Esame scritto, Febbraio 2017

- punteggio di partenza: 2 (4/6 cfu: 0)
- esercizi(o)
 - o corretto: +8 (4/6 cfu: 12) (o suddiviso se ci sono più domande)
 - sbagliato: -4 (4/6 cfu: 0) (errore concettuale), 0 (4/6 cfu: 4) (due o più errori di calcolo, errore di conversione), 4 (4/6 cfu: 8) (un errore di calcolo); non svolto: 0

	4/6 cfu	8 cfu
sufficienza	2	2
30	3	4
sufficienza con 1 errore di calcolo	2	3
sufficienza con 1 errore di fisica	3	4

- **1.** Un punto materiale si muove su una circonferenza di raggio r = 1 m con moto uniformemente accelerato. Al tempo $t_0 = 0$ il punto ha una velocità $v_0 = 0.1$ m/s. Dopo un tempo $t_1 = 2$ s ha percorso uno spazio $s_1 = 40$ cm. Si calcoli il modulo dell'accelerazione a al tempo $t_2 = 4$ s. |a| = 0.27 m/s²
- **2.** Nel sistema in figura la molla ha una costante elastica di 1.20 N/cm. Il piano sul quale si muove la pallina è inclinato di 10.0° rispetto all'orizzontale. La molla viene inizialmente compressa di 5.00 cm. Si calcoli la velocità che raggiunge una pallina di massa 100 g quando la molla viene rilasciata. Si trascuri ogni attrito e la massa della molla. v = 1.68 m/s

3. Un recipiente cilindrico, con l'asse disposto verticalmente, chiuso superiormente da un pistone di massa m=10 kg e sezione S=20 cm² scorrevole senza attrito lungo l'asse del cilindro, contiene n=0.1 mol di gas perfetto alla pressione p_0 e temperatura $T_0=300$ K. Si agisce sul pistone con una forza esterna F facendolo abbassare fino a ridurre il volume del gas al valore $V_f=V_0/2$; il lavoro eseguito dalla forza F e dalla forza dovuta alla pressione atmosferica è $L_1=300$ J, la pressione finale raggiunta è $p_f=3p_0$. Si calcoli la quantità di calore Q scambiato dal gas con l'esterno nella trasformazione considerata. Calore specifico a volume costante del gas perfetto $C_v=3R/2$.

Suggerimento: si ricordi che anche il peso del pistone compie un lavoro. Q = -154 J

4. Un torchio idraulico è costituito da due vasi cilindrici comunicanti tra loro e contenenti acqua, disposti verticalmente, di sezioni $S_A = 2 \text{ dm}^2 \text{ e } S_B = 10 \text{ dm}^2$, rispettivamente. Dentro i vasi possono scorrere, a tenuta e senza attrito, due pistoni A e B di masse $m_A = 20 \text{ kg}$ e $m_B = 150 \text{ kg}$. Si calcoli la massa m del carico che si deve porre sul pistone A per ottenere livelli uguali nei due vasi. m = 10 kg

5. Una sfera avente massa m = 1.5 mg e carica distribuita uniformemente $q = 3.0 \times 10^{-8}$ C, è appesa a un filo isolante e forma un angolo $\theta = 60^{\circ}$ con un grande piano isolante carico uniformemente. Assumendo che il piano si estenda in tutte le direzione, si determini la densità superficiale di carica σ sul piano. $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m $\sigma = 5.01 \times 10^{-9}$ C/m²

- **6.** Il periodo di rotazione della luna intorno alla terra è T_L = 27.32 giorni e la sua orbita è approssimativamente circolare di raggio d = 384400 km. L'accelerazione di gravità sulla superficie terrestre è g = 9.81 m/s². Si valuti il raggio terrestre r_T utilizzando **esclusivamente** i dati precedenti (non usare nemmeno la costante gravitazionale G). R_T = 6405 km
- **7.** Sapendo che la resistenza R_8 è attraversata da una corrente i_8 = 0.20 A, si calcoli la corrente che attraversa R_3 . R_8 = 10 Ω , R_1 = R_2 = R_3 = 5.0 Ω , R_4 = 12 Ω , R_5 = 15 Ω . I_3 = 0.08 A

8. Un elettrone viene accelerato da una differenza di potenziale pari a 100 V. Calcolare la frequenza di rivoluzione (in s⁻¹) dell'elettrone quando entra in una regione in cui vi è un campo magnetico uniforme di 35.0 μ T ($m_e = 9.1 \times 10^{-31}$ kg, $q_e = 1.6 \times 10^{-19}$ C) $f = 9.57 \times 10^5$ s⁻¹