

Vandana M L

Department of Computer Science and Engineering

Introduction to Data Structures

Vandana M L

Department of Computer Science and Engineering

Introduction to Data Structures

Data Structure is a scheme of organizing data in the memory of the computer in such a way that various operations can be performed efficiently on this data

Introduction to Data Structures

Why Data Structure?

Introduction to Data Structures

Why Data Structures?

- Computer systems deal with large amount of data (text, image, relational data etc.)
- > Data is just the raw material for information, analytics, business intelligence, advertising, etc.
- > The way data is organized in memory plays a key role in deciding the time complexity of the algorithms designed for solving the problems
- > Data Structures and algorithm go hand in hand

Introduction to Data Structures

Importance of Data Structures

- ➤ Data Structures is most fundamental and building block concept in computer science
- Good knowledge of Data Structures is required to build efficient software systems

Data Structures and its Applications Abstract Data Type

➤ Abstract Data Type is used to represent data and operations associated with an entity from the point of view of user irrespective of implementation

> ADT can be implemented using one or more Data Structures and

Algorithms Create Stack Push Queue ADT 909 ADT Create Create List Display Enqueue Insert Destroy ADT Dequeue Delete Display Display Destroy Destroy search key D

Classification of Data Structures

Linear Data Structures
Stack, Queue, Linked List

Non Linear Data Structures
Tree , Graph

Classification of Data Structures: Linear Data Structures

Linear Organisation

Stack
Queue
Linked List
Linear List using Array

Classification of Data Structures : Non Linear Data Structures

Non Linear Organisation

Tree Graph

Few Applications of Linear Data Structures

> Array

- To implement other data structures
- To store files in memory

Linked Lists

- To implement other data structures
- To manipulate large numbers

> Stacks

- Recursion
- Infix to postfix conversion

Queues

- Process Scheduling
- Event handling

Few Applications of Non Linear Data Structures

> Tree

- Auto complete features (Trie)
- Used by operating systems to maintain the structure of a file system

> Heaps

- Priority Queue implementation
- Heap Sort

Graphs

- Computer Networks
- Shortest Path Problems

Overview- Course Contents

Unit -1: Linked Lists

- Memory Allocation Static and Dynamic
- Singly Linked List
- Doubly Linked Lists
- Circularly Linked Lists
- Multi Lists : Sparse Matrix
- Applications :
 - Text Editor
 - Symbol Table of an Assembler

Overview- Course Contents

Unit -2: Stacks

- Basic Structure of Stack
- Array and Linked Implementation
- Applications :
 - Recursion
 - Conversion of Infix to Postfix
 - Conversion of Infix to Prefix
 - Evaluation of Expression
 - Parentheses Matching

Overview

Unit -2: Queues

- Basic Structure
- Circular Queue, Priority Queue, Dequeue
- Array and Linked Implementation
- Applications :
 - Josephus Problem,
 - CPU Scheduling

Overview- Course Contents

Unit -3: Trees

- Definitions, Binary Trees, Binary Search Tree, Threaded Binary trees.
- Operations on Trees
- Implementation of BST,
- Threaded BST

Unit -3: Heaps

- Heap as a Data Structure
- Array Implementation
- Priority queue as a heap
- Applications : Dictionary Implementation, Simulation of Airport operations.

Overview- Course Contents

Unit -4: Balanced Trees and Graphs

- AVL Trees
- Operations on AVL Trees
- Properties of Graphs
- Implementation of Graphs
- Search Operations on Graph
- Applications :
 - Indexing in data bases
 - Representing a Computer Topology

Overview- Course Contents

Unit -5: Suffix Trees

- Tries
- Implementation of Tries
- Operations on Tries: Insert, delete and search
- Applications :
 - Word Prediction
 - URLs Decoding
 - Cryptography

Unit -5: Hashing

- Hashing Techniques
- Collision resolution
- Double Hashing, Rehashing

Overview- Course Contents

Text Book:

Data Structures using C & C++

Yedidyah Langsam, Moshe J. Augenstein, Aaron M. Tenenbaum, 2015, Pearson Education, 2nd Edition.

Reference Book:

Data Structure and Program Design in C

Robert Kruse, C.L Tondo, Bruce P. Leung – 2007, Pearson Education, 2nd Edition.

THANK YOU

Vandana M L

Department of Computer Science & Engineering

vandanamd@pes.edu

+91 7411716615