МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по индивидуальному домашнему заданию «Перевод коротких фраз нейронной сетью» по дисциплине «Искусственные нейронные сети»

Студент гр. 8382	 Облизанов А.Д
Преподаватель	 Жангиров Т.Р.

Санкт-Петербург

2021

Цель.

Изучение применения искусственных нейронных сетей в области анализа текста и перевода предложений с одного языка на другой.

Задание.

Требования к модели:

- Модель должна быть разработана на языке Python с использованием Keras API
- Исходный код проекта должен быть быть в формате РЕР8
- В исходном коде должны быть поясняющие комментарии
- Модель не должна быть избыточной (должен соблюдаться баланс между размером сети [кол-во слоев и нейронов] и качеством выдаваемого результата)
- Обучение модели должно быть стабильно (для предложенной архитектуры ИНС обучение должно приводить к примерно одним и тем же результатом, то есть не должно быть такого, что при обучении 10 сетей удовлетворительный результат дают только 5 из них)
- Плюсом будет анализ с использованием callback'a TensorBoard
- Плюсом будет разработка собственных callback'ов
- Плюсом будет создание модели из ансамбля ИНС

Для изучения был выбран составлен датасет на основе сайта Taboeba (https://tatoeba.org/ru/downloads) — открытый источник переводов фраз с различных языков. Необходимо реализовать модель, осуществляющую перевод английских коротких фраз (не более 8 слов) на немецкий.

Выполнение работы.

Работа выполнялась на базе операционной системы Windows 10 в среде разработки РуСharm и в онлайн сервисе Google Colab.

Описание датасета и решаемой задачи

С ресурса Тавоева был скачан файл с фразами на английском и немецком языках с помощью инструмента на сайте, представленного на рис. 1.

Загрузки

Рисунок 1 – Интерфейс загрузки наборов фраз

В файле содержалось более 150000 фраз разной длины и сложности. Было принято решение скорректировать датасет: были убраны фразы, содержащие более 8 слов, а также фразы с некоторыми именами. В результате был получен датасет, состоящий из 80000 фраз. Пример фрагмента датасета представлен на рис. 2.

```
36223 Nothing bad happened. Nichts Schlimmes ist passiert.
36224 Nothing can stop him. Nichts kann ihn aufhalten.
36225 Now listen carefully.
                                 Jetzt hör gut zu.
36226 Now listen carefully.
                                  Jetzt hören Sie gut zu.
36227 Now listen carefully. Jetzt hört gut zu.
36228 Now we're in trouble. Jetzt stecken wir in Schwierigkeiten.
36229 OK, I think I get it. Okay, ich denke, ich verstehe das.
36230 Oil is running short. Das Öl ist aufgebraucht.
36231 One of them is lying.
                                  Einer von ihnen lügt.
36232 Oops, I did it again.
                                 O nein! Ich hab's schon wieder getan!
36233 Open your mouth wide. Den Mund bitte weit öffnen.
36234 Open your mouth wide. Mach deinen Mund weit auf.
36235 Our dog seldom bites. Unser Hund beißt nur selten. 36236 Our marriage is over. Unsere Ehe endete.
36237 Our store isn't open. Unser Geschäft ist nicht geöffnet.
36238 Our train is delayed. Unser Zug hat Verspätung.
36239 People don't do that. Man macht das nicht.
36240 People don't do that. Die Leute machen das nicht.
36241 People here love you. Die Leute hier lieben dich.
36242 People listen to Tom. Die Leute hören auf Tom.
36243 People make mistakes. Menschen machen Fehler.
36244 Perhaps he will come. Vielleicht wird er kommen.
```

Рисунок 2 – Фрагмент датасета

Из фрагмента можно увидеть, что одни и те же фразы переводятся по-разному: это неизбежно, потому что перевод не является однозначным отображением.

Задача нейронной сети — обеспечить в большинстве случаев перевод пользовательских простых фраз на уровне, близком к уровню перевода онлайн-сервисами, без учета знаков препинания и регистра.

Обработка данных

Подготовка данных для модели нейронной сети состоит из нескольких этапов:

• Форматирование текста: перевод всех буквенных символов в нижний регистр и удаление знаков препинания

С помощью такой операции можно сократить число уникальных слов (последовательностей символов), а также исключить влияние знаков препинания, которые пишутся слитно с некоторыми словами. Данная операций необходима для составления «словаря» слов на английском и немецком языках.

Листинг:

```
vocab[:, 0] = [s.translate(str.maketrans('', '', string.punctuation)) for s in
vocab[:, 0]]
vocab[:, 1] = [s.translate(str.maketrans('', '', string.punctuation)) for s in
vocab[:, 1]]

for i in range(len(vocab)):
    vocab[i, 0] = vocab[i, 0].lower()
    vocab[i, 1] = vocab[i, 1].lower()
```

• Превращение фраз в токены, представляющих собой массивы индексов.

Сеть работает с числами, а не со словами, поэтому используется встроенный в Keras объект Tokenizer. С помощью данного объекта производится индексация каждого уникального слова во входных данных и в переводе. Далее каждая фраза трансформируется в массив из 8 индексов слов в том же порядке, в каком слова расположены в этой фразе. Если фраза содержит менее 8 слов, то в конце массив заполнен нулями. Листинг настройки объекта Tokenizer для входных данных приведен в листинге ниже.

Листинг:

```
data_tokenizer = Tokenizer()
data_tokenizer.fit_on_texts(vocab[:, 0])
data_vsize = len(data_tokenizer.word_index) + 1
data_tsize = 8
...
def encode_sequences(tokenizer, length, lines):
    seq = tokenizer.texts_to_sequences(lines)
    seq = pad_sequences(seq, maxlen=length, padding='post')
    return seq
...
trainX = encode_sequences(data_tokenizer, data_tsize, train[:, 0])
trainY = encode_sequences(label_tokenizer, label_tsize, train[:, 1])
```

Пример изначальной фразы и ее токена:

- Фраза: how long is it
- Tokeh: [47 182 4 8 0 0 0 0]

Создание модели

Так как перевод не является отображением каждого слова из один язык в другой, а подразумевает учет контекста, было решено использовать рекуррентную модель нейронной сети.

Итоговая модель нейронной сети представлена в табл. 1.

Таблица 1 – Структура модели

Слой	Особенности	Выход	Число парам.
Embedding	Индекс 0 не используется в словаре	(None, 8, 512)	3618816
	(mask_zero=True)		
LSTM	Число ячеек – 512	(None, 512)	2099200
Dropout	Коэффициент – 0.3	(None, 512)	0
RepeatVector	Число повторений – 8	(None, 8, 512)	0
LSTM	Возвращает всю последовательность	(None, 8, 512)	2099200
	(return_sequences=True)		
Dropout	Коэффициент – 0.3	(None, 8, 512)	0
Dense	8 нейр., функция активации – softmax	(None, 8, 12159)	6237567

Изменения, которые были внесены в модель при исследовании:

- Были добавлены слои Dropout, так как модель была склонна к быстрому переобучению.
- Число ячеек слоев LSTM варьировалось от 300 до 700, в результате было выбрано число 512, как обеспечивающее лучшее сочетание скорости обучения (вычислительного), точности результата и отсутствию переобучения.

Параметры компиляции модели:

- Был выбран оптимизатор RMSProp с установленной скоростью обучения 0.001. В данной задаче оптимизатор Adam показывал более низкую скорость обучения и приводил к переобучению при большем значении потерь.
- Функция потерь: sparse_categorical_crossentropy. Для задачи обработки текста с большим количеством уникальных слов подходит

лучше, чем функция категориальной кросс-энтропии, так как учитывает именно целевой индекс слова, который должна рассчитать модель.

$$CCE(p,t) = -\sum_{c=1}^{C} t_{o,c} \log(p_{o,c})$$

Параметры обучения модели:

- Число эпох 30
- Размер батча 256

Были испробованы разные размеры батча: более низкие не позволяли точно контролировать точку переобучения, а более высокие давали более высокое значение ошибок модели

- Данные для валидации: 20% от тренировочного набора
- Callbacks
 - о TensorBoard для сбора статистики обучения модели
 - EarlyStopping для остановки модели в случае переобучения (параметр для слежения – потери на данных для валидации, ожидание – 3 эпохи)
 - ModelCheckpoint для сохранения лучшей модели (параметр для выбора – потери на данных для валидации)
 - ReduceLROnPlateau для снижения скорости обучения, когда потери на данных для валидации перестают уменьшаться.
 Ожидание 2 эпохи, коэффициент (factor) 0.1.
 - о Собственный Callback TranslateEveryFive, который осуществляет тестирование на пользовательских данных раз в 5 эпох.

```
class TranslateEveryFive(keras.callbacks.Callback):
    def __init__(self):
        super(MyCustomCallback, self).__init__()

def on_epoch_end(self, epoch, logs=None):
```

```
if epoch % 5 == 0:
    translate(self.model, custom data, custom text, epoch + 1)
```

Результаты обучения и тестирование.

График потерь взят из веб-приложения TensorBoard и приведен на рис. 3.

Рисунок 3 – График потерь

Стоит отметить, что точность модели определяется по корректному предсказанию всего предложения (то есть, что модель перевела фразу в точности так, как это указано в датасете). Данный показатель не является решающим, потому что одно и то же слово может иметь синонимы, и даже в датасете есть одинаковые фразы на английском языке, которые по-разному переводятся на немецкий.

График точности также из TensorBoard приведен на рис. 4.

Рисунок 4 – График точности

После обучения модель на тестовых данных достигла следующих показателей:

• Точность: 74.2%

• Потери: 1.637

На рис. 5 приведен график ошибок относительно итераций (батчей).

Рисунок 5 – График ошибок относительно итераций (батчей)

Гистограммы смещений (bias), ядра одного из слоев LSTM (kernel_0) и рекуррентного ядра слоя LSTM (reccurent_kernel_0) представлены на рис. 6.

Рисунок 6 – Гистограммы для слоя LSTM

Из гистограмм видно, что в начале обучения графики имели выраженные пики, которые с ходом обучения разглаживались. У смещений есть два выраженных интервала: [-0.1,0.3], [0.8,1.1]. Распределение весов практически симметрично относительно 0 на последних эпохах. Для другого LSTM слоя графики схожи.

Гистограммы смещений (bias_0) и весов (kernel_0) слоя Dense представлены на рис. 7.

Рисунок 7 – Гистограммы слоя Dense

Из гистограмм видно, что слои обучаются уже к 10 эпохе, а дальнейшие изменения несущественны.

Для обратного преобразования выхода нейронной сети (токена размером 8) была создана функция get word, листинг которой приведен ниже:

```
def get_word(n, tokenizer):
    if n == 0:
        return ""
    for word, index in tokenizer.word_index.items():
        if index == n:
            return word
    return ""
```

В табл. 2 приведены пользовательские фразы, их перевод с помощью переводчика Google и с помощью нейронной сети (после обучения).

Таблица 2 – Сравнение переводов

Оригинал	Google-переводчик	Предсказание	Комментарий	
i want to eat an	Ich möchte einen	ich möchte einen	Полное соответствие	
apple	Apfel	apfel		
my name is tom mein Name ist Tom		mein name ist tom	Полное соответствие	
how old are you	wie alt bist du	wie alt sind sie	Нейронная сеть применила	
			местоимение «вы», а	
			переводчик – «ты».	
where is the	Wo ist die Toilette	wo ist das toilette	Полное соответствие	
bathroom				

i really like you	Ich mag dich wirklich	ich	mag	dich	Полное соответствие
		wirk	lich		
life is so hard	das Leben ist so hart	das	leben	ist so	Полное соответствие
		hart			

Как видно из пользовательских фраз, нейронная сеть отлично переводит простые фразы на немецкий язык.

В табл. 3 приведены переводы нейронной сети во время обучения, полученные с помощью TranslateEveryFive.

Таблица 3 – Переводы во время обучения (Callback)

Эпоха	i want to eat	my name is	how old are	where is the	i really like	life is so hard
	an apple	tom	you	bathroom	you	
1	ich habe nicht	sie ist das	er ist es nicht	sie ist ist	ich habe nicht	er ist es nicht
	nicht				nicht	
6	ich muss	mein vater ist	wie sind sind	wo ist dein	ich habe dich	das ist ist
	einen einen	tom	sie		nicht	nicht
11	ich möchte	mein hund ist	wie alt sind	wo ist die	ich habe dich	das leben ist
	ein paar	tom	sie		dich	nicht
16	ich möchte	mein name ist	wie alt sind	wo ist das toi-	ich mag dich	das leben ist
	einen apfel	tom	sie	lette	dich dich	nicht schwer
21	ich möchte	mein vater ist	wie alt sind	wo ist das toi-	ich mag dich	das leben ist
	einen apfel	tom	sie	lette	wirklich	so schwer
26	ich möchte	mein name ist	wie alt sind	wo ist das toi-	ich mag dich	das leben ist
	einen apfel	tom	sie	lette	wirklich	so schwer

Из таблицы видно, что на первых эпохах нейронная сеть выучила мало слов, которые повторяются почти в каждой из фраз. Далее сеть обучилась выявлять большее число слов и к 26-й эпохе практически идеально переводить простые фразы. Итоговой эпохой является 30-я, но дальнейшие изменения не повлияли на выход нейронной сети.

При нескольких прогонах сеть показывает себя крайне стабильно, отличия в переводе наблюдаются в некоторых словах: иногда используются синонимы, иногда имеют место ошибки, но в целом модель всегда достигает точности около 73%.

Результаты тестирования модели на более сложных фразах приведены в табл. 4.

Таблица 4 – Сравнение переводов (сложные фразы)

Оригинал	Google-переводчик	Предсказание	Комментарий	
i don't want to use this	Ich möchte dieses Tool	ich möchte das für	Не было переведено	
tool	nicht verwend	слово «tool»		
do you know how to	Weißt du, wie man	weißt du dass man hier	Фраза искажена, но	
get there	dort hinkommt		смысл улавливается	
this film is terrible	Dieser Film ist	dieser film ist	Предсказание верно,	
	schrecklich	furchtbar	слова-синонимы	
i will borrow money to	Ich werde Geld leihen	ich werde mir mein	Слова «money»,	
pay	um zu bezahlen		«рау» не переведены	

Из результатов видно, что нейронная сеть не смогла корректно перевести все фразы: некоторые слова оказались ей незнакомыми, а также возникли сложности с построением более длинных фраз.

Основные проблемы, которые были решены:

- Быстрое переобучение модели было решено добавлением слоев Dropout и подбором размера батча
- Низкая точность не оказалась существенной проблемой, так как при изучении датасета было выявлено, что используются слова-синонимы, и в целом перевод можно считать неточной задачей.

Проблемы, которые не были в полной мере решены:

- Небольшой словарный запас, который обусловлен простым датасетом. Для большего разнообразия слов требуется намного более объемный датасет, так как желательно, чтобы слово фигурировало в нескольких фразах.
- Не учитывается пунктуация: ее ввод сильно ухудшал показатели модели и было решено от нее избавляться.

Из этого можно определить следующие рекомендации для развития модели:

- Увеличение датасета для большего словарного запаса нейронной сети
- Использование структуры автоэнкодера для определения моделью более сложных конструкций
- Учет пунктуации для перевода более сложных фраз
- Применение обычных методов перевода (например, словарей слов) для проверки корректности перевода модели и корректировки.

Выводы.

В ходе выполнения индивидуального задания было изучено применение нейронных сетей для перевода фраз с одного языка на другой. Была спроектирована и обучена модель, которая осуществляет перевод коротких простых фраз с английского языка на немецкий, проведен анализ результатов и тестирование на пользовательских фразах. В результате было сделан вывод, что рекуррентная модель способна корректно переводить простые фразы, но для перевода более сложных или длинных фраз требуется большое количество входных данных и усложненная структура модели.

ПРИЛОЖЕНИЕ А

Исходный код программы. Файл idz.py

```
import string
import datetime
import numpy as np
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense, LSTM, Embedding, RepeatVector, Dropout
from keras.preprocessing.text import Tokenizer
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau,
TensorBoard
from keras.preprocessing.sequence import pad_sequences
from keras.models import load_model
from keras import optimizers
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
def read_text(filename):
    with open(filename, mode='rt', encoding='utf-8') as file:
        text = file.read()
        phrases = text.strip().split('\n')
        return [phrase.split('\t') for phrase in phrases]
print("Loading file...")
data = read_text("vocab.txt")
vocab = np.array(data)
vocab = vocab[:60000, :]
print("Dictionary size:", vocab.shape)
print("Formatting text...")
vocab[:, 0] = [s.translate(str.maketrans('', '', string.punctuation)) for s in
vocab[:, 0]]
vocab[:, 1] = [s.translate(str.maketrans('', '', string.punctuation)) for s in
vocab[:, 1]]
for i in range(len(vocab)):
    vocab[i, 0] = vocab[i, 0].lower()
    vocab[i, 1] = vocab[i, 1].lower()
print("Tokenize...")
```

```
data_tokenizer = Tokenizer()
data_tokenizer.fit_on_texts(vocab[:, 0])
data_vsize = len(data_tokenizer.word_index) + 1
data_tsize = 8
label_tokenizer = Tokenizer()
label_tokenizer.fit_on_texts(vocab[:, 1])
label_vsize = len(label_tokenizer.word_index) + 1
label tsize = 8
def encode sequences(tokenizer, length, lines):
    seq = tokenizer.texts_to_sequences(lines)
    seq = pad_sequences(seq, maxlen=length, padding='post')
    return seq
def get_word(n, tokenizer):
    if n == 0:
        return ""
    for word, index in tokenizer.word_index.items():
        if index == n:
            return word
    return ""
def translate(model, custom_text, custom_answers, epoch = -1):
  custom_data = encode_sequences(data_tokenizer, data_tsize, custom_text)
  prediction = model.predict_classes(custom_data)
  if (epoch > 0):
    print("Epoch" + str(epoch))
  for j, pred in enumerate(prediction):
    print("Original:")
    print(custom_text[j])
    print("Google translate:")
    print(custom_answers[j])
    print("Prediction:")
    output = ""
    for i in range(len(pred)):
        if pred[i] != 0:
            output += str(get_word(pred[i], label_tokenizer)) + " "
        else:
            break
    print(output)
    print()
custom_text = ["i don't want to use this tool", "do you know how to get there",
```

```
"this film is terrible", "i will borrow money to pay", "life is so
hard"]
custom_answers = ["Ich möchte dieses Tool nicht verwende", "Weißt du, wie man
dort hinkommt",
              "Dieser Film ist schrecklich", "Ich werde Geld leihen um zu
bezahlen", "das Leben ist so hart"]
train, test = train_test_split(vocab, test_size=0.2, random_state=12)
trainX = encode_sequences(data_tokenizer, data_tsize, train[:, 0])
trainY = encode sequences(label tokenizer, label tsize, train[:, 1])
testX = encode_sequences(data_tokenizer, data_tsize, test[:, 0])
testY = encode_sequences(label_tokenizer, label_tsize, test[:, 1])
def make_model(in_vocab, out_vocab, in_timesteps, out_timesteps, n):
    model = Sequential()
    model.add(Embedding(in_vocab, n, input_length=in_timesteps, mask_zero=True))
    model.add(LSTM(n))
    model.add(Dropout(0.3))
    model.add(RepeatVector(out_timesteps))
    model.add(LSTM(n, return sequences=True))
    model.add(Dropout(0.3))
    model.add(Dense(out_vocab, activation='softmax'))
    model.compile(optimizer=optimizers.RMSprop(learning_rate=0.001),
loss='sparse_categorical_crossentropy', metrics=['accuracy'])
    model.summary()
    return model
class TranslateEveryFive(keras.callbacks.Callback):
    def __init__(self):
        super(TranslateEveryFive, self).__init__()
    def on_epoch_end(self, epoch, logs=None):
        if epoch % 5 == 0:
            translate(self.model, custom text, custom answers, epoch + 1)
print("Data vocab size / token size:", data_vsize, data_tsize)
print("Label vocab size / token size:", label_vsize, label_tsize)
print("Input 0 if you want to load model or anything to fit model")
s = input()
if s is not "0":
  print("Initializing model...")
  model = make_model(data_vsize, label_vsize, data_tsize, label_tsize, 512)
```

```
log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
  num_epochs = 30
  callbacks_list = [
    EarlyStopping(
      monitor='val_loss',
      patience=3,
    ),
   ModelCheckpoint(
      filepath='vocab-model.h5',
      monitor='val_loss',
      save_best_only=True,
    ),
    ReduceLROnPlateau(
      monitor='val_loss',
      factor=0.1,
      patience=2,
    ),
    TensorBoard(log_dir=log_dir, histogram_freq=1, embeddings_freq=1),
    TranslateEveryFive()
  1
  print("Training...")
 history = model.fit(trainX, trainY.reshape(trainY.shape[0], trainY.shape[1],
1),
                      epochs=num_epochs, batch_size=256,
                      validation_split=0.2, callbacks=callbacks_list, verbose=1)
  model.evaluate(testX, testY.reshape(testY.shape[0], testY.shape[1], 1))
  plt.plot(history.history['loss'])
  plt.plot(history.history['val_loss'])
  plt.legend(['train', 'validation'])
  plt.show()
model = load_model('vocab-model.h5')
translate(model, custom_text, custom_answers)
```