AP Calculus Homework 15

Please write your answer on a separate piece of paper and submit it on Classkick or write your answer directly on Classkick.

Please write all answers in exact forms. For example, write π instead of 3.14.

Questions with a * are optional. Questions with ** are optional and more challenging.

1. Find the area of the region.

a)
$$x = 2y^2$$
, $x = 4 + y^2$

a)
$$x = 2y^2$$
, $x = 4 + y^2$ b) $x = 1 - y^2$, $x = y^2 - 1$

2. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

a)
$$y = 2 - \frac{1}{2}x$$
, $y = 0$, $x = 1$, $x = 2$; about the x-axis

b)
$$y = 1 - x^2$$
, $y = 0$; about the x-axis

c)
$$y = 1/x$$
, $y = 0$, $x = 1$, $x = 2$; about the x-axis

d)
$$y = x^3$$
, $y = x$, $x \ge 0$; about the x-axis

e)
$$y = \frac{1}{4}x^2$$
, $y = 5 - x^2$; about the *x*-axis

3. The region in the first quadrant bounded by the graph of $y = \sec x$, $x = \frac{\pi}{4}$, and the axes is rotated about the x-axis. What is the volume of the solid generated?

(A)
$$\frac{\pi^2}{4}$$

(B)
$$\pi - 1$$
 (C) π (B) 2π (B) $\frac{8\pi}{3}$

(C)
$$\tau$$

(B)
$$2\pi$$

(B)
$$\frac{8\pi}{3}$$

4. Let R be the region between the graphs of y=1 and $y=\sin x$ from x=0 to $x=\frac{\pi}{2}$. The volume of the solid obtained by revolving R about the x-axis is given by

(A)
$$2\pi \int_0^{\frac{\pi}{2}} x \sin x dx$$

(B)
$$2\pi \int_0^{\frac{\pi}{2}} x \cos x dx$$

(A)
$$2\pi \int_0^{\frac{\pi}{2}} x \sin x dx$$
 (B) $2\pi \int_0^{\frac{\pi}{2}} x \cos x dx$ (C) $\pi \int_0^{\frac{\pi}{2}} (1-\sin x)^2 dx$

(D)
$$\pi \int_0^{\frac{\pi}{2}} \sin^2 x dx$$

(D)
$$\pi \int_0^{\frac{\pi}{2}} \sin^2 x dx$$
 (E) $\pi \int_0^{\frac{\pi}{2}} (1 - \sin^2 x) dx$

5. The region enclosed by the x-axis, the line x=3, and the curve $y=\sqrt{x}$ is rotated about the x-axis. What is the volume of the solid generated?

(A)
$$3\pi$$

(B)
$$2\sqrt{3}\pi$$

(C)
$$\frac{9}{2}\pi$$

(D)
$$9\pi$$

(B)
$$2\sqrt{3}\pi$$
 (C) $\frac{9}{2}\pi$ (D) 9π (E) $\frac{36\sqrt{3}}{5}\pi$