autogluon_each_location

October 19, 2023

```
[1]: # config
     label = 'y'
     metric = 'mean_absolute_error'
     time_limit = 60*30
     presets = 'best_quality'
     do_drop_ds = True
     # hour, dayofweek, dayofmonth, month, year
     use_dt_attrs = []#["hour", "year"]
     use_estimated_diff_attr = False
     use_is_estimated_attr = False
     use_groups = False
     n_groups = 8
     auto_stack = False
     num_stack_levels = 0
     num_bag_folds = 8
     num_bag_sets = 20
     use_tune_data = True
     use_test_data = True
     tune_and_test_length = 0.5 # 3 months from end
     holdout_frac = None
     use_bag_holdout = True # Enable this if there is a large gap between score_val_
     →and score_test in stack models.
     sample_weight = None#'sample_weight' #None
     weight_evaluation = False#
     sample_weight_estimated = 1
     sample_weight_may_july = 1
     run_analysis = True
     shift_predictions_by_average_of_negatives_then_clip = False
```

```
clip_predictions = True
shift_predictions = False
```

```
[2]: import pandas as pd
     import numpy as np
     import warnings
     warnings.filterwarnings("ignore")
     def feature_engineering(X):
         # shift all columns with "1h" in them by 1 hour, so that for index 16:00, \sqcup
      we have the values from 17:00
         # but only for the columns with "1h" in the name
         \#X \ shifted = X. filter(regex="\dh").shift(-1, axis=1)
         #print(f"Number of columns with 1h in name: {X_shifted.columns}")
         columns = ['clear_sky_energy_1h:J', 'diffuse_rad_1h:J', 'direct_rad_1h:J',
            'fresh_snow_12h:cm', 'fresh_snow_1h:cm', 'fresh_snow_24h:cm',
            'fresh_snow_3h:cm', 'fresh_snow_6h:cm']
         X_shifted = X[X.index.minute==0][columns].copy()
         # loop through all rows and check if index + 1 hour is in the index, if so_{\square}
      ⇔get that value, else nan
         count1 = 0
         count2 = 0
         for i in range(len(X shifted)):
             if X_shifted.index[i] + pd.Timedelta('1 hour') in X.index:
                 count1 += 1
                 X_shifted.iloc[i] = X.loc[X_shifted.index[i] + pd.Timedelta('1__
      ⇔hour')][columns]
             else:
                 count2 += 1
                 X_shifted.iloc[i] = np.nan
         print("COUNT1", count1)
         print("COUNT2", count2)
         X_old_unshifted = X[X.index.minute==0][columns]
         \# rename X_{-} old_unshifted columns to have \_ not\_ shifted at the end
         X_old_unshifted.columns = [f"{col}_not_shifted" for col in X_old_unshifted.
      ⇔columns]
         # put the shifted columns back into the original dataframe
```

```
\#X[columns] = X_shifted[columns]
   date_calc = None
   if "date_calc" in X.columns:
        date_calc = X[X.index.minute == 0]['date_calc']
    # resample to hourly
   print("index: ", X.index[0])
   X = X.resample('H').mean()
   print("index AFTER: ", X.index[0])
   X[columns] = X_shifted[columns]
    #X[X_old_unshifted.columns] = X_old_unshifted
   if date_calc is not None:
        X['date_calc'] = date_calc
   return X
def fix_X(X, name):
   # Convert 'date_forecast' to datetime format and replace original columnu
 ⇔with 'ds'
   X['ds'] = pd.to_datetime(X['date_forecast'])
   X.drop(columns=['date_forecast'], inplace=True, errors='ignore')
   X.sort_values(by='ds', inplace=True)
   X.set_index('ds', inplace=True)
   X = feature_engineering(X)
   return X
def handle_features(X_train_observed, X_train_estimated, X_test, y_train):
   X_train_observed = fix_X(X_train_observed, "X_train_observed")
   X_train_estimated = fix_X(X_train_estimated, "X_train_estimated")
   X_test = fix_X(X_test, "X_test")
   if weight_evaluation:
        # add sample weights, which are 1 for observed and 3 for estimated
```

```
X_train_observed["sample_weight"] = 1
        X_train_estimated["sample_weight"] = sample_weight_estimated
        X_test["sample_weight"] = sample_weight_estimated
   y_train['ds'] = pd.to_datetime(y_train['time'])
   y_train.drop(columns=['time'], inplace=True)
   y_train.sort_values(by='ds', inplace=True)
   y_train.set_index('ds', inplace=True)
   return X_train_observed, X_train_estimated, X_test, y_train
def preprocess_data(X_train_observed, X_train_estimated, X_test, y_train, __
 →location):
    # convert to datetime
   X_train_observed, X_train_estimated, X_test, y_train =_
 whandle_features(X_train_observed, X_train_estimated, X_test, y_train)
   if use_estimated_diff_attr:
       X_train_observed["estimated_diff_hours"] = 0
        X_train_estimated["estimated_diff_hours"] = (X_train_estimated.index -__
 apd.to_datetime(X_train_estimated["date_calc"])).dt.total_seconds() / 3600
        X_test["estimated_diff_hours"] = (X_test.index - pd.

→to_datetime(X_test["date_calc"])).dt.total_seconds() / 3600

        X_train_estimated["estimated_diff_hours"] = ___
 →X_train_estimated["estimated_diff_hours"].astype('int64')
        # the filled once will get dropped later anyways, when we drop y nans
        X_test["estimated_diff_hours"] = X_test["estimated_diff_hours"].

¬fillna(-50).astype('int64')
    if use_is_estimated_attr:
       X_train_observed["is_estimated"] = 0
       X train estimated["is estimated"] = 1
       X_test["is_estimated"] = 1
    # drop date calc
   X_train_estimated.drop(columns=['date_calc'], inplace=True)
   X_test.drop(columns=['date_calc'], inplace=True)
   y_train["y"] = y_train["pv_measurement"].astype('float64')
   y_train.drop(columns=['pv_measurement'], inplace=True)
```

```
X_train = pd.concat([X_train_observed, X_train_estimated])
    # clip all y values to 0 if negative
   y_train["y"] = y_train["y"].clip(lower=0)
   X_train = pd.merge(X_train, y_train, how="inner", left_index=True,_
 →right_index=True)
   # print number of nans in y
   print(f"Number of nans in y: {X_train['y'].isna().sum()}")
   X_train["location"] = location
   X_test["location"] = location
   return X_train, X_test
# Define locations
locations = ['A', 'B', 'C']
X trains = []
X tests = []
# Loop through locations
for loc in locations:
   print(f"Processing location {loc}...")
   # Read target training data
   y_train = pd.read_parquet(f'{loc}/train_targets.parquet')
    # Read estimated training data and add location feature
   X train_estimated = pd.read_parquet(f'{loc}/X train_estimated.parquet')
    # Read observed training data and add location feature
   X_train_observed= pd.read_parquet(f'{loc}/X_train_observed.parquet')
   # Read estimated test data and add location feature
   X_test_estimated = pd.read_parquet(f'{loc}/X_test_estimated.parquet')
   # Preprocess data
   X_train, X_test = preprocess_data(X_train_observed, X_train_estimated,__

¬X_test_estimated, y_train, loc)
   X_trains.append(X_train)
   X_tests.append(X_test)
# Concatenate all data and save to csv
X_train = pd.concat(X_trains)
X_test = pd.concat(X_tests)
```

Processing location A...

COUNT1 29667

COUNT2 1

index: 2019-06-02 22:00:00

index AFTER: 2019-06-02 22:00:00

COUNT1 4392 COUNT2 2

index: 2022-10-28 22:00:00

index AFTER: 2022-10-28 22:00:00

COUNT1 702 COUNT2 18

index: 2023-05-01 00:00:00

index AFTER: 2023-05-01 00:00:00

Number of nans in y: 0 Processing location B...

COUNT1 29232

COUNT2 1

index: 2019-01-01 00:00:00

index AFTER: 2019-01-01 00:00:00

COUNT1 4392 COUNT2 2

index: 2022-10-28 22:00:00

index AFTER: 2022-10-28 22:00:00

COUNT1 702 COUNT2 18

index: 2023-05-01 00:00:00

index AFTER: 2023-05-01 00:00:00

Number of nans in y: 4 Processing location C...

COUNT1 29206

COUNT2 1

index: 2019-01-01 00:00:00

index AFTER: 2019-01-01 00:00:00

COUNT1 4392 COUNT2 2

index: 2022-10-28 22:00:00

index AFTER: 2022-10-28 22:00:00

COUNT1 702 COUNT2 18

index: 2023-05-01 00:00:00

index AFTER: 2023-05-01 00:00:00

Number of nans in y: 6059

1 Feature enginering

```
[3]: import numpy as np
     import pandas as pd
     X_train.dropna(subset=['y', 'direct_rad_1h:J', 'diffuse_rad_1h:J'],
      →inplace=True)
     for attr in use_dt_attrs:
         X_train[attr] = getattr(X_train.index, attr)
         X_test[attr] = getattr(X_test.index, attr)
     \#print(X_train.head())
     # If the "sample_weight" column is present and weight_evaluation is True, \sqcup
      →multiply sample_weight with sample_weight_may_july if the ds is between
     _{\circ}05-01 00:00:00 and 07-03 23:00:00, else add sample_weight as a column to
      \hookrightarrow X train
     if weight_evaluation:
         if "sample_weight" not in X_train.columns:
             X_train["sample_weight"] = 1
         X_train.loc[((X_train.index.month >= 5) & (X_train.index.month <= 6)) | __</pre>
      →((X train.index.month == 7) & (X train.index.day <= 3)), "sample weight"] *=[]

¬sample_weight_may_july

     print(X_train.iloc[200])
     print(X_train[((X_train.index.month >= 5) & (X_train.index.month <= 6)) |
      →((X_train.index.month == 7) & (X_train.index.day <= 3))].head(1))
     if use_groups:
         # fix groups for cross validation
         locations = X_train['location'].unique() # Assuming 'location' is the name_
      ⇔of the column representing locations
         grouped_dfs = [] # To store data frames split by location
         # Loop through each unique location
         for loc in locations:
             loc_df = X_train[X_train['location'] == loc]
             # Sort the DataFrame for this location by the time column
             loc_df = loc_df.sort_index()
```

```
# Calculate the size of each group for this location
        group_size = len(loc_df) // n_groups
        # Create a new 'group' column for this location
        loc_df['group'] = np.repeat(range(n_groups),__
  repeats=[group_size]*(n_groups-1) + [len(loc_df) - group_size*(n_groups-1)])
        # Append to list of grouped DataFrames
        grouped_dfs.append(loc_df)
    # Concatenate all the grouped DataFrames back together
    X_train = pd.concat(grouped_dfs)
    X_train.sort_index(inplace=True)
    print(X_train["group"].head())
to_drop = ["snow_drift:idx", "snow_density:kgm3", "wind_speed_w_1000hPa:ms", __
 →"dew_or_rime:idx", "prob_rime:p", "fresh_snow_12h:cm", "fresh_snow_24h:cm", "

¬"wind_speed_u_10m:ms", "wind_speed_v_10m:ms", "snow_melt_10min:mm",
□

¬"rain_water:kgm2", "dew_point_2m:K", "precip_5min:mm", "absolute_humidity_2m:
 ogm3", "air_density_2m:kgm3", "msl_pressure:hPa", "pressure_100m:hPa", □

¬"pressure_50m:hPa", "clear_sky_rad:W"]

X_train.drop(columns=to_drop, inplace=True)
X_test.drop(columns=to_drop, inplace=True)
X_train.to_csv('X_train_raw.csv', index=True)
X_test.to_csv('X_test_raw.csv', index=True)
absolute_humidity_2m:gm3
                                        7.825
                                        1.245
air_density_2m:kgm3
ceiling_height_agl:m
                                  2085.774902
clear_sky_energy_1h:J
                                 1685498.875
clear_sky_rad:W
                                  452.100006
cloud base agl:m
                                  2085.774902
dew_or_rime:idx
                                          0.0
dew_point_2m:K
                                   280.549988
diffuse rad:W
                                  140.800003
diffuse_rad_1h:J
                                   538581.625
direct_rad:W
                                  102.599998
direct_rad_1h:J
                                  439453.8125
effective_cloud_cover:p
                                   71.849998
elevation:m
                                          6.0
```

```
fresh_snow_12h:cm
                                           0.0
fresh_snow_1h:cm
                                           0.0
fresh_snow_24h:cm
                                           0.0
fresh_snow_3h:cm
                                           0.0
fresh snow 6h:cm
                                           0.0
is_day:idx
                                           1.0
is in shadow:idx
                                           0.0
msl_pressure:hPa
                                  1026.349976
precip_5min:mm
                                          0.0
precip_type_5min:idx
                                           0.0
pressure_100m:hPa
                                  1013.325012
pressure_50m:hPa
                                  1019.450012
                                          0.0
prob_rime:p
rain_water:kgm2
                                          0.0
relative_humidity_1000hPa:p
                                    77.099998
sfc_pressure:hPa
                                  1025.550049
snow_density:kgm3
                                          NaN
                                          0.0
snow_depth:cm
snow_drift:idx
                                          0.0
snow melt 10min:mm
                                          0.0
snow_water:kgm2
                                          0.0
sun azimuth:d
                                    93.415253
sun_elevation:d
                                    27.633499
super_cooled_liquid_water:kgm2
                                        0.025
t_1000hPa:K
                                      282.625
total_cloud_cover:p
                                    71.849998
                                    44177.875
visibility:m
wind_speed_10m:ms
                                        2.675
wind_speed_u_10m:ms
                                         -2.3
wind_speed_v_10m:ms
                                         -1.4
wind_speed_w_1000hPa:ms
                                          0.0
                                       2991.12
location
                                            Α
Name: 2019-06-11 06:00:00, dtype: object
                     absolute humidity 2m:gm3 air density 2m:kgm3 \
ds
                                          7.7
2019-06-02 22:00:00
                                                            1.22825
                     ceiling_height_agl:m clear_sky_energy_1h:J \
ds
2019-06-02 22:00:00
                                                              0.0
                              1728.949951
                     clear_sky_rad:W cloud_base_agl:m dew_or_rime:idx \
ds
2019-06-02 22:00:00
                                            1728.949951
                                                                     0.0
                                 0.0
                     dew_point_2m:K diffuse_rad:W diffuse_rad_1h:J ... \
ds
```

```
2019-06-02 22:00:00
                             280, 299988
                                                    0.0
                                                                      0.0 ...
                         super_cooled_liquid_water:kgm2 t_1000hPa:K \
    ds
    2019-06-02 22:00:00
                                                     0.0
                                                           286.225006
                         total_cloud_cover:p visibility:m wind_speed_10m:ms \
    ds
    2019-06-02 22:00:00
                                        100.0 40386.476562
                                                                            3.6
                         wind_speed_u_10m:ms wind_speed_v_10m:ms \
    ds
    2019-06-02 22:00:00
                                                              -0.5
                                       -3.575
                         wind_speed_w_1000hPa:ms
                                                     y location
    ds
    2019-06-02 22:00:00
                                              0.0 0.0
                                                               Α
    [1 rows x 47 columns]
[5]: # Create a plot of X_{train} showing its "y" and color it based on the value of
      → the sample_weight column.
     #import matplotlib.pyplot as plt
     #import seaborn as sns
     \#sns.scatterplot(data=X_train, x=X_train.index, y="y", hue="sample_weight", u
      ⇔palette="deep", size=3)
     #plt.show()
[6]: def normalize_sample_weights_per_location(df):
         for loc in locations:
             loc df = df[df["location"] == loc]
             loc_df["sample_weight"] = loc_df["sample_weight"] /_
      →loc_df["sample_weight"].sum() * loc_df.shape[0]
             df[df["location"] == loc] = loc_df
         return df
     import pandas as pd
     import numpy as np
     def split_and_shuffle_data(input_data, num_bins, frac1):
         Splits the input_data into num_bins and shuffles them, then divides the \sqcup
      $\to$bins into two datasets based on the given fraction for the first set.
         Arqs:
             input_data (pd.DataFrame): The data to be split and shuffled.
             num_bins (int): The number of bins to split the data into.
```

```
frac1 (float): The fraction of each bin to go into the first output \sqcup
\hookrightarrow dataset.
  Returns:
      pd.DataFrame, pd.DataFrame: The two output datasets.
  # Validate the input fraction
  if frac1 < 0 or frac1 > 1:
      raise ValueError("frac1 must be between 0 and 1.")
  if frac1==1:
      return input_data, pd.DataFrame()
  # Calculate the fraction for the second output set
  frac2 = 1 - frac1
  # Calculate bin size
  bin_size = len(input_data) // num_bins
  # Initialize empty DataFrames for output
  output_data1 = pd.DataFrame()
  output_data2 = pd.DataFrame()
  for i in range(num_bins):
       # Shuffle the data in the current bin
      np.random.seed(i)
      current_bin = input_data.iloc[i * bin_size: (i + 1) * bin_size].
⇔sample(frac=1)
       # Calculate the sizes for each output set
      size1 = int(len(current_bin) * frac1)
       # Split and append to output DataFrames
      output data1 = pd.concat([output data1, current bin.iloc[:size1]])
      output_data2 = pd.concat([output_data2, current_bin.iloc[size1:]])
  # Shuffle and split the remaining data
  remaining_data = input_data.iloc[num_bins * bin_size:].sample(frac=1)
  remaining_size1 = int(len(remaining_data) * frac1)
  output_data1 = pd.concat([output_data1, remaining_data.iloc[:
→remaining_size1]])
  output_data2 = pd.concat([output_data2, remaining_data.iloc[remaining_size1:
→]])
  return output_data1, output_data2
```

```
[7]: from autogluon.tabular import TabularDataset, TabularPredictor
     from autogluon.timeseries import TimeSeriesDataFrame
     import numpy as np
     data = TabularDataset('X_train_raw.csv')
     # set group column of train_data be increasing from 0 to 7 based on time, the
      ⇔first 1/8 of the data is group 0, the second 1/8 of the data is group 1, etc.
     data['ds'] = pd.to datetime(data['ds'])
     data = data.sort_values(by='ds')
     # # print size of the group for each location
     # for loc in locations:
          print(f"Location {loc}:")
          print(train_data[train_data["location"] == loc].qroupby('qroup').size())
     # get end date of train data and subtract 3 months
     #split time = pd.to datetime(train data["ds"]).max() - pd.
      → Timedelta(hours=tune_and_test_length)
     # 2022-10-28 22:00:00
     split_time = pd.to_datetime("2022-10-28 22:00:00")
     train_set = TabularDataset(data[data["ds"] < split_time])</pre>
     test_set = TabularDataset(data[data["ds"] >= split_time])
     \# shuffle test_set and only grab tune_and_test_length percent of it, rest goes\sqcup
      ⇔to train_set
     test_set, new_train_set = split_and_shuffle_data(test_set, 40,_
     →tune and test length)
     print("Length of train set before adding test set", len(train set))
     # add rest to train set
     train_set = pd.concat([train_set, new_train_set])
     print("Length of train set after adding test set", len(train set))
     print("Length of test set", len(test_set))
     if use_groups:
         test_set = test_set.drop(columns=['group'])
     tuning_data = None
     if use_tune_data:
         if use_test_data:
             # split test_set in half, use first half for tuning
             tuning_data, test_data = [], []
```

```
for loc in locations:
            loc_test_set = test_set[test_set["location"] == loc]
            # randomly shuffle the loc_test_set
            loc_tuning_data, loc_test_data =_
 ⇒split_and_shuffle_data(loc_test_set, 40, 0.5)
            tuning data.append(loc tuning data)
            test_data.append(loc_test_data)
        tuning_data = pd.concat(tuning_data)
        test_data = pd.concat(test_data)
        print("Shapes of tuning and test", tuning data.shape[0], test data.
 ⇒shape[0], tuning_data.shape[0] + test_data.shape[0])
    else:
        tuning_data = test_set
        print("Shape of tuning", tuning_data.shape[0])
    \# ensure sample weights for your tuning data sum to the number of rows in
 ⇔the tuning data.
    if weight_evaluation:
        tuning_data = normalize_sample_weights_per_location(tuning_data)
else:
    if use_test_data:
        test_data = test_set
        print("Shape of test", test_data.shape[0])
train_data = train_set
# ensure sample weights for your training (or tuning) data sum to the number of \Box
⇔rows in the training (or tuning) data.
if weight evaluation:
    train_data = normalize_sample_weights_per_location(train_data)
    if use test data:
        test_data = normalize_sample_weights_per_location(test_data)
train_data = TabularDataset(train_data)
if use_tune_data:
    tuning_data = TabularDataset(tuning_data)
if use_test_data:
    test_data = TabularDataset(test_data)
```

Length of train set before adding test set 82026 Length of train set after adding test set 87486 Length of test set 5459

$train_{data} dataset summary$

-								
	count	unique			top	freq	\	
ceiling_height_agl:m	72280	59980			_	_		
clear_sky_energy_1h:J	87486	46359						
cloud_base_agl:m	81454	61360						
diffuse_rad:W	87486	11092						
diffuse_rad_1h:J	87486	46319						
direct_rad:W	87486	14181						
direct_rad_1h:J	87486	40118						
ds	87486	36794	2021-02-05	14:0	0:00	3		
effective_cloud_cover:p	87486	5655						
elevation:m	87486	3						
fresh_snow_1h:cm	87486	39						
fresh_snow_3h:cm	87486	70						
fresh_snow_6h:cm	87486	96						
is_day:idx	87486	5						
is_in_shadow:idx	87486	5						
location	87486	3			Α	31872		
<pre>precip_type_5min:idx</pre>	87486	15						
relative_humidity_1000hPa:p	87486	3799						
sfc_pressure:hPa	87486	3795						
snow_depth:cm	87486	487						
snow_water:kgm2	87486	161						
sun_azimuth:d	87486	83179						
sun_elevation:d	87486	72262						
<pre>super_cooled_liquid_water:kgm2</pre>	87486	53						
t_1000hPa:K	87486	1989						
total_cloud_cover:p	87486	5556						
visibility:m	87486	85949						
wind_speed_10m:ms	87486	596						
у	87486	11321						
	fi	rst	-	last		me	an	\
ceiling_height_agl:m		NaT		${\tt NaT}$	286	61.9298	06	
clear_sky_energy_1h:J		NaT		${\tt NaT}$	53029	97.3957	71	
cloud_base_agl:m		NaT		NaT	174	40.2418	02	
diffuse_rad:W		NaT		NaT	4	40.2674	97	
diffuse_rad_1h:J		NaT		NaT	14	5328.62	57	
direct_rad:W		NaT		NaT	į	51.5248	47	
direct_rad_1h:J		NaT		NaT	1853	338.058	54	
ds	2019-01	-01 2023	3-04-30 22:00	00:0				

effective_cloud_cover:p	NaT		NaT	67.052836	
elevation:m	NaT		NaT	11.414718	
fresh_snow_1h:cm	NaT		NaT	0.008783	
fresh_snow_3h:cm	NaT		NaT	0.026713	
fresh_snow_6h:cm	NaT		NaT	0.05322	
is_day:idx	NaT		NaT	0.490147	
is_in_shadow:idx	NaT		NaT	0.556952	
location	NaT		NaT		
<pre>precip_type_5min:idx</pre>	NaT		NaT	0.084976	
relative_humidity_1000hPa:p	NaT		NaT	73.779918	
sfc_pressure:hPa	NaT		NaT	1008.035963	
snow_depth:cm	NaT		NaT	0.197574	
snow_water:kgm2	NaT		NaT	0.090839	
sun_azimuth:d	NaT		NaT	179.584247	
sun_elevation:d	NaT		NaT	-0.705998	
super_cooled_liquid_water:kgm2	NaT		NaT	0.058256	
t_1000hPa:K	NaT		NaT	279.675551	
total_cloud_cover:p	NaT		NaT	73.72398	
visibility:m	NaT			32944.238197	
wind_speed_10m:ms	NaT		NaT	3.032943	
у	NaT		NaT	294.447861	
	std	min	2	5% 50%	\
ceiling_height_agl:m	2532.377528	27.8	1082.31	25 1856.075	
clear_sky_energy_1h:J	831839.646633	0.0	0	.0 9084.9	
cloud_base_agl:m	1808.519208	27.5	598.1562	25 1174.775	
diffuse_rad:W	61.119566	0.0	0	.0 1.35	
diffuse_rad_1h:J	218036.296903	0.0	0	.0 12531.2	
direct_rad:W	114.236728	0.0	0	.0 0.0	
direct_rad_1h:J	406379.39471	0.0	0	.0 0.0	
ds					
effective_cloud_cover:p	34.132847	0.0	42.13	25 79.7	
elevation:m	7.881545	6.0	6	.0 7.0	
fresh_snow_1h:cm	0.110515	0.0	0	.0 0.0	
fresh_snow_3h:cm	0.277575	0.0	0	.0 0.0	
fresh_snow_6h:cm	0.474579	0.0	0	.0 0.0	
is_day:idx	0.486133	0.0	0	.0 0.5	
is_in_shadow:idx	0.484138	0.0	0	.0 1.0	
location					
<pre>precip_type_5min:idx</pre>	0.32995	0.0	0	.0 0.0	
relative_humidity_1000hPa:p	14.200631	19.575	64		
sfc_pressure:hPa	13.038723	941.55	1000.0		
snow_depth:cm	1.28439	0.0		.0 0.0	
snow_water:kgm2	0.240248	0.0		.0 0.0	
sun_azimuth:d	97.419022	6.983	94.41		
sun_elevation:d	24.006117	-49.932	-17.9698		
<pre>super_cooled_liquid_water:kgm2</pre>	0.106959	0.0		.0 0.0	
t_1000hPa:K	6.551665	258.025	275		
- '''			•		

total_cloud_cover:p	33 9510	99 0.0	53.475	92.825
visibility:m			16564.5125	36910.75
wind_speed_10m:ms	1.7587		1.675	2.7
-	774.5318		0.0	0.0
У	114.5516.	15 -0.0	0.0	0.0
	75%	max	dtypes	s \
ceiling_height_agl:m	3916.78125	12285.775	float64	
clear_sky_energy_1h:J	831169.675	3006697.2	float64	
cloud_base_agl:m	2080.39375	11673.725	float64	
diffuse_rad:W	67.15	334.75	float64	
diffuse_rad_1h:J	243365.275	1182265.4	float64	<u>l</u>
direct_rad:W	32.225	683.4	float64	
direct_rad_1h:J	122454.125	2445897.0	float64	
ds			datetime64[ns]	
effective_cloud_cover:p	98.5	100.0	float64	
elevation:m	24.0	24.0	float64	
fresh_snow_1h:cm	0.0	7.1	float64	
fresh_snow_3h:cm	0.0	20.6	float64	
fresh_snow_6h:cm	0.0	34.0	float64	1
is_day:idx	1.0	1.0	float64	1
is_in_shadow:idx	1.0	1.0	float64	
location			object	5
<pre>precip_type_5min:idx</pre>	0.0	5.0	float64	
relative_humidity_1000hPa:p	85.175	100.0	float64	1
sfc_pressure:hPa	1017.1	1043.725	float64	1
snow_depth:cm	0.0	18.2	float64	1
snow_water:kgm2	0.1	5.65	float64	1
sun_azimuth:d	264.601138	348.48752	float64	1
sun_elevation:d	16.004499	49.94375	float64	1
<pre>super_cooled_liquid_water:kgm2</pre>	0.1	1.375	float64	1
t_1000hPa:K	284.225	303.25	float64	1
total_cloud_cover:p	99.9	100.0	float64	1
visibility:m	48289.05	75326.58	float64	1
wind_speed_10m:ms	4.05	13.275	float64	1
У	183.7125	5733.42	float64	1
	missing_count	t missing_ra		\
<pre>ceiling_height_agl:m</pre>	15206	0.173	8811 float	
<pre>clear_sky_energy_1h:J</pre>			float	
cloud_base_agl:m	6032	2 0.068	3948 float	
diffuse_rad:W			float	
diffuse_rad_1h:J			float	
direct_rad:W			float	
direct_rad_1h:J			float	
ds			datetime	
effective_cloud_cover:p			float	
elevation:m			float	
fresh_snow_1h:cm			float	

fresh_snow_3h:cm float fresh_snow_6h:cm float is_day:idx float is_in_shadow:idx float location object precip_type_5min:idx float relative_humidity_1000hPa:p float sfc_pressure:hPa float float snow_depth:cm float snow_water:kgm2 float sun_azimuth:d float sun_elevation:d super_cooled_liquid_water:kgm2 float float t_1000hPa:K total_cloud_cover:p float visibility:m float wind_speed_10m:ms float float У

variable_type special_types

numeric

numeric

cloud_base_agl:m numeric diffuse_rad:W numeric diffuse_rad_1h:J numeric direct_rad:W numeric direct_rad_1h:J numeric effective_cloud_cover:p numeric elevation:m category fresh_snow_1h:cm numeric fresh_snow_3h:cm numeric fresh_snow_6h:cm numeric is_day:idx category is in shadow:idx category location category precip_type_5min:idx category relative_humidity_1000hPa:p numeric sfc_pressure:hPa numeric snow_depth:cm numeric snow_water:kgm2 numeric sun_azimuth:d numeric sun_elevation:d numeric super_cooled_liquid_water:kgm2 numeric t_1000hPa:K numeric total_cloud_cover:p numeric visibility:m numeric wind_speed_10m:ms numeric

ceiling_height_agl:m

clear_sky_energy_1h:J

y numeric

test_data dataset summary

	count	unique		top	freq	\
ceiling_height_agl:m	2100	2065				
clear_sky_energy_1h:J	2731	1138				
cloud_base_agl:m	2374	2332				
diffuse_rad:W	2731	983				
diffuse_rad_1h:J	2731	1138				
direct_rad:W	2731	750				
direct_rad_1h:J	2731	932				
ds	2731	2200	2023-04-10	19:00:00	3	
effective_cloud_cover:p	2731	1348				
elevation:m	2731	3				
fresh_snow_1h:cm	2731	19				
fresh_snow_3h:cm	2731	36				
fresh_snow_6h:cm	2731	50				
is_day:idx	2731	5				
is_in_shadow:idx	2731	5				
location	2731	3		Α	1094	
<pre>precip_type_5min:idx</pre>	2731	10				
relative_humidity_1000hPa:p	2731	1523				
sfc_pressure:hPa	2731	1575				
snow_depth:cm	2731	61				
snow_water:kgm2	2731	61				
sun_azimuth:d	2731	2716				
sun_elevation:d	2731	2652				
super_cooled_liquid_water:kgm2	2731	29				
t_1000hPa:K	2731	774				
total_cloud_cover:p	2731	1126				
visibility:m	2731	2729				
wind_speed_10m:ms	2731	366				
у	2731	895				
		f	irst	1	ast \	
ceiling_height_agl:m			NaT		NaT	
clear_sky_energy_1h:J			NaT		NaT	
cloud_base_agl:m			NaT		NaT	
diffuse_rad:W			NaT		NaT	
diffuse_rad_1h:J			NaT		NaT	
direct_rad:W			NaT		NaT	
direct_rad_1h:J			NaT		NaT	
ds	2022-10	-28 22:00	0:00 2023-04	1-30 19:00	:00	
effective_cloud_cover:p			NaT		NaT	
elevation:m			NaT		NaT	
fresh_snow_1h:cm			NaT		NaT	
fresh_snow_3h:cm			NaT		NaT	
fresh_snow_6h:cm			NaT		NaT	
= =						

is_day:idx		NaT	NaT	
is_in_shadow:idx		NaT	NaT	
location		NaT	NaT	
<pre>precip_type_5min:idx</pre>		NaT	NaT	
relative_humidity_1000hPa:p		NaT	NaT	
sfc_pressure:hPa		NaT	NaT	
snow_depth:cm		NaT	NaT	
snow_water:kgm2		NaT	NaT	
sun_azimuth:d		NaT	NaT	
sun_elevation:d		NaT	NaT	
<pre>super_cooled_liquid_water:kgm2</pre>		NaT	NaT	
t_1000hPa:K		NaT	NaT	
total_cloud_cover:p		NaT	NaT	
visibility:m		NaT	NaT	
wind_speed_10m:ms		NaT	NaT	
у		NaT	NaT	
•				
	mean	std	min	\
ceiling_height_agl:m	3361.682133	2562.862274	28.0	
clear_sky_energy_1h:J	285528.142658	573252.521662	0.0	
cloud_base_agl:m	1685.111501	1833.56975	27.5	
diffuse_rad:W	26.230813	48.360421	0.0	
diffuse_rad_1h:J	94649.301538	172723.786046	0.0	
direct_rad:W	32.798068	92.244541	0.0	
direct_rad_1h:J	118054.008202	329601.815692	0.0	
ds				
effective_cloud_cover:p	66.798654	36.717964	0.0	
elevation:m	11.193336	7.806119	6.0	
fresh_snow_1h:cm	0.023984	0.147555	0.0	
fresh_snow_3h:cm	0.069498	0.352141	0.0	
fresh_snow_6h:cm	0.13885	0.57722	0.0	
is_day:idx	0.378341	0.472171	0.0	
is_in_shadow:idx	0.677133	0.452911	0.0	
location				
<pre>precip_type_5min:idx</pre>	0.076254	0.344931	0.0	
relative_humidity_1000hPa:p	71.631472	14.652551	21.7	
sfc_pressure:hPa	1009.397775	14.318453	971.15	
snow_depth:cm	0.119965	0.56196	0.0	
snow_water:kgm2	0.080511	0.19473	0.0	
sun_azimuth:d	180.975998	94.222121	14.914	
sun_elevation:d	-8.945472	22.095926	-49.887	
super_cooled_liquid_water:kgm2	0.035088	0.082444	0.0	
t_1000hPa:K	275.52987	4.271781	259.975	
total_cloud_cover:p	72.32056	37.085445	0.0	
visibility:m	34504.948017	17242.154257	270.3	
wind_speed_10m:ms	3.109676	1.782531	0.125	
у	179.379421	641.546947	0.0	
v				

	25%	50%	75%	max	\
ceiling_height_agl:m	1245.55625	2784.275	4919.18125	12294.9	
clear_sky_energy_1h:J	0.0	0.0	220909.2	2551917.2	
cloud_base_agl:m	516.7625	1000.8	2066.9875	10813.7	
diffuse_rad:W	0.0	0.0	32.0	280.5	
diffuse_rad_1h:J	0.0	0.0	116208.0	986147.0	
direct_rad:W	0.0	0.0	4.7625	511.7	
direct_rad_1h:J	0.0	0.0	24326.65	1844204.9	
ds	0.0	0.0	24320.03	1044204.9	
	36.3125	83.05	99.825	100.0	
<pre>effective_cloud_cover:p elevation:m</pre>	6.0				
		7.0	24.0	24.0	
fresh_snow_1h:cm	0.0	0.0	0.0	2.3	
fresh_snow_3h:cm	0.0	0.0	0.0	4.8	
fresh_snow_6h:cm	0.0	0.0	0.0	6.3	
is_day:idx	0.0	0.0	1.0	1.0	
is_in_shadow:idx	0.0	1.0	1.0	1.0	
location					
<pre>precip_type_5min:idx</pre>	0.0	0.0	0.0	3.0	
relative_humidity_1000hPa:p	61.775	73.55	82.9625	99.775	
sfc_pressure:hPa	999.1	1009.5	1020.275	1040.6	
<pre>snow_depth:cm</pre>	0.0	0.0	0.0	4.9	
snow_water:kgm2	0.0	0.0	0.1	2.15	
sun_azimuth:d	101.047372	179.89075	260.65412	347.81226	
sun_elevation:d	-26.72725	-8.178	6.393625	41.09175	
<pre>super_cooled_liquid_water:kgm2</pre>	0.0	0.0	0.0	0.75	
t_1000hPa:K	272.6625	275.45	278.5	285.825	
total_cloud_cover:p	44.5875	96.775	100.0	100.0	
visibility:m	20902.55	36141.85	48867.949	73937.67	
wind_speed_10m:ms	1.6	2.8	4.2375	9.9	
У	0.0	0.0	40.397706	5043.72	
·					
	dty	pes missing	_count missi	ng_ratio \	
ceiling_height_agl:m	•	-	631	-	
clear_sky_energy_1h:J	floa				
cloud_base_agl:m	floa		357	0.130721	
diffuse_rad:W	floa				
diffuse_rad_1h:J	floa				
direct_rad:W	floa				
direct_rad_1h:J	floa				
ds	datetime64[
effective_cloud_cover:p	floa				
elevation:m	floa				
fresh_snow_1h:cm	floa				
	floa				
fresh_snow_3h:cm					
fresh_snow_6h:cm	floa				
is_day:idx	floa				
is_in_shadow:idx	floa				
location	obj	ect			

<pre>precip_type_5min:idx</pre>	float64
relative_humidity_1000hPa:p	float64
sfc_pressure:hPa	float64
<pre>snow_depth:cm</pre>	float64
snow_water:kgm2	float64
sun_azimuth:d	float64
sun_elevation:d	float64
<pre>super_cooled_liquid_water:kgm2</pre>	float64
t_1000hPa:K	float64
total_cloud_cover:p	float64
visibility:m	float64
wind_speed_10m:ms	float64
У	float64

	raw_type	variable_type	special_types
<pre>ceiling_height_agl:m</pre>	float	numeric	
clear_sky_energy_1h:J	float	numeric	
cloud_base_agl:m	float	numeric	
diffuse_rad:W	float	numeric	
diffuse_rad_1h:J	float	numeric	
direct_rad:W	float	numeric	
direct_rad_1h:J	float	numeric	
ds	${\tt datetime}$		
effective_cloud_cover:p	float	numeric	
elevation:m	float	category	
fresh_snow_1h:cm	float	category	
fresh_snow_3h:cm	float	numeric	
fresh_snow_6h:cm	float	numeric	
is_day:idx	float	category	
is_in_shadow:idx	float	category	
location	object	category	
<pre>precip_type_5min:idx</pre>	float	category	
relative_humidity_1000hPa:p	float	numeric	
sfc_pressure:hPa	float	numeric	
<pre>snow_depth:cm</pre>	float	numeric	
snow_water:kgm2	float	numeric	
sun_azimuth:d	float	numeric	
sun_elevation:d	float	numeric	
<pre>super_cooled_liquid_water:kgm2</pre>	float	numeric	
t_1000hPa:K	float	numeric	
total_cloud_cover:p	float	numeric	
visibility:m	float	numeric	
wind_speed_10m:ms	float	numeric	
у	float	numeric	

1.0.1 Feature Distance

The following feature groups are considered as near-duplicates:

Distance threshold: <= 0.01. Consider keeping only some of the columns within each group:

- elevation:m, location distance 0.00
- diffuse_rad:W, diffuse_rad_1h:J distance 0.00

Feature interaction between diffuse_rad:W/diffuse_rad_1h:J


```
[9]: if run_analysis:
    auto.target_analysis(train_data=train_data, label="y", sample=None)
```

1.1 Target variable analysis

```
count
             mean
                          std min
                                    25%
                                         50%
                                                    75%
                                                                   dtypes \
87486
       294.447861
                   774.531815 -0.0
                                    0.0
                                         0.0
                                               183.7125
                                                        5733.42
                                                                  float64
unique missing_count missing_ratio raw_type special_types
```

y 11321 float

1.1.1 Distribution fits for target variable

• none of the attempted distribution fits satisfy specified minimum p-value threshold: 0.01

1.1.2 Target variable correlations

train_data - spearman correlation matrix; focus: absolute correlation for $y \ge 0.5$

Feature interaction between clear_sky_energy_1h:J/y in train_data

Feature interaction between diffuse_rad:W/y in train_data

Feature interaction between $diffuse_rad_1h:J/y$ in $train_data$

Feature interaction between direct_rad_1h:J/y in train_data

Feature interaction between direct_rad:W/y in train_data

Feature interaction between sun_elevation:d/y in train_data

Feature interaction between is_day:idx/y in train_data

Feature interaction between $is_in_shadow:idx/y$ in train_data

2 Starting

```
[10]: import os
      # Get the last submission number
      last_submission_number = int(max([int(filename.split('_')[1].split('.')[0]) for__
       ofilename in os.listdir('submissions') if "submission" in filename]))
      print("Last submission number:", last_submission_number)
      print("Now creating submission number:", last submission number + 1)
      # Create the new filename
      new_filename = f'submission_{last_submission_number + 1}'
      hello = os.environ.get('HELLO')
      if hello is not None:
          new_filename += f'_{hello}'
      print("New filename:", new_filename)
     Last submission number: 99
     Now creating submission number: 100
     New filename: submission 100
[11]: predictors = [None, None, None]
 []: def fit predictor for location(loc):
          print(f"Training model for location {loc}...")
          # sum of sample weights for this location, and number of rows, for bothu
       \hookrightarrowtrain and tune data and test data
          if weight evaluation:
              print("Train data sample weight sum:", ___
       strain_data[train_data["location"] == loc]["sample_weight"].sum())
              print("Train data number of rows:", train_data[train_data["location"]_
       \Rightarrow = loc].shape[0])
              if use_tune_data:
                  print("Tune data sample weight sum:", __
       otuning_data[tuning_data["location"] == loc]["sample_weight"].sum())
                   print("Tune data number of rows:", ...
       stuning_data[tuning_data["location"] == loc].shape[0])
              if use_test_data:
                  print("Test data sample weight sum:", ___
       stest_data[test_data["location"] == loc]["sample_weight"].sum())
                  print("Test data number of rows:", test_data[test_data["location"]_
       \rightarrow = loc].shape[0])
          predictor = TabularPredictor(
              label=label,
```

```
eval_metric=metric,
        path=f"AutogluonModels/{new_filename}_{loc}",
        # sample_weight=sample_weight,
        # weight_evaluation=weight_evaluation,
        # groups="group" if use_groups else None,
    ).fit(
        train_data=train_data[train_data["location"] == loc].

drop(columns=["ds"]),
        time_limit=time_limit,
        # presets=presets,
        num_stack_levels=num_stack_levels,
        num_bag_folds=num_bag_folds if not use_groups else 2,# just put_
  ⇔somethin, will be overwritten anyways
        num_bag_sets=num_bag_sets,
        tuning_data=tuning_data[tuning_data["location"] == loc].
  oreset_index(drop=True).drop(columns=["ds"]) if use_tune_data else None,
        use_bag_holdout=use_bag_holdout,
        # holdout_frac=holdout_frac,
    )
    # evaluate on test data
    if use_test_data:
        # drop sample weight column
        t = test_data[test_data["location"] == loc]#.
  →drop(columns=["sample_weight"])
        perf = predictor.evaluate(t)
        print("Evaluation on test data:")
        print(perf[predictor.eval_metric.name])
    return predictor
loc = "A"
predictors[0] = fit_predictor_for_location(loc)
Beginning AutoGluon training ... Time limit = 1800s
AutoGluon will save models to "AutogluonModels/submission_100_A/"
AutoGluon Version: 0.8.2
Python Version:
                    3.10.12
Operating System:
                   Linux
Platform Machine: x86_64
Platform Version: #1 SMP Debian 5.10.197-1 (2023-09-29)
Disk Space Avail: 150.33 GB / 315.93 GB (47.6%)
Train Data Rows:
                    31872
Train Data Columns: 27
Tuning Data Rows:
                   1093
Tuning Data Columns: 27
Label Column: y
```

```
Preprocessing data ...
AutoGluon infers you:
label-column == floa:
Label info (
```

AutoGluon infers your prediction problem is: 'regression' (because dtype of label-column == float and many unique label-values observed).

Label info (max, min, mean, stddev): (5733.42, 0.0, 649.68162, 1178.37671)

If 'regression' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])

Using Feature Generators to preprocess the data $\boldsymbol{...}$

Fitting AutoMLPipelineFeatureGenerator...

Available Memory:

131984.69 MB

Train Data (Original) Memory Usage: 8.77 MB (0.0% of available memory) Inferring data type of each feature based on column values. Set

feature_metadata_in to manually specify special dtypes of the features.

Stage 1 Generators:

Fitting AsTypeFeatureGenerator...

Stage 2 Generators:

Fitting FillNaFeatureGenerator...

Stage 3 Generators:

Fitting IdentityFeatureGenerator...

Stage 4 Generators:

Fitting DropUniqueFeatureGenerator...

Stage 5 Generators:

Fitting DropDuplicatesFeatureGenerator...

Useless Original Features (Count: 2): ['elevation:m', 'location']

These features carry no predictive signal and should be manually investigated.

This is typically a feature which has the same value for all

These features do not need to be present at inference time.

Types of features in original data (raw dtype, special dtypes):

('float', []) : 25 | ['ceiling_height_agl:m',

'clear_sky_energy_1h:J', 'cloud_base_agl:m', 'diffuse_rad:W',
'diffuse_rad_1h:J', ...]

Types of features in processed data (raw dtype, special dtypes):

('float', []) : 25 | ['ceiling_height_agl:m',

 $"clear_sky_energy_1h:J", "cloud_base_agl:m", "diffuse_rad:W", \\$

'diffuse_rad_1h:J', ...]

rows.

0.1s = Fit runtime

25 features in original data used to generate 25 features in processed data.

Train Data (Processed) Memory Usage: 6.59 MB (0.0% of available memory) Data preprocessing and feature engineering runtime = 0.14s ...
AutoGluon will gauge predictive performance using evaluation metric:
'mean_absolute_error'

This metric's sign has been flipped to adhere to being higher_is_better. The metric score can be multiplied by -1 to get the metric value.

To change this, specify the eval_metric parameter of Predictor()

```
use bag holdout=True, will use tuning data as holdout (will not be used for
early stopping).
User-specified model hyperparameters to be fit:
        'NN TORCH': {},
        'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {},
'GBMLarge'],
        'CAT': {},
        'XGB': {},
        'FASTAI': {},
        'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared error', 'ag args': {'name suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
        'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
        'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}},
{'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
Training model for location A...
Fitting 11 L1 models ...
Fitting model: KNeighborsUnif BAG_L1 ... Training model for up to 1799.86s of
the 1799.85s of remaining time.
        -140.7607
                         = Validation score (-mean_absolute_error)
        0.03s
               = Training runtime
                = Validation runtime
Fitting model: KNeighborsDist_BAG_L1 ... Training model for up to 1799.34s of
the 1799.34s of remaining time.
        -140.9568
                         = Validation score (-mean_absolute_error)
        0.03s = Training
                             runtime
                = Validation runtime
        0.38s
Fitting model: LightGBMXT BAG L1 ... Training model for up to 1798.88s of the
1798.88s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -100.7752
                         = Validation score (-mean_absolute_error)
        32.14s = Training
                              runtime
        19.88s
                = Validation runtime
Fitting model: LightGBM_BAG_L1 ... Training model for up to 1757.97s of the
1757.97s of remaining time.
        Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -100.7435
                         = Validation score (-mean_absolute_error)
```

```
20.84s = Training
                             runtime
       3.9s
               = Validation runtime
Fitting model: RandomForestMSE BAG L1 ... Training model for up to 1733.76s of
the 1733.76s of remaining time.
       -109.2719
                        = Validation score (-mean absolute error)
       6.65s
                = Training
                             runtime
       1.15s
                = Validation runtime
Fitting model: CatBoost_BAG_L1 ... Training model for up to 1724.67s of the
1724.66s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -106.8026
                        = Validation score (-mean_absolute_error)
       187.78s = Training
                             runtime
                = Validation runtime
Fitting model: ExtraTreesMSE_BAG_L1 ... Training model for up to 1535.71s of the
1535.71s of remaining time.
       -114.7323
                        = Validation score (-mean_absolute_error)
       1.45s = Training
                            runtime
       1.15s
                = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L1 ... Training model for up to 1531.77s of
the 1531.77s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -119.2733
                        = Validation score (-mean_absolute_error)
       39.85s = Training
                            runtime
       0.48s
                = Validation runtime
Fitting model: XGBoost_BAG_L1 ... Training model for up to 1490.17s of the
1490.17s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -103.765
                        = Validation score (-mean_absolute_error)
       5.68s
                = Training runtime
       0.31s
                = Validation runtime
Fitting model: NeuralNetTorch_BAG_L1 ... Training model for up to 1482.49s of
the 1482.49s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -99.7353
                        = Validation score (-mean absolute error)
       129.1s = Training
                            runtime
                = Validation runtime
Fitting model: LightGBMLarge_BAG_L1 ... Training model for up to 1351.79s of the
1351.79s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
        -98.4663
       92.66s = Training runtime
       29.64s
                = Validation runtime
Repeating k-fold bagging: 2/20
```

```
Fitting model: LightGBMXT_BAG_L1 ... Training model for up to 1247.62s of the
    1247.62s of remaining time.
            Fitting 8 child models (S2F1 - S2F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -100.3554
                             = Validation score (-mean absolute error)
            61.35s = Training
                                  runtime
            40.15s = Validation runtime
    Fitting model: LightGBM_BAG_L1 ... Training model for up to 1211.12s of the
    1211.12s of remaining time.
            Fitting 8 child models (S2F1 - S2F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -99.8771
                             = Validation score (-mean_absolute_error)
            46.32s
                     = Training
                                  runtime
            7.68s
                     = Validation runtime
    Fitting model: CatBoost_BAG_L1 ... Training model for up to 1181.51s of the
    1181.51s of remaining time.
            Fitting 8 child models (S2F1 - S2F8) | Fitting with
    ParallelLocalFoldFittingStrategy
[]: import matplotlib.pyplot as plt
     leaderboards = [None, None, None]
     def leaderboard_for_location(i, loc):
         if use test data:
             lb = predictors[i].leaderboard(test_data[test_data["location"] == loc])
             lb["location"] = loc
             plt.scatter(test_data[test_data["location"] == loc]["y"].index,__
      stest_data[test_data["location"] == loc]["y"])
             if use_tune_data:
                 plt.scatter(tuning_data[tuning_data["location"] == loc]["y"].index,__
      stuning_data[tuning_data["location"] == loc]["y"])
             plt.show()
             return 1b
         else:
             return pd.DataFrame()
     leaderboards[0] = leaderboard_for_location(0, loc)
[]: loc = "B"
     predictors[1] = fit_predictor_for_location(loc)
     leaderboards[1] = leaderboard_for_location(1, loc)
[]: loc = "C"
     predictors[2] = fit_predictor_for_location(loc)
     leaderboards[2] = leaderboard_for_location(2, loc)
```

```
[]:  # save leaderboards to csv pd.concat(leaderboards).to_csv(f"leaderboards/{new_filename}.csv")
```

```
Submit
    3
[]: import pandas as pd
     import matplotlib.pyplot as plt
     future_test_data = TabularDataset('X_test_raw.csv')
     future_test_data["ds"] = pd.to_datetime(future_test_data["ds"])
     #test_data
[]: test ids = TabularDataset('test.csv')
     test_ids["time"] = pd.to_datetime(test_ids["time"])
     # merge test_data with test_ids
     future_test_data_merged = pd.merge(future_test_data, test_ids, how="inner",_
      →right_on=["time", "location"], left_on=["ds", "location"])
     #test_data_merged
[]: # predict, grouped by location
     predictions = []
     location map = {
         "A": 0,
         "B": 1,
         "C": 2
     }
     for loc, group in future_test_data.groupby('location'):
         i = location_map[loc]
         subset = future_test_data_merged[future_test_data_merged["location"] ==__
      →loc].reset_index(drop=True)
         #print(subset)
         pred = predictors[i].predict(subset)
         subset["prediction"] = pred
         predictions.append(subset)
         # get past predictions
         train_data.loc[train_data["location"] == loc, "prediction"] = __

¬predictors[i].predict(train_data[train_data["location"] == loc])

         if use_tune_data:
             tuning_data.loc[tuning_data["location"] == loc, "prediction"] = __
      opredictors[i].predict(tuning_data[tuning_data["location"] == loc])
         if use_test_data:
             test_data.loc[test_data["location"] == loc, "prediction"] = ___
      spredictors[i].predict(test_data[test_data["location"] == loc])
```

```
[]: # plot predictions for location A, in addition to train data for A
     for loc, idx in location_map.items():
         fig, ax = plt.subplots(figsize=(20, 10))
         # plot train data
         train_data[train_data["location"] == loc].plot(x='ds', y='y', ax=ax,__
      ⇔label="train data")
         if use tune data:
             tuning_data[tuning_data["location"] == loc].plot(x='ds', y='y', ax=ax, __
      ⇔label="tune data")
         if use_test_data:
             test_data[test_data["location"] == loc].plot(x='ds', y='y', ax=ax,__
      ⇔label="test data")
         # plot predictions
         predictions[idx].plot(x='ds', y='prediction', ax=ax, label="predictions")
         # plot past predictions
         #train_data_with_dates[train_data_with_dates["location"]==loc].plot(x='ds',__
      ⇒y='prediction', ax=ax, label="past predictions")
         train_data[train_data["location"] == loc].plot(x='ds', y='prediction', ax=ax,__
      →label="past predictions train")
         if use tune data:
             tuning_data[tuning_data["location"] == loc].plot(x='ds', y='prediction',__
      →ax=ax, label="past predictions tune")
         if use test data:
             test data[test data["location"] == loc].plot(x='ds', y='prediction', |
      ⇔ax=ax, label="past predictions test")
         # title
         ax.set_title(f"Predictions for location {loc}")
[]: temp_predictions = [prediction.copy() for prediction in predictions]
     if clip_predictions:
         # clip predictions smaller than 0 to 0
         for pred in temp_predictions:
             # print smallest prediction
             print("Smallest prediction:", pred["prediction"].min())
             pred.loc[pred["prediction"] < 0, "prediction"] = 0</pre>
             print("Smallest prediction after clipping:", pred["prediction"].min())
     # Instead of clipping, shift all prediction values up by the largest negative
      \rightarrow number.
     # This way, the smallest prediction will be 0.
     elif shift predictions:
         for pred in temp_predictions:
```

```
# print smallest prediction
             print("Smallest prediction:", pred["prediction"].min())
             pred["prediction"] = pred["prediction"] - pred["prediction"].min()
             print("Smallest prediction after clipping:", pred["prediction"].min())
     elif shift_predictions_by_average_of_negatives_then_clip:
         for pred in temp_predictions:
             # print smallest prediction
             print("Smallest prediction:", pred["prediction"].min())
             mean_negative = pred[pred["prediction"] < 0]["prediction"].mean()</pre>
             # if not nan
             if mean_negative == mean_negative:
                 pred["prediction"] = pred["prediction"] - mean_negative
             pred.loc[pred["prediction"] < 0, "prediction"] = 0</pre>
             print("Smallest prediction after clipping:", pred["prediction"].min())
     # concatenate predictions
     submissions_df = pd.concat(temp_predictions)
     submissions_df = submissions_df[["id", "prediction"]]
     submissions_df
[]: # Save the submission DataFrame to submissions folder, create new name based on \square
      ⇒last submission, format is submission <last submission number + 1>.csv
     # Save the submission
     print(f"Saving submission to submissions/{new_filename}.csv")
     submissions_df.to_csv(os.path.join('submissions', f"{new_filename}.csv"),__
      →index=False)
     print("jall1a")
[]: train_data_with_dates = TabularDataset('X_train_raw.csv')
     train_data_with_dates["ds"] = pd.to_datetime(train_data_with_dates["ds"])
     # feature importance
     location="A"
     split_time = pd.Timestamp("2022-10-28 22:00:00")
     estimated = train_data_with_dates[train_data_with_dates["ds"] >= split_time]
     estimated = estimated[estimated["location"] == location]
     predictors[0].feature_importance(feature_stage="original", data=estimated,__
      →time_limit=60*10)
[]: # feature importance
     observed = train_data_with_dates[train_data_with_dates["ds"] < split_time]</pre>
     observed = observed[observed["location"] == location]
```

```
predictors[0].feature importance(feature stage="original", data=observed,
      →time_limit=60*10)
[]: # save this running notebook
     from IPython.display import display, Javascript
     import time
     # hei.123
     display(Javascript("IPython.notebook.save_checkpoint();"))
     time.sleep(3)
[]: # save this notebook to submissions folder
     import subprocess
     import os
     subprocess.run(["jupyter", "nbconvert", "--to", "pdf", "--output", os.path.
      →join('notebook_pdfs', f"{new_filename}.pdf"), "autogluon_each_location.
      []: | # display(Javascript("IPython.notebook.save_checkpoint();"))
     # time.sleep(3)
     # subprocess.run(["jupyter", "nbconvert", "--to", "pdf", "--output", os.path.
      → join('notebook_pdfs', f"{new_filename}_with_feature_importance.pdf"), u
      → "autogluon_each_location.ipynb"])
[]: # import subprocess
     # def execute_git_command(directory, command):
     #
           """Execute a Git command in the specified directory."""
     #
               result = subprocess.check_output(['git', '-C', directory] + command,___
     ⇔stderr=subprocess.STDOUT)
               return result.decode('utf-8').strip(), True
           except subprocess.CalledProcessError as e:
              print(f"Git command failed with message: {e.output.decode('utf-8').
      ⇔strip()}")
               return e.output.decode('utf-8').strip(), False
     # git_repo_path = "."
     # execute_git_command(git_repo_path, ['config', 'user.email',_
     → 'henrikskog01@gmail.com'])
     # execute qit_command(qit_repo_path, ['confiq', 'user.name', hello if hello is_
      →not None else 'Henrik eller Jørgen'])
```

```
# branch_name = new_filename
     # # add datetime to branch name
     # branch_name += f''_{pd}.Timestamp.now().strftime('%Y-%m-%d_%H-%M-%S')}"
     # commit_msg = "run result"
     # execute_git_command(git_repo_path, ['checkout', '-b',branch_name])
     # # Navigate to your repo and commit changes
     # execute_git_command(git_repo_path, ['add', '.'])
     # execute_git_command(git_repo_path, ['commit', '-m',commit_msg])
     # # Push to remote
     # output, success = execute_qit_command(qit_repo_path, ['push',_
      → 'origin', branch_name])
     # # If the push fails, try setting an upstream branch and push again
     # if not success and 'upstream' in output:
         print("Attempting to set upstream and push again...")
           execute_git_command(git_repo_path, ['push', '--set-upstream',_
     → 'origin', branch_name])
           execute git_command(git_repo_path, ['push', 'origin', 'henrik_branch'])
     # execute_git_command(git_repo_path, ['checkout', 'main'])
[]:
[]:
[]:
[]:
```