Analyse Numérique 1

Salem Nafiri

Ecole Hassania des Travaux Publics

Résolution des équations non linéaires F(x)=0

DEFINITION 2.1. A function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as being nonlinear when it does not satisfy the superposition principle that is

$$f(x_1 + x_2 + ...) \neq f(x_1) + f(x_2) + ...$$

Now that we know what the term *nonlinear* refers to we can define a system of non-linear equations.

Definition 2.2. A system of nonlinear equations is a set of equations as the following:

$$f_1(x_1, x_2, ..., x_n) = 0,$$

 $f_2(x_1, x_2, ..., x_n) = 0,$
 \vdots
 $f_n(x_1, x_2, ..., x_n) = 0,$

where $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and each f_i is a nonlinear real function, i = 1, 2, ..., n.

Analytical Solutions

Analytical solutions are available for special equations only.

Analytical solution of $ax^2 + bx + c = 0$

$$roots = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

No analytical solution is available for: $x - e^{-x} = 0$

Graphical Illustration

 Graphical illustration are useful to provide an initial guess to be used by other methods

Solve
$$x = e^{-x}$$
The $root \in [0,1]$

$$root \approx 0.6$$

Solution Methods

Many methods are available to solve nonlinear equations

- ☐Bisection Method
- ■Newton's Method
- ☐ Fixed point iterations

These will be covered.

- Secant method
- False position Method
- Muller's Method
- Bairstow's Method
- •

- The Bisection method is one of the simplest methods to find a zero of a nonlinear function.
- To use the Bisection method, one needs an initial interval that is known to contain a zero of the function.
- The method systematically reduces the interval. It does this by dividing the interval into two equal parts, performs a simple test and based on the result of the test half of the interval is thrown away.
- The procedure is repeated until the desired interval size is obtained.

Intermediate Value Theorem

 Let f(x) be defined on the interval [a,b],

• Intermediate value theorem:

if a function is <u>continuous</u> and f(a) and f(b) have <u>different signs</u> then the function has at least one zero in the interval [a,b]

Bisection Algorithm

Assumptions:

- f(x) is continuous on [a,b]
- f(a) f(b) < 0

Algorithm:

Loop

- 1. Compute the mid point c=(a+b)/2
- 2. Evaluate f(c)
- 3. If f(a) f(c) < 0 then new interval [a, c] If f(a) f(c) > 0 then new interval [c, b]

End loop

Assumptions:

Given an interval [a,b]

f is continuous on [a,b]

f(a) and f(b) have opposite signs.

These assumptions ensures the existence of at least one zero in the interval [a,b] and the bisection method can be used to obtain a smaller interval that contains the zero.

Example

Algorithm of Bisection Method

Data: f, a, b, eps

Output: alpha (approximation of the root of f on [a,b])

Step 1: c = (a+b)/2 (generation of the sequence (c_n))

Step 2: If |b-c|<eps then alpha:=c Stop.

Step 3: If f(a).f(b)<=0 then a:=c else If b:=c

Step 4: go to step 1

Example:

Can you use Bisection method to find a zero of

$$f(x) = x^3 - 3x + 1$$
 in the interval [0,1]?

Answer:

f(x) is continuous on [0,1]

$$f(0) * f(1) = (1)(-1) = -1 < 0$$

Assumptions are satisfied

Bisection method can be used

Best Estimate and Error Level

Bisection method obtains an interval that is guaranteed to contain a zero of the function.

Questions:

- What is the best estimate of the zero of f(x)?
- What is the error level in the obtained estimate?

Best Estimate and Error Level

The <u>best estimate</u> of the zero of the function **f(x)** after the first iteration of the Bisection method is the mid point of the initial interval:

Estimate of the zero:
$$r = \frac{b+a}{2}$$

$$Error \leq \frac{b-a}{2}$$

Stopping Criteria

Two common stopping criteria

- 1. Stop after a fixed number of iterations
- 2. Stop when the absolute error is less than a specified value

How are these criteria related?

Stopping Criteria

- c_n : is the midpoint of the interval at thenth iteration (c_n is usually used as the estimate of the root).
- r: is the zero of the function.

After *n* iterations:

$$|error| = |r - c_n| \le E_a^n = \frac{b - a}{2^n} = \frac{\Delta x^0}{2^n}$$

Stopping Criteria

Let TOL >0 be a small number

One can use either

$$|x_{n+1} - x_n| < TOL \text{ or } |x_{n+1} - x_n| / |x_n| < TOL$$

Or

$$f(x_{n+1}) < TOL$$

However, I recommend to STOP after BOTH

$$|x_{n+1} - x_n| < TOL$$
 and $f(x_{n+1}) < TOL$

Or

- Number of iterations (iter<=itmax)
- Initial Guess x₀

NOTE: most methods for non-linear equations are SENSITIVE w.r.t. the initial guess...

(In particular, Newton's method ...)

Convergence Analysis

Given f(x), a, b, and ε How many iterations are needed such that: $|x-r| \le \varepsilon$ where r is the zero of f(x) and x is the bisection estimate (i.e., $x = c_k$)?

$$n \ge \frac{\log(b-a) - \log(\varepsilon)}{\log(2)}$$

Convergence Analysis – Alternative Form

$$n \ge \frac{\log(b-a) - \log(\varepsilon)}{\log(2)}$$

$$n \ge \log_2 \left(\frac{\text{width of initial interval}}{\text{desired error}} \right) = \log_2 \left(\frac{b-a}{\varepsilon} \right)$$

Example

$$a = 6, b = 7, \varepsilon = 0.0005$$

How many iterations are needed such that: $|x-r| \le \varepsilon$?

$$n \ge \frac{\log(b-a) - \log(\varepsilon)}{\log(2)} = \frac{\log(1) - \log(0.0005)}{\log(2)} = 10.9658$$

$$\Rightarrow n \ge 11$$

Example

Use Bisection method to find a root of the equation x = cos (x) with (b-a)/2ⁿ<0.02

(assume the initial interval [0.5,0.9])

Question 1: What is f(x)?

Question 2: Are the assumptions satisfied?

Initial Interval

0.9

8.0

0.7

Bisection Method Programming in Scilab

```
a=.5; b=.9;
u=a-cos(a);
v = b - cos(b);
   for i=1:5
       c = (a+b)/2
       fc=c-cos(c)
       if u*fc<0
        b=c ; v=fc;
       else
          a=c; u=fc;
       end
   end
```

```
C =
  0.7000
fc =
 -0.0648
C =
  0.8000
fc =
  0.1033
C =
  0.7500
fc =
  0.0183
C =
  0.7250
fc =
 -0.0235
```

Advantage:

• A global method: it always converge no matter how far you start from the actual root.

Disadvantage:

- It cannot be used to find roots when the function is tangent is the axis and does not pass through the axis.
 - For example:
- It converges slowly compared with other methods.

$$f(x) = x^2$$

Newton's Method

Newton-Raphson Method

(also known as Newton's Method)

Given an initial guess of the root X_0 , Newton-Raphson method uses information about the function and its derivative at that point to find a better guess of the root.

Assumptions:

- f (x) is continuous and first derivative is known
- An initial guess x_0 such that $f'(x_0) \neq 0$ is given

Newton's Method

Recurrence formula

 x_{n+1} est l'abscisse du point d'intersection de la tangente à \mathcal{C}_f en x_n avec l'axe des abscisses.

L'équation de la tangente en x_n est : $y = f'(x_n)(x - x_n) + f(x_n)$

Cette tangente coupe l'axe des abscisse quand y = 0:

$$f'(x_n)(x-x_n)+f(x_n)=0 \Leftrightarrow f'(x_n)(x-x_n)=-f(x_n)$$
$$x-x_n=-\frac{f(x_n)}{f'(x_n)} \Leftrightarrow x=x_n-\frac{f(x_n)}{f'(x_n)}$$

On a donc la relation de récurrence suivante : $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Newton's Method

- Choose some initial guess x_0 such that $f'(x_0) \neq 0$
- Generate the sequence by $x_{n+1}=x_n+v_{n+1}$ where $f(x_n)+v_{n+1}$ $f'(x_n)=0$

Example

Use Newton's Method to find a root of

$$f(x) = e^{-x} - x,$$

$$f(x) = e^{-x} - x$$
, $f'(x) = -e^{-x} - 1$. Use the initial points $x_0 = 1$

Stop after three iterations

Given f(x), f'(x), x_0 Assumption $f'(x_0) \neq 0$

for i = 0:n

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

end

Results

- X = 0.5379 FNX = 0.0461
- X =0.5670 FNX =2.4495e-004
- X = 0.5671 FNX =6.9278e-009

Newton's Method

- Advantage:
 - Very fast
- Disadvantage:
 - Not a global method
 - For example: Figure 3.3 (root x = 0.5)

$$f(x) = \frac{4}{3}e^{2-x/2}(1+x^{-1}\log x)$$

• Another example: Figure 3.4 (root
$$x = 0.05$$
)

$$f(x) = \frac{20x - 1}{19x}$$

- In these example, the initial point should be carefully chosen.
- Newton's method will cycle indefinitely.
 - Newton's method will just hop back and forth between two values.
 - For example: Consider (root x = 0)

$$f(x) = \arctan(x).$$

 $x_0 = 1.39174520027...$ $x_1 = -1.39174520027...$ $x_2 = 1.39174520027... = x_1$

FIGURE 3.3 A function for which Newton's method will not work well, unless x_0 is carefully chosen.

$$f(x) = \frac{20x - 1}{19x}$$

FIGURE 3.4 A second function for which Newton's method will not work well, unless x_0 is very close to α .

How to find the initial value?

- Choose the midpoint of the interval
 - For example:

If the interval
$$\left[\frac{1}{4},1\right]$$
 take $x_0 = \frac{5}{8}$,

- Using linear interpolation
 - For example:

take our nodes to be $\frac{1}{4}$ and 1 and apply the linear interpolation

$$p_1(x) = \frac{x - 1/4}{3/4}\sqrt{1 + \frac{1 - x}{3/4}}\sqrt{1/4} = \frac{2x + 1}{3}$$

b is known

Newton's Method for n dimensional systems

Systems of Non-linear Equations: n-dimensional case

• Example:

• Conservation of mass coupled with conservation of energy, coupled with solution to complex problem.

Vector Notation

• We can rewrite this using vector notation:

$$\vec{\mathbf{f}}(\vec{\mathbf{x}}) = \vec{\mathbf{0}}$$

$$\mathbf{f} = (f_1, f_2, \dots, f_n)$$

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

Newton's Method for Non-linear Systems

Newton's method for non-linear systems can be written as:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \left[\mathbf{f}'(\mathbf{x}^{(k)})\right]^{-1} \mathbf{f}(\mathbf{x}^{(k)})$$
where $\mathbf{f}'(\mathbf{x}^{(k)})$ is the Jacobian matrix

The Jacobian Matrix

 The Jacobian contains all the partial derivatives of the set of functions.

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

• Note, that these are all functions and need to be evaluated at a point to be useful.

Newton's Method

- If the Jacobian is non-singular, such that its inverse exists, then we can apply this to Newton's method.
- We rarely want to compute the inverse, so instead we look at the problem.

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \left[\mathbf{f'}\left(\mathbf{x}^{(i)}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}^{(i)}\right)$$
$$= \mathbf{x}^{(i)} + \mathbf{h}^{(i)}$$

Newton's Method

• Now, we have a linear system and we solve for **h**.

• Repeat until **h** goes to zero.

$$\begin{bmatrix} \mathbf{J} \left(\mathbf{x}^{(k)} \right) \end{bmatrix} \mathbf{h}^{(k)} = -\mathbf{f} \left(\mathbf{x}^{(k)} \right)$$
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} + \mathbf{h}^{(i)}$$

We will look at solving linear systems later in the course.

Theorem 3. Assume that the function $F: \mathbb{R}^n \to \mathbb{R}^n$ is three times differentiable, that $\vec{s} \in \mathbb{R}^n$ is a solution of $F(\vec{s}) = \vec{0}$, and that $JF(\vec{s})$ is an invertible matrix. Then Newton's method converges quadratically to \vec{s} whenever \vec{x}_0 is chosen sufficiently close to \vec{s} .

Initial Guess

- How do we get an initial guess for the root vector in higherdimensions?
- In 2D, I need to find a region that contains the root.
- Steepest Decent is a more advanced topic not covered in this course. It is more stable and can be used to determine an approximate root.

Fixed Point Iteration Method

Fixed Point Iteration Method

• Fixed point of given function $g: \mathbb{R} \to \mathbb{R}$ is value x such that

$$x = g(x)$$

 Many iterative methods for solving nonlinear equations use fixed-point iteration scheme of form

$$x_{k+1} = g(x_k)$$

where fixed points for g are solutions for f(x) = 0

- Also called *functional iteration*, since function g is applied repeatedly to initial starting value x_0
- For given equation f(x) = 0, there may be many equivalent fixed-point problems x = g(x) with different choices for g

Other Examples:

$$f(x) = x^{2} - x - 2$$

$$g(x) = x^{2} - 2$$

$$or$$

$$g(x) = \sqrt{x + 2}$$

$$or$$

$$g(x) = 1 + \frac{2}{x}$$

Example:

Consider Newton's method as applied to
$$\underline{f(x) = x^2 - a}$$
: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$. (3.32)

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

As $n \to \infty$, we know that $x_n \to \alpha = \sqrt{a}$. (In this case, convergence occurs for any $x_0 > 0$.) We can write (3.32) more abstractly as

$$x_{n+1} = g(x_n) (3.33)$$

for
$$g(x) = \frac{1}{2}(x + ax^{-1})$$
. Note that

root
$$f(\alpha) = 0 \iff \alpha = g(\alpha).$$

To verify, simply let $x_n = x_{n+1} = x$, and solve for x.

1.
$$x_{n+1} = x_n + \frac{1}{2}(x_n^2 - a)$$
; $g(x) = x + \frac{1}{2}(x^2 - a)$

2.
$$x_{n+1} = a/x_n$$
; $g(x) = a/x$

3.
$$x_{n+1} = a + x - x^2$$
; $g(x) = a + x - x^2$

So, for a given function g, a number of questions can be raised:

- 1. Under what conditions does a fixed point exist?
- 2. Under what conditions does the iteration (3.33) converge?
- 3. If the iteration converges, how fast does it converge?

Theorem of FPI

Theorem 3.5 (Fixed-Point Existence and Convergence Theory) Let $g \in C([a,b])$ with $a \le g(x) \le b$ for all $x \in [a,b]$; then

- 1. g has at least one fixed point $\alpha \in [a,b]$.
- **2**. If there exists a value $\gamma < 1$ such that

$$|g(x) - g(y)| \le \gamma |x - y|$$
 (3.36)

for all x and y in [a,b], then

- (a) α is unique.
- (b) The iteration $x_{n+1} = g(x_n)$ converges to α for any initial guess $x_0 \in [a,b]$.
- (c) We have the error estimate

$$|\alpha - x_n| \le \frac{\gamma^n}{1 - \gamma} |x_1 - x_0|.$$
 (3.37)

Theorem FPI(con.)

3. If g is continuously differentiable on [a,b] with

$$\max_{x \in [a,b]} |g'(x)| = \underline{\gamma} < 1, \tag{3.38}$$

then

- (a) α is unique.
- (b) The iteration $x_{n+1} = g(x_n)$ converges to α for any initial guess $x_0 \in [a,b]$.
- (c) We have the error estimate

$$|\alpha - x_n| \le \frac{\gamma^n}{1 - \gamma} |x_1 - x_0|.$$

(d) The limit

$$\lim_{n\to\infty}\frac{\alpha-x_{n+1}}{\alpha-x_n}=g'(\alpha)$$

holds.

Theorem 3.6 (Local Convergence for Fixed-Point Iterations) Let g be continuously differentiable in an open interval of a fixed point α with $|g'(\alpha)| < 1$; then, for all x_0 sufficiently close to α , the iteration $x_{n+1} = g(x_n)$ converges,

$$\lim_{n\to\infty}\frac{\alpha-x_{n+1}}{\alpha-x_n}=g'(\alpha),$$

and

$$|\alpha - x_n| \le \frac{\gamma^n}{1 - \gamma} |x_1 - x_0|,$$

for some γ < 1.

Theorem 3.7 Consider the fixed-point iteration

$$x_{n+1} = g(x_n), (3.40)$$

where g is p times continuously differentiable, and $\alpha = g(\alpha)$. If

$$g'(\alpha) = g''(\alpha) = \dots = g^{(p-1)}(\alpha) = 0$$

but

$$g^{(p)}(\alpha) \neq 0,$$

then the iteration (3.40) converges with order p for x_0 sufficiently close to α .

Multiple Roots

 So far our study of root-finding methods has assumed that the derivative of the function does not vanish at the root:

$$\bar{f}'(\alpha) \neq 0.$$

What happens if the derivative does vanish at the root?

Lemma 3.1 If f is k times continuously differentiable in a neighborhood of α , and

$$f(\alpha) = f'(\alpha) = \dots = f^{(k-1)}(\alpha) = 0,$$

i.e., if the function and first k-1 derivatives vanish at α , but $f^{(k)}(\alpha) \neq 0$, then we can write

$$f(x) = (x - \alpha)^k F(x) \tag{3.58}$$

where $F(\alpha) \neq 0$. Similarly, if we can write f in the form (3.58), where $F(\alpha) \neq 0$, then it follows that the first k-1 derivatives vanish at α .

Example:

Let $f(x) = \cos^2 x$, which has a root at $x = \frac{1}{2}\pi$. Since $f'(x) = -2\sin x \cos x$, it follows that the derivative also vanishes at $x = \frac{1}{2}\pi$, so f has a double root. We can write f in the form called for in the lemma by the simple device of writing

$$f(x) = \cos^2 x = \left(x - \frac{\pi}{2}\right)^2 F(x),$$

where

$$F(x) = \frac{\cos^2 x}{\left(x - \pi/2\right)^2}.$$

So long as $x \neq \pi/2$, F(x) is well defined. What happens at $x = \pi/2$? We can use <u>L'Hôpital's</u> rule to determine that

$$\lim_{x \to \pi/2} F(x) = \lim_{x \to \pi/2} \frac{-2\sin x \cos x}{2} (x - \pi/2) = \lim_{x \to \pi/2} \frac{-2\cos^2 x + 2\sin^2 x}{2} = 1.$$

Thus we would define

$$F(x) = \begin{cases} \frac{\cos^2 x}{(x - \pi/2)^2} & x \neq \pi/2\\ 1 & x = \pi/2. \end{cases}$$

Iterative Solution

Find the root of: $f(x) = e^{-x} - x$

- 1. Start with a guess say $x_1=1$,
- 2. Generate

a)
$$x_2 = e^{-x^2} = e^{-1} = 0.368$$

b)
$$x_3 = e^{-x^2} = e^{-0.368} = 0.692$$

c)
$$x_4 = e^{-x^3} = e^{-0.692} = 0.500$$

In general:

After a few more iteration we will get

$$x_{n+1} = e^{-x_n}$$

$$0.567 \approx e^{-0.567}$$

$\tau\iota$	x_n
1	1.000
2	0.368
3	0.692
4	0.500
5	0.606
6	0.545
7	0.579
8	0.560
9	0.571
10	0.564
11	0.568
12	0.566
13	0.567
14	0.567
15	0.567

Problem
$$f(x)=2x^2-4x+1$$

- Find a root near x=1.0 and x=2.0
- Solution:
 - Starting at x=1, x=0.292893 at 15th iteration
 - Starting at x=2, it will not converge
 - Why? Relate to g'(x)=x. for convergence g'(x) < 1
 - Starting at x=1, x=1.707 at iteration 19
 - Starting at x=2, x=1.707 at iteration 12
 - Why? Relate to

$$g'(x) = (2x - \frac{1}{2})^{-\frac{1}{2}}$$

$$x = g(x) = \frac{1}{2}x^2 + \frac{1}{4}$$

$$x = g(x) = \sqrt{2x - \frac{1}{2}}$$

Examples

If $f(x) = x^2 - x - 2$, then fixed points of each of functions

•
$$g(x) = x^2 - 2$$

•
$$g(x) = \sqrt{x+2}$$

•
$$g(x) = 1 + 2/x$$

•
$$g(x) = \frac{x^2 + 2}{2x - 1}$$

are solutions to equation f(x) = 0

Fixed Point Iteration

The equation f(x) = 0, where $f(x) = x^3 - 7x + 3$, may be re-arranged to give $x = (x^3 + 3)/7$.

Intersection of the graphs of y = x and $y = (x^3 + 3)/7$ represent roots of the original equation $x^3 - 7x + 3 = 0$.

X

Fixed Point Iteration

The rearrangement $x = (x^3 + 3)/7$ leads to the iteration

$$x_{n+1} = \frac{x_n^3 + 3}{7}, \quad n = 0, 1, 2, 3, \dots$$

To find the middle root α , let initial approximation $x_0 = 2$.

$$x_{1} = \frac{x_{0}^{3} + 3}{7} = \frac{2^{3} + 3}{7} = 1.57143$$

$$x_{2} = \frac{x_{1}^{3} + 3}{7} = \frac{1.57143^{3} + 3}{7} = 0.98292$$

$$x_{3} = \frac{x_{2}^{3} + 3}{7} = \frac{0.98292^{3} + 3}{7} = 0.56423$$

$$x_{4} = \frac{x_{3}^{3} + 3}{7} = \frac{0.56423^{3} + 3}{7} = 0.45423$$
 etc.

The iteration slowly converges to give α = **0.441** (to 3 s.f.)

Fixed Point Iteration

The rearrangement $x = (x^3 + 3)/7$ leads to the iteration

$$x_{n+1} = \frac{x_n^3 + 3}{7}, \quad n = 0, 1, 2, 3, \dots$$

For $x_0 = 2$ the iteration will converge on the middle root α , since $g'(\alpha)$

$$\alpha$$
 = **0.441** (to 3 s.f.)

Fixed Point Iteration - breakdown

The rearrangement $x = (x^3 + 3)/7$ leads to the iteration

$$x_{n+1} = \frac{x_n^3 + 3}{7}, \quad n = 0, 1, 2, 3, \dots$$

For $x_0 = 3$ the iteration will diverge from the upper root α .

The iteration diverges because $g'(\alpha) > 1$.

Example: fixed point problems

Examples: FPI

Example: FPI

Convergence of FPI

• If $x^* = g(x^*)$ and $|g'(x^*)| < 1$, then there is interval containing x^* such that iteration

$$x_{k+1} = g(x_k)$$

converges to x^* if started within that interval

- If $|g'(x^*)| > 1$, then iterative scheme diverges
- Asymptotic convergence rate of fixed-point iteration is usually linear, with constant $C = |g'(x^*)|$
- But if $g'(x^*) = 0$, then convergence rate is at least quadratic

Simple Fixed-Point Iteration Convergence

• Fixed-point iteration converges if :

$$|g'(x)| < 1$$
 (slope of the line $f(x) = x$)

• When the method converges, the error is roughly proportional to or less than the error of the previous step, therefore it is called "linearly convergent."

Simple Fixed-Point Iteration-Convergence

More on Convergence

- Graphically \rightarrow the solution is at the intersection of the two curves. We identify the point on y_2 corresponding to the initial guess and the next guess corresponds to the value of the argument x where $y_1(x) = y_2(x)$.
- Convergence of the simple fixed-point iteration method requires that the derivative of g(x) near the root has a magnitude less than 1.
 - a) Convergent, $0 \le g' < 1$
 - b) Convergent, -1<g′≤0
 - c) Divergent, g'>1
 - d) Divergent, g' < -1

Definition 1.21 (Rate of Convergence of an Iterative Method). Suppose that the sequence $\{x_k\}$ converges to ξ . Then the sequence $\{x_k\}$ is said to converge to ξ with the order of convergence α if there exists a **positive constant** p such that

$$\lim_{k \to \infty} \frac{|x_{k+1} - \xi|}{|x_k - \xi|^{\alpha}} = \lim_{k \to \infty} \frac{e_{k+1}}{e_k^{\alpha}} = p.$$

- If $\alpha = 1$, the convergence is **linear**
- If $\alpha = 2$, the convergence is quadratic
- If $1 < \alpha < 2$, the convergence is **superlinear**

Using the above definition, we will now show:

- The rate of convergence of the fixed-point iteration is usually linear,
- The rate of convergence of the Newton method is quadratic,
- The rate of convergence of the Secant method is superlinear [Exercise].

Summary

Method	Pros	Cons
Bisection	 Easy, Reliable, Convergent One function evaluation per iteration A global method: it always converge no matter how far you start from the actual root. No knowledge of derivative is needed 	 Slow Needs an interval [a,b] containing the root, i.e., f(a)f(b)<0. It cannot be used to find roots when the function is tangent to the axis and does not pass through the axis (f(x)=x^2)
Newton	Very Fast (if near the root)Two function evaluations per iteration	 May diverge Not a global method Needs derivative and an initial guess x₀ such that f'(x₀) is nonzero
Fixed Iteration method	 Fast (depends on the choice of g) One function evaluation per iteration Convergent when g'<1 No knowledge of derivative is needed 	- Divergent when g'>1 -Needs an initial guess of x ₀

Summary

Method	Pros	Cons
Bisection	 Easy, Reliable, Convergent One function evaluation per iteration No knowledge of derivative is needed 	SlowNeeds an interval [a,b] containing the root, i.e., f(a)f(b)<0
Newton	- Fast (if near the root)- Two function evaluations per iteration	 May diverge Needs derivative and an initial guess x₀ such that f'(x₀) is nonzero
Fixed Iteration method	 Fast (depends on the choice of g) One function evaluation per iteration Convergent when g'<1 No knowledge of derivative is needed 	- Divergent when g'>1 -Needs an initial guess of x ₀
Secant	 Fast (slower than Newton) One function evaluation per iteration No knowledge of derivative is needed 	- May diverge - Needs two initial points guess x ₀ , x ₁ such that f(x ₀)- f(x ₁) is nonzero

There also

Scilab TP: Resolution of f(x)=0

Algorithm of Bisection Method

Data: f, a, b, eps

Output: alpha (approximation of the root of f on [a,b])

Step 1: c = (a+b)/2 (generation of the sequence (c_n))

Step 2: If |b-c|<eps then alpha:=c Stop.

Step 3: If f(a).f(b)<=0 then a:=c else If b:=c

Step 4: go to step 1

TP1: Exercice 1

Programmer la méthode de Bissection pour $f(x)=x-\cos(x)$ sur [a,b]=[0.5,0.9]

```
a=.5; b=.9;
u=a-cos(a);
v = b - cos(b);
   for i=1:5
       c = (a+b)/2
       fc=c-cos(c)
       if u*fc<0
         b=c; v=fc;
       else
          a=c; u=fc;
       end
   end
```

```
0.7000
fc =
 -0.0648
C =
  0.8000
fc =
  0.1033
C =
  0.7500
fc =
  0.0183
C =
  0.7250
fc =
 -0.0235
```

Exercice 2: Resolve f(x)=0 for

- $f(x)=x^2-2$, [a,b]=[1,2], $TOL=10^{-5}$
- f(x)=exp(x)-4x, [a,b]=[1,2.5], $TOL=10^{-8}$
- $f(x)=(x-1)^{20}$, [a,b]=[1,2], TOL= 10^{-6}
- $f(x)=x^3+4x^2-10$, [a,b]=[1,2], TOL= 10^{-5}

Algorithm of Newton Method

Data: f, f', x0,eps,iter, itmax

Output: x1 (approximation of the root of f on [a,b])

- 1. iter=1
- 2. fpm:=f'(x0)
- 3. fpm=0, iter=2 et sortir
- 4. x1=x0-f(x0)/fpm
- 5. If $|x_1-x_0|$ < eps then iter=0 root:= x_1 stop.
- 6. If iter=itmax the method is divergent, iter=1
- 7. Iter=iter+1; x0=x1 go to step 2.

TP2:

- 1. Montrer que l'équation $f(x)=x^6-x-1$ admet une racine alpha dans]1,2[.
- 2. Expliciter l'itération de Newton-Raphston.
- 3. Ecrire un programme permettant d'approcher la racine alpha par la méthode de Newton.
- 4. Pour $x_0=2$, donner les résultats sur un tableau avec les colonnes suivantes:

$$x_n$$
; $f(x_n)$; alpha- x_n ; x_{n+1} - x_n .

Comparer avec la méthode de la bissection et interpréter les résultats obtenus.

Algorithm of Fixed Point Iteration Method

Data: g, x0,eps,iter, itmax

Output: alpha (approximation of the FPT of g on [a,b])

- 1. iter=1; err=1+eps
- 2. while (iter<=itmax and err>eps) do
- a. xk=g(x0)
- b. err=|xk-x0|
- c. iter=iter+1
- d. x0=xk
- 3. If (iter>itmax) then the method is divergent else if alpha=xk.

TP3:

On considère les deux fonctions $f(x)=x-x^3$ et $g(x)=x+x^3$

- 1. Déterminer les points fixes de f et g dans l'intervalle [-1,1]
- 2. Etudier la convergence de l'itération du point fixe pour f puis pour g pour un point initial x_0 dans [-1,1].
- 3. Ecrire un programme réalisant l'itération du point fixe et illustrer les résultats obtenus dans la question précédente.