MATH-UH	2010	Ordinary	Differential	Equations
MAIII-UII	4010	Orumary	Differential	Eduations

Spring 2024

Recitation 2 Worksheet

February 02 2024

Question 1. Determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist:

$$(\ln t)y' + 2y = \cot t, \ y(2) = 3$$

Question 2. State where in the ty-plane the hypotheses of theorem 2.4.1 are satisfied:

$$y' = \frac{4 + t^2}{2y - y^2}$$

Question 3. Determine if the given differential equation is exact. If it is exact, find the solution. If it is not exact, use an appropriate integrating factor to solve it:

- a. $(\tan x \sin x \sin y)dx + \cos x \cos ydy = 0$
- b. $(y^2 \cos x 3x^2y 2x)dx + (2y \sin x x^3 + \ln y)dy = 0, y(0) = e$
- c. $6xydx + (4y + 9x^2)dy = 0$
- d. $\cos x dx + (1 + \frac{2}{y}) \sin x dy = 0$
- e. $xdx + (x^2y + 4y)dy = 0, y(4) = 0$
- f. $\frac{dy}{dx} + \frac{2y^2 + 6xy 4}{3x^2 + 4xy + 3y^2} = 0$

Question 4. Suppose that a certain population has a growth rate that varies with time and that this population satisfies the differential equation:

$$\frac{dy}{dt} = (0.3 + \sin t)\frac{y}{3}$$

- a. If y(0) = 1, find (or estimate) the time τ at which the population has doubled. Choose other initial conditions and determine whether the doubling time τ depends on the initial population.
- b. Suppose that the growth rate is replaced by its average value 1/10. Determine the doubling time τ in this case.
- c. Suppose that the term $\sin t$ in the differential equation is replaced by $\sin 2\pi t$; that is, the variation in the growth rate has a substantially higher frequency. What effect does this have on the doubling time τ ?
- d. Plot the solutions obtained in parts a, b, and c on a single set of axes.

Question 5. Consider the differential equation:

$$ty' + 2y = \frac{1}{2}t^2, \ y(2) = 1$$

- a. Draw a direction field for the given differential equation.
- b. Use theorem 2.4.1 to find an interval in which the initial value problem has a unique solution.
- c. Solve the differential equation
- d. Then do the same when the initial condition is changed to y(-2)=1