Kericho

greyhypotheses

The set of external functions used thus far - relative to, therefore based in, GitHub repository premodelling/time - are

Problem 4

Considering the time series model

$$Y(t) = \beta_0 + \beta_1 t + \beta_2 I(pmax(t - 50, 0)) + \beta_3 I(t > 225)$$

$$+ \beta_4 minT(t - k) + \beta_5 maxT(t - k) + \beta_6 Rain(t - k)$$

$$+ \mathcal{W}(t) + Z(t)$$
(1)

for the Kericho malaria cases data, wherein

variable	description
\overline{t}	time (months)
minT	mininum temperature
maxT	maximum temperature
Rain	rainfall (millimetres)
k	lag; $k = 2$ months
$\mathcal{W}(t)$	A Matern process whereby $\kappa=2.5$
Z(t)	Gaussian noise

Data Set-up

The original data set, with appended time dependent variables, is

```
$ Rain : num 3.7 3.2 5.6 8.3 8.1 5.4 5.5 6.1 5.7 5.6 ...
$ minT : num 11.8 11.3 10.9 12 10.9 11.4 10.2 10.1 10.2 11.1 ...
$ maxT : num 24 23.5 25.1 23.6 22.9 22.1 22.1 23 23.9 25.2 ...
$ VCAP : num 78.5 56.6 131.9 467.6 277 ...
$ CasesLN: num 3.22 3.22 3 3.4 2.89 ...
$ datestr: chr "1979-01" "1979-02" "1979-03" "1979-04" ...
$ date : Date, format: "1979-01-01" "1979-02-01" ...
$ time : num 0 1 2 3 4 5 6 7 8 9 ...
```

The function TimeDependentLag() creates lagged fields. Hence, the lagged minimum temperature, maximum temperature, and rain fields:

```
'data.frame': 310 obs. of 14 variables:
$ Year
         $ Month
           : Ord.factor w/ 12 levels "Jan"<"Feb"<"Mar"<..: 1 2 3 4 5 6 7 8 9 10 ...
$ Cases
          : int 25 25 20 30 18 18 15 15 10 20 ...
          : num 3.7 3.2 5.6 8.3 8.1 5.4 5.5 6.1 5.7 5.6 ...
$ Rain
$ minT
          : num 11.8 11.3 10.9 12 10.9 11.4 10.2 10.1 10.2 11.1 ...
          : num 24 23.5 25.1 23.6 22.9 22.1 22.1 23 23.9 25.2 ...
$ maxT
$ VCAP
           : num 78.5 56.6 131.9 467.6 277 ...
$ CasesLN : num 3.22 3.22 3 3.4 2.89 ...
$ datestr : chr "1979-01" "1979-02" "1979-03" "1979-04" ...
          : Date, format: "1979-01-01" "1979-02-01" ...
$ date
          : num 0 1 2 3 4 5 6 7 8 9 ...
$ time
$ mint_lag_2: num NaN NaN 11.8 11.3 10.9 12 10.9 11.4 10.2 10.1 ...
$ maxt_lag_2: num NaN NaN 24 23.5 25.1 23.6 22.9 22.1 22.1 23 ...
$ rain_lag_2: num NaN NaN 3.7 3.2 5.6 8.3 8.1 5.4 5.5 6.1 ...
```

Exercise 1: Model Fitting

Prior to fitting Eq. 1, records that have NaN values ...

```
condition <- !is.na(instances$rain_lag_2) | !is.na(instances$mint_lag_2) |
  !is.na(instances$maxt_lag_2)
excerpt <- instances[condition, ]</pre>
```

Hence, via the fit.matern() function

The summary of the model fitted for Eq. 1 is ...

```
Geostatistical linear model
Call:
linear.model.MLE(formula = log(Cases) ~ time + I(pmax(time -
   50, 0)) + I(time > 225) + mint_lag_2 + maxt_lag_2 + rain_lag_2,
   coords = as.formula(paste("~", time, "+ t_aux")), data = data,
   kappa = 2.5, start.cov.pars = ..1, method = "nlminb")
                                  StdErr z.value p.value
                      Estimate
(Intercept)
                     1.5546882 0.5374136 2.8929 0.0038169 **
time
                     0.0266066 0.0053688 4.9558 7.205e-07 ***
I(pmax(time - 50, 0)) -0.0258646 0.0059857 -4.3211 1.553e-05 ***
mint_lag_2
                    0.1449852 0.0418763 3.4622 0.0005357 ***
                   -0.0140655 0.0078728 -1.7866 0.0740030 .
maxt_lag_2
rain_lag_2
                    0.0185512 0.0101402 1.8295 0.0673303 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Log-likelihood: 98.64848
Covariance parameters Matern function (kappa=2.5)
           Estimate StdErr
log(sigma^2) -1.61326 0.1580
           -0.49494 0.1617
log(phi)
log(tau^2)
           -2.72287 0.5096
Legend:
sigma^2 = variance of the Gaussian process
phi = scale of the spatial correlation
tau^2 = variance of the nugget effect
```

The natural logarithm scale values of σ^2 , ϕ^2 , and τ^2 , and their confidence intervals:

```
parameters <- data.frame(estimates$cov.pars)
parameters$interval <- qnorm(p = 0.975, lower.tail = TRUE) * parameters$StdErr
parameters[, c('lower_ci', 'upper_ci')] <- parameters$Estimate +
   matrix(data = parameters$interval) %*% matrix(data = c(-1, 1), nrow = 1, ncol = 2)</pre>
```

Consequently, their normal scale values are

```
parameters[, 'exp(Estimate)'] <- exp(parameters$Estimate)
parameters[, c('exp(lower_ci)', 'exp(upper_ci)')] <-
as.matrix(exp(parameters[, c('lower_ci', 'upper_ci')]))</pre>
```

Hence

	Estimate	StdErr	lower_ci	upper_ci	<pre>exp(Estimate)</pre>	exp(lower_ci)
log(sigma^2)	-1.613	0.158	-1.923	-1.304	0.199	0.146
log(phi)	-0.495	0.162	-0.812	-0.178	0.610	0.444
log(tau^2)	-2.723	0.510	-3.722	-1.724	0.066	0.024
	exp(upper	c_ci)				
log(sigma^2)	(272				
log(phi)	(.837				
log(tau^2)	(178				

Exercise 2: Predictions

The foci herein are the ln(cases) point predictions, and their 95% prediction intervals, w.r.t. the months of the Kericho data set. Using the time.predict() function of $auxiliary_function.R$:

creates the time.predict() object of predictions, including the confidence intervals. The resulting graph . . .

Figure 1: Predictions: ln(cases) and confidence interval