Primary Topic	Term	Definition	Other Notes
1	absolute uncertainty	The uncertainty (the measure of precision) of a measurement expressed in the same units as the measurement	eg. 3.0 m +/1m or 55 kg +/- 1kg
1	accuracy	The level of agreement with the correct/standard/accepted value.	So how close the measurement(s) is to the correct value. Low systematic error = high accuracy
1	calibration error	A systematic error that resulting from inaccurate settings of the scale of measurement used by an instrument	This can be a zero offset error or it can be a error in which the space between markings has been increased or decreased; eg. photocopying a ruler at 95% instead of 100%
1	derived units (in the SI system)	Units that are a combination of one or more fundamental units.	
1	experimental error	Any error, random or systematic that is associated with the experimental method.	It does not include human error or blatant mistakes.
1	fundamental units (in the SI system)	The official units in the SI system upon which all other units are are based. They are the kilogram (kg), meter (m), second (s), ampere (A), mole (mol), and Kelvin (K).	
1	instrumental error	The error associated with the tool being used to measurement	For digital readouts it is equal to the smallest demarkation; for analogue readouts it is usually equal to the 1/2 of the smallest demarkation.
1	magnitude	The quantitative/numerical size of measurement.	Includes units
1	order of magnitude	The power of 10 closest to a number	Practically speaking, take the log of the number & then round to the nearest whole number
1	percentage uncertainty	The uncertainty (the measure of precision) of a measurement expressed as a percentage of the measurement. It is the relative uncertainty multiplied by 100 and expressed as a percentage.	
1	precision	The level of agreement between multiple measurements.	So how close multiple measurements are to each other; low random error = high precision. For a single measurement, it is specificity or level of detail of the measurement, so the number of decimals. P
1	qualitative	Something that is non-numerical in nature and focuses non-numerical descriptors or evidence.	
1	quantitative	Something that is numerical in nature and focuses on assigning numerical values	
1	random error	Errors in measuremnt caused by factors that vary from one measurement to another.	Affects precision because it causes a greater spread between multiple measurements, but does not affect the average value.
1	relative uncertainty (fractional uncertainty)	The uncertainty (the measure of precision) of a measurement with respect to the measurement itself. It is the absolute uncertainty divided by the measurement. It has no units	
1	resolve a vector	To break a vector aprart into its component along each axis.	
1	resultant vector scalar	The sum of one or more vectors A quantity that has only magnitude.	
1	significant figures	The digits in a number used to express the degree of precision of a single measurement.	
1	systematic error	Erros in measurement cause by factors that shift the measurements consistently in one direction.	Affects accuracy because it shifts the average of multiple measurements
1	uncertainty	The measure of the random error or precision.	
1	vector	A quantity that has both magnitude and direction.	
1	vector resolution	The process of breaking a vector apart into its components along each axis.	
1	zero offset error	An error such that the zero-point is set at something other than zero.	

Primary Topic	Term	Definition	Other Notes
2	acceleration	The rate of change in velocity per unit time	
2	air resistance	Also known as drag; it is the force that opposes the motion of an object due to the fact that it is moving through air due to the fact that it is colliding with air particles.	
2	average acceleration	The averaged value of the acceleration over a period of time (time weighted). It is the acceleration value that if constantly maintained for the period of time would have given the same result.	
2	average speed	The averaged value of the speed over a period of time (time weighted). It is the speed value that if constantly maintained for the period of time would have given the same result.	
2	average velocity	The averaged value of the velocity over a period of time (time weighted). It is the velocity value that if constantly maintained for the period of time would have given the same result.	
2	centripetal force		
2	Conservation of (linear) Momentum	The momentum of a closed system is constant. OR If the total external force acting on a system is zero, then the momentum of the system remains constant	
2	conservation of energy	The total amount of energy in a closed system will remain constant. OR Energy cannot be created or destroyed, it can only be transformed into different forms.	
2	displacement	The measured distance in a given (single) direction.	
2	distance	The length traveled by an object.	
2	drag	Also known as air resistance; it is a force that opposes the motion of an object as it moves through air due to the fact that it is colliding with air particles.	
2	dynamic equilibrium	The state of moving at a constant non-zero velocity (any velocity other than zero). It ony occurs when the vector sum of the forces acting on an object is zero; in other words, when the net force in each direction is zero.	
2	efficiency	The ratio of useful energy output to total energy input. It is usually expressed as a percentage.	
2	elastic collision	A collision in which total mechanical energy (primarily kinetic energy) is conserved. OR A collision in which no energy is gained or lost.	These are generally "bouncing collisions," however, keep in mind that no collision is perfectly elastic.
2	energy	The ability to do work. OR The energy transferred to a body is the work that has been done on that body.	It is often a circular defintion with work and is rarely formally defined.
2	fluid resistance	It is a force that opposes the motion of an object as it moves through a fluid (any liquid or gas; eg. air, water, oil) due to the fact that it colliding with the fluid particles.	
2	force	An interaction that causes acceleration, pressure, or deformation on an object.	It is usually thought of as a push or a pull.
2	Free-Body Diagram	A simplified drawing of an object in which only the forces acting on the object are shown using arrows to represent the magnitude and direction of each force.	
2	friction	It is a force that opposes the motion of an object that is contacting another surface due to forces that arise from its contact with that surface.	
2	gravitational potential energy	The (stored) energy an object has due to its position in a gravitational field. The change in gravitational potential energy is equal to m•g•∆h. It is a scalar quantity.	
2	Hooke's Law	The force applied by a spring or similarly behaving object is proportional to the displacement from the springs equilibrium, but is in the opposite direction. F = -kx where x is displacement from equilibrium	

2	impulse	The change in momentum of an object. OR The product of the resultant force (net force) and the time for which that force is applied.	
2	inelastic collision	A collision in which the total mechanical energy (primarily kinetic energy) decreases. OR A collision in which energy is "lost" (transformed into thermal energy or sound).	These are generally though of as "sticking collisions," however, technically every collision in a lab or experiment is partly inelastic. On the most strict defintion of elastic & inelastic, all experimental collisions are inelastic since some energy is lost.
2	instantaneous acceleration	The acceleration a single instant/moment in time.	Often thought of as the acceleration in which the time the speed is measured for approaches zero.
2	instantaneous speed	The speed a single instant/moment in time.	Often thought of as the speed in which the time the speed is measured for approaches zero.
2	instantaneous velocity	The velocity a single instant/moment in time.	Often thought of as the velocity in which the time the speed is measured for approaches zero.
2	kinetic energy	The energy an object has due to its motion (or momentum). It is a scalar quantity.	
2	momentum (linear)	The product of mass and velocity.	Often thought of as "the quantity of motion."
2	Newton's 1st Law	Every object continues in a state of rest or of uniform motion in a straight line unless acted upon by an external force.	
2	Newton's 2nd Law	The rate of change of momentum of a body is proportional to the resultant force acting on the body. OR F = ma where F is the resultant/net force. OR T accelaration produced by a force is directly proportional to the force acting on it.	Be careful to either that it is the net/resultant force that produces acceleration or to explicitly refer to the "acceleration produced by the force"
2	Newton's 3rd Law	When two bodies (objects) A and B interact, the force that A exerts on B is equal and opposite to the force that B exerts on A.	You must make explicit reference to force.
2	power	The rate of work done per unit time. It is a scalar quantity	
2	principle of conservation of energy	The total amount of energy in a closed system will remain constant. OR Energy cannot be created or destroyed, it can only be transformed into different forms.	
2	relative motion	It is the speed, velocity, or motion of an object as compared to another object or point that is assumed to be not moving.	
2	resultant force	The net force or vector sum of the forces.	
2	speed	For an object it is the rate of distance traveled per unit time	Most rate defintions follow the general format of " per unit"
2	spring constant (k)	The coefficient in Hooke's law that describes the force per unit displacement of a spring or similarly behaving object that has not reached its elastic limit and is following Hooke's Law	
2	static equilibrium	The state of being at rest or not moving. It ony occurs when the vector sum of the forces acting on an object is zero; in other words, when the net force in each direction is zero.	
2	translational equilibrium	The state of being in static or dynamic equilibrium; that is, the state of being at rest or of moving at a constant velocity. It ony occurs when the vector sum of the forces acting on an object is zero; in other words, when the net force in each direction is zero.	
2	velocity	For an object it is rate of the displacement traveled in a particlualr direction per unit time	Speed in a given direction is a subpar definition. Most rate definitions follow the general format of " per unit"
2	weight	The force of gravity on an object that is usually near the surface of the planet providing the gravitational force.	
2	work	The product of the force acting an object and the displacement in the direction of that force. It is a scalar quantity.	More easily thought of as a change in energy (ΔE)

Admonton's Law of Gases when an ideal gas is held at constant volume, the pressure of the gas is proportional to its temperature; also known as the Pressure Law of Cases A change from the liquid state to the gaseous state that Cocars at the belling point. The temperature at which a liquid will vaporize into a gas. It is the same temperature as the condemsation point. When I am I ideal gas is held at constant temperature, the volume of the gas is inversely proportional to its itemperature. Charles' Law of Gases (volume-temperature). When the pressure of an ideal gas is held constant, the volume of the gas is inversely proportional to its temperature, the volume of the gas is inversely proportional to a temperature, the volume of the gas is inversely proportional to a temperature, the volume of the gas is inversely proportional to a temperature, the volume of the gas is inversely proportional to a temperature, it is also known as the law of volumes. A change from the liquid state to the gaseous that the pressure of an ideal gas is held constant, the volume of the gas is inversely proportional to a temperature, it is also known as the law of volumes. A change from the liquid state to the gaseous that the pressure of an ideal gas will turn into a liquid. It is the same temperature below the when the pressure of an object to another. A change from the liquid state to the gaseous state that the most energy leaving the substance through evaporation. The temperature at which a liquid will turn into a sold. It is the same temperature as the most energy to gate to another. The temperature at which a liquid will turn into a sold. It is the same temperature as the most energy teaving the substance through evaporation. The change in internal energy. The thermal energy that is absorbed, given up or transferred from one object to another. The temperature of an object to another. The temperature of an object to another. The temperature of an object town and present the particles in an object. If the particles in	
state that occurs at the boiling point. The temperature at which a liquid will vaporize into a gas. It is the same temperature as the condensation point. Boyle's Law of Gases (pressure) the value of the gas is inversely proportional to itstemperature, the volume for the gas is inversely proportional to itstemperature. Charles' Law of Gases (volume-temperature) when the pressure of an ideal gas is held at constant temperature at which a gas will turn into a liquid. It is the same temperature as boiling point. The temperature at which a gas will turn into a liquid. It is the same temperature as boiling point. A change from the liquid state to the gas so biling point. A change from the liquid state to the gaseous state that occurs at a temperature below the boiling point. A drop in temperature or thermal energy of a substance due to the particles with the most energy leaving the substance through evaporation. The temperature at which a liquid will turn into a solid. It is the same temperature as the most energy leaving the substance through evaporation. The temperature at which a liquid will turn into a solid. It is the same temperature as the most energy leaving the substance through evaporation. The temperature at which a liquid will turn into a solid. It is the same temperature as the energy leaving that is absorbed, given up or variation and the most energy that is absorbed, given up or variation and the most energy that is absorbed, given up or variation and the control of the substance is the temperature of an object by one Kavin a through evaporation of an object by one Kavin a through evaporation of an object by one Kavin a through evaporation of an object by one Kavin a through evaporation of an object by one Kavin a through evaporation of an object by one Kavin a through evaporation of an object by one Kavin and the properation of an object by one Kavin and the properation of an object by one Kavin and the properation of the particles in an object by one Kavin and the properation of the propera	
into a gas. It is the same temperature as the condensation point. Boyle's Law of Gases (pressure-volume) Charles' Lew of Gases (volume-pressure-volume) Charles' Lew of Gas	
temperature, the volume for the gas is inversely proportional to its temperature. When the prossure of an ideal gas is held constant, the volume of the gas is directly proportional to its temperature; it is also known as the law of volume. The temperature at which a gas will turn into a liquid. It is the same temperature as boiling point. A change from the liquid state to the gaseous state that occurs at a temperature below the boiling point. A drop in temperature or thermal energy of a substance due to the particles with the most energy leaving the substance that which a liquid will turn into a solid. It is the same temperature as the melting point. The temperature at which a liquid will turn into a solid. It is the same temperature as the melting point. The change in internal energy. The thermal energy are given to the respect to another. The thermal energy are provided to another. The same and a continued to a solid as a solid and a solid another. The same and a solid and a solid as a solid as a solid and a solid another. The same and a solid another are a solid as a solid as a solid another. The same and a solid another are a solid as a solid as a solid another. The same another are solid as a solid	
Charles Law of Gases (volume- temperature) constant, the volume of the gas is directly proportional to its temperature; it is also known as the law of volumes condensation point The temperature at which a gas will turn into a liquid. It is the same temperature as boiling point. A change from the liquid state to the gaseous state that occurs at a temperature below the boiling point. A drop in temperature or thermal energy of a substance due to the particles with the most energy leaving the substance that on the particles with the most energy leaving the substance through evaporation. The temperature at which a liquid will turn into a solid. It is the same temperature as the melting point. The change in internal energy. The thermal energy of a solid. It is the same temperature as the melting point. The temperature of an object to another. The temperature of an object to sonther. The temperature of an object to yone Kelvin at temperature of an object to yone Kelvin at temperature of an object to yone Kelvin at temperature of an object to yone Kelvin internal energy. I deal gas I deal Gas Law Gases can be approximated as ideal gases that follow the equation of state; pV = nRT in the sum of all kinetic and potential energies of the particles in an object. I here sum of all kinetic and potential energies of the particles in an object. I the sum of all kinetic and potential energies of the particles in an object. The quantity of thermal energy required to change the substance. The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The quantity of thermal energy required to change the a substance from a solid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a solid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as	
condensation point liquid. It is the same temperature as boiling point. A change from the liquid state to the gaseous state that occurs at a temperature below the boiling point. A drop in temperature or thermal energy of a substance due to the particles with the most energy leaving the substance turbugh evaporation. The temperature at which a liquid will turn into a solid. It is the same temperature as the melling point. The change in internal energy. The thermal energy that is absorbed, given up or transferred from one object to another. The thermal energy required to raise the temperature of an object by one Kelvin a theoretical gas that obeys the equation pV = nRT; at all temperature, pressures, and volumes the gas molecules occupy negligible space and do not interact (there are no forces between them) Ideal Gases can be approximated as ideal gases that follow the equation of state; pV = nRT The sum of all kinetic and potential energies of the particles in an object. When the moving particle theory is applied to gases. Ident heat of fusion Iatent heat of vaporization The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the a substance from a solid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
evaporation state that occurs at a temperature below the boiling point. A drop in temperature or thermal energy of a substance due to the particles with the most energy leaving the substance through evaporation. The temperature at which a liquid will turn into a solid. It is the same temperature as the melting point. The change in internal energy. The thermal energy that is absorbed, given up or transferred from one object to another. The change in internal energy required to raise the temperature of an object by one Kelvin a theoretical gas that obeys the equation pV = nRT; at all temperatures, pressures, and volumes the gas molecules occupy negligible space and do not internal (there are no forces between them) I deal Gas Law Gases can be approximated as ideal gases that follow the equation of state; pV = nRT is internal energy The sum of all kinetic and potential energies of the particles in an object. When the moving particle theory is applied to gases. I latent heat Theat of fusion I attent heat of fusion I he quantity of thermal energy required to change the a substance from a liquid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
evaporative cooling substance due to the particles with the most energy leaving the substance through evaporation. The temperature at which a liquid will turn into a solid. It is the same temperature as the melting point. The change in internal energy. The thermal energy that is absorbed, given up or transferred from one object to another. The thermal energy required to raise the temperature of an object by one Kelvin a theoretical gas that obeys the equation pV = nRT; at all temperatures, pressures, and volumes the gas molecules occupy negligible space and do not interact (there are no forces between them) Gases can be approximated as ideal gases that follow the equation of state; pV = nRT The sum of all kinetic and potential energies of the particles in an object. kinetic theory for gases When the moving particle theory is applied to gases. It atent heat The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature does not change during process; it will remain at the boiling potential energies of the particles as only a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as only 2 kg of Carbon-12.	
reezing point a solid. It is the same temperature as the melting point. The change in internal energy. The thermal energy that is absorbed, given up or transferred from one object to another. The thermal energy required to raise the temperature of an object by one Kelvin a theoretical gas that obeys the equation pV = nRT; at all temperatures, pressures, and volumes the gas molecules occupy negligible space and do not internat (there are no forces between them) Ideal Gas Law Gases can be approximated as ideal gases that follow the equation of state; pV = nRT internal energy The sum of all kinetic and potential energies of the particles in an object. When the moving particle theory is applied to gases. Ideal theat The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the as substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the as substance from a fliquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the as substance from a fliquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the as substance from a fliquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
energy that is absorbed, given up or transferred from one object to another. The thermal energy required to raise the temperature of an object by one Kelvin a theoretical gas that obeys the equation pV = nRT; at all temperatures, pressures, and volumes the gas molecules occupy negligible space and do not interact (there are no forces between them) Ideal Gas Law Gases can be approximated as ideal gases that follow the equation of state; pV = nRT The sum of all kinetic and potential energies of the particles in an object. When the moving particle theory is applied to gases. Ideal theat The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
ideal gas a theoretical gas that obeys the equation pV = nRT; at all temperatures, pressures, and volumes the gas molecules occupy negligible space and do not interact (there are no forces between them) Ideal Gas Law Gases can be approximated as ideal gases that follow the equation of state; pV = nRT The sum of all kinetic and potential energies of the particles in an object. When the moving particle theory is applied to gases. Ideal theat The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
ideal gas nRT; at all temperatures, pressures, and volumes the gas melecules occupy negligible space and do not interact (there are no forces between them) Ideal Gas Law Gases can be approximated as ideal gases that follow the equation of state; pV = nRT The sum of all kinetic and potential energies of the particles in an object. When the moving particle theory is applied to gases. Ideal theat The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
internal energy The sum of all kinetic and potential energies of the particles in an object. When the moving particle theory is applied to gases. The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
The sum of all kinetic and potential energies of the particles in an object. When the moving particle theory is applied to gases. Iatent heat Iatent heat Iatent heat of fusion Iatent heat of vaporization Iatent heat of vaporization The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
When the moving particle theory is applied to gases. Iatent heat The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
latent heat The quantity of thermal energy required to change the state of a substance. The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
The quantity of thermal energy required to change the a substance from a solid state to a liquid state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The quantity of thermal energy required to change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature does not change during process; it will remain at the boiling possible to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
change the a substance from a liquid state to a gaseous state. The reverse process requires removing that same amount of energy. The temperature at which a solid will melt into a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
melting point a liquid. It is the same temperature as the freezing point. The basic SI unit for the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
mole substance. It is the amount of a substance that contains the same number of elementary particles as .012 kg of Carbon-12.	
A theory that sets forth a basic list of	
moving particle theory for gases assumptions for gas particles including the following:	

3		When an ideal gas is held at constant volume, the pressure of the gas is proportional to its temperature; also known as Admonton's Law of Gases	
3	specific heat capacity	It is the heat capacity per unit mass. OR The thermal energy required to raise a unit mass of an object by one Kelvin. OR The thermal energy required to raise one kilogram of an object by one Kelvin.	
3	temperature	It is a measure of the average kinetic energy of the particles in an object.	

Primary Topic	Term	Definition	Other Notes
4	amplitude	the maximum displacement from equilibrium achieved by a particle undergoing simple harmonic motion (SHM)	
4	angular frequency	radians (of oscillation) per unit time; it is 2pi * f; (w)	
4	compression	the region of maximum pressure for a sound wave or maximum particle density for a longitudinal wave	
4	crest	the point of maximum positive displacement of the medium in a wave	
4	damping	a decrease in the amplitude of oscillation due to friction or some other resistive force removing energy from the system	
1	diffraction	the spreading out of a wave after going through an aperature or around a barrier/obstacle	diffraction examples
1	displacement (SHM)	the distance from equilibrium of a particle undergoing simple harmonic motion (SHM)	
4	forced oscillation	oscilations resulting from the application of an external force; it is usually periodic	
4	frequency	(linear) frequency is the number of complete oscillations per unit time (f)	
4	longitudinal wave	a wave in which the particles/medium of the wave oscillate/vibrate at along the same axis as the direction of propogation (direction of travel)	
1	natural frequency of vibration	the frequency of oscillation of a system that is not subjected to a periodic external force	Ignore the initial force required to get the vibration started
4	oscillation	Movement back and forth in a consistent manner. Similar to and in many cases is the same thing as a vibration.	
	period	the time per a complete oscillation	
1	phase difference	the time interval or phase angle by which one wave leads or trails another	
1	rarefaction	the region of minimum pressure for a sound wave or minimum particle density for a longitudinal wave	
1	reflection	the bouncing or throwing back of a wave off of a suface or barrier	reflection example
4	refraction	the change in the direction of propogation of a wavefront caused by changes in wavespeed when entering a new or changing medium.	refraction example
4	resonance	a phenomenon that occurs when the frequency of forced oscillations is equal to the natural frequency of the system. It results in the constructive interference of waves/vibrations in the system.	
4	simple harmonic motion (SHM)	Oscillating motion in which the force acting on the system is towards the equilibrium and proportional to the displacement from the equilibrium	
4	Snell's Law	the ratio of sines of the angles of incidence is constant for all incidences in any pair of media.	Just look at the equation
1	transverse wave	a wave in which the particles/medium of the wave oscillate/vibrate at right angles to the direction of propogation (direction of travel)	
1	trough	the point of maximum negative displacement of the medium in a wave	
1	wave speed	the distance per unit time traveled by the wave front or energy of a wave	

Primary Topic	Term	Definition	Other Notes
5	electric current	the amount of charge per unit time flowing through a cross sectional area	
5	electrical potential difference	energy released per unit charge between two points	Often just called voltage
5	electromotive force (EMF)	the energy per unit charge supplied by a power source	
5	electronvolt (eV)	the energy acquired by an electron by moving through a potential difference of one volt.	It is a unit of energy equal to 1.6 x 10^-19 J
5	ideal ammeter	a device to measure current that has 0 reistance and is attached in series	
5	ideal voltmeter	a device to measure voltage that has infinite resistance and is attached in parallel	
5	internal resistance	aspects of a power source that cause power to be dissipated before electricity leaves the power source	behaves like a resistor in series with the battery and the rest of the circuit
5	Kirchoff's Current Law	The sum of currents flowing into a point in a circuit equals the sum of currents flowing out of that point	It is an extension of conservation of charge and says that (total current in) = (total current out)
5	Kirchoff's Junction Rule	another name for Kirchoff's Current Law	
5	Kirchoff's Loop Rule	another name for Kirchoff's Voltage Law	
5	Kirchoff's Voltage Law	In any closed loop (complete loop in a circuit), the sum of EMFs equals the sum of potential drops	It is an extension of conservation of energy and says for any complete path/loop through a circuit (there can be multiple) the (total energy supplied) = (total energy dissipated)
5	non-ohmic behavior	something that does not have a constant proportion between voltage and current (ie. it does not follow ohm's law)	
5	Ohm's Law	the ratio between voltage and current for a device remains constant over a wide range of voltage provided that temperature and other physical conditions are kept constant.	This results in a linear I-V curve, but keep in mind it requires constant temperature, among other things
5	ohmic behavior	something that has constant proportion betweeen voltage and current over a wide range of voltages (ie. it follows ohm's law)	
5	parallel circuit	there are multiple current pathways; all components have the same potential difference; (sum of currents flowing in) = (sum of currents flowing out);	Series vs parallel diagram
5	resistance	the voltage required per unit current flow through an object	Often thought of as how hard it is for electricity to flow to an object.
5	series circuit	all components have only one currrent pathway; therefore all components have the same current; the (sum of voltage drops) = (sum of EMFs)	Series vs parallel diagram
5	terminal voltage	the energy per charge supplied by a power source minus the voltage drop due to any internal resistance	I like to think of it as the effective voltage of a power source or the voltage you get at its terminals (output posts)

Primary Topic	Term	Definition	Other Notes
6	conductor	a material in which electrons of atoms can move relatively freely between diffrent atoms in the conductor	
6	electric field strength	the electrostatic (coulombic) force per unit charge on a small positive test charge placed at that point	
6	gravitational field strength	the gravitational force per unit mass on a small mass placed at that point	
6	insulator	a material in which electrons of atoms are held tightly by the atomic nuclei	
6	Law of Conservation of Charge	In a closed system, the amount of charge is constant.	
6	types of electric charge	positive and negative	neutral is usually just a balance of positive and negative; no charge is not a type of charge; just like how having "no color" is not a type of color

Primary Topic	Term	Definition	Other Notes
7	absorption spectra	the specific frequencies of light absobed by a gas when light is allowed to pass through it	It is the same as the emission spectra; electrons can absorb energy (light w/ that energy level) in the exact quatity needed to jump to another energy level.
7	alpha particle	a radioactive particle that is composed of 2 protons & 2 neutrons (essentially a helium-4 nucleus)	It can travel about 4 cm in air and is easily stopped by a couple sheets of computer paper
7	artificial (induced) transmutation	the process of causing one element to change into another by means other than natural (spontaneous) radioactive decay	
7	atomic mass unit	1/12 the mass of an atom of carbon-12	
7	beta particle	a radioactive particle; it is an electron or a positron.	It can travel several meters in air and can penetrate thin sheets of aluminum
7	binding energy (1)	the energy released (mass defect) when a nucleus is assembled from its indiivdual nucleons.	same as definition (2), just a different way of thinking about it
7	binding energy (2)	the energy required to to separate a nucleus into its individual nucleons	same as definition (1), just a different way of thinking about it; I like to think of it as "separation" energy instead of binding energy
7	binding energy per nucleon	the binding energy per a nucleon in a nucleus	this gives a way of comparing different atoms and isotopes even though the total energy will increase with each nucleon
7	emission spectra	the specific frequencies of light emitted by a gas or other source when excited	It results from the fact that each type of atom has different energy levels for its electrons. The different colors from the the difference in energy as an electron goes from one level to another
7	fission	the process of causing a nucleus to split into two smaller nuclei	usually triggered by hitting a nuclues with a neutron or some other particle of significant size; releases energy; main source of energy for nuclear power plants and most nuclear bombs; ususally involves plutonium or uranium, but can be done with thorium and other elements
7	fusion	the proces of causing two nuclei to merge into a single nucleus	usually done between hydrogen isotopes and/or helium isotopes. main source of energy in the sun and other stars
7	gamma ray	a form of high energy electromagnetic radiation.	It is not generally stopped by air and it can penetrate significant thicknesses of lead
7	half-life	the time it takes for a quantity of a (radioactive) material to reach half of its original value.	For radioactive materials it is not affected by temperature, pressure or chemical combination
7	ionizing radiation	radiation that has the capability of freeing an electron from an atom (ionizing it).	Primarily dangerous because it can affect genetic material (DNA) which can lead with replication of mutated cells
7	isotope	atoms of the same element that are chemically identical (interact the same in chemical reactions), but they have different masses.	
7	mass defect	the difference in mass between the reagents (reactants) and the products.	The "missing" mass has been converted into energy.
7	natural radioactive decay	when an element spontaneously emits radiation; there is no external cause or excititaion that triggers this	
7	nucleon	particles in the nucleus. Always either a proton or a neutron.	
7	nuclide	a distinct type of atom or nucleus characterized by its number of protons and neutrons	
7	Rutherford experiment	alpha particles (+ charge) were fired at a sheet of gold foil. Most went through showing atoms are mostly empty space. A few deflected and/or rebounded. This served as evidence that there was a dense positively charged center of each atom (a nucleus). This experiment gave rise to the simple nuclear model (+) nucleus & (-) electrons around it, no neutrons yet.	
7	strong nuclear reaction	a force between nucleons (protons or neutrons) that is always attractive. It drops quickly to 0 for distances greater than 1.3 fm	It is essentially what keeps protons and neutrons in the nucleus

Primary Topic	Term	Definition	Other Notes
8	albedo	the ratio between incoming radiation and the amount reflected by a surface	
3	black-body radiation	the radiation emitted by a perfect emitter	
3	climate	the average weather over the course of a long term (years); in other words, long term weather patterns for a region	Neil deGrasse Tyson explains the difference between climate & weather
3	climate change	a change in long term weather patterns (climate)	Does not refer to changes in weather on any specific day, but refers to changes in the long term average weather pattern
3	control rods	used to absorb free neutrons and prevent further nuclear reactions; they are rods inserted in between fuel rods in a nuclear reactor that stop the chain reaction process	Metaphorically: if a chain reaction is fun; control rods are where fun goes to die
3	controlled nuclear fission	a nuclear fission process in which the chain reaction is moderated to produce a steady output of energy over a longer period of time	nuclear power plant (functioning normally)
3	critical mass	the smallest amount of fissionable material needed to sustain a chain reaction	
3	efficiency	the ratio of useful energy output to total energy output expressed as a percentage	
3	energy degradation	the transformation/conversion of energy from a more useful form to a less useful form	
3	enhanced greenhouse effect	the trapping of IR waves in the Earth's lower atomsphere above and beyond naturally occuring levels; usually caused directly or indirectly by humans	
3	fissionable material	a material/isotope that can create a self- sustaining chain reaction under the right conditions	
8	greenhouse effect	the trapping of IR waves in the Earth's lower atomsphere; can be natural or unnatural	
8	greenhouse gases	gases that are responsable for the trapping of IR waves in the Earth's lower atmosphere via the greenhouse effect	
8	heat exchanger	the device that transfers heat from the primary loop to the secondary loop	
8	hydroelectric schemes	different methods of harnessing power from water	(1) water storage in lakes [via damns]; (2) tidal water storage [from ocean tides]; (3) pump storage [pump water up to container, let it flow later]
8	moderator	a material that will slow down neutrons to speeds that can cause fission	Metaphorically: if a chain reaction is fun; these are the hosts/hostesses that come around and keep things in that optimal fun zone
8	non-renewable energy source	an energy source that is either depleted when used and is not quickly regenerated/replenished	(click for example image) NOTE: your textbook considers nuclear power to be renewable despite the fact athat most other sources would classify it as non-renewable
3	photovoltaic cell	an electrical device that captures sunlight or other sources of EM radiation and converts it into electrical energy (via photoelectric effect)	
3	plasma	a gas in which the atoms are ionized; that is the nuclei and electrons are separated from each other; largely considered to be the fourth state of matter	
3	primary loop	in nuclear powerplant, it is the loop in which the reactor heats up a liquid (coolant) that is then used to warm up the power producing loop (secondary loop)	
3	renewable energy source	an energy source that is easily and readily replenished (usually by natural processes)	(click for example image) NOTE: your textbook considers nuclear power to be renewable despite the fact athat most other sources would classify it as non-renewable

8	Sankey diagram	a diagram used to show the allocation of a resource (see image); where the thickness of an arrow represents the amount of the resource allocated. Waste products have arrows that diverge up or down; useful products have arrows that go straight through	example of Sankey Diagram
8	secondary loop	in a nuclear powerplant, it is the loop in which water is turned to steam and used to drive a steam turbine to spin the generator and create power	
8	solar helating panels	panels that capture sunlight or other sources of EM radiation and convert them into thermal energy	water heaters
8	thermoelectric devices	devices that harness solar energy to produce electrical energy usually by heating water to drive a steam turbine	
8	uncontrolled nuclear fission	a nuclear fission process in which the chain reaction is not moderated and the energy is released in a relatively short time period	nuclear bomb or nuclear meltdown
8	weather	the state of the atomosphere with regards to dryness/humidity, wind speed, temperature, sun, cloud cover, etc	Neil deGrasse Tyson explains the difference between climate & weather