DM 4 : Lois du frottement solide Éléments de correction

N°	Elts de rép.	Pts	Note
1	recherches de tous les exercices	1	
2.	propreté de la copie	0.5	
3.	rendu pour le jour demandé	0.5	

	Un traineau sur la glace	
1	PFD appliqué à un élément infinitésimal de corde donne $-T(x)\vec{e}_x + T(x+dx)\vec{e}_x = \vec{0}$ donc \vec{T} cte sur toute la corde	
2	théorème du moment cinétique sur un élément infinitésimal de	
	corde au point M de coordonnée x donne $-T(x) \wedge MM +$	
	$T(x + dx) \wedge dx\vec{e}_x = \vec{0}$ donc \vec{T} colinéaire à $dx\vec{e}_x$ donc à la corde	
3	PFD appliqué au traineau à chien $M\vec{a} = \vec{F} + \vec{N} + \vec{T} + \vec{p}$, projection	
	selon \vec{N} donne $N = Mg\cos(\alpha)$ donc en glissement $T = \mu_d N =$	
	$\mu_d \cos(\alpha) Mg$, en projetant le PFD sur $-\vec{T}$ on obtient $ma = F - \vec{T}$	
	$T - Mg\sin(\alpha) = F - (\mu_d\cos(\alpha) + \sin(\alpha))Mg\operatorname{donc}\mu_d' = \cos(\alpha)\mu_d + \sin(\alpha)$	
	$\sin(\alpha) \operatorname{si} \alpha \ll \frac{\pi}{2} \operatorname{alors} \mu'_d = \mu_d + \alpha$	
4	à $\alpha = 0$ et dans le cas de non-glissement $T < \mu_s N$ donc $T < \mu_s Mg$	
	en projetant le PFD sur \vec{T} on a $T = F = F_0$ à l'arrêt, donc	
	$F_0 < \mu_s Mg \text{ donc } F_{0_{min}} = \mu_s Mg = 4,0.10^2 \text{ N}$	
5	En régime transitoire $\frac{M}{\beta} \frac{dv}{dt} + v = v_0$ donc $\tau = \frac{M}{v_0}$ donc $t_1 = 3\tau = 0$	
	$3\frac{M}{\beta} \text{ donc } \beta = 3\frac{M}{t_1} = 3.10^2 \text{ kg.s}^{-1}$	
6	en régime stationnaire $v=v_0$ donc le PFD projeté selon \vec{T} donne	
	$0 = F_0 - \beta v_0 - \mu_d Mg \text{ donc } F_0 = \beta v_0 + \mu_d Mg \text{ et } F_0 = 1, 2.10^3 \text{ N}$	
7	PFD appliqué au traineau, la projection radiale donne $-M\frac{v_0^2}{R}$	
	$-T\sin(\theta)$, la projection ortho-radiale donne $0 = T\cos(\theta) - R_T$, la	
	projection verticale donne $0 = Mg - N$, en glissement $R_T = \mu_d N$,	
	donc $tan(\theta) = \frac{v_0^2}{\mu_d R g}$ et $T = \frac{\mu_d M g}{\cos(\theta)}$	