Interpolation in First-Order Logic with Equality Master Thesis Presentation

Bernhard Mallinger

Advisor: Stefan Hetzl

Institute of Discrete Mathematics and Geometry TU Wien

12. Oktober 2014

Notes (cover this somewhere)

 interpolants can be extracted from resolution proofs since skolemisation and the cnf transformation doesn't change the set of interpolants

- Introduction
- 2 Craig Interpolation (10 min)
- 3 Proof by reduction (6 min)
- 4 Interpolant extraction from resolution proofs (10 min)
- 5 Semantic Proof (6 min)
- 6 Conclusion
 - References

- Introduction
- 2 Craig Interpolation (10 min)
- 3 Proof by reduction (6 min)
- 4 Interpolant extraction from resolution proofs (10 min)
- 5 Semantic Proof (6 min)
- 6 Conclusion
 - References

Introduction

- Want concrete algorithms for FOL/EQ
 - ⇒ Little attention so far
- Present different constructive proofs

- Introduction
- 2 Craig Interpolation (10 min)
- 3 Proof by reduction (6 min)
- 4 Interpolant extraction from resolution proofs (10 min)
- 5 Semantic Proof (6 min)
- 6 Conclusion
 - References

Craig Interpolation

Theorem (Craig). Let Γ and Δ be sets of first-order formulas where

- Γ contains red and gray symbols and
- △ contains blue and gray symbols

such that:

 \bullet $\Gamma \models \Delta$

Then there is a interpolant I containing only gray symbols such that:

- \bullet $1 \models \Delta$

Interpolation and Equality

Example

- Let $\Gamma = \{P(a), \neg P(b)\}\$ and $\Delta = \{a \neq b\}.$
- Clearly $\Gamma \models \Delta$.
- Only possible interpolant: $a \neq b$

Interpolation and Equality

Example

- Let $\Gamma = \{P(a), \neg P(b)\}\$ and $\Delta = \{a \neq b\}.$
- Clearly $\Gamma \models \Delta$.
- Only possible interpolant: $a \neq b$

Applications

- Proof of Beth's Definability Theorem
- Model checking
- Detecting loop invariants

- Introduction
- 2 Craig Interpolation (10 min)
- 3 Proof by reduction (6 min)
- 4 Interpolant extraction from resolution proofs (10 min)
- Semantic Proof (6 min)
- 6 Conclusion
 - References

Proof by reduction

Reduction to FOL without equality and function symbols:

Translate equality and function symbols:

$$(P(c))^* \equiv \exists x (C(x) \land P(x))$$
$$(P(f(c)))^* \equiv \exists x (\exists y (C(y) \land F(y,x)) \land P(x))$$
$$(s = t)^* \equiv E(s,t)$$

Add axioms for equality and new predicate symbols:

$$\varphi \rightarrow \left(\mathsf{T}_{E} \wedge \bigwedge_{f \in \mathsf{FS}} \mathsf{T}_{f}\right) \supset \varphi^{*}$$

Clearly φ and φ^* are equisatisfiable.

Proof in FOL without equality and FS

Lemma (Maehara)

Let Γ and Δ be sets of first-order formulas without equality and function symbols such that $\Gamma \vdash \Delta$ is provable in **sequent calculus**. Then for any partition $\langle (\Gamma_1; \Delta_1), (\Gamma_2; \Delta_2) \rangle$ there is an interpolant I such that

- **1** $\Gamma_1 \vdash \Delta_1$, I is provable
- **3** $L(I) \subseteq L(\Gamma_1, \Delta_1) \cap L(\Gamma_2, \Delta_2)$

[Baaz and Leitsch, 2011] presents a strengthening which includes function symbols.

Open question: Can it be extended to include equality?

Proof in FOL without equality and FS

Lemma (Maehara)

Let Γ and Δ be sets of first-order formulas without equality and function symbols such that $\Gamma \vdash \Delta$ is provable in **sequent calculus**. Then for any partition $\langle (\Gamma_1; \Delta_1), (\Gamma_2; \Delta_2) \rangle$ there is an interpolant I such that

- **1** $\Gamma_1 \vdash \Delta_1$, *I* is provable
- **2** Γ_2 , $I \vdash \Delta_2$ is provable

[Baaz and Leitsch, 2011] presents a strengthening which includes function symbols.

Open question: Can it be extended to include equality?

- Introduction
- 2 Craig Interpolation (10 min)
- 3 Proof by reduction (6 min)
- 4 Interpolant extraction from resolution proofs (10 min)
- 5 Semantic Proof (6 min)
- 6 Conclusion
 - References

Interpolant extraction

Motivation

- Proof by reduction is impractical
- Goal: Compute interpolants from proof
- The following is based on [Huang, 1995]

- Have to use "reverse" (but equivalent) formulation of

Interpolant extraction

Motivation

- Proof by reduction is impractical
- Goal: Compute interpolants from proof
- The following is based on [Huang, 1995]

Interpolant extraction from resolution proofs

- Skolemisation and clausal form transformation do no alter the set of interpolants
- Have to use "reverse" (but equivalent) formulation of interpolation

Huang's algorithm (1/2) (6 min)

Proof:

Extract propositional interpolant structure from proof

Propositional Interpolant:

$$\dots Q(f(c), c) \dots$$

Replace colored function and constant symbols

Prenex First-Order Interpolant:

$$\exists x_3 \forall x_5 \dots Q(x_5, x_3) \dots$$

Huang's algorithm (2/2)

- Propositional interpolant is interpolant modulo function and constant symbols
- For the lifting phase, the ordering of the lifting variables is crucial
- The type of the quantifier is determined by the coloring of the symbol

Theorem

The number of quantifier alternations in the resulting interpolant directly corresponds to the number of color alternations of terms in the resolution proof.

Interpolation extraction in one phase

Proof:

Combined structure extraction and replacing of colored symbols

Interpolant modulo current clause:

$$\forall x_5 \dots Q(x_5, c) \dots$$

Recursively applied to all inferences of the proof results in:

Non-Prenex First-Order Interpolant:

$$\exists x_3 \ldots \forall x_5 \ldots Q(x_5, x_3) \ldots$$

- Introduction
- 2 Craig Interpolation (10 min)
- 3 Proof by reduction (6 min)
- 4 Interpolant extraction from resolution proofs (10 min)
- 5 Semantic Proof (6 min)
- 6 Conclusion
 - References

Interpolation in First-Order Logic with Equality Bernhard Mallinger

- Introduction
- Craig Interpolation (10 min)
- 3 Proof by reduction (6 min)
- 4 Interpolant extraction from resolution proofs (10 min)
- Semantic Proof (6 min)
- 6 Conclusion
 - References

Conclusion

- Craig's and Huang's proof based interpolant extraction from proofs
 - ⇒ differ in applicability
- Craig shows that the interpolation theorem holds also in FOL/EQ
- Huang shows that interpolants can efficiently be extracted in FOL/EQ
 - Does not require different methods
 - Little attention so far in research
- Interpolation also allows for a model theoretic approach

Baaz, M. and Leitsch, A. (2011). *Methods of Cut-Elimination*. Trends in Logic. Springer.

Huang, G. (1995). Constructing Craig Interpolation Formulas.

In Proceedings of the First Annual International Conference on Computing and Combinatorics, COCOON '95, pages 181–190, London, UK, UK. Springer-Verlag.