Package 'ComplexHeatmap'

April 15, 2025

Type Package

```
Title Make Complex Heatmaps
Version 2.24.0
Date 2025-04-01
Depends R (>= 4.0.0), methods, grid, graphics, stats, grDevices
Imports circlize (>= 0.4.14), GetoptLong, colorspace, clue,
     RColorBrewer, GlobalOptions (>= 0.1.0), png, digest, IRanges,
     matrixStats, foreach, doParallel, codetools
Suggests testthat (>= 1.0.0), knitr, markdown, dendsort, jpeg, tiff,
     fastcluster, EnrichedHeatmap, dendextend (>= 1.0.1), grImport,
     grImport2, glue, GenomicRanges, gridtext, pheatmap (>= 1.0.12),
     gridGraphics, gplots, rmarkdown, Cairo, magick
VignetteBuilder knitr
Description Complex heatmaps are efficient to visualize associations
     between different sources of data sets and reveal potential patterns.
     Here the ComplexHeatmap package provides a highly flexible way to arrange
     multiple heatmaps and supports various annotation graphics.
biocViews Software, Visualization, Sequencing
URL https://github.com/jokergoo/ComplexHeatmap,
     https://jokergoo.github.io/ComplexHeatmap-reference/book/
License MIT + file LICENSE
git_url https://git.bioconductor.org/packages/ComplexHeatmap
git branch RELEASE 3 21
git_last_commit 028592a
git_last_commit_date 2025-04-15
Repository Bioconductor 3.21
Date/Publication 2025-04-15
Author Zuguang Gu [aut, cre] (ORCID: <a href="https://orcid.org/0000-0002-7395-8709">https://orcid.org/0000-0002-7395-8709</a>)
Maintainer Zuguang Gu <z.gu@dkfz.de>
```

columnAnnotation	
$column_dend\text{-}dispatch $	59
$column_dend-Heatmap-method $	60
$column_dend-HeatmapList-method . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	61
$column_order-dispatch \ \ldots \ \ldots$	62
column_order-Heatmap-method	62
column_order-HeatmapList-method	
comb_degree	64
comb_name	
comb_size	65
compare_heatmap	
compare_heatmap.2	
compare_pheatmap	
complement_size	
component_height-dispatch	
component_height-Heatmap-method	
component_height-HeatmapList-method	
component_width-dispatch	70
component_width-Heatmap-method	
component_width-HeatmapList-method	
copy_all-AnnotationFunction-method	
copy_all-dispatch	73
copy_all-SingleAnnotation-method	
decorate_column_dend	
decorate_column_names	
decorate_column_title	
decorate_dend	
decorate_dimnames	
decorate_heatmap_body	79
decorate_row_dend	
decorate_row_names	
decorate_row_title	
decorate_title	
default_axis_param	
default_get_type	84
dendrogramGrob	
dend_heights	86
$dend_xy\ \dots$	86
densityHeatmap	87
dim.Heatmap	89
dist2	90
draw-AnnotationFunction-method	91
draw-dispatch	92
draw-Heatmap-method	92
draw-HeatmapAnnotation-method	
draw-HeatmapList-method	94
draw-I egends-method	100

draw-SingleAnnotation-method	101
draw_annotation-Heatmap-method	102
draw_annotation_legend-HeatmapList-method	103
draw_dend-Heatmap-method	
draw_dimnames-Heatmap-method	105
draw_heatmap_body-Heatmap-method	106
draw_heatmap_legend-HeatmapList-method	
draw_heatmap_list-HeatmapList-method	
draw_title-dispatch	109
draw_title-Heatmap-method	109
draw_title-HeatmapList-method	110
extract_comb	111
frequencyHeatmap	111
full_comb_code	113
getXY_in_parent_vp	114
get_color_mapping_list-HeatmapAnnotation-method	115
get_legend_param_list-HeatmapAnnotation-method	
grid.annotation_axis	
grid.boxplot	
grid.dendrogram	
grid.draw.Legends	119
grid.textbox	120
gt_render	120
Heatmap	121
Heatmap-class	128
Heatmap3D	129
HeatmapAnnotation	130
HeatmapAnnotation-class	132
HeatmapList	133
HeatmapList-class	134
heatmap_legend_size-HeatmapList-method	134
height.AnnotationFunction	135
height.Heatmap	136
height.HeatmapAnnotation	136
height.HeatmapList	137
height.Legends	137
height.SingleAnnotation	138
heightAssign.AnnotationFunction	139
heightAssign.HeatmapAnnotation	139
heightAssign.SingleAnnotation	140
heightDetails.annotation_axis	
heightDetails.legend	
heightDetails.legend_body	
heightDetails.packed_legends	
heightDetails.textbox	
ht_global_opt	
 ht_opt	
ht size	

is_abs_unit	
Legend	
Legends	
Legends-class	
length.HeatmapAnnotation	
length.HeatmapList	
list_components	
list_to_matrix	
make_column_cluster-Heatmap-method	
make_comb_mat	
make_layout-dispatch	
make_layout-Heatmap-method	
make_layout-HeatmapList-method	
make_row_cluster-Heatmap-method	
map_to_colors-ColorMapping-method	
max_text_height	
max_text_width	
merge_dendrogram	
names.HeatmapAnnotation	
names.HeatmapList	
namesAssign.HeatmapAnnotation	
ncol.Heatmap	
nobs.AnnotationFunction	
nobs.HeatmapAnnotation	
nobs.SingleAnnotation	
normalize_comb_mat	
normalize_genomic_signals_to_bins	
nrow.Heatmap	
oncoPrint	
order.comb mat	
packLegend	
pheatmap	
pindex	
plot.Heatmap	
plot.HeatmapAnnotation	
plot.HeatmapList	
prepare-Heatmap-method	
print.comb_mat	
restore_matrix	
re_size-HeatmapAnnotation-method	
rowAnnotation	
row_anno_barplot	
row_anno_boxplot	
row_anno_density	
row_anno_histogram	
row_anno_points	
row_anno_text	
row dend-dispatch	

row_dend-Heatmap-method	
row_dend-HeatmapList-method	
row_order-dispatch	196
row_order-Heatmap-method	197
row_order-HeatmapList-method	198
set_component_height-Heatmap-method	199
set_component_width-Heatmap-method	200
set_name	201
set_nameAssign	201
set_size	202
show-AnnotationFunction-method	
show-ColorMapping-method	203
show-dispatch	
show-Heatmap-method	
show-HeatmapAnnotation-method	
show-HeatmapList-method	
show-SingleAnnotation-method	
Single Annotation	
Single Annotation-class	
size.AnnotationFunction	
size.HeatmapAnnotation	
size.SingleAnnotation	
sizeAssign.AnnotationFunction	
sizeAssign.HeatmapAnnotation	
sizeAssign.SingleAnnotation	
smartAlign2	
str.comb_mat	
subset_gp	
subset_matrix_by_row	
subset_no	
subset_vector	
summary.Heatmap	
summary.HeatmapList	
t.comb_mat	
test_alter_fun	
textbox grob	
unify mat list	
UpSet	
•	
upset_left_annotation	
upset_right_annotation	
upset_top_annotation	
width.AnnotationFunction	
width.Heatmap	
width.HeatmapAnnotation	
width.HeatmapList	
width.Legends	
width.SingleAnnotation	
widthAssign.AnnotationFunction	232

widthAssign.HeatmapAnnotation	33
widthAssign.SingleAnnotation	34
widthDetails.annotation_axis	34
widthDetails.legend	
widthDetails.legend_body	
widthDetails.packed_legends	
widthDetails.textbox	
[.AnnotationFunction	
[.comb_mat	
[.gridtext	
[.Heatmap	
[.HeatmapAnnotation	
[.HeatmapList	
[.SingleAnnotation	
%v%	
2	13

ComplexHeatmap-package

Make complex heatmaps

Description

Make complex heatmaps

Details

Index

This package aims to provide a simple and flexible way to arrange multiple heatmaps as well as flexible annotation graphics.

The package is implemented in an object-oriented way. The heatmap lists are abstracted into several classes.

- Heatmap-class: a single heatmap containing heatmap body, row/column names, titles, dendrograms and annotations.
- HeatmapList-class: a list of heatmaps and annotations.
- HeatmapAnnotation-class: a list of row/column annotations.

There are also several internal classes:

- SingleAnnotation-class: a single row annotation or column annotation.
- ColorMapping-class: mapping from values to colors.
- AnnotationFunction-class: construct an annotation function which allows subsetting.

Following two high-level functions take use of functionality of complex heatmaps:

• oncoPrint: oncoPrint plot which visualize genomic alterations in a set of genes.

8 +.AdditiveUnit

• densityHeatmap: use heatmaps to visualize density distributions.

The complete reference of ComplexHeatmap package is available at http://jokergoo.github.io/ComplexHeatmap-reference/book.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

+.AdditiveUnit

Horizontally Add Heatmaps or Annotations to a Heatmap List

Description

Horizontally Add Heatmaps or Annotations to a Heatmap List

Usage

```
## S3 method for class 'AdditiveUnit' x + y
```

Arguments

- x A Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.
- y A Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

Details

It is only a helper function. It actually calls add_heatmap, Heatmap-method, add_heatmap, HeatmapList-method or add_heatmap, HeatmapAnnotation-method depending on the class of the input objects.

The HeatmapAnnotation-class object to be added should only be row annotations. Column annotations should be added to the heatmap list by %v%.

x and y can also be NULL.

Value

```
A \ {\tt HeatmapList-class} \ object.
```

Author(s)

Zuguang Gu <z.gu@dkfz.de>

AdditiveUnit 9

See Also

%v% operator is used for vertical heatmap list.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}
```

AdditiveUnit

Constructor Method for AdditiveUnit Class

Description

Constructor Method for AdditiveUnit Class

Usage

```
AdditiveUnit(...)
```

Arguments

... Black hole arguments.

Details

This method is not used in the package.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

AdditiveUnit-class

Class for Concatenating Heatmaps and Annotations

Description

Class for Concatenating Heatmaps and Annotations

Details

This class is a super class for Heatmap-class, HeatmapList-class and HeatmapAnnotation-class classes. It is only designed for + generic method and the %v%v method so that above three classes can be appended to each other.

Examples

```
# There is no example
NULL
```

add_heatmap-dispatch Method dispatch page for add_heatmap

Description

Method dispatch page for add_heatmap.

Dispatch

add_heatmap can be dispatched on following classes:

- add_heatmap, Heatmap-method, Heatmap-class class method
- add_heatmap, HeatmapAnnotation-method, HeatmapAnnotation-class class method
- add_heatmap, HeatmapList-method, HeatmapList-class class method

```
# no example
NULL
```

 $\verb"add_heatmap-Heatmap-method"$

Add Heatmap to the Heatmap List

Description

Add Heatmap to the Heatmap List

Usage

```
## S4 method for signature 'Heatmap'
add_heatmap(object, x, direction = c("horizontal", "vertical"))
```

Arguments

object A Heatmap-class object.

x a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class

object.

direction Whether the heatmap is added horizontal or vertically?

Details

Normally we directly use + for horizontal concatenation and %v% for vertical concatenation.

Value

A HeatmapList-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

 $\verb"add_heatmap-HeatmapAnnotation-method"$

Add Annotations or Heatmaps as a Heatmap List

Description

Add Annotations or Heatmaps as a Heatmap List

Usage

```
## S4 method for signature 'HeatmapAnnotation'
add_heatmap(object, x, direction = c("horizontal", "vertical"))
```

Arguments

object A HeatmapAnnotation-class object.

x A Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class

object.

direction Whether it is horizontal list or a vertical list?

Details

Normally we directly use + for horizontal concatenation and %v% for vertical concatenation.

Value

A HeatmapList-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

 $\verb| add_heatmap-HeatmapList-method| \\$

Add heatmaps and row annotations to the heatmap list

Description

Add heatmaps and row annotations to the heatmap list

Usage

```
## S4 method for signature 'HeatmapList'
add_heatmap(object, x, direction = c("horizontal", "vertical"))
```

Arguments

object a HeatmapList-class object.

x a Heatmap-class object or a HeatmapAnnotation-class object or a HeatmapList-class

object.

direction direction of the concatenation.

Details

There is a shortcut function +. AdditiveUnit.

Value

A HeatmapList-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

adjust_dend_by_x

Adjust the Positions of nodes/leaves in the Dendrogram

Description

Adjust the Positions of nodes/leaves in the Dendrogram

Usage

```
adjust_dend_by_x(dend, leaf_pos = 1:nobs(dend)-0.5)
```

Arguments

dend A dendrogram object.

leaf_pos A vector of positions of leaves. The value can also be a unit object.

Details

The positions of nodes stored as x attribute are recalculated based on the new positions of leaves. By default, the position of leaves are at 0.5, 1.5, ..., n-0.5.

Examples

```
m = matrix(rnorm(100), 10)
dend = as.dendrogram(hclust(dist(m)))
dend = adjust_dend_by_x(dend, sort(runif(10)))
str(dend)
dend = adjust_dend_by_x(dend, unit(1:10, "cm"))
str(dend)
```

```
adjust_heatmap_list-HeatmapList-method

*Adjust Heatmap List*
```

Description

Adjust Heatmap List

Usage

```
## S4 method for signature 'HeatmapList'
adjust_heatmap_list(object)
```

Arguments

object A HeatmapList-class object.

alter_graphic 15

Details

This function adjusts settings in all other heatmaps according to the main heatmap. It also adjust the size of heatmap annotations to make them aligned nicely.

This function is only for internal use.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

alter_graphic

Automatically generate alter_fun

Description

Automatically generate alter_fun

Usage

```
alter_graphic(graphic = c("rect", "point"),
   width = 1, height = 1,
   horiz_margin = unit(1, "pt"), vertical_margin = unit(1, "pt"),
   fill = "red", col = NA, pch = 16, ...)
```

Arguments

graphic Graphic to draw. width Relative width of the rectangle. height Relative height of the rectangle. horiz_margin Horizontal margin. E.g. if you want 1mm margin on top and 1mm margin at bottom of the rectangle, set this value to unit(1, 'mm'). vertical_margin Vertical margin. fill Filled color. Border color. col Pch for points pch Pass to gpar

16 AnnotationFunction

Details

This function aims to simplify the definition of functions in alter_fun. Now it only supports rectangles and points.

Examples

```
mat = read.table(textConnection(
"s1,s2,s3
g1,snv;indel,snv,indel
g2,,snv;indel,snv
g3,snv,,indel;snv"), row.names = 1, header = TRUE, sep = ",", stringsAsFactors = FALSE)
mat = as.matrix(mat)
col = c(snv = "red", indel = "blue")

oncoPrint(mat,
   alter_fun = list(
   snv = alter_graphic("rect", width = 0.9, height = 0.9, fill = col["snv"]),
   indel = alter_graphic("rect", width = 0.9, height = 0.9, fill = col["indel"])
), col = col)
```

AnnotationFunction

Constructor of AnnotationFunction Class

Description

Constructor of AnnotationFunction Class

Usage

```
AnnotationFunction(fun, fun_name = "", which = c("column", "row"), cell_fun = NULL,
    var_import = list(), n = NA, data_scale = c(0, 1), subset_rule = list(),
    subsettable = length(subset_rule) > 0, show_name = TRUE, width = NULL, height = NULL)
```

fun	A function which defines how to draw the annotation. See **Details** section.
fun_name	The name of the function. It is only used for printing the object.
which	Whether it is drawn as a column annotation or a row annotation?
cell_fun	A simplified version of fun. cell_fun only accepts one single index and it draws repeatedly in each annotation cell.
var_import	The names of the variables or the variable themselves that the annotation function depends on. See **Details** section.
n	Number of observations in the annotation. It is not mandatory, but it is better to provide this information so that the higher order HeatmapAnnotation knows it and it can perform check on the consistency of annotations and heatmaps.

AnnotationFunction 17

data_scale The data scale on the data axis (y-axis for column annotation and x-axis for row annotation). It is only used when decorate_annotation is used with "native" unit coordinates. subset_rule The rule of subsetting variables in var_import. It should be set when users want the final object to be subsettable. See **Details** section. subsettable Whether the object is subsettable? It is used to turn off the drawing of annotation names in HeatmapAnnotation. show_name Annotations always have names associated and normally they will be drawn beside the annotation graphics to tell what the annotation is about. e.g. the annotation names put beside the points annotation graphics. However, for some of the annotations, the names are not necessarily to be drawn, such as text annotations drawn by anno_text or an empty annotation drawn by anno_empty. In this case, when show_names is set to FALSE, there will be no annotation names drawn for the annotation. width The width of the plotting region (the viewport) that the annotation is drawn. If it is a row annotation, the width must be an absolute unit. Since the AnnotationFunction object is always contained by the SingleAnnotation-classobject, you can only set the width of row annotations or height of column annotations, while e.g. the height of the row annotation is always unit(1, "npc") which means it always fully filled in the parent SingleAnnotation and only in SingleAnnotation or even HeatmapAnnotation can adjust the height of the row annotations. The height of the plotting region (the viewport) that the annotation is drawn. If height it is a column annotation, the width must be an absolute unit.

Details

In the package, we have implemted quite a lot annotation functions by AnnotationFunction constructor: anno_empty, anno_image, anno_points, anno_lines, anno_barplot, anno_boxplot, anno_histogram, anno_density, anno_joyplot, anno_horizon, anno_text and anno_mark. These built-in annotation functions support as both row annotations and column annotations and they are are all subsettable.

The build-in annotation functions are already enough for most of the analysis, nevertheless, if users want to know more about how to construct the AnnotationFunction class manually, they can refer to https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html# implement-new-annotation-functions.

Value

A AnnotationFunction-class object which can be used in HeatmapAnnotation.

```
x = 1:10
anno1 = AnnotationFunction(
  fun = function(index, k, n) {
    n = length(index)
    pushViewport(viewport(xscale = c(0.5, n + 0.5), yscale = c(0, 10)))
    grid.rect()
```

18 annotation_axis_grob

```
grid.points(1:n, x[index], default.units = "native")
    if(k == 1) grid.yaxis()
    popViewport()
},
var_import = list(x = x),
    n = 10,
    subsettable = TRUE,
    height = unit(2, "cm")
)
m = rbind(1:10, 11:20)
Heatmap(m, top_annotation = HeatmapAnnotation(foo = anno1))
Heatmap(m, top_annotation = HeatmapAnnotation(foo = anno1), column_km = 2)
```

AnnotationFunction-class

The AnnotationFunction Class

Description

The AnnotationFunction Class

Details

The heatmap annotation is basically graphics aligned to the heatmap columns or rows. There is no restriction for the graphic types, e.g. it can be heatmap-like annotation or points. Here the AnnotationFunction class is designed for creating complex and flexible annotation graphics. As the main part of the class, it uses a user-defined function to define the graphics. It also keeps information of the size of the plotting regions of the annotation. And most importantly, it allows subsetting to the annotation to draw a subset of the graphics, which is the base for the splitting of the annotations.

See AnnotationFunction constructor for details.

Examples

```
# There is no example
NULL
```

annotation_axis_grob Grob for Annotation Axis

Description

Grob for Annotation Axis

Usage

```
annotation_axis_grob(at = NULL, labels = at, labels_rot = 0, gp = gpar(),
    side = "left", facing = "outside", direction = "normal", scale = NULL)
```

annotation_axis_grob 19

Arguments

at Break values. If it is not specified, it is inferred from data scale in current viewport.

labels Corresponding labels.

labels_rot Rotations of labels.

gp Graphic parameters.

side side of the axis of the annotation viewport.

facing Facing of the axis.

direction Direction of the axis. Value should be "normal" or "reverse".

The data scale. If it is NULL, it is inferred from current viewport.

Value

scale

A grob object.

```
gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0,
    side = "left", facing = "outside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
grid.rect()
grid.text('side = "left", facing = "outside"')
grid.draw(gb)
popViewport()
gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0,
    side = "left", facing = "inside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
grid.rect()
grid.text('side = "left", facing = "inside"')
grid.draw(gb)
popViewport()
gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0,
    side = "right", facing = "outside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
grid.rect()
grid.text('side = "right", facing = "outside"')
grid.draw(gb)
popViewport()
gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0,
    side = "right", facing = "inside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
grid.rect()
```

20 annotation_axis_grob

```
grid.text('side = "right", facing = "inside"')
grid.draw(gb)
popViewport()
gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0,
    side = "top", facing = "outside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
grid.rect()
grid.text('side = "top", facing = "outside"')
grid.draw(gb)
popViewport()
gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 90,
    side = "top", facing = "outside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
grid.rect()
grid.text('side = "top", facing = "outside"')
grid.draw(gb)
popViewport()
gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 45,
    side = "top", facing = "outside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
grid.rect()
grid.text('side = "top", facing = "outside"')
grid.draw(gb)
popViewport()
gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0,
    side = "top", facing = "inside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
grid.rect()
grid.text('side = "top", facing = "inside"')
grid.draw(gb)
popViewport()
gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0,
    side = "bottom", facing = "outside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
grid.rect()
grid.text('side = "bottom", facing = "outside"')
grid.draw(gb)
popViewport()
gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0,
    side = "bottom", facing = "inside")
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
```

```
grid.rect()
grid.text('side = "bottom", facing = "inside"')
grid.draw(gb)
popViewport()
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
gb = annotation_axis_grob(labels_rot = 0, side = "left", facing = "outside")
grid.rect()
grid.text('side = "left", facing = "outside"')
grid.draw(gb)
popViewport()
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
gb = annotation_axis_grob(side = "left", direction = "reverse")
grid.rect()
grid.text('side = "left", direction = "reverse')
grid.draw(gb)
popViewport()
grid.newpage()
pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
gb = annotation_axis_grob(side = "bottom", direction = "reverse")
grid.rect()
grid.text('side = "bottom", directio = "reverse"')
grid.draw(gb)
popViewport()
```

```
annotation_legend_size-HeatmapList-method

Size of the Annotation Legends
```

Description

Size of the Annotation Legends

Usage

```
## S4 method for signature 'HeatmapList'
annotation_legend_size(object, legend_list = list(), ...)
```

```
object a HeatmapList-class object.

legend_list A list of self-defined legend, should be wrapped into grob objects. It is normally constructed by Legend.

Other arguments.
```

22 anno_barplot

Details

Internally, all annotation legends are packed by packLegend as a single grob object. This function is only for internal use.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example
NULL
```

anno_barplot

Barplot Annotation

Description

Barplot Annotation

Usage

```
anno_barplot(x, baseline = 0, which = c("column", "row"), border = TRUE, bar_width = 0.6,
    beside = FALSE, attach = FALSE,
    gp = gpar(fill = "#CCCCCC"), ylim = NULL, extend = 0.05, axis = TRUE, background = FALSE,
    axis_param = default_axis_param(which),
    add_numbers = FALSE, numbers_gp = gpar(fontsize = 8),
    numbers_rot = ifelse(which == "column", 45, 0), numbers_offset = unit(2, "mm"),
    width = NULL, height = NULL, ...)
```

X	The value vector. The value can be a vector or a matrix. The length of the vector or the number of rows of the matrix is taken as the number of the observations of the annotation. If x is a vector, the barplots will be represented as stacked barplots.
baseline	baseline of bars. The value should be "min" or "max", or a numeric value. It is enforced to be zero for stacked barplots.
which	Whether it is a column annotation or a row annotation?
border	Wether draw borders of the annotation region?
bar_width	Relative width of the bars. The value should be smaller than one.

anno_barplot 23

beside	When x is a matrix, will bars be positioned beside each other or as stacked bars?
attach	When beside is TRUE, it controls whether bars should be attached.
gp	Graphic parameters for bars. The length of each graphic parameter can be 1, length of x if x is a vector, or number of columns of x is x is a matrix.
ylim	Data ranges. By default it is $range(x)$ if x is a vector, or $range(rowSums(x))$ if x is a matrix.
extend	The extension to both side of ylim. The value is a percent value corresponding to ylim[2] - ylim[1].
axis	Whether to add axis?
axis_param	parameters for controlling axis. See default_axis_param for all possible settings and default parameters.
background	Logical, whether to draw background grid lines?
add_numbers	Whether to add numbers to the bars. It only works when x is a simple vector.
numbers_gp	Graphics parameters for the numbers.
numbers_rot	Rotation of numbers.
numbers_offset	Offset to the default positions (1mm away the top of the bars).
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
	Other arguments.

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

```
anno = anno_barplot(1:10)
draw(anno, test = "a vector")

m = matrix(runif(4*10), nc = 4)
m = t(apply(m, 1, function(x) x/sum(x)))
anno = anno_barplot(m, gp = gpar(fill = 2:5), bar_width = 1, height = unit(6, "cm"))
draw(anno, test = "proportion matrix")
```

24 anno_block

|--|

Description

Block annotation

Usage

```
anno_block(align_to = NULL, gp = gpar(), labels = NULL, labels_gp = gpar(),
    labels_rot = ifelse(which == "row", 90, 0),
    labels_offset = unit(0.5, "npc"), labels_just = "center",
    which = c("column", "row"), width = NULL, height = NULL, show_name = FALSE,
    panel_fun = NULL)
```

Arguments

`		
	align_to	If you don't want to create block annotation for all slices, you can specify a list of indices that cover continuously adjacent rows or columns.
	gp	Graphic parameters.
	labels	Labels put on blocks.
	labels_gp	Graphic parameters for labels.
	labels_rot	Rotation for labels.
	labels_offset	Positions of the labels. It controls offset on y-directions for column annotation and on x-directoin for row annotation.
	labels_just	Jusification of the labels.
	which	Is it a row annotation or a column annotation?
	width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
	height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
	show_name	Whether show annotatio name.
	panel_fun	A self-defined function that draws graphics in each slice. It must have two arguments: 1. row/column indices for the current slice and 2. a vector of levels from the split variable that correspond to current slice. When graphics is set, all other graphics parameters in anno_block are ignored.

Details

The block annotation is used for representing slices. The length of all arguments should be 1 or the number of slices.

Value

An annotation function which can be used in HeatmapAnnotation.

anno_block 25

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#block-annotation

```
Heatmap(matrix(rnorm(100), 10),
    top_annotation = HeatmapAnnotation(foo = anno_block(gp = gpar(fill = 2:4),
        labels = c("group1", "group2", "group3"), labels_gp = gpar(col = "white"))),
    column_km = 3,
    left_annotation = rowAnnotation(foo = anno_block(gp = gpar(fill = 2:4),
        labels = c("group1", "group2", "group3"), labels_gp = gpar(col = "white"))),
    row_km = 3
# ======= set the panel_fun argument =========
col = c("1" = "red", "2" = "blue", "A" = "green", "B" = "orange")
Heatmap(matrix(rnorm(100), 10), row_km = 2, row_split = sample(c("A", "B"), 10, replace = TRUE)) +
rowAnnotation(foo = anno_block(
 panel_fun = function(index, levels) {
  grid.rect(gp = gpar(fill = col[levels[2]], col = "black"))
  grid.text(paste(levels, collapse = ","), 0.5, 0.5, rot = 90,
   gp = gpar(col = col[levels[1]]))
 }
))
labels = c("1" = "one", "2" = "two", "A" = "Group_A", "B" = "Group_B")
Heatmap(matrix(rnorm(100), 10), row_km = 2, row_split = sample(c("A", "B"), 10, replace = TRUE)) +
rowAnnotation(foo = anno_block(panel_fun = function(index, levels) {
 grid.rect(gp = gpar(fill = col[levels[2]], col = "black"))
 grid.text(paste(labels[levels], collapse = ","), 0.5, 0.5, rot = 90,
  gp = gpar(col = col[levels[1]]))
}))
Heatmap(matrix(rnorm(100), 10), row_km = 2, row_split = sample(c("A", "B"), 10, replace = TRUE)) +
rowAnnotation(foo = anno_block(
 panel_fun = function(index, levels) {
 grid.rect(gp = gpar(fill = col[levels[2]], col = "black"))
  txt = paste(levels, collapse = ",")
  txt = paste0(txt, "\n", length(index), " rows")
  grid.text(txt, 0.5, 0.5, rot = 0,
  gp = gpar(col = col[levels[1]]))
 },
 width = unit(3, "cm")
))
# ====== set align_to ###############
col = c("foo" = "red", "bar" = "blue")
Heatmap(matrix(rnorm(100), 10), cluster_rows = FALSE) +
rowAnnotation(foo = anno_block(
 align_to = list(foo = 1:4, bar = 6:10),
 panel_fun = function(index, nm) {
 grid.rect(gp = gpar(fill = col[nm]))
```

26 anno_boxplot

```
grid.text(nm, 0.5, 0.5)
},
width = unit(2, "cm"))
)
```

anno_boxplot

Boxplot Annotation

Description

Boxplot Annotation

Usage

```
anno_boxplot(x, which = c("column", "row"), border = TRUE,
   gp = gpar(fill = "#CCCCCC"), ylim = NULL, extend = 0.05, outline = TRUE, box_width = 0.6,
   add_points = FALSE, pch = 16, size = unit(4, "pt"), pt_gp = gpar(), axis = TRUE, background = FALSE,
   axis_param = default_axis_param(which), width = NULL, height = NULL, ...)
```

X	A matrix or a list. If x is a matrix and if which is column, statistics for boxplots are calculated by columns, if which is row, the calculation is done by rows.
which	Whether it is a column annotation or a row annotation?
border	Wether draw borders of the annotation region?
gp	Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations.
ylim	Data ranges.
extend	The extension to both side of ylim. The value is a percent value corresponding to ylim[2] - ylim[1].
outline	Whether draw outline of boxplots?
box_width	Relative width of boxes. The value should be smaller than one.
add_points	Whether add points on top of the boxes?
pch	Point style.
size	Point size.
pt_gp	Graphics parameters for points.
axis	Whether to add axis?
axis_param	parameters for controlling axis. See default_axis_param for all possible settings and default parameters.
background	Logical, whether to draw background grid lines?
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
	Other arguments.

anno_customize 27

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

 $\verb|https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html| which is a substitute of the complex of$

Examples

```
set.seed(123)
m = matrix(rnorm(100), 10)
anno = anno_boxplot(m, height = unit(4, "cm"))
draw(anno, test = "anno_boxplot")
anno = anno_boxplot(m, height = unit(4, "cm"), gp = gpar(fill = 1:10))
draw(anno, test = "anno_boxplot with gp")
```

anno_customize

Customized annotation

Description

Customized annotation

Usage

```
anno_customize(x, graphics = list(), which = c("column", "row"),
    border = TRUE, width = NULL, height = NULL, verbose = TRUE)
```

Arguments

Х	A categorical variable.
graphics	A list of functions that define graphics for each level in x.
which	Is it a row annotation or a column annotation?
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
border	Whether to draw border.
verbose	Whether to print messages.

Details

Functions in graphics define simple graphics drawn in each annotation cell. The function takes four arguments:

x,y Center of the annotation cell.

w,h Width and height of the annotation cell.

28 anno_density

Value

An annotation function which can be used in HeatmapAnnotation.

Examples

```
x = sort(sample(letters[1:3], 10, replace = TRUE))
graphics = list(
    "a" = function(x, y, w, h) grid.points(x, y, pch = 16),
    "b" = function(x, y, w, h) grid.rect(x, y, w*0.8, h*0.8, gp = gpar(fill = "red")),
    "c" = function(x, y, w, h) grid.segments(x - 0.5*w, y - 0.5*h, x + 0.5*w, y + 0.5*h, gp = gpar(lty = 2))
)
anno = anno_customize(x, graphics = graphics)

m = matrix(rnorm(100), 10)
Heatmap(m, top_annotation = HeatmapAnnotation(bar = x, foo = anno))

# Add legends for `foo`
ht = Heatmap(m, top_annotation = HeatmapAnnotation(bar = x, foo = anno))
lgd = Legend(title = "foo", at = names(graphics), graphics = graphics)
draw(ht, annotation_legend_list = list(lgd))
```

anno_density

Density Annotation

Description

Density Annotation

Usage

```
anno_density(x, which = c("column", "row"),
   type = c("lines", "violin", "heatmap"), xlim = NULL, max_density = NULL,
   heatmap_colors = rev(brewer.pal(name = "RdYlBu", n = 11)),
   joyplot_scale = 1, border = TRUE, gp = gpar(fill = "#CCCCCC"),
   axis = TRUE, axis_param = default_axis_param(which),
   width = NULL, height = NULL)
```

X	A matrix or a list. If x is a matrix and if which is column, statistics for boxplots are calculated by columns, if which is row, the calculation is done by rows.
which	Whether it is a column annotation or a row annotation?
type	Type of graphics to represent density distribution. "lines" for normal density plot; "violine" for violin plot and "heatmap" for heatmap visualization of density distribution.
xlim	Range on x-axis.

anno_density 29

max_density	Maximal density values in the plot. Normally you don't need to manually set it, but when you have multiple density annotations and you want to compare between them, you should manually set this argument to make density distributions are in a same scale.
heatmap_colors	A vector of colors for interpolating density values.
joyplot_scale	Relative height of density distribution. A value higher than 1 increases the height of the density distribution and the plot will represented as so-called "joyplot".
border	Wether draw borders of the annotation region?
gp	Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations.
axis	Whether to add axis?
axis_param	parameters for controlling axis. See ${\tt default_axis_param}$ for all possible settings and default parameters.
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

```
m = matrix(rnorm(100), 10)
anno = anno_density(m, which = "row")
draw(anno, test = "normal density")
anno = anno_density(m, which = "row", type = "violin")
draw(anno, test = "violin")
anno = anno_density(m, which = "row", type = "heatmap")
draw(anno, test = "heatmap")
anno = anno_density(m, which = "row", type = "heatmap",
    heatmap_colors = c("white", "orange"))
draw(anno, test = "heatmap, colors")
```

anno_empty

Description

Empty Annotation

Usage

```
anno_empty(which = c("column", "row"), border = TRUE, zoom = FALSE,
    width = NULL, height = NULL, show_name = FALSE)
```

Arguments

which	Whether it is a column annotation or a row annotation?
border	Whether draw borders of the annotation region?
zoom	If it is true and when the heatmap is split, the empty annotation slices will have equal height or width, and you can see the correspondance between the annotation slices and the original heatmap slices.
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
show_name	Whether to show annotation name.

Details

It creates an empty annotation and holds space, later users can add graphics by decorate_annotation. This function is useful when users have difficulty to implement AnnotationFunction object.

In following example, an empty annotation is first created and later points are added:

```
m = matrix(rnorm(100), 10)
ht = Heatmap(m, top_annotation = HeatmapAnnotation(pt = anno_empty()))
ht = draw(ht)
co = column_order(ht)[[1]]
pt_value = 1:10
decorate_annotation("pt", {
  pushViewport(viewport(xscale = c(0.5, ncol(mat)+0.5), yscale = range(pt_value)))
  grid.points(seq_len(ncol(mat)), pt_value[co], pch = 16, default.units = "native")
  grid.yaxis()
  popViewport()
})
```

Heatmap(m, top_annotation = HeatmapAnnotation(pt = anno_points(pt_value)))

And it is similar as using anno_points:

anno_histogram 31

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

Examples

```
anno = anno_empty()
draw(anno, test = "anno_empty")
anno = anno_empty(border = FALSE)
draw(anno, test = "anno_empty without border")
```

anno_histogram

Histogram Annotation

Description

Histogram Annotation

Usage

```
anno_histogram(x, which = c("column", "row"), n_breaks = 11,
  border = FALSE, gp = gpar(fill = "#CCCCCC"),
  axis = TRUE, axis_param = default_axis_param(which),
  width = NULL, height = NULL)
```

X	A matrix or a list. If x is a matrix and if which is column, statistics for boxplots are calculated by columns, if which is row, the calculation is done by rows.
which	Whether it is a column annotation or a row annotation?
n_breaks	Number of breaks for calculating histogram.
border	Wether draw borders of the annotation region?
gp	Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations.
axis	Whether to add axis?
axis_param	parameters for controlling axis. See default_axis_param for all possible settings and default parameters.
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.

32 anno_horizon

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

 $\verb|https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html| \\ \verb|histogram-annotation| \\$

Examples

```
m = matrix(rnorm(1000), nc = 10)
anno = anno_histogram(t(m), which = "row")
draw(anno, test = "row histogram")
anno = anno_histogram(t(m), which = "row", gp = gpar(fill = 1:10))
draw(anno, test = "row histogram with color")
anno = anno_histogram(t(m), which = "row", n_breaks = 20)
draw(anno, test = "row histogram with color")
```

anno_horizon

Horizon chart Annotation

Description

Horizon chart Annotation

Usage

```
anno_horizon(x, which = c("column", "row"),
   gp = gpar(pos_fill = "#D73027", neg_fill = "#313695"),
   n_slice = 4, slice_size = NULL, negative_from_top = FALSE,
   normalize = TRUE, gap = unit(0, "mm"),
   axis = TRUE, axis_param = default_axis_param(which),
   width = NULL, height = NULL)
```

х	A matrix or a list. If x is a matrix or a data frame, columns correspond to observations.
which	Whether it is a column annotation or a row annotation?
gp	Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations. There are two unstandard parameters specificly for horizon chart: pos_fill and neg_fill controls the filled color for positive values and negative values.
n_slice	Number of slices on y-axis.
slice_size	Height of the slice. If the value is not NULL, n_slice will be recalculated.

anno_horizon 33

negative_from_top	
	Whether the areas for negative values start from the top or the bottom of the plotting region?
normalize	Whether normalize x by $max(abs(x))$.
gap	Gap size of neighbouring horizon chart.
axis	Whether to add axis?
axis_param	parameters for controlling axis. See $default_axis_param$ for all possible settings and default parameters.
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not

Details

Horizon chart as row annotation is only supported.

Value

An annotation function which can be used in HeatmapAnnotation.

allowed to be set for row annotation.

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#horizon-chart-annotation

34 anno_image

Description

Image Annotation

Usage

```
anno_image(image, which = c("column", "row"), border = TRUE,
   gp = gpar(fill = NA, col = NA), space = unit(1, "mm"),
   width = NULL, height = NULL)
```

Arguments

image	A vector of file paths of images. The format of the image is inferred from the suffix name of the image file. NA values or empty strings in the vector means no image to drawn.
which	Whether it is a column annotation or a row annotation?
border	Wether draw borders of the annotation region?
gp	Graphic parameters for annotation grids. If the image has transparent background, the fill parameter can be used to control the background color in the annotation grids.
space	The space around the image to the annotation grid borders. The value should be a unit object.
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.

Details

This function supports image formats in png, svg, pdf, eps, jpeg/jpg, tiff. png, jpeg/jpg and tiff images are imported by readPNG, readJPEG and readTIFF, and drawn by grid.raster. svg images are firstly reformatted by rsvg::rsvg_svg and then imported by readPicture and drawn by grid.picture. pdf and eps images are imported by PostScriptTrace and readPicture, later drawn by grid.picture.

Different image formats can be mixed in the image vector.

Value

An annotation function which can be used in HeatmapAnnotation.

anno_joyplot 35

See Also

 $\verb|https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html| \\ \verb|image-annotation| \\$

Examples

```
# download the free icons from https://github.com/Keyamoon/IcoMoon-Free
## Not run:
image = sample(dir("~/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10)
anno = anno_image(image)
draw(anno, test = "png")
image[1:5] = ""
anno = anno_image(image)
draw(anno, test = "some of png")
## End(Not run)
```

anno_joyplot

Joyplot Annotation

Description

Joyplot Annotation

Usage

```
anno_joyplot(x, which = c("column", "row"), gp = gpar(fill = "#000000"),
    scale = 2, transparency = 0.6,
    axis = TRUE, axis_param = default_axis_param(which),
    width = NULL, height = NULL)
```

X	A matrix or a list. If x is a matrix or a data frame, columns correspond to observations.
which	Whether it is a column annotation or a row annotation?
gp	Graphic parameters for the boxes. The length of the graphic parameters should be one or the number of observations.
scale	Relative height of the curve. A value higher than 1 increases the height of the curve.
transparency	Transparency of the filled colors. Value should be between 0 and 1.
axis	Whether to add axis?
axis_param	parameters for controlling axis. See default_axis_param for all possible settings and default parameters.
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.

36 anno_lines

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#joyplot-annotation

Examples

```
m = matrix(rnorm(1000), nc = 10)
lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row")
draw(anno, test = "joyplot")
anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = 1:10))
draw(anno, test = "joyplot + col")
anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", scale = 1)
draw(anno, test = "joyplot + scale")

m = matrix(rnorm(5000), nc = 50)
lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = NA), scale = 4)
draw(anno, test = "joyplot")
```

anno_lines

Lines Annotation

Description

Lines Annotation

Usage

```
anno_lines(x, which = c("column", "row"), border = TRUE, gp = gpar(),
   add_points = smooth, smooth = FALSE, pch = 16, size = unit(2, "mm"), pt_gp = gpar(), ylim = NULL,
   extend = 0.05, axis = TRUE, axis_param = default_axis_param(which), background = FALSE,
   width = NULL, height = NULL)
```

х	The value vector. The value can be a vector or a matrix. The length of the vector or the number of rows of the matrix is taken as the number of the observations of the annotation.
which	Whether it is a column annotation or a row annotation?
border	Wether draw borders of the annotation region?
gp	Graphic parameters for lines. The length of each graphic parameter can be 1, or number of columns of x is x is a matrix.

anno_lines 37

add_points	Whether to add points on the lines?
smooth	If it is TRUE, smoothing by ${\tt loess}$ is performed. If it is TRUE, add_points is set to TRUE by default.
pch	Point type. The length setting is the same as gp.
size	Point size, the value should be a unit object. The length setting is the same as gp.
pt_gp	Graphic parameters for points. The length setting is the same as gp.
ylim	Data ranges. By default it is range(x).
extend	The extension to both side of ylim. The value is a percent value corresponding to $ylim[2] - ylim[1]$.
axis	Whether to add axis?
axis_param	parameters for controlling axis. See default_axis_param for all possible settings and default parameters.
background	Logical, whether to draw background grid lines?
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

 $\verb|https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html| \\ \verb|lines-annotation| \\$

```
anno = anno_lines(runif(10))
draw(anno, test = "anno_lines")
anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3))
draw(anno, test = "matrix")
anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3),
add_points = TRUE, pt_gp = gpar(col = 5:6), pch = c(1, 16))
draw(anno, test = "matrix")
```

38 anno_mark

 $\verb"anno_link"$

Link Annotation

Description

Link Annotation

Usage

```
anno_link(...)
```

Arguments

... Pass to anno_zoom.

Details

This function is the same as anno_zoom. It links subsets of rows or columns to a list of graphic regions.

Examples

```
# There is no example NULL
```

anno_mark

Link annotation with labels

Description

Link annotation with labels

Usage

```
anno_mark(at, labels, which = c("column", "row"),
    side = ifelse(which == "column", "top", "right"),
    lines_gp = gpar(), labels_gp = gpar(),
    labels_rot = ifelse(which == "column", 90, 0), padding = unit(1, "mm"),
    link_width = unit(5, "mm"), link_height = link_width,
    link_gp = lines_gp,
    extend = unit(0, "mm"))
```

anno_mark 39

Arguments

at Numeric index from the original matrix.

labels Corresponding labels.

which Whether it is a column annotation or a row annotation?

side Side of the labels. If it is a column annotation, valid values are "top" and "bot-

tom"; If it is a row annotation, valid values are "left" and "right".

lines_gp Please use link_gp instead.

link_gp Graphic settings for the segments.
labels_gp Graphic settings for the labels.
labels_rot Rotations of labels, scalar.

padding Padding between neighbouring labels in the plot.

link_width Width of the segments.

link_height Similar as link_width, used for column annotation.

extend By default, the region for the labels has the same width (if it is a column anno-

tation) or same height (if it is a row annotation) as the heatmap. The size can be extended by this options. The value can be a proportion number or a unit

object. The length can be either one or two.

Details

Sometimes there are many rows or columns in the heatmap and we want to mark some of the rows. This annotation function is used to mark these rows and connect labels and corresponding rows with links.

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html# mark-annotation

```
anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row")
draw(anno, index = 1:100, test = "anno_mark")

m = matrix(1:1000, byrow = TRUE, nr = 100)
anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row")
Heatmap(m, cluster_rows = FALSE, cluster_columns = FALSE) + rowAnnotation(mark = anno)
Heatmap(m) + rowAnnotation(mark = anno)
```

40 anno_numeric

umeric Numeric labels annotation

Description

Numeric labels annotation

Usage

```
anno_numeric(x, rg = range(x), labels_gp = gpar(), x_convert = NULL,
    labels_format = NULL, labels_offset = unit(4, "pt"),
    bg_gp = gpar(fill = "#8080FF", col = "#8080FF"),
    bar_width = unit(1, "npc") - unit(4, "pt"),
    round_corners = TRUE, r = unit(0.05, "snpc"),
    which = c("row", "column"), align_to = "left", width = NULL)
```

Arguments

X	Α	vector	of	numeric	values.

rg Range. A numeric vector of length two.

labels_gp Graphics parameters for labels.

x_convert A function applied on x. E.g. when x contains p-values, to map x to the heights

of bars, a transformation of -log10(x) is normally applied.

labels_format A function applied on x. E.g., when x is a numeric, labels_format can be set

to function(x) sprintf("%.2f", x).

labels_offset Offset of labels to the left or right of bars.

bg_gp Graphics parameters for the background bars.

bar_width Width of bars. Note it corresponds to the vertical direction.

round_corners Whether to draw bars with round corners?

r Radius of the round corners.

which Row or column. Currently it only supports row annotation.

align_to Which side bars as well as the labels are aligned to. Values can be "left" or

"right". If x contains both positive and negative values, align_to can also be

set to 0 so that bars are aligned to pos = 0.

width Width of the annotation.

```
m = matrix(rnorm(100), 10)
x = rnorm(10)
Heatmap(m, right_annotation = rowAnnotation(numeric = anno_numeric(x)))
```

```
anno_oncoprint_barplot
```

Barplot Annotation for oncoPrint

Description

Barplot Annotation for oncoPrint

Usage

```
anno_oncoprint_barplot(type = NULL, which = c("column", "row"),
  bar_width = 0.6, beside = FALSE, ylim = NULL, show_fraction = FALSE, axis = TRUE,
  axis_param = if(which == "column") default_axis_param("column") else list(side = "top", labels_rot =
  width = NULL, height = NULL, border = FALSE)
```

Arguments

type A vector of the alteration types in the data. It can be a subset of all alteration

types if you don't want to show them all.

which Is it a row annotation or a column annotation?

bar_width Width of the bars.

beside Will bars be stacked or be positioned beside each other?

ylim Data range.

show_fraction Whether to show the numbers or the fractions?

axis Whether draw axis?

axis_param Parameters for controlling axis.

width Width of the annotation.

height Height of the annotation.

border Whether draw the border?

Details

This annotation function should always be used with oncoPrint.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
# There is no example
NULL
```

42 anno_points

|--|

Description

Points Annotation

Usage

```
anno_points(x, which = c("column", "row"), border = TRUE, gp = gpar(), pch = 16,
    size = unit(2, "mm"), ylim = NULL, extend = 0.05, axis = TRUE, background = FALSE,
    axis_param = default_axis_param(which), width = NULL, height = NULL, ...)
```

Arguments

x	The value vector. The value can be a vector or a matrix. The length of the vector or the number of rows of the matrix is taken as the number of the observations of the annotation.
which	Whether it is a column annotation or a row annotation?
border	Wether draw borders of the annotation region?
gp	Graphic parameters for points. The length of each graphic parameter can be 1, length of x if x is a vector, or number of columns of x is x is a matrix.
pch	Point type. The length setting is the same as gp.
size	Point size, the value should be a unit object. The length setting is the same as gp.
ylim	Data ranges. By default it is range(x).
extend	The extension to both side of ylim. The value is a percent value corresponding to ylim[2] - ylim[1].
axis	Whether to add axis?
axis_param	parameters for controlling axis. See default_axis_param for all possible settings and default parameters.
background	Logical, whether to draw background grid lines?
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.
	Other arguments.

Value

An annotation function which can be used in HeatmapAnnotation.

anno_simple 43

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#points-annotation

Examples

```
anno = anno_points(runif(10))
draw(anno, test = "anno_points")
anno = anno_points(matrix(runif(20), nc = 2), pch = 1:2)
draw(anno, test = "matrix")
```

anno_simple

Simple Annotation

Description

Simple Annotation

Usage

```
anno_simple(x, col, na_col = "grey",
   which = c("column", "row"), border = FALSE, gp = gpar(),
   pch = NULL, pt_size = unit(1, "snpc")*0.8, pt_gp = gpar(),
   simple_anno_size = ht_opt$simple_anno_size,
   width = NULL, height = NULL)
```

Arguments

x	The value vector. The value can be a vector or a matrix. The length of the
	vector or the nrow of the matrix is taken as the number of the observations of
	the annotation. The value can be numeric or character and NA value is allowed

Color that maps to x. If x is numeric and needs a continuous mapping, col should be a color mapping function which accepts a vector of values and returns a vector of colors. Normally it is generated by colorRamp2. If x is discrete (numeric or character) and needs a discrete color mapping, col should be a vector of colors with levels in x as vector names. If col is not specified, the color mapping is randomly generated by ComplexHeatmap:::default_col.

na_col Color for NA value.

which Whether it is a column annotation or a row annotation?

border Wether draw borders of the annotation region?

gp Graphic parameters for grid borders. The fill parameter is disabled.

pch Points/symbols that are added on top of the annotation grids. The value can be numeric or single letters. It can be a vector if x is a vector and a matrix if x is a

matrix. No points are drawn if the corresponding values are NA.

44 anno_simple

Details

The "simple annotation" is the most widely used annotation type which is heatmap-like, where the grid colors correspond to the values. anno_simple also supports to add points/symbols on top of the grids where the it can be normal point (when pch is set as numbers) or letters (when pch is set as single letters).

Value

An annotation function which can be used in HeatmapAnnotation.

allowed to be set for row annotation.

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html#simple-annotation-as-an-annotation-function

```
anno = anno_simple(1:10)
draw(anno, test = "a numeric vector")
anno = anno_simple(cbind(1:10, 10:1))
draw(anno, test = "a matrix")
anno = anno_simple(1:10, pch = c(1:4, NA, 6:8, NA, 10))
draw(anno, test = "pch has NA values")
anno = anno_simple(1:10, pch = c(rep("A", 5), rep(NA, 5)))
draw(anno, test = "pch has NA values")

pch = matrix(1:20, nc = 2)
pch[sample(length(pch), 10)] = NA
anno = anno_simple(cbind(1:10, 10:1), pch = pch)
draw(anno, test = "matrix, pch is a matrix with NA values")
```

anno_summary 45

anno_summary	Summary Annotation	
--------------	--------------------	--

Description

Summary Annotation

Usage

```
anno_summary(which = c("column", "row"), border = TRUE, bar_width = 0.8,
    axis = TRUE, axis_param = default_axis_param(which),
    ylim = NULL, extend = 0.05, outline = TRUE, box_width = 0.6,
    pch = 1, size = unit(2, "mm"), gp = gpar(),
    width = NULL, height = NULL)
```

Arguments

which	Whether it is a column annotation or a row annotation?
border	Wether draw borders of the annotation region?
bar_width	Relative width of the bars. The value should be smaller than one.
axis	Whether to add axis?
axis_param	parameters for controlling axis. See default_axis_param for all possible settings and default parameters.
ylim	Data ranges. ylim for barplot is enforced to be $c(0, 1)$.
extend	The extension to both side of ylim. The value is a percent value corresponding to ylim[2] - ylim[1]. This argument is only for boxplot.
outline	Whether draw outline of boxplots?
box_width	Relative width of boxes. The value should be smaller than one.
pch	Point style.
size	Point size.
gp	Graphic parameters.
width	Width of the annotation. The value should be an absolute unit. Width is not allowed to be set for column annotation.
height	Height of the annotation. The value should be an absolute unit. Height is not allowed to be set for row annotation.

Details

anno_summary is a special annotation function that it only works for one-column or one-row heatmap. It shows the summary of the values in the heatmap. If the values in the heatmap is discrete, the proportion of each level (the sum is normalized to 1) is visualized as stacked barplot. If the heatmap is split into multiple slices, multiple bars are put in the annotation. If the value is continuous, boxplot is used.

In the barplot, the color schema is used as the same as the heatmap, while for the boxplot, the color needs to be controlled by gp.

46 anno_text

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html# summary-annotation

Examples

```
ha = HeatmapAnnotation(summary = anno_summary(height = unit(4, "cm")))
v = sample(letters[1:2], 50, replace = TRUE)
split = sample(letters[1:2], 50, replace = TRUE)
Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split)
ha = HeatmapAnnotation(summary = anno_summary(gp = gpar(fill = 2:3), height = unit(4, "cm")))
v = rnorm(50)
Heatmap(v, top\_annotation = ha, width = unit(1, "cm"), split = split)
```

anno_text

Text Annotation

Description

Text Annotation

Usage

```
anno_text(x, which = c("column", "row"), gp = gpar(),
   rot = guess_rot(), just = guess_just(),
   offset = guess_location(), location = guess_location(),
   width = NULL, height = NULL, show_name = FALSE)
```

Arguments

x	A vector of text.
which	Whether it is a column annotation or a row annotation?
gp	Graphic parameters.
rot	Rotation of the text, pass to grid.text.
just	Justification of text, pass to grid.text.
offset	Depracated, use location instead.
location	Position of the text. By default rot, just and location are automatically inferred according to whether it is a row annotation or column annotation. The value of location should be a unit object, normally in npc unit. E.g. unit(0, 'npc') means the most left of the annotation region and unit(1, 'npc') means the most right of the annotation region.

anno_textbox 47

width Width of the annotation. The value should be an absolute unit. Width is not

allowed to be set for column annotation.

height Height of the annotation. The value should be an absolute unit. Height is not

allowed to be set for row annotation.

show_name Whether to show the annotation name.

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

 $\verb|https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html| \\ \verb|text-annotation| \\$

Examples

```
anno = anno_text(month.name)
draw(anno, test = "month names")
anno = anno_text(month.name, gp = gpar(fontsize = 16))
draw(anno, test = "month names with fontsize")
anno = anno_text(month.name, gp = gpar(fontsize = 1:12+4))
draw(anno, test = "month names with changing fontsize")
anno = anno_text(month.name, which = "row")
draw(anno, test = "month names on rows")
anno = anno_text(month.name, location = 0, rot = 45,
    just = "left", gp = gpar(col = 1:12))
draw(anno, test = "with rotations")
anno = anno_text(month.name, location = 1,
    rot = 45, just = "right", gp = gpar(fontsize = 1:12+4))
draw(anno, test = "with rotations")
```

anno_textbox

Text box annotations

Description

Text box annotations

Usage

```
anno_textbox(align_to, text, background_gp = gpar(fill = "#DDDDDD", col = "#AAAAAA"),
    which = c("row", "column"), by = "anno_link", side = c("right", "left"), ...)
```

48 anno_zoom

Arguments

align_to It controls how the text boxes are aligned to the heatmap rows. The value can

be a categorical vector which have the same length as heatmap rows, or a list of

row indices. It does not necessarily include all row indices.

text The corresponding texts. The value should be a list of texts. To control graphics

parameters of texts in the boxes, The value of text can also be set as a list of data frames where the first column contains the text, from the second column contains graphics parameters for each text. The column names should be "col",

"fontsize", "fontfamily" and "fontface".

background_gp Graphics for the background.

which Only "row" is allowed.

by Are text boxed arranged by anno_link or by anno_block?

side Side of the annotation to the heatmap.

... Pass to textbox_grob.

Examples

anno zoom

Zoom annotation

Description

Zoom annotation

Usage

```
anno_zoom(align_to, panel_fun = function(index, nm = NULL) { grid.rect() },
  which = c("column", "row"), side = ifelse(which == "column", "top", "right"),
  size = NULL, gap = unit(1, "mm"),
  link_width = unit(5, "mm"), link_height = link_width, link_gp = gpar(),
  extend = unit(0, "mm"), width = NULL, height = NULL, internal_line = TRUE)
```

anno_zoom 49

Arguments

align_to It defines how the boxes correspond to the rows or the columns in the heatmap.

If the value is a list of indices, each box corresponds to the rows or columns with indices in one vector in the list. If the value is a categorical variable (e.g. a factor or a character vector) that has the same length as the rows or columns in the heatmap, each box corresponds to the rows/columns in each level in the

categorical variable.

panel_fun A self-defined function that defines how to draw graphics in the box. The func-

tion must have a index argument which is the indices for the rows/columns that the box corresponds to. It can have second argument nm which is the "name" of the selected part in the heatmap. The corresponding value for nm comes from

align_to if it is specified as a categorical variable or a list with names.

which Whether it is a column annotation or a row annotation?

side Side of the boxes If it is a column annotation, valid values are "top" and "bot-

tom"; If it is a row annotation, valid values are "left" and "right".

size The size of boxes. It can be pure numeric that they are treated as relative frac-

tions of the total height/width of the heatmap. The value of size can also be

absolute units.

gap Gaps between boxes.

link_gp Graphic settings for the segments.

link_width Width of the segments.

link_height Similar as link_width, used for column annotation.

extend By default, the region for the labels has the same width (if it is a column anno-

tation) or same height (if it is a row annotation) as the heatmap. The size can be extended by this options. The value can be a proportion number or a unit

object. The length can be either one or two.

width Width of the annotation. The value should be an absolute unit. Width is not

allowed to be set for column annotation.

height Height of the annotation. The value should be an absolute unit. Height is not

allowed to be set for row annotation.

internal_line Internally used.

Details

anno_zoom creates several plotting regions (boxes) which can be corresponded to subsets of rows/columns in the heatmap.

Value

An annotation function which can be used in HeatmapAnnotation.

See Also

Examples

```
set.seed(123)
m = matrix(rnorm(100*10), nrow = 100)
subgroup = sample(letters[1:3], 100, replace = TRUE, prob = c(1, 5, 10))
rg = range(m)
panel_fun = function(index, nm) {
 pushViewport(viewport(xscale = rg, yscale = c(0, 2)))
 grid.rect()
 grid.xaxis(gp = gpar(fontsize = 8))
 grid.boxplot(m[index, ], pos = 1, direction = "horizontal")
 grid.text(paste("distribution of group", nm), mean(rg), y = 1.9,
  just = "top", default.units = "native", gp = gpar(fontsize = 10))
 popViewport()
}
anno = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun,
size = unit(2, "cm"), gap = unit(1, "cm"), width = unit(4, "cm"))
Heatmap(m, right_annotation = rowAnnotation(foo = anno), row_split = subgroup)
```

attach_annotation-Heatmap-method

Attach heatmap annotations to the heatmap

Description

Attach heatmap annotations to the heatmap

Usage

```
## S4 method for signature 'Heatmap'
attach_annotation(object, ha, side = c("top", "bottom", "left", "right"),
    gap = unit(1, "points"))
```

Arguments

```
object A Heatmap-class object.

ha A HeatmapAnnotation-class object.

side Which side of the heatmap. Value should be in "top", "bottom", "left", "right".

gap Space between the two heatmap annotations.
```

```
m = matrix(rnorm(100), 10)
ht = Heatmap(m)
ha = HeatmapAnnotation(foo = 1:10)
ht = attach_annotation(ht, ha)
ht
ha2 = HeatmapAnnotation(bar = letters[1:10])
ht = attach_annotation(ht, ha2)
ht
```

bar3D 51

bar3D	Draw 3D bars	
-------	--------------	--

Description

Draw 3D bars

Usage

```
bar3D(x, y, w, h, 1, theta = 60, default.units = "npc", fill = "white", col = "black")
```

Arguments

x x coordinate of the center point in the bottom face.y y coordinate of the center point in the bottom face.

w Width of the botton face.h Height of the botton face.

1 Length of the bars (in the z-direction).

theta The angle for the projection.

default.units Units.

fill Filled colors for the bars.

col Border colors.

Examples

```
grid.newpage() bar3D(c(0.3, 0.7), 0.5, 0.2, 0.2, 0.2, fill = 2:3)
```

bin_genome

Bin the genome

Description

Bin the genome

Usage

```
bin_genome(species = "hg19", bins = 2000, bin_size = NULL, ...)
```

Arguments

species Abbreviation of the genome, pass to read.chromInfo.

bins Number of bins. The final number of bins is approximately equal to it.

bin_size Size of the bins. If bin_size is set, bins is ignored.

... All pass to read.chromInfo. E.g. you can set a subset of chromosomes there.

52 c.ColorMapping

Value

A GRanges object of the genomic bins.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

c.ColorMapping

Concatenate A List of ColorMapping objects

Description

Concatenate A List of ColorMapping objects

Usage

```
## S3 method for class 'ColorMapping'
c(..., name = NULL)
```

Arguments

... A list of ColorMapping-class objects.

name Name of the new merged color mapping.

Details

Only discrete color mappings can be concatenated.

```
cm1 = ColorMapping(colors = c("A" = "red", "B" = "black"))
cm2 = ColorMapping(colors = c("B" = "blue", "C" = "green"))
c(cm1, cm2)
```

c.HeatmapAnnotation 53

c.HeatmapAnnotation

Concatenate Heatmap Annotations

Description

Concatenate Heatmap Annotations

Usage

```
## S3 method for class 'HeatmapAnnotation'
c(..., gap = unit(1, "points"))
```

Arguments

```
... HeatmapAnnotation-class objects.
gap Gap between the groups of annotations.
```

Details

The heatmap annotations should have same number of observations.

Examples

```
ha1 = HeatmapAnnotation(foo = 1:10)
ha2 = HeatmapAnnotation(bar = anno_points(10:1))
ha = c(ha1, ha2)
ha
ha3 = HeatmapAnnotation(sth = cbind(1:10, 10:1))
ha = c(ha1, ha2, ha3, gap = unit(c(1, 4), "mm"))
ha
```

cluster_between_groups

Cluster only between Groups

Description

Cluster only between Groups

Usage

```
cluster_between_groups(mat, factor)
```

Arguments

mat A matrix where clustering is applied on columns.

factor A categorical vector.

Details

The clustering is only applied between groups and inside a group, the order is unchanged.

Value

A dendrogram object.

Examples

```
m = matrix(rnorm(120), nc = 12)
colnames(m) = letters[1:12]
fa = rep(c("a", "b", "c"), times = c(2, 4, 6))
dend = cluster_between_groups(m, fa)
grid.dendrogram(dend, test = TRUE)
```

cluster_within_group Cluster within and between Groups

Description

Cluster within and between Groups

Usage

```
cluster_within_group(mat, factor)
```

Arguments

mat A matrix where clustering is applied on columns.

factor A categorical vector.

Details

The clustering is firstly applied in each group, then clustering is applied to group means. The within-group dendrograms and between-group dendrogram are finally connected by merge_dendrogram. In the final dendrogram, the within group dendrograms are enforced to be flat lines to emphasize that the within group dendrograms have no sense to compare to between-group dendrogram.

Value

A dendrogram object. The order of columns can be retrieved by order. dendrogram.

```
m = matrix(rnorm(120), nc = 12)
colnames(m) = letters[1:12]
fa = rep(c("a", "b", "c"), times = c(2, 4, 6))
dend = cluster_within_group(m, fa)
grid.dendrogram(dend, test = TRUE)
```

ColorMapping 55

ColorMapping Constructor Method for ColorMapping Class
--

Description

Constructor Method for ColorMapping Class

Usage

```
ColorMapping(name, colors = NULL, levels = NULL,
    col_fun = NULL, breaks = NULL, na_col = "#FFFFFF", full_col = NULL)
```

Arguments

name	Name for this color mapping. The name is automatically generated if it is not specified.
colors	Discrete colors.
levels	Levels that correspond to colors. If colors is name indexed, levels can be ignored.
col_fun	Color mapping function that maps continuous values to colors.
breaks	Breaks for the continuous color mapping. If col_fun is generated by colorRamp2, breaks is automatically inferred from the color mapping function.
na_col	Colors for NA values.
full_col	A super set of colors, used internally.

Details

colors and levels are used for discrete color mapping, col_fun and breaks are used for continuous color mapping.

Value

```
A ColorMapping-class object.
```

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
cm = ColorMapping(colors = c("A" = "red", "B" = "black"))
cm
require(circlize)
col_fun = colorRamp2(c(0, 1), c("white", "red"))
cm = ColorMapping(col_fun = col_fun)
```

ColorMapping-class

Class for Color Mapping

Description

Class for Color Mapping

Details

The ColorMapping-class handles color mapping for discrete values and continuous values. Discrete values are mapped by setting a vector of colors and continuous values are mapped by setting a color mapping function.

Methods

The ColorMapping-class provides following methods:

- ColorMapping: contructor methods.
- map_to_colors, ColorMapping-method: mapping values to colors.
- color_mapping_legend, ColorMapping-method: draw legend or get legend as an object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

color_mapping_legend-ColorMapping-method

Draw Legend Based on Color Mapping

Description

Draw Legend Based on Color Mapping

Usage

```
## S4 method for signature 'ColorMapping'
color_mapping_legend(object,
   plot = TRUE, ...,
   color_bar = object@type,
   title = object@name,
    title_gp = gpar(fontsize = 10, fontface = "bold"),
    title_position = "topleft",
   grid_height = unit(4, "mm"),
   grid_width = unit(4, "mm"),
    tick_length = unit(0.8, "mm"),
   border = NULL,
   at = object@levels,
   labels = at,
    labels_gp = gpar(fontsize = 10),
    labels_rot = 0,
    nrow = NULL,
   ncol = 1,
   by_row = FALSE,
    legend_gp = gpar(),
    legend_height = NULL,
    legend_width = NULL,
    legend_direction = c("vertical", "horizontal"),
   break_dist = NULL,
    graphics = NULL,
   param = NULL)
```

Arguments

object	A ColorMapping-class object.
plot	Whether to plot or just return the legend object?
	Pass to draw, Legends-method.
color_bar	"continous" or "discrete". It controls whether to show the discrete legend for the continuous color mapping.
title	Title of the legend, by default it is the name of the legend.
title_gp	Graphical parameters for legend title.
title_position	Position of the title. See Legend for all possible values.
grid_height	Height of each legend grid. Pass to Legend.
grid_width	Width of each legend grid. Pass to Legend.
tick_length	Length of the ticks on the continuous legends. Value should be a unit object.
border	Color for legend grid borders. Pass to Legend.

at Break values of the legend. By default it is the levels in the ColorMapping-class

object.

labels Labels corresponding to break values.

labels_gp Graphcial parameters for legend labels.

labels_rot Rotation of labels.

nrow Pass to Legend. It controls the layout of legend grids if they are arranged in

multiple rows or columns.

ncol Pass to Legend. It controls the layout of legend grids if they are arranged in

multiple rows or columns.

by_row Pass to Legend. It controls the order of legend grids if they are arranged in

multiple rows or columns.

legend_gp Graphic parameters for legend.

legend_height Height of the legend body. It only works when color_bar is continuous and

direction is vertical. Pass to Legend.

legend_width Width of the legend body. It only works when color_bar is continuous and

direction is horizontal. Pass to Legend.

legend_direction

When color_bar is continuous, whether the legend is vertical or horizontal?

Pass to Legend.

break_dist A zooming factor to control relative distance of two neighbouring break val-

ues. The length of it should be length(at) - 1 or a scalar.

graphics Internally used.

param All the legend-related parameters can be specified as a single list.

Details

The legend is constructed by Legend.

Value

A Legends-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

There is no example NULL

columnAnnotation 59

columnAnnotation

Construct Column Annotations

Description

Construct Column Annotations

Usage

```
columnAnnotation(...)
```

Arguments

... Pass to HeatmapAnnotation.

Details

The function is identical to

```
HeatmapAnnotation(..., which = "column")
```

Value

A HeatmapAnnotation-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

 $\verb"column_dend-dispatch" \textit{ Method dispatch page for column_dend}$

Description

Method dispatch page for column_dend.

Dispatch

column_dend can be dispatched on following classes:

- column_dend, Heatmap-method, Heatmap-class class method
- column_dend, HeatmapList-method, HeatmapList-class class method

Examples

```
# no example
NULL
```

```
column_dend-Heatmap-method
```

Get Column Dendrograms from a Heatmap

Description

Get Column Dendrograms from a Heatmap

Usage

```
## S4 method for signature 'Heatmap'
column_dend(object, on_slice = FALSE)
```

Arguments

object A Heatmap-class object.

on_slice If the value is TRUE, it returns the dendrogram on the slice level.

Value

The format of the returned object depends on whether rows/columns of the heatmaps are split.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

```
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
ht = draw(ht)
column_dend(ht)
ht = Heatmap(mat, column_km = 2)
ht = draw(ht)
column_dend(ht)
```

```
column_dend-HeatmapList-method
```

Get Column Dendrograms from a hHeatmap List

Description

Get Column Dendrograms from a hHeatmap List

Usage

```
## S4 method for signature 'HeatmapList'
column_dend(object, name = NULL, on_slice = FALSE)
```

Arguments

object A HeatmapList-class object.

name Name of a specific heatmap.

on_slice If the value is TRUE, it returns the dendrogram on the slice level.

Value

The format of the returned object depends on whether rows/columns of the heatmaps are split.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
ht_list = draw(ht_list)
column_dend(ht_list)
ht_list = Heatmap(mat, column_km = 2) + Heatmap(mat, column_km = 2)
ht_list = draw(ht_list)
column_dend(ht_list)
column_dend(ht_list, on_slice = TRUE)
ht_list = Heatmap(mat) %v% Heatmap(mat)
ht_list = draw(ht_list)
column_dend(ht_list)
ht_list = Heatmap(mat, column_km = 2) %v% Heatmap(mat)
ht_list = draw(ht_list)
column_dend(ht_list)
```

column_order-dispatch Method dispatch page for column_order

Description

Method dispatch page for column_order.

Dispatch

column_order can be dispatched on following classes:

- column_order, Heatmap-method, Heatmap-class class method
- column_order, HeatmapList-method, HeatmapList-class class method

Examples

```
# no example
NULL
```

column_order-Heatmap-method

Get Column Order from a Aeatmap List

Description

Get Column Order from a Aeatmap List

Usage

```
## S4 method for signature 'Heatmap'
column_order(object)
```

Arguments

object

A Heatmap-class object.

Value

The format of the returned object depends on whether rows/columns of the heatmaps are split.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
ht = draw(ht)
column_order(ht)
ht = Heatmap(mat, column_km = 2)
ht = draw(ht)
column_order(ht)
```

column_order-HeatmapList-method

Get Column Order from a Heatmap List

Description

Get Column Order from a Heatmap List

Usage

```
## S4 method for signature 'HeatmapList'
column_order(object, name = NULL)
```

Arguments

object A HeatmapList-class object.

name Name of a specific heatmap.

Value

The format of the returned object depends on whether rows/columns of the heatmaps are split.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
ht_list = draw(ht_list)
column_order(ht_list)
ht_list = Heatmap(mat, column_km = 2) + Heatmap(mat, column_km = 2)
ht_list = draw(ht_list)
column_order(ht_list)
ht_list = Heatmap(mat) %v% Heatmap(mat)
ht_list = draw(ht_list)
column_order(ht_list)
ht_list = Heatmap(mat, column_km = 2) %v% Heatmap(mat)
ht_list = draw(ht_list)
column_order(ht_list)
column_order(ht_list)
```

64 comb_name

comb_degree

Degrees of the Combination sets

Description

Degrees of the Combination sets

Usage

```
comb_degree(m)
```

Arguments

m

A combination matrix returned by make_comb_mat.

Details

The degree for a combination set is the number of sets that are selected.

Value

A vector of degrees of the combination sets.

Examples

comb_name

Names of the Combination sets

Description

Names of the Combination sets

Usage

```
comb_name(m, readable = FALSE)
```

Arguments

m A combination matrix returned by make_comb_mat.

readable Whether the combination represents as e.g. "A&B&C".

comb_size 65

Details

The name of the combination sets are formatted as a string of binary bits. E.g. for three sets of "a", "b", "c", the combination set with name "101" corresponds to select set a, not select set b and select set c. The definition of "select" depends on the value of mode from make_comb_mat.

Value

A vector of names of the combination sets.

Examples

comb_size

Sizes of the Combination sets

Description

Sizes of the Combination sets

Usage

```
comb_size(m, degree = NULL)
```

Arguments

m A combination matrix returned by make_comb_mat.

degree degree of the intersection. The value can be a vector.

Value

A vector of sizes of the combination sets.

66 compare_heatmap.2

compare_heatmap	heatmaps :heatmap()	between	stats::heatmap()	and	Complex-

Description

Compare heatmaps between stats::heatmap() and ComplexHeatmap::heatmap()

Usage

```
compare_heatmap(...)
```

Arguments

... The same set of arguments passed to stats::heatmap and ComplexHeatmap::heatmap.

Details

The function plots two heatmaps, one by stats::heatmap and one by ComplexHeatmap::heatmap. Users can see the difference between the two implementations.

Examples

```
mat = matrix(rnorm(100), 10)
compare_heatmap(mat)
```

```
compare_heatmap.2 Compare\ heatmaps\ between\ gplots::heatmap.2()\ and\ Complex-Heatmap::heatmap()
```

Description

Compare heatmaps between gplots::heatmap.2() and ComplexHeatmap::heatmap()

Usage

```
compare_heatmap.2(...)
```

Arguments

.. The same set of arguments passed to gplots::heatmap.2 and ComplexHeatmap::heatmap.2.

Details

The function plots two heatmaps, one by gplots::heatmap.2 and one by ComplexHeatmap::heatmap.2. Users can see the difference between the two implementations.

compare_pheatmap 67

Examples

```
mat = matrix(rnorm(100), 10)
compare_heatmap.2(mat)
```

compare_pheatmap

Compare heatmaps between pheatmap::pheatmap() and Complex-Heatmap()

Description

Compare heatmaps between pheatmap::pheatmap() and ComplexHeatmap::pheatmap()

Usage

```
compare_pheatmap(...)
```

Arguments

... The same set of arguments passed to pheatmap::pheatmap and ComplexHeatmap::pheatmap.

Details

The function plots two heatmaps, one by pheatmap::pheatmap and one by ComplexHeatmap::pheatmap. Users can see the difference between the two implementations.

Examples

```
mat = matrix(rnorm(100), 10)
compare_pheatmap(mat)
```

 ${\tt complement_size}$

Complement Set Size

Description

Complement Set Size

Usage

```
complement_size(m)
```

Arguments

m

A combination matrix returned by make_comb_mat.

Value

If there is no complement set, it returns zero.

Examples

```
\# There is no example NULL
```

```
component_height-dispatch
```

Method dispatch page for component_height

Description

Method dispatch page for component_height.

Dispatch

component_height can be dispatched on following classes:

- component_height, HeatmapList-method, HeatmapList-class class method
- component_height, Heatmap-method, Heatmap-class class method

Examples

```
# no example
NULL
```

```
component_height-Heatmap-method
```

Heights of Heatmap Components

Description

Heights of Heatmap Components

Usage

```
## S4 method for signature 'Heatmap'
component_height(object, k = HEATMAP_LAYOUT_COLUMN_COMPONENT)
```

Arguments

object A Heatmap-class object.

k Which components in the heatmap. The value should numeric indices or the

names of the corresponding column component. See **Detials**.

Details

All column components are: column_title_top, column_dend_top, column_names_top, column_anno_top, heatmap_body, column_anno_bottom, column_names_bottom, column_dend_bottom, column_title_bottom. This function is only for internal use.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

 ${\tt component_height-HeatmapList-method}$

Height of Heatmap List Components

Description

Height of Heatmap List Components

Usage

```
## S4 method for signature 'HeatmapList'
component_height(object, k = HEATMAP_LIST_LAYOUT_COLUMN_COMPONENT)
```

Arguments

object A HeatmapList-class object.

k Which component in the heatmap list. Values are in ComplexHeatmap:::HEATMAP_LIST_LAYOUT_COLUMN

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\# There is no example NULL
```

component_width-dispatch

Method dispatch page for component_width

Description

Method dispatch page for component_width.

Dispatch

component_width can be dispatched on following classes:

- component_width, HeatmapList-method, HeatmapList-class class method
- $\bullet \ \, \mathsf{component_width}, \mathsf{Heatmap-method}, \mathsf{Heatmap-class} \ \mathsf{class} \ \mathsf{method}$

Examples

```
# no example
NULL
```

component_width-Heatmap-method

Widths of Heatmap Components

Description

Widths of Heatmap Components

Usage

```
## S4 method for signature 'Heatmap'
component_width(object, k = HEATMAP_LAYOUT_ROW_COMPONENT)
```

Arguments

object A Heatmap-class object.

k Which components in the heatmap. The value should numeric indices or the

names of the corresponding row component. See **Detials**.

Details

All row components are: row_title_left , row_dend_left , row_names_left , row_anno_left , $heatmap_body$, row_anno_right , row_names_right , row_dend_right , row_title_right .

This function is only for internal use.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

component_width-HeatmapList-method

Width of Heatmap List Components

Description

Width of Heatmap List Components

Usage

```
## S4 method for signature 'HeatmapList'
component_width(object, k = HEATMAP_LIST_LAYOUT_ROW_COMPONENT)
```

Arguments

object A HeatmapList-class object.

k Which component in the heatmap list. Values are in ComplexHeatmap:::HEATMAP_LIST_LAYOUT_ROW_CC

Details

This function is only for internal use.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

 ${\it copy_all-AnnotationFunction-method} \\ {\it Copy~the~AnnotationFunction~Object}$

Description

Copy the AnnotationFunction Object

Usage

```
## S4 method for signature 'AnnotationFunction'
copy_all(object)
```

Arguments

object

The AnnotationFunction-class object.

Details

In AnnotationFunction-class, there is an environment which stores some external variables for the annotation function (specified by the var_import argument when constructing the AnnotationFunction-class object. This copy_all, AnnotationFunction-method hard copies all the variables into a new isolated environment.

The environment is at object@var_env.

```
\# There is no example NULL
```

copy_all-dispatch 73

copy_all-dispatch

Method dispatch page for copy_all

Description

Method dispatch page for copy_all.

Dispatch

copy_all can be dispatched on following classes:

- copy_all, AnnotationFunction-method, AnnotationFunction-class class method
- copy_all, SingleAnnotation-method, SingleAnnotation-class class method

Examples

```
# no example
NULL
```

```
copy_all-SingleAnnotation-method
```

Copy the SingleAnnotation object

Description

Copy the SingleAnnotation object

Usage

```
## S4 method for signature 'SingleAnnotation'
copy_all(object)
```

Arguments

object

The SingleAnnotation-class object.

Details

Since the SingleAnnotation object always contains an AnnotationFunction-class object, it calls copy_all, AnnotationFunction-method to hard copy the variable environment.

```
\# There is no example NULL
```

74 decorate_annotation

Description

Decorate Heatmap Annotation

Usage

```
decorate_annotation(annotation, code, slice = 1, envir = new.env(parent = parent.frame()))
```

Arguments

annotation Name of the annotation.

code Code that adds graphics in the selected heatmap annotation.
slice Index of the row slices or the column slice in the heatmap.

envir Where to look for variables inside code.

Details

There is a viewport for every column annotation and row annotation. This function contructs the name of the viewport, goes to the viewport by seekViewport, runs code to that viewport, and finally goes back to the original viewport.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-decoration.html

decorate_column_dend 75

```
grid.rect(gp = gpar(fill = "#FF000080"))
}, slice = 2)
```

Description

Decorate Heatmap Column Dendrograms

Usage

```
decorate_column_dend(..., envir = new.env(parent = parent.frame()))
```

Arguments

... Pass to decorate_dend.

envir Where to look for variables inside code.

Details

This is a wrapper function which pre-defined which argument in decorate_dend.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\# There is no example NULL
```

76 decorate_column_title

Description

Decorate Heatmap Column Names

Usage

```
decorate_column_names(..., envir = new.env(parent = parent.frame()))
```

Arguments

```
... Pass to decorate_dimnames.
envir Where to look for variables inside code.
```

Details

This is a helper function which pre-defined which argument in decorate_dimnames.

Value

The function returns no value.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

Examples

```
# There is no example NULL
```

Description

Decorate Heatmap Column Titles

Usage

```
decorate_column_title(..., envir = new.env(parent = parent.frame()))
```

decorate_dend 77

Arguments

... Pass to decorate_title.

envir Where to look for variables inside code.

Details

This is a helper function which pre-defined which argument in decorate_title.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\# There is no example NULL
```

decorate_dend

Decorate Heatmap Dendrograms

Description

Decorate Heatmap Dendrograms

Usage

```
decorate_dend(heatmap, code, slice = 1, which = c("column", "row"),
    envir = new.env(parent = parent.frame()))
```

Arguments

heatmap	Name of the heatmap.
code	Code that adds graphics in the selected heatmap dendrogram.
slice	Index of the row slice or column slice in the heatmap.
which	Is the dendrogram on rows or on columns?
envir	Where to look for variables inside code.

78 decorate_dimnames

Details

If you know the number of leaves in the dendrogram, it is simple to calculate the position of every leave in the dendrogram. E.g., for the column dendrogram, the i^th leave is located at:

```
# assume nc is the number of columns in the column slice unit((i-0.5)/nc, "npc")
```

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-decoration.html

Examples

```
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2)
decorate_dend("mat", {
    grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

decorate_dimnames

Decorate Heatmap Dimension Names

Description

Decorate Heatmap Dimension Names

Usage

```
decorate_dimnames(heatmap, code, slice = 1, which = c("column", "row"),
        envir = new.env(parent = parent.frame()))
```

Arguments

heatmap	Name of the heatmap.
code	Code that adds graphics in the selected viewport.
slice	Index of the row slice or column slice in the heatmap.
which	on rows or on columns?
envir	where to look for variables inside code.

Details

If you know the dimensions of the matrix, it is simple to calculate the position of every row name or column name in the heatmap. E.g., for the column column, the i^th name is located at:

```
# assume nc is the number of columns in the column slice unit((i-0.5)/nc, "npc")
```

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
set.seed(123)
mat = matrix(rnorm(100), 10)
rownames(mat) = letters[1:10]
colnames(mat) = LETTERS[1:10]
Heatmap(mat, name = "mat", km = 2)

decorate_dimnames("mat", {
    grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

Description

Decorate Heatmap Bodies

Usage

```
decorate_heatmap_body(heatmap, code,
    slice = 1, row_slice = slice, column_slice = 1,
    envir = new.env(parent = parent.frame()))
```

Arguments

neatmap	Name of the heatmap which is set as name argument in Heatmap function.
code	Code that adds graphics in the selected heatmap body.
slice	Index of the row slice in the heatmap.
row_slice	Index of the row slice in the heatmap.
column_slice	Index of the column slice in the heatmap.
envir	Where to look for variables inside code.

80 decorate_row_dend

Details

There is a viewport for each slice in each heatmap. This function contructs the name of the viewport, goes to the viewport by seekViewport, runs the code to that viewport and finally goes back to the original viewport.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-decoration.html

Examples

```
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat")
decorate_heatmap_body("mat", {
    grid.circle(gp = gpar(fill = "#FF000080"))
})
```

decorate_row_dend

Decorate Heatmap Row Dendrograms

Description

Decorate Heatmap Row Dendrograms

Usage

```
decorate_row_dend(..., envir = new.env(parent = parent.frame()))
```

Arguments

```
... Pass to decorate_dend.
envir Where to look for variables inside code?
```

Details

This is a helper function which pre-defined which argument in decorate_dend.

Value

The function returns no value.

decorate_row_names 81

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

Examples

```
# There is no example NULL
```

decorate_row_names

Decorate Heatmap Row Names

Description

Decorate Heatmap Row Names

Usage

```
decorate_row_names(..., envir = new.env(parent = parent.frame()))
```

Arguments

... Pass to decorate_dimnames.

envir wWhere to look for variables inside code.

Details

This is a helper function which pre-defined which argument in decorate_dimnames.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
# There is no example
```

82 decorate_title

decorate_row_title

Decorate Heatmap Row Titles

Description

Decorate Heatmap Row Titles

Usage

```
decorate_row_title(..., envir = new.env(parent = parent.frame()))
```

Arguments

... Pass to decorate_title.

envir Where to look for variables inside code.

Details

This is a helper function which pre-defined which argument in decorate_title.

Value

The function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example
```

decorate_title

Decorate Heatmap Titles

Description

Decorate Heatmap Titles

Usage

```
decorate_title(heatmap, code, slice = 1, which = c("column", "row"),
    envir = new.env(parent = parent.frame()))
```

default_axis_param 83

Arguments

heatmap	Name of the heatmap.
code	Code that adds graphics in the selected viewport.
slice	Index of the row slice or column slice in the heatmap.
which	Is it a row title or a column title?
envir	Where to look for variables inside code.

Details

There is a viewport for row titles and column title in the heatmap. This function contructs the name of the viewport, goes to the viewport by <code>seekViewport</code>, runs code to that viewport and finally goes back to the original viewport.

Value

The function returns no value.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-decoration.html

Examples

```
set.seed(123)
Heatmap(matrix(rnorm(100), 10), name = "mat", km = 2)
decorate_title("mat", {
    grid.rect(gp = gpar(fill = "#FF000080"))
}, which = "row", slice = 2)
```

default_axis_param

The Default Parameters for Annotation Axis

Description

The Default Parameters for Annotation Axis

Usage

```
default_axis_param(which)
```

Arguments

which

Whether it is for column annotation or row annotation?

84 default_get_type

Details

There are following parameters for the annotation axis:

at The breaks of axis. By default it is automatically inferred.

labels The corresponding axis labels.

labels rot The rotation of the axis labels.

gp Graphc parameters of axis labels. The value should be a unit object.

side If it is for column annotation, the value should only be one of left and right. If it is for row annotation, the value should only be one of top and bottom.

facing Whether the axis faces to the outside of the annotation region or inside. Sometimes when appending more than one heatmaps, the axes of column annotations of one heatmap might overlap to the neighbouring heatmap, setting facing to inside may invoid it.

direction The direction of the axis. Value should be "normal" or "reverse".

All the parameters are passed to annotation_axis_grob to construct an axis grob.

Examples

```
default_axis_param("column")
default_axis_param("row")
```

default_get_type

Default get_type for oncoPrint()

Description

Default get_type for oncoPrint()

Usage

```
default_get_type(x)
```

Arguments

Х

A strings which encode multiple altertations.

Details

It recognizes following separators: ;:, |.

```
# There is no example NULL
```

dendrogramGrob 85

Description

Grob for Dendrogram

Usage

```
dendrogramGrob(dend, facing = c("bottom", "top", "left", "right"),
    order = c("normal", "reverse"), gp = gpar())
```

Arguments

dend	A dendrogram object.
facing	Facing of the dendrogram.
order	If it is set to reverse, the first leaf is put on the right if the dendrogram is horizontal and it is put on the top if the dendrogram is vertical.
gp	Graphic parameters for the dendrogram segments. If any of col, 1wd or 1ty is set in the edgePar attribute of a node, the corresponding value defined in gp will be overwritten for this node, so gp is like global graphic parameters for dendrogram segments.

Details

If dend has not been processed by adjust_dend_by_x, internally adjust_dend_by_x is called to add x attributes to each node/leaf.

Value

A grob object which is contructed by segmentsGrob.

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}
```

86 dend_xy

dend_heights

Height of the Dendrograms

Description

Height of the Dendrograms

Usage

```
dend_heights(x)
```

Arguments

Х

a dendrogram object or a list of dendrogram objects.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

dend_xy

Coordinates of the Dendrogram

Description

Coordinates of the Dendrogram

Usage

```
dend_xy(dend)
```

Arguments

dend

a dendrogram object.

Details

dend will be processed by adjust_dend_by_x if it is processed yet.

Value

A list of leave positions (x) and dendrogram height (y).

densityHeatmap 87

Examples

```
m = matrix(rnorm(100), 10)
dend1 = as.dendrogram(hclust(dist(m)))
dend_xy(dend1)

dend1 = adjust_dend_by_x(dend1, sort(runif(10)))
dend_xy(dend1)

dend1 = adjust_dend_by_x(dend1, unit(1:10, "cm"))
dend_xy(dend1)
```

densityHeatmap

Visualize Density Distribution by Heatmap

Description

Visualize Density Distribution by Heatmap

Usage

```
densityHeatmap(data,
    density_param = list(na.rm = TRUE),
    col = rev(brewer.pal(11, "Spectral")),
    color_space = "LAB",
    ylab = deparse(substitute(data)),
    column_title = paste0("Density heatmap of ", deparse(substitute(data))),
    title = column_title,
   ylim = NULL,
    range = ylim,
    title_gp = gpar(fontsize = 14),
    ylab_gp = gpar(fontsize = 12),
    tick_label_gp = gpar(fontsize = 10),
    quantile_gp = gpar(fontsize = 10),
    show_quantiles = TRUE,
    column_order = NULL,
    column_names_side = "bottom",
    show_column_names = TRUE,
    column_names_max_height = unit(6, "cm"),
    column_names_gp = gpar(fontsize = 12),
    column_names_rot = 90,
    cluster_columns = FALSE,
    clustering_distance_columns = "ks",
    clustering_method_columns = "complete",
```

88 densityHeatmap

```
mc.cores = 1, cores = mc.cores,
...)
```

Arguments

data A matrix or a list. If it is a matrix, density is calculated by columns.

density_param Parameters send to density, na.rm is enforced to be TRUE.

col A vector of colors that density values are mapped to.

color_space The color space in which colors are interpolated. Pass to colorRamp2.

ylab Label on y-axis.
column_title Title of the heatmap.
title Same as column_title.
ylim Ranges on the y-axis.

range Same as ylim.

title_gp Graphic parameters for title.
ylab_gp Graphic parameters for y-labels.
tick_label_gp Graphic parameters for y-ticks.

quantile_gp Graphic parameters for the quantiles.

show_quantiles Whether show quantile lines.

column_order Order of columns.

column_names_side

Pass to Heatmap.

show_column_names

Pass to Heatmap.

column_names_max_height

Pass to Heatmap.

column_names_gp

Pass to Heatmap.

column_names_rot

Pass to Heatmap.

cluster_columns

Whether cluster columns?

clustering_distance_columns

There is a specific distance method ks which is the Kolmogorov-Smirnov statistic between two distributions. For other methods, the distance is calculated on the density matrix.

clustering_method_columns

Pass to Heatmap.

mc.cores Multiple cores for calculating ks distance. This argument will be removed in

future versions.

cores Multiple cores for calculating ks distance.

... Pass to Heatmap.

dim.Heatmap 89

Details

To visualize data distribution in a matrix or in a list, we normally use boxplot or violinplot. We can also use colors to map the density values and visualize distribution of values through a heatmap. It is useful if you have huge number of columns in data to visualize.

The density matrix is generated with 500 rows ranging between the maximun and minimal values in all densities.

Value

A Heatmap-class object. It can oly add other heatmaps/annotations vertically.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

See Also

```
https://jokergoo.github.io/ComplexHeatmap-reference/book/other-high-level-plots.html#density-heatmap
```

Examples

```
matrix = matrix(rnorm(100), 10); colnames(matrix) = letters[1:10]
densityHeatmap(matrix)

lt = list(rnorm(10), rnorm(10))
densityHeatmap(lt)

ha = HeatmapAnnotation(points = anno_points(runif(10)),
    anno = rep(c("A", "B"), each = 5), col = list(anno = c("A" = "red", "B" = "blue")))
densityHeatmap(matrix, top_annotation = ha)
densityHeatmap(matrix, top_annotation = ha) %v% Heatmap(matrix, height = unit(6, "cm"))
```

dim.Heatmap

Dimension of the Heatmap

Description

Dimension of the Heatmap

Usage

```
## S3 method for class 'Heatmap'
dim(x)
```

Arguments

Х

A Heatmap-class object.

90 dist2

Examples

```
# There is no example NULL
```

dist2

Calculate Pairwise Distance from a Matrix

Description

Calculate Pairwise Distance from a Matrix

Usage

```
dist2(x, pairwise_fun = function(x, y) sqrt(sum((x - y)^2)), ...)
```

Arguments

```
x A matrix or a list. If it is a matrix, the distance is calculated by rows.pairwise_fun A function which calculates distance between two vectors.Pass to as.dist.
```

Details

You can construct any type of distance measurements by defining a pair-wise distance function. The function is implemented by two nested for loops, so the efficiency may not be so good.

Value

A dist object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
lt = lapply(1:10, function(i) {
    sample(letters, sample(6:10, 1))
})
dist2(lt, function(x, y) {
    length(intersect(x, y))/length(union(x, y))
})
```

draw-AnnotationFunction-method

Draw the AnnotationFunction Object

Description

Draw the AnnotationFunction Object

Usage

```
## S4 method for signature 'AnnotationFunction'
draw(object, index, k = 1, n = 1, test = FALSE, ...)
```

Arguments

object	The AnnotationFunction-class object.
index	Index of observations.
k	Current slice index.
n	Total number of slices.
test	Is it in test mode? The value can be logical or a text which is plotted as the title of plot.
	Pass to viewport.

Details

Normally it is called internally by the SingleAnnotation-class.

When test is set to TRUE, the annotation graphic is directly drawn, which is generally for testing purpose.

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

draw-dispatch

Method dispatch page for draw

Description

Method dispatch page for draw.

Dispatch

draw can be dispatched on following classes:

- draw, AnnotationFunction-method, AnnotationFunction-class class method
- draw, Heatmap-method, Heatmap-class class method
- draw, SingleAnnotation-method, SingleAnnotation-class class method
- draw, Legends-method, Legends-class class method
- draw, HeatmapAnnotation-method, HeatmapAnnotation-class class method
- draw, HeatmapList-method, HeatmapList-class class method

Examples

```
# no example
NULL
```

draw-Heatmap-method

Draw a Single Heatmap

Description

Draw a Single Heatmap

Usage

```
## S4 method for signature 'Heatmap'
draw(object, internal = FALSE, test = FALSE, ...)
```

Arguments

object A Heatmap-class object.

internal If TRUE, it is only used inside the calling of draw, HeatmapList-method. It

only draws the heatmap without legends where the legend will be drawn by

draw, HeatmapList-method.

test Only for testing. If it is TRUE, the heatmap body is directly drawn.

... Pass to draw, HeatmapList-method.

Details

The function creates a HeatmapList-class object which only contains a single heatmap and call draw, HeatmapList-method to make the final heatmap.

There are some arguments which control the some settings of the heatmap such as legends. Please go to draw, HeatmapList-method for these arguments.

Value

```
A HeatmapList-class object.
```

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

Examples

```
# There is no example NULL
```

draw-HeatmapAnnotation-method

Draw the Heatmap Annotations

Description

Draw the Heatmap Annotations

Usage

```
## S4 method for signature 'HeatmapAnnotation'
draw(object, index, k = 1, n = 1, ...,
    test = FALSE, anno_mark_param = list())
```

Arguments

object A HeatmapAnnotation-class object.

index A vector of indices.

k The current slice index for the annotation if it is split.

n Total number of slices.

... Pass to viewport which contains all the annotations.

test Is it in test mode? The value can be logical or a text which is plotted as the title

of plot.

anno_mark_param

It contains specific parameters for drawing anno_mark and pass to the draw, SingleAnnotation-method.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\# There is no example NULL
```

draw-HeatmapList-method

Draw a list of heatmaps

Description

Draw a list of heatmaps

Usage

```
## S4 method for signature 'HeatmapList'
draw(object,
   newpage = TRUE,
   background = "white",
   row_title = character(0),
   row_title_side = c("left", "right"),
   row_title_gp = gpar(fontsize = 13),
   column_title = character(0),
   column_title_side = c("top", "bottom"),
   column_title_gp = gpar(fontsize = 13),
   heatmap_legend_side = c("right", "left", "bottom", "top"),
   merge_legends = ht_opt$merge_legends,
   show_heatmap_legend = TRUE,
   heatmap_legend_list = list(),
   annotation_legend_side = c("right", "left", "bottom", "top"),
    show_annotation_legend = TRUE,
   annotation_legend_list = list(),
    align_heatmap_legend = NULL,
   align_annotation_legend = NULL,
   legend_grouping = c("adjusted", "original"),
   gap = unit(2, "mm"),
```

```
ht_gap = gap,
main_heatmap = which(sapply(object@ht_list, inherits, "Heatmap"))[1],
padding = GLOBAL_PADDING,
adjust_annotation_extension = NULL,
auto_adjust = TRUE,
row_dend_side = c("original", "left", "right"),
row_sub_title_side = c("original", "left", "right"),
column_dend_side = c("original", "top", "bottom"),
column_sub_title_side = c("original", "top", "bottom"),
row_gap = NULL,
cluster_rows = NULL,
cluster_row_slices = NULL,
clustering_distance_rows = NULL,
clustering_method_rows = NULL,
row_dend_width = NULL,
show_row_dend = NULL,
row_dend_reorder = NULL,
row_dend_gp = NULL,
row_order = NULL,
km = NULL,
split = NULL,
row_km = km,
row_km_repeats = NULL,
row_split = split,
height = NULL,
heatmap_height = NULL,
column_gap = NULL,
cluster_columns = NULL,
cluster_column_slices = NULL,
clustering_distance_columns = NULL,
clustering_method_columns = NULL,
column_dend_width = NULL,
show_column_dend = NULL,
column_dend_reorder = NULL,
column_dend_gp = NULL,
column_order = NULL,
column_km = NULL,
column_km_repeats = NULL,
column_split = NULL,
width = NULL,
heatmap_width = NULL,
use_raster = NULL,
raster_device = NULL,
```

```
raster_quality = NULL,
raster_device_param = NULL,
raster_resize = NULL,
post_fun = NULL,
save_last = ht_opt$save_last,
### global setting
heatmap_row_names_gp = NULL,
heatmap_column_names_gp = NULL,
heatmap_row_title_gp = NULL,
heatmap_column_title_gp = NULL,
legend_title_gp = NULL,
legend_title_position = NULL,
legend_labels_gp = NULL,
legend_grid_height = NULL,
legend_grid_width = NULL,
legend_border = NULL,
legend_gap = NULL,
heatmap_border = NULL,
annotation_border = NULL,
fastcluster = NULL,
simple_anno_size = NULL,
show_parent_dend_line = NULL)
```

Arguments

object a HeatmapList-class object. newpage whether create a new page for the graphics. If you want to arrange multiple plots in one page, I suggest to use grid.grabExpr. background Background color of the whole plot. row_title title on the row. row_title_side will the title be put on the left or right of the heatmap. graphic parameters for drawing text. row_title_gp title on the column. column_title column_title_side will the title be put on the top or bottom of the heatmap. column_title_gp graphic parameters for drawing text. heatmap_legend_side side to put heatmap legend merge_legends merge heatmap legends and annotation legends to put into one column. show_heatmap_legend whether show all heatmap legends heatmap_legend_list use-defined legends which are put after the heatmap legends

annotation_legend_side

side of the annotation legends

show_annotation_legend

whether show annotation legends

annotation_legend_list

user-defined legends which are put after the annotation legends

align_heatmap_legend

How to align the legends to heatmap. Possible values are "heatmap_center", "heatmap_top" and "global_center". If the value is NULL, it automatically picks the proper value from the three options.

align_annotation_legend

How to align the legends to heatmap. Possible values are "heatmap_center", "heatmap_top" and "global_center".

legend_grouping

How the legends are grouped. Values should be "adjusted" or "original". If it is set as "original", all annotation legends are grouped together.

gap gap between heatmaps/annotations

ht_gap same as gap.

main_heatmap index of main heatmap. The value can be a numeric index or the heatmap name

padding padding of the whole plot. The value is a unit vector of length 4, which corre-

sponds to bottom, left, top and right.

adjust_annotation_extension

whether take annotation name into account when calculating positions of graphic

elements.

auto_adjust whether apply automatic adjustment? The auto-adjustment includes turning off

dendrograms, titles and row/columns for non-main heatmaps.

row_dend_side side of the dendrogram from the main heatmap

row_sub_title_side

side of the row title from the main heatmap

column_dend_side

side of the dendrogram from the main heatmap

column_sub_title_side

side of the column title from the main heatmap

row_gap this modifies row_gap of the main heatmap

cluster_rows this modifies cluster_rows of the main heatmap

cluster_row_slices

this modifies cluster_row_slices of the main heatmap

clustering_distance_rows

this modifies clustering_distance_rows of the main heatmap

clustering_method_rows

this modifies clustering_method_rows of the main heatmap

row_dend_width this modifies row_dend_width of the main heatmap show_row_dend this modifies show_row_dend of the main heatmap

```
row_dend_reorder
```

this modifies row_dend_reorder of the main heatmap

row_dend_gp this modifies row_dend_gp of the main heatmap row_order this modifies row_order of the main heatmap

km = this modifies km of the main heatmap
split this modifies split of the main heatmap
row_km this modifies row_km of the main heatmap

row_km_repeats this modifies row_km_repeats of the main heatmap

row_split this modifies row_split of the main heatmap height this modifies height of the main heatmap

heatmap_height this modifies heatmap_height of the main heatmap column_gap this modifies column_gap of the main heatmap

cluster_columns

this modifies cluster_columns of the main heatmap

cluster_column_slices

this modifies cluster_column_slices of the main heatmap

clustering_distance_columns

this modifies clustering_distance_columns of the main heatmap

clustering_method_columns

this modifies clustering_method_columns of the main heatmap

column_dend_width

this modifies column_dend_width of the main heatmap

show_column_dend

this modifies show_column_dend of the main heatmap

column_dend_reorder

this modifies column_dend_reorder of the main heatmap

column_dend_gp this modifies column_dend_gp of the main heatmap column_order this modifies column_order of the main heatmap column_km this modifies column_km of the main heatmap

column_km_repeats

this modifies column_km_repeats of the main heatmap

column_split this modifies column_split of the main heatmap

width this modifies width of the main heatmap

heatmap_width this modifies heatmap_width of the main heatmap

use_raster this modifies use_raster of every heatmap.
raster_device this modifies raster_device of every heatmap.
raster_quality this modifies raster_quality of every heatmap.

raster_device_param

this modifies raster_device_param of every heatmap.

raster_resize this modifies raster_resize of every heatmap.

post_fun A self-defined function will be executed after all the heatmaps are drawn. save_last Whether to save the last plot? heatmap_row_names_gp this set the value in ht_opt and reset back after the plot is done heatmap_column_names_gp this set the value in ht_opt and reset back after the plot is done heatmap_row_title_gp this set the value in ht_opt and reset back after the plot is done heatmap_column_title_gp this set the value in ht_opt and reset back after the plot is done legend_title_gp this set the value in ht_opt and reset back after the plot is done legend_title_position this set the value in ht_opt and reset back after the plot is done legend_labels_gp this set the value in ht_opt and reset back after the plot is done legend_grid_height this set the value in ht_opt and reset back after the plot is done legend_grid_width this set the value in ht_opt and reset back after the plot is done legend_border this set the value in ht_opt and reset back after the plot is done legend_gap Gap between legends. The value should be a vector of two units. One for gaps between vertical legends and one for the horizontal legends. If only one single unit is specified, the same gap set for the vertical and horizontal legends. heatmap_border this set the value in ht_opt and reset back after the plot is done annotation_border this set the value in ht_opt and reset back after the plot is done fastcluster this set the value in ht_opt and reset back after the plot is done simple_anno_size this set the value in ht_opt and reset back after the plot is done show_parent_dend_line this set the value in ht_opt and reset back after the plot is done

Details

The function first calls make_layout, HeatmapList-method to calculate the layout of the heatmap list and the layout of every single heatmap, then makes the plot by re-calling the graphic functions which are already recorded in the layout.

Value

This function returns a HeatmapList-class object for which the layout has been created.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

100 draw-Legends-method

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/a-list-of-heatmaps.html

Examples

```
# There is no example NULL
```

draw-Legends-method

Draw the Legends

Description

Draw the Legends

Usage

```
## S4 method for signature 'Legends'
draw(object, x = unit(0.5, "npc"), y = unit(0.5, "npc"), just = "centre", test = FALSE)
```

Arguments

object The grob object returned by Legend or packLegend.

x The x position of the legends, measured in current viewport.

y The y position of the legends, measured in current viewport.

just Justification of the legends.

test Only used for testing.

Details

In the legend grob, there should always be a viewport attached which is like a wrapper of all the graphic elements in a legend. If in the object, there is already a viewport attached, it will modify the x, y and valid.just of the viewport. If there is not viewport attached, a viewport with specified x, y and valid.just is created and attached.

You can also directly use grid. draw to draw the legend object, but you can only control the position of the legends by first creating a parent viewport and adjusting the position of the parent viewport.

```
lgd = Legend(at = 1:4, title = "foo")
draw(lgd, x = unit(0, "npc"), y = unit(0, "npc"), just = c("left", "bottom"))

# and a similar version of grid.draw
pushViewport(viewport(x = unit(0, "npc"), y = unit(0, "npc"), just = c("left", "bottom")))
grid.draw(lgd)
popViewport()
```

draw-SingleAnnotation-method

Draw the Single Annotation

Description

Draw the Single Annotation

Usage

Arguments

object A SingleAnnotation-class object.

index A vector of indices.k The index of the slice.

n Total number of slices. k and n are used to adjust annotation names. E.g. if k is

2 and n is 3, the annotation names are not drawn.

test Is it in test mode? The value can be logical or a text which is plotted as the title

of plot.

anno_mark_param

It contains specific parameters for drawing anno_mark.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

draw_annotation-Heatmap-method

Draw Heatmap Annotations on the Heatmap

Description

Draw Heatmap Annotations on the Heatmap

Usage

```
## S4 method for signature 'Heatmap'
draw_annotation(object, which = c("top", "bottom", "left", "right"), k = 1, ...)
```

Arguments

object A Heatmap-class object.

which The position of the heamtap annotation.

k Slice index.

... Pass to viewport which includes the complete heatmap annotation.

Details

A viewport is created which contains column/top annotations.

The function calls draw, HeatmapAnnotation-method to draw the annotations.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\label{eq:continuous_problem} \mbox{\ensuremath{\texttt{T}} There is no example} \\ \mbox{\ensuremath{\texttt{NULL}}}
```

 $\label{lem:constraint} draw_annotation_legend-HeatmapList-method \\ Draw\ legends\ for\ All\ Annotations$

Description

Draw legends for All Annotations

Usage

```
## S4 method for signature 'HeatmapList'
draw_annotation_legend(object, legend_list = list(), ...)
```

Arguments

object A HeatmapList-class object.

legend_list A list of self-defined legends, should be wrapped into grob objects. It is nor-

mally constructed by Legend.

... Other arguments.

Details

We call the "annotation legends" as the secondary legends. For horizontal heamtap list, the legends are those from all top/bottom annotations, and for vertical heatmap list, the legends are those from all left/right annotations.

A viewport is created which contains annotation legends.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\# There is no example NULL
```

draw_dend-Heatmap-method

Draw Heatmap Dendrograms

Description

Draw Heatmap Dendrograms

Usage

```
## S4 method for signature 'Heatmap'
draw_dend(object,
    which = c("row", "column"), k = 1, max_height = NULL, ...)
```

Arguments

object A Heatmap-class object.

which Are the dendrograms put on the row or on the column of the heatmap?

k Slice index.

max_height maximal height of dendrogram.

... Pass to viewport which includes the complete heatmap dendrograms.

Details

A viewport is created which contains dendrograms.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

```
grid.dendrogram
```

```
# There is no example NULL
```

draw_dimnames-Heatmap-method

Draw row names or column names

Description

Draw row names or column names

Usage

```
## S4 method for signature 'Heatmap'
draw_dimnames(object,
    which = c("row", "column"), k = 1, ...)
```

Arguments

object A Heatmap-class object.

which Are the names put on the row or on the column of the heatmap?

k Slice index.

... Pass to viewport which includes the complete heatmap row/column names.

Details

A viewport is created which contains row names or column names.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
# There is no example NULL
```

 $\label{lem:condition} draw_heatmap_body-Heatmap_method \\ Draw\ Heatmap\ Body$

Description

Draw Heatmap Body

Usage

```
## S4 method for signature 'Heatmap'
draw_heatmap_body(object, kr = 1, kc = 1, ...)
```

Arguments

object A Heatmap-class object.

kr Row slice index.

kc Column slice index.

... Pass to viewport which includes the slice of heatmap body.

Details

A viewport is created which contains subset rows and columns of the heatmap.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\# There is no example NULL
```

draw_heatmap_legend-HeatmapList-method

Draw legends for All Heatmaps

Description

Draw legends for All Heatmaps

Usage

```
## S4 method for signature 'HeatmapList'
draw_heatmap_legend(object, legend_list = list(), ...)
```

Arguments

object A HeatmapList-class object.

legend_list A list of self-defined legends, should be wrapped into grob objects. It is nor-

mally constructed by Legend.

... Other arguments.

Details

Actually we call the "heatmap legends" as the main legends. For horizontal heatmap list, the legends are those from heamtap/row annotation/left/right annotation. For vertical heatmap list, the legends are those from heamtap/column annotation/top/bottom annotation. if merge_legends is true in draw, HeatmapList-method, then it contains all legends shown on the plot.

A viewport is created which contains heatmap legends.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

 $\label{list-method} Draw\ the\ List\ of\ Heatmaps$

Description

Draw the List of Heatmaps

Usage

```
## S4 method for signature 'HeatmapList'
draw_heatmap_list(object)
```

Arguments

object A HeatmapList-class object.

Details

It only draws the list of heatmaps without legends and titles.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}
```

draw_title-dispatch 109

Description

Method dispatch page for draw_title.

Dispatch

draw_title can be dispatched on following classes:

- draw_title, Heatmap-method, Heatmap-class class method
- draw_title, HeatmapList-method, HeatmapList-class class method

Examples

```
# no example
NULL
```

draw_title-Heatmap-method

Draw Heatmap Title

Description

Draw Heatmap Title

Usage

```
## S4 method for signature 'Heatmap'
draw_title(object,
    which = c("row", "column"), k = 1, ...)
```

Arguments

object A Heatmap-class object.

which Is title put on the row or on the column of the heatmap?

k Slice index.

... Pass to viewport which includes the complete heatmap title.

Details

A viewport is created which contains heatmap title.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

Description

Draw Heatmap List Title

Usage

```
## $4 method for signature 'HeatmapList'
draw_title(object,
    which = c("column", "row"))
```

Arguments

object A HeatmapList-class object.
which Is it a row title or a column title.

Details

A viewport is created which contains heatmap list title.

This function is only for internal use.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

extract_comb 111

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

extract_comb

Extract Elements in a Combination set

Description

Extract Elements in a Combination set

Usage

```
extract_comb(m, comb_name)
```

Arguments

m A combination matrix returned by make_comb_mat.

comb_name The valid combination set name should be from comb_name.

Details

It returns the combination set.

Examples

frequencyHeatmap

Visualize Frequency Distribution by Heatmap

Description

Visualize Frequency Distribution by Heatmap

112 frequencyHeatmap

Usage

```
frequencyHeatmap(data,
   breaks = "Sturges",
   stat = c("count", "density", "proportion"),
   col = brewer.pal(9, "Blues"),
   color_space = "LAB",
   ylab = deparse(substitute(data)),
   column_title = paste0("Frequency heatmap of ", deparse(substitute(data))),
   title = column_title,
   ylim = NULL,
   range = ylim,
   title_gp = gpar(fontsize = 14),
   ylab_gp = gpar(fontsize = 12),
    tick_label_gp = gpar(fontsize = 10),
   column_order = NULL,
    column_names_side = "bottom",
    show_column_names = TRUE,
    column_names_max_height = unit(6, "cm"),
    column_names_gp = gpar(fontsize = 12),
    column_names_rot = 90,
   cluster_columns = FALSE,
   use_3d = FALSE,
    ...)
```

Arguments

data A matrix or a list. If it is a matrix, density is calculated by columns.

breaks Pass to hist. Please only set equal bin size.

stat Statistic to use.

col A vector of colors that density values are mapped to.

color_space The color space in which colors are interpolated. Pass to colorRamp2.

ylab Label on y-axis.

column_title Title of the heatmap.

title Same as column_title.

ylim Ranges on the y-axis.

range Same as ylim.

title_gp Graphic parameters for title.

ylab_gp Graphic parameters for y-labels.

tick_label_gp Graphic parameters for y-ticks.

column_order Order of columns.

full_comb_code 113

Value

A Heatmap-class object. It can oly add other heatmaps/annotations vertically.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
matrix = matrix(rnorm(100), 10); colnames(matrix) = letters[1:10]
frequencyHeatmap(matrix)
frequencyHeatmap(matrix, use_3d = TRUE)
```

full_comb_code

Full set of code of combination sets

Description

Full set of code of combination sets

Usage

```
full_comb_code(n, complement = FALSE)
```

Arguments

n Number of sets

complement Whether include the code for complement set?

Examples

```
full_comb_code(2)
full_comb_code(3)
full_comb_code(4)
full_comb_code(4, TRUE)
```

getXY_in_parent_vp

Convert XY in a Parent Viewport

Description

Convert XY in a Parent Viewport

Usage

```
getXY_in_parent_vp(u, vp_name = "ROOT")
```

Arguments

u A list of two units which correspond to x and y.

vp_name The name of the parent viewport.

Details

It converts a coordinate measured in current viewport to the coordinate in a parent viewport.

In the conversion, all units are recalculated as absolute units, so if you change the size of the interactive graphic window, you need to rerun the function.

Value

A list of two units.

```
grid.newpage()
pushViewport(viewport(x = 0.5, y = 0.5, width = 0.5, height = 0.5, just = c("left", "bottom")))
grid.rect()
grid.points(x = unit(2, "cm"), y = unit(2, "cm"), pch = 1)
u = list(x = unit(2, "cm"), y = unit(2, "cm"))
u2 = getXY_in_parent_vp(u)
popViewport()
grid.rect(gp = gpar(col = "red"))
grid.points(x = u2$x, u2$y, pch = 2)
```

Description

Get a List of ColorMapping objects

Usage

```
## S4 method for signature 'HeatmapAnnotation'
get_color_mapping_list(object)
```

Arguments

object

A HeatmapAnnotation-class object.

Details

Color mappings for visible simple annotations are only returned.

This function is only for internal use.

Value

A list of ColorMapping-class objects or an empty list.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

grid.annotation_axis

Description

Get a List of Annotation Legend Parameters

Usage

```
## S4 method for signature 'HeatmapAnnotation'
get_legend_param_list(object)
```

Arguments

object

A HeatmapAnnotation-class object.

Details

The annotation legend parameters for visible simple annotations are only returned.

This function is only for internal use.

Value

A list.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

Description

Draw Annotation Axis

Usage

```
grid.annotation_axis(at = NULL, labels = at, labels_rot = 0, gp = gpar(),
    side = "left", facing = "outside", direction = "normal")
```

grid.boxplot 117

Arguments

at Break values. If it is not specified, it is inferred from data scale in current view-

port.

labels Corresponding labels.
labels_rot Rotations of labels.
gp Graphic parameters.

side side of the axis of the annotation viewport.

facing Facing of the axis.

direction direction of the axis. Value should be "normal" or "reverse".

Details

It uses annotation_axis_grob to construct the grob object, then use grid.draw to draw the axis.

Examples

```
# See examples in `annotation_axis_grob`
NULL
```

grid.boxplot

Draw a Single Boxplot

Description

Draw a Single Boxplot

Usage

```
grid.boxplot(value, pos, outline = TRUE, box_width = 0.6,
    pch = 1, size = unit(2, "mm"), gp = gpar(fill = "#CCCCCC"),
    direction = c("vertical", "horizontal"))
```

Arguments

value A vector of numeric values.

pos Position of the boxplot.

outline Whether draw outlines?

box_width width of the box.

pch Point type. size Point size.

gp Graphic parameters.

direction Whether the box is vertical or horizontal.

118 grid.dendrogram

Details

All the values are measured with native coordinate.

Examples

```
lt = list(rnorm(100), rnorm(100))
grid.newpage()
pushViewport(viewport(xscale = c(0.5, 2.5), yscale = range(lt)))
grid.boxplot(lt[[1]], pos = 1, gp = gpar(fill = "red"))
grid.boxplot(lt[[2]], pos = 2, gp = gpar(fill = "green"))
popViewport()
```

grid.dendrogram

Draw the Dendrogram

Description

Draw the Dendrogram

Usage

```
grid.dendrogram(dend, ..., test = FALSE)
```

Arguments

dend A dendrogram object.
... Pass to dendrogramGrob.

test Is it in test mode? If it is in test mode, a viewport is created by calculating proper

xlim and ylim.

Details

grid.dendrogram supports drawing dendrograms with self-defind leaf positions. The positions of leaves can be defined by adjust_dend_by_x. Also the dendrogram can be customized by setting the edgePar attribute for each node (basically for controlling the style of segments), e.g. by color_branches.

To draw the dendrogram, a viewport should be firstly created. dend_xy can be used to get the positions of leaves and height of the dendrogram.

```
m = matrix(rnorm(100), 10)
dend = as.dendrogram(hclust(dist(m)))
grid.newpage()
pushViewport(viewport(xscale = c(0, 10.5), yscale = c(0, dend_heights(dend)),
    width = 0.9, height = 0.9))
grid.dendrogram(dend)
```

grid.draw.Legends 119

```
popViewport()
grid.dendrogram(dend, test = TRUE)

require(dendextend)
dend = color_branches(dend, k = 2)
dend = adjust_dend_by_x(dend, unit(sort(runif(10)*10), "cm"))
grid.dendrogram(dend, test = TRUE)
```

grid.draw.Legends

Draw the Legends

Description

Draw the Legends

Usage

```
## S3 method for class 'Legends'
grid.draw(x, recording = TRUE)
```

Arguments

x The grob object returned by Legend or packLegend.

recording Pass to grid.draw.

Details

This function is actually an S3 method of the Legends class for the grid.draw general method. It applies grid.draw on the grob slot of the object.

```
lgd = Legend(at = 1:4, title = "foo")
pushViewport(viewport(x = unit(0, "npc"), y = unit(0, "npc"), just = c("left", "bottom")))
grid.draw(lgd)
popViewport()
```

120 gt_render

grid	. textbox	

Draw multiple texts in a box

Description

Draw multiple texts in a box

Usage

```
grid.textbox(text, x = unit(0.5, "npc"), y = unit(0.5, "npc"), gp = gpar(), ...)
```

Arguments

text A vector of texts. The value can be single words or phrases/sentenses.

x X position.y Y position.

gp Graphics parameters of texts.

... Pass to textbox_grob.

Details

All details can be found in the help page of textbox_grob.

Examples

```
# There is no example NULL
```

gt_render

Mark the text for the rendering by gridtext package

Description

Mark the text for the rendering by gridtext package

Usage

```
gt\_render(x, ...)
```

Arguments

x Text labels. The value can be a vector.

... Other parameters passed to richtext_grob.

Details

Text marked by gt_render will be rendered by richtext_grob function.

Examples

```
if(requireNamespace("gridtext")) {
mat = matrix(rnorm(100), 10)
rownames(mat) = letters[1:10]
ht = Heatmap(mat,
column_title = gt_render("Some <span style='color:blue'>blue text **in bold.**</span><br>And *italics text.*<br/>br>And *italics text.*
 column_title_gp = gpar(box_fill = "orange"),
 row_labels = gt_render(letters[1:10], padding = unit(c(2, 10, 2, 10), "pt")),
 row_names_gp = gpar(box_col = "red"),
 row_km = 2,
 row_title = gt_render(c("title1", "title2")),
 row_title_gp = gpar(box_fill = "yellow"),
 heatmap_legend_param = list(
  title = gt_render("<span style='color:orange'>**Legend title**</span>"),
  title_gp = gpar(box_fill = "grey"),
  at = c(-3, 0, 3),
  labels = gt_render(c("*negative* three", "zero", "*positive* three"))
 ))
ht = rowAnnotation(
 foo = anno_text(gt_render(sapply(LETTERS[1:10], strrep, 10), align_widths = TRUE),
                 gp = gpar(box_col = "blue", box_lwd = 2),
                 just = "right",
                 location = unit(1, "npc")
)) + ht
draw(ht)
}
```

Heatmap

Constructor method for Heatmap class

Description

Constructor method for Heatmap class

Usage

```
Heatmap(matrix, col, name,
    na_col = "grey",
    color_space = "LAB",
    rect_gp = gpar(col = NA),
    border = NA,
    border_gp = gpar(col = "black"),
    cell_fun = NULL,
    layer_fun = NULL,
```

```
jitter = FALSE,
 row_title = character(0),
 row_title_side = c("left", "right"),
 row_title_gp = gpar(fontsize = 13.2),
 row_title_rot = switch(row_title_side[1], "left" = 90, "right" = 270),
 column_title = character(0),
 column_title_side = c("top", "bottom"),
 column_title_gp = gpar(fontsize = 13.2),
 column_title_rot = 0,
 cluster_rows = TRUE,
 cluster_row_slices = TRUE,
 clustering_distance_rows = "euclidean",
 clustering_method_rows = "complete",
 row_dend_side = c("left", "right"),
 row_dend_width = unit(10, "mm"),
 show_row_dend = TRUE,
 row_dend_reorder = is.logical(cluster_rows) || is.function(cluster_rows),
 row_dend_gp = gpar(),
 cluster_columns = TRUE,
 cluster_column_slices = TRUE,
 clustering_distance_columns = "euclidean",
 clustering_method_columns = "complete",
 column_dend_side = c("top", "bottom"),
 column_dend_height = unit(10, "mm"),
 show_column_dend = TRUE,
 column_dend_gp = gpar(),
column_dend_reorder = is.logical(cluster_columns) || is.function(cluster_columns),
 row_order = NULL,
 column_order = NULL,
 row_labels = rownames(matrix),
 row_names_side = c("right", "left"),
 show_row_names = TRUE,
 row_names_max_width = unit(6, "cm"),
 row_names_gp = gpar(fontsize = 12),
 row_names_rot = 0,
 row_names_centered = FALSE,
 column_labels = colnames(matrix),
 column_names_side = c("bottom", "top"),
 show_column_names = TRUE,
 column_names_max_height = unit(6, "cm"),
 column_names_gp = gpar(fontsize = 12),
 column_names_rot = 90,
 column_names_centered = FALSE,
```

```
top_annotation = NULL,
 bottom_annotation = NULL,
 left_annotation = NULL,
 right_annotation = NULL,
 km = 1,
 split = NULL,
 row_km = km,
 row_km_repeats = 1,
 row_split = split,
 column_km = 1,
 column_km_repeats = 1,
 column_split = NULL,
 gap = unit(1, "mm"),
 row_gap = unit(1, "mm"),
 column_gap = unit(1, "mm"),
 show_parent_dend_line = ht_opt$show_parent_dend_line,
 heatmap_width = unit(1, "npc"),
 width = NULL,
 heatmap_height = unit(1, "npc"),
 height = NULL,
 show_heatmap_legend = TRUE,
 heatmap_legend_param = list(title = name),
 use_raster = NULL,
raster_device = c("png", "jpeg", "tiff", "CairoPNG", "CairoJPEG", "CairoTIFF", "agg_png"),
 raster_quality = 1,
 raster_device_param = list(),
 raster_resize_mat = FALSE,
 raster_by_magick = requireNamespace("magick", quietly = TRUE),
 raster_magick_filter = NULL,
 post_fun = NULL)
```

Arguments

matrix

A matrix. Either numeric or character. If it is a simple vector, it will be converted to a one-column matrix.

col

A vector of colors if the color mapping is discrete or a color mapping function if the matrix is continuous numbers (should be generated by colorRamp2). If the matrix is continuous, the value can also be a vector of colors so that colors can be interpolated. Pass to ColorMapping. For more details and examples, please refer to https://jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap.html#colors.

name

Name of the heatmap. By default the heatmap name is used as the title of the heatmap legend.

na_col Color for NA values. Graphic parameters for drawing rectangles (for heatmap body). The value should rect_gp be specified by gpar and fill parameter is ignored. The color space in which colors are interpolated. Only used if matrix is numeric color_space and col is a vector of colors. Pass to colorRamp2. border Whether draw border. The value can be logical or a string of color. border_gp Graphic parameters for the borders. If you want to set different parameters for different heatmap slices, please consider to use decorate_heatmap_body. cell fun Self-defined function to add graphics on each cell. Seven parameters will be passed into this function: j, i, x, y, width, height, fill which are column index, row index in matrix, coordinate of the cell, the width and height of the cell and the filled color. x, y, width and height are all unit objects. Similar as cell_fun, but is vectorized. Check https://jokergoo.github. layer_fun io/ComplexHeatmap-reference/book/a-single-heatmap.html#customize-the-heatmap-body jitter Random shifts added to the matrix. The value can be logical or a single numeric value. It it is TRUE, random values from uniform distribution between 0 and 1e-10 are generated. If it is a numeric value, the range for the uniform distribution is (0, jitter). It is mainly to solve the problem of "Error: node stack overflow" when there are too many identical rows/columns for plotting the dendrograms. ADD: From version 2.5.6, the error of node stack overflow has been fixed, now this argument is ignored. row_title Title on the row. row_title_side Will the title be put on the left or right of the heatmap? row_title_gp Graphic parameters for row title. row_title_rot Rotation of row title. column_title Title on the column. column title side Will the title be put on the top or bottom of the heatmap? column_title_gp Graphic parameters for column title. column_title_rot Rotation of column titles. If the value is a logical, it controls whether to make cluster on rows. The value cluster_rows can also be a hclust or a dendrogram which already contains clustering. Check https://jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap. html#clustering. cluster_row_slices If rows are split into slices, whether perform clustering on the slice means? clustering_distance_rows It can be a pre-defined character which is in ("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "pearson", "spearman", "kendall").

It can also be a function. If the function has one argument, the input argument

should be a matrix and the returned value should be a dist object. If the function has two arguments, the input arguments are two vectors and the function calculates distance between these two vectors.

clustering_method_rows

Method to perform hierarchical clustering, pass to hclust.

row_dend_side Should the row dendrogram be put on the left or right of the heatmap?

row_dend_width Width of the row dendrogram, should be a unit object.

show_row_dend Whether show row dendrogram?

row_dend_gp Graphic parameters for the dendrogram segments. If users already provide a dendrogram object with edges rendered, this argument will be ignored.

row_dend_reorder

Apply reordering on row dendrograms. The value can be a logical value or a vector which contains weight which is used to reorder rows. The reordering is applied by reorder.dendrogram.

cluster_columns

Whether make cluster on columns? Same settings as cluster_rows.

cluster_column_slices

If columns are split into slices, whether perform clustering on the slice means?

clustering_distance_columns

Same setting as clustering_distance_rows.

clustering_method_columns

Method to perform hierarchical clustering, pass to hclust.

column_dend_side

Should the column dendrogram be put on the top or bottom of the heatmap?

column_dend_height

height of the column cluster, should be a unit object.

show_column_dend

Whether show column dendrogram?

column_dend_gp Graphic parameters for dendrogram segments. Same settings as row_dend_gp. column_dend_reorder

Apply reordering on column dendrograms. Same settings as row_dend_reorder.

row_order Order of rows. Manually setting row order turns off clustering.

column_order Order of column.

row_labels Optional row labels which are put as row names in the heatmap.

row_names_side Should the row names be put on the left or right of the heatmap?

show_row_names Whether show row names.

row_names_max_width

Maximum width of row names viewport.

row_names_gp Graphic parameters for row names.

row_names_rot Rotation of row names.

row_names_centered

Should row names put centered?

column_labels Optional column labels which are put as column names in the heatmap. column_names_side

Should the column names be put on the top or bottom of the heatmap?

column_names_max_height

Maximum height of column names viewport.

show_column_names

Whether show column names.

column_names_gp

Graphic parameters for drawing text.

column_names_rot

Rotation of column names.

column_names_centered

Should column names put centered?

top_annotation A HeatmapAnnotation object.

bottom annotation

A HeatmapAnnotation object.

left_annotation

It should be specified by rowAnnotation.

right_annotation

it should be specified by rowAnnotation.

km Apply k-means clustering on rows. If the value is larger than 1, the heatmap

will be split by rows according to the k-means clustering. For each row slice,

hierarchical clustering is still applied with parameters above.

split A vector or a data frame by which the rows are split. But if cluster_rows is a

clustering object, split can be a single number indicating to split the dendro-

gram by cutree.

row_km Same as km.

row_km_repeats Number of k-means runs to get a consensus k-means clustering. Note if row_km_repeats

is set to more than one, the final number of groups might be smaller than row_km,

but this might means the original row_km is not a good choice.

row_split Same as split.

column_km K-means clustering on columns.

column_km_repeats

Number of k-means runs to get a consensus k-means clustering. Similar as

row_km_repeats.

column_split Split on columns. For heatmap splitting, please refer to https://jokergoo.

github.io/Complex Heatmap-reference/book/a-single-heatmap.html # heatmap-split

•

gap Gap between row slices if the heatmap is split by rows. The value should be a

unit object.

row_gap Same as gap.

column_gap Gap between column slices.

show_parent_dend_line

When heatmap is split, whether to add a dashed line to mark parent dendrogram

and children dendrograms?

width Width of the heatmap body. height Height of the heatmap body.

heatmap_width Width of the whole heatmap (including heatmap components)

heatmap_height Height of the whole heatmap (including heatmap components). Check https:

//jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap.

html#size-of-the-heatmap.

show_heatmap_legend

Whether show heatmap legend?

heatmap_legend_param

 $A\ list contains\ parameters\ for\ the\ heatmap\ legends.\ See\ color_mapping_legend\ , ColorMapping_method\ and\ colorMapping_method\ and\ an extension of the color_mapping_legend\ , ColorMapping_method\ , ColorMapping_method\ and\ an extension of the color_mapping_method\ and\ an extension of the color_map$

for all available parameters.

use_raster Whether render the heatmap body as a raster image. It helps to reduce file size

when the matrix is huge. If number of rows or columns is more than 2000, it is by default turned on. Note if cell_fun is set, use_raster is enforced to be

FALSE.

raster_device Graphic device which is used to generate the raster image.

raster_quality A value larger than 1.

raster_device_param

A list of further parameters for the selected graphic device. For raster image support, please check https://jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap.html#heatmap-as-raster-image.

raster_resize_mat

Whether resize the matrix to let the dimension of the matrix the same as the dimension of the raster image? The value can be logical. If it is TRUE, mean is used to summarize the sub matrix which corresponds to a single pixel. The value can also be a summary function, e.g. max.

raster_by_magick

Whether to use image_resize to scale the image.

raster_magick_filter

Pass to filter argument of image_resize. A character scalar and all possible values are in filter_types. The default is "Lanczos".

post_fun A function which will be executed after the heatmap list is drawn.

Details

The initialization function only applies parameter checking and fill values to the slots with some validation.

Following methods can be applied to the Heatmap-class object:

- show, Heatmap-method: draw a single heatmap with default parameters
- draw, Heatmap-method: draw a single heatmap.
- + or %v% append heatmaps and annotations to a list of heatmaps.

128 Heatmap-class

The constructor function pretends to be a high-level graphic function because the show method of the Heatmap-class object actually plots the graphics.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap.html

Examples

```
# There is no example
```

Heatmap-class

Class for a Single Heatmap

Description

Class for a Single Heatmap

Details

The Heatmap-class is not responsible for heatmap legend and annotation legends. The draw, Heatmap-method method constructs a HeatmapList-class object which only contains one single heatmap and call draw, HeatmapList-method to make the complete heatmap.

Methods

The Heatmap-class provides following methods:

- Heatmap: constructor method.
- draw, Heatmap-method: draw a single heatmap.
- add_heatmap, Heatmap-method append heatmaps and annotations to a list of heatmaps.
- row_order, HeatmapList-method: get order of rows
- column_order, HeatmapList-method: get order of columns
- row_dend, HeatmapList-method: get row dendrograms
- column_dend, HeatmapList-method: get column dendrograms

Heatmap3D 129

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

Heatmap3D

3D Heatmap

Description

3D Heatmap

Usage

Arguments

```
matrix The input matrix. Values should be non-negative.

All pass to Heatmap.

bar_rel_width A factor between 0 and 1.

bar_max_length Maximal length of bars. Value should be in absolute unit.

bar_angle Angle for the projection.

row_names_side Row names are by default put on the left side of the heatmap.

show_row_dend By default the dendrogram is not drawn.

show_column_dend

By default the dendrogram is not drawn.
```

Detals

For large matrices, the plotting might be slow.

HeatmapAnnotation

Examples

```
m = matrix(sample(100, 36), 6)
Heatmap3D(m)
```

HeatmapAnnotation

Constructor Method for HeatmapAnnotation class

Description

Constructor Method for HeatmapAnnotation class

Usage

```
HeatmapAnnotation(...,
    df = NULL, name, col, na_col = "grey",
    annotation_legend_param = list(),
    show_legend = TRUE,
    which = c("column", "row"),
    gp = gpar(col = NA),
    border = FALSE,
    gap = unit(1, "points"),
    show_annotation_name = TRUE,
    annotation_label = NULL,
    annotation_name_gp = gpar(),
    annotation_name_offset = NULL,
    annotation_name_side = ifelse(which == "column", "right", "bottom"),
    annotation_name_rot = NULL,
    annotation_name_align = FALSE,
    annotation_height = NULL,
    annotation_width = NULL,
    height = NULL,
    width = NULL,
    simple_anno_size = ht_opt$simple_anno_size,
    simple_anno_size_adjust = FALSE)
```

Arguments

df

 Name-value pairs where the names correspond to annotation names and val-
ues can be a vector, a matrix and an annotation function. Each pair is sent to
SingleAnnotation to contruct a single annotation.

A data frame. Each column will be treated as a simple annotation. The data frame must have column names.

name Name of the heatmap annotation, optional.

HeatmapAnnotation 131

col A list of colors which contain color mapping to df or simple annotations defined

in See SingleAnnotation for how to set colors.

na_col Color for NA values in simple annotations.

annotation_legend_param

A list which contains parameters for annotation legends. See color_mapping_legend, ColorMapping-me

for all possible options.

show_legend Whether show annotation legends. The value can be one single value or a vector.

which Are these row annotations or column annotations?

gp Graphic parameters for simple annotations (with fill parameter ignored).

border border of single annotations.

gap Gap between annotations. It can be a single value or a vector of unit objects.

show_annotation_name

Whether show annotation names? For column annotation, annotation names are drawn either on the left or the right, and for row annotations, names are draw

either on top or at the bottom. The value can be a vector.

annotation_label

Labels for the annotations. By default it is the same as individual annotation

names.

annotation_name_gp

Graphic parameters for annuation names. Graphic parameters can be vectors.

annotation_name_offset

Offset to the annotation names, a unit object. The value can be a vector.

annotation_name_side

Side of the annotation names.

annotation_name_rot

Rotation of the annotation names. The value can be a vector.

annotation_name_align

Whether to align the annotation names.

annotation_height

Height of each annotation if annotations are column annotations.

annotation_width

Width of each annotation if annotations are row annotations.

height Height of the whole column annotations. width Width of the whole heatmap annotations.

simple_anno_size

Size of the simple annotation.

simple_anno_size_adjust

Whether also adjust the size of simple annotations when adjusting the whole

heatmap annotation.

Details

For arguments show_legend, border, annotation_name_offset, annotation_name_side, annotation_name_rot, show_annotation_name, they can be set as named vectors to modify values for some of the annotations, e.g. assuming you have an annotation with name foo, you can specify border = c(foo = TRUE) in HeatmapAnnotation.

There are three ways to specify heatmap annotations:

1. If the annotation is simply a vector or a matrix, it can be specified like HeatmapAnnotation(foo = 1:10). 2. If the annotations are already stored as a data frame, it can be specified like HeatmapAnnotation(df = df). 3. For complex annotations, users can use the pre-defined annotation functions such as anno_points: HeatmapAnnotation(foo = anno_points(1:10)).

For more details and examples, please check https://jokergoo.github.io/ComplexHeatmap-reference/book/heatmap-annotations.html.

Value

A HeatmapAnnotation-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

There are two helper functions: rowAnnotation and columnAnnotation.

Examples

```
# There is no example
NULL
```

HeatmapAnnotation-class

Class for Heatmap Annotations

Description

Class for Heatmap Annotations

Details

A complex heatmap contains a list of annotations which are represented as graphics placed on rows and columns. The HeatmapAnnotation-class contains a list of single annotations which are represented as a list of SingleAnnotation-class objects.

Methods

The HeatmapAnnotation-class provides following methods:

- HeatmapAnnotation: constructor method.
- draw, HeatmapAnnotation-method: draw the annotations.

HeatmapList 133

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}
```

HeatmapList

Constructor method for HeatmapList class

Description

Constructor method for HeatmapList class

Usage

```
HeatmapList(...)
```

Arguments

... arguments

Details

There is no public constructor method for the HeatmapList-class.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc There}}} \mbox{\ensuremath{\mbox{\sc NULL}}} \mbox{\ensuremath{\mbox{\sc NULL}}}}
```

HeatmapList-class

Class for a list of heatmaps

Description

Class for a list of heatmaps

Details

A heatmap list is defined as a list of heatmaps and annotations.

Methods

The HeatmapList-class provides following methods:

- draw, HeatmapList-method: draw the list of heatmaps and row annotations.
- add_heatmap, HeatmapList-method: add heatmaps to the list of heatmaps.
- row_order, HeatmapList-method: get order of rows
- column_order, HeatmapList-method: get order of columns
- row_dend, HeatmapList-method: get row dendrograms
- column_dend, HeatmapList-method: get column dendrograms

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

heatmap_legend_size-HeatmapList-method

Size of the Heatmap Legends

Description

Size of the Heatmap Legends

Usage

```
## S4 method for signature 'HeatmapList'
heatmap_legend_size(object, legend_list = list(), ...)
```

Arguments

object A HeatmapList-class object.

legend_list A list of self-defined legend, should be wrapped into grob objects. It is normally

constructed by Legend.

... Other arguments.

Details

Internally, all heatmap legends are packed by packLegend as a single grob object.

This function is only for internal use.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

height.AnnotationFunction

Height of the AnnotationFunction Object

Description

Height of the AnnotationFunction Object

Usage

```
## S3 method for class 'AnnotationFunction' height(x, ...)
```

Arguments

x The AnnotationFunction-class object.

... Other arguments.

Details

Internally used.

Examples

```
anno = anno_points(1:10)
ComplexHeatmap:::height(anno)
anno = anno_points(1:10, which = "row")
ComplexHeatmap:::height(anno)
```

height.Heatmap

Height of the Heatmap

Description

Height of the Heatmap

Usage

```
## S3 method for class 'Heatmap' height(x, ...)
```

Arguments

x The HeatmapList-class object returned by draw, Heatmap-method.

... Other arguments.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

height.HeatmapAnnotation

Height of the HeatmapAnnotation Object

Description

Height of the HeatmapAnnotation Object

Usage

```
## S3 method for class 'HeatmapAnnotation' height(x, \dots)
```

Arguments

x The HeatmapAnnotation-class object.

... Other arguments.

height.HeatmapList 137

Details

Internally used.

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

height.HeatmapList

Height of the Heatmap List

Description

Height of the Heatmap List

Usage

```
## S3 method for class 'HeatmapList' height(x, ...)
```

Arguments

x The HeatmapList-class object returned by draw, HeatmapList-method.

... Other arguments.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

height.Legends

Height of the Legends

Description

Height of the Legends

Usage

```
## S3 method for class 'Legends' height(x, ...)
```

Arguments

x The grob object returned by Legend or packLegend.

... Other arguments.

Value

The returned unit x is always in mm.

Examples

```
lgd = Legend(labels = 1:10, title = "foo", legend_gp = gpar(fill = "red"))
ComplexHeatmap:::height(lgd)
```

height.SingleAnnotation

Height of the SingleAnnotation object

Description

Height of the SingleAnnotation object

Usage

```
## S3 method for class 'SingleAnnotation' height(x, ...)
```

Arguments

x The SingleAnnotation-class object.

... Other arguments.

Details

Internally used.

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc There}}} \mbox{\ensuremath{\mbox{\sc NULL}}} \mbox{\ensuremath{\mbox{\sc NULL}}}}
```

heightAssign.AnnotationFunction

Assign the Height to the AnnotationFunction Object

Description

Assign the Height to the AnnotationFunction Object

Usage

```
## S3 replacement method for class 'AnnotationFunction' height(x, ...) <- value
```

Arguments

x The AnnotationFunction-class object.

value A unit object.
... Other arguments.

Details

Internally used.

Examples

```
\# There is no example NULL
```

heightAssign.HeatmapAnnotation

Assign the Height to the HeatmapAnnotation Object

Description

Assign the Height to the HeatmapAnnotation Object

Usage

```
## S3 replacement method for class 'HeatmapAnnotation' height(x, ...) <- value
```

Arguments

x The HeatmapAnnotation-class object.

value A unit object.
... Other arguments.

Details

Internally used.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{T}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}} \mbox{\ensuremath{\mbox{\textbf{e}}}
```

heightAssign.SingleAnnotation

Assign the Height to the SingleAnnotation Object

Description

Assign the Height to the SingleAnnotation Object

Usage

```
## S3 replacement method for class 'SingleAnnotation' height(x, ...) <- value
```

Arguments

x The SingleAnnotation-class object.

value A unit object.
... Other arguments.

Details

Internally used.

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

```
heightDetails.annotation_axis
```

Height for annotation_axis Grob

Description

Height for annotation_axis Grob

Usage

```
## S3 method for class 'annotation_axis'
heightDetails(x)
```

Arguments

Х

The annotation_axis grob returned by annotation_axis_grob.

Details

The physical height of the grob can be get by convertWidth(grobHeight(axis_grob), "mm").

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

heightDetails.legend Grob height for packed_legends

Description

Grob height for packed_legends

Usage

```
## S3 method for class 'legend'
heightDetails(x)
```

Arguments

Х

A legend object.

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

heightDetails.legend_body

Grob height for legend_body

Description

Grob height for legend_body

Usage

```
## S3 method for class 'legend_body'
heightDetails(x)
```

Arguments

Χ

A legend_body object.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc There}}} \mbox{\ensuremath{\mbox{\sc NULL}}} \mbox{\ensuremath{\mbox{\sc NULL}}}}
```

heightDetails.packed_legends

Grob height for packed_legends

Description

Grob height for packed_legends

Usage

```
## S3 method for class 'packed_legends'
heightDetails(x)
```

Arguments

Χ

A packed_legends object.

```
\# There is no example NULL
```

heightDetails.textbox 143

 ${\tt heightDetails.textbox} \ \ \textit{Height for textbox grob}$

Description

Height for textbox grob

Usage

```
## S3 method for class 'textbox'
heightDetails(x)
```

Arguments

Х

The textbox grob returned by textbox_grob.

Value

A unit object.

Examples

```
# There is no example NULL
```

ht_global_opt

Global Options for Heatmaps

Description

Global Options for Heatmaps

Usage

```
ht_global_opt(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE, ADD = FALSE)
```

Arguments

... Options.

RESET Reset all the option values.

READ.ONLY TRUE means only to return read-only values, FALSE means only to return non-

read-only values, NULL means to return both.

LOCAL Wwitch to local mode.

ADD Add new options.

144 ht_opt

Details

This function is deprecated. Please use ht_opt instead. However, changes by this function will also be sychronized in ht_opt.

Examples

```
# There is no example NULL
```

ht_opt

Global Options for Heatmaps

Description

Global Options for Heatmaps

Usage

```
ht_opt(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE, ADD = FALSE)
```

Arguments

... Options, see 'Details' section.

RESET Reset all the option values.

READ.ONLY Please ignore this argument.

LOCAL Please ignore this argument.

ADD Please ignore this argument.

Details

You can set some parameters for all heatmaps/annotations simultaneously by this global function. Pleast note you should put it before your heatmap code and reset all option values after drawing the heatmaps to get rid of affecting next heatmap.

There are following parameters to control all heatmaps:

```
heatmap_row_names_gp set row_names_gp in all Heatmap.
```

heatmap_column_names_gp set column_names_gp in all Heatmap.

heatmap_row_title_gp set row_title_gp in all Heatmap.

heatmap_column_title_gp set column_title_gp in all Heatmap.

heatmap_border set border in all Heatmap.

Following parameters control the legends:

legend_title_gp set title_gp in all heatmap legends and annotation legends.

ht_opt 145

legend_title_position set title_position in all heatmap legends and annotation legends.

legend_labels_gp set labels_gp in all heatmap legends and annotation legends.

legend_grid_width set grid_width in all heatmap legends and annotation legends.

legend_grid_height set grid_height in all heatmap legends and annotation legends.

legend_border set border in all heatmap legends and annotation legends.

legend_gap Gap between legends. The value should be a vector of two units. One for gaps between vertical legends and one for the horizontal legends. If only one single unit is specified, the same gap set for the vertical and horizontal legends.

merge_legend wether merge heatmap and annotation legends.

Following parameters control heatmap annotations:

annotation_border border in all HeatmapAnnotation.

simple_anno_size size for the simple annotation.

Following parameters control the space between heatmap components:

DENDROGRAM PADDING space bewteen dendrograms and heatmap body.

DIMNAME_PADDING space between row/column names and heatmap body.

TITLE_PADDING space between row/column titles and heatmap body. The value can have length of two which corresponds to the botton and top padding.

COLUMN_ANNO_PADDING space between column annotations and heatmap body.

ROW ANNO PADDING space between row annotations and heatmap body.

HEATMAP_LEGEND_PADDING space between heatmap legends and heatmaps

ANNOTATION_LEGEND_PADDING space between annotation legends and heatmaps

Other parameters:

fast hclust whether use hclust to speed up clustering?

show_parent_dend_line when heatmap is split, whether to add a dashed line to mark parent dendrogram and children dendrograms?

COLOR default colors for continuous color mapping.

You can get or set option values by the traditional way (like options) or by \$ operator:

```
# to get option values
ht_opt("heatmap_row_names_gp")
ht_opt$heatmap_row_names_gp
# to set option values
ht_opt("heatmap_row_names_gp" = gpar(fontsize = 8))
ht_opt$heatmap_row_names_gp = gpar(fontsize = 8)
```

Reset to the default values by $ht_opt(RESET = TRUE)$.

is_abs_unit

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

ht_opt

ht_size

Calculate the width and height of the heatmaps

Description

Calculate the width and height of the heatmaps

Usage

```
ht_size(ht)
```

Arguments

ht

A Heatmap-class or HeatmapList-class object.

Value

A list of two elements: width and height.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

is_abs_unit

Test Whether it is an Absolute Unit

Description

Test Whether it is an Absolute Unit

Usage

```
is_abs_unit(u)
```

Arguments

u

A unit object.

Legend 147

Details

Besides the normal absolute units (e.g. "mm", "inches"), this function simply assumes grob objects as absolute units.

For a complex unit which is combination of different units, it is absolute only if all units included are absolute units.

Value

A logical value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
is_abs_unit(unit(1, "mm"))
is_abs_unit(unit(1, "npc"))
is_abs_unit(grobWidth(textGrob("foo")))
is_abs_unit(unit(1, "mm") + unit(1, "npc"))
```

Legend

Make a Single Legend

Description

Make a Single Legend

Usage

```
Legend(at, labels = at, col_fun, name = NULL, grob = NULL,
    break_dist = NULL, nrow = NULL, ncol = 1, by_row = FALSE,
    grid_height = unit(4, "mm"),
    grid_width = unit(4, "mm"), tick_length = unit(0.8, "mm"),
    gap = unit(2, "mm"), column_gap = gap, row_gap = unit(0, "mm"),
    labels_gp = gpar(fontsize = 10), labels_rot = 0,
    border = NULL, background = "#EEEEEE",
    type = "grid", graphics = NULL, legend_gp = gpar(),
    pch = 16, size = unit(2, "mm"),
    legend_height = NULL, legend_width = NULL,
    direction = c("vertical", "horizontal"),
    title = "", title_gp = gpar(fontsize = 10, fontface = "bold"),
    title_position = c("topleft", "topcenter", "leftcenter", "lefttop", "leftcenter-rot", "lefttop-rot"
    title_gap = unit(2, "mm"))
```

148 Legend

Arguments

at Breaks of the legend. The values can be either numeric or character. If it is not

specified, the values of labels are taken as labels.

labels Labels corresponding to at. If it is not specified, the values of at are taken as

labels.

col_fun A color mapping function which is used to make a continuous legend. Use

colorRamp2 to generate the color mapping function. If at is missing, the breaks

recorded in the color mapping function are used for at.

name Name of the legend, internally used.

grob The legend body can be specified by a pre-constructed grob object.

break_dist A zooming factor to control relative distance of two neighbouring break val-

ues. The length of it should be length(at) - 1 or a scalar.

nrow For legend which is represented as grids, nrow controls number of rows of the

grids if the grids are arranged into multiple rows.

ncol Similar as nrow, ncol controls number of columns of the grids if the grids are

arranged into multiple columns. Note at a same time only one of nrow and ncol

can be specified.

by_row Are the legend grids arranged by rows or by columns?

grid_height The height of legend grid. It can also control the height of the continuous legend

if it is horizontal.

grid_width The width of legend grid. It can also control the width of the continuous legend

if it is vertical.

tick_length Length of the ticks on the continuous legends. Value should be a unit object.

gap If legend grids are put into multiple rows or columns, this controls the gap be-

tween neighbouring rows or columns, measured as a unit object.

column_gap The same as gap.

row_gap Space between legend rows.
labels_gp Graphic parameters for labels.

labels_rot Text rotation for labels. It should only be used for horizontal continuous legend.

border Color of legend grid borders. It also works for the ticks in the continuous legend.

background Background colors for the grids. It is used when points and lines are the legend

graphics.

type Type of legends. The value can be one of grid, points, lines and boxplot.

graphics Self-defined graphics for legends. The value should be a list of functions. Each

function should accept four argumets: x and y: positions of the legend grid

(center point), w and h: width and height of the legend grid.

legend_gp Graphic parameters for the legend grids. You should control the filled color of

the legend grids by gpar(fill = ...).

pch Type of points if points are used as legend. Note you can use single-letter as

pch, e.g. pch = 'A'. There are three additional integers that are valid for pch: 26

and 27 for single diagonal lines and 28 for double diagonal lines.

Legend 149

size	Size of points.
legend_height	Height of the whole legend body. It is only used for vertical continous legend.
legend_width	Width of the whole legend body. It is only used for horizontal continous legend.
direction	Direction of the legend, vertical or horizontal?
title	Title of the legend.
title_gp	Graphic parameters of the title.
title_position	Position of title relative to the legend. topleft, topcenter, leftcenter-rot and lefttop-rot are only for vertical legend and leftcenter, lefttop are only for horizontal legend.
title_gap	Gap between title and the legend body.

Details

Most of the argument can also be set in heatmap_legend_param argument in Heatmap or annotation_legend_param argument in HeatmapAnnotation to configure legend styles for heatmap and annotations.

Value

A Legends-class object.

See Also

packLegend packs multiple legends into one Legends-class object.

See examples of configuring legends: https://jokergoo.github.io/ComplexHeatmap-reference/book/legends.html

```
lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6))
draw(lgd, test = "add labels and title")

require(circlize)
col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
lgd = Legend(col_fun = col_fun, title = "foo")
draw(lgd, test = "only col_fun")

col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1))
draw(lgd, test = "unequal interval breaks")
```

150 Legends-class

Legends

Constructor method for Legends class

Description

Constructor method for Legends class

Usage

```
Legends(...)
```

Arguments

.. arguments.

Details

There is no public constructor method for the Legends-class.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

Legends-class

The Class for Legends

Description

The Class for Legends

Details

This is a very simple class for legends that it only has one slot which is the real grob of the legends. Construct a single legend by Legend and a group of legends by packLegend.

Examples

```
lgd = Legend(at = 1:4)
lgd
lgd@grob
```

length.HeatmapAnnotation

Number of Annotations

Description

Number of Annotations

Usage

```
## S3 method for class 'HeatmapAnnotation' length(x)
```

Arguments

Χ

A HeatmapAnnotation-class object.

Examples

```
# There is no example NULL
```

length.HeatmapList

Length of the HeatmapList object

Description

Length of the HeatmapList object

Usage

```
## S3 method for class 'HeatmapList'
length(x)
```

Arguments

х

A HeatmapList-class object

```
\# There is no example NULL
```

list_to_matrix

list_components

List All Heatmap Components

Description

List All Heatmap Components

Usage

```
list_components(pattern = NULL)
```

Arguments

pattern

A regular expression.

Value

A vector of viewport names.

Examples

```
\# There is no example NULL
```

list_to_matrix

Convert a List of Sets to a Binary Matrix

Description

Convert a List of Sets to a Binary Matrix

Usage

```
list_to_matrix(lt, universal_set = NULL)
```

Arguments

Details

It converts the list which have m sets to a binary matrix with n rows and m columns where n is the size of universal set.

Examples

Description

Make Cluster on Columns

Usage

```
## S4 method for signature 'Heatmap'
make_column_cluster(object)
```

Arguments

object

A Heatmap-class object.

Details

The function will fill or adjust $column_dend_list$, $column_order_list$, $column_title$ and $matrix_param$ slots.

If order is defined, no clustering will be applied.

This function is only for internal use.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

make_comb_mat

	make_comb_mat	Make a Combination Matrix for UpSet Plot	
--	---------------	--	--

Description

Make a Combination Matrix for UpSet Plot

Usage

```
make_comb_mat(..., mode = c("distinct", "intersect", "union"),
   top_n_sets = Inf, min_set_size = -Inf,
   universal_set = NULL, complement_size = NULL,
   value_fun = NULL, set_on_rows = TRUE)
```

Arguments

The input sets. If it is represented as a single variable, it should be a matrix/data frame or a list. If it is multiple variables, it should be name-value pairs, see Input

section for explanation.

mode The mode for forming the combination set, see Mode section.

top_n_sets Number of sets with largest size.

min_set_size Ths minimal set size that is used for generating the combination matrix.

universal_set The universal set. If it is set, the size of the complement set of all sets is also

calculated. It if is specified, complement_size is ignored.

complement_size

The size for the complement of all sets. If it is specified, the combination set

name will be like "00...".

value_fun For each combination set, how to calculate the size? If it is a scalar set, the

length of the vector is the size of the set, while if it is a region-based set, (i.e. GRanges or IRanges object), the sum of widths of regions in the set is calculated

as the size of the set.

set_on_rows Used internally.

Value

A matrix also in a class of comb_mat.

Following functions can be applied to it: set_name, comb_name, set_size, comb_size, comb_degree, extract_comb and t.comb_mat.

Input

To represent multiple sets, the variable can be represented as:

1. A list of sets where each set is a vector, e.g.:

make_comb_mat 155

```
list(set1 = c("a", "b", "c"),

set2 = c("b", "c", "d", "e"),

...)
```

2. A binary matrix/data frame where rows are elements and columns are sets, e.g.:

```
a b c
h 1 1 1
t 1 0 1
j 1 0 0
u 1 0 1
w 1 0 0
```

If the variable is a data frame, the binary columns (only contain 0 and 1) and the logical columns are only kept.

The set can be genomic regions, then it can only be represented as a list of GRanges objects.

Mode

E.g. for three sets (A, B, C), the UpSet approach splits the combination of selecting elements in the set or not in the set and calculates the sizes of the combination sets. For three sets, all possible combinations are:

A value of 1 means to select that set and 0 means not to select that set. E.g., "1 1 0" means to select set A, B while not set C. Note there is no "0 0 0", because the background size is not of interest here. With the code of selecting and not selecting the sets, next we need to define how to calculate the size of that combination set. There are three modes:

- 1. distinct mode: 1 means in that set and 0 means not in that set, then "1 1 0" means a set of elements also in set A and B, while not in C (i.e. setdiff(intersect(A, B), C)). Under this mode, the seven combination sets are the seven partitions in the Venn diagram and they are mutually exclusive.
- 2. intersect mode: 1 means in that set and 0 is not taken into account, then, "1 1 0" means a set of elements in set A and B, and they can also in C or not in C (i.e. intersect(A, B)). Under this mode, the seven combination sets can overlap.
- 3. union mode: 1 means in that set and 0 is not taken into account. When there are multiple 1, the relationship is OR. Then, "1 1 0" means a set of elements in set A or B, and they can also in C or not in C (i.e. union(A, B)). Under this mode, the seven combination sets can overlap.

156 make_layout-dispatch

Examples

```
set.seed(123)
lt = list(a = sample(letters, 10),
          b = sample(letters, 15),
          c = sample(letters, 20))
m = make_comb_mat(lt)
mat = list_to_matrix(lt)
mat
m = make_comb_mat(mat)
## Not run:
require(circlize)
require(GenomicRanges)
lt = lapply(1:4, function(i) generateRandomBed())
lt = lapply(lt, function(df) GRanges(seqnames = df[, 1],
    ranges = IRanges(df[, 2], df[, 3])))
names(lt) = letters[1:4]
m = make_comb_mat(lt)
## End(Not run)
```

make_layout-dispatch Method dispatch page for make_layout

Description

Method dispatch page for make_layout.

Dispatch

make_layout can be dispatched on following classes:

- make_layout, Heatmap-method, Heatmap-class class method
- make_layout, HeatmapList-method, HeatmapList-class class method

```
# no example
NULL
```

make_layout-Heatmap-method

Make the Layout of a Single Heatmap

Description

Make the Layout of a Single Heatmap

Usage

```
## S4 method for signature 'Heatmap'
make_layout(object)
```

Arguments

object

A Heatmap-class object.

Details

The layout of the single heatmap will be established by setting the size of each heatmap component. Also how to make graphics for heatmap components will be recorded by saving as functions.

Whether to apply row clustering or column clustering affects the layout, so clustering should be applied first by prepare, Heatmap-method before making the layout.

This function is only for internal use.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
# There is no example NULL
```

make_layout-HeatmapList-method

Make Layout for the Heatmap List

Description

Make Layout for the Heatmap List

Usage

```
## S4 method for signature 'HeatmapList'
make_layout(object,
   row_title = character(0),
   row_title_side = c("left", "right"),
   row_title_gp = gpar(fontsize = 14),
   column_title = character(0),
   column_title_side = c("top", "bottom"),
    column_title_gp = gpar(fontsize = 14),
   heatmap_legend_side = c("right", "left", "bottom", "top"),
   merge_legends = FALSE,
    show_heatmap_legend = TRUE,
   heatmap_legend_list = list(),
   annotation_legend_side = c("right", "left", "bottom", "top"),
    show_annotation_legend = TRUE,
    annotation_legend_list = list(),
    align_heatmap_legend = NULL,
   align_annotation_legend = NULL,
   legend_grouping = c("adjusted", "original"),
   ht_gap = unit(2, "mm"),
   main_heatmap = which(sapply(object@ht_list, inherits, "Heatmap"))[1],
   padding = GLOBAL_PADDING,
   auto_adjust = TRUE,
    row_dend_side = c("original", "left", "right"),
    row_sub_title_side = c("original", "left", "right"),
    column_dend_side = c("original", "top", "bottom"),
    column_sub_title_side = c("original", "top", "bottom"),
    row_gap = NULL,
   cluster_rows = NULL,
   cluster_row_slices = NULL,
   clustering_distance_rows = NULL,
   clustering_method_rows = NULL,
```

```
row_dend_width = NULL,
show_row_dend = NULL,
row_dend_reorder = NULL,
row_dend_gp = NULL,
row_order = NULL,
row_km = NULL,
row_km_repeats = NULL,
row_split = NULL,
height = NULL,
heatmap_height = NULL,
column_gap = NULL,
cluster_columns = NULL,
cluster_column_slices = NULL,
clustering_distance_columns = NULL,
clustering_method_columns = NULL,
column_dend_width = NULL,
show_column_dend = NULL,
column_dend_reorder = NULL,
column_dend_gp = NULL,
column_order = NULL,
column_km = NULL,
column_km_repeats = NULL,
column_split = NULL,
width = NULL,
heatmap_width = NULL,
use_raster = NULL,
raster_device = NULL,
raster_quality = NULL,
raster_device_param = NULL,
raster_resize = NULL)
```

Arguments

```
object A HeatmapList-class object.

row_title Title on the row.

row_title_side Will the title be put on the left or right of the heatmap list?

row_title_gp Graphic parameters for the row title.

column_title Title on the column.

column_title_side

Will the title be put on the top or bottom of the heatmap?

column_title_gp

Graphic parameters for the column title.

heatmap_legend_side

Side of the heatmap legends.
```

merge_legends Whether to put heatmap legends and annotation legends together. By default they are put in different viewports.

show_heatmap_legend

Whether show heatmap legends.

heatmap_legend_list

A list of self-defined legends, should be wrapped into a list of grob objects. Normally they are constructed by Legend.

annotation_legend_side

Side of annotation legends.

show_annotation_legend

Whether show annotation legends.

annotation_legend_list

A list of self-defined legends, should be wrapped into a list of grob objects. Normally they are constructed by Legend.

align_heatmap_legend

How to align the legends to heatmap. Possible values are "heatmap_center", "heatmap_top" and "global_center". If the value is NULL, it automatically picks the proper value from the three options.

align_annotation_legend

How to align the legends to heatmap. Possible values are "heatmap_center", "heatmap_top" and "global_center".

legend_grouping

How the legends are grouped. Values should be "adjusted" or "original".

ht_gap Gap between heatmaps, should be a unit object. It can be a vector of length 1 or the number of heamtaps/annotations.

main_heatmap Name or index for the main heatmap.

padding Padding of the whole plot. The four values correspond to the bottom, left, top

and right paddings.

auto_adjust whether apply automatic adjustment? The auto-adjustment includes turning off

dendrograms, titles and row/columns for non-main heatmaps.

row_dend_side If auto-adjustment is on, to put the row dendrograms of the main heatmap to the

most left side of the heatmap list or the most right side?

row_sub_title_side

There can be sub titles generated by the splitting of heatmaps. Similar setting as row_dend_side.

column_dend_side

Similar setting as row_dend_side.

column_sub_title_side

Similar setting as row_sub_title_side.

row_gap Overwrite the corresponding setting in the main heatmap.

cluster_rows Overwrite the corresponding setting in the main heatmap.

cluster_row_slices

Overwrite the corresponding setting in the main heatmap.

clustering_distance_rows

Overwrite the corresponding setting in the main heatmap.

clustering_method_rows

Overwrite the corresponding setting in the main heatmap.same setting as in Heatmap, if it is specified, clustering_method_rows in main heatmap is ignored.

row_dend_width Overwrite the corresponding setting in the main heatmap.

show_row_dend same Overwrite the corresponding setting in the main heatmap.

row_dend_reorder

Overwrite the corresponding setting in the main heatmap.

row_dend_gp Overwrite the corresponding setting in the main heatmap.

row_order Overwrite the corresponding setting in the main heatmap.

row_km Overwrite the corresponding setting in the main heatmap.

row_km_repeats Overwrite the corresponding setting in the main heatmap.

row_split Overwrite the corresponding setting in the main heatmap.

height Overwrite the corresponding setting in the main heatmap.

heatmap_height Overwrite the corresponding setting in the main heatmap.

column_gap Overwrite the corresponding setting in the main heatmap.

cluster_columns

Overwrite the corresponding setting in the main heatmap.

cluster_column_slices

Overwrite the corresponding setting in the main heatmap.

clustering_distance_columns

Overwrite the corresponding setting in the main heatmap.

clustering_method_columns

Overwrite the corresponding setting in the main heatmap.

column_dend_width

column Overwrite the corresponding setting in the main heatmap.

show_column_dend

Overwrite the corresponding setting in the main heatmap.

column_dend_reorder

Overwrite the corresponding setting in the main heatmap.

column_dend_gp Overwrite the corresponding setting in the main heatmap.

column_order Overwrite the corresponding setting in the main heatmap.

column_km Overwrite the corresponding setting in the main heatmap. column_km_repeats

Overwrite the corresponding setting in the main heatmap.

column_split Overwrite the corresponding setting in the main heatmap.

width Overwrite the corresponding setting in the main heatmap.

heatmap_width Overwrite the corresponding setting in the main heatmap.

```
raster_device Overwrite the corresponding setting in every heatmap.
raster_quality Overwrite the corresponding setting in every heatmap.
raster_device_param
Overwrite the corresponding setting in every heatmap.
raster_resize Overwrite the corresponding setting in every heatmap.
```

Details

It sets the size of each component of the heatmap list and adjusts graphic parameters for each heatmap if necessary.

This function is only for internal use.

Value

A HeatmapList-class object in which settings for all heatmap are adjusted.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

Examples

```
# There is no example NULL
```

```
make_row_cluster-Heatmap-method

*Make Cluster on Rows*
```

Description

Make Cluster on Rows

Usage

```
## S4 method for signature 'Heatmap'
make_row_cluster(object)
```

Arguments

object A Heatmap-class object.

Details

The function will fill or adjust row_dend_list, row_order_list, row_title and matrix_param slots.

If order is defined, no clustering will be applied.

This function is only for internal use.

Value

A Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

Description

Map Values to Colors

Usage

```
## S4 method for signature 'ColorMapping'
map_to_colors(object, x)
```

Arguments

object A ColorMapping-class object.

x Input values.

Details

It maps a vector of values to a vector of colors.

This function provides a uniform way for discrete and continuous color mapping.

Value

A vector of colors.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

164 max_text_height

Examples

```
cm = ColorMapping(colors = c("A" = "red", "B" = "black"))
map_to_colors(cm, sample(c("A", "B"), 10, replace = TRUE))
require(circlize)
col_fun = colorRamp2(c(0, 1), c("white", "red"))
cm = ColorMapping(col_fun = col_fun)
map_to_colors(cm, runif(10))
```

max_text_height

Maximum Height of Text

Description

Maximum Height of Text

Usage

```
max_text_height(text, gp = gpar(), rot = 0)
```

Arguments

text A vector of text.

gp Graphic parameters for text.
rot Rotation of the text, scalar.

Details

It simply calculates maximum height of a list of textGrob objects.

Note it ignores the text rotation.

Value

A unit object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

max_text_width calculates the maximum width of a text vector.

```
x = c("a", "b\nb", "c\nc\nc")
max_text_height(x, gp = gpar(fontsize = 10))
```

max_text_width 165

max	text	_width
-----	------	--------

Maximum Width of Text

Description

Maximum Width of Text

Usage

```
max_text_width(text, gp = gpar(), rot = 0)
```

Arguments

text A vector of text.

gp Graphic parameters for text.
rot Rotation of the text, scalar.

Details

It simply calculates maximum width of a list of textGrob objects.

Note it ignores the text rotation.

Value

A unit object which is in "mm".

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

max_text_height calculates the maximum height of a text vector.

```
x = c("a", "bb", "ccc")
max_text_width(x, gp = gpar(fontsize = 10))
```

166 merge_dendrogram

merge_dendrogram

Merge Dendrograms

Description

Merge Dendrograms

Usage

```
merge_dendrogram(x, y, only_parent = FALSE, ...)
```

Arguments

X	The parent dendrogram.
у	The children dendrograms. They are connected to the leaves of the parent dendrogram. So the length of y should be as same as the number of leaves of the parent dendrogram.
only_parent	Whether only returns the parent dendrogram where the height and node positions have been adjusted by children dendrograms.
	Other arguments.

Details

Do not retrieve the order of the merged dendrogram. It is not reliable.

```
m1 = matrix(rnorm(100), nr = 10)
m2 = matrix(rnorm(80), nr = 8)
m3 = matrix(rnorm(50), nr = 5)
dend1 = as.dendrogram(hclust(dist(m1)))
dend2 = as.dendrogram(hclust(dist(m2)))
dend3 = as.dendrogram(hclust(dist(m3)))
dend_p = as.dendrogram(hclust(dist(rbind(colMeans(m1), colMeans(m2), colMeans(m3)))))
dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
grid.dendrogram(dend_m, test = TRUE)
dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3), only_parent = TRUE)
grid.dendrogram(dend_m, test = TRUE)
require(dendextend)
dend1 = color_branches(dend1, k = 1, col = "red")
dend2 = color_branches(dend2, k = 1, col = "blue")
dend3 = color_branches(dend3, k = 1, col = "green")
dend_p = color_branches(dend_p, k = 1, col = "orange")
dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
grid.dendrogram(dend_m, test = TRUE)
```

names.HeatmapAnnotation

Annotation Names

Description

Annotation Names

Usage

```
## S3 method for class 'HeatmapAnnotation'
names(x)
```

Arguments

Χ

A HeatmapAnnotation-class object.

Examples

```
ha = HeatmapAnnotation(foo = 1:10, bar = anno_points(10:1))
names(ha)
```

names.HeatmapList

Names of the heatmaps/annotations

Description

Names of the heatmaps/annotations

Usage

```
## S3 method for class 'HeatmapList'
names(x)
```

Arguments

~

A HeatmapList-class object

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

168 ncol.Heatmap

```
namesAssign.HeatmapAnnotation
```

Assign Annotation Names

Description

Assign Annotation Names

Usage

```
## S3 replacement method for class 'HeatmapAnnotation' names(x) \leftarrow value
```

Arguments

```
x \hspace{1cm} A \hspace{0.1cm} \textit{HeatmapAnnotation-class object.}
```

value A vector of new names.

Examples

```
ha = HeatmapAnnotation(foo = 1:10, bar = anno_points(10:1))
names(ha) = c("A", "B")
names(ha)
```

ncol.Heatmap

Number of Columns in the Heatmap

Description

Number of Columns in the Heatmap

Usage

```
## S3 method for class 'Heatmap'
ncol(x)
```

Arguments

Χ

A Heatmap-class object.

```
# There is no example NULL
```

nobs.AnnotationFunction 169

```
nobs.AnnotationFunction
```

Number of Observations

Description

Number of Observations

Usage

```
## S3 method for class 'AnnotationFunction'
nobs(object, ...)
```

Arguments

object The AnnotationFunction-class object.
... Other arguments.

Details

returns NA.

Examples

```
anno = anno_points(1:10)
nobs(anno)
```

nobs.HeatmapAnnotation

Number of Observations

Description

Number of Observations

Usage

```
## S3 method for class 'HeatmapAnnotation'
nobs(object, ...)
```

Arguments

```
\begin{tabular}{ll} \beg
```

... other arguments.

170 nobs.SingleAnnotation

Value

If there is no nobs information for any of its SingleAnnotation-class object, it returns NA.

Examples

```
# There is no example NULL
```

 ${\tt nobs.SingleAnnotation} \ \ \textit{Number of Observations}$

Description

Number of Observations

Usage

```
## S3 method for class 'SingleAnnotation'
nobs(object, ...)
```

Arguments

```
object The SingleAnnotation-class object.
... Other arguments.
```

Details

It returns the n slot of the annotaton function. If it does not exist, it returns NA.

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

normalize_comb_mat 171

normalize_comb_mat

Normalize a list of combination matrice

Description

Normalize a list of combination matrice

Usage

```
normalize_comb_mat(..., full_comb_sets = FALSE, complement_set = FALSE)
```

Arguments

... Combination matrices.

full_comb_sets Whether the combination matrices contain the full sets of combination sets? complement_set Whether the combination matrices also contain the complement set?

Details

It normalizes a list of combination matrice to make them have same number and order of sets and combination sets.

The sets (by set_name) from all combination matrice should be the same.

Examples

```
# There is no example NULL
```

```
normalize_genomic_signals_to_bins
```

Overlap genomic signals to the genomic bins

Description

Overlap genomic signals to the genomic bins

Usage

Arguments

gr A GRanges object.

value The corresponding signals corresponding to gr.

value_column If value is not set and the values are in the meta-columns in gr, you can specify the column indices for these value columns, better to use name indices.

method One of "weighted", "w0" and "absolute". For the three different methods, please refer to https://bioconductor.org/packages/release/bioc/vignettes/EnrichedHeatmap/inst/doc/EnrichedHeatmap.html#toc_7.

empty_value The value for the bins where no signal is overlapped.

window The genomic bins generated from bin_genome.

Details

The genomic bins should be generated by bin_genome in advance. The genomic bins are saved internally, so that multiple uses of bin_genome ensure they all return the matrices with the same rows.

It supports following values.

- When neither value nor value_column is set, it simply overlap gr to the genomic bins and returns a one-column logical matrix which represents whether the current genomic bin overlaps to any signal.
- When the signals are numeric, value can be a numeric vector or a matrix, or value_column can contain multiple columns. The function returns a numeric matrix where the values are properly averaged depending on what method was used.
- When the signals are character, value can only be a vector or value_column can only contain one single column. The function returns a one-column character matrix.

Value

A matrix with the same row as the genomic bins.

```
## Not run:
require(circlize)
require(GenomicRanges)

chr_window = bin_genome("hg19")

#### the first is a numeric matrix #######
bed1 = generateRandomBed(nr = 1000, nc = 10)
gr1 = GRanges(seqnames = bed1[, 1], ranges = IRanges(bed1[, 2], bed1[, 3]))

num_mat = normalize_genomic_signals_to_bins(gr1, bed1[, -(1:3)])

#### the second is a character matrix ######
bed_list = lapply(1:10, function(i) {
```

```
generateRandomBed(nr = 1000, nc = 1,
        fun = function(n) sample(c("gain", "loss"), n, replace = TRUE))
})
char_mat = NULL
for(i in 1:10) {
   bed = bed_list[[i]]
   bed = bed[sample(nrow(bed), 20), , drop = FALSE]
    gr_cnv = GRanges(seqnames = bed[, 1], ranges = IRanges(bed[, 2], bed[, 3]))
    char_mat = cbind(char_mat, normalize_genomic_signals_to_bins(gr_cnv, bed[, 4]))
}
#### two numeric columns #########
bed2 = generateRandomBed(nr = 100, nc = 2)
gr2 = GRanges(seqnames = bed2[, 1], ranges = IRanges(bed2[, 2], bed2[, 3]))
v = normalize_genomic_signals_to_bins(gr2, bed2[, 4:5])
##### a list of genes need to be highlighted
bed3 = generateRandomBed(nr = 40, nc = 0)
gr3 = GRanges(seqnames = bed3[, 1], ranges = IRanges(bed3[, 2], bed3[, 2]))
gr3$gene = paste0("gene_", 1:length(gr3))
mtch = as.matrix(findOverlaps(chr_window, gr3))
at = mtch[, 1]
labels = mcols(gr3)[mtch[, 2], 1]
##### order of the chromosomes #######
chr = as.vector(seqnames(chr_window))
chr_level = paste0("chr", c(1:22, "X", "Y"))
chr = factor(chr, levels = chr_level)
#### make the heatmap ######
subgroup = rep(c("A", "B"), each = 5)
ht_opt$TITLE_PADDING = unit(c(4, 4), "points")
ht_list = Heatmap(num_mat, name = "mat", col = colorRamp2(c(-1, 0, 1), c("green", "white", "red")),
    row_split = chr, cluster_rows = FALSE, show_column_dend = FALSE,
    column_split = subgroup, cluster_column_slices = FALSE,
    column_title = "numeric matrix",
   top_annotation = HeatmapAnnotation(subgroup = subgroup, annotation_name_side = "left"),
    row_title_rot = 0, row_title_gp = gpar(fontsize = 10), border = TRUE,
    row_gap = unit(0, "points")) +
Heatmap(char_mat, name = "CNV", col = c("gain" = "red", "loss" = "blue"),
    border = TRUE, column_title = "character matrix") +
rowAnnotation(label = anno_mark(at = at, labels = labels)) +
rowAnnotation(pt = anno_points(v, gp = gpar(col = 4:5), pch = c(1, 16)),
    width = unit(2, "cm")) +
rowAnnotation(bar = anno_barplot(v[, 1], gp = gpar(col = ifelse(v[, 1] > 0, 2, 3))),
    width = unit(2, "cm"))
draw(ht_list, merge_legend = TRUE)
##### or horizontally ###
```

174 nrow.Heatmap

```
ht_list = Heatmap(t(num_mat), name = "mat", col = colorRamp2(c(-1, 0, 1), c("green", "white", "red")),
    column_split = chr, cluster_columns = FALSE, show_row_dend = FALSE,
    row_split = subgroup, cluster_row_slices = FALSE,
    row_title = "numeric matrix",
    left_annotation = rowAnnotation(subgroup = subgroup, show_annotation_name = FALSE,
        annotation_legend_param = list(
         subgroup = list(direction = "horizontal", title_position = "lefttop", nrow = 1))),
    column_title_gp = gpar(fontsize = 10), border = TRUE,
    column_gap = unit(0, "points"),
  column_title = ifelse(seq_along(chr_level) %% 2 == 0, paste0("\n", chr_level), paste0(chr_level, "\n")),
   heatmap_legend_param = list(direction = "horizontal", title_position = "lefttop")) %v%
Heatmap(t(char_mat), name = "CNV", col = c("gain" = "red", "loss" = "blue"),
    border = TRUE, row_title = "character matrix",
  heatmap_legend_param = list(direction = "horizontal", title_position = "lefttop", nrow = 1)) %v%
HeatmapAnnotation(label = anno_mark(at = at, labels = labels, side = "bottom")) %v%
HeatmapAnnotation(pt = anno_points(v, gp = gpar(col = 4:5), pch = c(1, 16)),
    annotation_name_side = "left", height = unit(2, "cm")) %v%
HeatmapAnnotation(bar = anno\_barplot(v[, 1], gp = gpar(col = ifelse(v[, 1] > 0, 2, 3))),
    annotation_name_side = "left", height = unit(2, "cm"))
draw(ht_list, heatmap_legend_side = "bottom", merge_legend = TRUE)
## End(Not run)
```

nrow.Heatmap

Number of Rows in the Heatmap

Description

Number of Rows in the Heatmap

Usage

```
## S3 method for class 'Heatmap'
nrow(x)
```

Arguments

х

A Heatmap-class object.

```
# There is no example NULL
```

oncoPrint 175

oncoPrint

Make oncoPrint

Description

Make oncoPrint

Usage

```
oncoPrint(mat, name,
    get_type = default_get_type,
    alter_fun,
    alter_fun_is_vectorized = NULL,
    col = NULL,
    top_annotation = HeatmapAnnotation(cbar = anno_oncoprint_barplot()),
    right_annotation = rowAnnotation(rbar = anno_oncoprint_barplot()),
    left_annotation = NULL,
    bottom_annotation = NULL,
    show_pct = TRUE,
    pct_gp = gpar(fontsize = 10),
    pct_digits = 0,
    pct_side = "left",
    pct_include = NULL,
    row_labels = NULL,
    show_row_names = TRUE,
    row_names_side = "right",
    row_names_gp = pct_gp,
    row_split = NULL,
    column_labels = NULL,
    column_names_gp = gpar(fontsize = 10),
    column_split = NULL,
    row_order = NULL,
    column_order = NULL,
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    remove_empty_columns = FALSE,
    remove_empty_rows = FALSE,
    show_column_names = FALSE,
    heatmap_legend_param = NULL,
    ...)
```

176 oncoPrint

Arguments

mat The value should be a character matrix which encodes mulitple alterations or

a list of matrices for which every matrix contains binary value representing whether the alteration is present or absent. When the value is a list, the names of the list represent alteration types. You can use unify_mat_list to make all

matrix having same row names and column names.

name Name of the oncoPrint. Not necessary to specify.

get_type If different alterations are encoded in the matrix as complex strings, this self-

defined function determines how to extract them. It only works when mat is a

matrix. The default value is default_get_type.

alter_fun A single function or a list of functions which defines how to add graphics for

different alterations. You can use alter_graphic to automatically generate for

rectangles and points.

alter_fun_is_vectorized

Whether alter_fun is implemented vectorized. Internally the function will

guess.

col A vector of color for which names correspond to alteration types.

top_annotation Annotation put on top of the oncoPrint. By default it is barplot which shows the

number of genes with a certain alteration in each sample.

right_annotation

Annotation put on the right of the oncoPrint. By default it is barplot which

shows the number of samples with a certain alteration in each gene.

left_annotation

Annotation put on the left of the oncoPrint.

bottom_annotation

Annotation put at the bottom of the oncoPrint.

show_pct whether show percent values on the left of the oncoprint?

pct_gp Graphic paramters for percent values

pct_digits Digits for the percent values.

pct_side Side of the percent values to the oncoPrint. This argument is currently disabled.

pct_include Alteration types that are included for the calculation of percent values.

row_labels Labels as the row names of the oncoPrint.

show_row_names Whether show row names?

row_names_side Side of the row names to the oncoPrint. This argument is currently disabled.

row_names_gp Graphic parameters for the row names.

row_split Pass to Heatmap. column_labels Pass to Heatmap.

 ${\tt column_names_gp}$

column_split

Pass to Heatmap.

Pass to Heatmap.

row_order Order of rows. By default rows are sorted by the number of occurence of the

alterations.

order.comb_mat 177

Details

The 'memo sort' method is from https://gist.github.com/armish/564a65ab874a770e2c26 . Thanks to B. Arman Aksoy for contributing the code.

https://jokergoo.github.io/ComplexHeatmap-reference/book/oncoprint.html gives details for configuring a oncoPrint.

Value

A Heatmap-class object which means you can add other heatmaps or annotations to it.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Pass to Heatmap.

Examples

```
# There is no example NULL
```

order.comb_mat

Order of the Combination Sets

Description

Order of the Combination Sets

Usage

```
order.comb_mat(m, decreasing = TRUE, on = "comb_set")
```

178 packLegend

Arguments

m A combination matrix returned by make_comb_mat.

on On sets or on combination sets?

decreasing Whether the ordering is applied decreasingly.

Details

It first sorts by the degree of the combination sets then by the combination matrix.

Examples

```
# There is no example NULL
```

packLegend

Pack Legends

Description

Pack Legends

Usage

```
packLegend(..., gap = unit(4, "mm"), row_gap = unit(4, "mm"), column_gap = unit(4, "mm"),
    direction = c("vertical", "horizontal"),
    max_width = NULL, max_height = NULL, list = NULL)
```

Arguments

... A list of objects returned by Legend.

gap Gap between two neighbouring legends. The value is a unit object with length

of one. It is the same as row_gap if the direction if vertial and the same as

column_gap if the direction is horizontal.

row_gap Horizontal gaps between legends.
column_gap Vertical gaps between legends.
direction The direction to arrange legends.

max_width The maximal width of the total packed legends. It only works for horizontal

arrangement. If the total width of the legends exceeds it, the legends will be

arranged into multiple rows.

max_height Similar as max_width, but for the vertical arrangment of legends.

list The list of legends can be specified as a list.

pheatmap 179

Value

A Legends-class object.

See Also

https://jokergoo.github.io/ComplexHeatmap-reference/book/legends.html#a-list-of-legends

Examples

```
require(circlize)
col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
lgd1 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
lgd2 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1))
pd = packLegend(lgd1, lgd2)
draw(pd, test = "two legends")
pd = packLegend(lgd1, lgd2, direction = "horizontal")
draw(pd, test = "two legends packed horizontally")
```

pheatmap

Translate pheatmap::pheatmap to ComplexHeatmap::Heatmap

Description

Translate pheatmap::pheatmap to ComplexHeatmap::Heatmap

Usage

```
pheatmap(mat,
    color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100),
    kmeans_k = NA,
    breaks = NA.
   border_color = ifelse(nrow(mat) < 100 & ncol(mat) < 100, "grey60", NA),</pre>
    cellwidth = NA,
    cellheight = NA,
    scale = "none",
    cluster_rows = TRUE,
    cluster_cols = TRUE,
    clustering_distance_rows = "euclidean",
    clustering_distance_cols = "euclidean",
    clustering_method = "complete",
    clustering_callback = NA,
    cutree_rows = NA,
    cutree_cols = NA,
  treeheight_row = ifelse(class(cluster_rows) == "hclust" || cluster_rows, 50, 0),
  treeheight_col = ifelse(class(cluster_cols) == "hclust" || cluster_cols, 50, 0),
    legend = TRUE,
    legend_breaks = NA,
```

180 pheatmap

```
legend_labels = NA,
annotation_row = NA,
annotation_col = NA,
annotation = NA,
annotation_colors = NA,
annotation_legend = TRUE,
annotation_names_row = TRUE,
annotation_names_col = TRUE,
drop_levels = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
main = NA,
fontsize = 10,
fontsize_row = fontsize,
fontsize_col = fontsize,
angle\_col = c("270", "0", "45", "90", "315"),
display_numbers = FALSE,
number_format = "%.2f",
number_color = "grey30",
fontsize_number = 0.8 * fontsize,
gaps_row = NULL,
gaps_col = NULL,
labels_row = NULL,
labels_col = NULL,
filename = NA,
width = NA,
height = NA,
silent = FALSE,
na_col = "#DDDDDD",
name = NULL,
# other graphic parameters for fonts
fontfamily = "",
fontfamily_row = fontfamily,
fontfamily_col = fontfamily,
fontface = 1,
fontface_row = fontface,
fontface_col = fontface,
# argument specific for Heatmap()
heatmap_legend_param = list(),
run_draw = FALSE)
```

Arguments

mat The input matrix.

color The same as in pheatmap. Here you don't necessarily need to generate a long

pheatmap 181

color vector. The discrete colors sent to colorRampPalette are also OK here. E.g. colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100) can be simply replaced as rev(brewer.pal(n = 7, name = "RdYlBu")).

The same as in pheatmap

kmeans_k The same as in pheatmap. breaks The same as in pheatmap. border_color The same as in pheatmap. cellwidth The same as in pheatmap. cellheight The same as in pheatmap. scale The same as in pheatmap. The same as in pheatmap. cluster_rows cluster_cols The same as in pheatmap. clustering_distance_rows The same as in pheatmap.

clustering_distance_cols

The same as in pheatmap.

clustering_method

The same as in pheatmap.

clustering_callback

The same as in pheatmap.

cutree_rows The same as in pheatmap.

cutree_cols The same as in pheatmap.

treeheight_row The same as in pheatmap.

treeheight_col The same as in pheatmap.

legend The same as in pheatmap.

legend_breaks The same as in pheatmap.

legend_labels The same as in pheatmap.

annotation_row The same as in pheatmap.

annotation_col The same as in pheatmap.

annotation The same as in pheatmap. annotation_colors

TI.

The same as in pheatmap.

annotation_legend

The same as in pheatmap.

annotation_names_row

The same as in pheatmap.

annotation_names_col

The same as in pheatmap.

drop_levels Enforced to be TRUE.

show_colnames The same as in pheatmap.

182 pheatmap

The same as in pheatmap. main fontsize The same as in pheatmap. fontsize_row The same as in pheatmap. The same as in pheatmap. fontsize_col angle_col The same as in pheatmap. display_numbers The same as in pheatmap. number_format The same as in pheatmap. number_color The same as in pheatmap. fontsize_number The same as in pheatmap. The same as in pheatmap. gaps_row The same as in pheatmap. gaps_col labels_row The same as in pheatmap. labels_col The same as in pheatmap. filename Not supported. width Not supported. height Not supported. silent Not supported. na_col The same as in pheatmap. Name of the heatmap. This argument is passed to Heatmap. name fontfamily Font family for row and column names. fontfamily_row Font family for row names. fontfamily_col Font family for column names. fontface Font face for row and column names. fontface_row Font face for row names. fontface_col Font face for column names. heatmap_legend_param Pass to Heatmap. Other arguments passed to Heatmap.

Details

run_draw

This function aims to execute pheatmap::pheatmap code purely with ComplexHeatmap.

Whether to run draw() function to the heatmap object.

Value

A Heatmap-class object.

pindex 183

See Also

```
See https://jokergoo.github.io/2020/05/06/translate-from-pheatmap-to-complexheatmap/compare_pheatmap that compares heatmaps between pheatmap::pheatmap() and ComplexHeatmap::pheatmap().
```

Examples

```
\# There is no example NULL
```

pindex

Get Values in a Matrix by Pair-wise Indices

Description

Get Values in a Matrix by Pair-wise Indices

Usage

```
pindex(m, i, j)
```

Arguments

```
    m A matrix or a 3-dimension array.
    i Row indices or the indices in the first dimension.
    j Column indicies or the indices in the second dimension.
```

Value

```
If m is a matrix, the value returned is a vector c(m[i1, j1], m[i2, j2], ...).

If m is an array, the value returned is a matrix rbind(m[i1, j1, ], m[i2, j2, ], ...).
```

```
m = matrix(rnorm(100), 10)
m2 = m[m > 0]
ind = do.call("rbind", lapply(1:10, function(ci) {
    i = which(m[, ci] > 0)
        cbind(i = i, j = rep(ci, length(i)))
}))
pindex(m, ind[, 1], ind[, 2])
identical(pindex(m, ind[, 1], ind[, 2]), m[m > 0])
# 3d array
arr = array(1:27, dim = c(3, 3, 3))
pindex(arr, 1:2, 2:3)
identical(pindex(arr, 1:2, 2:3),
    rbind(arr[1, 2, ], arr[2, 3, ]))
```

plot.Heatmap

Draw heatmap

Description

Draw heatmap

Usage

```
## S3 method for class 'Heatmap' plot(x, ...)
```

Arguments

x A Heatmap-class object.

... All pass to draw, Heatmap-method.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

```
plot.HeatmapAnnotation
```

Draw heatmap annotations

Description

Draw heatmap annotations

Usage

```
## S3 method for class 'HeatmapAnnotation' plot(x, ...)
```

Arguments

```
x A HeatmapAnnotation-class object.... All pass to draw, HeatmapList-method.
```

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

plot.HeatmapList 185

 ${\tt plot.HeatmapList}$

Draw heatmap

Description

Draw heatmap

Usage

```
## S3 method for class 'HeatmapList'
plot(x, ...)
```

Arguments

```
x A HeatmapList-class object.
```

... All pass to draw, HeatmapList-method.

Examples

```
\# There is no example NULL
```

```
prepare-Heatmap-method
```

Prepare the Heatmap

Description

Prepare the Heatmap

Usage

```
## S4 method for signature 'Heatmap'
prepare(object, process_rows = TRUE, process_columns = TRUE)
```

Arguments

```
object A Heatmap-class object.
```

process_rows Whether to process rows of the heatmap.

process_columns

Whether to process columns of the heatmap.

print.comb_mat

Details

The preparation of the heatmap includes following steps:

- making clustering on rows (by calling make_row_cluster, Heatmap-method)
- making clustering on columns (by calling make_column_cluster, Heatmap-method)
- making the layout of the heatmap (by calling make_layout, Heatmap-method)

This function is only for internal use.

Value

The Heatmap-class object.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

print.comb_mat

Print the comb_mat Object

Description

Print the comb_mat Object

Usage

```
## S3 method for class 'comb_mat'
print(x, ...)
```

Arguments

x A combination matrix returned by make_comb_mat.

... Other arguments

```
# There is no example NULL
```

restore_matrix 187

restore_matrix

Restore the index vector to index matrix in layer_fun

Description

Restore the index vector to index matrix in layer fun

Usage

```
restore_matrix(j, i, x, y)
```

Arguments

```
    j Column indices directly from layer_fun.
    i Row indices directly from layer_fun.
    x Position on x-direction directly from layer_fun.
    y Position on y-direction directly from layer_fun.
```

Details

The values that are sent to layer_fun are all vectors (for the vectorization of the grid graphic functions), however, the heatmap slice where layer_fun is applied to, is still represented by a matrix, thus, it would be very convinient if all the arguments in layer_fun can be converted to the sub-matrix for the current slice. Here, as shown in above example, restore_matrix does the job. restore_matrix directly accepts the first four argument in layer_fun and returns an index matrix, where rows and columns correspond to the rows and columns in the current slice, from top to bottom and from left to right. The values in the matrix are the natural order of e.g. vector j in current slice.

For following code:

```
Heatmap(small_mat, name = "mat", col = col_fun,
    row_km = 2, column_km = 2,
    layer_fun = function(j, i, x, y, w, h, fill) {
        ind_mat = restore_matrix(j, i, x, y)
        print(ind_mat)
    }
)
```

The first output which is for the top-left slice:

```
[,1] [,2] [,3] [,4] [,5]
[1,]
        1
             4
                   7
                       10
                             13
             5
[2,]
        2
                   8
                       11
                             14
[3,]
                   9
                             15
                       12
```

As you see, this is a three-row and five-column index matrix where the first row corresponds to the top row in the slice. The values in the matrix correspond to the natural index (i.e. 1, 2, ...) in j, i, x, y, ... in layer_fun. Now, if we want to add values on the second column in the top-left slice, the code which is put inside layer_fun would look like:

```
for(ind in ind_mat[, 2]) {
    grid.text(small_mat[i[ind], j[ind]], x[ind], y[ind], ...)
}
```

Examples

 ${\tt re_size-HeatmapAnnotation-method}$

Resize the Width or Height of Heatmap Annotations

Description

Resize the Width or Height of Heatmap Annotations

Usage

```
## S4 method for signature 'HeatmapAnnotation'
re_size(object,
    annotation_height = NULL,
    annotation_width = NULL,
    height = NULL,
    width = NULL,
    simple_anno_size = object@param$simple_anno_size,
    simple_anno_size_adjust = object@param$simple_anno_size_adjust)
```

rowAnnotation 189

Arguments

Details

The function only adjust height for column annotations and width for row annotations.

The basic rules are (take height and annotation_height for example:

- 1. If annotation_height is set and all annotation_height are absolute units, height is ignored.
- 2. If annotation_height contains non-absolute units, height also need to be set and the non-absolute units should be set in a simple form such as 1:10 or unit(1, "null"). 3. simple_anno_size is only used when annotation_height is NULL. 4. If only height is set, non-simple annotation is adjusted while keeps simple annotation unchanged. 5. If only height is set and all annotations are simple annotations, all annotations are adjusted, and simple_anno_size is disabled. 6. If simple_anno_size_adjust is FALSE, the size of the simple annotations will not change.

Examples

```
# There is no example NULL
```

rowAnnotation

Construct Row Annotations

Description

Construct Row Annotations

Usage

```
rowAnnotation(...)
```

Arguments

.. Pass to HeatmapAnnotation.

190 row_anno_barplot

Details

The function is identical to

```
HeatmapAnnotation(..., which = "row")
```

Value

A HeatmapAnnotation-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\# There is no example NULL
```

row_anno_barplot

Barplots as Row Annotation

Description

Barplots as Row Annotation

Usage

```
row_anno_barplot(...)
```

Arguments

```
... pass to anno_barplot.
```

Details

A wrapper of anno_barplot with pre-defined which to row.

You can directly use anno_barplot for row annotation if you call it in rowAnnotation.

Value

See help page of anno_barplot.

```
# There is no example NULL
```

row_anno_boxplot 191

row_anno_boxplot

Boxplots as Row Annotation

Description

Boxplots as Row Annotation

Usage

```
row_anno_boxplot(...)
```

Arguments

```
.. pass to anno_boxplot.
```

Details

A wrapper of anno_boxplot with pre-defined which to row.

You can directly use anno_boxplot for row annotation if you call it in rowAnnotation.

Value

See help page of anno_boxplot.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc h}}}} \mbox{\ensuremath{\mbox{\sc h}}} \mbox{\ensuremath{\mbox{\sc
```

row_anno_density

Density as Row Annotation

Description

Density as Row Annotation

Usage

```
row_anno_density(...)
```

Arguments

```
... pass to anno_density.
```

192 row_anno_histogram

Details

A wrapper of anno_density with pre-defined which to row.

You can directly use anno_density for row annotation if you call it in rowAnnotation.

Value

See help page of anno_density.

Examples

```
# There is no example
```

row_anno_histogram

Histograms as Row Annotation

Description

Histograms as Row Annotation

Usage

```
row_anno_histogram(...)
```

Arguments

```
... pass to anno_histogram.
```

Details

A wrapper of anno_histogram with pre-defined which to row.

You can directly use anno_histogram for row annotation if you call it in rowAnnotation.

Value

See help page of anno_histogram.

```
\# There is no example NULL
```

row_anno_points 193

row_anno_points

Points as Row Annotation

Description

Points as Row Annotation

Usage

```
row_anno_points(...)
```

Arguments

```
.. pass to anno_points.
```

Details

A wrapper of anno_points with pre-defined which to row.

You can directly use anno_points for row annotation if you call it in rowAnnotation.

Value

See help page of anno_points.

Examples

```
\# There is no example NULL
```

 row_anno_text

Text as Row Annotation

Description

Text as Row Annotation

Usage

```
row_anno_text(...)
```

Arguments

```
... pass to anno_text.
```

194 row_dend-dispatch

Details

A wrapper of anno_text with pre-defined which to row.

You can directly use anno_text for row annotation if you call it in rowAnnotation.

Value

See help page of anno_text.

Examples

```
\# There is no example NULL
```

row_dend-dispatch

Method dispatch page for row_dend

Description

Method dispatch page for row_dend.

Dispatch

row_dend can be dispatched on following classes:

- row_dend, Heatmap-method, Heatmap-class class method
- $\bullet \verb| row_dend, HeatmapList-method|, HeatmapList-class| class| method|$

```
# no example
NULL
```

row_dend-Heatmap-method

Get Row Dendrograms from a Heatmap

Description

Get Row Dendrograms from a Heatmap

Usage

```
## S4 method for signature 'Heatmap'
row_dend(object, on_slice = FALSE)
```

Arguments

object A Heatmap-class object.

Value

The format of the returned object depends on whether rows/columns of the heatmaps are split.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
ht = draw(ht)
row_dend(ht)
ht = Heatmap(mat, row_km = 2)
ht = draw(ht)
row_dend(ht)
```

row_dend-HeatmapList-method

Get Row Dendrograms from a Heatmap List

Description

Get Row Dendrograms from a Heatmap List

196 row_order-dispatch

Usage

```
## S4 method for signature 'HeatmapList'
row_dend(object, name = NULL, on_slice = FALSE)
```

Arguments

object A HeatmapList-class object.

name Name of a specific heatmap.

on_slice If the value is TRUE, it returns the dendrogram on the slice level.

Value

The format of the returned object depends on whether rows/columns of the heatmaps are split.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
ht_list = draw(ht_list)
row_dend(ht_list)
ht_list = Heatmap(mat, row_km = 2) + Heatmap(mat)
ht_list = draw(ht_list)
row_dend(ht_list)
row_dend(ht_list, on_slice = TRUE)
ht_list = Heatmap(mat, row_km = 2) %v% Heatmap(mat)
ht_list = draw(ht_list)
row_dend(ht_list)
```

row_order-dispatch

Method dispatch page for row_order

Description

Method dispatch page for row_order.

Dispatch

row_order can be dispatched on following classes:

- row_order, Heatmap-method, Heatmap-class class method
- row_order, HeatmapList-method, HeatmapList-class class method

Examples

```
# no example
NULL
```

row_order-Heatmap-method

Get Row Order from a Heatmap

Description

Get Row Order from a Heatmap

Usage

```
## S4 method for signature 'Heatmap'
row_order(object)
```

Arguments

object A Heatmap-class object.

Value

The format of the returned object depends on whether rows/columns of the heatmaps are split.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
mat = matrix(rnorm(100), 10)
ht = Heatmap(mat)
ht = draw(ht)
row_order(ht)
ht = Heatmap(mat, row_km = 2)
ht = draw(ht)
row_order(ht)
```

```
row_order-HeatmapList-method
```

Get Row Order from a Heatmap List

Description

Get Row Order from a Heatmap List

Usage

```
## S4 method for signature 'HeatmapList'
row_order(object, name = NULL)
```

Arguments

object A HeatmapList-class object.

name Name of a specific heatmap.

Value

The format of the returned object depends on whether rows/columns of the heatmaps are split.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
mat = matrix(rnorm(100), 10)
ht_list = Heatmap(mat) + Heatmap(mat)
ht_list = draw(ht_list)
row_order(ht_list)
ht_list = Heatmap(mat, row_km = 2) + Heatmap(mat)
ht_list = draw(ht_list)
row_order(ht_list)
ht_list = Heatmap(mat, row_km = 2) %v% Heatmap(mat)
ht_list = draw(ht_list)
row_order(ht_list)
row_order(ht_list)
```

```
{\it set\_component\_height-Heatmap-method} \\ {\it Set~Height~of~Heatmap~Component}}
```

Description

Set Height of Heatmap Component

Usage

```
## S4 method for signature 'Heatmap'
set_component_height(object, k, v)
```

Arguments

object A Heatmap-class object.

k Which column component? The value should a numeric index or the name of

the corresponding column component. See **Detials**.

v Height of the component, a unit object.

Details

 $All \ column \ components \ are: \ column_title_top, \ column_dend_top, \ column_names_top, \ column_anno_top, \ heatmap_body, \ column_anno_bottom, \ column_names_bottom, \ column_dend_bottom, \ column_title_bottom.$

This function is only for internal use.

Value

The Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
# There is no example NULL
```

Description

Set Width of Heatmap Component

Usage

```
## S4 method for signature 'Heatmap'
set_component_width(object, k, v)
```

Arguments

object A Heatmap-class object.

k Which row component? The value should a numeric index or the name of the

corresponding row component. See **Detials**.

v width of the component, a unit object.

Details

All row components are: row_title_left, row_dend_left, row_names_left, row_anno_left, heatmap_body, row_anno_right, row_names_right, row_dend_right, row_title_right.

This function is only for internal use.

Value

The Heatmap-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
# There is no example NULL
```

set_name 201

set_name

Set Names

Description

Set Names

Usage

```
set_name(m)
```

Arguments

m

A combination matrix returned by make_comb_mat.

Value

A vector of set names.

Examples

set_nameAssign

Modify Set Names

Description

Modify Set Names

Usage

```
set_name(x, ...) \leftarrow value
```

Arguments

x A combination matrix returned by make_comb_mat.value New set names.Other arguments.

set_size

Examples

set_size

Set Sizes

Description

Set Sizes

Usage

```
set_size(m)
```

Arguments

m

A combination matrix returned by make_comb_mat.

Value

A vector of set sizes.

show-AnnotationFunction-method

Print the AnnotationFunction Object

Description

Print the AnnotationFunction Object

Usage

```
## S4 method for signature 'AnnotationFunction'
show(object)
```

Arguments

object

The AnnotationFunction-class object.

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

show-ColorMapping-method

Print the ColorMapping Object

Description

Print the ColorMapping Object

Usage

```
## S4 method for signature 'ColorMapping'
show(object)
```

Arguments

object

A ColorMapping-class object.

Value

This function returns no value.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

show-dispatch

Method dispatch page for show

Description

Method dispatch page for show.

Dispatch

show can be dispatched on following classes:

- show, ColorMapping-method, ColorMapping-class class method
- show, HeatmapAnnotation-method, HeatmapAnnotation-class class method
- show, HeatmapList-method, HeatmapList-class class method
- show, Heatmap-method, Heatmap-class class method
- show, SingleAnnotation-method, SingleAnnotation-class class method
- show, AnnotationFunction-method, AnnotationFunction-class class method

Examples

```
# no example
NULL
```

show-Heatmap-method

Draw the Single Heatmap with Defaults

Description

Draw the Single Heatmap with Defaults

Usage

```
## S4 method for signature 'Heatmap'
show(object)
```

Arguments

object

A Heatmap-class object.

Details

It actually calls draw, Heatmap-method, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to draw, Heatmap-method.

Value

The HeatmapList-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\# There is no example NULL
```

show-HeatmapAnnotation-method

Print the HeatmapAnnotation object

Description

Print the HeatmapAnnotation object

Usage

```
## S4 method for signature 'HeatmapAnnotation'
show(object)
```

Arguments

object

A HeatmapAnnotation-class object.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\# There is no example NULL
```

show-HeatmapList-method

Draw a list of heatmaps with default parameters

Description

Draw a list of heatmaps with default parameters

Usage

```
## S4 method for signature 'HeatmapList'
show(object)
```

Arguments

object a HeatmapList-class object.

Details

Actually it calls draw, HeatmapList-method, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to draw, HeatmapList-method.

Value

This function returns no value.

Examples

```
\# There is no example NULL
```

show-SingleAnnotation-method

Print the SingleAnnotation object

Description

Print the SingleAnnotation object

Usage

```
## S4 method for signature 'SingleAnnotation'
show(object)
```

SingleAnnotation 207

Arguments

object A SingleAnnotation-class object.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

SingleAnnotation

Constructor Method for SingleAnnotation Class

Description

Constructor Method for SingleAnnotation Class

Usage

```
SingleAnnotation(name, value, col, fun,
    label = NULL,
    na_col = "grey",
    which = c("column", "row"),
    show_legend = TRUE,
    gp = gpar(col = NA),
    border = FALSE,
    legend_param = list(),
    show_name = TRUE,
    name_gp = gpar(fontsize = 12),
    name_offset = NULL,
    name_side = ifelse(which == "column", "right", "bottom"),
    name_rot = NULL,
    simple_anno_size = ht_opt$simple_anno_size,
    width = NULL, height = NULL)
```

208 SingleAnnotation

Arguments

name Name for the annotation. If it is not specified, an internal name is assigned.

value A vector or a matrix of discrete or continuous values.

col Colors corresponding to value. If the mapping is discrete, the value of col

should be a named vector; If the mapping is continuous, the value of col should

be a color mapping function.

fun A user-defined function to add annotation graphics. The argument of this func-

tion should be at least a vector of index that corresponds to rows or columns. Normally the function should be constructed by AnnotationFunction if you want the annotation supports splitting. See **Details** for more explanation.

label Label for the annotation. By default is the annotation name.

na_col Color for NA values in the simple annotations.

which Whether the annotation is a row annotation or a column annotation? show_legend If it is a simple annotation, whether show legend in the final heatmap?

gp Since simple annotation is represented as rows of grids. This argument controls

graphic parameters for the simple annotation. The fill parameter is ignored

here.

border border, only work for simple annotation

legend_param Parameters for the legend. See color_mapping_legend, ColorMapping-method

for all possible options.

show_name Whether show annotation name?

name_gp Graphic parameters for annotation name.

name_offset Offset to the annotation, a unit object.

name_side 'right' and 'left' for column annotations and 'top' and 'bottom' for row annota-

tions

name_rot Rotation of the annotation name.

simple_anno_size

size of the simple annotation.

width The width of the plotting region (the viewport) that the annotation is drawn. If

it is a row annotation, the width must be an absolute unit.

height The height of the plotting region (the viewport) that the annotation is drawn. If

it is a column annotation, the width must be an absolute unit.

Details

A single annotation is a basic unit of complex heatmap annotations where the heamtap annotations are always a list of single annotations. An annotation can be simply heatmap-like (here we call it simple annotation) or more complex like points, lines, boxes (for which we call it complex annotation).

In the SingleAnnotation constructor, value, col, na_col are used to construct a anno_simple annotation function which is generated internally by AnnotationFunction. The legend of the simple annotation can be automatcally generated,

SingleAnnotation 209

For construcing a complex annotation, users need to use fun which is a user-defind function. Normally it is constucted by AnnotationFunction. One big advantage for using AnnotationFunction is the annotation function or the graphics drawn by the annotation function can be split according to row splitting or column splitting of the heatmap. Users can also provide a "pure" function which is a normal R function for the fun argument. The function only needs one argument which is a vector of index for rows or columns depending whether it is a row annotation or column annotation. The other two optional arguments are the current slice index and total number of slices. See **Examples** section for an example. If it is a normal R function, it will be constructed into the AnnotationFunction-class object internally.

The SingleAnnotation-class is a simple wrapper on top of AnnotationFunction-class only with annotation name added.

The class also stored the "extended area" relative to the area for the annotation graphics. The extended areas are those created by annotation names and axes.

Value

A SingleAnnotation-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

There are following built-in annotation functions that can be directly used to generate complex annotations: anno_simple, anno_points, anno_lines, anno_barplot, anno_histogram, anno_boxplot, anno_density, anno_text, anno_joyplot, anno_horizon, anno_image, anno_block, anno_summary and anno mark.

```
ha = SingleAnnotation(value = 1:10)
draw(ha, test = "single column annotation")
m = cbind(1:10, 10:1)
colnames(m) = c("a", "b")
ha = SingleAnnotation(value = m)
draw(ha, test = "matrix as column annotation")
anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)))
ha = SingleAnnotation(fun = anno)
draw(ha, test = "anno_barplot as input")
fun = local({
   # because there variables outside the function for use, we put it a local environment
    value = 1:10
    function(index, k = 1, n = 1) {
      pushViewport(viewport(xscale = c(0.5, length(index) + 0.5), yscale = range(value)))
        grid.points(seq_along(index), value[index])
        grid.rect()
```

```
if(k == 1) grid.yaxis()
    popViewport()
}

})
ha = SingleAnnotation(fun = fun, height = unit(4, "cm"))
draw(ha, index = 1:10, test = "self-defined function")
```

SingleAnnotation-class

Class for a Single Annotation

Description

Class for a Single Annotation

Details

The SingleAnnotation-class is used for storing data for a single annotation and provides methods for drawing annotation graphics.

Methods

The SingleAnnotation-class provides following methods:

- SingleAnnotation: constructor method
- draw, SingleAnnotation-method: draw the single annotation.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

The SingleAnnotation-class is always used internally. The public HeatmapAnnotation-class contains a list of SingleAnnotation-class objects and is used to add annotation graphics on heatmaps.

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

size.AnnotationFunction 211

```
size.AnnotationFunction
```

Size of the AnnotationFunction Object

Description

Size of the AnnotationFunction Object

Usage

```
## S3 method for class 'AnnotationFunction' size(x, ...)
```

Arguments

```
x The AnnotationFunction-class object.
```

... Other arguments.

Details

It returns the width if it is a row annotation and the height if it is a column annotation. Internally used.

Examples

```
anno = anno_points(1:10)
ComplexHeatmap:::size(anno)
anno = anno_points(1:10, which = "row")
ComplexHeatmap:::size(anno)
```

```
size.HeatmapAnnotation
```

Size of the HeatmapAnnotation Object

Description

Size of the HeatmapAnnotation Object

Usage

```
## S3 method for class 'HeatmapAnnotation' size(x, ...)
```

212 size.SingleAnnotation

Arguments

x The HeatmapAnnotation-class object.

... Other arguments.

Details

It returns the width if it is a row annotation and the height if it is a column annotation. Internally used.

Examples

```
\# There is no example NULL
```

size.SingleAnnotation Size of the SingleAnnotation Object

Description

Size of the SingleAnnotation Object

Usage

```
## S3 method for class 'SingleAnnotation' size(x, ...)
```

Arguments

x The SingleAnnotation-class object.

... Other arguments.

Details

It returns the width if it is a row annotation and the height if it is a column annotation. Internally used.

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

```
sizeAssign.AnnotationFunction
```

Assign the Size to the AnnotationFunction Object

Description

Assign the Size to the AnnotationFunction Object

Usage

```
## S3 replacement method for class 'AnnotationFunction' size(x, ...) <- value
```

Arguments

```
x The AnnotationFunction-class object.value A unit object.... Other arguments.
```

Details

It assigns to the width if it is a row annotation and the height if it is a column annotation. Internally used.

Examples

```
anno = anno_points(1:10)
ComplexHeatmap:::size(anno) = unit(4, "cm")
ComplexHeatmap:::size(anno)
```

```
sizeAssign.HeatmapAnnotation
```

Assign the Size to the HeatmapAnnotation Object

Description

Assign the Size to the HeatmapAnnotation Object

Usage

```
## S3 replacement method for class 'HeatmapAnnotation' size(x, ...) \leftarrow value
```

Arguments

x The HeatmapAnnotation-class object.

value A unit object.
... Other arguments.

Details

It assigns the width if it is a row annotation and the height if it is a column annotation. Internally used.

Examples

```
# There is no example NULL
```

sizeAssign.SingleAnnotation

Assign the Size to the SingleAnnotation Object

Description

Assign the Size to the SingleAnnotation Object

Usage

```
## S3 replacement method for class 'SingleAnnotation' size(x, ...) <- value
```

Arguments

x The SingleAnnotation-class object.

value A unit object.
... Other arguments.

Details

It assigns to the width if it is a row annotation and the height if it is a column annotation. Internally used.

```
# There is no example NULL
```

smartAlign2 215

		7	٠		\sim
smar	† A	ш	1	gn	2

Adjust positions of rectanglar shapes

Description

Adjust positions of rectanglar shapes

Usage

```
smartAlign2(start, end, range, plot = FALSE)
```

Arguments

start	position which corresponds to the start (bottom or left) of the rectangle-shapes.
end	position which corresponds to the end (top or right) of the rectanglar shapes.
range	data ranges (the minimal and maximal values)
plot	Whether plot the correspondance between the original positions and the adjusted
	positions. Only for testing.

Details

This is an improved version of the smartAlign.

It adjusts the positions of the rectangular shapes to make them do not overlap

```
range = c(0, 10)
pos1 = rbind(c(1, 2), c(5, 7))
smartAlign2(pos1, range = range, plot = TRUE)
range = c(0, 10)
pos1 = rbind(c(-0.5, 2), c(5, 7))
smartAlign2(pos1, range = range, plot = TRUE)
pos1 = rbind(c(-1, 2), c(3, 4), c(5, 6), c(7, 11))
pos1 = pos1 + runif(length(pos1), max = 0.3, min = -0.3)
omfrow = par("mfrow")
par(mfrow = c(3, 3))
for(i in 1:9) {
    ind = sample(4, 4)
    smartAlign2(pos1[ind, ], range = range, plot = TRUE)
par(mfrow = omfrow)
pos1 = rbind(c(3, 6), c(4, 7))
smartAlign2(pos1, range = range, plot = TRUE)
pos1 = rbind(c(1, 8), c(3, 10))
smartAlign2(pos1, range = range, plot = TRUE)
```

216 subset_gp

str.comb_mat

str method

Description

str method

Usage

```
## S3 method for class 'comb_mat'
str(object, ...)
```

Arguments

object A combination matrix returned by make_comb_mat.
... Other arguments.

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

 $subset_gp$

Subset a gpar Object

Description

Subset a gpar Object

Usage

```
subset_gp(gp, i)
```

Arguments

gp A gpar object.i A vector of indices.

Value

A gpar object.

```
gp = gpar(col = 1:10, fill = 1)
subset_gp(gp, 1:5)
```

subset_matrix_by_row 217

subset_matrix_by_row Subset the Matrix by Rows

Description

Subset the Matrix by Rows

Usage

```
subset_matrix_by_row(x, i)
```

Arguments

x A matrix.

i The row indices.

Details

Mainly used for constructing the AnnotationFunction-class object.

Examples

```
\# There is no example NULL
```

subset_no

Do not do subseting

Description

Do not do subseting

Usage

```
subset_no(x, i)
```

Arguments

x A vector.i The indices.

Details

Mainly used for constructing the AnnotationFunction-class object.

218 summary.Heatmap

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

subset_vector

Subset the vector

Description

Subset the vector

Usage

```
subset_vector(x, i)
```

Arguments

x A vector.
i The indices.

Details

Mainly used for constructing the AnnotationFunction-class object.

Examples

```
\# There is no example NULL
```

summary.Heatmap

Print the Summary of a Heatmap

Description

Print the Summary of a Heatmap

Usage

```
## S3 method for class 'Heatmap'
summary(object, ...)
```

Arguments

```
\label{eq:A-Heatmap-class} \textbf{Object}.
```

... Other arguments.

summary.HeatmapList 219

Examples

```
# There is no example NULL
```

summary.HeatmapList

Summary of a Heatmap List

Description

Summary of a Heatmap List

Usage

```
## S3 method for class 'HeatmapList'
summary(object, ...)
```

Arguments

```
object A HeatmapList-class object.
... Other arguments.
```

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

t.comb_mat

Transpost the Combination Matrix

Description

Transpost the Combination Matrix

Usage

```
## S3 method for class 'comb_mat'
t(x)
```

Arguments

Х

A combination matrix returned by make_comb_mat.

220 test_alter_fun

Examples

test_alter_fun

Test alter_fun for oncoPrint()

Description

Test alter_fun for oncoPrint()

Usage

```
test_alter_fun(fun, type, asp_ratio = 1)
```

Arguments

fun The alter_fun for oncoPrint. The value can be a list of functions or a single function. See https://jokergoo.github.io/ComplexHeatmap-reference/book/oncoprint.html#define-the-alter-fun

type A vector of alteration types. It is only used when fun is a single function.

asp_ratio The aspect ratio (width/height) for the small rectangles.

Details

This function helps you to have a quick view of how the graphics for each alteration type and combinations look like.

```
alter_fun = list(
  mut1 = function(x, y, w, h) grid.rect(x, y, w, h, gp = gpar(fill = "red", col = NA)),
  mut2 = function(x, y, w, h) grid.rect(x, y, w, h, gp = gpar(fill = "blue", col = NA)),
  mut3 = function(x, y, w, h) grid.rect(x, y, w, h, gp = gpar(fill = "yellow", col = NA)),
  mut4 = function(x, y, w, h) grid.rect(x, y, w, h, gp = gpar(fill = "purple", col = NA)),
  mut5 = function(x, y, w, h) grid.rect(x, y, w, h, gp = gpar(lwd = 2)),
  mut6 = function(x, y, w, h) grid.points(x, y, pch = 16),
  mut7 = function(x, y, w, h) grid.segments(x - w*0.5, y - h*0.5, x + w*0.5, y + h*0.5, gp = gpar(lwd = 2))
)
test_alter_fun(alter_fun)
```

textbox_grob 221

textbox_grob	A simple grob for the word cloud	
--------------	----------------------------------	--

Description

A simple grob for the word cloud

Usage

```
textbox_grob(text, x = unit(0.5, "npc"), y = unit(0.5, "npc"), just = "centre",
   gp = gpar(), background_gp = gpar(col = "black", fill = "transparent"), round_corners = FALSE, r = uni
   line_space = unit(4, "pt"), text_space = unit(4, "pt"), max_width = unit(100, "mm"),
   padding = unit(4, "pt"), first_text_from = "top", add_new_line = FALSE, word_wrap = FALSE)
```

Arguments

text A vector of texts. The value can be single words or phrases/sentenses.

x X position. y Y position.

just Justification of the box in the viewport.

gp Graphics parameters of texts.
background_gp Graphics parameters for the box.

round_corners Whether to draw round corners for the box.

r Radius of the round corners.

line_space Space between lines. The value can be a unit object or a numeric scalar which

is measured in mm.

text_space Space between texts The value can be a unit object or a numeric scalar which

is measured in mm.

max_width The maximal width of the viewport to put the word cloud. The value can be a

unit object or a numeric scalar which is measured in mm. Note this might be

larger than the final width of the returned grob object.

padding Padding of the box, i.e. space between text and the four box borders. The value

should be a unit object with length 1, 2 or 4. If length of the input unit is 2, the first value is the padding both to the top and to the bottom, and the second value is the padding to the left and right. If length of the input unit is 4, the four values

correspond to paddings to the bottom, left, top and right of the box.

first_text_from

Should the texts be added from the top of the box or from the bottom? Value

should be either "top" or "bottom".

add_new_line Whether to add new line after every text? If TRUE, each text will be in a separated

line.

word_wrap Whether to apply word wrap for phrases/sentenses.

222 unify_mat_list

Value

A grob object. The width and height of the grob can be get by grobWidth and grobHeight.

Examples

```
words = sapply(1:30, function(x) strrep(sample(letters, 1), sample(3:10, 1)))
grid.newpage()
grid.textbox(words, gp = gpar(fontsize = runif(30, min = 5, max = 30)))
sentenses = c("This is sentense 1", "This is a long long long long long long sentense.")
grid.newpage()
grid.textbox(sentenses)
grid.textbox(sentenses, word_wrap = TRUE)
grid.textbox(sentenses, word_wrap = TRUE, add_new_line = TRUE)
```

unify_mat_list

Unify a List of Matrix

Description

Unify a List of Matrix

Usage

```
unify_mat_list(mat_list, default = 0)
```

Arguments

mat_list A list of matrix. All of them should have dimension names.

default Default values for the newly added rows and columns.

Details

All matrix will be unified to have same row names and column names.

Value

A list of matrix

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\# There is no example NULL
```

UpSet 223

UpSet

Make the UpSet plot

Description

Make the UpSet plot

Usage

```
UpSet(m,
    comb_col = "black",
    pt_size = unit(3, "mm"), lwd = 2,
    bg_col = "#F0F0F0", bg_pt_col = "#CCCCCC",
    set_order = order(set_size(m), decreasing = TRUE),
    comb_order = if(attr(m, "param")$set_on_rows) {
        order.comb_mat(m[set_order, ], decreasing = TRUE)
        } else {
        order.comb_mat(m[, set_order], decreasing = TRUE)
        },
        top_annotation = upset_top_annotation(m),
        right_annotation = NULL,
        row_names_side = "left",
        ...)
```

Arguments

m	A combination matrix returned by make_comb_mat. The matrix can be transposed to switch the position of sets and combination sets.	
comb_col	The color for the dots representing combination sets.	
pt_size	The point size for the dots representing combination sets.	
lwd	The line width for the combination sets.	
bg_col	Color for the background rectangles.	
bg_pt_col	Color for the dots representing the set is not selected.	
set_order	The order of sets.	
comb_order	The order of combination sets.	
top_annotation	A HeatmapAnnotation object on top of the combination matrix.	
left_annotation		
	A HeatmapAnnotation object on top of the combination matrix.	
right_annotation		
	A HeatmapAnnotation object on the right of the combination matrix.	
row_names_side	The side of row names.	
	Other arguments passed to Heatmap.	

224 UpSet

Details

By default, the sets are on rows and combination sets are on columns. The positions of the two types of sets can be switched by transposing the matrix.

When sets are on rows, the default top annotation is the barplot showing the size of each combination sets and the default right annotation is the barplot showing the size of the sets. The annotations are simply constructed by HeatmapAnnotation and anno_barplot with some parameters pre-set. Users can check the source code of upset_top_annotation and upset_right_annotation to find out how the annotations are defined.

To change or to add annotations, users just need to define a new HeatmapAnnotation object. E.g. if we want to change the side of the axis and name on top annotation:

```
Upset(..., top_annotation =
   HeatmapAnnotation(
    "Intersection size" = anno_barplot(
        comb_size(m),
        border = FALSE,
        gp = gpar(fill = "black"),
        height = unit(2, "cm"),
        axis_param = list(side = "right")
    ),
    annotation_name_side = "right",
    annotation_name_rot = 0)
)
```

To add more annotations on top, users just add it in HeatmapAnnotation:

```
Upset(..., top_annotation =
   HeatmapAnnotation(
     "Intersection size" = anno_barplot(
          comb_size(m),
          border = FALSE,
          gp = gpar(fill = "black"),
          height = unit(2, "cm"),
          axis_param = list(side = "right")
     ),
     "anno1" = anno_points(...),
     "anno2" = some_vector,
     annotation_name_side = "right",
     annotation_name_rot = 0)
)
```

And so is for the right annotations.

UpSet returns a Heatmap-class object, which means, you can add it with other heatmaps and annotations by + or %v%.

upset_left_annotation 225

Examples

```
set.seed(123)
lt = list(a = sample(letters, 10),
          b = sample(letters, 15),
          c = sample(letters, 20))
m = make\_comb\_mat(lt)
UpSet(m)
UpSet(t(m))
m = make_comb_mat(lt, mode = "union")
UpSet(m)
UpSet(m, comb_col = c(rep(2, 3), rep(3, 3), 1))
# compare two UpSet plots
set.seed(123)
lt1 = list(a = sample(letters, 10),
          b = sample(letters, 15),
          c = sample(letters, 20))
m1 = make\_comb\_mat(lt1)
set.seed(456)
lt2 = list(a = sample(letters, 10),
          b = sample(letters, 15),
          c = sample(letters, 20))
m2 = make_comb_mat(1t2)
max1 = max(c(set_size(m1), set_size(m2)))
max2 = max(c(comb_size(m1), comb_size(m2)))
UpSet(m1, top_annotation = upset_top_annotation(m1, ylim = c(0, max2)),
    right_annotation = upset_right_annotation(m1, ylim = c(0, max1)),
    column_title = "UpSet1") +
UpSet(m2, top_annotation = upset_top_annotation(m2, ylim = c(0, max2)),
    right_annotation = upset_right_annotation(m2, ylim = c(0, max1)),
    column_title = "UpSet2")
```

upset_left_annotation UpSet Left Annotation

Description

UpSet Left Annotation

Usage

```
upset_left_annotation(m,
    gp = gpar(fill = "black"),
    axis_param = list(direction = "reverse"),
    width = unit(ifelse(set_on_rows, 2, 3), "cm"),
    show_annotation_name = TRUE,
```

```
annotation_name_gp = gpar(),
annotation_name_offset = NULL,
annotation_name_side = "bottom",
annotation_name_rot = NULL,
...)
```

Arguments

```
m A combination matrix which is as same as the one for UpSet.
gp Graphic parameters for bars.
```

axis_param Parameters for axis.

width Width of the left annotation.

show_annotation_name

Whether show annotation names?

annotation_name_gp

Graphic parameters for anntation names.

annotation_name_offset

Offset to the annotation name, a unit object.

annotation_name_side

Side of the annotation name.

annotation_name_rot

Rotation of the annotation name, it can only take values in c(00, 90, 180,

270).

Passed to anno_barplot, e.g. to set add_numbers.

Examples

```
# There is no example NULL
```

```
upset_right_annotation
```

Default UpSet Right Annotation

Description

Default UpSet Right Annotation

Usage

```
upset_right_annotation(m,
   gp = gpar(fill = "black"),
   width = unit(ifelse(set_on_rows, 2, 3), "cm"),
   show_annotation_name = TRUE,
   annotation_name_gp = gpar(),
```

upset_top_annotation 227

```
annotation_name_offset = NULL,
annotation_name_side = "bottom",
annotation_name_rot = NULL,
...)
```

Arguments

```
A combination matrix which is as same as the one for UpSet.
                  Graphic parameters for bars.
gp
                  Width of the right annotation.
width
show_annotation_name
                  Whether show annotation names?
annotation_name_gp
                 Graphic parameters for anntation names.
\verb"annotation_name_offset"
                 Offset to the annotation name, a unit object.
annotation_name_side
                  Side of the annotation name.
annotation_name_rot
                 Rotation of the annotation name, it can only take values in c(00, 90, 180,
                 Passed to anno_barplot, e.g. to set add_numbers.
```

Details

The default right annotation is actually barplot implemented by anno_barplot. For how to set the right annotation or left annotation in UpSet, please refer to UpSet.

If you want to use decorate_annotation function, the annotation name for the "sets" is set_size and the annotation name for the "intersection sets" are intersection_size and if under the union mode, it is union_size.

Examples

```
# There is no example NULL
```

Description

Default UpSet Top Annotation

228 upset_top_annotation

Usage

```
upset_top_annotation(m,
   gp = gpar(fill = "black"),
   height = unit(ifelse(set_on_rows, 3, 2), "cm"),
   show_annotation_name = TRUE,
   annotation_name_gp = gpar(),
   annotation_name_offset = NULL,
   annotation_name_side = "left",
   annotation_name_rot = 0,
   ...)
```

Arguments

```
A combination matrix which is as same as the one for UpSet.
m
                 Graphic parameters for bars.
gp
                 The height of the top annotation.
height
show_annotation_name
                 Whether show annotation names?
annotation_name_gp
                 Graphic parameters for anntation names.
annotation_name_offset
                 Offset to the annotation name, a unit object.
annotation_name_side
                 Side of the annotation name.
annotation_name_rot
                 Rotation of the annotation name, it can only take values in c(00, 90, 180,
                 270).
                 Passed to anno_barplot.
. . .
```

Details

The default top annotation is actually barplot implemented by anno_barplot. For how to set the top annotation or bottom annotation in UpSet, please refer to UpSet.

If you want to use decorate_annotation function, the annotation name for the "sets" is set_size and the annotation name for the "intersection sets" are intersection_size and if under the union mode, it is union_size.

```
# There is no example
NULL
```

width.AnnotationFunction 229

```
width.AnnotationFunction
```

Width of the AnnotationFunction Object

Description

Width of the AnnotationFunction Object

Usage

```
## S3 method for class 'AnnotationFunction' width(x, \dots)
```

Arguments

x A AnnotationFunction-class object.

... Other arguments.

Details

Internally used.

Examples

```
anno = anno_points(1:10)
ComplexHeatmap:::width(anno)
anno = anno_points(1:10, which = "row")
ComplexHeatmap:::width(anno)
```

width.Heatmap

Width of the Heatmap

Description

Width of the Heatmap

Usage

```
## S3 method for class 'Heatmap' width(x, ...)
```

Arguments

x The HeatmapList-class object returned by draw, Heatmap-method.

... Other arguments.

230 width.HeatmapList

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

width.HeatmapAnnotation

Width of the HeatmapAnnotation Object

Description

Width of the HeatmapAnnotation Object

Usage

```
## S3 method for class 'HeatmapAnnotation' width(x, \dots)
```

Arguments

x The HeatmapAnnotation-class object.

... Other arguments.

Details

Internally used.

Examples

```
\label{eq:total_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc There}}} \mbox{\ensuremath{\mbox{\sc is}}} \mbox{\ensuremath{\mbox{\sc NULL}}} \mbox{\
```

width.HeatmapList

Width of the Heatmap List

Description

Width of the Heatmap List

Usage

```
## S3 method for class 'HeatmapList' width(x, ...)
```

width.Legends 231

Arguments

x The HeatmapList-class object returned by draw, HeatmapList-method.

... Other arguments.

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

width.Legends

Width of the Legends

Description

Width of the Legends

Usage

```
## S3 method for class 'Legends' width(x, ...)
```

Arguments

x The grob object returned by Legend or packLegend.

... Other arguments.

Value

The returned unit x is always in mm.

```
lgd = Legend(labels = 1:10, title = "foo", legend_gp = gpar(fill = "red"))
ComplexHeatmap:::width(lgd)
```

width.SingleAnnotation

Width of the SingleAnnotation Object

Description

Width of the SingleAnnotation Object

Usage

```
## S3 method for class 'SingleAnnotation' width(x, ...)
```

Arguments

x The SingleAnnotation-class object.

... Other arguments.

Details

Internally used.

Examples

```
\# There is no example NULL
```

widthAssign.AnnotationFunction

Assign the Width to the AnnotationFunction Object

Description

Assign the Width to the AnnotationFunction Object

Usage

```
## S3 replacement method for class 'AnnotationFunction' width(x, ...) <- value
```

Arguments

x The AnnotationFunction-class object.

... Other arguments. value A unit object.

Details

Internally used.

Examples

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

 $\verb|widthAssign.HeatmapAnnotation||\\$

Assign the Width to the HeatmapAnnotation Object

Description

Assign the Width to the HeatmapAnnotation Object

Usage

```
## S3 replacement method for class 'HeatmapAnnotation' width(x, \dots) <- value
```

Arguments

x The HeatmapAnnotation-class object.

value A unit object.
... Other arguments.

Details

Internally used.

```
\hbox{\tt\# There is no example}\\ \hbox{\tt NULL}
```

```
widthAssign.SingleAnnotation
```

Assign the Width to the SingleAnnotation Object

Description

Assign the Width to the SingleAnnotation Object

Usage

```
## S3 replacement method for class 'SingleAnnotation' width(x, ...) <- value
```

Arguments

```
x The SingleAnnotation-class object.
```

value A unit object.
... Other arguments.

Details

Internally used.

Examples

```
\# There is no example NULL
```

```
widthDetails.annotation_axis
```

Width for annotation_axis Grob

Description

Width for annotation_axis Grob

Usage

```
## S3 method for class 'annotation_axis'
widthDetails(x)
```

Arguments

x The annotation_axis grob returned by annotation_axis_grob.

widthDetails.legend 235

Details

The physical width of the grob can be get by convertWidth(grobWidth(axis_grob), "mm").

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\texttt{T}} There is no example} \\ \mbox{\ensuremath{\texttt{NULL}}}
```

widthDetails.legend

Grob width for packed_legends

Description

Grob width for packed_legends

Usage

```
## S3 method for class 'legend'
widthDetails(x)
```

Arguments

Х

A legend object.

Examples

```
# There is no example NULL
```

```
widthDetails.legend_body
```

Grob width for legend_body

Description

Grob width for legend_body

Usage

```
## S3 method for class 'legend_body'
widthDetails(x)
```

Arguments

Х

A legend_body object.

236 widthDetails.textbox

Examples

```
# There is no example
NULL
```

```
widthDetails.packed_legends
```

Grob width for packed_legends

Description

Grob width for packed_legends

Usage

```
## S3 method for class 'packed_legends'
widthDetails(x)
```

Arguments

Χ

A packed_legends object.

Examples

```
# There is no example
NULL
```

widthDetails.textbox Width for textbox grob

Description

Width for textbox grob

Usage

```
## S3 method for class 'textbox'
widthDetails(x)
```

Arguments

Χ

The textbox grob returned by textbox_grob.

Value

A unit object.

[.AnnotationFunction 237

Examples

```
# There is no example
NULL
```

[.AnnotationFunction Subset an AnnotationFunction Object

Description

Subset an AnnotationFunction Object

Usage

```
## S3 method for class 'AnnotationFunction'
x[i]
```

Arguments

- An AnnotationFunction-class object.
- A vector of indices.

Details

One good thing for designing the AnnotationFunction-class is it can be subsetted, and this is the base for the splitting of the annotations.

Examples

```
anno = anno_simple(1:10)
draw(anno[1:5], test = "subset of column annotation")
```

[.comb_mat

Subset the Combination Matrix

Description

Subset the Combination Matrix

Usage

```
## S3 method for class 'comb_mat'
x[i, j, drop = FALSE]
```

238 [.gridtext

Arguments

X	A combination matrix returned by make_comb_mat.
i	Indices on rows.
j	Indices on columns.
drop	It is always reset to FALSE internally.

Details

If sets are on rows of the combination matrix, the row indices correspond to sets and column indices correspond to combination sets, and if sets are on columns of the combination matrix, rows correspond to the combination sets.

If the index is one-dimension, e.g. x[i], the index always corresponds to the combination sets.

You should not subset by the sets. It will give you wrong combination set size. The subsetting on sets are only used internally.

This subsetting method is mainly for subsetting combination sets, i.e., users can first use comb_size to get the size of each combination set, and filter them by the size.

Examples

[.gridtext

Subset method of gridtext class

Description

Subset method of gridtext class

Usage

```
## S3 method for class 'gridtext' x[index]
```

Arguments

x A vector of labels generated by gt_render.

index Index

[.Heatmap 239

Details

Internally used.

Examples

```
\label{eq:total_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc There}}} \mbox{\ensuremath{\mbox{\sc is}}} \mbox{\ensuremath{\mbox{\sc NULL}}} \mbox{\
```

[.Heatmap

Subset a Heatmap

Description

Subset a Heatmap

Usage

```
## S3 method for class 'Heatmap' x[i, j]
```

Arguments

```
x A Heatmap-class object.i Row indices.j Column indices.
```

Details

This functionality is quite experimental. It should be applied before the layout is initialized.

```
m = matrix(rnorm(100), nrow = 10)
rownames(m) = letters[1:10]
colnames(m) = LETTERS[1:10]
ht = Heatmap(m)
ht[1:5, ]
ht[1:5]
ht[, 1:5]
ht[, 1:5]
```

240 [.HeatmapList

[.HeatmapAnnotation

Subset the HeatmapAnnotation object

Description

Subset the HeatmapAnnotation object

Usage

```
## S3 method for class 'HeatmapAnnotation' x[i, j]
```

Arguments

```
    x A HeatmapAnnotation-class object.
    i Index of observations.
    j Index of annotations.
```

Examples

```
ha = HeatmapAnnotation(foo = 1:10, bar = anno_points(10:1),
    sth = cbind(1:10, 10:1))
ha[1:5, ]
ha[, c("foo", "bar")]
ha[, 1:2]
ha[1:5, c("foo", "sth")]
```

[.HeatmapList

Subset a HeatmapList object

Description

Subset a HeatmapList object

Usage

```
## S3 method for class 'HeatmapList' x[i, j]
```

Arguments

```
x A HeatmapList-class object
i row indices
j column indices
```

[.SingleAnnotation 241

Details

If the heatmap list is horizontal, i is the row indices and j corresponds to heatmap names and single annotation names. and if the heatlist is vertical, i corresponds to heatmap/annotation names and j is the column indices.

Examples

```
ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") +
   rowAnnotation(foo = 1:10, bar = anno_points(10:1)) +
   Heatmap(matrix(runif(100), 10), name = "runif")
summary(ht_list[1:5, ])
summary(ht_list[1:5, "rnorm"])
summary(ht_list[1:5, c("rnorm", "foo")])

ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") %v%
   columnAnnotation(foo = 1:10, bar = anno_points(10:1)) %v%
   Heatmap(matrix(runif(100), 10), name = "runif")
summary(ht_list[, 1:5])
summary(ht_list[1, 1:5])
summary(ht_list[1, 1:5])
summary(ht_list["rnorm", 1:5])
summary(ht_list[c("rnorm", "foo"), 1:5])
```

[.SingleAnnotation

Subset an SingleAnnotation Object

Description

Subset an SingleAnnotation Object

Usage

```
## S3 method for class 'SingleAnnotation' x[i]
```

Arguments

```
x An SingleAnnotation-class object.
```

i A vector of indices.

Details

The SingleAnnotation class object is subsettable only if the containing AnnotationFunction-class object is subsettable. All the anno_* functions are subsettable, so if the SingleAnnotation object is constructed by one of these functions, it is also subsettable.

242 %v%

Examples

```
ha = SingleAnnotation(value = 1:10)
ha[1:5]
draw(ha[1:5], test = "ha[1:5]")
```

%v%

Vertically Add Heatmaps or Annotations to a Heatmap List

Description

Vertically Add Heatmaps or Annotations to a Heatmap List

Usage

```
x %v% y
```

Arguments

x A Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

y A Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

Details

It is only a helper function. It actually calls add_heatmap, Heatmap-method, add_heatmap, HeatmapList-method or add_heatmap, HeatmapAnnotation-method depending on the class of the input objects.

The HeatmapAnnotation-class object to be added should only be column annotations.

x and y can also be NULL.

Value

A HeatmapList-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

+. AdditiveUnit operator is used for horizontal heatmap list.

```
# There is no example NULL
```

Index

```
+. AdditiveUnit, 8, 242
                                                  anno_boxplot, 17, 26, 191, 209
[.AnnotationFunction, 237
                                                  anno_customize, 27
[.Heatmap, 239
                                                  anno_density, 17, 28, 191, 192, 209
[.HeatmapAnnotation, 240
                                                  anno_empty, 17, 30
[.HeatmapList, 240
                                                  anno_histogram, 17, 31, 192, 209
[.SingleAnnotation, 241
                                                  anno_horizon, 17, 32, 209
[.comb_mat, 237
                                                  anno_image, 17, 34, 209
[.gridtext, 238
                                                  anno_joyplot, 17, 35, 209
%v%, 8, 9, 11, 12, 127, 224, 242
                                                  anno_lines, 17, 36, 209
                                                  anno_link, 38, 48
add.AdditiveUnit(+.AdditiveUnit), 8
                                                  anno_mark, 17, 38, 93, 101, 209
add_heatmap(add_heatmap-dispatch), 10
                                                  anno_numeric, 40
add_heatmap, Heatmap-method
                                                  anno_oncoprint_barplot, 41
        (add_heatmap-Heatmap-method),
                                                  anno_points, 17, 30, 42, 132, 193, 209
                                                  anno_simple, 43, 44, 208, 209
add_heatmap, HeatmapAnnotation-method
        ({\tt add\_heatmap-HeatmapAnnotation-method}), {\tt anno\_summary}, {\tt 45}, {\tt 209}
                                                  ánno_text, 17, 46, 193, 194, 209
                                                  anno_textbox, 47
add_heatmap, HeatmapList-method
                                                  anno_zoom, 38, 48, 49
        (add_heatmap-HeatmapList-method),
                                                  annotation_axis_grob, 18, 84, 117, 141,
         13
                                                           234
add_heatmap-dispatch, 10
                                                  annotation_legend_size
add_heatmap-Heatmap-method, 11
                                                           (annotation_legend_size-HeatmapList-method),
add_heatmap-HeatmapAnnotation-method,
         12
                                                  annotation_legend_size, HeatmapList-method
add_heatmap-HeatmapList-method, 13
                                                           (annotation_legend_size-HeatmapList-method),
AdditiveUnit, 9
AdditiveUnit-class, 10
                                                  annotation_legend_size-HeatmapList-method,
adjust_dend_by_x, 14, 85, 86, 118
adjust_heatmap_list
        (\texttt{adjust\_heatmap\_list-HeatmapList-meth} \textbf{An}, \texttt{otationFunction}, 16, 17, 18, 30, 208, 209)
                                                  AnnotationFunction-class, 18
                                                  as.dist, 90
adjust_heatmap_list, HeatmapList-method
        (adjust\_heatmap\_list-HeatmapList-meth \verb"adt", ach\_annotation")
                                                           (attach_annotation-Heatmap-method),
adjust_heatmap_list-HeatmapList-method,
         14
                                                  attach_annotation, Heatmap-method
alter_graphic, 15, 176
                                                           (attach_annotation-Heatmap-method),
anno_barplot, 17, 22, 190, 209, 224, 226-228
anno_block, 24, 24, 48, 209
                                                  attach_annotation-Heatmap-method, 50
```

bar3D, 51	component_height
bin_genome, 51, 172	(component_height-dispatch), 68
	component_height,Heatmap-method
c.ColorMapping, 52	<pre>(component_height-Heatmap-method),</pre>
c.HeatmapAnnotation, 53	68
cluster_between_groups, 53	<pre>component_height,HeatmapList-method</pre>
cluster_within_group, 54	<pre>(component_height-HeatmapList-method),</pre>
color_branches, 118	69
color_mapping_legend	component_height-dispatch, 68
<pre>(color_mapping_legend-ColorMapping-m</pre>	nethonbonent_height-Heatmap-method, 68
56	component_height-HeatmapList-method,
color_mapping_legend,ColorMapping-method	69
<pre>(color_mapping_legend-ColorMapping-m</pre>	netombonent_width
56	(component_width-dispatch), 70
<pre>color_mapping_legend-ColorMapping-method,</pre>	component_width, Heatmap-method
56	(component_width-Heatmap-method),
ColorMapping, 55, 56, 123	70
ColorMapping-class, 56	component_width,HeatmapList-method
colorRamp2, 43, 55, 88, 112, 123, 124, 148	(component_width-HeatmapList-method),
colorRampPalette, 181	71
<pre>column_dend(column_dend-dispatch), 59</pre>	component_width-dispatch, 70
column_dend,Heatmap-method	component_width-Heatmap-method, 70
<pre>(column_dend-Heatmap-method),</pre>	component_width-HeatmapList-method, 71
60	copy_all (copy_all-dispatch), 73
column_dend,HeatmapList-method	copy_all, AnnotationFunction-method
<pre>(column_dend-HeatmapList-method),</pre>	(copy_all-AnnotationFunction-method),
61	72
column_dend-dispatch, 59	copy_all,SingleAnnotation-method
column_dend-Heatmap-method, 60	(copy_all-SingleAnnotation-method),
column_dend-HeatmapList-method, 61	73
<pre>column_order(column_order-dispatch), 62</pre>	copy_all-AnnotationFunction-method, 72
column_order,Heatmap-method	copy_all-dispatch, 73
(column_order-Heatmap-method),	copy_all-SingleAnnotation-method, 73
62	cutree, <i>126</i>
column_order,HeatmapList-method	040.00,120
<pre>(column_order-HeatmapList-method),</pre>	decorate_annotation, 17, 30, 74, 227, 228
63	decorate_column_dend, 75
column_order-dispatch,62	decorate_column_names, 76
column_order-Heatmap-method, 62	decorate_column_title, 76
column_order-HeatmapList-method, 63	decorate_dend, 75, 77, 80
columnAnnotation, 59, 132	decorate_dimnames, 76, 78, 81
comb_degree, 64, 154	decorate_heatmap_body, 79, 124
comb_name, 64, 111, 154	decorate_row_dend, 80
comb_size, 65, 154, 238	decorate_row_names, 81
compare_heatmap, 66	decorate_row_title, 82
compare_heatmap.2,66	decorate_title, 77, 82, 82
compare_pheatmap, 67, 183	default_axis_param, 23, 26, 29, 31, 33, 35,
complement_size, 67	37, 42, 45, 83
ComplexHeatmap-package, 7	default_get_type, 84, 176

dend_heights, 86	104
dend_xy, 86, 118	draw_dend,Heatmap-method
dendrogram, 14, 54, 85, 86, 118, 124, 125	(draw_dend-Heatmap-method), 104
dendrogramGrob, 85, 118	draw_dend-Heatmap-method, 104
density, 88	draw_dimnames
densityHeatmap, 8, 87	<pre>(draw_dimnames-Heatmap-method),</pre>
dim.Heatmap, 89	105
dist, 90, 125	draw_dimnames,Heatmap-method
dist2, 90	<pre>(draw_dimnames-Heatmap-method),</pre>
draw (draw-dispatch), 92	105
draw, AnnotationFunction-method	draw_dimnames-Heatmap-method, 105
(draw-AnnotationFunction-method),	draw_heatmap_body
91	<pre>(draw_heatmap_body-Heatmap-method),</pre>
draw, Heatmap-method	106
(draw-Heatmap-method), 92	draw_heatmap_body,Heatmap-method
draw, HeatmapAnnotation-method	<pre>(draw_heatmap_body-Heatmap-method),</pre>
(draw-HeatmapAnnotation-method),	106
93	draw_heatmap_body-Heatmap-method, 106
draw, HeatmapList-method	draw_heatmap_legend
(draw-HeatmapList-method), 94	$(draw_heatmap_legend-HeatmapList-method).$
draw, Legends-method	107
(draw-Legends-method), 100	draw_heatmap_legend,HeatmapList-method
draw, SingleAnnotation-method	<pre>(draw_heatmap_legend-HeatmapList-method)</pre>
(draw-SingleAnnotation-method),	107
101	draw_heatmap_legend-HeatmapList-method,
draw-AnnotationFunction-method, 91	107
draw-dispatch, 92	draw_heatmap_list
draw-Heatmap-method, 92	<pre>(draw_heatmap_list-HeatmapList-method),</pre>
draw-HeatmapAnnotation-method, 93	108
draw-HeatmapList-method, 94	draw_heatmap_list,HeatmapList-method
draw-Legends-method, 100	<pre>(draw_heatmap_list-HeatmapList-method),</pre>
draw-SingleAnnotation-method, 101	108
draw_annotation	draw_heatmap_list-HeatmapList-method,
(draw_annotation-Heatmap-method),	108
102	draw_title (draw_title-dispatch), 109
draw_annotation,Heatmap-method	draw_title,Heatmap-method
(draw_annotation-Heatmap-method),	(draw_title-Heatmap-method),
102	109
draw_annotation-Heatmap-method, 102	draw_title,HeatmapList-method
draw_annotation_legend	<pre>(draw_title-HeatmapList-method),</pre>
(draw_annotation_legend-HeatmapList-	110
103	draw_title-dispatch, 109 draw_title-Heatmap-method, 109
draw_annotation_legend,HeatmapList-method	·
(draw_annotation_legend-HeatmapList	draw_title-HeatmapList-method, 110 -method).
103	Extract.AnnotationFunction
draw_annotation_legend-HeatmapList-method,	([.AnnotationFunction), 237
103	Extract.comb_mat([.comb_mat), 237
draw dend/draw dend-Heatmap-method).	Extract.gridtext([.gridtext), 238

Extract.Heatmap([.Heatmap), 239	Heatmap, 79, 88, 113, 121, 128, 129, 144, 149,
Extract.HeatmapAnnotation	161, 176, 177, 182, 223
([.HeatmapAnnotation), 240	Heatmap-class, 128
<pre>Extract.HeatmapList([.HeatmapList), 240</pre>	Heatmap3D, 113, 129
Extract.SingleAnnotation	heatmap_legend_size
([.SingleAnnotation), 241	$(heatmap_legend_size-HeatmapList-method),$
extract_comb, 111, <i>154</i>	134
	heatmap_legend_size,HeatmapList-method
filter_types, 127	$(heatmap_legend_size-HeatmapList-method),$
frequencyHeatmap, 111	134
full_comb_code, 113	$\verb heatmap_legend_size-HeatmapList-method ,$
	134
<pre>get_color_mapping_list</pre>	HeatmapAnnotation, 16, 17, 23, 24, 27–29,
<pre>(get_color_mapping_list-HeatmapAnnota</pre>	ation-method, 34, 36, 37, 39, 42, 44, 46, 47, 49,
115	37, 120, 130, 131, 132, 143, 147,
<pre>get_color_mapping_list,HeatmapAnnotation-met</pre>	nod 189, 223, 224
(get_color_mapping_list-HeatmapAnnota	HeatmapAnnotation-class, 132
115	rica chiapers c, 199
get_color_mapping_list-HeatmapAnnotation-met	HeatmapList-class, 134
115	neight. Annotation unction, 155
<pre>get_legend_param_list</pre>	height.Heatmap, 136
(get_legend_param_list-HeatmapAnnotat	height HeatmapAnnotation, 136
116	TiergitettiedemapErse, 157
get_legend_param_list,HeatmapAnnotation-metho	height.Legends, 13/
(get_legend_param_list-HeatmapAnnotat	:ionemethod?
116	neight
$\verb get_legend_param_list-HeatmapAnnotation-methods \\$	od, (heightAssign.AnnotationFunction),
116	139
<pre>getXY_in_parent_vp, 114</pre>	height <heatmapannotation< td=""></heatmapannotation<>
gpar, 15, 124, 216	<pre>(heightAssign.HeatmapAnnotation), 139</pre>
GRanges, <i>52</i> , <i>172</i>	
grid.annotation_axis, 116	height <singleannotation (heightassign.singleannotation),<="" td=""></singleannotation>
grid.boxplot, 117	(Herghtassight, SingleAlmotation),
grid.dendrogram, <i>104</i> , <i>118</i> , 118	heightAssign.AnnotationFunction, 139
grid.draw, 100, 117, 119	heightAssign.HeatmapAnnotation, 139
grid.draw.Legends, 119	heightAssign.SingleAnnotation, 140
grid.grabExpr,96	heightDetails.annotation_axis, 141
grid.picture, 34	heightDetails.legend, 141
grid.raster, 34	heightDetails.legend_body, 142
grid.text, 46	heightDetails.packed_legends, 142
grid.textbox, 120	heightDetails.textbox, 143
grob, 19, 21, 22, 85, 100, 103, 107, 119, 135,	hist, 112
138, 147, 148, 150, 160, 222, 231	ht_global_opt, 143
grobHeight, 222	ht_opt, 99, 144, 144
grobWidth, 222	ht_size, 146
gt_render, 120, 121, 238	
	<pre>image_resize, 127</pre>
hclust, 124, 125, 145	is_abs_unit, 146

Legend, 21, 57, 58, 100, 103, 107, 119, 135,	names.HeatmapAnnotation, 167
138, 147, 150, 160, 178, 231	names.HeatmapList, 167
Legends, 150	names <heatmapannotation< td=""></heatmapannotation<>
Legends-class, 150	(namesAssign.HeatmapAnnotation),
length.HeatmapAnnotation, 151	168
length.HeatmapList, 151	namesAssign.HeatmapAnnotation, 168
list_components, 152	ncol.Heatmap, 168
list_to_matrix, 152	nobs.AnnotationFunction, 169
loess, <i>37</i>	nobs.HeatmapAnnotation, 169
	nobs.SingleAnnotation, 170
make_column_cluster	normalize_comb_mat, 171
<pre>(make_column_cluster-Heatmap-method),</pre>	normalize_genomic_signals_to_bins, 171
153	nrow.Heatmap, 174
make_column_cluster,Heatmap-method	
<pre>(make_column_cluster-Heatmap-method),</pre>	
153	options, <i>145</i>
make_column_cluster-Heatmap-method,	order.comb_mat,177
153	order.dendrogram, 54
make_comb_mat, 64, 65, 67, 111, 154, 178,	1
186, 201, 202, 216, 219, 223, 238	packLegend, 22, 100, 119, 135, 138, 149, 150,
make_layout (make_layout-dispatch), 156	178, 231
make_layout,Heatmap-method	pct_v_pct (%v%), 242
<pre>(make_layout-Heatmap-method),</pre>	pheatmap, 179, 180–182
157	pindex, 183
make_layout,HeatmapList-method	plot.Heatmap, 184
<pre>(make_layout-HeatmapList-method),</pre>	plot.HeatmapAnnotation, 184
158	plot.HeatmapList, 185
make_layout-dispatch, 156	PostScriptTrace, 34
make_layout-Heatmap-method, 157	prepare (prepare-Heatmap-method), 185
make_layout-HeatmapList-method, 158	prepare, Heatmap-method
make_row_cluster	(prepare-Heatmap-method), 185
<pre>(make_row_cluster-Heatmap-method),</pre>	prepare-Heatmap-method, 185
162	print.comb_mat, 186
<pre>make_row_cluster, Heatmap-method</pre>	ro cizo
(make_row_cruster-neatmap-method),	<pre>re_size (re_size-HeatmapAnnotation-method),</pre>
	188
make_row_cluster-Heatmap-method, 162 map_to_colors	re_size,HeatmapAnnotation-method
<pre>(map_to_colors-ColorMapping-method),</pre>	(re_size-HeatmapAnnotation-method),
(map_to_color s-color mapping-method),	188
map_to_colors,ColorMapping-method	re_size-HeatmapAnnotation-method, 188
(map_to_colors-ColorMapping-method),	read.chromInfo, 51
163	readJPEG, 34
map_to_colors-ColorMapping-method, 163	readPicture, 34
max, 127	readPNG, 34
max_text_height, 164, 165	readTIFF, 34
max_text_width, 164, 165	reorder.dendrogram, 125
mean, 127	restore_matrix, 187, 187
merge_dendrogram, 54, 166	richtext_grob, 120, 121
mer ge_derial ogi am, 27, 100	1 101100 A 0_81 OD, 120, 121

row_anno_barplot, 190	show, AnnotationFunction-method
row_anno_boxplot, 191	(show-AnnotationFunction-method),
row_anno_density, 191	203
row_anno_histogram, 192	show,ColorMapping-method
row_anno_points, 193	(show-ColorMapping-method), 203
row_anno_text, 193	show, Heatmap-method
row_dend(row_dend-dispatch), 194	(show-Heatmap-method), 204
row_dend, Heatmap-method	show, HeatmapAnnotation-method
(row_dend-Heatmap-method), 195	(show-HeatmapAnnotation-method),
row_dend,HeatmapList-method	205
<pre>(row_dend-HeatmapList-method),</pre>	show, HeatmapList-method
195	(show-HeatmapList-method), 206
row_dend-dispatch, 194	show, SingleAnnotation-method
row_dend-Heatmap-method, 195	(show-SingleAnnotation-method),
row_dend-HeatmapList-method, 195	206
row_order (row_order-dispatch), 196	show-AnnotationFunction-method, 203
row_order, Heatmap-method	show-ColorMapping-method, 203
(row_order-Heatmap-method), 197	show-dispatch, 204
row_order, HeatmapList-method	show-Heatmap-method, 204
<pre>(row_order-HeatmapList-method),</pre>	show-HeatmapAnnotation-method, 205
198	show-HeatmapList-method, 206
row_order-dispatch, 196	show-SingleAnnotation-method, 206
row_order-Heatmap-method, 197	
row_order-HeatmapList-method, 198	SingleAnnotation, 17, 130, 131, 207, 208, 210
rowAnnotation, 126, 132, 189, 190-194	
	SingleAnnotation-class, 210
seekViewport, <i>74</i> , <i>80</i> , <i>83</i>	size.AnnotationFunction, 211
segmentsGrob, 85	size.HeatmapAnnotation, 211
set_component_height	size.SingleAnnotation, 212
(set_component_height-Heatmap-method)	size< Annotation Function '
199	(312eA331gii.Aiiilotatioiii ulictioii),
<pre>set_component_height,Heatmap-method</pre>	213
(set_component_height-Heatmap-method)	size <heatmapannotation< td=""></heatmapannotation<>
199	(SIZEASSIGH. HEALIIIAPAHHOLALIOH),
<pre>set_component_height-Heatmap-method,</pre>	213
199	size <singleannotation< td=""></singleannotation<>
set_component_width	(sizeAssign.SingleAnnotation),
<pre>(set_component_width-Heatmap-method),</pre>	214
200	sizeAssign.AnnotationFunction, 213
<pre>set_component_width,Heatmap-method</pre>	sizeAssign.HeatmapAnnotation, 213
<pre>(set_component_width-Heatmap-method),</pre>	sizeAssign.SingleAnnotation, 214
200	smartAlign, 215
<pre>set_component_width-Heatmap-method,</pre>	smartAlign2, 215
200	str.comb_mat, 216
set_name, 154, 171, 201	subset_gp, 216
<pre>set_name<- (set_nameAssign), 201</pre>	<pre>subset_matrix_by_row, 217</pre>
set_nameAssign, 201	subset_no, 217
set_size, <i>154</i> , 202	subset_vector, 218
show(show-dispatch), 204	summary.Heatmap, 218

```
summary.HeatmapList, 219
t.comb_mat, 154, 219
test_alter_fun, 220
textbox_grob, 48, 120, 143, 221, 236
textGrob, 164, 165
unify_mat_list, 176, 222
unit, 14, 22, 34, 37, 39, 42, 44, 46, 49, 57, 69,
        71, 72, 84, 124–126, 131, 135, 139,
         140, 143, 146, 148, 160, 164, 165,
        178, 189, 199, 200, 208, 213, 214,
        221, 226–228, 232–234, 236
UpSet, 223, 224, 226–228
upset_left_annotation, 225
upset_right_annotation, 224, 226
upset_top_annotation, 224, 227
viewport, 91, 93, 102, 104-106, 109
width.AnnotationFunction, 229
width.Heatmap, 229
\verb|width.HeatmapAnnotation|, 230|\\
width.HeatmapList, 230
width.Legends, 231
width.SingleAnnotation, 232
width<-.AnnotationFunction
        (widthAssign.AnnotationFunction),
        232
width<-.HeatmapAnnotation
        (widthAssign.HeatmapAnnotation),
        233
width<-.SingleAnnotation
        (widthAssign.SingleAnnotation),
        234
widthAssign.AnnotationFunction, 232
widthAssign.HeatmapAnnotation, 233
widthAssign.SingleAnnotation, 234
widthDetails.annotation_axis, 234
widthDetails.legend, 235
widthDetails.legend_body, 235
widthDetails.packed_legends, 236
widthDetails.textbox, 236
```