Training für Programmierwettbewerbe - Exam Questions

Hanno Barschel (174761)

1 Introduction

- (1) Zeit Komplexität von drei Funktionen:
 - foo(.) hat eine Zeitkomplexität von $\mathcal{O}(n)$ (wobei n die Länge des gegebenen Vektors ist) und eine Platzkomplexität von $\mathcal{O}(n)$.

Das folgt direkt daraus, dass wir genau 2 Vorschleifen die jeweils den gesamten Vektor durchgehen haben also $\mathcal{O}(2n) = \mathcal{O}(n)$.

- **print_ pairs(.)** hat eine Zeitkomplexität von $\mathcal{O}(n^2)$ und eine Platzkomplexität von $\mathcal{O}(n)$.

Für jedes Element des Vektors ruft die Funktion nochmal jedes Element des Vektors auf und printed beide als Paar aus. Somit kommt eine Zeitkomplexität von $\mathcal{O}(n^2)$ zustande.

- **print_ unordered_ pairs(.)** hat eine Laufzeitkomplexität von $\mathcal{O}(n^2)$ und eine Platzkomplexität von $\mathcal{O}(n)$.

Für jedes Element des Vektors rufen wir alle Folgeelemente auf. Das sind es n - (i + 1) Aufrufe für Element i (i startet bei 0). Damit kommen wir auf eine Laufzeit von

$$\sum_{i=0}^{n-1} (n - (i+1)) = n^2 - \sum_{i=1}^{n} i = n^2 - \frac{n \cdot (n+1)}{2} = n^2 - \frac{n^2}{2} - \frac{1}{2} \in \mathcal{O}(n^2).$$

- all fib(.) hat eine Zeitkomplexität von $\mathcal{O}(n)$ und eine Platzkomplexität von $\mathcal{O}(n)$.

Die for-Schleife printed uns im Prinzip alle Fibonacci Zahlen bis n aus. Sobald wir eine Null in memo[i] finden sind aber bereits memo[i-1] und memo[i-2] berechnet, somit müssen wir diese nur addieren und haben keine wirklich tiefe Rekursion.

(2) Algorithmen Beispiele:

- $-\mathcal{O}(1)$: Für eine gegebene Hashtabelle und einen Index gibt der Algorithmus den Wert für den Index zurück.
- $-\mathcal{O}(\log(n))$: In einer sortierten Liste ein gegebenes Element suchen.
- $-\mathcal{O}(n)$: Der Algorithmus berechnet zu einem gegeben Array die Summe aller Elemente und gibt diese zurück.
- $-\mathcal{O}(n \cdot \log(n))$: Ein guter Sortier Algorithmus (Merge Sort).
- $-\mathcal{O}(n^2)$: Quicksort (worst-case Analyse).

- (3) Ersteinmal natürlich ordentlich zuhören wenn die Frage gestellt ist. Dabei sollten wir uns alles merken und auch auf Besonderheiten achten. Dann wählen wir ein geeignetes Beispiel. Dabei sollten wir immer im Hintergrund behalten, dass oft Spezialfälle besonders zu betrachten sind. Anschließend schreiben wir einen brute force Algorithmus auf und betrachten dessen Zeit sowie Platzkomplexität. Jetzt optimieren wir diesen noch indem wir das Ganze möglichst einfach machen, überflüssige und doppelte Arbeit vermeiden. Mit diesen Betrachtungen verbessern wir den Brutforce Algorithmus schließlich noch.
- (4) Gegeben sei eine Liste mit Natürlichen Zahlen. Gesucht sei die maximale Differenz zweier Werte im Array wobei der vordere (steht weiter vorne im Array) Wert kleiner als der hintere sein muss. Wir iterieren mittels zweier indexe, tmp_min und tmp die am Anfang beide auf 0 gesetzt werden. Gleichzeitig haben wir die Variable $max_diff = 0$ in der die bisher gefundene maximale Differenz gespeichert wird. Nun beginnen wir mittels einer for-Schleife mit Variablen tmp über den Array zu iterieren: Ist der Wert im Array an Stelle tmp kleiner oder gleich als der an der Stelle tmp_min so setzen wir tmp_min auf tmp. Ist tmp größer so berechnen wir die Differenz zwischen tmp und tmp_min . Ist diese größer als max_diff so ersetzen wir diese, ansonsten inkrementieren wir tmp einfach weiter.
- (5) Ich würde es mit einer Hashmap checken: Wir testen erst einmal ob die Strings die gleiche Länge haben (wenn nicht dann return 0). Danach erstellen wir 2 Hashmaps (für jedes Wort eine). Anschließend gehen wir mittels einer for-Schleife beide strings durch und für jeden Buchstaben inkrementieren wir den zugehörigen Hashwert. Abschließend vergleichen wir beide Hashmaps.

 $return(hashmap \ string1 == hashmap \ string2).$

2 Arrays and Bits

- (1) Für geordnete Mengen, wo jeder Eintrag einfach nur angibt ob das Element in der Menge ist oder nicht, können wir einfach die Bitoperationen anwenden um beispielsweise leicht die Anzahl an Elementen herausfinden die in beiden Mengen enthalten sind (durch den & Operator und danach rufen wir die count-Funktion auf). Zusätzlich können wir neue Mengen erstellen die...
 - ...alle Elemente enthalten die mindestens in einer der beiden Listen enthalten sind
 - ...alle Elemente enthalten die nur in genau einer der beiden Listen enthalten sind.

Auch können wir sehr leicht das Komplement, Vereinigung, Durchschnitt und Differenz bilden. Natürlich geht noch viel mehr. Bitoperationen haben den Vorteil, dass sie deutlich schneller sind, als über einen Array zu iterieren.

- (2) Negative vorzeichenbehaftete Integer haben ein Vorzeichenbit, dass auf 1 gesetzt ist. Ein logischer Rechts shift würde jetzt einfach alle bits nach rechts schieben und in die höchste Stelle eine 1. Somit wäre das Resultat dann plötzlich positiv.
 - Ein arithmetischer Rechtsshift lässt das erste Bit auf 1 und ersetzt die Bits nach dem Vorzeichenbit mit 1 (so viele wie geschoben wird). Damit bleibt die Zahl negativ und die Operation entspricht (etwa) einer Division mit 2, was unserer Vorstellung von einem Rechtsshift entspricht.
- (3) (n&(n-1)) == 0 testet ob die bitdarstellung von n und n-1 0 ergeben. Das ist der Fall, falls n=0, n=1 ist (&0 ergibt immer 0). Angenommen n ist eine 2er Potenz (also an k.ter Stelle eine 1 im bitstring). Dann ist in n-1 genau jede 0 die vor der k.ten Stelle kommt auf 1 gesetzt und die 1 in der k.ten Stelle wird zu 0. In den höheren Stellen ändert sich nichts. Somit ergibt für diesen Fall die Formel auch 0.

Angenommen n ist nicht durch 2 teilbar. In diesem Fall werden in n-1 alle Nullen hinter der ersten 1 in n auf 1 gesetzt und die erste 1 auf 0. Nach der Annahme, dass n keine 2er Potenz ist, existiert jetzt ein höheres bit, dass sowohl in n als auch in n-1 auf 1 gesetzt ist. Somit ergibt die Formel nicht 0.

(4) Wir wollen die Anzahl der Einserbits in der Variablen sum speichern.

Wir gehen in einem for loop von 0 bis sizeof(integer) über jeden einzelnen bit indem wir die gegebene Zahl n immer um 1 shiften und dann n&1 auf unsere Summe addieren. n&1 ist genau gleich dem letzten bit und so ergibt der Algorithmus die geforderte Summe.

(5) Wir wollen den reversed Integer in result speichern.

Um die Bits in einem gegeben Integer umzudrehen iterieren wir mittels eines forloops über alle bits (siehe (4)), shiften die gegebene Zahl immer um 1 und addieren das Ergebnis n&1 auf result drauf. Anschließend shiften wir result einmal nach Links.

(6) Die Quicksortpartitionierungsfunktion gibt für eine übergebene Liste, eine Liste aus wo das Pivotelement bereits an der richtigen Stelle steht. Nun gehen wir die Liste durch und testen für jedes Element ob es größer als das Pivotelement ist. Ist das der Fall so tauschen wir es nach hinten.

Wenn wir Einträge nach gerade und ungerade sortieren wollen können wir ähnlich vorgehen nur, dass wir wir testen ob das Element gerade ist. Ist das der Fall so tauschen wir es nach hinten.