Problem Set - 19 Jan 2024

PROBLEM 1 (2019 AMC 10B #13)

What is the sum of all real numbers x for which the median of the numbers 4, 6, 8, 17, and x is equal to the mean of those five numbers?

(A) - 5

(B) 0

(C) 5

(D) $\frac{15}{4}$

(E) $\frac{35}{4}$

PROBLEM 2 (2010 AMC 12B #11)

A palindrome between 1000 and 10,000 is chosen at random. What is the probability that it is divisible by 7?

(A) $\frac{1}{10}$ (B) $\frac{1}{9}$ (C) $\frac{1}{7}$ (D) $\frac{1}{6}$ (E) $\frac{1}{5}$

PROBLEM 3 (2013 AIME | #2)

Find the number of five-digit positive integers, n, that satisfy the following conditions:

- (a) the number n is divisible by 5,
- (b) the first and last digits of n are equal, and
- (c) the sum of the digits of n is divisible by 5.

PROBLEM 4 (2010 AIME II #9)

Let ABCDEF be a regular hexagon. Let G, H, I, J, K, and L be the midpoints of sides AB, BC, CD, DE, EF, and AF, respectively. The segments \overline{AH} , \overline{BI} , \overline{CJ} , \overline{DK} , \overline{EL} , and \overline{FG} bound a smaller regular hexagon. Let the ratio of the area of the smaller hexagon to the area of ABCDEF be expressed as a fraction $\frac{m}{n}$ where m and n are relatively prime positive integers. Find m+n.

PROBLEM 5 (2015 USAMO #5)

Let a, b, c, d, e be distinct positive integers such that $a^4 + b^4 = c^4 + d^4 = e^5$. Show that ac + bd is a composite number.