> _ <$ states >

Observations: The design of the codebook has a much greater impact on the performance than that of the states. 16 is observed to be the optimal codebook size. Even a single state HMM, 16-symbols HMM performs better than HMMs with a smaller codebook.

1.2 DTW

Figure 4: Each model is labelled by the number of nearest neighbours chosen.

Observations: Near perfect classification is obtained using just a single neighbour. This suggests that DTW is a very good distance measure for time series data.

1.3 HMMs versus DTW

- No training or hyperparameter tuning required in DTW.
- Unlike HMMs, DTW is memory and compute intensive during test time.

2 Connected Digits

Results on test-1								
Ground truth	Known model	Unknown model						
	length	length						
11z	11z	11z						
15	15	1555						
15z	1zz	1zz						
1z51	1z51	1z51z						
1z	1z	1z5z1						
1zz	1zz	1zz						
1zzz1	1zzz1	1zzz1						
51	51	511z1						
51z	51z	51z1z						
51zz5	51zz1	51zz1						
55	55	55						
z1	z1	z1zzz						
z1z	ZZZ	ZZZ						
z51z	z1z5	z1z5						
z 5	z5	z51						
z5z	z5z	z5z1						
z5zzz	z5zzz	z5zzz						
ZZ	ZZ	ZZ						

Results on test-2								
Ground truth	Fixed model	Unknown model						
	length = 3	length						
154.txt	111	11						
155.txt	155	155z1						
156.txt	151	15151						
157.txt	1zz	1zz15						
158.txt	z51	z51z1						
159.txt	551	55111						
160.txt	1zz	1zz						
161.txt	z1z	z1zzz						
162.txt	zz5	zz5z1						
163.txt	zz5	zz5z1						
164.txt	ZZZ	ZZ						
165.txt	ZZZ	zzz5z						
166.txt	ZZZ	ZZZ						

16-symbol, 10-state HMM models trained on each class are used for this task. The HMMs are then concatenated to form different continuous models. During concatenation the final state's self-transition probability is set to 0.5, and its next state transition probability is also set to 0.5. Sequence lengths upto 5 are considered. So there are a total of $3^1 + 3^2 + 3^3 + 3^4 + 3^5 = 363$ HMM models against which each datapoint is tested.

3 Handwriting

Figure 5: bA, dA, lA

3.1 HMM

3.1.1 Isolated

Isolated: Four types of features are used: coordinates, first derivatives, second derivatives, curvature. Different combination of these features are used to prepare different datasets.

Figure 6: HMM is labelled as < features > $_$ < symbols > $_$ < states >

The effect of features on performance

Figure 7: HMM is labelled as < features $> _ <$ symbols $> _ <$ states >

Confusion Matrix on Test Data								
	lA							
bA	29	1	0					
dA	0	30	0					
1A	0	5	25					

Observations: The curvature is the most important feature. The first and second derivatives capture the speed and acceleration of the stroke. Though the dataset has been generated in an online fashion by sampling points as they are written, the prediction happens offline, after the entire stroke has been recorded. Hence the speed and acceleration do not have any impact on the classification. In fact the second derivatives make the performance worse.

There is a confusion between the characters "dA" and "lA". Since the curvature is the main feature, we need to study the variation in curvature across a stroke for each of these characters. Though "bA" and "dA" have very similar curvatures for the second half of the stroke, the first halves have inverse curvature. This is a discriminating aspect.

3.1.2 Continuous

Results for 1, 2 and 3								
Ground truth	Fixed model	Unknown model length						
	length = 3							
dA-bA-bA (1)	bA-dA-dA,	bA-dA-bA						
	bA-dA-bA,							
	bA-dA-lA							
bA-lA-lA (2)	bA-lA-lA,	bA-lA-lA-bA-dA						
	bA-lA-dA,							
	bA-lA-bA							
bA-bA-lA (3)	dA-bA-bA	dA-bA-dA						

3.2 DTW

DTW-kNN classifier

Figure 8: Each model is labelled by the number of nearest neighbours chosen

Confusion Matrix on Test Data								
	bA	dA	lA					
bA	28	2	0					
dA	0	22	8					
lA	1	0	29					