Netzwerke und Internettechnologien 1

Internet Protocol Version 6

Netzwerke und Internettechnologien 1

Lernziele

1

Aufbau und Verwendung von IPv6

IPv6-Subnetzberechnung

IPv6

- IPv4 war nie für ein Internet in den heutigen Dimensionen konzipiert.
- Seit 1993 wurden Nachfolge-Entwicklungen (IPng) von der IETF evaluiert
- Anforderungen:
 - Stark vergrößerter Adressraum
 - Parallelbetrieb mit IPv4 für eine Übergangszeit
- IPv6 wurde 1998 als Standardisierungsentwurf im RFC 2460 verabschiedet

IPv6

Features

- Wesentlich größerer Adressraum durch 128 Bit Adressen
- Schnelleres Routing (Wegfall der IP-Header-Checksum, Flowlabel)
- Vereinfachtes Paketformat mit einem Header fester Größe (40 Byte)
- Extension Header für optionale Informationen
- Mobile IP-Adresse
- Autokonfiguration der Clients

Schreibweise von IPv6-Adressen

 Die 128 Bits der Adresse werden in acht hexadezimale, 16-Bit lange Blöcke unterteilt, die durch Doppelpunkte getrennt werden

2001:0DB8:0000:0000:0208:C7FF:FEC5:5E7A

- Abkürzen von IPv6-Adressen:
 - Führende Nullen können ausgelassen werden:

2001:DB8:0:0:208:C7FF:FEC5:5E7A

• Einer oder mehrere aufeinanderfolgende 4er Nullerblöcke werden durch zwei Doppelpunkte ("::") gekürzt.

2001:DB8::208:C7FF:FEC5:5E7A

• IPv4-Adressen können in IPv6-Adressen eingebettet (bzw. zum Schluss angehängt) werden, z.B.: X:X:X:X:X:X:192.168.0.1 oder 0:0:0:0:0:0:0:192.168.0.1 bzw. ::192.168.0.1, oder aber ::C0A8:1

Präfix in IPv6

- Der Präfix geben den Netzanteil der Adresse wieder (wie die Subnetzmaske bei IPv4).
- Die ersten 64 Bits einer Adresse sind der Netzwerkpräfix, während die letzten 64 Bits immer die Interface-ID darstellen.

Abbildung 3: IPv6 Präfix (eigene Darstellung)

• Aktuelle Liste der Präfixe unter <u>www.iana.org/assignments/ipv6-address-space</u>

Adresstypen

- IPv4:
 - Unicast (zielgerichtet, Quelle und Ziel eindeutig)
 - Multicast (Ziel ist eine bestimmte Gruppe von Hosts)
 - Broadcast (Paket geht an alle Adressen im Subnetz)
- IPv6:
 - Unicast (wie bei IPv4)
 - Multicast (übernimmt zusätzlich die Rolle von Broadcast)
 - Anycast (Paket geht an das nächstliegende System)

Aufteilung des IPv6-Adressraum

- Adressvergabe erfolgt hierarchisch
- Whois-Dienste der jeweiligen RIRs liefern Informationen über die Vergabe von IPv6-Netzen
- Endkunden werden vom Provider Netze mit dem Präfix /48 oder /56 zugewiesen

Abbildung 3: IPv6 Präfix (eigene Darstellung)

Spezielle IPv6-Adressen

- Die Anzahl der Netzwerkbits wird vom Präfix definiert.
- 64-Bits sind der Schnittstellen-ID zugeordnet.

Adresstyp	IPv4-Adresse	IPv6-Adresse		
Nicht angegeben	0.0.0.0	• •		
Loopback	127.0.0.1	::1		
Automatisch konfiguriert	169.254.0.0/16	FE80::/64		
Broadcast	255.255.255	Verwendet stattdessen Multicasts		
Multicast	224.0.0.0/4	FF00::/8		

Spezielle IPv6-Adressen

- 6to4-Adressen:
 - Tunnelmechanismus nach RFC 3056
 - Präfix: 2002::/16
 - Enthält die IPv4-Adresse des 6to4-Routers
- ISATAP-Adressen:
 - Tunnelmechanismus nach RFC 5214
 - Präfix: beliebiges Global Unicast-Präfix mit Identifier 00 00 5E FE bzw. 02 00 5E FE in den ersten 32 Bits des Interface-Identifiers, gefolgt von der IPv4-Adresse
- Teredo-Adressen:
 - Tunnelmechanismus nach RFC 4380
 - Präfix: 2001::/32 (beginnt also mit 2001:0:)
- Dokumentationsadressen:
 - Präfix: 2001:db8::/32

Global Unicast - Adressen

- Global Unicast-Adressen sind im Internet global routebare Adressen und haben das Präfix 2000::/3
- Das globale Routing-Präfix identifiziert den einer Site zugewiesenen Adressbereich
- Die Subnetz-ID identifiziert einen Bereich innerhalb einer Site (wie bei IPv4)
- Die Interface-ID identifiziert ein Interface in einem Subnetz

Abbildung 4: Global Unicast (eigene Darstellung)

Link Local Unicast - Adressen

- Jedes Interface erhält eine automatisch generierte Link-Local-Adresse, mit dem Präfix **FE80::/10**, die erhalten bleibt
- Im lokalen Subnetz wird wenn möglich mit der Link-Local-Adresse kommuniziert.
- Pakete mit Link Local-Adressen werden nicht geroutet.
- Wird das Standard-Gateway per Autoconfiguration ermittelt, wird die Link-Local-Adresse des Routers eingetragen
- Adressen werden mit einer Netz-ID ergänzt %44, der Computer identifiziert damit den Netzadapter, z.B. FE80::1E:D0E:AD32:F26%44

1111 1110 10	Bits auf 0 gesetzt	Interface ID	
10 Bits 54 Bits		64 Bits	
Abbildung 4: link local (eige	one Darstellung)		

Unique Local Unicast - Adressen

- Unique Local-Adressen sind das Äquivalent zu privaten IP-Adressen bei IPv4
- Unique Local-Präfix: FC00::/7 oder FD00::/8
- Unique Local-Adressen können entweder lokal (FD) oder zentral (FC) vergeben werden (8. Bit 1 oder 0)
- Das Globale Präfix wird mittels Zufallsalgorithmus ermittelt.

Abbildung 4: uniq local (eigene Darstellung)

IPv6-Multicast - Adressen

- Multicast wurde bei IPv6 gegenüber IPv4 überarbeitet und erweitert
- Multicast-Adressen übernehmen auch die Funktion von Broadcasts
- Pakete an eine Multicast-Adresse werden an alle Mitglieder einer Multicast-Gruppe gesendet
- Multicast-Adressen beginnen mit FF bzw. 1111 1111

Abbildung 4: multicast (eigene Darstellung)

Anycast-Adressen

- Anycast-Adressen werden mehreren Interfaces (In der Regel auf mehreren Hosts, Systeme, die denselben Dienst anbieten.) zugeordnet.
- Prinzip: One-to-Nearest, es wird der nächste erreichbare Host angesprochen
- Anycast-Adressen haben ein beliebiges Präfix und sind formal nicht von Unicast-Adressen zu unterscheiden
- Systeme, denen Anycast-Adressen zugewiesen werden, werden über deren Eigenschaft als Anycast-Adresse in Kenntnis gesetzt

Subnet-Präfix	00000000	
n Bits	128-n Bits	

Abbildung 4: anycast (eigene Darstellung)

IPv6 - Header

Vereinfachung des Headerformats

- Feste Größe von 40 Bytes
- Alle optionalen Komponenten ausgegliedert
- Einfachere Verarbeitung (Parsing)

Abbildung 1: IPv6 Header

IPv6 - Header

Vergleich IPv4 zu IPv6

• IPv4 - Paket

• IPv6 - Paket

Abbildung 2: IPv4+IPv6 Header (eigene Darstellung)

IPv6-Autokonfiguration

2 Varianten

- Stateful Address Autoconfiguration
 - Der Knoten erhält seine IPv6-Konfiguration durch DHCPv6 (kein Standardgateway).
- Stateless Address Autoconfiguration
 - der Knoten erhält seine IPv6-Konfiguration über Router Advertisements und optional weitere Parameter (z.B. Domainname, DNS-Server) zusätzlich über DHCPv6

Neighbour Discovery Protocol (NDP)

- Ersetzt das Address Resolution Protocol (ARP) für IPv6.
- Geht in seiner Funktionalität weit über ARP hinaus.
- Funktionen:
 - Autokonfiguration
 - Addressauflösung (IPv6- in MAC-Adresse)
 - Erkennung doppelter IP-Adressen (DAD Duplicate Address Detection Test)
 - Präfix- und Routerermittlung
 - Next-Hop-Bestimmung
 - Ermittlung von Parametern (Hop Limit, MTU)

IPv6 - Subnetz-Berechnung

IPv6-Subnetzberechnung

Berechnung binär

• Die Subnetzberechnung kann wie bei IPv4 binär erfolgen, indem die Bits betrachtet werden.

Der Adressraum des IPv6-Netzes

2001:adb8:AAAA::/48 (48 Bits sind festgelegt) soll in vier gleich große Teilnetze aufgeteilt werden.

4 Subnetze: erfordern 2 Bits diese werden im 4. Block der IP gesetzt

Нех		binär		
0000	0000	0000	0000	0000
4000	0100	0000	0000	0000
8000	1000	0000	0000	0000
C000	1100	0000	0000	0000

1. Subnetz 2001:adb8:AAAA::

2. Subnetz 2001:adb8:AAAA:4000::

3. Subnetz 2001:adb8:AAAA:8000::

4. Subnetz 2001:adb8:AAAA:C000::

IPv6-Subnetzberechnung

Berechnung mit Hexadezimaldifferenz

- Eine weiter Möglichkeit der Subnetz-Berechnung in IPv6 ist die hexdezimale Differenz.
- Anhand einer Tabelle wird der Wert für die freien Bits des Netzwerkpräfix ermittelt.
- Diese Differenz stellt dann die Schrittweite der Netzwerk. IDs dar.

Der Adressraum des IPv6-Netzes

2001:adb8:AAAA::/48 (48 Bits sind festgelegt) soll in vier gleich große Teilnetze aufgeteilt werden.

Hexadezimaldifferenz

Hex Zweierpotenz		weierpotenz	
	1	2^0	
	2	2^1	1. Subnetz 2001:adb8:AAAA::
	10	2^4	+4000
	20	2^5	2. Subnetz 2001:adb8:AAAA:4000::
	40	2^6	+4000
	80	2^7	3. Subnetz 2001:adb8:AAAA:8000::
	100	2^8	+4000
	200	2^9	4. Subnetz 2001:adb8:AAAA:C000::
	400	2^10	
	800	2^11	
	1000	2^12/	
	2000	2^13	
	4000	2^14	
	8000	2^15	

Quellen

Buchquelle

Kersken, Sascha (2017): IT-Handbuch für Fachinformatiker. Der Ausbildungsbegleiter. 8. Auflage, revidierte Ausgabe. Bonn: Rheinwerk Verlag; Rheinwerk Computing.

Schreiner, Rüdiger (2014): Computernetzwerke. Von den Grundlagen zur Funktion und Anwendung. 5., erw. Aufl. München: Hanser.

Abbildungen

1

https://de.wikipedia.org/wiki/Datei:IPv6_header_rv1.png

VIELEN DANK!

