All-in at the River

Standard Code Library

Shanghai Jiao Tong University

Desprado2

fstqwq

AntiLeaf

44

我清楚的记得那是 icpc2020 银川 当时我看着队友差 100 分钟出线,趴在魄罗上泣不成声 这个画面我永生难忘

那一刻我在想,如果能再给我一次机会,我一定要赢回所有如今沈阳就在眼前,我必须考虑这是不是我此生仅有的机会 重振交大荣光,我辈义不容辞

C	ontents			25	
	图论 1.1 最小生成树	2 2 2 3 3 4 4 6 6 7	5. 6 克	5.5.3 维护子树信息	27 29 30 30 30 30 30 30
	1.5.1 高斯消元 <	7 8 9 9 9	7 其 7. 7. 7.	其他算法 $O(1)$ 快速乘 $O(n^2)$ 高精度 $O(n^2)$	31 31 31 31
2	字符串 2.1 AC自动机 2.2 后缀数组 2.2.1 SAMSA 2.3 后缀自动机 2.4 回文树 2.4.1 广义回文树 2.5 Manacher马拉车 2.6 KMP 2.6.1 ex-KMP	11 11 11 12 12 13 15 15	9 注	1 常见数列	31 31 31 31 31 31
3	数学 3.1 插值 3.1.1 牛顿插值 3.1.2 拉格朗日插值 3.2.2 拉格朗日插值 3.2.1 FFT 3.2.2 NTT 3.2.3 任意模数卷积(三模数NTT) 3.2.4 多项式操作 3.2.5 拉格朗日反演 3.2.6 半在线卷积 3.3 FWT快速沃尔什变换 3.4 单纯形 3.5 线性代数 3.5.1 线性基	15 15 15 15 15 16 16 17 18 18 19 20 20			
4	数论 4.1 $O(n)$ 预处理逆元	20 20 20 20 20 20 21			
5	数据结构 5.1 线段树	21 21 21 21 22 22 22 22 24 24			

54

1. 图论

1.1 最小生成树

1.1.1 动态最小生成树

```
56
                                                       57
  // 动态最小生成树的离线算法比较容易@而在线算法通常极为复
                                                       58
                                                       59
  // 一个跑得比较快的离线做法是对时间分治@在每层分治时找出
    → 一定在/不在MST上的边®只带着不确定边继续递归
                                                       60
  // 简单起见@找确定边的过程用Kruskal算法实现@过程中的两种
                                                       61
    → 重要操作如下@
                                                       62
  // - Reduction@待修改边标为+INF@跑MST后把非树边删掉@减少
                                                       63
    → 无用边
                                                       64
  // - Contraction®待修改边标为-INF®跑MST后缩除待修改边之外
                                                       65
   →的所有MST边®计算必须边
                                                       66
  // 每轮分治需要Reduction-Contraction@借此减少不确定边@从
                                                       67
   → 而保证复杂度
                                                       68
  // 复杂度证明@假设当前区间有k条待修改边@n和m表示点数和边
                                                       69
    \rightarrow 数\emptyset那么最坏情况下R-C的效果为(n, m) -> (n, n + k - 1)
                                                       70
    \hookrightarrow -> (k + 1, 2k)
                                                       71
8
                                                       72
9
  // 全局结构体与数组定义
10
                                                       73
  struct edge { //边的定义
11
                                                       74
      int u, v, w, id; // id表示边在原图中的编号
12
                                                       75
13
      bool vis; // 在KruskaL时用@记录这条边是否是树边
                                                       76
      bool operator < (const edge &e) const { return w < e.w;</pre>
14
                                                       77
  } e[20][maxn], t[maxn]; // 为了便于回滚®在每层分治存一个
15
                                                       79
    →副本
                                                       80
16
                                                       81
17
  // 用于存储修改的结构体@表示第ia条边的权值从u修改为v
18
                                                       82
  struct A {
19
20
      int id, u, v;
                                                       84
21
  } a[maxn];
  int id[20][maxn]; // 每条边在当前图中的编号
  int p[maxn], size[maxn], stk[maxn], top; // p和size是并查集
                                                       89
   →数组@stk是用来撤销的栈
                                                       90
  int n, m, q; // 点数@边数@修改数
26
                                                       91
27
  // 方便起见@附上可能需要用到的预处理代码
29
  for (int i = 1; i <= n; i++) { // 并查集初始化
30
      p[i] = i;
31
                                                       95
      size[i] = 1;
32
                                                       96
33
                                                       97
34
                                                       98
  for (int i = 1; i <= m; i++) { // 读入与预标号
35
                                                       99
      scanf("%d%d%d", &e[0][i].u, &e[0][i].v, &e[0][i].w);
36
                                                       100
      e[0][i].id = i;
37
                                                       101
      id[0][i] = i;
38
                                                       102
39
                                                       103
40
                                                       104
41
  for (int i = 1; i <= q; i++) { // 预处理出调用数组
                                                       105
42
      scanf("%d%d", &a[i].id, &a[i].v);
                                                       106
43
      a[i].u = e[0][a[i].id].w;
                                                       107
44
      e[0][a[i].id].w = a[i].v;
                                                       108
45
                                                       109
46
  for(int i = q; i; i--)
47
                                                       110
      e[0][a[i].id].w = a[i].u;
48
                                                       111
49
  CDQ(1, q, 0, m, 0); // 这是调用方法
                                                      112
```

```
// 分治主过程 O(nLog^2n)
// 需要调用Reduction和Contraction
void CDQ(int 1, int r, int d, int m, long long ans) { //
 → CDQ分治
   if (1 == r) { // 区间长度已减小到10输出答案0退出
       e[d][id[d][a[1].id]].w = a[1].v;
       printf("%lld\n", ans + Kruskal(m, e[d]));
       e[d][id[d][a[l].id]].w=a[l].u;
       return:
   int tmp = top;
   Reduction(1, r, d, m);
   ans += Contraction(1, r, d, m); // R-C
   int mid = (1 + r) / 2;
   copy(e[d] + 1, e[d] + m + 1, e[d + 1] + 1);
   for (int i = 1; i <= m; i++)</pre>
       id[d + 1][e[d][i].id] = i; // 准备好下一层要用的数
         →组
   CDQ(1, mid, d + 1, m, ans);
   for (int i = 1; i <= mid; i++)</pre>
       e[d][id[d][a[i].id]].w = a[i].v; // 进行左边的修改
   copy(e[d] + 1, e[d] + m + 1, e[d + 1] + 1);
   for (int i = 1; i <= m; i++)</pre>
       id[d + 1][e[d][i].id] = i; // 重新准备下一层要用的
         →数组
   CDQ(mid + 1, r, d + 1, m, ans);
   for (int i = top; i > tmp; i--)
      cut(stk[i]);//撤销所有操作
   top = tmp;
// Reduction@减少无用边@待修改边标为+INF@跑MST后把非树边
 → 删掉®减少无用边
// 需要调用Kruskal
void Reduction(int 1, int r, int d, int &m) {
   for (int i = 1; i <= r; i++)</pre>
       e[d][id[d][a[i].id]].w = INF;//待修改的边标为INF
   Kruskal(m, e[d]);
   copy(e[d] + 1, e[d] + m + 1, t + 1);
   int cnt = 0:
   for (int i = 1; i <= m; i++)</pre>
       if (t[i].w == INF || t[i].vis){ // 非树边扔掉
           id[d][t[i].id] = ++cnt; // 给边重新编号
           e[d][cnt] = t[i];
   for (int i = r; i >= 1; i--)
      e[d][id[d][a[i].id]].w = a[i].u; // 把待修改的边改
        →回夫
   m=cnt:
```

```
113
114
    // Contraction@缩必须边待修改边标为-INF@跑MST后缩除待修
     →改边之外的所有树边
    // 返回缩掉的边的总权值
116
    // 需要调用Kruskal
117
    long long Contraction(int 1, int r, int d, int &m) {
118
       long long ans = 0;
119
120
       for (int i = 1; i <= r; i++)</pre>
121
           e[d][id[d][a[i].id]].w = -INF; // 待修改边标为-INF
122
123
       Kruskal(m, e[d]);
124
       copy(e[d] + 1, e[d] + m + 1, t + 1);
125
126
       int cnt = 0;
127
       for (int i = 1; i <= m ; i++) {</pre>
128
            if (t[i].w != -INF && t[i].vis) { // 必须边
130
               ans += t[i].w;
131
               mergeset(t[i].u, t[i].v);
132
            }
133
           else { // 不确定边
134
               id[d][t[i].id]=++cnt;
135
               e[d][cnt]=t[i];
136
            }
137
138
139
       for (int i = r ; i >= 1; i--) {
140
           e[d][id[d][a[i].id]].w = a[i].u; // 把待修改的边改
141
             →回夫
            e[d][id[d][a[i].id]].vis = false;
142
       }
143
144
       m = cnt:
145
146
       return ans:
147
148
149
150
    // Kruskal算法 O(mlogn)
151
    // 方便起见@这里直接沿用进行过缩点的并查集@在过程结束后
152
     → 撤销即可
    long long Kruskal(int m, edge *e) {
153
       int tmp = top;
154
       long long ans = 0;
155
156
       sort(e + 1, e + m + 1); // 比较函数在结构体中定义过了
157
        for (int i = 1; i <= m; i++) {
159
            if (findroot(e[i].u) != findroot(e[i].v)) {
160
               e[i].vis = true;
161
               ans += e[i].w;
162
               mergeset(e[i].u, e[i].v);
163
            }
164
165
            else
               e[i].vis = false;
166
167
168
       for(int i = top; i > tmp; i--)
169
           cut(stk[i]); // 撤销所有操作
170
171
       top = tmp;
172
173
       return ans;
174
175
176
```

```
// 以下是并查集相关函数
   int findroot(int x) { // 因为需要撤销®不写路径压缩
178
       while (p[x] != x)
179
          x = p[x];
180
181
182
       return x;
183
184
   void mergeset(int x, int y) { // 按size合并@如果想跑得更快
185
     → 就写一个按秩合并
       x = findroot(x); // 但是按秩合并要再开一个栈记录合并
186
         → 之前的秩
       y = findroot(y);
187
188
       if(x == y)
189
190
          return;
191
192
       if (size[x] > size[y])
           swap(x, y);
193
194
195
       p[x] = y;
       size[y] += size[x];
196
       stk[++top] = x;
197
198
199
   void cut(int x) { // 并查集撤销
200
201
       int y = x;
202
203
       do
           size[y = p[y]] -= size[x];
       while (p[y]! = y);
206
207
       p[x] = x;
208
```

1.2 最短路

1.2.1 k短路

```
//注意这是个多项式算法@在k比较大时很有优势@但k比较小时最
    → 好还是用A*
  //DAG和有环的情况都可以@有重边或自环也无所谓@但不能有零
   _ ₹X
  //以下代码以Dijkstra+可持久化左偏树为例
3
4
  const int maxn=1005, maxe=10005, maxm=maxe*30; //点数@边数@左
5
    → 偏树结点数
6
  //需要用到的结构体定义
  struct A{//用来求最短路
     int x,d;
     A(int x, int d):x(x),d(d){}
     bool operator<(const A &a)const{return d>a.d;}
12
  };
13
  struct node{//左偏树结点
14
      int w,i,d;//i@最后一条边的编号 d@左偏树附加信息
15
     node *lc,*rc;
16
     node(){}
17
     node(int w, int i): w(w), i(i), d(0){}
18
     void refresh(){d=rc->d+1;}
19
  }null[maxm],*ptr=null,*root[maxn];
20
21
  struct B{//维护答案用
22
      int x,w;//x是结点编号@w表示之前已经产生的权值
23
```

```
node *rt;//这个答案对应的堆顶®注意可能不等于任何一个
        → 结点的堆
      B(int x,node *rt,int w):x(x),w(w),rt(rt){}
25
      bool operator<(const B &a)const{return</pre>
26

  w+rt->w>a.w+a.rt->w;
}
27
28
  //全局变量和数组定义
29
  vector<int>G[maxn],W[maxn],id[maxn];//最开始要存反向图图然
30
    → 后把G清空作为儿子列表
  bool vis[maxn],used[maxe];//used表示边是否在最短路树上
  int u[maxe],v[maxe],w[maxe];//存下每条边@注意是有向边
  int d[maxn],p[maxn];//p表示最短路树上每个点的父边
33
  int n, m, k, s, t; //s, t分别表示起点和终点
34
35
  //以下是主函数中较关键的部分
36
  for(int i=0;i<=n;i++)root[i]=null;//一定要加上⑩⑫
  //(读入&建反向图)
  Dijkstra();
39
  //(清空G,W,id)
40
  for(int i=1;i<=n;i++)</pre>
41
      if(p[i]){
42
          used[p[i]]=true;//在最短路树上
43
          G[v[p[i]]].push_back(i);
44
45
  for(int i=1;i<=m;i++){</pre>
46
      w[i]-=d[u[i]]-d[v[i]];//现在的<math>w[i]表示这条边能使路径长
47
        → 度增加多少
      if(!used[i])
48
          root[u[i]]=merge(root[u[i]],newnode(w[i],i));
49
50
51
  dfs(t);
  priority_queue<B>heap;
  heap.push(B(s,root[s],0));//初始状态是找贡献最小的边加进
    →夫
  printf("%d\n",d[s]);//第1短路需要特判
54
  while(--k){//其余k-1短路径用二叉堆维护
55
      if(heap.empty())printf("-1\n");
56
      else{
57
          int x=heap.top().x,w=heap.top().w;
58
          node *rt=heap.top().rt;
59
60
          heap.pop();
61
          printf("%d\n",d[s]+w+rt->w);
          if(rt->lc!=null||rt->rc!=null)
62
             heap.push(B(x,merge(rt->lc,rt->rc),w));//pop掉
               → 当前边Ø换成另一条贡献大一点的边
          if(root[v[rt->i]]!=null)
             heap.push(B(v[rt->i],root[v[rt->i]],w+rt->w));//
65
               →留当前边壓往后面再接上另一条边
66
67
   //主函数到此结束
68
69
   //Dijkstra预处理最短路 O(m\log n)
70
  void Dijkstra(){
71
      memset(d,63,sizeof(d));
72
73
      d[t]=0;
      priority_queue<A>heap;
75
      heap.push(A(t,0));
      while(!heap.empty()){
76
          int x=heap.top().x;
77
          heap.pop():
78
          if(vis[x])continue;
79
          vis[x]=true:
80
          for(int i=0;i<(int)G[x].size();i++)</pre>
81
             if(!vis[G[x][i]]&&d[G[x][i]]>d[x]+W[x][i]){
82
                 d[G[x][i]]=d[x]+W[x][i];
83
```

```
p[G[x][i]]=id[x][i];
                    heap.push(A(G[x][i],d[G[x][i]]));
85
86
87
88
89
    //dfs求出每个点的堆 总计0(m\Log n)
   //需要调用merge®同时递归调用自身
   void dfs(int x){
92
93
        root[x]=merge(root[x],root[v[p[x]]]);
94
        for(int i=0;i<(int)G[x].size();i++)</pre>
95
            dfs(G[x][i]);
96
97
   //包装过的new node() 0(1)
98
   node *newnode(int w,int i){
        *++ptr=node(w,i);
100
101
       ptr->lc=ptr->rc=null;
        return ptr;
102
103
104
    //带可持久化的左偏树合并 总计O(\Log n)
105
   //递归调用自身
106
107
   node *merge(node *x,node *y){
108
        if(x==null)return y;
109
        if(y==null)return x;
110
        if(x->w>y->w)swap(x,y);
111
       node *z=newnode(x->w,x->i);
112
        z \rightarrow 1c = x \rightarrow 1c;
        z->rc=merge(x->rc,y);
        if(z->lc->d>z->rc->d)swap(z->lc,z->rc);
        z->refresh();
        return z;
117
```

1.3 仙人掌

1.3.1 仙人掌DP

```
#include <bits/stdc++.h>
   using namespace std;
   const int maxn = 200005;
5
   struct edge{
       int to, w, prev;
   }e[maxn * 2];
9
10
   vector<pair<int, int> > v[maxn];
   vector<long long> d[maxn];
13
14
   stack<int> stk;
15
16
   int p[maxn];
17
19
   bool vis[maxn], vise[maxn * 2];
20
   int last[maxn], cnte;
21
22
   long long f[maxn], g[maxn], sum[maxn];
24
25
   int n, m, cnt;
26
   void addedge(int x, int y, int w) {
27
```

```
v[x].push_back(make_pair(y, w));
28
29
30
   void dfs(int x) {
31
32
       vis[x] = true;
33
34
       for (int i = last[x]; \sim i; i = e[i].prev) {
35
            if (vise[i ^ 1])
36
37
                continue:
38
            int y = e[i].to, w = e[i].w;
39
40
            vise[i] = true;
41
42
            if (!vis[y]) {
43
                stk.push(i);
44
                p[y] = x;
45
                dfs(y);
46
47
                if (!stk.empty() && stk.top() == i) {
48
                    stk.pop():
49
                     addedge(x, y, w);
50
51
52
53
            else {
54
                cnt++;
55
56
                long long tmp = w;
57
                while (!stk.empty()) {
58
                     int i = stk.top();
59
                     stk.pop();
60
61
                     int yy = e[i].to, ww = e[i].w;
62
63
                     addedge(cnt, yy, 0);
64
65
                     d[cnt].push_back(tmp);
66
67
                     tmp += ww;
68
69
                     if (e[i ^ 1].to == y)
70
                         break;
71
72
73
                addedge(y, cnt, 0);
74
75
                sum[cnt] = tmp;
76
            }
77
78
79
80
81
   void dp(int x) {
82
83
       for (auto o : v[x]) {
84
            int y = o.first, w = o.second;
85
            dp(y);
86
       }
87
88
       if (x \le n) {
89
            for (auto o : v[x]) {
                int y = o.first, w = o.second;
91
92
                f[x] += 2 * w + f[y];
```

```
g[x] = f[x];
 95
 96
             for (auto o : v[x]) {
 97
                 int y = o.first, w = o.second;
 98
                 g[x] = min(g[x], f[x] - f[y] - 2 * w + g[y] +
100
101
102
103
        else {
             f[x] = sum[x];
104
105
             for (auto o : v[x]) {
                 int y = o.first;
106
107
                 f[x] += f[y];
108
109
110
111
             g[x] = f[x];
112
113
             for (int i = 0; i < (int)v[x].size(); i++) {</pre>
114
                 int y = v[x][i].first;
115
116
                 g[x] = min(g[x], f[x] - f[y] + g[y] + min(d[x])
                   \hookrightarrow [i], sum[x] - d[x][i]));
118
119
120
    signed main() {
121
122
        memset(last, -1, sizeof(last));
123
124
        ios::sync with stdio(false);
125
126
        cin >> n >> m;
127
        cnt = n;
        while (m--) {
131
             int x, y, w;
132
             cin >> x >> y >> w;
133
             e[cnte].to = y;
135
136
             e[cnte].w = w;
             e[cnte].prev = last[x];
137
             last[x] = cnte++;
138
139
             e[cnte].to = x;
140
             e[cnte].w = w;
141
             e[cnte].prev = last[y];
142
             last[y] = cnte++;
143
144
145
146
        dfs(1);
        dp(1);
147
148
        cout << g[1] << endl;</pre>
149
150
151
        return 0;
152
```

1.4 二分图

1.4.1 KM二分图最大权匹配

```
// KM Weighted Bio-Graph Matching KM二分图最大权匹配
   // By AntiLeaf
   // O(n^3)
   const long long INF = 0x3f3f3f3f3f3f3f3f3f;
   \label{long_long_w} \textbf{long} \ \ \textbf{w}[\texttt{maxn}][\texttt{maxn}], \ \  \textbf{lx}[\texttt{maxn}], \ \  \textbf{ly}[\texttt{maxn}], \ \  \textbf{slack}[\texttt{maxn}];
   // 边权 顶标 slack
   // 如果要求最大权完美匹配就把不存在的边设为-INF 否则所有
 9
     → 边对@取max
10
11
   bool visx[maxn], visy[maxn];
12
   int boy[maxn], girl[maxn], p[maxn], q[maxn], head, tail; //
13
     \hookrightarrow p: pre
14
   int n, m, N, e;
16
17
   // 增广
   bool check(int y) {
18
       visy[y] = true;
19
20
        if (boy[y]) {
21
22
            visx[boy[y]] = true;
23
             q[tail++] = boy[y];
24
            return false;
25
        }
26
27
        while (y) {
28
            boy[y] = p[y];
29
            swap(y, girl[p[y]]);
30
31
32
        return true;
33
34
   // bfs每个点
35
   void bfs(int x) {
36
        memset(q, 0, sizeof(q));
37
        head = tail = 0;
38
39
        q[tail++] = x;
40
        visx[x] = true;
41
42
        while (true) {
43
            while (head != tail) {
44
                 int x = q[head++];
45
46
                 for (int y = 1; y <= N; y++)
47
                      if (!visy[y]) {
48
                          long long d = 1x[x] + 1y[y] - w[x][y];
49
50
                           if (d < slack[y]) {</pre>
51
52
                               p[y] = x;
                               slack[y] = d;
53
54
                               if (!slack[y] && check(y))
55
                                   return;
56
57
58
59
60
             long long d = INF;
61
```

```
for (int i = 1; i <= N; i++)</pre>
                if (!visy[i])
63
                    d = min(d, slack[i]);
64
65
            for (int i = 1; i <= N; i++) {
66
                if (visx[i])
67
                 lx[i] -= d;
68
69
                 if (visy[i])
70
                    ly[i] += d;
71
                else
72
                slack[i] -= d;
73
74
75
            for (int i = 1; i <= N; i++)</pre>
76
                if (!visy[i] && !slack[i] && check(i))
77
                   return:
78
79
80
81
82
    // 主过程
83
    long long KM() {
84
        for (int i = 1; i <= N; i++) {
            // lx[i] = 0;
            ly[i] = -INF;
86
            // boy[i] = girl[i] = -1;
87
89
            for (int j = 1; j <= N; j++)</pre>
            ly[i] = max(ly[i], w[j][i]);
90
91
92
93
        for (int i = 1; i <= N; i++) {
            memset(slack, 0x3f, sizeof(slack));
94
            memset(visx, 0, sizeof(visx));
95
            memset(visy, 0, sizeof(visy));
96
            bfs(i);
97
98
99
        long long ans = 0;
100
        for (int i = 1; i <= N; i++)
101
           ans += w[i][girl[i]];
102
        return ans;
103
104
105
106
    // 为了方便贴上主函数
107
   int main() {
108
        scanf("%d%d%d", &n, &m, &e);
109
110
        N = max(n, m);
111
112
        while (e--) {
            int x, y, c;
113
            scanf("%d%d%d", &x, &y, &c);
            w[x][y] = max(c, 0);
115
116
117
        printf("%lld\n", KM());
118
119
        for (int i = 1; i <= n; i++) {</pre>
120
            if (i > 1)
121
                printf(" ");
122
            printf("%d", w[i][girl[i]] > 0 ? girl[i] : 0);
123
124
        printf("\n");
125
126
        return 0;
127
```

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

86

88

89

90

91

92

93

94

95

96

99

100

101

102

103

104

105

107

108

109

111

112

128

1.5一般图匹配

1.5.1 高斯消元

```
// Graph Matching Based on Linear Algebra 基于线性代数的-
   → 般图匹配 O(n^3)
  // By ysf
  // 通过题目2003#79 一般图最大匹配
3
  // 这个算法基于Tutte定理和高斯消元』思维难度相对小一些@也
   → 更方便进行可行边的判定
  // 注意这个算法复杂度是满的@并且常数有点大@而带花树通常
   →是跑不满的
  // 以及@根据Tutte定理@如果求最大匹配的大小的话直接输
   → 出Tutte矩阵的秩/2即可
  // 需要输出方案时才需要再写后面那些乱七八糟的东西
  // 复杂度和常数所限@1s之内500已经是这个算法的极限了
11
  const int maxn = 505, p = 1000000007;//p可以是任意10^9以内
   →的质数
13
   // 全局数组和变量定义
14
  int A[maxn][maxn], B[maxn][maxn], t[maxn][maxn], id[maxn],

    a[maxn];

  bool row[maxn] = {false}, col[maxn] = {false};
16
  int n, m, girl[maxn]; // girl是匹配点◎用来输出方案
17
18
  // 为了方便使用@贴上主函数
19
  // 需要调用高斯消元和eliminate
21
  int main() {
      srand(19260817); // 膜蛤专用随机种子®换一个也无所谓
22
23
24
      scanf("%d%d", &n, &m); // 点数和边数
      while (m--) {
25
         int x, y;
26
         scanf("%d%d", &x, &y);
         A[x][y] = rand() \% p;
         A[y][x] = -A[x][y]; // Tutte矩阵是反对称矩阵
29
30
      for (int i = 1; i <= n; i++)</pre>
32
         id[i] = i; // 输出方案用的◎因为高斯消元的时候会交
33
           → 换列
      memcpy(t, A, sizeof(t));
      Gauss(A, NULL, n);
35
36
37
      m = n;
      n = 0; // 这里变量复用纯属个人习惯.....
38
39
      for (int i = 1; i <= m; i++)
40
         if (A[id[i]][id[i]])
41
            a[++n] = i; // 找出一个极大满秩子矩阵
42
43
      for (int i = 1;i <= n; i++)
44
45
         for (int j = 1; j <= n; j++)</pre>
           A[i][j]=t[a[i]][a[j]];
46
47
                                                       110
48
      Gauss(A,B,n);
49
50
      for (int i = 1; i <= n; i++)</pre>
         if (!girl[a[i]])
                                                       113
             for (int j = i + 1; j <= n; j++)</pre>
                                                       114
                if (!girl[a[j]] && t[a[i]][a[j]] && B[j]
53
                  \hookrightarrow [i]) {
```

```
// 注意上面那句if的写法@现在t是邻接矩
                      →阵的备份◎
                    // 逆矩阵j行i列不为@当且仅当这条边可
                    girl[a[i]] = a[j];
                    girl[a[j]] = a[i];
                    eliminate(i, j);
                    eliminate(j, i);
                    break:
    printf("%d\n", n >> 1);
    for (int i = 1; i <= m; i++)</pre>
        printf("%d ", girl[i]);
    return 0;
// 高斯消元 O(n^3)
// 在传入B时表示计算逆矩阵@传入NULL则只需计算矩阵的秩
void Gauss(int A[][maxn], int B[][maxn], int n){
    if(B) {
        memset(B, 0, sizeof(t));
        for (int i = 1; i <= n; i++)</pre>
            B[i][i] = 1;
    for (int i = 1; i <= n; i++) {</pre>
        if (!A[i][i]) {
            for (int j = i + 1; j <= n; j++)</pre>
                if (A[j][i]) {
                    swap(id[i], id[j]);
                    for (int k = i; k <= n; k++)</pre>
                        swap(A[i][k], A[j][k]);
                    if (B)
                        for (int k = 1; k <= n; k++)
                            swap(B[i][k], B[j][k]);
                    break;
            if (!A[i][i])
                continue:
        int inv = qpow(A[i][i], p - 2);
        for (int j = 1; j <= n; j++)</pre>
            if (i != j && A[j][i]){
                int t = (long long)A[j][i] * inv % p;
                for (int k = i; k \leftarrow n; k++)
                    if (A[i][k])
                        A[j][k] = (A[j][k] - (long long)t *
                          \hookrightarrow A[i][k]) \% p;
                if (B)
                    for (int k = 1; k <= n; k++)
                        if (B[i][k])
                            B[j][k] = (B[j][k] - (long)
                              \hookrightarrow long)t * B[i][k])%p;
            }
    if (B)
```

while (head != tail){

```
for (int i = 1; i <= n; i++) {</pre>
115
                 int inv = qpow(A[i][i], p - 2);
                                                                        38
116
117
                 for (int j = 1; j <= n; j++)
118
                     if (B[i][j])
119
                         B[i][j] = (long long)B[i][j] * inv % p;
120
121
122
123
    // 消去一行一列 O(n^2)
125
    void eliminate(int r, int c) {
        row[r] = col[c] = true; // 已经被消掉
126
127
128
        int inv = qpow(B[r][c], p - 2);
129
        for (int i = 1; i <= n; i++)</pre>
130
            if (!row[i] && B[i][c]) {
131
                 int t = (long long)B[i][c] * inv % p;
132
133
                 for (int j = 1; j <= n; j++)</pre>
134
                     if (!col[j] && B[r][j])
135
                          B[i][j] = (B[i][j] - (long long)t *
                            \hookrightarrow B[r][j]) \% p;
137
138
```

1.5.2 带花树

```
// Blossom 带花树 O(nm)
  // By ysf
  // 通过题目@UOJ#79 一般图最大匹配
  // 带花树通常比高斯消元快很多@但在只需要求最大匹配大小的
   → 时候并没有高斯消元好写
  // 当然输出方案要方便很多
  // 全局数组与变量定义
8
  vector<int> G[maxn];
9
10
  int girl[maxn], f[maxn], t[maxn], p[maxn], vis[maxn], tim,

    q[maxn], head, tail;
11
  int n, m;
12
13
  // 封装好的主过程 O(nm)
14
  int blossom() {
15
      int ans = 0;
16
17
      for (int i = 1; i <= n; i++)</pre>
18
          if (!girl[i])
19
             ans += bfs(i);
20
22
      return ans;
23
24
25
  // bfs找增广路 O(m)
26
  bool bfs(int s) {
27
      memset(t, 0, sizeof(t));
28
      memset(p, 0, sizeof(p));
29
30
      for (int i = 1; i <= n; i++)</pre>
31
      f[i] = i; // 并查集
32
33
      head = tail = 0;
34
35
      q[tail++] = s;
      t[s] = 1;
36
```

```
int x = q[head++];
39
            for (int y : G[x]){
40
                if (findroot(y) == findroot(x) | | t[y] == 2)
                   continue:
42
43
                if (!t[y]){
44
                    t[y] = 2;
45
                    p[y] = x;
46
47
                    if (!girl[y]){
48
                        for (int u = y, t; u; u = t) {
49
                            t = girl[p[u]];
50
                            girl[p[u]] = u;
                            girl[u] = p[u];
                        return true;
                    t[girl[y]] = 1;
                    q[tail++] = girl[y];
                else if (t[y] == 1) {
59
                    int z = LCA(x, y);
60
                    shrink(x, y, z);
61
                    shrink(y, x, z);
62
63
64
65
66
       return false:
67
   }
68
   //缩奇环 O(n)
   void shrink(int x, int y, int z) {
       while (findroot(x) != z){
           p[x] = y;
           y = girl[x];
            if (t[y] == 2) {
                t[y] = 1;
                q[tail++] = y;
79
            if(findroot(x) == x)
               f[x] = z;
            if(findroot(y) == y)
               f[y] = z;
            x = p[y];
87
   //暴力找LCA O(n)
   int LCA(int x, int y) {
91
       tim++;
92
       while (true) {
           if (x) {
               x = findroot(x);
96
                if (vis[x] == tim)
97
                    return x;
99
                else {
                    vis[x] = tim;
                    x = p[girl[x]];
101
102
```

```
int flow=0,f;
                                                                       52
103
             swap(x, y);
                                                                               for(int &i=cur[x];i!=-1;i=e[i].prev)
104
                                                                       53
                                                                       54
105
                                                                                     \rightarrow if(e[i].cap>0&&d[e[i].to]==d[x]+1&&(f=dfs(e[i].to,min(e)))
106
107
    //并查集的查找 0(1)
                                                                       55
                                                                                        e[i].cap-=f;
                                                                                        e[i^1].cap+=f:
109
    int findroot(int x) {
                                                                       56
                                                                                        flow+=f;
110
        return x == f[x] ? x : (f[x] = findroot(f[x]));
                                                                       57
                                                                                        a-=f;
                                                                       58
111
                                                                                        if(!a)break;
                                                                       60
                                                                       61
                                                                               return flow;
          最大流
   1.6
                                                                       62
```

1.6.1 Dinic

51

```
// 注意Dinic适用于二分图或分层图,对于一般稀疏图ISAP更
    → 优, 稠密图则HLPP更优
   struct edge{int to,cap,prev;}e[maxe<<1];</pre>
3
   int last[maxn],len=0,d[maxn],cur[maxn],q[maxn];
7
   memset(last,-1,sizeof(last));
8
9
   void addedge(int x,int y,int z){
10
       AddEdge(x,v,z):
11
       AddEdge(y,x,0);
12
13
14
15
   void AddEdge(int x,int y,int z){
16
17
       e[len].to=y;
       e[len].cap=z;
19
       e[len].prev=last[x];
20
       last[x]=len++;
^{21}
22
23
   int Dinic(){
24
       int flow=0;
25
       while(bfs(),d[t]!=-1){
26
           memcpy(cur,last,sizeof(int)*(t+5));
27
           flow+=dfs(s,(\sim 0u)>>1);
28
29
       return flow;
30
31
32
33
   void bfs(){
34
       int head=0,tail=0;
35
       memset(d,-1,sizeof(int)*(t+5));
36
       q[tail++]=s;
37
       d[s]=0;
38
       while(head!=tail){
39
           int x=q[head++];
40
           for(int i=last[x];i!=-1;i=e[i].prev)
41
               if(e[i].cap>0&&d[e[i].to]==-1){
42
                    d[e[i].to]=d[x]+1;
43
44
                    q[tail++]=e[i].to;
45
               }
46
47
48
49
   int dfs(int x,int a){
50
       if(x==t||!a)return a;
```

1.6.2 ISAP

```
// 注意ISAP适用于一般稀疏图,对于二分图或分层图情况Dinic比
   → 较优, 稠密图则HLPP更优
  // 边的定义
  // 这里没有记录起点和反向边,因为反向边即为正向边xor 1,起
5
   →点即为反向边的终点
  struct edge{
     int to, cap, prev;
  } e[maxe * 2];
  // 全局变量和数组定义
  int last[maxn], cnte = 0, d[maxn], p[maxn], c[maxn],

    cur[maxn], q[maxn];

  int n, m, s, t; // s, t一定要开成全局变量
13
14
15
  // 重要!!!
16
  // main函数最前面一定要加上如下初始化
17
  memset(last, -1, sizeof(last));
19
20
  // 加边函数 O(1)
  // 包装了加反向边的过程,方便调用
  // 需要调用AddEdge
  void addedge(int x, int y, int z) {
24
     AddEdge(x, y, z);
25
     AddEdge(y, x, 0);
26
27
28
29
  // 真·加边函数 0(1)
  void AddEdge(int x, int y, int z){
31
     e[cnte].to = y;
     e[cnte].cap = z;
     e[cnte].prev = last[x];
     last[x] = cnte++;
35
36
37
38
  // 主过程 O(n^2 m)
39
  // 返回最大流的流量
  // 需要调用bfs,augment
  // 注意这里的n是编号最大值,在这个值不为n的时候一定要开个
   → 变量记录下来并修改代码
  // 非递归
43
  int ISAP() {
44
     bfs();
45
46
47
     memcpy(cur, last, sizeof(cur));
```

```
48
       int x = s, flow = 0;
49
50
       while (d[s] < n) {
51
           if (x == t) {//如果走到了t就增广一次,并返回s重新
52
            → 找增广路
              flow += augment();
53
              x = s;
54
55
56
           bool ok = false;
57
           for (int &i = cur[x]; ~i; i = e[i].prev)
58
               if (e[i].cap \&\& d[x] == d[e[i].to] + 1) {
59
                  p[e[i].to] = i;
60
                  x = e[i].to;
61
62
                  ok = true;
63
                  break;
64
65
66
           if (!ok) { // 修改距离标号
67
              int tmp = n - 1;
68
              for (int i = last[x]; ~i; i = e[i].prev)
69
                  if (e[i].cap)
70
                      tmp = min(tmp, d[e[i].to] + 1);
71
72
              if (!--c[d[x]])
73
                  break; // gap优化,一定要加上
74
75
              c[d[x] = tmp]++;
76
              cur[x] = last[x];
77
78
              if(x != s)
79
                 x = e[p[x] ^ 1].to;
80
81
82
83
       return flow;
84
85
   // bfs函数 O(n+m)
86
   // 预处理到t的距离标号
87
   // 在测试数据组数较少时可以省略,把所有距离标号初始化为0
   void bfs(){
89
       memset(d, -1, sizeof(d));
91
       int head = 0, tail = 0;
92
93
       d[t] = 0;
       q[tail++] = t;
95
       while (head != tail) {
96
          int x = q[head++];
97
           c[d[x]]++;
           for (int i = last[x]; ~i; i = e[i].prev)
              d[e[i].to] = d[x] + 1;
                  q[tail++] = e[i].to;
105
   // augment函数 O(n)
108
   // 沿增广路增广一次,返回增广的流量
109
   int augment() {
110
       int a = (~0u) >> 1; // INT_MAX
111
112
```

```
for (int x = t; x != s; x = e[p[x] ^ 1].to)

a = min(a, e[p[x]].cap);

for (int x = t; x != s; x = e[p[x] ^ 1].to){

e[p[x]].cap -= a;

e[p[x] ^ 1].cap += a;

return a;

return a;
```

1.6.3 HLPP最高标号预流推进

```
#include<cstdio>
   #include<cstring>
   #include<algorithm>
   #include<queue>
   using std::min;
   using std::vector;
   using std::queue;
   using std::priority_queue;
   const int N=2e4+5,M=2e5+5,inf=0x3f3f3f3f;
   int n,s,t,tot;
   int v[M<<1],w[M<<1],first[N],next[M<<1];</pre>
   int h[N],e[N],gap[N<<1],inq[N];//节点高度是可以到达2n-1的
       inline bool operator()(int a,int b) const
15
           return h[a]<h[b];//因为在优先队列中的节点高度不会
17
            →改变◎所以可以直接比较
18
19
   queue<int> Q;
   priority_queue<int, vector<int>, cmp> pQ;
   inline void add_edge(int from,int to,int flow)
22
23
      v[tot+1]=from;v[tot]=to;w[tot]=flow;w[tot+1]=0;
      next[tot]=first[from];first[from]=tot;
      next[tot+1]=first[to];first[to]=tot+1;
      return:
28
29
   inline bool bfs()
30
31
       int now;
32
      register int go;
33
      memset(h+1,0x3f,sizeof(int)*n);
34
      h[t]=0;Q.push(t);
35
      while(!Q.empty())
36
           now=Q.front();Q.pop();
           for(go=first[now];go;go=next[go])
39
               if(w[go^1]&&h[v[go]]>h[now]+1)
40
                   h[v[go]]=h[now]+1,Q.push(v[go]);
41
42
       return h[s]!=inf;
44
   inline void push(int now)//推送
45
46
       int d:
47
       register int go;
       for(go=first[now];go;go=next[go])
50
           if(w[go]&&h[v[go]]+1==h[now])
51
               d=min(e[now],w[go]);
52
               w[go]-=d;w[go^1]+=d;e[now]-=d;e[v[go]]+=d;
53
```

```
if(v[go]!=s&&v[go]!=t&&!inq[v[go]])
54
                    pQ.push(v[go]),inq[v[go]]=1;
55
                if(!e[now])//已经推送完毕可以直接退出
56
57
                    break:
58
        return;
59
60
    inline void relabel(int now)//重贴标签
61
62
        register int go;
63
        h[now]=inf;
64
        for(go=first[now];go;go=next[go])
65
            if(w[go]&&h[v[go]]+1<h[now])</pre>
66
                h[now]=h[v[go]]+1;
67
68
        return:
69
    inline int hlpp()
70
71
72
        int now,d;
        register int i,go;
73
        if(!bfs())//s和t不连通
74
            return 0;
75
        h[s]=n:
76
        memset(gap,0,sizeof(int)*(n<<1));</pre>
77
        for(i=1;i<=n;i++)</pre>
78
79
            if(h[i]<inf)</pre>
80
                ++gap[h[i]];
        for(go=first[s];go;go=next[go])
81
            if(d=w[go])
82
83
                w[go]-=d;w[go^1]+=d;e[s]-=d;e[v[go]]+=d;
84
                if(v[go]!=s&&v[go]!=t&&!inq[v[go]])
85
                    pQ.push(v[go]),inq[v[go]]=1;
86
87
        while(!pQ.empty())
88
89
            inq[now=pQ.top()]=0;pQ.pop();push(now);
90
            if(e[now])
91
92
                if(!--gap[h[now]])//gap优化图因为当前节点是最高
93
                  → 的所以修改的节点一定不在优先队列中图不必担
                  →心修改对优先队列会造成影响
                    for(i=1;i<=n;i++)</pre>
94
                         if(i!=s&&i!=t&&h[i]>h[now]&&h[i]<n+1)</pre>
95
                            h[i]=n+1;
96
                relabel(now);++gap[h[now]];
97
                pQ.push(now);inq[now]=1;
98
            }
99
100
101
        return e[t];
    int m;
103
    signed main()
104
105
        int u,v,w;
106
        scanf("%d%d%d%d",&n,&m,&s,&t);
107
        while(m--)
109
            scanf("%d%d%d",&u,&v,&w);
110
            add_edge(u,v,w);
111
112
        printf("%d\n",hlpp());
113
        return 0;
114
115
```

2. 字符串

2.1 AC自动机

```
// Aho-Corasick Automata AC自动机
   // By AntiLeaf
   // 通过题目@bzoj3881 Divljak
   // 全局变量与数组定义
   int ch[maxm][26] = \{\{0\}\}, f[maxm][26] = \{\{0\}\}, q[maxm] =
    \hookrightarrow {0}, sum[maxm] = {0}, cnt = 0;
   // 在字典树中插入一个字符串 O(n)
   int insert(const char *c) {
       int x = 0;
12
       while (*c) {
13
           if (!ch[x][*c - 'a'])
14
               ch[x][*c - 'a'] = ++cnt;
15
           x = ch[x][*c++ - 'a'];
17
18
       return x;
   }
19
20
   // 建AC自动机 O(n*sigma)
   void getfail() {
       int x, head = 0, tail = 0;
24
25
       for (int c = 0; c < 26; c++)
26
27
           if (ch[0][c])
               q[tail++] = ch[0][c]; // 把根节点的儿子加入队
28
                 → 列
29
       while (head != tail) {
30
           x = q[head++];
31
           G[f[x][0]].push_back(x);
34
           fill(f[x] + 1, f[x] + 26, cnt + 1);
35
           for (int c = 0; c < 26; c++) {
36
               if (ch[x][c]) {
37
                   int y = f[x][0];
39
                   while (y&&!ch[y][c])
40
                       y=f[y][0];
41
42
                   f[ch[x][c]][0] = ch[y][c];
43
                   q[tail++] = ch[x][c];
44
               }
46
               else
                   ch[x][c] = ch[f[x][0]][c];
47
48
49
       fill(f[0], f[0] + 26, cnt + 1);
50
51
```

2.2 后缀数组

2.2.1 **SAMSA**

```
#include<bits/stdc++.h>
using namespace std;
const int maxn=100005;
void expand(int);
void dfs(int);
```

```
int
                                                                   5 //在字符集比较小的时候可以直接开go数组@否则需要用map或者
6
    → root,last,cnt=0,val[maxn<<1]={0},par[maxn<<1]={0},go[maxn<<1] → 哈希表替换
                                                                      //注意结点数要开成串长的两倍
  bool vis[maxn<<1]={0};</pre>
                                                                      //全局变量与数组定义
   char s[maxn];
   int n,id[maxn<<1]={0},ch[maxn<<1]</pre>
                                                                     int last,val[maxn],par[maxn],go[maxn][26],cnt;
9
                                                                     int c[maxn],q[maxn];//用来桶排序
    \hookrightarrow [26]={{0}},height[maxn],tim=0;
10
   int main(){
                                                                      //在主函数开头加上这句初始化
11
       root=last=++cnt;
       scanf("%s",s+1);
                                                                     last=cnt=1:
12
       n=strlen(s+1);
13
                                                                  14
                                                                      //以下是按val进行桶排序的代码
       for(int i=n;i;i--){
14
                                                                  15
                                                                      for(int i=1;i<=cnt;i++)c[val[i]+1]++;</pre>
           expand(s[i]-'a');
15
                                                                  16
                                                                      for(int i=1;i<=n;i++)c[i]+=c[i-1];//这里n是串长
           id[last]=i;
16
17
                                                                      for(int i=1;i<=cnt;i++)q[++c[val[i]]]=i;</pre>
       vis[1]=true;
18
                                                                      //加入一个字符 均摊0(1)
       for(int i=1;i<=cnt;i++)if(id[i])for(int</pre>
19
                                                                  20
         \leftrightarrow x=i,pos=n;x\&\&!vis[x];x=par[x]){
                                                                      void extend(int c){
                                                                  21
           vis[x]=true;
                                                                         int p=last,np=++cnt;
20
                                                                  22
           pos-=val[x]-val[par[x]];
                                                                         val[np]=val[p]+1;
                                                                  23
22
           ch[par[x]][s[pos+1]-'a']=x;
                                                                         while(p&&!go[p][c]){
                                                                  24
23
                                                                              go[p][c]=np;
                                                                  25
       dfs(root);
24
                                                                  26
                                                                              p=par[p];
       printf("\n");
25
                                                                  27
       for(int i=1;i<n;i++)printf("%d ",height[i]);</pre>
26
                                                                          if(!p)par[np]=1;
                                                                  28
       return 0;
                                                                         else{
                                                                  29
28
                                                                              int q=go[p][c];
                                                                  30
   void expand(int c){
29
                                                                  31
                                                                              if(val[q]==val[p]+1)par[np]=q;
       int p=last,np=++cnt;
30
                                                                              else{
                                                                  32
       val[np]=val[p]+1;
31
                                                                  33
                                                                                  int nq=++cnt;
       while(p&&!go[p][c]){
32
                                                                                  val[nq]=val[p]+1;
                                                                  34
33
           go[p][c]=np;
                                                                                  memcpy(go[nq],go[q],sizeof(go[q]));
           p=par[p];
                                                                  35
34
                                                                                  par[nq]=par[q];
35
                                                                  36
       if(!p)par[np]=root;
36
                                                                  37
                                                                                  par[np]=par[q]=nq;
       else{
37
                                                                  38
                                                                                  while(p\&\&go[p][c]==q){
           int q=go[p][c];
38
                                                                  39
                                                                                      go[p][c]=nq;
           if(val[q]==val[p]+1)par[np]=q;
39
                                                                  40
                                                                                      p=par[p];
           else{
40
                                                                  41
41
               int nq=++cnt;
                                                                  42
               val[nq]=val[p]+1;
42
                                                                  43
               memcpy(go[nq],go[q],sizeof(go[q]));
43
                                                                  44
                                                                         last=np;
               par[nq]=par[q];
44
                                                                  45
               par[np]=par[q]=nq;
45
               while (p\&\&go[p][c]==q){
46
47
                   go[p][c]=nq;
                                                                     2.4
                                                                            回文树
48
                   p=par[p];
               }
49
50
           }
                                                                     //Palindromic Tree/EERTREE 回文树 O(n)
51
                                                                     //By ysf
52
       last=np;
                                                                     //通过题目®API02014 回文串
53
   void dfs(int x){
54
```

2.3 后缀自动机

last=par[x];

if(id[x]){

printf("%d ",id[x]);

height[tim++]=val[last];

55

56

57 58

59

60

61

62

```
1 //Suffix Automaton 后缀自动机 O(n)
2 //By ysf
3 //通过题目®Bzoj3473 字符串
```

for(int c=0;c<26;c++)if(ch[x][c])dfs(ch[x][c]);</pre>

```
//定理®一个字符串本质不同的回文子串个数是0(n)的
  //注意回文树只需要开一倍结点@另外结点编号是一个可用
   → 的bfs序
  //全局数组定义
  int val[maxn],par[maxn],go[maxn][26],last,cnt;
10
  char s[maxn];
11
  //重要@在主函数最前面一定要加上以下初始化
12
13 par[0]=cnt=1;
  val[1]=-1;
14
15
  //extend函数 均摊0(1)
16
  //向后扩展一个字符
17
  //传入对应下标
18
19
  void extend(int n){
     int p=last,c=s[n]-'a';
20
```

```
while(s[n-val[p]-1]!=s[n])p=par[p];
21
       if(!go[p][c]){
22
           int q=++cnt,now=p;
23
           val[q]=val[p]+2;
24
           do p=par[p];while(s[n-val[p]-1]!=s[n]);
25
           par[q]=go[p][c];
26
27
           last=go[now][c]=q;
28
29
       else last=go[p][c];
30
       a[last]++;
31
```

2.4.1 广义回文树

```
#include <bits/stdc++.h>
2
   using namespace std;
3
4
   constexpr int maxn = 1000005, mod = 1000000007;
5
6
   int val[maxn], par[maxn], go[maxn][26], fail[maxn][26],
7

    pam_last[maxn], pam_cnt;

   int weight[maxn], pow_26[maxn];
   int trie[maxn][26], trie_cnt, d[maxn], mxd[maxn],
10
    char chr[maxn];
   int f[25][maxn], log_tbl[maxn];
   vector<int> v[maxn];
13
14
   vector<int> queries[maxn];
15
16
17
   char str[maxn];
18
   int n, m, ans[maxn];
19
   int add(int x, int c) {
20
       if (!trie[x][c]) {
21
           trie[x][c] = ++trie_cnt;
           f[0][trie[x][c]] = x;
24
           chr[trie[x][c]] = c + 'a';
25
26
       return trie[x][c];
27
28
   int del(int x) {
30
       return f[0][x];
31
32
33
   void dfs1(int x) {
34
       mxd[x] = d[x] = d[f[0][x]] + 1;
36
       for (int i = 0; i < 26; i++)
37
           if (trie[x][i]) {
38
               int y = trie[x][i];
39
40
               dfs1(y);
41
42
               mxd[x] = max(mxd[x], mxd[y]);
43
               if (mxd[y] > mxd[son[x]])
44
                   son[x] = y;
45
46
47
48
   void dfs2(int x) {
49
       if (x == son[f[0][x]])
50
           top[x] = top[f[0][x]];
51
```

```
53
            top[x] = x;
        for (int i = 0; i < 26; i++)
55
            if (trie[x][i]) {
56
                int y = trie[x][i];
57
                dfs2(y);
60
61
        if (top[x] == x) {
62
            int u = x;
            while (top[son[u]] == x)
63
                u = son[u];
64
65
            len[x] = d[u] - d[x];
66
67
            for (int i = 0; i < len[x]; i++) {</pre>
68
                v[x].push back(u);
69
70
                u = f[0][u];
72
            u = x;
            for (int i = 0; i < len[x]; i++) { // 梯子剖分@要
74
              → 延长一倍
                v[x].push_back(u);
75
76
                u = f[0][u];
77
78
79
80
    int get_anc(int x, int k) {
81
        if (!k)
            return x;
84
        if (k > d[x])
85
            return 0;
86
        x = f[log_tbl[k]][x];
87
        k ^= 1 << log_tbl[k];</pre>
        return v[top[x]][d[top[x]] + len[top[x]] - d[x] + k];
90
91
92
    char get_char(int x, int k) { // 查询x前面k个的字符是哪个
93
        return chr[get_anc(x, k)];
94
95
96
    int getfail(int x, int p) {
97
        if (get\_char(x, val[p] + 1) == chr[x])
98
            return p;
99
100
        return fail[p][chr[x] - 'a'];
101
102
103
    int extend(int x) {
104
        int p = pam_last[f[0][x]], c = chr[x] - 'a';
105
106
        p = getfail(x, p);
107
108
109
        int new_last;
110
        if (!go[p][c]) {
111
            int q = ++pam_cnt, now = p;
112
113
            val[q] = val[p] + 2;
114
            p = getfail(x, par[p]);
115
116
            par[q] = go[p][c];
117
            new_last = go[now][c] = q;
118
119
```

```
for (int i = 0; i < 26; i++)
120
                  fail[q][i] = fail[par[q]][i];
121
                                                                          188
                                                                           189
                                                                                            int op;
                                                                                            scanf("%d", &op);
             if (get_char(x, val[par[q]]) >= 'a')
123
                                                                          190
                  fail[q][get_char(x, val[par[q]]) - 'a'] =
124
                                                                          191
                                                                                            if (op == 1) {
                    → par[a]:
                                                                          192
                                                                                                 char c;
                                                                          193
125
             if (val[q] <= n)</pre>
126
                                                                          194
                  weight[q] = (weight[par[q]] + (long long)(n -
                                                                          195
                    \rightarrow val[q] + 1) * pow_26[n - val[q]]) % mod;
                                                                          196
             else
                                                                                            }
128
                                                                          197
                  weight[q] = weight[par[q]];
                                                                          198
                                                                                            else
129
                                                                          199
130
         else
131
                                                                          200
             new_last = go[p][c];
                                                                          201
132
133
                                                                          202
         pam_last[x] = new_last;
134
                                                                          203
                                                                                        dfs1(1);
                                                                          204
135
         return weight[pam_last[x]];
                                                                          205
                                                                                        dfs2(1);
136
137
                                                                          206
                                                                          207
138
    void bfs() {
139
                                                                          208
140
                                                                          209
         queue<int> q;
                                                                          210
141
                                                                          211
                                                                                        par[0] = pam_cnt = 1;
142
143
         q.push(1);
                                                                          212
                                                                          213
         while (!q.empty()) {
145
                                                                          214
             int x = q.front();
                                                                          215
146
             q.pop();
                                                                          216
147
                                                                          217
                                                                                        val[1] = -1;
148
             sum[x] = sum[f[0][x]];
                                                                                        pam_last[1] = 1;
149
             if (x > 1)
                  sum[x] = (sum[x] + extend(x)) \% mod;
151
                                                                          220
                                                                                        bfs();
152
                                                                          221
             for (int i : queries[x])
153
                                                                          222
                  ans[i] = sum[x];
                                                                          223
154
155
                                                                          224
             for (int i = 0; i < 26; i++)
                                                                          225
156
                  if (trie[x][i])
                                                                          226
157
                       q.push(trie[x][i]);
158
                                                                          227
159
                                                                          228
                                                                                            chr[i] = 0;
                                                                          229
160
161
                                                                          230
    int main() {
                                                                          231
                                                                                            v[i].clear();
163
                                                                                            queries[i].clear();
164
                                                                          232
         pow_26[0] = 1;
165
                                                                          233
         log_tbl[0] = -1;
                                                                          234
166
167
                                                                          235
         for (int i = 1; i <= 1000000; i++) {</pre>
                                                                          236
                                                                                        trie_cnt = 0;
             pow_26[i] = 2611 * pow_26[i - 1] % mod;
169
                                                                          237
             log_tbl[i] = log_tbl[i / 2] + 1;
170
                                                                          238
         }
171
                                                                          239
172
                                                                          240
         int T;
                                                                          241
173
         scanf("%d", &T);
                                                                          242
                                                                          243
175
         while (T--) {
176
                                                                          244
                                                                                        pam_cnt = 0;
             scanf("%d%d%s", &n, &m, str);
177
                                                                          245
178
                                                                          246
             trie_cnt = 1;
                                                                          247
179
             chr[1] = '#';
                                                                          248
                                                                                   return 0;
180
                                                                          249
             int last = 1:
182
             for (char *c = str; *c; c++)
183
                  last = add(last, *c - 'a');
184
185
             queries[last].push_back(0);
```

```
for (int i = 1; i <= m; i++) {
        scanf(" %c", &c);
        last = add(last, c - 'a');
        last = del(last);
    queries[last].push_back(i);
for (int j = 1; j <= log_tbl[trie_cnt]; j++)</pre>
    for (int i = 1; i <= trie_cnt; i++)</pre>
        f[j][i] = f[j - 1][f[j - 1][i]];
for (int i = 0; i < 26; i++)
    fail[0][i] = fail[1][i] = 1;
for (int i = 0; i <= m; i++)</pre>
    printf("%d\n", ans[i]);
for (int j = 0; j <= log_tbl[trie_cnt]; j++)</pre>
    memset(f[j], 0, sizeof(f[j]));
for (int i = 1; i <= trie_cnt; i++) {</pre>
    d[i] = mxd[i] = son[i] = top[i] = len[i] =
      \hookrightarrow pam_last[i] = sum[i] = 0;
    memset(trie[i], 0, sizeof(trie[i]));
for (int i = 0; i <= pam_cnt; i++) {</pre>
    val[i] = par[i] = weight[i];
    memset(go[i], 0, sizeof(go[i]));
    memset(fail[i], 0, sizeof(fail[i]));
```

2.5 Manacher马拉车

```
//Manacher O(n)
   //By ysf
   //通过题目@51Nod1089 最长回文子串V2
   //n为串长@回文半径输出到p数组中
   //数组要开串长的两倍
   void manacher(const char *t, int n) {
7
      static char s[maxn * 2];
8
9
       for (int i = n; i; i--)
10
       s[i * 2] = t[i];
11
       for (int i = 0; i <= n; i++)
12
         s[i * 2 + 1] = '#';
13
14
      s[0] = '$';
15
       s[(n + 1) * 2] = ' 0';
16
       n = n * 2 + 1;
17
18
      int mx = 0, j = 0;
19
20
       for (int i = 1; i <= n; i++) {</pre>
21
          p[i] = (mx > i ? min(p[j * 2 - i], mx - i) : 1);
22
          while (s[i - p[i]] == s[i + p[i]])
23
              p[i]++;
24
25
          if(i + p[i] > mx){
26
              mx = i + p[i];
27
               j = i;
28
29
30
31
```

2.6 KMP

2.6.1 ex-KMP

```
//Extended KMP 扩展KMP
   //By AntiLeaf
   //通过题目®小作业0J 4182
   //全局变量与数组定义
  char s[maxn], t[maxn];
  int n, m, a[maxn];
   //主过程 O(n + m)
   //把t的每个后缀与s的LCP输出到a中@s的后缀和自己的LCP存

→ 在nx中

   //0-based@s的长度是m@t的长度是n
11
   void exKMP(const char *s, const char *t, int *a) {
12
      static int nx[maxn];
13
14
      memset(nx, 0, sizeof(nx));
15
16
17
      int j = 0;
      while (j + 1 < m \&\& s[j] == s[j + 1])
18
       j++;
19
      nx[1] = j;
20
21
      for (int i = 2, k = 1; i < m; i++) {
22
      int pos = k + nx[k], len = nx[i - k];
23
24
          if (i + len < pos)</pre>
25
              nx[i] = len;
26
          else {
27
```

```
j = max(pos - i, 0);
                while (i + j < m \&\& s[j] == s[i + j])
29
30
31
                nx[i] = j;
32
                k = i;
33
34
       }
35
36
       i = 0;
37
       while (j < n \&\& j < m \&\& s[j] == t[j])
38
39
           j++;
       a[0] = j;
40
41
       for (int i = 1, k = 0; i < n; i++) {
42
            int pos = k + a[k], len = nx[i - k];
43
            if (i + len < pos)</pre>
44
                a[i] = len;
45
            else {
46
                j = max(pos - i, 0);
47
                while(j < m \&\& i + j < n \&\& s[j] == t[i + j])
                j++;
                a[i] = j;
51
                k = i;
54
55
   }
```

3. 数学

- 3.1 插值
- 3.1.1 牛顿插值
- 3.1.2 拉格朗日插值
- 3.2 多项式
- 3.2.1 FFT

```
ı //Fast Fourier Transform 快速傅里叶变换 O(n\Log n)
  //By ysf
  //通过题目@COGS2294 释迦@作为拆系数FFT的组成部分@
  //使用时一定要注意double的精度是否足够®极限大概是10^14®
  const double pi=acos((double)-1.0);
7
  //丰写复数类
  //支持加减乘三种运算
  //+=运算符如果用的不多可以不重载
  struct Complex{
     double a,b;//由于Long double精度和double几乎相同图通常
12
       → 没有必要用Long double
     Complex(double a=0.0,double b=0.0):a(a),b(b){}
13
     Complex operator+(const Complex &x)const{return
14
       Complex operator-(const Complex &x)const{return
       Complex operator*(const Complex &x)const{return
       \hookrightarrow Complex(a*x.a-b*x.b,a*x.b+b*x.a);}
     Complex &operator+=(const Complex &x){return

    *this=*this+x;}

  }w[maxn],w_inv[maxn];
18
19
```

```
//FFT初始化 O(n)
   //需要调用sin、cos函数
   void FFT_init(int n){
       for(int i=0;i<n;i++)//根据单位根的旋转性质可以节省计
        → 算单位根逆元的时间
          w[i]=w_inv[n-i-1]=Complex(cos(2*pi/n*i),sin(2*pi/n*i))
24
       //当然不存单位根也可以@只不过在FFT次数较多时很可能会
        →增大常数
26
27
   //FFT主过程 O(n\Log n)
28
   void FFT(Complex *A,int n,int tp){
       for(int i=1,j=0,k;i<n-1;i++){</pre>
30
31
           do j^=(k>>=1);while(j<k);</pre>
32
           if(i<j)swap(A[i],A[j]);</pre>
33
34
       for(int k=2;k<=n;k<<=1)</pre>
35
           for(int i=0;i<n;i+=k)</pre>
36
               for(int j=0;j<(k>>1);j++){
37
                   Complex a=A[i+j],b=(tp>0?w:w_inv)
38
                    \hookrightarrow [n/k*j]*A[i+j+(k>>1)];
                   A[i+j]=a+b;
39
                   A[i+j+(k>>1)]=a-b;
40
41
42
       if(tp<0)for(int i=0;i<n;i++)A[i].a/=n;</pre>
43
```

3.2.2 NTT

```
// Number Theory Transform 快速数论变换 O(n\Log n)
   // Bv AntiLeaf
   // 通过题目@U0J#34 多项式乘法
   // 要求模数为10^9以内的NTT模数
6
   const int p = 998244353, g = 3; // p为模数@g为p的任意一个
    → 原根
7
   void NTT(int *A, int n, int tp) { // n为变换长度@
8
    → tp为1或-1®表示正/逆变换
       for (int i = 1, j = 0, k; i < n - 1; i++) { // O(n)旋转
9
        → 算法@原理是模拟二进制加一
          k = n;
10
           do
11
              j ^= (k >>= 1);
12
          while (j < k);</pre>
13
14
           if(i < j)
15
              swap(A[i], A[j]);
16
17
18
       for (int k = 2; k <= n; k <<= 1) {
19
           int wn = qpow(g, (tp > 0 ? (p - 1) / k : (p - 1) /
20
            \hookrightarrow k * (long long)(p - 2) % (p - 1)));
           for (int i = 0; i < n; i += k) {
21
              int w = 1;
22
              for (int j = 0; j < (k >> 1); j++, w = (long)
23
                \hookrightarrow long)w * wn % p){
                   int a = A[i + j], b = (long long)w * A[i +
24
                    \hookrightarrow j + (k \gg 1)] % p;
                  A[i + j] = (a + b) \% p;
25
                  A[i + j + (k >> 1)] = (a - b + p) \% p;
26
              } // 更好的写法是预处理单位根的次幂◎参照FFT的
27
                →代码
28
           }
29
```

```
30

31

32

int inv = qpow(n, p - 2); // 如果预处理过逆元的话

→ 就不用快速幂了

33

for (int i = 0; i < n; i++)

| A[i] = (long long)A[i] * inv % p;

35

}
```

3.2.3 任意模数卷积(三模数NTT)

```
1 //只要求模数在2^30-1以内,无其他特殊要求
  //常数很大,慎用
  //在卷积结果不超过10^14时可以直接double暴力乘,这时就不要
    → 写任意模数券积了
   //这里有三模数NTT和拆系数FFT两个版本,通常后者常数要小一
   //但在答案不超过10^18时可以改成双模数NTT,这时就比拆系
    → 数FFT快一些了
  //以下为三模数NTT,原理是选取三个乘积大于结果的NTT模数,最
   → 后中国剩余定理合并
  //以对23333333(不是质数)取模为例
  const int
    → maxn=262200, Mod=23333333, g=3, m[]={998244353,1004535809,1045430
      m0_inv=669690699,m1_inv=332747959,M_inv=942377029;//这
        →三个模数最小原根都是3
  const long long M=(long long)m[0]*m[1];
11
12
  //主函数(当然更多时候包装一下比较好)
13
   //用来卷积的是A和B
14
  //需要调用mul
  int n,N=1,A[maxn],B[maxn],C[maxn],D[maxn],ans[3][maxn];
  int main(){
17
      scanf("%d",&n);
      while(N<(n<<1))N<<=1;</pre>
19
20
      for(int i=0;i<n;i++)scanf("%d",&A[i]);</pre>
21
      for(int i=0;i<n;i++)scanf("%d",&B[i]);</pre>
      for(int i=0;i<3;i++)mul(m[i],ans[i]);</pre>
23
      for(int i=0;i<n;i++)printf("%d ",China(ans[0][i],ans[1]</pre>
       \hookrightarrow [i],ans[2][i]));
24
      return 0;
25
26
  //mul O(n \setminus log n)
27
  //包装了模NTT模数的卷积
  //需要调用NTT
  void mul(int p,int *ans){
      copy(A,A+N,C);
      copy(B,B+N,D);
      NTT(C,N,1,p);
33
      NTT(D,N,1,p);
      for(int i=0;i<N;i++)ans[i]=(long long)C[i]*D[i]%p;</pre>
35
      NTT(ans, N, -1, p);
36
37
  }
  //中国剩余定理 0(1)
  //由于直接合并会爆Long Long,采用神奇的方法合并
  //需要调用o(1)快速乘
41
  inline int China(int a0,int a1,int a2){
42
43
      long long A=(mul((long long)a0*m1_inv,m[1],M)
44
         +mul((long long)a1*m0_inv,m[0],M))%M;
      int k=((a2-A)\%m[2]+m[2])\%m[2]*M_inv\%m[2];
45
      return (k%Mod*(M%Mod)%Mod+A%Mod)%Mod;
46
47
  }
```

48

```
--分割线
49
50
   //以下为拆系数FFT,原理是减小结果范围使得double精度能够承
   //仍然以模233333333为例
52
   const int maxn=262200,p=23333333,M=4830;//M取值要使得结果
53
     → 不超过10^14
   //需要开的数组
55
   struct Complex{//内容略
56
   }w[maxn],w_inv[maxn],A[maxn],B[maxn],C[maxn],D[maxn],F[maxn]
57
58
   //主函数(当然更多时候包装一下比较好)
59
   //需要调用FFT初始化,FFT
   int main(){
61
       scanf("%d",&n);
62
       int N=1;
63
       while(N<(n<<1))N<<=1;</pre>
64
65
       for(int i=0,x;i<n;i++){</pre>
           scanf("%d",&x);
66
           A[i]=x/M;
67
           B[i]=x\%M;
68
69
       for(int i=0,x;i<n;i++){</pre>
70
71
           scanf("%d",&x);
72
           C[i]=x/M;
           D[i]=x\%M;
73
74
75
       FFT init(N);
       FFT(A,N,1);
76
       FFT(B,N,1);
77
       FFT(C,N,1);
78
       FFT(D,N,1);
79
       for(int i=0;i<N;i++){</pre>
80
           F[i]=A[i]*C[i];
81
           G[i]=A[i]*D[i]+B[i]*C[i];
82
           H[i]=B[i]*D[i];
83
84
       FFT(F,N,-1);
85
       FFT(G,N,-1);
86
       FFT(H,N,-1);
87
       for(int i=0;i<n;i++)</pre>
88
           printf("%d\n",(int)((M*M*((long long)
89
             \hookrightarrow (F[i].a+0.5)\%p)\%p+
           M*((long long)(G[i].a+0.5)%p)%p+(long long)
90
             \hookrightarrow (H[i].a+0.5)\%p)\%p));
       return 0:
91
92
```

3.2.4 多项式操作

```
//Polymial Operations 多项式操作
  //By ysf
  //通过题目®COGS2189 帕秋莉的超级多项式®板子题®
3
  const int maxn=262200;//以下所有代码均为NTT版本
  //以下所有代码均满足@A为输入@不进行修改@@C为输出@n为所需
   → 长度
7
  //多项式求逆 O(n\Log n)
8
  //要求A常数项不为@
9
  void getinv(int *A,int *C,int n){
10
      static int B[maxn];
11
     memset(C,0,sizeof(int)*(n<<1));</pre>
12
     C[0]=qpow(A[0],p-2);//一般题目直接赋值为1就可以
13
     for(int k=2;k<=n;k<<=1){</pre>
14
```

```
memset(B+k,0,sizeof(int)*k);
16
           NTT(B, k << 1, 1);
17
           NTT(C, k<<1,1);
18
           for(int i=0;i<(k<<1);i++)</pre>
19
               C[i]=((2-(long long)B[i]*C[i])%p*C[i]%p+p)%p;
20
           NTT(C, k<<1, -1);
21
           memset(C+k,0,sizeof(int)*k);
22
23
24 | }
G[maxn],H[maxn];
   //多项式开根 O(n\Log n)
26
   //要求A常数项可以开根/存在二次剩余
27
   //需要调用多项式求逆◎且需要预处理2的逆元
   void getsqrt(int *A,int *C,int n){
29
       static int B[maxn],D[maxn];
30
31
       memset(C,0,sizeof(int)*(n<<1));</pre>
       C[0]=(int)(sqrt(A[0])+1e-7);//一般题目直接赋值为1就可
32
        \hookrightarrow |\lambda|
       for(int k=2;k<=n;k<<=1){</pre>
33
           memcpy(B,A,sizeof(int)*k);
35
           memset(B+k,0,sizeof(int)*k);
36
           getinv(C,D,k);
37
           NTT(B, k < < 1, 1);
           NTT(D, k << 1, 1);
38
           for(int i=0;i<(k<<1);i++)B[i]=(long</pre>
39
             \hookrightarrow long)B[i]*D[i]%p;
           NTT(B,k<<1,-1);
40
           for(int i=0;i<k;i++)C[i]=(long long)</pre>
41
             → (C[i]+B[i])*inv_2%p;//inv_2是2的逆元
42
43
44
   //求导 O(n)
45
   void getderivative(int *A,int *C,int n){
46
       for(int i=1;i<n;i++)C[i-1]=(long long)A[i]*i%p;</pre>
47
       C[n-1]=0:
48
   }
49
50
   //不定积分 O(n\Log n)@如果预处理过逆元可以降到O(n)
   void getintegrate(int *A,int *C,int n){
       for(int i=1;i<n;i++)C[i]=(long</pre>
         \hookrightarrow long)A[i-1]*qpow(i,p-2)%p;
       C[0]=0;//由于是不定积分@结果没有常数项
54
55
56
   //多项式\Ln O(n\Log n)
57
   //要求A常数项不为0/存在离散对数
58
   //需要调用多项式求逆◎求导◎不定积分
   void getln(int *A,int *C,int n){//通常情况下A常数项都是1
60
       static int B[maxn];
61
       getderivative(A,B,n);
62
       memset(B+n,0,sizeof(int)*n);
64
       getinv(A,C,n);
       NTT(B,n<<1,1);
65
       NTT(C,n<<1,1);
66
       for(int i=0;i<(n<<1);i++)B[i]=(long long)B[i]*C[i]%p;</pre>
67
       NTT(B,n<<1,-1):
68
       getintegrate(B.C.n):
69
       memset(C+n,0,sizeof(int)*n);
70
71
72
   //多项式\exp O(n\log n)
   //要求A没有常数项
74
   //需要调用多项式\Ln
```

memcpy(B,A,sizeof(int)*k);

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

49

50

51

53

54

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70 71 72

73

74

75

76

77

```
//常数很大且总代码较长@在时间效率要求不高时最好替换为分
     → 治FFT
   //分治FFT依据@设G(x)=\exp F(x)@则有g_i=\sum_{k=1}^i f_k
     \hookrightarrow g_{\{i-k\}}
   void getexp(int *A,int *C,int n){
78
79
       static int B[maxn];
       memset(C,0,sizeof(int)*(n<<1));</pre>
80
81
       C[0]=1:
       for(int k=2;k<=n;k<<=1){</pre>
82
           getln(C,B,k);
           for(int i=0;i<k;i++){</pre>
85
               B[i]=A[i]-B[i];
               if(B[i]<0)B[i]+=p;</pre>
86
87
           (++B[0])%=p;
88
           NTT(B,k<<1,1);
89
           NTT(C,k<<1,1);
90
           for(int i=0;i<(k<<1);i++)C[i]=(long</pre>
91
             → long)C[i]*B[i]%p;
           NTT(C,k<<1,-1);
92
           memset(C+k,0,sizeof(int)*k);
93
94
95
    //多项式k次幂 O(n\Log n)
   //在A常数项不为1时需要转化
   //需要调用多项式/exp、\Ln
99
   //常数较大且总代码较长@在时间效率要求不高时最好替换为暴
100
     → 力快速幂
   void getpow(int *A,int *C,int n,int k){
       static int B[maxn];
102
       getln(A,B,n);
103
       for(int i=0;i<n;i++)B[i]=(long long)B[i]*k%p;</pre>
104
       getexp(B,C,n);
105
106
```

3.2.5 拉格朗日反演

3.2.6 半在线卷积

```
// Half-Online Convolution 半在线卷积
   // By AntiLeaf
   // O(n \log^2 n)
   // 通过题目@自己出的题
   // 主过程@递归调用自身
7
   void solve(int 1, int r) {
8
       if (r <= m)
9
10
          return:
11
       if (r - l == 1) {
12
13
           if (1 == m)
14
               f[1] = a[m];
15
           else
           f[1] = (long long)f[1] * inv[1 - m] % p;
16
17
18
           for (int i = 1, t = (long long)1 * f[1] % p; i <=
            \hookrightarrow n; i += 1)
19
            g[i] = (g[i] + t) \% p;
20
           return:
21
22
23
       int mid = (1 + r) / 2;
24
25
```

```
solve(1, mid);
    if (1 == 0) {
        for (int i = 1; i < mid; i++) {</pre>
            A[i] = f[i];
            B[i] = (c[i] + g[i]) \% p;
        NTT(A, r, 1);
        NTT(B, r, 1);
        for (int i = 0; i < r; i++)</pre>
           A[i] = (long long)A[i] * B[i] % p;
        NTT(A, r, -1);
        for (int i = mid; i < r; i++)</pre>
            f[i] = (f[i] + A[i]) \% p;
    else {
        for (int i = 0; i < r - 1; i++)
           A[i] = f[i];
        for (int i = 1; i < mid; i++)</pre>
           B[i - 1] = (c[i] + g[i]) \% p;
        NTT(A, r - 1, 1);
        NTT(B, r - 1, 1);
        for (int i = 0; i < r - 1; i++)</pre>
           A[i] = (long long)A[i] * B[i] %p;
        NTT(A, r - 1, -1);
        for (int i = mid; i < r; i++)</pre>
           f[i] = (f[i] + A[i - 1]) \% p;
        memset(A, 0, sizeof(int) * (r - 1));
        memset(B, 0, sizeof(int) * (r - 1));
        for (int i = 1; i < mid; i++)</pre>
           A[i - 1] = f[i];
        for (int i = 0; i < r - 1; i++)
            B[i] = (c[i] + g[i]) \% p;
        NTT(A, r - 1, 1);
        NTT(B, r - 1, 1);
        for (int i = 0; i < r - 1; i++)
            A[i] = (long long)A[i] * B[i] % p;
        NTT(A, r - 1, -1);
        for (int i = mid; i < r; i++)</pre>
          f[i] = (f[i] + A[i - 1]) \% p;
    memset(A, 0, sizeof(int) * (r - 1));
    memset(B, 0, sizeof(int) * (r - 1));
    solve(mid, r);
}
```

3.3 FWT快速沃尔什变换

```
1 //Fast Walsh-Hadamard Transform 快速沃尔什变换 O(n\log n)
2 //By ysf
3 //通过题目@COGS上几道板子题
4 
5 //注意FWT常数比较小@这点与FFT/NTT不同
6 //以下代码均以模质数情况为例@其中n为变换长度@tp表示正/逆
→ 变换
7 
8 //按位或版本
9 void FWT_or(int *A,int n,int tp){
```

```
for(int k=2;k<=n;k<<=1)</pre>
10
            for(int i=0;i<n;i+=k)</pre>
11
                                                                       30
                for(int j=0;j<(k>>1);j++){
12
                     if(tp>0)A[i+j+(k>>1)]=(A[i+j+(k>>1)]+A[i+j])%p3
13
14
                       \hookrightarrow A[i+j+(k>>1)]=(A[i+j+(k>>1)]-A[i+j]+p)%p
15
16
17
   //按位与版本
   void FWT_and(int *A,int n,int tp){
19
       for(int k=2;k<=n;k<<=1)</pre>
20
21
            for(int i=0;i<n;i+=k)</pre>
22
                for(int j=0;j<(k>>1);j++){
23
                     if(tp>0)A[i+j]=(A[i+j]+A[i+j+(k>>1)])%p;
                     else A[i+j]=(A[i+j]-A[i+j+(k>>1)]+p)%p;
25
26
27
   //按位异或版本
28
   void FWT_xor(int *A,int n,int tp){
29
       for(int k=2;k<=n;k<<=1)</pre>
30
            for(int i=0;i<n;i+=k)</pre>
31
                for(int j=0;j<(k>>1);j++){
32
                     int a=A[i+j],b=A[i+j+(k>>1)];
33
34
                     A[i+j]=(a+b)%p;
35
                     A[i+j+(k>>1)]=(a-b+p)%p;
36
37
       if(tp<0){
            int inv=qpow(n%p,p-2);//n的逆元☑在不取模时需要用每
38
              → 层除以2代替
39
            for(int i=0;i<n;i++)A[i]=A[i]*inv%p;</pre>
40
41
```

3.4 单纯形

```
//Simplex Method 单纯形方法求解线性规划
   //Bv vsf
2
   //通过题目@UOJ#179 线性规划@然而被hack了QAQ......@
3
   //单纯形其实是指数算法@但实践中跑得飞快@所以复杂度什么的
    → 也就无所谓了
6
7
   const double eps=1e-10;
8
9
   double A[maxn][maxn],x[maxn];
10
11
   int n,m,t,id[maxn<<1];</pre>
12
   //方便起见@这里附上主函数
13
   int main(){
14
       scanf("%d%d%d",&n,&m,&t);
15
       for(int i=1;i<=n;i++){</pre>
16
           scanf("%lf",&A[0][i]);
17
          id[i]=i;
18
19
       for(int i=1;i<=m;i++){</pre>
20
           for(int j=1;j<=n;j++)scanf("%lf",&A[i][j]);</pre>
^{21}
           scanf("%lf",&A[i][0]);
22
23
       if(!initalize())printf("Infeasible");
24
       else if(!simplex())printf("Unbounded");
25
26
           printf("%.15lf\n",-A[0][0]);
27
           if(t){
28
```

```
31
       return 0:
   //初始化
   //对于初始解可行的问题@可以把初始化省略掉
   bool initalize(){
38
39
       for(;;){
40
            double t=0.0;
41
            int l=0,e=0;
42
            for(int i=1;i<=m;i++)if(A[i][0]+eps<t){</pre>
                t=A[i][0];
                l=i;
45
            if(!1)return true;
46
47
            for(int i=1;i<=n;i++)if(A[1]</pre>
              \leftrightarrow [i]<-eps&&(!e||id[i]<id[e]))e=i;
            if(!e)return false;
48
            pivot(l,e);
49
50
   //求解
   bool simplex(){
54
       for(;;){
55
            int l=0,e=0;
56
            for(int i=1;i<=n;i++)if(A[0]</pre>
57
              \leftrightarrow [i]>eps&&(!e||id[i]<id[e]))e=i;
            if(!e)return true;
58
            double t=1e50:
59
            for(int i=1;i<=m;i++)if(A[i][e]>eps&&A[i][0]/A[i]
60
              → [e]<t){</pre>
                1=i:
                t=A[i][0]/A[i][e];
62
            if(!1)return false;
65
            pivot(1,e);
66
68
   //转轴操作@本质是
69
   void pivot(int 1,int e){
70
       swap(id[e],id[n+l]);
71
       double t=A[1][e];
72
       A[1][e]=1.0;
73
       for(int i=0;i<=n;i++)A[1][i]/=t;</pre>
74
75
       for(int i=0;i<=m;i++)if(i!=1){</pre>
            t=A[i][e];
76
            A[i][e]=0.0;
            for(int j=0;j<=n;j++)A[i][j]-=t*A[l][j];</pre>
79
80
```

for(int i=1;i<=m;i++)x[id[i+n]]=A[i][0];</pre>

for(int i=1;i<=n;i++)printf("%.15lf ",x[i]);</pre>

3.5 线性代数

3.5.1 线性基

4. 数论

4.1 O(n)预处理逆元

```
1 //Mutiply Inversation 预处理乘法逆元 O(n)
2 //By ysf
3 //要求p为质数(?)
4
5 inv[0]=inv[1]=1;
6 for(int i=2;i<=n;i++)
7 inv[i]=(long long)(p-(p/i))*inv[p%i]%p;//p为模数
8 //i<sup>-1</sup> = -\bigcup_pi \times (p \text{ mod } i)^{-1} \text{ (mod } )p
9 //i^-1 = -(p/i) * (p%i)^-1
```

4.2 杜教筛

```
24
  //Yuhao Du's Sieve 杜教筛 O(n^{2/3})
                                                   25
  //By ysf
  //通过题目@51Nod1239 欧拉函数之和
                                                   26
  //用于求可以用狄利克雷卷积构造出好求和的东西的函数的前缀
                                                   27
  //有些题只要求n<=10^9@这时就没必要开Long Long了@但记得乘
                                                   29
   →法时强转
                                                   30
7
  //常量/全局变量/数组定义
8
  const int
9
                                                  32
   bool notp[maxn];
10
  int prime[maxn/20],phi[maxn],tbl[100005];
  //tbl用来顶替哈希表®其实开到n^{1/3}就够了®不过保险起见开
   → 成\sqrt n比较好
  long long N;
13
14
  //主函数前面加上这么一句
15
  memset(tbl,-1,sizeof(tbl));
  //线性筛预处理部分略去
18
19
  //杜教筛主过程 总计O(n^{2/3})
20
  //递归调用自身
21
  //递推式还需具体情况具体分析@这里以求欧拉函数前缀和(mod
   → 10^9+7) 为例
                                                   41
  int S(long long n){
23
                                                   42
     if(n<=table_size)return phi[n];</pre>
24
                                                   43
     else if(~tbl[N/n])return tbl[N/n];
                                                   44
     //原理@n除以所有可能的数的结果一定互不相同
                                                   45
     int ans=0;
     for(long long i=2,last;i<=n;i=last+1){</pre>
28
        last=n/(n/i);
        ans=(ans+(last-i+1)%p*S(n/i))%p;//如果n是int范围的
30
          → 话记得强转
31
     ans=(n%p*((n+1)%p)%p*inv_2-ans+p)%p;//同上
33
     return tbl[N/n]=ans;
34
```

4.3 线性筛

14

15

16

17

19

20

21

22

23

//Extended Euler's Sieving 扩展线性筛 O(n)

```
//通过题目®51Nod1220 约数之和®预处理部分®
//此代码以计算约数之和函数\sigma_1@对10^9+7取模@为例
//适用于任何f(p^k)便于计算的积性函数
const int p=1000000007;
int prime[maxn/10],sigma_one[maxn],f[maxn],g[maxn];
//f@除掉最小质因子后剩下的部分
//g @最小质因子的幂次@在f(p^k)比较复杂时很有用@但f(p^k)可
 → 以递推时就可以省略了
//这里没有记录最小质因子@但根据线性筛的性质@每个合数只会
 → 被它最小的质因子筛掉
bool notp[maxn];//顾名思义
void get_table(int n){
   sigma_one[1]=1;//积性函数必有f(1)=1
   for(int i=2;i<=n;i++){</pre>
      if(!notp[i]){//质数情况
          prime[++prime[0]]=i;
          sigma_one[i]=i+1;
          f[i]=g[i]=1;
      for(int j=1;j<=prime[0]&&i*prime[j]<=n;j++){</pre>
          notp[i*prime[j]]=true;
          if(i%prime[j]){//加入一个新的质因子@这种情况很
           →简单
             sigma_one[i*prime[j]]=(long
              → long)sigma_one[i]*(prime[j]+1)%p;
             f[i*prime[j]]=i;
             g[i*prime[j]]=1;
          else{//再加入一次最小质因子◎需要再进行分类讨
           →论
             f[i*prime[j]]=f[i];
             g[i*prime[j]]=g[i]+1;
             //对于f(p^k)可以直接递推的函数@这里的判断
             //i/prime[j]%prime[j]!=0@这样可以省下f[]的
              →空间』
             //但常数很可能会稍大一些
             if(f[i]==1)//质数的幂次@这里\sigma_1可以递
              →推
                sigma_one[i*prime[j]]=(sigma_one[i]+i*prime[j]
                //对于更一般的情况@可以借助g[]计
                 \hookrightarrow 算f(p^k)
             else sigma_one[i*prime[j]]=//否则直接利用
              →积性◎两半乘起来
                (long
                 → long)sigma_one[i*prime[j]/f[i]]*sigma_one[
             break;
```

4.4 Miller-Rabin

```
//Miller-Rabin Primality Test Miller-Rabin素性检测算法 //By ysf //通过题目@Bzoj4802 欧拉函数@作为Pollard's Rho的子算法@ //复杂度可以认为是常数
```

```
6
   //封装好的函数体
7
   //需要调用check
  bool Miller_Rabin(long long n){
9
      if(n==1)return false;
10
       if(n==2)return true;
11
       if(n%2==0)return false;
12
       for(int i:{2,3,5,7,11,13,17,19,23,29,31,37}){
13
           if(i>n)break;
14
           if(!check(n,i))return false;
15
16
       return true;
17
18
19
   //用一个数检测
20
   //需要调用Long Long快速幂和0(1)快速乘
21
  bool check(long long n,long long b){//b是base
22
       long long a=n-1;
23
       int k=0;
24
       while(a%2==0){
25
           a>>=1;
26
27
           k++;
28
       long long t=qpow(b,a,n);//这里的快速幂函数需要写0(1)快
29
       if(t==1||t==n-1)return true;
30
       while(k--){
31
           t=mul(t,t,n);//mul是0(1)快速乘函数
32
33
           if(t==n-1)return true;
34
35
       return false;
36
```

4.5 Pollard's Rho

```
//Miller-Rabin Primality Test Miller-Rabin素性检测算法
  //By ysf
  //通过题目@Bzoj4802 欧拉函数@作为Pollard's Rho的子算法@
  //复杂度可以认为是常数
  //封装好的函数体
7
  //需要调用check
8
  bool Miller_Rabin(long long n){
9
      if(n==1)return false;
10
      if(n==2)return true;
11
      if(n%2==0)return false;
12
      for(int i:{2,3,5,7,11,13,17,19,23,29,31,37}){
13
14
          if(i>n)break:
15
          if(!check(n,i))return false;
16
17
      return true;
18
19
  //用一个数检测
20
  //需要调用Long Long快速幂和O(1)快速乘
  bool check(long long n,long long b){//b是base
      long long a=n-1;
23
      int k=0;
24
      while(a%2==0){
25
          a>>=1;
26
          k++;
27
28
      long long t=qpow(b,a,n);//这里的快速幂函数需要写0(1)快
29
      if(t==1||t==n-1)return true;
30
```

5. 数据结构

5.1 线段树

5.1.1 主席树

6

9

10

11

12 13

14

15

16

17

18

21

22

23

24

26

27

28

29

30

33

34

35

36

37

39

40

41

42

43

45

46

47

48

参见GREAD07加强版

5.2 陈丹琦分治

```
// Division of Dangi Chen CDQ分治
// By AntiLeaf
// 通过题目@四维偏序
void CDQ1(int l,int r){
   if(1>=r)return;
    int mid=(l+r)>>1;
   CDQ1(l,mid);CDQ1(mid+1,r);
    int i=1,j=mid+1,k=1;
   while(i<=mid&&j<=r){</pre>
        if(a[i].x<a[j].x){</pre>
            a[i].ins=true;
            b[k++]=a[i++];
        else{
            a[j].ins=false;
            b[k++]=a[j++];
   while(i<=mid){</pre>
        a[i].ins=true;
        b[k++]=a[i++];
   while(j<=r){</pre>
        a[j].ins=false;
        b[k++]=a[j++];
   copy(b+l,b+r+1,a+l);
   CDQ2(1,r);
void CDQ2(int 1,int r){
   if(l>=r)return;
    int mid=(l+r)>>1;
   CDQ2(1,mid);CDQ2(mid+1,r);
    int i=1,j=mid+1,k=1;
   while(i<=mid&&j<=r){</pre>
        if(b[i].y<b[j].y){</pre>
            if(b[i].ins)add(b[i].z,1);
            t[k++]=b[i++];
        else{
            if(!b[j].ins)ans+=query(b[j].z-1);
            t[k++]=b[j++];
   while(i<=mid){</pre>
        if(b[i].ins)add(b[i].z,1);
        t[k++]=b[i++];
```

```
49
        while(j<=r){
50
                                                                           46
             if(!b[j].ins)ans+=query(b[j].z-1);
51
                                                                           47
52
             t[k++]=b[j++];
                                                                           48
53
                                                                           49
        for(i=1;i<=mid;i++)if(b[i].ins)add(b[i].z,-1);</pre>
54
                                                                           50
        copy(t+l,t+r+1,b+l);
55
                                                                           51
56
                                                                           52
                                                                           53
```

5.3 Splay

参见LCT

5.4 树分治

5.4.1 动态树分治

```
//Dynamic Divide and Couquer on Tree 动态树分治 O(n\log n)-
    \hookrightarrow O(\log n)
   //By ysf
   //通过题目@COGS2278 树黑白
3
   //为了减小常数@这里采用bfs写法@实测预处理比dfs快将近一半
   //以下以维护一个点到每个黑点的距离之和为例
   //全局数组定义
8
   vector<int>G[maxn],W[maxn];
  int size[maxn],son[maxn],q[maxn];
10
   int p[maxn],depth[maxn],id[maxn][20],d[maxn][20];//id是对应
    → 层所在子树的根
   int a[maxn],ca[maxn],b[maxn][20],cb[maxn][20];//维护距离和
    →用的
   bool vis[maxn]={false},col[maxn]={false};
13
14
   //建树 总计O(n\Log n)
15
   //需要调用找重心@预处理距离@同时递归调用自身
  void build(int x,int k,int s,int pr){//结点@深度@连通块大
17
    → 小/// 小/// 小// 点分树上的父亲
      x=getcenter(x,s);
18
19
      vis[x]=true;
20
      depth[x]=k;
      p[x]=pr;
21
      for(int i=0;i<(int)G[x].size();i++)</pre>
22
          if(!vis[G[x][i]]){
23
              d[G[x][i]][k]=W[x][i];
24
25
              p[G[x][i]]=x;
              getdis(G[x][i],k,G[x][i]);
26
27
      for(int i=0;i<(int)G[x].size();i++)</pre>
28
          if(!vis[G[x][i]])build(G[x][i],k+1,size[G[x]
29
            \hookrightarrow [i]],x);
30
31
   //找重心 O(n)
32
   int getcenter(int x,int s){
33
      int head=0,tail=0;
34
      q[tail++]=x;
35
      while(head!=tail){
36
          x=q[head++];
37
          size[x]=1;
38
          son[x]=0;
39
          for(int i=0;i<(int)G[x].size();i++)</pre>
40
              if(!vis[G[x][i]]&&G[x][i]!=p[x]){
41
42
                  p[G[x][i]]=x;
43
                  q[tail++]=G[x][i];
44
```

```
for(int i=tail-1;i;i--){
           x=q[i];
           size[p[x]]+=size[x];
           if(size[x]>size[son[p[x]]])son[p[x]]=x;
       x=q[0];
       while(son[x]\&\&(size[son[x]]<<1)>=s)x=son[x];
       return x;
54
55
   //预处理距离 O(n)
56
57
   //方便起见@这里直接用了笨一点的方法@O(n\Log n)全存下来
   void getdis(int x,int k,int rt){
       int head=0,tail=0;
60
       q[tail++]=x;
61
       while(head!=tail){
           x=q[head++];
62
           size[x]=1;
63
           id[x][k]=rt;
64
           for(int i=0;i<(int)G[x].size();i++)</pre>
65
               if(!vis[G[x][i]]&&G[x][i]!=p[x]){
66
                   p[G[x][i]]=x;
67
                    d[G[x][i]][k]=d[x][k]+W[x][i];
68
                    q[tail++]=G[x][i];
69
70
71
       for(int i=tail-1;i;i--)
72
           size[p[q[i]]]+=size[q[i]];
73
74
75
   //修改 O(\Log n)
76
   void modify(int x){
77
       if(col[x])ca[x]--;
78
       else ca[x]++;//记得先特判自己作为重心的那层
79
       for(int u=p[x],k=depth[x]-1;u;u=p[u],k--)
80
           if(col[x]){
81
               a[u]-=d[x][k];
82
               ca[u]--;
83
               b[id[x][k]][k]-=d[x][k];
84
               cb[id[x][k]][k]--;
85
           else{
               a[u]+=d[x][k];
               ca[u]++;
               b[id[x][k]][k]+=d[x][k];
                cb[id[x][k]][k]++;
91
92
93
       col[x]^=true;
94
95
   //询问 O(\Log n)
97
   int query(int x){
       int ans=a[x];//特判自己是重心的那层
99
       for(int u=p[x],k=depth[x]-1;u;u=p[u],k--)
100
101
           ans+=a[u]-b[id[x][k]][k]+d[x][k]*(ca[u]-cb[id[x]
             \hookrightarrow [k]][k]);
       return ans;
102
103
```

5.4.2 紫荆花之恋

```
#include<cstdio>
princlude<cstring</pre>
```

```
#include<algorithm>
   #include<vector>
                                                                                  else{
                                                                      69
   using namespace std;
                                                                                      id[x][k]=id[p[x]][k];
                                                                      70
   const int maxn=100010;
                                                                                      d[x][k]=d[p[x]][k]+z;
                                                                      71
   const double alpha=0.7:
                                                                      72
   struct node{
                                                                                  ans+=order(w[x]-d[x][k],root[u])-order(w[x]-d[x]
                                                                      73
       static int randint(){
9
                                                                                    \hookrightarrow [k],root1[id[x][k]][k]);
            static int
10
                                                                                  insert(d[x][k]-w[x],root[u]);
                                                                      74
              \leftrightarrow a=1213, b=97818217, p=998244353, x=751815431;
                                                                                  insert(d[x][k]-w[x],root1[id[x][k]][k]);
                                                                      75
            x=a*x+b:x%=p:
11
                                                                                  size[u]++:
                                                                      76
            return x<0?(x+=p):x;</pre>
12
                                                                                  siz[id[x][k]][k]++;
                                                                      77
13
                                                                                  if(siz[id[x][k]][k]>size[u]*alpha+5)rt=u;
                                                                      78
14
       int data, size, p;
                                                                      79
15
       node *ch[2]:
                                                                      80
                                                                             id[x][depth[x]]=0;
       node(int d):data(d),size(1),p(randint()){}
16
                                                                             d[x][depth[x]]=0;
       inline void refresh(){size=ch[0]->size+ch[1]->size+1;}
17
                                                                              if(rt){
   }*null=new node(0),*root[maxn],*root1[maxn][50];
                                                                                  dfs_destroy(rt,depth[rt]);
   void addnode(int,int);
19
                                                                                  rebuild(rt,depth[rt],size[rt],p[rt]);
   void rebuild(int,int,int,int);
20
   void dfs_getcenter(int,int,int&);
   void dfs_getdis(int,int,int,int);
                                                                         void rebuild(int x,int k,int s,int pr){
   void dfs_destroy(int,int);
                                                                             int u=0;
24
   void insert(int,node*&);
                                                                             dfs_getcenter(x,s,u);
   int order(int,node*);
25
                                                                             vis[x=u]=true;
   void destroy(node*&);
26
                                                                             p[x]=pr;
   void rot(node*&,int);
                                                                              depth[x]=k;
   vector<int>G[maxn],W[maxn];
                                                                              size[x]=s;
   int size[maxn]={0},siz[maxn][50]={0},son[maxn];
                                                                             d[x][k]=id[x][k]=0;
   bool vis[maxn]:
                                                                      94
   int depth[maxn],p[maxn],d[maxn][50],id[maxn][50];
                                                                             destroy(root[x]);
                                                                      95
                                                                              insert(-w[x],root[x]);
   int n,m,w[maxn],tmp;
32
                                                                      96
   long long ans=0;
                                                                              if(s<=1)return;</pre>
                                                                      97
   int main(){
                                                                              for(int i=0;i<(int)G[x].size();i++)if(!vis[G[x][i]]){</pre>
                                                                      98
       freopen("flowera.in","r",stdin);
35
                                                                                  p[G[x][i]]=0;
                                                                      99
       freopen("flowera.out","w",stdout);
36
                                                                                  d[G[x][i]][k]=W[x][i];
                                                                     100
37
       null->size=0:
                                                                                  siz[G[x][i]][k]=p[G[x][i]]=0;
                                                                     101
38
       null->ch[0]=null->ch[1]=null;
                                                                     102
                                                                                  destroy(root1[G[x][i]][k]);
       scanf("%*d%d",&n);
39
                                                                     103
                                                                                  dfs_getdis(G[x][i],x,G[x][i],k);
       fill(vis,vis+n+1,true);
40
                                                                     104
       fill(root,root+n+1,null);
41
                                                                              for(int i=0;i<(int)G[x].size();i++)if(!vis[G[x]</pre>
       for(int i=0;i<=n;i++)fill(root1[i],root1[i]+50,null);</pre>
                                                                                \hookrightarrow [i]])rebuild(G[x][i],k+1,size[G[x][i]],x);
42
       scanf("%*d%*d%d",&w[1]);
43
                                                                     106
       insert(-w[1],root[1]);
                                                                         void dfs_getcenter(int x,int s,int &u){
44
                                                                     107
       size[1]=1;
                                                                             size[x]=1:
45
                                                                     108
       printf("0\n");
                                                                              son[x]=0;
46
                                                                     109
       for(int i=2;i<=n;i++){</pre>
                                                                              for(int i=0;i<(int)G[x].size();i++)if(!vis[G[x]</pre>
47
                                                                     110
                                                                               \hookrightarrow [i]]&&G[x][i]!=p[x]){
            scanf("%d%d%d",&p[i],&tmp,&w[i]);
48
                                                                                  p[G[x][i]]=x;
            p[i]^=(ans%(int)1e9);
                                                                     111
49
                                                                                  dfs_getcenter(G[x][i],s,u);
            G[i].push_back(p[i]);
                                                                     112
50
                                                                                  size[x]+=size[G[x][i]];
            W[i].push_back(tmp);
                                                                     113
51
                                                                     114
                                                                                  if(size[G[x][i]]>size[son[x]])son[x]=G[x][i];
52
            G[p[i]].push_back(i);
                                                                     115
            W[p[i]].push_back(tmp);
53
                                                                              if(!u||max(s-size[x],size[son[x]])<max(s-size[u],size[son[u]])</pre>
                                                                     116
            addnode(i,tmp);
54
                                                                     117
            printf("%lld\n",ans);
55
                                                                         void dfs_getdis(int x,int u,int rt,int k){
                                                                     118
56
                                                                              insert(d[x][k]-w[x],root[u]);
                                                                     119
57
       return 0:
                                                                              insert(d[x][k]-w[x],root1[rt][k]);
                                                                     120
58
                                                                              id[x][k]=rt;
   void addnode(int x,int z){//wj-dj>=di-wi
                                                                     121
59
                                                                     122
                                                                              siz[rt][k]++;
       depth[x]=depth[p[x]]+1;
60
                                                                              size[x]=1;
       size[x]=1;
                                                                     123
61
                                                                              for(int i=0;i<(int)G[x].size();i++)if(!vis[G[x]</pre>
       insert(-w[x],root[x]);
62
                                                                                \hookrightarrow [i]]&&G[x][i]!=p[x]){
63
                                                                                  p[G[x][i]]=x;
       for(int u=p[x],k=depth[p[x]];u;u=p[u],k--){
64
                                                                                  d[G[x][i]][k]=d[x][k]+W[x][i];
                                                                     126
            if(u==p[x]){
65
                                                                                  dfs_getdis(G[x][i],u,rt,k);
                                                                     127
                id[x][k]=x;
66
                                                                                  size[x]+=size[G[x][i]];
                d[x][k]=z;
```

16

→ 息维护

}null[maxn];

```
129
130
    void dfs_destroy(int x,int k){
        vis[x]=false;
        for(int i=0;i<(int)G[x].size();i++)if(depth[G[x]</pre>
133
          \leftrightarrow [i]]>=k&&G[x][i]!=p[x]){
             p[G[x][i]]=x;
             dfs_destroy(G[x][i],k);
136
138
    void insert(int x,node *&rt){
139
        if(rt==null){
             rt=new node(x);
             rt->ch[0]=rt->ch[1]=null;
             return;
        int d=x>=rt->data;
144
        insert(x,rt->ch[d]);
145
        rt->refresh();
146
        if(rt->ch[d]->p<rt->p)rot(rt,d^1);
147
148
    int order(int x, node *rt){
150
        int ans=0,d;
        while(rt!=null){
152
             if((d=x>rt->data))ans+=rt->ch[0]->size+1;
153
             rt=rt->ch[d];
154
155
        return ans;
156
157
    void destroy(node *&x){
158
        if(x==null)return;
159
        destroy(x->ch[0]);
160
        destroy(x->ch[1]);
161
        delete x:
162
        x=null;
163
164
    void rot(node *&x,int d){
165
        node *y=x->ch[d^1];
166
        x->ch[d^1]=y->ch[d];
167
        y \rightarrow ch[d]=x;
168
        x->refresh();
169
        (x=y)->refresh();
170
171
```

5.5 LCT

5.5.1 不换根(弹飞绵羊)

```
//Link-Cut Trees without Changing Root LCT不换根版本
    \hookrightarrow O((n+m) \setminus log n)
  //Bv vsf
  //通过题目@弹飞绵羊
3
  //常数较大@请根据数据范围谨慎使用
5
  #define isroot(x) ((x)!=(x)->p->ch[0]&&(x)!=(x)->p-
   → >ch[1])//判断是不是Splay的根
  #define dir(x) ((x)==(x)->p->ch[1])//判断它是它父亲的左/右
    → 儿子
9
  struct node{//结点类定义
10
      int size;//Splay的子树大小
11
12
      node *ch[2],*p;
      node():size(1){}
13
```

```
//在主函数开头加上这句初始化
17
  null->size=0;
18
  //初始化结点
  void initalize(node *x){x->ch[0]=x->ch[1]=x->p=null;}//
22
   //Access 均摊O(\Log n)
23
  //LCT核心操作@把结点到根的路径打通@顺便把与重儿子的连边
24
    →变成轻边
   //需要调用splay
  node *access(node *x){
      node *y=null;
      while(x!=null){
          splay(x);
         x->ch[1]=y;
30
          (y=x)->refresh();
31
         x=x->p;
32
33
34
      return y;
35
36
   //Link 均摊O(\Log n)
37
  //把x的父亲设为y
38
  //要求×必须为所在树的根节点◎否则会导致后续各种莫名其妙的
39
    →问题
  //需要调用splay
40
  void link(node *x,node *y){
42
      splay(x);
43
      x->p=y;
  }
  //Cut 均摊O(\Log n)
46
  //把x与其父亲的连边断掉
  //x可以是所在树的根节点@这时此操作没有任何实质效果
   //需要调用access和splay
49
  void cut(node *x){
50
      access(x);
51
      splay(x);
52
      x \rightarrow ch[0] \rightarrow p=null;
53
      x->ch[0]=null;
54
      x->refresh();
55
56
57
  //Splay 均摊O(\Log n)
  //需要调用旋转
59
  void splay(node *x){
60
      while(!isroot(x)){
61
          if(isroot(x->p)){
62
63
             rot(x->p,dir(x)^1);
             break;
65
          if(dir(x)==dir(x->p))rot(x->p->p,dir(x->p)^1);
66
          else rot(x->p,dir(x)^1);
          rot(x->p,dir(x)^1);
68
69
70
  //旋转@LCT版本@ 0(1)
72
  //平衡树基本操作
  //要求对应儿子必须存在@否则会导致后续各种莫名其妙的问题
75
  void rot(node *x,int d){
76
      node *y=x->ch[d^1];
77
      y->p=x->p;
```

void refresh(){size=ch[0]->size+ch[1]->size+1;}//附加信

58

59

60

61

62

5.5.2 换根/维护生成树(GREALD07加强版)

```
67
   #include<cstdio>
                                                                           68
   #include<cstring>
 2
                                                                           69
   #include<algorithm>
 3
                                                                           70
   #include<map>
                                                                           71
   #define isroot(x) ((x)->p==null||((x)->p->ch[0]!=(x)&&(x)-
 5
                                                                           72
     \hookrightarrow p \rightarrow ch[1]!=(x))
                                                                           73
   #define dir(x) ((x)==(x)->p->ch[1])
                                                                           74
 7
   using namespace std;
                                                                           75
   const int maxn=200010;
 8
                                                                           76
 9
   struct node{
                                                                           77
        int key,mn,pos;
10
                                                                           78
        bool rev;
11
                                                                           79
        node *ch[2],*p;
12
                                                                           80
        node(int
13
                                                                           81
          \hookrightarrow key=(\sim0u)>>1):key(key),mn(key),pos(-1),rev(false){}
        inline void pushdown(){
14
                                                                           83
            if(!rev)return;
15
                                                                           84
             ch[0]->rev^=true;
16
                                                                           85
17
             ch[1]->rev^=true;
                                                                           86
             swap(ch[0],ch[1]);
18
                                                                           87
19
             if(pos!=-1)pos^=1;
             rev=false;
20
                                                                           89
21
                                                                           90
22
        inline void refresh(){
                                                                           91
23
            mn=key;
                                                                           92
24
             pos=-1;
                                                                           93
             if(ch[0]->mn<mn){</pre>
25
                                                                           94
                 mn=ch[0]->mn;
26
                                                                           95
                 pos=0;
27
                                                                           96
28
                                                                           97
             if(ch[1]->mn<mn){</pre>
                                                                           98
30
                 mn=ch[1]->mn;
                                                                           99
31
                 pos=1:
                                                                           100
             }
32
                                                                           101
33
                                                                           102
   }null[maxn<<1],*ptr=null;</pre>
34
                                                                           103
   node *newnode(int);
                                                                           104
   node *access(node*);
                                                                           105
   void makeroot(node*);
37
                                                                           106
   void link(node*,node*);
38
                                                                           107
   void cut(node*,node*);
39
                                                                           108
   node *getroot(node*);
40
                                                                           109
   node *getmin(node*,node*);
                                                                           110
   void splay(node*);
                                                                          111
43
   void rot(node*,int);
                                                                          112
   void build(int,int,int&,int);
44
                                                                           113
   void query(int,int,int,int);
45
                                                                           114
46
     \rightarrow sm[maxn<<5]=\{0\},lc[maxn<<5]=\{0\},rc[maxn<<5]=\{0\},root[max]^{1}=\{0\}
47
   map<node*,pair<node*,node*> >mp;
                                                                           117
   node *tmp;
48
                                                                           118
   int n,m,q,tp,x,y,k,l,r,t,ans=0;
49
                                                                           119
   int main(){
50
                                                                           120
51
        null->ch[0]=null->ch[1]=null->p=null;
                                                                           121
52
        scanf("%d%d%d%d",&n,&m,&q,&tp);
                                                                           122
53
        for(int i=1;i<=n;i++)newnode((~0u)>>1);
                                                                           123
        for(int i=1;i<=m;i++){</pre>
54
                                                                           124
             scanf("%d%d",&x,&y);
55
             if(x==y){
56
```

```
root[i]=root[i-1];
             continue;
        if(getroot(null+x)!=getroot(null+y)){
            tmp=newnode(i);
             k=0;
        }
        else{
             tmp=getmin(null+x,null+y);
             cut(tmp,mp[tmp].first);
             cut(tmp,mp[tmp].second);
            k=tmp->key;
             tmp->key=i;
             tmp->refresh();
        link(tmp,null+x);
        link(tmp,null+y);
        mp[tmp]=make pair(null+x,null+y);
        build(0,m-1,root[i],root[i-1]);
    while(q--){
        scanf("%d%d",&1,&r);
        if(tp){
            1^=ans;
            r^=ans;
        ans=n;
        t=--1;
        query(0,m-1,root[r],root[l]);
        printf("%d\n",ans);
    return 0;
node *newnode(int x){
    *++ptr=node(x);
    ptr->ch[0]=ptr->ch[1]=ptr->p=null;
    return ptr;
node *access(node *x){
    node *y=null;
    while(x!=null){
        splay(x);
        x \rightarrow ch[1]=y;
        (y=x)->refresh();
        x=x->p;
    return y;
void makeroot(node *x){
    access(x);
    splay(x);
    x->rev^=true;
void link(node *x,node *y){
    makeroot(x);
    x->p=y;
}
void cut(node *x,node *y){
[0],cmakeroot(x);
    access(y);
    splay(y);
    y->ch[0]->p=null;
    y->ch[0]=null;
    y->refresh();
}
node *getroot(node *x){
    x=access(x);
    while(x->pushdown(),x->ch[0]!=null)x=x->ch[0];
```

 $\Leftrightarrow =(x)-p-ch[1])$

```
splay(x);
125
        return x;
126
128
    node *getmin(node *x,node *y){
129
        makeroot(x):
        x=access(v):
130
        while(x->pushdown(),x->pos!=-1)x=x->ch[x->pos];
131
132
        splay(x);
        return x;
133
134
    void splay(node *x){
135
        x->pushdown():
136
        while(!isroot(x)){
137
             if(!isroot(x->p))x->p->p->pushdown();
138
             x->p->pushdown();
             x->pushdown();
140
             if(isroot(x->p)){
141
                 rot(x->p,dir(x)^1);
142
143
             if(dir(x)==dir(x->p))rot(x->p->p,dir(x->p)^1);
             else rot(x->p,dir(x)^1);
146
             rot(x->p,dir(x)^1):
147
148
149
    void rot(node *x,int d){
150
        node *y=x->ch[d^1];
        if((x->ch[d^1]=y->ch[d])!=null)y->ch[d]->p=x;
152
153
        y->p=x->p;
        if(!isroot(x))x->p->ch[dir(x)]=y;
154
        (y->ch[d]=x)->p=y;
155
        x->refresh();
156
        y->refresh();
157
158
    void build(int 1,int r,int &rt,int pr){
159
        sm[rt=++cnt]=sm[pr]+1;
160
        if(l==r)return;
161
        lc[rt]=lc[pr];
162
        rc[rt]=rc[pr];
        int mid=(l+r)>>1;
164
        if(k<=mid)build(l,mid,lc[rt],lc[pr]);</pre>
165
        else build(mid+1,r,rc[rt],rc[pr]);
166
167
    void query(int l,int r,int rt,int pr){
168
        if(!rt&&!pr)return;
        if(t>=r){}
170
            ans-=sm[rt]-sm[pr];
171
             return;
172
173
        int mid=(l+r)>>1;
        query(1,mid,lc[rt],lc[pr]);
176
        if(t>mid)query(mid+1,r,rc[rt],rc[pr]);
177
```

5.5.3 维护子树信息

```
#define dir(x) ((x)==(x)->p->ch[1])
12
       //节点类定义
13
       struct node{//以维护子树中黑点到根距离和为例
14
                int w.chain cnt.tree cnt:
15
                long long sum, suml, sumr, tree_sum; //由于换根需要子树反
16
                    → 转◎需要维护两个方向的信息
               bool rev.col:
17
               node *ch[2],*p;
18
               node():w(0),chain_cnt(0),tree_cnt(0),sum(0),sum(0),sumr(0),tre
19
                    \hookrightarrow \{\}
                inline void pushdown(){
20
                         if(!rev)return:
21
                         ch[0]->rev^=true;
22
                         ch[1]->rev^=true;
23
24
                         swap(ch[0],ch[1]);
25
                         swap(suml,sumr);
26
                         rev=false;
27
                inline void refresh(){//不多解释了......这毒瘤题恶心的要
                    → 死®我骂我自己.png
29
                         sum=ch[0]->sum+ch[1]->sum+w;
                         suml=(ch[0]->rev?ch[0]->sumr:ch[0]->suml)+(ch[1]->rev?ch[1]
                                   +(tree_cnt+ch[1]->chain_cnt)*(ch[0]->sum+w)+tree_sum;
32
                         sumr=(ch[0]->rev?ch[0]->suml:ch[0]->sumr)+(ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev?ch[1]->rev[1]->rev[1]->rev[1]->rev[1]->rev[1]->rev[1]->rev[1]->rev[1]->rev[1
33
                                  +(tree_cnt+ch[0]->chain_cnt)*(ch[1]->sum+w)+tree_sum;
                         chain_cnt=ch[0]->chain_cnt+ch[1]->chain_cnt+tree_cnt
34
35
36
       }null[maxn<<1];//如果没有边权变点权就不用乘2了
       //封装构造函数
38
       node *newnode(int w){
39
               node *x=nodes.front();
40
41
               nodes.pop();
42
               initalize(x);
                x -> w = w;
                x->refresh();
45
                return x;
46
47
       //封装初始化函数
48
       //记得在进行操作之前对所有结点调用一遍
49
       inline void initalize(node *x){
                *x=node();
51
               x - ch[0] = x - ch[1] = x - p = null;
52
       }
53
       //Access函数
55
       //注意一下在Access的同时更新子树信息的方法
       node *access(node *x){
57
               node *y=null;
58
               while(x!=null){
59
60
                         splay(x);
                         x->tree_cnt+=x->ch[1]->chain_cnt-y->chain_cnt;
61
                         x->tree\_sum+=(x->ch[1]->rev?x->ch[1]->sumr:x->ch[1]->suml)
                         x->ch[1]=y;
                         (y=x)->refresh();
                         x=x->p;
67
                return y;
69
       //找到一个点所在连通块的根
70
       //对比原版没有变化
```

#define isroot(x) ((x)->p==null||((x)!=(x)->p->ch[0]&&(x)!

```
node *getroot(node *x){
       x=access(x);
73
       while(x->pushdown(),x->ch[0]!=null)x=x->ch[0];
74
75
       splav(x):
       return x:
76
77
78
    //换根᠍同样没有变化
   void makeroot(node *x){
       access(x);
82
       splay(x);
83
       x->rev^=true;
       x->pushdown();
84
85
86
   //连接两个点
87
   //注意这里必须把两者都变成根◎因为只能修改根结点
88
   void link(node *x,node *y){
89
       makeroot(x);
90
       makeroot(y);
91
       x - p = y;
92
       y->tree_cnt+=x->chain_cnt;
93
       y->tree sum+=x->suml;
94
       v->refresh();
95
96
97
   //删除一条边
   //对比原版没有变化
   void cut(node *x,node *y){
100
       makeroot(x);
       access(y);
103
       splay(y);
       y->ch[0]->p=null;
104
       y->ch[0]=null;
105
       y->refresh();
106
107
108
   //修改/询问一个点@这里以询问为例
109
   //如果是修改就在换根之后搞一些操作
110
   long long query(node *x){
111
       makeroot(x);
112
       return x->suml;
113
114
115
   //Splay函数
   //对比原版没有变化
117
   void splay(node *x){
118
119
       x->pushdown();
       while(!isroot(x)){
120
           if(!isroot(x->p))x->p->p->pushdown();
121
           x->p->pushdown();
           x->pushdown();
           if(isroot(x->p)){
124
               rot(x->p,dir(x)^1);
125
               break:
126
127
           if(dir(x)==dir(x->p))rot(x->p->p,dir(x->p)^1);
128
           else rot(x->p,dir(x)^1);
129
           rot(x->p,dir(x)^1);
130
131
132
133
    //旋转函数
134
   //对比原版没有变化
   void rot(node *x,int d){
136
       node *y=x->ch[d^1];
137
138
       if((x->ch[d^1]=y->ch[d])!=null)y->ch[d]->p=x;
```

```
5.5.4 模板题:动态QTREE4(询问树上相距最远点)
   #include<bits/stdc++.h>
   #include<ext/pb_ds/assoc_container.hpp>
   #include<ext/pb ds/tree policy.hpp>
   #include<ext/pb_ds/priority_queue.hpp>
   \#define \ isroot(x) \ ((x)->p==null||((x)!=(x)->p->ch[0]\&\&(x)!
    \hookrightarrow =(x)-p-ch[1])
   #define dir(x) ((x)==(x)->p->ch[1])
   using namespace std;
   using namespace __gnu_pbds;
10
   const int maxn=100010;
^{12}
   const long long INF=1000000000000000000011;
13
14
   struct binary_heap{
15
       __gnu_pbds::priority_queue<long long,less<long
16
         → long>,binary_heap_tag>q1,q2;
       binary_heap(){}
17
       void push(long long x){if(x>(-INF)>>2)q1.push(x);}
18
       void erase(long long x){if(x>(-INF)>>2)q2.push(x);}
19
       long long top(){
20
           if(empty())return -INF;
           while(!q2.empty()&&q1.top()==q2.top()){
23
               q1.pop();
24
               q2.pop();
25
           return q1.top();
26
       long long top2(){
           if(size()<2)return -INF;</pre>
29
30
           long long a=top();
           erase(a):
31
           long long b=top();
32
33
           push(a);
           return a+b;
34
35
       int size(){return q1.size()-q2.size();}
36
       bool empty(){return q1.size()==q2.size();}
37
   }heap;//全局堆维护每条链的最大子段和
38
   struct node{
39
       long long sum,maxsum,prefix,suffix;
41
       int key;
       binary_heap heap;//每个点的堆存的是它的子树中到它的最
42
         →远距离壓如果它是黑点的话还会包括自己
       node *ch[2],*p;
43
44
       bool rev;
       node(int
         \hookrightarrow k=0):sum(k),maxsum(-INF),prefix(-INF),suffix(-INF),key(k),
       inline void pushdown(){
46
           if(!rev)return;
47
           ch[0]->rev^=true;
48
           ch[1]->rev^=true;
50
           swap(ch[0],ch[1]);
           swap(prefix, suffix);
51
           rev=false:
52
53
```

```
inline void refresh(){
                                                                                      if(x>y)swap(x,y);
54
            pushdown();
                                                                                      modify(x,y,z);
55
                                                                     120
            ch[0]->pushdown();
                                                                     121
56
            ch[1]->pushdown();
57
                                                                     122
                                                                                 else modify_color(x);
            sum=ch[0]->sum+ch[1]->sum+key;
                                                                                 printf("%lld\n",(heap.top()>0?heap.top():-1));
58
                                                                     123
59
                                                                     124
              → prefix=max(ch[0]->prefix,ch[0]->sum+key+ch[1]->phefix); return 0;
60
              → suffix=max(ch[1]->suffix,ch[1]->sum+key+ch[0]->sμξfix)id addedge(int x,int y,int z){
                                                                             node *tmp;
                                                                     128
61
                                                                         uffiif(@yeeh@d@s>pmpty%);tmp=newnode(z);
              \rightarrow maxsum=max(max(ch[0]->maxsum,ch[1]->maxsum),ch[0]129
            if(!heap.emptv()){
                                                                             else{
62
                                                                     130
                prefix=max(prefix,ch[0]->sum+key+heap.top());
                                                                                  tmp=freenodes.front();
63
                                                                     131
                suffix=max(suffix,ch[1]->sum+key+heap.top());
                                                                                  freenodes.pop();
64
                                                                     132
                                                                     133
                                                                                 *tmp=node(z);
65
                  → maxsum=max(maxsum, max(ch[0]->suffix, ch[1]->pref:
                                                                         x)+k\punktap.top());
                if(heap.size()>1){
66
                                                                     135
                     maxsum=max(maxsum,heap.top2()+key);
                                                                               67
                                                                     136
                                                                             link(tmp,null+x);
68
                                                                             link(tmp,null+y);
69
            }
                                                                     138
                                                                             mp[make_pair(x,y)]=tmp;
70
    }null[maxn<<1],*ptr=null;</pre>
71
                                                                     139
                                                                         void deledge(int x,int y){
    void addedge(int,int,int);
72
                                                                     140
    void deledge(int,int);
                                                                             node *tmp=mp[make_pair(x,y)];
                                                                     141
73
    void modify(int,int,int);
                                                                             cut(tmp,null+x);
                                                                     142
74
    void modify_color(int);
                                                                     143
                                                                             cut(tmp,null+y);
    node *newnode(int);
                                                                     144
                                                                             freenodes.push(tmp);
   node *access(node*);
77
                                                                     145
                                                                             heap.erase(tmp->maxsum);
                                                                             mp.erase(make_pair(x,y));
   void makeroot(node*);
78
                                                                     146
    void link(node*,node*);
                                                                         }
                                                                     147
79
                                                                         void modify(int x,int y,int z){
    void cut(node*,node*);
80
                                                                     148
    void splay(node*);
                                                                             node *tmp=mp[make_pair(x,y)];
    void rot(node*,int);
                                                                             makeroot(tmp);
                                                                     150
83
    queue<node*>freenodes;
                                                                     151
                                                                             tmp->pushdown();
                                                                             heap.erase(tmp->maxsum);
    tree<pair<int,int>,node*>mp;
84
                                                                     152
    bool col[maxn]={false};
                                                                             tmp->key=z;
85
                                                                     153
    char c;
                                                                             tmp->refresh();
86
                                                                     154
    int n,m,k,x,y,z;
                                                                             heap.push(tmp->maxsum);
                                                                     155
    int main(){
                                                                     156
        \verb|null->ch[0]=| null->ch[1]=| null->p=| null;|
                                                                         void modify_color(int x){
89
                                                                     157
        scanf("%d%d%d",&n,&m,&k);
                                                                             makeroot(null+x):
90
                                                                     158
        for(int i=1;i<=n;i++){</pre>
                                                                             col[x]^=true;
                                                                     159
91
            newnode(0);
                                                                             if(col[x])null[x].heap.push(0);
92
                                                                     160
                                                                     161
                                                                             else null[x].heap.erase(0);
93
        heap.push(0);
                                                                             heap.erase(null[x].maxsum);
94
                                                                     162
95
        while(k--){
                                                                     163
                                                                             null[x].refresh();
            scanf("%d",&x);
                                                                             heap.push(null[x].maxsum);
96
                                                                     164
            col[x]=true;
97
                                                                     165
            null[x].heap.push(0);
                                                                         node *newnode(int k){
98
                                                                     166
99
                                                                     167
                                                                             *(++ptr)=node(k);
100
        for(int i=1;i<n;i++){</pre>
                                                                     168
                                                                             ptr->ch[0]=ptr->ch[1]=ptr->p=null;
            scanf("%d%d%d",&x,&y,&z);
101
                                                                     169
                                                                             return ptr;
            if(x>y)swap(x,y);
                                                                         }
102
                                                                     170
            addedge(x,y,z);
                                                                         node *access(node *x){
103
                                                                     171
                                                                             splay(x);
104
                                                                     172
        while(m--){
                                                                             heap.erase(x->maxsum);
                                                                     173
105
            scanf(" %c%d",&c,&x);
                                                                             x->refresh();
107
            if(c=='A'){
                                                                     175
                                                                             if(x->ch[1]!=null){
                scanf("%d",&y);
108
                                                                     176
                                                                                 x->ch[1]->pushdown();
                                                                                 x->heap.push(x->ch[1]->prefix);x->refresh();
109
                if(x>y)swap(x,y);
                                                                     177
                deledge(x,y);
                                                                                 heap.push(x->ch[1]->maxsum);
110
                                                                     178
111
            else if(c=='B'){
                                                                             x->ch[1]=null;
                                                                     180
                scanf("%d%d",&y,&z);
                                                                     181
                                                                             x->refresh();
                if(x>y)swap(x,y);
                                                                             node *y=x;
114
                                                                     182
                addedge(x,y,z);
                                                                             x=x->p:
115
                                                                     183
                                                                             while(x!=null){
                                                                     184
116
            else if(c=='C'){
                                                                                 splay(x);
                                                                     185
117
                scanf("%d%d",&y,&z);
```

```
heap.erase(x->maxsum);
186
            if(x->ch[1]!=null){
187
                x->ch[1]->pushdown();
189
                x->heap.push(x->ch[1]->prefix);
                heap.push(x->ch[1]->maxsum);
190
191
            x->heap.erase(y->prefix);
192
193
            x->ch[1]=y;
            (y=x)->refresh();
            x=x->p;
195
196
        heap.push(y->maxsum);
197
        return y;
198
199
    void makeroot(node *x){
        access(x);
201
        splav(x):
202
        x->rev^=true;
203
204
    void link(node *x,node *y){//新添一条虚边◎维护y对应的堆
        makeroot(x):
        makeroot(y);
207
        x->pushdown():
208
        x->p=y;
209
        heap.erase(y->maxsum);
210
        y->heap.push(x->prefix);
        y->refresh();
        heap.push(y->maxsum);
213
214
    void cut(node *x,node *y){//断开一条实边®一条链变成两条
215
     →链疊需要维护全局堆
        makeroot(x);
216
        access(y);
217
218
        splay(y);
219
        heap.erase(y->maxsum);
        heap.push(y->ch[0]->maxsum);
220
        y->ch[0]->p=null;
221
        y->ch[0]=null;
        y->refresh();
        heap.push(y->maxsum);
224
225
    void splay(node *x){
226
        x->pushdown();
227
        while(!isroot(x)){
228
            if(!isroot(x->p))x->p->p->pushdown();
            x->p->pushdown();
230
            x->pushdown();
231
            if(isroot(x->p)){
232
                rot(x->p,dir(x)^1);
233
234
            if(dir(x)==dir(x->p))rot(x->p->p,dir(x->p)^1);
236
237
            else rot(x->p,dir(x)^1);
            rot(x->p,dir(x)^1);
238
239
240
    void rot(node *x,int d){
        node y=x->ch[d^1];
242
243
        if((x->ch[d^1]=y->ch[d])!=null)y->ch[d]->p=x;
244
        v - > p = x - > p:
        if(!isroot(x))x->p->ch[dir(x)]=y;
245
        (y->ch[d]=x)->p=y;
246
        x->refresh();
        y->refresh();
249
```

5.6 长链剖分,梯子剖分

```
//Long-chain Subdivision 长链剖分 O(n)
  //By ysf
  //通过题目@vijos Lxhgww的奇思妙想@板子题@、Codeforces
  //顾名思义@长链剖分是取最深的儿子作为重儿子
  //长链剖分的两个应用图
  //0(1)在线求一个点的第k祖先
  //o(n)维护以深度为下标的子树信息
   //-----分割
10
    11
  //在线求一个点的第k祖先 O(n\Log n)-O(1)
12
  //其中0(n\Log n)预处理是因为需要用到倍增
13
  //理论基础@任意一个点x的k级祖先y所在长链长度一定>=k
15
  //全局数组定义
  vector<int>G[maxn],v[maxn];
  int d[maxn], mxd[maxn], son[maxn], top[maxn], len[maxn];
  int f[maxn][19],log_tbl[maxn];
20
   //在主函数中两遍dfs之后加上如下预处理
21
  log tbl[0]=-1;
  for(int i=1;i<=n;i++)log_tbl[i]=log_tbl[i>>1]+1;
  for(int j=1;(1<<j)<n;j++)</pre>
^{24}
      for(int i=1;i<=n;i++)</pre>
25
26
         f[i][j]=f[f[i][j-1]][j-1];
27
  //第一遍dfs@用干计算深度和找出重儿子
28
  //递归调用自身
  void dfs1(int x){
30
      mxd[x]=d[x];
31
      for(int i=0;i<(int)G[x].size();i++)</pre>
32
          if(G[x][i]!=f[x][0]){
33
             f[G[x][i]][0]=x;
34
             d[G[x][i]]=d[x]+1;
35
             dfs1(G[x][i]);
36
             mxd[x]=max(mxd[x],mxd[G[x][i]]);
37
             if(mxd[G[x][i]]>mxd[son[x]])son[x]=G[x][i];
38
39
40
41
  //第二遍dfs@用于进行剖分和预处理梯子剖分@每条链向上延伸
42
   → 一倍@数组
  //递归调用自身
  void dfs2(int x){
      top[x]=(x==son[f[x][0]]?top[f[x][0]]:x);
      for(int i=0;i<(int)G[x].size();i++)</pre>
         if(G[x][i]!=f[x][0])dfs2(G[x][i]);
47
      if(top[x]==x){
          int u=x;
50
          while(top[son[u]]==x)u=son[u];
          len[x]=d[u]-d[x];
52
          for(int i=0;i<len[x];i++,u=f[u]</pre>
           \hookrightarrow [0])v[x].push_back(u);
53
          for(int i=0;i<len[x]&&u;i++,u=f[u]</pre>
54
           \leftrightarrow [0])v[x].push_back(u);
      }
55
  }
57
  //在线询问x的k级祖先 0(1)
  //不存在时返回@
60 int query(int x,int k){
```

```
if(!k)return x;
61
       if(k>d[x])return 0;
62
       x=f[x][log_tbl[k]];
63
       k^=1<<log_tbl[k];
64
       return v[top[x]][d[top[x]]+len[top[x]]-d[x]+k];
65
66
67
          -----分割
     69
   //0(n)维护以深度为下标的子树信息
70
71
   vector<int>G[maxn],v[maxn];
72
   int n,p[maxn],h[maxn],son[maxn],ans[maxn];
74
   //原题题意◎求每个点的子树中与它距离是几的点最多◎相同的取
    → 最大深度
   //由于vector只能在后面加入元素@为了写代码方便@这里反过来
76
   void dfs(int x){
77
       h[x]=1;
78
       for(int i=0;i<(int)G[x].size();i++)</pre>
79
           if(G[x][i]!=p[x]){
80
81
              p[G[x][i]]=x;
82
              dfs(G[x][i]);
83
              if(h[G[x][i]]>h[son[x]])son[x]=G[x][i];
84
           }
85
       if(!son[x]){
86
          v[x].push_back(1);
87
           ans[x]=0;
88
          return;
89
90
       //printf("x=%d h=%d son=%d\n",x,h[x],son[x]);
       h[x]=h[son[x]]+1;
       swap(v[x],v[son[x]]);
       if(v[x][ans[son[x]]]==1)ans[x]=h[x]-1;
93
       else ans[x]=ans[son[x]];
95
       v[x].push_back(1);
       int mx=v[x][ans[x]];
96
       for(int i=0;i<(int)G[x].size();i++)</pre>
97
           if(G[x][i]!=p[x]&&G[x][i]!=son[x]){
98
               for(int j=1;j<=h[G[x][i]];j++){</pre>
99
                  v[x][h[x]-j-1]+=v[G[x][i]][h[G[x][i]]-j];
100
                  int t=v[x][h[x]-j-1];
101
                  if(t>mx | | (t==mx&&h[x]-j-1>ans[x])){
102
103
                      mx=t;
                      ans[x]=h[x]-j-1;
              v[G[x][i]].clear();
```

5.7 左偏树

参见k短路

```
5.8 STL
```

5.9 pb ds

5.10 rope

5.11 常见根号思路

6. 动态规划

6.1 决策单调性 $O(n \log n)$

```
#include <bits/stdc++.h>
   using namespace std;
   const int maxn = 300005;
 6
   int a[maxn], q[maxn], p[maxn], g[maxn]; // 存左端点®右端点
     → 就是下一个左端点 - 1
   long long f[maxn], s[maxn];
10
   int n, m;
11
12
   long long calc(int 1, int r) {
13
       if (r < 1)
           return 0;
       int mid = (1 + r) / 2;
17
       if ((r - 1 + 1) \% 2 == 0)
18
            return (s[r] - s[mid]) - (s[mid] - s[l - 1]);
19
20
21
            return (s[r] - s[mid]) - (s[mid - 1] - s[1 - 1]);
22
23
   int solve(long long tmp) {
24
       memset(f, 63, sizeof(f));
25
       f[0] = 0;
       int head = 1, tail = 0;
29
       // printf("----- solve(%lld) -----\n", tmp);
30
31
       for (int i = 1; i <= n; i++) {
32
            f[i] = calc(1, i);
33
34
            g[i] = 1;
35
            while (head < tail && p[head + 1] <= i)</pre>
36
                head++;
37
            if (head <= tail) {</pre>
38
                if (f[q[head]] + calc(q[head] + 1, i) < f[i]) {</pre>
40
                    f[i] = f[q[head]] + calc(q[head] + 1, i);
41
                    g[i] = g[q[head]] + 1;
42
                while (head < tail && p[head + 1] <= i + 1)</pre>
43
44
                    head++;
                if (head <= tail)</pre>
                    p[head] = i + 1;
46
47
            f[i] += tmp;
48
            // printf("f[%d] = %lld g[%d] = %d\n", i, f[i], i,
49
              \hookrightarrow g[i]);
51
            if (head \leftarrow tail && f[q[tail]] + calc(q[tail] + 1,
52
     \hookrightarrow n) \leftarrow f[i] + calc(i + 1, n))
                continue:
53
```

```
*/
 54
 55
              int r = n;
 57
              while(head <= tail) {</pre>
 58
                  if (f[q[tail]] + calc(q[tail] + 1, p[tail]) >
 59
                    \hookrightarrow f[i] + calc(i + 1, p[tail])) {
                      r = p[tail] - 1;
                       tail--;
 61
 62
                  else if (f[q[tail]] + calc(q[tail] + 1, r) <=</pre>
 63
                    \hookrightarrow f[i] + calc(i + 1, r)) {
                       if (r < n) {
 64
                           q[++tail] = i;
 65
                           p[tail] = r + 1;
 66
 67
                       break:
 68
                  }
 69
 70
                  else {
                       int L = p[tail], R = r;
 72
                      while (L < R) {
                           int M = (L + R) / 2;
 73
 74
                           if (f[q[tail]] + calc(q[tail] + 1, M)
 75
                              \hookrightarrow \langle = f[i] + calc(i + 1, M))
 76
                                L = M + 1;
 77
                           else
                                R = M;
 78
 79
 80
                       q[++tail] = i;
 81
                       p[tail] = L;
 84
                       break;
                  }
 85
              }
 86
              if (head > tail) {
 87
                  q[++tail] = i;
 88
                  p[tail] = i + 1;
 89
 90
              }
 91
 92
         return g[n];
 93
 94
 96
    int main() {
         scanf("%d%d", &n, &m);
 97
 98
         for (int i = 1; i <= n; i++) {</pre>
 99
100
             scanf("%d", &a[i]);
              s[i] = s[i - 1] + a[i];
101
102
103
         long long L = 0, R = 1e16;
104
105
         while (L < R) {
106
             long long M = (L + R) / 2;
108
             if (solve(M) > m)
109
                  L = M + 1;
              else
110
                  R = M;
111
112
         solve(L);
114
115
         printf("%1ld\n", f[n] - m * L);
116
117
         return 0;
```

119 }

7. 其他算法

- 7.1 O(1)快速乘
- 7.2 $O(n^2)$ 高精度
- 7.3 xorshift

8. 参考资料

8.1 常见数列

8.1.1 伯努利数

$$B(x) = \sum_{i \ge 0} \frac{B_i x^i}{i!} = \frac{x}{e^x - 1}$$

$$B_n = [n = 0] - \sum_{i=0}^{n-1} \binom{n}{i} \frac{B_i}{n - k + 1}$$

$$\sum_{i=0}^{n} \binom{n+1}{i} B_i = 0$$

$$S_n(m) = \sum_{i=0}^{m-1} i^n = \sum_{i=0}^{n} \binom{n}{i} B_{n-i} \frac{m^{i+1}}{i+1}$$

9. 注意事项

9.1 常见下毒手法

- 高精度高低位搞反了吗
- 线性筛抄对了吗
- sort比较函数是不是比了个寂寞
- 该取模的地方都取模了吗
- 边界情况(+1-1之类的)有没有想清楚
- 特判是否有必要,确定写对了吗

9.2 场外相关

- 安顿好之后查一下附近的咖啡店,打印店,便利店之类的位置,以备不时之需
- 热身赛记得检查一下编译注意事项中的代码能否过编译,还有熟悉比赛场地,清楚洗手间在哪儿,测试打印机(如果可以)
- 比赛前至少要翻一遍板子,尤其要看原理与例题
- 比赛前一两天不要摸鱼,要早睡,有条件最好洗个澡;比赛当天 不要起太晚,维持好的状态
- 赛前记得买咖啡,最好直接安排三人份,记得要咖啡因比较足的;如果主办方允许,就带些巧克力之类的高热量零食
- 入场之后记得检查机器,尤其要逐个检查键盘按键有没有坏的;如果可以的话,调一下gedit设置
- 开赛之前调整好心态,比赛而已,不必心急.

9.3 做题策略与心态调节

- 拿到题后立刻按照商量好的顺序读题,前半小时最好跳过题 意太复杂的题(除非被过穿了)
- 签到题写完不要激动,稍微检查一下最可能的下毒点再交,避免无谓的罚时
 - 一两行的那种傻逼题就算了
- 读完题及时输出题意,一方面避免重复读题,一方面也可以让 队友有一个初步印象,方便之后决定开题顺序
- 一个题如果卡了很久又有其他题可以写,那不妨先放掉写更容易的题,不要在一棵树上吊死
 - 一不要被─两道题搞得心态爆炸,一方面急也没有意义,一方面你很可能真的离AC就差一步
- 榜是不会骗人的,一个题如果被不少人过了就说明这个题很可能并没有那么难;如果不是有十足的把握就不要轻易开没什么人交的题;另外不要忘记最后一小时会封榜
- 想不出题/找不出毒自然容易犯困,一定不要放任自己昏昏欲睡,最好去洗手间冷静一下,没有条件就站起来踱步

- 思考的时候不要挂机,一定要在草稿纸上画一画,最好说出声 来最不容易断掉思路
- 出完算法一定要check一下样例和一些trivial的情况,不然容易写了半天发现写了个假算法
- 上机前有时间就提前给需要思考怎么写的地方打草稿,不要 浪费机时
- 查毒时如果最难的地方反复check也没有问题,就从头到脚仔仔细细查一遍,不要放过任何细节,即使是并查集和sort这种东西也不能想当然
- 后半场如果时间不充裕就不要冒险开难题,除非真的无事可做
 - 如果是没写过的东西也不要轻举妄动,在有其他好写的 题的时候就等一会再说
- 大多数时候都要听队长安排,虽然不一定最正确但可以保持组织性
- 最好注意一下影响,就算忍不住嘴臭也不要太大声
- 任何时候都不要着急,着急不能解决问题,不要当詰国王
- 输了游戏,还有人生;赢了游戏,还有人生.