Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №3.4.2

Закон Кюри-Вейсса

Автор: Ришат ИСХАКОВ

Преподаватель: Александр Александрович Казимиров

17 сентября 2016 г.

1 Цель работы

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствии поля располагались в пространстве хаотичным образом. Ферромагнитные вещества, которые при понижении температуры становятся парамагнитными должны подчиняться закону Кюри-Вейсса:

$$\chi = \frac{1}{T - \Theta_p},$$

где Θ_p - температура, близкая к температуре Кюри.

В нашей работе мы изучали температурную зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Для гадолиния точка Кюри лежит в пределах комнатных температур.

2 Экспериментальная установка

Рис. 1: Схема экспериментальной установки

1 - Катушка с образцом, 2 - стеклянный сосуд с трансформаторным маслом, 3 - вода в термостате, 4 - ртутный термометр, 5 - термостат

Параметры установки: k=24град/мВ ; $au_0=8.252$ мкс

3 Работа и измерения

Нашей задачей является проверка выполнения закона Кюри-Вейсса. Зная, что при изменении температуры должна меняться магнитная восприимчивость гадолиния, а, следовательно, и самоиндукция катушка, будем замерять период колебания τ в колебательном контуре в зависимости от температуры вещества T. Разность между температурой в термостате $T_{\text{изм.}}$ и реальной температурой вещества можно оценить с помощью термопары ΔU и коэффициента установки k. Проверим выполнение соотношения:

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_0^2)},$$

где au_0 период колебаний в отсутствии образца.

$T_{\text{изм.}}, ^{\circ}\text{C}$	14.75	15.00	16.52	17.15	18.20	19.17	20.11	21.10	22.08	23.06	24.06	26.06	28.04	30.01	32.01	34.00	35.99	39.97
ΔU , мВ	-0.02	-0.02	-0.02	-0.02	-0.02	-0.01	-0.02	-0.02	-0.02	-0.01	-0.02	-0.01	-0.02	-0.01	-0.02	-0.02	-0.02	-0.02
T, °C	14.39	15.00	16.52	17.15	18.20	19.17	20.11	21.10	22.08	23.06	24.06	26.06	28.04	30.01	32.01	34.00	35.99	39.97
τ , mkc	10.07	10.06	9.94	9.88	9.74	9.57	9.40	9.19	9.01	8.84	8.74	8.61	8.54	8.49	8.46	8.44	8.42	8.39
$\tau^2 - \tau_0^2$, mkc ²	33.26	33.04	30.65	29.44	26.85	23.51	20.28	16.43	13.16	10.00	8.29	5.95	4.78	3.98	3.46	3.05	2.73	2.28
$1/(\tau^2 - \tau_0^2), 1/\text{mkc}^2$	0.03	0.03	0.03	0.03	0.04	0.04	0.05	0.06	0.08	0.10	0.12	0.17	0.21	0.25	0.29	0.33	0.37	0.44
$\Delta(1/(\tau^2-\tau_0^2),1/\text{Hc}^2)$	0.09	0.09	0.11	0.11	0.14	0.17	0.23	0.34	0.52	0.88	1.27	2.43	3.73	5.35	7.07	9.05	11.26	16.14

Таблица 1: Данные с установки

Строим график зависимости $1/(\tau^2-\tau_0^2)=f(T)$ для определения парамагнитной точки Кюри Θ_p для гадолиния и $\tau^2-\tau_0^2=f(T)$ для проверки формулы.

Рис. 2: Зависимость $1/(\tau^2 - \tau_0^2) = f(T)$

Рис. 3: Зависимость $au^2 - au_0^2 = f(T)$

По уравнению прямой оценим значение парамагнитной точки Кюри Θ_p для гадолиния:

$$\Theta_p = 17.68 \pm 4.28^{\circ} \mathrm{C}$$

Табличное значение: 16 °C

4 Вывод

Полученное значение с учетом погрешности измерения соответствует действительности. Возможные причины погрешности измерения состоят в разнице температур между термостатом и гадолинием, несмотря на то, что это учитывается при расчете. Погрешность на частотомере очень мала.