УДК 519.74

Н.В. Федоров

ХАРАКТЕРИЗАЦИОННЫЙ АНАЛИЗ СВОЙСТВ СЕТЕЙ ПЕТРИ

Рассмотрены принципы характеризационного анализа сложных систем в задачах систем автоматизированного проектирования и применение данной методологии для анализа свойств сетей Петри: безопасность, ограниченность и сохранение.

Ключевые слова: характеризационный анализ, системы автоматизированного проектирования, сети Петри, безопасность, ограниченность, сохранение.

принцип характеризационного анализа сложных систем используется во многих задачах систем автоматизированного проектирования [1]. Данная методология позволяет определить необходимые и достаточные условия для преобразования одной модели в другую без увеличения носителя модели.

Любую систему автоматизированного проектирования можно представить как последовательность модельных преобразований:

$$\Psi_1 \to \Psi_2 \to \dots \to \Psi_n$$

причем каждую модель можно представить как двусортное множество $\Psi_i = \langle X_i, U_i \rangle$, где $X_i = \{x_{i1}, x_{i2}, ..., x_{ik}\}$ — носитель модели (элементы модели), а $U_i = \{u_{i1}, u_{i2}, ..., u_{im}\}$ — сигнатура модели (операции над элементами модели).

При преобразовании одной модели в другую $\Psi_i \to \Psi_j$ необходимо найти алгоритм интерпретации носителя модели Ψ_j в терминах носителя модели Ψ_i . При разработке данного алгоритма основной проблемой является нахождение в исходной модели Ψ_i таких подмоделей, которые не позволяют однозначно интерпретировать носитель модели Ψ_j в терминах носителя модели Ψ_i . Данные модели в характеризационном анализе называются запрещенными фигурами. Отсутствие в модели Ψ_i является необходимым и достаточным условием для однозначного преобразования данной модели в модель Ψ_i .

При наличии в модели Ψ_i запрещенных фигур преобразование возможно только при изменении носителя или сигнатуры модели Ψ_i (расширение или сужение), что приводить к удалению запрещенных фигур из модели Ψ_i .

При минимальном расширении носителя эта задача сводится к покрытию следующей двоичной матрицы:

Носитель модели	Запрещенные фигуры					
Ψ_{i}	Z_{j1}	Z_{j2}	•••	$Z_{_{ m jm}}$	•••	$Z_{ m jv}$
x_{i1}	0	1		0	•••	1
x_{i2}	1	0		1	•••	0
	•••	•••			•••	•••
$x_{\rm in}$	1	1		1	•••	0
	•••				•••	
$x_{_{ m ik}}$	0	0		1	•••	1

Элемент $(x_{\rm in}, Z_{\rm jm})$ данной матрицы равен 1, если $x_{\rm in}$ принадлежит $Z_{\rm im}$, и 0 в противном случае.

Носители модели Ψ_i , которые вошли в найденное покрытие, расщепляются на необходимое число для удаления запрещенных фигур.

Рассмотрим применение данной методологии для анализа свойств сетей Петри, которые используются в системах автоматизированного проектирования одной из основных моделей для моделирования систем [2].

При анализе моделей, построенных на основе сетей Петри, основными свойствами являются безопасность, ограниченность и сохранение [2, 5].

Для характеризации этих свойств будем рассматривать стандартные сети Петри [2].

Сеть Петри $C = \langle P, T, I, O \rangle$ называется стандартной, если в данной сети существует позиции p_0 (исток) и p_{n+1} (сток) такие, что $\#(p_0, I(t_j)) = 0$ и $\#(p_{n+1}, O(t_j)) = 0$ для любого перехода $t_j \in T$, причем начальной маркировкой является маркировка $(1,0,\dots,0,0,0)$, а конечной $-(0,0,\dots,0,\dots,0,1)$. Для любой сети Петри можно построить эквивалентную стандартную сеть Петри [2].

Рассмотрим характеризацию свойств безопасности, ограниченности и сохранения.

Любой переход в сети Петри можно рассматривать как следующее отношение:

- (1:1;1:1) переход имеет один вход от одной позиции и один выход в одну позицию;
- (1:n; 1:1) переход имеет n входов от одной позиции и один выход в одну позицию;
- (1:1; n:1) переход имеет один вход от одной позиции и n выходов в одну позицию;

(1:1; n:g) — переход имеет один вход от одной позиции и nвыходов в д позиций;

(n:1;1:1) — переход имеет один вход от каждой из n позиций и один выход в одну позицию;

(n:m; 1:1) — переход имеет m входов от каждой из n позиций и один выход в одну позицию;

(n:m; k:1) — переход имеет m входов от каждой из n позиций и k выходов в одну позицию;

(n:m; k:g) — переход имеет m входов от каждой из n позиций и k выходов в g позиций.

Только данные отношения влияют на запуск перехода.

Отношение (1:1; 1:1) — переход имеет один вход от одной позиции и один выход в одну позицию - можно рассматривать как одну позицию. В дальнейшим данные переходы не рассматриваются.

Позиция p_i в сети Петри $C = \langle P, T, I, O \rangle$ с начальной маркировкой μ_0 является безопасной, если для любой достижимой маркировки $\mu \in R(C, \mu_0)$, где $R(C, \mu_0)$ — множество достижимости сети Петри C, $\mu(p_i) <= 1$ [2, 5]. Сеть Петри C = < P, T, I, O > с начальной маркировкой μ_0 яв-

ляется безопасной, если любая позиция $p_i \in P$ безопасна [2, 5]. Позиция $p_i \in P$ сети Петри C = (P, T, I, O) с начальной маркировкой μ_0 является k-ограниченной, если $\mu_i \le k$ для всех $\mu \in R(C, \mu_0)$, где $R(C, \mu_0)$ — множество достижимости сети Петри C, $\mu(p_i) <= k [2, 5].$

Сеть Петри C = (P, T, I, O) с начальной маркировкой μ_0 ограничена, если существует такое число n, что все позиции $p_i \in P$

ограничены n-ограничены. Сеть Петри $C=(P,\,T,\,I,\,O)$ с начальной маркировкой μ_0 называется строго сохраняющей, если для всех $\mu\in R(C,\,\mu_0)$

$$\sum_{i=1}^{n} \mu_{i} = \sum_{i=1}^{n} \mu_{0i}$$

Сеть Петри C = (P, T, I, O) с начальной маркировкой μ_0 называется сохраняющей по отношению к вектору взвешивания $w = (w_1, w_2, ..., w_n), w > 0$, если для всех $\mu \in R(C, \mu_0)$

$$\sum_{i=1}^n \mu_i * w_i = \sum_{i=1}^n \mu_{0i} * w_i$$

Рассмотрим характеризацию свойства ограниченности сети Петри.

Теорема 1. (Запрещенная фигура 1 рода для свойства ограниченности). Сеть Петри C = (P, T, I, O) с начальной маркировкой μ_0 неограниченна, если в соответствующей стандартной сети существует подсеть $Z_1 = < P_{\rm z1},\ T_{\rm z1},\ I_{\rm z1},\ O_{\rm z1}>,\ {\rm rдe}\ P_{\rm z1} = \{p_{\rm z10},\ p_{\rm z11},\ p_{\rm z12}\},\ T_{\rm z1} = \{t_{\rm z10}\},\ I_{\rm z1}(t_{\rm z10}) = \{p_{\rm z10}\},\ O_{\rm z1} = \{p_{\rm z12},\ p_{\rm z11}{}^n\ (n>=1)\},\ {\rm причем}$ позиции $p_{\rm z10}$ (сток), $p_{\rm z12}$ (исток) определяют стандартную сеть Петри и позиция $p_{\rm z10}$ достижима из начальной маркировки $\mu_{\rm 0}.$

Доказательство. Позиция p_{z10} достижима из начальной маркировки μ_0 , т.е. $\mu(p_{z10})>=1$. В этом случае переход t_{z10} разрешен, т.к. $\mu(p_{z10})>=\#(p_{z10},I(t_{z10}))=1$. Новая маркировка позиций p_{z10} , $p_{z11},p_{z12}:\mu(p_{z10})=\mu(p_{z10})-1;\mu(p_{z11})=\mu(p_{z11})+n;\mu(p_{z12})=\mu(p_{z12})+1$. Т.к. позиции p_{z10} (сток), p_{z12} (исток) определяют стандартную сеть Петри и позиция p_{z10} достижима из начальной маркировки μ_0 , то существует последовательность переходов, которая помещает фишку в позицию p_{z10} , т.е. число фишек в позиции p_{z11} бесконечно возрастает, что доказывает неограниченность данной сети.

Теорема 2. (Запрещенная фигура 2 рода для свойства ограниченности). Сеть Петри $C=(P,\ T,\ I,\ O)$ с начальной маркировкой μ_0 неограниченна, если в соответствующей стандартной сети существует подсеть $Z_2=<\!P_{z2},\ T_{z2},\ I_{z2},\ O_{z2}\!>$, где $P_{z2}=\{p_{z20},\ p_{z21}\},\ T_{z2}=\{t_{z20}\},\ I_{z2}(t_{z20})=\{p_{z20}\},\ O_{z2}=\{p_{z21}^{\ n}\ (n>1)\}$, причем позиции p_{z20} (сток), p_{z21} (исток) определяют стандартную сеть Петри и позиция p_{z20} достижима из начальной маркировки μ_0 .

Доказательство. Позиция p_{z10} достижима из начальной маркировки μ_0 , т.е. $\mu(p_{z20})>=1$. В этом случае переход t_{z20} разрешен, т.к. $\mu(p_{z20})>=\#(p_{z20},I(t_{z20}))=1$. Новая маркировка позиций p_{z20} , p_{z21} : $\mu(p_{z20})=\mu(p_{z20})-1$; $\mu(p_{z21})=\mu(p_{z21})+n$. Т.к. позиции p_{z20} (сток), p_{z21} (исток) определяют стандартную сеть Петри и позиция p_{z20} достижима из начальной маркировки μ_0 , то существует последовательность переходов, которая помещает фишку в позицию p_{z20} , т.е. число фишек в позиции p_{z21} бесконечно возрастает, что доказывает неограниченность данной сети.

Данные теоремы характеризуют переходы следующих отношений:

(1:1; n:1) — переход имеет один вход от одной позиции и n выходов в одну позицию;

(1:1; n:g) — переход имеет один вход от одной позиции и n выходов в g позиций.

Следующие отношения не могут влиять на свойство ограниченности, т.к. они только уменьшают количество фишек:

(n:1; 1:1) — переход имеет один вход от каждой из n позиций и один выход в одну позицию;

(n:m; 1:1) — переход имеет m входов от каждой из n позиций и один выход в одну позицию.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Горбатов В.А.* Фундаментальные основы дискретной математики. М.: Наука. Физматлит, 1999. 544 с.
- 2. Питерсон Дж. Теория сетей Петри и моделирование систем: Пер. с англ. М.: Мир, 1984. 264 с.
- 3. Федоров Н. \overline{B} ., Игнатов О. Н. Метод имитационного моделирования инвестиционных проектов на основе динамических продуцирующих сетей // Горный информационно-аналитический бюллетень. 2010.-N2. С. 128-136.
- 4. Устимов К.О., Федоров Н.В. Автоматизация построения имитационной модели бизнес-процессов на основе методологии IDEF0 и раскрашенных сетей Петри // Горный информационно-аналитический бюллетень. -2013. № 12. С. 90-94.
- 5. Горбатов В.А., Крылов А.В., Федоров Н.В. САПР систем логического управления. М.: Энергоатомиздат, 1988. 231 с.
- 6. Федоров Н. В. Математическое и имитационное моделирование сложных систем. Учебное пособие. М.: МГИУ, 2014. 252 с. ПАБ

КОРОТКО ОБ АВТОРЕ

Федоров Николай Владимирович — кандидат технических наук, доцент, зав. кафедрой,

Московский государственный индустриальный университет.

UDC 519.74

N.V. Fedorov

HARAKTERIZATSIONNY ANALYSIS OF PROPERTIES OF NETWORKS OF PETRI

The article considers the principles harakterizatsionny complex systems analysis in problems of computer-aided design and application of this methodology to the analysis of properties of Petri nets: security, limitations and save.

Key words: harakterizatsionny analysis, computer-aided design systems, Petri networks, security, limitations and save.

AUTHOR

Fedorov N.V., Candidate of Technical Sciences, Assistant Professor, Head of Chair, Moscow State Industrial University, 115280, Moscow, Russia.

REFERENCES

- 1. Gorbatov V.A. *Fundamental'nye osnovy diskretnoy matematiki* (Basics of discrete mathematics), Moscow, Nauka, Fizmatlit, 1999, 544 p.
- 2. Piterson Dzh. *Teoriya setey Petri i modelirovanie sistem*: Per. s angl. (Petri net theory and modeling of systems. English—Russian translation), Moscow, Mir, 1984, 264 p.
- 3. Fedorov N.V., Ignatov O.N. *Gornyy informatsionno-analiticheskiy byulleten*'. 2010, no 7, pp. 128–136.
- 4. Ustimov K. O., Fedorov N. V. *Gornyy informatsionno-analiticheskiy byulleten*'. 2013, no 12, pp. 90–94.
- 5. Gorbatov V.A., Krylov A.V., Fedorov N.V. *SAPR sistem logicheskogo upravleniya* (CAD of logical control systems), Moscow, Energoatomizdat, 1988, 231 p.
- 6. Fedorov N. V. *Matematicheskoe i imitatsionnoe modelirovanie slozhnykh sistem*. Uchebnoe posobie (Mathematical and simulation modeling of complex systems. Educational aid), Moscow, MGIU, 2014, 252 p.