

Anexo 2 – Guía para el desarrollo de la tarea 2 (ejercicios ejemplo)

El presente anexo tiene como finalidad brindar un apoyo para el desarrollo de los ejercicios de la tarea 2. Se recomienda revisar el paso a paso de cada uno de los ejercicios aquí descritos, si aplica correctamente dichos pasos y el material de apoyo; lograran desarrollar exitosamente los 4 ejercicios de la unidad 1

Figura 1 Imagen conectivos lógicos y tablas de verdad

Nota: La figura representa los conectivos lógicos y su aplicación al hallar el valor de verdad. Fuente. Autor

Ejercicio 1: Proposiciones y tablas de verdad (Ejemplo)

Descripción del ejercicio:

A continuación, encontrará las proposiciones simples para el desarrollo del ejercicio 1:

p: El estudiante ha completado todas sus asignaciones a tiempo.

q: El estudiante comprende bien el material del curso.

r: El estudiante tiene dificultades en los exámenes.

$$\sim p \leftrightarrow (q \land \sim r)$$

Lenguaje natural de la proposición compuesta:

No es cierto que el estudiante ha completado todas sus asignaciones a tiempo Si y solo si El estudiante comprende bien el material del curso y No tiene dificultades en los exámenes.

TABLA MANUAL

Tabla 1

Tabla de verdad manual para el lenguaje simbólico $\sim p \leftrightarrow (q \land \sim r)$

Filas	p	q	r	~p	~r	q ∧ ~r	$\sim p \leftrightarrow (q \land \sim r)$
1	V	V	V	F	F	F	V
2	V	V	F	F	V	V	F
3	V	F	V	F	F	F	V
4	V	F	F	F	V	F	V
5	F	V	V	V	F	F	F
6	F	V	F	V	V	V	V
7	F	F	V	V	F	F	F
8	F	F	F	V	V	F	F

Nota: Corresponde a la solución de la tabla de verdad manual para el lenguaje simbólico $\sim p \leftrightarrow (q \land \sim r)$. Fuente. Autor

La tabla de verdad es una Contingencia

TABLA SIMULADOR

Figura 2

Tabla de verdad en simulador del lenguaje simbólico $\sim p \leftrightarrow (q \land \sim r)$

Nota: En la figura se muestra la solución de la tabla de verdad en simulador para el lenguaje simbólico $\sim p \leftrightarrow (q \land \sim r)$. Fuente. Autor

Ejercicio 2: Aplicación de la lógica fundamental

Descripción del ejercicio:

Enunciado: "Si 'María estudia matemáticas cinco horas diarias', entonces 'María aprobará el examen final'; y, si 'María aprueba el examen final', entonces 'María obtendrá una beca para la universidad'. Si y solo si, si 'María estudia matemáticas cinco horas diarias', entonces 'María obtendrá una beca para la universidad'".

- Definir cuáles son las premisas que intervienen en el argumento.
- p: María estudia matemáticas cinco horas diarias
- g: María aprobará el examen final
- r: María obtendrá una beca para la universidad
 - Identificar los conectores que intervienen en el argumento.

Los conectores del argumento son: conjunción (\land), condicional (\rightarrow) y bicondicional (\leftrightarrow).

 Construya el lenguaje simbólico correspondiente al argumento.

$$((p \rightarrow q) \land (q \rightarrow r)) \leftrightarrow (p \rightarrow r)$$

 Determine si el argumento es una tautología, contradicción o contingencia a través del simulador de tablas de verdad

Figura 3

Tabla de verdad en simulador del lenguaje simbólico ($(p \rightarrow q) \land (q \rightarrow q)$ $r)) \leftrightarrow (p \rightarrow r)$

Encuent	re la tabla de		((p ightarrow q) /	RTACIÓN $(q o r)) \leftrightarrow (p o r).$ PUESTA
	p	q	r	$((p ightarrow q) \wedge (q ightarrow r)) \leftrightarrow (p ightarrow r)$
	Verdadero	Verdadero	Verdadero	Verdadero
	Verdadero	Verdadero	FALSO	Verdadero
	Verdadero	FALSO	Verdadero	FALSO
	Verdadero	FALSO	FALSO	Verdadero
	FALSO	Verdadero	Verdadero	Verdadero
	FALSO	Verdadero	FALSO	FALSO
	FALSO	FALSO	Verdadero	Verdadero
	FALSO	FALSO	FALSO	Verdadero

Nota: En la figura se muestra la solución de la tabla de verdad en simulador para el lenguaje simbólico $((p \rightarrow q) \land (q \rightarrow r)) \leftrightarrow (p \rightarrow r)$. Fuente. Autor

La tabla de verdad es una contingencia

LEYES DE INFERENCIA

Figura 4

Imagen leyes de inferencia Lógica

LEYES DE INFERENCIA

Modus Ponendo Ponens (MPP)	Modus Tollendo Tollens (MTT)	Silogismo Hipotético (SH)	Modus Tollendo Ponens (MTP)	Adición
$p \rightarrow q$	$p \rightarrow q$	$p \rightarrow q$	pvq	р
р	- q	$q \rightarrow r$	-p	∴ p v q
∴ q	-p	$\therefore p \rightarrow r$	∴ q	
Dilema Constructivo	Doble Negación	Simplificación Disyuntiva	Adjunción / Conjunción	Simplificación
pvq p→r	-(-p)	pvq p→r	р	рΛq
q → s ∴ r v s	∴ p	q → r ∴ r	. p∧q	∴ p

Nota: En la figura se muestra la estructura de algunas leyes de inferencia. Fuente. Autor

Ejercicio 3: Demostración de un argumento usando las reglas de la inferencia lógica

Expresión simbólica

$$[(p \ \lor \ \sim q) \ \land \ (p \rightarrow \sim s) \ \land \ (\sim q \rightarrow \sim s)] \rightarrow \sim s$$

Deducir las premisas (P1, P2, P...) y la conclusión.

P1: (p v ~q)

P2: $(p \rightarrow \sim s)$

P3: $(\sim q \rightarrow \sim s)$

Conclusión: ~s

Definir la ley de inferencia que representa el lenguaje simbólico dado.

Ley utilizada: Simplificación Disyuntiva (SD)

Imagen simulador (Resultado Tautología).

Figura 5

Resultado simulador de tablas de verdad para el lenguaje simbólico $[(p \lor \sim q) \land (p \rightarrow \sim s) \land (\sim q \rightarrow \sim s)] \rightarrow \sim s$

p	q	s	$(((p ee eg q) \wedge (p ightarrow eg s)) \wedge (eg q ightarrow eg s)) ightarrow eg s$
True	True	True	True
True	True	False	True
True	False	True	True
True	False	False	True
False	True	True	True
False	True	False	True
False	False	True	True
False	False	False	True

Nota: En la figura se muestra la solución de la tabla de verdad en simulador para el lenguaje simbólico [(p $V \sim q$) Λ (p $\rightarrow \sim s$) Λ ($\sim q \rightarrow s$ \sim s)] $\rightarrow \sim$ s Fuente. Autor

Ejercicio 4: Problemas de aplicación

Descripción del ejercicio:

A continuación, encontrará la expresión simbólica, las premisas y la conclusión de un argumento para el desarrollo del ejercicio 4:

Expresión simbólica:

$$[(p \rightarrow \sim q) \land [(p \land r) \rightarrow q] \land (p \land r)] \rightarrow (\sim p \lor r)$$

• Definición de Proposiciones simples:

p: Camila es estudiante de psicología en la Unad

q: Camila participa oportunamente en el foro de interacción del entorno de aprendizaje.

r: Camila aprueba sus cursos matriculados en la Unad.

Lenguaje natural:

Si Camila es estudiante de psicología en la Unad, entonces no participa oportunamente en el foro de interacción del entorno de aprendizaje. Si Camila es estudiante de psicología en la Unad y aprueba sus cursos matriculados en la Unad, entonces participa oportunamente en el foro de interacción del entorno de aprendizaje. Camila es estudiante de psicología en la Unad y aprueba sus cursos matriculados en la Unad. En conclusión, Camila no es estudiante de psicología en la Unad o aprueba sus cursos matriculados en la Unad.

Completar tabla de demostración de validez de argumento mediante leyes de inferencia lógica:

Expresión simbólica:

$$[(p \rightarrow \sim q) \land [(p \land r) \rightarrow q] \land (p \land r)] \rightarrow (\sim p \lor r)$$

Premisas dadas

P1: $(p \rightarrow \sim q)$

P2: $(p \land r) \rightarrow q)$

P3: (p ∧ r)

Tabla 2 Demostración por leyes de inferencia

Premisa	Ley Aplicada	Premisas Usadas	¿Correcto o incorrecto?	Justificación
P4: q	Modus Tollendo ponens (MTP)	P2, P3	Incorrecto	La ley correcta que se utiliza en P2 y P3 es MPP
P5: ~p	Modus Tollendo Tollens (MTT)	P1, P4	Correcto	En P1 y P4, es correcto utilizar la ley de inferencia MTT
P6: r	Simplificación	P3	Correcto	Solo en la conjunción de P3, se puede utilizar la simplificación.
P7: ∼p v r	Adición	P5, p6	Correcto	Si tenemos dos premisas como P5 y P6, se puede aplicar la ley de la Adición

Nota: En esta tabla se hace la demostración por leyes de inferencia del ejercicio ejemplo. Fuente. Autor

Uso del Simulador de Tablas de Verdad

El uso de un simulador o generador (software) para la construcción de tablas de verdad para proposiciones compuestas y el uso del álgebra proposicional. El estudiante podrá utilizar un simulador online gratuito para la verificación de la tabla de verdad.

Figura 6 Tabla de verdad en simulador

re la tabla de		((p ightarrow q)	RTACIÓN $(q ightarrow r)) \leftrightarrow (p ightarrow r).$ PUESTA
p	q	r	$((p \to q) \land (q \to r)) \leftrightarrow (p \to r)$
Verdadero	Verdadero	Verdadero	Verdadero
Verdadero	Verdadero	FALSO	Verdadero
Verdadero	FALSO	Verdadero	FALSO
Verdadero	FALSO	FALSO	Verdadero
FALSO	Verdadero	Verdadero	Verdadero
FALSO	Verdadero	FALSO	FALSO
FALSO	FALSO	Verdadero	Verdadero
FALSO	FALSO	FALSO	Verdadero

Nota: En la figura se muestra la solución de la tabla de verdad en simulador. Fuente. Autor

El simulador o generador de tablas de verdad es una herramienta de apoyo al desarrollo de las tablas de verdad, en la red (online) podrá encontrar múltiples generadores de tablas de verdad o como aplicación para dispositivos móviles. En la guía y rubrica de evaluación de la tarea 1, se menciona el uso de este simulador. A continuación, podrá verificar un tutorial de un ejemplo de simulador que encontrará de forma gratuita online:

Castaño, C. (2024, 03, 08). Uso de simulador tablas de verdad online [Video]. YouTube. https://youtu.be/E0Iz2 oO t4

Entre los enlaces propuestos para la verificación del resultado final de

tablas de verdad, tenemos:

Opción 1: https://www.erpelstolz.at/gateway/TruthTable.html

Opción 2:

https://www.emathhelp.net/en/calculators/discretemathematics/truth-table-calculator/