Technological foundations of software development

Maxime Lefrançois - maxime.lefrancois@emse.fr - Version 2024

Table of Contents

Master your working environment

Slides

Pointers

Lecture Notes

TODOs

ICM – Computer Science Major – Course unit on Technological foundations of Computer Science and M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development

Institut Henri Fayol - MINES Saint-Étienne

Master your working environment

The purpose of this session is to ensure that you are familiar with your computer, your operating system, and the shell-like command line programming environment.

Slides

- lecture-1.pptx
- lecture-1.pdf
- lecture-1-2x2.pdf

Technological software de

Pointers

- cheatsheet devhints https://devhints.io/bash
- simplified man https://tldr.ostera.io/
- Bash homepage https://www.gnu.org/software/bash/

- zsh homepage https://zsh.sourceforge.io/
- Programmation shell sous Unix/Linux ksh, bash, Bourne shell (avec exercices corrigés) (6e édition), Christine Deffaix Ré, éditions ENI, Septembre 2019, 978-2-409-02072-8

Lecture Notes

- Reminders computer
 - o CPU
 - o CPU vs GPU
 - o RAM vs ROM
 - Peripherals and I/O ports
- Operating System
 - Definition
 - Usage share, Smartphones, Supercomputers
 - o Unix-like OS vs Windows
- Shell Console Terminal
- Windows
 - o Programs location
 - Windows environment variables
 - Windows registry
 - Windows Subsystem for Linux
- Unix-like OS
 - o Programs location
 - Shell configuration
 - o Environment variables
 - Run a program in the console
 - Program Command Line Interface
 - Fundamental Linux Principles
 - The standard file system hierarchy
 - The command prompt
 - Navigating the file system
 - The permissions system
 - Assigning a variable and Parameter expansion
 - o Command return values
 - Standard input and output of controls
 - Communication pipes
 - Globbing
 - Control structures

- Conditions
- o Invoke a script
- Top 50 Unix commands

TODOs

By Oct. 15th

NOTE

submit your work for Courses 1-2 as LASTNAME.zip to https://ecampus.emse.fr/mod/assign/view.php?id=33633 (expiration date/time: 2023-10-16 01:00)

WARNING

If you are using the Windows operating system, you must ensure that you have installed the <u>Windows Subsystem for Linux</u> (https://docs.microsoft.com/en-us/windows/wsl/install), and that you run commands from the WSL2 unix shell.

Windows users, I highly encourage you to read the following tutorials about WSL: <u>Set up a WSL development environment</u> (https://learn.microsoft.com/en-us/windows/wsl/setup/environment), <u>Get started using Visual Studio Code with Windows Subsystem for Linux</u>

NOTE

(https://learn.microsoft.com/en-us/windows/wsl/tutorials/wsl-vscode), <u>Get started with GPU acceleration for ML in WSL</u> (https://learn.microsoft.com/en-us/windows/wsl/tutorials/gpu-compute), <u>Run Linux GUI apps on the Windows Subsystem for Linux</u> (https://learn.microsoft.com/en-us/windows/wsl/tutorials/gui-apps), <u>Getting started with Linux and Bash</u> (https://learn.microsoft.com/en-us/windows/wsl/tutorials/linux)

- 1/5 points Describe the computer you are using in terms of hardware and operating system(s).
- 1/5 points You have installed a few useful programs, and can call run successfully the following commands in a unix shell. NOTE: For each of these programs, you may need to ensure it is found in the PATH, and potentially set other environment variables, such as JAVA_HOME for maven:
 - git (https://git-scm.com/) git --version
 - a version of the Java JDK (https://en.wikipedia.org/wiki/Java_Development_Kit) javac --version
 - Apache Maven (https://maven.apache.org/) mvn --version
 - Make (https://www.gnu.org/software/make/) make --version
 - Python version above 3.10 python --version
 - o <u>Docker Desktop</u> docker --version
- 1/5 points install <u>ollama</u> (https://ollama.com/), following instructions in the <u>online documentation</u> (https://github.com/ollama/ollama/tree/main/docs). Pull the <u>llama3.1</u> (https://ollama.com/library/llama3.1) language model (or some lighter language model).
- 0.5/5 points Use the <u>ollama api</u> (https://github.com/ollama/ollama/blob/main/docs/api.md) to query the model using the curl program.
- 0.5/5 points Pipe the output of the command above with the <u>jq</u> (https://jqlang.github.io/jq/) command-line JSON processor to print out the response content.
- 0.5/5 points find and install a command-line program to extract the text content of some PDF file
- 0.5/5 points Write a bash script ask_pdf.sh that satisfies the documentation below:

USAGE:

./ask_pdf.sh <pdf-file> "<question>"

DESCRIPTION:

ask_pdf.sh is a command-line tool that answers a specific question based on the content of the provided PDF document.

PARAMETERS:

<pdf-file>

The full path or name of the PDF document to analyze. This parameter is required.

"<question>"

The question to ask about the PDF content. This parameter is required and must be enclosed in quotes.

WARNING

To earn the points, you need to demonstrate everything works as expected by including a short screen recoding video (<5min), in addition to the sources of your scripts.

NOTE

language models can clearly help you get part of the points, but I want to be sure it worked on your computer, and that you provide explanations for each component of the answer.

Version 2024 Last updated 2024-09-13 14:08:46 +0200