

4: Arithmetic for Computers

Rajesh Panicker, NUS

CG3207

Acknowledgement :

- Text by Patterson and Hennessey and companion slides by Mary Jane Irwin
- Text and companion slides by Harris and Harris
- Some slides from A/Prof. Bharadwaj Veeravalli
- Some figures from Wikipedia

Note:

 Not all slides will be covered in the lecture. The rest are left as a self-learning exercise.

Contents

- Adder, Carry lookahead adder, Subtractor
- ALU with ADD/SUB/AND/OR
- Shifter
- Multiplier, Divider
- Floating point arithmetic

1-Bit Adders

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\begin{array}{ll} S &= A \oplus B \\ C_{out} &= AB \end{array}$$

Full Adder

C_{in}	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Advantage : simple hardware
- Disadvantage: slow (could be a part of the critical path)

- Possible solution: express and implement C_{i+1} directly in terms of $(A_0,...,A_i, B_0,...,B_i,C_0)$ instead of waiting for it to ripple in
 - The number of terms would be huge for higher C_{i+1}s, implying huge number of gates, with each gate having a high fan-in
 - Fan-in / fan-out is the number of inputs / outputs driving / driven by a gate. Large fan-in/out usually means the gate will have a larger delay
- Carry-lookahead understanding when we would generate a carry and when we would propagate

- Idea: compute C_{i+1} from a pre-processed form of inputs. Observe the following
 - $C_{i+1}=1$ when $A_i = B_i = 1$ regardless of C_i . Stage i generates a carry. $g_i = A_i.B_i$
 - C_{i+1}=1 when C_i = 1 and either A_i = 1 or B_i = 1. Stage i propagates a carry. p_i = A_i + B_i
 - $C_1 = p_0C_0 + g_0$
 - $C_2 = p_1C_1+g_1 = p_1p_0C_0 + p_1g_0 + g_1$ We can continue this ... but How far can we go? Doesn't this defeat our purpose?

- Doing this for 32 stages is cumbersome. Do this for, say, 4 stages and call this 4 stage unit as a fundamental block
 - The first block takes $A_0, B_0, ..., A_3, B_3, C_0$ and gives $(S_0, S_1, S_2, S_3, C_4)$

 C_0

- Use 8 such units to handle 32 bits
- The ripple effect is avoided within a block, but the ripple carry effect will be present between blocks
 - Nevertheless, the delays are significantly lower than the original ripple carry adder
 - A better solution?

- Block propagate (P_i) and generate (G_i) signals for 4-bit blocks
 - $P_0 = p_3 p_2 p_1 p_0$

- (i refers to the block number here)
- $G_0 = g_3 + p_3 (g_2 + p_2 (g_1 + p_1 g_0))$
- 16-bit adder using 4-bit CLAs

- How about 32 bit?
 - Cascade 2 x 16-bit units
 - Or ... ?

Subtractor

Basic idea : A-B = A+B'+1

Symbol

Implementation

ALUControl _{1:0}	Function
00	ADD
01	SUB
10	AND
11	OR

N, Z, C, V Flags

- N = 1 if *Result* is negative, i.e., $N = Result_{31}$
- Z = 1 if all of the bits of *Result* are 0
- C = 1 if
 - C_{out} of adder is 1 **AND**
 - ALU is performing ADD/SUB ($ALUControl_1 = 0$)
- V = 1 if
 - ALU is performing ADD/SUB ($ALUControl_1 = 0$) **AND**
 - A and Sum have opposite signs AND
 - If ADD $(ALUControl_0 = 0)$: A and B have same sign
 - If SUB $(ALUControl_0 = 1)$: A and B have different signs

ALU with Flags

To Do: Make sense of how each condition code is related to NZCV flags

Comparator: Equality

- Comparison in ARM is done using subtraction (SUBS/CMP)
- ALU does not contain dedicated comparison hardware
- However, equality check might still be required for other purposes
 - Pipeline hazard detection
 - Branch prediction

Symbol

Implementation

Shifter

- High hardware usage for 32 bit shifting
 - 32 x 32-1 mux
- Such a shifter which can combinationally shift an input by an arbitrary amount is called a barrel shifter

Shifter

- Hardware-efficient shifter
 - 5 x 32 x 2-1 mux

Shifter

- LSL, ASR and ROR can also be implemented following a similar logic
- The 4 different shifts are combined using a multiplexer, controlled by sh
- More efficient shifter designs available!

Multipliers

- Partial products formed by multiplying a single digit of the multiplier with multiplicand
- Shifted partial products summed to form result

Multiplier (4 x 4)

- Array multiplier
 - Pro : combinational (single cycle)
 - Cons: Very high hardware usage, delay (likely in the critical path)

Sequential Multiplier


```
Let S=000000, A=011, B=101 (initial values)
#1: B_0(orig B_0)=1
add: S=S+A=000000+000011=000011
A=A<<1; Thus A=000110
B=B>>1; Thus B=010
#2: B_0(orig B_1)=0; no addition required; A=A<<1; Thus A=001100
B=B>>1; Thus B=001
#3: B_0(orig B_2)=1
add: S=S+A=000011+001100=001111
```

Improved Sequential Multiplier

Idea is to always align A to the "high side" (3 most significant bits of S) and then perform addition; Shift S to the right and do not shift A

Least significant bits of S populated with B, which keeps getting shifted to the right with S (avoids the need for an extra register for B)

```
Let S=000101 (000B), A=011 (initial values)

#1: S_0(\text{orig }B_0)=1; add: S=S+A000=000101+011000=011101

S=S>>1; Thus S=001110

#2: S_0(\text{orig }B_1)=0; no addition required;

S=S>>1; Thus S=000111

#3: S_0(\text{orig }B_2)=1; add: S=S+A000=000111+011000=011111;

S=S>>1; Thus S=001111, which is the final result
```

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back

Division Hardware

- More efficient hardware (similar to that for multiplication) possible
- Better schemes such as nonrestoring division exists
 - Left as self-study
- Multiplier and Divider can share most of the hardware

Example

Steps involved when 0000 0111 is divided by 0010

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	110 0111
1	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	1111 0111
2	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	1111 1111
3	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	0000 0011
4	2a: Rem ≥ 0 ⇒ sII Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	0000 0001
5	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Signed Multiplication / Division

11x 10 0000	Unsigned interpretation 3 x 2 = 6
0110 0110	Signed interpretation $-1 \times -2 = +6$

1111x	
1110	
0000	Corrected signed
1110	multiplication
11 00	Need to do sign-
1 000	extension!
0010	CACCIOIOII.

- When multiplying two n-bit numbers, the least significant n-bits are the same irrespective of signed / unsigned multiplication
- For division, signed/unsigned always matter
- There are more efficient signed multiplication techniques read up!
- One simple trick convert negatives to positives before multiplication / division, and negate the result if the original operands are of different signs

Numbers with Fractions

- Two common notations
 - Fixed-point: binary point fixed
 - Floating-point: binary point floats to the right of the most significant 1
- Fixed point
 - Binary point is implied
 - The number of integer and fraction bits must be agreed upon beforehand. Notations not so standard
 - Example: 6.75 using 4 integer bits and 4 fraction bits

0110.1100

$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

Signed Fixed Point

- Representation using Sign&Mag or 2's compl.
- Example: Represent -7.510 using 4 integer and 4 fraction bits
 - Sign/magnitude
 - **111111000**
 - 2's complement
 - 1. +7.5: 01111000
 - 2. Invert bits: 10000111
 - 3. Add 1 to LSB: +1

10001000

- After multiplication / division, the position of point needs to be adjusted by shifting to the left / right by the number of fraction bits (why?)
- Generally computationally simpler than floating point and hence popular

Floating-Point Numbers

- Binary point 'floats' unlike fixed point
- Scientific notation usually used
- The IEEE 754 floating-point standard
 - a number is written as

- The '1' to the left of the point is implicit/hidden
- 127 is the 'bias' so that the Exponent field is always positive (known as excess-127 format)
- Significand is also known as Mantissa and some other terms;
 may or may not include the hidden bit depending on context

Floating Point Example

Write -58.25₁₀ in floating point (IEEE 754)

1. Convert decimal to binary:

$$58.25_{10} = 111010.01_2$$

2. Write in binary scientific notation:

$$1.1101001 \times 2^{5}$$

3. Fill in fields:

Sign bit: 1 (negative)

8 exponent bits: $(127 + 5) = 132 = 10000100_2$ 23 fraction bits: 110 1001 0000 0000 0000 0000

 1 bit
 8 bits

 1
 10000100

 110 1001 0000 0000 0000 0000

Sign Exponent

Fraction

in hexadecimal: 0xC2690000

IEEE 754 : Special Cases

Number	Sign	Exponent	significand
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

- Double-Precision (64-bit)
 - 1 sign bit, 11 exponent bits, 52 fraction bits. Bias = 1023
- Half-Precision (16-bit)
 - 1 sign bit, 5 exponent bits, 10 fraction bits. Bias = 15
 - Popular in machine learning / neural networks
 - Supported by modern GPUs (e.g., Nvidia Pascal and newer) and CPU ISAs/ISA extensions such as ARMv8.1-M, x86 AVX-512 etc.

Floating Point: Rounding

- Overflow: number too large to be represented
- Underflow: number too small to be represented
- Rounding modes: Down, Up, Toward zero, To nearest
- Example: round 1.100101 (1.578125) to only 3 fraction bits

Down: 1.100

■ Up: 1.101

■ Toward zero: 1.100

To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating Point Addition: Steps

- Extract exponent and fraction bits
- Prepend leading 1 to form the significand
- 3. Compare exponents
- 4. Shift the smaller significand to the right
- Add significands
- 6. Normalize significand and adjust exponent if necessary
- Round result
- 8. Assemble exponent and fraction back into floatingpoint format

Floating Point Addition: Example

- Add the following floating-point numbers 0x3FC00000, 0x40500000
 - 1. Extract exponent and fraction bits

1 bit	8 bits	23 bits
0	01111111	100 0000 0000 0000 0000 0000
Sign	Exponent	Fraction
1 bit	8 bits	23 bits
1 bit	8 bits 10000000	23 bits 101 0000 0000 0000 0000 0000

For first number (N1): S = 0, E = 127, F = .1

For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form significand

N1: 1.1

N2: 1.101

Floating Point Addition: Example

- 3. Compare exponents 127 128 = -1, so shift N1 right by 1 bit
- 4. Shift smaller significand if necessary shift N1's significand: $1.1 >> 1 = 0.11 \ (\times 2^1)$
- 5. Add significands

$$egin{array}{ccc} 0.11 & imes 2^1 \ & 1.101 imes 2^1 \ & 10.011 imes 2^1 \end{array}$$

Floating Point Addition: Example

6. Normalize significand and adjust exponent if necessary

$$10.011 \times 2^1 = 1.0011 \times 2^2$$

- 7. Round result
 No need (fits in 23 bits)
- 8. Assemble exponent and fraction back into floatingpoint format

$$S = 0$$
, $E = 2 + 127 = 129 = 10000001_2$, $F = 001100$..

<u></u>		
0	10000001	001 1000 0000 0000 0000 0000
1 bit	8 bits	23 bits

Sign Exponent

Fraction

in hexadecimal: 0x40980000