

Aplikacja ściemniacza

UNIV 1.0.6.2 (CPU)

1. Cechy

- Ściemniacz o mocy 300VA
- Ty Sterowany fazowo z odcinaniem fazy (trailing edge)
 - RC Odpowiedni dla obciążeń rezystancyjnych i pojemnościowych:
 - ampy żarowe (żarówki zwykłe i halogenowe 230V),
 - transformatory elektroniczne (przystosowane do pracy ze ściemniaczem ze sterowaniem fazowym)
- Napięcie zasilania z magistrali 10-24V
- Pobór prądu z magistarli12mA
- Do montażu na szynie DIN.
- Wymiary 90x58x53 mm (szerokość 3 modułów)
- Działanie urządzenia zależne jest od zainstalowanego w nim oprogramowania firmware.

UWAGA. NIEBEZPIECZNE NAPIĘCIE SIECI JEST ŁATWO DOSTĘPNE GDY MODUŁ JEST BEZ OBUDOWY. BEZPIECZNIE WYKONUJ POŁĄCZENIA Z SIECIĄ. W RAZIE WĄTPLIWOŚCI SKONTAKTUJ SIĘ Z KWALIFIKOWANĄ OSOBĄ. PROSZĘ ZACHOWAJ OSTROŻNOŚĆ PRZY PRACY Z NAPIĘCIEM SIECI.

2. Wersja aplikacji

3. Dane techniczne

Strona magistrali Parametr Symbol Wartość Jednostka Napięcie zasilania 10-24V ٧ U_s Pobór prądu z magistrali I_s 12 mΑ Napięcie izolacji magistrali od sieci 230V V AC U_{ISO} 500 (f=50Hz, t=1min) Dwa złącza RJ45 Typ złącza magistrali

Strona 230V

Parametr	Symbol	Wartość	Jednostka
Napięcie zasilania	U _{SH}	230/240	V
Częstotliwość napięcia zasilania	f _{SH}	50	Hz
Moc obciążenia	S _{LOAD}	0-300	VA
Zakres regulacji	$U_{\scriptscriptstyle{\phi}}$	0 - U _{SH}	V
Prąd zasilania z sieci przy S _{LOAD} =0	I_{SH}	10	mA
Wkładka bezpiecznikowa 5x20 szybka		2	А

4. Hardware

Rysunek 1. Schemat ideowy aplikacji ściemniacza dla procesora UNIV 1.0 (CPU).

4.2. Połączenie

Jeśli moduł jest pierwszy lub ostatni na magistrali, to pomiędzy piny CAN H i CAN L musi być włączony rezystor 120ohm. _3

Rysunek 2. Uproszczony schemat połączeń.

Rysunek 3. Schemat połączeń w rozdzielnicy.

Rysunek 4. Schemat połączenia magistrali ze złączem RJ45.

4.3. Płytka drukowana

- Płytka drukowana dla aplikacji ściemniacza UNIV 1.0.6.2 z zastosowaniem procesora UNIV 1.0 (CPU) Wymiary płytki 86mm x 50mm

4.3.1. Schemat montażowy

4.3.2. Zmontowana płytka

4.3.3. Elementy

Oznaczenie	Тур	Obudowa	Opis	
C1, C4, C5, C6, C8, C9, C10	100nF	0805	Kondensator	
C2, C3	22pF	0805	Kondensator	
C7	10uF/35V	SME	Kondensator elektrolityczny	
C11, C12	10uF/16V	SMB	Kondensator elektrolityczny	
C13	4n7	0805	Kondensator	
C14, C15	100nF/275V X2	raster 15mm	Kondensator	
R1, R7, R8, R10	10k	0805	Rezystor	
R2, R6	470 Ohm	0805	Rezystor	
R3	4k7	0805	Rezystor	
R4	51k 1%	0805	Rezystor	
R5	10k 1%	0805	Rezystor	
R9, R11	47k	0805	Rezystor	
R12, R13	47k 0,6W		Rezystor	
R14, R15	22k 1W		Rezystor	
R16	330 Ohm 1W		Rezystor	
R17	S10K275	raster 8,5mm	Warystor	
L1	BLM21A102SPT	0805	Dławik	
Y1	4MHz	HC49-S	Rezonator kwarcowy	
D1	FS1J	DO-214	Dioda	
D2	P6SMB33CA	DO-214	Dioda zabezpieczająca	
D3, D4	1N4007		Dioda	
D5	10V / 0,5W		Dioda Zenera	
D6	15V / 0,5W	MINIMELF	Dioda Zenera	
Br1	4A 600V		Mostek prostowniczy	
Br2	1A 600V		Mostek prostowniczy	
IC1	UNIV 1.0 (CPU)	SOIC-28	Procesor modułu uniwersalnego HAPCAN	
IC2	MCP2551-SN	SOIC-8	CAN Transceiver	
IC3	LM7805L	TO-92	Stabilizator napięcia	
			OUTPUT	
IC4, IC5	4N25	DIP6	Transoptor	
Q1	SPP20N60S5	TO-220	Tranzystor	
			Gate pin 2. Source pin 3	

Q2	BC817C	SOT-23	Tranzystor
			3 50723 1 2
J1, J2	RJ45	L18xW15xH11	Złącze
X1	ARK3	H=12,5mm raster=5mm	Złącze zaciskowe
F1	2A szybki	20x5	Bezpiecznik
HEATSINK	H38xL35xW13 10,8K/W	TO-220	Radiator
SCREW	M3x10		Śruba z nakrętką

4.4. Obudowa

- Obudowa o szerokości 3 modułów na szynę DIN 35mm
 Wymiary obudowy 90mm x 58mm x 53mm

4.4.1. Wymiary

4.4.2. Obróbka mechaniczna

4.4.2.1. Korpus

Korpus nie wymaga zmian.

4.4.2.2. Osłony złącz

Zakreskowane na czerwono obszary należy wyciąć.

Rysunek a) przedstawia osłonę od strony złącz RJ45

Rysunek b) przedstawia osłonę od strony złącz zaciskowych

4.4.2.3. Panel czołowy

Panel czołowy nie wymaga zmian.

4.4.3. Montaż

4.4.4. Etykiety

5. Wersja dokumentu

Plik	Opis	Data
univ_v1-0-6-2pcba_pl.pdf	Wersja oryginalna	Marzec 2010
univ_v1-0-6-2pcbb_pl.pdf	Uzupełnienie	Maj 2010