1.
$$P(+u|+e) = \frac{P(+u,+e)}{P(+e)}$$
First compute $P(+u,+e)$.
$$P(+u,+e) = \underset{h}{\leq} P(h) \underset{i}{\leq} (+u|i,h) \underset{i}{\leq} P(t|i) \cdot P(i) \cdot P(+e|t,+u)$$

$$= \underset{h}{\leq} P(h) \underset{i}{\leq} (+u|i,h) \underset{i}{\leq} P(t|i) \cdot P(t|i) \cdot P(+e|t,+u)$$

$$= \underset{h}{\leq} P(h) \underset{i}{\leq} (+u|i,h) \cdot P(t|i) \cdot P(+e|t,+u)$$

$$= \underset{i}{\leq} P(h) \underset{i}{\leq} P(h|i,h) \cdot P(h|i) \cdot P(h|i,+u)$$

$$= \underset{i}{\leq} P(h|i,h) \cdot P(h|i) \cdot P(h|i,+u)$$

$$= \underset{i}{\leq} P(h|i,h) \cdot P(h|i,h) \cdot P(h|i,+u)$$

$$= \underset{i}{\leq} P(h|i,h) \cdot P(h|i,h) \cdot P(h|i,+u)$$

$$= \underset{i}{\leq} P(h|i,h) \cdot P(h|i,+u) \cdot P(h|i,+u)$$

$$= \underset{i}{\leq} P(h|i,h) \cdot P(h|i,+u) \cdot P(h|i,+u) \cdot P(h|i,+u) \cdot P(h|i,+u)$$

$$= \underset{i}{\leq} P(h|i,h) \cdot P(h|i,+u) \cdot P(h|i,$$

Now compute
$$f_3 = \frac{1}{2} P(h) f_2(h)$$

$$= 0.6 \times 0.6618 + 0.4 \times 0.2046$$

$$= 0.47892$$
As a result, $P(tu, te) = 0.47892$
To calculate, $P(te) = P(tu, te) + P(-u, te)$

$$= \frac{1}{2} P(h) \frac{1}{2} (-u) i_1 h_1 \frac{1}{2} P(te) \cdot P($$

1.T and U are independent (FALSE)

There are a total of 2 paths from T to U.

First Path: T -- E -- U

The structure of this path is: $T \rightarrow E \leftarrow U$

Due to the fact that E is not given and none of E's descendants are given. We can say that this path is blocked

Second Path: T -- I --U

The structure of this path is $T \leftarrow I \rightarrow U$

Due to the fact that I is not given, we can say that path is not blocked.

As a result, T and U are not independent.

2. T and U are conditionally independent given I, E, and H (FALSE)

There are a total of 2 paths from T to U.

First Path: T -- E -- U

The structure of this path is: $T \rightarrow E \leftarrow U$

Due to the fact that E are given we can say that this bath is not blocked.

We do not need to check other paths since we have found a path that is not blocked.

As a result, T and U are not conditionally independent given I,E,H

3. T and U are conditionally independent given I and H (TRUE)

There are a total of 2 paths from T to U.

First Path: T -- E -- U

The structure of this path is: $T \rightarrow E \leftarrow U$

Due to the fact that E is not given and none of E's descendants are given. We can say that this path is blocked

Second Path: T -- I -- U

The structure of this path is $T \leftarrow I \rightarrow U$

Due to the fact that I is given, we can say that this path is blocked

As a result, T and U are conditionally independent given I and H.

4. E and H are conditionally independent given U. (FALSE)

There are two paths from E to H.

First path: E -- U -- H

The structure of this path is: $E \leftarrow U \leftarrow H$

Due to the fact that U is given, this path is blocked

Second path: E -- T -- I -- U --H

Check each triple in this path:

- 1. $E \leftarrow T \leftarrow I$ (not blocked since G is not given)
- 2. $T \leftarrow I \rightarrow U$ (not blocked since I is not given)
- 3. $I \rightarrow U \leftarrow H$ (not blocked since U is given)

As a result, the path E -- T -- I -- U -- H is not blocked

E and H are not conditionally independent given U.

5. E and H are conditionally independent given U, I, and T. (TRUE)

There are two paths from E to H.

First path: E -- U -- H

The structure of this path is: $E \leftarrow U \leftarrow H$

Due to the fact that U is given, this path is blocked

Second path: E -- T -- I -- U --H

Check each triple in this path:

1. $E \leftarrow T \leftarrow I$ (blocked since T is given)

Found a blocked triple path, no need to move forward

As a result, the path E -- T -- I -- U -- H is blocked.

As a result, E and H are conditionally independent given U, I, and T.

6. I and H are conditionally independent given E. (False)

There are two paths from I to H.

First Path: I -- U -- H

The structure of this path is: $I \rightarrow U \leftarrow H$

In this case U is not given. However, E, U's descendants, is given.

As a result, this path is not blocked and we do not need to check other paths.

7. I and H are conditionally independent given T (TRUE)

There are two paths from I to H.

First Path: I -- U -- H

The structure of this path is: $I \rightarrow U \leftarrow H$

In this case U is not given and none of U's descendants is given, this path is blocked.

Second path: I --T -- E -- U -- H

Check every triple:

1. $I \rightarrow T \rightarrow E$ (blocked since T is given)

No need to check the rest and the second path is blocked.

As a result, I and H are conditionally independent given T.

8. T and H are independent (TRUE)

There are two paths between T and H.

First Path: T -- I -- U -- H

Check every triple in this path:

- 1. $T \leftarrow I \rightarrow U$ (I is not given, not blocked)
- 2. $I \rightarrow U \leftarrow H$ (U and its descendants are not given, blocked)

Second path; T -- E -- U -- H

Check every triple in this path:

1. $T \rightarrow E \leftarrow U$ (E is not given and have not descendants, blocked)

No need to check other triple.

As a result, T and H are independent.

9. T and H are conditionally independent given E. (FALSE)

There are two paths between T and H.

First Path: T -- I -- U -- H

Check every triple in this path:

- 1. $T \leftarrow I \rightarrow U$ (I is not given, not blocked)
- 2. $I \rightarrow U \leftarrow H$ (U's descendants E is given, not blocked)

Since the first path is already not blocked.

T and H are not conditionally independent given E.

10. T and H are conditionally independent given E and U (FALSE)

First Path: T -- I -- U -- H

Check every triple in this path:

- 1. $T \leftarrow I \rightarrow U$ (I is not given, not blocked)
- 2. $I \rightarrow U \leftarrow H$ (U is given, not blocked)

As a result, this path is not blocked, T and H are not conditionally independent given E and U.