AI-Prompt-Driven Curriculum for Functorial Physics

A modular, self-guided curriculum using AI prompts to explore and internalize the framework. At each step, feed the prompt to your favorite LLM, refine its output, and compare against canonical references.

Module	Learning Goals	AI Prompt
1. Foundations of Category Theory	Understand objects, morphisms, functors, natural transformations	"Explain the basic concepts of category theory—objects, morphisms, functors, and natural transformations—with simple examples."
2. Classical Mechanics as a Category	Model symplectic manifolds and canonical maps categorically	"Describe the category whose objects are symplectic manifolds and whose morphisms are symplectomorphisms, including examples."
3. Quantum Mechanics as a Category	View Hilbert spaces and unitaries in categorical terms	"Define the category of Hilbert spaces with unitary morphisms. How do quantum channels generalize this?"
4. Building the Quantization Functor	Construct $\mathcal{Q}: \mathbf{C} \to \mathbf{Q}$ on simple systems	"Show how to quantize the 1D harmonic oscillator by defining a functor from its phase space to a Hilbert space and symplectic flow to the unitary propagator."
5. Semiclassical & De-Quantization	Capture $\hbar \to 0$ limits as a functor	"Explain how to construct a functor from quantum systems back to classical phase spaces via WKB approximation, illustrating with coherent states."
6. Ad- jointness & Natural Transfor- mations	Verify the adjoint relationship and correspondence principle	"Demonstrate the unit and counit natural transformations that witness an adjunction between quantization and semiclassical functors."
7. Applications & Extensions	Explore field theories, gauge symmetry, and topological functors	"Propose how higher-category or 2-functor structures can encode path integrals or gauge symmetry in Functorial Physics."
8. Research Project	Design a small research question in functorial unification	"Using Functorial Physics, outline a project to functorially quantize a simple gauge theory (e.g. U(1) electromagnetism) and compare classical and quantum structures."