Seminário de Sistemas Multiagentes

Agentes Inteligentes e Sistemas Multiagentes – Aplicação em Satélites e Constelações de Satélites

- Tendências em curso marcaram a história da computação
 - Ubíqua
 - Equipamentos ganham capacidade de processamento e sensoriamento redução do tamanho e custo diminuendo tornam possível
 - Interconexão
 - Sistemas distribuídos e concorrentes aparecem há um foco em computação principalmente como um processo de interação
 - Inteligência
 - A complexidade das tarefas automatizáveis que podem ser delegadas aos computadores tem crescido constantemente
 - Delegação
 - Dar controle aos computadores, mesmo em tarefas críticas de segurança
 - Orientação humana
 - Abstração na programação de computadores sai uma linguagem estruturada a lógica e mais a maneira que nós nos relacionamos

A programação progrediu

 Código da máquina -> linguagem de montagem -> linguagens de programação de alto nível -> procedimentos e funções -> tipos de dados abstratos -> objetos

Computadores -> agentes

- Quais técnicas podem ser necessárias para lidar com sistemas compostos por 10¹⁰ ou 10²⁰ processadores (intrachip e offchip)?
- E se os modelos atuais de desenvolvimento de software n\u00e3o consigam lidar com isso?

Delegação e Inteligência

- Necessidade de construir sistemas informatizados (automatizados) que possam nos substituir
 - A capacidade da computação agir de forma independente
 - A capacidade dos computadores (e sistemas) agir de uma maneira que represente nossos melhores interesses ao interagir com outros humanos ou sistemas
 - Deep blue, Teste de Turing
- Interconexão e Distribuição tornaram-se motivos centrais na Ciência da Computação
 - Com delegação e inteligência, implica em sistemas que podem cooperar, chegar em acordos e competir com outros sistemas com interesses diferentes

A Ciência da Computação se expande

- Essas questões não eram estudadas em Ciência da Computação até recentemente
- Convergência para um novo campo: sistemas multiagentes
- Mas o que é um Agentes?

"Um agente é um sistema de computador que é capaz de ação independente em nome de seu usuário ou proprietário (descobrir o que precisa ser feito para satisfazer os objetivos do projeto, em vez de ser constantemente informado)"

O que é sistemas multiagentes

- Um sistema multiagente é aquele que consiste em um número de agentes, que interagem uns com os outros
- No caso mais geral, os agentes estarão agindo em nome de usuários com diferentes objetivos e motivações
- Para interagir com sucesso, eles exigirão a capacidade de cooperar,
 coordenar e negociar uns com os outros, assim como as pessoas fazem.

- Design de Agente, Design de Sociedade
 - Design de Agente: Como construímos agentes capazes de ação independente e autônoma?
 - Design de Sociedade: Como construímos agentes capazes de interagir com outros agentes, mesmo não havendo os mesmos interesses/objetivos?

Sistemas Multiagentes

- Em Sistemas Multiagentes, abordamos questões como
 - Como a cooperação pode existir? Qual a linguagem? Existem conflito e há "acordo"? Metas individuais e em grupo existem?
- Embora essas questões sejam multidisciplinares, sistemas multiagentes se enfatiza que os agentes entidades computacionais de processamento de dados (ou conhecimento?)

Um primeiro contato - Spacecraft Control

- Quando uma sonda espacial faz seu longo vôo da Terra para os planetas exteriores, uma equipe de terra geralmente é obrigada a acompanhar continuamente seu progresso e decidir como lidar com eventualidades inesperadas
 - Isso é caro e, se as decisões forem necessárias rapidamente, simplesmente não é praticável
- Por essas razões, organizações como a NASA estão investigando seriamente a possibilidade de tornar as sondas mais autônomas – dando a elas capacidades e responsabilidades de tomada de decisão mais ricas
- Isso não é ficção: o DS1 da NASA fez isso!

Fonte: NASA

Deep Space 1

- DS1: http://nmp.jpl.nasa.gov/ds1/
 - "A Deep Space 1 foi lançada do Cabo Canaveral em 24 de outubro de 1998. Durante uma missão primária de grande sucesso, ela testou 12 tecnologias avançadas e de alto risco no espaço. Em uma missão estendida extremamente bem-sucedida, encontrou o cometa Borrelly e retornou as melhores imagens e outros dados científicos de um cometa. Durante sua missão hiperextendida totalmente bem-sucedida, realizou mais testes de tecnologia. A espaçonave foi aposentada em 18 de dezembro de 2001." – NASA Web site

- Agentes (e sua instanciação física em robôs) têm um papel a desempenhar em situações de alto risco, impróprias ou impossíveis para humanos
- O grau de autonomia será diferente dependendo da situação (o controle humano remoto pode ser uma alternativa, mas nem sempre)

- Satélites neste caso são os artificiais
- Projetados e desenvolvidos para diferentes fins
 - Nascem devido a corrida espacial
 - Foco inicialmente em questões militares e de sensoriamento remoto
- Há diferentes tamanhos, diferentes pesos e diferentes propósitos

SERVICES TO SOCIET

Maritime Defense

Maritime Environmental

Monitoring

Environmental changes

Risk management

Territorial Defense

Territorial Environmental

Monitoring

Critical Systems Monitoring

Humanitarian Aid

Satélites neste caso são os artificiais

 Satélites a miniaturização dos CIs e evolução na entrega de processamento impactou os satélites

Microsatellites (10 – 100 kg)

VISIONA VCUB (BRAZIL)	6U, 12U
AAC Clyde Space (Sweden)	6U, 12U
Adcole Space (USA)	12U
Argotech (Italy)	HAWK6, HAWK12
Berlin Space Technologies (Germany)	LEOS30, LEOS50, LEOS100
Blue Canyon Technologies (USA)	XB6, XB12, X-SAT Venus
EnduroSat (Bulgaria)	6U
GomSpace (Denmark)	6U, 12U
IMT (Italy)	Nadir Platform
ISIS (The Netherlands)	6U
MSS (USA)	Altair
NanoAvionics (Lithuania)	MP6 (6U), MP12 (12U), MP16(16U)
Open Cosmos (United Kingdom)	6U, 12U
Sitael (Italy)	S-50, S-75, NANOsky I 6U
SkyLabs	NANOsky I 20U
Spire Global (USA)	LEMUR 6U
Sputnix (Russia)	SXC6 6U
Tyvak NanoSat ellite Technology (USA)	TRESTLE S 6U, TRESTLE S 12U, MARVERICKS MICROSAT
UTIAS SFL (Canada)	SPARTAN, DEFIANT, JAEGER 12U, JAEGER 16U

Satélites a miniaturização dos CIs e evolução na entrega de processamento impactou os satélites

Nanosatellites (1 – 10 kg)

ITASAT 1 (BRAZIL)	6U
FloripaSat -1	10
AAC Clyde Space (Sweden)	1U, 3U
Blue Canyon Technologies (USA)	XB3
EnduroSat (Bulgaria)	1U, 3U
GomSpace (Denmark)	1U, 3U
Gumush (Turkey)	n-Art, n-Art Extreme
IMT (Italy)	1U, 3U
ISIS (The Netherlands)	1U
MSS (USA)	Altair 1
NanoAvionics (Lithuania)	M3P (3U)
Open Cosmos (United Kingdom)	3U
SkyLabs	NANOsky I 3U
Spire Global (USA)	LEMUR 3U
Sputnix (Russia)	SXC1 1U, SXC3 3U
UTIAS SFL (Canada)	THUNDE R 3U

Tendências surgem

Tendências surgem

Space Mining

"a single 30-m asteroid may contain 30 billion dollars in platinum alone ..."1

ispace

https://www.youtube.com /watch?v=V7bhhKOON_

 ${}^1https://africanews.space/the-effect-of-asteroid-mining-on-mining-activities-in-africa/}\\$

Satélites – O que é uma constelação?

"Um grupo de satélites artificiais trabalhando em conjunto, com cobertura terrestre coordenada, operando juntos sob controle compartilhado"

Essas constelações existem?

- O Iridium Satellite Phone System é o único fornecedor de soluções de voz e dados via satélite verdadeiramente globais e verdadeiramente móveis com cobertura completa da Terra
 - Lançou 77 satélites entre 1997 e 2002, com um serviço comercial de telefonia via satélite ao vivo em março de 2001
 - A Iridium substituiu recentemente sua constelação de 60 satélites existente enviando 75 satélites Iridium NEXT para o espaço em um foguete SpaceX Falcon 9 em 8 lançamentos diferentes
 - Em 11 de janeiro de 2019, os 10 satélites Iridium NEXT finais foram entregues à órbita terrestre baixa (780 km, 480 milhas)

SpaceX Starlink

- A SpaceX tem planos de implantar quase 12.000 satélites em três "shells" orbitais colocando aproximadamente:
 - 1600 em uma concha de altitude de 550 quilômetros
 - 2800 a 1.150 km
 - 7500 a 340 km

Satélites – O que é uma constelação?

- SpaceX Starlink
 - Paul Evans May 26, 2019 in the UK with a Canon EOS 5D Mark IV and 50mm f/1.8 lens. Shutter speed 1/25 sec. ISO 32000

MAS e Constelação de Satélites

- Descrição baseado em 2 trabalhos principalmente
 - Picard et al. Autonomous Agents and Multiagent Systems Challenges in Earth Observation Satellite Constellations, 2021
 - Bonnet e Tessier. Multi-Agent Collaboration: A Satellite Constellation Case, 2008
- A grande questão de criar constelações (EOS) é cobrir a Terra para algum serviço
 - EOS da Planet 150 satélites

- Poucos satélite, pouca cobertura, muitos satélites, muitos problemas
 - Sistemas multiagentes podem ajudar? Esse é a pergunta de 1 milhão de reais (ou bilhão)
 - Funcionalidade são adicionadas ao custo de muitos parâmetros e decisões a serem tomadas

MAS e Constelação de Satélites

Na imagem, há diversos atores com diversas atividades e objetivos próprios

- A questão é que o OBC é "bem limitado"
 - Depende da Terra pra algumas ações
- No caso do EOS
 - Há cooperação múltiplas aquisições e muitas vezes compostas.
 - Incertezas meteorológicas devem ser tratadas para evitar a captura de imagens inúteis cheias de nuvens.
 - Compartilham-se tarefas para que as observações inutilizáveis feitas por uma EOS possam ser realizadas posteriormente por uma EOS seguinte sobrevoando a região
 - Para cooperar, há comunicação indireta (via satélites de retransmissão dedicados) ou comunicação direta dentro do alcance para transferir tarefas de um para outro
 - Em vez de esperar minutos para interagir com estações terrestres acessíveis

MAS e EOS - Programação

"A modelagem e a programação multiagentes podem ser de grande ajuda fornecendo conceitos de modelagem (por exemplo, funções, objetivos, organizações) e metodologias para desenvolver plataformas para gerenciar sistemas multissatélites e multioperadores"

- O uso de simulação, nesse caso usando Multiagent-based simulation (MABS), é extremamente relevante
 - Satélite são caros e muito dificilmente sofreram uma "manutenção"
 - Compreender o desempenho é extremamente relevante
 - Ptolemy (https://ptolemy.berkeley.edu/) é projetado para simular sistemas embarcados, mas pode se beneficiar de MABS na modelagem
 - Porém não e feito para isso
- Um caminho desafiador para pesquisadores em engenharia de software orientada a agentes
 - Há diversas técnicas para otimizar o comportamento do satélites, mas há um ponto de complexidade
 - "Ser capaz de explicar aos decisores os diferentes componentes, seu comportamento e interações é um grande desafio ao integrar MABS com métodos de otimização"

MAS e EOS - Recursos

- O conceito de MultiAgent Resource Allocation (MARA) também é aplicável
- Há usuários dos satélites com mais ou menos recursos
 - Literalmente poder econômico nesse caso
- No caso do EOS
 - Usuários ou clientes podem compartilhar diferentes tipos de bens, como órbitas, que podem ser vistos como bens divisíveis, e obter exclusividade em porções de órbitas atribuídas a eles
 - Nesse caso, os usuários têm seu próprio centro de missão e podem operar o EOS em porções atribuídas a eles
 - Os usuários também podem compartilhar EOS solicitando alguma observação de uma zona geográfica
 - Nesse caso, os pedidos são vistos como bens indivisíveis e os pedidos de um determinado usuário que estão realmente agendados na constelação podem ser vistos como o pacote para esse usuário

MAS e EOS - Recursos

- Com MARA, o conceito de justiça pode ser aplicado a divisão igualitária ou não
 - Prioridade na utilização
 - Área de observação
- EOS e órbitas compartilhadas entre vários usuários
 - Pode-se aplicar mecanismos de leilão
 - Os usuários enviam seus lances (ou seja, relatam suas preferências) de forma pública ou privada
 - Pode haver uma ou várias rodadas
 - Atribuição é feita pelo leiloeiro

- No offline, com ação vinda da Terra, uma questão é bastante relevante é o Agendamento de Missão
 - Uso de CNP é uma alternativa
 - Peng Feng, Hao Chen, Shuang Peng, Luo Chen, and Longmei Li. 2015. A method of distributed multi-satellite mission scheduling based on improved contract net protocol
 - A técnica Distributed contraint optimization também pode ser usada
 - Permite lidar com restrições e variáveis de decisão
 - Distributed Large Neighborhood Search é útil se pensar que você tem vizinhos e tasks podem ser distribuídas
 - Ganhe-se capacidade de explicação identificação de conflitos
 - Aceleração divide a task em subtasks
 - Privacidade

- Ainda em Agendamento de Missão
 - Pode-se ter que lidar com multi-objetivo
 - Recompensas entre usuários pode não ser simétrica
- Outra questão sobre processamento offline são as incertezas
 - Em EOS pode-se citar a observação limitada por nuvens (a menos que seja esse o objetivo) e recursos como memória (armazenamento é sempre um problema)
 - A primeira incerteza é sobre recompensa (melhores imagens, melhores recompensas), já a segunda incerteza é sobre características de estado de transição (você está em um estado de armazenando a imagem e depois em enviando a imagem)
- Nesse contexto, o uso de Multiagent planning under uncertainties
 - A questão é: Usar técnicas de previsão de incertezas

- Seguindo sobre processamento offline, há o conceito de "Desconflitando solicitações de usuários"
 - O que certos atores (n\(\tilde{a}\)o agentes) tem acesso ou podem saber sobre seu uso de um EOS
 - Deve-se agir junto ao planejamento dos agentes (impactando no MAS) para que isso seja alcançado
- Isso significa que os diferentes usuários têm que resolver um problema
 - Os subcomponentes (variáveis de decisão, restrições ou parâmetros) são próprios e privados
- Nesse caso, o uso de Otimização de Consenso é útil
 - Decisão compartilhada com o uso de variáveis
 - Construção de acordos

- Seguindo uma abordagem online (muita mais interessante)
 - Abordagem offline acaba por ser insuficiente
 - Muitas vezes, o ator não tem acesso ao agente
 - Conceitos de delegação e inteligência entram em jogo mais fortemente
- O conceitos de reparo (por exemplo, para tarefas de EO) devem ser mais rápidas de que planejamento (plano) completo
 - Nesse caso, o uso de Multiagent plan repair pode ser usando como técnica para mudar partes dos planos, não todo o agendamento
- Técnicas como Dynamic Distributed Constraint Optimization (DynDCOP) para permitir que adaptações sejam usadas em on-fly
 - Agentes precisam decidir e cooperar nas mudanças repentinas do ambiente
- Mas cuidado com a comunicação
 - Para isso é o Consenso entre agente é aplicável, ele entre acordo sobre uma variável de decisão, como a task a ser concluída – ainda continuam resilientes e assíncronos

- Seguindo uma abordagem online (muita mais interessante)
- Mesmo que técnicas sejam extremamente ótimas, o agente é bem limitado
 - Processamento, memória e comunicação são restritos
 - Os trabalhos focam em apresentar técnicas que se adaptem ao limite do agente
 - J. Bonnet, M.-P. Gleizes, E. Kaddoum, S. Rainjonneau, and G. Flandin. 2015. Multisatellite Mission Planning Using a Self-Adaptive Multi-agent System
 - M. Johnston. 2020. Scheduling NASA's Deep Space Network: Priorities, Preferences, and Optimization.
 - P. Rust, G. Picard, and F. Ramparany. 2020. Resilient Distributed Constraint Optimization in Physical Multi-Agent Systems.
- Como os agentes não são isolados online, precisam se comunicar com outros agentes
 - As investigações sobre protocolos e interação é vista como
 - Agentes precisão cooperar, concordar, entrar em consenso de sous objetivos

ESA e Spacelab: Payload XL

- Questionamento s\u00e3o feitos nesse contexto
 - "qual protocolo de comunicação deve ser usado?"
 - "quando comunicar?", "quais dados comunicar e para quem?"
 - "qual o valor de uma informação?"
- Um exemplo útil nesse contexto é o Delay Tolerant Network
 - S. Nag, A. Li, V. Ravindra, M. Sanchez Net, K.-M. Cheung, R. Lammers, and B.
 Bledsoe. 2019. Autonomous Scheduling of Agile Spacecraft Constellations with Delay Tolerant Networking for Reactive Imaging.
 - A resiliência é o ponto aqui, você consegue manter e otimizar a troca de dados em um ambiente crítico
- Outra técnica para que "eu sei o que você está fazendo e como você está" é o protocolo de comunicação epidêmica
- Mas podemos resumir que a comunicação foca em epidêmica ou baseado na ideia de recompensa
 - O ponto de convergência fica em melhorar a reação e cooperação

- Por fim, uma técnica que é extremamente interessante no contexto de MAS é a coalisão
- Agentes podem ter o seu contato muito pequeno e tarefas podem ser curtas
- Coalisão é uma organização de agentes onde o tempo de vida é curto
 - Há um objetivo em comum e quando ele é completado a cooperação se encerra
- A dinamicidade do ambiente torna essa abordagem extremamente útil
 - As crenças, intenções e conhecimento (limitado ou não) determinam sobre o comportamento do agente na coalisão

O que podemos tirar como conclusões?

- Constelações, principalmente EOS, tiram muito proveito na utilização do MAS
- Porém, falamos de computadores que são extremamente restritos
 - Duas hipóteses
 - MAS é necessário devido as restrições computacionais e a cooperação (consenso, negociação, etc..) é benéfica
 - MAS, no estado atual, não é aplicável para o estado atual de desenvolvimento dos satélites (em operação e futuras missões)

Levanto o questionamento: A abstração e paradigmas que estudamos em MAS estão prontas para ser adotadas como padrão?

Referências

- Spacelab. Constelação Catarina. 2021/2022
- Picard et al. Autonomous Agents and Multiagent Systems Challenges in Earth Observation Satellite Constellations, 2021
- Bonnet e Tessier. Multi-Agent Collaboration: A Satellite Constellation Case, 2008
- J. Bonnet, M.-P. Gleizes, E. Kaddoum, S. Rainjonneau, and G. Flandin. 2015.
 Multisatellite Mission Planning Using a Self-Adaptive Multi-agent System
- M. Johnston. 2020. Scheduling NASA's Deep Space Network: Priorities, Preferences, and Optimization.
- P. Rust, G. Picard, and F. Ramparany. 2020. Resilient Distributed Constraint Optimization in Physical Multi-Agent Systems.
- Peng Feng, Hao Chen, Shuang Peng, Luo Chen, and Longmei Li. 2015. A method of distributed multi-satellite mission scheduling based on improved contract net protocol
- Vídeo: Paul Evans May 26, 2019 in the UK with a Canon EOS 5D Mark IV and 50mm f/1.8 lens. Shutter speed 1/25 sec. ISO 32000