ε計算とクラスの導入による具体的で直観的な集合論の構築

百合川尚学

平成32年1月22日

1 導入

2 言語

本稿の言語は三つある。一つ目は言語 \mathcal{L}_{\in} であり、その語彙は次から成る:

矛盾記号 丄

論理記号 →, ∨, ∧, →

量化子 ∀,∃

述語記号 =, €

変項 x,y,z,\cdots .

 \mathcal{L}_{F} の項と式は次で定義される:

項 変項のみが \mathcal{L}_{F} の項である.

- 式 ⊥は式である.
 - *s*, *t* を項とするとき ∈ *st*, = *st* は式である.
 - φ , ψ を式とするとき $\forall \varphi \psi$, $\land \varphi \psi$, $\rightarrow \varphi \psi$ は式である.
 - x を項とし φ を式とするとき $\exists x \varphi$, $\exists x \varphi$ は式である.

二つ目は言語 $\mathcal{L}_{\mathcal{E}}$ であり、その語彙は $\mathcal{L}_{\mathcal{E}}$ の語彙に $\mathcal{L}_{\mathcal{E}}$ の項と式は循環定義になる。

- 」は式である.
- s,t を項とするとき $\in st$, = st は式である.

- φ , ψ を式とするとき $\forall \varphi \psi$, $\land \varphi \psi$, $\rightarrow \varphi \psi$ は式である.
- x を変項とし φ を式とするとき $\exists x \varphi$, $\exists x \varphi$ は 式である.
- x を変項とし φ を式とするとき $\varepsilon x \varphi$ は項である.

x を変項とし φ を $\mathcal{L}_{\mathcal{E}}$ の式とするとき,以下では $\varepsilon x \varphi$ なる項を ε 項と呼び, $\{x \mid \varphi\}$ なる項を内包項と呼ぶ.三つめは言語 \mathcal{L} である. \mathcal{L} の語彙は $\mathcal{L}_{\mathcal{E}}$ の語彙に ε 項及び内包項が加えたものである.

項 変項, ϵ 項, 内包項のみが項である.

- 式 ・ 」は式である.
 - s,t を項とするとき ∈ st,= st は式で
 - φ, ψ を式とするとき $\forall \varphi \psi, \land \varphi \psi, \rightarrow \varphi \psi$ は式である.
 - x を項とし φ を式とするとき $\exists x \varphi$, $\exists x \varphi$ は式である.

 ε 項と内包項の中でも性質の良いものは

- 3 証明と公理
- 4 類と集合
- 5 保存拡大