Roberto Ruffolo-Benavides (26974732) Christiano Bianchet (27039573)

 Λ : Transitions Specifications

Formal Specifications

Overall

```
S = (Q, \Sigma_1, \Sigma_2, q_0, V, \Lambda) where
Q = \{dormant, init, idle, monitoring, error diagnosis, safe shutdown\}
\Sigma_1 = \{start, init ok, begin monitoring, init crash, kill, retry init, idle crash, \}
         idle_rescue, monitor_crash, moni_rescue, shutdown, sleep}
\Sigma_2 = \{init\_err\_msg, idle\_err\_msg, moni\_err\_msg\}
q_0: dormant
V: retry: N_0
Λ : Transitions Specifications
1. \rightarrow dormant
2. dormant --- start \rightarrow init
3. dormant --- kill \rightarrow final
4. init — init ok \rightarrow idle
5. init --- init\_crash/init\_err\_msg \rightarrow error\_diagnosis
6. idle — begin monitoring \rightarrow monitoring
7. idle --- idle \ crash/idle \ err \ msg \rightarrow error \ diagnosis
8. monitoring — monitor crash/moni err msg \rightarrow error diagnosis
9. error diagnosis — retry init[rety < 3]/retry ++ \rightarrow init
10. error_diagnosis --- idle_rescue → idle
11. error_diagnosis --- moni_rescue → monitoring
12 .error diagnosis — shutdown[retry \geq 3] \rightarrow safe shutdown
13. safe\ shutdown --- sleep \rightarrow dormant
Init
S = (Q, \Sigma_1, \Sigma_2, q_0, V, \Lambda) where
Q = \{boot\ hw, senchk, tchk, psichk, ready\}
\Sigma_1 = \{hw \ ok, \ sen \ ok, \ t \ ok, \ psi \ ok\}
\Sigma_2 = \{\}
q_0: boot_hw
V:
```

```
1. \rightarrow boot hw
```

2. boot
$$hw --- hw$$
 $ok \rightarrow senchk$

3.
$$senchk$$
 --- $sen ok \rightarrow tchk$

4.
$$tchk$$
 --- t $ok \rightarrow psichk$

5.
$$psichk$$
 --- psi ok \rightarrow $ready$

Monitoring

$$S = (Q, \Sigma_1, \Sigma_2, q_0, V, \Lambda)$$
 where

 $Q = \{monidle, regulate environment, lockdown\}$

 $\Sigma_1 = \{after_100ms, no_contagion, contagion_alert, purge_succ\}$

$$\Sigma_2 = \{FACILITY \ CRIT \ MESG\}$$

 q_0 : monidle

V:

 $\Lambda_{refined}$: Transitions Specifications

- 1. \rightarrow monidle
- 2. $monidle --- no_contagion \rightarrow regulate_environment$
- 3. monidle --- contagion alert/FACILITY CRIT MESG, inlockdown = true \rightarrow lockdown
- 4. regulate environment --- after_100ms → monidle
- 5. $lockdown --- purge_succ/inlockdown = false \rightarrow monidle$

 $\Lambda_{unrefined}$: Transitions Specifications

1. monitoring — monitor crash[!inlockdown]/moni err msg → error diagnosis

Error_Diagnosis

$$S = (Q, \Sigma_1, \Sigma_2, q_0, V, \Lambda)$$
 where

$$\Sigma_1 = \{apply_protocol_rescues, reset_to_stable\}$$

$$\Sigma_2 = \{\}$$

$$q_0$$
: $error_rcv$

V: err protocol def: boolean

 Λ : Transitions Specifications

- 1. \rightarrow error rcv
- 2. error rcv [error protocol def] \rightarrow applicable rescue
- 3. error rcv --- [!error protocol def] \rightarrow reset module data
- 4. applicable rescue apply protocol rescues \rightarrow final
- 5. reset module data --- reset to stable \rightarrow final

Lockdown

$$S = (Q, \Sigma_1, \Sigma_2, q_0, V, \Lambda) \text{ where } \\ Q = \{prep_vpurge, alt_temp, alt_psi, risk_assess, safe_status\} \\ \Sigma_1 = \{initiate_purge, tcyc_comp, psicyc_comp\} \\ \Sigma_2 = \{lock_doors, unlock_doors\} \\ q_0 : prep_vpurge \\ V : risk : R_+ \\ \Lambda : Transitions Specifications \\ 1. \rightarrow prep_vsurge \\ 2. prep_vsurge --- initiate_purge/lock_doors \rightarrow alt_temp \\ 3. prep_vsurge --- initiate_purge/lock_doors \rightarrow alt_psi \\ 4. alt_temp --- tcyc_comp \rightarrow risk_assess \\ 5. alt_psi --- psicyc_comp \rightarrow risk_assess \\ 6. risk_assess --- [risk > 0.01] \rightarrow initial \\ 7. risk_assess --- [risk < 0.01]/unlock_doors \rightarrow safe_status \\ 8. safe_status \rightarrow final \\ \end{cases}$$