Comparison Sorts III continued

CS 311 Data Structures and Algorithms Lecture Slides Monday, October 9, 2023

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2023 Glenn G. Chappell Some material contributed by Chris Hartman

Unit Overview Algorithmic Efficiency & Sorting

Topics

- ✓ Analysis of Algorithms
- Introduction to Sorting
- Comparison Sorts I
- Asymptotic Notation
- ✓ Divide and Conquer
- Comparison Sorts II
- ✓ The Limits of Sorting
- (part) Comparison Sorts III
 - Non-Comparison Sorts
 - Sorting in the C++ STL

Facts

- 1. Algorithm that reads all of its inputs must be Ω (n)
- 2. A general purpose comparison sort must be Ω (n log n)

Alg X is $\Omega(n)$

Its worst case running time is at least kn O Ω Θ

Review

	Using Big-O	In Words	
Cannot read A	O(1)	Constant time	
all of input	<i>O</i> (log <i>n</i>)	Logarithmic time	Fa
	<i>O</i> (<i>n</i>)	Linear time	
Probably \ not scalable	$O(n \log n)$	Log-linear time	Slo
	$O(n^2)$	Quadratic time	
not scalable *	$O(c^n)$, for some $c > 1$	Exponential time	

Useful Rules

- **Rule of Thumb.** For nested "real" loops, order is $O(n^t)$, where t is the number of nested loops.
- **Addition Rule.** O(f(n)) + O(g(n)) is either O(f(n)) or O(g(n)), whichever is larger. And similarly for Θ . This works when adding up any fixed, finite number of terms.

Review Introduction to Sorting

Sorting Algorithms Covered

- Quadratic-Time $[O(n^2)]$ Comparison Sorts
 - ✓ Bubble Sort
 - ✓ Insertion Sort
- (part) Quicksort
- Log-Linear-Time [O(n log n)] Comparison Sorts
 - ✓ Merge Sort
 - Heap Sort (mostly later in semester)
 - Introsort
- Special Purpose—Not Comparison Sorts
 - Pigeonhole Sort
 - Radix Sort

Review Asymptotic Notation

g(n) is:

- O(f(n)) if $g(n) \le k \times f(n)$...
- $\Omega(f(n))$ if $g(n) \ge k \times f(n)$...

• $\Theta(f(n))$ if both are true—possibly with different values of k.

	1	n	n log n	n ²	5 <i>n</i> ²	$n^2 \log n$	n^3	n ⁴
$O(n^2)$	YES	YES	YES	YES	YES	no	no	no
$\Omega(n^2)$	no	no	no	YES	YES	YES	YES	YES
$\Theta(n^2)$	no	no	no	YES	YES	no	no	no

In an algorithmic context, g(n) might be:

- The maximum number of basic operations performed by the algorithm when given input of size n.
- The maximum amount of additional space required.

In-place means using O(1) additional space.

Review Divide and Conquer [1/2]

A Divide/Decrease and Conquer algorithm needs analysis.

- It splits its input into b
 nearly equal-sized parts.
- It makes a recursive calls, each taking one part.
- It does other work requiring f(n) operations.

To Analyze

- Find b, a, d so that f(n) is $\Theta(n^d)$ —or $O(n^d)$.
- Compare a and b^d .
- Apply the appropriate case of the Master Theorem.

The **Master Theorem**

Suppose T(n) = a T(n/b) + f(n); $a \ge 1, b > 1, f(n)$ is $\Theta(n^d)$.

"n/b" can be a nearby integer.

Then:

- Case 1. If $a < b^d$, then T(n) is $\Theta(n^d)$.
- Case 2. If $a = b^d$, then T(n) is $\Theta(n^d \log n)$.
- Case 3. If $a > b^d$, then T(n) is $\Theta(n^k)$, where $k = \log_b a$.

We may also replace each " Θ " above with "O".

Review Divide and Conquer [2/2]

Try It!

Algorithm *B* is given a list as input. It uses a Decrease and Conquer strategy. It splits its input in half (or nearly so), and makes a recursive call on one of the parts. It also does other work requiring linear time.

Use the Master Theorem to determine the order of Algorithm B.

See In-Class Worksheet 2: The Master Theorem.

Review Comparison Sorts II

Merge Sort: recursively sort top & bottom halves of list, merge.

Analysis

- Efficiency: $\Theta(n \log n)$. Avg same. \odot
- Requirements on Data: Works for Linked Lists, etc. ☺
- Space Efficiency: Θ(log n) space for recursion. Iterative version is in-place for Linked List. Θ(n) space for array.
 ⊕/☺/☺
- Stable: Yes. ©
- Performance on Nearly Sorted Data: Not better or worse.

Notes

- Practical & often used.
- Fastest known for (1) stable sort, (2) sorting a Linked List.

See merge_sort.cpp.

The worst-case number of comparisons performed by a general-purpose comparison sort must be $\Omega(n \log n)$.

Reasoning:

- We are given a list of n items to be sorted.
- There are $n! = n \times (n-1) \times ... \times 3 \times 2 \times 1$ orderings of n items.
- Start with all n! orderings. Do comparisons, throwing out orderings that do not match what we know, until just one ordering is left.
- With each comparison, we cannot guarantee that more than half of the orderings will be thrown out.
- How many times must we cut n! in half, to get 1? Answer: $\log_2(n!)$, which is $\Theta(n \log n)$. (Use **Stirling's Approximation**.)
- So, for a general-purpose comparison sort, the worst-case number of comparisons must be at least that big. Thus: $\Omega(n \log n)$.

Quicksort: choose **pivot**, **partition**, recursively sort sublists. For the moment, we choose the first item in the list as our pivot.

See quicksort1.cpp.

Hoare's Partition Algorithm

- First, get the pivot out of the way: swap it with the first list item.
- Set iterator *left* to point to the first item past the pivot. Set iterator *right* to point to the last list item.
- Move iterator left up, leaving only low items below it. Move iterator right down, leaving only high items above it.
- If both iterators get stuck—left points to a high item and right points to a low item—then swap the items and continue.
- Eventually left & right cross each other.
- Finish by swapping the pivot with the last low item.

Comparison Sorts III

continued

Comparison Sorts III Better Quicksort — Problem

Quicksort has a serious problem.

Try applying the Master Theorem. It does not work, because what???

Comparison Sorts III Better Quicksort — Optimization 1: Improved Pivot Selection [1/2]

Choose the pivot using **Median-of-3**.

- Look at 3 items in the list: first, middle, last.
- Let the pivot be the one that is between the other two (by <).

This gives good performance on *most* nearly sorted data—as do other similar pivot-selection schemes.

But Quicksort with Median-of-3 (or similar) is slow for *other* data. So: still $\Theta(n^2)$.

Look into "Median-of-3 killer sequences".

2023-10-09 CS 311 Fall 2023 15

Comparison Sorts III Better Quicksort — Optimization 1: Improved Pivot Selection [2/2]

Median: value that

Ideally, our pivot is the *median* of the list.

- If it were, then Partition goes in the middle, when the list is sorted. would create lists of (nearly) equal size, and we could apply the Master Theorem, which would tell us:
- If we do O(n) extra work at each step, then we get an $O(n \log n)$ algorithm (same computation as for Merge Sort).

Can we find the median of a list in linear time?

Yes! Use BFPRT (the Blum-Floyd-Pratt-Rivest-Tarjan Algorithm).

2023-10-09 CS 311 Fall 2023 16

Comparison Sorts III Better Quicksort — Optimization 2: Tail-Recursion Elimination

How much additional space does Quicksort use?

- Partition is in-place and Quicksort uses few local variables.
- However, Quicksort is recursive.
- Quicksort's additional space usage is thus proportional to its recursion depth ...
- ... which is linear. Worst-case additional space used: $\Theta(n)$. \otimes

We can significantly improve this:

- Do the larger of the two recursive calls last.
- Do tail-recursion elimination on this final recursive call.
- Result: Recursion depth & additional space usage: $\Theta(\log n)$. \oplus
- And this additional space need not hold data items. (Why is this kinda good?)

Comparison Sorts III Better Quicksort — Optimization 3: Finishing with Insertion Sort

A possible speed-up: finish with Insertion Sort

- Quicksort, but without quite going to the bottom of the recursion.
 We end up with a nearly sorted list.
- Finish sorting this list using one call to Insertion Sort.

This is *not* the same as using Insertion Sort for small lists.

• Apparently this is generally faster*, but it is still $\Theta(n^2)$.

^{*}I have read that this tends to adversely affect the number of cache hits.

2023-10-09 CS 311 Fall 2023 18

Comparison Sorts III Better Quicksort — CODE

TO DO

- Rewrite our Quicksort to include the optimizations discussed:
 - Median-of-3 pivot selection.
 - Tail-recursion elimination on the larger recursive call.
 - Recursive calls to sort small lists do nothing. End with Insertion Sort of entire list.

See quicksort2.cpp.

Comparison Sorts III Better Quicksort — What is Needed?

We want an algorithm that:

- Is as fast as Quicksort on average.
- Has good $[\Theta(n \log n)]$ worst-case performance.

But for over three decades no one found one.

Some said (and some still say), "Quicksort's bad behavior is very rare; we can ignore it."

I suggest that this is not a good way to think.

- Sometimes poor worst-case behavior is okay; sometimes it is not.
- Know what is important in your situation.
- Remember that malicious users exist, particularly on the Web.

These are *general* principles. They apply to many issues, not just those involving Quicksort.

In 1997, a solution to Quicksort's big problem was finally published. We will discuss this. But first, we analyze Quicksort.

Comparison Sorts III Better Quicksort — Analysis of Quicksort

```
Efficiency
???
Requirements on Data
???
Space Usage
???
Stability
???
Performance on Nearly Sorted Data
???
```

Comparison Sorts III Introsort — Introspection

In 1997, algorithms researcher David Musser introduced a simple algorithm-design idea.

- For some problems, there are known algorithms with very good average-case performance and very poor worst-case performance.
- Quicksort is the best known of these, but there are others.
- Musser's idea is that, when such an algorithm runs, it should keep track of its performance. If it is not doing well, then it can switch to a different algorithm that has a better worst-case.
- Musser called this technique introspection, since the algorithm is examining itself.

The most important application of introspection is to sorting. It allows us to eliminate the awful worst-case behavior of Quicksort.

Comparison Sorts III Introsort — Heap Sort Preview

Here is a preview of a sort we will cover later in the semester.

We will study a data structure called a *Binary Heap*, which allows for fast find and removal of the item with the greatest key.

This leads to a comparison sort called **Heap Sort**. Procedure:

- Create a Binary Heap containing the dataset to be sorted.
- Repeatedly remove the item with the greatest key. Store these items in a list in reverse order: greatest at the end, etc.
- When complete, the list is a sorted version of the original dataset.

We study Heap Sort in detail later in the semester. For now:

- Heap Sort is log-linear time.
- Heap Sort is in-place.
- Heap Sort requires random-access data.

And Heap Sort forms part of a fast Quicksort variant called *Introsort*.

Quicksort's problem is due to its recursion depth. Quicksort is slow only when the recursion gets too deep.

Apply introspection:

- Do optimized Quicksort, but keep track of the recursion depth.
- If the depth exceeds some threshold—Musser suggested 2 log_2n then switch to Heap Sort for the current sublist being sorted.

The resulting algorithm is called **Introsort** [introspective sort].

Musser's 1997 paper recommends the optimizations we covered:

- Median-of-3 pivot selection.
- Tail-recursion elimination on one recursive call.
- Stop the recursion prematurely, and finish with Insertion Sort.
 (Maybe. This can adversely affect cache performance.)

Comparison Sorts III Introsort — Diagram

Here is an illustration of how Introsort works.

- In practice, the recursion will be much deeper than this.
- We might not do the Insertion Sort, due to its effect on cache hits.

2023-10-09 CS 311 Fall 2023 25

Comparison Sorts III Introsort — Analysis

```
Efficiency
???
Requirements on Data
???
Space Usage
???
Stability
???
Performance on Nearly Sorted Data
???
```

Our discussion of Quicksort & Introsort might suggest that their average-case time is significantly better than Merge Sort.

Historically, this has been largely the case. But experience shows that, on modern architectures, Merge Sort can be faster.

This is a tricky issue. Relative speed depends on:

- The processor used, and the performance of its cache.
- The type of the data being sorted.
- The data structure used, and its size.

It appears to me [GGC] that, in practice, use of the Quicksort family of algorithms—including Introsort—is fading.

For example, the old C Standard Library function qsort traditionally used Quicksort (thus the name). But some implementations now use Merge Sort.