Модель оптимального поворота ветрогенератора

Ильиных Тимур 21213 Мазяр Алексей 21213

Репозиторий: https://github.com/tobaffoon/Turbine_Yaw_Modeling_NSU

GE WIND TURBINE

BLADES (

Lift and rotate when hit by wind, causing the rotor to spin.

ROTOR (

Combination of the blades and hub.

PITCH SYSTEM (

Turns blades out of the wind to control rotor speed. Also, stops the rotor from spinning in conditions where wind is blowing too slow or too fast.

GENERATOR

Produces 60-cycle AC electricity within the turbine.

CONTROLLER

Starts and stops the turbine from working, depending on conditions.

YAW DRIVE

Controls upwind turbines to orient them should wind direction change.

TOWER

The base of the turbine, built to support the rest of the structure.

Постановка задачи

Кинетическая энергия ветра частично захватывается и перерабатывается ветряком в электрическую

Коэффициент, с которым энергия преобразуется - сложная нелинейная функция от:

- Скорости ветра
- Направления ветра
- Угла наведения

Пусть для конкретного ветра первый параметр известен, мы находим оптимальное значение угла наведения

Цель построения модели

Используя готовую модель реализовать и протестировать алгоритм, при котором гондола поворачивается только при достаточной разнице угла наведения с направлением ветра.

- 1. OpenFAST симулятор для моделирования динамических характеристик ветряной турбины
- 2. TurbSim ПО, позволяющее генерировать турбулентные модели ветра для InflowWind
- 3. PyDatView Рисует графики зависимости параметров от времени

Существенные параметры и чем они задаются

- 1. Входные:
 - а. Скорость ветра [м\c] TurbSim
 - b. Направление ветра [град] TurbSim
 - с. Угол поворота турбины [град] OpenFAST
- 2. Подбираемый:
 - а. Угол дельта [рад] (при котором угол наведения турбины меняется по ветру)
- 3. Выходной:
 - а. Вырабатываемая генератором мощность [кВт] OpenFAST

Конфигурация ветрогенератора

Table 1-1. Gross Properties Chosen for the NREL 5-MW Baseline
Wind Turbine

TTIII TUIDIIC	
Rating	5 MW
Rotor Orientation, Configuration	Upwind, 3 Blades
Control	Variable Speed, Collective Pitch
Drivetrain	High Speed, Multiple-Stage Gearbox
Rotor, Hub Diameter	126 m, 3 m
Hub Height	90 m
Cut-In, Rated, Cut-Out Wind Speed	3 m/s, 11.4 m/s, 25 m/s
Cut-In, Rated Rotor Speed	6.9 rpm, 12.1 rpm
Rated Tip Speed	80 m/s
Overhang, Shaft Tilt, Precone	5 m, 5°, 2.5°
Rotor Mass	110,000 kg
Nacelle Mass	240,000 kg
Tower Mass	347,460 kg
Coordinate Location of Overall CM	(-0.2 m, 0.0 m, 64.0 m)

Метод Нелдера-Мида

Минимизация

Перебор начальных решений

```
if __name__ == '__main__':
    arg0 = 0.2
    strat = YawErrorStrat
    res_list = []
    while arg0 <= 1.0:
        res = minimize(neg_yaw, arg0, args=strat, method='Nelder-Mead', bounds=[(0, 3)])
        if res.success :
            res_list.append(("s", arg0, res.x[0], -res.fun))
        else:
            res_list.append(("f", arg0, res.x[0], -res.fun))
        arg0 += 0.1</pre>
```

Границы дельты: [0,3]

Полученные результаты. Описание графиков

- 1. Скорость ветра [м\с]
- 2. Направление ветра [град]
- 3. Угол поворота ветряка [град]
- 4. Вырабатываемая генератором мощность [кВт]

Без применения стратегии

Мощность: 92178482

Дельта = 0.2 рад

Мощность: 92071076

Дельта = 0.7 рад

Мощность: 92146819

Итоги

Мы нашли, что оптимальное значение параметра равно 0.7 радианам.

Итогом проекта для каждого из нас стало - освоение используемого симулятора, умение редактировать его исходный код.

Спасибо за внимание