Question number	Scheme	Marks
9 (a)	$AC = \sqrt{10^2 + 10^2} = \sqrt{200} = 10\sqrt{2}$	M1A1 [2]
(b)	$A = \sqrt{\frac{10}{10\sqrt{2}}}$ $BM = \sqrt{10^2 - \left(5\sqrt{2}\right)^2} = 5\sqrt{2}$	M1A1 [2]
(c)	$A = \sqrt{\frac{8}{10\sqrt{2}}}$ $DM = \sqrt{8^2 - \left(5\sqrt{2}\right)^2} = \sqrt{14}$	M1A1
	$\angle DMB = \cos^{-1}\left(\frac{14+50-36}{2\times\sqrt{14}\times5\sqrt{2}}\right) = 58.0519^{\circ} \approx 58.1^{\circ}$	M1A1 [4]
(d)	Let perpendicular from point D to BM be the point Y $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
	Vertical height of shape ABCD	
	In triangle <i>DMY</i> (above) Height = $DY = \sqrt{14} \sin 58.0519^{\circ} = 3.1749 \approx 3.17$ (cm)	M1A1 [2]
	Tota	l 10 marks

Part	Mark	Notes
(a)	M1	For using Pythagoras theorem correctly on triangle ABC to find AC
	A1	For $AC = 10\sqrt{2}$
(b)	M1	For using Pythagoras theorem or any appropriate trigonometry correctly on triangle <i>ABC</i> to find <i>BM</i>
	A1	For the correct length $BM = 5\sqrt{2}$ NB: Allow for the answer just seen without any working as the triangle <i>ABC</i> is isosceles.
(c)	M1	For using Pythagoras theorem to find the length <i>DM</i>
	A1	For $DM = \sqrt{14}$ or accept awrt 3.74
	M1	For using cosine rule to find the required angle DMB $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	A1	For awrt 58.1°
(d)	M1	For using any appropriate trigonometry to find the required length. Ft their angle <i>DMB</i>
	A1	For awrt 3.17 (cm) Accept 3.18 (cm)