

Escuela Técnica Superior de Ingeniería Informática

Proyecto de fin de grado

Optimización y evaluación de sistemas de traducción automática para la asistencia a la gestión de recursos humanos en un contexto multilingüe

Grado en ingeniería informática

Curso académico: 2024-2025

Juan Castelló Beltrán

Tutor: Jorge Civera Saiz

Índice

1	Introducción y motivación	3
2	Estado del arte	5
3	Descripción del conjunto de datos	7
4	Metodología	9
5	Resultados	13
6	Conclusiones	16

1. Introducción y motivación

Contexto actual

- Globalización y empresas multinacionales.
- Gestión de RRHH.
- Dificultad en la identificación de talento:
 - o Diversidad de idiomas.
 - Gran cantidad de datos.

Introducción y motivación

Solución propuesta por la empresa (NTT Data / UNV)

- Utilización de inteligencia artificial (IA) para el procesamiento de datos.
- Implementación de sistemas de búsqueda inteligente de candidatos.
- Estandarización de información a un idioma común (inglés).

Motivación y Objetivo del TFG

- Optimizar y evaluar el módulo de traducción automática (TA).
- Uso de modelos de lenguaje grandes (LLMs).
- Buscar un equilibrio entre calidad, y coste temporal y económico.

2. Estado del arte

■ Aprendizaje automático (ML)

• Aprendizaje supervisado.

■ Redes neuronales

• Arquitectura Transformer: mecanismo de autoatención

2 Estado del arte

■ Modelos de Lenguaje Grandes (LLMs)

- Basados en la arquitectura Transformer.
- Preentrenamiento con gran cantidad de datos.
- Adaptación a tareas concretas: zero-shot, few-shot y fine-tuning.
- Capacidad de generación y comprensión de texto.

Prompt engineering

- Clave para guiar el comportamiento de los LLMs.
- Impacta directamente en la calidad de la traducción.

3. Descripción del conjunto de datos

■ Tipos de datos: Perfiles -Documentos de Asignación (DoA) -Asignaciones

Aplicación completa

3 Descripción del conjunto de datos

Selección y preproceso

- Filtrado de datos.
- Extracción de frases para la traducción.
- Selección de 1.000 frases (66 % perfiles, 33 % asignaciones, 1 % DoAs)

Generación de traducciones supervisadas

- Traducción inicial con DeepL.
- Revisión y posedición manual exhaustiva.
- Terminología específica.

4. Metodología

Evaluación de la traducción automática

- Evaluación manual (subjetiva).
- Evaluación automática (objetiva).

■ Tipos de métricas automáticas

- Basadas en coincidencias léxicas (BLEU).
- Basadas en similitud semántica (COMET).

Metodología: evaluación automática

BLEU	COMET
Comparación de n-gramas.	Comparación de word embeddings.
Ventajas:	Ventajas:
Rápido y económico.	 Alta sensibilidad semántica.
Funcionamiento simple.	■ Fuerte correlación con juicio humano.
Independiente del idioma.	Considera la fidelidad al texto fuente.
Desventajas:	Desventajas:
■ Problemas con frases largas.	 Mayor complejidad computacional.
■ Problemas con sinónimos.	■ Dependencia del modelo base.
■ 30 - 40: Buenas traducciones	■ < 85: Alta calidad
■ 40 - 50: Alta calidad	■ ≥ 85: Calidad muy alta
■ 50 - 60: Calidad muy alta	

Metodología: LLMs

- Criterio de selección: Diversidad en rendimiento, coste y accesibilidad.
- Modelos de Azure OpenAI:
 - Familia ChatGPT: GPT 4, GPT 4 mini.
- Modelos locales / Open-Source:
 - Familia Gemma3: Gemma3 4b, Gemma3 4b translator, Gemma3 12b
 - Familia DeepSeek: DeepSeek 7b, DeepSeek 8b.

Metodología: prompt engineering

- Se han utilizado 3 prompts distintos.
- **Prompt 1:** descripción de tarea a realizar (traducción) *Traduce estas frases del español al inglés.*
- **Prompt 2:** introduce un contexto según el tipo de documento a traducir Actúa como un traductor que analiza las frases con la información de perfiles y tradúcelos del español al inglés.
- Prompt 3: añade un ejemplo de traducción (one-shot)
 Actúa como un traductor que analiza las frases con la información de perfiles y tradúcelos del español al inglés como el ejemplo siguiente:
 Agradezco la oportunidad de considerar mi solicitud.
 I appreciate the opportunity to consider my application.

5. Resultados

Rendimiento Global (BLEU y COMET)

Modelo LLM	Prompt 1		Prompt 2		Prompt 3	
Modelo LLIM	BLEU	COMET	BLEU	COMET	BLEU	COMET
GPT 4	56.8	87.8	58.8	88.0	57.9	0.88
GPT 4 mini	58.3	0.88	57.6	87.9	58.3	87.9
Gemma3 4b	47.6	86.3	48.4	86.5	51.9	86.0
Gemma3 4b translator	58.0	86.5	57.0	86.6	57.7	86.1
Gemma3 12b	48.0	86.9	47.0	86.8	52.1	87.1
DeepSeek 7b	29.8	81.4	30.7	81.8	28.1	80.9
DeepSeek 8b	37.8	83.4	37.9	83.5	37.7	83.6

Impacto del Prompt Engineering

- La familia GPT muestra los mejores resultados.
- Gemma3 4b translator ofrece los resultados más competitivos a GPT
- Balance entre complejidad del prompt y potencia del LLM.

Resultados: Análisis de coste temporal y económico

Modelo	Coste temporal (horas)	Coste económico (€)
GPT 4	0.2	0.52
GPT 4 mini	0.2	0.03
Gemma 3 4b	1.1	0.03
Gemma 3 4b-translation	1.1	0.03
Gemma 3 12b	2.1	0.06
DeepSeek 7b	17.7	0.53
DeepSeek 8b	20.0	0.61

- GPT 4 mini ofrece el mejor equilibrio entre calidad de traducción y costes
- Gemma3 4b translator y Gemma 3 12b son lo modelos gratuitos más competitivos

Resultados: Tipos de documentos

■ Rendimiento por tipo de documento

Modelo LLM	Asignaciones		Pe	rfiles	DoAs	
MOGEIO LLIM	BLEU	COMET	BLEU	COMET	BLEU	COMET
GPT 4 mini	63.08	89.40	55.75	87.37	58.67	90.84
Gemma3 12b	60.10	88.78	47.75	86.32	51.33	88.75
DeepSeek 8b	44.92	85.82	33.70	82.58	38.39	85.76

- Variaciones significativas de calidad según el tipo de documento.
- GPT 4 mini es más robusto con calidad alta en diferentes documentos.

6. Conclusiones

Rendimiento de los LLMs en TA para RRHH

- LLMs actuales (GPT) altamente efectivos para TA en el dominio de RRHH.
- Mejora de eficiencia y precisión en gestión de documentación multilingüe.

Resultados

- Búsqueda de equilibrio entre calidad y eficiencia temporal/económica.
- Selección de modelos en función de prioridades empresariales.
- Repetir las ejecuciones locales con una máquina más potente

Relevancia del Prompt Engineering

• Diseño de prompt es crucial para optimizar el rendimiento de la TA.