逢甲大學 112 學年第二學期 普通物理實驗 結果報告

實驗 20 RLC 串聯共振

系級:光電一甲

姓名: 方宇凡 D1228597

羅冠杰 D1228728

洪嘉儀 D1291989

組別:B1

任課老師、助教:馬仕信教授、莊秉翰助教

室温:23°C

實驗上課日期:2024/05/29

一、數據紀錄紙

f	f_0	-500	-1000	-1500	-2000	-2500	-3000	-3500	-4000	-4500	-5000
V_R	1.2	1:19	1.15	1.05	0.95	0.85	ריט	0.6	0.5	0.42	0.34

ſ	f_0	+500	+1000	+1500	+2000	+2500	+3000	+3500	+4000	+4500	+5000
V_R	1.2	1.175	143	1.05	1.0	095	0.88	0.83	0.79	0.74	0.7

			3		Q_0		誤 差
V _{max}	$V_{\rm max}/\sqrt{2}$	f_1	f_2	Δf	實驗值	理論值	in /L
1.2.V	0.85 V	5.3kHz	10.41412	5. IIKHZ	1.45	1.53	5.2%

理論値
$$Q_0 = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{300} \times \sqrt{\frac{10 \times 10^{-5}}{0.041 \times 10^{-6}}} = 6.0033 \times$$
實驗値 $Q_0 = \frac{f_0}{\Delta f}$

二、數據分析

- (1) 判斷示波器螢幕的垂直格數,有時不是整數,需要估計,會產生人為的判斷誤差。
- (2) 調整信號產生器的頻率使示波器上的電壓為最大值時,測量的頻率有一個範圍, 造成誤差,
- (3) 電線長短會影響電阻大小。

三、結論

- (1) 各組員判斷出數值,再取平均。
- (2)找出電壓最大值的範圍,取頻率中間值。
- (3)可以透過四端測量法,使用兩組不同的電線來進行電壓測量,從而消除電線電阻的音響。

實驗總結:今天的實驗為 RLC 串聯共振,實驗器材為函數信號產生器、示波器、電阻器 300 歐姆、電容器 $0.047\mu F$ 、電感器 $10 \, \mathrm{mH}$ 、手攜式三用電錶、兩條 BNC-鱷魚夾、一對香蕉-鱷魚夾、三條雙頭鱷魚夾和兩條電源線。首先,按照助教的只是調整示波器上的按鈕至適當位置,設定好後,整個實驗過程中示波器上就不須變動個鈕、鍵、檔,完成校正後,即可開始接線。接好線路後,先用手攜示三用電錶,量測共振頻率 f_0 。接著用示波器量測 $V \mathrm{max}$,將頻率 f_0 ,每 $500 \, \mathrm{HZ}$ 遞減,紀錄 V_R 值大小,共取十次紀錄。再來,再接續每 $500 \, \mathrm{HZ}$ 遞增,紀錄 V_R 值大小,也一樣共取十次紀錄。得到數據後。作 V_R 對 f 的頻率響應圖,從圖中取 f_1 及 f_2 求出 Δf ,各別求出理論值 $Q_0 = \frac{1}{R} \sqrt{\frac{L}{C}}$ 及實驗值 $Q_0 = \frac{f_0}{\Delta f}$,並算百分誤差,即完成實驗。這次實驗過程中,我們遇到線路接觸不良導致數值無法顯示的狀況,經過更換線路,實驗就正常進行了。

四、實驗使用公式

- 1. $f_0 = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$ (L:電感/C:電容)
- 2. 理論值 $Q_0 = \frac{1}{R} \sqrt{\frac{L}{C}}$
- 3. 實驗值 $Q_0 = \frac{f0}{\Delta f}$
- 4.百分誤差 $=\frac{|g + mathbb{R} mathbb{R} mathbb{R} mathbb{R} mathbb{R}}{mathbb{R} mathbb{R} mathbb{R}} \times 100\%$

四、問題回答

Q1:在振盪電路中,為何要討論 Q 值。

答: Q 值可視為在共振狀態下之電路的電壓增益, Q 值較高, 選擇能力較強, 共振頻率附近的響應也較強。

Q2:在共振頻率時,量取電阻兩端的電位差與整個系統的電位差是否相同?何故?

A2: 不相同,量取電阻兩端的電位差反映了整個電路的阻抗特性和電壓分配情況,整個系統的電位差還包括電感和電容產生的電壓分量。

Q3:在 RLC 並聯電路是否也有共振頻率?試簡單說明一下。如果有,其值為何?

A3: 是,在RLC 並聯電路中也存在共振頻率。RLC 並聯電路的共振頻率可以通過分析電路的阻抗來確定。

$$\omega_0 = \frac{1}{\sqrt{LC}}$$