MAY 1984

EXPERIMENTAL INVESTIGATION OF SHOCK-CELL NOISE REDUCTION FOR SINGLE-STREAM NOZZLES IN SIMULATED FLIGHT

Contract NAS3-22514

(NASA-CR-168234-Vol-2) EXPERIMENTAL INVESTIGATION OF SHOCK-CELL NOISE REDUCTION FOR SINGLE-STREAM NOZZLES IN SIMULATED FLIGHT, COMPREHENSIVE DATA REPORT. VOLUME 2: LASER VELOCIMETER DATA (General Electric G3/71 20343.

N84-33149

Unclas

Comprehensive Data Report

VOLUME II

Laser Velocimeter Data

b y

K. Yamamoto

J.F. Brausch

B.A. Janardan

D.J. Hoerst

A.O. Price

P.R. Knott

National Aeronautics and Space Administration Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135

MAY 1984

EXPERIMENTAL INVESTIGATION OF SHOCK-CELL NOISE REDUCTION FOR SINGLE-STREAM NOZZLES IN SIMULATED FLIGHT

Contract NAS3-22514

Comprehensive Data Report VOLUME II

Laser Velocimeter Data

bу

K. Yamamoto

J.F. Brausch

B.A. Janardan

D.J. Hoerst

A.O. Price

P.R. Knott

For

National Aeronautics and Space Administration Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 ORIGINAL PAGE IS

**************************************	OF PO	OK COMPLE		
i. Report No. NASA CR-168234	2. Government Acces		3. Recipient's Catalog	No.
4. Title and Subtitle Experimental Investigation of Shingle-Stream Nozzles in Simulate Report Volume I.			5. Report Date May 6. Performing Organiz	
7. Author(s) K.J.Yamamoto, J.F.Brauscl A.O.Price, P.R.Knott	n, B.A.Janardan,	D.J.Hoerst,	8. Performing Organiz R82AEB491 10. Work Unit No.	ation Report No.
9. Performing Organization Name and Address	· · · · · · · · · · · · · · · · · · ·		10. 110 x 0 m 110.	•
General Electric Company Aircraft Engine Group Cincinnati, Ohio 45215			11. Contract of Grant NAS3-22514 13. Type of Report an	
12. Sponsoring Agency Name and Address	· · · · · · · · · · · · · · · · · · ·		Comprehensive	·
National Aeronautics and Space A Washington, D.C. 20546	dministration		14. Sponsoring Agency	
15. Supplementary Notes	123			
Project Manager, James R. St NASA-Lewis Research Center Cleveland, Ohio 44135	one			
18. Abstract				
This Comprehensive Data Report and test results which are an contains a description of the detailed test results from the Electric Anechoic Chamber. We volume III contains the diagralong with a description of Design drawings of scale mode.	nalyzed and docume model nozzle cone hot static and plume II presents nostic flow visuatest facilities	ented in the companion offigurations, acoust simulated flight ac the diagnostic lase alization test resul	ion Final Report. tic test condition constic tests at er velocimeter te ts obtained by a and reduction t	Volume I ons, and the General est results. shadowgraph
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Shock-Cell Noise Convergent-Divergent Disgnostic Laser Velocimeter Shadowgraph	Convergent-Divergent Diagnostic Laser Velöcimeter Testa			
19. Security Classif, (of this report) Unclassified	20. Security Classif. (c Unclassifie		21, No. of Pages	22, Price*

 $^{^{}ullet}$ For sale by the National Technical Information Service, Springfield, Virginia 22161

VOLUME II LASER VELOCIMETER DATA

PREGEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

VOLUME I -- TEST NOZZLES AND ACOUSTIC DATA

Section		Page
1.0	INTRODUCTION	1
2.0	SCALE MODEL NOZZLE CONFIGURATIONS	2
	2.1 Model 1: Baseline Conical-Convergent Nozzle	3
	2.2 Model 2: Circular Convergent-Divergent Nozzle	3
	2.3 Model 3: Baseline Contoured Convergent Annular Plug Nozzle	4
	2.4 Model 3 with Tabs: Baseline Contoured Convergent Annular Plug Nozzle with Shock Screech Tabs	4
	2.5 Model 4: Convergent-Divergent Annular Plug Nozzle	5
	2.6 Model 5: 20 Chute Annular Plug Suppressor, Convergent Flow Element Terminations -	6
	2.7 Model 6: 20 Chute Annular Plug Suppressor, Convergent-Divergent Flow Element Terminations	7
3.0	TEST POINT DEFINITION	33
	3.1 Definition of Variables	33
	3.2 Test Matrix of Model 1	38
	3.3 Test Matrix of Model 2	41
-	3.4 Test Matrix of Model 3	46
	3.5 Test Matrix of Model 4	51
	3.6 Test Matrix of Model 5	58
	3.7 Test Matrix of Model 6	61
4.0	ACOUSTIC TEST RESULTS	67
	4.1 Description of Acoustic Data Tables	67
	4.2 Acoustic Data of Model 1	72
	4.3 Acoustic Data of Model 2	114
	4.4 Acoustic Data of Model 3	221
	4.5 Acoustic Data of Model 4	297
	4.6 Acoustic Data of Model 5	451
	4.7 Acoustic Data of Model 6	509

TABLE OF CONTENTS

VOLUME II -- LASER VELOCIMETER DATA

Section			Page
5.0	LASE	R VELOCIMETER TESTS	591
	5.1	Test Matrix and Aerodynamic Conditions of Test Points	591
	5.2	Laser Velocimeter Test Data	592
		5.2.1 Tabulations of Laser Velocimeter Data 5.2.2 General Remarks on LV Mean Velocity Traces 5.2.3 Laser Velocimeter Data of Model 1 5.2.4 Laser Velocimeter Data of Model 2 5.2.5 Laser Velocimeter Data of Model 3 5.2.6 Laser Velocimeter Data of Model 4 5.2.7 Laser Velocimeter Data of Model 5 5.2.8 Laser Velocimeter Data of Model 6	592 593 771 832 899 991 1075 1221
<u>vol</u> u	ME II	I SHADOWGRAPH PHOTOS AND FACILITY DESCRIPTION	
6.0	SHAD	OWGRAPH PHOTO TESTS	1365
	6.1	Scope and Details of Tests	1365
	6.2	Shadowgraph Photo Test Results	1380
		6.2.1 Shadowgraph Photos of Model 1 6.2.2 Shadowgraph Photos of Model 2 6.2.3 Shadowgraph Photos of Model 3 6.2.4 Shadowgraph Photos of Model 4 6.2.5 Shadowgraph Photos of Model 5 6.2.6 Shadowgraph Photos of Model 6	1380 1396 1413 1427 1438 1451
7.0	STAT	IC PRESSURE DATA	1471
	7.1	Diagnostic Static Pressure Data	1471
	7.2	Suppressor Base Pressure Data	1483
8.0	NOME	NCLATURE	1489
9.0	REFE	RENCES	1491
APPENDICES			
Appendix	I	Acoustic Test Facility	1494
Appendix	II	Acoustic Data Acquisition and Reduction Procedures	1503
Appendix	III	Aerodynamic Data Acquisition and Reduction Procedures	1517
Appendix	IV	Laser Velocimeter System	1521
Appendix		Shadowgraph System	1529
Appendix	VI	Design Drawings of Scale Model Nozzles	1531

List of Illustrations in Volume II

		Page
5-1	Sample Traces Obtained During Axial and Radial Traverses	595
	List of Tables in Volume II	
5-1 thru 5-6	Aerodynamic Conditions of LV Test Points	597
5-7 thru 5-37	Scope of LV Mean Velocity Traverses and Point Turbulence Histogram Locations	603
5-38 thru 5-70	Aerodynamic Test Results by Laser Doppler Velocimeter	635

5.0 LASER VELOCIMETER TESTS

Mean velocity (axial component) and turbulent velocity (axial component) measurements for thirty-one (31) selected flow conditions of six models were performed employing the laser Doppler velocimeter. Aerodynamic conditions which define the test points are given in Subsection 5.1. Tabulations which explain the scope of mean velocity traverses and turbulence histogram measurements are also presented in Subsection 5.1. Subsection 5.2 contains tabulated data that describes the actual LV position, the type of traverse, and measured mean and turbulent velocities along with copies of the LV mean velocity traces.

5.1 TEST MATRIX AND AERODYNAMIC CONDITIONS OF TEST POINTS

The aerodynamic test conditions of the thirty-one (31) test points are presented in Tables 5-1 through 5-6. The LV test points presented in these tables correspond to the acoustic test points presented in Sections 3.2 through 3.7 of Volume I.

Each model includes the C-D design point (or corresponding test point), both at static and flight-simulated conditions. Additionally, some over-expanded or under-expanded cases were also tested. Most of the LV tests reported herein were conducted at an elevated temperature of $T_T \simeq 960^\circ$ K (1730° R). A limited number of lower temperature tests $[T_T \simeq 470^\circ$ K (850° R)] were also performed, mainly to identify the temperature dependency of the LV resolution capability.

Tables 5-7 through 5-37 summarize the scope of the LV tests. The scope of each of the thirty-one (31) test points consists of at least one of the following:

1. Normal Axial Traverses -- Traverses starting at:

- o The exit plane and proceed along the centerline of the nozzle or along parallel lines to the centerline (circular nozzles).
- o The end of the center plug and along the centerline of the nozzle or along parallel lines to the centerline (plug nozzles).
- 2. <u>Normal Radial Traverses</u> -- Traverses vertical to the centerline of the nozzle in E-W direction (i.e., along the plane of nozzle axis and microphones).

- 3. <u>Slant Axial Traverses</u> -- Traverses start at the exit plane and proceed along the lines which are parallel to the plug surface (only for plug nozzles).
- 4. <u>Slant Radial (Chordwise) Traverses* -- Traverses (only in close proximity of the plug surface) vertical to the nozzle axis in N-W direction.</u>
- 5. <u>Point Histograms</u> -- Turbulence velocities (turbulence intensities) were measured at the specified locations during the above mentioned axial, radial and chordwise traverses.

5.2 LASER VELOCIMETER TEST DATA

The measured data for LV test points given in Tables 5-38 through 5-70 are presented as follows:

- o Tabulated data in Tables 5-38 through 5-70.

 The tables summarize the type of traverse with its graph number, the histogram number and its location as defined by the position of the LV control volume, the measured mean and turbulence velocities.
- Copies of the mean velocity traces obtained on the Hewlett-Packard X-Y plotters. General remarks on the LV mean velocity traces are given in Subsection 5.2.2.

5.2.1 <u>Tabulations of Laser Velocimeter Data</u>

The parameters used in the tabulations of the LV data are defined below:

${ t P}_{f r}$	Pressure ratio
$^{\mathtt{T}}\mathtt{T}$	Total temperature, °R
v _j	Fully expanded jet exit velocity, ft/s
V _{a/c}	Free jet velocity, ft/s
Deq	Defined as the equivalent diameter based on total flow area, inches
h	Defined as the annulus height measured vertically to the plug surface between plug and inner wall of nozzle sleeve tip, inches

^{*} These traverses were actually performed by using the normal traverse platform. However, locating the traverse starting points was made by utilizing the slant -- traverse platform (see Appendix IV).

Type of traverse Either a radial, a chordwise or an axial

traverse

Position Position of linear voltage displacement

transducer (LVDT), volts

Graph No. Identification number of the mean velocity trace

Histogram No. Histogram number

REF Reference point for mean velocity traverse, volts

x, r, z Coordinates which define circular nozzle or plug

nozzle flowfield

x', r', z' Coordinates which define plug nozzle flowfield

(used relative to the slant traverse).

5.2.2 General Remarks on LV Mean Velocity Traces

Copies of the LV mean velocity traces are presented in the next subsections. The information provided on the mean velocity traces is explained on a set of sample traces provided in Figure 5-1. Additional general remarks on the mean velocity traces are given below:

- o Two kinds of mean velocity traces are available for most of the test points, i.e., pen-traverse and mini-histogram. During the present LV tests, the mean velocity data measured with the mini-histograms were obtained with the acceptable data samples set to 20. This number of samples yields an estimated 5% error in the mean velocity measurements with a statistical 95% confidence level for a given turbulence intensity of 10%.
- "X-axis" scale shown in the traces is identical for both the pentraverse and mini-histogram. There is, however, a slight difference of "Y-axis" scale between the two.
- Wherever both pen-traverse and mini-histogram are provided, the "Y-axis" scale shown in each trace is the one that was defined based on the mini-histogram velocity calibration chart. Therefore, for quantitative analysis purposes, only the mini-histogram traces should be used.
- o On the other hand, wherever only the pen-traverse is given, the

"Y-axis" scale shown in the trace is the one that was defined based on the pen-traverse velocity calibration chart; and, naturally, it can be used for quantitative analysis.

- o The axial mean velocity given in the traces is normalized by the isentropically expanded jet exit velocity, corresponding to the aerodynamic conditions of the given test point.
- o The traverse distance is normalized by using either of the following parameters:
 - A) Equivalent diameter, Deq
 - B) Annulus height, h
 - C) Hydraulic diameter, $D_{hyd} = \frac{4 \times (Annular area)}{Outer Perimeter}$

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5- 1. Sample Traces Obtained During Axial and Radial Traverses.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5- 1 (Cont'd). Sample Traces Obtained During Axial and Radial Traverses.

ORIGINAL PAGE IS

TABLE 5-1. AERODYNAMIC CONDITIONS OF LV TEST POINTS OF MODEL 1, CIRCULAR CONIC NOZZLE

TEST	Pr	${f T_T}$	T	v _j	V _{a/c}	
POINT	*	o _K	o _K (o _R)	m/s (ft/s)	m/s (ft/s)	REMARKS
113	3.128	946 (1703)	702 (1264)	732 (2402)	0	STATIC CONDITION, CORRESPONDS TO C-D DESIGN POINT
114	3.128	963 (1734)	716 (1288)	739 (2425)	122 (400)	FLIGHT SIMILATED, CORRESPONDS TO C-D DESIGN POINT
121	3.316	949 (1708)	693 (1247)	749 (2457)	0	STATIC CONDITION, UNDEREXPANDED FLOW
122	3.323	953 (1715)	696 (1252)	751 (2464)	122 (400)	FLIGHT SÍMULATED, UNDEREXPANDED FLOW
-	·····					
			·			
						

 $T_T = TOTAL TEMPERATURE$

T = STATIC TEMPERATURE

 V_{j} = FULLY EXPANDED JET EXIT VELOCITY

 $V_{a/c} = FREE JET VELOCITY$

TABLE 5-2. AERODYNAMIC CONDITIONS OF LV TEST POINTS OF MODEL 2

CIRCULAR CONVERGENT-DIVERGENT NOZZLE FOR DESIGN AT M = 1.4

TEST	$^{\mathtt{P}}\mathbf{r}$	TT	T	ľ	V _{a/c}	T
POINT	_	o _K (o _R)	o _K	m/s (ft/s)	m/s (ft/s)	REMARKS
213	3.121	949 (1708)	704 (1268)	732 (2403)	0	STATIC CONDITION, C-D DESIGN POINT
214	3.121	953 (1716)	708 (1275)	734 (2409)	122 (400)	FLIGHT SIMULATED, C-D DESIGN POINT
221	3.309	943 (1697)	688 (1239)	746 (2447)	0	STATIC CONDITION, UNDEREXPANDED FLOW
222	3.312	948 (1707)	693 (1247)	748 (2455)	122 (400)	FLIGHT SIMULATED, UNDEREXPANDED FLOW
207	3.018	948 (1707)	711 (1280)	723 (2372)	0	STATIC CONDITION, OVEREXPANDED FLOW
211	3.074	949 (1709)	708 (1274)	728 (2390)	o	STATIC CONDITION, OVEREXPANDED FLOW
						-

 $T_{TT} = TOTAL TEMPERATURE$

T = STATIC TEMPERATURE

 V_{j} = FULLY EXPANDED JET EXIT VELOCITY

Va/c = FREE JET VELOCITY

AERODYNAMIC CONDITIONS OF LV TEST POINTS OF MODEL 3
CONTOURED CONVERGENT ANNULAR PLUG NOZZLE TABLE 5-3.

TEST [.]	P _r	TT	T	V t	V _{a/c}	
POINT	• •	°K (°R)	o _K (^o R)	m/s (ft/s)	m/s (ft/s)	REMARKS
313	3.146	971 (1747)	721 (1297)	743 (2439)	0	STATIC CONDITION, CORRESPONDS TO C-D DESIGN POINT
314	3.136	952 (1713)	706 (1271)	735 (2411)	122 (400)	FLIGHT SIMULATED, CORRESPONDS TO C-D DESIGN POINT
321	3.320	963 (1733)	703 (1266)	755 (2476)	0	STATIC CONDITION, UNDEREXPANDED FLOW
322	3.353	955 (1719)	696 (1252)	754 (2474)	122 (400)	FLIGHT SIMULATED, UNDEREXPANDED FLOW
309	3.061	955 (1719)	713 (1284)	730 (2394)	0	STATIC CONDITION, OVEREXPANDED FLOW
1313	3.239	487 (877)	348 (627)	528 (1734)	0	STATIC CONDITION, LOW TEMP. CORRESPONDS TO C-D DESIGN PT.

 $T_{rp} = TOTAL TEMPERATURE$

T = STATIC TEMPERATURE

V_j = FULLY EXPANDED JET EXIT VELOCITY
V_{a/c} = FREE JET VELOCITY

ORIGINAL PAGE IS

TABLE 5-4.

AERODYNAMIC CONDITIONS OF LV TEST POINTS OF MODEL 4

CONVERGENT-DIVERGENT ANNULAR PLUG NOZZLE FOR DESIGN

AT M = 1.4

TEST	1 70	$\mathbf{T_{T}}$	T.	v _j	V _{a/c}	
POINT		o _K (o _R)	o _K (^o R)	m/s (ft/s)	m/s (ft/s)	REMARKS
413	3.108	957 (1723)	712 (1282)	735 (2411)	0	STATIC CONDITION, C-D DESIGN POINT
414	3.122	966 (1739)	718 (1293)	739 (2426)	122 (400)	FLIGHT SIMULATED, C-D DESIGN POINT
421	3 . 299	966 (1738)	707 (1272)	754 (2474)	0	STATIC CONDITION, UNDEREXPANDED FLOW
422	3.329	963 (1733)	703 (1265)	756 (2479)	122 (400)	FLIGHT SIMULATED, UNDEREXPANDED FLOW
407	3.025	962 (1732)	722 (1299)	729 (2392)	0	STATIC CONDITION, OVEREXPANDED FLOW
411	3.069	962 (1732)	718 (1293)	733 (2405)	0	STATIC CONDITION, OVEREXPANDED FLOW
419	3.214	938 (1689)	691 (1243)	736 (2416)	o	STATIC CONDITION, UNDEREXPANDED FLOW

 $P_r = PRESSURE RATIO$

 T_{rp} = TOTAL TEMPERATURE

T = STATIC TEMPERATURE

 V_{j} = FULLY EXPANDED JET EXIT VELOCITY

Va/c = FREE JET VELOCITY

AERODYNAMIC CONDITIONS OF LV TEST POINTS OF MODEL 5
20 ELEMENT ANNULAR CONVERGENT SUPPRESSOR NOZZLE TABLE 5-5.

TEST	Pr	TT	T.	t ^v	V _{a/c}	
POINT		o _K (o _R)	o _K (^o R)	m/s (ft/s)	m/s (ft/s)	REMARKS
513	3.123	962 (1732)	715 (1287)	738 (2421)	0	STATIC CONDITION, CORRESPONDS TO C-D DESIGN POINT
514	3.128	957 (1722)	711 (1279)	736 (2415)	122 (400)	FLIGHT SIMULATED, CORRESPONDS TO C-D DESIGN POINT
1513	3.209	472 (850)	338 (609)	518 (1701)	0	STATIC CONDITION, LOW TEMP. CORRESPONDS TO C-D DESIGN PT.
1514	3.214	472 (850)	338 (609)	519 (1702)	122 (400)	FLIGHT SIMULATED, LOW TEMP. CORRESPONDS TO C-D DESIGN PT.
			-			
			<u> </u>			
			·			

 $T_T = TOTAL TEMPERATURE$

T = STATIC TEMPERATURE

V = FULLY EXPANDED JET EXIT VELOCITY
V = FREE JET VELOCITY

TABLE 5-6. AERODYNAMIC CONDITIONS OF LV TEST POINTS OF MODEL 6 20 ELEMENT ANNULAR CONVERGENT-DIVERGENT SUPPRESSOR NOZZLE FOR DESIGN AT M \approx 1.4.

TEST	Pr	$^{\mathrm{T}}\mathrm{_{T}}$	Т	v _j	V _{a/c}	
POINT	-	o _K	o _K	m/s (ft/s)	m/s (ft/s)	REMARKS
613	3.128	960 (1728)	713 · (1283)	738 (2420)	. 0	STATIC CONDITION, C-D DESIGN POINT
614	3.125	961 (1729)	713 (1284)	737 (2419)	122 (400)	FLIGHT SIMULATED, C-D DESIGN POINT
1613	3.216	473 (852)	339 (610)	519 (1704)	0	STATIC CONDITION, LOW TEMP. C-D DESIGN POINT
1614	3.215	474 (853)	339 (611)	520 (1706)	122 (400)	FLIGHT SIMULATED, LOW TEMP. C-D DESIGN POINT

 $P_r = PRESSURE RATIO$

 $T_{_{\mathbf{T}}}$ = TOTAL TEMPERATURE

T = STATIC TEMPERATURE

V_j = FULLY EXPANDED JET EXIT VELOCITY
V_{a/c} = FREE JET VELOCITY

ORIGINAL PAGE IS

TABLE 5-7. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 1	Circular Conic Nozzle
TEST POINT	113

Туре	Туре	MEAN VELOCI	TY TRAVERSES	TURBULENCE H	IISTOGRAMS
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
	· -	r/D = 0	400 - 403	-	
	AXIAL	= 0.5	404 - 405	25	926 - 950 .
	-	=	·		
		Ý =			
in in		x/D = 0.08	406 – 407	-	-
/ERS		= 1.07	408 – 409	_	
TRAVERSE		= 4.30	410 - 411	_	-
		= 8.60	412 - 413	5	952 - 957
NORMAL	RADIAL	=		~	
Ŋ,		=	•		
}		=			
		:			
		* =			

ORIGINAL PAGE 19 OF POOR QUALITYTABLE 5-8. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 1	Circular Conic Nozzle
TEST POINT	114

Type of Syst.	Type of Traverse	MEAN VELOCITY TRAVERSES		TURBULENCE HISTOGRAMS	
		MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	442 - 443	-	_
	AXIAL	= 0.5	444 - 445	20	1038 - 1057
		= 0	456 - 457	-	-
		Y =			
E		x/D = 0	446 - 447	-	<u>-</u> ·
ERS		= 3	448 - 449	3	1059 - 1061
TRAVERSE		= 3.6	450 - 451	2	1062 - 1063
1		= 4.3	452 - 453	-	-
NORMAL	RADIAL	= 8.6	454 - 455	3	1066 - 1068
NO.		=	·		•
		=			
		=			
		Y =			

TABLE 5-9. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL1	Circular Conic Nozzle
TEST DOTUM	121

Type of Syst.	Туре	MEAN VELOCITY TRAVERSES		TURBULENCE HISTOGRAMS	
	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	416 - 417	_	_
	AXIAL	= 0.5	424 - 425	-	_
		= 0.5	428 - 429	26	976 - 1001
		* = 0.48		8	968 - 975
35		x/D = 0.1	418 - 419	-	_
VER		= 1.1	420 - 421		_
NORMAL TRAVERSE	•	= 4.2	422 - 423	-	_
AL.		= 8.5	426 – 427	10	958 – 967
OK.	RADIAL .	=			
ž		=	-		
		=			
[=			
		Y =			,

ORIGINAL PAGE IS

OF POOR QUALITY
TABLE 5-10. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT
TURBULENCE HISTOGRAM LOCATIONS

MONEY 1	Circular Conic Nozzlė
TEST POINT	122

Type of Syst.	Type of Traverse	MEAN VELOCITY TRAVERSES		TURBULENCE HISTOGRAMS	
		MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	430 - 431	_	-
	AXIAL	= 0.5	432 - 433	28	1004 - 1031
	ALIAL	E			
		Y =			
i i	,	x/D = 0	434 - 435	-	-
TRAVERSE		= 1	436 - 437	T -	-
RAV		= 4.2	438 - 439	-	_
1		= 8.5	440 - 441	6	1032 - 1037
NORMAL	RADIAL	=		·	
S ·		=			
		=			
	1	= .			
		¥ =			

TABLE 5-11. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 2 Circular Convergent-Divergent Nozzle for Design @ M, \simeq 1.4

TEST POINT 207

Type of Syst.	Type	MEAN VELOCITY TRAVERSES		TURBULENCE HISTOGRAMS	
	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO
		r/D = 0	4012 - 4013	-	<i>7</i>
	AXIAL	= 0.54	4014 - 4015	10	4018 - 4028
i		· =			
		† =			
SE		x/D =			
VER		=			
TRAVERSE		=		•	
		E			
NORMAL	RADIAL	=			
Z		= (
		=			
		E			
		Y =			

TABLE 5-12. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL_2	Circular Convergent-Divergent Nozzle for Design @ M = 1.4
TEST POINT	211

Type	Туре	MEAN VELOCITY TRAVERSES		TURBULENCE HISTOGRAMS	
Syst.	of Traverse	MEASURED FLOW REGION	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	4018 - 4019		
	AXIAL	= 0.54	4016 - 4017	10	4029 - 4038
		E	•		
		Y =			
SE		x/D =			
VER		=			
TRAVERSE		=			
		=			
NORMAL.	RADIAL	E			
Z ·		=			
		=			
		=			
		† =			

TABLE 5-13. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 2 Circular Convergent-Divergent Nozzle for Design @ M_j ≈ 1.4

TEST POINT 213

Туре	Туре	MEAN VELOCITY TRAVERSES		TURBULENCE HISTOGRAMS	
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	4020 - 4021	_	_
	AXIAL	= 0.51	4024 - 4025	_	_
		= 0.55	4022 - 4023	11	4040 - 4050
		Y = 0	4034 - 4035	-	- ·
Ħ		x/D = 1.1	4028 - 4029	-	
ERS		= 4.3	4030 - 4031	-	-
TRAVERSE		= 8.6	4032 - 4033	6	4051 - 4056
1		= 0	4026 - 4027		
NORMAL	RADIAL	=			
۶·		=			
ļ		=		,	
		=			
		Y =			

COORDINATE SYSTEM FOR LV MEASUREMENTS

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5-14. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 2 Circular Convergent-Divergent Nozzle for Design @ M₂ ≥ 1.4

TEST POINT 214

Type of Syst.	Туре	MEAN VELOCITY TRAVERSES		TURBULENCE HISTOGRAMS	
	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	4036 - 4037	-	_
	AXIAL	= 0.5	4038 - 4039	10	4059 - 4068
	i i	=			
		Y =			
ធ		x/D = 0.2	4046 - 4047		
TRAVERSE		= 1.2	4044 - 4045	-	-
rra1		= 4.4.	4042 - 4043	_	-
		= 8.7	4040 - 4041	.7	4069 - 4075
NORMAL .	RADIAL	=			
N ·	ĺ	=			
		=			
		=			
		Y =			

COORDINATE SYSTEM FOR LV MEASUREMENTS

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5-15. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODFI	2	Circular	Convergent-Divergent	Nozz1e	for	Design	0 м	~	1.4	
TEST PO	TNIC	221					-			

Type of Syst.	Type	MEAN VELOCI	TY TRAVERSES	TURBULENCE HISTOGRAMS		
	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM . NO.	
		r/D = 0	4002 - 4003	-		
	AXIAL	= 0.53	4000 - 4001	12	4000 - 4011	
		=				
		Y =		•		
Ħ		x/D = 0	4010 - 4011	-	-	
ERS		= 1.1	4008 - 4009	-	-	
TRAVERSE		= 4.3	4006 - 4007	-	_	
		= 8.6	4004 - 4005	6	4012 - 4017	
NORMAL	RADIAL	=				
ž		=	·			
		=				
		=				
		Y =				

COORDINATE SYSTEM FOR LV MEASUREMENTS

ORIGINAL PAGE IS

TABLE 5-16. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 2 Circular Convergent-Divergent Nozzle for Design @ M = 1.4

TEST POINT 222

Type of Syst.	Туре	MEAN VELOCI	TY TRAVERSES	TURBULENCE HISTOGRAMS			
	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.		
		r/D = 0	4048 - 4049	-	-		
	AXIAL	= 0.5	4050 - 4051	10	4076 - 4085		
		=					
		Y = .					
33	-	x/D = 0	4052 - 4053	-	-		
/ER		=1.0	4054 - 4055	-	_		
NORMAL TRÄVERSE		. = 4.3	4056 - 4057	-	_		
11		= 8.5	4058 - 4059	5	4087 - 4091		
JRM.	RADIAL	=					
NC	Ì	- ·					
	Ī	=					
	Ī	=			· · · · · · · · · · · · · · · · · · ·		
	Ī	Y =					

COORDINATE SYSTEM FOR LV MEASUREMENTS

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5-17. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 3	Contoured Convergent Annular Plug Nozzle
TEST POINT	309

Type	Туре	<u> </u>		TURBULENCE F	IISTOGRAMS
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	87 - 88	4	227 - 230
	AXIAL	= 0.57	89 - 90	_	-
		## ## ## ## ## ## ## ## ## ## ## ## ##		_	
		Y =			
3E		x/D =			
NORMAL TRAVERSE	RADIAL	=	·		
ΓRΑ		**			
VI.		=			
ORM.		=			
ž·		=			
		E			
		E			
		. 🗡 =	_		
		r'/h = 0.5	91 - 94	_	
		- =		·	
SLANT TRAVERSE	AXIAL	=			
SLA	WIND	=			
TR		£			
		† =			

TABLE 5-18. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL_	3	Contoured	Convergent	Annular	Plug	Nozzle	
--------	---	-----------	------------	---------	------	--------	-------------

TEST POINT 313

	1	 			
Type	Type	MEAN VELOCI	TY TRAVERSES	TURBULENCE H	ISTOGRAMS
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	105 - 106	5	249 - 253
	AXIAL	≈ 0.5	107 - 108	7	2 55 - 261
		=			
		Y =			
35	-	x/D = 0	109	4	262 - 265
NORMAL TRAVERSE	RADIAL	= 2	110	-	- ·
FRA		. = 4	111	. 6	266 - 271
(F.		= 6	114	_	-
JRM.		= 8	115	5	272 - 276
ž ·		=10	116 .	-	-
	i	* 4	112 - 113	_	-
		=			
		. 🕈 🛎			
		r'/h = 0.5	95 - 96	-	_
		= 1.0	97 – 98	4	245 - 248
SLANT TRAVERSE	AVTAT	= 1.5	99 - 100	-	_
SLAI	AXIAL	= 2.0	101 - 102	_	
TR		= 0.5	103	12	231 - 242
		= 1.0	104	_	-

COORDINATE SYSTEM FOR LV MEASUREMENTS

OREGINAL PAGE 19 OF POOR QUALITY

ORIGINAL PAGE IN TABLE 5-19. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT QUALITY TURBULENCE HISTOGRAM LOCATIONS

MODEL	3	Contoured Convergent Annular Plug Nozzle
		01/

TEST POINT 314

Туре	Туре	~£		TURBULENCE H	ISTOGRAMS
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	146 - 147	7	322 - 328
	AXIAL	= 0.5	148 - 149	- 7	329 - 335
		=			
4		* =		·	
Ħ	RADIAL	x/D = 0	1:55	7	350 - 356
ERS		= 2	154	. 1	349
TRA!		= 4	153	6	343 - 348
13		· = 6	152	-	-
NORMAL TRAVERSE		= 8	151	7 .	336 - 342
N N		= 10	150	_	-
	-	=	-		
		. =			
	••	† =		_	_
		r'/h= 0.5	156 - 157	12	357 - 368
		= 1.0	158 - 159	4	369 - 372
SLANT TRAVERSE	1377 17	= 1.55	160 - 161	-	-
SLAN	AXIAL :	= 0.43	162 - 163	2	373 - 374
T. J.	Ì	=			
		† =			

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5-20. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL	3	Contoured	Convergent	Annular	Plug	Nozzle
-------	---	-----------	------------	---------	------	--------

TEST POINT 321

Туре	Type	Type MEAN VELOCITY TRAVERSES of		·TURBULENCE HISTOGRAMS		
of Syst.	oi Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.	
		r/D = 0	125	6	292 - 297	
	AXIAL	= 0	126 - 127	-		
		= 0.5	128 - 129	6	298 - 303	
		Y = 0.5	130	-		
3E		x/D ≈ 0	117	.5	277 - 281	
/ERS	RADIAL	= 2	118	-	-	
FRA		= 4'	119	5	282 - 286	
(L)		= 4	120 - 121	-	-	
NORMAL TRAVERSE		= 6	122	-	-	
ž ·		= 8	123 -	5	287 - 291	
		= 10	124	-		
		*				
		. 🖞 =				
		r'/h = 0.5	132 - 133	13	304 - 316	
,		= 1.0	134 - 135	. 5 .	317 - 321	
SLANT TRAVERSE	ATTAT	= 1.5	136 - 137		-	
SLAI	AXIAL	=				
TR		=				
		Y =				

TABLE 5-21. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 3	Contoured	Convergent	Annular	Plug	Nozzle	
TECT DOTAIN	322					

TEST POINT 322

Type of Syst.	Type of Traverse	MEAN VELOCI	TY TRAVERSES	TURBULENCE HISTOGRAMS		
		MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.	
	AXIAL	r/D = 0	170 - 171	_	-	
		. • 0	174 - 177	5	393 - 397	
		= 0.5	178 - 179	7	398 - 405	
		¥ =				
333	RADIAL	x/D = 0	181	6	407 - 413	
/ER		= 2	1,82	-	<u>-</u>	
TRA		= 4	183	6	415 - 421	
1		= 6	184		-	
NORMAL TRAVERSE		= 8	186	7	422 - 428	
N .		= 10	185 .	-		
		=				
		=				
		. Y =		·		
	AXIAL	r'/h = 0.5	165 - 166	13	375 - 387	
SLANT TRAVERSE		= 1.0	167 - 168	4	388 - 391	
		=				
		=				
T.R.		=				
		† =				

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5-22. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL	3	Contoured	Convergent	Annular	Plug	Nozz1e
TEST PO	INT _	1313				

Type of Syst.	Type of Traverse	MEAN VELOCI	TY TRAVERSES	TURBULENCE HISTOGRAMS	
		MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
	AXIAL	r/D = 0	142 - 143	-	-
		= 0.5	144 - 145	-	_
		=			
		y =			
ម	-	x/D =			
ERS		=			
TRAV	-	*			
NORMAL TRAVERSE	RADIAL	*			
		E			
ž		=	•		
		=			
		= '			
		. 🗡 =			
SLANT TRAVERSE	AXIAL	r'/h = 0.5	138 - 139	-	_
		= 1.0	140 - 141	_	-
		=			
		=			
		=			
		† =			

THE SOUND OF POOR QUALITY

TABLE 5-23. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 4	Convergent-Divergent Annular Plug Nozzle for Design @ M. = 1.4
TEST POINT	407

	 	+ <u></u>	<u> </u>		
Type	Type of Traverse	MEAN VELOCI	TY TRAVERSES	TURBULENCE HISTOGRAMS	
of Syst.		MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
	AXIAL	r/D = 0	227 - 228	-	
		-			
ਜ਼		2 2 ,			
		Y =			
		x/D =			-
/ER		=			·
rka.	RADIAL	=			
NORMAL TRAVERSE		e e		,	
		, =			
		g.	·	·	
		#			
		£			-
		. † ≠			
SLANT TRAVERSE	AXIAL	r'/h = 0.5	205 - 206	_	
		=		<u> </u>	
		=			
		=	i		
		Y =		<u> </u>	

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5-24. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL4	Convergent-Divergent Annular Plug Nozzle for Design @ M = 1.4
TEST POINT	411

Туре	Type	MEAN VELOCI	TY TRAVERSES	TURBULENCE HISTOGRAMS	
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
	,	r/D = 0	225 - 226	-	_
	AXIAL	=			
		2			
	<u> </u>	· ¥ =			
SE		x/D =	·		
VER	RADIAL		· ·	· .	
NORMAL TRAVERSE		=	·		
l ¥E		=			
ORW.		=			
2 .		=			
		=			
		=			
		. ♥ =			
		r'/h = 0.5	209 - 210	_	-
		=			
SLANT TRAVERSE	AXIAL	=			
SLA	ANIAL	=	·		
T.		=	<u></u>		
		† =			

TABLE 5-25. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 4 Convergent-Divergent Annular Plug Nozzle for Design at M 2 1.4

TEST POINT 413

Type of	Туре	MEAN VELOCI	TY TRAVERSES	TURBULENCE HISTOGRAMS		
Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.	
		r/D = 0	187 - 188	5	430 - 437	
	AXIAL	≈ 0.5	189 - 190	7	447 - 455	
		= 0	191 - 192	-	-	
		Y = 0.5	193 - 194	-	-	
3.6		x/D = 0.2	200	6	468 - 476	
/ERS	RADIAL	= 2.2	199	-	-	
'RAY		= 4.2	198	' 5	463 - 467	
[.]		= 6.2	197	_	_	
NORMAL TRAVERSE		= 8.2	196	5	457 - 461	
ž		10.2	195	-	_	
		=	_			
		E				
	• •	. 🗡 =				
•		r'/h = 0.5	201 - 202	10	477 - 486	
	Ī	= 1.0	203 - 204	5	487 - 491	
SLANT TRAVERSE	A377.47	=	,			
SLAI	AXIAL	=			,	
T. S.		E				
	ľ	1 =				

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5-26. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 4 Convergent-Divergent Annular Plug Nozzle for Design at M = 1.4

TEST POINT 414

Type	Type	MEAN VELOCITY TRA	TURBULENCE HISTOGRAMS		
of Syst.	of Traverse	MEASURED FLOW RÉGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	229 - 230	9	550 - 561
	AXIAL	a 0.5	231 - 232	10	562 - 572
		•			
_		† =			
ដ ទ	<u> </u>	x/D = -0.82	239	2	595 - 596
NORMAL TRAVERSE		= 0.1	238	6	588 594 ·
IRA	•	= 2.0	237	- ·	-
1		= 4.0	236	7	580 - 587
)RM	RADIAL	= 6.0	235	-	-
ž·		= 8.0	234 .	7	573 - 579
		= 10.0	233	-	~
		= −1.58	243	-	-
		· † - 1.68	241	-	-
		$r^{1}/h = 0.5$	244 - 245	5	603 - 608
		= 1.0	242	.5	597 - 602
	17717	1. 0	. 246		-
	AXIAL	u 1.5	247 - 248	-	-
		2. 0	249 - 250		-
		¥ = 2.5	251 - 252		-
RSE		r'/h= 0.42 @ x'/h= 0	240		
.αVI		= =	·		STEM FOR LV MEASUREMENTS
SLANT TRAVERS		= = =		Taxis.	F
CAN.		= =		A Linex	re ∫si s
ည	RADIAL	= =		1 Total	
	(CHORD-	E ±	,		0 x-axis
	WISE)	= =		N	<u> </u>
	•	= =		1	1
	1	¥ = ¥ =			ù

TABLE 5-27. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 4	Convergent-Divergent Annular Plug Nozzle for Design @ M.	≈ 1.4
TEST POINT	419	

Type of	F MEAN VEGUUL	may Troathere	MINDS TO S	T 000 00 1310
A+ 1		TY TRAVERSES	TURBULENCE E	HISTOGRAMS
Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM .NO.
	r/D =			
AXIAL	= ,			
	=			
	Y =			
	x/D =			
_	=			
RADIAL				
1		•		
ļ			,	
ŀ				
<u>.</u> . '	•			
	<u> </u>	207 - 208	-	<u>-</u>
-	_		-	
AXIAL			 	
ł		<u> </u>	,	
-	 			
	RADIAL	r/D =	T/D =	TOWNESTONS 1D. NORDER LOCATION

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5-28. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL	4	Convergent-Divergen	t Annular	Plug	Nozzle	for	Design	at M	<u>;</u> ≃	1.4
TEST PO	INT _	421								

Type	Туре	MEAN VELOCITY TRAVERSES		TURBULENCE H	ISTOGRAMS
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	215 - 216	6	513 - 520
	AXIAL	= 0.5	217 - 218	9	521 ~ 532
		=			
		, ¥ =			
E.		x/D = 0	219	5	533 ~ 538
/ER	RADIAL	= 2	220	-	
I'RA		= 4	221	4	539 ~ 542
NORMAL TRAVERSE		= 6	222	2	543 - 544
ORM.		= 8	223	5	545 ~ 549
Ž ·		* 10	224	-	-
		2			
		E			
		. ¥ =			
		r'/h = 0.5	213 - 214	11	501 ~ 511
]]	= 1.0	211 - 212	4	497 ~ 500
SLANT TRAVERSE	AXIAL	=			
SLA	WYIND	=			
T.	Ţ	=	-		
		† =			

TABLE 5-29. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 4 Convergent-Divergent Annular Plug Nozzle for Design @ M. ≅ 1.4

TEST POINT 422

Туре	Туре	MEAN VELOCI	TY TRAVERSES	TURBULENCE H	HISTÖGRAMS
of Syst.	of Tr aver se	MEASURÉD FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	261 - 262	9	625 - 633
	AXIAL	= 0.5	263 - 264	5	634 - 640
		· =			
ស្ន		x/D = 0	265	2	641 - 642
ERS	RADIAL	= 1.8	266	3	643 645
TRAVERSE		= 3.7	267 ·	5	646 - 650
IL 1		=		•	
NORMAL		=			
N ·		=			
		=			,
i					,
	• •	. ♥ =		-	
		r'/h = 0.5	253 - 254	10	609 - 618
		= 1.0	255 - 256	5	619 - 624
NT RSE	AXIAL	= 1.5	257 - 258		
SLANT TRAVERSE	WYTER	= 2.0	259 - 260	-	<u> </u>
TR		. =			-
		† =			

TABLE 5-30. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT POOR QUALITY TURBULENCE HISTOGRAM LOCATIONS

MODEL 5 20 ELEMENT CONVERGENT ANNULAR SUPPRESSOR NOZZLE

TEST POINT 513

Туре	Туре	MEAN VELOCITY TRAVERSES			TURBULENCE HISTOGRAMS		
of of Syst. Traverse		MEASURED FLOW	REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.	
		r/D = 0		596 597	-	-	
	AXIAL	= 0.5	-	598 - 599B	18	1377 - 1394	
		= 0.2		636 - 637			
		† =					
, FJ		x/D = 0	• • •	600 - 601	-		
/ERS		= 2		602 - 603	13	1395 - 1407	
TRAN		= 6		604 - 605	-	-	
<u> </u>		8		606 - 607	11	1408 - 1418	
NORMAL TRAVERSE	RADIAL	=					
ž·		=	_	·			
		•					
		=					
		. 🕆 =					
		$r^{*}/h = 0.5$		610 - 611	20	1423 - 1442	
	I	= 1.0		630 - 631	21	1452 - 1472	
	AXIAL	-					
	WYINT	=					
j		=					
F-1		† =	الأخزة استالات الاقراب إدريني				
SLANT TRAVERSE		r'/h=0.5 @x'	/h=0.14	608	4	1419 - 1422	
RAVI		₹0.5	=0.14	609	-		
Ε		= 0.5	=2.3	616 - 617	3	1443 - 1445	
LAN		= 0.5	=1.1	618 - 619	3	1446 - 1448	
S)	RADIAL	* 0.5	=3.4	.620 - 621	3	1449 - 1451	
	(CHORD- WISE)	= 0.5	=4.6	622 - 623	-	-	
	.,,	= 0.5	=5.7	624 - 625			
		= 0.5	=6.9	626 - 627	-	-	
		0.5	*8.1	628 - 629	-		
		= 1.0	±0.96 ·	632 - 635	5 .	1473 - 1477	
	[¥ = 1.0	=1.93	636 - 637	-	-	

ORIGINAL PAGE IS OF POOR QUALITY.

TABLE 5-31. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 5	20 Element Convergent Annular Suppressor Nozzle

TEST POINT 514

Type	Type	MEAN VELOCI	TY TRAVERSES	TURBULENCE HISTOGRAMS		
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.	
		r/D = 0	721 - 722	-	-	
	AXIAL	= 0.5	723 - 724	21	1630 - 1650	
		=			•	
		Y =		•		
Б.		x/D = 0	725 - 726	_	-	
NORMAL TRAVERSE	RADIAL	= 2	727 - 728			
RA		# 6	729 - 730	_	-	
1		* 8	731 - 732	12	1651 - 1662	
) RM.		= 12	733 - 734	-	-	
ž		= 0	713 - 714	-	-	
	,	= -0.5	715 - 716	_	_	
		=-0.92	717 - 718	-	_	
		. 🕇 =-1.58	719 - 720	-	_	
		r'/h = 0.5	701 - 702	12	1594 - 1606	
		= 1.0	703 - 704	10	1607 - 1618	
TI SE		= 1.0	705 - 706	10	1619 - 1629	
SLANT TRAVERSE	AXIAL	≈ 1.25	707 - 708	_	-	
TRA		= 1.5	709 - 710	_		
		Y = 0.3	711 - 712	_	-	

ORIGINAL PAGE TO OF POOR QUALITY

TABLE 5-32. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 5 .	20 Element	Convergent	Annular	Suppressor	Nozzle	
TEST POINT	1513			<u> </u>		

Type of	Type	MEAN VELOCITY TRA	VERSES	TURBULENCE E	TURBULENCE HISTOGRAMS				
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.				
	`	r/D = 0	638 - 639	-	-				
NORMAL TRAVERSE	AXIAL	• 0.5	640 - 641	20	1478-1497				
	WINT	a 0.92	666 - 667		-				
		† •							
		x/D = 0.3	642 - 643	-	-				
	·	- 2.0	644 - 645	-					
	-	= 5.6	646 - 647		-				
		= 7.4	648 - 649	10	1498-1508				
	RADIAL	= 9.2	650 - 651	-	_				
	RADIAL	■ -1.1	658 - 659	-	· •-				
		■ -1.53 .	656 - 657	-	-				
		=							
	<u></u>	. Y =							
		r'/h = 0.5	652 - 653	10	1509-1519				
		= 1.0	654 - 655	17	1520-1537				
	AXIAL	=							
	WYIAL	8							
		=							
		† - ~							
EKSE	1	$r^{t}/h=0.5$ @ $x^{t}/h=1.12$	664 - 665						
Š.		= 0.5 = 2.43	662 - 663	COORDINATE SY	STEM FOR LV MEASUREMEN				
SLANI TKAVEN	` <u> </u>	= 0.5 = 4.29	660 – 661] }	£				
TWI.		= =		Z	3 ·] g				
"	RADIAL	B =		1 1	J. Sie				
	(CHORD- WISE)	=	`		0 X-axis				
	_	= =		N N					
					1				
		V = V =	٠.		¥				

TABLE 5-33. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 5 20 Element Convergent Annular Suppressor Nozzle

TEST POINT 1514

Type	Туре	MEAN VELOCI	TY TRAVERSES	TURBULENCE E	IISTOGRAMS
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
,		r/D = 0	668 - 669	_	-
	AXIAL	= 0.5	670 - 671	20	1538 - 1557
		=			
		Y =			
ज		x/D = -0.12	672 - 673	_	-
NORMAL TRAVERSE		= 1.88	674 - 675	-	-
rra	-	= 5.9	676 - 677	-	
Ę,		- 7.9	678 - 679	11	1558 - 1568
JRM/	RADIAL	= 9.8	680 - 681	-	<u>.</u>
ž·		= 0.08	693 - 694	· -	_
		= -0.5	695 - 696	-	
		= -0.93	697 - 698	_	-
	<u>.</u> .	. Y = -1.35	699 - 700	-	_
		r'/h = 0.5	682 - 683	4	1569 - 1572
}		. = 0.5	684	7	1573 - 1579
NT RSE	AUT.17	= 1.0	685 - 686	14	1580 - 1593
SLANT TRAVERSE	AXIAL	= 1.25	687 ~ 688		
TR		= 1.5	689 – 690		
Ī		= 0.3	691 - 692		

ORIGINAL PAGE 181. OF POOR QUALITY. FOINT

TABLE 5-34. SCOPE OF LV MEAN VELOCITY TRAVERSES AND FOINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 0 20 Element Convergent-Divergent Annular Suppressor Nozzle for

TEST POINT 613 Design at M. ≈ 1.4

Туре	Type	MEAN VELOCITY TRA	VERSES	TURBULENCE E	IISTOGRAMS			
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. LINEASURED LOCATION	HISTOGRAM No.			
<u>.,</u>		r/D = 0	737 - 738	-				
	AXIAL	 0.5	739 - 740	19	1667-1686			
NORMAL TRAVERSE		= 1.0	743 - 744	-	-			
		† =						
		x/D = 0.	741 - 742	-	<u>.</u>			
		= 3.4 .	745 - 746	9	1687-1696			
		= 6.4	747 - 748	-	_			
		* 8.6	749 - 750	10	1698-1707			
	RADIAL	≠-1.8 6	751 - 752	-	-			
	•	-1. 56	753 <i>-</i> ·754	-	-			
		=						
,								
		. Y =						
		r'/h = 0.5	755 - 756	19	1708-1727			
		- 1.0	757 - 758	10	1728-1737			
	AXIAL	. 1.5	759 - 760	-				
i	WINT	. 0.3	761 - 762	-				
ED CE		† -						
ERSE		$r^{t}/h = 0.5$ @ $x^{t}/h = 0.78$	762A- 762B	<u></u>	-			
RAV		= 0.5 = 1.61	763 - 764	COORDINATE S	YSTEM FOR LV HEASUREMENTS			
T		= 0.5 = 2.43	, 765 - 766	-	2			
SLANT TRAVER		= 0.5 = 3.25	767 - 768					
co.	RADIAL	= 0.5 = 4.07	769 - 770					
	(CHORD- WISE)	= 0.5 = 4.91	771					
		= 0.5 = 5.72	772					
		1.0 1.03	773					
		$\Psi = 0.5$ $\Psi = 0.13$	774 - 775] .	¥			

· And Handel

TABLE 5-35. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT TURBULENCE HISTOGRAM LOCATIONS

MODEL 6 20 Element Convergent-Divergent Annular Suppressor Nozzle

TEST POINT 614 for Design @ M, = 1.4

Type	Туре	MEAN VELOCI	TY TRAVERSES	TURBULENCE E	IISTOGRAMS
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
	•	r/D = 0	786 ~ 787	-	-
	AXIAL	= 0.5	788 - 789	19	1761 - 1782
	•	= 0.5	790 - 791	4	1786 - 1789
		Y = 0.5		. 4	1792 - 1795
ਬ		x/D = 0	792 - 793	_	-
'ERS		= 2.0	794 - 795	7'	1796 - 1802
RAV	, -	= 6.4	796 – 797	· -	· -
L 7		a 8.6	798 – 799	10	1803 - 1812
NORMAL TRAVERSE	RADIAL	= 12.8	800 - 801	-	-
ž ·		= -1.5	802 - 803	· -	_
		= -1.1	804 - 805	_	-
	,	= -0.8	806 - 807	-	-
,		· Y = -0.5	808 - 809	-	
		$r^{\dagger}/h = 0.5$	778 - 779	10	1751 - 1760
		= 1.0	776 – 777	13	1738 - 1750
T (SE		. = 0.3	780 - 781	-	-
SLANT TRAVERSE	AXIAL .	= 1.25	782 - 783	-	-
TR		= 1.5 .	784 - 785		_
•		=			

ORIGINAL PAGE 19 OF POOR QUALITY

TABLE 5-36. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT ; TURBULENCE HISTOGRAM LOCATIONS

MODEL 6 20 Element Convergent-Divergent Annular Suppressor Nozzle for
TEST POINT 1613 Design @ M. = 1.4

	<u> </u>	<u> </u>		.,	
Туре	Туре	MEAN VELOCI	TY TRAVERSES	TURBULENCE H	ISTOGRAMS
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
	•	r/D = 0	810 - 811		-
	AXIAL	= 0.5	812 - 813	20	1813 - 1832
		=			
		.¥ =		7	
E.		x/D = 0	814 - 815	·	
NORMAL TRAVERSE		= 2	816 - 817	7	1833 - 1839
rr.	*	= 6.4	818 - 819	-	-
V.		≈ 8.6	820 - 821	10	1840 - 1850
ORM.	RADIAL	= 12.8	822 - 823	· -	-
Ž ·		= -1.5	824825		
		= -1.1	826 - 827	· .	 -
		= -0.7	828 - 829	·	
		. Y = -0.5	830 - 831	-	-
		r!/h = 0.5	832 - 833	10	1851 - 1860
	1	= 1.0	834 - 835	10	1861 - 1870
NT RSE	AXIAL	= 1.25	836 - 837		-
SLANT	TATAL	= 1.5	838 - 839	-	-
T.		= 0.84	840 - 841		
		Y =			_

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 5-37. SCOPE OF LV MEAN VELOCITY TRAVERSES AND POINT ; TURBULENCE HISTOGRAM LOCATIONS

20 Element Convergent-Divergent Annular Suppressor Nozzle for MODEL 6 Design @ M. ≈ 1.4 1614 TEST POINT

Туре	Type	MEAN VELOCI	TY TRAVERSES	TURBULENCE H	ISTOGRAMS
of Syst.	of Traverse	MEASURED FLOW REGIONS	GRAPH ID. NUMBER	NO. OF HISTO. & MEASURED LOCATION	HISTOGRAM NO.
		r/D = 0	842 - 843) _ _
	AXIAL	a 0.48	844 - 845	19	1871 - 1890
,	,	=			
,		Y =			
五.		x/D = 0	846 - 847	_	
NORMAL TRAVERSE		= 2	848 - 849	7	1891 ÷ 1897
rra.	•	= 6,4	850 - 851	-	•
N.		= 8.5	852 - 853	13 ′	1899 - 1911
JRM.	RADIAL	= 12.8	854 - 855	, <i>-</i>	-
ž		= -1.9	1856 857		
		= -1.4	858 – 859	-	-
		= -1.1	860 - 861	·-	
1	• •	. = -0.7	862 - 863		
		$\psi = -0.4$	864 - 865	-	-
		r'/h = 0.2	866 - 867		
RSE		= 1.0	868 - 869	23	1912 - 1934
SLAI	AXIAL	= 0.5	870 - 871	io	1935 - 1945
SLANT TRAVERSE		= 1.5	872 - 873		
		† =			

TABLE 5-38.

P_r = Pressure Ratio

 $T_T = Total Temperature$

MODEL =

TEST POINT =

•	pnjhisto				n (VOIES	<u>) </u>	Slant		каσтат	mean	lurb.	
Иŏ	. No.	of Travers	Slant Axial		EW	NS	Ax. Pos.	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
		REF.		1.883	7.000.	13.902	EXITOR	JETAX	1S			
400	0	AX		•	7.013				a			AX. TRAVS ON JET AXIS
40	/			•	5					•	•	
40	2.			•	7.013					•	•	
40				٠	5				V	•	•	J
40				٠	7.781				0.5	•	•	AX. TRAVS. ON TO 29 = 0.5
408				•							•	
	926			1.958				1.04		2426	95	
7	927	,		1.958				1.04		2429	90	
	928			2000				1.63		1732	307	
f-	929			1.958				1.04		2390	124	HISTO HEASURED AXIAUY
\$	930			2.041			.	2.20		2109	228	ON 700g =0.5
=	931			2.080				2.74		1745	398	0
	932			2.140			<u> </u>	3.57		1830	326	
	933	<u> </u>		2.099				3.00		1626	363	
	9.34	V		2.180	1	↓		4.13		1589	416	<u> </u>
		NOMENO	LATURE									•

 V_j = Fully Expanded Jet Velocity

 $V_{a/c}$ = Free Jet Velocity

 $P_r = 3./28$ $V_i = 2402$ Ft/Sec

AERODYNAMIC TEST RESULTS BY
LASER DOPPLER VELOCIMETER

 $T_{T} = 1703^{\circ}R$

TEST DATE 3/29/82

Ft/Sec

 $D_{eq} = Equivalent Diameter$

TEST DATE 3/29/82

TABLE 5-38.	AERODYNAMIC TEST RESULTS B	Υ
	LASER DOPPLER VELOCIMETER	

(CONTINUED)

MODEL = $\frac{1}{P_r} = \frac{3.728}{2.02} \text{ V} = \frac{2.02}{2.02} \text{ Ft/Sec}$

TEST POINT = $\frac{113}{1}$ $T_{T} = \frac{1703}{703}$ O_{R} $V_{a/c} = 0$ Ft/Sec h = -1 In

	h Histo	Туре		Position	(Volts)	Slant	Axial	Radial	Mean	Turb.	
No.	No.	of Travers	Slant Axial		EW	NS	Ax. Pos. x'/h	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	935	AX		2.200	7.781	13.902	.]	4.41	0.5	1621	357	
	936			2.240				4.96		1763	430	
	937			2.280		Ì Ì		522		1519	378	
	938			2,320				6.08		1666	363	
	939		<u>.</u>	2.360	<u> </u>			6.63		/522	400	
	940			2,460	ļ			7.19		1605	392	HISTO MEASURED AXIALY
	941			2.440				7.74		1516	393	ON MOS = 0.5 (CONTINUED)
	942			2.5/3	·			8.76		151.7	385	
	943			2.597				9.93		1452	407	
	944			2.695				11.3		1323	382	
	9:45			2.774	·			12.4		1227	37/	
	946			1.924				0.57		2395	72	
	9:7		<u> </u>	1.972				1.24	<u> </u>	2137	284	
ļ	9:18			2.016		<u> </u>		1.85	<u> </u>	2028	225	
	9'19		<u> </u>	2.060	<u> </u>	<u> </u>	 	2.46	<u> </u>	≥∘72	290	
	9.0	₩	1	2./22	₩	₩		3.32	V	1889	308	<i>)</i>

NOMENCLATURE

P_r = Pressure Ratio

V_j * Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

٠.	TABLE 5	-38.	AERODYN/	MIC TES	T RESULTS	BY			TEST D	ATE3	129/82
Mod	EL = _				= 3.728		LUDED) 2402	<u>.</u> Ft/Sec	D = _	5.09	<u>†</u> In.
TES	T POINT	r =	/3	Ťτ	= 1703	° _R	V _{a/c} - —	0	Ft/Sec	h =	In
e F	Slant		n (Volts)		Slant Ax. Pos.	Axial	Radial	Mean Velocity	Turb. Velocity		Remarks
	Axial	Axial	EW	NS	x'/h'	x/D	r/D	Ft/Sec	Ft/Sec	•	tremat Ka

	Graph No.	Histo No.	Type of Travers	Slant Axial	Avial	(Volts	NS		ant Pos. /h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		95/	ΑX		2.161	7.781	13.962			3.88	0.5	1811	360	HISTO. MEASURED AXIALLY ON YOU = 0.
	406		EW		1.891	•	ŀ			0.08	•		•	(CONCLUBED)
ĺ	407				1,	•				0.08	,	•	•	
Į	408				1.962	•		<u> </u>	/	1.07		•	•	RADIAL TRAVS, ON
Į	409				3	•		<u> </u>		1.07		•	•	X/Dog=0.08, 1.07, 43
	410				2.194	•		ļ	\perp	4.3	•	•	•	AND 8.6 RESPECTIVELY
_	411				4,			<u> </u>		43	•	•	•	
3	412				2.502	•				8.6	•	•	•	, and the second
I	413			4-		•				8.6	•	•	•	
		952		4_		7.753		/			0.49	1574	431	<u> </u>
		953				8.067					0.70	1621	397	
		954				7.518					0.34	1001	324	HISTO MEASURED RADIALLY
	<u> </u>	255	NOT R	<u> SCORDE</u>	0	•		1/			•	•	•	ON XDag = 8.6
-		958		1		7.253		-/			0.17	2229	230	0
-		957				7.011	 	₩			0,01	227/	195	<u> </u>
Į								<u> </u>		\bigvee			1	`

 $P_r = Pressure Ratio$

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

ORIGINAL PAGE IS

 $T_{\overline{1}}$ = Total Temperature

V_{a/c} = Free Jet Velocity

h = Annulus Height

37

TEST DATE 3/30/82	ORIGINAL OF POOR
eq = <u>5.09</u> In.	PAGE QUAL

TABLE 5-39. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER

 $P_r = 3.316$ $V_j = 2457$ Ft/Sec MODEL =

TEST POINT = 121

 $T_T = \frac{1708}{0} R V_{a/c} = 0$

Ft/Sec

ľ	Graph	Histo	Туре		Position	(Volts))	Slant		Radial	Mean Turb.		
	No.	No.	of Travers	Slant		EW	NS	Ax. Pos x¹/h	Posit. x/D _{eq}	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
			REF.		1.884	7.018	13.902	EXIT W.					
	414		ΑX		LIST E	60KOED						•	
	415									•		•	<u> </u>
	416				1.284	7.018				0		•	AX TOOVS ON JET AXIS
L	417				4	4			•	7	•	•	
L	418		ĒW		1.81/	•			0.1	•	•	•	
L	419				4	. •			',	•	•	•	RADIAL TRAVS. ON
CJ.	42.0				1-962	•			1.1	•	•	•	X/Dog = 0.1, 1.1 AUD 42,
\tilde{c}	421				•	•			',	•	•	•	RESPECTIVELY
l	422				2.194	•			4.2	•		•	
	423		1		1,	•			:		•	•	
	424		_AX		•	7.748			•	0.5	•	•	AX. TRAVS ON YD == 0.5
	425		1		•	7			·	*		•	~
	426		EW		2.502	•			8.2	•	•	•	PRADIAL TRAUS. ON YOU = 8.5
Ĺ	427		J.		••	•	1		٠,	•	•	•	PACIAL TRAIS. ON YOU = 8.5
	· ··· · ·												×

NOMENCLATURE

P = Pressure Ratio

 $\mathbf{v}_{\mathbf{i}}$ = Fully Expanded Jet Velocity

D = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

(CONTINUED)

MODEL = / P = 3.3

 $v_1 = 2467$ Ft/Sec

 $D_{eq} = 5.69$ In.

TEST DATE 3/30/82

TEST POINT = 12/

 $T_T = 1708$ OR

V_{a/c}= 0 Ft/Sec

h = ____In.

ſ	G∵aph	Histo	Туре		Position	(Volts		Slant	Axial	Radial	Mean	Turb.	
	No.	No.	of Travers	Slant Axial	Axial	EW	NS	Ax. Pos.	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
		958	EW		2.502	7.012	13.902	/	8.5	0	2477	176	
		959				7.253				0.16	2420	198	
		960				7.253		!			2379	226	
L		961				7.253					22//	661	HISTO, MEASURED
		962				7.253				V	2413	203	RADIAUY ON XDag = 8.5
		963				802.5				0.32	2126	325	
, l		964				7.508				',	2127	336	<u> </u>
ا ت		965				7.753				0.48	1672	416	
		966				8.064				0.69	1084	373	<u> </u>
		967	V		V	8.064			₩	4	1188	362	
		968	ΑX		1924	7.748			0.56	0.48	2497	77	
		969			1.969				1.18		2492	117	
		970			2.005				1.68		1998	326	HISTO, MEASUKED
		971			2.005				1.68		1862	7.22	AXIALY ON 70-9=0.48
		912			2.005				1.68		1961	314	8
		973	<u> </u>		2.060	1 1 1	V	1	2.45		2409	198	<u> </u>

NOMENCLATURE

 $P_r = Pressure Ratio$

V; = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

h = Annulus Height

A SOCIAL

μ.	>
	5

TABLE 5-39.	AERODYNAMIC TEST RESULTS BY LASER DOPPLER VELOCIMETER (CONTINUED)	TEST DATE 3/30 /82	ORIGINAL OF POOF
MODEL =/	P _r = 3.3/6 v ₁ = 24.57 Ft/Sec	$D_{ad} = 5.09$ in.	Q PA
TEST POINT =	$T_{T} = 1708^{\circ} R$ $v_{a/c} = 0$	Ft/Sec h =In.	PAGE IS

Graph No.	Histo No.	Type of Travers	Slant Axial	Position Axial	(Volts)		VS.	Slant Ax. Po x'/h	os.	Axial Posit. x/D _{eq}	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	974	AX		2.//2	7.748	13.5	762		1	3.17	o.48	1827	360	
	975	.		2.164	٠,		Ľ		\perp	3.89	,	2119	280	
428	ļ	_AX_		•	7.798	· · · · · · · · · · · · · · · · · · ·			_	•	051	<u> </u>	•	AX TRAVS. ON YOU = 05
429				•									•	}
	976			1.943						0.82		5235	633	
	578			1.997						1.57		1846	330	
	9.28			2050						2.3/	ļ	237/	187	
	979			2.11			<u> </u>			3.16		1753	370	
	380			2,164						3.89	 	1983	322	
	281	 		2202			<u> </u>			4.42		1748	397	HISTO. HEASURED
	982		 	2238						4.92		1844	325	ANALYON Tong = 0.5
	983		 	2 28/						2.22	<u> </u>	1790	409	
	984		 -	2.320						606		1700	379	
	985		 	2.360				<i></i>		6.62		1772	4/3	
	986		ļ	2.400				<i></i> -		7./7		1825	385	
	987			2.442	<u> </u>		<u> </u>			7.76	₩	1758	401	

 $P_r = Pressure Ratio$

Y = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 T_T = Total Temperature

V_{a/c} = Free Jet Velocity

TABLE 5-39.	AERODYNAMIC TEST RESULTS BY		TEST DATE 3/30/82	ទី ទី
10DEL = /	LASER DOPPLER VELOCIMETER Pr = 3.3/6	(CONCLUDED) V = 2457 Ft/Sec	D _{eq} = 5.09 In.	RIGINAL
rest Point =	$T_{T} = 1708^{\circ}R$	Va/c	Ft/Sec h =In.	PAGE E

												5-60 2009
Graph No.	Histo No.	Type of Travers	Slant		(Volts) NS	Slant Ax. Pos. x ¹ /h	Posit.	Radial Posit.	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		1147613					~ / !!	x/D _{eq}	r/D _{eq}	1 27 300	7 0,000	
	988	AX_		25/3	7.798	13.772		25.8	0.51	1719	401	
	989			2,597				9.91		16.11	409	
\ <u></u>	990		•	2.695				11.28		1459	406	
	991			2.774				12.37		1377	379	
	992			1.922				22.0		2466	74	
	993			1.972				1.22		243/	260	
	994			2.0/8				1.86		1917	275	
	995			2035				2.09		2134	292	HISTO, MEASURED AXIALLY
	196			2.073				2.63		2/35	}22	en 1/00 = 05
	997			2.092				289		1798	402	0
	978			2.131				3.43		1849	316	
	999			2149				3.68		1911	338	
	1000	•		2.185				4.19		1763	397	
	101	J		2.149	V			3.68	*	1921	317	
		•							<u> </u>		\	
			/			V	1					

 $P_r = Pressure Rátio$

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

Va/c - Free Jet Velocity

ORIGINAL PAGE IS TEST DATE 3/3//82 $P_r = 3.323$ $V_j = 2463$ Ft/Sec $D_{eq} = 5.09$ In. $T_T = \frac{77.5}{}^{O}R$ $V_{e/c} = 400$ Ft/Sec h = - In.

TABLE 5-40. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER

MODEL =

TEST POINT = 122

		Histo	. Туре		Position	(Volts)		Slant			Radial	Mean	Turb.	,
	No.	No.	of Travers	Slant Axial		EW	EW NS		Ax. Pos.			Velocity Ft/Sec	Remarks		
			REF		1.883	7.009	13.8	5	EXIT	8	Jet	AXIS			
		1002	 :	LUAT	RECORDE	> .				\perp	•	•		•	
1		1003				•				\perp	•	•	•	•	
	430		Αx		•	7.018					•	0			
	43/					٠,					•	4	•	•	AX. TRAVS. ON 70=0
	432				•	7.808					•	0.5	•	•	AND O.S. RESPECTIVELY
တ	433				•	1,								•	<u> </u>
2		1004			2.774	7.808					/2.37		1413	332	
`		1005			2.695						11.28		1542	328	
		1006			2.644					·	10,57		1533	359	
ļ		1407			2.605						10.02		1670	397	HISTO. HEASURED AXIALLY
		1008			2.184						9.45		1684	360	YON 7/0 m = 0.5
		1109		<u> </u>	2.527						8.94		1734	329	0
		110		<u> </u>	2,488				1		8.40		1689	359	
)		44		<u> </u>	2.488						8.40		1650	36/	
į		11/2			2445	<u> </u>	1		L		7.80	V	1757	35.2	

NOMENCLATURE

P == Pressure Ratio

V = Fully Expanded Jet Velocity D = Equivalent Diameter

 $T_{T} = Total$ Temperature

V_{a/c} = Free Jet Velocity

TABLE 5-40	AERODYNAMIC TEST RESULTS BY	TEST DATE	<u>o</u>
MODEL =/	LASER DOPPLER VELOCIMETER (CONTINUED) Pr = 3.323 V = 2463 Ft/Sec	D _{eq} = <u>5.09</u> In.	ם מממק
TEST POINT =	$T_{T} = 17/5^{\circ}R$ $V_{a/c} = 400$	_ Ft/Sec h =In. Q	2 : 2

	Graph No.	Histo No.	Type of Travers	Slant Axial		(Volts) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
-							A - 4 -						7
		10/3	_AX		2.411	7.808	13.850	-	7.33	0.5	1607	363	
		1014			2.364				6.67		1876	315	
		2015			2.319				6.65		1613	33/	
		1016			2.257				5.19	<u> </u>	1896	203	
		1017			2.263				444		1784	369	
_ [1018	,		2.161				3.85		2036	295	
		1019			2./02				3.03		18-22	357	
ပ	,	1020			2.045				2.24		2.321	186	-HISTO, HEASURED AXIALLY
		1021			2.156				3.78		2042	272	ON MORE = 0.5 (CONTINUED)
		1022			1.995				1.54		2007	333	0
		1023			1544				0.83		2513	70	
	;	10:4			1.925				0.57		2439	28	
		1027		1	1.975				1.27	,	2388	208	
		1026			2.025				1.95		2184	2/8	
		1027			2.075				2.66		221/	318	
	j	1028	٧.		2.127	*	▼ .	1	3.38		1868	276	

 $P_r = Pressure Ratio$

 V_j = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_{T} = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5-40.	AERODYNAMIC TEST RESULTS BY	TEST (DATE 3/3//82	ORIGIN OF PC
MODEL =	LASER DOPPLER VELOCIMETER (CONTINUED) $P_r = 3.323 v_j = 246$		<i>5-09</i> In.	VAL PA
TEST POINT =	$T_{T} = \frac{17.5}{120} ^{\circ} R v_{a/c}$	400 Ft/Sec	h =In.	PAGE 18

Graph No.	Histo No.	Type of Travers	Slant Axial		(Volts		NS	Slant Ax. Pos x'/h	. Posit	Radial Posit. r/Deq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks -
	1029	AX		2.181	7.80 8°	13.	850		4.13	0.5	1992	336	HISTO MEASURED AXIALLY
`	1030			2,232				,	4.84		1761	183	ON 7/000=05
	1031	V		2,290					564	Į,	1855	338	0
434		EW		1.889	•				0.0		•	•	
425				4,	•				4	•	•	• .	
436				1.760	•				1.0	•	•	•	
437				٠.	•				4	•	•	•	RADIAL TRAUS. ON
438				2.192	•				4.2	•	•	•	\$6=0,10,4.2,8.5,
439				٠,	•	,			1,	•	•	•	RESPECTIVELY
440				2.500					2.8	•	•	•	
441					•					•	•	,	
	1032				7.013					0	2199	7/7_	ì
	1033				7.253					0.16	1964	719	HISTO. HEASURED
	10.14				7.253					0.16	22/3	122	RADIALLY ON X/Day=8.5
 	10.15				7.518					0.33	2/40	214	11
	10:6			4	7.753		,		\ \ \ \	0.48	1783	319	

P_r = Pressure Ratio

 V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

T_T = Total **Temperature**

 $V_{a/c}$ = Free Jet Velocity

		Modi Tes:	EL = T POINT		/22	— ^Р г ^Т Т	$P_r = 3323$ $V_j = 2463$ Ft/Se $T_T = 1715$ $^{\circ}R$ $V_{a/c} = 400$			Ft/Sec 400	D _{eq} = -	5.09 In. PAGE PAGE
Graph No.	Histo No.	Туре	Slant	Position	(Volts		Slant Ax. Pos.	Axial Posit.	Radial Posit.	Mean Velocity	Turb. Velocity	~ 22
	1037	Ew_	•	2.500	8.067	13.850	•	2,8	0.69	1241	3 //	SEE PREVIOUS PAGE TOR REHARKS
							À					
							· · · · · · · · · · · · · · · · · · ·					
					i l		1,1		<u> </u>	l		

LASER DOPPLER VELOCIMETER (CONCLUDED)

TABLE 5-40. AERODYNAMIC TEST RESULTS BY

NOMENCLATURE

4

 $P_r = Pressure Ratio$

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

TEST DATE 3/3/182

ORIGINAL PAGE |

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

~ ,
*
5

TABLE 5-41.	AERODYNAMIC TE	EST RESULTS BY		TEST DA	TE 3/31/82	유용
Nonce - 1	LASER DOPPLER		- 2/25 - 2/2	.	509	GINAL
MODEL =/			- <u>2425</u> Ft/Sec		5.09 In.	
TEST POINT =	<u>14</u>	$r_T = 1734^{\circ}R$	Va/c= 400	Ft/Sec	h =In.	PAGE QUALIT
						4 0

	Graph No.	Histo No.	Type of Travers	Slant	Autol	n (Volts) EW) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
			REF		1.881	7.018	13.843	EXT ON	JET!	PXLS			
	442		AX	<u> </u>	,	7.018			<u> </u>	0	•	•	
L	443				•	4			•	3	•	•	AX TRAVS. ON YOY = 0
	444			$\Box \bot'$	•	7.807				0.5	•	•	AND O.S. RESPECTIVELY
	445			\prod	•	ř,			•	,		•	
L		1038			1.939	7.807			0.76	0.5	2438	78	
. [1039			1.956				1.00		2447	95	
, [1040			1.991			*	1.49		1861	326	
		1041			1597			·	1.29		2000	320	
	l	1042			2020				1.89		2169	219	
		1043			2.050				2.3/		2238	239	HISTO, HEASTRED ANALLY
		1044			2.077]	2.68		1845	360	ON 7/200 = 0.5
		1045			2.096				2.95		רורו	179	0
L	<i></i>	1046			2.1/9				3.27		1888	289	
	<u> </u>	1047			≥./38	T			3.53		2005	27/	
		1048	4	· - '	2.16	J	V	Π	3.85		1863	339	

 $P_r = Pressure Ratio$

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/r}$ = Free Jet Velocity

OF POOR	ORIGINAL
QUALIT	PAGE
-	(g)

TABLE	5-41.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

(Continued) MODEL =

 $P_r = 3./28$ $v_j = 2425$ Ft/Sec $D_{eq} = 5.09$ In. $T_T = 1734$ OR $V_{a/c} = 400$ Ft/Sec h = -10. TEST POINT =

Ī	Graph No.	Histo No.	Type of	Slant	Position	(Volts		Slant		Radial	Mean	Turb. Velocity	Remarks
	NO.	NO.	Travers			EW	NS	Ax. Pos. x'/h	x/D _{eq}	r/D _{eq}	Ft/Sec	Ft/Sec	Nelliarks
		1049	Ax		2.189	7.807	13.843	1	4.24	0.5	1604	345	
		1050			2.231				4.82		1882	799	
		1051			2.27/				5.39		1730	367	
		1052			2.317				6.02	<u> </u>	1819	300	
Į		1053			2.353				8.52		1784	339	HISTO HEASURED
ر ا د		1054			2.395				7.10		177/	3/7	AXIALY ON TOOG = 0.5
<u> </u>		2201			2.488				8.40		1783	.328	(CONTINUED)
٦ [1056			2.567				9.50		1729	339	
		1057			2.694	₩			11.26	V .	1550	363	
1	446		EW		1.889	•			0	<u> </u>		•	
	447			 	,	•			7	•	•	•	PACIAL TRAVS ON .
ļ	·	1058		MOT	RECORD	5D			· · · · · · · · · · · · · · · · · ·			•	*/ AND 3.
	448				2.097			/	2.96		•	•	RESPECTIVELY.
ļ	449			 		•			1	<u> </u>	. •	•	<u>[</u>
-		1059		 		7.636		<i></i>		0.40	2212	115	HISTO MEASURED
Į		1060	J			7.044	V	<u> </u>		0.02	2029	フフ	RADIALLY ON You = 3

NOMENCLATURE

D = Equivalent Diameter

TEST DATE _ 3/31/82

 $T_T = Total Temperature$

Va/c = Free Jet Velocity

1	•
3	_
_	_
_	`
-	

TABLE 5-42. A	SERODYNAMIC TEST RESULTS BY	TEST DATE 4/7/82 9
MODEL = 2	ASER DOPPLER VELOCIMETER $P_r = 3.309 V_i = 2447 \text{ Ft/Sec}$	Deg = 5.09 In. R
TEST POINT =		

Graph No.	Histo No.	Type of Travers	Slant Axial	Position Axial	(Volts) EW	NS	Slant Ax. Po x¹/h		Radial Posit. r/D eq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF		1.977	6.972	13.544	EXIT	ON JET	AXIS		,	
4600		AX		•	7.729	,		<i>I</i> ·	0.53	,	W. St.	LAX. TRAVERS. ON 1/2 =0.53
4001				•			l/	<u> </u>		•	•	
	4600			3.000			/	14.22		1174	351	, , , , , , , , , , , , , , , , , , , ,
	400/			2.666			/_	9.58		5221	376	
- · · ·	4002			2520	ļ.			7.57		1821	409	
	4003			2.377			/_	226	ļ	1567	396	
	4004			5.225				7.98	<u> </u>	1482	382	
	4005			2.184				288		1404	378	HISTO- HEASURED AXIALLY
	4006			2.157				2.50		1424	379	ON 700g = 0.53
	4007			2.084	<u> </u>			1.49		1198	367	
···	4038			2.064	: I			1.21		1/28	347	· · · · · · · · · · · · · · · · · · ·
	4029			2035				0.81		528	. 324	
	6010			2.118			/	1.96		1270	37.3	
	4011	V		2.217		<u> </u>	V	3.34		1347	349	

 $P_r = Pressure Ratio$

V_j = Fully Expanded Jet Velocity

 $T_{T} = Total Temperature$

V_{a/c} = Free Jet Velocity

D_{eq} = Equivalent Diameter

			TABLE	5-41.			ST RESULTS					DATE 3/3//- 82
		МОП	EL = _		LASER D	OPPLER P	/ELOCIMETEI - = <u>3./28</u>	$\frac{R}{L}$ (Concl	uded). - 242ζ	Ft/Sec	ر مار الم	F POOR
		TES	T POIN	T =				o _R	Vá*c= -		Ft/Sec	ORIGINAL PAGE IS OF POOR QUALITY
Graph No.	Histo No.	Type of Travers	Slant Axial	Avial	n (Volts EW) NS	Slant Ax. Pos x'/h	Axial Posit. x/D () eq	Radial Posit. r/D _{eq.}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	The state of the s
450	1061	EW		2.097	1.427	13.843		2.96 ·· 3.63	-0:39	72/2		RADIAL TRAVS: ON X/Dog = 3.6
45/	1062	,			7.670		, ,		0,43	2473	A A SA BANK	HISTO, HEASUREO RADIALLY
.452	1063			2.195	7.041	·		43	0.02	2690	16.80	RADIAL TRAVS: ON YOU = 4.3
452	1064				1107 05	rocoeD			, ·•		and only make the security	and the contract of the contra
404	1065	4 N		2.500				8.6	tra 1 d	And the second second	म् र क्षित्र क्षेत्रक स्थापक स्थापक	
405	1056				7.010				-0.01	5225	7 , c 0 /2	HISTO HEASUREO RADIALLY
	10:57		 		7.253				0.32	2537	238	ON 7/007 = 8.6
456		ΑX			7.018],	1/		0]	AX. TRAVS: ON JET AXIS

P_r = Pressure Ratio

· V = Fully Expanded Jet Velocity

Deq = Equivalent Diameter

 $T_T = Total Temperature$

 $\dot{V}_{a/c}$ = Free Jet Velocity

TABLE 5-42. AER	ODYNAMIC TEST RESULTS BY	TEST DATE 4/7/82 유용
MODEL = 2	ER DOPPLER VELOCIMETER (Concluded) $P_r = 3.309 V_j = 2447 \text{Ft/Sec}$	POOR In. R
TEST POINT = 22/	$T_{T} = \frac{1697}{\text{C}} \text{R} \text{V}_{a/c} = 0$	eq

	Histo				n (Volts))	Slant	Axial	Radial	Mean	Turb.	
No.	No.	of Travers	Slant Axial		EW	NS	Ax. Pos.	. Posit. x/D eq	r/D eq	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
4002		AX			6.906	13.544			0	•		AX. TRAVS. ON JET AXIS
4063		Ţ		·	<u> </u>			•	3	•	<u> </u>	
4004		EW		2.593	•			8.6		•	*	RAPIAL TRAVE ON You = 86
4005	1				•				•	•	•	0
	4012				8.111				0.78	880	305	
	4013				7.740				0.53	1435	376.	
	4014	<u>'</u>			7.436				0.34	203/		HISTO. MEASURED AN
	4015	<u></u> '			7.183				0.17	2366	208	X/Deg = 8.6
	4016				6.913				0	2449	108	
	4017	<u> </u>		V	6.715			\downarrow	-0.11	2430	114	
4006				2285			<u> </u>	4.3		•		
4007				٠,	•			4	•	•	•	
4008				2.053	•			1.1		•	•	RADIAL TRAUS ON YOUR = 43.
4009				3				',	•	•	•	RADIAL TRANS ON YUNG = 4.3,
4010		<u> </u>		1.982	•			0.07	<u> </u>	•	•	
4011		<u> </u>	\prod_{-}	4	•	V	I	•	•	•	•	<u> </u>

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

D_{eq} = Equivalent Diameter

J)
UT:

TABLE 5-43.	AERODYNAMIC TEST RESULTS BY		TEST DATE 4/7/82
MODEL = 2	P _r = 3.018	v, = <u>2372</u> Ft/Sec	D _{eq} = 5.09 In.

		•					
TEST POINT ==	207	$T_T = 1707$ OR	V _{a/c} =	0	Ft/Sec	h =	 _In.

	Graph No.	Histo No.	Type of Travers	Slant Axial	Avial	(Volts)) NS	Slant Ax. Pos. x'/h		Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
			REF		1.977	6.856	12743	EXT 0	N JET	AXIS	•	•	
	4012		AX		. •	6.856			•	0	•	•	
	40/3				•	',				4	•	•	AY TRAVE ON TET ANS
	4014				•	7.689			•	0.54		•	AND YOU =054 RESPECTIVELY
	4015					γ,			•		•	,	
		4018			3.002	7.689			14.25		1098	318	<u> </u>
Į		4019			2.768				11.00		1280	379	
: [4020			2620				8.94		1413	369	
		4021			2.490				7.13		1489	387	HISTO. HEASURED
		4022			2406				5.96		1454	269	BUBLY ON TOME OST
		4023			2.3/3				4.67		1419	369	B
		4024			2.238				3.63		1413	367	
		1025			2.154				246		1395	382	
1		4026			2.099			1 / .	1.70		1306	825	
	ļ	4027	,	NOT	RECORDI	0		1			-	_	
		1628			2.048	<u> </u>	V	1/	0.99	1	1151	349	<u> </u>

 $P_r = Pressure Ratio$

 $T_T = Total Temperature$

 V_{j} = Fully Expanded Jet Velocity

 $V_{a/c}$ = Free Jet Velocity

D_{eq} = Equivalent Diameter

ORIGINAL PAGE IS

TEST	DATE .	4/7	182	OF POOR
eq =	<u>5</u> .	09	_ In.	OR QUA

TABLE	5-44.	AERODYNAMIC	TEST	RESULTS	BY
					_

TEST POINT = $\frac{2}{}$ $T_T = \frac{1709}{}$ or $V_{a/c} = \frac{0}{}$ Ft/Sec $h = \frac{-}{}$ In.

I		Histo				(Volts)	Slant		Radial	Mean	Turb.	
	No.	No.	of Travers	Slant Axial	Axial	EW	NS	Ax. Pos. x'/h	Posit. x/D eq	Posit. r/D eq	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
			REF		1-977	8.856	13743	EXIT O	U JET	AXIS	•	•	
	4016		AX		,	7.689		/	•	0.54		•	AX TRAVS. ON 100 = 0.54
	407				•				•		•	•	0
		4029			3.000				14.2		1140	329	
		4030			2,75/		·		10.8		1289	367	
		403/			2683				9.4		1406	346	
ار		4032			3.248				7.9	 	1021	365	
3		4033			2,450		,		6.6		1509	365	HISTO - MEASURED
Ĭ		4034			2349				c. 2		1496	389	AXIALLY ON You = ash
		4035			2.2.5.2				38		الادكار	36/	0
		4036			2.226				3.5		1407	350	
		4037			2.162				2.6		1387	369	
		4038		<u> </u>	2.106	<u> </u>			1.8	V	1315	346	<u></u>
	4618			/	•	818.8			•	0.0	•	,	AX. TRAVS. ON JET AXIS
	4019		→		•	4		/	•	4	•	•	*
		4019	NOT A	ECORD	EO.	•	V	1	•		•	•	

NOMENCLATURE

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

V_{a/c} = Free Jet Velocity

 D_{eq} = Equivalent Diameter

h = Annulus Height

 $T_T = Total Temperature$

TEST	DATE 4/7/	82	ORIGINAL
eq =	5.09	In.	PAGE QUALI

TABLE	5-45.		

MODEL =

TEST POINT = 2/3

T_T = <u>/708</u> OR

 $P_r = 3./2/$ $V_j = 2403$ Ft/Sec $D_{eq} = 5.09$ $T_T = 1708$ OR $V_{a/c} = 0$ Ft/Sec h = -

	Graph No.	Histo No.	Type of Travers	Slant Axial	Avial	n (Volts) EW) N:	s	Slant Ax. Po x'/h	os	Axial Posit. x/D	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
			REF		1.977	6.856	13.7	43	EX1	01	JET	axis	•	•	
	4020		AX		•	6.851				$\int \int$	•	0	•	•	
	402/				•	4				\mathcal{I}	•	2	•	•	
	4022				•	7.70/				\mathcal{L}		22.0	•		AX. TRAVS. ON Day = 0, ass
	4023				•	3.					•	4	•	•	AX. TRANS. ON Day = 0, 0.55, AND U.ST, RESPECTIVELY
L	4024				•	7.641					•	0.51	•	•	
<u>ත</u>	4035					4					•	•,	•	•	
UI		4040			2.863	7.70/					12.32	22,0	1205	325	
ယ		4541			2.765						10.68		1268	369	
L		4042			2.668						9.61		1334	378	-
Ĺ		4043			2.585]			P.&5		_	-	HISTO ANALLY MEASURED
		4044			3						4		1433	373	ON 1/000 = 0.55
]	8085			7.51/						7.42		1458	379	
	, 	4046			2.432						6.33		1478	38/	
	J	4547			2.368						2.44		1442	359	
	<u> </u>	80,18	V	J	2,267	1	V				4.03	1	1419	368	

NOMENCLATURE

P_r = Pressure Ratio

 V_{i} = Fully Expanded Jet Velocity

 T_T = Total Temperature

 $V_{a/c}$ = Free Jet Velocity

D_{eq} = Equivalent Diameter

rest	DATE	4/7/82

FARIF	5-45.	AERODYNAMIC	TEST	RESULTS
MOLE	フニヤフ・	ALNOVINANIC	IFOI	INTOOP 10

				ATE 4/1/82	<u> 유</u>									
						5 G								
			MOD)EL =			—— ^Р г	= 3./2/	_ V _{.j} =	2403	Ft/Sec	Deq ≃	5.09 In.	ORIGINAL OF POOR
			TES	T POINT	r =2	213	тт	= <u>1708</u>	°R v	a/c	0	Ft/Sec	h =!n.	PAGE IS
	Graph		Туре			(Volts)	Slant	Axial	Radial	Mean	Turb.		
,	No.	No.	of Travers	Slant Axial		EW	NS	Ax. Pos.	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks	,
		4049	AX		2,191	7.7.1	13.743		2.98	0.55	1375	374	SEE PREVIOUS PAGE FOR	
		4050	<u> </u>		2.114	7			1.90	4	1280		REMARKS	
	4026		EW		1.982	•			0	•	•	•		
	4027				4	•			7	•	•	•		
	4028				2.052	•			1-1	•	•	•	1	
	4029				4	•			•	•	•	•	PANA TEAUS. ON YOU	= 0,
65	4030				2.285	•			4,3	•	•	•	1.1. 4.3 AND 8.6	
4	4031				3	•			3	•	•	•	RESPECTIVELY	
	4032				2.593	•			8.6	•	•	•	·	
	4033				3	•				• •	•	•		
		4051			2.593	7.904				0.68	1073	334		
ĺ		4052				7.697				0.55	1412	364		
		१०१३				7.464				0.40	1884	328	HISTO MEASURED RAD	ALLY
		4014				7.267				0.27	2.222		ON 40.05 = 8.6	
		405				6.938				0.05	2417	126	D	
[808	V		V	6.753			V	- 0.07	2407	125		

NOMENCLATURE

P_r = Pressure Ratio

 V_{i} = Fully Expanded Jet Velocity

 T_T = Total Temperature

 $V_{a/c}$ = Free Jet Velocity

D_{eq} = Equivalent Diameter

TABLE '5-45.	AERODYNAMIC TEST RESULTS BY	TEST DATE 4/7/82	ORIGINAL
MODEL = 2 TEST POINT = 2	LASER DOPPLER VELOCIMETER (Concluded) $P_r = 3./2/ v_j = 2403 \text{ Ft/Sec}$ $T_T = 1708 \text{ or} v_{a/c} = 0$	p _{eq} = <u>5.09</u> In. Ft/Sec h =In.	PAGE IS

	Graph No.	Histo No.	Type of Travers	Slant	Autol	(Volts	NS	Slant Ax. Pos. x'/h		Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	4034		ΑX	•		6.856	13.743		•	0	•		LAX. TRAVS. ON JET AXIS
	40.35		٠,	-	•	3	\$		•	4		,	1
								,			<u> </u>		
											<u></u>		
							<u> </u>						
													
<u>ت</u> د													
זט זע													
·			<u> </u>										
			-										
ı									<u> </u>				
							,						<u> </u>
								<u> </u>	<u> </u>	<u> </u>			
						 				\	<u> </u>		

P_r = Pressure Ratio

 V_j = Fully Expanded Jet Velocity

 $T_T = Total Temperature <math>V_{a/c} = Free Jet Velocity$

D_{eq} = Equivalent Diameter

TABLE	5-46.	AERODYNAMIC		

MODEL = $\frac{2}{P_r} = \frac{3.121}{V_j} = \frac{26.09}{E}$ Ft/Sec

D_{eq} = <u>5.09</u> in.

Ft/Sec

TEST DATE 4/8/82

TEST POINT = 214

 $T_T = 1716^{\circ}R$

V_{a/c}= 400

h = _____!n.

ORIGINAL PAGE IS

	Graph No.	Histo No.	Type of Travers	Slant Axial		n (Volts EW) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
			REF		1.965	6.959	13.753		,				
	4036		ΑX		1.97/				<u> </u>	0	•	•	•
	4037				<u> </u>	↓			•	,	•	•	AX TOOKS ON TOO OAND
	4038				<u> </u>	7.726			•	0.5	•	•	O.S. RESPECTIVELY
	4039				·				•		•	•	1
		4059			3.002				14.4		1198	292	}
		4060			2.916				13.2		1263	295	
מל		4061			2.83/				12.0		1264	307	
7		4062			2.746				10.9		1315	309	
		4063	;		2.672				9.8		131K	318	HISTO. MEASURED ANALLY
-		4064			2597				8.8		1463	346	ON 1/2 = 0.5
		4065			2.505				7.5		1489	344	<i>0</i>
	<u> </u>	4065		1	2.437				6.6		1465	35 K	
		4067			2.354	<u> </u>			r.K		1407	328	
		4068	<u> </u>		2.257	<u> 4</u>	<u> </u>		4.1	1	(31)	330	<u>, </u>
Į						<u> </u>		1					<u> </u>

NOMENCLATURE

P_r = Pressure Ratio

V_i = Fully Expanded Jet Velocity

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

D = Equivalent Diameter

ORIGINAL OF POOR
PAGE
7 5

TABLE	5-46.		AERODYNAMIC TEST RESULTS
			LASER DOPPLER VELOCIMETER
MODEL =		>	P = 3/2/

(Concluded)

TEST POINT = 214

 $P_r = 3./2/$ $V_j = 2409$ Ft/Sec $D_{eq} = 5.09$ In. $T_T = 17/6$ OR $V_{a/c} = 400$ Ft/Sec h = - In.

TEST DATE 4/8/82

Graph No.	Histo No.	Type of Travers	Slant Axial		(Volts) EW	NS	Slant Ax. Pos x'/h	Posit.	Radial Posit. r/D eq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	. Remarks
4040		EW		2.589	•	13.75	3	8.7	•	•	•	RADIAL TRAVS ON
4041					•					•	•	$) \times 6 = 8.7$
	4069				8.892				1.26	378	56	
	4070				8.315				0.88	7//	190	
	407/				7.990				0.67	1050	296	
· · · · · · · · · · · · · · · · · · ·	4072				6.961				0.00	2386	10.3	HISTO, HEASUKED RADIALLY
	4073				7.224				0.17	2338	147	ON *100g = 8.7
	4074				7.508				0.38	1994	28/	<u> </u>
	4075			<u> </u>	7.774			_	0.53	1499	374	
4042				2.28/				4.4	<u> • </u>	<u> </u>	•	
4043				5	•			3	•		•	,
4044			<u> </u>	2.049	•	<u> </u>		1.2	<u> </u>	; ,	•	Y RACKAL TRAVS. ON
4045			<u> </u>	5	,		1/	3	<u> </u>	ļ. · ·	•	X/Dog = 4.4, 1.2 AND 0.2,
4046			 	1.978	•			0.2	· .	, ,	•	RESPECTIVELY
4047		<u>J.</u>	Y	,	<u> </u>	₩	1/	*		1.	·	

NOMENCLATURE

 $P_r = Pressure Ratio$

V = Fully Expanded Jet Velocity

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

D_{eq} = Equivalent Diameter

TABLE	5-47.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

MODEL = $\frac{2}{2}$ $P_r = \frac{3.3}{2}$ $V_j = \frac{24.5}{5}$ Ft/Sec $D_{eq} = \frac{5.09}{10}$ In.

TEST POINT = $\frac{222}{10}$ $T_{\dot{1}} = \frac{1707}{707}$ $V_{a/c} = \frac{400}{100}$ Ft/Sec $h = \frac{100}{100}$ In.

	Histo			Position	1 (V	olts)		Slant		Radial	Mean	Turb.	
No.	No.	of Travers	Slant Axial	Axial		EW		NS	Ax. Pos x¹/h	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
		REF		1.975	6.9	49	13.7	173	EXIT OF	JET A	X/.S			
4648		AX		•		<u> </u>					0	•	•	•
4049				•	,	<i>i</i>				•	3	,	•	AX. TRAUS. ON Yang = 0.
4050				•	7.	746				•	0.52	•	•	AND O.S.Z. RESPECTIVELY
4051				•		l				•		•	•	
	4076			3.002						14.3		1297	327	
	4077			2.9//						13.0		1332	3/8	
	4078			2.826						11.8		1365	333	
	40.79			2.742	,					10.7		1429	326	
	4080			264						9.4		8021	365	HISTO, HEASURED ANALLY
	4081			2.560						8-/		N221	36 6	ON MAN = 0.52
	4082			2.477						7.0		1582	384	
	4083			2.394						5.8		1495	386	
	4084			2.325						4.9		1430	368	
	46.85	y ·		2.230	,	Ł		'		3.5	V	1367	87.5	
							•		7					

NOMENCLATURE

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

D_{eq} = Equivalent Diameter

TEST DATE __4/8/82

TEST DATE	ORIC OF F
eq = <u>5.09</u> In.	ORIGINAL PAGE OF POOR QUAL

TABLE	5-47.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

MODEL =

TEST POINT = 222

(Concluded)

P_r = 3.3/2 $V_j = 24.55$ Ft/Sec D_{eq} = 2 $T_{\dot{T}} = 1707$ OR $V_{a/c} = 400$ Ft/Sec

		Histo				(Volts)		Slant		Radial	Mean	Turb.	
	No.	No.	of Traver	Slan s Axia		EW	NS		Ax. Pos.	x/D eq	r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	4052		ΕW		1.278	•	13.7	હ		Ó		•	•	
	5003	,		<u> </u>	3.	•				',		•	•	,
	4054				2.049	•				1.0	•	•	•	·
	2204		·		4	•			\int	3		÷	•	RADIAL TICAVS. ON YD-, =0,
	4056				2.28	•				4.3		•	•	1.0, 43 AND 8.5.
ļ	4057			1	5	•				3	• .	•	•	RESPECTIVELY
	4058				2.589	•				2.8		•	•	
2	4059				,	•				"	•		•	
7 =		4086			VOT PEC	ORDED				_		•	•	
	- ·	4087			2,589	8.104				8.5	0.75	868	249	
		4088				7.749					0.52	1381	35.8	
		4089				7.527					0.38	1973	326	HISTO, MEASURED RADIALLY
		40:0		1/		7.258					0.20	2342	180	HISTO, MEASURED RADIALLY
ŀ		40?/		//	<u> </u>	6.950	<u> </u>			1	0.00	2411	-10/	0
1				 		ļ	 		<u> </u>					
			,	¥]		j	Į (· ·	,

NOMENCLATURE

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

AERODYNAMIC TEST RESULTS BY

LASER	DOPPLER	VELOCIMETER
LYJEL	DOLLFEY	AFFOCILIFICA

MODEL =
$$\frac{3}{P_r} = \frac{3.067}{4.00} V_1 = \frac{239\%}{4.00} \text{ Ft/Sec}$$

$$D_{eq} = 5.67$$

TEST POINT =
$$309$$

$$T_{T} = 17/9^{\circ} R$$

		Histo			61		n (Volts)	Slant	Axial		Mean	Turb.	3 5
	No.	NO.			Slant Axial		ÉW	NS	Ax. Pos. x¹/h	x/D _{eq}	r/D _{eq}	Ft/Sec	Velocity Ft/Sec	Remarks
		REF 0.696 0.874 6.888 13		13.660	3.660 PLUG									
	87			ب	/	<u>'</u>			•	•	0	•	•	AX. TRAUS. ON JET AXIS
L	88			<u>i</u>		•	↓	<u> </u>	•	•		•	•	
		227				1.052	6.907	13.714	,	2.2		208/	196	
		228				1.083			•	2.6		1986	214	HISTO MEASURED AWALLY
L		229				1.105			•	2.9		2.76	189	ON JET ANS
L		230				1.069	V		•	2.4	V	2014	205	
L	89					•	7.762		•	•	0.59	•	•	AK. TRAUS. OU 1/0=0.59
	90				/	•	7		•	•	4	•	•)
	91		QΑ	πAX	•	0.674	5.556		•	•	SLANT $Y'/h = 0.5$	•	•	-
	92				•				•	•		•	•	SLANT AX. TRAVS
	93				•				•	• .		•	•	on 1/h = 0.5
	94		,	/	•			V	•	•	J	•	•	*
Γ														

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

 $D_{eq} = Equivalent Diameter$

TABLE	5-49.	AERODYNAMIC	TEST	RESULTS	BY

LASER DOPPLER VELOCIMETER

 $P_r = 3.746$ $V_j = 2439$ Ft/Sec $D_{eq} = 5.67$ In. MODEL *

 $T_T = 1747$ OR $V_{a/c} = 0$ Ft/Sec h = 0.8/ In. TEST POINT = 3/3

Ţ	Graph	Histo	Ty	уре		Posi	tio	n (Volts))		Slant	Axial	Radial	Mean	Turb.	,
	No.	No.		of	Slant Axlal	Axi	al	EW		NS	Ax. Pos.	Posit. x/D _{eq}	Posit.	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
Ī	95	_	SLAW	πAX	•	06	70	882.2	13.	7/8	•		3LALT 1/4-0.5	٠	•	
	96				•			"			•		3	•	•	
	97				•			8.663		,	•		1.0	•	•	
	98				•			1,			•		",	•	•	SLANT-AX, TRAYS, GN
	99	•			•			5,772			•		1.5	•	•	11/6=05,10,15 AND 20,
	100				•			•			•		,	•	•	RESPECTIVELY
	101				•			2822			•		2.0	•	•	
ဘ	102				•			:			•		7	•	•	
6	. 103				•			5.568			•		0.5	•	•,	
		23/			1.029						0.0			2580	186	
		232	<u></u>		1.324	B .					0.8			2528	106	
		233			1.560						1.45			2238	128	HISTO, MEASURED
		234			1.718						1.89			2/68	11.1	SLANT-AHALLY
		235			2.009				<u> </u>	·	2.66			2327	84	ON "/h = 0.5
		236			2.297		<u> </u>				3.48			2469	104	5
	,	237		<u> </u>	2.669	١	<u> </u>	V	,	<u> </u>	45		V	2547	120	(- 2. .c. ?6.
	NOMENCLATURE													ž 33		

P_r = Pressure Ratio

V_i = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

TEST DATE 10/13/8/

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

		•	TABLE	ATE 10/13/8/								
					LASER DO	PPLER V	ELOCIMETER	 l (Co	ntinued)			F DR
		MOD	EL = _	3			$P_r = 3./46$ $V_j = 2439$ Ft/Sec					OF POOR
		TES	T POINT	Γ=	3/3	τ_{T}	= <u>/747</u>	o _R v	a/c ⁼	0	.Ft/Sec	h = <u>0.8/</u> In. QAGE H
ဘ <u>ှ</u>							·					
3 Graph	Histo				(Volts)		Slant	Axial	Radial	Mean	Turb.	_
No.	No.	of Travers	Slant Axial	Axial	EW	NS	Ax. Pos. x'/h	x/D eq	Posit. r/D eq	Ft/Sec	Velocity Ft/Sec	Remarks
	238	SLANT AX	2.138	0.670	s.568	13.718	5.2		SCANT I'A CO.S	2526	104	
	239		3.143				2.8			2437	112	HISTO. MEASURED
	240		3.401				6.5			2207	117	SLANT-ANAUY
	241		3.57				7. ወ			2225	109	ON "/h=0.5 (CONTINUED)
	242		3.820				7.7		*	2332	/33	J
	243		LAIOT &	ECORDED			1	<i>"]</i>	•	-		
	24.4						-		•	-	-	
	245		2.207		5.772		6.0		scant r'/4=1.0	2210	214	
	266		2.927				8.0			2345	190	HUTO. HEASURED
	287		1.127				3.0			2167	321	SCANT-AXIALLY
	248	V	0.407	<u> </u>		·	1.0	1	.	1981	323	ov +1/h=1.0
	249	AX		1.676	0.888		•	10.0	0	1712	336)
	250			1.515			•	8.0	l	2046	270	HISTO, HEASURED
	251			1.355			-	60		2209	252	ANAUY ON JET ANS
	252			1.175			•	4.0		2073	578	
	253			1.034		V		2.0	J	2064	204	

 $P_r = Pressure Ratio$

 V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5-49.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

(Continued)

 $P_r = 3.146$ $V_j = 2439$ Ft/Sec $D_{eq} = 5.67$ In. MODEL =

3/3 TEST POINT =

 $T_T = \frac{7747}{R} \cdot R \cdot V_{a/c} = 0$ Ft/Sec h = 0.8/ In.

ľ			-			/14 1 - 1		61. 4		0-41-1	W		
ı	Graph No.	Histo No.	Type of	Slant	Position			Slant Ax. Pos.		Radial Posit.	Mean Velocity	Turb. Velocity	Remarks
	NO.		Travers		Axial	EW	NS	x'/h	x/D _{eq}	r/D _{eq}	Ft/Sec	Ft/Sec	Nonai Ka
Ļ									eq				
	104		SLANT	-	0.677	5.689	13.718		•	SLANT r/h=1.0		•	SLANT- AX. TRAUS. ON "/h=1.0
L	105		AX		•	6.888		•	•	0	•	•	
	106				-	6.888		•	•	4		•	AX TRAVS ON YOU = 0
	167				•	7.744		•	•	0.5	•	•	AND O.S. RESPECTIVELY
	108				•			•	•				
				ORDED				•	•			•	
		255	AX		0.796			•	9.0		1323	386	<u> </u>
		256						•	7.0		1543	406	
6		257						•	5.0		1783	423	HISTO. MEASURED AMALLY
တ		825						•	3,0		1804	377	ON YDeg = 0.5
ယ		259						•	2.0		1809	37.3	
		250						•	1.5		1803	373	
	,	251	V	/	V	J	V	'	1.0	V	1761	376	V
						_							

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature V_{a/c} = Free Jet Velocity$

ರಾ	ı
	ı
	ı

Graph	Histo	Ту	ne		Pos	sition	(Volts))		SI	ant	Axial	Radial	Mean	Turb.	28 244 28 244
No.	No.	0	f	Slan Axia	E A	xial	EW		NS	Ax	Pos. /h	Posit.	Posit.	Velocity	Velocity	Remarks
		RE	F	0.045	0.8	859	6.872	14	.03/	PLU	9 711					
109		E	<u>۲</u>		10.	863	~.					0		-	•	PROVAL TRANS. ON They -O
	262			<u></u>	Ц_		6.216						0.40	2334	126	
 	263						6.091		<u> </u>				0.47	2306	182	HISTO HEASURED RADIALLY
	264						5.93/						0.56	1757	દરદ	ON X/py =0
	265					<u> </u>	5.777		<u> </u>			l l	0.65	1043	333	<u> </u>
110					1	.024						2.0		-	-	PRADIAL TRAVS ON Yon = 2
111					1	.185	-				1	4.0	-	-	-	AND 4 PESPECTIVELY
·	266					4	6.688						012	2270	200	
<u> </u>	267				<u> </u>	_	6.456				L		0.25	23/5	222	HISTO, MEASURED
	268				<u>. </u>		6.262						0.37	1876	677	RADIALLY ON X/Day = 4
	269			<u> </u>			4						1,		-	0
	270			<u> </u>		_	4						·,	1768	755	
	27/		<u>'</u>	1		₩	5.778		/				0.65	202	264)
				<u> </u>						<u> </u>					*	
				l												

NOMENCLATURE

P_r = Pressure Ratio

 V_i = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 T_{τ} = Total Temperature

V_{a/c} = Free Jet Velocity

ζ,	,)	
:	j	ţ	

TABLE 5-49. AERODYNAM	IC TEST RESULTS BY	TEST DATE 10/15/8/	유용
MODEL = 3	PLER VELOCIMETER (Concluded) $P_{r} = 3.466 V_{r} = 2437 \text{ Ft/Sec}$	D _{eq} = <u>5.67</u> In.	GINAL POOR
TEST POINT = 3/3	$T_{T} = \frac{747}{747} \circ R V_{a/c} = 0$		PAGE
	a/c a/c		

		Histo No.	Type of Trave		Slan Axia	it	Position Axial	(Volts)		NS	Sla Ax.	Pos.	Axial Posit. x/D _{eq}	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
117	, +		EW	+		7	1.185	•	14	03/		1	4.0			•	
113						I	4	•	نظمات				′,	•	٠	•	RACIAL TRAVS, ON YOUR 4.
119	<i>t</i>					\Box	1.345	•	,				6.0	•		•	G. AND 8, RESPECTIVELY
1113	2						1.505	•		<u> </u>			8.0	•		•	
		272				_		5.446		<u> </u>				0.84	834	345	
		273			\bot			5.78/						0.65	1178	4/3.	HISTO. HEASURED
		274						6.263	,	<u> </u>		<u> </u>		0.38	1788	374	PADIALLY ON You = 8
ļ		275						6480				· · · · · · · · · · · · · · · · · · ·		0.24	1987	314	0
		276		_	 	_	<u> </u>	6807					<u> </u>	0.05	2088	267	
110	5		4	-	<u></u>	-	1.665	-		<u> </u>			10.0	•	<u> </u>	-	S RAPIAL TRAVS. ON Young = 10
-	+			7		7		,				····			``	<u> </u>	
																l	_

P_r = Pressure Ratio

 V_j = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TABLE	5-50.	AERODYNAMIC	TEST RESULTS BY	,		TEST (DATE 10/15/8/
	_	LASER DOPPLE	R VELOCIMETER	-			
MODEL = _	3		$P_{r} = 3.320$	٧,	<u>2476</u> Ft/Sec	D _{eq} = -	<u>5-67</u> In.
							h = <u>0.8/</u> In.

-	_	_	4							-	****	
	Histo				n (Volts)	<u>)</u>	Slant		Radial	Mean	Turb.	}
No.	No.	of Travers	Slant		EW	NS	Ax. Pos.	Posit.	Posit.	Velocity	Velocity	Remarks
		ravers	AXIA	·	·'	'	X./U	×/D _{eq}	r/D _{eq}	Ft/Sec	Ft/Sec	·
		REF	0.045	0.869	6.884	13.677	PLUGT	ρ		•	•	
117		EW		0.872	1			0.0	-	*	•	RADIAL TRAVS. ON YOU =0
	277		1 '	<u> </u>	5.774				0.65	1084	362	
	278	 '	 '	'	5.930			 	0.56	/828	327	HISTO HEASORED PARIALLY
	279	'	 '	 ′	6.096	<u> </u>		<u> </u>	0.46	2315	169	ON X/0. =0
	280	 '			6.218	<u> '</u>			0.39	23/7	97	<u> </u>
	28/	'	<u> </u>	₩	6.415	'		₩	0.27.	2216	122	
118		 '	 '	1.024		<u> </u>		2.0	<u> </u>		•	ROWAL TRAUS. ON
119		 '	 	1.185	•	 '		40	<u> </u>	•	•	X/D = 2 AND 4 RESPECTIVELY
	282	<u></u> '	 '	 '	6685	'		<u> </u>	0./2	8255	2/5	
	283	<u></u> '	 ′		6.457	<u> </u>		<u> </u>	0.25	2356	205	HISTO . MEASUREO RADIALLY
<u> </u>	284		 '	'	6.266			<u> </u>	0.36	2/52	3/6	on 40=4
	282	<u> </u>	Щ'	 '	5.535	<u> </u>		<u> </u>	0.56	1299	429	0
	286		Ш'		5.770			•	0.65	980	394	
120		<u>'</u>	 '	<u> </u>	•	'		40	•	٠	• h	REPEAT OF G-119
121	, 1	V	1	1 1 '		1 ∀ ′	[]	4.0	•	•	•	

 P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

of Poor	ORIGINAL
QUALI	PAGE
}	SAC.

TABLE	5-50.	AERODYNAMIC	TEST	RESULTS	BY
-------	-------	--------------------	------	---------	----

LASER DOPPLER VELOCIMETER (Continued)

 $P_r = 3.320$ $V_j = 2476$ Ft/Sec $D_{eq} = 5.67$ In. MODEL =

TEST POINT = $\frac{32}{}$ $T_T = \frac{733}{}^{\circ}R$ $V_{a/c} = \frac{0}{}^{\circ}$ Ft/Sec $h = \frac{0.8}{}^{\circ}$ In.

	Graph No.	Histo No.	Type of	Slant	T	(Volts			Slant Ax. Po			Radial Posit.	Mean Velocity	Turb. Velocity	Remarks
			Travers			EW	NS		x'/h		/D _{eq}	r/D _{eq}	Ft/Sec	Ft/Sec	nemai ka
	122		EW		1.345	•	13.67	7			6.0				RADIAL TRANS. ON
\perp	123				1.505	•					8.0	•	•	•	YDag = 6 AND 8, RESPECTIVELY
_		287 28.8			•	6.805						0.05	2184	242	<u> </u>
		289			<u> </u>	6.24.5						0.24	7079 1829	299 379	HISTO. MEASURED ROWALLY
L		290			•	5.785						0.57	1193	43/	ON */a= 8
L		291			•	5.446						0.84	826	337	
	124				1.665						0.0		•	•	PANAL TRAVS. ON YOU =10
고上	125		AX		-	6.887					_	0	•	•	AX. TRAVS. ON JET AXIS
		292			1.665						0.0		1926	8-25.	
_		293			1.674						0.0		1928	322	HISTO, MEASUREO
		294		<u> </u>	1.516						в. о		2193	265	AMALY ON JET AMS
		295		<u> </u>	1.353						6.0		22/2	181	
<u> </u>		296		ļ	1.193						4.0		2/48	198	
		297		<u> </u>	1.035				1		2.0		2074	170	J
	126										•		•	•	AX. TRAVS. ON JET AXIS
	127		J		•	V	V		1		•		•	•	

NOMENCLATURE

 P_r = Pressure Ratio V_i = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature <math>V_{a/c} = Free Jet Velocity$

OF POOR	ORIGIN
S Q	2
UAL	AGE
	Ŕ

TEST DATE 10/15/8/

TABLE	5-50.	AERODYNAMIC	TEST	RESULTS	ву

LASER DOPPLER VELOCIMETER (Continued)

MODEL =

 $P_r = 3.320$ $V_i = 2476$ Ft/Sec $D_{eq} = 5.67$. In.

TEST POINT = $\frac{32}{1}$ $T_T = \frac{1733}{1}$ OR $V_{e/c} = \frac{0}{1}$ Ft/Sec h = $\frac{0.81}{1}$ In.

T		Histo		уре			osition'	tion (Volts)					Slant		xial			Mean	Turb.	
	, No.	No.	_	of avers	Slan Axia		Axial		EW		NS	Ax.	. Pos /h	5. Po	osit. /D _{eq}	Pos	it. eq	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
-		 /				_								 	eq	 	e4 			
-	/28		A	7×		4		7.7	744	13	.677					0.	5	•		AX TRAIS. ON
	129		!		L/	4		<u></u>	<u> </u> '		<u> </u>	<u> </u>						•	•	1/0-y=0.5
		218	!			\perp	0.876		<u> </u>		<u> </u>	<u> </u>		(3.0			216/	275	<u> </u>
		299	<u> </u>				1.034		'		'			نيل	2.0			1836	32/	HISTO MEASURED
Į		300					1.193				['		<u>I</u>		4.0			1778	388	ANGUY ON TO = 0.5
L		30/		<u> </u>			1.355								6.0			1594	432	Ь
		362					1.519								9.0			1441	405	
		303			T		1.676		V			7		1	2.0		/	1275	374	
, [130			V		\prod	-	7:	744		111		7		0.5		•		AX. TRAUS. ON May = 0.5	
] ؛			RI	EF	0.04	5	0.682	5.	669	13.	678	E/	45 T (ED41	5 OF	- COKE EXIT				
Ĺ	13/			VT.AX		I	NOT R								1			,	•	
	132				-		1	T	556				•		$\mathcal{I}_{\mathbb{Z}}$	54A	=0.5	•	1	SLANT AX TRAVS. ON "/4 = 0.5
	133				-	I						·	•		7				•	
		304			4.77	9							3.0		7_			2535	132	
		305			4.43	1	-						2.0		7			2484	139	HISTO MEASURED SLANT-ANAUY
		306		V	4.03		¥		J_		<u> </u>		1.0				,	2368	116	ON "/h = 0.5

NOMENCLATURE

 $P_r = Pressure Ratio V_i = Fully Expanded Jet Velocity$

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

ಾ	
\odot	

TABLE 5-50. AERODYNAMIC	TEST RESULTS BY	TEST DATE <u>10/15/ 왕/ 오</u>
MODEL = 3	ER VELOCIMETER (Continued) $P_r = 3.320 V_i = 2476 \text{ Ft/Sec}$	POOR In. P. 5.6.7 In.
TEST POINT = 32/	$T_{T} = \frac{\sqrt{733}}{\sqrt{33}} R \qquad V_{a/c} = 0$	eq O

	Histo				n (Volts)	Slant		Radial	Mean	Turb.	š
No.	No.	of Travers	Slant Axial	Axial	EW	NS	Ax. Pos.	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	307	SLANT AX	3.622	0.682	5.556	13.678	<u> </u>		SCANT 1/h=0.5	2246	128	
	308		3.37/				9./			2408	140	
	309		3.140			<u> </u>	8.5			2550	176	
,	310		2.804				7.5			2577	144	
	3//		2478				6.7			2520	164	HISTO HEASURED SLANT-AXIAU)
	3/2		2./82				5.8			2417	116	ON Th= 0.5 (CONTINUED)
	313		1.807				4.8			. 22//	122	
	314		1.454				<i>ડ</i> . 9			2401	495	
	315		0.973				2.5			25.62	247	
	316	<u> </u>	0.910	V	↓	<u> </u>	2.4		<u> </u>	2542	21/	ν
	<u> </u>											
							<u> </u>					
								11				
	<u></u>							<u> </u>				
1	}	į		1			j	ĮI.				

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

h = Annulus Height

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$ $V_{a/c}$ = Free Jet Velocity

•	•	Ţ
Ċ)

TABLE 5-50. AEROD	YNAMIC TEST RESULTS BY	TEST DATE 10/15 /8/	- 우 - 우 - 우
MODEL = 3 LASER	DOPPLER VELOCIMETER (Concluded) $P_r = 3.320 v_j = 2476 \text{ Ft/s}$	Sec D _{eq} = <u>5.67</u> In.	ORIGINAL PI OF POOR QU
TEST POINT = $32/$	$T_{T} = 1733^{\circ} R \qquad V_{a/c} = 0$. Ft/Sec h = <u>0.8/</u> In.	PAGE IS

Graph No.	Histo No.	of	f	Slant Axial	7	ition	T	olts) EW) NS		Slant Ax. Pos. x'/h	Axial Posit. x/D	Pos		Velocity	Turb. Velocity Ft/Sec	Remarks	
		REF 0.045 0.682 5.		5.1	669	/3	.678			ORE	EXT	•	,					
134	 '	SANTA	AX	لنا	 '		5.1	664	<u></u> '	<u> </u>			11/f	9.47 1=1.0		•	SLAUT AX. TRANS.	
135	'			•	'		<u> </u>	<u></u> '	<u>'</u>	<u> </u>	•			<u></u> !			SLANTAX TRANS.	
	3/7			2.927					<u> </u>		7.9	<u> </u>	'		2479	161	Ω	
;	3/8			2.207			<u>_</u> '			1	5.3		'		2316	190	HISTO, MEASURED	
	319			1.129							2.9				2281	328	SLANT-ANALLY	
	320			1.256							3,3		'	['	2303	≥86	ON "/h =1.0	
	32/			6.407							1.0		/	1	2325	107		
136							5.7	772			['		SLA	WT 1=1.5	•	•	SLANT AX. TRAVS.	
137			\dashv			<u></u>	1	3		J		7	1	<i>'</i> ,		•	w r/h=1.5	
			\exists								<u> </u>							
	<u> </u>									/	<u> </u>]				
	'																	
	'																	
	['										<u> </u>							

NOMENCLATURE $P_r = Pressure Ratio$ $V_j = Fully Expanded Jet Velocity$ $T_T = Total Temperature$ $V_{a/c} = Free Jet Velocity$

D_{eq} = Equivalent Diameter

TEST	DATE 10/15/8/	ORIGINAL OF POOR
eq = /Sec	5.67 in. $h = 0.8/$ in.	R QUALITY

TABLE 5-51. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER

 $P_r = 3.239$ $V_j = 1734$ Ft/Sec $D_{eq} = 5.67$ in. $T_T = 877$ OR $V_{a/c} = 0$ Ft/Sec h = 0.8/11MODEL =

TEST POINT = 13/3__

 $T_T = 877^{\circ}R$

Ft/Sec h = 0.8/ in.

	Graph No.	Histo No.	Type of Travers	Slant	Position Axial	(Volts	NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
			REF-	0.045	0.676	2631	13.678	EAST E	XFE OF	CORE Z	'×T		
	138		SLANT			5.5/0		•	•	SLANT X=05	•	•	
L	139					٠,		•	•	1	•		SLANT AX. TRAUS.
L	140					5.631		•	•	1/6=10		•	ON "/h=0.5 AND 1.0,
	141				J	•		•	•	1	•	•	RESPECTIVELY
			REF		0.870	6.845	13.727	PLUG 7	יאני	•	•	•	
	142		ΑX	/	-	1				0	•	•)
۲ ۲	14.3		ì		•	V		/ .	•	4	•	•	AX. TRAVS. ON TOM = 0 AND O.S. RESPECTIVELY
<u>~</u> [144.				-	7.701		7	,	0.5	•	•	AND O.S. RESPECTIVELY
	145		V	7	•	4	V	/	•	′,		•	
-	····									ļ			
-	,				<u> </u>								
F													,
-				 						 			
ŀ				 -	<u> </u>	 				 			

NOMENCLATURE

P_r = Pressure Ratio

 V_{i} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TABLE 5-52. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER

 $P_r = 3./36$ $V_j = 24//$ Ft/Sec $D_{eq} = 5.67$ In. $T_T = /7/3$ OR $V_{a/c} = 400$ Ft/Sec h = 0.8/ In. MODEL =

TEST POINT = 314

ORIGINAL PAGE IS

ſ		Histo	Туре			n (Volts))	Slant	Axial	Radial	Mean	Turb.	
	No.	No.	of Travers	Slant S Axial		EW	NS	Ax. Pos.	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
			REF		0.863	6.895	13.694	PLUG	TIP				
	146		AX						'	0			LAY TRAVS. ON JET ANS
ļ	147		 '		<u> </u>	'	<u> </u>		•	<u> </u>	•	•	J
Ļ		322	 '	1	1.665	 '	'		10.0	<u> </u>	1980	3/3	1
		32.3	<u> </u>	1	1.505	 '			8.0	'	2/65	22/	<u> </u>
L		324	'		1.295	'	1		5.4		22/3	173	HISTO HEASURED ANALLY
ļ		325			1.345			<u> </u>	6.0	<u> </u>	2/07	232	W JET AXIS
م <u>ا</u> ج	1	326	 '	1	1.085	'			2.7	<u> </u>	2076	168	
75]	327	 '	1	1.185				4.0	 '	2/89	179	1
`		328	/ /		1.035	V	'		2.1	✓	2063	188	<u> </u>
	148		 '			7.751	<u> </u>			0.5	•		AX. TRAVS. ON YOU = 0.5
_	149			Ш′		'	 ′		•	'	<u> </u>	<u> </u>)
L		329	<u> </u>	!	0.864	 '			0	<u> </u>	2/48	226	<u> </u>
]		310	·'	! '	0.904	<u> '</u>			0.5		1788	283	HISTO, MEASURED ON
ļ		33/	<u> </u>		1-024	 '	<u> </u>	<u> </u>	2.0	<u> </u>	/873	298	7/Deg =0.5
l	,)	13321			1.185		<u> </u>	<u> </u>	4.0	l Ψ	1884	324	

NOMENCLATURE

P = Pressure Ratio

 V_{i} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5-52.	AERODYNAMI C	TEST RESULTS BY		TEST	DATE 10/16/8/
		R VELOCIMETER	(Continued)	•	
MODEL =	3 ,	$P_{r} = 3./36$	V; = 2411 Ft	t/Sec D _{eq} ≈	<u>5.67</u> In.
TEST POINT =	314	$T_{T} = 17/3^{\circ} R$	V _{a/c} =4	100 Ft/Sec	h = <u>0.8/</u> In.

	Histo	Туре		Position	(Volts)	Slant	Axial	Radial	Mean	Turb.	
No.	Ņo.	of Travers	Slant Axial	Axial	EM	NS	Ax. Pos.	Posit. x/D eq	Posit.	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	333	AX		1.505	7.751	13.694		8.0	0.5	12.58	339	HISTO MEASURED AXIALLY
	334			1.345				6.0		1705	339	ON MOOG = 0.5 (CONTINUED)
	335			1.665				10.0	<u> </u>	1370	345	
150		EW		4	•			10.0	-	•	•	RADIAL TRAVS ON YOU = 8
151				1.505	-			8.0	-	•	•	AND 10 RESPECTIVELY
·	336				6.815				0.05	2192	224	
	337				6.489				0.24	2004	30/	
	338				6.255				0.37	1795	361	HISTO, HEASULED RANALLY
	339				5.795				0.64	1117	324	ON ×/Dag = 8
	340				2.426				0.84	772	266	P
	34/				5.040				1.09	511	150	
	342			V	3.719			V	1.86	382	25	J
152				1.345	_			6.0	•	•	•	RAWAL TRAYS. ON Your = 6.0
153				1.185	-			4.0	-	•	•	AND 40 RESPECTIVELY
	343				2.085				1.06	344	39	HISTO MEASURED RADIALLY
	344	<u> </u>			5.760	₩	1		0.66	811	277	ON */Dec = 4.0

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature V_{a/c} = Free Jet Velocity$

TABLE 5-52.	AEROD	YNAMIC TEST RESULTS BY			TEST	DATE	10/161 8	<u>}</u>	ORIGI
MODEL =	3 LASER	DOPPLER VELOCIMETER () $P_r = 3.736 v_i$	Continued) = <u>2411</u>		D =	5.6	5 <u>7</u> i	n. ,	NAL PA
TEST POINT =	314	_ T _T = <u>/7/3</u> O _R	V _{a/c} = -	400	_Ft/Sec	h = _	0.81	ln.	PAGE 18

	Graph No.	Histo No.	Type of Travers	Slant		(Volts) EW	NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		345	EW		1.185	5.945	13.694	1	4.0	0.56	1189	328	
}_		346				6.269		1		0.37	2059	33/	HISTO, MEASURED RADIALLY
1		347		<u> </u>		6.481				0.24	2340	180	ON X/Dag = 40 (CONTINUED)
Ļ		348			k	6.694		·	\	0.12	2250	178_	
Ļ		349			1.024	3.682		, <u>{</u>	2.0	0.19	38/	18	HISTO . MEASURED AT You = 2 Tag-1.
_	154				1	-			7	-	-		RANGE TRAIS. ON X/Dag = 2.0
_ -	125				0.867	•			0.0		-		AND O.O. RESPECTIVELY
25		350				3.670				1.89	373	22	
-		351				5.391				0.88	774	39	
-		325				5-787				0.65	930	286	
		323				5.940				0.56	1741	338	HISTO. HEASURED RANAUY
		354				6.104				046	2315	144	W X/Dag = 0.0
		322		 		6.228			<u> </u>	0.39	2349	99	
		356		<u> </u>		6.422	Y		<u> </u>	0.28	2345	106	
ļ				<u> </u>				<u> </u>	<u> </u>	<u> </u>			
Ļ								1					

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

 $D_{eq} = Equivalent Diameter$

	TEST	DATE	10/16/8/

TABLE 5-52. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER

(Continued)

MODEL = 3 $P_r = 3./36$ $V_j = 24//$ Ft/Sec $D_{eq} = 5.67$ in. TEST POINT = 3/4 $T_T = \frac{17/3}{7/3}$ OR $V_{a/c} = \frac{400}{9}$ Ft/Sec $h = \frac{0.8}{10}$ in.

			جسيب سيسيب	فستبسية بالمستبيريات								
	Histo				(Volts)	Slant	Axial	Radial	Mean	Turb.	Remarks Z
No.	No.	of Traver	Slant S Axial		EW	NS	Ax. Pos.	x/D _{eq}	Posit. r/D _{eq}	Ft/Sec	Velocity Ft/Sec	Remarks Remarks
		REF	0.044	0.670	5.656	13.297			HEIGHT AT	CORE EXT		
156		SLANT AY	<u> </u>		5.656		-	1	SLANT 11/4=0.5			SLANT AX. TRAUS.
157			<u> </u>				•			•		ON M/4=0.5
	357		0.916				2.39			2951	121	
	328	<u> </u>	1.338				3.54			2466	96	
	359		1.644				438			2157	12/	
	360		1.955				5.23			2329	93	
	36/	<u></u>	2.300				6.18			2517	136	
	362		2.630				7.08			2573	98	HISTO HEASURED SLANT-
	363		2.895				7.80			2472	450	AKIALLY ON TIM = 0.5
	36%		3.105				8.38			2352	169	
	36.5		3308				8.93			2/6/	123	
	365		3.696				10.0			2280	116	
	367		4.037				10.9			2447	100	
	368	₩	4.408	V	¥	Y	11.9		₩	2527	96	

NOMENCLATURE

 P_r = Pressure Ratio V_i = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature V_{a/c} = Free Jet Velocity$

TABLE 5-52.	AERODYNAMIC TEST RESULTS BY	TEST DATE /0//6/8/ 12 2
MODEL = 3	LASER DOPPLER VELOCIMETER (Concluded) $P_r = 3.136 v_i = 241/ \text{ Ft/Sec}$	D _{eq} = <u>5.67</u> in. Q
TEST POINT =	$T_{T} = \frac{17/3}{6} R V_{A/C} = \frac{400}{6}$	_ Ft/Sec h = <u>0.8/</u> In. 4

1-				_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					-	<u> </u>					
		Histo					on	(Volts)	<u>)</u>	′	Slant			dial		Turb.	11
	No.	No.	of Traver		Slant	Axial	Ī	EW	$\{$	NS	Ax. Pos.	Posit.	Pos	<u>iit.</u>	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
Ĺ			liave.		AXIAI	<u></u>	\perp			·	X 7 / / /	x/D _{eq}		D eq		FL/Sec	,
	158		SCANT AX	\mathbf{x}^{T}		0.670	Ţ	5.765	13	3.297	,		SLK ri/	9NT 6=1.0	•	•	SLANT AK, TRAUS
	159			T	•		7								• ,		on r'/h =1.0
		369		I	2.924						7.87				2481	308	
		370		$\neg T$	2.204	1	\prod				5.90				2398	129	HISTO. MEASURED SLANT-
L		37/			2.960						2.96				250/	163	AKIALLY ON Y/h =1.0
		372			0.980			~			0.98			/	23/2	164	
	160				,			5.895					11/	= \\Z.L		,	
	161				•			•,			•			٩.	•	•	SLANT AX. TRAVS.
Σ -	162	<u> </u>			.]			5.564			•		r//	=043	·	•	ON T'/h=1.55 AND 043, RESPECTIVELY
څ ا	163	 '						'			•			<u> </u>		•	0
		373			3,3/9			'			8.96			\prod'	2113	194	HISTO. MEASURED SLANT- ANALLY
		374	1 1	_	2.570		_	'		<u> </u>	6.91			<u> </u>	2535	56	ON r'/h=0.43
Ļ		<u> </u>	<u> </u>	_		1											
L	<u> </u>	 _'				Ц		,									
ļ	!	<u> </u>								•							,
- [,			, ,	I	_}	. 				T-			<u></u>		

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature <math>V_{a/r} = Free Jet Velecity$

TABLE	5-53.	AERODYNAMIC	TEST	RESULTS	ВҮ
		1.0-5 50551			_

MODEL = $\frac{3}{100}$ P_r = $\frac{3.353}{3.355}$ v_j = $\frac{24.84}{400}$ Ft/Sec h = $\frac{5.67}{100}$ In.

TEST POINT = $\frac{322}{100}$ T_T = $\frac{1719}{100}$ °R v_{a/c} $\frac{400}{100}$ Ft/Sec h = $\frac{0.87}{100}$ In.

TEST DATE 10/16/81

	Histo	Ту	pe		Posit	ion	(Volts)		Slant	Axial		dial	Mean	Turb.	
No.	No.			Slant Axial	Axia	'	EW		NS	Ax. Pos.	x/D _{eq}	r/	D _{eq}	Ft/Sec	Velocity Ft/Sec	Remarks
		REF	:	0.044		113	823	13.	297	HIDPOINT	F AMIL					
165	<u> </u>	SLANT	аx	•		\coprod						5. 11/	4=05	•	•	SCANT AX. TRAVS. ON "/h = 0.5
166	<u> </u>				·									•	•	
	275			4.911						13.3				2598	107	
	376			4467						13.1			<u> </u>	2529	101	
	377			4.084						11.0			<u> </u>	2354	92	
	378		[3823					<u> </u>	9.86			<u></u>	2163	112	
	379			3.328				<u> </u>	<u> </u>	9.05				2479	121	HISTO, HEASURED SLANT-ANAU.
	380			3,133						8.44				2626	100	on "/h = 0.5
	381			2.884						7.75				27/2	98	
	382			2800						7.53				2645	98	
	383		[2403					<u> </u>	6.45		<u> </u>		2525	111	
	384			2010					<u> </u>	35.26				2286	94	
	38.			1.691					<u> </u>	4.69			<u> </u>	2/03	3/3	
	38;		<u> </u>	1.45/						3.83				2555	100	्र इंट
	38.		<u>_</u>	1-111	ŀ			<u> </u>	<u> </u>	2.92	1	1	Y	25/2	73 K	
				LATURE → Press	ure Ra	atio	V	· =	Ful	ly Expande	d Jet V	elo	city	D	= Equiva	lent Diameter
			•					,		ree Jet Ve					q ≖Annulus	He i aht

 $T_T = Total Temperature V_{a/c} = Free Jet Velocity$

TABLE 5-53.	AERODYNAMIC TEST RESULTS BY	TEST DATE	ORIGINAL OF POOR
MODEL = 3	LASER DOPPLER VELOCIMETER (Continued) $P_r = 3.353 V_j = 2484 \text{ Ft/Sec}$	D _{eq} = <u>5.67</u> In.	OT
TEST POINT =	$T_{T} = \frac{17/9}{9} R V_{a/c} = \frac{400}{9}$	Ft/Sec h = <u>0.8/</u> In.	AGE 18

	Histo	T	ype			tion	(Volts))	Slant	Axial	Radial	Mean	Turb.	
No.	No.		of avers	Slant Axial	Axi	a1	EW	NS	Ax. Pos.	Posit. x/D eq	Posit. r/D eq	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
167		SLOW	JT AX	(5.764	13.297		/	SCANT Y/L=1-0	•	•	SLANT AX. TRAVS
168				•		$ \angle $			•			•	•) au =/h=1.0
 .	388			2.925		/			7.86			2559	128	
	389		<u>. </u>	2.204					5.89	_/_		2392	//7	HIS TO. HEASURED SLANT-ANALY
	390			1.129					2.95	/		2449	277	ON 1/h =1.0
	391		/	0.402	/_		<u> </u>		0.97	/	V	2073	398	<u> </u>
169	,		1X	NOT	REG	ROE	0		,	•	•		•	
170			<u> </u>		0.8	62	6.882		•	•	0	•		AX. TRAVS. ON JET AXIS
171		1	T RE	CORDED	<u>.</u>		•		•	•	<u> </u>	<u> • </u>		
172		<u> </u>					•	<u> </u>		•	•	•	•	
		RI	5F	•	0.8	62	6.882	13.297	PLUG TI	o ·	•	<u> </u>	•	·
173		No.	T.RE	OROEI	<u> </u>		•	•	•	•			•	
	<u> </u>							1	ļ					

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_{T} = Total Temperature$

V_{a/c} = Free Jet Velocity

~1	
3	

TABLE 5-53.	AERODYNAMIC	TEST RESULTS BY	, _	TEST D	ATE 10/20/8/	
MODEL =	LASER DOPPL	ER VELOCIMETER P = 3 2 C 3	(Continued) $V_{i} = \frac{2484}{\text{Ft/Sec}}$	D =	5.67 In.	ORIGII OF PC
	322	_	v _{a/c} = 400			GINAL PA
						ALI

Graph	Histo	Туре		Position	(Volts)	Slant	Axial	Radial	Mean	Turb.	र वि
No.	No.	of Travers	Slant Axial	Axial	EW	NS	Ax. Pos. x'/h	Posit. x/D _{eq}	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
		REF		0.860	6.870	13.694	PLUG 7	10				
174		AX		_	6.917			•	0		•]
175-				-				•		•	•	AX TRAVS. ON JET AXIS
176				-				<u> </u>			•	
177				_							•	<u> </u>
	393			1.660				100		2035	289	
	394			1.500				8.0		2282	272	HISTO, HEASURED AXIALLY
	395			1.340				6.0		24/3	174	ON JET AXIS
	396			1.180				4.0		2275	182	
	39.7			1.019	<u> </u>			2.0	↓	1919	171	
178					7.773			<u> </u>	0.5	,		AX. TRAUS. ON YOU = 05
. 179								-		`	•	8
	398			1.660				10.0		1482	330	
	399			1.500				80		1567	354	HISTO MEASURED AXIALLY
	400	<u> </u>		1.340				6.0		1725	362	HISTO. HEASURED ANALLY ON Day = 0.5
	401	Ψ	<u> </u>	1.180	y		1	4.0		2009	342	0

 P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 T_{T} = Total Temperature

 $V_{a/c}$ = Free Jet Velocity

(Ì	C)	
	_	•)	

TABLE 5-53.	AERODYNAMIC TEST RESULTS BY	TEST DATE	ORIGI
MODEL = 3	LASER DOPPLER VELOCIMETER (Continued) $P_r = 3.353 v_i = 2484 \text{Ft/Sec}$	D _{eq} = <u>5.67</u> In.	NAL PA
TEST POINT =	$T_T = \frac{17/9}{9} \circ R V_{a/c} = \frac{400}{9}$	·	AGE IS

		Histo				(Volts))	Slant		Radial		Turb.	
	No.	No.	of Travers	Slant Axial		EW	NS	Ax. Pos.	Posit. x/D eq	r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
		402	ΑX		1.019	7.773	13694		2.0	0.5	1966	289	
Ĺ		403			0.899				0.5		1965	287	HISTO MEASURED AXIALLY
		404		LISTRE	oROSO						-		ON TOME O.S (CONTINUED)
		405			0.866				0		2295	188	
	180			UST PE	CORGEO	•			-			•	
		406				•				<u> </u>		•	
ļ	181		EV		0.860	•			0	` .	,	•	RAMAL TRAVS. ON
, [407				5.350				0.92	277	73	×0-g=0
3		408				5.762				0.67	887	3//	
		409		NOTRECO	ROED	5.925							HISTO. MEASURED RADIALLY
		410				5.925				0.58	1646	3/2	ON X/On = 0
		411				6.088				0.48	2314	199	,
		412				6.210				0.41	2246	115	
		4/3				6.378				0.31	2/37	143	
		414	Y NO	RECORD	50 ¥	6.404			V			•	
1							₩	1/					

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TABLE 5-53.	AERODYNAMIC TEST RESULTS BY	TEST	DATE 10/20/8/	ORIC OF 1
MODEL = 3	LASER DOPPLER VELOCIMETER $P_r = 3.3.53$	(Continued) $V_i = 2484$ Ft/Sec $D_{eq} =$	5.67_ In.	POOR (
TEST POINT =3	$T_{T} = 1719^{\circ}R$	V _{a/c} 400 Ft/Sec	h = <u>0.8/</u> in.	PAGE I

	Graph No.	Histo No.	Typ of Trave	f	Slant Axial	Ι.	ition	r (Volts) EW	NS	A:	lant x. Pos '/h	Pos	ial sit. eq	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks .
	182		Έu	/		1.0	121	~	13.694				2	•	•	•	PADIAL TRAVS.ON X/0- = 2
	183					1.	182	-					1	-	•	•	AND 4 RESPECTIVELY
		415					ļ	3.823						1.81	384	27)
		416	/	VOI	RECOR	050		-						-	-	_	
		417						6.679						0.14	2326	316	HISTO, HEASURED RADIALLY
		418						6465						0.26	2359	425	ON 404=4
		419					'	6.080						0.49	1720	380	0
ച		420						5.534						6.81	646	2/5	
$\frac{1}{\infty}$		42/				i	V	4.969				1)	1.14	દરદ	35)
	184					1.5	342	-				(,	•			RADIAL TRAVS. ON X/000 =6.
	185					1	662	-			\perp	/	0	•	٠	•	10 AND 8. RESPECTIVELY
	186					1.	502	•				8	3	•	•	•	- F 727
		422						3.162						2.20	38.5	84	1 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		423			,			6.788						0.68	2206	. 216	1 HISTO, MEASURED RANAUY
		424						6489						0.25	2097	315	ON X/04 = 8 3 = 9 = 9 = 9 = 9
L		425	1				V	6.265	Ψ.					0.38	-	7	り 分譲

 $P_r = Pressure Ratio$

 V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_{T} = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TABLE 5-53.	AERODYNAMIC TEST RESULTS BY	TEST DATE
MODEL =	$P_r = 3.3s3$ $V_j = 2$	TEST DATE $\frac{16/20/8}{26/20/8}$ and $\frac{100}{26/20/8}$ and $\frac{100}$
		7

	Histo	Туре		Position	(Volts)		Slant	Axial	Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial	Axial	EW	NS	Ax. Pos.	x/D eq	Posit. r/D _{eq}	Ft/Sec	Velocity Ft/Sec	Remarks
	426	EW	•	1.502		13.694		8	0.38	1929	307	HISTO. MEASURED RADIALLY
	427				5.803				0.65	1259	359	ON Ybog = 8 (CONTINUED)
	428	<u> </u>		<u> </u>	5-466	J	•	1	0.85	834	264.	<u> </u>
	429	NOT RE	OROEO	,	•	•		<u> </u>	•	• ,	•	
		···								<u>.</u>		
						` .						
												
										<u> </u>		
				<u></u>					<u> </u>	 	<u> </u>	
									ļ			
								, , ,				• •

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 T_T = Total Temperature

V_{a/c} = Free Jet Velecity

$\overline{}$	\
ļ	1
9)

TABLE 5-54. AERODYNAMIC TEST RESULTS BY

MODEL = $\frac{4}{10/22/8/}$ TEST DATE $\frac{10/22/8/}{10/22/8/}$ Pr = $\frac{3.025}{10.025}$ V; = $\frac{2392}{10.025}$ Ft/Sec h = $\frac{5.67}{10.08}$ In.

	Graph No.	Histo No.	Type of Traverse	Slant	Avial	(Volts) NS	Slant Ax. Pos. x'/h		Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
I			REF	0.066	0.716	5.482	13.692			· · · · · · · · · · · · · · · · · · ·	UGHT AT O	ORE EXIT	
	205		SUANT AX		4	9	4	ı	-	SLANT YILL = 0.5			SLANT AX. TRAVS
	2.06		4	+	٠	*.	٠,	-	_	3	•	•	SLANT AX. TRAVS
			·										
						.,		·					
}	···-		-,	<u> </u>									
ļ							•	,					
							: 						
1													
-						<u> </u>							
, }												,	
1					<u> </u>								

NOMENCLATURE

P_r = Pressure Ratio

 V_i = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

h = Annulus Height

σ; (x)

TABLE 5-54	AERODYNAMIC	TEST RESULTS BY		TEST	DATE	울루
MODEL =		$P_r = 3025 V_r$	= 2392 Ft/	Sec D = eq	<u>5.67</u> In	
TEST POINT =	407	$T_{T} = 1732 ^{O}R$	Va/c= 0	Ft/Sec	h = 0.8/	PAGE IS

Graph No.	Histo No.	Type of Traverse	Slant	Position Axial	(Volts)	NS	Slant Ax. Pos. x'/h	Pheit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks ,
		REF	-	0.826	6.895	13.647	PLUG T	IP			,	
227		AX	,	•]	•	•	0		•	AK. TRAUS. ON JET AKS
228		1	•	•				•	J	•		
	,											
							,			,		
							 	,	·			
												
-							<u> </u>		<u> </u>			
										 		
i									<u> </u>			•. •
							<u> </u>					
					<u> </u>		ļ — — — — — — — — — — — — — — — — — — —			 		1

				······································			 			<u> </u>		ن بر

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5-55.	AERODYNAMIC TEST RESULTS BY	TEST DATE	ORIGIN/
MODEL = 4	LASER DOPPLER VELOCIMETER $P_r = 3.069 v_j = 24.05 \text{ Ft/Sec}$	D _{eq} = <u>5.67</u> In.	AL PAGE DR QUALI
TEST POINT =	$T_{T} = 1732 ^{\circ} R V_{2/6} = 0$	Ft/Sec h = <u>0.8/</u> In.	

-				<u> </u>								
	Histo	Туре		Position	(Volts)	Slant		Radial	Mean	Turb.	
No.	No.	of	Slant	Axial	EW	NS	Ax. Pos.	Posit.	Posit.	Velocity Ft/Sec	Velocity	Remarks ,
		Traverse	AXIAI	<u> </u>			x'/n	x/D _{eq}	r/D _{eq}	Ft/Sec	Ft/Sec	
		RE F	0.066	0.716	5.482	13.692	HID POINT	F ANNI	US HEIG	HT AT COK	E EXT	
209		SLANTAX					•		SLANT M/AFOS	,	•	SLANT-AX. TRAVS.
2/0		4	-	L		1	•	•	1/1/4	•	•	SLANT-AX. TRAVS.
					,							
								-				
		-										
l												
		\										
						•						
		· · · · · · · · · · · · · · · · · · ·										<u> </u>
			Ĺ					l				

 $P_r = Pressure Ratio$

 V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5-55 AERODYNAMI	C TEST RESULTS BY	TEST DATE	유 <u>유</u>
MODEL = LASER DOPP	LER VELOCIMETER $P_r = 3.069 v_j = 2405 \text{ Ft/Sec}$	D _{eq} = <u>5.67</u> In.	POOR C
TEST POINT = 411	$T_T = 1732^{\circ} R$ $V_{e/c} = 0$	•	ACE IS

Graph No.	Histo No.	Type of Traverse	Slant	Position Axiai	(Volts) EW	NS	Slant Ax. Pos. x'/h		Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF		0.826	6.895	13.647	PLUG T	יף				
225		AX	•	•			•	•	0	•	•	AY. TRANS. ON JET AXIS
226		1	-	•	J		•	•	1	1	,	
·		 										
				 				!		<u> </u>		
										<u> </u>	 	
										<u></u>		
							! 				`	
	<u> </u>											
	<u> </u>											

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 T_T = Total Temperature

V_{a/c} * Free Jet ocity

TABLE	5-5 6 .	AERODYNAMIC	TEST	RESULTS	ВΥ
-------	----------------	-------------	------	---------	----

LASER DOPPLER VELOCIMETER

 $P_r = 3.08$ $V_i = 24/1$ Ft/Sec $D_{eq} = 5.67$ In.

TEST POINT = 413

 $T_T = \frac{1723}{6} R \cdot V_{a/c} = 0$ Ft/Sec h = 0.8/. In.

Graph	Histo	Туре		Position	(Volts)	Slant		Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial		EW	NS	Ax. Pos.	Posit. x/D eq	r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
		REF		0.858	6.897	13.692	PLIXE TI	ρ				
187		AX		-	1.847			•	0	•	•	L AX. TRAVS. ON JET AXS
188				-						•	•	
	430			1.664				10.1		1826	312	
	43/			,			1	4		_	_	
	432			1.503				8.1		2093	280	HISTO. MEASURED AWALLY
	433			1.342			1	6.0		•	-	ON JET ANS
	434			4				4		2159	440	
	435			1-183		1		4.1		•	•	
	436			4				4		2069	488	
	437			1.022	V			2.0	V	2012	197	
189					7.753				0.5	`	•	AX TRAVS. ON 1/0 = 0.5
190			I	•	s					•	•	6 .
	438			0.826	1			-		•	•	
	439				NOT RE	CORDED.	REPRATED	447-	455	•	•	, a ,
	440	1/	Y			1	1		1	•	4	28

NOMENCLATURE

P = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5-5 6 .		TEST DATE	ORIGINAL OF POOR
MODEL =	$\frac{\text{LASER DOPPLER VELOCIMETER}}{4} = \frac{241}{\text{Ft/Sec}} = \frac{241}{\text{Ft/Sec}}$	c D _{eq} = <u>5.67</u> In.	PAGE
TEST POINT =	$\frac{4/3}{T_T} = \frac{1723}{1723} \circ_R V_{1} = 0$	Ft/Sec h = In.	<u> </u>

Graph No.	Histo No.	Type of Traverse	Sla	nt	Position Axial	(Volts	NS	\$ lan: Ax. I x'/h	Pos.	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		11000130					Ϊ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		x/D _{eq}	''eq	, ,,,,,,,	1 17 300	
	441			$\perp \!\!\! \perp$					1	•	•	•	•	·
	442								I	•	•		•	
	443		No	7	RECORD	D. (RE	EATEO	447-	45	2.).				
	444			,					1		•		•	
	445								Π				٠	
	446							1					•	
	467	AX			0.867	7.753	13.692	1 7		0.11	0.5		•	
	448				0.902		1 1	1 7		0.55				
	449				1.022		-	1 7		2.05				
	450		\prod		4					3		,	•	MISTO HEASURED ANALLY
	451		\prod		1.183			1 /		406		,	•	ON 7/00 = 0.5
	452				7			1		5		,	·	(REPEAT . F 839 - 446)
	453				1.343					6.05		,	•	
	457				1.583			17		8.05				
	455				1.663			17		10.05			•	
		J						17				1		

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 T_{T} = Total Temperature

V_{a/c} = Free Jet Velitv

TABLE 5-56.	AERODYNAMI C	TEST RESULTS BY		TEST DATE	10/22/8/	우
10DEL =		P _r = <u>3/08</u>	(Continued) v _i = 24// Ft/Sec	D _{eq} = <u>5.6</u>	7 In.	POOR Q
TEST POINT =	413	T _T = <u>/723</u> °R	v _{a/c} =	Ft/Sec	<u>0.8/</u> In.	alitynd Bi abya

	Histo			Position	(Volts)	Slant	Axiaí	Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial		EW	NS	Ax. Pos x'/h	x/D _{eq}	r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
191			/			•				•	•	REPEATOR G-187 ANG-188
192				•	· · · · · ·	<u> </u>		•		ļ	•	
193			/	•	<u> </u>			<u> </u>	•	·	•	PEPEATOF G-189 AND G-19
194			/		•	·	ļ	<u> </u>	<u> </u>	•	-	
195		EW	/	1.673		13.692		10.2	<u> </u>		•	PACIAL TRAUS. ON YDOG = 10.2
	406		NOT	RECORDE	ρ:			<u> </u>		<u> </u>	•	V
196		,		1.575	•			8.2	·	•	•	RADIAL TRAVS. DN X/8-4= 8.2
	457				6.813			<u> </u>	-0.05	2088	266	
	458				6.491			<u> </u>	-0.24	1970	295	HISTO. MERSURED RANIALLY
	459				6.252			<u> </u>	-0.38	1751	323	ON X/0= 8.2
	460			<u> </u>	5.795			<u> </u>	-0.61	1196	373	
	461			V	5.461			<u> </u>	-0.84	878	326	
197				(.355				6.2	•		•	RADIAL TRAUS. ON YO = 6.2
	462			UST REC	ROED			· -	<u> </u>		•	AND 4.2 RESPECTIVELY
198				1.195				4.2	·	<u> </u>	•	
		V	\Box	<u> </u>		l V				[

 P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

h = Annulus Height

689

TABLE 5-56. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER (Continued)

MODEL = $\frac{4}{T_T} = \frac{3.08}{1723}$ V = $\frac{241}{T_T}$ Ft/Sec D = $\frac{5.67}{10.22}$ In. P = $\frac{1723}{10.22}$ V = $\frac{6}{T_T}$ Ft/Sec h = $\frac{0.81}{10.22}$ In. P = $\frac{1723}{10.22}$ V = $\frac{6}{T_T}$ Ft/Sec h = $\frac{0.81}{10.22}$ In. P = $\frac{1723}{10.22}$ V = $\frac{6}{T_T}$ V = $\frac{1}{T_T}$ P = $\frac{1}{T_T}$ V = $\frac{1$

Graph No.	Histo No.	Type of Traverse	Slant Axial		n (Volts) EW	NS	Slant Ax. Pos. x'/h	Axial Posit. x/D eq	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks .
	463	E₩_		1.195	5.758	13.692		4.2	0.67	968	328	
	464				6.675				0.12	2220	170	HISTO, HEASURED RACIALLY
	465				6.481				0.24	2292	170	ON X/Dag = 42
	466				6.270		1		0.37	2100	300	0
	467			V	6.946				0.03	1298	433	
199				1-034	_			2.2			•	RADIAL TRAVS. ON You = 2.2
200				0.877				0.2		-	•	AND 0.2 RESPECTIVELY
	468				6422				0.28	220/	420	<u> </u>
	469				6.228				0.39	2270	456	
	470				6.425				0.28	2344	82	
	47/				_				_			HISTO MEASURED RADIALLY
	472				6.107				0.46	2328	114	7 ON X/D==0.2
	473		Π		5.540				0.56	1798	329	
	474				1				-	-	4	
	475				V				-	-	•	
	4.6			IV	6.182	V	17	TV	0.42	2329	323	

NOMENCLATURE

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 T_T = Total Temperature

Va/c = Free Jet Valletity

TABLE 5-5 6 .	AERODYNAMIC	TEST RESULTS BY			TEST DATE	10/22/8/
		ER VELOCIMETER	(Continu	•		
MODEL =	4	$P_r = 3./08$	$v_{j} = 24$	// Ft/Sec	D _{eq} =	5-67 In.
TEST POINT =	413	T _T = <u>1723</u> OR	V _{2/c} =	0	Ft/Sec h	- <u>0.8/</u> II

	Histo				on (Volts)	Slant		Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial	Axial	EW	NS.	Ax. Pos. x'7h	x/D _{eq}	r/D _{eq}	Ft/Sec	Velocity Ft/Sec	Remarks
		REF	0.066	0716	5.740	13.672	MIDDLE PO	WTOF			AT CORE E	4.T
20/		SLANT AX			<u> </u>				SLANT rish=05			S. ANT-AX. TRAVS
202					<u> </u>		•			•	•	on r/h=0.5
	427		4546	<u> </u>	<u> </u>		12.3			2354	263	
	478		4.247				11.4			2304	381	
	479		3.693				9.9			2388	64	HISTO. HEASURED
	480		3.335				8.9			2409	118	SCANT-AXIALLY ON M=0.5
	481		2,843				7.6			2424	60	
	487		2,37/				6.3			2406	93_	
	483		2.04/				5.4			2376	62	
	484		1.716				4.5			-	-	
	485		1.426				3.7			24/3	65	· -
/"	48%		1.717				1 45		1	2373	64	
203			•		5.602		-		r//n=1.0	•	,	SLANT- AX TRAVS.
204			•		4		-	.	3	-	•	on "/h=1.0
		.\		V				1				, _

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5-5 6 .	AERODYNAMI C	TEST RESULTS BY		TEST DAT	E 10/22/8/	. 9 9
MODEL =	LASER DOPPL	#11 THEOUTINE TELL	(Concluded) - 24// Ft/Sec	D =	5.67 In.	AGINAL POOR
TEST POINT =	4/3	,	Va/c=	•	- 4	R QUAL
		, = :==::	a/c	_		

Graph	Histo	Ту	pe			n (Volts)	Slant		Radial	Mean	Turb.	
No.	No.	Trav		Slant Axial	Axial	EW	NS	Ax. Pos.	Posit. x/D eq	r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	487	SLAM	r AX	3570	0.716	5.602	13.672	9.6		SLAUT W/h=1.0	<u> </u>	73	
	488			2.986		1.		8-0			2382	95-	HISTO, HEASURED
	489			2.257				6.0			2351	10/	SLANT-ARALLY IN Thelo
	490			1.160				3.0			2300	177	(CONTINUED)
	491	\		0.430	<u> </u>	J	J	(.0		V	2203	189	<u> </u>
	492	L			•		•	•		•		•	
	5	N67	RE	ROEO		<u> </u>	•			'	•	•	
·	496	<u> </u>			·		•			•		•	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							! 					
				L									
		ļ											·
·]										
·													
									1				_

P_r = Pressure Ratio

 V_j = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} * Free Jet Vincity

TABLE 5-6	7. AERODYN	AMIC TEST RESULTS BY		TEST I
MODEL =		<u> </u>	2426 Ft/Sec	D _{eq} = -
	1 1.	r - vo 0-	/	eq -

	٠	~~	C
TEST POINT = 414	$T_{T} = 1739^{\circ} R$	Va/c 400 Ft/Sec	h = 0.8/ In. A

Graph No.	Histo No.	Type of Traverse		Slant Axial			lts W	F	IS	Slant Ax. Po x'/h	s.	Axial Posit. x/D _{eq}	Radial Posit. r/D _{eq}	Velocity	Turb. Velocity Ft/Sec	Remarks
		REP			10.858	6.84	75	13.6	47	PLUG	7	IP .				
229		AX				6.84	î5				I	٠	0		١	AX. TRAUS. ON JET AXIS
230					-						I	•		•	•	
	220				1.654							10		1976	409	
	221													-	1	
	552											→		-	-	
	523	_			1-498							8			•	
ľ	554				Ţ							4		2187	184	,
	222				1.338							6		2242	130	HISTO, HEASURED AXIALLY
	556				1.258							6		2222	136	ON JET 4XIS
	557				1.178							4		2169	130	
	228				1.098							3		2098	147	
	559				1.018							3		1969	170	
	2.0				_l							1		2003	154	
	51:1	V			0.938	V		Y					4	1765	196	V

P = Pressure Ratio

V_j = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$

 $V_{a/c} = Free Jet Velocity$

TABLE 5.57. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER (Continued)

MODEL = $\frac{4}{4}$ Pr = $\frac{3.722}{1739}$ Vr = $\frac{2426}{400}$ Ft/Sec h = $\frac{5.67}{0.81}$ In.

Graph	Histo	Туре		Position	ı (Volts)	Slant	Axial	Radial	Mean	Turb.	
No.	No.	of Travers	Slant Axial	Axial	EW	NS	Ax. Pos.	Posit. x/D eq	Posit.	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
23/		AX		•	7.751	13.647			0.5		,	AX TRAVS ON The = 0.5
232								<u> </u>		·)
	562			0866				0.1		2279	130	<u> </u>
	263			0.898				0.5		2053	294	
	26K			0.938				1		2025	249	
	292			1.018				2		2057	261	
,	566			1.098				3				HISTO, MEASURED AXIALLY
	567			4				3		2028	268	ON 7/00g = 0.5
L	568			1.178				4		1980	297	0
	569			1.258				2		1870	335	
	570			1.338				6		1770	333	
	571			1.498				8	,	1568	342	
· · · · · ·	572	·V		1.658	V			10	Y	1440	376	
233		EW		1.658	•			10			-	READIAL TRAVS. ON Your = 10
234	<u> </u>	<u> </u>	<u> </u>	1.498		₩		8	-	,	•	CHOIAL TRAUS. ON You = 10 AND 8, RESPECTIVELY
			<u> </u>				<u> </u>					

NOMENCLATURE

 $P_r = Pressure Ratio$

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

Va/c * Free Jet Valocity

TABLE 5-57.	AERODYNAM	IC TEST RESULTS BY		TEST DATE	- 00
MODEL =	4 LASER DOP		(Continued) 1 = 2426 Ft/Sec	D _{eq} = <u>5.67</u> In.	ORIGINAL OF POOR
TEST POINT =	414	T _T = <u>1739</u> O _R	Va/c 400		. •

								+				75
Graph No.	Graph Histo Type No. No. of Traverse		Slant Axial		n (Volts	T		Axial Posit.	Radial Posit. r/D eq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
							x¹/h	eq	eq			
	573	EW		1.498	3.716	13.647		8	1.86	393	5.5	
	574				5034				1.01	480	150	
	575				6.817				0.05	2/6/	194	HISTO. HEASURED RADIALLY
	576				6.498				0.24	2038	245	ON 4045 = 8
	577				6.255				0.37	1769	343	Ь
	578				5.795				0.64	1108	334	
	579			V	5.476			V	0.83	743	2/8	
23.0				1.338	•			6		•	•	RADIAL TRAIS. ON Young = 4
236				1.178	-	·		4		•		AND 6 , RESPECTIVELY
·	580				5.225				1.0	35¢	40	
	581			<u> </u>	5.764				0.66	734	2/9	
	582				5.945				0.56	1020	306	HISTO, MEASURED RADIALLY
	583				6.264				0.37	1992	33/	ON Young = 4
	584				6.479				45.0	•	_ `	
	23.5				4				٠,	2318	128	
	57.6	V			6.892	Y			0.12	227/	159	J

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TABLE 5-57.	AERODYNAMIC TEST RESULTS BY	TEST DATE 10/27/81	유용
MODEL = 4	LASER DOPPLER VELOCIMETER (Continued) $P_r = 3./22 V_j = 2426 \text{Ft/Sec}$	D _{eq} = <u>5.67</u> In.	POOR Q
TEST POINT =	$4/4$ $T_T = 1739$ OR $V_{a/c} = 400$	Ft/Sec h = <u>0.8/</u> In.	PAGE II

	Histo				tior	(Volts)	Slant	Axi		Radiai	Mean	Turb.	
No.	No.	of Traverse	Slant Axial			EW	NS	Ax. Po x'/h	Ax. Pos. Posit x'/h x/D _{eq}	eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	587	EW		1.17	8	6.892	13.647		1 4	4	0.0	2161	140	HISTO. HEASURED RADIALLY ON My=4. RADIAL TRAVS. ON MD= 2 AND O.I., RESPECTIVELY
237				1.01	18	•			/ 2	2	•	•	•	RADIAL TRAUS. ON You = 2
238				0.8	66	-			0.	1	-	•	•	AND O.I , RESPECTIVELY
•	588					3.666					1.89	368	114	
	589	,				5.609					0.75	273	2.8	
•	590					6.419					0.28	2286	73	HISTO. HEASURED RADIALLY
	591					6419					0.28	2285	85	ON */Dag = 0.1
	592					6.294					0.35	2324	152	
	593					5.997	<u> </u>				62.0		س	
	594			V		5-997			1		0.5}	1688	317	
239				0.7	92	-	1		-0.	82			-	RADIAL TRAVS. ON Young =- 0.82
	59.5					3.005	1				2.28	351		HISTO HEASUPED RADIALLY
	596	*		V		3.005	₩.	1/	1		2.28	389	/2	ON ×/pag = -0.82
			 									<u> </u>		
,		,	 				ļ	 			[
و و الرواية و الرواية و ا	<u> </u>		V					Ц					,	

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet V

TABLE 5-57	AERODYNAMIC TEST RESULTS BY	TEST DATE	유용
MODEL = 4	LASER DOPPLER VELOCIMETER (Continued) $P_r = \frac{3.722}{4.26} \text{Ft/Sec}$	D _{eq} = <u>5.67</u> In.	ORIGINAL OF POOR (
TEST POINT =	$T_{T} = 1739^{\circ} R V_{a/c} = 400$	Ft/Sec h = <u>0.8/</u> in.	PAGE IS

												<u> </u>
Graph No.	Histo No.	Type of Traverse	Slant	Positic Axial	on (Volts) NS	Slant Ax. Pos. x'/h	Axial Posit. x/D _{eq}	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	0.069		5.631	13.285	CORE EX	T EOG	E			·
240		NE	0.069		5.528	-	0	•	5CANT 11/h=0,42	•	-	CHORDINSE TRAVS ON 1/h=0.42
241		EW			-	13.285	-	-1.68	_	•		AT X'/h = O _ MOVAL TRAVS, ON By=
242		SLANT AX	-		5.631		-	-	50ANT 11/h=1.0	-		SERVI-AX. TRAVS. ON Th =1.0
	597		3.570		1		9.58	-		-	-	
	598		4				4 .	•		2348	82	HISTO. MEASUREO
	599		2.980				7.97	-		2350	92	SLANT-AXIALLY ON
	600		2.257				5.99	-		2311	111	r'/h=1.0
	601		1.160			-	2.99	-		2230	147	
	602	V	0.430				1.00		V	2166	186	
243		EW	0./21		-		-	-/.58	•		-	TRAVEL TRAVE, ON XDag = -1.6
244		SLANT AX			5.461		-	•	SCANT FILEOS	***	1	SCANT-AX TRAUS ON "/h=0.5
245		SLANT AX	-		٠,		-	-	ş	-		
246			1		5.63/		-	_	r/n-1.0			SCANT-AX-TRAIS, ON 1/h=1.0
	60}		3,410		5.461		9.15	-	r'/4=a5	2340	115.	HISTO. MEASURED SLANT-AYIALL
	307	V	2.850	1	3	₩	7.61		1	2354	101	ON 1/4=0.5

P_r = Fressure Ratio

 V_{j} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature V_{a/c} = Free Jet Velocity$

TABLE 5-57.	AERODYNAMIC TEST RESULTS BY	TEST DATE 10/28/8/
MODEL = 4	LASER DOPPLER VELOCIMETER (Concluded) $P_{r} = 3./22 V_{j} = 2426 \text{Ft/Sec}$ $4/4 T_{T} = /739 ^{O}R V_{a/c} = 400$	D TO

Graph No.	Histo No.	of Traverse	Slant	Positic Axial	on (1	Olts EW		NS	Slant Ax. Pos. x'/h	Axial Posit. x/D eq	Po	dial sit. Deq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks	
	605	S.ANT-1	4x	2,000		5	461	13.	285			SU	7NT =0,5	2347	117	
	606			1.650						4.33				-	_	HISTO MEASURED SCANT-AXIALLY
·	607			7			<u> </u>			,				2335	1/2	ON "/h=0.5 (CONTINUED)
	608			1.202			1			3.10			<u> </u>	2337	126	
247						5	799			•		r/h	=1.57			
248						<u> </u>	4			-		<u> </u>	4			SCANT-AX TRAUS ON
269				-		6.	098					11/6	= 2.5	_	_	11/h=1.5, 2.5 AND 2.0.
250			l	•			4			<u> </u>			4		_	PESPECTIVELY
125						5	959					1/4	= 2.0			
2\$2		<u> </u>				<u> </u>	4	ļ'	<u> </u>		-	-	4			
																
							. 		 -							
					1											

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Valocity

h ≠ Annulus Height

869

TEST DATE 10/22/8/

LASER DOPPLER VELOCIMETER

 $P_r = 3.2/4$ $V_i = 24/6$ Ft/Sec

TEST POINT = 4/9

 $T_T = \frac{1689}{6}$ OR $V_{a/c} = 0$ Ft/Sec

Graph	Histo	Туре		Position	(Volts		Slant		Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial	Axial	EW	NS	Ax. Pos.	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
		REF-	0.066	6.716	5.482	13.692	MID POINT	F ANNUL	S HEIGHT	ATCORE	Σ χιΤ	
207		SCANT AX	-	1	3	7	•	•	SLAUT -	•		SLANT-AX. TRAVS.
208		7	-	٠,	4	•		•	''	•	•	SLANT-AX. TRAVS.
				-				**************************************				
	,											
					:							
								 -				
								4-7-4-1				
							,					
											'	
											,	-

NOMENCLATURE

 $P_r = Pressure Ratio$

V = Fully Expanded Jet Velocity

= Equivalent Diameter

 $T_{\tau} = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5- <i>59</i> .		AERODYNAMIC TEST RESULTS BY
			LASER DOPPLER VELOCIMETER
		11	2 224

MODEL = $\frac{4}{r} = \frac{3.299}{1.299} = \frac{2474}{1.299} = \frac{5.67}{10.} = \frac{5.67}{10.} = \frac{42}{10.} = \frac{42}{10.} = \frac{7.38}{10.} = \frac{0}{10.} = \frac{5.67}{10.} = \frac{0.81}{10.} = \frac{0$

ORIGINAL PAGE IS

	Histo		61		(Volts)	Slant	Axial		Mean	Turb.	
No.	No.	of Traverse	Slant Axial	Axial	EW	NS	Ax. Pos.	×/D _{eq}	Posit.		Velocity Ft/Sec	Remarks
		RDF-	0.060	0.7/7	5.482	13.692	HIO POINT		US HEIGH	T AT CORE	EXIT	
211		SLANTAX			5,632				56.9NT 11/6=1.0			SLANT-AX TEAVS.
2/2	ļi											DN 41/4=1.6
	497		2.982				8.0			2388	72	
	498		2257			<u> </u>	6.0			2396	105	HISTO. HEASURED
	499		1.156				3.0			2347	167	SLAWT- AXIBLLY
	500		a427		V		1.0			2200	216	W "/h=1.0
2/3			-		5.482		•		r1/6=0.5	•	,	SLANT-BY TRAUS.
214			<u> </u>				•			•		ON "/h=0.5
	501		4407				11.9			2377	78	
	205		4032				10.9			2429	75	
	502		3.772				70. 2			2469	72	HISTO. HEASURED
	506		3.410				9. Z			2488	74	SLANT- AXIALLY
	50.		3./32				8.4			2475	121	an r/h=0.5
	50%		2.848				7.6			2454	113	
	202	V	2.609				7.0			2440	88	

NOMENCLATURE

 P_r = Pressure Ratio V_j = Fully Expanded Jet Velocity D_{eq} = Equivalent Diameter

 $T_T = Total Temperature V_{a/c} = Free Jet Velacity$

TABLE	5 -59 .	AERODYNAMIC TEST RESULTS BY	, -
		LASER DOPPLER VELOCIMETER	(Continued
MODEL =	4	P = 3.299	v = 262

= 2674 Ft/Sec D_{eq} = 5.67

TEST POINT = $\frac{421}{}$ $T_T = \frac{1738}{}$ O_R

 $V_{a/c} = 0$ Ft/Sec h = 0.8/ In.

	Histo	Turns	1				<u> </u>		 	 			
Graph No.	Histo No.	Type of Traverse	Slant Axlal		e (Volts) NS	Slant Ax. Pos. x¹/h	Posit. x/D _{eq}	<u> </u>	Ft/Sec	Turb. Velocity Ft/Sec	Remarks	
	508	SLANT AX	2.327	0.717	5.482	13.692	6.2.1	/	SCANT Y'/1=05	2418	109		
	509		1.994				5.29			2419	82	HISTO · MEASURED	
	510		1.649				4.35			2442	100	SCANT-AXIALLY ON "/L=0	
	511		1.202		1		3-13			2463	123	(CONTINUED)	
	REF		/	0.826	6.895	13.647	PLUG	TIP	<u> </u>		,		
215		AX			6.895			•	0	•	•	AX. TRAVS. ON JET AXIS	
216				•				•		•	•		
	5/2			NOT PECA	ROED			•		•			
	573			1.626	1			10		1955	285		
	514			1.466				8-	· ·	2198	211		
	212			1.306				6			**		
	516			1.226				5		2313	148	HISTO. MEASURED AKLALLY	
	577			1.146				4		2282	169	ON JET AXIS	
	812							_		_	•		
	579			1.066				3		2123	161		
	527	V	ľ	0.986	1 1	Y	1	2	t	1991	179		

NOMENCLATURE

P = Pressure Ratio

V_i = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5- 59 .	AERODYNAMIC TEST RESULTS BY LASER DOPPLER VELOCIMETER (Continued)	TEST DATE
MODEL =	P _r = 3.299 V _j = 2474 Ft/Sec	Deq = In. QUAR
TEST POINT =	42/ T _T = 1738 OR Va/c 0	

Graph No.	Histo No.	Type of	Slant) (Volts	T	Slant Ax. Pos.		Radial Posit.	Mean	Turb. Velocity	Remarks
		Traverse			EW	NS	x'7h	×/D _{eq}	r/D _{eq}	Ft/Sec		
2/7		AX			7.752	13667			0.5		•	AX. TRAUS. ON You = 0.5
218				-							•)
	152			1.626				10		1372	383	
<u> </u>	522			1466		 		8		1451	389	1
 	523			1.306				6		1660	402	
	25%			1.226				5		1797	399	
<u> </u>	525			1.146	<u> </u>			4		1857	379	
]	259			1.066	 			3		-	-	HISTO. HEASURED ANALLY
	\$27		Me	RECORD	ED	<u> </u>				-	,	ON Plag = 0.5
 	258			0.988				2		1832	330	0
	529		<u> </u>	0.868				0.5		1925	300	
 	530			0.909	1	<u> </u>		/				
ļ	23/		بالم	T PECOL	050		1				-	
ļ	255	<u> </u>	/	0.833	<u> </u>	<u> </u>	 	0.1	<u> </u>	2252	22/	<u>U</u>
 			 						 			
			<u> </u>		<u> </u>					<u> </u>		

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

T_T = Total Temperature

V_{a/c} = Free Jet <u>Val</u>ocity

TABLE 5-59. AERODYNAMIC	TEST RESULTS BY	TEST DATE	유유
MODEL = 4	P _r = 3.299 v _i = 2474 Ft/Sec	D _{eq} = <u>5.67</u> In.	ORIGINAL OF POOR
TEST POINT = 42/	$T_T = \frac{1738}{}^{O}R$ $V_{a/c} = \frac{0}{}$		PAGE 18

	Histo		E Clast		Slant Ax. Pos.		Ax		Radial Mean		Turb.	D				
No.	No.	of Traverse		Axia	al	EW	,	NS	Ax. x'7		x/l	sit. D _{eq}	r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
2/9		EW		0.83	13	•	/3.	647			0.	./	-			RADIAL TRAVS. ON Your = 0.1
	23.3					6.422	Ĺ						0.28	2288	132	В
	534					6.208							-	-	, -	
<u> </u>	232					6.208			<u> </u>	\perp			0.40	232/	77	HISTO, MEASURED RADIALLY
	536					6.104			<u> </u>				0.46	23//	122	ON X/Dos = 0.1
	537					5.942			<u> </u>				0.56	1779	308	,
	238			1		6.316					V	'	0.34	23/0	90	
220				0.98	6					<u></u>	3	2	-	-		RADIAL TRAUS. ON YOU = 2
22/				1.15	26			·			3	4	-	-	•	AND 4 RESPECTIVELY
	539					5.949							0.55	1393	401	
	540					6.268							0.37	2234	268	HISTO MEASURED RADIALLY
	541					6481							0.24	2410	164	DAY X/Dag = 4
	542			V		6.694							0.12	2284	174	, 0
222				1.30	6	~						ź	-	-	•	RADIAL TRAUS ON You-6
<u> </u>	543					5.456						′	0.84	767	312	HISTO HEPSURED RADIALLY
	24%	*		V		5.793		V	1	_	₩		0.65	•	-	av x/pag =6

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T \approx Total Temperature$

 $V_{a/c} = Free Jet Velocity$

TABLE 5-59.	AERODYNAMIC	TEST RESULTS BY	•	TEST DATE	10/26/81	유유
MODEL =	4 LASER DOPPLE		Concluded) = <u>2474</u> Ft/Sec	D _{eq} =	5.67 In.	ORIGINAL OF POOR
TEST POINT =	421	T _T = <u>1738</u> °R	V _{a/c} = <u>0</u>	Ft/Sec h	- <u>0.81</u> In.	PAGE IS

Graph No.	Histo No.	Type of Traverse	Slant Axial		sition xial	(Volts) EW)	NS		nt Pos h	Axi Pos x/D	i + i	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
223		EW		1.	466	-	/3.	647	•			}		•		RADIAL TRAVS. ON Mag = 8
	545					5-793							0.65	1241	392	
	546				· ·	5.546							0.79	860	345	HISTO, MEASURED RADIALLY
,	547					6.255							0.37	1838	345	ON *6 = 8
	548			<u> </u>		6.493							0.24	2045	288	0
	549			<u> </u>	<u> </u>	6.812						/	0.05	2192	241	
224		Y		1	.626	-	,	V		1	/	0	•	-	•	PACKAL TRAVS. ON YOU = 10
														,		0
					·								_,~=_,,			
	,							···		<u> </u>						
				<u> </u>							1					
. <u></u>			Ц													
			<u> </u>	<u> </u>												
,		[ľ						[I]		1					

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 T_T = Total Temperature

V_{a/c} * Free Jet Ve ty

TABLE	5-62 *	AERODYNAMIC TEST RESULTS BY	<u>Y</u>
		LASER DOPPLER VELOCIMETER	

MODEL = $\frac{4}{7}$ $P_r = 3.329$ $V_j = \frac{2479}{2479}$ Ft/Sec $P_{eq} = \frac{5.67}{10.00}$ In. TEST POINT = $\frac{422}{10.00}$ $T_T = \frac{1733}{10.00}$ $P_{eq} = \frac{1733}{10.00}$ Ft/Sec $P_{eq} = \frac{1733}{10.00}$ $P_{eq} = \frac{1733}{10.00}$

Graph No.	Histo No.	Type of Travers	Slant e Axial		n (Volts EW) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks .
		REF	0.065	0.708	5.488	13,285	HID POINT	OF ANN	LUS HEIG	IT AT COL	E EXIT	
253		SLANT AX	-		5.481		-		SLANT W/h= as	•		SLAWT-AX. TRAVS
254							-			•	•	ON "/h=0.5
	609		4407				11.89			2351	87	
	610		4.032				10.86			2365	99	
	611		3.722				10.00			2439	68	
	612		3.410				9-16			2439	P 2	
	613		2.850				7.62		<u> </u>	2424	109	HISTO. MEASURED SCANT-AKIALLY
	614		2.610			·	6,97			2397	1/3	ON "/4=0.5
	615		2.327				6.19			2372	91	
	616		1.996				5.29			2377	118	
	617		1.650				4.34.			2395	180	
	618		1.202		1	<u> </u>	3.1/		<u> </u>	2422	140	
255			<u> </u>		5.659				r/h=1.0	-	- '	SLAWT- AX. TRAVS.
256		₩ .	<u> </u>	<u> </u>	4	<u> </u>		<u> </u>	;			ON M/4=1.0
	<u></u>						<u> </u>	1		L		

NOMENCLATURE

 P_r = Pressure Ratio V_j = Fully Expanded Jet Velocity

D_{eg} = Equivalent Diameter

TEST DATE _10/28/8/

 $T_T = Total Temperature <math>V_{a/c} = Free Jet Velocity$

TABLE 5-62. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER (Continued)

MODEL = $\frac{4}{22}$ $\frac{P_r = 3.327}{1}$ $v_j = \frac{2479}{2479}$ Ft/Sec $v_{eq} = \frac{5.67}{1}$ In.

<u> </u>								<u>-</u>				•				
Graph No.	Histo Na.	of	Slant Axial			(Volt	s)	NS	Slant Ax. Pos. x'/h	×70	it.	Radi Posi r/D	• .	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	619	SLANT AY	2.983			5.659	13	.285	7.99				7	~363	106	î
	620		2.247	l					5.97					2324	116	
	621		2.257						6.00		$\int_{-}^{}$			2317	118	HISTO, MEASURED SLAWT-ANALLY
	622		1.154				1_		2.49					-	-	(oN " / h = 1-0
	623		3						,					2258	183	
	624		0.427						1.00			V		1891	26.3	<u>J</u>
257						5.805	<u>\</u>					r//h=	1.5	-		<u> </u>
258	<u> </u>					4					 	1				SCAUT-AX. TRAVS ON
259			<u> </u>		<u> </u>	5.950		<u> </u>		1		11/4 =	20			"/h = 1.5 AND 2.0, RESPECTIVELY
260		<u> </u>		<u> </u>	<u> </u>			<u> </u>		1		1,		_		
		REF	0.065	0	708	5.489	1	285	MIO POIN	707	- AN	vuus	HB	GHT AT E	UT	
		RET-	<u> </u>	0.	867	6.8 93	1	.285	PLUG TI	P					•	
261		_4X	/							<u> </u>	-	0				AX TRAUS ON JET AXIS
262				<u> </u>	-		4_		<u> </u>	-					•	
	625	_	+/-	0	939		4	 		<u> </u>	·	 		-	•	HISTO. MEASURED AWALY
	626		/	<u></u>	018	 		V	·	<u> </u>		1		•		ON JET AXIB

NOMENCLATURE

P_r = Pressure Ratio

 V_1 = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Ve<u>loc</u>ity

TABLE 5-62.	AERODYNAMIC TEST RESULT	5 ву	TEST DATE
	LASER DOPPLER VELOCIMET		
MODEL =	$\frac{4}{P_r} = \frac{3.32}{1.00}$	7 v _j = <u>2479</u> Ft/Sec	D _{eq} = <u>5.67</u> In.
TEST POINT =	422 T _T = 1733	OR Va/c 400	Ft/Sec h = <u>0.8/</u> In.

			7	TABLE				T RESULTS		ATE			
		٩	10 DE	EL = _		4	P _r	= 3.3 29	v _{.j} =	2479	Ft/Sec D _{eq} = 5.67 In. R		
		T	res1	T POIN	Γ =	122	T _T	= <u>1733</u>	°R	V _{a/c} = -	400	Ft/Sec	h =
Graph No.	Histo No.	Type of Traver	. [Slant Axial	Position Axial	(Volts	NS	Slant Ax. Pos x'/h	Axial Posit. x/D	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	627	AX			1.018	6.893	13,285		0	1.88	1984	16/	
	628				1.098					2.88	2/2/	144	
	629		_		1.178				<u> </u>	3.88	2218	153	HISTO. MEASURED AXIALLY
	630		_		1.258		<u> </u>			4.88	245	134	ON JET AXIS (CONTINUED)
	63/		_		1.338		 			5.88	2293	132	
	632		_		1.498		<u> </u>			7.88	2255	174	
	633		_		1.651	<u> </u>	 		<u> </u>	9.87	2089	249	
263			_		-	7.749			0.5				AX. TRAVS. ON Your =0.5
264			_		-		 			<u> </u>	<u> </u>		<u> </u>
	634				1.62.8				 	9.87	-	•	
•	635	-			1/					3	1456	336	
	636	<u> </u>			1.338				 	88.2	1665	415	HISTO. MEASURED AXIALLY
	637	 - -	-	 	4		 	 	 	3	1705	30-3	ON 700g = 0.5
	638	 		 	1.0		 	 		2.88	1888	364.	
	639	<u> </u>		 	4	 	 - - 	 	 	1.88	1852	324	
•	640	_ ₩		L	-		<u> </u>	1	. 1	0.90			<u>, </u>

, $P_r = Pressure Ratio$

V = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

	TABLE 5-62. AERODYNAMIC TEST RESULTS BY	TEST DATE
	MODEL = $\frac{LASER\ DOPPLER\ VELOCIMETER}{P_r = 3.3 \ge 9}$ V; = $\frac{24.79}{24.79}$ Ft/Sec	D _{eq} = <u>5.67</u> In.
708	TEST POINT = $\frac{422}{}$ $T_T = \frac{1733}{}$ OR $V_{a/c} = \frac{400}{}$	Ft/Sec $h = 0.8/$ In.

708		TES	T POIN	τ =	122	Т.	r * -	<u> 1733</u>	OR V	/a/c=	400	Ft/Sec	h = <u>0.8/</u> In. < [©]
Graph No.	Histo No.	Type of Traverse	Slant Axial	T	n (Volts EW) NS	S A	lant . Pos. /h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
265		EW		0.866	-	13.258		/	O	-	4-	•	RANAL TRAVS. ON Your = 0
	641				6.678					0.48	2273	170	HISTO HERSURED RADIALLY
 	642			<u> </u>	6.319				1	0.37	-		ON X/0 = 0
266				1.178					1.8	-	-		RACIAL TRAVS ON X/D-7 = 1.8
	643			<u> </u>	6692		_			0.12	2310	152	H HISTO MEASURED RAVIALLY
	644				6.481					0.24	2415	140	on x/b = 1.8
 	645			1	6.268				J	0.37	2275	241	1)
267				1.498					3.7				RADIAL TRAVS. ON Young = 3.7
	646				6.497		<u> </u>			0.23		-	<u> </u>
	647		<u> </u>	 	"					0.23	2134	228	HISTO. MEASURED PADIALLY
	648		 _	 	6.272			<u> </u>		0.37	1866	287	ON */Dog = 3.7
	647			<u> </u>	5.793					0.64	1273	372	
	650	V	 	₩	3	1	$\perp \downarrow$		J J	0.64	1356	376	V
	 -		 	<u> </u>	·	<u> </u>	1/	<u> </u>					
	 -	<u> </u>	ļ	 	 	ļ	44			 			
	<u> </u>		<u> </u>		<u> </u>	ļ	1		<u> </u>	<u> </u>	<u></u>		<u> </u>

OMENCLATURE

Pr = Pressure Ratio

V = Fully Expanded Jet Velocity

Deq = Equivalent Diameter

 T_T = Total Temperature

TABLE 5-63. AERODYNAMIC TEST RESULTS BY LASER DOPPLER VELOCIMETER

MODEL = $\frac{5}{P_r} = \frac{3.123}{3.123} v_j = \frac{242}{\text{Ft/Sec}} p_{eq} = \frac{5.03}{10.00} \text{In.}$ TEST POINT = $\frac{5}{3}$ $T_T = \frac{1732}{1732} R v_{e/c} = \frac{0}{0.00} \text{ Ft/Sec} h = \frac{1.19}{0.00} \text{In.}$

TEST DATE 4/30/82

	Histo	Туре		Position	(Volts)	Slant		Radial	Mean	Turb.	4 9
No.	No.	of Traverse	Slant Axial	Axial	1 EW NS Ax. Pos. P	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks		
		REF		2.188	7517	13.773	PLUG T	1P				
596		AX						•	0	•	•	
597				<u> </u>	1			•	ı	•	•	AX TRAUS. ON They =0
598					\$.276				0.5	•	•	AND O.S PESPECTIVELY
599				-		<u> </u>		•		•	•	
5998		, í						•			•	
	1377			2.160			.	-0.39		1699	229	
*	1378			2.200				0.16		1688	214	
	1379			2.240				073		1659	181	
	1380			2.210				1.29		1607	169	
	1381			2,320				1.86		1576	172	HISTO, HEASULED BILLING
	1382			2.360				2.42		15.64	172	MISTO, MEASURED PXIALLY ON YOUR = 0.5
	1383			2.400				2.98		1576	165	
	1384			2.440				3.55		1209	170	
···	1385			2.480				4.11		1472	180	
	1386	. ∤ .	ĺ	3.7.50	₩ "			4.67		1444	181	

NOMENCLATURE

P = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_{T} = Total Temperature$

V_{a/c} = Free Jet Velocity

~1
-
θ

TABLE 5-63.	AERODYNAMIC TEST RESULTS BY	TEST DATE 4/30 /82
MODEL = 5	LASER DOPPLER VELOCIMETER (Continued) $P_r = 3./23 V_j = 242/ \text{ Ft/Sec}$	Peq = 5.03 In. POOR
TEST POINT =S	$T_{T} = 1732 ^{\circ} R V_{a/c} = 0$	Ft/Sec h =In.

Graph	Histo	Туре		Position	(Volts)	1	Slant	Axial	Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial	Axial	EW	NS		Ax. Pos x'/h	x/D _{eq}	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	1387	ΑX		2580	8.276	13.77	3		5.23	0.5	1410	190	· · · · · · · · · · · · · · · · · · ·
	1388			2.600					5.80		1366	208	
	1389			2.640			_		6.36		1336	200	
	1390			2.680					6.92		1273	2/8	HISTO, MEASURED BYIBILY
	1391			2.720					7.49		1234	222	HISTO, MEASURED AXIAILY AN YOU = 0.5 (CONTINUED)
	1392	1		2.760					20.8		1171	237	
	1393			2.800					8-61		1136	234	
	1354	<i>V</i>		2.840	V				9.17	<u> </u>	1107	22/	<u> </u>
		REF		2.191	7.444	13 7	61	PLUG 7	TPC REL	CATED		*	
5976	REA	BATOF	\$-	597						<u> </u>		<u> </u>	
600		EW		2.191]		0	<u> </u>		·	
601				4	<u> </u>				3	<u> </u>	•	•	PAGIAL TRAVS ON YOU =
602				2.333					2		<u> </u>	<u> </u>	PROVAL TRANS. ON YOU =
603	<u> </u>	<u> </u>	 	<u> </u>			_		1,	· ·			
			!		<u> </u>	 	_	 			ļ		
	L		ll .	<u> </u>	<u> </u>	<u> </u>]	1			<u> </u>		<u> </u>

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet <u>Velocity</u>

	Histo		,		n (Volts)	Slant	Axial	Radial	Mean	Turb.	7 8
No.	No.	of Traverse	Slant Axial		EW	NS	Ax. Pos x'/h	x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	1395	EW		2.333	6.162	13.76		2.0	-0.85	887	263	
	1396				6.358				-0.72	1215	226	
	1397				6.636		<u>'</u>		-0.53	1548	149	
	1358				6.866				-0.38	1497	142	
]	1399				7.162				-0.19	1261	126	
	1400				7.375				-0.05	1163	104	HISTO. HEASURED RADIALLY
	1401				7.628				0.12	1314	154	ON X/0 = 2.0
	1402				7.87/				0.28	1517	140	
	1403				8.066				0.41	1623	127	
	1404				8.225				0.52	1613	142	
	1405				.8.394				0.63	1412	20/	
	1406		<u> </u>		8.630				0.78	1016	240	
	1407			4	8.821			V	0.91	720	194	
604				2.616	•			6.0		•		RADIAL TRAUS ON Your
605				4	•		17	4	•	•	•	J
						V	17	1				

NOMENCLATURE

P_{*} = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

		LASER	DOPPLER
	MODEL =	5	P
~1	TEST POINT =	513	т

TABLE 5-63.	AERODYNAMIC TEST RESULTS BY	TEST DATE 4/30/82	ORIGINAL
DEL = S	LASER DOPPLER VELOCIMETER (Continued) $P_r = 3./23 v_j = 24.21 \text{ Ft/Sec}$	D _{eq} = <u>5.03</u> In.	R QUAL
ST POINT =	5/3 T _T = 1732°R V = 0	Ft/Sec h = 1-19 In.	Z m

Graph No.	Histo No.	Type of	Slant	· · · · · · · · · · · · · · · · · · ·	n (Volts		Slant Ax. Pos	Posit.	Radial Posit	Mean Velocity	Turb. Velocity	Remarks
		Traverse			EW	NS	x¹/h	x/D _{eq}	r/D _{eq}		Ft/Sec	
606		ΕW		2.758	-	13.761		8				RAWAL TRAVS. ON X/D= 8
607	<u></u>	· · · · · · · · · · · · · · · · · · ·						1	<u> </u>	,)
	1408				9.225			8	1.18	607	178	
	1409				8.845				0.92	789	241	
i 	1410		i		8.486				0.69	1047	243	
	1411				8.072				0.42	1278	196	
	1412				7.742				6.20	1362	162	
	1413				7.387				-0.64	1359	137	HISTO, MEASURED RADIALLY
	1414				7.067				-0.25	1337	147	ON X/Dag = 8
	1415				6.732				-0.47	1232	198	D
	1416.		1		6.3/3				-0.75	1010	226	
<u> </u>	1417				5.866				-1.04	750	227	
	147	V		V	2.488	V		V	-1.29	1.99	200	
							17		<u> </u>			
									<u> </u>			
	}				T]	TT		I			

 $P_r = Pressure Ratio$

 V_{j} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet V ity

~;፤
ببسر
Ç

TABLE 5-63.	AERODYNAMIC TEST RESULTS BY	TEST DATE 4/30/82	ORIGINAL OF POOR
MODEL = 5	LASER DOPPLER VELOCIMETER (Continued) $P_r = 3./23 V_j = 242/ \text{ Ft/Sec}$	D _{eq} = <u>5.03</u> In.	-
TEST POINT =	$T_T = 1732$ OR $V_{a/c} = 0$	Ft/Sec h = <u>1.19</u> In.	PAGE IS

Graph	Histo	Туре		Positio	n (Volts	.)	Slant	Axial	Radial	Mean	Turb.	
No.	No.	of	Slant	1	1	1	Ax. Pos.	Posit.	Posit.	Velocity	Velocity	Remarks
		Traverse			EW	NS	x'/h	x/D _{eq}	r/D _{eq}	Ft/Sec	Ft/Sec	•
		REF	0.719	2.03/	6.186	13.420	HID POINT	OF ANN	LUS HEIG	IT AT EXI	7	
608		W.S.				- '	0.14	r/4=0.5	2/4			CHOPOWISE TRAUS, AT (W/h = 0.14 1/4
<u> </u>	1419				<u> </u>	13.701	•		= 0.03	1808	20/	
	1420					13.374	<u> </u>		0.24	1725	169	HISTO. HEASEKED CHOROWSE
	1421					13.467			0.50	1801	200	AT (. x/h=a14, 1/h=0.5)
	1422	<u> </u>	<u> </u>			13.483	\\'	1	024	1821	219	
609	<u> </u>		REPER	FOF G-	808	-	<u> </u>	1		•	•	
610		SCAUTAX	· .			13.420	•		r/4=0.5	•	,	SLANT-AX. TRIVS. ON 1/h=05
611										<u> </u>	•	
	1423		0.840				0.23			1861	197	<u> </u>
	1424		0.942				0.42			1954	245	
	1425		1.035			<u> </u>	0.59			2154	27/	MISTO. HEASURED SCANT-ANIAL
	1426		1-102				0.71			2260	244	ON "/h = 0.5
	1127		1.164				0.83			2299	248	
	11:28		1-213				0.92			230/	22/	
	11729	1	1.310		1	<u> </u>	1.10		V	2/27	157	14.

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature V_{a/c} = Free Jet Velocity$

TABLE 5-63. AERODYNAMIC TEST RESULTS	
--------------------------------------	--

LASER DOPPLER VELOCIMETER

(Continued) $P_r = 3./23$ $V_i = 242/$ Ft/Sec

TEST POINT = 373

 $T_T = \frac{1732}{R}$ OR. $V_{a/c} = 0$ Ft/Sec

TEST DATE 4/30/82

	Histo				n (Volts)	Slant		Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial		EW	NS	Ax. Pos.	Posit. x/D eq	Posit.	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	1630	SLANT AX	1.79.7	2.031	6.186	13.420			SLANT VIK-OS		150	7
	1431		1.481			· .	1.42			2244	123	
	1432		1.602				1.65	1		2356	141.	
	1633		1.69 8				1.83			2378	157	, , , , , , , , , , , , , , , , , , , ,
	1434		1.774				1.97			2356	/23	
	1435		1884				2.10			2375	12/	HISTO, HEAGURED SLAWT-
· ·	1436		1.931				2.26			2349	147	AXIAUY ON "/h=05
	1437		2047				2.48			2365	140	(CONTINUED)
	1438		2.163				2.69			2409	130	
	1439		2.288				2.93			2388	189	
	1440		2.389				3.12			2284	25/	
	1641		2.480				3.29			2/7/	32/	
,	141:2	₩ .	2,608		V	V	3.52		V	2/29	35/	U
					`			1				•

NOMENCLATURE

P = Pressure Ratio

V_i = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_{\tau} = Total Temperature$

Va/c = Free Jet Ve

ORIGINAL PAGE IS

TABLE	5-63.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

(Continued)

 $P_r = 3./23$ $V_j = 242/$ Ft/Sec $D_{eq} = 5.03$ In.

TEST DATE 4/30/82

TEST POINT = 5/3

 $T_T = \frac{1732}{R} OR V_{a/c} = 0$ Ft/Sec h = 1.19 In.

	Histo				n (Volts)	Slant		Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial	Axial	EW	NS	Ax. Pos. x'/h	x/D eq	r/D _{eq}	Ft/Sec	Velocity Ft/Sec	Remarks
6/2		EW.	1310			13.289*	1.1	-/.82		,	i .	
613			3				1 1	",	•		•	RADIAL TRAVS ON X/D-4 =-1.82
414			1.931		•		2.3	-1.56	•		•	RADIAL TRAVS ON X/D = -1.82
615		V	٠,					7	•		•	
616		NS	1.931		6.186	•			SCANT r/h=0.5			CHORDWISE TRAVE AT ("/h=0.5"
617			1		<u> </u>	•		•		•	•	x'/h=2.3
	1443		1.43			13.414		₹/4=0.35°		2307	175	HISTO. HEATURED CHORDWISE
	1444					13.375		0.24		2316	153	$AT(\frac{v}{h}=0.5, \frac{v}{h}=2.3)$
	1445					13.304	→	V 0.04		2316	118	<u>) </u>
618			1.310				1.1	•			•	CHORDWASE TRAUS AT ("/h=0.1",
619		,			<u> </u>	•		•		•	,	×/h=1.1)
	1446					13.469		2/h=0.50		2077	247	HISTO. HEASURED GOROWISE
	1447					13.403		0.32		2059	163	AT ("/h=0.5" , X/h=1.1)
	1448			 		13.288	V	0.00		2116	184	1
620			2.502	 	<u> </u>		3.4	•		•	•	CHOROMISE TRAVS. AT ("/n=0.5",
621		V	. 4	/	\ \	•	4		V	•	•	x'/h = 3.4.

NOMENCLATURE

* NEW REFERENCE OF MID-POINT OF MANULUS MEIGHT AT EXIT

P = Pressure Ratio

 V_i = Fully Expanded Jet Velocity D_{eq} = Equivalent Diameter

 T_T = Total Temperature

V_{a/c} = Free Jet Velocity

TABLE 5-63.	AERODYNAMIC TEST RESULTS BY	TEST DATE 4 /30/82	ORIGIN
MODEL =5	LASER DOPPLER VELOCIMETER (Continued) Pr = 3/23 v = 2/2/ Ft/Se	ec D _{eq} = <u>503</u> in.	OR QU
TEST POINT =	$T_T = 1732^{\circ}R V_{a/c} = 0$	Ft/Sec h = 1.19 In.	PAGE IN

Ī	Graph					n (Volts)	Slant	Axial	Radial	Mean	Turb.	
	No.	No.	of Traverse	Slant Axial	Axial	EW	NS	Ax. Pos. x'7h	Posit. x/D eq	r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
		1669	NS	3225		6.186	13.423	3.4	2/4=0.37	SLANT 11/4=0.5	2/33	328	HISTO HEASURED CHORDWISE
		1450					13,317		0.22		2294	195	AT (1/4=0.5 . x/4= 2.4)
		1657		<u> </u>			13.32		₩ 0.06		2239	222	(CONTINUED)
	622			3.173			-	4.58			,		
ļ	623			↓			•	↓					
	624			3.794	1			5.74	•				CHARDASE TRAVS. AT ("/H =0.5",
I	625			1			•	↓	•		•	,	x1/4=4.58 5.74 6.90
I	62.6			4.415	1		-	6.90	•		•		AND 8.05.) RESPECTIVELY
5	627			1	;		-	+	•		•		
	628			5.036				20.8	•		,	•	
	629		<u> </u>	↓ ·	<u> </u>	V	•	Ţ	•			•	
	630		SALT AX			6.330	13.395	-	-	r/4=1.0		,	SCANT-AX TRAVS. ON 1/4=1.0
	631			-	l l				•		·	•	
<u> </u>		1452		1.108				0.73			2/30	266	HISTO. HEASURED SUANT-AKIAILY
		145)		L				l			2/03	257	ON "/h =1.0
į		1454	1	1.234			↓	0.96		1	2207	267	

P_r = Pressure Ratio

 V_j = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

T_T = Total Temperature

Va/c = Free Jet Vacity

ORIGINAL PAGE IS OF POOR QUALITY

TABLE	5-63.	AERODYNAMIC TO	EST	RESULTS	BY
	•				

LASER DOPPLER VELOCIMETER (Continued)

 $V_1 = 2\frac{42}{1}$ Ft/Sec MODEL =

TEST DATE 4 /30/82

513 TEST POINT =

 $T_T = 1732^{\circ}R$

Ft/Sec

In.

	Histo		· · · · · · · · · · · · · · · · · · ·	Positio	n (Vol	ts)	Slant	Axial	Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial	Axial	EW	NS	Ax. Pos.	Posit. x/D eq	x/D _{eq} r/D _{eq} Ft.	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	1455	SLAWTAX	1.39.3		6.33	0 13.395	1.26		SLANT V/L=LO	2/69	176	
	1456		1517				1.49		,,,	2183	2/8	
	1457		1.752				1.93			2367	215	•
	1458		1.914	- /-			2,23		<u> </u>	2155	123	
	1459		2.03/				2.45			2232	/23	
٠.,	1460		2.135				2.64			2286	142	
	1461		2.279				2.91			2369	12.5	HISTO, HEASINED SLAWT-AWALLY
	1462		2.493				3.31			2241	130	ON "/h=1.0
	1463		2.633				3.57			2291	135	(CONTINUED)
	1484		2.728				3.75			2325	/33	
	145		2.866				4.00			23/8	160	
<u> </u>	1466		3041				4.33			2224	186	
	1467		3.173				82.4			2267	177	
	1468		3329				4.87			2235	20/	
	1409		3255	<u> </u>			5.23			2/56	235	£ ;-
	14,0	V	37/1		V	V,	5.58		V	2/05	264	

NOMENCLATURE

 $P_r = Pressure Ratio$

V = Fully Expanded Jet Velocity

≈ Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5-63.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER
MODEL =		5 P = 3./23

(Concluded)

 $DEL = \frac{5}{P_r} = \frac{3./23}{2.123} \text{ V} = \frac{242}{\text{Ft/Sec}}$

 $D_{eq} = \underline{5.03} \text{ In.}$

TEST POINT = 513

 $T_{T} = 1732 ^{\circ}R$

Ft/Sec h

 $h = \frac{1 - 19}{1 - 19} \ln x$

ORIGINAL PAGE IS

Graph	Histo	Туре			n (Volts))	Slänt	Axial	Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial	Axial	EW	NS	Ax. Pos.	Posit. x/D _{eq}	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	<u>R</u> emarks
	1471	SLANT AX	3.788		6.330	13.395			SLAHUT 11/4 =1.0	1963	255	HISTO. HEASURED SCAUT- AXIALLY
	1472		4.28			J	6.65	,		1844	265	ON "/h=1.0 (CONCLUDED)
632		us	1.234			_	0.96	•			•	
633		1	J			-	J	•			•	CHOROMSE TRAVS. AT (1/4=1.0,
634) REF	EATOF	G-632	1633		-	•	•			•	x/h=0.96)
635		1					•	•		•	•	<u> </u>
	1473	2.0	1.234			13.251	•	=/h = -0.11		2274	16.8	
	1474					13.470		0.50		2299	189	MISTO. MEASURED CHORDINS E
	1475					13.435		a41		226/	244	AT (1/4 = 1.0 , 1/4 = 0 96)
	1476	1				13.393	•	0.29		2203	163	
	1477	J	•		V	13.316	•	V 008	↓	2245	173	
636		SLANT AX	•		6.07 1	`		,	1/h=0.2	,		SCANT-AX TRAVS. ON "/h=0.2
637		Ţ	. 1		1	•			Ţ	•	•	
				,			,				',	
		ł					,					

NOMENCLATURE

P - Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_{\tau} = Total Temperature$

V_{a/c} = Free Jet <u>Vel</u>ocity

ORIGINAL PAGE IS

TABLE	5-64.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

MODEL = $\frac{5}{P_r} = \frac{3.2.09}{2.2.09} v_j = \frac{1701}{1701} \text{ Ft/Sec}$ $\frac{D_{eq}}{D_{eq}} = \frac{5.03}{10.00} \text{ In.}$

TEST POINT = $\frac{1513}{T}$ $T_T = \frac{850}{R}$ $V_{a/c} = \frac{0}{0}$ Ft/Sec $h = \frac{1.19}{10}$ in.

Graph	Histo	Туре		Position	n (Volts)	Slant		Radial	Mean	Turb.	
No.	No.	of Traverse	Slant Axial		EW	NS	Ax. Pos. x'/h	Posit. x/D eq	r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
		REF	0.150	5.188	7.342	13740	PLUG TI	ρ			1	
638		·AX		. •				•	0	•	•	AX. TRAYS. AN Y/Dag = 0
639				•	V			•	4	•	,	AND O.S RESPECTIVELY
640				•	8.101			•	0.5	•	•	
641				•				•		•		
	1478			2157				-0.44		1214	144	
	1479		\Box	2.197				6.13		1277	148	·
	1480			2.237				0.70		1306	1/8	
	1481			2.277				7.25		1304	103	
	1482			2.317				1.81		1284	107	HISTO. MEASURED AXIALLY
	1483			2.357				2.38		1771	103	ON Y/Oug = 0.5
	1484		1	2.397				2.94		1249	110	
	1485			2.437				3,50		1226	105	
	1486			2477			-	4.07		1206	110	
	1487			2.517				4.63		1179	126	÷
	1408	1		2557	V	V		5.19	V	1161	124	**************************************

NOMENCLATURE

P = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

TEST DATE 5/3/82

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TABLE 5-64.		TEST RESULTS BY	ORIGINAL S/3/81 POR	- 1 A
MODEL =	ST.	ER VELOCIMETER (Continued) Pr = 3.209 v; = 1701 Ft/Sec	$D_{eq} = 5.03 \text{ In.}$ Ft/Sec h = 1.19 In.	
EST POINT =	1513	T _T = 850 °R V _{a/c} = 0	Ft/Sec h =/_9 In. 3	70

ìraph No.	Histo No.	Type of Traverse	Slant		(Volts)	NS	Slant Ax. Pos x'/h	il Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	1489	ΑX		2377	8,101	13.74		5.75	0.5	1131	130	
	1490			2.637				6.32		1097	145	
	1491			2.677				6.88		1072	147	
	1492			2717				7.44		1045	12.5	HISTO. HEASURED AXIALLY
	1493			2.757				8.0/		1024	148	HISTO, MEASURED AXIALLY ON YOUR = 0.5
	1494			2.793				12.8		982	167	V
]	1495			2.838				9-13		967	163	
	1496			2.877				9.69		932	16/	
	1497			2.917	<u> </u>			10.26	V	921	161	
262		EW		2.186				0.3				
643				3			1_/	3				
644			<u> </u>	2.328	<u> </u>		1/	2		<u> </u>	•	RANAL TRAVS. ON X/D-4 = 0.
645				,	<u> </u>		1/	<u> </u>		<u> </u>		RANAL TRAVS. ON X/D = 0.
46			 	2611	·		1/	5.6				
547		V	V	3	•	l V	1/	<u> </u>	<u> </u>		·	

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet V<u>alo</u>city

TABLE 5-64.	AERODYNAMIC	TEST RESULTS BY		TEST DA	TE _5/3/82	유유
	LASER DOPPLE	R VELOCIMETER	(Continued)		•	POOR
MODEL =	5	$P_r = 3.209 v$	i = <u>170/</u> Ft/Sec	D _{eq} =	<u>5.03</u> In.	•
TEST POINT =	1513	$T_{T} = 850^{\circ}R$	V _{a/c} =	_ft/Sec	n = <u>1.19</u> In.	PAGE IS

Graph No.	Histo No.	Type of Traverse	Slant Axial		ion (Volts) NS	T A	lant x. Pos '/h	Axi Pos	it.	Radial Posit. r/D	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
848		EW		2.75	3 .	13.74			7.		eq ,			RANDI TRAIS. ON YOU = 7.4
649					•		1		1_1			•		<u> </u>
	1498				5.708		1_				-1.01	289	185	
	1499				6.222						-0.74	862	169	<u> </u>
	0021				6.642						-0.46	1025	127	
	1501				6.948						-0.26	1068	.110	
	1502				7.150						-0.13	1077	104	HISTO MEASURED RADIALLY
	1503				7.348		7				0.00	1091	104	HISTO, MEASURED RACIALLY ON X/0-7 = 7.4
	1504				7.729		1				0.26	//23	11/	b
	1202				8./29			7			0.52	/007	521	
	1506				8.459		1	7			0.74	847	. 186	
	1507	NOT RE	CORDED		-		1				_	•	•	
	1508		,	V	8.878				1	,	1.01	628	171	
650				2.89			17	·	9.	2		,		RADIAL TRANS ON X/Dag = 9.2
651		V		4	•		17		1		``	·	, , •	6
		· · · · · · · · · · · · · · · · · · ·				V	11							

 $P_r = Pressure Ratio$

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5-64.	AERODYNAMIC TEST RESULTS BY	TEST DATE		
	LASER DOPPLER VELOCIMETER (Continued)		PAGE "S	
MODEL = 5	$P_r = 3.209 V_j = 170/ \text{ Ft/Sec}$	$p_{\rm eq} = 5.03$ In.		
TEST POINT #	'S/3 T _T = 850 °R V _{a/c} = 0	Ft/Sec $h = 1-19$ In.		

Graph No.	Histo No.	Type of Traverse	Slant Axial	Position Axial	n (Volts EW) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	0.500	2.002	5,463	13.253	MID-POIN	TOF AMU	NUS HEIG	T AT EX	7	
528		SLANTAX			5.998		,		SLANT YI/L = 0.5	•		SLANT- AX TRAUS. ON
623			•				•			•	•	\ r'/h=0.5
	1509		0.250				0.84			1633	232	
	1510		1.020				1.03			1495	154	
	1511		1.120	.			1.16			1436	109	
	1512		1.120				1.96			1669	90	
	1213		1.900				2.61			1677	57	HISTO. MEASURED SLANT-
	1514		2030				2.85			1704	8-0	AXIALLY ON 1/h=0.5
	12/2		2.350				3.45			-	_	
· · · · · · · · · · · · · · · · · · ·	1276		2,520				3.77			1624	140	
	1577		4.020				16.57			1166	164	
	1218		2.7/8				4.14			1258	182	,
	1519		1.328		V		1.54		V	1578	1/2	<u>U</u>
654					6.179				1/4=10			SLANT-AX TRAVS. ON
223	L	<u> </u>				V		11				r'/h = 1.0

722

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

ln.

TABLE 5-64.	AERODYNAMIC TEST RESULTS BY		TEST DATE
	LASER DOPPLER VELOCIMETER	(Continued)	
MODEL =	P _r = 3.209	V _j = <u>/70/</u> Ft/Sec	P _{eq} = <u>5.03</u> In.
TEST POINT =	$T_{T} = 850^{\circ} R$	V _{a/c} =	Ft/Sec h = <u>1.19</u>

		-	 				T	t	 	·····		<u> </u>	
	Histo				on (Volts)	Slant		Radial	Mean	Turb.		
No.	No.	of. Traverse	Slant		EW	NS	Ax. Pos.	Posito	Posit.	Velocity Ft/Sec	Velocity Ft/Sec	Remarks	
L'	<u> </u>	Liávei ad	AATO		<u>l</u>	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	x/D _{eq}	r/D _{eq}	FL/386	1 1/360		
	1520	SLOUTAX	0.965		6.179	13.253	0.87		SLANT YI/K=1.0	1628	114	1	
	1221		1. Z5 Z	, ,			1.40			-	~		
	1522		"				"			4574	90		
	1023		1.527				1.92			1707	130		
<u> </u>	1524		1.816				2.46			1571	99		
	122		2.113				3.0/			1685	120		
	1526		2.373				3.49			1593	83		
	1527		2.666				4.04			1672	112	HISTO MEASURED SCANT-ANALLY	
L	1528		3.235			,	5./0			1579	98	ON "/h=1.0	
	1529	'	4				",			1587	102.		
<u> </u>	1030		1.069			,	1.06			1635	H^{*}		
	1231		1.171				1.25			1605	11		
	77.35		1.320				1.53			1606	84.		
<u></u> '	[12]		1.40/				1.68			1668	8 8		
	4521		1.680				2,20			1632	13/ :		
l '	153-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.223	Γ	V	V	3.2/		Y	1638	116	,	

NOMENCLATURE

 P_r = Pressure Ratio

 $V_{j} = Fully Expanded Jet Velocity$

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5-64.	AERODYNAMIC TEST RESULTS BY	TEST DATE <u>5/4/82</u>
	LASER DOPPLER VELOCIMETER (Concluded)	_
MODEL =	$P_r = 3.209$ $V_j = 170/$ Ft/Sec	
TEST POINT =	$T_{T} = 850^{\circ} R V_{2/c} = 0$	ft/Sec h = 1.19 In.

Graph	Histo	Туре		Positio	on (Volts)	.)	Slant	Axial	Radial	Mean	Turb.	
No.	No.	of Traverse	Slant	A 1 - 1	EW	NS	Ax. Pos.	J Posit.	. Posit.	Velocity	Velocity	Remarks
	1536	SLOWT AX	2485		6.171	13,223	3.70	,	SLANT HILLETO	1612	163	HISTO. HEASURED SLAWT-AXIALLY
<u> </u>	1537		3.454		4		5.59	•	,	1821	93	ON "/h=1.0 (CONTINUED)
656		EW	1.800	1	•		2.43	-1.53		<u> </u>		<u> </u>
657			',		-		,	'4	,	•	<u> </u>	RADIAL TRAVS. ON X/0.g= -1.53
658			2.800		••		4.29	-1.10	-	•		AND -1.10, RESPECTIVELY
659					•	<u> </u>		1	•	•		
660					5.918			-	r'/h=0.5		•	
661			₩				V			•	.•	
662			1.800			_	2.43	-		•	• '	CHOROMSE TRAVE, AT (X/h=4.29,
663			4	7		-	3	-		•	• .	1/h=0.5) (x/h=2.43, 1/h=0.5) AN
664			1.100			-	1.12	-		•	•	(x/h=1.12, 1/h=0.5), PESFECTIVELY
665		1	4			•	ş		V	'	•	
		REF	['	2./75	7.292	13.737	PLUG TI	, p -	<u> </u>	,	•	
666		AX	· '		888.8	13.801	•		0.92		•	AX. TRAVS ON TO = 0.92
167		Ţ		-	4	4	•	•	9	•	•	(NEAR PLUG SURFACE)
		<u>'</u>	7			,						TESTED ON 5/5/82

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity '

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TEST DATE 5/5/82

TABLE	5-65.	AERODYNAMIC	TEST	RESULTS	BY
-------	-------	--------------------	------	---------	----

LASER DOPPLER VELOCIMETER

MODEL = S $P_r = 3.2/4$ $V_j = 1702$ Ft/Sec $D_{eq} = 5.03$

TEST POINT = 1514 $T_T = 850$ °R $V_{a/c} = 400$ Ft/Sec h = 1.19 In.

Graph No.	Histo No.	of	Slant	A	(Volts) NS	Slant Ax. Pos	Posit.	Radial Posit.	Velocity	Turb. Velocity	Remarks
		Traverse	Axiai		ļ		x¹/h	x/D _{eq}	r/D _{eq}	Ft/Sec	Ft/Sec	
	<u> </u>	REF	<u> </u>	2.181	7.288	13.745	PLUG T	P				
668		ΑX			7.288	1	1		0	,	`	<u>.</u>
669					4			-	4		•	AX. TRAVS. ON They = O AND
670					8.047			•	0.5	•	•	O.S PESPECTIVELY
671										•	•	
·	1538			2.161				-0.2 F		1237	/20	
· · · · · · · · · · · · · · · · · · ·	1539			2.20				023		1308	114	
	1540			2.24/				0.84		1358	106	
	1541			2.281				1.41		1313	101	
	1245			2.32/				1.77		1350	89	HISTO, MERSURED AXIALLY
	1543			2.361				ξ2.≤		1337		ON Mag = 0.5
	1544			2.401				3./0		1324	90	0
	1280			2.441				3.66		1311	F 9	
	12.8.7		<u> </u>	2.481			1/	4.20		1297	100	
<u></u>	1547		<u> </u>	2.521			1/	4.78		1289	73	
	1548	₩ .	11	2.561	₩	₩]/	r.3r		1264	99	[

NOMENCLATURE

P = Pressure Ratio

 V_{1} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_{T} = Total Temperature$

Va/c = Free Jet_Velocity

TABLE 6-65. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER (Continued)

TEST POINT = 1514

V = 1702 Ft/Sec

TEST DATE

V_{a/c}= 400 Ft/Sec

5/5/82

ORIGINAL PAGE IS

	Histo					n (Volts	,)	Slant		Radial		Turb.	1 ·
No.	No.	of Travers		Slant Axial		EW	NS	Ax. Pos x'/h	s. Posit. x/D _{eq}	r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	1549	AX	工	$\equiv I$	2.60/	8.047	13.745		1 5.90	0.5	1248	/00	
	1550				2.641				6.47		1230	100	
	1221		, , ,		2.681				7.03		12/2	103	, , , , , , , , , , , , , , , , , , , ,
	1225				2.72/				7.60		1225	147	HISTO. HEASURED ANIALY
	1223				2.761				8.16	I	1161	115	ON 1/2=0.5
	1554				2.80/				8.72		1131	118	0
	1221				2.841				9.29		1117	/23	
	1029			'	2.88/				7.85		1109	116	
	122	· V			2.721				10.41	<u> </u>	1076	121	
672	!	EW			2.172	•			-0.12	•			
573			1	1	4			<u> </u>	,			'. .	
674				<u> </u>	2.315	-			1.88		•	<u> </u>	RADIAL TRAUS ON X/Dag = - a
675	 		$\perp \! \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \!$	<u> </u>	٠,	-			1/	<u> </u>			1.88 AND S. 17 LESPECTIVEL
676	<u> </u>	 	Ш	<u> </u>	2.598	`	<u> </u>	1/	5.87	•	•	·	
67.7	<u> </u>	<u> </u>	\perp	, , , , , , , , , , , , , , , , , , ,	. 4	•		11	4,	•	•		

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TABLE 5-65.	AERODYNAMI	TEST RESULTS BY		TEST DATE	5/5/82	ORIGII OF PC
•	LASER DOPPI	LER VELOCIMETER	(Continued)			OOR L
MODEL =	5	$P_r = 3.214$	v _j = <u>/702</u> Ft/Sec	D _{eq} =	5.03 In.	PAC
TEST POINT =	1514	T _T = 850 OR	Va/c= 400	_Ft/Sec h =	In.	PAGE 13

Remarks	Turb. Velocity Ft/Sec	Mean Velocity Ft/Sec	Radial Posit. r/D eq	Posit.	Slant Ax. Pos. x¹/h		(Volts) EW NS		Position Axial	Slant Axial	Type of Traverse	Histo No.	Graph No.	
1 ×/0-1 = 7.9	RANAL TROVS. ON	.•	•	•	7.86	1		13.745	٠	2.740		EW		678
0		•	•	•					•					679
,		144	714	-1.00					5.773				1558	
		168	892	-0.80					6.080				1559	
		139	1053	-0.63					6.327				1560	
		107	1140	-0.45					6.608				1301	
O KADIALLY	HISTO. MEASURED	98	8211	-0.29					6.855				1562	
,	ON \$/000 = 7.9	92	1092	-0.03					7.237				1583	
	D	99.	1156	0. 0					7.554				1564	
		106"	1195	0.45					7.974				282	
		1461	1052	0.65					8.275				1266	
		146.	8/3	0.89		· · · · · · · · · · · · · · · · · · ·			8.642				1567	
)	125	701	1.62	4		$\Box I$		8.838				1568	
2N X/0 = 9.8	PANAL TRAVS ON		•		9.82		\sqcup			2.882				680
0	٠ ,	•		-	4			¥	-	4		V		681
	6	• ,	•	-	4		Ŧ	¥	•	4		V		681

P_r = Pressuré Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5-65.	AERODY	NAMIC	TEST	RESULTS	ВУ
		LASER	DOPPLE	ER VEI	LOCIMETE	R
MODEL = _				P _r •	<u> 3.214</u>	_

ORIGINAL PAGE IS OF POOR QUALITY TEST DATE _ 5/5/82 V = 1702 Ft/Sec

 $T_T = 850^{\circ}R$

V_{a/c}= 400 Ft/Sec

(Continued)

Graph No.	Histo No.	Тур	/pe	Slant	T			Volts)			Slant Ax. Pos.	Axial			Mean Velocity	Turb. Velocity	Remarks
1000				Axial		xial		EW		NS	x'/h	x/D _{eq}	r/0		Ft/Sec	Ft/Sec	Nemarks .
		RE 7	E	0.500	L.	997	4	557	/3.	260	HID-POINT	OF AU			TAT ENT		
682		SLAWT	r AX	-			6.	000	1	,326			ISLA	=a5		,	SCANT-AX TRAUS, ON "/4=05
683	'			-				'			•			Ĺ′	•	<u> </u>	
	1569			1.020							0.77			<u> </u>	1789	172	
	1570			1-172		\perp					1.25				1432	. 10 2	HISTO, HEASURED SLAUT - AXIALLY
	1571			1.077		\int					1.08				1700	135	an r/h=a5
	12.55	[\dag{\psi}	<u> </u>	1.460		\mathcal{I}_{-}		√		V	1.78			V	1665	140	<u> </u>
		REF	E'	0.500	<u></u>	119	4	1.8 L	/3.	330	MID-PAIN'	OF AN	Mens	HEI	CHT AT EXIT	<u> </u>	<u></u>
684		SLANT	TAX	-				.975					561	ANT 4=0.5			REPEAT . F G-682
	1073	1		1.084					;'		1.09				1452	2/2	
	4074			1.455							1.78				1670	115	3
	1232		<u> </u>	1.689							2.22				1670	125	HISTO. NEASURED SLAWT-
	1576			1.836							2.49				1615	101	PXALLY ON 1/4 = 0.5
	1577		<u> </u>	1.982	\prod						2.76				1657	134	
	1578		'	1.566							2.00			<u> </u>	1677	92	11
	1577	1	V . '	2.134	V .			V		V	3.05			\bigvee	1642	99	V *

NOMENCLATURE

P_r = Pressure Ratio

 V_{i} = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

 $V_1 = \frac{1702}{5.03}$ Ft/Sec $P_{eq} = \frac{5.03}{5.03}$ In.

TABLE 5-65. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER

(Continued)

TEST POINT = 1514

	Histo			Positio	n (V	olts)	,	Slant	Axial	Radia	1 Mean	Turb.	
No.	No.	of Traverse	Slant Axial	Axial		EW		NS	Ax. Pos. x¹/h	Posit. x/D eq	Posit r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
685		SLAUT AX			6.	821	13.	330	,		SLANT I'll il.	· ·	•	SLANT-AX. TRAVS. ON 1/h=1.0
686			-						•			•	•	, .
	1580		1.005						0.94		•	1637	. /83	1
	1824		1.193			<u> </u>			1.29			1586	178	
	1285		1.338		<u> </u>				1.56			1587	111	
	(283)		1.483		1				7.83			1631	108	
	1294		1.633			<u> </u>			2.//			1643	220	
	181		1.792						2.4/		<u> </u>	1224	183	` ·
	1586		1.948						2.70			1564	138	HICTO . MEASURED SLAWT-AXIALLY
	1587		2.226						3.22			1632	164	OU 1/4=1.0
	11.86		2534						3.79			1577	137	
	1587		2.357	-					3.46			1591	121	
	1592		2.758	L					4.21			1616	102	
	1591		3343	1	<u> </u>				5.3/			16 09	80	
	1225		3.908	 	<u> </u>	ļ			6.36	Ц		1281	161	¥ .3
	159.3	Y	4.414	1	1	<u> </u>	1	! 	7.30	1	l v	1484	110	<i>)</i>

NOMENCLATURE

P = Pressure Ratio

V = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

		•	TABÈE 7	5-65	AERODYN/	AMIC TES	T RESULTS	BY SA				ATE	ORIGINAL OF POOR
					LASER DO	OPPLER V	ELOCIMETER	(Con	Lluded) 🤻				N. N.
		MODI	EL 🚆 🗀	3		P _ř	- 3.2/4°	V	1702	Ft/Sec	Deq.	<u> </u>	
		· PEC	: T POINT		., (4	`.* T	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Op 3	i saille	7	FF/KAP	r S 1./9	PAGE 18
-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a Start of	rec	•			. 'T							
3	34.7.		, <i>'</i> ,	Salara A	, `	. *'		37.80					; < w
Graph	Histo				(Volts)	l Slant? ∣	l Axial.:	Kadia	Mean	Turb 83400		
No.	No.	of Traverse	Slant Axlal	Axial	EW EW	NS	Ax. Pos.	x/D eq.	r/D eq	Ft/Sec	Velocity Ft/Sec	Remat	-KS
A STATE OF THE PARTY OF THE PAR	Ą	,	,	4						· 198		Weiler	
687		SLANT AX	•	/40 /	7	13.330		1	SLANT 11/4=1.25	E STANDARD	The fields	77	
688		<u> </u>	* *		the second				y.iq. 13				JUS. ON 1/ = 1.25.
689		, ,	``. · `	10000	6:360	 			1/1/2/15			IN AND O.3.	RESPECTIVELY
690			15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4			7 - 7					<u> </u>
691			1000	in the second	£ 876	<u> </u>			%= 0.3				
692		V	4. 2. 4	100 May 100 Ma	16. 16. 16. 16. 16. 16. 16. 16. 16. 16.	<u> </u>		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	61			No sant de	
693		EW	5.201	NOW SALE		 	8.78	80.0	/N=0			The second second	·
694			18. 19 18. 20. 20.	0 80 - 17 大型 70 20 20 20 20 20 20 20 20 20 20 20 20 20			Salaria Salaria	-0.50	State of the			15.00	
695			4 208				6.92	7 19	1				×6 -0.42
696			3.201			 	5.05	-0.13				-03 F0.93	ON NOW -0.08.
697			3.200 " 4	7. 10 10		 	7	-0.73		45.7		RESPECTIVELY	4ND -1:33,
699			2.205	1	為佛子	 	3.18	-1.35		******	海	LESPECTIVELY	_
700		V	4,	1		│ 	3.70	1	1.	1	ا الله الله الله الله الله الله الله ال		
		<u> </u>			237	 		,	1 1,4 %	1238011	and Siller		
				" "	28).					ه مقه	A STATE OF		·
		NOMENO	LATURE		海域等					\$ 1 M	1,000 m	STOKE TO STOKE THE	
				sure Rat	•	V = Fu	11y Expand	ded Jet	Velocity	y D	equiva	lent Diameter	·.
		T	= Tota	1 Temper	, átur e	v _{a/c} =	Free Jet \	Velocity	′	h	# Annulus	Height	

TABLE 5-66. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER

MODEL = $\frac{5}{5}$ $P_r = \frac{3./28}{3./28}$ $V_j = \frac{24/5}{5}$ Ft/Sec $D_{eq} = \frac{5.03}{5}$ In.

TEST POINT = $\frac{514}{4}$ $T_T = \frac{1722}{4}$ $V_{e/c} = \frac{400}{4}$ Ft/Sec $V_{e/c} = \frac{1.19}{4}$ In.

TEST DATE <u>\$/7/82</u> ORIGINAL POOR OUAL PAGE

/Sec h = 1.19 In. In.

								<u> </u>			<u> </u>	
Graph No.	Histo	Type of	Slow		n (Volts)	Slant		Radial	Mean	Turb.	D
NO.	No.	Travers	Slant Axial		EW	NS	Ax. Pos. x'/h	x/D _{eq}	Posit.	Ft/Sec	Velocity Ft/Sec	. Remarks
		RET-	0.500	2.027	6.025	13.400		OF- ANN/	NUS HEIGH	TAT EXT		,
701		SCANT AX		1					SCANT 11/h= 0.5	•	• 11	SCANT-AX. TRAVS. ON THEO.S
702			٠				•				• 1.	l)
	1584		0.756				0.48			1788	316	
	1595		0.817				0.59			1882	228	
	1596		0.967				0.87			2035	364.	
	1597		1.215				1.33			1999	24.2	
•	1598		1.315				1.52			2056	243	. 4.
	1599		1.415				1.71			2/15	234	HISTO. HEASURED SLAUT-
	1600		1.512				1.89			2191	23.7	MIRLY ON 1/h=0.5
`	1601		1.600				2.05			22/2	358	15
	160 2		1.682				2.2/			-	-	
,	1603		1.786	17			2.40			2/57	2/8	
	1604		1.887				2.59			2202	216	*
	1605	·	1.988				2.78			2235	241	-1
	1606	Y	2./09		1	1	3.00	I	V	>≥ 87	7 0/	

NOMENCLATURE

 $P_r = Pressure Ratio$

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5=66.	AERODYNAMI	C TEST RESULTS
MODEL =		LASER DOPP	LER VELOCIMETER P _r = 3.728

TABLE 5=66.	AERODYNAMIC TEST RESULTS BY	TEST	DATE 5/7/82	0.0
MODEL =		Continued) i = 2415 Ft/Sec Deq =	5.03 In.	ORIGINAL OF POOR
TEST POINT =		V _{a/c} = <u>400</u> Ft/Sec		AL PAGE DR QUALIT

Cnanh	1111-00	7		D 1 - 1 -	/14. 1.	·		<u> </u>	1	Γ.,		7.5
Grapn No.	Histo No.		Slant	Autol	n (Volts) EW	NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
763		SLANTAY			6.142	1345/		1	SLANT ri/h=1.0			SLANT-AX. TRAVS. ON "/h=1.0
704	 '		-			 _'	•	<u> </u>				<u> </u>
	1607	 /	0.983		6.022		0.90					
<u></u>	1608	<u> </u>	1522			<u> </u>	1.91	<u>'</u>				
	1609		2./20			<u> </u>	3.02	<u> </u>				
	1610	<u> </u>	2.675		V		4.06			SOME	INACLARA	Y WAS INVOLUED IN
	1611		3.195		5.976		5.03			L /	1	RAUBKSER ,
	1612		2.909				4.49	<u>i</u>		REPE	ATED IN	G-705/706 H-1619 through
ļ	1613		2.357				3.46					H- 1629
	1614		1.789			<u> </u>	2,40					•
	1615		1.204				1.31.					·
	1616		1.032				0.99					
	16'7		1.1/2				1.14					
	16.8	V	1.300		Y	Y	1.49		V			
								H				
	1		· '					7				

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_{T} = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TEST DATE ____ \$//0/82 TABLE 5-66. AERODYNAMIC TEST RESULTS BY (Continued) LASER DOPPLER VELOCIMETER $P_r = 3./28$ $V_j = 24/5$ Ft/Sec $D_{eq} = 5.03$ In. MODEL =

ORIGINAL PAGE IS $T_{T_i} = \frac{1722}{1722} \, ^{O}R$ $V_{a/c} = \frac{400}{100} \, \text{Ft/Sec} \, h = \frac{1.19}{100} \, \text{In}.$

Graph No.	Histo No.	Type of Traverse	Slant Axial		n (Volts EW) NS	Slant Ax. Pós x'/h	Posit	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	0.500	2,188	5.552	13.499	MID-POINT	OF ANNUE		AT BXT		
705		SANT AY			6.146				SLANT Y/A=1.0		•	SLANT-AX. TRAVS. ON
706			<u> </u>		<u> </u>					•	•	1 r/4 = 1.0
	1619		1.398				1.68			2193	292	
	1620		1.581				2.02			2249	428	
	1621		1.701				2.2 4			-	_	
· · · · · · · · · · · · · · · · · · ·	1622		1.914				2.64			2185	243	
	1623		1.989				2.78			2195	299	HISTO, HEASURED SLAWT-AXIAU
	1624		4				4			2192	167) ON 1/h=1.0
	1625		2.169				3.11			32 Y/	195	
	1626		2.244				3.25			2172	137	
	1627		2.454				3.65			2/90	141	
	1628		1.915				2.64			2159	727	
	1629	V	1-70/		V		2.24		V	2//2	218	
												•
				7		V						

NOMENCLATURE

P_r = Pressure Ratio

TEST POINT = 514

V = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 T_{T} = Total Temperature

V_{a/c} * Free Jet Velocity

TABLE	5-66.	•	AERODYNAMIC	TEST	RESULTS	BY

LASER DOPPLER VELOCIMETER

(Continued)

 $v_j = \frac{24/5}{\text{Ft/Sec}}$ MODEL =

514 $T_T = 1722$ OR Ft/Sec TEST POINT =

Graph No.	Histo No.	0	p e f erse	Slant Axial	Positio Axial	n (Volts EW) NS	.	Slant Ax. Pos. x'/h		Pos	dial sit. eq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
707		SLAN	r AX	•		6.246	13.49	59	•	I	SLA M/A	±1.25 ≠1.25		•	
708				•		4			•		,	,	·	•	
709				•		6.346			•		1//	=1.5	• -	• ,	SCANT-AX TRAVS. ON 1/h = 1.25
7/0				•		4			•		I	4	•	•	1.5 AND 0.3, RESPECTIVELY
7//				•		5.952			•		1%	e 0.3	•	•	
7/2		V	/	•		11			•		1	s		•	<u> </u>
7/3		EV	V	5.208		•			8.8	0.0	1%	0.1	•	٠	
714				4		•			",	4			•	•	
715		·		4,208		•		-	6.9	-0.5			•	•	PANAL TRAUS. ON YOM = 0.0.
716	<u> </u>			4		•			ν,	٠.		<u> </u>	•	•	PANAL TRAUS. ON X/0 = 0.0,
7/7				3,208		•			5.1	-0.72	<u> </u>		•	•	RESPECTIVELY
7/8				5	J	•			4	4				,	
719				2.208		•			2. 2	-1.58			•	1	
720		1		4		•	1		٠,	٠.		V	•		<u> </u>
								\Box			<u> </u>				

NOMENCLATURE

734

P = Pressure Ratio

 V_{i} = Fully Expanded Jet Velocity

= Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TABLE 5-66.	AERODYNAMIC TEST RESULTS BY	TI
	LASER DOPPLER VELOCIMETER (Continued)	
MODEL = S	$P_r = 3./28$ $V_j = 24/5$ Ft/Sec	Dec

ORIGINAL PAGE IS EST DATE 5/12/82 $V_{e/c} = \frac{400}{1.19}$ Ft/Sec h = 1.19 $T_T = /722^{\circ}R$ TEST POINT = 5/4

Graph No.	Histo No.	Type of Traverse	Slant Axlal	Autal	n (Volts EW) NS	Slant Ax. Pos x'/h		Radial Posit. r/D	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	0.500	2.20/	7.385	13.876	PLUG TH	4				
72/		ΑX		· .	7.355			<u> </u>	0		,	
722					3				4	<u> </u>	•	RESPECTIVELY
723				•	8.114	<u> </u>			0.5	•	•	RESPECTIVELY
724				•				•		•		
	1630			2.173				-0.37		1550	208	
	1631			2.213				0.17		1763	160	
	1632			2.213			.	0.73		1798	138	, ,
	1633			2,213		<u> </u>		1.29		1794	147	
	1634			2,333				1.86		1776	124	HISTO, HEASURED ANALLY
	163.5			2.373				2.42		1754	118	ON 1/200 = 0.5
	1636			2,4/3				2.58		1735	115	0
	1637		1	5423				3.54		17/3	///	
	1639		1	2493				4.11		1707	118	
	1639			5.233				467		1687	128	
	1642	¥	1	2.573	✓	_		5.23	₩	1654	136	

NOMENCLATURE

P = Pressure Ratio

 V_{i} = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

AERODYNAMIC TEST RESULTS BY

LACCO DODDLED VELOCIMETED /c

LASER DOPPLER VELOCIMETER (Continued)

MODEL = $\frac{5}{P_r} = \frac{3./28}{3.128} = \frac{245}{5} = \frac{5.03}{10} = \frac{5.03$

TEST POINT = 5/4 T_T = 7722 OR

 $T_T = \frac{1722}{R}$ $v_{a/c} = \frac{400}{100}$ Ft/Sec $h = \frac{1.19}{100}$ In.

ORIGINAL PAGE
OF POOR QUALI

Graph No.	Histo No.	Type of Traverse	5 lant	Position Axial	(Volts	NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D eq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	1641	AX		2.6/3	8.114	13.776		5.80	0.5	1622	/33	
	1642			2.653				6.36		1584	125	
	1643			2.693				6.92		1538	125	
	1644			2.733				7.49		1510	124	
	1645			2.773				8.05		1459	169	HISTO. HEASIRED ANALLY
	1646			2.1/3				8.61		1405	171	ON Your = 0.5
	1647			2.753				9.17	<u> </u>	1382	121	U U
·····	1648			2.893				9.74		1320	188	
	1649			2.893				9.74	<u> </u>	1334	/77	
	1650	_ ✓		2.733	<u> </u>			10.29	₩	1289	202	<u> </u>
725		EW		2.70/	_			0.0	<u>'</u>		•	
126				"	•			,	<u> </u>		•	
727_				2.352	-			2.0		•	•	RAWAL TEAUS. ON X/Dog = 0,
728			 	,	-		<u> </u>	7	<u> </u>	•	•	Z.O AND 6.0, RESPECTIVELY
727	<u> </u>	<u> </u>	 	2.654	-			6.0	•	•	•	
730		1	./	٠ ،		V	I /	٠,			'	V

NOMENCLATURE

P = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

 $T_T = Total Temperature <math>V_{a/c} = Free Jet Velocity$

D_{eq} = Equivalent Diameter

TABLE 5-66.	AERODYNAMIC TEST RESULTS BY	<u> </u>
	LASER DOPPLER VELOCIMETER	(Concluded)
MODEL =	5 P ₂ = 3./28	V. = 2415 F

DEL = $\frac{5}{P_r} = \frac{3.728}{10.00} \text{ V} = \frac{24/5}{10.00} \text{ Ft/Sec} = \frac{5.03}{10.00} \text{ In}.$

TEST POINT = 514 T_T = $\frac{1722}{7}$ °R $\frac{400}{10}$ Ft/Sec h = $\frac{1.19}{10}$ In.

Graph No.	Histo No.	Type of Traverse	Slant Axial	A	(Volts)) NS	Slant Ax. Pos x'/h	Axial Posit. x/D	Radial Posit. r/D	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
731		EW		2.800	•	13.876		8.0	-	•	•	L RADIAL TIBAUS. ON Yang = 8.0
732					ı				-	٠	•	
	1651				2.217				-/.2/	697	112	
	1652				5.991				-0.90	978	2/7	
	1653	· ·			6.498				-0.57	1267	162	
	1654				6.773				-0.38	1343	141	
	1622				7.052				-0.20	1370	/30	HISTO.HEARURED RANAUY
	1616				7.355				0.0	1421	12/	ON YOU = 8.0
	1657				7.674				0.2/	1478	134	0
^	1658				7.825				0.3/	1478	137	
	1659				8.040				0.45	1413	168	
	1660				8.343				0.65	1200	204	
	166!				8.66				0.87	928	198	
	1662			V	9.053		1	V	1-12	684	169	
733				2.950	•			/2	•		•	RADIAL TRAVS. ON X/Day = 12
734		. ✓		4	•	₩	\mathbf{I} / \mathbf{I}	"	•	•	•	V

NOMENCLATURE

P = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

ORIGINAL PAGE IS

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE 5-67. AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER

P_ = 3./28 V = 2./20 F

 $DDEL = \frac{6}{P_r} = \frac{3.728}{3.728} v_s = \frac{2420}{2420} \text{ Ft/Sec} \quad D_{eq} = \frac{5.03}{5.03} \text{ In.}$

TEST POINT = 6/3 $T_T = \frac{1728}{128}$ OR $V_{a/c} = \frac{0}{129}$ Ft/Sec h = 1.29 In.

O Graph No.	Histo No.	Type of	Slant	T	(Volts			Slant			Radial Posit.		Turb. Velocity	Remarks
1101	,,,,,	Traverse			EM	N	S	x'/h		×/D _{eq}	r/D _{eq}	Ft/Sec		nemer ka
		REF	0.086	2.219	7.214	13.8	93	PLUC	77	P				`
737		AX		•	7.214				1	•	0	•	•	1
738				•	4					•	4	•	•	AX TRAVS ON They =0
739				•	7.971					٠	0.5	,	•	AND O.S. RESPECTIVELY
740				-						•		•	•	
	1667			2.196						-0.39		-	•	
	1668			7.236	,			= I		0.17		2046	168	
	1669			2.274						0.70		1989	163	
	1670			2.318						1.32		1954	156	
	1671			2.358						1.89		1938	163	HISTO. HEASURED ANALLY
	1672			2.376				$\Box \bot$		2,42		1924	/१3	ON 7000 = 0.5
	1673			2436						2.98		1898	190	0
	1674			2.476						3.55		1817	23/	
	16:5	1 1		2516						4.11		1844	195	
	16-6			5.5.26						4.67		1809	223	
	1677	₩	ľ	2516	1	1		1		1.23	[₩ _	1757	246	

NOMENCLATURE

P = Pressure Ratio

V_j = Fully Expanded Jet Velocity

 $D_{eq} = Equivalent Diameter$

ORIGINAL PAGE IS

TEST DATE _ 5/19/82

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE '5-67.	AERODYNAMIC	TEST RESULTS B	<u>Y</u>	TEST DATE	5/19/82	유
MODEL =	LASER DOPPL	Pr = 3,728	(Continued) V = 2420 Ft/Sec	p _{eq} = <u>5.</u>	<i>o</i> ථ In.	POOR Q
TEST POINT =	613	T _T = <u>/728</u> °	R V _{a/c} =	Ft/Sec h = _	/.29 In.	Page IS

Graph No.	Histo No.	Type of Traverse	Slant Axial		(Volts) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	1678	ΑX		2.636	7.17/	13.893		5.80	0.5	1690	275	
	1679			2.676				6.36		1632	266	
	1680			2.716				6.92		5821	213	,
	1681		·	2.756				7.49		1546	284	MISTO. MEASURED ANALLY
	1682			2.796				8.05		1471	ु ००	ON 1/Dm = 0.5 (CONTINUED)
	1683			2.836		<u> </u>		8.61		1465	302	b
	1684			2.876				9.17		14-4	284	
	1685			2.916				9.74		1364	293	
	1686			2.956	V			10.30	V	1345	297	J
741		EW		2.219		<u> </u>		0.0		<u> </u>	,	RADIAL TRAVE ON You = 0
742		0		4 ,	-			3				
743		ΑX		-	8.728				1.0	,		AX. TRAUS. ON YOU = 1.0
744	<u> </u>	4	<u> </u>	-	",			-	3	,		
745		EW	<u> </u>	2.461	-			3,40				RADIAL TRAVS ON Your = 3.4.
746		1,		٠,	-				-)
1	1		V			1	1/			,	Ì	

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diamete-

 T_T = Total Temperature

V a/c = Free Jet Velocity

Мо	DEL	

TABLE 5-67. AERODYNAMIC TEST RESULTS BY

TEST DATE 5/17/82

LASER DOPPLER VELOCIMETER (Continued)

 $P_r = \frac{3./28}{4.0} V_i = \frac{2420}{2420} \text{ Ft/Sec}$ $D_{eq} = \frac{5.03}{4.0} \text{ In.}$

TEST POINT = 6/3

 $T_T = 1728$ OR $V_{a/c} = 0$ Ft/Sec h = 1.27 In.

Graph No.	Histo No.	Type of Traverse	Slant Axial	Avial	on (Volts EW		NS	Slant Ax. Pos x'/h	. Po		Radial Posit. r/D _{eq}		Turb. Velocity Ft/Sec	Remarks
^	1687	ΕW		2.46 /	6673	13.	3 93			3.4	-0.36	1892	185	
	1688				6.866		<u> </u>				-0.23	1966	126	
	1687	<u>. </u>			7.053						-0.11	1888	143	
	1690				7.246						0.02	1797	122	
	1691				7.389				<u>L</u>		0.12	1798	149	HISTO, HEASTED RADIALLY
	1692				7.547						0.22	1882	821	ON X/Dog = 3.4
	1693				7.742						0.35	1972	/22	, 0
	1694				7.906						0.46	1931	185	
	1695				8.113		•				0.59		, _	
	1696			1	1.323					₩	0.73	1163	306	<u> </u>
747				2.675	-				6	.4	-	-	•	RANAL TRAUS. ON YOUR = 6.4
748				3	,	V	/			4	-	-	•	0
			 			ļ	····		\perp]			
						ļ		 	 		ļ	ļ		
			ļ	<u></u>		ļ								
	L		<u> </u>]		<u> </u>				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

h = Annulus Height

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

ORIGINAL PAGE IS

TABLE	5-67.	AERODYNAMIC	TEST	RESULTS	ВΥ
IABLE	5-0/.	AERUDTNAMIC	1521	KE20F12	BT

LASER DOPPLER VELOCIMETER (Continued)

 $P_r = \frac{3./28}{2.00} \text{ V}_1 = \frac{2420}{2.00} \text{ Ft/Sec}$ $D_{eq} = \frac{5.03}{2.00} \text{ In.}$

TEST POINT = $\frac{6/3}{1}$ $T_T = \frac{725}{1}$ $^{\circ}R$ $V_{a/c} = \frac{0}{1}$ Ft/Sec $h = \frac{1.27}{1}$ In.

Graph	Histo	Туре			tion	ı (Volts))		Slant		Axi		Radial	Mean	Turb.	·
No.	No.	of Traverse	Slant Axia		al	EW		NS	Ax. P.	os.	. Pos	eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	. Remarks
		REF	0.087	7 2.72	24	7.341	13	541	PLUG	Ţ	P					
749	<u> </u> '	EW		1 2.8.	32	-		<u> </u>			8.6	50	-	•	•	RAMAL TRAUS. ON Your = 8.6
750						•				\perp			-	•		0
	1698					6.494						! !!	-0.56	1299	322	
	1679					6.674							-0.44	1470	291	
	1700					6.880							-0.30	1691	247	
	1701					7.106							-0.16	1715	199	
	1702					7.349							0.00	1820	113	HISTO, HEASURED RADIALLY
	1703	(·				7.520							0.12	1795	233	ON YOU = 8.6
	1704					7.690							0.23	1757	2.9	,
	1705	<u> </u>				7.753							- 034	1622	268	
	1706					8.076							0.49	1413	285	
	1707			1		8.244					V	/	0.60	1252	3/2	
751	'			2.09	92	-					-1.8	86	-		, ,	RADIAL TRAVS ON You = -1.
752	<u> </u>			3							;		-	•	٠	RADIAL TRAVS. AN YOUT -1.
	'	'	¥				1			7					.	

NOMENCLATURE

P = Pressure Ratio

V = Fully Expanded Jet Velocity

= Equivalent Diameter

 T_{T} = Total Temperature

V_{a/c} = Free Jet Velocity

	유유
-	IGINAL POOR
	PAGE
	7 7

TABLÉ	5-67.	AERODYNAMIC TEST RESULTS B	Υ
		LACED DODDLED VELOCIMETED	

SER DOPPLER VELOCIMETER (Continued)

ODEL = $\frac{6}{P_r} = \frac{3.728}{3.728} \text{ V}_1 = \frac{2420}{2420} \text{ Ft/Sec}$ D_{eq} = $\frac{5.03}{5.03} \text{ in}$.

TEST POINT = 6/3 $T_T = \frac{1728}{1728} R$ $V_{a/c} = \frac{0}{100}$ Ft/Sec h = 1.29 in.

Graph					ition (Volts)		Slant	Axial	Ràdial	Mean	Turb.	<u> </u>
No.	No.	of Traverse	Slant Axial		EW	NS	Ax. Pos.	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity. Ft/Sec	Remarks .
753		EW		2.113		13.14/	÷	-1.56	-			PANAL TRANS. ON YOUT = -1.54
754		4,	·	٠,	-	3	•	"			•	0
-		REF	0.200	2.060	5.763	13.342	HID-POIN	TOF AN	WLUS HE	GHT AT E	47 ·	
755		SLANT AX	-						SLANT W/4= as			SLANT-AK, TEAUS, ON 1/4=05
326			<u>.</u>				<u> </u>			<u> </u>	•	
	1708		4.687				7.73			2/00	160	
	1709		4577				7.57			2066	186	
	1710		4.314				7.0 1			2067	192	
	וודו		4.00 7			·	6.55			2/4/	193	
	1712		3.694		·		6.01			2/82	189	HISTO. HEASURED SLAWT-AXIALL
	17/3		3.393				5.47			2227	180	ON "/h = 0.5
	1714		3.097				4.99			2260	181	
	1715	,	2.797				4.47			231/	183	
	17/6		2.489				3.94			2342	138	
	1717		2.294				3.60			-	-	

NOMENCLATURE

1718

~₹

P_r = Pressure Ratio

V_i = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

h * Annulus Height

2320 /35

TABLE 5-67.	AERODYNAMIC TEST RESULTS BY	TEST DATE	유
MODEL = 6	LASER DOPPLER VELOCIMETER (Continued) $P_r = 3./28 V_i = 2/20 \text{ Ft/Sec}$	D_ = 5.03 In.	POOR
TEST POINT - 6		•	QUALITY

Graph No.	Histo No.	Type of	Slant	,	n (Volts	1	Slant Ax. Pos.		Radial	Mean Velocity	Turb. Velocity	Remarks
	,,,,,	Traverse		Axial	EW	NS	x¹/h	×/D _{eq}	r/D _{eq}	Ft/Sec		neimi ks
	1712	SLANT AX	1.908		5.763	13.342	2.54	1	3LANT 11/4=0.5	2339	110	
	1720		1.701				2.58			2333	117	
	1721		1.511				2.26		,	2290	115	
	1722		1.310				1.91	16		2259	145	
	1723		1.102				1.55	8		2286	197	HISTO. MEASURED SCANT-AMALY
	1724		0.903				1.21			2197	189	ON "/h=0.5 (CONTINUED)
	1725		0.693				0.85			2146	193	
	1726		0.415		<u> </u>		0.47			2068	254	
<u> </u>	1727	·	0.270		<u> </u>		0.15		- ↓	1919	232)
757	<u> </u>				5.962				r/h=1.0		*	SLANT-AX. TRAVS. ON "/"=1.0
7.05			•			<u> </u>					•	
	1728		4.689				7.73			2/33	169)
	1729		4.483				7.37			2/37	112	HISTO MERSUEED SLAWT- ANALLY
	1730		4.278				7.0 2			2133	190	ON 1/h=1.0
	1731		4.073				6.67	<u> </u>		2133	245	
	1732	V	3,880	V	V	₩	6.33	11	V	2152	2//	

NOMENCLATURE

P_r = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 T_T = Total Temperature

V_{a/c} = Free Jet Velocity

IAB	LE	5-0/.		AERODY	MAMIL
				LASER	DOPPL
MODEL	=		6		
•	•			,	

744

C TEST RESULTS BY

(Continued)

LER VELOCIMETER

V = 2420 Ft/Sec

TEST DATE 5/20/82

V_{e/c}= _____ Ft/Sec T_T = <u>/728</u> OR TEST POINT = 613

Graph No.	Histo No.	01	f [Slant Axial		7	(Volts) EW		NS	Slant Ax. Pos. x'/h	Po	osit. 'D eq	Po r/	eq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	1733	SLANT	-AX	3.692		$I\!\!\!\!\!I$	5.162	13	.342	6.01			SU	94 T .≖1.0	2118	222	
	1724			3473						2.65					2076	270	HISTO, MEASURED SLAWT-ANALLY
	1735			3.316						2.36				<u> </u>	2038	273	ON "/h = 1.0 (CONTINUED)
	1736			3.089		┸				4.97			_	<u> </u>	1953	324	
	1237			2.870		\perp	V			4.57				<u> </u>	1880	325	
759						_	6.152			-			1//	=1.5			
760				-		\perp	4				<u> </u>			3			SLANT-AX. TRANS. ON THE -1.5
761	<u></u>			-		_	5-642			-	<u> </u>		r/h	=0.3	•		SLANT-AX. TRANS. ON "/h=1.5" AND "/h=0.3, RESPECTIVELY
762						4	•		<u> </u>	-	<u> </u>	ļ	_	4		•	
		-				+					-	 	_		 		
		 			-	\dagger		-									
											П						
	 	 	·		 	_		<u> </u>	ļ		Ц.	·	<u> </u>		ļ		
	<u> </u>				L				<u>, </u>	<u></u>	Ľ						

NOMENCLATURE

Pr Pressure Ratio

V₁ = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5-67 .	AERODYNAMIC TEST RESULTS BY	TEST DATE 5/20/82	ORIG
		LASER DOPPLER VELOCIMETER (Continued)	POOR	NA
MODEL =	6	P _r = 3./28 V ₁ = 2620 Fi	t/Sec .U = 15.0⊖ in.	
TEST POINT		6/3 T _T = /728 OR V _{a/c} =	/ eq	AGE IS

Graph No.	Histo No.	Type of Traverse	Slant		n (Volts EW) NS	Slant Ax. Pos. x ¹ /h		Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	0.200	2.060	5-763	13.342	MID-POINT	OF ANN	LUS HEIGH	T AT BAT	•	
7/2A		NS	0.655		5.763		0.78		SLANT 11/6=0.5	;	•	
762B			4		•	•	4			•		CHORDMSE (NS) TRAYS.
763			1./33		•	•	1.61			•	•	AT (1/6 = 0.78 "/6 = 0.5)
764			',		•	•	٠,			•	•	(x/n=161, 1/n=0.5),
765			1.610		•	•	2.43				•	(*/h=2/3, */h=0.5)
766			۰,		•	•	5			•	• ,	$(\frac{w}{h} = 325, \frac{H}{h} = 0.5),$
767			2.085		,	•	3.25			•	•	(x/h=407, 1/h=0.5),
768			٠,		•	•	٠,			•	•	(x1/h=491, 11/h=0.5) AND
769			2.564		•	•	4.07			•	• •	(*/h= 5.72, 1/h=0.5),
770			٠,		•	•	*,			•	• .	RESPECTIVELY
77/			305			•	4.91			•	•	
772		Y	3,525		•	•	5.72		V	•	•	
									_			
				1								

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

_ **	
~	
4	
တ	

TABLE	5-67.	AERODYNAMIC	TEST RESULTS BY	, -	TEST DATE	5/24/82	4 30 5180
MODEL =	É	LASER DOPPL	$\frac{\text{ER VELOCIMETER}}{P_r = 3./28}$	(Concluded) $V_{j} = 2420 \text{ Ft/Sec}$	D _{eq} =	7.03 In.	OOR QU
TEST POINT	· =	3/3	T _T = _/728 OF	V _{a/c} =	Ft/Sec h =	<u></u>	AGE 8

<u> </u>											<u>- </u>	<u> </u>
Graph No.	Histo No.	Type of Traverse	Slant		(Volts) EW	NS	Slant Ax. Pos. x'/h	Posit	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	6.200	2.205	4.547	13.445	PLUG TIF	•		•	•	
773		N7 .	0.797	, •	•	_	1.03	٠	SLANT 1/4 =1.0		•	CHOPOMSECUS) TROVS
774			0.278	•	•	_	0.13		1/h=0.5	•	•	AT (X/h=1.03, 1/h=1.0) AND
775		V	4	٠	•	-	4	•	4	•	•	(*/h=1.03, */h=1.0) aup (*/h=0.13, */h=0.5),
								i				RESPECTIVELY
		·									,	
							•			······································		
										.,,		<i>ii.</i> .
											\\	
								ļ				
										 	٠,	
	<u> </u>											

NOMENCLATURE

P_r * Pressure Ratio

T_T = Total Temperature

V = Fully Expanded Jet Velocity

h = Annulus Height

V_{a/c} = Free Jet Velocity

= Equivalent Diameter

TABLE 5-68.	AERODYNAMIC TEST RESULTS BY		
	LASER DOPPLER VELOCIMETER		
MODEL = 6	P _r = 3/25 v	i = 2419	F

TEST DATE <u>5/24/82</u> OF ORIGINAL PAGE 189 In. QUALITY. $P_r = 3./25$ $V_j = 24/9$ Ft/Sec $P_{eq} = 5.03$ in. $T_T = 1/729$ OR $V_{a/c} = 400$ Ft/Sec h = 1.29 in.

Graph No.			Slant Axial		(Volts) NS	Slant Ax. Pos. x'/h		Radial Posit. r/D	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
i		REF	0.200	2.205	4.483	/3.370	PLUG TIP			•	,	
776		SLANT AX			6.022		•		5CANT 11/4 = 1.0		`	SLANT-AX. TEAUS. ON Th =1.0
<i>2</i> 27		,	-				•		.	٠	•	
	1738		0.520				0.55			1458	316	
	1739		2.063				3.2/			1629	3/8	·
	1740		3.446				5.29			2172	235	
	1741		3.662				5.96			2136	37.6	
	1742		3.140				6.26			2195	158	
	1743		4016			·	6.57		<u> </u>	2/63	199	HISTO. HEASURED SLANT-ANALLY
	1744		4.198				6.88			2164	186	ON M/h=1.0
	1745		4014			·	7.15			2136	186	
	1746		6222				7.4.9			2149	170	
	17:17		4.735				7.80			2156	175	
	1748		4.942				8.16			2114	178	
	1719		1.313				1.93			1290	340	
i	1750	J	2.746	Y	V	. ↓	4.38	11	₩	1959	282	٠ - ارا

NOMENCLATURE

P_r = Pressure Ratio

 V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

TEST POINT = 614

V_{a/c} = Free Jet Velocity

LASER DOPPLER VELOCIMETER

(Continued)

10DEL = $\frac{6}{100}$ Pr = $\frac{3.125}{100}$ V = $\frac{24.9}{100}$ Ft/Sec

D_{eq} = <u>'5.03</u> In.

TEST DATE 5/24/82

TEST POINT = 614

T_T = <u>/729</u> OR

v 400 Ft/Sec

h = 1.29 in.

	Histo		•		Posi	tion	(Vo	lts))		Slant	Axial		dial	Mean	Turb.	_
No.	No.	of Trave	rse	Slant Axial	Axia	a 1	E	W		NS	Ax. Pos. x'/h	Posit. x/D eq	r/	D eq	Ft/Sec	Velocity Ft/Sec	Remarks
778		SLANT	AΧ	,			5.8	22	13.	37 <i>0</i>	-			ANT = 0.5	·	•	SLAUT-AXTRAVS. ON THE O.S
779				•										<u> </u>	•		
	1251			0.454							0.44		<u> </u>		2148	290	
	1752			1.031							1.43		<u> </u>	<u> </u>	2320	181	
	1753			0.744		\perp					0.94		<u> </u>		2200	189	
	1754			1317		\perp					1.92		<u> </u>		2289	124	
	17.00			2.014		Ш				<u></u>	3./2				2317	137	HISTO. MEASURED SLAWT - AXIALLY
	1756			1.677							2.54		<u> </u>		23 68	123	ON 1/h=0.5
	1257			2.387						<u> </u>	3.76				2329	163	
l	1758			2.728							4.32		<u> </u>		2289	190	
	1757			3.229							5.2/				2/83	218	
	1760			3.687			\	<u> </u>			6.00		<u> '</u>	<u> </u>	2165	204	<u> </u>
780				•			\$.7	10	_				17/4	= 0.3		,	
78 /				•			,				•		_	5	•	•	SLANT- AK. TRAVS. ON "/h= 0.3
782				•			6.1	22			•		1%	-1.25		•	AND 1.25 , RESPECTIVELY
783		1		•	1			٠		<u> </u>		<u> </u>		4	<u> </u>	,	U

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

 $T_T = Total Temperature <math>V_{a/c} = Free Jet Velocity$

D_{eq} = Equivalent Diameter

TABLE 5-68.	AERODYNAMIC TEST RESULTS BY
	LASER DOPPLER VELOCIMETER
	<u>, </u>

TEST DATE _ 5/24/82 (Continued)

MODEL = $\frac{6}{100}$ P_r = $\frac{3.25}{2.03}$ V_j = $\frac{241.9}{100}$ Ft/Sec D_{eq} = $\frac{5.03}{100}$ In.

TEST POINT = $\frac{6}{4}$ T_T = $\frac{1729}{1729}$ PR V_{a/c} = $\frac{400}{100}$ Ft/Sec h = $\frac{1.29}{100}$ In.

												<u> </u>
Graph No.	Histo No.	Type of Traverse	Slant	Position Axial	(Volts) NS	Slant Ax. Pos. x'/h	Docte	Radial Posit. r/D eq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks .
784		SLANT AX	-		6.222	13.370			SCANT THE IS	,	•	SLANT-AX TRAUS. ON "/h=1.5
785				-	٠,	٠			4	•	•	
												<u> </u>
		· · · · · · · · · · · · · · · · · · ·							<u> </u>			
	7											
												
								 				
				· · · · · · · · · · · · · · · · · · ·								
	<u>`-</u>				<u> </u>							*
							_ 					
				L	L			<u> </u>	l			

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

V_{a/c} = Free Jet Velocity T_T = Total Temperature

D_{eq} = Equivalent Diameter h = Annulus Height

TABLE	5-68.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

(Continued)

 $P_r = 3./25$ $V_j = 24/9$ Ft/Sec $D_{eq} = 5.03$ In.

TEST POINT = 614

 \neg 50

 $T_T = \frac{1729}{100}$ or $V_{a/c} = \frac{400}{100}$ Ft/Sec h = $\frac{1.29}{100}$ In.

Graph	Histo	Туре		Position	(Volts)	Slant	Axial	Radial	Mean	Turb,	
No.	No.		Slant Axial		EW	NS		Posit.	Posit	Velocity	Velocity Ft/Sec	Remarks
		REF	0.200	2.2/3	7.332	13875	PLUG TI	c .				
786		AX.		_	7.332				0	,	•	
787		ĺ,		_	4			<u> </u>	3		•	AX. TRAIS. AN TONG = 0 ALOOS,
788					8,089				0.5		•	RESPECTIVELY
789				-				•		•	•	J
	1761			2./85				-0.37			400	
	1762	,		2.225				0.17		1982	198	
	1763			2.265				0.73		1835	206	
	1764			2.305				1.29		1844	197	
	1765			2.345				1.86		1716	198	LILSTO, MEASURED ANALLY
	1766			2.385				2.42		1802	216	LIISTO, HEASIRED ANALLY
	1767			2.425				2.98		1777	215	8
	1768			2.465				3.55		1766	23/	
	1767			2505				4.11		1738	231	
	1772			2745				4.67		1736	233	
	1771	V	ľ	2.5.85		1	17	5.23	V	8231	254	

NOMENCLATURE

P = Pressure Ratio

V; = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5-68.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

(Continued)

 $P_r = 3./2\Gamma \quad V_i = 249 \text{ Ft/Sec}$

TEST DATE 5/27/82

TEST POINT'= 614

T_T = <u>1729</u> °R

Va/c 400 Ft/Sec

Graph No.	Histo No.	Type of Traverse	Slant Axial	Position Axial	(Volts) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
·	/772	AX		2.625	8.089	13.875		5.80	0.5	_	-	
	1773			2665				6.36		1549	273	
	1774			2.705				6.92		<u> </u>	-	
ļ	1775			2.745				7.49		1464	278	
	1776			2.785				8.05		1415	267	HISTO. HEASURED ANALLY
ļ	7777			2.825				8:61		1389	290	ON TO = 0.5 (CONTINUED)
	1778			2.865				9.17		1362	268	0
	1779			2.905				9.74		1343	269	
	1780			2.945				10.30		/33/	266	
	178/			2.485				10.86		1289	280	
<u> </u>	1782	V	<u> </u>	2.355	1	/		2.06	V	1740	204	<u> </u>
	1783	NOT REC	ROED	•	·	•		-		_	-	
ļ												
<u> </u>							1					

NOMENCLATURE

 P_r = Pressure Ratio

 $T_{+} = Total Temperature$

V = Fully Expanded Jet Velocity

V_{a/c} = Free Jet Velocity

≠ Equivalent Diameter

	TABLE 5-68.	AERODYNAMIC	TEST RESULTS BY			TEST DAȚE	5/27/82	ORIGIN OF POO
	MODEL =		$P_r = 3./25$	(Continued) $v_j = 24/9$	Ft/Sec D	eq = <u>5.0</u>	3 In.	AL PAGE OR QUALI
752	TEST POINT =	614	T _T = <u>/729</u> O _R	Va/c*	400 Ft/	Sec h =	/.29 In.	

									·			·	
Graph No.	Histo No.	Type of Traverse	Slant	Position Axial	(Volts) NS	5	Slant Ax. Pos. x'/h	Axial Posit. x/D eq	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	0.200	2,2/3	7.251	13.83	7	PLUG T	IP.				
790		AX	/	•	8.109			1	•	0.5	,	1	AX. TRAUS. 614 10 0.5
791				-					•		٠	•	CREPERT OF G 722 (G759)
	1786			2.905					9.74		1464	266)
	1787			2.705					6.92		1664	246	HISTO. MEASINED ANALLY
	1788			2.505					4.11		1881	342	ON 1/00 = 0.5
	1789	V		2.305					1.27	₩	1878	190	<u> </u>
	1730-	1791	NOT RE	CORDED	4	1							
		REF	0200	2.2/3	7.302	/3.73	32	PLUG T	PC NE	V KEFE	ENCE)	•	
	1792	_AX	/	2.305	8.059				1.29	0.5	1923	173	
	1793			2.265					0.73		1926	177	HISTEL MEASURED PRIALLY
	1754			2.225					0.17		2006	185	en 70 = 0.5
	1795		/	2.185	J				-0.39	4	2094	179	<u> </u>
792		EW		2.2/3					0.0	•	<u> </u>		RADIAL TRAVS NYDON = 0
793		3		•	-	<u> </u>]		,	-	-		<u>J</u>
,		!	l]	∜	J	1			1		

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

 $T_T = Total Temperature$

Va/c = Free Jet Velocity

D_{eq} = Equivalent Diameter

ORIGINAL PAGE IS TEST DATE _ 5/27/82

TABLE 5-68. AERODYNAMIC TEST RESULTS BY

> LASER DOPPLER VELOCIMETER (Continued)

MODEL =

 $P_r = 3./25$ $V_j = 24/9$ Ft/Sec $D_{eq} = 5.03$

TEST POINTS 614

 $T_T = 1729$ $^{\circ}R$

 $V_{a/c} = 400$ Ft/Sec h = 1.29 In.

-			 								·					
Graph No.	Histo No.	Type of	Slant	T		(Volts			Slan	_	Axi		Radial Posit.	Mean Velocity	Turb. Velocity	Remarks
, NO.	"0.	Traverse		Ax	ial	EW		NS	$\frac{72.7}{x^{1}/h}$		y/r	eq	r/D _{eq}	Ft/Sec	Ft/Sec	nemar K5
				├							_		~ ~ ~		<u> </u>	
794		EW		2.	322	-	/3,	833			2.	0	•			RADIAL TRAVS. ON Your = 20
795						-				\perp			•		•	<u> </u>
	1796				<u> </u>	6.270							-0.69	990	52.K	
	1717		·	<u> </u>	<u> </u>	6.473				1_			-055	1499	291	
	1758			<u> </u>		6.753		<u> </u>					-0.36	2036	120	HISTO MEASURED RADIOLLY
	1799					7.375				<u> </u>			0.05	1679	141	ON ×/0-4 = 2.0
	1800			<u> </u>		7.901							0,40	2022	127	D
ļ	1801			<u> </u>		8.189							0.59	1578	260	
	1802				r	8.450					_ ₹		0.76	_	٠	
796	<u> </u>		$\perp \perp$	2.	669						6.	4	٠		•	
797					4	•					4		•		•	RACIAL TRAVS. ON You = 64
798				2.	821	-					8.	<u></u>	•	•	,	AND 8.6 , RESPECTIVELY
799						-				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	•	•	
	180 1					8.809							0.99	758	198	
	1804					8.484				 .			0.78	1020	239	T HIS TO, HEASURED RADIALLY
	1805	Y			4	8.152		/			V	' 	0.56	1379	273	ON 40-y = 8.6

NOMENCLATURE

P_r = Pressure Ratio

V_i = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

TABLE	5-68.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

(Continued)

 $P_r = \frac{3./25}{4.9}$ $V_i = \frac{24.9}{4.9}$ Ft/Sec

TEST DATE 5/27/82

TEST POINT = 614

T_T = <u>/729</u> OR

 $V_{a/c} = \frac{460}{460}$ Ft/Sec h = 1.29 In.

<u>, 7,2 7 </u>
Remarks
O. HEASULED RADIBLLY
Dog = 8.6
<i>'</i>

NOMENCLATURE

P = Pressure Ratio

 V_i = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 T_{T} = Total Temperature

V_{a/c} = Free Jet Velocity

TABLE	5-68.	AERODYNAMIC	TEST	RESULTS	ВУ

LASER DOPPLER VELOCIMETER (Concluded)

MODEL = 6 $P_r = 3./25$ $V_i = 24/9$ Ft/Sec

 $D_{eq} = 5.03$ in.

TEST DATE 5/27/82

TEST POINT = 614

 $T_{T} = 1729^{\circ} R$

V_{2/5}= <u>400</u> Ft/Sec

h = 1.29 In.

Graph No.	Histo No.	Type of Traverse	Slant Axial		n (Volts EW	1	NS	Slant Ax. Pos. x'/h	Axial Posit. x/D _{eq}	Pos	lial it. eq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	0.200	2.21 3	7.302	13.	833	PLUG TI	0					
800		EW		3.125				•	12.8		•	•	•	ROUAL TRAIS. ON X/Pag = 12.8
801			•	3.125	•				12.8		•	•	•	D
802			1.397	•	•		L	2.06	-1.50	54	ent OS	•	•	
803			3	•				7	7	/"	<u> </u>	•	· ·	
804			2.425	•	,			3.82	-1.05			•		
805			4	•				,	7			•	• ;	RADIAL TRAUS, ON YOUNG = -1.5,
806			3.0/	•	•			4.84	-0.81		`	•		-1.05, -0.81 AND 0.46
807		·	i	•	,			5	5			•	•	RESPECTIVELY
808			.3.84	•	•			6.26	0.46			•	• !	COMY WEAR PLUG SURFACE)
809		V	5	•	•	V		,	4	١	Y	•	• i	Ú
												,	:	
	•												i ^r	
										,				

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

 $V_{a/c}$ = Free Jet Velocity

LASER DOPPLER VELOCIMETER

MODEL =
$$\frac{6}{100} P_r = \frac{3.26}{100} V_s = \frac{1704}{100} \text{ Ft/Sec} D_{eq} = \frac{5.03}{100} \text{ In}.$$

TEST DATE _ 5/28/82

I

CT 6

$$T_T = 852$$
 or

TEST POINT =
$$\frac{16/3}{1}$$
 $T_T = \frac{852}{8}$ R $v_{a/c} = \frac{0}{0}$ Ft/Sec h = $\frac{1.29}{10}$ In.

$$h = 1.29$$
 In.

Graph No.	Histo No.	Type of Traverse	Slant Axial		(Volts) NS	Slant Ax. Pos x¹/h	Axial s. Posit. x/D _{eq}	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	0.200	2./87	7.284	13.725	PLUG 7	WP.				
810		ΑX		-	7.284			<u> </u>	0		,	<u> </u>
811				-	4			•	1,	•		AX. TRAYS. ON TOM = 0 AUD O.S.
812				-	8.041			•	0.5	•	•	RESPECTIVELY
813								•		•		
	1813			2160				-0.39		1580	117	
	1814			2,200				0.17		1505	107	
	1815	,		2,240		·		0.73		1437	151	
	1816			2.280		· ·		1.29		1450	104	
	1817			2320				1.86		1446	111	HISTO. HEASINGO AN AUY
	1818			2,360				2,42		1431	107	ON 40- = 0.5
	1819	, and		2400				2.98		1.409	114	
	1820			2.440				3.55		1413	110	
	1821			2480				4.11		1404	126	
	1822			2.520				4.67		1383	127	,
	1823	V		2.560	V	T ¥		1.23	1	1352	146	V

NOMENCLATURE

P = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

_	TEST RESULTS BY ER VELOCIMETER (Continued)	TEST DATE 5/28/82	ORIGINAL OF POOR
MODEL = 6	$P_r = 3.216$ $V_j = 1704$ Ft/Se	c D _{eq} = <u>5.03</u> In.	PAGE QUALI
TEST POINT =	T_ = 852 OR V_/= 0	Ft/Sec h = <u>/.29</u> In.	7 7

Graph No.	Histo No.	Type of Traverse	Slant Axial		(Volts)	NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	1824	4Χ		2.600	8.04/	13.725		5.80	0.5	1334	148	
	1852			2.640				6.36		1303	154	
	1826			2,680				6.92		(280	166	
	1827			2.720			,	7.49		1243	180	
	1828			2.760				8.05		/203	184	HISTO - MEASURED ANALLY
	1829			2.800				P.61		11.73	198	DN X/0-4 = 0.5 (CONTINUED)
	1830			2.840				9.17	·,	1156	20/	
	1831			2.880				9.74	:	1134	196	
	1832	V		2.920	- ₩			10.30	. V	1103	197	<u> </u>
814		_EW	1.	2.184				0.0	<u> </u>		•	
218				4				7		•	•	RADIAL TRAVS. ON X/0-1-0
816				2.326	•			2.0	•	•		AND 3.0, RESPECTIVELY
7/7					•				·	•	,	
	183.				8.177				0.59	1209	175	HISTO, HEASURED RADIALLY
	1335				7.914				0.42	1509	10/	ON X/0.00 = 2.0
	1935	₩	!	∦	7.679	₩ .	1	↓	0.26	1475	78	

NOMENCLATURE

 $P_r = Pressure Ratio$

 V_{j} = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} ≠ Free Jet Velocity

TEST	DATE <u>5/28/82</u>	ORIGINAL OF POOR
eq′ =	<u>5.03</u> In.	PAGE QUALI

TABLE 5-69.

758

AERODYNAMIC TEST RESULTS BY

LASER DOPPLER VELOCIMETER (Continued)

MODEL =

 $P_r = 3.216$ $V_i = 1704$ Ft/Sec

 $T_T = 852$ OR

 $V_{a/c} = 0$ Ft/Sec h = 1.29 In.

Graph No.	Histo No.	Type of Traverse	Slant Axial	Avial	(Volts)) NS	Slant Ax. Pos x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	1836	EW	1	2.326	7.302	13.725		2.0	0.01	1349	119	
	1837				7.073				-0.14	1464	102	HIS TO HEASURED RADIALLY
	183 7				478.3				-0.27	1524	79	ON You = 2.0 (CONTINUED)
	1839				6.485			√	-0.53	1288	170)
818	<u> </u>			2.640	,			6.4			•	
819				3	•			',	•	•	•	RADIAL TRAVS. ON YOM =6.4
820				2.792				8.6	•	٠	•	RADIAL TRAVS. ON YOM =6.4 AND 8.6 RESPECTIVELY
821					•		r		•	,	•	
	1840	,			4.355				-0.61	584	2/5	·
	1841				6.609				-0.45	1156	190	
L	1842				6.860				-0.28	1253	159	
	1843				7.099				-0.12	1367	116	HISTO, HEASURED RADIALLY
	1844				7.307				0.02	1393	/02	ON Xen = 8.6
	1845				7.505				0.15	1378	113	8
	1846				7.703		<u> </u>		0.28	1356	/32	
	1847			V	7.933	4	1	\	0.43	1269	174	

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_{\mathbf{r}} = \text{Total Temperature}$

V_{a/c} = Free Jet Velocity

OF POOR	ORIGINAL
QUALI	PAGE
	en.

TEST DATE _5/28/82

TABLE	5-69.	AERODYNAMIC	TEST	RESULTS	BY
***************************************	J 0J.	7121100711711110	ILU.	MESOCIS	р.

LASER DOPPLER VELOCIMETER (Continued)

 $P_r = 3.2/6$ $V_i = 1704$ Ft/Sec $D_{eq} = 5.03$ In. MODEL = '

 $V_{a/c} = 0$ Ft/Sec h = 1.29 In. T_T = <u>\$\$2</u> OR TEST POINT = 16/3

	,								·		,	<u> </u>
Graph No.	Histo No.	Type of Traverse	Slant Axial		(Volts) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	1848	ΕW		2.792	8.144	13.725	•	8.6	0.57	1110	198)
	1849				8.330		•		0.69	586	226	HISTO. MEASURED PADIALLY
	1750	1		V	8.514		•	1	0.81	854	214	ON ×0.00 = 8.6
822				3.096	•		•	12.8		,	•	RADIAL TRAVS. ON Your =12.8
823		₩	, /	••		1	•	1,		•	•	0
		REF	0.200	2.038	328.2	13.725	_ MID PO	WT OF PA	WUUS HE	GHT AT EX	7	
824		EW	1579	,	,		2.37	-1.23	SLANT M4-at	•	•	
825			3	•			4	•,	/"	•	•	
826		.	2.420	•			3.83	-1.06		•	•	RADIAL TEAUS. ON You = -1.53,
827			٠,	.	,		4	4		٠	•	-1.06, -0.72 AND -0.52,
828			3.2/0	•			5.18	-0.72		•	•	RESPECTIVELY
829			,	•			5	٠,		•	•	
830			4.040				6.01	-012		•	•	
831		4	4	•	•		٠,	٠.	4	•	•	-
							•					

NOMENCLATURE

P_r = Pressure Ratio

 V_{j} = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_{\tau} = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5-69`.	AERODYN	IAMIC TEST	RESULTS	вү
1		LASER D	OPPLER VE	LOCIMETE	R
MODEL = _		6	P _r •	3.216	
,			•		_

(Cont	inued)	
v, =	1704 Ft/Sec	D _{eq} = <u>5.03</u> In.

TEST DATE 5/28/82

 $T_T = 852$ or TEST POINT = 1613

760		TES	T POINT	· =/(613	тт	= 873	°R V _{a/c} ≖.	0	_ Ft/Sec	h =
Graph No.	Histo No.	Type of Traverse	Slant Axlal	Positio Axial	n (Volts) NS	Slant Ax. Pos. x'/h	Axial Radia Posit. Posit x/D eq r/D eq	Velocity	Turb. Velocity Ft/Sec	
832		SLANT AX	-		5.856	13.257		eq eq +//=0.			SCANT-AX. TRAVS.
833	1851		4.760				7.85		1230	104	ON 1/6 = 0.5
	1825		4189				6.86		1562	117	
	1853		3.822	<u> -</u>		 	5.95		1598	131	
ļ	1854		3.109			<u> </u>	5.00	/-	1632.	. 103	
	2281		2.539				4.03		1663	95	HISTO, MEASURED SIANT-AMALLY
	1826		2./38		<u> </u>	<u> </u>	334		1637	12/	au 1/4=0.5
	1857		1.725		<u> </u>	 	2.62		1681	129	
ļ	1858		1367		<u> </u>	<u> </u>	2.0/		1629	101	
	1859		1.064	·			1.49		1675	117	
	1860		0.6 22		₩		073	V	1670	124	<u> </u>
834			•		6.047		<u> </u>	r/h=1.0	<u>, </u>		SLAWT-AX. TRAVS. WY 1/4=1.0
835		, .	•		<u> </u>	<u> </u>		1/			
	1861		0.343	1			0.25		1543	114	HISTO, MEASURED SLANT-ANIALLY
1	1862	<u> </u>	2.759	<u> </u>	1		440	4	12.23	166	on r1/h=1.0

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

= Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5-69. <u>AE</u>	RODYNAMIC TEST RESULTS B	<u>Y</u>
	LA	SER DOPPLER VELOCIMETER	(Concluded)
MODEL =	6	P _r = 3.216	V _j = 170 4 Ft/Sec

Graph No.	Histo No.	Type of Traverse	Slant	LAVIOL	on (Volts) EW) NS	Slant Ax. Pos. x'/h	Posit.	. Posit.	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
. 1	1863	SLANT AX	3.164		1 6.047	13.255	5.10		SLANT H/A=LO	1569	138	
, , , , , , , , , , , , , , , , , , ,	1864		3.519				5.7/		////	1591	123	
	1865		3908				6.38			1627	101	
	1866		4233	T T			6.54			1593	110	HISTO. MEASURED SLANT-AXIALLY
	1867	<u> </u>	4478		<u> </u>		7.36		<u> </u>	1559	122	ON +1/h = 1.0
	1868	<u> </u>	4797				7.81			1434	111	1
/	1869		4.890			<u> </u>	8.07		<u> </u>	1601	109	11
	1870		5.095				8:42		V	1255	131	0
836					6.147		,		r/4=1.25	•	•	
837			<u> </u>		"	<u> </u>		1	4,	•	•	11.
8-38		1	-		6.245		•		r/h = 1.5	•	•	SLANT-AX. TRAVS. ON "/4=1.25
839		<u> </u>	,		٠,				3	•	•	I.S AND 0.84, RESPECTIVELY
840			•		5.989		,		1/n=084	•	•	
841		<u> </u>	·		4				',	•	•	4
						1		$\prod_{}$				
	{ · · · · · · ·			(7			I	,	Γ '	<u></u>	

NOMENCLATURE

P = Pressure Ratio

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

ORIGINAL PAGE IS

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TABLE	5-70.	AERO	DYNAMIC	TEST	RESULT	S BY
		LASI	R DOPPL	ER VE	LOCIMET	ER
MODEL =	•	6		Þ	= 3.21	7.

 $P_r = 3.2/5$ $V_j = 1706$ Ft/Sec $D_{eq} = 5.03$ in. $T_T = 853$ OR $V_{a/c} = 400$ Ft/Sec h = 1.29 in.

TEST POINT = 1614

iraph No.	Histo No.	Type of Traverse	Slant Axial	Position Axial	(Volts) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec		Remarks
		REF	0.200	2/83	7.383	13,727	PLUG TIP			•	•	
42		ΑX		-	7.383		1	•	.0		,	
43					4				7	·	,	AX. TRAUS. ON TORE -O AND
44				•	8.065			•	0.48	•	•	0.48, RESPECTIVELY
145				•						•	,	
	1871	v		2.155				-0.40		1575	91	
	1872			2.195				0.16		1571	116	
	1873			2.235				0.73	<u> </u>	1436	113	
	1874			2,275				1.29	ļ	1466	98	
	1875			2.315			L/	1.85	<u> </u>	1462	8.5	HISTO. HEASURED AXIALLY
	1876		1_/	5.312		<u>.</u>		2.42		1421	/02	ON 1/200 = 0.48
	1877			2.395	<u> </u>			2.98		1445	28	
	1878		<u> </u>	2435				3.54	 	1436	86	
	1879	<u> </u>	1	2,475			 	4.10		1359	126	
	1880		 	5212			 	4.67	 	1409	101	
	188.		11	2.555	1 1	₩]/	1.53	\	1402	/00	

NOMENCLATURE

76

 $P_r = Pressure Ratio$

 V_j = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

TEST DATE 6/3/82

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

유	OR!
POOR	GINA
QUAL	PAGE
	203

TABLE	5-70.	AERODYNAMIC	TEST	RESULTS	ВҮ

LASER DOPPLER VELOCIMETER (Continued) $\frac{6}{6} \qquad P_r = 3.245 \qquad v_j = \frac{1706}{100} \text{ Ft/Sec} \qquad D_{eq} = \frac{5.03}{100} \text{ In}.$

TEST DATE ___6/3/82

TEST POINT = $\frac{1614}{T_T} = \frac{853}{8}$ OR $V_{a/c} = \frac{400}{400}$ Ft/Sec h = $\frac{1.29}{100}$ In.

-							 					<u> </u>
Graph No.	Histo No.	Type of	Slant	Position			Slant Ax. Pos.		Radial	Mean Velocity	Turb. Velocity	Remarks
		Traverse	Axial	Axial	EW	NS	x'/h	x/D _{eq}	r/D _{eq}	Ft/Sec	Ft/Sec	Nella I KS
			- 				 		1			
<u> </u>	1882	AX		2.595	8.065	13.727	/	5.79	0.48	1382	111	
	1883			2.635				6.36		1345	125	
	1884			2,675				6.92		1314	127	
	1885			2.715	<u>'</u>	<u> </u>		7.48		1291	142	HISTO, MEASURED AWALLY
	1886			2755				8.04		1279	143	HISTO MEASURED AXALLY
	1887			2.795				8.61		1243	124	0
	1888			2835				9.17		/220	121	·
	1889			2.875				9.73		/2/2	725	
	1890	*		2.915	V			10.29	V	1186	172	
846		EW		2.182	•			0	-		•	
847				4	•			4	-	•	•	PRADIAL TRAUS. ON You = 0
848				2.324	•			1.98		•	•	AND 1.98, RESPECTIVELY
849		,			•			4		•	•	
	1891				6.398				-0.60	1130	159	HISTO. MEASURED RADIALLY
	1897				6.760				-0.36	1523	75	ON You = 1,98
	1893	4		4	7.080	V		Y	-0.15	1457	99	

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

	ORIGINAL OF POOR
•	PAGE
	3m

TABLE 5-70. AERODYNAMIC TEST RESULTS E	3Υ
--	----

LASER DOPPLER VELOCIMETER (Continued)

 $P_r = 3.215$ $V_j = 1706$ Ft/Sec $D_{eq} = 5.03$ In. MODEL =

76

 $T_T = 8.63$ °R $V_{a/c} = 4.00$ Ft/Sec h = 1.29 In

TEST DATE 6/3/82

Graph No.	Histo No.	Type of Traverse	Slant Axial	Avial	(Volts)	NS	Slant Ax. Pos x'/h	Posit.	Radial Posit. r/D	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	1894	EW		2.324	7.346	13.727		1.98	0.03	1326	89	
	1895				7.738				0.28	1882	74	HISTO, MEASURED RADIALLY
	1896				800.4	<u></u>	1		0.46	1498	79	HISTO, MEASURED RADIALLY ON Your =1.18 (CONTINUED)
	1897				8.373				0.68	845	ברו	0
	1898				NOT REC	ORDED		<u> </u>	<u></u>		`	
850				2.638		<u> </u>		6.4				<u> </u>
128				4				4		-	•	CACIAL TRAVE. ON YOU = 64
872				2.790				8.5		•	•	AND 8.5, PESPECTIVELY
853					<u> </u>				•		•	
	1899				6.373				-0.61	1083	/83	
	1900				7.300				0.02	-		
	1901				7.300				0.02	1383	80	HISTO. HEASURED RADIALLY
	1902				8.165				0.57	1160	176	ON X/Dag = 8.5
	1903				8.389				0.72	974	186	8
	1902				6.020				-0.85	884	181	
	1901-	V		₩	6.624	V		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-0.45	1278	148	<u> 1</u>

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

 D_{eq} = Equivalent Diameter

 $T_{-} = Total Temperature$

V_,_ = Free Jet Velocity

TABLE 5-70.	AERODYNAMIC	TEST RESULTS BY		TEST DATE	613182	_
	LASER DOPPLE	R VELOCIMETER	(Continued)			7.
MODEL =	6	P _r = 3.215	V; = 1706 Ft/Se	ec Deq =	<u>5.03</u> In.	Ċ
TEST POINT	1614	T _T = <u>853</u> °R	Va/c= 400	Ft/Sec h =	<u>1.29</u> in.	100

																
Graph No.	Histo No.	Type of Traverse	Slant ∈ Axial	Τ ,	sition xial	n (Volts) EW	T	NS	\$1 Ax X	lant k. Pos. '/h	Axi Pos x/D	cit l	Radial Posit. r/D eq	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	
	1906	EW		2.	790	6.829	/3.	.727			8	.5	-0.31	1365	101	
}	1907			′	<u> </u>	7.106	Ĺ	<u> </u>				'	_0.13	1391	28	
1	1908					7.587							0.19	1402	80	HISTO, MEASURED RADIALLY
, , , , , , , , , , , , , , , , , , ,	1909			'	<u> </u>	7.888						<u> </u>	0.39	\323	118	HISTO. MEASURED RACKAULY ON Yeng = 8.5
<u> </u>	1910	<u> </u>		<u> </u> '	<u> </u>	8.662	<u> </u>	<u> </u>				<u>'</u>	0.90	768	170	
	1911			<u> </u>	<u> </u>	5.820	 ′	<u> </u>				<u>/</u> !	-0.98	709	148	
228	<u> </u>	<u> </u>	_	13/	094		 '	<u></u> ′			12.	2.8		,		RADIAL TRAVS. ON YD-4 = 12.8
228	<u> </u> '	<u> </u>			4		_ '	<u> '</u>			<u>,,</u>	<u>.</u>	•		•	J
<u> </u>		 '					<u></u> '	<u> </u>					 '	 '		4
<u> </u>	<u> </u>		_				<u>'</u>	<u> </u>					 '	<u> </u>		
<u> </u>	<u> </u>	1	 '			,	<u>'</u>	<u> </u>		<u></u>			<u> </u> '	<u> </u>		
<u> </u>		<u> </u>					<u> </u>	<u> </u>		<u></u>			<u> </u>	 '		
<u> </u>			<u> </u>					<u> </u>								
<u></u> !			<u> </u>					<u>'</u>					<u> </u>	<u> </u>		-
		<u> </u>	<u> </u>		<u> </u>			<u> </u>					<u> </u>	<u> </u>		<u> </u>
<u></u> ;	<u></u>	1	[]			1'	\square	₩]	IJ_{-}		1	· · · · ·	1	<u> </u>	<u> </u>	

NOMENCLATURE

P_r = Pressure Ratio

 $T_T = Total Temperature$

V_j = Fully Expanded Jet Velocity

V_{a/c} = Free Jet Velocity

D_{eq} = Equivalent Diameter

h = Annulus Height

765

	TABLE 5-70.	AERODYNAMIC TEST RESULTS BY	TEST DATE <u>6/3/82</u>	ORIGINA DE POO
	,	LASER DOPPLER VELOCIMETER (Continued)	• ;	カデ と 3
. τ	MODEL =	$\frac{6}{r} = 3.2/5$ $V_j = 1706$ Ft/Sec	•	UALIT
7.R.F	TEST POINT =	614 TT = 853 OR Va/c 400	Ft/Sec h = <u>1.29</u> In.	-2 9

Graph No.	Histo No.	Type of Traverse	Slant		(Volts) NS	Slant Ax. Pos. x'/h	Posit.	Radial Posit. r/D _{eq}	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
		REF	0.200	2.043	5.649	13.782	MID-POIN	TOF AUN	VLUS HEL	HT MT E	V.7	
856		EΨ	0.404				0.35	-1.92	SLANT 11/4= 0.5	HT MT E		
857.			4				,	٠,	<u> </u>		•	
828			1.597				2.40	-1.41		•		
859			4		٠		,	3				RADIAL TRAVS. ON YDag = -1.92,
860			2.425				3.88	-1.05		<u> </u>	<u> </u>	RADIAL TRAYS. ON 40-9 = -1.92, -1.44, -1.05, -0.72 AND 0.37.
861			3		•			٠,	<u> </u>		•	RESPECTIVELY
862			3.210		· .		2.18	-0.72		•		
863	ļ		4				٠,			·		
864			4.040	/	·		6.61	0.37		•		
288		4	"	<u> </u>	•	₩	٠,	٠.	<u> </u>	·	•	
				ļ							ļ	
				<u> </u>						<u></u>	'	
			· · · · · · · · · · · · · · · · · · ·					ļ	ļ		,	
							<u> </u>	ļ	ļ <u>.</u>			
	<u> </u>							<u> </u>		<u> </u>	<u></u>	

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet Velocity

TEST DATE 6/3/82

TABLE	5-70.	AERODYNAMIC TEST RESULTS BY
		LASER DOPPLER VELOCIMETER

(Continued)

 $P_r = 3.215$ $V_j = 1706$ Ft/Sec $D_{eq} = 5.03$ In.

 $T_T = 853$ OR $V_{a/c} = 460$ Ft/Sec h = 1.29 In. TEST POINT =

	Histo		уре		Positi	on	n (Volts)	<u>) </u>		Slant	Axiai		dial	Mean	Turb.	
No.	No.			Slant Axial		1	EW	·	NS	Ax. Pos.	. Posit. x/D _{eq}	Po r/	D _{eq}		Velocity Ft/Sec	Remarks
866		SLAN	πAX			山	<i>\$</i> .732	13	.2/2			SC P/	ANT (=0.2		•	
867		<u> </u>	<u> </u>				. 4			•	1		•		,	SLANT-AX. TRAVS. ON
868	<u> </u>	<u> </u>		-			6.043			·		17/	4=1.0	•	•	MINEO.Z AND LO, RESPECTIVELY
869	<u> </u>	$\int \int $		-						•				•	•	,
!	1912	<u> </u>		4855					<u> </u>	8.01				1593	119	
	1913			4.764						7.5/				1528	115	
	1914	$\int \cdot \cdot '$		4.254						7.05				1584	120	
	1915		1	4.078	1 7 -					6.67				1604	114	
	1916	′		3.862			, ,			6.30				1636	101	HISTO, HEASURED SCANT-AXIALLY
	1917			3868						5.97				1617	(20	ON "/h=1-0
	1918			3469						T. § 3				1625	106	
	1919			3.272						5.29				1621	25	
	1920		1	3.065						4.93				1640	102	
	1921			2.865	1-7					4.59				1629	165	
	19:2			2.672						K.52				1604	99	
1	1923	 Y		2.464			V			3.90			V	1601	98	

NOMENCLATURE

P_r = Pressure Ratio

V = Fully Expanded Jet Velocity

= Equivalent Diameter

 $T_T = Total Temperature$

Va/c = Free Lat Velocity

LASER DOPPLER VELOCIMETER

(Continued)

MODEL =

 $V_1 = 1706$ Ft/Sec $D_{eq} = 5.03$ In.

TEST POINT = 1614

T_T = <u>853</u> °R

Graph No.	Histo No.		ype of verse	Slan Axia
	1924	SIG	л-Ах	2.27
	1925			209
	1926			1.82
	1927			1.66.
	1928			1.478
	1929			1.27
	1930	,		1.08.
	1931			0.86

768

	Histo	Туре			n (Volts))	Slant	Axial	Radial	Mean	Tur,b.	
No.	No.	of Traverse	Slant Axial	Axial	EW	NS	Ax. Pos.	Posit. x/D eq	Posit. r/D _{eq}	Velocity Ft/Sec	Velocity Ft/Sec	Remarks
	1924	SLAVT-AX	2.276		6.043	13.212	3.57		SCANT 11/4=10	1528	127	
	1925		2091				3.25			1518	140	
	1926		1.893				2.91			1483	176	
	1927		1.663	·			5-25			1466	169	
	1928		1.478				2.20			12.99	214	HISTO. HEASINGO SLANT-AVIAUN
	1929		1.272				1.84			1416	20/) an 1/6=1.0
	1930	,	1.083				1.55			1441	182	
	1931		0.868			,	1.15			1347	218	
	1932		0.253				0.09			1502	7/	
	1933		0.477				0.48			1640	67	
	1934		0.679		1		0.82		<u> </u>	1580	178	
8-70			•		5.849		-		1/4=a5		•	SLANT-AY TRAVS. ON "/h=0.5
87/			ſ							-		J
	1930		4356				7.15		<u> </u>	1432	116)
	1936		3.459				2.68			1526	157,	HISTO. MEASURED SLANT-ANALLY
	1937	1	2.997			V	4.81	1	1 1	1600	96	ON "/h=0.5"

NOMENCLATURE

P_r = Pressure Ratio

 V_{i} = Fully Expanded Jet Velocity

= Equivalent Diameter

 T_{τ} = Total Temperature

V_{a/c} = Free Jet Velocity

TABLE 5-70.		TEST RESULTS BY		TEST DATE	6/3/82	ORIGINAL OF POOR
MODEL =	6	Pr = 3.215	(Concluded) V = 1706 Ft/Sec	D _{eq} **	5-03 In.	
TEST POINT =	1614	T _T = <u>FCJ</u> OR	Va/c= 400	_ Ft/Sec h =	<u>/.29</u> In.	ALITYND BI JEVA

Graph No.	Histo No.	Type of Traverse	Slant Axlal		n (Volts EW	NS	Slant Ax. Pos. x ¹ /h	Posit	Radial Posit. r/D	Mean Velocity Ft/Sec	Turb. Velocity Ft/Sec	Remarks
	1938	SLANT-AY	2.488		5.849	13.212	3.94		SLANT Y/4 x Q 5	1630	86	
	19.29		2.148				335		'" -	1611	רד	
	1940		1.746				2.66		<u> </u>	1694	54	HISTO MEASIKED SLANT-ANALLY
<u> </u>	1941		1.384				2.05	<u> </u>		1590	2.6	ON 1/4=0.5
	1942		1.119	/_			1.58			1707	28	
<u> </u>	1943		0.785				1.02			1608	77	
	1944		0.486	/			0.49					
	1945		0.273		<u> </u>		0.12		V	1593	119	
872			-		6.237		•		r/4=15	-		SCANT-AX. TRAVS. ON "/H=1.5
873			-	1	"	. 1	•		*	-	•	
												
}		-						 				

		*						 				
	 							/				
								[

NOMENCLATURE

 $P_r = Pressure Ratio$

V_j = Fully Expanded Jet Velocity

D_{eq} = Equivalent Diameter

 $T_T = Total Temperature$

V_{a/c} = Free Jet locity

5.2.3 Laser Velocimeter Data of Model 1

PRECEDING PAGE BLANK NOT FILMED

Model 1 Test Point 113

-

₩ XY1101

OF POOR QUALITY

₩ XY 1101

ORIGINAL PAGE IS

SRECORDING CHARTS)
GRAPH, CHARDS COPPORATION
BUFFALO WEN YORK
TWITTO MEN YORK

ORIGINAL RAGELISO
OF POOR QUALITYO

MACCONTROLS CHARTE GALPHC CONTROLS CORPORATION BUFFALD NEW CHAR PREFITO IN U.S.A. ₩ XY 1101

EN RECORDING CHARTEL
GRAPHIC CONTROLS CORPORATION
BUFFALO NEW YORK
THERETO NEW YORK

ORIGINAL PAGE IS

ORIGINAL PAGE IS

10.1 XY 1101

ORIGINAL PAGE IS

OF POOR QUALITY

		DATE: 3/30/82 NOZZLE: #/
	┊╎┆┇┆╎╎┦┇┇┆╎╎╏┇┆╎╎┇┇╎╎┆┇┆╎╎┆┇╏╎╎╎╏┇┆╎╎┦┇╘┆╎╎┆┇╘┆┆┆┆┇┇┆┟╎┎┇┾╬╬┼┈╠━	TEST POINT: L.V ; ACOUSTIC - /2/
		PLOT IDENTIFICATION: G-42/
		TRAVERSE DETAILS.
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	AXIAL : (- :); OFFSET (- : : : - : : : : : : : : : : : : : :
		RADIAL XI : E.W. = 127 : N.S. = 17
		AXIAL. REF. (Y=0)- (-114 VOLTS) $\frac{X}{D} = 1.1$ LOCATIONS' TRAVERSE - 1-462 VOLTS $\frac{X}{D} = 1.1$
		SCALE : _ X-AXIS= 3.33 INCH/UNIT
		Y-AXIS= 400 F.P.S./UNIT
		MISTOGRAMS: H- TO H-
		£.
		LINE OF LU TRAVERSE
$P_r = 3.316$, $V_{a/c} = 0$ f/s		<u>╞╅┼╋╊╊┾╁╏╬╅┩┎╇</u> ┎╒┼┼╬┼┼╠╏┼╬┼┼╏╒┤╏┦╏┼╎╏╏
T _T = 1708 °R, D _{eq} = 5.07 in.		
$v_{j} = 2457 \text{ f/s}, h = - \text{ in}.$		
	0.2	

№ XY 1101

OF POOR QUALITY

ORIGINAL PAGE OF POOR QUALIT ALITYND Si 35vd

1101 XX 1101

MATCORDING CHANTS
COAPPU COUNTING COOLOND
BUFFLLO NUN YOR
MATCO M UAA O O

BREEDADING CHARTS
GALMIC CONTROLS CORPORATION
GUIFALO NEW YORK
CHARTED N.S.A.

ORIGINAL PAGE IS

CANADIS CHARTS
CANADIS CORPORATO
BUFFALO, NEW YORK
MINTED W 15.1

OF FOOR QUALITY

ORIGINAL PAGE IS

ORIGINAL PAGE IS

CHARLES CONTROLS CONT

ORIGINAL PAGE IS

SAPPLE CONTROL CHARLED
GRAPHE CONTROL CHPOTALON
GRAPHE WAY YORK
THE CONTROL OF VA.

BARECOROUNG CHARLS)

BARNAC CONTROL CORPORATOR

BARNAC CONTROL CONTROL

BARNAC CONTROL

BARNAC

No XY 1101

DATE: 3/3//82 | NOZZLE: ACOUSTIC - /22 PLOT IDENTIFICATION : TRAVERSE DETAILS. RADIAL REF. (\$\(\frac{1}{2}\) - \(\frac{1}{2}\) ROLIS R \(\frac{1}{2}\) ROLIS R \(\frac{1}{2}\) RADIAL REF. (\$\(\frac{1}{2}\)\) - \(\frac{1}{2}\) RADIAL REF. (\$\(\frac{1}{2}\)\) R.S. - \(\frac{1}{2}\)

AXIAL REF. (\$\(\frac{1}{2}\)\) - \(\frac{1}{2}\) R8 VOLTS \(\frac{1}{2}\) \(\frac{1}{2}\) RADIAL REF. (\$\(\frac{1}{2}\)\) ROLIS \(\frac{1}{2}\) REF. (\$\(\frac{1}{2}\)\) VOLTS \(\frac{1}{2}\) REF. (\$\(\frac{1}{2}\)\) SCALE : X-AXIS= 3.33 INCH/UNIT Y-AXIS= 375 F.P.S./UNIT HISTOGRAMS: H- 1032 TO H-1037 4 LINE OF WITCHESTE

;;;	:::.	1::.	· : . :	::		<u> </u>		,, ;,	٠ , .	:	:;;;	::-:	::.	<u>:</u>		: :] : : : ·		· ;	, ; ;		LOATE	. 2 2	دام	NOZZ	l C •	ئنہ	1
11111	; ;	1:::	11:11	1.;;	:.;	·	1.:.		· · ·	::	:::			j · ; .		:		::::		1111				1702 : L.			# ACOUSTIC	<u>-114</u>
	: 1.2	1	1::::	1::::	1.::.	1	1: :		7.		::::			7111		:			 : : : :	, ; ; ;		PLOT	IDENT	IFICAT	ION :		443	
	1	1:::	<u> : : : :</u>	11	1 : :		:1 '	<u>; . : </u>	11	11;	1111	7 7	:::					1:::	<u>;;;</u>	111				ETAILS		_		
.;.:	1:	\	::::	12:	28.1	; · · :	11111	: , ; ;		:::												AX	IAL E	IAL.	(<u> </u>) [_)7.0	OFFSET	- □ TS) <u>R</u> = 0
	;;;	1	illi	أززا			1:	.:::	1::				1:::									DA:	ntai 🗀	7 · F	.W	\Box	N.S	П
,	;;;	 					11.	: ::	, ; ; ; , ; ; ;				!!:														NOF AOF	$\frac{TS}{TS}$) $\frac{X}{D_{eq}}$
1:::	. 11				.		11111						111				1111	! : ;				SCAL			= 7.+ = 375		INCH/UNI F.P.S./U	
	1 . ; ;				1	• ,		111			 									 		HIST	OGRAMS		н-		H- 	
						1.11:	7		1111		<u> </u>	1 1	1 1 1	• ;	• :	1 1	• •		11-					•	·			
	11:					•								5	7				1, 4					<u> </u>	_		_,	—ф
1::::	:	. ; ; <u>;</u>	1:!				12	<u>;;;;</u>	3.		. ;		1111	1 !:] i •		, ; ;]		•			LINE O	计四寸	CAVERSE	
									<u> </u>	1111			,	:	i	1 !												
: ;	: !!							; ; ;	;; ;		انانا	G-		;;;.		::!			.:::				!!!:			;;;	`.: ! '	.:; :::
; ;	: ; ;		1					:::;	i;;;:	1.::	111		1:1,	::::				; ; ; ; ; ; ; ; .								1:11		
	1												:::: ::::	; ' : :		;;;;				1;;;						1::, i		
1::::																	1:11				1				 		1; ;	
									1111	: : : ;					1:;	-												
1								::!:	1 1 1	, ,		:::1	1 : , .	; ; ;	1:::	,1,:	1:::	::	: . : .		1111		, ''	1111			1	
· · ·	1 : : :			11.						• ; ;	::::		<u>-</u>	:	:		 			- ; · - ;		909			-:	 	 -	
	,	1,	98)		1,,		1.;	:: .	· ·		•	· ·	, ,							. ,	,,,,		11:			11.		
		: :		1:: .	<u> </u>	ļ:'-	· .					<i>-</i>										- ;	 :	.,,	-			.:: ::::
	۱	L	<u> </u>	<u> </u>	l	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	L		<u> </u>		ļ		<u> </u>	•	<u> </u>	<u> </u>	ļ;`` <u> </u>	<u></u>	<u> </u>	. :, ''

DISTANCE X/D (D= 509")

NYIM

arran arranga	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	THE THE PARTY OF T	·····
		DATE: # 3/3//62 NOZZLE:	انفدا
			; ACOUSTIC - 114
		PLOT IDENTIFICATION : G	
		TRAVERSE DETAILS.	
			; OFFSET - 🗆
┠┯╅╃		RADIAL REF.(C)- LOCATIONS' TRAVERSE.	VOLTS) R
			: N.S 🗀
		AXIAL REF. (X=0)-	-1.889 VOLTS) Deq
		SCALE: X-AXIS= 3,33 Y-AXIS= 375	INCH/UNIT
\ 		<u></u>	TO H-
		HISTOGRAMS: H-	10 11-
			,
	P _r = <u>3.128</u> , V _{a/c} = <u>400</u> f/s		MAVERSE
	$T_{T} = 1734 e_{R}, D_{eq} = 5.09 in.$		
	V _j = <u>2425</u> f/s, h = in.		
	p {		
		▎▊▝▞▗▗▊▜▞▊ ▎▊ ▜▜▜▜▜ ▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜ ₽₽₽₽₽₽₽₽	
		61	

#0. XY 11OT

in the second se	e
DATE:3/3/82 NOZZL	
TEST POINT! L.V	
PLOT IDENTIFICATION :	6-450
TRAVERSE DETAILS. AXIAL : -	□; OFFSET -□
RADIAL REF. (LOCATIONS TRAVER)- VOLTS) R VOLTS) R VOLTS) R VOLTS
LOCATIONS' TRAVER RADIAL X : E.W	E - 1 VOLTS / R ₂
AXIAL REF. (%	0)-1.881 VOLTS \ \(\frac{X}{D} = 34 \) E -2.145 VOLTS \ \(\frac{D}{D}_{eq} \)
SCALE: X-AXIS= 3.3.	INCH/UNIT
Y-AXIS- 39	F.P.S./UNIT
HISTOGRAMS: H- IDE	1 TO H- 1063
	•
	€
	IN ST. LI TRAVERSE
	#1

	DATE: 3/3//82 NOZZLE: #1
	TEST POINT: L.V ; ACOUSTIC - 114
	PLOT IDENTIFICATION : G-451
	TRAVERSE DETAILS.
	AXIAL : C - D ; OFFSET - D
	RADIAL REF. (C) - VOLTS R LOCATIONS TRAVERSE - VOLTS R 2
	AXIAL REF. (X=0)-1.881 VOLTS) X = 3.6
	SCALE : X-AXIS= 3.33 INCH/UNIT
	Y-AXIS= 375 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
	围, ———••••••••••••••••••••••••••••••••••
$P_r = 3./28$, $V_{a/c} = 400$ f/s	LINE OF LU TRAVERSE
	TTT*
$T_{n} = 1734 \text{e. R. D.} = 5.09 \text{ in } \frac{1}{1} = 1734 \text{e. R. D.} = 5.09 \text{ in } \frac{1}{1} = 1734 \text{e. R. D.} = 5.09 \text{ in } \frac{1}{1} = 1734 \text{e. R. D.} = 5.09 \text{ in } \frac{1}{1} = 1734 \text{e. R. D.} = 5.09 \text{ in } \frac{1}{1} = 1734 \text{e. R. D.} = 5.09 \text{ in } \frac{1}{1} = 1734 \text{e. R. D.} = 5.09 \text{ in } \frac{1}{1} = 1734 \text{e. R. D.} = 5.09 \text{ in } \frac{1}{1} = 1734 \text{e. R. D.} = 5.09 \text{e. R. D.} = 5.09$	 ┇┋┋┋┋┋┋┋┋┋┋ ┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼
$T_{T} = 17.3 \text{ k}$ °R, $D_{eq} = 5.09$ in.	
$T_{T} = 173 \text{ eq} \text{ eq} = 5.09 \text{ in}.$ $V_{j} = 2425 \text{ f/s}, \text{ h} = -\text{ in}.$	
$T_{T} = 17.3 \text{ er}$ er, $D_{eq} = 5.09$ in. $T_{T} = 17.3 \text{ er}$ $V_{j} = 2.425$ f/s, $N_{eq} = -10.4$ in.	
$T_{T} = 17.3 \text{ er}, D_{eq} = 5.09 \text{ in.}$ $V_{j} = 2425 \text{ f/s}, N = -\text{ in.}$	
$T_{T} = 17.3 \text{ er}, D_{eq} = 5.09 \text{ in.}$ $V_{j} = 2425 \text{ f/s}, h = -\text{ in.}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$T_{T} = 17.3 \text{ er}, D_{eq} = 5.09 \text{ in}.$ $V_{j} = 2425 \text{ f/s}, h = -\text{ in}.$	
$T_{T} = 17.3 \text{ er}, D_{eq} = 5.09 \text{ in}.$ $V_{j} = 2425 \text{ f/s}, N = -\text{ in}.$ $V_{j} = 2425 \text{ f/s}, N = -\text{ in}.$	
$T_{T} = 1734 \text{ °R, } D_{eq} = 5.09 \text{ in.}$ $V_{j} = 2425 \text{ f/s, } h = -\text{ in.}$ $G^{4} = \frac{1}{2} $	
T _T =1734 °R, D _{eq} =5.09 in.	
$V_{1} = 2425 \text{ f/s, h} = -\text{ in.}$ $0 = -\text{ in.}$	

NOZZLE: TEST POINT: L.V. -; ACOUSTIC - 114 PLOT IDENTIFICATION : G - 452 TRAVERSE DETAILS. AXIAL ☐ : d - ☐ ; OFFSET

RADIAL REF.(d) - VOLTS

LOCATIONS TRAVERSE - VOLTS RADIAL X : E.W. - 18 ; N.S. -AXIAL REF. (X-0)-1881 VOLTS X =4.3 LOCATIONS TRAVERSE -2.195 VOLTS Deg SCALE : X-AXIS= 3.33 INCH/UNIT XY 1101 Y-AXIS= F.P.S./UNIT H- 1064 TO H-1065 HISTOGRAMS: 2 A73 LINE OF LY TRAVERSE M RECORDING CHARTS

RECORDING CHARTS

GLANC NEW YORK

PARTED NEW YORK

OF POOR QUALITY

Mo XY1101

#6. XY 1101

		L DATE OF THE	ا ملاء NOZZLE:
	: 	DATE: 3/31	
		▗▘▐▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	IFICATION: G-455
		TRAVERSE D	ETAILS.
		AXIAL E]: (- []; OFFSET - [] IAL REF.(C) - VOLTS) R . ONS TRAVERSE - VOLTS R .
		LOCATI	AL REF.(C)- VOLTS) R. ONS' TRAVERSE - VOLTS R. 1: E.W SI; N.S
		AX	IAL REF. (X=0)-1-85/ VOLTS X = 8.6
			X-UXIZ= 3'33 INCH\/AMIL
			Y-AXIS= 395 F.P.S./UNIT
		HISTOGRAMS	: H- TO H-
	<u> </u>		<u> </u>
$P_{z} = 3./28$, $V_{a/c} = 400 \text{ g/s}$			LINE OF IN PROJECTS
$P_{r} = 3./28$, $V_{a/c} = 400 \text{ g/c}$	- Fitliii	VIII VIII VIII VIII VIII VIII VIII VII	
T _T = 1734 °R, D _{eq} = 5.09 in	·		
		L3 E 1 ! 3 E 6 L0 E 1 ! 1 E 3 Z E 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 1 E 1 E	\$□{cut a(□t d) }; cut a a a }
$v_{j} = 2425 f/s, h = -10$	•		
$v_{j} = 2\sqrt{25} f/s, h = -in$			
v _j =2425 f/s, h = in	- FALHAH		
$v_j = 2425 \text{ f/s}, h = -1000 \text{ fm}$	- FALHAH		
$v_j = 2425 \text{ f/s}, h = 10$	- FALHAH		
$v_j = \frac{2425}{f/s}, h = \frac{1}{12}$	- FALHAH		
v _j =2425 f/s, h =in	- FALHAH	2.6	
$v_j = 2425 \text{ f/s}, h = 10$	- FALHAH		
$v_j = 2.925$ f/s, $h = -1$	- FALHAH		

	DATE: 4/7/72 NOZZLE: # 2
	TEST POINT: L.V ; ACOUSTIC - 22/
	PLOT IDENTIFICATION: G - 4000
	TRAVERSE DETAILS. AXIAL
	AXIAL [2]: (1 - ; OFFSET - RADIAL REF.(1) - VOLTS) R LOCATIONS: TRAVERSE - VOLTS R 2
	-{
100 to 10	AXÌAL REF.()- VOLTS) $\frac{X}{D_{eq}}$
######################################	SCALE: X-AXIS- 7.07 INCH/UNIT
	Y-AXIS# >75 F.P.S./UNIT
	HISTOGRAMS: H- 400/ TO H- 4009
	<u> </u>
	LINE OF W TRAVERSE
	╎ ┎┍╫╒╫╒╫╒╫ ╒┋╏ ╃╫ ╒┋╏┩╒ ┼┼ ╏╏╒╫╒╒┋╏╒ ╬╬┼┼┼┼┼┼┼
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	14-11-11-11-11-11-11-11-11-11-11-11-11-1

16. XY 1101

CRAPHIC CONTRINO CHARTE CRAPHIC CONTRINO CHARTE SHARTE WAY TO

ORIGINAL PAGE IS

	DATE: 4/7/\$2 NOZZLE: 中2
	TEST POINT: L.V ; ACOUSTIC - 22/
	PLOT IDENTIFICATION : G - 4007
	TRAVERSE DETAILS. AXIAL : C - : OFFSET - : RADIAL REF.(C) - VOLTS, R
	RADIAL REF.(C)- VOLTS) R = LOCATIONS; TRAVERSE - VOLTS) R ₂ = RADIAL E: E.W : N.S :
	AXIAL REF. ()- VOLTS $\frac{x}{D_{eq}}$
	SCALE : X-AXIS= 3,33 INCH/UNIT Y-AXIS= 375 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
P _r = 3.309', V _{a/c} = 0 f/s	₩
T _T = 1697 °R, D _{eq} = 5.09 in.	LINE OF UT TRAVEL TE
v _j = 2447 f/s, h = - in.	
-7 -1 0 10 10 10 10 10 10 10 10 10 10 10 10	

																																																													116	• •	4/	<u>7/</u>	72		ŊÜ	77	.E:		#	4	1				
П	П	П	П	П		\prod	T			П	Π	П			\prod	T			\prod	\prod	Π		1	\prod	T	Π	П					П	T	Ţ	П	П							\prod	\prod	ĺ	П	П	T		H	П	П			Π		П	П	\prod	T	EST	PC)IN	τ:	L	٠.٧				;	AC	ous	STI	c ·	. 2	2/	<i></i>
H		+	\parallel	╫		H	H	╢	+	╫	H	\parallel	+	H	H	+	H	\parallel	1	+	+	-	H	$\dagger \dagger$	+	-	H	H		+	╁	H	╢	╁	-	H	\parallel	-		╫		H	H	H	+	╫	\forall	+		+		H	H		╫	\mathbb{H}	-	\parallel									ON	:	G	-	4	70	0	8			
		Ш		П			П				Ш		П					$\ \ $	П			1	Ш	П	П		П				H	П	11	1					Ш		Ì		П			П	П				1		Н		Н			11						DET													
lt		+	Ħ	\dagger	\dagger	Ħ	Ħ	Ħ		Ţ	Ħ	$\dagger \dagger$	1		$\dagger \dagger$	1	T.	Ħ	Ħ	\parallel	1	T	П	П	T	T	Ħ	Ħ	T			П	Ħ	T.	П		T		I	Ħ	Ī	П	$\dagger \dagger$	Ħ	†	Ħ	Ħ	†	T	П	П	1.1	Ħ	IT	Ħ	П			Ħ.	ţ	AX	IAL	- :		:	¢				i	0	F F :	SET		-		1
																			H		Ľ																ľ											- -												Ę		וחר	RA 'AT	DIA	Ļ,	Ri	EF.	(4	(ا	-			VO VC	LTS	۱	R =	
П					,		П	H	-	-									$\ $					-	١.	-		$\left\{ \cdot \right\}$					1			$\ $			1							1		-	-	<u> </u> .		-			 					1	RA	DIA	IL	ö	 :	E.\	W.		: <u>-</u> -:	= ;	 N	١٠S،		. Г	ገ		
4	Н	₩	#	╀			\coprod	\parallel	\parallel	\parallel	$\!$	H	+	4	╢	4	\parallel	\vdash	H	+	#	H	H	┦	+	+	╀	Н	ľ	+	H	Н	\mathbb{H}	+	H	H	+	+	H	╁	\parallel	igert	╢	\dashv	+	H	$\!$	+	╠	-	-	╀	-	-	\coprod	Н							A	XIA ION	L.	RI	EF.	(_).	<u>.</u>			VO	LT:	- د د	<u>x</u> _	. 2
										-			ľ							1		-	$\ $										ŀ			H							$\ $			-	-	- -	- -			1		.	-	-				C				X-									VO	LTS	; <i>J</i>	D _{eg}	2
İ		\prod	1			Ħ	П	1	П	T	Ħ	Ħ	1	IT	T	T	T	П	\parallel	\prod		T	П	H	T	.†	П	П		•	П	П	١,	1		П		1	П			F	1	П	1.	П	П		1	1		\parallel	:	H	-					31	,HL,	E ;		χ-,							IN F.						
Ц		\coprod	\coprod		Ш	\coprod	Ц	Ц	Ц	4	H	H	-	Ц	Ц	- -	4	Ц	Ц	\coprod	4	Ц	Ц	Ц	\downarrow	Ţ	Ц		1	1	Ц	Ц		1	Ц	Ц	4	1	Ц	Ц	1	Ц	Ц	Ц	1	Ц	\coprod	1	Ц		Ц	11		-	\parallel	Œ		1	1	<u>.</u>	ет	OGR				H-		_						-			
											ŀ					-						-	\dagger		Ŀ			ŀ	. .	-				.		H	•	-					H	1	-	-	H	.	-	ŀ				.		-						UUN	(ALT	•		п.						 	<u> </u>		_		
		$\dagger \dagger$	╫	╫		\parallel	1	$\dagger \dagger$			-	H					Н	H		+	ŀ	\parallel	Н		ij	+	H		H	+	H	H	ij	ıdl			i	N	H	k		H	╫	H	F	+		+	╬	H	1	-		H	-	-	-	1		1.								ı	1								
								ľ		<u>l</u>	H					_				ŀ		-[1			-	Ш			-		Ш	1	l'i	ü				İ	u ul	ľ			.			H	-[]					[].				a 1					_		\		_											ı
		П	П.	П	П	П	H	ŀ				Ŧ		1	.]]	1		-	П	\blacksquare	ī						П	Π		Π.		П	I				ĮĮ.		1	H		\prod	П		Τ	П	F	-	Ξ.	-	Π	-		-		Ē			1	Ŧ	•			_		_			M		,	_	_	_	→	ę	+
\parallel	Н	\mathbb{H}	₩	-	#	H	+	-			H	1	+	-			<u> - -</u>	1	1.	+	1	\parallel	빆	\mathbb{H}	+	ŀ	<u> </u>	H	+	<u> </u>	H	\mathbb{H}	ľ	11		Ľ		1	1	$\ \ $		H	H	\parallel	+	╟	1		-		-	<u> -</u>	-	-					+	ĺ		_		_				١	۱.			-					
			$\ \cdot \ $		╟	$\ \ $	H			-		Ħ	- :	-	#	Ė	-			- -					+	-	Ц				E	Н						-						H				-	1:	<u> </u>		<u> </u>	H		-					<u> </u>											Æ,						
\parallel		\parallel		Ħ		Ħ	$\dagger \dagger$	Ħ	Ξ	-		 		-1	1		ļ	Ħ	Ħ		Ħ	H	Ħ		Ţ	-	Ħ		+	+	H	H	Ħ	+	ľ	Ħ	1	;	H	H	Ħ	╫	$\dagger \dagger$	H	†	\parallel	Ħ	†	-	: -		-		1	-				\parallel		#											Ш					\dagger
	Ш		#	\coprod		\prod	ľ	1								: -				\coprod	ŀ	+	-	Щ	٠.٠	1	Ц	\coprod	1	4	ŀ	1	-	1	ĿĻ		$\downarrow \downarrow$	Ĺ		4	1	H	\prod	Ц	1	Ц	ij	F	1	1				<u> </u> :					\pm	丰	+	#						#			盐		Ŀ			<u> </u>	Ш
						1							Ţ					H	H	$\ $	ŀ	ŀŀ.				-					ŀ	$\ $				H	-	·			$\ \cdot\ $							F		1	-	-		.					#	1		#		#			\parallel			Ħ		F	=		7		-
\dagger	Н	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	H	H	+		+		H		+		H				H	\dagger		ŀ		+			H			†	$\dagger \dagger$	H		-	H	H	\dagger	†	H	H	H	╫	$\dagger \dagger$	H	\dagger		H	- -	+					╫							-									-	H	H	H		H	#	H
			Ш	Ц		Ц		ij	1	ŀ	11	Ш	-	l.		-	Ш		.	Ŀ	1	1		Ш		1	Ц			-	ŀ	Ц	<u>il</u>		<u>l</u>				ŀ		IJ.		_[]	Ш				-		-		-			-																		-		Ш		
			$\ $	$\ $						<u> </u> .				ľŀ		-	-	Ŀ.			-	1						li		-				-	:	1		: :					11	+	+			1				╁.	-		1	=				Ħ		\pm		Ħ											-		1
╫	H	+	╁	╫	-	H			+						╢	+		╁	+	+	+	╁	H		+		H	+	+	╫	+	Н	#	+	╫	H	+	╁	H		H	╫	╫	H	+	╫	\exists	-		-	<u> </u>			H	-						- -		+				-				₩	H			-	+	+
		-			-		Ш				ŀ		_					-	H	-].		-																+		H					-			ŀ							-	ĺ.					-									-							
						1			-				-		П	·				-											-		1	T				Ī	П	Π			П	\prod	ŀ	If			F		Ħ.		-			-		F	<u>-</u> -																	\prod	Ħ
\parallel	H		╫	╫	╫	╫	+	H		H	╢	+	+	H	+	$\!$	$\!$	H	H	+	+	╀	H	+	+	H	H	\parallel	+	$\!$	H	╢	#	+	-	┦	+	+	╟	H	\parallel	-	$\!$	\coprod	+	\coprod	\coprod	+	$\!$	\parallel	-			-	-		4		+			+	-	<u> - -</u>				H		-		#	+		\coprod	#	#
				$\ $						╟			Ė																				1	1								1					li					$\ \cdot\ $	H		-			$\left\{ \right\}$		-						H				-						-	#
П			\prod				\parallel		Ì	Ħ	Ħ	H	1			1	П				IT		$\ $				$\ $		1	T	\parallel	\parallel	T	+	H	$\dagger \dagger$	\parallel	1	Ħ	$\dagger \dagger$		4		\parallel	†		Ħ	Ť			Ħ	\parallel	$\dagger \dagger$	⇈		Ш	\parallel	$\dagger \dagger$	1	Ħ		††	††	-	П	1				\dagger				Ш	Ш	,††	
$\!$	\coprod		11	\prod	\coprod	\coprod	\mathbb{H}	4		\coprod	\parallel	4	1	Н	\parallel	\parallel	\coprod	\coprod	\parallel	\downarrow	4	\parallel	Н	4	1	\parallel		\parallel	1	1	Ц	Щ	1	ļ	1	\coprod	Щ	1	Ц	\prod	$\!$	H		\parallel	\downarrow	\parallel	\prod	1	Ц.	\parallel	\coprod	\parallel		\coprod	\coprod	Ш	4	11	4	<u> </u>	-	4	$\downarrow \downarrow$				\prod	-	H	1	1	#	1	Ш	Ш	4	4
																																	1	1											ļ																																
													-																-			3							1				ij																	ľ	ľ															+	
·						<u> </u>		_ <u></u>	•	<u> </u>					!	٠.,	1		!	نن		1	-				4-1			ш.	• •	ά	·····	•	البن	<u></u>	لـئــ		ــنــ	.ل.د	ــــــــــــــــــــــــــــــــــــــ	اند) (V)	لـنـ		. <u></u>	<u>l</u>		L-l	٠	٠	.ئ.ل	1			ب		.1.1.	.1.1.	ш			1,1	1,1,	لبب		.1.1	Щ.	لبب		لب		نطب	لبلبا	ш	44	1

16 XY 1101

	,					_					77				1.		_	т.	1.				т.				1	-		11	7		, ,	77	-1	<u> </u>	17			_		1 :	F				1 7	7.1	-					1.	7	11	- 1	T 1	117	. I)ATI	:	4/	7/	72		NO	ZZL	.E;		7	₂ 2	2_					_
	ļ		$\ $												li																																										$\ \cdot\ $			_	res'	P	OIN	T:	L	۷				:	AC	005	TI	Ç -	2	2/		_
+	+	$\dagger \dagger$		 			H	Ť		: -	Ħ	$\dagger \dagger$	+		\parallel		+	Ħ		+	Τ	$\dagger \dagger$	╫	††	Ħ	\dagger	+	+	Ħ		+	+	Ħ	Ħ	+		Ħ	H		†		$\dagger \dagger$	\dagger	†	†	+	\dagger	$\dagger \dagger$	Ħ	$\dagger \dagger$		H	+	Ħ		††	††	Ħ	+	! —		_		TIF			ON	:	G	-		ç	0/	0				_
		11		Ш			1			Ц	Ц		\prod		Ц	\parallel		\coprod	IJ	ļ	\prod	1	Ц	\prod	H	$\downarrow \downarrow$		1	\coprod	11	\parallel	4	Ц	$\downarrow \downarrow$	4		\coprod	\prod	Ц	1	-	H	\coprod	\parallel	\downarrow		1	\prod	\coprod	\parallel	-	-	\parallel	\prod		1	1	1						DET							,					_		
										.					H	+							$\ $		ŀ										ŀ			1		l						:						H				.	-	-		Ē	A	XIA	L Ra	DIA.	: L	Q R	EF.	.(4	L L)		Ų	irr:	SE I)LT	- 5\	- □ R		
\dagger	\dagger	†		#		Η.	-1-		\parallel			.	†		††	+		\dagger		+	†	H	††	$\dagger \dagger$		+	+	-			+	-	Ħ		1	Ħ		Ħ		\parallel		i	\parallel		Ť	H	Ħ	\parallel	Ħ			\dagger		\parallel	1.	1	. ;			#	_	LO	CAT	ION	įŠ.	Ţ	RAV	ER	SE.	Ξ			VC	LT	\$) <u>\$</u>	Ŕ ₂	,	
4		\prod	\parallel	Щ			-				1	- -	1	\prod	\prod	\bot		H		1	\vdash	H	\parallel	\coprod	\parallel	+	4	\parallel	Н	H	4	4	\coprod		\parallel	\parallel	H	\parallel		\parallel		\parallel	\parallel	4	1		+	H	+			$\!$.	-		-		H	#				ZZ XIA								1,3	. vc	LT LT	ر 2	Χ.	-01	,
											-			1	1	-		П				ŀ	$\ $	H												-								П			11.	.			-	-								F_				XIA	•	_		_		_	_		VC	LT:	s <i>J</i>	D _e	= <i>0.</i> /	•
\dagger	\dagger	††	$\dagger \dagger$				†				Ħ		+	+		+		11			Ť	Ħ	$\dagger \dagger$	Ħ	Ħ	†	\dagger		Ħ		1	1	-	1	I		1	Ħ				Ħ	1	1	Ť	-	Ì			-		ŀ	Ħ	Ħ	1	.;;	1			‡ :	SCA	LE	:	X-					-					TIF NUV				
4		\parallel	-	Щ	Ш			. 1	-	-			+	1	[-]	1	ĮĮ.		\parallel	-	\parallel	\prod	\coprod	\prod	\coprod	Ŧ	1	\coprod	\prod	ŀ	1	\parallel	\coprod	Ц	ĮĮ.	-	\prod	\parallel	Ц		-	\prod	\coprod	4	1	H	- -		<u>[</u>	1	\parallel		F		-]	F		E	urc	TOC	DAL				<u>.</u>			Τ0		_			<u>-</u>	—	_	-
	-			$\ \ $	-		ŀ							-					+				$\ $		-				-		r	-	ľ	-	- :										ŀ		1			-	-	-	-		+	-	#		#	-	uro		- 2/2	13:	,					10		п-				•		-
Ħ	\dagger	1	Ħ	\parallel		Ī	†	T			-	+	+			-			1							1			1		-	Ţ	П			H					Ħ				T	1		-				H	-														ı											
4		\parallel	$\!$	-	H	-				H	+	+	ŀ			-		H	+	+	${f H}$	H	H	H		+	╠	H	H	\parallel	+	N	Ų		Ц	н	Ш	ļļ	į.		\parallel	H	\parallel	+	+	-	-						-	+	+									\	_												1	
			H		Ė				ŀ			:	=	ij		•			- -	-	-			H							1			,			li								†		ij	+		-	- -	- -			\dagger		#		=	Ħ		_		_			l					•					۳	
			П		Ė								-						-		F		Ī			T			-			I				į						-					:		H	-	-	:	-							F;		-			ı.	1212	. 47	. Li	ne.	2av	BE!	Œ					•	ĺ
╁		+	╫	╫	+	\vdash	+		H	-	H		+		\parallel		- -	H	-		+	H	H	H	-	+	-		H	+	╁		₩	H	H	1	╢	Н				-	+	+	-	+	+	+	+	1	H	- -	+	+	+			#	#	-	H	Н	H		_ -	##	#	#			Н	+1	11	#	11	##	Π	-
					ŀ				-		-	F	-						-		-		H					ŀ			1	i		ļļi											1.	-	ij.			-	-	-									7				1			I			- -							
							•		-		-			†				1	111		-		I		-					-	-	,									-								1	-			-															-					. .	-				
		1	\parallel	1	П		F		H	Ħ	Ħ		Ŧ	Ħ	Ti	-	H	1	-		Ţ	1-1	1		-	+		Ħ	11	-	1		Ħ	1	ŀ	-	1	1	T		H	Ħ	1.			Į.	H					Ħ		T	-	1				Ħ			1					Ī			-				\prod		Ħ	
H		\parallel	#	$\!$		H	4		H			-	1	F	\parallel				-		H	-				-					_		F	-	7	F	-	-	-	-	-	-		1					-	-			-	\prod	+																-			-	<u>. - -</u>	+		
			$\ $				-	.				-	†		H	- -	H	$\ $		- -			Ц	-		-	- -	-	-	- -	7	ŀ	-	-	- -	$\left \cdot \right $				-		ľ	ŀ		:			1-1			- -														#		#	ŀ						+			$\ \cdot \ $	
ŀ		П	1	П	П	Π			П		-	Ţ		Ī.	-	=			-	Ī	F	H			-	Ī	F	F		1	T						\exists	ŀ		П			ŀ	•	ŀ			H			ŀ		Ŀ	\prod	ŀ													-				-	ŀ			H	\prod	
+		-	-	-	╫	+	-	H	H		+	+	-1-	-	1-		<u> </u>		╬	1	\parallel	-	H	╢	+	+	-	H	H	1	+	-	ŀ	+	1	1	╢	╬			H	-	+	1	\parallel	1		+	F	-	-	╁	-	╢	1		+	#		<u> </u>					- -		 	H					-			+	H	
		,											+		ŀ		-	1	-					-	1						-		Ī.		1	1	\coprod									ŀ				,						-	.]]	1					-				Ħ						+					
П			П	\prod		\prod		1	П	-	-	Τ	-		-	Π.	П		1			T			T	\prod			·	,		ì						T	H		П			П					ŀ		H		-			I	T			#	- -											-			- -		-	
+	+	\parallel	╫	╫	-	+	.		╫		+	+	H	H	+	+	H	+	+	╫	╁	H	\parallel	\parallel	+	╟	H	H	+	+	╁	#+	H	+	H	H	+	+	╫	+	H	H	+	+	\parallel	+	+	\parallel	\parallel	-	╫	+	+	- -	- -	+	+	+	+	-			+	#		#	 -	#			-	H	+	H		+	#	
		Ш		\parallel	\prod	\prod	Ι.	ŀ	\prod								H				\prod							Ц				Ц			Ц	Ц	\coprod	1		Ц	Ц						ŀ	\coprod			Ц		\coprod	\prod						1								\prod		1	\prod		-			Ш	Ŀ	
																					$\ $																																												-]].										
	-									-													ļ																!]									ŀ		

ì

į

	m	77	77	a a	Τį			1	11	П	1 6	_	1	ıΤ	П	TI	11	T	11	П	77	71	11	11	П	11	77	17	7	П	П	11	11	П	П	11	11	11	11	Т	П	П	F	П	П	тт	П	Т	П	П	11	ПТ	П	11;	DAT	E: 4	4/7	18	2.	NOZ	ZLE	_	_					
		$\ $																					Ц	H								İ							i										II					#.			THIC				····		ACO				22	<u> </u>
Ħ		\parallel			Ħ			1	Ħ		Ħ	П			П	\prod	\parallel	П	\prod	\prod	T		1	1	1	Ī	T		T		П				П						T				П		Til	П	\prod	П				FJ.	_							· -		40	7/	_		
H		$\frac{\prod}{\prod}$	<u> </u>	H	#			╫	 - 	╫	H	+	+	╁		╫	#	$\frac{11}{11}$	\parallel	 	$\frac{1}{1}$	H	╫	╫	+	+	4	. .					H	╫	$\frac{11}{11}$	+	H	+	+		+	+					+	-	╫	-	+	-1 i	-	H			SE DI					•	ΩE	FSF	т		- [7
		ŀ												Ī				H		Ц	Ц				Ш				ŀ		Ц	Ц	Ц	Ц		\prod																	1		•		RAD	JAL.	R	ÉF. (¢ RSE	۱-		V	DLT			
	,	-	-		$\ \ $			- -	+	+			-	-	۱,			$\ $		-	$\ $							ľ						╢							1		- 1				$\ \cdot\ $		1		ŀ	-			R	LUU.	L I	<u>יצאט</u> ז:	E.	<u> </u>	<u> </u>	·	N.:	<u>Y</u> ! S	- PF1		- ^K 2	
H		$\dagger \dagger$			╁	 		1	+		1		1	\parallel	-		\parallel	$\dagger \dagger$	\parallel		╫	╫	1	††	\dagger				1		1	1		╢	11	┧	Ti	Ħ			Ť	T	:	ŀ		F			\parallel		-				:						RSE						<u>X</u> 0.	= 0./
\parallel		╁	-		-	4	=	- -	\prod		$\prod_{i=1}^{n}$	ŀ		-	-	-	-	#	$\!$	\coprod	\coprod	\parallel	\parallel	\parallel	\dashv	+	+		+		\parallel	\parallel	\parallel	\parallel	\prod	$\frac{1}{1}$	+	4	+	\mathbb{H}	-	-	-	H	-					H			H	H	SCA								INC	H/U	NIT	r	_е	9
								.									$\ \cdot\ $				ľ	\coprod										ľ					<u> </u>		Ш					l			Щ		l		H				1						15		F.P	.s.,	/UN	TIP		
П			\prod						-	-			-			-					$\left \cdot \right $	-									İ		$\ \cdot \ $	$\ $	1/						ľ								.	-					HIS	TOGI	ràms	:`	Н	-		TO	, H	-				٠.
\parallel		+	╫	Н	$\dagger \dagger$	$\dagger \dagger$		+	+	H		+					\parallel	╫	H	#	\parallel		\parallel		+	╬	+	\dagger	+	1	\parallel	H.		H	$\ $	1			+	1	╁	T.					+	=	\parallel							_			ı									,
\parallel	Ш	4	H		\parallel			\coprod		-	-	-	-		: -	-			1		IJ			1	\prod	4	. -	-	1									┩		\prod	4	4		 -			H	H		-	-		- - -				_	_	_[_	đ:
			$\ $						P.		3	. 3) 0	9		. 1	٧.	, .	=	0		£	/s		-		-	- -			Ĭ		İ				\cdot		-		-					- -	-11		-										-									ָ וֹד
\prod					[]	Ш	ļ _	П																ſ	-			-		Π.	İ			\prod	T				Ţ				- -						-	1			#		2			Lı	NE 1	if L	u Tiè	DVI LE	}s:E					,
H		1	#		╫				T	: = -	/6	. 4	1		°F	₹,	D	eq	=_5	0	1	, i	n.	.	-	+	+-		+	-	\parallel		9		+	\parallel	\parallel	+	+			-	\parallel						1						- 	H		Ш	Ш									\prod
\parallel	Щ	\prod			4	-			v _i	=_	۷2	4	7_	_f	/s	3,	h	=		-		i	n.		-	<u> </u>	-			-	;			\prod			4		_		-	ŀ			-		- -	- -	-																			押
					Ï	$\ \cdot\ $		17	•											•						ŀ			•					П		\prod					-	-		-				- -										井					- - - - -					
		1	Ħ					ħ	1		T	7-		-	11			П		-	:	- -	11			1	-	-			Ī.	Į								ŀ	-						\prod																		-			\prod
H		+	╫		\parallel				+		+	•		╬		+	-		\prod	H	$\frac{1}{1}$	+	+	-	$\frac{1}{1}$		- - -	-	:		H	H	H	H	1	-			-	+	+	+				- -	+	╫	 																			#
		\coprod	ij		\prod				11		Ц						1			\prod	\prod		\prod					ŀ		<u> </u>	Ļ	Ц	\coprod	\prod			Ц	1	Ш	1		Щ	١.	-		Ц	\parallel	1	1				-													-		Ш.
					$\ \ $			$\left \cdot \right $				-	-	-	F						ŀ								1																			-	.	-															-			
		1	Ħ		1	\parallel				.]]		-	-		ŀ	1	T	1		1		1		F		1						ľ	14		\parallel					-								-				1																
H	-	+	╫	$\parallel \parallel$	╫	\parallel	H		\parallel	1	H	<u> </u>		╫	H	\parallel	H	╫	+	╫	+	+	+	-	+	+	+	+	\parallel	1	H	\parallel	H	H	\parallel	╢	+	+	+		+	+		-		+	+	H	H	╫	-	H	H							<u> </u>			- - -	-		-		#
			-	Ш				_	Ŀ			-							Ш				ŀ													Ţ				1					Ш			\prod	Ц														<u> </u>				17	\parallel
										$\ $	- -	_																				ŀ	į	H																													-					$\left \cdot \right $
\parallel			\parallel		$\dagger \dagger$	$\dagger \dagger$	\parallel	Ш						\parallel	$\dagger \dagger$	\parallel	#	1	\parallel	\parallel	\parallel	\parallel			Ħ		<u></u>	φį		1	\parallel	1	H	††	T	T		1		T	Ť				П			11	1	\parallel	\parallel	Ш				-			\prod	\prod		\prod		.]]				
H	╫	+	╬	$\parallel \parallel$	+	╫		$\left \cdot \right \cdot \left \cdot \right $	+	+	+	1	H	╁	\parallel	+	\parallel	\parallel	╫	\parallel	+	+	$\frac{\parallel}{\parallel}$	\parallel	$\frac{1}{1}$	+	1	+		+	1	1	; 	H	+	\parallel	- -	+	+	+	+	+	\parallel	+	H	H	+	╢	+	∦	╫	\parallel	+	H	₩	$\parallel \parallel$	╫	$\parallel \parallel$	╫	H	H	$\parallel \parallel$	╫		\mathbb{H}	$\ $	H	#
1:	1	1:	11		Ц		!						$\ \cdot\ $	Ш				$\ $			1					1		1						$\ $	$\ \ $		П				1						IJ.					Ш										Ш	Ш					
ſ.		· L_		1					ئنہ	++	-1-	÷	<u> </u>		•••												_	_	_	-	_	-	•	0				-	_			_		_			77			1																		

DATE: 4/7/82 NOZ	ZLE: #2
TEST POINT: L.V	; ACOUSTIC - 207
PLOT IDENTIFICATION :	6-40/2
AXIAL	☐; OFFSET -☐
RADIAL REF. (LOCATIONS' TRAVE	
AXIAL REF.	□ ; N.S □)- VOLTS\ X
AXIAL, REF.(LOCATIONS' TRAVE	
SCALE : X-AXIS= 7.6 Y-AXIS= 37.	F.P.S./UNIT
HISTOGRAMS: H-	то н-
	اٰ ہے ۔۔
	LIPE OF LU TRAVERSE
	·
	900

ПТ		TT	TI	П		ГТ		П	П	Т	П	П	П	П	Т	Т	П	П	Т	П	Tī	Т	T	ŦΤ	7	П	11	11	Т	7	П	тт	-	ΤŢ		1	П		П	77	į		1-1	741	_	11	_	177					-1-7		_			.,					D	ITE:		(c/	-/	'g ɔ	,	l M	07:	ZLE			#.	2						
		ļ																																										ľ											1	$\ $	H		-	.		#		ST	_	_								_			TI	· -	_	_	_	_
								1	1						Ī															Ţ	П	П	T	Ħ	Ì		П	1	Ħ	H	Ť	Ť	Ħ	П	+	Ħ	11		T	T	Ħ	П	H	1	1	\parallel	$\dagger \dagger$	1		Ť.	1		_	OT.	_		_						_	_				-		-/.	<u>-</u>	
	╫	\dagger		#	+	+	\parallel	H	\parallel	+	+	Н	H		\dagger	H		H	+	+	H	+	╫	H	+	+	\parallel	H	+	+	-	H	+	H	+	+	H	+	·	H	+	H	-	H	+	H	H	-	4	H	\parallel		╢	H	\dashv	-	ł		-	-	1	-	T	LAVI	ERS	Ε	DET	ΆI	LS	<u>-`</u>		_		_				_			_	_
	\prod	\parallel			Щ							Ц			ļ	H	1	Ц		1	\prod	-						Ц	Ц	ŀ			1		-			1	Ц	Ц				Ц			\prod	ŀ											ŀ	ŀ				AX	ĮΑL		Ø	_ :	(ţ_	-	٦ مر	3	ì	0	FFS	ET	. 70		- [
					ŀ	- -	-	ŀ	-	-			[]		-	.		- -		1	ģ					,																		$\ $		ŀŀ			-]	1		- -			-			Į .	AXI	.00	AT	ION	5,		(E.F	ΥE	RSE	<u> </u>				VO	LIS	(?	Ř.	≠4 2	es '
	П	\prod						Ŧ	H	1.	1		-		Ŧ					ŀ	\$	۱	T	1	Ţ	1	1			\$		Ħ	1		,		Ħ	İ		Ħ	Ť.	b		Ħ	T	\parallel	2		-	-	-		150	1		. :			+				Ē	RAI	31.4	L L A	LJ XIA	: .L.	Ε.	.W. REF	.(C])-	•	N.	.5.	-	- 1				
	\parallel	H		1,1				1		+	 		1	H		-	1	-			1	H		3	?	1		3		0	-	- -	^ -		3	<u> </u>		-	+	H	$\frac{1}{1}$	Š		╂	+	- -	7	-	-			-			H			-	9		: -			_	-				-	_	_							_		Đ	<u>eq</u>	_
<u> </u>	\coprod	<u> </u>				4		-	•		1		1		-		4					\prod		3		-	1	*		t	1	Ц	\perp		3		Ц			Ц		2		Ц						Ĺ						ŀ			3	‡	<u> </u>			ALI	: :					•						CH/ P.S						
									ŀ				-		ŀ			-					-}		ĺ		-				ľ												-			-			Ť	-	-	ŀ			$\ $		-	1	+		1	#	Н	ST(OGF	AM			-							H		_	_		_	
		\prod		•				1			-			Ē		ŀ	-	1		1				F		1	1	M,							T		Ī	1	+	Ħ		$\ \ $	+		-			\parallel		1	=	-		-	#	-											_		_		•		.	_								_
	H		H	\forall		\forall		ť			+								H	+	t	1	+	H		1	+	∦	Н		-			+		•			ŀ	H	H		+	H	1	-		Н	- - -	-		- - -			+		 -			ŀ		- -						٠.	_	_	٤	. 116	. .	7	u	76	<u>'</u>	sie i	ſΈ			
	#	Ш	$\left \cdot \right $	\prod	1	\parallel	1			:				-	F		-		-		¥	1	-				1	١.				·	-	-					1		ı				ļ					1							-			ŀ	1					L	_				• • •	-•			_		. –				٠ ﴿	4
	l							-		ŀ			-	H			-	: .	-	-							١,		ı					ال				F		í										h	1						-					+					ļ-, -		_/													ı
						\prod					-	-			-			1								The same		I						ľ						ı										Ĭ,						i	Ť				ŀ							1,	Ħ.		11:	1	Ħ	#	#	!	#	Ħ	<u>+1</u> .	<u> </u> -	H	
	╫		\parallel	1		:	Ħ	f		1				H.						i								k				h	ľ			ı	H	,	Ĥ		H	1			ŀ		j	1	Ì		į		H							H		ij		\blacksquare							H										\parallel	
#	-	$\left \frac{1}{4} \right $	╫	\prod	1	+	$\!$	H	1		-	1				1	Ш			ij.			ľ																	į									ij										ì																				+	•		
Щ									-										ì	ii E			i 1			Ï		4		į			4	Ė	11		i .				į																			į.		į	J							i i				-								
									-	-		-	-			1							ŀ			i			7	1127			į	ŀ		1				I			No.	1				ĺ	i.	C,			ا	III	I		#. -				ļį.	į	ı		H					ij			#			Ħ.					H	
$\parallel \parallel$	1		-	#	††	††			+	-	 -	+				1			H.										100					1						1	3				Ì							į						i.	排掛	1	ì		W					ļ						-		-		H	- - -	-[]	H	
+ + +	-	$\ \cdot\ $	╫	H	\parallel	+	\parallel		+	-	-			4		-	H	H						ŀ												İ						1	4		ľ							Ц				ij		şi.		. ' . '	Ĭ			`	ſ											<u> </u>						
	Щ	Щ	\coprod	\coprod		\prod	Ц		1					Ŀ	ŀ				ľ	ļ				4			Ψ.	į										1		ľ	j]		.]]		IJ												ή	Ŋ	I				ij	M								+	-						
																	I											ľ										П			1			T								7					7		ľ		ij	ľ	111	M			H	#			ŀ			+						#		
				\prod	\parallel	\parallel	\parallel	H		F	H				H	Ħ	M	#				+	$\dagger \dagger$	T				╫	1			1	\parallel	\parallel	 		\dagger			+	+	$\dagger \dagger$	-	\dagger	H	\dagger	+	+	H	H	\parallel	┧	+	+			+	\parallel	#		╫		1		\mathbb{H}			╫	-	Ш			\coprod	.,	,	H		\ -	1		H	
	H		╫	#	╫	╁	H	\parallel	+	H	\parallel	\parallel	Н			+	╫	+	H	\mathbb{H}	7	+	H	H	4	4		\parallel	-	-	H	+		-	-	H	-		\parallel	+		H		+		1		+		H	H	\parallel					\prod	H	-	4				1										1] -			
				-	-	\prod	\prod		-	\coprod	\prod					1	╢			<u> </u>	4	1		\parallel										Ц			-											1														ŀ		=										ŀ				-	[.	.		
i^{l}	[i]	1		\prod	1	!	11			$\ $	Ľ	4	<u> </u>		\prod	1	\prod		H	11	П	1	П			$\ $		$\ $			П					П		11	11		1		ĺ		\prod	$\ $				\prod	\prod	П			П	П	il	П		П	П	П	П	П	П	Π	ŢŤ	П	П	14	1	П	T	П	\forall	П	П	T	\mathbf{H}	П	1	

	┇╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏	ZLE: #2_
	TEST POINT; L.V	
	PLOT IDENTIFICATION :	6-4018
	TRAVERSE DETAILS. AXIAL	Ø; OFFSET -□
	RADIAL. REF. (C)- VOLTS) R = 0
	LOCATIONS' TRAVE	RSE - VOLTS/R2
	AXIAL REF. (LOCATIONS' TRAVE	
	SCALE: X-AXIS= 7-	
		75 F.P.S./UNIT
	HISTOGRAMS: H-	TO H-
		,
<u> - </u>		
	LIVE 6	THE TRAVERSE
-		
45		
		cs:

XY 1101

ç

OF POOR QUALITY

NOZZLE:

#2 . .

ORIGINAL PAGE 18

ORIGINAL PAGE IS

XY 1101

2

NO. XY 1101

Mo. XY 1101

DATE: 4/7/82 NOZZLE: #2 TEST POINT: L.V. -; ACOUSTIC - 213 PLOT IDENTIFICATION: TRAVERSE DETAILS.

AXIAL M: (L) - M: OFFSET - D: OFFSE VOLTS) X = SCALE : X-AXIS= 7.07 INCH/UNIT Y-AXIS= 315 F.P.S./UNIT TO H-, " HISTOGRAMS: LINE OF W ROUBESE

ORIGINAL PAGE IS OF POOR QUALITY

Ro. XY 1101

OF POOR QUALITY

ORIGINAL PAGE IS

_	_		_	<u> </u>
	-			DATE: 4/8/82 NOZZLE: #F2
H	-		Ė	TEST POINT: L.V ; ACOUSTIC - 214
	-	ř	:	PLOT IDENTIFICATION: 'G - 404/
	-		-	TRAVERSE DETAILS.
Ц	-		-	AXIAL □: (t □; OFFSET - □
			-	, RADIAL, REF.(C)- VOLTS) R = LOCATIONS' TRAVERSE - VOLTS R =
П	1		-	RADIAL [] : E.W [] : N.S []
	1	-	-	AXIAL REF.()- VOLTS) $\frac{X}{D} = 0.7$ LOCATIONS: TRAVERSE - VOLTS) $\frac{X}{D} = 0.7$
1	-	l	-	SCALE: X-AXIS= 3.33 INCH/UNIT
			1:1	Y-AXIS= 375 F.P.S./UNIT
		-		H1STOGRAMS: H- TO H-
E	-		-	
H	7		-	
H	1	ŀ	-	
Ц	,		Ε,	€
		Ξ		
Ц	_			LINE OF WTRAVERSE
П	-	-	7.	Tire to indicese
Н	į	l	- -	<u>┇</u> ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇
П		-	T	
		•		▐ ▝ ┆╌┩┸┼┦╸ ╒ ╬┞┦┸┼┼╃┸╇┩┩┹┩┼┼╃╫╢╃┼┧╏╟┧┠┩┞┦╽╽╎┞╬╸

п	ı	11	71	тг	7 7	17	ŧΤ	11	т	T I	1	Τ.	П		П	П	1	П	11	-	ŗ-	П	TT	1	r	Т	П	17	77	77	Τ.	П	11	-	1	1 1	_	-,-	_	11	т	-	_	П		т	_	_			11	1"1	777				7		T-1-1		
								-		H	-		H							1									П		l		ŀ				H	1		П							11												$\ \cdot\ $		DATE: 4/8/82 NOZZLE: #-2
H	tt	Н	\dagger	$\dagger \dagger$	H	†	H	tt		H	1.	+	H	T		$\dagger \dagger$	†	Н	H	\forall	Н	1	$\dagger \dagger$	H	t	\dagger	+	H	╢	t	+	Н	╢	t	+	T	Н	+	t	$\dagger \dagger$	H	$\dagger\dagger$	†	H	$\dagger \dagger$	H	H	+	H	H	╁	╁	H	\dagger	+	H	#	1	1	+ [TEST POINT: L.V ; ACOUSTIC - 214
Щ	Ц	\coprod	\coprod	\coprod	\prod		Ц	Ц	Ц	Ц	1		Ц			Ц	1	Ц	Ш	Ш	Į.	Ц	\coprod	Ш			Ц		Ц	Ţ		Ц		1		Ц	\prod	\downarrow	1		\prod]		ŀ		Ц				Ц		-[]]].]			PLOT IDENTIFICATION : G-4042
				$\ $		П		$\ \cdot\ $	Н	П			11	-			-			-	!		H					H					H	-								$\ $			ŀ				-	-	ľ	11							- -	`	TRAVERSE DETAILS.
ł		$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	+	╫	11	╁	╁	+		Н	H	+	H	+	+	Н	╫	H	1	H	╢	+	+		╁	╢	H	-	╫	╢	╁	+	╁	Н	+	+	H	╫	╁	+	+	H	1	╢	-	╫	-	╁	H	╂	+	4	Н	H	+			AXIAL : (- []; OFFSET - []
		Ц			\prod				Ц												Ш		Ш											1														-		-	-	$\ $	$\cdot \parallel$								AXIAL : (- :) : OFFSET - : RADIAL REF.(() - VOLTS R - LOCATIONS TRAVERSE - VOLTS R 2
				\prod	\prod				$\ $			-	\prod	Н									-	\prod																П	H			-		П		T	П	П	-		ŀ			1	1-			[.]	RADIAL 🔀 : E.W 🔯 ; N.S 🗀
H	\vdash	╫	${\parallel}$	╫	╂	+	H	╁	╫	H	+	+	╁	H	+	╫	+	+	H	H	H	╫	${}^{\!$	H	#	+	-	H	H	H	- -	+	H	╀	+	H	H	╢	╬	-	₩	H	+	+	+	H	H	+	H	+	╟	+	╁	+	+	\parallel	\parallel	\parallel			AXIAL REF. ()- VOLTS $\frac{X}{D} = 4.4$
	Ш																	-																	ľ									1											*	•		j.	† †	7	SCALE: X-AXIS= 3.33 INCH/UNIT
			П	$\ $				П		П	F					П				\prod		T	\prod	Π		Ţ		П		П		П	F	T		П	П				П		T	7	П	П	П		1	1	-		1			1		ŀ			. Y-AXIS= 375 F.P.S./UNIT
H		╬	$\!$	$\frac{1}{1}$	$\frac{11}{11}$	╣		#	₩	\coprod	-	-	H	\parallel	-		-		\coprod	4	$oldsymbol{\perp}$	Ц	\parallel	\coprod	$\frac{1}{1}$	+		-	$\!$	\parallel	1	Ц	┦	╀	4	\coprod	\prod	\mathbb{H}	_		\prod	\prod	\prod	1	1		┦	-		\prod	\prod	μ	1	\coprod	1	1	1	H		-	HISTOGRAMS: H- TO H-
			11	$\ $	\parallel				$\ \cdot \ $			-			1						.		11								ľ			ŀ					l			i						-				-	. -			ŀ		-			
П	П	П	Ħ	T	П		П		Π.	1.						-	T	T	Ħ	\prod			П	1		T	1	П	Ħ	П			Ħ	T	ĺ	í	Ï,		į,	î	Ī		Ħ	Ť	Ħ	Ħ	Ħ	Ţ	H.	IT	lt	Ħ	\dagger		+	1:	†	F	\pm	7	
-	-	$\!$	\parallel	1	-	:	\parallel		-	H	H		\parallel		-	H.	H	1	Ц	4	$oldsymbol{\downarrow}$		H	\coprod	\parallel	-	-		11	\parallel	1	\parallel	\prod							<u> </u>	11		Ш	1			\parallel	4			ļŗ	П	Ц	\downarrow		Ŀ		Ŀ		!!!	t
	$\ $			-	-{			-			$\ \cdot\ $				1	П	$\ $	-					H	Н		1				Н	1				1		H		l												11	$\ $	17			1				7	
		Ħ	Ħ	\dagger	††	1	1	T	,	H		+	$\dagger \dagger$	H	†	H	П	+	Ħ	\dagger	Ħ		\parallel	$\dagger \dagger$	H	t	T	\parallel	Ħ	\dagger	†	1	H	ı	Ť	1	$\dagger \dagger$	╫	۲	+				\dagger	\dagger	\dagger	\dagger	H	H	\parallel	H	H	\parallel	\dagger	7	+	i	1			LINE OF IN TRAVERSE
-		┨.	╢.		<u> </u>	\coprod	Ц.				\coprod	1	Ц	-	1	\coprod	\coprod	1	Ц	4	\perp	1	\coprod	Ц	H	ŀ			\prod	Ц	1			ı	1			Ш				И				Ц	\prod	\perp		<u> </u>]].	\coprod						·	11	
	$\ $																						$\ $	H											ł					ĺ		М		1				l	١								ľ	-	-	-	
H		$\dagger \dagger$	#	#	11	-		H		H	H	+	H	H	1	H	1	†		#	H	+	$\dagger \dagger$	$\dagger \dagger$	\dagger	\dagger			H	H	+	+	Н		+		$\dagger \dagger$	╢	1	+	H	Н		+		+		H		-	H	H	+	+	+	+	ŀ	+	╂.	- -	<u>┩╏╬┸╏╃┻┇╘╙┇╏┖┧╏┧╬┸╁╬</u> ╬╏╧╬╏┾┩╏┼╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏ ┨┇┆╎┎╏╎┼┇╏┼┇╚┩╏╾╏╍╸╎╏╬╬╬╬╬╬╬╬╬╬
		\prod	\coprod	\coprod	\prod	Ш	ļ	\parallel		Ц		.	Ц	Ц				1	Ц	川		1				-			Ц	Ц	Ц		Ц				Ц	Ш								ŀ						Ц					ļ	ŀ];		
			$\ $	$\ \cdot\ $	$\ $			-	.	Ш				H	-	-	11	- -		$\ $. .		$\ $			'	ľ			$\ $			H		ľ		$\ $						k		ļ			П	•				\parallel			ŀ			- -		
H	+	#	#	╫	#	H	+	-	-	H	+		+		-	H	H	ŀ	\prod	\dagger	H	1.	H	H	+	\dagger	-	\parallel	H	H	H	+	Н	╢	+	H	╫	╢		+	-		Ш	+	+	1.	H	H		4	1	-	╫	+	╬	H	-	+	- -	+-	┃ ┫╸╸╸╸╴╴┠┈┼┧╏┡┆╍╸╸╸╸╸╸╸╸╸╻╸╻╻╸╻╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸
	Щ	\parallel	-			11			<u> </u>	Ц	Ħ	1		<u> </u>	-	<u>.</u>		1	-		╽	_	-		<u>. </u>		:	-	1			-					Ц												-		·	-		-	ŀ			ŀ	1		
				.	$\ $					1		-		[1			+		\parallel			$\ $	$\ $.		$\ \ $					ŀ	-	\prod					\prod	$\ \ $			1	[]	\prod		Ţ,].	П	П			П		F		-	
H	╫	H	#	#	$\dagger \dagger$	${\dagger}$	+	+	+	H	╢	+	+	H	+	╫	H	+	+	\forall	+	+	H	H	H	+	+	${\mathbb H}$	╫	H	╢	+	H	H	+	H	╫	H	H	+	\dashv	\parallel	\parallel	+	+	+	H	4	\parallel	4	4	#	╫	+	ŀ	+	\prod	+	+	+	
	<u> </u>		F		11	\coprod					\prod				-]	1															$\ $									1						-		1	=	-			- _ :	$\ $	1 1
			-	1	$\ $				$\lceil \lceil$							-							F							П	1									7	1					T	T				1	fl-	F	1			ŀ				
†		#	H	1	$\dagger \dagger$	$\dagger \dagger$	+	1	1	H			H	H	+		H	†	$\dagger \dagger$	$\dagger \dagger$	Ħ	+	H	H	╢	\dagger	+	H	H	╁	\parallel	+	╫	H	1	\dagger	H	H	1	+	+	#	H	+	+	+	╫	╢	+	-	+	H	╫	╁	╢	+	+	+	╫	+	┇┇┆┇┇╬┇╬┇╬┇╬┇╬┇╬┇╬┇╬┇╬┇╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
	-		ļ	\coprod	\prod	$\downarrow \downarrow$	ŀ	ŀ		\prod		\coprod		\prod	_	-	\coprod	1	\parallel	\coprod	₽	1	\coprod	┦.	<u> </u>				\prod	\prod	\coprod	1	\prod				\coprod	Ц	\$				\prod		\prod	1	\prod	\prod	Щ									-			
																															·															ŀ													-	.	

ORIGINAL PAGE IS OF POOR QUALITY

	DATE: 4/8/82 NOZZLE: #2
	 TEST POINT: L.V ; ACOUSTIC - 214
	PLOT IDENTIFICATION: G-4044
	TRAVERSE DETAILS.
	AXIAL : C - : OFFSET - : RADIAL REF.(C)- VOLTS R = LOCATIONS TRAVERSE - VOLTS R2
	RADIAL REF.(Ć)- VOLTS\R_ LOCATIONS' TRAVERSE - VOLTS\R_2" RADIAL X : E.W 187 ; N.S □
	RADIAL <u> </u>
	AXIAL; REF.()- VOLTS) $\frac{x}{D_{eq}}$ /2
	SCALE: X-AXIS= 3,33 INCH/UNIT
	Y-AXIS= 375 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
	•
	LINE 5F W TRAVERSE
	╶ ┇┇╒┇┇╒╒┇┇ ┵┡╫┼╫╫╌╃┇╌╏╏╫┆╟╫╫┼
	▗
\$3. d	

XY 1101

£

ORIGINAL PAGE IS

DATE: 4/8/82

TRAVERSE DETAILS.

TEST POINT: L.V. -PLOT IDENTIFICATION :

NOZZLE:

AXIAL : (-) : OFFSET

RABIAL REF. (() - VOLTS

LOCATIONS TRAVERSE - VOLTS

RADIAL : E.W. - SS ; N:S. - []

AXIAL REF.()-LOCATIONS TRAVERSE -

.Y-AXIS= 375

H-

SCALE : X-AXIS= 3,33

HISTOGRAMS:

#2 : ACOUSTIC - 214

INCH/UNIT

TO H-

F.P.S./UNIT

- 🗆

 $\frac{\text{VOLTS}}{\text{VOLTS}}$ $\frac{X}{D} = 0.2$

G-4046

Model 2 Test Point 222

ORIGINAL PAGE IS

ORIGINAL PAGE 18 OF POOR QUALITY

	TI1
	DATE: 4 8 82 NOZZLE: #2
	TEST POINT: L.V ACOUSTIC - 277
	PLOT IDENTIFICATION: G-4057
	TRAVERSE DETAILS.
	AXIAL : (- : OFFSET - : OFFSET - : VOLTS R
	RADIAL REF. (C) - VOLTS) R
	RADIAL X : E.W PS ; N.S D
	AXIAL REF. (-) - VOLTS X - 43
	SCALE: X-AXIS= 3.33 INCH/UNIT ** Y-AXIS= 375 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
	71:-
┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
$P_r = 3.3/2$, $V_{a/c} = 400$ f/s	
T _T = /707 °R, D _{eq} = \$.09 in.	LINE OF HE TEMPERSE
[-[-]	
v _{j=24st f/s, h = - in.}	
	·┃┃ - - - - - - - - - - - - - - - - - - -
, The state of the	

ORIGINAL PAGE 19 OF POOR QUALITY

ORIGINAL PAGE IS

KO

No XY 1101

MAKEORDING CHARIS
GRAPHS CONTORS CORPOSITOR ()
SUFFALO NEW YORK () ()

و ٠

ORIGINAL PAGE IS
OF POOR QUALITY

No. XY 11O1

ORIGINAL PAGE IS
OF POOR QUALITY

XY 1101

9

XY 1101

Ş

מאים/ג אוויוט . 3

DATE: 10/15/8/ NOZZLE: #3

; ACOUSTIC - 32/

1.1.

10)

G - 136

TEST POINT: L.V. -

TRAVERSE DETAILS.

PLOT IDENTIFICATION :

B REGISTING CHARMS

CAMPING TOWINGS CORPORATOR

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

AMERICA MAN WORK

XY 1101

õ

No XY 1101

C2 TU2

No. XY 1101

Model 3 Test Point 314

DATE: /0//6/8/

NOZZLE:

OF POOR QUALITY

BARCORDING CHARTS.

ORANG CONTROL CHARTS.

BUFFAC, VEW, "OR.

PARTIES OF U.S.

Mo. XY 1101

No. XY 1101

•	DATE: 404 404 NO77LE:
	DATE: 10/16/8/ NOZZLE: ##3
	TEST POINT: L.V ; ACOUSTIC - 322
	PLOT IDENTIFICATION: G- 17/
	TRAVERSE DETAILS.
	RADIAL REF. (C)- VOLTS R
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AXIAL L: (L - D; OFFSET - D RADIAL REF. (L) - VOLTS) R LOCATIONS; TRAVERSE - VOLTS R 2
] RADIAL [_! : E.W [] ; N.S []
	AXIAL; REF.()- VOLTS) X = LOCATIONS; TRAVERSE - VOLTS) Deq
	SCALE: X-AXIS= 7.08 INCH/UNIT
	Y-AXIS= 4/8 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
<u> </u>	
<u>┟╅╫┸┩╻</u> ╱┊╁╂╃┩┟╃╏┆┧┪┇┩╏╌╎╎┇┋┩╬┈╌╬┪╌╬╅╌╬╬┼┼┩┇╬┼┩┲┇╫┼┼┧┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	LINE OF LY TRANSPEE
	(
T _T = 1719 °R, D _{eq} = 5.67 in.	
[[-]][-][-][-][-][-][-][-][-][-][-][-][-	
v _j = <u>2474</u> f/s, h = <u>0.81</u> in.	
	· <u> </u>
<u>╒╎┧┎╎┪╒╌</u> ┆┎┎┊┆┧ <u>┎╒</u> ┆┆┧┎┆┆┼╀╫╫┼┩┪┆┆┆┆┆┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
	<u> </u>
[-]	
┍╫ ╒╒┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
HEAL Distribution of Medical Property (I'M THE TOOLNAME OF DE CONTROL OF THE PLUT	
	p.(4[6]7 1

ORIGINAL PAGE IS

No XY 1101

MACCHAING CHARTEN
GRAPHIC CHRONICAS
GRAPHIC CHRONICAS
GRAPHIC DR. VOR.

BERTIE DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. VOR.

SPORTED DR. V

₩ XY 1101

Model 4 Test Point 407

OF POOR QUALITY

A 100

XY 1101

2

No XY 1101

ş , J.

RAPPECORDING CHARTS GRAPHC CONFRIS CORPOPUTON BUFFLC NEW YORK PHYTOW USA

Model 4 Test Point 414

XY 1101

ç

original page ig

MECCONDING CHÁRIG GALPHC CONTROLS CORPORATION BUFFALO NEW YORK PTIMTED IN U.S.A.

No. XY 1101

DATE: 10/28/81 NOZZLE: #4

TEST POINT: L.V. -

No XY 11O1

RECORDING CHARTEL

NAPHIC CONTROLS CCRPORATH

BUFFALO NEW YORK

PERMIS IN U.S.A.

V/Out

411

Model 4 Test Point 421

ORIGINAL PAGE IS OF POOR QUALITY

OF POOR QUALITY

Model 4 Test Point 422 T (

No XY 1101

ES RÉCORDING CHARTE GRAPHE CONTRES CORPORATION BUFFALD NEW YOR PRINTED M USA

XY 1101

£

NOZZLE:

É

DATE: 10/28/81

HISTOGRAMS:

TEST POINT: L.V. -

PLOT IDENTIFICATION : TRAVERSE DETAILS.

NOZZLE:

SCALE : X-AXIS- 2.22 INCH/UNIT Y-AXIS= 407

H-

AXIAL REF.()-LOCATIONS TRAVERSE -

RADIAL [_] ; E.W. - □ ; N.S. - □

#4

ACOUSTIC - 422 259

- 🗆

VOLTS \ \frac{X}{D_{eq}}

F.P.S./UNIT

LINE OF LU TRAVERSE

70 H-

OF POOR QUALITY

5.2.7 Laser Velocimeter Data of Model 5

.

ORIGINAL PAGE IS

ACOUSTIC - 513 6-597 - 🗆 RADIAL 🗀 : E.W. - 🖂 ; N.S. - 🗔 VOLTS) X = AXIAL LOCATIONS: ORIGINAL PAGE IS INCH/UNIT Y-AXIS= F.P.S./UNIT TO H-

INCORRECT X-SCALE 4/30/52

INCORRECT DATE: 4/30/82 : ACOUSTIC -5/3 TEST POINT: PLOT IDENTIFICATION : G-599 ORIGINAL X-AXIS= INCH/UNIT Y-AXIS= F.P.S./UNIT PACE 18 HISTOGRAMS: TO H-

THEORRECT X SCALE: USE G-5996. G-598 is OK

Ito. XY 1101

NOZZLE:

#5

ACOUSTIC - 5/3

₩ XY 1101

OF POOR QUALITY

PLOT IDENTIFICATION: G TRAVERSE DETAILS. AXIAL : (- RADIAL REF. ()- LOCATIONS: TRAVERSE - RADIAL : E.W SE AXIAL REF. ()- LOCATIONS: TRAVERSE - SCALE: X-AXIS= 3.32 Y-AXIS= 3.74	ACOUSTIC - 5/3		
TRAVERSE DETAILS, AXIAL □: ← □ RADIAL REF.(← □ LOCATIONS: TRAVERSE → RADIAL E.W. → AXIAL REF.(→ LOCATIONS: TRAVERSE → SCALE: X-AXIS- 3.32 Y-AXIS- 3.74 HISTOGRAMS: H- T	PLOT IDENTIFICATION: G-62		
RADIAL REF. (C) LOCATIONS: TRAVERSE - RADIAL X: E.W SE AXIAL REF. () LOCATIONS: TRAVERSE - SCALE: X-AXIS= 3.32 Y-AXIS= 3.74 HISTOGRAMS: H- T			
RADIAL E.W AXIAL REF.()- LOCATIONS: TRAVERSE - SCALE: X-AXIS= 3.32 Y-AXIS= 374 HISTOGRAMS: H- T	OFFSET - [] VOLTS\ R _		
AXIAL REF.()- LOCATIONS: TRAVERSE - SCALE: X-AXIS= 3.32 Y-AXIS= 3.74 HISTOGRAMS: H- 7	VOLTS \ R VOLTS \ R R VOLTS		
SCALE: X-AXIS= 3.32 Y-AXIS= 3.74 HISTOGRAMS: H- 7	VOLTS \ X = VOLTS \ Deq		
Y-AXIS= 374 HISTOGRAMS: H- T	INCH/UNIT		
LINE OF L	F.P.S./UNIT		
LINE OF L	н-		
	(
	TRAVERSE		
┃┇╹┤┃┞┦┡┹╃┩╀┼╟┼ ┇╘╇┩┩╃╃╇╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃┩┩┩ ┩	· · · ·		
╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒			
	* *		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			

ORIGINAL PAGE IS OF POOR QUALITY

.,5	
1+1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	o / 82 NOZZLE: 平5
TEST POINT	T: L.V ; ACOUSTIC - 5/3
PLOT IDENT	rification: G-614
TRAVERSE I	
AXIAL	□: ¢ - □: OFFSET - □
RAC 1.OCATI	DIAL REF.(C)- VOLTS)R 10NS' TRAVERSE - VOLTS R2
RADIAL	X : E.W 🖼 ; N.S □
	XIAL REF.()- VOLTS $\frac{X}{D_{eq}}$ O
	X-AXIS= 394 F.P.S./UNIT S: H- TO H-
SCALE :	X-AXIS- J.J. 2 INCH/UNIT TO S
	377 7.7.3./0411
HISTOGRAM	S: H- TO H- 9
	LINE OF LU TRAVERSE DAGE
	LINE OF IN TRAVERSE D
┇┆╡╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	······································
╻╸┇╸╬┸┸┸┸┸┸┸┸┸┸┸ ╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
┲┼┼╒┦┼┸┼╸╸╸╅┸┼┸┪╸┼┸╌╸┎╸╸╸┼┦╅╌╏┩╸╌┸╇┵╏╸╅╷╶╅╇╏╌┆╸╏┎┆╅┩╢╟╏╒╟╫┩┍┽┤┦┡┸╅╅┩╒╸╏╶╀┸╅╃╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅╅	╿┈┊┩ ┛═┷┼╃┩┼╬╸╀╌┆╽┦╬╘┆┆┆╏╅┼╬┇╏┇┧┟╏ ┇┇┇┇╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
┃┆┆┍┩╌┩╸┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩	╒═╌╤═╼ ╒╶┊ ═╇══╤═╇═╀╼╀╌┼╸ ╒ ╡╶ ┾╉═╶═╼═╬═╇═┼┈╘═╬┈┼
	<u> </u>
─────────────────────────────────────	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

RADIAL DISTALICE

DATE: 4/30/82

TEST POINT:

NOZZLE:

#5

6-615

ACOUSTIC - 5/3

PLOT IDENTIFICATION: 6 - GAL TRANSES DETAILS: ANIA			DATE: 4/30/82 NOZZLE: ##3- TEST PDINT: L.V ; ACOUSTIC - 373
RADIAL REF. (C) - VOLTS R VOLTS R LOCATIONS TRAVERSE - VOLTS R RADIAL REF. (C) - VOLTS X LOCATIONS TRAVERSE - VOLTS D R LOCA			
AXIAL REF. ()- VOLTS) X VOLTS) Den SCALE : X-AXIS- :3,32 INCH/UNIT Y-AXIS* 39 \(\) F.P.S./UNIT HISTOGRAMS: H- 1443 TO H- 1445- CHIRDWISE LU TRAVERSE			RADIAL REF.(C)- VOLTS R LOCATIONS TRAVERSE - VOLTS R
CANADOMSE LU TRAVERSE			AXIAL REF.()- VOLTS X LOCATIONS TRAVERSE - VOLTS D."
CANADOMSE LU TRAVERSE			Y-AXIS* 394 F.P.S./UNIT HISTOGRAMS: H-1443 TO H-1445
┊┍┍╒┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒			CHIRDWISE LU TRAVERSE
			4
		┸╇┸╌┇┸┸┷╊╌╏╌┦┸┰┇╌╝╏┇┹┸┰┸ ┸╃┰╒┰┰┲┧┌┸╂┰┰╏╌┰╏╌┸╏┲╬┢ ╩╏┌═╏═╏┰╏╏┼┼╇┇┎┎┸┇╬	┍═╬╌┷╁╌╅┸╌╬┸╌═╅╌═┇╅┸╌═╬╌╫ ═╅╌┙╃┧╅╁╌═╅┵┵┯┯═╧┺┩┯╫╒╫┆╎┼┼┦╎╏╎╬╣ ═╫╌╅╫╫╫

#5 NOZZLE: ACOUSTIC - 513 TEST POINT: PLOT IDENTIFICATION : G-618 TRAVERSE DETAILS. AXIAL : AXIAL □ : ᠿ - □ ;

RADIAL REF.(ᠿ)LOCATIONS' TRAVERSE -RADIAL : : original page is SCALE : X-AXIS= 3.32 INCH/UNIT 394 F.P.S./UNIT Y-AXIS= HISTOGRAMS: H- 1446 TO H- 1448 CHURDUIGE LV TRAVERSE 1101

A MODING DISTANCE

Ho. XY 1101

NOZZLE: #5 DATE: 4/3./82 ACOUSTIC - 573 6-620 PLOT IDENTIFICATION : TRAVERSE DETAILS. - 🗆 RADIAL X: E.W. - [] ; N.S. - 18 VOLTS) X = AXIAL. :3,32 INCH/UNIT SCALE : X-AXIS= 394 F.P.S./UNIT Y-AXIS* HISTOGRAMS: H- /449 CHOROWISE LU TRAVERTE

	DATE: 4/30/82 NOZZLE: 75
	TEST POINT: L.V ; ACOUSTIC - 573
╃┩╇┩╸╏┸╅┸╇┩╏┸┰╁╏┸┰╁╏┸┸┸┦┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸	PLOT IDENTIFICATION: G-622 TRAYERSE DETAILS.
	AXIAL : d - : OFFSET - :
	RADIAL REF.(C) - VOLTS R. LOCATIONS TRAVERSE - VOLTS R.
	RADIAL
	AXIAL REF.()- VOLTS \ \frac{X}{D_{eq}}
	SCALE : X-AXIS= - :3.32 INCH/UNIT
	Y-AXIS= 394 F.P.S./UNIT HISTOGRAMS: H- TO H-
	HISTOGRAMS: H- TO H-
	- HINDWISE C
	CIT TRAVERSE D
	Cu TRAVERSE ALITY
	╒ ╃┩┞╬╪╇┩╃┥┿╇┩╒┞╇╫┿╃┦┆┼┦┸╏╬╬┼╏┆┆┆┼╬╬╬┼ ┇═ <u>╏┇╄┲╒┪┡</u> ╽ <u>╃┲╈╈╃╏</u>

		''''
	┱╗╗╗╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
1++ (+ ++++++)	╬┸┈╏ [╕] ┇╇╃╒╌╏╫╌╃╼┾╬┞╫┾╃╌╎┾╂╫┆╒╼╬┼┼┆╘┍┼┦╏┹╀┯╃┼╌┼╂╏╬┪╫┼┼╂╂╄┪┼┼┼╀╬┼┩╏ <u>┡╫┆╃┯┯╬┩╏╏╓┯╬╏╏┸╏╏╏╏╏┸╏┸┸</u> ┸┋╇╃┼═╄┦╏┼	╻ ╎ ┎┸┸╏╍╁┸┠ ╏╌╏ ╍╂╼╂╼┞╼┞╼┦
	╻┍╫╒╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	╽╾┨╼┇╍┠╌┼╴┞╴ ╏╼╏═┡╾╏ ╴╽╾┇╼
<u> </u>	┇┩╸┠╺┽╌┞╴╂╾┼╸╬╶┼╾╣╌┞╌┦╶╀┈╴┆╶╏┍╸╬╌╏╌╏╴╏┈╏┈╏┈╏┈╏┈╏┈╏┈╏┈┆┈┆┈┆┈┆┈┆┈┆┈┆┈┆┈┆┈┆┈┆┈	/-
<u>╻</u> ┠ ╸╏╶╏═┋╸╏╴╏╼╏═╏═╏ ╶ ╏═╏═╏	╡═ ═┇╒┋╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
``F\+++\ +±+ F\!\!\!\TTT\	╏╏┇╸┇╼╫╸┆╏╏┾╬╴╏╶╬╬┼╸┟═╎╏┋╾╏╬╏┞╅╌╄┾╀┪╏╅┼┼╃┪╇┪┩╏╌╏╏╅╏╬╬┆╬┼┆┆╏┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	┃╠╬┧╽╏╏╏ ╏ ┡
	┋╘╶╫╒╌┡═╟═╫╒╬╒╫╒┪╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒	╂╍┨╼┋╌╂╼╬╴ <u>┠</u> ╴╅╼┝╼┨╶╬╼┨ ┉╬ ╸╴┆
▗▊▍▗▃▍▍▗▖▗▐▗▗▍▍▍▍▗▕▐▗ ▗ ▘▗▗▍▘▗	·ショシ。┆╕╏╌╽┟┦┇┲╆╬┱╁╗╒╬┸┖╬╩┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸	
	┛╝╸╒╶┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	[- - - - - - - - - -
	╃╃╒╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	┦╶╂╌╏╼╁╌╂╼┼╾╎╴┼╼┼╼┨╺ ┇ ╍
┖┸┸┩┼┸┸┸┸┸┸┸┸┸┸┸┸	·┟┪╸┦╸┞╌┫┊┆╶┩╒╀╌╄╌┪╒┸╒╀╌┆┈┪╒┸┸╒┸┸┆┆┆╌┩╌┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	 - - - - - - - - - - - - -
╶ ┡ ┋┆┞╃┩╢╟╫╅┥┪╏╏┞╅╬╏┧┪╬╏╏┪┪┟	╡╣┧╏ ┍┇┍╬┸╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
 	■▊▐▗▃▊▊▆▆▆▊▊▜▆▆▊▜▜▆▆▊▜▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆	┞ ╍╂═╁╌┧╌╎╶╀┙┟╾╂╾╂╌╂╌╂ ═╂ ╸
1.1-1-1.1 1-1-1.1 1-1-1-1-1-1-1-1-1-1-1-	╃╃╃╃╃╃╃╃╃╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	╂╼╿ ╸╏╸╏╸╏╸ ╏╾╏╾╏╾╏╸┼ ┈╏╸ ╏┑
╶╏ _{┯┸} ┾╏╏╍╁┦╏╏╍┼╏┦╍╬╏┞┼╏╏┼┼╏	╉┧╍┢╾┞╌╫╌╗╸╽╒┱┄╒┼╫╒┇ <u>╌╒┍╫╒┈┎╌┎╌╟╌┈┸┸┸╌</u> ┼╌┼╒╏╒┼╕┆╒┦╸┦╌╢╌┞╌╬╌╏╌┼┼┩╒┞╗┥┼┼┷╌┩╒┦╶┩╌┟┾╅╌╎╌┼╄╂╸╏┼┪╌┪╌┆┼╏	
▗▗▗▗▗▗▗▗▗▗ ▗▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	┖╏╏╏╏ ╏┼╀╃╃┪
	┸ ┈┈┋┋╒╒ ┪ ╒╒╎╒╘╒╡╒╘╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	┞╌┦╌ ╿╌╏╌╏╶╏ ╌┼╾┼╾╀╼╀╼╂╼╂╾╋╸
╶┖╗╏╏╬┧╏┡╬ <i>╬╍</i> ╂┩╽╎┞╃┩╁╫ ╃ ╾┼╾╂╍╂	╾╏┟ ┈┡┈┩═┡╒╃ ╶╉ ╒ ╏╞═╫╫┈╏┾╒╇ <u>┯╫┍╫┉┞┯┈╘╗┈┞┈┰┈┦╜╏╌╼╿╌</u> ┼┈╏╄╒┝╍┆╸┼╌╎╒╶╏╶┞╼┦╌┦╌┩╄╸╏╼╏┍┼╌┦╼╂═┼┞┈┤═┞═╎═┼═┼┼┼┼╸╏═┼╾╅┯┼┈┼	
╶┡╌┦╼┥╏╞╍┼╎╌╿╎╏╂┯╍╏ ╍╏╸┋ ┪╍╬╌╂╸╬╌╏╼╏	┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	╶ ╒╒┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩	┩╶┩╌╏╍╏╺┟╴┞╌╎╍╿╾┦╸╂╌┠╸╏╸
	╌ ┍╏╒┧┍┩╒┉╒╒┡╒┊╒╒╒┊╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	- - - - - - - - - - - -
┡ ┥ ┦┼┼┩╫┆┋╌┼╌╂╾╂╾┼╌╂╼╂╍╂╌╏╌╂╼╂╌┼	<u>╼╍╅╫╸┎╫╒╫┍╫╒╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫</u>	
· · · · · · · · · · · · · · · · · · ·	╶╶╶╶╶╶╶╶╶╶╶╶╶╶	╀╏╬┪┪╂╏╏┩╇┢ ┾
	┍╏┩╃╏┩┩┩┩┩┩┋┉┇┩┇┪┪┩┩┩╏╬┪┩┩╏╒╬┉╜┋═╠╩ ╌┇╌┋╠┉┋┸╌╒╌╌╌┇╒┸═╼╏╒╬╓╏╌╌═╇┉┊┸┦╌┩╸╏╏┼┼┼┼┼┼┼┼┼	┍ ┞┈╏┈╏┈ ┇╴ ╏┈╏┈╏┈╏┈╏┈╏╸╏╸╏╸ ╋╸
┇ _╇ ╇┩╒╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	┍ ╃┇ ╂╒ ┆┩┈╒┩╏╛┋┩┈┊┈╫┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈	
┈╏╸╂┈╂╶╂╌┦╼╂╸╂╌┦┄ ┦┈╂┈╏╸╏╸╏╸ ╂┈┞╌╏╸╂╸╂╸╂	╒ ╬╅╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
	┇┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	-┞╌┩╴┞┊┞╾┋╌ ┞╶ ╟┈┋═ ┋
┍┿╍╏╸╏╶╏╒┡ ╒┋╸╏╸╏╒╇ ╾ ╏╸╏╺┇╸╏╸╏╸╏╸╏╸╏╸	┍╒┋┩══┩╏┪╒══╫┋┋┋┋┋┋┋┋┋┋ ╒╒┋╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	-
┢ _╇ ┼╌┤╌┦╌╏╶╂═╎╺┼╼╏╶ ┼┉╏ ╸╏╍┝╌╎ ┈┋╸╏ ╍┞╸┼ ┈╏╸ ╂╾╏┱┾╌╵	┍ ╗┪╒╒┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	╶ ╂╼╂╾ ╿┈╏┈╏ ╼╂╼╂╌┼╌┼╾┼═╂╼╀╸
┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇	┍╫┼╀╂┩═┾┱╫┼┦╒┦═╀╌╂╌╀╌┼╌┼┸╏╌┰╤═┼┸┱┍═╈┼╎╬══┼╬╗══┷┼╃╫┼┼╃┼┼╇┼┼╃┼┼╇┼┼╃┼┼╃┼┼ ╒╒ ┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
╒╇╋┧╏┲╇┿╅┆┢╇╬┫┪╍╬╃╀┞┞╏╏╒╇ ┨	<u>┍┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍╫┍</u>	
- - - - - - - - - - - - - - - - - -		╶┞ ╸┞╾┞╼┞╼┞╼┞╼┞╼╂╼╂ ═ ┠╾
	┡╍┼╌┸╌┸╌┸╌┸╌┸╌┸╌┸┸╌┸┸╌┸╌┸╌╌┸╌┼╌┸╌┼┼┼┼┼┼┼┼	╶╏═╏╒╏┈╏┈╏ ╾┠═┞═╏┈╏═╏═╏
╸ ╏╸╏╶╏╸╏╺╏╸╏ ╶╏╼╂╸╂╼╂╾╂╾╂╒╸╂╺╏╸╿╶╏╸╿ ╸╏╾ ╏╸╏╸╏ ╸╏╸╏╶╏╼╂╸╏╾╏╸┦╼╂╍╂╼╁╸╏╸╿	╕ ┇┪┪┪┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩╃╃╃╃┩┩╃╃╃╃╃╃╃╃	
		╶ ┇ ╶ ┨┈┼╼╏┈╂┈╂┈╂╼╏╼┞┈┞┈╂═╅═
	╏┊┊╒╸┈┆┩┋┍╃┪┍┼┪╘┍╒╸┍┈╒┪┍┈╒╘┪┋╒╘┍┍┍ ╶┋┍┋┍┇┎┈╬┇┆┍╌╌╌┋╒╌╒╒╇╒╒╒╒╒╬╬╬┇┪╏╟╏╏╏┩╫╏╏╏ ╒┼╬ ╟╾┼┼	-┠ ╍┊═┆╌╅╌┧╸ ╂═ ┞═
╍ ╏╌┋╌╬╍╏╍┞╍┞╸ ┠╺╃╍╫╍┠╍╏╶╂╼╂╼┟╾╂╼┞╼╂╼┞╾╏╌╏╌╏	┢╫╒╃┍╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒	
- - - - - - - - - - - - - - - - - - -	<u>┆═┩╒┍┍╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫</u>	╺╊┈┩╼╏╼╏╼╏ ╾ ╏ ╾╏ ╸╏
	╀┼╗╒╌┼╀╗╒┼┼╀╗┷┼╃┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	┍┫╺┠┉╅╼╏╌┨╌╂╼╏╾╏╌╂╶╂╸╏╸ ╏╸
┷┤ ╏╌╏╍╏╍╏ ╍┼╌╁╍╀╍╀╼┧╼┧ ┷┤╏╾╂╾╂╍┾╍┤╌╁╌╀╍┦╼┼╼┪	╀╼┦╼┦╼╫╸┞╍┩╼┞╺┟╼╽╼╫ <u>┍╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫</u> ╒╫╒┼┼┼┼┼┼┼┼┼	
<u>╶</u> ┋╃┪┩╇┪┪╫┪╫	<u>╀┸┦╸╬╫┍╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫</u>	▃▍▐▗▋
		_┅ ┽ ┈┧ ╌╂╍╂╺╀╸╂ ╸╏╸╏╸╂╶┞╶┞╶╿╸ ┞╸┦
╸┞ ╌╏ ╺╀╼ ┞╸┨ ╼┼╍╂╼╂╼╂╼╂╼╂	╂╼╃╼╀╌┞╒╃╗┍╃╌╫╌┼╌┩┪ ┍┋┍┊╒╒╒┍┆╒╒╒┆╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	▎▔▀▝▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ ▀▀▀▀▀▀	╺╏╸ ╏ ╶╏ ╶┠┈┠╼╂╼╏ ┈╏╸╏╸ ┠╸ ┠ ╴┠
	╀╤┩╒╒╒╌╌┦╒╬╌╌╌╀╒╀┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	╒┩╸╏╶╏╼╏═╏═╣ ═┪ ╒╏═ ┩
┎┆╏╏╏╏╏╏╏╏╏	┿ ╃═══┋┈╬╒╒═╗┋┈┋╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	╿╗╸┆╸┇╸┋╸╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	╻ ╻ ┰╻┩ ╸╏╸╏
	╃┍┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	┊╼┋╼╎╌┞┈╎╼╎╍╏═┋═┩╼┋═ ╏╾ ╏╺╏ ╌
╸ ┋╸╏┈╏╸╏╸╏╸╏╸╏╸╏╸ ╏	╂╼╃╌╝╃╃╃╌╌┈┪═╀╌╌╗╌┆═╎┇╼╃╌╩┍╃═╏┇╌┇╌╃┇═┇ <u>╌╏╏┸┇┸┩┇┸┩┩╃╃╃╃╃</u> ╃┪╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
┍ ┋ <u>╒</u> ╋┉╏╴╏╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	╡ ┇┍╗╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	┍┍╒╒┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	╽ ╍┦╼┦ ╒╏╸╏╶╏╸╏╒╏═╏ ╌╏ ╌╏╍╏═╏═
╌┟╌╂╌┞╼╀╼┞╼╀╼╎╌╂╌╏╼╂╼╏╶╂╌╏	┦┍┩╒┩╒╃╒┩╒┩╒┋┩╒┆╒╒╒┆╒┋╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	╎╸╽╶┤╶┞┈╏╼╏╼╂┈┨┈┧┈┧┈╽╸┪┈┪
<u>╏╶╂╌┞╸┞╼╁╼╂╼╂╼╂╼╂╼╂╼╂</u> ╾┨╍╂╼┩╶╂╼┥ ═ ╉╼╂╶╂╶┟╌╏	┆╗╗╏╒┆╒┩╗╒╒┊╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	┇┇┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	╎╴╏╸╏╸╏╸┧ ╌╏ ╶╏╺╏╍╏╸┨╸╏╸╏╸╏╸╏╸
TT T T T T T T T T T T T T T T T T T T	┼╍┡╾╀╸┨╺┠╌┼╌═╀┉╉╌┼╌┼╌╃╌┩╌┩╌┩╒╫╒╫╒┆ ╒┆╒╒┈┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋	╽╸┨╼╽╶┨╶┨╶┨ ┈┨╺ ╏ ╌╂╴ <u>╂┈┨</u> ╍╂ <u>╸</u>
	<u>╃╃┦╌╫┲╫╸┇┯┼╸╿╶┸┈┸┈┸╌┸╌┸╌┸╌┸╌┸╌╌╃╌┈┤╶</u> ┊╌╌┼╼╂╸┼╴╌╌┧┺╏┈┦╺┼╼┦╼┞╌┼╌╢┼┈┼┼┼┼┼┼┼┼┼┼┼┆╏╏╒╎┄╣╏┈╏┰┼┼┼┼┼	
	╶╶╶╶╶╶╶╶╶ ╌	┇╶┫╶┋ ╶┇╼╁╼╁╴ ┇╴┩ ╌┦╼┞╍┦╌╂╌┦╼
▗▊▗╏▗╎ ┇ ╻┠╌╁╶┟┎╏╍┼╍╂│╶┨╶┟╼┼╌╂ ╶╏┈╏╍╏╸╏╌	┊ ╀┩╒╀╃╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫	┞╶╏┈╏╼╏╼┞╼┇╌╏╸ ┢┄┟╾╁╼┼ ╸ ┦╾┼╾
╏╏╏╒╒ ┼┼┼	╍ ╏┩┍┩┍┩╒┩╫╒╒┩╫╒╒┩╫╒╒┩╒┩╒┩╒┩╒┩╒ ╬╒╫ ╒╒╒┩╒┩╒ ╇╒╇╒╇╒╒╇╒╇╒╇╒╒╒╇╒╇╇╒╒╒╒╒╒╒╒╒╒╒╒	
	┇┇┦┩┎╸╟╌╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒	┞┋ ┩╅╏ ┩┩╏╏╏╇┋ ╂╌
	┇┍┍┈┩┍╒┍╒┍╒┍╒╒┍╒┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	╏╸ ╏╾ ╏╶╏╶╏ ╌┠┄ ┇╴╏╴╏╸ ╏╼
╀┸┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	┩╏┍┩┩┩╏┍┝┩┋╸┼╕┇┆ ┇ <u>┡╫╫╫╫╫</u> ╃╃╬╗┼┈ ╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	<u> </u>
	┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	┡┋
	╶┞┆ ╶┩╶┩╶┩ ╒╬╒╫╌┦╼╁╕╎╫╇╸╏┞┞╃┿╂╃╄╀╫┼┼╃╍╘╍┝╎╍┋╍╘┙┍┼╒╻╬┈┆╌┾┄╬╸╓╾╏╬ ┈╏┈╏┈╏┈╏┈╏┈╏┈╏┈╏┈╏╸╻╏╸ ╒┼┼╃┩╬┾╌	╏╶╏╺┞╼┞┈┞┈╏═╏┈╏╶┋═╏═╏╌╏═╏ ═
┦┫╏╏╎┡┡╇╒┡╇╒╒╇╇	┫╏╏╬╬╬╃┪╎╊╬╬┼┞╬╬╬╫╚┋┋┢┆┆┇┉┇ ┸┸┸╏┻┯┼┸╇╇┯┯┼╃╬╬╌╟╇┿┼╫┿╇┨╁╢┟╒┩╏┦┧╍╂┼┼┦┼╫╂╂┟┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
┞╸╏╸ ╏╶╴╏╸╏╶╏╶╏╶╏╶╏╸╏┈╏┈╏┈	╹╻╻┧╸ ┇┍╫╒╫╒╫╒╫╒╫╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	.T. T. T. T. T. T. T. T. T. T. T. T. T.
	╃╃═╃╃┸┩╒╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	┤╸ ╏╶┇╶ ┋┈ ┞╸┞╍┞╼┦╼┦╶┞╌┞╍╂╍┞
	▗▗▗▗▗▗▗▗▗▗▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗ ▗▄▄▄▗▗▗▗▄▗▄▗▗▗▗▗▗▗▗	

4/30/82 NOZZLE: #5 ACOUSTIC - Ly3 TRAVERSE DETAILS. C - □ ; REF.(C)-TRAVERSE -RADIAL REF. (C) - VOLTS LOCATIONS TRAVERSE - VOLTS RADIAL : E.W. - ; N.S. - 10 VOLTS) X = AXIAL REF.()-LOCATIONS TRAVERSE -SCALE : X-AXIS= 3.22 INCH/UNIT 394 F.P.S./UNIT Y-AXIS= HISTOGRAMS: H-TO H-CHORDWISE LV TROUBRSE 1109

DATE: 4/30/82

NOZZLE:

#5

ACOUSTIC - 5/3 TEST POINT: PLOT IDENTIFICATION : TRAVERSE DETAILS C - □ REF.(C)-TRAVERSE -RADIAL (Z. : E.W. - [] ; N.S. - []8 .3.32 INCH/UNIT SCALE : X-AXIS= Y-AXIS= 394 F.P.S./UNIT HISTOGRAMS: Τ0 H-CHOROMICE LY TRAUBESE

NOZZLE: ACOUSTIC - 5/3 PLOT IDENTIFICATION : ☐ : d - □ ; OFFSET HADIAL REF.(d)- VOL TIONS, TRAVERSE - VOL - 🗆 RADIAL 🔀 : E.W. - 🖂 ; N.S. - 🙉 VOLTS) X -OF POOR QUALITY 3,32 INCH/UNIT 394 F.P.S./UNIT Y-AXIS= HISTOGRAMS: TO H-H-CHOROMISE W TRAVINSE 116

DATE: 4/30/82

TRAVERSE DETAILS.

SCALE :

HISTOGRAMS:

NOZZLE:

RADIAL X: E.M. - 1; N.S. - 10

AXIAL REF.() - YOLTS
LOCATIONS TRAVERSE - YOLTS

C - C : OFFSET

REF. (C)- VOL

TRAVERSE - VOL

3.32 INCH/UNIT

F.P.S./UNIT

H-1477

#5

ACOUSTIC - 5/3

 $\frac{\text{VOLTS}}{\text{VOLTS}}$

M RECORDING CRARIES
EARN-C CONTON
EARN-C NEW YORK
PROFES IN VIA.

Ho. XY 1101

Ho. XY 1101

NOZZLE: #5 ACOUSTIC - 15/3 - 🛘 RADIAL 🔀 : E.W. - 🖪 ; N.S. - 🖸 $\frac{\text{VOLTS}}{\text{VOLTS}} \frac{X}{D_{eq}} = 2$ ORIGINAL PAGE 19 INCH/UNIT SCALE : F.P.S./UNIT HISTOGRAMS: TO H-LINE OF LU TPAVERSE

Ro. XY 1101

ORIGINAL PAGE IS

#5 NOZZLE: TEST POINT: ACOUSTIC -1513 6 - 650 RADIAL REF. (C.) - VOLTS R TRAVERSE DETAILS. 3.32 INCH/UNIT SCALE : X-AXIS= 39 4 F.P.S./UNIT Y-AXIS= , TO HISTOGRAMS: H-H-LIME OF LU TEAVERSE Ł

ORIGINAL PAGE IS

Io. XY 1101

ORIGINAL PAGE IS

	DATE: 5/4/12 NOZZLE: # 5
	TEST POINT: L.V ; ACOUSTIC - /5/3
	PLOT IDENTIFICATION: G-656
	TRAVERSE DETAILS.
┇ ┇┍┯╅╸╅┪╅╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	AXIAL []: (L - []; OFFSET - []
	RADIAL REF. (C.)- VOLTS) R = LOCATIONS; TRAVERSE - VOLTS) R =
	RADIAL
	AXIAL REF.()- VOLTS) X = VOLTS) D = VOLTS
	SCALE : X-AXIS= 3.32 INCH/UNIT
	Y-AXIS+ 394 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
	`
	LINE OF LU TRAVERSE
┍┧╌╌╌╸╎┪┇╟┩╎╌╒╏╬╼╀┾╫╒┲═╅╃╫┾╫╇┸══╃╫╃╫╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸┸╫┸┸╫┸┸╫┸┸╫┸	
╒┦╏╏┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇	┩┇┇┇┇╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
	┧╬╫╫╫╫╫╫╫╫

NOZZLE: #5 ; ACOUSTIC - /5/3 G-658 - 🗆 RADIAL X: E.W. - S ; N.S. - D

AXIAL REF.()- VOLTS
LOCATIONS TRAVERSE - VOLTS VOLTS > X = VOLTS SCALE : X-AXIS= .3.32 INCH/UNIT 374 F.P.S./UNIT Y-AXIS= HISTOGRAMS: TO H-H-LINE OF LY TRAVERSE

					DATE: 5/4/82 NDZZLE: #5
				<u>╒╏┧╶╗┪╏┸╒</u> ┇┾╅╅╅╅╅╅╅╅╅╅╅╅┪┪╽┪╏┿┹╏┾┿┼╂╬ ┎╏┾╣╏┩┍┧┞╼┡╁╫╅┹╅╈╇╇╇╇╇╇┩┩┩╏	TEST POINT: L.V ; ACOUSTIC - /5/3
					PLOT IDENTIFICATION: G-660
					TRAVERSE DETAILS.
					AXIAL : (- : ; OFFSET - : RADIAL REF. (- :) . VOLTS R
					RADIAL REF. (C) - VOLTS) R - LOCATIONS' TRAVERSE - VOLTS) R2"
			╌╸┝╏╍╏╼╏╼┸╼┸┸┸┸┸┸┸ ═╅╂╗╏╶╒┦═╂┈┼╌┼┦╶┟╒┸╼┲╇╏┇╏╒┸┻╁┼┼┼┼┼┼┼		RADIAL E.W []; N.S 20
					AXIAL REF.()- VOLTS) $\frac{X}{D_{eq}}$
					SCALE: X-AXIS= -3.32 INCH/UNIT
					Y-AXIS= 374 F.P.S./UNIT
			╼ ╸ ╸		HISTOGRAMS: H- TO H-
					, CHORDWISE LU
					TRAVERSE
	╺ ╸	┍╎┤╏┆╎╏┇┆╎╏╘ ╇╬ ┇┆╏╏╬	╶╏ ┋╫╟┪┩═╬┩╼╬┩╶╏┦╒┞╏╌╏╌ ╾═┪╸╗┩╃═╬╏┩╌╎┾╏╌╂╼╎╼╊╏╎╒╃┩╏╋┼╍┟		
					,
					
			╶ ╶ ╶ ╶ 		
[
			▗ ╒ ╒ ╒ ╒ ╒ ╒ ╒ ╒ ╒ ╒		╡╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
				╻┍╒═══╗╣┱╌╒╌╌╅┯╌╌┆┧╪┾═ <u>╏</u> ┦╄╏╤╬╬╬╬ ╒╬╏╬╬┸═╬	▗▗▗▗▗▗▗▗▗▗ ▗▗▗▗▗▗▗ ▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗

NOZZLE: #5 DATE: 5/4/82 : ACOUSTIC - /5/3 G-662 RADIAL X: E.W. - [] ; N.S. - [3] AXIAL LOCATIONS SCALE : X-AXIS= .3.32 INCH/UNIT Y-AXIS= 394 F.P.S./UNIT HISTOGRAMS: TO H-CHURDWISE LV TRAVERSE ïE

NOZZLE:

ORIGINAL PAGE IS OF POOR QUALITY

No. XY 1101

No. XY 1101

Io. XY 1101

1011 YX 04

┇┍╃┇┆┍┩╒╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	DATE: 5/5 /82 NOZZLE: #5
┖╶┸╃┪╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	TEST POINT: L.V ; ACOUSTIC - 1514
	PLOT IDENTIFICATION: G-680
┩ ┩┊┊ ┩╃┩┩┩╃ ┊┩┩┩┋┊╃┩┩┊╒╏╏╏┆┍┪╣╒╒╃╏┆┆╍╡ ╌╒┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	TRAVERSE DETAILS.
╙╒╀╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫	AXIAL []: (- []; OFFSET - []
	RADIAL REF. (C)- VOLTS) R LOCATIONS' TRAVERSE - VOLTS R2
	RADIAL &: E.W &; N.S D AXIAL REF.()- VOLTS \ \(\text{NOLTS} \) \(\text{Noltons} \) TRAVERSE - VOLTS \ \(\text{Noltons} \) \(\text{Noltons} \)
┡╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	LOCATIONS* TRAVERSE - VOLTS Deq
┡╃┇┍╅┇╎╵╬╏┸┧╀┩┩╃╃╃╫╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸	
	. Y-AXIS* 394 F.P.S./UNIT
	Y-AXIS* 394 F.P.S./UNIT HISTOGRAMS: H- TO H-
	LINE OF LITTRAFERSE
┇ <u>┇╒╗</u> ┆┆╒═┇┆╀╃╫╫╬╃╃╫┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
┇┩╏┆┇┆┇┩╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
┍╃╃┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩╃╃╇╇╃╃╃┩╇╇╇╃╃╇╇╇╇╇╇	
┇╌┦╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
┇┆┆┍╀╃╒╬┸╫ ╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
╃╃╃╃╃╃╃╃╃╃╃╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	<u>╶</u> ╤ ╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
┖┍┼┼┼┼┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆	
<u>╅┼┼┼┼┼┼┼┼</u>	
╃╃┼╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃	
<u>┋╬╫╫╒╫╬╫╫╫╫╫╫╟╟╟╟╫╫╫╫╟╟╟╟╫╫╫╫╟╟╟╟╫╫╫</u>	<u>╶┩╀┼┾╃╃╃╍┾┾╊╃╏┼┾╅┠╈╊┇╎╂┧╒┾┧┫╏┽┼╬╂┦┞╒╁╬┼┼</u> ╬

No. XY 1101

Ho. XY 1101

No. XY 1101

1193

ORIGINAL PAGE IS

1198

┸╌┸╌┸╌┸╌┸╌┸╌┼┼┼┼┼┸┼┸┩┪┪╇┪┩┪╇╇╇╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃		
┍╃┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩	DATE: 5/10/82 NOZZLE: #5	
╃┇┩╃┩┩╇┸┩╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	TEST POINT: L.V ; ACOUSTIC - 514	
	PLOT IDENTIFICATION: G-715	
╗╸┆╶┇╸┇╶┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩	TRAVERSE DETAILS.	
	AXIAL []: C - []; OFFSET - []	
) 'O
╵ ┆╶┆╒╒┍╒ ╒┋┆╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	RADIAL S: E.W 15; N.S	7 💆
	LOCATIONS TRAVERSE - VOLTS DE LOCATIONS TRAVERSE - VOLTS DE LOCATIONS TRAVERSE - VOLTS DE LOCATIONS DE LOCATI	39
┇┆┆╶┇┇╒╬┸╫┸╌┇╬┸╬┸╫┸┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸	LOCATIONS: REF.()- VOLTS) X Deq	ORIGINAL
	SCALE : X-AXIS= .3.32 INCH/UNIT) ESSEN
	Y-AXIS= 394 F.P.S./UNIT 12 HISTOGRAMS: H- TO H-	. jiii
	HISTOGRAMS: H- TO H-	BAGE
<u>┍╫╒╃╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫</u>	×/h=6.9	<u>@</u>
	LINE OF LIV	
	TRAVERSE	
┍╒┇╏╫╫┆┇┍┩┩┪┩┪┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸		
		ľ
		l
		ı
╃╃╃╃╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇		í
		٦.

DATE: S/O / 22 NOZIE: #5 TEST POINT: L.V : AGUSTIC - 5/4 PLOT IDENTIFICATION: 6 - 719 TEMPESS BETAILS ANIAL D: #7 (4) - 0: OFFSST - D			
PLOT IDENTIFICATION: G - 719 TRAVERSE DETAILS. AXIAL : (-) ; OFFSET - ; OFFSET - ; OCATIONS: TRAVERSE - VOLTS) R =			ATE: 5/10/82 NOZZLE: #5
TRAVERSE DETAILS. AXIAL : : : : : : : : : : : : : : : : : : :	╸ <u>╏╶╬╏┡┩┧┊┲╃╅╃┷╫╏┩╏╁┼┇╏┿╏╩┲╟╬</u> ┪┼╬┾╌═╇┼ ╒╵╏╘╘╒ ┆╎┝╏╛╅╌┵╌╅┼╬╁┼╬╏╌╬╸╬╌╬╬┼╬┼╬┼╬╬		
TRAVERSE DETAILS. AXIAL : C - : OFFSET - : RADIAL REF. (C.) - VOLTS R - LOCATIONS TRAVERSE - VOLTS R - LOCATIONS TRAVERSE - VOLTS D - RADIAL : E.W E : N.S : AXIAL REF. () - VOLTS D - LOCATIONS TRAVERSE - VOLTS D - SCALE : X-AXIS- 3.32 INCH/UNIT Y-AXIS- 3.44 F.P.S./UNIT HISTOGRAMS: H- TO H-		P	LOT IDENTIFICATION: 6-719
RADIAL X: E.H W; N.S D AXIAL REF.() - VOLTS) X = LOCATIONS' TRAVERSE - VOLTS) D SCALE: X-AXIS= 3.32 INCH/UNIT Y-AXIS= 3.44 F.P.S./UNIT HISTOGRAMS: H- TO H-	╬╍╪╌╏╌╬┦╋┖┝╍┝╺┎┲╬╌╅┸┼╅┎╅┞┸╀┸┼┾╍┰┾╬┇┷═┎╌┸┦┧┼╇╃┇┲╬┸╏╌╬╏┸┦╌┯╍╏╏┷┽┾╬╀╏┍╏╬╬╬╬╬╬ ╬┉╸┯╌┼╬╏╇┼┼┤╌╌┯╃╌╇┷╅┸╈┸╅┸╅┼┼┼╬┈╬┉╅┷╃┦╇┼╬╈╈╌┦╇┼╬╈╫┼┼╇┼╬┸╫┼┼╇┼╬╫┼	▗ ▗ ▗ ▗ ▕ 	RAVERSE DETAILS.
RADIAL X: E.H W; N.S D AXIAL REF.() - VOLTS) X = LOCATIONS' TRAVERSE - VOLTS) D SCALE: X-AXIS= 3.32 INCH/UNIT Y-AXIS= 3.44 F.P.S./UNIT HISTOGRAMS: H- TO H-		╒ ╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	AXIAL : (- D; OFFSET - D
RADIAL SE.H SE; N.S CONTROL STATE AXIAL REF. () - VOLTS DEG COCATIONS TRAVERSE - VOLTS DEG SCALE: X-AXIS= 3.32 INCH/UNIT Y-AXIS= 3.44 F.P.S./UNIT HISTOGRAMS: H- TO H-			RADIAL REF. (C.)- VOLTS) R VOLTS R
AXIAL REF.() - VOLTS) X = LOCATIONS; TRAVERSE - VOLTS) X = QQ SCALE: X-AXIS= 3.32 INCH/UNIT Y-AXIS= 3.44 F.P.S./UNIT HISTOGRAMS: H- TO H-			RADIAL X : E.W W : N.S
SCALE: X-AXIS= 3.32 INCH/UNIT Y-AXIS= 3.44 F.P.S./UNIT HISTOGRAMS: H- TO H-			AXIAL. REF.()- VOLTS X
Y-AXIS* 374 F.P.S./UNIT HISTOGRAMS: H- TO H-			
HISTOGRAMS: H- TO H-		S	CALE: X-AXIS= ;3.32 INCH/UNIT
╞┼┧┩┼┼┇┉╢╫╙╠ ╟┩┩┼╿╫╠╟╃┩┼╟╬╠┩╬╬╬┼┼┼╬╠┩┩╬╬╬┼┼┼┦┋┼╚┆┍┋┩ ╬╀┼┼┼╟╚╏╟╠┙╛╏ ╏╏┍┆┤┼╏╬┡┦┩┩╏┩╏╏┼┼┼┞┼╏┩┩╠┩┼┼┼┞┡╏┩┩╘ ┼			
When it is a second of the sec	┋╸┆┍╴╏╶┇╶┇╶╒╶╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒╸╒	<u> </u>	
TRAFETS E	▐▕▗┆ ┆ ┆╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫		4/h= 3,2
TRANSCE TO A A A A A A A A A A A A A A A A A A			ALDEAE / V

₹ 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		╸	
	┎┆┆┆┆┆┆╫╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬		
\$\partial \text{\tint{\text{\tinit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texict{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinitt{\text{\text{\text{\text{\text{\text{\texict{\text{\text{\text{\text{\texict{\text{\texit{\texict{\texict{\text{\texitt{\texit{\texi{\tex{\texi{\text{\texi{\texi{\texict{\texict{\tert{\texict{\texit{\ti			
	┡╴┆┆╫╫╒╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫		
6.18 6.18	┍╗┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒		
	┩┿╘╸┺┦╟╏┉┥┥┿┉┢╍╘┉╅╌┼┥╒╴┎╤╌╌╅╌╅╌╅╌╅┸╅╌╅┸╌╅┸╅╒╸╌┩╅┸╅╌╸┈╸ ╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸		
	╃┼┞╴╢╍┼┸╏╫╷┼╸┤╅╃┾╇╀╇╇╇╇╇╫╸╫┸╒╫╇┼┼╀╫╸╫┸╒╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇		<u>╶</u>
	<u>╒</u> ╅┊┊╒╫┪╅┩╎═╘╀╅ ┆┆┊┆┆┆┆┆┆┆┆┆┆┆┆	<u>╶</u> ┩┩╒╃┩┩ <u>┩</u> ┆┾┪╃┩╎ <u>╽╃╀╃┩╃╃</u>	▗ ▗
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		▗▕▗▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗	▝ ▘
			<u>. [] - </u>

RADIAL DISTANCE

DATE: 5/10/82 NOZZLE: #5

•	
┃ ┻╃╏╷╊┲┦╏┡╽╏╎╀╈┺┦╘╌┧┞┾╌┵╛┇┾╃╍╅╸╬╍╅╃╃┿┿╬╌╃┆┿╛╅╌╌┾╒┯╾╌╅╸╬╸╎╏╒╸┼┼╏╒╸┼┼╏╒╘┼┼╏╒┼┼╏╏┼┼┼╏┍╸┼┼╏╒┼┼┼╏╒┼┼┼	DATE: 5//2/82 NOZZLE: #5
	TEST POINT: L.V ; ACOUSTIC - 514
	PLOT IDENTIFICATION: G-725
┇╸┆╴┆╶╫╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	TRAVERSE DETAILS.
	AXIAL 🗆 : 🐧 - 🖸 ; OFFSET - 🖸
	AXIAL : (- :); OFFSET - : RADIAL REF.((- :) - VOLTS R REF. (- :
	I RANTALIK' F.W ISK : N.S □ I
	AXIAL REF.()- VOLTS X = 0 LOCATIONS TRAVERSE - VOLTS Deq
	SCALE : X-AXIS= :3.3 INCH/UNIT
┦ ┦┦┦╏╏┤┦┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩ ┩┩╇┩┩╇┩┩╇	Y-AXIS* 389 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
┠╏╁┾╃╒╏╛╏╬╎╏┾┩═╃╃╀╬╀╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
	
╒┋┆╬┆╏ ┆╬╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╟╟╟╟╟╟╟╟╟╟	
┖╒╒┍╶╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	LIDE OF LY TRAVERSE
┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	┇┋┇┇╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
┖╶╶╶╶╶╶╶╶╶ ╶ ╶╶╶	╎╎╏╏╏╏╏╏ ┇┋
	╽╛╃┇╏┩┩╒
<u>┣</u> ╅┝╅┍╏┷┇┍┩╏╪┧┧╅╏┷╫╒╏╏╏╒╅┇┎┼┼┼╅┎═╧╁╟┼┼┼┼╀═╧╧╅┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	┇╃┇╇┇╇┋╏╇╇┯╌┇╇┇ ┪╃╀╄╇┪┝╂╩╚╸┆╏┍┆┟┇╏╎╬┡┼╈┥╏╬╬
┩┩┇╬┩┩╒╗┇┩┇╃┇┩╏╒┾╫╬╫╀╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	┊ ┋┩ ╒╒┩┋┋┋┋ ┩╃ ┋╒┩
<u>┖╶╎┆┆┆┆┍┧┧┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆</u>	<u>let de la factoria de la distributa de la factoria del la factoria dela factoria de la factoria dela factoria de la factoria de la factoria de la factoria </u>

NOZZLE: #5 ACOUSTIC - 5/4 G - 727 XIAL []:

RADIAL
LOCATIONS RADIAL X : E.W. -AXIAL LOCATIONS SCALE : X-AXIS= INCH/UNIT Y-AXIS= 389 F.P.S./UNIT HISTOGRAMS: H-TO H-

RADIAL DISTANCE

	DATE: 5/12/82 NOZZLE: #5
	TEST POINT: L.V ; ACOUSTIC - 514
	PLOT IDENTIFICATION: G-729
╃┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩	TRAVERSE DETAILS.
	AXIAL []: d - []; OFFSET - []
	AXIAL : (- : OFFSET -
	RADIAL X: E.W 54 : N.S □
	AXIAL, REF. ()- VOLTS) X 6 LOCATIONS TRAVERSE - VOLTS) Deq
┡ ┡ ┡ ┡ ┡ ┡ ┡ ┡ ─	SCALE : X-AXIS= 3.3 INCH/UNIT
	Y-AXIS= 365 F.P.S./UNIT
┡╷╀┈╒┦╸╏╫╌┇╫╫╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	HISTOGRAMS: H- TO H-
	1
	&
	LINE OF IN TRAVERSE
	┇╌┇┸╌┉┸╌═┍┸═══╃═╌╂┇╩┵╌╸╶╌╌╌╏╌┱╏╏┢┆┆╏┇╏╏╏╏╏╏╏╏╏╏╏╏ ┇╌┇╏╌╏┸╏┸╏┇╌┸╌┈┈┈╬┇┸┈┸┈┸╌┇╌┈╸══╾┦╢╌┄╴╬╒╏┸╌┄╶╌╌╌╌
╃╬┸╇┸╇┸┺┸┺┸┺┸┺┸┺┸┺┸┺┸┺┸┸┸┸╇╬╬┸╫╢╾╬┼┸╫╢╾╬╀┸╇╫╏╁╏╎╗┼╀┸┸┸┸┺┸ ╒ ┸┸┸┸┸┸┸┸┺┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸	<u>╒</u> ┊╃╃╃╒╒╌┷╌╌╌╒╒╌┼┼┦
	<u>╒</u>
╅╅╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
┩┱┦┦╅┿┦╏┸┦┸┲┦╏┸┸┼┼┸╀┸┼┸┼┸┞╇┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸	╏ ╎╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸

DATE: 5/12/82 NOZZLE: #5 ; ACOUSTIC - 514 PLOT IDENTIFICATION : TRAVERSE DETAILS. RADIAL REF. (C.) - VOLTS

LOCATIONS TRAVERSE - VOLTS

RADIAL REF. () - VOLTS

AXIAL REF. () - VOLTS

LOCATIONS TRAVERSE - VOLTS $\frac{\text{VOLTS}}{\text{VOLTS}}$.3.3 INCH/UNIT SCALE : X-AXIS= Y-AXIS= 389 F.P.S./UNIT H- 1662 HISTOGRAMS: H- 165/ TO

Model 6 Test Point 613

1225

BATE: \$//9/22 WOZLE: ##6 FOUT DENTIFICATION: 6-745 FOUT DENTIFICAT		
PLOT IDENTIFICATION: G - 745 TRAVERSE DETAILS. AXIAL : C - : OFFSET - :: RADIAL REF. (C) - VOLTS R - LOCATIONS' TRAVERSE - VOLTS X = 2 LOCATIONS' TRAVERSE - VOLTS Deq SCALE: X-AXIS- :3.32 INCH/UNIT Y-AXIS- 393 F.P.S./UNIT HISTOGRAMS: H-/697 TO H-/696		DATE: 5-/19/82 NOZZLE: #-6
PLOT IDENTIFICATION: G - 745 TRAVERSE DETAILS. AXIAL : C - : OFFSET - :: RADIAL REF. (C) - VOLTS R - LOCATIONS' TRAVERSE - VOLTS X = 2 LOCATIONS' TRAVERSE - VOLTS Deq SCALE: X-AXIS- :3.32 INCH/UNIT Y-AXIS- 393 F.P.S./UNIT HISTOGRAMS: H-/697 TO H-/696		TEST POINT: L.V ; ACOUSTIC - 6/3
TRAVERSE DETAILS. AXIAL : (- : : : : : : : : : : : : : : : : :	┡╒┊╍┩ ╏┸╬┡╒╸┨╏┆┩┾┾╒╙ ┇┋┞┩╏┊╃╃┩╒┉╬┩╋╒┩╒╻╬╬┼┼╃ ┩╬╒╬┼╬╬ ┆╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
AXIAL : C - : OFFSET - : RADIAL, REF. (C) - VOLTS R LOCATIONS' TRAVERSE - VOLTS R RADIAL : E.M : N.S : AXIAL : E.M : N.S : AXIAL : E.M : N.S : LOCATIONS' TRAVERSE - VOLTS D AXIAL REF. () - VOLTS D AX	┇╌╃╡┧┾╒┩╏┤┩╏╕┧┋┑┪┧╻╬┆╏╒═┎╤╁╬┸╒┇┼┩┇╒╃╏╟┷╡┆┦╃╬╬┋┷┼╃╃┦╀┸╃┦┪╏┼┼╃╃┼╃╃┼╃╃┼┩┼┩┼┞╬┼┼╃╃╃┼	PLOT IDENTIFICATION: G - 745
RADIAL	<u>╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃</u>	TRAVERSE DETAILS.
RADIAL	╏┱╧┩╶╏╍┡╸┆╏╒┸┩┩┩┩╒┸┩┸┩╇┸┩┩┩╒┸┩┸╃┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸	AXIAL : (- D ; OFFSET - D
RADIAL ★ : E.N ★ ; N.S □ AXIAL REF.()- VOLTS ★ 2 LOCATIONS: TRAVERSE - VOLTS Deq SCALE : X-AXIS= 3.32 INCH/UNIT Y-AXIS= 393 F.P.S./UNIT HISTOGRAMS: H-/677 TO H-/676	<u>┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍</u>	RADIAL REF. (C)- VOLTS\ R
RADIAL	┇┩┇╒╬╸╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	LOCATIONS' TRAVERSE - VOLTS R2
SCALE: X-AXIS= .3.32 INCH/UNIT Y-AXIS= .3.32 INCH/UNIT Y-AXIS= .3.32 INCH/UNIT HISTOGRAMS: H-/677 TO H- /676	·┍╍╍┾╍╌┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	RADIAL DC: E.W B2 : N.S □
SCALE: X-AXIS= .3.32 INCH/UNIT Y-AXIS= .3.32 INCH/UNIT Y-AXIS= .3.32 INCH/UNIT HISTOGRAMS: H-/677 TO H- /676		AXIAL. REF. ()- VOLTS $\frac{X}{X} = 2$
Y-AXIS- 393 F.P.S./UNIT HISTOGRAHS: H-/697 TO H- /696	▊▊▊▊▊▊▊▊▊▊▊▊▊▊▊▊▊▊▊▊▊▊ ▊▊▊▊▊▊▊▊▊▊▊▊▊▊	LOCATIONS' TRAVERSE - VOLTS Deq
Y-AXIS- 393 F.P.S./UNIT HISTOGRAHS: H-/697 TO H- /696		SCALE: X-AXIS= :3.32 INCH/UNIT
HISTOGRAMS: H- /677 TO H- /676		
	▊╛╸ ╟╬╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
LINE OF LA TRANSPORTE LINE OF LA TRANSPORTE		H1510GRAMS: H-/67/ 10 H-/676
Line of the Tetranore Line of the Tetranore	┋╫ ┍╧╃┩┩╫┩┡╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
		LINE OF LY TRANSCE
	<u>┖╶╴</u> ┆┆┆┆╒╒╒╒╒╃╃╒╏╒╒╒┼┼╫┼╫╫┼╫╫┼┼╟┼╫┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	,
	┩╃┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	<u> </u>
	<u>╒╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶</u>	
	┍╒╶┩╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	╻ ╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	┲╬╅┸╈╙┵┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
	┇╎ <u>┇╏╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫</u>	┇╛┇═┺╇╃╃╏╏╏╏╏╏╏╏╏╏╏╏ ┇╛┇╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
	┇ ╒╒┋╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	╃╋┸┯┑╗╸┎┸╇┿┼┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸	
		┡╸┩╸┇┩╊╒┋╒╒╒╍╅╸╏╸╇╪┾┍┩╸═╬┼┼╶╏╏╇ ┼┼ ╏╏ ┼┼╬╬╌╬╬╌╬╬╬╬
	<u>┍┍┍┍┸┪┪┪╇┪╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇</u>	
	┿┿╪╈╅╅╅╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	╿╶╏╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
	┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	╏╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
	╅╬╅╏┆┱═┉╬╅╬╅╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	
		╒┋╏┋╬╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
	▗▊▎┆┇┇┪╒╫╫╒╫╫╒╫╫╒╫╫╒╇╅┩╫╒╇╃┩╫╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃	

DATE: 5/20/92 NOTICE: 46 TEST FORM: L.V ; ACUSTIC - 6/3 RACI IDENTIFICATION: C - 7749 TRANSITION SET (-) NOTICE: - 10 MODIA,		
TEST POINT: L.V ; ACOUSTIC - 6/3 PLOT IDENTIFICATION: G - 7 4 9 TRAVERSE DETAILS. AXIAL []: () - []; OFFSET - [] RADIAL, REF. (()) - VOLTS, R = LOCATIONS: TRAVERSE - VOLTS, N.S [] LOCATIONS: TRAVERSE - VOLTS, N.S [] LOCATIONS: TRAVERSE - VOLTS, N.S [] SCALE: X-AXIS= 39 3 F.P.S./UNIT Y-AXIS= 39 3 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707	┱╃╀╒╫╒╫╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃	DATE: 5/20/82 NOZZLE: #6
PLOT IDENTIFICATION: G - 749 TRAVERSE DETAILS. AXIAL : (; OFFSET - Ref. () - VOLTS R - LOCATIONS: TRAVERSE - VOLTS R - LOCATIONS	╃┇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
TRAVERSE DETAILS. AXIAL []: () - []; OFFSET - [] RADIAL REF. (()) - VOLTS R = 10CATIONS; TRAVERSE - VOLTS R = 10CATIONS; TRAVERSE - VOLTS D = 0 AXIAL REF. () - VOLTS D = 0 AXIAL REF. () - VOLTS D = 0 CATIONS; TRAVERSE - VOLTS D = 0 SCALE: X-AXIS= 3, 32 INCH/UNIT Y-AXIS= 37 3 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707		
AXIAL : C - : OFFSET - : RADIAL REF. (C) - VOLTS R - LOCATIONS' TRAVERSE - VOLTS) R - LOCATIONS' TRAVERSE - VOLTS) X - O AXIAL : E.W : N.S : AXIAL : E.W : N.S : LOCATIONS' TRAVERSE - VOLTS) X - O SCALE: X-AXIS= 3,32 INCH/UNIT Y-AXIS= 373 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707	┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	PLOT IDENTIFICATION: G-749
AXIAL : C - : OFFSET - : RADIAL REF. (C) - VOLTS R - LOCATIONS' TRAVERSE - VOLTS) R - LOCATIONS' TRAVERSE - VOLTS) X - O AXIAL : E.W : N.S : AXIAL : E.W : N.S : LOCATIONS' TRAVERSE - VOLTS) X - O SCALE: X-AXIS= 3,32 INCH/UNIT Y-AXIS= 373 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707	[1]	
RADIAL REF. (C)- VOLTS R_ LOCATIONS' TRAVERSE - VOLTS R_ RADIAL REF. (C)- VOLTS R_ RADIAL R_F. (C)- VOLTS R_ RADIAL R_F. (C)- VOLTS R_ R_F. (C)- VOLTS R_ R_F. (C)- VOLTS R_F. (╪╅╅╍╏╸ ╏╏╇┿ ╛╪┸╇╌┩╇╇╇╇╃╇╇╃╃╇╇╇╃╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
RADIAL K; : E.W M; N.S D AXIAL REF. ()- VOLTS) X = 0 LOCATIONS: TRAVERSE - VOLTS) D SCALE : X-AXIS= :3.32 INCH/UNIT Y-AXIS= 39 3 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707		Dantai DEE (1) VOITS D
RADIAL K; : E.W M; N.S D AXIAL REF.()- VOLTS X LOCATIONS: TRAVERSE - VOLTS D Eq. SCALE : X-AXIS= :3.32 INCH/UNIT Y-AXIS= 39 3 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707	┡┩╃╫╫╃┆╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	LOCATIONS TRAVERSE - VOLTS R.
AXIAL REF. ()- VOLTS) X = 0 LOCATIONS: TRAVERSE - VOLTS) Deq SCALE: X-AXIS= :3.32 INCH/UNIT Y-AXIS= 39 3 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707	<u>╒╃╁╌┦╌┇╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫</u>	RADIAL X: E.W 12 ; N.S
SCALE : X-AXIS= :3.32 INCH/UNIT Y-AXIS= 393 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707		AXIAL REF.()- VOLTS X _ A
SCALE : X-AXIS= :3.32 INCH/UNIT Y-AXIS= 393 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707		LOCATIONS' TRAVERSE - VOLTS Deq
Y-AXIS- 39 3 F.P.S./UNIT HISTOGRAMS: H- /687 TO H- /707		SCALE : X-AXIS= :3,32 INCH/UNIT
HISTOGRAMS: H- /687 TO H- /707	<u>╒┼┞┼┼┼┡┸╫┼╫┸╫┸╫┸╫┸╫┸╫┸╫</u>	
LINE OF LITERISE	┍ ┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	(
		LINE OF LU TRAVERSE
	┡┍┍┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	——————————————————————————————————————
	┍╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
	┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	╃╃╃┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸	┍╶╒╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶
	╬╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬┸╬	╿╸╡╸╏╶╎╶┊╶┊╶┊╶┊╶┊╶┊╸╏╶╸╸╸╏╸ ┩╸┩╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸
	╪╬╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
	┇╸┇┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃	
	╃╃┇┍╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒	┇╸ ╏╬╸┇╒┋╬╅╃═╒╬╉╉═╘┢╅╃═╾╂┆┼┼┩┩┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼
	╟┆ ^{┍┱} ┆┆ ┇┇┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆	
	╅╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	╘╏┩┩╒╃┩╃╒╒┋┩┩═╘╘┩┈┈╒╞╏╎┆┩ ╏┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼
	╃╏╃┎╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	╒╸╇┋┩╬╇┋┊┈╒┋╇┋╇┋ ╇ ┋ ╇╅ ┋
		<u>╒</u> ╤ ┩┇┋╒╗┋┋┈┈┈┈┋┋┋┊ ┋┋┋┋┋
	╃╃╃╃┇╏╃╃╀┼╃╏╱╪╾╏╂┝╃╅╃┩┵┼╃┞╃┦┼┼┼┩╏╟╬╏┼╟╬┞┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	<u>╶</u> ┼╋┾╃══┼╅┑══╂┼╟═╅╂╂┟┰ <u>╒┞</u> ╏┧╊╁┦┊═┾╂╂┼┼┼╂ ╸ ┇═╤

╃╃┇┍╃┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩	DATE: 5/20/82 NOZZLE: #6
	TEST POINT: L.V ; ACOUSTIC - 6/3
	PLOT IDENTIFICATION : G - 751
	TRAVERSE DETAILS.
	AXIAL : (- D : OFFSET - D
	RADIAL REF.(C)- VOLTS) R LOCATIONS' TRAVERSE - VOLTS) R2
	RADIAL X: E.W ER: N.S
	AXIAL, REF.()- VOLTS \sum_{eq}^{X}
	SCALE : X-AXIS= 1.72 INCH/UNIT
	Y-AXIS= 393 F.P.S./UNIT
╫╫╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	HISTOGRAMS: H- TO H-
╬ ╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	l
╃╃┇┍╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	é
╬╫┆╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
	LINE OF LY TRAVERSE
╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
╀┇┩╃╃┪╇╅╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
┇╸┇ ┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	▊▐▗▊▗▊▗▊▗▊▗▊▄▊▄▊▄▊▄▊▄▊▄▊▄▊▄▊▄▊▄▊▄▊▄▊▄▊▄▊

DAY AL DICTARIO

	
	DATE: 5/20/82 NOZZLE: #6
┣┆╊╎╶╉┡┸╅┸╫┸┦╏╅╫╏═╃╏┾┆┧┧┪╒═┩┼┦╅╅┸╃┸╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	TEST POINT: L.V ; ACOUSTIC - 6/3
╃┩╃╸┪╇┪╃┪┩┆┩╏╫┸╫┇╫┸┸╫┸┸┸╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃	PLOT IDENTIFICATION: G-753
<u>╒</u>	TRAVERSE DETAILS.
	AXIAL []: (- []; OFFSET - []
┠ ╏╒╒╒┩┋╏ ╟╒┾ ╒╏┆┪╏╒┩┇╎┼╏╒┩╃┼┩╸╒╇┩┩╒╃┩╒╒┩┩ ╫╒╃╃┼╌╌┩┩╃┼┼╒╃╃┼┼╒╃╃┼┼╒╃╃┼┼┼┼	RADIAL REF. (4)- VOLTS) R LOCATIONS TRAVERSE - VOLTS R2
	LOCATIONS TRAVERSE - VOLIS R2
	RADIAL S: E.W ES; N.S
╀╒┎┸┍╅┼┸┯╅┸╅╅╅┼┾╇╃┼╇╇┼┸╇╇┼╅╇╇┼╇╇╃╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	AXIAL REF.()- VOLTS $\frac{X}{D_{eq}}$
	SCALE : X-AXIS- 3.32 INCH/UNIT
	Y-AXIS= 393 F.P.S./UNIT
┍╃┸┼╬┸┼╬┸┼┸╇╇╃╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
	HISTOGRAMS: H- TO H-
╠╎ ┤┤┆┩┆╎╸┆┆┡┆┩┩╚┆┩┩╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	l
╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃	1 11 1
<u>┯╅╅┯┿╅┪╅╅╅╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇</u>	£
	1 71
	LINE OF LU TRANSESE
┰╍┛┎╀┿╌╀╃╌╬╅╅┸╅┸╅┸╅┸╅┸╅┸╅┸╅┸╅┸╅┸╅┸╅┸╅┸╅╇╬╇╇╃┸╇╇╇╇╇╇╇╇╇╇	
┖┍┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
╀╒╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃	
╃╬╇╃╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	╏╒╒╒┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
┼╌┦╌┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
╃┯┯┯╇╇┼┸┯┯╅╇╃╃╃╃╃╃┼┸┼┸┿╃╃┼╟┸┸┸┼┸┿┸┼╫ ┍┸╌┼╟┩╌╏╟╏┈╏┡╏╏╏ ╟╟┷╇╃╃╃╃╃╃╃╃╃╃╃╃╀┸ ╒╒┡ ╀╀╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃	╿ ┆┇╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
	╂╅┹╅╂╃╌╌╁╂╌┈╫╫╌┞╏╏╬╬┪
┦╬┯╃┥╃┯┥╏╄╋╇╂┺╏╅╇╄┯╃╇╄┼┩╇╄┷┼╃╇┼┩╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	<u>┞╤╂╅╃┸╤╤┼┆┧╤╤┎╒┼┆┼╃╤┼</u> ┆┼┼┼┆┆┼┼┆┆┼┼┼
╃╬╌┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	┇╬┪╃┸╬╃╂╩┢╃┇┩╪┧╠╬┢┢╬ ┩ ╒ ╋╬┼╬┆╇╒┆╁┆║┯╃╟╂┥╎┊┰╏
╬╇╃╬╅┞╬┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	▘▘ ▐▗▘▘▘▘▘▘▘▜▘▜▗▜▗▜▗▜▘▜▘▜▗▜▗▜▗▜▗▜▘▜▗▊▐▗▜▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊ ▗▀▗▊▗▘▘▞▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊▗▊

DATE: 5/20/82 | NOZZLE: #6 ORIGINAL PAGE IS ACOUSTIC - 6/3 PLOT IDENTIFICATION : G - 757 TRAVERSE DETAILS. VOLTS) X -2,22 INCH/UNIT SCALE : X-AXIS= 393 F.P.S./UNIT ID. XY 1101 Y-AXIS= HISTOGRAMS: H-1737 TO H-1728 LINE OF LY TRAVERSE 1243 MONTHO CHANGE CHANGE TO MONTHON CHANGE

250

▐╪┩┊┦┡┩ ╃╀┦╏╏╅┩╂┼┼╃╂╀╒╃┩╏┆┼┸┠╃┆┼┼╂╒╍┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	DATE: 5/20/82 NOZZLE: #6
	TEST POINT: L.V ; ACOUSTIC -613
	PLOT IDENTIFICATION: G-763
┋┆╎╎╕┩╏┆┆╎┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆	TRAVERSE DETAILS.
	AXIAL : C - : OFFSET - :
	RADIAL REF.(C)- VOLTS R LOCATIONS' TRAVERSE - VOLTS R2
	RADIAL REF.(C)- VOLTS) R LOCATIONS' TRAVERSE - VOLTS R2
┞╌╀╬╌┸╌┩╌┩┩╏╫╫╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	RADIAL S: E.W 🖂 ; N.S 🕏
┡╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	AXIAL REF.()- VOLTS) X LOCATIONS: TRAVERSE - VOLTS) Deq
	SCALE: X-AXIS* 3.32 INCH/UNIT
┇╶┇╶┇╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	Y-AXIS= 373 F.P.S./UNIT

<u>╒╃╀╕┇╒┩╫╀╒┸╃╃┸╫┸╒┺╒┯┵╅╀┺╼┻╅╃┞╃╒┺╍┼╃┼┦╁┺┼┷╃</u> ╞┢┼╌┟┹╅┼┼┤╂╏╸┽ <u>╏╎╃</u> ┼┼┩┼┩╫╬╏╏ <u>╢╫┞╏╢╅┼┼┼╃╃</u> ╛╛╃╇┿┼┼	HISTOGRAMS: H- TO H-
╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	, CHORDWISE LV
	TEAJERSE
	(
┇┇┇╫┇┇╫┇╫╫╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	
┇╴┍╌┎╒╌┎┍╒╒╶┎╒╒╒┎╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
┍┇╶┦╒┇┍╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ ┇ ┃ 2 	┇╒╸╗┩╃╃┩┈╒╘┇┢┇╒╒╘╘ ╬╬╬╬╬╬
┇╸╒╛┩┍┍╒╸┇╸┇╇┇╏┈╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	<u>┼</u> ┇┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋
╃╬┸┩┪┼╬╌╏┸┩╏┦╫┆┞╫┼┸┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	<u> </u>
▐▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	
┍╸╫╒┩┩╒┩┩╫┸╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
	╃┩┩╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃

No. XY 1101

	The state of the s
┡╤╀╏╃╬┼╫╣╏╫╎╎╫╬╫╫╬╀╎╫╫╬╬╫┆┆╍╃┋┨┾╫┼╫╏┼┼┼╫╏┆╍┦┩╬╬┼╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	DATE: 5/20/82 NOZZLE: #6
╒╸	TEST POINT: L.V ; ACOUSTIC - 6/3
	PLOT IDENTIFICATION: G-765
┇ ┇	TRAVERSE DETAILS.
	AXIAL 🗌 : 🧲 - 🖂 ; OFFSET - 🖂
	RADIAL REF. (C)- VOLTS) R LOCATIONS TRAVERSE - VOLTS R2
╽╶╃┩┩┩┇╶╃┾╃╂┆┝┺╃╏╊╟┼┝┹╇╃╏╇╂┾┦┩╃┩┵╀╬┆┼┼╬┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	RADIAL X: E.W ; N.S BE
	AXIAL REF.()- VOLTS X LOCATIONS TRAVERSE - VOLTS DO
	<u> </u>
╗ <u>╒╫╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫</u>	SCALE: X-AXIS= 332 INCH/UNIT
╒╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸	Y-AXIS= 393 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
	HISTOGRAMS: H- TO H-
	CHUROUISE LU
	TRAIERSE
┃┇┇┇┞┆┆┇╍═┇┇ ╒╗┆╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	-
╬╬╅┸╌╇╇┸╌╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	┇╗┇╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
╙┇┆┆ <mark>┦┩╎┩╏┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸</mark>	
┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
┃	
<u>┡</u> ┪ <u>┦╒┧╏╗┦╫┪╏╗┩╫┧╫╫╌╒┺╂╏╫╌┼╀╃╃╃╃╃╃╃╃╃╃╃╃</u> ┩	
┡╒ <u>┍╃</u> ┆ <u>╒</u> ┩╫╒┩╒┩╒┆┆┆╒╒╒┆┇╃╃┼┼╒╒╒┩╃╬┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
┎┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	

original page 18 of poor quality.

	DATE: 5/20/82 NOZZLE: #6
	TEST POINT: L.V : ACOUSTIC - 613
	PLOT IDENTIFICATION: 6-767
	TRAVERSE DETAILS.
┣╏╏┇╫┇┇╫┇╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	AXIAL : (- : : OFFSET - : VOLTS R
	RADIAL REF. (C) - VOLTS) R LOCATIONS TRAVERSE - VOLTS R2
	RÀDIAL X: E.W [] ; N.S 22 AXIAL REF.()- VOLTS X
	LOCATIONS TRAVERSE - VOLTS Deq
	SCALE : X-AXIS- 332 INCH/UNIT
	Y-AXIS= 393 F.P.S./UNIT
	utationalis; n= 10 n=
	CHOROWISE W
╽ <u>╒╶┎</u> ┆╌┆╌╒┆╌┆╌┇╌┆╌┇╫┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	TRAVERSE
╬ ┑╡╒┾┥ ┦┩╍┫ ╒╬╚┩╃╒╸╒╬╬╒╒╒╒╒╒╇┩┩╍╒╌╅┩╇╒╍╒ ╬╌╸┩╌┉╍┸┼╬╇╌╒╫┇╏╟┼╌╌┩═╬╌╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	
┍╒╒┇╫╫╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
┍╫╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	╡╏╗┾╫╫╂╒╒╏╠┩╏┿╈┢╗╏ ┼╫┪╒╇╗┋╏╬┟╌╫╏╄╸┑┪╟╗╺╷ [┪]

DATE: 5/20/72 NOZZLE: #6 ACOUSTIC - 6/3 TRAVERSE DETAILS. 3.32 INCH/UNIT 393 F.P.S./UNIT Y-AXIS* HISTOGRAMS: TO H-CHOROWISE LY TRAVERSE.

IIo. XY 1101

	DATE: 5/24/82 NOZZLE: #6
	TEST POINT: L.V ; ACOUSTIC - 6/3
	PLOT IDENTIFICATION: G-774
┡┼┦╏ ╸╸ ╏┤╃╬┪╏╃╬┼╏┆╒╊╘╏┆╒╉╛╀╉┼╀╅┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	TRAVERSE DETAILS. AXIAL : C - : OFFSET - :
	RADIAL REF. (C) - VOLTS) R LOCATIONS TRAVERSE - VOLTS R2
	RADIAL X: E.W 🖂 ; N.S 🔀
	AXIAL: REF.()- VOLTS $\frac{X}{D_{eq}}$ = VOLTS $\frac{X}{D_{eq}}$
	SCALE : X-AXIS= 3.32 INCH/UNIT
	Y-AXIS= 373 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
	CHORDINGE LV TRANERSE
<u>┩╃╃┩┩┩╃╃╃┩┠╃╃╃╃╄╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫</u>	
	<u>++ </u>
<u>, , , , , , , , , , , , , , , , , , , </u>	<u>:</u>

7)1(
	DATÉ: 5/24/82 NOZZLE: #6
	TEST POINT: L.V ; ACOUSTIC - 6/3
	PLOT IDENTIFICATION: G-775
	TRAVERSE DETAILS. AXIAL : d - D : OFFSET - D
	DANTAL DEE / A L. MOLTES D
	LOCATIONS; TRAVERSE - VOLTS R2 RADIAL X: E.W D; N.S 80
┇┦╶┩╡╏┼┦┦╘┾┆┇╏ ┆┼┦╏┾╒┇╒╬╏╌╬╘┝╒╬╒╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬ <u>┡</u> ╈╫┷╃╏┆┾╌╏╏┆┼╀╏╄╒╃┇╇╃┼╤┢╪╩╄╉┼╂┼╀╬┹┩╃┼┼┼╀╬╬┼┼┼╇╬┼┼╃╬╬┼┼┼╬╬┼┼┼╬╬┼┼┼┼┼┼┼┼┼┼┼┼┼	AXIAL REF.()- VOLTS X
	SCALE: X-AXIS= :3.32 INCH/UNIT
<u>╒╶╶</u> ╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶╶	Y-AXIS= 373 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
	CHORDWIE LV
	TRAVERSE
SO ONTE	
5/44/82	
┖╶ ╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	<u>┩╒╃┑┾╀╃╊┾╬╬╫╃</u> ╤┫╓┾┯┼╃╊┾╇╬╫╃╶┈┼┼┡┈

Model 6 Test Point 614

·	
	DATE: 5/24/82 NOZZLE: #6
	TEST POINT: L.V ; ACOUSTIC - 6/4
┍╃╫╒┩┍┆╏┆╏┆┆┆┆╬╬┆┆┇╬╬╅╀╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	PLOT IDENTIFICATION: G-776
┦┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇	TRAVERSE DETAILS.
	AXIAL 🔄 : 🖒 - 🖂 ; OFFSET - 🖂
	RADIAL REF. (C)- VOLTS R LOCATIONS TRAVERSE - VOLTS R2
	RADIAL ☐ : E.W ☐ ; N.S ☐
	AXIAL REF.()- VOLTS X LOCATIONS TRAVERSE - VOLTS Deq
	SCALE : X-AXIS= 2.22 INCH/UNIT
▗▊▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	Y-AXIS= 394 F.P.S./UNIT
	HISTOGRAMS: H- 1738 TO H- 1748
┡╌┦╕┦┩┩╒┩┍╬ ╒╏╒┩╒┩╒╃╒╃╒╃╒╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	
	•
	LINE OF LU TRAVERSE
┠╘╅┸╒┩┇╒╫┸┇╒╫┸┇╫┸┇╫┸╫ ╫┇╌╫┸╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬┼┼ ┎╬┸┾┷┲╫┇╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	
	·
	111117888
┇┍┧╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
	<u>╶</u> ╒ ┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆
	<u>╶</u>
<u>┣┯╏╛╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫</u>	<u>╶</u> <u>╒╒╒</u>
	╺
	<u>+1::++++++1+111++++=:=11::::-=1:=:+1:+1:+1:=:+1:+1:=</u>

ORIGINAL PAGE IS

Ш	П	Π	T	П	Т		T		Ţ		T	Π	ļ	Π	Π	T	Ī	П	T	П	Τ	Ī	П	T	Π	Τ	ĺ	T	П	Ţ	T	П	Ţ		T			T	Π	Π	T	1		T	П	Ţ		T		1	Ī	T	T	I	Τ	П		T	П	Ţ	П		Τ	П	T	П	Ī	Π	Ī	Ţ	ŀ	D,	AT	E:	5	/_	7	/ 0		7	N)Z	71.F			***	6		-						ı
		#	$\frac{\parallel}{\parallel}$	\parallel	1			1	\parallel		ļ		-	H	H	+	+		1	H	+	1	1	ļ		+	Ц	+		+		+			+		+	+	H	H	ļ		-	+	H	1		+	\parallel	+	H	+	 	4	4		H	+	H	ļ	-	H	+		+	H	-	-	-		۱.									. V									IC	-	6		ū	4	ĺ
						İ		١		ļ							l									-		l									1															*			İ		$\ $								ŀ				-[:		ľ							_						G		7	8	4			<u>~</u>	7	工	-	İ
	П	П	\prod	П	T	I				Ţ	T	П	T				I	Ī	-		I	T	1					Ī		Ī											Ì												I					F	F				ſ				ľ	-	Ī		•	TI	RA	۷E	RS	E	DE	TΑ	īL	s.		_			_		_			_	_				ĺ
╏╬┼┼	+	-	╫	H	+		H	1			L		+		Н	1	H		1	H	+	+	1			+		\dagger	ľ	+	H	1		1	Ť		+	\dagger			1	H	+	+	H	+	H	+		+	\parallel	+	+	+	╁			╁	1		†		+	H	+	H	+			•			A	ΧI	AL	DΛ	9) Al	:	ď	· ==	-	Ļ) }	;	0)FF	SE	T	TS TS	-	Ē	3	ļ	ĺ
																Ī		1				ļ				1		1			Ш		-		1		1	1	ŀ		1			ŀ				1		1			ļ		Ŀ			L				-	1		1	Ц					1			بإ	<u>óc</u>	ĄŢ	ΙŌ	NS	;	Ţ	RA	Ė	ŠĒ	-=				Ý	ΟĽ	TS) 	R ₂		ŀ	ĺ
				$\ \cdot \ $							-		-					1	1																			l		1													-	-						ľ			1				-			,			w	211	14			•	٠	. I		_	- 1	1		N		•	_) }	<u>X</u> .	_	Ì	í
				11	1			1			Ţ		T		-				1	ĺ	1	Ī	-	Ī		Ì		1		-				1	T			T]			ŀ		1		-		1	F		T				-	1			1		Ŧ		T		1			,	-	 S(A	LE	:	AT	10 X	NS -A:	XI:	T! S=	RA'	Z,	2	- 2	_	IN	ICH	V 1/U	NI.	TS. T		D _e	<u>.</u>	_	,
#		#	+	+	+			1		1						T			-		†			ļ		+		t		1		1			t		+	t			t		1		-	†						1	†					†	1				1		,					Α,			_				. Y.	-A		S=					١	F.	Р.	s.		NIT	T				
+++	╫	H	H	H	+	+		_	╢	+	+	1	+		H	†		+	-	-	+	+	1	+	H	╁		\dagger		+	H	+		1	+		+	\dagger	Н	+	ł	1	+	+	H	\dagger		-		+		1	+	+		-		╁	$\frac{1}{1}$	H	+	H	+	-	t	H	1			\parallel	ا	H)	lS L	101	GK.	AM:	S:	77	<u>.</u>	H-		-E		i. Ti		_41	Ĥ- 1⊥		Ľľ]' [TI	П	ŢΤ	_	
	Ц	Ц	Ц	\coprod					Ц		ļ		ļ			1	ŀ			,	1	-	U	Ц		1		1						1]	ļ			L				Ц			-		1		1	ŀ		igert		-	1				ŀ	1	Ц	ļ		-				Ŀ		Ė			1											1								
																-			-	-			-				-											1															-		-	,	-	-	-				-		1		-				-		-						1		-			•		}	$\prod_{i=1}^{n}$	{						-	
										1	-									-		-														-	-	I						-							ŕ	-					ŀ				-		-	-	-								-		-	-							- 				į								•
							ŀ							-					†					Ė				ľ						_	-			l				-						-		ŀ												-	-				†					ŀ	-		-	#							+	Ė									Ī		
				i							-								-			-	-			 				**				1			-														-											-	-		-		-	-					-			 -				-	-							-			-	Ē			
					-					-		-				-[-			-			,						Ė							ŕ				i		-		-	-].		-		-		•		ŀ	-																	1	-	-											- -		+						
					-		: [-]-					Ī		-										ľ									1	Ī			T									Ī	-		Ī										F	1	-						F					F												-							
\prod		ŀ	1		-				-						-		-	-		~	!							F		ì								Ī					į.		:	1		-	;			-	T								Ī	ŀ				ŀ	·			,				-	-	-						-	+					- -			$\left \cdot \right $			- -	
					-	T		1		Ī	i	- -	ŀ			1						Ĭ		h				Ī				1			-		1	T			Ī		ŀ			1		ŀ		T			-								T	F								-		-		F		-			1					7					F	H	H	Ŧ		\prod	
						1					-	•			1			-		•		1						T				Ť			Ī		1	1			Ì		Ì					1	ŀ							1						F					ŀ		-					1	F				1		<u> </u>						E					T			
								T		7	H	1			1	T									Ť			T		1		†		1			T			1	1		Ţ					T								1			1							I						1		F					1																
										1						T		T	T		;		-				Ì			Ì		-							ļ		Ì		1			1		Ī								1			1													T		1					T																Ì
	:	11	! (-] ;]						<u>T</u>			Ţ											1	1265	-	:	+			-	T			1111	-	1				1			-																																													

ID: XY 1101

,	1					DATE: 5/29/82 NOZZLE: #6
,	 			┊┋		TEST POINT: L.V ; ACOUSTIC -6/4
ğ ill						PLOT IDENTIFICATION: G-790
						TRAVERSE DETAILS. AXIAL Z : C - D : OFFSET - D RADIAL REF. (C \(\) - VOLTS \(\) R_= (LOCATIONS' TRAVERSE - VOLTS \(\) R_= (RADIAL EF. () - VOLTS \(\) \
				VEPERT CX	G-788	LINE OF LA TRAVERSE
			1814 H1784			
+ 1						

IIO. XY 1101

TEST POINT: L.V ACOUSTIC - 6/4 PLOT IDENTIFICATION: 6 - 792 TEMPOSS BETAILS: ANAL [: (! - 0] : OFFSET 0 ANALA, EEF.(.) . VOLTS) & . ANALA, EEF.(.) . VOLTS) & . ANALA, EEF.(.) . VOLTS) & . ANALA, EEF.(.) . VOLTS) & . ANALA, EEF.(.) . VOLTS) & . ANALA, EEF.(.) . VOLTS) & . ANALS . 340 F.P.S. (UNIT) HISTORAMS: H. TO H. LILLE * LATTERASE* LILLE * LAT				DATE: 5/27/82 NOZZLE: # 6
TRAVERSE DETAILS. AXIAL [] (_) VOLTS & RADIAL, REF. (_) VOLTS & LOCATIONS, TRAVESS. VOLTS & LOCATIONS, TRAVESS. VOLTS & SCALE : ANIS				
AXIAL : d ; OFFSET - VOLTS R 2 10501955 PAVESS - VOLTS R 2 PAVES - PAVES - VOLTS R 2 PAVES -		<u> </u>		PLOT IDENTIFICATION: G-792
ARADIAL REF. (L) VOLTS B. LOCATION: TRAVESS: VOLTS J. DOLATION: TRAVESS: VOLTS J. SCALE: K-AATIS B.22 INCAVINIT HISTOGRAMS: H. TO H. HISTOGRAMS: H. TO H. LOCATION: TRAVERSE LOCATION: TRAVERSE LOCATION: TRAVERSE LOCATION				
RADIAL KE.L. W. S. 1. N.S VOLTS D. O. SOLLE: X-AXIS- B.D. Z. IRCU/UNIT Y-AXIS- B.D. Z. IRCU/UNIT Y-AXIS- B.D. Z. IRCU/UNIT HISTOGRAMS: H- TO H- Line of Lij Traverse - E				DADYAN DEF. (C.)- VOLTS R
AXIAL REF. () VOLTS D. 90 SCALE: X-AXIS= D. 52 INCHIUNIT Y-AXIS= 390 F.P.S./UNIT HISTOGRAMS: H- TO H- Line of Lil Transase &				LOCATIONS TRAVERSE - VOLTS R2
SCALE: X-AXIS- 3-90 F.P.S./UNIT HISTOGRAMS: H- TO H- LINE OF LUT TRAVERSE & LINE OF LUT TRAVERSE				RADIAL X: E.W 12 '; N.S 1
SCALE: X-AXIS- 3-90 F.P.S./UNIT HISTOGRAMS: H- TO H- LINE OF LUT TRAVERSE & LINE OF LUT TRAVERSE		┩ ╏╸ ┾ ╒╏┆╒╣╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒		LOCATIONS; TRAVERSE - VOLTS Deg
HISTOGRAMS: H. TO H. LINE OF LIJ TRAVERSE				SCALE : X-AXIS= 3.32 INCH/UNIT
Line is Li Traverse.				
LINE OF LA TRAVERSE LINE OF L				HISTOGRAMS: H- TO H-
LINE OF LA TRAVERSE LINE OF L				
				LINE OF LA TRAVERSE
	┆╸ ┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇╸┇		╒╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸	\
				11717 111111111111111111111111111111111
		┦╸┇╸┡╶┦╸┩╸┡╸┡╸┡╼┦╼┦╼┡╼┝╸╏╼┞╼ ┧╼╂╼╃╼╃╸╂╸┼╌┦╾ ┡╶┩╸╽╸┡╶┩╸ ┞╼╀╼┩╼╂╸╏╼┇═┼ <i>╸</i> ┞ ╸╬ ┋┆┇ [┪] ┦┦ ╿ ┨	▐ ▕ ▕─├·┤╍┨╶╂╌ ┆┇╏┋ ╿╕┡╴┇ ╏┠╏╴┼╾╏╾┼╌┦╼╂ ┈╿╶╃╼├ ─┼ ╌╂╼╏╼┞╼┼╾╂╼╂╼┼╾╂╼╂═┥═┥╾┤╸┞╺╏═┼═	
			<u>▊</u> ┋╛┽┩╎┽╢┊┆┼┆╎╻║║┇╧┼┼┼╅╅┩┼┼┼┿╅┾╍┾┵┼╃┦┦┆┆	
		╊╃╎╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	▊╒ ╸ <u>┦╒╸┩╒╫╏┽╎┧╝╬╟╸╌╌┧╸</u> ╏╬ <u>╛╴</u> ┆┼┼╅╸ <u>╊╶</u> ┼╸	▗▗▗▗▗▗▗▗▗▗▗▗▄ ▗ ▄▄▗▗▗ ▗
		 		
$\{\{\{\},\{\}\}\},\{\{\}\}\}\},\{\{\}\}\},\{\{\}\}\}\},\{\{\}\}\}\},\{\{\}\}\}\},\{\{\}\}\}\},\{\{\}\}\}\},\{\{\}\}\}\},\{\{\}\}\}\},\{\{\}\}\}\}\}\}$		#-TTF-1 [3] #F-1 [3] #-1 [4] #-1 [4] #-1 [4] #-1 [4] #-1 [4] #-1 [4] #-1 [4] #-1 [4] #-1 [4] #-1 [4] #-1 [4] # 		<u>┡╃┧╌┧╞┨╞╄╏</u> ╒╏┾┼┼┧╏╒┿┟┦╘┦┊┞╡┊╵┼╏┞╸┆╏┞┥┾┅
				┇╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫

PAPIAL TOICTANICE

No. XY 1101

윾

POOR QUALITY

NOZZLE: ACOUSTIC -614 RADIAL REF. ()- VOLTS R NOTES

				. ' :			1										ļi:						Ш	$\ \cdot\ $						Īij.	<u> </u>	† [DATE:	5/27/	/ 8 2	NOZZL	E: .	#6		
11	; ! ;	. ::	 	1:	1:	11			甘				#						#	 						Ш	##	#						POINT:				COUST	ic -6	14
111.				+:		+++]].						<u> </u>	- 1-		111	##					##			<u> </u>	413					1	PLOT	IDENTIF	FICAT	ION :	6 - 7	196		
1																\parallel																ŧſ		RSE DET						
¥##					11			1	11.													. = -										<u>‡</u>	AXI	AL []	: (<u> </u>	_ i.	OFFSE		Ö
				1		<u> </u>			##				##			4			++:	#		#	#	Ш	#		#					Ξl	<u>L</u>	NAUTA OCATION	NS.	REF. (C	:	V.	OLTS)	<u>n</u>
									#								#	##	+++			#										剒	RAD	IAL 🔀	; E	.W (링 ;	N.S.	- 🗆	u
																												-1-1-				#	, L	AXIA MOLTACO	NS:	REF.(ŢRAVĒRS	E -	. V	OLTS)	Ĉ.™.
		111									4#																					#1	SCALE			3.3		INCH/U	NIT '	- Jane
++1																#						##										ŦĮ.			-AXIS	- 37			/ואטד	
##						111												###	#	 	- - - -							#				#1	HISTO	GRAMS:		H-	T0	H-		 -
																	#		諎									#				∄┃		τ-1		L	ive at	LV TR	AUERSI	E
																-11							111	H			${\mathbb H}$					∄╽	_	77				1		
+ <u>+</u>																						\prod								#		#1	_		۱.	$\overline{}$)			- (
##																	##															∄╽						J		
							#				##	##					+++	++-	1	M,												#1		П				1		
												1							雦			H							##	#		#,	17171		-1-1-7	-11144			 	
																							Ħ	H					詽	#		111								#
		###								-1-1-1	111				+++		-#1								1												1			
											#	#					Ш											剒	##	#										\blacksquare
																													##	\pm		#						###		\pm
				1																- - - - -						- - ₁		##			-1-1-1	#	-1-1-1	++++		++++			 -	#
扭				##						1-1-1																n i				7									7 3	
111				井							‡‡}	#							#		4+			Ϋ.																
											#				#	Ш					##	++ - - - -						##		##	##	#		 						
	扯	·FE	+11																#			Ħ	<u>-</u>	₩			計				#	肼				###	<u> </u>		+++	†
钳	###	##	-1-1	 [[団	뮘		1	#[11				<u> </u>				F -	H				TI.				#				1111	*				<u> </u>
	╫	###	- 11	+;;						- { }	111		i		₩		1 -		1	<u> </u>	¥ T	#	+[-	11-		<u>'</u>	#17				+			 [- -] -				<u> </u>		Ħ
	1]]]	#11				HH	<u>H</u>		11.			114		H	+		Π!	- -	[]	-	3			- -			 	- - -	††		: -[-	H		###				#	HH	H
:4	41	141		\prod_{i}			III			\prod					14.					1.1	TE	F			7		1	T		H		F	詽		###				#11	##
· - !		1111	+ 1-; ;	1	1-1	1-	1 1	<u>- </u>	1-1-]+	! -	17,17	TF:	' 1]	11.	<u> </u>	111	Hi.	<u>. [</u>	; !	, l	H.	LF		+				<u> </u>	111	11:	-1	<u>-}-</u> - -	 	1-1-1	11-1-1-	3 5 5 5	; ; ; ; ;		111

			DATE: 5/27/82 NOZZLE: # 6
			TEST POINT: L.V ; ACOUSTIC - 614
			PLOT IDENTIFICATION : G - 795
			TRAVERSE DETAILS.
╒╬╬╬╬╬╬╬╬╬╬╬ ╒╫╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬			AXIAL []: d - []; OFFSET - []
			RADIAL REF.(C)- VOLTS) R LOCATIONS TRAVERSE - VOLTS R2
			RADIAL X: E.W KI; N.S []
	2 2	\$ x 6	AXIAL REF. ()- VOLTS $)\frac{x}{D_{eq}} = 8$
			SCALE : X-AXIS- 3.32 INCH/UNIT
╒ ┇┵╌╌╬╒╬┩╫╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬			Y-AXIS= 340 F.P.S./UNIT
			HISTOGRAMS: H-1803 TO H-1812
			LINE OF LUTEAVERSE
		<u>┆</u> ┇╬╬╬╬╬╬╬	——————————————————————————————————————
			13-13-13-1-1-1-13-13-1-13-1-13-1-1-1-1-
│┃╬╬╅╗┞╬╇╬ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃			╿ ╗╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫
╻ <u>┨╶╴</u> ┇╶╒╴╽╺╏┟╕╏═╏╶╸ ╻╏╶╶┇╶╒╴╽╺╏╏╶╏╶╏┼ ┇╶╶		┇╶┩╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	┞╫╬╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫
			╏ ╒╒ ╍╸╎┵╁┯╏╘╒╒┯┱┯╬╏╏╏┇╬╸ ╏╒╫╍╾┿┝┯╬╏╘══┪┎┯╬╏╏╏╏╏╏╏╏┆┆┼┼

								HT: HEF	
 			<u> </u>		<u> </u>		<u> </u>		DATE: 5/27/82 NOZZLE: #6
						· : - <u></u>	<u> </u>		TEST POINT: L.V ; ACOUSTIC -614
									PLOT IDENTIFICATION: G-800
<i></i>									TRAVERSE DETAILS.
									AXIAL : (-); OFFSET -
									RADIAL REF.(C)- VOLTS R LOCATIONS TRAVERSE - VOLTS R2
									RADIAL DC: : E.W 5A : N.S
		<u>-1-i-1-i-1-i-1-i-1</u> -1-i-1-i-1-i-1-i-1-i-1			-+- - - - - -				AXIAL REF.()- VOLTS $\frac{x}{D}$ VOLTS $\frac{x}{D}$ = 12
1111111									SCALE: X-AXIS= 3.32 INCH/UNIT
									Y-AXIS 390 F.P.S./UNIT
									HISTOGRAMS: H- TO H-
									LIMBOF LI TRAVERSE
·╎╾┆╶┞╺╏╾╂╾┼╌╎╎╾┦╌┼ ┌┼╶┦╼╏╴┞╼┦╶┼	<u> </u>					11		 - - - - - - - - - - - - - - - - - - -	Times of industries
		<u> </u>							2
									177
									-
		+++++++					▎▀▐▗▘▐▀▍▀▍▐ ▗▘▍ ▀▍▞▍▀▍▀▍▞▍▀▋▀▋▀▋	┍╏╴╏╶╅╌┠╌╏╶╂╸╏╾╁╾ ╾┨╼╂╼╏╼╂═╏╼╁═╂═╏╼┼═	╸ ╒╸
););		
<u> </u>									
				MUMELL					
			┪═╏═╏═╏═╏═╏═╏═╏ ╬═╏═╏═╂═╂═╂═╂╶╏╏═╏═╬╴┠╴╏					╼ ╎╏╴┞ ╏╍╏╼╏╼╏╼╏╼╏╾ ╼╏╼╏╼╏═╏	╃╃╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫
74.14.14.14.1									
<u> </u>		<u> </u>			- - - - - - - - - - - - - - - - - - - -				<u>╶</u> ╤ ╒╒┩ ╤┩ ┩╒╏╒╒┋╒╒╒╒╒╒
		<u> </u>			#				
		111111111		<u> </u>					
		1441	1111111111	4-1111111111111111111111111111111111111			-1111		

OF POOR QUALITY DATE: 5/27/82 NOZZLE: #6 ACOUSTIC -6/4 TEST POINT: L.V. -PLOT IDENTIFICATION: G-802 TRAVERSE DETAILS. - 🗆 RADIAL REF.(() - VOLTS)
LOCATIONS' TRAVERSE - VOLTS

RADIAL ②: E.W. - ☑; N.S. - □ $\frac{\text{VOLTS}}{\text{VOLTS}}$ AXIAL REF.()-LOCATIONS TRAVERSE -SCALE : X-AXIS= 3.32 INCH/UNIT 340 F.P.S./UNIT No. XY 1101 .Y-AXIS= HISTOGRAMS: TO LINE . T. LU TRAISESE

No. XY 1101

CHARTE CONTROLS CHARTES
CHARTE CONTROLS CONTROLS
BLOFALD NEW YORK
PROTEON USES

ORIGINAL PAGE IS

						DATE: 5/27/82 NOZZLE: #6
				┍╒╍┋┋ ╌╬╫]	TEST POINT: L.V ; ACOUSTIC - 614
	!!-!! : 					PLOT IDENTIFICATION: G-804
						TRAVERSE DETAILS.
						AXIAL []: (- []; OFFSET - []
	<u> </u>					RADIAL REF.(C)- VOLTS) R LOCATIONS TRAVERSE - VOLTS R TRAVERSE R TRAVER
				╏╸ ╏╸ ┇╸ ┇╸ ┇╸ ┇╸ ┇╸ ┇╸ ┇ ┋		RADIAL 2: E.W 80 ; N.S
						AXIAL REF.()- VOLTS) $\frac{X}{D_{eq}}$
						SCALE: X-AXIS= 3.32 INCH/UNIT
						Y-AXIS= 390 F.P.S./UNIT
						HISTOGRAMS: H- TO H-
				╏╒ ┇┥╌┦═┦═┸═┸╌┦╌┦╌┦╌┦╌┦╌┦╌┦╌┦╌┦ ┩══╃╌┦╍╀═┦═╏╌┦╶╴┼┼┦┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼		LINE AT LY TRAVERSE
						
<u> - </u>						
2						4
		<u> </u>				
					╒┞┼ ┦╃ ╃┩┩╃╸┼┥╟┩┱╬┆╏╧┼┼┦┧╂╃╇╀┼┼┼┼╽┼┤ <u>┼┼</u> ╏	╶╫┾╫╃╬╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫
					┍╶╸╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	<u> </u>		`` `		▗▗▗▗▗▗▗▗ ▗▗▗▗▗▗▗▗▗▗ ▗▗▗▗▗▗▗▗▄▗▗▄	╼═┋╃┠═┇┋╃┸┼╀╀╀╀┼┵╃╏┾╌┡╡╏╏╏╠╿┧┼╏╏╂┸┪

NOZZLE:

#6

No. XY 1101

		DATE: 5/27/82 NOZZLE: ##6
		TEST POINT: L.V ; ACOUSTIC - 614
		PLOT IDENTIFICATION: G-806
▋ ▐ ╪┧┞╁╇┆┊┟╻┟╬┆╘╊╏╎┆┠┋╘┇╶╬┞╇ ┼╽┇╩ ┍╄╪╅	┍┇╍╬╌╂┈┇┈┦┈┩┈┩┈┩╌╏┈┞┉╃╼╎═┇╸┃╍┦┈┦┈╏┈┡┈╏┈┞╼╁╌╂╌╃╌╃╌╃╌╃╌┼╌┼╌┼╌┼╌┼┼╌┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	TRAVERSE DETAILS.
	┱┩╏┸╫┸╸╸╍┸┵╁┦╸╏╸╙╼╌┩╉┸╁┾╍┢┙╛╙╁╎┎┾╏╂┇╸┵╸┢╸╫┸┍┸╫╏╏┪╏┾╇╁╎╌╸┩╁╂╅┰╸╽┩╏╁┎╏╸╬╸╎┦╏╬ ┡╎┩╏┡╍┉╍╇┸╸╾╏┇╌┵┎┍┪╌╏╏┪╼┯╬┼╌┆┆╏┪┯╬┼┼┆┆┆┆┯╬╗┇╏┷╌┾┆╎╌┻╅┷┉┪┉╻┻┉┉╗╗┼┼╻┸┰┎╌┆	AXIAL []: (- []: OFFSET - []
		RADIAL REF.(C)- VOLTS) R LOCATIONS: TRAVERSE - VOLTS R2"
		RADIAL ★ : E.W 😝 ; N.S 🗀
		AXIAL REF. ()- VOLTS $\frac{x}{D_{eq}}$ =
		SCALE : X-AXIS= 3,32 INCH/UNIT
	<u>┩╅╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫</u>	Y-AXIS= 390 F.P.S./UNIT
	╃╃┇┇╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	HISTOGRAMS: H- TO H-
		LIVE OF IN TRAVERSE
		
┣┋╶┝╌┩╌┩╍┩╍┡╍┆╍┞┈┩╍╃╶┩╶┪╌╽╌┩╒ ╒ ╏╸┡╍ ┥═╏╶╀ ╌╏ ┯┼ ╸┩╸┩╸┩╸┩╸┩╸┩╸		
	<u>┇┍╫╒╒┍╫╒╒┍╫╒╒┍╫╒╒┍╫╒╒┍╫╒┍╫╒┍╫╒┍╫╒┍╫╒┍╫╒┍╫</u>	
┇╏═┇┇╶╒═┸╸┇═╉┠╌╏╏╌┉┢╀┇┇╬┢┎┇┪╍╍╏╬┼╏╏┪╸┪ ┇┸╤╬┧╏╏╾╒┸╒╏╌┎═╫┼╬╫		
	┇╤┇╏╒╬┇╬┇╒┸╤┇╒╬┇╀┇╏╬╌┸╌╏┇╬┸┸╌╏┇╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	▝ ▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜▜
┍ ┪╕┋ ┍┩┍┆┼┈┆┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼		
	╃┧┞┇ <u>╒</u> ┦╬╫┇╡╏┦╫╛┇╛┢┪╣╏ <u>╒╏╽╏┦┆╏┡</u> ╒┥┼┋╏┼┟┞┊╏╠┆╽╽┼╡┇┇┆ <mark>╟</mark> ╗┤╎┃┇┇┩┞╕╽┵┇┇┹╄╤┼╟╏┦╠╒╅	<u>*####################################</u>
	┍╸┩╒╶┇╶╫╒╶┩╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	▗▘▗▀▗▘▗▘▗▘▗▘▗▘▗▘▗▘▗ ▗▊▊▋▋▃▋▗▘▗▘▗▘▗▘▗▘▗▗▗▗ ▗▊▊▊██
2	<u> </u>	<u> </u>

DATE: 5/27/82 NOZZLE: #6 ; ACOUSTIC - 614 TEST POINT: L.V. -TRAVERSE DETAILS. AXIAL ☐ : C - ☐ ; OFFSET

RADIAL REF.(C)- VOL

LOCATIONS, TRAVERSE - VOL RADIAL X: E.W. - 22; N.S. - D

AXIAL REF.()- VOLTS

LOCATIONS TRAVERSE - VOLTS 3.32 INCH/UNIT SCALE : X-AXIS= 390 F.P.S./UNIT Y-AXIS= TO H-HISTOGRAMS: LUE AT LU TRAVERSE

No. XY 1101

10. XY 1101

IIO. XY 1101

				DATE: 5/28/82 NOZZLE: #6
 				TEST POINT: L.V ; ACOUSTIC -/6/3
		╾┧╌╌┧╏┞╎┼╏┧╶┤┼╬╬╌╗╏╬╏╏╏╬╏ ═┇╏╍╣╢╟╌┠╬┸┸╟╬╒╸╏ ═╬╫═╫╫╫		PLOT IDENTIFICATION: G-814
				TRAVERSE DETAILS.
				AXIAL []: (- ; OFFSET -)
				RADIAL REF. (C) - VOLTS) R LOCATIONS TRAVERSE - VOLTS R2
		═╅╎┾═┧╏┆╎┺┠═╏╸╽╇╏╃╌╅╅╸ ╤╏╒╌═╌┼┼╏╏┼┼╼╏╏┼┼┼		RADIAL & : E.W BH ; N.S
				AXIAL REF.()- YOLTS) X = O LOCATIONS TRAVERSE - YOLTS) Deq
				SCALE: X-AXIS= 3,32 INCH/UNIT
				Y-AXIS= 394 F.P.S./UNIT
				HISTOGRAMS: H- TO H-
				LINE OF LU TRAJERSE
		┦╏╸ ┼╸┧╸┇═┇═╏╸╏╸╬═╏╌┼╌╴╏╴╏╶╏╶╏ ┼╌╏═╒═┪╒┈╏═┇╶╏┈┇═╏	▄▗▊▊▗▄▗▊▞▁▜▄▗▊▗▎▗▍▃▋▗▍▗▍▞▋▟▄▄▞▆▘▊▗▄▄▄▊▗▗▃▜▗▗▃▜▗ ▄▗▊▃▗▃▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	#
		╉ ┋ ═┡┋┩╒╫╫┼┸╫╫╫ ┩═══╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫		
		┊ ╤╃╏╬╬╬╬	<u>╒</u> ┇┍┇═┇ <u>╃╒╛┰╅┇╛╅╅</u> ┆┇┇╣╽┍╏┆╟┪ <u>┪╂╂╏</u> ╒╒╏╒╒╏╒╏╒┼╬┼	
				╅╃╃╫╫┇╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫
<u> </u>				┇┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
				<u> </u>
1	,		<u></u>	

		DATE: 5/28/82 NOZZLE: #6	
		TEST POINT: L.V ; ACQUSTIC -	1613
		PLOT IDENTIFICATION: G-8/5	
		TRAVERSE DETAILS.	
		AXIAL : (; OFFSET	- 🗆
		RADIAL, REF.(C)- VOLTS LOCATIONS, TRAVERSE - VOLTS) ii 2
		RADIAL X : E.W SY; N.S C	3 5) X - 0
			$\sum_{\mathbf{D}_{eq}} \mathbf{x} = 0$
		SCALE: X-AXIS= 3,32 INCH/UNIT Y-AXIS= 394 F.P.S./UN	
		HISTOGRAMS: H- TO H-	
		LINE OF LUTCA	YBUSE
P _r = 3.2/6,	V . = 0 f/s		∉
	a/c		1
T _T =_852_ °R	, D _{eq} = <u>S.03</u> in.		
V _j = <u>/704</u> f/s	. h = /.29 in.		
┡┇╃┯┇┾╩╛╊╃┺┾┫┞╃╫╫┼╅╀┡┼╃╅╃┼╃╏┦ ╒╟┇╃┯╃┩╈┦╇┇╇╏╫╫╂╫┼┼╀╏┼┼╂╏┼┼┼╂			
		╃╫╏╃┩┩═╵╌╿╉╌┷╈╌╏╏┾╅╒╋╃┨╋╌╅╌╫╇╫╫╌┋╧┿╁┆╏╏╪╴ <u>╠╴┧╵┦╬</u> ┇╒ ┆┸╌╟┢┻╈╅┧╏╄╌╁┸╇╇╇╬┈╘┡	
╏╫╌╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫╒╫			
		┍╃╃┩╏┩┋ ┇┇╒┆ ┋╏╬╫╫┾╏╫╬╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
	╼┇┆╪╃┩┩╏╀┇┆┦╬┾╁┧┋╧┇┆┆┇╵┇┇┆┪╏┞╏╁┼┼╬╸╫╁┾╬┦╏╃┪╬╂╏┞╏ ┇┆┡┢╅╬╏╏┆┆┆┆┆		
			<u> </u>
•	1 b (PODIAL DISTANCE	•	

No. XY 1101

		DATE: 5/2 8/82 NOZZLE: #6
		TEST POINT: L.V ; ACOUSTIC - 1613
		PLOT IDENTIFICATION: 6-816
<u>╒</u>		TRAVERSE DETAILS.
┍╬┲┼┼┼╏┎╌╸╒╂╂┞┼┦╏┲┄╬╏╽┼╏┟╎╏╟ ╬╇┼┼┼╏┎╌╸╒╂╂┞┼┦╏┲┄╬╏╽┼╏┟┆┩┆		AXIAL []: (- []; OFFSET - []
		RADIAL REF. (C) VOLTS) R LOCATIONS TRAVERSE VOLTS R2
		RADIAL 💢 : E.W 🖼 : N.S 🗀
		AXIAL REF. ()- VOLTS $\frac{x}{p_{eq}}$ 2
╃┇╃╃╃╃╃┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸		SCALE : X-AXIS- 3.32 INCH/UNIT
		Y-AXIS 394 F.P.S./UNIT
		HISTOGRAMS: H- 1833 TO H- 1839
		LINE OF LY TROVERSE
	<u> </u>	CINE IN TRANSPORT
		1
╃╫╃╃┸╃┸╃┸╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇		
┍╸╅┍┸╅╒┸╅╒┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸		
╃╃╃╃╃╃╃╃╃╃╃╃╃ ╢╻┼┤┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼		
╅┸┦╏╏┸╏┸┸┸┸┸┦╏┇┩╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏		
	+[-[1]-[-	▎▘▞▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗
		╿┇ ╏ ╒╸ ┝┤╏ ┊╎ ┼┼╅╏┇┼┼╅╅┇┼┼┪┇┋╧┆╏╬╬┆╒┆╏╌┇┇╬┤╏╬

	DATE: 5/28/82 NOZZLE: #6
	TEST POINT: L.V ; ACOUSTIC - 1613
	PLOT IDENTIFICATION: G-817
	TRAVERSE DETAILS.
	AXIAL []: (- []; OFFSET - []
	RADIAL REF. (C) - VOLTS) R LOCATIONS TRAVERSE - VOLTS R2
	RADIAL E.W D ; N.S C AXIAL REF. C - 2.108 VOLTS \ \frac{x}{0.00} = 2.108 VOLTS \ \fra
╡╃╬┇╌┼┧╀╉╟┆╀┩╒┷═╬╫╫╃╫╬┇╫╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	LOCATIONS TRAVERSE -2326 VOLTS Deq
	SCALE: X-AXIS= 3.32 INCH/UNIT
	Y-AXIS- 344 F.P.S./UNIT
╘╒╃╍╊┆╫╊┧┇┦╸╌╅╫╫┲═╬╟┆╶╫╫┲┲╒╬┎╏╩┷╌╫╫┼┼╫┸╒╬┆╂╅╫┼╟┸╒┸╒╬╬╅╅╷┎┰╏╟┩╬╬┸╫╏╏┸╬┸┩╏╏╬╅╫┼╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬	HISTOGRAMS: H-1833 TO H-1839
	#I -
	LINE OF LY TRAVERSE
┍┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	# * 1
$P_{\rm r}=$ 3.216 , $V_{\rm a/c}=$ 0 f/s	
T _T =8\$2_ °R, D _{eq} = <u>\$.03</u> in.	╒╏ ┇┋┇ ╇┱╁ ┇┇╏╏╏╏╏╏╏╏╏╏╏╏ ╬╬╇
V ₁ = 1704 f/s, b = 129 in +++++++++++++++++++++++++++++++++++	
V _j = <u>/704</u> f/s, h = <u>/.29</u> in.	
╻┍┧┆╻╒┍╸╗╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	╒╇╍═╌┇╼╫╌╌╬╌╬╌╬╌╬╌╫╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╻╶╸╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	┍┾╸┍╒╶╒╶╶╶╒╸╎╶┼ ╸┆┈┩╸ ╌┎┇╏┇╬╍╏╏╏╏┪┆┇╅╏╏╬┆┆╏╏╏╏╏╏╬ ╌╾╌╶╌╼╌┈╌╸╏╫╣┇╅╃╂┼┼╌┰╌╬╅╀╬╏╌╽╒╌┦┆═╏┆╏╏
▊▞▜▐ ▗ ▊▜▗▘▊▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	
	╶╀╏┞┞╎╫╘╫╫┇┾═╅╫┇╏┾╬╬╬┼╷┇╛╟╏╫╬╏╫╏╏╬╏╏╏╏╏╏╬╏╬╬╬╬ ╒┡┼┆┢╫═┪┩┩┆╏┆╬╬╬╬╬╬╬╬╬╬
╻╫╬╬╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	▗ ╡╒┆╒┋╒┩ ╒ ┇┋┋┋╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒
	4

ORIGINAL PAGE IS

m. XY 1101

DATE: 5/28/82 NOZZLE: #6 ACOUSTIC - 1613 6-818 AXIAL []: (C - []; OFFSET

RADIAL REF.((C) - VOL

LOCATIONS' TRAVERSE - YOL - 🗆 RADIAL E.W. - E : N.S. - AXIAL REF. ()- VOLTS VOLTS VOLTS VOLTS) $\frac{x}{D_{eq}}$ 3.32 INCH/UNIT SCALE : X-AXIS= 394 -ZIXA-Y. F.P.S./UNIT TO H-HISTOGRAMS: 1308 LINE OF LY TRAVERSE

				1.		111		1:				I	::							11					- - - -									DA	E: 5	/28/	182	NOZZI			6		
	1	11.		H	71	111	; [.i			###							#		111									##		##			#	_			L.Y					1613	1
-i i -i i		111	- 1		ļ,		<u>; </u>	111															<u> </u>										#	_				ON:	G -	82	<u>o_</u>		_
						+ + -																											韭				<u>AILS</u> .	<u>.</u> -	- :	· OFF	SET	- 🗀	
1																		111					 												1.00	RADIA ATION	L R	EF. (C	()- SE -		VOLTS		
										!		T -1-1		<u> </u>		#		##										拼		#			#		RADIA	u 🔀	: E.	W	ß;	N.S	[ງ້	1
										<u> </u>																								}	LOC	NIXA Î	L R	EF.(RAVER)- SE -		VOLT:) <u>X</u> =	8
					#	##							<u> </u>													##							#	SC	ALE :	X-	AXIS,	3	32	INC	JUNIT	•	
		##					111	#					\Box						\blacksquare																						s./un		
		+-1-1																																HI	STOGI	RAMS:	H				. 182		-1∶
																#			13	1	N	#	V	拔	*	\$ 4							H	-				LIM	E ef	LJ TI	AVERS	E	
										\Box									1	1					3	70									1 ~L			_					1
																							H) —		- · +	₫	<u> </u>
																						!			#				##					l									Į.
	#	#	 								111				#																			L	71			·		<u></u>	1		_
> III	- -				-1-1-																													#	1111		1111	1111	Ш	1111			
																	1	##		+		113		圳	#		#		##	#													
					Ħ									##													\parallel		###		\mathbf{H}												
														##					Ħ		H				₩				\Box											++++			111
							+			\pm								丗			Ш				Ш					##	 									<u> </u>			
			 							-1-	-	#		###					Ш			#							#	##								###					
	1 1 						#							+++			盽	7/1																									
	Ħ																	1																								1111	
	11		113	斮			4				##	111		#		<u> </u>	#	<u> </u>			- -		111		Ш				<u> </u>			#		#									<u>-[-</u>
				#1	† [-]		1		11	ij	Ħ	#		##		#1	1	<u>-</u>			 - - -	1:1	1											#	#]
FILE				111	丗		1				#	1.		H	1				#	+	##				#					1		1									<u> </u>		111
		<u> 14 1</u>	111	1	###		#		- -		1#				<u> </u>	╬		<u>. -</u>			<u>! </u>		1	##	#!			<u> </u>	1		H	#	<u> </u>	#							144		15
	ţ.] .L				-[-		-		H		<u>;</u> ;;;	14		14					- ;	#	7 ‡	T			3.67														Filt		

DATE: 5/28/62

NOZZLE:

#6

OF POOR QUALITY

₩ XY 1101

		_
		σ
CHECONDING CHARYS	PARMEC CONTROLS CORPORATION BUFFALD NEW YORK	497 20 00000

ORIGINAL PAGE IS

		DATE:5/28/82 NOZZLE: #= 6
	┍ ╋╾╒╇╌╒╇╌╒╇╌┈ ┇┇╏╗╒╸╏╇╒╏╶┩╇╍╏╴╏┇╏╌╏┇┎═┇╏┇┪	TEST POINT: L.V ; ACOUSTIC - 1613
		PLOT IDENTIFICATION: G-826
		TRAVERSE DETAILS.
┩╸╎┍╒╸╸╸╸╸╸╸╸╸ ┩╸╒╸╸┆┍╶╾╸╾╸╸	╏╸╸ ┇╸ ┇╸ ┇╸ ┇╸ ┇╸ ┇╸ ┇ ╸ ┇	AXIAL : (- D : OFFSET - D : RADIAL REF. (C)- VOLTS R
		RADIAL REF.(C)- VOLTS) R LOCATIONS' TRAVERSE - VOLTS) R ₂
		RADIAL [: E.W [] ; N.S [] "AXIAL REF.()- VOLTS X
		AXIAL REF.()- VOLTS) X - VOLTS) D - VOLTS
		SCALE : X-AXIS- 3.3 2 INCH/UNIT
		Y-AXIS* 394 F.P.S./UNIT HISTOGRAMS: H- TO H-
		LIME OF LU TRAVERSE
╸ ╏ ╻┍╌┪╸ ┩╸ ┪╸╃╅╌┩╸╏┼┼┼╸╅┼┼┼┼┼┼┼┼┼┼┼	┇╸┇╌╏╽┼╼╃╍╣┟╌╅┾╧┼╸╏╾┆╏╼╣╾┩╼┇╾╃╼╇╸┇╼╃┰╽╾┧╺╀╸╽╾┦ ┇╸┇┈┆┆┈╣┇╾╫┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
	╬╶╬┇╶╌┇╘╅╶┟╶┢┩╍╬╴╟╏╁╶┦╶╉ ┇╶╬┇╌╴╏╏┠╼┆╸╏╶╅┱┇┷┼╧╌╂╌┇╏╶╏╶╏╶┼┯╈┵┼┱╬┪ ┇╶╬┇╌╶╏╏┸╤┆╸╏┆╬┪┇┷┼╧╌╂╼╏╏╏╏╏┼┼╈╈┼┼╋┪┪	┍╤╅┇═┪╏╒╃╡╢┇╒╃┩┇═╃┩╏╏╩╏┩╽╛╸╽╏╩╬╣╏┩╏╸╏ ┇┇┩╏╒┩╏╒┩╏╒┇ ╽┸┸┲┦╏╄╧┩

		Ŧ	•	T		Τ	-	[:	1	T.	[:		11		! !		1		1	-			H						111				I							1	DA	TE: I	5/2	8/8	32	NOZZ	LE:	- * -/	<u></u>			-
		\mathbb{H}	: :	''		-	4	-	1	╁	! 	+	+	+	<u>:</u>			#		#		Ш.	111		H	++	+++		\mathbb{H}	++		+	#	╁╂╁	++-	#				#				T:					OUSTI	C -(161	3
				1.				<u> </u> :.	1	Ħ	Щ				-1-		=			#:						-11.		Ш				#[1							Ŧ	PL	OT 1	IDEN	TIFI	CATI	ON:	G	- 8	28	 		
				į.			μ.	ļ.	-1-	-		- -							#	井			#				Ш		##			#	#					Ш		#	I	AVE	RSE	DETA	ILS.							_
			H		- 11		-	+	+						++	#				#		 	#						#			#	#			+			\boxplus	#		AXI	AL		: 4	٠ -	D	, 0	FFSE	T	- [
			-		-	#	Œ			1			Ħ	H								##							##				#		Ш	\pm				丰	İ	L	ra Ocat	JAIOL ZNOI	, R	EF. (Q_)∙ RSE •	•	V(DLTS: DLTS:) R 2	*
										#			<u> </u>	-	-							H			1							#		H					#	\pm		RAD	IAL	X	: E.	W	58	; 1	l.S	· 🖺	3	
	#		<u> </u>	#			#						#																\mp			#	\mp	${\mathbb H}$		#				\blacksquare		L	A. TADO	XIAL IONS	: R	EF. (RAVEI	RSE -		V.	OLTS OLTS) <u>X</u>	
						┟┠┇	#			#		#	#				\blacksquare												#												SI					3.					<u></u>	ـــــــ
		+					H		H															•					+												Ì					. 34					T	
																								扗		Ш	Ш		#						\pm	井				#	В	ISTO	GRAI	15:	ŀ	{-		TO	H-			
							\coprod								#			#					#				Ш	###								#		Ħ								4 .	_			:Ac=		
				\coprod					+		#							#				+++	#			H									#	#		H				_	Τ	ר		LII	ve of i	: M.	(eavi	AE215		
	且		丗	\pm			#						#										#						+					#	#							-	لم	┼			Ī					
	曲			#					\pm		#												#																										_			,
1	H	Ш		#			#								#		\blacksquare						#									#		\blacksquare								-					<u> </u>		<u>.</u>		-	¢
-	H			#			#		\blacksquare																						3111			\blacksquare							L											_
-4																							#			##				+ 1	Ш							#													##	
0											#		#								<u> </u>					113				-	1	į.		韭																	##	#
		+	<u> </u>		1				\pm	Ш	#									Ш	<u> </u>				<u> </u>									#																		#
			+	#			1														##		#											#																#		\exists
	曲				Ħ	1	#				\pm		\pm									#	#			\mathbb{H}		\mp		-17	71	Ė		#			H	H														ቭ
							#		#	#																					#		П	#																		
					111	芷			#																	珥		#			Ħ				\blacksquare							III				\blacksquare				-1 .L .		1
`					##									H			#									H		\mp			Ħ				#															 		7
}	H	#			 	11.			#	#				#						-		#	- -			\Box		#										H												11	<u> </u>	\mp
) 3				H	13	H						\mathbb{H}									#		-						3	†	1			#				#	1.									111	<u> </u>	#	111	Ŀ
9				H	7	1	- [H	#						+ -						<u> </u>		1				4	Ň	j: "Ī	#	11		1]:			#	4					##	111	1++				<u>.</u> ††‡	#	╅╬	-
j		#				11	H	\coprod		Ħ	Ш			#		<u> </u>	- -	H	\prod		11	1-1		- -	1	#	#	1			#	#		+			 	#	#	-	##	#					:-	14	###		+++	+
,)		4		†!:		+		#		#	#				†#	<u> </u>	-		掛				- - -	# !		;		#	H		1			#			Ħ	排	H	##	H	#	Ħ	甘		<u> </u>	+++	Hi		ijĦ	<u> </u>	
ň	F. 1		<u> </u>	1	劜	Ť	ļ! ļ				Ш][+1	11	<u>;</u>	##	-		#	111	#	Ŧ.		F		1		1	i.		Ti					\prod	H	.]].			Ħ			#	1			1:1				
ā	†	1.	ij.	1.1	4 17	1	<u> </u>	!!!	1.	H	11	11	<u>, †</u>	!!	!+	17	T:	1 1	†††		†	-		11:	<u>;</u>	:		1	<u> </u>	<u>: </u>	11	FI	H			1-1-	+11	-	11	Ш	T	17-1-	1-1-	Щ	<u> </u>	141-	[]	F	ارا]]]	Ŋ

£

	DATE: 5/28/82 NOZZLE: #6
┡╫╫╬╬╬╬╬╬╒╇╬╍╍╌╒╏┊╬╬╏╬╬╬╬╬╬╬╬╬╬╬╬	TEST POINT: L.V ; ACOUSTIC - 1613
	PLOT IDENTIFICATION: G-830
	TRAVERSE DETAILS. AXIAL []: (- []; OFFSET - [] RADIAL REF. (() - VOLTS) R ** LOCATIONS' TRAVERSE - VOLTS R ** RADIAL E : E.W 28 ; N.S [] AXIAL REF. () - VOLTS X ** LOCATIONS' TRAVERSE - VOLTS D ** QQ
	SCALE: X-AXIS= 3,32 INCH/UNIT .Y-AXIS= 394 F.P.S./UNIT
	HISTOGRAMS: H- TO H-
	LINE OF LY TRAVERSE

			DATE: 5/28/82 NOZZLE: #6
			TEST POINT: L.V ; ACOUSTIC -1613
		┆┆╏ <u>╒╒┆┆┋┆┙</u> ╏┦┇╅╌╸┼╌╸╏ <u>┡</u>	PLOT IDENTIFICATION: G-831
			TRAVERSE DETAILS.
			AXIAL []: (- []; OFFSET - [] RADIAL, REF.(()- VOLTS) R = LOCATIONS, TRAVERSE - VOLTS R = []
		╅╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	RADIAL X: E.W ED ; N.S CI
			AXIAL. REF.()- VOLTS $\sum_{n=0}^{\infty}$
			SCALE: X-AXIS= 3.3 2 INCH/UNIT
			.Y-AXIS= 394 F.P.S./UNIT
		╒	HISTOGRAMS: H- ' TO H-
			LINE OF LU TRAVERSE
			╶╴ ╒
		++++++++++++++++++++++++++++++++++++++	
		P _r = 3.2/6 , \	/a/c=_ 0 f/s
		T _T =_ 852 °R,	D _{eq} =5.03 in.
		ν _{j=} <u>/7ο4</u> f/s,	
			
		╸┞╸╏═┩╒┸╒ ╶╸╏╒╏╶╏┆┇╒┞╒┆╒┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	▗▐▀▘▊▜▜▐▗▜▜▜▟▐▗▐▜▃▋▐▜▞▍▆▗▍▍█▃▗▍▍▃▀▜▘▍▍▗▐▗▍▃▘▍▍▜ ▜▗▊▊█ ▗▀▞▐ ▄▜ ▗▃ <u>▓▜▗▊▜▜</u> ▄▜▋▍▜▄▜▜▋▍▜▄▋▜▄▋▜▄▋▜▟▋▜▄▊▀▍▃▋▜▋
•	O RAFXAN	L DISTANCE FROM PLUG	

Ho. XY 1101

•		•				T	:11	:	111			1;;						<u> </u>																-	1			٢	ATE: 5/28	/82	, NC	ZZLE:	#	6			7
<u> </u>	1	1	:		 	1	;;;				###								#			#	H						+				† #¶						EST POINT	: Լ	٠٧	•	; AI	OUSTI	C -/	613]
	<u> </u>	111	++		:	4	;; ;	+	 		111				H			<u> </u>				11.	-				<u> </u>				4								LOT IDENT	IFICA	TION	; 6	- 8	36]
			-											\pm					#			#							1		#								TRAVERSE D	ETAIL	<u>.s</u> .	_			-		
	+		<u> </u>		† † † • †		- - <u> </u>					111																	#									El	AXIAL RAD	IAL.	REF.	را (ک).	; ; }-			- [] R	
		- - -	<u> </u>						##		##	- - -		#	#			###	<u> </u>					++-					#										LOCATI RADIAL						OLTS)	R ₂	
													+1														H												LOCATI					V	OLTS)	<u>X</u> =	
												· - - -										<u> </u>			-			#	#									╂	SCALE :							eq	-
																																										394		.P.S.			
		#											Ш	#					#			#	H																HISTOGRAMS	:	H-		TO	H-			1
																			1																			∄[,	_				_			1
		-							#			##	#			#						#				- -	+++	#				H				#		∄┨	$\neg \tau$	1	_	LINE .	4 LI	I TRA	MERE	E	
													\blacksquare	7														\blacksquare										∄		-				_	•		
							\sharp		#								H	\parallel	#			#		##				#										#1						\supset	L	نر	-
<u>, III</u>																						\exists					\blacksquare											∄l			7						
5 		<u></u>																	- - -			#				+	+++1	#								##		##	 - - - - - - - - - - - - - - - - - - -]]]		###	##	1111	 	##
														.	ļ	Ġ,	ľ	<u> </u>	$\frac{11}{11}$			\blacksquare		Ŧ					I				#														
													I	1													##	#					#										<u> </u>				
												ľ	i i						#																												
							#						ŀ					#										+				##	#			##	#										
																						\blacksquare		H				\pm					I														
			#	#		 							'			Ħ	###	\ddagger					##	#			++4	#			#	Ħ	\ddagger				#							 			
			#	\mathbb{H}									- -														111	#					11														
			11	11	++			H		-			#					##			#	- -		#			舏		-	##							#							##]		
FIF					H		H						1			H	H	#1	Ŧ		Ħ		Ħ	#			\Box	Ţ	H			H				I							Ħ	拥	H][].	田
[] 	H	1		++-		╫	- - -		111	++		#		##		 	#:		1	 	1 1		1/-	#		-	+##	+ -	-[-			+ -	4#	+++	 		+	 			 		11.17	++++	##	! 	
				剒					#]:		11				11		1	<u> </u>		<u>, </u>		<u> </u>	#	肚			1				Ň	+			且		TH				1:5	111			<u> </u>	Ш
	1										<u> </u>	1				<u> </u>		11	14.				H	-			Ħi	- j.	ţ.	11.	ij					H	1					+117			<u>[</u>		
	``	<u>' </u>	11.	<u>'-!</u>	7-11	لل	11	<u> </u>	1.77	1	-1.		٠	T! i	1.	<u>i.''</u>	<u> "; '</u>	-1-1		11.1	1 !		1 []	il		ш	711	117		:LE	T.		11	rict		111:	1.1.1	111	<u> </u>		<u> </u>		1!!!	111	<u> 111</u>	! ! ! ! !	77.11

		DATE: 5/28/82 NOZZLE: #6
▐▗┊┋┋ ╒┋╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒		TEST POINT: L.V ; ACOUSTIC - 1613
		PLOT IDENTIFICATION: G-838
		TRAVERSE DETAILS.
		AXIAL G : C - C : OFFSET - C RADIAL REF. (C) - VOLTS\ R -
		RADIAL REF.(¢)- VOLTS) R = LOCATIONS' TRAVERSE - VOLTS) R ₂ RADIAL : E.M : N.S :
		AXIAL REF.()- VOLTS \ X
		LOCATIONS' TRAVERSE - VOLTS J Deg
		SCALE: X-AXIS= 2.22 INCH/UNIT Y-AXIS= 394 F.P.S./UNIT
		HISTOGRAMS: H- TO H-
		CIME OF M TRANSPECE
	╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
		<i>E</i>
	╬┇╏╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫	
	╣╏╏╏╫╫╬║╶┞╌╌╶╌╌╌╌╌╌╌╌╌╴╌╴╌╏╏╌╌╌╌╌╸╌╴╴╴┼╶┑╏╌╌╶╌╌╸ ╙╅═┇╽╏╏╴║╌╴╌┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈	
	╩┇┇╤╌╧╏╗╏╫╎╅┧╍┧╎╏┤╡╏┾╅┆┍╅╇╍┵┡╽╁┦┡╍┼╀╞╃╃╎╏┆╎┑╡╂┧┾┼╬┆┵╄╎┼┼╎┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	┇┇┼┼┧╒╏ ┇┆╇╒╏╏┇╏┎╏╒╇╒ ┇┇┆┆
╇╇╇┸┦┦ ┞┯╬╬╘┥╒┝╇╒┥╘┿╃╇╇ ╡╁ ╘╌┩╬┇ ┦╫┩┸╏┇╬╫┸ ╇╇╃╃╃╃╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇	┷═╅╃╫╫╫╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫┸╫	┍╬┸╃┺┇╃═╀┸╬┱ ┡ ╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫╫
		╿╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸ ╸
	┇ ┋	

Model 6 Test Point 1614 MERCONDING CHARTS

COMMIC CONTROLS CORPOSATOR

BAFFLO NEW YORK

PROFILE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE NEW YORK

THE

No. XY 1101

10:1 XX 1101

XY 1101

No. XY 1101

DATE: 6/3/82

TRAVERSE DETAILS.

TEST POINT: L.V. -

NOZZLE:

PLOT IDENTIFICATION : G-856

: #6 ; ACOUSTIC -1614

13.11

GRACEORDING CHANTE GRACE CONTROLS CORPORATION BLIFALO NEW YORK PROSTO NEW YORK

DATE: 6/3 /82 NOZZLE: #6 ; ACOUSTIC - 1614 TEST POINT: L.V. -PLOT IDENTIFICATION : G-858 TRAVERSE DETAILS. AXIAL []: (L - []; OFFSET

RADIAL REF.((L)- VOLTSLOCATIONS' TRAVERSE - VOLTS-- 🗆 VOLTS) R -RADIAL 🔀 : E.W. - 158 ; N.S. - 🗆 VOLTS) X . AXIAL REF.()-LOCATIONS TRAVERSE -SCALE : X-AXIS- 3.32 INCH/UNIT Y-AXIS= 383 F.P.S./UNIT HISTOGRAMS: T0 0 LING OF LY TRAVERSE

XY 1101

IIO. XY 1101

XY 1101

