Computer Networks

Error Detection and Correction & Media Access Control

Adrian Sergiu DARABANT

Lecture

6

The Data Link Layer

All People Seem To Need Data Processing

Handling Errors

- Data can be corrupted during transmission
 - Bits lost
 - Bits changed
 - Bits added
- Frame additional data to protect
 - Link-level addressing, seq no., etc
- Handling? add redundant bits (data)

Error detection/correction scenario

Send **D+EDC**Receive **D'+EDC'**

Detection vs Correction

- Error Detection Techniques
 - Allow for error detection but no possible correction
 - Require frame re-transmission
 - Used in low error rate transmission medias (fiber optics).
- Error correction techniques (FEC)
 - Involve more redundant data and processing power
 - Used in high error transmission medias (radio)

Advantages/disadvantages of Error detection/correction

- Error detection/correction techniques allow the receiver to sometimes but no always detect errors.
- Undetected errors might still remain => corrupted packets delivered to the network layer.
- ◆Goal have techniques that minimize the number of undetected errors

Detection/Correction Techniques

- Parity Checks
- Checksumming methods
- Cyclic redundancy checks

Parity Checks

- → d data bits → bit
 - 0111000110101011 0
- Parity Bit (PB)
 - One additional bit per character
 - Even parity
 - Odd Parity

How many bit errors can PB detect?

 $10001110 \longrightarrow 10101110 => error!$

10001110 ---→ 10100110 => No error detected !!!

Conclusion – 1 PB can only detect an odd number of errors!

Hamming Distance

- ◆Hamming distance = the number of bit positions in which two code-words differ.
- ◆How to calculate ?(Exclusive OR=XOR):

10001001 10110001

00111000

=> The number of 1's give the number of different bits.

Hamming and error detection

Error detection of d single-bit errors needs a d+1 distance code.

Example:

BP has a distance of 2 => can detect single bit errors.

Bit Parity - YES or NO?

Suppose a channel with BER: p=10-4=>

- 1) P(sb error)=p
- 2) P(no sb error)=1-p
- 3) P(no error in 8 bits)= $(1-p)^8$
- 4) P(undetected error in 8 bits)=1-(1-p)8

P(undetected error in 8 bits)=7.9x10-4

Bit Parity – YES or NO? (2)

After adding a parity bit :

P(no sb error)=1-p

P(no error in 9 bits)= $(1-p)^9$

P(sb error in 9 bits)= $9xP(sb error)xP(no error in 8 bits) = 9p(1-p)^8$

P(undetected error in 9 bits)=1-P(no error in 9 bits)-P(sb error in 9 bits)

 $= 1-(1-p)^9 - 9p(1-p)^8$

 \Rightarrow P(undetected error in 9 bits)=3.6x10-7

P(undetected error in 8 bits) 7.9x10-4

P(undetected error in 9 bits) 3.6x10-7

Single Bit Error Correction

Parity for each character(byte=line) + parity for each column (set of data bytes sent)

Example - Single Bit Error Correction

Hamming - Correctable single bit error

Correction vs Detection - Practice

- Detection techniques
 - For detecting *d* errors we need *d*+1 distance code.

- Correction Techniques
 - For correcting *d* errors we need 2*d*+1 distance code.

Error Correction

Valid codewords: 0000000000, 00000011111, 111111000000, and 11111111111

The Hamming distance of the code=5 => we can correct 2d+1=5 => d=2 bit errors.

- a) 00000000000000000011 =>the closest code is still 000000000000001
- b) 0000000000---→0000000111 => the closest code is not correctly determined anymore!!

Hamming correcting code

- Bits numbered from Isb to msb 1...n
- ◆Positions power of 2 = check bits => bits 1,2,4,8... etc check bits
- ◆Bit k from the sequence is checked by the positions from its binary decomposition k=11=1+2+8 => bits 1,2,8 are check bits

Hamming correcting code

In order to send 7 data bits we need 4 check bits.

Data: 1001101

Check bits 4: 1,2,4,8

11	10	9	8	7	6	5	4	3	2	1
1	0	0	X	1	1	0	X	1	X	X
1	0	0	1	1	1	0	0	1	0	1

sent as

Hamming correcting code

```
10011100101 is sent as 00011100101
=>the error bit is given by the indices
 that are in error
8=[11]+[10]+[9] - error =>k=8
4=[7]+[6]+[5] - ok =>k=8
2=[11]+[10]+[7]+[6]+[3]-error=>k=10
1=[11]+[9]+[7]+[5]+[3]-error = k=11
```

Checksum Codes

```
H e I I o w o r I d .

48 65 6C 6C 6F 20 77 6F 72 6C 64 2E
```

```
4865 + 6C6C + 6F20 + 776F + 726C + 642E + carry = 71FC
```

soh data eot Checksu m

- Byte stream interpreted as series of numbers (16 bit integers)
- Integers are added =>checksum appended to the frame.
- Receiver calculates again the checksum and discovers the errors.

Errors Checksum fails to detect

Data	Checksu	Data	Checksu
Item	m Value	Item	m Value
Binary		Binary	
0001	1	0011	3
0010	2	0000	0
0011	3	0001	1
0001	1	0011	3
Total	7	Total	7

- Second bit inverted for each value
- Checksum is the same

Cyclic Redundancy Check (CRC)

- Bit strings represented as polynomials with coef. 0 and 1.
- •K bit frame => $x^{k-1}+...+1$ (first and last coef must be 1)
- Example
 - $110001 = x_5 + x_4 + 1$
- Polynomial arithmetic is done module 2 i.e. ⇔ addition/subtraction = XOR operation

CRC (2)

- Sender (S) and Receiver (R) agree on a generator polynomial G(x)
- Frame m bits => M(X) the checksum of m is the remaining of R(x)=M(x)/G(x)
- Checksum added to frame.
- (R) Gets the frame M'(x)=[M(x)-R(x)]
 - If M'(x)/G(x) has remainder => error

CRC (3)

- Frame *m* bits. Generator *r* bits.
- ◆Calculate: xrM(x) m+r bits
- xrM(x) / G(x) take remainder R(x)
- \bullet Send: $T(x) = x^rM(x) R(x)$

soh data eot CRC

Receiver: T(x) should be divisible with G(x). If not we have transmission errors.

CRC - Fxamnle

Generator: 10011

Message after 4 zero bits are appended: 1 1 0 1 0 1 1 0 1 1 0 0 0 0

Transmitted frame: 110101111110

CRC (4)

- (S) sends T(x)=M(x)-R(x)
 - (R) receives T(x)+E(x). T(x)/G(x)=0 and E(x)/G(x) gives the error.
 - 1. If E(x)=P(x)G(x) => undetected error!!!!
 - E(x)=xi, Generally G(x) is multiple term
 => E(x)/G(x)≠0 All Single-Bit errors
 detected!
 - 3. $E(x)=x_1+x_2=x_2(x_1-1)-detected$. See (2)
 - 4. E(x) has odd number of terms. If G(x)=(x+1)G'(x)=> any odd number of errors are detected.

CRC (5)

◆IEEE 802 uses:

$$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+$$

 $x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x^{1}+1$

Catches all ≤ 32 bit error bursts and all odd length error bursts.

Medium Access Control

Requirements for a broadcast channel:

- Give everyone a chance to speaks
- Don't speak until you are spoken to
- Don't monopolize the conversation
- Raise your hand if you have question
- Don't interrupt when someone is speaking
- Don't fall asleep when someone else is talking

Channel Allocation Problem Model

- **Station Model** N stations generating frames within Δt with probab. $\lambda \Delta t$.
- Single Channel
- Collision Assumption
- **♦Time**
 - Continuous Time
 - Slotted Time
- Carrier
 - Carrier Sense
 - No Carrier Sense

Solution – Multiple Access Protocol

Access protocol requirements for a R bps channel:

- When only one node has data to send, that node has a throughput of R bps.
- When M nodes have data to send, each of these nodes has an avg. throughput of R/M bps
- The protocol is decentralized, i.e., there are no master nodes that can fail and bring down the entire system
- The protocol is simple, so that it is inexpensive to implement

Multiple Access Protocols

Channel Partitioning

Random Access Protocols

Channel Partitioning

link

FDM

Frequency Division

TDM

Time Division Multiplexing

All slots labelled 2 are dedicated to a specific sender-receiver pair.

Random Access Protocols

- ◆ALOHA
 - Pure Aloha
 - Slotted Aloha
- CSMA (Carrier Sense Multiple Access)
 - CSMA
 - CSMA/CD with collision detection

ALOHA

Users send data whenever they want

Two frames on the same channel – collision=> both frames are destroyed

CSMA

◆1-Persistent CSMA

Non-Persistent CSMA

P-persistent CSMA

CSMA/CD

- Sense the channel
- Stop sending when detecting collision
- After collision wait a random amount of time and try again.

Readings

- Computer Networks (A, Tannenbaum) - Chapters 3,4
- Computer Networks: A top Down
 Approach Featuring the Internet –
 Chapter 5