DASIL Python Workshop # 3
October 11th 2022

Introduction to Machine Learning Part #3

Yusen He, PhD - DASIL Data Scientist
Prof. Julia Bauder - Director of DASIL
Martin Pollack - DASIL Post Bachelor Fellow

Intro to Machine Learning Part #3 AGENDA

Parameters & Functions in ANN

How Neural Network Learn

Other Types of Neural Networks

Model Evaluation

• How human brain learn knowledge?

How human brain learn knowledge?

GRINNELL COLLEGE

First Perceptron by Frank Rosenblatt (1957)

A Perceptron Structure

Minsky & Papert (1969): First Multilayer Perceptron (ANN)

Discussion: What is the difference?

Versus

Human neural network

ANN

Intro to Machine Learning Part #3 AGENDA

Introduction to Artificial Neural Network

Parameters & Functions in ANN

How Neural Network Learn

Other Types of Neural Networks

Model Evaluation

Three layers:

- Input layer
- Hidden layer
- Output layer

Weights & Bias

Weights: Converts input data

Bias: Add on sum of weights x inputs

Activation Function:

Whether a neuron is "turn on"

GRINNELL COLLEGE

 $x_1 w_1 + x_2 w_2 + b_1$

Activation Function:

Whether a neuron is activated

Activation Function:

Whether a neuron is activated

In class exercise:

Suppose we have
$$z = x_1 w_1 + x_2 w_2 + b_1 = 0.4$$

Should the neuron "turn on" if
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Should the neuron "turn on" if $\sigma(z) = \max(0, z)$

Output: The final prediction

Loss Function:

How far the prediction is from truth

Regression Tasks:

Classification Tasks:

Binary Cross-Entropy (BCE) Loss: $Loss(\hat{y}, y) = \frac{1}{N}(y \times \log \hat{y} - (1 - y) \times \log(1 - \hat{y}))$

Log-predicted (+) probability

Actual positive

Actual negative

Log-predicted (-) probability

Intro to Machine Learning Part #3 AGENDA

Parameters & Functions in ANN

How Neural Network Learn

Other Types of Neural Networks

Model Evaluation

Rumelhart, Hinton, and Williams. (1986).

- We need to learn the following <u>parameters:</u>
 - Weights (w_i)
 - Biases(b_i)

Start with random initial guesses

Then do <u>backpropagation</u>

Differentiate, Multiply, Sum, Differentiate, Multiply, Sum,

Back Propagation:

Step 1: Compute the loss function $Loss(\hat{y}, y)$

Back Propagation:

Step 2: Compute the gradient of parameters (how much the loss function changes with respect to the parameters) via Chain Rule:

Back Propagation:

Step 3: Update the parameters using Gradient:

Gradient

