Time Expression Recognition Using a Constituent-based Tagging Scheme

Xiaoshi Zhong and Erik Cambria

Nanyang Technological University

{xszhong, cambria}@ntu.edu.sg

Outline

• Time expression analysis

- Datasets: TimeBank, Gigaword, WikiWars, Tweets
- Findings: loose structure, differentiable

• Time expression recognition

- TOMN: a constituent-based tagging scheme
- Baselines: HeidelTime, SUTime, SynTime, ClearTK, UWTime
- Datasets: TE-3, WikiWars, Tweets

Time Expression – Examples

```
Today
Friday
September
Last week
2 years ago
September 2006
2006 September
January 30, 1998
1 September 2006
the third quarter of 1984
. . .
```

Today Friday September Last week 2 years ago September 2006 2006 September January 30, 1998 1 September 2006 the third quarter of 1984

. . .

- Time token
 - Explicitly express time information
- Modifier
 - Modify time tokens
- Numeral
 - Numbers and ordinals (except year)

```
Today
Friday
September
Last week
2 years ago
September 2006
2006 September
January 30, 1998
1 September 2006
the third quarter of 1984
. . .
```

- Time token
 - Explicitly express time information
- Modifier
 - Modify time tokens
- Numeral
 - Numbers and ordinals (except year)

```
Today
Friday
September
Last week
2 years ago
September 2006
2006 September
January 30, 1998
1 September 2006
the third quarter of 1984
. . .
```

- Time token
 - Explicitly express time information
- Modifier
 - Modify time tokens
- Numeral
 - Numbers and ordinals (except year)

```
Today
Friday
September
Last week
2 years ago
September 2006
2006 September
January 30, 1998
1 September 2006
the third quarter of 1984
. . .
```

- Time token
 - Explicitly express time information
- Modifier
 - Modify time tokens
- Numeral
 - Numbers and ordinals (except year)

Time Expression Analysis

Datasets

- TimeBank
- Gigaword
- WikiWars
- Tweets

Findings

- Loose structure
- Differentiable

Time Expression Analysis – Datasets

Datasets

- TimeBank: a benchmark dataset used in TempEval evaluations
- Gigaword: a large dataset with automatically generated labels
- WikiWars: a war domain dataset collected from Wikipedia
- Tweets: a tweet dataset collected from Twitter

Dataset statistics

Dataset	#Docs	#Words	#Timex
TimeBank	183	61,418	1,243
Gigaword	2,452	666,309	12,739
WikiWars	22	119,468	2,671
Tweets	942	18,199	1,127

The datasets differ in size, source, domain, and text type, but their time expressions demonstrate similar characteristics

• Loose structure: time expressions are formed by loose structure

- Loose structure: time expressions are formed by loose structure
 - Loose collocation

September

September 2006

1 September 2006

• Changeable order

September 2006

2006 September

- Loose structure: time expressions are formed by loose structure
 - Loose collocation

September/B
September/B 2006/I
1/B September/I 2006/I

Changeable order
 September/B 2006/I
 2006/B September/I

In perspective of position within time expressions, under BIO scheme, "September" may appear as (i) Beginning or (ii) Inside word of time expressions

- Loose structure: time expressions are formed by loose structure
 - Loose collocation

```
September/U
September/B 2006/L
1/B September/I 2006/L
```

Changeable order
 September/B 2006/L
 2006/B September/L

Under BILOU scheme, "September" may appear as

- (1) Unit-word time expressions, or (2) Beginning,
- (3) Inside, (4) Last word of time expressions

• Loose structure: time expressions are formed by loose structure

Percentage of distinct time tokens and modifiers that appear in different positions within time expressions

Datasat	BIO Sc	heme	BILOU Scheme		
Dataset	Time token	Modifier	Time Token	Modifier	
TimeBank	58.18	33.33	63.64	33.33	
Gigaword	61.29	45.83	77.05	46.00	
WikiWars	53.57	26.19	61.40	29.55	
Tweets	67.21	27.59	72.58	27.59	

• **Differentiable**: time tokens can differentiate time expressions from common text

• **Differentiable**: time tokens can differentiate time expressions from common text

Percentage of time expression's constituents that appear in time expressions (*Ptimex*) and in common text (*Ptext*)

Datasat	Time Token		Mod	ifier	Numeral	
Dataset	Ptimex	Ptext	Ptimex	Ptext	Ptimex	Ptext
TimeBank	94.61	0.34	47.39	22.56	22.61	3.16
Gigaword	96.44	0.65	28.05	22.82	20.24	2.03
WikiWars	91.81	0.14	31.64	26.14	38.01	9.82
Tweets	96.01	0.50	21.38	13.03	18.81	1.28

$$Ptimex(T) = \frac{\#timex\ that\ contain\ T}{\#total\ timex} \qquad Ptext(T) = \frac{\#token\ that\ are}{\#total\ token}$$

Fundamental problem – Inconsistent Tag Assignment

- Position-based tagging scheme
 - BIO scheme: **B**eginning or **I**nside word of time expressions, **O**utside time expressions
 - BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions
- Inconsistent tag assignment
 - During training, a word is assigned with different tags simply because the word appears in different positions within labeled chunks

- Position-based tagging scheme
 - BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions

- Position-based tagging scheme
 - BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions
 - 1) September/U

- 2) September/B 2006/L
- 3) 2006/B September/L 4) 1/B September/I 2006/L

- Position-based tagging scheme
 - BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions
 - 1) September/U

- 2) September/B 2006/L
- 3) 2006/B September/L 4) 1/B September/I 2006/L
- 1) (..., w=September, ..., U)
- 2) (..., w=September, ..., B)
- 3) (..., w=September, ..., L)
- 4) (..., w=September, ..., I)

- Position-based tagging scheme
 - BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions
 - 1) September/U

- 2) September/B 2006/L
- 3) 2006/B September/L 4) 1/B September/I 2006/L
- 1) (..., w=September, ..., U)
- 2) (..., w=September, ..., B)
- 3) (..., w=September, ..., L)
- 4) (..., w=September, ..., I)

The inconsistent tag assignment reduces the predictive power of 'September'

This contradicts finding 2 that time tokens can differentiate time expressions from common text

Review

- Two findings
 - Finding 1: time expressions are formed by loose structure
 - Finding 2: time tokens can differentiate time expressions from common text
- Finding 1 leads BILOU scheme to inconsistent tag assignment
 - Reduce the predictive power of time tokens
 - 1) September/U 2) September/B 2006/L
 - 3) 2006/B September/L 4) 1/B September/I 2006/L
- Under BILOU scheme, Finding 1 contradicts finding 2

- Constituent-based tagging scheme
 - TOMN scheme: Time token, Modifier, Numeral, Outside time expressions
 - TOMN scheme assigns a tag to a word according to its constituent role

- Constituent-based tagging scheme
 - TOMN scheme: Time token, Modifier, Numeral, Outside time expressions
 - 1) September/T

- 2) September/T 2006/T
- 3) 2006/T September/T 4) 1/N September/T 2006/T

- Constituent-based tagging scheme
 - TOMN scheme: Time token, Modifier, Numeral, Outside time expressions
 - 1) September/T

- 2) September/T 2006/T
- 3) 2006/T September/T 4) 1/N September/T 2006/T
- 1) (..., w=September, ..., T)
- 2) (..., w=September, ..., T)
- 3) (..., w=September, ..., T)
- 4) (..., w=September, ..., T)

- Constituent-based tagging scheme
 - TOMN scheme: Time token, Modifier, Numeral, Outside time expressions
 - 1) September/T

- 2) September/T 2006/T
- 3) 2006/T September/T
- 4) 1/N September/T 2006/T

```
1) (..., w=September, ..., T)
```

The consistent tag assignment protects

'September's predictive power

Time Expression Recognition – TOMN

Overview of TOMN

Time Expression Recognition – Examples

• Non-O words that appear together form a time expression

For/o the/m first/n 10/n months/t of/m 1915/t ,/o Austria/o ...

Time Expression Recognition – Experiments

- Our method: TOMN
- Baselines
 - HeidelTime: rule-based
 - SUTime: rule-based
 - SynTime: type-based
 - ClearTK: learning-based
 - UWTime: learning-based
- Datasets
 - TE-3: comprehensive & formal
 - WikiWars: specific domain & formal
 - Tweets: comprehensive & informal

Performance of TOMN and baselines. The **best results** are in boldface and the <u>second best</u> are underlined.

Dataset	Methods	5	Strict Mat	ch	Relexed Match		
Dataset	Michious	Pr.	Re.	F1	Pr.	Re.	<i>F1</i>
	HeidelTime (Strotgen et al., 2013)	83.85	78.99	81.34	93.08	87.68	90.30
	SUTime (Chang and Manning, 2013)	78.72	80.43	79.57	89.36	91.30	90.32
TE-3	SynTime (Zhong et al., 2017)	91.43	92.75	92.09	94.29	95.65	94.96
112-3	ClearTK (Bethard, 2013)	85.90	79.70	82.70	93.75	86.96	90.23
	UWTime (Lee et al., 2014)	86.10	80.40	83.10	94.60	88.40	91.40
	TOMN	92.59	<u>90.58</u>	<u>91.58</u>	95.56	<u>93.48</u>	<u>94.51</u>
	HeidelTime (Strotgen et al., 2014)	88.20	78.50	83.10	95.80	85.40	90.30
	SUTime	78.61	76.69	76.64	95.74	89.57	92.55
WikiWars	SynTime (Zhong et al., 2017)	80.00	80.22	80.11	92.16	92.41	92.29
WIKI Wais	ClearTK	87.69	80.28	83.82	96.80	90.54	<u>93.54</u>
	UWTime (Lee et al., 2014)	<u>87.70</u>	78.80	83.00	97.60	87.60	92.30
	TOMN	84.57	80.48	82.47	96.23	<u>92.35</u>	94.25
	HeidelTime	91.67	74.26	82.05	96.88	78.48	86.71
	SUTime	77.69	79.32	78.50	88.84	90.72	89.77
Tweets	SynTime (Zhong et al., 2017)	89.52	94.07	91.74	93.55	98.31	95.87
	ClearTK	86.83	75.11	80.54	96.59	83.54	89.59
	UWTime	88.36	70.76	78.59	97.88	78.39	87.06
	TOMN	<u>90.69</u>	94.51	92.56	93.52	<u>97.47</u>	<u>95.45</u>

Performance of TOMN and baselines. The **best results** are in boldface and the <u>second best</u> are underlined.

Dataset	Methods		Strict Mate	ch	I	Relexed Match		
Dataset	Methous	Pr.	Re.	<i>F1</i>	Pr.	Re.	F1	
	HeidelTime (Strotgen et al., 2013)	83.85	78.99	81.34	93.08	87.68	90.30	
	SUTime (Chang and Manning, 2013)	78.72	80.43	79.57	89.36	91.30	90.32	
TE-3	SynTime (Zhong et al., 2017)	91.43	92.75	92.09	94.29	95.65	94.96	
112-3	ClearTK (Bethard, 2013)	85.90	79.70	82.70	93.75	86.96	90.23	
	UWTime (Lee et al., 2014)	86.10	80.40	83.10	94.60	88.40	91.40	
	TOMN	92.59	<u>90.58</u>	<u>91.58</u>	95.56	<u>93.48</u>	<u>94.51</u>	
	HeidelTime (Strotgen et al., 2014)	88.20	78.50	<u>83.10</u>	95.80	85.40	90.30	
	SUTime	78.61	76.69	76.64	95.74	89.57	92.55	
WikiWars	SynTime (Zhong et al., 2017)	80.00	80.22	80.11	92.16	92.41	92.29	
VVIKIVVAIS	ClearTK	87.69	80.28	83.82	96.80	90.54	<u>93.54</u>	
	UWTime (Lee et al., 2014)	<u>87.70</u>	78.80	83.00	97.60	87.60	92.30	
	TOMN	84.57	80.48	82.47	96.23	<u>92.35</u>	94.25	
	HeidelTime	91.67	74.26	82.05	96.88	78.48	86.71	
	SUTime	77.69	79.32	78.50	88.84	90.72	89.77	
Tweets	SynTime (Zhong et al., 2017)	89.52	94.07	<u>91.74</u>	93.55	98.31	95.87	
	ClearTK	86.83	75.11	80.54	96.59	83.54	89.59	
	UWTime	88.36	70.76	78.59	97.88	78.39	87.06	
	TOMN	<u>90.69</u>	94.51	92.56	93.52	<u>97.47</u>	<u>95.45</u>	

Time Expression Recognition – Experiments

- Cross-dataset experiments
 - Train on a dataset's training set
 - Test on other datasets' test sets
- Learning-based Baselines
 - ClearTK
 - UWTime
- Datasets
 - TE-3
 - WikiWars
 - Tweets

Cross-dataset performance on the **test set of TE-3** (Color background indicates single-dataset results)

Training Set	Methods	Stı	rict Mate	ch ch	Relexed Match		
	Memous	Pr. Re. F1		Pr.	Re.	<i>F1</i>	
	ClearTK	85.90	79.70	82.70	93.75	86.96	90.23
TE-3	UWTime	86.10	80.40	83.10	94.60	88.40	91.40
	TOMN	92.59	90.58	91.58	95.56	93.48	94.51
	ClearTK	65.67	63.77	64.71	87.31	84.78	86.03
WikiWars	UWTime	76.92	72.46	74.63	88.46	83.33	85.82
	TOMN	84.06	84.06	84.06	93.48	93.48	93.48
Tweets	ClearTK	72.59	71.01	71.79	93.33	91.30	92.31
	UWTime	80.00	72.46	76.05	92.80	84.06	88.21
	TOMN	85.42	89.13	87.23	91.67	95.65	93.62

Cross-dataset performance on the test set of WikiWars

Training Set	Methods	Stı	rict Mate	e h	Relexed Match		
	Memous	Pr.	Re.	F1	Pr.	Re.	<i>F1</i>
	ClearTK	74.38	60.76	66.89	97.54	79.68	87.71
TE-3	UWTime	87.01	79.34	83.00	96.07	87.60	91.64
	TOMN	82.18	75.65	79.07	96.26	87.93	91.90
	ClearTK	87.69	80.28	83.82	96.80	90.54	93.54
WikiWars	UWTime	87.70	78.80	83.00	97.60	87.60	92.30
	TOMN	84.57	80.48	82.47	96.23	92.35	94.25
Tweets	ClearTK	57.75	54.73	56.20	91.93	87.12	89.46
	UWTime	80.28	62.81	70.48	94.37	73.83	82.84
	TOMN	60.29	66.00	63.02	84.74	92.76	88.57

Cross-dataset performance on the **test set of Tweets**

Training Set	Methods	Stı	cict Mate	ch	Relexed Match		
	Withings	Pr.	Re.	F1	Pr.	Re.	<i>F1</i>
	ClearTK	81.16	47.26	59.73	97.10	56.54	71.47
TE-3	UWTime	89.66	65.82	75.91	94.83	69.62	80.29
	TOMN	92.92	88.61	90.71	96.90	92.41	94.60
	ClearTK	72.48	45.57	55.96	95.30	59.92	73.58
WikiWars	UWTime	87.43	61.60	72.28	95.81	67.61	79.21
	TOMN	85.00	86.08	85.53	93.75	94.94	94.34
Tweets	ClearTK	86.83	75.11	80.54	96.59	83.54	89.59
	UWTime	88.36	70.76	78.59	97.88	78.39	87.06
	TOMN	90.69	94.51	92.56	93.52	97.47	95.45

Time Expression Recognition – Efficiency

• TOMN is more efficient

Runtime of going through a whole process (unit: seconds)

Method	TE-3	WikiWars	Tweets
ClearTK	152	223	86
UWTime	864	1,050	160
TOMN	36	48	42

Summary

- Have two findings about time expressions
 - Loose structure
 - Differentiable
- Reveal a fundamental problem in position-based tagging scheme
 - Inconsistent tag assignment
- Define a constituent-based tagging scheme
 - Good results
 - Less time