Regulární množiny, regulární výrazy

ZPRACUJE: Mystik

Obsah

- 1 Způsoby prezentace regulárních jazyků
 - 1.1 Regulární množiny
 - 1.2 Regulární výrazy (RV)
 - 1.3 Kleeneho algebra
 - 1.4 Regulární přechodový graf
- 2 Rovnice nad regulárními výrazy
- 3 Algoritmus převodu RV na rozšířený KA

Způsoby prezentace regulárních jazyků

- Všechny tyto způsoby zápisu jsou ekvivalentní
- Všechny umožňují zapsat jazyky typu 3 Chomského hierarchie

Pozitivní iterace a+

$$a+=(a^*-\varepsilon)$$

	Alternativa	Konkatenace	Iterace	Pozitvní iterace	-	Neutr. prvek konkatenace
Regulární množiny	$P \cup Q$	$P \cdot Q$	P^*	P^+	Ø	{8}
Regulární výrazy	p + q	pq	<i>p</i> *	p^+	Ø	ε
Kleeneho algebra	p + q	pq	p *	p ⁺	0	1

Regulární množiny

Regulární množinu nad abecedou Σ definujeme takto:

- 1) Prázdná množina 🛭 je regulární množina
- 2) Množina obsahující pouze prázdný řetezec {ε} je regulární množina
- 3) Množina $\{a\}$ po všechna $a\in \Sigma$ je regulární množina
- 4) Jsou-li P a Q regulární množiny pak také jejich sjednocení ($P \cup Q$), konkatenace ($P \cdot Q$) a iterace ($P \cdot Q$) isou regulární množiny
- 5) Regulárními množinami jsou pouze množiny, které lze získat aplikací 1 až 4
- Třída regulárních množin je tedy nejmenší třída jazyků, která obsahuje ∅, ε, {a} pro všechny symboly a a je uzavřena vzhledem k operacím sjednoceni, součinu a iterace.

Regulární výrazy (RV)

představují obvyklou notaci regulárních množin

Regulární výraz nad abecedou Σ definujeme takto:

- 1) 🛮 je regulární výraz označující regulární množinu 🖟
- 2) ε je regulární výraz označující regulární množinu {ε}
- 3) a je regulární výraz označující regulární množinu $\{a\}$ po všechna $a \in \Sigma$
- 4) Jsou-li p a q regulární výrazy označující regulární množiny P a Q pak
 - (p + q) je regulární výraz označující regulární množinu $P \cup Q$
 - (pq) je regulární výraz označující regulární množinu $P \cdot Q$
 - (p^*) je regulární výraz označující regulární množinu P

1 z 3 29.5.2011 17:25

5) Regulárními výrazy jsou právě ty výrazy, které lze získat aplikací 1 až 4

Kleeneho algebra

algebra se sadou axiomů pro řešení rovnic nad regulárními výrazy

Algebra
$$(\Sigma, +, 0, \cdot, 1, *)$$

- + operace alternativy (asociativní, komutativní, idempotentní)
- 0 neutrální prvek operace alternativy, anihilátor operace konkatenace
- . operace konkatenace (asociativní, distributivní nad alternativou)
- 1 neutrální prvek operace konkatenace
- * operace iterace

Regulární přechodový graf

Regulární přechodový graf je zobecněný KA, který obsahuje množinu počátečních stavů a regulární výrazy na hranách. Každý reg. přechodový graf je možné převést na reg. přechodový graf s jediným přechodem na kterém je hledaný RV.

Rovnice nad regulárními výrazy

Rovnice jejichž složky jsou koeficienty a neznámé reprezentující dané a hledané regulární výrazy

- při řešení se využívají axiomy Kleeneho algebry a klasické postupy řešení soustav rovnic
- Užitečný vztah:

$$X = aX + b \Longrightarrow X = a*b$$
Důkaz:
$$a*b = a(a*b) + b$$

$$a*b = a+b+b$$

$$a*b = (a++\epsilon)b$$

$$a*b = (a*b)$$

Standardní tvar soustavy rovnic nad RV

soustava rovnic nar RV je ve standardním tvaru vzhledem k neznámým $\Delta=\{X_1,X_2,\dots,X_n\}$ má-li tvar:

$$\bigwedge_{1 \le i \le n} X_i = \alpha_{i0} + \alpha_{i1} X_1 + \alpha_{i2} X_2 + \ldots + \alpha_{in} X_n$$

• je-li soustava rovnic ve standardním tvaru pak existuje její minimální pevný bod (řešení) a alg. jeho nalazení

Algoritmus převodu RV na rozšířený KA

- pro výraz ε zkonstrujeme ε-přechod
- pro výraz x zkonstruujeme přechod se symbolem x
- pro výraz rq sjednotíme koncový stav r a počátečním stavem q
- pro výraz r + q zkonstruujeme z počátečního stavu ε-přechody do počátačních stavů r a q a ε-přechody z koncových stavů
 r a q do koncového stavu
- pro výraz r* zkonstruujeme ε-přechod mezi počátečním a koncovým stavem, ε-přechod z počátečního stavu do počátečního stavu r, ε-přechod z koncového stavu r do koncového stavu a ε-přechod z koncového stavu r do počátečního stavu r

2 z 3 29.5.2011 17:25

EDIT: v obrázku je prehodené r+q a r*

Kategorie: Státnice 2011 | Teoretická informatika

Stránka byla naposledy editována 28. 5. 2011 v 10:40.

3 z 3 29.5.2011 17:25