第三次作业

1929401206 丁誉洋

2022.5.27

题目 1: 对以下数据表分别用线性和二次拉格朗日插值多项式求 y(0.3) 的近似值

x	-0.1	0.1	0.2	0.4	0.9
y	-2	1	2	7	14

解:

(1) 线性插值

选取 $x_0 = 0.2, x_1 = 0.4$, 得到

$$L_1(x) = \frac{x - 0.4}{0.2 - 0.4} \times 2 + \frac{x - 0.2}{0.4 - 0.2} \times 7$$
$$\therefore y(0.3) \approx \frac{0.3 - 0.4}{0.2 - 0.4} \times 2 + \frac{0.3 - 0.2}{0.4 - 0.2} \times 7$$
$$\approx 4.5$$

(2) 二次插值

选取 $x_0 = 0.1, x_1 = 0.2, x_2 = 0.4$, 得到

$$L_2(x) = \frac{(x - 0.2)(x - 0.4)}{(0.1 - 0.2)(0.1 - 0.4)} \times 1 + \frac{(x - 0.1)(x - 0.4)}{(0.2 - 0.1)(0.2 - 0.4)} \times 2 + \frac{(x - 0.1)(x - 0.2)}{(0.4 - 0.1)(0.4 - 0.2)} \times 7$$

$$\therefore y(0.3) \approx \frac{(0.3 - 0.2)(0.3 - 0.4)}{(0.1 - 0.2)(0.1 - 0.4)} \times 1 + \frac{(0.3 - 0.1)(0.3 - 0.4)}{(0.2 - 0.1)(0.2 - 0.4)} \times 2 + \frac{(0.3 - 0.1)(0.3 - 0.2)}{(0.4 - 0.1)(0.4 - 0.2)} \times 7$$

$$\approx 4.0$$

题目 2: 给定数据表

x	0	2	5	8
f(x)	-5	15	0	3

(1) 试建立相应的三次拉格朗日插值多项式

解:

(1)

由题, $x_0 = 0, x_1 = 2, x_2 = 5, x_3 = 8$, 得到

$$L_3(x) = \frac{(x-2)(x-5)(x-8)}{(0-2)(0-5)(0-8)} \times (-5) + \frac{(x-0)(x-5)(x-8)}{(2-0)(2-5)(2-8)} \times 15$$
$$+ \frac{(x-0)(x-2)(x-8)}{(5-0)(5-2)(5-8)} \times 0 + \frac{(x-0)(x-2)(x-5)}{(8-0)(8-2)(8-5)} \times 3$$
$$= \frac{1}{2}(x-5)(x^2-8x+2)$$

题目 3: 给定数据表

x	0	3	5	6
f(x)	5	128	430	665

用三次插值函数求 f(2) 的值

解:

$$N_3(2) = f[3] + f[3,0](2-3) + f[3,0,5](2-3)(2-0) + f[3,0,5,6](2-3)(2-0)(2-5)$$

$$= 128 + 41 \times (-1) + 22 \times (-1) \times 2 + 1 \times (-1) \times 2 \times (-3)$$

$$= 49$$

$$\therefore f(2) \approx N_3(2) = 49$$

题目 4: 设 $l_i(x)(i=0,1,\ldots,n)$ 为基本拉格朗日插值多项式, 节点 x_0,x_1,\ldots,x_n 互异, 证明

$$\sum_{i=0}^{n} l_i(x) x_i^k \equiv x^k \qquad (k = 0, 1, \dots, n)$$

解:

等式左边 $\sum_{i=0}^{n} l_i(x) x_i^k$ 可等价转化为对 $(x_0, x_0^k), (x_1, x_1^k), \dots, (x_n, x_n^k)$ 的差值结果,

$$\mathbb{P} L_n(x) = \sum_{i=0}^n l_i(x) y_i,$$

容易看出 $L_n(x) = x^k$ 是一种可行的差值结果

因为 $k \le n$,根据定理 4.1,即: 在 n+1 个互异点 x_0, x_1, \ldots, x_n 上满足插值条件 $P(x_i) = y_i$ ($i=0,1,\ldots,n$) 的次数不超过 n 次的插值多项式 $P_n(x)$ 存在且惟一。

所以
$$L_n(x) = x^k$$
 存在且唯一

所以

$$\sum_{i=0}^{n} l_i(x) x_i^k \equiv x^k \qquad (k = 0, 1, \dots, n)$$

题目 5: 设 $f(x) = 2x^4 - 4x^2 + 4x - 1$, 求

- (1) $f[3^0, 3^1, 3^2, 3^3, 3^4]$;
- (2) $f[4^1, 4^2, 4^3, 4^4, 4^5, 4^6]$;
- (3) f[0,1,2,3].

解:

(1)

由题

$$N_4(x) = N_3(x) + f[3^0, 3^1, 3^2, 3^3, 3^4](x - 3^0)(x - 3^1)(x - 3^2)(x - 3^3)$$

$$N_4(x) = f(x) = 2x^4 - 4x^2 + 4x - 1$$

$$N_3(x) + f[3^0, 3^1, 3^2, 3^3, 3^4](x - 3^0)(x - 3^1)(x - 3^2)(x - 3^3) = 2x^4 - 4x^2 + 4x - 1$$

两边 x^4 的系数分别为 $f[3^0, 3^1, 3^2, 3^3, 3^4]$ 和 2 所以 $f[3^0, 3^1, 3^2, 3^3, 3^4] = 2$

(2) $N_4(x)$ 为 4 次多项式,其 6 阶均差函数 $f[4^1,4^2,4^3,4^4,4^5,4^6]$,因为 6>4,所以均差为 0 即 $f[4^1,4^2,4^3,4^4,4^5,4^6]=0$

(3)

$$f(0) = -1, f(1) = 1, f(2) = 23, f(3) = 137$$

$$f[0, 1, 2] = \frac{f[0, 2] - f[0, 1]}{2 - 1} = \frac{f(2) - f(0)}{2 - 0} - \frac{f(1) - f(0)}{1 - 0} = 12 - 2 = 10$$

$$f[0, 1, 3] = \frac{f[0, 3] - f[0, 1]}{3 - 1} = \frac{1}{2} \left(\frac{f(3) - f(0)}{3 - 0} - \frac{f(1) - f(0)}{1 - 0} \right) = \frac{1}{2} (46 - 2) = 22$$

$$f[0, 1, 2, 3] = \frac{f[0, 1, 3] - f[0, 1, 2]}{3 - 2} = 12$$

题目 6: 试给出以下数据最合理的拟合曲线。

x	0	2	4	6	8
y	-0.2	10.1	19.9	30.1	40.1

解:

描点,确定 m=1。

 $S_0 = 5, S_1 = 20, S_2 = 120$

 $T_0 = 100, T_1 = 601.2$

从而建立法方程组

$$\begin{pmatrix} 5 & 20 \\ 20 & 120 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 100 \\ 601.2 \end{pmatrix}$$

解得 $a_0 = -0.12, a_1 = 5.03$

故 P(x) = -0.12 + 5.03x

题目 7: 用最小二乘法求形如 $y = ax + bx^2$ 的多项式,使与下列数据拟合(得数保留四位小数)。

\boldsymbol{x}	-3	-1	0	2	4
y	-8.2	-9.2	0	38.1	102.1

解:

$$S_2 = 30, S_3 = 44, S_4 = 354, T_1 = 518.4, T_2 = 1703$$

:. 相应的方程组为

$$\begin{pmatrix} 30 & 44 \\ 44 & 354 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 518.4 \\ 1703 \end{pmatrix}$$

解得 $a \approx 12.5036, b \approx 3.2566$

:. 所求拟合多项式为 $y = 12.5036x + 3.2566x^2$

题目 8: 测得单摆振动的振幅随时间 t 变化的数据表如下,试用指数拟合求解衰减变化规律 $y=ae^{bt}$ (得数保留三位小数)。

t	0	1	2	3	4	5	6
y	9.00	4.47	2.22	1.10	0.55	0.27	0.13

解:

 $y = ae^{bt} \Longrightarrow z = \ln y = \ln a + bt$

首先根据 y_i 的值算出 $z_i = \ln y_i$ (t = 0, 1, 2, 3, 4, 5, 6)

t	0	1	2	3	4	5	6
$z_i = \ln y$	2.1972	1.4974	0.7975	0.0953	-0.5978	-1.3093	-2.0402

今 $z(t) = a_0 + a_1 t$ 对数据 (t_i, z_i) 进行拟合

$$S_0 = 7, S_1 = 21, S_2 = 91, T_0 = 0.6401, T_1 = -17.8006$$

建立法方程组

$$\begin{pmatrix} 7 & 21 \\ 21 & 91 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 0.6401 \\ -17.8006 \end{pmatrix}$$

解出 $a_0 = 2.204, a_1 = -0.704$

所以
$$z(t) = 2.204 - 0.704t$$
, $y(t) = e^{z(t)} = 9.064e^{-0.704t}$

题目 9: 试求以下超定方程组的最小二乘解(得数保留三位小数)。

$$\begin{cases} x_1 - x_2 = 1 \\ -2x_1 + x_2 = 2 \\ 2x_1 - 2x_2 = 3 \\ -3x_1 + x_2 = 4 \end{cases}$$

解:

$$A = \begin{pmatrix} 1 & -1 \\ -2 & 1 \\ 2 & -2 \\ -3 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

$$A^T A = \begin{pmatrix} 18 & -10 \\ -10 & 7 \end{pmatrix}, A^T b = \begin{pmatrix} -9 \\ -1 \end{pmatrix}$$

所以法方程为

$$\begin{pmatrix} 18 & -10 \\ -10 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -9 \\ -1 \end{pmatrix}$$

解得 $x_1 = -2.808, x_2 = -4.154$