Ejemplo. Gauss-Seidel

1)
$$3 \quad a - 0.1b - 0.2c = 7.85$$

2)
$$0.1 \ a + \frac{7}{1} \ b - 0.3c = -19.3$$

3)
$$0.3 \text{ a} - 0.2\text{b} + \frac{10}{10} \text{ c} = 71.4$$

 $\epsilon = 0.001$

Analizar la Diagonal Dominante

Despejando "a" de la ec.1, "b" de la ec.2 y "c" de la ec.3.

4)
$$a = 7.85 + 0.1b + 0.2c$$

3

5)
$$b = -19.3 - 0.1a + 0.3c$$

6)
$$c = 71.4 - 0.3a + 0.2b$$

Utilizar las ecuaciones 4, 5 y 6 para las iteraciones.

Se les asigna un valor de cero a todas las variables al iniciar.

$$a_0 = 0$$
, $b_0 = 0$ y $c_0 = 0$

1er. Iteración.

Con $b_0 = 0$ y $c_0 = 0$, obtener "a₁"

$$a_1 = \frac{7.85 + 0.1(0) + 0.2(0)}{3}$$

 $a_1 = 2.616666667$

Considerando
$$a_1 = 2.616666667$$
 y $c_0 = 0$, obtener "b₁" $b_1 = -19.3 - 0.1(2.616666667) + 0.3(0)$

7

 $b_1 = -2.79452381$

Siendo
$$a_1 = 2.616666667$$
 y $b_1 = -2.79452381$, obtener " c_1 " $c_1 = 71.4 - 0.3(2.616666667) + 0.2(-2.79452381)$

 $c_1 = 7.005609524$

2da. Iteración.

Con $b_1 = -2.79452381$ y $c_1 = 7.005609524$, obtener "a₂"

$$a_2 = \frac{7.85 + 0.1(-2.79452381) + 0.2(7.005609524)}{2}$$

 $a_2 = 2.990556508$

Considerando $a_2 = 2.990556508$ y $c_1 = 7.005609524$, obtener "b₂"

$$b_2 = -19.3 - 0.1(2.990556508) + 0.3(7.005609524)$$

 $b_2 = -2.499624685$

7

Siendo $a_2 = 2.990556508$ y $b_2 = -2.499624685$, obtener " c_2 "

$$c_2 = 71.4 - 0.3(2.990556508) + 0.2(-2.499624685)$$

 $c_2 = 7.000290811$

3era. Iteración.

Con $b_2 = -2.499624685$ y $c_2 = 7.000290811$, obtener "a₃"

$$a_3 = \frac{7.85 + 0.1(-2.499624685) + 0.2(7.000290811)}{3}$$

 $a_3 = 3.000031898$

Considerando $a_3 = 3.000031898$ y $c_2 = 7.000290811$, obtener "b₃"

$$b_3 = \underline{-19.3 - 0.1(3.000031898) + 0.3(7.000290811)}$$

 $b_3 = -2.499987992$

Siendo $a_3 = 3.000031898$ y $b_3 = -2.499987992$, obtener "c₃"

$$c_3 = 71.4 - 0.3(3.000031898) + 0.2(-2.499987992)$$

10

 $c_3 = 6.999999283$

4a. Iteración.

Con $b_3 = -2.499987992$ y $c_3 = 6.999999283$, obtener "a₄"

$$a_4 = 7.85 + 0.1(-2.499987992) + 0.2(6.999999283)$$

3

 $a_4 = 3.000000352$

Considerando $a_4 = 3.000000352$ y $c_3 = 6.999999283$, obtener "b₄"

$$b_4 = -19.3 - 0.1(3.000000352) + 0.3(6.999999283)$$

7

 $b_4 = -2.500000036$

Siendo $a_4 = 3.000000352$ y $b_4 = -2.500000036$, obtener " c_4 "

$$c_4 = 71.4 - 0.3(3.000000352) + 0.2(-2.500000036)$$

10

i	а	b	С
0	0	0	0
1	2.61666667	-2.794523810	7.005609524
2	2.990556508	-2.499624685	7.000290811
3	3.000031898	-2.499987992	6.999999283
4	3.000000352	-2.50000036	6.99999989
	$\varepsilon_a = a_4 - a_3 $	$\varepsilon_b = b_4 - b_3 $	$\varepsilon_{\rm c} = \left \mathbf{c}_4 - \mathbf{c}_3 \right $

 $\varepsilon_a = 0.000031545$

 $\varepsilon_{\rm b} = 0.000012043$

 $\varepsilon_{\rm c} = 0.000000706$