Normalization

What is Normalizarion? The technique to minimize data redundancy.

What is data redundancy? Duplicated data is present in many tables which is not required.

Why is it important to minimize? Eats up a lot of space and creates issues: Insertion, Deletion, and Updation these are normally called anormalise.

Problem:

rollno	name	branch	hod	office_tel
1	Akon	CSE	Mr. X	53337
2	Bkon	CSE	Mr. X	53337
3	Ckon	CSE	Mr. X	53337
4	Dkon	CSE	Mr. X	53337

Issues:

- 1. Insertion Anomaly: while inserting data every time we need to provide this repeated data which is not required and is just a waste of time and space.
- 2. Deletion Anomaly: Now while deleting data we are not only deleting the student information but also deleting the branch information. As soon as all records are deleted all student is deleted but along with that branch info is also deleted.
- 3. Updation Anomaly: If one of the HODs is changed in a department then we need to update all the records taking into care that the student belongs to that department only.

Howwill Normalisation solve this problem:

- 1. Split the table into two tables: student table and branch table
- 2. Student will only have roll no, name, branch
- 3. Branch will have branch, hod name and office_tel

You might think that still branch name is still repeated but it has minimized the data redundancy to a large extent.

Normalization is not about eliminating data redundancy but about reducing data redundancy.

Problem is solved as

- 1. If we want to insert data only important or relevant data is provided and the branch info is just saved once.
- 2. Deletion can also be done by the student name without affecting the branch infomation
- 3. Updating of branch info will be in one place and to only one record which leads to fewer mistakes and less space is used up.

Types of Normalization

1. 1st Normal Form: simple teams the step 1 of normalization.

Step 1 of Normalisation process

- Scalable Table design which can be easily extended.
- If your table is not even in 1st
 Normal Form, its considered poor
 DB design.

4 rules:

RULE 2

- A Column should contain values that are of the same type.
- Do not inter-mix different types of values in any column.

RULE 3

- Each column should have a unique name.
- Same names leads to confusion at the time of data retrieval

RULE 3

- Each column should have a unique name.
- Same names leads to confusion at the time of data retrieval

RULE 4

- Order in which data is saved doesn't matter.
- Using SQL query, you can easily fetch data in any order from a table.

BY 1NF the final result is:

STUDENTS TABLE				
rollno	name	subject		
101	Akon	OS		
101	Akon	CN		
103	Ckon	JAVA		
102	Bkon	С		
102	Bkon	C++		

2NF

For a table to be in the Second Normal Form...

- It should be in 1st Normal Form
- And, It should not have any Partial Dependencies.

What is Partial Dependency?

Before knowing partial dependency, first, we should know what is dependency or functional dependency in the table i.e. primary key.

	STUDENTS TABLE					
3	student_id	name	reg_no	branch	address	
	1	Akon	CSE-18	CSE	TN	
	2	Akon	IT-18	IT	AP	
	3	Bkon	CSE-18	CSE	HR	
	4	Ckon	CSE-18	CSE	МН	

In this case we can see Many To Many relationship

SCORE TABLE					
score_id	student_id	subject_id	marks	teacher	
1	1	1	82	Mr. J	
2	1	2	77	Mr. C++	
3	2	1	85	Mr. J	
4	2	2	82	Mr. C++	
5	2	4	95	Mr. P	

Primary Key should be score_id

But student_id + subject_id together makes a more meaningful primary key.

Here the primary key in score table is combination of student_id and subject_id

But to fetch teacher details only subject id is required. This is called Partial dependency.

This is Partial Dependency

The table to be in second normal form this should not exist .

How to remove the partial dependency?

- 1. To move teacher name with subject table
- 2. Or we can make a new table for teachers

SUBJECT TABLE					
subject_id	subject_name	teacher			
1	Java	Mr. J			
2	C++	Mr. C++			
3	C#	Mr. C#			
4	Php	Mr. P			

3NF

We also have the total marks and exam name after that the table would look this this:

IN 3NF

score_id = student_id + subject_id

exam_name: depend on student name and subject both

total marks: depends on the exam name

but the exam name is not our primary key this is a transitive dependency

so we need to put the exam name and total marks in **new** exam table .

Moral of the Story

As the data requirement increases, Database complexity increases, and the need for Normalisation too increases.

BCNF or 3.5NF (Boyce - Codd Normal Form)

Let's recap 2NF AND 3NF first,

- 1. 2NF: A table to be in 2nd normal form, it should be in 1NF and should not follow partial dependency.
- 2. Functional Dependency: A is prime attribute or primary key and B is not prime attribute, B is derived from A.
- 3. If we have AXY as candidate key where B only depends on A rather than depending on all the 3 keys then it's said to be partial dependency.

B depends on A

B doesn't depend on AXY

- 4. For a table to be in 3rd Normal form it should be in 2NF and should not have transitive dependency.
- 5. When a non-prime attribute depends on another non-prime attribute then this is called a Transitive dependency.

BCNF

- 1. First it should be in 3NF
- 2. For any dependency $A \rightarrow B$, **A should be a super key**.

Table should satisfy 2 conditions

- It should be in the 3rd Normal Form.
- For any dependency A →B, A should be a super key.

A can not be a non-prime attribute where B is a prime attribute.

College Enrollment Table				
student_id	subject	professor		
101	Java	P. Java		
101	C++	Р. Срр		
102	Java	P. Java2		
103	C#	P. Chash		
104	Java	P. Java		

in this case student_id and subject \Rightarrow primary key .

To solve this problem we can do this.

4NF

- 1. It should be in BCNF
- 2. There should not be multi-valued dependency.
- 3. Multi-valued dependency:
- 4. when for a single value of A more than one value of B exists. A is a prime attribute and B is a non-prime attribute.
- 5. For multivalued dependency, there should at least be 3 columns.

- A→>B, for a single value of A, more than one value of B exist.
- Table should have at-least 3 columns.
- For this table with A, B, C columns, B and C should be independent.

ENROLMENT TABLE					
s_id	course	hobby			
1	Science	Cricket			
1	Maths	Hockey			
2	C#	Cricket			
2	Php	Hockey			

	ENROLMENT TABLE					
s_id	course	hobby				
×1	Science	Cricket				
1	Maths	Hockey				
1	Science	Hockey				
1	Maths	Cricket				

4th No	rmal Form (4NF) Multi-Valued D	ENROLMENT TAE	No relati	lonsh:
	s_id	course	hobby	Jup
	1	Science	Cricket	
	1	Maths	Hockey	
	1	Science	Hockey	
	1	Maths	Cricket	

CourseOp	oted TABLE	Hobbi	es TABLE
s_id	course	s_id	hobby
1	Science	1	Cricket
1	Maths	1	Hockey
2	C#	2	Cricket
2	Php	2	Hockey

Student Enrollment Table

CourseOpted Table + Hobbies Table

(s_id & course)

(s_id & hobby)

5NF or PJNF (Project Join Normal Form)

- 1. It should be in 4NF
- 2. It should not have Join dependency, decompose the table.

		SPC Table		Water
	supplier	product	customer	
	ACME	72X SW	FORD	
	ACME	GEAR L	GM	
	ROBUSTO	E SWITCH	FORD	
	ROBUSTO	OBD II	MERCEDES	
	ALWAT	72X SW	GM	
	ALWAT	OBD II	MERCEDES	
EOS	ALWAT	GEAR L	MERCEDES	

SUPP_PRO TABLE

supplier	product
ACME	72X SW

SUI	OP	CU	ST	TA	BLE	

supplier customer

ACME FORD

CUST_PRO TABLE

customer	product		
FORD	72X SW		

then we should not do this breaking down of the table as it does not give surety that it is correct data,

But if breaking down the table doesn't lead to Information loss then decompose the table