

## Support Vector Machines



In honour of Breast Cancer Awareness
Month, October 2020, along with a
Case Study on Breast Cancer Cell
Classification (on the basis of
whether they are MALIGNANT OR BENIGN)

### About Support Vector Machines

★ Supervised Classification Machine Learning model.

- ★ They work in 3 simple steps:
  - Start with data in a relatively low dimension
  - Move the data into a higher dimension
  - Find a Support Vector Classifier that separates the higher dimension data into two groups

### They are great because...

- ★ They can handle outliers
- ★ They allow a few misclassifications in order to predict a better result (Bias-Variance tradeoff)
- ★ They can handle overlapping classifications
- ★ They can fit data within an n-dimensional plane (hyperplane)

### Important Terms

★ Margin - Shortest distance between the observations and the threshold

- ★ Soft Margin When we allow misclassifications within the margin, then this is the distance between the observations and the threshold
- ★ Support Vectors The observations on the edge and within the soft margin

### Important Terms, continued

- ★ Support Vector Classifier (AKA Soft Margin Classifier) When a soft margin is used to determine the location of a threshold, then an SVC is being used to classify observations
- ★ Support Vector Machines Used when our data cannot be classified using a simple, 2D plane

### Important Terms, continued

- ★ **Hyperplane -** Any plane with *n* number of dimensions
- ★ Kernels These are mathematical functions used to transform the data so that they can fit in an n-dimensional plane. There are three types of kernels commonly used:
  - Linear Kernels
  - Polynomial Kernels
  - Radial Kernels

### Linear and Polynomial Kernels

- ★ Linear Kernels These are used to make simple SVCs without any sort of data transformation.
- ★ Polynomial Kernels These increase the dimension of data to fit it on a higher plane, by setting the degree of the polynomial d and the relationships between each pair of observations and using these to find a good SVC.

### Radial Kernels

- ★ AKA Radial Basis Function Kernels
- ★ Find a SVC in infinite dimensions and behaves like a weighted k-NN model.
- ★ Closest observations (nearest neighbours) have a lot of influence on how the new observations are classified.
- ★ Since this only calculates the relationships between every pair of points as if they are in higher dimensions, they don't do any transformations on the data.

### Support Vector Machine



# Example: Medicine Dosage works on Patients

- ★ Medicine Dosage that work on Patient.
- ★ Dosage doesn't work when the quantity is high or low. Represented by Red Dots
- ★ Dosage only works when the dosage is optimal which is in the middle represented by the Green dots.



### **Polynomial Function**

Function = 
$$(a * b + r)^d$$
  
Degree(d) = 2, Constant (r)= 1  
Function =  $(a*b+1)*(a*b+1)$   
=  $(a^2b^2+2ab+1)$ 

Dot Product =  $(\sqrt{2}a, a^2, 1).(\sqrt{2}b, b^2, 1)$ 

Which gives the coordinates in higher dimension.





#### Case Study

### Breast Cancer Cell Classification

- \* Target Variables Malignant, Benign
- ★ Features There are 30 input features of cancer cells defined by this dataset
- ★ Shape There are 568 rows and 30 columns of data
- ★ Training and testing data have a 70:30 split
- ★ Optimal Parameters for training the SVM were:
  - ∘ *Kernel* RBF
  - o **C** 0.5
  - Gamma 0.0001

### Result - Confusion Matrix

```
★ TN - 61 / 63
★ TP - 106 / 108
★ FN - 2 / 63
★ FP - 2 / 108
```



★ Link to Program

### Result - Classification Report

```
★ accuracy score: 97.66%
```

```
★ precision score: 98.15%
```

★ recall score: 98.15%

★ f1 score: 98.15%

| * | MSE | (Mean | Square |
|---|-----|-------|--------|
|---|-----|-------|--------|

Error) = 2.34%

| classification | report:<br>precision | recall | f1-score | support |
|----------------|----------------------|--------|----------|---------|
| Θ              | 0.97                 | 0.97   | 0.97     | 63      |
| 1              | 0.98                 | 0.98   | 0.98     | 108     |
| accuracy       |                      |        | 0.98     | 171     |
| macro avg      | 0.97                 | 0.97   | 0.97     | 171     |
| weighted avg   | 0.98                 | 0.98   | 0.98     | 171     |

### Result - Decision Boundary - PCA



### References + Resources Used

- ★ Support Vector Machines, Clearly Explained!!! -StatQuest with John Starmer (YouTube)
- ★ Python Data Science Handbook Jake VanderPlas
- ★ CyberPunk Style Matplotlib Graphs Dominik Haitz (Matplot Blog)
- ★ Support Vector Machine Detailed Analysis -Niraj Verma (Kaggle)
- ★ UCI Machine Learning Repository (Dataset)