1) Prove $32n^2 + 17n + 1$ is $O(n^2)$

Proof: consider c=33 and k=200.

Then for any n ≥ k, $n^2 \ge 200n \ge 17n+1$. Since n is positive, we also have $0 \le 32n^2 + 17n+1$ Therefore for any n ≥ k, $0 \le 32n^2 + 17n + 1 \le 32$ $n^2 + n^2 = 33n^2 = cn^2$ So $32n^2 + 17n+1$ is $O(n^2)$

 $32n^2 + 17n + 1$ is not O(n) nor O(nlogn)

Proof by contradiction: suppose $32n^2 + 17n + 1$ is O(n)

Then there are c and k such that $0 \le 32n^2 + 17n + 1 \le cn$ for every $n \ge k$ but $32n^2 + 17n + 1 \le cn$ implies that $n \le 32n + 17 + (1/n) \le c$ But this fails for any n that is greater than 32n + 17 + (1/n) and as n approaches infinity there won't be a c that is greater than 32n + 17 + (1/n) So we have a contradiction and $32n^2 + 17n + 1$ is not O(n)

Proof by contradiction: suppose $32n^2 + 17n + 1$ is O(nlogn) Then there are a c and k such that $0 \le 32n^2 + 17n + 1 \le C(nlogn)$ for every $n \ge k$ However, there is no c that will satisfy $32n^2 + 17n + 1$ being greater than C(nlogn) as n gets closer to infinity. So $32n^2 + 17n + 1$ must not be O(nlogn)

2) Prove $32n^2 + 17n + 1$ is both $\Omega(n^2)$ and $\Omega(n)$

To prove $32n^2 + 17n + 1$ is $\Omega(n^2)$, prove there exists a c such that $c(n^2) < 32n^2 + 17n + 1$ For any c≤32 this inequality holds true. Therefore $32n^2 + 17n + 1$ is $\Omega(n^2)$

To prove $32n^2 + 17n + 1$ is $\Omega(n)$, prove there exists a c such that $c(n) < 32n^2 + 17n + 1$ For every n>0, if c is less than $(32n^2 + 17n + 1)/n$ then this inequality holds true. For example, if n=20 and c<81 then $(81)(20) < 32((20)^2) + 17(20) + 1$ Therefore, there exists a c such that $c(n) < 32n^2 + 17n + 1$ and $32n^2 + 17n + 1$ is $\Omega(n)$.

Prove $32n^2 + 17n + 1$ is not $\Omega(n^3)$ If $32n^2 + 17n + 1$ was $\Omega(n^3)$ then there would exist a c such that $c(n^3) < 32n^2 + 17n + 1$ For any n>0. This implies that every $c \le (32/n) + (17/n^2) + (n^3)$ as you approach infinity the right side will get very small and it won't be possible for there to be a c that fits the inequality

3) Prove that $32n^2 + 17n + 1$ is $\phi(n^2)$

f(n) is $\phi(n^2)$ if f(n) is bounded both above and below by n^2 therefore it is both $O(n^2)$ and $O(n^2)$,

To prove $32n^2 + 17n + 1$ is $\Omega(n^2)$ and bounded below, prove there exists a c such that $c(n^2) < 32n^2 + 17n + 1$

For any c≤32 this inequality holds true.

Therefore $32n^2 + 17n + 1$ is $\Omega(n^2)$

To prove $32n^2 + 17n + 1$ is $O(n^2)$ and bounded above consider c=33 and k=200.

Then for any $n \ge k$, $n^2 \ge 200n \ge 17n+1$. Since n is positive, we also have $0 \le 32n^2 + 17n+1$

Therefore for any $n \ge k$, $0 \le 32n^2 + 17n + 1 \le 32 n^2 + n^2 = 33n^2 = cn^2$

So $32n^2 + 17n + 1$ is $O(n^2)$

Since it is bounded both above and below by n^2 , $32n^2 + 17n + 1$ is $\phi(n^2)$

Prove that $32n^2 + 17n + 1$ is neither $\phi(n)$ nor $\phi(n^3)$

in order for $32n^2 + 17n + 1$ to be $\phi(n)$ it needs to be bounded above and below i.e. both O(n) and $\Omega(n)$

It is not bounded above and therefore not O(n) as proven by contradiction: suppose $32n^2 + 17n + 1$ is O(n)

Then there are c and k such that $0 \le 32n^2 + 17n + 1 \le cn$ for every $n \ge k$ but $32n^2 + 17n + 1 \le cn$ implies that $n \le 32n + 17 + (1/n)$ But this fails for any n that is greater than 32n + 17 + (1/n) So we have a contradiction and $32n^2 + 17n + 1$ is not O(n)and there it is not bounded from above by n and cannot be $\emptyset(n)$

In order for $32n^2 + 17n + 1$ to be $\emptyset(n^3)$ in needs to be both $O(n^3)$ and $\Omega(n^3)$ If $32n^2 + 17n + 1$ was $\Omega(n^3)$ then there would exist a c such that $c(n^3) < 32n^2 + 17n + 1$ For any n>0. This implies that every $c \le (32/n) + (17/n^2) + (n^3)$ as you approach infinity the right side will get very small and it won't be possible for there to be a c that fits the inequality. Therefore, it is not bounded from below by n^3 so $32n^2 + 17n + 1$ is not $\emptyset(n^3)$

.