Simulation of Hawkes Process

Suhas Shastry

Poisson Process

Homogeneous

$$P\{X(t) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$
 $n = 0,1,2,...$

Homogeneous Poisson process with rate=1

Inhomogeneous

$$P\{X(t) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$
 $n = 0,1,2,...$ $P\{X(t) = n\} = e^{-\Lambda(t)} \frac{\{\Lambda(t)\}^n}{n!}$ $n = 0,1,2,...$

Inhomogoneous Poisson Process with rate=t/2

Hawkes Process

Hawkes Process, lambda = 1, alpha = 2, beta = 3

$$\Lambda(t) = \lambda_0 + \sum_{t_i < t} \alpha e^{-\beta(t - t_i)}$$

$$l = \sum_{i=1}^{k} \log \left[\lambda + \alpha \sum_{j=1}^{i-1} e^{-\beta(t_i - t_j)} \right] - \lambda t_k + \frac{\alpha}{\beta} \sum_{i=1}^{k} \left[e^{-\beta(t_k - t_j)} - 1 \right]$$

Chicago Burglary data in Beat 423 (2017-18)

Simulated Hawkes data with lambda = 0.29, alpha = 0.04, beta = 0.79

Histogram of p value

Thank you

Simulation of Hawkes Process Suhas Shastry

shastrys@oregonstate.edu

https://rstudio.cloud/spaces/4116/project/113564