

Multivariate Analysis Using Co-Expression Network Modeling Identifies Specific Inflammation and Diffusion MRI Features in Major Depressive Disorder

Lucy Hui, Joanna Chen, Jean Chen

Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada

BACKGROUND

Major depressive disorder (MDD)

- MDD is the most prevalent psychiatric condition marked by persistent sadness and cognitive impairments.
- Only 50% of the MDD population respond to treatments derived from the monoamine hypothesis, implicating alternative pathophysiological underpinnings.
- Recent research indicates that neuroinflammatory processes play a significant role in its development. Crucially, there are notable sex differences in both the presentation and underlying neuroinflammatory mechanisms.

Figure 1. Mechanisms of Neuroinflammation [1]

Weighted Gene Co-expression Network Analysis (WGCNA)

- Bioinformatics tool used to identify modules or clusters of highly correlated genes across different biological conditions.
- Constructs a network where nodes represent genes and edges represent pairwise correlations between gene expression profiles.
- Unveils biological processes by associating modules with phenotypic traits, clinical outcomes, or experimental conditions.

Figure 2. Hierarchical clustering for scale free networks [2-3]

OBJECTIVES

- Identify sex-dependent modules of co-expressed genes associated with inflammatory biomarkers in MDD patients and healthy controls, elucidating shared and distinct networks underlying inflammation in depression.
- Assess the correlation between inflammatory gene expression modules, clinical variables, and neuroimaging markers to elucidate the clinical relevance of immune dysregulation in MDD.

REFERENCES

- Miller, A., Raison, C. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16, 22–34 (2016). https://doi.org/10.1038/nri.2015.5
- 2. Kim, C. How to find the optimal number of clusters with R? Medium (2022). https://medium.com/@chyun55555/how-to-find-the-optimal-number-of-clusters-w
- https://medium.com/@chyun55555/how-to-find-the-optimal-number-of-clusters-with-r-dbf84988388b

 3. Wurzburg, J. Synchrony Measurement and Connectivity Estimation of Parallel Spike Trains from in vitro Neuronal Networks (2020). DOI:10.25972/OPUS-22364.

PIPELINE

RESULTS

Canadian Biomarker Integration Network in Depression (CANBIND-1) Weighted Gene Co-ex

Weighted Gene Co-expression Network Analysis (WGCNA)

MDD

- Turquoise: IL2, IL5, IL6, IL8, IL12, G-CSF, MIP-1a, VEGF
- Yellow: IL4, Eotaxin, IL7
- Brown: IL9, MIP-1b, RANTES,
 TNFa
- Blue: IL1b, IL10, IL13, GM-CSF
- Green: IL17, FGF, PDGF
- Grey: IFABP, CRP, IL1ra, IL15, IFN, IP10, MCP

Control

- Pink: IL1b, IL13
- Red: IL1ra, G-CSF, MIP-1a
 Green: IL2, IL7, IL8, IL17
- Blue: IL4, Eotaxin, IL10, MCP
- Brown: IL5, IL12, GM-CSF, IFN
- Turquoise: IL6, IL15, IP10, VEGF
- Yellow: IL9, MIP-1b, RANTES, TNFa
- Black: FGF, PDGFGrey: IFABP, CRP

Figure 3. Inflammatory modules detected by WGCNA in MDD and control subjects.

Figure 4. Average inflammatory marker levels (mg/L) in MDD and control subjects. Horizontal bar depicts p<0.05.

Apparent sage of the sage of t

Montgomery-Åsberg Depression Rating Scale

CDI: Correlation diffusion index

FWF: Free water fraction

FAt: Free water corrected fractional anisotropy

MDt: free water corrected mean diffusivity

Figure 5. Module-Trait correlations for depression (a) and MRI (b). Red: $r^2>0$. White: $r^2=0$. Blue: $r^2<0$. Grey: missing values.

Diffusion MRI-based Brain Parcellation

DISCUSSION

- WGCNA-derived brown and green inflammatory modules revealed positive correlations with the traits of depression, fractional anisotropy, and mean diffusivity in MDD.
- The simultaneous reduction of fractional anisotropy with mean diffusivity in MDD suggests the presence of cytotoxic edema and neurodegeneration.
- Moreover, MDD inflammatory modules are negatively correlated with correlation diffusion index in white matter tracts, implying decreased white matter integrity.

ACKNOWLEDGEMENTS

This project is supported by the Data Sciences Institute, University of Toronto

Multivariate Analysis Using Co-Expression Network Modeling Identifies Sex-Specific Inflammation and Diffusion MRI Features in Major Depressive Disorder

Lucy Hui, Joanna Chen, Jean Chen

Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada

Control (n = 122)

65 Female

Canadian Biomarker Integration Network in Depression (CANBIND-1)

Clinical

11 depression

subcomponents

MDD (n = 211)

132 Female

74 Male

Molecular

29 cytokines &

chemokines

OBJECTIVES

- Identify sex-dependent modules of co-expressed genes associated with inflammatory biomarkers in MDD patients and healthy controls, elucidating shared and distinct networks underlying inflammation in depression.
- Assess the correlation between inflammatory gene expression modules, clinical variables, and neuroimaging markers to elucidate the clinical relevance of immune dysregulation in MDD.

PIPELINE

Weighted Gene Co-expression Network Analysis (WGCNA)

38 Male **Imaging** 4 diffusion MRI parameters MRI measures

MDD Male

- **Blue**: IL2, IL7, IL8, IL17, FGF, G-CSF, IFN, MIP-1
- Red: IL4, Eotaxin, IL10
- Turquoise: IL5, IL15, IL6, IL12, VEGF
- Brown: IL9, MIP-1b, RANTES, TNFa, **PDGF**
- Green: IL1b, IL13, GM-CSF
- Grey: IFABP, CRP, IL1ra, IP10, MCP

Control Male

- Blue: IL1b, IL13, GM-CSF, IFN
- Brown: IL2, IL17, FGF, PDGF
- Yellow: IL4, IL7, Eotaxin
- Turquoise: IL8, IL9, RANTES, TNFa,
- Grey: IFABP, CRP, IL1ra, IL5, IL6, IL10, IL12, IL15, G-CSF, IP10, MCP1, MIP-1a

• Turquoise: IL1ra, IL7, IL8, IL9, IL12,

RESULTS

MDD Female

- **Red**: IL1b, IL13
- Turquoise: IL1ra, IL4, Eotaxin, IL7, G-CSF, MCP1
- **Green**: IL2, IL12
- Blue: IL5, IL15, IL10, GM-CSF, VEGF
- Black: IL8, MIP-1a
- Brown: IL9, MIP-1b, RANTES, TNFa
- Yellow: IL17, FGF, PDGF • Grey: IFABP, CRP, IL6, IFN, IP10
- **TNF**a • Blue: IL5, IL6, IL15, GM-CSF, IFN,
- **VEGF**

Control Female

• Grey: IFABP, CRP, IL1b, IL4, IL10, IL13, Eotaxin, IP10, MCP-1, PDGF, MIP-1b, RANTES

Baseline

Modalities

a)

Montgomery-Åsberg Depression Rating Scale

CDI: Correlation diffusion index FWF: Free water fraction

FAt: Free water corrected fractional anisotropy MDt: free water corrected mean diffusivity

Diffusion MRI-based Brain Parcellation

Figure 5. Module-Trait correlations for depression (a) and MRI (b). Red: $r^2>0$. White: $r^2=0$. Blue: $r^2<0$. Grey: missing values.

Figure 4. Average marker levels (mg/L) in MDD (left) and control (right).