



## SC1007 Searching

Dr. Liu Siyuan

Email: syliu@ntu.edu.sg

Office: N4-02C-72a





#### Overview

- Exhaustive Algorithm:
  - Sequential Search
- Decrease-and-conquer Algorithm:
  - Binary Search
  - Jump Search

```
def search(head, a):
    pt = head
    while pt is not None and pt.key != a:
    pt = pt.next
    return pt
```

Assume that the search key *a* is in the list

- 1. Best-case analysis:  $c_1$  when a is the first item in the list => O (1)
- 2. Worst-case analysis:
- 3. Average-case analysis:

#### Assume that the search key *a* is in the list

- 1. Best-case analysis:  $c_1$  when a is the first item in the list => O (1)
- 2. Worst-case analysis:  $c_2 \cdot (n-1) + c_1 = O(n)$  when  $\alpha$  is the last item in the list
- 3. Average-case analysis  $p_1 \times time\ to\ search\ for\ item\ 1 + p_2 \times time\ to\ search\ for\ item\ 2 + \cdots + p_n \times time\ to\ search\ for\ item\ n$

```
def search(head, a):
    pt = head
    while pt is not None and pt.key != a:
    pt = pt.next
    return pt

def search(head, a):
    c1
    c1
    c2
    d2
    d2
    d2
    d2
    d2
    d2
    d2
    d2
    d3
    d2
    d2
    d2
    d3
    d2
    d3
    d3
    d4
    d4
    d5
    d6
    d6
    d7
    d7
    d7
    d8
    d8
   d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
    d8
```

Assume that the search key *a* is always in the list

- 1. Best-case analysis:  $c_1$  when **a** is the first item in the list =>  $\Theta$  (1)
- 2. Worst-case analysis:  $c_2 \cdot (n-1) + c_1 = O(n)$  when **a** is the last item in the list
- 3. Average-case analysis:  $p_1c_1 + p_2(c_1 + c_2) + p_3(c_1 + 2c_2) + \cdots + p_n(c_1 + (n-1)c_2)$

Assume that every item in the list has an equal probability as a search key, i.e.,  $p_i = \frac{1}{n}$ 

$$\frac{1}{n}[c_1 + (c_1 + c_2) + (c_1 + 2c_2) + \dots + (c_1 + (n-1)c_2)] = \frac{1}{n}\sum_{i=1}^{n}(c_1 + c_2(i-1))$$

$$= \frac{1}{n}[nc_1 + c_2\sum_{i=1}^{n}(i-1)]$$

$$= c_1 + \frac{c_2}{n} \cdot \frac{n}{2}(0 + (n-1)) = c_1 + \frac{c_2(n-1)}{2} = \Theta \text{ (n)}$$



If the search key is in the list, on average:  $c_1 + \frac{c_2(n-1)}{2} = 0$  (n)

If the search key, a, is not in the list, then the time complexity is

$$c_1 + nc_2 = \Theta$$
 (n)

Since the probability of the search key is in the list is unknown, we only can have

$$f(n) = P(a \text{ in the list})(c_1 + \frac{c_2(n-1)}{2}) + (1 - P(a \text{ in the list}))(c_1 + nc_2)$$

It is still a linear function. ⊖ (n)

```
def search(head, a):
   pt = head
   while pt is not None and pt.key != a:
     pt = pt.next
   return pt
```



- The data is stored unordered
- To search a key, every element is required to read and compare
- This is a brute-force approach or a näive algorithm
- Its time complexity is O(n)
- How can we improve it?

#### Decrease and Conquer: Binary Search

Given a sorted list



• Whether a search key *a* is in the list?

```
def binary_search_recursive(arr, left, right, target):
   if left > right:
        return -1
   mid = left + (right - left) // 2
   if arr[mid] == target:
        return mid
   elif arr[mid] < target:
        return binary_search_recursive(arr, mid + 1, right, target)
   else:
        return binary_search_recursive(arr, left, mid - 1, target)</pre>
```

#### Time Complexity of Binary Search

```
def binary_search_recursive(arr, left, right, target):
   if left > right:
        return -1
   mid = left + (right - left) // 2
   if arr[mid] == target:
        return mid
   elif arr[mid] < target:
        return binary_search_recursive(arr, mid + 1, right, target)
   else:
        return binary_search_recursive(arr, left, mid - 1, target)</pre>
```

```
def binary_search(self, target, current_node):
    if current_node is None:
        return False
    elif target == current_node.data:
        return True
    elif target < current_node.data:
        return self.binary_search(target,current_node.left)
    else:
        return self.binary_search(target,current_node.right)</pre>
```

- Given a sorted list, e.g.,
  - 14, 23, 31, 56, 73, 93, 94
- We can build a BST



#### **Terminology**



- The Height of a tree: The number of edges on the longest path from the root to a leaf
- The Depth of a node: The number of edges from the node to the root of its tree.

For a complete binary tree with height *H*, we have:

$$2^{H}-1 < n \le 2^{H+1}-1$$

where *n* is an integer and the size of the tree

$$2^{H} \le n < 2^{H+1}$$
 (e.g.,  $7 < n \le 15 \equiv 8 \le n < 16$ )

$$H \le \log_2 n < H+1$$

If H is an integer, H+1 must be the next integer.

Height = 
$$\lfloor \log_2 n \rfloor$$

#### Binary Search – Worst Case Time Complexity



Assume a complete binary tree

$$f(n) = f\left(\frac{n-1}{2}\right) + c = f\left(\frac{\left(\frac{n-1}{2}\right) - 1}{2}\right) + 2c = f\left(\frac{n-1-2}{2^2}\right) + 2c$$
$$= f\left(\frac{n-1-2}{2^2} - 1\right) + 3c = f\left(\frac{n-1-2-2}{2^3}\right) + 3c$$

• • •

#### Binary Search – Worst Case Time Complexity

$$f(n) = f\left(\frac{n-1}{2}\right) + c \qquad 0 < \frac{n-2^{k}+1}{2^{k}} \le 1$$

$$= f\left(\frac{n-(1+2+\dots+2^{k-2}+2^{k-1})}{2^{k}}\right) + kc \qquad 0 < \frac{n+1}{2^{k}} - 1 \le 1$$

$$= f\left(\frac{n-2^{k}+1}{2^{k}}\right) + kc \qquad 1 < \frac{n+1}{2^{k}} \le 2$$

$$= f(1) + kc \qquad 2^{k} < n+1 \le 2^{k+1}$$

$$= c + kc \qquad [\log_{2}(n+1)] \le k - 1$$

$$= (\lfloor \log_{2} n \rfloor + 1)c \qquad \lfloor \log_{2} n \rfloor + 1 = k + 1$$

$$= \Theta(\log_{2} n) \qquad k = \lfloor \log_{2} n \rfloor$$

$$0 < \frac{n-2^{k}+1}{2^{k}} \le 1$$

$$0 < \frac{n+1}{2^{k}} - 1 \le 1$$

$$1 < \frac{n+1}{2^{k}} \le 2$$

$$2^{k} < n+1 \le 2^{k+1}$$

$$k < \log_{2}(n+1) \le k+1$$

$$\lceil \log_{2}(n+1) \rceil = k+1$$

$$\lfloor \log_{2} n \rfloor + 1 = k+1$$

$$k = \lceil \log_{2} n \rceil$$

From previous slide:

$$2^k \le n < 2^{k+1} \equiv$$
  
 $2^k - 1 < n < 2^{k+1} - 1$ 

**Therefore**  $log(n+1) \le k+1$  $\lceil log(n+1) \rceil = k+1$  $logn \ge k$  $\lfloor logn \rfloor = k$ 

- $A_s(n)$ : # of comparisons for successful search
- $A_f(n)$ : # of comparisons for unsuccessful search (worst case):  $\Theta(\log_2 n)$

$$A(n) = qA_s(n) + (1 - q)A_f(n)$$

For  $A_s(n)$ , we assume  $n = 2^k - 1$  first



$$A(n) = qA_s(n) + (1 - q)A_f(n)$$



- For  $A_s(n)$ , we assume  $n = 2^k 1$  first
- We can observe that:
  - 1 position requires 1 comparison (level 1)
  - 2 positions requires 2 comparisons (level 2)
  - 4 positions requires 3 comparisons (level 3)
  - ...
  - 2<sup>t-1</sup> positions requires t comparisons ((level t)

$$A_{S}(n) = \sum_{t=1}^{k} p_{t} \times (\#comparisons \ at \ level \ t)$$

$$= \sum_{t=1}^{k} \frac{1}{n} \times (\#positions \ at \ level \ t) \times (\#comparisons \ at \ level \ t)$$

$$= \sum_{t=1}^{k} \frac{1}{n} \times 2^{t-1} \times t$$

$$A(n) = qA_s(n) + (1 - q)A_f(n)$$



• Assuming  $n=2^k-1$ , we have

$$A_{S}(n) = \frac{1}{n} \sum_{t=1}^{k} t2^{t-1}$$

$$\sum_{\substack{l=1 \ l \geq t-1 \ l$$

The time complexity is

$$A_{q}(n) = qA_{s}(n) + (1 - q)A_{f}(n)$$

$$= q \left[ \log_{2}(n+1) - 1 + \frac{\log_{2}(n+1)}{n} \right] + (1 - q)(\log_{2}(n+1))$$

$$= \log_{2}(n+1) - q + q \frac{\log_{2}(n+1)}{n}$$

$$= \Theta(\log_{2}n)$$

- q is probability which is always ≤ 1
- $\frac{\log_2(n+1)}{n}$  is very small especially when n >> 1
- Binary search does approximately  $\log_2(n+1)$  comparisons on average for n elements.

#### Binary Search – Another Implementation

```
def binary_search(arr, target):
    low = 0
    high = len(arr) - 1
    while low <= high:
        mid = (low + high) // 2
        if arr[mid] == target:
            return mid # target found at index mid
        elif arr[mid] < target:
            low = mid + 1 # search right half
        else:
            high = mid - 1 # search left half
        return -1 # target not found</pre>
```

#### Jump Search

```
def jump search(arr, target):
    n = len(arr)
    step = int(math.sqrt(n))
    prev = 0
    while prev < n and arr[min(step, n) - 1] < target:
        prev = step
        step += int(math.sqrt(n))
        if prev >= n:
            return -1
    for i in range(prev, min(step, n)):
        if arr[i] == target:
            return i
    return -1
```

• When binary search is costly, e.g., searching for an element in a very large sorted dataset stored on a slow storage medium, like a database on disk or an external hard drive

#### Time Complexity of Jump Search

- Assume that the search key a is in the list
- 1. Best-case analysis: Θ (1)
- 2. Worst-case analysis:  $\Theta\left(\sqrt{n}\right) + \Theta(\sqrt{n}) = \Theta\left(\sqrt{n}\right)$
- 3. Average-case analysis:  $\sum_{i=1}^{\sqrt{n}} p_i \ \Theta(\sqrt{n}) = \sum_{i=1}^{\sqrt{n}} \frac{1}{\sqrt{n}} \Theta(\sqrt{n}) = \Theta(\sqrt{n})$
- Assume that the search key a is not in the list

$$\Theta\left(\sqrt{n}\right) + \Theta(\sqrt{n}) = \Theta\left(\sqrt{n}\right)$$

• On average, the time complexity of Jump Search is  $\Theta(\sqrt{n})$ 

#### Summary

- Exhaustive Algorithm: Sequential Search
  - Time complexity O(n)
- Decrease-and-conquer Algorithm:
  - Binary Search: Time complexity O(log<sub>2</sub>n)
  - Jump Search: Time complexity  $O(\sqrt{n})$

|            | Best Case | Average Case                  | Worst Case                    | Overall        |
|------------|-----------|-------------------------------|-------------------------------|----------------|
| Sequential | Θ (1)     | Θ (n)                         | Θ (n)                         | O(n)           |
| Binary     | Θ (1)     | Θ (logn)                      | Θ (logn)                      | O (logn)       |
| Jump       | Θ (1)     | $\Theta\left(\sqrt{n}\right)$ | $\Theta\left(\sqrt{n}\right)$ | O $(\sqrt{n})$ |