Chapter 22: Counting

Meike Niederhausen and Nicky Wakim 2023-09-27

Class Overview

- Basic Counting Examples
- Permutations and Combinations
- More Examples: order matters vs. not

Basic Counting Examples

Basic Counting Examples (1/3)

Example 1

Suppose we have 10 (distinguishable) subjects for study.

- 1. How many possible ways are there to order them?
- 2. How many ways to order them if we can reuse the same subject and
 - need 10 total?
 - need 6 total?
- 3. How many ways to order them if without replacement and only need 6?
- 4. How many ways to choose 6 subjects without replacement if the order doesn't matter?

Basic Counting Examples (2/3)

Suppose we have 10 (distinguishable) subjects for study.

Example 1.1

How many possible ways are there to order them?

Example 1.2

How many ways to order them if we can reuse the same subject and

- need 10 total?
- need 6 total?

Basic Counting Examples (3/3)

Suppose we have 10 (distinguishable) subjects for study.

Example 1.3

How many ways to order them if without replacements and only need 6?

Example 1.4

How many ways to choose 6 subjects without replacement if the order doesn't matter?

Permutations and Combinations

Permutations and Combinations

Definition: Permutations

Permutations are the number of ways to arrange in order r distinct objects when there are n total.

$$nPr = \frac{n!}{(n-r)!}$$

Definition: Combinations

Combinations are the number of ways to choose (**order doesn't matter**) r objects from n without replacement.

nCr = "n choose r" =
$$\binom{n}{r}$$
 = $\frac{n!}{r!(n-r)!}$

Some combinations properties

$$\bullet \ \binom{n}{r} = \binom{n}{n-r}$$

$$\bullet \qquad \binom{n}{1} = n$$

$$\bullet \qquad \binom{n}{0} = 1$$

More Examples: order matters vs. not

More examples: order matters vs. not (1/2)

Example 2

Suppose we draw 2 cards from a standard deck without replacement. What is the probability that both are spades when

- 1. order matters?
- 2. order doesn't matter?

Table of different cases

See table on pg. 277 of textbook

- n = total number of objects
- r = number objects needed

with replacement

without replacement

order matters

 n^{r}

$$nPr = \frac{n!}{(n-r)!}$$

order doesn't matter

$$\begin{pmatrix} n+r-1 \\ r \end{pmatrix}$$

$$\begin{pmatrix} n+r-1 \\ r \end{pmatrix} \qquad nCr = \begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r!(n-r)!}$$