64-bit ARM Unikernels on uKVM

ARM

Wei Chen < Wei. Chen @arm.com >

Beijing / LC3 China 2017 2017-06-20

©ARM 2017

Thanks to

- Dan Williams (IBM), Martin Lucina (Docker), Anil Madhavapeddy (Docker) and other Solo5 contributors who give me lots of help in community.
- All my ARM colleagues who are co-working with me to implement AArch64 uKVM monitor and bring up guest.

Agenda

- Unikernel introduction
- Current workload issues and solutions on cloud
- uKVM and ARM work
- Demo
- What's next

What are unikernels

The unikernel community, Unikernel.org, defines it as follows:

Unikernels are specialized, single-address-space machine images constructed by using library operating systems.

A special collection of libraries that provides needed operating system functions in a compliable format.

Unikernels run on bare metal

Unikernels can be designed to run on bare metal directly.

Two big drawbacks:

- Resource isolations for multiple unikernels.
- Variety of different devices.

Unikernels run on hypervisors

Fortunately, modern hypervisors provide virtual machines with:

- Consistent set of virtual devices.
- Strong context isolation.

Why we need Unikernels?

To address issues of traditional workloads on Cloud

- Slower initialization
- More resources used
- More opportunities to exploit

User Space Service Process System Processes Library Routines File System Networking Scheduler **Device I/O Other Kernel Modules Kernel Space**

Traditional Workload Stack

Workloads with Virtual Machine

Move the workloads into the virtual machine:

Can Container help?

Are unikernels better solution?

Package only needed modules into an image:

MirageOS as an example

MirageOS unikernel can run on Xen or Linux KVM/QEMU as a guest.

VENOM vulnerability

- Origin
 - Bug in virtual floppy emulation.
- Range
 - Millions of virtual machines were potentially at risk.

#1 Attacker is

uKVM is a specialized unikernel monitor

Package hypervisor interfaces and emulations that only applications required:

Web **Networking** Console **Unikernel** + maritar **Application** Server **Application** virtual virtual virtual virtual block network network console uKVM uKVM **uKVM** Linux / KVM Linux / KVM Linux / KVM

uKVM on AArch64

- We have started to port uKVM on AArch64 at the beginning of this year.
- Currently, we have the following working:
 - Setup guest CPU
 - Setup guest memory
 - Setup guest timer
 - Setup guest MMU
 - https://github.com/Weichen81/ukvm-solo5-arm64
- And we are working with upstream to get support merged at:
 - https://github.com/Solo5/solo5

Guest page tables on AArch64

Need to enable MMU for guest to share data with host on AArch64.

Demo

- To demonstrate:
 - Http server binary size, boot time and memory usage.
 - How many http servers can run on this host at the same time.
- Hardware Configuration:
 - 8 Cortex-A53 2Ghz CPU
 - 16 GB memory
 - mirage-solo5-ukvm AArch64 Branch:
 - git checkout –b arm64 https://github.com/Weichen81/ukvm-solo5-arm64
 - Testing tag:
 - demo_for_oss_2017

Footprint and boot time

- Footprint:
 - ukvm-bin, 84Kbytes
 - Conduit_server.ukvm, 5.3Mbytes
- Http Server boot time:
 - Launch to uKVM main entry: ~Ims
 - uKVM main entry to conduit_server print "SOLO5": ~50ms

```
Unikernel Application Image
(Conduit_server)
5.3 Mbytes

Monitor (ukvm-bin)
84 Kbytes

Linux/KVM
```

```
Solo5: Memory map: 16 MB addressable:
           unused @ (0x0 - 0xfffff)
             text @ (0x100000 - 0x306fff)
Solo5:
          rodata @ (0x307000 - 0x35ffff)
Solo5:
             data @ (0x360000 - 0x471fff)
Solo5:
             heap >= 0x472000 < stack < 0x1000000
Solo5: new bindings
STUB: getenv() called
STUB: open() called
STUB: getpid() called
STUB: getppid() called
2017-05-16 09:12:03 -00:00: INF [netif] Plugging into 0 with mac a2:1e:82:57:38:65
2017-05-16 09:12:03 -00:00: INF [ethif] Connected Ethernet interface a2:1e:82:57:38:65
2017-05-16 09:12:03 -00:00: INF [arpv4] Connected arpv4 device on a2:1e:82:57:38:65
2017-05-16 09:12:03 -00:00: INF [udp] UDP interface connected on 10.0.0.2
2017-05-16 09:12:03 -00:00: INF [tcpip-stack-direct] stack assembled: mac=a2:1e:82:57:38:65,ip=10.0.0.2
```

Multiple instances

256 Conduit Servers:

• CPU usage: 100%

top -	08:09:36 up	3:19, 3	users, load	average:	196.78, 74.13,	27.56
Tasks:	458 total,	257 runnir	ng, 201 sleep	ing, 0	stopped, 0 zo	mbie
%Cpu0	: 99.0 us,	1.0 sy,	0.0 ni, 0.0	id, 0.0	wa, 0.0 hi,	0.0 si, 0.0 st
%Cpu1	:100.0 us,	0.0 sy,	0.0 ni, 0.0	id, 0.0	wa, 0.0 hi,	0.0 si, 0.0 st
%Cpu2	: 99.0 us,	1.0 sy,	0.0 ni, 0.0	id, 0.0	wa, 0.0 hi,	0.0 si, 0.0 st
%Cpu3	: 99.5 us,	0.5 sy,	0.0 ni, 0.0	id, 0.0	wa, 0.0 hi,	0.0 si, 0.0 st
%Cpu4	: 99.5 us,	0.5 sy,	0.0 ni, 0.0	id, 0.0	wa, 0.0 hi,	0.0 si, 0.0 st
%Cpu5	: 99.5 us,	0.5 sy,	0.0 ni, 0.0	id, 0.0	wa, 0.0 hi,	0.0 si, 0.0 st
%Cpu6	: 99.5 us,	0.5 sy,	0.0 ni, 0.0	id, 0.0	wa, 0.0 hi,	0.0 si, 0.0 st
%Cpu7	:100.0 us,	0.0 sy,	0.0 ni, 0.0	id, 0.0	wa, 0.0 hi,	0.0 si, 0.0 st
KiB Me	m : 16361072	total, 13	3976696 free,	207636	used, 2176740	buff/cache
KiB Sw	ap: 19730428	total, 19	9730428 free,	0	used. 13983140	avail Mem

PID	USER	PR	NI	VIRT	RES	SHR	S !	%CPU S	%MEM	TIME+	COMMAND
27498	weic	20	0	18144	8180	8100	R	3.9	0.0	0:02.38	ukvm-bin
27500	weic	20	0	18144	8112	8028	R	3.9	0.0	0:02.01	ukvm-bin
27502	weic	20	0	18144	7892	7808	R	3.9	0.0	0:02.39	ukvm-bin
27509	weic	20	0	18144	8152	8072	R	3.9	0.0	0:02.36	ukvm-bin
27521	weic	20	0	18144	8156	8072	R	3.9	0.0	0:02.38	ukvm-bin
27534	weic	20	0	18144	8084	8000	R	3.9	0.0	0:02.36	ukvm-bin
27538	weic	20	0	18144	8176	8092	R	3.9	0.0	0:02.35	ukvm-bin
27552	weic	20	0	18144	8048	7964	R	3.9	0.0	0:02.34	ukvm-bin
27554	weic	20	0	18144	8156	8072	R	3.9	0.0	0:02.35	ukvm-bin
27573	weic	20	0	18144	8072	7988	R	3.9	0.0	0:02.36	ukvm-bin
27597	weic	20	0	18144	8112	8028	R	3.9	0.0	0:02.36	ukvm-bin
27606	weic	20	0	18144	8176	8092	R	3.9	0.0	0:02.27	ukvm-bin
27607	weic	20	0	18144	8108	8024	R	3.9	0.0	0:02.11	ukvm-bin
27620	weic	20	0	18144	8180	8096	R	3.9	0.0	0:02.11	ukvm-bin
27625	weic	20	0	18144	8024	7940	R	3.9	0.0	0:02.35	ukvm-bin
27669	weic	20	0	18144	8040	7956	R	3.9	0.0	0:02.27	ukvm-bin
27672	weic	20	0	18144	8048	7964	R	3.9	0.0	0:02.28	ukvm-bin
27684	weic	20	0	18144	8112	8028	R	3.9	0.0	0:02.26	ukvm-bin
27481	weic	20	0	18144	8128	8044	R	3.4	0.0	0:02.13	ukvm-bin
27484	weic	20	0	18144	7776	7692	R	3.4	0.0	0:02.14	ukvm-bin

Memory usage: ~3GB

	total	used	free	shared	buff/cache	available
Mem:	15G	202M	13G	1.7G	2.1G	13G
Swap:	18G	0B	18G			

Single instance memory layout:

Work still needs to be done for AArch64

- Complete the upstream work.
- Add multi-platform supports, currently we only support Linux. If possible, we want to support other platforms like FreeBSD/MacOS.
- Add the VIRTIO support to increase the I/O performance.
- Verify and improve the compatibility of MirageOS libraries on AArch64.

Summary

- Unikernels on uKVM is an approach to make workloads to be smaller, faster and have less opportunities to exploit.
- What's next?
 - Running unikernels inside the container.

Question?

ARM

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Copyright © 2017 ARM Limited © ARM 2017