SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

About the presenter

Simon Sheather received his BSc (Hons) degree from the University of Melbourne and a Ph.D. in Statistics from La Trobe University. Currently Simon is Professor and Academic Director of the Statistics Department at Texas A&M University. Previously he was a faculty member at the Australian Graduate School of Management at the University of New South Wales. His research interests are in the fields of flexible regression methods for big data, and smoothing methods in nonparametric statistics. Simon works with industry developing practical predictive models for big data.

SAS® Forecast Studio 13.2

- Automatically fits time series models which can at the same time
- Detect and allow for outliers and level shifts
- Determine which model(s) optimize the chosen fit criterion

Outline

- Use SAS® Forecast Studio to develop times series models for New York City Yellow cabs
 - 1. Daily taxi fare revenue
 - 2. Daily taxi trips

Part 1. Daily taxi fare revenue in New York City

- We wish to develop a time series model for the daily taxi fare revenue by Yellow Cabs in New York City using publicly available data from 1/1/2011 until 5/31/2015 in order to both
- Predict daily taxi fare revenue for June 2015
- Estimate the impact of events including
 - Price increase
 - Holidays
 - One of events such as hurricanes

Daily taxi fare revenue in New York City

Daily taxi fare revenue and trip data in New York City

Source: http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

New York City fare increase and weather events

The New Hork Times

Save

As of Tuesday, Yellow Cabs Can Charge Higher Rates

increase rates by about 17 percent — into effect as of 12:01 a.m. on Tuesday, once they have recalibrated their meters and updated external markings.

By MATT FLEGENHEIMER SEPT. 3, 2012

Yellow taxis may begin charging more on Tuesday, ushering in an approved fare increase for riders, whose rates have remained virtually unchanged since 2006.

The city's Taxi and Limousine Commission announced late Monday that operators of yellow taxis would be allowed to put the new fares — which

Storm Barrels Through Region, Le

F Share
Tweet

Save

By JAMES BARRON OCT. 29, 2012

Hurricane Sandy battered the mid-Atlantic region on Monday, its powerful gusts and storm surges causing once-in-a-generation flooding in coastal communities, knocking down trees and power lines and leaving more than five million people — including a large swath of Manhattan — in the rain-soaked dark. At least seven deaths in the New York region were tied to the storm.

New York Today: Updates on the Winter Storm

By ANDY NEWMAN JANUARY 27, 2015 5:58 AM = 25 Comments

The great blizzard of 2015 <u>did not turn out to be a blizzard</u> in New York City. Only 7.8 inches had fallen in Central Park <u>as of 7 a.m.</u> and not much more after that.

And so the region gradually stirred back to life. The travel ban was lifted in the city and across New Jersey and southern New York at 7:30 a.m. New York City's subway system resumed operating at 9 a.m.

Open SAS Forecast Studio and click on New

Enter a name for your project and click on Next

Double click on SASUSER

Select the SAS data set and click on Next

Click on Next since there are no Classification (BY) variables

Select the Time ID variable (in this case Date) and click on Next

Select the Y variable (in this case DailyFareRevenue) and choose Dependent for its role then click on Next

Click on Next (since there are no missing values)

Click on Change other forecasting settings

Click on Diagnostics, then click on the box next to Detect outliers change the settings to those below and then click on Model Generation

Click on Model Generation, then choose Schwarz Bayesian information criterion as the Selection criterion (since we are seeking a parsimonious model) and then click on Forecast

Click on Forecast, then change the Number of periods to forecast to 30 and then click on OK

Click on Create and import events

Click on New

Enter the Name of the event (Hurricanelrene) and click on Add

Select the Date of the Event, click on the top arrow and then click on OK

Click on OK

Click on New add a level shift associated with the fare increase

Click on New add a level shift associated with the fare increase on 9/04/2012

Adding the other events and holidays and then click on Close

Click on Finish

Daily taxi fare revenue in New York City - Forecast Summary

Daily taxi fare revenue in New York City - Forecasting View

Daily taxi fare revenue in New York City - Forecasting View

Daily taxi fare revenue in New York City – Forecasting View Click on the right most icon in line with "Active series"

Daily taxi fare revenue in New York City – Actuals and Forecasts

Daily taxi fare revenue in New York City - Modeling View

Under the Modeling View, click on the right most icon to "View Diagnostics"

Daily taxi fare revenue in New York City – Diagnostics (partial output)

Under the Modeling View, click on Tables and then click on Parameter Estimates

Daily taxi fare revenue in New York City – Parameter Estimates

Component	Parameter	Estimate	Standard Error	t Value	Approx Pr > t
DailyFareRevenue	MA1_1	2.06587	0.03711	55.67	<.0001
DailyFareRevenue	MA1_2	-1.93025	0.04888	-39.49	<.0001
DailyFareRevenue	MA1_3	0.79967	0.03001	26.65	<.0001
DailyFareRevenue	MA2_7	0.95528	0.01129	84.64	<.0001
DailyFareRevenue	AR1_1	2.01692	0.04306	46.84	<.0001
DailyFareRevenue	AR1_2	-1.94354	0.05280	-36.81	<.0001
DailyFareRevenue	AR1_3	0.77606	0.04019	19.31	<.0001
DailyFareRevenue	AR2_7	0.99561	0.0040845	243.76	<.0001
HURRICANEIRENE	SCALE	-2607042.8	290485.7	-8.97	<.0001
FAREINCREASE	SCALE	1350446.9	401937.7	3.36	0.0008
HURRICANESANDY	SCALE	-4268159.6	335583.5	-12.72	<.0001
BLIZZARDOF2015	SCALE	-2838596.2	288736.6	-9.83	<.0001
CHRISTMASDAY	SCALE	-1245637.5	143927.1	-8.65	<.0001
JULY4	SCALE	-833331.5	143795.7	-5.80	<.0001
LABORDAY	SCALE	-351219.0	153208.0	-2.29	0.0220
MEMORIALDAY	SCALE	-552486.0	129617.8	-4.26	<.0001
THANKSGIVINGDAY	SCALE	-915862.3	144265.6	-6.35	<.0001
LS01JAN2015D	SCALE	2498994.8	390279.1	6.40	<.0001
A013FEB2014D	SCALE	-2890060.9	287751.8	-10.04	<.0001
LS05AUG2013D	SCALE	2537055.4	384968.4	6.59	<.0001
A011AUG2013D	SCALE	-2921294.4	287877.6	-10.15	<.0001
LS27AUG2011D	SCALE	-2379733.4	380531.1	-6.25	<.0001
LS04APR2011D	SCALE	2673861.4	385258.8	6.94	<.0001
LS01APR2011D	SCALE	-3183052.7	385269.2	-8.26	<.0001
A018JAN2015D	SCALE	4211287.5	288236.3	14.61	<.0001
LS01DEC2014D	SCALE	3668954.9	386812.7	9.49	<.0001
A0300CT2012D	SCALE	-3015633.0	335561.0	-8.99	<.0001
A001JAN2012D	SCALE	-1774041.6	287781.6	-6.16	<.0001

Daily taxi fare revenue in New York City – Parameter Estimates

Part 2. Daily taxi trips in New York City

- We wish to develop a time series model for the daily number of taxi trips by Yellow Cabs in New York City using publicly available data from 1/1/2011 until 5/31/2015 in order to both
- Predict daily taxi trips for June 2015
- Estimate the impact of events including
 - Price increase
 - Holidays
 - One of events such as hurricanes

Daily taxi trips in New York City – Forecasting View

Daily taxi trips in New York City – Modeling View

Component	Parameter	Estimate	Standard Error	t Value	Approx Pr > t	
TaxiTrips	CONSTANT	193950.5	20145.4	9.63	<.0001	
TaxiTrips	MA1_7	0.66573	0.02049	32.50	<.0001	
TaxiTrips	AR1_1	0.83603	0.01454	57.49	<.0001	
TaxiTrips	AR2_7	0.98939	0.0046384	213.31	<.0001	
HURRICANEIRENE	SCALE	-334459.4	17734.8	-18.86	<.0001	
HURRICANESANDY	SCALE	-239077.6	17394.9	-13.74	<.0001	
BLIZZARDOF2015	SCALE	-184863.2	15136.8	-12.21	<.0001	
BOXINGDAY	SCALE	-44047.0	9367.8	-4.70	<.0001	
CHRISTMASDAY	SCALE	-125750.3	8953.2	-14.05	<.0001	
INDEPENDENCEDAY	SCALE	-61274.3	7569.2	-8.10	<.0001	
LABORDAY	SCALE	-40070.9	7582.9	-5.28	<.0001	
MEMORIALDAY	SCALE	-57867.3	6879.1	-8.41	<.0001	
NEWYEAR	SCALE	1421.8	8514.0	0.17	0.8674	
THANKSGIVINGDAY	SCALE	-52018.4	8391.1	-6.20	<.0001	

Best Model Specification

Variable	Functional Transform	Constant	р	d	q	Р	D	Q	Seasonality	Outlier	Event	Model Criterion	Statistic	Status
TaxiTrips	NONE	YES	1	0	0	1	0	1	7	32	10	SBC	32454	ok

Daily taxi trips in New York City – Modeling View

	<i>3</i>					
	Component	Parameter	Estimate	Standard Error	t Value	Approx Pr > t
	A017FEB2013D	SCALE	67374.5	15201.2	4.43	<.0001
	LS24NOV2011D	SCALE	-81926.9	19574.7	-4.19	<.0001
	AO27JAN2011D	SCALE	-118600.7	15150.4	-7.83	<.0001
	LS01APR2011D	SCALE	-261725.4	18989.1	-13.78	<.0001
	LS04NOV2012D	SCALE	75519.6	18724.9	4.03	<.0001
	LS27DEC2014D	SCALE	-138905.3	20623.9	-6.74	<.0001
	L805AUG2013D	SCALE	209675.5	19432.7	10.79	<.0001
	A005MAR2015D	SCALE	-77884.7	15127.3	-5.15	<.0001
	LS24DEC2011D	SCALE	-79525.7	18588.7	-4.28	<.0001
	AO01JAN2012D	SCALE	-185341.6	17332.3	-10.69	<.0001
	L801AUG2013D	SCALE	-150976.6	19421.5	-7.77	<.0001
	A011AUG2013D	SCALE	-204879.4	15229.3	-13.45	<.0001
	A008FEB2013D	SCALE	-119024.0	17396.2	-6.84	<.0001
	L801JAN2015D	SCALE	170144.1	20114.2	8.46	<.0001
	AO09FEB2013D	SCALE	-160075.2	17454.5	-9.17	<.0001
	A014AUG2011D	SCALE	-196215.0	15508.8	-12.65	<.0001
	AO13FEB2014D	SCALE	-152227.5	15134.5	-10.06	<.0001
	LS03JAN2011D	SCALE	248948.7	19097.1	13.04	<.0001
	LS02AUG2013D	SCALE	-71066.4	19475.4	-3.65	0.0003
	LS04APR2011D	SCALE	245610.4	18997.8	12.93	<.0001
	AO21JAN2013D	SCALE	-73075.4	15137.7	-4.83	<.0001
	LS22NOV2012D	SCALE	-83898.7	19697.0	-4.26	<.0001
	LS270CT2014D	SCALE	-112633.7	18593.3	-6.06	<.0001
	A0300CT2012D	SCALE	-156026.7	17391.5	-8.97	<.0001
	AO21JAN2014D	SCALE	-145163.4	15131.8	-9.59	<.0001
	AO03JAN2014D	SCALE	-123591.6	15149.8	-8.16	<.0001
1	A021AUG2011D	SCALE	-169790.8	15637.6	-10.86	<.0001
1	LS24NOV2014D	SCALE	-149887.9	18693.5	-8.02	<.0001
	AO27AUG2011D	SCALE	-237780.3	17394.2	-13.67	<.0001
	AO12JAN2011D	SCALE	-113624.4	15149.7	-7.50	<.0001
1	LS01DEC2014D	SCALE	205424.4	18672.3	11.00	<.0001
	A001AUG2014D	SCALE	-104115.9	15137.4	-6.88	<.0001

Daily taxi trips in New York City – Modeling View

SAS® Forecast Studio 13.2

- Automatically fits time series models which can at the same time
- Detect and allow for outliers and level shifts
- Determine which model(s) optimize the chosen fit criterion

SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

• SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

