

Single Cylinder Engine with Differential Gearbox

Iyad Baz

Table of Contents

Description	4	
Material Table:	5	
Motion Analysis	6	
Compression Ratio	7	
Analysis	8	
Description	8	
Study Results	9	
Sustainability Analysis	13	
1060 Aluminum Alloy		13
1350 Aluminum Alloy		18
Thus, it is best to use Aluminum 1350 Alloy in	the manufacturing of the connecting rod. 23	
Cost of Implementation	24	
Rendered Images	25	
References	32	

Table of Figures

Figure 1 Displacement of the piston	б
Figure 2 Velocity of the piston	6
Figure 3 Stress Analysis	9
Figure 4 Displacement Analysis	10
Figure 5 Strain Analysis	11
Figure 6 Factor of safety analysis	12
Figure 7 Cam shaft	25
Figure 8 Connecting Rod	25
Figure 9 Connecting Rod Cover	25
Figure 10 Crank Shaft	26
Figure 11 Helical Worm Gear	26
Figure 12 Large Engine Gear	26
Figure 13 Main Shaft	27
Figure 14 Side Gear	27
Figure 15 Small Engine Gear	27
Figure 16 Spider Gear Shaft	28
Figure 17 Worm Shaft	28
Figure 18 Piston Head	28
Figure 19 Piston Head	29
Figure 20 Rocker Arm	29
Figure 21 Valve Spring Retainer	29
Figure 22 Valve	30
Figure 23 Retainer	30
Figure 24 Rod	30
Figure 25 Shaft	31
Figure 26 Project Assembly	21

Description

A single-cylinder engine is a piston engine with only one cylinder, sometimes known. Motorcycles, scooters, go-karts, all-terrain vehicles, radio-controlled vehicles, portable tools, and garden machines all use this engine (such as lawnmowers, cultivators, and string trimmers). Single-cylinder engines are often simpler and more compact than multicylinder engines. Air cooling is frequently more effective for single cylinder engines than multi-cylinder engines due to the larger opportunity for airflow around all sides of the cylinder. When compared to liquid-cooled engines, this reduces the weight and complexity of air-cooled single-cylinder engines. Single-cylinder engines have greater levels of vibration and a more pulsing power delivery during each cycle. Because of the unequal power distribution, single-cylinder engines frequently require a larger flywheel than multi-cylinder engines, resulting in slower changes in engine speed.

The single cylinder engine produced in the project functions using a motor on its gear, which implements the work of the explosion (the work of the motor generally). The cam shaft is then connected to a worm shaft, which is in turn connected to a differential gearbox.

The job of the gearbox is to mainly reduce the speed and increase the torque. Additionally, it translates motion for one direction (the worm shaft), to two other shafts (the 2 sides of the spider gear shaft).

<u>Note</u>: An animation of the project is provided along with the project file to show the functionality of the assembly as to different views of each part.

Material Table:

Parts in the final Assembly	Quantity
Crank Shaft	1
Connecting rod	1
Connecting rod cover	1
Piston head	1
Piston Pin	1
Cam shaft	1
Small Gear (Engine side)	1
Large Gear (Gear Box side)	1
Shaft	1
Rocker Arm	2
Valve	2
Rod	2
Worm Shaft	1
Gearbox	1

Parts in Valve Subassembly	Quantity
Valve spring retainer	1
Retainer	1
Valve	1

Parts in Gearbox	Quantity
Main Shaft	1
Side gear	2
Spider Gear Shaft	1
Spider Gear	2
Helical Worm Gear	1
Angular contact Bearings ISO 15	2
ABB 0360	
Angular contact Bearings ISO 15	2
ABB 4260	
Angular contact Bearings ISO 15	2
ABB 8260	
Angular contact Bearings ISO 15	2
ABB 4860	
Socket set screw point	4

Motion Analysis

Simulating the motor at 650 RPM by placing a rotary motor at the crank shaft, the following displacement and velocity graphs of the piston are obtained:

Figure 1 Displacement of the piston

Figure 2 Velocity of the piston

Compression Ratio

Max displacement upwards = 793mm

Max displacement downwards = 474mm

Stroke=1267mm

Swept Volume = (Cylinder Diameter / 2) Squared x 3.14 x Stroke

 $= (240 \text{mm/2})^2 \cdot 3.14 \cdot 1267 = 57288672 \text{ mm}^3$

Clearance Volume = Piston Volume + Deck Volume + Gasket Volume + Combustion Chamber Volume

= 4460066 mm³

Compression Ratio = (Swept Volume + Clearance Volume) / Clearance Volume = 13.8448

Analysis

Description

Analysis of piston during expansion stroke

Simulation of Piston

Date: Wednesday, November 24, 2021

Designer: Iyad Baz Study name: Static 1 Analysis type: Static

Study Results

The following analysis was done during the expansion stroke with a force that will yield a speed of 250 RPM.

Name	Туре	Min	Max
Strain1	ESTRN: Equivalent Strain	3.733e-16	6.608e-06

Name	Type	Min	Max
Factor of Safety1	Automatic	2.626e+02	1.410e+13
		Node: 39812	Node: 22943

Sustainability Analysis

1060 Aluminum Alloy

Sustainability Report

Connecting Rod

Material: 1060 Alloy

Recycled content:

0.00 %

Weight: 5608.71 g

Manufacturing

Milled

process:

Surface Area: 2.90E+5 mm²

Built to last: 10 years

Duration of use: 10 years

Manufacturing Region

The choice of manufacturing region determines the energy sources and technologies used in the modeled material creation and manufacturing steps of the product's life cycle.

Use Region

The use region is used to determine the energy sources consumed during the product's use phase (if applicable) and the destination for the product at its end-of-life. Together with the manufacturing region, the use region is also used to estimate the environmental impacts associated with transporting the product from its manufacturing location to its use location.

S	um	ma	ary
			_

Learn more about Life Cycle Assessment

Sustainability Report

Sustaine	Monity Report						
Model Name:	Connecting Rod	Material:	1060 Alloy		Weight:	5608.71	Manufacturing process:
					Surface Area:	2.90E+5 mm ²	Milled
		Recycled content:	0.00 %		Built to last:	10 years	
					Duration of use:	10 years	
Mate	rial	1060 Alloy		0.00 %			
Mate	rial Unit Cost	2.20 USD/kg	5				

Manufacturing

Use

Region: Asia Region: Asia

Process: Milled Duration of use: 10 years

Electricity

consumption: 4.2E-4 kWh/lbs.

Natural gas consumption:

0.00 BTU/lbs.

Scrap rate: 9.9 %

Built to last: 10 years

Part is painted: No Paint

Transportation End of Life

Truck distance: 1600 km Recycled: 15 %

Train distance: 0.00 km Incinerated: 2.0 %

Ship distance: 6100 km Landfill: 83 %

Airplane

Distance: 0.00 km

Comments

Click here for alternative units such as 'Miles Driven in a Car'

SOLIDWORKS

Model Connecting Rod Material: 1060 Alloy Weight: Surface Area:

Recycled content: 0.00 %

Weight: 5608.71 Manufacturing g process:

Surface 2.90E+5 Milled

Area: mm²

Built to 10 years last:

Duration 10 years of use:

Environmental Impact (calculated using CML impact assessment methodology)

Carbon Footprint

Material: 77 kg CO₂e

Manufact uring: 2.7 kg CO₂e

Transport 0.537 kg ation: CO₂e

End of 0.200 kgLife: CO_2e

Total Energy Consumed

Material: 960 MJ

Manufactu ring: 27 MJ

Transporta tion: 7.2 MJ

End of U.860 MJ

80 kg CO₂e

Air Acidification

Material: 0.521 kgSO₂e

Manufact 0.038 kg uring: SO₂e

Transport 5.1E-3 kg ation: SO_2e

 $\begin{bmatrix} \text{End of} & 4.7\text{E-4 kg} \\ \text{Life:} & \text{SO}_2\text{e} \end{bmatrix}$

 $0.564 \text{ kg SO}_2\text{e}$

Water Eutrophication

990 MJ

Material: 0.017 kg PO_4e

Manufactu 1.5E-3 kg ring: PO₄e

Transporta 7.2E-4 kg tion: PO₄e

End of 7.0E-5 kg Life: PO₄e

0.019 kg PO₄e

Material Financial Impact

12.30 USD

Comments		

35 SOLIDWORKS

Click here for alternative units such as 'Miles Driven in a Car'

Sustainability Report

Model Connecting Rod Name:

Material: 1350 Alloy

Recycled 0.00 %

content:

Weight: 5608.71 g

Manufacturing

process:

Milled

Surface Area: 2.90E+5 mm²

Built to last: 10 years

Duration of use: 10 years

Manufacturing Region

The choice of manufacturing region determines the energy sources and technologies used in the modeled material creation and manufacturing steps of the product's life cycle.

Use Region

The use region is used to determine the energy sources consumed during the product's use phase (if applicable) and the destination for the product at its end-of-life. Together with the manufacturing region, the

use region is also used to estimate the environmental impacts associated with transporting the product from its manufacturing location to its use location.

Summary		

Learn more about Life Cycle Assessment

Sustainability Report

Model Name:	Connecting Rod	Material:	1350 Alloy	Weight:	5608.71 g	Manufacturing process:
				Surface Area:	2.90E+5 mm ²	Milled
		Recycled content:	0.00 %	Built to last:	10 years	
				Duration of use:	10 years	
Mate	rial	1350 Alloy	0.00 %			
Mate	rial Unit Cost	2.20 USD/kg				

Manufacturing

Use

Asia

Region: Asia Region:

Process: Milled Duration of use: 10 years

Electricity

consumption: 0.00 kWh/lbs.

Natural gas consumption:

0.00 BTU/lbs.

Scrap rate: 0.00 %

Built to last: 10 years

Part is painted: No Paint

Transportation End of Life

Truck distance: 1600 km Recycled: 15 %

Train distance: 0.00 km Incinerated: 2.0 %

Ship distance: 6100 km Landfill: 83 %

Airplane

Distance: 0.00 km

Comments

<u>Click here for alternative units such as 'Miles</u> Driven in a Car'

SOLIDWORKS

Sustainability Report

Model Name:	Connecting Rod	Material:	1350 Alloy	Weight:	5608.71	Manufacturing process:
				Surface Area:	2.90E+5 mm ²	Milled
		Recycled content:	0.00 %	Built to last:	10 years	
				Duration of use:	10 years	

Environmental Impact (calculated using CML impact assessment methodology)

Carbon Footprint

Material: 70 kg CO₂e

Manufact 0.00 kg CO₂e

Transport 0.537 kg ation: CO₂e

End of 0.200 kg Life: CO₂e

Total Energy Consumed

Material: 870 MJ

Manufactu 0.00 MJ

Transporta 7.2 MJ

End of U.ife: 0.860 MJ

71 kg CO₂e

Air Acidification

Material: 0.474 kg SO_2e

Manufact uring: 0.00 kg SO₂e

Transport 5.1E-3 kg ation: SO₂e

0.480 kg SO₂e

Water Eutrophication

880 MJ

Material: 0.015 kgPO₄e

Manufactu o.00 kg PO₄e

Transporta 7.2E-4 kg tion: PO₄e

 $\begin{bmatrix} \textbf{End of} & 7.0\text{E-5 kg} \\ \textbf{Life:} & PO_4 e \end{bmatrix}$

0.016 kg PO₄e

Material Financial Impact

12.20 USD

Comments		

SOLIDWORKS

Click here for alternative units such as 'Miles Driven in a Car'

	1060 Alloy	1350 Alloy
Cost	12.3 USD	12.2 USD
Carbon	80	71
Energy	990	880
Air	0.564	0.48
Water	0.019	0.016

Thus, it is best to use Aluminum 1350 Alloy in the manufacturing of the connecting rod.

Cost of Implementation

2 stroke engine – 1900\$

https://www.alibaba.com/product-detail/2-Stroke-Engine-2-Stroke-Outboard_1600343967313.html?spm=a2700.galleryofferlist.normal_offer.d_title.31fe74b8hjv1pk&s=p

Gearbox – 165\$

https://www.amazon.com/Yukon-Gear-YC-G40048044-Differential/dp/B0078UBPAE/ref=asc_df_B0078UBPAE?tag=bingshoppinga-20&linkCode=df0&hvadid=80607997944711&hvnetw=o&hvqmt=e&hvbmt=be&hvdev=c &hvlocint=&hvlocphy=&hvtargid=pla-4584207577282251&psc=1

Shaft - 514\$

https://www.buyautoparts.com/blog/how-much-does-a-driveshaft-cost/

Rendered Images

Figure 7 Cam shaft

Figure 8 Connecting Rod

Figure 9 Connecting Rod Cover

Figure 10 Crank Shaft

Figure 11 Helical Worm Gear

Figure 12 Large Engine Gear

Figure 13 Main Shaft

Figure 14 Side Gear

Figure 15 Small Engine Gear

Figure 16 Spider Gear Shaft

Figure 17 Worm Shaft

Figure 18 Piston Head

Figure 19 Piston Head

Figure 20 Rocker Arm

Figure 21 Valve Spring Retainer

Figure 22 Valve

Figure 23 Retainer

Figure 24 Rod

Figure 25 Shaft

Figure 26 Project Assembly

References

SolidWorks Tutorial â[~] °. (2017, May 31). *SolidWorks Tutorial #275: advanced differential gear box* (+ *speed reducer worm gear & spider gears*) [Video]. YouTube. https://www.youtube.com/watch?v=a3UcmOBPCiw

CAD CAM TUTORIAL. (2016, December 30). *Solidworks tutorial | Sketch Engine in Solidworks* [Video]. YouTube. https://www.youtube.com/watch?v=PiSMgTaHm9I