Formális nyelvek és automaták 2. zh, mintafeladatok

I. feladatsor

- 1. Adjon DA-t az $L = \{a\}^*\{b\}$ nyelvhez!
- 2. Adjon az alábbi DA-val ekvivalens $G \in \mathcal{G}_{3nf}$ nyelvtant! (A redundanciákat lehetőség szerint küszöbölje ki!)

	$\mid a \mid$	b
\rightleftharpoons A	В	A
В	A	С
С	С	С

3. A gyakorlatról ismert algoritmust alkalmazva adjon NDA-t majd DA-t az alábbi nyelvtanhoz!

$$G: S \to aA|aB, A \to aA|bS, B \to aS|\varepsilon$$

4. Adjon DA-t az alábbi nyelvhez!

$$L = \{u \in \{a, b\}^* | (l_a(u)mod2) = 1 \land bb \text{ nem részszava } u\text{-nak } \}$$

5. A gyakorlatról ismert algoritmusokat alkalmazva adjon az alábbi nyelvtanhoz \mathcal{G}_{3nf} -beli nyelvtant, majd NDA-t és végül DA-t!

$$G: S \to bab|A|bB, A \to aA|B, B \to A|aS|aC|\varepsilon, C \to aC|aC|\varepsilon$$

I. feladatsor, megoldási kulcs:

1.

	a	b
$\rightarrow S$	S	A
\leftarrow A	Н	Н
H	Н	Н

2. $G: A \to aB|bA|\varepsilon, B \to aA$

3.

NDA:

	a	b
\rightarrow S	$\{A,B\}$	{}
A	{A}	{S}
$\leftarrow B$	{S}	{}

DA:

•	.•	a	b
	$\rightarrow \{S\}$	$\{A,B\}$	{}
	$\leftarrow \{A,B\}$	$\{S,A\}$	{S}
	$\{S,A\}$	$\{A,B\}$	{S}
	{}	{}	{}

4.

Jelölje p az automata által elemzett szó eddig beolvasott prefixét! Jelölje B(p) azt az állítást, hogy bb részszava p-nek! A DA a következő esetekben kerül az alábbi állapotokba:

$$A_0$$
: $(l_a(p)mod2) = 0 \land (p = \varepsilon \lor p_{[|p|]} = a) \land \neg B(p)$

$$B_0$$
: $(l_a(p)mod2) = 0 \land p \neq \varepsilon \land p_{[|p|]} = b \land \neg B(p)$

$$A_1: (l_a(p)mod2) = 1 \land p_{[|p|]} = a \land \neg B(p)$$

$$B_1: (l_a(p)mod2) = 1 \land p_{[|p|]} = b \land \neg B(p)$$

H: B(p)

Így az automata:

a	b
A_1	B_0
A_0	B_1
A_1	H
A_0	H
Н	Н
	A_1 A_0 A_1 A_0

II. feladatsor

- A1. Melyek az $L=(\{a,b\}\{c,\varepsilon\})^*$ nyelv maradéknyelvei?
- A2. Adja meg a maradéknyelvekből adódó DA-t!
- B1. Melyek az $L=(\{aa\}\{b,c\})^*$ nyelv maradéknyelvei?
- B2. Adja meg a maradéknyelvekből adódó DA-t!
- C1. Melyek az $L=((b|\varepsilon)a)^*b$ nyelv maradéknyelvei?
- C2. Adja meg a maradéknyelvekből adódó DA-t!

II. feladatsor, megoldási kulcs:

Mj.: A kezdő maradéknyelvet jobbra nyíl, az üres szót is tartalmazó új maradéknyelveket balra nyíl, a kezdő maradéknyelvtől különböző, üres szót nem tartalmazó új maradéknyelveket pedig gondolatjel előtéttel emeltük ki.

A1:

$$\rightleftharpoons L_{\varepsilon} = (\{a, b\}\{c, \varepsilon\})^*$$

$$\leftarrow L_a = \{c, \varepsilon\}L_{\varepsilon}$$

$$L_b = \{c, \varepsilon\}L_{\varepsilon} = L_a$$

$$-L_c = \{\}$$

$$L_{aa} = (L_a)_a = L_a$$

$$L_{ab} = (L_a)_b = L_b = L_a$$

$$L_{ac} = (L_a)_c = L_{\varepsilon}$$

A2:

	a	b	c
$\rightleftarrows L_{\varepsilon}$	L_a	L_a	{}
$\leftarrow L_a$	L_a	L_a	L_{ε}
{}	{}	{}	{}

B1:

B2:

	$\mid a \mid$	b	c
$\rightleftarrows L_{\varepsilon}$	L_a	{}	{}
L_a	L_{aa}	{}	{}
L_{aa}	{}	$L_{arepsilon}$	L_{ε}
{}	{}	{}	{}

C1:

C2

$\mathcal{O}_{\mathcal{I}}$.		
	a	b
$\to L_{\varepsilon}$	$L_{arepsilon}$	L_b
$\leftarrow L_b$	L_{ε}	{}
{}	{}	{}

III. feladatsor

1.

- (1) $(S, a, \#) \to (S, a)$
- $(2) \qquad (S, a, a) \to (S, aa)$
- (3) $(S, \varepsilon, a) \to (S, \varepsilon)$
- $(4) (S, b, a) \to (S, \varepsilon)$

Rajzoljuk fel a fenti egy vermes, üres veremmel elfogadó automata konfigurációs gráfját, ha az elemzendő szó az *aab*! Jelöljük a gráfban az elfogadó konfigurációkat és a zsákutcákat is!

2.

- $(1) \qquad (S, a, \#) \to (S, a)$
- $(2) (S, a, a) \to (S, aa)$
- $(3) (S, a, a) \to (V, \varepsilon)$
- $(4) \qquad (V, a, a) \to (V, \varepsilon)$

Rajzoljuk fel a fenti egy vermes, üres veremmel elfogadó automata konfigurációs gráfját, ha az elemzendő szó az *aaaa*! Jelöljük a gráfban az elfogadó konfigurációkat és a zsákutcákat is!

III. feladatsor, megoldási kulcs:

Megjegyzés a megoldási kulcshoz: A zsákutcákat a konfiguráció mellé írt [X] jellel, míg az elfogadó konfigurációkat [+] jellel jelöltük.

1.

2.

IV. feladatsor

1.
$$G = (\{a, b\}, \{S, A, B\}, \{S \rightarrow aA|aB, A \rightarrow bA|\varepsilon, B \rightarrow aS|aB\}, S)$$

A gyakorlaton tanult algoritmust szemléltetve adjuk meg a G-vel ekvivalens NDA-t majd VDA-t, mindkettőt táblázatos formában!

2. A gyakorlaton tanult algoritmust szemléltetve adjuk meg az alábbi DA redukáltját!

	a	b
$\rightarrow 1$	4	3
2	4	2
3	2	1
$\leftarrow 4$	6	3
5	10	9
$\leftarrow 6$	8	7
$\leftarrow 7$	4	7
8	4	8
9	8	5
← 10	4	10

3. Adjunk az L nyelvhez egy vermes, üres veremmel elfogadó automatát!

3.a
$$L = \{uu^{-1}|u \in \{a,b\}^*\}$$

3.b $L = \{u \in \{a,b\}^*|u = u^{-1}\}$
3.c $L = \{u \in \{a,b\}^*|l_a(u) = l_b(u)\}$
3.d $L = \{u \in \{a,b\}^*|l_a(u) = 2*l_b(u)\}$
3.e $L = L(G)$, ahol $G: S \to \varepsilon |aSb|SS|aS$

IV. feladatsor, megoldási kulcs:

1.

1.		a	b
NDA:	\rightarrow S	$\{A,B\}$	{}
NDA.	← A	{}	{A}
	В	{S,B}	{}

		a	b
	$\rightarrow \{S\}$	$\{A,B\}$	{}
	$\leftarrow \{A,B\}$	{S,B}	{A}
VDA:	$\{S,B\}$	$\{S,A,B\}$	{}
	$\leftarrow \{A\}$	{}	{A}
	$\leftarrow \{S,A,B\}$	$\{S,A,B\}$	{A}
	{}	{}	{}

2. Legyen A' a kezdőállapotból elérhető állapotok halmaza!

$$A_0'=\{1\},\,A_1'=\{1\}U\{3,4\},\,A_2'=\{1,3,4\}U\{2,6\},$$

$$A_3' = \{1, 2, 3, 4, 6\}U\{7, 8\}, A_4' = \{1, 2, 3, 4, 6, 7, 8\}U\{\}$$

$$A' = \{1, 2, 3, 4, 6, 7, 8\}$$
 $A \setminus A' = \{5, 9, 10\}$

Az ekvivalencia osztályok:

$$\sim 0 = \{1, 2, 3, 8\}, \{4, 6, 7\}$$

$$\sim 1 = \{1, 2, 8\}, \{3\}, \{4\}, \{6\}, \{7\}$$

$$\sim 2 = \{1\}, \{2, 8\}, \{3\}, \{4\}, \{6\}, \{7\}$$

$$\sim {}_{3}=\{1\},\{2,8\},\{3\},\{4\},\{6\},\{7\}$$

$$\sim = \{1\}, \{2, 8\}, \{3\}, \{4\}, \{6\}, \{7\}$$

Így a redukált automata:

	a	b
$\rightarrow 1$	4	3
28	4	28
3	28	1
$\leftarrow 4$	6	3
$\leftarrow 6$	28	7
← 7	4	7

3.a
$$(S, \varepsilon, \#) \to (S, \varepsilon)$$

$$(S, a, \#) \to (S, a), \qquad (S, b, \#) \to (S, b)$$

$$(S, a, a) \to (V, \varepsilon)|(S, aa)$$

$$(S, a, b) \to (S, ab), \qquad (S, b, a) \to (S, ba)$$

$$(S, b, b) \to (V, \varepsilon)|(S, bb)$$

$$(V, a, a) \to (V, \varepsilon), \qquad (V, b, b) \to (V, \varepsilon)$$
3.d
$$(S, \varepsilon, \#) \to (S, \varepsilon)$$

$$(S, a, \#) \to (S, a\#), \qquad (S, a, a) \to (S, aa)$$

$$(S, b, \#) \to (S, bb\#), \qquad (S, b, b) \to (S, bbb)$$

$$(S, a, b) \to (S, \varepsilon), \qquad (S, b, a) \to (A, \varepsilon)$$

$$(A, \varepsilon, a) \to (S, \varepsilon), \qquad (A, \varepsilon, \#) \to (S, b\#)$$
3.e
$$(S, \varepsilon, x) \to (S, \varepsilon)$$

$$(S, a, x) \to (S, \varepsilon)$$

V. feladatsor

- 1. $L = \{a^i b^j | i, j \in \mathbb{N}_0 \land i \neq j\}$
- 1.a Írjuk le az L nyelvet egy vermes, üres veremmel elfogadó automatával!
- 1.
b Mi az L szigorú típusa? (Bizonyítás)
- 2.* $L = \{ a^p | p \text{ prímszám} \}.$ Bizonyítsuk be, hogy $L \notin \mathcal{L}_2 !^1$
- 3. $G_2: S \to \varepsilon |abS|A$, $A \to a$ Adjon a G_2 nyelvtannal ekvivalens \mathcal{G}_{3nf} -beli nyelvtant!
- 4. Hozzuk kiterjesztett Chomsky normálformára az alábbi nyelvtant, a gyakorlatról ismert, négy lépéses algoritmus segítségével! $G: S \to aSB|SS|\varepsilon, B \to b|S$
- 5. Döntsük el a CYK algoritmus segítségével, hogy igaz-e az $aaabb \in L(G_{Ch})$ állítás! Szemléltessük az algoritmus működését a gyakorlatról ismert módon!

 G_{Ch} :

 $S \to AB|\hat{a}S|\hat{a}B|a|SS$

 $B \to b|AB$

 $\hat{a} \rightarrow a$

 $A \to \hat{a}S$

¹Ez a feladat csak azokban a félévekben aktuális, amikor vesszük a gyakorlaton a "Nagy Bar-Hillel" lemmát.

V. feladatsor, megoldási kulcs:

1.
$$L = \{a^i b^j | i, j \in \mathbb{N}_0 \land i \neq j\}$$

```
1.a

(S, a, \#) \to (S, a\#)

(S, a, a) \to (S, aa)

(S, \varepsilon, a) \to (A, \varepsilon)

(S, b, a) \to (B, \varepsilon)

(S, b, \#) \to (B, b)

(A, \varepsilon, a) \to (A, \varepsilon)

(A, \varepsilon, \#) \to (A, \varepsilon)

(B, b, b) \to (B, b)

(B, \varepsilon, b) \to (B, \varepsilon)

(B, b, a) \to (B, \varepsilon)

(B, b, \#) \to (B, b)

(B, \varepsilon, a) \to (A, \varepsilon)
```

1.b L szigorú típusa kettes. L ugyanis egyrészt kettes típusú, hiszen leírtuk veremautomatával. Másrészt L nem hármas típusú, ehhez ti. a Myhill-Nerode tétel szerint elég belátni, hogy végtelen sok maradéknyelve van. Ez utóbbi állítás pedig következik abból, hogy az $\{L_{a^i}|i\in\mathbb{N}_0\}$ maradéknyelv halmaz végtelen, aminek elégséges feltétele, hogy $i\neq j$ esetén $L_{a^i}\neq L_{a^j}$. Ez viszont közvetlenül adódik abból, hogy $b^i\notin L_{a^i}$, de $b^i\in L_{a^j}$, ami a maradéknyelv fogalma alapján nyilvánvaló az $a^ib^i\notin L$ és az $a^jb^i\in L$ állításokból. Az a^ib^i szó pedig nem lehet L eleme, hiszen benne a és b kitevője megegyezik. Az $a^jb^i\in L$ viszont $j\neq i$ miatt igaz.

2. $L = \{ a^p | p \text{ prímszám} \}.$

 $L \notin \mathcal{L}_2$. Tegyük fel ugyanis, hogy $L \in \mathcal{L}_2$! Ekkor a nagy Bar-Hillel lemma szerint van olyan n konstans, hogy az ennél hosszabb szavaknak van olyan xyzvw felbontása, amelyben k := |yv| pozitív egész és $xy^izv^iw \in L$ tetszőleges $i \in \mathbb{N}_0$ kitevőre. Mivel a prímszámok halmaza végtelen, biztosan van olyan p prímszám, amelyre p > n, azaz $|a^p| > n$, és így a^p -nek létezik a fenti típusú felbontása. Tekintsük most az $xy^{1+p}zv^{1+p}w \in L$ szót! $|xy^{1+p}zv^{1+p}w| = |xyzvw| + |y^pv^p| = p + k * p = (1+k) * p$, ami nem prímszám, márpedig az L szavainak hossza prímszám. Az ellentmondásból következik, hogy $L \notin \mathcal{L}_2$.

3.
$$G_2: S \to \varepsilon |aB|aZ, B \to bS, Z \to \varepsilon$$

4.
$$G: S \to aSB|SS|\varepsilon, B \to b|S$$

4.1. Korlátozott ε -mentesítés:

 $E_1 = \{S\}, E_2 = \{S\} \cup \{B\}, E_3 = \{S, B\} \cup \{\} = E_2, E = \{S, B\}$ Mivel $S \in E$, KES szükséges. Mivel S szerepel szabály jobboldalon is, új kezdőszimbólumot (K) vezetünk be.

$$K \to S|\varepsilon, S \to aSB|aS|aB|a|SS, B \to b|S$$

4.2. Láncmentesítés:

$$L(K) = \{K, S\}$$

$$K \to \varepsilon |aSB|aS|aB|a|SS$$

$$S \to aSB|aS|aB|a|SS$$

$$L(B) = \{B, S\}$$

$$B \rightarrow b|aSB|aS|aB|a|SS$$

4.3 Álterminálisok bevezetése:

$$K \to \varepsilon |\hat{a}SB|\hat{a}S|\hat{a}B|a|SS$$

$$S \to \hat{a}SB|\hat{a}S|\hat{a}B|a|SS$$

$$B \to b|\hat{a}SB|\hat{a}S|\hat{a}B|a|SS$$

$$\hat{a} \rightarrow a$$

4.4 Hosszú jobboldalak kiküszöbölése:

 $G_{Chomsky}$ $nf\varepsilon$:

$$K \to \varepsilon |AB| \hat{a}S |\hat{a}B| a |SS|$$

$$S \to AB|\hat{a}S|\hat{a}B|a|SS$$

$$B \rightarrow b|AB|\hat{a}S|\hat{a}B|a|SS$$

$$\hat{a} \rightarrow a$$

$$A \to \hat{a}S$$