Session 1: EEGLAB (in MATLAB)

Daniel Bennett UniSA, March 2016

Introduction & set-up of computers

EEGLAB
Program overview

EEGLAB
A whistle-stop tour

Introduction & set-up of computers

EEGLAB
Program overview

EEGLAB
A whistle-stop tour

Introductions (briefly)

Daniel Bennett PhD Candidate, University of Melbourne

I research decision making under uncertainty, using a combination of neuroimaging methods (EEG, fMRI) and computational cognitive modelling.

Obligatory embarassing EEG headshot:

Introduction to EEGLAB

EEGLAB is an open-source toolbox for preprocessing and analysis of EEG data.

MATLAB-based

Freely available (though MATLAB is not)

This 1-hour session will cover the basics of EEGLAB.

Features and limitations

Pointers toward some useful references

No MATLAB knowledge required.

We will largely use the GUI, not the command line

Information about command-line access to data will also be provided for those so inclined.

Setting Up Computers

Download the eeglab folder from this link: bit.ly/1WVrClt

Unzip it into your My Documents > MATLAB directory

In MATLAB, click 'Set Path' > 'Add folder and subfolders'

If prompted to save a different path file ('pathdef.m'), save this to your MATLAB folder too.

Introduction & set-up of computers

EEGLAB
Program overview

EEGLAB
A whistle-stop tour

Introduction to EEGLAB

EEGLAB is an open-source toolbox for preprocessing and analysis of EEG data.

MATLAB-based

Freely available (though MATLAB is not)

This 1-hour session will cover the basics of EEGLAB.

Features and limitations

Pointers toward some useful references

No MATLAB knowledge required.

We will largely use the GUI, not the command line

Information about command-line access to data will also be provided for those so inclined.

1997-2001: Initially developed as an Independent Components Analysis

toolbox at Salk Institute, La Jolla, USA.

2001-present: Maintained by the Schwartz Centre for Computational

Neuroscience, UCSD.

Website: http://sccn.ucsd.edu/eeglab/

Citation: Delorme, A., & Makeig, S. (2004). EEGLAB: an open source

toolbox for analysis of single-trial EEG dynamics including

independent component analysis. Journal of Neuroscience

Methods, 134(1), 9-21.

Version: - Current version is v.13 (MATLAB 2014a and later)

- Old version is v. 12 (pre-2014a)

Pros and Cons

Pro: - Access to single-trial data

Open-source and non-proprietary code

Flexible batch scripting

Extensive documentation

Surprisingly many inbuilt features

Ability to create new modules

Data visualisation

Cons: - Memory requirements

Unlovely GUI

Code stability

- User support

Data visualisation

For us, the most important considerations were to have control over every step of the analysis, and to have theory-neutral and flexible access to data.

Introduction & set-up of computers

EEGLAB
Program overview

EEGLAB
A whistle-stop tour

Getting started

- 1. Open MATLAB
- 2. Type eeglab at the command line
- 3. Press enter.

Getting started

These warnings are distracting, and kind of ugly...

```
Command Window
 >> eeglab
 eeglab: options file is C:\Users\dbennett1\eeg_options.m
 EEGLAB warning: there can be only one EEGLAB window, closing old one
 EEGLAB: adding "dipfit" v2.3 (see >> help eegplugin_dipfit)
 EEGLAB: adding "firfilt" v1.6.1 (see >> help eegplugin firfilt)
 Warning: The file 'C:\Users\dbennett1\TOOLBOXES\eeglab13 5 4b\eeglab.m' could not be cleared because it contains MATLAB code that is
 currently executing.
 > In eeglab>updatemenu (line 1416)
  In eeglab (line 368)
  In eeglab (line 1064)
 Warning: The file 'C:\Users\dbennett1\TOOLBOXES\eeglab13_5_4b\eeglab.m' could not be cleared because it contains MATLAB code that is
 currently executing.
 > In eeglab>updatemenu (line 1416)
  In <u>eeglab</u> (<u>line 368</u>)
  In <u>eeglab</u> (<u>line 1064</u>)
 Warning: The file 'C:\Users\dbennett1\TOOLBOXES\eeglab13 5 4b\eeglab.m' could not be cleared because it contains MATLAB code that is
 currently executing.
 > In eeglab>updatemenu (line 1416)
  In eeglab (line 368)
  In eeglab (line 1064)
 You are using the latest version of EEGLAB.
```

- 1. Enter the following at the command line: edit eeglab
- 2. Insert a % symbol at the beginning of line 1398: %clear functions;
- 3. Resave the file.

1. File > Load existing dataset > 'eeglab_data.set'.

NB: The file format for existing eeglab datasets is **.set**. If we had wanted to import directly from the raw datafile, we could have used File > Import data > Using EEGLAB functions and plugins.

If you look in the data folder, you will notice that there are two datafiles called eeglab_data. The .set file contains metadata, and the .fdt file contains the eeg recordings.

Plot > Channel data (scroll)

Things to note:

- 1. Timestamp
- 2. Vertical scale
- 3. Events
- 4. Stacking/unstacking
- 5. Rejecting data

Edit > Channel locations...

Plot > Channel spectra and maps

Plotting frequency range: [2 64]

Tools > Filter the data > Basic FIR filter

Lower edge = 58

Higher edge = 62

'Notch filter the data...' = ticked

Tools > Filter the data > Basic FIR filter

Lower edge = 58

Higher edge = 62

'Notch filter the data...' = ticked

Tools > Filter the data > Basic FIR filter

Lower edge = 58

Higher edge = 62

'Notch filter the data...' = unticked

Accessing Data

Data can be easily accessed from the command line, in the EEG structure:

- >> EEG
 >> EEG.data
- Continuous data like in this file are stored in an A x B matrix, where A is the number of electrodes,

 B is the number of data points

```
>> EEG.data(5,1:128)
>> plot(EEG.data(5,1:128))
>> EEG.data(5,:) = 0
```

Analysing Data

We will now open up a file which has already been 'epoched' (divided into segments for analysis)

- 1. File > Clear dataset(s)
- File > Load existing dataset > 'eeglab_data_epochs_ica.set'.
- 3. Plot > Channel data (scroll)

Note that data is now discrete, not continuous (try clicking on a segment).

Note also that time 0 in a segment always corresponds to a green line.

Unlike continuous data, epoched data are stored in an A x B x C matrix, where

A is the number of electrodes,
B is the number of data points per epoch
C is the number of epochs

As a result, we can access single-trial data from the command line as follows:

```
>> EEG.data(:,:,1)
```

And, if we so desire, we can access information about all the events that happen within an epoch as follows:

```
>> EEG.epoch(1)
```

P

Plotting Averaged Data

1. Plot > Channel ERPs > With scalp maps

Plot > Channel ERPs > In scalp/rect array
 Click on individual channels to enlarge

1. Plot > Channel ERP image

Channel = 27Time limits (ms) = $-500 \ 1500$

1. Plot > Channel ERP image

Channel = 27 Time limits (ms) = -500 1500 Smoothing = 0

1. Plot > Channel ERP image

Channel = 27
Time limits (ms) = -500 1500
Epoch-sorting field = 'latency'
Event type(s) = 'rt'
Smoothing = 10

0

Some Final Comments

Moving from point-and-click to batch scripting:

>> eegh

EEGLAB is tremendously useful for some things, especially for the purposes of MVPA.

It has some limitations in other respects, though.

For instance, no function to detect amplitude of a peak.

In many cases, these limitations are addressed by separate plugins

- ERPLAB (Lopez-Calderon & Luck, 2014)
- sLORETA

Useful resource: http://sccn.ucsd.edu/wiki/EEGLAB_TUTORIAL_OUTLINE