Regularizations

Shusen Wang

The ℓ_2 -Norm Regularization

Linear Regression

Input: feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and labels $\mathbf{y} \in \mathbb{R}^n$.

Output: vector $\mathbf{w} \in \mathbb{R}^d$ such that $\mathbf{X}\mathbf{w} \approx \mathbf{y}$.

Linear Regression

Input: feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and labels $\mathbf{y} \in \mathbb{R}^n$.

Output: vector $\mathbf{w} \in \mathbb{R}^d$ such that $\mathbf{X}\mathbf{w} \approx \mathbf{y}$.

• Least squares regression:

$$\min_{\mathbf{w}} \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}.$$

• Ridge regression:

$$\min_{\mathbf{w}} \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2} + \gamma ||\mathbf{w}||_{2}^{2}.$$

Loss Function

Regularization

Ridge Regression:

Algorithms

- Analytical solution: $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d)^{-1} \mathbf{X}^T \mathbf{y}$.
 - Time complexity: $O(nd^2 + d^3)$.

Ridge Regression:

Algorithms

- Analytical solution: $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d)^{-1} \mathbf{X}^T \mathbf{y}$.
 - Time complexity: $O(nd^2 + d^3)$.
- Derivations:
 - The objective function is $Q(\mathbf{w}) = \frac{1}{n} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2 + \gamma ||\mathbf{w}||_2^2$.
 - The gradient is $\nabla Q(\mathbf{w}) = \frac{2}{n} \mathbf{X}^T (\mathbf{X} \mathbf{w} \mathbf{y}) + 2\gamma \mathbf{w}$.
 - Set $\nabla Q(\mathbf{w}^*) = 0$ leads to $\frac{2}{n} (\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d) \mathbf{w}^* = \frac{2}{n} \mathbf{X}^T \mathbf{y}$.
- Time complexity:
 - $O(nd^2)$ time for the multiplication $\mathbf{X}^T\mathbf{X}$.
 - $O(d^3)$ time for the inversion of the $d \times d$ matrix $\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d$.

Ridge Regression:

Algorithms

- Conjugate gradient (CG)
 - $O\left(\sqrt{\kappa}\log\frac{n}{\epsilon}\right)$ iterations to reach ϵ precision.
 - Hessian matrix: $\nabla^2 Q(\mathbf{w}) = \frac{2}{n} (\mathbf{X}^T \mathbf{X} + n \gamma \mathbf{I}_d)$.
 - $\kappa = \frac{\lambda_{\max}(\mathbf{X}^T\mathbf{X}) + n\gamma}{\lambda_{\min}(\mathbf{X}^T\mathbf{X}) + n\gamma}$ is the condition number of the Hessian.

Usefulness of Regularization

Question: Why do we use the ℓ_2 -norm regularization?

Usefulness of Regularization

Question: Why do we use the ℓ_2 -norm regularization?

- Reason 1: easier to optimize.
 - Conjugate gradient (CG) requires $O\left(\sqrt{\kappa}\log\frac{n}{\epsilon}\right)$ iterations to reach ϵ precision.
 - Least squares: $\kappa = \frac{\lambda_{\max}(\mathbf{X}^T\mathbf{X})}{\lambda_{\min}(\mathbf{X}^T\mathbf{X})}$.
 - Ridge regression: $\kappa = \frac{\lambda_{\max}(\mathbf{X}^T\mathbf{X}) + n\gamma}{\lambda_{\min}(\mathbf{X}^T\mathbf{X}) + n\gamma}$. $(\gamma \uparrow, \kappa \downarrow)$.
 - \Longrightarrow CG converges faster as γ increases.

Usefulness of Regularization

Question: Why do we use the ℓ_2 -norm regularization?

- Reason 1: easier to optimize.
- Reason 2: better generalization.
 - Least squares has better training error (due to the optimality).
 - Ridge regression makes better prediction on test set (due to bias-variance decomposition).

The ℓ_1 -Norm Regularization

Fact 1: y can be independent of some of the d feature.

Fact 2: if $d \gg n$, linear models are likely to overfit.

$$\mathbf{x} \in \mathbb{R}^d \xrightarrow{\text{prediction}} y \in \mathbb{R}$$

Fact 1: y can be independent of some of the d feature.

Fact 2: if $d \gg n$, linear models are likely to overfit.

Example: Use genomic data to predict disease.

- d is huge: human have 20K protein-coding genes.
- n is small: tens or hundreds of human participants in an experiment.
- Most genes are irrelevant to a specific disease.

$$\mathbf{x} \in \mathbb{R}^d \xrightarrow{\text{prediction}} y \in \mathbb{R}$$

Fact 1: y can be independent of some of the d feature.

Fact 2: if $d \gg n$, linear models are likely to overfit.

Goal 1: Select the features relevant to y.

$$\mathbf{x} \in \mathbb{R}^d \xrightarrow{\text{prediction}} y \in \mathbb{R}$$

Fact 1: y can be independent of some of the d feature.

Fact 2: if $d \gg n$, linear models are likely to overfit.

Goal 1: Select the features relevant to y.

Goal 2: Prevent overfitting for large d, small n problems.

• LASSO: $\min_{\mathbf{w}} \frac{1}{2n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}$; s.t. $||\mathbf{w}||_{1} \le t$.

The feasible set $\{\mathbf{w}: \ ||\mathbf{w}||_1 \le t\}$ is convex.

- LASSO: $\min_{\mathbf{w}} \frac{1}{2n} ||\mathbf{X}\mathbf{w} \mathbf{y}||_{2}^{2}$; s.t. $||\mathbf{w}||_{1} \le t$.
 - It is a convex optimization model.
 - The optimal solution \mathbf{w}^* is **sparse** (i.e., most entries are zeros).
 - Smaller $t \rightarrow$ sparser \mathbf{w}^* .

• LASSO:
$$\min_{\mathbf{w}} \frac{1}{2n} \left| |\mathbf{X}\mathbf{w} - \mathbf{y}| \right|_{2}^{2}$$
; s.t. $\left| |\mathbf{w}| \right|_{1} \le t$.

- It is a convex optimization model.
- The optimal solution \mathbf{w}^* is **sparse** (i.e., most entries are zeros).
- Smaller $t \rightarrow$ sparser \mathbf{w}^{\star} .
- - Let x' be a test feature vector.
 - The prediction is $\mathbf{x}'^T \mathbf{w}^* = w_1^* x_1' + w_2^* x_2' + \dots + w_d^* x_d'$.
 - If $w_1^* = 0$, then the prediction is independent of x_1' .

The ℓ_1 -Norm Regularization

• LASSO:
$$\min_{\mathbf{w}} \frac{1}{2n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}$$
; s.t. $||\mathbf{w}||_{1} \le t$.

• Another form: $\min_{\mathbf{w}} \frac{1}{2n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \gamma ||\mathbf{w}||_1$.

Loss Function

Regularization

Summary

Regularized ERM

Regularized empirical risk minimization:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n L(\mathbf{w}; \mathbf{x}_i, y_i) + R(\mathbf{w}).$$

Regularized ERM

Regularized empirical risk minimization:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n L(\mathbf{w}; \mathbf{x}_i, y_i) + R(\mathbf{w}).$$

Loss Function

• Linear regression:
$$L(\mathbf{w}; \mathbf{x}_i, y_i) = \frac{1}{2} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

• Logistic regression:
$$L(\mathbf{w}; \mathbf{x}_i, y_i) = \log(1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i))$$

• SVM:
$$L(\mathbf{w}; \mathbf{x}_i, y_i) = \max\{0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\}$$

Regularized ERM

Regularized empirical risk minimization:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n L(\mathbf{w}; \mathbf{x}_i, y_i) + R(\mathbf{w}).$$

Regularization

•
$$\ell_1$$
-norm: $R(\mathbf{w}) = \gamma ||\mathbf{w}||_1$

•
$$\ell_2$$
-norm: $R(\mathbf{w}) = \gamma ||\mathbf{w}||_2^2$

• Elastic net:
$$R(\mathbf{w}) = \gamma_1 ||\mathbf{w}||_1 + \gamma_2 ||\mathbf{w}||_2^2$$