SECOND SEMESTER 2022-2023 Course Handout Part II

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CS F469

Course Title : INFORMATION RETREIVAL

Instructor-in-Charge : Dr. Aruna Malapati (arunam@hyderabad.bits-pilani.ac.in)

1. Scope and Objectives

This course studies the theory, design, and implementation of text-based information systems. The Information Retrieval core components of the course include statistical characteristics of text, representation of information needs and documents, several important retrieval models (Boolean, vector space, probabilistic, inference net, language modeling), collaborative filtering, Language translation and Multimedia information retrieval.

The student should be able to

- ➤ Design and implement Boolean and Vector space models for searching text documents.
- ➤ Analyze the effect of different scoring and ranking schemes for text search engines.
- ➤ Apply Google's Page rank algorithm given a web graph.
- ➤ Implement recommender systems using Singular Value, CUR Decomposition and latent factor models
- Compare the text retrieval techniques with Image, Video and Audio retrieval.
- **2. Pre requisites:** Programming in Java or C however programming in python will be an advantage , and knowledge of core data structures and algorithms.

3.a. Text Book

• **T1**. C. D. Manning, P. Raghavan and H. Schutze. Introduction to Information Retrieval, Cambridge University Press, 2008. The entire book is available at http://nlp.stanford.edu/IR-book/

3.b. Reference Books

- **R1:** Modern Information Retrieval, Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Addison-Wesley, 2000. http://people.ischool.berkeley.edu/~hearst/irbook/
- **R2:** Multimedia Information Retrieval by Stefan M. Rüger Morgan & Claypool Publisher series 2010.
- **R3** Information Retrieval: Implementing and Evaluating Search Engines by S. Buttcher, C. Clarke and G. Cormack, MIT Press, 2010.
- **R4**: Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman, Cambridge University Press

Lecture No	Learning Outcomes	Topics to be covered	Chapter in the Text Book
1	• List the course objectives	Introduction to the course	T1 Ch1
2-4	and define the vocabulary used in IR	Inverted Index constructions and merge algorithm, IR Pipeline, Skip Lists, Phrase queries	T1 Ch 1 & 2,R1 Ch2 section 5
5	 Evaluate and apply wild card queries and spelling correction 	Dictionary data structures, Wildcard queries	T1 Ch 3
6	 Evaluate and apply different spelling correction techniques 	Edit distances, Soundex algorithm, N-gram overlap, Context-sensitive correction	T1 Ch 3
7-9	• Apply tf-idf and cosine score to score documents against a query	Jaccard score, TF-IDF and its variants for ranked retrieval	T1 Ch 6
10-12	• Formulate Google's Page Ranks algorithm	Page Rank, Teleportation, Topic Specific Page rank, Spam, Hub and authorities (HITS), Web spam, web farms	T1 Ch 21
13-18	• Formulate the search as near duplicate detection	Latent Semantic Analysis	T1 Ch 18 Topic 18.4
		Locality Sensitive Hashing	R4 Ch 3
19-21	• Formulate IR problem using Probabilistic approach and Near duplicates approach	Probabilistic model for IR	T1 Ch 11
22	• Compare different metrics for evaluating search engines	Precision, Accuracy, Recall, Mean Average Precision, Precision and Recall in ranked retrieval	T1 Ch 8
23-28	• Compare and evaluate models for recommender systems	Recommender systems problem formulation and its solution using collaborative filtering, content-based filtering, Singular Value Decomposition, CUR Decomposition and Latent Factor modeling	R4 Ch 9
29-32	Define the terms used in multimedia queries	Basic Multimedia search technologies, Content-based retrieval	R2 Ch2,3
33-40	Understand Image and shape retrieval	Image and shape retrieval, Audio retrieval	R2 Ch2,3

5. Evaluation Scheme

5.a Major Components

Component	Duration	Weightage	Date&Time	Mode
Programming Assignments (10% evaluation will be done before Mid Sem)	Take Home	25%	TBA	Open Book
Mid-Term exam	90 mins	30%	18/03/2023 4.00-5.30Pm	Closed Book
Comprehensive exam	3 hours	45%	20/05/2023 AN	Closed Book

6. Chamber Consultation: TBA

7. Notices: All notices related to the course will be displayed on the **CMS**.

8. Make-up Policy:

Make-ups for Mid Sem and Comprehensive examination tests shall be granted by the I/C on prior permission and only to genuine cases in case of hospitalization. Permission will be granted only if the candidate has applied makeup for all other registered courses.

9.<u>Academic Honesty and Integrity Policy:</u> Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge CS F469