# ECE 215 Spring 2025

Objective 1.7:
Power Converters





## Objective 1.7

I can calculate the efficiency, source voltage, and current of a power transmission system with one or more power converters.

#### POWER CONVERSION

Most electronic and \_\_\_\_\_\_
loads are \_\_\_\_\_.

• Actuation \_\_\_\_\_ are \_\_\_\_.

High power motors are usually

 Since modern systems have both flavors of power, we need \_\_\_\_\_ that \_\_\_\_\_ from AC to DC







#### **DC-DC CONVERSION**





## DC-AC CONVERSION (INVERSION)





Examples

## AC-DC CONVERSION (RECTIFICATION)





### PROCESS FOR ANALYZING POWER CONVERTERS

- Find **real power** at the output of the converter
- Use efficiency to find real power at input to converter
- Use input voltage (and possibly pF) to calculate input current of converter

## ANALYZING POWER CONVERTERS - EXAMPLE 1

Given the circuit below, determine the current at the input to the dc/dc converter and estimate a circuit breaker rating to protect the converter from abnormal operation (Breaker B).





## ANALYZING POWER CONVERTERS - EXAMPLE 2

Given the circuit below, determine the DC current at the input to the dc/ac inverter, then appropriately size breaker B.



## ANALYZING POWER CONVERTERS - EXAMPLE 3

Given the circuit below, determine the DC current at the input to the ac/dc inverter, then appropriately size breaker B.

