《普通物理实验》实验报告

测量金属的杨氏模量

姓名 李灿辉 学号 2200017799 实验地点 南楼 134

实验日期 _2023 年 _10 月 _20 日

第一部分 数据处理

1 CCD 成像系统测量金属的杨氏模量

1.1 数据测量

实验名称

表 1: 测量金属丝受外力拉伸后的伸展变化数据表

i	m_i /(g)	$\delta m_i = m_i + \dots + m_{i+4}/(\mathbf{g})$	r_i /(mm)	r' _i /(mm)	$ar{r}_i$ /(mm)	$\delta L = r_{i+5} - r_i$ /(mm)	$\frac{\delta m}{\delta L}$ /(g/mm)
1	199.92	999.46	2.85	2.86	2.855	0.575	1738.19
2	199.97	999.21	2.98	2.98	2.980	0.565	1768.51
3	199.91	999.82	3.08	3.10	3.090	0.565	1769.59
4	199.70	999.62	3.19	3.21	3.200	0.570	1753.72
5	199.96	999.48	3.30	3.34	3.320	0.560	1784.79
6	199.67	1	3.41	3.45	3.430	/	1
7	199.58	1	3.53	3.56	3.545	/	/
8	199.71	1	3.64	3.67	3.655	/	1
9	199.56	1	3.76	3.78	3.770	1	1
10	/	1	3.86	3.90	3.880	/	1

表 2: 测量金属丝直径数据表

次数 i	1	2	3	4	5	6	7	8	9	10
直径 d'/mm	0.322	0.321	0.321	0.321	0.320	0.323	0.323	0.322	0.320	0.321

零点读数为 $d_0 = 0.002$ mm,允差为 e = 0.004mm,计算得到 $\bar{d} = (0.319 \pm 0.004)$ mm

使用木尺测得金属丝长度为 $L=(79.04\pm0.15)cm$, 查得北京地区 $g=9.8015m/s^2$,m 的不确定度较小,可以忽略。

1.2 逐差法处理数据

$$\begin{split} & \sigma_{\frac{\delta m}{\delta L}}^{(r)} = 7.9 g/m m \\ & \sigma_{\delta L} = 0.005 mm \\ & \frac{\sigma_{\frac{\delta m}{\delta L}}}{\frac{\delta L}{\delta L}} = 12 mm \\ & \frac{\frac{\delta m}{\delta L}}{\frac{\delta L}{\delta L}} = (1.763 \pm 0.012) \times 10^3 g/m m \\ & \sigma_{\overline{E}} = \overline{E} \sqrt{(\frac{\sigma_{\frac{\delta m}{\delta L}}}{\frac{\delta m}{\delta L}})^2 + (\sigma_l/l)^2 + (2\sigma_d/d)^2} = 4.4 \times 10^9 Pa \\ & \overline{E} = \frac{4gL\delta m}{\pi d^2 \delta L} = (1.71 \pm 0.04) \times 10^{11} Pa \end{split}$$

1.3 最小二乘法处理数据

令

$$M_i = \sum_{1}^{i} m_i$$

拟合图如下:

图 1: M-r 关系线性拟合图

拟合得到:

$$\begin{split} \overline{k} &= 1760.2g/mm \\ \sigma_k^{(r)} &= 6.3g/mm \\ r &= 0.99995 \\ \sigma_r &= 0.005mm \\ \sigma' &= \sigma_r (\sum_{i=1}^{10} (m_i - \overline{m}))^{-1/2} k^2 = 8.6g/mm \\ \sigma_k &= \sqrt{(\sigma')^2 + \sigma_k^{(r)2}} = 10.7g/mm \\ \sigma_{\overline{E}} &= \overline{E} \sqrt{\sigma_k^2/k^2 + \sigma_L^2/L^2 + (2\sigma_d/d)^2} = 4.4 \times 10^9 Pa \\ \overline{E} &= \frac{4gLk}{\pi d^2} = (1.71 \pm 0.04) \times 10^1 1 Pa \end{split}$$

2 光杠杆法测量金属的杨氏模量

注: 虽然没要求计算不确定度, 但是为了确定保留位数, 还是计算了不确定度。

2.1 数据测量

i	m_i /(g)	$\delta m_i = m_i + \dots + m_{i+3}/(\mathbf{g})$	标尺读数 l_i /(cm)	l' _i /(cm)	$ar{l}_i$ /(cm)	$\delta L = r_{i+5} - r_i$ /(cm)	$\frac{\delta m}{\delta L}$ /(g/cm)
1	200.13	799.64	13.33	13.33	13.330	1.275	627.2
2	200.12	799.18	13.64	13.66	13.650	1.240	644.5
3	199.72	799.33	13.99	13.97	13.980	1.225	652.5
4	199.67	799.67	14.29	14.29	14.290	1.250	639.7
5	199.99	799.94	14.60	14.61	14.605	1.215	658.4
6	199.67	1	14.89	14.89	14.890	/	/
7	200.27	1	15.18	15.23	15.205	/	1
8	200.01	1	15.52	15.56	15.540	/	/
9	/	1	15.82	15.82	15.820	/	1

表 3: 光杠杆法测量金属丝受外力拉伸后的伸展变化数据表

使用木尺测得测量望远镜标尺到反光镜的距离 $R=(141.50\pm0.09)cm$, 金属丝长度为 $L=(72.47\pm0.09)cm$; 使用游标卡尺和数据记录纸测得光杠杆底脚到刀口直线的距离为 $D=(8.490\pm0.010)cm$.

表 4: 测量金属丝直径数据表 2

次数 i	1	2	3	4	5	6	7	8	9	10
直径 d'/mm	0.326	0.325	0.323	0.322	0.320	0.321	0.321	0.320	0.323	0.323

零点读数为 $d_0=0.000mm$, 允差为 e=0.004mm, 计算得到 $\bar{d}=(0.322\pm0.004)mm$ 。

2.2 逐差法处理数据

由于组数为偶数,只能利用四组数据,这里采用后四组

$$\begin{split} &\sigma_{\frac{\delta m}{\delta L}}^{(r)} = 4.15 g/cm \\ &\sigma_{\delta L} = 0.03 cm \\ &\sigma_{\frac{\delta m}{\delta L}} = 16 g/cm \\ &\frac{\delta m}{\delta L} = (6.49 \pm 0.16) \times 10^2 g/cm \\ &\sigma_{\overline{E}} = \overline{E} \sqrt{(\frac{\sigma_{\frac{\delta m}{\delta L}}}{\frac{\delta m}{\delta L}})^2 + (\sigma_L/L)^2 + (\sigma_R/R)^2 + (\sigma_D/D)^2 + (2\sigma_d/d)^2} = 6.6 \times 10^9 Pa \\ &\overline{E} = \frac{8gRL\delta m}{\pi d^2 D\delta L} = (1.89 \pm 0.07) \times 10^{11} Pa \end{split}$$

2.3 最小二乘法处理数据

令

$$M_i = \sum_{1}^{i} m_i$$

拟合图如下:

图 2: M-r 关系线性拟合图

拟合得到:

$$\begin{split} \bar{k} &= 641.9g/cm \\ \sigma_k^{(r)} &= 3.8g/cm \\ r &= 0.99966 \\ \sigma_l &= 0.03cm \\ \sigma' &= \sigma_l k^2/(\bar{m}) = 8.0g/cm \\ \sigma_k &= \sqrt{(\sigma')^2 + \sigma_k^{(r)2}} = 8.8g/mm \\ \sigma_{\overline{E}} &= \overline{E}\sqrt{(\frac{\sigma_k}{k})^2 + (\sigma_L/L)^2 + (\sigma_R/R)^2 + (\sigma_D/D)^2 + (2\sigma_d/d)^2} = 5.3 \times 10^9 Pa \\ \overline{E} &= \frac{8gRLk}{\pi d^2 D} = (1.87 \pm 0.05) \times 10^{11} Pa \end{split}$$

第二部分 分析与讨论

1 开始加第一、二个砝码时r的变化量大于正常的变化量可能的原因

- 1. 金属丝未夹紧, 开始增加砝码时金属丝与夹具之间有一定的下滑。
- 2. 钢丝在自然状态下略有弯曲,并没有完全伸直,开始加砝码时,金属丝不但被拉伸,而且被拉直,由于由弯变直产生的额外伸长量导致测得 r 的变化量大于正常值。

2 开始加第一、二个砝码时 r 的变化量小于正常的变化量可能的原因

- 1. 金属丝发生扭转或测量时没有制动稳定。
- 2. 限位螺丝扭得过紧或支架调节不当,造成小圆柱与支架系统摩擦力过大,导致实际作用在钢丝上的力小于mg,故伸长量也小于mg对应的伸长量。

3 收获与感想

- 1. 关于数据处理: 本实验涉及了三种数据处理方法; 图像法,逐差法,最小二乘法,图像法较为直观,逐差法较为简单方便,最小二乘法精确度较高,各有其优点,后两者都能充分利用数据,减小数据处理带来的误差。
- 2. 关于仪器调节:本次实验中,仪器调节非常重要,提高测量的准确度的核心就在于金属丝竖直无摩擦的实现,另外,由于实验距离较远,望远镜的调节也比较困难,需要进行良好的粗调和一些调节技巧才能顺利完成实验。
- 3. 关于砝码: 由于砝码的重量与标准值有一定偏差,为了测量的准确,应当重新测量,测量时要注意测量重量和实验时放砝码的顺序,以保证测量数值的正确对应。