الرياضيات

الجـزء الخـاص بالشـرح و التمـارين

تطبيق التعثُمُ التفاعُلي

إعداد نخبة من خبراء التعليم

ع **الأول** الثانوي

القصل الحراسي الثاني

محتويات الكتاب

أُولًا: الجبر وحساب المثلثات

الوحدة

المصفوفات

الـــدرس الأول

الــدرس الثاني

الــدرس الثالث

الحرس الرابع

الحرس الخامس

تنظيم البيانات في مصفوفات.

جمع وطرح المصغوفات.

ضرب المصفوفات.

المحددات.

المعكوس الضربى للمصغوفة.

البرمجة الخطية

2

الـــحرس الأول | المتباينة الخ

الــدرس الثاني

3

المتباينة الخطية

– حل أنظمة من المتباينات الخطية بيانيًا.

البرمجة الخطية والحل الأمثل.

حساب المثلثات

الـــدرس الأول الــحرس الثاني

الــدرس الثالث الــدرس الرابــع

الحرس الخامس

الحرس السادس

الحرس السابع

حل المعادلات المثلثية. حل المثلث القائم الزاوية. زوايا الارتفاع وزوايا الانخفاض. القطاع الدائرى.

المتطابقات المثلثية.

القطعة الدائرية.

المساحات.

ثَانَيًا : المنحسة التحليلية -

4 light 10

المتجهات

الـــدرس الأول

ل الك

الــدرس الثانى

الـدرس الثالث

الحرس الرابع

الكميات القياسية والكميات المتجهة والقطعة المستقيمة الموجهة.

المتجهات.

العمليات على المتجهات.

تطبيقات على المتجهات.

5 [[6]

الخط المستقيم

الـــدرس الأول

الــدرس الثانى

الحرس الثالث

الحرس الرابع

الحرس الخامس

تقسيم قطعة مستقيمة.

معادلة الخط المستقيم.

قياس الزاوية بين مستقيمين.

طول العمود المرسوم من نقطة

إلى خط مستقيم.

المعادلة العامة للخط المستقيم المار بنقطة تقاطع مستقيمين.

البرمجة الخطية.

حساب المثلثات.

الوحدة

2 lbc.co

3 الوحدة

دروس الوحدة

تنظيم البيانات في مصفوفات.	1 Ice
جمع وطرح المصفوفات.	2 lk(m)
ضرب المصفوفات.	3 legan
المحددات.	4 pr
المحكوس الضي المصفوفة	E ā

نواتج التعثم

في نهاية هذه الوحدة من المتوقع أن يكون الطالب قادرًا على أن:

- يتعرف مفهوم المصفوفة ونظمها.
- ينمذج بعض المشكلات الحياتية باستخدام المصفوفات.
 - يتعرف بعض المصفوفات الخاصة.
 - يتعرف تساوى مصفوفتين.
 - پوجد مدور المصفوفة.
 - يضرب عددًا حقيقيًا في مصفوفة.
 - يتعرف مفهوم المصفوفة المتماثلة والمصفوفة شبه المتماثلة.
- يجرى عمليات الجمع والطرح والضرب على المصفوفات.

- يتعرف خواص جمع وضرب المصفوفات.
- يوظف استخدام المصفوفات في مجالات الحياة المختلفة
- يتعرف محدد المصفوفة من الرتبة الثانية والرتبة الثالثة.
 - يوجد قيمة محدد الرتبة الثانية والرتبة الثالثة.
- يوجد مساحة سطح المثلث باستخدام المحددات.
- يحل نظامًا من المعادلات الخطية بطريقة كرامر.
- وجد معكوس المصفوفة المربعة من النظم ٢ × ٦
 - يحل معادلتين آنيتين باستخدام المعكوس الضربى للمصفوفة.

أول من استخدم مصطلح «مصفوفة Matrix» هو العالم الإنجليزي : جيمس جوزيف سلفستر (١٨١٤ - ١٨٩٧م)

J. Sylvester (1814 - 1897)

أول من استخدم المصفوفات هو العالم البريطاني كيلي (١٨٢١ - ١٨٩٥م) وهو عالم رياضيات له الكثير من الأبحاث خاصة في الجبر وتضمنت تلك الأبحاث نظرية المصفوفة.

Arthur Cayley (1821 - 1895

انتشرت المصفوفات في عصرنا الحاضر فشملت العديد من فروع العلوم والمعرفة فنجد استخداماتها في علومالإحصاء والاقتصاد والاجتماع وعلم النفس، كما أن لها دورًا هامًا في علم الرياضيات وخاصة في فرع الجبر الخطى.

الدرس

تنظيم البيانات في مصفوفات

مثال توضیحی

• أحد محلات بيع البيتزا يبيع أربعة أنواع من البيتزا:

(بيتزا بالخضروات - بيتزا بالدجاج - بيتزا باللحوم - بيتزا باللحوم - بيتزا بالجبن)

وينتج لكل نوع من الأنواع السابقة ثلاثة أحجام مختلفة : (صغير - وسط - كبير)

• لسهولة تذكر المعلومات والمقارنة بينها

يقوم صاحب المحل بجدولة متوسط عدد

القطع المبيعة يوميًا في الجدول المقابل

بصورة مختصرة.

 1
 9
 0
 4

 2
 0
 1
 5

 3
 1
 2
 6

الحج

	صغير	وسط	کبیر
بيتزا الخضروات	10	17	٩
بيتزا الدجاج	17	١٨	17
بيتزا اللحوم	17	١.	٨
بيتزا الجبن	١٨	۲.	١٧

- كل عدد في هذا الجدول له دلالة ، فالعدد ١٠ يدل على عدد القطع المبيعة من بيتزا اللحوم حجم الوسط، والعدد ١٢ يدل على عدد القطع المبيعة من بيتزا الدجاج الحجم الكبير، ... وهكذا.
- إذا كنا نعلم مسبقًا أن الأعداد بالصف الأول هي متوسط القطع المبيعة يوميًا من بيتزا الخضروات من الأحجام: الصغير، الوسط، الكبير على الترتيب، وبالمثل الأعداد بالصف الثاني من بيتزا الدجاج، والثالث بيتزا اللحوم، والرابع بيتزا الجبن بنفس الترتيب فإننا نستطيع الاستغناء عن الجدول السابق وكتابة البيانات في صورة أكثر اختصارًا بكتابة

الأعداد فقط المتضمنة فيه بنفس ترتيبها داخل قوسين كبيرين من النوع

- تُسمى هذه الصورة مصفوفة ، كما تُسمى الأعداد بين القوسين عناصر المصفوفة.
- هذه المصفوفة تتكون من :

 العبود التبات الثانى الثانى الثانى الثانى التبات المباد التبات العبود العبود العبود التبات التبات العبود الثانى الثانى الثانى التبات العبود العبود العبود الثانى الثانى التبات التبات العبود العبود العبود العبود الثانى الثانى التبات العبود العبود العبود العبود الثانى الثانى التبات العبود العبود العبود العبود العبود الثانى الثانى الثانى التبات العبود العبود العبود العبود العبود التبات العبود الثانى الثانى التبات العبود العبود العبود العبود التبات العبود التبات العبود العبود العبود العبود العبود العبود التبات العبود ا

م الحظـة

يمكن لصاحب المحل تنظيم بياناته السابقة في جدول أخر مثل الجدول التالي :

ونلاحظ أننا ذكرنا عدد الصفوف أولًا ثم عدد الأعمدة وليس العكس.

1

الصف الرابع → ١٨١٠

	بيتزا الخضروات	بيتزا الدجاج	بيتزا اللحوم	بيتزا الجبن
صغير	10	17	17	١٨
وسط	17	١٨	١.	۲.
کبیر	٩ .	17	٨	17

وبالمثل يمكن الاستغناء عن الجدول السابق بكتابة الأعداد داخل مصفوفة.

فنكتب : متوسط البيع اليومى للمحل =
$$\begin{pmatrix} 1 & 17 & 17 & 10 \\ 7 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
 وهي مصفوفة على النظم 7×3

مما سبق يمكن تعريف المصفوفة كما يلى :

تعريف المصفوفة

- المصفوفة هي ترتيب لعدد من العناصر (متغيرات أو أعداد) في صفوف أفقية وأعمدة رأسية بين قوسين بحيث يكون الموقع في المصفوفة له معنى.
 - المصفوفة المكونة من م صفًا ، له عمودًا تكون على النظم م × له أو من النوع م × له (وتُقرأ م في له) حيث م ، له عددان صحيحان موجبان.
 - عدد عناصر المصفوفة = عدد الصفوف × عدد الأعمدة = 4×10^{-4}

« التعبير عن العنصر داخل المصفوفة :

- يُرمز للمصفوفة عادة بأحد الحروف الكبيرة مثل: ﴿ ، ب ، ج ، س ، ص ، ...
- ... بينما يُرمز للعنصر داخل المصفوفة بأحد الحروف الصغيرة مثل: ٢ ، ب ، ح ، س ، ص ، س ...
 - إذا أردنا التعبير عن العنصر داخل المصفوفة أ الذي يقع في الصف ص والعمود ع فإننا نكتبه على الصورة أصء
 - فَمِثُكُر العنصر ٢٠٢ يقع في الصف الثاني والعمود الثالث [ويُقرأ: ٢ اثنين ثلاثة] ، العنصر ٢٠٢ يقع في الصف الثالث والعمود الثاني [ويُقرأ: ٢ ثلاثة اثنين]

مثال (

- 1 اكتب نظم كل من المصفوفات: ١ ، ، ج
- ا اكتب العناصر الآتية : ١٠٠ ، ١٠٠ ، ١٠٠ ، ح١٠ ، ح١٠ ، ح٢٠

الحــل

- - 1 1/4 = 1 , -1 = -1 , 1/4 = -3 , -1/4 = 0 , -4/4 = 3 , -4/4 = -7

حاول بنفسك

$$\begin{pmatrix} Y- & 0 \\ 1 & \xi \\ 0 & V- \end{pmatrix} = \sqrt{1 + 1 + 1 + 1}$$
 إذا كانت المصفوفة س

اكتب نظم المصفوفة س اكتب العناصر الآتية : سبب ، سبب ، حسب

مالحظة

إذا كانت أ مصفوفة على النظم م × لم فيمكننا كتابتها على الصورة :

وسوف تقتصر دراستنا على الحالات التي فيها $1 \le n \le 7$ ، $1 \le n \le 7$

مثال ۲

Y = 1 على النظم $Y \times Y$ بحيث : Y = 1 ص Y = 1

الدل

$$\mathfrak{d}_{\gamma\gamma} = \gamma \times \gamma - \gamma = \gamma$$
 , $\mathfrak{d}_{\gamma\gamma} = \gamma \times \gamma - \gamma = 3$

$$\begin{pmatrix} \ddots & \ddots \\ x & y \\ \xi & 0 \end{pmatrix} = \begin{pmatrix} \ddots & \ddots \\ \xi & 0 \end{pmatrix} \therefore$$

بعض المصفوفات الخاصة

مصفوفة الصف

هى المصفوفة التي تتكون من صف واحد وأى عدد من الأعمدة فمثلًا (٢ ٣ - ١) هي مصفوفة صف على النظم ١ × ٣

مصفوفة العمود

هى المصفوفة التي تتكون من عمود واحد وأي عدد من الصفوف

المصفوفة المربعة

هي المصفوفة التي فيها عدد الصفوف يساوى عدد الأعمدة

المصفوفة الصفرية

هى المصفوفة التي جميع عناصرها أصفار ويرمز لها بالرمز ___ وتكون على أى نظم.

المصفوفة القطرية

هى مصفوفة مربعة جميع عناصرها أصفار، ما عدا عناصر القطر الرئيسي فيكون أحدها على الأقل لا يساوى الصفر [حيث إن القطر الرئيسي هو القطر الذي يحتوى العناصر ١٨٢، ٢ ٩٧٠، ٩٣٣]

مصفوفة الوحدة

هي مصفوفة قطرية ، يكون فيها كل عناصر القطر الرئيسي مساوية الواحد ويُزمز لها بالرمز I

الحظ أن
في مصفوفة الوحدة

$$1_{\text{aug}} = 1$$
 لكل $0 = 3$
 $1_{\text{aug}} = 1$ لكل $0 \neq 3$

فمثلًا
$$= \begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$$
 هي مصفوفة وحدة على النظم 1×7

$$^{\prime\prime}$$
 هی مصفوفة وحدة علی النظم $^{\prime\prime}$ هی مصفوفة وحدة علی النظم $^{\prime\prime}$ ه

تحقق من فهمك

اكتب نوع ونظم كل مصفوفة مما يأتى :

تساوى مصفوفتين

- تتساوى المصفوفتان ﴿ ، ب إذا وفقط إذا تحقق الشرطان الأتيان معًا :
 - المصفوفتان على نفس النظم.
- ٢ كل عنصر في المصفوفة إساوي العنصر المناظر له في الموضع في المصفوفة ب

بينما
$$\begin{pmatrix} 7 & \Lambda \\ -7 & 0 \end{pmatrix} \neq \begin{pmatrix} 7 & 0 \\ -7 & \Lambda \end{pmatrix}$$
 الاختلاف العناصر المتناظرة

مثال ٣

الحل

- ٠: المصفوفتان متساويتان.
- .. 3 = -1 , $-\omega + 0 = 7$ ومنها $-\omega = -7$ ، 7 = 0 ومنها $-\omega = 0$

حاول بنفسك

$$\begin{pmatrix} \Upsilon - & \Lambda \\ - & \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - & \Upsilon \\ - & \Upsilon \end{pmatrix} : \text{ (is) } \text{ is)}$$
 in the second of the

خرب عدد حقیقی فی مصفوفة

إذا كانت المصفوفة على النظم م × 10 فإن حاصل ضرب أى عدد حقيقى ك فى المصفوفة الهي المصفوفة على المصفوفة على المصفوفة على المصفوفة على نفس النظم م × 10 وكل عنصر من عناصر المصفوفة على العنصر المناظر له فى المصفوفة المصفوفة على العدد الحقيقى ك

اى ان ضرب عدد حقيقى فى مصفوفة يعنى ضرب كل عنصر من عناصر المصفوفة فى ذلك العدد الحقيقى، ولايغير من نظم المصفوفة

فمثلا إذا كانت :
$$\mathbf{1} = \begin{pmatrix} \mathbf{7} & \mathbf{7} & \mathbf{7} \\ \mathbf{7} & \mathbf{3} & \mathbf{7} \end{pmatrix}$$

فمثلا إذا كانت : $\mathbf{1} = \begin{pmatrix} \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} \\ \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} \end{pmatrix} = \begin{pmatrix} \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} \\ \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} \end{pmatrix} = \begin{pmatrix} \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} \\ \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} \end{pmatrix} = \begin{pmatrix} \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} \\ \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} & \mathbf{7} \end{pmatrix}$

والدظة

يمكن أخذ عامل مشترك من بين جميع عناصر المصفوفة.

$$\begin{pmatrix} 7 & \xi & 7 \\ V - & \cdot & 1 \end{pmatrix} = \begin{pmatrix} 7 & \Lambda & \xi \\ 1\xi - & \cdot & 7 \end{pmatrix}$$

مثال ع

$$\sqrt{-0}$$
 اذا کانت : $\sqrt{-0}$ -1 $= \begin{pmatrix} -0 & 0 - 0 \\ 17 & 1 \end{pmatrix}$ فأوجد قيمة : $\sqrt{-0}$

الحــل

$$Y = 0 - 100 \text{ or } 1 - 100 \text{ or } 1 - 100 \text{ or } 100 \text{ or }$$

حاول بنفسك

$$\{0-1, 0-1, 0-1, 0\}$$
 فأوجد: $\{0-1, 0-1, 0-1, 0\}$ فأوجد: $\{0-1, 0-1, 0\}$

🗸 مــدور المصـفوفة

فى أى مصفوفة $\frac{1}{2}$ على النظم $\frac{1}{2}$ على النظم $\frac{1}{2}$ على النظم $\frac{1}{2}$ المتبدلنا الصفوف بالأعمدة أو الأعمدة بالصفوف بنفس الترتيب فإننا نحصل على مصفوفة على النظم $\frac{1}{2}$ مسمى بمدور المصفوفة $\frac{1}{2}$ ويرمز لها بالرمز $\frac{1}{2}$

$$(a_{2})$$
 فإن: (a_{3}) فإن: (a_{3}) فإن: (a_{3})

$$\mathbf{r} = \begin{pmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{o} & \mathbf{r} \end{pmatrix} = \mathbf{r} \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{pmatrix} \mathbf{r}$$

لاحظ ان (۱ " " = ۴ ، ۱ " = ۱

فإن :
$$-^{\infty} = (9 - 7)$$
 مصفوفة على النظم 1×7 (مصفوفة صف)

مثال ٥

فأوجد قيمة كل من: - ، ص

الحـل

$$\xi = \omega = \frac{1}{\sqrt{T}} = \omega = \frac{1}{\sqrt{T}}$$
 or $\frac{1}{\sqrt{T}} = \omega = 1$ eath $\frac{1}{\sqrt{T}} = \omega = 1$

حاول بنفسك

المصفوفات المتماثلة وشبه المتماثلة

إذا كانت أ مصفوفة مربعة فإن:

- ا تُسمى مصفوفة متماثلة إذا وفقط إذا كانت: ا = ا الله
- ال تُسمى مصفوفة شبه متماثلة إذا وفقط إذا كانت: ا = ا مد

فمثلا

$$\begin{pmatrix} r - & 1 - & r \\ \cdot & \xi & 1 - \\ \circ & \cdot & r - \end{pmatrix} = \frac{1}{2} \cdot \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi & 1 - \\ \circ & \cdot & r - \end{array} \right) = \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi & 1 - \\ \circ & \cdot & r - \end{array} \right) = \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi & 1 - \\ \cdot & \cdot & r - \end{array} \right) = \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi & 1 - \\ \cdot & \cdot & r - \end{array} \right) = \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi & 1 - \\ \cdot & \cdot & r - \end{array} \right) = \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi & 1 - \\ \cdot & \cdot & r - \end{array} \right) = \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi & 1 - \\ \cdot & \cdot & r - \end{array} \right) = \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi - & 1 - \\ \cdot & \xi - & r - \end{array} \right) = \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi - & r - \\ \cdot & \xi - & r - \end{array} \right) = \left(\begin{array}{ccc} r - & 1 - & r \\ \cdot & \xi - & r - \\ \cdot & \xi - & r - \end{array} \right) = \left(\begin{array}{ccc} r - & r - \\ \cdot & \xi -$$

الى ان المصفوفة متماثلة لأن: ا = المسلم

$$\begin{pmatrix} \xi - & \frac{1}{Y} - & \vdots \\ Y & \vdots & \frac{1}{Y} \\ \vdots & Y - & \xi \end{pmatrix} = \underbrace{\qquad \vdots}_{Y} = \underbrace{\qquad \vdots}_{Y}$$

$$\begin{pmatrix} \xi - & \frac{1}{Y} - & \vdots \\ Y & \vdots & \frac{1}{Y} \\ \vdots & Y - & \xi \end{pmatrix} - = \begin{pmatrix} \xi & \frac{1}{Y} & \vdots \\ Y - & \vdots & \frac{1}{Y} - \\ \vdots & Y & \xi - \end{pmatrix} = \xrightarrow{\Delta_{a}} \vdots \bigcup_{i=1}^{d} \hat{a}_{i}$$

ای ان اسمصفوفة شبه متماثلة لأن: س = - س

ملاحظات

• إذا كانت : ١ مصفوفة متماثلة فإننا نلاحظ تماثل

عناصرها حول القطر الرئيسي ،

فيكون: الص ع = المحص كما بالشكل المقابل حيث:

$$\eta_{\gamma} = \eta_{1\gamma} = z$$
 , $\eta_{\gamma} = \eta_{1\gamma} = \omega$, $\eta_{\gamma\gamma} = \eta_{\gamma\gamma} = e$

القطر الرنيسي

(3)

للقطا

• عناصر القطر الرئيسي في المصفوفة شبه المتماثلة تكون مساوية الصفر

حيث :
$$1_{\gamma_{1}} = -1_{\gamma_{2}} = -2$$
 ، $1_{\gamma_{1}} = -1_{\gamma_{2}} = -6$ ، $1_{\gamma_{2}} = -1_{\gamma_{3}} = -6$

- أي مصفوفة قطرية هي مصفوفة متماثلة.
- أي مصفوفة وحدة تكون مصفوفة متماثلة.

ر مثال 🛴

$$\begin{pmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

فأوجد قيمة كل من: - ، ص

فأوجد قيمة كل من: - ، ص ، ع

الحل

🚺 ∵ 🎙 مصفوفة متماثلة. 🥶

، - س + ۲ ص = ۸

$$V = - - - = V$$

حاول بنفسك

ا إذا كانت :
$$\emptyset = \begin{pmatrix} \Lambda & 0 \\ 1 & -1 \end{pmatrix}$$
 مصفوفة متماثلة فأوجد قيمة : س

ند ا کانت :
$$= \begin{pmatrix} 0 & \Lambda - & 0 \\ 17 & 0 & 17 \\ -0 & -0 & -0 \end{pmatrix}$$
مصفوفة شبه متماثلة فأوجد قيمتى : -- 0 ، ص -- 0 ، ص -- 0 ، ص -- 0 ، ص

تمارين 1

على تنظيم البيانات في مصفوفات

اختبر نفسك

T (1)

🛄 من أسئلة الكتاب المدرسي ه تطبيق ه تذکر 👶 مستویات علیا രക്ക് ര أولًا 🖊 أسئلة الاختيار من متعدد اختر الإجابة الصحيحة من بين الإجابات المعطاة: • (۱) المصفوفة (۳ ۲ ۱) على النظم ٣×١(ب) 1 × Y (1) 1 × L (7) L × L (*) ٤ (ب) (٣) إذا كانت ٩ مصفوفة على النظم ٢ × ٣ فإن : عدد عناصر المصفوفة ٩ = (ج) ۲ . (د) ٥ ۹ (ب) (٤) إذا كانت ب مصفوفة على النظم ٣ × ١ فإن : ب مصفوفة على النظم (ج) (× ۱ T × T (-) 1× (1) T × 1 (2) • (٥) إذا كانت ____ مصفوفة صفرية على النظم ٢ × ٢ فإن عدد عناصرها يساوى (ب) 🛭 🗇 (ب) (i) صفر (4) 3 (٦) إذا كانت المصفوفة على النظم ٣ × ٤ فإن الصف يحتوى على عنصر. T(1) V (-) (ب) ٤ 17(2) (٧) إذا كانت أ مصفوفة على النظم ٣ × ٢ فإن المصفوفة ٢ أعلى النظم E x 7 (1) (ب) ۲×۲ (ج) ۲×۲ (L)7×7 1. (7) ٤(١) ٤ (ب) ۹ (ج) ۱٤ $\begin{pmatrix} 3 & 7 & 7 \\ 7 & 7 & 7 \end{pmatrix} (2) \qquad \begin{pmatrix} 3 & 3 \\ 7 & -3 \end{pmatrix} (2) \qquad \begin{pmatrix} 3 & 1 \\ 7 & -3 \end{pmatrix} (2) \qquad \begin{pmatrix} 7 & 7 & 2 \\ 7 & -3 & 7 \end{pmatrix} (3)$ 🔸 🕦 أقل عدد عناصر يمكن أن تحتويها مصفوفة =

(ب)

(ج) ٢

(١) صفر

نة يساوى	النظم المكنة لهذه المصفوة	صفوفة يساوى ٩ عناصر فإن عدد	(۱۱) إذا كان عدد عناصر مد
(د) ۹		۲ (ب)	
The same	ئن أن تساوى	ربعة عدد عناصرها <i>له</i> فإن <i>له</i> يمك	(۱۲) إذا كانت أ مصفوفة م
14(7)		(ب)	
يكون نظمًا	فأى مما يأتى لا يمكن أن	لمصفوفة س- يساوى ١٢ عنصر	(۱۳) اذا کان عدد عناصر ا
			للمصفوفة س- ؟
17 × 1 (2)	۸×٤ (ج)	(ب) ۲ × ۲	£ × T (1)
		,	4
		 تسمى مصفوف ۲	(٤) المصفوفة ٢ = ١
(د) شبه متماثلة.	(ج) قطرية.	(ب) صفرية.	(1) وحدة.
	فَإِنْ ؛ حِسْ + ٢ صِ =	۲-۲۰ ص مصفوفة قطرية س ۱۵	(ه) إذا كانت : (۳) . الم
		(ب) ۱۰	
******	+ ٤ فإن : -ن =	النظم ٣ × ٣ وكان : الم = -ب	(١) أ مصفوفة قطرية على
1 1895	(ب) ٤		(1) صفر
عدا -٤ .	(د) أي عدد حقيقي ما		(ج)
ضعف مجموع	عناصر القطر الرئيسي =	-۳ ۱) إذا كان مجموع - ۲) إذا كان مجموع	3 (۷) في المصفوفة (۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲
The same	and the same	فإن : ص =	عناصر القطر الأخر
A(7)	(ج) ٤	(ب) –٤	(۱) صفر
1	بموغ عناصر ﴿ يساوى ١٢	قطرية على النظم ٣ × ٣ وكان مج	(٨) إذا كانت أ مصفوفة
- ARTHUR		القطر الرئيسي فقط	فإن مجموع عناصر
(د) يساوى صفر		(ب) أقل من ١٢	
• *************************************	فإن : -س ص =	$\begin{pmatrix} 1 - & 1 \\ 7 & 7 - \\ \infty & 7 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$	ر (۱۰) إذا كانت : (<mark>۱۰</mark> - ۱۰
10(7)	۲ (ج)	Y- (÷)	10-(1)
(1)	-ں + ص =	: فإن $\begin{pmatrix} 0 & \Upsilon \\ 1 & \omega & V \end{pmatrix} = \begin{pmatrix} 0 & \Upsilon \\ \Upsilon & 0 \end{pmatrix}$	اِذَا كَانْتِ : ﴿ ﴿ ﴾ إِذَا كَانْتِ : ﴿ ص
1. (2)	٤ (ج).	(ب) ۳–	Y(1)

7 (=)

(ج) ۱۰

17 (4)

1-(1)

11

$$\frac{\pi^{\frac{r}{r}}}{r}(z)$$
 $\pi(z)$ $\pi(z)$

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} (2) \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} (2) \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} (2) \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} (2) \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} (1)$$

إذا كانت
$$\{ \text{ مصفوفة وكان } \{ \text{ مصفوفة وكان } \{ \text{ مصفوفة وكان } \{ \text{ مصفوفة } \{ \text{ مصفوفقة } \{ \text{ مصفوفة } \{ \text{ مصفوفقة } \{ \text{ مصفوفة } \{ \text{ مصفوفة } \{ \text{ مصفوفقة } \{ \text{ مصفوفقق } \{ \text{ م$$

$$\begin{pmatrix} 7 & 1 \\ \xi & 7 \\ 7 & 7 \end{pmatrix} (\downarrow) \begin{pmatrix} 7 & 7 & 1 \\ 7 & \xi & 7 \end{pmatrix} (\uparrow) \begin{pmatrix} \xi & 1 \\ 0 & 7 \\ 7 & 0 & \xi \end{pmatrix} (\uparrow)$$

فان : ۱۹٫۱ × ۱۹۰۹ × ۱۲۴ =

$$\frac{1}{Y}(a)$$
 $Y(a)$ $Y(a)$

(۱) إذا كانت المصفوفة على النظم
$$7 \times 7$$
 وكان : $9_{1/1} = 7$ ، $9_{+7} = 7$ ، $9_{+7} = 7$ ، $9_{+7} = 9_{+7} + 7$ ، $9_{+7} = -9$ ، $9_{-7} = -9$

$$\begin{pmatrix} q_{-} & r & r \\ 1 & r_{-} \end{pmatrix} \begin{pmatrix} u \end{pmatrix} \begin{pmatrix} r & r \\ r & r \\ -r & q_{-} \end{pmatrix} \begin{pmatrix} u \end{pmatrix} \begin{pmatrix} r & r \\ r & r \\ r & r \end{pmatrix} \begin{pmatrix} u \end{pmatrix} \begin{pmatrix} r & r \\ r & r \\ r & r \end{pmatrix} \begin{pmatrix} r &$$

(i)
$$\cot (e)$$

9

﴾ ﴿ ﴿ إِذَا كَانِتَ ﴾ مصفوفة شبه متماثلة على النظم ٣ × ٣ وكان ٢٠٣ = ٤ أي من العبارات الآتية صحيحة ؟

$$(7) \mathfrak{q}_{7\prime} = -3 \qquad (7) \mathfrak{q}_{\prime\prime} = \cdot$$

(6) إذا كانت:
$$w = \begin{pmatrix} 1 & 7 & 7 \\ 7 & 2 & 7 \end{pmatrix}$$
, $a = \begin{bmatrix} 1 & 7 & 7 \\ 7 & 3 & 7 \end{pmatrix}$ وكان: $Y = \begin{bmatrix} 1 & 7 & 7 \\ 7 & 3 & 7 \end{bmatrix}$

فاِن : ۲ + ۲ ب =

فإن : م + ف - له =

$$(1)$$
 $\beta = \beta^{**}$ (۲) $\beta = -\beta^{**}$ (۲) مصفوفة قطرية.

ما صفر
$$\begin{pmatrix} \frac{\pi}{\gamma} & \lambda \\ \frac{\pi}{\gamma} & \frac{\pi}{\gamma} \end{pmatrix} = \begin{pmatrix} \frac{\pi}{\gamma} & \lambda \\ \frac{\pi}{\gamma} & \frac{\pi}{\gamma} & \frac{\pi}{\gamma} \end{pmatrix}$$
 ان كانت المصفوفة $\begin{pmatrix} \frac{\pi}{\gamma} & \frac{\pi}{\gamma} \\ \frac{\pi}{\gamma} & \frac{\pi}{\gamma} & \frac{\pi}{\gamma} \end{pmatrix}$ من العبارات التالية تكون صحيحة ؟

الأسئلة المقالية

$$\begin{pmatrix} \frac{1}{7} \\ \frac{1}{7} \\ \frac{1}{9} \end{pmatrix} = \mathcal{E} \quad \begin{pmatrix} 1 & \cdot & 0 \\ 7 & 7 & \xi \\ A & V - & 7 \end{pmatrix} = \cdots \quad \begin{pmatrix} 7 & 1 - & \xi \\ 1 & \cdot & 7 \end{pmatrix} = \frac{1}{7} : \text{ where } 1$$

(١) اذكر نظم كل مصفوفة. (٢) اكتب كلاً من العناصر الآتية : ٢٠٠ ، ١٠٠ ، حم، ، ١٠٠ ، حم،

🛄 اكتب نوع كل مصفوفة ونظمها :

$$\begin{pmatrix} \cdot & \cdot \\ \cdot$$

وجد مدور كل من المصفوفات التالية موضحًا نظم المصفوفة الناتجة:

🧿 🛄 اكتب جميع عناصر المصفوفات الآتية :

$$7:7:1=2:3$$

$$0.00=1.37$$

 $\{ r, r, 1 \} \ni \emptyset$ ، $\{ r, r, 1 \} \ni \emptyset$ ، $\{ r, r, 1 \}$ ، $\{ r, r, 1 \} \cap \emptyset \in \{ r, r, r \} \}$

اكتب المصفوفة أ إذا عُلم أن: أ من ص = ص - س ثم أوجد: الم

اکتب المصفوفة :
$$\emptyset = (1_{00})$$
 على النظم 0×1 حيث $1_{00} = 0 - 0 + 1$
ثم أوجد المصفوفة $0 \times 1 = 1$ واذكر نظمها وأوجد قيمة حي م إذا كان $0 = 0$ ى

$$\begin{pmatrix} 1 - \xi \\ V \end{pmatrix} = \begin{pmatrix} 1 - \xi \\ 1 + T \end{pmatrix} = \begin{pmatrix} 1 - \xi \\ 1 + T \end{pmatrix} = \begin{pmatrix} 1 - \xi \\ 1 + T \end{pmatrix}$$

$$\begin{pmatrix} \xi & 70 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \xi & 3 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

فأوجد قيمتي : - ، ص

$$\begin{pmatrix} 1 - \sqrt{1 - 1} \\ \sqrt{1 - 1} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

"+ 3 3 -1 3 P 3 Ts

فأوجد قيمة كل من: - ، ص ، ع

$$\begin{pmatrix} 1 & p \\ 1 & s - r \end{pmatrix} = \begin{pmatrix} r & 10 \\ r & p \end{pmatrix}$$

$$\begin{pmatrix} r - q \\ 0 \end{pmatrix} = \begin{pmatrix} r - r \\ sr + r - r \end{pmatrix} + \begin{pmatrix} r \\ r \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1$$

$$\begin{pmatrix} 0 & 7 & 0 & 7 & 0 \\ 7 + 2 & 1 & -1 & 3 + 7 \end{pmatrix}$$
 إذا كانت : $\begin{cases} 1 & 3 + 7 & 3 + 7 \\ 1 & 7 & 7 & 7 \end{cases}$ فأوجد قيمة كل من : - 0 ، - 0 ، 3

فأوجد قيمة : - س ص ع

ثالثًا / مسائل تقيس مهارات التفكير

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\left\{\frac{1}{7}, 1-\right\}(3) \qquad \left\{\frac{1}{7}, 1\right\}(4) \qquad \left\{\frac{1}{7}, 1-\right\}(4) \qquad \left\{\frac{1}{7}-1\right\}(5)$$

= 1 + - 7 - 7 - 7 - 7 = 1

وکان
$$\begin{pmatrix} U^7 & A & -U^7 \\ A^7 & A \end{pmatrix} = \begin{pmatrix} 1 & - & 0 \\ - & 2 & 0 \end{pmatrix}$$
 فإن: $12 - - = 0$

1 (4) (ج) ٢ E () 3

(٤) إذا كانت المصفوفة (أس ص) على النظم ٢ × ٢ حيث أس ص = س + ٢ ص وكان مجموع عناصر الصف الأول = ك فإن : ك =

(١ − ١) × (١ − ١) × (١ − ١) × (١٠ − ١) × (١٠ − ١) × (١٠ − ١) × (١٠ − ١)

$$\frac{\pi}{r}(\iota)$$
 $\frac{\pi}{\epsilon}(\dot{\varphi})$ $\frac{\pi}{1}(\dot{\varphi})$ $\frac{\pi}{1}(1)$

فإن : مجموع عناصر القطر الرئيسي يساوى

تطبيقات حياتية

كريم: لعب ١٨ مباراة ، ٤١ تسديدة ، ١٠ أهداف.

(١) نظم البيانات في مصفوفة على أن ترتب أسماء اللاعبين ترتيبًا تصاعديًا تبعًا لعدد الأهداف.

(١) حدد نظم المصفوفة ، ما قيمة ٢٠٠ ؟

🚺 🛄 الربط بالطاقة:

يمكن أن يقاس استهلاك الطاقة . بالكيلووات/ساعة.

يبين الرسم البياني المقابل إنتاج الطاقة والاستهلاك لبعض الدول. اكتب مصفوفة تمثل بيانات الرسم البياني المقابل.

📆 🛄 الربط بالصناعة :

المصنوعات الجلدية	صناعة الأغذية	
٦٨	8.8	٦ أكتوبر
- 0 7	7.4	مدينة السادات
18	TV	العاشر من رمضان

يبين الجدول المقابل عدد المصانع الأهلية العاملة في قطاعي صناعة الأغذية والمصنوعات الجلدية في ثلاث مدن مختلفة من مدن بعض محافظات جمهورية مصر العربية.

- (١) نظم البيانات في مصفوفة.
- (١) اجمع عناصر كل عمود ، ما تفسيرك للنتائج التي حصلت عليها ؟
- (٣) اجمع عناصر كل صف ، هل النتائج التي حصلت عليها يمكن أن تزودنا بيانات ذات معنى ؟ فسر إجابتك.

الدرس **2**

جهــع وطــرح المصفوفات

أولا 🖊 جمع المصفوفات

إذا كانت أ ، ب مصفوفتين لهما نفس النظم فإن عملية الجمع تكون ممكنة ويكون ناتج الجمع عبارة عن مصفوفة لها نفس النظم وكل عنصر فيها هو مجموع العنصرين المتناظرين في أ ، ب

مثال ۱

$$\begin{pmatrix} 1 & \cdot & 1 \\ 1 & \cdot & 1 \end{pmatrix} = \mathcal{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} = \mathbf{E} \quad \begin{pmatrix} 1 & 1 \\ 1 &$$

أوجد إن أمكن كلاً من : ١٦ ٢ ٢ ٢ ج ٣ - ٢ - ج

الحـل

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 2 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 1$$

المصفوفتان ب، ج لا يمكن جمعهما لاختلاف نظمهما

حيث إن : ب مصفوفة على النظم ٣ × ٢ ، ج مصفوفة على النظم ٢ × ٣

مثال ۲

الحــل

$$\begin{pmatrix} V & Y \\ Y & 1 \\ 1- & 1 \end{pmatrix} = \begin{pmatrix} \xi & \cdot \\ Y- & Y \\ A- & \xi \end{pmatrix} + \begin{pmatrix} Y & Y \\ 0 & 1- \\ V & 7 \end{pmatrix} = \longrightarrow + \emptyset :$$

$$\begin{pmatrix} \ddots & \ddots & \ddots \\ 1 - & Y & \vee \end{pmatrix} = {}^{2\alpha} (\longrightarrow + \beta) \therefore$$

$$\begin{pmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = \stackrel{\sim}{\smile} \qquad \begin{pmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = \stackrel{\sim}{\smile} \qquad \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = \stackrel{\sim}{\smile} \qquad \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 7 \\ 1 & 7 & V \end{pmatrix} = \begin{pmatrix} \xi & 7 & \vdots \\ A & P & \xi \end{pmatrix} + \begin{pmatrix} 7 & 1 & 7 \\ V & 0 & 7 \end{pmatrix} = \stackrel{1}{\smile} + \stackrel{1}{\smile} P :$$

من (۱) ، (۲) نجد أن :
$$(9 + -1)^{ab} = 9^{ab} + -1$$

حاول بنفسك

إذا كانت :
$$\theta = \begin{pmatrix} -7 & 1 \\ 7 & 2 \end{pmatrix}$$
 ، $\leftarrow = \begin{pmatrix} 8 & -7 \\ 7 & 1 \end{pmatrix}$ فأوجد : $\frac{1}{7} \begin{pmatrix} 9 + -2 \\ 1 \end{pmatrix}$

مثال ٣

$$\begin{pmatrix} \xi + - & \xi \\ r & r - \end{pmatrix} + \begin{pmatrix} \gamma & r \\ r & 1 \end{pmatrix} = \begin{pmatrix} - & r \\ r & r \end{pmatrix} = \chi$$
 أوجد قيم $\gamma = \gamma = \gamma$ أوجد قيم أبي تحقق المعادلة : $\gamma = \gamma = \gamma = \gamma$

الحــل

$$\begin{pmatrix} 7 & 7 & 7 \\ 7 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 17 \\ -7 & 7 \end{pmatrix} + \begin{pmatrix} 3 & -+3 \\ -+7 & 7 \end{pmatrix}$$
 (ضرب عدد حقیقی فی مصفوفة)

$$\begin{pmatrix} 17 & 7 & 7 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 7 & 1 \\ 2 & 1 & 1 \end{pmatrix} \therefore$$

$$\Lambda = -$$
: oaisl : $-$ 17 + c

$$\gamma = -+1$$
 easil: $\alpha = \frac{1}{2}$

حاول بنفسك

إذا كانت:
$$\Upsilon$$
 $\begin{pmatrix} 7 & 1+7 \\ -2 & -7 \end{pmatrix} = \Upsilon$ $\begin{pmatrix} 7 & 1+7 \\ 7 & 1- \end{pmatrix} + \begin{pmatrix} 7 & 7+7 \\ -2 & 7- \end{pmatrix}$ فأوجد قيمة كل من: Υ ، -2

خواص عملية جمع المصفوفات

بفرض أن أ ، ب ، ع ثلاث مصفوفات من النظم م × 10 وأن مصفوفة صفرية من نفس النظم فإن الخواص الآتية تتحقق:

🚺 خاصية الانفلاق

۱+ ب تكون مصفوفة من نفس النظم م × س

🚹 خاصية الإبــدال

$$\begin{pmatrix} 7 & 1 \\ 7 & 7 - \end{pmatrix} = \begin{pmatrix} 7 & \xi \\ 0 & 1 - \end{pmatrix} + \begin{pmatrix} 1 & 7 - \\ 7 & 7 - \end{pmatrix} = \begin{pmatrix} 1 & 7 - \\ 7 & 7 - \end{pmatrix} + \begin{pmatrix} 7 & \xi \\ 0 & 1 - \end{pmatrix}$$

🞢 خاصية الدمــج

فمثلا

خاصية وجود المحايد الجمعى

$$\begin{pmatrix} 7 & 7 \\ \xi & 1 - \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ \xi & 1 - \end{pmatrix}$$

الجمعى (النظير) الجمعى

فمثلًا إذا كانت :
$$\theta = \begin{pmatrix} 3 & 1 & 0 \\ -7 & 7 & 0 \end{pmatrix}$$
 فإن : المعكوس الجمعى لها هو : $-\theta = \begin{pmatrix} -3 & -1 & 0 \\ -7 & 7 & -0 \end{pmatrix}$

ثانيا 🗸 طرح المصفوفات

إذا كانت ؟ ، ب مصفوفتين لهما نفس النظم م × معفإن ناتج الطرح (١ - ب

هو المصفوفة مح من النظم م × مه والتي تُعرف كما يلى :

9 = 9 - - = 9 + (- - -) حيث (- - -) هي المعكوس الجمعي للمصفوفة -

فمثلًا إذا كانت :
$$\theta = \begin{pmatrix} \gamma & 0 \\ 0 & -1 \end{pmatrix}$$
 ، $\boldsymbol{\zeta} = \begin{pmatrix} \zeta & \gamma \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \gamma & 0 \\ 0 & -1$

مللحظة

يمكن إجراء عملية الطرح مباشرة بطرح العناصر المتناظرة من المصفوفتين.

$$\begin{pmatrix} 1 & 7 & 7 \\ A & Y & Y - \end{pmatrix} = \begin{pmatrix} 7 & Y - & Y - \\ A & 1 - & . \end{pmatrix} - \begin{pmatrix} 0 & \xi & Y \\ & 1 & Y - \end{pmatrix}$$

مثال ٤

$$\begin{vmatrix} \xi & \cdot \\ \gamma - & \gamma - \\ \gamma - & \lambda \end{vmatrix} = \mathcal{E} \quad \begin{pmatrix} \gamma - & \gamma \\ \circ & \gamma - \\ \gamma - & \gamma \end{vmatrix} = \cdots \quad \begin{pmatrix} \gamma & \gamma \\ \gamma & \gamma - \\ \xi & \cdot \end{vmatrix} = \beta : \text{ where } \beta = \beta : \text{ where }$$

أوجد قيمة : $\frac{1}{4} + - + - + \frac{1}{4} + \frac{9}{4}$

$$\begin{pmatrix} \xi & \cdot \\ \gamma - & \gamma - \\ \gamma - & \lambda \end{pmatrix} \xrightarrow{1} + \begin{pmatrix} \gamma - & \gamma \\ 0 & \gamma - \\ \gamma - & \gamma \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \\ \gamma & \gamma - \\ \gamma - & \gamma \end{pmatrix} + \begin{pmatrix} \gamma & \gamma \\ \gamma & \gamma - \\ \gamma - & \gamma - \\ \gamma - & \gamma - \end{pmatrix} + \begin{pmatrix} \zeta & \zeta \\ \gamma & \gamma - \\ \gamma - & \gamma - \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \\ \gamma & \gamma - \\ \gamma - & \gamma - \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \zeta & \lambda \\ \gamma & \gamma - \\ \gamma - & \gamma - \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \zeta & \lambda \\ \gamma & \gamma - \\ \gamma - & \gamma - \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \zeta & \lambda \\ \gamma & \gamma - \\ \gamma - & \gamma - \\ \gamma - & \gamma - \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \zeta & \lambda \\ \gamma & \gamma - \\ \gamma - & \gamma - \\$$

حاول بنفسك

$$-7-87+87:$$
 فأوجد قيمة $+7-87=$ ، $= (-7-7)$ ، $= (-7-7)=$ فأوجد قيمة $= (-7-7)=$

مالحظة

عملية طرح المصفوفات ليست إبدالية وليست دامجة.

مثال ٥

الحــل

$$\frac{1}{\sqrt{7}}$$
 بضرب الطرفين في $\frac{1}{7}$..

$$\begin{pmatrix} \frac{7}{7} - & 1 - & 1 - \\ \cdot & 1 - & 7 \\ \frac{A}{7} & 7 & 1 \end{pmatrix} = \begin{pmatrix} 7 - & 7 - & 7 \\ \cdot & 7 - & 7 \\ A & q & 7 \end{pmatrix} \frac{1}{7} = \begin{bmatrix} \begin{pmatrix} 7 & 7 & 1 \\ \cdot & \xi & 7 - \\ 7 - & 1 - & \cdot \end{pmatrix} 7 - \begin{pmatrix} \xi & 1 & 1 - \\ \cdot & 0 & 7 \\ 7 & V & 7 \end{pmatrix} \end{bmatrix} \frac{1}{7} = \sim \cdots$$

مثال ٦

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

 $- \pi = [N^{-1} - M^{-1}]$ د المصفوفة س التى تحقق أن : ۲

الحــل

$$\begin{pmatrix} 0 & 7 & \xi \\ 7 - 1\xi & 17 \end{pmatrix} = \begin{pmatrix} 7 & 7 & 7 \\ 0 & \xi & 1 - \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 7 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 7 + \ddots \\ \xi - & 7 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 - & \vdots \\ \xi - & 1 & 0 \end{pmatrix} + \begin{pmatrix}$$

◄ الدرس الثاني

$$\begin{pmatrix} \frac{0}{7} & \frac{7}{7} & \gamma \\ 1 & \sqrt{\frac{17}{7}} \end{pmatrix} = \begin{pmatrix} 0 & 7 & \xi \\ \gamma & \sqrt{\frac{17}{7}} \end{pmatrix} = \begin{pmatrix} 0 & 7 & \xi \\ \gamma & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots \begin{pmatrix} \frac{17}{7} & \gamma \\ \sqrt{\frac{17}{7}} & \sqrt{\frac{17}{7}} \end{pmatrix} = \cdots$$

مثال ۷

 \sim إذا كانت: m+7 سمد = $\binom{7}{7}$ المصفوفة $\binom{7}{1}$

الحــل

ويأخذ مدور الطرفين : $(w - + \gamma w^{ac})^{ac} = \begin{pmatrix} \gamma & 31 \\ \gamma & 17 \end{pmatrix}$

$$\begin{pmatrix} 1 & q \\ 7 & 18 \end{pmatrix} = \sim 1 + 1 \sim 1$$

ويضرب المعادلة (٢) × -٢:

(T)
$$\begin{pmatrix} Y7 - & 1A - \\ 1Y - & YA - \end{pmatrix} = \sqrt{1} \times (7)$$

$$= \sqrt{1} \times (7)$$

$$= \sqrt{1} \times (7)$$

$$= \sqrt{1} \times (7)$$

$$= \sqrt{1} \times (7)$$

$$\begin{pmatrix} \xi & \tau \\ \tau & 0 \end{pmatrix} = \begin{pmatrix} 17 - & 9 - \\ 7 - & 10 - \end{pmatrix} \xrightarrow{1-} = \checkmark \cdot \cdot \cdot \cdot \begin{pmatrix} 17 - & 9 - \\ 7 - & 10 - \end{pmatrix} = \checkmark \cdot \cdot \cdot \cdot \cdot \cdot (7) \cdot (1)$$

حاول بنفسك

$$\begin{pmatrix} 7 & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{8} \end{pmatrix} = \longrightarrow \begin{pmatrix} 8 & 7 \\ \frac{1}{7} & 7 \end{pmatrix} = \emptyset : \text{ with } 1 \text{ in } 1 \text{$$

فأوجد المصفوفة س بحيث: ٢ ٩ - ٢ ب = ٢ س - ١ ٢

حيث I على النظم ٢ × ٢

مالحظة

يمكن استخدام الآلة الحاسبة العلمية في جمع وطرح المصفوفات وسوف نقوم بعرض ذلك في نهاية الوحدة.

لاحظ أن

لأى مصفوفة مربعة أيكون

$$\frac{1}{4} = \frac{1}{4} \left(\frac{1}{4} + \frac{1}{4} \right) + \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} \right) = \frac{1}{4}$$

مصفوفة متماثلة مصفوفة شبه متماثلة

40

تمارين 🖊

على جمع وطرح المصفوفات

👶 مستویات علیا

المدرسي أستلة الكتاب المدرسي

أولا 🖊 أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\begin{pmatrix} \tau & \cdot & \xi - \\ \cdot & \circ & 1 \end{pmatrix} \begin{pmatrix} \cdot & \cdot & \xi \\ \cdot & \circ & 1 \end{pmatrix} \begin{pmatrix} \cdot & \cdot & \xi \\ \cdot & \circ & 1 \end{pmatrix} \begin{pmatrix} \cdot & \cdot & \xi \\ \cdot & \circ & 1 \end{pmatrix} \begin{pmatrix} \cdot & \cdot & \xi \\ \cdot & \circ & 1 \end{pmatrix}$$

$$\begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} (2) \qquad \begin{pmatrix} \gamma \\ \gamma \\ \gamma \\ \cdot \end{pmatrix} (2) \qquad \begin{pmatrix} \gamma \\ \xi \\ \cdot \end{pmatrix} (1)$$

$$\cdots\cdots\cdots = \begin{pmatrix} \xi - & 7 \\ 7 - & 7 \end{pmatrix} + \begin{pmatrix} 7 - & 0 - \\ V & \xi \end{pmatrix}$$

$$I(\omega) = \begin{pmatrix} \vdots & \ddots \\ \ddots & \ddots \end{pmatrix} (\Rightarrow) \qquad \begin{pmatrix} \xi - & \ddots \\ \ddots & \ddots \end{pmatrix} (\psi) \qquad \vdots \qquad (1)$$

$$I = -+\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
 فإن $= -+\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

$$\begin{pmatrix} \cdot & \circ - \\ 1 - & 7 - \end{pmatrix} \begin{pmatrix} \cdot & 1 \\ 1 - & 2$$

$$\cdots\cdots\cdots = \frac{1}{2}\left(\chi - \chi\right) + \left(\frac{\chi - \chi}{2}\right) = 0$$

$$\begin{pmatrix} \ddots & \ddots \\ \ddots & \xi \end{pmatrix} (2) \qquad \begin{pmatrix} A \\ A - \end{pmatrix} (2) \qquad \begin{pmatrix} A \\ - \end{pmatrix} (2) \qquad \begin{pmatrix} A \\ - \end{pmatrix} (1)$$

اذا کان : ۲ س
$$+$$
 $\begin{pmatrix} -7 & -7 \\ 2 & \text{pubs} \end{pmatrix} = \begin{bmatrix} -7 & -7 \\ 1 & \text{pubs} \end{pmatrix} = \begin{bmatrix} -7 & -7 \\ 1 & \text{pubs} \end{bmatrix}$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \gamma & \gamma \\ 1 & 1- \end{pmatrix} \begin{pmatrix} 1 & 1- \\ 1 & 1- \end{pmatrix} \begin{pmatrix} 1 & 1- \\ 1 & 1- \end{pmatrix} \begin{pmatrix} 1 & 1- \\ 1 & 1- \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1-1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 &$$

(A) [ذا كان:
$$\binom{\gamma}{\gamma} - \binom{\gamma}{\omega} - \binom{\gamma}{\gamma} = \binom{\gamma}{\gamma} - \binom{\gamma}{\omega} + (\gamma) = (\gamma)$$
(b) [i] $\binom{\gamma}{\gamma} + \binom{\gamma}{\gamma} + \binom{\gamma}{\gamma} + \binom{\gamma}{\gamma} + (\gamma) = (\gamma)$
(c) [i] [ii] كانت: $\binom{\gamma}{\gamma} - \binom{\gamma}{\gamma} - \binom{\gamma}{\gamma} + \binom{\gamma}{\gamma} + (\gamma) = (\gamma)$
(d) [ii] [ii] كانت: $\binom{\gamma}{\gamma} - \binom{\gamma}{\gamma} - \binom{\gamma}{\gamma} + (\gamma) = (\gamma)$
(e) [ii] [ii] كانت: $\binom{\gamma}{\gamma} - \binom{\gamma}{\gamma} - \binom{\gamma}{\gamma} + (\gamma)$
(f) [iii] [iii] كانت: $\binom{\gamma}{\gamma} - \binom{\gamma}{\gamma} - (\gamma) + (\gamma)$

(ب) ۲-

(ج) ٢

9 (4)

7-(1)

$$I = \frac{\pi}{2}$$
 اذا کان : $\theta = \begin{pmatrix} \lambda & \theta & -\lambda & \theta \\ \lambda & \theta & \lambda \end{pmatrix}$ حیث $\lambda < \theta < \frac{\pi}{2}$ وکان : $\lambda = \theta = 0$ فإن : $\theta = 0$

$$\frac{\pi}{r}(\iota)$$
 $\frac{\pi}{\epsilon}(\dot{\tau})$ $\frac{\pi}{r}(\dot{\tau})$ $\frac{\pi}{r}(\dot{\tau})$

$$\begin{pmatrix} \theta & \theta & \theta & \theta \\ \theta & \theta & \theta & \theta \end{pmatrix} = -\omega = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} = -\omega \begin{pmatrix} \theta & \theta & \theta \\ \theta$$

$$\begin{pmatrix} 7 & 1 & 7 \\ 1 & \xi & 1 - \\ 1 & 1 - & 7 \end{pmatrix} \begin{pmatrix} 2 & 1 & 7 \\ 1 - & \xi & 1 \\ 1 & 1 & 7 \end{pmatrix} \begin{pmatrix} 2 & 1 & 7 \\ 1 - & \xi & 1 \\ 1 & 1 & 7 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1$$

(3) إذا كانت أ مصفوفة على النظم 7×7 حيث $1_{\text{out}} = | \text{out} - 3 |$ وكانت مصفوفة على النظم 7×7 حيث -2 فإن 1 + 2 = 2

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 &$$

 $\begin{pmatrix} \Upsilon & \Upsilon \\ \Sigma \end{pmatrix}$ إذا كان س مصفوفة على النظم $\Upsilon \times \Upsilon$ وكان : س + س مصفوفة على النظم $\Upsilon \times \Upsilon$

(٤٥) المصفوفة المربعة يمكن التعبير عنها دائمًا

(1) كمجموع مصفوفتين إحداهما متماثلة والأخرى شبه متماثلة.

(ب) كمجموع مصفوفتين إحداهما قطرية والأخرى متماثلة.

(ج) كحاصل ضرب عدد حقيقي ≠ صفر في مصفوفة متماثلة لها نفس النظم.

(د) بجمع المصفوفة نفسها مع مدورها.

$$\begin{pmatrix} Y - & Y \\ 1 - & 1 \end{pmatrix} = \mathcal{E} + \cdots , \begin{pmatrix} 1 - & 1 \\ & & r \end{pmatrix} = - + \mathcal{E}$$
 $\begin{pmatrix} Y - & Y \\ & & 1 \end{pmatrix} = \mathcal{E} + \cdots , \begin{pmatrix} 1 - & 1 \\ & & r \end{pmatrix}$
 $\begin{pmatrix} Y - & Y \\ & & 1 \end{pmatrix} = \mathcal{E} + \cdots , \begin{pmatrix} 1 - & 1 \\ & & r \end{pmatrix}$

$$\begin{pmatrix} \lambda & \xi \\ \lambda - & \lambda \end{pmatrix} (7) \qquad \begin{pmatrix} \lambda & \gamma \\ \lambda & \lambda - \end{pmatrix} (7) \qquad \begin{pmatrix} \lambda & \lambda \\ \lambda - & \lambda \end{pmatrix} (7) \qquad \begin{pmatrix} \lambda & \lambda \\ \lambda - & \lambda \end{pmatrix} (1)$$

تأنيا / الأسئلة المقالية

$$\begin{pmatrix} V \\ \xi \end{pmatrix} = \mathcal{E} \quad \begin{pmatrix} V - & Y \\ 1 - & \Lambda \end{pmatrix} = \longrightarrow \begin{pmatrix} 1 - & \xi - \\ V - & Y - \end{pmatrix} = \begin{pmatrix} \xi - \\ \xi - & - \end{pmatrix}$$

$$\begin{pmatrix} r-1 \\ r \end{pmatrix} = \mathcal{E}$$
 ، $\begin{pmatrix} \epsilon & 1-1 \\ r-1 \end{pmatrix}$ ، $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 & 7 \\ r-1 \end{pmatrix} = \emptyset$. $= \begin{pmatrix} 1-1 &$

$$= \{ + \} = \{ - + \} = \{$$

$$\begin{pmatrix} \xi & Y \\ Y & 1 \end{pmatrix} = - \cdot \cdot \begin{pmatrix} 1 & Y \\ 0 & Y \end{pmatrix} = \beta : \text{ with } 0$$

$$\text{distribution } 0$$

$$\text{dist$$

$$\begin{pmatrix} 1 & 7 \\ \xi & 7 \end{pmatrix} = \mathcal{E} \quad \begin{pmatrix} 1 & 1 \\ \xi & 7 \end{pmatrix} = 0 \quad \begin{pmatrix} 1 & 7 \\ \xi & 7 \end{pmatrix} = 0 \quad \begin{pmatrix}$$

فأوجد ناتج كل من العمليات الآتية إن أمكن ، مع ذكر السبب في حالة تعذر إجراء العملية :

إذا كانت :
$$\frac{1}{2} = \begin{pmatrix} -3 \\ 7 \\ -7 \end{pmatrix}$$
 ، $\psi = \begin{pmatrix} -3 \\ 7 \\ 7 \end{pmatrix}$ أثبت أن : المصفوفة $\frac{1}{2}$ معكوس جمعى للمصفوفة $\frac{1}{2}$ وذا كانت : $\frac{1}{2}$

11- c E- c 17 c 1 c Tu أوجد قيم: س ، ص ، ع ، ١ ، ب

أوجد قيمة كل من: - ، ص

$$\begin{pmatrix} 0 & 7 \\ 7 & \xi - \end{pmatrix} + \begin{pmatrix} 7 & V - \\ 7 & \Lambda \end{pmatrix} = \begin{pmatrix} 0 & 7 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 \\ 7 & \Lambda \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} =$$

47 6 E1

🚺 🛄 أوجد قيم 1 ، ب ، ح ، و التي تحقق المعادلة :

$$\begin{pmatrix} 7 & \mathbf{z} \\ \mathbf{r} & \mathbf{z} \end{pmatrix} \mathbf{E} - \begin{pmatrix} \mathbf{s} & \mathbf{f} \\ \mathbf{r} & \mathbf{z} \end{pmatrix} \mathbf{T} = \begin{pmatrix} \mathbf{r} & \mathbf{f} \\ \mathbf{z} & \mathbf{r} \end{pmatrix} \mathbf{T}$$

111 3-07 3 3 3 Fm

آآ أوجد قيم س ، ص ، ع ، ل التي تحقق أن :

الناكان: (٢ - ١٠ ١) - (٢ - ١٠ ٥) = (٢ - ١٠ ١٠) + ٢ (-١٠ ١٥) = T + T - 6 + 6 E-1

المصفوفة ب
$$\begin{pmatrix} 7 & 7 & 0 \\ \Lambda & 0 & 1- \\ 7 & . & \xi \end{pmatrix} = \begin{pmatrix} 7 & 7 & 0 \\ 7 & 1 & 7 \\ 1 & 0 & \xi \end{pmatrix}$$
 أوجد: المصفوفة ب

$$\begin{pmatrix} 7 & 7 & 7 \\ . & 1 & 2 \\ . & 1 & 2 \end{pmatrix} = \begin{pmatrix} 7 & -7 & 7 \\ . & 1 & 2 \\ . & 1 & 7 \end{pmatrix} \Rightarrow \begin{pmatrix} 7 & -7 & 7 \\ . & 1 & 2 \\ . & 1 & 2 \end{pmatrix} = \begin{pmatrix} 7 & -7 & 7 \\ . & 1 & 2 \\ . & 1 & 2 \end{pmatrix}$$

فأوجد المصفوفة س بحيث: س = ٢ ١ - ٣ - ٣ -

ا إذا كانت :
$$\emptyset = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
 ، $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ أوجد المصفوفة س حيث : $\gamma = 1 - 1$

$$\begin{pmatrix} \xi - & 1 \\ 1 - & 0 \end{pmatrix} + \sqrt{r} = \begin{bmatrix} \begin{pmatrix} 1 - & 0 \\ r - & \cdot \end{pmatrix} + \sqrt{r} \end{bmatrix}$$
 حل المعادلة المصفوفية : ٤ $= \frac{1}{2} \begin{pmatrix} 1 - & 0 \\ r - & \cdot \end{pmatrix}$

$$\begin{pmatrix} 1 & 7 & 7 \\ \xi & 7 & 7 \end{pmatrix} = \checkmark \cdot \begin{pmatrix} 1 & 7 & 1 \\ 0 & \xi & 7 \end{pmatrix} = \begin{cases} 1 & \text{if } \xi \\ 0 & \xi \end{cases}$$

$$\begin{pmatrix} 1 & \xi - \\ Y - & 1 \\ \vdots & 1 - \end{pmatrix} = \longrightarrow \begin{pmatrix} 1 - & Y \\ \vdots & Y \\ Y & 0 - \end{pmatrix} = \emptyset : \text{ with } 1$$

ثالثا 🗸 مسائل تقيس مهارات التفكير

المعطاة :	الاحابات	من بن	الصحيحة	اختر الإجابة	n
		0			

(١) إذا كانت المصفوفة مربعة غير صفرية فإن المصفوفة ا + ا مصفوفة

(٤) إذا كانت أ مصفوفة على النظم ٣ × ٣ حيث أمن ع ٢ ص - ع ، - مصفوفة على النظم ٣ × ٣

$$\begin{pmatrix} 7 & 1-& 7 \\ 7-& 1& \cdot\\ \cdot & 7-& \xi \end{pmatrix} (1) \begin{pmatrix} 7 & 1& \cdot\\ 1& \cdot& 1-\\ \cdot& 1-& 7- \end{pmatrix} (2) \begin{pmatrix} 7 & 7& 1\\ \xi& 7& 7\\ 0& \xi& 7 \end{pmatrix} (1) \begin{pmatrix} 1& 1& 1& 1\\ 1& 7& 7\\ 0& \xi& 7 \end{pmatrix} (1)$$

🎄 (ه) إذا كانت المصفوفة على النظم ٢ × ٢ وكان العلم المنط المام عناصر الهو

🞝 إذا كانت الله مصفوفتين على النظم ٢ × ٢ وكان (ا + س) مصفوفة متماثلة

$$\frac{1}{2}$$
فإن : $\frac{1}{2}$ = $\frac{1}{2}$

$$\begin{pmatrix} \Upsilon & \Upsilon \\ \cdot & 1 \end{pmatrix} = -\infty + -\infty$$
, $\begin{pmatrix} \Upsilon & 1 \\ \Upsilon - & \xi \end{pmatrix} = -\infty + -\Upsilon + \infty$; it is it is in the second of th

أوجد قيمة : هـ + و + م + ١٠

$$\begin{pmatrix} 7 & 7 - \\ 1 & - \end{pmatrix} = \stackrel{\bot L}{\smile} \quad \begin{pmatrix} 1 - & \xi \\ 7 & 0 - \end{pmatrix} = \begin{cases} 1 - & \xi \\ 1 & - \end{cases}$$

فأوجد المصفوفة س التي تحقق العلاقة : ٣ ١ - ٢ بُ ٢ س = ,

الدرس

3

ضرب المصفوفات

مثال تمهیدی

إذا كانت المصفوفة ؟ تعبر عن نتائج ٢٠ مباراة لفريقي الأهلى والزمالك في الدوري العام

وكانت المصفوفة تعبر عن عدد النقاط التي يحصل عليها كل فريق في حالة الفوز

فإن : مجموع النقاط التي حصل عليها فريق الأهلي = ١٢ × ٣ + ١ × ١ + ٢ × ٠ = ٤٢ نقطة

، مجموع النقاط التي حصل عليها فريق الزمالك = $1 \times 7 + 3 \times 1 + 6 \times \cdots = 77$ نقطة

ويمكن التعبير عن مجموع النقاط التي حصل عليها كل فريق بالمصفوفة $= \begin{pmatrix} \xi \\ \gamma \end{pmatrix}$

ونلاحظ أن

٤٢ هي ناتج جمع حواصل ضرب عناصر الصف فالأول من أ في عناصر عمود ~

، ٣٧ هي ناتج جمع حواصل ضرب عناصر الصف الثاني من أ في عناصر عمود من

• المصفوفة مح هي ناتج ضرب المصفوفة ◊ × المصفوفة -

$$\begin{pmatrix} \xi \\ \gamma \end{pmatrix} = \begin{pmatrix} \cdot \times 7 + 1 \times 7 + 7 \times 17 \\ \cdot \times 0 + 1 \times \xi + 7 \times 11 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ 0 \\ \xi \end{pmatrix} \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix}$$

ضرب المصفوفات

إذا كانت : أ مصفوفة على النظم م × ل ، مسمفوفة على النظم م × مهفإن :

- حاصل ضربهما ج = الحب يكون ممكنًا إذا وفقط إذا كان : (= √
 - اى عدد أعمدة المصفوفة ١ = عدد صفوف المصفوفة ب
 - المصفوفة ع = ١ م تكون على النظم م × ١٠

• كل عنصر ح_{صع} في المصفوفة ع = أ ب يساوى مجموع حواصل ضرب عناصر الصف ص من أ في عناصر العمود ع من ب عنصرًا بعنصر كلًا بنظيره.

ولتوضيح مفهوم عملية ضرب المصفوفات :

$$\frac{1}{2} \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right) = \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} &$$

فإن: أ مصفوفة على النظم ٣ × ٢ ، مصفوفة على النظم ٢ × ٢

وحيث ان : عدد أعمدة المصفوفة ♦ = عدد صفوف المصفوفة - ٢ = ٢

اى ان عملية ضرب المصفوفة أ في المصفوفة ب تكون ممكنة وينتج مصفوفة أب على النظم ٣ × ٢ ونحصل عليها كالآتى :

* نضرب كل عنصر من عناصر الصف الأول في المصفوفة ۴ بالعنصر المناظر في العمود الأول في المصفوفة ب ونجمع حواصل الضرب فنحصل على العنصر الموجود في (الصف الأول والعمود الأول) في المصفوفة (الح) كما يلى:

$$\begin{pmatrix} \dots & & & & \\ & \ddots & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

* ثم نضرب كل عنصر من عناصر الصف الأول في المصفوفة ؟ بالعنصر المناظر في العمود الثاني في المصفوفة - ونجمع حواصل الضرب فنحصل على العنصر الموجود في (الصف الأول والعمود الثاني) في المصفوفة (؟ -)

* وهكذا حتى نحصل على جميع عناصر المصفوفة الم كما يلي :

$$\theta = \begin{pmatrix} \theta_{1/1} & \theta_{1/2} \\ \theta_{2/1} & \theta_{1/2} \\ \theta_{2/1} & \theta_{1/2} \\ \theta_{2/1} & \theta_{2/2} \\ \theta_{2/1} & \theta_{2/2} \\ \theta_{2/2} & \theta_{2/2}$$

لاحظ أن عملية ضرب المصفوفة ب في المصفوفة أ تكون غير ممكنة.

أى أن ب ا غير ممكنة لأن عدد أعمدة المصفوفة ب≠ عدد صفوف المصفوفة ا

مثال ۱

أوجد ١ ب إن أمكن في كل مما يأتي :

$$\begin{pmatrix} \begin{matrix} r & \circ & 1 \\ \xi - & \gamma & 1 - \end{matrix} \end{pmatrix} = \smile \cdot \cdot \begin{pmatrix} \begin{matrix} r & \gamma & 1 \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \begin{matrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & \gamma \\ \gamma - & 1 - \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma & \gamma & \gamma \\ \gamma - & \gamma \\ \gamma - & \gamma \\ \gamma - & \gamma \end{pmatrix} = \smile \cdot \begin{pmatrix} \gamma$$

الحــل

١ ... أ مصفوفة على النظم ٢ × ٢ ، مصفوفة على النظم ٢ × ٢

.. عدد أعمدة المصفوفة أ = عدد صفوف المصفوفة - ٢

∴ احب ممكنة وتكون على النظم ٢ × ٢

ا نظم ٢ × ٣ ، مصفوفة على النظم ٢ × ٣ ، مصفوفة على النظم ٢ × ٣

. عدد أعمدة المصفوفة المعلوفة المصفوفة و . ا معنير ممكنة.

۲ × ۳ مصفوفة على النظم ۱ × ۳ ، مصفوفة على النظم ۲ × ۱

.. عدد أعمدة المصفوفة أ = عدد صفوف المصفوفة ب = ٣ .. أم ممكنة وتكون على النظم ١ × ١

$$(\vee) = ((\xi)(\Upsilon) + (\vee)(\vee -) + (\Upsilon -)(\Upsilon)) = \begin{pmatrix} \Upsilon - \\ \vee \\ \xi \end{pmatrix} (\Upsilon \quad \vee - \quad \Upsilon) = \longrightarrow \emptyset : :$$

مثال ۲

إذا كانت : $\emptyset = \begin{pmatrix} \Upsilon & 0 & 1 \\ 1 & -1 & \Upsilon \end{pmatrix}$ ، $\boldsymbol{\varphi} = \begin{pmatrix} \Upsilon & 0 & 1 \\ 1 & -1 & \Upsilon \end{pmatrix}$ أوجد : $\boldsymbol{\psi} = \boldsymbol{\psi}$ أذا كانت : $\boldsymbol{\psi} = \boldsymbol{\psi}$

الحيل

: ا ب ممكنة على النظم ٢ × ٢

$$\begin{pmatrix} 9 & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

حاول بنفسك

خواص عملية ضرب المصفوفات

إذا كانت ◊ ، - ، ج ثلاث مصفوفات ، ١ هي مصفوفة الوحدة فإن الخواص الأتية تتحقق :

خاصية الدمج (التنسيق)

$$\begin{pmatrix} Y - \\ 1 - \end{pmatrix} = \mathcal{E} \cdot \begin{pmatrix} \xi - \\ 0 \end{pmatrix} \cdot \begin{pmatrix} Y - \\ Y \end{pmatrix} = - \cdot \begin{pmatrix} Y - \\ \xi \end{pmatrix} \cdot \begin{pmatrix} Y - \\ 1 - \end{pmatrix} = \emptyset \cdot \hat{\mathcal{E}} \cdot \hat{\mathcal{E$$

$$\begin{pmatrix} \circ \\ \Upsilon^{-} \end{pmatrix} = \begin{pmatrix} \gamma^{-} \\ \gamma^{-} \end{pmatrix} \begin{pmatrix} \varepsilon - & \gamma & \Upsilon \\ \circ & \cdot & \Upsilon \end{pmatrix} = \mathcal{E} \longrightarrow \begin{pmatrix} \gamma \\ \gamma \vee - \end{pmatrix} = \begin{pmatrix} \gamma^{-} \\ \gamma \vee - \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \varepsilon & \gamma - & \circ \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma & \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma & \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma & \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} -\gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} = \mathcal{E} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla - & \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \nabla$$

🚹 خاصية وجود المحايد الضربي

مصفوفة الوحدة I هي المحايد الضربي.

$$\begin{pmatrix} 7 & 7 \\ 0 & 1 - \end{pmatrix} = \begin{pmatrix} 7 & 7 \\ 0 & 1 - \end{pmatrix} \begin{pmatrix} 1 & 7 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 7 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 7 \\ 1 & 1 \end{pmatrix}$$

🚹 خاصية توزيع ضرب المصفوفات على جمعها

$$\begin{pmatrix} 7 & 7-\\ 1- & 1 \end{pmatrix} = \mathcal{E} \quad \begin{pmatrix} 0-& 7\\ 7& 1- \end{pmatrix} = \cdots \quad \begin{pmatrix} 7-& 1\\ 1-& 1 \end{pmatrix} + \begin{pmatrix} 0-& 7\\ 7& 1- \end{pmatrix} = \mathcal{E} + \cdots = 0$$

$$\begin{pmatrix} 1&&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 7&7-\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 0-& 7\\ 7&1- \end{pmatrix} = \begin{pmatrix} 2+&-1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} = \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} + \begin{pmatrix} 1-&1\\ 1&&1 \end{pmatrix} +$$

مالحظة

إذا كانت أ ، ب مصفوفتين قابلتين للضرب على أى صورة بمعنى أن أب ممكنة ، ب أ ممكنة أيضًا. فإنه ليس من الضرورى أن يكون أب = ب أ وهذا يعنى أن ضرب المصفوفات ليس عملية إبدالية

للحظ أنه

يمكن ضرب أي مصفوفتين مربعتين على نفس النظم.

$$\begin{pmatrix} 3 & -7 \\ 7 & -1 \end{pmatrix} \begin{pmatrix} -7 & 7 \\ 7 & -1 \end{pmatrix} \begin{pmatrix} -7 & -3/1 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} -77 & -3/1 \\ -9 & -3 \end{pmatrix}$$

$$\begin{pmatrix} 7 & A - \\ Y & \xi - \end{pmatrix} = \begin{pmatrix} 1 & Y - \\ Y - & Y \end{pmatrix} \begin{pmatrix} Y - & \xi \\ Y - & Y \end{pmatrix} = \xi$$

$$\begin{cases}
7 & \Lambda - \\
7 & \xi -
\end{cases} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi - \\
1 & \chi
\end{pmatrix} = \begin{pmatrix}
7 & \chi - \\
1 & \chi -$$

مثال ۳

آد کانت : $\emptyset = \begin{pmatrix} \Upsilon & \Upsilon \\ 1 & 1 \end{pmatrix}$ فأوجد قيمة کل من : \emptyset ، \emptyset

الحــل

$$\mathbf{1}_{A} \mathbf{1}_{A} \mathbf{1}_{A}$$

إذا كانت أ مصفوفة غير مربعة فإن أ غير ممكنة.

لاحظ أنه

مثال ک

 \square = $\begin{pmatrix} 1 & 7 & 7 & 7 \end{pmatrix}$ فأثبت أن : $\begin{pmatrix} 7 & 7 & 7 & 7 \end{pmatrix}$ اذا كانت : $\begin{pmatrix} 7 & 1 & 7 & 7 \end{pmatrix}$

الحل

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} r - \begin{pmatrix} r & \cdot \\ r & \cdot \end{pmatrix} r - \begin{pmatrix} r & \cdot \\ r & \cdot \end{pmatrix} \begin{pmatrix} r & \cdot \\ r & \cdot \end{pmatrix} = {}^{T}I r - p r - {}^{T}p$$

$= \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} - \begin{pmatrix} \xi & \cdot \\ \cdot & \cdot \end{pmatrix} - \begin{pmatrix} \xi & \cdot \\ \cdot & \cdot \end{pmatrix} =$

حاول بنفسك

, تفكير ناقد

🚺 إذا كانت : ١ ، ب مصفوفتين ، وكان : ١ ب =

فهل هذا يعنى دائمًا أن : ١ = __ أو -= __ ؟

الإجابة : لا

____≠~ · ___≠ · · · ·

I = 1 إذا كانت : 1 مصفوفة مربعة وكان 1 = 1 فهل هذا يعنى دائمًا أن 1 = 1

الإجابة : لا

 $I = \emptyset$: أن إذا كانت : I = I فهذا لا يعنى دائمًا أن : I = I

الإجابة : لا

$$\begin{pmatrix} Y - Y \\ 1 - Y \end{pmatrix} = \cdots \quad \begin{pmatrix} Y - Y \\ Y - Y \end{pmatrix} =$$

أى أن إذا كانت : ١ × - = ١ فهذا لا يعنى دائمًا أن : - I = ا

مدور حاصل ضرب مصفوفتين

إذا كانت : ١ ، - مصفوفتين وكانت ١ - ممكنة فإن : (١-) معد المسلم

وبصفة عامة : (١٩ ج ... هـ) مد = هد ... ج مد بشرط أن تكون عمليات الضرب ممكنة.

مثال ٥

$$\begin{pmatrix} 1 & 7 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 ، $\begin{pmatrix} 1 & 7 \\ 9 & 7 \\ A & 7 \end{pmatrix}$: $\begin{pmatrix} 1 & 1 & 7 \\ 0 & 7 \end{pmatrix}$ فحقق أن : $\begin{pmatrix} 1 & 1 & 7 \\ 0 & 7 \end{pmatrix}$ أذا كانت : $\begin{pmatrix} 1 & 1 & 7 \\ 0 & 7 \end{pmatrix}$ ، $\begin{pmatrix} 1 & 1 & 7 \\ 0 & 7 \end{pmatrix}$ أذا كانت : $\begin{pmatrix} 1 & 1 & 7 \\ 0 & 7 \end{pmatrix}$ ، $\begin{pmatrix} 1 & 1 & 7 \\ 0 & 7 \end{pmatrix}$

الحال

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1$$

مثال ٦

فأوجد المصفوفة س التي تحقق العلاقة : ١٥ س = 4 + $(-3)^{4}$

الحـل

$$\begin{pmatrix} V - & V \\ \gamma \Lambda & \gamma \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ 0 & \gamma - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma \\ 0 & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ 0 & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ 0 & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & 0 - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma \\ \gamma - & 0 - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} = \begin{pmatrix} \gamma - & \gamma \\ \gamma - & \gamma - \end{pmatrix} =$$

مثال ۷

الحعل

يمكن إيجاد قيم ٢ ، - ، حدون إجراء عملية الضرب كاملة كالتالى :

نضرب عناصر الصف الأول من المصفوفة الأولى × عناصر العمود الأول من المصفوفة الثانية

$$Y-=Y-X+Y+Y+Y+Y-X+Y$$
:

، نضرب عناصر الصف الثالث من المصفوفة الأولى × عناصر العمود الأول من المصفوفة الثانية

$$7 = \checkmark : \checkmark + \lor \times 1 - 1 - \times \circ : \checkmark$$

، نضرب عناصر الصف الثاني من المصفوفة الأولى × عناصر العمود الثاني من المصفوفة الثانية

مالحظة

يمكن استخدام الآلة الحاسبة العلمية في ضرب المصفوفات وسوف نقوم بعرض ذلك في نهاية الوحدة.

على ضرب المصفوفات

تمارین 💍

👶 مستویات علیا

و تطبيق

രക്ക് ഭ

ه تذکر

المدرسي استلة الكتاب المدرسي

أولا 🖊 أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

• مصفوفة على النظم س × ل	على النظم م × س ، س	(١) إذا كانت المصفوفة
	ا س يكون ممكنًا إذا كانت	فإن حاصل الضرب
Activities and the		100

$$J = \nu (1)$$

$$J = \nu (2)$$

$$J = \nu (3)$$

$$7 \times 1(1)$$
 $7 \times 7(2)$ $1 \times 7(1)$ $1 \times 7(1)$

$$7 \times 1(1)$$
 $1 \times 7(2)$ $7 \times 7(1)$

(٧) إذا كانت أ مصفوفة على النظم ١ × ٣ ، صنف مصفوفة على النظم ١ × ٣ فإنه يمكن إجراء أي من العمليات الآتية ؟

$$- \beta(x) \qquad (-1) \qquad (-1)$$

 (\cdot) (\cdot) (\cdot) (\cdot) (÷) (د)غير ممكنة. $(-1) \begin{pmatrix} 3 & 7 & -7 \\ -7 & A \end{pmatrix} = \dots$ $\begin{pmatrix} \gamma \cdot \\ \gamma \gamma - \\ \lambda - \end{pmatrix} (\dot{\varphi}) \begin{pmatrix} \lambda - \gamma \gamma - \gamma \cdot \\ \gamma - \gamma \cdot \end{pmatrix} (\dot{\gamma})$ · (·) (÷) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ اذا کانت : $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ ، $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ عیث $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ فان : $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ فان : $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} \xi & 0 \\ T & 1 - \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1$ (۱) إذا كانت : I هي مصفوفة الوحدة فإن : I الله عدد صحيح موجب) (د) جميع ما سبق صحيح. (36) إذا كانت : $9 = \begin{pmatrix} 7 & -7 \\ 7 & -7 \end{pmatrix}$ فإن : $9^7 = \cdots$ (L) T×7 (ج) ٤٤ . . (د) 1(1) (7) = (7)9 (4) $\begin{pmatrix} \Lambda & V \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} V & V \\ \nabla & 0 \end{pmatrix} = \begin{pmatrix} V & V \\ \nabla & 0 \end{pmatrix} = \begin{pmatrix} V & V \\ \nabla & 0 \end{pmatrix}$ 1-(2) (ج) -۲ إذا كانت : $q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ فإن : $q^{7} - q = \dots$ I 0 (1) (خ) ۱۲

$$= \begin{pmatrix} \cdot \\ \gamma \\ \downarrow \\ - \end{pmatrix} \begin{pmatrix} \cdot \\ \gamma \\ - \end{pmatrix} \begin{pmatrix} \gamma \\ \gamma$$

$$\begin{pmatrix} \begin{pmatrix} V & A \\ A & A \end{pmatrix} \begin{pmatrix} \sigma & A \\ A \end{pmatrix} \begin{pmatrix} \sigma & A \end{pmatrix} \begin{pmatrix} \sigma & A \\ A \end{pmatrix} \begin{pmatrix} \sigma & A \\ A \end{pmatrix} \begin{pmatrix} \sigma & A \end{pmatrix} \begin{pmatrix} \sigma & A \\ A \end{pmatrix} \begin{pmatrix} \sigma & A \end{pmatrix} \begin{pmatrix} \sigma & A \\ A \end{pmatrix} \begin{pmatrix} \sigma & A \end{pmatrix} \begin{pmatrix} \sigma & A \\ A \end{pmatrix} \begin{pmatrix} \sigma & A \end{pmatrix} \begin{pmatrix} \sigma & A \\ A \end{pmatrix} \begin{pmatrix} \sigma & A \end{pmatrix}$$

$$(3)$$
 إذا كانت : $9 = \begin{pmatrix} 1 & 1 \\ 7 & 4 \end{pmatrix}$ ، $\sim = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$ وكان : $9 \times m = 1 + m$

فإن المصفوفة س 🚊

$$\begin{pmatrix} \circ \\ \xi - \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix}$$

(١) إذا كانت : ٩ = (طا س ما س منا س) وكان : ٩ ٩ ش = (٢) فإن : س =

 $]\pi$ ، $\frac{\pi}{7}$ [\exists رسوم

$$\frac{\pi}{r}(2)$$
 $\frac{\pi^{r}}{r}(2)$ $\frac{\pi^{r}}{r}(2)$ $\frac{\pi^{o}}{r}(1)$

 θ فَان : $\theta = \begin{pmatrix} \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \theta} & -\frac{\partial}{\partial \theta} \end{pmatrix} = \theta$ فإن : θ

$$I \times \theta \wedge I \wedge I$$
 (i)

$$I \times (1 + \theta) \times I \times (1 + \theta) \times (1$$

$$I \land (7) \qquad \underset{\downarrow}{\downarrow} \stackrel{\downarrow}{\downarrow} (7) \qquad \qquad \downarrow \downarrow (7) \qquad \qquad \downarrow \downarrow (1)$$

$$I \frac{1}{7} = \frac{7}{4}$$
 وکانت : س = $\frac{\pi}{4}$ وکانت س $\frac{\pi}{7} > 0 > 0$ میث $\frac{\pi}{7} = 0$ وکانت س $\frac{\pi}{7} = 0$ وکانت س $\frac{\pi}{7} = 0$ وکانت س $\frac{\pi}{7} = 0$

فإن قيمة θ التي تحقق ذلك =

$$\frac{\pi}{r}(\iota)$$
 $\frac{\pi}{\xi}(\dot{\varphi})$ $\frac{\pi}{\eta}(\dot{\varphi})$ $\frac{\pi}{\eta}(\dot{\eta})$

(٤٥) إذا كانت ١ ، - ، ج ثلاث مصفوفات مربعة من نفس النظم:

أي الخيارات الآتية صحيحة ؟

```
و (١) إذا كانت : ١ = ١ المربعة حيث الدالة د معرفة على مجموعة المصفوفات المربعة حيث
                                                                                                               د (س) = (س + I) (س - I) فإن : د (۱) = .....
     \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 
                               و (٤٠) إذا كانت المصفوفة مربعة بحيث كان : الآ - ا = I فإن : الآ = ..............
                                                       I + \mathfrak{f} \Upsilon(\Rightarrow) : I + \mathfrak{f} \Upsilon(\Rightarrow) I \Upsilon + \mathfrak{f}(1)
                IT+ (1)
                                                                           ^{\mathsf{Y}} إذا كانت ^{\mathsf{Y}} مصفوفة مربعة حيث : ^{\mathsf{Y}} = ^{\mathsf{Y}} فإن : (\mathsf{I}+\mathsf{I})
                 1+17(2) I+87(2)
                                                                                                                                                        ١٢+١(١) ١٢+١(١)
                       ﴿ ﴿ ﴾ إِذَا كَانْتَ ﴾ ، ب مصفوفتان على النظم ٢ × ٢ أي مما يأتي يكون صحيح دائمًا ؟
                                                                                                                                                             (-) (++) = (-+1) (-)
                                                                                                                                                                                           + 1 = (-+ P) (-)
                                               (c) (4-)" = 9" (c)
                                   (٥) إذا كانت المصفوفة مربعة بحيث الم = الفإن لكل م عدد طبيعي يكون الم الم = .....
                             1-(2)
                                                                                                                                                                       (ب)
                                                                                                                                                                                                                                                                     I(1)
                                                         (ب) طبيعي زوجي.
                                                                                                                                                                                                                                                        (١) طبيعي.
                               (د) طبيعي يقبل القسمة على ٢
                                                                                                                                                                                                                                      (ج) طبيعي فردي.
                                                                                                    (٥٥) إذا كانت المصفوفة وكان: -= ا الم في ان ح تكون .....
                                                                     (ب) شبه متماثلة.
                                                                                                                                                                                                                                                    (١) متماثلة.
                                                                                                                                                                                                                   (ج) مصفوفة الوحدة I
                                               (د) المصفوفة الصفرية [
                                                    (٥٠) إذا كانت كل من ٢ ، - مصفوفة متماثلة فإن المصفوفة (١ - ١) تكون .....
                    (د) مثلثية.
                                                                                (ب) شبه متماثلة. (ج) قطرية.
                                                                                                                                                                                                                                               (١) متماثلة.
                                             (١٥) إذا كانت ١ ، - مصفوفتان متماثلتان فإن المصفوفة (١- - ١٠) تكون .....
                                                                   (ج) قطرية.
                                                                                                                                                (١) متماثلة. (ب) شبه متماثلة.
                (د) صفرية.
                                         (٥٥) إذا كانت ٢ ، - مصفوفتين متماثلتين فإن (١٩-) مصفوفة متماثلة إذا كان .....
                                                       1-=-1(=)
                                                                                                                                                           (ب) ا = ا
(د) جميع ماسبق.
                                                                                                                                                                                                                                             I = - (1)
                                                                     (٥) إذا كانت المصفوفة (١ ١ - ١) متماثلة فإن ذلك يشترط أن تكون ..........
                                                              (ب) أشيه متماثلة.
                                                                                                                                                                                                                                             (١) أ متماثلة.
                                                            (د) - شبه متماثلة.
                                                                                                                                                                                                                                         (ج) متماثلة.
```

ثانيًا / الأسئلة المقالية

أ أوجد مصفوفة حاصل الضرب في كل مما يأتي (إن أمكن) مبينًا نظم المصفوفة الناتجة :

$$\begin{pmatrix} \tau & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \circ & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \circ & \cdot \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon \end{pmatrix} \begin{pmatrix} \tau - & \tau \\ \tau & \varepsilon$$

$$\begin{pmatrix} \cdot & \tau \\ \tau & \cdot \end{pmatrix} \begin{pmatrix} \gamma - & \gamma \\ \tau & \gamma \\ \tau - & \xi \end{pmatrix} (0)$$

$$\begin{pmatrix} 7 & 7 \\ 7- & 7- \end{pmatrix} \begin{pmatrix} 7 & 7 & 1 \\ 7- & 7- & 1- \end{pmatrix}$$

$$\begin{pmatrix} 0 & 7 & 7 \\ 7 & 1 & 2 \\ 0 & 3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 7 & 0 \\ 2 & -1 & 3 \\ 2 & 7 & 7 \end{pmatrix} \begin{pmatrix} 7 & 7 & 0 \\ 3 & -1 & 7 \\ 2 & 7 & 0 \end{pmatrix}.$$

$$\begin{pmatrix} \tau & \cdot & 1 \\ \cdot & 1 & \tau \end{pmatrix} \begin{pmatrix} \tau & \tau \\ \circ & \varepsilon \end{pmatrix}$$
 (1)

$$\binom{7}{5}\binom{7}{7}\binom{7}{7}$$

$$\begin{pmatrix} \gamma & & \vee \\ \gamma & & 1 \end{pmatrix} \begin{pmatrix} \gamma & \gamma - \\ \gamma & & -\gamma \end{pmatrix} \begin{pmatrix} \gamma & & \xi \\ 0 & & \vee \end{pmatrix}$$

یات :
$$\frac{1}{2}$$
 یانت : $\frac{1}{2} = \frac{1}{2}$ یانت : $\frac{1}{2} = \frac{1}{2}$ یانت : $\frac{1}{2} = \frac{1}{2}$ یانت : $\frac{1}{2} = \frac{1}{2}$

اذا کانت :
$$\emptyset = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 ، $\psi = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ فأوجد : $\emptyset + 1$ ، $\emptyset + 1$

$$\begin{pmatrix} V - & 0 & Y - \\ 0 & 0 - & 1 \cdot \\ Y - & 0 & A - \end{pmatrix} = \longrightarrow \begin{pmatrix} 1 & Y & 1 \\ 7 & 0 & 1 \\ \xi & Y & 1 - \end{pmatrix} = \emptyset : \text{ where } 0$$

فأثبت أن: ١٠ = ١٠١

$$\begin{pmatrix} \Upsilon & 1 \end{pmatrix} = \mathcal{E} \cdot \begin{pmatrix} \ddots & 1 \\ - & \Upsilon \end{pmatrix} = \cdots \cdot \begin{pmatrix} 1 - & \Upsilon \\ \Upsilon - & 1 \end{pmatrix} = \mathcal{E} \cdot \begin{pmatrix} \Upsilon & 1 \end{pmatrix}$$

$$\begin{pmatrix} r & \cdot & \xi \\ 1 - & r & 0 \end{pmatrix} = \mathcal{E} \quad \begin{pmatrix} 1 - & r \\ v & 0 \end{pmatrix} = \longrightarrow \begin{pmatrix} r - & r \\ r & \cdot \\ \xi & 1 - \end{pmatrix} = \mathbf{1} : \text{ where } \mathbf{1}$$

$$|\psi| = |\psi| = |\psi|$$

$$\begin{pmatrix} 1 & 7 & 1 \\ 7 & 17 & 7 \\ 0 & 1 & 0 \end{pmatrix} = \longrightarrow \begin{pmatrix} 1 & 1 & 1 \\ 5 & 7 & 7 \\ 7 & 7 & 7 \end{pmatrix} = \emptyset : \text{ where } 0$$

$$\begin{pmatrix} 0 & \cdot \\ \tau & \tau \end{pmatrix} = \mathcal{E} \quad \begin{pmatrix} \tau - & \tau \\ \cdot & \xi \end{pmatrix} = - \cdot \begin{pmatrix} \tau & 1 - \\ 1 & \tau \end{pmatrix} = \theta : \Box$$

$$= I \ YY + \emptyset \circ - \mathring{\emptyset} : \mathring{\emptyset} : \mathring{\emptyset} : \mathring{\emptyset} = \mathring{\emptyset} = \mathring{\emptyset}$$
 فأثبت أن $: \mathring{\emptyset} - \circ \mathring{\emptyset} + YY =$

$$\begin{pmatrix} r & r \\ & \ddots \end{pmatrix} =$$

أوجد قيمة كل من س ، ص التي تجعل : أ ب = ب أ

انت : م =
$$\begin{pmatrix} \ddots & \ddots \\ \gamma & \end{pmatrix}$$
 أوجد قيمة كل من س ، ص التي تحقق المعادلة :

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} = \mathcal{E} \quad \begin{pmatrix} \circ & \varepsilon & \tau \\ v & \cdot & q \end{pmatrix} = \longrightarrow \begin{pmatrix} \begin{pmatrix} v & 1\tau \\ \lambda & 1 \end{pmatrix} = \emptyset : \text{ where } i$$

ثالثًا 🗸 مسائل تقيس مهارات التفكير

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$(1)$$
 إذا كانت: $\mathbf{w} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$ \mathbf{a}

$$(1)$$
 إذا كانت : $\theta = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ وكان : $\theta^{VY} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \end{pmatrix}$ فإن : $\theta + 1 + 2 + 2 = 1$

$$\begin{pmatrix} \chi - & \chi \\ \chi - & \chi \end{pmatrix} (3) \qquad \begin{pmatrix} \chi & \chi \\ \chi & \chi \end{pmatrix} (4) \qquad \begin{pmatrix} \chi & \chi \\ \chi & \chi \end{pmatrix} (7) \qquad \begin{pmatrix} \chi & \chi \\ \chi & \chi \end{pmatrix} (1)$$

🎄 (٤) إذا كانت كل من المصفوفة بن 🕯 ، وليست مصفوفة صف أو مصفوفة عمود وكان عدد عناصر المصفوفة ١٠ = ١٠ وعدد عناصر المصفوفة - ٦ وكان: ١٠ ممكن فإن عدد عناصر المصفوفة (١٠)

(٥) إذا كانت ١ ، ٩ مصفوفتين مربعتين على نفس النظم فإن : (١ + ٩٠) = ٢ + ٢ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ إذا كان

$$\begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v_{el} \end{pmatrix} \begin{pmatrix} v_{el} & v_{el} \\ v_{el} & v$$

$$(\mathbf{v})$$
 إذا كانت : $\mathbf{v} = \begin{pmatrix} \mathbf{v} \\ \mathbf{v} \end{pmatrix}$ ، $\mathbf{v} \in \mathbf{v}$ فإن : \mathbf{v} =

(ج) ليس من الضروري أن يكون أ = __ أ، - _ = __ (د) جميع ما سبق خطأ م (١٠) إذا كانت أ مصفوفة على النظم ٢ × ٢ وكان : أ = ٣ أ + ٢ ١ ، أ = م أ + ل ١ 7(2) $\begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ 1- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ -- \end{pmatrix} = \begin{pmatrix} 1-\\ -- \end{pmatrix} \times \begin{pmatrix} 1-\\ --\end{pmatrix} \times$ فإن: الم × (٢) = $\begin{pmatrix} -3 \\ \xi \end{pmatrix}$ $\begin{pmatrix} -2 \\ \xi \end{pmatrix}$ (ب) (ع) (1)(1) PN-(4) P(1+N)(2) $\begin{pmatrix} \gamma & \circ \\ \Lambda - & \gamma - \end{pmatrix} (2) \qquad \begin{pmatrix} \gamma & \circ \\ \gamma - & \Lambda - \end{pmatrix} (2) \qquad \begin{pmatrix} \gamma & \gamma \\ \gamma - & \xi - \end{pmatrix} (1)$

$$I^{\gamma, \gamma}(z)$$
 فإن : \emptyset في المناطق أن الم

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} = \frac{\partial}$$

$$\begin{pmatrix} \cdot & 1 \\ - & 1 \end{pmatrix} = \emptyset \quad (\begin{pmatrix} 1 & 1 \\ - & 1 \end{pmatrix}) = \begin{pmatrix} 1 & 1 \\ - & 1 \end{pmatrix}$$

$$|\mathcal{E}| \geq 0$$

$$|\mathcal{E}| \geq 0$$

فأوجد المصفوفة س التي تحقق أن : س = $(۱ - 1)^{4}$

إذا كانت : س، ص، عُ مصفوفات غير صفرية مربعة وكان : عُ = ص مد س مد + س ص فاثبت أن : عُ مصفوفة متماثلة.

 $I = {}^{7.15}$ ن : س = $\begin{pmatrix} \cdot \\ 1 - \end{pmatrix} + \begin{pmatrix} \cdot \\ 1 - \end{pmatrix}$ فأثبت أن : س = $\begin{pmatrix} \cdot \\ 1 - \end{pmatrix}$

تطبيقات حياتية

🚺 🛄 الربط بالسياحة: يستهلك أحد الفنادق

فى مدينة الغردقة السياحية الكميات الموضحة من اللحوم والخضروات والفاكهة بالكيلو جرام في وجبتى الغداء والعشاء

	فاكهة	خضروات	لحوم	
Ī	١٥.	١	۲	وجبة الغداء
Ī	١	۸.	١٢.	وجبة العشاء

، وذلك تبعًا للجدول المقابل ، فإذا كان متوسط سعر الكيلو جرام من اللحوم ٦٥ جنيهًا ومتوسط سعر الكيلو جرام من الفاكهة هو خمسة جنيهات ، الكيلو جرام من الفاكهة هو خمسة جنيهات ، فأوجد باستخدام ضرب المصفوفات التكاليف الكلية للوجبتين.

- غرقة غرفة الفندق جناح بسريرين بسرير TA الزهرة 35 اللؤلؤة 90 40 ۲. الماسة 10 ٨.
- الربط بالسياحة: لدى شركة سياحية ٣ فنادق بمدينة الغردقة البين الجدول المقابل عدد الغرف المختلفة في كل فندق ، فإذا كانت الأجرة اليومية للغرفة التي تحتوى على سرير واحد ٢٥٠ جنيهًا ، وللغرفة التي تحتوى على سريرين ٤٥٠ جنيهًا ، وللجناح ٢٠٠ جنيه.
- (١) اكتب مصفوفة تمثل عدد الغرف المختلفة في الثلاثة فنادق ، ثم اكتب مصفوفة أسعار الغرف.
 - (٢) اكتب مصفوفة تمثل الدخل اليومي للشركة ، على فرض أن جميع الغرف تم شغلها.
 - (٣) ما ألدخل اليومي للشركة على فرض أن جميع الغرف تم شغلها ؟

"10£1 ...

الدرس

محدد الرتبة الثانية

إذا كانت : المصفوفة مربعة على النظم ٢ × ٢ حيث ا = (ح و الح

فإن : محدد المصفوفة اليرمز له بالرمز اا

أى أن : قيمة محدد الرتبة الثانية تساوى حاصل ضرب عنصرى القطر الرئيسى مطروحًا منه حاصل ضرب عنصرى القطر الآخر.

أوجد قيمة كل من المحددات الآتية:

$$1 = 10 - 17 = 0 \times 10^{-1} = 10^{-1$$

$$\begin{vmatrix} 3 & -V \\ 7 & F \end{vmatrix} = 3 \times F - 7 \times (-V) = 37 + 37 = 47$$

$$\begin{bmatrix} 7 \\ -\lambda \end{bmatrix} = 7 \times (-3) - (-1) \times 7 = -37 + 37 =$$
صفر

$$1 = \theta^{\mathsf{T}} = \theta^{\mathsf{$$

حاول بنفسك

مثال ک

أوجد قيمة س التي تحقق كلاً من المعادلتين الآتيتين:

$$1 = \begin{vmatrix} \Upsilon & \Upsilon & \Upsilon + \sigma & \Upsilon \\ \Upsilon & -\sigma & \Upsilon - & \Upsilon \end{vmatrix} = \begin{vmatrix} \Upsilon & \Upsilon & \Gamma \\ \Upsilon & -\sigma & \Upsilon - & \Gamma \end{vmatrix}$$

الحل

$$\xi - {}^{t} \omega = 1 \times \cdot - 1 \times (\xi - {}^{t} \omega) = | {}^{t} \xi - {}^{t} \omega = | {}^{t} \omega =$$

$$Y \pm = \overline{\xi} \hat{V} \pm = \cdots$$
 \vdots $\xi = \hat{V} - \vdots$ $\cdot = \xi - \hat{V} - \vdots$

حاول بنفسك

اً = ٢- ٢- التي تحقق المعادلة : عن التي التي تحقق المعادلة المعاد

وقبل التعرف على كيفية فك محدد الرتبة الثالثة سنتعرف أولاً على «المحدد الأصغر» المناظر لأى عنصر في المصفوفة أوكيفية تحديد إشارته.

لكل عنصر في المصفوفة أمحدد أصغر يمكن الحصول عليه بحذف الصف والعمود المتقاطعين على هذا العنصر.

فمثلًا يمكن الحصول على المحدد الأصغر المناظر لكل عنصر من عناصر الصف الأول كما يلي:

• ويمكن تحديد إشارة أي محدد أصغر لعنصر ما في المصفوفة بأن :

نجمع رتبة الصف ورتبة العمود الذين يتقاطعان عند هذا العنصر فإذا كان مجموع الرتبتين:

- فرديًا : كانت الإشارة سالبة.

فمثلا

- إشارة ا ١٠ ا موجبة لأن : ١ + ١ = ٢ (زوجي)

- إشارة | ٢_{١٧} | سالبة لأن : ١ + ٢ = ٢ (فردى)

- إشارة (١٠ موجبة لأن: ١ + ٣ = ٤ (زوجي)

• وعلى هذا يمكن كتابة قاعدة الإشارات

للمحدد الأصغر كما بالشكل المقابل:

- زوجيًا: كانت الإشارة موجبة.

للحظ أن

إشارة المحدد الأصغر المناظر للعنصر أمرع تتعين بالقاعدة: (-١)صبع

+ - + -

فك محدد الرتبة الثالثة

يمكن فك محدد الرتبة الثالثة بدلالة عناصر أى صف أو أى عمود ومحدداتها الصغرى وباستخدام قاعدة الإشارات السابق ذكرها.

$$\frac{\partial \hat{c}}{\partial x} = \frac{1}{4} | \frac{1}{4}$$

مثال ۳

الحل

باستخدام عناصر الصف الأول نجد أن:

$$\begin{vmatrix} \cdot & \uparrow - \\ \cdot & 1 \end{vmatrix} (1-) + \begin{vmatrix} \xi & \uparrow - \\ \uparrow - & 1 \end{vmatrix} + \begin{vmatrix} \xi & - \\ \downarrow - & 1 \end{vmatrix} + \begin{vmatrix} \xi & - \\ & 1 \end{vmatrix} + \begin{vmatrix} \xi & - \\ & 1 \end{vmatrix} + \begin{vmatrix} \xi & - \\ & 1 \end{vmatrix} + \begin{vmatrix} \xi$$

مالحظة

يمكن فك المحدد باستخدام أى صف أو أى عمود كما ذكرنا وسوف نقوم هنا بفكه مرة أخرى باستخدام عناصر العمود الثاني مع مراعاة قاعدة الإشارات.

$$\begin{vmatrix} 1 & 7 & 1 \\ 2 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 7 & 3 \\ 1 & 1 & 1 \end{vmatrix} + \underbrace{\text{cut}}_{T} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 3 \\ 1 & 1 & 1 \end{vmatrix} + \underbrace{\text{cut}}_{T} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 3 \\ 1 & 1 & 1 \end{vmatrix} + \underbrace{\text{cut}}_{T} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 &$$

وهي نفس النتيجة التي حصلنا عليها سابقًا (حاول بنفسك استخدام أي صف أو أي عمود آخر)

مثال ٤

الحــل

يفضل فك هذا المحدد بدلالة عناصر العمود الأول لوجود أكبر عدد من الأصفار

.. قيمة المحدد = 3
$$\begin{vmatrix} 0 & -7 \\ -7 & -1 \end{vmatrix}$$
 - صفر $\begin{vmatrix} -1 & 7 \\ -7 & -1 \end{vmatrix}$ + صفر $\begin{vmatrix} -1 & 7 \\ 0 & -7 \end{vmatrix}$ - صفر + صفر = 3 $(-0-7) = 3 \times (-1) = -33$

حاول بنفسك

محدد المصفوفة المثلثة

الصفوفة الثلثة

هي مصفوفة جميع عناصرها التي تحت القطر الرئيسي (أو فوقه) أصفار،

$$\begin{pmatrix} \cdot & \cdot & \gamma \\ \cdot & \gamma - & \gamma - \\ v & \gamma & \xi \end{pmatrix} \cdot \begin{pmatrix} \circ & \gamma & \gamma - \\ \gamma - & \gamma & \cdot \\ \gamma & \cdot & \cdot \end{pmatrix} \cdot \begin{pmatrix} \cdot & \gamma - \\ \xi & \gamma \end{pmatrix} \cdot \begin{pmatrix} \circ - & \gamma \\ & \cdot & \cdot \end{pmatrix} \cdot a^{-1}$$

قيمة محدد المصفوفة المثلثة تساوى حاصل ضرب عناصر قطرها الرئيسي،

$$\frac{\lambda^{4}}{4} \frac{1}{4} \frac{1}{4} = \frac{\lambda^{4}}{4} = \frac{\lambda^{4}}$$

$$= \eta_{//} (\eta_{\gamma\gamma} \, \eta_{\gamma\gamma} - \eta_{\gamma\gamma} \times \cdot) = \eta_{//} \, \eta_{\gamma\gamma} \, \eta_{\gamma\gamma}$$

وعلی هذا فإن :
$$\begin{vmatrix} \cdot & \cdot & \gamma \\ - & 1 - \end{vmatrix}$$
 ، $\begin{vmatrix} \cdot & \cdot & \gamma \\ \gamma & 1 - \end{vmatrix}$ ، $\begin{vmatrix} \cdot & \cdot & \gamma \\ \gamma & \gamma - \end{vmatrix}$ وعلی هذا فإن :

تحقق من فهمك

مثال ٥

الحــل

بفك المحدد :

حاول بنفسك

مثال ७

إذا كان: ﴿ مصفوفة على النظم ٢ × ٢ وكان: ١٩١ = ٧ أوجد: ١٩١

الحــل

$$(3 \quad 7 \quad 7 \quad 9) = (7 \quad 7 \quad 7)$$

من (١) ، (٢) ينتج أن : | ٣ | ا = ٩ × ٧ = ٦٣

• من المثال السابق يمكن استنتاج الملاحظات التالية :

مللحظات

- - * إذا كان : \$ مصفوفة على النظم * * وكان : \$ \$
 - فإن: | ٥ | | = ٥ × | | | = ٥ × ٣ = ٥
 - * إذا كان : \$ مصفوفة على النظم * × * وكان : | \$ | = 0
 - $\xi \cdot = 0 \times \Lambda = | \gamma | \times | \gamma | = | \gamma | = 1$
 - [الحان : المصفوفة مربعة فإن : ا ا ا ا ا ا المدا

إيجاد مساحة سطح المثلث باستخدام المحددات

عكن استخدام المحددات لإيجاد مساحة سطح مثلث باستخدام إحداثيات رؤوسه كما يلى:

اذا كان: س ص ع مثلثًا حيث: س (١ ، ب) ، ص (ح ، ٥) ، ع (ه ، و)

فإن: مساحة سطح ٨ - س ص ع هي ا ٥ ـ ا

وسوف نعرض في نهاية هذا الدرس إثبات القانون السابق كنشاط إثرائي.

مثال ۲

أوجد مستخدمًا المحددات مساحة سطح المثلث المقابل الذي إحداثيات رؤوسه س (۲،۱)

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{vmatrix} \frac{\lambda}{1} = \infty \therefore$$

وباستخدام عناصر العمود الثالث :

$$\begin{bmatrix} \begin{vmatrix} \gamma & \gamma \\ \xi - & \gamma \end{vmatrix} + \begin{vmatrix} \gamma & \gamma \\ \tau & \gamma - \end{vmatrix} - \begin{vmatrix} \zeta - & \gamma \\ \tau & \gamma - \end{vmatrix} \end{bmatrix} \frac{1}{\gamma} = -\infty :$$

$$=\frac{1}{2}\left[\left(P-A\right)-\left(T+3\right)+\left(-3-F\right)\right]=\frac{1}{2}\left(I-V-V\right)=-A$$

ن مساحة Δ س ص ع = $|\alpha|$ = $|-\Lambda|$ = Λ وحدة مربعة ...

لاحظ أننا استخدمنا عناصر العمود الثالث في فك المحدد لأنها الأسهل في إجراء العمليات الحسابية لوجود الواحد الصحيح.

حاول بنفسك

في الشكل المقابل:

وتأكد من صنحة الحل باستخدام قانون حساب مساحة المثلث.

مالحظة

مثال ۸

أثبت باستخدام المحددات أن: النقط (-٢ ، ٤) ، (٣ ، ٠) ، (٨ ، -٤) تقع على استقامة واحدة.

$$\begin{vmatrix} \varepsilon & \gamma - \\ \cdot & \gamma \end{vmatrix} + \begin{vmatrix} \varepsilon & \gamma - \\ \varepsilon - & \lambda \end{vmatrix} - \begin{vmatrix} \cdot & \gamma \\ \varepsilon - & \lambda \end{vmatrix} = \begin{vmatrix} \cdot & \varepsilon & \gamma - \\ \cdot & \cdot & \gamma \\ \cdot & \cdot & \lambda \end{vmatrix}$$

$$= (-77 - 1) - (77 - 1) = -77 + 37 - 77 = صفر$$

:. النقط (-۲ ، ٤) ، (٢ ، ·) ، (٨ ، -٤) تقع على استقامة واحدة.

حاول بنفسك

أثبت باستخدام المحددات أن النقط: (٤ ، ٤) ، (٢ ، ١) ، (-٢ ، -٥) تقع على استقامة واحدة.

حل نظام من المعادلات الخطية بطريقة كرامر

أولًا / حل أنظمة المعادلات الخطية في مجهولين

• حل نظام من المعادلات الخطية في مجهولين يُقصد به إيجاد قيم المجهولين الذين يحققان المعادلتين معًا.

١ نوجد قيم ثلاثة محددات وذلك بعد وضع المعادلتين على الصورة السابقة ، وهذه المحددات هي:

- يسمى محدد مصفوفة المعاملات ويُرمز له بالرمز △ ويُقرأ (دلتا)
- نحصل عليه بوضع معاملي حس في المعادلتين في العمود الأول ، ومعاملي ص في المعادلتين في العمود الثاني.
 - یسمی محدد المجهول ویُرمز له بالرمز Δ_{-0} ویُقرأ (دلتا)

 نحصل علیه من محدد المعاملات Δ وذلك بتغییر عنصری العمود الأول ان و (معاملی 0) بالثابتین Δ ، \dot{U}
 - يسمى محدد المجهول ص ويُرمز له بالرمز Δ_{0} ويُقرأ (دلتا ص)

 نحصل عليه من محدد المعاملات Δ وذلك بتغيير عنصرى العمود الثانى حن ن (معاملى ص) بالثابتين م ، ن

نوجد قیمة حس ، وقیمة حس کما یأتی (بفرض أن : $\Delta \neq 0$) :

$$\frac{-\dot{\upsilon}-sp}{-sr} = \frac{\begin{vmatrix} - & p \\ s & \dot{\upsilon} \end{vmatrix}}{\begin{vmatrix} - & p \\ s & \dot{\upsilon} \end{vmatrix}} = \frac{\Delta}{\Delta} = \omega$$

$$\frac{\Delta}{\Delta} = \frac{\begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix}} = \frac{\begin{vmatrix} 1 & -2 \\ 0 & 2 \end{vmatrix}}{\begin{vmatrix} 1 & -2 \\ 0 & 2 \end{vmatrix}}$$

لاحظ أنه إذا كان : ∆ ≠ صفر فإن للنظام حلًا وحيدًا

أما إذا كان : ∆ = صفر فإن للنظام عدد لانهائي من الحلول أو ليس له حل . والمثال التالي يوضح الخطوات السابق ذكرها.

مثال ۹

17 = 0 حل بطریقة کرامر المعادلتین الآتیتین : 7 - 0 ص = -77 ، 7 - 0 + 7 ص = 17

الحل

$$TT = 10 + 1\Lambda = (0-) \times T - T \times T = \begin{vmatrix} 0- & T \\ T & T \end{vmatrix} = \Delta$$

$$11 = A \cdot + 79 - = (0-) \times 17 - 7 \times 77 - = \begin{vmatrix} 0- & 77- \\ 7 & 17 \end{vmatrix} = \Delta$$

$$\Delta_{\infty} = \begin{vmatrix} 7 & -77 \\ 7 & 7 \end{vmatrix} = 7 \times 71 - 7 \times (-77) = 79 + 97 = 071$$

مالحظة

يمكنك التأكد من صحة الحل بالتعويض في كل من المعادلتين بقيمة س ، وقيمة ص

$$\therefore -\omega = \frac{\Delta_{-\omega}}{\Delta} = \frac{11}{77} = \frac{1}{7}, \quad \omega = \frac{\Delta_{-\omega}}{\Delta} = \frac{11}{77} = 0$$

$$\text{erize in Appendix of the model}$$

حاول بنفسك

حل المعادلتين الآتيتين باستخدام طريقة كرامر: ٤ - س + ٣ ص = -٤ ، ٣ - س - ص = -٣

ثانيًا 🖊 حل أنظمة المعادلات الخطية في ثلاثة مجاهيل

إذا كان لدينا نظام من المعادلات الخطية في ثلاثة مجاهيل كالآتي:

فإنه بطريقة مماثلة لما فعلناه في حالة نظام معادلتين خطيتين في مجهولين يكون :

$$\Delta = \begin{vmatrix} 9, & -1 & -1 \\ 9, & -1 & -1 \\ 9, & -1 & -1 \end{vmatrix} = \text{acc lkalaktr}$$

ونحصل عليه بتغيير عناصر العمود الأول (معاملات -س) بالثوابت م ، ن ، ك -

$$\Delta_{\text{no}} = \begin{vmatrix} 1 & A & -A \\ 1$$

ونحصل عليه بتغيير عناصر العمود الثاني (معاملات ص) بالثوابت م ، ن ، ك

$$\Delta_3 = \begin{vmatrix} 1 & -1 & 4 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \end{vmatrix} = \text{acc} \quad \text{lkeaply 3}$$

ونحصل عليه بتغيير عناصر العمود الثالث (معاملات ع) بالثوابت م ، ن ، ك

ويفرض أن
$$\Delta \neq$$
 صفر فإن : $= 0 = \frac{\Delta}{\Delta}$ ، $= 0 = \frac{\Delta}{\Delta}$ ، ع $= \frac{\Delta}{\Delta}$ ويفرض أن $\Delta \neq$ صفر فإن : $= 0 = \Delta$

والمثال التالى يوضح الخطوات السابقة.

مثال ۱۰

حل نظام المعادلات الآتية بطريقة كرامر:

٣ ص + ٢ ص = ٤ + ١ ، ٣ ص + ٢ ع = ٨ - ٥ ص ، ٣ ع - ١ = - ٢ ص

الحــل

١ نضع نظام المعادلات على الصورة : ٢ - س + ح ع = م كالتالى :

نوجد کلاً من : Δ ، $\Delta_{_{\mathrm{O}}}$ ، $\Delta_{_{\mathrm{O}}}$ کالتالی :

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{vmatrix} = 7 (-0) + (7) - 7 (-1) - 7 (-1) + (-1) (-1) - 7 (-1) = 1$$

$$\Delta_{-0} = \begin{vmatrix} 1 & 7 & -1 \\ 1 & 0 & 7 \\ -1 & -7 & -7 \end{vmatrix} = 1 (-01 + 3) - 7 (-37 + 7) + (-1) (-71 + 0)$$

$$= -11 + 77 + 11 = 77$$

$$\Delta_{\infty} = \begin{vmatrix} \gamma & \gamma & \gamma \\ \gamma & \lambda & \gamma \\ \gamma & -1 & -1 \end{vmatrix} = \gamma \left(-37 + 7\right) - \gamma \left(-9 - 7\right) + \left(-1\right) \left(-7 - \lambda\right)$$

$$\Delta_{3} = \begin{vmatrix} 7 & 7 & 1 \\ 7 & 0 & 1 \\ 7 & -7 & -7 \end{vmatrix} = 7(-0 + 77) - 7(-7 - 1) + 7(-7 - 0)$$

$$= 77 + 77 - 77 = 33$$

المجاهيل س ، ص ، ع كالتالى :

$$\Upsilon = \frac{\xi\xi}{\Delta} = \frac{\Delta}{\Delta} = \lambda$$
 ، $\Delta = \frac{\Delta}{\Delta} = -\lambda$ ، $\Delta = \frac{\Delta}{\Delta} = \gamma$. $\Delta = \frac{\Delta}{\Delta} = \gamma$. $\Delta = \frac{\Delta}{\Delta} = \gamma$. $\Delta = \gamma$. Δ

ملاحظتان

- يمكنك التأكد من صحة الحل بالتعويض عن المجاهيل الثلاثة في كل معادلة.
 - يُسمى (٢ ، ١- ، ٢) ثلاثى مرتب.

حاول بنفسك

حل نظام المعادلات الآتية بطريقة كرامر:

مللحظة

يمكن استخدام الآلة الحاسبة العلمية في إيجاد قيمة المحدد وسوف نقوم بعرض ذلك في نهاية الوحدة.

نشـــاط 🖊 طريقة لإثبات قانون إيجاد مساحة المثلث باستخدام المحددات

بفرض أن س ص ع مثلث حيث:

مساحة ∆س صع

- مساحة شبه المنحرف س س ص ص ص

$$=\frac{-4e}{7}\left(\alpha-7\right)+\frac{6+2}{7}\left(\alpha-\alpha\right)-\frac{-4}{7}\left(\alpha-1\right)$$

$$= \frac{1}{7} \left[(-+e) (a-7) + (e+2) (a-a) - (a+2) (a-7) \right]$$

(1)

(7)

$$\begin{bmatrix} \begin{vmatrix} c & c \\ c & c \end{vmatrix} - \begin{vmatrix} c & c \\ c & c \end{vmatrix} - \begin{vmatrix} c & c \\ c & c \end{vmatrix} \end{bmatrix} + \begin{vmatrix} c & c \\ c & c \end{vmatrix}$$

وبمقارنة الناتج الذي حصلنا عليه في (١) ، والناتج الذي حصلنا عليه في (٢) نجد أن :

مساحة
$$\Delta$$
 س ع = $\frac{1}{\sqrt{2}}$ ح $\frac{1}{\sqrt{2}}$ (بشرط أخذ القيمة المطلقة للناتج)

على المحـــددات

تمارین 4

👶 مستویات علیا

ه تطبیق

ه فهم

ه تذکر

🛄 من أسئلة الكتاب المدرسي

أولًا / أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$(-1)$$
 (-1) (-1) (-1) (-1)

$$\left\{ \div, \div - \right\} (\bot) \quad \left\{ \div, \Upsilon - \right\} () \qquad \left\{ \Upsilon, \Upsilon - \right\} () \qquad \emptyset (1)$$

E-(1)

19 (2)

- (١٩) مساحة △ ٢ بح = وحدة مساحة.
 - r-(1)
 - (ب) -ه، ١
 - (ج) ٥,١
 - (د) ۲
 - (٠) في الشكل المقابل:

مساحة الشكل الرباعي المحرو = وحدة مربعة.

- Y . (1)
- ۱۰ (ب)
- 71 (2)
- TE () 37
- - ٤(١) ٤
 - (ب) ٣

- (ج) ۳- ا
- V = 0 V =
 - 0(1)
 - (ب) ١٤

- (ج) ۹-
- - ١ (١) ١ (٠) ٢ (١) ١ (١)
 - (ع) إذا كانت : $9 = \begin{pmatrix} \gamma & \gamma \\ \gamma & \gamma \end{pmatrix}$ وكان : $|9 \gamma| =$ صفر فإن : $\gamma =$
 - - (۱) صفر (ب) ۷ (ج) ۱۰ (ج) ۱۱ (۱)

 - (ب) ۲ (۱) ۲ (۱) ۲ (۱) ۲ (۱) ۲ (۱) ۲ (۱) ۲ (۱) ۲ (۱) ۲ (۱)

(a)
$$| \text{ if } | \text{ Div } | \text{ if }$$

(7) [it | Ziv :
$$\sqrt{7}$$
 | $\sqrt{7}$ | $\sqrt{7$

(ب) {۲،۲} (ج) د الم

{·}(1)

{ (,) { . , } ()

$$\begin{vmatrix} a & b & b \\ b & b \end{vmatrix} = \begin{vmatrix} a & b & b \\ b & a & b \end{vmatrix} = \begin{vmatrix} a$$

$$\left\{\frac{1}{7}, \frac{1}{7}, \cdot\right\}(1) \qquad \left\{\frac{1}{7}, \frac{1}{7}\right\}(2) \qquad \left\{7, 7, \cdot\right\}(1)$$

$$\begin{bmatrix} \theta \end{bmatrix}$$
 منا $\begin{bmatrix} \theta \end{bmatrix}$ منا $\begin{bmatrix} \theta \end{bmatrix}$

$$\left\{\frac{\pi}{17}\right\}(4) \qquad \left\{\frac{\pi}{7}\right\}(4) \qquad \left\{\frac{\pi}{\xi}\right\}(4) \qquad \left\{\frac{\pi}{\xi}\right\}(5)$$

(۵) إذا كانت النقط (۱ ، -۲) ، (۲ ، ۲) ، (ه ، ۳) منتصفات أضلاع △ ۱ ب حـ فإن مساحة △ ٢ بحساويوحدة مساحة.

(٤٥) إذا كان: ١ (ك ، ك + ١) ، ب (٢ ، ٢) ، ح (٢ ، ١) هي رؤوس المتلث ٢ بح وكانت مساحة 1 م ع ح تساوى ١٠٥ وحدة مساحة فإن : ا =

(٥٥) إذا كانت النقط (٢، ٣) ، (٥، ٩) ، (٩، ٤) ثلاثة رؤوس لمتوازى الأضلاع فإن مساحة متوازى الأضلاع = وحدة مربعة.

(a) إذا كانت مساحة △ ابح = ٥ وحدة مساحة حيث ا (١ ، -١) ، ب (٢ ، ٠) ، ح (س, ، ص) وكانت ح تقع على المستقيم ٣ - س + ص - ٤ ك = ٠ فإن : ك €

 $\left\{ \Upsilon, \Upsilon \right\} () \qquad \left\{ \Upsilon -, \Upsilon \right\} (\Rightarrow) \qquad \left\{ \Upsilon, \Upsilon - \right\} () \qquad \left\{ \Upsilon, \Upsilon - \right\} (1)$

(١٠١٧) ، ح (٢٠١١) ، و (٠٠٠) فإن مساحة الشكل الرباعي ٢ و حد = وحدة مساحة.

Y,0(1) ٣,٥(٩)

هماحة المثلث المحصور بين المستقيمات ل، : $-\omega + \omega = 7$ ، $U_r : Y - \omega + \omega = -0$ ، ومحور السينات يساوى وحدة مساحة.

141 (7) $\frac{170}{5}$ (\Rightarrow) $\frac{171}{5}$ (\Rightarrow)

🎄 (٥) لكى يكون لنظام المعادلات ١ , - س + - ، ص = حر ، ١ , - س + - ب ص = حر

حل وحيد يجب أن يكون

 $\cdot = \begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{vmatrix} = \cdot$ · = | - | - | (-) (د) حم عم الح

 $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$

فإن مجموعة حل نظم المعادلات : الرس برص = ٣ هي

{(1,1)}(2)

ثانيا / الأسئلة المقالية

أوجد قيمة كل من المحددات الآتية:

1- 1 00

P -+ P - P

أثبت أن:

 $1 = \begin{vmatrix} r - & r \\ v - & 0 \end{vmatrix} \times \begin{vmatrix} \theta & \text{tib} & \theta & \text{tid} \\ \theta & \text{tid} & 1 \end{vmatrix}$ $1 = \begin{vmatrix} r - & r \\ v - & r \end{vmatrix} = \begin{vmatrix} r - & r \\ v - & r$

أوجد قيمة كل من المحددات الآتية:

$$\begin{vmatrix} 77 & 7 & 17 \\ 0 & V & 7 & 17 \\ 1 & . & . & 1 \end{vmatrix}$$

$$\begin{vmatrix} 17 & 7 & 1 \\ 1 & . & . & 1 \\ 1 & . & . & 1 \end{vmatrix}$$

$$\begin{vmatrix} 17 & 7 & 1 \\ 1 & . & . & 1 \\ 1 & . & . & 1 \end{vmatrix}$$

$$\begin{vmatrix} 17 & 7 & 1 \\ 1 & . & . & 1 \\ 1 & 0 & . & 1 \\ 1 & 0 & . & 1 \end{vmatrix}$$

$$\begin{vmatrix} 17 & 7 & 1 \\ 1 & . & . & 1 \\ 1 & 0 & . & 1 \\ 1 & 0 & . & 1 \end{vmatrix}$$

$$\begin{vmatrix} 17 & 7 & 1 \\ 1 & . & . & 1 \\ 1 & 0 & . & 1 \\ 1 & 0 & . & 1 \end{vmatrix}$$

$$\begin{vmatrix} 17 & 7 & 1 \\ 1 & . & . & 1 \\ 1 & 0 & . & 1 \\ 1 & 0 & . & 1 \end{vmatrix}$$

$$\begin{vmatrix} 17 & 7 & 1 \\ 1 & . & . & 1 \\ 1 & 0 & . & . & 1 \\ 1 & 0 & . & . & 1 \end{vmatrix}$$

$$\begin{vmatrix} 17 & 7 & 1 \\ 1 & . & . & . \\ 1 & 0 & . & . & 1 \\ 1 & . & . & . & . \\ 1 & . & . & . & . \\ 1 & . & . & . & . \\ 1 &$$

مل كلًا من المعادلات الآتية:

$$\begin{vmatrix} 1 & -1 & -1 & -1 \\ -1 & -1 & -1 \end{vmatrix} = \text{out}$$

🛄 أوجد مستخدمًا المحددات مساحة سطح المثلث:

«۱۲ وحدة مربعة»

« الم ٢٣ وحدة مربعة»

"T 61 1-"

«Y- ci An

ه-۱ أ، صفر أ، ٢ه

" T 61 . 61 0- "

\Lambda باستخدام المحددات أثبت أن كلًا من النقط الآتية تقع على استقامة واحدة:

٩ 🛄 حل كل نظام من المعادلات الخطية الآتية بطريقة كرامر:

۱۵ حل كل نظام من المعادلات الخطية بطريقة كرامر:

$$3 - 1 - 1 = 2 + 3 = -11$$

الشكل المقابل: في الشكل المقابل:

ثالثاً ﴿ مُسَائِلُ تَقْيَسُ مُمَارَاتُ التَّفَكِيرُ

۱ اختر الإجابة من بين الإجابات المعطاة :

$$\left]\frac{\pi}{7}, \cdot \left[\ni \theta \xrightarrow{\lambda_1} \begin{pmatrix} 1 & \theta & \lambda \\ 1 & \theta & \lambda \end{pmatrix} \right], \quad - = \begin{pmatrix} \lambda & \theta & \lambda \\ \lambda & \theta & \lambda \end{pmatrix} = 0, \quad \left(\begin{pmatrix} \theta & \lambda & \theta & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix} \right) = 0$$

$$\frac{\pi}{r}(2)$$
 $\frac{\pi}{\xi}(4)$ $\frac{\pi}{\eta}(4)$

$$\exists \theta$$
 فإن $\theta = 0$ فإن $\exists \theta$ فإن $\exists \theta = 0$ ما $\exists \theta$ فان $\exists \theta = 0$ فإن $\exists \theta = 0$

$$\frac{\pi}{\xi}(z)$$
 $\frac{\pi}{\gamma}(z)$ $\frac{\pi}{\gamma}(z)$ $\pi(1)$

- (3) النقط 1 (-1 ، o) ، (٢ ، ٢) ، c (٢ ، ١)
 - (1) رؤوس مثلث قائم الزاوية مساحته ٥ وحدات مربعة.
- (ب) رؤوس مثلث متساوى الساقين مساحته ١٠ وحدات مربعة.
- (ج) رؤوس مثلث متساوى الأضلاع مساحته ٩ وحدات مربعة.
 - (د) تقع على استقامة واحدة.

أوجد مساحة الشكل المظلل

مستخدمًا المحددات.

١٨٥ وحدة مربعة»

۲ باستخدام طریقة كرامر حل المعادلات الآتیة :

$$Y = \begin{vmatrix} v - v \\ -v - v \end{vmatrix}$$
, $Y = \begin{vmatrix} v - v \\ -v - v \end{vmatrix}$

alele)

تطبيقات حياتية

«الْمِنْمُ ٢٠ دِلْمُا » ١٥»

الدرس

المعكوس الضربى للمصفوفة

إذا كانت: أ ، ب مصفوفتين مربعتين على النظم ٢ × ٢

وكان: (أب = ب ا = I حيث I مصفوفة الوحدة على النظم ٢ × ٢

فإن : المصفوفتين ١ ، ب كلَّا منهما معكوس ضربى للآخر.

$$\begin{pmatrix} 1 & \frac{1}{7} \\ \frac{7}{7} & \frac{1}{7} \end{pmatrix} = - \cdot \cdot \begin{pmatrix} 7 - & \xi \\ 1 - & 7 \end{pmatrix} = \beta : \text{ where } \xi$$

$$\mathbf{I} = \begin{pmatrix} \ddots & \ddots \\ \ddots & - \end{pmatrix} = \begin{pmatrix} \gamma - & \xi \\ \gamma - & \gamma \end{pmatrix} \begin{pmatrix} \ddots & \frac{\gamma -}{\gamma} \\ \gamma & \frac{\gamma -}{\gamma} \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \ddots & \ddots \\ \gamma & \gamma \end{pmatrix} = \begin{pmatrix} \gamma & \frac{\gamma -}{\gamma} \\ \gamma & \frac{\gamma -}{\gamma} \end{pmatrix} \begin{pmatrix} \gamma - & \xi \\ \gamma & - \gamma \end{pmatrix} = \mathbf{I} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I} \quad \mathbf{I} = \begin{pmatrix} \gamma & \gamma - \gamma \\ \gamma & \gamma - \gamma \end{pmatrix} = \mathbf{I} \quad \mathbf{I}$$

المصفوفتان ١ ، ب كل منهما معكوس ضربى للآخر.

مالحظة

$$\begin{pmatrix} Y & 1 \\ 1 & Y \end{pmatrix} = -$$
المصفوفة $Y = \begin{pmatrix} \xi - & Y - & 1 \\ \xi - & 1 & Y \end{pmatrix} = 1$ المصفوفة والمحاونة و

فإن المصفوفة لاليست معكوس ضربى للمصفوفة ب

$$I = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \uparrow & \cdot \\ \cdot & \uparrow \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} \xi - & \uparrow & \cdot \\ \xi - & \cdot & \uparrow \end{pmatrix} = - \uparrow \cdot i \quad \text{i. i. i. a. a. b. a. b.$$

وذلك لأن المصفوفة ١ ، المصفوفة - ليست مربعة.

المعكوس الضربي للمصفوفة ٢ × ٢

الذي يرمز له بالرمز $^{-1}$ يكون معرفًا (موجودًا) عندما يكون محدد 1 = $\Delta \neq \cdot$ ويكون :

$$I = \frac{1}{\Delta} =$$

مثال ۱

أوجد المعكوس الضربي إذا كان له وجود لكل من المصفوفتين الآتيتين :

$$\begin{pmatrix} 7 & \frac{1}{7} \\ 17 & \frac{7}{7} \end{pmatrix} = \longrightarrow \boxed{1}$$

$$\begin{pmatrix} \Upsilon & \Upsilon - \\ \xi - & \Upsilon \end{pmatrix} = \emptyset$$

الحــل

$$\cdot = (L)(L) - (LL)(\frac{L}{L}) = \begin{vmatrix} LL & \frac{L}{L} \\ \frac{L}{L} & \frac{L}{L} \end{vmatrix} = \nabla \cdot \cdot \cdot \cdot \cdot$$

حاول بنفسك

$$\begin{pmatrix} \Upsilon & \Upsilon \\ \Upsilon & \Upsilon \end{pmatrix} = \Re$$
: أوجد إن أمكن المعكوس الضربي للمصفوفة : \Re

مثال ۲

أوجد قيم س الحقيقية التي تجعل للمصفوفة ﴿ في كل مما يأتي معكوسًا ضربيًا:

$$\begin{pmatrix} \xi & 1 - 0 \\ Y - 0 & T \end{pmatrix} = \emptyset$$

الحــل

المصفوفة أ لا يكون لها معكوس ضربي إذا كان: | ١٩ | = .

$$7 \pm = \cdots$$
 . $= 77 - 7$. $= 77 - 7$. $= 17$

.. المصفوفة ألا يكون لها معكوس ضربي عند ص = ± ٦ .

٢ المصفوفة ١ لا يكون لها معكوس ضربي إذا كان ١١ = ٠

حاول بنفسك

مثال ۳

$$\cdot \neq \Delta : \cdot \cdot \cdot \cdot = \langle \cdot \rangle = \langle$$

$$\begin{pmatrix} \frac{7}{7} & 7 \\ \frac{1}{7} & 1 \end{pmatrix} = \begin{pmatrix} 7 & \frac{2}{7} \\ 1 & 7 \end{pmatrix} \xrightarrow{\frac{7}{7}} = \stackrel{1}{7} \xrightarrow{\frac{7}{7}}$$

$$\cdot \cdot \cdot | \delta_{-1} | = | \frac{\lambda}{\lambda_{-1}} | = (-\lambda) \left(\frac{\lambda}{\lambda_{-1}} \right) - \left(\frac{\lambda}{\lambda_{-1}} \right) | (\lambda) | = \frac{\lambda}{\lambda_{-1}} | = | \frac{\lambda}{\lambda_{-1}}$$

$$\mathbf{f} = \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{t} & \mathbf{r} \end{pmatrix} = \begin{pmatrix} \frac{\mathbf{r}_{-}}{\mathbf{r}} & \frac{\mathbf{r}_{-}}{\mathbf{r}} \\ \mathbf{r}_{-} & \mathbf{r}_{-} \end{pmatrix} \mathbf{r}_{-} = \begin{pmatrix} \frac{\mathbf{r}_{-}}{\mathbf{r}} & \frac{\mathbf{r}_{-}}{\mathbf{r}} \\ \mathbf{r}_{-} & \mathbf{r}_{-} \end{pmatrix} \frac{\mathbf{r}_{-}}{\mathbf{r}_{-}} = \mathbf{r}_{-} \begin{pmatrix} \mathbf{r}_{-} \\ \mathbf{r}_{-} \end{pmatrix} \cdot \mathbf{r}_{-}$$

$$\begin{pmatrix} 1 & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\$$

باستخدام المصفوفتين لا ، ب في المثال السابق أثبت أن : (١ أ ب) = - ١

إذا كانت المصفوفة مربعة على النظم ٢ × ٢ بحيث ا الخ. ، ع مصفوفة أخرى وكان:

وذلك : بضرب طرفى المعادلة
$$\times$$
 \P^{-1} \mathcal{S} \mathbb{I} $\mathbb{$

وذلك : بضرب طرفى المعادلة ×
$$q^{'}$$
 وذلك : بضرب طرفى المعادلة × $q^{'}$ المعادلة × $q^{$

 $\begin{pmatrix} 1-\\ \gamma \end{pmatrix} = \infty \times \begin{pmatrix} 1-\\ \gamma \end{pmatrix}$: أوجد المصفوفة س التي تحقق أن :

بفرض أن:
$$9 = \begin{pmatrix} 1 - \\ \gamma \end{pmatrix} = 8$$
 ، $\begin{pmatrix} 1 - \\ \gamma \end{pmatrix} = 9$ بفرض أن:

$$\cdot \neq \angle L = (\angle L) (A - A) - (A - A) = \begin{vmatrix} \cdot & \cdot & \cdot \\ - & \cdot & \cdot \end{vmatrix} = |A| \cdot |A| \cdot$$

$$\begin{pmatrix} L \\ L \end{pmatrix} = \begin{pmatrix} L \\ L \end{pmatrix} \begin{pmatrix} \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \qquad \begin{pmatrix} \frac{L}{L} \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix} L \\ \frac{L}{L} \end{pmatrix} = \mathcal{I} \begin{pmatrix}$$

$$\begin{pmatrix} 1 & r \\ r & . \end{pmatrix} = \begin{pmatrix} v & r \\ r & . \end{pmatrix} \times \sqrt{r}$$
 أوجد المصفوفة س التي تحقق أن : س

حل معادلتين انيتين باستخدام المعكوس الضربي للمصفوفة

لحل المعادلتين الخطيتين على الصورة: ١٠ - ٠ + -، ص = ح، ١٠ ٠ - ٠ + -، ص = ح، أنيًا باستخدام المعكوس الضربي للمصفوفة نتبع الآتي:

🚺 نكتب المعادلتين على صورة المعادلة المصفوفية :

$$\begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}$$
is also illered and the second of the second and the se

ا نوجد حل المعادلة المصفوفية : ﴿ س = جُ فيكونُ س = ﴿ جُ الْحِينَ الْمُعَادِلَةُ المُصفُوفِيةُ ؛ ﴿ س = ﴿ عَ

ومن ذلك يمكن استنتاج قيم المجهولين س ، ص

مثال ٥

حل كل نظام من المعادلات الخطية التالية باستخدام المصفوفات:

الد

المعادلة المصفوفية هي : إس = ع حيث :

$$\begin{pmatrix} v \\ 1 \end{pmatrix} = \mathcal{E} \cdot \begin{pmatrix} v \\ w \end{pmatrix} = v \cdot \begin{pmatrix} v \\ 1 - \end{pmatrix} = \emptyset$$

د. للمصفوفة
$$\theta$$
 معكوس ضربى هو θ^{-1} .. $\theta^{-1} = \frac{1}{-0} \begin{pmatrix} 7 & 1 \\ 7 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 1 \\ 7 & 1 \end{pmatrix}$.. للمصفوفة θ معكوس ضربى هو θ^{-1} .. θ^{-1}

$$\binom{7}{1} = \binom{7}{1} \left(\frac{\frac{7}{0}}{\frac{7}{0}} - \frac{\frac{7}{0}}{\frac{7}{0}} \right) = \sim 1.$$

٠= - ٢ - - ٢ ص = - ١ ، ٢ - - ٢ ص = ٠

$$\begin{pmatrix} \Upsilon & \Upsilon - \\ \Upsilon & \Upsilon - \end{pmatrix} = \begin{pmatrix} \Upsilon & \Upsilon - \\ \Upsilon & \Upsilon - \end{pmatrix} \frac{1}{7} = \stackrel{1}{7} : \quad \therefore \neq 1 = (\Upsilon) (\Upsilon -) - (\Upsilon -) (\Upsilon) = \begin{vmatrix} \Upsilon - \\ \Upsilon - \end{pmatrix} = | \Upsilon | = \Delta : :$$

$$\begin{pmatrix} \Upsilon \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon & \Upsilon - \\ \Upsilon & \Upsilon - \end{pmatrix} = \sim : : :$$

$$\begin{pmatrix} \Upsilon \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon & \Upsilon - \\ \Upsilon & \Upsilon - \end{pmatrix} = \sim : : :$$

$$\begin{pmatrix} \Upsilon \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon & \Upsilon - \\ \Upsilon & \Upsilon - \end{pmatrix} = \sim : : :$$

$$\begin{pmatrix} \Upsilon \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} = \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \begin{pmatrix} \Upsilon - \\ \Upsilon \end{pmatrix} \end{pmatrix} \begin{pmatrix}$$

حاول بنفسك

V + - Y = 0 ، E = 0 ، Y + 0 من Y + 0 من Y + 0 ، Y + 0 من Y + 0 من Y + 0 ، Y + 0 من Y + 0

مثال ٦

الحــل

ولحل المعادلتين (١) ، (٢) نكتب المعادلة المصفوفية :

$$\begin{pmatrix} \cdot \\ - \end{pmatrix} = \mathcal{Z} \quad \begin{pmatrix} \cdot \\ \cdot \end{pmatrix} = -\infty \quad \begin{pmatrix} \cdot \\ \cdot \end{pmatrix} \quad \begin{pmatrix} \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot$$

$$T = 1 \times 1 - 1 \times \xi = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = | f | = \Delta : \epsilon$$

$$\binom{1}{\xi-} = \binom{\cdot}{\tau-} \binom{\frac{1-}{\tau}}{\frac{\tau}{\tau}} = \binom{\cdot}{\tau-} \cdots$$

$$\binom{1}{\tau} = \binom{\cdot}{\tau-} \binom{1}{\tau} = \binom{1}{\tau} = \binom{1}{\tau} \binom{1}{\tau} = \binom{1}{\tau} = \binom{1}{\tau} =$$

مالحظة

يمكن استخدام الآلة الحاسبة العلمية في إيجاد المعكوس الضربي للمصفوفة وسوف نقوم بعرض ذلك في نهاية الوحدة.

عنى المعكوس الضربى للمصفوفة

تمارين 5

اختبر نفسك

🖧 مستويات عليا

ه تطبیق

و فهـم

ه تذکر

🔲 من أسئلة الكتاب المدرسي

أولًا ﴿ أَسْئِلَةُ الْأَخْتِيَارُ مِنْ مُتَعَدِّدُ

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(١) أي المصفوفات الآتية ليس لها معكوس ضربي ؟

(١) أي من المصفوفات الآتية لها معكوس ضربي ؟

$$\begin{pmatrix} 1 & r \\ 1 & r \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$$

• (٣) إذا كانت المصفوفة (٢٠٠٠) ليس لها معكوس ضربي فإن : ١٠٠٠ =

• (6) إذا كانت المصفوفة ب هي المعكوس الضربي للمصفوفة ١٩ فإن

$$\frac{1}{2} = \frac{1}{2} (3)$$
 $= -\frac{1}{2} (4)$ $I = -\frac{1}{2} (4)$ $= -\frac{1}{2} (4)$

(٦) المصفوفة (٢ ١٢) لها معكوس ضربي عندما

(a) I (1)
$$\begin{pmatrix} \gamma & \gamma \\ \gamma & \frac{7}{\sqrt{2}} \end{pmatrix}$$
 (b) $\begin{pmatrix} \gamma & \gamma \\ \gamma & \frac{7}{\sqrt{2}} \end{pmatrix}$ (c) $\begin{pmatrix} \gamma & \gamma \\ \gamma & \frac{7}{\sqrt{2}} \end{pmatrix}$ (c) $\begin{pmatrix} \gamma & \gamma \\ \gamma & \frac{7}{\sqrt{2}} \end{pmatrix}$

(a) [i]
$$\sum_{i=1}^{n} \frac{1}{i} = \sum_{i=1}^{n} \frac{1}{i} = \sum_{i=1}^{n}$$

(1)
$$(1) \cdot (1) \cdot$$

وم إذا كان: ١٩س - ع فإن: س = 1 8 - (=) - (=) - (=) - (=) - (1) 8 - P(s)

إذا كانت أ ، ب مصفوفتان مربعتان بحيث | أ | ≠ ، ، | ب | خ . وكان : ب = - أ أ ب أ

فإن: (١٠ + ١٠) = ١٠٠٠٠٠٠٠٠٠

-+ P(2) -+-- PY+ P(2)

(m) إذا كانت أ مصفوفة شبه متماثلة على النظم ٢ × ٢ وكان : ا أ ا = ١ فإن :

 $I -= \emptyset (\downarrow) \qquad \qquad \emptyset -= \emptyset (1)$ f = f(a)

ن : ا خانت : ا = (منا ۱۵ – ما ۱۵ فان : ا ا خانت : ۱ = (منا ۱۵ منا ۱۹ فان :

أُولًا: إلى الله المعكوس ضربي عندما θ €

 $\mathcal{E}(\iota)$ فقط. $\left[\frac{\pi}{\gamma}, \cdot\right]$ فقط. $\left[\frac{\pi}{\gamma}, \frac{\pi}{\xi}\right]$ فقط. $\left[\frac{\pi}{\xi}, \cdot\right]$

1(2)

(٣٠٠) إذا كانت ١ ، - مصفوفتين على النظم ٢ × ٢ وكان : ١٩-١ = ٩ ، ١٩-١ = ٤ فإن : | ١٩ + إ - إ يمكن أن تساوى

 $\frac{10}{\sqrt{2}}$ (a) $\frac{17}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{2}}$

 $\binom{1}{\nu}$ $\binom{1}{\nu}$

(٣٥) إذا كانت : ١ مصفوفة مربعة بحيث ١١ إ + وكان ١ = قان : ١ =

(ب) ا I+ (()

اذا كانت أ مصفوفة مربعة بحيث $| | | | | \neq \cdot$ وكان : | | | | = 1 فإن : | | | | | = 1(·) (·)

ثانيًا / الأسئلة المقالية

ז بين المصفوفات التي لها معكوسات ضربية والمصفوفات التي ليس لها معكوسات ضربية فيما يلي وأوجد المعكوس

ما قيم أ الحقيقية التي تجعل لكل من المصفوفات الآتية معكوسًا ضربيًا:

a) Exp
$$f$$
 [Design in Exp f and in the exp f and in the exp f and f are f and f and f are f are f and f are f are f and f are f and f are f are f are f and f are f are f are f and f are f are f and f are f are f and f are f are f are f and f are f are f and f are f are f and f are f are f are f are f are f and f are f a

ا أوجد قيم س الحقيقية التي تجعل المصفوفة (٢٧ سي لها معكوس ضربي. ١٠٠٠ المحدد قيم سي الحقيقية التي تجعل المصفوفة (٢٧ سي المحدد قيم سي المحدد المحدد قيم سي ا

 $\left(\begin{array}{ccc} \cdot & \frac{1}{Y} \\ \frac{1}{Y} & \cdot \end{array}\right) = 1 -$ فأثبت أن: س $= \left(\begin{array}{ccc} \cdot & Y \\ Y & \cdot \end{array}\right) = 0$

ان: س $=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ ، ص $=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ فأثبت أن:

~ 1-w= \-(w-w) (m) \(\mathreal = \frac{1}{\sigma} \) (1) \(\mathreal = \frac{1}{\sigma} \) (1)

اذا کانت : $\theta = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ فأثبت أن : $(\theta^{-1})^{-1} = (\theta^{-1})^{-1}$

ا الصفوفة I = - ، $\begin{pmatrix} \xi & Y \\ Y & \psi \end{pmatrix} = -$ ا فأوجد: المصفوفة I = - ا

أوجد المصفوفة ﴿ في كل مما يأتي :

$$\begin{pmatrix} x & y \\ y & y \end{pmatrix} = b \begin{pmatrix} y & y \\ y & y \end{pmatrix}$$

$$\begin{pmatrix} y & y \\ y & y \end{pmatrix} = \begin{pmatrix} y & y \\ y & y \end{pmatrix}$$

$$\begin{pmatrix} y & y \\ y & y \end{pmatrix} = \begin{pmatrix} y & y \\ y & y \end{pmatrix}$$

المسفوفة ب المسفوفة ب المسفوفة ب المسفوفة ب المسفوفة ب المسفوفة ب المسفوفة ب

ان ا کان : $\begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix}$ وکانت : $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ فأوجد : $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

الخطية التالية باستخدام المصفوفات: الخطية التالية باستخدام المصفوفات:

$$0 = \omega - \frac{1}{7} + \omega - \omega = 0$$

🛄 🛄 نصف الفرق بين عددين هو ٢ ومجموع العدد الأكبر وضعف الأصغر هو ١٣ باستخدام المصفوفات أوجد العددين. "T & Va

«Y-«1» فاستخدم المصفوفات في إيجاد قيمتي الثابتين: ٢ ، ب

"T - 6 Yn - - Fn

(١ ، ٢) ، (٥ ، ١) الخط المستقيم الذي معادلته : ص + ٢ - س = حديمر بالنقطتين (١ ، ٥) ، (٢ ، ١) استخدم المصفوفات لإيجاد قيمة كل من الثابتين : ٢ ، ح

ثالثا / مسائل تقيس مهارات التفكير

أولا: س-١ =

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(١) إذا كانت : أ مصفوفة شبه متماثلة على النظم ٢ × ٢ فإن : أ تكون

«9 6 E»

(1) إذا كان : أ مصفوفة شبه متماثلة على النظم ٣ × ٣ فإن : أ تكون

$$I = ^{-}$$
 فإن : θ فإن : θ

$$\frac{\pi}{s}(\omega)$$
 $\frac{\pi}{r}(\varphi)$ $\frac{\pi}{r}(\varphi)$

	(ه) إذا كانت س- مصفوفة مربعة بحيث كان س ^٢ + ه س + ه I =
	فإن المعكوس الضربي للمصفوفة (س- + ۲) يساوى
I τ - ~ (a)	(۱) س-۲۲ (ب) س+۳۲ (ج) ۱۲+س
	 إذا كان: ١٩ - ١ + ١ = فإن المعكوس الضربي للمصفوفة ١ هي
1+1(4)	$l - I(\Rightarrow)$ $I - l(\Rightarrow)$ $l(1)$
or the same the	(٧) إذا كانت ١ ، - مصفوفتين على النظم ٢ × ٢ فأى مما يأتى دائمًا صحيح ؟
م انجا انجا م	(١) إذا كان: ١٩ = فإن: ١٩ = أو ب =
	$^{\prime}$ نا کان: ا \sim $=$ $=$ فإن: ا $=$ $=$ فإن: ا $=$ $=$ $=$ الله خان: الم
	$(7) (9 + 1)^{7} = 9^{7} + 79 + 17$
(د) (۲) فقط.	(١) (١) ، (٢) فقط. (ب) (١) ، (٣) فقط. (ج) (٣) ، (٣) فقط.
Sand April Call	(A) إذا كانت أ مصفوفة مربعة وكان أ = أ فأى مما يأتى صحيح دائمًا ؟
	(') $)$ $ $

(ب) (١) ، (٢) فقط.

(1) (1) (1) (1)

تطبيقات حياتية

(ج) (١) ، (٣) فقط.

(١) (١) فقط.

🛄 معرض الكتاب : ذهبت هدى ومريم إلى معرض القاهرة الدولى للكتاب ، فاشترت هدى من إحدى المكتبات ٥ كتب علمية و ٤ كتب تاريخية ودفعت ثمنًا لهم مبلغ ١٢٠ جنيهًا ، واشترت مريم من نفس المكتبة ٥ كتب علمية ، ١٠ كتب تاريخية ، ودفعت ثمنًا لهم مبلغ ١٥٠ جنيهًا ، فإذا كانت الكتب العلمية لها نفس الثمن ، وكذلك الكتب التاريخية لها نفس الثمن ، استخدم المصفوفات في إيجاد سعر كل من الكتاب العلمي والكتاب التاريخي.

40 6 Y . H

🚹 🛄 الربط بالمستهلك: اشترت أمل ٨ كجم من الدقيق ، ٢ كجم من الزبد ، بمبلغ ١٤٠ جنيهًا

، واشترت صديقتها ريم ٤ كيلو جرامات من الدقيق ، ٣ كيلو جرامات من الزبد بمبلغ ١٧٠ جنيهًا #0 - 6 OH

، استخدم المصفوفات في إيجاد سعر الكيلو جرام الواحد من كلا النوعين.

👚 🛄 الربط بالحياة : يشتري سائق دراجة بخارية ٢٤ لترًا من البنزين و ٥ لترات من الزيت بمبلغ ٥٦ جنيهًا لتموين دراجته ، بينما يشتري سائق دراجة بخارية أخرى ١٨ لترًا من البنزين ، ١٠ لترات من الزيت بمبلغ ٦٧ جنيهًا لتموين دراجته ، استخدم المصفوفات في إيجاد ثمن كل من لتر البنزين ولتر الزيت ، إذا علمت "E 6 1 1 " " " أنهما يستخدمان نفس النوعية من البنزين والزيت.

على الوحدة الأولى

استخدام الآلة الحاسبة العلمية في المصفوفة

يمكن استخدام الآلة الحاسبة العلمية التي تدعم المصفوفات في العديد من العمليات التي تتعلق بالمصفوفات مثل:

- * إيجاد مدور المصفوفة. * إجراء عمليات الجمع والطرح والضرب على المصفوفات.
 - * إيجاد قيمة محدد المصفوفة. * إيجاد المعكوس الضربي للمصفوفة.

وما نعرضه هنا سيكون باستخدام الآلة من النوع (CASIO fx-99IES PLUS)

اُولًا : إِدَجَالَ المَصَمُوفَةُ ﴾ = ﴿ وَلَا الْمُصَمُّوفَةُ ﴾ = ﴿ وَلَا الْمُصَمُّوفَةُ ﴾ :

اضغط على أزرار الآلة بالتتابع التالى من اليسار إلى اليمين :

وذلك لاختيار مصفوفة من النظم ٢ × ٢

ثم أدخل عناصر المصفوفة ﴿ بالضغط على الأزرار بالتتابع التالي :

المفال عناصر 4 = 7 =

ثانيًا : إدخال المصفوفة ب= = (٤ ٨٠) :

• اضغط على أزرار الآلة بالتتابع التالي من اليسار لليمين:

لاختيار مصنفوفة أخرى من النظم ٢ × ٢

ثم أدخل عناصر المصفوفة ب بالضغط على الأزرار بالتتابع التالي : 🕳 🗱 🕳 🔞 🦰 انخال عناصر

المنف الثاني المنف الثاني

وهكذا نكون أدخلنا المصفوفتين 🕴 ، 🛶 ويمكن إجراء بعض العمليات عليهما كالتالي :

ال لإيجاد المنطق الأزرار المنطق الأزرار المنطق الأزرار المنطق الأزرار المنطق الأزرار المنطق المنطق

٣ لإيجاد أحس اضغط الأزرار بالتتابع

بالتتابع من اليسار لليمين:

إلا لا قيمة محدد المصفوفة الأفرار

من اليسار لليمين:

MATA × MATB

B ستظهر لك على الشاشة المصفوفة (٢٥ -٢٨) والتي تمثل أحب المسفوفة (٢٥ ٣٢)

سيظهر لك على الشاشة -٤٩ والذي يمثل قيمة محدد المصفوفة ا

الأزرار بالتتابع من اليسار لليمين :

الأزرار بالتتابع من اليسار لليمين :

المتظهر لك على الشاشة المصفوفة () والتي تمثل المعكوس الضربي للمصفوفة () والتي تمثل المعكوس الضربي للمصفوفة ()

حاول بنفسك

استخدم الآلة الحاسبة لإيجاد كل مما يأتى:

استخدم الآلة الحاسبة لإيجاد كل مما يأتى:

الستخدم الآلة الحاسبة لإيجاد كل مما يأتى:

الوحدة الثانية

البرمجة الخطية

دروس الوحدة

المتباينة الخطية - حل أنظمة من المتباينات الخطية بيانيًا.

1 Ikuw

2 17

البرمجة الخطية والحل الأمثل.

نواتج التعثم

في نهاية هذه الوحدة من المتوقع أن يكون الطالب قادرًا على أن:

- يحل متباينات من الدرجة اللولى فى مجهول
 واحد مع تمثيل الحل بيانيًا.
- يحل متباينات من الدرجة الأولى فى مجهولين
 وتحديد منطقة الحل بيانيًا.
 - يحل نظامًا من المتباينات الخطية بيانيًا.
 - يحل مسائل حياتية على أنظمة المتباينات الخطية.
 - بستخدم البرمجة الخطية فى حل مشكلات رياضية حياتية.
- يضع معلومات خاصة بموضوع مشكلة رياضية
 حياتية فى جدول مناسب ، ويترجم البيانات لها
 فى صورة متباينات خطية ، ثم يحدد منطقة الحل
 بيانيًا.
 - يعين دالة الهدف بدلالة الإحداثيات ، مع تحديد
 النقط التى تنتمى إلى مجموعة الحل وإعطاء
 الحل الأمثل لدالة الهدف.

الدرس

1

المتباينة الخطية - حل أنظمة من المتباينات الخطية بيانيا

تذكر خواص علاقة التباين في ع :

بفرض أن ٢ ، - ، ح ثلاثة أعداد حقيقية :

• إذا كان: اع≤ب

• إذا كان: ١٩≤٠

• إذا كان: ١٩≤٠

فإن: ١ + ح ح ب + ح سواء كانت ح موجبة أو سالبة

فإن: ١ح ≤ ب إذا كانت حموجبة

فإن: ١ح≥بح إذا كانتحسالبة

يمكنك استنتاج الخواص السابقة في حالة علامات التباين الأخرى «≥ ، > ، <»

حل متباينة الدرجة الأولى في متغير واحد بيانيًا

- * كل من المتباينات: ٣ ٠ < ٥ ، ٤ ص ≥ ٢ ٠ ، ٢ ≤ ص < ٦ تسمى متباينة من الدرجة الأولى في متغير واحد.
 - * حل المتباينة معناه إيجاد جميع عناصر مجموعة التعويض التي تحقق المتباينة.
 - * وقد تكون مجموعة التعويض هي ع أو ع × ع
 - ، وفيما يلى نوضح كيفية حل المتباينة من الدرجة الأولى في متغير واحد في كلتا الحالتين.

ر مثال توضیحی ر

وضح بيانيًا مجموعة حل المتباينة: ٣ - ١٠ + ١٠

ا إذا كانت مجموعة التعويض هي ع × ع

إذا كانت مجموعة التعويض هي ع

الحــل

إذا كانت مجموعة التعويض هي ع تمثل مجموعة الحل على خط الأعداد

إذا كانت مجموعة التعويض هي ع × ع تمثل مجموعة الحل على الشبكة التربيعية

- مجموعة الحل هي جميع الأزواج المرتبة التي مسقطها السيني أكبر من -٣
- مجموعة الحل هي المنطقة التي تقع على يمين الخط المستقيم : ص = -٣ (وتسمى نصف المستوى).
- رسم المستقيم - ٣ بشكل متقطع يشير أن مجموعة نقاط هذا المستقيم ليست متضمنة في مجموعة الحل.
- مجموعة الحل هي جميع الأعداد الحقيقية الأكبر
 من -٣
- مجموعة الحل تمثل الجزء من خط الأعداد الذي يقع يمين العدد -٣
 - وجود حلقة مفرغة عند -٣ يعنى أنها ليست متضمنة في مجموعة الحل.

ر مثال ۱

وضح بيانيًا مجموعة الحل للمتباينة : ه س - $V \ge V$ س - ۱ في $S \times S$

الحــل

- 1- w- Y ≥ V w- 0 ...
- .: ٥ ٠ ٢ ٠ ≤ -١ + ٧
 - . 7≥0-7:
 - : س≤٢

للحظ أن

- ١ المنطقة المظللة على يسار المستقيم ٢ لأن علاقة التباين أصغر من.
- المستقيم ص = ٢ رسم متصلًا لاحتواء علاقة التباين على علامة التساوى أي ≤

مثال آ

وضح بيانيًا مجموعة حل المتباينة: - س - ١ ≥ ٤ - س + ٥ < - س + ١٧ حيث - س ∈ ع

الحــل

مثال ٣

أوجد بيانيًا مجموعة حل المثباينة:

الحــل

بتجزئة المتباينة إلى متباينتين كالتالي :

0+0->1-0-4

حل متباينة الدرجة الأولى في متغيرين بيانيا

* من المعلوم أنه يمكن تمثيل

المعادلة الخطية:

٢ - س + ٣ ص = ٦ بيانيًا

بخط مستقيم كالتالى:

٣		0-
	۲	ص

«ويمكن أخذ زوج مرتب ثالث

للتحقق من صحة الرسم»

- * نلاحظ من الرسم أن هذا المستقيم يجزئ المستوى الكارتيزي إلى ثلاث مجموعات من النقط:
- $\Upsilon = \infty + \Upsilon + \Upsilon$: كل منها يحقق أن : $\Upsilon = 0$ مجموعة نقط المستقيم ل (يسمى المستقيم الحدى) والتي كل منها يحقق أن :
 - مجموعة نقط المستوى التي تقع على أحد جانبي المستقيم ل (وتسمى نصف مستوى) ويرمز لها بالرمز في والتي كل منها يحقق أن : 7 u + 7 = v > 7
 - مجموعة نقط المستوى التي تقع على الجانب الآخر من المستقيم ل (وتسمى نصف مستوى أيضًا)

 ويرمز لها بالرمز في والتي كل منها يحقق أن: ٢ س + ٣ ص < ٦

 ونستطيع من التوضيح السابق أن نستنتج أن:
 - نصف المستوى ف، هو المنطقة التي تعبر عن مجموعة حل المتباينة : ٢ س + ٣ ص > ٦
 - نصف المستوى في بالإضافة إلى المستقيم ل تعبر عن مجموعة حل المتباينة : ٢ -س + ٣ ص ≥ ٦
 - نصف المستوى في هو المنطقة التي تعبر عن مجموعة حل المتباينة: ٢ س + ٣ ص < ٦
 - نصف المستوى في بالإضافة إلى المستقيم ل تعبر عن مجموعة حل المتباينة : ٢ -س + ٣ ص ≤ 7

خطوات حل متباينة الدرجة الأولى في متغيرين بيانيًا

١ نمثل معادلة المستقيم المرتبطة بالمتباينة

وذلك بخط متصل في حالة علامة التباين ≥ أ، ≥ ، وبخط متقطع في حالة علامة التباين > أ، <

ا نحدد نصف المستوى الذي تقع فيه منطقة الحل

وذلك بأخذ أي نقطة (س, ، ص,) تنتمي إلى أحد نصفى المستوى كنقطة اختبار ونعوض بها في المتباينة :

- فإن حققتها كانت منطقة الحل تقع في هذا النصف.
- وإن لم تحققها كانت منطقة الحل تقع في نصف المستوى الآخر الذي لا تنتمي إليه نقطة الاختبار.

ملاحظة

للتسهيل يمكن اختيار نقطة الأصل (٠٠٠) كنقطة اختبار إذا كان المستقيم الحدى لا يمر بنقطة الأصل.

مثال ٤

مثل بيانيًا مجموعة الحل للمتباينة : س – τ ص $\leq \tau$ في σ × σ

الحل

١ نرسم المستقيم الحدى ل الذي معادلته :

(بخط متصل لأن علامة التباين ≤)

٣		س
	1-	ص

بالاستعانة بالجدول الآتى:

1	٣		-
		1-	ص

٢ نأخذ نقطة الأصل كنقطة اختيار:

- ، ٠٠ النقطة (٠ ، ٠) تحقق المتباينة : (لأن : ٠ ≤ ٣)
- ∴ مجموعة الحل للمتباينة هي المستقيم ل ل نصف المستوى الذي تنتمي إليه النقطة (٠٠٠) وتمثلها المنطقة المظللة في الشكل السابق.

[لاحظ أنه يمكننا رسم المستقيم الحدى بدون تكوين الجدول السابق وذلك بالاستعانة بميل المستقيم والجزء المقطوع من محور الصادات كما درسنا في الأعوام السابقة]

مثال ٥

مثل بيانيًا مجموعة الحل للمتباينة : $\Upsilon - \omega + 3 \rightarrow 17$ في 2×2

الحل

١ نرسم المستقيم الحدى ل الذي معادلته :

(بخط متقطع لأن علامة التباين >)

بالاستعانة بالجدول الأتى:

٤		-
	٣	ص

ا نأخذ نقطة الأصل كنقطة اختبار

- ، ٠٠ (٠ ، ٠) لا تحقق المتباينة (لأن : ٠ < ١٢)
- .. مجموعة الحل للمتباينة هي نصف المستوى الذي لا تنتمي إليه النقطة (٠٠٠) وتمثلها المنطقة المظللة في الشكل السابق.

مللحظات

- المعادلة : ص = ، تمثل بيانيًا بمحور السينات.
- المعادلة : → = تمثل بيانيًا بمحور الصادات.
- المعادلة : ص = ٢ تمثل بيانيًا بمستقيم يوازي محور السينات ويمر بالنقطة (٠٠٠)
- ◄ المعادلة : ص = ٢ تمثل بيانيًا بمستقيم يوازي محور الصادات ويمر بالنقطة (٢ ، ٠)
- معادلة المستقيم التي على الصورة: $\frac{-0}{4} + \frac{0}{-1} = 1$ تمثل بيانيًا بمستقيم يمر بالنقطتين (1 ، ·) ، (· ، ·)

حاول بنفسك

مثل بيانيًا مجموعة الحل للمتباينة: ٢ -س - ه ص ≤ ١٠ في ع × ع

حل أنظمة من المتباينات الخطية بيانيا

لإيجاد الحل البياني لمتباينتين نتبع الأتي:

- نظلل المنطقة سم التي تمثل مجموعة الحل للمتباينة الأولى.
- ا نظلل المنطقة سى التى تمثل مجموعة الحل للمتباينة الثانية.
- فتكون مجموعة حل المتباينتين معًا تمثلها منطقة التظليل المشتركة سحيث س=س ∩سح

مثال ٦

مثل بيانيًا مجموعة الحل للمتباينتين: $-\omega + \tau$ $\omega \leq \tau$ ، $\tau = \omega + \omega \leq 3$ في $\sigma = 0$

الحـل

- ١٠ نرسم المستقيم الحدى ل، : + ٢ ص = ٣ (بخط متصل)
 ١٠ النقطة (٠٠٠) تحقق المتباينة (لأن : ٠ < ٣)
 - ∴ المنطقة سي مجموعة حل المتباينة : س + ٣ ص ≤ ٣

يمثلها ل, U نصف المستوى الذي تقع فيه نقطة الأصل [شكل ١١]]

- ا نرسم المستقيم الحدى ل ، ٢ س + ص = ٤ (بخط متصل)
 - ، ٠٠٠ النقطة (٠٠٠٠) تحقق المتباينة (لأن: ٠٠٤)
 - .. المنطقة سى مجموعة حل المتباينة : ٢ س + ص ≤ ٤
- ، يمثلها لى U نصف المستوى الذي تقع فيه نقطة الأصل [شكل/٢]]

رس ∩ س= س المتباينتين معًا هي : س= س ∩ س س مجموعة حل المتباينتين معًا هي : س = س م س س

وتمثلها منطقة التظليل المشتركة [شكل ٣]

. < 0

· < 00

ملاحظة

محورا الإحداثيات السيني والصادي يقسمان المستوى إلى ٤ أرباع:

الربع الأول : حيث س > .

، الربع الثاني: حيث س <٠ ، ص >٠

، الربع الثالث: حيث س <٠ ، ص <٠

، الربع الرابع : حيث س > ، ، ص < .

مثال ۷

مثل بيانيًا محموعة الحل للمتباينات:

س≥، ، ص≥، ، ص+٣-س≤٩ ، ص-س<١ في ع×ع

- ١ المتباينتان س ≥ ، ، ص ≥ ، مجموعة الحل لهما يمثلها و س ل وص ل الربع الأول من المستوى.
 - نرسم المستقيم الحدى ل، : ص + 7 ص = 9 (بخط متصل)
 - ١٠: النقطة (٠٠،٠) تحقق المتباينة (لأن : ٠< ٩)
 - ∴ المنطقة سي مجموعة حل المتباينة : ص + ٣ س ≤ ٩
 - ، يمثلها ل_{ال} لا نصف المستوى الذي تقع فيه نقطة الأصل [شكل [١]]

- ١> س- س> مجموعة حل المتباينة : ص س< ١
- ، يمثلها نصف المستوى الذي تقع فيه نقطة الأصل [شكل [١]]

1-		<u>_</u>
	١	ص

٤ س- مجموعة الحل للمتباينات الأربعة تمثلها المنطقة الواقعة في الربع الأول

والمشتركة في التظليل [شكل (٣)]

مالحظة

في المثالين السابقين رسمنا رسمًا منفصلاً لتوضيح منطقة الحل لكل متباينة على حدة ثم جعلنا الشكل الأخير يوضح منطقة الحل لجملة المتباينات ويمكن للطالب بعد قليل من التمرين أن يستغنى عن هذه الأشكال ويكتفى بالشكل الأخير،

مثال ۸

مثل بيانيًا مجموعة الحل للمتباينتين:

الحــل

١ نرسم المستقيم الحدى ل، :

٢ - س + ص = ٦ (بخط متقطع)

وهو يمر بالنقطتين (٠،١) ، (٢،٠)

، ٠٠ النقطة (٠،٠) لا تحقق المتباينة

.. مجموعة الحل سى يمثلها نصف المستوى الذي لا تقع فيه نقطة الأصل.

رسم المستقيم الحدى له: ٤ - س + ٢ ص = ٤ (بخط متصل) وهو يمر بالنقطتين (٠٠٢) ، (١٠٠)

، .. النقطة (٠،٠) تحقق المتباينة.

.. مجموعة الحل سى يمثلها المستقيم لى ل نصف المستوى الذي تقع فيه نقطة الأصل.

مثال ۹

مثل بيانيًا مجموعة الحل لجملة المتباينات الآتية :

٢-س+٢ص≤١، ص+٣≥٠، -س-ص>٠فيع×ع

الحــل

١ نرسم المستقيم الحدى

ل، : ٣ - س + ٢ ص = ٦ (خط متصل)

وهو يمر بالنقطتين (٢ ، ٠) ، (٠ ، ٣)

، : النقطة (٠٠٠) تحقق

المتباينة (لأن: ١ < ٦)

.: مجموعة الحلس, يمثلها

المستقيم ل ل نصف المستوى

الذي تقع فيه نقطة الأصل.

ا نرسم المستقيم الحدى لم : ص = -٣ (خط متصل)

[مستقيم يوازي محور السينات ويمر بالنقطة (٠٠- ٣)]

٢- < · : النقطة (٠ ، ٠) تحقق المتباينة (لأن : ٠ > -٣)

.. مجموعة الحل سم يمثلها المستقيم لى ل نصف المستوى الذي تقع فيه نقطة الأصل.

المستقيم الحدى لم : س - ص = ، (خط متقطع)

وهو يمر بالنقطتين (٠٠٠)، (١،١)

، ﴿ ١٠ النقطة (٠ ، ٢) لا تحقق المتباينة (لأن: -٢ > ٠)

∴ مجموعة الحل سي يمثلها نصف المستوى الذي لا تقع فيه النقطة (٠، ٢)

وتمثلها المنطقة المظللة.

مثال ۱۰

مصنع لإنتاج لعب الأطفال ينتج لعبة على شكل سيارة وأخرى على شكل طائرة يعمل بطاقة إنتاج يومى قدرها ٢٥٠ لعبة على الأكثر فإذا كانت تكلفة إنتاج السيارة الواحدة ١٥ جنيهًا ، تكلفة إنتاج الطائرة الواحدة ١٠ جنيهات والتكلفة الإجمالية للإنتاج اليومى لا تزيد عن ٢٠٠٠ جنيه.

اكتب نظام متباينات خطية يمثل ما سبق ثم مثل بيانيًا منطقة حل هذا النظام.

الحــل

بفرض عدد السيارات المنتجة س سيارة ، الطائرات ص طائرة.

• نظام المتباينات هو :

تعين المنطقة التي تمثل مجموعة الحل للمتباينات كالتالي :

المتباینتان
$$-0 \ge \cdot$$
 ، $-0 \ge \cdot$ یمثلها و $-0 \cup 0$ و $-0 \cup 0$ الربع الأول.

نرسم المستقيم الحدى ل
$$_{\gamma}: T \to 0 + 1 \to 0 \leq 1.7$$
 (بخط متصل) وهو يمر بالنقطتين (\cdot , \cdot , \cdot) ، (\cdot , \cdot , \cdot)

تمارین 💪

على المتباينة الخطية - حل أنظمة من المتباينات الخطية بيانيًا

اغتبر نفسك

👶 مستوبات عليا

•تذكر •فهـم •تطبيق

🔲 من أسئلة الكتاب المدرسي

أولا 🖊 أسئلة الاختيار من متعدد اختر الإجابة الصحيحة من بن الإجابات المعطاة: ﴿ (١) مجموعة حل المتباينة : -١ < - س ≤ ١ في ع هي [7,1](1)]7,1](2) [7,1](1) • (٣) الربع الذي يمثل حل نظام المتباينتين: س > ، ، ص > ، هو (1) 1806. (ج) الثالث. (ب) الثاني. (د) الرابع. • (٤) المنطقة التي تمثل مجموعة حل المتباينتين: ص > ، ، ص < ، في ع × ع هي الربع الأول. (د) الثاني. (ج) الثالث. (د) الرابع. $(7,7)(3) \qquad (7-7)(4) \qquad (7,7)(4) \qquad (7-7)(1)$ (٦) النقطة التي تنتمي إلى مجموعة حل المتباينتين: س > ٢ ، ص > ١ معًا هي (\(\cdot\)(\(\phi\)) (Y . 1) (1) (1,7)(2) (y) النقطة التي تقع في منطقة حل المتباينة : -س + ص ≤ ٣ هـ (7:1)(1) (A) النقطة لا تقع في منطقة حل المتباينة : ٢ -س + ص ≥ ه (1, 1-)(1) (١) النقطة (٢ ، ٢) تنتمى لمجموعة حل المتباينة : ٣ - ص - ص ١ (ب) ≥ (ج) د المِعْا >(1) • (١٠) إذا كانت النقطة (٢ ، ٣) تنتمي لمجموعة حل المتباينة س + ص ≤ ٢ فإن: ·> f(-) o ≤ f(i) (۱) إذا كانت : (۱ ، ص) تنتمى إلى منطقة حل المتباينة : -س + ۲ ص < ۷ فإن :

 $V < \omega(1)$ $V = \omega(2)$ $V < \omega(1)$

(۱) ص < ۲

(۱) النقطتان (۳ ، ه) ، (۱ ، ه) تنتميان لمجموعة حل المتباينة : - س + ص ٨				
≥(3)	> (÷)	(ب) ≥	<(1)	
٠٠٠ + ص > ٣	۲ ، ص ≥ ، ، ۲ ع	ى مجموعة حل المتباينات : - ك	(٣) النقطة التي لا تنتمي إا	
			هی	
(1,4)(1)	(× , L) (÷)	(ب) (۲ ۴ ۲)	(1,7)(1)	
		نظام حل المتباينات : حن > ٢		
	100		هی	
	4	(÷) (÷)		
		مجموعة حل المتباينتين: ٢ - س + ٠		
		(ب) (۲ ، ۲)		
		مجموعة حل نظام المتباينات: -		
		، في ع × ع هي		
		(ب) (۲ ، ۲)		
≥ ه ، ۲ ≤ ص ≤ ٤	المتباينات: ١ ≤ - س:	: المنطقة التي تمثل مجموعة حل	• (۱۷) في المستوى الديكارتي	
	بطارك لمجتمع رائي	W-1 424	. تكون منطقة	
		(ب) مربعة.		
مثلثة رؤوسها	ص ≤ ٤ تمثل منطقة	: س ≥ . ، ص ≥ . ، س +		
1-1-1-21			النقط	
((() ((,))	(ب) (۰،۰) (۰)	(٤ , ٤) , (-	(·) ((٤ (·) (1)	
(٤ , ٤) , (- , ٤) ((· · ·) ()	(• • ٤) • (٤	(ج) (٤،٤) ، (٠)	
 (١) إذا كانت سم هي مجموعة حل المتباينة: -س+ ص ≤ ه ، صم هي مجموعة حل المتباينة: 				
	N. ST	:	+ ص < ه فإر	
	(ب)س⊃س(ب)		ر1) س=صر (۱)	
Ø =-	(۱)س∩ص		~>~(÷)	
(1) إذا كانت المهي مجموعة حل المتباينة: -س + ص < ٤ ، - هي مجموعة حل المتباينة: -س + ص > ٤				
. A Up Water Say		3 10 1 1 3 13 -	فإن :	
Ø=-U(1)	100000000000000000000000000000000000000	→⊃ f (÷)		
ناه : ا		٠٠) ، (٢ ، ، ٤) هي ر		
I had the se	=,	، ٢ - س + ص ≤ حد فإن: ح	-س≥،، ص≥،	
(د) ٤	(خ) ۲	(ب) ۲	1(1)	

(٢٣) أي من الأشكال البيانية الآتية يمثل مجموعة حل للمتباينة : ٥ - ٢ - س < ٣ في ع × ع ؟

(6) الشكل المقابل يمثل مجموعة حل المتباينة في ع × ع

- 📦 الشكل الآتي يمثل مجموعة حل المتباينة في ع × ع

(٢) أي من الأشكال البيانية الآتية يمثل مجموعة حل للمتباينة : · ≤ - · < ٢ في ع × ع ؟ -

البيانية الآتية يمثل مجموعة حل المتباينة : $\cdot \leq \infty < 1$ في 2×2 ؟

(٩) المنطقة المظللة تمثل مجموعة حل المتباينات:

$$\cdot \leq 1 + \omega + \gamma + \omega + \gamma = \cdot \cdot \leq 1 - \omega + \gamma = 0$$

(ج) ص + ۱ ص − ۱ ≥ ٠ (د) ح الجزء المظلل في الشكل المقابل يمثل (٣)

مجموعة حل المتباينات

(٦) عن + ص = ١٥
 (٣) الجزء المظلل في الشكل المقابل

يمثل مجموعة حل المتباينات

- 🙀 الجزء المظلل في الشكل المقابل
- يمثل مجموعة حل المتباينات
- - £ ≥ + Y .
 - (ب) + ۲ ص ≤ ٤ ، ٢ س + ص ≤ ٤
- (ج) س ٢ + ص ، ، ح ص ، ، ح ص < ٤
 - ، ٢ س + ص < ٤
- · ≥ oo € + or Y · · ≥ oo Y + or € (1)
- (٣٣) المنطقة المظللة في الشكل المقابل تمثل مجموعة حل المتبابنات
 - , ₹≥ 0 , 0 ≤ 0 -
 - (١) ٤ س + ٣ ص ≥ ١٢
 - (ب) ع س + ۳ ص > ۱۲
 - (ج) ٢ -س + ٤ ص ≥ ١٢
 - . ≤ 17+ m £+ m T(s)

- (٢٥) الجزء المظلل في الشكل المقابل يمثل مجموعة حل المتباينة
- ٩ س + ب ص ≤ حديث
 - . < 21 . < 41 . < 1(1)
 - ·>>: ·> · · < (()
 - . < > . . > . . < ((=)
 - .>>: < -: .> *(1)
- $^+$ ائی التمثیلات الآتیة تصلح لتمثیل المتباینة : $^+$ س $^+$ ص $^-$ حیث $^+$ ، $^-$ ، ح $^+$ ع

◄ الدرس الأول 🔍

﴿ ﴿ أَى التمثيلات الآتية تصلح لتمثيل المتباينة : ٢ ص + ب ص ≥ حديث ٢ ، ب (ع + ع - ع - ع - ع - ع - ع - ع - ع - ع

🗘 🙌 إذا كانت ٢ ، ب أعداد حقيقية موجبة فإن أنسب تمثيل للمتباينة : ص < ٢ سر

ثانيا / الأسئلة المقالية

أوجد مجموعة الحل في ح لكل من المتباينات التالية ممثلًا إياها على خط الأعداد:

0 > 7 - 0 - 7 (1)

أوجد مجموعة الحل في ع × ع لكل من المتباينات التالية بيانيًا:

E-w<7> -(7)

Y-≤ - (٣)

LINES INCOME STREET

€ ≥ U-> Y- (A)

- (v) ص ≤ Y w
- ت حل كل نظام من المتباينات الخطية التالية بيانيًا في ع × ع:
- 1<0,0>1<0,0<1<0)

- - 2 + Y. ≤ 0 7 , 0 ≤ 0 7 + 3 0
 - 1-≥ + (1> (1)

- 1 < w w (T ≥ w + w (A)
- 1-0-<001)00(1)

على كل نظام من المتباينات الخطية التالية بيانيًا في ع × ع:

- (۱)س ≥ ، ، ص ≥ ، ، س+ص ≤ ه
- Y-≤wY+w, Y+w> , €≥w=11 (f)
- $\Lambda \leq \omega \geq 1 + \omega$, $\omega \geq 1 1 + \omega$, $\omega \geq 1 1 + \omega$
 - £≥ + + 1≥ + + + . ≤ + - (€)
- (a) (a) a -- 1, 1 1 + 1 a ≤ 11 , a < 1 + 1 0
 - 1> w w 1 × 2 w + w ≥ 1 , w w < 1
 - 1-w≥ · · ≥ w≥ · · · ≥ w- ≥ · (v)
- 7≤ 7 0
 - (۱) + ٤ ص < ۱ ، - ص < ۲ ، . ≤ س < ٤

ف الشكل المقابل:

وحب مربع مساحة سطحه ١٦ وحدة مربعة.

اكتب المتباينات التي تحقق مجموعة حل المنطقة المظللة بالشكل المقابل.

ثالثا 🗸 مسائل تقيس مهارات التفكير

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

إذا كانت النقطة (٢ ، ب) لا تنتمي لجموعة حل المتباينة : ٢ - س + ص > ٢ فإن

- ア<--- トア(a) ア≥--+トア(=) T>-+ + T(-) T < -+ + T (1)
 - (١) أي المتباينات الأتية لا تقع مجموعة حلها في الربع الثاني أو الثالث؟
 - (ب) س < ٠ (ج) ص < ٠ (ب) (۱) س > ٠
 - (٣) إذا كانت مجموعة حل المتباينة : ٢ س + ص > ٢ لا تقع في الربع الثالث أو الرابع فإن
 - (ب) ۴ ح ٠ 1<1(1) · = ۴ (ج) . < 1(1)

تطبيقات حياتية

🚺 🛄 يريد مربى حيوانات عمل حظيرة مستطيلة الشكل ، يجب أن لا يقل طول الحظيرة عن ٨٠ مترًا وأن (اكتب أربعة أبعاد ممكنة) لا يزيد محيطها عن ٣١٠ أمتار فما الأبعاد المكنة للحظيرة ؟

🚺 🛄 الربط بالمهن :

يريد نجار شراء نوعين من المسامير ، ولا يريد دفع أكثر من ٤٨ جنيهًا ثمنًا للشراء ، فإذا كان النجار يحتاج ٣ كيلو جرامات على الأقل من النوع الأول ، وكيلو جرامًا واحدًا على الأقل من النوع الثاني ، فما المبلغ الذي سيدفعه النجار ثمنًا لكل نوع ، إذا علمت أن ثمن الكيلو جرام الواحد من النوع الأول هو ٦ جنيهات ، وثمن الكيلو جرام من النوع الثاني هو ٨ جنيهات ؟

- (١) اكتب نظامًا من المتباينات الخطية يصف هذا الموقف.
 - (٢) مثل بيانيًا هذا النظام لتوضيح الحلول المكنة.
 - (٣) اذكر نقطة تكون حلا لهذا النظام ؟
 - (٤) اذكر نقطة لا تكون حلًا لهذا النظام ؟
- 👚 🛄 أعطى الأستاذ كريم لتلاميذه زمنًا قدره ٦٠ دقيقة لإجابة اختبار في الرياضيات ، يجب أن يجيب التلاميذ عن ٤ أسئلة على الأقل من القسم (٩) ، ٣ أسئلة على الأقل من القسم (-) ، بحيث لا يقل عدد الأسئلة المجابة من القسمين معًا عن ١٠ أسئلة.

فإذا استغرقت هناء ٤ دقائق لإجابة كل سؤال في القسم (١) ، ٥ دقائق لإجابة كل سؤال في القسم (١) . كم سؤالًا في كل قسم حاولت هناء الإجابة عنه ؟ .

الدرس **2**

البرمجة الخطية والحل الأمثل

- * البرمجة الخطية: هي إحدى الطرق التي تستخدم للحصول على أفضل الحلول لتحقيق هدف معين في ضوء القيود والإمكانيات المتاحة والوصول إلى الحل الأمثل.
 بحيث يكون الهدف الذي نسعى لتحقيقه على صورة دالة خطية تسمى «دالة الهدف»
 وتكون القيود والإمكانيات المتاحة على صورة مجموعة من المتباينات الخطية.
 - * تعتمد طريقة البرمجة الخطية على :
- تمثیل نظام المتباینات الذی یعبر عن القیود بحیث نحصل علی منطقة مضلعة تمثل «مجموعة الحل» وغالبًا ما تشتمل القیود علی المتباینتین $-v \ge v \ge v$ وهذا یعنی أن منطقة الحل تقع فی الربع الأول.
- تعيين دالة الصدف: V = V V + A صحيث V = V ثابتان فنرسم المستقيم V = V + A و الذي يمر بنقطة الأصل ثم نجعل هذا المستقيم يتحرك موازيًا لنفسه لأعلى حتى يمر برءوس المضلع المثل لمجموعة حل المتباينات وحيث إن جميع هذه المستقيمات المتوازية تكون متساوية في الميل ومختلفة فقط في قيمة الحد المطلق V = V وكل نقطة V = V تنتمى إلى مجموعة الحل وتنتمى لنفس المستقيم تعطى قيمة وحيدة للعدد V = V وبالتالى نستطيع أن نحدد أكبر قيمة أو أصغر قيمة لدالة الهدف .

(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(10-1)
(1

فمثر إذا كانت مجموعة الحل المثلة لمجموعة المثلة المجموعة المتباينات التي تمثل القيود هي المنطقة المظللة في الشكل المقابل والمطلوب هو إيجاد أكبر وأقل قيمة للمقدار : ٧ = ٣ - ٠٠ + ٢ ص فإننا نعوض بالنقط ٢ ، ٠ - ، ٥ ورؤوس المضلع) في دالة الهدف

لاحظ أن

قيمة دالة الهدف عند أى نقطة تقع على ضلع من أضلاع المنطقة المظللة تكون محصورة بين قيمتيهما عند رأسى المضلع الواصل بينهما هذا الضلع

وبالتالي تكون أكبر قيمة هي ٢٨ وذلك عند النقطة ٤ (٦ ، ٥) وأقل قيمة هي ١١ وذلك عند النقطة ٢ (١ ، ٤)

مثال ۱

عين مجموعة حل المتباينات الآتية معًا بيانيًا:

17≥ m + + m + 1 m ≤ 1 , 7 - m + 1 m ≤ 11

ثم أوجد من مجموعة الحل قيم (س ، ص) التي تجعل (س) أكبر ما يمكن حيث : س = ٥٠ س + ٥٥ ص

الحــل

أولاً : نعين المنطقة التي تمثل مجموعة الحل للمتباينات :

- المتباينتان : $-0 \ge \cdot$ ، $0 \ge \cdot$ يمثلهما و $-0 \cup 0$ و ص الربع الأول.
- (\cdot, λ) نرسم المستقیم الحدی ل $\cdot \cdot \omega + \gamma = \lambda$ (بخط متصل) وهو یمر بالنقطتین (\cdot, λ) ، (λ, λ)
 - نرسم المستقيم الحدى لم : Υ ω + Υ ω = Υ (بخط متصل) وهو يمر بالنقطتين (Υ ، Υ) ، (Υ ، Υ)
 - .. مجموعة حل المتباينات تمثلها المنطقة المظللة

بالشكل البياني وهي المنطقة المضلعة أحدو

لإيجاد نقطة ب جبريًا 🗝

نحل المعادلتين المثلتين بالمستقيمين ل، ، ل، حيث : U_{r} : $U_{$

ثانيًا : نحدد رؤوس منطقة الحل :

رؤوس منطقة الحل هي: ١ (٤،٠) ، - (٢،٣) ، ح (٠،٤) ، و (٠،٠)

ثالثًا : نحدد قيمة دالة المدف عند كل رأس :

· دالة الهدف ص = ٥٠ -س + ٥٧ ص

 $. = . \times Vo + . \times o. = [\ \ \ \ \] \quad \text{``} \quad \text{``}$

.. أكبر قيمة لدالة الهدف هي ٣٢٥ وذلك عند النقطة - (٢ ، ٣)

منطقة حل

دائسة الهدف

البرمجة الخطية

تطبيقات حياتية على البرمجة الخطية

المشكلات الحياتية المرتبطة بالبرمجة الخطية يمكن التعامل معما بالخطوات التالية :

- تحليل الموقف أو المشكلة وذلك بتحديد المتغيرات والقيود والمعلومات المتاحة وتنظيمها في جدول.
 - آ ترجمة القيود في صورة نظام من المتباينات الخطية.
 - ٣ كتابة دالة الهدف.
 - ٤ تمثيل نظام المتباينات الخطية بيانيًا وتحديد منطقة الحل.
 - ٥ تحديد رؤوس منطقة الحل.
- ↑ إيجاد دالة الهدف عند كل رأس من الرؤوس السابقة لتحديد الرأس الذي يتحقق عنده الهدف المطلوب.

مثال ۲

رؤوس المنطقة المضلعة

مخبر ينتج نوعين من الكعك ، يلزم للكعكة من النوع الأول ٢٠٠ جرام من الدقيق ، ٢٥ جرامًا من الزبد ، ويلزم للكعكة من النوع الثاني ١٠٠ جرام من الدقيق ، ٥٠ جرامًا من الزبد ، فإذا كانت كمية الدقيق المتاحة هي ٤ كجم فقط وكمية الزبد المتاحة هي ١٠٠ كجم فقط فأوجد أكبر عدد ممكن من الكعك يمكن عمله.

- * نفرض أن : عدد الكعك من النوع الأول = م كعكة ، عدد الكعك من النوع الثاني = ص كعكة
 - ننظم المعلومات المتاحة في المشكلة في جدول :

	الكمية المتاحة	النوع الثاني	النوع الأول	es a _u s
	٤	١	۲	دقيق
1	170.	0.	Yo .	زبد

- لترجم البيانات والقيود في صورة نظام من المتباينات :
 - ١ -س ≥ ، ، ص ≥ .
- ٤٠٠٠ ص ≤ ٠٠٠٠ ال الله ٢٠٠٠ من + ص ≤ ١٤٠٠ الله ٢٠٠٠ من + ص ≤ ١٤٠٠ الله على الله على
- ٠٠ ≥ ٠٠ + ٥٠ ص ≤ ١٢٥٠ أي أن س ٢٠ ص ≤ ٥٠
 - * نكتب دالة الهدف : س = -س + ص حيث س أكبر ما يمكن.
 - تمثيل نظام المتباينات الخطية بيانيًا وتحديد منطقة الحل :
 - ١ المتيانتان س ≥ ، ، ص ≥ . يمثلهما وس لا وص لا الربع الأول.
 - 🕥 نرسم المستقيم الحدى ل. :
 - ٢ س + ص = ٤٠ (بخط متصل) وهو يمر بالنقطتين
 - (· · Y.) · (E. · ·)

" نرسم المستقيم الحدى لم: - + ٢ ص = ٥٠ (بخط متصل) وهو يمر بالنقطتين (٠، ٥٠) ، (٥٠ ، ٠) . . مجموعة حل المتباينات تمثلها المنطقة المظللة بالشكل البياني وهي المنطقة المضلعة ٢ - ح و

* نحدد رؤوس منطقة الحل :

* نحدد قيمة دالة الهدف عند كل رأس :

د دالة الهدف
$$\gamma = -\upsilon + -\upsilon$$
 .: $\left[\sqrt{} \right]_{\varepsilon} = \cdot + \cdot = -\upsilon$. $\left[\sqrt{} \right]_{\gamma} = \cdot + \cdot = -\upsilon$. $\left[\sqrt{} \right]_{\gamma} = \cdot + \cdot = -\upsilon$. $\left[\sqrt{} \right]_{\gamma} = \cdot + \cdot = -\upsilon$. $\left[\sqrt{} \right]_{\gamma} = \cdot + \cdot = -\upsilon$.

.. أكبر عدد من الكعك يتم صنعه هو ٣٠ كعكة منها ١٠ من النوع الأول ، ٢٠ من النوع الثاني.

مثال ۳

مصنع طاقته الإنتاجية ١٢٠ وحدة على الأكثر من نوعين مختلفين من السلع ويحقق ربحًا في كل وحدة من النوع الأول ١٥ جنيهًا وربحًا لكل وحدة من النوع الثاني ٨ جنيهات ، وكان ما يباع من النوع الثاني لا يقل عن نصف ما يباع من النوع الأول.

أوجد عدد الوحدات التي يجب إنتاجها من كل نوع لكي يحقق المصنع أكبر ربح ممكن.

الحـــل

- * نفرض أن : عدد وحدات النوع الأول = -س ، عدد وحدات النوع الثاني = ص
 - ننظم المعلومات المتاحة في المشكلة في جدول :

· ·	النوع الأول	النوع الثاني	الحد الأقصى
العجدة المنتجة	<u></u>	ص	17.
الربح	10	٨	-

* نترجم البيانات والقيود في صورة نظام من المتباينات :

١ -س ≥ ٠ ، ص ≥ ٠

$$\cdots \frac{1}{7} \leq \omega$$
:

٣٠٠٠ ص لا تقل عن نصف س

. خ س - ٢ - س ≥ .

- * نكتب دالة الهدف: س = ١٥ -س + ٨ ص حيث س أكبر ما يمكن.
 - * تمثيل نظام المتباينات الخطية بيانيًا وتحديد منطقة الحل :
- ١ المتباينتان ص ≥ ، ، ص ≥ . يمثلهما و ص ل وص ل الربع الأول.
- آ نرسم المستقيم الحدى ل: س + ص = ١٢٠ وهو يمر ب (١٢٠ ، ١٢٠) ، (١٢٠ ، ٠)

٣ نرسم المستقيم الحدى لم : ٢ ص - س = ٠ وهو يمر ب (٠ ، ٠) ، (٢٠ ، ١٠)

منطقة حل المتباينات تمثلها المنطقة المظللة بالشكل وهي المنطقة المثلثة و ١٠

نحدد رؤوس منطقة الحل :

رؤوس منطقة الحل هي : و (٠٠٠) ، ١ (٠٨٠) ، ب (١٢٠٠)

* نحدد قيمة دالة الهدف عند كل رأس :

- .: أكبر ربح ممكن هو ١٥٢٠ جنيهًا ويتحقق ذلك عند إنتاج ٨٠ وحدة من النوع الأول
 - ، ٤٠ وحدة من النوع الثاني.

مثال ک

وجبة غذائية يراد تكوينها من نوعين من الأطعمة فإذا كانت القطعة من النوع الأول تحتوى ٣ سعرات حرارية ، ٢ وحدات ڤيتامين ج ، والقطعة من النوع الثانى تحتوى ٦ سعرات حرارية ، ٤ وحدات فيتامين ج ، وكان الحد الأدنى من السعرات الحرارية الواجب توافره بالوجبة هو ٣٦ سعر ، والحد الأدنى من وحدات ڤيتامين ج هو ٨٤ وحدة ، وكان سعر القطعة من النوع الأول ٣ جنيهات ومن النوع الثانى ٤ جنيهات. فما عدد القطع التى يمكن أن تتضمنها الوجبة لتحقق الحد الأدنى بأقل تكلفة ؟

الحــل

- * نفرض أن : عدد القطع من النوع الأول بالوجبة هو ص ، عدد القطع من النوع الثاني بالوجبة هو ص
 - # ننظم المعلومات في جدول :

الحد الأدني	القطعة من النوع الثاني	القطعة من النوع الأول	
77	٦ .	7	سعرات حرارية
٤٨	٤	. 1/	ڤيتامين ج

- * نترجم البيانات والقيود في صورة نظام من المتباينات :
 - ١ -س ≥ ، ، ص ≥ .
- ١٢ ≤ ص + ٢ ص ≥ ٢٦ اي ان س + ٢ ص ≥ ١٢
- ٢٤ ≤ ص ≥ ٨٤ ١٠ اي ان ٢ س + ٢ ص ≥ ٢٤
 - * نكتب دالة الهدف : ١ = ٣ ٠ + ٤ ص حيث ١ أقل ما يمكن
 - * تمثيل نظام المتباينات الخطية

وتحديد منطقة الحل :

- ١ المتباينتان س ≥ ٠ ، ص ≥ ٠
- يمثلهما وحن ل وص ل الربع الأول.
 - ا نرسم المستقيم الحدى ل، :
- س + ۲ ص = ۱۲ (بخط متصل) وهو يمر بالنقطتين (٠، ۲) ، (۱۲ ، ۰)

- ۲ (۱۲، ۱) ، (۱۲، ۱) وهو يمر بالنقطتين (۱۲، ۱) ، (۱۲، ۱) ، (۱۲، ۱)
 ۲ منطقة حل المتباينات تمثلها المنطقة المظللة بالشكل والتي تجدها النقط ۲ ، ، حـ
 - * نحدد رؤوس منطقة الحل : رؤوس منطقة الحل هي : ١ (٠ ، ١٢) ، ب (٢ ، ٣) ، ح (١٢ ، ٠)
 - * نحدد قيمة دالة الهدف عند كل رأس :
- .. أقل تكلفة للوجبة هي ٣٠ جنيهًا وذلك عندما تتكون من ٦ قطع من النوع الأول و٣ قطع من النوع الثاني.

مثال ٥

تهدف شركة سياحة لاستئجار أسطول من الطائرات يستطيع نقل ٢٨٠٠ راكب ، ١٢٨ طن أمتعة على الأقل وكان المتاح طرازان من الطائرات ؟ ، ب وكان عدد الطائرات المتاحة من الطراز ؟ هو ١٣ طائرة ومن الطراز ب هو ١٢ طائرة وكانت الحمولة كاملة لطائرة الطراز ؟ هى ٢٠٠ راكب ، ٨ طن أمتعه وللطراز ب هى ١٠٠ راكب ، ٦ طن أمتعه وكان إيجار الطائرة من الطراز ؟ هو ٢٤٠ ألف جنيه ، من الطراز ب هو ١٠٠ ألف جنيه. فكم طائرة من كل طراز يمكن استئجارها لتحقيق الهدف بأقل تكلفة ؟

الحل

- * نفرض أن : عدد طائرات الطراز ؟ هو س ، عدد طائرات الطراز ب هو ص
 - * تنظم المعلومات المتاحة بالمشكلة في جدول :

الحد الأد	طراز (ب)	طراز (۱)	
۲۸۰۰	1	۲	عدد الركاب
171	1	٨	الأمتعة بالطن

- * نترجم البيانات والقيود في صورة نظام من المتباينات :
 - ١١ -س ١٢ ، ص ١٢ ا
 - ٢٨٠٠ ≤ ١٠٠ + ١٠٠ ٢٠٠ ٢٠٠ ا
 - ١٢٨ ≤ ١٢٨ حس ≥ ١٢٨
- ای ان ۲ س + ص ≥ ۲۸
- ای ان ٤ -س + ٣ ص ≥ ١٤
 - * نكتب دالة الهدف: س = ٢٤٠ -س + ١٠٠ صحيث س أقل ما يمكن
 - تمثيل نظام المتباينات الخطية بيانيًا وتحديد منطقة الحل :
 - ا نرسم المستقيم الحدى ل
 - س = ۱۳ یوازی محور الصادات
 - ويقطع محور السينات
 - في النقطة (١٣ ، ٠)
 - ا نرسم المستقيم الحدى ليه:
 - ص = ۱۲ یوازی
 - محور السينات ويقطع
 - محور الصادات
 - في النقطة (٠، ١٢)
 - الرسم المستقيم الحدى لم :
 - ۲ س + ص = ۲۸
 - وهو يمر بالنقطتين
 - (· . 18) . (YA . .)

 $(\cdot, 17), (7, 1)$ نرسم المستقيم الحدى (1, 17), (7, 17) ع (1, 17), (7, 17)

.. منطقة حل المتباينات تمثلها المنطقة المظللة بالشكل وهي المنطقة المضلعة ٢- حـ و

* نحدد رؤوس منطقة الحل :

رؤوس منطقة الحل هي :

(1.1.) s · (E:17) » · (17.17) · · (17.1)

* نحدد قيمة دالة الهدف عند كل رأس:

٠٠٠ دالة الهدف س = ٢٤٠ -س + ١٠٠ ص

 $\text{``.} [\text{`} \text{`}]_{\bullet} = .37 \times \text{`} + . \cdot . \text{``} \times \text{`} \text{``} = . \text{`} \text{``} \text{$

 $[\color=0.37\times70.000]$

 $\text{``o'} = \text{``e'} \times \text{``} + \text{``e'} \times \text{``e'} = \text{``e'} \text{``e'}$

 $\mathsf{TY} = \mathsf{A} \times \mathsf{I} + \mathsf{I} \times \mathsf{Y} \times \mathsf{I} = \mathsf{I} \times \mathsf{I} \times$

.. أقل تكلفة تحقق الهدف هي عند استئجار ٨ طائرات من الطراز ٢ ، ١٢ طائرة من الطراز - وتكون التكلفة ٣٢٠٠٠٠ حنيه.

حاول بنفسك

مصنع ينتج نوعين من قطع الغيار ؟ ، ب ولإنتاج قطعة من النوع ؟ يلزم تشغيل ماكينتين الأولى لمدة ساعة والثانية لمدة والثانية لمدة ساعتين ونصف ، ولإنتاج قطعة من النوع بيلزم تشغيل الماكينة الأولى لمدة ٤ ساعات والثانية لمدة ساعتين. فإذا كانت الماكينة الأولى لا تعمل أكثر من ٨ ساعات يوميًا والثانية لا تعمل أكثر من ٢١ ساعة يوميًا وكان مكسب المصنع ٢٤ ، ٤٠ جنيهًا في كل قطعة من النوعين ؟ ، ب على الترتيب فأوجد أكبر مكسب يمكن أن يحصل عليه في اليوم الواحد.

على البرمجة الخطية والحل الأمثل

تمارين 7

اختبر نفسك

🖧 مستويات عليا

ه تذکر

🛄 من أسئلة الكتاب المدرسي

The state of the s	ولا اسنلة الاختيار من متعدد		
	اختر الإجابة الصحيحة من بين الإجابات المعطاة :		
- ٢٠ ص قيمة عظمي من النقط الآتية هي	(۱) 🛄 النقطة التي تكون عندها للدالة ٧ = ٤٠ -س +		
	(٤- · ·) (·) (· · ·) (1)		
	(۱) 🛄 النقطة التي تكون عندها للدالة م = ٣٥ - س +		
	(\(\cdot\)\(\phi\)\(\p		
	🔫 إذا كان ضعف العدد — لا يقل عن ثلاثة أمثال اله		
(ب) ٢ ص ≤ ٣ ص	۲(۱) حس ۲ حص		
(د)٢ - س ≥ ۲ ص عدد له بعدا	(ج) ۲ - س > ۳ ص		
9	(٤) أى التعبيرات الآتية يمثل المتباينة ص + ص ≤′ه١		
(ب) عددان مجموعهما لا يقل عن ١٥	(1) عددان مجموعهما أقل من ١٥		
(د) عددان مجموعهما لا يزيد عن ١٥	(ج) عددان مجموعهما يزيد عن ١٥		
	• (٥) أى التعبيرات الرمزية يمثل الجملة الآتية:		
	عددان مجموع أحدهما وضعف الأخر لا يزيد عن ٠		
(ب) - ب ۲ م ≥ ۲۰ من المال الم	۲٠ < ص ٢ + ٢٠ ص ١١)		
(د) - س+۲ ص≤٠٠٠	(ج) - س + ۲ ص (۲۰		
Had a variable of	(٦) أي التعبيرات اللفظية يمثل المتباينة : ص ≥ ٢ – س		
(ب) عددان أحدهما لا يزيد عن ضعف الآخر.	(1) عددان أحدهما أكبر من ضعف الآخر.		
(د) عددان أحدهما لا يقل عن ضعف الآخر.	. (ج) عددان أحدهما يقل عن ضعف الآخر.		
١٤٥٠ ، س≥٢ ، ص≥٢	😗 النقطة التي تنتمي لمنطقة حل المتباينات : — + ص		
من النقط التالية هي	وتجعل دالة الهدف		
(÷)(+)(+)	(° · ·) (·) · · · · · · · · · · · · · · ·		
ئىروط س ≥ ٠ ، ص ≥ ٠	القيمة العظمى للدالة $\sqrt{} = 0 + 7 \rightarrow 7$ القيمة العظمى للدالة $\sqrt{}$		
OH That I say a say	، - س + ص ≤ ۷ ، - س + ۲ ص ≤ ۱۰ هي		
	۲۲ (ب)		
	(١) النقطة التي تنتمي لمنطقة حل المتباينتين: • ≥ -س		
	س = ۲ - س + ۳ ص أكبر ما يمكن هي		
(7(0)(1) (.(.)(2)	(1)(3)(0) (0: (1)		

(٠) أقل قيمة للمقدار ٣ - ٠ - ٢ ص تحت الشروط - ٣ ≤ - ٠

تساوی

T(1)

(۱۱) إذا كان (۲ ، س) ينتمى لمجموعة حل المتباينة س + ۲ ص ≥ ٥ حيث ٢ ، س عددان صحيحان فإن أقل قيمة للمقدار ٢ ٢ + ٤ س =

(۴) الشكل المقابل يمثل منطقة الحل

و (١٥) في الشكل المقابل:

المنطقة المظللة تمثل مجموعة حل المتباينات $0 \ge 0$ ، $0 \ge 0$. $0 \ge 0$ ، $0 \ge 0$. $0 \ge 0$. 0

- - YE (1)
 - (ب) ۲۱
 - (ج) ٥٥
 - 78 (3)
- (٧) مصنع طاقته الإنتاجية ١٢٠ وحدة على الأكثر من نوعين مختلفين من السلع ، س ، ص على الترتيب فإذا كان ما يباع من النوع الثاني لا يقل عن نصف ما يباع من النوع الأول أي من أنظمة المتباينات الآتية تمثل البيانات والقيود السابقة ؟
 - -> or 17. ≥ or + or . . ≤ or . . ≤ or (1)
 - (ب)س≥٠، من≥٠، س+ص≥١٢٠، ص≤٢-ن
 - (ج)س≥٠٠، ص≥٠، ص١٠٠ ، ٢٠ص≥س
 - (د)س≥٠، ص≥٠، ص٠٤٠، ص٢٠٠٠ م ص١٢٠
- (د) عدد لانهائي. (ج) ۲ (ج) ۲ عدد لانهائي.

ثانيا / الأسئلة المقالية

- مثل كلًا من أنظمة المتباينات التالية ثم أوجد النقطة التي تحقق دالة الهدف في كل حالة:
- $Y \leq \omega$ ، $\omega \leq 0$ ، $\omega \leq 0$) $\omega \leq 0$ (1) $\omega \leq 0$ ، $\omega \leq 0$.

- (3) $0 \le 0$ ، $0 \le 0$. (1) $0 \le 0$. (2) $0 \le 0$.

- الجرى علم يوسف أنه للحفاظ على وزنه يجب عليه حرق السعرات الحرارية الزائدة عن طريق ممارسة المشى والجرى لله فوجد أن ممارسة المشى لمدة دقيقة واحدة تحرق ٢ سعرات حرارية وممارسة الجرى لمدة دقيقة واحدة تحرق ١٥ سعر حرارى ، وكان يوسف يمشى ما بين ١٠ ، ٢٠ دقيقة يوميًا ويجرى ما بين ٣٠ ، ٤٥ دقيقة يوميًا ، وكان الوقت المتاح لممارسة المشى والجرى يوميًا لايزيد عن ساعة واحدة فكم دقيقة يجب أن يمارس فيها يوسف المشى وكم دقيقة يمارس فيها الجرى يوميًا ليحرق أكبر قدر ممكن من السعرات الحرارية. ١٥٠ ، ١٥ دقيقة المشى وكم دقيقة يمارس فيها الجرى يوميًا ليحرق أكبر قدر ممكن من السعرات الحرارية.
- ينتج مصنع صغير للأثاث المعدنى ٢٠ دولابًا أسبوعيًا على الأكثر من نوعين مختلفين ٢ ، ٠٠ ، فإذا كان ريحه من النوع (١) هو ٨٠ جنيهًا وربحه من النوع (١٠) هو ١٠٠ جنيه ، وكان ما يباع من النوع الأول لا يقل عن ثلاثة أمثال ما يباع من النوع الثاني. أوجد عدد الدواليب من كل نوع ليحقق المصنع أكبر ربح ممكن.
- من الطيور وهو يرى ألا يقل عدد الدجاج عن ضعف عدد البط فإذا كان ربحه في كل دجاجة جنيهًا واحدًا وفي كل بطة جنيهين.

أوجد عدد ما يربيه المزارع من كل نوع حتى يحصل على أكبر ربح ممكن.

- المحل عن ٥٠ سمكة ، كما أنه لا يستخدم أكثر من ٣٠ سمكة من النوع (١) ، ولا تقل الطلبات من صاحب المحل عن ٥٠ سمكة ، كما أنه لا يستخدم أكثر من ٣٠ سمكة من النوع (١) ، ولا يستخدم أكثر من ٣٥ سمكة من النوع (١) هو ٤ جنيهات ، ومن النوع (١) هو ٣ جنيهات ، كم سمكة من كل من النوعين ١٩ ، يجب استخدامها لتحقيق أقل ثمن ممكن للشراء ؟
- ☑ ينتج أحد مصانع الآلات الموسيقية نوعين من آلات النفخ ، يحتاج تصنيع النوع الأول ٢٥ وحدة من النحاس ، ٤ وحدات من النيكل ، ويحتاج تصنيع النوع الثاني ١٥ وحدة من النحاس ، ٨ وحدات من النيكل ، فإذا كانت الكمية المتاحة في المصنع في أحد الأيام ٩٥ وحدة من النحاس ، ٣٢ وحدة من النيكل ، وكان ربح المصنع في الآلة من النوع الأول هو ٦٠ جنيهًا وربحه في الآلة من النوع الثاني ٤٨ جنيهًا ، فما عدد الآلات التي يجب أن ينتجها المصنع من كل نوع حتى يحقق أكبر ربح ممكن ؟

1 16 613:6-11	عدد الوحدات لكل كيلوجرام		
التكلفة لكل كيلوجرام	الفوسيفات	النترات	السماد
۱۷۰ قرشًا	1	٤	
۱۵۰ قرشًا	- 7	۲	_

أوجد أقل تكلفة من مزيج السمادين ؟ ، ب تمكنان المزارع من توفير العدد الكافى من وحدات النيترات لتحسين نوعية مزروعاته.

- ♦ الدرس الثاني
 - افترض أنك تُصنع وتبيع مرطبًا للجلد ، وإذا كان تصنيع عبوة المرطب العادى يستلزم ٢ سم من الزيت ، ١ سم من زبدة الكاكاو ، وكان تصنيع عبوة المرطب من النوع الممتاز يستلزم ١ سم من الزيت ، ٢ سم من زبدة الكاكاو ، سوف يكون ربحك هو ١٠ جنيهات لكل عبوة من النوع المعادى ، ٨ جنيهات لكل عبوة من النوع المعاذ. فإذا كان لديك ٢٤ سم من الزيت ، ١٨ سم من زبدة الكاكاو ، فما عدد العبوات التي يمكن تصنيعها من كل نوع ، حتى تحصل على أكبر ربح ممكن ، وما هذا الربح ؟
 - العتان غذائيتان الأولى بها ٥ وحدات فيتامين وتعطى ٣ سعر حرارى والثانية بها وحدتان فيتامين وتعطى ٢ سعر حرارى ، فإذا كأن المطلوب ٢٥ وحدة فيتامين على الأقل ، ٣٩ سعر حرارى على الأقل وكان ثمن الوحدة من السلعة الأولى ٦ جنيهات وثمن الوحدة من السلعة الثانية ٨ جنيهات. فما هى الكمية الواجب شراؤها من كل من السلعتين لتحقيق المطلوب بأقل تكلفة ؟
 - النج مصنع نوعين من المكاتب الصاج وكل نوع يقوم بتجميعه أحد العمال ثم يقوم عامل آخر بالدهان ، يستغرق العامل الأول ساعتين لتجميع الوحدة من النوع الأول ، و ٣ ساعات لتجميع الوحدة من النوع الثانى ، بينما يستغرق العامل الثانى ساعة ونصف الساعة لدهان الوحدة من النوع الأول وساعتين لدهان الوحدة من النوع الثانى ، فإذا كان العامل الأول يعمل ٦ ساعات يوميًا على الأقل ، بينما يعمل العامل الثانى ٦ ساعات يوميًا على الأكثر ، وكان ربح المصنع هو ٥٠ جنيهًا في كل وحدة من كل من النوعين ، فما عدد الوحدات التي يجب أن ينتجها المصنع يوميًا من كلا النوعين ليحقق أكبر ربح ممكن ؟
 - مصنع ينتج نوعين من الصابون ٢ ، ب فإذا كان إنتاج ما قيمته ١٠٠ جنيه من المنتج ٢ يحتاج إلى ٣٠ كجم من المواد الخام ، ١٨ ساعة من التشغيل على الماكينات ، وإنتاج ما قيمته ١٠٠ جنيه من المنتجب يحتاج إلى ٢٠ كجم من نفس المواد الخام ، ٢٤ ساعة من التشغيل على الماكينات. أوجد أكبر قيمة للمنتجات التي تنتج من ٥٠ كجم من المواد الخام ، ٧٢ ساعة من التشغيل على الماكينات.
 - ترزیان ینتجان نموذجین من البلوزات (۴) ، (ب) فیقوم الترزی الأول بتفصیل القماش بینما یقوم الثانی بخیاطته

 ه فإذا كان الترزی الأول یستغرق ساعة فی تفصیل النموذج (۴) وساعتین فی تفصیل النموذج (ب) ، وكان
 الترزی الثانی یستغرق ۳ ساعات لخیاطة النموذج (۴) وساعة واحدة لخیاطة النموذج (ب) ، وكان الترزی الأول
 یعمل فی الیوم ۸ ساعات علی الأكثر بینما یعمل الثانی ۹ ساعات فی الیوم علی الأكثر وكان مكسبهما من بیع
 البلوزة من النموذج (۴) هو ۱۰ جنیهات ومكسبهما من بیع البلوزة من النموذج (ب) هو ۱۵ جنیها. فأوجد عدد
 البلوزات من كل نموذج التی یمكنهما إنتاجه فی الیوم لیحصلا علی أكبر ربح ممكن.

ثالثاً ﴿ مُسَائِلُ تَقْيَسُ مُهَارَاتُ التَّفَكِيرُ

- ال يوسف وسامي يعملان على إحدى الماكينات لإنتاج منتج معين. فإذا كان يوسف ينتج وحدة المنتج في الساعة بينما مسامي ينتج وحدتين من هذا المنتج في الساعة ولكنه يمكنه العمل ساعتين على الأكثر في اليوم زيادة عن ساعات عمل يوسف. وإذا علمنا أن الماكينة يجب أن تعمل ٦ ساعات على الأقل يوميًا لتغطية نفقاتها وأنه يجب إنتاج ٨ وحدات من المنتج على الأقل يوميًا فأوجد أقل أجور يومية تدفع ليوسف وسامي إذا علم أن يوسف يحصل على ٥ جنيهات أجر في الساعة وسامي يحصل على ٨ جنيهات أجر في الساعة.
- ال يراد وضع نوعين من الكتب (۴) ، (ب) على رف مكتبة طوله ٩٦ سم وحمولته القصوى ٢٠ كجم فإذا كان وزن الكتاب من كلا النوعين هو ١ كجم وسمك الكتاب من النوع (۴) ٦ سم ومن النوع (ب) ٤ سم فأوجد عدد الكتب من كل نوع التي توضع على الرف بحيث يكون عددها أكبر ما يمكن «فسر وجود عدة حلول».

الوحدة الثالثة

حساب المثلثات

دروس الوحدة

المتطابقات المثلثية.

حل المعادلات المثلثية.

حل المثلث القائم الزاوية.

زوايا الارتفاع وزوايا الانخفاض.

القطاع الدائري.

القطعة الدائرية.

المساحات.

1 ILLUM

2 17

3 17

4 1

5 17

6

7 17

نواتج التعثم فسنها وساله المساحدة

في نهاية هذه الوحدة من المتوقع أن يكون الطالب قادرًا على أن :

- يستنتج العلاقات الأساسية بين الدوال المثلثية.
 - يثبت صحة متطابقات على الدوال المثلثية.
- يحدد ما إذا كانت المتساوية متطابقة أم معادلة مثلثية.
 - يحل المعادلات المثلثية البسيطة في الصورة العامة في الفترة [٠، ٢٠]
 - يتعرف على الحل العام للمعادلة المثلثية.

- يحل المثلث القائم الزاوية.
- يحل تطبيقات تشمل زوايا الارتفاع والانخفاض.
 - يتعرف على القطاع الدائري ويوجد مساحته.
- يتعرف على القطعة الدائرية ويوجد مساحتها.
- يوجد مساحة المثلث ومساحة الشكل الرباعى ومساحة المضلع المنتظم.
 - يستخدم أنشطة لبرامج الحاسب الدلى.

الدرس

1

المتطابقات المثلثية

المتطابقات والمعادلات المثلثية

المتطــابقة

هي متساوية صحيحة لجميع قيم المتغير الحقيقية والذي يُعرف به كل طرف من طرفي المتساوية.

فمثلًا المتساوية : منا $(-\theta)$ = منا θ تسمى متطابقة لأنها صحيحة لجميع قيم المتغير θ الحقيقية.

وذلك لأن : في الشكل المقابل :

من دراستنا السابقة للعلاقة بين الزاويتين المنتسبتين θ ، $(-\theta)$ وجدنا أن : النقطة $(-\omega)$ ، $(-\omega)$ صورة النقطة $(-\omega)$ ، $(-\omega)$ بالانعكاس في محور السينات

$$\theta$$
 ن منا θ الحقيقية θ الحقيقية θ الحقيقية θ الحقيقية θ الحقيقية

مالحظة

العلاقات المثلثية بين الدوال المثلثية للزوايا المنتسبة التي درسناها سابقًا هي متطابقات لأنها تتحقق لجميع قيم المتغير الحقيقية.

..... مثل ما
$$(\theta - \pi)$$
 مأل ، مثا $(\theta - \pi)$ مثل ما $(\theta - \pi)$ مثل مثل ما والم

المعادلة

هي متساوية صحيحة لبعض قيم المتغير الحقيقية التي تحققها وغير صحيحة للبعض الآخر الذي لا يحققها،

فمثلًا المتساوية : منا $\theta = 1$ تسمى معادلة لأنها صحيحة لبعض وليس كل قيم المتغير θ الحقيقية.

وذلك لأن : في الشكل المقابل :

ص المال الما

من دراستنا السابقة وجدنا أن : منا $\theta = -\upsilon$ ، ما $\theta = 0$

 $\theta = a$ عندما $\theta = 0$ فقط θ

وهذا لا يحدث إلا عندما θ = ٥٤° أو ٢٢٥° أو أي من الزوايا المكافئة لهما.

م الحظـة

يمكن تحديد ما إذا كانت العلاقة تمثل متطابقة أو معادلة عن طريق التمثيل البيانى للدالتين المحددتين لطرفيها ، فإذا كانت العالقة عن النقط (منطبقتين في النقط (منطبقتين) كانت العلاقة تمثل متطابقة ، وإذا كانتا متقاطعتين في بعض النقط فقط كانت تمثل معادلة.

فَمِثُلًا • في الشكل التالي :

الدالتان د، : د، (θ) = ميًا $(-\theta)$ ، د، : د، (θ) = ميًا θ متقاطعتان في جميع النقط أي منطبقتان.

ولذلك : المتساوية منا $(-\theta) = -$ منا θ تسمى متطابقة.

• في الشكل التالي :

الدالتان د ، : د ، (θ) = منا θ ، د ، د ، (θ) = ما θ متقاطعتان في بعض النقط

ولذلك : المتساوية منا $\theta = ald$ تسمى معادلة.

المتطابقات المثلثية الأساسية

- درسنا فيما سبق المتطابقات المثلثية الأتية :
 - 🚺 متطابقة الدوال المثلثية ومقلوباتها :

$$\frac{1}{\theta} = \theta$$

$$\frac{1}{\theta} = \theta$$
 منا θ

$$\frac{1}{\theta} = \theta$$
 is

$$\frac{1}{\theta} = \theta$$

$$\frac{1}{\Theta lb} = \Theta lb$$

$$\frac{1}{\theta} = \theta \downarrow b$$

θ التعبير عن طا θ ، طنا θ بدلالة ما θ ، منا

$$\frac{\theta}{\theta} = \frac{\partial}{\partial \theta} = \frac{\partial}{\partial \theta} = \frac{\partial}{\partial \theta}$$

$$\frac{\theta L}{\theta} = \theta U$$

$: \left(\left(heta - rac{\pi}{r} ight) , \; heta ight)$ متطابقة الدوال المثلثية للزاويتين المتتامتين r

$$\theta$$
 [$\theta = (\theta - \frac{\pi}{r})$]

$$\theta$$
 $= (\theta - \frac{\pi}{\gamma})$ $= (\theta - \frac{\pi}{\gamma})$

$$\theta$$
 $\delta = \left(\theta - \frac{\pi}{r}\right)$ δ

$$\theta$$
 $\delta = \left(\theta - \frac{\pi}{r}\right)$ $\delta \delta = \left(\theta - \frac{\pi}{r}\right)$

$$\theta \downarrow b = \left(\theta - \frac{\pi}{7}\right) \downarrow b$$

$$\theta \downarrow b = \left(\theta - \frac{\pi}{r}\right) \downarrow b$$
 , $\theta \downarrow b = \left(\theta - \frac{\pi}{r}\right) \downarrow b$.

$: \left((heta -) \cdot heta ight)$ متطابقة الدوال المثلثية للزاويتين

$$\theta = (\theta - 1)$$

$$\theta$$
 lie = $(\theta -)$ lie •

$$\theta$$
 فئا $(-\theta) = -$ فئا

ه متطابقة فيثاغورث :

لأى زاوية موجهة قياسها θ في الوضع القياسي إذا كان ضلعها النهائي يقطع دائرة الوحدة في النقطة (س ، ص) فإن :

$$\frac{1}{4}\frac{\theta}{\theta} + \frac{1}{4}\frac{\theta}{\theta} = \frac{1}{4}\frac{\theta}{\theta}$$

$$\frac{1}{4}\frac{\theta}{\theta} + \frac{1}{4}\frac{\theta}{\theta} = \frac{1}{4}\frac{\theta}{\theta}$$

• بقسمة طرفى العلاقة (١) على ما θ نجد أن :

$$\frac{1}{\theta} = \frac{1}{\theta} + \frac{1}{\theta} + \frac{1}{\theta} = \frac{1}{\theta} + \frac{1}{\theta} = \frac{1}{\theta} + \frac{1}{\theta} = \frac{1}{\theta} = \frac{1}{\theta} + \frac{1}{\theta} = \frac{1}$$

مللحظات

من العلاقة : ما
$$\theta$$
 + منا θ = ۱ نستنتج ان : ما θ = ۱ - منا θ ، منا θ = ۱ - ما θ من θ

$$\theta = \theta$$
 من العلاقة : $\theta + \theta$ و الآ $\theta = \theta$ نستنتج أن : θ و الآ $\theta = \theta$ ، و الآ $\theta = \theta$ ، و الآ

$$\theta = \theta$$
 من العلاقة : طنا $\theta + \theta = \delta$ من العلاقة : طنا $\theta = \delta$ من العلاقة : طنا δ من العلاقة : طنا ألم العلاقة : طنا ألم

تحقق من فهمك

اختر الإجابة الصحيحة : ما θ + منا θ \neq

(۱) طا
$$\theta$$
 طنا θ (د) حا ۲ ۲ θ حما ۲ ۲ θ (ج) طنا θ - قنا θ (د) قا θ طا θ (۱)

تبسيط المقادير المثلثية

المقصود بتبسيط المقدار المثلثي هو استخدام المتطابقات المثلثية لوضع المقدار في أبسط صورة له.

مثال ۱

اكتب كلًّا من المقادير الآتية في أبسط صورة :

$$\frac{\theta^{Y}}{\theta^{Y}} - \frac{1}{\theta^{Y}}$$

 θ $= \theta \left(\frac{\pi}{r} - \theta \right)$ $= \theta$

$$\frac{\left(\theta - \frac{\pi r}{r}\right)^{r} \mathcal{L} + 1}{\left(\theta + \frac{\pi r}{r}\right)^{r} \mathcal{L} + 1}$$

الحــل

$$1 = \theta^{\gamma} | \theta - \theta^{\gamma} | \delta = \frac{\theta^{\gamma} | \theta - \theta^{\gamma} | \delta}{\theta^{\gamma} | \theta - \theta^{\gamma} | \delta}$$

$$\theta$$
 الما $\theta = \frac{\partial}{\partial \theta} = \frac{\partial}{\partial \theta} = \theta$ امنا $\theta = \frac{\partial}{\partial \theta} = \theta$ امنا $\theta = \frac{\partial}{\partial \theta} = \theta$

$$1 = \theta^{\Upsilon} + \theta^{\Upsilon} = 0$$

 $\frac{\left(\frac{1}{\theta}\right)^{3}}{\left(\frac{1}{\theta}\right)^{3}} = \frac{1}{\theta} \left(\frac{1}{\theta}\right)^{3} = \frac{1}$

$$\frac{\theta^{\gamma} | l + 1}{\theta^{\gamma} | l + 1} = \frac{\left(\theta - \frac{\pi^{\gamma}}{\gamma}\right)^{\gamma} | l + 1}{\left(\theta + \frac{\pi^{\gamma}}{\gamma}\right)^{\gamma} | l + 1} = \frac{\theta^{\gamma} | l + 1}{\theta^{\gamma} | l + 1} = \frac{\theta^{\gamma} | l + 1}{\theta^{\gamma} | l + 1} = \theta^{\gamma} | l + 1$$

$$\theta^{\gamma} | l + 1 = \frac{\theta^{\gamma} | l + 1}{\theta^{\gamma} | l + 1} = \theta^{\gamma} | l + 1 = \theta^{\gamma} | l + 1$$

$$\frac{1}{2}$$
 لاحظ ان $\frac{1}{2}$ $\frac{1}{$

حاول بنفسك

ضع في أبسط صورة كلًّا من المقادير الآتية :

$$(\theta - \pi \ \Upsilon)$$
 if $(\theta - \frac{\pi}{\Upsilon})$ if $(\theta - \frac{\pi}{\Upsilon})$

المتطابقات المثلثية

- * لَلْثِبَاتُ صحة المتطابقة المثلثية نتبع إحدى الطريقتين : •
- ١ نبدأ بأحد طرفي المتطابقة ونستخدم المتطابقات المتلثية الأساسية لوضعه على نفس صورة الطرف الآخر.
 - أَ نضع كلًا من طرفى المتطابقة المثلثية في أبسط صورة لإثبات أن الطرفين لهما نفس الناتج عند وضعهما في أبسط صورة.

مثال ۲

 $1 - \theta$ آثبت صحة المتطابقة : ما θ - منا θ - ٢ ما θ - منا أثبت

الحــل

$$(\theta - 1) - \theta$$
 الطرف الأيمن $\theta - 1 - \theta$ الطرف الأيمن $\theta - 1 - 1 - 1 - 1$

=
$$a^{17} \theta - 1 + a^{17} \dot{\theta} = 7$$
 $a^{17} \theta - 1 = 1$

مثال ۳

 θ أثبت صحة المتطابقة : ما θ - منا θ - ۲ - ۲ منا θ

الحــل

$$(\theta ' | \theta - \theta' | \theta) (\theta' + \theta' \theta) =$$

$$(\theta^{\prime} | x - \theta^{\prime} | x) \times 1 =$$

$$= 1 - \alpha_1^{17} \theta - \alpha_1^{17} \theta = 1 - 7 \alpha_1^{17} \theta = 1$$

مثال ٤

 θ اثبت صحة المتطابقة : $\frac{a^{1}}{1-a^{2}}$

الحــل

حاول بنفسك

أثبت صحة المتطابقتين الآتيتين:

$$Y = Y(\theta \vdash a - \theta \vdash a) + Y(\theta \vdash a + \theta \vdash a)$$

$$\theta$$
 $| - 1 = \frac{\theta^{1/2}}{\theta + 1}$

مثال ٥

 θ أثبت صحة المتطابقة : طا θ + طنا θ = قنا θ قا

الحــل

 θ الطرف الأيمن = طا θ + طنا

$$\frac{\theta \ln + \frac{\theta \ln \theta}{\theta \ln \theta}}{\theta \ln \theta} = \frac{\theta \ln \theta}{\theta \ln \theta}$$

$$=\frac{\Delta^{2} \theta + \Delta^{2} \theta}{\Delta \theta} =$$

لاحظ أنه

اسهولة الإثبات نكتب المقدار بدلالة ما θ ، منا θ
 فقط وذلك باستخدام العلاقات الآتية :

$$\frac{\theta L}{\theta L} = \theta L \cdot \frac{\theta L}{\theta L} = \theta L$$

مثال ٦

 $\frac{\theta^{\mathsf{T}} \mathbf{b} - \mathbf{1}}{\theta^{\mathsf{T}} \mathbf{b} + \mathbf{1}} = \mathbf{1} - \theta^{\mathsf{T}} \mathbf{b} + \mathbf{1}$ أثبت صحة المتطابقة : ٢ منا

الحبل

$$\frac{\theta^{1}}{\theta^{1}} - 1 = \frac{\frac{\partial^{1}}{\theta^{1}} - 1}{\frac{\partial^{1}}{\theta^{1}} + 1} = \frac{\frac{\partial^{1}}{\theta^{1}} - 1}{\frac{\partial^{1}}{\theta^{1}} + 1} = \frac{\frac{\partial^{1}}{\theta^{1}} - 1}{\frac{\partial^{1}}{\theta^{1}} + 1} = \frac{\partial^{1}}{\theta^{1}} + 1 = \frac{\partial^{1}}{\theta^{1$$

$$=$$
 منا θ θ θ الطرف الأيمن θ θ θ θ الطرف الأيمن θ θ الطرف الأيمن θ

مثال ۷,

 θ أثبت صحة المتطابقة : قا θ - طا θ ما θ - منا θ + ۲ ما θ

الحــل

$$\begin{aligned} | \text{Idd}(\hat{\theta}) |$$

الطرف الأيسر = ميًا θ + ۲ ما θ = ۱ – ما θ + ۲ ما θ

$$(Y) \qquad \qquad \theta \leq 1 + 1 = 0$$

(1)

من (١) ، (٢) ينتج أن الطرفين متساويان.

حاول بنفسك

$$1 - \theta^{\gamma}$$
اثبت صحة المتطابقة : $\frac{\theta^{\gamma} + \frac{1}{2} - 1}{\theta^{\gamma} + \frac{1}{2} + \frac{1}{2}}$

مثال ۸

 $\left[\frac{\pi}{Y}, \cdot\right] = \frac{\pi}{Y}$ أوجد قيمة : ما θ منا θ حيث $\theta \in \left[-\frac{\pi}{Y}, \cdot\right]$

الحلل

$$\frac{\tau}{\Lambda} = \theta$$
 is θ is $\frac{\tau}{2} = \theta$ is θ is $\frac{\tau}{2} = \theta$.

تمارین 🖔

على المتطابقات المثلثية

اختبر نفسك

(د) فنا B

(د) قتا 0

1-(2)

🖧 مستویات علیا

 θ | $\theta = 0$ | θ

(د) طنا $\theta = -طا ۲۰۰۰$

 $\frac{1}{2} - = (\theta - \pi) \downarrow (1)$

 $\theta = - = \left(\theta - \frac{\pi r}{r}\right) = - = 0$

ه فهـم وتطبيق

ه تذکر

🛄 من أسئلة الكتاب المدرسي

أولا / أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(١) أي من العلاقات الآتية تمثل متطابقة ؟

$$\frac{\gamma}{\gamma} = \theta = 0$$

$$\theta = (\theta - \pi) = (-1)$$

(١) أي من العلاقات الآتية تمثل معادلة ؟

$$\theta \bowtie - = \left(\theta + \frac{\pi r}{r}\right) \bowtie (1)$$

$$\theta$$
 = $(\theta -)$ $= (-)$

$$\frac{\theta \mid \delta}{\theta \mid \delta} \quad (i)$$

$$(\lambda)$$
 Δ^{7} $(\lambda \wedge)^{9} + \Delta^{7}$ $(\lambda \wedge)^{9} - \theta = \cdots$

$$\theta' U = U' \theta$$

(1) قا ف

$$\frac{1}{\theta} = \frac{1}{\theta} = \frac{1}$$

$$\frac{a^{2} - a^{2} - a^{2}}{1 - a^{2} - a^{2}} = \frac{a^{2} - a^{2}}{1 - a^{2}} = \frac{a^{2}}{1 -$$

$$\frac{\lambda^{2}}{2} = \frac{\lambda^{2}}{2} - \frac{\lambda^{2}}{2} = \frac{\lambda^{2}}{2} =$$

$$\cdots \cdots = {}^{\mathsf{Y}}(\theta \mid \theta - \mathsf{a}\mathsf{i} \mid \theta) + {}^{\mathsf{Y}}(\theta \mid \theta - \mathsf{a} \mid \theta) - {}^{\mathsf{Y}}(\theta \mid \theta - \mathsf{a} \mid \theta) + {}^{\mathsf{Y}}(\theta \mid \theta - \mathsf{a} \mid$$

$$\theta$$
 إذا كان : طمتا $\theta = \frac{1}{\pi}$ فإن : قبا $\theta = 0$

$$\frac{7}{4} (1) \qquad \frac{1}{4} (2) \qquad \frac{1}{4} (1)$$

$$\frac{7\sqrt{\gamma}}{r} = \theta$$
 فإن : قا $\frac{7\sqrt{\gamma}}{r} = \theta$ في نام : قا $\frac{7\sqrt{\gamma$

$$\theta$$
 إذا كان : ما θ – منا $\theta = \frac{3}{6}$ حيث $\theta \in \left]$ ، $\frac{\pi}{7}$ فإن : ما θ منا $\theta = 0$

$$\frac{9}{0}$$
 (a) $\frac{1}{0}$ (b) $\frac{1}{0}$ (c) $\frac{1}{0}$ (1)

ن (م) إذا كان : فَنَا
$$\theta$$
 – طنا θ = $\frac{1}{7}$ فإن : قَنَا θ + طنا θ =

$$\gamma(z)$$
 $\frac{1}{r}(z)$ $\gamma(z)$ $\gamma(z)$

(ج) منا ۹۰

١٤ ٤ (١)

(۱) منا ۲۱۰ °۲۱ (ب)

♦ (٤٧) إذا كانت : ٩ = ٢ ما ٢ + ٥ ميا Θ فإن : ٩ ∈

$$\alpha$$
 إذا كان α ، α قياسى زاويتين حادتين وكان α + α α فإن : ما α + ما α =

$$\theta$$
 (۱) صفر (ب) ۱ (ب) منا θ

$$\frac{1-(a)}{\sqrt{10}}$$
 $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$

$$\frac{\partial}{\partial t} = \frac{1 - \partial t}{\partial t} - \frac{\partial^{3} t}{\partial t} = \frac{\partial^{3} t}{\partial t}$$

$$\frac{\partial}{\partial t} = \frac{\partial^{3} t}{\partial t} = \frac{\partial^{3} t}{\partial t}$$

$$\frac{\partial}{\partial t} = \frac{\partial^{3} t}{\partial t} = \frac{\partial^{3} t}{\partial t}$$

$$\frac{\partial}{\partial t} = \frac{\partial^{3} t}{\partial t} = \frac{\partial^{3} t}{\partial t}$$

ثاننا / الأسئلة المقالية

آ اكتب في أبسط صورة كلًا من المقادير الآتية «حيث θ قياس زاوية معرف عندها جميع الدوال المثلثية ومقلوباتها»:

$$\left(\theta-\pi\right) \stackrel{\text{Li}}{\smile} \left(\theta-\frac{\pi}{\gamma}\right) \stackrel{\text{Li}}$$

 $(\theta - \frac{\pi}{r})$ $\delta(\theta - \frac{\pi}{r})$ $\omega(r)$

$$\frac{\left(\theta - \frac{\pi}{Y}\right) L}{\left(\theta - \pi Y\right) L} \qquad (2)$$

$$(\theta -)$$
 $\frac{\pi}{\gamma}$ $\frac{\pi}{\gamma}$ $\frac{\pi}{\gamma}$

$$(\theta - \pi)$$
 طنا $(\theta - \frac{\pi}{\gamma})$ طنا $(\theta - \frac{\pi}{\gamma})$ فنا $(\theta - \frac{\pi}{\gamma})$

$$\frac{\left(\theta - \frac{\pi r}{r}\right)^{r} |\mathcal{U} + 1|}{\left(\theta - \frac{\pi}{r}\right)^{r} |\mathcal{U} + 1|}$$

و تطبيق

آ أثبت صحة كل من المتطابقات الآتية:

$$\theta$$
 $^{\prime}$ L + 1 = θ $^{\prime}$ La + θ $^{\prime}$ La $^{\prime}$ $^{\prime}$

$$Y - = (\theta^{Y} \theta + \theta^{Y} \theta - (\theta^{Y} \theta + \theta^{Y} \theta) - (\theta^{Y} \theta + \theta^{Y} \theta)$$

$$Y = Y(\theta + \alpha d \theta) + Y(\theta d \alpha + \theta d \alpha)$$

$$1 = \alpha^{\gamma} | \alpha + \beta^{\gamma} | \alpha^{\gamma} | \alpha^{\gamma$$

$$\theta$$
 فنا θ - ما θ = منا θ طنا θ

$$\alpha'b = \alpha'b + \alpha'b + \alpha'b = (1)$$

$$1 = \theta^{\mathsf{Y}} | \theta - \theta^{\mathsf{Y}} | \theta + \theta^{\mathsf{Y}} | \theta - \theta^{\mathsf{Y}} | \theta + \theta^{\mathsf{Y}} | \theta +$$

😙 أثبت صحة كل من المتطابقات الآتية :

$$\theta^{V} = \frac{\partial}{\partial x} \theta \times \frac{\partial}{\partial y} \theta = 1 - \partial_{x} \theta^{V} \theta$$

$$\theta = \theta + \frac{\theta}{\theta} + \frac{\theta}{\theta}$$

$$1 - a^{1} \theta = \frac{\theta^{1} - 1}{\theta^{1} \theta} = \frac{\theta^{1} - 1}{\theta^{1} \theta}$$

$$\theta$$
 فنا θ (۱ – ما θ فنا θ

(1)
$$\frac{1+4l^{2}\theta}{2l^{2}\theta}=1-4l^{2}\theta$$

(1)
$$\frac{\alpha^{2}}{\alpha^{3}} \frac{\theta - \alpha^{3}}{\theta - \alpha^{7}} \frac{\theta}{\theta} = \delta^{7} \theta - \delta^{7} \theta$$

$$\frac{\theta \, l b + 1}{\theta \, l b + 1} = \frac{1}{\theta \, l c b + 1} \, \square \, (12)$$

$$1 = \frac{(\theta + {}^{\circ} 1 \wedge \cdot) \theta}{\theta + {}^{\circ} \theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ} \theta \cdot) \theta}{\theta + {}^{\circ} \theta} + \frac{(\theta - {}^{\circ}$$

$$\theta \mid \Delta \times \theta \mid \Delta = \frac{\theta \mid \Delta \mid}{\theta \mid \Delta \mid \Delta \mid} \square (1)$$

$$\theta |_{a} + 1 = \frac{\theta^{1/2}}{\theta |_{a} - 1} \square (\epsilon)$$

$$1 - \theta^{\gamma} = \gamma = \frac{\theta^{\gamma} - 1}{\theta^{\gamma} + 1}$$

$$1 = \theta^{Y} - \frac{1}{4^{Y}(-e^{\circ} - \theta)} - 4^{Y} = 1$$

$$\beta^{\prime} \dot{b} - \alpha^{\prime} \dot{b} = \frac{1}{\beta^{\prime} b + 1} - \frac{1}{\alpha^{\prime} b + 1} \square (10)$$

$$\frac{\theta}{\theta} = \frac{1 - \lambda}{1 + \lambda} = \frac{1 - \lambda}{1 + \lambda} = \frac{\theta}{1 + \lambda}$$

$$Y = \frac{\alpha^{\frac{1}{1}} - \alpha^{\frac{1}{1}}}{\alpha \ln - \alpha \ln} + \frac{\alpha^{\frac{1}{1}} + \alpha^{\frac{1}{1}}}{\alpha \ln + \alpha \ln}$$
 (12)

$$1 = \frac{(\theta + ^{\circ} 1 \wedge \cdot) b}{\theta b} + \frac{(\theta - ^{\circ} 4 \cdot) b}{\theta b}$$

$$V + \theta$$
 $^{\mathsf{T}} \mathsf{L} \mathsf{d} + \theta$ $^{\mathsf{T}} \mathsf{L} \mathsf{d} = ^{\mathsf{T}} (\theta + \delta \mathsf{L} \theta) + ^{\mathsf{T}} (\theta + \delta \mathsf{L} \theta) + ^{\mathsf{T}} (\theta + \delta \mathsf{L} \theta)$

"TIV o ±"

اذا کان: $\frac{7}{7}$ منا $\frac{\theta-7}{1}$ ما $\frac{\theta}{7}=\frac{7}{7}$ فأوجد قيمة: طا $\frac{\theta}{7}$

 $\frac{\pi}{2}$ ، $\frac{\pi}{2}$ ، $\frac{\pi}{2}$ هنا $\frac{\pi$

10 6 1V x $\frac{1}{3}$ إذا كان : وَا θ - طا θ = $\frac{1}{5}$ فاحسب قيمة كل من : وَا θ ، طا θ

 $\frac{9}{77} = \theta$ منا $\frac{9}{10} = \frac{9}{2}$ فأثبت أن : ما $\frac{9}{10} = \frac{1}{10}$

اذا کان : ط θ + طهًا θ = ه أوجد القيمة العددية لكل مما يأتى :

0 "Lib + 0 "Lb (1) 0 41 0 + dil 0 a TT »

0 "Lib - 0. " (2) *±117 * 0 W - 0 W (m)

ثالثاً مسائل تقيس ممارات التفكير

اختر الإجابة الصحيحة من بن الإجابات المعطاة :

(۱) إذا كان : س + ص = ٣٠ فإن : طا (س + ٢ ص) طا (٢ س + ص) =

TVY(1) 1-(=)

 θ إذا كانت : ما $\theta = \frac{1}{2}$ ، $\theta \in \left[\frac{\pi}{2} \right]$ فإن : $\sqrt{1 + 4J^2 \theta} = 0$

 $\frac{1}{\sqrt{1-\frac{1}{4}}}\frac{1}{\sqrt{6}}\left(\frac{1}{2}\right) \qquad \frac{1}{\sqrt{6}}\frac{1}{\sqrt{6}}\left(\frac{1}{2}\right) \qquad \frac{1}{\sqrt{6}}\frac{1}{\sqrt{6}}\left(\frac{1}{2}\right)$ (L) N . 7 - 97

 $\pi > \theta > \frac{\pi}{r}$ اذا کان: $\pi > \theta > \frac{\pi}{r}$ فإن: $\pi > \theta > \frac{\pi}{r}$

0 = r-(1) 0 15 r- (=) (ب) ۲ منا 0 0 15 T (1)

(ج) ٢

(٤) إذا كان : ما \(\theta\) منا \(\theta\) هما جذرا المعادلة : ٢ - ٠٠ + - - ٠٠ - ١ = ٠٠ فإن : - =

(0)-3 (۱) صفر (۱) (ج) ٢

(۵) إذا كان: ٣ ما θ + ٤ منا θ = ٥ فإن: ٣ منا θ - ٤ ما θ =

٤ (پ)

 θ اذا کانت : $\theta \in \left[\cdot \cdot \right]$ وکانت طا θ + طنا $\theta = \lambda$ فان : ما θ + منا $\theta = 0$

(ب) ٧٠ · (1) (÷) 0 (2)

(د) صفر

$$\frac{\pi}{v}$$
 إذا كانت : $\theta \in]$ ، $\frac{\pi}{v}$ فإنْ : $\sqrt{\delta l^{\gamma}} \theta + \delta l^{\gamma} \theta = \dots$

$$\frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1$$

$$1\cdots - \nu(s)$$
 $\nu - 1\cdots (s)$ $\nu - 1\cdots (s)$ $\nu - 1\cdots (s)$

(1)
$$\frac{1}{7}$$
 33 (4) (5) (6) $\frac{1}{7}$ 03 (6) 73

.... =
$$\frac{^{\circ}11.^{\circ}11.^{\circ}1.$$

θ أثبت أن : ما θ + منا θ - ۱ - ۳ ما θ عنا θ

ن الشكل المقابل:

دائرة وحدة مركزها و

إذا كان: عد = ما 0 ، أحد مماسًا للدائرة عند ٩

 θ اوجد قیمة : منا θ + ما

الدرس

2

حل الهعادلات المثلثية

المقصود بحل المعادلة المثلثية هو إيجاد قيم المتغير التي تحقق هذه المعادلة وذلك بالاستعانة بالمتطابقات المثلثية.

الحل العام للمعادلة المثلثية

لإيجاد الحل العام للمعادلة المثلثية على الصورة :

منا
$$\theta = 1$$
 أو $| \mathbf{a} | \mathbf{b} = 1$ أو $| \mathbf{d} | \mathbf{d} = 1$ نتبع الخطوات الآتية :

- - ا نحدد الربع الذي تقع فيه الزاوية حسب إشارة المارة الشكل المقابل)

٣ نوجد قيم الزاوية θ حيث إن:

- $\beta = \theta$: إذا كانت θ تقع في الربع الأول فإن
- eta م الدبع الثانى فإن : eta م الدبع الثانى فإن الدبع الثانى فإن الدبع الدبع الدبع الثانى فإن الدبع ال
- β + °۱۸۰ = θ : إذا كانت θ تقع في الربع الثالث فإن
- β م الحالث θ تقع في الربع الرابع فإن θ η η

٤ نضيف عددًا من الدورات (٢ ١٨٠) حيث ١٨ ص إلى قيم θ لنحصل على الحل العام للمعادلة المثلثية.

م الحظ ق

*
$$-1 \le -1$$
 الحقيقية θ الحقيقية θ الحقيقية

وبالتالى نجد أن المعادلتين : ما $\theta = 1$ ، منا $\theta = 1$ ليس لهما حل في مجموعة الأعداد الحقيقية إذا كانت : ١ ﴿ [-١ ، ١]

$$1.8 - \theta$$
 ، $1.8 - \theta$ ، $1.8 - \theta$ ، ما $1.8 - \theta$

، فَا
$$\theta = 0$$
 ، ، ، فَهُمْ $\theta = -\sqrt{100}$ ، ليس لها حلول حقيقية.

اى انه ليس بالضرورة أن تكون لكل المعادلات المثلثية حلول حقيقية.

مثال ۱

أوجد الحل العام لكل من المعادلات الآتية:

ا منا
$$\theta = \frac{1}{\sqrt{100}}$$

°εο = θ :.

را منا
$$\theta = \frac{1}{2}$$
 (موجبة) .. θ تقع في الربع الأول. .. $\theta = -7^\circ$

أو
$$\theta$$
 تقع في الربع الرابع. θ . θ أو θ

$$\pi$$
ν $\frac{\pi}{r}$ - = θ i π ν $\frac{\pi}{r}$ + $\frac{\pi}{r}$ = θ :.

$$\pi$$
 الحل العام للمعادلة هو : $\theta = \pm \frac{\pi}{r} + 7$ π حيث $\pi \in \infty$

$$\frac{1}{2}$$
 ما $\theta = \frac{\sqrt{Y}}{Y}$ (موجبة) .. θ تقع في الربع الأول.

أو
$$\theta$$
 تقع في الربع الثاني. $ext{ ... } heta = ^1 heta^\circ - ^3 heta = ^1 heta^\circ$

$$\theta$$
 وبإضافة $(\pi \, \nu \, \tau)$ حيث $\nu \in \neg \nu$ إلى قيم

$$\pi \nu \Upsilon + \pi \frac{\Upsilon}{\xi} = \theta \quad \text{if} \quad \pi \nu \Upsilon + \frac{\pi}{\xi} = \theta :$$

ن الحل العام للمعادلة هو :
$$\theta = \frac{\pi}{3} + 7$$
 $\nu \pi$ أو $\theta = \frac{7}{3} \pi + 7$ $\nu \pi$ حيث $\nu \in \infty$

$$\theta = \frac{1}{\sqrt{r}}$$
 (موجبة) نا $\theta = \frac{1}{\sqrt{r}}$ (موجبة) نا $\theta = 0$ تقع في الربع الأول.

أو
$$\theta$$
 تقع في الربع الثالث. \cdots θ = ۱۸۰° + ۳۰° = ۲۱۰°،

وبإضافة (٢ ١٠٨) حيث ١٠ € صرالي قيم θ

$$\pi \nu + \pi \frac{v}{\tau} = \theta$$
 if $\pi \nu + \frac{\pi}{\tau} = \theta$::

ن الحل العام للمعادلة مو :
$$\theta=\frac{\pi}{\gamma}+7$$
 ν أو $\theta=\frac{\gamma}{\gamma}+7+7$ حيث $\nu\in$ ∞ ويمكن كتابة الحل العام للمعادلة بصورة أكثر تبسيطًا كالأتى :

الحل العام للمعادلة هو $\theta = \frac{\pi}{2} + \nu \pi$ حيث $\nu \in \infty$ وذلك بإضافة $\nu \pi$ إلى أصغر قياس موجب.

م الدظـة

مما سبق يمكن استنتاج أن :

إذا كانت β أصغر قياس موجب يحقق المعادلة ، له ∈ ص فإن :

الحل العام للمعادلة ما
$$\theta=0$$
 هو: $\theta=0$ هو: π $\tau+(\beta-\pi)=0$ الحل العام للمعادلة ما $\pi+\beta=0$ هو: $\pi+\beta=0$ الحل العام للمعادلة ما $\pi+\beta=0$ العام للمعادلة

- الحل العام للمعادلة ميًا $\theta = 9$ هو : $\theta = \pm 7 + 7$ س
 - الحل العام للمعادلة ط $\theta = 1$ هو : $\theta = \pi$ س

مثال ۲

أوجد الحل العام لكل من المعادلات الآتية:

الحــل

 $^{\circ}$ \ \lambda \cdot = \theta \cdot \cdot = \theta \cdot \cdot \cdot = \theta \cdot \cd

٠ = θ له

وبإضافة (٢ π ١٠) حيث ١٨ € صر إلى قيم θ

.. الحل العام للمعادلة هو:

 $\theta = 7 \pi v$ أو $\theta = \pi + 7 \pi v$ محيث $v \in \infty$

ويمكن كتابة الحل العام للمعادلة في صورة أكثر تبسيطًا كالأتي :

الحل العام للمعادلة هو: π = θ ميث نہ ∈ ص

$$\theta = \cdot$$
 د و $\theta = \cdot$ د و $\theta = \cdot$ د و او $\theta = \cdot$ د و او $\theta = \cdot$

وبإضافة (٢ π ٧) حيث ١٨ صر إلى قيم θ

.. الحل العام هو :
$$\theta = \frac{\pi}{\gamma} + 7$$
 π ν أو $\theta = \frac{7}{\gamma}$ $\pi + 7$ π ν حيث $\nu \in \infty$

ويمكن كتابة الحل العام للمعادلة في صورة أكثر تبسيطًا كالأتي :

الحل العام للمعادلة هو :
$$\theta = \frac{\pi}{\gamma} + \pi$$
 له حيث له $= \infty$

ن الحل العام هو :
$$\theta = \frac{\pi}{r} + 7 \pi$$
 محيث $\nu \in \infty$

$$^{\circ}$$
\A· = θ ...

$$\pi$$
 : الحل العام هو : θ = π ۲ + π م حيث π

م الدظ ق

مما سبق يمكن استنتاج الحل العام للمعادلات المثلثية للزوايا الربعية :

الحل العام	المعادلة
$\omega \pi = \theta$	· = 0 L •
$\nu \pi + \frac{\pi}{r} = \theta$	\ = θ L •
$\omega \pi \Upsilon + \frac{\pi \Upsilon}{\Upsilon} = \theta$	١-= θ ١٠ •
$\omega \pi + \frac{\pi}{\tau} = \theta$	· = 0 منا •
$\nu \pi \Upsilon = \theta$	١ = θ نه •
$\omega \pi \Upsilon + \pi = \theta$	١-= θ لنه •

حاول بنفسك

أوجد الحل العام لكل من المعادلات الآتية:

مثال ۳

أوجد الحل العام لكل من المعادلتين الآتيتين:

الحل

∴ طا θ = −۱ (سالبة)

للحظ أن

$$\therefore \theta = .77^{\circ} - \circ 3^{\circ} = \circ 17^{\circ}$$

 $\theta = \theta$ أو $\theta = \gamma$ وهي تكافئ $-\gamma$...

.: 0 = ۲ له T حيث له ∈ ص

أصغر قياس موجب يحقق المعادلة وهو ١٣٥°

ن. الحل العام هو : $\theta = \frac{\tau}{\xi} + v \pi$ حيث $v \in \infty$

٠ = (١ - θ امنا θ - ١)

.: إما منا θ = ·

 $\therefore \theta = \frac{\pi}{v} + u\pi$ حيث $u \in \infty$

ر ا ن منا θ = ۱ = θ ن منا θ

ن الحل العام للمعادلة هو : $\theta = \frac{\pi}{v} + \upsilon \pi$ أو $\theta = 7$ $\upsilon \pi$ حيث $\upsilon r \in \sigma v$

مثال ع

 θ أوجد الحل العام للمعادلة : ما θ منا

الحــل

.: θ = ١٨ حيث ١٨ € ص

 $\frac{1}{10}$ أو منا $\frac{1}{10}$ $\frac{1}{10}$ أو منا $\frac{1}{10}$ $\frac{1}{10}$ (موجبة)

 θ تقع في الربع الأول. $\theta = 0$: $\theta = 0$: $\theta = 0$

أو θ تقع في الربع الرابع. $ext{:} ext{:} ext{:}$

 $\sim \exists + \tau + \tau + \tau = \theta :$

ن. الحل العام هو : $\theta = \nu \pi$ أو $\theta = \pm \frac{\pi}{7} + \gamma \nu \pi$ حيث $\nu \in \infty$...

حاول بنفسك

 $\cdot = \theta$ أوجد الحل العام للمعادلة : ٢ ما θ منا $\theta - \sqrt{\tau}$ ما

حل المعادلة المثلثية في الفترة [٣٠٠] 🛪 [

مثال ٥

إذا كانت : $\theta \in [\cdot \, \cdot \, \cdot \, r]^{\circ}$ أوجد مجموعة الحل لكل من المعادلتين الآتيتين :

·= Y - 0 15 TV 1 - 1 + 0 15 T 1

120 - T (LL)

الحل

- ∴ θ تقع في الربع الثاني أو الثالث.
- ، نا الزاوية الحادة التي جيب تمامها = ألى قياسها ٦٠°

$$: \theta = \lambda \wedge^{\circ} - \lambda^{\circ} = \lambda \wedge^{\circ} + \lambda^{\circ} = \lambda \wedge^{\circ} + \lambda^{\circ} = \lambda^{\circ}$$

$$: \theta = \lambda \wedge^{\circ} - \lambda^{\circ} = \lambda^{\circ}$$

$$\sqrt{\gamma}$$
 منا $\theta = \frac{\sqrt{\gamma}}{\gamma}$ (موجبة) .. θ تقع في الربع الأول أو الرابع.

$$\{\text{°rlo} = \text{°to} - \text{°to} = \text{°to} =$$

مثال ٦

أوجد مجموعة الحل للمعادلة : ٤ ميًا θ - γ = . حيث $\theta \in [\cdot : \gamma, \gamma]$

$$T = \theta^{\gamma}$$
 in ϵ .

$$\frac{\overline{\forall V}}{\underline{\lor}} \pm = \theta \, \sqsubseteq \, \therefore$$

$$\frac{\sqrt{V}}{V} \pm \theta = \frac{\sqrt{V}}{V} \div \frac{\sqrt{V}}{V} \div \frac{\sqrt{V}}{V} = \frac{\sqrt{V}}{V} \cdot \frac{\sqrt{V}}{V} = \frac{\sqrt{V}}{V} = \frac{\sqrt{V}}{V} \cdot \frac{\sqrt{V}}{V} = \frac{\sqrt{V}}{V} \cdot \frac{\sqrt{V}}{V} = \frac{\sqrt{V}}{V} = \frac{\sqrt{V}}{V} \cdot \frac{\sqrt{V}}{V} = \frac{V}{V} =$$

$$^{\circ}$$
۳۰ الزاوية الحادة التي جيب تمامها = $\frac{\overline{\sqrt{\gamma}}}{\gamma}$ قياسها $^{\circ}$

$$\theta = \frac{1}{2} \cdot \frac{1}{2} \cdot$$

$$i \sim 10 = \frac{-\sqrt{7}}{7}$$
 (سالبة)

· = ٢ - 8 آله ٤ · ·

$$^{\circ}$$
Y\. = $^{\circ}$ Y\. + $^{\circ}$ \A\. = θ (1) $^{\circ}$ \0\. = $^{\circ}$ Y\. - $^{\circ}$ \A\. = θ ...

حاول بنفسك

 $[\pi \ {
m Y.} \ .] = \theta$ أوجد مجموعة الحل لكل من المعادلتين الآتيتين حيث

$$1 = \theta^{\gamma} U = 1$$

◄ الدرس الثاني

مثال ۷

 $[\pi\cdot\cdot]$ أوجد مجموعة حل المعادلة : ٢ ما θ منا θ + ٣ منا θ - حيث

الحــل

$$(]\pi\cdot\cdot]$$
 ا، $\theta=\frac{\pi}{7}$ أ، $\theta=\frac{\pi}{7}$ (مرفوض لأن $\theta\in[\cdot,\pi]$

$$\cdot$$
 ما $\theta = \frac{7}{7}$ (وهذه المعادلة ليس لها حل لأن $-1 \le \alpha \mid \theta \le 1$)

$$i \cdot 7 \cdot 4\theta + 7 = i$$

$$\left\{\frac{\pi}{7}\right\} = 5.5 : 6.5$$

مثال ۸

أوجد مجموعة حل المعادلة : ٤ خا θ - τ حا θ منا θ = θ حيث $\theta \in [\cdot : \pi \tau^{\circ}]$

الحـل

$$\theta = 0$$
 أ، $\theta = 0$ أ، $\theta = 0$ أ. إما : ما

$$\theta = \pi = \theta = \pi = \theta$$

ای ما
$$\frac{d}{\theta} = \frac{\pi}{3}$$
 (موجبة)

∴ θ تقع في الربع الأول أو الثالث.

، · · الزاوية الحادة التي ظلها ع قياسها ٢٥ ٣٦°

$$\therefore \ \theta = 70^{\circ} 77^{\circ} \ \text{i}, \ \theta = . \text{Al}^{\circ} + 70^{\circ} 77^{\circ} = 70^{\circ} 717^{\circ}$$

حاول بنفسك

اذا كانت : $0^{\circ} < \theta < 0$ أوجد مجموعة حل المعادلة : ٢ ما 0 منا $\theta = 7$ منا θ

مثال ۹

 $]^{\circ}$ وجد مجموعة حل المعادلة : ٢ ما θ - منا θ - ١ = ٠ حيث $\theta \in [\cdot : 77^{\circ}]$

الحــل

بالتعويض عن ما $\theta = 1 - منا <math>\theta$ «لتوحيد النسب المثلثية في المعادلة»

$$\cdot = 1 - \theta$$
 $\rightarrow - \alpha = -$

$$= 1 - \theta |_{\Gamma} - \theta^{\Upsilon} |_{\Gamma} + \tau - \tau ...$$

$$\cdot = (\theta \text{ is } Y - 1) (\theta \text{ is } + 1) :$$

$$1 - = \theta$$
 أي : منا $0 = -1$ أي : منا $0 = -1$

ای منا
$$\theta = \frac{1}{2}$$
 (موجبة)

$$\therefore \theta = \Gamma^{\circ} \text{ is } \theta = \Gamma^{\circ} - \Gamma^{\circ} = \theta$$

استخدام التكنولوجيا

في مثال (١) وجدنا أن :

الحل العام للمعادلة : منا $\theta = \frac{1}{7}$ هو $\theta = \pm \frac{\pi}{7} + 7$ هم حيث $\omega \in \infty$

 $\frac{1}{\sqrt{2}}=(\theta)$ ويمكن التأكد من صحة الحل برسم الدائتين د $_{1}: c_{1}: c_{2}: c_{3}: c_{4}: c_{5}: c_{5}:$

باستخدام أحد البرامج الرسومية وتحديد قيم θ المناظرة لنقط تقاطع الدالتين ومقارنتها

بقيم θ في الحل العام عند وضع u=u ، u=u ، u=u ، u=u

ونلاحظ من الرسم أن الدالتين تتقاطعان في النقط :

$$\cdots$$
 $\left(\frac{1}{7}, \pi^{\circ}_{\frac{1}{7}}\right), \left(\frac{1}{7}, \pi^{\frac{1}{7}}\right), \left(\frac{1}{7}, \pi^{\frac{1-}{7}}\right), \left(\frac{1}{7}, \pi^{\circ}_{\frac{1-}{7}}\right), \cdots$

$$\cdots$$
, π°_{r} , π^{1}_{r} , π^{1-}_{r} , $\pi^{\circ-}_{r}$, $\cdots = \theta$

وهي نفس القيم التي نحصل عليها من الحل العام

عند التعويض عن ١٠٠٠ - ١٠٠١ ، ١٠١٠ ، ١٠٠٠

تمارین 🧡

على حل المعادلات المثلثية

🕹 مستویات علیا

و لطبيق

ه تذکر

🔲 من أسئلة الكتاب المدرسي

أولا / أسئلة الاختيار من متعدد man that the wind of Total of the sec اختر الإجابة الصحيحة من بين الإجابات المعطاة : °۱۸۰ (ج) °YV · (2) °۲۷۰ (ج) °14. (~) θ : فإن θ = θ وکانت θ وکانت θ فان θ = θ فان θ °۱۸۰ (ج) °7V. (3) °۹۰ (ب) (ع) \square إذا كان : ٢ ما θ – \sqrt{r} = . وكانت $\cdot \circ < \theta < \cdot r \circ \circ$ فإن : θ = °۲۲. (۱) ۴۰ (۱) ۱۲. (۱) ۱۲. (۱) ۱۲. (۱) ۱۲. (۱) ۱۲. (۱) ۲۲. (۱) ۲۲. (۱) θ اذا کانت : ۱۸۰ θ θ وکانت : ۲ منا θ θ θ فإن : θ = °۲۱. (۱) °۲۱. (۱) °۲۱. (۱) °۲۱. (۱) °۲۱. (۱) π إذا كان : π منا π الله عنه π عيث π قياس أكبر زاوية موجبة ، π π π $\pi \stackrel{\vee}{\xi} (a) = \pi \stackrel{\circ}{\xi} (a$ مجموعة حل المعادلة : ما $\theta - \sqrt{\gamma}$ ميًا $\theta = \cdot$ حيث $\pi \in \pi$ هي π هي π هي π مجموعة حل المعادلة : ما π $\left\{\pi \frac{1}{r}\right\}(\iota) \qquad \left\{\pi \frac{\circ}{i}\right\}(\star) \qquad \left\{\pi \frac{\vee}{i}\right\}(\iota) \qquad \left\{\pi \frac{\xi}{r}\right\}(1)$ مجموعة حل المعادلة : $\sqrt{7}$ طا $\theta = 1$ حيث $9^{\circ} < \theta < 7$ هي {°YE.}(3) - {°Y1.}(2) {°۲١0}(1) {°۲١0}(4) {°۲٢0}(4) θ اذا کانت : $\theta = 0$ ، النا $\theta = 0$ فإن : $\theta = 0$ $\left\{\pi \stackrel{\circ}{\leftarrow}\right\}(J)$ $\left\{\pi \stackrel{\varepsilon}{\leftarrow}\right\}(A)$ $\left\{\pi \stackrel{\varepsilon}{\leftarrow}\right\}(A)$ $\left\{\pi \stackrel{\varepsilon}{\leftarrow}\right\}(A)$

$$(1)$$
 مجموعة حل المعادلة : ما (1) (1) (2) (3) (3) (4) (4) (5) (5) (7) (7) (8) (8) (9) (1)

$$\frac{\pi}{r} \pm \pi v \Upsilon(z) \qquad v\pi + \frac{\pi}{r}(z) \qquad (z) \Upsilon v\pi \pm \frac{\pi}{r}(z)$$

$$(z) \Upsilon v\pi \pm \frac{\pi}{r}(z) \qquad (z) \Upsilon v\pi \pm \frac{\pi}{r}(z)$$

$$(z) \text{ lich lists that Like it } z \Rightarrow \frac{1}{r} \text{ as }$$

$$\nu\pi + \frac{\pi}{r}(1)$$
 $\nu\pi + \frac{\pi}{1}(2)$ $\frac{\pi}{1} \pm \pi\nu \Upsilon(2)$ $\frac{\pi}{r} \pm \pi\nu \Upsilon(1)$

$$\pi \nu \Upsilon + \frac{\pi \xi}{\Upsilon} = \pi \pi \Upsilon + \frac{\pi \xi}{\Upsilon} (1)$$

$$\pi \nu \Upsilon + \frac{\pi \xi}{\Upsilon} (2)$$

$$^{\circ}$$
 ۱۱۲ $^{\circ}$ ۱۱

$$\frac{\pi r}{r}(\iota)$$
 $\pi(\dot{z})$ $\frac{\pi}{r}(\dot{z})$ $\frac{\pi}{r}(\dot{z})$

$$\emptyset () \quad \{ {}^{\circ}\mathsf{TT.} \; , \; {}^{\circ}\mathsf{TI.} \} \; () \quad \{ {}^{\circ}\mathsf{ID.} \; , \; {}^{\circ}\mathsf{TI.} \} \; ()$$

نفسها مجموعة حل المعادلة : ميّا س = $\sqrt{\pi}$ فإن مجموعة حل المعادلة : ميّا س = $\sqrt{\pi}$ هي نفسها مجموعة حل

$$\cdot = \left(\frac{1}{Y} - \omega + T - \omega\right) = \cdot$$

رجم إذا كانت : ۰°
$$\leq \theta < 77$$
° فإن مجموعة حل المعادلة : طا $\sqrt{\theta} = \sqrt{\eta}$ هي

زا کانت: $\cdot \leq - \cup < 7$ π فإن مجموعة حل المعادلة : ميّا $\left(- \cup - \frac{\pi}{7} \right) = \frac{1}{77}$ هي	
$\{03^{\circ}, 077^{\circ}, 077^{\circ}, 077^{\circ}\}$ (ب) $\{03^{\circ}, 077^{\circ}, 077^{\circ}\}$ (1) $\{03^{\circ}, 077^{\circ}\}$ (ج) $\{077^{\circ}, 077^{\circ}\}$ (ع) $\{03^{\circ}, 077^{\circ}\}$ (ع) $\{077^{\circ}, 077^{\circ}\}$ (خ) كانت : $0.0000000000000000000000000000000000$) (T)
ج) $\{0.77^{\circ}, 0.77^{\circ}\}$ ج) $\{0.3^{\circ}, 0.77^{\circ}\}$ ج) $\{0.3^{\circ}, 0.77^{\circ}\}$ إذا كانت : $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حل المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ فإن مجموعة حلى المعادلة : مِنَا $0.9^{\circ} < 0.77^{\circ}$ في أن	(7)
$(e^{\circ})^{\circ} \cdot (e^{\circ})^{\circ}$ ($e^{\circ})^{\circ} \cdot (e$	(7)
ندا کانت : $\cdot \circ \leq \theta < 0$ فإن مجموعة حل المعادلة : ميًا $\theta = 0$ هي	(7)
(ب) {°٩٠، °٠} (ب) {°٩٠، °٠} (ب) {°٩٠، °٠} (ب) {°٩٠، °٠} (ب) {°٢٧٠، °٩٠، °٠} (ب))
{°YV·, °٩·}() {°YV·, °٩·, °٠}(>	
	1
إذا كانت $\cdot \leq -\upsilon < \tau$ فإن مجموعة حل المعادلة : $\frac{\alpha 2 1' - \upsilon - \alpha 1' - \upsilon}{1 - \alpha 1' - \upsilon} + \tau = 0$ هي	
the same of the sa	
$\left\{\frac{\pi \circ}{\tau}, \frac{\pi \cdot \tau}{\tau}\right\}(\varphi) \qquad \left\{\frac{\pi \cdot \varepsilon}{\tau}, \frac{\pi}{\tau}\right\}(1)$	x - 3.77
$\left\{\frac{\pi \circ}{r}, \frac{\pi r}{\epsilon}, \frac{\pi r}{r}, \frac{\pi}{r}\right\} (1) \qquad \left\{\frac{\pi \circ}{r}, \frac{\pi \epsilon}{r}, \frac{\pi r}{r}, \frac{\pi}{r}\right\} (2)$	
إذا كانت $^{\circ} < \theta \leq ^{\circ}$ فإن مجموعة حل المعادلة : ما (۲ θ + $^{\circ}$) = $\sqrt{7}$ منا (۲ θ + $^{\circ}$)	(A)
	No.
(۱) {٠٣٠، ٢٠٠٠ } الله الله الله الله الله الله الله ال	
{°۲۸0, °100, °100, °10} (L) {01°, 0.1°, 0.1°, 0.1°)	
إذا كان : $\theta \in [\cdot \ , \ \gamma \ \pi [$ فإن مجموعة الحل للمعادلة : ما $\theta + \delta$ أنا $\theta = \gamma$ تساوى	(1)
$\left\{\frac{\pi}{\tau}\right\}(\iota) \qquad \left\{\pi\right\}(\star) \qquad \left\{\frac{\pi}{\tau}\right\}(\iota) \qquad \left\{\frac{\pi}{\tau}\right\}(\iota)$	
عدد حلول المعادلة : مِنَا $ heta - 3$ مِنَا $ heta + 3 = \cdot$ يساوى	(F)
w/ \	
(۱) صفر (ب) ۱ (ج) ۲ (ح) ۲ (۱)	
(1) صفر $(+)$ (ب)	
	(7)
إذا كانت : $0^{\circ} \leq \theta < 77^{\circ}$ فإن مجموعة حل المعادلة : ٢ منا $\theta - 0$ منا $\theta - 7 = 0$ هي	(1)
إذا كانت : $0 \le \theta < 77^\circ$ فإن مجموعة حل المعادلة : ٢ مئا $\theta - 0$ مئا $\theta - 7 = 0$ هي	(r)
$ $ الحالت : $\cdot \circ \leq \theta < 77^\circ$ فإن مجموعة حل المعادلة : 7 مثا $ \theta - 0 $ مثا $ \theta - 7 = 0 $ منا $ (1) $ $ (1) $ $ (1) $ $ (2) $ $ (3) $ $ (4) $ $ (4) $ $ (5) $ $ (5) $ $ (6) $ $ (6) $ $ (7) $ $ (7) $ $ (8) $ $ (8) $	(r) •
إذا كانت : $0 \le \theta < 0$ فإن مجموعة حل المعادلة : $0 < 0$ مئا $0 - 0 = 0$ هي	(r) •

```
١ (ب)
       (ج) ۲ (۲)
     بنائی تانت : 0 < 0 < \tau فإن عدد حلول المعادلة : مِنا \theta - \alpha فإن عدد حلول المعادلة : مِنا \theta - \alpha وا \theta يساوى ..............
           (ج) ۲
                                                      ۲ (ب)
أ إذا كانت: θ (٠٠١ وكانت سم هي مجموعة حل المعادلة: ما θ = ٠٠ صمه محموعة حل
      المعادلة : منا \theta = \frac{1}{2} فإن مجموعة حل المعادلة : ما \theta (٢ منا \theta - 1) = ٠ هي .....
                                                (ب)س ل ص
        (ج) س - ص (د) ص - س
 \frac{1}{\sqrt{k}} = \theta و کانت س تمثل مجموعة حل المعادلتين : ما \theta = \frac{1}{\sqrt{k}} ، منا \theta = \frac{1}{\sqrt{k}}
                         وكانت ص تمثل مجموعة حل المعادلة: ما θ = منا θ فإن: .....
(i) w = av (i) v = av (i)
      مجموعة حل المعادلة : (1+a|\theta)^{\gamma}= منا \theta+\gamma ما \theta حيث 0 \leq \theta < 0 هي .............
\{^{\circ}\backslash\Lambda, (^{\circ}, ^{\circ}, ^{\circ}, ^{\circ})\}
         التي تحقق أن \theta إذا كانت : س ، ص \theta \theta ، \theta \theta ، \theta \theta التي تحقق أن
                                                     ماس ماص = ١ تساوى .....
      \left\{\frac{\pi}{\nu}, \frac{\pi}{\nu}\right\}(1) = \left\{\frac{\pi^{\nu}}{\nu}, \frac{\pi}{\nu}\right\}(2) = \left\{\pi^{\nu}, \pi\right\}(1)
ن الحل العام للمعادلة : ما \theta = 7 \theta - 3 هو \pi + 7 \pi به حيث به عدد صحيح فإن : \theta = \cdots
                                                   (۱) صفر (ب) ۱–۱
      ° (¬) (→)
                                          🤈 (۱) الحل العام للمعادلة : ما 🏲 \theta = صفر هو ........
          TNT (3)
                              TN (→)
                                                   Tルド(シ)
                                                                           TN(1)
                          و (ك) الحل العام للمعادلة : ما θ منا θ = ٠ هو ...... (حيث له ∈ ص)
                                                      Nπ (-)
                                N T (=)
                                                                          Nπ Y(1)
           N T (1)
           ٤(١)
                   مجموعة حل المعادلة : طا \theta + فا \pi حيث \cdot \theta مجموعة حل المعادلة : طا \theta + فا \pi حيث \theta
  \left\{\frac{\pi \, \backslash \backslash}{7}, \frac{\pi \, \vee}{7}\right\}(3) \qquad \left\{\frac{\pi \, \backslash \backslash}{7}, \frac{\pi}{7}\right\}(4) \qquad \left\{\frac{\pi \, \vee}{7}, \frac{\pi}{7}\right\}(4)
     (ع) إذا كانت : \theta = \frac{\pi}{2} وكانت : طا \theta + طا^{7} \theta = 7 فإن : قا^{7} \theta + قا^{3} \theta = \dots
            A(1)
                                7 (=) 7
                                                          T (w)
  نا کان : منا \theta أحد جذري المعادلة : س - س طا \theta + ما \theta = \frac{1}{2} فإن إحدى قيم \theta هي ............
        (ج) ۲۰ (م) °۲۰ (م)
                                                  (ب) ٥٤٠
                                                                            ٣٠ (1)
```

١ أوجد الحل العام لكل من المعادلات الآتية:

$$\frac{1}{7} = \theta L \square (1)$$

$$\frac{\overline{r}\sqrt{-}}{r} = \theta \triangleright (\epsilon)$$

$$\frac{7}{4} = \theta \approx \frac{1}{4}$$

the second of the Harby Was a line

$$\frac{1-}{7}=\theta$$
 (0)

$$\frac{1}{Y} = \left(\theta - \frac{\pi}{Y}\right) \text{ is } \square \text{ (i)}$$

$$\cdot = \theta \text{ is } Y - \theta \text{ is } Y \text{ (ii)}$$

(P) (1) (A)

(4) (1) (1) (1)

١-=θ له (٦)

$$AI_{\bullet} = A^{Y}I_{\bullet} \times M$$

اذا كانت $\theta \in [\pi, \pi]$ أوجد مجموعة الحل لكل من المعادلات الآتية :

$$\cdot = \overline{Y}V + \theta \downarrow \delta (Y)$$

$$\frac{1}{Y} = (° \circ \cdot - \theta) \Rightarrow (r)$$

· = 0 1 - 7 - 0 (9)

· = TV + 0 12 7 (m)

·= + + 0 ام ٤ (٦)

$$\cdot = \frac{1}{\theta \, \text{th}} - \theta \, \text{th} \, (1)$$

نا المعادلات الآتية في الفترة
$$[\cdot, \frac{\pi}{7}]$$
:

$$\theta$$
 حل المعادلة : ما θ منا $\theta - \frac{1}{7}$ منا $\theta = 0$ إذا كانت : $\theta < 0$

و أوجد الحل العام لكل من المعادلات الآتية :

	The state of the s		
	:]π	, من المعادلات الآتية في الفترة [🚺 أوجد مجموعة حل كل
· = ٣ + 0	ا ٤ ما ٦ + ٨ ما	o ما θ + ۲ = ۰	-θ ⁷
$\cdot = r + \theta$	(٤) ٢ قا ٢ ٩ - ٧ قا	·= \-	0 1 - 0 TU T (T)
√7 = 37°	-04 · ·= 1+0 L	ة موجبة تحقق المعادلتين: ٢ م	أوجد قياس أصغر زاوي
	$\left]\frac{\pi}{7}$ ، $\cdot \left[\ni \theta$ حيث	عادلة: ما $\left(\frac{\theta}{3}\right) = \frac{1}{\sqrt{1}}$	٨ أوجد مجموعة حل الم
	(- into tall	BY The same of the	
		همارات التفکیر	الثا مسائل تقیس
		من بين الإجابات المعطاة:	١ اختر الإجابة الصحيحة
	۰ ، ، π تر آهو	ة: ماس = ، حيث س ∈ [(۱) عدد حلول المعادلا
٨(٤)	7 (+)	(ب) ٤	Y(1)
The second second	I The sense has		• (۱) إذا كان : ما ٢ +
114 20	1: - P1: ()	ر المراقع الم	
	(ب) منا ۴ - مناب =		
10-74	١-=(-+١) الم (١)	$\Lambda =$	Marian Maria
**********	بڻ س ∈ [۰۰، π [هي		Annual Control
Ø (1)	$\left\{\frac{\pi}{7},\right\}$ (حفر	(ب) {صفر}	$\left\{\frac{\pi}{7}\right\}(1)$
	ﺎﺩﻟﺔ : ٣ ﻣﺎ ﺱ = ﻓﺎ ﺱ ﻫﻮ	س ≥ ٣٦٠° فإن عدد حلول المع	(٤) إذا كانت ،° ≤ -
0(1)	(ج) ٤	(ب) ۳	Y (1)
		θ خزا θ = ۲ فارن : طا θ ۲۰۱۹ طزا	
		(ب)	
		جذرى المعادلة التربيعية : - س	
		π ۲] هی	and the second second
		$\frac{\pi}{r}$ (i $\frac{\pi}{r}$ (i)	
		ادلة : ما ^٧ س - ماس منا س	CONTRACTOR OF THE PARTY OF THE

175

حيث ص ∈]π ۲، ۰ و هو

$$\frac{\pi \, 11}{7} (2)$$
 $\frac{\pi \, 9}{7} (2)$ $\frac{\pi \, 7}{4} (2)$

$$\frac{1}{7}(2) \qquad \qquad \Upsilon(2) \qquad \qquad \frac{1}{2}(2) \qquad \qquad \Xi(1)$$

$$\frac{\Lambda^{-}}{10}(4) \qquad \frac{V^{-}}{7\xi}(4) \qquad \frac{0^{-}}{17}(4) \qquad \frac{T^{-}}{\xi}(1)$$

الحل العام للمعادلة : ﴿ الله
$$\theta$$
 - ﴿ الله عَلَى الله العام المعادلة : ﴿ الله عَلَى اللهُ عَلَى اللهُ عَلَى الله عَلَى الله عَلَى الله عَلَى الله عَلَى ا

$$\pi \omega + \frac{\pi}{7} (-)$$

$$\pi \omega + \frac{\pi}{7} \times {}^{\omega} (1-) (1)$$

$$\pi \nu \Upsilon + \frac{\pi}{7} - (2)$$

$$\pi \nu \Upsilon + \frac{\pi \Upsilon}{\Upsilon} (2)$$

اذا كانت $\theta \equiv [\cdot \; , \; angle \; \pi \; angle$ فأوجد مجموعة الحل لكل من المعادلات الآتية :

$$\cdot = 7 - \left(\theta - \frac{\pi}{7}\right) \log 1 + \theta \leq \epsilon$$

$$(3) \ U^3 \ \theta - 7 \ U^7 \ \theta + 7 = \cdot$$

الدرس

حل المثلث القائم الزاوية

- أي مثلث يحتوى على ستة عناصر، ثلاثة أضلاع وثلاث زوايا ، والمقصود بحل المثلث هو إيجاد قياسات زواياه وأطوال أضلاعه الغير معلومة.
- لحل المثلث القائم الزاوية يلزم معرفة : طولى ضلعين فيه أ ، طول أحد أضلاعه وقياس إحدى زاويتيه الحادتين.
 - تستخدم النسب المُثلثية للزاوية الحادة ونظرية ڤيثاغورث في حل المثلث القائم الزاوية حيث :

في المثلث ٢ - ح القائم الزاوية في ب

ا ما
$$\theta = \frac{|A = 1|}{|A = 1|}$$
 منا $\theta = \frac{|A = 1|}{|A = 1|}$

، طا
$$\theta = \frac{| L B | H}{| L A | H} = \frac{1}{1 - 1}$$

أُولًا ﴿ حَلَ المثلث القَائمِ الزاوية إذا علم منه طولا ضاعين

مثال ۱

حل المثلث أبح القائم الزاوية في حوالذي فيه: أحد السم ، أب المدر المثلث المراوية في حوالذي فيه : أحد المدر

$$\frac{\Lambda}{17.0} = -1$$
 ... ما $\frac{\Lambda}{17.0} = -1$ وباستخدام حاسبة الجيب نجد أن : $\frac{\Lambda}{17.0} = -1$... ما $\frac{\Lambda}{17.0} = -1$

لاحظ أنه يمكن إيجاد بحر باستخدام نظرية فيثاغورث حيث : (عم) - (١٠٠) - (١٠٠)

فیکون $= \sqrt{(0,1)^{1} - (1)^{7}} \approx 7,7$ سم

مثال ۲

حل المثلث ٢ بح القائم الزاوية في ب والذي فيه : ٢ ب ١٥ ، ١٥ سم ، بح = ٢٤,٧ سم

الحــل

$$\frac{10,7}{7E,V} = 41 < \therefore 41 < = \frac{1}{12} \cdot \frac$$

وباستخدام حاسبة الجيب نجد أن : ق (دح) م ٢٢ آ٦ ٢٢°

- .: & (29) = . P° 77 17 77° = 17 73 40°
- 10,7 (°TY 17 FY) = = = 10,7 .. (°TY 17 FY) L = 10,7 ..

٠: ١٠ = ماح

وباستخدام حاسبة الجيب نجد أن : ﴿ حِي ١٩,٢١ سم

لاحظ أنه يمكن إيجاد ٢ حابستخدام نظرية فيثاغورث حيث: (١ ح) ٢ = (١ - ٢) + (- ح)

فیکون: $1 = \sqrt{(7, 0)^{7} + (7, 0)^{7}} \approx 7$ سم

حاول بنفسك

حل المثلث ٢ بح القائم الزاوية في ب في الحالتين الآتيتين:

ثانيًا ۗ حل المثلث القائم الزاوية إذا علم منه طول ضلع وقياس إحدى زاويتيه الحادتين

مثال ۳

حل المثلث أب حد القائم الزاوية في والذي فيه: أحد = ١٢,٥ سم ، ق (دح) = ٠٥ ٥٠°

الحــل

- 5 (21) = . P° . 0 07° = . 1 37°
- - .: ١٠ م ٠٠٠ ما ٥٠ م٠٠ .

وباستخدام حاسبة الجيب نجد أن : أب = ٥٠,٥ سم

وباستخدام حاسبة الجيب نجد أن : ب ح 🏗 ١١,٢٥ سم

مثال ٤

حل المثلث أبح القائم الزاوية في والذي فيه: أب = ١٨٨ سم ، ق (دح) = ١١٨٥°

الحــل

• U (49) = . P° - 1/ 13° = 73 13°

وباستخدام حاسبة الجيب نجد أن : بحد الله ١٠٧٩ سم

لاحظ انه يمكن إيجاد طول بح باستخدام و (١٩) حيث يكون: وي الم الم

لاحظ انه يمكن إيجاد طول أحر باستخدام ف (د ١) حيث يكون : أحر = منا ١

*: 12 = 173 A3°

حاول بنفسك

تفكير ناقد

حل المثلث أب ح الذي فيه ق (دب) = ٩٠ إذا كان:

١ ١٠ = ٠١ سم ، ن (دح) = ٤٥°

هل مكن حل المثلث القائم الزاوية معلومية قياسى زاويتيه الحادثين ؟ الإجابة : لا يمكن.

تفسير الإجابة:

لأنه يوجد عدد لا نهائي من المثلثات القائمة التي لها نفس قياسي الزاويتين الحادتين (أي المثلثات المتشابهة)

ولذلك لا يمكن تحديد أى من هذه المثلثات هو المطلوب تحديد أطوال أضلاعه (أى حله) إلا إذا علم على الأقل أحد أطوال أضلاعه.

مثال

حل المثلث ٢ - ح القائم الزاوية في - مقربًا قياسات الزوايا لأقرب ثلاثة أرقام عشرية من الراديان والطول لأقرب ثلاثة أرقام عشرية من السنتيمترات إذا كان:

الحل

لاحظ أنه

يجب تحويل نظام الآلة الحاسبة من النظام (Deg) إلى النظام (Rad) قبل إجراء العمليات الحسابية التي تحتوي على دوال مثلثية لزوايا مقدرة بالراديان

وذلك بالضغط على 🕋 ثم 🧰 ثم 🚁

$$5.710 \approx 51.708 - \frac{\pi}{2} = (22)$$

1.,7 = 51, TOE L ..

5., Ao7
$$\approx$$
 5., V10 $-\frac{\pi}{Y} = (12)$ \circ \circ

حاول بنفسك

حل المثلث ٢ صح القائم الزاوية في صمقربًا قياسات الزوايا لأقرب ثلاثة أرقام عشرية من الراديان والطول لأقرب ثلاثة أرقام عشرية من السنتيمترات إذا كان:

مثال ٦

ا المحمثاث فيه: ق (دس) = ١٢ ٥٥° ، بحد = ١٥ سم ، رسم أو لم المحدث المحد

الحــل

وباستخدام حاسبة الجيب نجد أن : ق (دح) = ٨ ٣٩ ٨٤°

مثال ۷

دائرة طول نصف قطرها ٦ سم رسم فيها وتر يقابل زاوية مركزية قياسها ١٠٠° احسب طول هذا الوتر لأقرب ثلاثة أرقام عشرية.

الحل

.: ۶ منتصف ۹ ب

حاول بنفسك

٩ - قطر في الدائرة م

، ق (د ١) = ٢٤° ، ١ ح = ١٠ سم

أوجد طول نصف قطر الدائرة م القرب رقمين عشريين.

تمارين 🚺

على حل المثلث القائم الزاوية

اختبر نفسك

🖧 مستويات عليا

و فهم والطبيق

ه تذکر

🛄 من أسئلة الكتاب المدرسي

أولا / أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

- (١) يمكن حل المثلث القائم الزاوية في كل الحالات الآتية ما عدا أن يكون المعطى
 - (1) طولا ضلعين في المثلث.
 - (ج) قياسا زاويتين في المثلث.
 - (١) في الشكل المقابل:
 - 1 ح = سم
 - 17,7(1)
 - (ج) ۲,۷
 - (٣) في الشكل المقابل:
 - - 9, 1(1)
 - ٨,٤ (ج)
 - (L) PO
 - (٤) في الشكل المقابل:
 - طول بح ≃
 - 17(1)
 - (ب) ۱۳
 - (ج) ۱٦
 - YE (3)
 - (٥) في الشكل المقابل:
 - طول بحد = .
 - 7(1)
 - (ج) ٩

- (ب) طولا ضلعين وقياس الزاوية المحصورة بينهما.
 - (د) طول أحد ضلعى القائمة وطول الوتر.
- (ب) ۸,۲
- 0,9(1)
- (ب) ۹,۲
- 18,7(2)

- (ب) ع
- 0(1)

(ب) ٨٤ ٢٣°

0. 17(1)

- (٦) في الشكل المقابل:
- ن (د ح) =
 - °07 TV (1)
 - وج) ۲۲ ۴۳ (ج)
- (v) إذا كان المثلث المسحقائم الزاوية في ب ، اب = 0 سم ، بحد = 0 TV سم
 - فإن : ق (دح) =
- ٣٠ (ټ) ٠٠٠ ما ١٠٠٠ ١٠٠٠ ١٠٠٠ (6) 10° (ح) ٥٤°
 - (A) في الشكل المقابل:

TV, V ()

- °Y. 13 91 (1) (ب) ۹۸ ما ۲۰
- °7. 1 91 (1) °Y. 1391(2)
- (٩) إذا كان △ ٢ بح قائم الزاوية في ب ، ق (د ٢) = ٩٢٥ . ، بح = ٨ فإن: ١حت سم.
- اب) ۱۳ 7 (2) 1. (1) 11(2)
 - (٠٠) إذا كان △ ٢ حقائم الزاوية في ، ق (دح) = ١٣ ٤٥° ، حد = ٢٠ سم فإن : طول ال ع سيسسس
 - (ب) ۱۱,۷ 17,7(1)
 - 18,8 (=)
- (١١) في أي الأشكال الآتية لا يمكن حل المثلث ٢ ح ؟

- (1) · (u)
- (١٢) إذا كان ٢ ح مثلث قائم الزاوية في ٢ فإن :
 - أولا: بح =
- · 16 1 (=) (ب) ٢- فناح 26-1(1) ثانيًا: أب =
 - (ب) ١ح قاب (ج) ع ح فتا<u>ب</u> - U= +(1)

(د) عب قاح

- (١٣) الشكل المقابل يتكون من ٣ مربعات متلاصقة ، إذا كان طول ضلع کل منها یساوی ۲ سم فإن : بح =
 - 1 (·) F (=)
- + (1)

في الشكل المقابل: ﴿ (٤) في الشكل المقابل:

- 0(1)
- 7 7 (+)
- (١٥) في الشكل المقابل:

- 9(1)
- (ب) ۲۹
- 12 (÷).
- YA, 0 (4)

- - ون الساقين فيه : 9-9-1 سم ، (29)=77 37°

(ج) ۱۸,۷

(÷)

- Yo, Y(1)
- (ب) ۸, ۵۱
- (٧) في الشكل المقابل:

- (1) 2 (292) 2 (292)
- (ب) منا (د ع ح س) منا (د ع ع م)
- (ج) ما (دع حب) طا (دع عد)
- (د) منا (د ع حب) طنا (د ع ع حر)

(٨) في الشكل المقابل:

- حرى = سىم،
- (ب) ۲ ما ۲۰ منا ۲۰ (۱) ۲ فتا ۳۰ قا ۲۰
- °۲. ۲ °۲. ت ۲ (۵) (ج) ۲ کا ۳۰ منا ۲۰
 - (١) في الشكل المقابل:

1(1)

- ٢ ح مثلث قائم الزاوية في -
- وكان: ١ ي = ٥ سم ، ح = ٥ سم ، ح = =
 - فإن : قا α ما θ =
 - (ب) ۲

(c) A, o7

10 (=)

٧,٩٦ (ج)

(ج) ۴۹°

1. (4)

: ف الشكل المقابل ؛

△ ٢ - حقائم الزاوية في ب

، و ∈ بحد بحد حو = ۲۰ سم

۲۰ (ب) 7/1.(1)

(11) في الشكل المقابل:

ا بحد ، هدى مثلثان قائما الزاوية في ب ، وعلى الترتيب

فإذا كان : ح منتصف $\overline{-2}$ فإن : و على على المان على ا

(ب) ه : ۲ Y: T(1)

(ج) ۲: ۱ 1: 1 (1)

(11) 🛄 يبين الشكل المقابل:

دائرة مركزها م ، ١٠ قطر فيها

، فإذا كان : ٩ ح = ١٢ سم ، ق (١٩ = ٣٧°

فإن طول نصف قطر الدائرة ≃

(ب) ۹,۹۷ V, 01(1)

(٢٣) في الشكل المقابل:

الدائرة م طول نصف قطرها ٥ سم

، أحد مماس للدائرة عند ٢ ، ٢٥ = ٦ سم

فإن : ق (دج ع) =

(ب) ۲۱° °07 (1)

(ع) في الشكل المقابل:

طول اح =سم.

7(1)

(ج) ٤

0(1)

(0) اسح مثلث ، رسم الح ل بح فإذا كان: اع = ٢ سم ، و (دب) = ٢٥° ، و (دح) = ٢٠° فإن طول بح ≃سم.

> (ب) ۱٦ Y. (1)

1: (3)

E, V9 (1)

11 (2)

(ج) ۱۷

(٦) في الشكل المقابل:

١٠ ح مثلث متساوى الأضلاع طول ضلعه = ١٠ سم

فإن : و هر + هر و =

$$\frac{\overline{r}\sqrt{10}}{\Lambda}(\div) \qquad \frac{\overline{r}\sqrt{10}}{3}(\div) \qquad \frac{\overline{r}\sqrt{10}}{7}(1)$$

(٧) في الشكل المقابل:

$$\left[\frac{\pi}{r}, \frac{\pi}{r}\right] \ni \theta$$
 إذا كانت : $\theta \in \left[\frac{\pi}{r}, \frac{\pi}{r}\right]$

فإن: احر∈

ن ف الشكل المقابل:

أى مما يأتى صحيح ؟

(i)
$$\theta_{r} = \theta_{r} = \theta_{r}$$
 (ii) $\theta_{r} < \theta_{r} < \theta_{r}$

هٔ 🙌 في الشكل المقابل:

إذا كان: أحد قطر في الدائرة م

فإن مساحة الدائرة المار برؤوس ٨ ٢ - ح

 $\frac{\pi}{2}$ تساوی $\frac{\pi}{2}$ × $\frac{\pi}{2}$ × $\frac{\pi}{2}$

(i) ما^ا ح (ب) منا ح

(·) [77 77) [(·)

(6) [11 /7 , 37]

١ (١) ١ - طيا ٢

ثانيا / الأسئلة المقالية

🚺 🛄 أوجد قيمة كل من س ، ص في كل شكل من الأشكال الآتية :

الآتية : eta أوجد قيمة كل من الزاويتين eta ، eta بالقياس الستيني في كل شكل من الأشكال الآتية :

٢ ٢ - ح مثلث قائم الزاوية في أوجد طول ٢ ب مقربًا لرقم عشرى واحد إذا كان:

۱۲, ۱۳ سم»

(1) ك (ا ح) = ١٨ ٢٣° ، عد = ٢٥ سم

nau A, Yn

(1) U (L1) = 33 75° ، بد= ١٦ سم

۱۷٫۸ سم»

- (7) & (21) = 1 73° ، ١ح= ١٤ سم
- اذا كان : وهد مثلث قائم الزاوية في أوجد σ ($\Delta \sim$) لأقرب دقيقة إذا كان :

"EY F9 "

(۱) ۲ - ۱۲, ۲ سم ، 1ح= ٢.١١ سم

"OT 9"

(1) -c=30 ma ، احد = ١٨ سم

" OT AN

- ، بح=٤٠٠٤ سم (۲) ۲ ب = ۲۷,۲ سم
- 🔼 🛄 حل المثلث ٢ صح القائم الزاوية في مقربًا قياسات الزوايا لأقرب درجة والطول لأقرب سم حيث:
 - (۱) اب = ٤ سم ، سح= ١ سم
 - (۲) اب = ٥ ، ۱۲ . سم ، بحد= ١٧٠٦ سم
 - (۲) اب = ۳, ۵ سم ، 1ح= ٢٠٢١ سم
 - ، 1 = = ٢٤ سم (٤) بح= ٢١ سم
 - ٦ حل ٨ ١ ب ح القائم الزاوية في والذي فيه:

 - ، اب = ۲,۲۱ سم (۱) اح= ۲, ۲۲ سم
 - ، بد= ۲۲ سم (١) 🛄 ١- = ٢٩ سم
 - (7) (1 0 (Le) = 77° , 1e = 77 ma
 - 2 (L1) = 37 73° (٤) اب = ۱۲ سم
- 💟 🛄 حل المثلث ٢ ب ح القائم الزاوية في مقربًا الزوايا لأقرب ثلاثة أرقام عشرية من الراديان والطول لأقرب ثلاثة أرقام عشرية من السنتيمترات حيث:
 - 51,179=(12)00(1) ، ٢- = ١٨ سم
 - (1) to (La) = 137, . 1 12 = 1,01 ma
 - (۲) ك (د ح) = ۱,۰۸۲ ، عد مر مسم

📈 مثلث متساوى الساقين طول كل من ساقيه ٧ سم وقاعدته ١٠ سم.

"91 1. 1. " EE TE OO : "EE TE OO"

احسب قياسات زواياه.

٩ و ح مثلث متساوى الساقين فيه : ١ و = ١ ع ، بح = ٢٠ سم ، ق (د ب) = ٤٥ ٨٤° " No N أوجد طول: ١ إ لأقرب سنتيمتر.

١١ ص ص ع مثلث فيه : س ص = ١١،٥ سم ، ص ع = ٢٠,٧ سم ، ص ع = ٢٩,٩ سم "TV YF" أثبت أن: المثلث قائم الزاوية في ص ثم أوجد: قياس زاوية س

١١ دائرة طول نصف قطرها ٨ سم ، رسم ٢ ح قطر فيها ثم رسم الوتر ٢ ب طوله ١٠ سم " TA 2. 57, 9., 01 19 2" أوجد قياسات زوايا المثلث أبح

۱۱ 🛄 دائرة م طول نصف قطرها ۷ سم ، رسم فيها وتر اب يقابل زاوية مركزية قياسها ١١٠° ، «٨٦٤ , ١١ سم» احسب طول أب لأقرب ثلاثة أرقام عشرية.

١٢ ١٠ حرى معين طولا قطريه أحر ، بري هما ١٨,٨ سم ، ٢٤,٦ سم "VE EV" أوجد: ٥ (١٩٥ ح) لأقرب دقيقة.

1٤ قطعة أرض على شكل معين ٢ ب حرى طول ضلعه ١٠ أمتار ، ق (د ٢ ب حر) = ١٠٤ ١٠٤ سل أوجد: طولي قطريه أحد ، ب «٧٩» مترًا تقريبًا ، ١٢،٢٨ مترًا تقريبًا»

10 ا اب حرى مستطيل طول قطره احد = ٨, ١٤ سم ، ق (١ احد) = ٣٦ ٢٢° ۹,۹۰ سم تقریبًا ، ۲۲,۷ سم تقریبًا» أوجد طول كل من: ١٠ ، بح

🚹 🛄 ۱۹ - حرى شبه منحرف متساوى الساقين فيه : ١٥٠/ بعد ، ١٠ = حو = ٥ سم ، ١٥ = ٤ سم ، بح = ١٠ سم. " ITT OT ("OT A ("ITT OT ("OT A) أوجد قياس كل من زواياه الأربعة.

ثالثًا 🗸 مسائل تقيس مهارات التفكير

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(١) في الشكل المقابل: اذا كانت : و ∈ بحد بحيث و ٢ = و ب = و حد = ٥ سم ، ق (د عوب) = ۸۰° فإن: احد = سسسسسسسم °٤٠ اما ١٠ (١) ٥٠ لم ١٠ (١)

(c) o al . 3°

(ح) ه ما ۱۸°

 أذا كان: ١ - ح مثلثًا قائم الزاوية أطوال أضلاعه هي ١ ، ١ + ١ ، ١ - ١ حيث ١ > ١ فإن قياس أكبر زواياه الحادة يساوي تقريبًا. (ب) ۱۸ ۸٤° °T7 07 (1) (L) 73 75° °07 \((=) و (٣) إذا كان: ٢ - حمثاثًا قائم الزاوية في - ، ٢ - = ٦ سم ومحيط ١٥ - ح = ٢٤ سم فإن : ق (دح) = °11 (~) °07 (2) 💰 (٤) إذا كان : ٢ - ح مثلثًا قائم الزاوية في - وكان ٢ - > - ح ، مساحة ٨ ٢ - ح = ٣٠ سم ٢ ، ٢٠ + ب ح = ٢٠ سم فإن : ق (١٩) = (a) NT TY° (L) 13 71° °08 FV (4) °VV 19.(1) ه (٥) في الشكل المقابل: إذا كان: أحد قطرًا في دائرة م ، أب مماسًا لها ، اب= ٦ سم ، نق = ٥ سم فإن : ٥ (دوحم) = °0. 17(1) °11 (=) °TV F9 (1) (4) P 07° : ف الشكل المقابل في (٦) بح قطر في دائرة م ، ١ ح = ٦ سم ، ت (د١ بح) = θ فإن مساحة △ ابح =سسس سم 日以7(1) 日はて(二) 日は 11(1) 0 1 1A (=) : (v) في الشكل المقابل (إذا كان: ١ - ح مثلثًا قائم الزاوية في ١ 9 1 = sf · = - 1 sf · فإن : بحد = (ج) منا B (د) طا^۲ B (ب) طا 0 0 L (1)

🔥 شکل خماسی منتظم طول ضلعه ۸۸, ٥ سم فإن طول نصف قطر الدائرة المارة برؤوسه 🗠 ····

(ب) ه

7 (=)

V(2)

٤(1)

الدرس

زوايا الارتفاع وزوايا الانخفاض

زاوية الارتفاع

ح (الجسم المرصود) زاوية ارتفاع (عين الراصد)

إذا فُرض أن هناك راصد عند نقطة أ ونظر إلى جسم

عند نقطة ح أعلى مستوى النظر فإن الزاوية المحصورة

بين الشعاع ١- الأفقى والشعاع ١ حد الواصل بين

عين الراصد والجسم المرصود تسمى زاوية ارتفاع الجسم المرصود ح بالنسبة لنقطة ٢

زاوية الانخفاض

(عين الراصد) زاوية انخفاض ا ح (الجسم المرصود)

إذا فُرض أن هناك راصد عند نقطة أ ونظر إلى جسم عند نقطة ح أسفل مستوى النظر فإن الزاوية المحصورة

بين الشعاع ١- الأفقى والشعاع ١- الواصل بين عين

الراصد والجسم المرصود تسمى زاوية انخفاض الجسم المرصود ح بالنسبة لنقطة ٢

وللحظة

قياس زاوية انخفاض ح بالنسبة إلى 1 يساوى قياس زاوية ارتفاع † بالنسبة إلى حـ

وذلك لأن ق (د ٢) = ق (د ح) (بالتبادل)

تحقق من فهمك

باستخدام الشكل المقابل أكمل ما يأتى:

الأوية ارتفاع الطائرة بالنسبة للشخص أهي

ع زاوية انخفاض الشخص † بالنسبة للطائرة ب هي

مثال ۱

من نقطة على سطح الأرض على بُعد ٥٠ متراً من قاعدة منزل وجد أن قياس زاوية ارتفاع أعلى نقطة في المنزل يساوى ٢٦ ٣٨ أوجد ارتفاع المنزل لأقرب متر.

الحــل

بفرض أن ٢ - يمثل ارتفاع المنزل

.: ١٠ = ٥٠ × طا ٢٦ ٣٨ ≈ ٤٠ مترًا.

.: ارتفاع المنزل = ٤٠ مترًا تقريبًا.

مثال ۲

من قمة برج ارتفاعه ٥٠ متراً وجد أن قياس زاوية انخفاض جسم واقع في المستوى الأفقى المار بقاعدة البرج يساوى ٢٤ أوجد بعد الجسم عن قاعدة البرج لأقرب متر.

الحــل

بفرض أن ٢ - يمثل ارتفاع البرج

.. بعد الجسم عن قاعدة البرج = ١١٦ مترًا تقريبًا.

حاول بنفسك

من نقطة على سطح الأرض تبعد ٥٠ مترًا عن قاعدة عمود رأسى، وجد أن قياس زاوية ارتفاع قمة العمود هو ٣٢ ١٨° أوجد لأقرب متر ارتفاع العمود عن سطح الأرض.

مثال ۳

وقف شخص طوله ٥,٥ متر على بعد ١٠ أمتار من قاعدة سارية علم مثبتة رأسيًا على سطح الأرض فوجد أن قياس زاوية ارتفاع أعلى نقطة في السارية يساوي ٢٢ · ٤٠ احسب طول السارية لأقرب متر.

بفرض أن: ١ - يمثل ارتفاع السارية ، حرى يمثل طول الشخص

نرسم حن // وب حيث ن ∈ اب

مثال ک

عمود إنارة ارتفاعه ٧,٤ متر يلقى ظلًا على الأرض طوله ٥٥,٥ متر.

أوجد بالراديان قياس زاوية ارتفاع الشمس عندئذ.

- بفرض أن: أب يمثل عمود الإنارة
- ، بحد يمثل ظل عمود الإنارة على الأرض
 - ، θ قياس زاوية ارتفاع الشمس عندئذ.
- v, ε = t = θ b :. °0 T V EA ≈ 0 :.
- 5. وقياس زاوية ارتفاع الشمس بالراديان = ٨٤ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$

حاول بنفسك

من قمة صخرة ارتفاعها ٢٠٠ متر عن سطح البحر قيست زاوية انخفاض قارب ببعد ٢٠٠ متر عن قاعدة الصخرة. فما مقدار قياس زاوية الانخفاض بالراديان ؟

مثال ٥

من قمة صخرة ارتفاعها ٥٠ متراً رصد شخص سفينتين في البحر على شعاع واحد من قاعدة الصخرة فوجد أن قياسي زاويتي انخفاضيهما ١٠ ٣٢ ، ٣٠ ٤٩ أوجد البعد بين السفينتين.

بفرض أن ٢ - يمثل ارتفاع الصخرة ، حرى البعد بين السفينتين.

تقترب سفينة من منارة ارتفاعها ٤٠ متراً عن سطح البحر ، رصدت قمة المنارة في لحظة ما فوجدت أن قياس زاوية ارتفاعها ١٢, ٠٠ وبعد ٥ دقائق رصدت قمة المنارة ثانية فوجدت أن قياس زاوية ارتفاعها ٢٤, ٠٠ . احسب سرعة السفينة علمًا بأن السفينة تسير بسرعة منتظمة.

بفرض أن : أب يمثل المنارة

وأن حرى هي المسافة التي قطعتها السفينة في ٥ دقائق.

ن طا۱۲،
$$\sqrt{2} = \frac{5}{\sqrt{2}} = \frac{5}{\sqrt{2}}$$
 ن با کار $\sqrt{2} = \frac{5}{\sqrt{2}} = 5$ مترًا.

ن سرعة السفينة =
$$\frac{14 \text{سافة}}{\text{الزمن}} = \frac{170,70}{\text{o}} = 70,777$$
 م/دقيقة.

من النظام (Deg) إلى النظام (Rad) بالضغط على

تمارين 11

على زوايا الارتفاع وزوايا الانخفاض

🚜 مستويات عليا	ه تطبیق	<u>ه فهـم</u>	ه تذکر	من أستلة الكتاب المدرسي
tenta - 2 land			aacio	ا أسئلة الاختيار من
		ONTEL		
		: 0		اختر الإجابة الصحيحة من ب
رتفاع قمة البرج فكان				(۱) من نقطة على سطح ا
and the same	متر.	ر يساوى	ع البرج لأقرب ما	قياسها ٧٢° ف <mark>إن ا</mark> رتفا
124 (7)	122 (÷)		(ب) ۱۲۱	17. (1)
عها ٤٠ لهد	قياس زاوية ارتفا	متر فوجد أن	ىلى ارتفاع ١٠٠٠	(١) رصد شخص طائرة ع
	ب متر.	لأقرب	لطائرة يساوى	فإن بعد الراصد عن ا
(0) 1001	(ج) ۱۳۰۵	al-or-ib	(ب) ۱۱۹۲	737
اقع في المستوى الأفقى المار	انخفاض جسم و	أن قياس زاوية	٨ مترًا إذا وجد	(٣) من قمة برج ارتفاعه
	ج يساوي تقريبًا	من قاعدة البرج	فإن بُعد الجسم.	ُ بقاعدة البرج ١٢ ٢٤°
(د) ۳۹ متر				
هدف ثابت على سطح البحر	ه زاوية انخفاض	ح البحر قيسن	ا ۸۰ متر عن سط	(٤) من قمة منارة ارتفاعه
				فكان قياسها ٨٠°، ف
				VA (1)
زاوية ارتفاع الشمس عندئذ				
any Democra	ا مستداريات			لأقرب درجة يساوى
°0 \(\cdot\)	(ج) ۲۹°		(ب) ۱ه°	°77 (1)
نخفاض قارب يبعد عن قاعدة				
		5	راديان ≃	الصخرة ٢٠٠ متر بال
(c) 37, ·	· , ۲٥ (ج)		(ب) ۲3,۰	٠,٠٨(١)
				(٧) إذا سار شخص مسا
نريبًا.	متر تا	عندئذ يساوى	المستوى الأفقى	فإن مقدار ارتفاعه عز
۲۷٦.۸(۵)	(ج) ۲۷۸٫٦		(ب) ٤٠٩,١	970,0(1)
				(٨) 🛄 طائرة ورقية طول
ال متراد لباد عامة ياد				
٨- (١)	(ج) ۸۲		(ب) ۱۹	۲۷(۱)

- (٩) شخص طوله ١٦٠ سم ويقف على سطح الأرض وعلى بُعد ٢٠ مترًا من شجرة رأسية وجد أن قياس زاوية ارتفاع أعلى نقطة في الشجرة يساوي ٤٨ °٣١ فإن ارتفاع الشجرة ع متر.
 - 11(2)
- 17 (=)

مستويات عليا 👶

- 18 (4)
- 17 (1)

(١٠) في الشكل المقابل:

إذا قيست زاويتا ارتفاع قمة برج طوله ٥٠ ٣٧ متر من النقطتين ؟ ، ب على نفس الخط الأفقى المار بقاعدة البرج فكان قياساهما ٣٠° ، ٦٠° على الترتيب فإن البعد بين النقطتين ؟ ، ب يساوى متر.

- ٥٠ (١) ١٠٠ (١) ٣٧٥٠ (١) ٣٧١٠٠ (١)
- (۱) 🛄 من سطح منزل ارتفاعه ٨ أمتار رصد شخص زاوية ارتفاع قمة عمارة أمامه فوجد أن قياسها ٦٣° ورصد زاوية انخفاض قاعدتها فوجد أن قياسها ٢٨° فإن ارتفاع العمارة لأقرب متر
 - (ب) ۲۸ T1(1)
- (١٢) وقف شخص على صخرة ارتفاعها ٤٠ مترًا ولاحظ سفينتين في البحر على شعاع أفقى واحد من قاعدة الصخرة ، وقاس زاويتي انخفاضيهما ، فوجد قياسيهما ١٢ ٥٣° ، ٦ ٦٥° فإن البعد بين السفينتين = متر.
 - ۱۷,۷(پ) ۱۹,٤(۱) (ج) ۲۲,۲۲ (L) V, FA
 - (۱۶) إذا كان قياس زاوية ارتفاع الشمس ٣٠° فإن طول ظل برج ارتفاعه ١٥٠ متر على سطح الأرض = متر.
 - TV VO (1) TV 10. (2) TV T.. (4) TV VO (1)
- (٤) من قمة تل ارتفاعه ٣٠٠ متر كانت زاويتي انخفاض قمة وقاعدة برج مقابل قياساهما ٣٠° ، ٥٥° على الترتيب فإذا كان كلًا من قاعدة التل والبرج على نفس المستوى الأفقى فإن ارتفاع البرج = متر.
- $(\overline{r}\sqrt{r}-r)$ 10. (1) $(\overline{r}\sqrt{r}-r)$ 1... (2) $(\overline{r}\sqrt{r}-r)$ 7... (2) $(\overline{r}\sqrt{r}-r)$ 0. (1)
- (١٥) إذا كان طول ظل برج رأسى على الأرض الأفقية عندما كانت زاوية ارتفاع الشمس قياسها ٣٠ أكبر من طوله عندما كانت زاوية ارتفاع الشمس قياسها ٥٥° بمسافة ٦٠ متر فإن ارتفاع البرج = متر.
- $(1+\overline{r})^{r}$ (2) (3) (4) (4) (5) (7) (1)

(١) في الشكل المقابل:

شخص يقف على ضفة نهر وجد أن قياس زاوية ارتفاع قمة شجرة على الضفة الأخرى للنهر يساوى ٦٠° وعندما تحرك ٤٠ متر مبتعدًا عن الشجرة في اتجاه ٢٠ فإن قياس زاوية ارتفاع قمة الشجرة أصبح ٣٠° فإن عرض النهر = متر.

۲۰ (۵) ۲۰ (۵) ۲۰ (۱)

(۱۷) قام شخص من قمة برج مراقبة ارتفاعه ۲۰۰ متر برصد سفينتين في البحر في نفس المستوى الأفقى المار بقاعدة البرج وفي جهتين مختلفتين من برج المراقبة فكان زاويتي انخفاضيهما ۳۰°، ۶۵° فإن المسافة بين السفينتين عصصصص متر.

(١) ٥٥٠ (١) ٢٤٥ (ج) ٢٦٤

(۱) من قاعدة وقمة منزل ارتفاعه ۱۰ أمتار تم رصد زاويتي ارتفاع قمة برج مقابل فكانتا ۳۰°، ۳۰° على الترتيب فإذا كان قاعدتي المنزل والبرج على نفس المستوى الأفقى فإن ارتفاع البرج = متر. (۱) ۱۰ (۱) ۲۰ (۱) ۲۰ (۱) ۲۰ (۱)

ثانيا 🗸 الأسنلة المقالية

من نقطة على بعد ٨ أمتار من قاعدة شجرة وجد أن قياس زاوية ارتفاع قمة الشجرة ٢٢°، أوجد ارتفاع الشجرة لاقرب رقمين عشريين.

وجد شخص أن قياس زاوية ارتفاع قمة برج يساوى ٢١ ٣٩° فإذا كان الشخص يبعد عن قاعدة البرج مسافة مترًا تقريبًا « ٥٠ مترًا فما ارتفاع البرج ؟

رصد شخص طائرة على ارتفاع ١٠٠٠ متر فوجد أن قياس زاوية ارتفاعها ١٧ ٥٠° ، أوجد بعد الراصد الراصد عن الطائرة.

کا ۱۵۰ من قمة صخرة ارتفاعها ۱۸۰ مترًا من سطح البحر قيست زاوية انخفاض قارب يبعد ۳۰۰ متر عن قاعدة الصخرة ، فما مقدار قياس زاوية الانخفاض بالراديان ؟

م الكور من المنطقة المنطقة المنطقة المنطقة على منطع الأرض، فوجد أن قياس زاوية انخفاضها المنطقة المنطقة المنطقة والراصد. " ٢٨٧٣ مترًا تقريبًا المنطقة والراصد.

من قمة منارة ارتفاعها ٢٠٠ متر قيست زاوية انخفاض قارب في النهر فكان قياسها يساوي ١٤ ٣١ فما بُعد القارب عن قاعدة المنارة إذا كان القارب يقع مع قاعدة المنارة في مستو أفقي واحد ؟ ٣٢٩.٨٠ مترًا تقريبًا،

البرج يساوى ٣٦ ٢٨ أوجد بعد الجسم عن قاعدة البرج لأقرب متر.

- 🖊 🛄 عمود إنارة طوله ٧,٢ متر يلقى ظلا على الأرض طوله ٨,٤ متر أوجد بالراديان قياس زاوية ارتفاع الشمس عندئذ.
- ٩ من قمة برج ارتفاعه ١٦٠ مترًا وجد أن قياس زاوية انخفاض جسم في المستوى الأفقى المار بقاعدة البرج هو ٣٥° أوجد بُعد هذا الجسم عن كل من قاعدة البرج وقمته لأقرب متر. «٢٢٩ مترًا تقريبًا ، ٢٧٩ مترًا تقريبًا»
- 🚺 🛄 سلم يستند بأحد طرفيه على حائط رأسى ، ويرتفع عن سطح الأرض ٣,٨ متر والطرف السفلي للسلم على الأرض وقياس زاوية ميل السلم على الأرض ٦٤° أوجد لأقرب رقمين عشريين كلا من :
- (1) deb (mula. (١) بعد الطرف السفلي عن الحائط. «١٠٨٥ مترًا تقريبًا ۽ ٤،٢٢ مترًا تقريبًا»
- ۱۱ 🛄 إذا كان قياس زاوية ارتفاع مئذنة من نقطة على بُعد ١٤٠ مترًا من قاعدتها يساوي ٤٦ ٢٦° فما هو ارتفاع المئذنة لأقرب متر ؟ وإذا قيست زاوية ارتفاع المئذنة نفسها من نقطة تبعد ١١٠ أمتار من قاعدتها فأوجد لأقرب دقيقة قياس زاوية ارتفاعها عندئذ. « ۲۲ مترًا ، ۵۰ ۲۲ »
- υ وجد راصد أن قياس زاوية ارتفاع منطاد مثبت هو π ، ولما سار الراصد في مستوى أفقى نحو المنطاد مسافة ٨٠٠ متر وجد أن قياس زاوية الارتفاع هو 3 أوجد ارتفاع المنطاد لأقرب متر. «١٠٩٢ مترًا تقريبًا»
- وقف رجلان في جهتين مختلفتين من سارية علم مثبتة رأسيًا على سطح الأرض بحيث كان الرجلان وقاعدة السارية على مستقيم أفقى واحد. فإذا رصد كل منهما زاوية ارتفاع قمة السارية وكان قياسا زاويتي ارتفاعها هما ١٦ ٤٥° ، ١٢ ٤٧° أوجد البعد بين الرجلين إذا كان طول السارية ١٢ مترًا (بفرض إهمال طولي الرجلين). «۱۹.۷» مترا»
- المنا المثل برجًا ارتفاعه ٥٠ مترًا قاعدته ب وقمته ٢ ، وقف شخصان أحدهما عند حد والآخر عند ٢ حيث ب ، ح ، و تقع على مستقيم أفقى واحد ، بحيث ح تقع بين ب ، و فإذا رصد كل منهما زاوية ارتفاع قمة البرج ، كان قياسا زاويتي ارتفاع قمة البرج ١٣ ٢٥° ، ٣٦ ٥٥° على الترتيب فأوجد طول حرى (بفرض إهمال طولى الشخصين). «۲، ۱۰ مترًا»
- من قمة برج ارتفاعه ٦٠ مترًا رصدت سفينتان في البحر على شعاع أفقى واحد من قاعدة البرج فوجد أن قياسي زاويتي انخفاضيهما ٤٧°، ٥٣ ٤١° على الترتيب. أوجد البعد بين السفينتين لأقرب متر. ۱۲ مترًا»
 - 🚺 يقف شخص على بعد ٨٥ مترًا من قاعدة برج على قمته سارية علم فلاحظ أن قياسى زاويتي ارتفاع قمة. السارية وقاعدة السارية ٥٦° ، ٥٥° على الترتب.

أوجد طول سارية العلم لأقرب متر (بفرض إهمال طول الشخص).

«٩ أمتار»

"TAP . . "

S

الم الم تقترب سفينة من منارة ارتفاعها ٥٠ مترًا ، رصدت قمة المنارة في لحظة ما فوجد أن قياس زاوية ارتفاعها المنارة عند ١٠ دقيقة رصدت قمة المنارة ثانية فوجد أن قياس زاوية ارتفاعها ٢٢ ، ٢٠ احسب سرعة السفينة علمًا بأنها تسير بسرعة منتظمة.

ثالثًا 🗸 مسائل تقيس مهارات التفكير

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(١) في الشكل المقابل:

إذا كانت قياسات زوايا ارتفاع أعلى نقطة في البرج من ثلاث نقاط على الخط المؤدى لأسفل نقطة في البرج هي ٣٠°، ٤٥°، ٦٠° على الترتيب

(=) V7: V7

(ب) ۲: ۲

(ب)

(١) في الشكل المقابل:

TV: 1(1)

ظل زاوية ارتفاع قمة البرج من قمة المنزل =

- °۸. له ۱۰. (ج)
- ° E. 16 7. ° 7. 16 E. (3)
 - : ف الشكل المقابل في (٣)

قيست زاويتا ارتفاع قمة جبل أب

من قاعدة وقمة منزل حرى ارتفاعه ف فوجد قياساهما على

الترتيب س ، ص فإن : ١ ب =

الدرس

القطاع الدائرى

تعريف

القطاع الدائري هو جزء من سطح دائرة محدود بقوس فيها وبنصفي القطرين المارين بطرفي هذا القوس.

فإذا رسمنا في الدائرة م نصفي القطرين مم ، م

- كما في الشكل المقابل - فإن سطح الدائرة

ينقسم بهما إلى جزأين كل منهما يسمى «قطاع دائرى».

- وتسمى د أم بزاوية القطاع الأصغر، د أم بالمنعكسة بزاوية القطاع الأكبر.
 - ويسمى أحب بقوس القطاع الأصغر ، أوب بقوس القطاع الأكبر.

مساحة القطاع الدائري

الدائرة (T) dlin

¥ دائرة (£)(tim

قطاع أكبر

(m) dtm

بملاحظة الأشكال السابقة نجد أن:

$$\frac{1}{1} = \frac{0}{1} = \frac{0}{1} = \frac{0}{1} = \frac{0}{1}$$
 ، $\frac{0}{1} = \frac{0}{1}$ ، $\frac{0}{1} = \frac{0}{1}$ ، $\frac{0}{1} = \frac{0}{1}$ ، $\frac{0}{1} = \frac{0}{1}$ ، $\frac{0}{1} = \frac{0}{1}$

$$\frac{1}{T} = \frac{^{\circ}17.}{^{\circ}77.} = \frac{(^{\circ}17.)^{\circ}}{^{\circ}77.} = \frac{(^{\circ}17.)^{\circ}}{^{\circ}77$$

$$\frac{1}{\sqrt{7}} = \frac{^{\circ}14.}{^{\circ}73.} = \frac{(^{\circ}14.)^{\circ}}{^{\circ}73.} = \frac{^{\circ}14.}{^{\circ}73.} =$$

$$\frac{\gamma}{\pi} = \frac{\gamma_{\xi}}{\alpha_{1}} =$$

أى أن النسبة بين مساحة القطاع ومساحة الدائرة هي نفس النسبة بين قياس زاوية القطاع وقياس الدائرة.

وإذا رمزنا إلى : قياس زاوية القطاع بالتقدير الدائرى بالرمز θ وقياسها بالتقدير الستينى بالرمز -0° ، طول ثصف قطر الدائرة بالرمز نق وطول قوس القطاع بالرمز ل فإن :

$$\pi \times \frac{\theta}{\pi} \times \frac{\theta}{\pi} \times \pi$$
 نق π

ان أن مساحة القطاع الدائرى =
$$\frac{1}{7}$$
 نق مساحة القطاع الدائرى

$$\pi \times \frac{\pi}{\pi} \times \pi \times \pi$$
 نق $\pi \times \pi$ نق $\pi \times \pi$ نق $\pi \times \pi$

مساحة القطاع الدائرى =
$$\frac{-0^{\circ}}{\pi}$$

$$\frac{\mathsf{J}}{\mathsf{i}\bar{\mathsf{g}}} = {}^{\mathsf{g}}\theta : \mathsf{F}$$

$$\frac{1}{2}$$
 مساحة القطاع الدائرى = $\frac{1}{2}$ نق $\frac{1}{2}$

ملاحظتان

- یمکن اعتبار الدائرة قطاعًا دائریًا قیاس زاویته = π نق π وتکون مساحة القطاع الدائری = مساحة الدائرة = π نق π
 - 🚺 محيط القطاع الدائري = ٢ نق + ل

أوجد مساحة القطاع الدائري الذي طول قوسه ل في دائرة طول نصف قطرها نق إذا كان قياس زاويته θ^7 بالتقدير الدائري ، θ^3 بالتقدير الستيني في كل مما يأتي :

الحــل

مساحة القطاع =
$$\frac{1}{7}$$
 نق $\theta = \frac{1}{7} \times 0$ مساحة القطاع = θ نق $\theta = 0$ سم

7
مساحة القطاع = $\frac{33.0}{77.} \times \pi$ نق $^{7} = \frac{13.0}{77.} \times \pi \times (0.00)$ مساحة القطاع = π

مساحة القطاع =
$$\frac{1}{7}$$
 ل نق = $\frac{1}{7} \times 3 \times 7 = 11$ سم

حاول بنفسك

أوجد مساحة القطاع الدائري الذي طول نصف قطر دائرته = ٧ سم ، زاويته المركزية قياسها ٢,١٤

آ أوجد مساحة القطاع الدائري الذي طول نصف قطر دائرته = ٥,٥ سم وطول قوسه = ٨ سم

٣ أوجد مساحة القطاع الدائري الذي قياس زاويته ٦٠° في دائرة طول نصف قطرها ٥ سم

مثال ک

قطاع دائری طول نصف قطر دائرته ۱۲ سم ، ومحیطه ۵٥ سم أوجد مساحته.

الحــل

.. نق = ١٢ سم ، محيط القطاع = ٥٥ سم ، .. محيط القطاع = ٢ نق + ل

ن مساحة القطاع =
$$\frac{1}{7}$$
 ل نق = $\frac{1}{7} \times 17 \times 71 = 171$ سم ...

قطاع دائری طول نصف قطر دائرته ۱۵ سم ، ومساحته ۲۷۰ سم آوجد:

🚺 قياس زاوية القطاع بالقياسين الدائري والستيني.

1 طول قوس القطاع.

5
 ۲, $\xi = \frac{77}{10} = \frac{1}{3} = ^{5}$.:

"
$$177 \text{ F1} \approx \frac{\text{"1A.}}{\pi} \times \text{ F1} = \text{"} \therefore$$

مثال ٤

قطاع دائری مساحته ۷۰ سم۲ ومحیطه ۳۵ سم

أوجد طول نصف قطر دائرته وقياس زاويته المركزية بالقياس الستيني.

$$(1)$$
 د مساحة القطاع = ۷۰ د $\frac{1}{7}$ ل نق = ۷۰ د القطاع = ۷۰ د القطاع

ويالتعويض من (٢) في (١) : . . (٥٥ - ٢ نق) نق = ١٥٠

نق = ۱۰ سم وبالتعویض فی (۱) نق =
$$\frac{1}{2}$$
۷ سم وبالتعویض فی (۱)

$${}^{5}\frac{\Lambda}{\Gamma} = \frac{\Upsilon}{V, o} = \frac{J}{i\ddot{a}} = {}^{5}\theta :$$

$$^{\circ}$$
107 $\stackrel{\circ}{\epsilon}$ V, $^{\circ}$ 19 $\approx \frac{^{\circ}$ 1 $\Lambda \cdot}{\pi} \times \frac{^{\circ}}{\tau} = ^{\circ}$... $^{\circ}$ 107 $\stackrel{\circ}{\epsilon}$ V $\approx \frac{^{\circ}$ 1 $\Lambda \cdot}{\pi} \times ^{\circ}$ 1, $\circ = ^{\circ}$...

حاول بنفسك

.: ل = ٥١ سم

قطاع دائري مساحته ١٢٠ سم ، وطوله قوسه ٢٠ سم

أوجد قياس زاويته بالقياسين الدائري والستيني وأوجد محيط القطاع.

دائرة م طول نصف قطرها ٦ سم ، رسم فيها نصفا القطرين ٢٦ ، م بحيث : ١٠ = ١٠ سم أوجد مساحة القطاع الأصغر م ٢٠ لأقرب سنتيمتر مربع.

الحــل

نرسم مح لـ اب يقطعه في حد فيكون حد منتصف اب

مثال ٦

أب ح مثلث قائم الزاوية في ب فيه : أب = ٦ سم ، ب ح = ٨ سم، رسم قوس دائرى مركزه أ وطول نصف قطر دائرته يساوى أب قطع أح في و أوجد لأقرب سم مساحة المنطقة المحصورة بين : ب ح ، ح و ، ب و دائرته يساوى أب قطع أح في و أوجد لأقرب سم مساحة المنطقة المحصورة بين : ب ح و ، ح و ، ب و و مول

الحــل

المساحة المطلوبة = مساحة △ ٢ بحر - مساحة القطاع ٢ ب

ایجاد مساحة ∆ †ب۔د:

مساحة
$$\Delta$$
 اسم $\frac{1}{7}$ مساحة Δ اسم $\frac{1}{7}$ مساحة Δ

إيجاد مساحة القطاع أبى:

حاول بنفسك

أوجد مساحة الجزء المظلل في كل مما يأتي بدلالة π :

مثال ۷

الحــل

مساحة المنطقة المطلوبة = مساحة الشكل ٢ - م ح - مساحة القطاع م ح د -

إيجاد مساحة الشكل أب م حـ:

- ٠٠٠ أب مماسة للدائرة ، بم نصف قطر فيها.
 - ·9. = (1- 2) ..
 - وبالمثل ق (د احم) = ٩٠°
- .: ١٩ = ٩ هـ = ١٢ (١٣) (٥) عمر (فيثاغورث)
- .. and $\frac{1}{2}$ limits $\frac{1}{2}$ $\frac{1}{2}$

إيجاد مساحة القطاع محوبة

· ひ(レーイリ) = 13 77 VF°

فی
$$\triangle$$
 م \bigcirc ۹ القائم الزاویة فی \bigcirc : منا (د \bigcirc ۹) = $\frac{\circ}{17}$

- :. 5 (L-1 €) = 7 × 13 77 VF° = 17 03 371°
- - .. مساحة المنطقة المطلوبة = ٢٠ ٢٩ = ٣١ سم

تمارين 12

على القطاع الدائري

10(1)

💑 مستویات علیا	Without to wo	س • تدخير	استنه انجناب المدرا
		یار من متعدد	أولا / أسئلة الاخت
	: 5	حة من بين الإجابات المعطا	اختر الإجابة الصحي
۱۰ سم یساوی سم	نوسه ٤ سم وطول قطر دائرته	نطاع الدائري الذي طول ة	و (۱) 🚨 محيط الق
1. (2)	۲۰ (ج)	۲۰ (ب)	18 (1)
	ف قطر دائرته ٤ سم وطول قوس		
			تساوی
۸(۵)	١٠ (ج)	(ب) ۱۲	YE (1)
سم تساوی سم۲	ه ۱۰ سم وطول قطر دائرته ۱۰	ع الدائري الذي طول قوسد	(٣) مساحة القطا
1(2)	(ج) ه ۲۰	۲٥ (پ)	0.(1)
كه ٤ سم تساوى سم٢	ويته ٢, ٢ وطول نصف قطر دائرة	طاع الدائري الذي قياس زا	🥴 (٤) 🛄 مساحة الق
19,7(2)	۱۲,۸(⇒)	(ب) ۲, ۹	٤,٨(١)
نه ۳ سنم تساوی سنم۲	ويته ١٢٠° وطول نصف قطر دائرة	طاع الدائري الذي قياس را	🤷 🜔 🕮 مساحة الق
π ۱۲ (2)	π ٩ (÷)	π٦(پ)	π ٣ (1)
سم	ں قوسه ٢ سم فإن : نق = ٠٠		
(د) ٤	(ج)	(ټ) ۲	٦ (١)
	لمول نصف قطر دائرته ١٤ سم	ى الذى محيطه ٤٤ سم وه	 (٧) القطاع الدائر;
		يساوى سىم	فإن طول قوسه
() 3	(خ) ۲۲		
ساوی سیم۲	له ۱۲ سم وطول قوسه ٦ سم ت	قطاع الدائرى الذى محيط	🥠 🔑 مساحة ال
// (7)	(خ) ۱۲	(ب) ٩	٦(١)
م ، ومحيطه ٢٠ سم	نصف قطر دائرته يساوى ٤ سـ		227585
413			تساوی
(ت) ۸٤	(ج) ٤٢	(ب) ۲۲	٤٠(١)

سم	فإن طول قوسه يساوى	سف قطر دائرته ۲۰ سم	احته ٤٠٠ سم ، وطول ند	(۱۱) قطاع دائری مس
	٤٠ (١)			
	ويته ٢,٢ - ١٠٠٠ ويته			
	Y. (1)	1. (÷)	(ب) ه	Y(1)
. سم	ويته المركزية $rac{\pi}{\gamma}$ هو	سم ، وقیاس زا π ،	اع الدائري الذي مساحته	(۱۳) طول قوس القط
	π ۲ (3)	7 (÷)	π٦(ب)	14(1)
	۸ سم یساوی سم			
	YE (2)			
. ^	محیطه یساویش	ر دائرته ۲۰ سم ، فإن	ساحته ٤٥ سم وطول قط	(۱۵) قطاع دائری م
	٤٩ (٤)			
	p distance.	ف قطر دائرته ٦ سم	ائری ۲۷ سم وطول نصر	(١٦) مساحة قطاع د
		5	الدائري لزاويته المركزية =	، فإن القياس
14	(2) 0,3	(ج) ۲	(ب) ۲	1,0(1)
المركزية	، فإن القياس الدائرى لزاويته	طول نصف قطر دائرته	حيطه ٤ نق سم حيث نق ه	(۷) قطاع دائري م
			رادیان.	يساوى
	\frac{1}{\sqrt}(2)	Y (÷)	(ب) ۸	\frac{7}{1} (1)
	طر دائرته (نق)			
	April 10 Aug 1		وحدة طول.	فإن محيطه =
	(د) ۲.۲ نق	(ج) ۱,۲ نق	(ب) ۲,۲ نق	(۱) ۱,۲ نق
	م ومساحته الله نق سم	صف قطر دائرته نق س	نطاع الدائري الذي طول ن	(١٩) قياس زاوية الف
1			1/4 / 4 - 4	يساوي
		(ج) ۴۰°		٣٠ (1)
لقطاع	سطح الدائرة التي تحوى هذا ا	» ۱۰ سم فإن مساحة س		
				تساوی
			π ١٤ (ب)	
سم'			ا ٣,٦، سِم فإن مساحة	
	14 (7)	14 (=)		
سم			ا 🕺 ۹۰۰ سم کفان مساح	the state of the s
	٣٠٠(٥)	٤٠٠ (٩)	(ب) ۴۰۰	1 (1)

بطه = سم	سم فإن محي	طر دائرته نق	وطول نصف ق	٤ ل سم	لاع دائري طول قوسه	(۲۳) قد

(ق) قطاع دائری طول قوسه (ل) وقیاس زاویته
$$(\theta^2)$$
 وطول نصف قطر دائرته (نق)

(i)
$$i\bar{g} + U$$
 (c) $Y = (i\bar{g} + V)$ (e) $Y = (i\bar{g} + V)$ (e) $Y = (i\bar{g} + V)$

$$\frac{\lambda}{T} \cdot \hat{1} \cdot \hat{1}$$

(٢٠) في الشكل المقابل:

مساحة المنطقة المظللة تساوى

$$\pi \frac{\mathsf{Y}_0}{\mathsf{q}}(\varphi)$$
 $\pi \frac{\mathsf{o}}{\mathsf{q}}(1)$

$$\pi \frac{\Upsilon \Upsilon_0}{q} (1)$$
 $\pi \frac{\Upsilon ...}{q} (1)$

(٢١) في الشكل المقابل:

دائرة مركزها م ، م ، م م هما مساحتى القطاعين المظللين

$$(') \frac{U_{\gamma}}{U_{\gamma}} \qquad (7) \frac{\theta_{\gamma}^{2}}{\theta_{\gamma}^{2}} \qquad (7) \frac{U_{\gamma}^{7}}{U_{\gamma}^{7}}$$

- - °17. (1)

و (٣١) في الشكل المقابل:

نصف دائرة مركزها هـ

$$\frac{\gamma}{\Gamma} = \frac{\gamma^{-\alpha}}{\alpha \gamma} : \frac{\gamma}{\alpha}$$
 اذا کان

(٢٣) في الشكل المقابل:

مساحة الجزء المظلل =س

(ك) في الشكل المقابل: مساحة القطاع المظلل =سم

$$\frac{\Upsilon \Upsilon \circ}{\pi} (\dot{\varphi})$$

$$\frac{\mathsf{vo}}{\mathsf{\pi}\,\mathsf{v}}(\mathsf{s})$$

(١٥) في الشكل الْمُقابِل :

ربع دائرة مركزها م

فإن مساحة الجزء المظلل =

📆 في الشكل المقابل:

دائرتان متحدتا المركز (م)

طولا نصفا قطريهما ٤ سم ، ٦ سم

وطول حرى = ٩ سم

فإن مساحة الجزء المظلل =سمَّ

π ۱۲ (÷)

π٩(ب) ۱٠(١)

(٢٧) في الشكّل المقابل:

مساحة الجزء المظلل =سم

π۲(ب)

$$\pi(i)$$

$$\pi \frac{7}{7} (2)$$

$$\frac{\pi}{r}$$
 (\Rightarrow)

و الشكل المقابل: ﴿ وَ الشَّكُلُ الْمُقَابِلُ:

حاف ، حب مماسان للدائرة م

ف الشكل المقابل: ﴿ ﴿ ﴿ وَ السَّكُلُ الْمُقَابِلُ:

دائرة م طول نصف قطرها ١٠ سم

(٤٠) في الشكل المقابل:

نصف دائرة مركزها م فإن مساحة الجزء المظلل ع

(٤) في الشكل المقابل:

(2) في الشكل المقابل:

أب مماس للدائرة م التي تمر بالنقط ح ، 5 ، ه

9, ٧1 (1)

πο. (۵)

فِ الشكل المقابل: فِي الشكل المقابل:

فإن مساحة هذا الجزء =سم

π τε (-) ١٠١,١(-) ١١٢,τ(1)

م مركز الدائرة ، محيط الجزء المظلل = ٧, ٥٥ سم

في الشكل المقابل: ﴿ وَإِنَّ الْمُقَابِلُ:

قطاعان دائريان في دائرة طول نصف قطرها ٥ سم ، مجموع محيطيهما ٣٠ سم فإن مجموع مساحتيهما يساوى سم

(ج) ۲۲ ۲٥ (پ) ۲٥ (١)

في في الشكل المقابل:

دائرة طول نصف قطرها ٧ سم $\left(\frac{\Upsilon\Upsilon}{V} = \pi\right)^{\Upsilon}$ فإن مساحة المنطقة المظللة =ساحة المنطقة المظللة

· 0 TV (=) (۱) ۱۱ (۱)

🕥 في الشكل المقابل:

١ - قطر في دائرة م طول نصف قطرها ٤ سم ، مرة ينصف د بم مر ينصف د ١ م ح فإن مساحة الجزء المظلل =سم

π Υ (-) π Υ (-) π ε (1)

🖕 🚫 في الشكل المقابل :

دائرة مرکزها م وطول نصف قطرها ۳ سم ، $v \cdot (1 - c)$

فإن مساحة القطاع و م ب تساوى سم

 $\pi \frac{1}{7} (-) \pi (1)$ π ۲ (÷)

في الشكل المقابل:

إذا كان طول أ - : طول أ - الأكبر = ١ : ٥ فإن مساحة القطاع المظلل =سم

 $\pi \land \circ \cdot (\Rightarrow)$ $\pi \land \land (i)$ $\pi \land \cdot (i)$

π TT (1)

Y. (3)

T(1)

π [(1)

π ١٨. (3)

في الشكل المقابل:

إذا كان : $\frac{\text{مساحة القطاع الأصغر}}{\text{مساحة القطاع الأكبر}} = \frac{\gamma}{V}$

فإن θ =

- $\frac{\pi}{\tau}$ (1) π r (÷)
- $\frac{\pi \xi}{4} (\psi)$

: ف الشكل المقابل (٥٠)

 $\frac{\pi}{4}$ (i)

اذا كان: م٩: م -: م ح = ٤: ٢: ٩

فإن : مساحة القطاع الأصغر م ٢٩٠ =

- (4)
- $\frac{\xi}{a}$ (\Rightarrow)
- ¥ (-)
- \(\frac{1}{r}\)(1)

(٥) دائرة طول نصف قطرها نق قسمت إلى ١٠ من القطاعات الدائرية المتساوية في المساحة فإن مساحة القطاع الواحد =

- (د) المنق
- (ج) π نق^۲
- τ نق $\frac{1}{7}$ (ب) نق $\pi \frac{1}{7}$ نق $\pi \frac{1}{7}$
 - (٥٢) في الشكل المقابل:

دائرتان م ، د متماستان من الخارج ، المثلث ؟ م د متساوى الأضلاع

- فإن مساحة الجزء المظلل =سم
- (ب) ۱۱ (۲ T بي ت

π = - TV A(1)

π ½ - TV A ()

π 1V-TV 11 (=)

(٢٥) إذا كانت مـ مساحة قطاع دائري في دائرة فإذا نقص طول نصف قطر الدائرة إلى النصف دون تغيير راويته المركزية فإن مساحة القطاع تنقص بمقدار المساحة الأصلية.

- 1 (2)
- (÷)
- 1/ (·)

و (١٤) في الشكل المقابل:

٣ قطاعات دائرية من دائرة طول نصف قطرها نق سم

و ٣ قطاعات دائرية أخرى من دائرة طول نصف قطرها ٢ نق سم

فإن المساحة الكلية للشكل =سم

- 7 نق $\pi \frac{\pi}{2} (a)$
- (ج) ° π نق
- π ۳ (۱) انق۲ . (ب) ه π نق۲

ه (٥٥) في الشكل المقابل:

٧ دوائر متطابقة ومتماسة من الخارج

كما بالشكل طول نصف قطر كل منها نق سم

فإن مساحة الجزء المظلل =سم

 $\frac{7}{1}$ نق $\frac{\pi}{1}$ (ب) $\frac{\pi}{1}$ نق $\frac{\pi}{1}$ (۱)

(د) ۾ تق^۲

ثانيًا 🗸 الأسئلة المقالية

.

١ أوجد مساحة قطأع دائري طول قوسه ١٢ سم ، وطول نصف قطر دائرته ٨ سم ،

🚺 🛄 قطاع دائري طول قوسه ١٦ سم وطول نصف قطر دائرته ٩ سم. أوجد مساحته.

🚻 🛄 قطاع دائري قياس زاويته المركزية ٣٠° ، وطول نصف قطر دائرته ٥,٥ سم

احسب لأقرب سم مساحة القطاع.

الله عند مساحة القطاع الدائري الذي طول قطر دائرته ٢٠ سم وقياس زاويته ١٢٠° «١٠٤.٧» سم تقريبًا»

و أوجد مساحة القطاع الدائري الذي قياس زاويته ٤٠° في دائرة طول نصف قطرها ٦ سم الأقرب سم

" Jam 17,

«٢٦ سم ، ٤ . ٢^٠»

🚺 🛄 أوجد مساحة القطاع الدائري الذي طول نصف قطر دائرته ١٠ سم وقياس زاويته ١,٢٠ " ١٠٠ سم

💟 🛄 قطاع دائري طول قوسه ۷ سم ، ومحيطه ۲۰ سم أوجد مساحته.

محیطه ۲۸ سم ، وطول نصف قطر دائرته ۷ سم أوجد مساحته وقیاس زاویته المرکزیة بکلا القیاسین الدائری والستینی.

عطاع دائرى مساحته تساوى ٢٧٠ سم وطول نصف قطر دائرته يساوى ١٥ سم أوجد طول قوس القطاع وقياس زاويته المركزية بالراديان.

۱۵ قطاع دائری مساحته ٤٠ سم ، وطول قوسه ۸ سم أوجد محیطه.

قطاع دائرى مساحته ٢٥ سم٢ ، وقياس زاويته المركزية ٥ , ٥٠ احسب طول نصف قطر دائرته وطول قوسه.

· Leiusa

أوجد بدلالة π مساحة الجزء المظلل في كل شكل من الأشكال الآتية :

- القطرين م طول نصف قطرها ٧٠٥ سم ، رسم فيها نصفا القطرين م م ، مب بحيث : ٢ = ١٢ سم المرب المرب
- الأث دوائر طول نصف قطر كل منها ٥ سم ومراكزها هي رؤوس المثلث متساوى الأضلاع وطول ضلعه ١٠ سم الألث متساوى الأضلاع وطول ضلعه ١٠ سم الألث الثلاث المنطقة المحصورة بين الدوائر الثلاث.
- ا القطة خارج دائرة م طول نصف قطرها ٦ سم ، م ٢ = ١٢ سم رسمت ٢ ، ١٠ مماستين للدائرة في ، ح المحدد الأقرب سم مساحة المنطقة المحصورة بين الماسين ، ح الأصغر. الماسين ، م الماسين
- الأضلاع طول ضلعه ۸ $\sqrt{7}$ سم ، رسم قوس دائری مرکزه ۴ ویمس فی ۶ ویقطع $\sqrt{9}$ ، $\sqrt{9}$ فی $\sqrt{9}$ المنتیمتر المربع مساحة المنطقة المحصورة بین $\sqrt{9}$ ، $\sqrt{9}$ ($\sqrt{7}$ = $\sqrt{9}$) $\sqrt{9}$ المحصورة بین $\sqrt{9}$ المحصورة بین $\sqrt{9}$ المحصورة بین $\sqrt{9}$ ($\sqrt{9}$ = $\sqrt{9}$)

A STATE OF THE PARTY

ثالثاً / مسائل تقيس مهارات التفكير

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

و (١) إذا كان جذرا المعادلة ٣ ص ٢ - ١٩ ص + ١٣ = ، يساويان طول قطر دائرة وطول قوس فيها فإن محيط القطاع الدائري المرسوم على هذا القوس =سس سم

11 (1) 19 (=) 15 (-) 19(1)

(١) إذا كان جذرا المعادلة - ٢٠ - ١٣ - ١٠ + ١٩ = ، يساويان طول قطر دائرة وطول قوس فيها فإن مساحة القطاع الدائري المرسوم على هذا القوس =سم

(L) 2 (÷) 19 (·) 19 (1)

(٣) في الشكل المقابل:

دائرتان م ، به متباعدتان

إذا كان مي ، مي هما مساحتا القطاعين

 θ وکان : $\frac{\delta}{\delta} = \frac{\rho}{\delta}$ فإن : $\theta = 0$

°۸۰ (ب) °VY (1)

: ف الشكل المقابل :

م ٢ - قطاع دائري من دائرة مركزها (م)

، ودائرة (ح) بداخل القطاع

- P . - P . PP mai

فإن مساحة الجزء المظلل =سم

- π(i)
- (٥) في الشكل المقابل:

دائرتان متحدتا المركز (م) ، م ح = ح ١ إذا كان مم ، مم هما مساحتا المنطقتين المظللتين

وكان: مر = مم

فان ف (د ۴ م هـ) =

 $\frac{\pi}{\epsilon}$ (φ) $\frac{\pi}{3}(1)$

π ٤(1)

π o (L)

 $\frac{\pi}{r}(\Rightarrow)$

π ٢ (٠)

π 10 (÷)

\(\frac{1}{2}\)

(+) 3

: ف الشكل المقابل في (٦)

و فهـم

فإن مساحة الجزء المظلل =سح

π 9 (i) π 17 (·)

: ف الشكل المقابل في (٧)

أب ، ح و قوسان في دائرتين متحدتي المركز م

(とう) の (とりない) = の(ととのる)

إذا كان: مي ، مي مساحتي القطاعين

فإن : مَسِ =فإن :

\frac{1}{V}(1) (ب)

(A) في الشكل المقابل:

دائرتان متحدتا المركز (م)

إذا كان: ق (د ع مب) = ٢٠ ، م ح = حب

وكان مم مساحتي المنطقتين المظللتين

فإن : ملى =

Y(1) (ب)

: ف الشكل المقابل في (١)

إذا كان : وحم مماس لنصف دائرة (م)

وكان: وب= ٢ = ٢ وح ، ١٥ = ٢ سم

فإن مساحة الجزء المظلل =سم

TV T(1)

π7-TV1x(÷)

(١٠) في الشكل المقابل:

١٠ قطر في الدائرة م طوله ١٢ سم

إذا كان: ق (عمر) = ق (حرى) = ق (حرى)

فإن مساحة الجزء المظلل =سم

π ٦ (·)

πο(1)

T 1/ (1)

1 (2)

1(1)

TT - TV 17 (-)

T 1. (3)

في الشكل المقابل:

: (١٢) في الشكل المقابل :

TO(1)

: (١٣) في الشكل المقابل:

π 170 (1)

دائرتان متحدتا المركز م طولا نصفى قطريهما ١٢ سم ، ۱۸ سم إذا كان : ق (د عم ع) = ۳۰

فإن مساحة المنطقة المظللة = ········· سم

π ١٦٥ (-) π ١٥٠ (-)

TT7 (1)

π ١٨. (١)

ا المحمثاث قائم الزاوية في ، فيه اب = ٤ سم ، ب = ١ سم ، رسم قوس من دائرة مركزها ا ويمس بح عند ب ويقطع أح في و فأوجد الأقرب جزء من عشرة من السنتيمتر المربع مساحة الجزء المحصور " 1, 3 ma" بين بعد ، حد ، سع

٣ م ، ن مركزا دائرتين متماستين من الخارج في ١ ، المستقيم عد مماس مشترك لهما يمس الأولى في ب والثانية في حسفإذا كان طولا نصفي قطري الدائرتين ٥ سم ، ١٥ سم على الترتيب فأوجد لأقرب سم^٢ مساحة المنطقة المحصورة بين المماس المشترك والدائرتين ($\sqrt{r} = 7 / 1$) «٢٩ سم تقريبًا»

تطبيقات حياتية

🚺 🛄 الربط بالزراعة : حوض زهور على شكل قطاع دائري مساحته ٤٨ م وطول قوسه ٦ م «۲۸ متر ۱۲ متر» أوجد محيطه وطول نصف قطر دائرته.

آ قطعة من الورق على شكل مربع قطع منها ربع دائرة مركزها أحد رؤوس المربع وطول نصف قطرها يساوى طول ضلع المربع فإذا كانت مساحة الجزء الباقي من المربع ٤٨, ٢٨٥ سم فأوجد طول ضلع المربع. ١٥١ سم،

الدرس

6

القطعـة الدائريـة

تعريف

القطعة الدائرية هي جزء من سطح دائرة محدود بقوس فيها ووتر مار بنهايتي ذلك القوس.

- فإذا رسمنا في الدائرة م الوتر أب كما في الشكل المقابل
 فإن سطح الدائرة ينقسم بهذا الوتر إلى جزئين كل منهما يسمى «قطعة دائرية».
- والزاوية المركزية التي تقابل قوس القطعة تسمى زاوية القطعة فالزاوية ٢ مب في الشكل هي زاوية القطعة الكبري ٢ عب بينما د ٢ مب المنعكسة هي زاوية القطعة الكبري ٢ عب
 - وإذا كان وي قطرًا عموديًا على الوتر أب بحيث: وي ∩ أب = {ه} فإن ي هـ يسمى ارتفاع القطعة الصغرى.

(7)

وعلى ذلك فإن مساحة القطعة الدائرية يتطلب حسابها إيجاد مساحة المثلث الذى قاعدته وتر القطعة ورأسه مركز الدائرة ، لذلك نمهد لمساحة القطعة بقانون يستفاد به في إيجاد مساحة المثلث.

مساحة المثلث بمعلومية طولي ضلعين فيه وقياس الزاوية المحصورة بينهما :

ولكن من ٨ ٢ سء القائم الزاوية في و :

وبالتعویض من (۲) فی (۱) : ... مساحة Δ اسح = $\frac{1}{7}$ القانون صحیح لأی مثلث

.. مساحة المثلث = ٢ حاصل ضرب طولى ضلعين فيه × جيب الزاوية المحصورة بينهما.

إيجاد مساحة القطعة الدائرية

نفرض أن المطلوب إيجاد مساحة القطعة الصغرى أ ى -

من دائرة طول نصف قطرها «نق» وأن قياس الزاوية

المركزية للقطعة = θ بالقياس الدائري.

لذلك نقول: مساحة القطاع م ١ ى - = ٢ و نق ٢

، مساحة Δ م ع $-=\frac{1}{7}$ م ع \times م $-\times$ ما (- ع م - م + نق \times نق ما $\theta = \frac{1}{7}$ نق ما θ

.. مساحة القطعة ع ى - = مساحة القطاع م ع ى - - مساحة A م ع - ..

$$=\frac{1}{7}\theta^{2}$$
 $\frac{1}{100}$ $\frac{1}{7}$ $\frac{1}{7$

 \cdot : مساحة القطعة الدائرية = $\frac{1}{7}$ نق 7 (θ^{7} – ما θ)

وللحظات

👣 مساحة القطعة الكبرى ٢٥ –

= مساحة القطاع م ٢٥٠ + مساحة ٥ م ١ -

$$(\theta - \pi)$$
 نق $\frac{1}{7} + \frac{1}{7}$ نق $\frac{1}{7} + \frac{1}{7}$ نق $\frac{1}{7} = \theta$

- و يمكن إيجاد مساحة القطعة الكبرى بطرح مساحة القطعة الصغرى من مساحة الدائرة.
 - 😙 محيط القطعة الدائرية = طول قوسها + طول وترها

مثال ۱

أوجد مساحة قطعة دائرية طول نصف قطر دائرتها ٨ سم ، وقياس زاويتها المركزية ١٢٠°

الحــل

5
 T, .988 $\approx \frac{\pi}{^{\circ} \backslash \Lambda} \times ^{\circ}$ \ T. = $^{5}\theta$:

ن مساحة القطعة الدائرية = $\frac{1}{7}$ نق $(\theta^2 - 4\theta) = \frac{1}{7} \times \Lambda^7 (339.7^2 - 4.71°) \approx 7.77 سم <math>^7$

وللدظة

مَى المثال السابق : يمكن استخدام القياس الدائرى للزاوية المركزية في حساب مساحة القطعة بدلاً من استخدام القياس الستيني فتكون :

مساحة القطعة الدائرية =
$$\frac{1}{7} \times \Lambda^{7}$$
 (339., 7^{2} – ما 338., 7) ≈ 7 , 7 9 سم

مع ملاحظة أنه يجب تحويل نظام الآلة من النظام (Deg) إلى النظام (Rad) قبل حساب المساحة وذلك

مثال ۲

أوجد مساحة القطعة الدائرية التي طول نصف قطر دائرتها ١٠ سم ، وقياس زاويتها المركزية ١,٠٢ مقربًا الناتج لرقمين عشريين.

الحل

مساحة القطعة الدائرية = $\frac{1}{7}$ نق $(\theta^2 - \lambda) = \frac{1}{7} \times 1^7 (1... - \lambda)$ مساحة القطعة الدائرية = $\frac{1}{7}$ نق $(\theta^2 - \lambda) = \frac{1}{7} \times 1^7 (1... - \lambda)$

حاول بنفسك

أوجد مساحة القطعة الدائرية التي طول نصف قطر دائرتها نق وقياس زاويتها المركزية θ إذا كان :

5
۲,۰۲ = 5 طنق = ۸ سیم ، θ

مثال ۳

قطعة دائرية طول نصف قطر دائرتها ١٠ سم ، وطول قوسها ٢٦,١٩ سم

أوجد مساحة هذه القطعة.

الحــل

$$\dot{\theta} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = 1$$

$$\theta$$
 نق θ نق (θ - ما θ) نق ... مساحة القطعة

إذا كان طول وتر قطعة دائرية في دائرة طول نصف قطرها ١٠ سم يساوي ١٢ سم فأوجد مساحة هذه القطعة علمًا بأنها قطعة صغرى في الدائرة.

الحل

ومن
$$\Delta$$
 ۱ م ح یکون : م ح = $\sqrt{(1)^{7} - (7)^{7}} = ۸$ سم ، ما (L ۱ م ح) = $\frac{7}{1} = 7$, .

5), YAR9
$$\approx \frac{\pi}{^{\circ}\text{NA}} \times ^{\circ}\text{VY } = ^{\xi} = ^{\xi}\theta$$
 ...

ن. مساحة القطعة الدائرية
$$92 = \frac{1}{2}$$
 نق $(\theta^2 - 4\theta)$

مثال ٥

أوجد مساحة القطعة الدائرية الصغرى التي طول وترها ٢٤ سم ، وارتفاعها ٦ سم

الحل

ونرسم محد 1 اب يقطع اب في و ويقطع الدائرة في ح

فيكون حرى هو ارتفاع القطعة

:. حرو = 1 ma

.: ١٢ = ح = ١٢ سم

.: مع = نق - ٢

(5 p) + (5 p) = (p p) ...

۲۱ × ۲۱ = ۲ × (۲ نق - ۲) .: نق = ۱۵ سم

∴ نق^۲ = ١٤٤ + نق^۲ - ١٢ نق + ٢٦ .:

.:. نق = ۱۵ سم

ال عاصر (رياضيات - شرح) م ٢٧ / أولى ثانوى / التيرم الثاني ١٠٩

5
1, $\Lambda_{0} = \frac{\pi}{^{\circ} \backslash \Lambda_{-}} \times ^{\circ}$ 1.7 \(\)

.. مساحة القطعة الدائرية الصغرى =
$$\frac{1}{2} \times i \vec{\sigma}^{7} (\theta^{2} - \lambda \theta)$$

حاول بنفسك

أوجد مساحة قطعة دائرية ارتفاعها ٣ سم ، وطول نصف قطر دائرتها ١٠ سم

مثال ٦

دائرتان متطابقتان طول نصف قطر كل منهما ٦ سم وقر إحداهما عركز الأخرى

أوجد مساحة المنطقة المشتركة بينهما.

الحــل

متساويتين في المساحة.

م ن متساوى الأضلاع فيه : م
$$-$$
 = م $\dot{0}$ = $\dot{0}$ سم $\dot{0}$ متساوى الأضلاع فيه :

$$\pi \frac{r}{r} = \frac{0.14}{0.14} \times 0.14 \cdot 0.01 = 0.01 \cdot 0.01$$

ن مساحة القطعة الصغرى
$$1 \circ -\frac{1}{7} \cdot i \circ$$
 ن $-\frac{1}{7} \cdot i \circ \circ$

7
سم 7 سم 7 سم 7 7 7 7 7 7

.. مساحة المنطقة المحصورة بين الدائرتين =
$$7 \times 11,11 = 77,13$$
 سم

على القطعة الدائرية

تمارين 😘

فتبر نفسك	١

🖧 مستويات عليا	o <u>تطبیق</u>	രക്ക് •	• تذکر	🛄 من أسئلة الكتابُ المدرسي
or in the latest			ر متعدد	أولًا اسئلة الاختيار مر
11117		: 51	بين الإجابات المعط	اختر الإجابة الصحيحة من
يتها المركزية ١٢٠°	٨ سم وقياس زاو	ب قطر دائرتها	رية التى طول نصف	(١) مساحة القطعة الداء
			سم۲	تساوی تقریبًا
24(7)	(∻) ۲۸		(ب) ۱ه	90(1)
رکزیة ۱٫۲ ً	وقياس زاويتها الم	دائرتها ۸ سم	رية التي طول قطر	(١) مساحة القطعة الداء
			سىم۲	تساوى تقريبًا
١,٠٧(٥)	(ج) ۲۸ م		۲,۱٤ (ب)	A, oV (1)
قوسیها ۵ سیم	١٠ سم ، وطول أ	ب قطر دائرتها	رية التي طول نصف	• (٣) مساحة القطعة الداءً
· many mark			سم۲	تساوی تقریبًا
(د) ه٠,٠٥	(ج) ۱۰,۰		(ب) ۲۰۰۲	1,.7(1)
رتها ۲ 🖓 سنم	ول نصف قطر دائ	يتها ۳۰°، وط	رية التي قياس زاو	و (٤) مساحة القطعة الدائد

(٥) مساحة القطعة الدائرية المرسومة في دائرة طول نصف قطرها ١٠ سم وقياس زاويتها المحيطية ٦٠ تساوی تقریبًا سم

 $\gamma - \frac{\pi}{r}(\iota)$ $\gamma + \pi(\iota)$ $\gamma - \pi(\iota)$ $\gamma + \frac{\pi}{r}(1)$

(ج) ۲۱ 14(1)

(٦) مساحة قطعة دائرية طول وترها ١٨ سم ، وطول نصف قطر دائرتها ١٨ سم لأقرب سم تساوی سم

7. (2) ٣٠ (١) Y9 (1) (ب) ۲۸

> (v) في الشكل المقابل: مساحة الجزء المظلل تساوى تقريبًا ..

(ټ) ه. ۸۲ V, 1(1)

۲,٠٢(١) 18,7 (-)

ئرتها	رها یساوی طول نصف قط <mark>ر دا</mark>	رية الكبرى التى طول وتر	(٨) مساحة القطعة الدائر		
(پ)	(∻) ۱۳۷	۳۱٥ (ب) .	٤٣٩ (1)		
	ل دائرة طول نصف قطرها ٥,٥				
	ح ≃سم۲				
0(1)	٤٥ (ج)	٧٢ (ټ)	To (1)		
	. ٩° ومساحة سطحها ٦، سم				
		بًاسم	دائرتها يساوى تقريد		
18 (2)	V (÷)	(ب) ۸ , ۱۹	9.9(1)		
	ة من هذه الدائرة قياس زاويتها ا				
		سم تقريبًا.	تساوی		
(2) 7,337	۱۲, ٤ (ڿ)	(ب) ه , ه ۱۸۵	775,9(1)		
	وطول نصف قطر دائرتها ١٠ ،				
		سم۲	تساوى تقريبًا		
71,2(2)	(ج) ۲,۲۲	١٢٢.٨(ټ)	9,1(1)		
ى تقريبًاسم	د عن مركز الدائرة ٥ سم تساوي	طول وترها ۸ سم ، ويبع	١ (١٣) مساحة قطعة دائرية		
۸ (۵)	٧ (ج) ٧	(ب) ۲۲۱	٤٨(١)		
(٤) مساحة قطعة دائرية طول وترها ١٦ سم ، وارتفاعها ٤ سم = سم٢					
1.V(J)	٧٩ (<u>-</u> -)	(ب) ه٤	181(1)		
	ع الدائري المشترك معها في الا				
		•	المركزية يساوى		
(د) ٥٤	۲۷۰ (ج)	۱۸۰ (ب)	9. (1)		
۳°	ـ = ۸ سم ، ق (د ب) = .	ب= ٥ سم ، ب	١ : ١٥ ٢ ٢ - مثلث فيه		
		سم۲	فإن مساحة المثلث =		
TV 7. (2)	TV 1. (=)	۲۰ (ب)	1. (1)		
(٧) في دائرة واحدة إذا كانت القطعة الدائرية تشترك مع القطاع الدائري في نفس القوس فيكون لها نفس					
		***************************************	المساحة إذا كان		
(د) ل = نق	$\frac{\pi r}{r} = \theta (\Rightarrow)$	$\pi = \theta (\varphi)$	(۱) ل = ۲ نق		

(٨) قطعة دابرية من دائرة طول نصف قطرها نق سم وطول وترها ٧٧ نق سم

فإن مساحتهاسم

$$(1)$$
 نق $\frac{1}{7}$ (1) نق $\frac{1}{3}$ نق $\frac{1}{3}$ نق $\frac{1}{3}$ نق $\frac{1}{3}$ نق $\frac{1}{3}$

$$\left(1-\frac{\pi}{7}\right)^{7}$$
 نق $\frac{1}{2}$ (د) $\frac{1}{3}$ نق $\frac{1}{2}$ (د)

(١٩) في الشكل المقابل:

ت (د ا بحر) = ٥٤° ، اب قطر في الدائرة م بحيث العدائرة م بحيث العدائرة م بحيث الدائرة م بحيث العدائرة م بحيث ا $\left(\frac{\Upsilon\Upsilon}{V} = \pi\right)$ مساحة الجزء المظلل =سم سم ميث مساحة الجزء المظلل

ف الشكل المقابل:

نصف دائرة م ، بح مماس للدائرة م عند ب

(١١) في الشكل المقابل:

مساحة القطعة الدائرية الصغرى

التي وترها أب = وحدة مربعة.

(٢) في الشكل المقابل:

اذا كان أب قطر في دائرة م

فإن : مساحة الجزء المظلل ≃سم٢

(٢٣) في الشكل المقابل:

دائرة طول نصف قطرها ٦ سم تمر برؤوس سداسي منتظم فإن مساحة الجزء المظلل =سم

1,7(2)

 $(\theta) + \frac{1}{7} \log (\theta) + \frac{1}{7} \log (\theta)$

(د) نق (الم علم + ما اله علم)

(٤) في الشكل المقابل:

دائرة طول نصف قطرها نق

فإن محيط القطعة الدائرية المظللة =

(٥) في الشكل المقابل:

إذا كان: من مساحة القطعة الدائرية التي وترها ٢-

، مي مساحة القطعة الدائرية التي وترها حرك

فإن : مل تساوى كل مما يأتى ما عدا

$$(4) \left(\frac{i\bar{\omega}}{i\bar{\omega}_{*}}\right)^{2}$$

$$(\psi) \left(\frac{U_{1}}{U_{-}}\right)^{\gamma}$$

$$\frac{U_{\lambda} i \bar{u}_{\lambda}}{U_{\lambda} i \bar{u}_{\lambda}}$$

(٢٦) في الشكل المقابل:

ا مماس للدائرة م ، احد = ٣ سم ، ق (د ١) = ٣٠٠

فإن مساحة الجزء المظلل ≃سم

(٢٧) في الشكل المقابل:

دائرة مركزها م ، أحد مماس للدائرة عند ؟ ، ق (د ب ؟ ح) = ٥٤°

فإن مساحة المنطقة المظللة =سم٢

ن ف الشكل المقابل:

نصف دائرة م طول قطرها ١٢ سم

فإن مساحة المنطقة المظللة =

 $(c)\left(\frac{9}{52}\right)^{7}$

في الشكل المقابل:

حد هر و ربع دائرة مركزها و ، أب يمسها في ه

فإن مساحة القطعة الدائرية المظللة =سم

$$(\tau - \pi) \vee \tau (\iota)$$
 $(\tau - \pi) \vee \tau (\iota)$

دائرة مركزها (و) ، σ (د و) = -7° ، σ ح = τ سم

فإن مساحة الجزء المظلل =سم

$$\overline{r}V - \frac{\pi}{r}(\varphi)$$
 . $\overline{r}V = \pi \epsilon(1)$

$$\overline{r}V - \pi \Upsilon(2)$$
 $\overline{r}V \Upsilon - \frac{\pi \Lambda}{r}(2)$

إذا كان: ١٠ ، ١٠ قطعتان مماستان للدائرة م

، قياس الزاوية بينهما ٣٠° ، ٩ - = ٥ سم

فإن مساحة الجزء المظلل عسسسس سم

(0) 1, 1

🌲 👣 في الشكل المقابل:

قطاعان دائريان من الدائرتين م ، لم اللتان طولا نصفا قطريهما ٦ سم

، $7\sqrt{1}$ سبم على الترتيب ، فإذا كانت مساحة القطاع م 1-7 π سم 1

، مساحة القطاع مع ع ب ع TT سم

فإن مساحة الشكل الرباعي ٢ م س ١٠ =٠

TTV9(=)

(c) P + P VT

🌲 🙌 في الشكل المقابل:

١- حرى مستطيل فيه ه منتصف ١٥ ، ١ ه = ه ١ = ٦ سم رسمت دائرة مركزها (ف) تمر بالنقطتين ه ، خ

فإن مساحة الجزء المظلل =سم

دائرة مركزها م ، وطول نصف قطرها نق

إذا كان: وه = ٣ هـ ح

فإن مساحة المنطقة المظللة = ب نق ×

$$\frac{\overline{r}\sqrt{r}}{r} - \frac{\pi}{r} (\Rightarrow) \qquad \frac{\pi}{r} (\Rightarrow) \qquad \frac{1}{r} - \frac{\pi}{r} (1)$$

$$\frac{1}{7} - \frac{\pi \gamma}{7} (\omega)$$

ثانيا 🗸 الأسئلة المقالية

🚺 🛄 أوجد مساحة القطعة الدائرية التي :

(١) طول نصف قطر دائرتها ١٢ سم ، وقياس زاويتها يساوي ٤ , ١٠

(۱) طول نصف قطر دائرتها ۸ سم ، وقیاس زاویتها یساوی ۱۳۵°

٣٠ سم تقريبًا "

«٣٥ سم تقريبًا»

1 أوجد مساحة قطعة دائرية قياس زاويتها المركزية ٢٤ م١١٥ ، وطول نصف قطر دائرتها ٢٠ سم

«۲۲۲ سم تقریبًا»

🝸 أوجد مساحة القطعة الدائرية التي طول نصف قطر دائرتها ١٤ سم ، وطول قوسها ٢٢ سم. ١٠٥ سم تقريبًا «

و دائرة مساحتها ٨٠٠٪ سم أوجد مساحة قطعة من هذه الدائرة طول قوسها ٢٦,١٨ سم 11 P mg 11

0 أب وتر في دائرة طوله ١٠ سم يقابل زاوية مركزية قياسها ٦٠° أوجد مساحة القطعة الكبرى التي وترها ٢-- T. O.

🚺 🛄 أوجد مساحة القطعة الدائرية التي :

(١) طول وترها ٦ سم ، وطول نصف قطر دائرتها ٥ سم

(٢) ارتفاعها ٥ سم ، وطول نصف قطر دائرتها ١٠ سم

«١٦ سم تقريبًا»

«٤ سم تقريبًا»

المحمد مساحة قطعة دائرية طول وترها = طول نصف قطر دائرتها = ٦ سم ٣٠٢١، ٣ سم تقريبًا ٥

٨ أوجد مساحة قطعة دائرية كبرى طول وترها ١٤ سم ، وطول نصف قطر دائرتها ٥٠,٥ سم ٢٢١ سم ٨٠

🚺 🛄 وتر في دائرة طوله ٨ سم على بعد ٣ سم من مركزها ، أوجد مساحة القطعة الدائرية الصغرى الحادثة من تقاطع هذا الوتر مع سطح الدائرة. ۱۱۰ سم تقریبًا «

« ٣٩ سم تقريبًا »

🚺 🛄 في الشكل المرسوم:

ا بحد مثلث متساوى الأضلاع مرسوم داخل الدائرة م التي طول نصف قطرها

٨ سم ، أوجد مساحة كل جزء من القطع

الدائرية المظللة.

الم المح مثلث متساوى الأضلاع طول ضلعه ٢٤ سم ، رسمت دائرة برؤوسه أوجد طول نصف قطر الدائرة المرافعة الدائرية الصغرى الى وترها بح

القطع الصغرى الثلاث التي أوتارها أضلاع المثلث أبح المجاملة على من المعاملة المعاملة التي المعاملة المعاملة المثلث التي المثلث التي أوتارها المثلث المعاملة المثلث المعاملة المثلث المعاملة المثلث المعاملة المثلث المعاملة المثلث المعاملة ا

١٢ أب ، أحد وتران متساويا الطول في دائرة م طول كل منهما ٢ ٦ سم ، ٤٠ (١٠٥٥) = ٥٠ الله المواد المواد

ن الشكل المقابل:

ا حدى مربع طول ضلعه ٦ سم رسم قوسان دائريان مركزاهما ١ ، ح ، وطول نصف قطر كل منهما = ٦ سم

أوجد مساحة الجزء المظلل.

«٢١ سم تقريبًا»

دائرتان متطابقتان طول نصف قطر كل منهما ١٢ سم ، وتمر كل منهما بمركز الأخرى. أوجد مساحة المنطقة المشتركة بينهما.

۱ ۲ عد مثلث قائم الزاوية في ب فيه : ٢ ب = ٦ سم ، ب ح = ٨ سم مرسوم داخل دائرة أوجد الأقرب سنتيمتر مربع مساحة كل من القطع الثلاث الصغرى التي أوتارها أضلاع المثلث.

ه٤ سم ، ١١ سم ، ٣٩ سم تقريبًا،

«٤٢ سم"

🚺 في الشكل المقابل:

م ، ن ، ه مراكز أنصاف دوائر

، احد ا سم ، حب = ١ سم

أوجد مساحة الجزء المظلل.

١ انقطة خارج دائرة مركزها م ، رسم من ٢ القطعتان المماستان ٢ - ، ٢ حد يمسانها في ب ، حد فإذا كان طول نصف قطر الدائرة = ٥ سم ، ٢ م = ١٠ سم

فأوجد مساحة القطعة الصغرى التي قوسها حح

«١٥,٢٥٥ سم"

🛐 دائرتان طولا نصفی قطریهما ٦ سم ، ٨ سم ، والبعد بين مركزيهما ١٠ سم أوجد مساحة المنطقة المشتركة بين الدائرتين لأقرب جزء من عشرة.

ثالثاً مسائل تقيس مهارات التفكير

- اختر الإجابة الصحيحة من بين الإجابات المعطاة :
 - ف الشكل المقابل:

ف الشكل المقابل: •

دائرتان متماستان من الخارج في ٢ ، إذا كان : ٢ - = ٤ سم

، ٢ ح = ٦ سم وكانت مم ، مم مشاحتي الجزأين المظللين فإن : مَـ =

$$\frac{\omega_{i} \cdot \overline{\omega_{i}}}{\overline{\omega_{i}}} = \frac{\omega_{i}}{\overline{\omega_{i}}}$$

: في الشكل المقابل في (٣)

دائرة مركزها م ، ق (احب) = ٢٠٠٠

فإن مساحة الشكل المظلل =سح

$$(\overline{r})(\tau - \pi \tau) \frac{\tau v}{\tau} (\varphi)$$
 (φ) (φ)

$$\left(\overline{\gamma} \nabla \tau - \pi \gamma\right) \frac{\gamma V}{\xi} (1) \qquad \left(\overline{\gamma} \nabla \tau - \pi \gamma\right) \frac{\gamma V}{\xi} (2)$$

إذا كان وتر التقاطع لدائرتين متقاطعتين هو قطر إحداهما وطوله يساوى طول نصف قطر الدائرة الأخرى ويساوى ١٠ سم فأوجد مساحة المنطقة المشتركة بين الدائرتين. ۱۱ کم کی سم ۱۱

«T : E »

👸 في الشكل المقابل:

دائرتان متحدتا المركز في م فإذا كان نق هو طول

نصف قطر الدائرة الصغرى وكان م ٤ = نق ، م ٢ = ٢ نق

حيث θ تقع على الدائرة الكبرى ، θ (د θ م -) = θ (د - م ع) = θ

أوجد النسبة بين θ^2 ، ما θ إذا علم أن مساحتى الجزأين المظللين متساويتان.

تطبيقات حياتية

- راعة: حوض للزرع على شكل دائرة طول نصف قطرها ٤ أمتار ، قُسم إلى أربعة أجزاء بواسطة مثلث متساوى الأضلاع تقع رؤوسه على الدائرة.

"TA . P 4 "

احسب مساحة إحدى القطع الدائرية الصغرى لأقرب رقمين عشريين.

الدرس

الوساحيات

أولا 🖊 مساحة المثلث

سبق أن درست مساحة المثلث وعلمت أن :

اولا مساحة المثلث = $\frac{1}{7}$ طول القاعدة \times الارتفاع المناظر لها

اى انه فى أى مثلث ٢ -ح إذا كان ٢٥ لـ بح فإن :

ثانيًا مساحة المثلث = ألم حاصل ضرب طولى ضلعين فيه × جيب الزاوية المحصورة بينهما

أى أنه في أي مثلث أبح

مساحة المثلث
$$1 - e = \frac{1}{7}$$
 $1 - x$ مساحة المثلث

مثال ۱

احسب مساحة المثلث أبح في كل من الحالات الآتية:

- ١١ عد = ١٠ سم وطول العمود المرسوم من على احد يساوى ٧ سم
 - ١٥ ع ١٢ سم ، عد = ١٥ سم ، د (دع) = ٩٠٠
- ٣ ٢ = ١١ سم ، صح = ١٠ سم ، ق (د -) = ٤٧ مقربًا الناتج لأقرب رقمين عشريين.
 - ع اب = ٢٥ سم ، بد = ١٧ سم ، احد = ٢٦ سم

الحــل

ا مساحة المثلث ا حد
$$\frac{1}{Y}$$
 = حد المثلث ا مساحة المثلث ا $\frac{1}{Y}$ = $\frac{1}{Y}$ × 10 × $\frac{1}{Y}$ × 10 × 10 × $\frac{1}{Y}$ × 10 × $\frac{1}{Y}$ × 10 × 10 × $\frac{1}{Y}$ × 10 × $\frac{$

- - غ نرسم ع على لا بحر ، نفرض أن بع = س سم فيكون : و ح = (١٧ - س) سم
 - ٠٠ ك ١ ع د د د د ١٥٠ = ٩٠ و (د ١٥٠) = ٩٠ ·
 - (1) 770 = °(st) .:.
 - · ٠ ١٥ ح فيه : ع (١٥ ع ح) = ٠٩٠
 - (Y) TV7 = Y(st) ::
- من (١) ، (١) ينتج أن : ١٥٦ - ٢٧٦ (١٨٩ ٤٣ - ٢٨٩)
- TTA = TE .: 37 - TE + TA9 TV7 = 770 .:
 - بالتعويض في (١) : .: (١٩) = ٥٢٥ ٩٤ = ٢٧٥ .: ١٩ = ٤٢ سم
- ن. مساحة المثلث $1 x = \frac{1}{7} x \times 12 = \frac{1}{7} \times 10 \times 37 = 3.7$ سم

× (12) = (12) - (25) :

وقاعدة هيرون لحساب مساحة المثلث

إذا رمزنا لمحيط المثلث ٢ - ح (مجموع أطوال أضلاع المثلث) بالرمز ٢ ح

تأكد من الحل في المثال السابق باستخدام قاعدة هيرون.

حاول بنفسك

احسب مساحة المثلث ٢ - ف كل من الحالتين الأتيتين مقربًا الناتج لرقمين عشريين :

١ المثلث ٢ بح متساوى الأضلاع وطول ضلعه ٦ سم.

ثانيًا 🗸 مساحة الشكل الرباعي المحدب

في الشكل المقابل:

ا حرى شكل رباعي قطراه احر ، حرى متقاطعان في م ويحصران

بينهما زاوية قياسها θ

فإذا كان: ١٩ لـ سرة ، حو لـ سرة

$$= \frac{1}{7} - 2 \times 9 + \frac{1}{7} - 2 \times 2 = \frac{1}{7} - 2 (9 + 2 = 0)$$

$$\therefore \text{ and } \text{ or } \text{ if } \text$$

مللحظة

إذا استخدمنا الزاوية 4 م و التي قياسها $(10.1^\circ - \theta)$ أي الزاوية المكملة للزاوية 4 م التي قياسها θ فإن مساحة الشكل الرباعي $1 - \infty$ لا تتغير لأن : ما $(10.1^\circ - \theta) = 10$

مثال ۱

احسب مساحة الشكل الرباعي الذي طولا قطريه ١٠ سم ، ١٢ سم وقياس الزاوية المحصورة بينهما ٦٢°

الحــل

مساحة الشكل الرباعي = $\frac{1}{7}$ حاصل ضرب طولي قطريه \times جيب الزاوية المحصورة بينهما = $\frac{1}{7}$ \times 10 \times

مالدظة

يمكن استخدام القانون السابق في حساب مساحات بعض الأشكال الرباعية الخاصة مثل :

في الشكل المقابل: ١ - حرى مربع،

:. مساحة المربع المحدد = ب × اح × حد × ما ٩٠.

$$= \frac{1}{7} \times 1 \times 2 \times 1 = \frac{1}{7} (12)^{7}$$

فمثلا المربع الذي طول قطره ٦ سم تكون مساحته = $\frac{1}{7} \times (٦)^7 = 1$ سم

.. and a law
$$1 - x = \frac{1}{x} \times 1 - x \times x =$$

فمثلا المعین الذی طولا قطریه ۲ سم ، ۸ سم تکون مساحته = $\frac{1}{7} \times 7 \times 1 = 37$ سم

حاول بنفسك

أوجد ما يأتي : .

- ١ مساحة المربع الذي طول قطره ٨ سم
- 👔 مساحة المعين الذي طولا قطريه ١٢ سم ، ١٦ سم
- ٣ مساحة الشكل الرباعي الذي طولا قطريه ٦ سم ، ٨ سم وقياس الزاوية بينهما ١٢٠°

م الحظ ق

الإثبات

$$\left[\Delta \left(\Delta \right) \times A \right) \times \left[\Delta \left(\Delta \right) \left(A \right) \right] \times \left[\Delta \left(A \right) \right]$$

مساحة المضلع المنتظم

- المضلع المنتظم: هو مضلع جميع زواياه الداخلة متساوية في القياس وجميع أضلاعه متساوية في الطول.
- قياس زاوية رأس المضلع المنتظم الذي عدد أضلاعه wضلعًا = $\frac{(w-7) \times 10^{\circ}}{w}$ $^{\circ}_{17.}$ فمثلًا قیاس زاویة رأس المضلع السداسی المنتظم = $\frac{^{\circ}_{17.} \times ^{\circ}_{17.}}{^{\circ}_{17.}}$

 $\frac{\pi \, Y}{M}$ من المثلثات المتساوية الساقين والمتطابقة والتي قياس زاوية رأس كل منها

 $^{\circ}VY = \frac{\pi Y}{100}$ کل منها متساوی الساقین وقیاس زاویة رأسه

مساحة المضلع المنتظو :

في الشكل المقابل:

مضلع منتظم عدد أضلاعه له ضلعًا

وطول ضلعه = - وحدة طول. •

فإن : مساحة المضلع = مساحة ∆ 9 م - × 1

$$\frac{\pi}{\sqrt{2}} = (-2) \cdot 0 \cdot (-2) = (-2) \cdot 0 \cdot (-2) = \frac{\pi}{\sqrt{2}} = (-2) \cdot 0 \cdot 0 \cdot 0 = \frac{\pi}{\sqrt{2}} =$$

$$\frac{\pi}{\sqrt{3}} = \frac{7}{\sqrt{3}} = \frac{7$$

$$\frac{\pi}{\nu} \text{ the '} \sim \frac{1}{2} = \nu \times \left(\frac{\pi}{\nu} \text{ the '} \frac{1}{\nu}\right) = \frac{1}{2} \text{ where } \frac{1}{\nu}$$

اى أن مساحة المضلع المنتظم الذى عدد أضلاعه بمضلعًا وطول ضلعه س = $\frac{1}{2}$ بمس مثا لما تم

مثال ۳

أوجد مساحة كل من:

- ١ شكل ثماني منتظم طول ضلعه ٧ سم (لأقرب رقمين عشريين)
- آ مضلع منتظم عدد أضلاعه = ١٢ ضلعًا وطول ضلعه = ١٠ سم (لأقرب سنتيمتر مربع)
 - ٣ مثلث متساوى الأضلاع طول ضلعه = ٩ سم (لأقرب ثلاثة أرقام عشرية)

الحـــل

$$\frac{\pi}{\Lambda}$$
 مساحة المضلع الثمانى المنتظم = $\frac{1}{3}$ \sqrt{N} وكما $\frac{\pi}{\Lambda}$ مساحة المضلع الثمانى المنتظم = $\frac{1}{3}$ \sqrt{N} وكما $\frac{\pi}{\Lambda}$ مساحة المضلع الثمانى المنتظم = $\frac{1}{3}$

$$\frac{\pi}{\nu}$$
 مساحة المضلع الذي عدد أضلاعه ١٢ ضلعًا = $\frac{1}{3}$ سرن طمًا مساحة المضلع الذي عدد أضلاعه ١٢ ضلعًا

7
سنم ۱۱۲۰ $\approx \frac{\pi}{17}$ لله \times 7 ۱۲۰ $\times \frac{1}{5}$ $=$

مساحة المثلث المتساوى الأضلاع =
$$\frac{1}{3}$$
 مرا $\frac{\pi}{\sqrt{3}}$ هنا $\frac{\pi}{\sqrt{3}}$ مساحة المثلث المتساوى الأضلاع = $\frac{1}{3}$ مرا $\frac{\pi}{\sqrt{3}}$ مساحة المثلث المتساوى الأضلاع = $\frac{1}{3}$ مرا مرا مسم

حل اخبر:

مساحة المثلث =
$$\frac{1}{7}$$
 حاصل ضرب طولی ضلعین \times جیب الزاویة المحصورة بینهما = $\frac{1}{7}$ \times 9 \times 9 \times 9 \times 0 \times 0 سم

مللحظتان

◄ المثلث المتساوى الأضلاع هو مضلع ثلاثى منتظم ولذلك يمكن استخدام قانون حساب مساحة المضلع المنتظم
 فى إيجاد مساحته كما فى المثال السابق ويكون : "

مساحة المثلث المتساوى الأضلاع =
$$\frac{1}{3} \times 7 \times -0^7 \times 4$$
 مساحة المثلث المتساوى الأضلاع

$$rac{\overline{r}\sqrt{r}}{r} = \frac{\overline{r}\sqrt{r}}{r} \times rac{r}{r} = \frac{r}{r}$$

مساحة المثلث المتساوى الأضلاع = $\frac{\sqrt[3]{r}}{3}$ حن حيث حن طول ضلع المثلث

• وبنفس الطريقة يمكن إيجاد مساحة السداسي المنتظم:

مساحة السداسي المنتظم =
$$\frac{\pi}{3} \times 7 \times -0^7 \times 4$$

مساحة السداسي المنتظم =
$$\frac{7\sqrt{7}}{7}$$
 س حيث س طول ضلعه

حاول بنفسك

ای ان

استخدم قانون حساب مساحة المضلع المنتظم في إيجاد مساحة كل من:

- ١ مثلث متساوى الأضلاع طول ضلعه ١٥ سم (مقربًا الناتج لرقمين عشريين)
 - ٢ مربع طول ضلعة ٦ سم
- ٣ مضلع خماسى منتظم طول ضلعه ١٢ سم (مقربًا الناتج لثلاثة أرقام عشرية)

على المساحـــات

تمارين 14

اختبر نفسك

🔒 مستويات عليا	هم وتطبيق	• تذکر • ف	من أسئلة الكتاب المدرسي
10 15		ن متعدد	أسئلة الاختيار مر
			اختر الإجابة الصحيحة من
	م.، حد= ٨ سم ،		
The second second	77	٣٠٠ ٢٠٠٠	تساوی
٣٣,٤,(۵)	(ج) ۸۸	(ب) ۹ ,۲3	۲۱, ٤ (١)
، ۱۰ مسار ټ	(ج) ۱۸ حد ساقیه ۱۰ سم وقیاس زاوی	وى الساقين الذي طول أد	(1) مساحة المثلث المتسا
		· ·	تساوی
0.(7)	TV 70 (÷)	(ب) ۵۰ (۳	. Yo (1)
سم تساوی سیم	ته ٦ سم ، طول أحد ساقيه ٥ يا	ري الساقين الذي طول قاعد	(٣) مساحة الثارث التساه
7. (2)	١٠ (جَ)	(ب) ۱۲	10(1)
سم ۲	لعه ٦ سم تساوی	وى الأضلاع الذي طول ض	(٤) مساحة المثلث المتسا
TV 9 (2)	(ج) ۱۰ لعه ٦ سم تساوی (ج) ۹	TV 11 (-)	14(1)
٣٠ تساوى سم	، ٨ سم وقياس الزاوية بينهما ·	مى الذي طولا قطريه ٦ سم	(٥) مساحة الشكل الرباء
(L) 37 VT	TV 17 (÷)	۲٤ (ب)	17 (1)
٣ سم ٢ يكون قياس الزاويا	۱۲ سم ومساحته تساوی .	ى طولا قطريه ١٠ سم ،	(٦) الشكل الرباعي الذ
· War well and the			الحادة بين قطريه
(د) ه٤°	, /o· (÷)	(ب) ۲۰	°r. (1)
· 0.0.3 You	ضلعه ٤ سم تساوى	داسى المنتظم الذي طول ه	 (٧) مساحة الشكل السر
(٤) 37	TV YE (=)	(ب) ۱۲	TV 17(1)
7	ضلعه ۱۰ سم 🛥	ماسى المنتظم الذي طول ف	(٨) مساحة الشكل الخد
15V,78 (J)	(ج) ۱۹,۸۸۲		
· · · · · · · · · · · · · · · · · · ·	سلعه ٦ سم تكون مساحته	حدى زواياه ٥٠° وطول ض	(١) المعين الذي قياس إ

(۱) ۲۷٫۹ (ج) ۱۱۰٫۲۱ (ج) ۲۲٫۷۹

(١٠) مساحة المثلث المتساوى الأضلاع الذي طول ضلعه - س سم تساوي

(1) -ب

11,07(2)

		طول قطره س سم تساوی	(۱۱) مساحة المربع الذي	
(c) \frac{\sqrt{x}}{x} - 67	Y→ YV (÷)	(ب) ۲ س۲	(۱) س	
سیم	عه <i>حن</i> سم تساوی	اسى المنتظم الذي طول ضلا	(۱۲) مساحة الشكل السد	
(د) ۲ س	(÷) \(\frac{\frac{1}{7}}{7} \cdot \cdot \)	(ب) ۲ آ۲ -	$\frac{r\sqrt{r}}{r}$ (1)	
سم	س سم تساوی	نى المنتظم الذى طول ضلعه	🕯 (۱۳) مساحة الشكل الثمار	
	(ب) ٢ ص طاه٤°		(۱) ۲ س طناه ع°	
(د) ٢ س ^۲ طاه ، ۲۲°		°(1) ۲ س۲ طنا ه ۶° (ج) ۸ س۲ طنا ه ۲۲۰°		
s t			: (ع) في السحل المقابل:	
917.		۱ - ح و شکل رباعی فیه : ح و = ۲ سم		
31.		حدو = ۲۷ V۳ سم۲ سم۲		
		سىم	فإن : ٢ حـ =	
(4) 11	/o (÷)			
سم ۲		طوال أضلاعه ٧٧ ، ٧٧ ،		
7.1 1 (2)	7.√(÷)	(c) 7 Vr	1/(1)	
, جيب تمام الزاوية	ملعین فیه ٦ سم ، ٨ سم فإن	ىاحته ١٤,٤ سىم ، طولا ض	الزوايا مسائل ما الزوايا مس	
		الضلعين يساوى		
4 (7)	(÷)	(ب)	7 (1)	
Y	م ، أرسم ≃سم	طوال أضلاعه ٤ سم ، ٦ س	(٧) مساحة المثلث الذي أ	
(6) 1,13		B (100 (100 (100 (100 (100 (100 (100 (10	177,9(1)	
. حد= ۱۲ سم	فإذا كان: ٢ - = ٩ سم ،			
		° (لأقرب درجة)		
W (7)	The second secon	(ب) ۲۲	77(1)	
سم	ه ٣٦ ٣٦ سم ^٢ يساوى	CON 100 EA	The second secon	
17 (7)	(ج) ۲	(ب) ٤٢	T/7(1)	
سم	۸		 ف الشكل المقابل: 	
90.	put .		٢ - حرى متوازى أضا	
		سم	مساحته =	
77 (2)	(ج) ۲۶	(ب) ۲۰	17 (1)	

▶ الدرس السابع	Marin Stage	A colonia stat	
زاوية جيب تمامها %	سم ، ۱۳ سم ، ويحصران	اعي الذي طؤلا قطريه ١٢	(۱۱) مساحة الشكل الربا
			تساوی
188 (3)	J ⋅ (÷)	(ب) ۲۷	7.(1)
وى سىم.	آ سم ، فإن طول ضلعه يسا	کل سداسی منتظم ٤٥ √	(٢) إذا كانت مساحة ش
	(÷) 5 77		
	ALL DESCRIPTION OF THE PARTY OF		(٣) في الشكل المقابل:
	· θ = (2-12)	رة م ، احد = ٦ سم ، ق	
(Page 1)		بد = سم ^۲	
θ FP 1V(2)	θ b 1 (÷)	(ب) ۲ یا ۹	0 L 7 (1)
<u> </u>		به المرسوم من مركز سدا،	

	•	1
)
\	L .	

(ب) ۲۰°

(د) ۹۰

(ب) ۲۲ VT سم۲

(c) 77 VT mg (ج) ٤٥ VT سم (ه) في الشكل المقابل:

مساحة △ ١ بح تساوى YE (1)

۲۲ (ج)

(٦) في الشكل المقابل:

على أحد أضلاعه يساوى ٦ سم

فإن مساحة المسدس تساوى ...

(۱) ۲۷ ﴿٢ سم ٢

إذا كانت مساحة الشكل أب حرو = ٥٠ سم ٢ فإن : ق (د ٢ هـ -) =

°r. (1) °Vo (+)

(٧) في الشكل المقابل:

إذا كانت مساحة الشكل ابحر = ١٩٠ سم فإن : طول هرح =

11 (=) (ب) ۱۰ (ب 9(1)

 (٨) في ٢٥ - ح: إذا رمزنا لنصف محيط المثلث بالرمز ع وكان ع - ٢ - = ٦ سم ، ع - ب ح = ٨ سم ، ع - ١ ح = ١٠ سم فإن مساحة ١٩ ب ح = سم٢ (ب) ۲۶ ان ۱۹۶۰ (ج) ۲۰ ۱۳۰۶ (L) A3 Vo (٢٩) مضلع منتظم طول ضلعه ٦ سم وقياس الزاوية الخارجة عن أحد رؤوسه تساوى ٣٦° فإن مساحته ≃سم YVV (1) YIA (=) (L) TP1 المثلث فيه : - = 1 سم وكان طول المتوسط $\overline{10} = 1$ سم فإن أكبر مساحة للمثلث 1 - 1تساوی سیم۲ TV 17 (2) 17(0) 77(1) (6) 17/7 (٣) مثلث متساوى الأضلاع ارتفاعه ٦ سم فإن مساحته سم 7/17(1) (-) 51 17 (c) N/ VY (+) 17 (+) (٢٦) إذا كان ل هو ارتفاع المثلث المتساوى الأضلاع فإن مساحته = سم (-) * (-) (L) 7 L (÷) \ \ \ \ (÷) (٣٣) مثلث محيطه ١٥٠ سم والنسبة بين أطوال أضلاعه ٥ : ١٢ : ١٣ فإن مساحته = Yo. (1) Vo. (1) ٥٠٠ (ج) (ب) ه۲۷ 🞄 📆 أى المثلثات الآتية يمكن إيجاد مساحته ؟ (۱) مثلث متساوى الساقين محيطه = ٣٠ سم (ب) مثلث قائم الزاوية محيطه = ٣٠ سم (ج) مثلث متساوى الأضلاع محيطه = ٢٠ سم (د) مثلث قائم الزاوية طول وتره = ٣٠ سم (٣٥) إذا كان قطرا الشكل الرباعي متعامدان فإن مساحته = (1) حاصل ضرب طولا قطريه. (ب) 😾 حاصل ضرب طولا قطریه. (ج) حاصل ضرب أطوال أضلاعه. (د) 😾 حاصل ضرب أطوال أضلاعه. (٣) إذا كان: - س هو محيط المثلث ٢ - ح فإن: ١٠ - ١١ - ١١ - ١ (-٠ - ١١ ح) فإن: ١٠ - ١١ ح) (i) مساحة ∆ ابح . (ب) ۲ مساحة A ا ب (ج) ۲ مساحة A و ب (د) ٤ مساحة ∆ ٩ بح

(ب) لا ما B (ج) لا ما B

(د) ل منا 0

J(1)

10/0

فإن مساحة △ ٢ بع =

🙌 في الشكل المقابل :

١ - حدى مربع طول ضلعه ٦ سم ، ه = ٢ ٢٧ سم

فإن مساحة △ ٢ ب هـ =

10/7(=)

(c) 37 VY

(٤) في الشكل المقابل:

٩ ، حرى وتران متقاطعان في ه ، هرى = ٧ \ ٢ سم

، ه ب = ۸ سم ، ق ((ق) = ۲۰ ، ق (ا ح) = ۳۰ ،

(ب) ۲۸

فإن : مساحة ∆و هـ ب = ···

11/17(0)

11/17 (2)

1

(1) AT VY

(٤) في الشكل المقابل:

١ - حرى مربع ، وحد همثلث متساوى الأضلاع

فإن مساحة △ ٢٥ هـ =سم

(٤٢) في الشكل المقابل:

شكل سداسي منتظم فإن مساحة المنطقة المظللة =

(ب) ۱ , ۶ ع۲ (1) 1,137

(L) 7, 137 (ج) ٦, ٣٤٢

(٤٣) في الشكل المقابل:

مساحة △ ٢ بح

i

541

ثانيا / الأسئلة المقالية

🛄 🛄 أوجد مساحة كل شكل من الأشكال الآتية باعتبار أن 🦳 هي وحدة المساحة :

🚹 🛄 أوجد مساحة المثلث أبحه في كل من الحالات الآتية :

العمود المرسوم من
$$-$$
 على $1 < -$ يساوى $1 < -$ سم وطول العمود المرسوم من $-$ على $1 < -$ يساوى $1 < -$ سم

" Au YE "

" pur EY 11

" a wa 0 & "

«١١٥ سم تقريبًا»

🚺 🛄 أوجد مساحة الشكل المحرو في كل من الحالات الآتية:

ال المسب مساحة المثلث؟ حد الذي فيه: ٢٠ = ٨ سم ، حد = ٧ سم ، ٢٨ سم تقريبًا « ٢٨ سم تقريبًا »

ثالثا مسائل تقيس مهارات التفكير

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
- (1) we limb out a direction of π (a) of π (b) π (c) π (c) π (d) π (e) π (f) π
- - (3) is It is the state of the

(٥) إذا كان: ٢-حوه شكل خماسي منتظم طول ضلعه = ل سم وطول ٢ح = م سم

$$\frac{\text{Aulas}}{\text{Alg}} : \frac{\Delta \uparrow \Delta}{\text{Aulas}} = \frac{\Delta}{\Delta}$$

$$\frac{J^{\tau}}{2}(3) \qquad \frac{J^{\tau}}{2}(3) \qquad \frac{J^{\tau}}{2}(3) \qquad \frac{J^{\tau}}{2}(3)$$

 $^{\prime}$ ان المحود شکل رباعی فیه : $^{\prime}$ حر $^{\prime}$ حود $^{\prime}$ اذا کانت مساحة ($^{\prime}$ و هر حر) = م سم ، مساحة (۵ م م م عرب) = (م - ۲) سم ، مساحة (۵ م ص ب) = (م + ۱۰) سم ، ، مساحة $(\Delta - \alpha - \alpha) = (a + 17)$ سم فإن مساحة الشكل : $1 - 2 = \dots$ 77 (-) A(1) (x) 10

14 (2)

أ في الشكل المقابل:

إذا كانت مساحة (Δ و هـ ۶) = ٢ سم ، مساحة (Δ ۶ هـ حـ) = ٨ سم ٢ ، مساحة (ف صح ع ع ع سم ع ع سم ع الله ع ع سم ع الله ع وكانت و منتصف أو أوحد مساحة الشكل أبح

تطبيقات حياتية

🛄 إنشاءات: الشكل المقابل يرسم مجموعة من الدرجات تؤدى إلى مدخل مجمع سكني على شكل شبه منحرف متساوى الساقين قاعدته الكبرى لأسفل وعرضها ٧ أمتار وقاعدته الصغرى لأعلى وعرضها ٣ أمتار، ويميل كل من ساقيه على القاعدة السفلي بزاوية قياسها ٧٥ أوجد:

- (١) طول كل من ساقيه (لأقرب جزء من عشرة)
 - (٣) مساحة شبه المنحرف لأقرب متر مربع

1043 V, V 43 AT4"

- 🚺 🛄 أحواض زينة : صمم حوض لأسماك الزينة قاعدته على شكل خماسي منتظم طول قطره ٧٢ سم ، أوجد لأقرب سنتيمتر مربع مساحة قاعدته. " TE. VII
- 🗀 زهور : يصمم كريم حديقة لمنزله ، ويرغب أن يكون الجزء المخصص للزهور على شكل سداسي منتظم مساحته ٤٥ √٣ متر مربع. أوجد طول ضلعه. 11 71

الهندسة التحليلية

المتجهات.

الخط المستقيم.

ثانیًا

<u>4</u> الودية

<mark>2</mark> الويدة

الوحدة الرابعة

المتجهات

دروس الوحدة

- الكميات القياسية والكميات المتجهة والقطعة المستقيمة الموجهة.
 - المتجمات. 👤 💆
 - العمليات على المتجهات.
 - व वि वि प्रायमा विकासका विकासका विकासका विकासका विकास विकास

نواتج التعلم

في نهاية هذه الوحدة من المتوقع أن يكون الطالب قادرًا على أن:

- يتعرف الكمية القياسية والكمية المتجهة والقطعة المستقيمة الموجهة ، ويعبر عنها بدلالة طرفيها فى مستوى الإحداثيات.
 - يتعرف متجه الموضع ويضعه فى الصورة القطبية.
 - پوجد معيار المتجه ، والمتجه الصفري.
 - يتعرف ويحل تمارين على تكافؤ متجهين.
 - يتعرف متجه الوحدة ويعبر عن المتجه بدلالة متجهى الوحدة الأساسيين.

- يتعرف توازى متجهين وتعامد متجهين.
 - يضرب متجهًا في عدد حقيقي.
- يجمع متجهين باستخدام قاعدة المثلث (الإحداثيات - طريقة متوازى الأضلاع) - يطرح متجهين.
 - یثبت بعض النظریات الهندسیة باستخدام المتجهات.
 - يحل تطبيقات فيزيائية على المتجهات.

17

۱۲ مترآ

الدرس

1

الكويات القياسية والكويات الوتجهة والقطعة الوستقيوة الووجمة

لكميات القياسية والكميات المتجهة

* تنقسم الكميات التي نتعامل معها في حياتنا إلى نوعين :

الكمية القياسية : هي كمية تتعين تمامًا بعدد حقيقي هو مقدار هذه الكمية.

ومن أمثلتها: الطول - الكتلة - الزمن - درجة الحرارة - الحجم - المسافة.

الكمية المتجهة : هي كمية تتعين بعدد حقيقي هو مقدار هذه الكمية بالإضافة إلى الاتجاه.

ومن أمثلتها: القوة - الإزاحة - متجه السرعة.

ولتوضيح الفرق بين الكمية القياسية والكمية المتجهة نوضح على سبيل المثال الفرق بين المسافة ككمية قياسية والإزاحة ككمية متجهة :

> المسافة: هي طول المسار الفعلى المقطوع أثناء الحركة من موضع إلى آخر. وهي كمية قياسية لأنها تتعين تمامًا بمقدارها فقط وليس لها اتجاه.

اللزاحة: هي أقصر بعد بين نقطة البداية ونقطة النهاية ، وفي اتجاه من نقطة البداية إلى نقطة النهاية ، أي أنها مسافة بين النقطتين في اتجاه معين.

وهي كمية متجهة لأنها تتعين تمامًا بمقدارها بالإضافة إلى اتجاهها.

فمثلًا في الشكل المقابل:

إذا تحرك جسم من النقطة (١) مسافة ١٢ مترًا شرقًا ثم غير اتجاهه وسار مسافة ٥ أمتار شمالاً ثم توقف عند النقطة (حـ)

فإن : المسافة التي قطعها الجسم أثناء الحركة = 1 - + - = 1 + 0 = 10 مترًا وتكون : الإزاحة الحادثة خلال الحركة هي طول 1 - = 10 وفي الاتجاه من 1 إلى ح

ای آن الإزاحة =
$$\sqrt{(17)^{2} + (0)^{2}} = 17$$
 متراً في اتجاه 1

FTA

/الاتجـــاه

كل شعاع في المستوى يعين اتجاهًا معينًا.

فمثلاً في الشكل المقابل:

- و أ بحدد اتجاه الشرق.
- و ه بحدد اتجاه الشمال الشرقي.
- و ن بحدد اتحاه ٣٠ شمال الغرب.
- وم بحدد اتجاه ٣٥° شرق الجنوب.

لاحظ أنه في الشكل المقابل:

اذا كان: أب ، حرى متوازيين وكل منهما لا يوازي سوص

، ه ∈ اب ، و ∈ حري ، ع ∈ س ص

فإن: • هم ، ب أ لهما نفس الاتجاه ويحملهما مستقيم واحد.

- هم أ ، هم في اتجاهين متضادين ويحملهما مستقيم واحد.
- هر أ ، و و في اتجاهين متضادين ويحملهما مستقيمان متوازيان.
- ه أ ، ع س مختلفان في الاتجاه ويحملهما مستقيمان غير متوازيين.

- * الشعاعان المتحدان في الاتجاه أو المتضادان في الاتجاه يحملهما مستقيم واحد أو مستقيمان متوازيان.
 - * الشعاعان المختلفان في الاتجاه لا يمكن أن يحملهما مستقيم واحد أو مستقيمان متوازيان.

القطعة المستقيمة الموجهة

- إذا حددنا للقطعة المستقيمة ألب نقطة بداية أ ونقطة نهاية ب فإنه يترتب على ذلك أن يصبح للقطعة المستقيمة اتجاه من ٢ إلى - وتسمى قطعة مستقيمة موجهة ويرمز لها بالرمز ٢ - مع ملاحظة أن : ٢ - خ ب١ الاختلافهما في نقطتي البداية والنهاية مما يؤدي إلى تضادهما في الاتجاه.
 - مما سبق نرى أن القطعة المستقيمة الموجهة تتحدد بثلاثة عناصر هي :
- ٣ الاتجاه من نقطة البداية إلى نقطة النهاية. ٢ نقطة النهاية. ١ نقطة البداية.

تعريف

- القطعة المستقيمة الموجهة : هي قطعة مستقيمة لها نقطة بداية ونقطة نهاية واتجاه.
- ٢ معيار القطعة المستقيمة الموجهة (معيار أب) : هو طول أب ويرمز له بالرمز | أب | ولاحظ أن || ع || = | ع |
- ٣ تكافؤ قطعتين مستقيمتين موجهتين : تتكافأ القطعتان المستقيمتان الموجهتان إذا كان : (١) لهما نفس الطول (المعيار). (٢) لهما نفس الاتجاه.

في الشكل المقابل:

ا - حرى متوازى أضلاع تقاطع قطراه في م ، ه منتصف اح.

أُولًا : اذْكر القطع المستقيمة الموجهة (إن وجدت) والتي تكافئ :

19-

399

15 5

0 90

4

00 7

ثَانَيًا : بِيُن لماذًا تَكُونَ القطع المستقيمة الموجهة التالية غير متكافئة :

-5 · P5 1

اولا: ١ ا د

392

19800

799,29

P5 T

٦ لا يوجد.

ا حب 500

٢ لأن : ٢٠ ، حب متضادتان في الاتجاه.

ثانيًا: ١ لان: | ءم العالم الع

الأن: ١٩٩ ، حم متضادتان في الاتجاه.

حاول بنفسك

في الشكل المقابل:

فأكمل ما يأتي بوضع «تكافئ» أو «لا تكافئ» مع ذكر السبب:

١ ١٩٠ عو لأنهما

م الدظات

١ ١ ، حد و لا يمكن أن تتكافئا إلا إذا كان يحملهما مستقيمان متوازيان أو مستقيم واحد كما بالشكلين الآتيين:

٢ إذا كانت : ٢ ، ب ، ح ، و لا تقع على استقامة واحدة وكانت: ١- تكافئ وحد

فإن: الشكل أبحر متوازي أضلاع.

٣ من نقطة في المستوى ولتكن حالا يمكن رسم الا قطعة مستقيمة موجهة وحيدة حدة

تكافئ قطعة مستقيمة أخرى أب في نفس المستوى.

٤ يوجد عدد لانهائي من القطع المستقيمة الموجهة التي يمكن رسمها في المستوى وكل منها تكافئ قطعة مستقيمة موجهة أخرى.

ف مستوى إحداثي متعامد عين النقط: ١ (٢ ، ١) ، (١ ، ٢) ، د (٢ ، ٢) ، د (١ ، ١) ، د (١ ، ١) ثم ارسم حم ، ول كل منهما تكافئ أب ، أوجد إحداثيي كل من : ه ، ل

لرسم حره تكافئ أب يجب أن تكون حره ، أب لهما نفس الاتجاه ونفس المعيار.

* نحدد طول حرف = طول ٢ باستخدام الفرجار

أو بحساب عدد المربعات الأفقية والرأسية فنجد أن: هـ = (٥ ء ٤)

* ويالمثل: نرسم ول نجد أن: ل = (٤ ، ١)

حل أخر: ٠٠ الانتقال يحافظ على التوازي وأطوال القطع المستقيمة.

- .: النقطة حد هي صورة ٢ بالانتقال [(٢ ، ٢) (-٢ ، ١)] = (٤ ، ١) ولرسم حد تكافئ ٢ ب نجد أن حد مي صورة ٢ ب بالانتقال (١٠٤)
- .. النقطة هـ هي صورة النقطة بالانتقال (٤ ، ١)
- النقطة هـ = (۱ + ٤ ، ٣ + ١) = (٥ ، ٤) وبالمثل يمكن إيجاد إحداثيي النقطة ل

على الكميات القياسية والكميات المتحهة والقطعة المستقيمة الموجهة

تمارين

🖧 مستویات علیا

و تطلباق

രക്ക് ര

• تذکر

🔲 من أسلة الكتاب المدرسي

أُولًا / أَسْئِلَةُ الْاخْتِيَارُ مِنْ مُتَعَدِّدُ

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- 🕴 (۱) 🕮 أي مما يأتي يمثل كمية متجهة ؟
- (۱) الزمن. (ب) درجة الحرارة. (ج) الإزاحة.
- (١) إذا كان: ١٩ حرى متوازى أضلاع تقاطع قطراه في م فإن:
 - أُولًا حرى تكافئ
 - -P(1) (ب) سام
 - ثانيًا: مَ وَ تَكَافَىٰ
 - Ps(1) (ب) عب
 - : في الشكل المقابل (٣)
 - إذا كان: ١ بحو، هب حو متوازيي أضلاع
 - فإن : ١٩ تكافئ كلًا من
- 52,94(1) (ب) سد ، دو
 - (ج) بعد ، هو
- Pu : 24 (1)
 - (٤) في الشكل المقابل:

ا حود هو سداسي منتظم ، مركزه النقطة م فإن :

أُولًا: ١ - تكافئ كلًا من القطع المستقيمة الموجهة الآتية

- ماعدا
- (ج) مح (۱) هری (ب) ب
 - ثانيًا: مَء تكافئ
- 17 (1) (ج) <u>ه</u>و
- (٥) 🖽 ۴ حرى مربع تقاطع قطراه في م ، فإن أزواج القطع المستقيمة الموجهة الآتية متكافئة
 - ما عداما

- ٠ (١) عد ، ١٥ (١) عم ، عد

(د) الكتلة.

59(4)

80 (4)

(د) حب

57.78(4)

59: 2- (=)

ى من القطع المستقيمة	م مركزه الهندسي (نر) أو	ه و شکل سداسی منتظ	(٦) 🗓 إذا كان ٢ بحر
		الموجهة التالية غير متكافئة ؟	
50: - 1 (2)	(ج) اب ، نرح		(١) أب ، وني
a the public day of			(٧) إذا كان: ١٩ = ١٥
	(ب) ح منتصف ٢ ب		(۱) منتصف اح
the same of the	(د) ۲ تنطبق على ح		(ج) بتنطبق على ح
	محيح ؟		(٨) إذا كان حر منتصف ٢-
حب	= = (7) 1= =	(Y) 1 = 	(۱) اح = بد
	(ج) (۲) ، (۲) فقط.		(١) (١) فقط.
			(١) في الشكل المقابل:
()	(1	صاف أقطار في دائرة (إذا كان: ٩٦ ، ٩٠ أن
			فأى مما يأتى صحيح ؟
一元	-= îr (r)	(Y) = FP (Y)	
(د) (۲) ، (۳) فقط.	(ج) (۲) ، (۲) فقط.		
	سافة التي قطعها تكون	لة ٢ إلى نقطة ب فإن الم	(١٠) إذا تحرك جسم من نقم
	(ب) أقل من 1 ب		1-1 (1)
St. Charles	-P(a)	1 1	(ج) أكبر من أو يساوى
			(۱۱) إذا تحرك جسم من نقه
and the same			(1) المسافة التي قطعها
		ا الجسم تساوى أب +	
I and the same type has		ا الجسم تساوى ا	
The same of			(د) الإزاحة التي قطعه
۲سم کسم	The state of the		(١٢) في الشكل المقابل:
		قطة ٢ شرقًا إلى النقطة -	
1 . A the section	200		ثم عاد غربًا إلى النقطة
190 m100 f C 00	سم.		أُولًا: المسافة التي قطع
71(2)	(خ)	(ب) ٩	٦(1)

ثانيًا: الإزاحة الحادثة = ...

- (1) ٩ سم في اتجاه ١
- (ج) ٩ سم في اتجاه ٢٩

(ب) ٦ سم في اتجاه حرب (د) ۲۱ سم في اتجاه ٢٠

ف (١٣) في الشكل المقابل:

ا إذا تحرك جسم من النقطة ٢ مسافة ٤٨ مترًا شرقًا ثم غير اتجاهه وسار مسافة ٢٠ مترًا شمالاً ثم توقف عند النقطة ح فإن:

- أولًا: المسافة التي قطعها الجسم = مترًا
- 71 (-) 07(1) (ج) ٨٤
 - ثانيًا: الإزاحة الحادثة =
- (1) ١٨ متر في اتجاه ١٠ (ب) ٦٨ متر في اتجاه حـ ١
- (ج) ۲ه متر في اتجاه ۴ ح (د) ٥٢ متر في اتجاه ح

(١٤) في الشكل المقابل:

إذا كانت كل من : وح ، أب عمودية على بح وإذا تحرك جسم من النقطة ٢ إلى النقطة ب ثم حد وتوقف عند النقطة و فإن :

- ۲٥ (ب) ۲٥ (۱) Y9 (=)
 - ثانيًا : الإزاحة الحادثة =
- (1) ٣٥ سم في اتجاه ٢٥ (ب) ۲۵ سم في اتجاه ۶۶
- (ج) ۲۵ سم في اتجاه ع (د) ۲۵ سم في اتجاه ۲۶

(١٥) في الشكل المقابل:

ا محود هد و شكل سداسي منتظم طول ضلعه ٨ أمتار

- ، إذا تحرك جسم من النقطة ٢ إلى النقطة ب
 - ثم حدثم و ثم ه وتوقف عند النقطة و فإن :
- أولًا: المسافة التي قطعها الجسم =متر.
- (ب) ۸۸ (ج) ۲۲ A(1)

YA ()

Y. (1)

ثانيًا: الإزاحة الحادثة =

(ب) ٤٠ متر في اتجاه و أ (١) ٨ متر في اتجاه أو

(د) ٤٠ متر في اتجاه أو (ج) ٨ متر في اتجاه و ٩

(٦) سيارة قطعت ٢٠ متر في اتجاه الشمال ثم قطعت نفس المسافة في اتجاه الغرب فإن إزاحة السيارة

هیه

(ب) ٤٠ متر في اتجاه الشمال الغربي. (1) ٤٠ متر في أتجاه الغرب.

(١) في المستوى الإحداثي المتعامد إذا كانت : ١ (١-، ٣) ، - (-، ١) ، ح (٠،٤)

وكان: ١٠٠٠ يكافئ حرى فإن: ٥ = ١٠٠٠٠٠٠٠٠

(r-12-)(s) (1, 5-)(-) (ب) (٤ ، ٢٠) (Y & E-)(1)

(١٨) في الشكل المقابل:

حديقة مربعة الشكل مساحتها ٩٠٠ متر مربع تم عمل مسارات مستقيمة للترجل بها حتى لا تؤذى النباتات فقسمت تلك المسارات الحديقة إلى ٩ مربعات متطابقة كما بالشكل فإذا تحرك شخص من نقطة ٢ إلى ب متخذًا المسار الموضيح بالشكل فإن :

أولًا: المسافة المقطوعة = متر.

9. (2) (ج) ۲۰ ٥٠ (ب) r. (1)

ثانيًا : الإزاحة الحادثة =

(ب) ۲۰ متر فی اتجاه اب (۱) ۲۰ متر فی اتجاه اب

(د) ۲۰ متر فی اتجاه ب (ج) ۲۰ ۲۷ متر فی اتجاه اب

(١٩) في الشكل المقابل:

تحرك رجل من نقطة ٢ إلى نقطة ب ثم تحرك على مسار دائری طول نصف قطره ٧ متر فإن أقصى معيار إزاحة للرجل = متر.

(ج) ۲٥ ۲٠ (ب) - 11(1)

ثانيًا / الأسئلة المقالية

الشكل المقابل:

١ - ح و مستطيل تقاطع قطراه في م ، ه = أو

بين ما إذا كان الشعاعان في كل مما يأتي متحدين في الاتجاه

أو متضادين في الاتجاه أو مختلفي الاتجاه:

521-19(1)

20,00(2)

25,29(1)

ره) ده ، حب

ن الشكل المقابل:

اكتب القطع المستقيمة الموجهة والتي تكافئ كلاً مما يأتي:

17 (1) 50 (1)

59 (T)

الشكل المقابل:

١- ح و متوازى أضلاع فيه : ١ح ١ - و = {م}

، ه منتصف إب ، و منتصف بح

أُولًا : اذكر القطع المستقيمة الموجهة (إن وجدت) والتي تكافئ :

-P(1)

P- (E)

D-(1)

-P(0)

29(2)

ثانيًا : بيِّن لماذا تكون القطع المستقيمة الموجهة التالية غير متكافئة :

(۱) مه، سو

25, 9-(8)

20121(1)

(۲) وب، وح

ابح مثلث فيه : س منتصف اب

، ل منتصف أحر ، س ص ع ل مستطيل

اكتب القطع المستقيمة الموجهة (إن وجدت) والتي تكافئ كلاً مما يأتي :

(۱) س ص

(E)

Ju- (1)

(٥) بص

JP (4)

DP (T)

(٣) بص تكافئ عس

J-- (1)

١ - - د مثلث فيه : ١ - - ١ ح

، س ، ص ، ع منتصفات أب ، بح ، حا على الترتيب.

أولًا: أي العبارات التالية صحيحة:

(۱) س من تكافئ عص

ثانيًا : اكتب القطع المستقيمة الموجهة (إن وجدت) والتي تكافئ كلاً من :

(a) and (b) and (c)

(۱- ۱۰ م) مستوی إحداثی متعامد: إذا كانت ۴ (۲ ، ۳) ، - (-۲ ، ۱) ، ح (٥ ، -۱)

- (١) ارسم حرى تكافئ ٢ وعين إحداثيي النقطة ؟
- (٢) عين إحداثيي النقطة م منتصف حد أثم حدد القطع المستقيمة الموجهة التي تكافئ:

-5(1). -1(+) -1(1)

- (٣) هل الشكل ٢ حروب متوازى أضلاع ؟ فسر إجابتك.
- القطع المستقيمة الموجهة با أحرك ، وم ، به و متكافئة حيث و نقطة الأصل. أوجد إحداثيي كل من : ؟ ، م ، به

🚺 🔝 في مستوى إحداثي متعامد:

إذا كانت ١ (٣ ، ١) ، ح (١ ، ٢) ، و (١ ، ٣) ، و (٤ ، ٧)

- (۱) أوجد من الرسم : $\| \overline{1} \|$ ، $\| \overline{2} \overline{2} \|$
 - (١) أثبت أن: ١٩ تكافئ حدة
- (٣) إذا كانت القطع المستقيمة الموجهة حد ، ١٩٩ ، ١٨٥ ، وم متكافئة. أوجد إحداثيى كل من : م ، ١٨ ، م حيث و نقطة الأصل.
- أنشئ نظامًا للإحداثيات المتعامدة في المستوى حيث (و) نقطة الأصل وعيِّن عليه النقط:

الدرس

2

الوتجمات

متجه الموضع

تعريف

متجه الموضع لنقطة معلومة † بالنسبة لنقطة الأصل و :

هو القطعة المستقيمة الموجهة و؟ التي بدايتها نقطة الأصل و ونهايتها النقطة المعلومة ؟

فمثلًا في الشكل المقابل

- * و أ هو متجه الموضع لنقطة أ بالنسبة لنقطة الأصل و ويُكتب: و أ = (٢، ٢)
- * و هو متجه الموضع لنقطة بالنسبة لنقطة الأصل و ويكتب : و (٣ ، ٤)

مالحظة

نظرًا لأن كل متجهات الموضع لها نفس نقطة البداية «و» لذلك نرمز لمتجه الموضع «و ؟» بالرمز «؟»

ففى الشكل السابق : نكتب : $\hat{\mathbf{r}} = (\mathbf{r} \cdot \mathbf{r})$ ، $\hat{\mathbf{r}} = (\mathbf{r} \cdot \mathbf{r})$

معيارالمتجم

هو طول القطعة المستقيمة التي تمثل المتجه.

وإذا استخدمنا قانون البعد بين نقطتين لإيجاد طول و٢

فان: طول و
$$\overline{f} = \sqrt{(-v - v)^{7} + (-v - v)^{7}}$$

فمثلا

• إذا كان :
$$\overline{1} = (7 , -3)$$
 فإن : $\| \overline{1} \| = \sqrt{(7)^7 + (-3)^7} = 0$ وحدة طول.

• إذا كان :
$$= (-7, 7)^7)$$
 فإن : $= \sqrt{(-7)^7 + (7)^7} = 7$ وحدة طول.

متجمالوحدة

هو متجه معياره الواحد الصحيح،

11 = "e" + 9:

فَمَثُلًا
$$\hat{\mathbf{f}} = \left(\frac{7}{6}, \frac{3}{6}\right)$$
 متجه وحدة لأن : $\|\hat{\mathbf{f}}\| = \sqrt{\left(\frac{7}{6}\right)^7 + \left(\frac{3}{6}\right)^7} = 1$ وحدة طول.

المتجه الصفرى

هو متجه معياره يساوى الصفر ويرمز له بالرمز و أو - حيث و = (٠٠٠) وهو متجه غير معين الاتجاه.

تحقق من فهمك -

ا هل
$$\hat{1} = (\frac{-\sqrt{\gamma}}{\gamma}, \frac{1}{\gamma})$$
 متجه وحدة أم لا ؟ ولماذا ؟

إذا كان : (ك ، -7) متجه وحدة فأوجد قيمة : ك

الصورة القطبية لمتجه الموضع

فمثلًا إذا كان والم يصنع زاوية قياسها ٣٠ مع

فإن : الصورة القطبية للمتجه و
$$\hat{\mathbf{r}} = (\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r})$$

$$\left(\frac{\pi}{\epsilon^{9}}, \tau\right) = \frac{\pi}{\epsilon}$$

م الدظ ة

إذا كان : متجه موضع النقطة ٢ (- س ، ص)

على الصورة القطبية
$$\theta$$
 = ($\|\theta\|$ ، θ) فإن :

وتكون الصورة الإحداثية للمتجه وأ هي :

مثال ۱

إذا كان و ؟ متجه موضع النقطة ؟ بالنسبة لنقطة الأصل

فأوجد إحداثيي النقطة ٢ في كل من الحالات الآتية :

$$(\frac{\pi \, \epsilon}{\nabla} \, \epsilon) = (\lambda \, i) = (\frac{\pi \, \epsilon}{\nabla})$$

$$TV \xi - = \frac{\pi \xi}{T} |_{\Delta} \Lambda = \omega = \lambda = \frac{\pi \xi}{T} |_{\Delta} \Lambda = \omega$$

مثال آ

إذا كان و أ متجه موضع النقطة أ بالنسبة لنقطة الأصل

أوجد الصورة القطبية للمتجه و أ في كل من الحالتين الآتيتين :

الربع الأول

(0-r7.)

.: ا و ا ا = ا (ه ۱۲) + (-ه) = ۱۰ وحدة طول.

الريع الرابع

الحــل

$$\therefore \| \overline{eq} \| = \sqrt{(3)^7 + (3\sqrt{7})^7}$$

$$\overline{\gamma} V = \frac{\overline{\gamma} \sqrt{\epsilon}}{\epsilon} = 0 \text{ W}$$

، ∵ قياس الزاوية الحادة التي ظلها ٣٧

الربع الثاتي

(0-1A.)

(0+1A.)

الربع الثالث

٠>٠٠٠٠

$$\frac{1-}{rV} = \frac{\circ-}{rV \circ} = \Theta V \circ$$

 $^{\circ}$ ۳۰ = ($\frac{1}{\sqrt{N}}$) هى \sqrt{N} هى \sqrt{N}) هى الزاوية الحادة التى ظلها \sqrt{N}) هى الزاوية الحادة التى ظلها \sqrt{N}

حاول بنفسك

- ا إذا كان متجه الموضع وا = (٥ ٧٧ ، ٢٧٥) فأوجد إحداثيي النقطة ٩
 - (۱۲ ، $\sqrt{7}$ ۱۲–) اکتب بالصورة القطبية متجه الموضع $\sqrt{9}$ = (-۱۲ $\sqrt{7}$ ، ۱۲)

المتجهات المتكافئة

كل متجه $\hat{\mathbf{f}} = (-\upsilon \cdot \sigma)$ يمكن تمثيله هندسيًا بالعديد من القطع المستقيمة الموجهة المتكافئة والتي كل منها تكافئ متجه الموضع للنقطة $\mathbf{f} = (-\upsilon \cdot \sigma)$

ففي الشكل المقابل

$$\hat{7} = (7 ، 3)$$
 هو متجه الموضع للنقطة

$$=\sqrt{77+37}=0$$
 exera deb

• للاحظ مما سبق: ارتباط المتجهات بالأزواج المرتبة أى بعناصر ع × ع أى (ع) ولذلك يمكن استنتاج تعريف المتجهات بمفهومها الرياضي أو الجبرى كالآتى:

تعريف

عناصر المجموعة ح مع عمليتي الجمع والضرب في عدد حقيقي المعرفتين عليها تسمى متجهات ويرمز لها بأحد الرموز: أ ، ب ، ح ، ...

حيث إن المجموعة g^{2} = مجموعة الأزواج المرتبة لحاصل الضرب الديكارتي $g \times g$

جمع متجهین جبریا

$$(10) = (-0, 0)$$

$$(7,0) = (7,0) + (7,0) + (7,0)$$
 فإن $(7,7) = (7,0) + (7,0) =$

🖊 خواص جمع المتجهات

النغلاق: لكل أ ،
$$= 3^{\vee}$$
 يكون $+ 1 + 1 = 3^{\vee}$

الم خاصية الدمج أو التجميع : لأي ثلاثة متجهات أ ، ب ، ح يكون :

 $(\cdot \cdot \cdot) = \frac{1}{2}$ خاصية وجود العنصر المحايد : لأى متجه $\hat{\mathbf{r}}$ يوجد متجه صفرى $\hat{\mathbf{e}} = (\cdot \cdot \cdot)$

$$\vec{1} = \vec{1} + \vec{0} = \vec{0} + \vec{1} = \vec{1}$$

ضرب متجہ فی عدد حقیقی

إذا كان: أ = (ن ، ص) = ع ، ك = ع فإن: ك أ = ك (س ، ص) = (ك س ، ك ص)

$$(10-, 7) = (0-, 7) = (7, -0)$$
 فإن: $7 = 7 = 7 (7, -0) = (7, -0)$

🖊 خواص ضرب المتجه في عدد حقيقي

- ١ خاصية التوزيع :
- (۱) لأى متجهين أ ، ب ، ك ∈ ع يكون : ك (أ + ب) = ك أ + ك ب

خاصية الدمج أو التجميع : لأى متجه أ ، ك، ، ك، \in ع

مثال ۳

(`` (`` =) =) `` (`` =

فأوجد كلاً من المتجهات الآتية:

$$(1 \ 7 \ 7 \ -7) = (7 \ 7) + (7 \ 7) = (7 \ 7) + (-7$$

مثال ٤

إذا كان: أ = (١،١) ، ب = (١،١) فأوجد: ا أ - ٢ ب ا

الحــل

حاول بنفسك

اذا كان: $\hat{q} = (7 , -1)$ ، $\hat{x} = (7 , -0)$ ، $\hat{x} = (-0 , 0)$ فاكتب على الصورة القطبية المتجه \hat{q} حيث $\hat{q} = \hat{q} - 7$

تساوی متجهین

 $\vec{l} = \vec{l} = (-0, -0, -0)$ ، $\vec{l} = (-0, -0, -0)$ یکون : $\vec{l} = \vec{l}$ یکون : $\vec{l} = \vec{$

فمثلًا إذا كان :
$$\hat{\bf f} = (-0, -0)$$
 ، $\hat{\bf v} = (-0, -0)$ وكان : $\hat{\bf f} = \hat{\bf v}$ فمثلًا إذا كان : $\hat{\bf f} = -0$ ، $\hat{\bf v} = -0$ ، $\hat{\bf v} = -0$

مثال ٥

الحــل

🖊 متجها الوحدة الأساسيان 🦟 ، م

إذا كان لدينا نظام إحداثي متعامد في المستوى ، (و) نقطة الأصل فإن :

للنقطة (١ ، ،) ومعياره الوحدة واتجاهه هو الاتجاه الموجب لمحور السينات.

٢ متجه الوحدة الأساسي ص = (٠٠١) هو متجه الموضع للنقطة (٠٠١) ومعياره الوحدة واتجاهه هو الاتجاه الموجب لمحور الصادات،

التعبير عن أي متجه بدلالة متجمى الوحدة الأساسيين :

فإنه يمكن التعبير عنه بدلالة متجمى الوحدة الأساسيين كالتالى :

وتستخدم هذه القاعدة مباشرة للتعبير عن الزوج المرتب الذي يمثل أ بدلالة متجهى الوحدة الأساسيين س ، ص

عبر عن كل من المتجهات التالية بدلالة متجهى الوحدة الأساسيين ثم أوجد معياره:

$$(7 \cdot \cdot -7) = \overline{1}$$

الحــل

حاول بنفسك

عبر عن كل من المتجهات التالية بدلالة متجهى الوحدة الأساسيين ثم أوجد معياره:

$$(\cdot \cdot \cdot) = \overline{s}$$

$$(17-\cdot 17-)=\overline{J}$$

مثال ٧

اكتب كلاً من المتجهات التالية بالصورة القطبية والإحداثية ثم عبر عنها بدلالة متجهى الوحدة الأساسيين:

- 🚺 قوة مقدارها ١٢ نيوتن تؤثر في اتجاه الشمال الشرقي.
- آ سرعة منتظمة لسيارة تقطع ٨ أمتار كل ثانية في اتجاه ٣٠ شمال الغرب.
 - الاسمال. الشمال. الماحة جسم مسافة ٢٤ مترًا في اتجاه الشمال.
 - ¿ قوة مقدارها ٤ ثقل كجم تؤثر في اتجاه ٣٠ شرق الجنوب.

الحـل

ا نفرض أن متجه الموضع للقوة = أ

· · أتجاه الشمال الشرقي ينصف الزاوية بين الشمال والشرق.

$$\theta_r = \frac{\theta_r}{r} = 03$$

- * الصورة القطبية $\hat{\uparrow}$ = (۱۲ ، ٥٤°)
- * الصورة الإحداثية أ = (١٢ ميًا ٥٤° ، ١٢ ما ٥٤°) = (٢ ١٧ ، ٢ ١٧)
 - * 9 = 1 17 + 17 0

$$\theta_{\gamma} = . \wedge 1^{\circ} - . \gamma^{\circ} = . \circ 1^{\circ}$$

- * الصورة القطبية ب = (٨ ، ١٥٠°)
- * الصورة الإحداثية ب = (٨ منا ١٥٠ ، ٨ ما ١٥٠) = (-٤ ٣٧ ، ٤)
 - * -= -3 VT w + 3 av

تفرض أن متجه الموضع للإزاحة = ح ، ، θ ، = ، ٩٠

- * الصورة القطبية ح = (٢٤ ، ٩٠)
- * الصورة الإحداثية حـ = (٢٤ منا ٩٠ ، ٢٤ ما ٩٠) = (صفر ، ٢٤) -
 - * = 37 av

و نفرض أن متجه الموضع للقوة = 5

- $\therefore \theta_{1} = . \forall Y^{\circ} + . T^{\circ} = . . T^{\circ}$
- * الصورة القطبية $\overline{s} = (3 ، ... °)$
- * الصورة الإحداثية $\overline{s} = (3 \frac{1}{2} 7^{\circ}) \cdot 3 \cdot 1 \cdot 7^{\circ}) = (7 \cdot 7 \cdot 7 \cdot 7)$
 - * = = 7 m 7 m a

حاول بنفسك

اكتب كلًّا من المتجهات التالية بالصورة القطبية والإحداثية ثم عبر عنها بدلالة متجهى الوحدة الأساسيين:

- ١ قوة مقدارها ٦٣ نيوتن تؤثر على الجسم في اتجاه الشرق.
 - آ إزاحة جسم مسافة ٣ أمتار في اتجاه الجنوب.
- ٣ سرعة منتظمة لسيارة تقطع ٥٠ مترًا كل ثانية في اتجاه الشمال الغربي.

توازى متجهين وتعامدهما

* لکل $\hat{7}$ ، $\hat{-}$ متجهین غیر صفریین حیث : $\hat{7} = (-0, 0, 0)$ ، $\hat{-} = (-0, 0, 0)$

الله المان : ١٩١١ -

فإن: طا 0, = طا 0,

$$\frac{1}{100} = \frac{1}{100} :$$

· = رص من - من من : .

والعكس صحيح.

الذا كان: ١٩ ١ -

فإن: ط 0, ×ط 0, = -١

$$1 - = \frac{\omega}{\omega} \times \frac{\omega}{\omega} :$$

· = س، ص، عد، عد، · :

والعكس صحيح.

فعثلًا إذا كان:
$$\hat{\mathbf{1}} = (\mathbf{1} + \mathbf{1})$$
 ، $\hat{\mathbf{x}} = (\mathbf{1} + \mathbf{1})$. $\hat{\mathbf{x}} = ($

مثال ۸

اِذَا كَانَ : $\hat{\mathbf{1}} = (-7 \ , \ \Upsilon)$ ، $\hat{\mathbf{1}} = (-3 \ , \ 4)$ أوجد قيمة م في كل مما يأتي :

-//FT

مثال ۹

أنشئ نظامًا للإحداثيات المتعامدة في المستوى حيث (و) هي نقطة الأصل ثم مثل عليه كلاً مما يأتي:

- المتجه أ = (١ ، ٢) بقطعة مستقيمة موجهة مبدؤها النقطة (١ ، ٢)
- المتجه = (٢ ، ٢-) بقطعة مستقيمة موجهة مبدؤها النقطة (١ ، ١) ثم أوجد إحداثيي نقطة النهاية في كل حالة.

الحل

- ١ التمثيل المتجه أ = (١ ، ٣)
- * نبدأ من النقطة (١ ، ٢) ثم نتحرك يمينًا وحدة واحدة في الاتجاه الموجب لمحور السينات.
- * ثم نتحرك لأعلى ٣ وحدات في الاتجاه الموجب لمحور الصادات
 - .. نقطة النهاية = (٢ ، ٥)

- * نبدأ من النقطة (١٠ ١٠) ثم نتحرك يمينًا ٤ وحدات في الاتجاه الموجب لمحور السينات.
 - * ثم نتحرك لأسفل وحدثين في الاتجاه السالب لمحور الصادات.
 - .: نقطة النهاية = (٢ ، -١)

م الحظية

إذا كان: مُ متجهًا غير صفرى ، ك خ ، فإن: مُ // ك مُ ويكون ال مُ ا = ال ا الم ا حيث اتجاه كم مونفس اتجاه م لكلك > ، ، اتجاه كم موعكس اتجاه م لكلك < .

فمثلًا • م ، ٢ م

7-1-0

متوازيان وفي نفس الاتجاه. متوازيان وفي اتجاهين متضادين.

مثال ۱۰

إذا كان : ﴿ مَتَجِهُ غَيْرُ صَفْرَى أُوجِدُ قَيْمَةً لَكَ فَي كُلُ مِنَ الْحَالِتِينَ الْآتِيتِينَ :

|| PY- || = || P|| 2 .. |

ارسم المتجه م = (١ ، ٢) ثم ارسم من النقط: - (-٤ ، -٢) ، ح (٢ ، ٠) ، و (-١ ، ١) القطع المستقيمة الموجهة والتي تكافئ ٣ م ، $-\frac{\pi}{7}$ م ، $-\frac{\pi}{6}$ على الترتيب.

- ١ نرسم المتجه م = (١ ، ٢) بداية من النقطة (٠ ، ٠)
 - رسم المتجه ٣ م = ٣ (١ ، ٢) = (٢ ، ١)

بداية من النقطة - (-٤ ، -٣)

 $(T-, \frac{T}{T}) = (T, 1)$ نرسم المتجه $-\frac{T}{T}$ $\frac{T}{T}$ $\frac{T}{T}$ نرسم المتجه $\frac{T}{T}$ بداية من النقطة حر (٢،٠)

نرسم المتجه - م = (١٠ ، ١٠) بداية من النقطة ٤ (١٠ ، ١٠)

Y = el :.

T= | 2 | T:

مثال ۱۲

الشبكة المقابلة لمتوازيات أضلاع متطابقة ، عبر عن كل من القطع المستقيمة الموجهة التالية بدلالة المتجهين م ، به :

الحل

- 1 9-
- ع بد
 - Js Y

- ٣ ح ٥ 201 P U9

NYT

- 1-0 DS A
 - 25-1

ا حرب

- P E- 0
- NY- A

- 7 8 1
- NTE
- 7 Y

مالدظة

إذا كان : ٩ ، - متجهين غير صفريين وكان ٩ = ك - ، ك ≠ صفر فإن : ٩ / / -

فمثلًا إذا كان: ١٩ = (٢،٢) ، - = (١٠،١٥) Po=(Y, Y) o= -: -1/F:

حاول بنفسك

في الشكل المقابل:

تمثيل لبعض المتجهات في المستوى المتعامد اكتب كلًا من المتجهات الآتية بدلالة متجهى

- 5

0

الوحدة الأساسيين :

- 1 9
- - 5 8

على المتجهات

تمارین 🧷

اختم نفسك

🖧 مستویات علیا ه تطبیق • تذکر • فهم

🛄 من أسئلة الكتاب المدرسي

V(1)

أولًا / أسئلة الاختيار من متعدد اختر الإجابة الصحيحة من بين الإجابات المعطاة : (۱) اذا کان : أ = (٥ ، - ۱۲) فإن : || أ || = ٧- (ب) (1) إذا كان: $\hat{\mathbf{q}} = (1)$ (۱۸ نان: $\hat{\mathbf{q}} = (1)$ (۱ ، ۱۲) (ب) (۱۲ ، ۸) (۱) (×) (×) (×) (×) 🕴 کل المتجهات الآتية هي متجهات وحدة ما عدا $(1,1)(2) \qquad (1,1)(2) \qquad (2,1)(2) \qquad (2,1)(2)$ ٤,٥-(١) ٢ (١) (o) (ان کان: ٩ = (٢٠١٠) ، ح = (٣٠١٥) متوازيين فإن: ك = $\frac{7}{7}(1)$ $\frac{7}{7}(2)$ $\frac{7}{7}(2)$ $\frac{7}{7}(2)$ (٦) إذا كان: أ = (٤،٥) ، ت = (٠٠٠) فإن: المتجهين أ ، ت (ب) متوازیان. (ج) متکافئان. (د) غیر ذلك. (1) متعامدان. (V) إذا كان: أ = (ك ، ٢) ، ب = ٢ س - ص وكان: ألب فإن: ك = (ب) الله عنور (د) صفر (د) صفر (چ) ه (د) (٩) إذا كان: ٩ = (٢ ، ٥) ، ت = (٤ ، ٢) فإن: || -٢ ٩ + ٣ ت || = ················ 1. (=) 18 (4) ٨ (ب) (+)(/, /) (9 , 8-) (4) (0 (1) (1) (۱۱) إذا كان: أ + ب = (٨ ، ١٦) ، أ = (ه ، ١٢) فإن: الب ا = (L) A Vo 17 (=)

٥ (ب)

γ = ۲ (٤) أ = ۲ س + ۳ ص يصنع مع الاتجاه الموجب لمحور السينات زاوية قياسها θ حيث

 $\frac{7}{7} = \theta \ \text{lb} \ (1) \qquad \frac{7}{7} = \theta \ \text{lb} \ (2) \qquad \frac{7}{7} = \theta \ \text{lb} \ (3)$

وه) إذا كان :
$$\hat{\mathbf{r}} = (\mathbf{r} \ \mathbf{r})$$
 متجه موضع في الصورة القطبية لنقطة $\hat{\mathbf{r}}$ فإن : $\hat{\mathbf{r}} = (\mathbf{r})$

$$\left(\frac{\pi}{\Upsilon}, \Upsilon\right)(J) \qquad \left(\frac{\pi}{\Upsilon}, \Upsilon-\right)(A) \qquad \left(\frac{\pi}{\Upsilon}, \Upsilon\right)(A) \qquad \left(\frac{\pi}{\Upsilon}, \Upsilon\right)(A)$$

$$\left(\frac{\pi}{7}, 7\right)(3)$$
 $\left(\frac{\pi}{7}, 7\right)(4)$ $\left(\frac{\pi}{7}, 7\right)(5)$ $\left(\frac{\pi}{7}, 7\right)(7)$

$$(\Lambda)$$
 إذا كان : $\hat{\mathbf{1}} = (\Lambda)$ حيث ما $\hat{\mathbf{0}} = \frac{\pi}{6}$ متجه موضع لنقطة $\hat{\mathbf{1}}$ فإن : $\hat{\mathbf{1}} = \cdots$

(١٩) في الشكل المقابل:

$$\tilde{r}$$
 فإن : $\tilde{r} = (\tilde{r}, \tilde{r})$ فإن : $\tilde{r} = (\tilde{r}, \tilde{r})$

$$\left(\frac{\pi}{\xi}, \Upsilon\right)(\omega)$$
 $\left(\frac{\pi}{\chi}, \Upsilon\right)(\omega)$ $\left(\frac{\pi}{\chi}, \Upsilon\right)(\omega)$ $\left(\frac{\pi}{\chi}, \Upsilon\right)(1)$

$$q - (a)$$
 $1 - (a)$ $\frac{11}{7} (a)$ (b) (1)

$$\Lambda = -\infty \quad (1) \quad \Lambda = \infty \quad (2) \quad \Lambda = \infty \quad (3) \quad \Lambda = \infty \quad (4) \quad (4) \quad \Lambda = \infty \quad (4) \quad (5) \quad (4) \quad (5) \quad (6) \quad (7) \quad$$

ن اذا کان :
$$\hat{\mathbf{r}} = (\mathbf{b} + \mathbf{l} \cdot \mathbf{l})$$
 ، $\hat{\mathbf{r}} = (\mathbf{r} \cdot \mathbf{l})$ فإن قيم ك التي تجعل $\hat{\mathbf{r}} = (\mathbf{l} \cdot \mathbf{l} \cdot \mathbf{l})$

(٣٥) إذا كان :
$$\hat{7} = (7 ، -1) ، - = (7 ، 3) ، ح = (ك ، ٥٥) والمتجهان ح ، $- - \hat{7}$ متوازيين$$

```
الله المنتجهان أ = (١٠،١) ، ع = رم ع ص متعامدين فإن: رم = ..........
```

(٣٧) أي أزواج المتجهات الآتية تكون متعامدة ؟

🙀 🗥 أى مِن أزواج المتجهات الآتية ليسا متضادين ؟

$$(1-\epsilon, \gamma) = \overline{-\epsilon} \cdot (\gamma, \epsilon) = \overline{\beta} \cdot (\gamma, \gamma) =$$

$$(1-\cdot\cdot)=\overline{}\cdot(2\cdot\cdot)=\overline{\cdot(2\cdot\cdot)=\overline{\cdot(2\cdot\cdot)=\overline{}\cdot(2\cdot\cdot)=\overline{}\cdot(2\cdot\cdot)=\overline{}\cdot(2\cdot\cdot)=\overline{}\cdot(2\cdot\cdot)=\overline{}\cdot(2\cdot\cdot)=\overline{}\cdot(2\cdot\cdot)=\overline{}\cdot(2\cdot\cdot)=\overline{}\cdot(2\cdot\cdot)=\overline{}\cdot($$

و (٤) إذا كان : أ = ك ح حيث ح متجه وحدة في اتجاه أ فإن : ك =

$$\frac{\hat{\mathbf{f}}}{\|\hat{\mathbf{f}}\|}(\omega) \qquad \|\hat{\mathbf{f}}\| \pm (\omega) \qquad \|\hat{\mathbf{f}}\| (\omega) \qquad 1 \pm (1)$$

(١٤) إذا كان: ٩ = (٢، ٢) ، - = (ك، ٣) ، ح = (م، -٤)

 $\left(\frac{\pi}{1\lambda}, \circ\right) = \overline{2}$, $\overline{2} = \overline{2}$, $\overline{2} = \overline{2}$

(٤٣) المتجه الذي يعبر عن إزاحة جسم مسافة ٤٠ سم في اتجاه الجنوب الشرقي هو

(£2) إذا كان معيار القوة ص = ١٠ نيوتن وتعمل في اتجاه ٣٠ شمال الشرق فإن : ص =

(٤٥) سفينة تقطع مسافة ١٠ ٣٧ كم شمالًا ثم ١٠ كم غربًا فإن الإزاحة = في الصورة القطبية.

$$\left(\frac{\pi}{7}, \Upsilon \cdot \right)(1) = \left(\frac{\pi}{7}, \Upsilon \cdot \right)(2) = \left(\frac{\pi}{7}, \Upsilon \cdot \right)(2) = \left(\frac{\pi}{7}, \Upsilon \cdot \right)(1)$$

$$1 = \frac{100}{400} \frac{100}{100} (3)$$

$$1 - \frac{1}{400} \frac{100}{100} (4)$$

$$= \overline{L} + \overline{P} : \text{id} \quad (\pi \frac{T}{3}, T) = \overline{L} \quad (\pi \frac{T}{3}, T) = \overline{L} = \overline{L}$$

$$\left(\frac{\pi}{\Upsilon}, \xi\right)(J)$$
 $\left(\cdot, \xi\right)(A)$ $\left(\xi, \xi\right)(A)$ $\left(\pi, \overline{\Upsilon}, \xi\right)(A)$

(٥٢) في الشكل المقابل:

ا حدى في الله الماسى منتظم مركزه نقطة الأصل

وطول ضلعه ٥ وحدات طولية

$$\left(\pi \stackrel{\xi}{\tau} \stackrel{(\circ)}{-}\right) \stackrel{(\circ)}{-} \qquad \left(\frac{\pi}{\tau} \stackrel{(\circ)}{-}\right) \stackrel{(1)}{-}$$

$$\left(\frac{\pi}{r}, \circ\right)(1)$$
 $\left(\pi \frac{\xi}{r}, \circ\right)(2)$

(۵۳) إذا كان الشكل المقابل يمثل أ

أى الأشكال الآتية يمثل المتجه - ٢٠

(ه) في الشكل المقابل:

فإن الشكل الذي يمثل ٢-

ثانيًا / الأسئلة المقالية

١ اذا كان: ١ = ٣ س - ٢

(3) 7 9 + 7 ·

· | | - + - f | (m)

$$(3)\overline{1} = (...7\sqrt{7})$$

$$(7 - i \wedge A) = \sqrt{(1)}$$

$$(\cdot i \nabla \nabla \nabla - A) = \sqrt{(1)}$$

$$(7) \overline{\mathcal{L}} = (-0, -71)$$

$$(7) \overline{\mathcal{L}} = (\sqrt{7}, -7\sqrt{7})$$

"19VV"

.11.

$$(7) \underbrace{e}_{1} = (0 \sqrt{7}, \frac{7\pi}{3})$$

$$(3) \underbrace{e}_{1} = (7, \frac{7\pi}{3})$$

📊 أوجد قيم س ، ص في كل مما يأتي :

$$(\circ \circ \mathsf{T}) = (\circ \circ \circ) - (\mathsf{T} - \circ \circ) - (\mathsf{T}) \qquad (\circ \circ \mathsf{T}) = (\circ \circ \mathsf{T}) - (\circ \circ) - (\mathsf{T})$$

$$(\circ \cdot \xi -) = (1 \cdot 7) + (7 \cdot 7) + (7$$

اذكر العلاقة بين المتجهين: ؟ ، ب مع ذكر السبب.

$$(r)$$
 أوجد قيمة : ٤ $\stackrel{?}{\wedge}$ + $\stackrel{?}{\vee}$ ، ٤ $\stackrel{?}{\wedge}$ + $\stackrel{?}{\vee}$ أوجد : $= 2$ إذا كان : $\stackrel{?}{\vee}$ $= 1$

أوجد المتجه ؟ الذي يحقق المعادلة: ٢ ؟ = ٢ ح - ٣ 5 + ٢ هـ « (T- + V) »

(۱) أثبت أن: المتجه لَ =
$$Y = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$
 يوازى المتجه $\frac{1}{2} = \frac{1}{2}$ س $\frac{1}{2} = \frac{1}{2}$

$$(1)$$
 إذا كان: $0 - 0$ 1 $10 - 0$ 1

إلى أوجد بدلالة متجهى الوحدة الأساسيين المتجه الذي يغبر عن:

(١) قُوة مقدارها ٣٧ نيوتن تؤثر على جسم وتعمل في اتجاه الشمال.

- (۱) 🛄 سرعة منتظمة مقدارها ٦٠ كم/س في اتجاه الغرب.
 - (٣) إزاحة جسم مسافة ٢٥ مترًا في اتجاه الجنوب.
- (٤) متجه معياره ٦ وحدات ويصنع زاوية قياسها $\frac{\pi}{5}$ مع الاتجاه الموجب لمحور السينات.
 - (٥) إزاحة جسم مسافة ١٥٠ سم في اتجاه ٣٠° شمال الغرب.
 - (٦) 🛄 قوة مقدارها ٢٠ ث كجم تؤثر على جسم في اتجاه ٣٠° جنوب الشرق.
 - (v) 🛄 إزاحة جسم مسافة ٤٠ سم في اتجاه الشمال الغربي.
- ۱ ، ۰ ، ح ، ۶ أربع نقط على استقامة واحدة مرتبه من اليمين إلى اليسار حيث ١ : ح : ح = ٢ : ٣ : ٥ ضع العدد المناسب مكان النقط فيما يلى علمًا بأن الرمز « = » يعنى تكافئ :

- إذا كان: أ = ٢ س + ص ، ب = س + ٣ ص أوجد:
 - (١) قيمة ك التي تجعل المتجه (أ + ك ب) يوازي المتجه س
 - (١) قيمة ل التي تجعل المتجه (ل ٢٠ + س) يوازي المتجه ص

 $\frac{1}{4} \frac{1}{4} - \epsilon \frac{1}{4} = 0$

🔟 🖽 الشبكة المقابلة لمتوازيات أضلاع متطابقة.

عبر عن كل من القطع المستقيمة الموجهة التالية بدلالة المتجهين مـــ ، نم :

- الشي نظامًا للإحداثيات المتعامدة في المستوى حيث (و) هي نقطة الأصل وعين عليه متجه الموضع الممثل المتجه م المراد عليه عليه عليه الموضع الممثل المتجه م = (۲ ، ۳) ثم ارسم:
- (1) قطعة مستقيمة موجهة مبدؤها النقطة = (3 ، 6) تمثل المتجه $\tilde{7}$ وأوجد إحداثيي نقطة النهاية.

🔝 🛄 يبين الشكل تمثيلًا لبعض المتجهات في المستوى الإحداثي المتعامد:

اكتب كل متجه بدلالة متجهى الوحدة الأساسيين.

ثالثًا / مسائل تقيس مهارات التفكير

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\widehat{f} = (2) \qquad \widehat{f} = (2) \qquad \widehat{f$$

(١) إذا كان: أ = ٢ س + ٤ ص ، ت = ٧ س + ٤٢ ص

فإن : المتجه الذي له نفس معيار ب ويوازي المتجه ؟ هو

$$\frac{1}{\sqrt{2}} \cdot 1 \cdot + \frac{1}{\sqrt{2}} \cdot 1 \cdot 0 \cdot (1)$$

$$\frac{1}{\sqrt{2}} \cdot 1 \cdot 0 \cdot (1)$$

$$\frac{1}{\sqrt{2}} \cdot 1 \cdot 0 \cdot (1)$$

$$\frac{1}{\sqrt{2}} \cdot 1 \cdot 0 \cdot 0 \cdot (1)$$

(٣) إذا كان: ١٩ = ٢ س - ص ، ب = س + ص ، ح = س + ٣ ص

وكان أ لـ (ك ب + ح) فإن : ك =

🤙 (٤) أي الجمل الأتية غير صحيح ؟

(٥) قياس الزاوية بين المتجهين : أ = ٦ س - ٢ ص ، ب = س + ٣ ص هو

إذا كان: و أ يمثل القوة ق ، ا ق = ١٢ وحدة

فأى العبارات الآتية لا يمثل متجه القوة ق ؟

(١) القوة 🗗 معيارها ١٢ وحدة قوة وتعمل في اتجاه ٦٠° شمال الغرب

(د) القوة ق معيارها ١٢ وحدة قوة وتعمل في اتجاة يصنع ٣٠° مع الشمال

هي المتجه $\frac{7}{7}$ هي المتجه $\frac{7}{7}$ هي $\frac{\pi}{7}$ هي المتجه $\frac{7}{7}$ هي المتحدد المتحدد

$$\left(\frac{\pi \circ}{r}, \Upsilon\right)(1)$$
 $\left(\frac{\pi \cdot \xi}{r}, \Upsilon\right)(2)$ $\left(\frac{\pi \cdot \xi}{r}, \Upsilon\right)(3)$ $\left(\frac{\pi \cdot \chi}{r}, \Upsilon\right)(4)$

(٩) إذا دار متجه الموضع أ = (١، ٣١) حول نقطة الأصل بزاوية قياسها ٤٥° في عكس

اتجاه دوران عقارب الساعة فإن الصورة القطبية للمتجه ٢ بعد دورانه هي

الدرس **3**

العوليات على الوتجمــــات

أولًا ﴿ جمع المتجهات هندسيًا

الطريقة الأولى (قاعدة المثلث «علاقة شال») :

إذا كان أب تمثل المتجه م ، بح تمثل المتجه له محمد عن المتجه لم محيث إن نقطة النهاية (ب) للمتجه الأول م هي

نفسها نقطة البداية للمتجه الثاني لم

فإن احد تمثل المتجه م + له أي أن أال المتجه م + له

أى أن الإزاحة أب متبوعة بإزاحة أخرى بح تكافئ إزاحة وحيدة أح

مثال ۱

إذا تحركت سفينة من الموقع (1) في الاتجاهات المعطاة حتى وصلت إلى الموقع ($^{+}$) ارسم مسار الرحلة بمقياس رسم مناسب مستخدمًا أدواتك الهندسية ثم أوجد من الرسم مقدار واتجاه إزاحة السفينة (1). إذا كانت الاتجاهات هي:

- مسافة ٦٠٠ متر شرقًا ثم مسافة ٨٠٠ متر شمالاً.
- آ مسافة ۲۰ كم غربًا ثم مسافة ۳۰ كم في اتجاه ۲۰° شمال الغرب.

۱ نفرض أن مقياس الرسم هو :

كل « ٢٠٠ متر » في الحقيقة تمثل بـ «١ سم» في الرسم

- .. ۱۰۰ متر تمثل ب ۳ سم ، ۸۰۰ متر تمثل ب ٤ سم
 - من الرسم وبالقياس نجد أن: ١٠ = ٥ سم
 - .. معيار الإزاحة = ٥ × ٢٠٠٠ = ١٠٠٠ متر
 - ، اتجاه الإزاحة θ = ٥° (باستخدام المنقلة)
 - i, $\theta = \sqrt{\frac{\xi}{\tau}}$ = π
- .. السفينة تبعد عن الموقع ؟ مسافة ١٠٠٠ متر في اتجاه ٥٣ شمال الشرق.

۲ نفرض أن مقياس الرسم هو :

كل «١٠ كم» في الحقيقة تمثل بـ «١ سم» في الرسم

- . . ۲۰ کم تمثل ب ۲ سم ، ۳۰ کم تمثل ب ۳ سم
- ومن الرسم وبالقياس نجد أن: ١ = ٤,٤ سم
 - .. معيار الإزاحة = غ , ٤ × ١٠ = ٤٤ كم
 - ، اتجاه الإزاحة $\theta \approx 77^{\circ}$ (باستخدام المنقلة)
 - .. السفينة تبعد عن الموقع ٢ مسافة ٤٤ كم
 - في اتجاه ٣٧° شمال الغرب.

حاول بنفسك

إذا تحركت سيارة من الموقع (*) في الاتجاهات المعطاة حتى وصلت إلى الموقع (*) ارسم مسار الرحلة بمقياس رسم مناسب مستخدمًا أدواتك الهندسية ثم أوجد من الرسم مقدار واتجاه إزاحة السيارة (*) إذا كانت الاتجاهات هي :

- مسافة ۱۲۰۰ متر شرقًا ثم مسافة ۱۲۰۰ متر شمالاً.
- آ. مسافة ٢٥ كم شرقًا ثم ٣٠ كم في اتجاه ٦٠° شمال الشرق.
- ٣ مسافة ٥٠ كم غربًا ثم مسافة ٤٠ كم في اتجاه الشمال الغربي.

ملاحظات هامة

ا أى متجهين م ، به يمكن جمعهما (إيجاد محصلتهما) بإنشاء متجهين متتاليين ومكافئين

المتجهين م ، به كما في الشكل المقابل.

٢ قاعدة شال لجمع متجهين صحيحة إذا كانت النقط

٢ ، - ، ح تنتمي إلى مستقيم واحد.

ففي الأشكال الثلاثة المقابلة يكون :

- ٣ المتجه الصفرى» عن المتجه الصفرى»
 - ع في أي مثلث ٢ ب د يكون : ٢ أب + ب د + د أ = و

لأن: (اب + ب ح) + حا = اح + حا = و

ويمكن تعميم ذلك بالنسبة لأى مضلع :

فمثلًا في الشكل الخماسي ٢ - ح ٥ ه يكون :

٥ في أي شكل رباعي يكون :

ويمكن تعميم ذلك بالنسبة لأى مضلع :

فمثلًا في الشكل الخماسي ٢ - حرو ه يكون :

مثال ۱

في الشكل المقابل:

الحــل

نرسم المتجه أكما هو موجود ثم من نهايته نرسم متجه يكافئ أومن نهايته نرسم متجه يكافئ حر ومن نهايته نرسم متجه يكافئ و ثم نرسم متجه من نقطة بداية ألى نقطة نهاية و فيكون المتجه على هو محصلة المتجهات.

مثال ۳

في أي شكل رباعي ١ - حر أثبت أن:

(1)

(Y)

الحــل

، الطرف الأيسر =
$$12 - 2 = 12 + 2 = 1$$

مثال ٤

١ - ح و شكل رباعي فيه : ٢ - ح = ٣ أو أثبت أن :

الحــل

[تذكران

را ای ان اسد ≠ ۶۶ .. بد // ۶۶ ، بد = ۲۰ ای ان اسد ≠ ۱۶۶ .. به ۱۶۶ ای ان اسد ≠ ۱۶۶ ...

لإثبات أن الشكل الرباعي شبه منحرف نثبت أن فيه ضلعين متقابلين متوازيان وغير متساويين في الطول.

الشكل أحدو شبه منحرف.

◄ الدرس الثالث

$$\frac{52+25+24+59=54+29}{25-25+24+59}$$

$$\frac{55+24+59=54+29}{59+24+59=24+59=24}$$

$$\frac{57+59=24+59=24}{59+24+29}$$

$$\frac{57+59=24+59=24}{59+24+29}$$

مثال ٥

اب ح مثلث ، و (بحيث ٣ بعيث ٣ ب ء = ٤ وح أثبت أن : ٣ أب + ٤ أح = ٧ أو

وبجمع (١) ، (٢) :

مثال ٦

إذا كان: ٤ م - ٣ - س ص = ٤ عص + ٧ ص ص أثبت أن: م = ع ص

$$3 \stackrel{?}{h} = 3 \stackrel{?}{3} \stackrel{?}{au} + 4 \stackrel{?}{au} \stackrel{?}{au} = 3 \stackrel{?}{3} \stackrel{?}{au} + 4 \stackrel{?}{au} \stackrel{?}{au} = 3 \stackrel{?}{au} + 2 \stackrel{?}{au} \stackrel{?}{au} = 3 \stackrel{?}{au} =$$

حاول بنفسك

الطريقة الثانية / (قاعدة متوازى الأضلاع):

إذا كان: ١ - تمثل المتجه م ، ١٩ تمثل المتجه به

حيث إن المتجهين م ، به لهما نفس نقطة البداية (ع)

* في الشكل المقابل:

إذا كانت : م هي نقطة تقاطع قطري متوازي الأضلاع فإن : 1 ح = ٢ مم وبالتالي يكون: (أب + أو = ٢ مم

وبالجمع نجد أن : أب + أو + بم + وم = ٢ مم

75-=57=7- : 6 79 Y = 95 + 95 - 59 + - 9 :.

وبالتالي يمكننا استنتاج الملاحظة التالية :

م الحظ ق

في الشكل المقابل:

إذا كان: ١٦ متوسطًا في ١٥٠ -ح

فإن: ١- + ١ح = ٢ ١٤

ابحرى متوازى أضلاع ، م نقطة ما في مستويه ، هر نقطة تقاطع قطريه احر ، ي أثبت أن: ١٩٠ + ١٠٠ + ١٥٠ + ١٥٠

الحل

(57+-1)+(27+97)=57+27+47+97

ولكن مم + مح = ٢ م م حيث ه منتصف اح

، م ب + ع م حيث ه منتصف ع

ثانیًا 🗸 طرح متجهـین مندسـیًا

اذا كان : أب تمثل المتجه م ، أحد تمثل المتجه م

وذلك لأن اب- اح = اب + حا = حا + اب = حب

/ التعبير عن القطعة المستقيمة الموجهة أب بدلالة متجهى الموضع لطرفيها

فمثلا إذا كانت: ١ (٥، ٣) ، - (-٢، ٤)

◄ عند تطبيق قاعدتي الجمع والطرح السابقتين على قطعتين مستقيمتين موجهتين يجب مراعاة :

- ١ في حالة الجمع تكون نقطة البداية للقطعة الثانية هي نقطة النهاية للقطعة الأولى.
 - آ في حالة الطرح يكون للقطعتين نفس نقطة البداية.

مثال ۸ ہ

١٠٠٤ ، ١٠ (٢ ، ٢) ، - (٢ ، ٢) ، ح (٢ ، ٣) أوجد إحداثيي النقطة و

- · · ابحو متوازي أضلاع.
- $(T, \cdot) = (T, \cdot) + (T, \cdot) + (T, \cdot) = (T, \cdot) + (T, \cdot) + (T, \cdot) = (T, \cdot) = (T, \cdot) + (T, \cdot) = (T, \cdot) = (T, \cdot) + (T, \cdot) = (T, \cdot) + (T, \cdot) = (T, \cdot) + (T, \cdot) = (T, \cdot) = (T, \cdot) = (T, \cdot) + (T, \cdot) = ($

حاول بنفسك

إذا كان : ١ - حو متوازى أضلاع فيه : ١ = (- ω ، ١) ، - ا

مثال ۹

١٠٠٥) ، د (١٠١٠) ، حدو شبه منحرف فيه: ١ (١٠١٠) ، حدو ١٠٠٥) ، د (١٠٠٥)

ا إذا كان: ١- ١/ وح فاوجد قيمة: ك ا أثبت أن: حب ١ ١-

٣ أوجد: مساحة شبه المنحرف ٢ - حرى

الحل

$$(\Upsilon, \xi) = (\Lambda, \Lambda) - (\Psi, \Upsilon) = \theta - \omega = \omega \theta$$
.

$$=\frac{7\sqrt{0}+0\sqrt{0}}{7}\times7\sqrt{0}=07$$
 each acres.

(المطلوب أولًا)

(المطلوب ثانيًا)

(1.1-) \$ (7-60-)5

(المطلوب ثالثًا)

حاول بنفسك

٩- ح مثلث فيه : ١ (٢ ، ٢) ، - (١ ، ١٠) ، ح (-٤ ، ١)

آ أوجد: مساحة ∆ ابح

١ أثبت أن: ١ - ١ ـ ـ ح

م الحظ ق

في الشكل المقابل:

إذا كان : ٢ ، - يمثلان ضلعان متجاوران

فى متوازى الإضلاع فإن : $(\hat{1} + \hat{1})$ ، $(\hat{1} - \hat{1})$

يمثلان قطرى متوازى الأضلاع وبالتالى يكون

على العمليات على المتجهات

تمارین 🕇

🖧 مستویات علیا

و لطبيق

ه تذکر

💷 من أسئلة الكتاب المدرسي

أُولًا / أُسئلة الاختيار من متعدد

اختر الاحابة الصحيحة من بن الإجابات المعطاة :

$$(1)$$
 إذا كان: $\overline{q} = (7, -7)$ ، $\overline{-} = (1, 7)$ فإن: $\overline{q} = -$

$$(\xi - \zeta + \Upsilon)(\Delta)$$
 $(\xi + \zeta + \Upsilon)(\Delta)$ $(\xi + \zeta + \Upsilon)(\Delta)$ $(\xi - \zeta + \Upsilon)(\Delta)$

$$\left(\circ \, \cdot \, \Upsilon \right) \left(\circ \, \cdot \, \Upsilon - \right) \left(\div \right) \qquad \left(\uparrow \cdot \, \wedge - \right) \left(\div \right) \qquad \left(\Upsilon - \, \cdot \, \circ \right) \left(\uparrow \right)$$

.....
$$\hat{r} : \hat{r} : \hat$$

(i) [ici
$$20i : 1 = (7 \cdot -0) \cdot - = (-1 \cdot 0) e 20i : 3 = (7 \cdot 0) e 20i 1 - 1 / 3 e 20i 1 - 2 e 20i 1 -$$

Ps (-)

P5 Y (=)

(c) e-

2-(1)

- 💠 (٢٣) في متوازى الأضلاع المرسوم أمامك
 - وم + ويم =

 - 1(1)
 - (=+ f) 1/(=)

- (ب) (c) + (1-w)

(· · \-)(÷)

- >- Y(1) (ج) ب (ب) ۲۰ (ب) 52(1)
- $= \overline{s}$: فإن $: \overline{1} = \overline{s} = \overline{s}$ فإن $: \overline{5} = \overline{s}$ فإن $: \overline{5} = \overline{s}$ فإن $: \overline{5} = \overline{s}$
- (V . V) (J) (V· o-)(÷) (V- · o-)(·) (V· o)(1)
 - (7, 9) = -2 متوازی أضلاع فیه : (7, 9) = (7, 7) ، (7, 10) = (1, 10) ، (7, 10) = (1, 10)
 - فإن نقطة و =
 - (١،٠)(٠) (. . 1)(1)
 - (٧) إذا كان: ١٩ حرو ه شكل خماسى فإن: وه + ه ١ - ١ =
 - 5-(1) ٠ (ب) A > (ج)
 - (٨) إذا كان: ١٦ = ٢ عد فإن:
 - (1) △ ٢ بحقائم الزاوية.
 - (ج) اب + احد = ۲ حب
 - (ب) ب منتصف اح (د) ح منتصف ا ب

- اب حد مثلث ، إذا كانت و منتصف بحر، ه منتصف اح
 - فإن: أب + أح = اه
 - (ب) ٢

 - (ج) ٤

(1- (.) (1)

(٣٠) في الشكل المقابل:

\(i)

١- حرى مستطيل ، ه منتصف ٢٥

- ، هرب + ب١٠ ١٥ =
 - -D(1)
 - (ج) هد
- - (m) في الشكل المقابل:

لَمْ متجه يمثل

- FY(1)
- FY (+)

- Y (+)

ف الشكل المقابل:

١- ح و مستطيل فيه : ه منتصف ح و فإن :

فإن : ك =

فی
$$\Delta$$
 الترتیب وکان او ، ه منتصفی ای ، احد علی الترتیب وکان ای الترتیب وکان ایک علی ایک علی ایک علی الترتیب وکان ایک علی ایک علی الترتیب وکان ایک علی الترتیب وکان ایک علی ایک

فإن : وهر =

ف الشكل المقابل:

ا بحرو هو سداسي منتظم فإن:

- (i) ea
- 59 (=)
 - - (٣٧) في الشكل المقابل:

إذا كان ٢ - حرى مستطيل ، مرب لي

- P- Y(1)
- NP E (=)

(ب) ۱۹ه

Y (2)

Y (2)

ف الشكل المقابل: في الشكل المقابل:

١ - ح و متوازى أضلاع فيه : و منتصف ١ -

(٣٩) في الشكل المقابل:

ا - حروشبه منحرف

وكان: ١٤٥ حب فإن: ك =

(ج) ا

 $\frac{1}{\sqrt{2}}$

(ج) ٢ وه

فإن : تو =

(٤٣) الشكل المقابل يمثل متجهين أ ، ب

أى الأشكال الآتية يمثل المتجه أ - ب ؟

👌 (٤٤) في الشكل المقابل:

(حيث طول كل ضلع في شبكة المربعات يمثل وحدة الأطوال)

أي مما يأتي صحيح ؟

$$\frac{1}{2} + \frac{1}{2} = \frac{1}{2} (\psi)$$

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} (\omega)$$

カイナタイ(ツ)

ライールイ(1)

إذا كان: وس = م، وء = س

١ - ح و متوازى أضلاع ، - س منتصف ١ -

(، ١-) عن أو متوسط في △ أب حصيث ا (٩ ، ١) ، و (-١ ، ٠)

(٤٩) في الشكل المقابل:

إذا كان هم منتصف حرى

- (a) إذا كان ا حدو مستطيل تقاطع قطراه في م فإن: أحد + أب =
 - 5-(1)
- (·) (·)

- (٥١) في الشكل المقابل:

إذا كان م نقطة تقاطع متوسطات ١٥٠٥ حد

- فإن : ٩٩ + ٢ مب =
 - ر(۱) عد
 - (ج) صفر
 - (٥٢) في الشكل المقابل:

إذا كان و ٢ - ح مستطيل

- فإن : البء + ءه ا =
 - 11/11)

 - TEV (=)
 - (٥٢) في الشكل المقابل:

ا بحرى متوازى أضلاع

- فإذا كان: حا = (٢، ٧) ، وب = (٢ ، ٣)
 - فإن : حري =
 - (+ + 0)(1)
 - (ب) (۲،۲)
- (×, ٣)(2) (·, \·)(÷)

(ب) اب

(ب) ۱۲۲

(6)1/13

i

- (٥٤) في الشكل المقابل:
- ٢ ح و معين تقاطع قطراه في م
- فإذا كان: الم + او = ك (اب + اع)

19 + 26 + 3- + 92 + 95

- فإن : ك =
- $\frac{1}{Y} (-)$
- 1 (=)

- - 7 (4)

- -5 Y (-)
- (د) ۲ هـ

P5 Y (1)

(٥٥) في الشكل المقابل:

(ج) ٢ حه

(٥٦) في الشكل المقابل:

إذا كان مساحة المربع الكبير = ٤٩ وحدة مساحة

و مُشِي

، مساحة المربع الصغير = ٢٥ وحدة مساحة

فان: ١٠ = ١٠٠٠٠٠٠٠٠٠

في الشكل المقابل: في (٥٧)

ابحروهم سداسي منتظم طول ضلعه ٢ وحدة طولية

فإن: ا مُ الم الم حب + وه ا = وحدة طول.

$$\|\hat{a} - \hat{b}\| > \|\hat{a} + \hat{b}\| > \|\hat{b} + \hat{b}\| < \|\hat{b}\|$$
 في أي من الحالات الآتية يكون : $\|\hat{b} + \hat{b}\| > \|\hat{b}\|$

ثانئا الأسئلة المقالية

- (1-, 7-)=5 ، (2, 3)=(3, 3أوجد: إحداثيي النقطة ح "(T & O-)"
- (V, V) = (V, V) ، (V, V) = (V, V)أوجد قيم: س ، ص ثم أوجد: | الما ، | ا عا ا "NOVE 1. VY 60-61"
 - أوجد كلًا من: أب ، بح بدلالة متجهى الوحدة الأساسيين ثم أثبت أن: ١- ١ بح
 - الذا كان: ٢ م + ٢٩ س = ٢ حس ٢٠ أثبت أن: م = ٩٩
 - 🗖 🕮 في أي مثلث س ص ع أثبت أن: س ص + ص ع + ع س = .

- 🔝 🛄 في الشكل المقابل:
 - ٢ ح و شكل رباعي
- 300 = 100 = 000

أثبت أن: هب + بحد + حو = هم ا + 12 + ءو

ف الشكل الرباعي ٢ ب حرى أثبت أن:

- ١٠ ١ حو شبه منحرف فيه : ١٥ // ح ، ه منتصف ٢ ، و منتصف وح
 - أثبت أن: ٢٤ + بحد = ٢ هو
 - - أثبت أن : (١) ٢ ح و شبه منحرف.

- 59 8 = 5 + 9 (1)
- $\frac{58}{7} = \frac{5}{7} + \frac{1}{2}$ | $\frac{7}{7} = \frac{58}{7}$ | $\frac{7}{7} = \frac{58}{7}$ | $\frac{7}{7} = \frac{7}{7}$ | $\frac{7}{7} = \frac{7}{7}$
 - ۱۹ عدد شکل رباعی فیه : ۲ بح = ٥ اه

- 15 7 = 25 7 47 (1)
 - المحرومتوازى أضلاع تقاطع قطراه في م ، لم نقطة خارجة عنه
 - أثبت أن : (١) الم أحد + وب = ٢ أب
 - ·= = + + + + = = (+)
- >- Y = -5 > P(1)
- 5ル+ ル= コル+ PN (E)
- 58 Y = 2 + 5 x + 2
 - الله المحرومتوازي أضلاع فيه : ه منتصف حد أثبت أن : أب + أو + وح = ٢ أه
 - العدو شكل رباعي فيه: س منتصف اح ، ص منتصف ع
 - أثبت أن: ١٦ + ١٥٠ + حب + حرء = ٤ سص
- الم الم عند عند عند عند عند عند عند عند عند الم عند عند الم عند عند عند عند عند الم الم الم الم الم الم الم الم
 - إذا كانت م نقطة تقاطع متوسطات المثلث ا عد ، ط نقطة خارج المثلث
 - أثبت أن: ط الم + طب + طح = ٢ ط ١

١١٢ اب ح مثلث ، ومنتصف ب ح ، ه منتصف اح ، و منتصف اب

$$(-1, -1)$$
 اوجد: $(-1, -1)$ اود: $(-1, -1)$ اوجد: $(-1, -1)$ اود: $(-1, -1)$ او

$$1 - 2$$
 شکل رباعی إذا کان : $1 - 2$ (۱ ، ۲) ، $1 - 2$ (- ۲ ، ۱) ، $2 - 2$ (٥ ، -۱) أوجد المتجه الذي تمثله $1 - 2$ وإذا کانت : $1 - 2$ (- ۱ ، ۳) أوجد إحداثيات : $1 - 2$ ، $2 - 3$

$$(10, 1-1)$$
 ، $(10, 1-1)$ ،

🔝 في الشكل المقابل:

إذا كان: وه // بح

أوجد قيم ك ، ل ، م ، له العددية إذا كان :

$$\frac{1}{1} = \frac{1}{1} = \frac{1}$$

$$\begin{pmatrix} \frac{1}{2} & \frac{$$

إذا كان: ١٩ حو من مسدس منتظم مركزه و ،

🚻 🗓 في الشكل المقابل:

١- حو ه و سداسي منتظم

أثبت أن:

أوجد: (١) إحداثيي كل من النقط: ١ ، ب ، ح

(١) مساحة سطح المثلث ١ بح باستخدام المتجهات.

🗀 🗀 اسحوشبه منحرف فیه :

(2:1-)=5: (0:1)=>: (1-:E)=-: (T-:T-)=1

(r) أوجد: مساحة شبه المنحرف أبحر

"Y . 6 8"

ثارثًا / مسائل تقيس مهارات التفكير

أ اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(١) إذا كان : ١ ، ب متجهين غير صفريين فإن : | ١ | + | ب | اب | المسلم

≥(1) $\leq (\Delta)$ >(-) <(i)

(١) إذا كان: ١٩ - = ح ، ١٩ ا + ا - ا = ا ح ا فإن: سيسسس

(ب) ا ، ب متكافئان. (۱) ۲ ، ب متعامدان.

(د) ح عمودی علی کل من ؟ ، ب (ج) أ ، ب متوازيان.

(٣) إذا كان: ٩ ، - متجهين غير صفريين وكان | ٩ + - | = | ٩ - - | فإن:

(ب) ، ب متكافئان. --= (1)

(د) ؟ ، ب متعامدان. (ج) أ ، ب متوازيان.

(٤) في الشكل المقابل:

١ - حو مربع وكان: ١ص + نسص = ك سرح

فإن : ك =

۲ (ب) 1(1)

٤ (٥) (ج) ۲

إذا كانت م نقطة تقاطع متوسطات ١ ٢ - فإن:

(٨) في الشكل المقابل:

وكان: ح = ال ع ح + م حب

$$\Upsilon(\Rightarrow)$$
 $\frac{1}{2}(\psi)$ $\frac{1}{2}(1)$

7 (4)

(١) في الشكل المقابل:

5

أو ينصف د ١٠ ح وكان ١ - ٢ ١ ح

(١٠) في الشكل المقابل:

إذا كان ٢ - حرى متوازى أضلاع فيه :

- و = Y سم ، و ح = 3 سم فإن : ١٩ =

$$\frac{1}{\sqrt{7}} + \frac{1}{\sqrt{7}} + \frac{1}{\sqrt{7}} = \frac{1$$

(١١) في الشكل المقابل:

إذا كان اسح مثلث قائم الزاوية في ، اح = ٢٤ سم

وكانت م هي نقطة تلاقى متوسطات المثلث أبح

: (١٢) في الشكل المقابل:

إذا كانت : م هي نقطة تلاقي متوسطات 🛆 ٩ ؎۔

الترتيب. ع ، م ، ع ، م ، ع ، م منتصفات اب ، ح ، ح ، و الترتيب. أثبت أن: ١٠ + ١٥ + ١٥ + ١٥ = ٢ (ع - ٢ + ١٥ م)

الدرس

4

تطبيقات على الهتجمات

أولًا / تطبيقات مندسية

نعلم أنه إذا كان: أب = ك وح ، ك خ . فإن: أب ، وح :

• يحملهما مستقيم واحد.

ای ان ا ۹، س، ح، وعلی استقامة واحدة

• يحملهما مستقيمان متوازيان.

ای ان ۱ ۱ اور

مالدظة

اذا كان: ١ - حو شكلًا رباعيًا فيه: ١ - الله عد ، له خ

فإن: أب // وح ، ا أب ا = اله الاحد ا والعكس صحيح.

فمثلًا إذا كان: ١٩ حرى شكلًا رباعيًا فيه: ١٩ - حرى

فإن: ١٠ // حرة ، ١٠ = ٢ حر

وبالتالي يمكن استخدام المتجهات لإثبات بعض النظريات والعلاقات الهندسية كما يلي :

مثال ۱

باستخدام المتجهات أثبت أنه : إذا تساوى وتوازى ضلعان متقابلان في أى شكل رباعى فإن الضلعين الآخرين يكونان متساويين ومتوازيين أيضًا أى أن الشكل يكون متوازى أضلاع.

الحل

◄ المعطيات

◄ المطلـوب

◄ البرهان

مثال ۲

باستخدام المتجهات أثبت أن : القطعة المستقيمة المرسومة بين منتصفى ضلعين في مثلث توازى الضلع الثالث وطولها يساوى نصف طوله.

- المعطيات في ∆ ابح:
- و منتصف اب ، ه منتصف اح
- المطلوب عد // بح ، طول عد = ب طول بح
- 1 + = st . + + = st .. البرهان ∴ و منتصف اب

$$= \frac{1}{2} \frac{1}{\sqrt{1 + \frac{1}{2}}} \frac{1}{\sqrt{1 + \frac{1}{2}}} = \frac{1}{2} \frac{1}{\sqrt{1 + \frac{1}{2}}} = \frac{1}{2$$

◄ الوعطيات

◄ المطلـوب

◄ البرهان

العمل ♦

مثال ٣

باستخدام المتجهات أثبت أن: قطري متوازى الأضلاع ينصف كل منهما الآخر.

الحل

- ١ ح و متوازى أضلاع.
- القطران أحد ، بع ينصف كل منهما الآخر.
- نفرض أن م نقطة منتصف 5 ثم ارسم المتجهين :

29,00

- في ١٥ ١ م : ١٩٥ = ١ ١ ، في ١ حدم : ١ ح = ١٥ + ١٥ حدم : ١
 - ن ب م = م عملا ، أب = وحد (من متوازى الأضلاع)
- .: ١٩٩ ، مح لهما نفس الاتجاه وتشتركان في نقطة م : 99 = 92
 - .: ١ ، م ، ح تقع على استقامة واحدة.
 - .: م منتصف احد ، م منتصف بع عملاً.
 - .. القطران اح ، بع ينصف كل منهما الآخر.

مثال ٤

في الشكل المقابل:

- ١- جري شبه منحرف فيه : ١٥ // بح マニート・アニラア・ラアニュー・
- ا عبر بدلالة م ، لم عن كل من : بح ، أح ، بدي
 - ا إذا كانت: س ∈ وب حيث: وس = ب سب

1 99 = | 90 .

أثبت أن : النقط ٢ ، ص ، ح تقع على استقامة واحدة.

- を T = 5 P T = ユー: SP T = ユー// 5 P: 1
- ルート=ト+ルー=5トトルーニョー ・トアナルーコーナートーコト
 - マイナル=マイナルナー=コーナートトラ=コラい

في ∆بحس:

- .: سح ، احس لهما نفس الاتجاه ومشتركتان في النقطة -
 - .. ٢ ، ، ح تقع على استقامة واحدة.

حاول بنفسك

في الشكل المقابل:

٩ بحري متوازي أضلاع ، س ∈ ١٩٤ ، ص ∈ بح

بحيث: ١ -س = حص

أثبت باستخدام المتجهات أن : - صص ، - ع ينصف كل منهما الآخر.

ملاحظات هامة لحل مسائل الأشكال الرباعية

لإثبات أن الشكل الرباعي متوازي أضلاع نثبت إحدى الخواص الأتية :

كل ضلعين متقابلين متوازيان.

- كل ضلعين متقابلين متساويان في الطول. ٤ القطران ينصف كل منهما الآخر.
- ٣ ضلعان متقابلان متوازيان ومتساويان في الطول.

فمثلًا لإثبات أن الشكل الرباعي ٢ - حرى متوازى أضلاع

نثبت ان: بد // ۶۲ ، بد = ۶۶ ای نثبت ان: بد = ۶۶

* لاثبات أن الشكل الرباعي مستطيل أو معين أو مربع فإننا نثبت أولاً أن هذا الشكل متوازي أضلاع

كما سبق ثم :

- لإثبات أن متوازى الأضلاع هو مستطيل نثبت إحدى الخاصيتين الآتيتين :
 - ١ ضلعان متجاوران فيه متعامدان.

فمثلا: ١-١-

القطران متساويان في الطول.

- فمثلا: | 1 ح | = | با
 - لإثبات أن متوازى الأضلاع هو معين نثبت إحدى الخاصيتين الآتيتين :
- فمثلا: | ا ا | | حد |
- ٣ ضلعان متجاوران فيه متساويان في الطول.
- فمثلا: احـــــ

- 📝 القطران متعامدان.
- لإثبات أن متوازى الأضلاع هو مربع نثبت إحدى خواص المستطيل وإحدى خواص المعين معًا.

مثال ٥

 $(\xi, T-) = \xi$ ، $(\Lambda, \Lambda) = -$ ، $(\Lambda, \Lambda) = -$ أثبت باستخدام المتجهات أن: الشكل أبحر مستطيل ثم أوجد محيطه ومساحته.

الحل

$$(\xi, \xi) = (\xi, \nabla_{-}) - (\Lambda, \Lambda) = \overline{\xi} - \overline{\xi} = \overline{\xi} - \overline{\xi} = (\Lambda, \Lambda) - (\Lambda, \Lambda) = \overline{\xi} - \overline{\xi} = \overline{\chi} - \overline{\xi} = \overline{\chi} + \overline{\chi} = \overline{\chi} + \overline{\chi} = \overline{\chi} = \overline{\chi} + \overline{\chi} = \overline{\chi} =$$

من (١) ، (٢) ينتج أن الشكل ٢ - حرى مستطيل

.. محيط المستطيل = $Y (3 \sqrt{Y} + 7 \sqrt{Y}) = 31 \sqrt{Y}$ وحدة طولية.

، مساحة المستطيل = ٤ $\sqrt{7} \times 7 \sqrt{7} = 37$ وحدة مربعة.

مثال ٦

١٠٠)= ٥ ، (٤-، ٢-) ، حد (٢، ٥) ، و ١ ، ١٠) ، حد (٢، ٥) ، و ١ ، ١٠) أثبت باستخدام المتجهات أن : الشكل معين ثم أوجد مساحته.

الحل

$$(r, r-) = (r-, r) - (r, r) = r-s = s-r$$

من (١) ، (٢) ينتج أن : الشكل ٢ - حرى معين

.. مساحة المعين = $\frac{1}{2}$ × حاصل ضرب طولى القطرين = $\frac{1}{2}$ × $\sqrt{1}$ × $\sqrt{1}$ = 17 وحدة مربعة.

حاول بنفسك

$$(1, 7-) = 5$$
, $(7-, 1-) = 2$, $(1, 1) = 4$, $(5, 1-) = 6$, $(7-, 1-) = 6$

أثبت باستخدام المتجهات أن: الشكل ٢ - حرى معين ثم أوجد محيطه ومساحته.

ثاننا/ تطبيقات فيزيائية

القوة المحصلة

- * القوة : هي متجه يتميز بأنه يمر بنقطة معلومة وتعمل في خط مستقيم.
 - * تمثل القوة بقطعة مستقيمة موجهة وترسم بمقياس رسم مناسب.

١ قوة مقدارها ٠٠ = ١٠ نيوتن في اتجاه الشرق

«تمثل بقطعة مستقيمة موجهة طولها ٢ سم»

آ قوة مقدارها عه = ١٥ نيوتن في أتجاه الغرب

«تمثل بقطعة مستقيمة موجهة طولها ٣ سم»

- * قوة الاحتكاك (ك): هي قوة خفية تظهر عند محاولة تحريك جسم على سطح خشن وهي دائمًا في عكس الاتجاه الذي يميل الجسم إلى التحرك فيه.
- إذا كانت قوة دفع الجسم > قوة الاحتكاك «يتحرك الجسم»
- إذا كانت قوة دفع الجسم < قوة الاحتكاك «يظل الجسم ثابت»

القوة المحصلة (يَ)

القوى المؤثرة على جسم تخضع لعملية جمع المتجهات ويعرف ناتج هذه العملية بمحصلة القوى (0)

(أو القوة المحصلة) حيث أن : و = و + وي + وي + ...

فمثلا

١ إذا أثرت قوة ع مقدارها ٨ نيوتن في اتجاه الشرق ثم أثرت قوة إضافية على مقدارها ٤ نيوتن

في اتجاه الشرق أيضاً.

* اعتبر أن ى متجه وحدة في اتجاه الشرق

أى أن ا ص = ه نيوتن وتعمل في اتجاه حركة الجسم

ا نختار مقیاس رسم مناسب «کل ه نیوتن تمثل على الرسم بـ ١ سم»

Sh= 30 St= 20

ا عند محاولة تحريك جسم بقوة عم مقدارها ١٢ نيوتن وكان مقدار قوة الاحتكاك عندئذ ٧ نيوتن

* اعتبر أن ى متجه وحدة في اتجاه حركة الجسم

أى أن أ ص= ٥ نيوتن وتعمل في اتجاه حركة الجسم

مالحظة

تقاس القوة بوحدات : الداين - النيوتن - ثقل جرام (ث جم) - ثقل كيلوجرام (ث كجم)

مثال ۷

إذا أثرت القوى: ق = ٥ س + ٢ ص ، ق = -٢ س + ٧ ص ، ق = ٣ س - ص

في نقطة مادية. احسب مقدار واتجاه محصلة هذه القوى (القوى مقاسة بالنيوتن)

الحـل

- : محصلة القوى ت = ت + ق + ق + ق :
- - .. مقدار المحصلة = $\| \boldsymbol{v} \| = \sqrt{(7)^7 + (\Lambda)^7} = 1 \cdot iugii$
 - $^{\circ}$ ه اتجاه المحصلة θ = طا $^{-1}$ ($\frac{\Lambda}{7}$) \approx 7° ه

(5V-= =

مثال ۸

اكتب بدلالة متجه الوحدة ي محصلة القوى الموضحة بكل مهما يأتي :

ق = ١٢٥

عدم نوبر المنافع المن

(E) dlin

الحل

وللحظتان

١ إذا كانت القوتان متساويتين في المقدار ولهما نفس خط العمل وفي اتجاهين متضادين فإن القوة المحصلة (ت) =٠

الإذا كانت محصلة عدة قوى متلاقية في نقطة واحدة = ٠ هذا يعنى أن مجموعة هذه القوى متزنة.

مثال ۹

إذا كانت: 0, 0 : 0 ، 0 ، 0 ، 0 ، 0 ، 0 ، 0 .

١ محصلة القوى = س - ٤ ص

الحال

 $(\overline{\smile} - \overline{\lor} + \overline{\smile} +$

$$r = r$$
 .. $r = r + r$

$$Y = P$$
 : $A = V - P + o$:

حاول بنفسك

إذا أثرت القوى $\frac{1}{100} = 0$ س + $\frac{1}{100}$ م $\frac{1}{100} = 7$ س - $\frac{1}{100}$ م $\frac{1}{100} = -3$ س + $\frac{1}{100}$ م $\frac{1}{100} = -3$ س + $\frac{1}{100} = -3$

السرعة النسبية

عندما ينظر راكب سيارة إلى سيارة أخرى تتحرك في نفس اتجاهه فإنها تبدو له وكأنها تتحرك بسرعة بطيئة
 بينما عندما ينظر إلى سيارة أخرى تتحرك في عكس اتجاهه فإنها تبدو له وكأنها تتحرك بسرعة كبيرة.

متجة السرعة النسبية

إذا كان: عم هو متجه سرعة الجسم (١) الفعلية ، ع هو متجه سرعة الجسم (١) الفعلية فإن:

ر عَيم هو متجه السرعة النسبية للجسم (س) بالنسبة إلى الجسم (١) عَيم = عَ -3 م وهي السرعة التي يبدو الجسم (س) متحركًا بها إذا اعتبر أن الجسم (١) في حالة سكون»

رم السرعة السرعة النسبية الجسم (٩) بالنسبة إلى الجسم (١) عَم = 3 م = 3 م = 3 السرعة التى يبدو الجسم (٩) متحركًا بها إذا اعتبر أن الجسم (١) في حالة سكون»

مثال ۱۰

تتحرك سيارة (۱) على طريق مستقيم بسرعة ٨٠ كم/ساعة وتتحرك سيارة (١٠) على نفس الطريق بسرعة ٢٠ كم/ساعة. أوجد سرعة السيارة (١) بالنسبة للسيارة (١٠) إذا كانت :

- السيارتان تتحركان في اتجاه واحد.
- آ السيارتان تتحركان في اتجاهين متضادين.

الحــل

ى متجه وحدة في اتجاه حركة السيارة (١)

السيارتان تتحركان في اتجاه واحد:

أى أن راكب السيارة (-) يشعر أن السيارة † تتحرك بسرعة ٢٠ كم/-

<u>σλ.</u> <u>ση.</u>-

السيارتان تتحركان في اتجاهين متضادين :

أى أن راكب السيارة (-) يشعر أن السيارة (١) متحركة بسرعة ١٤٠ كم/-

مثال ۱۱

دراجة بخارية (٢) تسير بسرعة ٥٠ كم/س لاحظ راكبها أن سيارة (س) تسير في الاتجاه المضاد بسرعة ١١٠ كم/س بالنسبة له أوجد السرعة الفعلية للسيارة.

الحــل

نفرض أن ى متجه وحدة في اتجاه حركة الدراجة (١)

$$\vec{z}_{0} = \vec{z} - \vec{z}_{0} = \vec{z}_{0} - \vec{z}_{0} - \vec{z}_{0} = \vec{z}_{0} - \vec{z}_{0} = \vec{z}_{0} - \vec{z}_{0} - \vec{z}_{0} - \vec{z}_{0} = \vec{z}_{0} - \vec{z}_{0} - \vec{z}_{0} - \vec{z}_{0} + \vec{z}_{0} - \vec{$$

أى أن السيارة (ب) تسير بسرعة ٦٠ كم/س في الاتجاه المضاد لحركة الدراجة (١)

حاول بنفسك

تتحرك سيارة على طريق مستقيم بسرعة ٨٠ كم/س فإذا تحركت على نفس الطريق دراجة بخارية بسرعة ٣٠ كم/س أوجد السرعة النسبية للدراجة بالنسبة للسيارة في كل من الحالتين الآتيتين:

- ا الدراجة تتحرك في نفس اتجاه حركة السيارة.
 - الدراجة تتحرك عكس اتجاه حركة السيارة.

اختبر نفسك

(r/ + + -) (2)

(c) 5 VF

على تطبيقات على المتجهات

تمارین 4

ه تذکر

🛄 من أسئلة الكتاب المدرسي

أولًا / أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

مسائل على التطبيقات المندسية

(+) FV7

$$\left(r\frac{1}{7},\frac{1}{4}\right)(\dot{r})$$
 $\left(\frac{1}{7},\frac{1}{4}\right)(\dot{r})$ $\left(\frac{1}{7},\frac{1}{4}\right)(\dot{r})$

(١) في الشكل المقابل:

$$(r)$$
 إذا كان : $1 - \frac{r}{2} = \frac{r}{2}$ بد فإن :

(٤) في الشكل المقابل:

ب و متوسط في △ ٢ بح القائم الزاوية في ب

$$\frac{1}{\sqrt{1+\epsilon}} = \frac{1}{\sqrt{1+\epsilon}} = \frac{1}{\sqrt{1+\epsilon}}$$

(٥) في الشكل المقابل:

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$\frac{1}{\sqrt{r}} \frac{\xi}{a} = \frac{1}{5r} (1)$$

🖧 مستويات عليا

و تطبيق

™ • •

(د) وه = با ب

8 U- Y (1)

٥٥٤(١)

- 👌 (٦) في الشكل المقابل:
- ١- حرى من على مريعان
- طولا ضلعاهما ٦ سم ، ٣ سم على الترتيب
 - فإن : أح =
 - 7/7(1)
 - (·) 179-
- (x) 17 w3

(ج) ٤ هـ ٥

- (V) في الشكل المقابل:
- ١- ، حرى وتران في الدائرة (1) = 5 = (0)
 - فإن : حرى =
- (ب) ٢ ح ه

مسائل على التطبيقات الفيزيائية

- (١) في الشكل المقابل:
- محصلة القوى الموضحة بدلالة
- متجه الوحدة ي =
- (ب) -۸ ی SA(1)
 - (١) في الشكل المقابل:

(٣) في الشكل المقابل:

- محصلة القوى الموضحة بدلالة
- متجه الوحدة ي =
- (ب) -ه ی 50(1)

- (=) 03 D

(ج) ۲۲ ی

- (c)-(s) ت ٨٠ ١٥ جم

۳۰ ث جم

۲۰ ث کچم

٥٧ ث كجم

- محصلة القوى الموضحة بدلالة
 - متجه الوحدة ي =
- (ب) ٠٠ ي (50.(1)
- (ج) ۱۱۰ ی
- (د) -۱۱۰ ی
- ﴿ ٤) مقدار محصلة القوى المؤثرة على جسم عند محاولة تحريكه بقوة مقدارها ٧٠ نيوتن وكان مقدار قوة الاحتكاك ٥٥ نيوتن تساوى نيوتن.
 - 140 (=) 10(1). (ب) ٥٥ V. (1)
 - (a) إذا كان: $0 = \sqrt{-7} = \sqrt{-7}$ ، $0 = 7 = \sqrt{-7}$ تؤثران في نقطة مادية فإن : معيار القوة المحصلة = وحدة قوة.
 - TV € (÷) 1.V Y (1) (د) ٤

(٦) إذا كان: ق = (٩، ٠) ، ق = -٣ س + ٤ ص تؤثران في نقطة مادية وكانت المجموعة متزنة فإن : ١ + - =

$$(v)$$
 إذا كانت : $\frac{3}{5}$, $\frac{1}{5}$ ، $\frac{1}{5}$ = $\frac{1}{5}$ ، $\frac{1}{5}$ = $\frac{1}{5}$. $\frac{1}{5}$.

$$(\lambda)$$
 إذا كانت : 3 , = (λ) أذا كانت : 3 , = (λ) أذا كانت : (λ) أذ

$$(*)$$
 | $(*)$

(١٠) يتحرك راكب دراجة ٢ على طريق مستقيم أفقى بسرعة ١٤ كم/ساعة فإذا قابل راكب أخر ب يتحرك بسرعة ٢٠ كم/ساعة في الاتجاه المضاد. فإن معيار السرعة النسبية بينهما = كم/س T. (1)

(۱۱) تتحرك سيارة على طريق مستقيم بسرعة ٩٠ كم/ص ، إذا تحركت دراجة بخارية بسرعة ٤٠ كم/ص على نفس الطريق. فإن معيار سرعة الدراجة البخارية بالنسبة إلى السيارة عندما تتحركان في نفس الاتجاه = كم/س

(١٥) إذا أثرت القوتان: ق = ٤ س - ٦ ص ، ق = -١ س + ٨ ص في نقطة مادية فإن محصلتهما و =

(٣) إذا كانت القوى : ق = (٢ ، ٢) ، ق و = ١ س + ٢ ص ، ق و = (-٤ ، ب) تؤثر في نقطة مادية ومتزنة فإن : ٢ + - = ···

(١٤) في الشكل المقابل:

فإن محصلة القوتين في ، في هي

- - (i) ٦٨ ثجم في اتجاه الشمال. (ب) ٣٤ √٢ ثجم في اتجاه الشمال الغربي.
 - (ج) ٦٨ ث.جم في اتجاه الشمال الغربي.

ثانيًا / الأسئلة المقالية

مسائل على التطبيقات المندسية

🚺 في الشكل المقابل:

١ - حو متوازى أضلاع ، ه منتصف ١ -

، و منتصف وحد

أثبت باستخدام المتجهات أن: الشكلء هب و متوازى أضلاع.

🗓 🗓 في الشكل المقابل:

١- حد ، ١- س ص متوازيا أضلاع.

أثبت باستخدام المتجهات أن:

الشكل حس صء هو متوازى أضلاع.

- إذا كان: س ص ع ل متوازى أضلاع ، ه ∈ سل ، و ∈ ص ع
- بحيث : هر س = ع و أثبت باستخدام المتجهات أن : هو ، صل ينصف كل منهما الآخر.

في الشكل المقابل:

١ حد شبه منحرف فيه : ١٠ ١/ سح

، ٢٥ = ١٠ سح وتقاطع قطراه في م

فإذا كانت : ه ، و منتصفى مب ، مح على الترتيب

أثبت باستخدام المتجهات أن : ١ هـ و ٤ متوازى أضلاع.

- استخدم المتجهات الإثبات أن: القطعة المستقيمة المرسومة بين منتصفى أى ضلعين متقابلين من أضلاع متوازى أ أضلاع توازى الضلعين الأخرين وطولها يساوى طول كل منهما.
- باستخدام المتجهات أثبت أن: إذا تساوى وتوازى ضلعان متقابلان في أي شكل رباعي فإن الضلعين الآخرين أي كونان متساويين ومتوازيين أيضًا أي أن الشكل يكون متوازى أضلاع.

الم المتجهات أثبت أن : و منتصف المح ، و منتصف المح باستخدام المتجهات أثبت أن : و
$$\sqrt{\frac{1}{\sqrt{2}}}$$

$$(\xi - (\delta - \delta)) = (\xi - (\delta - \delta))$$
 ، $\xi = (\xi - (\delta - \delta))$ ، $\xi = (\xi - (\delta - \delta))$ ، $\xi = (\xi - (\delta - \delta))$. $\xi = (\xi$

🚻 🛄 باستخدام المتجهات أثبت أن النقط:

$$9 = (-3, -1)$$
 ، $= (-3, -1)$ ، $= (-7, -1)$ هی رؤوس معین.

ال اذا كان: ١٩ حرد شكلًا رياعيًا فيه:

$$(Y, \cdot) = S \cdot (X, \cdot) = S \cdot (Y, \cdot) = S \cdot (Y,$$

أثبت باستخدام المتجهات أن: الشكل اسح ومستطيل ثم أوجد محيطه ومساحته. " T & V V 7 "

اب ح مثلث فيه : و ∈ اب ، ه ∈ اح أوجد: بحد بدلالة م، به

ثم برهن أن: بحر // وه

((ルート) アル

الشكل المقابل: في الشكل المقابل:

٩- ح و شبه منحرف ، ١٩ // -ح ア=59: ルーーリンン・シーラー59:

- (١) عبر بدلالة م ، يه عن كل من : بحد ، احد ، وحد ، وب
 - (١) إذا كانت: س ∈ احد حيث اس = ي احد

أثبت أن النقط: ٤ ، ص ، ب تقع على استقامة واحدة.

🔟 🗓 في الشكل المقابل : 🦳

وع ب مثلث فيه : وع = ٧ سم ، و = ٥ ١٧ سم

، ق (د او ب) = ١٢٥ - . .

أوجد باستخدام المتجهات : طول اب

«۱۲ سم»

- الترتيب. ع ، ل منتصفات الأضلاع أب ، ح ، ح ، و الترتيب. ب ع ، ل منتصفات الأضلاع أب ، ح ، ح ، و أ على الترتيب. باستخدام المتجهات أثبت أن :
 - (١) الشكل ص ع ل متوازى أضلاع.
 - (1) محيط الشكل -ن ص ع ل يساوى مجموع طولى قطرى الشكل الرباعي.

مسائل على التطبيقات الفيزيائية

- $\sqrt{-2}$ إذا أثرت القوى : $\sqrt{-2}$ $\sqrt{-2}$ $\sqrt{-2}$ $\sqrt{-2}$ $\sqrt{-2}$ $\sqrt{-2}$ $\sqrt{-2}$
- ، 0 0 0 0 0 0 0 0 أوجد مقدار واتجاه محصلة هذه القوى.

«١٥ نيوټن ، ٨٤ ٧ ٣٥ »

(القوى مقيسة بالنيوتن)

- - 🗀 أوجد محصلة القوى المؤثرة 🗗 في كل مما يأتي :

- 🗓 🗓 في كلُّ مما يأتي القوتان 👣 ، عب تؤثران في نقطة مادية ، وضح مقدار واتجاه محصلة كل قوتين منها :
 - (١) ع، = ١٥ نيوتن في اتجاه الشرق ، ع، ٤٠ نيوتن في اتجاه الغرب.
- (۱) عى = ٥٠ داين تعمل في اتجاه ٦٠° غرب الشمال ، عن = ٥٠ داين تعمل في اتجاه ٣٠° جنوب الشرق.
- (٣) ع. = ٣٠ نيوتن تعمل في اتجاه ٢٠ شرق الشمال ، عن = ٣٠ نيوتن تعمل في اتجاه ٧٠ شمال الشرق.
- o اذا کانت القوی : ق = ۲ س + ۳ ص ، قر = ۶ س + ص ، قر = ۵ س + ص تؤثر في نقطة مادية أوجد قيمتي أ ، ب إذا كانت محصلة هذه القوى و :

(1) to = 0 m - 7 av ·= 20(5) 12-6 V-6 7-6 Y-8

T اذا كانت القوى : ق = ٧ س - ٥ ص ، ق = ١ س + ٣ ص

، ور = -٤ س + (- - ٢) ص تؤثر في نقطة مادية أوجد قيمتي ١ ، ب إذا كانت :

- (۱) محصلة مجموعة القوى تساوى ٤ س ٧ ص (٢) مجموعة القوى متزنة. «١، ٢٠، ٢-، ٥»
 - ▼ تتحرك سيارة ۴ على طريق مستقيم بسرعة ١٤٠ كم/س وتتحرك السيارة بعلى نفس الطريق بسرعة ١١٠ كم/س. أوجد سرعة السيارة ٢ بالنسبة إلى السيارة ب عندما:
 - (١) تتحرك السيارتان في اتجاه واحد.
- (١) تتحرك السيارتان في اتجاهين متضادين. ۳۰۱۱ کم/س ، ۲۵۰ کم/س
- 🔼 تتحرك سيارة مخصصة لمراقبة السرعة على الطريق الصحراوي «القاهرة الإسكندرية» بسرعة ٣٠ كم/س راقبت هذه السيارة حركة شاحنة قادمة في الاتجاه المضاد فبدت وكأنها تتحرك بسرعة ١١٠ كم/س. فما هي السرعة الفعلية للشاحنة ؟ ١١٠١ كم/س١١
- 🗓 🛄 تتحرك سيارة مخصصة لمراقبة السرعة على أحد الطرق الصحراوية بسرعة ٤٠ كم/س. راقبت هذه . السيارة حركة سيارة قادمة في الاتجاه المضاد فبدت وكأنها تتحرك بسرعة ١٣٥ كم/س. فإذا كانت أقصى سرعة مسموح بها على هذا الطريق ١٠٠ كم/س.

هل السيارة القادمة مخالفة للسرعة المقررة أم لا ؟ فسر إجابتك.

«غير مخالفة»

ثالثًا 🖊 مسائل تقيس مهارات التفكير

١ اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- ان ازا کانت: 0 : 0 ، 0فإن مقدار محصلة هذه القوى =داين
 - 17 (1) (L) F V7 0 (-)

 * (1) إذا كانت القوى * (* (* * *) * * * * * * ، 0 = -0 س + (- + 1) ص تؤثر في نقطة واحدة والمجموعة في حالة اتزان فإن : ٢ =

1-(2) ارب) -۱۲ 1 (-) 17(1)

(٣) إذا كانت في = س - ٣ ص ، في = ٣ س + ١ ص فإن القوة في التي تجعل محصلة القوى الثلاث هي متجه الوحدة في اتجاه الموجب لمحور الصادات تساوى

> (ب) - ٤ س - ٢ ص ~~~~~~~(1) (د) - ٤ س - ٣ ص (ج) - ه س - ۳ ص

💰 (٤) مجموعة مكونة من ١٠٠ قوة مقدار كل قوة ١٠ نيوتن تؤثر في نقطة واحدة، قياس الزاوية بين كل قوة والتي تليها $\frac{\pi}{2}$ فإن معيار محصلة هذه القوى =نيوتن.

> (د) صفر ١٠ (٩) (ب) ۰۰۰ 1 . . (1)

ا إذا كانت: ق = ٥ س + ٣ ص ، ق = (٧ + ١) س + ١ ص ، ق = -١٤ س + (٣ - ب) ص ثلاث قوى مستوية ومتلاقية في نقطة وكانت القوة المحصلة بالصورة القطبية (ع) = (١٠ ٢٧ ، ١٠٥) «Y & A-» أوجد قيمتي: ١ ، ب

省 قامت سيارة (٩) متحركة على طريق مستقيم بقياس السرعة النسبية لسيارة (٧-) أمامها تسير في نفس الاتجاه فوجدتها ٢٠ كم/ساعة ولما خفضت السيارة (٩) سرعتها إلى النصف وأعادت القياس وجدت أن السرعة النسبية للسيارة (-) أصبحت ٥٠ كم/ساعة. فما هي السرعة الفعلية لكل من السيارتين ؟ ١٠٠ كم/س ، ٨٠ كم/س،

الوحدة الخامسة

الخط المستقيم

دروس الوحدة

تقسيم قطعة مستقيمة.

معادلة الخط المستقيم.

قياس الزاوية بين مستقيمين

طول العمود المرسوم من نقطة إلى خط مستقيم.

المعادلة العامة للخط المستقيم المار بنقطة تقاطع مستقيمين.

1 Irelat

2

3 الدرس

4

5

نواتج التعثم

في نهاية هذه الوحدة من المتوقع أن يكون الطالب قادرًا على أن :

- یوجد إحداثیی نقطة تقسیم قطعة مستقیمة من
 الداخل أو الخارج إذا علمت نسبة التقسیم.
 - يوجد النسبة التى تنقسم بها قطعة مستقيمة.
 من الداخل أو من الخارج إذا علم إحداثيا نقطة
 التقسيم.
 - يتعرف الصور المختلفة لمعادلة الخط المستقيم.
 - يوجد المعادلة المتجهة, والمعادلات البارامترية ،
 والمعادلة الكارتيزية للخط المستقيم.

- يوجد الصورة العامة لمعادلة الخط المستقيم.
 - يوجد معادلة الخط المستقيم بدلالة الأجزاء
 المقطوعة من محورى الإحداثيات.
 - يوجد قياس الزاوية الحادة بين مستقيمين.
- يوجد طول العمود المرسوم من نقطة إلى خط مستقيم.
- يوجد المعادلة العامة للمستقيم المار بنقطة تقاطع مستقيمين.

الدرس

1

تقسيم قطعة مستقيمة

• إذا كانت: أَبُ قطعة مستقيمة موجهة رأب فإن أى نقطة ح ∈ أب تقسم أب إلى قطعتين مستقيمتين موجهتين أحد ، حرب بحيث أب = أحد + حرب وإذا كانت النقطة حرتقسم أب بنسبة معلومة له: له وكانت مه ، مه ، مه مى المتجهات الممثلة بالقطع المستقيمة الموجهة وأ ، وب ، وحد حيث (و) هى نقطة الأصل.

ن ل. ١٠ عد = لم. حب

$$\frac{1}{600} = \frac{1}{600} = \frac{1}{1000}$$

وللحظات

١ إذا كانت : ح (1 - فإن «ح تقسم ٢ - من الداخل»

ويكون اح ، حب لهما نفس الاتجاه وتكون القيمتان ل، ، لم موجبتين

[(1)] $\frac{U_{\gamma}}{U_{\gamma}} > 0$

آ إذا كانت : ح ∈ أب ، ح ∉ آب فإن «حتقسم آب من الخارج» ويكون آح ، حب لهما اتجاهان متضادان وتكون إحدى القيمتين ل، ، لم موجبة والأخرى سالبة

ای ان $\frac{U_{\gamma}}{U} < 0$ وفی هذه الحالة یکون لدینا احتمالان :

اولا: ال، ا> ال، اتكون ح ∈ ال ، ح ∉ ال الكارا)]

 $\left|\frac{1}{\sqrt{1-x}}\right| = \frac{\left|\frac{1}{\sqrt{x}}\right|}{\left|\frac{1}{\sqrt{x}}\right|}$

اى ان حب = الب

$$\frac{d^{2}+d^{2}+d^{2}}{d^{2}+d$$

$$(-\upsilon \cdot -\upsilon) = (\frac{\upsilon \cdot -\upsilon \cdot + \upsilon \cdot -\upsilon \cdot }{\upsilon \cdot + \upsilon \cdot } \cdot \frac{\upsilon \cdot -\upsilon \cdot + \upsilon \cdot -\upsilon \cdot }{\upsilon \cdot + \upsilon \cdot })$$

وتسمى بالصورة الإحداثية.

يمكن الاستعانة بالشكل المجاور لتبسيط
 إيجاد الصورة الإحداثية.

إذا كانت : 1 = (1 - 3) ، - = (7 ، 7) أوجد إحداثيي النقطة حالتي تقسم 1 - 3 من الداخل بنسبة 1 - 3

: ح تقسم ٢ ب من الداخل

$$\frac{\gamma}{\gamma} = \frac{1}{\gamma} :$$

$$\therefore \sqrt{2} = \frac{7(1) \cdot 3 + 7(1)}{7 + 7} = \frac{7 \times 1 + 7 \times 7}{2} = \frac{7 \times 1 + 7}{2} =$$

حـل أخر باستخدام المتجهات :

$$Y = 0$$

الحل

للحظ أن

$$\frac{\xi-}{\pi}=\frac{\sqrt{J}}{J}$$
 ...

$$\therefore \frac{U_{y}}{V_{y}} = \frac{3}{4}$$

$$\therefore \frac{1}{V_{y}} = \frac{3}{V_{y}} + \frac{1}{V_{y}} \frac{1}{V_{y}}$$

$$\frac{^{\prime}1+^{\prime}1}{^{\prime}0}+\frac{^{\prime}1}{^{\prime}0}+\frac{^{\prime}1}{^{\prime}0}=\frac{^{\prime}1}{^{\prime}0}$$

$$(9-60)=\left(\frac{7-60}{1-100},\frac{7+60}{1-100}\right)=\frac{(7-60)(1-10)(1-10)(1-10)(1-10)(1-10)}{(1-10)(1-10)(1-10)(1-10)}=\frac{7+60}{1-10}$$

* لاحظ أننا اعتبرنا نسبة التقسيم ل. : ل. = -٤ : ٣ ولو اعتبرناها ٤ : -٣ فسوف نحصل على نفس النتيجة.

$$(9-10) = \frac{(7-10)+3(7-10)}{(7-10)} = \frac{1}{100}$$

حـل أخر باستخدام المتجهات :

٠٠٠ ح تقسم ب أ من الخارج بنسبة ٤ : ٣

$$\frac{\varepsilon}{r} = \frac{\varepsilon}{2} :$$

ومنها ص = -٩

إذا كانت : ١ = (١ ، ١٠) ، ب= (٥ ، ٢) وكانت : ح ∈ أب بحيث : ٢ ١ ح = ٣ حب

فأوجد إحداثيي حراذا كان: [التقسيم من الداخل.] التقسيم من الخارج.

$$\frac{r}{r} = \frac{st}{r} : r = s + r :$$

$$\frac{T}{T} = \left| \frac{1}{T} \right| ::$$

 $\frac{\tau}{\gamma} = \frac{V}{V}$ إذا كان التقسيم من الداخل فإن : $\frac{V}{V} = \frac{\tau}{\gamma}$

$$\frac{1}{\sqrt{2}} = \frac{1}{12} \frac{1}{\sqrt{2}} + \frac{1}{12} \frac{1}{\sqrt{2}} = \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{2} \frac$$

$$\left(\frac{\xi}{\circ},\frac{\chi_1}{\circ}\right)=\Rightarrow :$$

$$\frac{T}{Y} = \frac{T}{Y} = \frac{V}{Y} = \frac{V}{V}$$
 إذا كان التقسيم من الخارج فإن : أيذا كان التقسيم من الخارج

$$\mathbf{i}_{1} = \frac{\mathbf{Y}}{\mathbf{I}} = \frac{\mathbf{Y}}{\mathbf{I}} = \frac{\mathbf{Y}}{\mathbf{I}} = \frac{\mathbf{Y}}{\mathbf{I}} = \frac{\mathbf{Y}}{\mathbf{I}}$$

$$(A \cdot A) = \frac{(A \cdot A) + A \cdot A \cdot A}{(A \cdot A) + A \cdot A} = \frac{A \cdot A \cdot A \cdot A \cdot A}{(A \cdot A) + A \cdot A} = (A \cdot A)$$

حـل آخر باستخدام الصورة الإحداثية لنقطة التقسيم :

$$= \frac{(U_1 - U_1 + U_2 - U_3)}{(U_1 + U_3)} \cdot \frac{U_1 - U_1 + U_2 - U_3}{(U_1 + U_3)}$$

$$\therefore \mathbf{c} = \left(\frac{7 \times 7 + 7 \times 0}{0}, \frac{7 \times (-1) \times 7}{7 \times 7}, \frac{7 \times (-1) \times 7}{7 \times 7}\right) = \frac{3}{0}$$

$$(\Lambda \cdot \P) = \left(\frac{\Upsilon \times \Upsilon + (1-) \times \Upsilon^{-}}{\Upsilon + \Upsilon^{-}} \cdot \frac{\circ \times \Upsilon + \Upsilon \times \Upsilon^{-}}{\Upsilon + \Upsilon^{-}}\right) = \Rightarrow \therefore$$

حاول بنفسك

١ = ١ ، ٢ ، - ٥ أوجد إحداثيي النقطة حالتي تقسم ١ بنسبة ٤ : ٣ إذا كان :

٢ التقسيم من الخارج.

م الحظ ق

فإن: ل = ل = ل

١ التقسيم من الداخل.

اذا كانت : ح منتصف أب حيث : ١ (س ، ص) ، ب (س ، ص)

ن ألم = الصورة المتجهة .. ألم = المتجهة المتجهة

مثال ع

إذا كانت : $\uparrow = (-1 ، 3)$ ، -= (0 ، -7) فأوجد إحداثيات النقطتين ح ، و اللتين تقسمان \uparrow إلى ثلاثة أجزاء متساوية الطول.

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

$$\therefore \overline{\nabla} = \frac{(-1, 3) + (0, -7)}{(-1, 3) + (1, 7)} = \overline{\nabla} \therefore$$

$$(\cdot, \tau) = \frac{(\tau - \cdot, \circ) + (\tau, \cdot)}{(\tau + \tau)} = \frac{\tau}{\tau} + \frac{\tau}{\tau} = \frac{\tau}{\tau} :$$

 $1: Y = (1 ، \cdot)$ ويمكن إيجاد و باعتبار أنها تقسم $1 - \sqrt{1 - 1}$ من الداخل بنسبة ل. : ل. = Y : Y

مثال ٥

١- د ٢-) ، ح = (٢ ، ٠) ، ح = (١- ، ٢) ، ح = (١- ، ١-) أوجد إحداثيي الرأسى

الحل

نفرض أن : و = (-س ، ص) .

، : القطران ينصف كل منهما الآخر في متوازى الأضلاع.

$$r = 0$$
:
$$\frac{0 - + \cdot}{r} = \frac{r - 0}{r}$$
:

$$\frac{\gamma - \gamma}{\gamma} = \frac{\gamma + 2\gamma}{\gamma}$$

$$(Y-,Y)=s$$
:. $Y-=\omega$:.

والدظات

* لإثبات أن النقط ٢ ، ب ، ح تقع على استقامة واحدة فإننا نثبت :

أو ٢ - = - ح + ١ ح (باستخدام البعد بين نقطتين حيث ٢ - الطول الاكبر)

* إذا كانت ح تقسم ال بنسبة لي : ل فيكون التقسيم :

آ من الخارج إذا كانت لن سالبة.

من الداخل إذا كان لم موجبة.

رمثال ٦

أثبت أن النقط : 1 = (1 ، -7) ، - = (-7 ، -9) ، ح = (ه ، ه) تقع على استقامة واحدة ثم أوجد :

النسبة التي تقسم بها ٢ القطعة بح

١ النسبة التي تقسم بها ح القطعة ٢ ب

الحــل

$$(7, 1)$$
 $7-=(7-, 7-)=(7-, 1)-(9-, 7-)=\hat{7}-\hat{7}=\hat{7}$

.: ١ ، - ، ح تقع على استقامة واحدة ، - ، ح في جهتين مختلفتين من ١

،
$$\frac{\| \overline{1} - \|}{\| \overline{1} - \|} = \frac{3}{7}$$
 وينتج ان

٢ تقسم عد بنسبة ٢ : ٤ من الداخل.

حـل أخر باستخدام الميل :

$$Y = \frac{\gamma + 0}{1 - 0} = \frac{\gamma + 0}{1 - 0} = \frac{\gamma + 0}{1 - \gamma} = \frac{\gamma +$$

.: ١ ، - ، ح تقع على استقامة واحدة.

١ نفرض أن ح (٥ ، ٥) تقسم ٢ بنسبة له : ل

.. -7 U, + 0 U, = U, + U,

(سالبة)
$$\frac{\xi}{V} = -\frac{4}{3}$$
 (سالبة)

.: ح تقسم أب بنسبة ٤ : ٧ من الخارج.

ا نفرض أن ١ (١ ، -٣) تقسم حد بنسبة له : ل

 $\therefore \frac{l_{\gamma}}{l} = \frac{\gamma}{3} \left(\text{age}_{\gamma} \right)$

.. ٢ تقسم بح بنسبة ٢ : ٤ من الداخل.

حل ثالث باستخدام البُعد بين نقطتين :

$$\sim 9 = \sqrt{(1-0)^7 + (-7-0)^7} = 3\sqrt{0}$$
 each deb.

$$\frac{9}{12} = \frac{9}{12} = \frac{9}{12} = \frac{9}{12}$$

:. - = = 1 - + = 1

.: ح تقسم أب بنسبة ٤ : ٧ من الخارج ، ١ تقسم بح بنسبة ٣ : ٤ من الداخل.

أوجد النسبة التي تنقسم بها أب بكل من نقطتي تقاطعها مع محوري الإحداثيات

أولًا: بفرض أن حه = (س ، ٠) هي

نقطة تقاطع أب مع محور السينات

$$\frac{\circ}{7} = \frac{\circ}{7} : \circ \cup_{7} = \frac{\circ}{7} : \circ \cup_$$

.: أي تنقسم بنقطة تقاطعها مع محور السينات

بنسبة ٢ : ٥ من الداخل.

$$(\cdot, \frac{11}{4}) = (i = 1)$$
 د. حد (نقطة التقسيم)

ثانيًا: بفرض أن و = (٠، ص) هي

نقطة تقاطع أب مع محور الصادات

$$\therefore \quad \cdot = \frac{\bigcup_{\gamma} \times (-7) + \bigcup_{\gamma} \times 3}{\bigcup_{\gamma} + \bigcup_{\gamma}}$$

$$\therefore \frac{7}{5} = \frac{7}{50} \therefore$$

محور الصادات بنسبة ٤ : ٣ من الداخل.

$$\frac{11}{V} = \frac{0 \times \xi + 7 - \times 7}{\xi + 7} = 0 \therefore$$

$$\frac{11}{A} = \frac{7 - \times 7 + 2 \times 0}{0 + 7} = 0$$

حاول بنفسك

إذا كانت : ١ (٢ ، ٢) ، - (-٢ ، ١) أوجد النسبة التي تنقسم بها ١ - بنقطة تقاطعها مع محور السينات ثم أوجد إحداثيي نقطة التقسيم.

مثال ۸

إذا كانت: f = (1, 1) ، $\psi = (1, 0)$ ، $\psi = (1, 1)$ رءوس مثلث فأوجد إحداثيي نقطة تلاقى متوسطاته.

الحل

. · نقطة تقاطع متوسطات المثلث تقسم كلاً من هذه المتوسطات من الداخل

بنسبة ٢ : ١ من جهة الرأس ويفرض أن ٤ منتصف حد

$$\left(1, \frac{\lambda}{\lambda}\right) = \left(\frac{\lambda}{\lambda}, \frac{\lambda}{\lambda}\right) = \xi$$

، ه (نقطة تقاطع المتوسطات) تقسم أكم من الداخل بنسية ٢ : ١

$$T = \frac{7 \times 1 + \frac{1}{4} \times 7}{1 + 7} = 0$$

$$(1, T) = 0 : 1 = \frac{1 \times 1 + 1 \times T}{1 + T} = 0$$

ä hall o

إذا كان احد مثلثًا رءوسه ا= (س، مص، ، ب= (س، مصر)

، ح = (سم ، صم) ، وكانت م نقطة تلاقى متوسطاته

$$\left(\frac{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}{\gamma},\frac{\omega_{1}+\omega_{2}+\omega_{3}}{\gamma}\right)=\frac{1}{\gamma}$$

* يمكن حل المثال السابق كما يلي :

$$(1, T) = \left(\frac{T - 0 + 1}{T}, \frac{T + 1 + T}{T}\right) = \left(\frac{T + 1 + T}{$$

للحظ الفرق

إذا كانت : ح ∈ أب وكان :

على تقسيم قطعة مستقيمة

تمارين <mark>5</mark>

اختبر نفسك

💑 👶 مستویات علیا

• فهنم • تطبیق

ه تذکر

🛄 من أسئلة الكتاب المدرسي

the same was		ولًا 🖊 أسئلة الاختيار من متعدد		
	The state of	اختر الإجابة الصحيحة من بين الإجابات المعطاة :		
1 1 1 W 2	فإن: منتصف ٢	(£ , V-) = - , (7	(۱) إذا كانت : ۴ = (۲ ، ۱	ļ
	(\			
	رع ا - ح د حيث : ١ = (٣ :			ļ
(6)(1,7)	(A · ·) (÷)	(ب) (۲،۲)	(٤، .)(1)	
i mean	(۲ ، ۲) = ۱ : ميث - ۲ ، ۷)	(۲، ۳) هي نقطة تنصيف	(٣) 🛄 إذا كانت النقطة	ļ
· (1,0 · ·) (s).	(0, 4)(2)			
	(س، ٤) ، - (١، ص			
in the same in				I
V-(L)	/- (∻)	(ب)	V(1)	
الطرف الآخر للقطر	طة طرفية (٢ ، ٤) فإن نقطة	-٢) فإذا كان قطرها له نق	، (٥) دائرة مركزها (٢ ، -	ļ
			هی	
(E (A) (2)	(() (-)	(ب) (٠٠)	(Y : E-) (1)	
بنسبة و: ٢ من الداخل	ن النقطة حالتي تقسم أب	-٧- ، (٧ ، ٠) فإد	ر ٦) إذا كانت : ١٩ (٣- ، -	ļ.
(4- , 4-) (7)	(· · · ·) (÷)	(٢- , ٢) (٠)	(7 . 7-)(1)	ļ.
ن الخارج بنسبة ٢ : ٢	النقطة حرالتي تقسم أب م) ، - (٧ ، -١) فإن	(۷) إذا كانت : ۱ (۲ ، ٥	
The state of the state of		-10-11	هی	
	(/r , /v) (÷)			
· · · · · · · · · · · · · · · · · · ·	/) ، ح∈ اب بحیث۔	١- ، ٥) = ٠ ، (٤،	(A) إذا كانت : ۴ = (-٤	
	4		فإن : حـ =	
(Y , E-) (J)	(£ , A-) (=)	(٤- , ٢)()	(A-(E)(1)	

فإن النقطة ح هي

(£, Y)(), (£, E)(), (Y, E)(), (£, .)(1)

(١٠) إذا كانت: ١ (٣- ، -٤) ، - (-٨ ، ٧) وكانت: ح ∈ ١٦ ، ح ∉ ١٦

بحيث اح= ٢ حب فإن ؛ ح هي

 $(1 \wedge - \cdot 17)(1) \qquad (1 \wedge - \cdot 17 -)(2) \qquad (1 \wedge \cdot 17 -)(2) \qquad (1 \wedge \cdot 17)(1)$

(١١) إذا كانت: - (، ، ٢) ، ح (٢ ، ،) وكانت ٢ تقع في ثلث المسافة من - إلى ح فإن نقطة ٢ هي

 $(1-\epsilon, 1-\epsilon)(1) \qquad (1-\epsilon, 1-\epsilon)(1-\epsilon) \qquad (1-\epsilon, 1)(1)$

﴿ (١) إذا كانت : ٢ (٢ ، ٢) ، ب (١ ، ٦) فإن النقطة حالتي تقع في ربع المسافة من ٢ إلى ب

(Y, T) (=) (T-, T) (=) (() (-7) () (T , T) (1)

(١) النقطة التي تقع في ٢ المسافة من ٢ إلى - القطعة المستقيمة ٢ -

حيث ١ (٣ ، -٢) ، ب (١- ، ٥) هي

 (\cdot) (\cdot) (\cdot) (\cdot) $\left(\frac{V}{o}, \frac{\xi}{o}\right)(z)$

(٤) إذا كانت : ح (٤ ، ٤) تقسم أب بنسبة ١ : ٢ من الداخل وكانت ٢ (٧ ، ٨) فإن : ب =

(L) (Y) 3)

(٥) إذا كان: ١ - (٢ ، ٤) ، ١ = (٢ ، ٥) ، حتقسم ١ - بنسبة ٢ : ٢ من الخارج

(T . A) (w) (1V (V) (1) (T . A-) (=) (1V- (V-) ()

(١) النسبة التي يقسم بها محور السينات القطعة المستقيمة أب حيث ١ (٢ ، ٥) ، ب (٧ ، -٢)

(١) ٥: ٢ من الداخل. (ب) ٢: ٣ من الداخل. (ج) ٣: ٢ من الخارج.

(١) ١ : ٣ من الخارج. (ب) ٣ : ١ من الداخل. (ج) ١ : ٢ من الخارج. (د) ٢ : ٢ من الداخل.

🖣 (٨) إذا كانت : ٢ (٢ ، ٥) ، ب (٥ ، ٢) ، ح (٤ ، ص) ثلاث نقط على استقامة واحدة فإن ح تقسم ٢ بنسبة

(١) ١ : ٢ من الداخل. (ب) ٢ : ١ من الداخل. (ج) ٢ : ١ من الخارج. (د) ١ : ٢ من الخارج.

(. . 0)(3)

(A ...) 1

(+++)

(١٩) في الشكل المقابل:

٩ متوسط في ٨ ٩ ب ح ، م نقطة تلاقى المتوسطات

فإن : نقطة م هي

(٠٠) إذا كان : 9 = 1 متوسطًا في 1 = 1

فإن نقطة تلاقى متوسطات △ ٢ بحد هي

(۱) ع ح مثلث فیه : ۱ (۳ ، ۱) ، ب (۱ ، ۷) ، م هی نقطة تلاقی متوسطاته حیث م = (۱ ، ۲)

فإن النقطة حـ هي

(۱٬۲) عبد مثلث فيه : ۱ (۸،۷) ، م هي نقطة تلاقي متوسطاته حيث م = (۱،۲)

فإن النقطة و منتصف بحد هي

(٣) إذا كان: ١٥ متوسط ١٥ ١ صح، م هي نقطة تقاطع متوسطات ١٥ ١ صح وكانت:

١ (٥ ، ٤) ، م (٧ ، ٨) فإن : ١٩ = ------

$$(1) \begin{pmatrix} \frac{7}{7}, \frac{7}{7} \end{pmatrix} (1) \begin{pmatrix} \frac{7}{7}, \frac{7}{7} \end{pmatrix} (2) \begin{pmatrix} \frac{7}{7}, \frac{7$$

(٤) إذا كانت : ح تقسم -9 بنسبة 7: 7 من الداخل فإن : $\frac{9 - 2}{9 - 2} = \dots$

$$\frac{\tau}{\circ}$$
 (2) $\frac{\tau}{\tau}$ (4) $\frac{\tau}{\tau}$ (5)

(٥) إذا كانت : ح تقسم 1 بنسبة ٥ : ٧ من الخارج فإن : $\frac{9}{6}$ =

$$\frac{\circ}{\Upsilon}(1)$$
 $\frac{\Upsilon}{\varphi}(2)$ $\frac{\Upsilon}{\varphi}(3)$ $\frac{\Upsilon}{\varphi}(1)$

(1) إذا كانت : ح = أب وكان : ٣ أب و عان : ٣ أبنية 7:0(2)

(٢) إذا كانت ٢ تقسم -ح من الخارج بنسبة ٢ : ٣ فإن

(د) ح تقسم أب من الخارج بنسبة ٢: ٢ (ج) ح تقسم ٢ - من الداخل بنسبة ٢ : ١ $\overline{V} = \overline{V} = \overline{V}$ ، $\overline{V} = \overline{V}$. \overline

🝰 مستویات علیا

(٩) إذا كانت نقط منتصفات أضلاع مثلث هي (٢٠ ، ٣) ، (٧ ، ١٠) ، (٤ ، ٤)

فإن نقطة تلاقى متوسطات المثلث هني

$$(\cdot, (\frac{\circ}{\tau})(1))$$
 $(\cdot, \circ)(1)$ $(\tau, \tau)(1)$

$$\frac{|\sqrt{\omega}|}{|\sqrt{\omega}|}(a) \qquad \frac{|\sqrt{\omega}|}{|\sqrt{\omega}|}(a) \qquad \frac{|\sqrt{\omega}|}{|\sqrt{\omega}|}(a) \qquad \frac{|\sqrt{\omega}|}{|\sqrt{\omega}|}(a)$$

$$\frac{|\nabla \omega|}{|\nabla \omega|}(z) \qquad \frac{|\nabla \omega|}{|\nabla \omega|}(z) \qquad \frac{|\nabla \omega|}{|\nabla \omega|}(z) \qquad \frac{|\nabla \omega|}{|\nabla \omega|}(z)$$

(٣) في الشكل المقابل:

کل مما یأتی صحیح ما عدا

: في الشكل المقابل في (ال

$$\left(\frac{\vee}{V}, \frac{1}{V}\right)(1)$$
 $\left(\frac{\vee}{V}, \frac{1-V}{V}\right)(2)$ $\left(\frac{\vee}{V}, \frac{1-V}{V}\right)(1)$

(17617-) (167-)

فى الشكل المقابل:

و منتصف بح ، ه ∈ اب بحيث

٣ ه ب = ٤ هم ٢ فإن إحداثي النقطة هم هو

(1-17)(1)

(1-10)(=)

(٣) إذا كان: ١ (س، ، ص،) ، - (س، ، ص،) نقطتان في المستوى وكان محور الصادات يقسم ١-من الخارج فمن المؤكد أن

(د) ص ص > صفر (ج) ص ، ص موجبان.

(٣) إذا كانت ح منتصف أب وكانت و تقسم أحد من الداخل بنسبة ٢ : ٢

فإن و تقسم أب بنسبة

$$\frac{1}{\lambda}(a)$$
 $\frac{1}{\lambda}(a)$

\(\frac{1}{\pi}\)

٤(١)

(٣٨) إذا كانت النقطة ح تقسم أ من الداخل بنسبة ٢ : ٢ ونقطة 5 تقسم أ حد من الداخل بنسبة ١ : ٤

فإن نقطة و تقسم أب بنسبة

۸:۱(ب) ۲:۱(۱)

(ج) ۲۲: ۲۲

(٦٠١) اذا كانت : ح (س، ، ص،) ، ٤ (س، ، ص،) هما نقطتي تثليث السحيث ١٠ (١٠١) ، ٠ (١٠٢)

فإن : س، + س، =

(ج) ٧

7 (4)

(٤) إذا كانت : ١ (-٢ ، ٥) ، - (١ ، ١) وكانت ح تقسم ١ من الداخل بنسبة ٩، : ٩،

وكانت و تقسم ب ع من الداخل بنسبة م، : م، وكانت ح = (٤ ، ٢) فإن : و =

(7, 7)(1)

(ب) (٤،٢)

(+ () (-)

٩ - ح مثلث ، و (١ - ١) ١ - عيث ١ (١ ، -٤) ، - (٢ ، ٢)

، و (٤ ، ٢) ، ٩ ح = ٦ سم ، ب ح = ٤ سم

فإن كل مما يأتي صحيح ما عدا

(ب) محيط A ع حرى محيط A - حرى

(۱) مساحة Δ أحرء = $\frac{7}{7}$ مساحة Δ بحرء

(د) و تقسم ب أ بنسبة ٢ : ٢ من الداخل،

(ج) حرى ينصف د احب

ف الشكل المقابل: ﴿ وَإِنَّ اللَّهُ اللَّلْمُ اللَّهُ اللَّا اللَّلْمُ اللَّهُ الللَّلْمُ اللَّا اللَّا اللَّهُ اللَّهُ الللَّهُ اللَّهُ اللَّهُ

(£ , Y-) (÷)

(٤٤) في الشكل المقابل:

((1) (-3) 7)

(7.69.)(1)

$$\frac{\xi}{0}$$
 (\Rightarrow)

- (٤٧) في الشكل المقابل:
- النقطة حدهي
 - (. . 0)(1)
 - (ب (٤) (ب)
 - (+, (7) (+)
 - (· · ٢) ()
 - (٨) في الشكل المقابل:
- - 1: (1)
 - (ب) ۳:۷
 - (ج) ۲: ۷
 - 7:1(2)

(٤٩) في الشكل المقابل:

رُاوية θ في وضعها القياسي ضلعها النهائي يقطع دائرة الوحدة في θ

فإن و تقسم حح من الخارج بالنسبة ..

(ب) منا θ

 $\frac{1}{\theta - 1}$ (i)

(د) قنا 0

(ج) قا B

(ه) إذا كان متجه موضع النقطة q بالصورة القطبية هو $\overline{q} = (0 \ \text{VV})$ ، $\frac{\pi}{3}$) ، $-(7 \ \text{O})$ ، $-(7 \ \text{O})$

فإذا كانت تقسم أحر بنسبة ٧: ٤ من الخارج فإن: ح =

- (€ · ٢-) (÷) (€ · ٢) (·) (o · ٢-) (1)

ثَانِيًا / الأسئلة المقالية

الله الله النا المنات : ١ = (٠٠٠-) ، ب = (٣٠١) فأوجد إحداثيي النقطة حالتي تقسم ١٩٠٠ الله النقطة على النقطة عل

من الداخل بنسبة ١ : ٢

"(T + T)"

- [1] إذا كانت: ٩ = (٣ ، ٣) ، -= (-١ ، ٥) فأوجد:
- (١) إحداثيي النقطة حالتي تقسم ١- بنسبة ٢ : ٣ من الداخل.
- (أ) إحداثيي النقطة والتي تقسم أب بنسبة ٤: ٣ من الخارج. $(77 + 17) + (\frac{5}{2} + \frac{5}{2})$
- (١- ، ١-) = ٩ أوجد إحداثيي النقطة ح التي تقع عند خمس المسافة من النقطة ٩ = (١- ، ١-)
- الى النقطة = (٩ ، ٤) 11 (- 4 1) 11
- [۱ ا کانت: ح ∈ با ، ح ∉ اب وکانت ۱ = (۲،۲) ، ب = (٤،۲) وكان: ١ ح = ٢ ٢ س أوجد إحداثني نقطة ح x(1-61)0
- 🗖 🛄 إذا كانت : ٢ = (١ ، ٣) ، ب = (٤ ، ٢٠) أوجد إحداثيي النقطة حـ إذا كانت : ح ∈ اب بحيث ٢ اح= ٢ خب 11 (1 c 1-) 1
- الا کانت : ۱ = (٤ ، ٣) ، ب = (٣ ، ٥) فأوجد حر أب بحيث ٢١ح = ٥ حب $\alpha \left(\Lambda \leftarrow \frac{\Lambda}{\Lambda \Lambda} - \right) \leftarrow \left(\frac{1}{\Lambda \Lambda} \leftarrow \frac{\Lambda}{\Lambda} \right) =$
- ٧ إذا كانت: ٩ = (١ ، ١) ، = (-١ ، -٢) فأوجد إحداثيي النقطة ح ∈ ٩ -، ح ﴿ ٢ بحيث بعدها عن ٢ أربعة أمثال بعدها عن ب "(T- & T-)"
- (۱، عانت النقطة ع = (۲، ۲) ، ح = (۱، ل) ، ب = (ك، ۱) على استقامة واحدة ، حر $= \frac{1}{1}$ ، $= \frac{1}{2}$ أوجد : ل ، ك « V- « Y-»
- اذا كانت : ۴ = (۸ ، −٤) ، = (-۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين تقسمان ۲ → (۱ ، ۲) فأوجد إحداثيات النقطتين اللتين التين ال إلى ثلاثة أجزاء متساوية في الطول. 11 (- 6 7) 6 (7 - 6 0) 11
- اذا كانت : ٢ = (١ ، -٤) ، -= (٥ ، ٤) فأوجد إحداثيات النقط ح ، ٥ ، هـ التي تقسم ٢-إلى أربعة أجزاء متساوية في الطول. «(Y & E) & (· & T) & (Y- & T) »
- ١١ إذا كانت : ٢ € محور السينات ، ب ∈ محور الصادات ، ح = (٤٠ ، ٣) منتصف ٢ ب فأوجد إحداثيي كل من ١ ، -0(-1 2 ·) 2 (· 2 /-) 1
- آ إذا كانت : ٢ = (٢ ، ٣) ، ب = (-٢ ، ٣) فأوجد النسبة التي تقسم بها النقطة ح = $(\Lambda \ , \ \infty)$ القطعة $\frac{1}{1}$ مبينًا نوع التقسيم ثم أوجد قيمة ص «١ : ۴ (من الخارج) ، -٧»

- إذا كانت : 9 = (-7 , 7) ، = (3 , -7) فأوجد النسبة التي يقسم بها محور السينات القطعة المستقيمة $\frac{7}{4}$ مبينًا نوع التقسيم وأوجد نقطة التقسيم.
- ال ال الذا كانت: ٢ = (٥ ، ٢) ، = (٢ ، -١) فأوجد النسبة التي تنقسم بها ٢ بكل من نقطتي تقاطع التقسيم.

 ال المحادثيات ، مبينًا نوع التقسيم في كل حالة ، ثم أوجد إحداثيي نقطة التقسيم.
 ال : ١ (من الداخل) ، ٥ : ٢ (من الخارج) ، (٣ ، ٠) ، (٠ ، -٣)»
- إذا كانت : ح ، 5 نقطتى تقاطع أب مع محورى الإحداثيات فأوجد النسبة التى تقسم بها كل من ح ، 5 القطعة المستقيمة أب مبينًا نوع التقسيم ، علمًا بأن : $1 = (-0 \ v) \ v = (-7 \ v)$
- ا ان کانت النقط $f = (1 ، -1) ، = (-1 ، 1) ، ح = (\sqrt{77}, \sqrt{77})$ هی رءوس مثلث فاوجد إحداثیی نقطة تقاطع متوسطاته.

 ($\frac{\sqrt{77}}{7}, \frac{\sqrt{77}}{7}$)"
- إذا كانت : 9 = (3 , 17) ، = (-7 , 1) ، = (1 , 7) ، = (7 , 7) ، = (7 , 7) . = (7 , 7
- ا اسح متوازی أضلاع فإذا كانت : 1 = (۷ ، -7) ، -= (10 ، 3) ، ح = (10 ، 7) فأوجد إحداثيي نقطة تقاطع قطريه $1 \sqrt{100}$ ثم أوجد إحداثيي الرأس کا سام ۱۵ ، (۱۰ ، ۱۰) الم الم ۱۵ ، (۱۰ ، ۱۰) الم الم ۱۵ ، (۱۰ ، ۱۰) الم ۱۵ ، (۱
- اذا کان: المحوم شکلاً رباعیًا ، ا = (٤ ، ٣) ، $= (\cdot \cdot \cdot)$ ، $= (\cdot)$
- أثبت أن النقط ٢ = (١ ، ٤) ، ب = (٢ ، ٣) ، ح = (٣ ، ١٦) تقع على استقامة واحدة ثم أوجد:
- (١) النسبة التي تقسم بها ٢ القطعة المستقيمة -ح ، مبينًا نوع التقسيم. ١١ : ٢ (من الداخل)
- (٢) النسبة التي تقسم بها القطعة المستقيمة ح ؟ ، مبينًا نوع التقسيم. «٢: ((من الخارج)»
- (٣) النسبة التي تقسم بها ح القطعة المستقيمة أب ، مبينًا نوع التقسيم. «٢: ٣ (من الخارج)»

١٥ ، ٥ ، ٧ منتصفات ١٠ ، - ح ، ح ا على الترتيب في ١٥ ابح

$$(1, 1) = - 1$$
 ، $(2, 1) = - 1$ ، $(3, 1) = - 1$ ، $(4,$

ثَالِثًا / مسائل تقيس مهارات التفكير

₹ اختر الإجابة الصحيحة من بين الإجابات المعطاة :

💠 (١) في الشكل المقابل:

(١) في الشكل المقابل:

(٣) في الشكل المقابل:

(٢. , ٢-) (=) (11: 4-)(2)

7 (1) $\frac{\xi}{2}$ (\Rightarrow) ه (ه) إذا كانت النقطتان ؟ ، ب تقعان على منحنى الدالة : ص = س حيث ؟ (٣ ، ٩) وكان محور الصادات يقسم ؟ بنسبة ٣ : ٢ من الداخل فإن : ب =

$$(9, 7-)(3) \qquad (7,70,1,0-)(4) \qquad (5,7-)(4) \qquad (1,1-)(1) \qquad .$$

(٦) في الشكل المقابل:

إذا كانت : م (۲ ، ۲) نقطة تلاقى متوسطات Δ المح ، مُ (۱ ، -7) نقطة تلاقى متوسطات Δ أَ \rightarrow \sim فإن : $\sqrt{11} + \sqrt{11} + \sqrt{11} + \sqrt{11}$ (ب) (۱) (۲ ، ۵)

(\o- \cdot \tau-) (\sigma) (\sigma-\cdot \tau-) (\sigma)

ق الشكل المقابل:

أ ب حرى متوازى أضلاع فيه : و منتصف ب ح

فإذا كانت : هـ = (٣ ، ٣)

، ح = (٢ ، ٥) فأوجد: إحداثيي النقطة ٢

إذا كانت :
$$1 = (7, 7)$$
 ، $- = (0, 7)$ ، $- = (1, 7)$ هى رءوس مثلث $- = (1, 7, 7)$ هن رءوس مثلث $- = (1, 7, 7)$

الدرس

2

معادلة الخط المستقيم

درسنا في السنوات السابقة أن :

 $oldsymbol{\cdot}$ الصورة العامة لمعادلة الخط المستقيم هي : γ – γ + γ + γ

حيث ٢ ، - ، ح أعداد حقيقية ، ٢ ، - لا يساويان الصفر معًا وتمثل بيانيًا بخط مستقيم

فمثلًا كل من العلاقات : س + ١٦ ص = ٦ ، ص = ٢ ، س - ٤ = . تمثل خطًا مستقيمًا

، كل من العلاقتين : $ص + \sqrt{-u} = 3$ ، $-u + \frac{1}{2} = 0$ لا تمثل خطًا مستقيمًا.

* ميل الخط المستقيم :

ا إذا كان المستقيم ل يمر بالنقطتين (س، ، ص،) ، (س، ، ص،)

 $\frac{1-}{7} = \frac{7-7}{1-5}$ میله یساوی (۲، ۴) میله یساوی $\frac{7-7}{7} = \frac{7-7}{7}$

ا إذا كانت معادلة المستقيم على الصورة : 1 - 0 + 0 - 0 + 0 = 0

$$\frac{-\text{ alab}}{\text{ out}} = \frac{-\text{ alab}}{\text{ alab}}$$
 نفان:

فمثلًا المستقيم الذي معادلته : ٥ – 0 + 0 ص + 0 – ، ميله = $\frac{-6}{3}$

اذا كانت معادلة المستقيم على الصورة : ص = م - u + - e فإن : ميله e

، يقطع جزءًا من محور الصادات طوله القيمة المطلقة للعدد حد ويمر بالنقطة (٠، ح)

فمثلًا المستقيم الذي معادلته : ص = ٣ - س - ٥

ميله = ٣ ويقطع من الجزء السالب لمحور الصادات ٥ وحدات طولية ويمر بالنقطة (٠ ، -٥)

ع إذا كان : ه قياس الزاوية الموجبة التي يصنعها المستقيم مع الاتجاه الموجب لمحور السينات

فمثلًا إذا كان قياس الزاوية الموجبة التي يصنعها المستقيم مع الاتجاه الموجب لمحور السينات = ٥٤° فوث ميل المستقيم = ط ٥٤° = ١

وبالتالي نلاحظ أن ميل الخط المستقيم يتغير بتغير قياس الزاوية (م) كما يلي :

- * إذا كان ميل أب = ميل عد فإن النقط ٢ ، ب ، حتقع على استقامة واحدة.
 - * العلاقة بين المستقيمين المتوازيين والمتعامدين :

إذا كان : ل, ، ل, مستقيمين ميلاهما م, ، م, على الترتيب فإن :

أى أن المستقيمين المتوازيين ميلاهما متساويان ، والعكس صحيح.

$$1$$
 $U_{r} \perp U_{r} \iff a_{r} \cdot a_{r} = -1$ (a) $U_{r} \perp U_{r} \perp U_{r} \iff a_{r} \cdot a_{r} = -1$

أى أن احاصل ضرب ميلى مستقيمين متعامدين يساوى ١٠ ، والعكس صحيح.

فمثلًا إذا كان المستقيم ل، يمر بالنقطتين (٢ ، ٥) ، (٣- ، -١)

$$1 = \frac{1+0}{7+7} = \frac{0}{7} + \frac{1}{7} = 1$$
یکون میله م

، المستقيم لم يصنع زاوية موجبة مع الاتجاه الموجب لمحور السينات قياسها ١٣٥°

- * أي نقطتين مختلفتين في المستوى يمر بهما خط مستقيم واحد ، ومن أي نقطة خارج هذا المستقيم يمكن رسم مستقيم آخر وحيد يوازيه.
- * لتحديد معادلة أي خط مستقيم فإنه يلزمنا معرفة معلومتين عن هذا المستقيم كأن نعرف نقطتين عليه ، أو نقطة عليه وميله ، أو ما شابه ذلك كما سيتضح فيما يلى من شرح.

تعريف متجه اتجاه المستقيم

هو متجه غير صفري يمكن تمثيله بقطعة مستقيمة موجهة على خط مستقيم.

* ففي الشكل المقابل :

كل من سرض ، صع ، عس ، صس

هو متجه اتجاه للخط المستقيم ل

* إذا كان : ى # و ، ى // المستقيم ل فإن: ي متجه اتجاه المستقيم ل

* إذا كان : ي = (٩ ، ب) متجه اتجاه المستقيم.

فإن : كى متجه اتجاه لنفس المستقيم حيث ك = ع*

فمثلًا إذا كان: ي = (٣ ، ٤) متجه اتجاه مستقيم ما فإن كلًا من المتجهات (٦ ، ٨) ، (٣- ، -٤) ، (۲ ، ۱ ، ۷) ، (۲ ، ۱ ، ۱) ، ... متجه اتجاه لهذا المستقيم.

إذا كان : ى = (١ ، -) متجه اتجاه لمستقيم فإن ميل هذا المستقيم = - ، والعكس صحيح.

فَعثُلًا إذا كان : (٢ ، ٣-) متجه اتجاه لمستقيم فإن ميل هذا المستقيم = $\frac{7}{7}$ ، المستقيم الذي ميله = $\frac{3}{7}$ يكون المتجه ى = (٧ ، -٤) متجه اتجاه له.

/ الصور المختلفة لمعادلة الخط المستقيم

* إذا كان ل مستقيمًا يمر بالنقطة ن ، ي متجه اتجاه له ويفرض

نقطة له تقع على المستقيم ل وأن ق ، م هما المتجهان

الممثلان بالقطعتين المستقيمتين الموجهتين و ن ، و م على الترتيب

* يوجد عدد ك = ع بحيث ن ن = ى - ق = ك ى

ن ر ع و ب الله عن وتسمى هذه الصورة «المعادلة المتجهة للخط المستقيم»

حيث ك عدد حقيقى ويسمى بارامتر وعند كل قيمة للبارامتر ك يمكن إيجاد نقطة على المستقيم.

وتسمى هذه الصورة «المعادلات الوسيطية (البارامترية)»

$$\frac{-1}{100} = \frac{100 - 00}{100} : \frac{100 - 00}{100} = \frac{100 - 00}{100} : \frac{100 - 00}{100} = \frac{100 - 00}{100}$$

$$A = \frac{100 - 00}{100 - 00}$$

$$\frac{}{\rho} = (\rho)$$
 الميل (م) : ، ،

وتسمى هذه الصورة «المعادلة الكارتيزية»

. نلخص ما سبق فيما يلي : →

المستقيم ل الذي يمر بالنقطة 0 = (-0, -0, -0) والمتجه 0 = (1 - 0, -0) متجه اتجاه له تكون :

المعادلة المتجهة هي : $\sqrt{=\sqrt{}}$

$$+ 2 + 100 = -00 + 100$$

المعادلة الكارتيزية هى :
$$\frac{\alpha - \alpha}{\alpha - \alpha}$$
 = م

مثال ۱

أوجد الصور المختلفة لمعادلة الخط المستقيم الذى يمر بالنقطة

الحــل

* المعادلتان الوسيطيتان هما : س =
$$-7 + 2$$
 ، ص = $-7 + 2$

$$\frac{1}{\tau} = \frac{\Delta u + \gamma}{\tau} = \frac{\Delta u + \gamma}{\tau} = \frac{1}{\tau}$$
 المعادلة الكارتيزية هي :

. .

تنگواه (1, 7-) متجه اتجاه للمستقیم $\frac{1}{2}$ میل المستقیم $\frac{1}{2}$

حل أخر لإيجاد المعادلة الكارتيزية :

$$\frac{\gamma + \omega}{\gamma} = \frac{\gamma - \omega}{\gamma} : \frac{\gamma}{\gamma}$$

بحذف ك من المعادلتين الوسيطيتين

مثال آ

أوجد الصور المختلفة لمعادلة المستقيم الذي يمر بالنقطة ($- Y = \frac{3}{6}$) وميله

الحــل

.: المتجه ي = (٥ ، -٤) متجه اتجاه لهذا المستقيم.

- $\frac{\xi-}{0}=$ الميل م
- * المعادلة المتجهة هي : آب = (٢ ، ١) + ك (٥ ، -٤)

- * المعادلتان الوسيطيتان هما : س = ٢ + ٥ ك ، ص = ١ ٤ ك

حاول بنفسك

أوجد معادلة المستقيم الذي يمر بالنقطة (١، ٤) ويصنع مع الاتجاه الموجب لمحور السينات زاوية قياسها

$igg(-\omega_{\gamma} \circ \omega_{\gamma})$ معادلة المستقيم بمعلومية نقطتين عليه $oldsymbol{v}=(-\omega_{\gamma} \circ \omega_{\gamma})$ ، $oldsymbol{v}=(-\omega_{\gamma} \circ \omega_{\gamma})$

المتجه $\overline{v} = \overline{v}$ = \overline{v} متجه اتجاه للمستقيم.

- $(\overline{\upsilon} \overline{\upsilon})$ المعادلة المتجهة هي : المعادلة المتجهة المتجهة المتجهة المتجهة المتجهة المتجهة المتجهة المتح
- ، : الميل (م) = $\frac{\Delta v_{\gamma} \Delta v_{\gamma}}{-v_{\gamma} -v_{\gamma}}$ وبالتعويض عن الميل في الصورة الكارتيزية.
 - $\frac{\alpha \alpha_{\gamma} \alpha_{\gamma}}{\alpha_{\gamma} \alpha_{\gamma}} = \frac{\alpha_{\gamma} \alpha_{\gamma}}{\alpha_{\gamma} \alpha_{\gamma}} = \frac{\alpha_{\gamma} \alpha_{\gamma}}{\alpha_{\gamma} \alpha_{\gamma}}$: المعادلة الكارتيزية هي :

مثال ۳

أوجد الصور المختلفة لمعادلة المستقيم الذي يمر بالنقطتين : v = (1 - 1 - 1) ، v = (-1 - 1)

الحـل

$$1-=\frac{1}{1-}=\frac{1}{1$$

$$1-\frac{1}{2}$$
 المعادلة الكارتيزية هي : $\frac{20}{10}$

والدظات

- ١ معادلة المستقيم الذي يمر بنقطة الأصل و (٠،٠) هي :
- * المعادلة المتجهة : ﴿ = ك ى حيث ى متجه اتجاه له.
- * المعادلة الكارتيزية : ص = م ص حيث م ميل المستقيم.
- متجه اتجاه المستقيم الذي يمر بنقطة الأصل والنقطة (-0, 0) هو 0 = (-0, 0
 - ٣ المستقيم الذي يوازي محور السينات ويمر بالنقطة (س، ، ص،) يكون المتجه

معادلته الكارتيزية:
$$\frac{\omega - \omega_1}{\omega - \omega_1} = \frac{1}{1}$$
 الى أن 1 ص = ω_1

٤ المستقيم الذي يوازي محور الصادات ويمر بالنقطة (س، ، ص،)

، معادلته الكارتيزية :
$$\frac{\alpha - \alpha_0}{-\alpha_0} = \frac{1}{1}$$
 (غير معرف) أن أن أب = -0,

- معادلة محور السينات هي : $ص = \cdot$ أو $\sqrt{} = b$
- معادلة محور الصادات هي : (-٠ = ٠ أو (٠ ، ١)

مثال ٤

أوجد الصورة المتجهة والكارتيزية للخط المستقيم الذي يمر بنقطة الأصل وبالنقطة v = (-7) ، ه)

الحل

- .. المتجه ي = (-۳ ، ه) متجه اتجاه لهذا المستقيم
- : المستقيم يمر بنقطة الأصل.
 - $\frac{0-}{7} = \frac{0}{7}$ ، ميل المستقيم

- (o, r-) e= ...
- .: المعادلة المتجهة هي : v = ك ى
- ، المعادلة الكارتيزية هي : ص = م س
- .: ٢ص + ٥ -س = ٠

.: ص = -

متجه اتجاه العمودي على المستقيم

- - * اذا كان : $\sqrt{r} = (1, -1)$ عموديًا على خط مستقيم فإن أيًا من عائلة المتجهات التى على الصورة (-r, -1) حيث (-r, -1) حيث (-r, -1) حيث (-r, -1) حيث (-r, -1)
 - فمثلًا إذا كان: ي = (٤ ، ٥) متجه اتجاه مستقيم فإن متجه اتجاه العمودي عليه هو:

مثال ٥

أوجد الصور المختلفة لمعادلة المستقيم ل الذي يمر بالنقطة (-7 + 7) وعمودي على المتجه (-1 + 7)

الحـل

- ن. ي = (٤ ، -١) متجه اتجاه للمستقيم ل
- ت: س = (۱ ، ٤) عمودي على المستقيم ل
- (1-, 2) 0+ (7, 4-)= ...
- .. المعادلة المتجهة هي : V = 0 + ك ي

ای ان (س ، ص) = (۲ ، ۲) + ك (۱ ، ۱-)

- ، المعادلتان الوسيطيتان هما : ص = ٢ + ٤ ك ، ص = ٢ ك
 - $\frac{1}{2} = \frac{7 \infty}{7 + 1}$ المعادلة الكارتيزية هي :

الصورة العامة هي : -س + ٤ ص - ٥ = ٠.

مالدظة

إذا كانت المعادلة العامة للمستقيم هي: ١ - س + - ص + ح = • فإن :

- * المتجه $\sqrt{r} = (1, -1) = ($ معامل ، معامل ص) هو متجه عمودى على المستقيم.
 - * المتجه ي = (- ، ٩) هو متجه اتجاه لهذا المستقيم.

فَمِثْكُرُ المستقيم الذي معادلته : ٢ -س + ٣ ص + ٧ = ٠ يكون :

المتجه به = (۲ ، ۲) هو متجه عمودي عليه ، المتجه ي = (۲ ، ۲۰) هو متجه اتجاه له.

مثال 7 ہ

 $\cdot = 1$ من $+ \infty$ $- \infty$ $+ \infty$ أوجد الصورة المتجهة لمعادلة المستقيم $+ \infty$

الحــل

- ∴ المستقیم: ٣ س ۲ ص + ۱۲ = ٠
- .: المتجه ي = (۲ ، ۲) متجه اتجاه له.
- : المتجه به = (۳ ، ۲۰) متجه عمودي عليه.

وللحصول على الصورة المتجهة لمعادلة هذا المستقيم نبحث عن أى نقطة يمر بها وذلك بأن نعطى

- (أو ص) أي قيمة ونوجد قيمة ص (أو - u) المناظرة.

فبوضع س = ، نجد أن : −٢ ص + ١٢ = ٠

.. معادلته المتجهة هي : ب = (٠ ، ٢) + ك (٢ ، ٢) ..

.: المستقيم يمر بالنقطة (٠،٠)

حاول بنفسك

أوجد المعادلة المتجهة والكارتيزية للمستقيم ل الذي عر بالنقطة (-٤ ، ١) والمتجه (-٣ ، ٦) عمودي عليه.

معادلة المستقيم بمعلومية ميله (م) وطول الجزء المقطوع من محور الصادات

· · المستقيم ميله (م) ويقطع محور الصادات في النقطة (· ، ح)

أي أنه يقطع جزءًا من محور الصادات طوله القيمة المطلقة للعدد ح

وبالتعويض في الصورة الكارتيزية نجد أن: $\frac{\omega - - \epsilon}{\epsilon} = \alpha$

ای ان اص=م-س+ح

معادلة المستقيم بمعلومية الجزءين المقطوعين من محوري الإحداثيات

نفرض أن المستقيم يقطع محور السينات في النقطة (٢ ، ٠) ، محور الصادات في النقطة (٠ ، ٠)

وبالتعويض في الصورة الكارتيزية :

$$1 = - - - - + 9 - \frac{9}{100}$$

$$1 = \frac{-0}{100} + \frac{0}{100} = 1$$

$$1 = \frac{-0}{100} + \frac{0}{100} = 1$$

مثال ۷

أوجد المعادلة العامة لكل مما يأتى:

- المستقيم ل, الذي ميله ٣ ويقطع من الجزء السالب لمحور الصادات جزءًا طوله ٧ وحدات طولية.
 - الستقيم ل، الذي يقطع من الجزء الموجب لمحور السينات ٤ وحدات ويقطع من الجزء السالب لمحور الصادات ٣ وحدات.

الحــل

$$V-\psi=\pi=0$$
 معادلة المستقيم ل، هي: $\omega=\pi-\psi+\infty$

$$1 = \frac{\omega}{7} + \frac{\omega}{2}$$
 .: $1 = \frac{\omega}{9} + \frac{\omega}{1} + \frac{\omega}{1} = 1$ أي $7 = \omega - 3$ معادلة المستقيم له هي : $\frac{1}{9} + \frac{\omega}{1} = 1$

حاول بنفسك

مالدظات

* المعادلة: ٢ - س + - ص + ح = . حيث ٢ ، - لا يساويان الصفر معًا

تسمى بالصورة العامة لمعادلة الخط المستقيم.

وهي معادلة مستقيم موازي لمحور السينات ويمر بالنقطة (٠، -ح)

وهي معادلة مستقيم موازي لمحور الصادات ويمر بالنقطة (-ح ، .)

وهي معادلة مستقيم يمر بنقطة الأصل.

- * لإيجاد نقطة تقاطع المستقيم مع محور السينات نضع ص = .
- * لإيجاد نقطة تقاطع المستقيم مع محور الصادات نضع

مثال ۸

أوجد قياس الزاوية الموجبة التي يصنعها الخط المستقيم: $\Upsilon - U + \Upsilon = V + \infty$ مع الاتجاه الموجب لمحور السينات ثم أوجد إحداثيات نقطتي تقاطعه مع محوري الإحداثيات.

الحل

- ٠.٠ الميل السيالب.
- ، ٠٠٠ قياس الزاوية الحادة التي ظلها ٣٠ هو ١٩ ٥٥ ،
- ولإيجاد نقطة التقاطع مع محور الصادات نضع ب = ٠
 - .. ص = -۲
- ولإيجاد نقطة التقاطع مع محور السينات نضع ص = ٠
 - ٠٠. س = -٢

- ·. & (L &) = . 10° 11 6° = 13 771°
 - .. ۳ × ۰ + ۲ ص + ۲ = ۰

.. طاه = ٢-

·. الزاوية منفرجة.

- .. نقطة التقاطع هي (٠٠ ٢-)
 - ·= 7+ · × 7+ 7:
- .: نقطة التقاطع هي (٢-١،٠)

حـل اخـر لإيجاد نقطتي التقاطع مع محوري الإحداثيات :

٠: ٢ - س + ٢ ص + ٢ = ٠

.. ٢ - س + ٢ ص = - ٢ بالقسمة على - ٦

- $1 = \frac{\infty}{T -} + \frac{\infty}{T -} :$
- · . المستقيم يقطع محور السينات في النقطة (- ٢ ، ٠) ويقطع محور الصادات في النقطة (٠ ، -٣)

مثال ۹

أثبت أن النقط : 1 = (3 ، -7) ، - = (7 ، 7) ، ح = (٥ ، -٤) تقع على استقامة واحدة.

الحل

$$1-\frac{\sqrt{1+2}}{1+2}=\frac{$$

.. النقط ٢ ، ب ، ح تقع على استقامة واحدة.

حل اخر: ن معادلة أحد هى :
$$\frac{00+7}{10-3} = \frac{-3+7}{0-3} = -1$$
 أى $\frac{00}{10-3} = -1$

ن ب∃ احد

- ، : · النقطة ب = (-٦ ، ٧) تحقق المعادلة.
 - .: ١،٠ ، ح تقع على استقامة واحدة.

مثال ۱۰

أوجد المعادلة العامة لكل من المستقيمات الآتية:

 $\frac{\tau}{\xi}$ المستقيم ل، الذي يمر بالنقطة (τ ، -۱) وميله = $-\frac{\tau}{\xi}$

١٢٠ المستقيم لم الذي يمر بالنقطة (٤ ، ٣٧٠) ويصنع مع الاتجاه الموجب لمحور السينات زاوية موجبة قياسها ١٢٠°

المستقيم لي الذي يمر بالنقطة (-۲ ، -٥) والمتجه ي = (٣ ، ١) متجه اتجاه له.

المستقيم ل₁ الذي يمر بالنقطة (-٣ ، ٧) ويوازي محور السينات.

المستقيم ل، الذي يمر بالنقطتين (٤ ، -٢) ، (٥ ، ٣)

المستقیم لی الذی یمر بالنقطة (۱ ، ۲) موازیًا المستقیم : ۲ - س + ۳ ص - ٦ = .

٨ المستقيم لم الذي يمر بالنقطة (٢ ، ٣) عموديًا على المستقيم الذي ميله ◊

$$\frac{\nabla}{1}$$
 معادلة المستقيم ل هي: $\frac{\nabla}{1} = -\frac{1}{3} = -\frac{1}{3}$

۲ : ميل المستقيم ل الله = ط ۱۲۰° = − √۳

$$\overline{TV} \circ = \sqrt{TV} + \infty$$
 معادلة المستقيم ل من $\frac{\nabla V}{\partial t} = -\sqrt{T}$

رب ميل المستقيم ل_ا = الم

$$\frac{1}{T} = \frac{\omega + 0}{T + \omega} : \frac{\omega}{\omega + 0} = \frac{1}{T}$$

المتجه ي = (٥ ، ١) متجه اتجاه للمستقيم ل

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}$$

معادلة المستقيم ل هي : ص = ٧

$$o = \frac{Y + Y}{1 - o} = \sqrt{1 - \frac{Y + Y}{1 - o}}$$
 میل المستقیم ل

معادلة المستقيم ل. هي :
$$\frac{\omega + \gamma}{\omega - 3} = 0$$

$$\frac{Y-}{\pi}$$
 = ميل المستقيم المعطى $\frac{Y-}{\pi}$

معادلته هی :
$$\frac{\infty - Y}{Y} = \frac{Y}{Y}$$
 معادلته هی :

معادلته هی :
$$\frac{\omega - \gamma}{-\gamma} = \frac{-\gamma}{0}$$

ای اس-۳ص-۱۳

 $\frac{1}{0} = \frac{1}{0}$...

ای اس-ه ص-۱٤ = ٠

ای اص - ۷ = ۰

ای اه س - ص - ۲۲ = ٠

 $\frac{Y_{-}}{w} = \frac{1}{w}$ ميل المستقيم المطلوب.

 $\frac{Y-}{2}$ = ميل المستقيم المطلوب = $\frac{Y-}{2}$

ای ۲ -س + ه ص - ۱۹ = .

٩ - ح مثلث رء وسه النقط: ١ = (١٠ ، ٥) ، ب = (٤ ، ٢٠) ، ح = (٠ ، ٣٠) أوجد معادلة المستقيم المار بالرأس ٢ عموديًا على بح

$$\frac{\vee}{\Upsilon}$$
 = ميل المستقيم ميل

$$\frac{\nabla}{2} \cdot \frac{\nabla}{2} \cdot \frac{\nabla$$

مثال ۱۲

أوجد معادلة المستقيم المار بالنقطة (١ ، ٣) وميله سالب والذي يصنع مع محوري الإحداثيات مثلثًا مساحته ٦ وحدات مربعة.

 $1 = \frac{r}{r} + \frac{1}{r}$...

نفرض أن المستقيم يقطع محور السينات في (١٠٠)

$$1 = \frac{\Delta}{1} + \frac{\Delta}{1} = \frac{\Delta}{1} + \frac{\Delta}{1} = 1$$

$$7 = - p \frac{1}{7} :$$

بالتعويض من (٢) في (١) :

وبالتعويض في (٢):

$$1/7 = 7/7 - 1/7 : 1/7 = (1/7 - 1/7) 1 : 1/$$

$$\cdot = (7 - 3) + 3 = \cdot$$

مثال ۱۳

· = 17 + 17 - 7 7 ...

.: ١ = ٢ ومنها - = ٢

أوجد مسقط النقطة ٢ (٥ ، ٥) على المستقيم ل: ٢ - س + ص = ٥

ثم أوجد صورة النقطة † بالانعكاس في نفس المستقيم.

الحل

بفرض نقطة - هي مسقط النقطة ؟ على المستقيم ل

$$\frac{1}{4} = \frac{1}{4}$$
 \therefore

$$\frac{1}{Y} = \frac{0 - 0}{0 - 0}$$
 as $\frac{1}{Y} = \frac{1}{Y}$...

أى أن : مسقط النقطة ٢ على المستقيم ٢ -س + ص = ٥ هي النقطة - = (٢ ، -١)

لإيجاد ٢ (ح ، ٤) صورة ٢ (٥ ، ٠) بالانعكاس في المستقيم ل

$$(1-, T) = \left(\frac{5+\cdot}{7}, \frac{5+\circ}{7}\right) :$$

وللدظات

- ١ ميل المستقيم الذي يصنع مع محوري الإحداثيات مثلثًا متساوى الساقين يساوي ١ أو ١٠
 - مساحة المثلث الذي يصنعه المستقيم $\frac{-0}{1} + \frac{0}{1} = 1$ مع محوري الإحداثيات يساوي $\frac{1}{1} + \frac{1}{1} \times \frac{1}{1} = 1$

على معادلة الخط المستقيم

🕹 مستویات علیا

ه تطبيق

രക്കം

ه تذکر

🛄 من أسئلة الكتاب المدرسي

The sale based to	Backer Francis	ن متعدد	ولًا / أسئلة الاختيار م
			اختر الإجابة الصحيحة مر
		-۲) ، ب (٥،٦) فإن ه	The second secon
١(۵) .	(ج) ٤	(·) 3	1-(1)
	+ ٥ = ٠ يكون ميله = ٠٠٠٠٠٠	لته العامة: ٤ - س + ٣ ص	(۱) المستقيم الذي معاد
\frac{\xi}{\sigma} \left(\(\triangle \)	<u>₹</u> (÷)	<u>ئ</u> (ب)	£ (1)
عليه =	كون ميل المستقيم العمودى	طتين (٤ ، -٢) ، (٥ ، ٣) يا	(٣) المستقيم المار بالنقم
<u>, (7)</u>	०− (⇒)	(ب)	0(1)
		يم: (۱+۴۲) - س - ۲۹ ه	
$\frac{\lambda}{\sqrt{1-(\tau)}}$	° (÷)	(ب) –(\(1)
السينات زاوية ظلها ٥٧٠٠	نع مع الاتجاه الموجب لمحور	١ - ٤ ص + ٥ = ٠ يص	(ه) إذا كان المستقيم:
			فإن : ٢ =
۲ (۵)	(÷)	(ب) –۲	17-(1).
دة فإن : ص =	-٤) تقع على استقامة واجد	١ ، ١) ، (٥ ، ٣) ، (٨ ، ١	(٦) إذا كانت النقط: (
		(ب) ه	
r - ∪- f =) ، (٠ ، ٢) والمستقيم ص	متقيم المار بالنقطتين (٣ ، ٠	(٧) 🛄 إذا توازي المس
a - Stan Barrier	والموالية المراكبة والأ		
		γ (ψ)	
+ ه = ۰ متعامدین	= ، ، ، احس + ۳ ص	قيمان : ٣ - س - ٢ ص + ٧	🍐 🔝 إذا كان المستن
			فإن : ا =
1-(1)	Y− (÷)	(ب) ۲	١(1)
ب تمامها <u>ع</u> هو	ور السينات زاوية موجبة جي	يصنع مع الاتجاه الموجب لمح	ميل المستقيم الذي
(2)	<u>₹</u> (÷)	(ب)	<u>r</u> (1)
سينات يكون	مع الاتجاه الموجب لمحور الس	$rac{\pi}{2}$ نع زاوية موجبة قياسها	🕴 (۱۰) المستقيم الذي يص
	and the state of the sale		متجه اتجاهه = …
(/ (/)(2)	(/ , /-) (÷)	(• ، ١) (•)	() (· ·) (1)

```
الستقیم الذی معادلته ص = \frac{6}{5} س + ۷ یکون متجه اتجاهه = ..............
                                          (٥،٤) (ب) (٤،٥) (١)
     (£-(0)(1) (£(0-)(2)
                           (١٢) المستقيم: ١ - س + ب ص + ح = ، له متجه اتجاه هو .....
                                        (-- , 1) (-, )
                         (+ (-) (-)
     (P- ( -) ( s)
                            👌 (۱۳) ميل المستقيم المار بالنقطتين (۴ ، ۴) ، (ب ، ب ) هو .....
                                                                     -- Tr(1)
                     -+ (=)
                                         -- P(-)
          -P(1)
(٤٤) إذا كان : ي = (٢ ، -٥) متجه اتجاه لمستقيم ما فإن جميع المتجهات التالية تكون متجهات اتجاه لنفس
                                                  المستقيم ما عدا المتجه .....
   (۲, ۰, ۱-) (۱) (۰, ۲-) (۱) (۲, ۰, ۰) (۱) (۱) (۱) (۱)
(١٥) 🛄 إذا كان : ى = (٢ ، ١) متجه اتجاه للمستقيم فإن جميع المتجهات التالية عمودية على المستقيم
                                               (1-i, 1)(-i, 1)(1)
     (\div) (1) (\div)
                                   👌 👣 إذا كان ميل المستقيم = 🔫 فإن متجه اتجاهه يكون .....
                                                                    (1) (7 : -7)
                       · ( ( , T-) ( )
                                                                     (E- (T) (=)
                 (د) كل ما سبق صحيح.
       🛶 🖽 إذا كان : (٦ ، ٤) ، (٣ ، م) متجهى اتجاه لمستقيمين متعامدين فإن : م = .....
                                                                          4 (i)
                                                (ب)
           4- (2)
                             \frac{2}{9} (\Rightarrow)
                     🔥 🚯 متجه اتجاه المستقيم العمودي على محور الصادات يمكن أن يكون ..........
      (1-\cdot 1)(1) \qquad (1\cdot 1)(2) \qquad (1\cdot 1)(2) \qquad (1\cdot 1)(2)
                                 (١٩) كل من العلاقات الآتية تمثل خطًا مستقيمًا ما عدا .....
    \sqrt{-1} = \sqrt{-1}
                                                (۱) ص = √ه س (ب) س = ه
                            (٠٠) معادلة المستقيم المار بالنقطتين (٤ ، ٠) ، (٠ ، ٣) هي .....
                                                           ١٢ = ص ٤ + س ٢ (١)
                 (ب) ع س + ۳ ص = ۲٥
                                                             (ج) ٢ س - ٤ ص = ٠
                (د) ٢ ص - ٤ -س = -٧
               (١١) معادلة المستقيم الذي يمر بالنقطة (٢ ، -٣) ويوازي محور السينات هي ...........
    \cdot = \mathsf{r} - \mathsf{o}(\mathsf{s}) \qquad \cdot = \mathsf{r} - \mathsf{o}(\mathsf{s}) \qquad \cdot = \mathsf{r} + \mathsf{o}(\mathsf{s}) \qquad \cdot = \mathsf{r} + \mathsf{o}(\mathsf{s})
     💠 🕥 🛄 المعادلة الكارتيزية للمستقيم الذي يمر بالنقطة (-٢ ، ٧) ويوازي محور الصادات هي ........
                          V = \omega = (+) Y = \omega = (+) Y = \omega
```

Y-= -Y

ه الموجب لمحور السينات زاوية موجبة قياسها ٤٥° ويقطع	(٣) 🛄 معادلة المستقيم الذي يصنع مع الاتجاء
	جزءًا موجبًا من محور الصادات مقداره ٥ و٠
$\circ + \smile \frac{1}{Y} = \smile (\smile)$	(۱) ص = س – ه
(د) ص = س + ه	$(=)$ $\alpha_i = \frac{1}{\sqrt{Y}} = 0$
.يًا على المستقيم ص = V هي	(٤) معادلة المستقيم المار بالنقطة (٣ ، -٢) عمود
$V = -V$ (c) $\Delta U = V$	
من المحورين السيني والصادى جزأين موجبين مقداراهما	
affining the of the second of the	۲ ، ۲ على الترتيب هي
(ب) ٣ -س + ٢ ص = ١	(۱) ٢ - س + ٢ ص = ٢
(د) ٢ - س + ٢ ص = ١	7 = 00 + 7 -0 + 7 (-)
-٤ ، ٣) ومتجه الاتجاه له (٢ ، ٥) هي	(٦) المعادلة المتجهة للمستقيم الذي يمر بالنقطة (
(ب) ر = (-٤ ، ۲) + ك (٢ ، ٥)	(で、と-) e) + (o, Y) = v(1)
(E-, T) e+ (0, T) = V(1)	(+) · (+) + (+ · ٤-) = · (+)
	(۱۷) 🖽 المعادلة المتجهة للمستقيم الذي يمر بنقط
(1, 1) e= (4)	(1) = V(1)
(1··) e+(Y·1) = V(1)	(··) = (··) = (·)
نطة الأصل ويوازى المستقيم الذي معادلته:	. (٨) الصيغة العامة لمعادلة الخط المستقيم المار بنة
The latest transfer to the second	√ = (۲ ، -0) + ك (۳ ، ٤) هى
(ب) ٤ - ٠٠ - ٣ صفر	(۱) ۲ س + ه = صفر
(د) ۲ - س - ٤ صفر	(ج) ه - <i>س</i> - ۲ ص = صفر
the property of the second of the	(٩) المعادلة المتجهة لمحور السينات هي
(1,1)@+(·,1)=V(·)	(···) =+(··)= v(1)
$(1 \cdot \cdot) \mathscr{Q} = \mathcal{J}(3)$	(· (·)) = \(\sigma \)
طة (۳ ، ۵) ويوازي محور السينات هي	(٣٠) 🖽 المعادلة المتجهة للمستقيم الذي يمر بالنق
(い・・) と + (0・ア) = シ(シ)	(0, T) = J(1)
(· · 1) @= \(()	(· · 1) & + (o i r) = v (+)
ار بالنقطتين (٥ ، ٠) ، (٠ ، ٢) ما عدا المعادلة	(٣) جميع المعادلات الآتية تمثل معادلة المستقيم الم
(+) (+ (· ·) = (· ·)	(Y-10) 2+(10) = V(1)
$(\xi(1) -) e + (Y(1) = F(1))$	(0,(1),(1+(1,1))=(1,1)

و (٣٣) المعادلتان البارامتريتان للمستقيم الذي يصنع مع الاتجاه الموجب لمحور السينات زاوية موجبة قياسها ٥٤ ويمر بالنقطة (٣٠ ، -٥) هما

الستقيم U : -U = V - Y ه م U = -V + A ه يمر بالنقطة (rs)

$$(1, 1-)(1) \qquad (1-1, 1-)(2) \qquad (1-1, 1-)(1)$$

(٣٥) المستقيم الذي معادلته المتجهة هي $\sqrt{} = (7 \ , -1) + (9 \ , -0)$ يكون متجه اتجاه العمودي عليه =

(٦ ، ٢) متوازيين المستقيمان: ٤ - س + - ص + ٩ = ، ، آ = (١ ، ٥) + ك (٦ ، ٢) متوازيين

$$\frac{r}{\xi}(1) \qquad \frac{\xi}{\tau}(2) \qquad \frac{\xi}{\tau}(3)$$

(٣٧) إذا مر مستقيم بالنقطة (٢ ، ١) وكان المتجه به = (١ ، ٣) عموديًا عليه فإن معادلة المستقيم

(٣٩) المستقيم : م = (١ ، ٤) + ك (٠ ، ١) يوازى

$$Y = \infty = \infty$$
 (c) $| \text{lurifina} - \infty = Y$

(2) \square مساحة المثلث المحدد بمحور السينات ومحور الصادات والمستقيم \uppi \uppha \uppha

•				
٢ ك ، ص = ٣ - ك والتي إحداثيها السيني = ٣	، المستقيم : -·· + /	(٤٢) النقطة التي تقع على		
We will have been the and we will		هی		
(+, r)(a) (-, r)(÷)	(١-, ٢) (٠)	(1,7)(1)		
قيم: ٢ - س + ٢ ص - ٦ = ٠ هو وحدة طول.				
7 (2)				
مى س = ٦ + ١ ك ، ص = ١ - ١ ك				
		فإن ميل هذا المستة		
$\frac{\lambda}{\lambda^{-}} (\tau)$ $\frac{\lambda}{\lambda^{-}} (\dot{\tau})$	(ب) ۲	(1) /		
<u>ن</u> = ۱ یکونان	$\frac{\Delta}{1} + \frac{\Delta}{1} + \frac{\Delta}{1}$	(ea) المستقيمان م +		
(ب) متقاطعان ومتعامدان.		(1) متوازیان.		
 أ) متوازيان. (ب) متقاطعان ومتعامدان. (د) يتقاطعان في النقطة (۱۰،۰) 				
دى على المستقيم - + ٢ ص = ١١ هي				
(ب) س ۳ - ۵۰ - ۱۲ = ۰	= 17	(۱) س - ۳ ص +		
$\cdot = 17 - \omega - 7 - \omega - (\psi)$ $\cdot = 17 - \omega - 7 - \omega - (\psi)$ $\cdot = 18 + \omega - \omega + 31 = \cdot$				
اذا كانت المعادلة البارامترية للمستقيم $1 - 2 = 3 - 1$ ، $0 = 3$				
· · · · · · · · · · · · · · · · · · ·	لعمودي على أب يساوي	فإن ميل المستقيم ا		
(ج) ۱ (د) غیر معرف.	(ب) صفر.	$\frac{1}{\xi}$ - (1)		
طرا متوازى الأضلاع ٢ - حرى هما - س + ٣ ص = ٤				
يجب أن يكون	= ٧ فإن الشكل أ بحر	، ٦ - س - ٢ ص		
(ج) رباعی دائری. (د) معین.	(ب) مربع.	(1) مستطيل.		
(ع) إذا كان أو متوسط في △ اب ح الذي فيه : ١ (٢ ، ٢) ، ب (١ ، ١٠) ، ح (٢ ، ٢) .				
ازیًا 7۶ هیا	م المار بالنقطة (١ ، ١) مو	فإن معادلة المستقي		
(ب) ٢ - ٠٠ - ١١ - ٠٠	· =·V - ¿	(۱) ۲ س - ۹ ص		
(د) ۲ -س + ۹ ص + ۷ = ۰	. = 11 - 6	(ج) ٢ - ١ + ٩ ص		
، ب (٤ ، ٢) هي	١- ، ٢) ١ حيث ١ (١- ، ١٠)	(٥٠) معادلة محور تماثل		
(ب) س + ۲ ص = ٥		(۱) س + ۲ ص		
the state of the s				

ون ا كان : ١ (١ ، -٢) ، - (٢ ، -١) فإن معادلة المستقيم الذي يقسم ١٠٠٠ بنسبة ٣ : ١ من الداخل على التعامد هي

فإن معادلة القطر الآخر هي

(٥٤) إذا كان المستقيم : ١ - ٠ + - ص = ١٢ يقطع جزءًا موجبًا من محور السينات طوله ٦ وحدات ، وجزءًا سالبًا من محور الصادات طوله ٤ وحدات فإن: ٢ + ٢ - =

• (00) معادلة الخط المستقيم الذي يقع على بعدين متساويين من المستقيمين ص = - ٢ ، ص = ١٠ هیه

$$17-=0$$
 (2) (3) (4) (4) (5) (5) (6) (7)

(٥٦) معادلة الخط المستقيم المار بالنقطة حـ (٣ ، ٤) ويقطع الجزئين الموجبين لمحوري الإحداثيات السيني والصادي في النقطتين ٢ ، ب على الترتيب بحيث ٢ ح : حب = ٢ : ٣ هي

(٥٧) مساحة المثلث المحدد بالمستقيم المار بالنقطة (Y , Y) وميله = $\frac{1}{Y}$ ومحورى الإحداثيات تساوى وحدة مربعة.

🍦 (٨٥) معادلة الخط المستقيم المار بالنقطة (٤ ، ٣) ويقطع من محورى الإحداثيات جزءين مجموعهما -١

$$1 = \frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}}, \quad 1 = \frac{1}$$

$$1 = \frac{\omega}{1} + \frac{\omega}{1}, \quad 1 = \frac{\omega}{1} + \frac{\omega}{$$

ف الشكل المقابل: في الشكل المقابل:

(٦٠) في الشكل المقابل:

$$1 = \frac{\omega}{Y} + \frac{\omega}{Y} (1)$$

$$1 = \frac{\omega}{Y} - \frac{\omega}{Y} (\varphi)$$

$$1-=\frac{\infty}{Y}-\frac{\infty}{Y}(\Rightarrow)$$

$$1-=\frac{\omega}{Y}+\frac{\omega}{Y}(z)$$

(١١) في الشكل المقابل:

إذا كان مساحة
$$\Delta 1 - = 9$$
 وحدة مربعة

هی

(١٢) في الشكل المقابل:

معادلة أب هي

(ب) ص = س

ف الشكل المقابل: ف الشكل المقابل:

$$\omega = \frac{4}{\nu} - \omega$$

: ف الشكل المقابل ف (١٤)

ثلاث داوئر متطابقة متماسة مثنى مثنى إذا كانت :

(١٥) في الشكل المقابل:

دائرتان متطابقتان فإن

معادلة المستقيم ل هي .

(١٦) في الشكل المقابل:

دائرة مركزها (٧ ، ٨) ، المستقيم أب مماس لها عند النقطة ١

فإن معادلة المستقيم أب هي ...

(١٧) في الشكل المقابل:

مساحة الشكل المظلل = وحدة مزيعة.

(١٨) في الشكل المقابل:

فإن معادلة أو هي

(٦٩) في الشكل المقابل:

فإن معادلة و 5 هي

· (v.) في الشكل المقابل :

$$- = 17 + \infty - 7$$
 إذا كان معادلة المستقيم ل, هي $- 0 - 7 + 10 = -10$

، معادلة المستقيم لي هي س - ص + ٤ = ٠

فإن مساحة الشكل الرباعي المظلل = وحدة مربعة.

(٧١) في الشكل المقابل:

، م ٢ = ٢ م ب فإن معادلة مريم هي

: (١٢) في الشكل المقابل :

إذا كان: ١٠ حو ، حوم مدمريعان متطابقان ، ه (٠ ، ١)

: الشكل المقابل في (٧٣)

إذا كان: ١ - حرى ، وحم ١٠ مستطيلان متطابقان

وكان ٢ (٨ ، ١) فإن معادلة المستقيم ١٨٥ هي

و (٧٤) في الشكل المقابل:

ثانيا الأسئلة المقالية

🔝 🔝 أوجد ميل الخط المستقيم المار بكل زوج من النقط التالية ، وبين أيًا من هذه المستقيمات متوازيًا وأيها متعامد:

- - ، = ٦ ص + ب ٢ ،

(١) أوجد قيمة - التي تجعل ل، ، ل، متوازيين.

- (١) أوجد ميل المستقيم ل
- (٣) أوجد قيمة ب التي تجعل ل، ، ل، متعامدين.

av . Y . 4- . 7 .

- (٤) إذا كان المستقيم ل, يمر بالنقطة (١ ، ٣) فأوجد قيمة : ٢
- الأصل ، ثم أوجد إحداثيات نقاط التقاطع مع محورى الإحداثيات (إن وجدت):
 - (۱) س + ۳ ص = ،
 - (٤) ص ٥ = ٠

- ·= T + T(1)
- 17=0+7-7(4)
- وجد الصور المختلفة لمعادلة المستقيم الذي :
- (١) يمر بالنقطة ٥ (٣ ، ١٠) والمتجه ي = (٣ ، ٥) متجه اتجاه له.
- (٢) يمر بالنقطة (٥ ، -١) ويصنع مع الاتجاه الموجب لمحور السينات زاوية موجبة قياسها ١٣٥°
 - (٢) يمر بالنقطتين (٢ ، -٣) ، (٥ ، ١)
 - $\frac{1}{\gamma}$ = میله (۱ ، ۲) میله و (٤)
 - (٥) 🛄 يمر بالنقطة ت (٢ ، -٣) والمتجه به = (-١ ، ٢) متجه اتجاه عمودي عليه.
 - (١ ، ٢) ويكون عموديًا على المستقيم ر = (٢ ، ٥) + ك (-٢ ، ١)
 - (٧) يمر بالنقطة ق (٣, ، ٥) عموديًا على المتجه أب حيث أ = (٣ ، -٣) ، = (٥ ، ٤)
 - $(\Upsilon \iota \Upsilon) = \widehat{\mathbf{f}}$ where (λ)
 - وجد المعادلة العامة للمستقيم الذي:
 - (۱) □ يمر بالنقطة (٣ ، -٤) ويوازى المستقيم : + ٢ ص ٧ = .
- (٢) يمر بالنقطة و (-١ ، -٣) والمتجه أب حيث أ = (-٤ ، ٣) ، -= (-٥ ، -٢) متجه اتجاه له.
- (٣) يقطع طولًا قدره ٤ وحدات من الجزء السالب لمحور الصادات والمتجه ى = (٧ ، -٣) متجه اتجاه له.
 - $\frac{1}{\sqrt{1000}}$ وحدات من الجزء الموجب لمحور السينات وميله = $-\frac{1}{\sqrt{1000}}$
- (ه) يقطع طولًا قدره ٢ وحدة من الجزء السالب لمحور السينات ويقطع طولًا قدره ٤ وحدات من الجزء الموجب لمحور الصادات.

- $(\frac{\pi}{r})$ يمر بالنقطة (-7) (-7) ويصنع مع الاتجاه الموجب لمحور السينات زاوية موجبة قياسها $(\frac{\pi}{r})$
 - (v) يمر بالنقطة (r ، -0) عموديًا على المستقيم : -0 + 7 0
 - (A) يمر بالنقطة (٣ ، ٥) عموديًا على المستقيم أب حيث : ١ = (٣ ، ٣-) ، ب = (٥ ، ٤)
 - (١ ، ٢) = ، (٦ ، ٣-) = ٩ حيث ٩ = (-٣ ، ٦) ، = (١ ، ١)
- أوجد معادلة المستقيم المار بالنقطة (٢ ، -٣) وميله = ٢ وإذا كان هذا المستقيم يمر بالنقطتين (٢ ، ٧) ، (٥ ، -) فأوجد قيمتى : ٢ ، (٥ ، -) فأوجد قيمتى : ٢ ، (٥ ، -)
- إلى أوجد معادلة المستقيم الذي ميله م ، والمار بالنقطة (٢ ، ٠) ما هي نقطة تقاطع هذا المستقيم مع محور الصادات؟
 - أثبت أن المستقيم المار بالنقطتين : 9 = (3 1) ، = (7 7) يوازى المستقيم المار بالنقطتين $\sqrt{7}$ أثبت أن المستقيم المار بالنقطتين : 9 = (7 1) ثم أوجد معادلة كل من المستقيمين.
 - المتجهة للخط المستقيم أب ، شم أثبت أن النقط ؟ ، ب ح رح ٢ ، ٢) ثلاث نقط في المستوى ، فأوجد المعادلة المتجهة للخط المستقيم أب ، ثم أثبت أن النقط ؟ ، ب ، ح تقع على استقامة واحدة.
 - أوجد طولى الجزءين المقطوعين من المحورين بواسطة المستقيم: ٢ -س ٣ ص + ١٢ = .
 - 🚺 أوجد معادلتي المستقيمين اللذين يمران بالنقطة (٣٠ ، ٢) ويوازيان المحورين.
 - أوجد معادلة المستقيم الذي يمر بالنقطة (Y Y) ويصنع زاوية موجبة جيب تمامها يساوى $\frac{-\sqrt{Y}}{Y}$ مع الاتجاه الموجب لمحور السينات.
 - إذا كانت: 9 = (-3, 3) ، = (-1, -7) ، حتقسم 9 1 بنسبة 1 : 7 من الداخل فأوجد معادلة المستقيم المار بالنقطة حوالنقطة (7, 7)
 - الذي يمر بنقطة الذي يمر بنقطة الذي يمر بنقطة الذي يمر بنقطة الله الله الذي يمر بنقطة الذي يمر بنقطة الذي يمر بنقطة الذي يمر بنقطة الديم المستقيم الداخل بنسبة ٢: ٣ ويكون عموديًا على المستقيم ٥ ص ١٢ = .
 - الربط بالهندسة: ألى قطر في دائرة مركزها م فإذا كان: (-٧، ١١) ، م (-٢، ٣) م (-٢، ٣) فأوجد معادلة المماس للدائرة عند نقطة أ

- الربط بالهندسة: إذا قطع المستقيم ٣ س + ٤ ص ١٢ = ، محورى الإحداثيات السينى والصنادى في النقطتين ٢ ، ب على الترتيب فأوجد:
 - (١) مساحة سطح ∆ و ٢ حيث و نقطة الأصل.
 - (١) معادلة المستقيم العمودي على ١٦ ويمر بنقطة منتصفها.
- (۱ ، ۳−) ، (۱ ، ۳−) أوجد طولى الجزءين المقطوعين من المحورين بواسطة المستقيم الذي يمر بالنقطتين : (۳− ، ۱) ، (٤ ، ٠)
 - (٥ ، ٢) $\omega + (1 , 7) = \sqrt{1 (1 , 7)}$ أوجد طولى الجزءين المقطوعين من المحورين بواسطة المستقيم : $\sqrt{1 (1 , 7)} + \omega$
- الهجد معادلة الخط المستقيم الذي يمر بالنقطة (٥ ، -٢) عموديًا على المستقيم الذي يقطع من الجزء الموجب المحور السينات جزءًا طوله ٤ وحدات ومن الجزء السالب لمحور الصادات جزءًا طوله ٣ وحدات.
- أثبت أن النقط: 9 = (7, 7) ، = (7, 7) ، = (1, 7) هى رؤوس مثلث وإذا كانت $2 \in 9$ أثبت أن النقط: 9 = (7, 7) ، = (7, 7) ، = (7, 7) هى رؤوس مثلث وإذا كانت $2 \in 9$ بحيث 1 = (7, 7) ،
 - أوجد قياس الزاوية الموجبة التي يصنعها المستقيم ل مع الاتجاه الموجب لمحور السينات إذا كان:
 - 7=0+00 で: 1(1)
 - (۱) ل يمر بالنقطتين (٠٠٠) ، (٢ ، -٢)
 - (٣) ل يقطع من محوري السينات والصادات جزءين موجبين طولاهما ٤ ، ٦ وحدات طولية على الترتيب.
 - er+1-=0 : er+7=0:1(E)
 - (٥) المتجه ي = (١، ٣٧) متجه اتجاه له.
 - (۱) المتجه \sqrt{r} (۱) متجه اتجاه العمودي عليه.
 - $= 7 \omega 7 \omega 7 = 0$ أوجد الصورة المتجهة لمعادلة المستقيم ل : ٢ $\omega 7 = 0$
 - أوجد الصورة المتجهة والصورة العامة لمعادلة المستقيم ل: - 7 ك ، - 7 ك - 7 ك
 - اً أوجد الصورة المتجهة لمعادلة المستقيم ل : $\frac{-c}{b} + \frac{cc}{c} = 1$ حيث $1 \neq \cdot \cdot \cdot \cdot \cdot + \cdot \cdot$
 - (٥، ξ -) = ، (۲، ۲) = ξ ، ξ -) اوجد معادلة محور تماثل ξ حيث
 - ا إذا كانت: ١ (٥ ، -١) ، ب (٣ ، ٧) ، ح (١ ، -١) ، ب النقطة ١ وينصف -ح
 - ا المستقيم المار بالرأس المعموديًّا على بح = (٤ ، -٢) ، ح = (-٢ ، ٠) المستقيم المار بالرأس المعموديًّا على بح

١ ١ ١ - ح ٢ مربع فيه : ١ = (٢ ، ٢) ، ح = (١ ، ٤) أوجد معادلتي قطريه.

أثبت أن النقطة : م = (٥ ، -٤) هي مركز الدائرة المارة برءوس المثلث ٢ - حيث :

ا عند نقطة ا الماس للدائرة عند نقطة ا الماس للدائرة عند نقطة ا الماس للدائرة عند نقطة ا

ثالثًا 🗸 مسائل تقيس مهارات التفكير

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

 $\left(-\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)(1) \qquad \left(-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)(2) \qquad \left(-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)(1)$

(+) (+) (+) (+) (+) (+) (+) (+) (+)

(۱) ص - س = ۱ (ب) ص + س = ۱

(ج) ٢ - س + ص = ٥

(٤) معادلة المستقيم المار بالنقطة (٣ ، ٤) ويقطع جزئين متساويين في الطول من محوري الإحداثيات يمكن أن تكون

١-= س = ٧ = ص = ١- (١) س + ص = ٧

(ج) ص + ۲ ص = ۱۰ (د) (۱) ، (ب) معًا.

(ه) إذا كانت : ٢ (٣ ، -٥) ، - (-٤ ، ٨) فإن النسبة التي يقسم بها المستقيم - ٠ + ص = . القطعة المستقيمة ٢ من جهة ٢ هي

۲: ۲(۵) ۲: ۲ (۶) ۲: ۲ (۱) ۲: ۲

(٦) مسقط النقطة (٢ ، ٢) على المستقيم ل: - س + ص = ١١ هو

(1)(-1,0) (±) (±) (0,7) (±)

(٨) إذا كانت النقطة ٢ (٠٠٠) هي صورة النقطة - (٢٠٤) بالانعكاس في المستقيم ل

فإن معادلة المستقيم ل هي

(1) س = ۲ ص

(٩) الشكل المقابل:

يمثل مربع ا حدى ، معادلة المستقيم أو هي س + ص = ٤

فإن معادلة القطر بع هي

(ج) س + ص = ٢

(c) - 0 + 0 = 3 VY

: (١٠) في الشكل المقابل :

فإن معادلة المستقيم بح هي

$$1 = \frac{\infty}{7} + \frac{\infty}{7} (1)$$

$$1 = \frac{\infty}{7} + \frac{\infty}{r_{-}} (-1)$$

$$1 = \frac{\infty}{r} - \frac{\sqrt{r}}{r} (\Rightarrow)$$

(د) س + ص = ۱۸

(١١) في الشكل المقابل:

10(1)

YE (=)

(١٢) في الشكل المقابل:

، حـ ٢ = حـ و فإن معادلة ل, هي

$$1 = \frac{\omega}{\rho} + \frac{\omega}{\tau} (\varphi)$$

 $1 = \frac{\omega}{7} + \frac{\omega}{0} (1)$

$$1 = \frac{\omega}{1} + \frac{\omega}{1} (1)$$

 $1 = \frac{\omega}{1} + \frac{\omega}{1} (\Rightarrow)$

(と、て) と+(て、て)= (い)

ف الشكل المقابل:

مساحة المثلث اب

تساوى وحدة مربعة.

$$\Upsilon(\psi)$$
 $\frac{1}{2}$ (1)

(٤) في الشكل المقابل:

المعادلة الاتجاهية للمستقيم بح هي

(١٥) في الشكل المقابل:

إذا كانت معادلة المستقيم أب

هي ٢ -س + ٣ ص = ١٢

فإن المعادلة المتجهة للمستقيم وح هي

(T, T) e+ (T, T) = J(1)

$$(x, x) = (x, x) = (x, x) = (x, x)$$

(で、て) と+(て、下)= (二)

(٦) في الشكل المقابل:

$$1 = \frac{\omega}{\Lambda} + \frac{\omega}{\gamma}$$
 إذا كانت معادلة المستقيم

فإن المعادلة البارامترية للمستقيم وح هي

(١٧) في الشكل المقابل:

فإن المعادلة المتجهة للمستقيم ل، هي

: الشكل المقابل في الشكل المقابل المقابل

إذا كان: وح = ٢ وب ، معادلة المستقيم أب

فإن للعادلة المتجهة للمستقيم أحد هي

(1, T) e+ (., T) = (1)

(١٩) في الشكل المقابل:

إذا كانت مساحة المربع أحدى = ٣٦ وحدة مربعة مربعة (-١٢ ، ،) فإن المعادلة المتجهة للمستقيم هرب

هيه

(٢٠) المعادلتان الوسيطيتان للمستقيم أب هما

(١١) في الشكل المقابل:

إذا كانت مساحة المستطيل و عود مربعة

فإن معادلة أب هي

(٢٢) في الشكل المقابل:

إذا كان : و أ ، و ب مماسين للدائرة م عند ٢ ، ب

فإن المعادلة الاتجاهية للمستقيم وم هي ..

ا في الشكل المقابل:

إذا كان: ١- حو شكلاً رباعياً

أوجد:

(١) ميل ب و ثم استنتج ع (د ه)

(١) معادلتي : ١٠ ، حرو

ا أوجد معادلة المستقيم الذي يمر بالنقطة (٤، ٢) ويقطع من محوري الإحداثيات جزأين غير متساويين وموجبين مجموعهما ١٤

أوجد معادلة المستقيم المار بالنقطة (٣ ، ٢) وميله سالب والذي يصنع مع محوري الإحداثيات مثلثًا مساحته ۱۲ وحدة مربعة.

ف الشكل المقابل:

و اسح ، وم هد مربعان

أوجد مساحة المربع المظلل.

«٩ وحدات مربعة»

الدرس

3

قیاس الزاویۃ بین مستقیمین

بصفة عامة ينتج دائمًا من تقاطع المستقيمين زاويتان [إحداهما مكملة للأخرى]

إما قائمتان أو إحداهما حادة والأخرى منفرجة.

* إذا كانت هـ هي قياس الزاوية بين

المستقيمين ل، ، ل، اللذين ميلاهما م، ، م

فان: طاه =
$$\left| \frac{A_1 - A_2}{A_1 + A_2} \right|$$

 $= \frac{\left[\left[\frac{\pi}{\sqrt{\tau}} \right] + \left(\frac{\pi}{\sqrt{\tau}} \right) \right]}{\tau} \quad \text{a.} \quad$

مع ملاحظة ما يأتي :

- ا إذا كان ظل الزاوية موجبًا فإننا نحصل على الزاوية الحادة.
- إذا كان ظل الزاوية يساوى الصفر فإن قياس الزاوية بينهما يساوى الصفر [ويكون م، = م، والمستقيمان متوازيان أو منطبقان]
 - 9 إذا كان ظل الزاوية غير معرف فإن قياس الزاوية بينهما يساوى 9 [ويكون 4 $_{7}$ $_{7}$ والمستقيمان متعامدان]
 - ع قياس الزاوية المنفرجة = قياس مكملة الزاوية الحادة.

مثال (

أوجد قياس الزاوية الحادة بين المستقيمين:

ميل الستقيم ٢ - س + ح = ٠

$$\frac{\lambda}{1-} = \frac{\xi}{\lambda-} = ^{\lambda} + ^{\lambda} \cdot \frac{\lambda}{1} = ^{\lambda} + ^{\lambda} \cdot \cdot$$

$$\therefore \text{ dec} = \left| \frac{\frac{A_1 - A_2}{Y}}{(1 + A_1 A_2)} \right| = \left| \frac{\frac{A_2}{Y} + \frac{A_2}{Y}}{(1 + A_2 A_2)} \right| = \frac{3}{Y}.$$

أوجد قياس الزاوية الحادة بن المستقيمين:

$$1 = \left| \frac{\frac{1}{\sqrt{1 - \frac{1}{2}}}}{\frac{1}{\sqrt{1 - \frac{1}{2}}}} \right| = \left| \frac{\frac{1}{\sqrt{1 - \frac{1}{2}}}}{\frac{1}{\sqrt{1 - \frac{1}{2}}}} \right| = \frac{1}{\sqrt{1 - \frac{1}{2}}}$$

$$\frac{\Lambda}{\Lambda^{-}} = \frac{\Lambda}{\Lambda} \quad , \quad \frac{\Lambda}{\Lambda} = \frac{\Lambda}{\Lambda} \quad ...$$

حاول بنفسك

إذا كان قياس الزاوية بين المستقيمين ل: - - ٧ ص + ١ = .

، لي : - + ك ص + ٢ = . يساوى ٤٥° فأوجد قيمة : ك

 $\frac{1}{Y} = \frac{Y}{2! Y} :$

$$\left|\frac{\frac{1}{\omega} + \frac{1}{Y}}{\frac{1}{\omega} - 1}\right| = \text{°} \text{ `` do } \text{ ``} \quad \text{`` do } = \text{°} \quad \text{`` } \frac{1}{Y} = \text{``} \quad \text{`` } \frac{1}{Y} = \text{``} \quad \text{``} \quad \text{``} = \text{``} \quad \text{``} \quad \text{``} = \text{``} \quad \text{``} \quad \text{``} \quad \text{``} = \text{``} \quad \text{``}$$

$$1 \pm \frac{\frac{1}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} \therefore \qquad \left| \frac{\frac{1}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} \right| = 1 \therefore$$

$$\frac{1}{2} - 1 = \frac{1}{2} + \frac{1}{7} \text{ lol} :$$

$$1 - \frac{1}{2 \cdot 1} = \frac{1}{2} + \frac{1}{7} \cdot 1$$

$$= \omega : \qquad \frac{r_{-}}{r} = \frac{1}{\omega r} : .$$

مثال ٤

أوجد قياسات زوايا المثلث ٢ بح الذي رءوسه:

الحل

میل
$$\frac{1}{1-r} = \frac{1-r}{r-r} = \frac{3}{r}$$
 (غیر معرف) : $\frac{1}{1-r}$ یوازی محور الصادات ...

، میل
$$\frac{1}{\sqrt{2}} = \frac{1-1}{7-1} = \frac{1}{7} = \frac{1-1}{7-1} = \frac{1-1}{7-1}$$
 میل $\frac{1}{\sqrt{2}} = \frac{1-1}{7-1} = \frac{1-1}{7-$

$$\frac{3}{7} = \frac{1-0}{7-7} = \frac{3}{7}$$

$$\frac{\frac{3}{7}}{r} = \frac{\frac{\frac{3}{7}}{r} - \cot \frac{1}{7}}{r} = \frac{\frac{3}{7}}{r} - \cot \frac{1}{7}$$
 من (۲) ، (۳) ، طاحہ

°0 × 1 = (2 - 1) 0 :.

م الدظـة

* لتعيين نوع المثلث ٢ - حسب زواياه (حيث ١ حيمثل طول أكبر أضلاع المثلث) :

ا إذا كان:
$$(9 -)^7 > (9 -)^7 + (- -)^7$$
 فإن المثلث منفرج الزاوية في –

آ إذا كان:
$$(1 - 2)^{2} = (1 - 1)^{2} + (1 - 2)^{3}$$
 فإن المثلث قائم الزاوية في –

آذا کان:
$$(9 -)^7 < (9 -)^7 + (- -)^7$$
 فإن المثلث حاد الزوايا.

مثال ٥

أوجد قياسات زوايا المثلث الذي رؤوسه :

$$1 = (3, 7)$$
 ، $- = (-1, 1)$ ، $- = (-7, 3)$ ثم أوجد مساحته.

الحـل

$$\cdot \cdot ? = \sqrt{(3+1)^7 + (7-1)^7} = \sqrt{P7}$$
 each deb.

∴
$$(1 - 1)^7 > (1 - 1)^7 + (- - 2)^7$$
 ∴ $\Delta 1 - 2$ منفرج الزاوية في –

. د ۱ ، د ح حادثان.

$$\frac{1-}{1} = \frac{\xi - \tau}{3+\xi} = \frac{1-\xi}{3+\xi} = \frac{\tau}{3+\xi} =$$

$$^{\circ} \mathsf{YA} \simeq (\mathsf{P} \, \Delta) \, \mathcal{O} \, \ldots \qquad \qquad \frac{\mathsf{Yo}}{\mathsf{PA}} = \left| \frac{\mathsf{Y}}{\mathsf{Y}} + \frac{\mathsf{Y}}{\mathsf{O}} \right| = \mathsf{P} \, \mathsf{U} \, \ldots$$

$$^{\circ}$$
 Yo $\simeq (\sim 2)$ \odot \therefore $\frac{70}{07} = \left| \frac{\frac{1}{1.} + \frac{7}{0}}{\frac{7}{0.} + 1} \right| = \sim 10^{\circ}$

، مساحة المثلث = $\frac{1}{7}$ × حاصل ضرب طولى أى ضلعين × جيب الزاوية المحصورة بينهما

≃ ۱۲,۷ وحدة مربعة.

حاول بنفسك

أوجد قياسات زوايا المثلث أبح إذا كان:

على قياس الزاوية بين مستقيمين

تمارين 7

اختبر نفسك

عليا	🖧 مستويات	

ه تطبیق

രക്ക്

• تذکر

المنلة الكتاب المدرسي

- Company		ن متعدد	ا أسئلة الاختيار م
	A.A.	A TAP OF THE REST	اختر الإجابة الصحيحة مر
The state of the s	ساوی	بين المستقيمين اللذين ميلاه	(۱) 🖽 قياس الزاوية
(د) ه٤°	°9 · (÷)	(ب) ۲۰°	°r · (1)
	بلاهما ۲ ، -۷ یساوی	ة بين المستقيمين اللذين مي	(1) قياس الزاوية الحاد
		(ب) ۳۰°	
artikali giringina	٣ ، ص = ٤ يساوى	بين المستقيمين: ٢ - ٠٠ =	(٣) 🛄 قياس الزاوية
°۲۰ (۵)	(ج) ۰۲°	(ب) ه٤°	°4. (1)
(1-	· T) &+ (Y- · ·) =	ة بين المستقيمين ل، : ٧	(٤) قياس الزاوية الحاد
10.7	4-1-7	ه) + ك (۲، ۲) يساوى	، ل٠٠ : س = (٠٠٠
°4. (1)	(ج) ۲۰°	(ب) م٤°	۳۰ (۱)
الذي ميله 🕆 يساوي	٢ ص + ٥ = ، والمستقيم	ة بين المستقيم : ٦ -س - ٢	(٥) قياس الزاوية الحاد
°£0 (1)	°r. (÷)	°۲۰ (ب)	°170 (1)
اله: - س - ١٦ ص - ١ = ٠			
			يساوى
°۹۰ (۵) ، ال ۲۰۰۰ - ۳ - ص	(خ) ۲۰ °	(ب) °٤°	°r. (1)
١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠	1 , 4-) = + (0 , 4) =	ة بين المستقيمين ل، : ٧	(٧) قياس الزاوية الحاد
		(4)	يساوى
0.(1)	ط. (خ)	(ب) ه٤°	۴٠ (۱)
((()) + ((()) =)	ص + ٥ = ٠ ، ل٠	المستقيمين ل، : - س + ٢ ه	(٨) قياس الزاوية بين
°14.	-110		يساوى
°170 (2)	°9 · (÷)	(ب) °٤°	(۱) صفر
لې: ٤ -٠ + ١ ص - ٥ - ٠	1 (2-17) 2+(4	$(-1) = \sqrt{-1}$ المستقيمين ل	(٩) قياس الزاوية بين ا

(ج) ه٤°

(T-1) e+ (1-1)	+ ۲ ص = ۱۰، لهر: رأ = (-	ين المستقيمين ل: ٢ -س	(-1) قياس الزاوية الحادة بـ
			يساوى تقريبًا
(۱) ۸۲%	· °79 (÷)	(ب) ۱ه°	°oY (1)
ع = ك ، ص = ١ + ك	ں - ص - ۳ = ، ، لد : سر	بين المستقيمين ل: ٢ -	(١١) قياس الزاوية الحادة
100000000000000000000000000000000000000		*****	يساوى تقريبًا
°VY (2)	°\\(\(\alpha\)	(ب) ۷۱°	°19 (1)
°٦٠ (١) .	°£0 (÷)	°۳۰ (ب)	°10 (1)
ستقيم المار بالنقطتين	- ٢ ص + ٣ = ٠ ، والم	المحصورة بين المستقيم:	(٣) قياس الزاوية الحادة
the state of the		يساوى تقريبًا	
°(4) 57 (1)	°V. FY (÷)	(ب) ۲۸ (ب)	°V1 FE (1)
ماوي	- ص = ه ، ص = ۲ <u>ي</u> س	بين المستقيمين : ٣٧ -س	(٤) قياس الزاوية الحادة ا
	°£0 (÷)		
، = ، يساوى	٣) ، (-٣ ، ٠) والمستقيم ص	تقيم المار بالنقطتين (٠)	(٥) قياس الزاوية بين المس
	°٤٥ (ج)		
	(۲،۲) + ك (۱،۱) والمس		
		the second second	هو
°۱۳٥ (۵)	(ج) ۲۰°	(ب) ه٤°	°T-(1)
وی ۹۰ °	۷ ، ص=۹-س+۲یسا	بين المستقيمين: - س = /	(٧) إذا كان قياس الزاوية
			فَإِن : ۴ =
/-(4)	٩٠ (ج)	(ب) ۱	(۱) صفر
اوية الحادة بين	حـ (٢- ، ٤-) فإن قياس الز	((() - ((١، ٢-) ١: ١ (١٠)
		ح هو	المستقيمين الس
(c) dr (7	$\left(\frac{\pi}{\xi}\right)^{1}$ $\mathbb{U}^{1}\left(\frac{\pi}{\xi}\right)$	$\left(\frac{L}{\lambda}\right) \wedge \Gamma \left(\frac{L}{\lambda}\right)$	(1) 4-(1)
$\cdot = \Lambda - \omega$	ة بين المستقيمين : - س + ك		
		· بساوى ب هى	
{r}(4)	{\frac{7}{1} \ \ 7} \ (≠)	$\left\{\frac{L}{I}, L_{-}\right\} (\dot{r})$	{\frac{\pi}{\pi}, \pi\}(1)
: ٢ - س - ص + ٤ = ٠	(١ ، ٤) ويصبنع مع المستقيم	ميله موجب ويمر بالنقطة	(٠٠) معادلة المستقيم ل الذي
		سى	زاوية ظل قياسها 🔓
	(ب) ص - س + ۲ = ۰		(۱) ص - س - ۳

(c) 4 (1)

(1) قیاس الزاویة بین المستقیمین 1 - (1 - 1) = (1 - 1) قیاس الزاویة بین المستقیمین (1 - 1) = (1 - 1) ص

يساوى

- °۲۰ (۱) ۳۰ (ج) ۴۰ (ج) ۴۰ °۳۰ (۱) ۴۰ °۳۰ (۱)

يساوى

- $\left(\frac{\overline{\varepsilon}}{\mathfrak{k}}\right) \ \mathcal{V} \ \mathcal{V} \ (\dot{\varphi}) \qquad \frac{\pi}{\zeta} \ (\dot{\varphi}) \qquad \frac{\pi}{\zeta$
 - 👚 يبين الشكل المقابل قطعة أرض مثلثة الشكل

إحداثيات رؤوسها هي : ١ (٢ ، ٠) ، - (-٢ ، ٠)

، ح (٠، ٢) فإن:

أولًا: قياس الزاوية الحادة بين أحد ومحور السينات

يساوى

- ۴۰ (ب) ۳۰ (ب) ۳۰ (۱
- (ج) ه٤° (د)

9. (2)

- ثانيًا: قياس الزاوية بين المستقيمين أحر ، بح يساوى
 - (۱) ۴۰ (ج) °۲۰ (ج) °۲۰ (ج)
 - ثالثًا: المعادلة المتجهة للمستقيم أحد هي
- (1・・) シャ(・・1) = ブ(・) (・・1) シャ(・・1) = ブ(1)
- (1,1)@+(.,1)=~(1) (1,1-)@+(.,1)=~(+)
 - رابعًا: المعادلة المتجهة للمستقيم حد هي
- (いい) シャ(いい) = ブ(い)
- (1,1-) 0+(1,1)= 1
- (· · 1) e+(1 · ·) = v(1)
- (1,1-) @+(.,7)= [.)
- خامسًا: المعادلة الكارتيزية للمستقيم المار بالنقطة ح ، ويوازى أب هي
- $7 = \omega \omega (1)$ $7 = \omega + \omega = 7$ (1)

سادسًا: مساحة سطح المثلث ٢ ب حساوي وحدة مربعة.

(۱) ٤٢ (ج) ٢٦ (ج) ٢٢

ثانيًا / الأسئلة المقالية

- أوجد قياس الزاوية الحادة بين كل زوج من أزواج المستقيمات الآتية :
- (1-1) シャ(ナー・ア)=ブ:、リ ・ (・1) ピーブ:、リ(1)
- (1) (1) (1) + (1,1) + (1,1) . Ly: Y - - - - -

- (T) U, : + 7 au + 0 = . 1 U, : 3 u m 7 = .
- (٤) الله لي: -س + ۲ ص + ۳ = ، ، لي: -س ٣ ض + ١ = ،
 - $T = \omega \frac{\omega}{0} : \gamma U : \gamma = \gamma \omega + \gamma + \omega + \gamma : \gamma U (0)$
 - $Y = \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} = \frac{1}{4} =$
 - 1 = 0 0 + 0 7 : 7 0 + 0 0 = 1
- ١-٥٢=٥٠١ -١-١٠٥ ، ١٠٥٠ ، ١٠٥ ، ١٠٥ ، ١٠٥ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥ ، ١٠٥٠ ، ١٠٥٠ ، ١٠٥ ، ١٠٠ ، ١٠٥ ، ١٠٥ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١٠٠ ، ١
- - · (١) قياس الزاوية بين المستقيمين ل، ، ل، هو صفر "
 - (٢) قياس الزاوية بين المستقيمين ل، ، ل، هو ٩٠°

👸 أوجد معادلة المستقيم:

- $\frac{1}{\sqrt{1}}$ المار بالنقطة (-1 ، ۳) ويصنع مع المستقيم : -0 + ۲ ص + ۲ = ، زاوية ظل قياسها
- (۱) المار بالنقطة (۲ ، -۲) ويصنع مع المستقيم : $\sqrt{} = (7 ، -1) + \mathcal{O}$ (7 ، -3) زاوية قياسها 63°

- $^{\circ}$ إذا كان قياس الزاوية بين المستقيمين : $^{\circ}$ $^{\circ}$ -
- - مستقیمان میلاهما م ، $\frac{7}{5}$ م وظل قیاس الزاویة بینهما = $\frac{6}{11}$ ویمران بالنقطة (7 1) أوجد معادلتیهما علمًا بأن م > .
 - (۱- ، ۲-) عدمثاث فیه : ۱ = (۰ ، ۲) ، ب = (۲ ، ۱) ، ح = (-۲ ، -۱)
 - أوجد قياس زاوية : ۴

ا أوجد قياسات زوايا المثلث المحد الذي رءوسه ا = (٤، ٧) ، ب = (-٢، -١) ، د = (-٢، -٤) ، د = (٢، ٠٤) ، د ٢٦ ٣٤» ، ١٩٠٠ ، ١٩٠٥ ، ٢٦ ٣٤» ، ١٩٠٥ ،

س السام المحمثاث فيه : ١ = (٠،٠) ، ح = (٢،٦) ، ح = (٢،٦)

أثبت أن: المثلث متساوى الساقين ثم أوجد قياس زاوية ٢

ثم أوجد: مساحته لأقرب رقمين عشريين.

« أ م م م ا ا وحدة مربعة »

۱۲ ا عد مثلث قائم الزاوية في ا ومعادلة بحد هي س = (۱ ، ۱) + ك (۱ ، ۲)
ومعادلة اب هي س = (۱ ، ۵) + ك (۱ ، ۲) أوجد: ت (۱ ا حس)
«٥٤»

النا كان المثلث المحقائم الزاوية في حيث: الأخريين. (٥،٧) ، ح(١،٥) ، ح(١،٥) وقوجد قيمة: ص، ثم أوجد قياس كل من الزاويتين الأخريين.

(١) أوجد: إحداثيي نقطة و التي تقسم بح من الداخل بنسبة ٢: ٢

(٣) أثبت أن: ١<u>٩</u> = --

(١) أثبت أن: ١٩٤ لـ سح

(٥) أوجد مساحة سطح المثلث: ١ - ح

(٤) أوجد: ٥ (١-)

إذا كانت : 1 = (0, 0) ، - = (7, -1) ، $- = (\frac{7}{7}, 0)$ وأثبت أن : المستقيم $\sqrt{1} = (7, 0) + (0, 0) + (0, 0)$ يصنع مع المستقيم $\sqrt{1} = (7, 0) + (0, 0)$ الساقين رأسه 1

🔟 أثبت أن المثلث الذي معادلات المستقيمات الحاملة لأضلاعه هي :

ثالثًا 🗸 مسائل تقيس مهارات التفكير

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

(1) قیاس الزاویة المنفرجة بین المستقیمین : $\omega = (7 - \sqrt{7}) (-\omega + 0)$ ، $\omega = (7 + \sqrt{7}) (-\omega - 1)$ هو

°۱۲۰ (۵) ۱۰۰ (ج) ۱۲۰ (ج) °۱۲۰ (۵) °۱۲۰ (۵)

(۱) ل، ، ل، مستقيمان ظل الزاوية بينهما يساوى ٢٠٠٠ ، ميل ل، يساوى ضعف ميل ل،

فإن ميل المستقيم ل =

- 1 ± (1)
- 1 , 1 (=)
- (٣) في الشكل المقابل:

..... = 0 lb.

- **♦**(1)
- ° (÷)
- 1/V (1)
- (٤) في الشكل المقابل:

 $\frac{7}{\sqrt{100}} = \frac{7}{\sqrt{100}}$ إذا كان: منا $\theta = \frac{7}{\sqrt{100}}$

فإن النقطة ب = ٠

- (· . A)(1)
- (ب) (۲) (ب)
- (+, 1) (+)
- (. . ٤) ()
- (٥) في الشكل المقابل:

ك =

- F- (1)
 - (ج) ع
- (٦) في الشكل المقابل:

.... =

- 7(1)
- (ب) ۳-
- $(\dot{\div}) \frac{\rho}{\gamma}$
- 9- (2)

(ب) ± ١

(ب) -ع

(4)

(د) جميع ما سبق ص

(v) في الشكل المقابل:

(٨) إذا دار المستقيم المار بالنقطتين ٢ (٢ ، ٠) ، ب (٣ ، ٢) حول نقطة ٢ بزاوية قياسها ٤٥ في اتجاه صد عقارب الساعة فإن معادلة المستقيم أب في وضعه الجديد هي

(ب) س - ۲ ص = ۲

(٩) في الشكل المقابل:

$$\cdots\cdots = \theta \ \rlap{\ } \rlap{\ }} }$$

- أوجد معادلة أحد الضلعين المتساويين في المثلث القائم الزاوية إذا كانت معادلة الوتر هي ٣ -س + ٤ ص + ٤ = ٠

ونقطة رأس الزاوية القائمة هي (٢ ، ٢)

- $a \cdot = 17 \omega + \omega + 0$
 - إذا كان الخط المستقيم ل يصنع زاوية جيب تمامها يساوى ١٠٧٢ مع الخط المستقيم

- أوجد: معادلة الخط المستقيم ل إذا كان يمر بالنقطة (١ ، -٢)
 - \bullet = ۱ + \circ ، \circ ، \circ \circ ، \circ \circ \circ . \circ \circ
 - قياسها ثابت لجميع قيم ب ≠ ١ وأوجد قياس هذه الزاوية.

الدرس

4

طول العمود المرسوم من نقطة إلى خط مستقيم

* طول العمود (ل) المرسوم من النقطة (س، ، ص،)

إلى الخط المستقيم الذي معادلته : ١٠ - س + - ص + ح = .

یتحدد من العلاقة: طول العمود (ل) = $\frac{|9-0, +-\infty, +-\infty|}{\sqrt{9^7+-7^7}}$

ملاحظات هامة

١ إذا كان طول العمود المرسوم من النقطة (س، ، ص،) على المستقيم :

١ - ٠ + - ص + ح = ، يساوى الصفر فإن النقطة تكون واقعة على المستقيم.

- مول العمود المرسوم من نقطة الأصل (٠٠٠) على المستقيم: ١٩-٠٠ + ص +ح = ، يساوى الحرار العمود المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم من نقطة الأصل (٠٠٠) على المستقيم : ١٩-٠٠ + ص +ح = ، يساوى المرسوم ا
 - ٣ طول العمود المرسوم من النقطة (ص، ، ص،) على محور السينات = اص، ا

 - و إذا كانت (س، ، ص،) ، (س، ، ص،) نقطتين في المستوى الذي يحوى الخط المستقيم

١-- ١- ص + ح = ٠ وكان المقداران ١-٠٠ + - ص + ح

، أحرب + حصب + حلهما نفس الإشارة كانت النقطتان على جانب واحد من الخط المستقيم وإن اختلفا في الإشارة كانت النقطتان على جانبين مختلفين من الخط المستقيم.

مثال 🚺

أوجد طول العمود المرسوم من النقطة (٣ ، ٥) إلى الخط المستقيم : $\sqrt{} = (-1 , 1) + 2 + (2 , -7)$

الحل

- $\frac{7}{3}$ المستقيم $\sqrt{1} = \frac{7}{3} + \frac{7}{3}$
- $r \frac{r}{2} = \frac{r}{2} = \frac{r}{2} = \frac{r}{2} = \frac{r}{2}$.: 3 ص $r \frac{r}{2} = \frac{r}{2}$.: الصورة الكارتيزية هي : $r \frac{r}{2} = \frac{r}{2} = \frac{r}{2}$
 - الصورة العامة هي : ٣ ٠ + ٤ ص ٥ = ٠
 - .. طول العمود = $\frac{|7(7)+3(0)-0|}{\sqrt{(7)^7+(3)^7}} = \lambda, 3$ وحدة طول.

حاول بنفسك

أوجد طول العمود المرسوم من النقطة (- 7 ، 7) إلى الخط المستقيم : $\sqrt{} = (7 ، 7) + 2 + 2$

مثال ۱

أوجد بُعد النقطة $\gamma = (```)$ عن المستقيم المار بالنقطة = (- ```) وميله

الحــل

- ن معادلة المستقيم المار بالنقطة = (- ۲ ،) وميله $= \frac{0}{7}$ هى :
 - $\frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}$
 - .. البُعد = طول العمود المرسوم من النقطة ٢ إلى المستقيم
 - $=\frac{|0\times 7-7\times 3+1|}{\sqrt{07+77}}=\frac{\frac{3}{2}}{\sqrt{17}}$ each deb.

للحظ أن

بعد نقطة عن مستقيم تعنى طول العمود المرسوم من هذه النقطة إلى هذا المستقيم.

مثال ۳

اذا كان طول العمود المرسوم من النقطة (V ، ح) إلى المستقيم : $V - \Lambda - \Lambda - \Lambda = 0$ يساوى V, وحدة طول فأوجد قيمة : ح

الحــل

$$\frac{1}{|V-V-V|} = \frac{\lambda}{|V-V|} : \frac{\lambda}{|V-V|} : \frac{\lambda}{|V-V|} = \frac{\lambda}{|V-V|} : \frac{\lambda}{|V-V|}$$

$$\therefore -\Lambda = -37 \quad \text{i.} \quad -\Lambda = -39 \quad \therefore = 7 \quad \text{i.} \quad \alpha = \frac{\sqrt{3}}{3}$$

مثال ٤

مستقيم طول العمود النازل من النقطة (٢ ، ٥) عليه يساوى ٣ وحدات والمتجه (٣ ، ٤) متجه اتجاه له أوجد معادلة هذا المستقيم.

الحـل

- ٠: المتجه (٣ ، ٤) متجه اتجاه للمستقيم. .: المتجه (٤ ، ٣-) متجه عمودي على المستقيم.
 - .. معادلة المستقيم هي : ٤ -س ٣ ص + ح = .
 - ن طول العمود عليه من النقطة (٢ ، ٥) = ٣ وحدة طول.

$$10 = |V - V| \therefore \qquad 0 \times V = |V - V| \therefore \qquad 10 - |V - V| = |V| =$$

م الثم

الصل

نعتبر أحد الأضلاع وليكن بح هو قاعدة المثلث ونوجد الارتفاع وهو طول العمود من المنافظ المستقيم مع ونوجد كذلك طول بح ثم نحسب مساحة المثلث كما يلى:

$$\therefore -\infty = \sqrt{(1-0)^7 + (0+7)^7} = \sqrt{171+9} = 0$$
 excla delas.

$$r = r - \omega + 3$$
 معادلة بحر هي $r = \frac{r}{r} = \frac{r}{r} = \frac{r}{r} = \frac{r}{r}$ اي $r = 0$ معادلة بحر هي $r = 0$

.. deb leave at 1 إلى صح =
$$\frac{| \times \times + 3 \times | - \times |}{\sqrt{1 + 1 \times 1}} = \frac{| \times \times + \times | - \times |}{0} = \frac{| \times \times \times | - \times |}{0} = 3$$
 each delie.

.. amles
$$\Delta$$
 1 - Δ 2 - Δ 3 = .1 each any and ...

حاول بنفسك

اذا کانت النقط :
$$1 = (-7, 7)$$
 ، $- = (-7, 7)$ ، ح = $(-7, 7)$ ، مثلث أوجد :

أوجد مساحة الدائرة التي مركزها النقطة م (١، ١) ويمسها المستقيم الذي معادلته:

$$(\Upsilon, \Upsilon, \Upsilon = \pi)$$
 . $= \Upsilon - \omega + \Lambda + \omega$. $\Upsilon = \Upsilon$. Υ

•• deb llaner lhours and lhot of (1, 1) and labor $1 + (1, 1)^T = \frac{1}{1} = \frac{1}{1}$

، . · طول نصف قطر الدائرة = طول العمود المرسوم من المركز على الماس ل

نق = ۲ وحدة طول. : المساحة = π نق 7 = ۲. 7 × 3 = 7 ، 17 وحدة مربعة.

- طول العمود من $\frac{1}{2}$ على الخط المستقيم $\frac{|7\times7-3\times1+7|}{\sqrt{p+71}} = \frac{|11|}{0} = \frac{1}{0} = 7,7$ وحدة طول.
- - ١١ ١١ من ٤ ص + ٦ له إشارتان مختلفتان ١١ ، -١١
 - عند التعويض بإحداثيي كل من النقطتين أ ، ب
 - النقطتان تقعان على جانبين مختلفين من المستقيم ل

مثال ۸

أثبت أن المستقيمين ل، ، ل، متوازيان وأوجد البُعد بينهما في كل مما يأتي :

- ١ ١٠ : ٠ ٢ ص + ١١ = ، ، له : ٢ ١ ٤ ص + ٧ = ٠
- (人・1-) シ+(と・1)=ブ: し・(モ・ア) シ+(ロ・イ)=ブ: しょ

$$\frac{1}{V} = \frac{V}{V} = \frac{1}{V}$$
 ميل المستقيم ل

$$\frac{1}{Y} = \frac{Y-}{2} = \frac{1}{2}$$
 ميل المستقيم ل

- الميلان متساويان.
- .: المستقيمان متوازيان.

مالحظة

لإيجاد البُعد بين لي ، ل نعين نقطة على أحد المستقيمين ونوجد طول العمود

الساقط منها على المستقيم الأخر،

* فبوضع - ١ = ١ مثلاً في معادلة المستقيم ل

البُعد بين المستقيمين = طول العمود المرسوم

من النقطة (۱، ۲) على المستقيم له
$$= \frac{|Y \times 1 - 3 \times 7 + V|}{\sqrt{3 + 7/7}} = \frac{7\sqrt{6}}{7} \text{ each deb.}$$

والدظة

البعد بين المستقيمين المتوازيين 1 - 0 + 0 - 0 + 0 = 0 البعد بين المستقيمين المتوازيين 1 - 0 + 0 - 0 + 0 = 0 يساوى $\frac{| - - 2|}{| - - 7|}$

المتجه ي = (٣ ، -٤) متجه اتجاه للمستقيم ل

، المتجه ي = (-٦ ، ٨) متجه اتجاه للمستقيم لي

، : النقطة س= (٢ ، -٥) ∈ ل

$$\frac{\xi-\omega}{\Lambda} = \frac{1-\omega}{\eta} : \omega : \omega = 3 + \Lambda$$

. الم: ٤ س + ٣ ص - ١٦ = .

:. I lipse the transfer of the second of th

مثال ۹

أثبت أن النقطة : (٢ ، ٤) تقع على أحد منصفى الزاوية بين المستقيمين :

الحــل

النقطة تقع على أحد منصفى الزاوية بين المستقيمين ل ، ل إذا كانت على بُعدين متساويين من المستقيمين.

$$\frac{1}{2} + \frac{1}{2} + \frac{1$$

من (١) ، (٢) : .: النقطة (٤ ، ٦) تقع على أحد منصفى الزاوية بين المستقيمين ل ، ل

تمارین 8

على طول العمود المرسوم من نقطة إلى خط مستقيم

🔥 مستويات عليا

ه تطبیق

ه فهم

• تذکر

🛄 من أسئلة الكتاب المدرسي

		the Property	من متعدد	1 أسئلة الاختيار
		Head a single	من بين الإجابات المعطاة :	
	وحدة طول.	حور الصادات يساوى	سهم من النقطة (٣- ، ٥) إلى م	
			(ب) ه	
	وحدة طول.		سوم من النقطة (-٣ ، ٥) إلى م	
	4-(7)		(ب) ه	
		يم ٣ -س - ٤ ص - ١٥ =	موم من نقطة الأصل إلى المستق	(٣) طول العمود المرس
	101/2		وحدة طول،	يساوى
	(4) 3	(∻) ۲۰	وحدة طول. (ب) ه	10(1)
	. = 0 - 0	نط المستقيم: ٤ - س + ٣ -	سوم من النقطة (٣ ، ١) إلى الذ	(٤) طول العمود المرس
		Wall was	وحدة طول.	يساوى
	0(2)	(ج) ع	(ب)	Y (1)
ول.	وى وحدة ط	ط المستقيم - ٠ + ٥ = ٠ يسا	موم من النقطة (٠، -٤) إلى الذ	(٥) طول العمود المرس
	0-(7)	(ج) ه	(ب) ٤	· (i)
ول.	وى وحدة طو	المستقيم - 0 + ص = ، يسا	المرسوم من النقطة (١ ، ١) إلى	(٦) 🖺 طول العمود
	. (7)	(خ) ا	(ب) ۲۲	- Y (1)
	(7,	قيم س = (١ ، ٢) + ك (٤	سوم من نقطة الأصل إلى المست	(V) طول العمود المر
			وحدة طول،	سباوی
*	, (2)	(ج) ه	(ب) ٤	7(1)
	(1,1)0	للستقيم √ = (٢ ، ٠) +	بسوم من النقطة (-٢ ، -٤) علم	(٨) طول العمود المر
		market and	وحدة طول،	يساوى
	7,7(2)			1,7(1)
- 9	. ٤ ك ، ص = - ٢ ك	ى المستقيم ل : - 0 = - ٢ +	يسوم من النقطة (-٢ ، -٥) علم	
		the second second	وحدة طول،	يساوي
	(د) ٤	(ج) ۲	Y (~)	1(1)

(ج) -۸

1 .- (2)

1-(1)

(ب) -ه

(٠٠) إذا كان البعد بين المستقيمين $b_1: 7 - b + 3 - b - 11 = . ، <math>b_2: 7 - b + b - b + c = .$ يساوى ٣ وحدات طول ، ح > ٠ فإن : ح =

٠٦ (ب)

- 02 (1)
- (١١) في الشكل المقابل:

طول العمود المرسوم من نقطة ٢ على المستقيم بح

- يساوى
- (ب) ۲ Y(1)
- 0(1) (ج) ٤
 - (٢٢) في الشكل المقابل:

طول ٢ - = وحدة طول.

- 1(1)
- رمعادلة أحد المستقيمين الذي ميله $=-\frac{6}{17}$ وطول العمود الساقط عليه من النقطة (٢ ، -١) يساوى ٢ معادلة أحد المستقيمين الذي ميله وحدة طول هي

(ب) ٢

- · = ۲۸ ص ۱۲ + ص (1)
- (ج) ه س + ۱۲ ص + ۲۶ = ·

- (ب) ٥ س + ١٢ ص ٢٤ = ٠
 - (د) ه س ۱۲ ص + ۲۸ = ·

(٤) في الشكل المقابل:

طول العمود المرسوم من النقطة ب على المستقيم ل يساوى وحدة طولية.

- 7/7(1)

 - (ج) ٣

(٥) في الشكل المقابل:

إذا كانت م دائرة ، أب مماسًا لها وكانت معادلة المستقيم أم هى س - ٣ ص + ٤ = ٠٠ كانت النقطة ب (٤ ، -٤)

- فإن : بح × بع = وحدة مربعة.
 - 1.17(4)
- o√ ٤ (÷)
- (٦) مربع فيه معادلتي المستقيمين الحاملين لضلعين متقابلين فيه هما ص = ٣ ، ص = -٢ فإن معادلتي المستقيمين الحاملين للضلعين الآخرين يمكن أن يكونا
 - (ب) س = ۲ ، س = ۲

(۱) ص = ۳ ، ص = -۲

١-= ، ص = ٤ ، ص = -١

(ج)س = ۷ ، س = ۲

(1,0)

p. (7.9)

ارتفاع القطعة الدائرية

الصغري المظللة = وحدة طول.

قطاع دائري ، المستقيم ل مماسًا لدائرته

فإن : ٢ م = وحدة طول.

$$- \gamma : \frac{1}{r} (1)$$
 $\gamma : \frac{1}{r} (2)$ $\gamma : \frac{1}{r} (3)$ $\gamma : \frac{1}{r} (3)$

لجميع قيم
$$\theta$$
 فإن طول العمود الساقط من نقطة الأصل على المستقيم : - س منا θ + ω ما θ = θ يساوى

$$\left|\frac{J}{\sqrt{1+J^{2}}}\right|$$
 (د) $\left|\frac{J}{\sqrt{1+J^{2}}}\right|$ (د) $\left|\frac{J}{\sqrt{1+J^{2}}}\right|$

إذا كانت
$$\uparrow$$
 ، \bullet نقطتان على المستقيم \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet عيث طول \uparrow يساوي $\ifmmode 10\eng herminal 10\eng$

ثانيًا / الأسئلة المقالية

أوجد طول العمود المرسوم من النقطة ي إلى المستقيم ل إذا كانت:

$$Y = \frac{\omega}{Y} + \frac{\omega}{T} : J$$
 (1-17) = $G(0)$

احسب طول نصف قطر الدائرة التي مركزها النقطة م = (٣ ، ١-) ويمسها المستقيم الذي معادلته

أوجد بعد النقطة (١ ، -٢) عن الخط المستقيم المار بالنقطة (٢ ، -٣) والذي يصنع زوايا متساوية القياس مع كل من الاتجاهين الموجب لمحور السينات والسالب لمحور الصادات.

إذا كان طول العمود المرسوم من النقطة (١ ، ح) على الخط المستقيم :

إذا كان طول العمود المرسوم من النقطة (٣ ، ١) على المستقيم:

إذا كان طول العمود الساقط من النقطة (٧ ، -١) على المستقيم:

اثبت أن المستقيمين: ل $_{\Lambda}$: Υ - ω + ω - Υ = ω ، ω - ω -

۸ اثبت أن المستقيمين: ل₁: ٣ - س - ٤ ص - ١٢ = ٠ ٠ - لړ: ٦ - س - ٨ ص + ٢١ = ٠ متوازيان
 ثم أوجد البعد بينهما.

• الله على المحريق الثانى تمثله المعادلة : ٣ -س - ٤ ص - ٧ = ٠ م - ٧ = ٠ م م - ٧ = ٠ م م - ٧ = ٠ م م المحادلة : ٣ -س - ٤ م + ١١ = ٠

أثبت أن: الطريقين متوازيان ثم أوجد أقصر بعد بينهما.

۱۱ اذا قطع المستقيم: ٤ - س - ٣ ص = ١٢ محورى الإحداثيات في النقطتين ١ ، - فأوجد:

- (1) مساحة سطح المثلث و ٢ حيث و نقطة الأصل.
- (١) أقصر مسافة من نقطة الأصل إلى الخط المستقيم أب ١٠٥ وحدة مربعة ٢٠٤٠ وحدة طول ١٠٠٠

- ال إذا كانت النقط 1 = (-3, 1) ، -= (7, 7) ، حو = (-7, 7) هي رءوس مثلث فأوجد:
 - (١) المعادلة الكارتيزية للمستقيم بح

(١) طول ب

- (٤) مساحة **1 اب ح**
- (٣) طول العمود الساقط من ٢ إلى بح

«٥ وحدات طول ، ٣ -س + ٤ ص - ١٨ = ، ، ٢ , ٥ وحدة طول ، ١٣ وحدة مربعة»

- آ أوجد مساحة المثلث الذي رءوسه النقط ٢ = (٢ ، ٢) ، ح = (١ ، ٣) ، ه. ١٥ ، وحدة مربعة»
 - الله عنوازي أضلاع فيه : ١ = (-١ ، ٤) ، ب = (٢ ، -٢) ، ح = (-١ ، -٥) أوجد :
 - (۱) طول بح

(١) إحداثيي النقطة و

- (٤) طول العمود الساقط من ٢ إلى بح
- (٣) معادلة المستقيم بح
- (٥) مساحة متوازى الأضلاع أبحر

«(-٥ ، ١) ، ٥ وحدات طول ، ٣ -بر- ٤ ص - ١٧ = ، ، ٧ وحدة طول ، ٣٦ وحدة مربعة «

- (1, 7) = 5, (5, 7) = 4, (7, 0) = 4, (1, 7) = 5, (1, 7) = 6هي رءوس متوازي أضلاع وأوجد مساحته. «٢٥ وحدة مربعة»
- (1, Y-) = 0, (Y-, Y-) = 0, (Y, Y) = 0, (Y, Y) = 0, (Y, Y) = 0هى رءوس شبه منحرف وأوجد مساحته. «١٨ وحدة مربعة»
- ☑ الربط بالهندسة: ٢ حو شبه منحرف فيه: ١٤ // ح ، فإذا كانت: (00, 1) , - (1, 1) , - (1, 1) , 2 (3, 0) أوجد قيمة ص ، ثم أوجد مساحة شبه المنحرف إ - حرى «-- ۱۲ ، ۲- وحدة مربعة»
- 🚻 أوجد معادلة المستقيم الذي متجه إتجاهه (١٠٠٠) وطول العمود النازل عليه من النقطة (٢٠١٠) يساوي ٣ ٧٧ وحدة طول. $_{\alpha}$: = $_{0}$ Y - $_{\infty}$ + $_{\infty}$ + $_{\infty}$ + $_{\infty}$ + $_{\infty}$ + $_{\infty}$ $_{\infty}$ + $_{\infty}$ $_{\infty}$
 - أثبت أن النقطتين : (١ ، ١) ، (-٢ ، ٣) تقعان على جانبين مختلفين من الخط المستقيم ٢ - س - ص + ٣ = ٠ وعلى بعدين متساويين منه.
- س = (٥ ، ٢) ، س = (-٢ ، ٣) واللتان طولا نصفى قطريهما ٢ ، ٣ وحدة طول على الترتيب ، وبين هل الدائرتان تقعان في جانب واحد أم في جانبي هذا المستقيم ؟

	ها وتران معادلتيهما :	ية مركزها نقطة الأصل في	🚺 🕮 الربط بالهندسة : دائر
ساويان في الطول.	+ ٢٦ = ٠ أثبت أن الوترين متس		
مات الحاملة لأضلاعه	لة للمثلث الذي معادلات المستقيد	/) هي مركز الدائرة الداخا	الله أثبت أن: النقطة (١١ ، ١
۱۱ ص + ٥ = ٠	+ ٤ ص = ٥ ، ٥ - ٠٠ + ٢	اله (۱،۱) ، ۲ س	اً هی : سَ = (۳۰،۲۰) +
المراجعة المراجعة	بن المستقيمين :	على أحد منصفى الزاوية ،	اثبت أن: ١ (٤ ، ١) تقع
	•=	. ، س-٣ص+٤	= 1 - 17 - 1 - 9
Gy De salt.			
1 2497	النقط:	عى ٢ بحر الذي رء وسه	🔯 أوجد مساحة الشكل الرباء
	(A : E-) = 5 : (o	(3,1)	= - ((· · ٢) = ٢
		مارات التفكير	ثالثًا مسائل تقيس مم
			CAN BE SEED OF THE
Last Fact	near .	بين الإجابات المعطاة :	اختر الإجابة الصحيحة من
,	- می ٤ - س + ٣ ص - ٩ =	٩ (٢ ، -٣) ومعادلة ب	و (۱) ۹ - حرى مربع حيث
-		وحده مرب	قان مساحه المربع –
٧(٦)	7 (4)	(ب) ٤	Y (1)
ص = ۲	-١) ومعادلة - ح هى - · · +	ى الأضلاع فيه : ١ (٢ ،	🕴 (۱) ۴ ب حد مثلث متساو
The same of the sa	حدة طولية.	ن ۱ ب ح = و.	فإن طول ضلع المثلن
7/(1)	(÷) \(\frac{\lambda}{\lambda}\)	(i) Y	y (1)
ماوى ٤ وحدات وهذا	وم من (٠٠٠) عموديًا عليه يس	يم الذي طول العمود المرسم	﴿ (٣) معادلة الخط المستقب
	لوجب لمحور السينات هي		
· = £ :	(ب) ۲۲ س + ص ±	· = A ±	(۱) س+ ۱۳ ص
· = Å	+ w + w + w ±	· = Y ±	(ج) ٣٧ - · + ص
Silver to to	لبق على المستقيمات : •		د (٤) نقطة تقاطع ارتفاعا ه الله الله الله الله الله الله الله ال
- Land 100 200	195 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	، -س + ص = ۱ هي	
$\left(\frac{\tau}{l}, \frac{\tau}{l}\right)(\tau)$	(-, /) (+)		
(+ +)(-)		(ب) (ب)	The State of the
			 (٥) إذا كان : حـ هو ط
		ح فإن : بيمكن أن تسا 	T =
(د) ح	(÷)	(÷)	1(1)
TAO 1811 - 211 7 - 18 1 1	/// -/		

: ف الشكل المقابل في (٦)

فإن : ك يمكن أن تساوى

(٧) النسبة التي يقسم بها المستقيم س - ص - ٢ = . القطعة المستقيمة ٢ - حيث ٢ (٢ ، -١) ، ب (٩ ، ٨) هي

- 1 = 7 + 0 + 7 + 0 وتبعد عن المستقيم 1 + 7 = 0 + 0 + 7 = 0 أوجد نقطة على المستقيم 1 + 7 + 0 + 0 + 7 = 0بمقدار √ه وحدة طولية. «(17 6 71-) 6 (7 6 11-)»
- (٠ ، ٢) = s ، (٢ ، ١-) = ع ، (٦ ، ٤) ، ح = (١ ، ٢) ، ع = (٢ ، ٢) فأوجد طول: حرَّدُ حيث حرَّ ، و نقطتا تقاطع العمودين المرسومين من ح ، و على الخط المستقيم أب « الم وحدة طول»
- € أوجد معادلة المستقيم الذي يمر بالنقطة (٢ ، -٤) وطول العمود الساقط عليه من نقطة الأصل يساوى ٢
- 0 إذا كانت : ٢ = (٣ ، ٥) ، ب = (١١ ، ١١) نقطتين ثابتتين فأوجد النقطة (أو النقط) حرالتي تنتمي لمحور السينات بحيث تكون مساحة △ ٢ مرح تساوى ٣٠ وحدة مربعة.

الدرس

5

المعادلة العامة للخط المستقيم المار بنقطة تقاطع مستقيمين

إذا تقاطع المستقيمان ل، : ٩, - ، + - ، ص + ح ، = ، ، له : ٩ - ص + ح ، = ،

في نقطة فإن المعادلة العامة لجميع المستقيمات المارة بنقطة تقاطعهما هي :

- في حالة أن م = صفر فإننا نحصل على معادلة المستقيم لي
- في حالة أن ل = صفر فإننا نحصل على معادلة المستقيم ل,
- في حالة أن م ≠ صفر ، ل ≠ صفر فإننا نحصل على المعادلة العامة لأى مستقيم يمر بنقطة تقاطع المستقيمين
 ل، ، ل، بخلافهما وفي هذه الحالة يمكن كتابة المعادلة (١) على الصورة :

٩, - س + - ، ص + ح ، + ك (٩, - س + - ، ص + ح ،) = صفر

حيث ك ثابت لا يساوى الصفر.

مثال ۱

أوجد معادلة المستقيم المار بنقطة تقاطع المستقيمين:

 $Y - \omega + \gamma = 0$ ، $\gamma - \gamma = 0$ ، $\gamma - \gamma = 0$ ، $\gamma = 0$

الحــل

المعادلة العامة للمستقيم المار بنقطة تقاطع المستقيمين المعلومين بخلافهما هي :

، ٠: النقطة (٥ ، ٣) تقع على هذا المستقيم. . . فهي تحقق معادلته.

: (۱) وبالتعويض في (۱) : $\frac{\lambda - 1}{11}$

: (8 - w - 4) = (8 - w - 4)

وبالضرب × ١٢ : .. ٢٤ ص + ٢٦ ص - ٢١٦ - ٥ ص + ٢ ص + ٧ = .

أى ١٩ س + ٣٨ ص - ٢٠٩ - أي س + ٢ ص - ١١ = .

مل أخر:

نوجد نقطة تقاطع المستقيمين : Y - w + T = 0 ، 0 - w - Y = 0 بحلهما جبريًا وذلك بضرب المعادلة الأولى في Y = 0 والثانية في Y = 0

:. 3 - w + r co = FT

، ١٥ -س - ٦ ص = ٢١

بالجمع : .: ۱۹ س = ۷ه

.. - س = ٣ وبالتعويض في أي من المعادلتين. · . ص = ٤

.: نقطة التقاطع هي (٣ ، ٤) ثم نوجد معادلة المستقيم المار بالنقطتين (٣ ، ٤) ، (٥ ، ٣) كما سبق دراسة ذلك.

حاول بنفسك

أوجد معادلة المستقيم الذي عر بنقطة تقاطع المستقيمين:

(5 - 10) ، 3 - 00 + 00 ويمر بالنقطة (6 - 10)

مثال ۲

أوجد معادلة المستقيم المار بنقطة تقاطع المستقيمين: ٣ -٠٠ ٢ صن = ١٠

، و حس – Υ ص – Υ = . ویکون عمودیًا علی المستقیم : Υ حس + Υ ص – Υ = .

الحل

المعادلة العامة للمستقيم المار بنقطة تقاطع المستقيمين بخلافهما هي :

.: - س (٣ + ٥ ك) + ص (٢ - ٢ ك) - ١٠ - ٤ ك = .

$$\frac{2 \circ + r}{2 r - r} - = \frac{v}{r} : \frac{2 \circ + r}{2 r - r} - = \frac{v}{r} : \frac{2 \circ + r}{r} - \frac{v}{r} : \frac{v}{r} = \frac{v}{r} : \frac{v}{r} : \frac{v}{r} = \frac{v}{r} : \frac{v}{r} : \frac{v}{r} = \frac{v}{r} : \frac{v}{r} :$$

وبالتعويض في (١):

$$\frac{1}{2}$$
 معادلة المستقيم المطلوب هي : ٣ - س + ٢ ص - ١٠ + $\frac{1}{11}$ (٥ - س - ٣ ص - ٤) = ٠

مثال ٣

أثبت أن المستقيمين : ٤ - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 + 0 - 0 - 0 - 0 - 0 التعامد ثم أوجد نقطة تقاطعهما.

الحـل

$$\therefore \, A_{1} = \frac{-3}{7} = \frac{3}{7} \, , \, A_{2} = -\frac{3}{7} = -1$$

.: المستقيمان متقاطعان على التعامد.

* لإيجاد نقطة تقاطع المستقيمين نوجد أولاً المعادلة العامة للمستقيم الثاني

$$\frac{\Upsilon}{1}$$
 - المستقيم الثاني يمر بالنقطة (۲ ، ه) وميله = $-\frac{\Upsilon}{3}$

$$\frac{\varphi}{1} = \frac{\varphi}{1} = \frac{\varphi}{1} = \frac{\varphi}{1}$$
 ... المعادلة الكارتيزية هي :

أى أن المعادلة العامة هي : ٣ -س + ٤ ص - ٢٦ = ٠

بجمع (٣) ، (٤).:

وبالتعويض في (١):

(7)

على المعادلة العامة للخط المستقيم المار بنقطة تقاطع مستقيمين

👶 مستویات علیا

ه تطبیق

ه فهـم

ه تذکیر

🛄 من أسئلة الكتاب المدرسي

(7 : 2) (1)

أُولًا / أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

ص =
$$\frac{7}{2}$$
 معادلة المستقيم الذي يوازي محور الصادات ويمر بنقطة تقاطع المستقيمين : $\infty = 3$ ، $\infty = \frac{7}{2}$ ص هي

$$\xi = - (1)$$
 $\xi = - (2)$ $\xi = - (2)$ $\xi = - (3)$

$$Y = \omega = (1)$$
 $Y = \omega = (1)$

$$\cdot = Y + \omega - (1)$$
 $\cdot = Y - \omega - (1)$

(٧) المعادلة المتجهة للمستقيم المار بالنقطة (٣ ، ١) وبنقطة تقاطع المستقيمين :

(Λ) معادلة المستقيم المار بالنقطة (Γ ، 3) وبنقطة تقاطع المستقيمين Γ : Γ - Γ - Γ - Γ - Γ ، لى: ر = (٢ ، ،) + ك (٢ ، ٢) هى (ب) س - ص + ۲ = ، (1) س - ص + ١ = ٠ (د) - س + ص + ۲ = · (ج) س + ص - ۱ = · ٩) المعادلة المتجهة للخط المستقيم المار بنقطة تقاطع المستقيمين ل: - ٥ - ٥ - ٥ ، لى : س + ص = ١٣ ومتجه اتجاهه (٤ ، ١) هي (1, 2) = + (7,0) = (4) (1) v = (3,1) + (5 (0,1) (E (1) e) + (A-(0) = v(1) (1, E) e) + (A, o) = ((a) ويوازى المستقيم : ٧ = (١٠١٠) + ك (٥،٤) هي (ب) ٤ - س - o ص + ٤ (ب (1) ٤ - س + ٥ ص - ١٤ = ٠ (د) ٤ - س - ٥ ص - ١٤ = ٠ (ج) ٥ - ١٤ - ص - ١٤ - ٠ (١١) معادلة المستقيم المار بنقطة تقاطع المستقيمين: ٢ - س + ٣ ص - ٢ = ٠ ، ٣ - س - ص - ١٤ = ٠ ويصنع مع الاتجاه الموجب لمحور السينات زاوية موجبة قياسها ١٣٥° هي (ب) س + ص = ۲ · = ص + ص (1) (د) ص - - س = ۲ (ج)س - ص = ٢ (١٢) عدد المستقيمات التي تمر بنقطة تقاطع مستقيمين = (د) عدد لا نهائي. (ب) ۱ (ج) (i) صفر. (٣) إذا مر المستقيم (س - ٤ ص + ٤) + ك (٤ - س + ص + ٥) = · بالنقطة (١ ، ١) فإن : ك = 1- (2) 7 (a) رب) ۲ ٤(1) ٤ (3) إذا مر محور السينات بنقطة تقاطع المستقيمين ٩ - ب + ص + ٣ = . ، - - ص + ص + ١ = .فإن : ٢ = -- T(J) - T (u) ·(1) (1 , 1) $= \sqrt{(1, 1)} + (1, 1) = \sqrt{(1, 1)} + (1, 1) + (1,$ هیه (1, 1-)(2) (1 , 1-)(-)

(4, 7) (4)

(T . T) (i)

معادلة المستقيم المارة بنقطة تقاطع المستقيمين -0 = -7 ، -0 = 7 وينصف الزاوية بينهما هیه

، ٢٩ لـ بحد فإن معادلة ٢٩ هي

· = 1 + ou + (Y)

(د) لا شيء مما سبق.

(ب) (٢) فقط.

(٨) انطلقت قذيفة من مكان ما لتصيب هدفًا ثابتًا متبعة المسار في الخط المستقيم ٢ - س + ص - ١ = ٠ وكذلك قذيفة من مكان آخر لتصيب نفس الهدف متبعة المسار في الخط المستقيم - س ص + ٤ = ٠ فإن معادلة المستقيم الذي تسلكه قذيفة من نقطة (٥ ، ٣٠) لتصيب نفس الهدف هي

ثاننا/ الأسئلة المقالية

🚺 أوجد معادلة المستقيم الذي يمر بنقطة تقاطع المستقيمين:

$$(1-1)^{3}$$
 ، $(1-1)^{3}$ ، $(1-1)^{3}$ ، $(1-1)^{3}$

« مر + \ + س

🚺 أوجد معادلة المستقيم المار بنقطة تقاطع المستقيمين :

«·= w+ 7 - Y»

🗀 أوجد معادلة المستقيم المتجهة المار بنقطة تقاطع المستقيمين :

$$\sqrt{-2}$$
 $=$ $\sqrt{-7}$ $=$ $\sqrt{-7$

- = ٥ + ٠ = ٣ ٠ = ٠
 أوجد معادلة المستقيم المار بنقطة تقاطع المستقيمين: -٠ = ٠ = ٠ ، = ٤ - ص - ٢ ، $= 1 + \infty - 7 - \infty + 1 = 0$ ويكون موازيًا للمستقيم « ٠ = ١١ + ص ١٠ - س « «
 - و أوجد معادلة المستقيم المار بنقطة تقاطع المستقيمين :

 (Υ, Υ) اثبت أن المستقيمين : Υ س $-\Upsilon$ ص +3= ، $\sqrt{}=(\Lambda, \Lambda)+$ $(\Lambda, \Lambda)+$ $(\Lambda, \Lambda)=$

متقاطعان على التعامد ثم أوجد نقطة تقاطعهما.

- - 🚺 أوجد معادلة المستقيم المار بنقطة تقاطع المستقيمين:

٢ - س + ص - ١ = ، ، - س - ص + ٣ = ، ويقطع من الجزء السالب لمحور الصادات جزءًا طوله ٣ وحدات.

- ا أوجد معادلة المستقيم الذي يمر بنقطة تقاطع المستقيمين: ٥ - ص = ٥ ، ٠ + ٢ ص = ١ من الجزءين الموجبين لمحورى الإحداثيات طولين متساويين.
 - ا الله عان ل، : ٣ -س + ٢ ص ٧ = ، ، له : ر = (-٢ ، ،) + ك (٣ ، ٢) فأوجد : الله عند الله عن
 - (۱) المعادلة الكارتيزية للمستقيم لي (۲) قياس الزاوية بين المستقيمين ل، ، لي
 - (٢) نقطة تقاطع المستقيمين ل، ، ل،
 - (٤) معادلة المستقيم الذي يمر بنقطة تقاطع المستقيمين والنقطة (٢ ، ٤)
- (٥) طول العمود المرسوم من نقطة تقاطع المستقيمين إلى الخط المستقيم الذي معادلته: ٣ -س ٤ ص ٩ = ٠
 - (٦) مساحة سطح المثلث المحدد بالمستقيمين ل، ، لم ومحور السينات.
 - ۱٤ ١٤ ٠ ع ص ١٤ = ٠
 الربط بالحياة: طريقان مستقيمان معادلة مسار الأول: ٣ ٠ ع ص ١٤ = ٠
 - ومعادلة مسار الثاني: ٤ س + ٣ ص ٢ = ٠

أثبت أن الطريقين متعامدان ، ثم أوجد :

- (١) نقطة تقاطعهما.
- (٢) معادلة المستقيم الذي يمر بنقطة التقاطع والنقطة (٣ ، -٢)
- (٣) طول أقصر بعد من نقطة تقاطع الطريقين على طريق آخر معادلته : ٤ ٠ + ٣ = .
 - (٤) مساحة سطح المنطقة المثلثة المحددة بالطريقين ومحور الصادات.

ثالثًا 🗸 مسائل تقيس مهارات التفكير

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
- (1) index raids thursday the state of $\frac{\partial}{\partial t} = \frac{\partial}{\partial t} = \frac{$
 - $\left(\frac{-t}{-t},\frac{-t}{-t}\right)(a) \qquad \left(\frac{-t}{-t},\frac{-t}{-t}\right)(a)$

- ق 5 تذکر فهم تطبیق مستویات علیا (٢) لقيم ك المختلفة فإن المعادلة (٢ + ك) س + ((2 + 1) ص = (3 + 1) ك تمثل (1) مستقيمات متوازية.
 - (ب) مستقيمات متقاطعة في النقطة (-Y ، P)
 - (ج) مستقيمات متقاطعة في النقطة (٢ ، -٩)
 - (د) لا شيء مما سبق.
- (٣) إذا كان: ١٩ حرى شكل رباعي فيه معادلات المستقيمات التي تحمل أضلاعه ١٩ ، بحر ، حرى ، ·= ۱۲+ ص + ۲ ص = ٤ ، ص - ۲ ص = ٤ ، ٥ - ٠ + ص + ٢ = ٠ على الترتيب فإن قياس الزاوية بين القطران أحد ، 5 ب تساوى
 - °r. (1) (ب) ٥٤° (ج) . F°
 - (٤) إذا مرت الثلاث مستقيمات : ٣-س + ص ٢ = ، ، ك س + ٢ ص ٣ = . ، ٢ - ص - ٣ = ، بنقطة واحدة فإن : ك =
 - ٣ (ب) (ج) ٢ 0-(1)
- (ه) إذا كانت المستقيمات: + + ، ص + ٤ = ، ، ص + ٢ ص + ٤ = . تحمل متوسطات مثلث فإن : ٢ =
 - E-(1) Y- (w) (ج) ٢ ٤(١)
 - آ أوجد معادلة المستقيم الذي يمر بنقطة تقاطع المستقيمين:

ر د ، ۲) + الح (۲ ، ۳) + (3 ، 1) + (4 ، 1) + (5 ، 1) + (5 ، 1) وطول العمود النازل عليهمن النقطة (-۲ ، ۱) يساوى ٥ √٢ وحدة طول. «ص + ٧ -س - ٢٧ = .»

- إذا كانت : 9 = (1 ، 1). ، = (2 ، 3) ، 5 = (7 ، 7) ثلاثة رؤوس في الشكل الرباعي الدائري ١ - ح و الذي فيه : ٥ (د س) = ٩٠ أوجد :
 - (١) معادلة ب (١) معادلة حرى
- (٣) إحداثيي النقطة حـ $\frac{1}{1}$ $\frac{1}$

الرباضيات

- اخــتبارات تراكــمية
- اخـــتبارات شهــرية
- امتحانات نهائیة

إعداد تخية من خيراء التعليم

الفصل الحراسف الثانى

- ◄ الاختبـارات التراكميـــة القصيرة.
 - ▶ الاختبــارات الشهرية.
 - ◄ امتحانــات الكتــاب المدرســي.
 - ♦ الامتحانــات النهائيــة.
 - ◄ الإجابات.

الاختبارات التراكمية القصيرة

أُولًا ؛ اختبارات تراكمية قصيرة في الجبر.

ثانيًا : اختبارات تراكمية قصيرة في حساب المثلثات.

ثَالثًا ؛ اختبارات تراكمية قصيرة في الهندسة التحليلية.

الدرجة الكلية

على درس 1 من الوحدة الأولى

اختبار 1

أجب عن الأسئلة الأتية ،

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$(1)$$
 (ع) (2) (ع) (2) (ع) (3) (ع) (3) (ع) (4) (ع) (4)

$$\Delta(z) = 1$$
 (4) $\Delta(z) = -2$ $\Delta(z) = -2$

$$\frac{7}{7}(1) \qquad \frac{7}{7}(1)$$

ه الجبر

$$\begin{pmatrix} \mathbf{v} & \mathbf{f} \\ \mathbf{s} & \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{v} + \mathbf{v} & \mathbf{v} + \mathbf{v} \\ \mathbf{v} & \mathbf{v} \end{pmatrix} : \mathbf{v}$$

فإن: المعادلة التي جنراها ٢٠ ، ٢ ك هي

$$\cdot = \xi + {}^{\prime} \smile () \qquad \qquad \cdot = \xi - {}^{\prime} \smile (1)$$

وکان : ۲ س = ص^{مد} فإن : ۴ + ۲ ب =

$$\Lambda(z)$$
 $\Lambda(z)$ $\Lambda(z)$

(٩) المصفوفة (٣ ٢ ١) على النظم

$$1 \times \Gamma(1)$$
 $1 \times \Gamma(2)$ $1 \times \Gamma(1)$ $1 \times \Gamma(1)$

(۱۱) إذا كانت: أ مصفوفة على النظم ٢ × ٢ وكان أ س ص = ص

$$\dot{\underline{y}}_{\downarrow \downarrow} : \eta_{17} \times \eta_{27} \times \eta_{27} = \dots$$

$$\dot{\underline{y}}_{\downarrow \uparrow} : \eta_{17} \times \eta_{27} \times \eta_{27} = \dots$$

$$\dot{\underline{y}}_{\downarrow \uparrow} : \eta_{17} \times \eta_{27} \times \eta_{27} \times \eta_{27} = \dots$$

$$\dot{\underline{y}}_{\downarrow \uparrow} : \eta_{17} \times \eta_{27} \times \eta_{$$

$$f = f(-1)$$

الدرجة الكلية حتى درس 2 من الوحدة الأولى أجب عن الأسئلة الأتية : اختر الإجابة الصحيحة من بن الإجابات المعطاة : (١) إذا كانت المصفوفة \ على النظم ٢ × ٣ فإن عدد عناصر \ يساوى 7(2) 0 (=) ۲ (ب) ۲ (۱) صف. (ب) عمود. (ج) متماثلة. (د) شبه متماثلة. (r) إذا كان: $\begin{pmatrix} \tau \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ فإن: $-\omega + \omega = \cdots$ $I(1) \qquad \begin{pmatrix} \xi - \chi \\ \chi - \chi \end{pmatrix} + \begin{pmatrix} \chi - 0 - \chi \\ \chi - \chi \end{pmatrix} + \begin{pmatrix} \chi - 0 - \chi \\ \chi - \chi \end{pmatrix}$ $I(1) \qquad \begin{pmatrix} \chi \\ \chi \end{pmatrix} \qquad \begin{pmatrix} \xi - \chi \\ \chi \end{pmatrix}$ (۱) متماثلة. (ب) شبه متماثلة. (ج) صفرية. (١) وحدة.

(٦) إذا كانت المصفوفة 🎙 متماثلة وشبه متماثلة في نفس الوقت فإن :

 $I = \{(-)$

(د) أ مصفوفة صف.

٨

= (1)

(ج) أ مصفوفة قطرية.

(٧) إذا كانت : أ مصفوفة على النظم ٢ × ٢ حيث أص ع = ص - ٢ ع ، - مصفوفة على

$$\begin{pmatrix} \lambda - & \lambda - \\ \gamma - & \gamma - \end{pmatrix} (\dot{r}) \qquad \qquad \begin{pmatrix} \lambda & \lambda \\ \gamma & \gamma \end{pmatrix} (1)$$

$$\begin{pmatrix} \gamma & 1 \\ \gamma & 1 \end{pmatrix} (1)$$
 $\begin{pmatrix} \gamma & \gamma \\ \gamma & \gamma \end{pmatrix} (2)$

(٩) إذا كانت : ﴿ مصفوفة متماثلة فأي مما يأتي يمكن أن يمثل قاعدة لإيجاد عناصر المصفوفة ﴿ ؟

$$(+)^{\dagger} = Y - 3 \qquad (+)^{\dagger} = 2 + 3$$

$$\frac{1}{2} \frac{1}{2} \frac{1$$

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \end{pmatrix} (\cdot) \qquad \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \end{pmatrix} (\cdot) \qquad \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \end{pmatrix} (\cdot)$$

1(1)

اختبار 3 حتى درس 3 من الوحدة الأولى

أجب عن النسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(۱) إذا كانت
$$\{ , -1 \}$$
 مصفوفتين بحيث : $\{ -1 \}$ $\{ -1 \}$ فإن : $\{ -1 \}$ فإن المسلم المسلم المسلم (۱) إذا كانت $\{ -1 \}$ مصفوفتين بحيث : $\{ -1 \}$

$$\begin{pmatrix} 7 & 1 \\ 7 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\$$

(1) إذا كانت أ مصفوفة على النظم ٢ × ٣ ، صد مصفوفة على النظم ١ × ٣

فإن المصفوفة ◊ ب تكون على النظم

$$\Upsilon \times \Upsilon(\bot)$$
 $\Upsilon \times \Upsilon(-)$ $\Upsilon \times \Upsilon(-)$ $\Upsilon \times \Upsilon(-)$

$$I = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & \xi \\ 1 & -1 \end{pmatrix}$$
 فإن : $-\omega = \cdots$

$$(3)$$
 إذا كان: $\begin{pmatrix} 7 & -0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} \infty & -3 \\ 1 & -1 \end{pmatrix}$ فإن: $-\infty + \infty = \cdots$

(ه) إذا كان:
$$\emptyset = \begin{pmatrix} 3 & 1 \\ 7 & -3 \end{pmatrix}$$
 فإن: \emptyset = \emptyset

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}_{J,L}(\uparrow) \qquad \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}_{J,L}(\downarrow)$$

 $I = {}^{1}$ إذا كانت : 1 مصفوفة على النظم 1 × 2 وكان 1 + 1

فإن: مجموع عناصر أيساوى

$$\cdots\cdots = \begin{pmatrix} \lambda & \ddots & \lambda \\ \lambda & \ddots & \lambda \end{pmatrix} \begin{pmatrix} \ddots & \lambda \\ \ddots & \lambda \end{pmatrix} \begin{pmatrix} \lambda \\ \lambda & \lambda \end{pmatrix}$$

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} (2) \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} (3) \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} (4) \qquad \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} (1)$$

(١) إذا كانت كل من ١ ، ٠ مصفوفة متماثلة فإن المصفوفة (١٠٠١) تكون

(٠) إذا كانت (١٠) مصفوفة صفرية على النظم ٢ × ٢/فإن عدد عناصرها =

$$\begin{pmatrix} 2 & -3 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} 3 & 7 \\ -3 & -7 \end{pmatrix} \begin{pmatrix} 4 & 7 \\ -3 & -7 \end{pmatrix}$$
 (6) (1)

$$\begin{pmatrix} r - & 1 \\ r - & q \end{pmatrix} (a) \qquad \begin{pmatrix} r - & 1 \\ r & q \end{pmatrix} (a) \begin{pmatrix} q & \xi \\ 1 & 1 \end{pmatrix} (a) \qquad \begin{pmatrix} 1 & \xi \\ 1 & q \end{pmatrix} (1)$$

حتى درس 4 من الوحدة الأولى

أحب عن النسئلة الاتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(1)
$$|\vec{\xi}| \ge |\vec{\xi}| = |\vec{\xi}|$$
 $\Rightarrow (1) |\vec{\xi}| \ge |\vec{\xi}| = |\vec{\xi}| =$

فإن مساحة سطح المثلث المح تساوى وحدة مربعة.

$$\left[\Upsilon,\Upsilon_{-}\right](\downarrow)$$
 $\emptyset(1)$

$$\begin{pmatrix} & & & \\ &$$

$$\theta = -\frac{1}{2}$$
 اذا کان: $\theta = \frac{1}{2}$ $\theta = -\frac{1}{2}$ $\theta = \frac{1}{2}$ $\theta = \frac{1}{2}$ $\theta = \frac{1}{2}$

$$\frac{\pi}{\xi}(\omega)$$
 $\frac{\pi}{\gamma}(\dot{\varphi})$ $\frac{\pi}{\gamma}(\dot{\varphi})$ $\pi(1)$

$$\begin{pmatrix} 1 & & \\ & & \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & & \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & & \\ & \\ & \\$$

$$(1 \quad 9) = \checkmark \times (1 \quad 7) \quad (2 \quad 7) \quad (3 \quad 7) \quad (4 \quad 7) \quad (5 \quad 7) \quad (6 \quad 7) \quad (7 \quad 7) \quad (7 \quad 7) \quad (7 \quad 7) \quad (8 \quad 7) \quad (9) \quad (9) \quad (10) \quad$$

حتى درس 5 من الوحدة الأولى

اختبار 5

11

أجب عن النسئلة النتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\begin{pmatrix} \gamma & \circ & - \\ \gamma & - & q \end{pmatrix} \begin{pmatrix} \omega & - & \gamma \\ \gamma & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \varphi \\ \gamma & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & \gamma \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & \gamma \\ \xi & - & q \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & \gamma \\ \xi & - & \gamma \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & \gamma \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi & - & \gamma \end{pmatrix} \begin{pmatrix} \varphi & - & \gamma \\ \xi &$$

(٤) مساحة المثلث الذي رؤوسه :
$$(3, 0)$$
 ، $(7, -1)$ ، $(1, 7)$

تساوى وحدة مربعة.

(ه) إذا كان:
$$\emptyset = \begin{pmatrix} 1 & 3 \\ -1 & 7 \end{pmatrix}$$
 وكان $\emptyset = \emptyset$ × نفإن: $\emptyset = \emptyset$

$$\begin{pmatrix} A - & V \\ \xi & \xi \end{pmatrix} () \qquad \begin{pmatrix} A - & V \\ 1 - & \xi \end{pmatrix} () \begin{pmatrix} A & V - \\ 1 & \xi - \end{pmatrix} () \qquad \begin{pmatrix} \xi & V - \\ 1 & \xi - \end{pmatrix} ())$$

(v) إذا كانت: ﴿ مصفوفة مربعة على النظم ٢ × ٢ وكان ٢٠ ١ إ = ٨ فإن: ٢ ١ إ =

(A) إذا كان: أ مصفوفة مربعة فإن المصفوفة (أ + أ^{مد}) تكون

$$(e)$$
 (ع) (e) صفر (e) (e) (e)

$$\cdots\cdots\cdots = -+ \uparrow : \text{ i.i.} \qquad \begin{pmatrix} \uparrow \\ \gamma \end{pmatrix} = \begin{pmatrix} \uparrow \\ - \end{pmatrix} \begin{pmatrix} 1 & \gamma \\ 1 & -\gamma \end{pmatrix} : \text{ i.i.}$$

$$\cdot = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$
, $\cdot = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$, $\cdot = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$; $\cdot = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$

ال 6 حتى درس 1 من الوحدة الثانية

أجب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

النقطة التي تنتمي إلى مجموعة حل المتباينة : ص < ٢ -س + ٣ هي

$$\begin{pmatrix} 1-\\ 0 \end{pmatrix} = \longrightarrow \quad (\quad (\quad \quad) =) =$$
 ($\qquad \qquad (\quad) =)$

فإن العملية الوحيدة المكنة من العمليات الآتية هي

$$\left\{\frac{\lambda}{7}, \frac{\lambda}{7-}, \frac{\lambda}{7}\right\} (7) \qquad \left\{\frac{\lambda}{7-}, \frac{\lambda}{7}\right\} (7)$$

$$I_{\lambda}(\tau)$$
 $I_{\lambda}(\tau)$ $I_{\lambda}(\tau)$ $I_{\lambda}(\tau)$ $I_{\lambda}(\tau)$

الضربى للمصفوفة
$$\begin{pmatrix} 1 & - \\ & & 2 \end{pmatrix}$$
 يساوى $\begin{pmatrix} -1 & 7 \\ & & 1 \end{pmatrix}$ فإن : $-\omega + \omega = \cdots$

(٧) إذا كان: ل ، م هما جذرا المعادلة: -٠٠ - ٤ -٠٠ = ٠

$$\begin{pmatrix} \cdot & \Upsilon^- \\ V_- & \circ \end{pmatrix} () \qquad \begin{pmatrix} \circ & \Upsilon^- \\ V & \cdot \end{pmatrix} () \begin{pmatrix} \circ & \Upsilon^- \\ V_- & \cdot \end{pmatrix} () \begin{pmatrix} \circ & \Upsilon \\ V_- & \cdot \end{pmatrix} ())$$

(٩) النقطة التي تنتمي إلى مجموعة حل المتباينات: س ≥ ٢ ، ص < ٢

، - س + ص > ۲ هي

$$(1, 1)(2)$$
 $(2, 1)(4)$ $(2, 1)(4)$ $(2, 1)(4)$

(١٠) مساحة المثلث الذي رؤوسه (١ ، ٢) ، (٠ ، ، ١) ، (٠ ، ،) تساوى وحدة مربعة.

(۱۲) مجموعة حل المتباينة : $-u + o \leq T - u + 1 < T - u + 7$ في \mathcal{Z} هي

$$\{\Upsilon, \Upsilon\}(J) \qquad \emptyset (\Rightarrow) \qquad [\Upsilon, \Upsilon[(\varphi)], \Upsilon, \Upsilon] - \mathcal{E}(1)$$

الدرجة الكلية			
11	درس 2 من الوحدة الثانية	ر 7 دتی د	اختبا
		الأتية :	أجب عن الأسئلة
		ن بين الإجابات المعطاة	اختر الإجابة الصحيحة م
، + س + ص ≥ ٣	ت:س>۲ ، ص>۱	لى مجموعة حل المتباينا	(١) النقطة التي تنتمي إ
			هی
(4 ' 1) (7)	(÷) (÷)	(ب، ۱) (ب)	(1,7)(1)
	- س =	: فإن ۲ مارن ا	(۱) إذا كان: ا
0 (1)	٤ (ج)	(ب)	Y (1)
نظم ۱ × ۲	، ك مصفوفة على ال	يفة على النظم ١ × ٣	(٣) إذا كانت: ﴿ مصفو
سا (۵)	- 1 = (- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(ب) سنة + ٩	-+ P(1)
	معكوس ضربى فإن : س		
٣ (٤)	(∻) ۲	(ب) صفر	Y- (1)
ا هي ٤ وحدات مربعة	(, ,) , (, , ,) , (, , ,	تلث الذي رؤوسه (ك	(ه) إذا كانت مساحة الم
			فإن : ك =
A- 11 A (4)	(ج) صفر أ، ٨	(ب) -٤ ١، ٤	(١) صفر أ، -٨
	ا فإن: ا ا ا	فة مربعة وكان ¶ = I	(٦) إذا كانت : أ مصفو
I + \$ (2)	∮ ₹ (÷)	(·)	(1)

(v) الشكل المقابل يمثل منطقة الحل لنظام

من المتباينات فإن القيمة الصغرى لدالة

الهدف س = ٣ -س + ٢ ص هي

- ٨ (ب)
- 7(1)

- 17 (4)
- 17 (=)

مجموعة حل المتباينات

(٩) إذا كانت المصفوفة : ٩ = (بين -٩ (من -٩

 $\{ \prime, \cdot, \} (7) \qquad \{ \prime -, \cdot, \} (\stackrel{\leftarrow}{\rightarrow}) \qquad \{ \prime -, \cdot, \} (\stackrel{\leftarrow}{\rightarrow}) \qquad \{ \prime, \cdot, - \} (1)$

(١) إذا كان ضعف العدد س لا يقل عن ثلاثة أمثال العدد ص فإن

(ب) ٢ س ≤ ٣ ص

w > > - Y(1)

(c) Y - w ≥ 7 ou

رج) ۲ - س > ۳ ص

(۱۲) النقطة التي تنتمي لمنطقة حل المتباينات : $-0 \ge 1$ ، $-0 + \infty \ge 0$ ، $-\infty \ge 1$ والتي تجعل دالة الهدف 1 - 1 - 1 = 0 والتي تجعل دالة الهدف 1 - 1 = 0

$$(\Upsilon \cdot \Upsilon) (\bot) \qquad (\xi \cdot \Upsilon) (\Rightarrow) \qquad (\Upsilon \cdot \xi) (\psi) \qquad (\circ \cdot \cdot) (1)$$

ثانیًا

اختبـــارات تراكــميــــة قصيرة في حساب المثلثات

الدرجة الكلية			
ق الثالثة على الثالثة	درس 1 من الوحد	ل 1 على	اختبا
		، الاتية ،	أجب عن النسئلة
	: 51	من بين الإجابات المعط	اختر الإجابة الصحيحة
المار المرازية المرا	۲-۲ ما ۵ منا ۵	.ار : (ما θ + منا θ)	(١) أبسط صورة للمقد
(د) ما و الله الله الله الله الله الله الله ا	(ج) ۲	(پ) ۱	θ 1 θ L Y (1)
		*******	$\cdots = \frac{\theta \text{ id } \theta \text{ id }}{\theta \text{ id }} \text{ (1)}$
(د) فنا θ	(ج) كا B	(ب) منا θ	θ L (1)
			$\cdot = \frac{\left(\theta - \frac{\pi}{\Upsilon}\right) L}{\left(\theta - \pi \Upsilon\right) L} (\Upsilon)$
1-(2)	(ج) ا	(ب) طنا θ	θ ν (1)
			(٤) أبسط صورة للمقد
(1) 16 0 kg (4) 20	(ج) مِنْ اللهِ	0 (4)	V(1)
يا (٢ س + ص) =٢)	(س + ۲ ص) ط	س = ۳۰ فاِن : طا	(ه) إذا كان : -س + ه
7/7(2)	(ج) - ا	(ب) صفر	1(1)
فإن : ما θ منا θ =	$[] \cdot \frac{\pi}{\gamma} \cdot .[] \ni$	$\theta = \frac{\xi}{\delta} = \theta$	(٦) إذا كان: ما θ -
			\(\frac{1}{2}\)
			(γ) إذا كان : ما θ + δ
۲٥ (۵)	(خ) ۲۲	(ب) ه	1(1)
	444444444444444444444444444444444444444	٢ فإن: قا ٢ 0 =	θ إذا كان: طا θ
(د) ۹,۰	۱۰- (ج)	(پ) ۱۰	1 (1)
			(۱) ۲ طا صرطنا ص + ۲
7(4)	0 (2)	r (u)	1(1)

 ◄ حساب المثلثات (١٠) في الشكل المقابل: المحومتوازي أضلاع ، منا ۴ + منا - + منا ح + منا ع = (د) ٤ (ج) مفر . (ج) ١-(١) $\theta + 3$ منا $\theta + 3$ منا $\theta = 0$ فإن: θ منا $\theta - 3$ ما $\theta = 0$ 0(1) ۲ (۵) (ب) ٤ (۵) صفر القيمة العددية للمقدار : ه ميًا $\theta \times \tau$ وَا $\theta = \cdots$ ۲ (ب) 1(1) الدرجة الكلية حتيا الله المنافقة على المنافقة الثالثة أجب عن النسئلة الآتية : اختر الإجابة الصحيحة من بين الإجابات المعطاة : $\pi \nu \uparrow + \frac{\pi}{\gamma}(\iota)$ $\pi \nu + \frac{\pi}{\gamma}(\dot{\varphi})$ $\pi \nu \uparrow (\dot{\varphi})$ TN(1)

$$\pi \frac{11}{7}(\omega)$$
 این ان عبا $\theta = \frac{1}{7}$ ، $\pi \pi \left[\Rightarrow \theta \right]$ ، $\pi \pi \left[\Rightarrow \theta \right]$. π

(ه) إذا كانت : س ، ص Θ π π π π π π π π π التي تحقق أن ما س ما ص = ۱ تساوی $\left\{\frac{\pi}{r}, \frac{\pi}{r}\right\}(\iota) \left\{\frac{\pi r}{r}, \frac{\pi}{r}\right\}(\iota) \quad \left\{\pi r, \pi\right\}(\iota) \quad \left\{\pi r, \pi\right\}(\iota)$ (٦) إذا كانت : س $\pi \cdot [0, \pi]$ فإن مجموعة حل المعادلة : ميًا س = $\frac{1}{7}$ هي نفسها محموعة حل المعادلة (ب) ٢ منا س = مناس (1) طاس = ۲ عاس (د) منا ب س = ۱ ٢ = س ا ٢ - س ٢ مناس ٢ ح $\theta + \alpha \dot{\theta} + \theta \dot{\theta} + \theta \dot{\theta} = 0$ (A) إذا كانت : ك = ٤ ما ٣ س - ٥ فإن : ك ∈ [١- ، ٩-] (١) [٧ ، ٥] (١) [١٠ ، ٨] (ب) [٤ ، ٤-] (١) (اب) إذا كان : طا $\theta = 1$ فإن إحدى قيم θ هي (3) (3) 2). ° 170 (4) ° 170 (4) ° 1. (4) ° 1. (1) $\theta:$ اذا کان: $\eta^{1} = 1$ حیث $\theta \in]$ ، η ، η و انزا کان: η (۱) هغ° (ب) ۹۰ (ج) ۱۸۰ ° (د) ۲۷۰° $\frac{d^{2}\theta}{d^{2}\theta} = \frac{d^{2}\theta}{d^{2}\theta} + \frac{d^{2}\theta}{d^{2}\theta} = \frac{d$ $\frac{1-(3)}{\frac{1}{2}}$ $\frac{\sqrt{-}}{2}$ (\Rightarrow) $\frac{1}{2}$ (\Rightarrow) $\frac{1}{2}$ (\Rightarrow) (۱۲) مجموعة حل المعادلة : ما س + منا س = ، حيث ١٨٠ > حس < ٣٦٠ تساوی $\{^{\circ} \Upsilon \circ \} (\downarrow) \quad \{^{\circ} \Upsilon \circ$

حتى درس 🕽 من الوحدة الثالثة

4 EA (-)

7.9(-)

أحب عن الأسئلة الآتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

- (١) في الشكل المقابل:
- ن (د ح) =
 - 07 TV(1)
 - ° ++ ++ (=)
- 0. 17(1)
 - (١) في الشكل المقابل:
 - - 9, 1(1)
 - ٨, ٤ (٩)
- 18.7(2)
- (au) إذا كانت : $heta \in [\cdot \ , \cdot \wedge \wedge^\circ]$ ، مِنَا $heta + \wedge = \cdot$ فإن : $heta = \cdots$
- (*) The TV. (3) 9. (-) .(1)
 - (ع) اِذَا كَانَ : فَلَ $\theta = \frac{1}{2}$ فَإِن : فَيَا $\theta = 0$ فَإِن : فَيَا $\theta = 0$
 - \frac{1}{1} (\Rightarrow) $\frac{\gamma}{\gamma}(\psi)$ $\frac{0}{3}(1)$
 - (ه) في الشكل المقابل:

- · ひ(とりーと) = の。
- فإن : مساحة △ ا بح =سم.
- θ L TY(2) θ L TY(2) θ L Δ(1)
 - (٦) ٢ ب ح مثلث قائم الزاوية في ب ، ٢ ب ٢ سم ، محيطه = ١٢ سم
 - فإن : ق (دح) ≃
 - °۱۷(۱)) ۳۷ (ب)

 - °\A(=)

(1)

°07(2)

(۷) الحل العام للمعادلة : مِنَا $\theta = -1$ هو «حيث $v \in \alpha$ »

$$\nu\pi^{\gamma} + \frac{\pi}{\gamma}(2)$$
 $\nu\pi^{\gamma} + \pi(2)$ $\nu\pi + \frac{\pi}{\gamma}(2)$ $\nu\pi + \frac{\pi}{\gamma}(1)$

$$\frac{1}{2}$$
 اذا کان: قبًا $\frac{1}{2}$ $\frac{1}{2}$ فإن: طبًا $\frac{1}{2}$ فإن: طبًا $\frac{1}{2}$ اندا کان: قبًا $\frac{1}{2}$

$$\frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \right) = \frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \right) = \frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \right)$$

$$\cdots\cdots = 1 - \left(\frac{\pi}{r} - \theta\right)^{r} + \left(\theta - \frac{\pi}{r}\right)^{r} \downarrow (1)$$

(۱) صفر (ب) ۱ (ج) ما ّ
$$\theta$$
 (د) منا ّ θ

$$\overline{\theta}$$
 اِذَا کَانَ : ما $\theta = \frac{1}{2}$ ، $\theta \in]$ ، $\frac{\pi}{7}$ فإن : $\sqrt{1+4J^7}$ =(۱)

$$\frac{1}{\sqrt{4-\sqrt{-1}}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) & \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array} \right) \\ \frac{1}{\sqrt{4+1}} \left(\begin{array}{cc} \tau \end{array}$$

$$\nu\pi + \frac{\pi}{7}(\downarrow)$$
 $\nu\pi + \frac{\pi}{7}(1)$

$$\nu\pi + \frac{\pi}{7}(1)$$
 $\nu\pi + \frac{\pi}{7}(2)$

الدرجة الكلية

حتى درس 4 من الوحدة الثالثة

اختبار 4

أجب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$(1)$$
 اِذَا کان: $0 \leq \theta < 0$ ، $0 \leq 0$ ، $0 \leq 0$ نان: $0 = 0$ فان: $0 = 0$ نان: $0 = 0$ د. (۱) $0 \leq 0$ $0 \leq 0$ (۱) $0 \leq 0$ $0 \leq 0$ (۱) $0 \leq 0$ (۱) $0 \leq 0$ (۱)

(١) يمكن حل المثلث القائم الزاوية في كل الحالات الآتية ما عدا أن يكون المعطى

(*) الحل العام للمعادلة : ط $\theta = \sqrt{r}$ هو «حيث $v \in \sigma_v$

$$\pi \nu + \frac{\pi}{7}(1)$$
 $\pi \nu \uparrow + \frac{\pi \, \epsilon}{7}(1)$ $\pi \nu \uparrow + \frac{\pi}{7}(1)$

(٤) أبسط صورة للمقدار : ما (٩٠° – θ) قتا (١٨٠° – θ) تساوى

(ه) إذا كان: ما ٢ + ما - = ٢ فإن

 (٦) إذا كان: △ ٢ - حقائم الزاوية وأطوال أضلاعه هي: ٢ ، ٢ + ١ ، ١ - ١ حيث ٢ > ١ فإن قياس أكبر زواياه الحادة هي تقريبًا.

(٧) من نقطة على سطح الأرض تبعد ٤٠ مترًا عن قاعدة برج قيست زاوية ارتفاع قمة البرج فكانت ٧٢° فإن ارتفاع البرج لأقرب متر يساوى متر.

(١) في الشكل المقابل:

٢ - ح مثلث قائم الزاوية في ٢ ، ١٥ لـ ب ح ، ١٥ = ما م

(١٠) في الشكل المقابل:

إذا قيست زاويتي ارتفاع قمة برج طوله ٥٠ ٣٧ متر من النقطتين ٢ ، ب على نفس الخط الأفقى المار بقاعدة البرج فكان قياسيهما ٣٠° ، ٦٠° على الترتيب فإن البعد بين النقطتين ٢ ، ب يساوى متر.

(د) طا ص

°٩٠ (ج) °٨٠ (ب) °٧٢ (١)

°1 . . (u)

تها ۲۶ سم ۲	۱۲۰° في دائرة مساحا	نياس زاويته المركزية	(٧) مساحة قطاع دائري ا
		٠,٠	تساوی
77(2)	٨(ج)	(ب) ۱۲	78(1)
لمركزية	م ^۲ فإن قياس زاويته ا	۱۱ سم ومساحته ۹ س	(٨) قطاع دائري محيطه ٢
	× (÷)		74
	ينا θ – ما θ =	ا ۱۲ = ۱۲ فان : م	(١) إذا كان: ٢٥ ما θ م
<u>r√</u> (2)	<u>√√</u> ±(÷)	$\frac{1}{0} \pm (\psi)$	1 (1)
			$\cdots = \frac{\partial}{\partial l} + \frac{\partial}{\partial l} + \frac{\partial}{\partial l} \cdots$
θ W(2)	(ج) قتا 8 قا 8	(ب) ما 0 + منا B	1(1)
نيم θ هي	٣٧ = ٠ فإن إحدى ق	، ۲۰۱۰[، ۲ منا 0 +	\cdot ا إذا كانت : $\theta \in]$
	(ج) ۲۱۰°		
= طا س هي	ل المعادلة : ٣ ما س =	≥ ٣٦٠° فإن عدد حلو	(۱) إذا كانت : ٠ ≤ س
(د) ه : قاعلهملا علقا راعا (۲) الدرجة الكلية	ه / = ((+) ع ه / = ((+) - "+) اله اله اله اله اله اله اله اله اله اله	۲(ب) و«حيث ا	r∈∞ Y(1) -
ا ا	، 6 من الوحدة الثالثة	حتی درس	اختبار
Dynamical Balling		اتية ،	أجب عن النسئلة ال
		بين الإجابات المعطاة :	اختر الإجابة الصحيحة من
		$\cdots = \theta$	(۱) ما ^۲ 0 + منا ^۲ 0 + طنا
(د) طنا ^۳ B	(ج) طا ^۲ B	(ب) ف تا ّ θ	(١) قا ٢
ل قوسه ٦ سم	طر دائرته ٤ سم وطوا	ى الذى طول نصف ق	(٢) مساحة القطاع الدائر
		۲	تساویس
٨(٤)	۱۰ (⇒)	(پ) ۱۲	YE(1)

(r) إذا كان : ما (r) + مهًا (r) = (r) حيث (r) فإن : (r)

(٤) الحل العام للمعادلة : منا θ = ۱ هو «حيث نه ∈ ص»

$$\pi \nu \Upsilon + \frac{\pi}{\Upsilon}(1)$$
 $\pi \nu + \frac{\pi}{\Upsilon}(2)$ $\pi \nu \Upsilon(2)$ $\pi \nu \Upsilon(1)$

(٥) في الشكل المقابل:

فإن : ٢٠ = سم.

(۱) ۱۰ ما ۶۰ (د) ه ما ۲۰ (د) ه ما ۲۰ (د) ه ما ۲۰

$$\frac{0}{\xi}(a)$$
 $\xi(a)$ (a)

(v) في الشكل المقابل : (v)

ملول حد = سم المحال الم

(۱) مساحة القطعة الدائرية التي قياس زاويتها ۳۰° ، وطول نصف قطر دائرتها ۲ \sqrt{r} سم تساويسم.

$$\Upsilon - \frac{\pi}{r}(a)$$
 $\Upsilon + \pi \left(\frac{1}{r}\right)$ $\Upsilon - \pi \left(\frac{1}{r}\right)$ $\Upsilon + \frac{\pi}{r}(1)$

$$\cdots = \theta^{r} + \frac{1}{4} \frac{1}{\theta^{r}} + \frac{1}{\theta^{r}} (1.)$$

			(١١) في الشكل المقابل
			(۱۱) في الشكل المقابل : مساحة المنطقة ال
1			تساوی
	π ۱٦ (پ)		π ^ (1)
- Y	π ۲ (2)		π ξ (辛)
			(١٢) في الشكل المقابل
	14	ف قطرها ۱۰ سم	
(And)		· 0 (29 = 77°	
	سم۲	ء المظلل =	
π • · (Δ)	π ٤٠ (٠)	π ۲۰ (ب)	π ۲. (1)
الدرجة الكلية			
ر قث	رس 7 من الوحدة الثا	ال 7 حتى در	اختبا
ditt+Y-j+d		لة الاتية :	أجب عن النسنا
	: 8	من بين الإجابات المعطا	اختر الإجابة الصحيحة
احته ۹ ۲۷ سم م	وى الأضلاع الذي مسا	طول ضَّبلع المثلث المتساو	(١) إذا كان - 0 هو
			فإن : س =
٣ (۵)	TV (+)	(ب) ۲ ۱۷	7(1)
وطول قوسه ١٠ سم	لذی مساحته ۵۵ سم ^۲	دائرة القطاع الدائري ا	(۱) طول نصف قطر
			يساوى
٦ (۵)	۹ (ج)	(ب) ۲	٤,0(1)
	لول ضلعه ۱۲ سم	خماسي المنتظم الذي ط	(٣) مساحة الشكل اا
	The state of	سم (لأقرب سم)	
(4) 437	0.(2)		

(٤) مساحة الشكل الرباعي المحدب الذي طولا قطريه ١٢ سم ، ٨ سم وقياس الزاوية المحصورة بينهما ٢٠° تساوي سم

(ه) إذا كانت : $\theta \in [\,\cdot\,\,,\,\pi[$ فإن قيمة θ التي تجعل جذري المعادلة :

 $\pi \frac{r}{r} (\Rightarrow) \qquad \frac{\pi}{r} (\downarrow) \qquad \frac{\pi}{r} (1)$

(٦) في الشكل المقابل:

دائرة م ، م ح = ٦ سم ، ق (د ٩ م ب) = ق (د ح م ب) = ٤٠° فإن مساحة الجزء المظلل = سم ٢

$$\pi \lor (3)$$
 $\pi \lor (3)$ $\pi \circ (4)$ $\pi \cdot (1)$

(۷) إذا كان : $\uparrow + - = -7$ فإن القيمة العددية للمقدار :

-----= (- A + P 9) L + (- T + P T) L

(۱) (ب) ۲۷ (ج) صفر

(A) في الشكل المقابل:

مساحة △ ا بحتساویسم

۲۸ (ب) ۲۶ (۱) ۲۲ (ج) ۲۲ (ج)

(٩) مساحة قطعة دائرية طول وترها ١٨ سم ، وطول نصف قطر دائرتها ١٨ سم لأقرب سم تساوىسسم

(٠٠) الحل العام للمعادلة : منا θ = ٠ هو «حيث له ∈ ص»

$$\nu\pi\Upsilon + \frac{\pi}{\Upsilon}(1)$$
 $\nu\pi + \frac{\pi}{\Upsilon}(2)$ $\nu\pi\Upsilon(2)$ $\nu\pi(1)$

(١١) في الشكل المقابل:

ا بحرى متوازى أضلاع

YE (=) Y. (-)

17(1)

(١٢) في الشكل المقابل:

ب و = ٦ سم ، مساحة الشكل ٩ ب حرو = ٢٤ ٦٦ سم

، ق (در ه ح) = ۱۲۰°

فإن: أح =سم.

١٥ (١٥) ١٤ (ب) ١٢ (١)

17(2)

(4) and (1) -1 -1

41

IİIIİ

ـة التحـليلية	قصيـرة في الهندس	نتبارات تراكمية ذ	ا تالتا
الدرجة الكلية			11/
	ا 1 من الوحدة الرابعة	ر 1 علی درس	اختبا
No grante, take		الاتية .	أجب عن الأسئلة
		من بين الإجابات المعطاة :	اختر الإجابة الصحيحة
(1-, 1-) > ,	(2 , 2) - , (7 - , 2	ثى المتعامد إذا كانت : ٢ (أَ بُ فَإِن النقطة وهي	(١) في المستوي الإحدا وكانت حرك تكافئ
(V- · ·) (.	(V : -) (÷)	(ب) (۲ ، -۲)	(7, 7-)(1)
	م مرکزه الهندسی (ش) أی	ه و شکل سداسی منتظ	
50:00	(ج) ا ر نرح (د	50: -1 (4)	(۱) اب ، وتر
	قطعت نفس المسافة في اتج	متر في اتجاه الشمال ثم	
سمال الغربي.	(ب) ٤٠ متر في اتجاه الث	جاه الغرب. 📗	(۱) ۶۰ متر فی ات
ه الجنوب الغربي.	(د) ۲۰ ۲۷ متر في اتجا	ى اتجاه الشمال الغربي.	(ج) ۲۰ √۲ متر ف
		كمية متجهة ؟	(٤) أي مما يأتي يمثل
) الكتلة.	(ج) الإزاحة. (L	(ب) درجة الحرارة.	(١) الزمن.

(٥) إذا تحرك راكب دراجة مسافة ١٢ كم في اتجاه الشمال ثم عاد وتحرك من النقطة التي وصل إليها ٤ كم في اتجاه الجنوب فإن المسافة التي قطعها راكب الدراجة خلال الرحلة کلهاکم

> 17 (1) (ب) ٤ ٨ (١) 17 (2)

> > (١) ١٩ حرى مستطيل فإذا تحرك جسم من ١ إلى حدثم إلى بثم إلى و فإن الإزاحة الحادثة

(1) مقدارها ٢ - في اتجاه - ١ (س) مقدارها عو في اتجاه ع (ح) مقدارها عوفي اتجاه عو (د) مقدارها وحفى اتجاه وح

(*)
$$|\vec{i}| \ |\vec{i}| $

(ب) ٢ ، ب في نفس الاتحاه.

-//9(1)

حتى درس 🞖 من الوحدة الرابعة

أجب عن النسئلة الأثية :

〒上〒(→)

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

.....
$$= \overline{5}$$
: فإن : $\overline{1} = \overline{5} = \overline{5}$ فإن : $\overline{5} = \overline{5}$ فإن : $\overline{5} = \overline{5}$

$$\left(\frac{\pi}{\xi}, \sqrt{\chi}\right) = \hat{\beta}(1)$$

$$\left(\frac{\pi}{\xi}, \sqrt{\chi}\right) = \hat{\beta}(1)$$

$$\left(\frac{\pi}{\xi}, \sqrt{\chi} \right) = \hat{\gamma} (1) \qquad \left(\frac{\pi}{\xi}, \sqrt{\chi} \right) = \hat{\gamma} (2)$$

(٣) في الشكل المقابل : ﴿

١ - حـ و متوازى أضلاع قطراه متقاطعان في م

فإن جميع العبارات التالية تعبر عن أحد عدا العبارة

(٤) في المثلث الحد: إذا كانت و منتصف حد فإن: عا + حا + او =

(a) I i l Di :
$$\hat{\uparrow}$$
 : $\hat{\uparrow}$

(7) قیاس الزاویة بین المتجهین : $\hat{7} = 7$ $\hat{w} + 7$ $\hat{w} = \hat{w} + \sqrt{7}$ $\hat{w} = \sqrt{10}$ $\hat{w} = \sqrt{10}$

(A) إذا كان: أ = ٢٠ س - ١٥ ص ، ب = ٧ س + ٤٢ ص

وکان:
$$\vec{r} = \vec{r} + \vec{r}$$
 ، $\vec{r} = \vec{r} + \vec{r} = \vec{r}$ فإن: $\vec{r} = \vec{r} + \vec{r} = \vec{r}$ وکان: $\vec{r} = \vec{r} + \vec{r} = \vec{r}$ وکان: $\vec{r} = \vec{r} = \vec{r}$ (ب) $\vec{r} = \vec{r} = \vec{r}$

| w | = | w | (3)

(٩) في الشكل المقابل:

ابحوه و سداسي منتظم فإن :

(١٠) في الشكل المقابل :

(1) إذا كان:
$$7 \hat{7} + \dots = (0, -7)$$
 ، $1 \hat{7} = (-7, -7)$ فإن: $\hat{7} = \dots$
(1) إذا كان: $1 (7, -7)$ (ب) (ب) (۲, -7) (ب) (ب) (۲, -7) (ب) (ب) (۲, -7) (ب) إذا كان: $1 (9, -7)$ ، $1 (1, -7)$ وكان $1 \hat{7} = 0$ فإن: $1 (9, -7)$ وكان $1 \hat{7} = 0$

(۱) ۲- (۱) ۲- (ب) ۲- (ب) ۲- (۱)

الدرجة الكلية

حتى درس 4 من الوحدة الرابعة

أجب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(۱) إذا كان :
$$\frac{3}{9} = .71$$
 $\frac{1}{2}$ ، $\frac{1}{2} = ...$ فإن : $\frac{1}{2}$, $\frac{1}{2} = ...$ (۱) (۲) $\frac{1}{2}$ (۲) $\frac{1}{2}$ (۲) $\frac{1}{2}$ (۲) $\frac{1}{2}$

(٣) في الشكل المقابل:

(٥) في الشكل المقابل:

Y-(2)

(٦) في الشكل المقابل:

١ حدى مستطيل فيه : ه منتصف حدى

(A) في الشكل المقابل :

(*) إذا كانت القوى
$$\frac{\pi}{\sqrt{2}} = \frac{\pi}{\sqrt{2}}$$
 ، $\frac{\pi}{\sqrt{2}} = \frac{\pi}{\sqrt{2}} = \frac{\pi}{\sqrt{2}}$) $\frac{\pi}{\sqrt{2}} = \frac{\pi}{\sqrt{2}} = \frac{\pi}{\sqrt{2}} = \frac{\pi}{\sqrt{2}}$. $\frac{\pi}{\sqrt{2}} = -6 \text{ m} + (-4) \text{ m}$ rêft és isads elecs el Apaesas és alls l'itili

(١٠) في الشكل المقابل:

فإن محصلة القوتين في ، في هي

·····= \(\frac{\frac{1}{2}}{2} \)

ج) ا ج) ا

فإن : ك =

$$Y = \| \vec{\Box} - \vec{f} \|_{(\downarrow)}$$

$$Y = \| \vec{\Box} + \vec{f} \|_{(1)}$$

$$Y = \| \vec{\Box} + \vec{f} \|_{(1)}$$

$$Y = \| \vec{\Box} + \vec{f} \|_{(1)}$$

الدرجة الكلية

11

حتى درس 1 من الوحدة الخامسة

اختبار 5

أجب عن الأسئلة الأتية ،

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(۱) إذا كان : وح =
$$(17)$$
 ، $\frac{\pi}{7}$) متجه موضع لنقطة حر بالنسبة لنقطة الأصل و فإن نقطة حر هي

$$(Y-,Y)(y)$$
 $(Y,Y)(y)$ $(Y-,Y-)(y)$ $(Y-,Y-)(y)$

(ه) في الشكل المقابل: والمعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة

$$|\vec{c}| \geq |\vec{c}| \geq |\vec{c}| = |$$

فإن النقطة — هي

- (٦) المتجه الذي يعبر عن السرعة المنتظمة ٦ كم/- لسيارة في اتجاه الشمال الغربي
- (ب) ۲/۲ س ۲/۲ ص (1) 7 VT w + 7 VT av (+) -7 17 m + 7 17 a (c) -5 17 m + 5 17 a
 - (٧) المتجهات الآتية متجهات وحدة ما عدا

- (A) إذا كانت : ح ∈ أب وكان أب = ٤ ب م ، ١ (-١ ، ٤) ، ب (٣ ، ٤) فإن النقطة حـ هي
- (£, 7)(3) (+, £)(÷) (7, £)(·) (£, ·)(1)
 - (١) النسبة التي يقسم بها محور السينات القطعة المستقيمة ٢ حيث ٢ (٢ ، ٥) ، ب (۲ ، ۲-۱) هي
 - ٥: ٢(١) ٢: ٣ (١) ٢: ٥ (١)
 - (ア・ア) ン 、 (ハ・ソ) 、 (0・ア) ト: (1・ア) カート(1・ア) فإن نقطة تلاقى متوسطات المثلث هي

(۱) (٤،٦) (ب) (٢،٤) (ج) (٢،٩)

(١١) في الشكل المقابل: اذا كان: ١٤٤ حـ = ١٩٠

فان النقطة ب هي

(٢) (٢-) (١) (٢٠ (٢-) (٠) (١٢ (٠) (١٢ (٥-) (١)

حتى درس 2 من الوحدة الخامسة

أجب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(١) معادلة المستقيم الذي يمر بالنقطة (٢ ، ٣-) ويوازي محور السينات هي

$$\cdot = \mathsf{T} - \mathsf{D}(\mathsf{L}) \quad \cdot = \mathsf{T} - \mathsf{D}(\mathsf{L}) \quad \cdot = \mathsf{T} + \mathsf{D}(\mathsf{L})$$

(١) المعادلة المتجهة للمستقيم: ٤ - س + ٣ ص = ١٢ هي

$$(\xi, \tau) = + (\xi - \xi, \tau) = \sqrt{(1)}$$

$$(\tau, \xi) = + (\tau, \xi - \xi) = \sqrt{(1)}$$

$$(\xi, \tau) = + (\xi - \xi, \tau) = \sqrt{(2)}$$

$$(\xi, \tau) = + (\xi - \xi, \tau) = \sqrt{(2)}$$

$$(\xi, \tau) = + (\xi - \xi, \tau) = \sqrt{(2)}$$

(٣) في الشكل المقابل:

(E-17-) e+(E-17)= s(1)

جميع العبارات الآتية تعبر عن

اه ما عدا العبارة

(٤) إذا كان : $\overline{S} = (7 - 7)$ متجه اتجاه المستقيم فإن جميع المتجهات الآتية تكون متجهات اتجاه لنفس المستقيم ما عدا المتجه

(٥) إذا كانت النقطة ٢ (٠٠٠) هي صورة النقطة - (٢،٢) بالانعكاس في المستقيم ل فإن معادلة المستقيم ل هي

(٦) المتجه الذي يعبر عن إزاحة جسم مسافة ٤٠ سم في اتجاه الجنوب الشرقي هو

(٧) إذا كان: ١ (٣، ١-٥) ، - (-١،٥) ، م (١،١٥) وكان ١ - // م فإن: ك =

(۸) النسبة التي يقسم بها محور الصادات أب حيث (۲ ، ۵) ، ب (۲ ، ۷) تساوي

(١) في الشكل المقابل: معادلة المستقيم وحد هي

$$(=)$$
 $\omega = \frac{u}{a} = \omega$

(٠) المستقيم : ٦ -س - ٨ ص = ٤٨ يصنع مع محورى الإحداثيات مثلثًا محيطه = وحدة طول،

(١١) متجه اتجاه العمودي على المستقيم : س = ٣ + ٢ ك ، ص = ٤ - ك هو

(١٢) معادلة أحد المستقيمين المنصفين للزاوية بين محورى الإحداثيات هي

الدرجة الكلية حتى درس 🕃 من الوحدة الخامسة أجب عن الأسئلة الأتية : اختر الإجابة الصحيحة من بين الإجابات المعطاة : (۱) قياس الزاوية الحادة المحصورة بين المستقيم : $\sqrt{} = (7, 7) + \mathcal{O} (1, 1)$ والمستقيم -ر يساوى ° £0 (1) °r. (~) °170 (=) (L) . F° (۱) إذا كان متجه الاتجاه العمودي على مستقيم هو ١٥ = (٢ ، ٤) فإن ميل هذا المستقيم $\frac{\xi}{r}$ (φ) $\frac{\xi-}{r}$ (1) (ج) F- (2) (٣) إذا كان: ١٩ حرى متوازى أضلاع فإن: ٢٠ + بحر + وب = (ب) <u>صفر</u> (ج) اح ٤) قياس الزاوية بين المستقيمين ل, : - + ٢ ص + ٥ = ٠ ، ل ، ع = (١ ، ٤) + ك (١ ، ٢) تساوى (۱) صفر (ب) °۶° (ج) °۹۰ (۱) °۱۳۵° (٥) إذا كانت: - (٢،٠) ، ح (٢،٠) وكانت ٢ تقع في ثلث المسافة من - إلى ح فإن نقطة ٢ هي (۱) إذا كانت : $\hat{\mathbf{q}} = (\mathbf{q} - \mathbf{l} \cdot \mathbf{r})$ ، $\hat{\mathbf{q}} = (\mathbf{q} - \mathbf{l} \cdot \mathbf{r})$ وكان $\hat{\mathbf{q}} = \mathbf{l}$ فإن قيمة $\mathbf{q} = \mathbf{l}$ $\frac{1}{2}$ (۱) منفر $\frac{1}{2}$ (۱) المنفر (ج) $\frac{1}{2}$

 (A) قياس الزاوية المنفرجة المحصورة بين المستقيمين :

(۹) العمودي على المستقيم : $\sqrt{}=(7,7)+ \cup (1,-\sqrt{7})$ يصنع مع الاتجاه الموجب لمحور السينات زاوية قياسها

 (\cdot) سیارتان (\cdot) ، ب تسیران فی خط مستقیم فإذا کان : (\cdot) سیارتان (\cdot) ، (\cdot) سیارتان (\cdot) ، (\cdot) نام (\cdot) ، (\cdot) ، (\cdot) نام (\cdot) ، (\cdot)

(۱) إذا كان المستقيم : $\frac{-0}{7} + \frac{0}{2} = 1$ يصنع مع محورى الإحداثيات مثلثًا مساحة سطحه 9 وحدات مربعة فإن : 0 = 1

١٤) مجموعة قيم ك التي تجعل قياس الزاوية الحادة بين المستقيمين - ٠ + ك ص - ٨ = ٠

$$\frac{\pi}{3}$$
 هی $\frac{\pi}{3}$ هی $\frac{\pi}{3}$ هی $\frac{\pi}{3}$ هی $\frac{\pi}{3}$ هی $\frac{\pi}{3}$ هی $\frac{\pi}{3}$

$$\left\{ \chi \right\} \left(\tau \right) \qquad \left\{ \frac{1}{4}, \chi \right\} \left(\frac{1}{4}, \chi \right) \qquad \left\{ \frac{1}{4}, \chi \right\} \left(\frac{1}{4}, \chi \right) \qquad \left\{ \frac{1}{4}, \chi \right\} \left(\frac{1}{4}, \chi \right)$$

الدرجة الكثية

اختبار 8 حتى درس 4 من الوحدة الخامسة

أحب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(۱) إذا كان : (٦ ، ٤) ، (٣ ، م) متجهى اتجاه لمستقيمين متوازيين فإن : م =

$$\frac{q_-}{r}(\omega)$$
 $\gamma(\omega)$ $\gamma(\omega)$ $\gamma(\omega)$

(١) معادلة الخط المستقيم المار بالنقطتين : (٢ ، ،) ، (٠ ، -٢) هي

$$1 = \frac{r}{\omega} + \frac{r}{\omega}(1)$$
 $\cdot = \frac{r}{\omega} + \frac{r}{\omega}(1)$

$$1 = \frac{\lambda}{1 - \frac{\lambda}{1$$

	نما 🕹 ۽ -۲ يساوي	المستقيمين الذين ميلاه	(٣) قياس الزاوية بين
٥٩٠ (١)	°9. (=)	(ب) ۲۰	°£0 (1)
. =	على المستقيم : -ر ، +	وم من النقطة (١،١)	(٤) طول العمود المرس
		وحدة طول.	يساوى
(د) صفر	1 (4)	₹V (÷)	Y (1)
made del	∋ c ((V- (T-)	٠ (٥،٣)٠:	(٥) احد مثلث فيه
	ا ا ا ا	Δ amile $\frac{1}{\pi} = s - 1$	بحيث مساحة 🛆
(1,1)(2)	(/- (·) (÷)	$\left(\lambda \cdot \frac{\lambda}{L} \right) \left(\dot{\gamma} \right)$	(TV , T) (1)
بهات التالية تكون متجهات	تقيم ما فإن جميع المت	، -٤) متجه اتجاه لسا	(٦) إذا كان: ي = (٢
	*******	يم ما عدا المنجه	الجاه تنفس السنتة
((,) ()	(٤ ، ٣) (=)	(ب) (۹) (ب)	(٤ ، ٣-) (1)
- ٤ ص + ٠٠ = ٠	٠ - ٢٠ ، - = ٢٠	ن: ٣ - س - ٤ ص +	(٧) البعد بين المستقيمي
(د) ه یوحدة طول	(ج) ع	(ب) ۲	Y (1)
ىوحدة طول	محور الصادات يساو	من النقطة (-١ ، ٤) إلى	(A) طول العمود النازل ،
٤ (١) ٤	1 (=)	(پ) –۱	V (1)
٢ = ٠ فإن مساحة المربع	+ س ٤ - س ٣ : 5	(۲ ، -۳) ، معادلة ح	(٩) ٢-حرو مربع فيه ٢
70 (2)	17 (÷)	۹ (ب)	٤ (١)
س پساوی	٣ ص ، ب = -3	تجهين : ١ = ٣ س- + ٢	(١٠) قياس الزاوية بين الم
*10.(2)	رخ) ۱۸۰ (خ)	(ب) ۲۰°	°£0 (1)
		= \$5 + 5.	++ + (11)
(a)	• (÷)	(ب) حو	(1)
(T . E) e) + (·	لستقيم : س = (ه ،	من نقطة الأصل على ا	(۱۲) طول العمود المرسوم
		وحدة طول.	يساوى
(د) ٤	(∻) ۳	(ب) ه	10 (1)

الدرجة الكلية

حتى درس 5 من الوحدة الخامسة

أجب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(٢) طول العمود المرسوم من نقطة الأصل على المستقيم : $\sqrt{} = (\cdot \cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot \cdot \cdot) + (\cdot) + (\cdot \cdot) + (\cdot$ يساوى وحدة طول، ١١١ دائم تفعيل إلنا ١٢٠٠١ توم

(٣) معادلة المستقيم المار بنقطة تقاطع المستقيمين: -س = ١ ، ص = ٢ هي

5-+-1(-)

(٤) في الشكل المقابل:

(٥) أى النقط الآتية تقع على المستقيم : آ = (-۲ ، ۱) + ك (۲ ، ۳) ؟

$$\left(\begin{smallmatrix} \gamma & \cdot & \frac{\gamma}{T} \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 \end{smallmatrix}\right) \qquad \left(\begin{smallmatrix} \frac{\gamma}{T} & \cdot & \frac{\gamma}{T} \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 \end{smallmatrix}\right) \qquad \left(\begin{smallmatrix} \frac{\gamma}{T} & \cdot & \frac{\gamma}{T} \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 \end{smallmatrix}\right) \qquad \left(\begin{smallmatrix} \gamma & \cdot & \frac{\gamma}{T} \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 \end{smallmatrix}\right) \qquad \left(\begin{smallmatrix} \gamma & \cdot & \frac{\gamma}{T} \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 \end{smallmatrix}\right)$$

(٦) المستقيم : $\frac{-v}{v} + \frac{\infty}{v} = 1$ يصنع مع محورى الإحداثيات مثلثًا مساحة سطحه

تساوى وحدة مساحة

(v) في الشكل المقابل: أحدى شبه منحرف إذا كان:

فإن : قيمة ك =حيث ك ∈ ع سيس منه به من من منه المناه المناه المناه المناه المناه المناه المناه

(٠٠) إذا كان المستقيمان : ص = ه ص + ح ، ص = ٢ ص + ۶ متوازيين فإن : ٢ =

$$\left(\frac{\sqrt{2}}{2}, \frac{\xi}{2}\right)(2) \qquad \left(1 - (7)(2)\right) \qquad \left(\frac{\xi}{2}, \frac{\sqrt{2}}{2}\right)(2) \qquad \left(7 \cdot (1-)(1)\right)$$

هادلة المستقيم المار بنقطة تقاطع المستقيمين ل $_{
m I}: -\omega + \Upsilon = 0$ هادلة المستقيم المار بنقطة تقاطع المستقيمين ل

، لى : -س - ٢ ص = ، ويوازى محور السينات هي

$$Y = \omega (1)$$
 $Y = \omega (1)$ $Y = \omega (1)$

الاختبــارات الشهرية

أُولًا : نماذج اختبارات شهر مارس.

تُانِيًا : نماذج اختبارات شهر أبريل.

محتوى امتحان شهر مـــارس

الجبر

من : تنظيم البيانات في مصفوفة ،

إلى: المعكوس الضربي للمصفوفة.

حساب المثلثات

من: التطابقات المثلثية.

إلى: زوايا الارتفاع والانخفاض.

الهندسة

من: الكميات القياسية والكميات المتجهة والقطعة

المستقيمة الموجهة.

إلى: تقسيم القطعة المستقيمة.

محتوى امتحان شهر أبريــل

الجبار

من: المتباينة الخطية.

إلى: البرمجة الخطية والحل الأمثل.

حساب المثلثات

من: القطاع الدائري.

إلى: المساحات.

الهندسة

من : معادلة الخط المستقيم.

إلى: المعادلة العامة للخط المستقيم المار بنقطة

تقاطع مستقيمين.

نماذج اختبارات شهر مارس

الدرجة الكلية

أجب عن الأسئلة الأتية :

(۱۲ درجـ		ت المعطاة :	حر الإجابه الصحيحة من بين الإجابان
وکان : ا = ب	7+1)=- ($\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
			فإن : ل + م + س=

(۱) کل مما یأتی یساوی $(1 - \alpha | \theta)$ $(1 + \frac{1}{6!} \alpha)$ ما عدا

 (٣) مساحة المثلث الذي رؤوسه ٩ (٠، ٤) ، ب (٥، ٢) ، ح (٢، ١) تساوىوحدة مربعة.

نا كان: $\hat{1} = (\lambda, \lambda)$ ، $\hat{1} = (\lambda, \lambda)$ فإن كل العبارات الآتية صحيحة (٤) إذا كان: $\hat{1}$

$$(17, 11) = \overline{1} + \overline{1}$$

(٥) إذا كانت ١ ، ٥ مصفوفتين بحيث : ١ مَثُ + ٥ الله = فإن : الأبُّ تكون مصفوفة

(٦) أي من المتجهات الأتية يمثل متجه السرعة لسيارة تتحرك بسرعــة مقدارها ١٠٠ كم/س في اتجاه ٦٠° شمال الغرب ؟

(A) في الشكل المقابل:

٩ - ح و شبه منصرف فيه : ب ح = ٢ ١٥ ، ١٥ ، ١٥ / ب ح فإن: بح + ٢ وح = (۱) ع ح (ب) با + أو المعالم المعا

$$\binom{\mathsf{V}}{\mathsf{E}} \frac{\mathsf{1}}{\mathsf{o}} (\mathsf{o}) \qquad \left(\mathsf{E} \quad \mathsf{V}\right) \frac{\mathsf{1}}{\mathsf{o}} \left(\mathsf{e}\right) \qquad \left(\mathsf{T} - \right) \left(\mathsf{o}\right) \left(\mathsf{E} \quad \mathsf{o}\right) (\mathsf{1})$$

$$|\vec{r}|$$
 $|\vec{r}|$ رب) مجموعة الحل للمعادلة : م
$$|\theta| = \frac{1}{3}$$
 حيث $\theta \geq 0$ هي π دين الحادلة : ما $\theta = 0$

$$\{\frac{\pi}{\pi}, \frac{\pi}{\pi}\}$$

$$\left\{\frac{\pi \circ (\pi^{\gamma})}{r}, \frac{\pi}{r}\right\} (1)$$

$$\left\{\frac{\pi \circ \left(\frac{\pi \uparrow}{r}, \frac{\pi \uparrow}{r}\right)(\bot)\right\} \left\{\frac{\pi \uparrow}{r}, \frac{\pi - \uparrow}{r}\right\}(\bot)$$

$$(^5\theta + \frac{\pi}{\gamma}, \omega) = \hat{1}, (^5\theta, \omega) = \overline{1}$$

(٤ درجات)

أجب عن السؤاليين الآتيين:

١ في الشكل المقابل:

و منتصف ب

، ه منتصف ای

أثبت أن: ١ - + ١ ح = ٢ هـ

] دائرة م طول نصف قطرها ٧ سم ، رسم فيها وتر أب يقابل زاوية مركزية قياسها ١١٠ ، احسب طول أب القرب ثلاثة أرقام عشرية. (٤ درجات) الدرجة الكلية أجب عن الأسئلة الآتية : (۱۲ درجة) اختر الإجابة الصحيحة من بين الإجابات المعطاة : (1) d' θ + d' θ d' θ = の は も で (() と で (で) で し で () で し で () で () 0 L (=) 0 YU(1) (7) إذا كانت : $9 = \begin{pmatrix} Y & Y \\ \xi & Y \end{pmatrix} = 0$. (7) فإن : $9 \leftarrow + \leftarrow 9 = \cdots$ $I \leftarrow (\downarrow)$ $I \in (\downarrow)$ $I \leftarrow (\downarrow)$ $I \leftarrow (\downarrow)$ $\Delta = -7$ میں $\Delta = -1$ یکون $\Delta = -1$ یکون $\Delta = -1$ Υ(ω) Υ-(φ) Υ(ψ) Θ (ω) 1-(1) (٤) إذا كان: أ = (ك ، ٢) ، ت = (٢ ، ٢) ، ح = (١ ، ٤) وكان : ٩ // حرب فإن : ك = ۲ (س) ۲ (ب) ۲ (س) ۲ (۱) (ه) إذا كان: -سص = (٢ ، ٣) ، صع = (٤ ، ه) فإن: -سع = ············ (1) (1) (1) (1) (4) (1) (4) (1) (1) (٦) الحل العام للمعادلة : ﴿ وَا $\theta + 1 = 0$ هو (حيث $\omega \in \alpha$ $\pi_{N} + \pi_{\frac{V}{\xi}} = \theta(\varphi) \qquad \pi_{N} + \pi_{\frac{Y}{\xi}} = \theta(1)$ $\pi \nu \Upsilon + \frac{\pi}{r} = \theta (s)$ $\pi \nu + \frac{\pi}{s} = \theta (s)$ (v) إذا كانت المصفوفة أ على النظم $Y \times Y$ حيث $Y = (1_{003})$ ، $1_{003} = 0 + 3$ فان : ا" = 17-(3) 1-(-) 17(-) 9(1)

(۸) إذا كانت : 0 = (7/7) ، $(\frac{\pi}{2})$ ، $(\frac{\pi}{2})$ ، $(\frac{\pi}{2})$ قوتان تؤثران في نقطة مادية فإن معيار محصلة القوتين = وحدة قوة.

(١٠) في الشكل المقابل:

Y-(1)

(١١) إذا كان س- متجه وحدة في اتجاه الشرق ، ص- متجه وحدة في اتجاه الشمال فإن القوة ى التى مقدارها ٤ √٣ نيوتن وتؤثر في اتجاه ٣٠° شمال الغرب هي ع =

(١٥) إذا كان: أ = ٤ س - ٣ ص ، تجه بحيث أ ل ب

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$$

آ أجب عن السؤاليين الآتيين:

(۱۲، ۷) ،
$$= (-1, 7)$$
 ، $= (-1, 7)$ ، $= ($

ا أوجد مساحة سطح المثلث الذي رؤوسه (٢ ، ٤) ، - (-٢ ، ٤) ، ح (٠ ، -٢) (٤ درجات)

نماذج اختبارات شمر أبريل

الدرجة الكلية - الدرجة الكلية (الدرجة)

اختبار 1

أجب عن الأسئلة الآتية :

- اختر الإجابة الصحيحة من بين الإجابات المعطاة :
- (۱) مجموعة حل المتباينات : $-u \ge \cdot \cdot -u + -u \le 1$ تمثل منطقة مثلثة رؤوسها النقط

(١) أي من النقط الآتية تنتمي إلى منطقة حل المتباينتين: -س + ص ≤ ٦ ، -س - ص ≤ ٧ ؟

(٣) قطاع دائري محيطه ٨ سم وطول قوسه ٢ سم فإن مساحته =سم٢

(٥) مساحة القطعة الدائرية الصغرى التي ارتفاعها ٥ سم وطول نصف قطرها ١٣ سم عسم

(٦) أي من الأشكال البيانية الآتية يمثل مجموعة حل للمتباينة : · ≤ - س < ٢ في ع × ع ؟

. و م - ۸ = ٠	المستقيمين: - س	الحادة بين	, تجعل قياس الزاوية	(٧) مجموعة قيم ك التي
	••••	ىي	$\frac{\pi}{2}$ ه - بساوی	، ۲ -س - ص - ۱
{r} (s	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(ج)	$\left\{\frac{1}{T}$, $T-\right\}\left(\frac{1}{T}\right)$	{\frac{1-}{7}, 7} (1)
	، ٤) يمر بالنقطة	۲) ف (۲	لته : ﴿ = (١- ، ٢	(A) المستقيم الذي معاد
(۲، ۰) (۵			(ب) (ب)	
-س+۳ ص= ٦	دات والمستقيم: ٢	حور الصا	د بمحور السينات وم	(٩) مساحة المثلث المحد
· only			وحدة مربعة.	تساوى
17 (3	2-14-6	(ج) ۲	(ب) ۲	7(1)
(ハ・フ) ピ+(・	ستقيم : 🕡 = (٣ ،	-٤) على الم	م من النقطة (-٢ ، -	(١٠) طول العمود المرسوم
	The late		وحدة طول.	يساوى
۲,7(۵)	(ج) ۲,۰	(ب) ۲٫۲	یساوی(۱)
ا عليه فإن معادلة	= (۱ ، ۳) عمودیًّا	المتجه تم	قطة (۲ ، ۱) وكان	(۱۱) إذا مر مستقيم بالن
				المستقيم هي
	+ ۲ ص - ه = ٠	(ب) س	. = 0 +	(۱) س ۲ + ص
	ں – ص – ہ = ،	٠٣ (١)		(ج) س ۳ ص
ستقيم س	+ ك (١،١) والم	(' ') =	ة بين المستقيم : 🗸 =	(١٢) قياس الزاوية الحاد
				_ هو
°170 (3)		رخ) ۰۷۰	°۲۰ (ب)	°£0 (1)

📊 أجب عن السؤاليين الآتيين :

اً أوجد الصور المختلفة لمعادلة الخط المستقيم الذي يمر بالنقطة (۱ ، ۳) ويكون عموديًا على المستقيم : $\sqrt{} = (7 \ ، \ 0) + (6 \ (7 \))$

آ مثل بيانيًا مجموعة حل المتباينات الآتية معًا:

س ≤ ٤ ، ص < س + ٢ ، س + ٢ ص ≥ -٢ في ع × ع (٤ درجات)

الدرجة ألكلية	بار 2	اخت	
٢٠			أجب عن الأسئلة الآتية
(۱۲ درجـة)	لعطاة :	ة من بين الإجابات ا	🚺 اختر الإجابة الصحيحا
، ٢ - س + ص + ه = ٠	(1,7)0+(1,5	ن المستقيمين ﴿ = ((۱) قياس الزاوية بين يساوي
(L) YV°	(خ) ۰۹۰	°08 17(-)	°7.(1)
14-11-11-1	1=1 1 1=1.	يمين: ٢ -س - ص	(٢) البُعد بين المستق
		وحدة طول.	يساوى
(د)صفر	1 ½ (÷)	٤ (پ)	1 (1)
من النقط الآتية تقع على	۲ ، ۱ (۰ ، ۲۰) فأى	منفیم ۲ ب یساوی	المستقيم أ ي ؟
(٤,٦)(١)	(+)(+)) (+)	(ب) (۱) (ب)	(1, .)(1)
بها (۲ نق + ۸) سم	ن محیط قطاع دائری فی	قطرها نق سم وكا	(٤)دائرة طول نصف
1-13-34-27-2-1	سم ۲	القطاع	فإن مساحة هذا
(د)٤ نق	(ج) ٨ نق٢	(ب) ٤ نق٢	(۱)نق۲
اينات :	, تمثل مجموعة حل المتب	النطقة التي	(٥)في المستوى الديك
Total Manuficial To	: ٤ تكون منطقة	≥ ، ، س + ص ≤	س ≥ ، ، ص ≥
(د)مثلثة.	(ج) مستطيلة .	(ب)مربعة.	(١)دائرية.
۲ -س - ص + ه = ۰	لستقيم الذي معادلته: '	قيم العمودي على ا	(٦) متجه اتجاه المستن
	State of the state		هو
(1-67-)(1)	(/- · r)(÷)	(ب)(ب)	(* (* 1)(1)
	(4 , 5) - , (1-		

(A) الشكل المقابل يمثل منطقة الحل لنظام من المتباينات فإن القيمة الصغرى لدالة

الهدف ص = ٣ -س + ٢ ص هي

- A (-)
- 7(1)
- 15 (2)
- 17 (=) (٩) المستقيم ل : -0 = 1 - 7 ك ، 0 = -1 + 3 ك يمر بالنقطة
- $(1\cdot 1-)(1) \qquad (1-\cdot 1-)(2) \qquad (1-\cdot 1)(2) \qquad (1\cdot 1)(1)$

- (١٠) في الشكل المقابل:
 - 99= 79 C
 - ، مساحة القطاع م أ = ١٢ سم
 - فإن مساحة الجزء المظلل =

 - 18 (=) 17 (-) 1. (1)
- (١) أي الأشكال الآتية يمثل مجموعة حل المتباينة : س + ص ≥ ١ ؟

- (١٢) إذا كان (١ ، -) ينتمي لمجموعة حل المتباينة : -س + ٢ ص ≥ ٥ حيث ٢ ، -عددان صحيحان فإن أقل قيمة للمقدار ٢ ١ + ٤ - =
 - 7(3)
- 1. (=)
- ٥- (ب)
- 0(1)

🫐 أجب عن السؤاليين الآتيين:

- $\cdot = Y + \omega + \gamma$ ، $(Y (1)) + ((، ،)) + ((، ،)) ، <math> Y \omega + \omega + \gamma = 0$ ، (1) + ((، ،)) + ((،)) +(٤ درجات) متوازيان ثم أوجد أقصر مسافة بينهما.
- ٢ أب وتر في دائرة طوله ٨ سم يقابل زاوية مركزية قياسها ٦٠ أوجد لأقرب رقم عشرى واحد مساحة سطح القطعة الدائرية الصغرى التي وترها أب (ع درجات)

امتحانات الكتاب المدرسي

أُولًا: نماذج امتحانات الكتاب المدرسي في الجبر وحساب المثلثات.

ثانيًا : نماذج امتحانات الكتاب المدرسى في الهندسة التحليلية.

نماذج امتحانات الكتاب المدرسي في الجبر وحساب المثلثات

النموذج الأول

أجب عن الأسئلة الآتية :

	: 5	. بيد الاجابات المعطا	اختر الإجابة الصحيحة م
	اينات :	إلى مجموعة حل المتب	(١) النقطة التي تنتمي
A Section	ص ≥ ٣ هي	١ ، - س + ه	- ۲ ، ص
(7,1)(2)	(4, 4) (=)	(ب) (۲،۱)	(1 , 7)(1)
النظم ١ × ٣	۲ ، الله مصفوفة على	وفة على النظم ١ × ٢	(۱) إذا كانت : أ مصف
full dis march	al Tables W. F.	لعملية الآتية	فإنه يمكن إجراء اا
→ ₹(2)	(خ) الم	(ب) س ^د + ۱	→+ ₹(1)
ں = ۸ ھی	=۱ ، ۲-س+۲ ص	تين: ٢ - س - ٣ ص	(٣) مجموعة حل المعادل
{(٢,٢)}(ع)	(خ) {(۲ ، ۲)}	(ب) {(۱،۲)}	{(۲, ۱)}(1)
بالسنتيمترات المربعة	سه ۲ سم فإن مساحته	له ١٠ سم وطول قوب	(٤) قطاع دائري محيم
			تساوى
7. (2)	۱۰ (خ)	(ب) ۸	٤(١)
	ں = ، حیث ۱۸۰° <		
			تساوى
{010}(7)	(÷) (·37°}	(ب) {۲۲۰}	{°Y1.}(1)
	ا بينام المفرقين		

: أ حل نظام المعادلتين الخطيتين التاليتين باستخدام المصفوفات :

(ب) أثبت صحة المتطابقة :

👔 (١) أوجد مساحة المثلث الذي رؤوسه (٤٠،٢) ، (٢،١) ، (٢٠،٥) باستخدام المحددات.

$$]\pi$$
 ۲ ، \cdot [\exists حیث \neg حیث \neg المعادلة : ۲ ما \neg ۲ ما \neg ا

(ب) رُصد قارب من قمة فنار ارتفاعه ٥٠ مترًا ، فوجد أن قياس زاوية انخفاضه ٣٥° ، أوجد بُعد القارب عن قمة الفنار.

أب وتر فى دائرة طوله ٨ سم يقابل زاوية مركزية قياسها ٦٠° أوجد الأقرب رقم عشرى واحد مساحة سطح القطعة الدائرية الصغرى التى وترها أب

(ب) عين مجموعة حل المتباينات الآتية بيانيًا في ع × ع:

 $18 \ge 0$ ، $10 \le 0$. $10 \le 0$

س = ٣٠ - س + ٥٠ ص أكبر ما يمكن.

النموذج الثانى

أجب عن الأسئلة الآتية :

- اختر الإجابة الصحيحة من بين الإجابات المعطاة :
- (۱) إذا كانت أ مصفوفة على النظم ٢ × ٣ ، ومد مصفوفة على النظم ١ × ٣ فإن المصفوفة أحب تكون على النظم
- ال ۲×۱ (۲) (خ) ۱×۲ (خ) ۲×۲ (۱) ۲×۲ (۱)
 - (٢) النقطة التي تنتمي إلى مجموعة حل المتباينات:

(۲) إذا كان :
$$\begin{vmatrix} Y & -\psi & Y \\ Y & \xi \end{vmatrix} = \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = \cdots$$

(۱) $Y(1)$

(۱) $Y(1)$

(۱) أبسط صورة للمقدار : $Y + dil^Y \theta$ هي

(۱) $Al^Y \theta$ (١) Al^Y

(1) حل نظام المعادلتين الخطيتين التاليتين باستخدام طريقة كرامر:

$$(-)$$
أثبت صحة المتطابقة : $\frac{\alpha - 1 - 0}{2 - 0} = 1 - \alpha^{-1}$

$$\begin{pmatrix} \Upsilon & \Upsilon & \Upsilon \\ \Upsilon & \Lambda \end{pmatrix} = \begin{pmatrix} \Upsilon & \Upsilon - \\ \Upsilon & \xi \end{pmatrix} \times \hat{\mathbf{1}} = \hat{\mathbf{1}}$$
 التى تحقق العلاقة : $\hat{\mathbf{1}} \times \hat{\mathbf{1}} \times \hat{\mathbf{1}} \times \hat{\mathbf{1}} = \hat{\mathbf{1}}$

$$\frac{1}{Y} = \left(\theta - \frac{\pi}{Y}\right)$$
 أوجد الحل العام للمعادلة : منا

- (ب) قطعة دائرية قياس زاويتها المركزية ٩٠° ومساحة سطحها ٥٦ سم٢ ، أوجد طول نصف قطر دائرتها.
- (1) من نقطة على سطح الأرض تبعد ٥٠ مترًا عن قاعدة عمود رأسى، وجد أن قياس زاوية ارتفاع قمة العمود ٤٢ ٩١° أوجد لأقرب متر ارتفاع العمود عن سطح الأرض.

نماذج امتحانات الكتاب المدرسي في الهندسة التحليلية

النموذج الأول

أجب عن الأسئلة الآتية :

🚺 أكمل ما يأتي :

(1) إذا كان:
$$\hat{1} = 7$$
 $\sqrt{m} + 7$ \sqrt{m} , $\sqrt{m} = 7$ $\sqrt{m} - \sqrt{m}$
 $\hat{1}$ $\hat{1}$ $\hat{2}$ $\hat{1}$ $\hat{2}$ $\hat{3}$ $\hat{4}$ $\hat{4}$ $\hat{5}$ (۱) إذا كان :
$$\hat{q} = (-7, 1)$$
 ، حَ = $(-7, 1)$ متوازيين فإن : $(-7, 1)$

(۳) إذا كانت :
$$1 = (-3, 3)$$
 ، $- = (0, -4)$ ، $- = (7, -4)$ ، $- = (7, -4)$ ، $- = (7, -4)$. $- = (7, -4)$

(ه) المعادلة المتجهة للمستقيم الذي يمر بالنقطة (٢ ، -٣) ومتجه الاتجاه له (٣ ، ٤)

(1) إذا كان : ا - 4 أ ا = ه ا ك أ ا فأوجد : قيمة ك

(ب) أوجد معادلة المستقيم الذي يمر بنقطة تقاطع المستقيمين:

- [1] إذا كانت نقطة حر (۲، ۵) تقسم أب بنسبة ٤: ١ وكانت : ١ (٨، ٣) فأوجد إحداثيي نقطة ب
- (ب) أثبت أن المثلث الذي رؤوسه النقط: ص (٤، ٢) ، ص (٣، ٥) ، ع (٥، ١-١) قائم الزاوية في ص ، ثم احسب مساحة الدائرة المارة برؤوسه.
 - آ إذا كان ل : ٣ -س + ٢ ص ٧ = ، ل : ٢ -س ٣ ص + ٤ = ، فأوجد:
 - (١) قياس الزاوية بين : ل، ، له
 - (١) المعادلة المتجهة للمستقيم الذي يمر بنقطة تقاطع المستقيمين ل، ، لم والنقطة (٣ ، ٤)

النموذج الثانى

أجب عن الأسئلة الآتية :

- 🚺 أكمل ما بأتي :
- - - (ه) طول العمود المرسوم من النقطة (١ ، ١) إلى المستقيم : س + ص = . ساوى
 - (1) إذا كان : ك | ٤ أ | = | ٣ أ | فأوجد : قيمة ك

- (۱) إذا كانت : ۱ = (۲ ، ۲) ، ب = (٥ ، ۱۰) ، ح = (۲ ، ۲۰) ثلاثة رؤوس
 لتوازى أضلاع ۱ بحرى فأوجد إحداثيى الرأس ي
- (-, -) اثبت أن المستقيمين : $\sqrt{-} = (-, -) + (-, -)$ ، (-, -)
- (1) إذا كانت : ٢ = (-١ ، ٤) ، ب = (٥ ، -١) أوجد إحداثيى نقطة حرالتى تقسم الداخل بنسبة ١ : ٢
 - (ب) دائرة مركزها نقطة الأصل.

أثبت أن الوترين المرسومين في الدائرة الذين معادلتاهما :

متساويان في الطول.

و المحود شبه منحرف فيه : ١٩٥ // صح فإذا كانت :

(vo.0) 5 . (1.7) . (1-, T) . (1-, V) 1

أوجد: (١) قيمة ص (٢) مساحة سطح شبه المنحرف ٢ - حرى

مديرية التربية والتعليم إدارة شرق مدينة نصر

محافظة القاهرة

1

أولا أسئلة الاختيار من متعدد

(1) celclái

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\cdots = -+\begin{pmatrix} Y & Y \\ Y - & 0 \end{pmatrix}$$
 : $= -+\begin{pmatrix} Y & Y \\ Y - & 0 \end{pmatrix}$

$$\begin{pmatrix} \gamma & \gamma - \\ \gamma & \xi - \end{pmatrix} \begin{pmatrix} \omega \end{pmatrix} \qquad \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \omega \end{pmatrix} \qquad \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\ \gamma & \omega - \end{pmatrix} \begin{pmatrix} \gamma - & \gamma - \\$$

(۱) إذا كان : أ = (۲ ، ۸) فإن : | أ | =

(7) إذا كان: $\frac{1}{7} = 0$ س + $\frac{1}{7}$ ص ، $\frac{1}{7} = \frac{1}{7}$ فإن: $\frac{1}{7} + \frac{1}{7} = \frac{1}{7}$

..... =
$$-3$$
 + -4 = -3 شبه متماثلة فإن : 9 + -4 = -3 (3) إذا كانت : -4 = -3 -3 شبه متماثلة فإن : -4 + -4 = -3

(٦) المعادلة المتجهة للمستقيم المار بالنقطة (٣ ، ١) وبنقطة تقاطع المستقيمين

ت النهائية	الامتحاثان
------------	------------

			الامتحانات النهائية —
(1-1.)-1	٤ ، ٢-) - ، (٤ ،	رح الذي فيه : ٩ (٢ ،	(٧٨) مساحة المثلث ١-
		. وحدة مربعة.	تساوی
78 (2)	17 (÷)	(ب) ۱۲	A(1)
· = ٧ - ص ٢ + ص	۳ ص + ٥ = ٠	دة بين المستقيمين: -	من قباس الزاوية الحا
(د) ۱۲۰°	°7. (÷)	° ٤0 (ع)	٠٣. / ١٠
(لأقرب سم)	COLUMN TO CO	Mark Land Company Comp	And Philippe of the Control of the C
(د) ٤٤	(ج) ³³ (ج) الستقيم: ٣-٠	£7 ()	(۱۹) مساحه الحداثمر
+ ٤ ص + ١ = ٠	ه) إلى المستقيم: ٣-٠٠	(÷)	2.(1)
	1- (-	سوم من النقطة (١٠٠٠	(٠٠) طول العمود المره
		وحده طول.	يساوى
(3)	٤ (ج) عاد الم	(ب) ۲	Y(1)
نصف قطر دابرتها	بتها المركزية ١٥٠ وطول	الدائرية التى قياس زاوي	(1) مساحة القطعة
	.((لأقرب سم	. (column A
٧٠ (٦)	(ج) ۸۲	77 (4)	7.711
اينات :	ن مجموعة حل نظام المنب	مر عددن صحيحين فا	
	ص < ٦ هے	+ - / -	THE RESTAURANT OF THE PARTY OF
	(ب) (د) {(۱،۲)} (د) خان	Section of	Y
{	(1.7)}()	1	(1) {(0) }
	(a) (b)	- (-	/·/)} (÷)
(r- c E-)	٤ - ٢ + ص فإن	$= \sim \cdot \left(\frac{\gamma}{\gamma}, \gamma\right)$	(۱۳) إذا كان: ١ =
, , , (2)	(+) (+)	r (E) () (T . E-) /11
ميث ۴ (۲ ، ۵)	القطعة المستقيمة أ - ح	قطع بها محور السيئات	(12) النسبة التي يا
			- · · ·) - ·
	(ب) ۲:۲من		ρ Y: ο (1)
الخارج	(د) ۲: ٥ من		م ۲ : ۲ _{(ج})

(6) المستقيم $\frac{-0}{1} + \frac{0}{1} = 1$ يصنع مع محوري الإحداثيات مثلث مساحته = وحدة مساحة.

$$\theta$$
 إذا كان : فَنَا θ - طِنَا θ = $\frac{1}{7}$ فإن : فَنَا θ + طِنَا θ = $\frac{1}{7}$

$$\gamma(z)$$
 $\frac{L}{\lambda}(\dot{z})$ $\frac{L}{\lambda}(\dot{z})$ $\lambda(z)$

ثاننا الأسئلة المقالية

أجب عن السؤالين الأثيين :

المتباينات التالى بيانيًا :

إدارة ٦ أكتوبر توحيه الرياضيات

محافظة الجيزة

أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(1) calclái (۱) إذا كانت المصفوفة $\begin{pmatrix} \gamma & \gamma \\ -1 & -1 \end{pmatrix}$ مصفوفة متماثلة فإن $\gamma = 0$ (ب) ۲ (ج) ۲ 1(1)

- (٢) مساحة المثلث ٢ ب حالذي فيه : ٢ ب = ٧ سم ، بح = ٨ سم ، ق (د ب) = ٥٠ ° تساوی سم
 - TT. E (1) (ب) ۹,۲٤ (ح) ۱۸
- π اذا کان ۲ ما $\theta \sqrt{r} = 0$ وکانت : $\theta \in [\pi, r]$ فإن : $\theta = \pi$ (۱) ۳۰ أو ۱۵۰ (ب) ۲۰ أو ۱۲۰ (ج) ۱۵۰ أو ۲۱۰ (د) ۱۲۰ أو ۲۲۰
- (٤) إذا كان: أب = (٢، ٦) ، بحد = (١، ٢) فإن: حدا =

$$(\mathsf{T} \cdot \circ -) \, (\mathsf{J}) \qquad (\circ \cdot \mathsf{T} -) \, (\diamond) \qquad (\mathsf{T} - \cdot \circ) \, (\diamond) \qquad (\circ - \cdot \ \mathsf{J}) \, (1)$$

			الامتحانات النهانية
1 >	مفوفة معلى النظم ٣ >	على النظم ٢ × ٣ والمص	(٥) إذا كانت أ مصفوفة ع
		ورد على النظم	Si. 972 : 11 . 12
1 ~ 1 (2)	7 × 7 (=)	7×1/1	
7=0-0-4	ن: - س + ص = ۲	ينقطة تقاطع المستقيمع	 (۱) ۲ × ۱ معادلة المستقيم المار
		۱۰) هی۱)	ويمر بالنقطة (٢ ، -
•=	(ب) س - ص - ۲		(۱) - س - ص + ۳
· = ٣	(د) ۲ س - ص		-
·········· = f r :	ن ۲۱ = ۱۶ فأن	15. 7 × 7 , 21.	71.1 6
The second second	, (÷)	A1 (w)	47
ر دائرته ۳ سم	، ۱۲۰° وطول نصف قط	ار ی الذی قیاس زاویته	(۱) مساحة القطاع الدا
元 17(3)	π ٩ (٠)	76 1 ()	TT Y COL
	، ص – ن سی	T = 1 . 3" 11	
(3)	١٠ (٩)	7.1.	. 0
. في 2 × 2	ص < ، ، - ، > ص	حموعة حل المتباينتين :	a fire all lattices
			هى الربع
(د) الرابع.	(ج) الثالث.	(ب) الثاني،	هی اربع
	١) إلى محور الصادات	يوم من النقطة (-٥، ١	روم ادا العدود الديد
		وحدة طول،	(۱۱) هول المحدود الربي يساوى
, A (7)	(خ) ۱۲	Y (w)	0/11
ض سيارة في المستوى	ل أن قياس زاوية إنخفا،	المه ١٠٠ متر وحد رجا	5 1 - 7
عدة البرج لأقرب متر	بعد هذه السيارة عن قا	ىدة البرج هي ٣٥° فإن	الأفقى المار بقاء
		متر	
107 (2)	187 (+)	(ب) ۱۳۲	177 (1)

◄ الرياضيات

(١٠) ١ - ح و متوازى أضلاع فإن : ١ - يكافئ 21(2) (ب) حد (ب) د (ج) عد \dots فإن : س $+ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ فإن : س $+ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 - \\ \xi - & \gamma \end{pmatrix} (\Rightarrow) \begin{pmatrix} 1 & 0 \\ \gamma - & \xi \end{pmatrix} (\varphi) \begin{pmatrix} 0 & 1 \\ \xi & \gamma - \end{pmatrix} (1)$ (د) (د) (ه) إذا كان ؟ = (٨ ، ك) وكان : ا ؟ ا = ١٠ فان : ك = 「 ± (-) 「 ー (-) T(1) (٦) إذا كان المتجهين: أ = (م ، ٣) ، ب = (٢ ، ١) متوازيان فإن: م = \rightarrow \(\frac{\sigma}{\rightarrow}\) (÷) T(1) 7-(2) (ب) ٢ (٧) في الشكل المقابل: بح مماس للدائرة م عند ب اب=بد=۱ سم فإن مساحة الجزء المظلل =سم £,0V(~) 17.0V(1) 9.18(4) 0, TV (-) ١ النقطة التي تنتمي لجموعة حل المتاينتين: ٢ - س + ص < ٥ ، - س + ٢ ص < ٦ (1 , Y) (1) (ب) (۲،۱) (ج) (۲،۱) (۱،۳) إذا كان المستقيمان : ٤ س + ١ ص + ٧ = ، ، $\sqrt{} = (١ ، ٥) + (٥ ، ١)$ متوازيان فإن : ۴ = $\frac{2}{\sqrt{2}}$ (a) $\frac{2}{\sqrt{2}}$ (b) (ب) ع (٠٠) إذا كانت المصفوفة : (ح ١٢) ليس لها معكوس ضربى فإن : ح = 7 ± () (ج) صفر 7-(-) 7(1)

(١١) في الشكل المقابل:

قياس الزاوية θ = ····

- °r.(1)
- (ب) ٥٤°
- °٦٠ (ج)
- °Vo(1)

(۱۳) إذا كان : قا $\theta - d$ $\theta = \frac{1}{7}$ فإن : قا $\theta + d$ $\theta = \dots$

- 7-(4) $r(\dot{\gamma})$ $\frac{1}{1-}(\dot{\gamma})$
 - (٥٠٠ ٢) النسبة التي يقسم بها محور السينات القطعة المستقيمة آب حيث ١ (٢٠٠٥)
 - ، ب (۲ ، ۲۰) هي
 - (١) ٥ : ٢ من الخارج
 - (ح) ٢: ٢ من الخارج
 - (د) ٥: ٢ من الداخل
- $\begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$ ، $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$ فإن : $\mathbf{q} = \mathbf{q}$ $\begin{pmatrix} \xi & \xi - \\ 1 & \xi - \end{pmatrix} (u) = \begin{pmatrix} \xi & \xi - \\ 1 & \xi \end{pmatrix} (a) = \begin{pmatrix} \xi - & \xi \\ \vdots & \xi - \end{pmatrix} (u) = \begin{pmatrix} Y - & \xi \\ 1 & \vdots \end{pmatrix} (1)$
 - ه) إذا كان : $\hat{\mathbf{q}} = (-0 1 , 7)$ ، $\hat{\mathbf{q}} = (7 , -3)$ متجهان متعامدان

 - V(1)
 - $\frac{1}{\epsilon} (\Rightarrow) \qquad \Lambda(\psi)$

(ب) ٢ : ٧ من الخارج

- (٦) إذا كانت : ١ (٢ ، ٧) ، (٧ ، ٠) فإن النقطة حالتي تقسم ١ -
 - من الداخل بنسبة ٥ : ٢ هي
 - $(\Upsilon, \Upsilon)(\Rightarrow)$ $(\Upsilon-, \Upsilon)(\Rightarrow)$ $(\Upsilon, \Upsilon-)(1)$
- (Y- (Y-)(2) ٣-٠- ١٠ ص +٩ =٠

Tt 9(1) T 17(2)

- (٧) في الشكل المقابل: المستقيم ٢ - ٠ + ٤ ص + ٩ = ٠
- مماس للدائرة م حيث م (١، ٢)
- فإن مساحة الدائرة م تساوى
 - π To(1)
 - TO (-)

Y.

ثانيا الأسئلة المقالية

أجب عن السؤالين الأتيين :

إدارة شرق توجيه الرياضيات

محافظة الإسكندرية

(P) calclai

أولًا أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

- (۱) إذا كانت المصفوفة أ على النظم ٤ × ٢ فإن عدد عناصر المصفوفة أ =
- (د) ۲ (ج) (ج) ۸ (۱)

- (٣) مساحة الشكل الرباعي الذي طول قطريه ١٢ سم ، ١٠ سم قياس الزاوية المحصورة بينهم ٤٣ ٤٣ لأقرب سم منه عليه المناسمة عليه المناسبة المن
 - ٥٥ (١) . (١) ٧٠ (٠) ٢٠ (١)
 - (٤) ما في ط منا في ط ط الله عنا في الله ع
 - $\theta \stackrel{\text{Y}}{=} (1)$ $\theta \stackrel{\text{Y}}{=} (2)$ $\theta \stackrel{\text{Y}}{=} (2)$ $\theta \stackrel{\text{Y}}{=} (3)$
 - (٥) أي مما يأتي يمثل كمية متجهة ؟
 - (۱) الإزاحة. (ب) درجة الحرارة. (ج) الزمن. (د) الكتلة.

71

			الامتحابات انتهادي
نسم س	 ا فإن النقطة ع تق 	ره) ، ص = (٧ ،	(٦) إذا كانت : س = (٦
		, (0:	(۱) إذا كانت : جن - (۱
(14 . 14-)(1)	(Y (E) (-)	۲ هی۲	من الخارج بنسبه ١:
. = \Y -	() (-)	(ب) (۱۷ ، ۱۲۰)	(1- · V) (1)
14	تقيم: ١ - ١٠ + ١ حر	ن محور الصادات للمس	(٧) طول الجزء المقطوع مر
			هو
1(3)	7 (∻)	٥- (ب)	هو۲(1)
	المصفود ع	على النظم الكلافان	الما كالما المرفوفة
	1.1	, v , (÷)	7×7(1)
۳ یساوی۳	المعادلة: ٢ ما θ =	، ۲ π [فإن عدد حلول	(٠) إذا كانت : θ ∈ [
	(+)	(ب) صغر	1(1)
	لم طول فوسته ۱ سم -	111 11 W	of the thinks
	1		
(- (-) (-)	(1. (V) (-) .	(20, (3) (0)	(°50 . A) (1)
على استقامة واحدة	، (۹، -٤) تقع ع	(va , T) , (A ,	(۱) (۸، ۵۶) (۱) إذا كانت النقط (۱
	/s = 1 = 1	(, , , (, , , , , , , , , , , , , , ,	(١١) إذا كانت النفط (١١
11-(2)	0(2)	۰ (ب)	فإن: ص =
٠٠٠ - ١ - ١ - ١ - ١	الالمال المالية	(ب) –ه	11(1)
بم: ٢ -س + ٣ ص = ٢	ور الصادات والمستد	دد بمحور السينات ومح	(٣) مساحة المثلث المحا
T(.)		(ب) ۹ مل النظام للمتباينتان -	تسناوی
(0)	/ (÷)	(ب) ۹	17(1)
٠ هو	<00 , .<0	مل النظام للمتباينتان -	(ع) الربع الذي يمثل ح
(د) الرابع.	(ج) الثالث،	(ب) الثاني،	1811765
نمته فوجد قیاسها ۳۹° ۲۵°	دة برج زاوية ارتفاع أ	. ءا بعد ٥٠ من قاء	47
		الله الم	(ه) رصد سخص یت
۲٦ (۵)	Yo (a)	الاقرب ا	فإن ارتفاع البرج
	(-)	(ب) ٤٢	77 (1)

- ◄ الرياضيات

74

(٦) إذا كان المستقيمين : ٤ - + - - + - + + = - ، $\sqrt{-} = (1 ، 0) + (0 ، 1) متوازيين$

$$\frac{7}{7}(a) \qquad \frac{7}{6}(a) \qquad \frac{5}{7}(a) \qquad \frac{7}{7}(a)$$

$$(v)$$
 إذا كانت المصفوفة : $S = \begin{pmatrix} 0 & 0 & 0 \\ T & V & T \end{pmatrix}$ متماثلة فإن : $S = W$

ثانيا الأسئلة المقالية

أجب عن السؤالين الأتيين :

أوجد بيانيًا حل النظام من المتباينات الخطية الآتية :

س≥٠،، ص≥٠،، ≤س٤٠، ، ص≥من

ا اِذَا كَانَ : $\hat{1} = (7, 7)$ ، $\hat{1} = (7, 3)$ أوجد كلًّا مما يأتى : $\hat{1}$ ، $\| 7 \hat{1} - 7 \hat{1} \|$

مديرية التربية والتعليم إدارة قليوب

محافظة القليوبية

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\binom{1}{5}$$
 اذا کانت : $\binom{1}{5}$ مصفوفتین : حیث $\binom{1}{5}$ = $\binom{1}{5}$ فإن : $\binom{1}{5}$ فارن
$$\begin{pmatrix} \varepsilon & \circ \\ r & 1 \end{pmatrix} (\circ) \qquad \begin{pmatrix} 1 - & \circ \\ r & \varepsilon \end{pmatrix} (\bullet) \qquad \begin{pmatrix} \varepsilon & r \\ \circ & 1 - \end{pmatrix} (\circ) \qquad \begin{pmatrix} 1 - & r \\ \circ & \varepsilon \end{pmatrix} (1)$$

- ◄ الرياضيات

(3) [t]
$$2i0 : (\frac{-1}{7}) - (\frac{1}{9}) = (\frac{7}{6})$$
 $4i0 : -0 + 00 = \dots \dots (1)$
(1) $(\frac{1}{7}) \cdot (\frac{1}{7}) \cdot (\frac{1}{7$

Yo

0_			الافتحانات انتهانية
قمة الشجرة ٦٠	وجد أن قياس زاوية ارتفاع	أمتار من قاعدة شجرة	(۱۷) من نقطة على بعد ٨
		= متر	نادا تفاء الشجرة
٧ (٦)	T V ε (→)	TVA(w)	* / / /
	+ ۲۵ = ۰ هو	1 - 1 - 1 - 1 Th	*(1)
(۱) صف		ما حل - ١٠ حل	(£) عدد حلول المعادلة :
:1: - 411	(ج) ۳	(ب) ۲	1(1)
ه الشرق فإن	قطعت نفس المسافة في اتجا	م في اتجاه الشمال ثم أ	(۵) قطعت سیار ق۳۰ ک
			إزاحة السيارة هي
شمال.	(ب) ٦٠ كم في اتجاه ال	2 - 411 - 1	إراك السيارات ال (1) ٦٠ كم في اتج
لشمال.	(د) ۲۰ ۲۷ فی اتجاه ا	ياه استرق.	(۱) ۱۰ کم فی اند
		جاه الشمال الشرقى. « - «	(ج) ۳۰ ۲۲ في ات
Ad		، ١٢٠) فإن: ١٩١١	. (10 اذا کان : ۱۹ = (-
(2)	1V(2)	V/ V	
	تعامدين فإن - ك	1, (7) les oïceris	5 71 17 111
٤,٥-(١)	Y-(-)	0.0(0.1):((٧) إذا كان: (١ ، ٤
	Υ− (÷)	(ب) ۲	A(1)
	22/1/21	۳- فإن:	(٨) إذا كان: ب = -
	- // F(u) F=- r-(u)		-LF(1)
	1= - 4-(1)	13	= = = (2)
	and the second	A0 -	A 00
1 (4)	* * * * * * * * * * * * * * * * * * * *	11	فإن: ١ - + ١-
T. (1)	$\frac{7}{7} \left(\frac{1}{7}\right)$ $\frac{7}{7} \left(\frac{1}{7}\right)$ $\frac{7}{7} \left(\frac{1}{7}\right)$	(ب)	Y(1)
(V	سف اب حيث: ١ = (٢٠٠٠)	(۱، ۳) هي نقطه منتظ	(١٠) إذا كانت النقطة
		= =====================================	فإن : النقطة -
	(1, 1-)(-)		(1)(1)
	(4)(0,0,7)		(0 - 4)/ .
***************************************	+ ۱ یکون متجه اتجاهه	0 = 0 : dil.	****
(E-(0)(J)	(8 (0-)(-)	/- { - J Walk	(۱۱) المستقيم الذي ه
	(٤،٥-)(-)	(ب) (ن)	(1)(0)3)
3 0	- 1+ 0- 1 00 F = 0-	لحادة بين المستقيمين:	13.01:11 13.00
1. (7)	٤٥ (ج)	۲۰ (ب)	10(1)

(۱) طول العمود المرسوم من النقطة (۱ ، ۱) على المستقيم : $-\omega + \omega = 0$ يساوى وحدة طول.

(1) $\frac{\sqrt{Y}}{Y}$ (ب) \sqrt{Y} (ب) \sqrt{Y}

(٤) معادلة المستقيم المار بنقطة الأصل وبنقطة تقاطع المستقيمين: - ٢ = ٢ ، ص = ٣ هي

٠ = ٠ - ٢ ص - ٢ ص - ١ من ٢ - ٠ - ٣ ص = ٠

(ج) ٢-٠٠ ص = · · ص = · (د) ٣-٠٠ ص = ·

ها مساحة المثلث الذي يصنعه المستقيم : $\frac{-u}{\gamma} + \frac{\sigma}{\gamma} = 1$ مع محوري الأحداثيات يساوي وحدة مربعة.

(د) ۲۲ (ج) ۸ (ج) ۲ (۱) ۲۲ (۱)

(٦) النسبة التي يقسم بها محور السينات القطعة المستقيمة ٢٠

حيث : ١ = (٢ ، ٥) ، ب = (٢ ، ٠٠) هي

(١) ٥ : ٢ من الداخل.

(ج) ٢: ٢ من الخارج. (a) ٢: ٥ من الخارج.

(۲، ۳) الصورة العامة لمعادلة الخط المستقيم الذي معادلته المتجه : $\sqrt{} = (\cdot \ \cdot \) + (\cdot \)$

· = ١٢ - س - ٤ ص - ٢٢ = ٠ (ب) ع - س - ٣ ص - ٢١ = ٠

ثانيا الأسئلة المقالية

أجب عن السؤالين الأتيين :

 $17 \ge 0$ وجد مجموعة حل المتباينة الآتية بيانيًا في $3 \times 3: 7 - 0 + 3 \longrightarrow 1$

👔 في الشكل المقابل:

و منتصف بح

، هر منتصف اع

أثبت أن: ٢ - ٢ - ١ ح = ٢ هرب ٢ م حد

محافظة الشرقية

اولا اسئلة الاختيار من متعدد (يسمح باستخدام الآلة الحاسبة)

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$(\frac{\pi \, v}{\xi}, 1) (1) \qquad (\frac{\pi \, v}{\xi}, 1) (2) \qquad (\frac{\pi \, v}{\xi}, 1) (3) \qquad (\frac{\pi \, v}{\xi}, 1) (4) \qquad (\frac{\pi \, v}{\xi}, 1) (5) \qquad (\frac{\pi \, v}{\xi}, 1) (1)$$

تساوى وحدة مربعة.

◄ الرياضيات

```
(۸) إذا كانت: المصفوفة \emptyset = \begin{pmatrix} Y & Y \\ 0 & Y \end{pmatrix} فإن: \emptyset = \begin{pmatrix} 1 & 1 \\ 1 & Y \end{pmatrix} المصفوفة \emptyset = \begin{pmatrix} 1 & 1 \\ 0 & Y \end{pmatrix}
     I 0 (1)
                                I T (~)
                        I 1. (a)
                                                           I & (1)
          (٩) النقطة التي تقع في منطقة حل المتباينة : ٢ -س + ٣ ص ≥ ٦ هي ..........
  (۲، ۱) (١) (۲، ۲) (ج) (۰، ۲) (۲، ۲) (۲، ۲)
    القيمة العظمي لدالة : v = v + 3 ص تحت القيود : v \ge v ، ص v \ge v
                                   ء -س + ص ≤ ٦ عند النقطة .....
(١) (٥،٥) (٠) (٠) (٥،١) (١،٥) (٥،١)
(١١) إذا تحرك جسيم في اتجاه ٨٠ م في اتجاه الشمال ثم ٦٠ م في اتجاه الشرق فإن النسبة
             بين المسافة التي قطعها الجسيم ومعيار الإزاحة الحادثة هي .....
    0: V(J)
                     ٧:٥( ج) ٣:٤( ب) ١:١(١)
             (۱۲) سداسی منتظم طول ضلعه ۸ سم فإن مساحته = .....سم
(1) 27 VT (4) 57 VT (4) 331 VT
ميل المستقيم العمودي على المستقيم : \sqrt{\phantom{a}} = (7, 7) + \mathcal{O} (-6, 7) يساوي .............
 1- (2)
                                     ٥- (ب)
                          0 (-)
                                                            T(1)
                      \frac{\pi}{2} قطاع دائری مساحته \pi سم وقیاس زاویته المرکزیة \pi
                                   فإن طول قوس القطاع = ....سم
   π Y (1)
                        T7(=)
                                         7(4) 14(1)
(٥) إذا كانت : ٢ = (١-١ ، ٤) ، ب= (٣ ، ٤) ، حر اب وكان : ٢ ب = ٤ ب ح
                                       فإن احداثي النقطة حـ = .....
  (E , T) (s)
                     (· ( £) (a) (Y ( £) (u) (£ ( · ) (1)

 (٦) رصد شخص طائرة على ارتفاع ١٠٠٠ مترا فوجد أن زاوية ارتفاعها ١٧ ٥٠٠°

                              فإن بُعد الراصد عن الطائرة = .....مترًا
   1781 (2)
                      7710 (-) 1781 (-) 7871 (1)
                (د) (۲ ، ٤) (ج) (ج) (٤ ، ٢) (٤ ، ٢)
```

$$\pi$$
 إذا كان : ما θ طنا $\theta = \frac{1}{\gamma}$ حيث : $\theta \in \frac{\pi}{\gamma}$ ، γ قان : $\theta = 0$

(٧) ا مح مثلث رؤوسه : ١ (-١ ، ٥) ، ح (٢٠ ، ٠) ، ح (٣٠ ، ٠)

فإن معادلة المستقيم المار بالنقطة ٢ ، عمودي على حد

ثالثا الأسئلة المقالية

أجب عن السؤالين الاتيين :

- مثل أنظمة المتباینات : $-\infty \ge \cdot$ ، $-\infty \ge \cdot$ ، $-\infty + \pi$ $-\infty \ge 6$ ، $-\infty + \pi$ $-\infty \ge 6$ ، $-\infty + \pi$ $-\infty \ge 7$ ثم أوجد من مجموعة الحل قيم : $(-\infty \cdot \pi)$ التي تجعل $(\infty \cdot \pi)$ أقل ما يمكن حيث : $(\infty \cdot \pi) = 7 (-\infty \cdot \pi)$
 - (۱ ، ٥) ، (٣ ، ٢) أوجد الصور المختلفة لمعادلة المستقيم المار بالنقطتين : (٣ ، ٣) ، (٥ ، ١)

إدارة غرب طنطا توجيه الرياضيات

محافظة الغربية

اولا أسئلة الاختيار من متعدد (يسمح باستخدام الآلة الحاسبة)

اختر الإجابة الصحيحة من بن الإجابات المعطاة :

11

(۱) قياس الزاوية بين المستقيمين : ل : → + ۲ ص + ٥ = صفر

(۱) طول العمود المرسوم من النقطة (۳، ۱) إلى الخط المستقيم: ٤ -س + ٣ ص - ٥ = ٠ يساوىوحدة طول.

7=00 + + ,	- Y · - 3- 11 1 .		
	بادات والمستقيم	حور السينات ومحور الص	(r) مساحة المثلث المحدد بم
17(2)		ة مربعة.	تساوی وحد
(-)	, (÷	·) (·)	7(1)
17.5	with the states	=	(٤) (١ + طنا ^٢ - س) ما ^٢ - س
,(3)	ج) منا ا	1 / h / h	ν.
		· which is done	m. / m.
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 11 . 1
(1)	(2)	0-11	
Charles Harding	= + + :	ا ۱) = (۹) فان	(۱) ° (۱) إذا كان : (۳ –۱ (۱) ۳
7(4)	0/3	(1)-(-)((٦) إذا كان: (٦ -١
رربع المسافة	(ج) انتاتہ التی تقع فے	(ب) ع	۲(1)
· Wallet and the	ALCOHOLD TO THE REAL PROPERTY.	. , . , . ,	(v) إذا كانت : ١ (٢ ، ١
(* (-) ()	(7,7)	(ب) (۲-۲)	من ٢ إلى ب هي
- IF: 15	• > > > + + + + + + + + + + + + + + + +	(ب- ، ۲) (ب)	(r, r)(1)
		· 200+~	1= 1: : :
٣٠ (٤)	-		فإن : ك =
	1. (*)	٠٠٠٠ (ب)	r(1)
	- A	1 10 0 -1 10	11
15(7)	(خ) –۱	7 ± (~)	1/11
سم	سم فإن مساحته = …	= ۲ ۱۵ ۱ مورد . (ب) ± ۲ اه ۱۰ سم وطول قوسه ۲	دی قطاع دائری محیط
	1.0	731	
Street, Co., Co., Co., Co., Co., Co., Co., Co.	O'a	Mana lah cy	VI I
(-)	(ج)	TVITI	w/s .
.≤∪	ات: س≥٠٠ ، ۵	رب) إلى مجموعة حل المتبايد	· / ^ (1)
	ر ٦ هي٠٠٠٠٠٠٠٠٠٠٠٠٠٠	رع ، - س+۲ ص	(۱۲) النقطة التي تنتمي
(1 (1)(3)	(T : T) (-)	(")	٠٠٠-٧٠
The state of the s	7(+)	(ب) (۲ ، ۰)	(1) (1)

- ◄ الرياضيات

(7) إذا كانت:
$$\frac{1}{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $e = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$ فإن: $\frac{1}{7} + e_{77} = \dots$
(8) Italulti (Italulti (

(ب) ٥- (ج) ٥- (ب)

£-(1)

(٣) النسبة التي تقسم بها محور السينات أب حيث: ١ (٢ ، ٥) ، - (٧ ، -٢)

(ب) ٢ : ٣ من الداخل (١) ٥ : ٢ من الداخل

(د) ٢: ٥ من الخارج (ج) ٢: ٢ من الخارج

(٤) عمود إنارة طوله ٨ متر يلقى ظلًا على الأرض طوله ٥ متر فإن قياس زاوية ارتفاع الشمس عندئذ لأقرب درجة تساوى

01 (2) (ب) ۱ ه (ج) ۲۹ TT (1)

(۵) (ماس + مناس) ۲ - ۲ ماس مناس =

(1) ail-(ب) ماس (ج) ۱ (١) صفر

(٦) قيم س التي تجعل المصفوفة (٢ حر) ليس لها معكوس ضربي هي £ ± (2)

۲ ± (ج) ٤- ١١ ٢- (ب) 8 617 (1)

E-(1) (ج) ۳-(ب)

ثانيا الأسئلة المقالية

أجب عن السؤالين الأتيين ،

أثبت أن: ٢ ع - ٤ ع حد = ٧ ع عد

عين مجموعة حل المتباينات الآتية معًا بيانيًا:

17≥ 00 7+ 0- 7 , 1≥ 00 7+ 00 ≤ 1. 5 00 . 5 00 . 5 00 . 5 00 € 71 ثم أوجد من مجموعة الحل قيم : (-0) ، (-0) التي تجعل (-0) أكبر ما يمكن حيث ٧ = ٥٠ حن + ٥٠ ص

إدارة غرب المنصورة

محافظة الدقهلية

أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

(·)(+) (·)(+) (د) غیر ممکنة

(۱) إذا كان: (۲، ۲) ، (٤، ٤) متجهين متوازيين فإن: ك =

$$\cdots = (\theta^{\vee} (\theta + 1) (\theta - 1) (\theta + 1) (\theta)$$

(ع) النقطة التي تقع في منطقة حل المتباينة : $-\omega + \omega \ge 0$ هي

$$(\lor, \cdot)(\downarrow)$$
 (\lor, \lor) (\lor, \lor) (\lor, \lor) (\lor, \lor)

هيمن الداخل.

(٧) قياس الزاوية الحادة بين المستقيمين الذين ميلاهما : ٢ ، ٢ يساوي

(٨) المعادلة الكارتيزية للمستقيم المار بالنقطتين : (٢- ٢ ، ٤) ، (٣ ، ١) هي

(*) إذا كان:
$$\mathbf{x} = (17)^T \cdot (7)^T \cdot (7)^T \cdot (17)^T \cdot$$

عن قاعدة الصخرة ١٠٠ متر بالراديان =

(ب) ۰,۰۸ (ب

· , YE(3)

., £7(1)

	، بنسبة ٢ : ١ فإن : إ		
(د) ٤	(ج) ۲	(ب) ۱	¥ (1)
ن الربع	، > ، ص < ، هو	، نظام المتباينتين : ص	(۱۹) الربع الذي يمثل حل
	(ج) الثالث.	(ب) الثاني.	(١) الأول.
	(حيث نه∈ من)	: منا θ = ۱ هو	(٢٠) الحل العام للمعادلة
$\nu\pi + \frac{\pi}{r}(1)$	νπΥ(÷)		νπ(1)
	: س =	٣ = صفر فإن	(۱) إذا كان:
17(2)	17 (÷)	1 (4)	(1)
ات الأتية تكون	قيم ما فإن جميع المتجه	، -٣) متجه اتجاه لست	(۱۱) إذا كان : ي = (۱)
	***************************************	المستتقيم ماعدا المتجه	متجهات اتجاه نفس
(1, 4-)(2)	(* ') (*)	(ب) (۲ ، -۲)	(7 . 1-)(1)
سم	سم وطول قوسه = ۱۲	ری الذی محیطه = ۲٤	(٣) مساحة القطاع الدائ
		pu	تساوی
188 (4)	۹٦ (ج)	٧٢ (ټ)	
ی تقع فی خمس	فإن إحداثيي النقطة الت	(2 , 9) - , (1-	(£) إذا كانت : † (-۱ ،
		21 211 11	المسافة من النقطة ٢
(1)(3)	(١-، ٠)(=)	(ب ١-) (ب)	(1, .)(1)
ن : –ن =	٣) مصفوفة متماثلة فإر	$\begin{pmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \end{pmatrix} = \begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \end{pmatrix}$	(ه) إذا كانت المصفوفة ﴿
7(4)	(ج) ه	(ب) ٤	7(1)
(0, 4-) =	· (Y- · Y) - ·	ىتطيل فيه : ۱ (٥ ، ١)	الله إذا كان اسحومس
Last of	6.72		فإن : ك =
0-(2)	o (÷)	(ب) ۳۰	7 (1)

ت النهائية	الامتحانا
------------	-----------

(۴۷) طول العمود المرسوم من النقطة ((7, 0) إلى المستقيم الذي معادلته (7, 0) عند (7, 0)

يساوى لأقرب وحدة طول.

ثاننا الأسئلة المقالية

أجب عن السؤالين الأتيين :

١ ١ عدى متوازى أضلاع فيه: ه منتصف حد أثبت أن: ١ - ٢ ع + ١٥ + عد = ٢ ١٩ هـ

وجد القيمة العظمى لدالة الهدف : $\sqrt{} = 7 - 0 + 7 \rightarrow 0$

 $1 \le 1 \le 1 + \infty + \infty$ ، $1 \le 1 + \infty \le 1$ ، $1 \le 1 \le 1 \le 1$

القنطرة غرب

توحيه الرياضيات

محافظة الإسماعيلية

أولا أسئلة الاختيار من متعدد

اختر الإجابة الصحيحة من بين الإجابات المعطاة : (١) إذا كان: ١ = (س ، ٤) ، ب = (٢ ، ص) وكان: ١٩ // ب

$$A = \omega \omega - (\omega)$$

$$(+) = V - U = (+)$$

$$(+) = (+) = (+)$$

$$(+) = (+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+)$$

$$(+) = (+$$

- (٣) مساحة الجزء المظلل =تقريبًا
- ۸(ب)
 - 9(4) ١٠ (ج)

(٤) أي النقط التالية تنتمي إلى مجموعة حل النظام : -س > ٠ ، ص > ٠

، ٢ - س + ص > ٦٢

(ه) إذا كان : || أ || = ٤

فان : آ =

(x, T) (x) (x) (x)

(٦) المعادلة المتجهة للمستقيم المار بنقطة الأصل والنقطة (١ ، ٢) هي

(v) إذا كان : أ = ٣ - ب + ك ص وكان : ا أ ا = ه فإن : ك =

(A) إذا كان المستقيم: ١٩ - س + ب ص = ١٢ يقطع جزءًا موجبًا من محور السينات طوله
 ٢ وحدات وجزءًا سالبًا من محور الصادات طوله ٤ وحدات فإن: ١٩ + ٢ ب =

(١) إذا كانت : أ مصفوفة شبة متمائلة فإن المعكوس الجمعى للمصفوفة أ يساوى

$$I(\omega)$$
 $= \frac{1}{2} (-1)$ $= \frac{1}{2} (-1)$

(١٠) في الشكل المقابل:

(١) مساحة الدائرة التي مركزها النقطة (٤ ، ١-) ويمسها المستقيم ل : ر = (۱ ، ۱) + ك (۱۲ ، ۵) تساوى وحدة مربعة. π ٢ (١) π ٦ (÷) πΛ(1) (۱۱) في نظام المعادلات: ١٠ - س + ب ص = حر ، ١٠ - س + ب ص = حر إذا كان: الم (0.- (Vo) () ((Vo (0.-) (÷) ((T - (T) (·) (1, T-) قياس الزاوية بين مستقيمين ل (1, T-) ((T-1, T-1)، ل ، : ٢ - س = ٣ - ص يساوى °۲. (ع) °۲. (۱) °۳. (۱) 0. (4) (١٤) من نقطة على سطح الأرض تبعد ٥٠ متر عن قاعدة عمود رأسى وجد أن قياس زاوية ارتفاع قمة العمود ٢٤ ° 19 فإن ارتفاع العمود من سطح الأرض لأقرب متر = ١٥١ (١) ١٥١ (١) ٥٢ (١) ١٨(١) (٥) إذا كان : ١ ، - مصفوفتين على النظم ٣ × ٢ فإن المصفوفة (٥ ١ + ٣ -) من على النظمعلى النظم T × T (3) $T \times Y (\Rightarrow)$ $Y \times O (\downarrow)$ $Y \times T (\uparrow)$ ن ا کانت : $\theta \in \left[\cdot , \frac{\pi}{\gamma}\right]$ فإن مجموعة حل المعادلة : ما θ طنا $\theta = \frac{1}{\gamma}$ هي $\left\{\frac{\pi \circ}{r}\right\}(4)$ $\left\{\frac{\pi \cdot \xi}{r}\right\}(4)$ $\left\{\frac{\pi}{r}\right\}(4)$ $\left\{\frac{\pi}{r}\right\}(4)$ T9/(2) (ب) ۱۲ (ج) ۱۲ 17(1) ويوازى محور الصادات هي · = Y + ()-() ·= ٢ - ص = ٢ (ج) ص - ٢ = ٠ (١) ص - ٢ = ٠

 $\theta = \frac{1}{2} \theta +$

$$\theta \stackrel{\text{\tiny `[}}{} = (-)$$
 $\theta \stackrel{\text{\tiny `[}}{} = (-)$ $\theta \stackrel{\text{\tiny `[}}{} = (-)$

(۱) إذا كان ميل المستقيم = $\frac{-7}{7}$ فإن متجه اتجاهه يكون

$$(-7, 7)(1)$$
 $(-7, 7)(-7, 7)$ (-1)

$$I \Upsilon(\bot)$$
 $\square(\Rightarrow)$ $I(-(1)$

(۴۳) مساحة القطاع الدائرى الذى طول نصف قطر دائرته يساوى ٤ سم ومحيطه = ٢٠ سم تساوى سم ٢٠ تساوى

 $\omega - \tau = 0$ ، $\omega + 1 - \omega = -1 + 1$ ه من تقع على المستقيم : $\omega = -1 + 1$ ه ، $\omega = \tau - 1$

والتي إحداثيها السيني = ٣ هي

$$(1, 7)(1) \qquad (\cdot, 7)(1) \qquad (1, 7)(1)$$

(٥) في الشكل المقابل:

- A-21-9

رج) الحال (د) الحالف ا

(٦) معادلة المستقيم المار بالنقطة (٢ ، ١) والمتجه به = (١ ، ٣) عمودي عليها هي

الرسم البياني المقابل:

ثانيا الأسئلة المقالية

أجب عن السؤالين الأتيين :

🚺 في الشكل المقابل:

👔 مثل بيانيًا مجموعة حل المتباينات الآتية :

2×2 di . < m - m - m - m - m > 1 ≥ m + m - m > 1 ≥ m + m - m

إدارة بلطيم توحيه الرياضيات

محافظة كغر الشيخ

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

١ × ٢ فإن المصفوفة أح تكون على النظم

```
(٣) النقطة التي تنتمي إلى مجموعة حل المتباينات : المسامين المسامين
                                                                                                                                      س>٢ ، ص>١ ، س+ص≥٣ هي .....
                                                                                                                (7,7)(\Rightarrow) (7,1)(\Rightarrow) (1,7)(1)
         ((1)(1)

 (٤) أبسط صورة للمقدار : ١ + طنا θ هي ............

                      (۱) ما و (ب) منا و (ج) قا و (ب) منا و (د) قتا و
(٥) طول العمود المرسوم من النقطة (٣٠ ، ٥) إلى محور السينات يساوى .......... وحدة طول.
                                                                                                                                                                                                  (ب) ه (ب)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A(1)
                    Υ ( )
                     (٦) معادلة المستقيم المار بنقطة تقاطع المستقيمين : -\omega + o = \cdot معادلة المستقيم المار بنقطة تقاطع المستقيمين : -\omega + o = \cdot
                                                                                                                                                                                                                                                                                                                                     وبنقطة الأصل هي .....
                                                                                               (ب) ٥ - س + ٣ ص = .
                                                                                                                                                                                                                                                                                                 (۱) ه س - ۳ ص = ،
                                                                                                                                                                                                                                                                                                                               (ج) ٢ س - ٥ ص = ٠
                                                                                              (L) ٢-س+ o ص= .
                                                                                 \left(\frac{\pi}{1}, 0\right) = \overline{x}, \overline{x} = \overline{x}, \overline{x} = \overline{x}
                                                                                                                                                                        فان : || أَ || + || ب || + || ح || = .......... وحدة طول.
                                                                                                                                                                                                                                                                                                                   1. (-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         9 (1)
                                                                                                                                                                                                 11 (=)
                                                   17 (4)

 (A) إذا كانت : (١ ، ص) تنتمى إلى منطقة حل المتباينة : -س + ٢ ص < ٧</li>

                                                                                                                                                                                                                                                                                                                                                                                                             فإن : .....
                                                                                                                                                              (i) ص < ۲ (ب) ص < ۲ (ج) ص = ۲
               (د) ص > ٧
                                           (٩) مساحة القطعة الدائرية التي طول نصف قطر دائرتها ١٠ سم وطول قوسها ٥ سم
                                                                                                                                                                                                                                                                                    تساوى تقريبًا .....سم
       (۱) ۱٬۰۳ (۱) ۲٬۰۰ (ج) ۲٬۰۰۰ (۱)
                                 (۱۰) إذا كان : ۲ س+ \begin{pmatrix} -7 & -7 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -7 & -7 \\ 1 & 1 \end{pmatrix} فإن : المصفوفة س=
      \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 
                                   ..... = \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1}{\sqrt{r
    ( \mathsf{T} - \mathsf{i} \ \mathsf{E} - ) \ ( \mathsf{i} \ ) \qquad \qquad ( \mathsf{T} - \mathsf{i} \ \mathsf{E} ) \ ( \mathsf{e} ) \qquad ( \mathsf{T} \ \mathsf{i} \ \mathsf{E} - ) \ ( \mathsf{f} \ )
```

distant	لامتحانات	
-income	Morellia	

			الامتحانات النهائية
	إن ميله يساوى	متجه اتجاه مستقيم ، ف	الامتحالات النهائية (۱) إذا كان : ي = (۲ ، ٤) د
2 ' /	F (-	() 5	*
(د) ص = ٣	h	ر بالنفطة (١٠٠٠) ت	(۱۳) معادلة الخط المستقيم الما
	- C		
	.912	-0 V	
	O. T.	المرفرية على النظم ا	72 2 11
***************************************	··= (- e)	1/8 7/ /2	(۱) صفر
(v. 1)	فإن: (١ –)	$\begin{pmatrix} \circ & v \end{pmatrix} = \begin{pmatrix} v - v \end{pmatrix}$	(۱) صفر (۱) إذا كان : (۳
•	∀ ۲۷۰ فإن : θ	$\theta \geq ^{\circ} \theta \cdot \overline{\psi} = \overline{\tau}$	ده اذا کان ۲۰ ما 9 – ۲
۲ (۵)	°۲٤٠ (ج)	°17. (v)	(۲ ۲) (۱) (۳) إذا كان: ۲ ما 9 – ۲ (۱) ۲۰°
راوية ارتفاع الشمس	طوله ه متر ، فإن قياس	القطلًا على الأرض،	(۱) ۳۰ (۱) (۸) عمود إنارة طوله ۸ مت
		ر ينعي عاد الى	(۱۸) عمود إنارة طوله ۸ مد
(د) ۸۰°	°49 (2)		عندئذٍ لأقرب درجة يه
ن : م =	Li - 1 7 . 15	یاوی (ب) ۱۰°	(۱) ۲۳° (۱) إذا كان : أ = (۲ ،
	0-3(3) ((8	(1) اذا کان: ۱ = (۲ ،
V-4	(-)	(ب) ۲	r-(1)
		* * * * * * * * * * * * * * * * * * * *	
0	- ۷ = ۰ يساوى	٠ ـ ـ ٢٠ ص	٠٠+٠٠٠
) فإن إحداثيى النقطة أ 	1.1)- (1.	ر ا	°£° (1)
	F/ = = 1	مف اب حیث	(٦) إذا كانت : حد مسد
(1) (1)	(· · ∨-) (÷)	(7, 4)	- هو
	/ (=)	(ب، ۱) (ب)	(1 · V) (1)

(۳) قطاع دائری محیطه ۱۰ سم وطول قوسه ۲ سم ، فإن مساحته =سم. سم.

(٤) مثلث متساوى الأضلاع طول ضلعه ٨ سم ، فإن مساحته سم.

(ه) إذا كان : ٩ = -٧ ت فإن : ··········

﴿﴾ النسبة التي يقسم بها محور السينات القطعة المستقيمة الموجهة ٢٠٠٠

(۱) ۲ : ٥ من الداخل.

ثالثا الأسئلة المقالية

أجب عن السؤالين الاتيين :

٣ + س < ٢ > س + ٣

ا اسح عنوازی أضلاع فیه ه منتصف سح اثبت أن: أب + أو + وح = ٢ أه

1. d= 0-1 = 4

من = - T + 3 ل

(+) (1) (·) (-) 3 £ (3)

(P)

まましましまで

(٢) طول العمود المرسوم من النقطة (٣ ، ٥) إلى محور السينات يساوى وحدة طول.

() الحل العام للمعادلة : ﴿ لَمَا $(\frac{\pi}{2} - \theta) = \sqrt{\pi}$ هو (حيث $v \in \infty$

$$\nu\pi + \frac{\pi}{7}(1)$$
 $\nu\pi + \frac{\pi}{7}(1)$ $\nu\pi + \frac{\pi}{7}(1)$

(٤) المعادلة الكارتيزية للمستقيم المار بالنقطة (٣٠ ، ٧) ويوازي محور الصادات هي

$$Y = v = (v)$$
 $V = v = (v)$ $V = v = (1)$

(٥) إذا كان: م = ١٢ س - ١٢ ص فإن الصورة القطبية للمتجه م هي

$$\left(\pi \stackrel{\vee}{,}$$

$$\left(\frac{\pi}{\xi}, \sqrt{\gamma} \sqrt{\gamma}\right) (2) \qquad \left(\pi \frac{\tau}{\xi}, \sqrt{\gamma} \sqrt{\gamma}\right) (2)$$

الله عانت : قا
$$\theta$$
 – طنا θ = فإن : قنا θ + طنا θ =

$$\frac{1}{2} (1) \qquad \frac{1}{2} (1)$$

(٧) إذا كان: ٩ (-٢ ، -٧) ، - (٤ ، ٠) فإن: حالنقطة التي تقسم ٩ -

ثانيًا الأسئلة المقالية

أجب عن السؤالين الأتيين :

أوجد بيانيًا منطقة الحل لنظام المتباينات الآتية :

$$1 \ge 0$$
 ، $0 + 0 = 1$ ، $0 \le 1$ ، $0 \le 1$ ، $0 \le 1$ ، $0 \le 1$ ، $0 \le 1$ ، $0 \le 1$ ، $0 \le 1$ ، $0 \le 1$. $0 \le 1$ ثم استنتج الحل الأمثل الذي يجعل دالة الهدف $1 \le 1 \le 1$ ، $0 \le 1 \le 1$.

أوجد الصورة المختلفة لمعادلة الخط المستقيم المار (٢ ، -١) وميله √ المحتلفة لمعادلة الخط المستقيم المار (٢ ، -١) وميله √ المحتلفة المح

البالطبات (۱) النا کان:
$$| \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array}$$
 (د) $()$ (ب) $()$ (ج) $()$ (ج) $()$ (ب) $()$ (بالمرتمة منافح منافح منافح منافح منافح منافح منافح منافح منافح مناف

: دالة الهدف: ال = ٢ س + ص أكبر ما يمكن ١ - حدد المطللة بالشكل حيث ١ (١٠٠١) - - (٢٠١٦) مجموعة الحل للمتباينات هي المنطقة المضلعة : [/] = . . [/] = 1 × 1 = 1 القيمة العظمى لدالة الهدف ع = ... ·[\] = \ x \ \ 1 + 1 = ·((···) 31 (1··) *1 (8 · Y) - That !! 1= [V] (ب) مساحة اللطعة الدائرية = أي تق (؟ - ط ٩٠٠ °) ارتفاع العمود عن سطح الأرض = ١٨ مثرًا 111 = (1- = 1) - 4 14 M - 1-

- x | (-3 -x)

1. 1 = 31 (V A) (-3

١ - حو و المطالة بالشكل هيد ١ (٢٠٠٠)

 الرسم المستقيم الحدى لب: -٤ -س + ص = -٨ (بخط متصل) يمر باللقطتين (٠٠٠)، (٨٠٠)

أ، θ تقع في الربع الثاني

いのヨッカイナガルのはひい日のい

(JO) (JO) (JO) (JO)

النموذج الثاني

سى = ١٠٠١ ، مى = ١٠٠

.: الحل العام مو : θ = ٢ + ٢ برده

$$(\downarrow, \downarrow, \downarrow)$$
 $\Rightarrow = \theta \downarrow :$ $\Rightarrow = (\theta - \frac{\pi}{2}) \downarrow : : (\downarrow)$
 $\Rightarrow \theta \Rightarrow \phi \in (\downarrow, \downarrow, \downarrow)$
 $\Rightarrow \theta \Rightarrow \phi \in (\downarrow, \downarrow, \downarrow)$

$$\frac{1}{\gamma} = (\theta - \frac{\pi}{4})$$
 : $\frac{1}{\gamma}$:

$$\frac{1}{2} = \left(\theta - \frac{2\pi}{4}\right) \frac{1}{2} \cdot \frac{1}{2}$$

$$\frac{1}{2} = (\theta - \frac{\pi}{4})$$
 : مثا θ تقع في الربع الأولى ...

$$\{\xi_{-} = x_{-}^{T} \times Y_{-} = x_{-}^{T} \}_{-}^{T} = x_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} + Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} + Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} + Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$\{ \{ \zeta_{-} \}_{-}^{T} = x_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \times Y_{-}^{T} \}_{-}^{T} \}$$

$$(r\frac{1}{2}, ...) \sim (r\frac{1}{2}, r\frac{1}{2})$$
.
 $(r, ...)$
 $rection (rection ($

= ماس × ماس × ماس = ماس

9

• نرسم السنقيم المدي لم : ٣ -س + ٤ ص = ١٤ (ب) المرف الأيس = المرب عناس

 $(Y \circ Y) \circ (Y \stackrel{1}{\downarrow} \circ \cdot \cdot) \circ (Y \circ Y) \circ (Y \circ Y)$

= ١ - مرا - س = المغرف الأيسر.

$$=\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix}$$

) + + (+ +) - - (- 1) + + + + (+ +)

= I TY + 10 - 7 :

11=

= Δ ∵ (1)

Y (1) :: (=)

<

 $\lambda = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

 $Y = \frac{Y_1}{V} = \frac{\Delta}{A} = Y$

A = U .:

-11

- ◄ الرياضيات

(·· V-)(-)

BURE IN THE SERVER

(٧) إذا كانت : ح منتصف اب حيث : ح (٢٠٠) ، ب (٢٠٠)

فإن إحداثي النقطة ٢ هي

عال إحداثي العقط إلى السالة

(7, r) (·) (7, v) (1)

ثانيا الأسئنة المقالية

أجب عن السؤالين الاتيين :

- ۱ أثبت أن: المستقيمين $\sqrt{} = (1, 1) + (2, 7)$ ، 7 (4, 7) + (3, 7) ، 7 (4, 7) + (3, 7) متوازيين ثم أوجد أقصر بُعد بينهما.

ادارة ناصر توجیه الریاضیات توجیه الریاضیات

اولا اسْتَلَة الاختيار من متعدد (-)

اختر الإجابة الصحيحة من بين الإجابات المعطاة:) تَعْفِقُطا) لَهُ تَعْمِهُ قَعْفِهِ أَ عَمَاكَ امَّا

(1) إذا كان:
$$\hat{1} = (7, 3)$$
 فإن: $\|\hat{1}\|$

$$(1)$$
 إذا كان: (7) (7) (7) (7) (7) إذا كان: (7)

→ الرياضيات			and the same
	، ١٥= ١٢ سو	م فی ب ، ۲ ب = ه سم	(۵) A اسحقائ
	جة.	= الأقرب در	فإن: ٥ (١٩)
7V (1)	چة. (ج) ۱۸	(ب) ۲۲	70 (1)
V (3)	۳ من قاعدة برج قيست	بطح الأرض تبعد ٢٠ ٧	(٦) من نقطة على س
راويه ارتفاع قمه البرج	مت .	ارتفاع البرج =	فکانت ۳۰° فإن
	TV 10 (+)	10(4)	7/1.(1)
٨٠ (٦)	= θ : فإن (ج) ۱۸۰ >	A > ° = \ -	(٧) إذا كان : طا 0
************	< ۱۸۰ فإن : θ =	3 ()	T. (1)
(د) ٥٤	120 (÷)	(ب)	(۵) قطاء دا: -
ن مساحة	- قطر دائرته ٤ سم تكو	يطه ۱۱ سم وطول نصف ۲	سطحه =
		٠٠٠٠٠ ٢٠٠٠٠٠	4/1)
78 (4)	(خ) ۱۲	(ب) ۱۲	A(1)
عف قطر دائرتها	زاویتها ۱۵۰ مطول ند	طعه الدائرية التي قناس	ما المحمد المحمد الم
		شنم	
7 - π ۱ · (۵)	7 + π ۱・(辛)	(ب) ۲ – π	γ+π \. (1)
و الربعو الربع	١٠٠١ م ص٠٠٨	عل نظام المتباينتين : -ر	الربع الذي يميل
رد) الرابع. الرابع.	رج) الثالث.	(ب) الثاني.	(١) الأول.
(11) = 10.3.1(0)	۱۷۰۰ ، ۲۷۰۰		
، ص+ص≥۲	12 41/1	(7 ()) (2)	(1, 7)(1)
(7 , 1) (3)	(+, r) (÷)	النظار الا	(١١) المصفوفة (١١)
	***	١ - ١ - ١	7 × 1 (1)
4 ~ 4 ()	1 X 1 (2)		
1×7 p	ا ﴿ مُصفُّوفَةً على النظ	به على النظم ٢ × ٣ ،	فان الصفوفة
7 × 1 (2)	/ × √ (÷)	(ب) ۲×۲	7 × 1 (1)
= 1 >-	با معكوس ضربي عندما	ا فإن : ٢ ليس لو	(۱) ع الحالث : الم الم الم الم الم الم الم الم الم الم
7(1)	٤ ± (ج)	(ب) –٤	٤(1)
٨ (٦)			

الإجابــات

◄ الرياضيات

```
(m{r}) أبسط صورة للمقدار : ما m{	heta} ممًا m{	heta} طا m{	heta} هو ......
  (۱) طا<sup>۲</sup> ( ( ب ) منا<sup>۳</sup> ( ( ) ط<sup>۳</sup> ( د ) ۱ ( ع ) ط<sup>۳</sup> ( د ) ۱ ( ع ) ط ( د ) ۱ ( ع ) ط ( د ) ۱ ( ع )
(١) ٤ فقط
\{\xi - i \xi\} - \mathcal{E}(\omega) \{\xi \pm (\omega)\} \{\xi\} - \mathcal{E}(\omega)
     ه) إذا كانت : \theta = \pi V ، \tau و فإن مجموعة الحل للمعادلة : \tau ما \tau ، \tau = صفر
                                                 {°10.6°7.}(1)
                (ب) {۱۲۰، °۲۰} (ب)
                                             {°Y1. (°10.} (=)
               {°YE. , °17.} (2)
              (١) إذا كانت : ه منتصف سص فإن : سه + صه = .....
       (١) ٢ س ه (ب) س ص (ج) و (د) ص س
                               (-) (-) (-) (-)
                                                               I(1)

 (A) النقطة التي تكون عندها للدالة : √ = ٠٠ → ٢٠ من قيمة عظمي من

      (· · ٢٥) (· · · ) (÷) (٤- · ·) (·)
                                                       ( . . . ) (1)
     (٩) إذا كان: - س ص ع مثلث متساوى الأضلاع مرسوم داخل دائرة طول نصف قطرها
        o سم فإن مساحة القطعة الدائرية الصغرى التي وترها صع ع .......... سم 
                                                               10(1)
                    را) إذا كانت : \mathcal{S} = \begin{pmatrix} x & -3 & x \\ x & 0 & x \end{pmatrix} مصفوفة شبه متماثلة
                                                       فإن : <u>ص</u> = ......
                                       (پ) –٤
      4-(7)
```

(ب) ۳ ± (ج)

(ب) ۱ (ج) - طنا^۲ B

المقدار : ما θ + مَا θ - مَا θ - فَا θ في أبسط صورة يساوى

r-(1)

(١) صفر

110

(t) ± 3

▶ الرياضيات			(1)
س زاوية ارتفاع أعلى	ر من قاعدة منزل وجد أن قياه	الأرض تبعد ١٠٠ مت	(۱۰) من نقطة على سطح
ري ال	ل ≃متر.	الم ارتفاع المنز	05-3
11.(2)	41 (*)	٧٤ (ب)	٩(١)
۰۰ سم۲	ول ضلعه ٦ سيم =	اسى المنتظم الذي ط	(1) مساحة الشكل السد
7/1/(2)	(ج) ۱۸	(ب) ٤٥ ٧٣	٥٤ (١)
محيح	ه ع = ك I حيث ك عدد ،	- 18 . (+ 1	(۱۱) إذا كانت : ج = (٢)
			0 0,
1-(2)	(ج) ٨	(ب) –۲	٦(١)
(V . T)	عة المستقيمة س ص حيث -	ا محور السينات القط	(۱۳) النسبة التي يقسم به
(***)6	au te		، ص (۲ ، ه) هي .
	(ب) ٥ : ٧ من الداخل.		(۱) ۷ : ٥ من الخارع
	(د) ٥ : ٧ من الخارج.	بارود ۸ لیزیار دار	(ج) ٧: ٥ من الداخل
	- 172 = 1	$\frac{1}{2}$ فإن: ٢ س	(٤) إذا كان : سَ = (٤
$\left(\frac{\pi i}{\epsilon}, \hat{\xi}\right)(z)$	(# (E) (=)	(T (A) (-)	$\left(\frac{\pi}{\xi}, \Lambda\right)$
14 14 20 14	سع + صل =	ن مستطيل فإن:	(ه) إذا كان: س ص ع ا
(د) صاب	(ج) صعَ	(ب) ۲ سص	(۱) ۲ ص ع
: 4	للخط المستقيم الذي معادلت	ن النقطة (٣ ، ٥) علم	🗥 طول العمود المرسوم مر
	وحدة طول.	٠ يساوى٠	٢-٠٠ ع ص - ٤ =
7(4)	o (÷)	(ب) ٤ (ب	1(1)
الم معالمين	، ٣) ويوازى محور السينات	الذي يمر بالنقطة (٢	(٧) المعادلة المتجهة للمستقيم
	وب) + (۲،۲) ع = آ		(T, T) e) = 5 (1)
(, .)	(11.) = 5(2)	(1)	و (÷) کر = (۲ ، ۲) + لا

◄ الرياضيات

$$(1-, 7)$$
 قياس الزاوية الحادة بين المستقيمين ل $(7, 7)$ = $(7, 7)$ + $(7, 7)$

$$(```)$$
 المستقيم $(- 0 - 3 \ o + 18) + (3 - o + o + o + o) = \cdot مار بالنقطة $(```)$$

$$\frac{1}{V}(a)$$
 $\frac{1}{V}(a)$ $\frac{1}{V}(a)$ $\frac{V}{V}(a)$ $\frac{V}{V}(a)$

ثارثا الأسئلة المقالية

أجب عن السؤالين الأتيين :

🚺 حل نظام المتباينات الخطية التالية بيانيًا في 🏂:

١ - ح و شكل رباعي فيه : - ح = ٣ أو أثبت أن: أحد + ب ع = ٤ أو

(L) 7 : 0 من الخارج

إدارة أسوان توجيه الرياضيات

محافظة أسوان

10

اولا استلة الاختيار من متعدد (يسمح باستخدام الآلة الحاسبة)

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$$

(٢) المقدار : ما 6 ممًا 6 طا 6 في أبسط صورة يساوي

$$\theta^{1}$$
 $b - 1 (1)$ θ^{1} θ^{2} θ^{3} θ^{4} θ^{4} θ^{4} θ^{4} θ^{4}

◄ الرياضيات

(٧) قياس الزاوية بين المستقيمين اللذان ميلاهما ٢ ، ٢ يساوي ° 20 (1) ۹٠ (ج) (A) المصفوفة : (ص ع -ه) شبه متماثلة فإن : -ر ص + ع ن + و ه = 14-(2) 7.-(1) $I = \begin{pmatrix} 1 & \gamma \\ \gamma & \gamma \end{pmatrix} \times \begin{pmatrix} \gamma \\ \gamma & \gamma \end{pmatrix}$ إذا كانت : $\gamma \times \begin{pmatrix} \gamma \\ \gamma & \gamma \end{pmatrix}$ فإن : المصفوفة $\gamma \times \gamma$ $\begin{pmatrix} L^{-} & L \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \gamma \end{pmatrix} \qquad \begin{pmatrix} L & L^{-} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \dot{\gamma} \end{pmatrix} \qquad \begin{pmatrix} \dot{\gamma} & L \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \dot{\gamma} \end{pmatrix} \qquad \begin{pmatrix} L & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \dot{\gamma} \end{pmatrix}$ (١٠) إذا كان: △ ١ - حقائم الزاوية في ب ، ١ - = ٥ سم ، - ح = ٥ ٢١ سم فإن قياس زاوية حيساوي (=) 03° (L) 70° ٣٠ (ت) 7. (1) (۱۱) قطاع دائري محيطه ٤ نق سم حيث نق طول نصف قطر دائرته فإن القياس الدائري لزاويته المركزية يساوى (بالراديان) $(1) \circ \mathcal{E}(2) \qquad (2) \wedge \mathcal{E}(2) \qquad (3) \wedge \mathcal{E}(2) \qquad (4) \wedge \mathcal{E}(2) \qquad (5) \wedge \mathcal{E}(2) \qquad (6) \wedge \mathcal{E}(2$ (١٥) ٢ - ح و متوازى أضلاع فيه : ٩ (٧ ، -٢) ، ب (١٥ ، ٤) ، ح (٩ ، ٢) $(1-\epsilon\cdot)(2)$ $(-\epsilon\cdot)(3)$ $(-\epsilon\cdot)(4)$ $(-\epsilon\cdot)(4)$ (١٣) المعادلة المتجهة للستقيم الذي يمر بالنقطة (٣ ، ٥) ويصنع مع الاتجاه الموجب لمحور السينات زاوية موجبة قياسها ٤٥° هي (1:1-) と+(0:1) = ブ(シ) (0:1) と+(1:1) = ブ(1) (Y, Y) e+ (0, T) = v(1) (1-1) e+ (0, T) = v(2) (۱ ، ۷) = (3 ، 3) تقسم (3 ، 3) تقسم (3 ، 3) تقسم (3 ، 4) تقسم (3 ، 4) تقسم (3 ، 4)فإن: ب تساوى (E & Y) (J) (Y- , 1-) (+) (Y , 1) (+) (5- , Y-) (1)

$$\frac{7-}{V}(1)$$
 $\frac{7}{V}(2)$ $\frac{7-}{0}(2)$

ثانيًا الأسئلة المقالية

أجب عن السؤالين الأتيين ؛

الخطية التالية بيانيًا في ع^٢ :

محافظة أسوان

10 / 10 ac lide

إدارة أسوان توجيه الرياضيات

اولًا أسئلة الاختيار من متعدد (يسمح باستخدام الآلة الحاسبة)

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\$$

$$\theta' = (-1) d' \theta$$
 $(-1) d' \theta$ $(-1) d' \theta$

س زاوية ارتفاع أعلى	، قاعدة منزل وجد أن قيا	س تبعد ۱۰۰ متر مز	(٢٠) من نقطة على سطح الأرذ
			نقطة في المنزل ١٧ ٢٢°
11.(2)			1(1)
۰۰۰ سم	ضلعه ٦ سم =	المنتظم الذي طول	(۱) مساحة الشكل السداسي
TV 11 (2)	(ج) ۱۸	(ب) ٤٥ ٧٣	٥٤(1)
		0 - 3 . ((۲) إذا كانت : ج = (٣٠)
			فان : ك = الله
1-(3)	۱ (ج)	(ب) -7	7(1)
ن س (۲،۲)	ة المستقيمة - 0 ص حيد	حور السينات القطع	(٢٣) النسبة التي يقسم بها م
		********	ء ص (۱ ء ٥) هي
	(ب) ٥ : ٧ من الداخا		(1) ٧ : ٥ من الخارج.
3.	(د) ه : ٧ من الخار		(ج) V : ٥ من الداخل.
	= ($\frac{\pi}{2}$ فإن: ۲ سو $\frac{\pi}{2}$	(3) إذا كان : $\overline{-0}$
$\left(\frac{\pi}{\varepsilon}, \left(\frac{1}{\varepsilon}\right), \left(\frac{1}{\varepsilon}\right)\right)$	$\left(\frac{\pi}{\gamma}, \left(\frac{\xi}{\xi}\right)\right)$	$\left(\frac{\lambda}{4E}, V\right)$	(¹ ()10 √ A) (1)
	سع + صل =	مستطيل فإن:	(٥) إذا كان: - ص ص ع ل
(د) ص-ں	(ج) صع	(ب) ۲ س	(۱) ۲ ص غ
			(٦) طول العمود المرسوم مر
	وحدة طول،	٠ يساوى	٣ - س + ٤ ص - ٤ =
7(2)	(ج) ه	(ب) ٤	14 (1)
سينات هي	(۲ ، ۲) ویوازی محور اا	م الذي يمر بالنقطة	(٧) المعادلة المتجهة للمستقي
(111) 2+ (7	(ب) ک = ک (۲ ،		(ア・ア) ション(1)
()	(١) ع = آراء)	(1)@	$I + (\Upsilon, \Upsilon) = \sqrt{(\Rightarrow)}$

(۱، ۲) إذا كان: أ = (١، ١-) ، ب = (١، ٢) فإن: المال = ·············· (ب) ٤ (ج) ٣ 7 (2)

(٤) قياس الزاوية الحادة المحصورة بين المستقيم المار بالنقطتين: (١٠٠)، (١٠٠) والاتجاه الموجب لمحور السينات تساوى

(۱) صفر (ب) ه٤° (ج) ۲۰° °9. (1)

(٦) النقطة التي تنتمي إلى مجموعة حل المتباينتين الأتيتين: ٢ - س + ص < ٤

، س + ۲ ص < ٦ هي

(۷) أبسط صورة للمقدار : $\frac{1-\sqrt{1}}{9}$ هي

(ب) ۳ Y(1) 0 (=) A ()

(١٩) في الشكل المقابل:

جميع العبارات التالية تعبر

عن أحم عدا العبارة

المقدار : ما heta + مُنا heta - وَنَا heta في أبسط صورة يساوى heta المقدار : ما heta

$$\theta$$
 (۱) صفر θ (ب) θ (ب) θ (ب) θ (۱) صفر

(٣) أيسط صورة للمقدار : ما θ منا θ طا θ هو (۱) کا ا^۳ (ب) منا ا^۳ (ب) منا ا { E- (E } - 2 () (ب) ع - { ٤ } - ع (١) ٤ فقط ه الحال المعادلة : ۲ م θ = π ۲ م الحال المعادلة : ۲ م θ = π صفر (٥) إذا كانت : θ {°17. 6°7.}(L) {°10. 6°T.}(1) {°YE. , °1Y.} (1) {°11. (°10.} (=) (١) إذا كانت : ه منتصف سص فإن : سه + صه = (۱) ٢ - ١٥ (ب) - ١٥٠٠ (ج) و (د) صـِ $\cdots = \begin{pmatrix} r & r \\ r & 1 \end{pmatrix} + \begin{pmatrix} r & r \\ r & r \end{pmatrix} (y)$ (٨) النقطة التي تكون عندها للدالة : √ = ٤٠ ص + ٢٠ ص قيمة عظمي من النقط الأتية (· (Yo) () (1· (10) (÷) (E- (·) (·) (. . .) (1) (٩) إذا كان: - ص ص ع مثلث متساوى الأضلاع مرسوم داخل دائرة طول نصف قطرها ه سم فإن مساحة القطعة الدائرية الصغرى التي وترها ص ع عد سم (4) 75 7(-) (٠) إذا كانت : $8 = \begin{pmatrix} 7 & -3 & 7 \\ 7 & . & 7 \end{pmatrix}$ مصفوفة شبه متماثلة (-7) ص (-7)فإن : ص = (ج) ۲ 4-(1) (۱) ٤ (ب)

الإجابات

	احد= ۱۳ سم	، اب = 0 سم ،	(a) ۱۵ مرح قائم في ب
		7- · · · · · · · ·	- (0 .)
77 (2)	(خ) ۸۲	(ب) ۲۲	٦٥ (١)
فاع قمة البرج	قاعدة برج قيست زاوية ارت	رض تبعد ۲۰ ۳۷ من	(٦) من نقطة على سطح الأر
	ىتر.	البرج = ه	فكانت ٣٠° فإن ارتفاع
۲. (۵)	TV 10 (=)	(ب) ۱۰	7/1.(1)
•	۸۱° فإن: θ = ·······	$\cdot > \theta > ^{\circ} \cdot $.	(٧) إذا كان : طا θ - ١ =
(د) ٥٤	(ج) ۱۲۰	(ب) ۲۰	r. (1)
مة	لر دائرته ٤ سم تكون مساء	١ سم وطول نصف قط	(۸) قطاع دائری محیطه ۲
		Yau	= مصلحه
78 (2)	17 (=)	(ب) ۱۲	A(1)
ر دائرتها	يتها ١٥٠° وطول نصف قط	لدائرية التي قياس زاو	(٩) مساحة سطح القطعة ا
		سم	۲ ۱۲ سم
7 - T 1 · (3)	7 + π ۱· (÷)	r - π ۱. (ψ)	γ+π 1. (1)
- (1)	٠٠ ، صري ، هو الرب	طام المتباينتين إج	(١٠) الربع الذي يمثل حل نف
(د) الرابع : (۱۱	ر (ج) الثالث،	(ب) الثاني، ٢٠٠٠	(١) الأول.
س+ ص≥٣	، ۱ < ب م > ۲ د د	وعة حل المتباينة : -ر	(۱) النقطة التي تنتمي لجه
(7 : 1) (3)	(٢, ٢) (=)	(٢ : ١) (٠)	(1 (7) (1)
		على النظم	(۱۱) المصفوفة (۱ ۲ ۲)
7 × 7 (1)	۲×۱(ج)	(ب) ۲×۲	Y × 1 (1)
1 ×	ا مصفوفة على النظم ٢	على النظم ٢ × ٣ ، أ	(٣) إذا كانت : أ مصفوفة
			فإن المصفوفة 🕶 على
1 × 1 (1)	/× √ (÷)	(ب) ۲×۲	T×1(1)
ى =	ہا معکوس ضربی عندما (ج) ± ٤	٢ فإن : ٩ ليس له	(ع) اذا کانت : ۱ = (د
۲ (۵)	٤ ± (ج)	٤- (ب)	ξ(1)
		1000	

- 4 الرياضيات

(۱، ۷) باذا كانت : ح منتصف اب حيث : ح (۲، ۰) ، ب (۲، ۲)

فان إحداثي النقطة ﴿ هي

ثانيا الأسثنة المقالية

أجب عن السؤالين الأتيين :

- متوازيين ثم أوجد أقصر بعد بينهما.
- أوجد القيمة العظمى لدالة الهدف : $\gamma = 7 c + 3$ ص $1 \ge 1 \ge 1$ ، حس $1 \ge 1$

إدارة ناصر محافظة بنى سويف توحيه الرياضيات

(1) I'll With I musical agent all 1 Lucies (1) اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$(1)$$
 إذا كان : (7) $= (\pi \frac{7}{8}, 7) = (\pi \frac{7}{8}, 7)$

أسحرو المظللة بالشكل حيث ا(٢٠٠١) ، س (٤٠٠٢) ٠٠ مجموعة الحل المتباينات مي المنطقة المضلعة ٠٠٠ دالة الهدف: ١ = ٢ سن + من أكبر ما يمكن $\because [\triangle]^{c} = \cdot \cdot \cdot [\triangle]^{d} = \lambda \times \lambda = 3$ القيمة العظمى ادالة الهدف ب 1. = \$ + T × T = [V] . (...) 16(...) ... (1.1) - itali 1= [V]. $\binom{n}{2} \cdot \binom{n}{2} \cdot \binom{n}$ ٠٠ ارتفاع العمود عن سطح الأرض = ١٨ مترا (بخط متصل) يمر بالتفطئين (٠٠٠)، (٨٠٠) المنتو الالمالية المالية (ب) • س ≥ . ، من ≥ . . س ا الربع الأول يستقهما و سن ل و من ل الربع الأول ٢ سي + ٢ ص = ١٨ (بخط متصل) الله الم الم الم الم الم الم المسترا يمر بالتقطئين (٠٠٠) ، (٢٠٠٠) $117 = \left(1 - \frac{TL}{T}\right)^T \cdot \frac{TL}{T}$ درسم الستقیم المدی لی: - " A 13 11 = T= يمثل طول العمود. (١) نفرض أن : ١ ب (+) : 2 (= 0 = + : 10 = + ((+) 1. 日= 十二日からはない日日の 1. 1- 1/ (17 1/1) 1-1 :- 1: 1 المل العام هو : θ = + ٢ بير نه $=\frac{31}{-1}\begin{pmatrix} -\sqrt{\lambda} & -\sqrt{3} \\ -\sqrt{\nu} & -\sqrt{3} \end{pmatrix} = \begin{pmatrix} \lambda \\ 3 \end{pmatrix}$

= I * * + 1 0 - 7 :

(1) :: {= (-3 + 1)

= A .. (1)

النموذج الثانى

:. قيمة الدالة أن أكبر ما يمكن عندما 1 = = 0 1 1 = 0

أ، 8 تقع في الربع الثاني

.: 6 تقع في الربع الأول ∴ 8 = ۲۰ وتکافی کا

1 [V] = .0 × +7 = +111

 $101 = 1 \times 0 \times 0.1 \times 0 \times 0 \times 0.1 = 10$: ٧ = ٢٠ سي + ٥٠ ص

٠٠٠ مجموعة الحل المتباينات هي المنطقة المضلعة ا معدد المطلق بالشكل حيث ا (٢٠٠٤ م. ٠) (ナナ・・) ~ (いず・、ま) ー・

1 T T

 نرسم الستقيم الصنى لي: ٣ -س + ٤ ص = ١٤ (τ, τ) ، $(\tau \stackrel{1}{+} \cdot \cdot)$ یمر بالتقطتین $(\cdot \cdot \cdot \stackrel{1}{+} \tau)$ ، (τ, τ)

= ١ - منا حن = الطرف الأيسر.

<

	فإن : →ن =		 ۲ حس ۱۵ کان : الله کان : الل
0(1)	£ (÷)	(ب)	Y(1)
ة انخفاض قارب يبعد	سطح البحر يكون قياس زاوي	ا ۱۰۰ متر عن	(٩) من قمة صخرة ارتفاعه
	≃	۲ متر بالراديان	عن قاعدة الصخرة ٠٠
., ٢٤ (٥)	· , Yo (÷)	(ب) ۲3 , ۰	٠,٠٨(١)
يل هذا المستقيم	ستقيم هو مم = (٣ ، ٤) فإن ه	العمودى على ما	(٠) إذا كان متجه الاتجاه
			هوه
(2)	₹ (÷)	(ب) ع	<u>ξ−</u> (1)
ن : ك =	، -٢) وكان : أَ لَمْ صَا فَإِرْ	r) = (a	(١١) إذا كان: أ = (٢ ، ك
4-(7)	Y- (÷)	(ب) ۲	۳(1)
$\frac{\pi}{r}$ کزیة	سم وقياس زاويته المر π ٦ سم	ى الذي مساحت	(١٢) طول قوس قطاع دائر
			100
π ۲ (ع) (ه) طول العمود النازل	٦ (ج) من (-/ ، ؛) إلى محور الص لها معكوس ضربى فإن : -	π٦ (پ) عادات دوهاسرت	١٨(١)
ب =	لها معكوس ضربي فإن : ٠	سيا (٢	(١٥) إذا كانت المصفوفة (
7(1)	Y (÷)	(ب) صفر	Y-(1)
۱) فإن نقطة تلاقى	(1. (Y) -	. (0, 7)	(١٤) ٢ - ح مثلث فيه : ١
			متوسطات المثلث هي
(4, 7)(1)	(9 · E) (÷)	(ب) (۲ ،	(7 . 1) (1)
1<.	لتباينات: سن > ۲ ، ص	مجموعة حل ا	(٥) النقطة التي تنتمي إلم
			، س + ص ≥ ۲ هم
(, ,)(7)	(4, 4)	(ب) (۱)	(1:7)(1)
سم	ى طول ضلعه ٨ سم تساوى	سى المنتظم الذ	
(6) 331 17		(پ) ۲۶ آ	TV 17(1)

(٢) طول العمود المرسوم من النقطة (٣٠ ، ٥) إلى محور السينات يساوى وحدة طول.

(حيث $v \in \sigma$ الحل العام للمعادلة : ولما $\frac{\pi}{v} = \theta = \sqrt{\tau}$ هو (حيث $v \in \sigma$

$$\nu\pi + \frac{\pi}{7}(1)$$
 $\nu\pi + \frac{\pi \vee}{7}(2)$ $\nu\pi + \frac{\pi}{7}(1)$

$$Y = 0 - (1)$$
 $V = 0 - (1)$ $V = 0 - (1)$

(٥) إذا كان : $\hat{h} = 17$ س $\hat{h} = 17$ ص فإن الصورة القطبية للمتجه \hat{h} هي

$$\left(\pi \stackrel{\vee}{\underset{\xi}{\vee}}, \stackrel{\vee}{} \uparrow \bigvee 17\right) (\varphi) \qquad \qquad \left(\pi \stackrel{\vee}{\underset{\xi}{\vee}}, \stackrel{\vee}{} \uparrow \bigvee 17-\right) (1)$$

$$\left(\frac{\pi}{\xi}, \sqrt{\chi}, \chi\right)$$
 (1) $\left(\pi, \frac{\pi}{\xi}, \chi\right)$ (2)

اذا كانت : قا $\theta - d$ نا $\theta = \frac{1}{2}$ فإن : قنا $\theta + d$ نا $\theta = \cdots$

$$\frac{1}{\sqrt{1-1}}$$

(٧) إذا كان : ١ (- ٣ ، - ٧) ، ب (٤ ، ٠) فإن : حالنقطة التي تقسم ١٠٠

من الداخل بنسية
$$\alpha + 7$$
 هني سياس سياس سياس من الداخل بنسية $\alpha + 7$ من الداخل بنسية α

ثاننا الأسئلة المقالية

أحب عن السؤالين الأتيين ،

أوجد بيانيًا منطقة الحل لنظام المتباينات الآتية :

$$1 \ge 0$$
 ، $-\infty + \infty \le 1$ ، $-\infty + \infty \le 1$ ، $-\infty + \infty \le 1$ ثم استنتج الحل الأمثل الذي يجعل دالة الهدف $\infty = 1$ $-\infty + \infty$ (قيمة عظمي)

[] أوجد الصورة المختلفة لمعادلة الخط المستقيم المار (٢ ، -١) وميله ٢


```
(٦) إذا كانت: س≥١، ص≥١، س+ص≤٢
                               فإن دالة الهدف ٧ = ٥ ص + ٤ ص يكون لها قيمة عظمى عند النقطة ......
  (۱) (٥، ٥) (ب) (١، ٥) (ج) (٥، ١) (د) (٢، معفر)
                      (v) إذا كان: أ = (ك ، ك + ٢) ، ب = (٢ ك ، ه ك - ٣) فإن إحدى قيم ك
                                                                                                                                                                             التي تجعل أ // ب هي .....
                                                                                                                        ۲ (ب)
                                                                                                                                                                                                                                                                                                                      T(1)
             (A) إذا كان: Y س + \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} فإن: المصفوفة س = ...........
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 
                  (۱) طناس (ب) طاس (ج) مناس (۱) فناس
                         (١٠) طول العمود المرسوم من نقطة الأصل على المستقيم: ٣ -س - ٤ ص = ١٠
                                                                                                                                                                                                                       يساوى .....وحدة طول،
                 ٠ (١) ٢ (٠) ٢ (٠)
          (۱۱) اب حری متوازی اضلاع ، حا \{ \{ \{ \} \} \} فإن : \{ \{ \} \} \} فان : \{ \{ \} \} \}
                  5PT(1) =PT(2) 5-(1)
                       (10) إذا كان: ١ عمل عمل - = - ٢ مملاً حد + ٨ فإن: ١ = .....
                                                                                                                                                                                 اقاس طناس ۱طاس
                                  χ(¬) γ-(÷)
                                                                                                                                                                                ۲- (پ)
                                                                                                                                                                                                                                                                                                                   A(1)
             (١٣) مساحة الشكل الرباعي المحدب الذي طولا قطريه ١٢ سم ، ١٣ سم ويحصران زاوية
                                                                                                                                                                              جیب تمامها <del>۱۳</del> تساوی .....سم
                    122 (3)
                                                                                                                                J. (÷) A. (÷)
                                                                                                                                                                                                                                                                       7. (1)
```


(۲ ، ۱–) والمتجه اتجاه له حيث $\overline{S} = (-1 \cdot 7)$ والمتجه \overline{S} متجه اتجاه له حيث $\overline{S} = (-1 \cdot 7)$ فإن المعادلتين البارامتريتين للمستقيم ل هما

تَارِينًا الأسئلة المقالية

أجب عن السؤالين الأتيين :

- 👣 مثل بيانيًا مجموعة حل المتباينة : ص < ٢ س + ٣
 - ا اسحاد متوازی أضلاع فیه ه منتصف سحا اثبت أن : 1 + 1 + 1 + 1 + 2 = 1

الجـــزء الخـــاص بالإجـــــــابـات

إعداد نخية من خيراء التعليم

^= [₹]	0=57+4-1: 4 0=57+4-1: 4	10 T T T T T T T T T T T T T T T T T T T
۲/۱ = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = ۱/1 = 1/1 =	(۱) (۱) (۱) بيمي (۱) (۲): (۱) (۲): (۱) بيمي (۱): (۱): (۱): (۱): (۱): (۱): (۱): (1): (1): (1): (1): (1): (1): (1): (1	ا التحديد (١) (٢) : (1) : (1)
17 - 0 - 0 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 17 - 0 - 0 - 0 - 17 - 0 - 0 - 0 - 17 - 0 - 0 - 0 - 17 - 0 - 0 - 0 - 0 - 17 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1. = \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2	\(\begin{align*} \langle \frac{1}{2} \times \\ \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \\ \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \\ \times \\ \tim
∴ 1 → 1 = V	3	
$\frac{1}{2} = \begin{pmatrix} 1 & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix} = \begin{pmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix} = \begin{pmatrix} \lambda & \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix}$	$ \mathbf{x} \times \mathbf{x} ^{2} = 3$ $ \mathbf{x} \times \mathbf{x} ^{2} = 3$ $ \mathbf{x} \times \mathbf{x} ^{2} = 3$ $ \mathbf{x} \times \mathbf{x} ^{2} = 3$ $ \mathbf{x} \times \mathbf{x} ^{2} = 3$ $ \mathbf{x} \times \mathbf{x} ^{2} = 3$	9 = 7 - 0 Y+C
$\begin{aligned} x &= 1 - 1 = \frac{1}{1} x & = \frac{1}{1} - \frac{1}{1} x & = \frac{1}{$		1 = 0 . $1 = 0$. $1 =$

$\begin{pmatrix} x_1 & x_1 & x_2 \\ x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ x_2 & x_3 & x_4 \\ x_3 & x_4 & x_4 \\ x_4 & x_4 & x_4 \\ x_5 & x_5 & x_5 \\ x_5 & x_$	(a) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ aby Hidda 4×1 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\$	(3) $\begin{pmatrix} 3 & -1 \\ -1 & \lambda \end{pmatrix}$ $\Rightarrow 0$	(1) (- 1 x) على النظم 1 × 7 (1) (1 x - 1 x x x x x x x x x x x x x x x x	$ \begin{vmatrix} 0 - \times 1 & 0 - \times 17 & 0 - \times 16 \\ 0 - \times V & 0 - \times 1 & 0 - \times 7 & 0 - \times 7 \\ 0 - \times V & 0 - \times 1 & 0 - \times 7 & 0 \end{vmatrix} = \begin{vmatrix} 0 - \times V & 0 - \times 1 & 0 - \times 7 \\ 0 - \times V & 0 - \times 1 & 0 - \times 7 \end{vmatrix} $ $ \begin{vmatrix} 0 - \times V & 0 - \times 1 & 0 - \times 7 \\ 0 1 & V_{0} & 0 - V_{0} & 0 \end{vmatrix} = \begin{vmatrix} 0 - \times V & 0 - \times V_{0} & 0 \\ 0 1 & 0 - V_{0} & 0 - V_{0} \end{vmatrix} = \begin{vmatrix} 0 - \times V & 0 - \times V_{0} & 0 \\ 0 1 & 0 - V_{0} & 0 - V_{0} \end{vmatrix} = \begin{vmatrix} 0 - \times V & 0 - V_{0} & 0 & 0 \\ 0 1 & 0 - V_{0} & 0 & 0 \end{vmatrix} $
(۱) مصفوفة مربعة على النظم ۲ × ۲ (۱) مصفوفة معف على النظم ۲ × ۲ (۲) مصفوفة معود على النظم ۲ × ۲ (۱) مصفوفة مسفرية على النظم ۲ × ۲ (۵) مصفوفة قطرية على النظم ۲ × ۲ (۳) مصفوفة قطرية على النظم ۲ × ۲ (۳) مصفوفة قطرية على النظم ۲ × ۲	الله (۱) أعلى النظم ٢ × ٢ ، س على النظم ٢ × ٢ ، (١) أعلى النظم ٢ × ٢ ، س على النظم ٢ × ٢ ، أو الله الله الله الله الله الله الله الل	(a) (c) (d) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(4)(+) (4	ارشادات الـوحـدة الأولـي ارشادات تعـارين ا اولا استنة الاختيار من متعدد اولا (ع)(ه) (ع)(ه) (غ)(ه) (غ)(ه)

(3)(3) (+) (F) (1)(10) (3)(3) (+) (10) (a)(a) (b)(b) (a)(b) (c)(b) (1)(6) (1)(6) (2)(7) (8)(1) (6)(1) (v)(*) (v)(v) (*)(v) (۱) اجت= (۲۰ مر) (۱) غیر سکن (۲) اجت= (۲۰ مر) مصنائع المسئورمات الجلدية اكثر من الأغذية (1) Through $1\%_{0} = 13 + 67 + 77 + 77 = 1.4$ ارشادات تمارین 2 مدينة ٦ أكتوبر الأعلى في عدد المسائع (A) (P) (A) (A) (40(4) (00(r) (1)00 (+)00 (1) (2) (1) (1) (c) (c) (r) (*) (%) (*) (T) إولا أسنتة الاختيار من متعدد (r) الصف الأول = 11 + 1,1 = 1/1 (r) الصف الثالث = ۲۷ + ۱٤ + ۱٥ $\Lambda_{*} = 9\Upsilon + \Upsilon \Lambda = 0$ ثانيا الأسللة المقالية (A)(A) (A)(A) (1) (2) (1) (2) (1) (m) (-) (m) (2) (4) (4) (a)(c) (a)(c) (LO(1) (A)(*) (0)(1)(0)(4) (1) 44 (4) (F) Υ = (-0 - 00) .. ٩ = ٢ × (-0 - 00) .. 3 1/1+1+1=VI .. (س - ص) (س + س ص + من) = ؟ .. (٨) مجموع عناصر القطر الرئيسي = ١٠١١ + ١٠٠٩ + ١٠٠٩ بالتعويض من (١) في (١) : .: ٢٠٠٠ = (٢٠٠٠) بيلوح (١) من (٢) : : - ٢ سي ص = ١ : 400 = 4100 : - - - 1 an $\Lambda = \frac{1}{12} (1)$ [horizon $\Lambda = \frac{1}{12} (1)$] [13] : سن - ٢ سي مي + صن = ١ (Y) : سن + سن من + من = ۲ 0 = 70 = 0" · · · 1 = " - " - " تطبيقات حياتية 1-= Un Ur .. 3 - 500 1

A = 0 + T = (+ J) Y = 7 - 1 + (L 4) مجموع عناصر الصف الأول = ١١، + ١١، اسدادن الجدالس ، ۱ده (٦) من تساوي المعفوقتين نجد أن : ١ = ١ + ن 0=0+p: Y=0 + Y=p: 1=1× (1-0) (1-0) .: 1. 13---- 1 4x4+ [+ -- +] .. N=1-411 5-=-1 .= 2= 1 .: ·= (1-v-)(1+v-1): x = 1(1) x = = + (-1) + (---) + (----) 1 1 1 1 m-= au 1= pd . T= p+d .. (١) :: ل ، م مما جدرا المادة : 1=0=1 1-=0=1 . = 1+ U-T- T-يعل المادلتين (١) ، (٢) : (5) ... 1" = 1 + 1 (1) = 1 (٣) : المعقولة قب متماثلة + + + + + + + + 5 1-= (p+--+ s) -= (p+-+ s) : -ve {1,-+} + 1,1 = 1 + 7 (T) = + 5+---+5 3+2+4+1 1 = C : \$= \ - N(0) リードードード 0 = Y + U = Y :. 1+0= OAY : (A) (A) (P) (1)(c) (+)(r) ثالثا مسائل تقيس مهارات التفكير V= U-Y: 7-=2: (1) the stable. (3) 1--1×1-×1=2 (1) = (1 or (1) (1) 1: 1 an + m = 1 + 1 m ٠ = ١ - س - ١ - ١ . . 1- 1 × 1 = 0-1 : 1:13+1=1-0 : - سعلولة شبه متعاقة 一日をしていいい 1: 1 an + - = 5 1=0--1-1: (5)(5) (*)(3) إرشادات العل : ن أمسلولة متماثلة 1+8=001:1 1. V = 3+1 (1) and and (1) T. 0 = U- .. (F) and 35. 1:1=-13 Y= 00 .. 1=00 .. X=0- .. (4)(4) (4)(0 (1)(3)

(J) ... (J+1) = [++] = [++] 12 = (T - C - T) = " | + |: الصفوة (١-١) شبه متمالة .: المسلوبة (١٠١١) متماقة .: (١ +-) مصفولة متماثة (3) { + + + = } = {(6) (ه) نفرض ان: ا = (ع ل (۱) بغرض أن: ا= ١- ١ (١) يفرض أن : - = } + } · 1 = (20) 1 " إرشادات لعل رقم $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ $L = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $L = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $L = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $=\begin{pmatrix} -\lambda & -3 \\ -\lambda & -3 \\ -\lambda & -3 \end{pmatrix} + \begin{pmatrix} -\phi & \lambda \\ -\lambda & -1 \\ -\lambda & -1 \end{pmatrix} = \begin{pmatrix} -\lambda & \lambda \\ -\lambda & -3 \\ -\lambda & -1 \end{pmatrix}$ نالنا مسائل تقيس مصارات التفكير $=\begin{pmatrix} 1 & V & 1 \\ -1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 & -1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix}$ () = () = () : : $\begin{pmatrix} \overline{V} - \overline{\psi} & \overline{V} - \overline{\psi} \\ 1 & \overline{V} - \overline{\psi} \end{pmatrix} = \mu \begin{pmatrix} \mu \\ - \mu \end{pmatrix} = \overline{V} :$ SE (+)(7) (+)(7) (T) .: 0 m .: (L) (+)(e) 1+51= Jul .. (1)(6) (3)(3)

 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1$ $\begin{pmatrix} \cdot & \wedge - \\ \cdot & - \end{pmatrix} = \begin{pmatrix} \cdot & \gamma \\ \cdot & - \end{pmatrix} - \begin{pmatrix} \cdot & \gamma \\ - & \cdot \end{pmatrix} = \sqrt{\gamma} \times \cdots$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \lambda m + \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \lambda m + \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1$ $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ (1-17) + - w T = (17-1) + - w 1 :: (1) $\therefore m_{\pi} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ $\begin{array}{c} (1, 1) & (1, 1) \\ (1, 1) & (1, 1) \end{array}$ $\begin{pmatrix} V_{-} & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} u \\ -1 \end{pmatrix} = \begin{pmatrix} u \\ -1 \end{pmatrix} = 0$ 11=1+2:0 $\prod_{i=1}^{n} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n}$ 7-10-1 1 = Ue .. 1 = J :: = 00 : 1-= J-1. J-Y=1-J-1. : (0 = 0 1-=6: .= 0+36+0-T. 17. -0+13+0=1 · + ---1=0101 1-13=-1 T= Un 1

$$\begin{pmatrix} (& & & \\$$

$$\begin{array}{c} (1 - i - i) \\ (1 -$$

(1)(4) (3)(4) (3)(4) (4)(1) (916 9 4 b) = تارث مسائل تقيس مهارات التفكير (0) - - = (36) (36 18) (1 1) = 1 إرشادات لحل رقم 📗 $\begin{pmatrix} \vdots & \ddots \\ \vdots & \ddots \end{pmatrix} = \begin{pmatrix} \vdots & \ddots \\ \vdots & \ddots \end{pmatrix} \begin{pmatrix} \vdots & \ddots \\ \vdots & \ddots \end{pmatrix} = \begin{pmatrix} \vdots & \ddots \\ \vdots & \ddots \end{pmatrix}$ $\begin{pmatrix} 1 & -vv + av \\ -v & -v & -v \\ -v & -v \end{pmatrix} = \begin{pmatrix} 1 & -v & -v \\ -v & -v \\ -v & -v \end{pmatrix}$ - (- 00) + (- 00) -(1)= I - - 1 + - - 1 + - - 1 + ... ·= -- + 00 = 1 6 .: V - Y - V = . . .

(1)(4) (10(4) (10(4) (20(4) (60(1) $\mathcal{S} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \mathcal{S}$ $(7 + \frac{1}{4}) + (111 + \frac{1}$ $t_i = t \times t = \begin{pmatrix} -1 & v \\ -1 & v \end{pmatrix} \begin{pmatrix} v & v \\ v & v \end{pmatrix} = t \times t = t$ (-3) = (13 or) (1V. 170)= = (-14 49) $\begin{pmatrix} x & x \\ y & y \end{pmatrix} \begin{pmatrix} x & y \\ y & y \end{pmatrix} = \begin{pmatrix} x & y \\ y & y \end{pmatrix}$ (1) (T) = 1 -1 -1 Y=00: 0=00+Y.

$$\begin{pmatrix} \begin{pmatrix} \ddots & \ddots & \\ \vdots & \vdots & \ddots & \\ \vdots & \ddots & \ddots & \\ \vdots & \vdots & \ddots & \\ \vdots & \ddots & \vdots & \\ \vdots & \vdots & \ddots & \\$$

·= (1+ ··) (-· -) (-· + ·) = · ·= (1-0-10) (-1-10-) ... : ۲ ص - ۱ + ص (س - ۸ - ۲ : ۲ : ۱۰ = ۱۰ 1. = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 Y = - 11 - - - 11 - - - 1. .= (1+0-)-(1-0-) :. · = (1+ cm) (1+ cm) -·= (Y+v-) (A-v-) :: .= 17-0-1-1-1. (1-5-)(1-5-);(1) 1-= U= 1 1 1 - 1 - 1 = ١٠ س ل - ١٠ ع ص = ١٠ (س ل - ع ص) = 1 - 1 - 1 - 1 - 3 - 3 - 0 + 3 - 0 0 = ٤ س ل - ٤ ع ص = ٤ (س ل - ع ص) $\frac{|\mathbf{S}|}{|\mathbf{S}|} = \frac{1}{|\mathbf{S}|} + 1 \begin{vmatrix} \mathbf{T} & \mathbf{T} \\ \mathbf{V} & \mathbf{A} \end{vmatrix} + \frac{1}{|\mathbf{S}|} + \frac{1}{|\mathbf{S}$ = (-1 - - - -) × 1 L - (3 - L) × 1 - -(1) 3-L 3 L 1-= 11 - 17 + 17 - 17 = -1 T. = T x 1. = 14=4×5= 1J. ET (0)

14 × 4 + (A-) × 4 = A- 4- 4- 4- 4-= 1-1-1+1+1-1= (1-) × 1-0-1× (-1) 1×1-1×1+

(A) (A) (A) (A) (A) (A) (A) (A) (A) (a)(b) (e) (r) (1) (r) (+) (10) (1)(1)(1)(1)(1)(1)(1)(1)(1)(1) (a) (a) (a) (a) (a) (b) (b) (c) QB(+) QB(1) QB(1) QB(+) (1)(+) (1)(+) (1)(+) (3)(+) 00(0) (0)(c) (0)(c) (10(c) (00(c) (00(c) (20(c) أولا أسئلة الاختيار من متعدد

8 15 - 8 16 - (1 + 4 18) = 3 18 - 51 8 = س من ا + س + من + ١ - س من من - من = 9, 0 - 9, 0 (a) 1 × 4 0 - 510 × 510 = 41 0 - 51 0 = -1 = سن من + سن + عن - سن عن - عن - سن (12)(1)(10)(+) (13)(1) (13)(1) (13)(1) (a) (b) (a) (b) (c) (c) (c) (c) (c) (a) (b) (a) (c) (c) (c) (c) (d) (l) (d) (1)(6)(4)(8)(4)(8)(4)(6)(1)(9)(1) تارين الأسنئة المقالية $(1) - \frac{1}{\lambda} \times \frac{1}{\lambda} + 1 \times \frac{1}{\lambda} = 1$ Y-= Y × Y-(1-) × 1(1) 1-10-

(۲) الدخل اليومي = (۲۰ ، ۲۰) الدخل اليومي = (۲۰ ، ۲۰) الدخل اليومي = (۲۰ ، ۲۰) (٣) الدخل اليومي للشركة = ١٠٤٠٠ چنيه (Yo.) (X 1E YA (Yo.) (YO. 40 Yo.) (YO.) Wo. . = (8.7..)

ارشادات تعارین

، تكاليف وجية العشاء = ٢٦٠ جنيها

 $\sum_{i=1}^{N_0} \binom{10}{i!} :: تكاليف وجبة النداء = ١٤١٥٠ جنيها (1810.)=

تطبيقات حيانية

$\nabla^{-n} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 \end{vmatrix} = 1 - 1 = 1$ $\nabla^{-n} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1 - 1 = 1$ $\nabla^{-n} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1$ $\nabla^{-n} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1$ $\nabla^{-n} = \frac{1}{\sqrt{n}} = 1$	$\nabla^{\text{AS}} = \begin{vmatrix} \lambda & \lambda \\ \lambda & \lambda \end{vmatrix} = 0 - \lambda = \lambda$ $\nabla^{\text{AS}} = \begin{vmatrix} \lambda & \lambda \\ \lambda & \lambda \end{vmatrix} = 0 - \lambda = \lambda$ $\nabla^{\text{AS}} = \begin{vmatrix} \lambda & \lambda \\ \lambda & \lambda \end{vmatrix} = 0 - \lambda = \lambda$	$\begin{vmatrix} 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 &$	$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} $ $(Y) - Y + Y - Y - Y - Y + Y - Y - Y + Y - Y -$	$\begin{array}{c c} (\gamma) \ O. \ O. \ O. \ O. \ O. \ O. \ O. \ O$
. 8			(a) 4.7° - 2.7° - 2.7° - 3.7° - 4.7°	$\begin{aligned} & \cdot = \begin{vmatrix} 1 & 0 & 0 & 0 & 0 & -1 \\ T + 0 & 1 & 0 & -1 & T & 0 & 0 \end{vmatrix} \\ & \cdot = (1 - 0 - T + \frac{1}{2} - 0) + 0 + (1 - 0 - T) + 0 & 0 & 0 \\ & \cdot = (1 - 0 - T + \frac{1}{2} - 1) + 0 + (1 - 0 - 1) + 0 & 0 & 0 \\ & \cdot = 0 - 1 - T + \frac{1}{2} - 1 + 0 + 0 + 0 & 0 & 0 \\ & \cdot = 0 - 1 - 0 - T + \frac{1}{2} - 0 & 0 & 0 & 0 \\ & \cdot = 0 - 1 - 0 - T + \frac{1}{2} - 0 & 0 & 0 & 0 \end{aligned}$

(1) (5-x-1-x5x-1) 0= ان المناسداد اد الماد نيمة المسر = 0 (ا ت × و ح - 1 ح × ص ٤) $=(.7-1)^{-1}$ $(1-1)^{-1}$ = (1-1)-1 (1-11) + and ، ص - ع = ، ، ٢ س - ، ع ع = - ٢ 19=17+7= : 1-x20-10x-1= ank x + 3 x 0 + 1 C + . : قيمة المعند = a × صنفر = صنفر $1 = \frac{14}{14} = \frac{\sqrt{\Delta}}{\Delta} = \sqrt{-} :$ $1 = \frac{14}{14} = \frac{\sqrt{\Delta}}{\Delta} = \sqrt{-} :$ $1 = \frac{14}{14} = \frac{1}{2} \frac{\Delta}{\Delta} = \frac{1}{2} \frac{\Delta}{\Delta}$ ، س + ، من + ۳ ع = ٤ - منفر + منفر 1-=8+007-0-1 SUX STESSECT .. V= 2+ 00+ 7+0+ 7(1) 0=27+w+--(Y) بالتعويض في (١) : أكمل الحل يتفسك. 14 = A + 11 = (ه) أجب بنفسك أكمل الحل بنقسك = x (11-1)-(-14+1)+1 (-3+1) =1(-1+11)-1(1-1)+1(-1+1) =1(-1+1)-(-1+11)+7(1-11) $= \lambda (-1 + \lambda) - (3 - 1) + \lambda (-3 + 1)$ (Y - Y - Y) - and + (Y - Y) = (Y - Y)= (٠-٥) - ۲ (٢-١) + صفر Δ = 1 - 1 - 1 - 1 - 1 - 2 Δ 70-= 0V - 1A-1. = $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$ $\frac{1}{10} = \frac{1}{10} = \frac{1}{10} = \frac{1}{10}$ $\frac{11-\frac{\epsilon^{\Delta}}{4}=\epsilon^{\alpha}}{1}=\epsilon^{\alpha}$ $\tau \quad \tau \quad \tau = \frac{1}{4}$ 11=14-14+1.= 19-=11+17-= 1 -- = 10 - 0 - . = 7 7 7 = A 1 1- 1 = A(r) 17-=1-1--= 11=18+0=

ŀ

44

سعر الكشكول=۱۰ جنيها ، سعر الكتاب= ۲۰ جنيها

 $Y_{-} = \frac{1}{\Lambda} = \frac{\Lambda}{\Delta} = \frac{\Lambda}{\Lambda}$

 $1_0 = \frac{1_1}{\Lambda} = \frac{\sqrt{\Delta}}{\Delta} = \sqrt{-}$

ارشادات تمارین 5

(١) الصفولة لا يكون لها معكوس ضربي عندما 🛆 =

: V= 1 = 11-1= ·

سنئة الاختيار من متعدد

(3)(5) 3 33

(1)(1) (4)(3) 800 (1)(0) (*)(1) (~) (e)

(*) (9) (3)(3)

(+) (10) (3) (4) (4)00 3

(1)00 (A) (A) (A) (A)

(٢) المسفوفة لا يكون لها معكوس ضربي عندما Δ =

167-{1}

 $\nabla \nabla = \begin{vmatrix} 3 & 4 \\ 4 & 5 \end{vmatrix} = \lambda_1 - \lambda_2 = 0$

.: الصفوة يكون لها معكوس ضربي عندما

7=17:

(A) (A) (+) (T) (2)(0) (1)(1)

(2) (4) (-)(-) (4) (7)

(v) (v)

(1)(1) (+) (T) (1)00 (0) (0)

(1) (k) (r)

10 : (÷) (+) (ra) (+) (F) (+) (F)

 $= \Delta$ المصفوفة لا يكون لها معكوس ضربي عندما (٣)

أ. الصفولة يكون لها معكوس ضربي عندما

1 ±= 1 .. 11 = 1 ..

167-{-1.11}

 $\therefore \nabla = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1, -1 - 1, = 0$

. = (r+1) (1-1) :.

1. 1=3 1.1=-7.

 $Y = 1 + Y = \begin{vmatrix} 1 & Y \\ 1 & 1 - \end{vmatrix} = \Delta :: (1)$ $\begin{pmatrix} 1 - & 1 \\ Y & 1 \end{pmatrix} \frac{1}{\Delta} = \lim_{\lambda \to \infty} \lim_{\lambda \to \infty} \lim_{\lambda \to \infty} \lim_{\lambda \to \infty} \frac{1}{\Delta} :: \| \operatorname{Link}(x, y) \|_{L^{\infty}(X_{0})}$

نفرض أن سعر الكشكول = -س جنها

، سعر الكتاب = ص جنيه

.: مساحة \ و أحد = | -١٢ | = ١٢ وحدة مربعة

 $=\frac{\lambda}{i}\left(1\times-7\lambda\right)=-\lambda_1$

... مساحة الشكل = ٦ + ١٢ = ١٨ وبعدة مربعة

11, = w + 1 my = 11 10 = 00 T+ 0- T:

تانيا الأسلاة المقاليـة

(1) T

(2)93

 $1 = \frac{17}{17} = \frac{\sqrt{\Delta}}{\Delta} = \frac{1}{2} = \frac{1}{2}$ $\lambda = \frac{11}{\Delta} = \frac{11}{\Delta} = 1$

 $\frac{1}{3} = \frac{11}{\Delta} = \frac{11}{11} = 1$

تطبيقات حياتية

(1.1) > ((1.1)) 1 ((.1)) - ((1))

.: مساحة ◊ و ب ح = ١ وحدة مربعة

7=(1 × 1) = =

17=7+1+15=

 $(T + \cdot) + (1 + \cdot) + (\cdot - 1) =$

: 0 = 4 L

(T.T) - ((· ·)) - ((· ·)) - (T · T)

ن مساحة الشكل المثلل = 1 - 7 = 1 وهدة مربعة $\frac{1}{2}$ $: : \text{-condex} \Delta \uparrow - \ell = f \times \Gamma \times \Lambda = \sharp \uparrow \ell \text{-ext} \text{ a.g.}$.. مساحة 1 1 - عد = | ٦- | = 1 وهدة مربعة

 $=\frac{1}{4}(\lambda_1 + 3\lambda - VY) = -1$

4 1 1 b ::

= 7 (7+3) - (--7) + ank

= 31 + 4 = 11

(1.1)-1

(11)-1

(A . .) \$...

17 = Y - 1/4 = 1/4 - 1/4 - 1/4 - 1/4 - 1/4 - 1/4 = 1/4

1=2 T-00 T: 1=0-0-T: .. V = · = A .. 7= J-- 8 7 .

17. = 14. - 44. = 11. T =

$$\nabla^{ab} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 12.4 - 13.1 = 1.1$$

$$\nabla^{ab} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1.1 + 1.1$$

(٤) الصفوة لا يكون لها معكوس ضربي عندما ∆ = .

 $\begin{pmatrix} \cdot & t \\ 1 - & r_- \end{pmatrix} \frac{1}{\Delta} = \frac{1}{\Delta} \begin{pmatrix} 1 & 1 \\ 1 - & r_- \end{pmatrix}$

 $=\frac{1}{\sqrt{1-\lambda^{-1}}}\begin{pmatrix} -\lambda & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$

(J) :: $\nabla = \begin{vmatrix} 1 & 3 \\ -1 & -3 - - = -3 \end{vmatrix}$

المسلوبة يكون لها معكوس ضربي عندما

163-{11-1]

 $\begin{pmatrix} \frac{1}{\tau} & \frac{1}{\tau} \\ \frac{\tau}{\tau} & \frac{\tau}{\tau} \end{pmatrix} = \begin{pmatrix} \frac{1}{\tau} & \frac{1}{\tau} \\ \frac{1}{\tau} & \frac{1}{\tau} \end{pmatrix} \frac{1}{\tau} =$

أن المسفوفة يكون لها معكوس ضربي عندما

. = 1 + 77 + 3 = .

$$\nabla^{-3} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 3$$

... الصفوفة ليس لها معكوس ضربي غدما

1-= U- 111 = U- 1

1-= 0-111=0-

 $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

 $\begin{pmatrix} 1 + a - & a - 1 \\ 1 + a - & 1 - 1 \end{pmatrix} =$

I = (. . .) =

 $\nabla \nabla \nabla = \frac{1}{\lambda} \quad \text{and} \quad \frac{1}{\lambda} = \frac{1}{\lambda$

.= (+.--) (+---) :.

$$\begin{aligned} \mathcal{E} &= \cdot \cdot \cdot \cdot \mathcal{E} = \begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix} = \Delta \cdot \cdot \cdot \\ & \cdot & -1 \end{vmatrix} = \Delta \cdot \cdot \cdot \cdot \\ & \cdot & -1 \end{vmatrix} = \Delta \cdot \cdot \cdot \cdot \\ & \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{vmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -1 \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\$$

(i): $i = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ on $-\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\mathcal{Z} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \mathcal{E} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \sqrt{1 - 1} \cdot \sqrt{1 + 1 + 1} \cdot \sqrt{1 + 1 + 1} \cdot \sqrt{1 + 1 + 1} \cdot \sqrt{1 + 1} \cdot \sqrt{1 + 1} \cdot \sqrt{1 + 1 + 1} \cdot \sqrt{1 + 1 + 1} \cdot \sqrt{1 + 1 + 1} \cdot \sqrt{1 + 1}$ $\begin{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2$ $| - \nabla + \lambda - | \frac{1}{\lambda} | = | \frac{1}{\lambda} | = \lambda + \lambda - | \frac{1}{\lambda} | = | \frac{1}{\lambda} | = \lambda + \lambda = 1$ $(A_{-1} - A_{-1}) = \begin{pmatrix} A_{-1} & A_{-1} \\ A_{-1} & A_{-1} \end{pmatrix}$ $(A_{-1} - A_{-1}) = \begin{pmatrix} A_{-1} & A_{-1} \\ A_{-1} & A_{-1} \end{pmatrix}$ " + = + (" +) = (" +) $\begin{pmatrix} a \\ 1 \end{pmatrix} = \begin{pmatrix} r \\ r \end{pmatrix} \begin{pmatrix} r \\ r \end{pmatrix} \begin{pmatrix} r \\ r \end{pmatrix} = \begin{pmatrix} c - r \\ r \end{pmatrix}$ $\therefore \begin{pmatrix} c \\ r \end{pmatrix} = \begin{pmatrix} c - r \\ r \end{pmatrix} = \begin{pmatrix}$ $(x_{i}^{-1}) = (x_{i}^{-1})(x_{i}^{-1}) = (x_{i}^{-1})(x_{i}^{-1}) = (x_{i}^{-1})(x_{i}^{-1}) = (x_{i}^{-1})(x_{i}^{-1}) = (x_{i}^{-1})(x_{i}^{-1}) = (x_{i}^{-1})(x_{i}^{-1})(x_{i}^{-1}) = (x_{i}^{-1})(x_{i}^{-1})(x_{i}^{-1})(x_{i}^{-1}) = (x_{i}^{-1})(x_{$ (i) : $\begin{pmatrix} \begin{pmatrix} A & A \\ A & A \end{pmatrix} = \begin{pmatrix}$ 6 Jan. $\frac{1}{\sqrt{2}}$ = $\frac{1}{\sqrt{2}}$ \frac $\vdots \longrightarrow = \begin{pmatrix} \frac{1}{\lambda} & \frac{\lambda}{\lambda} \\ \frac{1}{\lambda} & \frac{\lambda}{\lambda} \end{pmatrix} \begin{pmatrix} \vdots & \lambda \\ 1 & -\lambda \end{pmatrix} = \begin{pmatrix} 1 & \lambda \\ \lambda & \lambda \end{pmatrix}$ $\begin{pmatrix} x & y \\ y & z \end{pmatrix} = \begin{pmatrix} y & y \\ y & z \end{pmatrix} \begin{pmatrix} y - y \\ y & z \end{pmatrix} \begin{pmatrix} y - y \\ y & z \end{pmatrix} = 1.5$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\forall \ \ d_{-1} = \frac{1}{\lambda} \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} = \begin{pmatrix} \frac{\lambda}{\lambda} & \frac{\lambda}{\lambda} \\ \frac{\lambda}{\lambda} & \frac{\lambda}{\lambda} \end{pmatrix}$ = - 1 = - 1 = - 1 : (۱) يغرض أن : -= (۲ ۱) (۲) يغرض آن: --- = (۱) (1 1) -- 1:

(3)
$$f(x) = \frac{1}{1 + f(x)} = \frac{1}{1 + f(x)} = \frac{1}{1 + f(x)}$$

أي أن الإجابة (ج) ليست صحيحة دائمًا

: الإجابة المسحيحة في ٢ فقط (د)

$$\frac{d}{dt} = \frac{d}{dt} = \begin{pmatrix} \theta | b - 1 \\ 1 & \theta | b \end{pmatrix} \frac{1}{\theta | t |} = \frac{d}{\theta | t |}$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\frac{d}{dt} = \frac{d}{dt} = \frac{d}{\theta | t |} = \frac{d}{\theta |}$$

 $||\cdot|| = |\cdot| : |\cdot| = |\cdot| : (a)$ $|\cdot| = |\cdot| : (b)$ $|\cdot| = |\cdot| : (b)$

1 ± = | | | = | | | . . .

.: (۲) ایست صحیحة دانشا. ..

، ليس من الضروري أن تكون الصفوفة قطرية

لكي تملق إن ١ = ١ ميد ان :

 $\begin{pmatrix} \gamma & -1 \\ \gamma & -\gamma \end{pmatrix}$ مثلًا ليست قطرية وتحقق ذلك.

.: (۲) لیست صحیحة دانثا.

تطبيقات حياتية

تفرض أن سعر الكتاب العلمي = س جنيه

ء سعر الكتاب التاريخي = عن هينه

$$\begin{array}{l} : \{ \{ 1, 1, \dots, \{ 1, 1 \} \} \mid \{ 1, \dots, \{ 1, 1 \} \} \} \\ : : \{ \{ 1, \dots, \{ 1, \dots, \{ 1, 1 \} \} \} \} \\ : : : \text{ Bidden} \text{ Handow} \text{ Handow} \text{ Handow} \text{ If } \{ 1, \dots, \{ 1$$

 $\begin{pmatrix} 1_0 \\ 1_0 \end{pmatrix} = \mathcal{E} \cdot \begin{pmatrix} 0_{-} \\ 0_0 \end{pmatrix} = \mathbf{v} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \mathbf{1} \cdot \mathbf{1}$ ٠: ٥ - س + ١ ص = ١٢٠ ، ٥ - س + ١٠ ص = ١٥٠

$$\begin{array}{c} \left(\begin{array}{c} x \\ 1 \end{array} \right) = \left(\begin{array}{c} x_1 \\ -1 \end{array} \right) \left(\begin{array}{c} x_1 \\ -1 \end{array} \right) = \left(\begin{array}{c} x \\ 3 \end{array} \right) \\ \vdots \\ x_{k-1} = \frac{1}{k} \left(\begin{array}{c} x_1 \\ -1 \end{array} \right) = \left(\begin{array}{c} x_1 \\ -1 \end{array} \right) \end{array}$$

ناتنا مسائل تقيس مهارات التفكير

1=31=1:

$$\begin{array}{lll} & :: \nabla = [1] = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = -x - x = -x \\ & :: \nabla = \begin{bmatrix} 1 \\ 1 & -1 \end{bmatrix} \\ & :: \nabla = \begin{bmatrix} 1$$

$$\begin{array}{c} \vdots \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} \frac{1}{1} \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \\ \vdots \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \\ \vdots \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \\ \vdots \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \\ \vdots \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \\ \vdots \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1$$

$$\begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\left(\begin{array}{c} 1 = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} \frac{1}{1} \\ \frac{1}{1} \end{array}\right) = \left(\begin{array}{c} 1 \\ \frac{1}{1} \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \end{array}\right) = \left$$

$$\begin{array}{c|c} : \nabla = \left|\frac{1}{\lambda}\right| = \frac{1}{\lambda} = \frac{1}{\lambda$$

$$\nabla \Phi_{1} = \frac{1}{1 - 1} \begin{pmatrix} 1 & 1 & 1 \\ 3 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$\nabla \Phi_{1} = \frac{1}{1 - 1} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \frac{1}{1 - 1} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$\begin{array}{c} \cdot \cdot \cdot \begin{pmatrix} \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} \\ \cdot \cdot \cdot \downarrow_{-} = \frac{1}{4} \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} \\ \cdot \cdot \cdot \downarrow_{-} = \frac{1}{4} \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot$$

30(1) (50(c) (50(c) D(1) (A) (A) (A) (L) (v) (v) (v) 0.0 (+) 0.0 (r)

 $\binom{0.7}{1.} = \mathcal{E}_{1} \binom{1.7}{1.} = \binom{1.7}{1.} = \frac{1}{1.}$

.. V = | 4 | = | V1 ... | = -34 - -1 = -01

، سعر الكتاب التاريخي = ٥ جنيهات

.. سعر الكتاب العلمي = ٢٠ جنبها

0 = Jan ; T. = J- ;

S. -- -- ...

(+ 10) = (+ 10) 10 = 10 ...

 $\begin{pmatrix} v_{1}^{-1} \\ v_{2}^{-1} \end{pmatrix} = \begin{pmatrix} v_{1}^{-1} \\ v_{1} \end{pmatrix} \begin{pmatrix} v_{1}^{-1} & v_{2}^{-1} \\ v_{2}^{-1} & v_{2}^{-1} \end{pmatrix} = \begin{pmatrix} v_{2}^{-1} \\ v_{2}^{-1} \end{pmatrix} : .$

، تفرض أن سعر كيلو جرام الزيد = من جنيه

15. = 00 Y + U-A ..

١٧٠ = ١٧٠ = ١٧٠

نفرض أن سعر كيلو جرام النقيق = س جنيه

.. سعر لتر البنزين = أو ا جنيه

1 = wo 1 / + = o ...

 $(1 - \begin{pmatrix} 1 & \lambda \\ \lambda & \lambda \end{pmatrix}) \cdot m^{-1} = \begin{pmatrix} -\lambda \\ \mu \nu \end{pmatrix} \cdot \mathcal{Z} = \begin{pmatrix} -\lambda \\ \lambda \nu \end{pmatrix}$) $-1 - \mu \nu$) -1

(a) (a) (b) (b) (a) (c) (c) (c)

(a) (b) (1) (b) (c) (c) (c) (c) (40 (+) (30 (+) (e) (1) (v)(r) (v)(v) (v)(v) (30(1) (60(1) (A) (A) (A) (A)

ولا أسننة الاختيار من متعدد

(1)(0)(4)(0)(1)(0)(1)(0)(4)(0)(1)(0)

(١) نرسم المستقيم المدي

1= 00 - U-1: J

ناتيا الأسنئة المقالية

(1)(4)(4)(1)

ارشادات تمارین 6

ء نفوض أن سعو للر الزيد = ص جنيه نفرض أن سعر لتر البنزين = س جنيه

: 37-U+0 av = 10

(10 - 7) = (1- 1.) 7. = 1-7.

 $(x, \frac{1}{2}) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

 $\lambda = \lambda = \lambda = 0$ $\lambda = 0$

5 1 = Ju : 1

11 = Ja 1. + J- 11.

ارشادات الوحدة الثانية

The sails 1-3

ن مجموعة مل التبايئة مي المستقيم ل U نصف. المستوى الذي لا تقع فيه نقطة الأصل وتمثلها

النطقة الطالة بالشكل.

(٢) ترسم المستقيم العدى

Y = --- + -- : J

(+ + 1)=(-1)+=4:

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} V_{1} \\ V_{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{12} \\ \frac{1}{2} & \frac{1}{12} \end{pmatrix} = \begin{pmatrix} 0 - 1 \\ 0 - 1 \end{pmatrix}$.:

.. سعر كيلو جرام الدقيق = ٥ جنيهات

0. = 0 + 60 = OF ..

ا سعر كيلو جرام الزيد = ٥٠ جنيها

 $\nabla \nabla = |\lambda| = \begin{vmatrix} 1 & \lambda \\ \lambda & \lambda \end{vmatrix} = 3\lambda - V = \lambda\lambda$

Co 1 = Ju : 1

1くいーアーニュくいしょいしい

(r): 1-1-1-1-1

(يخط منقطع)

لا تحقق التبايلة: ٢ س - ص ١

|8 1 -] = C+ :: TSU ::

12-1-1-12-1-1:(1)

(::)

(7-1-) . (-17)

وهو يمر بالتقطئين

(يخط متصل)

وبالتعويض بالنقطة

[1. w -[= 2.4.: 1≥ -:.

12 - T - C - T - C - T - (1)

تحقق التباينة : س + ص < ٢

وهو يمر بالنقطتين

(3) :: 1+-0<1-0+1≥31+-0

1151+0-121:

(7...), (... 1)

وبالتعويض بالنقطة (: :)

124-71: 1124-121:

: 42=], . L

14

44

تحقق التبايته :

4-50

1-= U+1 U (يخط متصل)

JE M

إذا كان : لم // لم أي في حالة ميل لم = ميل لم مجموعة على المتواينتين س + ٢ ص ٧٠ (١١) مجموعة حل المتباينة سى + ص ≥ ١ 1 - س + 1 من < ۱ نساري D ، لم: احس + ؛ مس - ١ = ، ·= T - w + T - (1) : 4=2 X=1: Cond (not)

:: الستقيم الحدي ٢ س + ص = ٢ يوازي محور

، لم : سن - ٦ صن = ٦ (بخط متقطع) ويمر بالتفطلتين (٠٠٠-١) ، (٢٠٠٠)

لى : س + 1 س = ٨ (يخط متقطع) ويمر بالتقطتين (٢٠٠٠) ، (١٠٤)

(٩) نرسم المستقيمان الحدية

3

(١) -س> - مجمرة طلها لا تقع في الربع الثاني أو

 (٣) إذا كان مجموعة على التبايلة ١ - ب + ص > ٢ لا يقع في الربع الثالث أو الرابع ﴿ إِنَّ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللّ

{(x · 1) · (x · 1) · (x · 1) · (x · 1)} متى تكون من ، من أعداد مسميمة من الرسم نجد أن الطول مي : .: عدد الطول هو :

، س - ص < 2 لا تقع في الربع الثالث أو الرابع

(٤) مجموعة حل التباينتين - ب + ص > ٤

فتكون من مجموعة هل التباينات وتمثلها النطقة

THE PERSON

,: |= o.i.

، لم : سن = ، (يخط متعمل) ، لي: سن = ؟ (يفط متقطع)

Chall

7

مي النطقة تحن السنقيم سن + من = ب

اللكي تكون مجموعة حل النظام = 2

يجب أن يكون ١٨٠ تطبيقات حياتية

مي النطقة فوق المستقيم -ن + ص = ٢ ، مجموعة عل التباينة س + ص ≤)

للتبانية من 2 س

(ه) : مجموعة حل

هي النطقة الخططة

من الشكل نجد أن ا (١٠٠٤) ، م (١٠٠٤) ، ح (١٠٠٤)

- .. الماليات مي س ≤ 1 ، ص ≤ 1 ، س + ص ≥ 1 .
- ١١٢٧ مسائل تقيس مهارات التفكير
- 3(3) (3)(1) (±)(3) (4)(3) (3(3) (5)(3) (a)(r) (+)(1)

لتاينة من ١٠٠ مي النطقة النقطة

، مجموعة هل

- (1)(0)
- (4)(1) (S)(F)

إرشادات العل:

(١) إذا كان النفاة (١٠٠) لل لجموعة حل التباتية .: النقطة (١ ، -) 3 أجسوعة حل التباينة T < GB + G- T

(٦) لاحظ أن {(١ ، ١)} فقط تحقق التباينات الثاري

.. مجموعة على الشباينات - س ح عي ح س

مي النطقة الشتركة أي الإجابة رقم (-)

- 「とし+りて: 1200+0-1
- 7

(4. 11.) 1 (1. 11.)

نرسم المستقيم الحدي لي: -س = ٨٠ (بخط متصل)

سى + ص = ١٥٥ (يفظ منصل)

ونرسم المستقيم الحدى ل. .

(٩) محور تماثل منطقة هل التباينات هو محور السينات

. = @ :

.: - ب > . ، ص > . ويسئلهما الربع الأول

تفرض أن طول المستطيل = -- ، متر

ء عرض المستطيل = ص متر

النقطة التي من الوكد أن تنتمي لجموعة هل التباينة

3-2 Jan+ Jan

والنقطتين (١ ، ٤) ، (٤ ، ١) ينتميان لمهوعة المل

مي نقطة تقع على القطعة المستقيمة الواصلة بينهما

ومن الرسم القابل مي النقطة (٢ - ٢)

100200+000

- (Y . . A.) . (Y . . Y.) .
- «يوجد حلول آخرى»
- . .

(١) أولاً : نعين المنطقة التي تمثل مجموعة الحل المتباينات كالتالي:

قاتيا الأسنئة المقالية

(١) نرسم المستقيم العدى لي: حس + ص = ٥ وهو يمر بالتقطئين (٠٠٥) ، (٥٠٠)

(٢) نرسم المستقيم الحدى لي : حن = ١

 $\Upsilon = ---$ نرسم المستقيم العدى ل $_{\gamma}$: ---

 مجموعة الحل للمتباينات الأربع تمثل بالنطقة (・・・) 1・(・・・) 1(0・・・)

10 = 0 × 0 = 1 [√] · = 2 [√] ∵

.[~] = 1 × 1 + 0 × 3 = 37

قَالِيًّا : ٢٠ دالة الهدف : ٧ = ٢ ص + ٥ ص

(T:1) > (T:1) -1

- بالنطقة الطالة ١ حيث ١ (١٠٠١) مجموعة المل المتباينات الثلاث تمثل
- (T, T) > (1:1) -.

(٧) أولاً : نمن النطقة التي تمثل مجموعة العل

المتباينات كالتالي :

.. اكبر ما يمكن عند ١ (٥٠٠)

1=1×1=1

- عَلَيْ : ١٠ دالة الهدف : ٧ = ٢ -س + ٢ ص 1) = 1 × 7 + 8 × 7 = [[V] : V=1×Y+7×1=[V],
- : النقطة (١٠١) تجعل دالة الهدف . 1 = 1 × 7 + 7 × 7 = [] .
- (٢) أولاً : نمين النطقة التي تمثل مجموعة الحل أصغر ما يمكن
- (١) التبايتان: ١٥٠ . هي ١٠ يستهما وسن ل وصل الربع الأول المشابئات كالتالي :

1-0 + 1 ص = 1 وهو يمر بالتقطتين 1

(· · · v) · ((· · ·)

(٣) نروسم المستقيم المدي لي:

(. , , 0) , (0, , .)

٢ ص + س = ٥١ ولهو يمر بالتقطلتين

(٣) نرسم المستقيم العدى لي:

ينشهما وسن ل وص ل الربع الأول

・ といる・ というはははい(1)

- (4)(+)(0)(+)(0)(+)(0)(+)(0)(+) いいまかり
- (10(+) (40(+) (40(+)

C 169 III

(٤) نرسم المستقيم الحدى ل: ٤ -س + ٢ ص = -١٢ | أولاً : ثمين المنطقة التي تمثل مجموعة الحل للمتباينات كالتالح

وهو يمر بالنقطتين (٠٠٠-٤) ، (٣-١٠٠)

1. 2 - 2 1. (1)

ء لم : -ن = ٢٠ والنظلة المصورة بينهما. تمثل بالمستقيمين المتوازيين لي: - 0 = 10

 $\{Y\}$ مجموعة هل المتباينة : $X \leq \infty \leq 0$

، ل: ص = 10 والنطقة المصورة بينهما. تمثل بالستقيمين التوازيين لم : من = ٢٠

(٣) نرسم المستقيم العدى : ل : سن + ص = ١٠

وهو يمر بالقطتين (٠٠٠٠) ، (٦٠٠٠)

مجموعة الحل للمتباينات الثلاثة تمثل بالنطقة

الظللة بالشكل ا بحرو الرحيث:

(10.1.) > ((1.1.) - ((1.1.))

.: أكبر قيمة تلفذها ل هي الواقل قيمة هي ١٧٠

(t. 17.) D. (to 1 10) 51

\V-= a - 8-x T + . = [J],

1 [] = -1+1× -- 1 [J] .

([] = 7 + 7 × -1 -0 = -3/

Y-=0-.xY+Y=_[J],

:[U], =-7+7×3-0=3 V=0-1×T+.=_ J] 4

.: الكير مايمكن عند النقطة حـ (٠٠) ٢٠٠٠

ين من اقل ما يمكن عند النقطة - (١٠٢)

1 [] [= 1 × 3 + 1 × 4 = V1

1 = 1 × V = 31

(٤) أولاً : نعين النطقة التي تمثل مجموعة الحل

المتباينات كالنالي

 مجموعة الجل للمتباينات الأربع تمثل بالنطقة (-17-):01(1-1):01(1-17); (-17) > · (E···) - · (E···) المالة بالشكل المحوص ن حيث

الله الله الهداد الهداد العداد العداد الله الهداد الله الهداد العداد الهداد العداد ال

19-=9×4-4-X="[]: الله الهدف: ٧ = ٢ س - ٢ من

1=0×7-1×1= [] (1=1-x1-= [V] * [*] = 1 × -1 = -3

 مجموعة الحل المتباينات الأربع تمثلها النطقة (··· 1+) 551 (Y-··) > ((0 · A) - 1 الماللة بالشكل المعروصية : ١ (٢٠١٠)

مجموعة العل المتباينات الأربع تعنل بالنطقة الطلة

بالشكل والتي تحدما اللقط ا وب و حرحيث :

(4. .) 4. (1.1) -1 (. . 10) 1

قَالِيًا : ١٠ دالة الهدف : ١٠ = ٢ ص + ٢ - ص

T. = 10 x Y = [] :

 $\Upsilon = 0$ نرسم المستقيم الحدي لي : $3 - 0 + \Upsilon$ من $= \Upsilon$ [1] أولاً : نمين النطقة التي تمثل مجموعة الحل المتباينات ، لم : -ن = ٢ والنطقة المصورة بيتهنا. ، لع: ص = ٤ والنطقة المصورة بيتهما. تمثل بالستقيمين التوازيين لم : ص = -1 تمثل بالمستقيمين التوازيين ل: -س = --(٢) سجمرية هل التباينة : -1 ≤ ص ≤ 1 (١) مجمرية مل التباينة: ٢٠ ≤ سر ٢١ $T = \infty$ نرسم الستقيم الحدى ل $\gamma = \infty$

وهو يمر بالتفطئين (٠٠٠)، (٢٠٠٠)

٣-ن + ٢ ص = -١ وهو يمر بالتقطتين (٢) نرسم الستقيم الحدى لم: (. . 1-) . (1-1 . .)

Y-=نرسم المستقيم الحدى إلى: -س Y

ليمرق أكبر قبر سكن من السعرات الحرارية

VY. = E. x 10 + Y. x 7 = [] .

Wfo = to x 10 + 1. x 1 = [J] , 01.= 1. × 1+ 01 × .7 = [] . ov. = T. x 10 + Y. x 7 = [J]:

بلرض أن يوسف يعشى س نقيقة بومياً ويجرى ص

1020027.17.20-21...

7. 200+0-1

V10 = 20 x 10 + 10 x 7 = [J] x

يجب أن يمشى ١٥ دقيلة ويجرى ١٥ دقيقة.

وينالة الهدف : ل = ٦ سن + ١٥ صن أكبر ما يمكن

10

وهو يمر بالقطئين (٠٠٠) ، (٣٠٠)

ا و نفوض أن عدد الآلات من النوع الأول --، عدد الآلات من النوع الثاني ص

T. 2 0- (1)

: (۱) - بر + صر ≥ · ه

- تترجم الجدول في صدورة متباينات :
- (۱) سی ≥ ٠ ، میں ≥ ٠
- (١) ٥١ ١٥ مس ≤ ٥١ مس ≤ ٥١ TT ≥ 00 1+ 0-1 (T)

أولًا : نمين النطقة التي سَمَّل مجموعة الحل المشابينات كالتالي

ر = 1 س + ٢ ص أقل ثمن ممكن للشراء

و دالة الهدف مي : To≥6(T)

بفرض عند النجاج سي ، عند البط هن

بفرض أن عدد الدواليب من النوع ٢ = - س

وعدد الدواليب من النوع - = ص

(٣) - س≥٢ ص أي أن حى - ٢ ص ≥٠ و دالة الهدف مي : الربح / أكبر ما ينكن

(١) نرسم الستقيم الحدى لي : -ن + ص = ٥٠

وهو يمر بالقطشين (٠٠٠٠) ، (٥٠٠٠)

- و دالة الهدف: الربع أكبر ما يمكن حيث : 7 = 1 - 1 + 43 au
- أولًا : نعمي المنطقة التي تمثّل مجموعة الحل المتباينات
- SID!
- يمثلهما وحن الوص اللوبع الأول (١) الشاينتان: سن ≥٠٠٠ صن ≥٠

 Υ نرسم السنقيم الحدى أي: Υ سن + Υ هن = Υ

 $\Upsilon\Upsilon = 3 - 4 - 4$ نرسم الستقيم الحدى لم 3 - 4 - 4 - 4 - 4

وهو يمر بالتقطتين (٠٠٠) ، (٨٠٠)

٠: - س + ٢ ص = ٨

... مجموعة الحل المتباينات تمثلها النطاقة المظالة

بالشكل ا محصوف ا (٢٠١٢٠)،

(To: 10) - (To: T.) -

وهو يمر بالنقطتين (٢ ، ٢) ، (٥ ، -٢)

19 = 00 T + 0-0 :

- (٣) نرسم المستقيم الحدى لي: هن = ٥٦
- $Y_{-} = 0$ ذرسم المستقيم الحدى لي : س

أولاً : نعين النطقة التي تمثل مجموعة العل العتباينات

أولاً : نعين النطقة التي تمثل مجموعة الحل المتباينات

، ويالة الهدل: ٧ = ٨٠ ص + ١٠٠٠ ص

1. ≥ 0+ 0-1

· Sup 1 · Sur ..

هيڻ ل= س ۲+ ص

- يعشهما و سن لا ومن لا الربع الأول
- (٧) نرسم الستقيم الحدى لي: حن + هي = ٢٠٠

- وهو يبر بالنقطتين (۲۰۰۰) ، (۲۰۰۰) · Sum · Sum (1)

يمثلهما و سن ل و هن ل الربع الأول

(١) التبايتان س ≥٠٠٥ ص ≥٠

SIE

- (٣) نرسم السنقيم الحدي لي: سن ٢ ص = ٠ وهو يمر بالقطنين (٠٠٠) ، (٠٠٠) ، (١٠٠٠) كالتالي : $T_{-} = 0$ ترسم المستقيم المدى ل $_{1}$: $-0 + \infty$
- وهو يمر بالنقطتين (٠٠٠٠) ، (٢٠٠٠) Υ) ترسم المستقيم الحدى ل γ : -0 = 7 هـى
- وهو يمر بالتقطتين (٠٠٠) ، (٥١ ، ٥)

- مجموعة المل المتباينات تمثلها النطقة المثالة
- المرد ميت
- (0110)-1(-17)11(-1-)3

رُدُ اللَّي ربح وهو ١٠٠ جنو يتعقل عد تربية

۲۰۰ دچاچهٔ ر۰۰۰ پیله.

بفرش أن عدد الأسماك من اللوع ! = --

، من النوع = ص

6.0

£ ... = (1...) × + × ·.. = [√] ∴

1 - [V] - - - JV].

الله الهناد الله الهناد الم

(. . .) 3 .

ن أعلى ربع يتمقق عند إلقاع ١٥ يولاب من 1V.. = 0 × 1.. + 10 × A. = [] (17... = . x 1... + Y. x A. = [/] . قَالِيَا : ١٠٠٠ مالة الهدف : ٧ = ٨٠٠٠ من : [() [= . \ \ . + . \ \ \ . = . النوع ا ، ٥ دواليب من النوع سد

(ア・ア)し、(・・下音) ここのころして

00 7

Cell

C sall 1860

(· · ·) J · (E · · ·) > ·

أ. مجموعة العل المثباينات هي النطقة المثللة

شراء ١٥ سمكة من النوع أو ٢٥ سمكة من رْ: أَقَلَ قَدِمَةُ لَلشَّراء مِن ١٦٥ جِنْبِهَا وِهِذَا عَنْد

170 = Yo x Y + 10 x 8 = [J] 4

1. = Y. × Y + Y. × £ = [] . 110 = 10 × 1 + 7 × 07 = 011

٠٠. مجموعة الحل المتباينات هي النطقة الطالة الماك

صيد: ١١ (١٠٠٠ ١ ١٠٠٠) ٢٠٠١ (١٠٠٠) ١٠٠١

قائل: ﴿ وَالْهُ الْهِدَادِ } = 1 ص + ٢ من

- نفرض أن عدد الوحدات من السلعة الأولى -- ، عدد الوهدات من السلعة الثانية ص (٣) نرسم السنقيم العدى لم : س + ٢ ص = ١٨ وهو
- * تترجم الجدول في صورة متباينات :
- · Super · Sur (1)
- To ≤ 00 T + 0-0 (T)
- (T) T+++ + 1 ص ≥ 17 أي أن + 7 ص ≥ 17 (T) « دالة الهدف: ت = ٦ -س + ٨ مس ، ت أقل ما يمكن
- أولا : نعين للنطقة التي تمثل مجموعة الحل المتباينات كالتالي
- يسقهما و سن ا وص ا الربع الأول. · Sum · · Sum (1)
- نرسم المستقيم العدى لم : + + عن = + 1 وهو (7) Υ) نرسم السنقيم العدى ل γ : ٥ سى + Υ ص = ٥٪ وهو يمر بالتقطتين (٠٠٥٠)، (٥٠٠) يمر بالنقطتين (٠٠٠ م. ٦) ، (١٣) ٠٠

9,0

- مجموعة الحل المتباينات يمثنها النطقة المثللة
- اللها : ١٠ دالة الهيف : ١٠ = ١٠ ص + ٨ ص J(111) 12 (111) : [V]:
- \1. = \1 x \1. = \[\sqrt{} \] /
- \TT = 1 × A + 1. × 1. = [] (VY = 1 × A = [V]
- :: اكبر ربع ممكن دو ١٣٢ جنها عد تصنيع ١٠ عيوات من النوع العادي و ٤ عبوات من النوع

43

A PA

 Υ) ترسم السنقيم العدى إلى $\Upsilon - \tau \to \infty = 17$ وهو

يمر بالقطئين (٠٠ ٢٤) ، (٢٢ ٠٠)

يمر بالتفطئين (٠٠١٠) ، (٨٠٠٠)

يمثلهما و سن ل وص ل الربع الأول

(١) التبايتان: -- ≥ . ، ص ≥ .

أولًا : نعين المنطقة التي تمثل مجموعة المل للمتباينات

- تصما القالم ١٠٠١ مين ١١٠١ (١٠٠) .. مجنوعة الصل تطلها النطقة الطالبة والتي
- قَاشَ : ١٧٠ ١١٥ الهنف : ٦٠ ١٧٠ ٢٠٠ من
- 10T. = . × 10. + 1 × 14. = [] ...
- 14.. = 4 x 10. + . x 14. = [] . 11. F = . ALX 14 . 91 X 18 . 18 7 18
- : الل تكافئة من ١٠٠ جنيها وامي مند شيراء ٢ كجم من النوع ا ، ٢ كجم من النوع-
- النوع العادى النوع الممتاز الكنية الثامة 5 1 34 JKKI
- و تقرض أن عدد عبوات النوع العادي س ، عدد عبوات النوع للمثار ص
- و تترجم الجدول في صورة متباينات :
- و دالة الهدف: ال أكبر ما يمكن هيث ال 1/1 ≥ m + 7 m (T)
- J = + () + A AU

.: [~], = . [× = 7 + 13 × . = 17 عْلَيًّا : ١٠ دالة الهدف : ٧ = ١٠ صل + ١٨ ص

1 [~] = -1 × 1 + 43 × 1 = 317 197 = 1 × + 43 × 3 = 799 1 [A] = 1 × + 41 × = 1

.". أعلى ربع من ٢٦١ جنبيًّا ومو بتحقق عند إنتاج التين من النوع الأولى وثالات الآت من النوع الثاني.

وسقات	-	7	
لنيتراه		-1	17
	3 5	€ €	الكنية على الأقل

15001+		ç	-=(1) =	-
E 3	تيايتات :	شوع (ب) =	ات من الثو	7
	لی صورة ،	إمان من ا	الكبلوجراه	-
15 m 1 + u - 1 (1) . Sum 1 . Sum (1)	 تترجم الجدول في صورة متباينات : 	، عدد الكيلو جرامات من النوع (ب) = ص	، تفرض أن عدد الكيلو جرامات من الثوع (١) = -	الغوسفات
	*		*	

The same	مايمكن		-
E 18	8		
1	10.+0		1.1.
311	- 1V. =	12.	1
رَّةُ : نمين النطقة التي تمثّل مجموعة الحل المتبابنار	ردالة الهدف: ٧ = ١٧٠ س + ١٥٠ ص أقل ما يمكن	15001+0-(7)	111
e.	TIE IT	3	1.1

(۱) التبايتان: سرک، ، صرک،

- 17 = 3 4 + 5 1 = 1 1 = 1 صينظهنا و س لا وص لا الربع الأول
- $(\Lambda \cdot \cdot)$ $T c + ac = \Lambda eae pac villabers <math>(\Lambda \cdot \cdot)$
- (Υ) it is the factor of Υ and Υ and Υ and Υ and Υ يمر بالتقطتين (٢٠٠٠) ، (٢٠٠٠)

43

عدد ساعات العمل A INSE ĺ الترزي الثاني ٢ الترزى الأول

أولًا : نمين النطقة التي تمثل مجموعة العل المتياينات كالتالي :

* دالة الهدف: ﴿ لَكُبْرِ مَا يَمَكُنُ حَبِثَ :

ي = ١٠٠٠ سن + ١٠٠٠ ص

« يفرض أن عد البلوزات المنتجة من النموذج أ هو س ، عند البلوزات المنتجة من النموذج - هو ص

ه تترجم بيانات الجدول في صورة المتباينات : · Sup : · SUF (1)

Y = 0 ترسم الستقيم الحدى لي Y = 0 سن Y = 0

وهو يمر بالتقطتين (٠٠٠) ، (٤٠٠)

وهو يمر بالنقطتين (٠٠ د ٢٠٧٥) ، (٣٠ ه ٠٠)

(Y) ترسم الستقيم الحدى ل $_1: Y \to 0 + 3$ من = 0

يمثلهما وسن الوص اللهج الأول

(١) التبايتان: س≥٠٠ ص٠٤٠

- 1> -- (1) -- (1)
- 1 ≥ -- + -- (M)
- « دالة الهدف: ٧ = ١٠ ص + ١٥ ص ، ای ای ایکن

أولًا : نمين النطقة التي تطلُّ مجموعة الحل المتباينات SIEN

مجموعة الحل للمتباينات تمثلها النطقة النظالة

 (Υ) ترسم الستقيم الحدى ل $\gamma : \Upsilon - U + \Delta U = \Gamma$ وهو

يمر بالتقطتين (٠٠٠) ، (٤٠٠)

يمر بالنقطتين (٠٠٠) ، (٢٠٠)

الله : ي دالة البد : ي = ١٠٠٠ ص + ١٠٠٠ ص

تنتج من النوع 1 ما قيمته ١٠٠٠ جنب ومن :. أكبر قيمة المنتجان هي ٣٢٥ جنبهًا عندما \$ [V] التتوسما قيمته ٢٢٥ جنيها.

بالشكل والتي تحدما النقط: ﴿ (٠٠ ، ٥٠)

80 : ٠٠٠ دالة الهدف : ۵ = ١ صن + ٨ ص

(110)20(011)-

1 ... = 14.0 × V = [@] :

.: مجموعة الحل المتباينات في النطقة النطالة

٠٠ مجموعة المل المتباينات هي النطقة الطالة

٢ وهدات من السلعة الأولى ، ٥ وهدات من

THE REPORT

.. اقل تكلفة من ٥٨ جنبية ربعي عند شراء

1 [5] = 1 × 7 + 4 × 5 = 46

١ [ت] = ١٧ × ١١ = ٨٧

(Tr.) 50 (Tr.) and

لأول الثانى المسل	الأول الثاني
۲ ۲ دعلى الأق	العامل الثاني ٢ ٢ ٢
۱٫۰ ۲ دعلى الأق	العامل الثاني ٥٠،٥

•		b
	الثاني	130
100	IKSP.	E L
		i
		=

* نفرض أن عدد مكاتب النوع الأول س « تترجم الجدول في صورة متباينات : ، عدد مكاتب النوع الثاني ص

.". أكبر ربع يحققه المسلم هو ٢٠٠٠ جنيه علاما

ينتج ٤ مكاتب من النوع الأول.

· Sup · · Sup (1)

1≥001+0-1.0(1) 15 m+ 1 m (1)

المنتج (١) المنتج (١) الحد الأقصى

• دالة الهدف: الربح / = ٥٠ ص + ٥٠ ص أكبر

أولًا : نعين المنطقة التي تعتل مجموعة العل المتباينات ما يمكن

و تقرض أن الصنع ينتج عدد س مما قبته ١٠٠٠ جنيه من

المنتج ا ، من سا قيمت ١٠٠٠ جذب من النتج ب

ه تترجم الجدول في صورة متبايتات :

· S co · · S co (1)

×

77

×

ساعات تشغيل مواد خام

(١) التبايتان: س ٢٠٠٥ من ٢٠٠

(Y) غرسم المستقيم العدى ل: ٢ سن + ٢ ص = ١ يستمهما وسن ا وص ا الربع الأول

وهو يمر بالقطنين (٠٠٠) ، (٢٠٠)

(٢) ٢٠ سن + ٢٠ صن ≤ ١٥ أي أن ٦ سن + ٤ صن ≤ ١٥

(7) ترسم المستقيم المندي ليه : ٥٠، ١ -س + ٢ هن = (7) (7) (7) من (7) من (7) المستقيم المندي ليه : ٥٠ ا -س + ٤ هن (7)

وهو يمر بالتطلتين (٢٠٠) ، (٢٠٠)

S

.: مجموعة الحل مي النطقة و ١ ب حر المثللة في الشكل هيث : و (٠٠٠) ، ۱ (١٦) ، ٠) الله الهدف: ﴿ وَاللَّهُ الْهِدِفَ : ﴿ وَ حَلَّ الْمُولِدُ اللَّهِ اللَّالَّاللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّالِيلِيلَّالِيلِيلِيلِيلِيلِيلِيلِيلِيلِيلِيلِ (x . 1 .) - ((x . x) - 1

3

عند النقطتين - ، ح ولذلك تتعدد الطول .: أكبر عدد من الكتب = ٢٠ كتابًا ويتحقق ذلك 1. = [V] (1. = JV) ويكون [س] = ١٠ [س] = ١١

س دمر ، من دمر أي التالم التالية (12.7). (17.4). (17.1)

> أولاً : نعين النطقة التي تعثل مجموعة الحل المتباينات و دالة الهدف: ان أكبر ما يمكن هيد : ان = س + ص (٣) ٦ -ر + ١ مر ≤ ١٦ أي أن ٢ -ر + ٢ مر ≤ ٨١

SEEL

رهي كل النقاط (س ، ص) 3 ساح بعيث

(14 , 17) , (17 , 1) , (10 , 0) ,

حلول والسبب في ذلك أن السنقيم المثل لدالة (x.v.). (x.v.). (x.v.).

الهدف مي = - + ص بوازي المستقيم

الحامل للقطعة المستقينة بح

1. = w+ -- L

- 八日子は一八日子は日子(1)

يمثلهما و سن ل وصل ل الربع الأول

 $\Upsilon_{-} = -\omega_{-} + \omega_{-} = -\omega_{-} + \omega_{-} = 0$ ترسم المستقيم العدى ل $\gamma_{-} = -\omega_{-} = 0$ وهو يمر بالتقطئين (٠٠٠٠) ، (٢٠١٠)

رهو يمر بالتقطتين (٠٠، ٣٤) ، (٦٦، ٠٠)

.: مجموعة الحل المتباينات مي النطقة إلطالة (111) -1 (111) -1 (111) بالشكل والتي تحدما النقاط: ﴿ ()

عْلَيُّ : يَا دَالَةَ الْهِيفَ : إِن = هَ جِي + مِنْ صِي

日本の=い+い=」」」 T:=,[/]:

١٠] = ١٠ + ١١ = ١١ جنيها

منها ليوسف ١٦٠ جنيها لسامي هيث يعمل :. أقل أجور يرسية هي ٢٦ جنيهًا يدفع ٢٠ جنيهًا يوسف ا ساهات وسامي ساعتين.

النوع (١) النوع (٤٠) المد الأقصى

(٢) نرسم المستقيم الحدي لي: سي + ص = ٦

 $\Lambda = \infty + \Upsilon + \infty$ نرسم المستقيم الحدى لم : س + Υ من = Λ وهويمر بالقطائين (٠٠٠) ، (٦٠٠) يو

• تفرض أن عدد الكتب من اللوع ٢ = - ص كتاب

، وأن عدد الكتب من النوع ب = ص كتاب

تترجم الجدول في صنورة متباينات :

وهويس بالتفطئين (١٠٠٠) ، (٨ ، ٠)

وهو يمر بالتفطئين (٠٠٠) ، (٢٠٠)

عد ٢ يلوزة من النموذج (١) ، عد ٢ بلوزة

من النموذج (١)

. = [[] . T. = T x \ . = [[]] . .: الكرري مسكن مو دا جنيها عند إنتاج

10= T × 10 + T × 1. = [] /

ثالثا مسائل تقيس مهارات التفكير

ه تفرض أن يوسف يعمل س ساعة ، سامي يعمل ص ساعة في اليوم

٠٠ يوسف ينتج عدد سن وهدة ، سامي ينتج عدد

* تترجم للطومات في صورة مثباينات : ٢ ص وهدة.

ハムシャイナルー(で)

(4) : سامی یمکن آن یعمل ساعتین زیادة عن یوسف

12 m-w .:

و دالة الهدف: ﴿ آلَلُ مَا يَمَكُنُ هَيِثَ :

V=0-0+1-0

أولا : نعين النطقة التي تمثل سهموية الحل المتباينات

... مجموعة الحل المشاينات هي النطقة المظللة

(ア・ア) し・(ミ・・) !:シュラマー!

المنيا: ٠٠٠ دالة الهدف: ١٠ = ١٠ -٠٠ ١٠ من (...)3:(.:1) ...

1. [V] | = 01 × 3 = .1

 $(3) (7) \qquad (4) \frac{1}{4} \frac{1}{4$ $= 3.0 \times \frac{3.0}{10} = 3.0 \times 1.0 = 1$ (١) المرف الأيمن = ط 8 + ط 8 = ع 8 + ع 8 = 1848 518 = 18 × 18 × 18 = = = ١ + مرا 8 = الطرف الأيسر 1.0+9,0 (r) الطرف الأيمن = ٢ ما 8 + ما 9 = الله قا 8 = الطرف الأيسر = 4 0+ 4 0=1 0 = 10 = (0 - x) L (0 + 1) L -9744797= = 10-10= 10 = 10 = 10 = 10 (0-1) は (マーカ) は (マーカ) と (い) 1=014+015=01(04-)-187878, 187818 (r) الطرف الأيمن = 516 - ما 6 1=01+016= の1(十一年)10 (A) 7, 050 050 0 2, 0 × 3/0 × 3/0 = 670 (1)(10) (-)(r) (-0)(0-) (e)(r) (4)(r) (0)(1) (4)(4)(4)(4)(4)(4) =1 8+1 18 18+2 8-118 78 (3) 4 (+ 0) 1 (+ 0) = 18 5 0 = 1 (N) 18 51 - 1 - 9, 8 - 1, 8 - 7, 8 1=81586=(8-x)15(8-x)し(r) 1=868に=(8-)は(8+要)に(7) إرشادات الوحدة الثالثة (43(r) (r3(r) (3)(r) 1-84-4-8-4-8-1 (+) (+) (+) (v) (+) (0) (+) (T) (v)(1) (v)(c) (1) (20(1) (*)(%) (4) (7) (1) (A) (1)(1) (1)(4) (2)(4)

الأسنلة المقالية

(a) (b) (c)

(3) (+)

(4)(0)

(4)(£) (+) (T) (+) (T) (1) (1)

(1)(7)

(H) (W)

(r) gr

(3) (4)

(4) (7)

(A) (A) (a) (b) (c) (c)

(4) (7)

(4) 00(4)

(*)(x)

(v)(v)

(+)(Y)

ارشادات تمارین 8 اسللة الاختيار من متعدد

86861-1(86+86)(o) $1 = \frac{\theta \, \mathcal{L}}{\theta \, \mathcal{L}} = \frac{(\theta - \pi \, \eta) \, \mathcal{L}}{(\theta - \theta) \, \mathcal{L}}$

1=0 12+0 1=

(v) الطرف الأيمن (A) الطرف الأيمن (b) الطرف الأيمن	$\theta^{1}_{1}(x) = \frac{\theta^{1}_{1}(x)}{\theta^{1}_{1}(x)} = \frac{\theta^{1}_{1}(x$
(۲) الطرف الأيمن = ك 4 الم 4 الم 5 الأيمن = ك 4 الم 5 الأيمن الأيمن = ك 5 الم 5 الم 6 الم 5 الم 6 الم	(3) I I I Like $\frac{1}{3}$ ($\frac{1}{3}$ × $$

3

(1)	$ \begin{array}{c} \ _{1}^{2} (\theta + \varphi_{1}, \theta + \varphi_{$
ریفرنس آن: ۲۰ کا ۱۰ والجمع: (۱۱ ویفرنس (۱۱) والجمع: (۱۱ و ۱۰ و ۱۱ و ۱۱ و ۱۱ و ۱۱ و ۱۱ و ۱۱ و	$ \underbrace{(\lambda)}_{i}(x,y_{i}) _{i}(x,y_{i}) _{i}(x,$
الاستان القيس مسارات القفخير الاستان القيس مسارات القفخير الاستان القائم الله القيس مسارات القفخير الاستان الله الله الله الله الله الله الله ال	(3) $q_1 \theta - q_2 \theta = (q \theta - q \theta) (q \theta + q \theta)$ $= \frac{1}{4(q \theta + q \theta)_1} - \frac{1}{3}q \theta + q \theta$ $= \frac{1}{4(q \theta + q \theta)_2} - \frac{1}{3}q \theta + q \theta$ $= \frac{1}{4(q \theta + q \theta)_2} - \frac{1}{3}q \theta + q \theta$ $= \frac{1}{4(q \theta + q \theta)_2} - \frac{1}{3}q \theta + q \theta$ $= \frac{1}{4(q \theta + q \theta)_2} - \frac{1}{3}q \theta + q \theta$ $= \frac{1}{4(q \theta + q \theta)_2} - \frac{1}{3}q \theta + q \theta$ $= \frac{1}{4(q \theta + q \theta)_2} - \frac{1}{3}q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta + q \theta + q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta$ $= \frac{1}{4}q \theta + q \theta$ $= \frac{1}{4}q \theta + q
$\begin{array}{c} \ 210 - 410 = \frac{1}{3} \\ \ 210 = \frac{1}{3} + 410 \ e_{12} e_{12} e_{13} \\ \ 21 \ 0 = \frac{1}{3} + \frac{1}{3} + 40 \\ \ 21 \ 0 = \frac{1}{3} + \frac{1}{3} + 40 \\ \ 21 \ 0 = \frac{1}{3} + \frac{1}{3} + 40 \\ \ 21 \ 0 = \frac{1}{3} + \frac{1}{3} + 40 \\ \ 21 \ 0 = \frac{1}{3} + \frac{1}{3} + 40 \\ \ 21 \ 0 = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \\ \ 210 \ 0 = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \\ \ 210 \ 0 = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \\ \ 210 \ 0 = \frac{1}{3} + 1$	(او تا المراق ا

```
.: 8 = ۱۸۰ + ۱۱ = ۱۶۰ رهي تکافئ -۱۲۰
                                                                                                                                                                                                                                                   (を) - 38 = - x - = 815 :: (v)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \pi_{-1} (Lady lady \theta_{-1} : \theta = \pm \frac{\pi}{4} + 7 (4.7)
                                      \pi_{\nu}. [Led] [Led \alpha_{\nu}: \theta = \frac{\sqrt{\pi}}{4} + \gamma_{\nu} (p. \pi_{\nu}).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \pi_{AB} = \frac{\pi_{AB}}{\gamma} + \frac{\pi_{AB}}{\gamma} + \frac{\pi_{AB}}{\gamma} + \frac{\pi_{AB}}{\gamma}
                                                                                                                                                                                                                                                                                   \pi_{AU} + \frac{\pi_{A}}{2} = \theta = \frac{\pi_{A}}{2} + c_{A}\pi_{A}
                                                                                                                                                                                                                                                                                                                                                "TIO = "FT" - 01" = 0 .:
                                                                                                                                                                                           *...= 1. - "T1. = 0 .:
                                                                                                                                  Tr. = " - " TT. = 0 ..
                                                                                                                                                                                                                                                                                                                                                                                                           "YO = " &0 - " \ A. = 0 :.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      11. = 1. - " 1. = 0 ..
                                                                                                                                                           اً، θ يقع في الربع الرابع

 θ تقع في الربع الثاني

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1. θ = ... * + Y ω. π
                                                                                                                                                                                                                     :: 8 تقع في الربع الثالث
                                                                                                                                                                                                                                                                                                                                                                                                                                     .: 6 تقع في الربع الثاني
                                                                        1.01+ Tr. = 0.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  11.0 = -- 11. + 1 U.T.
                                                                                                                                                                                                                                                                                                                                                                        أ ، 0 تقع في الربع الرابع
                                                                                                     TAY+ "11. = 8 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   أ، 9 تقع في الربع الثالث
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (a) : 3 8 = -+ (mlip)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             πωτ+ "ιτ. = θ ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TAT+ " 18. = 0 ..
          1, 0 = 1/1 + 7 c. I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1, 0 = 07 + 7 C. I
                                                                                                                                                                                                                                                                                                                  3.0+ "YTO = 0 :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (지나) !-= 8 나 :: (기)
                                                                                                                                                                                                                                              °1. = 0 ∴
                                                                                                                                                                                                                                                                                                                                                                                                                            : 0 = 03°
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (m) (m)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Y. = 0 ..
                                                                                                                                                                                                                                                                                                                                                                 :. 8 = ۲۱۰ - ۱۵ " دمی تکافی -۵۰ دمی تکافی -۵۰
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (33)(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (3)(r)
                                                                                                                                                                                                                                                                                                                                    That + 80 - = 8 1 That + 80 = 8 ..
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             πωτ+ 10. = θ είπωτ+°τ. = θ .:
                                                                                                                                                                                                                                                                                                    : Italy Italy as \theta = \pm \frac{\pi}{3} + 7 \text{ GeV}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              オカイナ 一丁・ハスシャナ 二日
                                                                                                                             : العل العام عن 8 = 4 - 1. T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (2)(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (5)(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (+) (To)
                                                                                                                                                                                      YE. = 1.+" \1. = 0 :.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         10. = "r. - "11. = 0 :.
                                1: 0 = .V. + .L. = -13
                                                                                 (3) ... of 0 = 1/4 (myright)
                                                                                                                                                                                                                                                                                                                                                                                                                                                    (Type ) + 10 = 1 (1)
                                                       ن θ متع في الربع الثالث
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              تارق الأسئلة المقالية
                                                                                                                                                                                                                                                                                                                                                                                            أ، θ تقع في الربع الرابع
ا، θ تقع في الربع الرابع
                                                                                                                                                                                                               أ، 8 تقع في الربع الثالث
                                                                                                                                                                                                                                            :: 8 تتم في الربع الأول
                                                                                                                                                                                                                                                                         (T) : 4 0 = 1/7 (Mesis)
                                                                                                                                                                                                                                                                                                                                                                                                                          .: 6 تقع في الربع الأول
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   أ، θ تقع في الربع الثاني
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               :: 8 تقع في الربع الأول
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (1) :: 40 = + (next)
                                                                                                                                                         7. 0 = .T + U.R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            : . المل العام هو :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (1)67)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (+)(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (1)00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (20 (-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (a) (a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (+)(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (A) (A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (2)000
```

ī	160000	(000)	(4) (4)	(4) (9)
٠٠ القدار = ١٠٠٠ - ١٠٠٠	(00(1)	(+) (+)	(40 (4)	(WB(r)
1. = 1 + M × 1 = (1-) + M 1-+	(3) (3)	(1)(0)	(*)(7)	(3.0 (*)
::.+ * * * * * * * * + * * * * * +	Q0(c)	(v) (+)	(40(4)	(-)(1)
+ شاء ٨٨ + صفر + ماء ١٠	(3)(5)	(3)(1)	(1)(10)	0.000
= 1 1 + 2 7 1 + 2 7 7 +	(3)(2)	(4)(4)	(4)(0)	(0)(1)
14. 5+ 141 5+ + 17 5+ 17 5+	(e) (÷)	(S)(4)	(1)(4)	(*)(*)
2 15 + 17 15 + 18 15 +	(3)(3)	(1)(-)	(4)(5)	(3)(4)
، البسط = ما ١٠ + ما ٢٠ + ما ٣٠ + ساء ،	lett	اسئلة الاختيا	اسئلة الاختيار من متعدد	19201
$1 - = (1 -) + _{out} + _{out} + _{out} + _{out} =$		ارشادات ت	ارشادات تمارین 9	100
14. 5+1. 5+ (15+ ME) +				
("\x\b' + \x\b') + ("\x\b' + \x\b') =	θ .:	96-1=	1=86+865: 86-1=865:	1=01
* × · V +	+1:1-	1,0=7,6	1 -1 0 = 2 0 : 20 = 2 0 1 -1 ::	40
"149 F+ + 31 F+ 3. F+	0.0	9 2-1=02		
القام = منا ١٠ + منا ٢٠ + منا ٢٠		86-1	96	
15 -= "JANI" = - 71, " 7 YANI = - 71	91:	84-1× 1-48	91-1	
$= 1 \times 33 + \frac{1}{4} + 1 = \frac{1}{4} \circ 3$	وبالضرب	وبالضرب×(١٠ – ما θ) بسطًا وبقامًا	الله والمالا	100
+(4, 11, + 4, 11,)+1, 01, +1, 1,	1	#1+18	81:10 -110 110 -110	1+10
	· θ Ε · ·	= 0 L		
1. 1 + 1 1 + 1 1 1 + +	-			
=41,+71,+71,+701		= الطرف الايسر	, Simul	
%, "L+M" L+M" L++		7-1=	8 E 8 LT-1=	
والترام ٨٨ = ١٠٠٠ من ١٠٠٠ والمدا		= (4, 0+	6 F 9 F 1 - 1 (0 F + 0 F) =	1,07,0
1 15 = (1 - 4.) L = M L :: (0)		+ 7, 8	+7,0-17,07,0)	(6
シート・コート・ ト・コート・シン	Š	= 1 × (9)	=1 × (4, 0 + 1 1, 9 7, 9	9 1
7+3=1++1+1.3		(J, 0-1	(4, 6-7, 67, 6+7, 6)	(A) (b)
P++= (4 16+2 18) = w+7		= (4, 0 + 7, 0)	(A)	
(81 2+01 4)+(0 5+0 4):		الملزف الأيمن = ما 6 + عا 6	3.0	
February (1) + (2) :	7			

コーナースト コート・コート コート・コート

.= 01-0 L:00

1. # = 0 :.

.=1-8L

· = 0 :

:. الحل العام هو : θ = 12.73

"IF0 = "E0 - "IA. = 0 :

أ، θ تقع في الربع الثاني

.: 6 تقع في الربع الأول

.= 8L-8L8LTP .. 00

0 = .VI.

1 . = 0 .

エル=8:

: - (T) - 0 L Y 0 L :

· = 01 T/ - 0 1 T T .. (0)

3

"10. = "Y. - "1A. = 0 ..

7.07+ 10. = 0 il

エンド+ 元のい

πω۲+°r. =θ ::

ا، θ تقع في الربع الثاني

:. 8 تقع في الربع الأول

ا، ما 8 = أو (مرجبة)

-= (1-0LT) 0L ::

. = 0 L : 1. 0 = U.I.

. = 0L-0 LT ..

ガッド=日1

$\pi_{\alpha'}$; [Let] [Let $\frac{\pi_{\alpha'}}{2} \pm \theta = \pm \frac{\pi_{\alpha'}}{2} + 7 \sqrt{\pi}$];	おかく+ ヤ・= 0 ::	٠٠٠ - ۲۱۰ - ۲۲۰ ای کالئ ۲۰۰۰	أ، 6 علم في الربع الوابع	٠٠. θ تقع في الربع الأول θ	$[\cdot, \cdot, \cdot] \theta = \frac{\lambda}{\sqrt{\lambda}} (\pi^{(\alpha)})$	πν=θ::	'.ν. = θ · ι · = θ · . · · = θ · . ·	: - (+++++++++++++++++++++++++++++++++++	: 18 78 - 4 18 = .	- 3	00 : 10 -10 - 10		1.740+7=.	πωΥ+*4.±=θ :.	ا، θ = ۱۷۲° وهي تکافئ - ۱۰	. = 0 : · = 0 : ·	·=(r+0Lr)0L:	.= 8 L T + 8 L 8 L T : 60		$\pi_{av} + \frac{\pi}{4} = \theta = \pi + \tau_{av}$	Tar + 10. = 01	$\pi_{A'} r + r = \theta$.	-		:: 6 متم في الربع الأول	٠٠٠ ١٠٠ = أو (موجية)	(00 ∴ ¬((\frac{\pi}{\pi} − \theta) = \frac{\pi}{\pi}
$1 \cdot \theta = \frac{1}{\sqrt{x}} + \lambda r^{\alpha} x$	$\pi_{\alpha \nu} + \frac{\pi_{\alpha}}{2} = \theta = \frac{\pi_{\alpha}}{2} + \pi_{\nu \alpha}$	וו 6 = סוד " די הת	$\pi_{\alpha} + \gamma_{\alpha} = \theta$.	η ν = ε ο - η γ = θ · · ·	TT0 = 10 + \A. = 0	:: 8 عم في الربع الثالث	: ١٠٠٠ = - ١٠ ٠٠ (١١٠٠٠)	·= T/+ 8L T :: (0)	$\pi_{AV} \Upsilon + \frac{\pi}{4} \pm \theta = 0$: Italy Italy as:	πων+*·. ±=θ.:	ا، و معلم على ترجيع الرجيع الم و معلم على الرجيع الرجيع		42	: المل العام مو : 0 = أية + به 13	π.ν+ \α. =θ.:	rr. = r rι. = θ	أ ، 8 علم في الربع الوابع	"\0. = "Y "\Λ. = θ	∴ 6 تقع في الربع الثاني	(v) :: 410 = - 17 :: 40 = - 1/2 (mips)	$\pi_{AJ} + \frac{\pi}{2} \pm \frac{\pi}{2} + 3 + 7 \text{ to } \pi$	T. 0 = -01° + 7 い. I	π.ν Y + 10 = θ	2		. 6 تقم في الربيم الأيل 6 = 6 €.	(4) = 8 = 1 : (A)

```
    ١٠: الزاوية العادة التي جيب تعامها ٢٠ فياسها ٢٠.

                                                                                                                              95-91: . -95-96 Line .
                                            ، ٠٠٠ الزاوية المادة التي ظلها ١ قياسها ٥٤ "
                                                                                                                                                                                                      {"m., "11., "10., "r.} = C.f ..
                     .: θ = 03 1, θ = . Λι + 03 = 0 ΥΥ
                                                                                                                                                                                                                                                                                                                                             "TT. = "T. - "T1. = 0 :1 "T. = 0 .:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        "IY. = "1. -"IA. = 0 il "1. = 0 ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            下きまのに : = のに:
                                                                                                                                                       .= (85+86) (85-86) ..
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             = 0 15 .: E=0 15 T .: (10)
                                                                       .: θ تقع في الربع الأول أو الثالث

    ∴ Θ تقع في الربع الثاني أو الثان؛

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .: 0 تقع في الربع الثالث أو الرابع
                                                                                                                                                                                                                                                                                                                                                                                                                : 0 معم في الربع الأول أو الرابع
                                                                                                                                                                                                                                                                                                       اباد ١٠ الم الم
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ان ۱۶ و = - الم (سالية)
                                                                                                                                                                                                                                                        10. = "r. - "11. = 0 .:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        "

        \theta : \theta : \theta : \theta

                                                                                                                                                                                                                                                                                                                                                                                                                                        : عنا 8 = <del>الم (موجية)</del>
                                                                                                                                                                                                                                 "11. ="r. + "11. = 0 i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  7. = 1. - 71. = 0 1
                                                                                                                                                                               ·=0 16-016 .. (3)
                                                                                                 : ط 6 = ١ (سرجية)
: 10=== + : 10== + ( weigh
                                                                                                                                                                                                                                                                                                                                        ، ٠٠٠ الزاوية الحادة التي ظلها ١ قياسها ٥٥ "
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1-05: W=0:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  : +2={.w.}
                                                                                    Υo. = θ :. ° τ . = ° . - θ .:
                                                                                                             .: (0 - . ٥ ) تقع في الربع الأول أو الرابع
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                " 1. 0 = . W. + 1 14 11 = 1 17 131
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ("YV., "W., "., ") = Er ..
                                                                                                                                                                                     ، :: الزاوية المادة التي جيب تمامها 🕆
                                                                                                                                                                                                                                                                                                                                                                                                                        1-=013: .=013+1:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      : +2= { + 13 m , + 14 13 m}
                                      1 = 0 1 1 0 = 7 1 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             أ، خا 6 = ، وينها 6 = ، ١٠ ، ١٠٠٠
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    : عا 6 = · ومنها 6 = · · مدا
                                                                                                                                                                                                                                                                                                                                                                   .. 8 تقع في الربع الثاني أو الرابع
                                                                                                                                                                                                                                                                                                                                                                                                                                         · = (0 - 1.) 4 + 10 ... 00
                                                                  ("ro.. "11.) = Cf ::
                                                                                                                                                                                                                                      (そうし) = (0 - 0)にいのか
                                                                                                                                                                                                                                                                                           " to = "to - "T" = 0 i
                                                                                                                                                                                                                                                                 ("T)0 , "ITO) = C.P .:
                                                                                                                                                                                                                                                                                                                   " Ho = " to - " \ A. = 0 ..
                                                                                                                                                                                                                                                                                                                                                                                              :: ١ ٥ = -١ (سالية)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              .=1+85 :: (0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        : 0=1 14 11°
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .= 815 81 .: (0)
                                                                                                                                                            فياسها ١٠
```

 γ_1 الزاوية المادة التي جبيها $\frac{\gamma_1}{\gamma}$ قياسها γ^*

، :: الزاوية الحادة التي ظلها ٢ قياسها ٢ ٢٦ ٢٣

.: 6 تقع في الربع الأول أو الثالث

Θ تقع في الربع الأول أو الثاني

، :: الزاوية الحادة التي جيبها 🚡 قياسها ٥٠ م ٨٤٠ " (A) 1. 3 10 + 1 = 1 1. 19 = 1/2 (m/m) 2=01:10 -- -- (間しい-1):13=0 *TT 1 F. Fo = "01 F. Fo + "14. = 0 .] "TYA FO FO = " EA FO FO + " IA. = 0 .. "TII YE FO = "EA FO FO - "TT. = 8 . I {"TIL TE FO, "TYA FO FO} = CA ... {"TT 1 F. FO, " 01 F. FO} = C.f .: ، :: الزاوية المادة التي جيب تعامها (A) .. 918 + 1/2 = . .. 918 = -1/2 .: 0 تقع في الربع الثالث أو الرابع ٠٠ . 6 تقع في الربع الثاني أو الثالث : جا 8 = - الم .: θ تقع في الربع الأول أو الثالد · ντο = ° εο - ° νλ. = θ ... 1, 0 = . VI + 03 = 011, :: 42 = {ox, , ox, } : ال 8 = } (مرجبة) : ال 8 = ٢ (موجية) οι τ. το = θ .. . = T + 8 15 T .: (a) .= 0 - 0 U : (A) قياسها ٥٤ (T) - (101) - (7)

، :: الزاوية المادة التي ظلها ﴿ فياسها ٥٠ ؟ ١٥ * ، ٠٠٠ الزاوية الحادة التي ظلها ١ قياسها ٥٤ " : 0 = 03 1.0 = . NO + 03 = 0 YY (٤) : الله − ١ = ١ : الله = ١ (مرجبة) .: 6 تقع في الربع الأول أو الثالث :: 4.3 = {03°, 077°} ، :: الزارية الحادة التي جيب تمامها 🛉 قياسها ٦٠ ، -: الزاوية الحادة التي جبيها 🐈 قياسها ٣٠٠ (い) シュューリー・・・・コロニーキ (つか) (い、11日・1-日に、1日日 - (1) ".. = "1. - "T1. = 0 11 "1. = 0 :. ن مجموعة المل = {٢١٠ ، ٢٢٠ } °\1. = 0 : - \1-= 0 L :: .: 8 تقع في الربع الثالث أو الرابع .: 8 تقع في الربع الأول أو الرابع .: θ تقع في الربع الثاني أو الثالث "11. = "1. + "14. = 0 1 " . . = " . - " \ A . = 0 .. (A) :: 178+1/1=. .: 0 = . v. + . v. = 0 .: : عا 8 = * ا (سالية) TT. = T. - TT. = 0 .1 "11. = "T. + "1A. = 0 .. (m. 1) = C 0 = . VI - . L. = 0 .. T. 0 = . . . + T U. II ·= 1+81 TAY+ "11. = 0 .. أ، 8 تقع في الربع الثالث 12日=エナイルエ

117 or 14.

{"TYO, " \A., " EO, " . } = [. A .. .= (1-01) 0 I .:

، ٠٠٠ الزاوية المادة التي ظلها ١ قياسها ٥٤ " "YYo = "10 + "IA. = 0 1 "10 = 0 :. .: 6 شم في الربع الأول أو الثالث ·=01-07 ··· (1)

(1) : 4 9 - 418 = . : 4 9 - 48 = . ا، با ۱ - ۱ = ۰ . . . با ۱ = ۱ (سرجية) .= (1-0 J) 0 .: :. 8=11 10 14 1.8= .v. + 11 10 11 : ٤ ع ا ٥ = ٢ عا ا : : ط ا ٥ = ؟ (سوجية) ٠. ١٠٠٠ : ١٠٠٥ : ١٠٠٠ : ٩٠٠٠ : ٩٠٠٠ : ١٠٠ : ١٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠ : ١٠٠٠ : ١٠٠٠ : ١٠٠ : = 11,19,114, Β تقع في الربع الأول أو الثالث . = (8 LT-8 L 1) 8 L .: ، -: الزاوية المادة التي ظلها 🕆 1119-119= قياسها ١٤ ١٥ ١٦

134 134.4

"ITT EI TE = "01 IN FT - "IN. = 0 :. "+.+ 11 46 = "07 1/4 47 - "T1. = 0.1

، :: الزاوية المادة التي جيبها ﴿ قياسها ٣٠

.: 8 تقع في الربع الأول أو الثاني

٠: ما ٥ = أ (موجية)

"10. = "Y. - "1A. = 0 .1 "Y. = 0 ..

، :: الزارية الحادة التي ظلها ﴿ قياسها ٢٠ ما ٥٥ * .: 6 تقع في الربع الثاني أو الرابع

: 410 = - + (milip) 86 Y-= 85 Y:

.= (1+8L)(1-8L1):

·=1-06+06 : (1)

*YV. 1 " . = 0 : . . = 0 ! . . .= 8 L T + 8 L T .1

{"r) 0, "TTO , "ITO , " 80} = C.A .. "110 = "10 - "11. = 0 a)

، -: الزاوية المادة التي ظلها أمَّ قياسها ٢٦ ٦٥ ٢٦٥

.: 8 تقع في الربع الثاني أو الوابع

()] (() + 1 = 4 () = =] (() ()

°14. 1° = 0 : . = 0 ! :

.= (Y+0 10 6)0 1: . = 0 U + 7 40 = .

"IET VEA = "TI ST IT - "IA. = 0 ..

"rrr 6 24 = "r1 35 1r - "r1. = 8 1

: 42= {. , v3 v 111 , . . .

{ TYT V LA.

": 0 = "to - " \A. = 0 ::

.: 6 تقع في الربع الثاني أو الرابع : 410 = -1 (miris)

85--86: --85-854

1. 10 # 0 # 0 + . L. のイレ=のはい(1)

، :: الزاوية الحادة التي جبيها 🐈 قياسها 环 ナ=8レン -= - - 9レバ "10. = "Y. - "1A. = 0 (1"Y. = 0 ... :: 8 متع في الربع الأول أو الثاني ["10.1" 1.1"] = Cr .:

٠٠ θ = ١٠ أ، ٢٧٠ (مرفوض) .= 85 ::

: = (+ - 0L) 0L :: .= 86 + - 86 86 ··

، :: الزاوية الحادة التي جيبها 🕆 قياسها ٣٠ 10. = "T. - " 1A. = 0 .1 "T. = 0 .. : 6 تقع في الربع الأول أو الثاني ("1.1") o.1" () = Ep .:

· = 0 レ : - 1 − 0 レ x il .: 0 = . ٩ أ، ٧٧٠ (مرفوض)

.= 8E ..

·= 85 - 85 85 7 ...(r) .= (1-86 T) 85 .:

، -: الزاوية الحادة التي ظلها ١ قياسها ٥٥ " · · · θ = 01 1. θ = · · · · · + 01 = 0 · · · {"TTO. "IA. . "EO. ".) = C. . ..

.: 8 تقع في الربع الأول أو الثالث.

: طا 8 = ۱ (موجية) . = 1 - B U . 1

: المل العام مو: 8 = 1 + 1 + 1 Lb 1. 0 = - 1 - x c

: 0 = - 03 - - A/ U

" x 0 + 3 0 = 1 + 1.7" " w 77.+ °1. = θ τ- 11 WTT. + "1. = 87 .. · θ=01°+.1° ω

... الحل العام هو : $\theta = \frac{\pi}{\Lambda} + \frac{\pi}{\Lambda} \frac{\pi}{2} \frac{\nabla}{\Delta}$ 1:0=-サーナルル

w m. - 1. -= 0 : w "r1. + "1. = θ - il v°1.+°1.=θ∴ w TT. + "1. = 81 : 1. 3θ±θ± .: " + "1. + "1" U 016=0015 : (r) 1:0=一二十八八八

.. Italy Italy as: $\theta = \frac{77}{7} + \frac{7}{7}$ us.

w *11. - "1.-= 0 .:

w"17.+"1.=0-il

ω"IY. + "Y. = 0 :

w"11. +"1. = 0T :

8 = 0 1 = (1)

w +1. + 1. = θ + ± θ ...

1.0===+10元

2"77. +"1. = 0 d

: الحل العام هو : 0 = 4 + 1 1 15 us

1. 0 = .4 + . AI .

1. + 1. = 8 T .:

$\begin{array}{lll} \vdots & \lambda & \lambda & \lambda & 0 \\ \lambda & 0 & 0 & 0 \\ \lambda & 0 & 0$	(a) $\therefore 4\theta + 4\theta = x$ $\therefore (a) = x$ (b) $\therefore 4\theta + 4\theta = x$ (c) $\therefore 4\theta + 4\theta = x$ (d) $\Rightarrow x + \theta + 4\theta + x = x$ (e) $\Rightarrow x + \theta + 4\theta + x = x$ (f) $\Rightarrow x + \theta + 4\theta + x = x$ (g) $\Rightarrow x + \theta + 4\theta + x = x$ (g) $\Rightarrow x + \theta + 4\theta + x = x$ (g) $\Rightarrow x + \theta + 4\theta + x = x$ (h) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta + 4\theta + x = x$ (l) $\Rightarrow x + \theta$	(٤) : ٢ ماس = طاس : ٢ ماس = ماس = ماس = ماس = ماس = ماس = ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = : ٢ ماس = نياس =
افرن س = ۱۰ مد ۱۳ ۱ ۱۳ ۱ ۱۳ ۱ ۱۳ ۱ ۱۳ ۱ ۱۳ ۱ ۱۳ ۱ ۱	$(3)(4) \qquad (4)(7) \qquad (5)(1) \qquad (4)(1) \qquad (5)(1) \qquad (5)(1) \qquad (6)(1) \qquad (6)(1) \qquad (6)(1) \qquad (6)(1) \qquad (6)(1) \qquad (7)(1) \qquad ($	$\begin{array}{c} (\lambda) \\ (\lambda) \\ (\lambda) \\ (\lambda) \end{array} = \begin{pmatrix} \lambda \\ (\lambda) \\ (\lambda) \end{pmatrix} = \begin{pmatrix} \lambda \\ (\lambda) \\ ($
$ \begin{array}{c} \bigvee \\ \bigvee \bigvee$	$\begin{array}{lll} &$	الاوارية العالمة التي طلها ١ قياسها ١٥٠ الاوارية العالمة التي طلها ١ قياسها ١٥٠

·= (1+86 T) (T+86 T) :.

ن ما 8 = أ (مرفوض)

(한 시 원 = -수 (에나)

() :: 14 8+×48+7=.

(10. (T.) = C. A.

: ما B = ۲ (مرفونس)

11-18-1

العادلة ليس لها حل في الفترة العطاة

Θ تقع في الربع الثالث أو الرابع

]π . .] ∋ θ ∵ .

:= (1-8L)(1-8L1) ::

.=1-8LT. ن ما 8 = أ (مرجبة)

·= ++06-0-0 1 + + (1)

ء 🔆 الزاوية العادة التي جيبها 🐈 فياسها 🥂

.: θ تقع في الربع الأول أ، الثاني

10. = "Y. - "M. = 0 11 "Y. = 0 ..

'10r fit = "rift" of - "14. = 8 ::

= ١٤ ٢٦ ٢٢٣ (مرفوض)

"n fr & - "n . = 8 1

.=1-84.1

.: 8 تقع في الربع الثاني أو الوابع

:: 410=- 수 (씨나)

.=1+0bT:

، ٠٠٠ الزاوية الحادة التي قلها 🕆

فياسيها عن ١٦٠ ١٦٠

·= (1-84) (1+847) ::

.=1-84-8 br .. (r)

Ø=C+ :

```
ه :: الزاوية المادة التي ظلها ﴿ ۗ قياسها ٠٠٠
{ \w.} = c+ ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (موجية) Tr= 0 ل :: Tr= 0 ل ::

    ١: الزاوية الحادة التي ظلها ١ قياسها ٥١°

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .. 0 = . 1° 1, 0 = . 1° + . 1° = . 11°
                                                                                                                                                                                                                                                                                                            {r., r3={r, rx, r, r, r3=====
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .: 0 = 01° 1, 0 = - A1° + 01° = 0 YY
                                   1-=0E:
                                                                                                  7=06: .=1-067:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        {"TTO. "TI..." 10, "T.} = 0 ..
                                                                                                                                                                                                                                          .= 0+0160+(1-016) T:
                                                                                                                                                                                                                                                                                                                                                                                                        .: 8 تقع في الربح الثاني أو الرابع
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Y=0 " 1=0 " Y:
                                                                                                                                                                                                          = 0+010+1-0 167:

 Β تقع في الربع الأول أو الثالث

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         :. 8 تقع في الربع الأول أو الثالث
                                                                                                                                    = (1+815) (1-8157) ::
                                                                                                                                                                         .=1-016+0767:
                                                                                                                                                                                                                                                                            (v) -. 14, 0+0 fl + 0 = .
                                                                                                                                                                                                                                                                                                                                                                             "17. = "1. - "1A. = 0 ..
                                                                                                                                                                                                                                                                                                                                            r..=1.- r1.=0.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1. 4. 0+4, 0+1=A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        V=0 15+0 1 .. (v)
                                                                                                                                                                                                                                                                                                                                                                                                                                               (+416) TY-=011.1
                                                                   :: منا 8 = ٦ (مرفوضر)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           أ، ط 8 = ١ (موجية)
   .. 0 = .v.
                                     1-= 816.1
                            ، :: الزاوية المادة التي ظلها الم قياسها ٢٠
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ، -: الزاوية العادة التي ظلها ﴿ لاَ فياسها ٨ُ ١٤ ءُهُ
                                                                                                                                                                                                                                                                  ، :: الزاوية المادة التي جيبها ﴿ فياسها ٣٠
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1 ±= 0 1 ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ירדו זו א. "רדם . "ודם .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       "ire to or , of it h . "to] = C.f ..

    الزارية العادة التي ظلها ١ قياسها ٥٤.

      TI. = T. + "IA. = 0 .1 T. = 0 ...
                                                                                                                                                                                                                                             "10: = "T. - "1A: = 0 11 "T. = 0 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                .= (1+85)-(1+85) BLY ..
                                                                                                                                                                                                                                                                                                                                                                                                                                                              ·=1-85-864+85864: (0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ". . 0 10 ar = 0 .1 " rrt 12 A = 0 .1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      :. 0 = 4 31 30 11 0 = 10 01 011.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            : 0 = 03 1, 0 = 071 1, 0 = 077
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           {"rio ."r.o 10 or.
                                                                                                                                                                             ·=1+04(T/+1)-0 4T/(1)
                                                                                                                                                   .= (1-84) (1-84T) ::
                                                                                                                                                                                                                                                                                                                                                                                              : (210+1) (1-9P-1) :
                                                                                                                                                                                                             {"\n., "\o., ".) = C.f ..
                                                                            .: 6 مقع في الربع الأول أو الثالث
                                                                                                                                                                                                                                                                                                       :. 8 تقع في الربع الأول أو الثاني
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     . = (x - 0 ") (1 - 0 ") :.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (3) - 4, 0 - 1A, 0 + 1 = .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              T=0 14 1 T10 = 0 11
                                                                                                         ٠٠٠ ١١٥ = ١١٠ (سرجية)
                                                                                                                                                                                                                                                                                                                                      ا، ما 8 = أ (سرجية)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 : 40=±4x
                                                                                                                                                                                                                                                                                                                                                                      1-=0に:
```

$\frac{\overline{Y}_{i}^{k}}{(1 + i \pi)^{2}} = \frac{\overline{Y}_{i}^{k}}{(1 + i \pi)^{2}} $	$ \begin{array}{cccc} \hline \Gamma_{1} = \theta & \Gamma_{2} & \theta & \Gamma_{3} & \theta & \Gamma_{4} & \Gamma_{5} \\ \hline \Gamma_{1} = \theta & \Gamma_{2} & + \theta & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{1} = \theta & \Gamma_{3} & + \theta & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{1} = 0 & \Gamma_{2} & \Gamma_{3} & \Gamma_{4} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{1} = 0 & \Gamma_{2} & \Gamma_{3} & \Gamma_{4} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{1} = 0 & \Gamma_{2} & \Gamma_{3} & \Gamma_{4} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{1} = 0 & \Gamma_{2} & \Gamma_{3} & \Gamma_{4} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{1} = 0 & \Gamma_{2} & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{1} = 0 & \Gamma_{2} & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{2} = 0 & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{3} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{3} = 0 & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{4} = 0 & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{5} = 0 & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{5} = 0 & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} & \Gamma_{5} \\ \hline \Gamma_{5} = 0 & \Gamma_{5} &$	ف تقع في الربع الأول أو الثاني ، ت الزاوية المعادة التي جيبها ﴿ فياسها · ، و و ، ۴ أن و م . ، ١ أن - ۴ و ، ٥ أن ، و و	(1) 1 (10 - 1) = 10 = \$\frac{1}{2} \cdot	حا 8 = ﴿ (موجية) حا 8 عقع في الربح الأول أو الرابع 9 حاء أن 8 حاء التي جيب تمامها ﴿ فيلسها ان 8 حاء أن 8 حاء التي جيب تمامها ﴿ فيلسها ان حاج الرابع العادة التي جيب تمامها ﴿ فيلسها	$ \begin{array}{c} \mathbf{II} \\ \cdot = 1 - \left(\theta - \frac{\pi}{2}\right) \downarrow 11 + \theta \stackrel{T}{\downarrow} \downarrow 1 \stackrel{T}{\downarrow} 1 T$	$ \begin{array}{l} : (\forall \ d \mid \theta \mid -) \ (d \mid \theta \mid +) \ \therefore \\ \frac{1}{\gamma} = \theta \mid \nu \ \therefore \\ \frac{1}{\gamma} = \theta \mid \nu \ \therefore \\ \vdots \ \text{location as supported} \\ \vdots \$
	رن برن ا الرب المراس = ، وينها الرس = برن ا المراس المراه المر	۱ = ۱۰ عاص عاص = ۱۰ به ۲۵ می عاص = ۱۰ به ۲۵ می اس عاص = ۱۰ به ۲۵ میاس عاص = ۱۰ به می تاسی است و ۲۵ می تاسی = ۱۰ می توفوشد از می تاسی = ۱۰ می توفوشد از می تاسی = ۱۰ می توفوشد از می تاسی = ۱۰ می توفوشد از می تاسی = ۱۰ می توفوشد از می تاسی = ۱۰ می توفوشد از می تاسی = ۱۰ می توفوشد از می تاسی = ۱۰ می تاسی =	- 4 6	(۱) لكن تكون الممادلة على وحيد موجب لابد أن يكون الممادلة على وحيد موجب لابد أن يكون المرف الأيمن مربع كامل أو + 10 = 10 عن الموف الأيمن مربع كامل أو + 10 = 10 عن الموف المرف الموف المرف الموف المرف الموف $\{\frac{\pi^{1}e^{2}}{\pi^{1}}\}$ $[\pi^{1}e^{2}]$ $[\pi^{1}e^{2}]$ $[\pi^{1}e^{2}]$ $[\pi^{1}e^{2}]$ $[\pi^{1}e^{2}]$ $[\pi^{1}e^{2}]$ $[\pi^{1}e^{2}]$ $[\pi^{1}e^{2}]$	$\begin{aligned} & (\lambda) & \text{if } Y = 0 \text{ and } Y \text{ is } \dots \text{ if } Y = 0 \text{ and } Y \text{ is } \dots \text{ if } Y \text{ is } \dots if$	

1

3

Yo

، :: ل= 8 نتى :: ل= ١٥٠ × ٠٠ = ١٠٥ سم :. محيط القطاع = ٢ تق + ل = ٢ × ١٠ + ٨ = ٨ ٢ سم .: محيط اللمااع = ل + ۲ نق = ١٠ × ٢ + ٢٠ .: .. F = 0 mad .. مساحة القطاع = أل تق = أ × ١٤ × ٧ .. ς, t = 12 and , θ_s = 12 = 14 = 14 . γ_s ٠٠٠ ع = أ × ٨ × نتى ١٠٠ سم 1. YA = 31 + F :: F = 31 == = 1,03 ms 60 map T x 5. . o x + = To .. $\theta_s = \lambda_y \times \frac{\pi}{v_{V_s}} = 0.4311_o$ ، : مساحة القطاع = أل تق ن مساحة القطاع = أو الأنق : مساحة القطاع = أل تق ": مساحة القطاع = أل تق : محيط اللطاع = ٢ نق + ل B = 3 × 1 11 = 10, 12 -0 = 2 × -1.4 = 131, 10 × J × + = TV. : ς = 1 = J = γ = γ 1. x J x + = Yo .. 1 · · · · · · · · · · · · · · · · · · π = $\gamma_{\text{max}} = \frac{1}{\gamma} || \hat{\nabla} $r_{\mu\nu} = r \approx \frac{r_{\mu\nu}}{r_{\mu\nu}} \times r_{\mu\nu} \times r_{\mu\nu} = r_{\mu\nu} \times r_{\mu\nu} \times r_{\mu\nu} = r_{\mu\nu} \times r_{\mu$ سساحة القطاع = أو 8 نق = أ × ٢٠١١ × ٠٠٠٠ 7-17 = 11. × 17 × 18 = = + × 11 × 1= 14 ---= + x 11 x y = y1 my 1 = . = الفاع = π نق^۲ × ^{−0} $\frac{v}{v}$ × آن $\pi = e$ القطاع = π نق vساحة القطاع = 17 تق × ٢٦٠ : مصيط القطاع = ٢ تق + ل تاريب الأسننة المقالية مساحة القطاع = أل نق مساحة القطاع = $\frac{1}{V}$ ل تق Y + 31 Y = Yo : ال تق = ١ سم 1 X = 31 Y ...

" AT, 177 =

... (Lulas ! Lallers = 301, 14 - 141, 141 = 04 may

"-" xx "1 × " = 111. x4 -"."

17. ToE = Y×Y1, 1VV = ~ 子 ~ 1 (1) 1 (1) : ...

1. . PAY × 7 × += -- + 1 1 3 5 5 5 1 ... Tom T1, 14V = ، ١٠٠٠ = ٢٩٢٠ ، ١ سم (فيثاغورس)

: ال (د سم م) = ١٢٠ · 1.=(トーム)ひ: カー・ラーー

: A 11- قائم الزاوية

 ... مساحة النطقة المحسورة بين الدوائر = ۲۰,۲ = ۲۰,۲ = ع سم تقريباً.

.. مساحة القطاعات الثارة = ٢ × أ 8 نق . 1 × 1 × 10 × 10 × 1 × 1 =

 $\frac{1}{1} = \frac{1}{11} \times \frac{1}{11} \times \frac{1}{11} = \frac{1}{11} = \frac{1}{11} \times \frac{1}{11} = \frac{1}{11} = \frac{1}{11} \times \frac{1}{11} = \frac{1}{11} = \frac{1}{11} \times \frac{1}{11} = \frac{1}{11} = \frac{1}{11} \times \frac{1}{11} =$ " T, 73 may

: مساحة الثلث = أ × ١٠ × ١٠ مل ١٠ .

:. مسامة القطاع = أن يتق = أ × أنا = 1

(1) : حاصل ضرب الجذرين = ۲ تق ل = ۱۹ (١) : مجموع الجذرين = ٢ نق + ل = ٢٠ : مصبط القطاع = ٢ نق + ل = "

(0)(1) (0)(+) (0)(+) إرشادات لطل رقم

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (+)(e) (+)(f) (+)(f) (+)(f) (+)(f)

نازانا مسائل تقيس مهارات التفكير

"(۱۰,۱۲) × ۱۲ × "۱۲. = المثانا الماسانة القالات : ... = ۲۲ سم تقریباً.

7. 5 = 7. ...

11. = (12) 0 1 = (27-1) 0 .

r. = (5-71)0 - - - S = 5 - :

: · 1 1 - حسساوى الأضلاع

:. السنامة الطلوية = ٢٦١ ، ٨٢ ، ٢٩٨ - ٧٠ × ٧٠ مسم 1 Vo , TIA = T × (11) × 1. = ، :: مساعة القطاع ٢ - ص ص

いいきましてい

، :: مساحة القطاع ب مح

1111

.. o (119-)=111.1 or h= (seta) ..

.. 4 (c++2) = 1. - 1.

مساحة الهزء المثلل

(T) KA

... مساحة الموزء المظلل 10. 10 مسم" : 11 B, = 1

= (3V - 0'31 B) my ، من الملك القائم الزاوية

= = + x x x 31 - + 05 x (A) - مساحة القطاع

مساحة الجزء للظلل

(Y) KA

= مساحة الثلث

مساحة المزء المظلل (Y) ...

= = + 0 is = + x x . x × (1) = 1. 1 may مساحة الجزء الظلل = مساحة القطاع (١٩٤ -) : عسامة ∆ 1 م ح = مسامة ∆ محب

シャームニットリム :: .: ~ alland ! ラナニカンニは いってする (e) Ka

مساحة ربع الدائرة

(1) and

= = 128 16

 $\pi \times {}^{\tau}(V, a) \times \frac{1.111}{11.} = \xi$ [Mail] $\Xi_{mail} : ...$ مراكز الدوائر مي رءوس 6 .. مساحة الجزء المظلل = ٨ ٣ . مساحة الجزء 1 1. x "x x T - 1. x " x X == T 1.0= # 7 8 . 0 = - 1 1 (0) = 0 1 1 1 mm - مساحة القطاع م حرى = مساحة القطاع ١٠٠٠ = مسامة القطاع ١٠٠٠ - مساحة القطاع م حرى $=\frac{3}{4\times 1_1}=1$

= = = x (1)

طول فسلعه = ۲ تق = ۱۰ سم

مثلث متسارى الأضلاع

=11-11 == 11 (3-11) ==

=مساحة الربع-مساحة القطاع = 1 - T × N

A 70 mag

:. تق= 11 متر

" مساحة القطاع = أل نق

: V3 = + × 1 × 12

 $\frac{1}{2} \frac{1}{2} \frac{1}{2} \left(V_{1,1} - \lambda I_{1,1} \right) = 0 \, L \, L \, L$ $= \frac{1}{2} \frac{1}{2} \frac{1}{2} \left(V_{1,1} - \lambda I_{1,1} \right) = 0 \, L \, L \, L$

 $= \chi_{\mathcal{X}} - \frac{1}{2} = \frac{1}{4}$ $\therefore \text{ and as like; elliable}$

تطبيقات حياتية

.: مصيط القطاع = ٢ تق + ل = ٢ × ١٦ + ٦ = ٢٨ متر

("110 XIF - 710 XI) x - 7 3 4 011, مساحة القطعة = 111 -

1 × 11 (0110 × - 1 0110) 11 × + = = + x 131 (1.13-41.1) = .7 --(١) مساحة القطعة

(١) مساحة القطمة

الأسنلة المقالية

(*)(·) (0) (4) (1) (10) (~)(~) (+)(10) (3) (-) (4)00 (30 (4) (+) (w) (+) (m) (1) (W) (4)(4) (4)(4) (A.D. (A.) (40(4) (1)(3) (1)00 (*)(5) (1)(1) (r)(r) (1)(r) (+)07 (4)(0)

3 (3)(3)

(D(r) (3)(3)

اسئلة الاختيار من متعدد

ارشادات تمارین 13

.: 15 = 0 YY =نق - ١٤٤٤ - نق = ١٤١٦ . ، نق سم .. تق = ١٥ سم وهو طول ضلع الربع : 1317 . IJ = 044 .V3

= أ المنول الد ١٥٥٤ . . نول سم .. مساحة اللطقة الباقية ، ": مساحة ربع الدائرة :: مساحة المربع = تق مسم بقرض أن طول ضلع المربع

:. 0 (x17-)=1×1017 = 1377 : 0 (ct) = 10 17

1= = = (-+11) = : . - tames : نوسم عمد ١١٠

T=>1: (١) نفرض أن أآب مو وثر القطعة ، ممركز الدائرة

 $\frac{1}{2} + \frac{1}{2} \times \dots = \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} = \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}{2} \times \dots \times \frac{1}$

٠٠٠ = ٦٠ - ٣٦٠ = (قلمكسة) و ٢٦٠ - ٦٠٠ · . مساحة القطعة الكبرى

:. 1 1 سم متساوى الأفسلاع 1. = (-+11) v. : تق = . ا سم いっちゃうかい

> (4)(4) (*)(o)

(3)(3) (3)(4)

(3(3)

(*)(3)

: A 1 1 0 i

= + x 1 (311. 13- 1318. 14) = 18 mi 1 0 = 1 = 111. 14 .. مساحة اللطنة

T X .11 = IT. E

- 17,000 Ji .:

:: مساسة القطعة = ﴿ × ١٤١ (﴿ ١٠ إِ - ما ﴿ ١٥) =10 = .. 0, = 1 = 11 = 415

("m fr L - "x "m fr) (中) × 中= 177 mg

.: 0 (c1) - History = 17 LAL .. مساحة القطعة الكبرى

" AT TX = (- PT 1) 0 :. : 0 (c143) = 13 13 1.0 = (5 P 1 3) L ...

T. = (-11) ... いっしゅうしゅい

.. مساحة القطعة ...

.. سامة كل جزه = ٢٩ سم تقريبًا

وروها سحد = أ × 11 (١١٠ × ١٨٠ - ما ١١٠ (

(い)ひゃー(シャーン)ひ:

("1.7176- " x "1.717) xo x + = Ten 11 =

.: مساحة القطعة

1.11= (L11) U.

= sptb :

("18. L - #x 18.) 188 x + = .. 1= 10 = (st-1) b : 17 = 110 77 - 14 = 71 mag " : 0 (L-1-1) : 1 T " O (L-15) = 16 17 · . مساحة القطعة الدائرية - 1114 -

:. نق = ۱۲ مام سم アード、ヤッ (いしー · ル· × い) ヤ× 十=

TT 11 11

.. مساحة القطعة التي

("11. L - " x "11.) × 1... × + =

110

十二六 = (5111)に ::

" : = (-+11) U ::

: مساحة القطعة

1. = (set 1) 0 :.

.. 45= .1 - 0 = 0 may

: 0 (1198) = 4 10 ::

(١) نفرض أن أل هو وتر القطعة

، م مركز الدائرة 「一」と

19=1111+0=0 : A 5 7 A ca

("Vr 11 1 - 1, YATE) YO x ==

 s_1 , $tain = \frac{\pi}{s_1} \times or ii = i\theta$:

ي مساحة القطعة

3

مساحة القطعة التي وترها إلى في الدائرة الصغرى

:. 0(114)=111.1

= + - - × 1 = - 1 × A = 37 may

مساحة الجزء المظلل

الدائرة ن + مساحة نصف الدائرة هـ)

| 「とうな」

("1.7176- " " " 1.711) YI x +=

11,11=

"TT or = " or h - " 1. = (r it 1) 0 :: 1 "Vr EE = "TT or x T = (-014) 0 .. |

- (مساحة القطعة التي ويترفا أحد + مساحة القطعة

التي وترها سه)

+ مساحة نصف الدائرة في) = (مساحة نصف الدائرة ن

[(+0 L - 10,) + + + × or (0, -10,) -"1.7 To fy = "TT or Tr x r - "IA. = , 8 .: (の) (カート・コート) | - 元 で = :: مساحة الجزء الظلل = YE سم Trarita (レートン)ロニ : こま(てかり)= 1= 1 = [\(\psi \) \(\pi \) \ ٠٠ = (١٢-١) ت ٠٠ = (سم) ٥٠ = 4 11 [11 + 1] ナトサートしい ٠٠٠ 1 من قطر في الدائرة م ٠٠٠ ق (د ١ حرس) = ٠٠٠ ، مساحة القطعة التي وترما أحر= أ مساحة الدائرة 1 = ("WY EE L - # VY EE) YO x + = · い(レーラー) - ハハ - 33 TV = 11111 ("1.7 (11 - "x x 1.7 (1) x = x + = = + nit = + xxx ox = 17 mg :. (١ تور) = (١ تور) + (١ تور) . .. مسامة القطعة التي وترها أب ، مساحة القطعة التي وترها بح

مساحة الجزء المظلل = مساحة الشكل بالكامل – مساحة = مـ (نصف الدائرة ن) + مـ (نصف الدائرة هـ) = مساحة الشكل بالكامل - (مساحة نصف .. + mie, = + mie, + + mie, .: م (نصف الدائرة م) ٠٠ نق = نق + نقار ٠٠ نق م نصف الدائرة م

· . مساحة القطعة

 $\binom{a_{1}\gamma_{1}}{a_{1}}\binom{a_{1}}{a_{1}} \times \binom{a_{1}\gamma_{1}}{a_{1}} \times \binom{a_{$

(00) + (10) = (00) ::

1. = (it+1) o :

.. 4 (c 19 c) = 1.

11. = (-11) = - (-11) 0 :: 1. = (r it i) = (i ft i) ... : مساحة القطعة التي وترها أب - 11 may い!=ひゃ=た! ∵

أ. مساحة كل من القطعتين اللتين وتراهما ؟ أ م أحو

(1.711/ - 1/1 x 1.71) (1/2) ==

T1. 1 2

1.717 = 147 TA-TT.

(-11) = (-11) o ::

1 11 min

10

= (1) (1 - 4 -1) = 11 my بالدائرة اوالتي وترما وب = 1 × + II, (0, -10)

= 4× (1/4) (44 131, × 110 - 1 14 131,)

... مساحة القطعة التي وتراها بحر

= 44 A31.

أ. مساحة الجزء الظلل = ٢ مساحة القطعة الدائرية = مجموع ساحتى القطفتين ، : - الدائرتين متطابقتان. الدائريتين اللتين وتركل مسلحة الجزء الظلل منهاي ... O(1-4-)=10(1-1-)=1×3311

.: 37 E = 077 :: E = 17 = 17 = 17 = 17 = 17

رن نق = ١٤٤ - ١٢٤ نق + نق + الم

:: تق = (۱۱ - تق) + ۱۱

ومن ۵ - ۶۰ : (- ۶) = (۶۰) + (۱۶۰) ومن

1. 45= 11 - 15

- 1.= -1 1== 1. .. الله = 1 may

TT OT = (- 1) U .. $(1 \leftarrow)_{\lambda} = (1)_{\lambda} + (v)_{\lambda} = \cdots$

 .. مساحة النطقة المُشركة بين الدائرتين = ١٧٧ سما لى الدائرة ن = أ × ١١٤ (١٧٠ × 100 - ما ١٧٠ (في الدائرة م = مساحة القطعة التي وترما أب

" W.1 "

TPT = 1.6 .. - is = 1 mg

٠١٢. = (١٢٩٠) ت ١٢٠ st = (seta) b :: .

T. = (s+1) - T. = (s++1) - T.

.. مساحة كل من القطعتين التين وتراهما ألى ، أح $\frac{1}{1}$ $\frac{1}$

 $T_{\text{max}} = 1$ ، ومساحة الدائرة = π بتق $T_{\text{max}} = 1$ و المسم مهموع مساحتی القطافتین = ££ سم*

.: مساحة القطعة التي وترما أب في الدائرة الكبرى

THE TY NY = YO X TI X + = =

· = (-110) - ·

= مساحة القطعة الصغرى التي وترها في ح

(١) مساحة الجزء المظلل إرشادات لطل رقم 🔝

= مساحة نصف هذه الدائرة

ني الدائرة الصغرى

(1)(1) (1)(4) (1)(1)

ساحة القفعة التي وترما أب

نالتا مسائل تقيس مهارات التفكير

= 11, 11 + 12, +1 × 1, 17 mg

.. مساحة النطقة الشتركة

= 13, 11 mg

.. مساحة القطعة الدائرية

- is = 5 ...

مساحة القطعة التي وترها أب في الدائرة الكيرى

("VT EE b - " x " VT EE) 11 x + + =

= 1 (xx-x4x)

= ۱۸. ۲۲ + ۲۹. ۲۷ مسم تقریباً

:. مساحة النطقة المشركة

= + × (11) × 13 = 11 E mag

一· いなりを一本ではな(1)

= مساحة القطاع جحب + sumles Dofer

= 🕹 × ٤ نق ((8 ء - ما 6) = ٢ نق ((8 ء - ما 6)

: + 0, if = 1 if (0, -10)

، -: المساحقين متساويتان

 $=\frac{i\xi_1}{i\xi_2} = \left(\frac{1}{\lambda}\right) = \frac{1}{\lambda}$

(r) :: محية الشكل الطال

= 15 + 40 (1)

: 0 = 1 0 - 1 1 0 :

: 3 10 = 10. · 10 = 4

، مساحة اللطعة الدائرية التي وترها أب

= + × (1 15) (0 2 - 70)

ساحة القطاع حرم و = أ 8 تق

θ=(-11)=(-11)··

184-18-12

本では一十日

:: ١ (١٤ + ١) = أو نق (١ + ١٤)

 $= i\bar{v}\left(1 + \frac{\pi}{4}\right)$ Jin + + Ji=

٠٠ مساحة متوازي Kenks 1-05

T. 10 = 0 - :

97,0 : . طول ضلع الشكل السناسي = ٦ م (٧) 100 11 00 $\frac{\pi}{\sqrt{2}} \left\{ \begin{array}{ll} \frac{\pi}{\sqrt{2}} \times \sqrt{2} \times \sqrt{2} \times \frac{1}{\sqrt{2}} = -\sqrt{2} \times \sqrt{2} \times \sqrt{$ Γ حا (د ا د ا د ا ج Γ به مساحة الشكل السناسي المنظم Γ ن مساحة الشكل الخماسي ニューカルン Par 17 = 34: PLT TO

- 17-11 = 7 - 11 as (a) (b) (+)(+) (*) (°·) (43 (4) (+) (re) (+) (10) (0) (0) (1)(1) (4) (4) (a)(r) (1-1)=(1-1)+(1-1)===+1(1) とうすい! S 1.+ 1 = (1.1)= (1) 1- = (1 - 1) - (-1 1-1) = (1 17) (1-1-1-) ++ (1-17) += T+1(1) =(1,3-3)+(-1,3-11) (6)1-7-(7-17)-7-1(0) (14-14-)-(1-14)= (+)(5) (*)(*) (+) (TO (+)(1) (3) (4) (P) (P) (3)(4) (1)(0) (*)(*) (3)(1) (1, 1-) = (1 - 1) (1-1) = (1) = ۲ / ۱۰ وحدة طول اسنئة الاختيار من متعدد (1-1-) = - (1-1-) = - : ارشادات نعمارين 1 3 1 + 1 B とりーしい! (*) (TA) (+) (T) (4)(5) (A) (A) 3 الاسنئة المقالية (4) (4) (v) (+) (ア・カーニーナー:(で) (A) (A) (3)(+) (*) (T) (4) (7) (4)(0) (1)00 33 (1)(1) (*) (%) (4) (V) (AD(1) (1)(+) (+) (m) (+)(1) (1) (V) (4)(4) (*) (d) (A) (A) (+) (ET) (+) OTV 38 カヤヤヤヤン (r) من الرسم: ج (-۲ ، -۱) ، ده (۴ ، ۱) (١) من الرسم: [آت] = ٥ وهدات طول 1 (1 1) 01 (1 1 1) J. من الرسم: ٥ (٥ ، -٦) ، قد (٢ ، -٢) لأن لهما نفسي الطول ونفسي الاتجاه ، احروا= ه وجدات طول (1) 1- Blage - 2 (100) 00

.0

(1): (7): (7) - (1) + (1) - (1) - (1) - (1) = (1)

Ja= . - 1-1

، قياس الزاوية المعادة التي ظلها الم

Y-= 0- : .= £+0-+ 7 :

، عل- ١٠-١٠ - ١ = ، .. عل+ ١٤ - ١ = ،

17-= Ja ::

: احا = ۱ (-1) + (-1) = ۱ ۲ وحدة على .

(6) : = -3 - 3 - 3 - 3 - 3 (0)

*rr, = "r, - "r1. = 0 ...

("T" - (11) = - :

T 0 = 03 7. = 0 .: (7) :: $\| \vec{v} \|_{2} = \| (5)^{T} + (6)^{T} \|_{2} = 1$ و مثل دخول T. = 0 .. (ع) :: اتا = را (۲۲) + (۲۲) = ۱۱ رستاهل :. [] = ر (۸ (۲) + (۸) + در الم عدة ملول (A, T) A) = ~ ~ ~ ~ T) A=F :: (1) اتا= را (-۲/۲) + (٠) = ۱۲/۲ وحدة علول 1 - 14. (7 ... (Trr)+(Trr)+=121. () :: (* = 1/1 = 1/1 av = (4/2, 4/2) = いこまれでしてかっこ(1) = ۲ اه وحدة طول 1 .. 488 = 1/4 = 44 $\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$ = ٦ رهدات طول Th = Th = 84. · < 001 · < 00 ? . 1 = 10 = 11 = 1 (1.1.1)=13: ("1. 11)=7: (to 1 7) = (... VI 71-=-(0) ر الال= (() + (٢١/٢) = ٢١/٢ وحدة طول :: ات ا = ۱۲ (-۰) + (-۲) = ۱۲ رهدة طول =(7,-7)+(1,-1)=(3,-3)1. 117- 4 - 11 = 1711 + 11 = 2 17 existably (··· \\) = (\(\text{r} \cdot \(\text{r}\) + (\(\text{r} \cdot \(\text{r}\)) = (\(\text{r} \cdot \(\text{r}\)) + (\(\text{r} \cdot \(\text{r}\)) = (\(\text{r} \cdot \(\text{r}\)) + (\(\text{r} \cdot \(\text{r}\) ٠٠: ان = ١٠ ومدة طول $\|\hat{f}\| = \sqrt{(-1)^{7} + (-7)^{7}} = 0$ gatis alg. (1) t=-1 ex-1 ex (1-17) T+(1:1-) == TT+ - = (1) (4) \$ - \$ = (7, -1) - \$ (-1, 3) = ۱۲ و مدة علول (· · x) + (-1(· -1) = (-1(· · ·)) 1 1+ 1-1 = | -1 -1 | = /١٩٧١ وحدة طول =(-1111)+(11-1)= (1.1)+(-1.1)-1(1.1) (1,1)++(1-17)=-1+1(1) 197+1/= | 97+ - 0 | : = ۱۷ و مدة طول · | | | + 1 = | = 1 ((11) + · =(-1 + 31) (T) == 0 (T) ()かーしまんで() 3)1+ - · · · · (3) 1=1/1 av

(1.0-) + + (+++-) + - (1-.8) + + + : (A-17) == (T1.1-): F==J:(1) (r-, v) - (0, r-) + + (r, r) r =] ... (Thre-)+(Thr-,1-)+(Thr-,0)= . = VY - YY = Y2 × Y - A- × 3- ... (A-1T)=A. (Y - 1 --) + (1 - 4-) - (Y- - A) = JY= JY .. . = JY- JY .. 11=10+017-1 1=01: (+)+(-1)+(-1++)= (T-14)-(1017-)+(111)= =(*, 13) (r, r) = - · · (1) (1 1 -) + (1-) =] ... ヤーリニ いーリサニ 11=Jo+J = x 1- : : 11=1 -- 75+10 = 3 وهدات طول シャナナーシーン (T/ x- , x-)= 1 = 11+17 (1- + V)= (r-1 \frac{1}{2}) = r :: Y-= 01 :: F//J: (1)1-1-2-(1-1)+(1-1)-2-5+11 (···)=(1x-1A)+(1x1A)= (r) نفرض أن ح = الع أ + ل - حيد الع ، ل 3 ك ((1) · ·) + (0 · ·) + (· · ·) + (· · · ·) JOTT = (TT . .) = (11 . .) T = 3 T . (3): 014 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 = 3 (-1 1 -1) = (-37 1 -17) (1): 4/1 : 4×01-(-11)×1=. 1111111 [(17-14-14) = 3 [(717) + (-14) 11 (11 (·) = (J 0+0) - 1 J 7 - 1 J = (7) = - (1 - V) = m - V a) . = TE + TE-= T × (A-) - 1T- × T : (1) 1/4= - 1/4 -*LU: *//2: 210:(0) (1) エー・ハー)+(ア・マ) ニールーラを(ア) · - 7 + 1- = (1-) × 7 - 7 - 7 - 7 - 7 - 7 - .. ():10:10=1(-1:10)=(-1:10) (017-) J+(1-17) @= ... (J = + (- 7 () + (- 7 () + ()) = 1. = 1 .. 17. = 117 .. (\(\lambda \cdot \) = (\(\lambda \cdot \cdot \cdot \cdot \) = (\(\lambda \cdot 18 A+ LE--//1:

9.9

I

1.0

، ب د = (-۵ - ۲ ، ۵ - س - ۲) = (۲ ، ۲ - ۳) 3 3 : P=3 1-=0-0 (1011-)=(1-17) -- (111): (1 · · ·) + (Y - · Y) - (Y · Y-) = (110)-(Y-17)=F--==-1. (11)=(1-111-1)=(11) $\cdot = (\Upsilon + \omega)(\Upsilon -) + (z -) \times (\Upsilon -) \therefore$ (Y+ 2) + 0-)= T=01: .=1-01-10: (3) N= 0 () F = 2 $(Y \times A) = 0$ (بضرب المادلة $(Y \times A)$ · :: △ 1 - حقائم الزاوية في -(1-1 1-1)= يجمع (١) ، (٢) : ١٠ ل = ١٤ ·=(---T) ++ A-×1: T = p : : (1) (1) i = p·= U+1-1+4- ;; 1+1-4=5: ن اب حرا مستطيل 10=PT+J9 : -: ts=24 とし上しま:: 1-=21-11: (14.1)= 1 = a) (1) $(Y \circ Y -) = (Y \circ Y) - (Y \circ Y -) = \underbrace{-1 - \underbrace{-1 - \underbrace{-1 - 1}_{-1}}_{-1} = \underbrace{Y}$ $=\frac{1}{4}[(4,1)+(1,1)+(-1,-0)]$ (1,1-)+(1,1-)=(+,1-)

1.4

 الشكل متوازى أضادع. ·· (1-1)=(1-1)-(1-1)=(1-1) $(x \cdot y) = ((x - 1) - 1 \cdot (x - 1)) = (x - 1)$ ، مساحة السنطيل = $\gamma \sqrt{\gamma / 1} = 37$ وهدة مربعة. .: أي = وحد : الشكل متوازى أضلاع. ن إلى = وحد ن الشكل متوازى أفسلاع (١) 15 = (-1 1-4) (x : A) = (x - 1 : - A) = 5 - = = 5 : ، إ عد ا = ا (-١) + ٤ ا = ١٧ وحدة طول ، المتح العرب - المتح ا : الشكل اب حاد معين. (Y , Y-) = 5-, (Y-, Y-) = -1 محيط الستطيل = ٢ (٢٠/٧١ + ١/٧١) = 17/11 exere adely = (-7 + -0) : = Y × (Y-) + Y- × Y- :: + = (0 1-x) · الشكل ا ب حرى مستطيل. |x| = |x| = |x| + |x| = |x| + |x| = |x|من (١) ، (٢) : : الشكل السحوشيه متعرف. ان المكل السح نقطة تلاقي متوسطات المثلث مي : (١٠ ١ - ١٠) (計量) *= シナーン::(り:()) か (0-11-0)=(-11-10)= (1+4-1+0-1-0) (1-18)=(1-11) == (1-1)1=1-1-1: すい=すい+すい-シャレン アーディーアーマーし: ، في ∆ إبد: ٢٠ أو متوسط (ナナナナナ) ショデ: الثلث تقسم كلا منها بنسبة 11 = 21+ CT :: 1+1+1+7=77: ر: نقطة تقاطع متوسطات 計1=1+1: ٢: ١ في جهة الرأس 計量二計 51//20: 計学=計:

فإننا نستطيم تقسيم القوى إلى أزواج من القوى كل منها يضاد الأخرى في الاتجاه ويساويها في القدار · ِ: اللَّوَى فِي هَالَةُ الرَّانَ . َ: الْمُعَمِّلَةُ = مُسَفِّرُ 1 = رومنها او = - ٤ + ٢ + ل = ١ ا 17-=-: ء ":" محصلة القوى الثلاث هي منجه الوحدة (3+1) + (1+1) as (いっしていい、いいのにていい)= (3) : قياس الزاوية بن كل قوتين متقاليتين ، ٠٠٠ عدد القوى زوجي ويساوى ١٠٠٠ () + C () + (201+147)+ ... معيار محصلة هذه القوى = صفر (٣) غلرض أن أور = الع سر + ل ص (T-70) = (Load) : 1-= 17-= 1: وتعمل في اتجاه الشمال 181.+11 ، ب+ ۱۲ = صفر (°170. T/1.)=0 .: 1-11 = out ريشها ل= ٢ (1.11.)= P(1+1)+ (11-1)= (3)(4) 510-= E .: 5.5 - E=5140- .: ن مقدار المحصلة = $\sqrt{(\tau)} + (\xi) + \tau$ ه داین : : السرعة المسموح بها على الطريق = ١٠٠٠ كم/س (F+C)+ (+ C)+ فالنا مسائل تقيس مهارات التفكير السيارة القادمة غير مخالفة السرعة اللررة. (1) 0 = (1/1/2 7 1/2 1/2) = (1/2) .: السرعة اللعلية للسيارة - = ٥٠ كم/-: المصلة = (-٨ س + ٨ ص) (8) + (1)+ (13/41/14)=10, (してアナーマーナー)+ としててーします! 10+0+0+0: (ショナナナナー)= ()か=(いるないのか) JOT/17+ JUT-= (O(+) (O(L) 15- 5=1-5. إرشادات لعل رقم

GA-- 2: GT. - 2=611.- .. です。三分り、一日は、二足一下二大: .. السرعة الفطية للشاحنة = ٨٠ كم/س في أنجاه (でいし) - はいこことにいいこと() - 3- 120 2 11 -- 11 S 120 - 2 ... تفرض أن : ي منجه وحدة في انجاء حركة السيارة نفرض أن: كا منجه وحدة في الجاء حركة سيارة المراقبة (١) وأن السيارة الأخرى هي (--) بفرض أن كل متجه وحدة في اتجاه حركة السيارة ؟ 1. 2 = 1. 2 . 3 . = - 21. 5 1 (1+1) - (1+1) : .. سرعة السيارة † بالنسبة للسيارة ب 12-12-12: = ٢٠ کم/س في نفس اتجاد ٢ - ١٠٤٠/ .. سرعة السيارة ۴ بالنسبة السيارة -.. (1) 3/= 3/3/3/= 1/19 T-=1: . .=1+T :: = ٥٠٠ كم/س في نفس إنجاه ١ مضاد لاتجاه سيارة المراقبة (١) وأن الشاحة مي (١) (١) : الجبرية مترتة () (++) + (++) + (++) () Jar+ Jar+ Jar+ Jar+ Jar J ... (0) というしょうしょうしょり (1+1) + (1+1) = とり(ナーノナン) (1) (x+1) + (1+1) es يْ مقدار المحصلة = ١٠ نيوتن خَلُوب 7 = 4 : :-=-3 7.1+4=3 C.4=1 V-=1: . . +1+V .. Ca(0-1)+ (1+1)= X-=1: وتعمل في اتجاء ٧٠ شمال الشرق (++1)+(++1)= - 1, 51 mm 5T.+ST.=0: اتجاه ٧٠ شمال الشرق : ان ا= ١٠ نيون 10 - 0 + 5 + 6 - 1 (r) نعتير ي منجه وهدة في 1 + ---0=1+V . 13+4=

l

141

أي أن: (سر ، صر) = (۲ ، ه) + لا (۲ ، د) (T-1 V) 2) + (01 T) = (10 V) + (2) (V-1 V) :. المادلة التجهه : - = (١ ، ٢) + لى (١ ، ٢) .. الصنورة العامة : ٣ - ن + ٧ ص - ٢٤ = ١ ای ان : (س ، سر) = (۲ ، ۱) + لاه (۲ ، ۱) (A) :: الستقيم يعمل متجه الوضع ٢ (٢ - ١٠) .. متجه اتجاه الستقيم الطلوب مو (٢٠١) (٦) : متوه أنجاه المستقيم العلوم هو (٦٠ ١٠) (V : T) = (T - (T - T) - (T - T) = (T - T) $\cdot = 1 + \omega - \omega - \Upsilon$: The state of the state المسورة العابة: → - ۲ ص - ۲ ص - ۸ ... المعادلتان الوسيطيتان: سن = ٢ + ٧ لو : العادلة التجه: ٧ = الع (٢ ، -٢) ه : المستقيم عمودي على المتجه ال $\frac{v}{1} = \frac{v}{1 - v}$ المارة الكارتيزية : $\frac{v}{v} = \frac{v}{1 - v}$ العادلتان الوسيطيتان : س = ١ + له .. منجه انجاء المستقيم هو (٣- ، ٧) الى ان: (سر ، صر) = له (۲ ، ۲۰) $\frac{1}{V} = \frac{V - V}{V - V}$ $\frac{1}{V - V} = \frac{1}{V}$ TO-UNV=1+U-T-: .. يعر بنقطة الأصل 1-00=Y-0-Y: 1+001=1-0-1 0 T-0=000 3 T+T= 001 a)+1-= 001

ای آن: (س، ، صر) = (۲ ، ۲۰) + لای (۲ ، ۱۰) (٥) : نور منجه اتجاه المعودي : : ى = (١٠١) (ا د ا - د د - د د د د د ا) + له (۱ - ۱) + له (۱ - ۱) (1 + 1) = + (1 - + 1) + (2 - 1) + (2 - 1) .: رار المسررة العامة : سن - ٢ صن - ٥ - ٠ · (1 = 1) = + (1 - = 1) = -المادلتان الوسيطيتان: - ن = ٢ + ٢ لق 1+ co 1=1-0- 1 100=-1+10

المعادلتان الوسيطيتان : - س = ٢ + ٢ لى ايي آن: (س ، ص) = (ه ، -١) + لهد (١ ، -١) اي آن : (س ، ص) = (٢ ، ٢٠) + له (٤٠١) الصورة العامة : ا س – ۲ من – ۱۷ = . $(\xi, \chi) = \frac{\delta - \chi}{1 + \lambda} = \frac{1}{\lambda}$ (λ) : العادلة التجهه : ، ص = -۲+ ؛ لق المعادلتان الوسيطيتان : -س = ٢ + ٢ لج .: المسورة العامة : س + ص - 4 m المادلة الكارتيزية : $\frac{1}{2}$ مرد $\frac{1}{2}$ = $\frac{3}{4}$ المادلتان الوسيطيتان : س = ٥ + له المادلة الكارتيزية : " ص- 0 - 0 المادلة الكارتيزية : " (1,1)+(x-1)=> 1+ Ja- 1- 1- 1- 1: 1+0==+0+-;

ي المارة التجهه :

، من = -١ - لق

.: طول البزء القطوع من الجزء السالب لمعور

$\frac{n+\lambda}{n-1} = \frac{1-\lambda}{1-\lambda} = \frac{1-\lambda}{1-\lambda} = \frac{1}{\lambda}$ $\therefore \text{ off } \underline{1} = \frac{1-\lambda}{\lambda+\lambda} = 1$	$ \mathbf{x} $ $ $	$\langle X \rangle = \langle Y \rangle = \langle Y \rangle$ $\Rightarrow \langle Y \rangle = \langle Y \rangle$ $\Rightarrow \langle Y \rangle = \langle Y \rangle$ $\Rightarrow \langle Y \rangle = \langle Y \rangle$ $\Rightarrow \langle Y \rangle = \langle Y \rangle$ $\Rightarrow \langle Y $	$\begin{array}{ll} (1+\alpha_0) & (1+\alpha_0) $
الا المستقيم في : مص ا الله المستقيم في : الله الله المستقيم في : الله الله الله الله الله الله الله ال	$ \begin{pmatrix} \frac{\tau}{\tau} \cdot \tau \end{pmatrix} = \begin{pmatrix} \frac{\tau}{\tau} \cdot \tau \cdot \tau \cdot \frac{\tau}{\tau} \end{pmatrix} = \frac{\tau}{\tau} \cdot \frac{\tau}{\tau} \cdot \frac{\tau}{\tau} $ $ \vdots \text{with the limits of hills} $ $ \vdots \text{with the limits of hills} $ $ \vdots \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau$	$\frac{\lambda}{c} = \frac{c+1\lambda}{r-4\nu} = \frac{1}{r} \frac{1}{r} \frac{1}{r} \frac{1}{r} \frac{1}{r} = \frac{1}{r} $	$\begin{array}{ll} \frac{1}{44} \frac{1}{44} \frac{1}{4} \frac{1}$

.: ٥ شي- ٤٢ = -1 سن - ٤ . = Y. - w + 0 + 0 . .

 $\frac{t_{-}}{0} = \frac{\frac{Y_{+}}{2} - o_{-}}{1 + o_{-}} : o_{-} = \frac{1}{2} \cdot o_{-} : o_{-} = \frac{1}{2} \cdot$

غرض أن الزاوية التي يصنعها السنقيم مع الاتجاء الوجب $\frac{1}{\lambda} \left(\frac{1}{\lambda} \cdot \frac{1}{\lambda} \right) + \frac{1}{\lambda} \left(\frac{1}{\lambda} \cdot \frac{1}{\lambda} \right) = \left(-\frac{1}{\lambda} \cdot \frac{1}{\lambda} \right)$ $(x \cdot x_{-}) = \frac{x+1}{(x-1)^{-1}} = \frac{x+1}{(x-1)^{-1}}$ $\frac{Y-Y}{Y+Y} = \frac{Y-y_0}{Y+y_0} : \frac{1+Y}{y_0+y_0} = \frac{Y-Y}{Y+y_0}$ $\therefore \text{ add if i limiting the } :$ ، طول الهزء المقطوع من الجزء الموجب لمحور .. ميل السنقيم المطلوب = فل ١٣٥ = -١ $\therefore \sqrt{3} |\theta| = \frac{\lambda}{-\sqrt{\lambda}} = -\frac{\sqrt{\lambda}}{1} \pmod{\frac{\lambda}{2}}$ نفرض أن نقطة تقسيم أ على ح ن ميل الستقيم الطلوب = أ ، ": ميل المستقيم المطي = 3 . = 17 + wa + - 0- .. ". H = - . 1 = 0 .. T+ -- 1. - - 0 0 :: السينان = ٦ وهدان طول θ عم في الربع الثاني Y = 00 , Y - = 0- 1 المسادات = ٤ وحدات طول 1-= 1-00 :: لحور السياد مي 0 : عن - ١ = -٢ - س + ٤ : عن + ٢ - س - ٥ = ٠ .: الستقيم يقطع محور الصادات في النقطة (٠٠٠-٩٩) وهذا الستقيم يقطع محور الصنادات عندما سن = ٠ نالل المال = الله المال ما .: ي = (١ ، ١-) منجه اتجاء المستقيم ١٦. ، سل هر ١٥ = ١٠٠١ = ١٠٠١ : ١٠٠١ حرعلي استقامة واحدة + = - 1 - 7 = - - + ... (トー・ド) とり+(ト・・)=シ: معادلة هر و مي : ص - ١ - ٢ - ٢ - ١ ، :: المستقيم يمر بالنقطة (١٠٠) معادلة أل هي : من + ا = - T # = *- = = = = :: 11-= - 7 - U- Y : ن ميل آن= ميل مد 11- U-1= Un :. 1=18 *+61= . .. من= ١٠٠٠ + ه 1-= Us ..

: هي - ١ = ٢ - ٢٠٠٠ : ٢ - س - هي +٧ = ٠ $(x \cdot x) = \left(\frac{x}{1+x}, \frac{x}{1+x}\right) = \frac{1}{x+x}$ $(1 \cdot 1 - 1) = (\frac{\gamma}{\gamma}, \frac{\gamma}{\gamma}, \frac{\gamma}{\gamma}) = (-1, 3)$ $\frac{1+\tau}{s-\tau} = \frac{1+\tau}{s-\tau} = \frac{n_0+\tau}{s-\tau} = \frac{n_0+\tau}{s-\tau} = \frac{1+\tau}{s-\tau}$ ن المادلة الكارتيزية مي : $\frac{1}{1} = \frac{1}{1 + 1}$ $\Upsilon = \frac{1 - m}{1 + m}$: and that the same $\frac{1}{m} + \frac{1}{m} + \frac{1}{m}$ ، :: محور تماثل اب بكون عموديًا عليها $\frac{V}{V} = \frac{0 - 00}{1 + 00}$: aslc limiting as. 1. WILL = 1-1 = 1 = 1 (1-17) + (T1)-)=J: 1. 1 au + 1/ = -1 -1 1. 1-1-1-1-1-1: .: ميل المستقيم الطلوب = V+ - V= 1 . - wat .. . = 1V+0-1-V-V = YY - w + 7 - A .. mir = = 1+4 = 4 :: ميل محور التماثل = Y ن: منمور: تماثل التي يتصفها A = 1+00 $(T \circ Y -) + (Y \circ Y) = (Y \circ Y) + (Y \circ Y \circ Y)$ (4) : = = (1. Tr) = (10 : (0) رَ . فا ه = 🚽 (موجبة) 🛴 هـ قياس زاوية حادة . = $V = \omega_0 + T + \omega_0 + T$ and v = V = v.: اي متجه اتجاه المستقيم ل= (٢١- ١) (3) : L:-U=1+760 , ou =-1+760 (---1)=6: : (--1)+10(11-): : المستقيم يمر بالنقطة (٠٠ - ٢٠) (*・*)=な: デート: ٠٠٠ - ١- ١٠ الق ، ص = -١ + ١ الق الصورة الكارتيزية هي $\frac{\eta}{\eta} = \frac{\eta}{\eta}$ ه الصورة الكارتيزية هي : قر قياس زاوية حادة : فر = ٢٠ (1) = = (1) : (v) T-= un : .. V= . V. - . L. = . 11. ای آن: ٢-٠٠ - ١= -٢ ص - ٢ ((() e) + ((- (·) =) =): ه فياس زاوية منفرجة : واد = - الم (سالية) : واد = - الم 1 | 8 | 1 | " W = 34 18 AL بوضع س = ٠ $Y_1^2 = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$ "ITT IN TEE "ON IN TI - "IA. = a :. (٢٠٠٢) عادلة المتجهة : آب = (١٠،١٠) + لا (٢٠٠٢) .: "171 Fr 51 = "14 FT 1-"14. 8 4 :: (١) ت الله = أ ت ه زاوية متقرجة ١ الصورة العامة هي : ٢ -ن + ٢ عن - ٥ = ٥ ... (ي ان: (س، مص) = (١٠ - ١) + له (٢٠ - ٢) الماراتين الوسيطيتان : س = ٤ + ٢ اف .: ١ ، ب ، حاليسوا على استقامة واحدة (1) :: 110 = 1 -1 (mp) ، من = -١ - ٢ لق : 비아 = 축 = 축 (milis) ، ": و تقسم أل من الداخل بنسبة لم $\frac{Y_{-}}{Y_{-}} = \frac{1 + \omega_{0}}{1 - \omega_{-}}$ المادلة الكارتيزية : $\frac{Y_{-}}{Y_{-}} = \frac{1 + \omega_{0}}{1 - \omega_{-}}$: 0 = .V. - 03 = 011. .. الد قياس زارية منفرجة ٠: ٢ من + ٣ = -١ -ن + ٨ :: ﴿ قَيَاسَ زَاوِيَّهُ مَنْفُرِجِهُ (T. V) T+(T-17) T = 5: ن ا در د هي رازوس مثلث ن ميل آل * ميل بالا (Y- + T) = G:

: ، ٢ مس + سن - ٧ = ، ، ميل مذا القطر = 🕆

 $=\left(\frac{1}{\lambda-1},\frac{1}{\lambda+1}\right)$ | $=\left(\frac{1}{\lambda-1},\frac{1}{\lambda+1}\right)$

ن ميل القطر الثاني المعودي عليه = و القطر الثاني يمر بنقطة منتصف =

 $Y = \frac{m - m}{1 - m}$: and the limits on $\frac{m - m}{m} = 1$

.: مل-۲=۲-س-۲ .: مل-۲-س-۱=۱ مادلة القطر الذي يمر بالتقطتين ٢ = (٢ ، ٢)

100 (11) 001

· العادلتين تدلان على نفس المستقيم.

ر: ۲ سی ۲ میں ۷ س – ۷ س من (۱) ، (۲): العادلة الكارتيزية مي : من + ١ = ٢٠

(Y, T-) es+ (1-10) = J:

(1) .= V - w + T - V = 1

: 1 - س + 1 ص - 3 ا = ·

179

ه : ٢ م مي مركز الدائرة الماره برؤوس الملك ٢ - حـ

, $\gamma = \sqrt{\left(1-\alpha\right)^{\gamma} + \left(-V+1\right)^{\gamma}} = 0$ each to adult

:: ١٩٥ = ١١ (١ - ٥) + (-١ + ٤) = ٥ وهدات طول

 $1 = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$: ميل المستقيم أ = - ٢ ويمر بالنقطة (١٠٤). ن و د ۳ وحدات ن د ۱۰ (۱۰ ۲۰) TE = 31 - TE = 30 : :. معادلة المستقيم أب هي: ص- : = - ٢ أى أن : سيل المستقيم = أن ، - = (١٠ ، ١٠) (١) : معادلة المستقيم : سي - ٢ من - ٤ = . (9) : aslell landing 15 and : 1 + 1 - (9) $Y = \frac{1 - \infty}{Y - \infty}$: aslets limiting to $\frac{1}{Y} = \frac{1}{Y} = \frac{1}{Y}$ (1.1=(-1.1) · -=(-1.1) بو= ٦ وهدات ، و ٢ = ٨ وهدات 1= 1 + 1 + 1 | ، :: الستقيم الكلات . 1 = 1 - 1 | Lauring | 1 - 1 - 1 - 1 - 1 - 1 (Y-1.) >1 أي أن: ٢ - ٠ + ص = ٨ رز معادلة حرة هي : هي = ١ ، :: عاد // محور السينات ١٠٠٠ سيل ١٦٦ = ٢٠٠١ = ١ 1 = 2 3 ··· ای آن: - س - ۲ مس = ٤ أي أن: ٢ سي + صي = ٥ :. ميل المستقيم ل = -٣ : ١٠ = ١٠ وهدات : 0117V: (A) المستقيم ل عمودي على القطعة المستقيمة أب من 3 بالانمكاس في السنقيم ل 🙃 🏎 منتصف ۴ $\left(\begin{array}{c} \frac{1}{\sqrt{1+\epsilon}}, \frac{1}{\sqrt{1+\epsilon}} \right) = \frac{1}{\sqrt{1+\epsilon}} \left(\begin{array}{c} \frac{1}{\sqrt{1+\epsilon}} \end{array}\right)$ الستقيم ل: سن + سن = ١١ هي (٥ ، ١٠) $(1,1) = \left(\frac{\lambda}{\lambda + \sqrt{1 + \delta}}, \frac{\lambda}{\lambda + \delta}\right) = (1,1,1)$ رلإيجاد ؟ (حد ٤٤) صورة ٢ (٢ ، ٨) :. ميل المستقيم ل= \ ال (٩٠٨) : نقطة التفاطع سمى (١٠١) (1 · 1) = (٨ ، ٢) = ١ القطة (٧) نفرض أن القطة ١ .: mused ((*) على ای آن: ۲س - ص - ۱ = ۱ .. نقطة التقاطع مي (٥٠٠) 1-=1 1 1-=-1 = w 1 1 = w ... يحل المادلتين (١) ، (٣) : 1= 00 1 0= U- :: يمل المادلتين (١) ٥ (١): أي أن: - - - ص + ١ = ١ (1) . = V - W- T + U-٠٠ معادلة المستقيم ل هي (: 1=(-1 1-3) ن معادلة أب عي 1= - July :: 7 = 1 - 2

17


```
\frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}{\Lambda} = \frac{1}

    ألعادلتان الوسيطيتان المستقيم ألى مما :

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                : مقوه انجاء المستقيم و ٢٠ = (٢ ، ١٠)

    المعادلة الانجاهية للمستقيم و ۴ هي :

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      :: 1 (--) + (·) = 1 (2) + (-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (١٥) نفرض أن : t = (س، ٠٠)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    = مساحة المستطيل سى فر و
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .: العادلة التجهة المستقيم أن مي:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 - 3+7 to 1 = 1-3 to
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 : 1=(1.1) . ==(.11.)
                                                                                                                                                                                                                                                                                 ····= (1 · 1) · 5 = (-1 · ·)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ... (-1) - (1-) - (1-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          أي أن: ٢ س + ص - ١٠٠٠
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E = 17 - Y. = 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ا · · مثل إلى = الم - ا = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (1-17) es+(·1·)=V
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  = ۲۰ وهدة مريعة
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (3 + 1) + (B (11 -3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               :: ميل عاء = ٢ = ٢ = ٢
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               : 中四十二
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        : - حد = ٢ وحدة طول
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ، ب و = ١٠ وحدة علول
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -3=13 ·· ·
- 40 = +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (١٥) : معادلة المستقيم أل هي : ٢٠٠٠ مد الله
: منجه الانجاه للمستقيم أ = (٢ ، -١)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           : مثجه اتجاه المستقيم فرب = (٢ ، ٢)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .: المادلة الاتجاهية للمستقيم فرب مي
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (ト・ナー)=一(山)(・イト)=1:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (١٠٢) = حدود المستقيم الحد = (١٠١)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (\omega \circ \cdot \cdot) = \left(\frac{1}{1+\alpha} \circ \frac{1}{1+\alpha}\right) ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                    (···-)=- · (r··)=5:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  : (لعادلة التجهة للمستقيم أح في :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       :. ميل المستقيم أح = ٢-١- ٢
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (· : 1 = (· · · ) · -= (· · ·)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (١٩) : مساحة الربع = ٢٦ وهدة مربعة
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (١٠) ٢٠ و (٠٠ مس) منتصف أحر هيث
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      T=Um 1 1-=Um ..
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (1.1)=(1.1-)=
                                                                                                                                                                                                                                                              ، ·· ميل آخ = · + غ = غ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1(111) : ~ (~1.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (1,1)=(-1,1-)=
                                                                                                                     ن او=١ وهدات
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ( . . . ) = 5 .. .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -3 T=23 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (-1-)=>:
```


: معادلة المستقيم في : × + 1 + 1 :

.: T-u+1 au-37=+

: (--1) (--1): : 31 - 4 = -14 -

· (11-1) (-1+7)=3+

.. -73 + VI -- - = 3 -

. = fr + - 1r - 1 ...

((-) = 2 : ن مساحة الربع = $\Upsilon \times \Upsilon = \P$ وهدة مربعة \therefore

.= 10-w-wi.

، بغرض ف = (- رد، در) : ٤ در + در- ١٥ = ، 3 ناسا = ۱۸ سا ۱۱۰ ناسا - ۱۸ سا + ۱۱ = صفو (1) $1 = \frac{-\infty}{1} + \frac{-\infty}{1} + \frac{-\infty}{1} = 1$ (1) بقرض أن المستقيم الطلوب يقطع محور السينات في $(3 \cdot 0) = 0 \quad \therefore \quad 0 = 0 \quad \vdots$ $\frac{1}{1} = \frac{0 - 0}{0 - 0} \quad \therefore \quad \text{adolf} \quad \frac{1}{1} = \frac{1}{1} \quad \vdots \quad \frac{1}{1} = \frac{1}{1} = \frac{1}{1} \quad \vdots \quad \frac{1}{1} = \frac{1}{1} = \frac{1}{1} \quad \vdots \quad \frac{1}{1} = \frac{1}{1$ معادلة الستقيم الطلوب تكون على الصورة : ر ، :: (۲ ، ۲) نفطة على المستقيم $Y = \frac{1}{\sqrt{1 - \lambda}} \times A = 1 \times \frac{1}{\sqrt{1 - \lambda}} \times \frac{1}{\sqrt{1$. عن +س - 0 = ، ، عند س = . . (1) $\frac{1}{1 - \frac{1}{1}} = 1$ collingues $\frac{1}{1}$ $\frac{1}{\sqrt{1+\frac{1}{2}}} = \frac{1}{\sqrt{1+\frac{1}{2}}} \qquad \therefore \frac{1}{\sqrt{1+\frac{1}{2}}} = \frac{1}{\sqrt{1+\frac{1}{2}}} \therefore$ ガニー・ バニー・ ، نِ: مساحة الثَّاثِ = ١٢ وهنة مربعة ي: ٢ سن + ٢ صن - ١٢ = صفر (۱۰۰۹) ، الصادات في (۲۰۰۰) .: س= ٤ وبالتمويش في (٢) :: (--1) = out 1=15 1= + + + : 7 + 7 = 1 ... 1 = 7 + 7 ... - 11 = 11 - 11 = C+1 T + (1) U = 1 = 1 :: (1) ومقها ٢ = ٧ (مرفوض)

(۲ + 1) السنقيم يمر بالنقطة (۱ + ۲)

نفرض أن المستقيم يقطع محور السينات في (١٠٠) .: معادلة المستقيم مي + + - (١) : . ومحور الصبادات في (٠٠٠)

· = T + ... + ... (···)=(-1·1)+5=(-1···) 1= 1= 1-1= -- -- ... (111)=-1(11)=1:1 $\therefore \text{ with } a \in S = \frac{1}{1+1} = -1$ $\therefore \text{ which illustrates } a \in S \text{ as } S$ ٠ ٢ - ١ - ١ - ١ - ١ - ١ ن معادلة المستقيم أ .. O (r or) = 34 13 14

 $\frac{1}{1} = \left| \frac{\frac{1}{4} - \frac{1}{4}}{\frac{1}{4} + 1} \right| = \frac{1}{4} \cdot \frac{$ ، سال ب حد = المبارة = الم ، سال أحد = ٢٠٠١ = ٢٠ .. بيل أل × بيل الم = - ١٠ . ٠ (د -) = ٠٠ ، 1 - = ا (x + 1) + (x - 1) = x ا و وهدة طول : 1-=1(1-0)x+(1-1)x=1x1 وحدة ملول ("11 F. F1 + "1. 12 11) - "11. = (11) U ... $V = V = V = V + (V - V)^{T} + (V + 0)^{T} = V$ وحدة ملول "n ft = "r fn - ". = (1 4) o :: (1) (1) (1) (1) :: 1 1 - حسنفرج الزاوية في ا : 1 = 1 - 2 = - 1 :: · : ميل أحر = ا - ٢ = ١٠ · "TE F. FI = (-1) U .. " . . i o i / = : mall 1 = 1 + 1 = 1 Tr 11=(~1) 0 :. :: ١-- الرب - ٢ (٢ - ١٠) - ١٠١٠ وحدة علول ، ١ هـ = ١٠ (٠ + ٢) ٢ + (٢ + ١) ٢ = ١٦١ وحدة طول --- الا (۲+۲) ۲+۱) + (۱+۱) = ۱۹۱ وحدة طول نَ إِمَا م = أَ وَمِنْهَا مِيلًا الْسَنْقَيْمِينَ بِكُونَانَ ﴾ ١٠ $\frac{1}{h}$ ه = ۱ ومنها میلا الستقیمین یکونان ۱ ه $\frac{1}{h}$ يمر بالنقطة (٢٠ - ١٠) هي : ص - ص + ٤ = $\frac{V}{V} = \frac{1 + v_0}{V - v_0}$: میں بالنقطة (۲ ، -۱) میں: $\frac{V}{V} = \frac{V}{V}$:. عند م = 🖒 معادلة المستقيم الذي ميله 🤙 عند م = ١ معادلة المستقيم الذي ميله = ١ · ٠ م = ١٠ أء -١ (مرفوفسان لأن ٢٠ ٠) $\frac{\Lambda}{V} = \frac{1 + \omega}{V - \omega}$: من (V - V) من النقطة (V - V)الم المنفرجة ، د ب ، د ح حادثان $1 = \frac{1 + \infty}{1 - \infty}$: $\Delta_0 = (1 - \epsilon)$ (~1) + ((~1) < (~-) : $\frac{T}{\lambda} = معادلة المستقيم الذي ميله <math>\frac{T}{\lambda}$ معادلة المستقيم الذي ميله = ١ 1:0+ 1/2 -= 1/2 +01 .= (1-+) (A-+T) :. 1 = 1V + U- T - U0 A (6) . = YV + J- 1 - 1 A T G ·= (1++) (4++T) :: + 00 -= + 10+ E. .. . = A + F 11 + FT .. - = A+P11- PT .. اي من --- د + ا = . - 00 = 1 10 + 1 · ...

= + × 7/7 × 7/7 51× ~~ × + = ~ 1 ∆ 1 ~ (0)

= ١ وحدة مريمة

(1)(4)(1)(6)(4)(6)(1)(6)(1)(6)(1)

(A) (A) (A) (A) (A) (A) (A) (A)

 $\frac{1}{V} = \frac{1}{V}$ ، ميل المستقيم م $\frac{1}{V} = \frac{1}{V}$ ، ميل المستقيم ، . . ظل الزاوية الحادة الحصورة بين المستقيمين

1. 90= 1+1 = 20 10+1 = 1+1 = 11+1

TP+T=+0 , TP-T=10:(1)

رزشادات لعل رقم

 $\frac{1}{2}$. ثياس الزارية بين المستقيمين $\frac{1}{2}$ ، $\frac{1}{2}$ = $\frac{1}{2}$ ، $\frac{1}{2}$

، قال الزاوية الحادة بين المستقيمين أحد ، ٧

الثلث متساوى الساقين

ار المعلق المعل

+-= 1-0 = - 1 Juni

 $s_{-1-\sqrt{2}} = s_{-1} \left(\frac{\lambda}{\lambda} - \lambda_{\lambda} + \left(-\lambda - \lambda_{\lambda}\right)_{\lambda} = s_{-1} \left(\frac{\lambda}{\lambda} + \frac{\lambda}{\lambda}\right) = \left(\frac{\lambda}{\lambda} + \frac{\lambda}{\lambda}\right) = \left(\frac{\lambda}{\lambda} + \frac{\lambda}{\lambda}\right) = \left(1 + \delta - \delta\right)$

:: ١ - = ١ (- - ٢) ١ - (١ - ١) ٢ = ٢ ١ - ١ و مدة مول

ن: قياس الزاوية بين المستقيمين أحد ، $\sqrt{=1.1}$ 10 أو . .: المستقيم من يصنع مع المستقيمين أل ، أحد

مثثنا متساوى الساقين راسه ا

: de= 1-4 = 0.1 : e=1110

+== ++++ : += | ++++ :

(١) تقرض أن ميل له = ٩ ن ميل له = ٢ ٩

. . قياس الزاوية المفرجة بين المستقيمين

: 0 (ca) = .1°

17. = 1. - 1A. =

.= (1-4) (1-47) ...

1=0 1 =0: P1+19 =-14

. = 1+6 T - PT (ping

ナイニアイナン

نقرض أن ل: ٢-٠٠ + ٤ ص = ٢٦ ، لم : سى - ٧ مى + ١٣ = .

 $(\xi \cdot \tau) = \frac{(\tau \cdot \xi) + (o \cdot \tau) \tau}{1 + \tau} = g(\tau)$ or $\tilde{\chi} = (\tau \cdot \Delta) \cdot \omega$: $\frac{\xi}{\tau} = \left| \frac{\tau + \frac{1}{\tau}}{1 + \tau} \right| = t \cdot \mu$: $\tau \cdot \tau$

: میل آو × میل ب هر = ۱ × -۱ = -۱

トナイントイントナー

16 x 21 x -1 = 2 -1 1 2 lama ,

1= U-V-V+ AU +

V=サイヤ=サイデ=ル:

 $| (\gamma) : 1 = \frac{1}{2} ((0 - \lambda)^{1} + (\lambda - 1)^{1} = \lambda_{1})$ وحدة شول TITLY:

17 وحدة مريعة * JATAL X

 $\gamma = \pi \left((1-1)^T + (n-1)^T = T^T \right)^T$ existed (3) .. wife 1 = 0 - 1 = 4 - t=st :

ن سيل أت : ١ : ميل أحد العمودي: = -

T = 1+ + = (-1) ... " A (-) = 34 IN

1= 1+ + 1 = (-21) ::

1-= - July : 1

この(しゃしょういこ

トーラ 小 サート: ·= () + () () + (Y) = 1+ + T + FT Ging

: الإجابة الصحيحة (د)

.. قياس الزاوية بين المستقيمين له ، له = ٩٠٠

をトモン T=る×ない

(一)(一)(一)+1 = 17 ::

وبالتالي قياس الزاوية بين المستقيمين لي ، لم = ٤٥ "

الثلاث متساوى الساقين وقائم الزاوية.

.: قياس الزاوية بين المستقيمين ل، ع له = ٥٥ "

174

: ((レマシ)) : ((レマシ)) :: .. ميل آح = ٢٠٠٠ = ٧٠٠ :.

: ن (د ح اس) = دع " .. ن (د احب) = ده " 1. = 00 .: ("TI FT 6 E + "T 11 F1) - " 1 A. = (14) 0 .: عد ٧ وهدات مربعة

 $\frac{7}{11} = \frac{1}{11} 17 1 1 1 1 1 1 × × × 1 2 1 × × × 1 3 7 13 77 = 13 33 111

1 + 1 1 - 1 = 13 1 - 31 1 + 1 · = (17+14)(7-1) = F9 - 111 - F1 :: 1 =1 1 T=1 :

: ميل المستقيم لي = ٢-

-: ميل الطريق الأول = أ ميل الطريق الثاني = أ

 $\left(\frac{1}{1}, \frac{1}{1}\right)$ ، البعد بين الطريقين = طول العمود الساقط من $\left(\frac{1}{1}, \frac{1}{1}\right)$

.: الطريق الأولى // الطريق الثاني

التي تنتمي للطريق الثاني إلى الطريق الأول

 $\frac{1}{1} \times \frac{1}{1} \times \frac{1}$

11+11

ميل المستقيم لم = - ٢

، البُّعد بين المستقيمين = طول العمود الساقط من 1//1

 $\frac{1}{3+1} \times 2 + 1 \times 4 - 1 = \frac{1}{2} = 1 \frac{1}{2} 0$ (٥ ء ٨) التي تنتمي إلى المستقيم ل، إلى المستقيم ل،

= ١٠١١ وحدة طول

ن ميل المستقيم لي = 7

، ميل المستقيم ل: = أي = 1

وبالقسمة على ١٢ :: ٢٠ - الله القسمة على ١٣

17 = J-1 - 7 - 0 = 11

(1-1-1) --- (11)

البعد بين المستقيمين = طول العمود الساقط من $(\cdot \cdot \cdot) \mid : \cdot \cdot \cdot$ مساحة $\Delta \in \P \rightarrow \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ وهدة مربعة التي تنتمي المستقيم ل، إلى الستقيم ل، : L, // L,

117+37

 $=\frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1\times -1|} = \frac{|1\times\cdots\times -1\times -1|}{|1\times\cdots\times -1|} = \frac{|1\times\cdots\times -1|}{|1\times\cdots\times -1$

1+17

، أقصر مسافة = طول العمود الساقط من (٠٠٠)

ن: ميل المستقيم ل = 6

، ميل المستقيم ل $_{\rm P}=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}$ 11/ J.

ومنها حد = -10

1.-=>+01

ومنها حدده

1. = ++ 0 :

ء ٠٠٠ الصورة الكارتيزية للمستقيم لي هي :

 $\frac{1}{1} = \frac{1}{1 - 1} = \frac{1}{1 - 1} = \frac{1}{1 - 1} = \frac{1}{1}$

1+ U-1-11- -1+ ::

= ۱۱۱ + ۱ = ٥ وحدة طول. (1)--=1(1+1)+(1-1)

: 0 au - .. = Y - va 0 4 - 4 - 4

> (المعدد من المركز إلى مثل العمود من المركز إلى مثل المركز إلى الماس ل = (1 × ۲ + ۲ × - (+ ۱) = وا 41114 = ٢ وهدة علول

من الاتجامين الهجب لحور السيئات والسالب ": المستقيم يصنع زوايا منساوية القياس مع كل

Leg landel

.. ميل المستقيم = ١

(۲) طول الصور. = | ۲۰ × ۲ + ۰ × - 1 – ۲۶ ا

Ya+ 121

= 1 المدة علول

= 10 × ۴ وحدة طول = 5

:، طول العمود = الم ١٦١٠ : ماول العمود = : 1-1 - Y au + 01 = :

1-0-1-0-1. Y-0-1-0-1. $1 = \frac{Y + \omega_0}{Y - \omega_0}$: and the image $\frac{Y}{Y} = \frac{Y}{Y} = \frac{Y}{Y}$

... بعد النفطة (١ ، - ٣) عن الفط المستقيم

= 11+1-0|= 17=17 رحدة عليل

1. 1/21 = 1/2 × 1 + 1 × × + 0

(ع) طول العمور = = (۱ × -۲ + ۱ × -۲ + ۴)

= (= ٢ وحدة طول

11 1 + 7 == - 11 pich == = 1 : إما ١٧ + ٢ حد= ١٢ ومنها حد= ٢ - TH = V+ Te

 $| 1 \nabla - \nabla - \nabla + \nabla \times \nabla | = \frac{1}{|\nabla \nabla \nabla + \nabla \times \nabla - \nabla - \nabla \nabla + \nabla \nabla \nabla |}$

1/3+1

- 1 × 4 - 3 × 1 + 4-12+11

>+0 =1. :.

= ١٣١٠ وحدة طول

1/(1--1/+11-1(1+-)

ا - ۲ اب را - ۱ اب ا = ۲ اب رحدة طول

(١) : الستقيم يمر بالنفطة (٠٠٥) رسيه = +

 $\frac{1}{V} = \frac{1}{V} - \frac{1}{V} = \frac{1}{V}$

10- Um Y = J-6 :

ीया शिव्यासक रिक्टिशिक

ا :: ۲۲ مرا ۱۰ ۱۹۴۰ + ۱ = ۲۱ ۱ - ۱ ا ويتربيع الطرفين :

11×1+1×1-

. = معادلة المستقيم في : ٧ سن + ص + هن = . : متجه اتجاه المستقيم هو (١٠٠ / ٧٠) : 41/2 = 1/24+1 × 1+ = 1/2 :

T. = + TT .. | + TT | = T. .. $\frac{1}{1+\alpha} \times \left(\frac{1}{1+\alpha} \left(\frac{1}{1+\alpha} + \frac{1}{1+\alpha}\right) \times \frac{1}{1+\alpha}\right) \times \frac{1}{1+\alpha}$

ا ۱×۲-۲×۲-۱ = أو رحدة طول ا ×۲-۲×۲-۱ = الم

:: طول العمود من اعلى سح

أي: س- ٢ ص - ٢ = ١

01-=> .. T.-=>+ TT .i $\cdot = \Lambda + \omega + \omega + \omega + V$... $\cdot = \Lambda + \omega + \Lambda + \omega$

= ۱۸ وهدة مريعة.

ا، ٧ سن + شن - ٢٥ = .

المالات المالات المالات

: 1-7 = 1-0 : au-1=-3 ٠. می :-

(۲ - س - ص + ۲ = ۰) يساوي

بعد النقطة (١٠١) عن الفط المستقيم

 $\frac{1\times (-1+1)}{\sqrt{1+1}} = \frac{1}{\sqrt{1-1}} \operatorname{cont} \frac{1}{1+1}$

، ٠٠٠ الماية الكارتيزية للمستقيم سحد هي :

ء 🐺 بعد النقطة (٣٠ ٢٠) من الخط المستقيم

(Y - - - - - -) يساوى

A-0-1

1.+0-7-=7-00: .= 17 - w+ w- T ::

.. شول العمود المرسوم من ؟ (٣ ه ١) إلى صحح $=\frac{1\times 1+1\times 1-11}{4\pi}=\frac{1}{4\pi}$ eats with = ١٠٠٤ = ١١٥ وحدة طول 1: 15 = 1/(1-3), + (1+1),

ة ء - 5 عند التعويض بإحداثيي النقطتين فإنهما يقعان

على جانبين مختلفين من الفط الستقيم.

 التفطئان تقعان على بعدين متساويين من الدما الستقيم. ، : · القدار ٢ س - ص + ٢ له إشارتان مختلفتان

(٥) مساحة متوازي الأضلاع أحدى

(r) طول المعرد من النقطة ا إلى بحد

= ٥ × ٢٠ = ٢٦ وحدة مريعة

51/17:

- tr//st:

من (١) ، (١) :: اسمه و متوازي أفسلاع (1-1)+(1+1-)/---:

= ١١٠١ وهدة طول

· : معادلة سخ هي : من - ٢ = -٢ + ٥ أي: ٢-١٦ ص + ١٦ = .

.: طول السود الساقط من أ إلى عد

= 1/3+1 = 1/11 Gurg mel = ۲۵ وحدة مريمة. .. مساحة متوازي الأضلاع = ١٣١٠ × ١٣١٠

١ سال ١ = ٢+١ = ١ 1. mp 15 = 1+4 = 21 m

3 1 1 2 = 1 (1+1) + (1-1) = 1 11+3 = ١٠٠١ = ١١٥ و مدة ملول 10//st ::

1. mp 1-1-1-1

= ۱۲ وهدة مريدة.

(3) my of 1777 = + × 0 × 14

17+17

1 = 1-1 = 5- July

= ۱۱+۹/ = ۱۲۲ و مدة طول

·· -- = 1 (-1-1) + (0+1)

، معادلة ب هر مي : س - 0 = - 1 - 7 - 0 ، = ٥٠٥١ وهدة مريعة.

، طول العمود من النقطة ﴿ إِلَى بَ حَ

أي : ٨ سن + ٢ صن + ١ = ٠

(١) بفرض أن :٤ = (س ، ص)

، ٠٠ نقطة منتصف أحر مي نفسها نقطة منتصف ب

(1) - (1) $(1+1)^{3} + (-7+0)^{3} = 0$ eats with (1 + 0-) = 5 .. 1 = 00 + 0-= 0- ..

(r) معادلة المستقيم عبد هي :

T = T + 00 : T + 0 - 1 + 00 . = 1V - Jan 1 - Jan T .. 1-0-T=1+0=1.

(٤) طول العمود الساقط من ا إلى سح

T) = | 11V - E × E - 1 - × T | = 17+14/ Las V, Y =

· = معادلة المستقيم هي : ٣٦٠ س + ص + ه = ·

(r) ميل المستقيم = ال ١٢٠ = - (r)

= 1/1 وحدة طولية

いいずーナー

| 1 - (1-)+1 |

من اعلى ب

117+11

下中十十十年

، :: بعد النقطة (٠٠٠) عن المستقيم = ٤

:= | - | - :

A ...

$$\frac{r_{\Lambda}}{r_{1}} = \frac{r_{\Lambda} \times \Lambda \times 1 - t - x_{0}}{1 + r_{0}} = \frac{r_{\Lambda}}{r_{1}} \times \frac{r_{1}}{r_{1}} \times \frac{r_$$

(٤) نقطة تلاقي ارتفاعات الثلث القائم في نفسها نقطة

رأس القائمة

(٥) ٠٠٠ طول العمود الساقط من نقطة الأصل

على المستقيم = المراب

= ١٠٠٤ وهدة مريعة

.. مساحة الديكل إسحو = : . 14 + 1.

الله مسائل تقيس مهارات التفكير

.: الإجابة مي (٠٠٠)

.: المادلة مي : ١٦٦ س + ص ± ٨ = .

الساقط من التقابة (ت ء ۲) إلى المستقيم
+ غ = .
$$7 + 3 = \frac{1 - (1)}{4 - 1} = 4 \cdot 1$$
 وحدة طول

$$\frac{\| \mathbf{x} \|_{2}}{\| \mathbf{x} \|_{2}} = \frac{\| \mathbf{x} \|_{2}}{\| \mathbf{x} \|_{2}} + \| \mathbf{x} \|_{2} +$$

$$\frac{1}{1 + 1}$$
 $\frac{1}{1 + 1}$
 $\frac{1}$

$$=\frac{|0\times 11+\lambda 1\times V+o|}{|0\times 11+\lambda 1\times V+o|}=\frac{\lambda 1}{|0\times 11+\lambda 1\times V+o|}$$

delta (8
$$^{\circ}$$
) [$^{\circ}$] [$^{\circ}$] and $^{\circ}$ delta for $^{\circ}$] $^{\circ}$. A $^{\circ}$ - $^{\circ$

$$=\sqrt{1\cdot t} \left(\operatorname{ver}_2 \operatorname{up} \right)$$

$$=\sqrt{1\cdot t}$$

ن ب يمكن أن تساوى ال

r/+=-::

(3)(4)

(2)(2)

(4)(3)

(5)(3) (*)(3)

*= ** ::

$$(Y_{-}) = \sqrt{Y_{-}}$$
 المستقيم $(Y_{-}, Y_{-}) = \sqrt{Y_{-}}$ وبيله مدة طول مدة طول

; algh limage at
$$v_{\theta}$$
 (0 × 7) [by illuminary v_{θ} and v_{θ}] v_{θ} is a parameter v_{θ} and v_{θ} and v_{θ} are v_{θ} and v_{θ} and v_{θ} are v_{θ} and v_{θ} and v_{θ} are v_{θ} and v_{θ} and v_{θ} are v_{θ} and v_{θ} and v_{θ} and v_{θ} are v_{θ} and v_{θ} and v_{θ} are v_{θ} and v_{θ} and v_{θ} are v_{θ} and v_{θ} and v_{θ} and v_{θ} are v_{θ} and v_{θ} are v_{θ} and v_{θ} and v_{θ} and v_{θ} are v_{θ} and v_{θ} and v_{θ} and v_{θ}

رد: طول العمود من
$$(x_1 + x_2)$$
 إلى المستقيم $(x_1 + x_2)$ المي المستقيم $|x_1 + x_2| + |x_2|$ = $\frac{|x_1 + x_2|}{|x_2 + x_2|}$ = $\frac{|x_1 + x_2|}{|x_2 + x_2|}$

$$\frac{1}{1+1}$$
 = $\frac{1}{0}$ = $\frac{1}{0}$ = $\frac{1}{0}$ = $\frac{1}{0}$ = $\frac{1}{0}$

, add lines,
$$xix(-x, -1)$$
 that light (iff is)
$$= \frac{|x \cdot x - x \cdot x - x \cdot x - x \cdot x|}{|x \cdot x - x \cdot x|} = \frac{|x \cdot x - x \cdot x|}{|x \cdot x - x|}$$

$$= \frac{|x \cdot x - x \cdot x|}{|x \cdot x - x|}$$

المادلة العامة للمستقيم الطلوب هي

ناتنا الأسننة المقالية

·=(11--17)-: ·=(11--17:

しゅん= いいに-しまい

33

.: السنقيم يقسم أب من الداخل ، :: اللقدار له إشارتان مختلفتان

تساري ٢ ء - ٢ على الترتيب

، ": طول العمود المرسوم من "

على المستقيم = الم

| 1 - (\) + + (\-) + | × | =

11.19

= ٢ × (بعد المستقيم لم عن لم

: بعد المستقيم لم عن لي يد السنقيم لم عن لم

11-(1)+1-11

11+1

يعد المستقيم لي عن لم = +

+ = (2-1 Δ) inlum
(2-51 Δ) inlum

(٦) :: الثَقَانَ متحدنا القاعدة أحي

١٠١ - اله = - ١ ومنها له = -١

: الإجابة الصنفيحة (ج)

1 + (= 1 enis) (= 0

7= 2+11:

. 124

(+)(3)

(+)(0)

(20(1)

(a) (3)

نفرض أن النقطة هي (٢٠-١- ٩)

11+1 (-1-1)+1 = 10

.. |-1-11 |= o

11-=11 11-=1:

، طول العمود الساقط من نقطة تقاطع المستقيمين 3 3 Y= 00 :. $\frac{1}{1}(1-1)^{2} = \frac{1}{1}(1+\frac{1}{1})^{2} =$ (ع) ص - ٢ = ١ - ١ = ١ .. ص - ٢ = س - ١ .: معادلة المستقيم الطلوب في : ص - س = ١ (٦) :: الستقيم ل، يقطع محور السينات في النقطة ، المستقيم لم يقطع محور السيئات في التقطة ل، ، لم على محور السينات = ٢ وحدة طول. = 🙀 ۽ وهنڌ طول = + ا رهدة مريمة (e) def | prof = 1 × 1 - 1 × 1 - 1 . : قياس الزاوية بين المستقيمين = ١٠٠ $=\frac{16}{9}=\Lambda$ وهدة طول = (· · · · بجمع (٢) ، (٤) ، ١٢ مس = ٢٦ وبالتعويض في (١): ... -س = ١ (Y ()) ... (Y ()) サーチ・チールン(1) بضرب المايلة (١) × ٢ : 1: 300+1-0=31 11=0-1-001: manuel (1) × X V= y= + + y= + (1) 1. 1 an - 1 -0 = 1 (+ + Y-) : اله = ٦ : العادلة هي: -س + مس - ١ = . .: (0+ لق)-- + (- + + 1 لق) من - 0 - لق = · ای : ٦-س+٢ص - ٢+٢-س - ٢ مس+١= .: (a+le) - + + (-1+ الق) ص = a+le ·· المستقيم يقطع جزءين متساويين من الجزءين ٥ سن - ص - ٥ + لغ (س + ٢ ص - ١) = ٠ ٠٠ الستقيم يقطع من الجزوين الوجيين لمعورى ٢ -- ٢ + ١ - ١ + ١ (س - ص + ٢) = ٠ ٦ سن + صن - ١ + له (س - ص + ص + ٦ $1 = \frac{1}{2} \frac{(1 - 2b)}{(a + b)} + \frac{(1 + 2b)}{(a + b)} \frac{1}{a} \cdots \frac{1}{a}$.. العادلة المطلوبة من : سن + صن = ١ ·=(T+T+.) @/+1-T- : المادلة العامة للمستقيم المثلوب في : العارثة الطلوبة مي ا المادلة العامة المستقيم الطلوب هي : ٠٠٠ المستقيم يمر بالنقطة (٠٠٠-٢) الإحداثيات طواين متساويين. الموجيئ لمعرري الإحداثيات. 1 = 4 10 : 1= (() + () + () : : ای : ۸ سی + صی + ۳ = ، 01+1-=01+0: .. ميله = ال د۱۲ = - ا مل اغر:

1= 1-0+0 :

ء من ميل المستقيم الثاني = - ي

وميله = ١+ ١ لا (0)+0)-

العادلة الطلوبة عي:

(3) المارلة الكارتيزية للمستقيم الثاني هي : $\frac{\tau}{1-\tau} = \frac{\tau}{1-\tau}$.:. معادلة المستقيم المار بالنقطتين (٣٠٠) ، (٣٠٠) 1=0=1 .". المستقيمان متعامدان ولإيجاد نقطة التقاطع نحل 1 = 1 + 0 : 1 + 1 = 1 + 0 : 0 : 0 = 1 1-= - 17 / 1 - - - 17 / 1 - - - 17 / 1. (1) ويضرب المائة (7) × 3 والجمع مع 1-= 2-x = 3 x -3 --1 يجمع (١) ، (١) : ن ١٢ صل = ١٢ V = - T + - T - - T پحل العادلتين : Y مس الستقيمان متقاطعان على التعامد .. نقطة التقاطع هي (٢٠١٠) $T = \omega_0$ \therefore (1)1-=(+-) × +=+×,+: ويالتمويض في (١) : . . ص = ٢ 1- ---- 1 = ---- 1 Si .: نقطة القاطع مي (١ ١٠) 1 3 mm + 000 = -0 أي: ٢ هي + سن - ١ = ١ V= - Y + V + Y ... المادلتين ممًا جبريًا : ヤーニャイヤール: $_{1}$ Y × (Y) $_{2}$ X $_{3}$ 5- = to 1 = 14 ... 11= U-1+ Un 1: بضرب العادلة (١) × ٢ : 1-700+7-0-3 11-= 001-00 $\tau = \frac{(a+b)^{-}}{-1+\tau \log b}$.. $\tau = \frac{(a+b)^{-}}{-1+\tau \log b}$... ای د ۱۵ سی – ۵ سی – ۲۵ – ۲ سی – ۱ سی + ۲ سی اي : (٥ + او) -ر + (-١ + ٢ او) صي - و - او = ٠ $(1\cdot\cdot)=(\cdot\cdot\cdot)$... it has to be it is a full of the constant o 0+1=01+1: أي: (١ + ٢ لق) سن - (٢ + لق) من + ٥ - ١ لق = . أي: ٢ س - ١٩ ص + ١٥ + ٢ س - ص - ١ = ١ ع سى - مى - 4 + لع (س + ۲ مى - ۱) = . $a = (1 - aa) - 7 - \frac{7}{2} (-a) + 7 - aa) - 0 = 0$ ·= (1-00-0-1) + + + + - - - - -... المادة الطلوبة في: $\frac{1}{2}$ ميل الستقيم -u - 1 من + 1 = 0 هو $\frac{1}{2}$ سى - T من + 0 + الى (T سى - ص - 1) = 1 للمادلة العامة للمستقيم للطلوب هي : العادلة العامة للمستقيم الطلوب هي : ای: ۲۲ س - ۱۱ ص - ۲۲ = ۱ ء : * المستقيم يوازي محور الصنادات ای : ٥ - ٠٠ - ١٠ ص + ١١ = ٠

وميل هذا الستقيم = ٢ + ٢ اي

1 = 1 = 7 :

= 0 ::

، تقطة التقاطع في : (١٠ - ١٠)

ای: ۲- س- سر - ۲= ۰

107

	: معادلة حرك في : مور - با = - با (۲) : معادلة حرك في : مور - با = - با (۲) : ۲ مول + مور - غاة = .	$(1) : \frac{1}{\sqrt{16}} \underbrace{1}_{1} $	$Y_{-} = \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} \cup \dots \cup Y_{-}} : \text{ and } \lim_{N \to \infty} \frac{1}{Y_{-} $	(1) \therefore $\text{off}(x - 1) = 1$, \therefore off $x - 1 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	ويقسمة الطرفين على ٧ : .: ممادلة المستقيم في : ٧ سن + ص – ٣٧ =	.: ۲۱ س - ۱۶ من - ۲۶۲ - ۱۷ س + ۱۵ من - ۱۷ = ۰ ای : ۲۹ س + ۷ من - ۲۵۲ = ۰	$\frac{1}{1 - 1} - \frac{1}{1 - 1} = $	$(17)^{7} = 0$ $(17)^{7} = 0$ $(17)^{7} = 0$ $(17)^{7} = 0$: 341 (0 + 434 (0 + 44) = .	- 11 (12 + 70) (12 + 177 =
۲۱۱ س ۲۱۱ س + ۱۲ س ۲۱۱ س + ۱۲ س ۲۱۱ س + ۲۱۱ س + ۲۱۱ س + ۲۱۱ س + ۲۱۱ س + ۲۱۱ س + ۲۱۱ س + ۲۱۱ س + ۲۱۱ س + ۲۱۱ س + ۲۱۱ س + ۲۱ س +	 $\frac{1}{4} \left(\frac{1}{4} + \frac{1}{4} \left(\frac{1}{4} + \frac{1}{4} \right)_{1} + \left(\frac{1}{4} + \frac{1}{4} \right)_{2} \right)_{2}$ $= \frac{1}{4} \left(\frac{1}{4} + \frac{1}{4} \left(\frac{1}{4} \right)_{2} + \left(\frac{1}{4} + \frac{1}{4} \left(\frac{1}{4} \right)_{2} \right)_{2} + \frac{1}{4} \left(\frac{1}{4} + \frac{1}{4} \left(\frac{1}{4} \right)_{2} \right)_{2} \right)_{2}$) $\frac{1}{2}$ (1 $\frac{1}{2}$	$(1) \cdot (1 + 1) $	4 -	ن معادلة المستقيم الأول هي : مص - 7 = 7		(3)	3 3	1	

3

3

ء يفسرب العادلة الثانية × 1-

(۱) : ۲ سی - ۱ می = ۲ ۱ سی + ۲ می = ۲

-1= Jay+J-1 ...

3

は一日の十十八日に

:. ١٠ × ٩٠ = -١ (١) يفسرب المادلة الأولى ×١٠

こいることを

يُ الطريقين متعامدين

إرشادات لعل رقم

.: قباس الزاوية بين القطران أحد ، وب تساوي . ٩- ا حاصل ضرب میلی احد ، ب و پساوی -۱ . = (٧-س + ص - ٥ + لع (س + ص - ٧ - ١٠) وبالتعويض في (١): : ---- + ١-- = ١- $(1) : \{1 + (a) + (a + (b) + (a) + (b) + (b) \}$ (-1 , -1) = (-1) : (-1) : (-1) : (-1) : (-1) ·= V- - + - + - + - + - - - Y وهذه في عائلة المستقيمات المارة بتقطة تقاطع (1-11) -- (1-1) -- (1-1) --+= 00 : ن ميل احد د - ١ - بيل ٢٠٠٠ . (٣) يمل المادلان ممّا نجد أن ١ (٣٠ - ٢) (٤) بحل المادلتين ٢ - ٠ + ص - ٢ = ٠ م ١٠ الم الستقيمان مختلفين : (--1)+0+(1--): (1-1) (12 (13 (1 -1) (- 1 - 0 - 0 - 1 = . ad ·= (~~) (~~) . - (++1) -c=1-: (1) w (1) the (4, 1-) (4) O = 00 ... المستقيمان (1)(4)(1)(5)(1)(6)(1)(6)(1) .. مساحة الثان = + × + 3 × ٢ = + 3 وحدة مريعة بفسرب (۱) × ۲: : ، ۱ سی - ۱۲ ص = ۲۶ (۲) (3) : السار الأول يقطع محور الصادات في النقطة بجمع (۲) ، (۱) ، (۲) من = ... و۲ سن = ... بضرب (۲) × 1: 1: ۱۱ س + ۱۲ س = ۸ (۱) وبعد نقطة التقاطع (٢ ء -٢) عن محور الصادات ء المسار الثاني يقطع معور المسادات في النقطة (٢) معادلة المستقيم المار بالتفطئين (٢- ١٠٠) ، (٢- ١٠) نازأنا مسائل تقيس مهارات التفكير = 11 = 0V, Y وحدة طول $Y = -\infty$... (1) ... ∞ =4(.-.),+(--.),= (7) alg). (Base, 181 = $\frac{13 \times 1 + 1}{111 + 1}$ (T- 1 T) ... I Talk | 1 Talk | 1. .. (TT) = 1 - 1 = . طول قاعدة الشد = الله وحدة طول = ٢ وحدة طول (Y, 0-1 -)