Feuille de TD N°3

Exercice 1. On lance une pièce à plusieurs reprises jusqu'à obtenir face. Soit X le nombre de lancers requis.

- 1. Trouver l'entropie $H_2(X)$ en bits.
- 2. Trouver une séquence de questions binaires (oui ou non) de la forme "X est-il contenu dans l'ensemble S?" qui permettrait de déterminer les valeurs de X. Comparer le nombre moyen de questions à $H_2(X)$.

Exercice 2. Soit l'épreuve aléatoire "Lancer deux dés non pipés", et les variables aléatoires suivantes :

- P_1 qui vaut 0 si le nombre tiré (dé 1) est pair, 1 s'il est impair.
- X_1 qui représente le nombre tiré (dé 1).
- X_{12} qui représente le couple de nombres tirés (dé 1, dé 2).
- Σ qui représente la somme des nombres tirés (dé 1+ dé 2).

Calculer

- 1. La quantité d'information associée aux évènements : $\{X_1=4\}$; $\{P_1=0\}$; $\{\Sigma=6\}$; $\{X_{12}=(4,2)\}$; $\{X_{12}=(4,2)\mid \Sigma=6\}$.
- 2. Les entropies de X_1 , P_1 , X_{12} et Σ .
- 3. L'information mutuelle $I(X_1, P_1)$.

Exercice 3. Soient X et Y deux variables aléatoires à valeurs dans $\{1,2,3\}$ dont la distribution jointe p(x,y) est donnée par : p(1,1) = p(2,2) = p(3,3) = p(1,3) = 0, p(1,2) = p(2,1) = p(2,3) = 1/4 et p(3,1) = p(3,2) = 1/8. Calculer P(X), P(X), P(X) et P(X) et P(X).

Exercice 4.

- 1. Calculer H(X) où $X \sim B(p)$.
- 2. Calculer $\operatorname{Ent}(f)$ où f est la densité de $X \sim \mathcal{E}(\lambda)$.
- 3. Calculer $\operatorname{Ent}(f)$ où f est la densité de $X \sim \mathcal{N}(m, \sigma^2)$.

Exercice 5. (Inégalité de Pinsker) Soient P et Q deux mesures de probabilité sur (Ω, \mathcal{A}) . La distance en variation totale entre P et Q est définie par

$$TV(P,Q) := \sup_{A \in \mathcal{A}} |P(A) - Q(A)|.$$

Le but de cet exercice est de montrer que si $Q \ll P$ alors

$$TV(P,Q)^2 \le \frac{1}{2}D(Q \mid\mid P).$$

1. Soit λ une mesure t.q $P \ll \lambda$ et $Q \ll \lambda$. On note $p(x) = dP/d\lambda$ et $q(x) = dQ/d\lambda$. Montrer que

$$TV(P,Q) = P(A^*) - Q(A^*) = \frac{1}{2} \int |p(x) - q(x)| d\lambda(x),$$

où $A^* = \{x : p(x) \ge q(x)\}.$

2. Soit Y t.q Q = YP, $B^* = \{Y \ge 1\}$ et $Z = \mathbf{1}_{\{B^*\}}$. Montrer que

$$TV(P,Q) = \mathbb{E}_Q Z - \mathbb{E} Z.$$

- 3. Montrer que $\Lambda_{Z-\mathbb{E}Z}(\alpha) \leq \frac{\alpha^2}{8}$. (Penser à Hoeffding).
- 4. Montrer que pour tout $\alpha > 0$

$$TV(P,Q) \le \frac{\frac{\alpha^2}{8} + D(P \mid\mid Q)}{\alpha}$$

5. En déduire l'inégalité de Pinsker

$$TV(P,Q)^2 \le \frac{1}{2}D(Q \mid\mid P).$$

Exercice 6. Soit P une mesure de probabilité sur \mathcal{X} . Montrer que la fonction qui à toute mesure de probabilité Q sur \mathcal{X} associe $D(P \mid\mid Q)$ est convexe.

Exercice 7. (Inégalité de Han) Soient X_1, \ldots, X_n des variables aléatoires discrètes. Montrer que

$$H(X_1,\ldots,X_n) \leq \frac{1}{n} \sum_{i=1}^n H(X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_n).$$

Exercice 8. Let but de cet exercice est de montrer que si Z est une variable aléatoire positive alors $Var(Z) \leq Ent(Z^2)$.

1. Montrer que

$$\phi(p) = \frac{\mathbb{E}Z^2 - (\mathbb{E}Z^p)^{\frac{2}{p}}}{\frac{1}{p} - \frac{1}{2}}$$

est croissante sur [1, 2).

- 2. Montrer que $\lim_{p\to 2} \phi(p) = 2\operatorname{Ent}(Z^2)$.
- 3. En déduire que $Var(Z) \leq Ent(Z^2)$.

Exercice 9. Soit $A, B \subset \mathbb{R}$ deux ensembles compacts. On définit

$$A + B = \{x + y : x \in A, y \in B\}.$$

Montrer que

$$Vol(A + B) \ge Vol(A) + Vol(B).$$

Indication : Montrer qu'il suffit de considérer $A \subset (-\infty, 0]$ et $B \subset [0, \infty)$.

Exercice 10. (Inégalité de Prékopa-Leindler) Soit $\lambda \in (0,1)$, et $f,g,h=\mathbb{R}^n \to [0,\infty)$ vérifiant pour tout $x,y\in\mathbb{R}^n$

$$h((1 - \lambda)x + \lambda y) \ge f(x)^{1-\lambda}g(y)^{\lambda}.$$

Le but de cet exercice est de montrer que

$$\int_{\mathbb{R}^n} h(x)dx \ge \left(\int_{\mathbb{R}^n} f(x)dx\right)^{1-\lambda} \left(\int_{\mathbb{R}^n} g(x)dx\right)^{\lambda}.$$

- 1. Justifier qu'il suffit de montrer l'inégalité quand sup $f(x) = \sup g(x) = 1$.
- 2. On suppose n=1. Justifier que

$$\int_{\mathbb{R}} f(x)dx = \int_0^1 \text{Vol}(\{x: f(x) \ge t\}).$$

3. Montrer que

$$(1 - \lambda)\{x : f(x) > t\} + \lambda\{x : g(x) > t\} \subset \{x : h(x) > t\}.$$

4. En utilisant l'exercice précédent, montrer que

$$\int_{\mathbb{R}} h(x)dx \ge (1 - \lambda) \int_{\mathbb{R}} f(x)dx + \lambda \int_{\mathbb{R}} g(x)dx.$$

5. En déduire que

$$\int_{\mathbb{R}} h(x)dx \ge \left(\int_{\mathbb{R}} f(x)dx\right)^{1-\lambda} \left(\int_{\mathbb{R}} g(x)dx\right)^{\lambda}.$$

6. On suppose que l'inégalité de Prékopa-Leindler est vérifiée pour toutes les dimensions inférieure ou égale à n-1. Montrer cette inégalité en dimension n.

Exercice 11. (Inégalité de Brunn-Minkowski) Le but de cet exercice est de montrer que pour tout $A, B \subset \mathbb{R}^n$ compacts et pour tout $\lambda \in (0, 1)$, on a

$$\operatorname{Vol}((1-\lambda)A + \lambda B)^{\frac{1}{n}} \ge (1-\lambda)\operatorname{Vol}(A)^{\frac{1}{n}} + \lambda \operatorname{Vol}(B)^{\frac{1}{n}}.$$
 (1)

1. En utilisant l'inégalité de Prékopa-Leindler, montrer que

$$Vol((1 - \lambda)A + \lambda B) \ge Vol(A)^{1-\lambda} + Vol(B)^{\lambda}.$$

2. Montrer que pour avoir (1), il suffit de montrer que pour tout $A, B \subset \mathbb{R}^n$ compacts

$$\operatorname{Vol}(A+B)^{\frac{1}{n}} \ge \operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}.$$

- 3. Justifier qu'on peut supposer Vol(A) et Vol(B) strictement positifs.
- 4. On pose $A' = \operatorname{Vol}(A)^{-\frac{1}{n}}A$ et $B' = \operatorname{Vol}(B)^{-\frac{1}{n}}B$. Montrer que pour tout $\lambda \in (0,1)$ on a

$$Vol((1 - \lambda)A' + \lambda B') \ge 1.$$

5. En utilisant l'inégalité ci-dessous avec un λ bien choisi, montrer l'inégalité de Brunn-Minkowski.