

REC'D 18 FEB 2005

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le _______ 0 7 DEC. 2004

Pour le Directeur général de l'Institut national de la propriété Industrielle Le Chef du Département des brevets

Martine PLANCHE

REST AVAILABLE COPY

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1.a) OU b)

> INSTITUT NATIONAL DE LA PROPRIETE

SIEGE 26 bls, rue de Saint-Petersbourg 75800 PARIS cedex 08 Téléphone: 33 (0)1 53 04 53 04 Télécople: 33 (0)1 53 04 45 23 www.inpl.fr

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08 Téléphone : 33 (1) 53 04 53 04 Télécopie : 33 (1) 42 94 86 54

REQUÊTE EN DÉLIVRANCE page 1/2

1 Circle (10) 12 20 04 05 04 1 Circle (10) 12 5 1 5 5 5 5 1			h-8/-		
	Réservé à l'INPI		Cet imprimé est à remplir lisiblement à l'encre noire DB 540 68/ 21		
REMISTOR DE	ESC 2003		NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE		
75 IN	IPI PARIS B		À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE		
LICO	0314151		CABINET ORES		
N° D'ENREGISTR NATIONAL ATTRI			36 rue de St Pétersbourg		
DATE DE DÉPÔT			75008 PARIS		
Par l'inpi					
	ences pour ce dossler BLOcp226/111FR		•		
	tion d'un dépôt par télécopie	N° attribué pa	ar l'INPI à la télécopie		
***	RE DE LA DEMANDE	1 13 15 17 1 24 1 10 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s 4 cases survantes		
	nde de brevet	X			
Deman	nde de certificat d'utilité				
Demar	nde divisionnaire		•		
l	Demande de brevel iniliale	No.	Date []]]]		
i .		₹ **	Date L		
<u> </u>	ou demande de certificat d'utilité initiale ormation d'une demande de		Unit Landau Land		
	ormation d'une demande de européen Demande de brevet iniliale	N°	Date [
3 TITRE	DE L'INVENTION (200 caractères ou	espaces maximum)			
4 DÉCLA	ARATION DE PRIORITÉ	Pays ou organisation			
1 —	EQUÊTE DU BÉNÉFICE DE	Date	N°		
		Pays ou organisation			
1	ATE DE DÉPÔT D'UNE	Date	N°		
DEMA	ande antérieure française	Pays ou organisation	ion See a la No		
1	,		autres prìorités, cochez la case et utilisez l'imprimé «Suite»		
THE PARTY	ANDEUR (Cochez l'une des 2 cases)	THE CALL STREET			
· 大海 / 图 / 1.	NDEUR (Cochez l'une des 2 cases)	The said of the said of the said of	The Contract of the Contract o		
Nom ou đén	nomination sociale	INSTITUT PAST	TEUR		
Prénon		 			
	ms e juridique	Etablissement p	public		
N° SIR		Labitsement public			
	APE-NAF				
Domici		25-28 rue du Do	octeur Roux		
ou siège	Code postal et ville	17151712141 PA	ARIS Cedex 15		
3108-	Pays	FRANCE			
Nationa	nalité	Française			
	téléphone (facultatif)		N° de télécopie (facultatif)		
Adresse électronique (facultatif)		1			

X S'il y a plus d'un demandeur, cochez la case et utilisez l'Imprimé «Suite»

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

REQUÊTE EN DÉLIVRANCE page 2/2

REMISPOED PESC 2003		[•		
TI INPI PARIS B					
N° D'ENREGISTREMENT 0314151					
NATIONAL ATTRIBUÉ PAR L'INPI			DB 540 W / 210507		
6 MANDATAIRE (Silyalidi)					
Nom	ORES	ORES			
Prénom	Béatrice	Béatrice			
Cabinet ou Société	CABINET ORES				
N 9da novveiu navenant at (a)	<u> </u>				
N °de pouvoir permanent et/ou de lien contractuel	1.				
Rue	36 rue de St Pét	36 rue de St Pétersbourg			
Adresse Code postal et ville	17 5 0 0 8 PARIS				
Pays	FRANCE				
N° de téléphone (facultatif)	01.53.21.11.00.				
N° de télécopie (facultatif)	01.53.21.08.88.				
Adresse électronique (facultatif)	ores@cabinet-or				
7 INVENTEUR (S)	Les inventeurs so	Les Inventeurs sont nécessairement des personnes physiques			
Les demandeurs et les inventeurs sont les mêmes personnes	Oui Non : Dans ce cas remplir le formulaire de Désignation d'inventeur(s)				
8 RAPPORT DE RECHERCHE	Uniquement pour une demande de brevet (y compris division et transformation)				
Établissement immédia ou établissement différé	<u>K</u>				
Paiement échelonné de la redevance (en deux versements)	Uniquement pour les personnes physiques effectuant elles-mêmes leur propre dépôt Oui Non				
P RÉDUCTION DU TAUX DES REDEVANCES	Uniquement pour les personnes physiques Requise pour la première fois pour cette invention (joindre un avis de non-imposition) Obtenue antérieurement à ce dépôt pour cette invention (joindre une copie de la décision d'admission à l'assistance gratuite ou indiquer sa référence): AG				
SÉQUENCES DE NUCLEOTIDES ET/OU D'ACIDES AMINÉS	Cochez la case si la description contient une liste de séquences				
Le support électronique de données est join	t 🗶				
La déclaration de conformité de la liste de séquences sur support papier avec le support électronique de données est jointe	X				
Si vous avez utilisé l'imprimé «Suite», Indiquez le nombre de pages jointes	1				
SIGNATURE DU DEMANDEUR OU DU MANDATAIRE (Nom et qualité du signataire) Le Mandataire, Béatrice C	ORES (n° 92-4046)		VISA DE LA PRÉFECTURE OU DE L'INPI		

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08 Téléphone : 33 (1) 53 04 53 04 Télécopie : 33 (1) 42 94 86 54

BREVET D'INVENTION

REQUÊTE EN DÉLIVRANCE

Page suite Nº 1.../1...

0.050	Réservé à l'INPI				
DATE	Réservé à l'INPI				
DATE 75 INPI PA	anio d				
	0314151				
N° D'ENREGISTREMENT NATIONAL ATTRIBUÉ PAR L	PNPI		Cet imprimé est à remplir lisi	iblement à l'encre noire	DB 829 @ W / 010702
		BLOcp226/111FR			
	our ce dossier (facultatif)	Pays ou organisation			
4 DÉCLARATION	N DE PRIORITÉ	Date LILL	1 1 1 No		
OU REQUÊTE	DU BÉNÉFICE DE	Pays ou organisation			
LA DATE DE	DÉPÔT D'UNE	Date N°			
DEMANDE A	ntérieure française	Pays ou organisation			
		Date Nº			Hill was a contract of
DEMANDEUR	(Cochez l'une des 2 cases)		ale Pe		制度
Nom		CENTRE NATIO	NAL DE LA RECHERCH	IE SCIENTIFIQUE	
ou dénomination	on sociale				
Prénoms					
Forme juridiqu	ie	Etablissement pu	ablic		
N° SIREN		سببت			
Code APE-NAF	-				<u>=</u>
Domicile	Rue	3 rue Michel-Ang			5
ou siège	Code postal et ville	[715171914] PA	RIS Cedex 16		
Siege	Pays	FRANCE			7.2
Nationalité		Française			
N° de télépho	ne (facultatif)				***
N° de télécop					1.00
Adresse électr	ronique (facultatif)			The same and the amount of the first of the	TELEFORM OF PROPERTY.
5 DEMANDEU	R (Cochez l'une des 2 cases)	Personne mor	ale 🚎 🚉 🗀 🕍 🔲 P	ersonne physique	一位的
Nom ou dénominat	tion sociale				
Prénoms					
Forme juridiqu	ue				
N° SIREN			111		
Code APE-NA	F				
Domicile	Rue				
ou siège	Code postal et ville				
sieRe	Pays				
Nationalité					
N° de télépho	one (facultatif)				
N° de télécop					
Adresse élect	tronique (facultatif)				
OU DU MA	DU DEMANDEUR Le N INDATAIRE alité du signataire)	landataire,	RES (n° 92-4046)	VISA DE LA PRÉ QU DE L'IN	
1	•	Dealine C.	120 (// 02 / / / /		

La présente invention est relative à une nouvelle souche de coronavirus associé au syndrome respiratoire aigu sévère (SRAS), issue d'un prélèvement répertorié sous le n° 031589 et prélevé à Hanoi (Vietnam), à des molécules d'acide nucléique issues de son génome, aux protéines et peptides codés par lesdites molécules d'acide nucléique ainsi qu'à leurs applications, notamment en tant que réactifs de diagnostic et/ou comme vaccin.

Le coronavirus est un virus à ARN monocaténaire, de polarité positive, d'approximativement 30 kilobases qui se réplique dans le cytoplasme des cellules hôtes; l'extrémité 5' du génome a une structure en coiffe et l'extrémité 3' comporte une queue polyA. Ce virus est enveloppé et comprend, à sa surface, -des structures péplomériques- dénommées spicules.

10

15

Le génome comprend les cadres ouverts de lecture ou ORF suivants, de son extrémité 5' vers son extrémité 3': ORF1a et ORF1b correspondant aux protéines du complexe de transcription-réplication, et ORF-S, ORF-E, ORF-M et ORF-N correspondant aux protéines structurales S, E, M et N. Il comprend également des ORFs correspondant à des protéines de fonction inconnue codées par : la région située entre 1'ORF-S et 1'ORF-E et chevauchant cette dernière, la région située entre 1'ORF-N, et la région incluse dans 1'ORF-N.

La protéine S est une glycoprotéine membranaire (200-220 kDa) qui 20 se présente sous la forme de spicules ou "Spike" émergeant de la surface de l'enveloppe virale. Elle est responsable de l'attachement du virus aux récepteurs de la cellule hôte et de l'induction de la fusion de l'enveloppe virale avec la membrane cellulaire.

La petite protéine d'enveloppe (E) également dénommée sM (small membrane) qui est une protéine trans-membranaire non glycosylée d'environ 10 kDa, est la protéine présente en plus faible quantité dans le virion. Elle joue un rôle moteur dans le processus de bourgeonnement des coronavirus qui se produit au niveau du compartiment intermédiaire dans le réticulum endoplasmique et l'appareil de Golgi

La protéine M ou protéine de matrice (25-30 kDa) est une glyco-30 protéine membranaire plus abondante qui est intégrée dans la particule virale par une interaction M/E, tandis que l'incorporation de S dans les particules est dirigée par une interaction S/M. Elle semble être importante pour la maturation virale des coronavirus et pour la détermination du site au niveau duquel les particules virales sont assemblées.

La protéine N ou protéine de nucléocapside (45-50 kDa) qui est la plus conservée parmi les protéines structurales des coronavirus, est nécessaire pour encapsider l'ARN génomique puis pour diriger son incorporation dans le virion. Cette protéine est vraisemblablement également impliquée dans la réplication de l'ARN.

5

10

20

25

30

Lorsqu'une cellule hôte est infectée, le cadre de lecture (ORF) situé en 5' du génome viral est traduit en une polyprotéine qui est clivée par les protéases virales et libère alors plusieurs protéines non-structurales telles que l'ARN-polymérase ARN dépendante (Rep) et l'ATPase hélicase (Hel). Ces deux protéines sont impliquées dans la réplication du génome viral ainsi que dans la génération de transcrits qui sont utilisés dans la synthèse des protéines virales. Les mécanismes par lesquels ces ARNms sub-génomiques sont produits, ne sont pas complètement compris ; cependant des faits récents indiquent que les séquences de régulation de la transcription à l'extrémité 5' de chaque gène représentent des signaux qui régulent la transcription discontinue des ARNms sub-génomiques.

9

F ...

Les protéines de la membrane virale (protéines S, E et M) sont insérées dans le compartiment intermédiaire, alors que l'ARN répliqué (brin +) s'assemble avec la protéine N (nucléocapside). Ce complexe protéine-ARN s'associe ensuite avec la protéine M incluse dans les membranes du réticulum endoplasmique et les particules virales se forment lorsque le complexe de la nucléocapside bourgeonne dans le réticulum endoplasmique. Le virus migre ensuite à travers le complexe du Golgi et éventuellement sort de la cellule, par exemple par exocytose. Le site de l'attachement du virus à la cellule hôte se trouve au niveau de la protéine S.

Les coronavirus sont responsables de 15 à 30 % des rhumes chez l'Homme et d'infections respiratoires ou digestives chez les animaux, notamment le chat (FIPV: Feline infectious peritonitis virus), la volaille (IBV: Avian Infectious bronchitis virus), la souris (MHV: Mouse Hepatitis virus), le porc (TGEV: Transmissible gastroenterititis virus, PEDV: Porcine Epidemic Diarrhea virus, PRCoV: Porcine Respiratory Coronavirus, HEV: Hemagglutinating encephalomyelitis Virus) et les bovins (BcoV: Bovine coronavirus).

En général, chaque coronavirus n'affecte qu'une seule espèce ; chez les individus immunocompétents, l'infection induit des anticorps éventuellement neutralisants et une immunité cellulaire, capables de détruire les cellules infectées.

Une épidémie de pneumonie atypique, dénommée syndrome respiratoire aigu sévère (SARS ou Severe acute respiratory syndrome, SRAS en français) s'est propagée dans différents pays (Vietnam, Hong-Kong, Singapour, Thaïlande et Canada) au cours du premier trimestre 2003, à partir d'un foyer initial apparu en Chine dans le dernier trimestre de 2002. La sévérité de cette maladie est telle que son taux de mortalité est d'environ 3 à 6 %. La détermination de l'agent causatif de cette maladie a été entreprise par de nombreux laboratoires, à travers le monde.

5

10

15

20

25

En mars 2003, un nouveau coronavirus (SARS-CoV, SARS virus ou virus SRAS, en français) a été isolé, en association avec des cas de syndrome respiratoire aigu sévère (T.G.KSIAZEK et al., The New England Journal of Medicine, 2003, 348, 1319-1330; C. DROSTEN et al., The New England Journal of Medicine, 2003, 348, 1967-1976; Peiris et al., Lancet, 2003, 361, 1319-).

Des séquences génomiques de ce nouveau coronavirus ont ainsi été obtenues, notamment celles de l'isolat Urbani (Genbank n° d'accès AY274119.3 et A. MARRA et al., Science, May 1, 2003, 300, 1399-1404) et de l'isolat de Toronto (Tor2, Genbank n° d'accès AY 278741 et A. ROTA et al., Science, 2003, 300, 1394-1399).

L'organisation du génome est comparable à celle des autres coronavirus connus permettant ainsi de confirmer l'appartenance du SARS-CoV à la famille des *Coronaviridae*; les cadres ouverts de lecture ORF1a et 1b et les cadres ouverts de lecture correspondant aux protéines S, E, M, et N, ainsi qu'à des protéines codées par : la région située entre l'ORF-S et l'ORF-E (ORF3), la région située entre l'ORF-S et l'ORF-E et chevauchant l'ORF-E (ORF4), la région située entre l'ORF-M et l'ORF-N (ORF7 à ORF11) et la région correspondant à l'ORF-N (ORF13 et ORF14), ont notamment été identifiées.

Sept différences ont été mises en évidence entre les séquences des isolats Tor2 et Urbani; 3 correspondent à des mutations silencieuses (c/t en position 16622 et a/g en position 19064 de l'ORF1b, t/c en position 24872 de l'ORF-S) et 4 modifient la séquence en acides aminés de respectivement : les protéines codées par

l'ORF1a (c/t en position 7919 correspondant à la mutation A/V), la protéine S (g/t en position 23220 correspondant à la mutation A/S), la protéine codée par l'ORF3 (a/g en position 25298 correspondant à la mutation R/G) et de la protéine M (t/c en position 26857 correspondant à la mutation S/P).

En outre, l'analyse phylogénétique montre que le SARS-CoV est éloigné des autres coronavirus et qu'il est apparu, ni par mutation de coronavirus respiratoires humains, ni par recombinaison entre des coronavirus connus (pour une revue, voir Holmes, J.C.I., 2003, 111, 1605-1609).

5

15

25

30

La mise en évidence et la prise en compte de nouveaux variants sont importantes pour la mise au point de réactifs de détection et de diagnostic du SRAS suffisamment sensibles et spécifiques ainsi qu'à des compositions immunogènes aptes à protéger des populations contre des épidémies de SRAS.

Les Inventeurs ont maintenant mis en évidence une autre souche de coronavirus associé au SRAS, qui se distingue des isolats Tor2 et Urbani.

La présente invention a donc pour objet, une souche isolée ou purifiée de coronavirus humain associé au syndrome respiratoire aigu sévère, caractérisée en ce que son génome présente sous la forme d'ADN complémentaire un codon sérine en position 23220-23222 du gène de la protéine S ou un codon glycine en position 25298-25300 du gène de l'ORF3, et un codon alanine en position 7918-7920 de l'ORF1a ou un codon sérine en position 26857-26859 du gène de la protéine M, lesdites positions étant indiquées en référence à la séquence Genbank AY274119.3.

· .

Selon un mode de réalisation avantageux de ladite souche, l'équivalent ADN de son génome présente une séquence correspondant à la séquence SEQ ID NO: 1; cette souche de coronavirus est issue du prélèvement de lavage bronchoalvéolaire d'un patient atteint de SRAS, répertorié sous le n° 031589 et effectué à l'hôpital français de Hanoi (Vietnam).

Conformément à l'invention, ladite séquence SEQ ID NO:1 est celle de l'acide désoxyribonucléique correspondant à la molécule d'acide ribonucléique du génome de la souche isolée de coronavirus telle que définie cidessus.

La séquence SEQ ID NO: 1 se distingue de la séquence Genbank AY274119.3 (isolat Tor2) en ce qu'elle possède les mutations suivantes :

- g/t en position 23220 ; le codon alanine (gct) en position 577 de la séquence en acides aminés de la protéine S de Tor2 est remplacé par un codon sérine (tct),

- a/g en position 25298 ; le codon arginine (aga) en position 11 de la 5 séquence en acide aminés de la protéine codée par l'ORF3 de Tor 2 est remplacé par un codon glycine (gga).

En outre, la séquence SEQ ID NO: 1 se distingue de la séquence Genbank AY278741 (isolat Urbani) en ce qu'elle possède les mutations suivantes:

- t/c en position 7919; le codon valine (gtt) en position 2552 de la 10 séquence en acides aminés de la protéine codée par l'ORF1a est remplacé par un codon alanine (gct),
 - t/c en position 16622 : cette mutation ne modifie pas la séquence en acides aminés des protéines codées par l'ORF1b (mutation silencieuse),
- g/a en position 19064 : cette mutation ne modifie pas la séquence 15 en acides aminés des protéines codées par l'ORF1b (mutation silencieuse),
 - c/t en position 24872 : cette mutation ne modifie pas la séquence en acides aminés de la protéine S, et
 - c/t en position 26857 : le codon proline (ccc) en position 154 de la séquence en acides aminés de la protéine M est remplacé par un codon sérine (tcc).

En l'absence de mention particulière, les positions des séquences nucléotidiques et peptidiques sont indiquées en référence à la séquence Genbank AY274119.3.

La présente invention a également pour objet un polynucléotide isolé ou purifié, caractérisé en ce que sa séquence est celle du génome de la souche isolée de coronavirus telle que définie ci-dessus.

25

30

Selon un mode de réalisation avantageux dudit polynucléotide il présente la séquence SEQ ID NO : 1.

La présente invention a également pour objet un polynucléotide isolé ou purifié, caractérisé en ce que sa séquence hybride dans des conditions de forte stringence avec la séquence du polynucléotide tel que défini ci-dessus.

Les termes « isolé ou purifié » signifient modifié « par la main de l'homme » à partir de l'état naturel ; autrement dit si un objet existe dans la nature, il

est dit isolé ou purifié s'il a été modifié ou extrait de son environnement naturel ou les deux. Par exemple, un polynucléotide ou une protéine/un peptide naturellement présent dans un organisme vivant n'est ni isolé, ni purifié; en revanche le même polynucléotide ou protéine /peptide séparé des molécules coexistantes dans son environnement naturel, obtenu par clonage, amplification et/ou synthèse chimique est isolé au sens de la présente invention. De plus, un polynucléotide ou une protéine/peptide qui est introduit dans un organisme par transformation, manipulation génétique ou par toute autre méthode, est « isolé » même s'il est présent dans ledit organisme. Le terme purifié tel qu'utilisé dans la présente invention, signifie que les protéines /peptides selon l'invention sont essentiellement libres d'association avec les autres protéines ou polypeptides, comme l'est par exemple le produit purifié de la culture de cellules hôtes recombinantes ou le produit purifié à partir d'une source non-recombinante.

10

15

20

25

30

Au sens de la présente invention, on entend par conditions d'hybridation de forte stringence, des conditions de température et de force ionique choisies de telle manière qu'elles permettent le maintien de l'hybridation spécifique et sélective entre polynucléotides complémentaires.

Ά,

. 14

A titre d'illustration, des conditions de forte stringence aux fins de définir les polynucléotides ci-dessus, sont avantageusement les suivantes : l'hybridation ADN-ADN ou ADN-ARN est réalisée en deux étapes : (1) préhybridation à 42°C pendant 3 heures en tampon phosphate (20 mM pH 7,5) contenant 5 x SSC (1 x SSC correspond à une solution 0,15 M NaCl + 0, 015 M citrate de sodium), 50 % de formamide, 7 % de sodium dodécyl sulfate (SDS), 10 x Denhardt's, 5 % de dextran sulfate et 1 % d'ADN de sperme de saumon ; (2) hybridation pendant 20 heures à 42°C suivie de 2 lavages de 20 minutes à 20°C en 2 x SSC + 2 % SDS, 1 lavage de 20 minutes à 20°C en 0,1 x SSC + 0,1 % SDS. Le dernier lavage est pratiqué en 0,1 x SSC + 0,1 % SDS pendant 30 minutes à 60°C.

La présente invention a également pour objet un fragment représentatif du polynucléotide tel que défini ci-dessus, caractérisé en ce qu'il est susceptible d'être obtenu, soit par l'utilisation d'enzymes de restriction dont les sites de reconnaissance et de coupure sont présents dans ledit polynucléotide tel que défini ci-dessus, soit par amplification à l'aide d'amorces oligonucléotidiques spécifiques dudit polynucléotide tel que défini ci-dessus, soit par transcription in vitro, soit par synthèse

chimique.

15

20

30

Selon un mode de réalisation avantageux dudit fragment, il est sélectionné dans le groupe constitué par : l'ADNc correspondant à au moins un cadre ouvert de lecture (ORF) choisi parmi : ORF1a, ORF1b, ORF-S, ORF-E, ORF-M, ORF-N, ORF3, ORF4, ORF7 à ORF11, ORF13 et ORF14, et l'ADNc correspondant aux extrémités 5' ou 3' non-codantes dudit polynucléotide.

Selon une disposition avantageuse de ce mode de réalisation, ledit fragment présente une séquence sélectionnée dans le groupe constitué par :

- les séquences SEQ ID NO : 2 et 4 représentant l'ADNc corres-10 pondant à l'ORF-S qui code pour la protéine S,
 - les séquences SEQ ID NO : 13 et 15 représentant l'ADNc correspondant à l'ORF-E qui code pour la protéine E,
 - les séquences séquence SEQ ID NO: 16 et 18 représentant l'ADNc correspondant à l'ORF-M qui code pour la protéine M,
 - les séquences SEQ ID NO : 36 et 38 représentant l'ADNc correspondant à l'ORF-N qui code pour la protéine N,
 - les séquences représentant les ADNc correspondant respectivement : aux ORF1a et ORF1b (ORF1ab, SEQ ID NO : 31), aux ORF3 et ORF4 (SEQ ID NO : 7, 8), aux ORF 7 à 11 (SEQ ID NO : 19, 20), à l'ORF13 (SEQ ID NO : 32) et à l'ORF14 (SEQ ID NO : 34), et
 - les séquences représentant les ADNc correspondant respectivement aux extrémités 5'(SEQ ID NO : 39 et 72) et 3' non-codantes (SEQ ID NO : 40, 73) dudit polynucléotide.

La présente invention a également pour objet un fragment de l'ADNc codant pour la protéine S, tel que défini ci-dessus, caractérisé en ce qu'il présente une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 5 et 6 (fragments Sa et Sb).

La présente invention a également pour objet un fragment de l'ADNc correspondant aux ORF1a et ORF1b tel que défini ci-dessus, caractérisé en ce qu'il présente une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 41 à 54 (fragments L0 à L12).

La présente invention à également pour objet un fragment du polynucléotide tel que défini ci dessus, caractérisé en ce qu'il présente au moins 15 bases ou paires de bases consécutives de la séquence du génome de ladite souche incluant au moins une de celles situées en position 7979, 16622, 19064, 23220, 24872, 25298 et 26857. De préférence, il s'agit d'un fragment de 20 à 2500 bases ou paires de bases, de manière préférée de 20 à 400.

Selon un mode de réalisation avantageux dudit fragment, il inclut au moins un couple de bases ou de paires de bases correspondant aux positions suivantes: 7919 et 23220, 7919 et 25298, 16622 et 23220, 19064 et 23220, 16622 et 25298, 19064 et 25298, 23220 et 24872, 23220 et 26857, 24872 et 25298, 25298 et 26857.

10

15

20

25

30

La présente invention a également pour objet des amorces d'au moins 18 bases aptes à amplifier un fragment du génome d'un coronavirus associé au SRAS ou de l'équivalent ADN de celui-ci.

Selon un mode de réalisation desdites amorces, elles sont sélectionnées dans le groupe constitué par :

•

 $\partial \gamma_{i}$

:

- la paire d'amorces nº 1 correspondant respectivement aux positions 28507 à 28522 (amorce sens, SEQ ID NO : 60) et 28774 à 28759 (amorce anti-sens, SEQ ID NO : 61) de la séquence du polynucléotide tel que défini ci-dessus, et

- la paire d'amorces n° 2 correspondant respectivement aux positions 28375 à 28390 (amorce sens, SEQ ID NO : 62) et 28702 à 28687 (amorce anti-sens, SEQ ID NO : 63) de la séquence du polynucléotide tel que défini ci-dessus.

La présente invention a également pour objet une sonde apte à détecter la présence du génome d'un coronavirus associé au SRAS ou d'un fragment de celui-ci, caractérisée en ce qu'elle est sélectionnée dans le groupe constitué par : les fragments tels que définis ci-dessus et les fragments correspondant aux positions suivantes de la séquence du polynucléotide tel que défini ci-dessus : 28561 à 28586, 28588 à 28608, 28541 à 28563 et 28565 à 28589 (SEQ ID NO : 64 à 67).

Les sondes et amorces selon l'Invention peuvent être marquées directement ou indirectement par un composé radioactif ou non radioactif par des méthodes bien connues de l'Homme du Métier, afin d'obtenir un signal détectable et/ou quantifiable. Parmi les isotopes radioactifs utilisés, on peut citer le ³²P, le ³³P, le

³⁵S, le ³H ou l'¹²⁵I. Les entités non radioactives sont sélectionnées parmi les ligands tels que la biotine, l'avidine, la streptavidine, la digoxygénine, les haptènes, les colorants, les agents luminescents tels que les agents radioluminescents, chémoluminescents, bioluminescents, fluorescents, phosphorescents.

5 L'invention englobe les sondes et les amorces marquées dérivées des séquences précédentes.

De telles sondes et amorces sont utiles pour le diagnostic de l'infection par un coronavirus associé au SRAS.

La présente invention a également pour objet une méthode de détec-10 tion d'un coronavirus associé au SRAS, à partir d'un échantillon biologique, laquelle méthode est caractérisée en ce qu'elle comprend au moins :

- (a) l'extraction d'acides nucléiques présents dans ledit échantillon biologique,
- (b) l'amplification d'un fragment de l'ORF-N par RT-PCR à l'aide 15 d'une paire d'amorces telle que définie ci-dessus, et
 - (c) la détection par tout moyen approprié des produits d'amplifications obtenus en (b).

Les produits d'amplifications (amplicons) en (b) sont de 268 pb pour la paire d'amorces n° 1 et de 328 pb pour la paire d'amorces n° 2.

Selon un mode de mise en œuvre avantageux dudit procédé, l'étape (b) de détection est réalisée à l'aide d'au moins une sonde correspondant aux positions 28561 à 28586, 28588 à 28608, 28541 à 28563 et 28565 à 28589 de la séquence du polynucléotide tel que défini ci-dessus.

De préférence, le génome du coronavirus associé au SRAS est détecté et éventuellement quantifié par PCR en temps réel, à l'aide de la paire d'amorces n°2 et des sondes correspondant aux positions 28541 à 28563 et 28565 à 28589 marquées avec des composés différents, notamment des agents fluorescents différents.

25

La RT-PCR en temps réel qui met en œuvre cette paire d'amorces et cette sonde est très sensible puisqu'elle permet de détecter 10² copies d'ARN et jusqu'à 10 copies d'ARN, elle est en outre fiable et reproductible.

L'invention englobe les polydésoxyribonucléotides et les polyribonucléotides simple-brin, double-brin et tripe-brin correspondant à la séquence du génome de la souche isolée de coronavirus et de ses fragments tels que définis cidessus, ainsi qu'à leurs séquences complémentaires, sens ou anti-sens, notamment les ARN et les ADNc correspondant à la séquence du génome et de ses fragments tels que définis ci-dessus.

fragments les également invention englobe présente La d'amplification obtenus à l'aide d'amorces spécifiques du génome de la souche purifiée ou isolée tel que défini ci-dessus, notamment à l'aide d'amorces et de paires d'amorces telles que définies ci-dessus, les fragments de restriction constitués par ou comprenant la séquence des fragments tels que définis ci-dessus, les fragments obtenus par transcription in vitro à partir d'un vecteur contenant la séquence SEQ ID NO: 1 ou un fragment tel que défini ci-dessus, ainsi que des fragments obtenus par synthèse chimique. Des exemples de fragments de restriction sont déduits de la carte de restriction de la séquence SEQ ID NO: 1 illustrée par la figure 13. Conformément à l'invention lesdits fragments sont, soit sous forme de fragments isolés, soit sous forme de mélanges de fragments. L'invention englobe également les fragments modifiés, par rapport aux précédents, par enlèvement, ou addition de nucléotides dans une proportion d'environ 15 %, par rapport à la longueur des fragments ci-dessus et/ou modifiés au niveau de la nature des nucléotides, dès lors que les fragments nucléotidiques modifiés conservent une capacité d'hybridation avec les séquences d'ARN génomiques ou antigénomiques de l'isolat tel que défini ci-dessus.

10

15

20

25

Les molécules d'acide nucléique selon l'invention sont obtenues par les méthodes classiques, connues en elles-mêmes, en suivant les protocoles standards tels que ceux décrits dans Current Protocols in Molecular Biology (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, USA). Par exemple, elles peuvent être obtenues par amplification d'une séquence nucléique par PCR ou RT-PCR ou bien par synthèse chimique totale ou partielle.

La présente invention a également pour objet une puce ou filtre à 30 ADN ou à ARN, caractérisé en ce qu'il comprend au moins un polynucléotide ou l'un de ses fragments tels que définis ci-dessus.

Les puces ou filtres à ADN ou à ARN selon l'invention sont

préparés par les méthodes classiques, connues en elles-mêmes, comme par exemple greffage chimique ou électrochimique d'oligonucléotides sur support de verre ou de nylon.

La présente invention a également pour objet un vecteur de clonage et/ou d'expression recombinant, notamment un plasmide ou un phage comprenant un fragment d'acide nucléique tel que défini ci-dessus. De préférence, ledit vecteur recombinant est un vecteur d'expression dans lequel ledit fragment d'acide nucléique est placé sous le contrôle d'éléments régulateurs de la transcription et de la traduction appropriés. En outre, ledit vecteur peut comprendre des séquences (étiquettes ou tag) fusionnées en phase avec l'extrémité 5' et/ou 3' dudit insert, utiles pour l'immobilisation, et/ou la détection et/ou la purification de la protéine exprimée à partir dudit vecteur.

10

15

20

Ces vecteurs sont construits et introduits dans des cellules hôtes par les méthodes classiques d'ADN recombinant et de génie génétique, qui sont connues en elles-mêmes. De nombreux vecteurs dans lesquels on peut insérer une molécule d'acide nucléique d'intérêt afin de l'introduire et de la maintenir dans une cellule hôte, sont connus en eux-mêmes; le choix d'un vecteur approprié dépend de l'utilisation envisagée pour ce vecteur (par exemple réplication de la séquence d'intérêt, expression de cette séquence, maintien de la séquence sous forme extrachromosomique ou bien intégration dans le matériel chromosomique de l'hôte), ainsi que de la nature de la cellule hôte.

Conformément à l'invention, ledit plasmide est notamment sélectionné parmi les plasmides suivants :

- le plasmide, dénommé SARS-S, compris dans la souche bactérienne déposée sous le n° I-3059, le 20 juin 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient la séquence d'ADNc codant pour la protéine S de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, laquelle séquence correspondant aux nucléotides des positions 21406 à 25348 (SEQ ID NO: 4), en référence à la séquence Genbank AY274119.3,

- le plasmide, dénommé SARS-S1, compris dans la souche bactérienne déposée sous le n° I-3020, le 12 mai 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15 ; il contient un fragment 5' de la séquence d'ADNc codant pour la protéine S de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie cidessus, lequel fragment correspondant aux nucléotides des positions 21406 à 23454 (SEQ ID NO :5), en référence à la séquence Genbank AY274119.3 Tor2,

- le plasmide, dénommé SARS-S2, compris dans la souche bactérienne déposée sous le n° 1-3019, le 12 mai 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15 ; il contient un fragment 3'de la séquence d'ADNc codant pour la protéine S de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie cidessus, lequel fragment correspondant aux nucléotides des positions 23322 à 25348 (SEQ ID NO :6), en référence à la séquence Genbank n° d'accès AY274119.3,

- le plasmide, dénommé SARS-SE, compris dans la souche bactérienne déposée sous le n° I-3126, le, 13 novembre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient l'ADNc correspondant à la région située entre l'ORF-S et l'ORF-E et chevauchant l'ORF-E de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle région correspondant aux nucléotides des positions 25110 à 26244 (SEQ ID NO:8), en référence à la séquence Genbank n° d'accès AY274119.3,

20

25

_ 3

: ب

: :

- le plasmide, dénommé SARS-E, compris dans la souche bactérienne déposée sous le n° I-3046, le 28 mai 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15 ; il contient la séquence d'ADNc codant pour la protéine E de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle séquence correspondant aux nucléotides des positions 26082 à 26413 (SEQ ID NO :15), en référence à la séquence Genbank n° d'accès AY274119.3,

- le plasmide, dénommé SARS-M; compris dans la souche bactérienne déposée sous le n° I-3047, le 28 mai 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient la séquence d'ADNc codant pour la protéine M de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus;

laquelle séquence correspondant aux nucléotides des positions 26330 à 27098 (SEQ ID NO:18), en référence à la séquence Genbank n° d'accès AY274119.3,

- le plasmide dénommé SARS-MN, compris dans la souche bactérienne déposée sous le n° I-3125, le 13 novembre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient la séquence d'ADNc correspondant à la région située entre l'ORF-M et l'ORF-N de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589 et prélevée à Hanoi, telle que définie ci-dessus, laquelle séquence correspondant aux nucléotides des positions 26977 à 28218 (SEQ ID NO :20), en référence à la séquence Genbank n° d'accès AY274119.3,

10

15

20

25

30

- le plasmide dénommé SARS-N, compris dans la souche bactérienne déposée sous le n° I-3048, le 5 juin 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15 ; il contient l'ADNc codant pour la protéine N de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle séquence correspondant aux nucléotides des positions 28054 à 29430 (SEQ ID NO :38), en référence à la séquence Genbank n° d'accès AY274119.3,

- le plasmide dénommé SARS-5'NC, compris dans la souche bactérienne déposée sous le n° I- 3124, le 7 novembre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient l'ADNc correspondant à l'extrémité 5'non codante du génome de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle séquence correspondant aux nucléotides des positions 1 à 204 (SEQ ID NO :39), en référence à la séquence Genbank n° d'accès AY274119.3,

- le plasmide dénommé SARS-3'NC, compris dans la souche bactérienne déposée sous le n° I-3123 le 7 novembre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15.; il contient la séquence d'ADNc correspondant à l'extrémité 3'non codante du génome de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle séquence correspondant à celle située entre le nucléotide en position 28933 à 29727 (SEQ ID NO :40), en référence à la séquence Genbank n° d'accès AY274119.3, se termine par une série de nucléotides a.,

- le plasmide d'expression dénommé pIV2.3N, contenant un fragment d'ADNc codant pour une fusion C-terminale de la protéine N (SEQ ID NO : 37) avec une étiquette polyhistidine,
- le plasmide d'expression dénommé pIV2.3S_C, contenant un fragment d'ADNc codant pour une fusion C-terminale du fragment correspondant aux positions 475 à 1193 de la séquence en acides aminés de la protéine S (SEQ ID NO : 3) avec une étiquette polyhistidine,
 - le plasmide d'expression pIV2.3S_L, contenant un fragment d'ADNc codant pour une fusion C-terminale du fragment correspondant aux positions 14 à 1193 de la séquence en acides aminés de la protéine S (SEQ ID NO : 3) avec une étiquette polyhistidine,

10

15

20

25

30

- le plasmide d'expression dénommé pIV2.4N, contenant un fragment d'ADNc codant pour une fusion N-terminale de la protéine N (SEQ ID NO : 3) avec une étiquette polyhistidine,
 - le plasmide d'expression dénommé pIV2.4S_C ou pIV2.4S₁, contenant un insert codant pour une fusion N-terminale du fragment correspondant aux positions 475 à 1193 de la séquence en acides aminés de la protéine S (SEQ ID NO: 3) avec une étiquette polyhistidine, et

7

4

- le plasmide d'expression dénommé pIV2.4S_L contenant un fragment d'ADNc codant pour une fusion N-terminale du fragment correspondant aux positions 14 à 1193 de la séquence en acides aminés de la protéine S (SEQ ID NO : 3) avec une étiquette polyhistidine.

Selon une disposition avantageuse du plasmide d'expression tel que défini ci-dessus, il est compris dans une souche bactérienne qui a été déposée sous le n° I- 3117, le 23 octobre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15.

Selon une autre disposition avantageuse du plasmide d'expression tel que défini ci-dessus, il est compris dans une souche bactérienne qui a été déposée sous le n° I- 3118, le 23 octobre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15.

La présente invention a également pour objet une banque d'ADNc caractérisée en ce qu'elle comprend des fragments tels que définis ci-dessus, en parti-

culier des fragments d'amplification ou des fragments de restriction, clonés dans un vecteur recombinant, notamment un vecteur d'expression (banque d'expression).

La présente invention a également pour objet des cellules, notamment des cellules procaryotes, modifiées par un vecteur recombinant tel que défini cidessus.

Les vecteurs recombinants tels que définis ci-dessus et les cellules transformées par lesdits vecteurs d'expression sont avantageusement utilisés pour la production des protéines et des peptides correspondants. Les banques d'expression dérivées desdits vecteurs, ainsi que les cellules transformées par lesdites banques d'expression sont avantageusement utilisées pour identifier les épitopes immunogènes (épitopes B et T) des protéines du coronavirus associé au SRAS.

La présente invention a également pour objet les protéines et les peptides purifiées ou isolées, caractérisés en ce qu'ils sont codés par le polynucléotide ou l'un de ses fragments tels que définis ci-dessus.

Selon un mode de réalisation avantageux de l'invention, ladite protéine est sélectionnée dans le groupe constitué par :

- la protéine S de séquence SEQ ID NO :3
- la protéine E de séquence SEQ ID NO :14
- la protéine M de séquence SEQ ID NO :17
- la protéine N de séquence SEQ ID NO: 37

5

10

20

30

- les protéines codées par les ORFs : ORF1a, ORF1b, ORF3, ORF4 et ORF7 à ORF11, ORF13 et ORF14 de séquence respectivement, SEQ ID NO :74, 75, 10, 12, 22, 24, 26, 28, 30, 33 et 35.

Selon un mode de réalisation avantageux de l'invention, ledit 25 peptide est sélectionné dans le groupe constitué par :

- a) les peptides correspondant aux positions 14 à 1193 et 475 à 1193 de la séquence en acides aminés de la protéine S,
- b) les peptides correspondant aux positions 2 à 14 (SEQ ID NO : 69) et 100 à 221 de la séquence en acides aminés de la protéine M; ces peptides correspondent respectivement à l'ectodomaine et à l'endodomaine de la protéine M, et
- c) les peptides correspondant aux positions 1 à 12 (SEQ ID NO : 70) et 53 à 76 (SEQ ID NO : 71) de la séquence en acides aminés de la protéine E ; ces

peptides correspondent respectivement à l'ectodomaine et à l'extrémité C-terminale de la protéine E, et

d) les peptides de 5 à 50 acides aminés consécutifs, de préférence de 10 à 30 acides aminés, inclus ou chevauchant partiellement ou totalement la séquence des peptides tels que définis en a), b) ou c).

La présente invention a également pour objet un peptide caractérisé en ce qu'il présente une séquence de 7 à 50 acides aminés incluant un résidu d'acide aminé sélectionné dans le groupe constitué par :

- l'alanine située en position 2552 de la séquence en acides aminés de la protéine codée par l'ORF1a.

5

20

25

30

- la sérine située en position 577 de la séquence en acides aminés de la protéine S de la souche de SARS-CoV telle que définie ci-dessus,
- la glycine en position 11 de la séquence en acides aminés de la protéine codée par l'ORF3 de la souche de SARS-CoV telle que définie ci-dessus,
- la sérine en position 154 de la séquence en acides aminés de la protéine M de la souche de SARS-CoV telle que définie ci-dessus.

La présente invention a également pour objet un anticorps ou un fragment d'anticorps polyclonal ou monoclonal, susceptible d'être obtenu par immunisation d'un animal avec un vecteur recombinant tel que défini ci-dessus, une banque d'ADNc telle que définie ci-dessus ou bien une protéine ou un peptide tels que définis ci-dessus, caractérisé en ce qu'il se lie avec l'une au moins des protéines codées par le SARS-CoV telles que définies ci-dessus.

L'invention englobe les anticorps polyclonaux, les anticorps monoclonaux, les anticorps chimériques tels que les anticorps humanisés, ainsi que leurs fragments (Fab, Fv, scFv).

Au sens de la présente invention, on entend par anticorps chimérique, relativement à un anticorps d'une espèce animale particulière ou d'une classe particulière d'anticorps, un anticorps comprenant tout ou partie d'une chaîne lourde et/ou d'une chaîne légère d'un anticorps d'une autre espèce animale ou d'une autre classe d'anticorps.

Au sens de la présente invention, on entend par anticorps humanisé une immmunoglobuline humaine dans laquelle les résidus des CDRs (Complementary-Determining Regions) qui forment le site de liaison à l'antigène sont remplacés par ceux d'un anticorps monoclonal non-humain possédant la spécificité, l'affinité ou l'activité recherchées. Par comparaison avec les anticorps non-humains, les anticorps humanisés sont moins immunogènes et possèdent une demi-vie prolongée chez l'Homme car ils ne possèdent qu'une faible proportion de séquences non-humaines étant donné que la quasi-totalité des résidus des régions FR (Framework) et de la région constante (Fc) de ces anticorps sont ceux d'une séquence consensus d'immunoglobulines humaines.

La présente invention a également pour objet une puce à protéine, 10 caractérisée en ce qu'elle comprend une protéine, un peptide ou bien un anticorps tels que définis ci-dessus.

Les puces à protéine selon l'invention sont préparées par les méthodes classiques, connues en elles-mêmes. Parmi les supports appropriés sur lesquels peuvent être immobilisés des protéines, on peut citer ceux en matière plastique ou en verre, notamment sous la forme de microplaques.

15

20

La présente invention a également pour objet des réactifs dérivés de la souche isolée de coronavirus associé au SRAS, issue du prélèvement répertorié sous le n° 031589, utiles pour l'étude et le diagnostic de l'infection provoquée par un coronavirus associé au SRAS, lesquels réactifs sont sélectionnés dans le groupe constitué par :

- (a) une paire d'amorces, une sonde ou une puce à ADN telles que définies ci-dessus,
- (b) un vecteur recombinant ou une cellule modifiée tels que définis ci-dessus,
- 25 (c) une souche isolée de coronavirus ou un polynucléotide tels que définis ci-dessus,
 - (d) une protéine ou un peptide tel que défini ci-dessus,
 - (e) un anticorps ou fragment d'anticorps tels que définis ci-dessus, et
 - (f) une puce à protéine telle que définie ci-dessus.
- Ces différents réactifs sont préparés et utilisés selon les techniques classiques de biologie moléculaire et d'immunologie, en suivant les protocoles standards tels que ceux décrits dans Current Protocols in Molecular Biology

(Frederick M. AUSUBEL, 2000, Wiley and Son Inc., Library of Congress, USA), dans Current Protocols in Immunology (John E. Cologan, 2000, Wiley and Son Inc. Library of Congress, USA) et dans Antibodies: A Laboratory Manual (E. Howell and D Lane, Cold Spring Harbor Laboratory, 1988).

5

10

15

20

25

30

Les fragments d'acide nucléique selon l'invention sont préparés et utilisés selon les techniques classiques telles que définies ci-dessus. Les peptides et les protéines selon l'invention sont préparés par les techniques d'ADN recombinant, connues de l'Homme du métier, notamment à l'aide des vecteurs recombinants tels que définis ci-dessus. Alternativement, les peptides selon l'invention peuvent être préparés par les techniques classiques de synthèse en phase solide ou liquide, connues de l'Homme du métier.

Les anticorps polyclonaux sont préparés par immunisation d'un animal approprié avec une protéine ou un peptide tels que définis ci-dessus, éventuellement couplé à la KLH ou à l'albumine et/ou associé à un adjuvant approprié tel que l'adjuvant de Freund (complet ou incomplet) ou l'hydroxyde d'alumine ; après obtention d'un titre en anticorps satisfaisant, les anticorps sont récoltés par prélèvement du sérum des animaux immunisés et enrichis en IgG par précipitation, selon les techniques classiques, puis les IgG spécifiques des protéines du SARS-CoV sont éventuellement purifiées par chromatographie d'affinité sur une colonne appropriée sur laquelle sont fixés ledit peptide ou ladite protéine, tels que définis ci-dessus, de façon à obtenir une préparation d'IgG monospécifiques.

÷

14

Les anticorps monoclonaux sont produits à partir d'hybridomes obtenus par fusion de lymphocytes B d'un animal immunisé par une protéine ou un peptide tels que définis ci-dessus avec des myélomes, selon la technique de Köhler et Milstein (Nature, 1975, 256, 495-497); les hybridomes sont cultivés *in vitro*, notamment dans des fermenteurs ou produits *in vivo*, sous forme d'ascite; alternativement lesdits anticorps monoclonaux sont produits par génie génétique comme décrit dans le brevet américain US 4,816,567.

Les anticorps humanisés sont produits par des méthodes générales comme celles décrites dans la Demande Internationale WO 98/45332.

Les fragments d'anticorps sont produits à partir des régions V_H et V_L clonées, à partir des ARNm d'hybridomes ou de lymphocytes spléniques d'une

souris immunisée; par exemple, les fragments Fv, scFv ou Fab sont exprimés à la surface de phages filamenteux selon la technique de Winter et Milstein (Nature, 1991, 349, 293-299); après plusieurs étapes de sélection, les fragments d'anticorps spécifiques de l'antigène sont isolés et exprimés dans un système d'expression approprié, par les techniques classiques de clonage et d'expression d'ADN recombinant.

Les anticorps ou leur fragments tels que définis ci-dessus, sont purifiés par les techniques classiques connues de l'Homme du métier, telles que la chromatographie d'affinité.

La présente invention a en outre pour objet l'utilisation d'un produit sélectionné dans le groupe constitué par : une paire d'amorces, une sonde, une puce à ADN, un vecteur recombinant, une cellule modifiée, une souche isolée de coronavirus, un polynucléotide, une protéine ou un peptide, un anticorps ou un fragment d'anticorps, et une puce à protéine tels que définis ci-dessus, pour la préparation d'un réactif de détection et éventuellement de génotypage/sérotypage, d'un coronavirus associé au SRAS.

10

15

20

25

Les protéines et les peptides selon l'invention, qui sont aptes à être reconnus et/ou à induire la production d'anticorps spécifiques du coronavirus associé au SRAS, sont utiles pour le diagnostic de l'infection par un tel coronavirus; l'infection est détectée, par une technique appropriée- notamment EIA, ELISA, RIA, immunofluorescence-, à partir d'un échantillon biologique prélevé chez un individu susceptible d'être infecté.

Selon une disposition avantageuse de ladite utilisation, lesdites protéines sont sélectionnées dans le groupe constitué par les protéines S, E, M et/ou N et les peptides tels que définis ci-dessus.

Les protéines S, E, M et/ou N et les peptides dérivés de ces protéines tels que définis ci-dessus, par exemple la protéine N, sont utilisées pour le diagnostic indirect d'une infection à coronavirus associé au SRAS (diagnostic sérologique; détection d'anticorps spécifiques du SARS-CoV), notamment par une méthode immunoenzymatique (ELISA).

Les anticorps et les fragments d'anticorps selon l'invention, notamment ceux dirigés contre les protéines S, E, M et/ou N et les peptides dérivés tels que définis ci-dessus, sont utiles pour le diagnostic direct d'une infection à coro-

navirus associé au SRAS; la détection de protéine(s) du SARS-CoV est réalisée par une technique appropriée, notamment EIA, ELISA, RIA, immunofluorescence à partir d'un échantillon biologique prélevé chez un individu susceptible d'être infecté.

La présente invention à également pour objet une méthode de détection d'un coronavirus associé au SRAS, à partir d'un échantillon biologique, laquelle méthode est caractérisée en ce qu'elle comprend au moins :

- (a) la mise en contact dudit échantillon biologique avec au moins un anticorps ou un fragment d'anticorps, une protéine, un peptide ou bien une puce ou un filtre à protéine ou à peptide tels que définis ci-dessus, et
- (b) la révélation par tout moyen approprié des complexes antigèneanticorps formés en (a), par exemple par EIA, ELISA, RIA, ou par immunofluorescence.

Selon un mode de mise en œuvre avantageux dudit procédé l'étape (a) comprend :

(a₁) la mise en contact dudit échantillon biologique avec au moins un premier anticorps ou un fragment d'anticorps qui est fixé sur un support approprié, notamment une microplaque,

÷,

÷.,

- (a₂) le lavage de la phase solide, et
- (a₃) l'addition d'au moins un second anticorps ou un fragment
 20 d'anticorps, différent du premier, ledit anticorps ou fragment d'anticorps étant éventuellement marqué de façon appropriée.

Ce procédé qui permet de capturer les particules virales présentes dans l'échantillon biologique est également dénommé procédé d'immunocapture.

Par exemple:

10

- l'étape (a₁) est réalisée avec au moins un premier anticorps monoclonal ou polyclonal ou un fragment de ceux-ci, dirigé contre la protéine S, M, et/ou E, et/ou un peptide correspondant à l'ectodomaine de l'une de ces protéines (peptides M2-14 ou E1-12)
- l'étape (a₃) est réalisée avec au moins un anticorps ou un fragment d'anticorps dirigé contre un autre épitope de la même protéine ou de préférence contre une autre protéine, de manière préférée contre une protéine interne telle que la nucléoprotéine N ou l'endodomaine de la protéine E ou M, de manière encore plus préférée

il s'agit d'anticorps ou de fragments d'anticorps dirigés contre la protéine N qui est très abondante dans la particule virale; lorsqu'un anticorps ou un fragment d'anticorps dirigé contre une protéine interne (N) ou contre l'endodomaine des protéines E ou M est utilisé, le dit anticorps est incubé en présence de détergent, comme le Tween 20 par exemple, à des concentrations de l'ordre de 0,1 %.

5

10

15

20

- l'étape (b) de révélation des complexes antigène-anticorps formés est réalisée, soit directement à l'aide d'un second anticorps marqué par exemple avec de la biotine ou une enzyme appropriée telle que la peroxydase ou la phosphatase alcaline, soit indirectement à l'aide d'un sérum anti-immunoglobulines marqué comme ci-dessus. Les complexes ainsi formés sont révélés à l'aide d'un substrat approprié.

La présente invention a en outre pour objet un kit de détection d'un coronavirus associé au SRAS, caractérisé en ce qu'il comprend au moins un réactif sélectionné dans le groupe constitué par : une paire d'amorces, une sonde, une puce à ADN ou à ARN, un vecteur recombinant, une cellule modifiée, une souche isolée de coronavirus, un polynucléotide, une protéine ou un peptide, un anticorps, et une puce à protéine tels que définis ci-dessus.

La présente invention a en outre pour objet, une composition immunogène, caractérisée en ce qu'elle comprend au moins un produit sélectionné dans le groupe constitué par :

- a) une protéine ou un peptide tels que définis ci-dessus,
- b) un polynucléotide de type ADN ou ARN ou l'un de ses fragments représentatifs tels que définis ci-dessus, de séquence choisie parmi :
 - (i) la séquence SEQ ID NO : 1 ou son équivalent ARN
- 25 (ii) la séquence hybridant dans des conditions de forte stringence avec la séquence SEQ ID NO : 1,
 - (iii) la séquence complémentaire de la séquence SEQ ID NO: 1 ou de la séquence hybridant dans des conditions de forte stringence avec la séquence SEQ ID NO: 1,
- (iv) la séquence nucléotidique d'un fragment représentatif du polynucléotide tel que défini en (i), (ii) ou (iii),
 - (v) la séquence telle que définie en (i), (ii), (iii) ou (iv), modifiée, et

- c) un vecteur d'expression recombinant comprenant un polynucléotide tel que défini en b), et
 - d) une banque d'ADNc telle que définie ci-dessus,

ladite composition immunogène étant capable d'induire une immunité humorale ou cellulaire protectrice spécifique du coronavirus associé au SRAS, notamment la production d'un anticorps dirigé contre un épitope spécifique du coronavirus associé au SRAS.

Les protéines et les peptides tels que définis ci-dessus, notamment les protéines S, M, E et/ou N et les peptides dérivés, ainsi que les molécules d'acide nucléique (ADN ou ARN) codant lesdites protéines ou lesdits peptides, sont de bons candidats vaccin et peuvent être utilisées dans des compositions immunogènes pour la production d'un vaccin contre le coronavirus associé au SRAS.

10

15

20

25

Selon un mode de réalisation avantageux des compositions selon l'invention, elles contiennent en outre, au moins un véhicule pharmaceutiquement acceptable et éventuellement des substances porteuses et/ou des adjuvants.

٠.

4

: ·

Les véhicules pharmaceutiquement acceptables, les substances porteuses et les adjuvants sont ceux classiquement utilisés.

Les adjuvants sont avantageusement choisis dans le groupe constitué par des émulsions huileuses, de la saponine, des substances minérales, des extraits bactériens, de l'hydroxyde d'alumine et le squalène.

Les substances porteuses sont avantageusement sélectionnées dans le groupe constitué par des liposomes unilamellaires, des liposomes multilamellaires, des micelles de saponine ou des microsphères solides de nature saccharidique ou aurifère.

Les compositions selon l'invention, sont administrées par voie générale, notamment intramusculaire ou sous-cutanée ou bien par voie locale notamment nasale (aérosol).

La présente invention a également pour objet l'utilisation d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75 pour former un complexe immun avec un anticorps dirigé spécifiquement contre un épitope du coronavirus associé au SRAS.

La présente invention a également pour objet un complexe immun formé d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75, et d'un anticorps dirigé spécifiquement contre un épitope du coronavirus associé au SRAS.

La présente invention a également pour objet l'utilisation d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75 pour induire la production d'un anticorps capable de reconnaître spécifiquement un épitope du coronavirus associé au SRAS.

10

15

20

La présente invention a également pour objet l'utilisation d'un polynucléotide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 1, 2, 4, 7, 8, 13, 15, 16, 18, 19, 20, 31, 36 et 38 pour induire la production d'un anticorps dirigé contre la protéine codée par ledit polynucléotide et capable de reconnaître spécifiquement un épitope du coronavirus associé au SRAS

Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions, qui ressortiront de la description qui va suivre, qui se réfère à des exemples de mise en œuvre du polynucléotide représentant le génome de la souche de SARS-CoV issue du prélèvement répertorié sous le numéro 031589, et des fragments d'ADNc dérivés objets de la présente invention, ainsi qu'au Tableau I présentant la liste des séquences :

Tableau I: Liste des séquences

numéro d'identification	Séquence	Position de l'ADNc en référence à Genbank AY274119.3	Numéro de dépôt à la CNCM du plasmide correspondant
SEQ ID NO : 1	génome de la souche issue du prélèvement 031589	-	-
SEQ ID NO: 2	ORF-S*	21406-25348	-
SEQ ID NO: 3	Protéine S	-	-
SEQ ID NO: 4	ORF-S**	21406-25348	1-3059
SEQ ID NO: 5	fragment Sa	21406-23454	I-3020

	24		
OFO ID NO : 6	fragment Sb	23322-25348	I-3019
SEQ ID NO: 6	ORF-3+ORF-4*	25110-26244	-
SEQ ID NO:7	ORF-3+ORF-4**	25110-26244	I-3126
SEQ ID NO:8	ORF3	-	-
SEQ ID NO:9	Protéine ORF-3	-	-
SEQ ID NO: 10	ORF4		-
SEQ ID NO: 11	Protéine ORF-4	-	
SEQ ID NO: 12	ORF-E*	26082-26413	-
SEQ ID NO: 13	Protéine E	2000220110	-
SEQ ID NO: 14	ORF-E**	26082-26413	I-3046
SEQ ID NO: 15	ORF-E ORF-M*	26330-27098	
SEQ ID NO: 16		20000 27 000	-
SEQ ID NO: 17	Protéine M ORF-M**	26330-27098	I-3047
SEQ ID NO: 18		26977-28218	
SEQ ID NO: 19	ORF7 à 11*	26977-28218	I-3125
SEQ ID NO: 20	ORF7 à 11**	20311-20210	-
SEQ ID NO: 21	ORF7		-
SEQ ID NO: 22	Protéine ORF7	-	_
SEQ ID NO: 23	ORF8	-	-
SEQ ID NO: 24	Protéine ORF8		-
SEQ ID NO: 25	ORF9	-	
SEQ ID NO: 26	Protéine ORF9	-	
SEQ ID NO: 27	ORF10	-	
SEQ ID NO: 28	Protéine ORF10	-	
SEQ ID NO: 29	ORF11	-	
SEQ ID NO: 30	Protéine ORF11		•
SEQ ID NO: 31	OrF1ab	265-21485	-
SEQ ID NO: 32	ORF13	28130-28426	
SEQ ID NO: 33	Protéine ORF13	-	
SEQ ID NO: 34	ORF14		
SEQ ID NO: 35	Protéine ORF14	28583-28795	-
SEQ ID NO: 36	ORF-N*	28054-29430	
SEQ ID NO: 37	Protéine N		I-3048
SEQ ID NO: 38	ORF-N**	28054-29430	1-3124
SEQ ID NO: 39	5'non-codante**	1-204	
SEQ ID NO: 40	3'non-codante**	28933-29727	I-3123
014	ORF1ab	-0.500	-
SEQ ID NO: 41	Fragment L0	30-500	
SEQ ID NO: 42	Fragment L1	211-2260	-
SEQ ID NO: 43	Fragment L2	2136-4187	-
SEQ ID NO: 44	Fragment L3	3892-5344	<u> </u>
SEQ ID NO: 45	Fragment L4b	4932-6043	-
SEQ ID NO: 46	Fragment L4	5305-7318	-
SEQ ID NO: 47		7275-9176	-
SEQ ID NO: 48		9032-11086	-
SEQ ID NO: 49		10298-12982	-
SEQ ID NO: 50		12815-14854	-
DEG 10 110.00			

·				
SEQ ID NO: 51	Fragment L9	14745-16646	-	
SEQ ID NO: 52	Fragment L10	16514-18590	-	
SEQ ID NO: 53	Fragment L11	18500-20602	-	
SEQ ID NO: 54	Fragment L12	20319-22224	-	
SEQ ID NO: 55	Amorce N sens	_	-	
SEQ ID NO: 56	Amorce N	-	-	
	antisens			
SEQ ID NO: 57	Amorce S _c sens	-	-	
SEQ ID NO: 58	Amorce S _L sens	-	-	
SEQ ID NO: 59	Amorce Sc e t SL	-	-	
	antisens			
SEQ ID NO: 60	Amorce sens	28507-28522	-	
	série 1			
SEQ ID NO: 61	Amorce antisens	28774-28759		
	série 1			
SEQ ID NO: 62	Amorce sens	28375-28390	-	
	série 2			
SEQ ID NO: 63	Amorce antisens	28702-28687	-	
	série 2			
SEQ ID NO: 64	Sonde 1/série 1	28561-28586	-	
SEQ ID NO: 65	Sonde 2/série 1	28588-28608	-	
SEQ ID NO: 66	Sonde 1/série 2	28541-28563	-	
SEQ ID NO: 67	Sonde 2/série 2	28565-28589	•	
SEQ ID NO: 68	Amorce ancre			
	14T			
SEQ ID NO: 69	Peptide M2-14	-	-	
SEQ ID NO: 70	Peptide E1-12	-	-	
SEQ ID NO: 71	Peptide E53-76	. ••	_	
SEQ ID NO: 72	5'non-codante*	1-204	_	
SEQ ID NO: 73	3'non-codante*	28933-29727	-	
SEQ ID NO: 74	Protéine ORF1a		••	
SEQ ID NO: 75	Protéine ORF1b	_	-	
SEQ ID NO:76-139 Amorces				
* produit d'amplification PCP (amplican)				

^{*} produit d'amplification PCR (amplicon)

- la figure 1 illustre l'analyse par Western-blot de l'expression in
 vitro des protéines recombinantes N, S_C et S_L à partir des vecteurs d'expression pIVEX. Piste 1 : pIV2.3N. Piste 2 : pIV2.3S_C. Piste 3 : pIV2.3S_L. Piste 4 : pIV2.4N. Piste 5 : pIV2.4S₁ ou pIV2.4S_C. Piste 6 : pIV2.4S_L. L'expression de la protéine GFP exprimée à partir du même vecteur est utilisée comme contrôle.
- la figure 2 illustre l'analyse par électrophorèse en gel de 10 polyacrylamide en conditions dénaturantes (SDS-PAGE) et coloration au bleu de

^{**} insert cloné dans le plasmide déposé à la CNCM ainsi qu'aux dessins annexés dans lesquels :

Coomassie, de l'expression in vivo de la protéine N à partir des vecteurs d'expression pIVEX. La souche d'*E.coli* BL21(DE3)pDIA17 transformée par les vecteurs pIVEX recombinants est cultivée à 30°C dans du milieu LB, en présence ou en l'absence d'inducteur (IPTG 1mM). Piste 1 : pIV2.3N Piste 2 : pIV2.4N.

- la figure 3 illustre l'analyse par électrophorèse en gel de polyacrylamide en conditions dénaturantes (SDS-PAGE) et coloration au bleu de Coomassie, de l'expression *in vivo* des polypeptides S_L et S_C à partir des vecteurs d'expression pIVEX. La souche d'*E.coli* BL21(DE3)pDIA17 transformée par les vecteurs pIVEX recombinants est cultivée à 30°C dans du milieu LB, en présence ou en l'absence d'inducteur (IPTG 1mM). Piste 1 : pIV2.3S_C Piste 2 : pIV2.3S_L. Piste 3 : pIV2.4S₁ Piste 4 : pIV2.4S_L.

- la figure 4 illustre l'activité antigénique des protéines N, S_L et S_C recombinantes produites dans la souche *E. coli* BL21(DE3)pDIA17 transformée par les vecteurs pIVEX recombinants. A : électrophorèse (SDS-PAGE) des lysats bactériens.B et C : Western-blot avec les sérums, provenant d'un même patient infecté par le SARS-CoV, prélevés respectivement 8 jours (B : sérum M12) et 29 jours-(C : sérum M13) après le début des symptômes du SRAS. Piste 1 : pIV2.3N. Piste 2 : pIV2.4N. Piste 3 : pIV2.3S_C. Piste 4 : pIV2.4 S₁. Piste 5 : pIV2.3S_L. Piste 6 : pIV2.4S_L - la figure 5 illustre la purification sur colonne Ni-NTA agarose de la

protéine N recombinante produite dans la souche E. coli BL21(DE3)pDIA17 à partir du vecteur pIV2.3N. Piste 1 : Extrait bactérien total. Piste 2 : Extrait soluble. Piste 3 : Extrait insoluble. Piste 4 : Extrait déposé sur la colonne Ni-NTA. Piste 5 : protéines non-retenues. Piste 6 : Fractions du pic 1. Piste 7 : Fractions du pic 2.

- la figure 6 illustre la purification de la protéine S_C recombinante à partir des corps d'inclusions produits dans la souche E. coli BL21(DE3)pDIA17 transformée par le pIV2.4S₁.A. Traitement au Triton X-100 (2%): Piste 1: Extrait bactérien total. Piste 2: Extrait soluble. Piste 3: Extrait insoluble. Piste 4: Surnageant après traitement au Triton X-100 (2 %). Pistes 5 et 6: Culot après traitement au Triton X-100 (2 %).B: Traitement à l'urée 4M, 5M, 6M et 7M des extraits solubles et inso-

30 lubles.

5

- la figure 7 représente l'immunoempreinte réalisée à l'aide d'un lysat de cellules infectées par le SARS-CoV et d'un sérum de patient atteint de pneumopathie atypique.
- la figure 8 représente des immunoempreintes réalisées à l'aide d'un lysat de cellules infectées par le SARS-CoV et d'immunsérums de lapins spécifiques de la nucléoprotéine N (A) et de la protéine de spicule S (B). I.S.: sérum immun. p.i.: sérum pré-immun. L'immunsérum anti-N a été utilisé au 1/50000 et l'immunsérum anti-S au 1/10000.
- la figure 9 illustre la réactivité en ELISA des sérums polyclonaux
 monospécifiques de lapin dirigés contre la protéine N ou le fragment court de la protéine S (Sc), vis-à-vis des protéines recombinantes correspondantes utilisées pour l'immunisation. A : lapins P13097, P13081, et P13031 immunisés avec la protéine N recombinante purifié. B : lapins P11135, P13042, et P14001 immunisés avec une préparation de corps d'inclusions correspondants au fragment court de la protéine S
 (Sc). I.S. : sérum immun. p.i. : sérum pré-immun.
 - la figure 10 illustre la réactivité en ELISA de la protéine N recombinante purifiée, vis-à-vis de sérum de patients atteints de pneumonie atypique causée par le SARS-CoV. Figure 10a : plaques ELISA préparés avec la protéine N à la concentration de 4 μg/ml et 2 μg/ml. Figure 10b : plaque ELISA préparée avec la protéine N à la concentration de 1 μg/ml. Les sérums désignés A, B, D, E, F, G, H correspondent à ceux du Tableau IV.

20

25

- la figure 11 illustre l'amplification par RT-PCR de quantités décroissantes d'ARN synthétique du gène N du SARS-CoV (10⁷ à 1 copie), à l'aide des couples d'amorces n° 1 (N/+/28507,N/-/28774) (A) et n° 2 (N/+/28375,N/-/28702) (B). T: amplification réalisée en l'absence d'ARN. MW: marqueur d'ADN.
- la figure 12 illustre l'amplification par RT-PCR en temps réel d'ARN synthétique du gène N du SARS-CoV: des quantités décroissantes d'ARN synthétique en répliquat (repli.; pistes 16 à 29) ainsi que de l'ARN viral dilué au 1/20x10⁻⁴ (piste 32) ont été amplifiés par RT-PCR en temps réel à l'aide du kit "Light Cycler RNA Amplification Kit Hybridization Probes" et des couples d'amorces et de sondes de la série n° 2, dans les conditions décrites à l'exemple 7.

- la figure 13 (figure 13.1 à 13.70) représente la carte de restriction de la séquence SEQ ID NO: 1 correspondant à l'équivalent ADN du génome de la souche de SARS-CoV issue du prélèvement répertorié sous le numéro 031589.

Il doit être bien entendu, toutefois, que ces exemples sont donnés uniquement à titre d'illustration de l'objet de l'invention, dont ils ne constituent en aucune manière une limitation.

<u>Exemple 1</u>: Clonage et séquençage du génome de la souche de SARS-CoV issue du prélèvement répertorié sous le numéro 031589

L'ARN de la souche de SARS-CoV a été extrait à partir du prélèvement de lavage bronchoalvéolaire répertorié sous le numéro 031589, effectué sur un patient de l'hôpital français de Hanoi (Vietnam) atteint de SRAS.

L'ARN isolé a été utilisé comme matrice pour amplifier les ADNc correspondant aux différents cadres ouverts de lecture du génome (ORF 1a, ORF1b, ORF-S, ORF-E, ORF-M, ORF-N (incluant les ORF-13 et ORF-14), ORF3, ORF4, ORF7 à ORF11), et aux extrémités 5' et 3' non-codantes. Les séquences des amorces et des sondes utilisées pour l'amplification/détection ont été définies d'après la séquence nucléotidique disponible du SARS-CoV.

.

- 2, 5

. .

Dans ce qui suit les amorces et les sondes sont identifiées par : la lettre S, suivie d'une lettre qui indique la région correspondante du génome (L pour l'extrémité 5'incluant ORF1a et ORF1b; S, M et N pour les ORF-S, ORF-M, ORF-N, SE et MN pour les régions intergéniques correspondantes), puis éventuellement de Fn, Rn, avec n inclus entre 1 et 6 correspondant aux amorces utilisées pour la PCR nichée ou imbriquée (paire F1 + R1 pour la première amplification, paire F2 + R2 pour la deuxième amplification, etc...), puis de /+/ ou /-/ correspondant à une amorce sens ou antisens et enfin des positions des amorces en référence à la séquence Genbank AY27411.3; pour les amorces S et N sens et antisens et les autres amorces sens uniquement, lorsqu'une seule position est indiquée elle correspond à celle de l'extrémité 5' d'une sonde ou d'une amorce d'environ 20 bases; pour les amorces antisens autres que les amorces S et N, lorsqu'une seule position est indiquée elle correspond à celle de l'extrémité 3' d'une sonde ou d'une amorce d'environ 20 bases.

20

30

Les produits d'amplifications ainsi générés ont été séquencés à l'aide d'amorces spécifiques afin de déterminer la séquence complète du génome de la

souche de SARS-CoV issue du prélèvement répertorié sous le numéro 031589. Ces produits d'amplification, à l'exception de ceux correspondant aux ORF1a et ORF1b, ont ensuite été clonés dans des vecteurs d'expression afin de produire les protéines virales correspondantes et les anticorps dirigés contre ces protéines, notamment par immunisation à base d'ADN.

1. Extraction des ARN

10

15

20

25

30

Les ARN ont été extraits à l'aide du kit *Qlamp viral RNA extraction mini* (QIAGEN) en suivant les recommandations du fabricant. De manière plus précise : 140 µl du prélèvement et 560 µl de tampon AVL ont été mélangés vigoureusement pendant 15 secondes, incubés 10 min à température ambiante puis centrifugés brièvement à vitesse maximale. 560 µl d'éthanol à 100% ont été ajoutés au surnageant et le mélange ainsi obtenu a été agité très vigoureusement pendant 15 sec. 630 µl du mélange ont ensuite été déposés sur la colonne.

La colonne a été placée sur un tube de 2 ml, centrifugée 1 min à 8000 rpm, puis le reste du mélange précédent a été déposé sur la même colonne, centrifugé à nouveau, 1 min à 8000 rpm et la colonne a été transférée sur un tube de 2 ml propre. Ensuite, 500 μl de tampon AW1 ont été ajoutés sur la colonne, puis la colonne a été centrifugée 1 min à 8000 rpm et l'éluat a été éliminé. 500 μl de tampon AW2 ont été ajoutés sur la colonne qui a ensuite été centrifugée 3 min à 14000 rpm et transférée sur un tube de 1,5 ml. Enfin, 60 μl de tampon AVE ont été ajoutés sur la colonne qui a été incubée 1 à 2 min à température ambiante puis centrifugée 1 min à 8000 rpm. L'éluat correspondant à l'ARN purifié a été récupéré et congelé à –20°C.

2. Amplification, séquençage et clonage des ADNc

2.1) ADNc codant pour la protéine S

Les ARN extraits à partir du prélèvement ont été soumis à une transcription inverse à l'aide d'oligonucléotides hexamériques de séquence aléatoire (pdN6), afin de produire des fragments d'ADNc.

La séquence codant pour la glycoprotéine S du SARS-CoV a été amplifiée sous la forme de deux fragments d'ADN chevauchants : fragment 5' (SRAS-Sa, SEQ ID NO:5) et fragment 3'(SRAS-Sb, SEQ ID NO:6), en réalisant deux amplifications successives à l'aide d'amorces imbriquées. Les amplicons ainsi obtenus

30

ont été séquencés, clonés dans le vecteur plasmidique PCR 2.1-TOPO™ (IN VITROGEN), puis la séquence des ADNc clonés a été déterminée.

a)clonage et séquençage des fragments Sa et Sb

a₁) synthèse de l'ADNc

5

15

20

25

30

Le mélange réactionnel contenant : ARN (5 μl), H₂O ppi (3,5 μl), tampon de transcriptase inverse5X (4 μl,), dNTP 5 mM (2 μl), pdN6 100 ug/ml (4 μl), RNasin 40 UI/ul (0,5 μl) et transcriptase inverse AMV-RT, 10 UI/ul, PROMEGA (1μl) a été incubé dans un thermocycleur dans les conditions suivantes : 45 min à 42°C, 15 min à 55°C, 5 min à 95°C, puis l'ADNc obtenu a été maintenu à +4°C.

10 a₂) première amplification PCR

Les extrémités 5' et 3' du gène S ont été amplifiées respectivement avec les paires d'amorces S/F1/+/ 21350-21372 et S/R1/-/ 23518-23498, S/F3/+/ 23258-23277 et S/R3/-/25382-25363. Le mélange réactionnel de 50 μl contenant : ADNc (2 μl), amorces 50 μM (0,5 μl), tampon 10 X (5 μl), dNTP 5 mM (2 μl), Taq Expand High Fidelity, Roche (0,75 μl) et H₂0 (39, 75 μl) a été amplifié dans un thermocycleur, dans les conditions suivantes : une étape initiale de dénaturation à 94°C pendant 2 min a été suivie de 40 cycles comprenant : une étape de dénaturation à 94°C pendant 30 sec, une étape d'hybridation à 55°C pendant 30 sec puis une étape d'élongation à 72°C pendant 2 min 30 sec, avec 10 sec d'élongation supplémentaire à chaque cycle, puis d'une étape finale d'élongation à 72°C pendant 5 min.

¥ :

Ž.

a₃) deuxième amplification PCR

Les produits de la première amplification PCR (amplicons 5' et 3') ont subi une seconde étape d'amplification PCR (PCR nichée) dans des conditions identiques à celles de la première amplification, avec les paires d'amorces S/F2/+/21406-21426 et S/R2/-/23454-23435, et S/F4/+/23322-23341 et S/R4/-/25348-25329, respectivement pour l'amplicon 5' et l'amplicon 3'.

a₄) clonage et séquençage des fragments Sa et Sb

Les amplicons Sa (extrémité 5') et Sb (extrémité 3') ainsi obtenus ont été purifiés à l'aide du kit *QIAquick PCR purification* (QIAGEN), en suivant les recommandations du fabricant, puis ils ont été clonés dans le vecteur PCR2.1-TOPO (kit Invitrogen), pour donner les plasmides dénommés SRAS-S1 et SRAS-S2.

L'ADN des clones Sa et Sb a été isolé puis l'insert correspondant a été séquencé à l'aide du Kit Big Dye, Applied Biosystem® et des amorces universelles M13 forward et M13 reverse, ainsi que des amorces: S/S/+/21867, S/S/+/22353, S/S/+/22811, S/S/+/23754, S/S/+/24207, S/S/+/24699, S/S/+/24348, S/S/-/24209, S/S/-/23630, S/S/-/23038, S/S/-/22454, S/S/-/21815, S/S/-/24784, S/S/+/21556, S/S/+/23130 et S/S/+/24465, en suivant les instructions du fabricant; les séquences des fragments Sa et Sb ainsi obtenues correspondent aux séquences SEQ ID NO :5 et SEQ ID NO :6 dans la liste de séquences jointe en annexe.

Le plasmide, dénommé SARS-S1 a été déposé sous le n° I-3020, le 12 mai 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient un fragment 5' de la séquence du gène S de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, lequel fragment dénommé Sa correspondant aux nucléotides des positions 21406 à 23454 (SEQ ID NO:5), en référence à la séquence Genbank AY274119.3 Tor2.

Le plasmide, dénommé TOP10F'-SARS-S2 a été déposé sous le n° I-3019, le 12 mai 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient un fragment 3'de la séquence du gène S de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, lequel fragment dénommé Sb correspondant aux nucléotides des positions 23322 à 25348 (SEQ ID NO: 6), en référence à la séquence Genbank n° d'accès AY274119.3.

b) clonage et séquençage de l'ADNc complet (clone SRAS-S de 4 kb)

L'ADNC S complet a été obtenu à partir des clones SARS-S1 et SARS-S2 précités, de la façon suivante :

- 1) une réaction d'amplification PCR a été réalisée sur un clone SARS-S2 en présence de l'amorce S/R4/-/25348-25329 précitée et de l'amorce S/S/+/24696-24715: un amplicon de 633 bp a été obtenu,
- 2) une autre réaction d'amplification PCR a été réalisée sur un autre 30 clone SARS-S2, en présence des amorces S/F4/+/23322-23341 précitée et S/S/-/24803-24784: un amplicon de 1481 pb a été obtenu,

La réaction d'amplification a été réalisée dans les conditions telles que définies ci-dessus pour l'amplification des fragments Sa et Sb, à l'exception que 30 cycles d'amplifications comprenant une étape de dénaturation à 94° C pendant 20 sec et une étape d'élongation à 72° C pendant 2 min 30 sec ont été effectués.

3) les 2 amplicons (633 pb et 1481 pb) ont été purifiés dans les conditions telles que définies ci-dessus pour les fragments Sa et Sb.

5

10

15

20

25

4) une autre réaction d'amplification PCR à l'aide des amorces S/F4/+/23322-23341 et S/R4/-/25348-25329 précitées, a été réalisée sur les amplicons purifiés obtenus en 3). La réaction d'amplification a été réalisée dans les conditions telles que définies ci-dessus pour l'amplification des fragments Sa et Sb, à l'exception que 30 cycles d'amplifications ont été effectués.

L'amplicon de 2026 pb ainsi obtenu a été purifié, cloné dans le vecteur PCR2.1-TOPO puis séquencé comme ci-dessus, à l'aide des amorces telles que définies ci-dessus pour les fragments Sa et Sb. Le clone ainsi obtenu a été dénommé clone 3'.

5) Le clone SARS-S1 précédemment obtenu et le clone 3'ont été digérés par EcoR I, les bandes d'environ 2kb ainsi obtenues ont été purifiées sur gel puis amplifiées par PCR avec les amorces S/F2/+/21406-21426 et S/R4/-/25348-25329 précitées. La réaction d'amplification a été réalisée dans les conditions telles que définies ci-dessus pour l'amplification des fragments Sa et Sb, à l'exception que 30 cycles d'amplifications ont été effectués. L'amplicon d'environ 4 kb a été purifié et séquencé. Il a ensuite été cloné dans le vecteur PCR2.1-TOPO pour donner le plasmide, dénommé SARS-S, et l'insert contenu dans ce plasmide a été séquencé comme ci-dessus, à l'aide des amorces telles que définies ci-dessus pour les fragments Sa et Sb. Les séquences d'ADNc de l'insert et de l'amplicon codant pour la protéine S, correspondent respectivement aux séquences SEQ ID NO: 4 et SEQ ID NO: 2 dans la liste de séquences jointe en annexe, elles codent pour la protéine S (SEQ ID NO: 3).

À

.7

La séquence de l'amplicon correspondant à l'ADNc codant pour la protéine S de la souche de SARS-CoV issue du prélèvement n°031589 présente les deux mutations suivantes par rapport aux séquences correspondantes de respective-

ment les isolats Tor2 et Urbani, les positions des mutations étant indiquées en référence à la séquence complète du génome de l'isolat Tor2 (Genbank AY274119.3) :

- g/t en position 23220; le codon alanine (gct) en position 577 de la séquence en acides aminés de la protéine S de Tor2 est remplacé par un codon sérine (tct),

- c/t en position 24872 : cette mutation ne modifie pas la séquence en acides aminés de la protéine S, et

Le plasmide, dénommé SARS-S, a été déposé sous le n° I-3059, le 20 juin 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient la séquence d'ADNc codant pour la protéine S de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, laquelle séquence correspondant aux nucléotides des positions 21406 à 25348 (SEQ ID NO :4), en référence à la séquence Genbank AY274119.3.

2.2) ADNc codant pour les protéines M et E

5

25

30

Les ARN issus du prélèvement 031589, extraits comme ci-dessus, ont été soumis à une transcription inverse, associée, lors de la même étape (kit *Titan One Step RT-PCR®*, Roche), à une réaction d'amplification par PCR, à l'aide des couples d'amorces :

- S/E/F1/+/26051-26070 et S/E/R1/-/26455-26436 pour amplifier l'ORF-E, et
- 20 S/M/F1/+/26225-26244 et S/M/R1/-/27148-27129 pour amplifier l'ORF-M.

Un premier mélange réactionnel contenant : 8,6 μl d'H₂Oppi, 1 μl de dNTP (5mM), 0,2 μl de chacune des amorces (50μM), 1,25 μl de DTT (100mM) et 0,25 μl de RNAsin (40Ul/μl) a été combiné avec un deuxième mélange réactionnel contenant : 1 μl d'ARN, 7 μl d'H₂Oppi, 5 μl de tampon de RT-PCR 5X et 0,5 μl de mélange d'enzyme et les mélanges combinés ont été incubés dans un thermocycleur dans les conditions suivantes : 30 min à 42°C, 10 min à 55°C, 2 min à 94°C suivi de 40 cycles comprenant une étape de dénaturation à 94°C pendant 10 sec, une étape d'hybridation à 55°C pendant 30 sec et une étape d'élongation à 68°C pendant 45 sec, avec 3 sec d'incrément par cycle et enfin une étape d'élongation terminale à 68°C pendant 7 min.

Les produits d'amplification ainsi obtenus (amplicons M et E) ont subi une deuxième amplification PCR (PCR nichée) en utilisant le kit Expand High-Fi®, Roche), à l'aide des couples d'amorces :

- S/E/F2/+/26082-26101 et S/E/R2/-/26413-26394 pour l'amplicon E, et
- 5 S/M/F2/+/26330-26350 et S/M/R2/-/27098-27078 pour l'amplicon M.

15

20

25

30

Le mélange réactionnel contenant: 2 μl du produit de la première PCR, 39,25 μl d'H₂Oppi, 5 μl de tampon 10X contenant du MgCl₂, 2 μl de dNTP (5mM), 0,5μl de chacune des amorces (50 μM) et 0,75μl de mélange d'enzyme a été incubé dans un thermocycleur dans les conditions suivantes: une étape de dénaturation à 94°C pendant 2 min a été suivie de 30 cycles comprenant une étape de dénaturation à 94°C pendant 15 sec, une étape d'hybridation à 60°C pendant 30 sec et une étape d'élongation à 72°C pendant 45 sec, avec 3 sec d'incrément par cycle, et enfin une étape d'élongation terminale à 72°C pendant 7 min. Les produits d'amplification obtenus correspondant aux ADNc codant pour les protéines E et M ont été séquencés comme ci-dessus, à l'aide des amorces: S/E/F2/+/26082 et S/E/R2/-/26394, S/M/F2/+/26330, S/M/R2/-/27078 précitées et des amorces S/M/+/26636-26655 et S/M/-/26567-26548. Ils ont ensuite été clonés, comme ci-dessus, pour donner les plasmides dénommés SARS-E et SARS-M. L'ADN de ces clones a ensuite été isolé et séquencé à l'aide des amorces universelles M13 forward et M13 reverse ainsi que des amorces S/M/+/26636 et S/M/-/26548 précitées.

. 3

×

La séquence de l'amplicon représentant l'ADNc codant pour la protéine E (SEQ ID NO: 13) de la souche de SARS-CoV issue du prélèvement n°031589 ne comporte pas de différences par rapport aux séquences correspondantes des isolats AY274119.3-Tor2 et AY278741-Urbani. La séquence de la protéine E de la souche de SARS-CoV 031589 correspond à la séquence SEQ ID NO: 14 dans la liste de séquences jointe en annexe.

Le plasmide, dénommé SARS-E a été déposé sous le n° I-3046, le 28 mai 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15 ; il contient la séquence d'ADNc codant pour la protéine E de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle séquence correspondant aux

nucléotides des positions 26082 à 26413 (SEQ ID NO :15), en référence à la séquence Genbank n° d'accès AY274119.3.

La séquence de l'amplicon représentant l'ADNc codant pour la M (SEQ ID NO:16) de la souche de SARS-CoV issue du prélèvement n°031589 ne comporte pas de différences par rapport à la séquence correspondante de l'isolat AY274119.3-Tor2. En revanche, en position 26857, l'isolat AY278741-Urbani comporte un c et la séquence de la souche de SARS-CoV issue du prélèvement répertorié sous le n°031589 un t. Cette mutation aboutit à une modification de la séquence en acides aminés de la protéine correspondante: en position 154, une proline (AY278741-Urbani) est changée en sérine dans la souche de SARS-CoV issue du prélèvement répertorié sous le n°031589. La séquence de la protéine M de la souche de SARS-CoV issue du prélèvement répertorié sous le n°031589 correspond à la séquence SEQ ID NO:17 dans la liste de séquences jointe en annexe.

Le plasmide, dénommé SARS-M a été déposé sous le n° I-3047, le 28 mai 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient la séquence d'ADNc codant pour la protéine M de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus; laquelle séquence correspondant aux nucléotides des positions 26330 à 27098 (SEQ ID NO :18), en référence à la séquence 20 Genbank n° d'accès AY274119.3.

2.3) ADNc correspondant aux ORF3, ORF4, ORF7 à ORF11

25

La même stratégie d'amplification, de clonage et de séquençage a été utilisée pour obtenir les fragments d'ADNc correspondant respectivement aux ORF suivantes : ORF 3, ORF4, ORF7, ORF8, ORF9, ORF10 et ORF11. Les couples d'amorces utilisées pour la première amplification sont :

- ORF3 et ORF4: S/SE/F1/+/25069-25088 et S/SE/R1/-/26300-26281
- ORF7 à ORF11 : S/MN/F1/+/26898-26917 et S/MN/R1/-/28287-28266

Les couples d'amorces utilisées pour la deuxième amplification sont :

- ORF3 et ORF4: S/SE/F2/+/25110-25129 et S/SE/R2/-/26244-26225
- 30 ORF7 à ORF11 : S/MN/F2/+/26977-26996 et S/MN/R2/-/28218-28199

Les conditions de la première amplification (RT-PCR) sont les suivantes : 45 min à 42°C, 10 min à 55°C, 2 min à 94°C suivi de 40 cycles compre-

nant une étape de dénaturation à 94°C pendant 15 sec, une étape d'hybridation à 58°C pendant 30 sec et une étape d'élongation à 68°C pendant 1 min, avec 5 sec d'incrément par cycle et enfin une étape d'élongation terminale à 68°C pendant 7 min.

Les conditions de la PCR nichée sont les suivantes : une étape de dénaturation à 94°C pendant 2 min a été suivie de 40 cycles comprenant une étape de dénaturation à 94°C pendant 20 sec, une étape d'hybridation à 58°C pendant 30 sec et une étape d'élongation à 72°C pendant 50 sec, avec 4 sec d'incrément par cycle et enfin une étape d'élongation terminale à 72°C pendant 7 min.

5

10

20

25

30

Les produits d'amplification obtenus correspondant aux ADNc contenant respectivement les ORF3 et 4 et les ORF7 à 11 ont été séquencés à l'aide S/SE/-/25875, S/SE/-/25494, S/SE/+/25835, S/SE/+/25363, amorces: S/MN/+/27839, S/MN/+/27409, S/MN/-/27836 S/MN/-/27799 et clonés comme cidessus pour les autres ORF, pour donner les plasmides dénommés SARS-SE et SARS-MN. L'ADN de ces clones a été isolé et séquencé à l'aide de ces mêmes amorces et des amorces universelles M13 sens et M13 anti-sens. 15

La séquence de l'amplicon représentant l'ADNc de la région contenant les ORF 3 et 4 (SEQ ID NO :7) de la souche de SARS-CoV issue du prélèvement n°031589 comporte une différence nucléotidique par rapport à la séquence correspondante de l'isolat AY274119-Tor2. Cette mutation en position 25298 aboutit à une modification de la séquence en acides aminés de la protéine correspondante (ORF 3): en position 11, une arginine (AY274119-Tor2) est changée en glycine dans la souche de SARS-CoV issue du prélèvement n°031589. En revanche, aucune mutation n'a été identifiée par rapport à la séquence correspondante de l'isolat AY278741-Urbani. Les séquences des ORF 3 et 4 la souche de SARS-CoV issue du prélèvement n°031589 correspondent respectivement aux séquences SEQ ID NO:10 et 12 dans la liste de séquences jointe en annexe.

Le plasmide, dénommé SARS-SE a été déposé sous le n° I-3126, le 13 novembre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient l'ADNc correspondant à la région située entre l'ORF-S et l'ORF-E et chevauchant l'ORF-E de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle région correspondant aux nucléotides des positions 25110 à 26244 (SEQ ID NO:8), en référence à la séquence Genbank n° d'accès AY274119.3,

La séquence de l'amplicon représentant l'ADNc correspondant à la région contenant les ORF7 à ORF11 (SEQ ID NO:19) de la souche de SARS-CoV issue du prélèvement n°031589 ne comporte pas de différences par rapport aux séquences correspondantes des isolats AY274119-Tor2 et AY278741-Urbani. Les séquences des ORF7 à 11 de la souche de SARS-CoV issue du prélèvement n°031589 correspondent respectivement aux séquences SEQ ID NO: 22, 24, 26, 28 et 30 dans la liste de séquences jointe en annexe.

Le plasmide dénommé SARS-MN a été déposé sous le n° I-3125, le 13 novembre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient la séquence d'ADNc correspondant à la région située entre l'ORF-M et l'ORF-N de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589 et prélevée à Hanoi, telle que définie ci-dessus, laquelle séquence correspondant aux nucléotides des positions 26977 à 28218 (SEQ ID NO :20), en référence à la séquence Genbank n° d'accès AY274119.3.

10

15

20

30

La séquence de l'amplicon représentant l'ADNc correspondant à la région contenant les ORF7 à ORF11 (SEQ ID NO:19) de la souche de SARS-CoV issue du prélèvement n°031589 ne comporte pas de différences par rapport aux séquences correspondantes des isolats AY274119-Tor2 et AY278741-Urbani. Les séquences des ORF7 à 11 de la souche de SARS-CoV issue du prélèvement n°031589 correspondent respectivement aux séquences SEQ ID NO: 22, 24, 26, 28 et 30 dans la liste de séquences jointe en annexe.

25 2.4) ADNc codant pour la protéine N et incluant les ORF13 et ORF14

L'ADNc a été synthétisé et amplifié comme décrit ci-dessus pour les fragments Sa et Sb. De manière plus précise, le mélange réactionnel contenant : 5 μl d'ARN, 5 μl d'H₂O ppi 4 μl de tampon de reverse transcriptase 5X, 2 μl de dNTP (5 mM), 2 μl d'oligo 20T (5 μM), 0,5 μl de RNasin (40 UI/ul) et 1, 5 μl de AMV-RT (10 UI/ul Promega) a été incubé dans un thermocycleur dans les conditions suivantes : 45 min à 42°C, 15 min à 55°C, 5 min à 95°C, puis il a été maintenu à +4°C.

Une première amplification PCR a été réalisée avec la paire d'amorces S/N/F3/+/28023 et S/N/R3/-/29480.

Le mélange réactionnel comme ci-dessus pour l'amplification des fragments S1 et S2 a été incubé dans un thermocycleur, dans les conditions suivantes : une étape initiale de dénaturation à 94°C pendant 2 min a été suivie de 40 cycles comprenant une étape de dénaturation à 94°C pendant 20 sec, une étape d'hybridation à 55°C pendant 30 sec puis une étape d'élongation à 72°C pendant 1 min 30 sec avec 10 sec d'élongation supplémentaire à chaque cycle, puis d'une étape finale d'élongation à 72°C pendant 5 min.

L'amplicon obtenu à la première amplification PCR a subi une seconde étape d'amplification PCR (PCR nichée) avec la paires d'amorce S/N/F4/+/28054 et S/N/R4/-/29430 dans des conditions identiques à celles de la première amplification.

10

15

20

25

30

Le produit d'amplification obtenu correspondant à l'ADNc codant pour la protéine N de la souche de SARS-CoV issue du prélèvement n°031589a été séquencé à l'aide des amorces : S/N/F4/+/28054, S/N/R4/-/29430, S/N/+/28468, S/N/+/28918 et S/N/-/28607 et cloné comme ci-dessus pour les autres ORF, pour donner le plasmide dénommé SARS-N. L'ADN de ces clones a été isolé et séquencé à l'aide des amorces universelles M13 sens et M13 anti-sens, ainsi que des amorces S/N/+/28468, S/N/+/28918 et S/N/-/28607.

La séquence de l'amplicon représentant l'ADNc correspondant à l'ORF-N et incluant les ORF13 et ORF14 (SEQ ID NO :36) de la souche de SARS-CoV issue du prélèvement n°031589 ne comporte pas de différences par rapport aux séquences correspondantes des isolats AY274119.3-Tor2 et AY278741-Urbani. La séquence de la protéine N de la souche de SARS-CoV issue du prélèvement n°031589 correspond à la séquence SEQ ID NO : 37 dans la liste de séquences jointe en annexe.

Les séquences des ORF13 et 14 de la souche de SARS-CoV issue du prélèvement n°031589 correspondent respectivement aux séquences SEQ ID NO : 32 et 34 dans la liste de séquences jointe en annexe.

Le plasmide dénommé SARS-N a été déposé sous le n° I-3048, le 5 juin 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15 ; il contient l'ADNc codant pour la protéine

N de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle séquence correspondant aux nucléotides des positions 28054 à 29430 (SEQ ID NO :38), en référence à la séquence Genbank n° d'accès AY274119.3.

5 2.5) extrémités 5' et 3' non-codantes

- a) extrémité 5'non-codante (5'NC)
- a₁) synthèse de l'ADNc

Les ARN issus du prélèvement 031589, extraits comme ci-dessus, ont été soumis à une transcription inverse dans les conditions suivantes :

10 L'ARN (15 μl) et l'amorce S/L/-/443 (3 μl à la concentration de 5μm, ont été incubés 10 min à 75°C.

Ensuite, du Tampon de transcriptase inverse 5X (6 μ l, INVITROGEN), des dNTP 10 mM (1 μ l), du DTT 0,1M (3 μ l) ont été ajoutés et le mélange a été incubé à 50° C pendant 3 min.

Enfin la transcriptase inverse (3 μl de Superscript®, INVITROGEN) a été ajoutée au mélange précédent qui a été incubé à 50°C pendant 1h30 puis à 90 °C pendant 2 min.

L'ADNc ainsi obtenu a été purifié à l'aide du kit *QIAquick PCR* purification (QIAGEN), selon les recommandations du fabricant.

20 b₁) Réaction à la Terminal Transferase (TdT)

L'ADNc (10 μ l) est incubé 2 min à 100°C, conservé dans la glace, puis sont ajoutés : H₂0 (2,5 μ l), tampon TdT 5X (4 μ l, AMERSHAM), dATP 5mM (2 μ l) et TdT (1,5 μ l, AMERSHAM). Le mélange ainsi obtenu est incubé 45 min à 37°C puis 2 min à 65°C.

Le produit obtenu est amplifié par une première réaction PCR à l'aide des amorces: S/L/-/225-206 et ancre 14T: 5'-AGATGAATTCGGTACCTTTTTTTTTTTTTTT-3' (SEQ ID NO:68). Les conditions de l'amplification sont les suivantes: une étape initiale de dénaturation à 94°C pendant 2 min est suivie de 10 cycles comprenant une étape de dénaturation à 94°C pendant 10 sec, une étape d'hybridation à 45°C pendant 30 sec puis une étape d'élongation à 72°C pendant 30 sec puis de 30 cycles comprenant une étape de dénaturation à 94°C pendant 10 sec, une étape d'hybridation à 50°C pendant 30 sec puis

une étape d'élongation à 72°C pendant 30 sec, puis d'une étape finale d'élongation à 72°C pendant 5 min.

Le produit de la première amplification PCR a subi une seconde étape d'amplification à l'aide des amorces : S/L/-/204-185 et ancre 14T précitée dans des conditions identiques à celles de la première amplification. L'amplicon ainsi obtenu a été purifié, séquencé à l'aide de l'amorce S/L/-/182-163 puis il a été cloné comme ci-dessus pour les différentes ORF, pour donner le plasmide dénommé SARS-5'NC. L'ADN de ce clone a été isolé et séquencé à l'aide des amorces universelles M13 sens et M13 anti-sens et de l'amorce S/L/-/182-163 précitée.

L'amplicon représentant l'ADNc correspondant à l'extrémité 5'NC de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589 correspond à la séquence SEQ ID NO : 72 dans la liste de séquences jointe en annexe ; cette séquence ne comporte pas de différences par rapport aux séquences correspondantes des isolats AY274119.3-Tor2 et AY278741-Urbani.

Le plasmide dénommé SARS-5'NC a été déposé sous le n° I- 3124, le 7 novembre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; il contient l'ADNc correspondant à l'extrémité 5'non codante du génome de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle séquence correspondant aux nucléotides des positions 1 à 204 (SEQ ID NO :39), en référence à la séquence Genbank n° d'accès AY274119.3.

- b) extrémité 3'non-codante (3'NC)
- a₁) synthèse de l'ADNc

10

15

20

Les ARN issus du prélèvement 031589, extraits comme ci-dessus, ont été soumis à une transcription inverse, selon le protocole suivant : le mélange réactionnel contenant : ARN (5 μl), H₂O (5 μl), tampon de transcriptase inverse 5X (4 μl), dNTP 5 mM (2 μl), Oligo 20T 5μM (2 μl), RNasin 40 U/ μl (0,5 μl) et RT-AMV 10 UI/ μl (1,5 μl, PROMEGA) a été incubé dans un thermocycleur, dans les conditions suivantes : 45 min à 42°C, 15 min à 55°C, 5 min à 95°C, puis il a été maintenu à 44°C.

L'ADNc obtenu a été amplifié par une première réaction PCR à l'aide des amorces S/N/+/28468-28487 et ancre 14T précitée. Les conditions de

l'amplification sont les suivantes : une étape initiale de dénaturation à 94°C pendant 2 min est suivie de 10 cycles comprenant une étape de dénaturation à 94°C pendant 20 sec, une étape d'hybridation à 45°C pendant 30 sec puis une étape d'élongation à 72°C pendant 50 sec puis de 30 cycles comprenant une étape de dénaturation à 94°C pendant 20 sec, une étape d'hybridation à 50°C pendant 30 sec puis une étape d'élongation à 72°C pendant 50 sec, puis d'une étape finale d'élongation à 72°C pendant 5 min.

Le produit de la première amplification PCR a subi une seconde étape d'amplification à l'aide des amorces S/N/+/28933-28952 et ancre 14T précitée, dans des conditions identiques à celles de la première amplification. L'amplicon ainsi obtenu a été purifié, séquencé à l'aide de l'amorce S/N/+/29257-29278 et cloné comme ci-dessus pour les différentes ORF, pour donner le plasmide dénommé SARS-3'NC. L'ADN de ce clone a été isolé et séquencé à l'aide des amorces universelles M13 sens et M13 anti-sens et de l'amorce S/N/+/29257-29278 précitée.

L'amplicon représentant l'ADNc correspondant à l'extrémité 3'NC de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589 correspond à la séquence SEQ ID NO :73 dans la liste de séquences jointe en annexe ; cette séquence ne comporte pas de différences par rapport aux séquences correspondantes des isolats AY274119.3-Tor2 et AY278741-Urbani.

Le plasmide dénommé SARS-3'NC a été déposé sous le n° I-3123 le 7 novembre 2003, auprès de la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15.; il contient la séquence d'ADNc correspondant à l'extrémité 3'non codante du génome de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, telle que définie ci-dessus, laquelle séquence correspondant à celle située entre le nucléotide en position 28933 à 29727 (SEQ ID NO :40), en référence à la séquence Genbank n° d'accès AY274119.3, se termine par une série de nucléotides a.

2.6) ORF1a et ORF1b

10

15

20

25

L'amplification de la région 5' contenant les ORF1a et ORF1b du génome du SARS-CoV issu du prélèvement 031589 a été réalisée en pratiquant des réactions de RT-PCR suivies de PCR nichées selon les mêmes principes que ceux précédemment décrits pour les autres ORF. Les fragments amplifiés sont chevau-

chants sur plusieurs dizaines de bases, permettant ainsi la reconstruction informatique de la séquence complète de cette partie du génome. En moyenne, les fragments amplifiés sont de deux kilobases.

14 fragments chevauchants dénommés L0 à L12 ont ainsi été
5 amplifiés à l'aide des amorces suivantes :

Tableau II: Amorces utilisées pour l'amplification de la région 5'(ORF1a et ORF1b)

de la région 5'(ORF1a et ORF1b)								
REGION AMPLIFIEE ET SEQUENCEE	Amorce sens RT-PCR	Amorce antisens RT-PCR	Amorce sens PCR nichée	Amorce antisens PCR nichée				
(ne tient pas								
amorces) L0	S/L0/F1/+30	S/L0/R1/-481						
50-480 L1	S/L1/F1/+147	S/L1/R1/-2336	S/L1/F2/+211	S/L1/R2/-2241				
231-2240 L2	S/L2/F1/+2033	S/L2/R1/-4192	S/L2/F2/+2136	S/L2/R2/-4168				
2156-4167 L3	S/L3bis/F1/+3850	S/L3bis/R1/-5365	S/L3bis/F2/+3892	S/L3bis/R2/-5325				
3913-5324 L4b	S/L4b/F1/+4878	S/L4b/R1/-6061	S/L4b/F2/+4932	S/L4b/R2/-6024				
4952-6023 L4	S/L4/F1/+5272	S/L4/R1/-7392	S/L4/F2/+5305	S/L4/R2/-7323				
5325-7318 L5	S/L5/F1/+7111	S/L5/R1/-9253	S/L5/F2/+7275	S/L5/R2/-9157				
7296-9156 L6	S/L6/F1/+8975	S/L6/R1/-11151	S/L6/F2/+9032	S/L6/R2/-11067				
9053-11066 L7	S/L7/F1/+10883	S/L7/R1/-13050	S/L7/F2/+10928	S/L7/R2/-12963				
10928-12962 L8	S/L8/F1/+12690	S/L8/R1/-14857	S/L8/F2/+12815	S/L8/R2/-14835				
12835-14834 L9	S/L9/F1/+14688	S/L9/R1/-16678	S/L9/F2/+14745	S/L9/R2/-16625				
14765-16624 L10	S/L10/F1/+16451	S/L10/R1/-18594	S/L10/F2/+16514	S/L10/R2/-18571				
16534-18570 L11	S/L11/F1/+18441	S/L11/R1/-20612	S/L11/F2/+18500	S/L11/R2/-20583				
18521-20582 L12	S/L12/F1/+20279	S/L12/R1/-22229	S/L12/F2/+20319	S/L12/R2/-22206				
20338-22205.	<u></u>		inlifiés dans les c	anditions suiva				

Tous les fragments ont été amplifiés dans les conditions suivantes, excepté le fragment L0 qui a été amplifié comme décrit ci-dessus pour l'ORF-M:

10

15

- RT-PCR: 30 min à 42°C, 15 min à 55°C, 2 min à 94°C, puis l'ADNc obtenu est amplifié dans les conditions suivantes : 40 cycles comprenant : une étape de dénaturation à 94°C pendant 15 sec, une étape d'hybridation à 58°C pendant 30 sec puis une étape d'élongation à 68°C pendant 1 min 30 sec, avec 5 sec d'élongation supplémentaire à chaque cycle, puis une étape finale d'élongation à 68°C pendant 7 min.

- <u>PCR nichée</u>: une étape initiale de dénaturation à 94°C pendant 2 min est suivie de 35 cycles comprenant: une étape de dénaturation à 94°C pendant 15 sec, une étape d'hybridation à 60°C pendant 30 sec puis une étape d'élongation à 72°C pendant 1 min 30 sec, avec 5 sec d'élongation supplémentaire à chaque cycle, puis une étape finale d'élongation à 72°C pendant 7 min.

Les produits d'amplifications ont été séquencés à l'aide des amorces définies dans le Tableau III ci-après :

Tableau III: Amorces utilisées pour le séquençage de la région 5' (ORF1a et ORF1b)

Noms Séquences (SEQ ID NO: 76 à 139) S/L3/+/4932 5'-CCACACACAGCTTGTGGATA-3' S/L4/+/6401 5'-CCGAAGTTGTAGGCAATGTC-3' S/L4/+/6964 5'-TTTGGTGCTCCTTCTTATTG-3' S/L4/-/6817 5'-CCGGCATCCAAACATAATTT-3' S/L5/-/7633 5'-TGGTCAGTAGGGTTGATTGG-3' S/L5/-/8127 5'-CATCCTTTGTGTCAACATCG-3' S/L5/-/8633 5'-GTCACGAGTGACACCATCCT-3' S/L5/+/7839 5'-ATGCGACGAGTCTGCTTCTA-3' S/L5/+/8785 5'-TTCATAGTGCCTGGCTTACC-3' S/L5/+/8255 5'-ATCTTGGCGCATGTATTGAC-3' S/L6/-/9422 5'-TGCATTAGCAGCAACAACAT-3' S/L6/-/9966 5'-TCTGCAGAACAGCAGAAGTG-3' S/L6/-/10542 5'-CCTGTGCAGTTTGTCTGTCA-3' S/L6/+/10677 5'-CCTTGTGGCAATGAAGTACA-3' S/L6/+/10106 5'-ATGTCATTTGCACAGCAGAA-3' S/L6/+/9571 5'-CTTCAATGGTTTGCCATGTT-3' S/L7/-/11271 5'-TGCGAGCTGTCATGAGAATA-3' S/L7/-/11801 5'-AACCGAGAGCAGTACCACAG-3' S/L7/-/12383 5'-TTTGGCTGCTGTAGTCAATG-3' S/L7/+/12640 5'-CTACGACAGATGTCCTGTGC-3' S/L7/+/12088 5'-GAGCAGGCTGTAGCTAATGG-3' S/L7/+/11551 5'-TTAGGCTATTGTTGCTGCTG-3' S/L8/-13160 5'-CAGACAACATGAAGCACCAC-3' 5'-CGCTGACGTGATATATGTGG-3' S/L8/-/13704 S/L8/-14284 5'-TGCACAATGAAGGATACACC-3' S/L8/+/14453 5'-ACATAGCTCGCGTCTCAGTT-3' S/L8/+/13968 5'-GGCATTGTAGGCGTACTGAC-3' S/L8/+/13401 5'-GTTTGCGGTGTAAGTGCAG-3' S/L9/-15098 5'-TAGTGGCGGCTATTGACTTC-3' S/L9/-15677 5'-CTAAACCTTGAGCCGCATAG-3' S/L9/-16247 5'-CATGGTCATAGCAGCACTTG-3' S/L9/+16323 5'-CCAGGTTGTGATGTCACTGAT-3' 5'-CCTTACCCAGATCCATCAAG-3' S/L9/+15858 5'-CGCAAACATAACACTTGCTG-3' S/L9/+15288 5'-AGTGTTGGGTACAAGCCAGT-3' S/L10/-16914 S/L10/-17466 5'-GTTCCAAGGAACATGTCTGG-3' S/L10/-18022 5'-AGGTGCCTGTGTAGGATGAA-3' 5'-GGGCTGTCATGCAACTAGAG-3' S/L10/+18245 S/L10/+17663 5'-TCTTACACGCAATCCTGCTT-3'

10

5'-TACCCATCTGCTCGCATAGT-3' S/L10/+17061 5'-GCAAGCAGAATTAACCCTCA-3' S/L11/-/18877 5'-AGCACCACCTAAATTGCATC-3' S/L11/-19396 5'-TGGTCCCTTTGAAGGTGTTA-3' S/L11/-20002 5'-TCGAACACATCGTTTATGGA-3' S/L11/+20245 5'-GAAGCACCTGTTTCCATCAT-3' S/L11/+/19611 5'-ACGATGCTCAGCCATGTAGT-3' S/L11/+/19021 5'-GAGGTGCAGTCACTCGCTAT-3' SARS/L1/F3/+800 5'-CAGAGATTGGACCTGAGCAT-3' SARS/L1/F4/+1391 5'-CAGCAAACCACTCAATTCCT-3' SARS/L1/F5/+1925 5'-AAATGATGGCAACCTCTTCA-3' SARS/L1/R3/-1674 5'-CACGTGGTTGAATGACTTTG-3' SARS/L1/R4/-1107 5'-ATTTCTGCAACCAGCTCAAC-3' SARS/L1/R5/-520 5'-CGCATTGTCTCCTGGTTTAC-3' SARS/L2/F3/+2664 5'-GAGATTGAGCCAGAACCAGA-3' SARS/L2/F4/+3232 5'-ATGAGCAGGTTGTCATGGAT-3' SARS/L2/F5/+3746 5'-CTGCCTTAAGAAGCTGGATG-3' SARS/L2/R3/-3579 5'-TTTCTTCACCAGCATCATCA-3' SARS/L2/R4/-2991 5'-CACCGTTCTTGAGAACAACC-3' SARS/L2/R5/-2529 5'-TCTTTGGCTGGCTCTTACAG-3' SARS/L3/F3/+4708 5'-GCTGGTGATGCTGCTAACTT-3' SARS/L3/F4/+5305 5'-CCATCAAGCCTGTGTCGTAT-3' SARS/L3/F5/+5822 5'-CAGGTGGTGCAGACATCATA-3' SARS/L3/R3/-5610 5'-AACATCAGCACCATCCAAGT-3' SARS/L3/R4/-4988 5'-ATCGGACACCATAGTCAACG-3' SARS/L3/R5/-4437

Les séquences des fragments L0 à L12 de la souche de SARS-CoV issue du prélèvement répertorié sous le n° 031589, correspondent respectivement aux séquences SEQ ID NO:41 à SEQ ID NO:54 dans la liste de séquences jointe en annexe. Parmi ces séquences, seule celle correspondant aux fragments L5 comporte une différence nucléotidique par rapport à la séquence correspondante de l'isolat AY278741-Urbani. Cette mutation t/c en position 7919 aboutit à une modification de la séquence en acides aminés de la protéine correspondante, codée par l'ORF 1a: en position 2552, une valine (codon gtt; AY278741) est changée en alanine (codon gct) dans la souche de SARS-CoV 031589. En revanche, aucune mutation n'a été identifiée par rapport à la séquence correspondante de l'isolat AY274119.3-Urbani. Les autres fragments ne présentent pas de différences par rapport aux séquences correspondantes des isolats Tor2 et Urbani.

Exemple 2: Production et purification de protéines N et S recombinantes de la souche de SARS-CoV issue du prélèvement répertorié sous le numéro 031589

La protéine entière et deux fragments polypeptidiques de la protéine S de la souche de SARS-CoV issue du prélèvement répertorié sous le numéro 031589 ont été produites chez *E. coli*, sous forme de protéines de fusion comprenant une étiquette polyhistidine N-ou C-terminale. Dans les deux polypeptides S, les séquences hydrophobes N et C-terminales de la protéine S (peptide signal : positions 1 à 13 et hélice transmembranaire : positions 1196 à 1218) ont été délétées alors que l'hélice β (positions 565 à 687) et les deux motifs de type coiled-coils (positions 895 à 980 et 1155 à 1186) de la protéine S ont été préservés. Ces deux polypeptides sont constitués par : un fragment long (S_L) correspondant aux positions 14 à 1193 de la séquence en acides aminés de la protéine S et un fragment court (S_C) correspondant aux positions 475 à 1193 de la séquence en acides aminés de la protéine S.

1) Clonage des ADNc N, S_L et S_C dans les vecteurs d'expression pIVEX2.3 et pIVEX2.4

10

15

30

Les ADNc correspondant à la protéine N et aux fragments S_L et S_C ont été amplifiés par PCR dans des conditions standard, à l'aide de l'ADN polymérase Platinium Pfx® (INVITROGEN). Les plasmides SRAS-N et SRAS-N ont été utilisés comme matrice et les oligonucléotides suivants comme amorces :

- 5'-CCCATATGTCTGATAATGGACCCCAATCAAAC-3' (N sens, SEQ ID NO :55)
 5'-CCCCCGGGTGCCTGAGTTGAATCAGCAGAAGC-3' (N antisens, SEQ ID NO :56)
 5'-CCCATATGAGTGACCTTGACCGGTGCACCAC-3' (S_C sens, SEQ ID NO :57)
 5'-CCCATATGAAACCTTGCACCCCACCTGCTC-3' (S_L sens, SEQ ID NO :58)
 5'-CCCCCGGGTTTAATATATTGCTCATATTTTCCC-3' (S_C et S_L antisens, SEQ ID NO :59).
 - Les amorces sens introduisent un site *Ndel* (souligné) alors que les amorces antisens introduisent un site *Xmal* ou *Smal* (souligné). Les 3 produits d'amplification on été purifiés sur colonne (kit *QlAquick PCR Purification*, QlAGEN) et clonés dans un vecteur approprié. L'ADN plasmidique purifié des 3 constructions (kit *QlAFilter Midi Plasmid*, QlAGEN) a été vérifié par séquençage et digéré par les enzymes *Ndel* et *Xmal*. Les 3 fragments correspondants aux ADNc N, S_L et S_C ont été purifiés sur gel d'agarose puis insérés dans les plasmides pIVEX2.3MCS (étiquette

polyhistidine C-terminale) et pIVEX2.4d (étiquette polyhistidine N-terminale) préalablement digérés par les mêmes enzymes. Après vérification des constructions, les 6 vecteurs d'expressions ainsi obtenus (pIV2.3N, pIV2.3S_C, pIV2.3S_L, pIV2.4N, pIV2.4S_C également dénommé pIV2.4S_I, pIV2.4S_L) ont été ensuite utilisés, d'une part pour tester l'expression des protéines *in-vitro*, et d'autre part pour transformer la souche bactérienne BL21(DE3)pDIA17 (NOVAGEN). Ces constructions codent pour des protéines dont la masse moléculaire attendue est la suivante : pIV2.3N (47174 Da), pIV2.3S_C (82897 Da), pIV2.3S_L (132056 Da), pIV2.4N (48996 Da), pIV2.4S_I (81076 Da) et pIV2.4S_L(133877 Da).

10 2) Analyse de l'expression des protéines recombinantes in-vitro et in vivo

20

25

30

L'expression de protéines recombinantes à partir des 6 vecteurs recombinants a été testée, dans un premier temps, dans un système in-vitro (RTS100, Roche). Les protéines produites in vitro, après une incubation des vecteurs recombinants pIVEX, 4h à 30°C, dans le système RTS100, ont été analysées par western-blot à l'aide d'un anticorps anti-(his)6 couplé à la péroxydase. Le résultat d'expression invitro (Figure 1) montre que seule la protéine N est exprimée en quantités importantes, cela quelle que soit la position, N- ou C-terminale, de l'étiquette polyhistidine. Dans une seconde étape, l'expression des protéines N et S a été testée in-vivo à 30°C dans du milieu LB, en présence ou en l'absence d'inducteur (IPTG 1mM). La protéine N est très bien produite dans ce système bactérien (Figure 2) et se retrouve principalement dans une fraction soluble après lyse des bactéries. En revanche, la version longue de S (S_L) est très peu produite et complètement insoluble (Figure 3). La version courte (Sc) présente également une très faible solubilité, mais un taux d'expression beaucoup plus élevé que celui de la version longue. Par ailleurs, la construction Sc fusionnée à une étiquette polyhistidine en position C-terminale présente une taille plus faible que celle attendue. Une expérience d'immunodétection avec un anticorps anti-polyhistidine a montré que cette construction était incomplète. En conclusion, les deux constructions, pIV2.3N et pIV2.4S₁, exprimant respectivement la protéine N entière fusionnée à l'étiquette polyhistidine en C-terminal et la protéine S courte fusionnée à l'étiquette polyhistidine en N-terminal, ont été retenues pour produire les deux protéines en grande quantité afin de les purifier.

3) Analyse de l'activité antigénique des protéines recombinantes

L'activité antigénique des protéines N, S_L et S_C a été testée par western-blot, à l'aide de deux échantillons de sérum, provenant d'un même patient infecté par le SARS-CoV, prélevés 8 jours (M12) et 29 jours-(M13) après le début des symptômes du SRAS. Le protocole expérimental est comme décrit à l'exemple 3. Les résultats illustrés par la figure 4 montrent (i) la séroconversion du patient, et (ii) que la protéine N possède une plus forte réactivité antigénique que la protéine S courte.

4) Purification de la protéine N à partir de pIV2.3N

5

10

15

25

Plusieurs expériences de purification de la protéine N, produite à partir du vecteur pIV2.3N, ont été réalisées selon le protocole suivant. Les bactéries BL21(DE3)pDIA17, transformées par le vecteur d'expression pIV2.3N, ont été cultivées à 30°C dans 1 litre de milieu de culture contenant 0,1 mg/ml d'ampicilline, et induites par 1 mM IPTG quand la densité cellulaire, équivalente à $A_{600} = 0.8$, est atteinte (environ 3 heures). Après 2 heures de culture en présence d'inducteur, les cellules ont été récupérées par centrifugation (10 min à 5000 rpm), remises en suspension dans le tampon de lyse (50 mM NaH₂PO₄, NaCl 0,3 M, 20 mM imidazole, pH 8 contenant le mélange d'inhibiteurs de protéases Complete®, Roche), et lysées par la presse de French (12000 psi). Après centrifugation du lysat bactérien (15 min à 12000 rpm), le surnageant (50 ml) a été déposé à un débit de 1ml/min sur une colonne (15 ml) de chélation métallique (Ni-NTA superflow, Qiagen), équilibrée par le tampon de lyse. Après lavage de la colonne par 200 ml de tampon de lyse, la protéine N a été éluée par un gradient d'imidazole (20 →250 mM) en 10 volumes de colonne. Les fractions contenant la protéine N ont été rassemblées et analysées par électrophorèse en gel de polyacrylamide en conditions dénaturantes puis coloration au bleu de Coomassie. Les résultats illustrés par la figure 5 montrent que le protocole employé permet de purifier la protéine N avec une homogénéité très satisfaisante (95%) et un rendement moyen de 15 mg de protéine par litre de culture.

5) Purification de la protéine S_C à partir de pIV2.4S_C (pIV2.4S₁)

Le protocole suivi pour purifier la protéine S courte est très différent de celui décrit ci-dessus car la protéine est fortement aggrégée dans le système bactérien (corps d'inclusion). Les bactéries BL21(DE3)pDIA17, transformées par le vecteur d'expression pIV2.4S₁ ont été cultivées à 30°C dans 1 litre de milieu de

culture contenant 0,1 mg/ml d'ampicilline, et induites par 1 mM IPTG quand la densité cellulaire, équivalente à $A_{600} = 0.8$, est atteinte (environ 3 heures). Après 2 heures de culture en présence d'inducteur, les cellules ont été récupérées par centrifugation (10 min à 5000 rpm), remises en suspension dans le tampon de lyse (0,1 M Tris-HCl, EDTA 1 mM, pH 7,5), et lysées par la presse de French (1200 psi). Après centrifugation du lysat bactérien (15 min à 12000 rpm), le culot a été remis en suspension dans 25 ml de tampon de lyse contenant 2% Triton X100 et 10 mM β mercaptoéthanol, puis centrifugé pendant 20 min à 12000 rpm. Le culot a été remis en suspension dans un tampon Tris-HCl 10 mM contenant 7 M urée, et mis en agitation douce pendant 30 min à température ambiante. Ce dernier lavage des corps d'inclusion avec 7 M urée est nécessaire pour éliminer la plupart des protéines membranaires d'E. coli qui co-sédimentent avec la protéine Sc aggrégée. Après une dernière centrifugation pendant 20 min à 12000 rpm, le culot final est remis en suspension dans le tampon Tris-HCl 10 mM. L'analyse électrophorétique de cette préparation (Figure 6) montre que la protéine S courte peut être purifiée avec une homogénéité satisfaisante (environ 90%) à partir des corps d'inclusion (extrait insoluble).

Exemple 3 : Immunodominance de la protéine N

La réactivité des anticorps présents dans le sérum des patients atteints de pneumopathie atypique causée par le coronavirus associé au SRAS (SARS-CoV), vis-à-vis des différentes protéines de ce virus, a été analysée par western-blot dans les conditions décrites ci-après.

`

n.

1) Matériel

10

20

25

30

a) lysat de cellules infectées par le SARS-CoV

Des cellules Vero E6 (2x10⁶) ont été infectées par le SARS-CoV (isolat répertorié sous le numéro FFM/MA104) à une multiplicité d'infection (M.O.I.) de 10⁻¹ ou 10⁻² puis incubées dans du milieu DMEM contenant 2% de SVF, à 35°C dans une atmosphère contenant 5% de CO₂. 48 heures plus tard, le tapis cellulaire a été lavé avec du PBS puis lysé avec 500 μl de tampon de dépôt préparé selon Laemmli et contenant du β-mercaptoéthanol. Les échantillons ont ensuite été bouillis 10 minutes puis soniqués 3 fois 20 secondes.

49

b) anticorps

b₁) sérum de patient atteint de pneumopathie atypique

Le sérum référencé au Centre National de Référence des virus influenzae (Région-Nord) sous le N° 20033168 est celui d'un patient français atteint d'une pneumopathie atypique causée par le SARS-CoV prélevé au jour 38 après le début des symptômes ; le diagnostic d'infection par le SARS-CoV a été réalisé par RT-PCR nichée et PCR quantitative.

b₂) sérums polyclonaux de lapin monospécifiques dirigés contre la protéine N ou la protéine S

Les sérums sont ceux produits à partir des protéines recombinantes N et S_C (exemple 2), selon le protocole d'immunisation décrit à l'exemple 4 ; il s'agit du sérum du lapin P13097 (sérum anti-N) et du sérum du lapin P11135 (sérum anti-S).

2) Méthode

15

20

20 µl de lysat de cellules infectées par le SARS-CoV à des M.O.I. de 10⁻¹ et 10⁻² et, à titre de contrôle, 20 μl d'un lysat de cellules non infectées (mock) ont été séparés sur un gel SDS à 10% de polyacrylamide puis transférés sur une membrane de nitrocellulose. Après blocage dans une solution de PBS/lait 5%/Tween 0,1% et lavage en PBS/Tween 0,1%, cette membrane a été hybridée pendant une nuit à 4°C avec : (i) l'immun-sérum N° 20033168 dilué au 1/300, 1/1000 et 1/3000 dans le tampon PBS/BSA 1%/Tween 0,1%, (ii) le sérum du lapin P13097 (sérum anti-N) dilué au 1/50000 dans le même tampon et (iii) le sérum du lapin P11135 (sérum anti-S) dilué au 1/10000 dans le même tampon. Après lavage en PBS/Tween, une hybridation secondaire a été réalisée à l'aide, soit d'anticorps polyclonaux de mouton dirigés contre les chaînes lourdes et légères des immunoglobulines G humaines et couplés à la peroxidase (NA933V, Amersham), soit d'anticorps polyclonaux d'âne dirigés contre les chaînes lourdes et légères des immunoglobulines G de lapin et couplés à la peroxidase (NA934V, Amersham). Les anticorps fixés ont été révélés à l'aide du kit ECL+ (Amersham) et de films d'autoradiographie Hyperfilm MP (Amersham). Une échelle de masse moléculaire (kDa) est portée sur la figure.

3) Résultats

5

10

15

20

25

30

La figure 7 montre que trois polypeptides de masse moléculaire apparente 35, 55 et 200 kDa sont détectés spécifiquement dans les extraits de cellules infectées par le SARS-CoV.

Afin d'identifier ces polypeptides, deux autres immunoempreintes (figure 8) ont été réalisées sur les mêmes échantillons et dans les mêmes conditions avec des anticorps polyclonaux de lapins spécifique de la nucléoprotéine N (lapin P13097, figure 8A) et de la protéine de spicule S (lapin P11135, figure 8B) Cette expérience montre que le polypeptide de 200 kDa correspond à la glycoprotéine de spicule S du SARS-CoV, que le polypeptide de 55 kDa correspond à la nucléoprotéine N tandis que le polypeptide de 35 kDa représente vraisemblablement une forme tronquée ou dégradée de la N.

Les données présentées dans la figure 7 montrent donc que le sérum 20033168 réagit fortement avec la N et beaucoup plus faiblement avec la S du SARS-CoV, puisque les polypeptides de 35 et 55 kDa sont révélés sous la forme de bandes intenses pour des dilutions de 1/300, 1/1000 et 1/3000 de l'immunsérum alors que le polypeptide de 200 kDa n'est que faiblement révélé pour une dilution de 1/300. On peut noter également qu'aucun autre polypeptide du SARS-CoV n'est détecté pour des dilutions supérieures au 1/300 du sérum 20033168.

₹.

,...<u>\$</u>

Cette expérience indique que la réponse en anticorps spécifique de la N du SARS-CoV domine les réponses en anticorps spécifiques des autres polypeptides du SARS-CoV et en particulier la réponse en anticorps dirigée contre la glycoprotéine S. Elle indique une immunodominance de la nucléoprotéine N lors des infections humaines par le SARS-CoV.

Exemple 4: Préparation d'anticorps polyclonaux monospécifiques dirigés contre les protéines N et S du coronavirus associé au SRAS (SARS-CoV)

1) Matériel et méthode

Trois lapins (P13097, P13081, P13031) ont été immunisés avec le polypeptide recombinant purifié correspondant à l'intégralité de la nucléoprotéine (N), préparé selon le protocole décrit à l'exemple 2. Après une première injection de 0,35 mg par lapin de protéine émulsionnée en adjuvant complet de Freund (voie intradermique), les animaux ont reçus 3 injections de rappel à 3 puis 4 semaines

d'intervalle, de 0,35 mg de protéine recombinante émulsionnée en adjuvant incomplet de Freund.

Trois lapins (P11135, P13042, P14001) ont été immunisés avec le polypeptide recombinant correspondant au fragment court de la protéine S (S_C), produit comme décrit à l'exemple 2. Comme ce polypeptide est retrouvé principalement sous la forme de corps d'inclusion dans le cytoplasme bactérien, les animaux ont reçus 4 injections intra-dermiques à 3-4 semaines d'intervalle d'une préparation de corps d'inclusion correspondant à 0,5 mg de protéine recombinante émulsionnée en adjuvant incomplet de Freund. Les 3 premières injections ont été réalisées avec une préparation de corps d'inclusion préparés selon le protocole décrit à l'exemple 2, tandis que la quatrième injection a été réalisée avec une préparation de corps d'inclusion qui ont été préparés selon le protocole décrit à l'exemple 2 puis purifiés sur gradient de saccharose et lavés en 2 % Triton X100.

Pour chaque lapin, un sérum pré-immun (p.i.) a été préparé avant la première immunisation et un immun-sérum (I.S.) 5 semaines après la quatrième immunisation.

Dans un premier temps, la réactivité des sérums a été analysée par test ELISA vis à vis de préparations de protéines recombinantes semblables à celles utilisées pour les immunisations; les tests ELISA ont été réalisés selon le protocole et avec les réactifs tels que décrits à l'exemple 6.

Dans un deuxième temps, la réactivité des sérums a été analysée en réalisant une immunoempreinte (western blot) d'un lysat de cellules infectées par le SARS-CoV, en suivant le protocole tel que décrit à l'exemple 3.

2) Résultats

10

20

Les tests ELISA (figure 9) démontrent que les préparations de protéine N recombinante et de corps d'inclusion du fragment court de la protéine S (Sc) sont immunogènes chez l'animal et que le titre des sérums immuns est élevé (plus de 1/25000).

L'immunoempreinte (figure 8) montre que le sérum immun du lapin
30 P13097 reconnaît deux polypeptides présents dans les lysats de cellules infectées par
le SARS-CoV: un polypeptide dont la masse moléculaire apparente (50-55 kDa selon
les expériences) est compatible avec celle de la nucléoprotéine N (422 résidus, masse

moléculaire prédite de 46 kDa) et un polypeptide de 35 kDa, qui représente vraisemblablement une forme tronquée ou dégradée de la N.

Cette expérience montre également que le sérum du lapin P11135 reconnaît principalement un polypeptide dont la masse moléculaire apparente (180-220 kDa selon les expériences) est compatible avec une forme glycosylée de la S (1255 résidus, chaîne polypeptidique non glycosylée de 139 kDa), ainsi que des polypeptides plus légers, qui représentent vraisemblablement des formes tronquées et/ou non glycosylées de la S.

En conclusion, l'ensemble de ces expériences démontrent que des polypeptides recombinants exprimés chez *E. coli* et correspondant aux protéines N et S du SARS-CoV permettent d'induire chez l'animal des anticorps polyclonaux capables de reconnaître les formes natives de ces protéines.

Exemple 5 : Préparation d'anticorps polyclonaux monospécifiques dirigés contre les protéines M et E du coronavirus associé au SRAS (SARS-CoV)

٠,٠

15 1) Analyse de la structure des protéines M et E

a) Protéine E

5

10

20

25

30

La structure de la protéine E du SARS-CoV (76 acides aminés) a été analysée in silico, à l'aide de différents logiciels comme signalP v1.1, NetNGlyc 1.0, THMM 1.0 et 2.0 (Krogh et al., 2001, J. Mol. Biol., 305(3):567-580) ou encore TOPPRED (von Heijne, 1992, J. Mol. Biol. 225, 487-494). L'analyse montre que ce polypeptide non glycosylé est une protéine membranaire de type 1, contenant une seule hélice transmembranaire (aa 12-34 d'après THMM), et dont la plus grande partie du domaine hydrophile (42 résidus) est localisée à l'extrémité C-terminale et vraisemblablement à l'intérieur de la particule virale (endodomaine). On peut noter une inversion dans la topologie prédite par les versions 1.0 (N-ter est externe) et 2.0 (N-ter est interne) du logiciel THMM, mais que d'autres algorithmes, notamment TOPPRED et THUMBUP (Zhou et Zhou, 2003, Protein Science 12:1547-1555) confirment une localisation externe de l'extrémité N-terminale de E.

b) Protéine M

Une analyse similaire réalisée sur la protéine M du SARS-CoV (221 acides aminés) montre que ce polypeptide ne possède pas de peptide signal (d'après le logiciel signalP v1.1) mais trois domaines transmembranaires (résidus 15-37, 50-72,

77-99 d'après THMM2.0) et un grand domaine hydrophile (aa 100-221) localisé à l'intérieur de la particule virale (endodomaine). Elle est vraisemblablement glycosylée sur l'asparagine en position 4 (d'après NetNGlyc 1.0).

Ainsi, en accord avec les données expérimentales connues pour les autres coronavirus, il est remarquable que les deux protéines M et E présentent des endodomaines correspondant à la majeure partie des polypeptides et des ectodomaines de très petite taille.

5

15

20

25

30

- l'ectodomaine de E correspond vraisemblablement aux résidus 1 à 11 ou 1 à 12 de la protéine : MYSFVSEETGT(L), SEQ ID NO : 70. En effet, la probabilité associée à la localisation transmembranaire du résidu 12 est intermédiaire (0,56 d'après THMM 2.0).

- l'ectodomaine de M correspond vraisemblablement aux résidus 2 à 14 de la protéine : ADNGTITVEELKQ, SEQ ID NO : 69. En effet, la méthionine N-terminale de M est très probablement clivée du polypeptide mature car le résidu en position 2 est une Alanine (Varshavsky, 1996, 93:12142-12149).

Par ailleurs, l'analyse de l'hydrophobicité (Kyte & Doolittle, Hopp & Woods) de la protéine E met en évidence que l'extrémité C-terminale de l'endodomaine de E est hydrophile et donc vraisemblablement exposée à la surface de ce domaine. Ainsi, un peptide synthétique correspondant à cette extrémité est un bon candidat immunogène pour induire chez l'animal des anticorps dirigés contre l'endodomaine de E. En conséquence, un peptide correspondant aux 24 résidus C-terminaux de E a été synthétisé.

2) Préparation d'anticorps dirigés contre l'ectodomaine des protéines M et E et l'endodomaine de la protéine E

Les peptides M2-14 (ADNGTITVEELKQ, SEQ ID NO: 69), E112 (MYSFVSEETGTL, SEQ ID NO: 70) et E53-76 (KPTVYVYSRV
KNLNSSEGVP DLLV, SEQ ID NO: 71) ont été synthétisés par Neosystem. Ils ont
été couplés à la KLH (Keyhole Limpet Hemocyanin) à l'aide du MBS (m-maleimidobenzoyl-N-hydroxysuccinimide ester) via une cystéine ajoutée au cours de la synthèse
soit en N-terminal du peptide (cas de E53-76) soit en C-terminal (cas de M2-14 et E112).

Deux lapins ont été immunisés avec chacun des conjugués, en suivant le protocole d'immunisation suivant : après une première injection de 0,5 mg de peptide couplé à la KLH et émulsionné en adjuvant complet de Freund (voie intradermique), les animaux reçoivent 2 à 4 injections de rappel à 3 ou 4 semaines d'intervalle de 0,25 mg de peptide couplé à la KLH et émulsionné en adjuvant incomplet de Freund.

Pour chaque lapin, un sérum pré-immun (p.i.) a été préparé avant la première immunisation et un immun-sérum (I.S.) est préparé 3 à 5 semaines après les injections de rappel.

La réactivité des sérums est analysée dans un premier temps par test ELISA vis à vis du peptide utilisé pour l'immunisation, puis par immunoempreinte vis-à-vis de lysats de cellules infectées par le SARS-CoV, comme décrit pour les sérums anti-N et anti-S de l'exemple 4, selon des protocole similaires à ceux décrits aux exemples 3 et 6, respectivement pour l'immunoempreinte et le test ELISA.

Dans un second temps, la réactivité des immunsérums dirigés contre les peptides M2-14 et E1-12 à reconnaître les ectodomaines de M et de E présents à la surface de la particule virale native est analysée par des tests d'immunocapture et/ou d'immunoprécipitation de virions natifs.

į.

7

Exemple 6: Analyse de la réactivité en ELISA de la protéine N recombinante, vis-à-vis de sérums de patients atteints de SRAS

1) Matériel

10

15

20

L'antigène utilisé pour préparer les phases solides est la nucléoprotéine N recombinante purifiée préparée selon le protocole décrit à l'exemple 2.

Les sérums à tester (Tableau IV) ont été choisis sur la base des résultats d'analyse de leur réactivité par immunofluorescence (titre IF-SRAS), vis-àvis de lysats de cellules infectées par le SARS-CoV.

55

Tableau IV: Sérums testés en ELISA

Référence	N° sérum	Type de sérum	Date du Sérum***	Titre IF-SRAS
3050	Α	Témoin	na*	nt**
3048	В	Témoin	na	nt
033168	D	Patient 1- SRAS	27/04/03 (J38)	320
033397	E	Patient-1 SRAS	11/05/03 (J52)	320
032632	F	Patient-2 SRAS	21/03/03 (J17)	2500
032791	G	Patient-3 SRAS	04/04/03 (J3)	<40
033258	Н	Patient-3 SRAS	28/04/03 (J27)	160

*na : non-applicable. ** nt : non-testé. *** les dates indiquées correspondent au nombre de jours après le début des symptômes de SRAS.

2) Méthode

5

10

La protéine N (100 μl) diluée à différentes concentrations dans du tampon carbonate 0,1 M, pH 9,6 (1, 2 ou 4 μg/ml) est distribuée dans les puits de plaques ELISA, puis les plaques sont incubées une nuit à température du laboratoire. Les plaques sont lavées avec du tampon PBS-Tween, saturées avec du tampon PBS-lait écrémé-saccharose (5 %). Les sérums à tester (100 μl) préalablement dilués (1/50, 1/100, 1/200, 1/400, 1/800, 1/1600 et 1/3200) sont ajoutés, puis les plaques sont incubées 1 h à 37° C. Après 3 lavages, le conjugué anti-IgG humaines marqué à la peroxydase (référence 209-035-098, JACKSON) dilué au 1/18000 est ajouté puis les plaques sont incubées 1 h à 37 °C. Après 4 lavages, le chromogène (TMB) et le substrat (H₂0₂) sont ajoutés et les plaques sont incubées 30min à température ambiante, à l'abri de la lumière. La réaction est ensuite arrêtée puis l'absorbance à 450 nm est mesurée à l'aide d'un lecteur automatique.

3) Résultats

Les tests ELISA (figure 10) démontrent que la préparation de protéine N recombinante est reconnue spécifiquement par les anticorps de sérums de patients atteints de SRAS prélevés en phase tardive de l'infection (≥ 17 jours après le début des symptômes) alors qu'elle n'est pas reconnue de façon significative par les anticorps d'un sérum de patient prélevé en phase précoce de l'infection (3 jours après le début des symptômes) ni par des sérums témoins de sujets non atteints de SRAS.

Exemple 7: Détection du coronavirus associé au SRAS (SARS-CoV) par RT-PCR en temps réel à l'aide d'amorces spécifiques du gène de la nucléoprotéine

- 1) Mise au point des conditions de la RT-PCR
- a) conception des amorces et des sondes

5

25

La conception des amorces et sondes a été réalisée à partir de la séquence du génome de la souche de SARS-CoV issue du prélèvement répertorié sous le numéro 031589, à l'aide du programme "Light Cycler Probe Design (Roche)". Ainsi les deux séries d'amorces et de sondes suivantes ont été sélectionnées :

- <u>série 1</u> (SEQ ID NO : 60, 61, 64, 65):

- 10 amorce sens: N/+/28507: 5'-GGC ATC GTA TGG GTT G-3' [28507-28522]
 - amorce antisens: N/-/28774: 5'-CAG TTT CAC CAC CTC C-3' [28774-28759]
 - sonde 1: 5'-GGC ACC CGC AAT CCT AAT AAC AAT GC-fluorescéine 3' [28561-28586]
 - sonde 2: 5' Red705 -GCC ACC GTG CTA CAA CTT CCT-phosphate [28588-28608]

- <u>série 2</u> (SEQ ID NO : 62, 63, 66, 67)

- amorce sens: N/+/28375: 5'-GGC TAC TAC CGA AGA G-3' [28375-28390]
- amorce antisens: N/-/28702: 5'-AAT TAC CGC GAC TAC G-3' [28702-28687]
- sonde 1 : SRAS/N/FL : 5'-ATA CAC CCA AAG ACC ACA TTG GC fluorescéine 3'
 [28541-28563]

igh Ling

20 - sonde 2: SRAS/N/LC705: 5' Red705 -CCC GCA ATC CTA ATA ACA ATG CTG C-phosphate 3' [28565-28589]

b) analyse de l'efficacité des deux couples amorces

Afin de tester l'efficacité respective des deux couples d'amorces, une amplification par RT-PCR a été réalisée sur un ARN synthétique correspondant aux nucléotides 28054-29430 du génome de la souche de SARS-CoV issue du prélèvement répertorié sous le numéro 031589et contenant la séquence du gène N.

De manière plus précise :

Cet ARN synthétique a été préparé par transcription in vitro à l'aide de l'ARN polymérase du phage T7, d'une matrice d'ADN obtenu par linéarisation du plasmide SRAS-N avec l'enzyme Bam H1. Après élimination de la matrice d'ADN par digestion à l'aide de DNAse 1, les ARN synthétiques sont purifiés par une extraction au phénol-chloroforme suivie de deux précipitations successives en acétate d'ammonium et isopropanol. Ils sont alors quantifiés par mesure de l'absorbance à 260

nm et leur qualité est contrôlée par le rapport des absorbances à 260 et 280 nm ainsi que par une électrophorèse en gel d'agarose. Ainsi, la concentration de la préparation d'ARN synthétique utilisée pour ces études est de 1,6 mg/ml, ce qui correspond à 2,1.10¹⁵ copies/ml d'ARN.

5 Des quantités décroissantes d'ARN synthétique ont été amplifiés par RT-PCR à l'aide du kit "Superscript™ One-Step RT-PCR with Platinum® Taq" et les couples d'amorces n° 1 (N/+/28507, N/-/28774) (figure 1A) et n° 2 (N/+/28375, N/-/28702) (figure 1B), en suivant les indications du fournisseur. Les conditions d'amplification utilisées sont les suivantes : l'ADNc a été synthétisé par incubation 30 min à 45 °C, 15 min à 55°C puis 2 min à 94 °C puis il a été amplifié par 5 cycles compre-10 nant : une étape de dénaturation à 94°C pendant 15 sec, une étape d'hybridation à 45°C pendant 30 sec puis une étape d'élongation à 72°C pendant 30 sec, suivis de 35 cycles comprenant : une étape de dénaturation à 94°C pendant 15 sec, une étape d'hybridation à 55°C pendant 30 sec puis une étape d'élongation à 72°C pendant 30 sec, avec 2 sec d'élongation supplémentaire à chaque cycle, et d'une étape finale d'élongation à 72°C pendant 5 min. Les produits d'amplification obtenus ont ensuite été maintenus à 10°C.

Les résultats présentés à la figure 11 montrent que le couple d'amorces n° 2 (N/+/28375, N/-/28702) permet de détecter jusqu'à 10 copies d'ARN (bande de faible intensité) ou 10² copies (bande de bonne intensité) contre 10⁴ copies pour le couple d'amorces n° 1 (N/+/28507, N/-/28774). Les amplicons sont respectivement de 268 pb (couple 1) et de 328 pb (couple 2).

c) mise au point de la RT-PCR en temps réel

15

20

30

Une RT-PCR en temps réel a été mise au point à l'aide du couple d'amorces n°2 et du couple de sonde constitué par SRAS/N/FL et SRAS/N/LC705 25 (figure 2).

L'amplification a été réalisée sur un LightCyclerTM (Roche) à l'aide du kit "Light Cycler RNA Amplification Kit Hybridization Probes " (référence 2 015 145, Roche) dans les conditions optimisées suivantes. Un Mélange réactionnel contenant : H₂O (6,8 µl), MgCl₂ 25 mM (0,8 µl, 4 µM final de Mg2+), mélange réactionnel 5X (4 μ l), sonde SRAS/N/FL 3 μ M (0,5 μ l, 0,075 μ M final), sonde SRAS/N/LC705 3

 μ M (0,5 μ l, 0,075 μ M final), amorce N/+/28375 10 μ M (1 μ l, 0,5 μ M final), amorce N/-/28702 10 μ M (1 μ l, 0,5 μ M final), mélange d'enzyme (0,4 μ l) et échantillon (ARN viral, 5 μ l) a été amplifié en suivant le programme suivant :

-<u>Transcription inverse</u>: **50°C** 10:00min analysis mode: none 5 - <u>Dénaturation</u>: 95°C 30sec x1 analysis mode: none

- Amplification: 95°C 2sec

15

20

30

50°C 15sec analysis mode: quantification* × x45

72°C 13sec rampe thermique 2,0°C/sec

- refroidissement: 40°C 30sec x1 analysis mode: none

*La mesure de fluorescence se fait à la fin de l'hybridation et à chaque cycle (en mode SINGLE).

Les résultats présentés à la figure 12 montrent que cette RT-PCR en temps réel est très sensible puisqu'elle permet de détecter 10² copies d'ARN synthétique dans 100% des 5 échantillons analysés (29/29 échantillons dans 8 expériences) et jusqu'à 10 copies d'ARN dans 100% des 5 échantillons analysés (40/45 échantillons dans 8 expériences). Elle montre également que cette RT-PCR permet de détecter la présence du génome du SARS-CoV dans un échantillon et de quantifier le nombre de génomes présents. A titre d'exemple, l'ARN viral d'un stock de SARS-CoV cultivé sur cellules Vero E6 a été extrait à l'aide du kit "Qiamp viral RNA extraction" (Qiagen), dilué à 0,05.10⁻⁴ et analysé par RT-PCR en temps réel selon le protocole décrit ci-dessus; l'analyse présentée à la figure 12 montre que ce stock de virus contient 6,5.10⁹ génomes —équivalents/ml (geq/ml), ce qui est tout à fait similaire à la valeur de 1,0.10¹⁰ geq/ml mesurée à l'aide du kit "RealArt™ HPA-Coronavirus LC RT PCR Reagents" commercialisé par Artus.

25 d) détection de l'ARN du SARS-CoV par PCR en temps réel à partir de prélèvements respiratoires

Une étude comparative a été réalisée sur une série de prélèvements respiratoires reçus par le Centre National de Référence du Virus Influenzae (région nord) et susceptibles de contenir du SARS-CoV. Pour ce faire, l'ARN a été extrait des prélèvements à l'aide du kit "Qiamp viral RNA extraction" (Qiagen) et analysé par RT-PCR en temps réel, d'une part à l'aide des couples d'amorces et de sondes de la

série n° 2 dans les conditions décrites ci-dessus d'une part, et d'autre part à l'aide du kit "LightCycler SARS-CoV quantification kit" commercialisé par Roche (référence 03 604 438). Les résultats sont résumés dans le Tableau ci-dessous. Ils montrent que 18 des 26 prélèvements sont négatifs et 5 des 26 prélèvements sont positifs pour les deux kits, tandis qu'un prélèvement est positif pour le seul kit Roche et deux pour les seuls réactifs N"série2". En outre, pour 3 prélèvements (20032701, 20032712, 20032714) les quantités d'ARN détectés sont nettement supérieures avec les réactifs (sondes et amorces) de la série n°2. Ces résultats indiquent que les amorces et sondes N"série2" sont plus sensibles pour la détection du génome du SARS-CoV dans des prélèvements biologiques que celles du kit actuellement disponible.

<u>Tableau V:</u> Analyse par RT-PCR en temps réel des ARN extraits d'une série de prélèvements de 5 patients à l'aide des couples d'amorces et de sondes de la série n° 2 (N "série 2") ou du kit "LightCycler SARS-CoV quantification kit" (Roche). Le type de prélèvement est indiqué ainsi que le nombre de copies de génome viral mesurées dans chacun des deux tests. NEG: RT-PCR négative.

Prélèvements n°	Patient	Type de prélèvement	KIT ROCHE	N "série2"
20033082	K	nasal	NEG	NEG
20033083	K	pharyngé	NEG	NEG
20033086	K	nasal	NEG	NEG
20033087	K	pharyngé	NEG	NEG
20032802	M	nasal	NEG	NEG
20032803	M	expectoration	NEG	NEG
20032806	M	nasal ou pharyngé	NEG	NEG
20031746ARN2	С	pharyngé	NEG	NEG
20032711	С	nasal ou pharyngé	39	NEG
20032910	В	nasal	NEG	NEG
20032911	В	pharyngé	NEG	NEG
20033356	V	expectoration	NEG	NEG
20033357	V	expectoration	NEG	NEG
20031725	K	asp. endotrachéale	NEG	150
20032657	K	asp. endotrachéale	NEG	NEG
20032698	K	asp. endotrachéale	NEG	NEG
20032720	K	asp. endotrachéale	3	5
20033074	K	selles	115	257
20032701	M	pharyngé	443	1676
20032702	M	expectoration	NEG	249
20031747ARN2	С	pharyngé	NEG	NEG
20032712	С	inconnu	634	6914
20032714	С	pharyngé	17	223
20032800	В	nasal	NEG	NEG
20033353	V	nasal	NEG	NEG
20033384	V	nasal	NEG	NEG

REVENDICATIONS

- 1°) Utilisation d'un produit sélectionné dans le groupe constitué par :
- a) une protéine ou un peptide codé par le polynucléotide de séquence SEQ ID NO: 1,
- b) un anticorps ou un fragment d'anticorps monoclonal ou polyclonal dirigé contre ladite protéine ou ledit peptide en a), et

5

10

15

20

- c) une puce ou un filtre à protéine ou à peptide comprenant la protéine ou le peptide en a) ou bien l'anticorps ou le fragment d'anticorps en b), pour la préparation d'un réactif de détection et éventuellement de sérotypage, d'un coronavirus associé au SRAS.
- 2°) Utilisation selon la revendication 1, caractérisée en ce que ladite protéine est sélectionnée dans le groupe constitué par :
 - la protéine S de séquence SEQ ID NO :3,
 - la protéine E de séquence SEQ ID NO: 14,
 - la protéine M de séquence SEQ ID NO: 17,
 - la protéine N de séquence SEQ ID NO: 37, et
- les protéines codées par les ORF: ORF1a, ORF1b, ORF3, ORF4 et ORF7 à ORF11, ORF13 et ORF14 de séquence respectivement, SEQ ID NO: 74, 75, 10, 12, 22, 24, 26, 28, 30, 33 et 35.
- 3°) Utilisation selon la revendication 1, caractérisée en ce que ledit peptide est sélectionné dans le groupe constitué par :
 - a) les peptides correspondant aux positions 14 à 1193 et 475 à 1193 de la séquence en acides aminés de la protéine S,
- b) les peptides correspondant aux positions 2 à 14 (SEQ ID NO : 69) 25 et 100 à 221 de la séquence en acides aminés de la protéine M ; et
 - c) les peptides correspondant aux positions 1 à 12 (SEQ ID NO : 70) et 53 à 76 (SEQ ID NO : 71) de la séquence en acides aminés de la protéine E ; et les peptides de 5 à 50 acides aminés consécutifs, de préférence de 10 à 30 acides aminés, inclus ou chevauchant partiellement ou totalement la séquence des peptides tels que définis en a), b) ou c).

60

REVENDICATIONS

- 1°) Utilisation d'un produit sélectionné dans le groupe constitué par :
- a) une protéine ou un peptide codé par le polynucléotide de séquence SEQ ID NO:1,
- b) un anticorps ou un fragment d'anticorps monoclonal ou polyclonal dirigé contre ladite protéine ou ledit peptide en a), et
 - c) une puce ou un filtre à protéine ou à peptide comprenant la protéine ou le peptide en a) ou bien l'anticorps ou le fragment d'anticorps en b), pour la préparation d'un réactif de détection et éventuellement de sérotypage, d'un coronavirus associé au SRAS.
 - 2°) Utilisation selon la revendication 1, caractérisée en ce que ladite protéine est sélectionnée dans le groupe constitué par :
 - la protéine S de séquence SEQ ID NO :3,

10

15

25

- la protéine E de séquence SEQ ID NO: 14,
- la protéine M de séquence SEQ ID NO: 17,
- la protéine N de séquence SEQ ID NO: 37, et
- les protéines codées par les ORF: ORF1a, ORF1b, ORF3, ORF4 et ORF7 à ORF11, ORF13 et ORF14 de séquence respectivement, SEQ ID NO: 74, 75, 10, 12, 22, 24, 26, 28, 30, 33 et 35.
- 3°) Utilisation selon la revendication 1, caractérisée en ce que ledit peptide est sélectionné dans le groupe constitué par :
 - a) les peptides correspondant aux positions 14 à 1193 et 475 à 1193 de la séquence en acides aminés de la protéine S,
 - b) les peptides correspondant aux positions 2 à 14 (SEQ ID NO : 69) et 100 à 221 de la séquence en acides aminés de la protéine M; et
 - c) les peptides correspondant aux positions 1 à 12 (SEQ ID NO : 70) et 53 à 76 (SEQ ID NO : 71) de la séquence en acides aminés de la protéine E ; et les peptides de 5 à 50 acides aminés consécutifs, de préférence de 10 à 30 acides aminés, inclus ou chevauchant partiellement ou totalement la séquence des peptides tels que définis en a), b) ou c).
 - 4°) Utilisation selon la revendication 1, caractérisée en ce que ledit peptide est constitué de 7 à 50 acides aminés consécutifs codés par le polynucléotide

- 4°) Utilisation selon la revendication 1, caractérisée en ce que ledit peptide présente une séquence de 7 à 50 incluant un résidu d'acide aminé sélectionné dans le groupe constitué par :
- l'alanine située en position 2552 de la séquence en acides aminés
 de la protéine codée par l'ORF1a de la souche isolée de coronavirus telle que définie à la revendication 1 ou à la revendication 2,
 - la sérine située en position 577 de la séquence en acides aminés de la protéine S de la souche isolée de coronavirus telle que définie à la revendication 1 ou à la revendication 2,
 - la glycine en position 11 de la séquence en acides aminés de 1'ORF3 de la souche isolée de coronavirus telle que définie à la revendication 1 ou à la revendication 2, et

10

15

20

- la sérine en position 154 de la séquence en acides aminés de la protéine M de la souche isolée de coronavirus telle que définie à la revendication 1 ou à la revendication 2.
- 5°) Méthode de détection d'un coronavirus associé au SRAS, à partir d'un échantillon biologique, laquelle méthode est caractérisée en ce qu'elle comprend au moins :
- (a) la mise en contact dudit échantillon biologique avec au moins un anticorps ou un fragment d'anticorps, une protéine, un peptide ou bien une puce ou un filtre à protéine ou à peptide tels que définis à l'une quelconque des revendications 1 à 4, et
 - (b) la révélation par tout moyen approprié des complexes antigèneanticorps formés en (a).
- 6°) Méthode selon la revendication 5, caractérisée en ce que l'étape (a) comprend :
 - (a₁) la mise en contact dudit échantillon biologique avec au moins un premier anticorps ou fragment d'anticorps qui est fixé sur un support approprié, notamment une microplaque,
 - (a2) le lavage de la phase solide, et

de séquence SEQ ID NO: 1, lequel peptide est sélectionné dans le groupe constitué par :

- un peptide comprenant l'alanine située en position 2552 de la séquence en acides aminés de la protéine codée par l'ORF1a,
- 5 un peptide comprenant la sérine située en position 577 de la séquence en acides aminés de la protéine S,
 - un peptide comprenant la glycine en position 11 de la séquence en acides aminés de la protéine codée par l'ORF3, et
- un peptide comprenant la sérine en position 154 de la séquence en acides aminés de la protéine M.
 - 5°) Méthode de détection d'un coronavirus associé au SRAS, à partir d'un échantillon biologique, laquelle méthode est caractérisée en ce qu'elle comprend au moins :
- (a) la mise en contact dudit échantillon biologique avec au moins un
 anticorps ou un fragment d'anticorps, une protéine, un peptide ou bien une puce ou un filtre à protéine ou à peptide tels que définis à l'une quelconque des revendications 1 à 4, et
 - (b) la révélation par tout moyen approprié des complexes antigèneanticorps formés en (a).
 - 6°) Méthode selon la revendication 5, caractérisée en ce que l'étape (a) comprend :
 - (a₁) la mise en contact dudit échantillon biologique avec au moins un premier anticorps ou fragment d'anticorps qui est fixé sur un support approprié, notamment une microplaque,
 - (a2) le lavage de la phase solide, et

20

- (a₃) l'addition d'au moins un second anticorps ou fragment d'anticorps, différent du premier, ledit anticorps ou fragment d'anticorps étant éventuellement marqué de façon appropriée.
- 7°) Kit ou coffret de détection d'un coronavirus associé au SRAS, 30 caractérisé en ce qu'il comprend au moins un réactif sélectionné dans le groupe constitué par : une protéine ou un peptide, un anticorps ou un fragment d'anticorps et

- (a₃) l'addition d'au moins un second anticorps ou fragment d'anticorps, différent du premier, ledit anticorps ou fragment d'anticorps étant éventuellement marqué de façon appropriée.
- 7°) Kit ou coffret de détection d'un coronavirus associé au SRAS, caractérisé en ce qu'il comprend au moins un réactif sélectionné dans le groupe constitué par : une protéine ou un peptide, un anticorps ou un fragment d'anticorps et une puce ou un filtre à protéine ou à peptide tels que définis à l'une quelconque des revendications 1 à 4.

5

15

20

25

30

- 8°) Composition immunogène, caractérisée en ce qu'elle comprend 10 au moins un produit sélectionné dans le groupe constitué par :
 - a) une protéine ou un peptide tels que définis à la revendication 1,
 - b) un polynucléotide de type ADN ou ARN ou l'un de ses fragments représentatifs tels que définis ci-dessus, de séquence choisie parmi :
 - (i) la séquence SEQ ID NO: 1 ou son équivalent ARN
 - (ii) la séquence hybridant dans des conditions de forte stringence avec la séquence SEQ ID NO : 1,
 - (iii) la séquence complémentaire de la séquence SEQ ID NO: 1 ou de la séquence hybridant dans des conditions de forte stringence avec la séquence SEQ ID NO: 1,
 - (iv) la séquence nucléotidique d'un fragment représentatif du polynucléotide tel que défini en (i), (ii) ou (iii),
 - (v) la séquence telle que définie en (i), (ii), (iii) ou (iv), modifiée, et

4

Ģ

- c) un vecteur d'expression recombinant comprenant un polynucléotide tel que défini en b), et
 - d) une banque d'ADNc telle que définie ci-dessus.
- 9°) Utilisation d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75 pour former un complexe immun avec un anticorps dirigé spécifiquement contre un épitope du coronavirus associé au SRAS.
- 10°) Complexe immun formé d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les

une puce ou un filtre à protéine ou à peptide tels que définis à l'une quelconque des revendications 1 à 4.

- 8°) Composition immunogène, caractérisée en ce qu'elle comprend au moins un produit sélectionné dans le groupe constitué par :
 - a) une protéine ou un peptide tels que définis à la revendication 1,
- b) un polynucléotide de type ADN ou ARN ou l'un de ses fragments représentatifs, de séquence choisie parmi :
 - (i) la séquence SEQ ID NO: 1 ou son équivalent ARN
- (ii) la séquence hybridant dans des conditions de forte stringence 10 avec la séquence SEQ ID NO : 1,

- (iii) la séquence complémentaire de la séquence SEQ ID NO: 1 ou de la séquence hybridant dans des conditions de forte stringence avec la séquence SEQ ID NO: 1,
- (iv) la séquence nucléotidique d'un fragment représentatif du polynucléotide tel que défini en (i), (ii) ou (iii),
 - (v) la séquence telle que définie en (i), (ii), (iii) ou (iv), modifiée, et
 - c) un vecteur d'expression recombinant comprenant un polynucléotide tel que défini en b), et
 - d) une banque d'ADNc telle que définie ci-dessus.
- 9°) Utilisation d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75, in vitro, pour former un complexe immun avec un anticorps dirigé spécifiquement contre un épitope du coronavirus associé au SRAS.
- 25 10°) Complexe immun formé d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75, et d'un anticorps dirigé spécifiquement contre un épitope du coronavirus associé au SRAS.
- 11°) Utilisation d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75, pour la

une puce ou un filtre à protéine ou à peptide tels que définis à l'une quelconque des revendications 1 à 4.

- 8°) Composition immunogène, caractérisée en ce qu'elle comprend au moins un produit sélectionné dans le groupe constitué par :
 - a) une protéine ou un peptide tels que définis à la revendication 1,
- b) un polynucléotide de type ADN ou ARN ou l'un de ses fragments représentatifs, de séquence choisie parmi :
 - (i) la séquence SEQ ID NO: 1 ou son équivalent ARN

5

15

20

25

- (ii) la séquence hybridant dans des conditions de forte stringence avec la séquence SEQ ID NO : 1,
 - (iii) la séquence complémentaire de la séquence SEQ ID NO: 1 ou de la séquence hybridant dans des conditions de forte stringence avec la séquence SEQ ID NO: 1,
 - (iv) la séquence nucléotidique d'un fragment représentatif du polynucléotide tel que défini en (i), (ii) ou (iii),
 - (v) la séquence telle que définie en (i), (ii), (iii) ou (iv), modifiée, et
 - c) un vecteur d'expression recombinant comprenant un polynucléotide tel que défini en b), et
 - d) une banque d'ADNc comprenant un polynucléotide tel que défini en b).

 $\mathcal{M}^{\mathcal{S}}$

d

- 9°) Utilisation d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75, in vitro, pour former un complexe immun avec un anticorps dirigé spécifiquement contre un épitope du coronavirus associé au SRAS.
- 10°) Complexe immun formé d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75, et d'un anticorps dirigé spécifiquement contre un épitope du coronavirus associé au SRAS.
- 30 11°) Utilisation d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75, pour la

séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75, et d'un anticorps dirigé spécifiquement contre un épitope du coronavirus associé au SRAS.

11°) Utilisation d'une protéine ou d'un peptide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 et 75 pour induire la production d'un anticorps capable de reconnaître spécifiquement un épitope du coronavirus associé au SRAS.

12°) Utilisation d'un polynucléotide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 1, 2, 4, 7, 8, 13, 15, 16, 18, 19, 20, 31, 36 et 38 pour induire la production d'un anticorps dirigé contre la protéine codée par ledit polynucléotide et capable de reconnaître spécifiquement un épitope du coronavirus associé au SRAS

préparation d'une composition immunogène apte à induire la production d'un anticorps capable de reconnaître spécifiquement un épitope du coronavirus associé au SRAS.

12°) Utilisation d'un polynucléotide isolé ou purifié présentant une séquence sélectionnée dans le groupe constitué par les séquences SEQ ID NO: 1, 2, 4, 7, 8, 13, 15, 16, 18, 19, 20, 31, 36 et 38, pour la préparation d'une composition immunogène apte à induire la production d'un anticorps dirigé contre la protéine codée par ledit polynucléotide et capable de reconnaître spécifiquement un épitope du coronavirus associé au SRAS.

Figure

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

7/83

FIGURE 7

FIGURE 8

В

A

Figure 9

ELISA-N 4μg

Figure 10a

Figure 10b

Figure 11

Figure 12

```
>< XhoII
                                                      >< Sau3AI
                    >< ScrFI
                                                      >< NdeII
                                        > < TthHB8I
                    >< MvaI
                                                      >< MflI
                                        > < TaqI
                  >< EcoRII
                                                      >< MboI
                                          >< Sau3AI
                    >< Ec1136I
                                                      >< DpnII
                                          >< NdeII
                  >< DsaV
                                          >< MboI>< MnlI>< DpnI
                    >< BstOI
                                                      >< BstYI
                                          >< DpnII
                     >< BstNI
                                            >< DpnI
                                                      >< BspAI
                     >< BsiLI
                                                       >< Bsp143I
                                          >< BspAI
                  >< BsaJI
                                            >< Bsp143I>< BglII
                     >< ApyI
ATATTAGGTT TTTACCTACC CAGGAAAAGC CAACCAACCT CGATCTCTTG TAGATCTGTT CTCTAAACGA
                                                            60
                                                  50
                                      40
                           30
                  20
       10
                                          >< VneI
                                    >< SphI
                                          >< SnoI
                                      >< RmaI
                                              >< SduI
                                    >< PaeI
                                              >< NspII
                                     >< NspI
                                     >< NspHI >< HgiAI
                                     >< NlaIII >< Bsp1286I
                                       >< MaeI >< BmyI
                                           >< ApaLI
   >< Tru9I
                                           >< Alw44I
               >< BbvI
   >< MseI
                                              >< Alw21I
                             > < Fnu4HI
                >< AluI
ACTITAAAAT CIGIGAGCI GICGCICGGC IGCAIGCCIA GIGCACCIAC GCAGIATAAA CAATAATAAA
                                                            130
                                               120
                                       110
                            100
                  90
                                            >< SfcI
                                                >< PstI
                                                >< MnlI
                                             >< Ksp632I
                                             >< EarI
                              > < MboII
             >< HindII
                                            >< Eam1104I
                         >< MaeIII
             >< HincII
 TTTTACTGTC GTTGACAAGA AACGAGTAAC TCGTCCCTCT TCTGCAGACT GCTTACGGTT TCGTCCGTGT
                                                             200
                                   180
                                                 190
                            170
                 160
       150
     >< TthHB8I
                      >< StyI
                                   >< ScrFI
                      >< RmaI
     >< TaqI
                                  >< NciI
                      >< MaeI
      >< Sau3AI
                                  >< MspI
                      >< EcoT14I
      >< NdeII
                                     >< MaeIII
                      >< Eco130I
      >< MboI
                                  >< HpaII
                      >< BssT1I
      >< DpnII
                                  >< HapII
                      >< BsaJI
        >< DpnI
                                 >< DsaV
                      >< BlnI
      >< BspAI
                                  >< BcnI
        >< Bsp143I
                      >< AvrII
 TGCAGTCGAT CATCAGCATA CCTAGGTTTC GTCCGGGTGT GACCGAAAGG TAAGATGGAG AGCCTTGTTC
                                                             270
                                    250
                                                  260
                           240
                  230
        220
                                                                   >< RmaI
                                                   >< Esp3I >< MaeII
                                                                 >< MaeI
                                                   >< BsmAI
                       >< MaeII> < Eco57I</pre>
        >< HindII
                                                                 >< BsmBI
                                                   >< Alw26I
                   > < AflIII > < DdeI
        >< HincII
 TTGGTGTCAA CGAGAAAACA CACGTCCAAC TCAGTTTGCC TGTCCTTCAG GTTAGAGACG TGCTAGTGCG
                                                             340
                                                  330
                                     320
                  300
                             310
        290
```

```
15/83
                          >< Sau961
                              >< PssI
                           >< PalI
                          >< NspIV
                            >< MnlI
                           >< HaeIII
                          >< Eco0109I
                          >< DraII>< MboII >< PmlI</pre>
                >< MnlI
                          >< Cfr13I >< PmaCI
               >< Ksp632I >< BsuRI
                                        > < MaeII
                          >< BsiZI>< EcoNI >< Eco72I
                          >< BshI >< BslI >< BsaAI</pre>
               >< Eam1104I>< AsuI >< BsiYI>< BbrPI
 TGGCTTCGGG GACTCTGTGG AAGAGGCCCT ATCGGAGGCA CGTGAACACC TCAAAAATGG CACTTGTGGT
        360
                  370
                          380
                                    390
                                                 400 410
                                                          >< Tru9I
                       >< RsaI
                                                          >< SfaNI
 >< RmaI
                                     >< BspWI
                      >< Csp6I
                                                          >< MseI
 >< MaeI >< AluI</pre>
                       >< AfaI
                                  >< AluI
                                                             > < MaeII
 CTAGTAGAGC TGGAAAAAGG CGTACTGCCC CAGCTTGAAC AGCCCTATGT GTTCATTAAA CGTTCTGATG
       430
                 440
                                  460 470
                           450
                   >< PalI
                   >< HaeIII
                                                                 >< RsaI
   >< Tru9I
                 >< GdiII
                                                                 McrI ><
   >< MseI
                 >< EaeI
                                                                >< Csp6I
  >< Esp4I
                  >< BsuRI
                                                         >< BsmI BsiEI ><
  >< AflII
                  >< BshI
                                  >< AluI
                                                     >< BscCI >< AfaI
 CCTTAAGCAC CAATCACGGC CACAAGGTCG TTGAGCTGGT TGCAGAAATG GACGGCATTC AGTACGGTCG
       500
                 510
                            520
                                      530
                                                540
                                                        550
                                   >< NspI
                     >< Scal
                                   >< NspHI
                     >< RsaI
                                   >< NlaIII
                   > < Csp6I
                                   >< BslI
                                                                >< MboII
                 >< BsrI
                                   >< BsiYI
                                                            >< MboII
                    >< AfaI
                              >< AflIII
                                                >< MunI
                                                          >< AciI
TAGCGGTATA ACACTGGGAG TACTCGTGCC ACATGTGGGC GAAACCCCAA TTGCATACCG CAATGTTCTT
       570
                 580 590
                                      600
                                                610
                                                           620
                                                >< TthHB8I
                                               >< TaqI
                                                >< Sau3AI
                                                >< NdeII
                                                >< MboI
                                                >< DpnII
                                                  > < DpnI
                                               >< ClaI
                                               >< Bsu15I
                                               >< BspDI
                       >< NlaIV
                                                >< BspAI
                         >< MspI
                                                  > < Bsp143I
                         >< HpaII
                                               >< Bsp106I
                         >< HapII
                                               >< BsiXI
                                                                MaeIII >
                        >< Cfr10I
                                               >< BscI>< SfaNI DdeI ><
                                     >< AluI >< BanIII BfrI ><
                       >< BscBI
CTTCGTAAGA ACGGTAATAA GGGAGCCGGT GGTCATAGCT ATGGCATCGA TCTAAAGTCT TATGACTTAG
      640
                650
                           660
                                     670
                                                680
                                                          690
                                                                    700
```

```
>< Sau3AI
                >< NdeII
                >< MboI
                                                                  VneI ><
           >< HphI
                                                                  SnoI ><
                >< DpnII
                                                                > < NlaIII
                >< BspAI
                                                                 ApaLI ><
                                                       >< DdeI
           >< AlwI>< DpnI
                                       >< MboII >< BsrI
                                                                Alw44I ><
                >< Bsp143I
      >< AluI
GTGACGAGCT TGGCACTGAT CCCATTGAAG ATTATGAACA AAACTGGAAC ACTAAGCATG GCAGTGGTGC
                                                         760
                            730
                                       740
                                                  750
                 720
                        >< SstI
                        >< SduI
                        >< SacI
                        >< NspII
                                                                  Sau96I ><
                      >< MnlI
                                                      >< TthHB8I
                                                                    PalI ><
                        >< HgiAI
                                                      >< TagI
                                                                  NspIV ><
                        >< Eco24I
>< SduI
                                                     > < SalI
                                                                  HaeIII ><
                      >< Ecl136II
>< NspII
                                                     > < RtrI
                                                                  Cfr13I ><
>< HgiAI
                        >< Bsp1286I
                                                        >< HindII
                                                                   BsuRI ><
                        >< BmyI
    >< DraIII
                                                                  BsiZI ><
                                                        >< HincII
                        >< BanII</pre>
>< Bsp1286I
                                                          >< BsgI
                                                                    BshI ><
                        >< Alw21I
>< BmyI
                                                       >< AccI
                                                                    AsuI ><
                                      >< MaeIII
                      >< AluI
>< Alw21I
ACTCCGTGAA CTCACTCGTG AGCTCAATGG AGGTGCAGTC ACTCGCTATG TCGACAACAA TTTCTGTGGC
                                                  820
                                                            830
                                       810
                 790
                            800
       780
                                                 >< ThaI
                                               >< ThaI
                                                 >< MvnI
                                               >< MvnI
                                               >< HinPlI
         > < RsaI
                                                                > < VneI
                                               >< Hin6I
         > < NlaIV
                                                                > < SnoI
                                                 >< HhaI
            >< KpnI
                                                                     >< SduI
                                                 >< CfoI
       >< Eco64I
                                                               NspII ><
                                                 >< BstUI
        >< Csp6I
                                                               HgiAI ><
                                               >< BstUI
         > < BscBI
                                                 >< Bsp50I Bsp1286I ><
       >< BanI
                                                                     >< BmyI
                                               >< Bsp50I
       >< Asp718
                                                                > < ApaLI
                                                 >< AciI
         > < AfaI
                                                 >< AccII
                                                                > < Alw44I
       >< AccB1I
                                                              Alw21I ><
                                               >< AccII
                        >< MnlI
                                  >< SfaNI
       >< Acc65I
CCAGATGGGT ACCCTCTTGA TTGCATCAAA GATTTTCTCG CACGCGCGGG CAAGTCAATG TGCACTCTTT
                                                              900
                                                  890
                             870
                                        880
                  860
       850
                         >< TthHB8I
                   >< TthHB8I
                         >< TaqI
                   >< TagI
                        >< MnlI
                                                             NlaIII ><
                      >< Ksp632I
                                                             >< NlaIII
                      >< Hinfl>< PleI
                                                                   EcoRII ><
                                        >< MboII
                                                   >< MaeIII
                      >< Eam1104I
                      >< Earl > < Bbvl>< Accl >< Fnu4Hl
                                                                     DsaV ><
CCGAACAACT TGATTACATC GAGTCGAAGA GAGGTGTCTA CTGCTGCCGT GACCATGAGC ATGAAATTGC
                                        950
                                                   960
                                                             970
                             940
                  930
       920
                                                   >< TthHB8I
                                                   >< TaqI
                                                   >< SfuI
                                                   >< NspV>< Tru9I
                                                   >< LspI>< MseI
>< ScrFI
            >< HinPlI
```

FIGURE 13.3

```
>< MvaI
               >< Hin6I
                                         >< SduI
                                                      >< Csp45I
  >< Ecl136I
                 >< HhaI
                                         >< NspII
                                                       >< BstBI
  >< BstOI
                  >< HaeII
                                         >< HgiAI
                                                       >< Bsp119I
  >< BstNI
                >< Eco47III
                                         >< Bsp1286I >< BsiCI
  >< BsiLI
                 >< CfoI
                                         >< BmyI
                                                      >< Bpu14I
  >< ApyI >< DdeI >< Bsp143II >< AluI
                                         >< Alw21I
                                                      >< AsuII
  CTGGTTCACT GAGCGCTCTG ATAAGAGCTA CGAGCACCAG ACACCCTTCG AAATTAAGAG TGCCAAGAAA
                   1000
                              1010
                                          1020
                                                     1030
                                                                1040
                                                                            1050
                                                  >< Tru9I
                            >< BsmI
                                                  >< MseI
                        >< BscCI
 TTTGACACTT TCAAAGGGGA ATGCCCAAAG TTTGTGTTTC CTCTTAACTC AAAAGTCAAA GTCATTCAAC
                                                        > < MnlI
                   1070
                              1080
                                         1090
                                                     1100
                                                                            1120
   >< PmlI
   >< PmaCI
  >< MaeII
   >< Eco72I
   >< BsaAI
                                       >< NlaIII
                                                             >< RsaI
   >< BbrPI
                                               >< Bst1107I >< Csp6I
  >< AflIII
                 >< MnlI>< DdeI
                                              >< AccI
                                                             >< AfaI
 CACGTGTTGA AAAGAAAAAG ACTGAGGGTT TCATGGGGCG TATACGCTCT GTGTACCCTG TTGCATCTCC
       1130
                  1140
                             1150
                                       1160
                                                    1170
                                                                1180
                                                                           1190
  >< SfaNI
        >< MaeIII
                            >< AccI
ACAGGAGTGT AACAATATGC ACTTGTCTAC CTTGATGAAA TGTAATCATT GCGATGAAGT TTCATGGCAG
                  1210
                             1220 .
                                        1230
                                                    1240
                                                               1250
                                                                    >< SinI
                                                                    >< Sau96I
                                                                   PssI ><
                                                                     >< Psp5II
                                                                    >< PpuMI
                                                                    >< NspIV
                                                                     >< NspHII
                                                                    >< Eco47I
                                                                    >< DraII
                                                                    >< Cfr13I
                                                                    >< BsiZI
                                                                    >< Bme18I
                                                                    >< AvaII
                                                                   >< AsuI
>< MaeII
ACGTGCGACT TTCTGAAAGC CACTTGTGAA CATTGTGGCA CTGAAAATTT AGTTATTGAA GGACCTACTA
                                                          EcoOl09I ><AflIII >
                 1280
                            1290
                                       1300
                                                   1310
                                                              1320
                                                                          1330
                                                                 Van911 ><
       >< RsaI
                                                                      SinI ><
                                                                    Sau96I ><
  >< NspI
                                                                  PflMI ><
       >< NlaIV
                                                                     NspIV ><
  >< NlaIII
  >< NspHI>< KpnI
                                                                     NspHII >
                                                                    Eco47I ><
     >< Eco64I
                                                                    Cfr13I ><
      >< Csp6I
       >< BscBI
                                                                   BslI ><
     >< BanI
                                                                     BsiZI ><
                                                                 BsiYI ><
     >< Asp718
                                                                   Bme18I ><
       >< AfaI
     >< AccBlI
                                                                    AvaII ><
                                                                     AsuI ><
```

FIGURE 12 A

```
>< NlaIII
                    >< SfcI
    >< Acc65I
CATGTGGGTA CCTACCTACT AATGCTGTAG TGAAAATGCC ATGTCCTGCC TGTCAAGACC CAGAGATTGG
           1350 1360 1370 1380 1390
    1340
                                           >< TthHB8I
                                           >< TaqI>< MnlI
                                             >< HinfI</pre>
                                        >< PleI >< AciI
 >< DdeI
ACCTGAGCAT AGTGTTGCAG ATTATCACAA CCACTCAAAC ATTGAAACTC GACTCCGCAA GGGAGGTAGG
     1410 1420 1430 1440 1450
                                                1460
                                                     NlaIV ><
>< RmaI
                                                         >< BsrI
                    >< BbvI >< Fnu4HI BscBI ><
    >< MnlI
ACTAGATGTT TTGGAGGCTG TGTGTTTGCC TATGTTGGCT GCTATAATAA GCGTGCCTAC TGGGTTCCTC
 >< MaeI
     1480 1490 1500 1510 1520
                                                  1530
                                                       XhoII ><
                                                       Sau3AI ><
                                                        NdeII ><
                                                        MflI ><
                                    >< MaeIII
                                                        MboI ><
                                      >< Eco31I DpnII ><
                >< RmaI
     >< MnlI.
GTGCTAGTGC TGATATTGGC TCAGGCCATA CTGGCATTAC TGGTGACAAT GTGGAGACCT TGAATGAGGA
                     1570 1580 1590 1600 1610<sup>i</sup>
     1550 1560
                          > < Tru9I
                          > < MseI
                      >< MaeII >< Tru9I
                                                     > < MnlI
                            >< HpaI
                                                     > < Ksp632I
                            >< HindII
                                                      > < EarI
              >< HinfI >< PleI >< HincII
                                                      > < Eam1104I
    >< AlwI >< DdeI >< AflIII >< MseI
 TCTCCTTGAG ATACTGAGTC GTGAACGTGT TAACATTAAC ATTGTTGGCG ATTTTCATTT GAATGAAGAG
                                       1660 1670
                            1650
          1630 1640
     1620
                                                        PleI ><
      >< MboII
                                                      > < HinfI
                    >< SfaNI
         >< BstXI
 GTTGCCATCA TTTTGGCATC TTTCTCTGCT TCTACAAGTG CCTTTATTGA CACTATAAAG AGTCTTGATT
            1700 1710 1720 1730 1740 1750
                                            >< StyI
                                       >< MaeIII
                                           >< EcoT14I
                                           >< Eco130I
                             >< PleI
                     >< MaeIII
>< HinfI>< AciI
                                                      BslI ><
                                           >< BssT1I
                                                     BsiYI ><
                                            >< BsaJI
 ACAAGTCTTT CAAAACCATT GTTGAGTCCT GCGGTAACTA TAAAGTTACC AAGGGAAAGC CCGTAAAAGG
      1760 1770 1780 1790
                                        1800
                                                 1810
                                       >< Van91I
                     >< Sau3AI
                                       >< PflMI
                     >< NdeII
                                       >< DraIII
                     >< MboI
                                       >< BslI
                     >< DpnII
                     >< DpnI >< Tru9I >< BsiYI >< BspAI >< MseI >< BbvI >< Stru4HI >< Stru4HI ><
                                                    >< MnlI
                      >< Bsp143I
```

```
TGCTTGGAAC ATTGGACAAC AGAGATCAGT TTTAACACCA CTGTGTGGTT TTCCCTCACA GGCTGCTGGT
                   1840
                              1850
                                         1860
                                                    1870
                                                               1880
                        >< ThaI
                        >< SfaNI
                        >< MvnI
                        >< HinP1I
                    >< HinPlI
                        >< Hin6I
                    >< Hin6I
                         >< HhaI
       >< Sau3AI
                       >< HhaI
       >< NdeII
                        >< CfoI
                                                                      PvuII >
       >< MboI
                       >< CfoI
                                                                      Psp5I >
       >< DpnII
                       >< BstUI
                                                                     NspBII >
         >< DpnI
                    >< BssHII
                                                                   HphI ><
       >< BspAI
                       >< Bsp50I
                                                                   Fnu4HI ><
         >< Bsp143I
                      >< AccII
                                      >< Fnu4HI
                                                  >< BbvI
 GTTATCAGAT CAATTTTTGC GCGCACACTT GATGCAGCAA ACCACTCAAT TCCTGATTTG CAAAGAGCAG
       1900
                  1910
                             1920
                                                  1940
                                        1930
                                                        1950
                                                  >< TthHB8I
                                                         >< StyI
                                                         >< NcoI
                                                   >< HindII
                                                   >< HincII
                                                    >< HinlI
                                                         >< EcoT14I
                                                    >< Eco57I
                                                 >< TaqI>< Ecol30I
                                                >< SalI >< DsaI
                                                >< RtrI >< BssTlI
                                                    >< BsaHI
                                                    >< Bbill>< NlaIII
  >< MaeIII
                                                    >< Acyl >< Hgal
         >< BbvI
                                        >< MaeII >< AccI>< BsaJI
 CTGTCACCAT ACTTGATGGT ATTTCTGAAC AGTCATTACG TCTTGTCGAC GCCATGGTTT ATACTTCAGA
                                                                   HphI ><
                1980
                        1990
                                       2000
                                                  2010
                                                             2020
                                                                        2030
                                                       >< RsaI
                                 >< NdeI
                                                     > < Csp6I
        >< BspMI
                                    >< MaeIII >< BsrI >< AfaI
CCTGCTCACC AACAGTGTCA TTATTATGGC ATATGTAACT GGTGGTCTTG TACAACAGAC TTCTCAGTGG
                 2050
                           2060
                                       2070
                                                 2080
                                                             2090
                                                                        2100
                                         >< StuI
                                         >< PalI
                                         >< HaeIII
                                         >< Eco147I
                   >< SduI
                                    >< DdeI
                   >< NspII
                                        >< BsuRI
                   >< Bsp1286I
                                        >< BshI
                                                                  DdeI ><
                   >< BmyI
                                        >< AatI
                                                    > < MnlI
TTGTCTAATC TTTTGGGCAC TACTGTTGAA AAACTCAGGC CTATCTTTGA ATGGATTGAG GCGAAACTTA
                2120
                           2130
                                      2140
                                                 2150
                                                        2160
                                                                       2170
                                    >< TfiI
                                    >< HinfI
                                                                 Tth1111 ><
             >< SfaNI >< BsgI
                                     >< FokI
GTGCAGGAGT TGAATTTCTC AAGGATGCTT GGGAGATTCT CAAATTTCTC ATTACAGGTG TTTTTGACAT
                2190
                           2200
                                      2210
                                                 2220
                                                           2230
                                                                      2240
```

```
Tru9I ><
                                                                     MseI ><
                                                                      HpaI >
                                                                    HindII >
                                                                    HincII >
       >< Eco57I
CGTCAAGGGT CAAATACAGG TTGCTTCAGA TAACATCAAG GATTGTGTAA AATGCTTCAT TGATGTTGTT
                                                        2300
                                                 2290
                           2270
                                      2280
                2260
     2250
                        >< Sau3AI
                         >< NdeII
                         >< MboI
                                                           >< Sau3AI
                              > < MaeIII
                                                           >< NdeII
                           >< FbaI
                                                           >< DpnII
                         >< DpnII
                                                             >< DpnIMboII ><
                           >< DpnI
                                                                  DdeI ><
                                               >< HinPlI
                         >< BspAI
                                               >< Hin6I
                                                            >< Bsp143I
                           >< Bsp143I
                                                           >< MboIBfrI ><
                                                 >< HhaI
                         >< BsiQI
           >< TthHB8I
                                                           >< BspAI BbsI ><
                                                 >< CfoI
                         >< BclI
           >< TaqI
AACAAGGCAC TCGAAATGTG CATTGATCAA GTCACTATCG CTGGCGCAAA GTTGCGATCA CTCAACTTAG
                                                  2360
                                                             2370
                                       2350
                            2340
                2330
                                                                   >< PvuII
                                                                   >< Psp5I
                                                  >< MaeII
                                                >< Bst1107I
                                                                   >< NspBII
                                                   >< BsaAI Fnu4HI ><
                                                    >< BbvI
                                                                > < Fnu4HI
                                                                   >< AluI
                                               >< AccI
                                    >< DrdI
            >< HphI
GTGAAGTCTT CATCGCTCAA AGCAAGGGAC TTTACCGTCA GTGTATACGT GGCAAGGAGC AGCTGCAACT
                                                             2440
                                                  2430
                                       2420
                         2410
                 2400
            >< Tru9I
                  >< NlaIV
            >< MseI
                  >< MnlI
                                                                     >< ScaI
           >< Esp4I
                                                                     >< RsaI
                >< Eco64I
                                                             >< NlaIIIMnlI ><
                  >< BscBI
                                                                  MnlI ><
      >< NlaIII >< BanI</pre>
                                                   >< TfiI
                                                                    >< Csp6I
           >< AflII
                                                  >< HinfI >< HphI >< AfaI
                             >< MaeIII</pre>
                >< AccB1I
ACTCATGCCT CTTAAGGCAC CAAAAGAAGT AACCTTTCTT GAAGGTGATT CACATGACAC AGTACTTACC
                                                             2510
                                                   2500
                            2480
                                       2490
      2460
                 2470
                                           > < XhoI
                                            >< TthHB8I
                                   >< TthHB8I>< TaqI
                                           > < SlaI
                                           > < PaeR7I
                                           > < NspIII
                                        >< HphI >< HinlI
                                           > < Eco88I
                                           > < CcrI
                                        >< Esp3I >< BsaHI
                                           > < BcoI
                                        >< BsmAI >< BbiII
                                                           >< HgaI
                                           > < Aval
                                   >< TaqI > < Ama87I>< BsmBI
                                                                >< AluI
                                        >< Alw26I >< AcyI
  >< DdeI>< MnlI
 TCTGAGGAGG TTGTTCTCAA GAACGGTGAA CTCGAAGCAC TCGAGACGCC CGTTGATAGC TTCACAAATG
                                                             2580
                                                                         2590
                                                   2570
                                        2560
                           2550
       2530
                  2540
```

```
>< PalI >< NlaIII
                                    >< HaeIII >< MnlI
                                    >< BsuRI
                                               >< DdeI >< Tru9I
  >< AluI
                  >< BsrI
                                    >< BshI
                                               >< BfrI >< MseI
GAGCTATCGT TGGCACACCA GTCTGTGTAA ATGGCCTCAT GCTCTTAGAG ATTAAGGACA AAGAACAATA
      2600
                 2610
                            2620
                                       2630
                                                  2640
                                                              2650
                                                             >< VneI
                                                                  Tru9I ><
               >< ScrFI
                                                              >< SnoI
               >< MvaI
                                                                  >< SduI
             >< EcoRII
                                                                  >< NspII
   >< MstI
               >< Ecl136I
                                                                  MseI ><
  >< HinPlI >< DsaV
                                                                  >< HgiAI
  >< Hin6I
              >< BstOI
                                                         Bsp1286I ><BslI ><
    >< HhaI
              >< BstNI
                                                                   BsiYI ><
   >< FspI
              >< BsmAI
                                                                  >< BmyI
               >< BsiLI
   >< FdiII
                                                             >< ApaLI
    >< CfoI
               >< ApyI
                                                  >< Tru9I
                                                             >< Alw44I
   >< AviII
               >< Alw26I
                            >< BsrI
                                                  >< MseI
                                                                 >< Alw21I
CTGCGCATTG TCTCCTGGTT TACTGGCTAC AAACAATGTC TTTCGCTTAA AAGGGGGTGC ACCAATTAAA
      2670
                2680
                            2690
                                     2700
                                                  2710
                                                             2720
                                                            >< TfiI
  >< MaeIII
                             >< MboII
                                          > < MaeIII
                                                            >< HinfI AluI ><
GGTGTAACCT TTGGAGAAGA TACTGTTTGG GAAGTTCAAG GTTACAAGAA TGTGAGAATC ACATTTGAGC
      2740
                2750
                            2760
                                       2770
                                                  2780
                                                           2790
                                                                   >< RsaI
                                                                   >< NlaIV
                                                                  MaeIII ><
                                                              >< MspI>< KpnI
                                                              >< HpaII
                                                              >< HapII
                                                                > < Eco64I
                                        >< SduI
                                                                  >< Csp6I
                                        >< NspII
                                                          >< Tfil >< BscBI
                                        >< HgiAI
                                                                > < BanI
       >< MaeII
                                        >< Bsp1286I
                                                                > < Asp718
             >< HindII
                                        >< BmyI
                                                          >< HinfI >< AfaI
             >< HincII
                         >< Tru9I
                                        >< Alw21I
                                                                > < AccB1I
       >< AflIII
                          >< MseI
                                            >< AccI
                                                                > < Acc65I
TTGATGAACG TGTTGACAAA GTGCTTAATG AAAAGTGCTC TGTCTACACT GTTGAATCCG GTACCGAAGT
      2810
                2820
                           2830
                                     2840
                                                 2850
                                                            2860
                                                              >< Sau3AI
                                                              >< NdeII
                                                              >< MboI
                                                              >< DpnII
              >< NspI
                                                               > < DpnI
              >< NspHI
                                                   >< MboII >< BspAI
              >< NlaIII
                                                    > < BsrI > < Bsp143I
 >< DdeI
                 >< MnlI
                             >< AlwNI
                                              >< BbsI
                                                           >< AlwNI
TACTGAGTTT GCATGTGTTG TAGCAGAGGC TGTTGTGAAG ACTTTACAAC CAGTTTCTGA TCTCCTTACC
     2880
                2890
                           2900
                                      2910
                                                 2920
                                                          · 2930
           >< Sau3AI
           >< NdeII
           >< Mbol
           >< DpnII
            >< DpnI
           >< BspAI
```

.

```
>< AluI >< SfaNI
     >< NlaIII>< Bsp143I
AACATGGGTA TTGATCTTGA TGAGTGGAGT GTAGCTACAT TCTACTTATT TGATGATGCT GGTGAAGAAA
                       2970 2980 2990 3000 3010
              2960
      2950
                                                >< SfaNI
                                            >< MnlI
                                            >< Ksp632I
                 >< GsuI
     >< MboII
                                                            > < MboII
                                            >< EarI
           >< BsaAI
                             >< MnlI >< Eam1104I >< MboII
  >< HphI >< MaeII>< BpmI
ACTITICATC ACGIATGIAT IGITCCTTTI ACCCTCCAGA IGAGGAAGAA GAGGACGAIG CAGAGIGIGA
                                           3060 3070 3080
                                    3050
                        3040
             3030
   3020
                                         > < RsaI
                                    >< RsaI
                                 >< NlaIII
                                                             >< FokI
                                     >< MnlI
                                   >< Csp6I
>< Csp6I
                                                             Eco31I ><
                                                     >< MamI BsmAI ><
                                                   >< BsiBI BsaI ><
                                         > < AfaI
                 >< MboII
                                                     >< BsaBIAlw26I ><
                                    >< AfaI
 GGAAGAAGAA ATTGATGAAA CCTGTGAACA TGAGTACGGT ACAGAGGATG ATTATCAAGG TCTCCCTCTG
              >< MboII
                        3110 3120 3130 3140
             3100
        >< NlaIV>< PvuII>< XmnI
      >< Eco64I >< Psp5I >< TthHB8I

< MnlI >< DdeI >< TaqI >< MnlI >< MboII >< BscBI>< NspBII >< MnlI >< EarI >< Bsr
>< AccBII >< AluI >< Asp700I >< Eaml104I >< MboII>< BsI
     >< MnlI >< DdeI
                                                      >< MboII >< MboII
                                                            >< BsrI
 GAATTTGGTG CCTCAGCTGA AACAGTTCGA GTTGAGGAAG AAGAAGAGGA AGACTGGCTG GATGATACTA
                                                            3210
                          3180 3190
                                                3200
                3170
                                                       >< Tru9I
                                                       >< MseI >< Eco57I
   >< FokI
                                                  >< BsrI>< MboII BsrI ><
 CTGAGCAATC AGAGATTGAG CCAGAACCAG AACCTACACC TGAAGAACCA GTTAATCAGT TTACTGGTTA
                                                           3280
                3240 3250 3260
                                                3270
                                            >< MnlI
   >< Tru9Í
                                      >< HindII>< Tru9I >< DraIII
>< HincII>< MseI >< BspWI
                            >< Tru9I
   >< MseI
                            >< MseI
  TTTAAAACTT ACTGACAATG TTGCCATTAA ATGTGTTGAC ATCGTTAAGG AGGCACAAAG TGCTAATCCT
                                                           3350
                                                 3340
                                      3330
       3300 3310
                            3320
                                                           >< VneI
                                                           >< SnoI
                                                               > < SduI
                                                               > < NspII
                                                               > < HgiAI
                                                               > < Bsp1286I
                                                               > < BmyI
                                                           >< ApaLI
                                                           >< Alw44I
                                          > < NlaIII</pre>
                >< HphI
                                                               > < Alw21I
                                             >< BspMI
  ATGGTGATTG TAAATGCTGC TAACATACAC CTGAAACATG GTGGTGGTGT AGCAGGTGCA CTCAACAAGG
                 >< Fnu4HI
                                                           3420
                 3380 3390 3400
                                                 3410
                                                       >< Sau96I
                                                       >< PalI
                                                       >< NspIV
                                                       >< HaeIII
                                                       >< Cfr13I
             >< NlaIV
```

FIGURE 13.9

```
>< Eco64I
                                                  >< BsuRI
           >< BscBI
                                       > < Tru9I >< BsiZI
> < MseI >< BshI
        >< BanI
        >< AccB1I>< NlaIII
                                          >< AluI >< AsuI >< MnlI
 CAACCAATGG TGCCATGCAA AAGGAGAGTG ATGATTACAT TAAGCTAAAT GGCCCTCTTA CAGTAGGAGG
      3440
                3450 3460 3470
                                              3480 3490
                                                    >< SinI
                                                    >< Sau96I
                                                    >< NspIV
                                              >< NspHI>< NspHII
                                                    >< Eco47I
                                                    >< Cfr13I
                                             >< NlaIII >< BspMI
                                                    >< BsiZI
                                                    >< Bme18I
                                                   >< AvaII MnlI ><
                            > < DdeI
                                             >< NspI>< AsuI FokI ><
 GTCTTGTTTG CTTTCTGGAC ATAATCTTGC TAAGAAGTGT CTGCATGTTG TTGGACCTAA CCTAAATGCA
      3510 3520 3530 3540
                                        3550
                  > < Tru9I
            >< HphI> < MseI
                 >< Esp4I
              >< AluI
                            > < NdeI
                 >< AflII>< Fnu4HI >< BbvI
 GGTGAGGACA TCCAGCTTCT TAAGGCAGCA TATGAAAATT TCAATTCACA GGACATCTTA CTTGCACCAT
      3580
          3590 3600
                              3610 3620
                                                            RsaI ><
                                                           Csp6I ><
                >< Eco57I
                                          >< BcqI
 TGTTGTCAGC AGGCATATTT GGTGCTAAAC CACTTCAGTC TTTACAAGTG TGCGTGCAGA CGGTTCGTAC
     3650 3660 3670 3680 3690
                                                      3700
    >< BsgI
                             >< BspMI
                    >< AluI
       >< BcgI/a</pre>
                                                 >< NlaIII
ACAGGTTTAT ATTGCAGTCA ATGACAAAGC TCTTTATGAG CAGGTTGTCA TGGATTATCT TGATAACCTG
           3730 3740 3750 3760 3770
                                                  >< MnlI
                > < MnlI >< NlaIV
>< Eco57I >< BscBI
    >< RmaI
                                             >< Tfil >< Mboll
                                             >< HinfI >< DdeI
AAGCCTAGAG TGGAAGCACC TAAACAAGAG GAGCCACCAA ACACAGAAGA TTCCAAAACT GAGGAGAAAT
          3800
                      3810
                                  3820 3830 3840
                                  >< Tru9I
                                       >< StuI
                                       >< PalI
                                 · >< MseI >< MnlI >< MaeIII
                                       >< HaeIII
                                                   >< EcoO651
                                       >< Eco147I
                                                   >< Eco91T
     >< RsaI
                                       >< BsuRI
                                                          BstXI ><
    >< Csp6I
            >< TthHB8I
>< TaqI
                                       >< BshI
>< AatI
                                                    >< BstPI
     >< AfaI</pre>
CTGTCGTACA GAAGCCTGTC GATGTGAAGC CAAAAATTAA GGCCTGCATT GATGAGGTTA CCACAACACT
                                                   >< BstEII
     3860 3870 3880 3890 3900 3910
                                                           TfiI ><
                                                         NlaIII ><
                                                          HinfI ><
```

>< EcoRV >< HindIII

>< DdeI

```
>< BsrI >< MboII >< MaeIII
                                      >< Eco32I >< AluI
GGAAGAAACT AAGTTTCTTA CCAATAAGTT ACTCTTGTTT GCTGATATCA ATGGTAAGCT TTACCATGAT
     3930 3940 3950 3960 3970 3980 3990
         >< NspI
          >< NspHI
                              >< SfaNI
          >< NlaIII
                   > < EcoNI
> < MboII > < BslI > < Nl
> < HphI > < BsiYI > < FokI
                               > < EcoNI
      >< MnlI
          >< DdeI
          >< BfrI
TCTCAGAACA TGCTTAGAGG TGAAGATATG TCTTTCCTTG AGAAGGATGC ACCTTACATG GTAGGTGATG
    4000 4010 4020 4030 4040 4050 4060
    >< SpeI
     >< RmaI
    >< MnlI >< DdeI
TTATCACTAG TGGTGATATC ACTTGTGTTG TAATACCCTC CAAAAAGGCT GGTGGCACTA CTGAGATGCT
     4070 4080 4090 4100 4110 4120 4130
                                             >< ScrFI
                                         >< RsaI
                                             >< MvaI
                                           >< EcoRII
                                             >< Ecl136I
                                           >< DsaV
                                        >< Csp6I >< EcoNI
                                             >< BstOI
                                             >< BstNI
                                             >< BsiLI
                                           >< BsaJI
                                       >< BsaAI >< BslI
                                       >< MaeII>< ApyI</pre>
                     >< MboII
                                       >< AfaI >< BsiYI
                   >< BsrI
 CTCAAGAGCT TTGAAGAAG TGCCAGTTGA TGAGTATATA ACCACGTACC CTGGACAAGG ATGTGCTGGT
      4140 4150 4160 4170 4180 4190 420Ô
                        >< Tru9I
                        >< MseI
                                                  >< RsaI
              >< DdeI >< Esp4I
                                                 >< Csp6I
              >< BspWI
  >< MnlI
 >< FokI >< AluI >< AfaI >< Eco57I >< AfaI
 TATACACTTG AGGAAGCTAA GACTGCTCTT AAGAAATGCA AATCTGCATT TTATGTACTA CCTTCAGAAG
      4210 4220 4230 4240 4250 4260 4270
                                 >< ScrFI
                                 >< MvaI
                                >< EcoRII
                                                   NlaIII ><
                                               Ksp632I >< F
                                >< Ecl136I
               >< XmnI
        > < Ksp632I >< RmaI >< DsaV
                                                        >< EarI
        > < Earl > < Tfil>< MboII >< BstOI
> < Eam1104I >< Mael >< BstNI
     > < Eam1104I > < MaeI > < BstNI > < DdeI > < HinfI > < ApyI > < ApyI
                                                  Eam1104I ><
                                         BsmAI ><
Alw26I ><
 CACCTAATGC TAAGGAAGAG ATTCTAGGAA CTGTATCCTG GAATTTGAGA GAAATGCTTG CTCATGCTGA
            4290 4300 4310 4320 4330 4340
                        >< Zsp2I
            >< VspI
                     >< Ppu10I
            >< Tru9I
            >< NlaIII >< FokI
          >< MboII
                >< Eco57I >< Mph1103I >< FokI
```

FIGURE 13.11

```
>< AsnI
>< AseI
                            >< EcoT22I
                                              >< BspWI
                           >< AvaIII</pre>
                                                >< BglI
 AGAGACAAGA AAATTAATGC CTATATGCAT GGATGTTAGA GCCATAATGG CAACCATCCA ACGTAAGTAT
       4350
                 4360
                           4370
                                   4380
                                                4390
                                                         4400
                                >< SfaNI
       >< Tru9I
                              > < HindII
                                            >< TfiI
                                                           >< SpeI
       >< MseI
                              > < HincII>< MboII
                                                            >< RmaI
           >< MnlI
                                     >< DrdI >< HinfI
                                                            >< MaeI
 AAAGGAATTA AAATTCAAGA GGGCATCGTT GACTATGGTG TCCGATTCTT CTTTTATACT AGTAAAGAGC
                                             4460
               4430
                           4440
                                     4450
                                                         4470
                                                >< MaeIII
 >< SfcI
                                           >< Fnu4HI
                                                           >< MunI
     >< AluI
                       >< AluI
                                           >< AciI
                                                             MaeIII ><
 CTGTAGCTTC TATTATTACG AAGCTGAACT CTCTAAATGA GCCGCTTGTC ACAATGCCAA TTGGTTATGT
      4490
                4500
                          4510
                                4520
                                               4530
                                                      4540
                               >< ThaI
                               >< MvnI
                                >< MboII
                               >< HinPlI
                            >< HinPlI
                               >< Hin6I
                            >< Hin6I
                                 >< HhaI
            >< Tru9I
                               >< HhaI
       >< NlaIII
                          >< Fnu4HI
            >< MseI
                                >< CfoI
              >< MnlI
                               >< CfoI
               >< Ksp632I
                               >< BstUI
                            >< BssHII>< BspWI >< Tru9I
              >< EarI
                             >< Bsp50I
              >< Eam1104I
                                                >< MseI
            >< BbvI
                               >< AccII
                                                      >< AluI
                                                                 HphI ><
GACACATGGT TTTAATCTTG AAGAGGCTGC GCGCTGTATG CGTTCTCTTA AAGCTCCTGC CGTAGTGTCA
      4560
               4570 4580
                                   4590 4600
                                                         4610
                 >< MaeIII
  >< SfaNI
               >< AlwNI
                                                 >< MnlI >< MnlI>< DdeI
GTATCATCAC CAGATGCTGT TACTACATAT AATGGATACC TCACTTCGTC ATCAAAGACA TCTGAGGAGC
      4630
               4640
                          4650
                                    4660
                                               4670
                                                         4680
                                           >< SinI
                                           >< Sau96I
                                           >< NspIV
                                            >< NspHII
>< SduI
                                           >< Eco47I
>< NspII
                                           >< Cfr13I
>< HgiAI
                                           >< BsiZI
>< Bsp1286I
                                           >< Bme18I
                                                              >< RsaI
>< BmyI
                                           >< AvaII
                                                              >< Csp6I
>< Alw21I
                                           >< AsuI
ACTTTGTAGA AACAGTTTCT TTGGCTGGCT CTTACAGAGA TTGGTCCTAT TCAGGACAGC GTACAGAGTT
     4700
             4710 4720 4730
                                              4740
                                                        4750
                                                           > < TthHB8I
                                                           > < TaqI
                                                        >< SduI
                                             >< Van91I >< NspII
              >< Tru9I
                                     >< RsaI
                                             >< PflMI
                                                       >< Eco24I
              >< MseI
                                  >< HphI
                                             >< BslI
                                                       >< Bsp1286I
             >< Esp4I
                                    >< Csp6I
                                             >< BsiYI
                                                       >< BmyI GsuI ><
                               FIGURE 13 12
```

```
>< AfaI >< AccB7I >< BanIIBpmI ><</pre>
           >< AflII >< MaeIII
AGGTGTTGAA TTTCTTAAGC GTGGTGACAA AATTGTGTAC CACACTCTGG AGAGCCCCGT CGAGTTTCAT
             4780 4790 4800 4810 4820 4830
                                                    >< Tru9I
                                       >< PleI >< EcoNI
                                         >< MnlI >< BslI
                                      >< BsmAI >< BsiYI
                               >< Hinfl>< Alw26I>< AciI >< MseI
              >< HphI
CTTGACGGTG AGGTTCTTTC ACTTGACAAA CTAAAGAGTC TCTTATCCCT GCGGGAGGTT AAGACTATAA
    4840 4850 4860 4870 4880
                                    >< AluI
AAGTGTTCAC AACTGTGGAC AACACTAATC TCCACACACA GCTTGTGGAT ATGTCTATGA CATATGGACA
     4910 4920 4930 4940 4950 4960 4970
      >< SinI
      >< Sau96I
      >< NspIV
      >< NspHII
      >< Eco47I
                                                    NlaIII ><
      >< Cfr13I
                                                  >< NlaIII
      >< BsiZI
                                                    > < MnlI
      >< Bme18I
                              >< MaeIII >< Tru9I >< MnlI
>< FokI >< MseI >< BspHI
                                                  >< MnlI
      >< AvaII
      >< AsuI
GCAGTTTGGT CCAACATACT TGGATGGTGC TGATGTTACA AAAATTAAAC CTCATGTAAA TCATGAGGGT
            4990 5000 5010 5020 5030
     4980
                                            > < TthHB8I
                                            > < TaqI
            >< RsaI
                         >< SnaBI >< ScaI
>< MaeII >< HindIII >< RsaI
                 > < RmaI
                    >< Csp6I
            >< AfaI
 AAGACTTTCT TTGTACTACC TAGTGATGAC ACACTACGTA GTGAAGCTTT CGAGTACTAC CATACTCTTG
                    5070 5080 5090 5100 5110
     5050
          5060
                   >< RsaI
                       >< NspI
                       >< NspHI
                       >< NlaIII
                                                          MnlI >
                 >< MseI
                   >< AflIII
                                                      BsiYI ><
                   >< AfaI >< DraI
 ATGAGAGTTT TCTTGGTAGG TACATGTCTG CTTTAAACCA CACAAAGAAA TGGAAATTTC CTCAAGTTGG
     5120 5130 5140 5150 5160 5170 5180
                                        >< RmaI
    >< Tru9I >< Tru9I >< RmaI
>< MseI >< MseI >< MunI >< MaeI
 TGGTTTAACT TCAATTAAAT GGGCTGATAA CAATTGTTAT TTGTCTAGTG TTTTATTAGC ACTTCAACAG
     5190 5200 5210 5220 5230
                                                  5240 5250
                                              >< SfaNI
                                              >< SduI
                                              >< NspII
                                              >< Eco24I
                                              >< Bsp1286I
                                              >< BmyI
                                              >< BbvI Fnu4HI ><
                                              >< BanII >< BspWI
                       >< MnlI
```

```
CTTGAAGTCA AATTCAATGC ACCAGCACTT CAAGAGGCTT ATTATAGAGC CCGTGCTGGT GATGCTGCTA
       5260
                  5270
                             5280
                                        5290
                                                  5300
                                                           5310
       >< VneI
       >< SnoI
            >< SduI
            >< NspII
            >< HgiAI
            >< Bsp1286I
            >< BmyI
       >< ApaLI
       >< Alw44I
                                                                    MboII ><
            >< Alw21I
                                                  >< AluI
                                                                    >< HphI
 ACTTTTGTGC ACTCATACTC GCTTACAGTA ATAAAACTGT TGGCGAGCTT GGTGATGTCA GAGAAACTAT
       5330
                 5340
                         5350 5360
                                                  5370
                    > < SphI
                    > < PaeI</pre>
                    > < NspI
                    > < NspHI >< TfiI</pre>
                                                  >< Tru9I
           >< SfcI > < NlaIII>< HinfI
                                                  >< MseI
 GACCCATCTT CTACAGCATG CTAATTTGGA ATCTGCAAAG CGAGTTCTTA ATGTGGTGTG TAAACATTGT
       5400
                 5410
                         5420
                                      5430
                                                5440
                                                             5450
                                                       >< RsaI
                   >< Tru9I
                                                     > < Csp6I
                                                                     Esp4I >
                   >< MseI
                                   >< AluI
                                                       >< AfaI
GGTCAGAAAA CTACTACCTT AACGGGTGTA GAAGCTGTGA TGTATATGGG TACTCTATCT TATGATAATC
      5470
               5480
                           5490 5500
                                                  5510
                                                             5520
                                                             >< RsaI
                                                                 >< MboII
                                                         >< RmaIHinfI ><
                                                             >< Csp6I
>< Tru9I
                             >< SfaNI
                                                         >< MaeI >< BbsI
                         >< NlaIII
                                                             >< AfaI
TTAAGACAGG TGTTTCCATT CCATGTGTGT GTGGTCGTGA TGCTACACAA TATCTAGTAC AACAAGAGTC
      5540
               5550
                         5560
                                      5570
                                                5580
                                                            5590
                                                                       5600
                                                       >< RsaI
   >< PleI
                              > < DdeI
                                                      >< Csp6I
  >< BsgI
                          >< BspWI >< BspMI
                                                      >< AfaI
TTCTTTTGTT ATGATGTCTG CACCACCTGC TGAGTATAAA TTACAGCAAG GTACATTCTT ATGTGCGAAT
      5610
                5620
                           5630
                                      5640
                                                5650
                                                            5660
                                                                       5670
                                                >< Eco31I
   >< RsaI
                                                 >< DdeI
        > < MaeIII
                                                >< BsmAI
  >< Csp6I
                                                >< BsaI
                                                                 MnlI ><
   >< AfaI >< BsrI
                                               >< Alw26I
GAGTACACTG GTAACTATCA GTGTGGTCAT TACACTCATA TAACTGCTAA GGAGACCCTC TATCGTATTG
     5680
                5690
                           5700
                                     5710 5720
                                                           5730
      >< SstI
                                     >< SinI
      >< SduI
                                     >< Sau96I
      >< SacI
                                     >< NspIV
      >< NspII
                                     >< NspHII
      >< HgiAI
                             > < RsaI
                                        >< MaeIII
      >< Eco24I
                                    >< Eco47I
    >< Ecl136II
                                    >< Cfr13I .
      >< Bsp1286I
                                    >< BsiZI
      >< BmyI
                                    >< Bme18I
                                PICTIDE 12 14
```

```
>< AvaII
      >< BanII
      >< Alw21I
                              >< Csp6I>< AsuI
                               > < Afal >< Bsrl>< AlwNI
ACGGAGCTCA CCTTACAAAG ATGTCAGAGT ACAAAGGACC AGTGACTGAT GTTTTCTACA AGGAAACATC
                                                  5790
                            5770
                                      5780
                 5760
                                      >< TthHB8I
                                      >< TaqI >< MaeIII</pre>
TTACACTACA ACCATCAAGC CTGTGTCGTA TAAACTCGAT GGAGTTACTT ACACAGAGAT TGAACCAAAA
                                                             5870
                 5830
                            5840
                                       5850
                                                  5860
                                                                >< RsaI
                                                               >< Csp6I
                                                  >< SfcI >< BbvI
                >< FokI
                                              >< Fnu4HI
                                                                >< AfaI
TTGGATGGT ATTATAAAA GGATAATGCT TACTATACAG AGCAGCCTAT AGACCTTGTA CCAACTCAAC
                                                  5930
                 5900
                            5910
                                       5920
                                                             5940
                                                                  Tru9I ><
                                                                    SwaI ><
                                                                   MseI ><
                                          > < NspI
                                                                   MamI ><
                                          > < NspHI
                                                                   DraI ><
                                          > < NlaIII
                                                                   BsiBI ><
                                      >< AflIII
                                                                   BsaBI ><
CATTACCAAA TGCGAGTTTT GATAATTCA AACTCACATG TTCTAACACA AAATTTGCTG ATGATTTAAA
                                       5990
      5960
                 5970
                            5980
                                                  6000
                                                             6010
                                              >< MboII
                           >< AluI
                                       >< AluI>< MaeIII
TCAAATGACA GGCTTCACAA AGCCAGCTTC ACGAGAGCTA TCTGTCACAT TCTTCCCAGA CTTGAATGGC
                 6040
                                       6060
                                                  6070
                                                              6080
      6030
                            6050
                  >< SfcI
GATGTAGTGG CTATTGACTA TAGACACTAT TCAGCGAGTT TCAAGAAAGG TGCTAAATTA CTGCATAAGC
                            6120
                                       6130
                                                  6140
                                                              6150
      6100
                 6110
                >< Tru9I
                      >< ScrFI
                      >< MvaI
                >< MseI
                   >< EcoRII
                      >< Ecl136I
                   >< DsaV
                      >< BstOI
                      >< BstNI
                                                                MaeII ><
                      >< BsiLI
                                                              >< DraIII
>< MunI
                                         >< MaeII
      >< BstXI
                      >< ApyI
                                                           ><. BstXI
CAATTGTTG GCACATTAAC CAGGCTACAA CCAAGACAAC GTTCAAACCA AACACTTGGT GTTTACGTTG
      6170
                 6180
                          6190
                                       6200
                                                  6210
                                                            6220
        > < RsaI
        >< Csp6I
                                                                   MboII ><
         > < AfaI>< BsrI
TCTTTGGAGT ACAAAGCCAG TAGATACTTC AAATTCATTT GAAGTTCTGG CAGTAGAAGA CACACAAGGA
      6240
                 6250
                            6260
                                       6270
                                                  6280
                                                             6290
                                                                         6300
                          >< HindII
                                                        >< MboII
                                                >< MnlI
                          >< HincII
ATGGACAATC TTGCTTGTGA AAGTCAACAA CCCACCTCTG AAGAAGTAGT GGAAAATCCT ACCATACAGA
                                       6340
      6310
                 6320
                            6330
                                                  6350
                                                             6360
```

```
>< MaeIII
                                                        >< Tru9I
                  >< MaeII
                                                       >< MseI
AGGAAGTCAT AGAGTGTGAC GTGAAAACTA CCGAAGTTGT AGGCAATGTC ATACTTAAAC CATCAGATGA
           6390
                           6400
                                    6410 6420
                                                        6430
                                  >< XhoII
                                  >< Sau3AI
                                >< NlaIII
                                  >< NdeII
                                  >< MflI
                                  >< MboI
                                  >< DpnII
                                   >< DpnI
                                  >< BstYI
     >< Tru9I
                                  >< BspAI
     >< MseI
                           >< BspHI >< Bsp143I>< Fnu4HI
        > < MaeIII
                      >< MnlI >< BbvI >< AlwI
AGGTGTTAAA GTAACACAAG AGTTAGGTCA TGAGGATCTT ATGGCTGCTT ATGTGGAAAA CACAAGCATT
      6450
               6460
                          6470 - 6480
                                            6490 6500 6510
                                 >< SauI
                           >< RmaI
                                >< MstII
                           >< MaeI
                                >< Eco81I
                                >< DdeI
                                >< CvnI
                                >< Bsu36I
                                >< Bse21I
                                >< BfrI> < Tru9I
    >< Tru9I
                                >< AxyI> < MseI>< MunI</pre>
    >< MseI
                    >< AluI
                               >< AocI >< DraI >< BbvI Fnu4HI ><
ACCATTAAGA AACCTAATGA GCTTTCACTA GCCTTAGGTT TAAAAACAAT TGCCACTCAT GGTATTGCTG
     6520
              6530
                        6540
                                    6550
                                              6560
                                                        6570
   >< VspI
             >< StyI
   >< Tru9I
             >< EcoT14I
                                                 > < DdeI
   >< MseI
             >< Eco130I
                                                   >< BslI
   >< AsnI
             >< BssT1I
                                                   >< BsiYI
             >< BsaJI
                                                 > < BfrI
                                                             >< Fnu4HI
CAATTAATAG TGTTCCTTGG AGTAAAATTT TGGCTTATGT CAAACCATTC TTAGGACAAG CAGCAATTAC
     6590
              6600
                        6610 6620
                                             6630
                                                       6640
           >< HinPlI
           >< Hin6I
                                     >< Tru9I
            >< HhaI
                             >< MaeII>< MseI
             >< DdeI
                              >< DraIII
>< BbvI
            >< CfoI
                              >< AflIII
AACATCAAAT TGCGCTAAGA GATTAGCACA ACGTGTGTTT AACAATTATA TGCCTTATGT GTTTACATTA
     6660
             6670
                        6680 6690
                                        6700
                                                        6710
             >< RsaI
                            > < RsaI>< XbaI
            >< Csp6I
                          >< Csp6I >< RmaI
     >< MunI >< AfaI >< AfaI >< AluI
TTGTTCCAAT TGTGTACTTT TACTAAAAGT ACCAATTCTA GAATTAGAGC TTCACTACCT ACAACTATTG
     6730
              6740
                     6750
                                  6760
                                             6770
                                                        6780
                                               >< VspI
                                               >< Tru9I
                                          >< NaeI
                                         >< MspI
                                               >< MseI
```

my/

```
30/83
                                             >< HpaII
                                             >< HapII
                                            >< Cfr10I >< FokI
                                                   >< AsnI
            >< Tru9I
                                                   >< Asel>< Hphl>< MaeIII
                             >< SfaNI
CTAAAAATAG TGTTAAGAGT GTTGCTAAAT TATGTTTGGA TGCCGGCATT AATTATGTGA AGTCACCCAA
            >< MseI
                                                            6850
                                                6840
                           6820
                                      6830
                6810
                                                                  MaeIII >
                                                       >< DdeI
                                           >< Tru9I
                                                                   >< BbvI
                                                       >< BfrI
                                           >< MseI
ATTTTCTAAA TTGTTCACAA TCGCTATGTG GCTATTGTTG TTAAGTATTT GCTTAGGTTC TCTAATCTGT
                                                            6920
                                                 6910
                                      6900
                           6890
                6880
      6870
                                            >< SduI
                                            >< NspII .
                                            >< HgiAI
                                            >< Bsp1286I
                   > < RsaI
                                            >< BmyI
                  >< Csp6I
                                            >< Alw21I
                   > < AfaI
GTAACTGCTG CTTTTGGTGT ACTCTTATCT AATTTTGGTG CTCCTTCTTA TTGTAATGGC GTTAGAGAAT
                                                                       7000
                                                             6990
                                                 6980
                            6960
                                   6970
                 6950
      6940
                                                                    Tru9I ><
                                                                    MseI ><
                                                               >< Fnu4HI
                   > < MaeIII
      >< Tru9I
                                                                      BbvI >
                   >< MaeII
TGTATCTTAA TTCGTCTAAC GTTACTACTA TGGATTTCTG TGAAGGTTCT TTTCCTTGCA GCATTTGTTT
                                                            7060
                            7030 7040 7050
                 7020
                                                                 RsaI ><
                    > < TfiI
                                                                 >< HphI
                         >< MamI
                                                               Csp6I ><
                    > < HinfI
                                             >< XmnI>< MaeIII
                         >< BsiBI
                                                                 AfaI ><
                         >< BsaBI >< AluI >< Asp700I
 AAGTGGATTA GACTCCCTTG ATTCTTATCC AGCTCTTGAA ACCATTCAGG TGACGATTTC ATCGTACAAG
     >< PleI>< HinfI
                                                          7130
                                                7120
                                       7110
                            7100
                 7090
       7080
                          >< PalI
                             >< NspBII
                          >< HaeIII
                         >< GdiII
                           >< Fnu4HI
                         >< EaeI
                               >< DdeI
                           >< BsuRI
                           >< BshI >< BslI
 >< RmaI
                           >< AciI>< BsiYI
 CTAGACTIGA CAATTTTAGG TCTGGCCGCT GAGTGGGTTT TGGCATATAT GTTGTTCACA AAATTCTTTT
                                                                      7210
                                                           7200
                                                  7190
                             7170
                                       7180
                  7160
                                                    >< RmaI
                  >< BspMI
                                                    >< MaeI
                   >< AluI .
 ATTTATTAGG TCTTTCAGCT ATAATGCAGG TGTTCTTTGG CTATTTTGCT AGTCATTTCA TCAGCAATTC
                                                              7270
                                                  7260
                                       7250
                           7240
                  7230
       7220
                                                                  RsaI ><
                                                                  >< MboII
                                                                  MamI ><
                                          >< NlaIV
                                                               Csp6I ><
                                        >< Eco64I
                                                                BsiBI ><
                                > < RsaI >< BscBI
                                                                BsaBI ><
                               >< Csp6I >< BanI</pre>
                                                                  AfaI ><
                                > < AfaI>< AccB1I
```

FIGURE 13.17

> < NlaIII

```
TTGGCTCATG TGGTTTATCA TTAGTATTGT ACAAATGGCA CCCGTTTCTG CAATGGTTAG GATGTACATC
                   7300
                            7310 7320
                                                    7330
                                                              7340
                                                              TthHB8I ><
                                                                      >< TaqI
                                                                      MnlI ><
                         >< NdeI
                                                                Ksp632I ><
                         >< Ksp632I
                                                                   >< FokI
                         >< EarI
                                                          >< MboII EarI ><
                        >< Eam1104I>< AluI>< MboII >< NlaIII Eam1104I ><
  TTCTTTGCTT CTTTCTACTA CATATGGAAG AGCTATGTTC ATATCATGGA TGGTTGCACC TCTTCGACTT
                             7380
       7360
                7370
                                     7390
                                                   7400
                                                              7410
                                                                     XhoII ><
                                                                    Sau3AI ><
                                                                NlaIII ><
                                                                     NdeII ><
                                                                      MflI ><
                                                                      MboI ><
                                     >< ThaI
                                                                 > < Ksp632I
                                    >< MvnI
                                                                 > < EarI
                  >< HinP1T
                                   >< MluI
                                                                 > < Eam1104I
                  >< Hin6I
                                    >< BstUI
                                                                     DpnII ><
                    >< HhaI
                                    >< Bsp50I >< RsaI
                                                                     BstYI ><
     >< NlaIII
                    >< CfoI
                                   >< Afliii >< Csp6i
>< Accii >< Afai
                                                        >< Tru9I BspAI ><
>< MseI BglII ><
       >< BspWI >< BspWI >< AccII
 GCATGATGTG CTATAAGCGC AATCGTGCCA CACGCGTTGA GTGTACAACT ATTGTTAATG GCATGAAGAG
       7430
                  7440
                            7450
                                       7460
                                                  7470
                                                             7480
                             >< PalI
                             >< HaeIII
                             >< DsaI
                                                                     >< MunI
       >< MboII
                             >< BsuRI
                                                                  MaeIII ><
 >< DpnI
                            >< BshI
                                                    >< MunI
                                                                BsmAI ><
 >< Bsp143I
              >< MnlI
                         >< BsaJI >< PleI>< HinfI</pre>
                                                               Alw26I ><
 ATCTTTCTAT GTCTATGCAA ATGGAGGCCG TGGCTTCTGC AAGACTCACA ATTGGAATTG TCTCAATTGT
       7500
                 7510
                        7520
                                       7530
                                                  7540
                                                             7550
                                                                       7560
                      >< RsaI
                                                                Tru9I ><
                    > < Csp6I
                                                                MseI ><
                  >< BsrI
                                              >< GsuI
                                                         >< MaeIIIDraI ><
                      >< AfaI
                                              >< BpmI
                                                              > < BsrI
GACACATTTT GCACTGGTAG TACATTCATT AGTGATGAAG TTGCTCGTGA TTTGTCACTC CAGTTTAAAA
      7570
                 7580
                          7590
                                   7600
                                                  7610
                                                             7620
                                                                   >< Thal
                                                                   >< MvnI
                                                               > < HphI
                                                             HinPlI ><
                                                                 >< HinP1I
                                                                   >< Hin6I
                                                                 >< Hin6I
                                                                HhaI ><
                                                                  >< HhaI
                                                                CfoI ><
                                                                   >< CfoI
                                                                   >< BstUI
                                                                 >< BssHII
                                                            Bsp50I ><
                   > < BsrI
GACCAATCAA CCCTACTGAC CAGTCATCGT ATATTGTTGA TAGTGTTGCT GTGAAAAATG GCGCGCTTCA
     7640
                7650
                           7660
                                     7670
                                                 7680
                                                           7690
```

```
>< FokI
                                >< BsmAI
                                             >< AciI
                                 >< Alw26I
CCTCTACTTT GACAAGGCTG GTCAAAAGAC CTATGAGAGA CATCCGCTCT CCCATTTTGT CAATTTAGAC
                                                 7750
                                      7740
                            7730
                7720
                                        >< VspI
                                        >< Tru9I
                                        >< MseI
                                        >< AsnI
                                                                  >< BcgI/a
                                        >< AseI
AATTTGAGAG CTAACAACAC TAAAGGTTCA CTGCCTATTA ATGTCATAGT TTTTGATGGC AAGTCCAAAT
                                                            7830
                                                7820
                                       7810
                            7800
                 7790
      7780
                                     >< SfcI >< PvuII
                                             >< Psp5I
                                   >< RsaI
     >< PleI >< Csp6I >< NspBII
>< HinfI >< DdeI >< BcgI >< AfaI >< AluI
GCGACGAGTC TGCTTCTAAG TCTGCTTCTG TGTACTACAG TCAGCTGATG TGCCAACCTA TTCTGTTGCT
                                                             7900
                                       7880
                                                  7890
                         7870
                 7860
      7850
                                                                   TthHB8I ><
                                                                      TaqI ><
                                                                     SalI ><
                                                                     RtrI ><
                                                                     HindII >
                                    >< ScaI
                                                                     HincII >
                                                   >< Tru9I
                                     >< RsaI
                                                    >< SfaNI >< Eco57I</pre>
                                    >< Csp6I
                                                   >< MseI
                                   >< AfaI
                      >< MaeII
 TGACCAAGCT CTTGTATCAG ACGTTGGAGA TAGTACTGAA GTTTCCGTTA AGATGTTTGA TGCTTATGTC
        >< AluI
                                                              7970
                                                   7960
                                        7950
                7930
                             7940
       7920
                                             >< Tru9I
                                             >< MseI
                                                            >< SfcI
                                           > < Esp4I
                                                       >< BspWI >< AluI
                                           > < AflII
 GACACCTTTT CAGCAACTTT TAGTGTTCCT ATGGAAAAAC TTAAGGCACT TGTTGCTACA GCTCACAGCG
                                                              8040
                                                   8030
                                        8020
                             8010
                  8000
       7990
                                                        >< PvuII
                                                        >< Psp5I
                                                        >< NspBII
                                                         >< Fnu4HI
                                                        >< AluI
                                         >< BbvI
                   >< AluI
 AGTTAGCAAA GGGTGTAGCT TTAGATGGTG TCCTTTCTAC ATTCGTGTCA GCTGCCCGAC AAGGTGTTGT
                                                   8100
                                                               8110
                                                                        8120
                                       8090
                             8080
                  8070
        8060
                                                                  MaeIII ><
                                                                   >< DdeI
                                             >< BsmAI
              >< HindII
                                      >< FokI>< Alw26I</pre>
  TGATACCGAT GTTGACACAA AGGATGTTAT TGAATGTCTC AAACTTTCAC ATCACTCTGA CTTAGAAGTG
              >< HincII
                                                                          8190
                                                              8180
                                                   8170
                                    8160
                             8150
                  8140
                                                                      >< XhoII
                                                               Sau3AI ><
                                                                      >< NdeII
                                                                      >< MflI
                                                                      >< MboI
                                                            >< NlaIII >< HgaI
                                                             >< HinlI >< DpnII
                                                                   DpnI ><
```

```
Bsp143I ><
                                                               >< BsaHI >< BstYI
               >< MaeIII>< HphI</pre>
                                                               >< BbiII >< BspAI
     >< MaeIII
                 >< HphI >< NlaIII</pre>
                                                               >< Acyl >< BqlII
  ACAGGTGACA GTTGTAACAA TTTCATGCTC ACCTATAATA AGGTTGAAAA CATGACGCCC AGAGATCTTG
        8200
                   8210
                              8220
                                         8230
                                                     8240
                                                                 8250
        >< NspI
        >< NspHI
        >< NlaIII
  >< HinPlI
  >< Hin6I
    >< HhaI
   >< CfoI
                                                >< BspWI >< MaeIII</pre>
 GCGCATGTAT TGACTGTAAT GCAAGGCATA TCAATGCCCA AGTAGCAAAA AGTCACAATG TTTCACTCAT
       8270
                  8280
                            8290
                                         8300
                                                     8310
                                                                8320
                                                                            8330
                         >< NspI
                         >< NspHI
                                         >< PvuII
                         >< NlaIII
                                         >< Psp5I
                     >< Eam1105I
                                         >< NspBII
                           >< BbvI
                                          >< Fnu4HI
                    >< AflIII
                                         >< AluI
                                                  >< BbvI
                                                                   > < Fnu4HI
 CTGGAATGTA AAAGACTACA TGTCTTTATC TGAACAGCTG CGTAAACAAA TTCGTAGTGC TGCCAAGAAG
       8340
                  8350
                              8360
                                         8370
                                                     8380
                                                                8390
                                       >< RmaI
         >< MboII
                                       >< MaeI >< Eam1105I
 AACAACATAC CTTTTAGACT AACTTGTGCT ACAACTAGAC AGGTTGTCAA TGTCATAACT ACTAAAATCT
       8410
                  8420
                             8430
                                         8440
                                                    8450
                                                               8460
                                                                           8470
                                                   >< Tru9I
                                                         >< PalI
                                                   >< MseI
                                                         >< HaeIII
                            >< ScaI
                                                  >< Esp4I
                            >< RsaI >< Tru9I</pre>
                                                         >< BsuRI
                           >< Csp6I >< MseI</pre>
                                                         >< BshI
                            >< AfaI
                                      >< DraI
                                                  >< AflII
                                                                 >< BbvI
CACTCAAGGG TGGTAAGATT GTTAGTACTT GTTTTAAACT TATGCTTAAG GCCACATTAT TGTGCGTTCT
      8480
                  8490
                             8500
                                        8510
                                                    8520
                                                               8530
                                    >< RsaI
                                   >< Csp6I
                               >< BsrI
                                                           >< NlaIII
  >< Fnu4HI
                                    >< AfaI
                                                              >< MaeIII
TGCTGCATTG GTTTGTTATA TCGTTATGCC AGTACATACA TTGTCAATCC ATGATGGTTA CACAAATGAA
      8550
                 8560
                             8570
                                        8580
                                                   8590
                                        >< MaeIII
                                > < MaeIII
      >< MaeIII
                                        >< FokI
ATCATTGGTT ACAAAGCCAT TCAGGATGGT GTCACTCGTG ACATCATTTC TACTGATGAT TGTTTTGCAA
      8620
                 8630
                            8640
                                        8650
                                                   8660
                                                              8670
                                                                        SfcI >
        >< NspI
                                                                Fnu4HI ><
        >< NspHI
                          >< NlaIII
                                                                  BbvI ><
        >< NlaIII
                            >< HgaI
                                         >< BstXI
                                                        >< BbvI
ATAAACATGC TGGTTTTGAC GCATGGTTTA GCCAGCGTGG TGGTTCATAC AAAAATGACA AAAGCTGCCC
      8690
                 8700
                            8710
                                       8720
                                                   8730
                                                              8740
                                                                         8750
```

```
>< ScrFI
                                                               >< RsaI
                                                >< ScrFI
                                                >< MvaI >< MspI
                                              >< EcoRII >< HpaII
                                                 >< Ecl136I>< NciI
                                                        >< HapII
                                               >< DsaV
                                                 >< BstOI>< DsaV
                                                              >< Csp6I
                                                 >< BstNI
                                                 >< BsiLI >< BcnIDdeI ><
       >< Fnu4HI
                                                               >< AfaI
                                                 >< ApyI
      >< AluI
TGTAGTAGCT GCTATCATTA CAAGAGAGAT TGGTTTCATA GTGCCTGGCT TACCGGGTAC TGTGCTGAGA
                                                              8810
                                                   8800
                                       8790
                            8780
                 8770
                                                                >< BspWI
                                             >< MnlI
         > < MaeIII
                       >< HphI
GCAATCAATG GTGACTTCTT GCATTTTCTA CCTCGTGTTT TTAGTGCTGT TGGCAACATT TGCTACACAC
                                                              8880
                                                   8870
                                       8860
                            8850
                 8840
      8830
                                                                       Tru9I >
                                                                  SfaNI ><
                                                                     >< RsaI
                                                                        MseI >
                                                         >< Fnu4HI >< Csp6I
                                       >< BspWI
                                                          >< DdeI >< AfaI
                                         >< BbvI>< MnlI
CTTCCAAACT CATTGAGTAT AGTGATTTTG CTACCTCTGC TTGCGTTCTT GCTGCTGAGT GTACAATTTT
                                                              8950
                                                                         8960
                                                   8940
                                        8930
                            8920
                 8910
      8900
                                                      > < RmaI
                                                 >< MnlI
                                                      > < MaeI
                  >< FokI
TAAGGATGCT ATGGGCAAAC CTGTGCCATA TTGTTATGAC ACTAATTTGC TAGAGGGTTC TATTTCTTAT
                                                               9020
                                                                          9030
                                                   9010
                                        9000
                  8980
                             8990
      8970
                                                                       ScrFI >
                                                                        MvaI >
                                                                   MnlI ><
                                                                    EcoRII ><
                                                                     Ecl136I >
                                                                      DsaV ><
                                                                       BstOI >
                                                                       BstNI >
                                              >< NlaIV
                                                                       BsiLI >
                                                      >< FokI
                                                                        ApyI >
                                              >< BscBI
      >< AluI
AGTGAGCTTC GTCCAGACAC TCGTTATGTG CTTATGGATG GTTCCATCAT ACAGTTTCCT AACACTTACC
                                                               9090
                                                    9080
                                        9070
                             9060
       9040
                  9050
                                                              >< RsaI
                                                                    >< NspI
                                                >< SfcI
                                                                    >< NspHI
                                               >< ScaI
                                               >< RsaI
                                                                    >< NlaIII
                         >< SfaNI
                                                            >< NlaIII
                                              >< Csp6I
                     > < MaeIII
                                                             >< Csp6I
                                               >< AfaI
                       >< GsuI
                                                    >< AccI
                                                              >< AfaI
                                        >< DdeI
                       >< BpmI
 TGGAGGGTTC TGTTAGAGTA GTAACAACTT TTGATGCTGA GTACTGTAGA CATGGTACAT GCGAAAGGTC
                                                                           9170
                                                               9160
                                                    9150
                             9130
                                        9140
                  9120
       9110
                                                                        >< SstI
                                                                        >< SduI
                                                                        >< SacI
                                                                 NspII ><
                                                                 HgiAI ><
                                                                Eco24I ><
                                                              Bsp1286I ><
```

```
Ecl136II ><>< BmyI
                                               BanII ><
                                 >< Tru9I
                                              Alw21I ><
                   >< BsrI
                                 >< MseI
 AGAAGTAGGT ATTTGCCTAT CTACCAGTGG TAGATGGGTT CTTAATAATG AGCATTACAG AGCTCTATCA
     9180 9190
                     9200 9210 9220 9230
                     >< TfiI
      >< SfaNI
                     >< HinfI >< AluI
                                                  >< MnlI
GGAGTTTTCT GTGGTGTTGA TGCGATGAAT CTCATAGCTA ACATCTTTAC TCCTCTTGTG CAACCTGTGG
          9260 9270 9280 9290 9300 9310
     9250
                                          >< MaeIII
                                                 HphI ><
 · >< Eco57I
                                     > < BbvI Fnu4HI ><
GTGCTTTAGA TGTGTCTGCT TCAGTAGTGG CTGGTGGTAT TATTGCCATA TTGGTGACTT GTGCTGCCTA
     9320 9330 9340 9350 9360 9370 9380
                           >< RsaI
                          >< Csp6I >< NlaIII
                          · >< BbvI >< Fnu4HI
>< AfaI>< HphI >< BspWI
              >< MaeII
              >< AflIII
CTACTTTATG AAATTCAGAC GTGTTTTTGG TGAGTACAAC CATGTTGTTG CTGCTAATGC ACTTTTGTTT
     9390 9400
                    9410 9420 9430 9440 9450
                      >< RsaI
                      >< NlaIV
                        >< KpnI
                     >< Eco64I
                                      > < ScrFI
> < NciI</pre>
                     >< Csp6I
                                     > < Nci
>< MspI
                     >< BscBI
>< Asp718
                                     >< HpaII
                     >< BanI >< AluI
                                         >< HinfI
                      >< AfaI
                                      >< HapII >< PleI
                     > < DdeI
TTGATGTCTT TCACTATACT CTGTCTGGTA CCAGCTTACA GCTTTCTGCC GGGAGTCTAC TCAGTCTTTT
    9460 9470 9480 9490 9500 9510
   >< RsaI
   >< Csp6I
   ACTTGTACTT GACATTCTAT TTCACCAATG ATGTTTCATT CTTGGCTCAC CTTCAATGGT TTGCCATGTT
           9540 9550 9560 9570 9580
TTCTCCTATT GTGCCTTTTT GGATAACAGC AATCTATGTA TTCTGTATTT CTCTGAAGCA CTGCCATTGG
    9600
         9610 9620
                            9630
                                    9640
                                             9650
                                              >< TthHB8I
                                           >< RsaI
                                            >< MnlI
                                          >< MnlI
                         TTCTTTAACA ACTATCTTAG GAAAAGAGTC ATGTTTAATG GAGTTACATT TAGTACCTTC GAGGAGGCTG
    9670
          9680
                  9690 9700 9710
                                         9720
    >< RsaI
    >< Csp6I
                         >< RsaI
         >< BcgI
                        >< Csp6I >< BsmAI
```

רכינו ממוזאום

```
>< AfaI
                                             >< Alw26I
CTTTGTGTAC CTTTTTGCTC AACAAGGAAA TGTACCTAAA ATTGCGTAGC GAGACACTGT TGCCACTTAC
                                               9780
                                                       9790
                                     9770
                      9760
                9750
                                                     >< NlaIV
                                                        >< DdeI
                                   >< RsaI
                                                     >< BscBI
                                  >< Csp6I
                                                        >< BfrI
                                                                 AluI ><
                                   >< AfaI
ACAGTATAAC AGGTATCTTG CTCTATATAA CAAGTACAAG TATTTCAGTG GAGCCTTAGA TACTACCAGC
                                                         9860
                                   9840 9850
                           9830
                9820
     9810
                 >< Fnu4HI
                        >< DdeI
                       >< BfrI
          >< Fnu4HI
                                                       >< DdeI >< AlwNI
                      >< BbvI
            >< AluI
   >< BbvI
TATCGTGAAG CAGCTTGCTG CCACTTAGCA AAGGCTCTAA ATGACTTTAG CAACTCAGGT GCTGATGTTC
                                                          9930
                                               9920
                           9900
                                     9910
                9890
      9880
                                                                 >< BsmI
                                       >< SfcI
                                            >< PstI
                                                            >< BscCI
TCTACCAACC ACCACAGACA TCAATCACTT CTGCTGTTCT GCAGAGTGGT TTTAGGAAAA TGGCATTCCC
                                             9990 10000
                9960
                           9970
                                     9980
      9950
                           >< RsaI
                         >< NlaIII
                                >< MaeIII
                                                        >< Tru9I
                          >< Csp6I
                                                        >< MseI
                           >< AfaI
GTCAGGCAAA GTTGAAGGGT GCATGGTACA AGTAACCTGT GGAACTACAA CTCTTAATGG ATTGTGGTTG
                        10040 10050
                                               10060 10070
               10030
     10020
                                                                 XhoII ><
                                                                 Sau3AI ><
                                                                 NdeII ><
                                                       >< Tru9I
                                                                  MflI ><
                                                     >< NspI
                                                                  MboI ><
                                                     >< NspHI
                                                                 DpnII ><
                                                    ·>< NlaIII
                            >< NspI
                                                                 BstYI ><
                                                       >< MseI
                            >< NspHI
             >< FokI
                                                         >< MboII BspAI ><
            >< Bst1107I
                           >< NlaIII
                                                                BglII ><
                                                   > < BbsI
                        >< AflIII
           >< AccI
GATGACACAG TATACTGTCC AAGACATGTC ATTTGCACAG CAGAAGACAT GCTTAATCCT AACTATGAAG
                                                                    10150
               10100 10110 10120 10130
                                                          10140
     10090
                                                                   PalI > .
                                                                    MscI >
                                                                  HaeIII >
                                                                  EaeI ><
                                                                   BsuRI >
                                                                    BshI >
 >< DpnI >< MboII
                                                                    BalI >
                            >< AluI
 >< Bsp143I
 ATCTGCTCAT TCGCAAATCC AACCATAGCT TTCTTGTTCA GGCTGGCAAT GTTCAACTTC GTGTTATTGG
                                              10200
                                                          10210
                                10190
                        10180
               10170
     10160
                       >< DdeI> < Tru9I
                       >< BfrI> < MseI
                                                     >< DdeI
 CCATTCTATG CAAAATTGTC TGCTTAGGCT TAAAGTTGAT ACTTCTAACC CTAAGACACC CAAGTATAAA
                                                                     10290
                                   10260
                                               10270
                                                          10280
                          10250
     10230
                10240
                 >< ScrFI
                 >< MvaI
               >< EcoRII
                                              >< SphI
                 >< Ecl136I
```

FIGURE 13.23

```
>< DsaV
                                         >< PaeI
                >< BstOI
                                          >< NspI
                >< BstNI
                                          >< NspHI
                >< BsiLI
                                   >< RmaI >< NlaIII
                >< ApyI
                                   >< MaeI
                                          >< HphI
 TTTGTCCGTA TCCAACCTGG TCAAACATTT TCAGTTCTAG CATGCTACAA TGGTTCACCA TCTGGTGTTT
     10300
              10310 10320 10330 10340
                                                     10350 10360
                                                 >< Sau3AI
                                                 >< NdeII
                                                 >< MboI>< NlaIII
       >< Eco31I
                                                 >< DpnII
       >< BsmAI
       >< Bsal>< NlaIII
                                           >< Tru9I>< DpnI
                            >< Tru9I
                                           >< MseI >< Bsp143I
       >< Alw26I
                             >< MseI
                                                >< BspAI>< AlwI
ATCAGTGTGC CATGAGACCT AATCATACCA TTAAAGGTTC TTTCCTTAAT GGATCATGTG GTAGTGTTGG
     10370 10380 10390
                                 10400 10410
                                                    10420
                                        >< Zsp2I
                                   >< Ppu10I
                                        >< NsiI>< SfaNI
                                          >< NdeI
                                        >< Mph1103I
  >< Tru9I
                                       >< MseI
                                     TTTTAACATT GATTATGATT GCGTGTCTTT CTGCTATATG CATCATATGG AGCTTCCAAC AGGAGTACAC
     10440
             10450 10460
                                 10470
                                          10480 10490
                             >< SinI
                             >< Sau96I
                             >< NspIV
                              >< NspHII
                                                          >< SfcI
                             >< Eco47I
                                                            RsaI ><
                             >< Cfr13I
                                                          PstI ><
                             >< BsiZI
                                                          >< Fnu4HI
    >< RsaI
                            >< Bme18I
                                       >< HindII
                                                          Csp6I ><
    >< Csp6I>< DdeI
                           >< AvaII >< HincII
                    >< Avail
>< Asul>< BsgI >< BbvI >< BspMI AfaI ><
    >< AfaI>< BfrI
GCTGGTACTG ACTTAGAAGG TAAATTCTAT GGTCCATTTG TTGACAGACA AACTGCACAG GCTGCAGGTA
    10510
           10520 10530
                               10540
                                      10550
                                                  10560
                >< Tru9I
                              >< NlaIII
               >< MseI >< BbvI >< Fnu4HI
                                                            HphI ><
CAGACACAC CATAACATTA AATGTTTTGG CATGGCTGTA TGCTGCTGTT ATCAATGGTG ATAGGTGGTT
    10580
             10590 10600
                               10610 10620
                                                10630
                                                            10640.
 >< Tru9I
      >< TfiI
 >< MseI
                                                 >< RsaI
  >< HphI
                              >< Tru9I
                                                >< Csp6I
      >< HinfI
                             >< MseI
                                                >< AfaI
TCTTAATAGA TTCACCACTA CTTTGAATGA CTTTAACCTT GTGGCAATGA AGTACAACTA TGAACCTTTG
    10650
             10660
                      10670 10680 10690 10700 10710
                      >< SinI
                      >< Sau96I
                          >< PssI
                       >< Psp5II
                      >< PpuMI
                      >< NspIV.
                       >< NspHII
                       >< NlaIV
```

DICTION 10 04

```
>< EcoO109I
                         >< Eco47I
                         >< DraII
    >< Sau3AI
                         >< Cfrl3I
    >< NdeII
                         >< BsiZI
    >< MboI
                         >< BscBI
    >< DpnII>< NlaIII
                                                            >< DdeI
      >< DpnI >< HindII
                         >< Bme18I
                                                            >< BfrI
                         >< AvaII
    >< BspAI >< HincII
                                                            >< BbvI
                                       >< MnlI
ACACAAGATC ATGTTGACAT ATTGGGACCT CTTTCTGCTC AAACAGGAAT TGCCGTCTTA GATATGTGTG
                         >< AsuI
                                     10750
                          10740
               10730
    10720
                                                 >< StyI
                                            >< RsaI
                                                 >< EcoT14I
                                                  >< Eco130I
                                          > < Csp6I
                  >< SfcI
                                                  >< BssT1I
                  >< Fnu4HI
>< Fnu4HI
                                                  >< BsaJI
              >< Fnu4HI
   >< BbvI
                                           >< AfaI
CTGCTTTGAA AGAGCTGCTG CAGAATGGTA TGAATGGTCG TACTATCCTT GGTAGCACTA TTTTAGAAGA
              >< AluI >< PstI
                                                10830 10840
                                      10820
                          10810
               10800
     10790
                                                    >< StyI
                                                    >< EcoT14I
                                                    >< Eco130I
                                                    >< BssTlI
                                          > < MaeIII>< BsaJI
 TGAGTTTACA CCATTTGATG TTGTTAGACA ATGCTCTGGT GTTACCTTCC AAGGTAAGTT CAAGAAAATT
                                                                     10920
                                                 10900
                           10880 10890
                10870
     10860
           >< SfaNI
         > < SduI
                                                                   RsaI ><
                             >< Tru9I
          > < NspII
                                                       >< Tfil Csp6I ><
                            >< MseI
  >< Tru9I> < Bsp1286I
                                                       >< HinfI
                                   >< FokI
 GTTAAGGGCA CTCATCATTG GATGCTTTTA ACTTTCTTGA CATCACTATT GATTCTTGTT CAAAGTACAC
                                      10960
                                                 10970
                            10950
                10940
      10930
                                                                      >< MunI
                                    >< XmnI
                                                                     Fnu4HI >
                                      >< BsmI
                                                                     BspWI ><
                                  >< BscCI
                                                                     BbvI >
                                                             >< BbvI
                                    >< Asp700I
 AGTGGTCACT GTTTTCTTT GTTTACGAGA ATGCTTTCTT GCCATTTACT CTTGGTATTA TGGCAATTGC
                                                 11040
                                    11030
                 11010
                            11020
      11000
      >< NspI
                       >< Tru9I
      >< NspHI
                                      >< BsmI
                       >< MseI
      >< NlaIII
                                                           >< MaeIII
     >< BspWI >< Fnu4HI>< BspWI >< BscCI
  TGCATGTGCT ATGCTGCTTG TTAAGCATAA GCACGCATTC TTGTGCTTGT TTCTGTTACC TTCTCTTGCA
                                                             11120
                                                  11110
                                      11100
                            11090
                11080
      11070
                                      >< SfaNI
                                      >< RmaI
                                 > < NspI
                                                           >< HphI
                                 > < NlaIII
                                                          >< BspHI
                                      >< NheI
                                                                    >< NlaIII</pre>
                                                     >< BsiBI</pre>
                                       >< MaeI
               >< Tru9I
                                                    >< BsaBI >< NlaIII
                         >< Accl> < NspHl>< AluI
  ACAGTTGCTT ACTTTAATAT GGTCTACATG CCTGCTAGCT GGGTGATGCG TATCATGACA TGGCTTGAAT
               >< MseI</pre>
                                                  11180
                                        11170
                             11160
                 11150
       11140
```

FIGURE 13.25

39/83 .

```
>< Tru9I
                              >< MseI
         > < RmaI
                            > < Esp4I
         > < MaeI
                                   >< Eco57I
            >< AluI
                            > < AflII
 TGGCTGACAC TAGCTTGTCT GGTTATAGGC TTAAGGATTG TGTTATGTAT GCTTCAGCTT TAGTTTTGCT
     11210 11220
                     11230
                                 11240 11250 11260
                                                                11270
                                     >< RmaI
                                         >< MaeII
                                     >< MaeI
     > < NlaIII > < SfaNI > < Fnu
> < BspHI > < AluI > < BbvI
                                  >< Fnu4HI
                                         >< Afliir
 TATTCTCATG ACAGCTCGCA CTGTTTATGA TGATGCTGCT AGACGTGTTT GGACACTGAT GAATGTCATT
     11280
             11290 11300 11310
                                        11320
                                                    11330 11340
                                                    . >< Sau96I
                                                      >< PalI
                                                     >< NspIV
                                                    >< NlaIII
                                                      >< HaeIII
                                  >< Sau3AI
                                                        > < DdeI
                                  >< NdeII
                                                    >< Cfr13I
                                  >< MboI
                                                     >< BsuRI
                                  >< DpnII
                                                     >< BsiZI
                                                     >< BshI
                                   >< DpnI
                                   >< Bsp143I
                                 >< Bsp1431 >< AsuI
                                                       > < BfrI
               >< AccI
ACACTTGTTT ACAAAGTCTA CTATGGTAAT GCTTTAGATC AAGCTATTTC CATGTGGGCC TTAGTTATTT
    11350 11360 11370 11380 11390 11400
                                              >< RmaI
                                       >< NlaIII
                                             >< MaeI>< SfcI
 >< MaeIII >< MnlI >< MaeIII
                                             >< AluI>< AluI
CTGTAACCTC TAACTATTCT GGTGTCGTTA CGACTATCAT GTTTTTAGCT AGAGCTATAG TGTTTGTGTG
            11430 11440 11450 11460
    11420
                                                    11470
                               >< BsrI
                                                   >< NlaIII BfrI >
TGTTGAGTAT TACCCATTGT TATTTATTAC TGGCAACACC TTACAGTGTA TCATGCTTGT TTATTGTTTC
    11490 11500
                   11510 11520 11530 11540
                          >< PalI
                          >< HaeIII
               >< Fnu4HI >< BsuRI
  >< BbvI
            >< Fnu4HI >< BspWI
>< BbvI >< BspWI >< BshI >< Eco57I >< MaeIII
TTAGGCTATT GTTGCTGCTG CTACTTTGGC CTTTTCTGTT TACTCAACCG TTACTTCAGG CTTACTCTTG
    11560
            11570 11580 11590 11600
                                                   11610 11620
                                                >< ScrFI
                                                >< MvaI
                                             >< EcoRII
                                                >< Ecl136I
                                             >< DsaV
                                               >< BstOI
                                               >< BstNI
                    >< Eco31I .
                                               >< BsiLI
                    >< BsmAI
                                             > < BsaJI
                    >< BsaI
                                            >< BsaJI
```

PTOTTO -- 0 -

101 4444

```
>< ApyI
             >< DrdI >< Alw26I
GTGTTTATGA CTACTTGGTC TCTACACAAG AATTTAGGTA TATGAACTCC CAGGGGCTTT TGCCTCCTAA
                                 11660 11670
                                                      11680
                       11650
             11640
    11630
                       >< Tru9I
                       >< MseI
                  > < HindIII> < Tru9I
>< SfaNI
                                                           > < NlaIII
                     >< AluI > < MseI > < MnlI</pre>
  >< MnlI
GAGTAGTATT GATGCTTTCA AGCTTAACAT TAAGTTGTTG GGTATTGGAG GTAAACCATG TATCAAGGTT
                                            11740 11750
                                  11730
                       11720
    11700 11710
                                >< VneI
                                 >< SnoI
                                    >< SduI
                                    >< NspII
                                    >< HgiAI
                                    >< Bsp1286I
                                    >< BmyI >< RsaI
                                                    >< MboII
                                 >< ApaLI
      >< RsaI
                                >< Alw44I >< Csp6I
                                                                  DdeI >
      >< Csp6I
                         >< MaeII >< Alw21I >< AfaI
       >< AfaI
GCTACTGTAC AGTCTAAAAT GTCTGACGTA AAGTGCACAT CTGTGGTACT GCTCTCGGTT CTTCAACAAC
                                  11800 11810
                                                       11820
     11770 11780
                         11790
                                >< NspII> < RsaI</pre>
                                    >< DraIII
                                >< SduI>< Csp6I
                                >< Bsp1286I
      >< MboII
                               >< BmyI > < AfaI >< MboII
        >< HinfI >< PleI
TTAGAGTAGA GTCATCTTCT AAATTGTGGG CACAATGTGT ACAACTCCAC AATGATATTC TTCTTGCAAA
                               11870
                                           11880
                                                    11890
                         11860
               11850
     11840
                 >< TthHB8I
                                                              SfcI ><
                 >< TaqI
                                                          >< NlaIII
                                 >< MboII
            >< HindIII
                                                       >< BspWI AccI ><
                             > < Eco57I
             >< AluI
 AGACACAACT GAAGCTTTCG AGAAGATGGT TTCTCTTTTG TCTGTTTTGC TATCCATGCA GGGTGCTGTA
              11920 11930 11940
                                              11950 11960
     11910
    >< VspI
                                                  > < Ksp632I
    >< Tru9I
                                                  > < EarI
                            >< TthHB8I
    >< MseI
                            >< TaqI >< MboII >< Eaml104I
    >< Asel>< MnlI >< BcgI/a >< Eco57I >< Eco57I >< BcgI
 GACATTAATA GGTTGTGCGA GGAAATGCTC GATAACCGTG CTACTCTTCA GGCTATTGCT TCAGAATTTA
                         12000
                                                       12030
                                              12020
                                    12010
               11990
     11980
                                          >< StuI
                                    >< ScrFI
                                          >< PalI
                                    >< MvaI>< HaeIII
                                  >< EcoRII>< Eco147I
                                    >< Ecl136I
                                  >< DsaV >< BsuRI
                                    >< BstOI
                                    >< BstNI
                                       >< BspWI
                                    >< BsiLI
                                  >< BsaJI >< BshI
                                                                 TfiI ><
                  >< Fnu4HI
                                                       >< SfcI HinfI ><
              >< Ndel >< BspWl>< Mnll >< Bgll
                                    >< ApyI>< AatI</pre>
                                                            > < AluI
```

```
GTTCTTTACC ATCATATGCC GCTTATGCCA CTGCCCAGGA GGCCTATGAG CAGGCTGTAG CTAATGGTGA
                  12060
                            12070
                                     12080
                                                   12090
                                                              12100
                                                                         12110
          >< XmnI
                          >< Tru9I
                                                             >< SfaNI
         >< HphI
                          >< MseI
                                                         >< DdeI
          >< Asp700I
                          >< Eco57I
                                                             >< BbvI Fnu4HI ><
  TTCTGAAGTC GTTCTCAAAA AGTTAAAGAA ATCTTTGAAT GTGGCTAAAT CTGAGTTTGA CCGTGATGCT
                  12130
                             12140
                                        12150
                                                   12160
                                                              12170
                                                                 XhoII ><
                                                                Sau3AI ><
                                                                 NdeII ><
                                                                        MnlI >
                                                                     >< MnlI
                                                                       >< MflI
                                > < Sau3AI
                                                                      >< MboI
                                > < NdeII
                                                                 DpnII ><
                                > < MboI
                                                                    DpnI ><
                                > < DpnII
                                                                     DdeI ><
                                    >< DpnI
                                                                BstYI ><
                                     >< BspWI
                                                         >< RsaIBspAI ><
                                > < BspAI
                                                        >< Csp6IBsp143I ><
      '>< NlaIII</pre>
                                   >< Bsp143I
 GCCATGCAAC GCAAGTTGGA AAAGATGGCA GATCAGGCTA TGACCCAAAT GTACAAACAG GCAAGATCTG
                                                        >< AfaIBglII ><
                 12200
                            12210
                                       12220
                                                12230
                                                             12240
                                                                        12250
                       >< SpeI
                                                    >< Ksp632I > < HindIII</pre>
                        >< RmaI
                                                           >< DdeI >< SfaNI
                  >< MaeIII
                                      >< MboII
                                                    >< Eam1104I >< BspWI
                        >< MaeI
                                         >< BspWI
                                                    >< EarI>< BfrI >< AluI
 AGGACAAGAG GGCAAAAGTA ACTAGTGCTA TGCAAACAAT GCTCTTCACT ATGCTTAGGA AGCTTGATAA
                 12270
                           12280
                                      12290
                                                  12300
                                                           12310
                                  >< ThaI
                                  >< MvnI
                               >< HinPlI
                               >< Hin6I
                                 >< HhaI
                                 >< CfoI
                                 >< BstUI
        >< Tru9I
                                 >< Bsp50I
        >< MseI
                                 >< AccII
TGATGCACTT AACAACATTA TCAACAATGC GCGTGATGGT TGTGTTCCAC TCAACATCAT ACCATTGACT
                12340
                          12350
                                      12360 12370
                                                          12380
                                         >< RsaI
                                         >< NlaIV
                                       >< Eco64I
                                        >< Csp6I
                                    >< BslI
                                    >< BsiYI>< KpnI
                                         >< BscBI
                                       >< BanI
                                      >< Asp718
                  >< NlaIII
                                        >< AfaI
               >< BstXI
                                      >< AccB1I
                                                                 >< MaeIII
    >< Fnu4HI
               >< BbvI
                                      >< Acc65I
ACAGCAGCCA AACTCATGGT TGTTGTCCCT GATTATGGTA CCTACAAGAA CACTTGTGAT GGTAACACCT
                                                                   BsgI >< '
               12410
                          12420
                                12430
                                                12440
                                                       12450
                                                                    12460
          >< Zsp2I
     >< Ppu10I
```

TOTOY TO - - - -

```
>< NsiI
           >< Mph1103I
                                                                   DdeI ><
    >< NdeI>< EcoT22I
                                                                   BfrI ><
                                                >< AciI
                                 >< SfaNI</pre>
TTACATATGC ATCTGCACTC TGGGAAATCC AGCAAGTTGT TGATGCGGAT AGCAAGATTG TTCAACTTAG
        >< AvaIII >< SfaNI
                                                 12510
                           12490
                                      12500
                12480
     12470
                                       >< PalI
                                                   >< MnlI >< DdeIDdeI ><
                                       >< HaeIII</pre>
                                       >< BsuRI >< MaeIII >< BspWI
     >< Tru9I>< NlaIII
                                                          >< AluI
                                                                   BspWI ><
                               > < XcmI>< BshI
TGAAATTAAC ATGGACAATT CACCAAATTT GGCTTGGCCT CTTATTGTTA CAGCTCTAAG AGCCAACTCA
                                      12570
                           12560
                12550
     12540
                                                                   RsaI ><
                                                                  NlaIV ><
                                                                      KpnI ><
                                                                >< Fnu4HI
                                                               Eco641 ><
                                                                  Csp6I ><
                                                                   BscBI ><
     >< Tru9I
                                                                Asp718 ><
 >< PvuII
                                                                    AfaI ><
                                                                >< AciI>< BanI
 >< Psp5I
 >< NspBII
                                                                AccB1I ><
                            >< HinfI >< PleI
     >< MseI
                                                                Acc65I ><
                                                    >< PshAI
                           >< DdeI>< BsrI
 >< AluI > < SfcI
 GCTGTTAAAC TACAGAATAA TGAACTGAGT CCAGTAGCAC TACGACAGAT GTCCTGTGCG GCTGGTACCA
                                                  12650
                           12630
                                       12640
                12620
      12610
                                                     >< TthHB8I
                                                     >< TaqI
                                                     >< SfuI
                                                     >< NspV
                                                    >< MnlI
                                                     >< LspI
                                                     >< Csp45I
                                                     >< BstBI
                                                     >< Bsp119I
                >< RsaI
                                                     >< BsiCI
               >< Csp6I
                                                     >< Bpu14I
          >< AluI
                                                     >< AsuII
 CACAAACAGC TTGTACTGAT GACAATGCAC TTGCCTACTA TAACAATTCG AAGGGAGGTA GGTTTGTGCT
                                                              12730
                                                   12720
                                        12710
                            12700
                  12690
       12680
                         >< XhoII
                         >< Sau3AI
                         >< NdeII
                         >< MflI
                         >< MboI
                         >< DpnII
                           >< DpnI
                                                                 >< RsaI
                                           >< TfiI
                         >< BstYI
                                                                       >< Csp6I
                                        >< RmaI
                         >< BspAI
                                                                >< Csp6I>< RsaI
                                           >< HinfI
                           >< Bsp143I
                                                                >< AfaI>< AfaI</pre>
                                        >< MaeI >< DdeI
                         >< BglII
  GGCATTACTA TCAGACCACC AAGATCTCAA ATGGGCTAGA TTCCCTAAGA GTGATGGTAC AGGTACAATT
                            12770
                                        12780
                                                    12790
       12750
                  12760
                                                       >< Sau96I
                                                            >< PssI
                                                          >< PalI
                                                       >< NspIV
```

```
>< HaeIII
                                                   >< EcoO109I
                                                   >< DraII
                                                   >< Cfr13I
                                                      >< BsuRI
               >< NlaIV
                                                   >< BsiZI
                                                                    RsaI >
               >< BsrI
                                                     >< BshI
                                                                  Csp6I ><
               >< BscBI
                               > < MaeIII
                                                   >< AsuI
                                                                    AfaI >
 TACACAGAAC TGGAACCACC TTGTAGGTTT GTTACAGACA CACCAAAAGG GCCTAAAGTG AAATACTTGT
      12820
               12830
                         12840
                                     12850
                                                12860
                                                          12870
                                                            >< SfcI
                                                              > < MboII
                                                              MaeII ><
                                                         >< Fnu4HI >< RsaI
                                                        >< Eco57I >< Csp6I
               >< Tru9I
                                                              > < BbsI
               >< MseI >< MnlI</pre>
                                           >< BbvI
                                                        >< AluI
                                                                   >< AfaI
 ACTTCATCAA AGGCTTAAAC AACCTAAATA GAGGTATGGT GCTGGGCAGT TTAGCTGCTA CAGTACGTCT
      12890
              12900
                         12910
                                 12920
                                              12930
                                                        12940
                        >< RsaI
               >< SfcI >< Csp6I
           >< BspWI
                        >< AfaI
                                 >< BspMI
                                                                AccI ><
 TCAGGCTGGA AATGCTACAG AAGTACCTGC CAATTCAACT GTGCTTTCCT TCTGTGCTTT TGCAGTAGAC
     12960
                12970
                        12980 12990
                                               13000
                                                         13010
                         >< RmaI
                           >< MnlI
                         >< MaeI
                                       >< HphI
CCTGCTAAAG CATATAAGGA TTACCTAGCA AGTGGAGGAC AACCAATCAC CAACTGTGTG AAGATGTTGT
     13030
               13040 13050 13060
                                               13070 13080 13090
                                                      >< SinI
                                                      >< Sau96I
                                                      >< NspIV
                                                       >< NspHII
                                                      >< NlaIII
                                                      >< Eco47I
                                                            >< Eam1105I
                                                      >< Cfr13I
 >< RsaI
            >< RsaI
                                                      >< BsiZI
 >< MboII
            >< Csp6I
                                                      >< Bme18I >< XcmI
>< Csp6I
             >< BsrI
                                                      >< AvaII
 >< AfaI
             >< AfaI
                                >< MaeIII
                                             >< AluI >< AsuI> < HinfI
GTACACAC TGGTACAGGA CAGGCAATTA CTGTAACACC AGAAGCTAAC ATGGACCAAG AGTCCTTTGG
     13100
              13110 13120
                                    13130
                                              13140
                                                        13150
                                                          >< TfiI
                >< SfaNI
                                                               >< MaeIII
           >< NlaIII
                          >< FokI
                                                          >< HinfI
TGGTGCTTCA TGTTGTCTGT ATTGTAGATG CCACATTGAC CATCCAAATC CTAAAGGATT CTGTGACTTG
     13170
           13180
                                  13200 13210
                       13190
                                                        13220
        > < RsaI
          >< MaeII
       >< Csp6I
                                                          >< DdeI
        > < AfaI
                                           >< BsrI
AAAGGTAAGT ACGTCCAAAT ACCTACCACT TGTGCTAATG ACCCAGTGGG TTTTACACTT AGAAACACAG
                                                          >< BfrI
              13250
                         13260 13270
                                              13280
                                                        13290
```

>< Thal

.

```
>< SfaNI
                                                         >< MvnI
                                                         >< BstUI
                                                         >< Bsp50I
   >< RsaI
                                                       >< AciI
  >< Csp6I
                                                         >< AccIISfaNI ><
                                  >< SfcI >< MaeIII</pre>
   >< Afal >< Acil
TCTGTACCGT CTGCGGAATG TGGAAAGGTT ATGGCTGTAG TTGTGACCAA CTCCGCGAAC CCTTGATGCA
                                             13350
                                                          13360
                                                                    13370
                                    13340
               13320 13330
            >< Zsp2I
                   > < SfaNI
            >< Mph1103I>< Tru9I
                                                              Fnu4HI ><
       >< PpulOI>< MaeII
                                                               BsgI ><
            >< NsiI> < FokI
                                                            >< BbvI
            >< EcoT22I >< MseI
                                                               AciI ><
                                  >< AciI
                                               >< Fnu4HI
                      >< DraI
    >< Acil>< AvaIII
GTCTGCGGAT GCATCAACGT TTTTAAACGG GTTTGCGGTG TAAGTGCAGC CCGTCTTACA CCGTGCGGCA
                                                13420 13430
                        13400 13410
               13390
     13380
     >< SpeI
          >< ScaI
          >< RsaI
      >< RmaI
      >< MaeI
                                                                   >< BspWI
        > < Csp6I
                       >< SfcI
                                                                    BcqI >
                                    >< BcgI/a
>< BspWI >< AfaI
                      >< AccI
CAGGCACTAG TACTGATGTC GTCTACAGGG CTTTTGATAT TTACAACGAA AAAGTTGCTG GTTTTGCAAA
                                              13490 13500
                                   13480
                          13470
     13450
               13460
                             >< ScrFI
                             >< MvaI
                                  >< MnlI
                            >< EcoRII
                             >< Ecl136I
                             >< BstOI
                             >< BstNI
                                   >< BslI
                            >< DsaV >< BsiYI
                                                        >< PleI
                             >< BsiLI
                                                    > < FokI >< HinfI
                              >< ApyI
GTTCCTAAAA ACTAATTGCT GTCGCTTCCA GGAGAAGGAT GAGGAAGGCA ATTTATTAGA CTCTTACTTT
                                                           13570
                                                13560
                                    13550
                13530
                           13540
     13520
                                      >< NlaIII
                                 >< Ksp632I
                                 >< EarI
                                 >< Eam1104I
    >< Tru9I
                                                              >< Tru9I
                                   >< BsmAI
    >< MseI
                                                   >< MboII
                                                              >< MseI
                                   >< Alw26I
 >< MnlI
 GTAGTTAAGA GGCATACTAT GTCTAACTAC CAACATGAAG AGACTATTTA TAACTTGGTT AAAGATTGTC
                                                                      13650
                                     13620
                                                13630
                                                           13640
                13600 13610
     13590
                                                       >< RsaI
                                                       >< NlaIV
                                                    > < NlaIII
                                                         >< KpnI
                                                         >< HphI
                                                    > < Eco64I
                                                       >< Csp6I
                                                       >< BscBI
                                                     > < BanI
                                                     > < Asp718
```

```
>< MaeIII >< AfaI</pre>
  >< NspBII
                                            > < AccB1I MaeII ><
  >< AciI >< NlaIII
                                             > < Acc65I > < HgaI
 CAGCGGTTGC TGTCCATGAC TTTTTCAAGT TTAGAGTAGA TGGTGACATG GTACCACATA TATCACGTCA
     13660 13670 13680 13690 13700 13710 13720
                                           >< MnlI
                                      >< MaeII
 GCGTCTAACT AAATACACAA TGGCTGATTT AGTCTATGCT CTACGTCATT TTGATGAGGG TAATTGTGAT
            13740 13750 13760 13770 13780
  >< Tru9I
   >< MseI
              >< MaeIII >< MunI</pre>
 ACATTAAAAG AAATACTCGT CACATACAAT TGCTGTGATG ATGATTATTT CAATAAGAAG GATTGGTATG
          13810 13820 13830 13840 13850 13860
    13800
                         >< ThaI
                        >< MvnI
                       >< MluI
                        >< BstUI
                                                 >< RsaI
                        >< Bsp50I
                                                  >< HphI
                       >< TfiI
         >< HinfI
ACTTCGTAGA GAATCCTGAC ATCTTACGCG TATATGCTAA CTTAGGTGAG CGTGTACGCC AATCATTATT
    13870 13880 13890 13900 13910 13920
                                                         XhoII >
                                                         Sau3AI >
                                                         NdeII >
                                                          MflI >
       > < SfaNI ·
                                              >< RsaI
                                                          MboI >
       >< RsaI
                                            > < Csp6I
                                                        DpnII >
      >< Csp6I
                                                         BstYI >
                                        >< AfaI BspAI >
       >< AfaI
                  >< SfaNI
AAAGACTGTA CAATTCTGCG ATGCTATGCG TGATGCAGGC ATTGTAGGCG TACTGACATT AGATAATCAG
    13940
             13950 13960
                             13970 13980 13990 14000
                                            > < ScrFI
                                            > < MvaI
                                              >< Fnu4HI
                                          >< EcoRII
                                            > < Ecl136I
                                            > < BstOI
                                            > < BstNI
   >< Tru9I
                                >< RsaI
> < HphI
                                                 >< BslI
                                          >< BsiYI
              >< RsaI
   >< MseI
                               >< Csp6I
             >< Csp6I
 >< DpnI
                                            > < BsiLI
 >< Bsp143I
                             > < BbvI > < ApyI
>< AfaI >< DsaV >< AciI
    GATCTTAATG GGAACTGGTA CGATTTCGGT GATTTCGTAC AAGTAGCACC AGGCTGCGGA GTTCCTATTG
    14010 14020 14030 14040 14050 14060
                                                     · >< SfaNI
                                   >< RmaI >< HinfI
>< MnlI >< Fnu4HIPleI ><
>< MaeI >< DdeI
                      >< MamI
 >< TfiI
         >< SfaNI
                      >< BsiBI
 >< Hinfl >< Fokl >< BsaBl >< Bbvl >< BspWl Ndel >< bc
TGGATTCATA TTACTCATTG CTGATGCCCA TCCTCACTTT GACTAGGGCA TTGGCTGCTG AGTCCCATAT
    14080 14090 14100 14110 14120 14130 14140
    >< Sau3AI
    >< NdeII
```

```
>< MboI
    >< MamI
                                                                   Tth1111 ><
     >< DpnII
                                                                   MboII ><
       >< DpnI
                                                           >< Ksp632I
          >< BspWI
                                                           >< Eaml104I
     >< BspAI
                                                               >< BsmAI
                            >< XcmI
       >< Bsp143I
                                                           >< Earl Aspl ><
                            >< Tru9I
    >< BsiBI
                                                               >< Alw26I
                            >< MseI
     >< BsaBI >< FokI
GGATGCTGAT CTCGCAAAAC CACTTATTAA GTGGGATTTG CTGAAATATG ATTTTACGGA AGAGAGACTT
                                                             14200
                                                                        14210
                                                 14190
                           14170
                                      14180
                14160
     14150
                               > < SinI
                               > < Sau96I
                               > < NspIV
                                 >< NspHII
                                 >< NlaIV
       >< TthHB8I
                              >< FokI
       >< TaqI
                               > < Eco47I
            >< McrI
                               > < Cfr13I
         > < Ksp632I
                               > < BsiZI
         > < EarI
                         >< SspI>< BscBI
         > < Eam1104I
               > < Tru9I > < Bme18I
      >< BsmAI
                                                             >< Tru9I
            >< BsiEI> < MseI
                               > < AvaII
                                                    >< MunI >< MseI
      >< Alw26I >< DraI > < AsuI
TGTCTCTTCG ACCGTTATTT TAAATATTGG GACCAGACAT ACCATCCCAA TTGTATTAAC TGTTTGGATG
                                                             14270
                                                  14260
                14230
                                      14250
                          14240
     14220
                                                                       SinI ><
                                                                     Sau96I >< .
                                                                      NspIV ><
                                                                      NspHII >
                                                                     Eco471 ><.
                                                                     Cfr13I ><
                                                                      BsiZI ><
                                                                     Bme18I ><
                                                                      AvaII ><
                              >< Tru9I
                                                                       AsuI ><
                              >< MseI
        >< FokI
ATAGGTGTAT CCTTCATTGT GCAAACTTTA ATGTGTTATT TTCTACTGTG TTTCCACCTA CAAGTTTTGG
                                                              14340
                                                  14330
                           14310
                                       14320
                14300
     14290
   >< SpeI
    >< RmaI
                                                             >< BsrI
                   >< SspI
     >< MaeI
ACCACTAGTA AGAAAAATAT TTGTAGATGG TGTTCCTTTT GTTGTTTCAA CTGGATACCA TTTTCGTGAG
                                                              14410
                                                  14400
                                       14390
                14370
                            14380
     14360
                                              >< Thal>< Esp3I
                                                  >< DdeI
                                              >< BstUI
                                                           >< BsmBI
                                              >< Bsp50I
            >< RsaI
                                              >< MvnI>< BsmAI
     >< HinfI >< PleI
                                                     >< Alw26I
                                  >< HgaI>< AluI</pre>
          > < Csp6I
                                     >< FokI >< AccII
                                                                  > < BbvI
            >< AfaI
 TTAGGAGTCG TACATAATCA GGATGTAAAC TTACATAGCT CGCGTCTCAG TTTCAAGGAA CTTTTAGTGT
                                                              14480
                                       14460
                                                  14470
                            14450
                 14440
      14430
                        >< Zsp2I
                          >< SphI
                   >< Ppul0I
                          >< PaeI
                          >< NspI
```

```
>< Sau3AI
                        >< NspHI
       >< NdeII
                       >< NsiI
       >< MboI
                        >< NlaIII
       >< DpnII
                       >< Mph1103I
                                                                    >< NspI
         > < DpnI
                        >< Fnu4HI
                                                              NspHI ><
   >< Fnu4HI>< BspWI
                      >< EcoT22I
                                                             NlaIII ><
       >< BspAI
                      >< BspWI
                                                                 >< BspWI
         > < Bsp143I> < AvaIII > < AlwNI</pre>
                                              >< RmaI
                                                                 >< BsgI
               >< AluI
                        >< AluI >< BbvI >< MaeI
                                                                  >< BbvI
ATGCTGCTGA TCCAGCTATG CATGCAGCTT CTGGCAATTT ATTGCTAGAT AAACGCACTA CATGCTTTTC
     14500
               14510
                          14520
                                     14530
                                               14540
                                                           14550
                                               >< ScrFI
                                               >< NciI
                                               >< MspI
                                               >< HpaII
     >< Fnu4HI
                                               >< HapII
    >< AlwNI
                                             >< DsaV
                                                         >< Tru9I
    >< AluI
                                               >< BcnI
                                                       >< MseI
AGTAGCTGCA CTAACAAACA ATGTTGCTTT TCAAACTGTC AAACCCGGTA ATTTTAATAA AGACTTTTAT
    · 14570
                14580
                          14590
                                     14600
                                               14610
                                                           14620
                          >< Tru9I
                                                                   DdeI ><
                          >< MseI
                                                      >< MboII
                                                                  BbvI ><
GACTTTGCTG TGTCTAAAGG TTTCTTTAAG GAAGGAAGTT CTGTTGAACT AAAACACTTC TTCTTTGCTC
     14640
              14650
                          14660
                                    14670
                                                14680
                                                           14690
                                                                      14700
              >< FokI
                                                              EcoRV ><
            >< Fnu4HI
                                                             Eco32I ><
AGGATGGCAA CGCTGCTATC AGTGATTATG ACTATTATCG TTATAATCTG CCAACAATGT GTGATATCAG
     14710
               14720
                         14730
                                 14740
                                                14750
                                                          14760
                                                                  >< VspI
                                                                  >< Tru9I
                                                                  >< MseI
                                                                  >< AsnI
                                              >< MaeIII
                                                                  >< AseI
ACAACTCCTA TTCGTAGTTG AAGTTGTTGA TAAATACTTT GATTGTTACG ATGGTGGCTG TATTAATGCC
               14790
                         14800 14810
                                              14820
                                                          14830
             >< Tru9I
             >< MseI
                                 >< PvuII
              >< HpaI
                                  >< Psp5I
                                                   > < XcmI
              >< HindII
                                  >< NspBII
                                                >< Tru9I
              >< HincII
                                  >< AluI
                                                >< MseI
                                                              MaeI ><
AACCAAGTAA TCGTTAACAA TCTGGATAAA TCAGCTGGTT TCCCATTTAA TAAATGGGGT AAGGCTAGAC
    14850
               14860
                          14870
                                14880
                                              14890
                                                        14900
                       >< SfaNI
                                              >< Thal
                          >< Sau3AI
                                              >< MvnI
                          >< NdeII
                                              >< BstUI
                          >< MboI
                                                  >< Bst1107I
                                           >< BspWI >< FokI
                          >< DpnII
                            >< DpnI
                                             >< Bsp50I
                           >< Bsp143I
                                              >< AccII>< DdeI
       >< Hinfl>< MnlI
                         >< BspAI >< AlwI
                                                 >< AccI
TTTATTATGA CTCAATGAGT TATGAGGATC AAGATGCACT TTTCGCGTAT ACTAAGCGTA ATGTCATCCC
    14920
               14930
                         14940
                                    14950
                                               14960
                                                          14970
                                                                    14980
                                                      >< SstI
```

PIOTIPE 40 04

>< SduI
>< SacI</pre>

.

```
>< NspII
                                                       >< HgiAI
                                                       >< Eco24I
                                                    > < Ecl136II
                     >< Tru9I
                                                       >< Bsp1286I
               >< TfiI
                                                       >< BmyI
                     >< MseI
                                                       >< BanII
               >< HinfI
                                                        >< Alw21I
                   > < Esp4I
                                                    > < AluI
                                   >< BspWI
                   > < AflII
TACTATAACT CAAATGAATC TTAAGTATGC CATTAGTGCA AAGAATAGAG CTCGCACCGT AGCTGGTGTC
                                                          15040
                                     15020
                                               15030
                          15010
     14990
               15000
                                                                 RmaI ><
                                                                > < MnlI
            >< ScaI
                                                                 MaeI ><
     >< SfcI>< RsaI
                                                               >< Fnu4HI
  >< BsmAI >< Csp6I
                                                               >< AciI
TCTATCTGTA GTACTATGAC AAATAGACAG TTTCATCAGA AATTATTGAA GTCAATAGCC GCCACTAGAG
  >< Alw26I >< AfaI
                                               15100
                                                           15110
                                      15090
                          15080
                15070
                                                          >< Tru9I
                                                          >< MseI
GAGCTACTGT GGTAATTGGA ACAAGCAAGT TTTACGGTGG CTGGCATAAT ATGTTAAAAA CTGTTTACAG
  >< AluI
                                                                      15190
                                                            15180
                                                 15170
                         15150 15160
                15140
     15130
                                                                   NspI ><
                                                                  NspHI ><
                                                                 NlaIII ><.
                                                              >< NlaIII
                                                                    Ddel ><
                                                                BspWI ><
                                                                    BfrI ><
                                               >< MaeIII
 TGATGTAGAA ACTCCACACC TTATGGGTTG GGATTATCCA AAATGTGACA GAGCCATGCC TAACATGCTT
                                                                       15260
                                                 15240
                                                            15250
                           15220 15230
                15210
      15200
          > < PalI
          > < HaeIII
          > < BsuRI
                                                  >< MaeIII
                      >< MnlI
 AGGATAATGG CCTCTCTTGT TCTTGCTCGC AAACATAACA CTTGCTGTAA CTTATCACAC CGTTTCTACA
                                                  15310
                                                             15320
                                    15300
                           15290
                 15280
      15270
                                                                Tru9I ><
                                                                      ScrFI >
                                                                       MvaI >
                                                                      >< MseI
                                                                     FokI ><
                    >< MstI
                                                                   EcoRII ><
                   >< HinPlI
                                                                    Ecl136I >
                   >< Hin6I
                                                                     DsaV ><
                     > < HhaI
                                                                      BstOI >
                    >< FspI
                                               >< NlaIII
                                                                      BstNI >
                    >< FdiII
                                                                      BsiLI >
                                                     > < Fnu4HI
                     > < CfoI>< Tru9I
                                                                       ApyI >
                                                     >< AciI
                    >< AviII >< MseI
 GGTTAGCTAA CGAGTGTGCG CAAGTATTAA GTGAGATGGT CATGTGTGGC GGCTCACTAT ATGTTAAACC
                                                                        15400
                                                             15390
                                                  15380
                           15360 15370
                15350
      15340
          > < SfaNI
                >< MspI
                                                        >< Tru9I MaeIII ><
                               >< HphI
                >< HpaII
                                                                  AluI ><
                                                        >< MseI</pre>
                               >< BspWI
                >< HapII
```

```
AGGTGGAACA TCATCCGGTG ATGCTACAAC TGCTTATGCT AATAGTGTCT TTAACATTTG TCAAGCTGTT
       15410
                  15420
                             15430
                                         15440
                                                    15450
                                                                15460
                                                                           15470
                                                               >< DrdI
 >< BspWI
                                                    >< AluI
                                                                    > < AciI
 ACAGCCAATG TAAATGCACT TCTTTCAACT GATGGTAATA AGATAGCTGA CAAGTATGTC CGCAATCTAC
      15480
                  15490
                             15500
                                         15510
                                                    15520
                                                               15530
                                               >< Sau3AI
                                               >< NdeII
                                               >< MboI
                                             > < MamI
                                                 >< FbaI
                                               >< DpnII
                                                 >< DpnI
                                                  >< BspHI
                                               >< BspAI
                                                >< Bsp143I
                                              >< BsiQI
                          >< SfcI
                                            > < BsiBI>< NlaIII
                           >< BsmAI
                                            > < BsaBI>< FokI</pre>
                           >< Alw26I
                                              >< BclI>< EcoRI
                                                                        FokI ><
 AACACAGGCT CTATGAGTGT CTCTATAGAA ATAGGGATGT TGATCATGAA TTCGTGGATG AGTTTTACGC
      15550
                 15560
                            15570
                                        15580
                                                   15590
                                                               15600
                                                                          15610
                               >< TfiI
                                   >< SfaNI
                           >< NlaIII
             >< BspMI
                              >< HinfI
                                                                      >< MaeIII
 TTACCTGCGT AAACATTTCT CCATGATGAT TCTTTCTGAT GATGCCGTTG TGTGCTATAA CAGTAACTAT
                 15630
                            15640
                                        15650
                                                   15660
                                                              15670
                                                                          15680
                     > < RmaI
                    >< NheI >< Tru9I
 >< Fnu4HI
                     > < MaeI
                                      >< Tru9I
>< AciI
                    >< AluI >< MseI
                                      >< MseI
                                                                       MnlI ><
GCGGCTCAAG GTTTAGTAGC TAGCATTAAG AACTTTAAGG CAGTTCTTTA TTATCAAAAT AATGTGTTCA
     15690
                 15700
                            15710
                                       15720
                                                   15730
                                                              15740
                                                                          15750
                                               >< SinI
                                               >< Sau96I
                                                   >< PssI
                                               >< Psp5II
                                              >< PpuMI
                                              >< NspIV
                                               >< NspHII
                                              >< EcoO109I
                                              >< Eco47I
                                              >< DraII
                                              >< Cfr13I
                                              >< BsiZI
                       >< DdeI
                                              >< Bme18I
 >< NlaIII
                  >< BsmAI
                                              >< AvaII
   >< DdeI
                  >< Alw26I
                                              >< AsuI
TGTCTGAGGC AAAATGTTGG ACTGAGACTG ACCTTACTAA AGGACCTCAC GAATTTTGCT CACAGCATAC
                                                            >< MnlI
     15760
                15770
                           15780
                                      15790
                                                  15800
                                                             15810
                                                  >< XhoII
                                                  >< Sau3AI
                                                  >< NdeII
                                                  >< MflI
```

>< MboI

```
>< DpnII
                              >< RsaI
                                                          > < SspI
                                             >< DpnI
                         >< MaeII</pre>
                                                          HinP1I ><
                                            >< BstYI
                              >< Csp6I
       >< Tru91
                                                           Hin6I ><
                                        >< BspMI
                          >< BsaAI
   >< RmaI
                                                              HhaI ><
                                            >< BspAI
                         >< AflIII
                              >< Afal >< AlwI>< Bsp143I
   >< MaeI
                                                              CfoI ><
AATGCTAGTT AAACAAGGAG ATGATTACGT GTACCTGCCT TACCCAGATC CATCAAGAAT ATTAGGCGCA
                                           15870 15880
                        15850
                                  15860
              15840
                                                              >< SfaNI
                                  >< RsaI
                                                          >< MaeIII
                                  >< Csp6I
          >< TthHB8I
                                                              BsrI ><
                                  >< AfaI
          >< TaqI
GGCTGTTTTG TCGATGATAT TGTCAAAACA GATGGTACAC TTATGATTGA AAGGTTCGTG TCACTGGCTA
                                  15930 15940
                                                       15950
                      15920
              15910
        > < FokI
TTGATGCTTA CCCACTTACA AAACATCCTA ATCAGGAGTA TGCTGATGTC TTTCACTTGT ATTTACAATA
                                         16010
                                                       16020
                        15990 16000
              15980
     15970
                                    >< Van91I
                                    >< PflMI
                                    IqeN ><
                             > < Pall>< NspHI
                             > < MscI>< NlaIII
                             > < HaeIII</pre>
                             > < BsuRI
                              >< BsrI
                           >< EaeI >< BslI
                                             >< NspI
                             > < BshI>< BsiYI >< NspHI
                                >< AflIII >< AflIII
                >< NlaIII
        CATTAGAAAG TTACATGATG AGCTTACTGG CCACATGTTG GACATGTATT CCGTAATGCT AACTAATGAT
                                  16070 16080
                                                     16090
                         16060
               16050
     16040
             >< RsaI> < NlaIV
              >< MnlI
                                          >< RsaI
                     >< DdeI
            >< Csp6I
                  >< BsrI >< MnlI
                                          >< Csp6I
                                          >< AfaI
             >< AfaI> < BscBI
 AACACCTCAC GGTACTGGGA ACCTGAGTTT TATGAGGCTA TGTACACACC ACATACAGTC TTGCAGGCTG
                                                       16160
                         16130 16140
                                            16150
              16120
     16110
                                               >< NlaIV
                                                     >< EcoNI
                                                     >< Eco31I
                                             >< Eco64I>< BsmAI
                                               >< BscBI >< BslI
                                             >< BanI >< BsiYI
                                                     >< BsaI
                                           >< AciI
                                             >< AccBlI>< Alw26I
 TAGGTGCTTG TGTATTGTGC AATTCACAGA CTTCACTTCG TTGCGGTGCC TGTATTAGGA GACCATTCCT
   >< BspWI
                                                       16230
                                                                 16240
                         16200 16210
                                              16220
                16190
      16180
                    . >< Tth111I
                                                            > < Tru9I
                          >< NlaIII
             >< Fnu4HI
            >< BspWI >< AspI
 ATGTTGCAAG TGCTGCTATG ACCATGTCAT TTCAACATCA CACAAATTAG TGTTGTCTGT TAATCCCTAT
                         16270 16280 16290 16300
                                                                 16310
                16260
      16250
              >< ScrFI
              >< MvaI
```

FIGURE 13.37

```
51/83
             >< EcoRII
               >< Ecl136I
             >< DsaV
               >< BstOI
               >< BstNI
               >< BsiLI
                                                    >< RmaI
             >< BsaJI
                                                >< MnlI
                                                                   BspWI ><
               >< ApyI
                         >< MaeIII >< MaeIII</pre>
                                                    >< MaeI
 GTTTGCAATG CCCCAGGTTG TGATGTCACT GATGTGACAC AACTGTATCT AGGAGGTATG AGCTATTATT
      16320
                 16330
                           16340
                                      16350 16360
                                                           16370
    >< MaeIII
                          ·>< MnlI
 GCAAGTCACA TAAGCCTCCC ATTAGTTTTC CATTATGTGC TAATGGTCAG GTTTTTGGTT TATACAAAAA
      16390
                16400
                          16410
                                     16420
                                               16430
                                                            16440
      >< NspI
                                                       >< NspI
      IHqsN ><
                    > < Tth111I
                                                       >< NspHI
      >< NlaIII>< MaeIII>< MaeIII
                                                       >< NlaIII
  >< AflIII
                  >< AspI
                                                  >< AflIII .
 CACATGTGTA GGCAGTGACA ATGTCACTGA CTTCAATGCG ATAGCAACAT GTGATTGGAC TAATGCTGGC
    . 16460
                16470
                          16480 16490
                                                16500
                                                           16510
                         >< RsaI
                           >< PleI
                           >< DdeI
                        >< Csp6I
                         >< BsmAI >< HinfI
                                                                  >< MnlI
                         >< AfaI
                                        >< AluI >< Fnu4HI
                                                             >< BbvI
 GATTACATAC TTGCCAACAC TTGTACTGAG AGACTCAAGC TTTTCGCAGC AGAAACGCTC AAAGCCACTG
     16530
                16540
                           16550
                                     16560
                                                16570
                                                          16580
                                          > < Thal
                                                >< Scal
                                      >< RsaI >< RsaI
                                         > < MvnI
                                     >< Csp6I >< Csp6I
                                         > < BstUI
         > < Tru9I
                                         > < Bsp50I
         > < MseI > < NdeI</pre>
                                      >< AfaI
                                               >< AfaI
              >< AluI
                                         > < AccII
AGGAAACATT TAAGCTGTCA TATGGTATTG CCACTGTACG CGAAGTACTC TCTGACAGAG AATTGCATCT
     16600
               16610
                          16620
                                     16630
                                                16640
                                                           16650
                                                             MaeIII ><
                                                           >< MaeIII
                                                           >< EcoO651
                                                           >< Eco91I
                                                           >< BstPI
   >< SfaNI
                     >< RmaI
                                                           >< BstEII
     >< NlaIII
                     >< MaeI
                                                            >< BsrI
TTCATGGGAG GTTGGAAAAC CTAGACCACC ATTGAACAGA AACTATGTCT TTACTGGTTA CCGTGTAACT
     16670
               16680
                         16690 16700 16710
                                                          16720
                                                                 RsaI ><
                                                                  >< MnlI
             >< RsaI
                            >< RsaI
                                                                   >< HphI
             >< Csp6I
                           >< Csp6I
                                              >< SfaNI
                                                            . Csp6I ><
             >< AfaI
                            >< AfaI
                                            >< MaeIII
                                                         >< HphI AfaI ><
AAAAATAGTA AAGTACAGAT TGGAGAGTAC ACCTTTGAAA AAGGTGACTA TGGTGATGCT GTTGTGTACA
```

16770

16780

16790

16760

16740

16750

.

```
>< HphI
   >< RsaI
                                                                  DdeI ><
                                               >< HindII
  >< Csp6I
                                                                  BfrI ><
                                               >< HincII
   >< AfaI
GAGGTACTAC GACATACAAG TTGAATGTTG GTGATTACTT TGTGTTGACA TCTCACACTG TAATGCCACT
                                                                   16870
                                                         16860
                                              16850
                                    16840
                          16830
               16820
    16810
  >< VneI
  >< SnoI
     >< SduI
     >< NspII
                              > < SduI
     >< HgiAI
                              > < NspII
 >< DraIII
                             > < HgiAI
     >< Bsp1286I
                                                      >< RsaI
                         >< BspWI >< DraIII
      >< BmyI
                                                      >< Csp6I
                             > < Bsp1286I
             >< RmaI
  >< ApaLI
                                                  >< BsrI
                              > < BmyI
            >< MaeI
  >< Alw44I
                                                                    DdeI >
                                                       >< AfaI
                              > < Alw21I
      >< Alw21I
TAGTGCACCT ACTCTAGTGC CACAAGAGCA CTATGTGAGA ATTACTGGCT TGTACCCAAC ACTCAACATC
                                                                     16940
                                                          16930
                                               16920
                                  16910
                         16900
     16880
               16890
                                                                StyI ><
                                                                    SinI >
                                                                  Sau96I >
                                                                   NspIV >
                                                             EcoT14I ><
                                                                  Eco47I >
                                                             Eco130I ><
                                                         >< Scal Cfr13I >
                                                              BssTlI ><
                                                  >< SphI >< RsaI BsiZI >*
                                                  >< PaeI
                                                            BsaJI ><
                                                  >< NlaIII
                                                                  Bme18I >
                                                  >< NspI>< Csp6I
              >< RmaI
                                                  >< NspHI>< AfaI
              >< MaeI
 TCAGATGAGT TTTCTAGCAA TGTTGCAAAT TATCAAAAGG TCGGCATGCA AAAGTACTCT ACACTCCAAG
                                                           17000
                                                16990
                                    16980
                          16970
                16960
     16950
      >< ScrFI
           >< RsaI
      >< MvaI
    >< EcoRII
      >< Ecl136I
         > < Csp6I
      >< BstOI
      >< BstNI
   >< XcmI >< BslI
           >< BsiYI
 >< NspHII
      >< BsiLI
      >< ApyI
                >< BsrI
     >< DsaV>< AfaI > < HinfI>< PleI</pre>
 GACCACCTGG TACTGGTAAG AGTCATTTTG CCATCGGACT TGCTCTCTAT TACCCATCTG CTCGCATAGT
                                                           17070
                                                                      17080
                                     17050
                                              17060
                           17040
                17030
      17020
                   >< SfaNI
                      >< PvuII
            >< SphI
            >< PaeI
                        >< Psp5I
                      >< NspBII
            >< NspI
                                                    > < Tru9I
            >< NspHI >< Fnu4HI
                                                           >< SspI
                > < NlaIII>< BspWI
   >< Bst1107I
           >< NlaIII >< AluI >< BbvI > < MseI
 GTATACGGCA TGCTCTCATG CAGCTGTTGA TGCCCTATGT GAAAAGGCAT TAAAATATTT GCCCATAGAT
                                             17130
                                                           17140
                                      17120
      17090
                           17110
                17100
```

```
> < Thal
                         >< ThaI
                               > < MvnI
                         >< MvnI >< ThaI
                               > < HinPlI
                             >< HinPlI
                       >< HinP1I >< MvnI
                               > < Hin6I
                             >< Hin6I
                               > < HhaI
                         >< HhaI >< HhaI
                               > < CfoI
                         >< CfoI >< CfoI
                               > < BstUI
                         >< BstUI >< BstUI
                             >< BssHII
                            >< BspMI
                               > < Bsp50I
                         >< Bsp50I>< Bsp50I
                                                                     RmaI >
           >< TfiI
                       >< Hin6I> < AccII
                                                                     MaeI >
           >< HinfI
                        >< AccII >< AccII
                                                               > < EcoRI
AAATGTAGTA GAATCATACC TGCGCGTGCG CGCGTAGAGT GTTTTGATAA ATTCAAAGTG AATTCAACAC
     17160
                17170
                           17180
                                     17190
                                               17200
                                                           17210
                                  >< Zsp2I
                             >< Ppul0I
                                  >< NsiI
                                  >< Mph1103I
                                  >< EcoT22I
 >< BsaI
                              > < AvaIII
                                                            >< DrdI
TAGAACAGTA TGTTTTCTGC ACTGTAAATG CATTGCCAGA AACAACTGCT GACATTGTAG TCTTTGATGA
     17230
             17240
                          17250
                                     17260
                                                17270
                                                           17280
                                            >< RmaI
                                            >< MaeI
                                                                   >< MaeII
AATCTCTATG GCTACTAATT ATGACTTGAG TGTTGTCAAT GCTAGACTTC GTGCAAAACA CTACGTCTAT
     17300
               17310
                         17320
                                   17330
                                                17340
                                                        17350
     >< Sau3AI
     >< NdeII
     >< MboI
     >< DpnII
      >< DpnI
     >< BspAI
                                                          >< RmaI
>< AlwI>< Bsp143I
                             > < AciI
                                                          >< MaeI SspI ><
ATTGGCGATC CTGCTCAATT ACCAGCCCCC CGCACATTGC TGACTAAAGG CACACTAGAA CCAGAATATT
     17370
               17380
                          17390
                                    17400
                                             17410
                                                           17420
                                  >< SinI
                                  >< Sau96I
                                  >< NspIV
                                                 >< StyI
                                   >< NspHII >< NspI
                                  >< Eco47I >< NspHI
                                  >< Cfr13I
                                              >< NlaIII
                                  >< BsiZI
                                                >< EcoT14I
                                 >< BsgI
                                                >< Eco130I
                                  >< Bme18I
                                                >< BssT1I
>< Tru9I
                                  >< AvaII
                                                >< BsaJI
>< MseI
                                  >< AsuI> < AflIII
TTAATTCAGT GTGCAGACTT ATGAAAACAA TAGGTCCAGA CATGTTCCTT GGAACTTGTC GCCGTTGTCC
    17440
             17450 17460
                                     17470
                                               17480
                                                          17490
                                                                     17500
```

EIGIIDE 12 AA

```
>< HindII
                                              >< AluI
            >< HincII
TGCTGAAATT GTTGACACTG TGAGTGCTTT AGTTTATGAC AATAAGCTAA AAGCACACAA GGATAAGTCA
                                              17550
                                                         17560
                                  17540
                        17530
    17510
               17520
                                            >< NlaIII
>< AluI
GCTCAATGCT TCAAAATGTT CTACAAAGGT GTTATTACAC ATGATGTTTC ATCTGCAATC AACAGACCTC
                                                         17630
                                               17620
                         17600 17610
               17590
     >< MnlI
>< EcoNI
                                                        >< HphI
  >< BslI
                                                     >< AluI
  >< BsiYI
AAATAGGCGT TGTAAGAGAA TTTCTTACAC GCAATCCTGC TTGGAGAAAA GCTGTTTTTA TCTCACCTTA
                                                         17700
                                               17690
                         17670 17680
               17660
     17650
                                                          >< TfiI
                               >< DdeI
              >< SfcI
                                                          >< HinfI
                            >< BfrI
                  > < AluI
TAATTCACAG AACGCTGTAG CTTCAAAAAT CTTAGGATTG CCTACGCAGA CTGTTGATTC ATCACAGGGT
                                                          17770
                                  17750 17760
                          17740
               17730
                                                             > < HindII
                                                              > < HincII
            >< TthlllI
                                                                 >< AciI
          >< AspI
TCTGAATATG ACTATGTCAT ATTCACACAA ACTACTGAAA CAGCACACTC TTGTAATGTC AACCGCTTCA
                                                          17840
                                               17830
               17800
                         17810
                                    17820
     17790
                                                       >< XhoII
                                                       >< Sau3AI
                                                       >< NdeII
                                                       >< MflI
                                                       >< MboI
                                                      >< MamI
                                                       >< DpnII
                                                         >< DpnI
                                                       >< BstYI
                                                       >< BspAI
                                                         >< Bsp143I
                                                      >< BsiBI
                                                      >< BsaBI
                                   >< BspWI
                                                       >< BglII
ATGTGGCTAT CACAAGGGCA AAAATTGGCA TTTTGTGCAT AATGTCTGAT AGAGATCTTT ATGACAAACT
                          17880 17890 17900
                                                         17910
              17870
     17860
             >< XbaI
                                                            >< MaeIII
             >< RmaI
                                                                BsrI ><
             >< MaeI
                         >< MaeII
GCAATTTACA AGTCTAGAAA TACCACGTCG CAATGTGGCT ACATTACAAG CAGAAAATGT AACTGGACTT
                                               17970 17980
                                   17960
               17940
                         17950
     17930
                >< Sau3AI
                >< NdeII
                      >< MboII
                >< MboI
                   > < FokI
                                                >< NlaIV
                >< DpnII
                                              >< Eco64I
                  >< DpnI
                                                >< BscBI
                >< BspAI
                                                                MnlI ><
                                              >< BanI
                  >< Bsp143I
 >< Tru9I
                                                           >< DdeI
                      >< BbsI > < BsrI
                                              >< AccBlI
 >< MseI>< SfcI
```

```
TTTAAGGACT GTAGTAAGAT CATTACTGGT CTTCATCCTA CACAGGCACC TACACACCTC AGCGTTGATA
      1.8000
                18010
                          18020
                                    18030
                                              18040
                                                        18050
                                     >< ScrFI
                                      >< MvaI
                                    >< EcoRII
                                   >< Eco57I
                                     >< Ecl136I
                                    >< DsaV
                                     >< BstOI
                                                               >< PleI
                                                       >< NlaIII
                                     >< BstNI
                             >< HindII>< BsiLI</pre>
                                                               HinfI ><
                             >< HincII>< ApyI
                                                              AccI ><
 TAAAGTTCAA GACTGAAGGA TTATGTGTTG ACATACCAGG CATACCAAAG GACATGACCT ACCGTAGACT
     18070
                18080
                          18090
                                    18100 18110 18120
                                          >< MaeIII
                                                               ThaI ><
                                          >< EcoO651
                                                              MvnI ><
                                          >< Eco911
                                                             BstUI ><
                                      >< BstXI
                                                             Bsp50I ><
                                         >< BstPI
                                                                 >< AciI
                                         >< BstEII >< HphI AccII ><
CATCTCTATG ATGGGTTTCA AAATGAATTA CCAAGTCAAT GGTTACCCTA ATATGTTTAT CACCCGCGAA
     18140
              18150 18160 18170
                                             18180
                                                        18190
    >< XmnI
        > < MboII
                                                       >< SfaNI
        > < MaeIII
                                                           >< RmaI
    >< Asp700I
                                                        >< NlaIII
   >< AluI >< MaeII
                                 >< MnlI
                                                           >< MaeI
GAAGCTATTC GTCACGTTCG TGCGTGGATT GGCTTTGATG TAGAGGGCTG TCATGCAACT AGAGATGCTG
    18210
              18220
                        18230
                                  18240
                                             18250
                                                       18260
                                           >< Tru9I
                                           >< MseI
   >< RsaI
                                           >< HpaI
 >< GsuI
                      >< RmaI
                                           >< HindII
                                                          >< RsaI
  >< Csp6I
                                           >< HincII >< Csp6I
                        >< MnlI
 >< BpmI
                       >< MaeI
                                              >< DdeI >< AluI BsrI ><
   >< AfaI
                                 >< SfcI >< BfrI >< AfaI
                      >< AluI
TGGGTACTAA CCTACCTCTC CAGCTAGGAT TTTCTACAGG TGTTAACTTA GTAGCTGTAC CGACTGGTTA
    18280 18290
                         18300
                                 18310
                                             18320
                                                      18330
                                                      >< ScrFI
                                                      >< MvaI
                                                         >< MnlI
                                                        >< MaeIII
                                                    >< EcoRII
                                                        >< Eco0651
                                                   >< EcoNI
                                                       >< Eco91I
                                                      >< Ecl136I
                                                    >< DsaV Tru9I ><
                                                       >< DraIII
                                                       >< BstPI
                                                     >< BstOI
                                                     >< BstNI PmeI ><
                                                       >< BstEII
                                                    >< BslI MseI ><
                                                    >< BsiYI HphI ><
  >< HindII
                >< HphI
                                  >< Tru9I
                                                     >< BsiLI DraI ><
  >< HincII
                     >< EcoRI
                                 >< MseI
                                                     >< Apyl >< Bsrl
                              FIGURE 12 12
```

```
TGTTGACACT GAAAATAACA CAGAATTCAC CAGAGTTAAT GCAAAACCTC CACCAGGTGA CCAGTTTAAA
                        18370 18380 18390 18400
    18350
              18360
                                >< ScrFI
                                >< MvaI
                              >< EcoRII
                                >< Ecl136I
                              >< DsaV
                                >< BstOI
                                >< BstNI
                                                           >< RsaI
                                                               DdeI ><
                                >< BsiLI
                                                > < Tru9I>< Csp6I
                              >< BsaJI
                >< NlaIII
                                >< ApyI
                                                > < MseI >< AfaI
CATCTTATAC CACTCATGTA TAAAGGCTTG CCCTGGAATG TAGTGCGTAT TAAGATAGTA CAAATGCTCA
                       18440 18450
    18420 18430
                                             18460
                                                       18470
                                                      >< NlaIII
                                               >< HinPlI
                         >< Tth111I
                                               >< Hin6I
                          >< HinfI
                                                 > < HhaI
                        >< AspI >< PleI
                                                > < CfoI
                                                              >< AluI
GTGATACACT GAAAGGATTG TCAGACAGAG TCGTGTTCGT CCTTTGGGCG CATGGCTTTG AGCTTACATC
             18500
    18490
                       18510 18520
                                             18530
                                                     18540
                                                                   18550
                      >< SinI
                      >< Sau96I
                      >< NspIV
                       >< NspHII
                      >< Eco47I
                      >< Cfr13I
                      >< BsiZI
      >< ScaI
                      >< Bme18I
      >< RsaI
                      >< AvaII
     >< Csp6I
                                  >< MaeII
      >< AfaI
                      >< AsuI
                                  >< AflIII
                                              >< MaeIII>< MaeII
AATGAAGTAC TTTGTCAAGA TTGGACCTGA AAGAACGTGT TGTCTGTGTG ACAAACGTGC AACTTGCTTT
                                18590 18600
                                                      18610
    18560
              18570
                       18580
                                                                 18620
                             > < TfiI
                                                    >< Tth111I
                                                 > < AspI
                             > < HinfI
TCTACTTCAT CAGATACTTA TGCCTGCTGG AATCATTCTG TGGGTTTTGA CTATGTCTAT AACCCATTTA
                               18660 18670
    18630 18640
                    18650
                                                        18680
                                                                  18690
                                                               >< ScrFI
                                                              RsaI ><
                                                               >< MvaI
                                                              >< EcoRII
                                                        Ec1136I ><
                                                              >< DsaV
                                                             Csp6I ><
                                                               BstXI ><
                             > < MaeIII
                                                               >< BstOI
                             > < EcoO651
                                                               >< BstNI
                             > < Eco91I
                                                               >< BsiLI
                             > < BstPI
                                                               >< ApyI
                    >< Eco57I> < BstEII</pre>
                                         >< MaeIII >< NlaIII</pre>
                                                              AfaI ><
TGATTGATGT TCAGCAGTGG GGCTTTACGG GTAACCTTCA GAGTAACCAT GACCAACATT GCCAGGTACA
                                  18730
                                         18740
    18700
              18710
                        18720
                                                       18750
              >< SfaNI
               >< RmaI
            IqeN ><
            >< NspHI
```

```
>< NlaIII
                                       >< RmaI
                  >< MaeI
                                     >< NlaIII
                                                                Tru9I ><
  >< NlaIII
              >< BspWI
                                       >< MaeI
                                                          >< NlaIII
         > < AflIII
                               >< BspHI
                                                                 MseI ><
 TGGAAATGCA CATGTGGCTA GTTGTGATGC TATCATGACT AGATGTTTAG CAGTCCATGA GTGCTTTGTT
                18780 18790
                                    18800
                                          18810
                                                        18820
     >< ThaI
     >< MvnI
   >< HinP1I
   >< Hin6I
    >< HhaI
    >< CfoI
    >< BstUI
                                >< EcoNI> < MnlI
    >< Bsp50I
                                 >< BslI
                                                     >< Tru9I
    >< AccII
                                  >< BsiYI
                                              >< DdeI >< MseI
 AAGCGCGTTG ATTGGTCTGT TGAATACCCT ATTATAGGAG ATGAACTGAG GGTTAATTCT GCTTGCAGAA
                18850 18860 18870
                                            18880 18890
   >< RsaI
  >< Csp6I
                                             >< MboII
                                                           > < NlaIII
           >< NlaIII >< BspWI
   >< AfaI
                                              >< BsrI >< BspHI
 AAGTACAACA CATGGTTGTG AAGTCTGCAT TGCTTGCTGA TAAGTTTCCA GTTCTTCATG ACATTGGAAA
     18910
               18920
                       18930
                                  18940
                                            18950
                                                        18960
                       >< SauI
                       >< MstII
                       >< Eco81I
                       >< DdeI
                                                           NlaIII ><
                       >< CvnI
                                                        >< EspI
                       >< Bsu36I
                                                   >< Eco57I MaeIII ><</pre>
                       >< Bse21I
                                                        >< DdeI
                       >< AxyI
                                                        >< CelII
                       >< AocI
                                >< MnlI >< SfaNI
                                                        >< Bpul102I
TCCAAAGGCT ATCAAGTGTG TGCCTCAGGC TGAAGTAGAA TGGAAGTTCT ACGATGCTCA GCCATGTAGT
     18980 18990
                       19000 19010
                                           19020 19030
          >< MnlI
                              >< Ksp632I
    >< HindIII
                              >< EarI
     >< AluI
                >< MboII
                             >< Eam1104I
GACAAAGCTT ACAAAATAGA GGAACTCTTC TATTCTTATG CTACACATCA CGATAAATTC ACTGATGGTG
               19060
                        19070 19080 19090 19100
                         >< Sau3AI
                         >< NdeII
                         >< MboI
                     >< MaeII> < MaeIII
                        >< DpnII
                          >< DpnI
                        >< BspAI
                >< MaeIII >< Bsp143I
                                       >< MunI
TTTGTTTGTT TTGGAATTGT AACGTTGATC GTTACCCAGC CAATGCAATT GTGTGTAGGT TTGACACAAG
    19120
              19130
                        19140 19150
                                            19160 19170
                                                         Zsp2I ><
                                                             >< SphI
                                                          > < PpulOI
                                                             >< PaeI
                                                             >< NspI
                      >< ScrFI
                                                             >< NspHI
                      >< MvaI
                                                             >< NlaIII
                    >< EcoRII
                                                      Mph1103I ><
```

```
>< GsuI
                        >< Ecl136I
                                                              EcoT22I ><
                      >< DsaV
                                                                    >< BsmI
                        >< BstOI
                                                              >< BscCI
                        >< BstNI
                                                              >< BpmI >< NsiI
                        >< BsiLI
                        >< ApyI
AGTCTTGTCA AACTTGAACT TACCAGGCTG TGATGGTGGT AGTTTGTATG TGAATAAGCA TGCATTCCAC
                                                 19230
                           19210
                                     19220
                19200
     19190
                                    >< Tru9I
                                          > < MunI
                                    >< MseI
           >< TthHB8I
                                     >< DraI
>< BcgI/a >< TaqI
                                     >< BcgI
ACTCCAGCTT TCGATAAAAG TGCATTTACT AATTTAAAGC AATTGCCTTT CTTTTACTAT TCTGATAGTC
                                                19300
                                                             19310
                                      19290
                           19280
                19270
     19260
                                                                  SfaNI ><
              >< PleI
                                                                     >< MaeII
               >< NlaIII
                                                                BsaAI ><
             >< BsmAI
     >< HinfI>< Alw26I
CTTGTGAGTC TCATGGCAAA CAAGTAGTGT CGGATATTGA TTATGTTCCA CTCAAATCTG CTACGTGTAT
                                                  19370
                                      19360
                           19350
                19340
     19330
                                                                       Zsp2I >
                                                                >< ScaI
                                                                 PpulOI ><
                                                                 >< RsaINsiI >
                                                                    Mph1103I >
                                                             >< SfaNIEcoT22I >
                                                      > < RsaI >< Csp6I
                                                                    AvaIII ><
                                                     >< Csp6I
                                                                >< AfaI
                                             >< NlaIII> < AfaI</pre>
 TACACGATGC AATTTAGGTG GTGCTGTTTG CAGACACCAT GCAAATGAGT ACCGACAGTA CTTGGATGCA
                                                                         19460
                                                  19440
                                                              19450
                                       19430
                            19420
      19400
                 19410
 TATAATATGA TGATTTCTGC TGGATTTAGC CTATGGATTT ACAAACAATT TGATACTTAT AACCTGTGGA
                                                              19520
                                                  19510
                            19490
                                       19500
                 19480
      19470
            >< ScrFI
            >< MvaI
              >< MaeIII
         >< EcoRII
            >< Ecl136I
         >< DsaV
            >< BstOI
            >< BstNI
                                                      >< Tru9I
            >< BsiLI
                                                      >< MseI
 ATACATTTAC CAGGTTACAG AGTTTAGAAA ATGTGGCTTA TAATGTTGTT AATAAAGGAC ACTTTGATGG
                                                              19590
                                                   19580
                                        19570
                            19560
                  19550
       19540
      >< SgrAI
        >< NaeI
                                 > < VspI
       >< MspI
                                 > < Tru9I
       >< HpaII
                                 > < MseI
       >< HapII
                                 > < AsnI
      >< Cfr10I
                                 > < AseI
  ACACGCCGGC GAAGCACCTG TTTCCATCAT TAATAATGCT GTTTACACAA AGGTAGATGG TATTGATGTG
                                                              19660
                                                                          19670
                                                   19650
                                        19640
                             19630
                  19620
       19610
```

FIGURE 13. 45

```
>< XhoII
 >< Sau3AI
 >< NdeII
>< MflI
 >< MboI
 >< DpnII
   >< DpnI
                                                                    >< MaeIII
                                                              >< EspI
 >< BstYI
                                                              >< DdelTru9I ><
 >< BspAI
                                                              >< CelIIMseI ><
                                   >< Tru9I
   >< Bsp143I
                                                    >< AluI
                                                             >< Bpu1102I
                                   >< MseI
 >< BglII
GAGATCTTTG AAAATAAGAC AACACTTCCT GTTAATGTTG CATTTGAGCT TTGGGCTAAG CGTAACATTA
                                       19710
                                                  19720
                                                              19730
                                                                         19740
     19680
                19690
                           19700
                                                     >< Fnu4HI
                                                >< EcoRV
                >< Tru9I
  >< BsrI
                >< MseI
                                      >< BbvI
                                                >< Eco32I
AACCAGTGCC AGAGATTAAG ATACTCAATA ATTTGGGTGT TGATATCGCT GCTAATACTG TAATCTGGGA
     19750
                19760
                           19770
                                       19780
                                                  19790
                                                              19800
                                                                         19810
                           >< NspI
                           >< NspHI
                            >< NlaIII
                              >< BsgI
                       >< AflIII
CTACAAAAGA GAAGCCCCAG CACATGTATC TACAATAGGT GTCTGCACAA TGACTGACAT TGCCAAGAAA
     19820
                19830
                           19840
                                       19850
                                                  19860
                                                              19870
                                                                     >< AccI
    >< DdeI>< MboII
CCTACTGAGA GTGCTTGTTC TTCACTTACT GTCTTGTTTG ATGGTAGAGT GGAAGGACAG GTAGACCTTT
     19890
                19900
                                       19920
                                                  19930
                                                              19940
                                                                         19950
                           19910
                                                                    SinI ><
                                                                  Sau96I ><
                                                                   NspIV ><
                                                                   NspHII ><
                                                                    NlaIV ><
                                                                  Eco47I ><
                                                                  Cfr13I ><
                                                                      >< BslI
                                                                   BsiZI ><
                                                                      >< BsiYI
                                                                    BscBI ><
                                                                  Bme18I ><
                         >< Tru9I
                                                                   AvaII ><
                         >< MseI
                                                                    AsuI ><
TTAGAAACGC CCGTAATGGT GTTTTAATAA CAGAAGGTTC AGTCAAAGGT CTAACACCTT CAAAGGGACC
     19960
                19970
                           19980
                                       19990
                                                  20000
                                                              20010
                               >< VspI
                               >< Tru9I
                               >< PleI
        >< RmaI
                              >< MseI
                                                                   Tru9I ><
       >< NheI
                       >< MaeIII
                                                               >< Tru9I
        >< MaeI
                              >< AsnI
                                         >< TfiI
                                                                    MseI ><
                                         >< HinfI
                      >< Hinfl>< Asel
>< HgaI>< AluI
                                                              >< MseI
AGCACAAGCT AGCGTCAATG GAGTCACATT AATTGGAGAA TCAGTAAAAA CACAGTTTAA CTACTTTAAG
                                       20060
     20030
                20040
                           20050
                                                  20070 .
                                                             20080
                                                                         20090
                                                >< DdeI
                                                          >< MnlI
                                                                     Tru9I ><
```

>< BsmAI

>< DdeI

```
>< Alw26I >< BfrIMseI ><</pre>
AAAGTAGACG GCATTATTCA ACAGTTGCCT GAAACCTACT TTACTCAGAG CAGAGACTTA GAGGATTTTA
              20110 20120 20130 20140 20150
                            >< TthHB8I
                             >< TagI
                                  >< SstI
                                                            XhoI ><
                                  >< SduI
                                                            TthHB8I >
                                  >< SacI
                                                              TaqI >
                           > < PaeR7I
                                                             SlaI ><
                           > < NspIII
                                                            PaeR7I ><
                                   >< NspII
                                                           NspIII ><
                                   >< HgiAI
                                                              >< MnlI
                            > < Eco88I
                                                            Eco88I ><
                           > < XhoI>< Eco24I
          >< XcmI
                                                              CcrI ><
                                >< Ecl136II
    >< Sau3AI
                                                       BspWI ><
                           > < SlaI>< Bsp1286I
     >< NdeII
                                                             BcoI ><
                           > < CcrI>< BmyI
     >< MboI
                                                         > < BcgI/a
                           > < BcoI>< BanII
     >< DpnII
                                                              AvaI ><
                           > < Ama87I
      >< DpnI
                      Ama87I ><
     >< BspAI
AGCCCAGATC ACAAATGGAA ACTGACTTTC TCGAGCTCGC TATGGATGAA TTCATACAGC GATATAAGCT
      >< Bsp143I
              20180 20190 20200 20210 20220
              >< TthHB8I
              >< TaqI .
              >< SfuI
              >< NspV
              >< LspI
                                                                    7.
              >< Csp45I
              >< BstBI
              >< Bsp119I
                                                   >< MboII
              >< BsiCI
                                                   >< BbsI
              >< Bpul4I
                                             >< NlaIII >< AciIMseI ><
              >< AsuII >< BcgI
 CGAGGGCTAT GCCTTCGAAC ACATCGTTTA TGGAGATTTC AGTCATGGAC AACTTGGCGG TCTTCATTTA
                        20260 20270 20280
                                                    20290
             20250
     20240
                      >< HphI
                 >< HinPlI
                 >< Hin6I
                  > < HhaI >< TfiI
        >< EspI
                  >< HaeII
        >< DdeI
                                    >< Tru9I
        >< CelII >< Eco47III
                                   >< MseI
        >< Bpull02I > < CfoI >< HinfI
        >< BfrI >< Bsp143II
                                    >< MnlI
 ATGATAGGCT TAGCCAAGCG CTCACAAGAT TCACCACTTA AATTAGAGGA TTTTATCCCT ATGGACAGCA
                                           20350 20360 20370
                        20330 20340
              20320
      20310
                           >< MstI
                                                         Sau3AI ><
                          >< HinP1I</pre>
                                                          NdeII ><
                          >< Hin6I
                                                          MboI ><
                           >< HhaI
                                                          DpnII ><
                           >< FspI
                                                            DpnI ><
                           >< FdiII
                                                          BspAI ><
                           >< CfoI
                                                          Bsp143I ><
                          >< AviII
              >< SfaNI
 CAGTGAAAAA TTACTTCATA ACAGATGCGC AAACAGGTTC ATCAAAATGT GTGTGTTCTG TGATTGATCT
               20390 20400 20410 20420 20430
      20380
```

```
>< Tth111I
                  >< TaqI
            >< AspI
                               > < MaeIII
                                                                 MaeIII ><
 TTTACTTGAT GACTTTGTCG AGATAATAAA GTCACAAGAT TTGTCAGTGA TTTCAAAAGT GGTCAAGGTT
      20450
              20460
                           20470
                                      20480
                                                20490
                                                            20500
                                                        >< NspI
                                                        >< NspHI
                                                        >< NlaIII
                                                           >< FokI
 >< MunI
                               > < NlaIII
                                                   >< AflIII
ACAATTGACT ATGCTGAAAT TTCATTCATG CTTTGGTGTA AGGATGGACA TGTTGAAACC TTCTACCCAA
                20530
                           20540
                                      20550
                                                 20560
                                                            20570
                             >< SfaNI
                             >< ScrFI
                             >< MvaI
                           >< EcoRII
                             >< Ecl136I
                           >< DsaV
                             >< BstOI
                                                 >< SfaNI
                             >< BstNI
                                                       >< RsaI BspWI ><
                             >< BsiLI
                                                     > < Csp6I
                                                                      BsmI >
               >< BspWI
                             >< ApyI
                                                       >< AfaI
                                                                 BscCI ><
AACTACAAGC AAGTCAAGCG TGGCAACCAG GTGTTGCGAT GCCTAACTTG TACAAGATGC AAAGAATGCT
     20590
                20600
                           20610
                                      20620
                                                 20630
                                                            20640
 >< Eco57I >< MaeIII</pre>
                                            >< HphI
TCTTGAAAAG TGTGACCTTC AGAATTATGG TGAAAATGCT GTTATACCAA AAGGAATAAT GATGAATGTC
     20660
               20670
                          20680
                                      20690
                                                20700
                                                           20710
                                                    > < RsaI
                                                   >< Csp6I
       >< Bst1107I
                            >< Tru9I
                                                >< AluI
      >< AccI
                            >< MseI
                                                    > < AfaINlaIII ><
GCAAAGTATA CTCAACTGTG TCAATACTTA AATACACTTA CTTTAGCTGT ACCCTACAAC ATGAGAGTTA
     20730
               20740
                          20750
                                     20760
                                                20770
                                                           20780
                                      >< ScrFI
                                           >< RsaI
                                      >< MvaI
                                    >< EcoRII >< NspBII
                                      >< Ecl136I
                                         Ecl136I >< SduI
> < Csp6I >< NspII
                                      >< BstOI >< PvuII>< HqiAI
                                      >< BstNI
                                                      >< DdeI
                                      >< BsiLI >< Psp5I>< Bsp1286I
                                      >< Apyl >< AluI >< BmyI
                                    >< DsaV>< AfaI
                                                       >< Alw21I
TTCACTTTGG TGCTGGCTCT GATAAAGGAG TTGCACCAGG TACAGCTGTG CTCAGACAAT GGTTGCCAAC
    20800
               20810
                          20820
                                     20830
                                               20840 20850
                      >< XhoII
                           >< Tru9I
                      >< Sau3AI
                      >< NdeII
              >< TthHB8I
                          >< MseI
                      >< MflI
                      >< MboI
                     >< MamI
                      >< DpnII
                >< TfiI >< DpnI
```

PIOTIDE to An

```
> < TfiI
                     >< BstYI
                                                   > < HinfI
                      >< BspAI
                                                            >< Tru9I
                                            >< Esp3I
                >< HinfI>< Bspl43I</pre>
                                                             >< MseI
                              >< Tth111I >< BsmBI
                     >< BsiBI
                                            >< BsmAI
                                                             > < BsmAI
                     >< BsaBI
                                            >< Alw26I >< HgaI> < Alw26I
                                >< AspI
              >< TaqI >< BglII
TGGCACACTA CTTGTCGATT CAGATCTTAA TGACTTCGTC TCCGACGCAG ATTCTACTTT AATTGGAGAC
                                                          20920
               20880 20890
                                  20900
                                              20910
    20870
                                                            >< StyI
                                                                 >< SinI
                                                                 >< Sau96I
                                                             >< RmaI
                              > < SinI
                                                                 >< NspIV
                              > < Sau96I
                                                           NspHII ><
                                   >< PssI
                                                             >< MaeI
                                >< Psp5II
                                                            >< EcoT14I
                              > < PpuMI
                                                                 >< Eco47I
                              > < NspIV
                                                            >< Eco130I
                                >< NspHII
                                                                 >< Cfr13I
                                >< NlaIV
                                                            >< BssT1I
                              > < EcoO109I
                                                                >< BsiZI
                              > < Eco47I
                                                            >< BsaJI
                              > < DraII
                                                                 >< Bme18I
                              > < Cfr13I
                                                            >< BlnI
                              > < BsiZI
                                                            >< AvrII
                                >< BscBI
                                                                 >< AvaII
                              > < Bme18I
          >< RsaI
                                                                 >< AsuI
                              > < AvaII
         > < Csp6I
                                                                 AflIII >< %
                              > < AsuI
           >< AfaI
TGTGCAACAG TACATACGGC TAATAAATGG GACCTTATTA TTAGCGATAT GTATGACCCT AGGACCAAAC
                                             20980
                                                      20990
                                    20970
               20950
                        20960
  >< NspI
  >< NspHI
                                                                   RmaI ><
  >< NlaIII >< PleI
                                                                   MaeI ><
                 >< HinfI
 >< MaeIII</pre>
ATGTGACAAA AGAGAATGAC TCTAAAGAAG GGTTTTTCAC TTATCTGTGT GGATTTATAA AGCAAAAACT
                      21030 21040 21050 21060
     21010
              21020
    >< ScrFI
    >< MvaI
  >< EcoRII
    >< Ecl136I
  >< DsaV
                                                                 Sau96I >
    >< BstOI
                                                                   NspIV >
    >< BstNI
                                                                   Cfr13I >
    >< BsiLI
                                                                    BsiZI >
   >< BsaJI
                                      >< BsmI
                                                       >< BsmI
               >< SfcI
   >< BsaJI
                                                 >< BscCIHindIII ><>< AluI
                                 >< BscCI
              > < AluI
     >< ApyI
 AGCCCTGGGT GGTTCTATAG CTGTAAAGAT AACAGAGCAT TCTTGGAATG CTGACCTTTA CAAGCTTATG
                                     21110
                                                21120
                                                          21130
                          21100
               21090
     21080
                                               >< Zsp2I
                                           >< Ppu10I
                                               >< NsiI
  >< PalI .
                                                              Tru9I ><
                                               >< Mph1103I
  >< HaeIII
                                               >< EcoT22I
                            >< MaeIII</pre>
  >< BsuRI
                                           >< AvaIII >< SfaNIBcgI/a ><</pre>
            >< NlaIII>< AluI >< BcgI
 GGCCATTTCT CATGGTGGAC AGCTTTTGTT ACAAATGTAA ATGCATCATC ATCGGAAGCA TTTTTAATTG
                                                          21200 21210
                                   21180
                                                21190
                21160
                           21170
```

```
>< Zsp2I
                                                          >< SphI
                                                   >< Ppu10I
                                                          >< PaeI
                                                          >< NspI
                                                          >< NspHI
                                                        >< NsiI
                                                          >< NlaIII
                                                     > < NlaIII
                                                        >< Mph1103I
                                                        >< EcoT22I
                                                     > < AvaIII
                                                                   >< MnlI
 GGGCTAACTA TCTTGGCAAG CCGAAGGAAC AAATTGATGG CTATACCATG CATGCTAACT ACATTTTCTG
      21220
                21230
                           21240
                                      21250
                                                 21260
                                                            21270
                                                                  Tru9I ><
                  >< MboII
                                                                   >< Tru9I
                   >< GsuI
                                                                   MseI ><
                   >< BsrI
                                                                   >< MseI
                   >< BpmI
                                                                    MnlI ><
                  >< BbsI
                                                    >< NlaIII
                                                                    >< MnlI
 GAGGAACACA AATCCTATCC AGTTGTCTTC CTATTCACTC TTTGACATGA GCAAATTTCC TCTTAAATTA
      21290
                21300
                           21310
                                      21320
                                                 21330
                        >< Tru9I
                        >< MseI
                       >< Esp4I> < TfiI
                       . >< BsmAI
                                                          Ksp632I ><
                        >< Alw26I
                                                   >< MboII
                                                                  >< EarI
                       >< AflII> < HinfI
                                                         Eam1104I ><
21360
                21370
                           21380
                                     21390
                                                21400
                                                           21410
                                                          >< Tru9I
                                                          >< MseI
                                                           >< HindII
                                                           >< HincII
                                                           >< HpaI AflIII >
GTAGGCTTAT CATTAGAGAA AACAACAGAG TTGTGGTTTC AAGTGATATT CTTGTTAACA ACTAAACGAA
     21430
                21440
                          21450
                                     21460
                                                21470
                                                           21480
                                                                     21490
                                                          >< VneI
                                                          >< SnoI
                                                              >< SduI
                                                              >< NspII
                                                       >< HpaII
                                                             >< HqiAI
                                                       >< HapII
                                                      >< Cfr10I
                                                             >< Bsp1286I
                                                      >< MspI>< BmyI
   >< NspI
                                 >< SpeI
                                                         >< ApaLI
   >< NspHI
                                  >< RmaI
                                                         >< Alw44I
   >< NlaIII
                                  >< MaeI >< MaeIII >< AgeI >< Alw21I
CATGTTTATT TTCTTATTAT TTCTTACTCT CACTAGTGGT AGTGACCTTG ACCGGTGCAC CACTTTTGAT
               21510
                          21520
                                    21530
                                               21540
                                                          21550
        > < AluI
                                  >< MnlI
GATGTTCAAG CTCCTAATTA CACTCAACAT ACTTCATCTA TGAGGGGGGT TTACTATCCT GATGAAATTT
               21580
                          21590
                                    21600
                                               21610
                                                          21620
```

>< Sau3AI

```
>< NdeII
 >< MboI
 >< DpnII
   bspAI >< MseI > < MboII
>< Bsp143I
                >< Tru9I</pre>
 >< BspAI
                                                 >< MaeIII
TTAGATCAGA CACTCTTTAT TTAACTCAGG ATTTATTTCT TCCATTTTAT TCTAATGTTA CAGGGTTTCA
   21640 21650 21660 21670 21680 21690
    >< VspI
    >< Tru9I
    >< MseI
                                 >< AsnI
    >< AseI >< MaeII
TACTATTAAT CATACGTTTG GCAACCCTGT CATACCTTTT AAGGATGGTA TTTATTTTGC TGCCACAGAG
           21720 21730 21740
                                      21750 21760
   21710
                 >< BslI
            >< DsaI>< BsiYI
                                    >< NlaIII
                                          > < MaeIII
            >< BsaJI
AAATCAAATG TTGTCCGTGG TTGGGTTTTT GGTTCTACCA TGAACAACAA GTCACAGTCG GTGATTATTA
    21780 21790 21800 21810 21820 21830 21840
                             >< NspI
                             >< NspHI
>< Tru9I
                             >< NlaIII
>< MseI
                                         >< MaeIII
                            >< MaeIII
>< HphI
TTAACAATTC TACTAATGTT GTTATACGAG CATGTAACTT TGAATTGTGT GACAACCCTT TCTTTGCTGT
    21850 21860 21870 21880 21890
                                               21900 21910
                                          >< Zsp2I
      >< StyI
                                            >< Tru9I
          >< NlaIII
                                       >< Ppu10I TthHB8I ><
      >< NcoI >< RsaI
      >< EcoT14I
                                          >< NsiI >< TaqI
                                >< Eco130I
      >< DsaI>< Csp6I
      >< BssT1I
      >< BsaJI>< AfaI
TTCTAAACCC ATGGGTACAC AGACACATAC TATGATATTC GATAATGCAT TTAATTGCAC TTTCGAGTAC
   21920 21930 21940 21950
                                      21960 21970 21980
                                         >< Tru9I
                                         >< MseI
                                          >< DraI
ATATCTGATG CCTTTTCGCT TGATGTTTCA GAAAAGTCAG GTAATTTTAA ACACTTACGA GAGTTTGTGT
   21990 22000 22010 22020 22030
                                               22040 22050
                                                       >< Sau3AI
                                                       >< NdeII
                                                       >< MboI
                                                       >< DpnII
>< Tru9I
                                                         >< DpnI
                                                       >< BspAI
>< MseI
                                        >< SfcI
                                                 Bsp143I ><
TTAAAAATAA AGATGGGTTT CTCTATGTTT ATAAGGGCTA TCAACCTATA GATGTAGTTC GTGATCTACC
   22060 22070 22080 22090 22100 22110 22120
                                         >< Tru9I
                         > < Tru9I
                                         >< MseI
      >< Tru9I
                                         >< MnlI
                         > < MseI
      >< MseI
TTCTGGTTTT AACACTTTGA AACCTATTTT TAAGTTGCCT CTTGGTATTA ACATTACAAA TTTTAGAGCC
            22140 22150 22160 22170 22180 22190
    22130
```

FIGURE 13.51

```
65/83
                                           > < SduI>< SfcI
                                                  >< PvuII
                                                  >< Psp5I
                                           > < NspII
                                                  >< NspBII
                                           > < MaeII > < Fnu4HI</pre>
                                           > < Bsp1286I >< PstI
                             >< BspMI
                                           > < BmyI>< Fnu4HI
        >< HphI
                                   >< BbvI
                                                  >< AluI
                                                                  >< BbvI
 ATTCTTACAG CCTTTTCACC TGCTCAAGAC ATTTGGGGCA CGTCAGCTGC AGCCTATTTT GTTGGCTATT
      22200
                 22210
                            22220
                                       22230
                                                  22240
                                                            22250
                                             >< SfaNI
                                             >< RsaI
                                           > < Csp6I
>< DraI
                                            >< AfaI
                                                          >< AlwNI
TAAAGCCAAC TACATTTATG CTCAAGTATG ATGAAAATGG TACAATCACA GATGCTGTTG ATTGTTCTCA
     22270
                22280
                           22290
                                      22300
                                                22310
                                                           22320
                                                                      22330
                               > < Tru9I
                               > < MseI
                                      >< AluI
AAATCCACTT GCTGAACTCA AATGCTCTGT TAAGAGCTTT GAGATTGACA AAGGAATTTA CCAGACCTCT
     22340
                22350
                           22360
                                      22370
                                                 22380
                                                            22390
                  >< SauI
                  >< MstII
                  >< Eco81I
                  >< DdeI
                  >< CvnI
                  >< Bsu36I
                  >< Bse21I
                  >< AxyI
                                     >< TfiI
                            >< MnlI >< HinfI
     >< MnlI
                  >< AocI
                                                >< SspI
                                                                   >< MnlI
AATTTCAGGG TTGTTCCCTC AGGAGATGTT GTGAGATTCC CTAATATTAC AAACTTGTGT CCTTTTGGAG
     22410
                22420
                           22430
                                      22440
                                                22450
                                                          22460
                                        >< Zsp2I
                                    >< Ppu10I
                                        >< NsiI
                                          > < NlaIII
                                        >< Mph1103I
      >< Tru9I
                                        >< EcoT22I
      >< MseI
                                     >< AvaIII
AGGTTTTTAA TGCTACTAAA TTCCCTTCTG TCTATGCATG GGAGAGAAA AAAATTTCTA ATTGTGTTGC
     22480
               22490
                          22500
                                     22510
                                              22520 22530
               >< SduI
               >< NspII
               >< HqiAI
               >< Bsp1286I
               >< BmyI
                                            >< Tru9I
               >< Alw21I
                                            >< MseI
                                                                 DdeI ><
TGATTACTCT GTGCTCTACA ACTCAACATT TTTTTCAACC TTTAAGTGCT ATGGCGTTTC TGCCACTAAG
    22550
               22560
                          22570
                                     22580
                                                22590
                                                         22600
    >< Sau3AI
    >< NdeII
    >< MboI
    >< DpnII
      >< DpnI
```

```
>< TfiI
    >< BspAI
                                 >< Hinfl
TTGAATGATC TTTGCTTCTC CAATGTCTAT GCAGATTCTT TTGTAGTCAA GGGAGATGAT GTAAGACAAA
    22620 22630 22640 22650 22660 22670
     >< ScrFI
     >< MvaI
  >< HinPlI
  >< Hin6I
    >< HhaI
    >< HaeII
    >< EcoRII
     >< Ecl136I
    >< DsaV
    >< CfoI
      >< BstOI
     >< BstNI
     >< Bsp143II
      >< BsiLI
                                                               >< NlaIII
TAGCGCCAGG ACAAACTGGT GTTATTGCTG ATTATAATTA TAAATTGCCA GATGATTTCA TGGGTTGTGT
                   > < BsrI
                         22710 22720 22730 22740
     22690
               22700
               >< SfaNI
                                                                DdeI ><
              >< RmaI
                                                                BfrI ><
                                           >< BsrI
              >< MaeI
 CCTTGCTTGG AATACTAGGA ACATTGATGC TACTTCAACT GGTAATTATA ATTATAAATA TAGGTATCTT
                                          22800 22810
                                    22790
                        22780
               22770
     22760
                >< Sau96I
                 >< PalI
                 >< NspIV
         > < HindIII
                 >< HaeIII
                 >< EcoO109I
                 >< DraII
             >< DdeI
                 >< Cfr13I
                 >< BsuRI
                 >< BsiZI
                 >< BshI
             >< BfrI >< PssI
       >< NlaIII >< AsuI>< BsmAI
                                                                BspWI ><
                      >< Alw26I
 AGACATGGCA AGCTTAGGCC CTTTGAGAGA GACATATCTA ATGTGCCTTT CTCCCCTGAT GGCAAACCTT
                                     22860 22870
                                                        22880
                         22850
                22840
      22830
                                  >< Tru9I
                             >< PalI
                             >< MscI
                             >< HaeIII
                            >< EaeI>< MseI
                             >< BsuRI
                >< Tru9I
                             >< BshI
                >< MseI
                           >< BalI
  GCACCCCACC TGCTCTTAAT TGTTATTGGC CATTAAATGA TTATGGTTTT TACACCACTA CTGGCATTGG
                 >< BspMI
                                              22940
                                                        22950
                                     22930
                           22920
                22910
      22900
                                                             Sau961 ><
                                                       >< PallNspIV ><
                                                   > < MspI NspHII ><
```

>< HaeIII

```
67/83
                                                        > < HpaII Eco47I ><
                                                             >< DsaI
                                                        > < HapII Cfr13I ><</pre>
                                                            >< BsuRISinI ><</pre>
                                                          >< GdiII BsiZI ><
                           >< ScaI
                                                             >< BsaJI
                           >< RsaI
                                               >< Tru9I
                                                          >< EaeI Bme18I ><
                          >< Csp6I
                                               >< MseI >< Cfr10I AvaII ><
                           >< AfaI
                                                >< DraI
                                                            >< BshI AsuI ><
 CTACCAACCT TACAGAGTTG TAGTACTTTC TTTTGAACTT TTAAATGCAC CGGCCACGGT TTGTGGACCA
      22970
                  22980
                             22990
                                        23000
                                                    23010
                                                               23020
                                                     >< Tru9I
                                                                       >< RsaI
                                              >< Tru9I
                                                                      >< Csp6I
                                                     >< PleI
                                                                        BsrI ><
                      > < Tru9I
                                                     >< MseI
                                                                       >< BsrI
                      > < MseI>< BsrI
                                              >< MseI
                                                          >< HinfI
                                                                       >< AfaI
 AAATTATCCA CTGACCTTAT TAAGAACCAG TGTGTCAATT TTAATTTTAA TGGACTCACT GGTACTGGTG
      23040
                 23050
                            23060
                                        23070
                                                   23080
                                                              23090
   >< Tru9I
                                                   >< PalI
   >< MseI
                                                   >< HaeIII
    >< MboII
                                                 >< GdiII
    >< HpaI
                                                 >< EaeI
    >< HindII
                                                   >< BsuRI
                                                                        TfiI ><
    >< HincII
                                                   >< BshI
 TGTTAACTCC TTCTTCAAAG AGATTTCAAC CATTTCAACA ATTTGGCCGT GATGTTTCTG ATTTCACTGA
                                                                       HinfI ><
   · 23110
                 23120
                           23130
                                       23140
                                                   23150
                                                              23160
          > < XhoII
       >< TthHB8I
      >< TaqI
         > < Sau3AI
         > < NdeII
         > < MflI
         > < MboI
         > < DpnII
            >< DpnI
         > < BstYI
         > < BspAI
                                > < SspI
    >< AlwI >< Bsp143I
                                   >< HphI
TTCCGTTCGA GATCCTAAAA CATCTGAAAT ATTAGACATT TCACCTTGCT CTTTTGGGGG TGTAAGTGTA
     23180
                23190
                           23200
                                     23210
                                                  23220
                                                             23230
       >< ScrFI
       >< MvaI
     >< EcoRII
       >< Ecl136I
                                                          >< Tru9I
     >< DsaV
                                                          >< MseI
       >< BstOI
                                                           >< HpaI
       >< BstNI
                                                           >< HindII
       >< BsiLI
                                                   >< Eco57I
       >< ApyI
                                             >< BsgI
                                                           >< HincII
ATTACACCTG GAACAAATGC TTCATCTGAA GTTGCTGTTC TATATCAAGA TGTTAACTGC ACTGATGTTT
     23250
                23260
                           23270
                                      23280
                                                 23290
                                                             23300
                                                                        23310
                >< Sau3AI
               >< NlaIII
                >< NdeII
                 >< MboI
                 >< DpnII
                  >< DpnI
```

>< HinP1I

```
>< Hin6I
           >< BspWI
                                                          PleI ><
                                     > < HhaI
               >< BspAI
                                                       >< BsrI
                 >< Bsp143I >< AluI> < CfoI
CTACAGCAAT TCATGCAGAT CAACTCACAC CAGCTTGGCG CATATATTCT ACTGGAAACA ATGTATTCCA
                                                     23370
                                  23350 23360
    23320 23330
                       23340
                                   >< TthHB8I
                                   >< TaqI
                                  >< SalI
                                  >< RtrI
                                  >< NspI
                          >< EspI
                                 IHqaN ><
                          >< DdeI >< NlaIII
                          >< CelII >< HindÍI
                          >< Bpull02I>< HincII
                                  >< AccI
                         >< AluI
>< HinfI
GACTCAAGCA GGCTGTCTTA TAGGAGCTGA GCATGTCGAC ACTTCTTATG AGTGCGACAT TCCTATTGGA
                                            23430 23440 23450
                                  23420
                         23410
              23400
     23390
                                       > < SnaBI
                                            >< ScaI
                                            >< RsaI
                                              >< RmaI
                                      >< MaeII >< MaeI
                                       > < Eco105I
                                           >< Csp6I
             >< RmaI
                                       > < BsaAI
               >< MaeIII
                                            >< AfaI
>< AluI
             >< MaeI
GCTGGCATTT GTGCTAGTTA CCATACAGTT TCTTTATTAC GTAGTACTAG CCAAAAATCT ATTGTGGCTT
                                            23500
                                                       23510
                                 23490
                         23480
               23470
                           >< MunI
ATACTATGTC TTTAGGTGCT GATAGTTCAA TTGCTTACTC TAATAACACC ATTGCTATAC CTACTAACTT
                                            23570
                                                        23580
                        23550 23560
     23530
               23540
                                                               RsaI ><
                                                          >< MnlI
                                                             Csp6I ><
                                                               AfaI ><
              >< SfcI
 TTCAATTAGC ATTACTACAG AAGTAATGCC TGTTTCTATG GCTAAAACCT CCGTAGATTG TAATATGTAC
                                             23640 23650
                      23620 23630
         > < TfiI
         > < HinfI
                                                 > < AluI
    >< AciI
 ATCTGCGGAG ATTCTACTGA ATGTGCTAAT TTGCTTCTCC AATATGGTAG CTTTTGCACA CAACTAAATC
                                                      23720 23730
                        23690 23700 23710
            23680
 >< VneI
    >< SduI
    >< NspII
                                          >< PmlI
    >< HgiAI
                           >< Sau3AI
                                         >< PmaCI
 >< SnoI>< DdeI
                            >< NdeII
                                         >< MaeII
     >< Bsp1286I
                            >< MboI
                                         >< Eco72I
     >< BmyI
                                          >< BsaAI
                               >< DpnI
     >< BbvI
                               >< Bsp143I >< BbrPI
 >< ApaLI
                            >< DpnII >< AlwI
     >< Alw21I >< Fnu4HI >< BspAI >< AflIII
 GTGCACTCTC AGGTATTGCT GCTGAACAGG ATCGCAACAC ACGTGAAGTG TTCGCTCAAG TCAAACAAAT
                                    23770 23780
                                                      23790
               23750 . 23760
```

```
>< RsaI
 >< Csp6I
                                >< Tru9I
                    >< SspI >< MseI
 >< AfaI
                                               >< SspI
 GTACAAAACC CCAACTTTGA AATATTTTGG TGGTTTTAAT TTTTCACAAA TATTACCTGA CCCTCTAAAG
     23810 23820
                      23830
                                23840 23850
                                                  23860
 >< MnlI
 >< MnlI
                                >< Tru9I >< SfaNI >< HphI NlaIII ><
    >< DdeI >< MnlI</pre>
                                >< MseI >< MaeIII BspHI ><
 CCAACTAAGA GGTCTTTTAT TGAGGACTTG CTCTTTAATA AGGTGACACT CGCTGATGCT GGCTTCATGA
            23890 23900 23910 23920 23930
                                 , >< XhoII
                                   >< Sau3AI
               >< Styl
                              >< RmaI
                >< RmaI
                                 >< NdeII
                >< MaeI
                                  >< MflI
               >< EcoT14I
                                  >< MboI
                                                >< MstI
               >< Eco130I
                          >< MaeI
                                               >< HinPlI
               >< BssTlI >< VspI >< DpnII
                >< BsmI
                                                >< HhaI
            >< BscCI
                         >< Tru9I >< BstYI
                                               >< FspI
                        >< BsaJI
                                                >< FdiII
               >< BlnI
               >< AvrII
                                                >< AviII
AGCAATATGG CGAATGCCTA GGTGATATTA ATGCTAGAGA TCTCATTTGT GCGCAGAAGT TCAATGGACT
   23950 23960
                     23970 23980 23990
                                                    24000
                                                   >< RmaIRsaI ><
              >< MnlI >< Fnu4HI >< Fnu4HI Csp6I >< >< BspWI >< BbvI >< BspWI >< MaeIAfaI ><
TACAGTGTTG CCACCTCTGC TCACTGATGA TATGATTGCT GCCTACACTG CTGCTCTAGT TAGTGGTACT
    24020
              24030
                      24040
                               24050 24060
                                               24070
                         >< MboII
                         >< HinP1I
                         >< Hin6I
                            >< HhaI
                             >< HaeII
                             >< Fnu4HI >< Ksp632I
                            >< CfoI
                                     >< EarI
                    >< FokI >< BspWI
                                    >< Eam1104I
               >< BbvI
                            >< Bsp143II
GCCACTGCTG GATGGACATT TGGTGCTGGC GCTGCTCTTC AAATACCTTT TGCTATGCAA ATGGCATATA
    24090
             24100
                     24110
                              24120
                                         24130
                                                   24140
                                                         Tru9I ><
              >< MaeIII
                                                         MseI ><
GGTTCAATGG CATTGGAGTT ACCCAAAATG TTCTCTATGA GAACCAAAAA CAAATCGCCA ACCAATTTAA
   24160
           24170 24180 24190
                                         24200 24210
                                                       MaeII ><
                    >< TfiI
                                                     >< Fnu4HI
                                >< BbvI
                    >< HinfI
                                                     >< AluI
CAAGGCGATT AGTCAAATTC AAGAATCACT TACAACAACA TCAACTGCAT TGGGCAAGCT GCAAGACGTT
    24230 24240 24250
                              24260 24270 24280
>< Tru9I
>< MseI
>< HpaI
                                      >< DdeI
 >< HindII
           >< BsmI >< Tru9I
                               >< Tru9I >< BfrI
 >< HincII>< BscCI >< MseI
                            >< MseI
                                         >< AluI
```

FIGURE 12 56

```
GTTAACCAGA ATGCTCAAGC ATTAAACACA CTTGTTAAAC AACTTAGCTC TAATTTTGGT GCAATTTCAA
                     24320 24330 24340 24350 24360
    24300
              24310
                     >< ThaI
                     >< SpoI
                     >< NruI
                      >< MvnI
                                   >< TthHB8I
                     >< BstUI
                                   >< TaqI
                                               >< RsaI
                     >< Bsp68I
            >< EcoRV >< Bsp50I >< MnlI
                                              >< Csp6I
                                                            >< MseI
            >< Eco32I >< AccII >< MnlI >< AciI>< AfaI
GTGTGCTAAA TGATATCCTT TCGCGACTTG ATAAAGTCGA GGCGGAGGTA CAAATTGACA GGTTAATTAC
                                           24410 24420
                                  24400
                        24390
    24370
              24380
                          >< MaeIII >< BbvI
                                                >< Fnu4HI
                                                            BbvI ><
AGGCAGACTT CAAAGCCTTC AAACCTATGT AACACAACAA CTAATCAGGG CTGCTGAAAT CAGGGCTTCT
                                                      24490
              24450 24460 24470
                                            24480
                                                       >< HindII
          >< Fnu4HI
                                                       >< HincII
                        >< DdeI
     >< BspWI
GCTAATCTTG CTGCTACTAA AATGTCTGAG TGTGTTCTTG GACAATCAAA AAGAGTTGAC TTTTGTGGAA
             24520 24530 24540 24550
                                                      24560
    24510
                                                          > < NspI
                                                          > < NspHI
                                                          > < NlaIII
                                                         >< MaeIII
                                                             >< MaeII
                                        >< NlaIII
                                                         >< FokI
                                        >< MboII
                                                         BsaAI ><
                              >< Fnu4HI >< BbsI
                                  >< Acil>< BbvI >< AflIII
AGGGCTACCA CCTTATGTCC TTCCCACAAG CAGCCCCGCA TGGTGTTGTC TTCCTACATG TCACGTATGT
                     24600 24610 24620 24630
            24590
      >< ScrFI
      >< MvaI
    >< EcoRII
      >< Ecl136I
      >< BstOI
                          >< HinPlI
      >< BstNI
                           >< Hin6I
    >< MnlI >< BslI
                             >< HhaI
     >< DsaV>< BsiYI</pre>
                              >< HaeII
      >< BsiLI
                             >< CfoI
                                             >< NlaIII
     >< BsaJI>< HphI
                              >< Bsp143II >< BspHI
      >< ApyI
GCCATCCCAG GAGAGGAACT TCACCACAGC GCCAGCAATT TGTCATGAAG GCAAAGCATA CTTCCCTCGT
                      24670 24680 24690
                                                      24700
              24660
    >< MnlI
>< BslI
               >< Tru9I
                                   >< MnlI
>< BsiYI
               >< MseI
GAAGGTGTTT TTGTGTTTAA TGGCACTTCT TGGTTTATTA CACAGAGGAA CTTCTTTTCT CCACAAATAA
                       24740 24750 24760 24770
     24720
              24730
                                                     >< Tru9I
                      >< DdeI
                                                        >< SfaNI
                        >< BsmAI
                                                     >< MseIAlwI ><
                        >< Alw26I
TTACTACAGA CAATACATTT GTCTCAGGAA ATTGTGATGT CGTTATTGGC ATCATTAACA ACACAGTTTA
                                            24830 24840
                                 24820
     24790
                    24810
            24800
>< Sau3AI
>< NdeII
```

```
>< MboI
                 >< PleI
                                                     > < Scal
 >< DpnII
                >< MnlI
                                > < Ksp632I
                                                     > < RsaI
   >< DpnI
                >< DdeI >< HinfI
                                                  >< MboII
 >< BspAI
                >< BspWI
                               > < Eam1104I
                                                    >< Csp6I
   >< Bsp143I
                    >< AluI
                                > < Earl > < Alul > < Afal
                                                                > < HphI
 TGATCCTCTG CAACCTGAGC TTGACTCATT CAAAGAAGAG CTGGACAAGT ACTTCAAAAA TCATACATCA
      24860
                 24870
                          24880
                                    24890
                                               24900
                                                            24910
         >< Sau3AI
         >< NdeII
         >< MboI
        >< MamI
         >< DpnII
            >< DpnI
         >< BspAI
           >< Bsp143I
        >< BsiBI
                                  >< Tru9I
                                                  >< HindII
        >< BsaBI
                                  >< MseI
                                                  >< HincII</pre>
 CCAGATGTTG ATCTTGGCGA CATTTCAGGC ATTAACGCTT CTGTCGTCAA CATTCAAAA GAAATTGACC
      24930
               24940
                                  24960 24970
                          24950
                                                            24980
                         >< Tru9I
                              > < TfiI
            >< MnlI
                         >< SwaI
      >< EcoNI
                         >< MseI
       >< BslI
                              > < HinfI
 >< MnlI>< BsiYI</pre>
                          >< DraI
 GCCTCAATGA GGTCGCTAAA AATTTAAATG AATCACTCAT TGACCTTCAA GAATTGGGAA AATATGAGCA
     25000
                25010
                         25020 25030
                                               25040
                                                           25050
              >< StyI
             >< PalI
             >< HaeIII
              >< EcoT14I
              >< Eco130I
             >< BsuRI
              >< BssT1I
                                                             NlaIII ><
     >< Tru9I>< BshI
                                                             MaeIII ><
     >< MseI >< BsaJI</pre>
                                                                 >< BstXI
ATATATTAAA TGGCCTTGGT ATGTTTGGCT CGGCTTCATT GCTGGACTAA TTGCCATCGT CATGGTTACA
     25070
               25080
                        25090
                                     25100
                                                25110
                                                           25120
                                                    > < SphI
                                                    > < PaeI
                  >< SpeI
                                                    > < NspI
                   > < Rmal
                                                    > < NspHI
                 >< NlaIII
                                                    > < NlaIII
                   > < MaeI
                                               >< MnlI>< BbvI Fnu4HI ><
ATCTTGCTTT GTTGCATGAC TAGTTGTTGC AGTTGCCTCA AGGGTGCATG CTCTTGTGGT TCTTGCTGCA
     25140
               25150 25160
                                   25170
                                               25180
                                                         25190
                        >< FokI
                  >< DdeI
>< MnlI >< PleI>< HinfI >< BsrI
AGTTTGATGA GGATGACTCT GAGCCAGTTC TCAAGGGTGT CAAATTACAT TACACATAAA CGAACTTATG
    25210
               25220
                         25230
                                    25240
                                               25250
                                                          25260
                            >< Sau3AI
                            >< NdeII
                            >< MboI
                            >< DpnII
                             > < DpnI
                                FIGIDE 12 50
```

```
>< BspAI
                            > < Bsp143I
                      >< BsgI >< AlwI
                                            >< BsrI
GATTTGTTTA TGAGATTTTT TACTCTTGGA TCAATTACTG CACAGCCAGT AAAAATTGAC AATGCTTCTC
                      25300 25310 25320
                                                   25330
    25280
              25290
      >< ScaI
      >< RsaI
                 >< SfcI
     >< Csp6I
                                                   >< MnlI
                            >< AciI
                >< NlaIII
      >< AfaI
CTGCAAGTAC TGTTCATGCT ACAGCAACGA TACCGCTACA AGCCTCACTC CCTTTCGGAT GGCTTGTTAT
                                25380 25390 25400
                        25370
              25360
     25350
                            > < HinPlI
                            > < Hin6I
                                                              RmaI ><
                               >< HhaI
                                                             NheI ><
                                            >< HinP1I</pre>
                                >< HaeII
                              >< Eco47III
                                                             MaeI ><
                                             >< Hin6I
                                                         Fnu4HI ><
                                              >< HhaI
                               >< CfoI
                               >< Bsp143II >< CfoI
                                                          AluI ><
             >< BspWI
TGGCGTTGCA TTTCTTGCTG TTTTTCAGAG CGCTACCAAA ATAATTGCGC TCAATAAAAG ATGGCAGCTA
                                                     25470
             25430 25440 25450
                                           25460
      >< EcoNI
        >< BslI
                                              >< MaeIII
        >< BsiYI
                >< BsrI >< BbvI
                                                            BbvI ><
                                      > < Fnu4HI
     >< BbvI
 GCCCTTTATA AGGGCTTCCA GTTCATTTGC AATTTACTGC TGCTATTTGT TACCATCTAT TCACATCTTT
                                                     25540
                         25510 25520
                                            25530
     25490 25500
                                                              Zsp2I ><
                                                          PpulOI ><
                                                               NsiI ><
         > < SfcI
                      >< HinP1I
                                                            Mph1103I >< ·
                                  >< RsaI
                       >< Hin6I
             >< PstI
  > < Fnu4HI >< HhaI >< Csp6I
>< BspMI >< MnlI >< CfoI >< AfaI >< MnlI
                                                            EcoT22I ><
 TGCTTGTCGC TGCAGGTATG GAGGCGCAAT TTTTGTACCT CTATGCCTTG ATATATTTTC TACAATGCAT
     25560 25570 25580 25590 25600 25610
     >< SfaNI
        >< NspI
        >< NspHI
                                                             >< SfaNI
        >< NlaIII
 CAACGCATGT AGAATTATTA TGAGATGTTG GCTTTGTTGG AAGTGCAAAT CCAAGAACCC ATTACTTTAT
                                  25660
                                            25670
                                                       25680
                        25650
     25630
               25640
                                                >< Bst1107I
                                                       MaeIII ><
                                               >< AccI
 GATGCCAACT ACTTTGTTTG CTGGCACACA CATAACTATG ACTACTGTAT ACCATATAAC AGTGTCACAG
                         25720 25730
                                             25740
                                                       25750
                                                                 25760
      25700 25710
                                                              >< MboII
                                                            BstXI ><
                                >< HphI
                                                         >< BbsI MnlI >
                                    >< Eco57I
    >< MunI >< MaeIII >< MaeIII</pre>
 ATACAATTGT CGTTACTGAA GGTGACGGCA TTTCAACACC AAAACTCAAA GAAGACTACC AAATTGGTGG
                                           25810 25820
              25780 25790
                               25800
      25770
                                            >< RsaI
                                                > < NlaIII
                                                >< HphI
                          >< Tru9I >< Tth111I>< Csp6I
                 >< DdeI >< MseI>< AspI
                                            >< AfaI
      >< DdeI
```

FIGURE 13.59

```
TTATTCTGAG GATAGGCACT CAGGTGTTAA AGACTATGTC GTTGTACATG GCTATTTCAC CGAAGTTTAC
            25850 25860 25870 25880
                                                    25890
                                                          Tru9I ><
        > < HinfI>< PleI</pre>
                                     >< BsrI
                                                           MseI ><
     >< AluI >< AccI
                        >< SfcI >< AlwNI >< MboII
                                                           HindIII >
TACCAGCTTG AGTCTACACA AATTACTACA GACACTGGTA TTGAAAATGC TACATTCTTC ATCTTTAACA
     25910
                                25940 25950 25960
            25920
                        25930
                                      > < TthHB8I
      >< Tru9I
                                      > < TaqI
                                                    >< Ksp632I
      >< MseI
                                      > < MboII
                                                  >< Earl BspWI ><
 >< AluI
                                >< Eco57I
                                                   >< Eam1104I AlwI ><
AGCTTGTTAA AGACCCACCG AATGTGCAAA TACACACAAT CGACGGCTCT TCAGGAGTTG CTAATCCAGC
     25980 25990 26000 26010 26020
   >< XhoII
   >< Sau3AI
    >< NlaIV
   >< NdeII
   >< MflI
   >< MboI
   >< DpnII
    >< DpnI
   >< BstYI
   >< BstI
   >< BspAI
    >< Bsp143I
                                                             RsaI ><
    >< BscBI
                                  >< RmaI
                                                           Csp6I ><
   >< BamHI >< AlwI
                                  >< MaeI
                                                             AfaI ><
AATGGATCCA ATTTATGATG AGCCGACGAC GACTACTAGC GTGCCTTTGT AAGCACAAGA AAGTGAGTAC
             26060
    26050
                       26070
                                 26080 26090 26100
                                     > < Tru9I
                                  >< RsaI
                                     > < MseI
                                   >< MboII
        > < RsaI
                                  >< MaeII
                                                >< RsaI
                                 >< Csp6I >< Tru9I >< Csp6I
>< AfaI >< MseI >< AfaI
       >< Csp6I
        > < AfaI
GAACTTATGT ACTCATTCGT TTCGGAAGAA ACAGGTACGT TAATAGTTAA TAGCGTACTT CTTTTCTTG
    26120
            26130
                       26140
                                 26150
                                          26160
                                                    26170
                                             >< TthHB8I
                                            >< TagI
                >< RmaI
                                        >< HinP1I
                                                        > < RsaI
                 > < MaeIII
                                        >< Hin6I
                                                        Fnu4HI ><
                >< MaeI >< RmaI
                                         >< HhaI
                                        >< FokI >< MaeI
CTTTCGTGGT ATTCTTGCTA GTCACACTAG CCATCCTTAC TGCGCTTCGA TTGTGTGCGT ACTGCTGCAA
              26200 26210 26220 26230
    26190
                                                     26240
                                                 >< Tru9I
    >< Tru9I
                                           >< ThaI
    >< MseI
                                           >< MvnI
>< SspI >< MaeII
                                                 >< MseI
     >< HpaI
                                           >< BstUI
                                                         Ksp632I >
     >< HindII
                                 >< MaeII >< Bsp50I</pre>
                                                    >< MboII EarI >
     >< HincII
                                    >< AccI >< AccII Eam1104I >
TATTGTTAAC GTGAGTTTAG TAAAACCAAC GGTTTACGTC TACTCGCGTG TTAAAAATCT GAACTCTTCT
             26270 26280
                                 26290
                                           26300
                                                    26310
                                                              26320
```

```
>< Sau3AI
            >< NdeII
            >< MboI
            >< DpnII
      >< MboII>< DpnI
                                                                     >< Tru9I
    >< XmnI >< BspAI> < Eco57I</pre>
                                                                     >< MseI
    >< Asp700I>< Bsp143I
GAAGGAGTTC CTGATCTTCT GGTCTAAACG AACTAACTAT TATTATTATT CTGTTTGGAA CTTTAACATT
                                                           26380
                                                 26370
                                      26360
                           26350
                26340
     26330
                                                          >< ScrFI
                                                          >< MvaI
                                                        >< EcoRII
                                                          >< Ec1136I
                                                        >< DsaV NlaIV ><</pre>
                                                          >< Bst0I
                       >< RsaI
                                                          >< BstNI
                                                                     RmaI ><
                                             >< Tru9I
                            >< MnlI
                                             >< MseI
                                                          >< BsiLI
                                                                     MaeI ><
                      >< Csp6I
                                                          >< ApyIBscBI ><
                                          > < AluI
                      >< AfaI
         > < NlaIII
GCTTATCATG GCAGACAACG GTACTATTAC CGTTGAGGAG CTTAAACAAC TCCTGGAACA ATGGAACCTA
                                                             26450
                                                 26440
                                       26430
                           26420
                26410
     26400
                         >< ScrFI
                   >< RmaI
                         >< MvaI
                   >< MaeI
                       >< EcoRII
                         >< Ec1136I
                        >< DsaV
                          >< BstOI
                                                                              Ç
                          >< BstNI
                          >< BsiLI
                          >< ApyI >< MaeIII
GTAATAGGTT TCCTATTCCT AGCCTGGATT ATGTTACTAC AATTTGCCTA TTCTAATCGG AACAGGTTTT
                                                             26520
                                                  26510
                                       26500
                            26490
                26480
     26470
                                         >< PalI
                                         >< MscI
                                    >< MnlI >< MaeIII
                                         >< HaeIII
                                       >< EaeI
                                         >< BsuRI
                                          >< BsrI
                                      >< BspWI
   >< RsaI
                                         >< BshI
             >< HindIII
  >< Csp6I
                                                          >< BbvI Fnu4HI ><
                                         >< BalI
   >< AfaI
 TGTACATAAT AAAGCTTGTT TTCCTCTGGC TCTTGTGGCC AGTAACACTT GCTTGTTTTG TGCTTGCTGC
                                                             26590
                            26560 . 26570
                                                  26580
                26550
      26540
             >< VspI
             >< Tru9I
                                  >< HphI
             >< MseI
    >< SfcI >< AsnI
                              >< BsrI
             >< Asel>< MaeIII>< AciI
 TGTCTACAGA ATTAATTGGG TGACTGGCGG GATTGCGATT GCAATGGCTT GTATTGTAGG CTTGATGTGG
                                                  26650
                                                              26660
                                       26640
                            26630
               26620
      26610
 >< EspI
      >< Eco57I
 >< DdeI
                                          >< RsaI
 >< CelII
                                          >< Csp6I
 >< Bpu1102I
                                    FIGURE 13.61
```

```
>< BfrI
                                        >< AfaI
     >< AluI
                                            >< AciI
                                                                  MboII >
  CTTAGCTACT TCGTTGCTTC CTTCAGGCTG TTTGCTCGTA CCCGCTCAAT GTGGTCATTC AACCCAGAAA
      26680
                 26690
                       26700 26710
                                               26720
                                                     26730
                                                                    26740
                            >< ScrFI
                            >< NciI
                           >< MspI
                           >< HpaII
                           >< HapII
                          >< DsaV>< MnlI
                           >< BslI
                           >< BsiYI
                          >< BsaJI >< MunI
                                                 > < XcmI
                           >< BcnI >< MaeIII >< AciI >< NlaIII
 CAAACATTCT TCTCAATGTG CCTCTCCGGG GGACAATTGT GACCAGACCG CTCATGGAAA GTGAACTTGT
      26750
               26760
                          26770 26780 26790
                                                      26800
                                                              Tru9I ><
                                                                   SinI >
                                                                 Sau96I >
                                                                 PpuMI >
                                                                 NspIV >
                                                               MseI ><
                                                            >< MaeIII
            >< Sau3AI
                                                  > < RmaI >< HaeII</pre>
            >< NdeII
                                     >< PalI > < MaeI >< MspI ><
                                                              EcoO109I >
            >< MboI
                                                        >< HinPlIEco47I >
              >< FbaI
                                      >< HpaII >< StyI>< Hin6I DraII >
            >< DpnII
                                      >< HapII >< EcoT14I
                                  Cfr13I >
              >< DpnI
            >< BspAI
              >< Bsp143I
                                                                Bme18I >
            >< BsiQI
                       >< BsuRI >< BlnI >< HhaI AvaII >
>< MaeIII >< BshI >< AvrII >< CfoI AsuI >
            >< BclI
 CATTGGTGCT GTGATCATTC GTGGTCACTT GCGAATGGCC GGACACTCCC TAGGGCGCTG TGACATTAAG
     26820
                         26840 26850 26860
               26830
                                                       26870
                                                                  26880
             >< Sau3AI
             >< NdeII
             >< MboI
             >< DpnII
               >< DpnI
   >< PssI >< BspMI
>< Psp5II
             >< XmnI
>< Bsp143I
             >< BspAI
 >< NspHII
                                     >< Asp700I > < HgaI Fnu4HI ><
GACCTGCCAA AAGAGATCAC TGTGGCTACA TCACGAACGC TTTCTTATTA CAAATTAGGA GCGTCGCAGC
     26890
               26900
                         26910 26920
                                              26930
                                                       26940
                                                                  26950
           >< TfiI
           >< HinfI
          >< BbvI
                                                           > < Tru9I
       >< BbvI
                        >< Fnu4HI >< AciI
GTGTAGGCAC TGATTCAGGT TTTGCTGCAT ACAACCGCTA CCGTATTGGA AACTATAAAT TAAATACAGA
     26960 26970 26980
                                   26990
                                             27000
                                                     27010
     >< MspI
                                   >< RsaI
     >< HpaII
                               >< RmaI
     >< HapII
                                  >< Csp6I
    >< Cfr10I
                               >< MaeI>< BcgI
                                                             HindII ><
    >< BcgI/a
                    >< SspI
                                   >< AfaI >< MaeIII
                                                             HincII ><
```

```
CCACGCCGGT AGCAACGACA ATATTGCTTT GCTAGTACAG TAAGTGACAA CAGATGTTTC ATCTTGTTGA
    27030 27040 27050 27060 27070 27080
   >< ScrFI
   >< MvaI
     >< MaeIII
  >< EcoRII
   >< Ecl136I
  >< DsaV
    >< BstOI
    >< BstNI
                                                                 >< TfiI
    >< BsiLI
                               >< MnlI
CTTCCAGGTT ACAATAGCAG AGATATTGAT TATCATTATG AGGACTTTCA GGATTGCTAT TTGGAATCTT
    >< ApyI
                                          27140 27150
               27110 27120
                                   27130
                                                  > < MnlI
                                  >< Tru9I
                 >< BsmAI
                                  >< MseI
                                               >< DdeI
                 >< Alw26I
GACGTTATAA TAAGTTCAAT AGTGAGACAA TTATTTAAGC CTCTAACTAA GAAGAATTAT TCGGAGTTAG
 >< MaeII
                                                      27220
               27180 27190 27200
                                              27210
     27170
                                                              >< Ksp632I
                                                >< MboII
                                             >< NlaIIIEam1104I ><
                 >< MboII
ATGATGAAGA ACCTATGGAG TTAGATTATC CATAAAACGA ACATGAAAAT TATTCTCTTC CTGACATTGA
                                                      27290
                                              27280
                        27260 27270
     27240
             27250
                                                  > < RsaI >< RsaI
                                                 >< Csp6I >< Csp6I</pre>
                                                  > < AfaI >< AfaI
                                      >< MnlI
                   > < AluI
TTGTATTTAC ATCTTGCGAG CTATATCACT ATCAGGAGTG TGTTAGAGGT ACGACTGTAC TACTAAAAGA
                                                        27360
                                  27340
                                              27350
                         27330
                27320
                                                       >< MnlI
               >< MnlI >< HphI >< HphI
ACCTTGCCCA TCAGGAACAT ACGAGGGCAA TTCACCATTT CACCCTCTTG CTGACAATAA ATTTGCACTA
                                                       27430
                                    27410 27420
                        27400
              27390
     27380
                                                                Sau3AI >
                                                             > < PvuII
                                                             > < Psp5I
                                                             > < NspBII
                                                                 NdeII >
                                              >< TthHB8I
                                                                  MboI >
                                              >< TaqI
                                                              >< Fnu4HI
                                           >< RsaI
                                                                 DpnII >
                                          >< Csp6I
                                                                 BspAI >
                                               >< BbvI
       >< RmaI
                                                             > < AluI
                                           >< AfaI
       >< MaeI
 ACTTGCACTA GCACACACTT TGCTTTTGCT TGTGCTGACG GTACTCGACA TACCTATCAG CTGCGTGCAA
                                              27490 27500
                         27470 27480
               27460
      27450
                                                     >< SstI
                                                     >< SduI
                                                     >< SacI
                                                     >< NspII
                                                     >< HgiAI
                                                     >< Eco24I
                                                   > < Ecl136II
                                                         >< BspWI
                                                     >< Bsp1286I
                                                      >< BmyI
                                                      >< BanII
 >< HphI
                                                     >< Alw21I
                            >< MnlI
  >< DpnI
```

FIGURE 13. 63

```
>< Bsp143I
                            >< MnlI
                                                       > < AluI
  GATCAGTTTC ACCAAAACTT TTCATCAGAC AAGAGGAGGT TCAACAAGAG CTCTACTCGC CACTTTTCT
                                                                   BbvI ><
                  27530
                            27540
                                   27550
                                                   27560
                                                              27570
                                                                      SstI ><
                                                                      SduI ><
                                                                      SacI ><
                                                                     NspII ><
                                                                     HqiAI ><
                                                                    Eco24I ><
                                                                Ecl136II ><
                                                                  Bsp1286I ><
                                                                      BmyI ><
               >< RmaI
                         >< Tru9I
                                                                     BanII ><
               >< MaeI
                         >< MseI
                                              >< Tru9I
                                                                    Alw21I ><
         >< Fnu4HI
                              >< HphI
                                              >< MseI
                                                                    AluI ><
 CATTGTTGCT GCTCTAGTAT TTTTAATACT TTGCTTCACC ATTAAGAGAA AGACAGAATG AATGAGCTCA
      27590
                 27600
                          27610
                                       27620
                                                  27630
                                                            27640
   >< Tru9I
                                                        >< Tru9I
   >< MseI
                                                        >< MseI
 CTTTAATTGA CTTCTATTTG TGCTTTTTAG CCTTTCTGCT ATTCCTTGTT TTAATAATGC TTATTATATT
      27660
                 27670
                            27680
                                       27690
                                                  27700
                                                             27710
                        >< XhoII
                           >< XbaI
                     > < ScrFI
                        >< Sau3AI
                            >< RmaI
                        >< NdeII
                     > < MvaI
                        >< MflI
                        >< MboI
                   >< EcoRII>< MaeI
                     > < Ecl136I
                       >< DpnII
                         >< DpnI
                       >< BstYI
                    > < BstOI
                    > < BstNI
            >< TthHB8I >< BspAI
                                          > < RsaI
                  >< DsaV>< Bsp143I
                                          >< MboII
                    > < BsiLI
                                         >< Csp6I
            >< TaqI > < ApyI > < AlwI</pre>
                                        > < AfaI
TTGGTTTTCA CTCGAAATCC AGGATCTAGA AGAACCTTGT ACCAAAGTCT AAACGAACAT GAAACTTCTC
                                                                  >< NlaIII
               27740
                           27750
                                      27760
                                                 27770
                                                            27780
                                                                       27790
                                                       >< HinPlI
                                                       >< Hin6I
                                                         >< HhaI
                                                  >< RsaI >< HaeII
                                            >< SfcI
                                                       >< Eco47III
                                                 >< Csp6I>< CfoI SfaNI ><
                                    >< NdeI
                                                 >< AfaI >< Bsp143II</pre>
ATTGTTTTGA CTTGTATTTC TCTATGCAGT TGCATATGCA CTGTAGTACA GCGCTGTGCA TCTAATAAAC
     27800
               27810
                         -27820
                                     27830
                                                27840
                                                           27850
                                                                       27860
              >< XhoII
             >< Sau3AI
             >< NdeII
        > < MnlI
             >< MflI
```

```
>< MboI
              >< DpnII
                             >< RsaI
                >< DpnI
                         >< MboII
              >< BstYI
                            >< Csp6I >< RmaI
     >< NlaIII>< BspAI
                            >< AfaI >< MaeI</pre>
        >< AlwI >< Bsp143I
CTCATGTGCT TGAAGATCCT TGTAAGGTAC AACACTAGGG GTAATACTTA TAGCACTGCT TGGCTTTGTG
                                                             27920
                           27890
                                      27900
                                                27910
                27880
     27870
 >< SduI
  >< RmaI
 >< NspII
  >< MaeI
 >< HgiAI
                                                         >< NspI
 >< Bsp1286I
                                                          >< NspHI
 >< BmyI
                                                         >< NlaIII >< MaeIII
 >< Alw21I
CTCTAGGAAA GGTTTTACCT TTTCATAGAT GGCACACTAT GGTTCAAACA TGCACACCTA ATGTTACTAT
                                                  27980
                                                              27990
                                                                         28000
                                       27970
                           27960
     27940
                27950
         > < XhoII
                                                   >< RsaI
         > < Sau3AI > < Van91I
                                                   >< NlaIV
                 >< PvuII
                                                     >< KpnI >< NlaIII
                 >< Psp5I
                                                 >< Eco64I
                                                                 >< MaeIII
         > < NdeII > < PflMI
                                                  >< Csp6I>< HphI
         > < MflI>< NspBII
                                                   >< BscBI
                                                                >< EcoO651
                            >< HinPlI
           < DpnII
                                                 >< BanI >< BspHI
                           >< Hin6I
            >< Bsp143I
                                                                 >< Eco91I
         > < BstYI > < BslI >< HhaI >< RmaI
                                                 >< Asp718
                                                                 >< BstPI
         > < BspAI > < BsiYI>< CfoI >< MaeI</pre>
                                                  >< AfaI
                                                                 >< BstEII
         > < Mbol>< Alul>< BspWl >< BspWl
                                                 >< AccB1I
                                                                >< BbvI
                                                 >< Acc65I
    >< AlwI >< DpnI > < AccB7I
                                      >< AluI
CAACTGTCAA GATCCAGCTG GTGGTGCGCT TATAGCTAGG TGTTGGTACC TTCATGAAGG TCACCAAACT
                                                              28060
                                                                         28070
                                                  28050
                           28030
                                       28040
                28020
     28010
                                                                     >< SinI
                                                                     >< Sau96I
                                                                     >< NspIV
                                                               NspHII ><
                                                                 NlaIV ><
                                                                     >< Eco47I
                                                                     >< Cfr13I
                                                                     >< BsiZI
                  >< RsaI
                                                                 BscBI ><
               >< MaeII
  >< Fnu4HI
                                                                     >< Bme18I
                              >< Tru9I
                 >< Csp6I
     >< Esp3I
                                                                     >< AvaII
                                                  >< Tru9I
                              >< MseI
                  >< BsmBI
     >< BsmAI
                                                                     >< AsuI
                                                  >< MseI
                               >< DraI
                  >< AfaI
     >< Alw26I
 GCTGCATTTA GAGACGTACT TGTTGTTTTA AATAAACGAA CAAATTAAAA TGTCTGATAA TGGACCCCAA
                                                                         28140
                                                   28120
                                                              28130
                            28100
                                       28110
      28080
                 28090
                                        >< SinI
                                        >< Sau96I
                                        >< NspIV
                                         >< NspHII
                                          >< NlaIV
                                        >< Eco47I
                                        >< Cfr13I
                                        >< BsiZI
                   >< SduI
                                          >< BscBI
                   IIqaW ><
                                        >< Bme18I
                   >< Bsp1286I
                                        >< AvaII >< TfiI
                   >< BmyI
                                                   >< HinfI
                                                                      >< MnlI
                                        >< AsuI
         >< MaeII
                       >< AciI
```

FIGURE 13.65

```
TCAAACCAAC GTAGTGCCCC CCGCATTACA TTTGGTGGAC CCACAGATTC AACTGACAAT AACCAGAATG
     28150
                28160
                           28170 28180
                                                 28190
                                                            28200
                                                                       28210
                              >< HinPlI >< StyI
                                  >< HaeII
                    > < Pall >< Hin6I >< EcoT14I
                    > < HaeIII >< HhaI>< Eco130I
                                     >< BssTlI
                           >< BspWI
                    > < BsuRI
                                 >< Bsp143II
             >< HgaI> < BshI
                                 >< CfoI>< BsaJI
                                                    >< HqaI
GAGGACGCAA TGGGGCAAGG CCAAAACAGC GCCGACCCCA AGGTTTACCC AATAATACTG CGTCTTGGTT
    28220
               28230
                           28240
                                      28250
                                                 28260
                                                            28270
                                                                       28280
                                              >< TthHB8I
                                                    > < ScrFI
                                                   >< PalI
                                             >< PaeR7I
                                             >< NspIII
                                                     > < MvaI
                                                   >< HaeIII
                                                   >< EcoRII
                                             >< Eco88I
                                             >< XhoI > < Ecl136I
                                                   >< DsaV
                                                   >< BsuRI
                                             >< SlaI > < BstOI</pre>
                                       >< MnlI>< TaqI> < BstNI
                                             >< CcrI > < BsiLI
                                                 >< BshI
                                      >< HinfI
                                      >< Tfil>< Bcol>< BsaJl
                 >< MnlI
                                  >< DdeI
                                           >< AvaI > < ApyI</pre>
                                            >< Ama87I >< MnlI
    >< AluI >< DdeI > < NlaIII
                                 >< BfrI
CACAGCTCTC ACTCAGCATG GCAAGGAGGA ACTTAGATTC CCTCGAGGCC AGGGCGTTCC AATCAACACC
     28290
               28300
                          28310
                                      28320
                                                 28,330
                                                            28340
      >< SinI
     >< Sau96I
     >< NspIV
      >< NspHII
     >< Eco47I
     >< Cfr13I
     >< BsiZI
                               > < Ksp632I
     >< Bme18I
     >< AvaII
                               > < Eam1104I
     >< AsuI
                               > < Earl > < Alul>< MboII</pre>
AATAGTGGTC CAGATGACCA AATTGGCTAC TACCGAAGAG CTACCCGACG AGTTCGTGGT GGTGACGGCA
    28360
               28370
                          28380
                                      28390
                                                28400
                                                            28410
                                                                       28420
            >< SstI
            >< SduI
            >< SacI
            >< NspII
            >< HgiAI
           >< EspI
                                                  >< Sau96I
            >< Eco24I
          >< Ecl136II
                                       >< StyI
                                                  >< PalI
           >< DdeI
                                        >< RmaI
                                                  >< NspIV
           >< CelII
                                        >< MaeI
                                                  >< HaeIII
            >< Bsp1286I
                                       >< EcoT14I >< Cfr13I
           >< Bpu1102I
                                       >< Ecol30I >< BsuRI
            >< BmyI
                                       >< BssT1I
                                                   > < BsrI
            >< BanII
                         >< RsaI
                                      >< BsaJI
                                                  >< BsiZI
```

```
>< BshI>< HindIII
                                    >< BlnI
           >< Alw21I
                        >< Csp6I
                                   >< AvrII >< AsuI >< AluI
                        >< AfaI
 >< HphI >< AluI
AAATGAAAGA GCTCAGCCCC AGATGGTACT TCTATTACCT AGGAACTGGC CCAGAAGCTT CACTTCCCTA
             28440 28450 28460 28470
                                                      28480
 >< HinPlI
  >< Hin6I .
   >< HhaI
    >< HaeII
                           > < MnlI
                                         >< NlaIV
   >< CfoI
                         >< SfaNI >< DdeI >< BscBI
    >< Bsp143II
CGGCGCTAAC AAAGAAGGCA TCGTATGGGT TGCAACTGAG GGAGCCTTGA ATACACCCAA AGACCACATT
                                                   28550 28560
                        28520 28530
                                           28540
              28510
 >< NlaIV
>< Eco64I
 >< BscBI
>< BanI
    >< AciI
                                                       >< MnlI
>< AccB1I >< BbvI
                       >< Fnu4HI
GGCACCCGCA ATCCTAATAA CAATGCTGCC ACCGTGCTAC AACTTCCTCA AGGAACAACA TTGCCAAAAG
                        28590 28600 28610
                                                                28630
                                                       28620
             28580
     28570
                                                                >< ThaI
                                                           >< MnlI
                                                        >< MaeII >< MvnI</pre>
                                                          BstUI ><
                                              >< MnlI
                                            >< Ksp632I
                                                         Bsp50I ><
                         >< Fnu4HI
                                            >< EarI
                                                         >< BsaAI>< AciI
                        >< BspWI
                                          >< Eam1104I
                                                         AccII ><
             >< MnlI
                       >< AciI>< MboII
GCTTCTACGC AGAGGGAAGC AGAGGCGGCA GTCAAGCCTC TTCTCGCTCC TCATCACGTA GTCGCGGTAA
                                           28680
                                                        28690
                                   28670
                       28660
               28650
     28640
                 >< ScrFI
                 >< MvaI
                                             >< TthHB8I
               >< EcoRII
                                                      >< RmaI
                 >< Ecl136I
                                                     >< NheI
               >< DsaV>< Fnu4HI</pre>
                                                    >< MnlI
                 >< BstOI
                                                      >< MaeI
                 >< BstNI
                                                 > < BspWI
                 >< BsiLI
                                             >< TaqI >< AciI
                                >< BbvI
                 >< ApyI
 TTCAAGAAAT TCAACTCCTG GCAGCAGTAG GGGAAATTCT CCTGCTCGAA TGGCTAGCGG AGGTGGTGAA
                        28730 28740 28750
                                                      28760
               28720
     28710
         > < Thal
         > < MvnI
      >< HphI >< MnlI
         > < HinPlI
         > < Hin6I
           >< HhaI
                                                             PalI ><
         > < BstUI
                      >< RmaI
                                                           HaeIII ><
                   >< MaeI
         > < Bsp50I
                                                            BsuRI ><
    >< BbvI >< CfoI>< Fnu4HI
                                                            BshI ><
                                     >< AluI
         > < AccII>< BspWI
 ACTGCCCTCG CGCTATTGCT GCTAGACAGA TTGAACCAGC TTGAGAGCAA AGTTTCTGGT AAAGGCCAAC
                                                      28830
                                             28820
              28790 28800
                                  28810
     28780
                                                                RsaI ><
                                                                >< MnlI
         > < Pall>< MaeIII</pre>
                                                            MaeII ><
                                  >< Fnu4HI
         > < HaeIII</pre>
                                                              Csp6I ><
                                    >< DdeI
         > < BsuRI
                     >< DdeI
```

FIGURE 13.67

```
>< MnlI >< BspWI
                                                                      AfaI ><
                    > < BbvI
                                                        >< SfaNI
         > < BshI
AACAACAAGG CCAAACTGTC ACTAAGAAAT CTGCTGCTGA GGCATCTAAA AAGCCTCGCC AAAAACGTAC
                                                              28900
                           28870
                                       28880
                                                  28890
                                                                         28910
     28850
                28860
                                              >< Tth111I
                                                >< SinI
                                                >< Sau96I
                                                >< NspIV
                                                 >< NspHII
                                           > < MaeII
                                                >< Eco47I
                                                >< Cfr13I
                                               >< BsmBI
                                                >< BsiZI
                                                                >< StyI
              >< RsaI
                   >< MaeIII
                                                >< Bme18I
                                                                >< EcoT14T
                  >< MaeII
                                 >< Esp3I
                                                >< AvaII
                                                                >< Eco130I
                                  >< BsmAI
                                                >< AsuI
             >< Csp6I
                                                                >< BssTlI
                                 >< Alw26I> < AspI
              >< AfaI
                                                                >< BsaJI
TGCCACAAAA CAGTACAACG TCACTCAAGC ATTTGGGAGA CGTGGTCCAG AACAAACCCA AGGAAATTTC
                                       28950
     28920
                28930
                           28940
                                                  28960
                                                              28970
                                                                         28980
  >< SinI
  >< Sau96I
  >< NspIV
   >< NspHII
   >< NlaIV
                                                 >< PalI
  >< Eco47I
                                                 >< HaeIII
                                               >< GdiII
 >< Cfr13I
  >< BsiZI
                                                  >< Fnu4HI
   >< BscBI
                                               >< EaeI
  >< Bme18I
                                                 >< BsuRI
  >< AvaII
                                                 >< BshI
                                                                      BspWI >
  >< AsuI
                                                  >< AciI
                                                                   >< BspWI
GGGGACCAAG ACCTAATCAG ACAAGGAACT GATTACAAAC ATTGGCCGCA AATTGCACAA TTTGCTCCAA
                29000
                           29010
                                       29020
                                                  29030
                                                              29040
        >< BsmI
                                         >< NlaIII
    >< BscCI >< MnlI >< MaeIII
                                             >< MaeIII
                                                                   >< NlaIII
GTGCCTCTGC ATTCTTTGGA ATGTCACGCA TTGGCATGGA AGTCACACCT TCGGGAACAT GGCTGACTTA
                29070
                           29080
                                       29090
     29060
                                                  29100
                                                              29110
                                                                         29120
                             >< XhoII
                             >< Sau3AI
                             >< NdeII
                             >< MflI
                             >< MboI
                                  >< FokI
            >< Tru9I
                             >< DpnII
      >< NlaIV
                               > < DpnI
                             >< BstYI
                                                   >< TthlllI
    >< NlaIII
                             >< BspAI
                                                    >< MaeII
            >< MseI
      >< BscBI >< BstXI>< AlwI> < Bsp143I
                                                 >< AspI
                                                                BspWI ><
TCATGGAGCC ATTAAATTGG ATGACAAAGA TCCACAATTC AAAGACAACG TCATACTGCT GAACAAGCAC
     29130
                29140
                           29150
                                      29160
                                                  29170
                                                             29180
                                                                        29190
                                                                     EspI ><
                                                                     DdeI ><
                                                                    CelII ><
                                                                 Bpul102I ><
             >< HgaI
                                                                    AluI ><
ATTGACGCAT ACAAAACATT CCCACCAACA GAGCCTAAAA AGGACAAAAA GAAAAAGACT GATGAAGCTC
     29200
                                      29230
                                                  29240
                29210
                           29220
                                                             29250
                                                                        29260
```

```
>< PleI
                                  >< MboII
       >< Fnu4HI
                                             >< Ksp632I >< GsuI
                                >< MboII
      >< BspWI
                                  >< MaeIII >< EarI>< Fnu4HI
      >< BsmAI
                                     >< HinfI >< Eaml104I>< BpmI
      >< Alw26I
                                                 >< Acil >< NlaIII
                                   >< BbvI
                         >< Fnu4HI
       >< AciI
AGCCTTTGCC GCAGAGACAA AAGAAGCAGC CCACTGTGAC TCTTCTTCCT GCGGCTGACA TGGATGATTT
                                                      29320 29330
                                  29300 29310
                        29290
             29280
    29270
                                                             NlaIII ><
                                         >< HinfI</pre>
                        >< NlaIII
                               >< AluI >< TfiI>< DdeI
                                                             >< BspHI
    >< FokI
CTCCAGACAA CTTCAAAATT CCATGAGTGG AGCTTCTGCT GATTCAACTC AGGCATAAAC ACTCATGATG
                                            29380
                                                        29390
                                   29370
                       29360
               29350
                                                           >< AccI
                           >< MaeII
ACCACACAG GCAGATGGGC TATGTAAACG TTTTCGCAAT TCCGTTTACG ATACATAGTC TACTCTTGTG
                                   29440 29450 29460
                                                                 29470
                         29430
               29420
                                                >< Tru9I
                                          >< Tru9I
                                                >< MseI
                                          >< MseI
                                           >< HpaI
      >< XmnI
                                                               Tru9I ><
                                           >< HindII</pre>
      >< EcoRI>< MaeIII
                                                                MseI ><
                                           >< HincII
      >< Asp700I >< BsgI
CAGAATGAAT TCTCGTAACT AAACAGCACA AGTAGGTTTA GTTAACTTTA ATCTCACATA GCAATCTTTA
                                            29520 29530
                       29500 29510
               29490
     29480
                                                                 XorII >
                                                               TthHB8I >
                                                                  TaqI >
                                                             Sau3AI ><
                                                             RsaI ><
                                                            >< ThalPvul >
                                                               NdeII ><
                                                                 >< MnlI
                                                            >< MvnIMcrI >
                                                               MboI ><
                                                               DpnII ><
                                                                 DpnI ><
                                                            Csp6I ><
                                                            >< BstUI
                                                       >< HaeIII BspCI >
                                                              BspAI ><
                                                  >< TthHB8I >< Bsp50I
                                                       >< PalI Bsp143I ><
                                                       >< BsuRI BsiEI >
                                                       >< BshIAfaI ><
                                                          >< AciI
                                                  >< TaqI
            >< MnlI
                                                            >< AccII
                                            >< MnlI
        >< MaeIII
 ATCAATGTGT AACATTAGGG AGGACTTGAA AGAGCCACCA CATTTTCATC GAGGCCACGC GGAGTACGAT
                                              29590 29600
                                                                   29610
                                   29580
                         29570
             29560
      29550
                                                  >< SduI
                                                  >< NspII
                                                        >< MboII >< VspI
                                                                >< Tru9I
                                                  >< Eco24I
                                     >< Ksp632I
                                                  >< Bsp1286I
                                                               >< MseI
                               >< Fnu4HI
                     >< RmaI
       >< RsaI
                                                  >< BmyI
                                                                >< AsnI
                                      >< EarI
                     >< MaeI
      >< Csp6I
                              > < AluI>< Eam1104I >< BanII
                                                                 >< AseI
                >< BbvI
       >< AfaI
```

1er dépôt

83/83

CGAGGGTACA GTGAATAATG CTAGGGAGAG CTGCCTATAT GGAAGAGCCC TAATGTGTAA AATTAATTTT 29620 29630 29640 29650 29660 29670 29680

>< Tru9I >< DdeI >< MseI >< BfrI

>< NlaIII > < AluI

AGTAGTGCTA TCCCCATGTG ATTTTAATAG CTTCTTAGGA GAATGACAAA AAAAAAAAA AAAAAA

29690 29700 29710 29720 29730 29740

S226CAS111.ST25 SEQUENCE LISTING

<110> INSTITUT PASTEUR CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

<120> Utilisation des protéines et des peptides codés par le génome d'une nouvelle souche de coronavirus associé au SRAS

<130> F226CAS111

<160> 75

<170> PatentIn version 3.1

<210> 1

<211> 29746

<212> DNA

<213> CORC	ONAVIRUS					
<400> 1 atattaggtt	tttacctacc	caggaaaagc	caaccaacct	cgatctcttg	tagatctgtt	60
ctctaaacga	actttaaaat	ctgtgtagct	gtcgctcggc	tgcatgccta	gtgcacctac	120
gcagtataaa	caataataaa	tttactgtc	gttgacaaga	aacgagtaac	tcgtccctct	180
tctgcagact	gcttacggtt	tcgtccgtgt	tgcagtcgat	catcagcata	cctaggtttc	240
gtccgggtgt	gaccgaaagg	taagatggag	agccttgttc	ttggtgtcaa	cgagaaaaca	300
cacgtccaac	tcagtttgcc	tgtccttcag	gttagagacg	tgctagtgcg	tggcttcggg	360
gactctgtgg	aagaggccct	atcggaggca	cgtgaacacc	tcaaaaatgg	cacttgtggt	420
ctagtagagc	tggaaaaagg	cgtactgccc	cagcttgaac	agccctatgt	gttcattaaa	480
cgttctgatg	ccttaagcac	caatcacggc	cacaaggtcg	ttgagctggt	tgcagaaatg	540
gacggcattc	agtacggtcg	tagcggtata	acactgggag	tactcgtgcc	acatgtgggc	600
gaaaccccaa	ttgcataccg	caatgttctt	cttcgtaaga	acggtaataa	gggagccggt	660
ggtcatagct	atggcatcga	tctaaagtct	tatgacttag	gtgacgagct	tggcactgat	720
cccattgaag	attatgaaca	aaactggaac	actaagcatg	gcagtggtgc	actccgtgaa	780
ctcactcgtg	agctcaatgg	aggtgcagtc	actcgctatg	tcgacaacaa	tttctgtggc	840
ccagatgggt	accctcttga	ttgcatcaaa	gattttctcg	cacgcgcggg	caagtcaatg	900
tgcactcttt	ccgaacaact	tgattacatc	gagtcgaaga	gaggtgtcta	ctgctgccgt	960
gaccatgagc	atgaaattgc	ctggttcact	gagcgctctg	ataagagcta	cgagcaccag	1020
acacccttcg	aaattaagag	tgccaagaaa	tttgacactt	tcaaagggga	atgcccaaag	1080
tttgtgtttc	ctcttaactc	aaaagtcaaa	gtcattcaac	cacgtgttga	aaagaaaaag	1140
actgagggtt	tcatggggcg	tatacgctct	gtgtaccctg	ttgcatctcc	acaggagtgt	1200
aacaatatgc	acttgtctac	cttgatgaaa	tgtaatcatt	gcgatgaagt	ttcatggcag	1260
acgtgcgact	ttctgaaagc	cacttgtgaa	cattgtggca	ctgaaaattt	agttattgaa	1320
ggacctacta	catgtgggta	cctacctact	aatgctgtag Page 1	tgaaaatgcc	atgtcctgcc	1380

tgtcaagacc cagagattgg acctgagcat agtgttgcag attatcacaa ccactcaaac	1440
attgaaactc gactccgcaa gggaggtagg actagatgtt ttggaggctg tgtgtttgcc	1500
tatgttggct gctataataa gcgtgcctac tgggttcctc gtgctagtgc tgatattggc	1560
tcaggccata ctggcattac tggtgacaat gtggagacct tgaatgagga tctccttgag	1620
atactgagtc gtgaacgtgt taacattaac attgttggcg attttcattt gaatgaagag	1680
gttgccatca ttttggcatc tttctctgct tctacaagtg cctttattga cactataaag	1740
agtcttgatt acaagtcttt caaaaccatt gttgagtcct gcggtaacta taaagttacc	1800
aagggaaagc ccgtaaaagg tgcttggaac attggacaac agagatcagt tttaacacca	1860
ctgtgtggtt ttccctcaca ggctgctggt gttatcagat caatttttgc gcgcacactt	1920
gatgcagcaa accactcaat tcctgatttg caaagagcag ctgtcaccat acttgatggt	1980
atttctgaac agtcattacg tcttgtcgac gccatggttt atacttcaga cctgctcacc	2040
aacagtgtca ttattatggc atatgtaact ggtggtcttg tacaacagac ttctcagtgg	2100
ttgtctaatc ttttgggcac tactgttgaa aaactcaggc ctatctttga atggattgag	2160
gcgaaactta gtgcaggagt tgaatttctc aaggatgctt gggagattct caaatttctc	2220
attacaggtg tttttgacat cgtcaagggt caaatacagg ttgcttcaga taacatcaag	2280
gattgtgtaa aatgcttcat tgatgttgtt aacaaggcac tcgaaatgtg cattgatcaa	2340
gtcactatcg ctggcgcaaa gttgcgatca ctcaacttag gtgaagtctt catcgctcaa	2400
agcaagggac tttaccgtca gtgtatacgt ggcaaggagc agctgcaact actcatgcct	2460
cttaaggcac caaaagaagt aacctttctt gaaggtgatt cacatgacac agtacttacc	2520
tctgaggagg ttgttctcaa gaacggtgaa ctcgaagcac tcgagacgcc cgttgatagc	2580
ttcacaaatg gagctatcgt tggcacacca gtctgtgtaa atggcctcat gctcttagag	2640
attaaggaca aagaacaata ctgcgcattg tctcctggtt tactggctac aaacaatgtc	2700
tttcgcttaa aagggggtgc accaattaaa ggtgtaacct ttggagaaga tactgtttgg	2760
gaagttcaag gttacaagaa tgtgagaatc acatttgagc ttgatgaacg tgttgacaaa	2820
gtgcttaatg aaaagtgctc tgtctacact gttgaatccg gtaccgaagt tactgagttt	2880
gcatgtgttg tagcagaggc tgttgtgaag actttacaac cagtttctga tctccttacc	2940
aacatgggta ttgatcttga tgagtggagt gtagctacat tctacttatt tgatgatgct	3000
ggtgaagaaa acttttcatc acgtatgtat tgttcctttt accctccaga tgaggaagaa	3060
gaggacgatg cagagtgtga ggaagaagaa attgatgaaa cctgtgaaca tgagtacggt	3120
acagaggatg attatcaagg tctccctctg gaatttggtg cctcagctga aacagttcga	3180
gttgaggaag aagaagagga agactggctg gatgatacta ctgagcaatc agagattgag	3240
ccagaaccag aacctacacc tgaagaacca gttaatcagt ttactggtta tttaaaactt	3300
actgacaatg ttgccattaa atgtgttgac atcgttaagg aggcacaaag tgctaatcct	3360
atggtgattg taaatgctgc taacatacac ctgaaacatg gtggtggtgt agcaggtgca Page 2	3420

ctcaacaagg	caaccaatgg	tgccatgcaa	aaggagagtg	atgattacat	taagctaaat	3480
ggccctctta	cagtaggagg	gtcttgtttg	ctttctggac	ataatcttgc	taagaagtgt	3540
ctgcatgttg	ttggacctaa	cctaaatgca	ggtgaggaca	tccagcttct	taaggcagca	3600
tatgaaaatt	tcaattcaca	ggacatctta	cttgcaccat	tgttgtcagc	aggcatattt	3660
ggtgctaaac	cacttcagtc	tttacaagtg	tgcgtgcaga	cggttcgtac	acaggtttat	3720
attgcagtca	atgacaaagc	tctttatgag	caggttgtca	tggattatct	tgataacctg	3780
aagcctagag	tggaagcacc	taaacaagag	gagccaccaa	acacagaaga	ttccaaaact	3840
gaggagaaat	ctgtcgtaca	gaagcctgtc	gatgtgaagc	caaaaattaa	ggcctgcatt	3900
gatgaggtta	ccacaacact	ggaagaaact	aagtttctta	ccaataagtt	actcttgttt	3960
gctgatatca	atggtaagct	ttaccatgat	tctcagaaca	tgcttagagg	tgaagatatg	4020
tctttccttg	agaaggatgc	accttacatg	gtaggtgatg	ttatcactag	tggtgatatc	4080
acttgtgttg	taataccctc	caaaaaggct	ggtggcacta	ctgagatgct	ctcaagagct	4140
ttgaagaaag	tgccagttga	tgagtatata	accacgtacc	ctggacaagg	atgtgctggt	4200
tatacacttg	aggaagctaa	gactgctctt	aagaaatgca	aatctgcatt	ttatgtacta	4260
ccttcagaag	cacctaatgc	taaggaagag	attctaggaa	ctgtatcctg	gaatttgaga	4320
gaaatgcttg	ctcatgctga	agagacaaga	aaattaatgc	ctatatgcat	ggatgttaga	4380
gccataatgg	caaccatcca	acgtaagtat	aaaggaatta	aaattcaaga	gggcatcgtt	4440
gactatggtg	tccgattctt	cttttatact	agtaaagagc	ctgtagcttc	tattattacg	4500
aagctgaact	ctctaaatga	gccgcttgtc	acaatgccaa	ttggttatgt	gacacatggt	4560
tttaatcttg	aagaggctgc	gcgctgtatg	cgttctctta	aagctcctgc	cgtagtgtca	4620
gtatcatcac	cagatgctgt	tactacatat	aatggatacc	tcacttcgtc	atcaaagaca	4680
tctgaggagc	actttgtaga	aacagtttct	ttggctggct	cttacagaga	ttggtcctat	4740
tcaggacagc	gtacagagtt	aggtgttgaa	tttcttaagc	gtggtgacaa	aattgtgtac	4800
cacactctgg	agagccccgt	cgagtttcat	cttgacggtg	aggttctttc	acttgacaaa	4860
ctaaagagtc	tcttatccct	gcgggaggtt	aagactataa	aagtgttcac	aactgtggac	4920
aacactaatc	tccacacaca	gcttgtggat	atgtctatga	catatggaca	gcagtttggt	4980
ccaacatact	tggatggtgc	tgatgttaca	aaaattaaac	ctcatgtaaa	tcatgagggt	5040
aagactttct	ttgtactacc	tagtgatgac	acactacgta	gtgaagcttt	cgagtactac	5100
catactcttg	atgagagttt	tcttggtagg	tacatgtctg	ctttaaacca	cacaaagaaa	5160
tggaaatttc	ctcaagttgg	tggtttaact	tcaattaaat	gggctgataa	caattgttat	5220
ttgtctagtg	ttttattagc	acttcaacag	cttgaagtca	aattcaatgc	accagcactt	5280
caagaggctt	attatagagc	ccgtgctggt	gatgctgcta	acttttgtgc	actcatactc	5340
gcttacagta	ataaaactgt	tggcgagctt	ggtgatgtca	gagaaactat	gacccatctt	5400
ctacagcatg	ctaatttgga	atctgcaaag	cgagttctta Page 3	atgtggtgtg	taaacattgt	5460

ggtcagaaaa ctactacctt aacgggtgta gaagctgtga tgtatatggg tactctatct	5520
tatgataatc ttaagacagg tgtttccatt ccatgtgtgt gtggtcgtga tgctacacaa	
tatctagtac aacaagagtc ttcttttgtt atgatgtctg caccacctgc tgagtataaa	5580
	5640
ttacagcaag gtacattett atgtgcgaat gagtacactg gtaactatea gtgtggteat	5700
tacactcata taactgctaa ggagaccctc tatcgtattg acggagctca ccttacaaag	5760
atgtcagagt acaaaggacc agtgactgat gttttctaca aggaaacatc ttacactaca	5820
accatcaagc ctgtgtcgta taaactcgat ggagttactt acacagagat tgaaccaaaa	5880
ttggatgggt attataaaaa ggataatgct tactatacag agcagcctat agaccttgta	5940
ccaactcaac cattaccaaa tgcgagtttt gataatttca aactcacatg ttctaacaca	6000
aaatttgctg atgatttaaa tcaaatgaca ggcttcacaa agccagcttc acgagagcta	6060
tctgtcacat tcttcccaga cttgaatggc gatgtagtgg ctattgacta tagacactat	6120
tcagcgagtt tcaagaaagg tgctaaatta ctgcataagc caattgtttg gcacattaac	6180
caggctacaa ccaagacaac gttcaaacca aacacttggt gtttacgttg tctttggagt	6240
acaaagccag tagatacttc aaattcattt gaagttctgg cagtagaaga cacacaagga	6300
atggacaatc ttgcttgtga aagtcaacaa cccacctctg aagaagtagt ggaaaatcct	6360
accatacaga aggaagtcat agagtgtgac gtgaaaacta ccgaagttgt aggcaatgtc	6420
atacttaaac catcagatga aggtgttaaa gtaacacaag agttaggtca tgaggatctt	6480
atggctgctt atgtggaaaa cacaagcatt accattaaga aacctaatga gctttcacta	6540
gccttaggtt taaaaacaat tgccactcat ggtattgctg caattaatag tgttccttgg	6600
agtaaaattt tggcttatgt caaaccattc ttaggacaag cagcaattac aacatcaaat	6660
tgcgctaaga gattagcaca acgtgtgttt aacaattata tgccttatgt gtttacatta	6720
ttgttccaat tgtgtacttt tactaaaagt accaattcta gaattagagc ttcactacct	6780
acaactattg ctaaaaatag tgttaagagt gttgctaaat tatgtttgga tgccggcatt	6840
aattatgtga agtcacccaa attttctaaa ttgttcacaa tcgctatgtg gctattgttg	6900
ttaagtattt gcttaggttc tctaatctgt gtaactgctg cttttggtgt actcttatct	6960
aattttggtg ctccttctta ttgtaatggc gttagagaat tgtatcttaa ttcgtctaac	7020
gttactacta tggatttctg tgaaggttct tttccttgca gcatttgttt aagtggatta	7080
O3ctccctta attattataa aaataataa	7140
ctagacttga caattttagg tctggccgct gagtgggttt tggcatatat gttgttcaca	7200
33311711111 311111111111111111111111111	7260
2015211152 topographo the second	7320
CCCATTCTA CONTRACTOR TOTAL	7380
additated atatestess testings	7440
atomatoca cacquattaa atomatoca t	7500
Page 4	. 500

gtctatgcaa	atggaggccg	tggcttctgc	aagactcaca	attggaattg	tctcaattgt	7560
gacacatttt	gcactggtag	tacattcatt	agtgatgaag	ttgctcgtga	tttgtcactc	7620
cagtttaaaa	gaccaatcaa	ccctactgac	cagtcatcgt	atattgttga	tagtgttgct	7680
gtgaaaaatg	gcgcgcttca	cctctacttt	gacaaggctg	gtcaaaagac	ctatgagaga	7740
catccgctct	cccattttgt	caatttagac	aatttgagag	ctaacaacac	taaaggttca	7800
ctgcctatta	atgtcatagt	ttttgatggc	aagtccaaat	gcgacgagtc	tgcttctaag	7860
tctgcttctg	tgtactacag	tcagctgatg	tgccaaccta	ttctgttgct	tgaccaagct	7920
cttgtatcag	acgttggaga	tagtactgaa	gtttccgtta	agatgtttga	tgcttatgtc	7980
gacacctttt	cagcaacttt	tagtgttcct	atggaaaaac	ttaaggcact	tgttgctaca	8040
gctcacagcg	agttagcaaa	gggtgtagct	ttagatggtg	tcctttctac	attcgtgtca	8100
gctgcccgac	aaggtgttgt	tgataccgat	gttgacacaa	aggatgttat	tgaatgtctc	8160
aaactttcac	atcactctga	cttagaagtg	acaggtgaca	gttgtaacaa	tttcatgctc	8220
acctataata	aggttgaaaa	catgacgccc	agagatcttg	gcgcatgtat	tgactgtaat	8280
gcaaggcata	tcaatgccca	agtagcaaaa	agtcacaatg	tttcactcat	ctggaatgta	8340
aaagactaca	tgtctttatc	tgaacagctg	cgtaaacaaa	ttcgtagtgc	tgccaagaag	8400
aacaacatac	cttttagact	aacttgtgct	acaactagac	aggttgtcaa	tgtcataact	8460
actaaaatct	cactcaaggg	tggtaagatt	gttagtactt	gttttaaact	tatgcttaag	8520
gccacattat	tgtgcgttct	tgctgcattg	gtttgttata	tcgttatgcc	agtacataca	8580
ttgtcaatcc	atgatggtta	cacaaatgaa	atcattggtt	acaaagccat	tcaggatggt	8640
gtcactcgtg	acatcatttc	tactgatgat	tgttttgcaa	ataaacatgc	tggttttgac	8700
gcatggttta	gccagcgtgg	tggttcatac	aaaaatgaca	aaagctgccc	tgtagtagct	8760
gctatcatta	caagagagat	tggtttcata	gtgcctgg <u>c</u> t	taccgggtac	tgtgctgaga	8820
gcaatcaatg	gtgacttctt	gcattttcta	cctcgtgttt	ttagtgctgt	tggcaacatt	8880
tgctacacac	cttccaaact	cattgagtat	agtgattttg	ctacctctgc	ttgcgttctt	8940
gctgctgagt	gtacaatttt	taaggatgct	atgggcaaac	ctgtgccata	ttgttatgac	9000
actaatttgc	tagagggttc	tatttcttat	agtgagcttc	gtccagacac	tcgttatgtg	9060
cttatggatg	gttccatcat	acagtttcct	aacacttacc	tggagggttc	tgttagagta	9120
gtaacaactt	ttgatgctga	gtactgtaga	catggtacat	gcgaaaggtc	agaagtaggt	9180
atttgcctat	ctaccagtgg	tagatgggtt	cttaataatg	agcattacag	agctctatca	9240
ggagttttct	gtggtgttga	tgcgatgaat	ctcatagcta	acatctttac	tcctcttgtg	9300
caacctgtgg	gtgctttaga	tgtgtctgct	tcagtagtgg	ctggtggtat	tattgccata	9360
ttggtgactt	gtgctgccta	ctactttatg	aaattcagac	gtgtttttgg	tgagtacaac	9420
catgttgttg	ctgctaatgc	acttttgttt	ttgatgtctt	tcactatact	ctgtctggta	9480
ccagcttaca	gctttctgcc	gggagtctac	tcagtctttt	acttgtactt	gacattctat	9540

ttcaccaat	g atgtttcat	t cttggctca	c cttcaatgg	t ttgccatgt	t tṫctcctatt	9600
gtgcctttt	t ggataacag	c aatctatgt	a ttctgtatt	t ctctgaagc	a ctgccattgg	9660
ttctttaac	a actatctta	g gaaaagagt	c atgtttaat	g gagttacat	t tagtaccttc	9720
gaggaggct	g ctttgtgta	c ctttttgct	c aacaaggaa	a tgtacctaa	a attgcgtagc	9780
gagacactg	t tgccactta	c acagtataa	c aggtatctt	g ctctatata	a caagtacaag	9840
tatttcagt	g gagccttaga	a tactaccag	c tatcgtgaa	g cagcttgct	g ccacttagca	9900
aaggctctaa	a atgactttag	g caactcagg	t gctgatgtt	c tctaccaac	c accacagaca	9960
tcaatcacti	ctgctgttc	gcagagtgg	t tttaggaaaa	a tggcattcc	gtcaggcaaa	10020
gttgaaggg1	gcatggtaca	agtaacctg	t ggaactacaa	a ctcttaatg	g attgtggttg	10080
gatgacacag	tatactgtco	aagacatgt	atttgcacag	g cagaagaca	gcttaatcct	10140
aactatgaag	atctgctcat	tcgcaaatc	aaccatagci	ttcttgttca	a ggctggcaat	10200
gttcaactto	gtgttattgg	ccattctate	g caaaattgto	tgcttaggct	taaagttgat	10260
acttctaaco	ctaagacaco	: caagtataaa	tttgtccgta	tccaacctg	tcaaacattt	10320
tcagttctag	, catgctacaa	tggttcacca	tctggtgtt	atcagtgtgc	catgagacct	10380
aatcatacca	ttaaaggttc	tttccttaat	ggatcatgtg	gtagtgttgg	ttttaacatt	10440
gattatgatt	gcgtgtcttt	ctgctatatg	catcatatgg	agcttccaac	aggagtacac	10500
gctggtactg	acttagaagg	taaattctat	ggtccatttg	ttgacagaca	aactgcacag	10560
gctgcaggta	cagacacaac	cataacatta	aatgttttgg	catggctgta	tgctgctgtt	10620
atcaatggtg	ataggtggtt	tcttaataga	ttcaccacta	ctttgaatga	ctttaacctt	10680
gtggcaatga	agtacaacta	tgaacctttg	acacaagatc	atgttgacat	attgggacct	10740
ctttctgctc	aaacaggaat	tgccgtctta	gatatgtgtg	ctgctttgaa	agagctgctg	10800
cagaatggta	tgaatggtcg	tactatcctt	ggtagcacta	ttttagaaga	tgagtttaca	10860
ccatttgatg	ttgttagaca	atgctctggt	gttaccttcc	aaggtaagtt	caagaaaatt	10920
				catcactatt		10980
				atgctttctt		11040
				ttaagcataa		11100
				actttaatat		11160
				tggctgacac		11220
				tagttttgct		11280
				ggacactgat		11340
				aagctatttc		11400
				cgactatcat		11460
				tatttattac		11520
ttacagtgta	tcatgcttgt	ttattgtttc	ttaggctatt Page 6	gttgctgctg	ctactttggc	11580

cttttctgt	t tactcaaccg	ttacttcagg	cttactcttg	gtgtttatga	ctacttggtc	11640
tctacacaa	ng aatttaggta	tatgaactcc	caggggcttt	tgcctcctaa	gagtagtatt	11700
gatgcttt	a agcttaacat	taagttgttg	ggtattggag	gtaaaccatg	tatcaaggtt	11760
gctactgta	ac agtctaaaat	gtctgacgta	aagtgcacat	ctgtggtact	gctctcggtt	11820
cttcaacaa	ac ttagagtaga	gtcatcttct	aaattgtggg	cacaatgtgt	acaactccac	11880
aatgatati	tc ttcttgcaaa	agacacaact	gaagctttcg	agaagatggt	ttctcttttg	11940
tctgtttt	gc tatccatgca	gggtgctgta	gacattaata	ggttgtgcga	ggaaatgctc	12000
gataaccg	tg ctactcttca	ggctattgct	tcagaattta	gttctttacc	atcatatgcc	12060
gcttatgc	ca ctgcccagga	ggcctatgag	caggctgtag	ctaatggtga	ttctgaagtc	12120
gttctcaa	aa agttaaagaa	atctttgaat	gtggctaaat	ctgagtttga	ccgtgatgct	12180
gccatgca	ac gcaagttgga	aaagatggca	gatcaggcta	tgacccaaat	gtacaaacag	12240
gcaagatc	tg aggacaagag	ggcaaaagta	actagtgcta	tgcaaacaat	gctcttcact	12300
atgcttag	ga agcttgataa	tgatgcactt	aacaacatta	tcaacaatgc	gcgtgatggt	12360
tgtgttcc	ac tcaacatcat	accattgact	acagcagcca	aactcatggt	tgttgtccct	12420
gattatgg [.]	ta cctacaagaa	cacttgtgat	ggtaacacct	ttacatatgc	atctgcactc	12480
tgggaaat	cc agcaagttgt	tgatgcggat	agcaagattg	ttcaacttag	tgaaattaac	12540
atggacaa	tt caccaaattt	ggcttggcct	cttattgtta	cagctctaag	agccaactca	12600
gctgttaa	ac tacagaataa	tgaactgagt	ccagtagcac	tacgacagat	gtcctgtgcg	12660
gctggtac	ca cacaaacagc	ttgtactgat	gacaatgcac	ttgcctacta	taacaattcg	12720
aagggagg	ta ggtt <mark>tgtgct</mark>	ggcattacta	tcagaccacc	aagatctcaa	atgggctaga	12780
ttccctaa	ga gtgatggtac	aggtacaatt	tacacagaac	tggaaccacc	ttgtaggttt	12840
gttacaga	ca caccaaaagg	gcctaaagtg	aaatacttgt	acttcatcaa	aggcttaaac	12900
aacctaaa [.]	ta gaggtatggt	gctgggcagt	ttagctgcta	cagtacgtct	tcaggctgga	12960
aatgctac	ag aagtacctgc	caattcaact	gtgctttcct	tctgtgcttt	tgcagtagac	13020
cctgctaa	ag catataagga	ttacctagca	agtggaggac	aaccaatcac	caactgtgtg	13080
aagatgtt	gt gtacacacac	tggtacagga	caggcaatta	ctgtaacacc	agaagctaac	13140
atggacca	ag agtcctttgg	tggtgcttca	tgttgtctgt	attgtagatg	ccacattgac	13200
catccaaa	tc ctaaaggatt	ctgtgacttg	aaaggtaagt	acgtccaaat	acctaccact	13260
tgtgctaa	tg acccagtggg	ttttacactt	agaaacacag	tctgtaccgt	ctgcggaatg	13320
tggaaagg	tt atggctgtag	ttgtgaccaa	ctccgcgaac	ccttgatgca	gtctgcggat	13380
gcatcaac	gt ttttaaacgg	gtttgcggtg	taagtgcagc	ccgtcttaca	ccgtgcggca	13440
caggcact	ag tactgatgtc	gtctacaggg	cttttgatat	ttacaacgaa	aaagttgctg	13500
gttttgca	aa gttcctaaaa	actaattgct	gtcgcttcca	ggagaaggat	gaggaaggca	13560
atttatta	ga ctcttacttt	gtagttaaga	ggcatactat Page 7	gtctaactac	caacatgaag	13620

agactattta taacttggtt aaagattgtc cagcggttgc tgtccatgac tttttcaagt	13680
ttagagtaga tggtgacatg gtaccacata tatcacgtca gcgtctaact aaatacacaa	13740
tggctgattt agtctatgct ctacgtcatt ttgatgaggg taattgtgat acattaaaag	13800
aaatactcgt cacatacadt tgctgtgatg atgattattt caataagaag gattggtatg	13860
acttcgtaga gaatcctgac atcttacgcg tatatgctaa cttaggtgag cgtgtacgcc	13920
aatcattatt aaagactgta caattctgcg atgctatgcg tgatgcaggc attgtaggcg	13980
tactgacatt agataatcag gatcttaatg ggaactggta cgatttcggt gatttcgtac	14040
aagtagcacc aggctgcgga gttcctattg tggattcata ttactcattg ctgatgccca	14100
tcctcacttt gactagggca ttggctgctg agtcccatat ggatgctgat ctcgcaaaac	14160
cacttattaa gtgggatttg ctgaaatatg attttacgga agagagactt tgtctcttcg	14220
accgttattt taaatattgg gaccagacat accatcccaa ttgtattaac tgtttggatg	14280
ataggtgtat ccttcattgt gcaaacttta atgtgttatt ttctactgtg tttccaccta	14340
caagttttgg accactagta agaaaaatat ttgtagatgg tgttcctttt gttgtttcaa	14400
ctggatacca ttttcgtgag ttaggagtcg tacataatca ggatgtaaac ttacatagct	14460
cgcgtctcag tttcaaggaa cttttagtgt atgctgctga tccagctatg catgcagctt	14520
ctggcaattt attgctagat aaacgcacta catgcttttc agtagctgca ctaacaaaca	14580
atgttgcttt tcaaactgtc aaacccggta attttaataa agacttttat gactttgctg	14640
tgtctaaagg tttctttaag gaaggaagtt ctgttgaact aaaacacttc ttctttgctc	14700
aggatggcaa cgctgctatc agtgattatg actattatcg ttataatctg ccaacaatgt	14760
gtgatatcag acaactccta ttcgtagttg aagttgttga taaatacttt gattgttacg	14820
atggtggctg tattaatgcc aaccaagtaa tcgttaacaa tctggataaa tcagctggtt	14880
tcccatttaa taaatggggt aaggctagac tttattatga ctcaatgagt tatgaggatc	14940
aagatgcact tttcgcgtat actaagcgta atgtcatccc tactataact caaatgaatc	15000
ttaagtatgc cattagtgca aagaatagag ctcgcaccgt agctggtgtc tctatctgta	15060
gtactatgac aaatagacag tttcatcaga aattattgaa gtcaatagcc gccactagag	15120
gagctactgt ggtaattgga acaagcaagt tttacggtgg ctggcataat atgttaaaaa	15180
ctgtttacag tgatgtagaa actccacacc ttatgggttg ggattatcca aaatgtgaca	15240
gagccatgcc taacatgctt aggataatgg cctctcttgt tcttgctcgc aaacataaca	15300
cttgctgtaa cttatcacac cgtttctaca ggttagctaa cgagtgtgcg caagtattaa	15360
gtgagatggt catgtgtggc ggctcactat atgttaaacc aggtggaaca tcatccggtg	15420
atgctacaac tgcttatgct aatagtgtct ttaacatttg tcaagctgtt acagccaatg	15480
taaatgcact tctttcaact gatggtaata agatagctga caagtatgtc cgcaatctac	15540
aacacaggct ctatgagtgt ctctatagaa atagggatgt tgatcatgaa ttcgtggatg	15600
agttttacgc ttacctgcgt aaacatttct ccatgatgat tctttctgat gatgccgttg Page 8	15660

tgtgctataa cagtaactat gcggctcaag gtttagtagc tagcattaag aactttaagg 1	5720
cagttettta ttateaaaat aatgtgttea tgtetgagge aaaatgttgg actgagaetg 1	5780
accttactaa aggacctcac gaattttgct cacagcatac aatgctagtt aaacaaggag 1	5840
atgattacgt gtacctgcct tacccagatc catcaagaat attaggcgca ggctgttttg 1	.5900
atgattacgt gtacctgct taccagate categoria aaggttcgtg tcactgcta 1	.5960
tcgatgatat tgtcaaaaca gatggtacac ttatgattga aaggttcgtg tcactggcta 1	.6020
ttgatgctta cccacttaca aaacatccta attaggagta tgetgueges toosaass	.6080
atttacaata cattagaaag ttacatgatg agettactgg educatgetg salang	6140
ccgtaatgct aactaatgat aacacctcac ggtactggga acctgagett aacgaget	L6200
tgtacacacc acatacagtc ttgcaggctg taggtgcttg tgtattgcg untring	L6260
cttcacttcg ttgcggtgcc tgtattagga gaccatteet utgetgeung igengen	L6320
accatgicat ticaacatca cacaaattag tyttgicigi taateestas garagam	
ccccaggttg tgatgtcact gatgtgacac aactgtatet aggaggtatg agreement	16380
gcaagtcaca taagcctccc attagttitt cattatgige taatggcoup governs	16440
tatacaaaaa cacatgtgta ggcagtgaca atgttattga ctttaatggg taagaan	16500
gtgattggac taatgctggc gattacalac tigctaacac tigtacigus usacionis	16560
ttttcgcagc agaaacgctc adagccacty aggadacatt tuugetged tuugetged	16620
ccactgtacg cgaagtactc tctgacagag aattgcatct ttcatgggag gttggaaaac	16680
ctagaccacc attgaacaga aactatgtct ttactggtta ccgtgtaact aaaaatagta	16740
aagtacagat tggagagtac acctttgaaa aaggtgacta tggtgatgct gttgtgtaca	16800
gaggtactac gacatacaag ttgaatgttg gtgattactt tgtgttgaca tctcacactg	16860
taatgccact tagtgcacct actctagtgc cacaagagca ctatgtgaga attactggct	16920
tgtacccaac actcaacatc tcagatgagt tttctagcaa tgttgcaaat tatcaaaagg	16980
tcggcatgca aaagtactct acactccaag gaccacctgg tactggtaag agtcattttg	17040
ccatcggact tgctctctat tacccatctg ctcgcatagt gtatacggca tgctctcatg	17100
cagctgttga tgccctatgt gaaaaggcat taaaatattt gcccatagat aaatgtagta	17160
gaatcatacc tgcgcgtgcg cgcgtagagt gttttgataa attcaaagtg aattcaacac	17220
tagaacagta tgttttctgc actgtaaatg cattgccaga aacaactgct gacattgtag	17280
tctttgatga aatctctatg gctactaatt atgacttgag tgttgtcaat gctagacttc	17340
gtgcaaaaca ctacgtctat attggcgatc ctgctcaatt accagccccc cgcacattgc	17400
tgactaaagg cacactagaa ccagaatatt ttaattcagt gtgcagactt atgaaaacaa	17460
taggtccaga catgttcctt ggaacttgtc gccgttgtcc tgctgaaatt gttgacactg	17520
tgagtgcttt agtttatgac aataagctaa aagcacacaa ggataagtca gctcaatgct	17580
tcaaaatgtt ctacaaaggt gttattacac atgatgtttc atctgcaatc aacagacctc	17640
aaataggcgt tgtaagagaa tttcttacac gcaatcctgc ttggagaaaa gctgtttta	17700
Page 9	

tctcacctta	taattcacag	aacgctgtag	cttcaaaaat	cttaggattg	cctacgcaga	17760
ctgttgattc	atcacagggt	tctgaatatg	actatgtcat	attcacacaa	actactgaaa	17820
cagcacactc	ttgtaatgtc	aaccgcttca	atgtggctat	: cacaagggca	aaaattggca	17880
ttttgtgcat	aatgtctgat	agagatcttt	atgacaaact	gcaatttaca	. agtctagaaa	17940
taccacgtcg	caatgtggct	acattacaag	cagaaaatgt	aactggactt	tttaaggact	18000
gtagtaagat	cattactggt	cttcatccta	cacaggcacc	tacacacctc	agcgttgata	18060
taaagttcaa	gactgaagga	ttatgtgttg	acataccagg	cataccaaag	gacatgacct	18120
accgtagact	catctctatg	atgggtttca	aaatgaatta	ccaagtcaat	ggttacccta	18180
atatgtttat	cacccgcgaa	gaagctattc	gtcacgttcg	tgcgtggatt	ggctttgatg	18240
tagagggctg	tcatgcaact	agagatgctg	tgggtactaa	cctacctctc	cagctaggat	18300
tttctacagg	tgttaactta	gtagctgtac	cgactggtta	tgttgacact	gaaaataaca	18360
cagaattcac	cagagttaat	gcaaaacctc	caccaggtga	ccagtttaaa	catcttatac	18420
cactcatgta	taaaggcttg	ccctggaatg	tagtgcgtat	taagatagta	caaatgctca	18480
gtgatacact	gaaaggattg	tcagacagag	tcgtgttcgt	cctttgggcg	catggctttg	18540
agcttacatc	aatgaagtac	tttgtcaaga	ttggacctga	aagaacgtgt	tgtctgtgtg	18600
acaaacgtgc	aacttgcttt	tctacttcat	cagatactta	tgcctgctgg	aatcattctg	18660
tgggttttga	ctatgtctat	aacccattta	tgattgatgt	tcagcagtgg	ggctttacgg	18720
gtaaccttca	gagtaaccat	gaccaacatt	gccaggtaca	tggaaatgca	catgtggcta	18780
gttgtgatgc	tatcatgact	agatgtttag	cagtccatga	gtgctttgtt	aagcgcgttg	18840
attggtctgt	tgaataccct	attataggag	atgaactgag	ggttaattct	gcttgcagaa	18900
aagtacaaca	catggttgtg	aagtctgcat	tgcttgctga	taagtttcca	gttcttcatg	18960
acattggaaa	tccaaaggct	atcaagtgtg	tgcctcaggc	tgaagtagaa	tggaagttct	19020
		gacaaagctt				19080
		actgatggtg				19140
gttacccagc	caatgcaatt	gtgtgtaggt	ttgacacaag	agtcttgtca	aacttgaact	19200
		agtttgtatg			_	19260
		aatttaaagc			_	19320
		caagtagtgt				19380
		aatttaggtg				19440
		tataatatga				19500
		aacctgtgga				19560
		aataaaggac			_	19620
		gtttacacaa			_	19680
aaaataagac a	aacacttcct	gttaatgttg	catttgagct Page 10	ttgggctaag	cgtaacatta	19740

aaccagtgcc	agagattaag	atactcaata	atttgggtgt	tgatatcgct	gctaatactg	19800
taatctggga	ctacaaaaga	gaagccccag	cacatgtatc	tacaataggt	gtctgcacaa	19860
tgactgacat	tgccaagaaa	cctactgaga	gtgcttgttc	ttcacttact	gtcttgtttg	19920
atggtagagt	ggaaggacag	gtagaccttt	ttagaaacgc	ccgtaatggt	gttttaataa	19980
cagaaggttc	agtcaaaggt	ctaacacctt	caaagggacc	agcacaagct	agcgtcaatg	20040
gagtcacatt	aattggagaa	tcagtaaaaa	cacagtttaa	ctactttaag	aaagtagacg	20100
gcattattca	acagttgcct	gaaacctact	ttactcagag	cagagactta	gaggatttta	20160
agcccagatc	acaaatggaa	actgactttc	tcgagctcgc	tatggatgaa	ttcatacagc	20220
gatataagct	cgagggctat	gccttcgaac	acatcgttta	tggagatttc	agtcatggac	20280
aacttggcgg	tcttcattta	atgataggct	tagccaagcg	ctcacaagat	tcaccactta	20340
aattagagga	ttttatccct	atggacagca	cagtgaaaaa	ttacttcata	acagatgcgc	20400
aaacaggttc	atcaaaatgt	gtgtgttctg	tgattgatct	tttacttgat	gactttgtcg	20460
agataataaa	gtcacaagat	ttgtcagtga	tttcaaaagt	ggtcaaggtt	acaattgact	20520
atgctgaaat	ttcattcatg	ctttggtgta	aggatggaca	tgttgaaacc	ttctacccaa	20580
aactacaagc	aagtcaagcg	tggcaaccag	gtgttgcgat	gcctaacttg	tacaagatgc	20640
aaagaatgct	tcttgaaaag	tgtgaccttc	agaattatgg	tgaaaatgct	gttataccaa	20700
aaggaataat	gatgaatgtc	gcaaagtata	ctcaactgtg	tcaatactta	aatacactta	20760
ctttagctgt	accctacaac	atgagagtta	ttcactttgg	tgctggctct	gataaaggag	20820
ttgcaccagg	tacagctgtg	ctcagacaat	ggttgccaac	tggcacacta	cttgtcgatt	20880
cagatcttaa	tgacttcgtc	tccgacgcag	attctacttt	aattggagac	tgtgcaacag	20940
tacatacggc	taataaatgg	gaccttatta	ttagcgatat	gtatgaccct	aggaccaaac	21000
atgtgacaaa	agagaatgac	tctaaagaag	ggtttttcac	ttatctgtgt	ggatttataa	21060
agcaaaaact	agccctgggt	ggttctatag	ctgtaaagat	aacagagcat	tcttggaatg	21120
ctgaccttta	caagcttatg	ggccatttct	catggtggac	agcttttgtt	acaaatgtaa	21180
atgcatcatc	atcggaagca	tttttaattg	gggctaacta	tcttggcaag	ccgaaggaac	21240
aaattgatgg	ctataccatg	catgctaact	acattttctg	gaggaacaca	aatcctatcc	21300
agttgtcttc	ctattcactc	tttgacatga	gcaaatttcc	tcttaaatta	agaggaactg	21360
ctgtaatgtc	tcttaaggag	aatcaaatca	atgatatgat	ttattctctt	ctggaaaaag	21420
gtaggcttat	cattagagaa	aacaacagag	ttgtggtttc	aagtgatatt	cttgttaaca	21480
actaaacgaa	catgtttatt	ttcttattat	ttcttactct	cactagtggt	agtgaccttg	21540
accggtgcac	cacttttgat	gatgttcaag	ctcctaatta	cactcaacat	acttcatcta	21600
tgaggggggt	ttactatcct	gatgaaattt	ttagatcaga	cactctttat	ttaactcagg	21660
atttatttct	tccattttat	tctaatgtta	cagggtttca	tactattaat	catacgtttg	21720
gcaaccctgt	catacctttt	aaggatggta	tttattttgc Page 11	tgccacagag	aaatcaaatg	21780

ttgtccgtgg	ttgggtttt	ggttctacca	tgaacaacaa	gtcacagtc	g gtgattatta	21840
ttaacaatto	tactaatgtt	gttatacgag	catgtaactt	tgaattgtg1	gacaaccctt	21900
tctttgctgt	ttctaaaccc	atgggtacac	agacacatac	: tatgatatto	gataatgcat	21960
ttaattgcac	tttcgagtac	atatctgatg	ccttttcgct	tgatgtttca	gaaaagtcag	22020
gtaattttaa	acacttacga	gagtttgtgt	ttaaaaataa	agatgggttt	ctctatgttt	22080
ataagggcta	tcaacctata	gatgtagttc	gtgatctacc	ttctggtttt	aacactttga	22140
aacctattt	taagttgcct	cttggtatta	acattacaaa	ttttagagco	attcttacag	22200
ccttttcacc	tgctcaagac	atttggggca	cgtcagctgc	agcctatttt	gttggctatt	22260
taaagccaac	tacatttatg	ctcaagtatg	atgaaaatgg	tacaatcaca	gatgctgttg	22320
attgttctca	aaatccactt	gctgaactca	aatgctctgt	taagagcttt	gagattgaca	22380
aaggaattta	ccagacctct	aatttcaggg	ttgttccctc	aggagatgtt	gtgagattcc	22440
ctaatattac	aaacttgtgt	ccttttggag	aggtttttaa	tgctactaaa	ttcccttctg	22500
tctatgcatg	ggagagaaaa	aaaatttcta	attgtgttgc	tgattactct	gtgctctaca	22560
actcaacatt	tttttcaacc	tttaagtgct	atggcgtttc	tgccactaag	ttgaatgatc	22620
tttgcttctc	caatgtctat	gcagattctt	ttgtagtcaa	gggagatgat	gtaagacaaa	22680
tagcgccagg	acaaactggt	gttattgctg	attataatta	taaattgcca	gatgatttca	22740
tgggttgtgt	ccttgcttgg	aatactagga	acattgatgc	tacttcaact	ggtaattata	22800
attataaata	taggtatctt	agacatggca	agcttaggcc	ctttgagaga	gacatatcta	22860
atgtgccttt	ctcccctgat	ggcaaacctt	gcaccccacc	tgctcttaat	tgttattggc	22920
cattaaatga	ttatggtttt	tacaccacta	ctggcattgg	ctaccaacct	tacagagttg	22980
tagtactttc	ttttgaactt	ttaaatgcac	cggccacggt	ttgtggacca	aaattatcca	23040
ctgaccttat	taagaaccag	tgtgtcaatt	ttaattttaa	tggactcact	ggtactggtg	.23100
tgttaactcc	ttcttcaaag	agatttcaac	catttcaaca	atttggccgt	gatgtttctg	23160
atttcactga	ttccgttcga	gatcctaaaa	catctgaaat	attagacatt	tcaccttgct	23220
cttttggggg	tgtaagtgta	attacacctg	gaacaaatgc	ttcatctgaa	gttgctgttc	23280
tatatcaaga	tgttaactgc	actgatgttt	ctacagcaat	tcatgcagat	caactcacac	23340
cagcttggcg	catatattct	actggaaaca	atgtattcca	gactcaagca	ggctgtctta	23400
taggagctga	gcatgtcgac	acttcttatg	agtgcgacat	tcctattgga	gctggcattt	23460
gtgctagtta	ccatacagtt	tctttattac	gtagtactag	ccaaaaatct	attgtggctt	23520
atactatgtc	tttaggtgct	gatagttcaa	ttgcttactc	taataacacc	attgctatac	23580
ctactaactt	ttcaattagc	attactacag	aagtaatgcc	tgtttctatg	gctaaaacct	23640
ccgtagattg	taatatgtac	atctgcggag	attctactga	atgtgctaat	ttgcttctcc	23700
		caactaaatc				23760
atcgcaacac	acgtgaagtg	ttcgctcaag	tcaaacaaat Page 12	gtacaaaacc	ccaactttga	23820

aatattttgg	tggttttaat	ttttcacaaa	tattacctga	ccctctaaag	ccaactaaga	23880
ggtcttttat	tgaggacttg	ctctttaata	aggtgacact	cgctgatgct	ggcttcatga	23940
agcaatatgg	cgaatgccta	ggtgatatta	atgctagaga	tctcatttgt	gcgcagaagt	24000
tcaatggact	tacagtgttg	ccacctctgc	tcactgatga	tatgattgct	gcctacactg	24060
ctgctctagt	tagtggtact	gccactgctg	gatggacatt	tggtgctggc	gctgctcttc	24120
aaataccttt	tgctatgcaa	atggcatata	ggttcaatgg	cattggagtt	acccaaaatg	24180
ttctctatga	gaaccaaaaa	caaatcgcca	accaatttaa	caaggcgatt	agtcaaattc	24240
aagaatcact	tacaacaaca	tcaactgcat	tgggcaagct	gcaagacgtt	gttaaccaga	24300
atgctcaagc	attaaacaca	cttgttaaac	aacttagctc	taattttggt	gcaatttcaa	24360
gtgtgctaaa	tgatatcctt	tcgcgacttg	ataaagtcga	ggcggaggta	caaattgaca	24420
ggttaattac	aggcagactt	caaagccttc	aaacctatgt	aacacaacaa	ctaatcaggg	24480
ctgctgaaat	cagggcttct	gctaatcttg	ctgctactaa	aatgtctgag	tgtgttcttg	24540
gacaatcaaa	aagagttgac	ttttgtggaa	agggctacca	ccttatgtcc	ttcccacaag	24600
cagccccgca	tggtgttgtc	ttcctacatg	tcacgtatgt	gccatcccag	gagaggaact	24660
tcaccacagc	gccagcaatt	tgtcatgaag	gcaaagcata	cttccctcgt	gaaggtgttt	24720
ttgtgtttaa	tggcacttct	tggtttatta	cacagaggaa	cttcttttct	ccacaaataa	24780
ttactacaga	caatacattt	gtctcaggaa	attgtgatgt	cgttattggc	atcattaaca	24840
acacagttta	tgatcctctg	caacctgagc	ttgactcatt	caaagaagag	ctggacaagt	24900
acttcaaaaa	tcatacatca	ccagatgttg	atcttggcga	catttcaggc	attaacgctt	24960
ctgtcgtcaa	cattcaaaaa	gaaattgacc	gcctcaatga	ggtcgctaaa	aatttaaatg	25020
aatcactcat	tgaccttcaa	gaattgggaa	aatatgagca	atatattaaa	tggccttggt	25080
atgtttggct	cggcttcatt	gctggactaa	ttgccatcgt	catggttaca	atcttgcttt	25140
gttgcatgac	tagttgttgc	agttgcctca	agggtgcatg	ctcttgtggt	tcttgctgca	25200
agtttgatga	ggatgactct	gagccagttc	tcaagggtgt	caaattacat	tacacataaa	25260
cgaacttatg	gatttgttta	tgagattttt	tactcttgga	tcaattactg	cacagccagt	25320
aaaaattgac	aatgcttctc	ctgcaagtac	tgttcatgct	acagcaacga	taccgctaca	25380
agcctcactc	cctttcggat	ggcttgttat	tggcgttgca	tttcttgctg	tttttcagag	25440
cgctaccaaa	ataattgcgc	tcaataaaag	atggcagcta	gccctttata	agggcttcca	25500
gttcatttgc	aatttactgc	tgctatttgt	taccatctat	tcacatcttt	tgcttgtcgc	25560
tgcaggtatg	gaggcgcaat	ttttgtacct	ctatgccttg	atatattttc	tacaatgcat	25620
caacgcatgt	agaattatta	tgagatgttg	gctttgttgg	aagtgcaaat	ccaagaaccc	25680
attactttat	gatgccaact	actttgtttg	ctggcacaca	cataactatg	actactgtat	25740
accatataac	agtgtcacag	atacaattgt	cgttactgaa	ggtgacggca	tttcaacacc	25800
aaaactcaaa	gaagactacc	aaattggtgg	ttattctgag Page 13	gataggcact	caggtgttaa	25860

清 河

agactatgtc gttgtacatg gctatttcac cgaagtttac taccagcttg agtctacaca	25920
aattactaca gacactggta ttgaaaatgc tacattcttc atctttaaca agcttgttaa	25980
agacccaccg aatgtgcaaa tacacacaat cgacggctct tcaggagttg ctaatccagc	26040
aatggatcca atttatgatg agccgacgac gactactagc gtgcctttgt aagcacaaga	26100
aagtgagtac gaacttatgt actcattcgt ttcggaagaa acaggtacgt taatagttaa	26160
tagcgtactt ctttttcttg ctttcgtggt attcttgcta gtcacactag ccatccttac	26220
tgcgcttcga ttgtgtgcgt actgctgcaa tattgttaac gtgagtttag taaaaccaac	26280
ggtttacgtc tactcgcgtg ttaaaaatct gaactcttct gaaggagttc ctgatcttct	26340
ggtctaaacg aactaactat tattattatt ctgtttggaa ctttaacatt gcttatcatg	26400
gcagacaacg gtactattac cgttgaggag cttaaacaac tcctggaaca atggaaccta	26460
gtaataggtt tcctattcct agcctggatt atgttactac aatttgccta ttctaatcgg	26520
aacaggtttt tgtacataat aaagcttgtt ttcctctggc tcttgtggcc agtaacactt	26580
gcttgttttg tgcttgctgc tgtctacaga attaattggg tgactggcgg gattgcgatt	26640
gcaatggctt gtattgtagg cttgatgtgg cttagctact tcgttgcttc cttcaggctg	26700
tttgctcgta cccgctcaat gtggtcattc aacccagaaa caaacattct tctcaatgtg	26760
cctctccggg ggacaattgt gaccagaccg ctcatggaaa gtgaacttgt cattggtgct	26820
gtgatcattc gtggtcactt gcgaatggcc ggacactccc tagggcgctg tgacattaag	26880
gacctgccaa aagagatcac tgtggctaca tcacgaacgc tttcttatta caaattagga	26940
gcgtcgcagc gtgtaggcac tgattcaggt tttgctgcat acaaccgcta ccgtattgga	27000
aactataaat taaatacaga ccacgccggt agcaacgaca atattgcttt gctagtacag	27060 -
taagtgacaa cagatgtttc atcttgttga cttccaggtt acaatagcag agatattgat	27120
tatcattatg aggactttca ggattgctat ttggaatctt gacgttataa taagttcaat	27180
agtgagacaa ttatttaagc ctctaactaa gaagaattat tcggagttag atgatgaaga	27240
acctatggag ttagattatc cataaaacga acatgaaaat tattctcttc ctgacattga	27300
ttgtatttac atcttgcgag ctatatcact atcaggagtg tgttagaggt acgactgtac	27360
tactaaaaga accttgccca tcaggaacat acgagggcaa ttcaccattt caccctcttg	27420
ctgacaataa atttgcacta acttgcacta gcacacactt tgcttttgct tgtgctgacg	27480
gtactcgaca tacctatcag ctgcgtgcaa gatcagtttc accaaaactt ttcatcagac	27540
aagaggaggt tcaacaagag ctctactcgc cactttttct cattgttgct gctctagtat	27600
ttttaatact ttgcttcacc attaagagaa agacagaatg aatgagctca ctttaattga	27660
cttctatttg tgctttttag cctttctgct attccttgtt ttaataatgc ttattatatt	27720
	27780
	27840
gcgctgtgca tctaataaac ctcatgtgct tgaagatcct tgtaaggtac aacactaggg Page 14	27900

gtaatactta tagcactgct tggctttgtg ctctaggaaa ggttttacct tttcatagat 27960 28020 ggcacactat ggttcaaaca tgcacaccta atgttactat caactgtcaa gatccagctg 28080 gtggtgcgct tatagctagg tgttggtacc ttcatgaagg tcaccaaact gctgcattta qagacqtact tqttqtttta aataaacgaa caaattaaaa tgtctgataa tggaccccaa 28140 tcaaaccaac gtagtgcccc ccgcattaca tttggtggac ccacagattc aactgacaat 28200 28260 aaccagaatg gaggacgcaa tggggcaagg ccaaaacagc gccgacccca aggtttaccc 28320 aataatactg cgtcttggtt cacagctctc actcagcatg gcaaggagga acttagattc cctcgaggcc agggcgttcc aatcaacacc aatagtggtc cagatgacca aattggctac 28380 taccgaagag ctacccgacg agttcgtggt ggtgacggca aaatgaaaga gctcagcccc 28440 28500 agatggtact tctattacct aggaactggc ccagaagctt cacttcccta cggcgctaac aaagaaggca tcgtatgggt tgcaactgag ggagccttga atacacccaa agaccacatt 28560 28620 ggcacccgca atcctaataa caatgctgcc accgtgctac aacttcctca aggaacaaca ttgccaaaag gcttctacgc agagggaagc agaggcggca gtcaagcctc ttctcgctcc 28680 tcatcacgta gtcgcggtaa ttcaagaaat tcaactcctg gcagcagtag gggaaattct 28740 cctgctcgaa tggctagcgg aggtggtgaa actgccctcg cgctattgct gctagacaga 28800 28860 ttgaaccagc ttgagagcaa agtttctggt aaaggccaac aacaacaagg ccaaactgtc actaagaaat ctgctgctga ggcatctaaa aagcctcgcc aaaaacgtac tgccacaaaa 28920 cagtacaacg tcactcaagc atttgggaga cgtggtccag aacaaaccca aggaaatttc 28980 ggggaccaag acctaatcag acaaggaact gattacaaac attggccgca aattgcacaa 29040 29100 tttgctccaa gtgcctctgc attctttgga atgtcacgca ttggcatgga agtcacacct tcgggaacat ggctgactta tcatqgaqcc attaaattgg atgacaaaga tccacaattc 29160 aaagacaacg tcatactgct gaacaagcac attgacgcat acaaaacatt cccaccaaca 29220 gagcctaaaa aggacaaaaa gaaaaagact gatgaagctc agcctttgcc gcagagacaa 29280 aagaagcagc ccactgtgac tcttcttcct gcggctgaca tggatgattt ctccagacaa 29340 cttcaaaatt ccatgagtgg agcttctgct gattcaactc aggcataaac actcatgatg 29400 accacacaag gcagatgggc tatgtaaacg ttttcgcaat tccgtttacg atacatagtc 29460 tactcttgtg cagaatgaat tctcgtaact aaacagcaca agtaggttta gttaacttta 29520 atctcacata gcaatcttta atcaatgtgt aacattaggg aggacttgaa agagccacca 29580 cattttcatc gaggccacgc ggagtacgat cgagggtaca gtgaataatg ctagggagag 29640 ctgcctatat ggaagagccc taatgtgtaa aattaatttt agtagtgcta tccccatgtg 29700 29746

0.

`v 3

ं

<210> 2<211> 3945<212> DNA<213> CORONAVIRUS<220><221> CDS<222>
(89)..(3853)<223>

<400> 2

tt	ctct	tcto	g gaa	aaag	ıgta	ggct	tato	s at t	226C agag	AS11: aaaa	1.ST	25 acaga	igtt	j tg	gtttc	aag 60
tg	atat	tcti	gti	aaca	act	aaac	gaac	atg Met 1	ttt Phe	att Ile	ttc Phe	tta Leu 5	ı tta ı Leu	tti Phe	t ctt e Leu	112
ac Th	t ct r Le 10	u ii	r ag ir se	it gg er Gl	t ag y Se	r ga r As 15	c ct p Le	t ga u As	c cg p Ar	g tg g Cy	c ac s Th 20	r Th	t tt ir Ph	it ga ie As	at ga sp Asp	t 160
gt Va 25	. 01	a go n Al	t co a Pr	t aa o As	t ta n Ty 30	1. ID	t ca r Gl	a ca n Hi	t ac s Th	t tc r se 35	a tc r Se	t at r Me	g ag t Ar	g gg g Gl	gg gtt ly Val 40	208
ta Ty	c ta r Ty	t cc r Pr	t ga o As	t ga p Gl 45	a at u Il	t tt e Ph	t ag e Ar	a tc g Se	a ga r Ası 50	c act	t ct r Le	t ta u Ty	t tt r Le	a ac u Th 55	t cag ir Gln	256
ړۍ	Le	u 711	60	u Pro	PNC	ету	r sei	65	n va	I Thi	r Gly	y Ph	e Hi. 70	s Th	t att r Ile	.*
aa1 Asi	t car 1 Hi:	t ac 5 Th 75	g tt r Ph	t ggd e Gly	c aad / Asr	c cct n Pro	gto Val 80	ata Ila	a cct e Pro	t ttt D Phe	t aag	g gat s Ası 85	t gg o Gly	t at y Il	t tat e Tyr	352
tt1 Phe	gc1 2 Ala 90	t gc	c aca	a gaq r Gli	g aaa I Lys	a tca s Ser 95	aat Asr	gti Val	t gto l Val	cgt Arg	ggt Gly 100	/ Trp	g gti o Va	t tt l Ph	t ggt e Gly	400
tct Ser 105		ate Me	g aad t Asi	c aad 1 Asr	aag Lys 110	361	cag Gln	tcg Ser	ggtg Val	att Ile 115	TIE	att Elle	aac Asr	aa Ası	t tct n Ser 120	448
• • • • • • • • • • • • • • • • • • • •	731	va	va.	125	Arg	Ala	cys	ASI	130	Glu	Leu	ı Cys	Asp	135 135		496
		,,,,,	140)	Lys	710	MEC	145	1 (1)	GIN	ınr	HTS	150	Met	ata Ile	5.44
		155			. 7311	Cys	160	riie	Giu	ryr	TIE	5er 165	Asp	Ala	ttt Phe	_. 592
	170	ΛJÞ	, vai	361	Giu	175	ser	GIY	aat Asn	Pne	180	His	Leu	Arg	Glu	640
185	741		Lys	ASII	190	ASP	ч	Pne	ctc Leu	195	vaı	Tyr	Lys	Gly	Tyr 200	688
• • • • • • • • • • • • • • • • • • • •		.	vah	205	vai	Arg	ASP	Leu	cct Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	736
_,,		116	220	Lys	Leu	Pro	Leu	225	att Ile	ASN	Ile	Thr	Asn 230	Phe	Arg	784
	,	235	••••	AIU	1116	261	240	Ald	caa Gln	ASP .	Tie	245	GIY	Thr	Ser	832
gct Ala	gca Ala	gcc Ala	tat Tyr	ttt Phe	gtt Val	ggc Gly	tat Tyr	tta Leu	aag Lys Page	Pro '	act Thr	aca Thr	ttt Phe	atg Met	ctc Leu	880

250 S226CAS111.ST25 250 255 260 tat gat gaa aat ggt aca atc aca gat gct gtt g

	230					233					200					
aag Lys 265	tat Tyr	gat Asp	gaa Glu	aat Asn	ggt Gly 270	aca Thr	atc Ile	aca Thr	gat Asp	gct Ala 275	gtt Val	gat Asp	tgt Cys	tct Ser	caa G1n 280	928
aat Asn	cca Pro	ctt Leu	gct Ala	gaa Glu 285	ctc Leu	aaa Lys	tgc Cys	tct Ser	gtt Val 290	aag Lys	agc Ser	ttt Phe	gag Glu	att Ile 295	gac Asp	976
aaa Lys	gga Gly	att Ile	tac Tyr 300	cag Gln	acc Thr	tct Ser	aat Asn	ttc Phe 305	agg Arg	gtt Val	gtt Val	CCC Pro	tca Ser 310	gga Gly	gat Asp	1024
									ttg Leu							1072
ttt Phe	aat Asn 330	gct Ala	act Thr	aaa Lys	ttc Phe	cct Pro 335	tct Ser	gtc Val	tat Tyr	gca Ala	tgg Trp 340	gag Glu	aga Arg	aaa Lys	aaa Lys	1120
att Ile 345	tct Ser	aat Asn	tgt Cys	gtt Val	gct Ala 350	gat Asp	tac Tyr	tct Ser	gtg Val	ctc Leu 355	tac Tyr	aac Asn	tca Ser	aca Thr	ttt Phe 360	1168
ttt Phe	tca Ser	acc Thr	ttt Phe	aag Lys 365	tgc Cys	tat Tyr	ggc Gly	gtt Val	tct Ser 370	gcc Ala	act Thr	aag Lys	ttg Leu	aat Asn 375	gat Asp	1216
ctt Leu	tgc Cys	ttc Phe	tcc Ser 380	aat Asn	gtc Val	tat Tyr	gca Ala	gat Asp 385	tct Ser	ttt Phe	gta Val	gtc Val	aag Lys 390	gga Gly	gat Asp	1264
gat Asp	gta Val	aga Arg 395	caa G1n	ata Ile	gcg Ala	cca Pro	gga Gly 400	caa Gln	act Thr	ggt Gly	gtt Val	att Ile 405	gct Ala	gat Asp	tat Tyr	1312
aat Asn	tat Tyr 410	aaa Lys	ttg Leu	cca Pro	gat Asp	gat Asp 415	ttc Phe	atg Met	ggt Gly	tgt Cys	gtc Val 420	ctt Leu	gct Ala	tgg Trp	aat Asn	1360
act Thr 425	agg Arg	aac Asn	att Ile	gat Asp	gct Ala 430	act Thr	tca Ser	act Thr	ggt Gly	aat Asn 435	tat Tyr	aat Asn	tat Tyr	aaa Lys	tat Tyr 440	1408
agg Arg	tat Tyr	ctt Leu	aga Arg	cat His 445	ggc Gly	aag Lys	ctt Leu	agg Arg	ccc Pro 450	ttt Phe	gag Glu	aga Arg	gac Asp	ata 11e 455	tct Ser	1456
									cct Pro							1504
									ggt Gly							1552
att Ile	ggc Gly 490	tac Tyr	caa Gln	cct Pro	tac Tyr	aga Arg 495	gtt Val	gta Val	gta Val	ctt Leu	tct Ser 500	ttt Phe	gaa Glu	ctt Leu	tta Leu	1600
aat Asn 505	gca Ala	ccg Pro	gcc Ala	acg Thr	gtt Val 510	tgt Cys	gga Gly	cca Pro	aaa Lys	tta Leu 515	tcc Ser	act Thr	gac Asp	ctt Leu	att Ile 520	1648
									aat Asn Pag							1696

					52	5				s2	26c/ 53		11.9	ST2.	5		5	35		
gt Va	g tt I Le	a a u Ti		cct Pro 540		t to r se	a a	ag a ys A	ı y	ttt Phe 545	- G	a co n Pi	ca ro	ttt Phe	caa G1r	a ca n Gl 55	n P	tt he	ggc Gly	1744
cg Ar	t ga g As		tt :	tct Ser	ga: As	t tt p Ph	c ad e Th	11 W	at : sp :	tcc Ser	gt Va	t co 1 Ar	ga g 'g /	gat Asp	cct Pro 565	Ly	a a s T	ca hr	tct Ser	1792
ga: Gl:	a at u Il 57		a e	gac Asp	ati Ile	t tc e Se	a co r Pr 57	<u> </u>	gc 1 ys 9	tct Ser	tti Phe	t gg e Gl	у	ggt Gly 580	gta Val	ag Se	t g r V	ta al	att Ile	1840
aca Thi 585	a cc r Pro	t gg o G1	ja a y 1	aca ſhr	aat Asr	gc 1 Al 59	<u>u</u> 50	a to	ct g er G	yaa ilu	gtt Val	gc 1 A1 59	a٧	gtt /al	cta Leu	ta Ty	t ca	aa In	gat Asp 600	1888
	aa Ası	-,			605	···			11 14	ia	610))	SA	ııa	ASP	Gli	1 Le	L5	Thr	1936
eca Pro	gc1 Ala	t tg 1 Tr		gc rg 20	ata Ile	tai Tyi	t tc Se	t ac r Th	יו פ	ga 1y 25	aac Asn	aa Ası	t g n V	ta al	ttc Phe	cag Glr 630	Th	:t ir	caa Gln	1984
gca Ala	ggo	tg Cy. 63	= -	tt eu	ata Ile	gga Gly	gc Ala	t ga a G1 64	u n	at is	gtc Val	gad	c a	nr	tct Ser 645	tat Tyr	ga G1	g u	tgc Cys	2032
•	att Ile 650		_	-	,	,,,,	65	5	e c	ys	AIA	3e1	6	60 60	HIS	Inr	va	1 :	Ser	2080
tta Leu 665	tta Leu	cg1 Arg	t ag	gt a er	act Thr	agc Ser 670	911	a aa 1 Ly	a to s Se	et er	att Ile	gtg Val 675	A.	ct : la :	tat Tyr	act Thr	at Me	t S	tct Ser 580	2128
	ggt Gly			(585	301			y	(690	ASI	AS	sn 1	Inr	Ile	695	a I	Te	2176
	act Thr		70	00			JC.	110	70	5	1111	GIU	va	11 (*	net :	Pro 710	Val	S	er	2224
atg Met		715				٠	~3þ	720))	11 le	ne c	ıyr	Τι	e C	ys (25	GIY	Asp) S	er	2272
act Thr	730						735	LCu	G 1	11 (yı '	ч	74	0	ne (_ys	Thr	G	In	2320
cta Leu 745					-	750	O.y	116	A10	a A	la c	755	GII	пА	Sp A	ırg	Asn	TI 7(nr 50	2368
cgt Arg	gaa Glu	gtg Val	Pho	~ ~	ct d la d 65	caa Gln	gtc Val	aaa Lys	caa Glr	I M	tg 1 et 1 70	tac ſyr	aaa Lys	a ao 5 Ti	cc c hr P	ro	act Thr 775	tt Le	tg eu	2416
aaa Lys			780		., .	ne ,	4311	riie	785	G	10 1	.ie	Leu	1 Pr	о А 7	sp 1 90	Pro	Le	u	2464
aag (_ys	cca Pro	act Thr	aag Lys	J ag Ar	g t	ct ser i	ttt Phe	att Ile	gag Glu	AS	ac t sp L age	eu i	ctc Leu	tt Ph	t a	at a sn L	aag .ys	gt Va	g 1	2512

			793					000									2560
aca Thi	rL	tc eu 10	gct Ala	gat Asp	gct Ala	ggc Gly	ttc Phe 815	atg Met	aag Lys	caa Gln	tat Tyr	ggc Gly 820	gaa Glu	tgc Cys	cta Leu	ggt Gly	2560
ga As 82	рΙ	tt le	aat Asn	gct Ala	aga Arg	gat Asp 830	ctc Leu	att Ile	tgt Cys	gcg Ala	cag G1n 835	aag Lys	ttc Phe	aat Asn	gga Gly	ctt Leu 840	2608
ac Th	a g r V	tg al	ttg Leu	cca Pro	cct Pro 845	ctg Leu	ctc Leu	act Thr	gat Asp	gat Asp 850	MEC	att Ile	gct Ala	gcc Ala	tac Tyr 855	act Thr	2656
gc Al	t g a A	ict (la	cta Leu	gtt Val 860	ser	ggt Gly	act Thr	gcc Ala	act Thr 865	Ala	gga Gly	tgg Trp	aca Thr	ttt Phe 870	٠.,	gct Ala	2704
gg G1	c g	jct (la	gct Ala 875	Leu	caa Gln	ata Ile	cct Pro	ttt Phe 880	Ala	atg Met	caa Gln	atg Met	gca Ala 885		agg Arg	ttc Phe	2752
aa As	n G	ggc 31y 890	att Ile	gga Gly	gtt Val	acc Thr	caa Gln 895	ASII	gtt Val	cto	tat Tyr	gag Glu 900	~~	caa Gln	aaa Lys	caa Gln	2800
at 17 90	e A	gcc Ala	aac Asn	caa Glr	ttt Phe	aac Asn 910	Lys	gcg Ala	att Ile	agt Ser	caa Gln 915	1 110	caa Gln	gaa Glu	tca Ser	ctt Leu 920	2848
		aca Thr	aca Thr	tca Ser	act Thr 925	. VIS	ttg Leu	ggc Gly	aag Lys	cto Lei 930	1 611	gac n Asp	gtt Val	gtt Val	aac Asr 935	cag Gln	2896
a: A:	at (gct Ala	caa G]r	gca n Ala 940	a Lei	a aac u Asr	aca Thr	ctt Leu	gt1 Va 949	Ly:	a caa s Glr	a cti 1 Lei	ago u Ser	tct Ser 950		ttt Phe	2944
g G	gt ly	gca Ala	att 116 955	e Sei	a agi r Sei	t gto r Val	cta Lei	a aat 1 Asr 960	i Wal	t ate	c cti e Lei	t tcg u Sei	g cga r Arg 965	2	gat I Asp	aaa Lys	2992
g V	a I	gag Glu 970	Ala	g ga a Gl	g gta	a caa 1 Gli	a att	- A2	c agg	g tt: g Le	a at u Il	t aca e Thi 980		aga Y Arg	a cti g Lei	t caa u Gln	3040
S	gc er 85	Leu	ca: Gl	a ac n Th	c ta r Ty	t gt r Va 990	i in	a caa r Gli	a ca n Gli	a ct n Le	a ate u Il 99	E ~11	g gct g Ala	t gci a Ali	t gaa a Glo	a atc u Ile 1000	3088
а	aa	act	tc Se	t gc r Al	a As	t con Lo	tt g eu A	ct g la A	ct a la T	m. r	aa ys 010	atg Met	tct (Ser (gag ' Glu (-9-3	gtt Val 1015	3133
C L	tt eu	gga Gly	a ca ⁄ Gl	a tc n Se	r Ly	a a s A 20	ga g rg V	tt g al A	ac t sp P	ne c	gt ys 025	gga Gly	aag Lys	ggc Gly	.,.	сас His 1030	3178
C	tt .eu	ate Me	t Se	c tt r Ph	e Pr	a c o G 35	aa g 1n A	ca g la A	cc c la P		at is .040	ggt Gly	gtt Val	gtc Val		cta Leu 1045	3223
C F	at Iis	gt Va	c ac I Th	g ta ir Ty	r va	:g C :1 P :50	ca t ro s	cc c er G	ag g In G	ilu r	.gg .rg .055	aac Asn	ttc Phe	acc Thr		gcg Ala 1060	3268
Ç	ca Pro	gc. Al	a at a Il	t to e Cy	jt ca 's Hi	it g	aa g lu G	gc a	aa g ys A		ac yr age		cct Pro	cgt Arg	gaa Glu	ggt Gly	3313

				1065				s22	6CAS1 1070		Т25			1075	
gtt Val	ttt Phe	gtg Val	ttt Phe	aat Asn 1080	Gly	act Thr	tct Ser	tgg Trp	ttt Phe 1085	Ile	aca Thr	cag Glr	agg Arg	aac Asn 1090	3358
ttc Phe	ttt Phe	tct Ser	cca Pro	caa Gln 1095	Ile	att Ile	act Thr	aca Thr	gac Asp 1100	Asn	aca Thr	ttt Phe	gto Val	tca Ser 1105	3403
gga Gly	aat Asn	tgt Cys	gat Asp	gtc Val 1110	gtt Val	att Ile	ggc Gly	atc Ile	att Ile 1115	Asn	aac Asn	aca Thr	gtt Val	tat Tyr 1120	3448
gat Asp	cct Pro	ctg Leu	caa Gln	cct Pro 1125	gag Glu	ctt Leu	gac Asp	tca Ser	ttc Phe 1130	Lys	gaa Glu	gag Glu	ctg Leu	gac Asp 1135	3493
aag Lys	tac Tyr	ttc Phe	aaa Lys	aat Asn 1140	cat His	aca Thr	tca Ser	cca Pro	gat Asp 1145	gtt Val	gat Asp	ctt Leu	ggc Gly	gac Asp 1150	3538
att Ile	tca Ser	ggc Gly	att Ile	aac Asn 1155	gct Ala	tct Ser	gtc Val	gtc Val	aac Asn 1160	att Ile	caa Gln	aaa Lys	gaa Glu	att Ile 1165	3583
gac Asp	cgc Arg	ctc Leu	aat Asn	gag Glu 1170	gtc Val	gct Ala	aaa Lys	ASI	tta Leu 1175	aat Asn	gaa Glu	tca Ser	ctc Leu	att Ile 1180	3628
Asp	Leu	Gln	Glu	1185	Сту	Lys	туг	GIU	caa Gln 1190	tat Tyr	att Ile	aaa Lys	tgg Trp	cct Pro 1195	3673
tgg Trp	tat Tyr	gtt Val	rrp	ctc Leu 1200	ggc Gly	ttc Phe	att (Ile /	Ala ·	gga Gly 1205	cta Leu	att Ile	gcc Ala	atc Ile	gtc Val 1210	3718
atg Met	gtt Val	aca Thr	TIG	ttg Leu 1215	ctt Leu (tgt · Cys (tgc a Cys f	чеτ	act Thr 1220	agt Ser	tgt Cys	tgc Cys	Ser	tgc Cys 1225	3763
ctc Leu	aag Lys	ggt (Gly /	~ 1 u y	tgc Cys 1230	tct t Ser (tgt (Cys (ggt t Gly s	ser c	tgc Cys 1235	tgc a	aag Lys	ttt Phe	Asp (gag Glu 1240	3808
gat (gac Asp	tct (Ser (31U 1	cca o Pro N L245	gtt α /al ι	etc a eu l	ag <u>c</u> .ys c	ily V	gtc a /al i L250	aaa 1 Lys I	tta Leu I	cat His	Tyr ⁻	aca Thr 1255	3853
taaa	gaa	ct ta	atgga	itttg	ttta	itgag	at t	ttt	actct	t tgg	gatca	aatt	acto	gcacagc	3913
cagta	aaaa	at to	jacaa	tgct	tctc	ctgo	aa g	t							3945
<210>	- 3	<211>	- 12	55<21	.2>	PRT<	213>	CO	RONAV	/IRUS	<400)> 3	ł		
Met F 1	he 1	le P	he L 5	eu Le					u Thr				-	Leu	
Asp A	rg C	Cys T 2	hr т O	hr Ph	e As	p As	p Va 25] G]	n Ala	Pro	Asn	Tyr 30	Thr	Gln	
His T	hr s 3	er s 5	er M	et Ar	g Gl	y Va 40	Ту	г ту	r Pro	Asp	G]u 45	Ile	Phe	Arg	

Ser Asp Thr Leu Tyr Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser 50 60 Asn Val Thr Gly Phe His Thr Ile Asn His Thr Phe Gly Asn Pro Val 65 70 75 Ile Pro Phe Lys Asp Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn 85 90 Val Val Arg Gly Trp Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln
100 105 Ser Val Ile Ile Asn Asn Ser Thr Asn Val Val Ile Arg Ala Cys 115 120 Asn Phe Glu Leu Cys Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met 130 140 Gly Thr Gln Thr His Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr 145 150 155 160 Phe Glu Tyr Ile Ser Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser 165 170 175 Gly Asn Phe Lys His Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly 185 190 Phe Leu Tyr Val Tyr Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp 195 . 200 205 Leu Pro Ser Gly Phe Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu 210 220 Gly Ile Asn Ile Thr Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro 225 230 235 Ala Gln Asp Ile Trp Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr 245 250 255 Leu Lys Pro Thr Thr Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile 260 265 270 Thr Asp Ala Val Asp Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys 275 280 285 Ser Val Lys Ser Phe Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn 290 295 Phe Arg Val Val Pro Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr 305 310 315

Asn Leu Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser 325 330 335 Val Tyr Ala Trp Glu Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr 340 345 350 Ser Val Leu Tyr Asn Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly 355 360 365 Val Ser Ala Thr Lys Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala 370 380 Asp Ser Phe Val Val Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly 385 390 395 400 Gln Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe 405 410 415 Met Gly Cys Val Leu Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser 420 430 Thr Gly Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu 435 440 445 Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly 450 460 Lys Pro Cys Thr Pro Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp 465 470 475 480 Tyr Gly Phe Tyr Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val 485 490 495 Val Val Leu Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly 500 505 Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn 515 520 525 Phe Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg 530 540 Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp 545 550 555 560 Ser Val Arg Asp Pro Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys 565 570 575 Ser Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser 580 585 590

Glu Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr 595 600 605 Ala Ile His Ala Asp Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr 610 615 Gly Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu 625 630 635 640 His Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile 645 650 655 Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys 660 665 670 Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala 675 680 685 Tyr Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile 690 695 700 Thr Thr Glu Val Met Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys 705 710 715 720 Asn Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu Leu 725 730 735 Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile 740 745 750 Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys 755 760 765 Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe 770 775 780 Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile 785 790 795 800 Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Met 805 810 Lys Gln Tyr Gly Glu Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile 820 825 Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr 835 840 845 Asp Asp Met Ile Ala Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala 850 860

Thr Ala Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe 865 870 880 Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn 885 890 895 Val Leu Tyr Glu Asn Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala 900 905 910 Ile Ser Gln Ile Gln Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly 915 920 925 Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu 930 940 Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn 945 950 955 960 Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln Ile Asp 965 970 975 Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln 980 985 990 Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala 995 1000 1005 Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg Val Asp 1010 1015 1020 Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ala Ala 1025 1030 1035 Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala Pro Ala Ile Cys His Glu Gly Lys 1055 1060 1065 Ala Tyr Phe Pro Arg Glu Gly Val Phe Val Phe Asn Gly Thr Ser 1070 1080 Phe Ile Thr Gln Arg Asn Phe Phe Ser Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly 1100 1105 Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp 1115 1120 1125

Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His Thr Ser 1130 1135 1140
Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser Val 1145 1150 1155
Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys 1160 1165 1170
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr 1175 1180 1185
Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile 1190 1195
Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys 1205 1210 1215
Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly 1220 1225 1230
Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys 1235 1240 1245
Gly Val Lys Leu His Tyr Thr 1250 1255
<210> 4<211> 3943<212> DNA<213> CORONAVIRUS<400> 4 ctcttctgga aaaaggtagg cttatcatta gagaaaacaa cagagttgtg gtttcaagtg
atattettgt taacaactaa acgaacatgt ttattttett attatttett acteteacta
gtggtagtga ccttgaccgg tgcaccactt ttgatgatgt tcaagctcct aattacactc

60 120 180 gtggtagtga ccttgaccgg tgcaccactt ttgatgatgt to aacatacttc atctatgagg ggggtttact atcctgatga aatttttaga tcagacactc 240 tttatttaac tcaggattta tttcttccat tttattctaa tgttacaggg tttcatacta 300 ttaatcatac gtttggcaac cctgtcatac cttttaagga tggtatttat tttgctgcca 360 cagagaaatc aaatgttgtc cgtggttggg tttttggttc taccatgaac aacaagtcac 420 agtcggtgat tattattaac aattctacta atgttgttat acgagcatgt aactttgaat 480 tgtgtgacaa ccctttcttt gctgtttcta aacccatggg tacacagaca catactatga 540 tattcgataa tgcatttaat tgcactttcg agtacatatc tgatgccttt tcgcttgatg 600 tttcagaaaa gtcaggtaat tttaaacact tacgagagtt tgtgtttaaa aataaagatg 660 ggtttctcta tgtttataag ggctatcaac ctatagatgt agttcgtgat ctaccttctg 720 gttttaacac tttgaaacct atttttaagt tgcctcttgg tattaacatt acaaatttta 780 gagccattct tacagccttt tcacctgctc aagacatttg gggcacgtca gctgcagcct 840 attttgttgg ctatttaaag ccaactacat ttatgctcaa gtatgatgaa aatggtacaa 900

\$226CAS111.ST25 tcacagatgc tgttgattgt tctcaaaatc cacttgctga actcaaatgc tctgttaaga	960
gctttgagat tgacaaagga atttaccaga cctctaattt cagggttgtt ccctcaggag	1020
atgttgtgag attccctaat attacaaact tgtgtccttt tggagaggtt tttaatgcta	1080
ctaaattccc ttctgtctat gcatgggaga gaaaaaaaat ttctaattgt gttgctgatt	1140
actctgtgct ctacaactca acatttttt caacctttaa gtgctatggc gtttctgcca	1200
ctaagttgaa tgatctttgc ttctccaatg tctatgcaga ttcttttgta gtcaagggag	1260
atgatgtaag acaaatagcg ccaggacaaa ctggtgttat tgctgattat aattataaat	1320
tgccagatga tttcatgggt tgtgtccttg cttggaatac taggaacatt gatgctactt	1380
caactggtaa ttataattat aaatataggt atcttagaca tggcaagctt aggccctttg	1440
agagagacat atctaatgtg cctttctccc ctgatggcaa accttgcacc ccacctgctc	1500
ttaattgtta ttggccatta aatgattatg gtttttacac cactactggc attggctacc	1560
aaccttacag agttgtagta ctttcttttg aacttttaaa tgcaccggcc acggtttgtg	1620
gaccaaaatt atccactgac cttattaaga accagtgtgt caattttaat tttaatggac	1680
tcactggtac tggtgtgtta actccttctt caaagagatt tcaaccattt caacaatttg	1740
gccgtgatgt ctctgatttc actgattccg ttcgagatcc taaaacatct gaaatattag	1800
acatttcacc ttgctctttt gggggtgtaa gtgtaattac acctggaaca aatgcttcat	1860
ctgaagttgc tgttctatat caagatgtta actgcactga tgtttctaca gcaatccatg	1920
cagatcaact cacaccagct tggcgcatat attctactgg aaacaatgta ttccagactc	1980
aagcaggctg tcttatagga gctgagcatg tcgacacttc ttatgagtgc gacattccta	2040
ttggagctgg catttgtgct agttaccata cagtttcttt attacgtagt actagccaaa	2100
aatctattgt ggcttatact atgtctttag gtgctgatag ttcaattgct tactctaata	2160
acaccattgc tatacctact aacttttcaa ttagcattac tacagaagta atgcctgttt	2220
ctatggctaa aacctccgta gattgtaata tgtacatctg cggagattct actgaatgtg	2280
ctaatttgct tctccaatat ggtagctttt gcacacaact aaatcgtgca ctctcaggta	2340 ⁻
ttgctgctga acaggatcgc aacacacgtg aagtgttcgc tcaagtcaaa caaatgtaca	2400
aaaccccaac tttgaaatat tttggtggtt ttaatttttc acaaatatta cctgaccctc	2460
taaagccaac taagaggtct tttattgagg acttgctctt taataaggtg acactcgctg	2520
atgctggctt catgaagcaa tatggcgaat gcctaggtga tattaatgct agagatctca	2580
tttgtgcgca gaagttcaat gggcttacag tgttgccacc tctgctcact gatgatatga	2640
ttgctgccta cactgctgct ctagttagtg gtactgccac tgctggatgg acatttggtg	2700
ctggcgctgc tcttcaaata ccttttgcta tgcaaatggc atataggttc aatggcattg	2760
gagttaccca agatgttctc tatgaggacc agaggacagt agagg	2820
Cgattagtca aattcaagaa tcacttacaa caacatanaa taaatt	2880
acgttgttaa ccagaatgct caagcattaa acacacttat taaaaaaa	2940
J	~ > 10

			S226CAS111.	ST25		
ttggtgcaat ttd	caagtgtg (gtcgaggcgg	3000
aggtacaaat tga	acaggcta a	attacaggca	gacttcaaag	ccttcaaacc	tatgtaacac	3060
aacaactaat cag	gggctgct g	gaaatcaggg	cttctgctaa	tcttgctgct	actaaaatgt	3120
ctgagtgtgt tct	ttggacaa 1	tcaaaaagag	ttgacttttg	tggaaagggc	taccacctta	3180
tgtccttccc aca	aagcagcc (ccgcatggtg	ttgtcttcct	acatgtcacg	tatgtgccat	3240
cccaggagag gaa	acttcacc a	acagcgccag	caatttgtca	tgaaggcaaa	gcatacttcc	3300
ctcgtgaagg tg	tttttgtg 1	tttaatggca	cttcttggtt	tattacacag	aggaacttct	3360
tttctccaca aa	taattact a	acagacaata	catttgtctc	aggaaattgt	gatgtcgtta	3420
ttggcatcat taa	acaacaca 🤉	gtttatgatc	ctctgcaacc	tgagcttgac	tcattcaaag	3480
aagagctgga caa	agtacttc a	aaaaatcata	catcaccaga	tgttgatctt	ggcgacattt	3540
caggcattaa cg	cttctgtc q	gtcaacattc	aaaaagaaat	tgaccgcctc	aatgaggtcg	3600
ctaaaaattt aaa	atgaatca (ctcattgacc	ttcaagaatt	gggaaaatat	gagcaatata	3660
ttaaatggcc ttg	ggtatgtt	tggctcggct	tcattgctgg	actaattgcc	atcgtcatgg	3720
ttacaatctt gc	tttgttgc a	atgactagtt	gttgcagttg	cctcaagggt	gcatgctctt	3780
gtggttcttg ctg	gcaagttt q	gatgaggatg	actctgagcc	agttctcaag	ggtgtcaaat	3840
tacattacac ata	aaacgaac 1	ttatggattt	gtttatgaga	ttttttactc	ttggatcaat	3900
tactgcacag cca	agtaaaaa d	ttgacaatgc	ttctcctgca	agt		3943
240 5 244	2040 24	2 242		raug .400 - 1	<u>.</u>	
<210> 5<211> ctcttctgga aa	2049<217 aaggtagg				gtttcaagtg	60
atattcttgt ta	acaactaa a	acgaacatgt	ttattttctt	attatttctt	actctcacta	120
gtggtagtga cc	ttgaccgg 1	tgcaccactt	ttgatgatgt	tcaagctcct	aattacactc	180
aacatacttc at	ctatgagg g	ggggtttact	atcctgatga	aatttttaga	tcagacactc	240
tttatttaac tc	aggattta 1	tttcttccat	tttattctaa	tgttacaggg	tttcatacta	300
ttaatcatac gt	ttggcaac (cctgtcatac	cttttaagga	tggtatttat	tttgctgcca	360
cagagaaatc aa	atgttgtc (cgtggttggg	tttttggttc	taccatgaac	aacaagtcac	420
agtcggtgat ta	ttattaac a	aattctacta	atgttgttat	acgagcatgt	aactttgaat	480
tgtgtgacaa cc	ctttcttt (gctgtttcta	aacccatggg	tacacagaca	catactatga	540
tattcgataa tg	catttaat 1	tgcactttcg	agtacatatc	tgatgccttt	tcgcttgatg	600
tttcagaaaa gt	caggtaat 1	tttaaacact	tacgagagtt	tgtgtttaaa	aataaagatg	660
ggtttctcta tg	tttataag g	ggctatcaac	ctatagatgt	agttcgtgat	ctaccttctg	720
gttttaacac tt	tgaaacct a	atttttaagt	tgcctcttgg	tattaacatt	acaaatttta	780
gagccattct tac	cagccttt 1	tcacctgctc	aagacatttg	gggcacgtca	gctgcagcct	840
attttgttgg cta	atttaaag d	ccaactacat	ttatgctcaa	gtatgatgaa	aatggtacaa	900
tcacagatgc tg	ttgattgt 1	tctcaaaatc	cacttgctga	actcaaatgc	tctgttaaga	960

1er dépôt

S226CAS111.ST25 gctttgagat tgacaaagga atttaccaga cctctaattt cagggttgtt ccctcaggag 1020 atgttgtgag attccctaat attacaaact tgtgtccttt tggagaggtt tttaatgcta 1080 ctaaattccc ttctgtctat gcatgggaga gaaaaaaaat ttctaattgt gttgctgatt 1140 actctgtgct ctacaactca acatttttt caacctttaa gtgctatggc gtttctgcca 1200 ctaagttgaa tgatctttgc ttctccaatg tctatgcaga ttcttttgta gtcaagggag 1260 atgatgtaag acaaatagcg ccaggacaaa ctggtgttat tgctgattat aattataaat 1320 tgccagatga tttcatgggt tgtgtccttg cttggaatac taggaacatt gatgctactt 1380 caactggtaa ttataattat aaatataggt atcttagaca tggcaagctt aggccctttg 1440 agagagacat atctaatgtg cctttctccc ctgatggcaa accttgcacc ccacctgctc 1500 ttaattgtta ttggccatta aatgattatg gtttttacac cactactggc attggctacc 1560 aaccttacag agttgtagta ctttcttttg aacttttaaa tgcaccggcc acggtttgtg 1620 gaccaaaatt atccactgac cttattaaga accagtgtgt caattttaat tttaatggac 1680 tcactggtac tggtgtgtta actccttctt caaagagatt tcaaccattt caacaatttg 1740 gccgtgatgt ctctgatttc actgattccg ttcgagatcc taaaacatct gaaatattag 1800 acatttcacc ttgctctttt gggggtgtaa gtgtaattac acctggaaca aatgcttcat 1860 ctgaagttgc tgttctatat caagatgtta actgcactga tgtttctaca gcaatccatg 1920 cagatcaact cacaccagct tggcgcatat attctactgg aaacaatgta ttccagactc 1980 aagcaggctg tcttatagga gctgagcatg tcgacacttc ttatgagtgc gacattccta 2040 ttggagctg 2049 2027<212> DNA<213> CORONAVIRUS<400> catgcagatc aactcacacc agcttggcgc atatattcta ctggaaacaa tgtattccag 60 actcaagcag gctgtcttat aggagctgag catgtcgaca cttcttatga gtgcgacatt 120 cctattggag ctggcatttg tgctagttac catacagttt ctttattacg tagtactagc 180 caaaaatcta ttgtggctta tactatgtct ttaggtgctg atagttcaat tgcttactct 240 aataacacca ttgctatacc tactaacttt tcaattagca ttactacaga agtaatgcct 300 gtttctatgg ctaaaacctc cgtagattgt aatatgtaca tctgcggaga ttctactgaa 360 tgtgctaatt tgcttctcca atatggtagc ttttgcacac aactaaatcg tgcactctca 420 ggtattgctg ctgaacagga tcgcaacaca cgtgaagtgt tcgctcaagt caaacaaatg 480 tacaaaaccc caactttgaa atattttggt ggttttaatt tttcacaaat attacctgac 540 cctctaaagc caactaagag gtcttttatt gaggacttgc tctttaataa ggtgacactc 600 gctgatgctg gcttcatgaa gcaatatggc gaatgcctag gtgatattaa tgctagagat 660 ctcatttgtg cgcagaagtt caatgggctt acagtgttgc cacctctgct cactgatgat 720 atgattgctg cctacactgc tgctctagtt agtggtactg ccactgctgg atggacattt 780 ggtgctggcg ctgctcttca aatacctttt gctatgcaaa tggcatatag gttcaatggc 840

• :						
attggagtta c	ccaaaatgt	tctctatgag	S226CAS111. aaccaaaaac		ccaatttaac	900
aaggcgatta g	tcaaattca	agaatcactt	acaacaacat	caactgcatt	gggcaagctg	960
caagacgttg t	taaccagaa	tgctcaagca	ttaaacacac	ttgttaaaca	acttagctct	1020
aattttggtg c	aatttcaag	tgtgctaaat	gatatccttt	cgcgacttga	taaagtcgag	1080
gcggaggtac a	aattgacag	gttaattaca	ggcagacttc	aaagccttca	aacctatgta	1140
acacaacaac t	aatcagggc	tgctgaaatc	agggcttctg	ctaatcttgc	tgctactaaa	1200
atgtctgagt g	tgttcttgg	acaatcaaaa	agagttgact	tttgtggaaa	gggctaccac	1260
cttatgtcct t	cccacaagc	agccccgcat	ggtgttgtct	tcctacatgt	cacgtatgtg	1320
ccatcccagg a	gaggaactt	caccacagcg	ccagcaattt	gtcatgaagg	caaagcatac	1380
ttccctcgtg a	aggtgtttt	tgtgtttaat	ggcacttctt	ggtttattac	acagaggaac	1440
ttcttttctc c	acaaataat	tactacagac	aatacatttg	tctcaggaaa	ttgtgatgtc	1500
gttattggcg t	cattaacaa	cacagtttat	gatcctctgc	aacctgagct	tgactcattc	1560
aaagaagagc t	ggacaagta	cttcaaaaat	catacatcac	cagatgttga	tcttggcgac	1620
atttcaggca t	taacgcttc	tgtcgtcaac	attcaaaaag	aaattgaccg	cctcaatgag	1680
gtcgctaaaa a	tttaaatga	atcactcatt	gaccttcaag	aattgggaaa	atatgagcaa	1740
tatattaaat g	gccttggta	tgtttggctc	ggcttcattg	ctggactaat	tgccatcgtc	1800
atggttacaa t	cttgctttg	ttgcatgact	agttgttgca	gttgcctcaa	gggtgcatgc	1860
tcttgtggtt c	ttgctgcaa	gtttgatgag	gatgactctg	agccagttct	caagggtgtc	1920
aaattacatt a	cacataaac	gaacttatgg	atttgtttat	gagattttt	actcttggat	1980
caattactgc a	cagccagta	aaaattgaca	atgcttctcc	tgcaagt		2027
.210 7.211	1000-21	2 504 247		rnug .400	7	
<210> 7<211 tcttgctttg t					tcttgtggtt	60
cttgctgcaa g	tttgatgag	gatgactctg	agccagttct	caagggtgtc	aaattacatt	120
acacataaac g	aacttatgg	atttgtttat	gagattttt	actcttggat	caattactgc	180
acagccagta a	aaattgaca	atgcttctcc	tgcaagtact	gttcatgcta	cagcaacgat	240
accgctacaa g	cctcactcc	ctttcggatg	gcttgttatt	ggcgttgcat	ttcttgctgt	300
ttttcagagc g	ctaccaaaa	taattgcgct	caataaaaga	tggcagctag	ccctttataa	360
gggcttccag t	tcatttgca	atttactgct	gctatttgtt	accatctatt	cacatcttt	420
gcttgtcgct g	caggtatgg	aggcgcaatt	tttgtacctc	tatgccttga	tatattttct	480
acaatgcatc a	acgcatgta	gaattattat	gagatgttgg	ctttgttgga	agtgcaaatc	540
caagaaccca t	tactttatg	atgccaacta	ctttgtttgc	tggcacacac	ataactatga	600
ctactgtata c	catataaca	gtgtcacaga	tacaattgtc	gttactgaag	gtgacggcat	660
ttcaacacca a	aactcaaag	aagactacca	aattggtggt	tattctgagg	ataggcactc	720
aggtgttaaa g	actatgtcg	ttgtacatgg	ctatttcacc	gaagtttact	accagcttga	780

\$226CA\$111.\$T25	
gtctacacaa attactacag acactggtat tgaaaatgct acattcttca tctttaacaa	840
gcttgttaaa gacccaccga atgtgcaaat acacacaatc gacggctctt caggagttgc	900
taatccagca atggatccaa tttatgatga gccgacgacg actactagcg tgcctttgta	960
agcacaagaa agtgagtacg aacttatgta ctcattcgtt tcggaagaaa .caggtacgtt	1020
aatagttaat agcgtacttc tttttcttgc tttcgtggta ttcttgctag tcacactagc	1080
catccttact gcgctt	1096
<210> 8<211> 1135<212> DNA>213> CORONAUTRUS 400. 0	
<pre><210> 8<211> 1135<212> DNA<213> CORONAVIRUS<400> 8 attgccatcg tcatggttac aatcttgctt tgttgcatga ctagttgttg cagttgcctc</pre>	60
aagggtgcat gctcttgtgg ttcttgctgc aagtttgatg aggatgactc tgagccagtt	120
ctcaagggtg tcaaattaca ttacacataa acgaacttat ggatttgttt atgagatttt	180
ttactcttgg atcaattact gcacagccag taaaaattga caatgcttct cctgcaagta	240
ctgttcatgc tacagcaacg ataccgctac aagcctcact ccctttcgga tggcttgtta	300
ttggcgttgc atttcttgct gtttttcaga gcgctaccaa aataattgcg ctcaataaaa	360
gatggcagct agccctttat aagggcttcc agttcatttg caatttactg ctgctatttg	420
ttaccatcta ttcacatctt ttgcttgtcg ctgcaggtat ggaggcgcaa tttttgtacc	480
tctatgcctt gatatatttt ctacaatgca tcaacgcatg tagaattatt atgagatgtt	,
ggctttgttg gaagtgcaaa tccaagaacc cattacttta tgatgccaac tactttgttt	540
gctggcacac acataactat gactactgta taccatataa cagtgtcaca gatacaattg	600
tcgttactga aggtgacggc atttcaacac caaaactcaa agaagactac caaattggtg	660
gttattctga ggataggcac tcaggtgtta aagactatgt cgttgtacat ggctatttca	720
ccgaagttta ctaccagctt gagtctacac aaattactac agacactggt attgaaaatg	780
	840
ctacattett catetttaac aagettgtta aagaceeace gaatgtgeaa atacacacaa	900
tcgacggctc ttcaggagtt gctaatccag caatggatcc aatttatgat gagccgacga	960
cgactactag cgtgcctttg taagcacaag aaagtgagta cgaacttatg tactcattcg	1020
tttcggaaga aacaggtacg ttaatagtta atagcgtact tctttttctt gctttcgtgg	1080
tattcttgct agtcacacta gccatcctta ctgcgcttcg attgtgtgcg tactg	1135
<210> 9<211> 1096<212> DNA<213> CORONAVIRUS<220><221> CDS<222> (137)(958)<223>	
<400> 9 ccttgctttg ttgcatgact agttgttgca gttgcctcaa gggtgcatgc tcttgtggtt	60
cttgctgcaa gtttgatgag gatgactctg agccagttct caagggtgtc aaattacatt	120
cacataaac gaactt atg gat ttg ttt atg aga ttt ttt act ctt gga tca	172
1 5 10	112
Itt act gca cag cca gta aaa att gac aat gct tct cct gca agt act le Thr Ala Gln Pro Val Lys Ile Asp Asn Ala Ser Pro Ala Ser Thr 15 20 25	220

U. 40pu.

								322	OCAS.	L.L.	3123					
gtt (cat His 30	gct Ala	aca Thr	gca Ala	acg Thr	ata Ile 35	ccg Pro	cta Leu	caa Gln	gcc Ala	tca Ser 40	ctc Leu	cct Pro	ttc Phe	gga Gly	268
tgg (Trp	ctt Leu	gtt Val	att Ile	ggc Gly	gtt Va1 50	gca Ala	ttt Phe	ctt Leu	gct Ala	gtt Val 55	ttt Phe	cag Gln	agc Ser	gct Ala	acc Thr 60	316
aaa Lys	ata Ile	att Ile	gcg Ala	ctc Leu 65	aat Asn	aaa Lys	aga Arg	tgg Trp	cag Gln 70	cta Leu	gcc Ala	ctt Leu	tat Tyr	aag Lys 75	ggc Gly	364
ttc Phe	cag Gln	ttc Phe	att Ile 80	tgc Cys	aat Asn	tta Leu	ctg Leu	ctg Leu 85	cta Leu	ttt Phe	gtt Val	acc Thr	atc Ile 90	tat Tyr	tca Ser	412
cat His	ctt Leu	ttg Leu 95	ctt Leu	gtc Val	gct Ala	gca Ala	ggt Gly 100	1-10-0	gag Glu	gcg Ala	caa Gln	ttt Phe 105		tac Tyr	ctc Leu	460
tat Tyr	gcc Ala 110	Leu	ata Ile	tat Tyr	ttt Phe	cta Leu 115	GIII	tgc Cys	atc Ile	aac Asn	gca Ala 120	,-	aga Arg	att	att Ile	508
atg Met 125			tgg Tr	cti Lei	tgt LCys 130	rip	aag Lys	tgc Cys	aaa Lys	tcc ser 135		aac Asn	cca Pro	tta Leu	ctt Leu 140	556
	gat Asp	gco Ala	a aa a Ası	tae 1 Ty: 14:	Pile	gtt val	tgc Cys	tgg Trp	cac His 150		cat His	aac Asr	tat Tyr	gac Asp 15	tac Tyr	604
tgt Cys	ata Ile	cci Pr	a ta o Ty 16	r AS	c agt n Sei	gto Val	aca Thr	gat Asp 165		att Ile	gto Va	gti Va	act Thr 170	gaa Glu	ggt Gly	652
gac Asp	ggo	at / Il 17	<u>e</u> se	a ac r Th	a cc r Pro	a aaa o Ly:	a cto s Leo 180	ı Ly:	a gaa s Glu	a gad I Asi	tae Ty	c caa r Gli 18	a att n Ile 5	t ggi	t ggt y Gly	700 ×
tat Tyr	tc1 Sei 190	ga G1	_	t ag p Ar	g ca g Hi	c tc s se 19	_ 31	t gt y Va	t aaa 1 Ly:	a ga s As	c ta p Ty 20	t gt r Va 0	c gty 1 Va	t gt: 1 Va	a cat I His	748 -
ggc Gly 205	ta 'Ty		c ac e Th	c ga r Gl	u va	t ta 1 Ty 0	c ta r Ty	c ca r Gl	g ct n Le	t ga u Gl 21	g tc u Se 5	t ac r Th	a ca r Gl	a at n Il	t act e Thr 220	796
		c ac p Th	t gg ir Gl	t at y I1 22	e Gi	a aa u As	t gc n Al	t ac a Th	a tt r Ph 23		c at e Il	c tt e Ph	t aa e As	c aa n Ly 23	g ctt s Leu 5	844
gtt Va	t aa l Ly	a ga s As	sp Pr	ca co ro Pi 10	g aa o As	t gt n Va	g ca 1 Gl	a at n Il 24	Ć 111	c ac s Th	a at r Il	c ga e As	c gg p G1 25	c to y se 0	t tca r Ser	892
gg: Gly	a gt y Va	I A			ca go ro Al	a at la Me	g ga t As 26	P	a at	t ta e Ty	it ga 'r As	it ga sp GT 20		g ac o Th	g acg ir Thr	940
ac Th	t ac r Th 27	t a	ac a	tg Co	ct ti ro Le	ig ta eu	ıagca	ıcaag	, aaa	ıgtga	ıgta	cgaa	ıctta	itg		988
to.			n tt	tcaa	aaaa	aaca	iggta	acg t	taat	agtt	a at	tagc	gtact	tct	ttttct	t 1048
					tgct				gccat		ta ci					1096

10<211> 274<212> PRT<213> CORONAVIRUS<400> 10 Met Asp Leu Phe Met Arg Phe Phe Thr Leu Gly Ser Ile Thr Ala Gln 10 15Pro Val Lys Ile Asp Asn Ala Ser Pro Ala Ser Thr Val His Ala Thr 20 25 30 Ala Thr Ile Pro Leu Gln Ala Ser Leu Pro Phe Gly Trp Leu Val Ile 35 40 45 Gly Val Ala Phe Leu Ala Val Phe Gln Ser Ala Thr Lys Ile Ile Ala 50 60 Leu Asn Lys Arg Trp Gln Leu Ala Leu Tyr Lys Gly Phe Gln Phe Ile 65 70 75 80 Cys Asn Leu Leu Leu Phe Val Thr Ile Tyr Ser His Leu Leu Leu 85 90 95 Val Ala Ala Gly Met Glu Ala Gln Phe Leu Tyr Leu Tyr Ala Leu Ile 100 105 110 Tyr Phe Leu Gln Cys Ile Asn Ala Cys Arg Ile Ile Met Arg Cys Trp 115 120 125 Leu Cys Trp Lys Cys Lys Ser Lys Asn Pro Leu Leu Tyr Asp Ala Asn 130 135 140 Tyr Phe Val Cys Trp His Thr His Asn Tyr Asp Tyr Cys Ile Pro Tyr 145 150 155 160 Asn Ser Val Thr Asp Thr Ile Val Val Thr Glu Gly Asp Gly Ile Ser 165 170 175 Thr Pro Lys Leu Lys Glu Asp Tyr Gln Ile Gly Gly Tyr Ser Glu Asp 180 185 190 Arg His Ser Gly Val Lys Asp Tyr Val Val Val His Gly Tyr Phe Thr Glu Val Tyr Tyr Gln Leu Glu Ser Thr Gln Ile Thr Thr Asp Thr Gly 210 220 Ile Glu Asn Ala Thr Phe Phe Ile Phe Asn Lys Leu Val Lys Asp Pro 235 235 240 Pro Asn Val Gln Ile His Thr Ile Asp Gly Ser Ser Gly Val Ala Asn 245 250 255

Pro Ala Met Asp Pro Ile Tyr Asp Glu Pro Thr Thr Thr Ser Val 260 265 270

Pro Leu

<210> 11<211> 1096<212> (558)(1019)<223>	DNA<213> CORONA	VIRUS<220><221>	CDS<222>
<400> 11			
tcttgctttg ttgcatgact agtt	gttgca gttgcctcaa	gggtgcatgc tctt	gtggtt 60
cttgctgcaa gtttgatgag gatg	actctg agccagttct	caagggtgtc aaat	tacatt 120
acacataaac gaacttatgg attt	gtttat gagattttt	actcttggat caat	tactgc 180
acagccagta aaaattgaca atgo	ttctcc tgcaagtact	gttcatgcta cago	aacgat 240
accgctacaa gcctcactcc cttt	cggatg gcttgttatt	ggcgttgcat ttct	tgctgt 300
ttttcagagc gctaccaaaa taat	tgcgct caataaaaga	tggcagctag ccct	ttataa 360
gggcttccag ttcatttgca attt	actgct gctatttgtt	accatctatt caca	tctttt 420
gcttgtcgct gcaggtatgg aggc	gcaatt tttgtacctc	tatgccttga tata	ttttct 480
acaatgcatc aacgcatgta gaat	tattat gagatgttgg	ctttgttgga agtg	caaatc 540
caagaaccca ttacttt atg atg Met Met 1	cca act act ttg Pro Thr Thr Leu 5		
ata act atg act act gta ta Ile Thr Met Thr Thr Val Ty 15			
tcg tta ctg aag gtg acg gc Ser Leu Leu Lys Val Thr Al 30			
acc aaa ttg gtg gtt att ct Thr Lys Leu Val Val Ile Le 45	u Arg Ile Gly Thr	cag gtg tta aag Gln Val Leu Lys S5	act 734 Thr
atg tcg ttg tac atg gct at Met Ser Leu Tyr Met Ala Il 60 65			
cta cac aaa tta cta cag ac Leu His Lys Leu Leu Gln Th 80			
tct tta aca agc ttg tta aa Ser Leu Thr Ser Leu Leu Ly 95			
tcg acg gct ctt cag gag tt Ser Thr Ala Leu Gln Glu Le 110	g cta atc cag caa u Leu Ile Gln Gln 115	tgg atc caa ttt Trp Ile Gln Phe 120	atg 926 Met
atg agc cga cga cga cta ct Met Ser Arg Arg Arg Leu Le 125 . 13	u Ala Cys Leu Cys		
agt acg aac tta tgt act ca Ser Thr Asn Leu Cys Thr Hi		Lys Gln Val Arg	

•	140					145			52 2	ecas	5111. 150	ST25	5				
	taa	tagt	taa ·	tagc	gtac	tt c	tttt	tctt	g ct	ttcg [.]	taat	att	cttg	cta	gtca	cactag	1079
		_		tgcg					-								1096
	.21/	٥.	17.7	11.	154	.oao.	. 0	יל. ידם	10.	COR	081416	FOLIC					
	<pre><210> 12<211> 154<212> PRT<213> CORONAVIRUS<400> 12 Met Met Pro Thr Thr Leu Phe Ala Gly Thr His Ile Thr Met Thr Thr</pre>																
	Met 1	Met	Pro	Thr	Thr 5	Leu	Phe	Ala	Gly	Thr 10	His	Ile	Thr	Met	15 15	Thr	
	Val	Tyr	His	11e 20	Thr	val	Ser	Gln	11e 25	Gln	Leu	ser	Leu	Leu 30	Lys	Val ·	
	Thr	Ala	Phe 35	Gln	His	Gln	Asn	ser 40	Lys	Lys	Thr	Thr	Lys 45	Leu	val	Val	
	Ile	Leu 50	Arg	Ile	Gly	Thr	G]n 55	Val	Leu	Lys	Thr	Met 60	Ser	Leu	Tyr	Met	
	Ala 65	Ile	Ser	Pro	Lys	Phe 70	Thr	Thr	Ser	Leu	Ser 75	Leu	His	Lys	Leu	Leu 80	
	Gln	Thr	Leu	Val	Leu 85	Lys	Met	Leu	His	ser 90	Ser	Ser	Leu	Thr	Ser 95	Leu	
	Leu	Lys	Thr	His 100	Arg	Met	Cys	Lys	Tyr 105	Thr	Gln	Ser	Thr	Ala 110	Leu	Gln	
	Glu	Leu	Leu 115	Ile	Gln	Gln	Trp	11e 120	Gln	Phe	Met	Met	Ser 125	Arg	Arg	Arg	
	Leu	Leu 130		Cys	Leu	Cys	Lys 135	His	Lys	Lys	٧a٦	Ser 140	Thr	Asn	Leu	Cys	
	Thr 145	His	Ser	Phe	Arg	Lys 150	Lys	Gln	Val	Arg							
	(36))(263)	11> <223:	332 - >	<212>	→ DI	NA<2.	1.3>	CORG	CVANC	CRUS•	<220:	><22	1> (CDS<222>	
		0> cttt		agca	caaga	aa ag	gtgag	gtac	g aad		let 1			Phe	gtt t Val s 5		53
	gaa Glu	gaa Glu	aca Thr	ggt Gly 10	acg Thr	tta Leu	ata Ile	gtt Val	aat Asn 15	agc Ser	gta Val	ctt Leu	ctt Leu	ttt Phe 20	ctt Leu	gct Ala	101
	ttc Phe	gtg Val	gta Val 25	ttc Phe	ttg Leu	cta Leu	gtc Val	aca Thr 30	cta Leu	gcc Ala	atc Ile	ctt Leu	act Thr 35	gcg Ala	ctt Leu	cga Arg	149
	ttg Leu	tgt Cys 40	gcg Ala	tac Tyr	tgc Cys	tgc Cys	aat Asn 45	att Ile	gtt Val	aac Asn	gtg Val	agt Ser 50	tta Leu	gta Val	aaa Lys	cca Pro	197
										Pag	e 34						

acg gtt tac gtc tac tcg cgt gtt aaa aat ctg aac tct tct gaa gga Thr Val Tyr Val Tyr Ser Arg Val Lys Asn Leu Asn Ser Ser Glu Gly 55 60 65 70	245
gtt cct gat ctt ctg gtc taaacgaact aactattatt attattctgt Val Pro Asp Leu Val 75	293
ttggaacttt aacattgctt atcatggcag acaacggta	332
<210> 14<211> 76<212> PRT<213> CORONAVIRUS<400> 14	
Met Tyr Ser Phe Val Ser Glu Glu Thr Gly Thr Leu Ile Val Asn Ser 1 10 15	
Val Leu Leu Phe Leu Ala Phe Val Val Phe Leu Leu Val Thr Leu Ala 20 25 30	
Ile Leu Thr Ala Leu Arg Leu Cys Ala Tyr Cys Cys Asn Ile Val Asn 35 40 45	
Val Ser Leu Val Lys Pro Thr Val Tyr Val Tyr Ser Arg Val Lys Asn 50 55 60	
Leu Asn Ser Ser Glu Gly Val Pro Asp Leu Leu Val 65 70 75	
<210> 15<211> 332<212> DNA<213> CORONAVIRUS<400> 15, tgcctttgta agcacaagaa agtgagtacg aacttatgta ctcattcgtt tcggaagaaa	60
caggtacgtt aatagttaat agcgtacttc tttttcttgc tttcgtggta ttcttgctag	120
tcacactagc catcettact gegettegat tgtgtgegta etgetgeaat attgttaaeg	180
tgagtttagt aaaaccaacg gtttacgtct actcgcgtgt taaaaatctg aactcttctg	240
aaggagttcc tgatcttctg gtctaaacga actaactatt attattattc tgtttggaac	300
tttaacattg cttatcatgg cagacaacgg ta	332
<210> 16<211> 708<212> DNA<213> CORONAVIRUS<220><221> CDS<222> (41)(703)<223>	
<400> 16 tattattatt attctgtttg gaactttaac attgcttatc atg gca gac aac ggt . Met Ala Asp Asn Gly 1 5	55
act att acc gtt gag gag ctt aaa caa ctc ctg gaa caa tgg aac cta Thr Ile Thr Val Glu Glu Leu Lys Gln Leu Leu Glu Gln Trp Asn Leu 10 15 20	103
gta ata ggt ttc cta ttc cta gcc tgg att atg tta cta caa ttt gcc Val Ile Gly Phe Leu Phe Leu Ala Trp Ile Met Leu Leu Gln Phe Ala 25 30 35	151

1er dépôt

tgg Trp	ctc Leu 55	ttg Leu	tgg Trp	cca Pro	gta Val	aca Thr 60	ctt Leu	act	tat	111. ttt Phe	gtg	ctt Leu	gct Ala	gct Ala	gtc val	247
tac Tyr 70	aga Arg	att Ile	aat Asn	tgg Trp	gtg Val 75	act Thr	ggc Gly	ggg Gly	att Ile	gcg Ala 80	att Ile	gca Ala	atg Met	gct Ala	tgt Cys 85	295
att Ile	gta Val	ggc Gly	ttg Leu	atg Met 90	tgg Trp	ctt Leu	agc Ser	tac Tyr	ttc Phe 95	gtt Val	gct Ala	tcc Ser	ttc Phe	agg Arg 100	ctg Leu	343
ttt Phe	gct Ala	cgt Arg	acc Thr 105	cgc Arg	tca Ser	atg Met	tgg Trp	tca Ser 110	ttc Phe	aac Asn	cca Pro	gaa Glu	aca Thr 115	aac Asn	att Ile	391
ctt Leu	ctc Leu	aat Asn 120	gtg Val	cct Pro	ctc Leu	cgg Arg	ggg Gly 125	aca Thr	att Ile	gtg Val	acc Thr	aga Arg 130	ccg Pro	ctc Leu	atg Met	439
gaa Glu	agt Ser 135	gaa Glu	ctt Leu	gtc Val	att Ile	ggt Gly 140	gct Ala	gtg Val	atc Ile	att Ile	cgt Arg 145	ggt Gly	cac His	ttg Leu	cga Arg	487
atg Met 150	gcc Ala	gga Gly	cac His	tcc Ser	cta Leu 155	ggg Gly	cgc Arg	tgt Cys	gac Asp	att Ile 160	aag Lys	gac Asp	ctg Leu	cca Pro	aaa Lys 165	535
gag Glu	atc Ile	act Thr	gtg Val	gct Ala 170	aca Thr	tca Ser	cga Arg	acg Thr	ctt Leu 175	tct Ser	tat Tyr	tac Tyr	aaa Lys	tta Leu 180	gga Gly	583
gcg Ala	tcg Ser	cag Gln	cgt Arg 185	gta Val	ggc Gly	act Thr	gat Asp	tca Ser 190	ggt Gly	ttt Phe	gct Ala	gca Ala	tac Tyr 195	aac Asn	cgc Arg	631
tac Tyr	cgt Arg	att Ile 200	gga Gly	aac Asn	tat Tyr	aaa Lys	tta Leu 205	aat Asn	aca Thr	gac Asp	cac His	gcc Ala 210	ggt Gly	agc Ser	aac Asn	679
gac Asp	Asn	att Ile	gct	ttg	cta Leu	Val	cag Gln	taag	gt						·	708
	215		АТА	LCU		220										
<21					<212		RT<2:	1.3>	CORG	ONAV	CRUS~	<400×	> 17	7		
	0>	17<2	11>	221		≻ PI									Leu	
Met 1	0> Ala	17<2: Asp	11> Asn	221- Gly 5	<212	→ PI Ile	Thr	٧a٦	Glu 10	Glu	Leu	Lys	Gln	Leu 15		
Met 1 Glu	0> Ala Gln	17<2 Asp Trp	11> Asn Asn 20	221- Gly 5	<212: Thr	PI Ile	Thr Gly	Val Phe 25	Glu 10 Leu	Glu Phe	Leu	Lys Ala	Gln Trp 30	Leu 15 Ile	Met	
Met 1 Glu	O> Ala Gln Leu	17<2: Asp Trp Gln 35	Asn Asn 20 Phe	221- Gly 5 Leu	<212: Thr Val	Ile Ile Ser	Gly Asn 40	Val Phe 25 Arg	Glu 10 Leu Asn	Glu Phe Arg	Leu Leu Phe	Lys Ala Leu 45	Gln Trp 30 Tyr	Leu 15 Ile	Met Ile	
Met 1 Glu Leu Lys	O> Ala Gln Leu Leu 50	17<2 Asp Trp Gln 35 Val	Asn Asn 20 Phe	221- Gly 5 Leu Ala	<212: Thr Val	Ile Ile Ser Leu	Gly Asn 40 Leu	Val Phe 25 Arg Trp	Glu 10 Leu Asn	Glu Phe Arg Val	Leu Phe Thr	Lys Ala Leu 45 Leu	Gln Trp 30 Tyr	Leu 15 Ile Ile Cys	Met Ile Phe	

Ala Ser Phe Arg Leu Phe Ala Arg Thr Arg Ser Met Trp Ser Phe Asn 100 105 110 Pro Glu Thr Asn Ile Leu Leu Asn Val Pro Leu Arg Gly Thr Ile Val 115 120 125 Thr Arg Pro Leu Met Glu Ser Glu Leu Val Ile Gly Ala Val Ile Ile 130 135 140 Arg Gly His Leu Arg Met Ala Gly His Ser Leu Gly Arg Cys Asp Ile 145 150 160 Lys Asp Leu Pro Lys Glu Ile Thr Val Ala Thr Ser Arg Thr Leu Ser 165 170 175 Tyr Tyr Lys Leu Gly Ala Ser Gln Arg Val Gly Thr Asp Ser Gly Phe . 180 185 190 Ala Ala Tyr Asn Arg Tyr Arg Ile Gly Asn Tyr Lys Leu Asn Thr Asp 195 200 205 His Ala Gly Ser Asn Asp Asn Ile Ala Leu Leu Val Gln 210 220 <210> 18<211> 769<212> DNA<213> CORONAVIRUS<400> 18 cctgatcttc tggtctaaac gaactaacta ttattattat tctgtttgga actttaacat tgcttatcat ggcagacaac ggtactatta ccgttgagga gcttaaacaa ctcctggaac aatggaacct agtaataggt ttcctattcc tagcctggat tatgttacta caatttgcct attctaatcg gaacaggttt ttgtacataa taaagcttgt tttcctctgg ctcttgtggc

60 120 180 240 cagtaacact tgcttgtttt gtgcttgctg ctgtctacag aattaattgg gtgactggcg 300 ggattgcgat tgcaatggct tgtattgtag gcttgatgtg gcttagctac ttcgttgctt 360 ccttcaggct gtttgctcgt acccgctcaa tgtggtcatt caacccagaa acaaacattc 420 ttctcaatgt gcctctccgg gggacaattg tgaccagacc gctcatggaa agtgaacttg 480 tcattggtgc tgtgatcatt cgtggtcact tgcgaatggc cggacactcc ctagggcgct 540 gtgacattaa ggacctgcca aaagagatca ctgtggctac atcacgaacg ctttcttatt 600 acaaattagg agcgtcgcag cgtgtaggca ctgattcagg ttttgctgca tacaaccgct 660 accgtattgg aaactataaa ttaaatacag accacgccgg tagcaacgac aatattgctt 720 769 tgctagtaca gtaagtgaca acagatgttt catcttgttg acttccagg 19<211> 1231<212> DNA<213> CORONAVIRUS<400> 19 taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct 60 ttgctagtac agtaagtgac aacagatgtt tcatcttgtt gacttccagg ttacaatagc 120

1er dépôt

S226CAS111.ST25	
agagatattg attatcatta tgaggacttt caggattgct atttggaatc ttgacgttat	180
aataagttca atagtgagac aattatttaa gcctctaact aagaagaatt attcggagtt	240
agatgatgaa gaacctatgg agttagatta tccataaaac gaacatgaaa attattctct	300
tcctgacatt gattgtattt acatcttgcg agctatatca ctatcaggag tgtgttagag	360
gtacgactgt actactaaaa gaaccttgcc catcaggaac atacgagggc aattcaccat	420
ttcaccctct tgctgacaat aaatttgcac taacttgcac tagcacacac tttgcttttg	480
cttgtgctga cggtactcga catacctatc agctgcgtgc aagatcagtt tcaccaaaac	540
ttttcatcag acaagaggag gttcaacaag agctctactc gccacttttt ctcattgttg	600
ctgctctagt atttttaata ctttgcttca ccattaagag aaagacagaa tgaatgagct	660
cactttaatt gacttctatt tgtgcttttt agcctttctg ctattccttg ttttaataat	720
gcttattata ttttggtttt cactcgaaat ccaggatcta gaagaacctt gtaccaaagt	780
ctaaacgaac atgaaacttc tcattgtttt gacttgtatt tctctatgca gttgcatatg	840
cactgtagta cagcgctgtg catctaataa acctcatgtg cttgaagatc cttgtaaggt	900
acaacactag gggtaatact tatagcactg cttggctttg tgctctagga aaggtttac	960
cttttcatag atggcacact atggttcaaa catgcacacc taatgttact atcaactgtc	1020
aagatccagc tggtggtgcg cttatagcta ggtgttggta ccttcatgaa ggtcaccaaa	1080
ctgctgcatt tagagacgta cttgttgttt taaataaacg aacaaattaa aatgtctgat	1140
aatggacccc aatcaaacca acgtagtgcc ccccgcatta catttggtgg acccacagat	1200
tcaactgaca ataaccagaa tggaggacgc a	1231
210 20 244 4042 404	
<210> 20<211> 1242<212> DNA<213> CORONAVIRUS<400> 20 gcatacaacc gctaccgtat tggaaactat aaattaaata cagaccacgc cggtagcaac	60
gacaatattg ctttgctagt acagtaagtg acaacagatg tttcatcttg ttgacttcca	120
ggttacaata gcagagatat tgattatcat tatgaggact ttcaggattg ctatttggaa	180
tcttgacgtt ataataagtt caatagtgag acagttattt aagcctctaa ctaagaagaa	240
ttattcggag ttagatgatg aagaacctat ggagttagat tatccataaa acgaacatga	300
aaattattct cttcctgaca ttgattgtat ttacatcttg cgagctatat cactatcagg	360
agtgtgttag aggtacgact gtactactaa aagaaccttg cccatcagga acatacgagg	420
gcaattcacc atttcaccct cttgctgaca ataaatttgc actaacttgc actagcacac	480
actttgcttt tgcttgtgct gacggtactc gacataccta tcagctgcgt gcaagatcag	540
tttcaccaaa acttttcatc agacaagagg aggttcaaca agagctctac tcgccacttt	600
ttctcattgt tgctgctcta gtatttttaa tactttgctt caccattaag agaaagacag	660
aatgaatgag ctcactttaa ttgacttcta tttgtgcttt ttagcctttc tgctattcct	720
tgttttaata atgcttatta tattttggtt ttcactcgaa atccaggatc tagaagaacc	780
ttgtaccaaa gtctaaacga acatgaaact tctcattgtt ttgacttgta tttctctatg	940

S226CAS111.ST25	
cagttgcata tgcactgtag tacagcgctg tgcatctaat aaacctcatg tgcttgaaga	900
tccttgtaag gtacaacact aggggtaata cttatagcac tgcttggctt tgtgctctag	960
gaaaggtttt accttttcat agatggcaca ctatggttca aacatgcaca cctaatgtta	1020
ctatcaactg tcaagatcca gctggtggtg cgcttatagc taggtgttgg taccttcatg	1080
aaggtcacca aactgctgca tttagagacg tacttgttgt tttaaataaa cgaacgaatt	1140
aaaatgtctg ataatggacc ccaatcaaac caacgtagtg ccccccgcat tacatttggt	1200
ggacccacag attcaactga caataaccag aatggaggac gc	1242
<210> 21<211> 1231<212> DNA<213> CORONAVIRUS<220><221> CDS<222 (86)(274)<223>	>
<400> 21	60
taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct	112
ttgctagtac agtaagtgac aacag atg ttt cat ctt gtt gac ttc cag gtt Met Phe His Leu Val Asp Phe Gln Val 1 5	112
aca ata gca gag ata ttg att atc att atg agg act ttc agg att gct Thr Ile Ala Glu Ile Leu Ile Ile Ile Met Arg Thr Phe Arg Ile Ala 10 15 20 25	160
att tgg aat ctt gac gtt ata ata agt tca ata gtg aga caa tta ttt Ile Trp Asn Leu Asp Val Ile Ile Ser Ser Ile Val Arg Gln Leu Phe 30 35 40	208
aag cct cta act aag aag aat tat tcg gag tta gat gat gaa gaa cct Lys Pro Leu Thr Lys Lys Asn Tyr Ser Glu Leu Asp Asp Glu Glu Pro 45 50 55	256
atg gag tta gat tat cca taaaacgaac atgaaaatta ttctcttcct Met Glu Leu Asp Tyr Pro 60	304
gacattgatt gtatttacat cttgcgagct atatcactat caggagtgtg ttagaggtac	364
gactgtacta ctaaaagaac cttgcccatc aggaacatac gagggcaatt caccatttca	424
ccctcttgct gacaataaat ttgcactaac ttgcactagc acacactttg cttttgcttg	484
tgctgacggt actcgacata cctatcagct gcgtgcaaga tcagtttcac caaaactttt	544
catcagacaa gaggaggttc aacaagagct ctactcgcca ctttttctca ttgttgctgc	604
tctagtattt ttaatacttt gcttcaccat taagagaaag acagaatgaa tgagctcact	664
ttaattgact tctatttgtg ctttttagcc tttctgctat tccttgtttt aataatgctt	724
attatatttt ggttttcact cgaaatccag gatctagaag aaccttgtac caaagtctaa	784
acgaacatga aacttctcat tgttttgact tgtatttctc tatgcagttg catatgcact	844
gtagtacagc gctgtgcatc taataaacct catgtgcttg aagatccttg taaggtacaa	904
cactaggggt aatacttata gcactgcttg gctttgtgct ctaggaaagg ttttaccttt	964
tcatagatgg cacactatgg ttcaaacatg cacacctaat gttactatca actgtcaaga	1024
tccagctggt ggtgcgctta tagctaggtg ttggtacctt catgaaggtc accaaactgc	1084
tgcatttaga gacgtacttg ttgttttaaa taaacgaaca aattaaaatg tctgataatg Page 39	1144

1204

gaccccaatc aaaccaacgt agtgcccccc gcattacatt tggtggaccc acagattcaa

ct	gaca	ataa	cca	gaat	gga	ggac	gca										1231
<2	10>	22<	211>	63	<212	> P	RT<2	13>	COR	ONAV	'IRUS	<400)> 2	22			
Me: 1	t Pho	e Hi	s Le	u Va 5	l As	p Ph	e Gl	n Va	10 10	r Il	e Al	a Gl	u I	le Le 15		le:	
116	e Ile	e Me	t Ar 20	g Th	r Ph	e Ar	g Il	e A1 25	a IÌ	e Tr	p As	n Le	u As		ı fı	le	
ΙΊ¢	Sei	35	r Il	e Va	l Ar	g Gl	n Le 40	u Ph	е Ly	s Pr	o Le	u Th 45		's Ly	's A	sn	
Tyr	Ser 50	· Glu	ı Lei	u Asį) As	o G1 55	u Gla	u Pr	o Me	t Gl	u Le 60		р Ту	r Pr	О		
<21 (28	.0> 5)	23<2 (650	211>))<22	123 23>	31<2	12>	DNA-	<213:	> C	DRONA	AVIR	US<2	20><	221>	CI	DS<222:	>
	0> cgta		gaaa	actat	aa a	attaa	atao	ca qa	acca	acco	a at:	anca:	aca a	(13.3°	to + 1	tact	60
									catc								60 120
									aggat							-	180
									ctct						_		240
									cata			ıc at	g aa		tt a	itt	296
ctc Leu 5	ttc Phe	ctg Leu	aca Thr	ttg Leu	att Ile 10	gta Val	ttt Phe	aca Thr	tct Ser	tgc Cys 15	gag Glu	cta Leu	tat Tyr	cac His	ta 5 Ty 20	r	344
cag Gln	gag Glu	tgt Cys	gtt Val	aga Arg 25	ggt Gly	acg Thr	act Thr	gta Val	cta Leu 30	cta Leu	aaa Lys	gaa Glu	CCt	tgo Cys 35	CC Pr	a o	392
tca Ser	gga Gly	aca Thr	tac Tyr 40	gag Glu	ggc Gly	ASh	tca Ser	Pro	ttt Phe	cac His	cct Pro	ctt Leu	gct Ala 50	gac Asp	aa As	t n	440
aaa Lys	ttt Phe	gca Ala 55	cta Leu	act Thr	tgc Cys	act Thr	agc Ser 60	aca Thr	cac His	ttt Phe	gct Ala	ttt Phe 65	gct Ala	tgt Cys	gc ⁻ Ala	t a	488
gac Asp	ggt Gly 70	act Thr	cga Arg	cat His	acc Thr	tat Tyr 75	cag Gln	ctg Leu	cgt Arg	gca Ala	aga Arg 80	tca Ser	gtt Val	tca Ser	cca Pro	a o	536
aaa _ys 35	ctt Leu	ttc Phe	atc Ile	aga Arg	caa Gln 90	gag Glu	gag Glu	gtt Val	caa Gln	caa Gln 95	gag Glu	ctc Leu	tac Tyr	tcg Ser	cca Pro 100)	584
eu .eu	ttt Phe	ctc Leu	att Ile	gtt Val 105	gct Ala	gct Ala	cta Leu	gta Val	ttt Phe 110	tta Leu	ata Ile	ctt Leu	tgc Cys	ttc Phe 115	acc Thr		632

S226CAS111.ST25 att aag aga aag aca gaa tgaatgagct cactttaatt gacttctatt Ile Lys Arg Lys Thr Glu	680
tgtgcttttt agcctttctg ctattccttg ttttaataat gcttattata ttttggtttt	740
cactcgaaat ccaggatcta gaagaacctt gtaccaaagt ctaaacgaac atgaaacttc	800
tcattgtttt gacttgtatt tctctatgca gttgcatatg cactgtagta cagcgctgtg	860
catctaataa acctcatgtg cttgaagatc cttgtaaggt acaacactag gggtaatact	920
tatagcactg cttggctttg tgctctagga aaggttttac cttttcatag atggcacact	980
atggttcaaa catgcacacc taatgttact atcaactgtc aagatccagc tggtggtgcg	1040
cttatagcta ggtgttggta ccttcatgaa ggtcaccaaa ctgctgcatt tagagacgta	1100
cttgttgttt taaataaacg aacaaattaa aatgtctgat aatggacccc aatcaaacca	1160
acgtagtgcc ccccgcatta catttggtgg acccacagat tcaactgaca ataaccagaa	1220.
tggaggacgc a	1231
<210> 24<211> 122<212> PRT<213> CORONAVIRUS<400> 24	
Met Lys Ile Ile Leu Phe Leu Thr Leu Ile Val Phe Thr Ser Cys Glu 1 10 15	
Leu Tyr His Tyr Gln Glu Cys Val Arg Gly Thr Thr Val Leu Leu Lys 20 25 30	
Glu Pro Cys Pro Ser Gly Thr Tyr Glu Gly Asn Ser Pro Phe His Pro 35 40 45	
Leu Ala Asp Asn Lys Phe Ala Leu Thr Cys Thr Ser Thr His Phe Ala 50 55 60	
Phe Ala Cys Ala Asp Gly Thr Arg His Thr Tyr Gln Leu Arg Ala Arg 65 70 75 80	
Ser Val Ser Pro Lys Leu Phe Ile Arg Gln Glu Glu Val Gln Glu 85 90 95	
Leu Tyr Ser Pro Leu Phe Leu Ile Val Ala Ala Leu Val Phe Leu Ile 100 105	
Leu Cys Phe Thr Ile Lys Arg Lys Thr Glu 115 120	
<210> 25<211> 1231<212> DNA<213> CORONAVIRUS<220><221> CDS<22 (650)(781)<223>	2>
<400> 25 taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct	60
ttgctagtac agtaagtgac aacagatgtt tcatcttgtt gacttccagg ttacaatagc	120
agagatattg attatcatta tgaggacttt caggattgct atttggaatc ttgacgttat	180
agagatattg attatcatta tyaggactit taggattget accessure cognis	

• :* ::}

7

aataagttca atagtgagac aattatttaa gcctctaact aagaagaatt attcggagtt	240
agatgatgaa gaacctatgg agttagatta tccataaaac gaacatgaaa attattctct	300
tcctgacatt gattgtattt acatcttgcg agctatatca ctatcaggag tgtgttagag	360
gtacgactgt actactaaaa gaaccttgcc catcaggaac atacgagggc aattcaccat	420
ttcaccctct tgctgacaat aaatttgcac taacttgcac tagcacacac tttgcttttg	480
cttgtgctga cggtactcga catacctatc agctgcgtgc aagatcagtt tcaccaaaac	540
ttttcatcag acaagaggag gttcaacaag agctctactc gccacttttt ctcattgttg	600
ctgctctagt atttttaata ctttgcttca ccattaagag aaagacaga atg aat gag Met Asn Glu 1	658
ctc act tta att gac ttc tat ttg tgc ttt tta gcc ttt ctg cta ttc Leu Thr Leu Ile Asp Phe Tyr Leu Cys Phe Leu Ala Phe Leu Leu Phe 5 10 15	706
ctt gtt tta ata atg ctt att ata ttt tgg ttt tca ctc gaa atc cag Leu Val Leu Ile Met Leu Ile Ile Phe Trp Phe Ser Leu Glu Ile Gln 20 25 30 35	754
gat cta gaa gaa cct tgt acc aaa gtc taaacgaaca tgaaacttct Asp Leu Glu Glu Pro Cys Thr Lys Val 40	801
cattgttttg acttgtattt ctctatgcag ttgcatatgc actgtagtac agcgctgtgc	861
atctaataaa cctcatgtgc ttgaagatcc ttgtaaggta caacactagg ggtaatactt	921
atagcactgc ttggctttgt gctctaggaa aggttttacc ttttcataga tggcacacta	981
tggttcaaac atgcacacct aatgttacta tcaactgtca agatccagct ggtggtgcgc	1041
ttatagctag gtgttggtac cttcatgaag gtcaccaaac tgctgcattt agagacgtac	1101
ttgttgtttt aaataaacga acaaattaaa atgtctgata atggacccca atcaaaccaa	1161
cgtagtgccc cccgcattac atttggtgga cccacagatt caactgacaa taaccagaat	1221
ggaggacgca	1231
<210> 26<211> 44<212> PRT<213> CORONAVIRUS<400> 26	
Met Asn Glu Leu Thr Leu Ile Asp Phe Tyr Leu Cys Phe Leu Ala Phe 1 10 15	

Leu Leu Phe Leu Val Leu Ile Met Leu Ile Ile Phe Trp Phe Ser Leu 20 25 30

Glu Ile Gln Asp Leu Glu Glu Pro Cys Thr Lys Val 35 40

<210> 27<211> 1231<212> DNA<213> CORONAVIRUS<220><221> CDS<222> (791)..(907)<223>

<400> 27 taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct

S226CAS111.ST25 ttgctagtac agtaagtgac aacagatgtt tcatcttgtt gacttccagg ttacaatagc	120
agagatattg attatcatta tgaggacttt caggattgct atttggaatc ttgacgttat	180
aataagttca atagtgagac aattatttaa gcctctaact aagaagaatt attcggagtt	240
agatgatgaa gaacctatgg agttagatta tccataaaac gaacatgaaa attattctct	300
tcctgacatt gattgtattt acatcttgcg agctatatca ctatcaggag tgtgttagag	360
gtacgactgt actactaaaa gaaccttgcc catcaggaac atacgagggc aattcaccat	420
ttcaccctct tgctgacaat aaatttgcac taacttgcac tagcacacac tttgcttttg	480
cttgtgctga cggtactcga catacctatc agctgcgtgc aagatcagtt tcaccaaaac	540
ttttcatcag acaagaggag gttcaacaag agctctactc gccacttttt ctcattgttg	600
ctgctctagt atttttaata ctttgcttca ccattaagag aaagacagaa tgaatgagct	660
cactttaatt gacttctatt tgtgcttttt agcctttctg ctattccttg ttttaataat	720
gcttattata ttttggtttt cactcgaaat ccaggatcta gaagaacctt gtaccaaagt	780
ctaaacgaac atg aaa ctt ctc att gtt ttg act tgt att tct cta tgc Met Lys Leu Leu Ile Val Leu Thr Cys Ile Ser Leu Cys 1 5 10	829
agt tgc ata tgc act gta gta cag cgc tgt gca tct aat aaa cct cat Ser Cys Ile Cys Thr Val Val Gln Arg Cys Ala Ser Asn Lys Pro His 15 20 25	877
gtg ctt gaa gat cct tgt aag gta caa cac taggggtaat acttatagca Val Leu Glu Asp Pro Cys Lys Val Gln His 30 35	927
ctgcttggct ttgtgctcta ggaaaggttt taccttttca tagatggcac actatggttc	987
aaacatgcac acctaatgtt actatcaact gtcaagatcc agctggtggt gcgcttatag	1047
ctaggtgttg gtaccttcat gaaggtcacc aaactgctgc atttagagac gtacttgttg	1107
ttttaaataa acgaacaaat taaaatgtct gataatggac cccaatcaaa ccaacgtagt	1167
gcccccgca ttacatttgg tggacccaca gattcaactg acaataacca gaatggagga	1227
сдса	1231
. <210> 28<211> 39<212> PRT<213> CORONAVIRUS<400> 28	
Met Lys Leu Leu Ile Val Leu Thr Cys Ile Ser Leu Cys Ser Cys Ile 1 10 15	,
Cys Thr Val Val Gln Arg Cys Ala Ser Asn Lys Pro His Val Leu Glu 20 25 30	
Asp Pro Cys Lys Val Gln His 35	
<210> 29<211> 1231<212> DNA<213> CORONAVIRUS<220><221> CDS<222 (876)(1127)<223>	2>
<400> 29 taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct Page 43	60

-1. - 5 13.

ttgctagtac agta	agtgac aacaga	tgtt tcatcttgtt	gacttccagg ttacaatagc	120
agagatattg atta	tcatta tgagga	cttt caggattgct	atttggaatc ttgacgttat	180
aataagttca atag	tgagac aattat	ttaa gcctctaact	aagaagaatt attcggagtt	240
agatgatgaa gaac	ctatgg agttag	atta tccataaaac	gaacatgaaa attattctct	300
tcctgacatt gatt	gtattt acatct	tgcg agctatatca	ctatcaggag tgtgttagag	360
gtacgactgt acta	ctaaaa gaacct	tgcc catcaggaac	atacgagggc aattcaccat	420
ttcaccctct tgct	gacaat aaattt	gcac taacttgcac	tagcacacac tttgcttttg	480
cttgtgctga cggta	actcga catacc	tatc agctgcgtgc	aagatcagtt tcaccaaaac	540
ttttcatcag acaa	gaggag gttcaa	caag agctctactc	gccacttttt ctcattgttg	600
ctgctctagt attt	ttaata ctttgc	ttca ccattaagag	aaagacagaa tgaatgagct	660
cactttaatt gact	tctatt tgtgct	tttt agcctttctg	ctattccttg ttttaataat	720
gcttattata tttt	ggtttt cactcg	aaat ccaggatcta	gaagaacctt [,] gtaccaaagt	780
ctaaacgaac atgaa	aacttc tcattg	tttt gacttgtatt	tctctatgca gttgcatatg	840
cactgtagta cago	gctgtg catcta		tgc ttg aag atc ctt Cys Leu Lys Ile Leu 5	893
gta agg tac aac Val Arg Tyr Asn 10	act agg ggt a Thr Arg Gly A	aat act tat agc Asn Thr Tyr Ser 15	act gct tgg ctt tgt Thr Ala Trp Leu Cys 20	941
gct cta gga aag Ala Leu Gly Lys 25	Val Leu Pro I	ttt cat aga tgg Phe His Arg Trp 30	cac act atg gtt caa His Thr Met Val Gln 35	- 989
aca tgc aca cct Thr Cys Thr Pro 40	aat gtt act a Asn Val Thr 1 45	atc aac tgt caa Ile Asn Cys Gln	gat cca gct ggt ggt Asp Pro Ala Gly Gly 50	1037
gcg ctt ata gct Ala Leu Ile Ala 55	agg tgt tgg t Arg Cys Trp 7	tac ctt cat gaa Tyr Leu His Glu 65	ggt cac caa act gct Gly His Gln Thr Ala 70	1085
gca ttt aga gac Ala Phe Arg Asp	gta ctt gtt g Val Leu Val v 75	gtt tta aat aaa Val Leu Asn Lys 80	cga aca aat Arg Thr Asn	1127
taaaatgtct gataa	atggac cccaato	caaa ccaacgtagt	gcccccgca ttacatttgg	1187
tggacccaca gatto	caactg acaataa	acca gaatggagga	cgca	1231
<210> 30<211>	84<212> PRT	<213> CORONAVIR	:us<400> 30	
			Arg Gly Asn Thr Tyr	
1	5	10	15	
Ser Thr Ala Trp 20	Leu Cys Ala L	Leu Gly Lys Val 25	Leu Pro Phe His Arg 30	

Trp His Thr Met Val Gln Thr Cys Thr Pro Asn Val Thr Ile Asn Cys 35 40 45

Gln Asp Pro Ala Gly Gly Ala Leu Ile Ala Arg Cys Trp Tyr Leu His 50 60

Glu Gly His Gln Thr Ala Ala Phe Arg Asp Val Leu Val Val Leu Asn 65 70 80

Lys Arg Thr Asn

<210> 31<2	11> 21221<	:212> DNA<2 tgtcaacgag	13> CORONA aaaacacacg	VIRUS<400> tccaactcag	31 tttgcctgtc	60
			ttcggggact			120
			tgtggtctag			180
			attaaacgtt			240
			gaaatggacg			300
			gtgggcgaaa			360
			gccggtggtc			420
			actgatccca			480
			cgtgaactca			540
			tgtggcccag			600
			tcaatgtgca			660
			tgccgtgacc			720
			caccagacac			780
			ccaaagtttg			840
			aaaaagactg			900
			gagtgtaaca			960
atgaaatgta	atcattgcga	tgaagtttca	tggcagacgt	gcgactttct	gaaagccact	1020
tgtgaacatt	gtggcactga	aaatttagtt	attgaaggac	ctactacatg	tgggtaccta	1080
cctactaato	ctgtagtgaa	aatgccatgt	cctgcctgtc	aagacccaga	gattggacct	1140
gagcatagto	, ttgcagatta	tcacaaccac	tcaaacattg	aaactcgact	ccgcaaggga	1200
ggtaggacta	gatgttttgg	aggctgtgtg	tttgcctatg	ttggctgcta	taataagcgt	1260
gcctactggg	ttcctcgtg	tagtgctgat	attggctcag	gccatactgg	cattactggt	1320
					acgtgttaac	1380
attaacatt	g ttggcgatti	tcatttgaat	gaagaggttg	ccatcatttt	ggcatctttc	1440
					gtctttcaaa	1500
accattgtt	g agtcctgcgg	j taactataaa	gttaccaagg	gaaagcccgt	: aaaaggtgct	1560
				gtggttttc	ctcacaggct	1620

gctggtgtta	tcagatcaat	ttttgcgcgc	acacttgatg	cagcaaacca	ctcaattcct	1680
gatttgcaaa	gagcagctgt	caccatactt	gatggtattt	ctgaacagtc	attacgtctt	1740
gtcgacgcca	tggtttatac	ttcagacctg	ctcaccaaca	gtgtcattat	tatggcatat	1800
gtaactggtg	gtcttgtaca	acagacttct	cagtggttgt	ctaatctttt	gggcactact	1860
gttgaaaaac	tcaggcctat	ctttgaatgg	attgaggcga	aacttagtgc	aggagttgaa	1920
tttctcaagg	atgcttggga	gattctcaaa	tttctcatta	caggtgtttt	tgacatcgtc	1980
aagggtcaaa	tacaggttgc	ttcagataac	atcaaggatt	gtgtaaaatg	cttcattgat	2040
gttgttaaca	aggcactcga	aatgtgcatt	gatcaagtca	ctatcgctgg	cgcaaagttg	2100
cgatcactca	acttaggtga	agtcttcatc	gctcaaagca	agggacttta	ccgtcagtgt	2160
atacgtggca	aggagcagct	gcaactactc	atgcctctta	aggcaccaaa	agaagtaacc	2220
tttcttgaag	gtgattcaca	tgacacagta	cttacctctg	aggaggttgt	tctcaagaac	2280
ggtgaactcg	aagcactcga	gacgcccgtt	gatagcttca	caaatggagc	tatcgttggc	2340
acaccagtct	gtgtaaatgg	cctcatgctc	ttagagatta	aggacaaaga	acaatactgc	2400
gcattgtctc	ctggtttact	ggctacaaac	aatgtctttc	gcttaaaagg	gggtgcacca	2460
attaaaggtg	taacctttgg	agaagatact	gtttgggaag	ttcaaggtta	caagaatgtg	2520
agaatcacat	ttgagcttga	tgaacgtgtt	gacaaagtgc	ttaatgaaaa	gtgctctgtc	2580
tacactgttg	aatccggtac	cgaagttact	gagtttgcat	gtgttgtagc	agaggctgtt	2640
gtgaagactt	tacaaccagt	ttctgatctc	cttaccaaca	tgggtattga	tcttgatgag	2700
tggagtgtag	ctacattcta	cttatttgat	gatgctggtg	aagaaaactt	ttcatcacgt	2760
atgtattgtt	ccttttaccc	tccagatgag	gaagaagagg	acgatgcaga	gtgtgaggaa	2820
gaagaaattg	atgaaacctg	tgaacatgag	tacggtacag	aggatgatta	tcaaggtctc	2880
cctctggaat	ttggtgcctc	agctgaaaca	gttcgagttg	aggaagaaga	agaggaagac	2940
tggctggatg	atactactga	gcaatcagag	attgagccag	aaccagaacc	tacacctgaa	3000
gaaccagtta	atcagtttac	tggttattta	aaacttactg	acaatgttgc	cattaaatgt	3060
gttgacatcg	ttaaggaggc	acaaagtgct	aatcctatgg	tgattgtaaa	tgctgctaac	3120
atacacctga	aacatggtgg	tggtgtagca	ggtgcactca	acaaggcaac	caatggtgcc	3180
atgcaaaagg	agagtgatga	ttacattaag	ctaaatggcc	ctcttacagt	aggagggtct	3240
tgtttgcttt	ctggacataa	tcttgctaag	aagtgtctgc	atgttgttgg	acctaaccta	3300
aatgcaggtg	aggacatcca	gcttcttaag	gcagcatatg	aaaatttcaa	ttcacaggac	3360
atcttacttg	caccattgtt	gtcagcaggc	atatttggtg	ctaaaccact	tcagtcttta	3420
caagtgtgcg	tgcagacggt	tcgtacacag	gtttatattg	cagtcaatga	caaagctctt	3480
tatgagcagg	ttgtcatgga	ttatcttgat	aacctgaagc	ctagagtgga	agcacctaaa	3540
caagaggagc	caccaaacac	agaagattcc	aaaactgagg	agaaatctgt	cgtacagaag	3600
cctgtcgatg	tgaagccaaa	aattaaggcc	tgcattgatg Page 46		aacactggaa	3660

gaaactaagt	ttcttaccaa	taagttactc	ttgtttgctg	atatcaatgg	taagctttac	3720
catgattctc	agaacatgct	tagaggtgaa	gatatgtctt	tccttgagaa	ggatgcacct	3780
tacatggtag	gtgatgttat	cactagtggt	gatatcactt	gtgttgtaat	accctccaaa	3840
aaggctggtg	gcactactga	gatgctctca	agagctttga	agaaagtgcc	agttgatgag	3900
tatataacca	cgtaccctgg	acaaggatgt	gctggttata	cacttgagga	agctaagact	3960
gctcttaaga	aatgcaaatc	tgcattttat	gtactacctt	cagaagcacc	taatgctaag	4020
gaagagattc	taggaactgt	atcctggaat	ttgagagaaa	tgcttgctca	tgctgaagag	4080
acaagaaaat	taatgcctat	atgcatggat	gttagagcca	taatggcaac	catccaacgt	4140
aagtataaag	gaattaaaat	tcaagagggc	atcgttgact	atggtgtccg	attcttcttt	4200
tatactagta	aagagcctgt	agcttctatt	attacgaagc	tgaactctct	aaatgagccg	4260
cttgtcacaa	tgccaattgg	ttatgtgaca	catggtttta	atcttgaaga	ggctgcgcgc	4320
tgtatgcgtt	ctcttaaagc	tcctgccgta	gtgtcagtat	catcaccaga	tgctgttact	4380
acatataatg	gatacctcac	ttcgtcatca	aagacatctg	aggagcactt	tgtagaaaca	4440
gtttctttgg	ctggctctta	cagagattgg	tcctattcag	gacagcgtac	agagttaggt	4500
gttgaatttc	ttaagcgtgg	tgacaaaatt	gtgtaccaca	ctctggagag	ccccgtcgag	4560
tttcatcttg	·acggtgaggt	tctttcactt	gacaaactaa	agagtctctt	atccctgcgg	4620
gaggttaaga	ctataaaagt	gttcacaact	gtggacaaca	ctaatctcca	cacacagctt	4680
gtggatatgt	ctatgacata	tggacagcag	tttggtccaa	catacttgga	tggtgctgat	4740
gttacaaaaa	ttaaacctca	tgtaaatcat	gagggtaaga	ctttctttgt	actacctagt	4800
gatgacacac	tacgtagtga	agctttcgag	tactaccata	ctcttgatga	gagttttctt	4860
ggtaggtaca	tgtctgcttt	aaaccacaca	aagaaatgga	aatttcctca	agttggtggt	4920
ttaacttcaa	ttaaatgggc	tgataacaat	tgttatttgt	ctagtgtttt	attagcactt	4980
caacagcttg	aagtcaaatt	caatgcacca	gcacttcaag	aggcttatta	tagagcccgt	5040
gctggtgatg	ctgctaactt	ttgtgcactc	atactcgctt	acagtaataa	aactgttggc	5100
gagcttggtg	atgtcagaga	aactatgacc	catcttctac	agcatgctaa	tttggaatct	5160
gcaaagcgag	ttcttaatgt	ggtgtgtaaa	cattgtggtc	agaaaactac	taccttaacg	5220
ggtgtagaag	ctgtgatgta	tatgggtact	ctatcttatg	ataatcttaa	gacaggtgtt	5280
tccattccat	gtgtgtgtgg	tcgtgatgct	acacaatatc	tagtacaaca	agagtcttct	5340
tttgttatga	tgtctgcacc	acctgctgag	tataaattac	agcaaggtac	attcttatgt	5400
gcgaatgagt	acactggtaa	ctatcagtgt	ggtcattaca	ctcatataac	tgctaaggag	5460
accctctatc	gtattgacgg	agctcacctt	acaaagatgt	cagagtacaa	aggaccagtg	5520
actgatgttt	tctacaagga	aacatcttac	actacaacca	tcaagcctgt	gtcgtataaa	5580
ctcgatggag	ttacttacac	agagattgaa	ccaaaattgg	atgggtatta	taaaaaggat	5640
aatgcttact	atacagagca	gcctatagac	cttgtaccaa	ctcaaccatt	accaaatgcg	5700

Page 47

agttttgata	atttcaaact	cacatgttct	aacacaaaat	ttgctgatga	tttaaatcaa	5760
atgacaggct	tcacaaagcc	agcttcacga	gagctatctg	tcacattctt	cccagacttg	5820
aatggcgatg	tagtggctat	tgactataga	cactattcag	cgagtttcaa	gaaaggtgct	5880
aaattactgc	ataagccaat	tgtttggcac	attaaccagg	ctacaaccaa	gacaacgttc	5940
aaaccaaaca	cttggtgttt	acgttgtctt	tggagtacaa	agccagtaga	tacttcaaat	6000
tcatttgaag	ttctggcagt	agaagacaca	caaggaatgg	acaatcttgc	ttgtgaaagt	6060
caacaaccca	cctctgaaga	agtagtggaa	aatcctacca	tacagaagga	agtcatagag	6120
tgtgacgtga	aaactaccga	agttgtaggc	aatgtcatac	ttaaaccatc	agatgaaggt	6180
gttaaagtaa	cacaagagtt	aggtcatgag	gatcttatgg	ctgcttatgt	ggaaaacaca	6240
agcattacca	ttaagaaacc	taatgagctt	tcactagcct	taggtttaaa	aacaattgcc	6300
actcatggta	ttgctgcaat	taatagtgtt	ccttggagta	aaattttggc	ttatgtcaaa	6360
ccattcttag	gacaagcagc	aattacaaca	tcaaattgcg	ctaagagatt	agcacaacgt	6420
gtgtttaaca	attatatgcc	ttatgtgttt	acattattgt	tccaattgtg	tacttttact	6480
aaaagtacca	attctagaat	tagagcttca	ctacctacaa	ctattgctaa	aaatagtgtt	6540
aagagtgttg	ctaaattatg	tttggatgcc	ggcattaatt	atgtgaagtc	acccaaattt	6600
tctaaattgt	tcacaatcgc	tatgtggcta	ttgttgttaa	gtatttgctt	aggttctcta	6660
atctgtgtaa	ctgctgcttt	tggtgtactc	ttatctaatt	ttggtgctcc	ttcttattgt	6720
aatggcgtta	gagaattgta	tcttaattcg	tctaacgtta	ctactatgga	tttctgtgaa	6780
ggttcttttc	cttgcagcat	ttgtttaagt	ggattagact	cccttgattc	ttatccagct	6840
cttgaaacca	ttcaggtgac	gatttcatcg	tacaagctag	acttgacaat	tttaggtctg	6900
gccgctgagt	gggttttggc	atatatgttg	ttcacaaaat	tcttttattt	attaggtctt	6960
tcagctataa	tgcaggtgtt	ctttggctat	tttgctagtc	atttcatcag	caattcttgg	7020
ctcatgtggt	ttatcattag	tattgtacaa	atggcacccg	tttctgcaat	ggttaggatg	7080
tacatcttct	ttgcttcttt	ctactacata	tggaagagct	atgttcatat	catggatggt	7140
tgcacctctt	cgacttgcat	gatgtgctat	aagcgcaatc	gtgccacacg	cgttgagtgt	7200
acaactattg	ttaatggcat	gaagagatct	ttctatgtct	atgcaaatgg	aggccgtggc	7260
ttctgcaaga	ctcacaattg	gaattgtctc	aattgtgaca	cattttgcac	tggtagtaca	7320
ttcattagtg	atgaagttgc	tcgtgatttg	tcactccagt	ttaaaagacc	aatcaaccct	7380
			gttgctgtga			7440
tactttgaca	aggctggtca	aaagacctat	gagagacatc	cgctctccca	ttttgtcaat	7500
			ggttcactgc			7560
			tctaagtctg			7620
			caagctcttg			7680
actgaagttt	ccgttaagat	gtttgatgct	tatgtcgaca Page 48	ccttttcagc	aacttttagt	7740

32204.0222	
gttcctatgg aaaaacttaa ggcacttgtt gttatagett acagegagte agenanggg	7800
gtagetttag atggtgteet tretacatte gtgteagetg eeegaeaagg ego-go-go-go-go-go-go-go-go-go-go-go-go-g	7860
accgatgttg acacaaagga tgttattgaa tgtttaaaac ttttaaacca coos	7920
gaagtgacag gtgacagttg taacaatttc atgctcacct ataataaggt tgaaaacatg	7980
	8040
gcaaaaagtc acaatgtttc actcatctgg aatgtaaaag actacatgtc tttatctgaa	8100
cagctgcgta aacaaattcg tagtgctgcc aagaagaaca acataccttt tagactaact	8160
tgtgctacaa ctagacaggt tgtcaatgtc ataactacta aaatctcact caagggtggt	8220
aagattgtta gtacttgttt taaacttatg cttaaggcca cattattgtg cgttcttgct	8280
gcattggttt gttatatcgt tatgccagta catacattgt caatccatga tggttacaca	8340
aatgaaatca ttggttacaa agccattcag gatggtgtca ctcgtgacat catttctact	8400
gatgattgtt ttgcaaataa acatgctggt tttgacgcat ggtttagcca gcgtggtggt	8460
tcatacaaaa atgacaaaag ctgccctgta gtagctgcta tcattacaag agagattggt	8520
ttcatagtgc ctggcttacc gggtactgtg ctgagagcaa tcaatggtga cttcttgcat	8580
tttctacctc gtgtttttag tgctgttggc aacatttgct acacaccttc caaactcatt	8640
gagtatagtg attttgctac ctctgcttgc gttcttgctg ctgagtgtac aatttttaag	8700
gatgctatgg gcaaacctgt gccatattgt tatgacacta atttgctaga gggttctatt	8760
tottatagtg agottogtoc agacactogt tatgtgotta tggatggtto catcatacag	8820
tttcctaaca cttacctgga gggttctgtt agagtagtaa caacttttga tgctgagtac	8880
tgtagacatg gtacatgcga aaggtcagaa gtaggtattt gcctatctac cagtggtaga	8940
tgggttctta ataatgagca ttacagagct ctatcaggag ttttctgtgg tgttgatgcg	9000
atgaatctca tagctaacat ctttactcct cttgtgcaac ctgtgggtgc tttagatgtg	9060
tctgcttcag tagtggctgg tggtattatt gccatattgg tgacttgtgc tgcctactac	9120
tttatgaaat tcagacgtgt ttttggtgag tacaaccatg ttgttgctgc taatgcactt	9180
ttgtttttga tgtctttcac tatactctgt ctggtaccag cttacagctt tctgccggga	9240
gtctactcag tcttttactt gtacttgaca ttctatttca ccaatgatgt ttcattcttg	9300
gctcaccttc aatggtttgc catgttttct cctattgtgc ctttttggat aacagcaatc	9360
tatgtattct gtatttctct gaagcactgc cattggttct ttaacaacta tcttaggaaa	9420
agagtcatgt ttaatggagt tacatttagt accttcgagg aggctgcttt gtgtaccttt	9480
ttgctcaaca aggaaatgta cctaaaattg cgtagcgaga cactgttgcc acttacacag	9540
tataacaggt atcttgctct atataacaag tacaagtatt tcagtggagc cttagatact	9600
accagctatc gtgaagcagc ttgctgccac ttagcaaagg ctctaaatga ctttagcaac	9660
tcaggtgctg atgttctcta ccaaccacca cagacatcaa tcacttctgc tgttctgcag	9720
agtggtttta ggaaaatggc attcccgtca ggcaaagttg aagggtgcat ggtacaagta Page 49	9780

Si Si

13

acctgtggaa ctacaactct taatggattg tggttggatg acacagtata ctgtccaaga 984	40
catgtcattt gcacagcaga agacatgctt aatcctaact atgaagatct gctcattcgc 990	00
aaatccaacc atagctttct tgttcaggct ggcaatgttc aacttcgtgt tattggccat 996	50
tctatgcaaa attgtctgct taggcttaaa gttgatactt ctaaccctaa gacacccaag 1002	20
tataaatttg tccgtatcca acctggtcaa acattttcag ttctagcatg ctacaatggt 1008	30
tcaccatctg gtgtttatca gtgtgccatg agacctaatc ataccattaa aggttctttc 1014	10
cttaatggat catgtggtag tgttggtttt aacattgatt atgattgcgt gtctttctgc 1020	00
tatatgcatc atatggagct tccaacagga gtacacgctg gtactgactt agaaggtaaa 1026	50
ttctatggtc catttgttga cagacaaact gcacaggctg caggtacaga cacaaccata 1032	: 0
acattaaatg ttttggcatg gctgtatgct gctgttatca atggtgatag gtggtttctt 1038	0
aatagattca ccactacttt gaatgacttt aaccttgtgg caatgaagta caactatgaa 1044	0
cctttgacac aagatcatgt tgacatattg ggacctcttt ctgctcaaac aggaattgcc 1050	0
gtcttagata tgtgtgctgc tttgaaagag ctgctgcaga atggtatgaa tggtcgtact 1056	0
atccttggta gcactatttt agaagatgag tttacaccat ttgatgttgt tagacaatgc 10620	0
tctggtgtta ccttccaagg taagttcaag aaaattgtta agggcactca tcattggatg 10680	0
cttttaactt tcttgacatc actattgatt cttgttcaaa gtacacagtg gtcactgttt 10740	0
ttctttgttt acgagaatgc tttcttgcca tttactcttg gtattatggc aattgctgca 10800	0
tgtgctatgc tgcttgttaa gcataagcac gcattcttgt gcttgtttct gttaccttct 10860	0
cttgcaacag ttgcttactt taatatggtc tacatgcctg ctagctgggt gatgcgtatc 10920	0
atgacatggc ttgaattggc tgacactagc ttgtctggtt ataggcttaa ggattgtgtt 10980)
atgtatgctt cagctttagt tttgcttatt ctcatgacag ctcgcactgt ttatgatgat 11040)
gctgctagac gtgtttggac actgatgaat gtcattacac ttgtttacaa agtctactat 11100)
ggtaatgctt tagatcaagc tatttccatg tgggccttag ttatttctgt aacctctaac 11160)
tattctggtg tcgttacgac tatcatgttt ttagctagag ctatagtgtt tgtgtgtgtt 11220)
gagtattacc cattgttatt tattactggc aacaccttac agtgtatcat gcttgtttat 11280)
tgtttcttag gctattgttg ctgctgctac tttggccttt tctgtttact caaccgttac 11340	}
ttcaggctta ctcttggtgt ttatgactac ttggtctcta cacaagaatt taggtatatg 11400	1
aactcccagg ggcttttgcc tcctaagagt agtattgatg ctttcaagct taacattaag 11460	i
ttgttgggta ttggaggtaa accatgtatc aaggttgcta ctgtacagtc taaaatgtct 11520	
gacgtaaagt gcacatctgt ggtactgctc tcggttcttc aacaacttag agtagagtca 11580	
tcttctaaat tgtgggcaca atgtgtacaa ctccacaatg atattcttct tgcaaaagac 11640	
acaactgaag ctttcgagaa gatggtttct cttttgtctg ttttgctatc catgcagggt 11700	
gctgtagaca ttaataggtt gtgcgaggaa atgctcgata accgtgctac tcttcaggct 11760	
attgcttcag aatttagttc tttaccatca tatgccgctt atgccactgc ccaggaggcc 11820 Page 50	•

tatgagcagg	ctgtagctaa	tggtgattct	gaagtcgttc	tcaaaaagtt	aaagaaatct	11880
ttgaatgtgg	ctaaatctga	gtttgaccgt	gatgctgcca	tgcaacgcaa	gttggaaaag	11940
atggcagatc	aggctatgac	ccaaatgtac	aaacaggcaa	gatctgagga	caagagggca	12000
aaagtaacta	gtgctatgca	aacaatgctc	ttcactatgc	ttaggaagct	tgataatgat	12060
gcacttaaca	acattatcaa	caatgcgcgt	gatggttgtg	ttccactcaa	catcatacca	12120
ttgactacag	cagccaaact	catggttgtt	gtccctgatt	atggtaccta	caagaacact	12180
tgtgatggta	acacctttac	atatgcatct	gcactctggg	aaatccagca	agttgttgat	12240
gcggatagca	agattgttca	acttagtgaa	attaacatgg	acaattcacc	aaatttggct	12300
tggcctctta	ttgttacagc	tctaagagcc	aactcagctg	ttaaactaca	gaataatgaa	12360
ctgagtccag	tagcactacg	acagatgtcc	tgtgcggctg	gtaccacaca	aacagcttgt	12420
actgatgaca	atgcacttgc	ctactataac	aattcgaagg	gaggtaggtt	tgtgctggca	12480
ttactatcag	accaccaaga	tctcaaatgg	gctagattcc	ctaagagtga	tggtacaggt	12540
acaatttaca	cagaactgga	accaccttgt	aggtttgtta	cagacacacc	aaaagggcct	12600
aaagtgaaat	acttgtactt	catcaaaggc	ttaaacaacc	taaatagagg	tatggtgctg	12660
ggcagtttag	ctgctacagt	acgtcttcag	gctggaaatg	ctacagaagt	acctgccaat	12720
tcaactgtgc	tttccttctg	tgcttttgca	gtagaccctg	ctaaagcata	taaggattac	12780
ctagcaagtg	gaggacaacc	aatcaccaac	tgtgtgaaga	tgttgtgtac	acacactggt	12840
acaggacagg	caattactgt	aacaccagaa	gctaacatgg	accaagagtc	ctttggtggt	12900
gcttcatgtt	gtctgtattg	tagatgccac	attgaccatc	caaatcctaa	aggattctgt	12960
gacttgaaag	gtaagtacgt	ccaaatacct	accacttgtg	ctaatgaccc	agtgggtttt	13020
acacttagaa	acacagtctg	taccgtctgc	ggaatgtgga	aaggttatgg	ctgtagttgt	13080
gaccaactcc	gcgaaccctt	gatgcagtct	gcggatgcat	caacgttttt	aaacgggttt	13140
gcggtgtaag	tgcagcccgt	cttacaccgt	gcggcacagg	cactagtact	gatgtcgtct	13200
acagggcttt	tgatatttac	aacgaaaaag	ttgctggttt	tgcaaagttc	ctaaaaacta	13260
			aaggcaattt			13320
ttaagaggca	tactatgtct	aactaccaac	atgaagagac	tatttataac	ttggttaaag	13380
attgtccago	ggttgctgtc	catgactttt	tcaagtttag	agtagatggt	gacatggtac	13440
cacatatato	acgtcagcgt	ctaactaaat	acacaatggc	tgatttagtc	tatgctctac	13500
			taaaagaaat		•	13560
gtgatgatga	ttatttcaat	aagaaggatt	ggtatgactt	cgtagagaat	cctgacatct	13620
_			tacgccaatc			13680
			taggcgtact			13740
		•	tcgtacaagt			13800
ctattgtgga	ttcatattac	tcattgctga	tgcccatcct Page 53		agggcattgg	13860

•						
ctgctgagtc co	catatggat	gctgatctcg	caaaaccac	t tattaagtg	g gatttgctga	13920
aatatgattt ta	acggaagag	agactttgto	tcttcgacc	g ttattttaa	a tattgggaco	13980
agacatacca to	cccaattgt	attaactgtt	tggatgata	g gtgtatcct	t cattgtgcaa	14040
actttaatgt gi	ttattttct	actgtgtttc	cacctacaa	ttttggacc	a ctagtaagaa	14100
aaatatttgt ag	gatggtgtt	ccttttgttg	tttcaactg	ataccattt	t cgtgagttag	14160
gagtcgtaca ta	aatcaggat	gtaaacttac	atagctcgcg	tctcagttt	c aaggaacttt	14220
tagtgtatgc to	gctgatcca	gctatgcatg	cagcttctgg	caatttatt	g ctagataaac	14280
gcactacatg ct	ttttcagta	gctgcactaa	caaacaatgt	tgcttttcaa	a actgtcaaac	14340
ccggtaattt ta	aataaagac	ttttatgact	ttgctgtgtc	: taaaggttt	tttaaggaag	14400
gaagttctgt tg	gaactaaaa	cacttcttct	ttgctcagga	tggcaacgct	gctatcagtg	14460
attatgacta tt	atcgttat	aatctgccaa	caatgtgtga	tatcagacaa	ctcctattcg	14520
tagttgaagt tg	gttgataaa	tactttgatt	gttacgatgg	tggctgtatt	aatgccaacc	14580
aagtaatcgt ta	acaatctg	gataaatcag	ctggtttccc	atttaataaa	tggggtaagg	14640
ctagacttta tt	atgactca	atgagttatg	aggatcaaga	tgcacttttc	gcgtatacta	14700
agcgtaatgt ca	tccctact	ataactcaaa	tgaatcttaa	gtatgccatt	agtgcaaaga	14760
atagagctcg ca	ccgtagct	ggtgtctcta	tctgtagtac	tatgacaaat	agacagtttc	14820
atcagaaatt at	tgaagtca	atagccgcca	ctagaggagc	tactgtggta	attggaacaa	14880
gcaagtttta cg	gtggctgg	cataatatgt	taaaaactgt	ttacagtgat	gtagaaactc	14940
cacaccttat gg	gttgggat	tatccaaaat	gtgacagagc	catgcctaac	atgcttagga	15000
taatggcctc tc	ttgttctt	gctcgcaaac	ataacacttg	ctgtaactta	tcacaccgtt	15060
tctacaggtt ag	ctaacgag 1	tgtgcgcaag	tattaagtga	gatggtcatg	tgtggcggct	15120
cactatatgt ta	aaccaggt g	ggaacatcat	ccggtgatgc	tacaactgct	tatgctaata	15180
gtgtctttaa ca	tttgtcaa g	gctgttacag	ccaatgtaaa	tgcacttctt	tcaactgatg	15240
gtaataagat ag	ctgacaag t	tatgtccgca	atctacaaca	caggctctat	gagtgtctct	15300
atagaaatag gga	atgttgat d	catgaattcg	tggatgagtt	ttacgcttac	ctgcgtaaac	15360
atttctccat ga	tgattctt t	ctgatgatg	ccgttgtgtg	ctataacagt	aactatgcgg	15420
ctcaaggttt ag	tagctagc a	ıttaagaact	ttaaggcagt	tctttattat	caaaataatg	15480
tgttcatgtc tga	aggcaaaa t	gttggactg	agactgacct	tactaaagga	cctcacgaat	15540
tttgctcaca gca	atacaatg c	tagttaaac	aaggagatga	ttacgtgtac	ctgccttacc	15600
cagatccatc aag	gaatatta g	gcgcaggct	gttttgtcga	tgatattgtc	aaaacagatg	15660
gtacacttat gat	ttgaaagg t	tcgtgtcac	tggctattga	tgcttaccca	cttacaaaac	15720
atcctaatca gga	agtatgct g	atgtctttc	acttgtattt	acaatacatt	agaaagttac	15780
atgatgagct tac	tggccac a	tgttggaca [.]	tgtattccgt	aatgctaact	aatgataaca	15840
cctcacggta ctg	ggaacct g	agttttatg a	aggctatgta Page 52	cacaccacat	acagtcttgc	15900

Page 52

\$226CAS111.5123	E0.60
aggetgtagg tgettgtgta ttgtgcaatt cacagaette acticgtige ggtgddgon	5960
ttaggagacc attcctatgt tgcaagtgct gctatgacca tgtcatttca acatcacaca I	.6020
aattagtgtt gtctgttaat ccctatgttt gcaatgcccc aggttgtgat gtcactgatg 1	.6080
tgacacaact gtatctagga ggtatgagct attattgcaa gtcacataag cctcccatta l	6140
gttttccatt atgtgctaat ggtcaggttt ttggtttata caaaaacaca tgtgtaggca I	L6200
gtgacaatgt cactgacttc aatgcgatag caacatgtga ttggactaat gctggcgatt 1	L6260
acatacttgc caacacttgt actgagagac tcaagctttt cgcagcagaa acgctcaaag 1	L6320
ccactgagga aacatttaag ctgtcatatg gtattgccac tgtacgcgaa gtactctctg 1	16380
acagagaatt gcatctttca tgggaggttg gaaaacctag accaccattg aacagaaact 1	16440
atgtctttac tggttaccgt gtaactaaaa atagtaaagt acagattgga gagtacacct	16500
ttgaaaaagg tgactatggt gatgctgttg tgtacagagg tactacgaca tacaagttga :	16560
atgttggtga ttactttgtg ttgacatctc acactgtaat gccacttagt gcacctactc	16620
tagtgccaca agagcactat gtgagaatta ctggcttgta cccaacactc aacatctcag	16680
atgagttttc tagcaatgtt gcaaattatc aaaaggtcgg catgcaaaag tactctacac	16740
tccaaggacc acctggtact ggtaagagtc attttgccat cggacttgct ctctattacc	16800
catctgctcg catagtgtat acggcatgct ctcatgcagc tgttgatgcc ctatgtgaaa	16860
aggcattaaa atatttgccc atagataaat gtagtagaat catacctgcg cgtgcgcgcg	16920
tagagtgttt tgataaattc aaagtgaatt caacactaga acagtatgtt ttctgcactg	16980
taaatgcatt gccagaaaca actgctgaca ttgtagtctt tgatgaaatc tctatggcta	17040
ctaattatga cttgagtgtt gtcaatgcta gacttcgtgc aaaacactac gtctatattg	17100
gcgatcctgc tcaattacca gccccccgca cattgctgac taaaggcaca ctagaaccag	17160
aatattttaa ttcagtgtgc agacttatga aaacaatagg tccagacatg ttccttggaa	17220
cttgtcgccg ttgtcctgct gaaattgttg acactgtgag tgctttagtt tatgacaata	17280
agctaaaagc acacaaggat aagtcagctc aatgcttcaa aatgttctac aaaggtgtta	17340
ttacacatga tgtttcatct gcaatcaaca gacctcaaat aggcgttgta agagaatttc	17400
ttacacgcaa tcctgcttgg agaaaagctg tttttatctc accttataat tcacagaacg	17460
ctgtagcttc aaaaatctta ggattgccta cgcagactgt tgattcatca cagggttctg	17520
aatatgacta tgtcatattc acacaaacta ctgaaacagc acactcttgt aatgtcaacc	17580
gcttcaatgt ggctatcaca agggcaaaaa ttggcatttt gtgcataatg tctgatagag	17640
atctttatga caaactgcaa tttacaagtc tagaaatacc acgtcgcaat gtggctacat	17700
tacaagcaga aaatgtaact ggactttta aggactgtag taagatcatt actggtcttc	17760
atcctacaca ggcacctaca cacctcagcg ttgatataaa gttcaagact gaaggattat	17820
gtgttgacat accaggcata ccaaaggaca tgacctaccg tagactcatc tctatgatgg	17880
gtttcaaaat gaattaccaa gtcaatggtt accctaatat gtttatcacc cgcgaagaag Page 53	17940

ctattcgtca cgttcgtgcg tggattggct ttgatgtaga gggctgtcat gcaactagag 18	000
atactataga tactaaccta cototogaa tactaacca	060
Characters and the state of the	120
22CCTCC2CC 200tq2CC20 tttp2C20t	180
desatatant destatance atomic significant	240
acagagtcgt gttcgtcctt tgggcgcatg gctttgagct tacatcaatg aagtactttg 183	300
tcaagattgg acctgaaaga acgtgttgtc tgtgtgacaa acgtgcaact tgcttttcta 183	360
cttcatcaga tacttatgcc tgctggaatc attctgtggg ttttgactat gtctataacc 184	120
catttatgat tgatgttcag cagtggggct ttacgggtaa ccttcagagt aaccatgacc 184	180
aacattgcca ggtacatgga aatgcacatg tggctagttg tgatgctatc atgactagat 185	40
gtttagcagt ccatgagtgc tttgttaagc gcgttgattg gtctgttgaa taccctatta 186	500
taggagatga actgagggtt aattctgctt gcagaaaagt acaacacatg gttgtgaagt 186	60
ctgcattgct tgctgataag tttccagttc ttcatgacat tggaaatcca aaggctatca 187	20
agtgtgtgcc tcaggctgaa gtagaatgga agttctacga tgctcagcca tgtagtgaca 187	80
aagcttacaa aatagaggaa ctcttctatt cttatgctac acatcacgat aaattcactg 188	40
atggtgtttg tttgttttgg aattgtaacg ttgatcgtta cccagccaat gcaattgtgt 189	00
gtaggtttga cacaagagtc ttgtcaaact tgaacttacc aggctgtgat ggtggtagtt 189	60
tgtatgtgaa taagcatgca ttccacactc cagctttcga taaaagtgca tttactaatt 190	20
taaagcaatt gcctttcttt tactattctg atagtccttg tgagtctcat ggcaaacaag 190	80
tagtgtcgga tattgattat gttccactca aatctgctac gtgtattaca cgatgcaatt 191	40
taggtggtgc tgtttgcaga caccatgcaa atgagtaccg acagtacttg gatgcatata 1920	00
atatgatgat ttctgctgga tttagcctat ggatttacaa acaatttgat acttataacc 1920	60
tgtggaatac atttaccagg ttacagagtt tagaaaatgt ggcttataat gttgttaata 193	20
aaggacactt tgatggacac gccggcgaag cacctgtttc catcattaat aatgctgttt 1938	30
acacaaaggt agatggtatt gatgtggaga tctttgaaaa taagacaaca cttcctgtta 1944	10
atgttgcatt tgagctttgg gctaagcgta acattaaacc agtgccagag attaagatac 1950	00
tcaataattt gggtgttgat atcgctgcta atactgtaat ctgggactac aaaagagaag 1956	0
ccccagcaca tgtatctaca ataggtgtct gcacaatgac tgacattgcc aagaaaccta 1962	0
ctgagagtgc ttgttcttca cttactgtct tgtttgatgg tagagtggaa ggacaggtag 1968	0
acctttttag aaacgcccgt aatggtgttt taataacaga aggttcagtc aaaggtctaa 1974	0
caccttcaaa gggaccagca caagctagcg tcaatggagt cacattaatt ggagaatcag 1980	0
taaaaacaca gtttaactac tttaagaaag tagacggcat tattcaacag ttgcctgaaa 1986	0
cctactttac tcagagcaga gacttagagg attttaagcc cagatcacaa atggaaactg 1992	0
actttctcga gctcgctatg gatgaattca tacagcgata taagctcgag ggctatgcct 19980 Page 54	0

tcgaacacat cgtttatgga gatttcagtc atggacaact tggcggtctt catttaatga 2	0040
taggettage caagegetea caagatteae caettaaatt agaggatttt ateeetatgg 2	0100
acagcacagt gaaaaattac ttcataacag atgcgcaaac aggttcatca aaatgtgtgt 2	20160
gttctgtgat tgatctttta cttgatgact ttgtcgagat aataaagtca caagatttgt 2	20220
gttctgtgat tgatctttta cityatyact ttgatgagat and g	20280
cagtgatttc aaaagtggtc aaggttacaa ttgactatgc tgaaatttca ttcatgcttt 2	20340
ggtgtaagga tggacatgtt gaaaccttct acccaaaact acaagcaagt caagcgtggc 2	20400
aaccaggtgt tgcgatgcct aacttgtaca agatgcaaag aatgcttctt gaaaagtgtg 2	20460
accttcagaa ttatggtgaa aatgctgtta taccaaaagg aataatgatg aatgeegeaa	20520
agtatactca actgtgtcaa tacttaaata cacttactit agetgtacee cacaaaa	20580
gagttattca ctttggtgct ggctctgata aaggagttgc accaygtaca getgegetaa	20640
gacaatggtt gccaactggc acactacttg tcgattcaga tcttaatgac taby	
acgcagattc tactttaatt ggagactgtg caacagtaca tacggctaat dadagggan	20700
ttattattag cgatatgtat gaccctagga ccaaacatgt gacaaaagag aaggata	20760
aagaagggtt tttcacttat ctgtgtggat ttataaagca aaaactagee cegggeg	20820
ctatagctgt aaagataaca gagcattctt ggaatgctga cctttacaag cttatgggcc	20880
atttctcatg gtggacagct tttgttacaa atgtaaatgc atcatcatcg gaagcatttt	20940
taattggggc taactatctt ggcaagccga aggaacaaat tgatggctat accatgcatg	21000
ctaactacat tttctggagg aacacaaatc ctatccagtt gtcttcctat tcactctttg	21060
acatgagcaa atttcctctt aaattaagag gaactgctgt aatgtctctt aaggagaatc	21120
aaatcaatga tatgatttat tctcttctgg aaaaaggtag gcttatcatt agagaaaaca	21180
acagagttgt ggtttcaagt gatattcttg ttaacaacta a	21221
22	
<210> 32<211> 297<212> DNA<213> CORONAVIRUS<400> 32 atggacccca atcaaaccaa cgtagtgccc cccgcattac atttggtgga cccacagatt	60
caactgacaa taaccagaat ggaggacgca atggggcaag gccaaaacag cgccgacccc	120
aaggtttacc caataatact gcgtcttggt tcacagctct cactcagcat ggcaaggagg	180
aacttagatt ccctcgaggc cagggcgttc caatcaacac caatagtggt ccagatgacc	240
aaattggcta ctaccgaaga gctacccgac gagttcgtgg tggtgacggc aaaatga	297
<210> 33<211> 98<212> PRT<213> CORONAVIRUS<400> 33	
Met Asp Pro Asn Gln Thr Asn Val Val Pro Pro Ala Leu His Leu Val 1 10 15	
Asp Pro Gln Ile Gln Leu Thr Ile Thr Arg Met Glu Asp Ala Met Gly 25 30	

Leu	50 50	Ser	Gin	Leu	Ser	S5	Ser	Met	Ala	Arg	Arg 60	Asn	Leu	Asp	Ser	
Leu 65	Glu	Αla	Arg	Ala	Phe 70	Gln	Ser	Thr	Pro	11e 75	Val	val	Gln	Met	Thr 80	
Lys	Leu	Аlа	Thr	Thr 85	Glu	Glu	Leu	Pro	Asp 90	Glu	Phe	٧a٦	val	۷a٦ 95	Thr	
Ala	Lys	٠.							·							
<210 atg			11> cgtg								IRUS- gcca				acgcag	60
aggg	gaage	cag	aggc	ggcag	gt ca	aagco	ctct	t ct	cgct	cctc	atca	ecgta	ıgt (cgcgg	gtaatt	120
caag	gaaat	ttc	aact	cctg	gc ag	gcagt	tagg	g ga	aatt	ctcc	tgct	cgaa	itg g	gctag	gcggag	180
gtgg	gtgaa	aac ·	tgcc	ctcg	cg ct	tatto	gctg	c ta	g .							213
<210)> 3	35<2	11>	70<2	212>	PRT	r<2 1 3	3> (coroi	NAVI	ีใบร<4	- 00	35			
Met 1	Leu	Pro	Pro	Cys 5	Tyr	Asn	Phe	Leu	Lys 10	Glu	Gln	His	Cys	G]n 15	Lys	
Ala	Ser	Thr	G]n 20	Arg	Glu	Ala	Glu	Ala 25	Ala	٧a٦	Lys	Pro	Leu 30	Leu	Ala	
Pro	His	His 35	٧a٦	val	Ala	Val	11e 40	Gln	G1u	Ile	Gln	Leu 45	Leu	Ala	Ala	
Val	Gly 50	Glu	Ile	Leu	Leu	Leu 55	Glu	Trp	Leu	Ala	Glu 60	۷aΊ	٧a٦	Lys	Leu	
Pro 65	Ser	Arg	Tyr	Cys	Cys 70										,	
<210 (67))> 3	36<23 L335)	L1>) <223	1377 >	<212	?> D	NA<2	213>	COR	ONAV	'IRUS	<220	><22	1>	CDS<222>	
<400 atga	_		caaa	ctgc	t gc	attt	agag	acg	tact	tgt	tgtt	ttaa	at a	.aacg	aacaa	60
atta	aa a M 1	let S	ct g Ser A	at a sp A	at g sn G S	ga c ly P	cc c ro G	aa t iln s	ca a Ser A	sn G	aa c In A O	gt a rg S	gt g er A	cc c la P	cc ro	108
cgc Arg 15	att Ile	aca Thr	ttt Phe	Gly	gga Gly 20	ccc Pro	aca Thr	gat Asp	tca Ser	act Thr 25	gac Asp	aat a Asn <i>i</i>	aac Asn	Gln .	aat Asn 30	156
gga Gly	gga Gly	cgc Arg	aat Asn	ggg Gly 35	gca Ala	agg Arg	cca Pro	aaa Lys	cag Gln 40	cgc Arg	cga (Arg (ccc (Pro (Gln (ggt Gly 1 45	tta Leu	204

ccc Pro	aat Asn	aat Asn	act Thr 50	gcg Ala	tct Ser	tgg Trp	ttc Phe	aca	act	ctc	ST25 act Thr	cag	cat ніs 60	ggc Gly	aag Lys	252
gag Glu	gaa Glu	ctt Leu 65	aga Arg	ttc Phe	cct Pro	cga Arg	ggc Gly 70	cag Gln	ggc Gly	gtt Val	cca Pro	atc Ile 75	aac Asn	acc Thr	aat Asn	300
agt Ser	ggt Gly 80	cca Pro	gat Asp	gac Asp	caa Gln	att Ile 85	ggc Gly	tac Tyr	tac Tyr	cga Arg	aga Arg 90	gct Ala	acc Thr	cga Arg	cga Arg	348
gtt Val 95	cgt Arg	ggt Gly	ggt Gly	gac Asp	ggc Gly 100	aaa Lys	atg Met	aaa Lys	gag Glu	ctc Leu 105	agc Ser	ccc Pro	aga Arg	tgg Trp	tac Tyr 110	396
ttc Phe	tat Tyr	tac Tyr	cta Leu	gga Gly 115	act Thr	ggc Gly	cca Pro	gaa Glu	gct Ala 120	tca Ser	ctt Leu	ccc Pro	tac Tyr	ggc Gly 125	gct Ala	444
aac Asn	aaa Lys	gaa Glu	ggc Gly 130	atc Ile	gta Val	tgg Trp	gtt Val	gca Ala 135	act Thr	gag Glu	gga Gly	gcc Ala	ttg Leu 140	aat Asn	aca Thr	492
ccc Pro	aaa Lys	gac Asp 145	cac His	att Ile	ggc Gly	acc Thr	cgc Arg 150	aat Asn	cct Pro	aat Asn	aac Asn	aat Asn 155	gct Ala	gcc Ala	acc Thr	540
gtg Val	cta Leu 160	caa Gln	ctt Leu	cct Pro	caa Gln	gga Gly 165	aca Thr	aca Thr	ttg Leu	cca Pro	aaa Lys 170	ggc Gly	ttc Phe	tac Tyr	gca Ala	588
gag Glu 175	gga Gly	agc Ser	aga Arg	ggc Gly	ggc Gly 180	agt Ser	caa Gln	gcc Ala	tct Ser	tct Ser 185	cgc Arg	tcc Ser	tca Ser	tca Ser	cgt Arg 190	636
agt S er	cgc Arg	ggt Gly	aat Asn	tca Ser 195	aga Arg	aat Asn	tca Ser	Thr	cct Pro 200	ggc Gly	agc Ser	agt Ser	agg Arg	gga Gly 205	aat Asn	684
tct Ser	cct Pro	gct Ala	cga Arg 210	atg Met	gct Ala	agc Ser	gga Gly	ggt Gly 215	ggt Gly	gaa Glu	act Thr	gcc Ala	ctc Leu 220	Ala	cta Leu	732
ttg Leu	ctg Leu	cta Leu 225	gac Asp	aga Arg	ttg Leu	aac Asn	cag Gln 230	Leu	gag Glu	agc Ser	aaa Lys	gtt Val 235	tct Ser	ggt Gly	aaa Lys	780
ggc Gly	caa Gln 240	GIn	caa Gln	caa Gln	ggc Gly	caa Gln 245	Thr	gtc Val	act Thr	aag Lys	aaa Lys 250	tct Ser	gct Ala	gct Ala	gag Glu	828
gca Ala 255	Ser	aaa Lys	aag Lys	cct Pro	cgc Arg 260	GIn	aaa Lys	cgt Arg	act Thr	gcc Ala 265	Thr	aaa Lys	cag Gln	tac Tyr	aac Asn 270	876
gtc Val	act Thr	caa Gln	gca Ala	Phe 275	ggg	aga Arg	cgt Arg	ggt Gly	cca Pro 280	Glu	caa Gln	acc Thr	caa Gln	gga Gly 285	aat Asn	924
ttc Phe	ggg Gly	gac Asp	caa Gln 290	Asp	cta Leu	atc Ile	aga Arg	caa Gln 295	Gly	act Thr	gat Asp	tac Tyr	aaa Lys 300	HIS	tgg Trp	972
ccg Pro	caa Gln	att Ile 305	Ala	caa Gln	ttt Phe	gct Ala	cca Pro 310	ser	gcc Ala	tct Ser	gca Ala	ttc Phe 315	ttt Phe	gga Gly	atg Met	1020

								S22	26CA:	2111	.ST2:)				
tca Ser	cgc Arg 320	att Ile	ggc Gly	atg Met	gaa Glu	gtc Val 325	aca Thr	cct Pro	tcg Ser	gga Gly	aca Thr 330	tgg Trp	ctg Leu	act Thr	tat Tyr	1068
cat His 335	gga Gly	gcc Ala	att Ile	aaa Lys	ttg Leu 340	gat Asp	gac Asp	aaa Lys	gat Asp	cca Pro 345	Gln	ttc Phe	aaa Lys	gac Asp	aac Asn 350	1116
gtc Val	ata Ile	ctg Leu	ctg Leu	aac Asn 355	aag Lys	cac His	att Ile	gac Asp	gca Ala 360	Tyr	aaa Lys	aca Thr	ttc Phe	cca Pro 365	cca Pro	1164
aca Thr	gag Glu	cct Pro	aaa Lys 370	aag Lys	gac Asp	aaa Lys	aag Lys	aaa Lys 375	Lys	act Thr	gat Asp	gaa Glu	gct Ala 380	Gln	cct Pro	1212
ttg Leu	ccg Pro	cag G1n 385	aga Arg	caa Gln	aag Lys	aag Lys	cag Gln 390	ccc Pro	act Thr	gtg Val	act Thr	ctt Leu 395	ctt Leu	cct Pro	gcg Ala	1260
gct Ala	gac Asp 400	atg Met	gat Asp	gat Asp	ttc Phe	tcc Ser 405	aga Arg	caa Gln	ctt Leu	caa Gln	aat Asn 410	tcc Ser	atg Met	agt Ser	gga Gly	1308
gct Ala 415	tct Ser	gct Ala	gat Asp	tca Ser	act Thr 420	cag Gln	gca Ala	taa	aca	ctca	tga ·	tgac	caca	ca		1355
agge	cagat	tgg g	gctai	tgtaa	aa c	9										1377
<210> 37<211> 422<212> PRT<213> CORONAVIRUS<400> 37																
Met 1	Ser	Asp	Asn	Gly 5	Pro	Gln	Ser	Asn	Gln 10	Arg	Ser	Аlа	Pro	Arg 15	Ile	•
Thr	Phe	Glу	G]y 20	Pro	Thr	Asp	Ser	Thr 25	Asp	Asn	Asn	Gln	Asn 30	Gly	Gly	
Arg	Asn	G]y 35	Ala	Arg	Pro	Lys	Gln 40	Arg	Arg	Pro	Gln	G]y 45	Leu	Pro	Asn	
Asn	Thr 50	Ala	Ser	Trp	Phe	Thr 55	Аlа	Leu	Thr	Gln	Нis 60	Gly	Lys	Glu	Glu	
Leu 65	Arg	Phe	Pro	Arg	Gly 70	Gln	Gly	Val	Pro	Ile 75	Asn	Thr	Asn	Ser	Gly 80	
Pro	Asp	Asp	Gln	Ile 85	Glу	Tyr	Tyr	Arg	Arg 90	ΑΊa	Thr	Arg	Arg	Va1 95	Arg	
Gly	Glу	Asp	Gly 100	Lys	Met	Lys	Glu	Leu 105	Ser	Pro	Arg	Trp	Tyr 110	Phe	Tyr	
Tyr	Leu	Gly 115	Thr	Gly	Pro	Glu	Ala 120	Ser	Leu	Pro	Tyr	Gly 125	Ala	Asn	Lys	
Glu	Gly 130	Ile	Val	Trp	Va1	Ala 135	Thr	Glu	Gly	Ala	Leu 140	Asn	Thr	Pro	Lys	

Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu 145 150 155 160 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly
165 170 175 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg 180 185 190 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 195 200 205 Ala Arg Met Ala Ser Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu 210 225 220 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 225 235 240 Gln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 245 250 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr 260 265 270 Gln Ala Phe Gly Arg Gly Pro Glu Gln Thr Gln Gly Asn Phe Gly 275 280 285 Asp Gln Asp Leu Ile Arg Gln Gly Thr Asp Tyr Lys His Trp Pro Gln 290 295 300 Ile Ala Gln Phe Ala Pro Ser Ala Ser Ala Phe Phe Gly Met Ser Arg 305 310 315 Ile Gly Met Glu Val Thr Pro Ser Gly Thr Trp Leu Thr Tyr His Gly 325 330 335 Ala Ile Lys Leu Asp Asp Lys Asp Pro Gln Phe Lys Asp Asn Val Ile 340 345 350 Leu Leu Asn Lys His Ile Asp Ala Tyr Lys Thr Phe Pro Pro Thr Glu 355 360 365 Pro Lys Lys Asp Lys Lys Lys Thr Asp Glu Ala Gln Pro Leu Pro 370 380 Gln Arg Gln Lys Lys Gln Pro Thr Val Thr Leu Leu Pro Ala Ala Asp 385 390 395 400 Met Asp Asp Phe Ser Arg Gln Leu Gln Asn Ser Met Ser Gly Ala Ser 405 410 415

Ala Asp Ser Thr Gln Ala 420

<210> 38<211> 1377<212> DNA<213> CORONAVIRUS<400> 38 atgaaggtca ccaaactgct gcatttagag acgtacttgt tgttttaaat aaacgaacaa	. 60
attaaaatgt ctgataatgg accccaatca aaccaacgta gtgccccccg cattacattt	120
ggtggaccca cagattcaac tgacaataac cagaatggag gacgcaatgg ggcaaggcca	180
aaacagcgcc gaccccaagg tttacccaat aatactgcgt cttggttcac agctctcact	240
cagcatggca aggaggaact tagattccct cgaggccagg gcgttccaat caacaccaat	300
agtggtccag atgaccaaat tggctactac cgaagagcta cccgacgagt tcgtggtggt	360
gacggcaaaa tgaaagagct cagccccaga tggtacttct attacctagg aactggccca	420
gaagcttcac ttccctacgg cgctaacaaa gaaggcatcg tatgggttgc aactgaggga	480
gccttgaata cacccaaaga ccacattggc acccgcaatc ctaataacaa tgctgccacc	540
gtgctacaac ttcctcaagg aacaacattg ccaaaaggct tctacgcaga gggaagcaga	600
ggcggcagtc aagcctcttc tcgctcctca tcacgtagtc gcggtaattc aagaaattca	660
actcctggca gcagtagggg aaattctcct gctcgaatgg ctagcggagg tggtgaaact	720
gccctcgcgc tattgctgct agacagattg aaccagcttg agagcaaagt ttctggtaaa	780
ggccaacaac aacaaggcca aactgtcact aagaaatctg ctgctgaggc atctaaaaag	840
cctcgccaaa aacgtactgc cacaaaacag tacaacgtca ctcaagcatt tgggagacgt	900
ggtccagaac aaacccaagg aaatttcggg gaccaagacc taatcagaca aggaactgat	960
tacaaacatt ggccgcaaat tgcacaattt gctccaagtg cctctgcatt ctttggaatg	1020
tcacgcattg gcatggaagt cacaccttcg ggaacatggc tgacttatca tggagccatt	1080
aaattggatg acaaagatcc acaattcaaa gacaacgtca tactgctgaa caagcacatt	1140
gacgcataca aaacattccc accaacagag cctaaaaagg acaaaaagaa aaagactgat	1200
gaagctcagc ctttgccgca gagacaaaag aagcagccca ctgtgactct tcttcctgcg	1260
gctgacatgg atgatttctc cagacaactt caaaattcca tgagtggagc ttctgctgat	1320
tcaactcagg cataaacact catgatgacc acacaaggca gatgggctat gtaaacg	1377
<210> 39<211> 204<212> DNA<213> CORONAVIRUS<400> 39	
atattaggtt tttacctacc caggaaaagc caaccaacct cgatctcttg tagatctgtt	60
ctctaaacga actttaaaat ctgtgtagct gtcgctcggc tgcatgccta gtgcacctac	120
gcagtataaa caataataaa ttttactgtc gttgacaaga aacgagtaac tcgtcctct	180
tctgcagact gcttacggtt tcgt	204
<210> 40<211> 809<212> DNA<213> CORONAVIRUS<400> 40	
actcaagcat ttgggagacg tggtccagaa caaacccaag gaaatttcgg ggaccaagac	60
ctaatcagac aaggaactga ttacaaacat tggccgcaaa ttgcacaatt tgctccaagt	120

S226CAS111.ST25 gcctctgcat tctttggaat gtcacgcatt ggcatggaag tcacaccttc gggaacatgg	180
ctgacttatc atggagccat taaattggat gacaaagatc cacaattcaa agacaacgtc	240
atactgctga acaagcacat tgacgcatac aaaacattcc caccaacaga gcctaaaaag	300
gacaaaaaga aaaagactga tgaagctcag cctttgccgc agagacaaaa gaagcagccc	360
actgtgactc ttcttcctgc ggctgacatg gatgatttct ccagacaact tcaaaattcc	420
actgtgactc ttcttcctgc ggctgacatg gargatalarac tcatgatgac cacacaaggc	480
atgagtggag cttctgctga ttcaactcag gcataaacac tcatgatgac cacacaaggc	540
agatgggcta tgtaaacgtt ttcgcaattc cgtttacgat acatagtcta ctcttgtgca	600
gaatgaattc tcgtaactaa acagcacaag taggtttagt taactttaat ctcacatagc	660
aatctttaat caatgtgtaa cattagggag gacttgaaag agccaccaca ttttcatcga	720
ggccacgcgg agtacgatcg agggtacagt gaataatgct agggagagct gcctatatgg	780
aagagcccta atgtgtaaaa ttaattttag tagtgctatc cccatgtgat tttaatagct	809
tcttaggaga atgacaaaaa aaaaaaaaa	803
<210> 41<211> 448<212> DNA<213> CORONAVIRUS<400> 41	60
aatgaacaca tagggctgtt caagctgggg cagtacgcct ttttccagct ctactagacc	120
acaagtgcca tttttgaggt gttcacgtgc ctccgatagg gcctcttcca cagagtcccc	
gaagccacgc actagcacgt ctctaacctg aaggacaggc aaactgagtt ggacgtgtgt	180
tttctcgttg acaccaagaa caaggctctc catcttacct ttcggtcaca cccggacgaa	240
acctaggtat gctgatgatc gactgcaaca cggacgaaac cgtaagcagt ctgcagaaga	300
gggacgagtt actcgtttct tgtcaacgac agtaaaattt attattgttt atactgcgta	360 .
ggtgcactag gcatgcagcc gagcgacagc tacacagatt ttaaagttcg tttagagaac	420
agatctacaa gagatcgagg ttggttgg	448
707 TODOUNTPUS (400) 42	
<210> 42<211> 2033<212> DNA<213> CORONAVIRUS<400> 42 atacctaggt ttcgtccggg tgtgaccgaa aggtaagatg gagagccttg ttcttggtgt	60
caacgagaaa acacacgtcc aactcagttt gcctgtcctt caggttagag acgtgctagt	120
gcgtggcttc ggggactctg tggaagaggc cctatcggag gcacgtgaac acctcaaaaa	180
tggcacttgt ggtctagtag agctggaaaa aggcgtactg ccccagcttg aacagcccta	240
tgtgttcatt aaacgttctg atgccttaag caccaatcac ggccacaagg tcgttgagct	300
ggttgcagaa atggacggca ttcagtacgg tcgtagcggt ataacactgg gagtactcgt	360
gccacatgtg ggcgaaaccc caattgcata ccgcaatgtt cttcttcgta agaacggtaa	420
taagggagcc ggtggtcata gctatggcat cgatctaaag tcttatgact taggtgacga	480
gcttggcact gatcccattg aagattatga acaaaactgg aacactaagc atggcagtgg	540
tgcactccgt gaactcactc gtgagctcaa tggaggtgca gtcactcgct atgtcgacaa	600
tgcactccgt gaactcactc gryagettaa tygusgegen ye	660
caatttctgt ggcccagatg ggtaccctct tgattgcatc aaagattttc tcgcacgcgc	720
gggcaagtca atgtgcactc tttccgaaca acttgattac atcgagtcga agagaggtgt	
0000 67	

1er dépôt

\$226CAS111.ST25	
ctactgctgc cgtgaccatg agcatgaaat tgcctggttc actgagcgct ctgataagag	780
ctacgagcac cagacaccct tcgaaattaa gagtgccaag aaatttgaca ctttcaaagg	840
ggaatgccca aagtttgtgt ttcctcttaa ctcaaaagtc aaagtcattc aaccacgtgt	900
tgaaaagaaa aagactgagg gtttcatggg gcgtatacgc tctgtgtacc ctgttgcatc	960
tccacaggag tgtaacaata tgcacttgtc taccttgatg aaatgtaatc attgcgatga	1020
agtttcatgg cagacgtgcg actttctgaa agccacttgt gaacattgtg gcactgaaaa	1080
tttagttatt gaaggaccta ctacatgtgg gtacctacct actaatgctg tagtgaaaat	1140
gccatgtcct gcctgtcaag acccagagat tggacctgag catagtgttg cagattatca	1200
caaccactca aacattgaaa ctcgactccg caagggaggt aggactagat gttttggagg	1260
ctgtgtgttt gcctatgttg gctgctataa taagcgtgcc tactgggttc ctcgtgctag	1320
tgctgatatt ggctcaggcc atactggcat tactggtgac aatgtggaga ccttgaatga	1380
ggatctcctt gagatactga gtcgtgaacg tgttaacatt aacattgttg gcgatttca	1440
tttgaatgaa gaggttgcca tcattttggc atctttctct gcttctacaa gtgcctttat	1500
tgacactata aagagtcttg attacaagtc tttcaaaacc attgttgagt cctgcggtaa	1560
ctataaagtt accaagggaa agcccgtaaa aggtgcttgg aacattggac aacagagatc	1620
agttttaaca ccactgtgtg gttttccctc acaggctgct ggtgttatca gatcaatttt	1680
tgcgcgcaca cttgatgcag caaaccactc aattcctgat ttgcaaagag cagctgtcac	1740
catacttgat ggtatttctg aacagtcatt acgtcttgtc gacgccatgg tttatacttc	1800
agacctgctc accaacagtg tcattattat ggcatatgta actggtggtc ttgtacaaca	1860
gacttctcag tggttgtcta atcttttggg cactactgtt gaaaaactca ggcctatctt	1920
tgaatggatt gaggcgaaac ttagtgcagg agttgaattt ctcaaggatg cttgggagat	1980
tctcaaattt ctcattacag gtgtttttga catcgtcaag ggtcaaatac agg	2033
<210> 43<211> 2018<212> DNA<213> CORONAVIRUS<400> 43	
<210> 43<211> 2018<212> DNA<213> CORONAVIRUS<400> 43 ggattgaggc gaaacttagt gcaggagttg aatttctcaa ggatgcttgg gagattctca	60
aatttctcat tacaggtgtt tttgacatcg tcaagggtca aatacaggtt gcttcagata	120
acatcaagga ttgtgtaaaa tgcttcattg atgttgttaa caaggcactc gaaatgtgca	180
ttgatcaagt cactatcgct ggcgcaaagt tgcgatcact caacttaggt gaagtcttca	240
tcgctcaaag caagggactt taccgtcagt gtatacgtgg caaggagcag ctgcaactac	300
tcatgcctct taaggcacca aaagaagtaa cctttcttga aggtgattca catgacacag	360
tacttacctc tgaggaggtt gttctcaaga acggtgaact cgaagcactc gagacgcccg	420
tgatagett cacaaatgga getategttg geacaceagt etgtgtaaat ggeeteatge	480
cttagagat taaggacaaa gaacaatact gcgcattgtc tcctggttta ctggctacaa	540
caatgtett tegettaaaa gggggtgeae caattaaagg tgtaaeettt ggagaagata	600
tgtttggga agttcaaggt tacaagaatg tgagaatcac atttgagctt gatgaacgtg	660

S226CAS111.ST25 ttgacaaagt gcttaatgaa aagtgctctg tctacactgt tgaatccggt acc	gaagtta 720
ctgagtttgc atgtgttgta gcagaggctg ttgtgaagac tttacaacca gtt	tctgatc 780
tccttaccaa catgggtatt gatcttgatg agtggagtgt agctacattc tac	
atgatgctgg tgaagaaac ttttcatcac gtatgtattg ttccttttac cct	
aggaagaaga ggacgatgca gagtgtgagg aagaagaaat tgatgaaacc tgt	
agtacggtac agaggatgat tatcaaggtc tccctctgga atttggtgcc tca	
cagttcgagt tgaggaagaa gaagaggaag actggctgga tgatactact gag	
agattgagcc agaaccagaa cctacacctg aagaaccagt taatcagttt act	
taaaacttac tgacaatgtt gccattaaat gtgttgacat cgttaaggag gca	
ctaatcctat ggtgattgta aatgctgcta acatacacct gaaacatggt ggt	
caggtgcact caacaaggca accaatggtg ccatgcaaaa ggagagtgat gat	
agctaaatgg ccctcttaca gtaggagggt cttgtttgct ttctggacat aat	tcttgcta 1380
agaagtgtct gcatgttgtt ggacctaacc taaatgcagg tgaggacatc cag	
aggcagcata tgaaaatttc aattcacagg acatcttact tgcaccattg ttg	gtcagcag 1500
gcatatttgg tgctaaacca cttcagtctt tacaagtgtg cgtgcagacg gtt	tcgtacac 1560
aggtttatat tgcagtcaat gacaaagctc tttatgagca ggttgtcatg ga	ttatcttg 1620
ataacctgaa gcctagagtg gaagcaccta aacaagagga gccaccaaac aca	agaagatt 1680
ccaaaactga ggagaaatct gtcgtacaga agcctgtcga tgtgaagcca aaa	aattaagg 1740
cctgcattga tgaggttacc acaacactgg aagaaactaa gtttcttacc aa	taagttac 1800
tcttgtttgc tgatatcaat ggtaagcttt accatgattc tcagaacatg ct	tagaggtg 1860
aagatatgtc tttccttgag aaggatgcac cttacatggt aggtgatgtt at	cactagtg 1920
gtgatatcac ttgtgttgta ataccctcca aaaaggctgg tggcactact ga	gatgctct 1980
caagagcttt gaagaaagtg ccagttgatg agtatata	2018
<210> 44<211> 1442<212> DNA<213> CORONAVIRUS<400> 44 ttgatgaggt taccacaaca ctggaagaaa ctaagtttct taccaataag tt	
ttgctgatat caatggtaag ctttaccatg attctcagaa catgcttaga gg	
tgtctttcct tgagaaggat gcaccttaca tggtaggtga tgttatcact ag	
tcacttgtgt tgtaataccc tccaaaaagg ctggtggcac tactgagatg ct	
ctttgaagaa agtgccagtt gatgagtata taaccacgta ccctggacaa gg	· · · ·
gttatacact tgaggaagct aagactgctc ttaagaaatg caaatctgca tt	
taccttcaga agcacctaat gctaaggaag agattctagg aactgtatcc tg	
gagaaatgct tgctcatgct gaagagacaa gaaaattaat gcctatatgc at	
gagccataat ggcaaccatc caacgtaagt ataaaggaat taaaattcaa ga	
ttgactatgg tgtccgattc ttcttttata ctagtaaaga gcctgtagct tc	tattatta 600

The state of the s

₩.

1er dépôt

			2226CAS111	.5125		
cgaagctgaa	ctctctaaat	gagccgcttg	tcacaatgcc	aattggttat	gtgacacatg	660
gttttaatct	tgaagaggct	gcgcgctgta	tgcgttctct	taaagctcct	gccgtagtgt	720
cagtatcatc	accagatgct	gttactacat	ataatggata	cctcacttcg	tcatcaaaga	780
catctgagga	gcactttgta	gaaacagttt	ctttggctgg	ctcttacaga	gattggtcct	840
attcaggaca	gcgtacagag	ttaggtgttg	aatttcttaa	gcgtggtgac	aaaattgtgt	900
accacactct	ggagagcccc	gtcgagtttc	atcttgacgg	tgaggttctt	tcacttgaca	960
aactaaagag	tctcttatcc	ctgcgggagg	ttaagactat	aaaagtgttc	acaactgtgg	1020
acaacactaa	tctccacaca	cagcttgtgg	atatgtctat	gacatatgga	cagcagtttg	1080
gtccaacata	cttggatggt	gctgatgtta	caaaaattaa	acctcatgta	aatcatgagg	1140
gtaagacttt	ctttgtacta	cctagtgatg	acacactacg	tagtgaagct	ttcgagtact	1200
accatactct	tgatgagagt	tttcttggta	ggtacatgtc	tgctttaaac	cacacaaaga	1260
aatggaaatt	tcctcaagtt	ggtggtttaa	cttcaattaa	atgggctgat	aacaattgtt	1320
atttgtctag	tgttttatta	gcacttcaac	agcttgaagt	caaattcaat	gcaccagcac	1380
ttcaagaggc	ttattataga	gcccgtgctg	gtgatgctgc	taacttttgt	gcactcatac	1440
tc						1442
<210> 45<2	211> 1050<	212. 504.2	13		45	
			gtccaacata	VIRUS<400> cttggatggt	45 gctgatgtta	60
caaaaattaa	acctcatgta	aatcatgagg	gtaagacttt	ctttgtacta	cctagtgatg	120
acacactacg	tagtgaagct	ttcgagtact	accatactct	tgatgagagt	tttcttggta	180
ggtacatgtc	tgctttaaac	cacacaaaga	aatggaaatt	tcctcaagtt	ggtggtttaa	240
cttcaattaa	atgggctgat	aacaattgtt	atttgtctag	tgttttatta	gcacttcaac	300
agcttgaagt	caaattcaat	gcaccagcac	ttcaagaggc	ttattataga	gcccgtgctg	360
gtgatgctgc	taacttttgt	gcactcatac	tcgcttacag	taataaaact	gttggcgagc	420
ttggtgatgt	cagagaaact	atgacccatc	ttctacagca	tgctaatttg	gaatctgcaa	480
agcgagttct	taatgtggtg	tgtaaacatt	gtggtcagaa	aactactacc	ttaacgggtg	540
tagaagctgt	gatgtatatg	ggtactctat	cttatgataa	tcttaagaca	ggtgtttcca	600
ttccatgtgt	gtgtggtcgt	gatgctacac	aatatctagt	acaacaagag	tcttcttttg	660
ttatgatgtc	tgcaccacct	gctgagtata	aattacagca	aggtacattc	ttatgtgcga	720
atgagtacac	tggtaactat	cagtgtggtc	attacactca	tataactgct	aaggagaccc	780
tctatcgtat	tgacggagct	caccttacaa	agatgtcaga	gtacaaagga	ccagtgactg	840
atgttttcta	caaggaaaca	tcttacacta	caáccatcaa	gcctgtgtcg	tataaactcg	900
atggagttac	ttacacagag	attgaaccaa	aattggatgg	gtattataaa	aaggataatg	960
cttactatac	agagcagcct	atagaccttg	taccaactca	accattacca	aatgcgagtt	1020
ttgataattt	caaactcaca	tottctaaca				1050

	211> 1995 <br catactcgct			/IRUS<400> cgagcttggt	46 gatgtcagag	60
aaactatgac	ccatcttcta	cagcatgcta	atttggaatc	tgcaaagcga	gttcttaatg	120
tggtgtgtaa	acattgtggt	cagaaaacta	ctaccttaac	gggtgtagaa	gctgtgatgt	180
atatgggtac	tctatcttat	gataatctta	agacaggtgt	ttccattcca	tgtgtgtgtg	240
gtcgtgatgc	tacacaatat	ctagtacaac	aagagtcttc	ttttgttatg	atgtctgcac	300
cacctgctga	gtataaatta	cagcaaggta	cattcttatg	tgcgaatgag	tacactggta	360
actatcagtg	tggtcattac	actcatataa	ctgctaagga	gaccctctat	cgtattgacg	420
gagctcacct	tacaaagatg	tcagagtaca	aaggaccagt	gactgatgtt	ttctacaagg	480
aaacatctta	cactacaacc	atcaagcctg	tgtcgtataa	actcgatgga	gttacttaca	540
cagagattga	accaaaattg	gatgggtatt	ataaaaagga	taatgcttac	tatacagagc	600
agcctataga	ccttgtacca	actcaaccat	taccaaatgc	gagttttgat	aatttcaaac	660
tcacatgttc	taacacaaaa	tttgctgatg	atttaaatca	aatgacaggc	ttcacaaagc	720
cagcttcacg	agagctatct	gtcacattct	tcccagactt	gaatggcgat	gtagtggcta	780
ttgactatag	acactattca	gcgagtttca	agaaaggtgc	taaattactg	cataagccaa	840
ttgtttggca	cattaaccag	gctacaacca	agacaacgtt	caaaccaaac	acttggtgtt	900
tacgttgtct	ttggagtaca	aagccagtag	atacttcaaa	ttcatttgaa	gttctggcag	960
tagaagacac	acaaggaatg	gacaatcttg	cttgtgaaag	tcaacaaccc	acctctgaag	1020
aagtagtgga	aaatcctacc	atacagaagg	aagtcataga	gtgtgacgtg	aaaactaccg	1080
aagttgtagg	caatgtcata	cttaaaccat	cagatgaagg	tgttaaagta	acacaagagt	1140
taggtcatga	ggatcttatg	gctgcttatg	tggaaaacac	aagcattacc	attaagaaac	1200
ctaatgagct	ttcactagcc	ttaggtttaa	aaacaattgc	cactcatggt	attgctgcaa	1260
ttaatagtgt	tccttggagt	aaaattttgg	cttatgtcaa	accattctta	ggacaagcag	1320
caattacaac	atcaaattgc	gctaagagat	tagcacaacg	tgtgtttaac	aattatatgc	1380
cttatgtgtt	tacattattg	ttccaattgt	gtacttttac	taaaagtacc	aattctagaa	1440
ttagagcttc	actacctaca	actattgcta	aaaatagtgt	taagagtgtt	gctaaattat	1500
gtttggatgc	cggcattaat	tatgtgaagt	cacccaaatt	ttctaaattg	ttcacaatcg	1560
ctatgtggct	attgttgtta	agtatttgct	taggttctct	aatctgtgta	actgctgctt	1620
ttggtgtact	cttatctaat	tttggtgctc	cttcttattg	taatggcgtt	agagaattgt	1680
atcttaattc	gtctaacgtt	actactatgg	atttctgtga	aggttctttt	ccttgcagca	1740
tttgtttaag	tggattagac	tcccttgatt	cttatccagc	tcttgaaacc	attcaggtga	1800
cgatttcatc	gtacaagcta	gacttgacaa	ttttaggtct	ggccgctgag	tgggttttgg	1860
catatatgtt	gttcacaaaa	ttcttttatt	tattaggtct	ttcagctata	atgcaggtgt	1920
tctttggcta	ttttgctagt	catttcatca	gcaattcttg	gctcatgtgg	tttatcatta	1980

S226CAS111.ST25	1005
gtattgtaca aatgg	1995
<210> 47<211> 1884<212> DNA<213> CORONAVIRUS<400> 47 aattettgge teatgtggtt tateattagt attgtacaaa tggcacccgt ttetgcaatg	60
gttaggatgt acatcttctt tgcttctttc tactacatat ggaagagcta tgttcatatc	120
atggatggtt gcacctcttc gacttgcatg atgtgctata agcgcaatcg tgccacacgc	180
gttgagtgta caactattgt taatggcatg aagagatctt tctatgtcta tgcaaatgga	240
ggccgtggct tctgcaagac tcacaattgg aattgtctca attgtgacac attttgcact	300
ggtagtacat tcattagtga tgaagttgct cgtgatttgt cactccagtt taaaagacca	360
atcaacccta ctgaccagtc atcgtatatt gttgatagtg ttgctgtgaa aaatggcgcg	420
cttcacctct actttgacaa ggctggtcaa aagacctatg agagacatcc gctctcccat	480
tttgtcaatt tagacaattt gagagctaac aacactaaag gttcactgcc tattaatgtc	540
atagtttttg atggcaagtc caaatgcgac gagtctgctt ctaagtctgc ttctgtgtac	600
tacagtcagc tgatgtgcca acctattctg ttgcttgacc aagctcttgt atcagacgtt	660
ggagatagta ctgaagtttc cgttaagatg tttgatgctt atgtcgacac cttttcagca	720
acttttagtg ttcctatgga aaaacttaag gcacttgttg ctacagctca cagcgagtta	780
gcaaagggtg tagctttaga tggtgtcctt tctacattcg tgtcagctgc ccgacaaggt	840
gttgttgata ccgatgttga cacaaaggat gttattgaat gtctcaaact ttcacatcac	900
tctgacttag aagtgacagg tgacagttgt aacaatttca tgctcaccta taataaggtt	960
gaaaacatga cgcccagaga tcttggcgca tgtattgact gtaatgcaag gcatatcaat	1020
gcccaagtag caaaaagtca caatgtttca ctcatctgga atgtaaaaga ctacatgtct	1080
ttatctgaac agctgcgtaa acaaattcgt agtgctgcca agaagaacaa catacctttt	1140
agactaactt gtgctacaac tagacaggtt gtcaatgtca taactactaa aatctcactc	1200
aagggtggta agattgttag tacttgtttt aaacttatgc ttaaggccac attattgtgc	1260
gttcttgctg cattggtttg ttatatcgtt atgccagtac atacattgtc aatccatgat	1320
ggttacacaa atgaaatcat tggttacaaa gccattcagg atggtgtcac tcgtgacatc	1380
atttctactg atgattgttt tgcaaataaa catgctggtt ttgacgcatg gtttagccag	1440
cgtggtggtt catacaaaaa tgacaaaagc tgccctgtag tagctgctat cattacaaga	1500
gagattggtt tcatagtgcc tggcttaccg ggtactgtgc tgagagcaat caatggtgac	1560
ttcttgcatt ttctacctcg tgtttttagt gctgttggca acatttgcta cacaccttcc	1620
aaactcattg agtatagtga ttttgctacc tctgcttgcg ttcttgctgc tgagtgtaca	1680
atttttaagg atgctatggg caaacctgtg ccatattgtt atgacactaa tttgctagag	1740
ggttctattt cttatagtga gcttcgtcca gacactcgtt atgtgcttat ggatggttcc	1800
atcatacagt ttcctaacac ttacctggag ggttctgtta gagtagtaac aacttttgat	1860
gctgagtact gtagacatgg taca	1884

<210> 48<211> 2020<212> DNA<213> CORONAVIRUS<400> 48 cactcgttat gtgcttatgg atggttccat catacagttt cctaacactt acctggagg	g 60
ttctgttaga gtagtaacaa cttttgatgc tgagtactgt agacatggta catgcgaaa	
gtcagaagta ggtatttgcc tatctaccag tggtagatgg gttcttaata atgagcatt	
cagageteta teaggagett tetgtggtgt tgatgegatg aateteatag etaacatet	
tactcctctt gtgcaacctg tgggtgcttt agatgtgtct gcttcagtag tggctggtg	
tattattgcc atattggtga cttgtgctgc ctactacttt atgaaattca gacgtgttt	
tggtgagtac aaccatgttg ttgctgctaa tgcacttttg tttttgatgt ctttcacta	
actetytetg gtaccagett acagetttet geegggagte tacteagtet titaettgt	
cttgacattc tatttcacca atgatgtttc attcttggct caccttcaat ggtttgcca	
gttttctcct attgtgcctt tttggataac agcaatctat gtattctgta tttctctga	
gcactgccat tggttcttta acaactatct taggaaaaga gtcatgttta atggagtta	
atttagtacc ttcgaggagg ctgctttgtg tacctttttg ctcaacaagg aaatgtacc	
aaaattgcgt agcgagacac tgttgccact tacacagtat aacaggtatc ttgctcta	
taacaagtac aagtatttca gtggagcctt agatactacc agctatcgtg aagcagct	
ctgccactta gcaaaggctc taaatgactt tagcaactca ggtgctgatg ttctctac	
accaccacag acatcaatca cttctgctgt tctgcagagt ggttttagga aaatggca	
cccgtcaggc aaagttgaag ggtgcatggt acaagtaacc tgtggaacta caactctt	
tggattgtgg ttggatgaca cagtatactg tccaagacat gtcatttgca cagcagaa	
catgcttaat cctaactatg aagatctgct cattcgcaaa tccaaccata gctttctt	
tcaggctggc aatgttcaac ttcgtgttat tggccattct atgcaaaatt gtctgctt	
gcttaaagtt gatacttcta accctaagac acccaagtat aaatttgtcc gtatccaa	
tggtcaaaca ttttcagttc tagcatgcta caatggttca ccatctggtg tttatcag	
tgccatgaga cctaatcata ccattaaagg ttctttcctt aatggatcat gtggtagt	
tggttttaac attgattatg attgcgtgtc tttctgctat atgcatcata tggagctt	
aacaggagta cacgctggta ctgacttaga aggtaaattc tatggtccat ttgttgac	
acaaactgca caggctgcag gtacagacac aaccataaca ttaaatgttt tggcatgg	
gtatgctgct gttatcaatg gtgataggtg gtttcttaat agattcacca ctactttg	
tgactttaac cttgtggcaa tgaagtacaa ctatgaacct ttgacacaag atcatgtt	
catattggga cctctttctg ctcaaacagg aattgccgtc ttagatatgt gtgctgct	
gaaagagctg ctgcagaatg gtatgaatgg tcgtactatc cttggtagca ctatttta	
agatgagttt acaccatttg atgttgttag acaatgctct ggtgttacct tccaaggt	
gttcaagaaa attgttaagg gcactcatca ttggatgctt ttaactttct tgacatca	
attgattctt gttcaaagta cacagtggtc actgtttttc tttgtttacg agaatgct	
-	

不清 海 寶

S226CAS111.ST25 cttgccattt actcttggta ttatggcaat tgctgcatgt	2020
<210> 49<211> 2040<212> DNA<213> CORONAVIRUS<400> 49 agcatttcca gcctgaagac gtactgtagc agctaaactg cccagcacca tacctctatt	60
taggttgttt aagcctttga tgaagtacaa gtatttcact ttaggccctt ttggtgtgtc	120
tgtaacaaac ctacaaggtg gttccagttc tgtgtaaatt gtacctgtac catcactctt	180
agggaatcta gcccatttga gatcttggtg gtctgatagt aatgccagca caaacctacc	240
tcccttcgaa ttgttatagt aggcaagtgc attgtcatca gtacaagctg tttgtgtggt	300
accagccgca caggacatct gtcgtagtgc tactggactc agttcattat tctgtagttt	360
aacagctgag ttggctctta gagctgtaac aataagaggc caagccaaat ttggtgaatt	420
gtccatgtta atttcactaa gttgaacaat cttgctatcc gcatcaacaa cttgctggat	480
ttcccagagt gcagatgcat atgtaaaggt gttaccatca caagtgttct tgtaggtacc	540
ataatcaggg acaacaacca tgagtttggc tgctgtagtc aatggtatga tgttgagtgg	600
aacacaacca tcacgcgcat tgttgataat gttgttaagt gcatcattat caagcttcct	660
aagcatagtg aagagcattg tttgcatagc actagttact tttgccctct tgtcctcaga	720
tcttgcctgt ttgtacattt gggtcatagc ctgatctgcc atcttttcca acttgcgttg	780
catggcagca tcacggtcaa actcagattt agccacattc aaagatttct ttaacttttt	840
gagaacgact tcagaatcac cattagctac agcctgctca taggcctcct gggcagtggc	900
ataagcggca tatgatggta aagaactaaa ttctgaagca atagcctgaa gagtagcacg	960
gttatcgagc atttcctcgc acaacctatt aatgtctaca gcaccctgca tggatagcaa	1020
aacagacaaa agagaaacca tcttctcgaa agcttcagtt gtgtcttttg caagaagaat	1080
atcattgtgg agttgtacac attgtgccca caatttagaa gatgactcta ctctaagttg	1140
ttgaagaacc gagagcagta ccacagatgt gcactttacg tcagacattt tagactgtac	1200
agtagcaacc ttgatacatg gtttacctcc aatacccaac aacttaatgt taagcttgaa	1260
agcatcaata ctactcttag gaggcaaaag cccctgggag ttcatatacc taaattcttg	1320
tgtagagacc aagtagtcat aaacaccaag agtaagcctg aagtaacggt tgagtaaaca	1380
gaaaaggcca aagtagcagc agcaacaata gcctaagaaa caataaacaa gcatgataca	1440
ctgtaaggtg ttgccagtaa taaataacaa tgggtaatac tcaacacaca caaacactat	1500 ·
agctctagct aaaaacatga tagtcgtaac gacaccagaa tagttagagg ttacagaaat	1560
aactaaggcc cacatggaaa tagcttgatc taaagcatta ccatagtaga ctttgtaaac	1620
aagtgtaatg acattcatca gtgtccaaac acgtctagca gcatcatcat aaacagtgcg	1680
agctgtcatg agaataagca aaactaaagc tgaagcatac ataacacaat ccttaagcct	1740
ataaccagac aagctagtgt cagccaattc aagccatgtc atgatacgca tcacccagct	1800
agcaggcatg tagaccatat taaagtaagc aactgttgca agagaaggta acagaaacaa	1860
gcacaagaat gcgtgcttat gcttaacaag cagcatagca catgcagcaa ttgccataat	1920

S226CAS111.ST25 accaagagta aatggcaaga aagcattctc gtaaacaaag aaaaacagtg accactgtgt	1980
actttgaaca agaatcaata gtgatgtcaa gaaagttaaa agcatccaat gatgagtgca	2040
access	
<210> 50<211> 2012<212> DNA<213> CORONAVIRUS<400> 50 cttgtaggtt tgttacagac acaccaaaag ggcctaaagt gaaatacttg tacttcatca	60
aaggettaaa caacetaaat agaggtatgg tgetgggeag tttagetget acagtacgte	120
ttcaggctgg aaatgctaca gaagtacctg ccaattcaac tgtgctttcc ttctgtgctt	180
ttgcagtaga ccctgctaaa gcatataagg attacctagc aagtggagga caaccaatca	240
ccaactgtgt gaagatgttg tgtacacaca ctggtacagg acaggcaatt actgtaacac	300
cagaagctaa catggaccaa gagtcctttg gtggtgcttc atgttgtctg tattgtagat	360
gccacattga ccatccaaat cctaaaggat tctgtgactt gaaaggtaag tacgtccaaa	. 420
tacctaccac ttgtgctaat gacccagtgg gttttacact tagaaacaca gtctgtaccg	480
tctgcggaat gtggaaaggt tatggctgta gttgtgacca actccgcgaa cccttgatgc	540
agtctgcgga tgcatcaacg tttttaaacg ggtttgcggt gtaagtgcag cccgtcttac	600
accgtgcggc acaggcacta gtactgatgt cgtctacagg gcttttgata tttacaacga	660
aaaagttgct ggttttgcaa agttcctaaa aactaattgc tgtcgcttcc aggagaagga	720
tgaggaaggc aatttattag actcttactt tgtagttaag aggcatacta tgtctaacta	780
ccaacatgaa gagactattt ataacttggt taaagattgt ccagcggttg ctgtccatga	840
ctttttcaag tttagagtag atggtgacat ggtaccacat atatcacgtc agcgtctaac	900
taaatacaca atggctgatt tagtctatgc tctacgtcat tttgatgagg gtaattgtga	960
tacattaaaa gaaatactcg tcacatacaa ttgctgtgat gatgattatt tcaataagaa	1020
ggattggtat gacttcgtag agaatcctga catcttacgc gtatatgcta acttaggtga	1080
gcgtgtacgc caatcattat taaagactgt acaattctgc gatgctatgc gtgatgcagg	1140
cattgtaggc gtactgacat tagataatca ggatcttaat gggaactggt acgatttcgg	1200
tgatttcgta caagtagcac caggctgcgg agttcctatt gtggattcat attactcatt	1260
gctgatgccc atcctcactt tgactagggc attggctgct gagtcccata tggatgctga	1320
tctcgcaaaa ccacttatta agtgggattt gctgaaatat gattttacgg aagagagact	1380
ttgtctcttc gaccgttatt ttaaatattg ggaccagaca taccatccca attgtattaa	1440
ctgtttggat gataggtgta tccttcattg tgcaaacttt aatgtgttat tttctactgt	1500
gtttccacct acaagttttg gaccactagt aagaaaaata tttgtagatg gtgttccttt	1560
tgttgtttca actggatacc attttcgtga gttaggagtc gtacataatc aggatgtaaa	1620
cttacatagc tcgcgtctca gtttcaagga acttttagtg tatgctgctg atccagctat	1680
gcatgcagct tctggcaatt tattgctaga taaacgcact acatgctttt cagtagctgc	1740
actaacaaac aatgttgctt ttcaaactgt caaacccggt aattttaata aagactttta	1800
tgactttgct gtgtctaaag gtttctttaa ggaaggaagt tctgttgaac taaaacactt	1860

, sign

1er dépôt

S226CAS111.ST25 cttctttgct caggatggca acgctgctat cagtgattat gactattatc gttataatct 1920 gccaacaatg tgtgatatca gacaactcct attcgtagtt gaagttgttg ataaatactt 1980 2012 tgattgttac gatggtggct gtattaatgc ca 51<211> 1877<212> DNA<213> CORONAVIRUS<400> 51 gtacttcgcg tacagtggca ataccatatg acagcttaaa tgtttcctca gtggctttga 60 gcgtttctgc tgcgaaaagc ttgagtctct cagtacaagt gttggcaagt atgtaatcgc 120 cagcattagt ccaatcacat gttgctatcg cattgaagtc agtgacattg tcactgccta 180 cacatgtgtt tttgtataaa ccaaaaacct gaccattagc acataatgga aaactaatgg 240 gaggettatg tgacttgcaa taatagetea taceteetag atacagttgt gteacateag 300 tgacatcaca acctggggca ttgcaaacat agggattaac agacaacact aatttgtgtg 360 atgttgaaat gacatggtca tagcagcact tgcaacatag gaatggtctc ctaatacagg 420 caccgcaacg aagtgaagtc tgtgaattgc acaatacaca agcacctaca gcctgcaaga 480 ctgtatgtgg tgtgtacata gcctcataaa actcaggttc ccagtaccgt gaggtgttat 540 cattagttag cattacggaa tacatgtcca acatgtggcc agtaagctca tcatgtaact 600 ttctaatgta ttgtaaatac aagtgaaaga catcagcata ctcctgatta ggatgttttg 660 taagtgggta agcatcaata gccagtgaca cgaacctttc aatcataagt gtaccatctg 720 ttttgacaat atcatcgaca aaacagcctg cgcctaatat tcttgatgga tctgggtaag 780 gcaggtacac gtaatcatct ccttgtttaa ctagcattgt atgctgtgag caaaattcgt 840 gaggtccttt agtaaggtca gtctcagtcc aacattttgc ctcagacatg aacacattat 900 tttgataata aagaactgcc ttaaagttct taatgctagc tactaaacct tgagccgcat 960 agttactgtt atagcacaca acggcatcat cagaaagaat catcatggag aaatgtttac 1020 gcaggtaagc gtaaaactca tccacgaatt catgatcaac atccctattt ctatagagac 1080 actcatagag cctgtgttgt agattgcgga catacttgtc agctatctta ttaccatcag 1140 ttgaaagaag tgcatttaca ttggctgtaa cagcttgaca aatgttaaag acactattag 1200 cataagcagt tgtagcatca ccggatgatg ttccacctgg tttaacatat agtgagccgc 1260 cacacatgac catctcactt aatacttgcg cacactcgtt agctaacctg tagaaacggt 1320 gtgataagtt acagcaagtg ttatgtttgc gagcaagaac aagagaggcc attatcctaa 1380 gcatgttagg catggctctg tcacattttg gataatccca acccataagg tgtggagttt 1440 ctacatcact gtaaacagtt tttaacatat tatgccagcc accgtaaaac ttgcttgttc 1500 caattaccac agtagctcct ctagtggcgg ctattgactt caataatttc tgatgaaact 1560 gtctatttgt catagtacta cagatagaga caccagctac ggtgcgagct ctattctttg 1620 cactaatggc atacttaaga ttcatttgag ttatagtagg gatgacatta cgcttagtat 1680 1740 acgcgaaaag tgcatcttga tcctcataac tcattgagtc ataataaagt ctagccttac cccatttatt aaatgggaaa ccagctgatt tatccagatt gttaacgatt acttggttgg 1800

\$226CAS111.ST25	1860
cattaataca gccaccatcg taacaatcaa agtatttatc aacaacttca actacgaata	1877
ggagttgtct gatatca	20
<210> 52<211> 2051<212> DNA<213> CORONAVIRUS<400> 52 tcaggtccaa tcttgacaaa gtacttcatt gatgtaagct caaagccatg cgcccaaagg	60
acgaacacga ctctgtctga caatcctttc agtgtatcac tgagcatttg tactatctta	120
atacgcacta cattccaggg caagccttta tacatgagtg gtataagatg tttaaactgg	180
tcacctggtg gaggttttgc attaactctg gtgaattctg tgttattttc agtgtcaaca	240
taaccagtcg gtacagctac taagttaaca cctgtagaaa atcctagctg gagaggtagg	300
ttagtaccca cagcatetet agttgcatga cagceeteta cateaaagee aatecaegea	360
cgaacgtgac gaatagcttc ttcgcgggtg ataaacatat tagggtaacc attgacttgg	420
taattcattt tgaaacccat catagagatg agtctacggt aggtcatgtc ctttggtatg	480
cctggtatgt caacacataa tccttcagtc ttgaacttta tatcaacgct gaggtgtgta	540
ggtgcctgtg taggatgaag accagtaatg atcttactac agtccttaaa aagtccagtt	600
acattttctg cttgtaatgt agccacattg cgacgtggta tttctagact tgtaaattgc	660
agtttgtcat aaagatctct atcagacatt atgcacaaaa tgccaatttt tgcccttgtg	720
atagccacat tgaagcggtt gacattacaa gagtgtgctg tttcagtagt ttgtgtgaat	780
atgacatagt catattcaga accetgtgat gaatcaacag tetgegtagg caatectaag	840
atttttgaag ctacagcgtt ctgtgaatta taaggtgaga taaaaacagc ttttctccaa	900
gcaggattgc gtgtaagaaa ttctcttaca acgcctattt gaggtctgtt gattgcagat	960
gaaacatcat gtgtaataac acctttgtag aacattttga agcattgagc tgacttatcc	1020
ttgtgtgctt ttagcttatt gtcataaact aaagcactca cagtgtcaac aatttcagca	1080
ggacaacggc gacaagttcc aaggaacatg tctggaccta ttgttttcat aagtctgcac	1140
actgaattaa aatattctgg ttctagtgtg cctttagtca gcaatgtgcg gggggctggt	1200
aattgagcag gatcgccaat atagacgtag tgttttgcac gaagtctagc attgacaaca	1 260
ctcaagtcat aattagtagc catagagatt tcatcaaaga ctacaatgtc agcagttgtt	1320
tctggcaatg catttacagt gcagaaaca tactgttcta gtgttgaatt cactttgaat	1380
ttatcaaaac actctacgcg cgcacgcgca ggtatgattc tactacattt atctatgggc	1440
aaatatttta atgccttttc acatagggca tcaacagctg catgagagca tgccgtatac	1500
actatgcgag cagatgggta atagagagca agtccgatgg caaaatgact cttaccagta	1560
ccaggtggtc cttggagtgt agagtacttt tgcatgccga ccttttgata atttgcaaca	1620
ttgctagaaa actcatctga gatgttgagt gttgggtaca agccagtaat tctcacatag	1680
tgctcttgtg gcactagagt aggtgcacta agtggcatta cagtgtgaga tgtcaacaca	1740
aagtaatcac caacattcaa cttgtatgtc gtagtacctc tgtacacaac agcatcacca	1800
tagtcacctt tttcaaaggt gtactctcca atctgtactt tactatttt agttacacgg	1860
Layleacett tecommagge general	

ă.

S226CAS111.ST25 taaccagtaa agacatagtt tctgttcaat ggtggtctag gttttccaac ctcccatgaa 1920 agatgcaatt ctctgtcaga gagtacttcg cgtacagtgg caataccata tgacagctta 1980 aatgtttcct cagtggcttt gagcgtttct gctgcgaaaa gcttgagtct ctcagtacaa 2040 2051 gtgttggcaa g <210> 53<211> 2075<212> DNA<213> CORONAVIRUS<400> tgcttgtagt tttgggtaga aggtttcaac atgtccatcc ttacaccaaa gcatgaatga 60 aatttcagca tagtcaattg taaccttgac cacttttgaa atcactgaca aatcttgtga 120 ctttattatc tcgacaaagt catcaagtaa aagatcaatc acagaacaca cacattttga 180 tgaacctgtt tgcgcatctg ttatgaagta attttcact gtgctgtcca tagggataaa 240 atcctctaat ttaagtggtg aatcttgtga gcgcttggct aagcctatca ttaaatgaag 300 accgccaagt tgtccatgac tgaaatctcc ataaacgatg tgttcgaagg catagccctc 360 420 gagcttatat cgctgtatga attcatccat agcgagctcg agaaagtcag tttccatttg tgatctgggc ttaaaatcct ctaagtctct gctctgagta aagtaggttt caggcaactg 480 ttgaataatg ccgtctactt tcttaaagta gttaaactgt gtttttactg attctccaat 540 taatgtgact ccattgacgc tagcttgtgc tggtcccttt gaaggtgtta gacctttgac 600 tgaaccttct gttattaaaa caccattacg ggcgtttcta aaaaggtcta cctgtccttc 660 cactctacca tcaaacaaga cagtaagtga agaacaagca ctctcagtag gtttcttggc 720 aatgtcagtc attgtgcaga cacctattgt agatacatgt gctggggctt ctcttttgta 780 gtcccagatt acagtattag cagcgatatc aacacccaaa ttattgagta tcttaatctc 840 tggcactggt ttaatgttac gcttagccca aagctcaaat gcaacattaa caggaagtgt 900 tgtcttattt tcaaagatct ccacatcaat accatctacc tttgtgtaaa cagcattatt 960 aatgatggaa acaggtgctt cgccggcgtg tccatcaaag tgtcctttat taacaacatt 1020 ataagccaca ttttctaaac tctgtaacct ggtaaatgta ttccacaggt tataagtatc 1080 aaattgtttg taaatccata ggctaaatcc agcagaaatc atcatattat atgcatccaa 1140 gtactgtcgg tactcatttg catggtgtct gcaaacagca ccacctaaat tgcatcgtgt 1200 aatacacgta gcagatttga gtggaacata atcaatatcc gacactactt gtttgccatg 1260 1320 agactcacaa ggactatcag aatagtaaaa gaaaggcaat tgctttaaat tagtaaatgc acttttatcg aaagctggag tgtggaatgc atgcttattc acatacaaac taccaccatc 1380 acagcctggt aagttcaagt ttgacaagac tcttgtgtca aacctacaca caattgcatt 1440 ggctgggtaa cgatcaacgt tacaattcca aaacaaacaa acaccatcag tgaatttatc 1500 gtgatgtgta gcataagaat agaagagttc ctctattttg taagctttgt cactacatgg 1560 ctgagcatcg tagaacttcc attctacttc agcctgaggc acacacttga tagcctttgg 1620 atttccaatg tcatgaagaa ctggaaactt atcagcaagc aatgcagact tcacaaccat 1680 gtgttgtact tttctgcaag cagaattaac cctcagttca tctcctataa tagggtattc 1740

aacagaccaa	tcaacgcgct	taacaaagca	s226CAS111. ctcatggact	ST25 gctaaacatc	tagtcatgat	1800
agcatcacaa	ctagccacat	gtgcatttcc	atgtacctgg	caatgttggt	catggttact	1860
ctgaaggtta	cccgtaaagc	cccactgctg	aacatcaatc	ataaatgggt	tatagacata	1920
gtcaaaaccc	acagaatgat	tccagcaggc	ataagtatct	gatgaagtag	aaaagcaagt	1980
tgcacgtttg	tcacacagac	aacacgttct	ttcaggtcca	atcttgacaa	agtacttcat	2040
tgatgtaagc	tcaaagccat	gcgcccaaag	gacga			2075
						
	211> 1891< acttaaatta			VIRUS<400> cagcacagtg	54 aaaaattact	60
tcataacaga	tgcgcaaaca	ggttcatcaa	aatgtgtgtg	ttctgtgatt	gatcttttac	120
ttgatgactt	tgtcgagata	ataaagtcac	aagatttgtc	agtgatttca	aaagtggtca	180
aggttacaat	tgactatgct	gaaatttcat	tcatgctttg	gtgtaaggat	ggacatgttg	240
aaaccttcta	cccaaaacta	caagcaagtc	aagcgtggca	accaggtgtt	gcgatgccta	300
acttgtacaa	gatgcaaaga	atgcttcttg	aaaagtgtga	ccttcagaat	tatggtgaaa	360
atgctgttat	accaaaagga	ataatgatga	atgtcgcaaa	gtatactcaa	ctgtgtcaat	420
acttaaatac	acttacttta	gctgtaccct	acaacatgag	agttattcac	tttggtgctg	480
gctctgataa	aggagttgca	ccaggtacag	ctgtgctcag	acaatggttg	ccaactggca	540
cactacttgt	cgattcagat	cttaatgact	tcgtctccga	cgcagattct	actttaattg	600
gagactgtgc	aacagtacat	acggctaata	aatgggacct	tattattagc	gatatgtatg	660
accctaggac	caaacatgtg	acaaaagaga	atgactctaa	agaagggttt	ttcacttatc	720
tgtgtggatt	tataaagcaa	aaactagccc	tgggtggttc	tatagctgta	aagataacag	780
agcattcttg	gaatgctgac	ctttacaagc	ttatgggcca	tttctcatgg	tggacagctt	840
ttgttacaaa	tgtaaatgca	tcatcatcgg	aagcattttt	aattggggct	aactatcttg	900
gcaagccgaa	ggaacaaatt	gatggctata	ccatgcatgc	taactacatt	ttctggagga	960
acacaaatcc	tatccagttg	tcttcctatt	cactctttga	catgagcaaa	tttcctctta	1020
aattaagagg	aactgctgta	atgtctctta	aggagaatca	aatcaatgat	atgatttatt	1080
ctcttctgga	aaaaggtagg	cttatcatta	gagaaaacaa	cagagttgtg	gtttcaagtg	1140
atattcttgt	taacaactaa	acgaacatgt	ttattttctt	attatttctt	actctcacta	1200
gtggtagtga	ccttgaccgg	tgcaccactt	ttgatgatgt	tcaagctcct	aattacactc	1260
aacatacttc	atctatgagg	ggggtttact	atcctgatga	aatttttaga	tcagacactc	1320
tttatttaac	tcaggattta	tttcttccat	tttattctaa	tgttacaggg	tttcatacta	1380
ttaatcatac	gtttggcaac	cctgtcatac	cttttaagga	tggtatttat	tttgctgcca	1440
cagagaaatc	aaatgttgtc	cgtggttggg	tttttggttc	taccatgaac	aacaagtcac	1500
agtcggtgat	tattattaac	aattctacta	atgttgttat	acgagcatgt	aactttgaat	1560
tgtgtgacaa	ccctttcttt	gctgtttcta	aacccatggg	tacacagaca	catactatga	1620

tattonata	aa tocat	ttaat to		S226CAS111.		tcgcttgatg	1680	
					_			
_					•	aataaagatg		
	_					ctaccttctg		
gttttaaca	ac tttga	aacct at	ttttaagt	tgcctcttgg	tattaacatt	acaaatttta	1860	
gagccatto	ct tacag	ccttt tc	acctgctc	a		•	1891	
<210> 55	5<211>	32<212>	DNA<213>	ARTIFICIA	AL SEQUENCE-	<220><223>	amorce	N sens
<400> 55 cccatatgt	_	atgga cc	ccaatcaa	ac			32	
<210> 56 antisens	6<211>	32<212>	DNA<213>	artificia	al sequence	<220><223>	amorce	N
<400> 56 ccccgggt		gttga at	cagcagaa	gc			32	
<210> 57	7<2 11 >	31<212>	DNA<213>	artificia	al sequence-	<220><223>	amorce	Sc sens
<400> 57 cccatatga	•	ttgac cg	gtgcacca	c			31	
<210> 58	8<211>	30<212>	DNA<213>	artificia	ll sequence∢	<220><223>	amorce	SL sens
<400> 58 cccatatga		gcacc cc	acctgctc				30	
<210> 59 ccccgggt	9<211> tt taata	33<212> tattg ct	DNA<213> catattt	amorce Sc ccc	et SL anti	sens<400>	59 33	
<210> 60 ggcatcgta			DNA<213>	amorce se	ens série 1<	<400> 60	16	
61			DNA<213>	amorce an	itisens séri	e 2 (28774-		400>
cagtttcac	cc acctc	c					16	
<210> 62 ggctactac	2<211> cc gaaga	16<212> g	DNA<213>	amorce se	ns série 2	(28375-2839	90) <400> 16	62
63			DNA<213>	amorce an	tisens séri	e 2 (28702-	28687)<	400>
aattaccgc	cg actac	9				_	16	
<210> 64 ggcacccgc	4<211> ca atcct	26<212> aataa caa	DNA<213> atgc	sonde 1/s	érie 1 (285	61-28586)<4	00> 64 26	
<210> 65 gccaccgtg		21<212> cttcc t	DNA<213>	sonde 2/s	érie 1 (285	88-28608)<4	00> 65 21	
<210> 66			DNA<213>	sonde 1/s	érie 2 /son	de N/FL		

S226CAS111.ST25	
atacacccaa agaccacatt ggc	23
<210> 67<211> 25<212> DNA<213> sonde 2/série 2/sonde SARS/N/L(28565-28589)<400> 67	C705
cccgcaatcc taataacaat gctgc	25
<210> 68<211> 30<212> DNA<213> artificial sequence<220><223> 14T	amorce ancre
<400> 68 agatgaattc ggtacctttt ttttttttt	30
<210> 69<211> 13<212> PRT<213> artificial sequence<220><223>	peptide M2-14
<400> 69	
Ala Asp Asn Gly Thr Ile Thr Val Glu Glu Leu Lys Gln 1 5 10	
<210> 70<211> 12<212> PRT<213> artificial sequence<220><223>	peptide E1-12
<400> 70	
Met Tyr Ser Phe Val Ser Glú Glu Thr Gly Thr Leu 1 5 10	
<210> 71<211> 24<212> PRT<213> artificial sequence<220><223>	peptide E53-72
<400> 71	
Lys Pro Thr Val Tyr Val Tyr Ser Arg Val Lys Asn Leu Asn Ser Ser	,
Glu Gly Val Pro Asp Leu Leu Val	΄,
<210> 72<211> 153<212> DNA<213> CORONAVIRUS<400> 72 gatattaggt ttttacctac ccaggaaaag ccaaccaacc tcgatctctt gtagatctgt	60
tctctaaacg aactttaaaa tctgtgtagc tgtcgctcgg ctgcatgcct agtgcaccta	120
cgcagtataa acaataataa attttactgt cgt	153
210 72 214 410 212 222	•
<pre><210> 73<211> 410<212> DNA<213> CORONAVIRUS<400> 73 ttctccagac aacttcaaaa ttccatgagt ggagcttctg ctgattcaac tcaggcataa</pre>	60
acactcatga tgaccacaca aggcagatgg gctatgtaaa cgttttcgca attccgttta	120
cgatacatag tctactcttg tgcagaatga attctcgtaa ctaaacagca caagtaggtt	180
tagttaactt taatctcaca tagcaatctt taatcaatgt gtaacattag ggaggacttg	240
aaagagccac cacattttca tcgaggccac gcggagtacg atcgagggta cagtgaataa	300
tgctagggag agctgcctat atggaagagc cctaatgtgt aaaattaatt ttagtagtgc	360
tatccccatg tgattttaat agcttcttag gagaatgaca aaaaaaaaaa	410
210 74 211 4202 212 242	

<210> 74<211> 4382<212> PRT<213> CORONAVIRUS<400> 74 Page 75

Met Glu Ser Leu Val Leu Gly Val Asn Glu Lys Thr His Val Gln Leu 1 5 10 15 Ser Leu Pro Val Leu Gln Val Arg Asp Val Leu Val Arg Gly Phe Gly 20 25 30 Asp Ser Val Glu Glu Ala Leu Ser Glu Ala Arg Glu His Leu Lys Asn 35 40 45 Gly Thr Cys Gly Leu Val Glu Leu Glu Lys Gly Val Leu Pro Gln Leu 50 60 Glu Gln Pro Tyr Val Phe Ile Lys Arg Ser Asp Ala Leu Ser Thr Asn 65 70 75 80 His Gly His Lys Val Val Glu Leu Val Ala Glu Met Asp Gly Ile Gln 85 90 95 Tyr Gly Arg Ser Gly Ile Thr Leu Gly Val Leu Val Pro His Val Gly 100 105 110 Glu Thr Pro Ile Ala Tyr Arg Asn Val Leu Leu Arg Lys Asn Gly Asn 115 120 125 Lys Gly Ala Gly Gly His Ser Tyr Gly Ile Asp Leu Lys Ser Tyr Asp 130 135 140 Leu Gly Asp Glu Leu Gly Thr Asp Pro Ile Glu Asp Tyr Glu Gln Asn 145 150 155 160 Trp Asn Thr Lys His Gly Ser Gly Ala Leu Arg Glu Leu Thr Arg Glu 165 170 175 Leu Asn Gly Gly Ala Val Thr Arg Tyr Val Asp Asn Asn Phe Cys Gly 180 185 Pro Asp Gly Tyr Pro Leu Asp Cys Ile Lys Asp Phe Leu Ala Arg Ala 195 200 205 Gly Lys Ser Met Cys Thr Leu Ser Glu Gln Leu Asp Tyr Ile Glu Ser 210 220 Lys Arg Gly Val Tyr Cys Cys Arg Asp His Glu His Glu Ile Ala Trp 225 230 235 240 Phe Thr Glu Arg Ser Asp Lys Ser Tyr Glu His Gln Thr Pro Phe Glu 245 250 255 Ile Lys Ser Ala Lys Lys Phe Asp Thr Phe Lys Gly Glu Cys Pro Lys 260 265 270

Phe Val Phe Pro Leu Asn Ser Lys Val Lys Val Ile Gln Pro Arg Val 285

Glu Lys Lys Lys Thr Glu Gly Phe Met Gly Arg Ile Arg Ser Val Tyr 290

Pro Val Ala Ser Pro Gln Glu Cys Asn Asn Met His Leu Ser Thr Leu 305 310 320

Met Lys Cys Asn His Cys Asp Glu Val Ser Trp Gln Thr Cys Asp Phe 335

Leu Lys Ala Thr Cys Glu His Cys Gly Thr Glu Asn Leu Val Ile Glu 340 345

Gly Pro Thr Thr Cys Gly Tyr Leu Pro Thr Asn Ala Val Val Lys Met 365

Pro Cys Pro Ala Cys Gln Asp Pro Glu Ile Gly Pro Glu His Ser Val 370

Ala Asp Tyr His Asn His Ser Asn Ile Glu Thr Arg Leu Arg Lys Gly 385 390

Gly Arg Thr Arg Cys Phe Gly Gly Cys Val Phe Ala Tyr Val Gly Cys 415

Tyr Asn Lys Arg Ala Tyr Trp Val Pro Arg Ala Ser Ala Asp Ile Gly 425

Ser Gly His Thr Gly Ile Thr Gly Asp Asn Val Glu Thr Leu Asn Glu 445 445

Asp Leu Leu Glu Ile Leu Ser Arg Glu Arg Val Asn Ile Asn Ile Val 450 450

Gly Asp Phe His Leu Asn Glu Glu Val Ala Ile Ile Leu Ala Ser Phe 475 480

Ser Ala Ser Thr Ser Ala Phe Ile Asp Thr Ile Lys Ser Leu Asp Tyr 490 495

Lys Ser Phe Lys Thr Ile Val Glu Ser Cys Gly Asn Tyr Lys Val Thr 500 500

Lys Gly Lys Pro Val Lys Gly Ala Trp Asn Ile Gly Gln Gln Arg Ser 525

Val Leu Thr Pro Leu Cys Gly Phe Pro Ser Gln Ala Ala Gly Val Ile 530

Arg Ser Ile Phe Ala Arg Thr Leu Asp Ala Ala Asn His Ser Ile Pro 545 550 560 Asp Leu Gln Arg Ala Ala Val Thr Ile Leu Asp Gly Ile Ser Glu Gln
565 570 Ser Leu Arg Leu Val Asp Ala Met Val Tyr Thr Ser Asp Leu Leu Thr 580 585 590 Asn Ser Val Ile Ile Met Ala Tyr Val Thr Gly Gly Leu Val Gln Gln 595 600 605 Thr Ser Gln Trp Leu Ser Asn Leu Leu Gly Thr Thr Val Glu Lys Leu 610 620 Arg Pro Ile Phe Glu Trp Ile Glu Ala Lys Leu Ser Ala Gly Val Glu 625 630 640 Phe Leu Lys Asp Ala Trp Glu Ile Leu Lys Phe Leu Ile Thr Gly Val 645 650 650 Phe Asp Ile Val Lys Gly Gln Ile Gln Val Ala Ser Asp Asn Ile Lys 660 665 Asp Cys Val Lys Cys Phe Ile Asp Val Val Asn Lys Ala Leu Glu Met 675 680 685 Cys Ile Asp Gln Val Thr Ile Ala Gly Ala Lys Leu Arg Ser Leu Asn 690 695 Leu Gly Glu Val Phe Ile Ala Gln Ser Lys Gly Leu Tyr Arg Gln Cys 705 710 720 Ile Arg Gly Lys Glu Gln Leu Gln Leu Met Pro Leu Lys Ala Pro 735 Lys Glu Val Thr Phe Leu Glu Gly Asp Ser His Asp Thr Val Leu Thr 740 745 750 Ser Glu Glu Val Val Leu Lys Asn Gly Glu Leu Glu Ala Leu Glu Thr 755 760 765 Pro Val Asp Ser Phe Thr Asn Gly Ala Ile Val Gly Thr Pro Val Cys 770 775 780 Val Asn Gly Leu Met Leu Leu Glu Ile Lys Asp Lys Glu Gln Tyr Cys 785 790 795 Ala Leu Ser Pro Gly Leu Leu Ala Thr Asn Asn Val Phe Arg Leu Lys 805 810 815

\$226CA\$111.ST25

Gly Gly Ala Pro Ile Lys Gly Val Thr Phe Gly Glu Asp Thr Val Trp 820 825 830 Glu Val Gln Gly Tyr Lys Asn Val Arg Ile Thr Phe Glu Leu Asp Glu 835 840 845 Arg Val Asp Lys Val Leu Asn Glu Lys Cys Ser Val Tyr Thr Val Glu 850 860 Ser Gly Thr Glu Val Thr Glu Phe Ala Cys Val Val Ala Glu Ala Val 865 870 875 880 Val Lys Thr Leu Gln Pro Val Ser Asp Leu Leu Thr Asn Met Gly Ile 885 890 895 Asp Leu Asp Glu Trp Ser Val Ala Thr Phe Tyr Leu Phe Asp Asp Ala 900 905 910 Gly Glu Glu Asn Phe Ser Ser Arg Met Tyr Cys Ser Phe Tyr Pro Pro 915 925 Asp Glu Glu Glu Asp Asp Ala Glu Cys Glu Glu Glu Ile Asp 930 935 940 Glu Thr Cys Glu His Glu Tyr Gly Thr Glu Asp Asp Tyr Gln Gly Leu 945 950 955 960 Pro Leu Glu Phe Gly Ala Ser Ala Glu Thr Val Arg Val Glu Glu 965 970 975 Glu Glu Glu Asp Trp Leu Asp Asp Thr Thr Glu Gln Ser Glu Ile Glu 980 985 990 Pro Glu Pro Glu Pro Thr Pro Glu Glu Pro Val Asn Gln Phe Thr Gly 995 1000 1005 Tyr Leu Lys Leu Thr Asp Asn Val Ala Ile Lys Cys Val Asp Ile 1010 1020 Val Lys Glu Ala Gln Ser Ala Asn Pro Met Val Ile Val Asn Ala 1025 1030 1035 Ala Asn Ile His Leu Lys His Gly Gly Gly Val Ala Gly Ala Leu 1040 1050 Asn Lys Ala Thr Asn Gly Ala Met Gln Lys Glu Ser Asp Asp Tyr 1055 1060 1065 The Lys Leu Asn Gly Pro Leu Thr Val Gly Gly Ser Cys Leu Leu 1070 1080

Ser Gly His Asn Leu Ala Lys Lys Cys Leu His Val Val Gly Pro 1085 1090 1095

Asn Leu Asn Ala Gly Glu Asp Ile Gln Leu Leu Lys Ala Ala Tyr 1100 11105

Glu Asn Phe Asn Ser Gln Asp Ile Leu Leu Ala Pro Leu Leu Ser 1115 1120 1125

Ala Gly Ile Phe Gly Ala Lys Pro Leu Gln Ser Leu Gln Val Cys 1130 1140

Val Gln Thr Val Arg Thr Gln Val Tyr Ile Ala Val Asn Asp Lys 1145 1150 1155

Ala Leu Tyr Glu Gln Val Val Met Asp Tyr Leu Asp Asn Leu Lys 1160 1165

Pro Arg Val Glu Ala Pro Lys Gln Glu Glu Pro Pro Asn Thr Glu 1175 1180

Asp Ser Lys Thr Glu Glu Lys Ser Val Val Gln Lys Pro Val Asp 1190 1195 1200

Val Lys Pro Lys Ile Lys Ala Cys Ile Asp Glu Val Thr Thr Thr 1205 1210 1215

Leu Glu Glu Thr Lys Phe Leu Thr Asn Lys Leu Leu Leu Phe Ala 1220 1230

Asp Ile Asn Gly Lys Leu Tyr His Asp Ser Gln Asn Met Leu Arg 1235 1240 1245

Gly Glu Asp Met Ser Phe Leu Glu Lys Asp Ala Pro Tyr Met Val 1250 1260

Gly Asp Val Ile Thr Ser Gly Asp Ile Thr Cys Val Val Ile Pro 1265 1270

Ser Lys Lys Ala Gly Gly Thr Thr Glu Met Leu Ser Arg Ala Leu 1280 1290

Lys Lys Val Pro Val Asp Glu Tyr Ile Thr Thr Tyr Pro Gly Gln 1295 1300 1305

Gly Cys Ala Gly Tyr Thr Leu Glu Glu Ala Lys Thr Ala Leu Lys 1310 1315

Lys Cys Lys Ser Ala Phe Tyr Val Leu Pro Ser Glu Ala Pro Asn 1325 1330

S226CAS111.ST25 Ala Lys Glu Glu Ile Leu Gly Thr Val Ser Trp Asn Leu Arg Glu 1340 1345 1350 Met Leu Ala His Ala Glu Glu Thr Arg Lys Leu Met Pro Ile Cys 1355 1360 1365 Met Asp Val Arg Ala Ile Met Ala Thr Ile Gln Arg Lys Tyr Lys 1370 1380 Gly Ile Lys Ile Gln Glu Gly Ile Val Asp Tyr Gly Val Arg Phe 1385 1390 1395 Phe Phe Tyr Thr Ser Lys Glu Pro Val Ala Ser Ile Ile Thr Lys 1400 1405 Leu Asn Ser Leu Asn Glu Pro Leu Val Thr Met Pro Ile Gly Tyr 1415 1420 1425 Val Thr His Gly Phe Asn Leu Glu Glu Ala Ala Arg Cys Met Arg 1430 1435 1440 Ser Leu Lys Ala Pro Ala Val Val Ser Val Ser Ser Pro Asp Ala 1445 1450 1455 Val Thr Thr Tyr Asn Gly Tyr Leu Thr Ser Ser Ser Lys Thr Ser 1460 1465 1470 Glu Glu His Phe Val Glu Thr Val Ser Leu Ala Gly Ser Tyr Arg 1475 1480 1485 Asp Trp Ser Tyr Ser Gly Gln Arg Thr Glu Leu Gly Val Glu Phe 1490 1500 Leu Lys Arg Gly Asp Lys Ile Val Tyr His Thr Leu Glu Ser Pro 1505 1510 1515 Val Glu Phe His Leu Asp Gly Glu Val Leu Ser Leu Asp Lys Leu 1520 1530 Lys Ser Leu Leu Ser Leu Arg Glu Val Lys Thr Ile Lys Val Phe 1535 1540 1545 Thr Thr Val Asp Asn Thr Asn Leu His Thr Gln Leu Val Asp Met 1550 1560 Ser Met Thr Tyr Gly Gln Gln Phe Gly Pro Thr Tyr Leu Asp Gly 1565 1570 1575 Ala Asp Val Thr Lys Ile Lys Pro His Val Asn His Glu Gly Lys 1580 1590

Thr Phe Phe Val Leu Pro Ser Asp Asp Thr Leu Arg Ser Glu Ala 1595 1600

Phe Glu Tyr Tyr His Thr Leu Asp Glu Ser Phe Leu Gly Arg Tyr 1610 1620

Met Ser Ala Leu Asn His Thr Lys Lys Trp Lys Phe Pro Gln Val 1625 1630

Gly Gly Leu Thr Ser Ile Lys Trp Ala Asp Asn Asn Cys Tyr Leu 1640 1650

Ser Ser Val Leu Leu Ala Leu Gln Gln Leu Glu Val Lys Phe Asn 1655 1660

Ala Pro Ala Leu Gln Glu Ala Tyr Tyr Arg Ala Arg Ala Gly Asp 1670 1675

Ala Ala Asn Phe Cys Ala Leu Ile Leu Ala Tyr Ser Asn Lys Thr 1685 1690

Val Gly Glu Leu Gly Asp Val Arg Glu Thr Met Thr His Leu Leu 1700 1705

Gln His Ala Asn Leu Glu Ser Ala Lys Arg Val Leu Asn Val Val 1715 1720 1725

Cys Lys His Cys Gly Gln Lys Thr Thr Thr Leu Thr Gly Val Glu 1730 1735

Ala Val Met Tyr Met Gly Thr Leu Ser Tyr Asp Asn Leu Lys Thr 1745 1750

Gly Val Ser Ile Pro Cys Val Cys Gly Arg Asp Ala Thr Gln Tyr 1760 1765

Leu Val Gln Gln Glu Ser Ser Phe Val Met Met Ser Ala Pro Pro 1775 1780

Ala Glu Tyr Lys Leu Gln Gln Gly Thr Phe Leu Cys Ala Asn Glu 1790 1795

Tyr Thr Gly Asn Tyr Gln Cys Gly His Tyr Thr His Ile Thr Ala 1805 1810

Lys Glu Thr Leu Tyr Arg Ile Asp Gly Ala His Leu Thr Lys Met 1820 1830

Ser Glu Tyr Lys Gly Pro Val Thr Asp Val Phe Tyr Lys Glu Thr 1835 1840

Ser	Tyr 1850	Thr	Thr	Thr	Ile	Lys 1855	Pro	Val	Ser	Tyr	Lys 1860	Leu	Asp	Gly
Val	Thr 1865	Tyr	.Thr	Glu	Ile	Glu 1870	Pro	Lys	Leu	Asp	Gly 1875	Tyr	Туг	Lys
Lys	Asp 1880	Asn	Ala [.]	Tyr	Tyr	Thr 1885	Glu	Gln	Pro	Ile	Asp 1890	Leu	٧a٦	Pro
Thr	Gln 1895	Pro	Leu	Pro	Asn	Ala 1900	Ser	Phe	Asp	Asn	Phe 1905	Lys	Leu	Thr
Cys	Ser 1910	Asn	Thr	Lys	Phe	Ala 1915	Asp	Asp	Leu	Asn	Gln 1920	Met	Thr	G1y
Phe	Thr 1925	Lys	Pro	Αla	Ser	Arg 1930	Glu	Leu	Ser	٧a٦	Thr 1935	Phe	Phe	Pro
Asp	Leu 1940		Gly	Asp	va1	va7 1945	Ala	Ile	Asp	Tyr	Arg 1950	His	Tyr	ser
Ala	Ser 1955	Phe	Lys	Lys	Gly	Ala 1960	Lys	Leu	Leu	His	Lys 1965	Pro	Ile	٧a٦
	His 1970		Asn	Gln	Ala	Thr 1975	Thr	Lys	Thr	Thr	Phe 1980	Lys	Pro	Asn
Thr	Trp 1985	Cys	Leu	Arg	Cys	Leu 1990	Trp	ser	Thr	Lys	Pro 1995	Val	Asp	Thr
Ser	Asn 2000	Ser	Phe	Glu	٧a٦	Leu 2005	Αla	val	Glu	Asp	Thr 2010	Gln	Gly	Met
Asp	Asn 2015	Leu	Аlа	Cys	Glu	Ser 2020	Gln	Gln	Pro	Thr	Ser 2025	Glu	Glu	val
val	Glu 2030	Asn	Pro	Thr	Ile	G1n 2035	Lys	Glu	٧a٦	Ile	G]u 2040	Cys	Asp	Val
Lys	Thr 2045	Thr	Glu	Va]	Va7	Gly 2050	Asn	Val	ile	Leu	Lys 2055	Pro	Ser	Asp
Glu	G]y 2060	٧a٦	Lys	val	Thr	G1n 2065	Glu	Leu	GТу	His	G1u 2070	Asp	Leu	Met
Ala	Ala 2075	туг	val	Glu	Asn	Thr 2080	Ser	Ile	Thr	Ile	Lys 2085	Lys	Pro	Asn
Glu	Leu 2090	Ser	Leu	Ala	Leu	Gly 2095	Leu	Lys	Thr	Ile	Ala 2100	Thr	His	Gly

Ile Ala Ala Ile Asn Ser Val Pro Trp Ser Lys Ile Leu Ala Tyr 2105 2110 2115

Val Lys Pro Phe Leu Gly Gln Ala Ala Ile Thr Thr Ser Asn Cys 2120 2125 2130

Ala Lys Arg Leu Ala Gln Arg Val Phe Asn Asn Tyr Met Pro Tyr 2135 2140 2145

Val Phe Thr Leu Leu Phe Gln Leu Cys Thr Phe Thr Lys Ser Thr 2150 2160

Asn Ser Arg Ile Arg Ala Ser Leu Pro Thr Thr Ile Ala Lys Asn 2165 2170 2175

Ser Val Lys Ser Val Ala Lys Leu Cys Leu Asp Ala Gly Ile Asn 2180 2185

Tyr Val Lys Ser Pro Lys Phe Ser Lys Leu Phe Thr Ile Ala Met 2195 2200 2205

Trp Leu Leu Leu Ser Ile Cys Leu Gly Ser Leu Ile Cys Val 2210 2215 2220

Thr Ala Ala Phe Gly Val Leu Leu Ser Asn Phe Gly Ala Pro Ser 2225 2230 2235

Tyr Cys Asn Gly Val Arg Glu Leu Tyr Leu Asn Ser Ser Asn Val 2240 2245 2250

Thr Thr Met Asp Phe Cys Glu Gly Ser Phe Pro Cys Ser Ile Cys 2255 2260 2265

Leu Ser Gly Leu Asp Ser Leu Asp Ser Tyr Pro Ala Leu Glu Thr 2270 2280

Ile Gln Val Thr Ile Ser Ser Tyr Lys Leu Asp Leu Thr Ile Leu 2285 2290 2295

Gly Leu Ala Ala Glu Trp Val Leu Ala Tyr Met Leu Phe Thr Lys 2300 2310

Phe Phe Tyr Leu Leu Gly Leu Ser Ala Ile Met Gln Val Phe Phe 2315 2320 2325

Gly Tyr Phe Ala Ser His Phe Ile Ser Asn Ser Trp Leu Met Trp 2330 2340

Phe Ile Ile Ser Ile Val Gln Met Ala Pro Val Ser Ala Met Val 2345 2350 2355

Arg Met Tyr Ile Phe Phe Ala Ser Phe Tyr Tyr Ile Trp Lys Ser 2360 2365 2370 Tyr Val His Ile Met Asp Gly Cys Thr Ser Ser Thr Cys Met Met 2375 2380 2385 Cys Tyr Lys Arg Asn Arg Ala Thr Arg Val Glu Cys Thr Thr Ile 2390 2400 Val Asn Gly Met Lys Arg Ser Phe Tyr Val Tyr Ala Asn Gly Gly 2405 2410 2415 Arg Gly Phe Cys Lys Thr His Asn Trp Asn Cys Leu Asn Cys Asp 2420 2430 Thr Phe Cys Thr Gly Ser Thr Phe Ile Ser Asp Glu Val Ala Arg 2435 2440 2445 Asp Leu Ser Leu Gln Phe Lys Arg Pro Ile Asn Pro Thr Asp Gln 2450 2460 Ser Ser Tyr Ile Val Asp Ser Val Ala Val Lys Asn Gly Ala Leu 2465 2470 2475 His Leu Tyr Phe Asp Lys Ala Gly Gln Lys Thr Tyr Glu Arg His 2480 2485 Pro Leu Ser His Phe Val Asn Leu Asp Asn Leu Arg Ala Asn Asn 2500 2505 Thr Lys Gly Ser Leu Pro Ile Asn Val Ile Val Phe Asp Gly Lys 2510 2520 Ser Lys Cys Asp Glu Ser Ala Ser Lys Ser Ala Ser Val Tyr Tyr 2525 2530 2535 Ser Gln Leu Met Cys Gln Pro Ile Leu Leu Leu Asp Gln Ala Leu 2540 2545 2550 Val Ser Asp Val Gly Asp Ser Thr Glu Val Ser Val Lys Met Phe 2555 2560 2565 Asp Ala Tyr Val Asp Thr Phe Ser Ala Thr Phe Ser Val Pro Met 2570 2580 Glu Lys Leu Lys Ala Leu Val Ala Thr Ala His Ser Glu Leu Ala 2585 2590 2595 Lys Gly Val Ala Leu Asp Gly Val Leu Ser Thr Phe Val Ser Ala 2600 2610

Ala Arg Gln Gly Val Val Asp Thr Asp Val Asp Thr Lys Asp Val 2615 2620 2625 Ile Glu Cys Leu Lys Leu Ser His His Ser Asp Leu Glu Val Thr 2630 2640 Gly Asp Ser Cys Asn Asn Phe Met Leu Thr Tyr Asn Lys Val Glu 2645 2650 2655 Asn Met Thr Pro Arg Asp Leu Gly Ala Cys Ile Asp Cys Asn Ala 2660 2665 2670 Arg His Ile Asn Ala Gln Val Ala Lys Ser His Asn Val Ser Leu 2675 2680 2685 Ile Trp Asn Val Lys Asp Tyr Met Ser Leu Ser Glu Gln Leu Arg 2690 2695 2700 Lys Gln Ile Arg Ser Ala Ala Lys Lys Asn Asn Ile Pro Phe Arg 2705 2710 2715 Leu Thr Cys Ala Thr Thr Arg Gln Val Val Asn Val Ile Thr Thr 2720 2725 2730 Lys Ile Ser Leu Lys Gly Gly Lys Ile Val Ser Thr Cys Phe Lys 2735 2740 2745 Leu Met Leu Lys Ala Thr Leu Leu Cys Val Leu Ala Ala Leu Val 2750 2760 Cys Tyr Ile Val Met Pro Val His Thr Leu Ser Ile His Asp Gly 2765 2770 2775 Tyr Thr Asn Glu Ile Ile Gly Tyr Lys Ala Ile Gln Asp Gly Val 2780 2790 Thr Arg Asp Ile Ile Ser Thr Asp Asp Cys Phe Ala Asn Lys His 2795 2800 2805 Ala Gly Phe Asp Ala Trp Phe Ser Gln Arg Gly Gly Ser Tyr Lys 2810 2815 2820 Asn Asp Lys Ser Cys Pro Val Val Ala Ala Ile Ile Thr Arg Glu 2825 2835 Ile Gly Phe Ile Val Pro Gly Leu Pro Gly Thr Val Leu Arg Ala 2840 2845 2850 Ile Asn Gly Asp Phe Leu His Phe Leu Pro Arg Val Phe Ser Ala 2855 2860 2865

Val Gly Asn Ile Cys Tyr Thr Pro Ser Lys Leu Ile Glu Tyr Ser 2870 2880 Asp Phe Ala Thr Ser Ala Cys Val Leu Ala Ala Glu Cys Thr Ile 2885 2890 2895 Phe Lys Asp Ala Met Gly Lys Pro Val Pro Tyr Cys Tyr Asp Thr 2900 2905 Asn Leu Leu Glu Gly Ser Ile Ser Tyr Ser Glu Leu Arg Pro Asp 2915 2920 2925 Thr Arg Tyr Val Leu Met Asp Gly Ser Ile Ile Gln Phe Pro Asn 2930 2940 Thr Tyr Leu Glu Gly Ser Val Arg Val Val Thr Thr Phe Asp Ala 2945 2950 2955 Glu Tyr Cys Arg His Gly Thr Cys Glu Arg Ser Glu Val Gly Ile 2960 2965 2970 Cys Leu Ser Thr Ser Gly Arg Trp Val Leu Asn Asn Glu His Tyr 2975 2980 2985 Arg Ala Leu Ser Gly Val Phe Cys Gly Val Asp Ala Met Asn Leu 2990 2995 3000 Ile Ala Asn Ile Phe Thr Pro Leu Val Gln Pro Val Gly Ala Leu 3005 3010 3015 Asp Val Ser Ala Ser Val Val Ala Gly Gly Ile Ile Ala Ile Leu 3020 3030 Val Thr Cys Ala Ala Tyr Tyr Phe Met Lys Phe Arg Arg Val Phe 3035 3040 3045 Gly Glu Tyr Asn His Val Val Ala Ala Asn Ala Leu Leu Phe Leu 3050 3060 Met Ser Phe Thr Ile Leu Cys Leu Val Pro Ala Tyr Ser Phe Leu 3065 3070 3075 Pro Gly Val Tyr Ser Val Phe Tyr Leu Tyr Leu Thr Phe Tyr Phe 3080 3085 Thr Asn Asp Val Ser Phe Leu Ala His Leu Gln Trp Phe Ala Met 3095 3100 Phe Ser Pro Ile Val Pro Phe Trp Ile Thr Ala Ile Tyr Val Phe. 3110 3120

Ż.

Cys Ile Ser Leu Lys His Cys His Trp Phe Phe Asn Asn Tyr Leu 3125 3130 3135 Arg Lys Årg Val Met Phe Asn Gly Val Thr Phe Ser Thr Phe Glu 3140 3150 Glu Ala Ala Leu Cys Thr Phe Leu Leu Asn Lys Glu Met Tyr Leu 3155 3160 3165 Lys Leu Arg Ser Glu Thr Leu Leu Pro Leu Thr Gln Tyr Asn Arg 3170 3180 Tyr Leu Ala Leu Tyr Asn Lys Tyr Lys Tyr Phe Ser Gly Ala Leu 3185 3190 3195 Asp Thr Thr Ser Tyr Arg Glu Ala Ala Cys Cys His Leu Ala Lys 3200 3210 Ala Leu Asn Asp Phe Ser Asn Ser Gly Ala Asp Val Leu Tyr Gln 3215 3220 3225 Pro Pro Gln Thr Ser Ile Thr Ser Ala Val Leu Gln Ser Gly Phe 3230 3240 Arg Lys Met Ala Phe Pro Ser Gly Lys Val Glu Gly Cys Met Val 3245 3250 3255 Gln Val Thr Cys Gly Thr Thr Thr Leu Asn Gly Leu Trp Leu Asp 3260 3270 Asp Thr Val Tyr Cys Pro Arg His Val Ile Cys Thr Ala Glu Asp 3275 3280 3285 Met Leu Asn Pro Asn Tyr Glu Asp Leu Leu Ile Arg Lys Ser Asn 3290 3300 His Ser Phe Leu Val Gln Ala Gly Asn Val Gln Leu Arg Val Ile 3305 3310 3315 Gly His Ser Met Gln Asn Cys Leu Leu Arg Leu Lys Val Asp Thr 3320 3330

Gly Gln Thr Phe Ser Val Leu Ala Cys Tyr Asn Gly Ser Pro Ser 3350 3360 .

Ser Asn Pro Lys Thr Pro Lys Tyr Lys Phe Val Arg Ile Gln Pro 3335 3340 3345

Gly Val Tyr Gln Cys Ala Met Arg Pro Asn His Thr Ile Lys Gly 3365 3370

Ser Phe Leu Asn Gly Ser Cys Gly Ser Val Gly Phe Asn Ile Asp 3380 3385 3390 3380 Tyr Asp Cys Val Ser Phe Cys Tyr Met His His Met Glu Leu Pro 3395 3400 3405 Thr Gly Val His Ala Gly Thr Asp Leu Glu Gly Lys Phe Tyr Gly 3410 3420 Pro Phe Val Asp Arg Gln Thr Ala Gln Ala Ala Gly Thr Asp Thr 3425 3430 3435 Thr Ile Thr Leu Asn Val Leu Ala Trp Leu Tyr Ala Ala Val Ile 3440 3445 3450 Asn Gly Asp Arg Trp Phe Leu Asn Arg Phe Thr Thr Leu Asn 3455 3460 3465 Asp Phe Asn Leu Val Ala Met Lys Tyr Asn Tyr Glu Pro Leu Thr 3470 3480 Gln Asp His Val Asp Ile Leu Gly Pro Leu Ser Ala Gln Thr Gly 3485 3490 3495 Ile Ala Val Leu Asp Met Cys Ala Ala Leu Lys Glu Leu Leu Gln 3500 3505 3510 Asn Gly Met Asn Gly Arg Thr Ile Leu Gly Ser Thr Ile Leu Glu 3515 3520 3525 Asp Glu Phe Thr Pro Phe Asp Val Val Arg Gln Cys Ser Gly Val 3530 3540 Thr Phe Gln Gly Lys Phe Lys Lys Ile Val Lys Gly Thr His His 3545 3550 3555 Trp Met Leu Leu Thr Phe Leu Thr Ser Leu Leu Ile Leu Val Gln 3560 3565 Ser Thr Gln Trp Ser Leu Phe Phe Phe Val Tyr Glu Asn Ala Phe 3575 Leu Pro Phe Thr Leu Gly Ile Met Ala Ile Ala Ala Cys Ala Met 3590 3600 3590 Leu Leu Val Lys His Lys His Ala Phe Leu Cys Leu Phe Leu Leu 3605 3610 3615 Pro Ser Leu Ala Thr Val Ala Tyr Phe Asn Met Val Tyr Met Pro 3620 3625

Ala Ser Trp Val Met Arg Ile Met Thr Trp Leu Glu Leu Ala Asp 3635 3640 3645 Thr Ser Leu Ser Gly Tyr Arg Leu Lys Asp Cys Val Met Tyr Ala 3650 3655 Ser Ala Leu Val Leu Leu Ile Leu Met Thr Ala Arg Thr Val Tyr 3665 3670 3675 Asp Asp Ala Ala Arg Arg Val Trp Thr Leu Met Asn Val Ile Thr 3680 3680 Leu Val Tyr Lys Val Tyr Tyr Gly Asn Ala Leu Asp Gln Ala Ile 3695 3700 3705 Ser Met Trp Ala Leu Val Ile Ser Val Thr Ser Asn Tyr Ser Gly 3710 3720 Val Val Thr Thr Ile Met Phe Leu Ala Arg Ala Ile Val Phe Val 3725 3730 3735 Cys Val Glu Tyr Tyr Pro Leu Leu Phe Ile Thr Gly Asn Thr Leu 3740 3750 Gln Cys Ile Met Leu Val Tyr Cys Phe Leu Gly Tyr Cys Cys Cys 3755 3765 Cys Tyr Phe Gly Leu Phe Cys Leu Leu Asn Arg Tyr Phe Arg Leu 3770 3780 Thr Leu Gly Val Tyr Asp Tyr Leu Val Ser Thr Gln Glu Phe Arg 3785 3790 3795 Tyr Met Asn Ser Gln Gly Leu Leu Pro Pro Lys Ser Ser Ile Asp 3800 3805 Ala Phe Lys Leu Asn Ile Lys Leu Leu Gly Ile Gly Gly Lys Pro 3815 3820 3825 Cys Ile Lys Val Ala Thr Val Gln Ser Lys Met Ser Asp Val Lys 3830 3840 Cys Thr Ser Val Val Leu Leu Ser Val Leu Gln Gln Leu Arg Val 3845 3850 3855 Glu Ser Ser Lys Leu Trp Ala Gln Cys Val Gln Leu His Asn 3860 3865 Asp Ile Leu Leu Ala Lys Asp Thr Thr Glu Ala Phe Glu Lys Met 3875 3880 3885

Val Ser Leu Leu Ser Val Leu Ser Met Gln Gly Ala Val Asp 3890

Tle Asn Arg Leu Cys Glu Glu Met Leu Asp Asn Arg Ala Thr Leu 3905

Gln Ala Ile Ala Ser Glu Phe Ser Ser Leu Pro Ser Tyr Ala Ala 3920 3925

Tyr Ala Thr Ala Gln Glu Ala Tyr Glu Gln Ala Val Ala Asn Gly 3935 3940 3945

Asp Ser Glu Val Val Leu Lys Lys Leu Lys Lys Ser Leu Asn Val 3950 3960

Ala Lys Ser Glu Phe Asp Arg Asp Ala Ala Met Gln Arg Lys Leu 3965 3970 3975

Glu Lys Met Ala Asp Gln Ala Met Thr Gln Met Tyr Lys Gln Ala 3980 3985

Arg Ser Glu Asp Lys Arg Ala Lys Val Thr Ser Ala Met Gln Thr 3995 4000 4005

Met Leu Phe Thr Met Leu Arg Lys Leu Asp Asn Asp Ala Leu Asn 4010 4015

Asn Ile Ile Asn Asn Ala Arg Asp Gly Cys Val Pro Leu Asn Ile 4025 4030 4035

Ile Pro Leu Thr Thr Ala Ala Lys Leu Met Val Val Val Pro Asp 4040 4045 4050

Tyr Gly Thr Tyr Lys Asn Thr Cys Asp Gly Asn Thr Phe Thr Tyr 4055 4060 4065

Ala Ser Ala Leu Trp Glu Ile Gln Gln Val Val Asp Ala Asp Ser 4070 4075

Lys Ile Val Gln Leu Ser Glu Ile Asn Met Asp Asn Ser Pro Asn 4085 4090

Leu Ala Trp Pro Leu Ile Val Thr Ala Leu Arg Ala Asn Ser Ala 4100 4105

Val Lys Leu Gln Asn Asn Glu Leu Ser Pro Val Ala Leu Arg Gln 4115 4120 4125

Met Ser Cys Ala Ala Gly Thr Thr Gln Thr Ala Cys Thr Asp Asp 4130 4140

Asn Ala Leu Ala Tyr Tyr Asn Asn Ser Lys Gly Gly Arg Phe Val 4145 4155 Leu Ala Leu Leu Ser Asp His Gln Asp Leu Lys Trp Ala Arg Phe 4160 4165 4170 Pro Lys Ser Asp Gly Thr Gly Thr Ile Tyr Thr Glu Leu Glu Pro 4175 4180 4185 Pro Cys Arg Phe Val Thr Asp Thr Pro Lys Gly Pro Lys Val Lys 4190 4200 Tyr Leu Tyr Phe Ile Lys Gly Leu Asn Asn Leu Asn Arg Gly Met 4205 4215 Val Leu Gly Ser Leu Ala Ala Thr Val Arg Leu Gln Ala Gly Asn 4220 4230 Ala Thr Glu Val Pro Ala Asn Ser Thr Val Leu Ser Phe Cys Ala 4235 4240 4245 Phe Ala Val Asp Pro Ala Lys Ala Tyr Lys Asp Tyr Leu Ala Ser 4250 4260 Gly Gly Gln Pro Ile Thr Asn Cys Val Lys Met Leu Cys Thr His 4265 4270 4275 Thr Gly Thr Gly Gln Ala Ile Thr Val Thr Pro Glu Ala Asn Met 4280 4290 Asp Gln Glu Ser Phe Gly Gly Ala Ser Cys Cys Leu Tyr Cys Arg 4295 4300 4305 Cys His Ile Asp His Pro Asn Pro Lys Gly Phe Cys Asp Leu Lys 4310 4320 Gly Lys Tyr Val Gln Ile Pro Thr Thr Cys Ala Asn Asp Pro Val 4325 4330 4335 Gly Phe Thr Leu Arg Asn Thr Val Cys Thr Val Cys Gly Met Trp 4340 4350 Lys Gly Tyr Gly Cys Ser Cys Asp Gln Leu Arg Glu Pro Leu Met 4355 4365 Gln Ser Ala Asp Ala Ser Thr Phe Leu Asn Gly Phe Ala Val 4370 4380 <<210> 75<211> 2695<212> PRT<213> CORONAVIRUS<400> 75 Arg Val Cys Gly Val Ser Ala Ala Arg Leu Thr Pro Cys Gly Thr Gly

Page 92

1 5

15

Thr Ser Thr Asp Val Val Tyr Arg Ala Phe Asp Ile Tyr Asn Glu Lys 20 25 30 Val Ala Gly Phe Ala Lys Phe Leu Lys Thr Asn Cys Cys Arg Phe Gln 45 Glu Lys Asp Glu Glu Gly Asn Leu Leu Asp Ser Tyr Phe Val Val Lys 50 55 60 Arg His Thr Met Ser Asn Tyr Gln His Glu Glu Thr Ile Tyr Asn Leu 65 70 75 80 Val Lys Asp Cys Pro Ala Val Ala Val His Asp Phe Phe Lys Phe Arg 85 90 95 Val Asp Gly Asp Met Val Pro His Ile Ser Arg Gln Arg Leu Thr Lys 100 105 110Tyr Thr Met Ala Asp Leu Val Tyr Ala Leu Arg His Phe Asp Glu Gly 115 120 Asn Cys Asp Thr Leu Lys Glu Ile Leu Val Thr Tyr Asn Cys Cys Asp 130 140 Asp Asp Tyr Phe Asn Lys Lys Asp Trp Tyr Asp Phe Val Glu Asn Pro 145 150 155 Asp Ile Leu Arg Val Tyr Ala Asn Leu Gly Glu Arg Val Arg Gln Ser 165 170 175 Leu Leu Lys Thr Val Gln Phe Cys Asp Ala Met Arg Asp Ala Gly Ile 180 185 190 Val Gly Val Leu Thr Leu Asp Asn Gln Asp Leu Asn Gly Asn Trp Tyr 195 200 205 Phe Gly Asp Phe Val Gln Val Ala Pro Gly Cys Gly Val Pro Ile 210 220Val Asp Ser Tyr Tyr Ser Leu Leu Met Pro Ile Leu Thr Leu Thr Arg 225 230 235 Ala Leu Ala Ala Glu Ser His Met Asp Ala Asp Leu Ala Lys Pro Leu 245 250 255 Ile Lys Trp Asp Leu Leu Lys Tyr Asp Phe Thr Glu Glu Arg Leu Cys 260 265 270 Leu Phe Asp Arg Tyr Phe Lys Tyr Trp Asp Gln Thr Tyr His Pro Asn Page 93

280

275

Cys Ile Asn Cys Leu Asp Asp Arg Cys Ile Leu His Cys Ala Asn Phe 290 295 300 Asn Val Leu Phe Ser Thr Val Phe Pro Pro Thr Ser Phe Gly Pro Leu 305 310 315 320 Val Arg Lys Ile Phe Val Asp Gly Val Pro Phe Val Val Ser Thr Gly 325 330 335 Tyr His Phe Arg Glu Leu Gly Val Val His Asn Gln Asp Val Asn Leu 340 345 350 His Ser Ser Arg Leu Ser Phe Lys Glu Leu Leu Val Tyr Ala Ala Asp 355 360 Pro Ala Met His Ala Ala Ser Gly Asn Leu Leu Leu Asp Lys Arg Thr 370 380 Thr Cys Phe Ser Val Ala Ala Leu Thr Asn Asn Val Ala Phe Gln Thr 385 390 395 400 Val Lys Pro Gly Asn Phe Asn Lys Asp Phe Tyr Asp Phe Ala Val Ser 405 410 415 Lys Gly Phe Phe Lys Glu Gly Ser Ser Val Glu Leu Lys His Phe Phe 420 430 Phe Ala Gln Asp Gly Asn Ala Ala Ile Ser Asp Tyr Asp Tyr Tyr Arg
435 440 445 Tyr Asn Leu Pro Thr Met Cys Asp Ile Arg Gln Leu Leu Phe Val Val 450 460 Glu Val Val Asp Lys Tyr Phe Asp Cys Tyr Asp Gly Gly Cys Ile Asn 465 470 475 Ala Asn Gln Val Ile Val Asn Asn Leu Asp Lys Ser Ala Gly Phe Pro 485 490 495 Phe Asn Lys Trp Gly Lys Ala Arg Leu Tyr Tyr Asp Ser Met Ser Tyr 500 505 510Glu Asp Gln Asp Ala Leu Phe Ala Tyr Thr Lys Arg Asn Val Ile Pro 515 520 525 Thr Ile Thr Gln Met Asn Leu Lys Tyr Ala Ile Ser Ala Lys Asn Arg 530 540 Ala Arg Thr Val Ala Gly Val Ser Ile Cys Ser Thr Met Thr Asn Arg Page 94

,

545

Gln Phe His Gln Lys Leu Leu Lys Ser Ile Ala Ala Thr Arg Gly Ala 565 570 575

Thr Val Val Ile Gly Thr Ser Lys Phe Tyr Gly Gly Trp His Asn Met 580 590

Leu Lys Thr Val Tyr Ser Asp Val Glu Thr Pro His Leu Met Gly Trp 595 600 605

Asp Tyr Pro Lys Cys Asp Arg Ala Met Pro Asn Met Leu Arg Ile Met 610 620

Ala Ser Leu Val Leu Ala Arg Lys His Asn Thr Cys Cys Asn Leu Ser 625 630 635

His Arg Phe Tyr Arg Leu Ala Asn Glu Cys Ala Gln Val Leu Ser Glu 645 650 655

Met Val Met Cys Gly Gly Ser Leu Tyr Val Lys Pro Gly Gly Thr Ser 660 665 670

Ser Gly Asp Ala Thr Thr Ala Tyr Ala Asn Ser Val Phe Asn Ile Cys 675 680 685

Gln Ala Val Thr Ala Asn Val Asn Ala Leu Leu Ser Thr Asp Gly Asn 690 695 700

Lys Ile Ala Asp Lys Tyr Val Arg Asn Leu Gln His Arg Leu Tyr Glu 705 710 715 720

Cys Leu Tyr Arg Asn Arg Asp Val Asp His Glu Phe Val Asp Glu Phe 725 730 735

Tyr Ala Tyr Leu Arg Lys His Phe Ser Met Met Ile Leu Ser Asp Asp 745 750

Ala Val Val Cys Tyr Asn Ser Asn Tyr Ala Ala Gln Gly Leu Val Ala 755 760 765

Ser Ile Lys Asn Phe Lys Ala Val Leu Tyr Tyr Gln Asn Asn Val Phe 770 780

Met Ser Glu Ala Lys Cys Trp Thr Glu Thr Asp Leu Thr Lys Gly Pro 785 790 800

His Glu Phe Cys Ser Gln His Thr Met Leu Val Lys Gln Gly Asp Asp 815

Tyr Val Tyr Leu Pro Tyr Pro Asp Pro Ser Arg Ile Leu Gly Ala Gly Page 95

820

830

Cys Phe Val Asp Asp Ile Val Lys Thr Asp Gly Thr Leu Met Ile Glu 835 840 845 Arg Phe Val Ser Leu Ala Ile Asp Ala Tyr Pro Leu Thr Lys His Pro 850 860 Asn Gln Glu Tyr Ala Asp Val Phe His Leu Tyr Leu Gln Tyr Ile Arg 865 870 875 880 Lys Leu His Asp Glu Leu Thr Gly His Met Leu Asp Met Tyr Ser Val 885 890 895 Met Leu Thr Asn Asp Asn Thr Ser Arg Tyr Trp Glu Pro Glu Phe Tyr 900 910Glu Ala Met Tyr Thr Pro His Thr Val Leu Gln Ala Val Gly Ala Cys 915 920 925 Val Leu Cys Asn Ser Gln Thr Ser Leu Arg Cys Gly Ala Cys Ile Arg 930 935 940 Arg Pro Phe Leu Cys Cys Lys Cys Cys Tyr Asp His Val Ile Ser Thr 945 950 955 960 Ser His Lys Leu Val Leu Ser Val Asn Pro Tyr Val Cys Asn Ala Pro 965 970 975 Gly Cys Asp Val Thr Asp Val Thr Gln Leu Tyr Leu Gly Gly Met Ser 980 985 990 Tyr Tyr Cys Lys Ser His Lys Pro Pro Ile Ser Phe Pro Leu Cys Ala 995 1000 Asn Gly Gln Val Phe Gly Leu Tyr Lys Asn Thr Cys Val Gly Ser 1010 1015 1020 Asp Asn Val Thr Asp Phe Asn Ala Ile Ala Thr Cys Asp Trp Thr 1025 1030 1035 Asn Ala Gly Asp Tyr Ile Leu Ala Asn Thr Cys Thr Glu Arg Leu 1040 1045 1050 Lys Leu Phe Ala Ala Glu Thr Leu Lys Ala Thr Glu Glu Thr Phe 1055 1060 1065 Lys Leu Ser Tyr Gly Ile Ala Thr Val Arg Glu Val Leu Ser Asp 1070 1075 1080 Arg Glu Leu His Leu Ser Trp Glu Val Gly Lys Pro Arg Pro Pro

Page 96

S226CAS111.ST25 1095 1090 1085 Leu Asn Arg Asn Tyr Val Phe Thr Gly Tyr Arg Val Thr Lys Asn 1100 1105 1110 Ser Lys Val Gln Ile Gly Glu Tyr Thr Phe Glu Lys Gly Asp Tyr 1115 1120 1125 Gly Asp Ala Val Val Tyr Arg Gly Thr Thr Tyr Lys Leu Asn 1130 1140 Val Gly Asp Tyr Phe Val Leu Thr Ser His Thr Val Met Pro Leu 1145 1150 1155 Ser Ala Pro Thr Leu Val Pro Gln Glu His Tyr Val Arg Ile Thr 1160 1165 1170 Gly Leu Tyr Pro Thr Leu Asn Ile Ser Asp Glu Phe Ser Ser Asn 1175 1180 1185 Val Ala Asn Tyr Gln Lys Val Gly Met Gln Lys Tyr Ser Thr Leu 1190 1200 Gln Gly Pro Pro Gly Thr Gly Lys Ser His Phe Ala Ile Gly Leu 1205 1210 1215 Ala Leu Tyr Tyr Pro Ser Ala Arg Ile Val Tyr Thr Ala Cys Ser 1220 1225

His Ala Ala Val Asp Ala Leu Cys Glu Lys Ala Leu Lys Tyr Leu 1235 1240 1245

Pro Ile Asp Lys Cys Ser Arg Ile Ile Pro Ala Arg Ala Arg Val 1250 1255

Glu Cys Phe Asp Lys Phe Lys Val Asn Ser Thr Leu Glu Gln Tyr 1265 1270 1275

Val Phe Cys Thr Val Asn Ala Leu Pro Glu Thr Thr Ala Asp Ile 1280 1285

Val Val Phe Asp Glu Ile Ser Met Ala Thr Asn Tyr Asp Leu Ser 1295 1300 1305

Val Val Asn Ala Arg Leu Arg Ala Lys His Tyr Val Tyr Ile Gly 1310 1320

Asp Pro Ala Gln Leu Pro Ala Pro Arg Thr Leu Leu Thr Lys Gly 1325 1330

Thr Leu Glu Pro Glu Tyr Phe Asn Ser Val Cys Arg Leu Met Lys Page 97

1340 S226CAS111.ST25 1345 1350

Thr Ile Gly Pro Asp Met Phe Leu Gly Thr Cys Arg Arg Cys Pro 1355 1360 1365

Ala Glu Ile Val Asp Thr Val Ser Ala Leu Val Tyr Asp Asn Lys 1370 1380

Leu Lys Ala His Lys Asp Lys Ser Ala Gln Cys Phe Lys Met Phe 1385

Tyr Lys Gly Val Ile Thr His Asp Val Ser Ser Ala Ile Asn Arg 1400 1410

Pro Gln Ile Gly Val Val Arg Glu Phe Leu Thr Arg Asn Pro Ala 1425

Trp Arg Lys Ala Val Phe Ile Ser Pro Tyr Asn Ser Gln Asn Ala 1430 1440

Val Ala Ser Lys Ile Leu Gly Leu Pro Thr Gln Thr Val Asp Ser 1445 1455

Ser Gln Gly Ser Glu Tyr Asp Tyr Val Ile Phe Thr Gln Thr Thr 1460 1465 1470

Glu Thr Ala His Ser Cys Asn Val Asn Arg Phe Asn Val Ala Ile 1475 1480 1485

Thr Arg Ala Lys Ile Gly Ile Leu Cys Ile Met Ser Asp Arg Asp 1490 1500

Leu Tyr Asp Lys Leu Gln Phe Thr Ser Leu Glu Ile Pro Arg Arg 1505 1510 1515

Asn Val Ala Thr Leu Gln Ala Glu Asn Val Thr Gly Leu Phe Lys 1520 1530

Asp Cys Ser Lys Ile Ile Thr Gly Leu His Pro Thr Gln Ala Pro 1535 1540 1545

Thr His Leu Ser Val Asp Ile Lys Phe Lys Thr Glu Gly Leu Cys 1550 1560

Val Asp Ile Pro Gly Ile Pro Lys Asp Met Thr Tyr Arg Arg Leu 1575 1570

Ile Ser Met Met Gly Phe Lys Met Asn Tyr Gln Val Asn Gly Tyr 1580 1590

Pro Asn Met Phe Ile Thr Arg Glu Glu Ala Ile Arg His Val Arg Page 98 1600

Ala Trp Ile Gly Phe Asp Val Glu Gly Cys His Ala Thr Arg Asp 1610 1620 Ala Val Gly Thr Asn Leu Pro Leu Gln Leu Gly Phe Ser Thr Gly 1625 1630 1635 Val Asn Leu Val Ala Val Pro Thr Gly Tyr Val Asp Thr Glu Asn 1640 1650 Asn Thr Glu Phe Thr Arg Val Asn Ala Lys Pro Pro Pro Gly Asp 1655 1660 1665 Gln Phe Lys His Leu Ile Pro Leu Met Tyr Lys Gly Leu Pro Trp 1670 1680 Asn Val Val Arg Ile Lys Ile Val Gln Met Leu Ser Asp Thr Leu 1685 1690 1695 Lys Gly Leu Ser Asp Arg Val Val Phe Val Leu Trp Ala His Gly 1700 1705 1710 Phe Glu Leu Thr Ser Met Lys Tyr Phe Val Lys Ile Gly Pro Glu 1715 1720 1725 Arg Thr Cys Cys Leu Cys Asp Lys Arg Ala Thr Cys Phe Ser Thr 1730 1740 Ser Ser Asp Thr Tyr Ala Cys Trp Asn His Ser Val Gly Phe Asp 1745 1750 Tyr Val Tyr Asn Pro Phe Met Ile Asp Val Gln Gln Trp Gly Phe 1760 1765 1770 Thr Gly Asn Leu Gln Ser Asn His Asp Gln His Cys Gln Val His 1775 1780 1785 Gly Asn Ala His Val Ala Ser Cys Asp Ala Ile Met Thr Arg Cys 1790 1800 Leu Ala Val His Glu Cys Phe Val Lys Arg Val Asp Trp Ser Val 1805 1810 1815 Glu Tyr Pro Ile Ile Gly Asp Glu Leu Arg Val Asn Ser Ala Cys 1820 1825 Arg Lys Val Gln His Met Val Val Lys Ser Ala Leu Leu Ala Asp 1835 1840 1845

Lys Phe Pro Val Leu His Asp Ile Gly Asn Pro Lys Ala Ile Lys

Page 99

'n,

1850 1860 Pro Gln Ala Glu Val Glu Trp Lys Phe Tyr Asp Ala Gln 1870 1875 Pro Cys Ser Asp Lys Ala Tyr Lys Ile Glu Glu Leu Phe Tyr Ser 1880 1890 Tyr Ala Thr His His Asp Lys Phe Thr Asp Gly Val Cys Leu Phe 1895 1900 1905 Trp Asn Cys Asn Val Asp Arg Tyr Pro Ala Asn Ala Ile Val Cys 1910 1920 Arg Phe Asp Thr Arg Val Leu Ser Asn Leu Asn Leu Pro Gly Cys 1925 Asp Gly Gly Ser Leu Tyr Val Asn Lys His Ala Phe His Thr Pro 1940 1950 Ala Phe Asp Lys Ser Ala Phe Thr Asn Leu Lys Gln Leu Pro Phe Phe Tyr Tyr Ser Asp Ser Pro Cys Glu Ser His Gly Lys Gln Val 1970 1980 Val Ser Asp Ile Asp Tyr Val Pro Leu Lys Ser Ala Thr Cys Ile 1985 1990 1995 Thr Arg Cys Asn Leu Gly Gly Ala Val Cys Arg His His Ala Asn 2000 2010 Glu Tyr Arg Gln Tyr Leu Asp Ala Tyr Asn Met Met Ile Ser Ala 2015 2020 2025 Gly Phe Ser Leu Trp Ile Tyr Lys Gln Phe Asp Thr Tyr Asn Leu 2030 2040 Trp Asn Thr Phe Thr Arg Leu Gln Ser Leu Glu Asn Val Ala Tyr 2045 2055 Asn Val Val Asn Lys Gly His Phe Asp Gly His Ala Gly Glu Ala 2060 2065 2070 Pro Val Ser Ile Ile Asn Asn Ala Val Tyr Thr Lys Val Asp Gly 2075 2080 2085 Ile Asp Val Glu Ile Phe Glu Asn Lys Thr Thr Leu Pro Val Asn 2090 2100 Val Ala Phe Glu Leu Trp Ala Lys Arg Asn Ile Lys Pro Val Pro

Page 100

Glu Ile Lys Ile Leu Asn Asn Leu Gly Val Asp Ile Ala Ala Asn 2120 2125 2130

2110

Thr Val Ile Trp Asp Tyr Lys Arg Glu Ala Pro Ala His Val Ser 2135 2140 2145

Thr Ile Gly Val Cys Thr Met Thr Asp Ile Ala Lys Lys Pro Thr 2150 2160

Glu Ser Ala Cys Ser Ser Leu Thr Val Leu Phe Asp Gly Arg Val 2165 2170 2175

Glu Gly Gln Val Asp Leu Phe Arg Asn Ala Arg Asn Gly Val Leu 2180 2185 2190

Ile Thr Glu Gly Ser Val Lys Gly Leu Thr Pro Ser Lys Gly Pro 2195 2200 2205

Ala Gln Ala Ser Val Asn Gly Val Thr Leu Ile Gly Glu Ser Val 2210 2220

Lys Thr Gln Phe Asn Tyr Phe Lys Lys Val Asp Gly Ile Ile Gln 2225 2230

Gln Leu Pro Glu Thr Tyr Phe Thr Gln Ser Arg Asp Leu Glu Asp 2240 2250

Phe Lys Pro Arg Ser Gln Met Glu Thr Asp Phe Leu Glu Leu Ala 2255 2260 2265

Met Asp Glu Phe Ile Gln Arg Tyr Lys Leu Glu Gly Tyr Ala Phe 2270 2280

Glu His Ile Val Tyr Gly Asp Phe Ser His Gly Gln Leu Gly Gly 2285 2290 2295

Leu His Leu Met Ile Gly Leu Ala Lys Arg Ser Gln Asp Ser Pro 2300 2310

Leu Lys Leu Glu Asp Phe Ile Pro Met Asp Ser Thr Val Lys Asn 2315 2320 2325

Tyr Phe Ile Thr Asp Ala Gln Thr Gly Ser Ser Lys Cys Val Cys 2330 2340

Ser Val Ile Asp Leu Leu Leu Asp Asp Phe Val Glu Ile Ile Lys 2345 2350 2355

Ser Gln Asp Leu Ser Val Ile Ser Lys Val Val Lys Val Thr Ile Page 101 \$226CAS111.ST25 2360 2365 2370

Asp Tyr Ala Glu Ile Ser Phe Met Leu Trp Cys Lys Asp Gly His 2375 2380 2385 Val Glu Thr Phe Tyr Pro Lys Leu Gln Ala Ser Gln Ala Trp Gln 2390 2400 Pro Gly Val Ala Met Pro Asn Leu Tyr Lys Met Gln Arg Met Leu 2405 2415 Leu Glu Lys Cys Asp Leu Gln Asn Tyr Gly Glu Asn Ala Val Ile 2420 2430 Pro Lys Gly Ile Met Met Asn Val Ala Lys Tyr Thr Gln Leu Cys 2435 2440 2445 Gln Tyr Leu Asn Thr Leu Thr Leu Ala Val Pro Tyr Asn Met Arg 2450 2460 val Ile His Phe Gly Ala Gly Ser Asp Lys Gly Val Ala Pro Gly 2465 2475 Thr Ala Val Leu Arg Gln Trp Leu Pro Thr Gly Thr Leu Leu Val 2480 2485 2490 Asp Ser Asp Leu Asn Asp Phe Val Ser Asp Ala Asp Ser Thr Leu 2495 2500 2505 Ile Gly Asp Cys Ala Thr Val His Thr Ala Asn Lys Trp Asp Leu 2510 2520 Ile Ile Ser Asp Met Tyr Asp Pro Arg Thr Lys His Val Thr Lys 2525 2535 Glu Asn Asp Ser Lys Glu Gly Phe Phe Thr Tyr Leu Cys Gly Phe 2540 2550 Ile Lys Gln Lys Leu Ala Leu Gly Gly Ser Ile Ala Val Lys Ile 2555 2560 2565 Thr Glu His Ser Trp Asn Ala Asp Leu Tyr Lys Leu Met Gly His 2570 2580 Phe Ser Trp Trp Thr Ala Phe Val Thr Asn Val Asn Ala Ser Ser 2585 2590 2595 Ser Glu Ala Phe Leu Ile Gly Ala Asn Tyr Leu Gly Lys Pro Lys 2600 2610 Glu Gln Ile Asp Gly Tyr Thr Met His Ala Asn Tyr Ile Phe Trp Page 102

2615

2620

Arg Asn Thr Asn Pro Ile Gln Leu Ser Ser Tyr Ser Leu Phe Asp 2630 2640

Met Ser Lys Phe Pro Leu Lys Leu Arg Gly Thr Ala Val Met Ser 2645 2650 2655

Leu Lys Glu Asn Gln Ile Asn Asp Met Ile Tyr Ser Leu Leu Glu 2660 2665 2670

Lys Gly Arg Leu Ile Ile Arg Glu Asn Asn Arg Val Val Ser 2675 2680 2685

Ser Asp Ile Leu Val Asn Asn 2695

POT/FR2004/093106

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
D BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.