Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes

Creighton Heaukulani (No affiliation) and Mark van der Wilk (PROWLER.io)

Summary

- Apply black-box, gradient-based variational inference to Wishart and inverse Wishart processes
- Introduce a numerically stable additive noise parameterization and a low-rank "factored" variant
- May scale down inference w.r.t. length of time series and dimensionality of covariance matrix
- Competitive performance against MGARCH, though inverse Wishart process appears unreliable

Construct (inverse) Wishart processes from GPs

Let $Y_n \in \mathbb{R}^D$ be the n-the measurement in a time series of length N, and let

$$Y_n \mid \mu_n, \Sigma_n \sim \mathcal{N}(\mu_n, \Sigma_n), \qquad n \ge 1.$$
 (1)

Here we focus on modeling the sequence of covariance matrices Σ_n .

Consider the Wishart and inverse Wishart processes, which may be constructed from i.i.d. Gaussian processes as follows: Sample a bunch of i.i.d. GPs:

$$f_{d,k} \sim \text{GP}(0, \kappa(\cdot, \cdot; \theta)), \qquad d \leq D, k \leq \nu,$$
 (2)

for some degrees of freedom $\nu \geq D$. Let X_n be a covariate representing the time at which measurement n was taken, and let $F_{n,d,k}:=f_{d,k}(X_n)$, let $F_n:=(F_{n,d,k},d\leq D,k\leq \nu)$, and

$$\Sigma_n = A F_n F_n^T A^T, \tag{3}$$

$$\Sigma_n^{-1} = A F_n F_n^T A^T, \tag{4}$$

for a scale matrix A.

Intuitively, we can visualize an evolving sequence of two-dimensional covariance matrices as in the figure to the right.

* Figure taken from Wilson and Ghahramani [2010].

Black-box variational inference with GPflow

We maximize the lower bound on $\log p(Y)$:

$$\log p(Y) \ge \sum_{n=1}^{N} \mathbb{E}_{q(F_n)}[\log p(Y_n \mid F_n)] - \sum_{d=1}^{D} \sum_{k=1}^{\nu} \mathsf{KL}[q(U_{d,k}) \mid\mid p(U_{d,k})], \tag{5}$$

for a mean-field variational distribution q, specified by Hensman et al. [2015]. Gradients obtained following Kingma and Welling [2014], Salimans and Knowles [2013]; black-box requiring only:

$$\log p(Y_n \mid F_n) = -\frac{D}{2}\log(2\pi) - \frac{1}{2}\log|AF_nF_n^TA^T| - \frac{1}{2}Y_n^T(AF_nF_n^TA^T)^{-1}Y_n, \tag{6}$$

for the Wishart process, or for the inverse Wishart process:

$$\log p(Y_n \mid F_n) = -\frac{D}{2}\log(2\pi) + \frac{1}{2}\log|AF_nF_n^TA^T| - \frac{1}{2}Y_n^TAF_nF_n^TA^TY_n. \tag{7}$$

Particularly easy with GPflow [Matthews et al., 2017]. Code for the inverse Wishart process:

import tensorflow as tf

from gpflow import models, likelihoods, kernels, conditionals, kullback_leiblers, transforms

self.R, self.D = R, Dself. $A_diag = Parameter(np.ones(D), transform=transforms.positive)$

 $Qgpflow.decors.params_as_tensors \# decorator translating TF tensors for GPflow$ def variational_expectations(self, mu, S, Y): N, D = tf.shape(Y)

 $W = tf.random_normal([self.R, N, tf.shape(mu)[1]])$

F = W * (S ** 0.5) + mu # samples through which TF automatically differentiates # compute the (mean of the) likelihood

 $AF = self.A_diag[:, None] * tf.reshape(F, [self.R, N, D, -1])$ yffy = tf.reduce_sum(tf.einsum('jk,ijkl \rightarrow ijl', Y, AF) ** 2.0, axis=-1)

chols = $tf.cholesky(tf.matmul(AF, AF, transpose_b=True))$ # cholesky of precision $logp = tf.reduce_sum(tf.log(tf.matrix_diag_part(chols)), axis=2) - 0.5 * yffy$ return tf.reduce_mean(logp, axis=0)

class InvWishartProcess(models.svgp.SVGP); def __init__(self, X, Y, Z, minibatch_size=None, nu=None): D = Y. shape [1]

nu = D if nu is None else nu # degrees of freedom

create a compositional kernel function $\mathsf{kern} = \mathsf{kernels}$. $\mathsf{Matern32}(1) + \mathsf{kernels}$. $\mathsf{RationalQuadratic}(1) + \mathsf{kernels}$. $\mathsf{PeriodicKernel}(1) * \mathsf{kernels}$. $\mathsf{RBF}(1)$

almost all work is done by SVGP! $super()._-init_-(X, Y, kern = kern, # notation as in the paper$ likelihood = InvWishartProcessLikelihood(D, R=10), # 10 MCMC samples

> minibatch_size = minibatch_size. Z = Z) # initial inducing points should be passed

 $num_latent = D * nu$, # number of outputs (multi-output GP)

The additive noise and factored parameterizations

Inference on the Wishart process is unstable. The LHS shows a histogram of one of the gradients.

Correct unstable gradients in the Wishart process with the following additive noise parameterization:

$$\Sigma_n := A F_n F_n^T A^T + \Lambda, \quad n \ge 1, \tag{8}$$

and the loglikelihood becomes:

$$\log p(Y_n \mid F_n) = \frac{ND}{2} \log(2\pi) - \log|AF_nF_n^TA^T + \Lambda| - \frac{1}{2}Y_n^T(AF_nF_n^TA^T + \Lambda)^{-1}Y_n.$$
 (9)

Corrected gradients in the RHS figure above.

An analogous parameterization for the inverse Wishart process is:

$$\Sigma_n^{-1} := A F_n F_n^T A^T + \Lambda^{-1}, \quad n \ge 1,$$
(10)

with loglikelihood:

$$\log p(Y_n \mid F_n) = \frac{ND}{2} \log(2\pi) + \log|AF_nF_n^TA^T + \Lambda^{-1}| - \frac{1}{2}Y_n^T(AF_nF_n^TA^T + \Lambda^{-1})Y_n.$$
 (11)

Set $K \ll D$, and let F_n be $K \times \nu$ for $\nu \geq K$, and let A be $D \times K$. We obtain a low-rank, "factored" model. With the Woodbury matrix identities, the computational complexity becomes:

	Time	Space
full cov $(M \ll N)$	$O(N_b D^3 + D^2(N_b^3 + N_b M^2 + M^3))$	$O(D^2(N_b^2 + N_bM + M^2))$
${\rm factored}\ {\rm cov}\ (K\ll D)$	$O(N_bDK^2 + K^2(N_b^3 + N_bM^2 + M^3))$	$O(DK + K^2(N_b^2 + N_bM + M^2))$

Comparison to MGARCH

Summary:

- Inverse Wishart process is unreliable.
- Additive noise parameterization improves performance.
- Should prefer full covariance model if resources allow.

Datasets:

- **Dow 30**: Intraday returns on the comps of the Dow 30 Industrial Ave; N = 978, D = 30.
- **FX**: Daily foreign exchange rates for 20 currency pairs; $N=1,565,\ D=20.$
- ETF: Close prices of 52 popular exchange traded funds; N=2,285 and D=52.
- **S&P 500**: Daily returns on closing prices of comps of the S&P 500 index; N=1,258, D=505.

We evaluate on test sets of 10 forecast horizons. Visualize as follows:

The boxplots are over 10 training/testing splits, formed with rolling windows.

•	8/	8 1 ,	8
	Dow 30	FX	S&P 500
arch	142.47 ± 17.97	68.24 ± 7.55	1358.23 ± 355.12
dcc	162.70 ± 42.98	82.52 ± 4.55	<u> </u>
dcc-t	162.64 ± 42.86	82.54 ± 4.56	_
go-garch	163.59 ± 52.65	82.43 ± 4.85	_
iwp	$164.09 \pm 26.47^*$ (1.71e-8)	81.42 ± 4.12 (8.15e-8)	_
n-iwp	164.49 ± 19.82 * (1.13e-9)	82.10 ± 3.72 (1.62e-3)	<u> </u>
n-wp	$oxed{165.98 \pm 23.23^* \ (1.03 ext{e-}6)}$	$82.69 \pm 4.15 \ ext{(5.11e-2)}$	_
f10-iwp	162.28 ± 22.91 * (4.67e-11)	$77.76 \pm 3.94 $ (5.99e-17)	1275.27 ± 264.48 (4.14e-18)
f10-wp	165.39 ± 30.89 * (2.31e-5)	81.12 ± 3.59 (2.62e-10)	$1423.31 \pm 132.19^* \ (1.48$ e-13)
f30-iwp	_	_	1047.73 ± 1436.16 (3.90e-18)
f30-wp	_	_	$1438.40 \pm 130.14^*~(ext{1.54e-15})$

References

J. Hensman, A. G. de G. Matthews, and Z. Ghahramani. Scalable variational Gaussian process classification. In AISTATS, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.

A. G. de G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá, Z. Ghahramani, and J. Hensman. GPflow: A Gaussian process library using TensorFlow. Journal of Machine Learning Research, 18(40):1-6, 2017.

T. Salimans and D. A. Knowles. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4):837–882, 2013.

A. G. Wilson and Z. Ghahramani. Generalised Wishart processes. In UAI, 2010.