

GOAL

Determine whether an infinite series is CONVERGENT or DIVERGENT (by comparison).

Theorem 1

$$\sum_{n=1}^{+\infty} a_n \text{ and } \sum_{n=1}^{+\infty} b_n \text{ differ only}$$
by a finite number of terms,

both series converges or both series diverges

Example. Convergent or divergent?

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{n+2}$$
Convergent

Example. Convergent or divergent?

$$\sum_{n=1}^{+\infty} \frac{1}{n+4}$$

Divergent

Theorem 2

Let c be a constant.

$$\sum_{n=1}^{+\infty} u_n \text{ is convergent with a}$$

$$\sup \text{ of } S$$

$$\Longrightarrow \sum_{n=1}^{+\infty} c \cdot u_n \text{ is convergent with a}$$

sum of $c \cdot S$.

Theorem 3

Let c be a non-zero constant.

$$\sum_{n=1}^{+\infty} u_n \text{ is divergent}$$

$$\implies \sum_{n=1}^{+\infty} c \cdot u_n \text{ is divergent.}$$

Example. Convergent or divergent?

$$\sum_{n=1}^{+\infty} \frac{4}{n(n+1)}$$

Convergent

Example. Convergent or divergent?

$$\sum_{n=1}^{+\infty} \frac{-5}{n^{\frac{1}{2}}}$$

Divergent

Theorem 4.a

$$\sum_{n=1}^{\infty} a_n$$
 is convergent with sum *S*.

$$\sum_{n=1}^{+\infty} b_n$$
 is convergent with sum R .

$$\sum_{n=1}^{n=1} b_n \text{ is convergent with sum } R.$$

$$\sum_{n=1}^{+\infty} b_n \text{ is convergent with sum } R.$$

$$\sum_{n=1}^{+\infty} (a_n \pm b_n) \text{ are also convergent}$$

$$\sum_{n=1}^{+\infty} (a_n \pm b_n) \text{ are also convergent}$$

with a sum of $S \pm R$

Theorem 4.b

 $\sum_{n=1}^{\infty} a_n$ is convergent with sum S. $\sum_{n=1}^{\infty} b_n$ is divergent. n=1

 $\Longrightarrow \sum_{n=0}^{+\infty} (a_n \pm b_n)$ are divergent.

Example 3. Convergent or divergent?

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2^{n-1}} - \frac{6}{3^{n-1}} \right)$$

Example 4. Convergent or divergent?

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n(n+1)} + \frac{1}{n} \right)$$

Divergent

CAUTION!!!

$$\sum_{n=1}^{+\infty} a_n \text{ and } \sum_{n=1}^{+\infty} b_n \text{ are divergent.}$$

NO (GENERAL) CONCLUSION on convergence/divergence of

$$\sum_{n=1}^{+\infty} (a_n \pm b_n)$$

