Cross-Graph Learning of Multi-Relational Associations

Hanxiao Liu, Yiming Yang Carnegie Mellon University {hanxiaol, yiming}@cs.cmu.edu

June 22, 2016

Outline

Task Description

New Contributions

Framework

Scalable Inference

Empirical Evaluation

Summary

Task Description

Goal: Predict associations among heterogeneous graphs.

"John publish a reinforcement learning paper at ICML."
(John,RL_Paper,ICML)

Outline

Task Description

New Contributions

Framework

Scalable Inference

Empirical Evaluation

Summary

New Contributions

- ► A unified framework to integrating heterogeneous information in multiple graphs.
- ► Transductive learning to leverage both labeled data (sparse) and unlabeled data (massive).
- ▶ A convex approximation for the scalable inference over the combinatorial number of possible tuples.

Outline

Task Description

New Contributions

Framework

Scalable Inference

Empirical Evaluation

Summary

Notation

- ▶ $G^{(1)}, G^{(2)}, \dots, G^{(J)}$ are individual graphs;
- n_j is the #nodes in $G^{(j)}$;
- (i_1, i_2, \ldots, i_J) is a tuple (multi-relation);
- $f_{i_1,i_2,...,i_J}$ is the predicted score for the tuple;
- f is a tensor in $\mathbb{R}^{n_1 \times n_2 \times \cdots \times n_J}$.

Product Graph (\mathscr{P}) induced from $G^{(1)}, \ldots, G^{(J)}$.

Tensor product: $\mathscr{P}(G^{(1)}, G^{(2)}, G^{(3)}) = G^{(1)} \otimes G^{(2)} \otimes G^{(3)}$

Product Graph (\mathscr{P}) induced from $G^{(1)}, \ldots, G^{(J)}$.

Tensor product: $\mathscr{P}(G^{(1)}, G^{(2)}, G^{(3)}) = G^{(1)} \otimes G^{(2)} \otimes G^{(3)}$

Why product graph?

▶ Mapping heterogeneous graphs onto a unified graph for label propagation (transductive learning).

Assuming

$$vec(f) \sim \mathcal{N}\left(0, \mathscr{P}\right)$$

(1)

which implies

$$-\log p(f|\mathscr{P}) \propto vec(f)^{\top} \mathscr{P}^{-1} vec(f) := ||f||_{\mathscr{P}}^{2} \qquad (2)$$

Optimization problem

$$\min_{f} \ \ell_{\mathcal{O}}(f) + \frac{\gamma}{2} \|f\|_{\mathscr{P}}^{2} \tag{3}$$

Assuming

$$vec(f) \sim \mathcal{N}(0, \mathscr{P})$$
 (1)

which implies:

$$-\log p(f|\mathscr{P}) \propto vec(f)^{\top} \mathscr{P}^{-1} vec(f) := \|f\|_{\mathscr{P}}^{2} \qquad (2)$$

Optimization problem

$$\min_{f} \ \ell_{\mathcal{O}}(f) + \frac{\gamma}{2} \|f\|_{\mathscr{P}}^{2} \tag{3}$$

Assuming

$$vec(f) \sim \mathcal{N}(0, \mathscr{P})$$
 (1)

which implies:

$$-\log p(f|\mathscr{P}) \propto vec(f)^{\top} \mathscr{P}^{-1} vec(f) := ||f||_{\mathscr{P}}^{2}$$
 (2)

Optimization problem

$$\min_{f} \ \ell_{\mathcal{O}}(f) + \frac{\gamma}{2} \|f\|_{\mathscr{P}}^{2} \tag{3}$$

For computational tractability, we focus on the spectral graph product family of \mathscr{P} .

Spectral Graph Product (SGP)

The eigensystem of $\mathscr{P}_{\kappa}\left(G^{(1)},\ldots,G^{(J)}\right)$ is parametrized by the eigensystems of individual graphs, i.e.,

$$\left\{\kappa(\lambda_{i_1},\ldots,\lambda_{i_J}),\bigotimes_j v_{i_j}\right\}_{i_1,\ldots,i_J} \tag{4}$$

 λ_{i_j}/v_{i_j} is the i_j -th eigenvalue/eigenvector of the j-th graph.

Nice properties of SGP:

Subsuming basic operations

$$\kappa(x,y) = x \times y \implies \mathscr{P}_{\kappa}(G,H) = G \otimes H \quad \text{Tensor}$$
(5)

$$\kappa(x,y) = x + y \implies \mathscr{P}_{\kappa}(G,H) = G \oplus H \quad \text{Cartesian} \quad (6)$$

Supporting graph diffusions

$$\sigma_{Heat}(\mathscr{P}_{\kappa}) = I + \mathscr{P}_{\kappa} + \frac{1}{2}\mathscr{P}_{\kappa}^{2} + \dots = \mathscr{P}_{e^{\kappa}}$$
 (7)

$$\sigma_{von-Neumann}(\mathscr{P}_{\kappa}) = I + \mathscr{P}_{\kappa} + \mathscr{P}_{\kappa}^{2} + \dots = \mathscr{P}_{\frac{1}{1-\kappa}}$$
 (8)

Order-insensitive: If κ is commutative, then SGP is commutative (up to graph isomorphism).

Nice properties of SGP:

Subsuming basic operations

$$\kappa(x,y) = x \times y \implies \mathscr{P}_{\kappa}(G,H) = G \otimes H \quad \text{Tensor}$$
(5)

$$\kappa(x,y) = x + y \implies \mathscr{P}_{\kappa}(G,H) = G \oplus H \quad \text{Cartesian} \quad (6)$$

Supporting graph diffusions

$$\sigma_{Heat}(\mathscr{P}_{\kappa}) = I + \mathscr{P}_{\kappa} + \frac{1}{2}\mathscr{P}_{\kappa}^{2} + \dots = \mathscr{P}_{e^{\kappa}}$$
 (7)

$$\sigma_{von-Neumann}(\mathscr{P}_{\kappa}) = I + \mathscr{P}_{\kappa} + \mathscr{P}_{\kappa}^{2} + \dots = \mathscr{P}_{\frac{1}{1-\kappa}}$$
 (8)

Order-insensitive: If κ is commutative, then SGP is commutative (up to graph isomorphism).

Nice properties of SGP:

Subsuming basic operations

$$\kappa(x,y) = x \times y \implies \mathscr{P}_{\kappa}(G,H) = G \otimes H \quad \text{Tensor}$$
(5)

$$\kappa(x,y) = x + y \implies \mathscr{P}_{\kappa}(G,H) = G \oplus H$$
 Cartesian (6)

Supporting graph diffusions

$$\sigma_{Heat}(\mathscr{P}_{\kappa}) = I + \mathscr{P}_{\kappa} + \frac{1}{2}\mathscr{P}_{\kappa}^{2} + \dots = \mathscr{P}_{e^{\kappa}}$$
 (7)

$$\sigma_{von-Neumann}(\mathscr{P}_{\kappa}) = I + \mathscr{P}_{\kappa} + \mathscr{P}_{\kappa}^{2} + \dots = \mathscr{P}_{\frac{1}{1-\kappa}}$$
 (8)

Order-insensitive: If κ is commutative, then SGP is commutative (up to graph isomorphism).

Outline

Task Description

New Contributions

Framework

Scalable Inference

Empirical Evaluation

Summary

For general GP, the semi-norm is computed as

$$||f||_{\mathscr{P}}^2 = vec(f)^{\top} \mathscr{P}^{-1} vec(f)$$
(9)

For SGP, \mathscr{P}_{κ} no longer has to be explicitly computed.

$$||f||_{\mathscr{P}_{\kappa}}^{2} = \sum_{i_{1}, i_{2}, \dots, i_{J}}^{n_{1}, n_{2}, \dots, n_{J}} \frac{f(v_{i_{1}}, \dots, v_{i_{J}})^{2}}{\kappa(\lambda_{i_{1}}, \dots, \lambda_{i_{J}})}$$
(10)

- $f(v_{i_1}, v_{i_2}, \dots, v_{i_J}) = f \times_1 v_{i_1} \times_2 v_{i_2} \cdots \times_J v_{i_J}$
- ▶ However, even evaluating (10) is expensive.

For general GP, the semi-norm is computed as

$$||f||_{\mathscr{P}}^2 = vec(f)^{\top} \mathscr{P}^{-1} vec(f)$$
(9)

For SGP, \mathscr{P}_{κ} no longer has to be explicitly computed.

$$||f||_{\mathscr{P}_{\kappa}}^{2} = \sum_{i_{1}, i_{2}, \dots, i_{J}}^{n_{1}, n_{2}, \dots, n_{J}} \frac{f(v_{i_{1}}, \dots, v_{i_{J}})^{2}}{\kappa(\lambda_{i_{1}}, \dots, \lambda_{i_{J}})}$$
(10)

- $f(v_{i_1}, v_{i_2}, \dots, v_{i_J}) = f \times_1 v_{i_1} \times_2 v_{i_2} \cdots \times_J v_{i_J}$
- ightharpoonup However, even evaluating (10) is expensive.

For general GP, the semi-norm is computed as

$$||f||_{\mathscr{P}}^2 = vec(f)^{\top} \mathscr{P}^{-1} vec(f)$$
(9)

For SGP, \mathscr{P}_{κ} no longer has to be explicitly computed.

$$||f||_{\mathscr{P}_{\kappa}}^{2} = \sum_{i_{1}, i_{2}, \dots, i_{J}}^{n_{1}, n_{2}, \dots, n_{J}} \frac{f(v_{i_{1}}, \dots, v_{i_{J}})^{2}}{\kappa(\lambda_{i_{1}}, \dots, \lambda_{i_{J}})}$$
(10)

- $f(v_{i_1}, v_{i_2}, \dots, v_{i_J}) = f \times_1 v_{i_1} \times_2 v_{i_2} \cdots \times_J v_{i_J}$
- \blacktriangleright However, even evaluating (10) is expensive.

Using low-rank SGP

- f lies in the linear span of the eigenvectors of \mathscr{P} .
- ▶ Eigenvectors of high volatility can be pruned away.

Using low-rank SGP

- f lies in the linear span of the eigenvectors of \mathscr{P} .
- ► Eigenvectors of high volatility can be pruned away.

Figure : Eigenvectors of G (blue), H (red) and $\mathcal{P}(G, H)$.

Restrict f in the linear span of "smooth" bases of \mathscr{P} .

$$f(\alpha) = \sum_{i_1, i_2, \dots, i_J = 1}^{d_1, d_2, \dots, d_J} \alpha_{i_1, i_2, \dots, i_J} \bigotimes_j v_{i_j}$$

$$\tag{11}$$

where the core tensor $\alpha \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_J}$, $d_j \ll n_j$.

The semi-norm becomes

$$||f(\alpha)||_{\mathscr{P}_{\kappa}}^{2} = \sum_{i_{1}, i_{2}, \dots, i_{J}=1}^{d_{1}, d_{2}, \dots, d_{J}} \frac{\alpha_{i_{1}, i_{2}, \dots, i_{J}}^{2}}{\kappa(\lambda_{i_{1}}, \lambda_{i_{2}}, \dots, \lambda_{i_{J}})}$$
(12)

We then optimize w.r.t. α instead of f. Parameter size $\prod_j n_j \to \prod_j d_j$.

Restrict f in the linear span of "smooth" bases of \mathscr{P} .

$$f(\alpha) = \sum_{i_1, i_2, \dots, i_J = 1}^{d_1, d_2, \dots, d_J} \alpha_{i_1, i_2, \dots, i_J} \bigotimes_j v_{i_j}$$

$$\tag{11}$$

where the core tensor $\alpha \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_J}$, $d_j \ll n_j$.

The semi-norm becomes

$$||f(\alpha)||_{\mathscr{P}_{\kappa}}^{2} = \sum_{i_{1}, i_{2}, \dots, i_{J} = 1}^{d_{1}, d_{2}, \dots, d_{J}} \frac{\alpha_{i_{1}, i_{2}, \dots, i_{J}}^{2}}{\kappa(\lambda_{i_{1}}, \lambda_{i_{2}}, \dots, \lambda_{i_{J}})}$$
(12)

We then optimize w.r.t. α instead of f. Parameter size: $\prod_j n_j \to \prod_j d_j$.

Figure : Tucker Decomposition, where α is the core tensor.

Revised optimization objective

$$\min_{\alpha \in \mathbb{R}^{d_1 \times d_2 \cdots \times d_J}} \ \ell_{\mathcal{O}}(f(\alpha)) + \frac{\gamma}{2} \|f(\alpha)\|_{\mathscr{P}_{\kappa}}^2$$

Ranking loss function

$$\ell_{\mathcal{O}}(f) = \frac{\sum_{\substack{(i_1, \dots, i_J) \in \mathcal{O} \\ (i'_1, \dots, i'_J) \in \bar{\mathcal{O}}}} \left(f_{i_1 \dots i_J} - f_{i'_1 \dots i'_J} \right)_+^2}{|\mathcal{O} \times \bar{\mathcal{O}}|}$$

$$\nabla_{\alpha} = \frac{\partial \ell_{\mathcal{O}}}{\partial f} \left(\frac{\partial f_{i_1, \dots, i_J}}{\partial \alpha} - \frac{\partial f_{i'_1, \dots, i'_J}}{\partial \alpha} \right) + \gamma \alpha \oslash \kappa \tag{15}$$

(13)

Revised optimization objective

$$\min_{\alpha \in \mathbb{R}^{d_1 \times d_2 \cdots \times d_J}} \ell_{\mathcal{O}}(f(\alpha)) + \frac{\gamma}{2} \|f(\alpha)\|_{\mathscr{P}_{\kappa}}^2$$
 (13)

Ranking loss function

$$\ell_{\mathcal{O}}(f) = \frac{\sum_{\substack{(i_{1}, \dots, i_{J}) \in \mathcal{O} \\ (i'_{1}, \dots, i'_{J}) \in \bar{\mathcal{O}}}} \left(f_{i_{1} \dots i_{J}} - f_{i'_{1} \dots i'_{J}} \right)_{+}^{2}}{|\mathcal{O} \times \bar{\mathcal{O}}|}$$

$$\nabla_{\alpha} = \frac{\partial \ell_{\mathcal{O}}}{\partial f} \left(\frac{\partial f_{i_{1}, \dots, i_{J}}}{\partial \alpha} - \frac{\partial f_{i'_{1}, \dots, i'_{J}}}{\partial \alpha} \right) + \gamma \alpha \otimes \kappa$$
 (15)

18 / 24

Revised optimization objective

$$\min_{\alpha \in \mathbb{R}^{d_1 \times d_2 \cdots \times d_J}} \ell_{\mathcal{O}}(f(\alpha)) + \frac{\gamma}{2} ||f(\alpha)||_{\mathscr{P}_{\kappa}}^2$$
 (13)

Ranking loss function

$$\ell_{\mathcal{O}}(f) = \frac{\sum_{\substack{(i_1, \dots, i_J) \in \mathcal{O} \\ (i'_1, \dots, i'_J) \in \bar{\mathcal{O}}}} \left(f_{i_1 \dots i_J} - f_{i'_1 \dots i'_J} \right)_+^2}{|\mathcal{O} \times \bar{\mathcal{O}}|}$$
(14)

$$\nabla_{\alpha} = \frac{\partial \ell_{\mathcal{O}}}{\partial f} \left(\frac{\partial f_{i_1, \dots, i_J}}{\partial \alpha} - \frac{\partial f_{i'_1, \dots, i'_J}}{\partial \alpha} \right) + \gamma \alpha \oslash \kappa \tag{15}$$

Tensor algebras are carried out on GPU.

Outline

Task Description

New Contributions

Framework

Scalable Inference

Empirical Evaluation

Summary

Empirical Evaluation

Datasets

Enzyme 445 compounds, 664 proteins.

DBLP 34K authors, 11K papers, 22 venues.

Representative Baselines

TF/GRTF Tensor Factorization/Graph-Regularized TF

NN One-class Nearest Neighbor

RSVM Ranking SVMs

LTKM Low-Rank Tensor Kernel Machines

Empirical Evaluation

Datasets

Enzyme 445 compounds, 664 proteins.

DBLP 34K authors, 11K papers, 22 venues.

Representative Baselines

TF/GRTF Tensor Factorization/Graph-Regularized TF

NN One-class Nearest Neighbor

RSVM Ranking SVMs

LTKM Low-Rank Tensor Kernel Machines

Empirical Evaluation

Our method: "TOP" (blue).

Figure: Performance on Enzyme (above) and DBLP (below).

Outline

Task Description

New Contributions

Framework

Scalable Inference

Empirical Evaluation

Summary

Summary

Contribution

- ► A unified framework to integrating heterogeneous information in multiple graphs.
- ► Transductive learning to leverage both labeled data (sparse) and unlabeled data (massive).
- ▶ A convex approximation for the scalable inference over the combinatorial number of possible tuples.

Future/On-going Work

- ▶ Learning structured associations.
- ▶ Larger problems: Microsoft Academic Graph (37 GB).

Summary

Contribution

- ► A unified framework to integrating heterogeneous information in multiple graphs.
- ► Transductive learning to leverage both labeled data (sparse) and unlabeled data (massive).
- ▶ A convex approximation for the scalable inference over the combinatorial number of possible tuples.

Future/On-going Work

- ▶ Learning structured associations.
- ▶ Larger problems: Microsoft Academic Graph (37 GB).

Thank You