

Netherlands Forensic Institute Ministry of Justice and Security

Large Language Models for Digital Forensics

Hans Henseler (NFI, UoSL) Gaëtan Michelet (UNIL)

DFRWS EU 2024, Workshop, March 19, 2024, Zaragoza, Spain

Agenda

Time	Title
11:00	Introduction Large Language Models
11:30	Part I: Hands-on prompt engineering for digital forensics
12:15	Break
12:30	Part II: Hands-on with Llama2
12:50	Wrap up

Introduction Large Language Models

Part I: Hans Henseler

Netherlands Forensic Institute Ministry of Justice and Security

Microsoft Copilot

- > 2021 GitHub Copilot
- February 1: Bing Chat
- September 26 : Windows 11 Copilot
- November 1: Microsoft Office 365 Copilot:

Introducing Microsoft 365
Copilot | Your Copilot for
Work - YouTube

The rise of deep learning 2012-2022

2012: AlexNet wins the ImageNet Large Scale Visual Recognition Challenge

2014: Introduction of Generative Adversarial Networks (GAN's)

2015: AlphaGo defeats world champion Go, Lee Sedol

2017: Google introduces BERT improving ML translations

2018-2021: Introduction of GPT-2, DALL-E, CLIP, GPT-3, ...

2022: DALL-E2, Midjourney, Stable Diffusion, ChatGPT, ...

2023: GPT4, Llama2 (Meta), Claude 2 (Anthropic), Mistral, Grok (X)

2024: Gemini (Google), Mistral Large, Claude 3 ...

What is ChatGPT?

- ChatGPT is a large language model (LLM)
 - Essentially a machine learning model that learns an algorithm to predict the next word based on many text examples
- Based on GPT3.5/GPT4 (Generative Pre-trained Transformer)
 - Improved version of GPT-3 that "understands" text and program code
 - Different models for performance, chat, text and code completion
 - GPT3.5 was trained on 570 GB data from the internet (articles, posts, web pages and books)

Available as

- Free version
- ChatGPT-plus €23 per month
- OpenAI playground (API access):
 - GPT3.5-turbo API 0,002 dollar per 1.000 tokens, ~700 words
 - GPT4 API 0,03 dollar per 1.000 tokens, ~700 words

What can ChatGPT do?

Chat. Like a chatbot that...

- Assists with writing and brainstorming
- Tells riddles, jokes, stories
- Plays games
- Gives compliments and advise
- Helps with filling in forms

But it that can also:

- Summarise
- Translate
- Analyse and structure (unstructured) information
- Answer questions (but the answer may not be right)
- Assist with software writing and debugging
- Generate (anonymous) testdata

What can ChatGPT not do?

- It hallucinates facts
- It gives wrong answers
- Replies can be biased
- Can not act spontaneously (needs to be prompted)
- Is not good at making calculations (e.g. 4213x8242)
- > Is limited to generating text output
- Can accidentally reveal sensitive training data
- ...?

Netherlands Forensic Institute Ministry of Justice and Security

Thoughts on using AI for forensic purposes

- Hansken is:
 - used for investigations, bit
 - designed for evidentiary use
- Evidentiary use is more strict:
 - Accurate
 - Repeatable
 - Reproducible
- So algorithms must be:
 - Explainable
 - Validated
 - Deterministic
 - Not depend on external data

- Artificial Intelligence:
 - Use external data: Training sets
 - Use external data: Cause bios
 - Lacks explainability
- Use AI for investigative purposes, with
 - Disclaimer
 - Education
- By the way:
 - Not all currently used algorithms are good
 - Data under investigation can results from AI itself

https://blog.ampedsoftware.com/2021/10/05/can-ai-be-usedfor-forensics-and-investigations DFRWS EU Workshop, Zaragoza, 19-3-2024

Hallucinations, data privacy and explainability

Preventing hallucinations:

- Provide <u>clear prompts</u> to ChatGPT to base its response on digital traces
- ChatGPT should not hallucinate but inform that there are no relevant traces
- Retrieval-Augmented-Generation (RAG) comes to the rescue
- Explicit <u>references to the source</u> on which a response is based

Maintaining data privacy:

- Digital traces and case specific details <u>can not be send to the public cloud</u> (e.g., ChatGPT in the OpenAI cloud)
- Powerfull Large Language Models can already be <u>deployed on premise</u> (e.g., Meta's Llama 2)
- Assumption: Open source LLMs with RAG do not need the extensive factual knowledge as ChatGPT/GPT-4

Explaining responses:

- <u>Identify the sources</u> that were retrieved as part of the RAG method to explain the response
- Reproducability over creativity (experiment with "temperature" of the LLM)

Topics for future work

- Can we do this off-line with the same quality?
- Build a co-pilot in Hansken leveraging Retrieval Augmented Generation (RAG)
- Evaluate with (real) users
- Advanced topics:
 - Multi-modal generative transformers (Visual ChatGPT)
 - Augmented language models
 - Planning an investigation

Midjourney prompt: Looking in a crystal ball seeing the future of artificial intelligence, ultra HD, super realistic, cinematic lighting. (fast)

How smart are LLMs?

- Hugging Face open LLM leaderboard:
 - https://huggingface.co/spaces/Hugging FaceH4/open IIm leaderboard
- Score gebaseerd op:
 - ARC: Abstraction en Reasoning Challenge
 - HellaSwag: een benchmark die zich richt op gezond verstand redeneren
 - MMLU: Massive Multitask Language Understanding
 - TruthfulQA: een benchmark die beoordeelt of een taalmodel waarheidsgetrouwe antwoorden genereert

Model	Score
garage-bAInd/Platypus2-70B-instruct	73.13
upstage/Llama-2-70b-instruct-v2	72.95
fangloveskari/Platypus_QLoRA_LLaMA_70b	72.94
yeontaek/llama-2-70B-ensemble-v5	72.86
TheBloke/Genz-70b-GPTQ	72.82
TheBloke/Platypus2-70B-Instruct-GPTQ	72.81
psmathur/model_007	72.72
yeontaek/llama-2-70B-ensemble-v4	72.64
psmathur/orca_mini_v3_70b	72.64
ehartford/Samantha-1.11-70b	72.61
MayaPH/GodziLLa2-70B	72.59
psmathur/model_007_v2	72.49
chargoddard/MelangeA-70b	72.43
ehartford/Samantha-1.1-70b	72.42
psmathur/model_009	72.36

MMLU 2019-2023

https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu

Netherlands Forensic Institute Ministry of Justice and Security

MPT-7B Instruct MocalcML MPT-30B Instruc

ChatRWKV

OpenChat V3

How open are LLMs?

- Researchers from Nijmegen University:
 - Opening up ChatGPT: tracking "open source" LLM + RLF
 - https://opening-up-chatgpt.github.io/

How to use this table. Every cell records a three-level openness judgement (✓ open , — partial or X closed) with a direct link to the available evidence; on hover, the cell will display the notes we have on file for that judgement. At the end of a row, the § is a direct link to source data. The table is sorted by cumulative openness, where ✓ is 1, ~ is 0.5 and X is 0 points.

latabricks LLM base: FleutherAl nythia RL base: databricks-dolly-15k

Agenda

Time	Title
11:00	Introduction Large Language Models
11:30	Part I: Hands-on prompt engineering for digital forensics
12:15	Break
12:30	Part II: Hands-on with Llama2
12:50	Wrap up

Part I

Hands-on prompt engineering for digital forensics

Github & Google CoLab

Link:

- https://github.com/NetherlandsForensicInstitute/DFRWS-EU-2024-LLM4DF-Workshop
- Notebooks:
- Part I: Prompt engineering with ChatGPT for Digital Forensics
- Part II: Hands-on with Llama2

Requirements:

- Google CoLab is free but you need a Gmail account!
- Account for accessing free version of OpenAI ChatGPT
- Make sure to select a T4 GPU

Reductive operations

- Summarization Say the same thing with fewer words. Can use list, notes, executive summary.
- Distillation Purify the underlying principles or facts. Remove all the noise, extract axioms, foundations, etc.
- Extraction Retrieve specific kinds of information. Question answering, listing names, extracting dates, etc.
- Characterizing Describe the content of the text. Describe either the text as a whole, or within the subject.
- Analyzing Find patterns or evaluate against a framework. Structural analysis, rhetorical analysis, etc
- Evaluation Measuring, grading, or judging the content. Grading papers, evaluating against morals
- Critiquing Provide feedback within the context of the text. Provide recommendations for improvement

Transformative Operations

- Reformatting Change the presentation only. Prose to screenplay, XML to JSON.
- Refactoring Achieve same results with more efficiency. Say the same exact thing, but differently.
- Language Change Translate between languages. English to Russian, C++ to Python.
- Restructuring Optimize structure for logical flow, etc. Change order, add or remove structure.
- Modification Rewrite copy to achieve different intention. Change tone, formality, diplomacy, style, etc.
- Clarification Make something more comprehensible. Embellish or more clearly articulate.

Generative (Expansion) Operations

- Drafting Generate a draft of some kind of document. Code, fiction, legal copy, KB, science, storytelling.
- Planning Given parameters, come up with plans. Actions, projects, objectives, missions, constraints, context.
- Brainstorming Use imagine to list out possibilities. Ideation, exploration
 of possibilities, problem solving, hypothesizing.
- Amplification Articulate and explicate something further. Expanding and expounding, riffing on stuff.

Maximum prompt size

- The maximum size of the prompt in a LLM is called context size
- Prompts are converted into tokens
 - English: 1 word ≈ 1.3 tokens
- > GPT3 from 22-11-2022:
 - 2.048 tokens \approx 5 pages
- > GPT4 from 14-3-2023:
 - 8.096 tokens ≈ 20 pagina's

What to do if your prompt doesn't fit?

- Cut the information into smaller pieces and present them one by one
 - After the last part you ask the question
- Or, search the information for relevant paragraphs with a regular search engine
 - Create a prompt with the found paragraphs and the question to the user and offer it to ChatGPT
- > The latter can be automated:
 - Retrieval Augmented Generation (RAG)

Prompt engineering with ChatGPT for DF

Our 4 case study experiments:

- 1. Writing search queries
- 2. Summarising chat conversations
- 3. Analysing search results
- 4. Reverse engineering

In part I Colab we will focusses on #1, #3 and #4

Midjourney prompt: photorealistic picture of a digital sleuth in the style of Sherlock Holmes as a robot investigating a crime scene with digital traces in smartphones and computers (fast)

More on prompt engineering

- Videos and articles by David Shapiro:
 - https://medium.com/@dave-shap/become-a-gpt-prompt-maestro-943986a93b81
 - On YouTube: https://www.youtube.com/watch?v=aq7fnqzeaPc
 - About System Prompts: <u>https://www.youtube.com/watch?v=oILYjtbmLgc&t=760s</u>
- Video and notebook by AssemblyAI:
 - Prompt Engineering 101
 - https://www.youtube.com/watch?v=aOm75o2Z5-o
 - Prompt_Engineering_101.ipynb
 - https://colab.research.google.com/drive/1lHd9b8C4ccAGpkK06dzcFB0asjXWGZi0

Exercise I: prompt engineering & ChatGPT 3.5

Open Github

- https://github.com/NetherlandsForensicInstitute/DFRWS-EU-2024-LLM4DF-Workshop
- Navigate to Part_I_Prompt_engineering_with_ChatGPT_for_digital_forensics.ipynb Or open in Google Colab for better navigation (it is not necessary to execute code):
- Goto https://colab.research.google.com/
- select Github
- find NetherlandsForensicInstitute
- browse to DFRWS-EU-2024-LLM4DF-Workshop
- open Part_I_Prompt_engineering_with_ChatGPT_for_digital_forensics.ipynb Requirements:
- You need to have an account to chat with ChatGPT 3.5 (free)

Break

Time	Title
11:00	Introduction Large Language Models
11:30	Part I: Hands-on prompt engineering for digital forensics
12:15	Break
12:30	Part II: Hands-on with Llama2
12:50	Wrap up

Agenda

Time	Title
11:00	Introduction Large Language Models
11:30	Part I: Hands-on prompt engineering for digital forensics
12:15	Break
12:30	Part II: Hands-on with Llama2
12:50	Wrap up

Netherlands Forensic Institute Ministry of Justice and Security

Part II

Hands-on with a local LLM in a Google Colab notebook

How to get LLMs

Subscribe to OpenAl GPT4, Google PaLM

- Models are generally more powerful (Higher scores in various assessments)
- No need to setup and maintain the models and hardware
- Need to pay
- Privacy problems

Setup a local in-house LLM

- Many models are free
- No privacy issue
- Mid range hardware required
- Self maintenance (very limited support from publishers)

Local LLMs

What Hardware is required?

What Models to be used?

Background Info for Model Selection

- What do LLMs perform?
 - Generate coherent text (semantically related text) which can delivery meaningful contents:

$$P(w_n|w_{n-1},w_{n-2},...,prompt)$$

 Words are probabilistically generated one by one: depending on the previous generated words and the user given "prompt". Different LLMs have different probability distribution functions!!!

An example illustrating how LLMs generate words

using the prompt: "Write a sentence about a vehicle."

Important Parameters for Local LLMs

Top_k	Only consider the top k words
Top_p	Only consider the top words having total probabilities ≤ <i>Top_p</i>
Temperature	Higher value → more diverse and creative content, but content may not be coherent or even irrelevant
n_ctx, max_length	Max. context length
Max_new_tokens	Max. number of tokens to be generated
Repeat_penalty	Discourage repetitive or redundant output

Local LLM Selection

Features of local LLMs to be considered:

Size of the models (num. of parameters/weights)	 7B, 13B, 30B, etc. Larger size models usually give better performance but require better hardware and slower
Nature of the models	Use instruct model or chat models for Q&A and Retrieval Augmented Generation (RAG)
Weight Quantization	Usually map floating point values (16bits/32bits) to integer values (int8, int4, etc)
Model Data Format/Structure	Hugging Face, GGUF, GGML (now replaced by GGUF), GPTQ, AWQ
Context length (tokens)	 2K, 4K, 8K, 32K ChatGPT: 8K, GPT4: 32K Number of context words ~ (0.6 or 0.7) * number of tokens

Parameter Quantization

- Models are too big!
- High VRAM GPU cards are too expensive! Almost no competitor !!!
- > **Limited supply** of high VRAM GPUs
- Model computation is slow!

How to make models smaller, while preserving the number of parameters/weights, or minimizing the degradation of performance?

Use **smaller number of bits** to store the parameters/weights

Float32, float16 ---→ int8 (8-bit integer), int4, ...

Faster computation

Netherlands Forensic Institute Ministry of Justice and Security

Frameworks

Hugging Face: Traditional framework

GGUF/GGML: Optimized for CPU and (CPU + GPU) GPTQ:
Optimized for
GPU and (GPU
+ CPU)

AWQ:
Recent efficient
quantization method
(size, speed)

```
    meta-llama/Llama-2-7b-chat-hf

    Text Generation 
        • Updated Aug 9 
        • 
        ± 1.09M 
        • ○ 1.32k
        • ○ 1.32k

    meta-llama/Llama-2-7b

    ▼ Text Generation • Updated Jul 20 • ♥ 2.65k

    meta-llama/Llama-2-70b-chat-hf

    Text Generation 
        • Updated Aug 9 
        • 
        ± 141k 
        • 
        ○ 1.39k

    meta-llama/Llama-2-7b-hf

    Text Generation ● Updated Aug 9 ● ± 563k ● ○ 627

    meta-llama/Llama-2-13b-chat-hf

    Text Generation ● Updated Aug 9 ● 
    ± 240k ● ♥ 585

➡ TheBloke/Llama-2-7B-Chat-GGML

▼ Text Generation • Updated 6 days ago • ± 7.04k • ♥ 570
```


Netherlands Forensic Institute Ministry of Justice and Security

Llama 2 7B chat model

No. of parameters: 7B (float 16)

Memory required: ~ 14GB

- Q4_0: 4bit quantization
 - 7B parameters ∼ 3.5GB
- Q5_0: 5bit quantization
 - 7B parameters ∼ 4.4GB
- Q6_K_S: 6bit K-quantization
 - 7B parameters ~ 5.3GB
- Q8_0: 8bit quantization
 - 7B parameters~ 7.0GB

Exercise II: Hands on with Llama2

Open in Google Colab (or in your local IDE if you have a GPU >8GB RAM):

- > Goto https://colab.research.google.com/
- select Github
- find NetherlandsForensicInstitute
- browse to DFRWS-EU-2024-LLM4DF-Workshop
- open Part_II_Hands_on_with_Llama2.ipynb

Requirements:

- Google CoLab is free but you need a Gmail account!
- Make sure to select a T4 GPU (16GB RAM)

Agenda

Time	Title Title
11:00	Introduction Large Language Models
11:30	Part I: Hands-on prompt engineering for digital forensics
12:15	Break
12:30	Part II: Hands-on with Llama2
13:00	Wrap up

Wrap up

What's new and what's coming?

Custom GPTs from OpenAI: RAG & functions

- With a ChatGPT plus subscription you can build a custom GPT
 - Tailored instruction
 - Proprietary documents (RAG)
 - Connection to online API's (Functions)
- OpenAI launched their GPT store beginning of 2024
 - In february it had 159.000 GPTs

https://chat.openai.com/gpts

OpenAI Custom GPTs are not alone

https://customgpt.ai

https://www.perplexity.ai

https://auth.askyourpdf.com

https://pdf.ai

https://chatdoc.com

Google Gemini 1.5

- > Kort na het vrijgeven van Gemini 1.0 (advanced) kwam Google met de aankondiging van Gemini 1.5 https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024
- Gemini 1.5 heeft een context size van 1 miljoen tokens.
 - 1.000.000 tokens ≈ 2.500 blz
- Het model is nog niet beschikbaar maar Google heeft wel een aantal indrukwekkende demonstraties als video online gezet.

https://youtu.be/wa0MT8OwHuk

OpenAI Sora

- SORA is een tekst naar video model en is op 15-2-2024 gelanceerd
- Is in staat om op basis van een prompt 1 minuut video te genereren.
- Is niet nieuw maar de kwaliteit is veel beter dan eedere modellen.
- Volgens OpenAI is SORA kun je met SORA een wereld simuleren

https://openai.com/research/video-generation-models-as-world-simu

Netherlands Forensic Institute Ministry of Justice and Security

Thank you!

Hans Henseler h.henseler@nfi.nl Gaëtan Michelet victor.cheng@tauexpress.com

Published papers and articles:

