Amazon Fine Food Reviews Analysis

Data Source: https://www.kaggle.com/snap/amazon-fine-food-reviews

EDA: https://nycdatascience.com/blog/student-works/amazon-fine-foods-visualization/

The Amazon Fine Food Reviews dataset consists of reviews of fine foods from Amazon.

Number of reviews: 568,454 Number of users: 256,059 Number of products: 74,258 Timespan: Oct 1999 - Oct 2012

Number of Attributes/Columns in data: 10

Attribute Information:

- 1. ld
- 2. Productld unique identifier for the product
- 3. Userld unqiue identifier for the user
- 4. ProfileName
- 5. HelpfulnessNumerator number of users who found the review helpful
- 6. HelpfulnessDenominator number of users who indicated whether they found the review helpful or not
- 7. Score rating between 1 and 5
- 8. Time timestamp for the review
- 9. Summary brief summary of the review
- 10. Text text of the review

Objective:

Given a review, determine whether the review is positive (rating of 4 or 5) or negative (rating of 1 or 2).

[Q] How to determine if a review is positive or negative?

[Ans] We could use Score/Rating. A rating of 4 or 5 can be cosnidered as a positive review. A rating of 1 or 2 can be considered as negative one. A review of rating 3 is considered nuetral and such reviews are ignored from our analysis. This is an approximate and proxy way of determining the polarity (positivity/negativity) of a review.

[1]. Reading Data

[1.1] Loading the data

The dataset is available in two forms

- 1. .csv file
- 2. SQLite Database

In order to load the data, We have used the SQLITE dataset as it is easier to query the data and visualise the data efficiently.

Here as we only want to get the global sentiment of the recommendations (positive or negative), we will purposefully ignore all Scores equal to 3. If the score is above 3, then the recommendation wil be set to "positive". Otherwise, it will be set to "negative".

```
In [1]: %matplotlib inline
import warnings
warnings.filterwarnings("ignore")

import sqlite3
import pandas as pd
import numpy as np
import nltk
import string
```

```
from sklearn.feature extraction.text import TfidfTransformer
        from sklearn.feature extraction.text import TfidfVectorizer
        from sklearn.feature extraction.text import CountVectorizer
        from sklearn.metrics import confusion matrix
        from sklearn import metrics
        from sklearn.metrics import roc curve, auc
        from nltk.stem.porter import PorterStemmer
        import re
        # Tutorial about Python regular expressions: https://pymotw.com/2/re/
        import string
        from nltk.corpus import stopwords
        from nltk.stem import PorterStemmer
        from nltk.stem.wordnet import WordNetLemmatizer
        from gensim.models import Word2Vec
        from gensim.models import KeyedVectors
        import pickle
        from tadm import tadm
        import os
        C:\Users\user\Anaconda3\lib\site-packages\qensim\utils.py:1197: UserWar
        ning: detected Windows; aliasing chunkize to chunkize serial
          warnings.warn("detected Windows; aliasing chunkize to chunkize seria
        l")
In [2]: # using SQLite Table to read data.
        con = sqlite3.connect('database.sqlite')
        # filtering only positive and negative reviews i.e.
        # not taking into consideration those reviews with Score=3
        # SELECT * FROM Reviews WHERE Score != 3 LIMIT 500000, will give top 50
        0000 data points
        # you can change the number to any other number based on your computing
         power
```

import matplotlib.pyplot as plt

import seaborn as sns

```
# filtered data = pd.read sql query(""" SELECT * FROM Reviews WHERE Sco
re != 3 LIMIT 500000""", con)
# for tsne assignment you can take 5k data points
filtered data = pd.read sql query(""" SELECT * FROM Reviews WHERE Score
!= 3 LIMIT 100000""", con)
# Give reviews with Score>3 a positive rating(1), and reviews with a sc
ore<3 a negative rating(0).</pre>
def partition(x):
    if x < 3:
        return 0
    return 1
#changing reviews with score less than 3 to be positive and vice-versa
actualScore = filtered data['Score']
positiveNegative = actualScore.map(partition)
filtered data['Score'] = positiveNegative
print("Number of data points in our data", filtered data.shape)
filtered data.head(3)
```

Number of data points in our data (100000, 10)

Out[2]:

	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenomin
0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	
1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	

```
ld
                     ProductId
                                          Userld ProfileName HelpfulnessNumerator HelpfulnessDenomin
                                                       Natalia
                                                       Corres
           2 3 B000LQOCH0
                                 ABXLMWJIXXAIN
                                                      "Natalia
                                                      Corres"
In [3]: display = pd.read sql query("""
          SELECT UserId, ProductId, ProfileName, Time, Score, Text, COUNT(*)
          FROM Reviews
          GROUP BY UserId
          HAVING COUNT(*)>1
          """, con)
In [4]:
          print(display.shape)
          display.head()
          (80668, 7)
Out[4]:
                                                                                     Text COUNT(*)
                        Userld
                                   ProductId
                                             ProfileName
                                                               Time Score
                                                                             Overall its just
                                                                                 OK when
                                B007Y59HVM
                                                  Breyton 1331510400
                                                                                                  2
               R115TNMSPFT9I7
                                                                             considering the
                                                                                   price...
                                                                               My wife has
                                                 Louis E.
                                                                                 recurring
                                B005HG9ET0
                                                                                                  3
                                                  Emory 1342396800
                                                                                  extreme
               R11D9D7SHXIJB9
                                                  "hoppy"
                                                                                   muscle
                                                                               spasms, u...
                                                                              This coffee is
                                                                               horrible and
              #oc-
R11DNU2NBKQ23Z
                                B007Y59HVM
                                                          1348531200
                                                                                                  2
                                                                              unfortunately
                                                                                    not ...
                                                                             This will be the
                                                 Penguin
                                B005HG9ET0
                                                          1346889600
                                                                             bottle that you
                                                                                                  3
              R11O5J5ZVQE25C
                                                   Chick
                                                                             grab from the ...
```


[2] Exploratory Data Analysis

[2.1] Data Cleaning: Deduplication

It is observed (as shown in the table below) that the reviews data had many duplicate entries. Hence it was necessary to remove duplicates in order to get unbiased results for the analysis of the data. Following is an example:

```
In [7]: display= pd.read_sql_query("""
    SELECT *
    FROM Reviews
    WHERE Score != 3 AND UserId="AR5J8UI46CURR"
    ORDER BY ProductID
```

""", con)
display.head()

Out[7]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenon
0	78445	B000HDL1RQ	AR5J8UI46CURR	Geetha Krishnan	2	
1	138317	B000HDOPYC	AR5J8UI46CURR	Geetha Krishnan	2	
2	138277	В000НДОРУМ	AR5J8UI46CURR	Geetha Krishnan	2	
3	73791	B000HDOPZG	AR5J8UI46CURR	Geetha Krishnan	2	
4	155049	B000PAQ75C	AR5J8UI46CURR	Geetha Krishnan	2	
4						>

As it can be seen above that same user has multiple reviews with same values for HelpfulnessNumerator, HelpfulnessDenominator, Score, Time, Summary and Text and on doing analysis it was found that

ProductId=B000HDOPZG was Loacker Quadratini Vanilla Wafer Cookies, 8.82-Ounce Packages (Pack of 8)

ProductId=B000HDL1RQ was Loacker Quadratini Lemon Wafer Cookies, 8.82-Ounce Packages (Pack of 8) and so on

It was inferred after analysis that reviews with same parameters other than ProductId belonged to the same product just having different flavour or quantity. Hence in order to reduce redundancy it was decided to eliminate the rows having same parameters.

The method used for the same was that we first sort the data according to ProductId and then just keep the first similar product review and delelte the others. for eg. in the above just the review for ProductId=B000HDL1RQ remains. This method ensures that there is only one representative for each product and deduplication without sorting would lead to possibility of different representatives still existing for the same product.

Observation:- It was also seen that in two rows given below the value of HelpfulnessNumerator is greater than HelpfulnessDenominator which is not practically possible hence these two rows too are removed from calcualtions

```
In [11]: display= pd.read_sql_query("""
SELECT *
```

Out[10]: 87.775

```
FROM Reviews
         WHERE Score != 3 AND Id=44737 OR Id=64422
         ORDER BY ProductID
          """, con)
         display.head()
Out[11]:
                ld
                     ProductId
                                      Userld ProfileName HelpfulnessNumerator HelpfulnessDenon
                                                   J. E.
          0 64422 B000MIDROQ A161DK06JJMCYF
                                                                       3
                                               Stephens
                                                "Jeanne"
          1 44737 B001EQ55RW A2V0I904FH7ABY
                                                   Ram
                                                                       3
In [12]: final=final[final.HelpfulnessNumerator<=final.HelpfulnessDenominator]</pre>
In [13]: #Before starting the next phase of preprocessing lets see the number of
          entries left
          print(final.shape)
         #How many positive and negative reviews are present in our dataset?
         final['Score'].value counts()
         (87773, 10)
Out[13]: 1
               73592
               14181
         Name: Score, dtype: int64
```

[3] Preprocessing

[3.1]. Preprocessing Review Text

Now that we have finished deduplication our data requires some preprocessing before we go on further with analysis and making the prediction model.

Hence in the Preprocessing phase we do the following in the order below:-

- 1. Begin by removing the html tags
- 2. Remove any punctuations or limited set of special characters like, or. or # etc.
- 3. Check if the word is made up of english letters and is not alpha-numeric
- 4. Check to see if the length of the word is greater than 2 (as it was researched that there is no adjective in 2-letters)
- 5. Convert the word to lowercase
- 6. Remove Stopwords
- 7. Finally Snowball Stemming the word (it was observed to be better than Porter Stemming)

After which we collect the words used to describe positive and negative reviews

```
In [14]: # printing some random reviews
    sent_0 = final['Text'].values[0]
    print(sent_0)
    print("="*50)

    sent_1000 = final['Text'].values[1000]
    print(sent_1000)
    print("="*50)

    sent_1500 = final['Text'].values[1500]
    print(sent_1500)
    print("="*50)

    sent_4900 = final['Text'].values[4900]
```

```
print(sent_4900)
print("="*50)
```

My dogs loves this chicken but its a product from China, so we wont be buying it anymore. Its very hard to find any chicken products made in the USA but they are out there, but this one isnt. Its too bad too bec ause its a good product but I wont take any chances till they know what is going on with the china imports.

The Candy Blocks were a nice visual for the Lego Birthday party but the candy has little taste to it. Very little of the 2 lbs that I bought w ere eaten and I threw the rest away. I would not buy the candy again.

was way to hot for my blood, took a bite and did a jig lol

My dog LOVES these treats. They tend to have a very strong fish oil sme ll. So if you are afraid of the fishy smell, don't get it. But I think my dog likes it because of the smell. These treats are really small in size. They are great for training. You can give your dog several of the se without worrying about him over eating. Amazon's price was much more reasonable than any other retailer. You can buy a 1 pound bag on Amazon for almost the same price as a 6 ounce bag at other retailers. It's definitely worth it to buy a big bag if your dog eats them a lot.

```
In [15]: # remove urls from text python: https://stackoverflow.com/a/40823105/40
84039
sent_0 = re.sub(r"http\S+", "", sent_0)
sent_1000 = re.sub(r"http\S+", "", sent_1000)
sent_150 = re.sub(r"http\S+", "", sent_1500)
sent_4900 = re.sub(r"http\S+", "", sent_4900)
print(sent_0)
```

My dogs loves this chicken but its a product from China, so we wont be buying it anymore. Its very hard to find any chicken products made in the USA but they are out there, but this one isnt. Its too bad too bec ause its a good product but I wont take any chances till they know what is going on with the china imports.

```
In [16]: # https://stackoverflow.com/questions/16206380/python-beautifulsoup-how
         -to-remove-all-tags-from-an-element
         from bs4 import BeautifulSoup
         soup = BeautifulSoup(sent_0, 'lxml')
         text = soup.get text()
         print(text)
         print("="*50)
         soup = BeautifulSoup(sent 1000, 'lxml')
         text = soup.get text()
         print(text)
         print("="*50)
         soup = BeautifulSoup(sent 1500, 'lxml')
         text = soup.get text()
         print(text)
         print("="*50)
         soup = BeautifulSoup(sent 4900, 'lxml')
         text = soup.get text()
         print(text)
```

My dogs loves this chicken but its a product from China, so we wont be buying it anymore. Its very hard to find any chicken products made in the USA but they are out there, but this one isnt. Its too bad too bec ause its a good product but I wont take any chances till they know what is going on with the china imports.

The Candy Blocks were a nice visual for the Lego Birthday party but the candy has little taste to it. Very little of the 2 lbs that I bought were eaten and I threw the rest away. I would not buy the candy again.

was way to hot for my blood, took a bite and did a jig lol

My dog LOVES these treats. They tend to have a very strong fish oil sme ll. So if you are afraid of the fishy smell, don't get it. But I think my dog likes it because of the smell. These treats are really small in size. They are great for training. You can give your dog several of the

se without worrying about him over eating. Amazon's price was much more reasonable than any other retailer. You can buy a 1 pound bag on Amazon for almost the same price as a 6 ounce bag at other retailers. It's definitely worth it to buy a big bag if your dog eats them a lot.

```
In [17]: # https://stackoverflow.com/a/47091490/4084039
          import re
          def decontracted(phrase):
              # specific
              phrase = re.sub(r"won't", "will not", phrase)
              phrase = re.sub(r"can\'t", "can not", phrase)
              # general
              phrase = re.sub(r"n\'t", " not", phrase)
              phrase = re.sub(r"\'re", " are", phrase)
phrase = re.sub(r"\'s", " is", phrase)
              phrase = re.sub(r"\'d", " would", phrase)
              phrase = re.sub(r"\'ll", " will", phrase)
              phrase = re.sub(r"\'t", " not", phrase)
              phrase = re.sub(r"\'ve", " have", phrase)
              phrase = re.sub(r"\'m", " am", phrase)
              return phrase
In [18]: sent 1500 = decontracted(sent 1500)
          print(sent 1500)
          print("="*50)
          was way to hot for my blood, took a bite and did a jig lol
In [19]: #remove words with numbers python: https://stackoverflow.com/a/1808237
          0/4084039
          sent 0 = \text{re.sub}("\S^*\d\S^*", "", sent <math>0).\text{strip}()
          print(sent 0)
```

My dogs loves this chicken but its a product from China, so we wont be buying it anymore. Its very hard to find any chicken products made in

the USA but they are out there, but this one isnt. Its too bad too bec ause its a good product but I wont take any chances till they know what is going on with the china imports.

```
In [20]: #remove spacial character: https://stackoverflow.com/a/5843547/4084039
    sent_1500 = re.sub('[^A-Za-z0-9]+', ' ', sent_1500)
    print(sent_1500)
```

was way to hot for my blood took a bite and did a jig lol

```
In [21]: # https://gist.github.com/sebleier/554280
         # we are removing the words from the stop words list: 'no', 'nor', 'no
         + 1
         # <br /><br /> ==> after the above steps, we are getting "br br"
         # we are including them into stop words list
         # instead of <br /> if we have <br/> these tags would have revmoved in
          the 1st step
         stopwords= set(['br', 'the', 'i', 'me', 'my', 'myself', 'we', 'our', 'o
         urs', 'ourselves', 'you', "you're", "you've",\
                     "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselve
         s', 'he', 'him', 'his', 'himself', \
                     'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'it
         s', 'itself', 'they', 'them', 'their',\
                     'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'th
         is', 'that', "that'll", 'these', 'those', \
                     'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'h
         ave', 'has', 'had', 'having', 'do', 'does', \
                     'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or',
          'because', 'as', 'until', 'while', 'of', \
                     'at', 'by', 'for', 'with', 'about', 'against', 'between',
          'into', 'through', 'during', 'before', 'after',\
                     'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out',
          'on', 'off', 'over', 'under', 'again', 'further',\
                     'then', 'once', 'here', 'there', 'when', 'where', 'why', 'h
         ow', 'all', 'any', 'both', 'each', 'few', 'more',\
                     'most', 'other', 'some', 'such', 'only', 'own', 'same', 's
         o', 'than', 'too', 'very', \
                     's', 't', 'can', 'will', 'just', 'don', "don't", 'should',
```

```
"should've", 'now', 'd', 'll', 'm', 'o', 're', \
                      've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't",
          'didn', "didn't", 'doesn', "doesn't", 'hadn',\
                      "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "is
         n't", 'ma', 'mightn', "mightn't", 'mustn',\
                     "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn',
          "shouldn't", 'wasn', "wasn't", 'weren', "weren't", \
                      'won', "won't", 'wouldn', "wouldn't"])
In [35]: # Combining all the above stundents
         from tqdm import tqdm
         preprocessed reviews = []
         # tqdm is for printing the status bar
         for sentance in tgdm(final['Text'].values):
             sentance = re.sub(r"http\S+", "", sentance)
             sentance = BeautifulSoup(sentance, 'lxml').get text()
             sentance = decontracted(sentance)
             sentance = re.sub("\S*\d\S*", "", sentance).strip()
             sentance = re.sub('[^A-Za-z]+', ' ', sentance)
             # https://gist.github.com/sebleier/554280
             sentance = ' '.join(e.lower() for e in sentance.split() if e.lower
          () not in stopwords)
             preprocessed reviews.append(sentance.strip())
         100%|
                   87775/87775 [01:04<00:00, 1358.83it/s]
In [36]: preprocessed reviews[1500]
Out[36]: 'way hot blood took bite jig lol'
In [39]: final['CleanedText'] = preprocessed reviews
         final.head(5)
Out[39]:
                  ld
                       ProductId
                                        Userld
                                               ProfileName HelpfulnessNumerator Helpfulness[
```

		ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	Helpfulness[
226	2 0 24	750	2734888454	A13ISQV0U9GZIC	Sandikaye	1	
226	3 21 24	751	2734888454	A1C298ITT645B6	Hugh G. Pritchard	0	
706	7 7 76	870	B00002N8SM	A19Q006CSFT011	Arlielle	0	
706	7 6 76	869	B00002N8SM	A1FYH4S02BW7FN	wonderer	0	
706	7 5 76	868	B00002N8SM	AUE8TB5VHS6ZV	eyeofthestorm	0	
4							•

[3.2] Preprocessing Review Summary

In [0]: ## Similartly you can do preprocessing for review summary also.

[4] Featurization

[4.1] BAG OF WORDS

[4.2] Bi-Grams and n-Grams.

```
In [0]: #bi-gram, tri-gram and n-gram
    #removing stop words like "not" should be avoided before building n-gra
    ms
    # count_vect = CountVectorizer(ngram_range=(1,2))
    # please do read the CountVectorizer documentation http://scikit-learn.
    org/stable/modules/generated/sklearn.feature_extraction.text.CountVecto
    rizer.html

# you can choose these numebrs min_df=10, max_features=5000, of your ch
    oice
    count_vect = CountVectorizer(ngram_range=(1,2), min_df=10, max_features=5000)
```

```
final_bigram_counts = count_vect.fit_transform(preprocessed_reviews)
print("the type of count vectorizer ",type(final_bigram_counts))
print("the shape of out text BOW vectorizer ",final_bigram_counts.get_s
hape())
print("the number of unique words including both unigrams and bigrams "
, final_bigram_counts.get_shape()[1])
```

the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'> the shape of out text BOW vectorizer (4986, 3144) the number of unique words including both unigrams and bigrams 3144

[4.3] TF-IDF

```
In [0]: tf idf vect = TfidfVectorizer(ngram range=(1,2), min df=10)
        tf idf vect.fit(preprocessed reviews)
        print("some sample features(unique words in the corpus)",tf idf vect.ge
        t feature names()[0:10])
        print('='*50)
        final tf idf = tf idf vect.transform(preprocessed reviews)
        print("the type of count vectorizer ",type(final tf idf))
        print("the shape of out text TFIDF vectorizer ",final tf idf.get shape
        ())
        print("the number of unique words including both unigrams and bigrams "
        , final tf idf.get shape()[1])
        some sample features(unique words in the corpus) ['ability', 'able', 'a
        ble find', 'able get', 'absolute', 'absolutely', 'absolutely deliciou
        s', 'absolutely love', 'absolutely no', 'according']
        the type of count vectorizer <class 'scipy.sparse.csr.csr matrix'>
        the shape of out text TFIDF vectorizer (4986, 3144)
        the number of unique words including both unigrams and bigrams 3144
```

[4.4] Word2Vec

```
In [0]: # Train your own Word2Vec model using your own text corpus
        i = 0
        list of sentance=[]
        for sentance in preprocessed reviews:
            list of sentance.append(sentance.split())
In [0]: # Using Google News Word2Vectors
        # in this project we are using a pretrained model by google
        # its 3.3G file, once you load this into your memory
        # it occupies ~9Gb, so please do this step only if you have >12G of ram
        # we will provide a pickle file wich contains a dict ,
        # and it contains all our courpus words as keys and model[word] as val
        # To use this code-snippet, download "GoogleNews-vectors-negative300.bi
        # from https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edi
        # it's 1.9GB in size.
        # http://kavita-ganesan.com/gensim-word2vec-tutorial-starter-code/#.W17
        SRFAzZPY
        # you can comment this whole cell
        # or change these varible according to your need
        is your ram qt 16q=False
        want to use google w2v = False
        want to train w2v = True
        if want to train w2v:
            # min count = 5 considers only words that occured atleast 5 times
            w2v model=Word2Vec(list of sentance,min count=5,size=50, workers=4)
            print(w2v_model.wv.most similar('great'))
            print('='*50)
            print(w2v model.wv.most similar('worst'))
        elif want to use google w2v and is your ram gt 16g:
            if os.path.isfile('GoogleNews-vectors-negative300.bin'):
```

```
w2v model=KeyedVectors.load word2vec format('GoogleNews-vectors
        -negative300.bin', binary=True)
                print(w2v model.wv.most similar('great'))
                print(w2v model.wv.most similar('worst'))
            else:
                print("you don't have gogole's word2vec file, keep want to trai
        n w2v = True, to train your own w2v ")
        [('snack', 0.9951335191726685), ('calorie', 0.9946465492248535), ('wond
        erful', 0.9946032166481018), ('excellent', 0.9944332838058472), ('espec
        ially', 0.9941144585609436), ('baked', 0.9940600395202637), ('salted',
        0.994047224521637), ('alternative', 0.9937226176261902), ('tasty', 0.99
        36816692352295), ('healthy', 0.9936649799346924)]
        [('varieties', 0.9994194507598877), ('become', 0.9992934465408325), ('p
        opcorn', 0.9992750883102417), ('de', 0.9992610216140747), ('miss', 0.99
        92451071739197), ('melitta', 0.999218761920929), ('choice', 0.999210238
        4567261), ('american', 0.9991837739944458), ('beef', 0.999178051948547
        4), ('finish', 0.9991567134857178)]
In [0]: w2v words = list(w2v model.wv.vocab)
        print("number of words that occured minimum 5 times ",len(w2v words))
        print("sample words ", w2v words[0:50])
        number of words that occured minimum 5 times 3817
        sample words ['product', 'available', 'course', 'total', 'pretty', 'st
        inky', 'right', 'nearby', 'used', 'ca', 'not', 'beat', 'great', 'receiv
        ed', 'shipment', 'could', 'hardly', 'wait', 'try', 'love', 'call', 'ins
        tead', 'removed', 'easily', 'daughter', 'designed', 'printed', 'use',
        'car', 'windows', 'beautifully', 'shop', 'program', 'going', 'lot', 'fu
        n', 'everywhere', 'like', 'tv', 'computer', 'really', 'good', 'idea',
        'final', 'outstanding', 'window', 'everybody', 'asks', 'bought', 'mad
        e']
```

[4.4.1] Converting text into vectors using Avg W2V, TFIDF-W2V

[4.4.1.1] Avg W2v

```
In [0]: # average Word2Vec
        # compute average word2vec for each review.
        sent vectors = []; # the avg-w2v for each sentence/review is stored in
         this list
        for sent in tqdm(list of sentance): # for each review/sentence
            sent vec = np.zeros(50) # as word vectors are of zero length 50, yo
        u might need to change this to 300 if you use google's w2v
            cnt words =0; # num of words with a valid vector in the sentence/re
        view
            for word in sent: # for each word in a review/sentence
                if word in w2v words:
                    vec = w2v model.wv[word]
                    sent vec += vec
                    cnt words += 1
            if cnt words != 0:
                sent vec /= cnt words
            sent vectors.append(sent_vec)
        print(len(sent vectors))
        print(len(sent vectors[0]))
        100%|
                   | 4986/4986 [00:03<00:00, 1330.47it/s]
        4986
        50
        [4.4.1.2] TFIDF weighted W2v
In [0]: # S = ["abc def pgr", "def def def abc", "pgr pgr def"]
        model = TfidfVectorizer()
        tf idf matrix = model.fit transform(preprocessed reviews)
        # we are converting a dictionary with word as a key, and the idf as a v
        alue
        dictionary = dict(zip(model.get feature names(), list(model.idf )))
```

```
In [0]: # TF-IDF weighted Word2Vec
        tfidf feat = model.get feature names() # tfidf words/col-names
        # final tf idf is the sparse matrix with row= sentence, col=word and ce
        ll val = tfidf
        tfidf sent vectors = []; # the tfidf-w2v for each sentence/review is st
        ored in this list
        row=0;
        for sent in tqdm(list of sentance): # for each review/sentence
            sent vec = np.zeros(50) # as word vectors are of zero length
            weight sum =0; # num of words with a valid vector in the sentence/r
        eview
            for word in sent: # for each word in a review/sentence
                if word in w2v words and word in tfidf feat:
                    vec = w2v model.wv[word]
                      tf idf = tf idf matrix[row, tfidf feat.index(word)]
                    # to reduce the computation we are
                    # dictionary[word] = idf value of word in whole courpus
                    # sent.count(word) = tf valeus of word in this review
                    tf idf = dictionary[word]*(sent.count(word)/len(sent))
                    sent vec += (vec * tf idf)
                    weight sum += tf idf
            if weight sum != 0:
                sent vec /= weight sum
            tfidf sent vectors.append(sent vec)
            row += 1
        100%|
                     4986/4986 [00:20<00:00, 245.63it/s]
```

[5] Assignment 4: Apply Naive Bayes

- 1. Apply Multinomial NaiveBayes on these feature sets
 - SET 1:Review text, preprocessed one converted into vectors using (BOW)
 - SET 2:Review text, preprocessed one converted into vectors using (TFIDF)

2. The hyper paramter tuning(find best Alpha)

- Find the best hyper parameter which will give the maximum AUC value
- Consider a wide range of alpha values for hyperparameter tuning, start as low as 0.00001
- Find the best hyper paramter using k-fold cross validation or simple cross validation data
- Use gridsearch cv or randomsearch cv or you can also write your own for loops to do this task of hyperparameter tuning

3. Feature importance

 Find the top 10 features of positive class and top 10 features of negative class for both feature sets Set 1 and Set 2 using values of `feature_log_prob_` parameter of <u>MultinomialNB</u> and print their corresponding feature names

4. Feature engineering

- To increase the performance of your model, you can also experiment with with feature engineering like :
 - Taking length of reviews as another feature.
 - Considering some features from review summary as well.

5. Representation of results

You need to plot the performance of model both on train data and cross validation data
for each hyper parameter, like shown in the figure. Here on X-axis you will have alpha
values, since they have a wide range, just to represent those alpha values on the graph,
apply log function on those alpha values.

Once after you found the best hyper parameter, you need to train your model with it, and find the AUC on test data and plot the ROC curve on both train and test.

Along with plotting ROC curve, you need to print the <u>confusion</u> matrix with predicted and original labels of test data points. Please visualize your confusion matrices using <u>seaborn heatmaps</u>.

6. Conclusion

• You need to summarize the results at the end of the notebook, summarize it in the table format. To print out a table please refer to this prettytable library link

Note: Data Leakage

- 1. There will be an issue of data-leakage if you vectorize the entire data and then split it into train/cv/test.
- 2. To avoid the issue of data-leakag, make sure to split your data first and then vectorize it.
- 3. While vectorizing your data, apply the method fit_transform() on you train data, and apply the method transform() on cv/test data.
- 4. For more details please go through this link.

Applying Multinomial Naive Bayes

[5.1] Applying Naive Bayes on BOW, SET 1

```
In [0]: # Please write all the code with proper documentation
In [40]: X = final["CleanedText"]
    print("shape of X:", X.shape)
    shape of X: (87775,)

In [41]: y = final["Score"]
    print("shape of y:", y.shape)
    shape of y: (87775,)
```

```
In [42]: from sklearn.model selection import train test split
         # X train, X test, y train, y test = train test split(X, Y, test size=
         0.33, shuffle=Flase): this is for time series split
         X train, X test, y train, y test = train test split(X, y, test size=0.3
         3) # this is random splitting
         X train, X cv, y train, y cv = train test split(X train, y train, test
         size=0.33) # this is random splitting
         print(X train.shape, y train.shape)
         print(X cv.shape, y cv.shape)
         print(X test.shape, y test.shape)
         print("="*100)
         from sklearn.feature extraction.text import CountVectorizer
         vectorizer = CountVectorizer()
         vectorizer.fit(X train) # fit has to happen only on train data
         # we use the fitted CountVectorizer to convert the text to vector
         X train bow = vectorizer.transform(X train)
         X cv bow = vectorizer.transform(X cv)
         X test bow = vectorizer.transform(X test)
         print("After vectorizations")
         print(X train bow.shape, y train.shape)
         print(X cv bow.shape, y cv.shape)
         print(X test bow.shape, y test.shape)
         print("="*100)
         (39402,) (39402,)
         (19407,) (19407,)
         (28966,) (28966,)
         ______
         After vectorizations
         (39402, 37005) (39402,)
         (19407, 37005) (19407,)
```

```
In [47]: from sklearn.naive bayes import MultinomialNB
         from sklearn.metrics import roc_auc_score
         import matplotlib.pyplot as plt
         train auc = []
         cv auc = []
         K = [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10]
         for i in K:
             MNB = MultinomialNB(alpha = i)
             MNB.fit(X train bow, y train)
             # roc auc score(y true, y score) the 2nd parameter should be probab
         ility estimates of the positive class
             # not the predicted outputs
             y train pred = MNB.predict proba(X train bow)[:,1]
             y cv pred = MNB.predict proba(X cv bow)[:,1]
             train auc.append(roc auc score(y train,y train pred))
             cv_auc.append(roc_auc_score(y_cv, y_cv_pred))
         plt.plot(K, train auc, label='Train AUC')
         plt.plot(K, cv auc, label='CV AUC')
         plt.legend()
         plt.xlabel("K: hyperparameter")
         plt.ylabel("AUC")
         plt.title("ERROR PLOTS")
         plt.show()
```



```
In [48]: best alpha=1.75
In [49]: from sklearn.metrics import roc_curve, auc
         MNB = MultinomialNB(alpha=best alpha)
         MNB.fit(X train bow, y train)
         # roc auc score(y true, y score) the 2nd parameter should be probabilit
         y estimates of the positive class
         # not the predicted outputs
         train fpr, train tpr, thresholds = roc curve(y train, MNB.predict proba
         (X \text{ train bow})[:,\overline{1}])
         test fpr, test tpr, thresholds = roc curve(y test, MNB.predict proba(X
         test bow)[:,1])
         plt.plot(train fpr, train tpr, label="train AUC ="+str(auc(train fpr, t
         rain tpr)))
         plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test fpr, test
         tpr)))
         plt.legend()
```

```
plt.xlabel("K: hyperparameter")
          plt.ylabel("AUC")
          plt.title("ERROR PLOTS")
          plt.show()
                                ERROR PLOTS
            1.0
             0.8
             0.6
           AUC
             0.4
             0.2
                                    train AUC = 0.9350122876175783
                                    test AUC = 0.8879848428379475
             0.0
                        0.2
                                         0.6
                 0.0
                                0.4
                                                0.8
                                                        1.0
                               K: hyperparameter
In [50]: bow features = vectorizer.get feature names()
In [51]: feat count = MNB.feature_count_
          feat count.shape
Out[51]: (2, 37005)
In [52]: MNB.class count
Out[52]: array([ 6389., 33013.])
In [53]: log prob = MNB.feature log prob
          log prob
Out[53]: array([[-11.71889178, -12.17087691, -12.17087691, ..., -12.17087691,
                   -12.17087691, -12.170876911,
```

```
[-12.05502524, -12.78096224, -12.35351823, ..., -12.54457346,
                 -13.09111717, -13.09111717]])
In [54]: | feature_prob = pd.DataFrame(log_prob, columns = bow features)
         feature prob tr = feature prob.T
         feature_prob_tr.shape
Out[54]: (37005, 2)
In [55]: print("Top 10 Negative Features:-\n", feature prob tr[0].sort values(asc
         ending = False)[0:10])
         print("\n\n Top 10 Positive Features:-\n", feature prob tr[1].sort value
         s(ascending = False)[0:10])
         Top 10 Negative Features:-
          not
                    -3.464836
         like
                   -4.565485
                 -4.854329
         would
         taste
                  -4.884000
         product -4.903351
         one
                   -5.096276
                   -5.330636
         good
         coffee
                  -5.359161
                   -5.398941
         no
                   -5.441736
         flavor
         Name: 0, dtype: float64
          Top 10 Positive Features:-
          not
                   -3.758664
                  -4.573942
         like
                  -4.706583
         good
                  -4.788671
         great
                  -4.913525
         one
         taste
                  -5.013783
         coffee
                  -5.031094
         flavor
                  -5.102636
         would
                  -5.107832
```

love -5.129905 Name: 1, dtype: float64

```
In [62]: from sklearn.metrics import confusion_matrix
    import seaborn as sns
    print("Train confusion matrix")
    cm=confusion_matrix(y_train, MNB.predict(X_train_bow))
    class_label = ["negative", "positive"]
    df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
    sns.heatmap(df_cm, annot = True, fmt = "d")
    plt.title("Confusiion Matrix")
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
    plt.show()
```

Train confusion matrix


```
In [63]: print("Test confusion matrix")
    cm=confusion_matrix(y_test, MNB.predict(X_test_bow))
    class_label = ["negative", "positive"]
    df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
    sns.heatmap(df_cm, annot = True, fmt = "d")
```

```
plt.title("Confusiion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
```

Test confusion matrix

[5.1.1] Top 10 important features of positive class from SET 1

```
In [0]: # Please write all the code with proper documentation
In [64]: X = final["CleanedText"]
    print("shape of X:", X.shape)
    shape of X: (87775,)

In [65]: y = final["Score"]
    print("shape of y:", y.shape)
    shape of y: (87775,)
```

```
In [66]: from sklearn.model selection import train test split
         # X train, X test, y train, y test = train test split(X, Y, test size=
         0.33, shuffle=Flase): this is for time series split
         X_train, X_test, y_train, y test = train test split(X, y, test size=0.3
         3) # this is random splitting
         X train, X cv, y train, y cv = train test split(X train, y train, test
         size=0.33) # this is random splitting
         print(X train.shape, y train.shape)
         print(X cv.shape, y cv.shape)
         print(X test.shape, y test.shape)
         print("="*100)
         from sklearn.feature extraction.text import TfidfVectorizer
         vectorizer = TfidfVectorizer(ngram range=(1,2))
         vectorizer.fit(X train) # fit has to happen only on train data
         # we use the fitted CountVectorizer to convert the text to vector
         X train tfidf = vectorizer.transform(X train)
         X cv tfidf = vectorizer.transform(X cv)
         X test tfidf = vectorizer.transform(X test)
         print("After vectorizations")
         print(X train tfidf.shape, y train.shape)
         print(X cv tfidf.shape, y cv.shape)
         print(X test tfidf.shape, y test.shape)
         print("="*100)
         (39402.) (39402.)
         (19407,) (19407,)
         (28966,) (28966,)
         After vectorizations
         (39402, 774328) (39402,)
         (19407, 774328) (19407,)
```

```
In [70]: from sklearn.naive bayes import MultinomialNB
         from sklearn.metrics import roc_auc_score
         import matplotlib.pyplot as plt
         train auc = []
         cv auc = []
         K = [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10]
         for i in K:
             MNB = MultinomialNB(alpha = i)
             MNB.fit(X train tfidf, y train)
             # roc auc score(y true, y score) the 2nd parameter should be probab
         ility estimates of the positive class
             # not the predicted outputs
             y train pred = MNB.predict proba(X train tfidf)[:,1]
             y cv pred = MNB.predict proba(X cv tfidf)[:,1]
             train auc.append(roc_auc_score(y_train,y_train_pred))
             cv auc.append(roc auc score(y cv, y cv pred))
         plt.plot(K, train_auc, label='Train AUC')
         plt.plot(K, cv auc, label='CV AUC')
         plt.legend()
         plt.xlabel("K: hyperparameter")
         plt.ylabel("AUC")
         plt.title("ERROR PLOTS")
         plt.show()
```



```
In [72]:
         best alpha=1
In [73]: from sklearn.metrics import roc curve, auc
         MNB = MultinomialNB(alpha =best alpha)
         MNB.fit(X train tfidf, y train)
         # roc auc score(y true, y score) the 2nd parameter should be probabilit
         y estimates of the positive class
         # not the predicted outputs
         train fpr, train tpr, thresholds = roc curve(y train, MNB.predict proba
         (X train tfidf)[:,1])
         test fpr, test tpr, thresholds = roc curve(y test, MNB.predict proba(X
         test tfidf)[:,1])
         plt.plot(train fpr, train tpr, label="train AUC ="+str(auc(train fpr, t
         rain tpr)))
         plt.plot(test fpr, test tpr, label="test AUC ="+str(auc(test fpr, test
         tpr)))
         plt.legend()
```

```
plt.xlabel("K: hyperparameter")
          plt.ylabel("AUC")
          plt.title("ERROR PLOTS")
          plt.show()
                                ERROR PLOTS
            1.0
             0.8
             0.6
           AUC
             0.4
             0.2
                                    train AUC = 0.9397300150094223
                                    test AUC = 0.7895993773329124
             0.0
                        0.2
                                        0.6
                 0.0
                                0.4
                                                0.8
                                                        1.0
                               K: hyperparameter
In [74]: tfidf features = vectorizer.get feature names()
In [75]: feat count = MNB.feature_count_
          feat count shape
Out[75]: (2, 774328)
In [76]: MNB.class count
Out[76]: array([ 6369., 33033.])
In [77]: log_prob = MNB.feature log prob
          log prob
Out[77]: array([[-13.44331986, -13.62109891, -13.62109891, ..., -13.62109891,
                   -13.62109891, -13.62109891],
```

```
[-13.20737315, -13.63748125, -13.6956151, ..., -13.76081361,
                 -13.75334593, -13.7533459311)
In [78]: | feature_prob = pd.DataFrame(log_prob, columns = tfidf features)
         feature prob tr = feature prob.T
         feature_prob_tr.shape
Out[78]: (774328, 2)
In [79]: print("Top 10 negative features:-\n", feature prob tr[0].sort values(asc
         ending = False)[0:10])
         print("\n\n Top 10 positive features:-\n", feature prob tr[1].sort value
         s(ascending = False)[0:10])
         Top 10 negative features:-
          not
                    -8.174450
                   -8.970659
         like
                 -9.091604
         taste
         would
                   -9.106226
         product -9.108145
         coffee
                   -9.309711
                   -9.423601
         one
         flavor
                  -9.557258
         no
                   -9.567925
                   -9.617312
         good
         Name: 0, dtype: float64
          Top 10 positive features:-
          not
                    -7.335034
         great
                   -7.676431
                   -7.744778
         aood
         like
                   -7.778422
         coffee
                   -7.779309
         love
                   -7.910020
                   -7.910410
         tea
                   -8.028604
         one
                   -8.029803
         taste
```

product -8.049458 Name: 1, dtype: float64

```
In [80]: from sklearn.metrics import confusion_matrix
    import seaborn as sns
    print("Train confusion matrix")
    cm=confusion_matrix(y_train, MNB.predict(X_train_tfidf))
    class_label = ["negative", "positive"]
    df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
    sns.heatmap(df_cm, annot = True, fmt = "d")
    plt.title("Confusiion Matrix")
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
    plt.show()
```

Train confusion matrix


```
In [81]: print("Test confusion matrix")
    cm=confusion_matrix(y_test, MNB.predict(X_test_tfidf))
    class_label = ["negative", "positive"]
    df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
    sns.heatmap(df_cm, annot = True, fmt = "d")
```

```
plt.title("Confusiion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
```

Test confusion matrix

In [82]: models = pd.DataFrame({'vectorizer': ['NaiveBayes with Bow', "NaiveBaye
s with TFIDF"], 'Model' : ["MultinomialNB", "MultinomialNB"], 'Hyper Para
meter(alpha)': [1.75,1], 'AUC':[.88,.78]}, columns = ["vectorizer", "Mod
el", "Hyper Parameter(alpha)", "AUC"])
models

Out[82]:

	vectorizer	Model	Hyper Parameter(alpha)	AUC
0	NaiveBayes with Bow	MultinomialNB	1.75	0.88
1	NaiveBayes with TFIDF	MultinomialNB	1.00	0.78

In []:

[5.1.2] Top 10 important features of negative class from SET 1

In [0]: # Please write all the code with proper documentation

[5.2] Applying Naive Bayes on TFIDF, SET 2

In [0]: # Please write all the code with proper documentation

[5.2.1] Top 10 important features of positive class from SET 2

In [0]: # Please write all the code with proper documentation

[5.2.2] Top 10 important features of negative class from SET 2

In [0]: # Please write all the code with proper documentation

[6] Conclusions

In [0]: # Please compare all your models using Prettytable library