⑩日本国特許庁(JP)

①実用新案出願公告

學実用新案公報(Y2)

 $\Psi 3 - 32781$

2020公告 平成3年(1991)7月11日

®int. Cl. ⁰ 識別記号 庁内整理番号 F 02 M 51/06 RSMP. 8311-3C 8311-3G 53/04 Ř311—3Ğ 61/18 8311-3G 8311-3G

(全3頁)

日考案の名称

電子制御燃料噴射式内燃機関の電磁式フユーエルインジェクタ

創事 昭59-16069

60公 昭60-128967

包出 顧 昭59(1984)2月9日

@昭60(1985) 8 月29日

者 山 田 博

群馬県伊勢崎市柏川町1671番地1 日本電子機器株式会社

内

72)考 筌 清 水 啓

群馬県伊勢崎市柏川町1671番地1

日本電子機器株式会社

勿出 頭 人 日本電子機器株式会社

群馬県伊勢崎市粕川町1671番地1

100代理 人 弁理士 笹島 宮二雄

審査 官 æ

利 夫

図参考文献

特開 昭55-93955 (JP, A)

実公 昭44-25681 (JP, Y1)

1

匈実用新案登録請求の範囲

電子制御燃料噴射式内燃機関の吸気通路に装着 される電磁式フユーエルインジェクタにおいて、 電線と接続されるコネクタ部を樹脂で成形すると 共に、少なくとも該コネクタ部に連なりノズルポ 5 デイに至るノズルホルダの外周面全面をコネクタ 部と同一の樹脂材でモールド被膜したことを特徴 とする電子制御燃料噴射式内燃機関の電磁式フュ ーエルインジエクタ。

考案の詳細な説明

〈技術分野〉

本考案は、電子制御燃料噴射式内燃機関に使用 される電磁式フユーエルインジェクタに関する。 く背景技術〉

運転状態に基づいて演算された贖射パルス巾をも つ駆動パルスが機関の吸気通路に装着された電磁 式のフユーエルインジェクタに出力され、該フユ ーエルインジエクタを前記パルス巾に相応する時 間開弁駆動させることにより、所定の噴射量の燃 20 にくい等の問題もあつた。 料が機関に供給されるようになつている。

ここで、第1図に示すように従来フューエルイ

2

ンジエクタ1はノズルホルダ1 aに形成された周 **溝にラバー製のインシユレータ2を嵌挿した状態** でプラケット3及びワッシャ4にポルトを通して 図示しない機関の吸気通路壁に締結されている。

尚、フユーエルインジエクタ1に駆動パルスを 入力させるためのコネクタ部 1 b が樹脂材で一体 モールド成形されている。

かかる従来構造においては、次のような問題点 を生じていた。

即ち、フユーエルインジェクタ 1 のノズルホル 10 ダ部1aの露出された金属表面積が大きいため、 フユーエルインジエクタ1の作動音がそのまま放 射され、アイドリング時には耳障りな騒音とな り、又、機関の高温時機関本体壁からの放射熱が 電子制御燃料噴射式内燃機関にあつては、機関 15 フューエルインジェクタ1の金属表面に伝達され て内部温度を上昇させ、燃料蒸気を発生させて再 始動性を悪くすることがあつた。

又、フユーエルインジエクタ1は流量が異なる 規格のものでも外形は殆ど同一であるため識別し

〈考案の目的〉

本考案はこのような従来の問題点に鑑みなされ

3

たもので、作動音による騒音を低減し、遮熱性を 向上できると共に、職別性にも優れた構造とした フューエルインジエクタを提供することを目的と する。

〈考案の構成〉

このため、本考案はフユーエルインジエクタの コネクタ部を樹脂材で成形すると共に、少なくと もこれに連なつてノズルボデイ部に至るノズルホ ルダの外周面全面をコネクタ部と同一の樹脂材で モールド被膜した構成とする。

く実施例〉

以下、本考案の実施例を図面に基づいて説明す る。

第1の実施例を示す第2図においては、フユー エルインジェクタ11のコネクタ部11aを形成 15 で覆つた構成としたため、防音性が向上してア する樹脂材を延設してノズルボデイ部外周面を覆 うプロテクタ11bの基端部に至るノズルホルダ 11 cの外周面全面を樹脂材12でモールドして ある。

かかる構成とすれば、ノズルホルダ部11cの 20 する等種々の特長を備えるものである。 金属表面が全面樹脂材12でモールド被膜される ため、フューエルインジエクタ11の作動音が樹 脂材12によつて減衰され、表面からの放射によ るアイドリング時の耳障りな騒音を大幅に低減で きる。

又、機関本体壁からフユーエルインジエクタ1 1内壁への放射熱の伝達も樹脂材 12によつて効 果的に遮断され、燃料蒸気の発生を防止してホッ トリスタート性が向上する。

さらに、樹脂材12を色分けすることにより、 流量規格の異なるフユーエルインジエクタ11を 一目で識別することが可能になり、かつ、樹脂材 12表面に部品番号を刻印することも容易に行 5 え、その部品も広い面積から任意の所に設定でき る等の利点もある。

第3図は第2の実施例を示し、従来のインシユ レータ、駆動用プラケツトに相当する部分をも樹 脂材13で一体モールド成形したものである。

このようにすれば、部品点数の減少となり、組 10 立作業能率が向上し、コスト的にも有利である。 〈考案の効果〉

以上説明したように、本考案によれば、コネク 夕部に連なるノズルホルダの外周面全面を樹脂材 ドリング時の騒音を低減できると共に、遮熱性も 向上して機関本体壁からの放射熱によるフユーエ ルインジエクタの内部温度の上昇を防止してホツ トリスタート性を向上でき、さらに識別性も向上

図面の簡単な説明

第1図は従来のフューエルインジェクタ及びそ の取付用部品を示す正面図、第2図は本考案の第 1の実施例に係るフューエルインジェクタの正面 25 図、第3図は本考案の第2の実施例に係るフュー エルインジエクタの正面図である。

11…フユーエルインジエクタ、11a…コネ クタ部、11 c…ノズルホルダ、12, 13…樹 脂材。

第3図

()

THIS PAGE BLANK (USPTO)