Les notions vues au Collège, en Seconde et en Première S

Phénomène périodique, période et fréquence

- Un phénomène périodique se reproduit identique à luimême à intervalles de temps égaux.
- La période T est la plus petite durée au bout de laquelle un phénomène périodique se répète.
- La fréquence f est le nombre de répétitions d'un phénomène périodique par unité de temps.

La fréquence et la période sont liées par la relation $f = \frac{1}{2}$ avec T en seconde (s) et f en hertz (Hz).

ightharpoonup La **tension maximale** U_{\max} d'un signal est l'écart entre la valeur maximale de ce signal et la valeur référence.

 U_{max} s'exprime en volt (V).

Sur l'exemple ci-dessus :

$$U_{\text{max}} = 2.0 \text{ div} \times 1 \text{ mV/div} = 2.0 \text{ mV}$$

et $T = 1.7 \text{ div} \times 0.40 \text{ s/div} = 0.68 \text{ s}$,

soit
$$f = \frac{1}{0.00} = 1.5$$
 Hz.

Un oscilloscope ou un système d'acquisition permet de visualiser l'évolution d'une tension au cours du temps.

Ondes sonores et ultrasonores

Les ondes sonores et ultrasonores ont besoin d'un milieu matériel pour se propager.

Dans l'air, elles se propagent à une vitesse dont la valeur est de l'ordre de 340 m·s⁻¹.

Les sons audibles ont des fréquences comprises entre 20 Hz et 20 kHz environ. Ils sont limités par les infrasons (f < 20 Hz) et par les **ultrasons** (f > 20 kHz).

Lumière et ondes électromagnétiques

- Le spectre des ondes électromagnétiques est découpé en divers domaines.
- Dune radiation lumineuse est caractérisée par sa fréquence ou par sa longueur d'onde dans le vide.

La fréquence d'une onde électromagnétique est souvent notée v (nu).

La longueur d'onde dans le vide λ et la fréquence v d'une onde électromagnétique sont liées par la relation $\lambda = \frac{c}{c}$. λ s'exprime en mètre (m) et v en hertz (Hz); c est la vitesse de la lumière dans le vide : c $\approx 3,00 \times 10^8 \, \mathrm{m \cdot s^{-1}}$.

- Longueurs d'onde dans le vide et fréquences des radiations visibles ou invisibles.
- La lumière émise par un laser est monochromatique, elle ne contient qu'une radiation. La lumière émise par une source chaude comme une lampe à incandescence est polychromatique, elle contient plusieurs radiations.
- Dans le vide ou dans l'air, les radiations visibles ont des longueurs d'onde comprises entre 400 nm et 800 nm environ. Elles sont limitées par les **ultraviolets** (λ < 400 nm) et par les **infrarouges** ($\lambda > 800$ nm).

Longueurs d'onde dans le vide et dans l'air des radiations visibles.

L'énergie de la lumière est transportée par des photons. Dans une radiation de longueur d'onde dans le vide λ , chaque photon transporte un **quantum d'énergie** $\mathscr{E} = h \cdot v = \frac{h \cdot c}{\lambda}$.

% s'exprime en joule (J), λ en mètre (m) et v en hertz (Hz); h est la constante de Planck : h = 6,63 × 10⁻³⁴ J·s.