Line Detection using CNNs

(i14-0140) Muneeb Aadil

Background/Motivation: Hough Transform

Definition: Hough Transform is an image processing algorithm to detect parameters of any geometric shape in a binary image by populating an accumulator a.k.a *hough space*.

Background/Motivation: Hough Transform (cont...)

Drawbacks:

- 1. Hyperparameter fine-tuning at test-time.
- 2. Computationally costly to accumulate N-dimensional array.

Solution: End-to-end CNN

- 1. No hyperparameter tuning at test-time.
- 2. Can run in real time (in GPU environment)

Dataset: Generated Synthetically

Split

Training: 10,000 Validation: 100 Test: 100

Hypothesis: Bigger receptive field ⇒ better performance

Reasoning: Arbitrary geometric shape (triangle, for instance) might look identical to line in local spatial neighborhood.

Overfitting Test

Hypothesis: Bigger receptive field ⇒ better performance (cont...)

Solution: Scale-Space

Hypothesis: Bigger receptive field ⇒ better performance (cont...)

Solution: Scale-Space ⇒ UNets

Tuning the learning Rate + Training Details

Learning Rate

Training Details

- Objective Function = Pixel wise L2
 Loss (Binary cross entropy was numerically unstable)
- 2. Optimizer = ADAM (beta1 = 0.9, beta2 = 0.999)
- 3. Learning Rate = 1e-3
- 4. Batch Size = 64
- 5. Framework = Keras
- 6. Training Time = 2 hours (NVIDIA Tesla K80)
- 7. Sourcecode available at *Github* https://github.com/muneebaadil/Hou gh-Transform-using-CNNs

Architectures Tested

Results

Input Image

Predicted Image

Results (cont...)

Input Image

Predicted Image

Results (cont...): Fscore, precision, recall.

Conclusion and Future Work

- 1. Global structure \Rightarrow Scale space is important
- 2. End-to-end CNNs based method of line detection is promising

Future Work

- 1. Noisy dataset
- 2. Natural Images