XI JORNADA DE JÓVENES INVESTIGADORES DEL I3A

Hacia la implementación on the edge de un segmentador de PCG basado en la U-Net

Daniel Enériz¹, Antonio J. Rodriguez-Almeida², Himar Fabelo², Nicolás Medrano¹, Belén Calvo¹ y Gustavo M. Callico²

¹Grupo de Diseño Electrónico (GDE-I3A), {eneriz, nmedrano, becalvo}@unizar.es ²IUMA, ULPGC, {aralmeida, hfabelo, gustavo}@iuma.ulpgc.es

Introducción - Fonocardiogramas PCG: sonidos corazón - Segmentación de PCG: division en ciclos - 4 estados cardiacos: S1→Sis→S2→Dias PCG Estado Cardiaco Sist Sist 0.5 2.0 0.0 1.5 Tiempo (s) - U-Net: Segmentación de imágenes, adaptación a 1D - Soporte Hardware: Edge computation Capacidad de optimizar **FPGA** Datos de punto fijo Herramientas HLS

Base de datos y preprocesado

- 2016 Physionet/CinC challenge:
- · 792 PCGs+ECGs · 135 sujetos
- · Información de segmentación: ECGs
- Preprocesado:
- · Reducción de picos · BP 25-400 Hz
- · Decimado a 50 Hz · 4 envolventes

Tiempo (s)

Implementación

- Objetivo: Xilinx Zynq 7010 & 7020: Low-spec FPGA + dual-core ARM CPU
- Descripción algorítmica: C/C++
- Datos de punto fijo: (16,8)
- Resultados de síntesis (*N*=64):

_						\	- /	_		
BRAM LUT	nenc	1	2	3	4	1	2	3	4	
	4	31	49	69	121	15	20	25	30	
	5	31	49	79	175	15	20	25	30	
	n_0 6	31	49	79	175	15	20	25	30	SI
	7	31	51	103	287	15	20	25	30	U
	8	31	51	103	287	15	20	25	30	
	4	10355	14193	17966	21700	4320	6046	7805	9577	
	5	11087	15534	19947	24301	4572	6582	8648	10739	
	n_0 6	11119	15596	20035	24415	4606	6653	8731	10836	Ŧ
	7	11119	15596	20035	24415	4620	6686	8779	10899	
	8	10378	14213	18002	21751	4408	6194	7998	9815	
Datos en <i>cursiva</i> exceden los recursos disponibles en la 7010, los tachados en ambas										

- Recursos limitantes: BRAM y LUT

Conclusiones

- Modelo para la segmentación de PCGs en ciclos cardiacos
- Identificados 3 parametros de reducción del modelo: N, n_{enc} y n_0
- Caracterización del impacto de los parametros en las metricas
- Implementación en FPGA de bajo coste usando tipos de dato de punto fijo
- Caracterización del impacto de los parametros en los recursos de la FPGA

- Validación: Cross Valdation de 10-fold con separación de sujetos

· Originalmente tiene $n_{\rm enc}$ =4 encoders/decoders y n_0 =8 filtros en el primer encoder,

Arquitectura, validación, entrenamiento y reducción

- Entrenamiento: Optimizador Adam, *learning rate* de 10⁻⁴, 15 épocas y *batch size* de 1

- Red basada en la U-Net, presentada en F. Renna *et al.* 2019

los cuales se van duplicando en cada etapa

· La entrada son N muestras temporales de las 4 envolventes

· Se identifican tres parametros de reducción del modelo: N, $n_{\rm enc}$ y n_0

Contacto y más información:

Instituto Universitario de Investigación en Ingeniería de Aragón **Universidad** Zaragoza

Instituto Universitario de

