"A compreensão das questões faz parte da avaliação"

Análise e Projeto de Algoritmos

Bacharelado em Ciência da Computação

 $1^{\underline{a}}$ Avaliação Individual

6 de abril de 2015

Nome:	Período:
110IIIe	1 e110u0,

$Quest\tilde{a}o$ 1: (1.0 ponto)

Considerando todos os algoritmos de ordenação estudados em aula, complete as 5 posições vazias no quadro abaixo com as complexidades assintóticas corretas.

Algoritmo	Pior caso	Melhor caso	Caso médio	Espaço
Insertion-Sort	$\theta(n^2)$		$\theta(n^2)$	$\theta(n)$
Merge-Sort	$\theta(n \lg n)$	$\theta(n \lg n)$	$\theta(n \lg n)$	$\theta(n)$
Selection-Sort	$\theta(n^2)$	$\theta(n^2)$	$\theta(n^2)$	$\theta(n)$
Heap-Sort	$O(n \lg n)$	$O(n \lg n)$		$\theta(n)$
Quick-Sort		$\theta(n \lg n)$	$\theta(n \lg n)$	$\theta(n)$
Counting-Sort	$\theta(k+n)$	$\theta(k+n)$	$\theta(k+n)$	$\theta(k+n)$
Radix-Sort	$\theta(d(n+k))$	$\theta(d(n+k))$	$\theta(d(n+k))$	$\theta(d(n+k))$
Bucket-Sort		$\theta(n)$	$\theta(n)$	

Questão 2: (1.5 pontos)

Prove que $O(n^2) + O(n^2) + O(n^2) = O(3n^2)$.

$Quest\tilde{a}o\ 3:\ (1.5\ pontos)$

Aplique o método da árvore de recursão para determinar a solução da recorrência a seguir para uma constante c > 0.

$$T(n) = \begin{cases} \theta(1) & \text{, se } n \leq 3\\ 3T(\lfloor \frac{n}{4} \rfloor) + \theta(n^2) & \text{, se } n \geq 4 \end{cases}$$

$Quest\~ao 4: (2.0 \text{ pontos})$

Prove a corretude do algoritmo de Euclides, que determina o Máximo Divisor Comum (MDC) entre 2 números naturais. Lembre-se que mdc(m,0) = mdc(0,m) = m para todo $m \in \mathbb{N}$, com m > 0, e além disso, mdc(x,y) = mdc(y,x mod y).

$Quest\~ao 5: (2.0 \text{ pontos})$

Demonstre(prove), formalmente, que qualquer algoritmo de ordenação por comparação exige $\Omega(n \lg n)$ comparações no pior caso.

Questão 6: (2.0 pontos)

Quando analisamos a versão aleatorizada do algoritmo Quick-Sort, obtida por meio da adoção de um particionamento aleatório, chegamos na recorrência apresentada a seguir. Mostre (prove) que $T(n) = O(n \lg n)$.

$$T(n) = \begin{cases} \theta(1) & \text{, se } n = 1\\ \frac{1}{n} \left(\sum_{k=0}^{n-1} \left(T(k) + T(n-1-k) + \theta(n) \right) \right) & \text{, se } n > 1 \end{cases}$$

"Esta avaliação terá duração máxima de 3 horas"