Семинар от 04.09.2021

Куликов А.В.

Сентябрь 2021

План

- Дисконтирование в дискретном времени
- Дисконтирование в непрерывном времени
- Процентные ставки

Безрисковая процентная ставка

r — безрисковая процентная ставка в дискретном времени (risk-free rate), т.е. % ставка, под которую банк безрисково дает ссуду другому банку.

При вложении суммы денег x на банковский счет в момент времени 0, в момент времени n вкладчик в любом случае получает сумму $(1+r)^n x$.

Факторы, влияющие на процентную ставку:

- продуктивность производства.
- разброс в ожидаемой продуктивности.
- временные предпочтения людей.
- влияние рискованности валюты.

NB. Банковская ставка — безрисковая \pm премия за риск.

 \bullet ежегодно $-(1+r)^{[t]}x$;

- ежегодно $(1+r)^{[t]}x$;
- \bullet ежеквартально $-(1+r/4)^{[4t]}x$;

- ежегодно $(1+r)^{[t]}x$;
- \bullet ежеквартально $-(1+r/4)^{[4t]}x$;
- \bullet ежемесячно $-(1+r/12)^{[12t]}x;$

- ежегодно $(1+r)^{[t]}x$;
- \bullet ежеквартально $-(1+r/4)^{[4t]}x$;
- \bullet ежемесячно $-(1+r/12)^{[12t]}x;$
- ежедневно $(1+r/365)^{[365t]}x$;

- ежегодно $(1+r)^{[t]}x$;
- \bullet ежеквартально $-(1+r/4)^{[4t]}x$;
- ежемесячно $(1+r/12)^{[12t]}x$;
- ежедневно $-(1+r/365)^{[365t]}x$;
- непрерывно $(1+r/n)^{[nt]}x \rightarrow e^{rt}x$.

Реальная годовая процентная ставка при начислении процентной ставки с капитализацией

- ежегодно r(10%);
- ежеквартально $(1 + r/4)^4 1(10,38\%)$;
- ежемесячно $(1 + r/12)^{12} 1(10,47\%)$;
- ежедневно $(1 + r/365)^{365} 1(10,516\%)$;
- непрерывно $e^r 1(10, 517\%)$.

NPV

Дисконтированная выплата — определяется как

$$\frac{P}{(1+r)^n},$$

где P — размер выплаты, n — момент выплаты.

Чистая дисконтированная стоимость контракта определяется как

$$NPV = \sum_{n=1}^{N} \frac{P_{t_n}}{(1+r)^{t_n}},$$

где P_{t_n} — размер выплаты по контракту в момент времени t_n . Внутренняя норма доходности определяется как

$$IRR: \sum_{n=1}^{N} \frac{P_n}{(1+IRR)^n} = 0.$$

где P_n — размер выплаты по контракту в момент времени $n_{n,n}$

6/16

NPV

Период окупаемости проекта определяется как

$$PP = \min\{k : \sum_{n=1}^{k} \frac{P_n}{(1+r)^n} \ge 0\},\$$

Аннуитет (annuity) — контракт, выплачивающий своему владельцу одинаковую сумму денег x в моменты времени $1, 2, \ldots$

$$NPV = \sum_{n=1}^{\infty} \frac{x}{(1+r)^n} = \frac{x}{r}.$$

Реальная процентная ставка

Замечание. Пусть I — темпы инфляции (inflation rate), т.е. сумма x в момент времени 0 имеет ту же покупательную стоимость, что и сумма $(1+I)^n x$ в момент времени n.

Тогда реальная процентная ставка (real interest rate) определяется следующим образом:

$$R = \frac{1+r}{1+I} - 1.$$

Выплаты по кредитам

Пусть кредит на сумму x взят на n месяцев с помесячным начислением процентов исходя из годовой ставки r Тогда реальная процентная ставка по кредиту $(1+r/12)^{12}-1$. Погашение может идти следующими вариантами

- аннуитентный (каждый месяц одна сумма);
- дифференцированный (каждый месяц платятся проценты и одинаковая часть по кредиту)

Выплаты будут выглядеть следующим образом

Выплаты по кредитам

Пусть кредит на сумму x взят на n месяцев с помесячным начислением процентов исходя из годовой ставки r Тогда реальная процентная ставка по кредиту $(1+r/12)^{12}-1$. Погашение может идти следующими вариантами

- аннуитентный (каждый месяц одна сумма);
- дифференцированный (каждый месяц платятся проценты и одинаковая часть по кредиту)

Выплаты будут выглядеть следующим образом

•
$$y_1 = \cdots = y_n = x \frac{r/12}{(1 - \frac{1}{(1 + r/12)^n})}$$
, т.к.

$$y_1 \sum_{i=1}^n \frac{1}{(1+r/12)^i} = x.$$

Выплаты по кредитам

Пусть кредит на сумму x взят на n месяцев с помесячным начислением процентов исходя из годовой ставки r Тогда реальная процентная ставка по кредиту $(1+r/12)^{12}-1$. Погашение может идти следующими вариантами

- аннуитентный (каждый месяц одна сумма);
- дифференцированный (каждый месяц платятся проценты и одинаковая часть по кредиту)

Выплаты будут выглядеть следующим образом

•
$$y_1 = \cdots = y_n = x \frac{r/12}{(1 - \frac{1}{(1 + r/12)^n})}$$
, т.к.

$$y_1 \sum_{i=1}^n \frac{1}{(1+r/12)^i} = x.$$

$$z_i = \frac{x}{n} + x \frac{r}{12} \frac{n-i+1}{n}.$$

Рыночная норма капитализации

Пусть k — рыночная норма капитализации (market capitalization rate) области экономики в дискретном времени, т.е. при вложении суммы денег x в данную область экономики в момент времени 0, в момент времени n вкладчик получает случайную сумму X такую, что $\mathsf{E} X = (1+k)^n x$.

Практический смысл: При инвестировании x в момент 0 в эту область экономики в момент n мы получим сумму денег X, где X — случайная величина такая, что $\mathsf{E} X = (1+k)^n x$.

Факторы, влияющие на норму капитализации ставку, следующие:

- \bullet процентная ставка (r).
- влияние рискованности данной области экономики.

NPV

Чистая дисконтированная стоимость инвестиционного проекта из данной области экономики определяется как

$$NPV = \sum_{n=1}^{N} \frac{\mathsf{E}P_{t_n}}{(1+k)^{t_n}}$$

Рыночная норма капитализации

Пусть k — рыночная норма капитализации (market capitalization rate) области экономики в дискретном времени, т.е. при вложении суммы денег x в данную область экономики в момент времени 0, в момент времени n вкладчик получает случайную сумму X такую, что $\mathsf{E} X = (1+k)^n x$.

Практический смысл: При инвестировании x в момент 0 в эту область экономики в момент n мы получим сумму денег X, где X — случайная величина такая, что $EX = (1+k)^n x$.

Факторы, влияющие на норму капитализации ставку, следующие:

- процентная ставка (r).
- влияние рискованности данной области экономики.

NPV

Чистая дисконтированная стоимость инвестиционного проекта из данной области экономики определяется как

$$NPV = \sum_{n=1}^{N} \frac{\mathsf{E}P_{t_n}}{(1+k)^{t_n}}$$

Задачи IRR, NPV

- 1. Был приведен пример проекта с отсутствующей IRR. Если все $\mathsf{E} P_n \geq 0, \exists k : \mathsf{E} P_k > 0,$ то $\forall r \mathsf{NPV}(r) > 0,$ а значит не существует IRR
- **2.** Был приведен пример проекта с неединственной IRR. Пусть $\mathsf{E} P_1 = \mathsf{6}, \mathsf{E} P_2 = -\mathsf{5}, \mathsf{E} P_3 = \mathsf{1}.$ Тогда

$$rac{6}{1+\mathit{IRR}}-rac{5}{(1+\mathit{IRR})^2}+rac{1}{(1+\mathit{IRR})^3}=0, rac{1}{1+\mathit{IRR}}=2$$
 или $3.$
$$\mathit{IRR}=-50\%$$
 или $-rac{2}{3}.$

Задачи на дом

- 1. Задачи 11 и 30 из job interview. Размещено в lms.
- 2. Пусть проект сначала затратный, а потом генерирует прибыль, те.

$$\exists i : \mathsf{E} P_k \le 0, k \le i, \mathsf{E} P_k \ge 0, k > i.$$

$$\exists k \leq i : \mathsf{E} P_k < 0, \exists k > i, \mathsf{E} P_k > 0.$$

Доказать, что

- ∃!IRR;
- $NPV > 0 \leftrightarrow IRR > k$;
- $NPV > 0 \leftrightarrow PP < \infty$.

Спасибо за внимание