

Europäisches Patentamt European Patent Office

Office européen des brevets

(11) EP 0 882 794 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 09.12.1998 Bulletin 1998/50

(21) Application number: 98105047.9

(22) Date of filing: 19.03.1998

(51) Int. Cl.⁶: **C12N 15/13**, C07K 16/46, A61K 39/395, G01N 33/574 // C07K16/18

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 19.03.1997 JP 66981/97

(71) Applicant:

Kyowa Hakko Kogyo Co., Ltd. Chiyoda-ku, Tokyo 100 (JP)

(72) Inventors:

 Kazuyasu, Nakamura Machida-shi, Tokyo (JP) Nobuo, Hanai
 Sagamihara-shi, Kanagawa (JP)

(74) Representative:

Kinzebach, Werner, Dr. et al Patentanwälte Reitstötter, Kinzebach und Partner Postfach 86 06 49 81633 München (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(54) Human complementarity determining region (CDR)-grafted antibody to ganglioside gm2

(57) A human CDR-grafted antibody which specifically reacts with ganglioside GM₂, wherein said antibody comprises CDR 1, CDR 2 and CDR 3 of heavy chain (H chain) variable region (V region) comprising amino acid sequences described in SEQ ID NO:1, SEQ ID NO:2 and SEQ ID NO:3, and CDR 1, CDR 2 and CDR 3 of light chain (L chain) V region comprising amino acid sequences described in SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6, and wherein at least one of the frameworks (FR) of said H chain and L chain V regions comprises an amino acid sequence selected from common sequences (HMHCS; human most homologous consensus sequence) derived from human antibody subgroups.

Description

5

FIELD OF THE INVENTION

This invention relates to a human complementarity determining region (referred to as "CDR" hereinafter) grafted antibody to ganglioside GM₂ (referred to as "GM₂" hereinafter). This invention also relates to a DNA fragment encoding the above-described antibody, particularly its variable region (referred to as "V region" hereinafter). This invention relates to an expression vector which contains the DNA fragment and to a host transformed with the expression vector. This invention further relates to a method for the production of the human CDR-grafted antibody specific for GM₂ and to its therapeutic and diagnostic use.

BACKGROUND OF THE INVENTION

It is known in general that, when a mouse antibody is administered to human, the mouse antibody is recognized as foreign matter in the human body and thus induces a human antibody to a mouse antibody (human anti-mouse antibody, referred to as "HAMA" hereinafter) which reacts with the administered mouse antibody to produce adverse effects (Dillman, R.O. et al., J. Clin. Oncol., 2, 881 (1984); Meeker, T.C. et al., Blood, 65, 1349 (1985); LoBuglio, A.F. et al., J. Natl. Cancer Inst., 80, 932 (1988); Houghton, A.N. et al., Proc. Natl. Acad. Sci. U.S.A., 82, 1242 (1985)), and the administered mouse antibody is quickly cleared (Pimm, M.V. et al., J. Nucl. Med., 26, 1011 (1985); Meeker, T.C. et al., Blood, 65, 1349 (1985); Khazaeli, M.B. et al., J. Natl. Cancer Inst., 80, 937 (1988)) to reduce effects of the antibody (Shawler, D.L. et al., J. Immunol., 135, 1530 (1985); Courtenay-Luck, N.S. et al., Cancer Res., 46, 6489 (1986)).

In order to solve these problems, attempts have been made to convert a mouse antibody into a humanized antibody such as a human chimeric antibody or a human CDR-grafted antibody. The human chimeric antibody is an antibody in which its V region is derived from an antibody of nonhuman animal and its constant region (referred to as "C region" hereinafter) is derived from a human antibody (Morrison, S.L. et al., Proc. Natl. Acad. Sci. U.S.A., 81, 6851 (1984)). Furthermore, it is reported that, when this type of antibody is administered to human, HAMA is hardly induced and its half-life in blood increases six times (LoBuglio, A.F. et al., Proc. Natl. Acad. Sci. U.S.A., 86, 4220 (1989)). The human CDR-grafted antibody is an antibody in which the CDR of human antibody is replaced by other CDR derived from nonhuman animal (Jones, P.T. et al., Nature, 321, 522 (1986)), which is also called a reshaped human antibody. It is reported that, in a test of a human CDR-grafted antibody in monkeys, its immunogenicity is reduced and its half-life in blood is increased four to five times, in comparison with a mouse antibody (Hakimi, J. et al., J. Immunol., 147, 1352 (1991)).

Also, with regard to the cytotoxicity of antibodies, it is reported that the Fc region of a human antibody activates human complement and human effector cells more effectively than the Fc region of mouse antibody. For example, it is reported that human effector cell-mediated anti-tumor effects of a mouse antibody to GD₂ is increased when the antibody is converted into a human chimeric antibody having human antibody Fc region (Mueller, B.M. *et al.*, *J. Immunol.*, 144, 1382 (1990)), and similar results are reported on a human CDR-grafted antibody to CAMPATH-1 antigen (Reichmann, L. *et al.*, *Nature*, 332, 323 (1988)). These results indicate that humanized antibodies are more desirable than mouse antibodies as antibodies to be clinically used in human.

Ganglioside as a glycolipid having sialic acid is a molecule which constitutes an animal cell membrane, and comprises a carbonhydrate chain as a hydrophilic side chain and sphingosine and fatty acid as hydrophobic side chains. It is known that types and expression quantities of ganglioside vary depending on the cell species, organ species, animal species and the like. It is known also that the expression of ganglioside changes quantitatively and qualitatively in the process of cancer development of cells (Hakomori, S. et al., Cancer Res., 45, 2405 (1985)). For example, it is reported that gangliosides GD₂, GD₃, GM₂ and the like which are hardly observed in normal cells are expressed in nerve ectoderm system tumors considered to have high malignancy, such as neuroblastoma, pulmonary small cell carcinoma and melanoma (Pukel, C.S. et al., J. Exp. Med., 155, 1133 (1982); Nudelman, E. et al., J. Biol. Chem., 257, 12752 (1982); Werkmeister, J.A. et al., Cancer Res., 47, 225 (1987); Mujoo, K. et al., Cancer Res., 47, 1098 (1987); Cheung, N.V. et al., Cancer Res., 45, 2642 (1985); Tai, T. et al., Proc. Natl. Acad. Sci. U.S.A., 80, 5392 (1983)), and antibodies to these gangliosides are considered to be useful for diagnosis and treatment of various cancers in human.

It is indicated that human antibodies to GM₂ are useful for treatment of human melanoma (Irie, R.F. *et al.*, *Lancet*, I, 786 (1989)). However, the antibodies to GM₂ so far reported are either those which are derived from nonhuman animal or a human antibody belonging to the IgM class (Natoli, E.J. *et al.*, *Cancer Res.*, <u>46</u>, 4116 (1986); Miyake, M. *et al.*, *Cancer Res.*, <u>48</u>, 6154 (1988); Cahan, L.D. *et al.*, *Proc. Natl. Acad. Sci. U.S.A.*, <u>79</u>, 7629 (1982); Fredman, P. *et al.*, *J. Biol. Chem.*, <u>264</u>, 12122 (1989)). The antibody of the IgM class, however, is unsuitable for applying to human, because it has a pentameric structure having a large molecular weight (about 900,000) in comparison with the antibody of IgG class which has a molecular weight of about 150,000, thus posing a problem in carrying out its purification, in addition to other problems such as its short half-life in blood and weak anti-tumor effect (Bernstein, I.D. *et al.*, *Monoclonal Anti-bodies, Plenum Press*, p.275 (1980)).

Because of the above, it is desirable to develop a humanized antibody to GM₂ of the IgG class which, when applied to human, does not induce HAMA in the human body, causes less adverse effects, shows prolonged half-life in blood and has improved anti-tumor effect, so that its high diagnostic and therapeutic effects on human cancers can be expected.

The inventors of the present invention disclose in JP-A-6-205694 (the term "JP-A" as used herein means an "unexamined published Japanese patent application") (corresponding to EP-A-0 598 998) a method for producing an IgG class human chimeric antibody and a human CDR-grafted antibody, which can specifically reacts with GM₂ and are useful for diagnosis and treatment of human cancers. However, there are no reports on a human CDR-grafted antibody which, when compared with a human chimeric antibody, has similar levels of binding activity and binding specificity for GM₂ and anti-tumor effects upon GM₂-positive cells.

SUMMARY OF THE INVENTION

5

30

40

45

50

55

As described in the foregoing, it is considered that human CDR-grafted antibodies are useful for diagnosis and treatment of human cancers and the like. However, the antibody activity is reduced when the CDRs of the heavy chain (referred to as "H chain" hereinafter) V region and light chain (referred to as "L chain" hereinafter) V region of an antibody of nonhuman animal are replaced only with the CDRs of the H chain V region and L chain V region of a human antibody, so that great concern has been directed toward the establishment of a method for the production of a human CDR-grafted antibody to GM₂ belonging to the IgG class (referred to as "human CDR-grafted anti-GM₂ antibody" hereinafter) which, when compared with a human chimeric antibody, has similar levels of binding activity and binding specificity for GM₂ and anti-tumor effects upon GM₂-positive cells, as well as a method for producing a human CDR-grafted antibody, which can be applied to all antibodies.

This invention relates to a human CDR-grafted antibody which specifically reacts with ganglioside GM₂, wherein said antibody comprises CDR 1, CDR 2 and CDR 3 of H chain V region comprising amino acid sequences of SEQ ID NO:1, SEQ ID NO:2 and SEQ ID NO:3 or functional equivalents thereof, and CDR 1, CDR 2 and CDR 3 of L chain V region comprising amino acid sequences of SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6 or functional equivalents thereof, and wherein at least one of the frameworks (referred to as "FR" hereinafter) of said H chain and L chain V regions comprises an amino acid sequence selected from common sequences (human most homologous consensus sequence (referred to as "HMHCS" hereinafter) derived from human antibody subgroups.

Furthermore, the present invention relates to the above human CDR-grafted antibody, wherein said FR of H chain or L chain V region of the human CDR-grafted antibody comprises an amino acid sequence in which at least one amino acid is replaced by an other amino acid, and wherein said antibody has antigen-binding activity, binding specificity, antibody dependent cell mediated cytotoxicity (ADCC), and complement dependent cytotoxicity (CDC) comparable to those of a human chimeric antibody having a V region of a monoclonal antibody derived from nonhuman animal which specifically reacts with ganglioside GM₂`

Moreover, the present invention relates to the above human CDR-grafted antibody, wherein said H chain C region of the antibody is derived from an antibody belonging to the human antibody IgG class.

BRIEF EXPLANATION OF THE DRAWINGS

Fig. 1 shows a construction scheme for a plasmid named pBSA.

Fig. 2 shows a construction scheme for a plasmid named pBSAE.

Fig. 3 shows a construction scheme for a plasmid named pBSH-S.

Fig. 4 shows a construction scheme for a plasmid named pBSK-H.

Fig. 5 shows a construction scheme for plasmids named pBSH-SA and pBSK-HA.

Fig. 6 shows a construction scheme for plasmids named pBSH-SAE and pBSK-HAE.

Fig. 7 shows a construction scheme for plasmids named pBSH-SAEE and pBSK-HAEE.

Fig. 8 shows a construction scheme for a plasmid named pBSK-HAEESal.

Fig. 9 shows a construction scheme for a plasmid named pBSX-S.

Fig. 10 shows a construction scheme for a plasmid named pBSX-SA.

Fig. 11 shows a construction scheme for a plasmid named pBSSC.

Fig. 12 shows a construction scheme for a plasmid named pBSMo.

Fig. 13 shows a construction scheme for a plasmid named pBSMoS. Fig. 14 shows a construction scheme for a plasmid named pChilgLA1S.

Fig. 15 shows a construction scheme for a plasmid named pMohCκ.

Fig. 16 shows a construction scheme for a plasmid named pBSMoSal.

Fig. 17 shows a construction scheme for a plasmid named pBSMoSalS.

Fig. 18 shows a construction scheme for a plasmid named pBShCγ1.

- Fig. 19 shows a construction scheme for a plasmid named pMohCγ1.
- Fig. 20 shows a construction scheme for a plasmid named pMoy1SP.
- Fig. 21 shows a construction scheme for a plasmid named pMoκγ1SP.
- Fig. 22 shows a construction scheme for a plasmid named pKANTEX93.
- Fig. 23 shows a construction scheme for a plasmid named pBSNA.

5

20

25

- Fig. 24 shows a construction scheme for a plasmid named pBSH3.
- Fig. 25 shows a construction scheme for a plasmid named pBSES.
- Fig. 26 shows a construction scheme for a plasmid named pBSL3.
- Fig. 27 shows a construction scheme for a plasmid named pKANTEX796H.
- Fig. 28 shows a construction scheme for a plasmid named pKANTEX796.
 - Fig. 29 shows a construction scheme for a plasmid named pT796.
 - Fig. 30 is a graphic representation of transient mouse-human chimeric anti-GM₂ antibody expression by the plasmids pKANTEX796 and pT796. The ordinate donotes the antibody concentration that showed GM₂-binding activity, and the abscissa denotes the time after introduction of the plasmid.
 - Fig. 31 shows a construction scheme for a plasmid named pBSH10.
 - Fig. 32 shows a construction scheme for a plasmid named pBSL16.
 - Fig. 33 illustrates a process for mutagenesis by PCR and a process for cloning DNA fragments mutated.
 - Fig. 34 shows a construction scheme for a plasmid named pBSLV1+2.
 - Fig. 35 shows a construction scheme for a plasmid named pBSLm-28.
 - Fig. 36 shows a construction scheme for a plasmid named pBSHSGL.
 - Fig. 37 shows a construction scheme for a plasmid named pT796LCDR.
 - Fig. 38 shows a construction scheme for plasmids named pT796HLCDR, pT796HLCDRHV2 and pT796HLCDRHV4.
 - Fig. 39 shows a construction scheme for a plasmid named pT796HLCDRH10.
 - Fig. 40 shows construction scheme for plasmids named pT796HCDR, pT796HCDRHV2, pT796HCDRHV4 and pT796HCDRH10.
 - Fig. 41 is a graphic representation of the results of human CDR-grafted anti-GM $_2$ antibody activity evaluation in terms of transient expression as obtained using the plasmids pT796, pT796HCDR, pT796HCDRHV2, pT796HCDRHV4 and pT796HCDRH10. The ordinate denotes the plasmid used, and the abscissa denotes the relative activity value with the activity obtained with the chimera antibody being taken as 100%.
 - Fig. 42 shows a construction scheme for plasmids named pT796HLCDRLV1, pT796HLCDRLV2, pT796HLCDRLV3, pT796HLCDRLV4, pT796HLCDRLV8, pT796HLCDRLm-2, pT796HLCDRLm-8, pT796HLCDRLm-28 and pT796HLCDRHSGL.
 - Fig. 43 is a graphic representation of the results of human CDR-grafted anti-GM $_2$ antibody activity evaluation in terms of transient expression as obtained using the plasmids pT796, pT796HLCDR, pT796HLCDRLV1, pT796HLCDRLV3, pT796HLCDRLV4, pT796HLCDRLV8, pT796HLCDRLm-2, pT796HLCDRLm-8, pT796HLCDRLm-28 and pT796HLCDRHSGL. The ordinate denotes the plasmid used, and the abscissa denotes the relative activity value with the activity obtained with the chimera antibody being taken as 100%.
 - Fig. 44 shows a construction scheme for plasmids named pKANTEX796HLCDRLm-28 and pKANTEX796HLCDRHSGL.
 - Fig. 45 shows electrophoretic patterns obtained for mouse-human chimeric anti- GM_2 antibody KM966 and purified human CDR-grafted anti- GM_2 antibodies KM8966 and KM8967 by SDS-PAGE (4 to 15% gradient gels used). The patterns shown on the left side are those obtained under reducing conditions, and those on the right under nonreducing conditions. From the left of each lane, the electrophoretic patterns for high-molecular-weight marker, KM966, KM8966, KM8967, low-molecular-weight marker, KM966, KM8966 and KM8967 are shown in that order.
 - Fig. 46 is a graphic representation of the GM₂-binding activities of mouse-human chimeric anti-GM₂ antibody KM966 and purified human CDR-grafted anti-GM₂ antibodies KM8966 and KM8967. The ordinate denotes the GM₂-binding activity, and the abscissa the antibody concentration.
 - Fig. 47 is a graphic representation of the reactivities of mouse-human chimeric anti-GM₂ antibody KM966 and purified human CDR-grafted anti-GM₂ antibodies KM8966 and KM8967 against various gangliosides. The ordinate denotes the ganglioside species, and the abscissa the binding activity. AcGM₂ stands for N-acetyl-GM₂, GcGM₂ for N-glycolyl-GM₂, AcGM3 for N-acetyl-GM₃ and GcGM3 for N-glycolyl-GM₃.
 - Fig. 48 is a graphic representation of the reactivities of mouse-human chimeric anti- GM_2 antibody KM966 and purified human CDR-grafted anti- GM_2 antibodies KM8966 and KM8967 against the human lung small cell carcinoma cell line SBC-3. The ordinate denotes the number of cells, and the abscissa the fluorescence intensity. From the lowermost graph, the reactivities of control, KM8967, KM8966 and KM966 are shown in that order.
 - Fig. 49 graphically shows the CDC activities of mouse-human chimeric anti-GM₂ antibody KM966 and purified human CDR-grafted anti-GM₂ antibodies KM8966 and KM8967 against the human lung small cell carcinoma cell line

SBC-3. The ordinate indicates the cytotoxic activity and the abscissa the concentration of the antibody.

Fig. 50 graphically shows the ADCC activities of mouse-human chimeric anti- GM_2 antibody KM966 and purified human CDR-grafted anti- GM_2 antibodies KM8966 and KM8967 against the human lung small cell carcinoma cell line SBC-3. The ordinate indicates the cytotoxicity and the abscissa the concentration of the antibody.

Fig. 51 shows a construction scheme for plasmids, pKANTEX796HM1Lm-28, pKANTEX796HM3Lm-28, pKANTEX796HM31Lm-28 and pKANTEX796HM32Lm-28.

Fig. 52 shows the electrophoretic patterns in SDS-PAGE (using 4-15% gradient gels) of mouse-human chimeric anti-GM $_2$ antibody KM966, human CDR-grafted anti-GM $_2$ antibody KM8966 and human CDR-grafted anti-GM $_2$ antibodies each having various types of substitution. The pattern obtained under nonreducing conditions is shown on the left side and that obtained under reducing conditions on the right side. M stands for molecular weight markers (from the top, the arrows indicate the molecular weight of 205 Kd, 140 Kd, 83 Kd, 45 Kd, 32.6 Kd, 18 Kd and 7.5 Kd in that order) and 1, 2, 3, 4, 5, 6 and 7 stand for the electrophoretic patterns of KM966, KM8966, M1-28, M2-28, M3-28, M31-28 and M32-28, respectively.

Fig. 53 graphically shows the CDC activities of mouse-human chimeric anti-GM₂ antibody KM966, human CDR-grafted anti-GM₂ antibody KM8966 and human CDR-grafted anti-GM₂ antibodies each having various types of substitution against the human lung small cell carcinoma cell line SBC-3. The ordinate indicates the cytotoxic activity and the abscissa the concentration of the antibody.

Fig. 54 shows a construction scheme for plasmids, pKANTEX796HLm-28 No.1, pKANTEX796HM1Lm-28 No.1, pKANTEX796HM2Lm-28 No.1 and pKANTEX796HM3Lm-28 No.1.

Fig. 55 shows the electrophoretic patterns in SDS-PAGE (using 4-15% gradient gels) of mouse-human chimeric anti-GM₂ antibody KM966 and human CDR-grafted anti-GM₂ antibodies each having various types of substitution. The pattern obtained under nonreducing conditions is shown on the left side and that obtained under reducing conditions on the right side. M stands for molecular weight markers (from the top, the arrows indicate the molecular weight of 205 Kd, 140 Kd, 83 Kd, 45 Kd, 32.6 Kd, 18 Kd and 7.5 Kd in that order) and 1, 2, 3, 4 and 5 stand for the electrophoretic patterns of KM966, h796H-No.1, M1-No.1, M2-No.1 and M3-No.1, respectively.

Fig. 56 graphically shows the CDC activities of mouse-human chimeric anti-GM₂ antibody KM966, human CDR-grafted anti-GM₂ antibodies KM8966 and KM8970 and human CDR-grafted anti-GM₂ antibodies each having various types of substitution against the human lung small cell carcinoma cell line SBC-3. The ordinate indicates the cytotoxic activity and the abscissa the concentration of the antibody.

Fig. 57 graphically shows the GM₂-binding activities of mouse-human chimeric anti-GM₂ antibody KM966 and human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970. The ordinate indicates the GM₂-binding activity and the abscissa the concentration of the antibody.

Fig. 58 graphically shows the reactivities of mouse-human chimeric anti-GM₂ antibody KM966 and human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970 against various gangliosides. The ordinate indicates the ganglioside species and the abscissa the binding activity. AcGM₂ stands for N-acetyl-GM₂, GcGM₂ for N-glycolyl-GM₃, AcGM₃ for N-acetyl-GM₃ and GcGM₃ for N-glycolyl-GM₃.

Fig. 59 graphically shows the reactivities of mouse-human chimeric anti-GM₂ antibody KM966 and human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970 against the human lung small cell carcinoma cell line SBC-3. The ordinate indicates the number of cells and the abscissa the fluorescence intensity. From the lowermost graph, the reactivities of control, KM966, KM8970 and KM8969 are shown in that order.

Fig. 60 graphically shows the ADCC activities of mouse-human chimeric anti- GM_2 antibody KM966 and human CDR-grafted anti- GM_2 antibodies KM8966, KM8969 and KM8970 against the human lung small cell carcinoma cell line SBC-3. The ordinate indicates the cytotoxicity and the abscissa the concentration of the antibody.

Fig. 61 graphically shows the CDC activities of mouse-human chimeric anti-GM₂ antibody KM966 and human CDR-grafted anti-GM₂ antibodies KM8966, KM8969 and KM8970 against the human lung small cell carcinoma cell line SBC-3 obtained when the reaction was carried out for 1 hour and 4 hours after the addition of the human complement. The ordinate indicates the cytotoxicity and the abscissa the concentration of the antibody.

DETAILED DESCRIPTION OF THE INVENTION

50

In the human CDR-grafted antibody, only CDRs of the H chain and L chain V regions comprise amino acid sequences of an antibody derived from nonhuman animal, and FRs of the H and L chain V regions and the C region comprise of amino acid sequences of a human antibody. Examples of the nonhuman animal include mouse, rat, hamster, rabbit and the like, as long as a hybridoma can be prepared therefrom.

With regard to the FR of the V regions of H chain and L chain, any amino acid sequence of known human antibodies can be used, such as an amino acid sequence selected from human antibody amino acid sequences, HMHCS, registered at the Protein Data Bank. Preferably, an amino acid sequence of the FR of HMHCS, which has a high homology with the FR of a monoclonal antibody of nonhuman animal, may be used.

As described in the foregoing, the antibody activity is reduced when the CDRs of the H chain V region and L chain V region of an antibody of nonhuman animal are replaced only with the CDRs of the H chain V region and L chain V region of a human antibody. In consequence, the present invention relates to a human CDR-grafted antibody wherein at least one amino acid in the FR of H chain and L chain V regions of the human CDR-grafted antibody is replaced by an other amino acid, so that it can show certain levels of antigen-binding activity, binding specificity and antibody dependent cell mediated cytotoxicity (ADCC), as well as complement dependent cytotoxicity (CDC), which are comparable to those of a human chimeric antibody having the V region of a monoclonal antibody derived from nonhuman animal which specifically reacts with ganglioside GM₂, and to a method for producing the same.

The replacement of at least one amino acid in the FR of H chain and L chain V regions of the human CDR-grafted antibody of the present invention means that amino acid residues desired to be replaced in the FR of H chain and L chain V regions of the human CDR-grafted antibody having a human antibody amino acid sequence are replaced by an other amino acid residues at corresponding positions in the FR of H chain and L chain V regions of a monoclonal antibody derived from nonhuman animal which specifically reacts with ganglioside GM₂. For example, at least one amino acid of positions 38, 40, 67, 72, 84 and 98 in the FR of H chain V region and positions 4, 11, 15, 35, 42, 46, 59, 69, 70, 71, 72, 76, 77 and 103 in the FR of L chain V region is replaced by an other amino acid.

Mouse anti- GM_2 monoclonal antibody KM796 (FERM BP-3340, JP-A-4-311385) can be cited as an example of the monoclonal antibody derived from nonhuman animal which specifically reacts with ganglioside GM_2 . A chimeric anti- GM_2 antibody KM966 (FERM BP-3931, JP-A- 6-205694) can be cited as an example of the human chimeric antibody having the V region of a monoclonal antibody which is derived from nonhuman animal which specifically reacts with ganglioside GM_2 .

Examples of the antibody having certain levels of antigen-binding activity, binding specificity and antibody dependent cell mediated cytotoxicity (ADCC), which are comparable to those of a human chimeric antibody having a V region of a monoclonal antibody derived from nonhuman animal which specifically reacts with ganglioside GM₂ include KM8966 produced by a transformant cell line KM8966 (FERM BP-5105), KM8967 produced by a transformant cell line KM8967 (FERM BP-5106) and KM8970 produced by a transformant cell line KM8970 (FERM BP-5528).

KM8969 produced by a transformant cell line KM8969 (FERM BP-5527) can be cited as an example of the antibody having certain levels of antigen-binding activity, binding specificity, antibody dependent cell mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC), which are comparable to those of a human chimeric antibody having a V region of a monoclonal antibody derived from nonhuman animal which specifically reacts with ganglioside GM₂.

A method for producing the human CDR-grafted anti-GM₂ antibody is discussed below.

1. Construction of humanized antibody expression vector

35

55

The humanized antibody expression vector is an expression vector for use in animal cells, in which cDNA molecules encoding the C regions of H chain and L chain of a human antibody are integrated, and can be constructed by inserting the cDNA molecules encoding the C regions of H chain and L chain of a human antibody into respective expression vectors for animal cell use or by inserting the cDNA molecules which encode the C regions of H chain and L chain of a human antibody into a single expression vector for animal cell use (such a vector is called a tandem cassette vector). The C regions of human antibody can be any of C regions of human antibody H chain and L chain, and examples thereof include γ1 type C region (referred to as "Cγ1" hereinafter) and γ4 type C region (referred to as "Cγ4" hereinafter) of the human antibody H chain and κ type C region (referred to as "C κ " hereinafter) of the human antibody L chain. Any expression vector for animal cell use can be used, as long as the cDNA encoding the human antibody C region can be integrated and expressed. Examples thereof include pAGE107 (Miyaji, H. et al., Cytotechnology, 3, 133 (1990)), pAGE103 (Mizukami, T. et al., J. Biochem., 101, 1307 (1987)), pHSG274 (Brady, G. et al., Gene, 27, 223 (1984)), pKCR (O'Hare, K. et al, Proc. Natl. Acad. Sci. U.S.A., 78, 1527 (1981)), and pSG1βd2-4 (Miyaji, H. et al., Cytotechnology, 4, 173 (1990)). Examples of the promoter and enhancer to be used in the expression vector for animal cell use include early promoter and enhancer of SV40 (Mizukami, T. et al., J. Biochem., 101, 1397 (1987)), LTR promoter and enhancer of Moloney mouse leukemia virus (Kuwana, Y. et al., Biochem. Biophys. Res. Comm., 149, 960 (1987)) and promoter (Mason, J.O. et al., Cell, 41, 479 (1985)) and enhancer (Gillies, S.D. et al., Cell, 33, 717 (1983)) of immunoglobulin H chain. The thus constructed humanized antibody expression vector can be used for expressing the human chimeric antibody and human CDR-grafted antibody in animal cells.

2. Preparation of cDNA encoding the V region of antibody of nonhuman animal

The cDNA encoding the H chain V region and L chain V region of the antibody of nonhuman animal to GM_2 is obtained in the following manner.

cDNA molecules are synthesized by extracting mRNA from cells of a hybridoma which produces the anti-GM2 mon-

oclonal antibody. A library is prepared from the thus synthesized cDNA using a phage or a plasmid. Using cDNA corresponding to the C region moiety or cDNA corresponding to the V region moiety of each chain of a mouse antibody as a probe, a recombinant phage or recombinant plasmid having a cDNA which encodes the V region of H chain or a recombinant phage or recombinant plasmid having a cDNA encoding the V region of L chain is isolated from the library, and complete nucleotide sequences of the intended H chain V region and L chain V region of the antibody on the recombinant phage or recombinant plasmid are determined. Complete amino acid sequences of the H chain V region and L chain V region are deduced from the thus determined nucleotide sequences.

KM796 (FERM BP-3340, JP-A-4-311385) can be cited as an example of the hybridoma cells which produce the anti-GM₂ monoclonal antibody.

The guanidine thiocyanate-cesium trifluoroacetate method [Methods in Enzymol., 154, 3 (1987)] can be exemplified as a method for prepering total RNA from hybridoma cells KM796, and the oligo (dT) immobilized cellulose column method [Molecular Cloning; A Laboratory Manual (2nd ed.)] can be exemplified as a method for preparing poly(A)⁺ RNA from the total RNA. As a kit for use in the preparation of mRNA from the hybridoma KM796 cells, Fast Track mRNA Isolation Kit; manufactured by Invitrogen), Quick Prep mRNA Purification Kit; manufactured by Pharmacia) or the like can be exemplified.

With regard to the method for synthesizing cDNA and preparing cDNA library, the methods described in Molecular Cloning; A Laboratory Manual (2nd ed.) and Current Protocols in Molecular Biology, supplements 1 - 34 and the like, or a method which uses a commercially available kit such as Super ScriptTM Plasmid System for cDNA Synthesis and Plasmid Cloning (manufactured by Life Technologies) or Zap-cDNA Synthesis Kit (manufactured by Stratagene) can be exemplified. In preparing a cDNA library, any vector can be used as the vector into which the cDNA synthesized using the mRNA extracted from the hybridoma cells KM796 is to be integrated, as long as the cDNA can be integrated therein. Examples of such vectors include ZAP Express [Strategies, 5, 58 (1992)], pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)], λzap II (manufactured by Stratagene), λgt10, λgt11 [DNA Cloning, A Practical Approach, Vol.1, 49 (1985)], Lambda BlueMid (manufactured by Clontech), λExCell, pT7T3 18U (manufactured by Pharmacia), pcD2 [Mol. Cell. Biol., 3, 280 (1983)] and pUC18 [Gene, 33, 103 (1985).

As *Escherichia coli* into which a cDNA library constructed by the vector is to be introduced, any strain can be used, as long as the cDNA library can be introduced, expressed and maintained. Examples of such strains include XL1-Blue NRF' [*Strategies*, <u>5</u>, 81 (1992)], C600 [*Genetics*, <u>39</u>, 440 (1954)], Y1088, Y1090 [*Science*, <u>222</u>, 778 (1983)], NM522 [*J. Mol. Biol.*, <u>166</u>, 1 (1983)], K802 [*J. Mol. Biol.*, <u>16</u>, 118 (1966)] and JM105 [*Gene*, <u>38</u>, 275 (1985)]. Selection of cDNA clones encoding the V regions of H chain and L chain of the antibody of nonhuman animal from the cDNA library can be carried out by a colony hybridization or place hybridization method in which a probe labeled with an isotope or a fluorescence is used [*Molecular Cloning*; A Laboratory Manual (2nd ed.)]. Also, a DNA fragment encoding the V regions of H chain and L chain can be prepared by preparing primers and carrying out the polymerase chain reaction (referred to as "PCR" hereinafter) method [*Molecular Cloning*; A Laboratory Manual (2nd ed.), Current Protocols in Molecular Biology, supplements 1 - 34] using cDNA or cDNA library synthesized from poly(A)⁺ RNA or mRNA as the template.

Nucleotide sequence of the DNA can be determined by digesting the cDNA clone selected by the aforementioned method with appropriate restriction enzymes, cloning the digests into a plasmid such as pBluescript SK(-) (manufactured by Stratagene) and then analyzing the resulting clones by a generally used nucleotide sequence analyzing method such as the dideoxy method of Sanger *et al.* [*Proc. Natl. Acad. Sci., U.S.A.,* 74, 5463 (1977)]. Analysis of the nucleotide sequence can be carried out using an automatic nucleotide sequence analyzer such as 373A DNA Sequencer (manufactured by Applied Biosystems).

3. Identification of CDR of the antibody of nonhuman animal

10

45

50

Each V region of H chain and L chain of the antibody forms an antigen binding site. Each of the V regions of H chain and L chain comprises four FRs whose sequences are relatively stable and three CDRs which connect them and are rich in sequence changes (Kabat, E.A. et al., "Sequences of Proteins of Immunological Interest", US Dept. Health and Human Services, 1991). Each CDR can be found by comparing it with the V region amino acid sequences of known antibodies (Kabat, E.A. et al., Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991).

4. Construction of CDR of the antibody of nonhuman animal

The DNA sequences encoding the H chain V region and L chain V region of the human CDR-grafted anti-GM₂ antibody are obtained in the following manner.

First, an amino acid sequence of the V region of each of the H chain and L chain of the human antibody is selected for grafting the CDR of the V region of the anti- GM_2 antibody of nonhuman animal. As the amino acid sequence of the human antibody V region, any of the known V region amino acid sequences derived from human antibodies can be

used. For example, an amino acid sequence selected from human antibody V region amino acid sequences, HMHCS, registered at the Protein Data Bank may be used. However, in order to create a human CDR-grafted antibody having activities of interest such as binding activity and binding specificity for GM₂ or anti-tumor effect on GM₂-positive cells, it is desirable that the sequence has a high homology with the amino acid sequence of the V region of monoclonal antibody derived from nonhuman animal. Next, the DNA sequence encoding the FR in the selected V region amino acid sequence of human antibody is connected with the DNA sequence which encodes the amino acid sequence of the CDR, that becomes the source of the creation, of the V region of monoclonal antibody originated from nonhuman animal, thereby designing a DNA sequence which encodes the amino acid sequence of the V region of each of the H chain and L chain. A total of 6 synthetic DNA fragments are designed for each chain in such a manner that they can cover the thus designed DNA sequence, and PCR is carried out using them. Alternatively, 6 or 7 of each of anti-sense and sense DNA sequences, each comprising 35 to 84 bases, are synthesized in such a manner that they can cover the thus designed DNA sequence, and they are annealed to form double-stranded DNA fragments which are then subjected to the linking reaction. Thereafter, the amplification reaction product or the linking reaction product is subcloned into an appropriate vector and then its nucleotide sequence is determined, thereby obtaining a plasmid which contains the DNA sequence that encodes the amino acid sequence of the V region of each chain of the human CDR-grafted antibody of interest.

5. Modification of amino acid sequence of the V region of human CDR-grafted antibody.

Modification of amino acid sequence of the V region of human CDR-grafted antibody is carried out by a mutation introducing method using PCR. Illustratively, a sense mutation primer and an anti-sense mutation primer, comprising 20 to 40 bases and containing a DNA sequence which encodes amino acid residues after the modification, are synthesized and PCR is carried out using, as the template, a plasmid containing a DNA sequence which encodes the amino acid sequence of the V region to be modified. The amplified fragments are subcloned into an appropriate vector and then their nucleotide sequences are determined to obtain a plasmid which contains a DNA sequence in which the mutation of interest is introduced.

6. Construction of human CDR-grafted antibody expression vector

20

40

45

The human CDR-grafted antibody expression vector can be constructed by inserting the DNA sequences obtained in the above paragraphs 4 and 5, encoding V regions of H chain and L chain of the human CDR-grafted antibody, into upstream of the cDNA, corresponding to the C regions of H chain and L chain of human antibody, of the humanized antibody expression vector prepared in the above paragraph 1. For example, they are inserted into upstream of the cDNA of desired human antibody C regions so that they are properly expressed, by introducing appropriate restriction enzyme recognition sequences into the 5'- and 3'-termini of a synthetic DNA when PCR is carried out in order to construct a DNA sequence which encodes amino acid sequences of the V regions of H chain and L chain of the human CDR-grafted antibody.

7. Expression of the human CDR-grafted antibody and its activity evaluation

A transformant cell line capable of producing the human CDR-grafted antibody can be obtained by introducing the human CDR-grafted antibody expression vector prepared in the above paragraph 6.

Electroporation (JP-A-2-257891; Miyaji, H. *et al.*, *Cytotechnology*, <u>3</u>, 133 (1990)) or the like can be used as the introduction method of the expression vector into host cells.

With regard to the host cells into which the human CDR-grafted antibody expression vector is introduced, any type of host cells can be used with the proviso that the human CDR-grafted antibody can be expressed therein. Examples of such cells include mouse SP2/0-Ag14 cells (ATCC CRL1581, referred to as "SP2/0 cells" hereinafter), mouse P3X63-Ag8.653 cells (ATCC CRL1580), dihydrofolate reductase gene (referred to as "DHFR gene" hereinafter)-deficient CHO cells (Urlaub, G. et al., Proc. Natl. Acad. Sci. U.S.A., 77, 4216 (1980)), rat YB2/3HL.P2.G11.16Ag.20 cells (ATCC CRL1662, referred to as "YB2/0 cells" hereinafter) and the like.

After introduction of the vector, a transformant cell line capable of producing the human CDR-grafted antibody is selected in accordance with the method disclosed in JP-A-2-257891, using the RPMI 1640 medium containing geneticin (manufactured by Gibco, referred to as "G418" hereinafter) and fetal calf serum (referred to as "FCS" hereinafter). By culturing the thus obtained transformant cell line in a medium, the human CDR-grafted antibody can be produced and accumulated in the culture supernatant. Activity of the human CDR-grafted antibody in the culture supernatant is measured, for example, by the enzyme-linked immunosorbent assay (referred to as "ELISA method" hereinafter; Harlow, E. et al., Antibodies, A laboratory Manual, Cold Spring Harbor Laboratory, Chapter 14 (1988)). In addition, production of the human CDR-grafted antibody by the transforaant cell line can be improved in accordance

with the method disclosed in JP-A-2-257891 making use of a DHFR gene amplifying system and the like.

The human CDR-grafted antibody can be purified from the aforementioned culture supernatant using a protein A column (Harlow, E. *et al.*, *Antibodies*, *A Laboratory Manual*, Cold Spring Harbor Laboratory, Chapter 8 (1988)). Alternatively, other purification methods usually used for proteins can be employed. For example, it can be purified by carrying out gel filtration, ion exchange chromatography, ultrafiltration and the like techniques in an appropriate combination. Molecular weight of the H chain, L chain or entire antibody molecule of the thus purified human CDR-grafted antibody is measured for example by polyacrylamide gel electrophoresis (referred to as "SDS-PAGE" hereinafter; Laemmli, U.K. *et al.*, *Nature*, <u>227</u>, 680 (1970) or western blot technique (Harlow, E. *et al.*, *Antibodies, A Laboratory Manual*, Cold Spring Harbor Laboratory, Chapter 12 (1988).

Reactivity of the purified human CDR-grafted antibody with antigens and its binding activity to cultured cancer cell lines are measured by ELISA method, fluorescent antibody technique and the like means. Its complement dependent cytotoxicity (referred to as "CDC" hereinafter) activity and antibody dependent cell mediated cytotoxicity (referred to as "ADCC" hereinafter) activity upon cultured cancer cell lines are measured by the method of Shitara, K. et al. (Cancer Immunol. Immunother., 36, 373 (1993)).

Since the human CDR-grafted antibody of the present invention binds to cultured cancer cell lines of human origin in a specific fashion and shows cytotoxic activities such as CDC activity and ADCC activity, it is useful in the diagnosis and treatment of human cancers and the like. In addition, since most portions of said antibody are originated from the amino acid sequence of a human antibody, when compared with monoclonal antibodies of animal origins excluding human, it is expected that it will exert strong anti-tumor effect without showing immunogenicity and that the effect will be maintained for a prolonged period of time.

The human CDR-grafted antibody of the present invention can be used as an anti-tumor composition, alone or together with at least one pharmaceutically acceptable auxiliary (carrier). For example, the human CDR-grafted antibody is made into an appropriate pharmaceutical composition by dissolving it in physiological saline or an aqueous solution of glucose, lactose, mannitol or the like. Alternatively, the human CDR-grafted antibody is freeze-dried in the usual way and then mixed with sodium chloride to prepare powder injections. As occasion demands, the pharmaceutical composition may contain pharmaceutically acceptable salts and the like additives commonly known in the field of pharmaceutical preparations.

Though the dosage of the pharmaceutical preparation varies depending on the age, symptoms and the like of each patient, the human CDR-grafted antibody is administered to animals including human at a dose of from 0.2 to 20 mg/kg/day. The administration is carried out once a day (single administration or every day administration) or 1 to 3 times a week or once in 2 to 3 weeks, by intravenous injection.

The present invention will be illustrated by the following Examples; however, the present invention is not limited thereto.

5 EXAMPLE 1

10

Construction of tandem cassette humanized antibody expression vector, pKANTEX93:

A tandem cassette humanized antibody expression vector, pKANTEX93, for the expression of a human CDR-grafted antibody in animal cells was constructed based on the plasmid pSE1UK1SEd1-3 described in JP-A-2-257891 by inserting a cDNA fragment coding for a human CDR-grafted antibody H chain V region and a cDNA fragment coding for a human CDR-grafted antibody L chain V region into said plasmid upstream of the human antibody $C\gamma$ 1 cDNA and human antibody $C\kappa$ cDNA, respectively, in the following manner. The humanized antibody expression vector thus constructed can be also used for expressing a mouse-human chimeric antibody.

15 1. Modification of Apal and EcoRI restriction enzyme sites occurring in rabbit β-globin gene splicing and poly A signals

For making it possible to construct a human CDR-grafted antibody expression vector by inserting human CDR-grafted antibody V regions cassette-wise in the form of *NotI-Apal* (H chain) and EcoRI-*SpI*I (L chain) restriction fragments into a vector for humanized antibody expression, the *Apal* and *Eco*RI restriction sites occurring in the rabbit β-globin gene splicing and poly A signals of the plasmid pSE1UK1SEd1-3 were modified in the following manner.

Three µg of the plasmid pBluescript SK(-) (Stratagene) was added to 10 µl of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme *Apal* (Takara Shuzo) was further added, and the digestion reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, and the 3' cohesive ends resulting from *Apal* digestion were rendered blunt using DNA Blunting Kit (Takara Shuzo), followed by ligation using DNA Ligation Kit (Takara Shuzo). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101. Thus was obtained a plasmid, pBSA, shown in Fig. 1.

Furthermore, 3 µg of the plasmid pBSA thus obtained was added to 10 µl of 50 mM Tris-hydrochloride buffer (pH

7.5) containing 10 mM magnesium chloride, 100 mM sodium chloride and 1 mM DTT, 10 units of the restriction enzyme *Eco*RI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, and the 5' cohesive ends resulting from *Eco*RI digestion were rendered blunt using DNA Blunting Kit (Takara Shuzo), followed by ligation using DNA Ligation Kit (Takara Shuzo). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101. Thus was obtained the plasmid pBSAE shown in Fig. 2.

Then, 3 μ g of the thus-obtained plasmid pBSAE was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT, 10 units of the restriction enzyme *Hind*III (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 20 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, and the solution was divided into two 10- μ l portions. To one portion, 10 units of the restriction enzyme *Sac*II (Toyobo) was further added and, to the other, 10 units of the restriction enzyme *Kpn*I (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. Both the reaction mixtures were fractionated by agarose gel electrophoresis, whereby about 0.3 μ g each of a *Hind*III-*Sac*II fragment (about 2.96 kb) and a *Kpn*I-*Hind*III fragment (about 2.96 kb) were recovered.

Then, 3 μ g of the plasmid pSE1UK1SEd1-3 was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme *Sac*II (Toyobo) and 10 units of the restriction enzyme *Kpn*I (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 10 mM Trishydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT, 10 units of the restriction enzyme *Hin*dIII (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 0.2 μ g each of a *Hin*dIII-*Sac*II fragment (about 2.42 kb) and a *Kpn*I-*Hin*dIII fragment (about 1.98 kb) were recovered.

Then, 0.1 µg of the thus-obtained *HindIII-SacII* fragment of pSE1UK1SEd1-3 and 0.1 µg of the above *HindIII-SacII* fragment of pBSAE were dissolved in a total of 20 µl of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101 and, as a result, a plasmid, pBSH-S, shown in Fig. 3 was obtained. Furthermore, 0.1 µg of the above-mentioned *KpnI-HindIII* fragment of pSE1UK1SEd1-3 and 0.1 µg of the above-mentioned *KpnI-HindIII* fragment of pBSAE were dissolved in a total of 20 µl of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pBSK-H shown in Fig. 4 was obtained.

Then, 3 μ g each of the thus-obtained plasmids pBSH-S and pBSK-H were respectively added to 10- μ l portions of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme *Apal* (Takara Shuzo) was further added to each mixture, and the reaction was allowed to proceed at 37°C for 1 hour. Both the reaction mixtures were subjected to ethanol precipitation. With each precipitate, the 3' cohesive ends resulting from *Apal* digestion were rendered blunt using DNA Blunting Kit (Takara Shuzo), followed by ligation using DNA Ligation Kit (Takara Shuzo). The thus-obtained recombinant DNA solution were used to transform *Escherichia coli* HB101, and the plasmids pBSH-SA and pBSK-HA shown in Fig. 5 were obtained.

Then, 5 μ g each of the thus-obtained plasmids pBSH-SA and pBSK-HA were respectively added to 10- μ l portions of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride, 100 mM sodium chloride and 1 mM DTT, 1 unit of the restriction enzyme EcoRl (Takara Shuzo) was further added to each mixture, and the reaction was allowed to proceed at 37°C for 10 minutes for partial digestion. Both the reaction mixtures were subjected to ethanol precipitation. With each precipitate, the 5' cohesive ends resulting from EcoRl digestion were rendered blunt using DNA Blunting Kit (Takara Shuzo), followed by fractionation by agarose gel electrophoresis, whereby about 0.5 μ g each of a fragment about 5.38 kb in length and a fragment about 4.94 kb in length were recovered. The thus-recovered fragments (0.1 μ g each) were each dissolved in a total of 20 μ l of sterilized water and subjected to ligation treatment using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant DNA solutions were respectively used to transform Escherichia coli HB101, and the plasmids pBSH-SAE and pBSK-HAE shown in Fig. 6 were obtained.

Then, 3 μg each of the thus-obtained plasmids pBSH-SAE and pBSK-HAE were respectively added to 10-μl portions of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride, 100 mM sodium chloride and 1 mM DTT, 10 units of the restriction enzyme *Eco*RI (Takara Shuzo) was further added to each mixture, and the reaction was allowed to proceed at 37°C for 1 hour. Both the reaction mixtures were subjected to ethanol precipitation. With each precipitate, the 5' cohesive ends resulting from *Eco*RI digestion were rendered blunt using DNA Blunting Kit (Takara Shuzo), followed by ligation using DNA Ligation Kit (Takara Shuzo). The thus-obtained recombinant plasmid DNA solutions were each used to transform *Escherichia coli* HB101, and two plasmids, pBSH-SAEE and pBSK-HAEE, shown in Fig. 7 were obtained. Ten μg each of the thus-obtained plasmids were subjected to sequencing reaction according to the instructions attached to AutoRead Sequencing Kit (Pharmacia Biotech), followed by base sequence determination by electrophoresis on A.L.F. DNA Sequencer (Pharmacia Biotech), whereby it was confirmed that both

the Apal and EcoRI sites had disappeared as a result of the above modification.

5

30

(2) Sall restriction site introduction downstream from rabbit β -globin gene splicing and poly A signals and SV40 early gene poly A signal

For making it possible to exchange the antibody H chain and L chain expression promoters of the humanized antibody expression vector each for an arbitrary promoter, a Sall restriction site was introduced into the plasmid pSE1UK1SEd1-3 downstream from the rabbit β -globin gene splicing and poly A signals and from the SV40 early gene poly A signal in the following manner.

Three µg of the plasmid pBSK-HAEE obtained in Paragraph 1 of Example 1 was added to 10 µl of 10 mM Trishydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Nael (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 20 μl of 50 mM Tris-hydrochloride buffer (pH 9.0) containing 1 mM magnesium chloride, 1 unit of alkaline phosphatase (E. coli C75, Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour for dephosphorylation at the 5' termini. The reaction mixture was further subjected to phenol-chloroform extraction and then to ethanol precipitation, and the precipitate was dissolved in 20 µl of 10 mM Tris-hydrochloride buffer (pH 8.0) containing 1 mM disodium ethylenediaminetotraacetate (hereinafter briefly referred to as "TE buffer"). One μl of said reaction solution and 0.1 μg of a phosphorylated Sa/l linker (Takara Shuzo) were added to sterilized water to make a total volume of 20 μl, followed by ligation treatment using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform Escherichia coli HB101, and a plasmid, pBSK-HAEESal, shown in Fig. 8 was obtained. Ten µg of the plasmid thus obtained was subjected to sequencing reaction according to the instructions attached to AutoRead Sequencing Kit (Pharmacia Biotech), followed by electrophoresis on A.L.F. DNA Sequencer (Pharmacia Biotech) for base sequence determination, whereby it was confirmed that one Sall restriction site had been introduced downstream from the rabbit β-globin gene splicing and poly A signals and from the SV40 early gene poly A signal.

3. Modification of *Apa*I restriction site occurring in poly A signal of Herpes simplex virus thymidine kinase (hereinafter referred to as "HSVtk") gene

The Apal restriction site occurring in the HSVtk gene poly A signal downstream from the Tn5 kanamycin phosphotransferase gene of the plasmid pSE1UK1SEd1-3 was modified in the following manner.

Three μg of the plasmid pBSA obtained in Paragraph 1 of Example 1 was added to 10 μl of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme SacII (Toyobo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Xhol (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μg of a SacII-XhoI fragment (about 2.96 kb) was recovered.

Then, 5 μ g of the plasmid pSE1UK1SEd1-3 was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme SacII (Toyobo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme XhoI (Takara Shuzo) was further added, and the reaction was fractionated by agarose gel electrophoresis, whereby about 1 μ g of a SacII-XhoI fragment (about 4.25 kb) was recovered.

Then, 0.1 μ g of the above SacII-XhoI fragment of pBSA and the above SacII-XhoI fragment of pSE1UK1SEd1-3 were added to a total of 20 μ I of sterilized water, followed by ligation using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli\ HB101$, and the plasmid pBSX-S shown in Fig. 9 was obtained.

Then, 3 μ g of the thus-obtained plasmid pBSX-S was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Apal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the 3' cohesive ends resulting from Apal digestion were rendered blunt using DNA Blunting Kit (Takara Shuzo) and then ligation was carried out using DNA Ligation Kit (Takara Shuzo). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli$ HB101, and a plasmid, pBSX-SA, shown in Fig. 10 was obtained. Ten μ g of the thus-obtained plasmid was subjected to sequencing reaction according to the instructions attached to AutoRead Sequencing Kit (Pharmacia Biotech), followed by electrophoresis on A.L.F. DNA Sequencer

(Pharmacia Biotech) for base sequence determination, whereby it was confirmed that the *Apa*I restriction site in the HSVtk gene poly A signal had disappeared.

4. Construction of humanized antibody L chain expression unit

5

A plasmid, pMohC κ , containing a human antibody C κ cDNA downstream from the promoter/enhancer of the Moloney mouse leukemia virus long terminal repeat and having a humanized antibody L chain expression unit allowing cassette-wise insertion thereinto of a humanized antibody L chain V region was constructed in the following manner.

Three μg of the plasmid pBluescript SK(-) (Stratagene) was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Sacl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Clal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, and the cohesive ends resulting from Sacl and Clal digestion were rendered blunt using DNA Blunting Kit (Takara Shuzo), followed by fractionation by agarose gel electrophoresis, whereby about 1 μ g of a DNA fragment about 2.96 kb in length was recovered. A 0.1- μ g portion of the DNA fragment recovered was added to a total of 20 μ l of sterilized water and subjected to ligation reaction using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli\ HB101$, and the plasmid pBSSC shown in Fig. 11 was obtained.

Then, 3 μg of the thus-obtained plasmid pBSSC was added to 10 μl of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Kpnl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Xhol (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μg of a Kpnl-Xhol fragment (about 2.96 kb) was recovered.

Then, 5 μ g of the plasmid pAGE147 described in JP-A-6-205694 was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Kpnl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Xhol (Takara Shuzo) was further added, and the reaction was fractionated by agarose gel electrophoresis, whereby about 0.3 μ g of a Kpnl-Xhol fragment (about 0.66 kb) containing the Moloney mouse leukemia virus long terminal repeat promoter/enhancer was recovered.

Then, 0.1 μ g of the *KpnI-XhoI* fragment of pBSSC and 0.1 μ g of the *KpnI-XhoI* fragment of pAGE147 each obtained as mentioned above were dissolved in a total of 20 μ I of sterilized water and subjected to ligation using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pBSMo shown in Fig. 12 was obtained.

Then, 3 μ g of the above plasmid pBSMo was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Kpnl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme HindIII (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μ g of a Kpnl-HindIII fragment (about 3.62 kb) was recovered.

Then, synthetic DNAs respectively having the base sequences shown in SEQ ID NO:12 and SEQ ID NO:13 were synthesized using an automatic DNA synthesizer (Applied Biosystems model 380A). To 15 μ l of sterilized water were added 0.3 μ g each of the thus-obtained synthetic DNAs, and the mixture was heated at 65°C for 5 minutes. The reaction mixture was allowed to stand at room temperature for 30 minutes and then 2 μ l of 10-fold concentrated buffer [500 mM Tris-hydrochloride (pH 7.6), 100 mM magnesium chloride, 50 mM DTT] and 2 μ l of 10 mM ATP were added, 10 units of T4 polynucleotide kinase was further added, and the reaction was allowed to proceed at 37°C for 30 minutes for phosphorylation of the 5' termini. To a total of 20 μ l of sterilized water were added 0.1 μ g of the above Kpnl-HindIII fragment (3.66 kb) derived from the plasmid pBSMo and 0.05 μ g of the phosphorylated synthetic DNA pair, and ligation was effected using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli\ HB101$, and the plasmid pBSMoS shown in Fig. 13 was obtained. Ten μ g of the plasmid thus obtained was subjected to sequencing reaction according to the instructions attached to AutoRead Sequencing Kit (Pharmacia Biotech), followed by electrophoresis on A.L.F. DNA Sequencer (Pharmacia Bio-

tech) for base sequence determination, whereby it was confirmed that the synthetic DNA pair had been introduced as desired.

Then, 3 μ g of the plasmid pChilgLA1 described in JP-A-5-304989 was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units each of the restriction enzymes EcoRI (Takara Shuzo) and EcoRV (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μ g of an EcoRI-EcoRV fragment (about 9.70 kb) was recovered.

Then, synthetic DNAs respectively having the base sequences shown in SEQ ID NO:14 and SEQ ID NO:15 were synthesized using an automatic DNA synthesizer (Applied Biosystems model 380A). To 15 μ l of sterilized water were added 0.3 μ g each of the thus-obtained synthetic DNAs, and the mixture was heated at 65°C for 5 minutes. The reaction mixture was allowed to stand at room temperature for 30 minutes. Then, 2 μ l of 10-fold concentrated buffer [500 mM Tris-hydrochloride (pH 7.6), 100 mM magnesium chloride, 50 mM DTT] and 2 μ l of 10 mM ATP were added, 10 units of T4 polynucleotide kinase was further added, and the reaction was allowed to proceed at 37°C for 30 minutes for phosphorylation of the 5' termini. To a total of 20 μ l of sterilized water were added 0.1 μ g of the above EcoRI-EcoRV fragment (9.70 kb) derived from the plasmid pChilgLA1 and 0.05 μ g of the phsophorylated synthetic DNA, and ligation was effected using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli\ HB101$, and the plasmid pChilgLA1S shown in Fig. 14 was obtained.

Then, 3 μ g of the plasmid pBSMoS obtained in the above manner was dissolved in 10 μ l of 20 mM Tris-hydrochloride buffer (pH 8.5) containing 100 mM potassium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Hpal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme EcoRI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μ g of an Hpal-EcoRI fragment (about 3.66 kb) was recovered.

Then, 10 μ g of the plasmid pChilgLA1S obtained as mentioned above was dissolved in 10 μ l of 20 mM Tris-acetate buffer (pH 7.9) containing 50 mM potassium acetate, 10 mM magnesium acetate, 1 mM DTT and 100 μ g/ml BSA, 10 units of the restriction enzyme N/alV (New England BioLabs) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme EcoRl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 0.3 μ g of an N/alV-EcoRl fragment (about 0.41 kb) was recovered.

Then, 0.1 μg of the above Hpal-EcoRl fragment of pBSMoS and 0.1 μg of the above NlalV-EcoRl fragment of pChilgLA1S were added to a total of 20 μl of sterilized water, and ligation was effected using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform Escherichia coli HB101, and the plasmid pMohC κ shown in Fig. 15 was obtained.

5. Construction of humanized antibody H chain expression unit

40

A plasmid, pMohC γ 1, containing a human antibody C γ 1 cDNA downstream from the promoter/enhancer of the Moloney mouse leukemia virus long terminal repeat and having a humanized antibody H chain expression unit allowing cassette-wise insertion thereinto of a humanized antibody H chain V region was constructed in the following manner.

Three μg of the plasmid pBSMo obtained in Paragraph 4 of Example 1 was added to 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme *Xho*I (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μl of 30 mM sodium acetate buffer (pH 5.0) containing 100 mM sodium chloride, 1 mM zinc acetate and 10% glycerol, 10 units of Mung bean nuclease (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 10 minutes. The reaction mixture was subjected to phenol-chloroform extraction and then to ethanol precipitation, the cohesive ends of the precipitate were rendered blunt using DNA Blunting Kit (Takara Shuzo) and ligation was effected using DNA Ligation Kit (Takara Shuzo). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pBSMoSal shown in Fig. 16 was obtained. A 10-μg portion of the plasmid obtained was subjected to sequencing reaction according to the instructions attached to AutoRead Sequencing Kit (Pharmacia Biotech), followed by electrophoresis on A.L.F. DNA Sequencer (Pharmacia Biotech) for base sequence determination, whereby it was confirmed that the *Xho*I restriction site upstream of the Moloney mouse leukemia virus long terminal repeat promoter/enhancer had disappeared.

Then, 3 µg of the plasmid pBSMoSal obtained as mentioned above was added to 10 µl of 10 mM Tris-hydrochloride

buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Kpnl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme HindIII (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μ g of a Kpnl-HindIII fragment (about 3.66 kb) was recovered.

Then, synthetic DNAs respectively having the base sequences shown in SEQ ID NO:16 and SEQ ID NO:17 were synthesized using an automatic DNA synthesizer (Applied Biosystems model 380A). To 15 μ l of sterilized water were added 0.3 μ g each of the thus-obtained synthetic DNAs, and the mixture was heated at 65°C for 5 minutes. The reaction mixture was allowed to stand at room temperature for 30 minutes. Then, 2 μ l of 10-fold concentrated buffer [500 mM Tris-hydrochloride (pH 7.6), 100 mM magnesium chloride, 50 mM DTT] and 2 μ l of 10 mM ATP were added, 10 units of T4 polynucleotide kinase was further added, and the reaction was allowed to proceed at 37°C for 30 minutes for phosphorylation of the 5' termini. To a total of 20 μ l of sterilized water were added 0.1 μ g of the above Kpnl-HindIII fragment (3.66 kb) derived from the plasmid pBSMoSa1 and 0.05 μ g of the phosphorylated synthetic DNA, and ligation was effected using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli$ HB101, and the plasmid pBSMoSa1S shown in Fig. 17 was obtained. A 10- μ g portion of the thus-obtained plasmid was subjected to sequencing reaction according to the instructions attached to AutoRead Sequencing Kit (Pharmacia Biotech), followed by electrophoresis on A.L.F. DNA Sequencer (Pharmacia Biotech), for base sequence determination whereby it was confirmed that the synthetic DNA had been introduced as desired.

Then, 10 μ g of the plasmid pChilgHB2 described in JP-A-5-304989 was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Eco52l (Toyobo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 30 mM sodium acetate buffer (pH 5.0) containing 100 mM sodium chloride, 1 mM zinc acetate and 10% glycerol, 10 units of Mung bean nuclease (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 10 minutes. The reaction mixture was subjected to phenol-chloroform extraction and then to ethanol precipitation, and the cohesive ends were rendered blunt using DNA Blunting Kit (Takara Shuzo). After ethanol precipitation, the precipitate was dissolved in 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Apal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 0.7 μ g of Apal-blunt end fragment (about 0.99 kb) was recovered.

Then, 3 μ g of the plasmid pBluescript SK(-) (Stratagene) was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesia chloride and 1 mM DTT, 10 units of the restriction enzyme Apal (2UTakara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 33 mM Tris-acetate buffer (pH 7.9) containing 10 mM magnesium acetate, 66 mM potassium acetate, 0.5 mM DTT and 100 μ g/ml BSA, 10 units of the restriction enzyme Smal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μ g of an Apal-Smal fragment (about 3.0 kb) was recovered

Then, 0.1 μg of the *Apal*-blunt end fragment of pChilgHB2 and 0.1 μg of the *Apal-Smal* fragment of pBluescript SK(-), each obtained as mentioned above, were added to a total of 20 μl of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pBShC γ 1 shown in Fig. 18 was obtained.

Then, 5 μ g of the above plasmid pBShC γ 1 was dissolved in 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Apal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Spel (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μ g of an Apal-Spel fragment (about 1.0 kb) was recovered.

Then, 3 μ g of the plasmid pBSMoSa1S obtained as mentioned above was dissolved in 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme $A\rho al$ (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme $S\rho el$ (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture

was fractionated by agarose gel electrophoresis, whereby about 1 μg of an *Apal-Spel* fragment (about 3.66 kb) was recovered.

Then, 0.1 μg of the *Apal-Spel* fragment of pBShCγ1 and 0.1 μg of the *Apal-Spel* fragment of pBSMoSa1S, each obtained as mentioned above, were added to a total of 20 μl of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pMohCγ1 shown in Fig. 19 was obtained.

6. Construction of tandem cassette humanized antibody expression vector, pKANTEX93

10

20

A tandem cassette humanized antibody expression vector, pKANTEX93, was constructed using the various plasmids obtained in Paragraphs 1 through 5 of Example 1 in the following manner.

Three μg of the plasmid pBSH-SAEE obtained in Paragraph 1 of Example 1 was added to 10 μl of 10 mM Trishydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme HindIII (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Sall (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μg of a HindIII -Sall fragment (about 5.42 kb) was recovered.

Then, 5 μ g of the plasmid pBSK-HAEE obtained in Paragraph 1 of Example 1 was added to 10 μ l of 10 mM Trishydrochloride buffer (ph 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Kpnl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme HindIII (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 0.8 μ g of a Kpnl-HindIII fragment (about 1.98 kb) containing the rabbit β -globin gene splicing and poly A signals, the SV40 early gene poly A signal and the SV40 early gene promoter was recovered.

Then, 5 μ g of the plasmid pMohC γ 1 obtained in Paragraph 5 of Example 1 was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Kpnl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Sall (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 0.8 μ g of a human CDR-grafted antibody H chain expression unit-containing Kpnl-Sall fragment (about 1.66 kb) was recovered.

Then, 0.1 μ g of the HindIII-Sa/I fragment of pBSH-SAEE, 0.1 μ g of the HindIII fragment of pBSK-HAEE and 0.1 μ g of the HindIII fragment of pMohC γ 1, each obtained as mentioned above, were added to a total of 20 μ I of sterilized water and ligated together using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform HindIII and the plasmid pMo γ 1SP shown in Fig. 20 was obtained.

Then, 3 μ g of the above plasmid pMo γ 1SP was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Sa/l (Takara Shuzo) and 10 units of the restriction enzyme XhoI were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μ g of a Sa/l-XhoI fragment (about 9.06 kb) was recovered.

Then, 5 μ g of the plasmid pBSK-HAEESal obtained in Paragraph 2 of Example 1 was added to 10 μ l of 10 mM Trishydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Kpnl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Sall (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 0.7 μ g of a Kpnl-Sall fragment (about 1.37 kb) containing the rabbit β -globin gene splicing and poly A signals and the SV40 early gene poly A signal was recovered.

Then, 5 μ g of the plasmid pMohC κ obtained in Paragraph 4 of Example 1 was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1mM DTT, 10 units of the restriction enzyme Kpnl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5)

containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme XhoI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 0.7 μ g of a human CDR-grafted antibody L chain expression unit-containing KpnI-XhoI fragment (about 1.06 kb) was recovered.

Then, 0.1 μg of the Sall-Xhol fragment of pMo γ 1SP, 0.1 μg of the Kpnl-Sall fragment of pBSK-HAEESal and 0.1 μg of the Kpnl-Xhol fragment of pMohC κ , each obtained as mentioned above, were added to a total of 20 μl of sterilized water and ligated together using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plaid pMo $\kappa\gamma$ 1SP shown in Fig. 21 was obtained.

Then, 3 μ g of the above plasmid pMo $\kappa\gamma$ 1SP was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme *Xho*l (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 1 units of the restriction enzyme *Sac*II (Toyobo) was further added, and the reaction was allowed to proceed at 37°C for 10 minutes for partial digestion. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.2 μ g of a *Sac*II-*Xho*I fragment (about 8.49 kb) was recovered.

Then, 3 μg of the plaid pBSX-SA obtained in Paragraph 3 of Example 1 was added to 10 μl of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme SacII (Toyobo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme XhoI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μg of a SacII-XhoI fragment (about 4.25 kb) was recovered.

Then, 0.1 μg of the SacII-XhoI fragment of pMo $\kappa\gamma$ 1SP and 0.1 μg of the SacII-XhoI fragment of pBSX-SA, each obtained as mentioned above, were added to a total of 20 μI of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli\ HB101$, and the plasmid pKANTEX93 shown in Fig. 22 was obtained.

EXAMPLE 2

5

10

25

1. Expression of mouse-human chimeric anti-GM2 antibody

Mouse-human chimeric anti-GM₂ antibody expression was effected using the humanized antibody expression vector pKANTEX93 mentioned above in Example 1 in the following manner.

(1) Construction of plasmid pBSH3 containing mouse anti-GM2 antibody KM796 H chain V region cDNA

Three μg of the plasmid pBluescript SK(-) (Stratagene) was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units each of the restriction enzymes SacII (Toyobo) and KpnI (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, and the precipitate was subjected to blunting treatment for rendering blunt the 3' cohesive ends resulting from the restriction enzyme digestion using DNA Blunting Kit (Takara Shuzo). The resulting reaction was precipitated with ethanol, the precipitate thus obtained was dissolved in 20 μ l of a buffer containing 50 mM Tris-hydrochloride buffer (pH 9.0) and 1 mM magnesium chloride, and the mixture thus obtained was allowed to react by adding one unit of alkali phosphatase ($E.\ coli$ C75, Takara Shuzo) at 37°C for 1 hour for dephosphorylation of the 5' termini. Then, fractionation by agarose gel electrophoresis was carried out, and about 1 μ g of a DNA fragment about 2.95 kb in size was recovered.

Then, synthetic DNAs respectively having the base sequences shown in SEQ ID NO:18 and SEQ ID NO:19 were synthesized using an automatic DNA synthesizer (Applied Biosystems model 380A). To 15 μ l of sterilized water were added 0.3 μ g each of the synthetic DNAs obtained, and the mixture was heated at 65°C for 5 minutes. The reaction mixture was allowed to stand at room temperature for 30 minutes and then 2 μ l of 10-fold concentrated buffer [500 mM Tris-hydrochloride (pH 7.6), 100 mM magnesium chloride, 50 mM DTT] and 2 μ l of 10 mM ATP were added, 10 units of T4 polynucleotide kinase was further added, and the reaction was allowed to proceed at 37°C for 30 minutes for phosphorylating the 5' termini. To a total of 20 μ l of sterilized water were added 0.1 μ g of the DNA fragment (2.95 kb) derived from the plasmid pBluescript SK(-) and 0.05 μ g of the phosphorylated synthetic DNA, each obtained as mentioned above, followed by ligation to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech): The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plaid pBSNA shown in Fig.

23 was obtained. Ten μg of the plasmid obtained was subjected to sequencing reaction treatment according to the instructions attached to AutoRead Sequencing Kit (Pharmacia Biotech), followed by electrophoresis on A.L.F. DNA Sequencer (Pharmacia Biotech) for base sequence determination, whereby it was confirmed that the synthetic DNA had been introduced as desired.

5

25

Then, 3 μ g of the plasmid pBSNA obtained as mentioned above was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Apal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 μ g/ml BSA and 0.01% Triton X-100, 10 units of the restriction enzyme NotI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μ g of a DNA fragment about 2.95 kb in size was recovered.

Then, 10 μ g of the plaid pChi796HM1 described in JP-A-6-205964 was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Apal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 μ g/ml BSA and 0.01% Triton X-100, 10 units of the restriction enzyme NotI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.3 μ g of a DNA fragment about 0.45 kb in size was recovered.

Then, 0.1 µg of the *Apal-NotI* fragment of pBSNA and 0.1 µg of the *Apal-NotI* fragment of pChi796HM1, each obtained as mentioned above, were added to a total of 20 µl of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pBSH3 shown in Fig. 24 was obtained.

(2) Construction of plasmid pBSL3 containing mouse anti-GM2 antibody KM796 L chain V region cDNA

Three μg of the plasmid pBluescript SK(-) (Stratagene) was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Kpnl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, and the precipitate was subjected to blunting treatment for rendering blunt the 3' cohesive ends resulting from Kpnl digestion using DNA Blunting Kit (Takara Shuzo) and then to ethanol precipitation, the precipitate was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Sacl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μ g of a DNA fragment about 2.95 kb in size was recovered.

Then, synthetic DNAs respectively having the base sequences shown in SEQ ID NO:20 and SEQ ID NO:21 were synthesized using an automatic DNA synthesizer (Applied Biosystems model 380A). To 15 μ l of sterilized water were added 0.3 μ g each of the synthetic DNAs obtained, and the mixture was heated at 65°C for 5 minutes. The reaction mixture was allowed to stand at room temperature for 30 minutes. Then, 2 μ l of 10-fold concentrated buffer [500 mM Tris-hydrochloride (pH 7.5), 100 mM magnesium chloride, 50 mM DTT] and 2 μ l of 10 mM ATP were added, 10 units of T4 polynucleotide kinase was further added, and the reaction was allowed to proceed at 37°C for 30 minutes for phosphorylating the 5' termini. The, 0.1 μ g of the DNA fragment (2.95 kb) derived from the plasmid pBluescript SK(-) and 0.05 μ g of the phosphorylated synthetic DNA, each obtained as mentioned above, were added to a total of 20 μ l of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pBSES shown in Fig. 25 was obtained. Ten μ g of the plasmid obtained was subjected to sequencing reaction treatment according to the instructions attached to AutoRead Sequencing Kit (Pharmacia Biotech), followed by electrophoresis on A.L.F. DNA Sequencer (Pharmacia Biotech) for base sequence determination, whereby it was confirmed that the synthetic DNA had been introduced as desired.

Then, 3 μg of the plasmid pBSES obtained as mentioned above was added to 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 $\mu g/ml$ BSA, 10 units each of the restriction enzymes EcoRl (Takara Shuzo) and Sp/l (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μg of a DNA fragment about 2.95 kb in size was recovered.

Then, 5 μ g of the plasmid pKM796L1 described in JP-A-6-205694 was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units each of the restriction enzymes EcoRl (Takara Shuzo) and Af/III (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1

hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.3 μg of an *EcoRI-AfIIII* fragment about 0.39 kb in size was recovered. Then, synthetic DNAs respectively having the base sequences shown in SEQ ID NO:22 and SEQ ID NO:23 were synthesized using an automatic DNA synthesizer (Applied Biosystems model 380A). To 15 μ l of sterilized water were added 0.3 μg each of the synthetic DNAs obtained, and the mixture was heated at 65°C for 5 minutes. The reaction mixture was allowed to stand at room temperature for 30 minutes. Then, 2 μ l of 10-fold concentrated buffer [500 mM Tris-hydrochloride (pH 7.6), 100 mM magnesium chloride, 50 mM DTT] and 2 μ l of 10 mM ATP were added, 10 units of T4 polynucleotide kinase was further added, and the reaction was allowed to proceed at 37°C for 30 minutes for phosphorylating the 5' termini.

Then, 0.1 μ g of the pBSES-derived *EcoRI-SpII* fragment (2.95 kb), 0.1 μ g of the pKM796LI-derived *EcoRI-AfIIII* fragment and 0.05 μ g of the phosphorylated synthetic DNA, each obtained as mentioned above, were added to a total of 20 μ I of sterilized water and ligated together using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pBSL3 shown in Fig. 26 was obtained. Ten μ g of the plasmid obtained was subjected to sequencing reaction treatment according to the instructions attached to AutoRead Sequencing Kit (Pharmacia Biotech), followed by electrophoresis on A.L.F. DNA Sequencer (Pharmacia Biotech) for base sequence determination, whereby it was confirmed that the synthetic DNA had been introduced as desired.

3. Construction of mouse-human chimeric anti-GM2 antibody expression vector, pKANTEX796

20

A mouse-human chimeric anti- GM_2 antibody expression vector, pKANTEX796, was constructed using the plasmid pKANTEX93 obtained in Example 1 and the plasmids pBSH3 and pBSL3 respectively obtained in Paragraph 1 (1) and (2) of Example 2, in the following manner.

Three μg of the plasmid pBSH3 was added to 10 μl of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Apal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 $\mu g/ml$ BSA and 0.01% Triton X-100, 10 units of the restriction enzyme Notl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.3 μg of an Apal-Notl fragment about 0.46 kb in size was recovered.

Then, 3 μ g of the plasmid pKANTEX93 was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme $A\rho al$ (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 μ g/ml BSA and 0.01% Triton X-100, 10 units of the restriction enzyme Not (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, whereby about 1 μ g of an $A\rho al$ -Notl fragment about 12.75 kb in size was recovered.

Then, 0.1 μ g of the pBSH3-derived *Apal-Not*I fragment and 0.1 μ g of the pKANTEX93-derived *Apal-Not*I fragment, each obtained as mentioned above, were added to a total of 20 μ I of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pKANTEX796H shown in Fig. 27 was obtained.

Then, 3 μg of the plasmid pBSL3 was added to 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesia chloride, 1 mM DTT and 100 μg/ml BSA, 10 units each of the restriction enzymes *Eco*RI (Takara Shuzo) and *Sp*/I (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.3 μg of an *Eco*RI-*Sp*/I fragment about 0.4 kb in size was recovered.

Then, 3 μ g of the plasmid pKANTEX796H was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 μ g/ml BSA, 10 units each of the restriction enzymes EcoRI (Takara Shuzo) and Sp/I (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μ g of an EcoRI-Sp/I fragment about 13.20 kb in size was recovered.

Then, 0.1 μ g of the pBSL3-derived EcoRI-Sp/I fragment and 0.1 μ g of the pKANTEX796H-derived EcoRI-Sp/I fragment, each obtained as mentioned above, were added to a total of 20 μ l of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli\ HB101$, and the plasmid pKANTEX796 shown in Fig. 28 was obtained.

(4) Expression of mouse-human chimeric anti-GM2 antibody in YB2/0 cells using pKANTEX796

Introduction of the plasmid into YB2/0 cells (ATCC CRL1662) was carried out by the electroporation method (Miyaji, H. et al., Cytotechnology, 3, 133 (1990)). A 4 μg portion of pKANTEX796 obtained in Paragraph 1 (3) of Example 2 was introduced into 4×10^6 cells of YB2/0 cells, and the resulting cells were suspended in 40 ml of RPMI1640-FCS (10) medium [RPMI1640 medium (manufactured by Nissui Pharmaceutical) supplemented with 10% of FCS, an appropriate amount of 7.5% sodium bicarbonate solution, 3% of 200 mM L-glutamine solution (manufactured by Gibco) and 0.5% of penicillin-streptomycin solution (manufactured by Gibco, contains 5,000 U/ml of penicillin and 5 mg/ml of streptomycin)] and dispensed in 200 µl portions into wells of a 96 well microplate. After 24 hours of culturing at 37°C in a 5% CO₂ incubator, G418 was added to each well to a final concentration of 0.5 mg/ml, and the cells were cultured for 1 to 2 weeks. Culture supernatants were recovered from wells in which colonies of transformant cell lines have been formed, and the activity of the mouse-human chimeric anti-GM2 antibody in the culture supernatants was measured by the ELISA method described in the following paragraph (5). Cells in wells in which the activity was found were subjected to gene amplification in the following manner with an attempt to increase expression quantity of the chimera antibody. Firstly, the cells were suspended in the RPMI1640-FCS (10) medium supplemented with 0.5 mg/ml of G418 and 50 nM of methotrexate (manufactured by Sigma, to be referred to as "MTX" hereinafter), to a density of $1-2 \times 10^5$ cells/ml, and the suspension was dispensed in 2 ml portions in wells of a 24 well plate. The cells were cultured at 37°C for 1 to 2 was in a 5% CO2 incubator to induce resistant cells to 50 nM MTX. In wells in which the cells resistant to 50 nM MTX have been formed, the final concentration of MTX was increased to 100 nM and then to 200 nM and the expression quantity was evaluated by the ELISA method to select cells having the highest expression quantity. The thus selected cells were subjected twice to cloning by the limiting dilution analysis and then established as the final chimera antibody stable expression cells. The thus established mouse-human chimeric anti-GM2 antibody stable expression cells showed an expression quantity of about 1 to 2 µg/ml, so that it was confirmed that efficient and stable expression of the humanized antibody can be effected by the use of pKANTEX93.

(5) ELISA method

A 2 ng portion of ganglioside was dissolved in 2 ml of ethanol solution containing 5 ng of phosphatidylcholine (manufactured by Sigma) and 2.5 ng of cholesterol (manufactured by Sigma). This solution or a diluted solution thereof was dispensed in 20 μ l portions in wells of a 96 well microplate (manufactured by Greiner), air-dried and then subjected to blowing with a phosphate buffer containing 1% BSA (to be referred to as "PBS" hereinafter). To the resulting plate was added culture supernatant of a transformant cell line, a purified mouse monoclonal antibody a purified mouse-human chimeric antibody or a purified humanized antibody in an amount of from 50 to 100 μ l, subsequently carrying out 1 to 2 hours of reaction at room temperature. After the reaction and subsequent washing of each well with PBS, 50 to 100 μ l of a peroxidase-labeled rabbit anti-mouse IgG antibody (manufactured by Dako, used by 400 times dilution) or a peroxidase-labeled goat anti-human γ chain antibody (manufactured by Kiyukegard & Perry Laboratory, used by 1,000 times dilution) was added thereto, and 1 to 2 hours of reaction was carried out at room temperature. After washing with PBS, 50 to 100 μ l of an ABTS substrate solution [a solution prepared by dissolving 550 mg of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) in 1 liter of 0.1 M citrate buffer (pH 4.2) and adding 1 μ l/ml of hydrogen peroxide to the solution just before its use] was added to each well to effect development of color which was then measured at OD₄₁₅.

2. Transient mouse-human chimeric antibody expression in COS-7 (ATCC CRL 1651) cells

For enabling more rapid activity evaluation of various versions of human CDR-grafted anti-GM₂ antibody, transient expression of mouse-human chimeric anti-GM₂ antibody expression was caused in COS-7 cells by the Lipofectamine method using pKANTEX796 and a variant thereof in the following manner.

(1) Construction of variant of pKANTEX796

50

Since transient antibody expression in animal cells is dependent on the copy number of an expression vector introduced, it was supposed that an expression vector smaller in size would show a higher expression efficiency. Therefore, a smaller humanized antibody expression vector, pT796, was constructed by deleting a region supposedly having no effect on humanized antibody expression from pKANTEX796 in the following manner.

Thus, 3 μ g of the plasmid pKANTEX796 was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme *Hin*dIII (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme $M \mu$

(Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, and the 5' cohesive ends resulting from the restriction enzyme digestion were rendered blunt using DNA Blunting Kit (Takara Shuzo). The reaction mixture was fractionated by agarose gel electrophoresis and about 1 μg of a DNA fragment about 9.60 kb in size was recovered. A 0.1-μg portion of the thus-recovered DNA fragment was added to a total of 20 μl of sterilized water and subjected to ligation treatment using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pT796 shown in Fig. 29 was obtained.

(2) Transient expression of mouse-human chimeric anti-GM2 antibody using pKANTEX796 and pT796

A 1 \times 10⁵ cells/ml suspension of COS-7 cells was distributed in 2-ml portions into wells of a 6-well plate (Falcon) and cultured overnight at 37°C. Two μg of pKANTEX796 or pT796 was added to 100 μl of OPTI-MEM medium (Gibco), a solution prepared by adding 10 µl of LIPOFECTAMINE reagent (Gibco) to 100 µl of OPTI-MEM medium (Gibco) was further added, and the reaction was allowed to proceed at room temperature for 40 minutes to cause DNA-liposome complex formation. The COS-7 cells cultured overnight were washed twice with 2 ml of OPTI-MEM medium (Gibco), the complex-containing solution was added, and the cells were cultured at 37°C for 7 hours. Then, the solution was removed, 2 ml of DMEM medium (Gibco) containing 10% FCS was added to each well, and the cells were cultured at 37°C. After 24 hours, 48 hours, 72 hours, 96 hours and 120 hours of cultivation, the culture supernatant was recovered and, after concentration procedure as necessary, evaluated for mouse-human chimeric anti-GM2 antibody activity in the culture supernatant by the ELISA method described in Paragraph 1 (5) of Example 2. The results are shown in Fig. 30. As shown in Fig. 30, higher levels of transient mouse-human chimeric anti-GM2 antibody expression was observed with pT796 as compared with pKANTEX796. For pT796, the level of expression was highest at 72 to 96 hours, the concentration being about 30 ng/ml (in terms of GM2 binding activity). The above results indicate that construction of a pKANTEX93-derived vector having a reduced size and introduction thereof into COS-7 cells make it possible to make activity evaluation of expression vector-derived humanized antibodies in a transient expression system. Furthermore, for close activity comparison of various versions of human CDR-grafted anti-GM2 antibody as mentioned hereinafter, the ELISA method described below under (3) was used to determine antibody concentrations in transient expression culture supernatants.

(3) Determination by sandwich ELISA of humanized antibody concentrations in various culture supernatants

A solution prepared by 400-fold dilution of goat anti-human γ chain antibody (Igaku Seibutugaku Kenkyusho) with PBS was distributed in 50- μ l portions into wells of a 96-well microtiter plate and allowed to stand overnight at 4°C for binding to the wells. After removing the antibody solution, blowing was effected with 100 μ l of PBS containing 1% BSA at 37°C for 1 hour. Fifty μ l of a transient expression culture supernatant or purified mouse-human chimeric anti-GM₂ antibody was added thereto and allowed to react at room temperature for 1 hour. Thereafter, the solution was removed, the wells were washed with PBS, and 50 μ l of a solution prepared by 500-fold dilution of peroxidase-labeled mouse antihuman κ chain antibody (Zymet) with PBS was added and allowed to react at room temperature for 1 hour. After washing with PBS, 50 μ l of an ABTS substrate solution was added for causing color development, and the OD₄₁₅ was measured.

EXAMPLE 3

40

45

10

Production of human CDR-grafted anti-GM2 antibody I

A human CDR-grafted anti-GM₂ antibody higher in GM₂-binding activity than the human CDR-grafted anti-GM₂ antibody described in Example 2 of JP-A-6-105694 was produced in the following manner.

(1) Modification of human CDR-grafted anti- GM_2 antibody H chain V region described in Paragraph 1 (1) of Example 2 of JP-A-6-205694

DNAs coding for some versions of the human CDR-grafted anti-GM₂ antibody H chain V region described in Example 2 as derived by replacing several amino acids in the FR with original mouse antibody amino acids were constructed in the following manner. Based on a computer model for the V region of mouse antibody KM796, those amino acid residues that were expected to contribute to restoration of antigen-binding activity as a result of replacement were selected as the amino acid residues to be replacement. First, DNAs respectively having the base sequences of SEQ ID NO:24 and SEQ ID NO:25 were synthesized using an automatic DNA synthesize (Applied Biosystems model 380A).

Then, a version (version 2) of human CDR-grafted antibody H chain V region shown in SEQ ID NO:26 and having

replacement in positions 78 (threonine in lieu of glutamine), 79 (alanine in lieu of phenylalanine) and 80 (tyrosine in lieu of serine) was constructed in the same manner as in Paragraph 1 (1) of Example 2 of JP-A-6-205964 using a synthetic DNA of SEQ ID NO:24 in lieu of the synthetic DNA of SEQ ID NO:27 of JP-A-6-205964.

Then, another version (version 4) of human CDR-grafted antibody H chain V region shown in SEQ ID NO:27 and having replacements in positions 27 (tyrosine in lieu of phenylalanine), 30 (threonine in lieu of serine), 40 (serine in lieu of proline) and 41 (histidine in lieu of proline) was constructed in the same manner as in Paragraph 1 (1) of Example 2 of JP-A-6-205694 using a synthetic DNA of SEQ ID NO:25 in lieu of the synthetic DNA of SEQ ID NO:25 of JP-A-6-205694.

 (2) Construction of human CDR-grafted anti-GM₂ antibody H chain V region using known HMHCS of human antibody H chain V region

According to Kabat *et al.* (Kabat E. A. *et al.*, *Sequences of Proteins of Immunological Interest*, US Dept. of Health and Human Services, 1991), known human antiobdy H chain V regions are classifiable into subgroups I to III (Human Sub Groups (HSG) I to III) based on the homology of their FR regions, and coon sequences have been identified for respective subgroups. The present inventors identified HMHCS as one meaning from the common sequences, a human CDR-grafted anti-GM₂ antibody H chain V region was constructed based on the HMHCS. First, for selecting HMHCS to serve as the base, the homology was examined between the FR, of the mouse antibody KM796 H chain V region and the FR of the HMHCS of the human antibody H chain V region of each subgroup (Table 1).

TABLE 1

Homology (%) between mouse antibody KM796 H chain V region FR and human antibody H chain V region common sequence FR			
HSG I	HSG II	HSG III	
72.1	52.9	58.6	

30

20

25

As a result, it was confirmed that subgroup I shows the greatest similarity. Thus, based on the HMHCS of subgroup I, a human CDR-grafted anti-GM₂ antibody H chain V region was constructed by the PCR method in the following manner.

Synthetic DNAs respectively having the base sequences of SEQ ID NO:28 through SEQ ID NO:33 were synthesized using an automatic DNA synthesizer (Applied Systems model 380A). The DNAs synthesized were added, each to a final concentration of 0.1 μM, to 50 μI of 10 mM Tris-hydrochloride buffer (pH 8.3) containing 50 mM potassium chloride, 1.5 mM magnesium chloride, 0.001% gelatin, 200 μM dNTP, 0.5 μM M13 primer RV (Takara Shuzo), 0.5 μM M13 primer M4 (Takara Shuzo) and 2 units of TaKaRa Taq DNA polymerase, the mixture was covered with 50 μI of mineral oil, a DNA thermal cycler (Perkin Elmer model PJ480) was loaded with the mixture, and 30 PCR cycles (2 minutes at 94°C, 2 minutes at 55°C and 2 minutes at 72°C per cycle) were conducted. The reaction mixture was purified using QIAquick PCR Purification Kit (Qiagen) and then made into a solution in 30 μI of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme *ApaI* (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μI of 50 mM Tris-hydrochloride (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 μg/mI BSA and 0.01% Triton X-100, 10 units of the restriction enzyme *NotI* (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.2 μg of an *ApaI-NotI* fragment about 0.44 kb in size was recovered.

Then, 3 μ g of the plasmid pBSH3 obtained in Paragraph 1 (1) of Example 2 was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme *Apal* (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 μ g/ml BSA and 0.01% Triton X-100, 10 units of the restriction enzyme *Not*I (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agraose gel electrophoresis, and about 1 μ g of an *Apal-Not*I fragment about 2.95 kb in size was recovered.

Then, 0.1 μ g of the *Apal-Not*I fragment of the human CDR-grafted anti-GM₂ antibody H chain V region and 0.1 μ g of the *Apal-Not*I fragment of pBSH3, each obtained as mentioned above, were added to a total of 20 μ I of sterilized

water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101. Plasmid DNAs were prepared from 10 transformant clones and their base sequences were determined. As a result, a plasmid, pBSB10, shown in Fig. 31 and having the desired base sequence was obtained. The amino acid sequence and base sequence of the human CDR-grafted anti-GM₂ antibody H chain V region contained in pBSH10 are shown in SEQ ID NO:7. In the amino acid sequence of the thus-constructed human CDR-grafted anti-GM₂ antibody H chain V region, arginine in position 67, alanine in position 72, serine in position 84 and arginine in position 98 in the FR as selected based on a computer model for the V region are replaced by lysine, valine, histidine and threonine, respectively, that are found in the mouse antibody KM796 H chain V region. This is for the purpose of retaining the antigen-binding capacity of mouse antibody KM796.

(3) Modification of human CDR-grafted anti- GM_2 antibody L chain V region described in Paragraph 1 (2) of Example 2 of JP-A-6-205694

10

First, a DNA having the base sequence of SEQ ID NO:34 was synthesized using an automatic DNA synthesizer (Applied Biosystems model 380A), and a human CDR-grafted anti- GM_2 antibody L chain V region cDNA with a 3' terminus capable of pairing with the restriction enzyme Sp/I was constructed by following the same reaction procedure as in Paragraph 1 (2) of Example 2 of JP-A-6-205694 using the synthetic DNA in lieu of the synthetic DNA of SEQ ID NO:35 of JP-A-6-205964.

Then, 3 μ g of the plasmid pBSL3 obtained in Paragraph 1 (2) of Example 2 was added to 10 μ l of 50 mM Tris-hydro-chloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 μ g/ml BSA, 10 units each of the restriction enzymes EcoRI (Takara Shuzo) and Sp/I (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electro-phoresis, and about 1 μ g of an EcoRI-Sp/I fragment about 2.95 kb in size was recovered.

Then, 0.1 μ g of the EcoRl-Sp/l fragment of the human CDR-grafted anti-GM $_2$ antibody L chain V region obtained as mentioned above and 0.1 μ g of the above EcoRl-Sp/l fragment of pBSL3 were added to a total of 20 μ l of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli\ HB101$, and the plasmid pBSL16 shown in Fig. 32 was obtained.

Then, DNAs coding for certain versions of the human CDR-grafted anti-GM₂ antibody L chain V region contained in the above plasmid pBSL16 were constructed by replacing a certain number of amino acids in the FR with original mouse antibody amino acids by mutagenesis by means of PCR in the following manner (Fig. 33). Based on a computer model for the V region of mouse antibody KM796, those amino acid residues that were expected to contribute to restoration of antigen-binding activity as a result of replacement were selected as the amino acid residues to be replaced.

Antisense and sense DNA primers for introducing mutations were synthesized using an automatic DNA synthesizer (Applied Biosystems model 380A). A first PCR reaction was conducted in the same manner as in Paragraph 1 (2) of Example 3 using a final concentration each of 0.5 μ M of M13 primer RV (Takara Shuzo) and the antisense DNA primer and of M13 primer M4 (Takara Shuzo) and the sense DNA primer, with 1 ng of pBSL16 as the template. Each reaction mixture was purified using QIAquick PCR Purification Kit (Qiagen) with elution with 20 μ I of 10 mM Tris-hydrochloride (pH 8.0). Using 5 μ I of each elute, a second PCR reaction was conducted in the same manner as in Paragraph 1 (2) of Example 3. The reaction mixture was purified using QIAaquick PCR Purification Kit (Qiagen) and then made into a solution in 30 μ I of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 μ g/ml BSA, 10 units each of the restriction enzymes EcoRI (Takara Shuzo) and Sp/I (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.2 μ g of an EcoRI-Sp/I fragment (about 0.39 kb) of each replacement version of the human CDR-grafted anti-GM2 antibody L chain V region was recovered.

Then, 0.1 $\mu\mu$ g of the above EcoRI-Sp/I fragment of each replacement version of the human CDR-grafted anti-GM₂ antibody L chain V region and 0.1 μ g of the EcoRI-Sp/I fragment of pBSL3 were added to a total of 20 μ I of sterilized water and ligated to each other using Ready-To-Go T4 DNA ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform Escherichia~coli HB101, and a plasmid DNA was prepared from a transformant clone, and the base sequence of said plasmid was determined. In this way, plasmids respectively containing a base sequence having a desired mutation or mutations were obtained.

Thus, a plasmid, pBSLV1, containing version 1, shown in SEQ ID NO:37, of the human CDR-grafted anti-GM₂ anti-body L chain V region was obtained following the above procedure using the synthetic DNA of SEQ ID NO:35 as the mutant antisense primer and the synthetic DNA of SEQ ID NO:36 as the mutant sense primer. In the amino acid sequence of the version 1 human CDR-grafted anti-GM₂ antibody L chain V region, the amino acid valine in position 15 in the FR is replaced by proline that is found in the mouse antibody KM796 L chain V region. This is for the purpose of retaining the antigen-binding capacity of mouse antibody KM796.

A plasmid, pBSLV2, containing version 2, shown in SEQ ID NO:40, of the human CDR-grafted anti-GM2 antibody

L chain V region was obtained following the above procedure using the synthetic DNA of SEQ ID NO:38 as the mutant antisense primer and the synthetic DNA of SEQ ID NO:39 as the mutant sense primer. In the amino acid sequence of the version 2 human CDR-grafted anti- GM_2 antibody L chain V region, the amino acid leucine in positions 46 in the FR is replaced by tryptophan that is found in the mouse antibody KM796 L chain V region. This is for the purpose of retaining the antigen-binding capacity of mouse antibody KM796.

A plasmid, pBSLV3, containing version 3, shown in SEQ ID NO:43, of the human CDR-grafted anti-GM₂ antibody L chain V region was obtained following the above procedure using the synthetic DNA of SEQ ID NO:41 as the mutant antisense primer and the synthetic DNA of SEQ ID NO:42 as the mutant sense primer. In the amino acid sequence of the version 3 human CDR-grafted anti-GM₂ antibody L chain V region, proline in position 79 and isoleucine in position 82 in the FR are both replaced by alanine that is found in the mouse antibody KM796 L chain V region. This is for the purpose of retaining the antigen-binding capacity of mouse antibody KM796.

Then, a plasmid, pBSLV1+2, containing a human CDR-grafted anti-GM₂ antibody L chain V region having both the version 1 and version 2 replacements was constructed in the following manner.

Three μg of the plasmid pBSLV1 obtained as mentioned above was added to 10 μl of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units each of the restriction enzymes EcoRl (Takara Shuzo) and Hindlll (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.2 μg of an EcoRl-Hindlll fragment about 0.20 kb in size was recovered.

Then, 3 μ g of the plasmid pBSLV2 obtained as mentioned above was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units each of the restriction enzymes EcoRI (Takara Shuzo) and HindIII (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μ g of an EcoRI-HindIII fragment about 3.2 kb in size was recovered.

Then, 0.1 μ g of the EcoRI-HindIII fragment of pBSLV1 and 0.1 μ g of the EcoRI-HindIII fragment of pBSLV2, each obtained as mentioned above, were added to a total of 20 μ I of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli\ HB101$, and the plasmid pBSLV1+2 shown in Fig. 34 was obtained.

Then, the PCR reaction procedure mentioned above was followed using 1 ng of the plasmid pBSLV1+2 obtained as mentioned above as the template, a synthetic DNA having the base sequence of SEQ ID NO:44 as the mutant antisense primer and a synthetic DNA having the base sequence of SEQ ID NO:45 as the mutant sense primer, whereby a plasmid, pBSLV4, containing a version 4 human CDR-grafted anti-GM₂ antibody L chain V region set forth in SEQ ID NO:46 was obtained. In the amino acid sequence of the version 4 human CDR-grafted anti-GM₂ antibody L chain V region, valine in position 15, leucine in position 46, aspartic acid in position 69, phenylalanine in position 70 and threonine in position 71 in the FR are replaced by proline, tryptophan, serine, tyrosine and serine, respectively, that are found in the mouse antibody KM796 L chain V region. This is for the purpose of retaining the antigen-binding capacity of mouse antibody KM796.

Then, the PCR reaction procedure mentioned above was followed using 1 ng of the plasmid pBSLV1+2 obtained as mentioned above as the template, a synthetic DNA having the base sequence of SEQ ID NO:47 as the mutant antisense primer and a synthetic DNA having the base sequence of SEQ ID NO:48 as the mutant sense primer, whereby a plasmid, pBSLV8, containing a version 8 human CDR-grafted anti-GM₂ antibody L chain V region set forth in SEQ ID NO:49 was obtained. In the amino acid sequence of the version 8 human CDR-grafted anti-GM₂ antibody L chain V region, valine in position 15, leucine in position 46, aspartic acid in position 69, phenylalanine in position 70, threonine in position 71, serine in position 76, leucine in position 77 and glutamine in position 78 in the FR are replaced by proline, tryptophan, serine, tyrosine, serine, arginine, methionine and glutamic acid, respectively, that are found in the mouse antibody KM796 L chain V region. This is for the purpose of retaining the antigen-binding capacity of mouse antibody KM796

Then, the PCR reaction procedure mentioned above was followed using 1 ng of the plasmid pBSLV4 obtained as mentioned above as the template, a synthetic DNA having the base sequence of SEQ ID NO:50 as the mutant antisense primer and a synthetic DNA having the base sequence of SEQ ID NO:51 as the mutant sense primer, whereby a plasmid, pBSLm-2, containing a version Lm-2 human CDR-grafted anti-GM₂ antibody L chain V region set forth in SEQ ID NO:52 was obtained. In the amino acid sequence of the version Lm-2 human CDR-grafted anti-GM₂ antibody L chain V region, valine in position 15, tyrosine in position 35, leucine in position 46, aspartic acid in position 69, phenylalanine in position 70 and threonine in position 71 in the FR are replaced by proline, phenylalanine, tryptophan, serine, tyrosine and serine, respectively, that are found in the mouse antibody KM796 L chain V region. This is for the purpose of retaining the antigen-binding capacity of mouse antibody KM796.

Then, the PCR reaction procedure mentioned above was followed using 1 ng of the plasmid pBSLV4 obtained as mentioned above as the template, a synthetic DNA having the base sequence of SEQ ID NO:53 as the mutant antisense primer and a synthetic DNA having the base sequence of SEQ ID NO:54 as the mutant sense primer, whereby

a plasmid, pBSLm-8, containing a version Lm-8 human CDR-grafted anti-GM $_2$ antibody L chain V region set forth in SEQ ID NO:55 was obtained. In the amino acid sequence of the version Lm-8 human CDR-grafted anti-GM $_2$ antibody L chain V region, valine in position 15, leucine in position 46, aspartic acid in position 69, phenylalanine in position 70, threonine in position 71, phenylalanine in position 72 and serine in position 76 in the FR are replaced by proline, tryptophan, serine, tyrosine, serine, leucine and arginine, respectively, that are found in the mouse antibody KM796 L chain V region. This is for the purpose of retaining the antigen-binding capacity of mouse antibody KM796.

Then, a plasmid, pBSLm-28, containing a human CDR-grafted anti-GM₂ antibody L chain V region having both the version Lm-2 and version Lm-8 replacements was constructed in the following manner.

Three μg of the plasmid pBSLm-2 obtained as mentioned above was added to 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme EcoRl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μl of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 $\mu g/ml$ BSA, 10 units of the restriction enzyme Xbal (Takara Shuzo) was further added, and the reaction as allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.2 μg of an EcoRl-Xbal fragment about 0.24 kb in size was recovered.

Then, 3 μ g of the plasmid pBSLm-8 obtained as mentioned above was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme EcoRI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 50 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 μ g/ml BSA, 10 units of the restriction enzyme XbaI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μ g of an EcoRI-XbaI fragment about 3.16 kb in size was recovered.

25

35

40

50

55

Then, 0.1 µg of the *Eco*Rl-*Xba*l fragment of pBSLm-2 and 0.1 µg of the *Eco*Rl-*Xba*l fragment of pBSLm-8, each obtained as mentioned above, were added to a total of 20 µl of sterilized water and ligated to each other using Ready-To-go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pBSLm-28 shown in Fig. 35 was obtained. The version Lm-28 human CDR-grafted anti-GM₂ antibody L chain V region contained in the plasmid pBSLm-28 is shown in SEQ ID NO:8. In the amino acid sequence of the version Lm-28 human CDR-grafted anti-GM₂ antibody L chain V region thus constructed, valine in position 15, tyrosine in position 35, leucine in position 46, aspartic acid in position 69, phenylalanine in position 70, threonine in position 71, phenylalanine in position 72 and serine in position 76 are replaced by proline, phenylalanine, tryptophan, serine, tyrosine, serine, leucine and arginine, respectively, that are found in the mouse antibody KM796 L chain V region. This is for the intended purpose of retaining the antigen-binding capacity of mouse antibody KM796.

(4) Construction of human CDR-grafted anti-GM₂ antibody L chain V region using known HMHCS of human antibody L chain V region

According to Kabat *et al.* (Kabat E. A. *et al.*, "Sequences of Proteins of Immunological Interest", US Dept. of Health and Human Services, 1991), known human antibody L chain V regions are classifiable into subgroups I to IV based on the homology of their FR regions, and common sequences have been identified for respective subgroups. The present inventors identified HMHCS as one meaning from the common sequences, a human CDR-grafted anti-GM₂ antibody L chain V region was constructed based on the HMHCs. First, for selecting common sequences to serve as the base, the homology was exmined between the FR of the mouse antibody KM796 L chain V region and the FR of the HMHCS of the human antibody L chain V region of each subgroup (Table 2).

TABLE 2

Homology (%) between mouse antibody KM796 L chain V region FR and human antibody L chain V region common sequence FR				
HSG I	HSG II	HSG III	HSG IV	
70.0	65.0	68.8	67.5	

As a result, it was confirmed that subgroup I shows the greatest similarity. Thus based on the common sequence of subgroup I, a human CDR-grafted anti-GM₂ antibody L chain V region was constructed by the PCR method in the

following manner.

30

Synthetic DNAs respectively having the base sequences of SEQ ID NO:56 through SEQ ID NO:61 were synthesized using an automatic DNA synthesizer (Applied Systems model 380A). The DNAs synthesized were added, each to a final concentration of $0.1~\mu\text{M}$, to $50~\mu\text{I}$ of 10~mM Tris-hydrochloride buffer (pH 8.3) containing 50 mM potassium chloride, 1.5~mM magnesium chloride was covered with 1.5~mM mineral oil, a DNA thermal cycler (Perkin Elmer model PJ480) was loaded with the mixture, and 1.5~mM pCR cycles (2 minutes at 1.5~mM minute

Then, 0.1 µg of the above *Eco*RI-*SpI*I fragment of the human CDR-grafted anti-GM₂ antibody L chain V region and 0.1 µg of the *Eco*RI-*SpI*I fragment of pBSL3 were added to a total of 20 µl of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101. Plasmid DNAs were prepared from 10 transformant clones and their base sequences were determined. As a result, a plasmid, pBSHSGL, shown in Fig. 36 and having the desired base sequence was obtained. The amino acid sequence and base sequence of the human CDR-grafted anti-GM₂ antibody L chain V region contained in pBSHSGL are shown in SEQ ID NO:9. In the amino acid sequence of the thus-constructed human CDR-grafted anti-GM₂ antibody L chain V region, methionine in position 4, leucine in position 11, valine in position 15, tyrosine in position 35, alanine in position 42, leucine in position 46, aspartic acid in position 69, phenylalanine in position 70, threonine in position 71, leucine in position 77 and valine in position 103 in the FR as selected based on a computer model for the V region are replaced by leucine, methionine, proline, phenylalanine, serine, tryptophan, serine, tyrosine, serine, methionine and leucine, respectively, that are found in the mouse antibody KM796. L chain V region. This is for the intended purpose of retaining the antigen-binding capacity of mouse antibody KM796.

2. Activity evaluation of replacement versions of human CDR-grafted anti-GM2 antibody in terms of transient expression

Various replacement version human CDR-grafted anti-GM₂ antibodies composed of the human CDR-grafted anti-GM₂ antibody H chain and L chain V regions constructed in Paragraphs 3 (1) through (4) of Example 3 and having various replacements were evaluated for activity in terms of transient expression in the following manner.

First, for evaluating the human CDR-grafted anti-GM₂ antibody H chain V regions having various replacements, expression vectors, pT796HCDRHV2, pT796HCDRHV4 and pT796HCDRH10, were constructed by replacing the mouse H chain V region of the mouse-human chimeric anti-GM₂ antibody transient expression vector pT796 obtained in Paragraph 1 (1) of Example 2 of JP-A-6-205694 with the human CDR-grafted anti-GM₂ antibody H chain V regions having various replacements, in the following manner. For comparison, an expression vector, pT796HCDR was constructed by replacing the mouse H chain V region of pT796 with the human CDR-grafted anti-GM₂ antibody H chain V region obtained in Paragraph 1 (1) of Example 2.

Three μg of the plasmid pT796 was added to 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1mM DTT and 100 $\mu g/ml$ BSA, 10 units each of the restriction enzymes EcoRl (Takara Shuzo) and Sp/l (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μg of an EcoRl-Sp/l fragment about 9.20 kb in size was recovered. Then, 3 μg of the plasmid pBSL16 obtained in Paragraph 1 (3) of Example 3 was added to 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 $\mu g/ml$ BSA, 10 units each of the restriction enzymes EcoRl (Takara Shuzo) and Sp/l (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.3 μg of an EcoRl-Sp/l fragment about 0.39 kb in size was recovered.

Then, 0.1 μ g of the EcoRI-Sp/I fragment of pT796 and 0.1 μ g of the EcoRI-Sp/I fragment of pBSL16, each obtained as mentioned above, were added to a total of 20 μ I of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform $Escherichia\ coli\ HB101$, and the plasmid pT796LCDR shown in Fig. 37 was obtained.

Then, 3 μ g of the above plasmid pT796LCDR was added to 10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Apal (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 μ g/ml BSA and 0.01% Triton X-100, 10 units of the restriction

enzyme NotI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μ g of an ApaI-NotI fragment about 9.11 kb in size was recovered.

Then, 0.1 μ g of the human CDR-grafted anti-GM₂ antibody H chain V region obtained in Paragraph 1 (1) of Example 2 of JP-A-6-205694 or the replacement version 2 or 4 human CDR-grafted anti-GM₂ antibody H chain V region obtained in Paragraph 1 (1) of Example 3 and 0.1 μ g of the *Apal-Not*l fragment of pT796LCDR were added to a total of 20 μ l of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). Each recombinant plasmid DNA solution thus obtained was used to transform *Escherichia coli* HB101. The plasmids pT796HLCDR, pT796HLCDRHV2 and pT796HLCDRHV4 shown in Fig. 38 were obtained.

Then, 3 μg of the plasmid pBSH10 obtained in Paragraph 1 (2) of Example 3 was added to 10 μl of 10 mM Trishydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme *ApaI* (Takara Shuzo) was further added, and the restriction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 $\mu g/ml$ BSA and 0.01% Triton X-100, 10 units of the restriction enzyme *Notl* (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.3 μg of an *Apal-Notl* fragment about 0.44 kb in size was recovered.

Then, 0.1 µg of the *Apal-Not*I fragment of pBSM10 and 0.1 µg of the *Apal-Not*I fragment of pT796LCDR were added to a total of 20 µl of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). The thus-obtained recombinant plasmid DNA solution was used to transform *Escherichia coli* HB101, and the plasmid pT796HLCDRH10 shown in Fig. 39 was obtained.

Then, 3 μg each of the plasmids pT796HLCDR, pT796HLCDRHV2, pT796HLCDRHV4 and pT796HLCDRH10 were respectively added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 μ g/ml BSA, 10 units each of the restriction enzymes EcoRI (Takara Shuzo) and Sp/I (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. Each reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μ g of an EcoRI-Sp/I fragment about 9.15 kb in size was recovered.

Then, 5 μ g of the plasmid pBSL3 obtained in Paragraph 1 (2) of Example 2 was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 μ g/ml BSA, 10 units each of the restriction enzymes EcoRI (Takara Shuzo) and Sp/I (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 0.4 μ g of an EcoRI-Sp/I fragment about 0.39 kb in size was recovered.

Then, 0.1 μg of the EcoRI-Sp/I fragment of each of pT796HLCDRHV2, pT796HLCDRHV4 and pT796HLCDRH10 and 0.1 μg of the EcoRI-Sp/I fragment of pBSL3 were added to a total of 20 μI of sterilized water and ligated to each other using Ready-To-Go DNA Ligase (Pharmacia Biotech). Each recombinant plasmid DNA solution thus obtained was used to transform $Escherichia\ coli\ HB101$. In this way, the plasmids pT796HCDR, pT796HCDRHV2, pT796HCDRHV4 and pT796HCDRH10 shown in Fig. 40 were obtained.

Then, 2 μg each of the plasmids pT796HCDR, pT796HCDRHV2, pT796HCDRHV4 and pT796HCDRH10 thus obtained were used for transient human CDR-grafted anti-GM $_2$ antibody expression and for culture supernatant human CDR-grafted anti-GM $_2$ antibody activity evaluation by the procedures described in Paragraphs 1 (5), 2 (2) and (3) of Example 2. After introduction of each plasmid, the culture supernatant was recovered at 72 hours, and the GM $_2$ -binding activity and antibody concentration in the culture supernatant were determined by ELISA and the relative activity was calculated with the activity of the positive control chimera antibody taken as 100%. The results are shown in Fig. 41.

The results revealed that the amino acid residue replacements alone in replacement versions 2 and 4 have little influence on the restoration of the antigen-binding activity of the human CDR-grafted anti-GM $_2$ antibody but that the use of the pBSH10-derived human CDR-grafted antibody H chain V region constructed based on the known HMHCS of the human antiobdy H chain V region, contributes to the restoration of the antigen-binding activity.

In view of the above results, the human CDR-grafted anti-GM₂ antibody H chain V region constructed based on the known HMHCS of the human antibody H chain V region as shown in SEQ ID NO:7 was selected as a novel human CDR-grafted anti-GM₂ antibody H chain V region.

Then, for evaluating the human CDR-grafted anti-GM $_2$ antibody L chain V regions having various replacements, expression vectors, pT796HLCDRLV1, pT796HLCDRLV2, pT796HLCDRLV3, pT796HLCDRLV4, pT796HLCDRLV8, pT796HLCDRLm-2, pT796HLCDRLm-8, pT796HLCDRLm-28, and pT796HLCDRHSGL, were constructed in the following manner by replacing the mouse L chain V region of the vector pT796HCDRH10 for transient human CDR-grafted anti-GM $_2$ antibody expression obtained as mentioned above with the human CDR-grafted anti-GM $_2$ antibody L chain V regions having various replacements.

Thus, 3 µg of the plasmid pT796HCDRH10 was added to 10 µl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 µg/ml BSA, 10 units each of the restric-

tion enzymes EcoRI (Takara Shuzo) and Sp/I (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μ g of an EcoRI-Sp/I fragment about 9.15 kb in size was recovered.

Then, 3 μ g of the plasmid pBSLV1, pBSLV2, pBSLV3, pBSLV4, pBSLV8, pBSLm-2, pBSLm-8, pBSLm-28 or pBSHSGL obtained in Paragraph 1 (3) or (4) of Example 3 was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 μ g/ml BSA, 10 units each of the restriction enzymes EcoRI (Takara Shuzo) and Sp/I (Takara Shuzo) were further added, and the reaction was allowed to proceed at 37°C for 1 hour. Each reaction mixture was fractionated by agarose gel electrophoresis, and about 0.3 μ g of an EcoRI-Sp/I fragment about 0.39 kb in size was recovered.

Then, 0.1 μ g of the EcoRI-Sp/I fragment of the pT796HCDRH10, and 0.1 μ g of the EcoRI-Sp/I fragment of each replacement version human CDR-grafted anti-GM $_2$ antibody L chain V region were added to a total of 20 μ I of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). Each recombinant plasmid DNA solution thus obtained was used to transform $Escherichia\ coli\ HB101$. In this way, the plasmids pT796HLCDRLV1, pT796HLCDRLV2, pT796HLCDRLV3, pT796HLCDRLV4, pT796HLCDRLV8, pT796HLCDRLM-2, pT796HLCDRLM-8, pT796HLCDRLM-28 and pT796HLCDRHSGL were obtained as shown in Fig. 42.

Then, 2 μg each of the thus-obtained plasmids pT796HLCDRLV1, pT796HLCDRLV2, pT796HLCDRLV3, pT796HLCDRLV8, pT796HLCDRLV8, pT796HLCDRLm-2, pT796HLCDRLm-8, pT796HLCDRLm-28 and pT796HLCDRHSGL and of the plasmid pT796HLCDR described in Example 2 of JP-A-6-205694 and capable of expressing human CDR-grafted anti-GM₂ antibody were used for transient human CDR-grafted anti-GM₂ antibody expression and for culture supernatant human CDR-grafted anti-GM₂ antibody activity evaluation by the procedures described in Paragraphs 1 (5) and 2 (2) and (3) of Example 2. After introduction of each plasmid, the culture supernatant was recovered at 72 hours, and the GM₂-binding activity and antibody concentration in the culture supernatant were determined by ELISA and the relative activity was calculated with the activity of the positive control chimera antibody taken as 100%. The results are shown in Fig. 43.

The results revealed that the amino acid residue replacements alone in replacement versions 1, 2, 3, 4 and 8 have little influence on the restoration of the antigen-binding activity of the human CDR-grafted anti-GM₂ antibody but that the amino acid residue replacements in replacement versions Lm-2 and Lm-8 contributes to the restoration of the antigen-binding activity. Furthermore, version Lm-28 having both the amino acid residue replacements of Lm-2 and Lm-8 showed a high level of antigen-binding activity almost comparable to that of the chimera antibody, revealing that those amino acid residues replaced in producing Lm-28 were very important from the antigen-binding activity viewpoint.

In view of the above results, the version Lm-28 human CDR-grafted anti-GM₂ antibody L chain V region shown in SEQ ID NO:8 was selected as a first novel human CDR-grafted anti-GM₂ antibody L chain V region.

It was further revealed that the antigen-binding activity can be restored when the pBSHSGL-derived human CDR-grafted anti-GM₂ antibody L chain V region, namely the human CDR-grafted anti-GM₂ antibody L chain V region constructed based on the known HMHCS of the human antibody L chain V region, is used.

In view of the above result, the human CDR-grafted anti- GM_2 antibody L chain V region constructed based on the known HMHCS of the human antibody L chain V region as set forth in SEQ ID NO:9 was selected as a second novel human CDR-grafted anti- GM_2 antibody an L chain V region.

It is to be noted that in those human CDR-grafted anti-GM₂ antibody L chain V regions that showed high binding activity against GM₂, certain amino acid residues which cannot be specified by deduction fro known human CDR-grafted antibody production examples have been replaced by amino acid residues found in the mouse L chain V region. Thus, obviously, it was very important, in human CDR-grafted anti-GM₂ antibody production, to identify these amino acid residues.

Furthermore, the fact that the human CDR-grafted anti- GM_2 antibodies having those human CDR-grafted anti- GM_2 antibody H chain and L chain V regions based on the known HMHCS of the human antibody V region showed high antigen binding activity is proof of the usefulness of the present process in human CDR-grafted antibody production.

3. Acquisition of cell lines for stable production of human CDR-grafted anti-GM2 antibodies

50

Based on the results of Paragraph 2 (5) of Example 3, two cell lines, KM8966 and KM8967, capable of stably expressing KM8966, which has the amino acid sequence set forth in SEQ ID NO:7 as the H chain V region and the amino acid sequence set forth in SEQ ID NO:8 as the L chain V region, and KM8967, which has the amino acid sequence set forth in SEQ ID NO:7 as the H chain V region and the amino acid sequence set forth in SEQ ID NO:9 as the L chain V region, respectively as human CDR-grafted anti-GM₂ antibodies having higher antigen-binding activity than the human CDR-grafted anti-GM₂ antibody described in Example 2 of JP-A-6-205694 were obtained in the following manner.

Three μ g each of the plasmids pT796HLCDRLm-28 and pT796HLCDRHSGL obtained in Paragraph 2 (5) of Example 3 were respectively added to 10 μ l of 20 mM Tris-hydrochloride buffer (pH 8.5) containing 100 mM potassium chlo-

ride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme BamHI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. Each reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme XhoI (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. Each reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μ g of a BamHI-XhoI fragment about 4.93 kb in size was recovered.

Then, 3 μg of the plasmid pKANTEX93 obtained in Example 1 was added to 10 μl of 20 mM Tris-hydrochloride buffer (pH 8.5) containing 100 mM potassium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme BamHl (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was subjected to ethanol precipitation, the precipitate was added to 10 μl of 50 mM Trishydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT, 10 units of the restriction enzyme Xhol (Takara Shuzo) was further added, and the reaction was allowed to proceed at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis, and about 1 μg of a BamHl-Xhol fragment about 8.68 kb in size was recovered.

Then, 0.1 μg of the BamHI-XhoI fragment of pT796HLCDRLm-28 or pT796HLCDRHSGL and 0.1 μg of the BamHI-XhoI fragment of pKANTEX93, each obtained as mentioned above, were added to a total of 20 μI of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). Each recombinant plasmid DNA solution thus obtained was used to transform *Escherichia coli* HB101. In this way, the plasmids pKANTEX796HLCDRLm-28 and pKANTEX796HLCDRHSGL shown in Fig. 44 were obtained.

Then, 4 μg each of the above plasmids pKANTEX796HLCDRLm-28 and pKANTEX796HLCDRHSGL were respectively used to transform YB2/0 (ATCC CRL 1581) cells according to the procedure described in Paragraph 1 (4) of Example 2 and, after final selection using G418 (0.5 mg/ml) and MTX (200 nM), a transformant cell line, KM8966, capable of producing about 40 μ g/ml of KM8966, i.e. the pKANTEX796HLCDRLm-28-derived human CDR-grafted anti-GM₂ antibody, and a transformant cell line, KM8967, capable of producing about 30 μ g/ml of KM8967, i.e. the pKANTEX796HLCDRHSGL-derived human CDR-grafted anti-GM₂ antibody, were obtained.

The transformants KM8966 and KM8967 have been deposited with National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba, Ibaraki, Japan; hereinafter the address is the same as this) on May 23, 1995 under the deposit numbers FERM BP-5105, and FERM BP-5106, respectively.

4. Purification of human CDR-grafted anti-GM₂ antibodies KM8966 and KM8967

20

30

The transformant cell lines KM8966 and 8967 obtained in Paragraph 3 of Example 3 were respectively suspended in GIT medium (Nippon Pharmaceutical) containing 0.5 mg/ml G418 and 200 nM MTX and, according to the procedure of Paragraph 11 of Example 1 of JP-A-6-205694, 18 mg of purified human CDR-grafted anti-GM₂ antibody KM8966 and 12 mg of purified KM8967 were obtained each from about 0.5 liter of culture fluid. Three µg each of the purified human CDR-grafted anti-GM₂ antibodies obtained and the mouse-human chimeric anti-GM₂ antibody KM966 were subjected to electrophoresis by the known method [Laemli, U.K., *Nature*, 227, 680 (1979)] for molecular weight determination. The results are shown in Fig. 45. As shown in Fig. 45, under reducing conditions, both antibody H chains showed a molecular weight of about 50 kilodaltons and both antibody L chains showed a molecular weight of about 25 kilodaltons. Expression of H and L chains of correct molecular weights was thus confirmed. Under nonreducing conditions, both human CDR-grafted anti-GM₂ antibodies showed a molecular weight of about 150 kilodaltons and it was thus confirmed that antibodies each composed of two H chains and two L chains and having a correct size had been expressed. Furthermore, the H and L chains of each human CDR-grafted anti-GM₂ antibody were analyzed for N-terminal amino acid sequence by automatic Edman degradation using a protein sequencer (Applied Biosystems model 470A), whereby an amino acid sequence deducible from the base sequence of the V region DNA constructed was revealed.

5. In vitro reactivity of human CDR-grafted anti-GM2 antibodies KM8966 and KM8967 against GM2

The mouse-human chimeric anti-GM₂ antibody KM966 and the purified human CDR-grafted anti-GM₂ antibodies KM8966 and KM8967 were tested for reactivity against GM₂ by ELISA as described in Paragraph 1 (5) of Example 2. The results are shown in Fig. 46. GM₂ (N-acetyl-GM₂) used was purified from cultured cell line HPB-ALL [Oboshi *et al.*, *Tanpakushitsu*, *Kakusan & Koso* (*Protein, Nucleic Acid & Enzyme*), 23, 697 (1978)] in accordance with the known method [*J. Biol. Chem.*, 263, 10915 (1988)]. As shown, it was found that the purified human CDR-grafted anti-GM₂ antibody KM8966 exerted the binding activity comparable to that of the mouse-human chimeric anti-GM₂ antibody KM8967 was about 1/4 to 1/5 of that of the mouse-human chimeric anti-GM₂ antibody KM966.

6. Reaction specificity of human CDR-grafted anti-GM2 antibodies KM8966 and KM8967

The mouse-human chimeric anti-GM $_2$ antibody KM966 and the human CDR-grafted anti-GM $_2$ antibodies KM8966 and KM8967 were tested for reactivity against the gangliosides GM $_1$, N-acetyl-GM $_2$, N-glycolyl-GM $_2$, N-glycolyl-GM $_3$, GD $_{1a}$, GD $_{1b}$ (latron), GD $_2$, GD $_3$ (latron) and GQ $_{1b}$ (latron) by ELISA as described in Paragraph 1 (5) of Example 2. The results are shown in Fig. 47. GM $_1$ and GD $_{1a}$ were purified from bovine brain, N-acetyl-GM $_2$ from cultured cell line HPB-ALL [Oboshi *et al.*, *Tanpakushitsu, Kakusan & Koso (Protein, Nucleic acid & Enzyme*), 23, 697 (1978)], N-glycolyl-GM $_2$ and N-glycolyl-GM $_3$ from mouse liver, N-acetyl-GM $_3$ canine erythrocytes, and GD $_2$ from cultured cell line IMR32 (ATCC CCL127), respectively by the *per se* known method [*J. Biol. Chem.*, 263, 10915 (1988)]. Each antibody was used in a concentration of 10 μ g/ml.

As shown in Fig. 47, it was confirmed that the human CDR-grafted anti-GM $_2$ antibodies KM8966 and KM8967 react specifically with GM $_2$ (N-acetyl-GM $_2$ and N-glycolyl-GM $_2$) like the mouse-human chimeric anti-GM $_2$ antibody KM966.

7. Reactivity of human CDR-grafted anti-GM2 antibodies KM8966 and KM8967 against cancer cells

The human lung small cell carcinoma culture cell line SBC-3 (JCRB 0818) (1×10^6 cells) was suspended in PBS, the suspension was placed in a microtube (TREF) and centrifuged (1200 rpm, 2 minutes). To the thus-washed cells was added 50 μ l (50 μ g/ml) of the mouse-human chimeric anti-GM $_2$ antibody KM966 or the purified human CDR-grafted anti-GM $_2$ antibody KM8966 or KM8967, followed by stirring and 1 hour of standing at 4°C. After the above reaction step, the cells were washed three times with PBS, each time followed by centrifugation. Then, 20 μ l of fluorescein isocyanate-labeled protein A (30-fold dilution, Boehringer Mannheim) was added and, after stirring, the reaction was allowed to proceed at 4°C for 1 hour. Thereafter, the cells were washed three times with PBS, each time followed by centrifugation, then further suspended in PBS and subjected to analysis using a flow cytometer, EPICS Elite (Coulter). In a control run, the above procedure was followed without addition of the human CDR-grafted anti-GM $_2$ antibody and analyzed. The results are shown in Fig. 48. It was found that the purified human CDR-grafted anti-GM $_2$ antibodies KM8966 and KM8967 strongly reacted with the human lung small cell carcinoma culture cell line SBC-3 like the mouse-human chimeric anti-GM $_2$ antibody KM966.

8. In vitro antitumor activity of human CDR-grafted anti-GM2 antibodies KM8966 and KM8967: CDC activity

(1) Preparation of target cells

15

30

40

45

The target cells SBC-3, cultured in RPMI1640-FCS (10) medium supplemented with 10% FCS, here adjusted to a cell concentration of 5×10^6 cells/500 μ l, 3.7 MBq of Na $_2$ ⁵¹CrO $_4$ (Daiichi Pure Chemicals Co., Ltd.) was added thereto. Then, the reaction was allowed to proceed at 37°C for 1 hour, and the cells were washed three times with the medium. The cells were then allowed to stand in the medium at 4°C for 30 minutes and, after centrifugation, the medium was added to adjust the cell concentration to 1×10^6 cells/ml.

(2) Preparation of the complement

Sera from healthy subjects were combined and used as a complement source.

(3) CDC activity measurement

The mouse-human chimeric anti-GM $_2$ antibody KM966 or purified human CDR-grafted anti-GM $_2$ antibody KM8966 or KM8967 was added to wells of 96-well U-bottom plates within the final concentration range of 0.05 to 50 μ g/ml and then 50 μ l (5 × 10⁴ cells/well) of the target cells prepared in (1) were added to each well. The reaction was allowed to proceed at room temperature for 1 hour. After centrifugation, the supernatants were discarded, the human complement obtained in (2) was added to each well to give a final concentration of 15% v/v, and the reaction was allowed to proceed at 37°C for 1 hour. After centrifugation, the amount of 51 Cr in each supernatant was determined using a gamma counter. The amount of spontaneously dissociated 51 Cr was determined by adding to the target cells the medium alone in stead of the antibody and complement solutions and measuring the amount of 51 Cr in the supernatant in the same manner as mentioned above. The total amount of dissociated 51 Cr was determined by adding to the target cells 1 N hydrochloric acid in stead of the antibody and complement solutions and measuring the amount of 51 Cr in the supernatant in the same manner as mentioned above. The CDC activity was calculated as follows:

CDC activity (%) = $\frac{\text{Amount of}^{51}\text{Cr in sample supernatant - Amount of}^{51}\text{Cr spontaneously dissociated}}{\text{Total amount of}^{51}\text{Cr dissociated - Amount of}^{51}\text{Cr spontaneously dissociated}} \times 100$

- The results thus obtained are shown in Fig. 49. It was shown that CDC activity of the human CDR-grafted anti-GM₂ antibodies KM8966 and KM8967 was lower than that of the mouse-human chimeric anti-GM₂ antibody KM966.
 - 9. In vitro antitumor activity of human CDR-grafted anti-GM2 antibodies KM8966 and KM8967: ADCC activity
- (1) Preparation of target cells

The target cells SBC-3 cultured in RPMI1640-FCS (10) medium supplemented with 10% FCS were adjusted to a cell concentration of 1×10^6 cells/500 μ l, 3.7 MBq of Na $_2$ ⁵¹CrO $_4$ (Daiichi Pure Chemicals Co., Ltd.) was added thereto. Then, the reaction was allowed to proceed at 37°C for 1 hour and the cells were washed three times with the medium. The cells were then allowed to stand in the medium at 4°C for 30 minutes and then, after centrifugation, the medium was added to adjust the cell concentration to 2×10^5 cells/ml.

(2) Preparation of effector cells

20

25

Human venous blood (50 ml) was collected, 0.5 ml of heparin sodium (Takeda Chemical Industries; 1,000 units/ml) was added, and the mixture was gently stirred. This mixture was overlaid on Polymorphprep (Nycomed) and centrifuged to separate the lymphocyte layer (PBMC). The resulting lymphocytes were washed three times by centrifugation with RPMI1640 medium supplemented with 10% FCS, and the cells were suspended in the medium (5×10^6 cells/ml) for use as effector cells.

(3) ADCC activity measurement

The mouse-human chimeric anti-GM $_2$ antibody KM966 or purified human CDR-grafted anti-GM $_2$ antibodies KM8966 or KM8967 was added to wells of 96-well U-bottom plates within the final concentration range of 0.05 to 50 μ g/ml and then 50 μ l (1 \times 10⁴ cells/well) of the target cell suspension prepared in (1) and 100 μ l (5 \times 10⁵ cells/well) of the effector cell suspension prepared in (2) were added to each well. The reaction was allows to proceed at 37°C for 4 hours and, after centrifugation, the amount of 51 Cr in each supernatant was measured using a gamma counter. The amount of spontaneously dissociated 51 Cr was determined by adding to the target cells the medium alone in lieu of the antibody and effector cells and measuring the amount of 51 Cr in the supernatant in the same manner as mentioned above. The total amount of dissociated 51 Cr was determined by adding to the target cells 1 N hydrochloric acid in lieu of the antibody and effector cells and measuring the amount of 51 Cr in the supernatant in the same manner as mentioned above. The ADCC activity was calculated as follows:

ADCC activity (%)=
$$\frac{\text{Amount of}^{51}\text{Cr in sample supernatant - Amount of}^{51}\text{Cr spontaneously dissociated}}{\text{Total amount of}^{51}\text{Cr dissociated - Amount of}^{51}\text{Cr spontaneously dissociated}} \times 100$$

The results thus obtained are shown in Fig. 50. The human CDR-grafted anti-GM₂ antibody KM8966 showed ADCC activity comparable to that of the mouse-human chimeric anti-GM₂ antibody KM966, whereas the human CDR-grafted anti-GM₂ antibody KM8967 showed ADCC activity slightly lower than that of the mouse-human chimeric anti-GM₂ antibody KM966.

EXAMPLE 4

50 Production of human CDR-grafted anti-GM₂ antibodies II

The human CDR-grafted anti-GM₂ antibodies KM8966 and KM8967 showed antigen binding activity (ELISA), binding specificity and ADCC activity comparable to those of the mouse-human chimeric anti-GM₂ antibody KM966, while its CDC activity was lower than that of the chimeric antibody. In order to improve the CDC activity, human CDR-grafted anti-GM₂ antibodies were produced in the following manner.

1. Modification of human CDR-grafted anti- GM_2 antibody KM8966 H chain V region

Among the human CDR-grafted anti-GM₂ antibodies prepared in Example 3, the antibody KM8966 showing higher CDC activity was subjected to amino acid residue replacements at the H chain V region (SEQ ID NO:7) in order to improve CDC activity. The amino acid residues to be replaced were selected at random with reference to the results of various replacement obtained in Example 3 and a computer model for the V region of mouse antibody KM796. Replacements were introduced by PCR method using as a template 1 ng of the plasmid pBSH10 containing the human CDR-grafted anti-GM₂ antibody H chain V region obtained in Paragraph 1 (2) of Example 3 and using as a primer antisense and sense synthetic DNA containing mutations described in Paragraph 1 (3) of Example 3.

The reaction was carried out in the same manner as described in Paragraph 1 (3) of Example 3 using the synthetic DNA of SEQ ID NO:62 as the mutant antisense primer and the synthetic DNA of SEQ ID NO:63 as the mutant sense primer to obtain the plasmid pBSHM1 containing version HM1, shown in SEQ ID NO:64, of the human CDR-grafted anti-GM₂ antibody H chain V region. In the amino acid sequence of the version HM1, arginine in position 38, alanine in position 40, glutamine in position 43 and glycine in position 44 in the FR shown in SEQ ID NO:7 were replaced by lysine, serine, lysine and serine, respectively, that are found in the mouse antibody KM796 H chain V region.

The plasmid pBSHM2 containing version HM2, shown in SEQ ID NO:10, of the human CDR-grafted anti-GM $_2$ anti-body H chain V region was obtained following the reaction described in Paragraph 1 (3) of Example 3 using the synthetic DNA of SEQ ID NO:65 as the mutant antisense primer and the synthetic DNA of SEQ ID NO:66 as the mutant sense primer. In the amino acid sequence of the version HM2, arginine in position 38 and alanine in position 40 in the FR shown in SEQ ID NO:7 were replaced by lysine and serine, respectively, that are found in the mouse antibody KM796 H chain V region.

The plasmid pBSHM3 containing version BM3, shown in SEQ ID NO:69, of the human CDR-grafted anti-GM $_2$ anti-body H chain V region was obtained following the reaction described in Paragraph 1 (3) of Example 3 using the synthetic DNA of SEQ ID NO:67 as the mutant antisense primer and the synthetic DNA of SEQ ID NO:68 as the mutant sense primer. In the amino acid sequence of the version HM3, valine in position 68 and isoleucine in position 70 in the FR shown in SEQ ID NO:7 were replaced by alanine and leucine, respectively, that are found in the mouse antibody KM796 H chain V region.

The plasmid pBSHM31 containing version HM31, shown in SEQ ID NO:70, of the human CDR-grafted anti-GM $_2$ antibody H chain V region was obtained following the reaction described in Paragraph 1 (3) of Example 3 using 1 ng of the plasmid pBSHM3 as the template, the synthetic DNA of SEQ ID NO:62 as the mutant antisense primer and the synthetic DNA of SEQ ID NO:63 as the mutant sense primer. In the amino acid sequence of the version HM31, arginine in position 38, alanine in position 40, glutamine in position 43 and glycine in position 44 in the FR of the version HM3 were replaced by lysine, serine, lysine and serine, respectively, that are found in the mouse antibody KM796 H chain V region.

Further, the plasmid pBSHM32 containing version HM32, shown in SEQ ID NO:71, of the human CDR-grafted anti-GM₂ antibody H chain V region was obtained following the reaction described in Paragraph 1 (3) of Example 3 using 1 ng of the plasmid pBSHM3 as the template, the synthetic DNA of SEQ ID NO:65 as the mutant antisense primer and the synthetic DNA of SEQ ID NO:66 as the mutant sense primer. In the amino acid sequence of the version HM32, arginine in position 38 and alanine in position 40 in the FR of the version HM3 were replaced by lysine and serine, respectively, that are found in the mouse antibody KM796 H chain V region.

2. Evaluation of CDC activity of human CDR-grafted anti-GM₂ antibodies having various replacements in the human CDR-grafted anti-GM₂ antibody H chain V region

(1) Construction of expression vectors

10

35

Expression vectors for various human CDR-grafted anti- GM_2 antibodies containing the H chain V region of human CDR-grafted anti- GM_2 antibodies having various replacements obtained in Paragraph 1 of Example 4 and the L chain V region of KM8966 (SEQ ID NO:8) were prepared in the following manner.

Three μg each of the plasmids pBSHM1, pBSHM2, pBSHM3, pBSHM31 and pBSHM32 obtained in Paragraph 1 of Example 4 were dissolved in 10 μl of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of *Apa*I (Takara Shuzo) were added thereto and the mixture was allowed to react at 37°C for 1 hour. The resulting mixture was subjected to ethanol precipitation and the thus-obtained precipitate was dissolved in 10 μl of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 $\mu g/ml$ BSA and 0.01% of Triton X-100. Ten units of *Notl* (Takara Shuzo) were further added thereto to allow the mixture to react at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis to recover about 0.2 μg of the Apal-Notl fragment of about 0.44 kb.

Then, 3 μg of the plasmid pKANTEX796HLCDRLm-28 obtained in Paragraph 3 (3) of Example 3 was dissolved in

10 μ l of 10 mM Tris-hydrochloride buffer (pH 7.5) containing 10 mM magnesium chloride and 1 mM DTT, 10 units of *Apal* (Takara Shuzo) were added thereto and the mixture was allowed to react at 37°C for 1 hour. The resulting mixture was subjected to ethanol precipitation and the thus-obtained precipitate was dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT, 100 μ g/ml BSA and 0.01% of Triton X-100. 10 units of *Notl* (Takara Shuzo) were added thereto to allow the mixture to react at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis to recover about 1 μ g of the *Apal-Notl* fragment of about 13.14 kb.

About 0.1 μg each of the thus-obtained Apal-Notl fragment of pBSHM1, pBSHM2, pBSHM3, pBSHM31 and pBSHM32 and 0.1 μg of the Apal-Notl fragment of pKANTEX796HLCDRLm-28 were added in a total of 20 μl of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). Each of the resulting recombinant plasmid DNA solutions was used to transform *Escherichia coli* HB101 and plasmids, pKANTEX796HM1Lm-28, pKANTEX796HM31Lm-28, pKANTEX796HM31Lm-28 and pKANTEX796HM32Lm-28 shown in Fig. 51 were obtained.

(2) Expression of replacement versions of human CDR-grafted anti-GM₂ antibodies

Four μg each of the plasmids pKANTEX796HM1Lm-28, pKANTEX796HM2Lm-28, pKANTEX796HM3Lm-28, pKANTEX796HM31Lm-28 and pKANTEX796HM32Lm-28 obtained in Paragraph 2 (1) of Example 4 were used to transform YB2/0 cells (ATCC CRL 1581) in accordance with the method as described in Paragraph 1 (4) of Example 2. The cells were ultimately selected using G418 (0.5 mg/ml) and MTX (200 nM) to obtain about 2 to 5 μ g/ml of transformants capable of producing human CDR-grafted anti-GM₂ antibodies derived from the corresponding expression vectors.

(3) Purification of replacement versions of human CDR-grafted anti-GM2 antibodies

25

45

Cells of each transformant obtained in Paragraph 2 (2) of Example 4 were suspended in GIT medium (Nihon Pharmaceutical) containing 0.5 mg/ml G418 and 200 nM MTX and about 1 to 3 mg of purified human CDR-grafted anti-GM₂ antibodies were obtained from about 0.6 liter of the culture broth in accordance with the method described in Paragraph 11 of Example 1 of JP-A-6-205694. The human CDR-grafted anti-GM2 antibodies derived from the plasmids pKANTEX796HM1Lm-28, pKANTEX796HM2Lm-28, pKANTEX796HM31Lm-28 and pKANTEX796HM32Lm-28 are hereinafter referred to as "M1-28", "M2-28", "M3-28", "M31-28" and "M32-28", respectively. 4 µg each of the purified human CDR-grafted anti-GM2 antibodies, the human CDR-grafted anti-GM2 antibody KM8966 and the mouse-human chimeric anti-GM2 antibody KM966 were electrophoresed by the conventional method [Laemmli: Nature, 227, 680 (1970)] for molecular weight checking. The results are shown in Fig. 52. As shown in Fig. 52, under reducing conditions, the molecular weight of the antibody H chain was about 50 KDa and the molecular weight of the antibody L chain was about 25 KDa, thus confirming the expression of the H chain and L chain having the correct molecular weight. Under nonreducing conditions, the molecular weight of the human CDR-grafted anti-GM2 antibodies was about 150 KDa, confirming that the antibody expressed was composed of two H chains and two L chains and was correct in size. The N-terminal amino acid sequence of the H and L chains of each purified human CDR-grafted anti-GM2 antibodies was examined by automatic Edman degradation using a protein sequencer (Applied Biosystems model 470A). As a result, it was confirmed that the amino acid sequence was consistent with that deduced from the synthesized V region DNA sequence.

(4) CDC activity of replacement versions of human CDR-grafted anti-GM2 antibodies

CDC activity of the replacement versions of the human CDR-grafted anti-GM₂ antibodies obtained in Paragraph 2 (3) of Example 4, the human CDR-grafted anti-GM₂ antibody KM8966 and the mouse-human chimeric anti-GM₂ antibody KM966 was measured in accordance with the method described in Paragraph 8 of Example 3. The results are shown in Fig. 53. As shown in Fig. 53, it was found that, among the replacement versions of the human CDR-grafted anti-GM₂ antibodies, the human CDR-grafted anti-GM₂ antibody M2-28 derived from the plasmid pKANTEX796HM2Lm-28 showed the highest CDC activity which was higher than that of the human CDR-grafted anti-GM₂ antibody KM8966 prepared in Example 3. This result indicates that the replaced amino acid residues of the version HM2 among the various replacement versions prepared in Paragraph 1 of Example 4 play an important role for improving CDC activity. It was assumed from the computer model for the V region of mouse antibody KM796 that the replacement of the amino acid residues of the version HM2 would influence on the entire structure of the V region since these amino acid residues are located at the site which interacts with the L chain V region. Recent study of the production of human CDR-grafted antibody reveals that the amino acid residues which affect the structure of the antibody varies in each antibody. No method for precisely predicting such amino acid residues has been established and the above results provide a significant finding for the production of the human CDR-grafted antibody.

The human CDR-grafted anti- GM_2 antibody M2-28 derived from the plasmid pKANTEX796HM2Lm-28 was designated as KM8970 and the antibody KM8970-producing trasformant KM8970 has been deposited with National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology as of May 9, 1996 under the deposit number FERM BP-5528.

3. Modification of human CDR-grafted anti-GM₂ antibody KM8966 L chain V region

The human CDR-grafted anti-GM₂ antibody KM8966 prepared in Example 3 was subjected to amino acid residue replacements in the L chain V region (SEQ ID NO:8) to improve CDC activity. As an amino acid residue to be replaced, serine residue in position 59 was selected based on the results of various replacements obtained in Paragraph 1 (3) of Example 3 which suggested that it was important to support the structure of CDR2 for the human CDR-grafted anti-GM₂ antibody activity. Replacements were introduced by PCR method using as a template 1 ng of the plasmid pBSLm-28 containing the human CDR-grafted anti-GM₂ antibody L chain V region obtained in Paragraph 1 (3) of Example 3 and using as a primer antisense and sense synthetic DNA containing mutations described in Paragraph 1 (3) of Example 3.

The reaction was carried out in the same manner as described in Paragraph 1 (3) of Example 3 using the synthetic DNA of SEQ ID NO:72 as the mutant antisense primer and the synthetic DNA of SEQ ID NO:73 as the mutant sense primer to obtain the plasmid pBSLm-28 No.1, containing version Lm-28 No.1, shown in SEQ ID NO:11, of the human CDR-grafted anti-GM₂ antibody L chain V region. In the amino acid sequence of the version Lm-28 No.1, serine in position 59 in the FR shown in SEQ ID NO:83 was replaced by alanine that is found in the mouse antibody KM796 L chain V region.

4. Evaluation of CDC activity of human CDR-grafted anti-GM₂ antibody having new replacement in human CDR-grafted anti-GM₂ antibody L chain V region

(1) Construction of expression vectors

5

25

50

Expression vectors for the human CDR-grafted anti-GM₂ antibody containing the human CDR-grafted anti-GM₂ antibody L chain V region having the replacement obtained in Paragraph 3 of Example 4 and the human CDR-grafted anti-GM₂ antibody H chain V region were obtained in the following manner.

Six μ g of the plasmid pBSLm-28 No.1 obtained in Paragraph 3 of Example 4 was dissolved in 10 μ l of 50 mM Trishydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride, 1 mM DTT and 100 μ g/ml BSA. 10 units each of *Eco*Rl (Takara Shuzo) and *Spl*l (Takara Shuzo) were added thereto to allow the mixture to react at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis to recover about 0.4 μ g of the *Eco*Rl-*Spl*l fragment of about 0.39 kb.

Then, 3 μ g each of the plasmid pKANTEX796HLCDRLm-28 obtained in Paragraph 3 of Example 3 and the plasmids pKANTEX796HM1Lm-28, pKANTEX796HM2Lm-28 and pKANTEX796HM3Lm-28 obtained in Paragraph 2 (1) of Example 4 were dissolved in 10 μ l of 50 mM Tris-hydrochloride buffer (pH 7.5) containing 100 mM sodium chloride, 10 mM magnesium chloride and 1 mM DTT and 100 μ g/ml BSA, 10 units each of EcoRl (Takara Shuzo) and Sp/l were added thereto and the mixture was allowed to react at 37°C for 1 hour. The reaction mixture was fractionated by agarose gel electrophoresis to recover about 1 μ g of the EcoRl-Sp/l fragment of about 13.19 kb.

A 0.1 μg portion each of the thus-obtained *Eco*RI-*Sp/*I fragment of pBSLm-28 No.1 and 0.1 μg of the *Eco*RI-*Sp/*I of pKANTEX796HLCDRLm-28, pKANTEX796HM1Lm-28, pKANTEX796HM2Lm-28 and pKANTEX796HM3Lm-28 were added in a total of 20 μl of sterilized water and ligated to each other using Ready-To-Go T4 DNA Ligase (Pharmacia Biotech). Each of the resulting recombinant plasmid DNA solutions was used to transform *Escherichia coli* HB101 and the plasmids pKANTEX796HLm-28 No.1, pKANTEX796HM1Lm-28 No.1, pKANTEX796HM2Lm-28 No.1 and pKANTEX796HM3Lm-28 No.1 shown in Fig. 54 were obtained.

(2) Expression of human CDR-grafted anti-GM2 antibodies having replacements in the L chain V region

Four μg each of the plasmids pKANTEX796HLm-28 No.1, pKANTEX796HM1Lm-28 No.1, pKANTEX796HM2Lm-28 No.1 and pKANTEX796HM3Lm-28 No.1 obtained in Paragraph 4 (1) of Example 4 was used to transform YB2/0 cells (ATCC CRL 1581) in accordance with the method as described in Paragraph 11 of Example 1. The cells were ultimately selected using G418 (0.5 mg/ml) and MTX (200 nM) to obtain about 2 to 5 μ g/ml of transformants capable of producing human CDR-grafted anti-GM₂ antibodies derived from the corresponding expression vectors.

(3) Purification of human CDR-grafted anti-GM2 antibodies having replacements in the L chain V region

Cells of each transformant obtained in Paragraph 4 (2) of Example 4 were suspended in GIT medium (Nihon Pharmaceutical) containing 0.5 mg/ml G418 and 200 nM MTX and about 1 to 3 mg of purified human CDR-grafted anti-GM₂ antibodies were obtained from about 0.6 liter of the culture broth in accordance with the method described in Paragraph 11 of Example 1 of JP-A-6-205694. The human CDR-grafted anti-GM2 antibodies derived from the plasmids pKANTEX796HLm-28 No.1, pKANTEX796HM1Lm-28 No.1, pKANTEX796HM2Lm-28 pKANTEX796HM3Lm-28 No.1 are hereinafter referred to as "h796H-No.1", "M1-No.1", "M2-No.1" and "M3-No.1", respectively. Four µg each of the purified human CDR-grafted anti-GM2 antibodies and the mouse-human chimeric anti-GM₂ antibody KM966 was electrophoresed by the conventional method [Laemmli: Nature, 227, 680 (1970)] for molecular weight checking. The results are shown in Fig. 55. As shown in Fig. 55, under reducing conditions, the molecular weight of the antibody H chain was about 50 KDa and the molecular weight of the antibody L chain was about 25 KDa, thus confirming the expression of the H chain and L chain having the correct molecular weight. Under nonreducing conditions, the molecular weight of the human CDR-grafted anti-GM₂ antibodies was about 150 KDa, confirming that the antibody expressed was composed of two H chains and two L chains and was correct in size. The N-terminal amino acid sequence of the H and L chains of each purified human CDR-grafted anti-GM2 antibodies was examined by automatic Edman degradation using a protein sequencer (Applied Biosystems model 470A). As a result, it was confirmed that the amino acid sequence was consistent with that deduced from the synthesized V region DNA sequence.

(4) CDC activity of human CDR-grafted anti-GM₂ antibodies having replacements in the L chain V region

CDC activity of the human CDR-grafted anti-GM2 antibodies having replacements in the L chain V region obtained in Paragraph 4 (3) of Example 4, the human CDR-grafted anti-GM2 antibody KM8970, the human CDR-grafted anti-GM2 antibody KM8966 and the mouse-human chimeric anti-GM2 antibody KM966 was measured in accordance with the method described in Paragraph 8 of Example 3. The results are shown in Fig. 56. Comparing CDC activity of KM8966 with that of h796H-No.1, it was found that the replacement introduced into only the L chain V region showed improved CDC activity. Among the replaced antibodies having replacements in both of the L chain V region and the H chain V region, M2-No.1 having replacement in the human CDR-grafted anti-GM2 antibody KM8970 H and L chain V region obtained in Paragraph 2 of Example 4 showed the highest CDC activity, which was comparable to or higher than that of KM8970. These results indicates that the replaced amino acid residue in position 59 in the FR of the L chain V region prepared in Paragraph 3 of Example 4 played an important role for improving its CDC activity and it interacted with the replaced amino acid residue in the H chain V region of KM8970 for improving its CDC activity cooperatively. It was not assumed from the computer model for the V region of mouse antibody KM796 that the replacement of the amino acid residue in position 59 in the FR of the version Lm-28 No.1 would be involved in direct action with antigen GM2 and interaction with each CDR residue. However, the above results suggested that they were quite important for maintaining the entire structure of the whole V region. This knowledge cannot be predicted from the known production method of a humanized antibody, and the above findings will provide an important indication for the production of human CDR-grafted antibody.

The human CDR-grafted anti-GM₂ antibody M2-No.1 derived from the plasmid pKANTEX796HM2Lm-28 No.1 was designated as KM8969 and the antibody KM8969-producing trasformant KM8969 has been deposited with National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology as of May 9, 1996 under the deposit number FERM BP-5527.

5. In vitro reactivity of human CDR-grafted anti-GM2 antibodies KM8969 and KM8970 with GM2

Reactivities of the mouse-human chimeric anti- GM_2 antibody KM966 and the human CDR-grafted anti- GM_2 antibodies KM8969 and KM8970 with GM_2 were measured in accordance with the method described in Paragraph 1 (5) of Example 2. The results are shown in Fig. 57. As shown in Fig. 57, the human CDR-grafted anti- GM_2 antibodies KM8969 and KM8970 showed binding activity comparable to that of the mouse-human chimeric anti- GM_2 antibody KM966.

Reaction specificity of human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970

45

50

The mouse-human chimeric anti-GM₂ antibody KM966 and the human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970 were examined for reactivity with various gangliosides in accordance with the method described in Paragraph 6 of Example 3. The results are shown in Fig. 58. As shown in Fig. 58, it was found that the human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970 specifically reacted with GM₂ (N-acetyl GM₂ and N-glycolyl GM₂) like the mouse-human chimeric anti-GM₂ antibody KM966.

7. Reactivity of human CDR-grafted anti-GM2 antibodies KM8969 and KM8970 with cancer cells

The mouse-human chimeric anti-GM₂ antibody KM966 and the human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970 were examined for reactivity with the human lung small cell carcinoma cell line SBC-3 (JCRB 0818) using fluorescein isocyanate-labeled rabbit anti-human IgG antibody (Dako) as a second antibody in accordance with the method described in Paragraph 7 of Example 3. The results are shown in Fig. 59. As shown in Fig. 59, the human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970 strongly reacted with the human lung small cell carcinoma cell line SBC-3 like the mouse-human chimeric anti-GM₂ antibody KM966.

8. In vitro antitumor effect of human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970: antibody dependent cell
mediated cytotoxicity (ADCC)

The mouse-human chimeric anti-GM₂ antibody KM966 and the human CDR-grafted anti-GM₂ antibodies KM8966, KM8969 and KM8970 were examined for ADCC activity against the human lung small cell carcinoma cell line SBC-3 (JCRB 0818) in accordance with the method described in Paragraph 9 of Example 3. The results are shown in Fig. 123. As shown in Fig. 123, the human CDR-grafted anti-GM₂ antibodies KM8969 and KM8970 showed ADCC activity comparable to that of the mouse-human chimeric anti-GM₂ antibody KM966.

9. Comparison of in vitro anti-tumor activities of humanized anti-GM2 antibodies: comparison of CDC activity

20

40

45

50

55

CDC activities of various humanized anti-GM $_2$ antibodies (KM966, KM8969 and KM8970) established in the aforementioned Inventive Examples 3 and 4 were compared by prolonging the reaction time. Illustratively, the reaction time of the method described in the item 8 of Inventive Example 3 after addition of the human complement was set to 4 hours. The results are shown in Fig. 61. As shown in Fig. 61, it was revealed that the CDC activity of each of these humanized antibodies increases by the 4 hours of reaction and, at an antibody concentration of 5 μ g/ml or more, the mouse-human chimeric anti-GM $_2$ antibody KM966 and the human CDR-grafted anti-GM $_2$ antibodies KM8969 and KM8970 show almost the same level of CDC activity. Particularly, KM8969 showed the highest CDC activity which was about 1/2 of that of the mouse-human chimeric anti-GM $_2$ antibody KM966, so that it was revealed that a human CDR-grafted anti-GM $_2$ antibody having further high CDC activity was able to be produced by the examination of Inventive Example 4.

Thus, production method of human CDR-grafted anti- GM_2 antibodies and evaluation of their various activities have been described, and these results show that the established human CDR-grafted anti- GM_2 antibodies are useful for the treatment of human cancers.

By the present invention, human CDR-grafted antibodies to ganglioside GM₂, whose binding activity and binding specificity for GM₂ and anti-tumor effect upon ganglioside GM₂-positive cells are comparable to the levels of chimeric human antibodies, and the production method thereof are provided.

35

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:		
	(i) APPLICANT: Kyowa Hakko Kogyo Co., Ltd		
10	(ii) TITLE OF INVENTION: Human complementarity determining Region (CDR)-grafted antibody to ganglioside GM2		
	(iii) NUMBER OF SEQUENCES: 73		
15	 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Kyowa Hakko Kogyo Co., Ltd. (B) STREET: 6-1, Ohtemachi 1-chome, Chiyoda-ku (C) CITY: Tokyo (E) COUNTRY: Japan 		
20	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 		
25	(vi) CURRENT APPLICATION DATA:(A) APPLICATION NUMBER: 98105047.9(B) FILING DATE: 10.03.1998		
	<pre>(viii) ATTORNEY/AGENT INFORMATION:</pre>		
30	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (089) 998397-0 (B) TELEFAX: (089) 987304		
	(2) INFORMATION FOR SEQ ID NO:1:		
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
40	(ii) MOLECULE TYPE: peptide		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:		
45	Asp Tyr Asn Met Asp 1 5		
	(2) INFORMATION FOR SEQ ID NO:2:		
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: peptide		

36

55

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
5	Tyr Ile Tyr Pro Asn Asn Gly Gly Thr Gly Tyr Asn Gln Lys Phe Lys 1 10 15
5	Ser
	17
10	(2) INFORMATION FOR SEQ ID NO:3:
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
,,	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
20	Tyr Gly His Tyr Tyr Gly Tyr Met Phe Ala Tyr 1 10 11
	(2) INFORMATION FOR SEQ ID NO:4:
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 10 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
	Ser Ala Ser Ser Val Ser Tyr Met His 1 10
35	(2) INFORMATION FOR SEQ ID NO:5:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 7 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
40	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
<i>45</i>	Ser Thr Ser Asn Leu Ala Ser 1 5 7
	(2) INFORMATION FOR SEQ ID NO:6:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide

		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:6:						
5	Gln 1	Gln	Arg	Ser	Ser	Tyr 5	Pro	Tyr	Thr 9								
	(2)	INF	or m a	TION	FOR	SEQ	ID	NO:7	:								
10		(i	(QUENA) L B) T C) S D) T	ENGT YPE: TRAN	H: 4 nuc DEDN	33 b leic ESS:	ase aci dou	pair d	s							
		(ii) M O	LECU:	LE T	YPE:	oth	er n	ucle	ic a	cid,	syn	thet	ic D	NA		
15		(ix	(. (. (.		AME/: OCAT DENT	ION: IFIC	-19 ATIO	1 N ME	tide THOD	: S							
20			() () () ()	D) 0' A) Ni B) L	OCAT DENT THER AME/I	ION: IFIC: INF KEY: ION:	31. ATION ORMA dom 50.	.35 N ME' TION ain .66	rhod : hyl	perv	aria	ble	regi	on 1			
<i>25</i>			() () ()	D) 0' A) NA B) L(C) II	THER AME/I OCAT DENT	INFO KEY: ION: IFICA	ORMA' doma 99. ATIO	TION ain .109 N ME'	THOD : hyj THOD : hyj	perv			,				
		(xi) SE	QUEN	CE DI	ESCR	IPTI	on: s	SEQ :	ID N	0:7:						
30	ATG Met 1	GGA Gly	TGG Trp	AGC Ser	TGG Trp 5	ATC Ile	TTT Phe	CTC Leu	TTC Phe	CTC Leu 10	CTG Leu	TCA Ser	GGA Gly	ACT Thr	GCA Ala 15	GGT Gly	48
35	GTC Val	CTC Leu	TCT Ser	GAG Glu 20	GTG Val	CAG Gln	CTG Leu	GTG Val	CAG Gln 25	TCT Ser	GGA Gly	GCA Ala	GAG Glu	GTG Val 30	AAG Lys	AAG Lys	96
	CCT Pro	GGG Gly	GCC Ala 35	TCA Ser	GTG Val	AAG Lys	GTC Val	TCC Ser 40	TGC Cys	AAG Lys	GCT Ala	TCC Ser	GGA Gly 45	TAC Tyr	ACC Thr	TTC Phe	144
40	ACT Thr	GAC Asp 50	TAC Tyr	AAC Asn	ATG Met	GAC Asp	TGG Trp 55	GTG Val	CGA A rg	CAG Gln	GCC Ala	CCT Pro 60	GGA Gly	CAA Gln	GGG Gly	CTC Leu	192
45	GAG Glu 65	TGG Trp	ATG Met	GGA Gly	TAT Tyr	ATT Ile 70	TAT Tyr	CCT Pro	AAC Asn	AAT Asn	GGT Gly 75	GGT Gly	ACT Thr	GGC Gly	TAC Tyr	AAC Asn 80	240
	CAG Gln	AAG Lys	TTC Phe	AAG Lys	AGC Ser 85	AAG Lys	GTC Val	ACC Thr	ATT Ile	ACC Thr 90	GTA Val	GAC Asp	ACA Thr	TCC Ser	ACG Thr 95	AGC Ser	288
50	ACA Thr	GCC Ala	TAC Tyr	ATG Met 100	GAG Glu	CTG Leu	CAC His	AGC Ser	CTG Leu 105	AGA Arg	TCT Ser	GAG Glu	GAC Asp	ACG Thr 110	GCC Ala	GTG Val	336

	TAT Tyr	TAC Tyr	TGT Cys 115	GCG Ala	ACC Thr	TAC Tyr	GGT Gly	CAT His 120	TAC Tyr	TAC Tyr	GGC Gly	TAC Tyr	ATG Met 125	TTT Phe	GCT Ala	TAC Tyr	384
5	TGG Trp	GGC Gly 130	CAG Gln	GGA Gly	ACC Thr	CTG Leu	GTC Val 135	ACC Thr	GTC Val	TCC Ser	TCA Ser	GCC Ala 140	TCC Ser	ACC Thr	AAG Lys	GGC Gly 144	442
	С																443
10	(2)	INFO	RMAT	TION	FOR	SEQ	ID N	10:8:									
15		(i)	(E	A) LE 3) TY C) SI	CE CHENGTH (PE: (RANI (POLC	i: 39 nucl EDNE	00 ba eic SS:	acio doub	airs 1	3							
		(ii)	MOI	LECUI	LE TY	PE:	othe	er ni	ıclei	ic ac	cid,	synt	heti	c Di	A		
20		(ix)	(<i>I</i> (E (C	3) LC C) II A) NA	AME/F CATI CENTI AME/F	ON: FICA (EY:	-22. TION doma	1 N MET ain		: S							
25			(C (I (F (C	C) II O) OT A) NA B) LO C) II	CATI CENTI THER AME/F CATI CENTI	FICA INFO (EY: ION:	ATION ORMAN doma 49.	N MET TION: ain .55 N MET	hyr THOD:	erva							
30			(<i>I</i> (E	A) NA B) L(C) II	THER AME/I DENTI THER	EY: ON: FICE	doma 86 	ain .96 N ME1	THOD:	: S							
		(xi)	SEÇ	QUENC	CE DE	ESCRI	PTI	ON: S	SEQ 1	ED NO	2:8:						
35	ATG Met 1	CAT His	TTT Phe	CAA Gln	GTG Val 5	CAG Gln	ATT Ile	TTC Phe	AGC Ser	TTC Phe 10	CTG Leu	CTA Leu	ATC Ile	AGT Ser	GCC Ala 15	TCA Ser	48
	GTC Val	ATA Ile	ATG Met	TCC Ser 20	AGA Arg	GGA Gly	GAT Asp	ATC Ile	CAG Gln 25	CTG Leu	ACC Thr	CAG Gln	AGC Ser	CCA Pro 30	AGC Ser	AGC Ser	96
40	CTG Leu	AGC Ser	GCT Ala 35	AGC Ser	CCA Pro	GGT Gly	GAC Asp	AGA Arg 40	GTG Val	ACC Thr	ATC Ile	ACG Thr	TGC Cys 45	AGT Ser	GCC Ala	AGC Ser	144
45	TCA Ser	AGT Ser 50	GTA Val	AGT Ser	TAC Tyr	ATG Met	CAC His 55	TGG Trp	TTC Phe	CAG Gln	CAG Gln	AAA Lys 60	CCA Pro	GGT Gly	AAG Lys	GCT Ala	192
	CCA Pro 65	AAG Lys	CTT Leu	TGG Trp	ATC Ile	TAC Tyr 70	AGC Ser	ACA Thr	TCC Ser	AAC Asn	CTG Leu 75	GCT Ala	TCT Ser	GGT Gly	GTG Val	CCA Pro 80	240
50	TCT Ser	AGA Arg	TTC Phe	AGC Ser	GGT Gly 85	AGC Ser	GGT Gly	AGC Ser	GGT Gly	ACA Thr 90	TCT Ser	TAC Tyr	TCT Ser	CTC Leu	ACC Thr 95	ATC Ile	288

					Pro		GAC Asp								Gln		336
5	AGT Ser	AGT Ser	TAC Tyr 115	Pro	TAC Tyr	ACG Thr	TTC Phe	GGC Gly 120	Gly	GGG Gly	ACC Thr	AAG Lys	GTG Val 125	Glu	ATC Ile	AAA Lys	384
10		ACG Thr 130															390
	(2)	INFO	ORMA'	TION	FOR	SEQ	ID 1	NO: 9	:								
15		(i)	() ()	A) L: B) T C) S	ENGT YPE: TRAN	H: 3 nuc DEDN	CTER 90 ba leic ESS: line	ase p acidoul	pair: d	S							
20		(i i)) M O	LECU:	LE T	YPE:	othe	er n	ucle	ic a	cid,	syn	thet:	ic D	NA		
		(ix)	() (1	B) L	AME/I	ION:	sig -22. ATION	1		: S							
25			(1 (0 (1 (1	B) L(C) II D) O'(A) NI	OCAT: DENT: THER AME/I	ION: IFICA INFO KEY:	doma 24 ATION DRMAT doma 49	.33 N ME: TION: ain			arial	ole :	regio	on 1			
30			(1 (1 (1 (1	C) II D) O' A) NI B) L(C) II	DENT: THER AME/I DCAT: DENT:	IFICA INFO KEY: ION: IFICA	TION CAMPO CAMPO ATION CAMPO C	METON: TION: TION: 196 MET	rhod:	erva							
35		(xi)					IPTIC					JIC 1	egic)II J			
	ATG Met 1	CAT His	TTT Phe	CAA Gln	GTG Val 5	CAG Gln	ATT Ile	TTC Phe	AGC Ser	TTC Phe 10	CTG Leu	CTA Leu	ATC Ile	AGT Ser	GCC Ala 15	TCA Ser	48
40	GTC Val	ATA Ile	Met	Ser	Arg	Gly	GAC Asp	Ile	Gln	Leu	Thr	Gln	Ser	Pro	TCC Ser	TCC Ser	96
45	ATG Met	TCT Ser	GCA Ala 35	TCT Ser	CCA Pro	GGA Gly	GAC Asp	AGA Arg 40	GTC Val	ACC Thr	ATC Ile	ACT Thr	TGT Cys 45	AGT Ser	GCA Ala	AGT Ser	144
50	TCA Ser	AGT Ser 50	GTA Val	AGT Ser	TAC Tyr	ATG Met	CAC His 55	TGG Trp	TTT Phe	CAG Gln	CAG Gln	AAA Lys 60	CCA Pro	GGG Gly	AAA Lys	TCA Ser	192
	CCT Pro 65	AAG Lys	CTC Leu	TGG Trp	ATC Ile	TAC Tyr 70	TCA Ser	ACT Thr	TCA Ser	AAT Asn	TTA Leu 75	GCT Ala	TCT Ser	GGT Gly	GTG Val	CCA Pro 80	240

							GGT Gly										288
5							GAT Asp										336
10							TTC Phe										384
	CGT Arg																390
15																	
	(2)	INFO	ORMA!	NOI	FOR	SEQ	ID N	NO:10	0:								
20		(i)	() ()	A) LE B) T) C) S1	ENGTI (PE: [RANI	H: 43	CTERI 33 ba leic ESS: line	ase p acid doub	p a irs d	3							
		(ii)	MOI	LECUI	E TY	PE:	othe	er nu	ıclei	ic ac	cid,	synt	heti	c DN	IA.		
25		(ix)	(<i>I</i>	3) LO	ME/F	ON:	sig -19. ATION	1		s							
30			1) () () () ()	3) L(2) II 0) OI A) NA 3) L(CATI ENTI THER ME/F CATI	ON: FICA INFO (EY: ON:	doma 31 ATION RMAT doma 50	35 METON: in 66	hyp	erva	ıriab	ole r	egic	on 1			
35			(I (<i>I</i> (C	0) OI A) NA B) LO	THER ME/F CATI ENTI	INFO EY: ON: FICE	ATION ORMAT doma 99 ATION ORMAT	ION: in 109 MET	hyp:	erva S							
		(xi)	SEÇ	QUENC	E DE	SCRI	PTIC	N: S	SEQ I	D NC	:10:						
40	ATG Met 1	GGA Gly	TGG Trp	AGC Ser	TGG Trp 5	ATC Ile	TTT Phe	CTC Leu	TTC Phe	CTC Leu 10	CTG Leu	TCA Ser	GGA Gly	ACT Thr	GCA Ala 15	GGT Gly	48
45	GTC Val	CTC Leu	TCT Ser	GAG Glu 20	GTG Val	CAG Gln	CTG Leu	GTG Val	CAG Gln 25	TCT Ser	GGA Gly	GCA Ala	G A G Glu	GTG Val 30	AAG Lys	AAG Lys	96
	CCT Pro	GGG Gly	GCC Ala 35	TCA Ser	GTG Val	AAG Lys	GTC Val	TCC Ser 40	TGC Cys	AAG Lys	GCT Ala	TCC Ser	GGA Gly 45	TAC Tyr	ACC Thr	TTC Phe	144
50	ACT Thr	GAC Asp 50	TAC Tyr	AAC Asn	ATG Met	GAC Asp	TGG Trp 55	GTG Val	AAG Lys	CAG Gln	AGC Ser	CCT Pro 60	GGA Gly	CAA Gln	GGG Gly	CTC Leu	192

												GGT Gly				240
5												GAC Asp				288
10												GAG Glu				336
												TAC Tyr				384
15						Leu						GCC Ala 140				432
	С															433
20	(2)	INF	ORMA:	rion	FOR	SEQ	ID N	NO:11	ı:							
25		(i)	() (1	QUENCA) LE B) TY C) ST C) TO	ENGTI PE: PRANI	i: 39 nucl	90 ba leic ESS:	ase p acid	airs i	3						
		(ii)	MOI	LECUI	LE TY	PE:	othe	er ni	ıclei	ic ad	cid,	synt	heti	.c Di	ΙA	
30		(ix)	() () ()	ATURE A) NA B) L(C) II A) NA	ME/F CATI CENTI ME/F	ON: FICA ŒY:	-22. ATION doma	1 MET in		: S						
35) (1) (1) (1)	A) NA B) LC C) II	ENTI THER ME/F CATI	FICA INFO (EY: ION:	ATION RMAT doma 49	METON: in 55 MET	hyp THOD:	erva		ole r	_			
40			() () ()	A) NA B) LO C) II O) OI	ME/F CATI ENTI HER	EY: ON: FICA INFO	doma 86 ATION RMAT	in 96 MET	HOD: hyp	: S perva	ıriab	ole n				
									_	D NO						
45												CTA Leu				48
												CAG Glm				96
50												ACG Thr				144

						ATG Met										192
5						TAC Tyr 70										240
10						AGC Ser										288
						GAG Glu										336
15						ACG Thr										384
20	CGT Arg															390
	(2)	INFO	RMA	CION	FOR	SEQ	ID N	NO:12	2:							
25		(i)	(<i>I</i> (E	A) LE B) TY C) ST	ENGTH PE: RANI	IARAC I: 32 nucl DEDNE	bas eic SS:	e pa acio sino	irs i							
30						PE:						-	heti	.c DN	IA	
	CACI	'CAG'I	GT I	'AAC'I	GAGO	SA GC	AGGT	'GAA'I	TC							32
35	(2)					SEQ LARAC										
40		(1)	(<i>P</i> (E	L) LE S) TY C) SI	NGTH PE: RANI	i: 40 nucl EDNE	bas eic SS:	e pa acid	irs I							
40		(ii)	MOL	ECUI	E TY	PE:	othe	r nu	clei	.c ac	id,	synt	heti	c DN	ΙA	
		(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NO	:13:					
45	AGCT	'GAAT	TC A	CCTG	CTCC	T CA	GTTA	ACAC	TGA	GTGG	TAC					40
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	ю:14	:							
50		(i)	(A (B (C) LE) TY	NGTH PE:	IARAC I: 21 nucl EDNE	bas eic SS:	e pa acid sino	irs							

	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
5	AATTCGTACG GTGGCTGCAC C	21
	(2) INFORMATION FOR SEQ ID NO:15:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	GGTGCAGCCA CCGTACG	17
20	(2) INFORMATION FOR SEQ ID NO:16:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
30	CTCGCGACTA GTGGGCCCGC GGCCGC	26
	(2) INFORMATION FOR SEQ ID NO:17:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	AGCTGCGGCC GCGGGCCCAC TAGTCGCGAG GTAC	34
45	(2) INFORMATION FOR SEQ ID NO:18:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
	GTGGCGGCCG CTTGGGCCCG	20
5		
	(2) INFORMATION FOR SEQ ID NO:19:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
15	CGGGCCCAAG CGGCCGCCAC	20
	(2) INFORMATION FOR SEQ ID NO:20:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
	CATGAATTCT TCGTACGGTT CGATAAATCG ATACCG	36
30	(2) INFORMATION FOR SEQ ID NO:21:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
40	CGGTATCGAT TTATCGAACC GTACGAAGAA TTCATGAGCT	40
	(2) INFORMATION FOR SEQ ID NO:22:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	CACGTTCGGA GGGGGGACCA AGCTGGAAAT AAAAC	35

	(2)	INFORMATION FOR SEQ ID NO:23:	
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	GTAC	CGTTTTA TTTCCAGCTT GGTCCCCCCT CCGAA	35
15	(2)	INFORMATION FOR SEQ ID NO:24:	
20		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
	TCGA	ACACCAG CAAGAACACA GCCTACCTGA GACTCAGCAG CGTGACAGCC GCCGACACCG	60
	С		61
30	(2)	INFORMATION FOR SEQ ID NO:25:	
30	(2)	INFORMATION FOR SEQ ID NO:25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(2)	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(2)	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	60
<i>35</i>	ccg	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid, synthetic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	60
35	ccg	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid, synthetic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: EATACAC ATTCACTGAC TACAACATGG ACTGGGTGAG ACAGAGCCAT GGACGAGGTC	60

		(; v)	. cc1	TURE												
5		(14)	(A) NA B) L(C) II A) NA B) L(C) II	ME/H DENT] ME/H DENT] DENT]	ON: FICA EY: ON: FICA	. 19. ATION doma 31. ATION	N MET ain .35 N MET	ide THOD: THOD:	: S	ari ak	ole v	regio	an 1		
10			I) () () ()	A) NA B) L(C) II O) OT	AME/H CATI CENTI CHER	(EY: ION: IFICA INFO	doma 50. ATION RMA	ain .66 N MET	rHOD:	: S						
15			I) I)	3) L(C) II O) O	THER	ON: FICA INFO	99. ATION RMA	.109 N MET	THOD:	perva			regio	on 3		
		(X1)	SEÇ	DOENC	DE DE	SCR	(PTI	ON: S	SEQ I	ID NO):26:	:				
20	GGC	CGCA		et G									eu Le		SA ACT	
25		GGT Gly														99
25		AGG Arg														147
30		TTC Phe														195
3 <i>5</i>		CTC Leu														243
		AAC Asn 80														291
40		AAC Asn														339
45		GTC Val														387
		TAC Tyr														435
50		GGC Gly 144	С													442

	(2) INFORMATION FOR SEQ ID NO:27:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 442 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA
10	<pre>(ix) FEATURES: (A) NAME/KEY: sig peptide</pre>
15	(B) LOCATION: -191 (C) IDENTIFICATION METHOD: S (A) NAME/KEY: domain (B) LOCATION: 3135 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 1 (A) NAME/KEY: domain (B) LOCATION: 5066 (C) IDENTIFICATION METHOD: S
	(D) OTHER INFORMATION: hypervariable region 2(A) NAME/KEY: domain
20	(B) LOCATION: 99109 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 3
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
25	GGCCGCACC ATG GGA TGG AGC TGG ATC TTT CTC TTC CTC CTG TCA GGA ACT 5 Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Thr 1 5 10
	GCT GGT GTC CTC TCT CAG GTC CAA CTG CAG GAG AGC GGT CCA GGT CTT Ala Gly Val Leu Ser Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu 20 25 30
30	GTG AGG CCT AGC CAG ACC CTG AGC CTG ACC TGC ACC GTG TCC GGA TAC 14 Val Arg Pro Ser Gln Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Tyr 35 40 45
<i>35</i>	ACC TTC ACT GAC TAC AAC ATG GAC TGG GTG AGA CAG AGC CAT GGA CGA 19 Thr Phe Thr Asp Tyr Asn Met Asp Trp Val Arg Gln Ser His Gly Arg 50 55 60
	GGT CTC GAG TGG ATT GGA TAT ATT TAT CCT AAC AAT GGT GGT ACT GGC 24 Gly Leu Glu Trp Ile Gly Tyr Ile Tyr Pro Asn Asn Gly Gly Thr Gly 65 70 75
40	TAC AAC CAG AAG TTC AAG AGC AGA GTG ACA ATG CTG GTC GAC AGC 29 Tyr Asn Gln Lys Phe Lys Ser Arg Val Thr Met Leu Val Asp Thr Ser 80 85 90
45	AAG AAC CAG TTC AGC CTG AGA CTC AGC AGC GTG ACA GCC GCC GAC ACC 33 Lys Asn Gln Phe Ser Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr 95 100 105 110
	GCG GTC TAT TAT TGT GCA ACC TAC GGT CAT TAC TAC GGC TAC ATG TTT 38 Ala Val Tyr Tyr Cys Ala Thr Tyr Gly His Tyr Tyr Gly Tyr Met Phe 115 120 125
50	GCT TAC TGG GGT CAA GGT ACC ACC GTC ACA GTC TCA GCC TCC ACC 43 Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr 130 135

	AAG GGC C Lys Gly 144	442
5	(2) INFORMATION FOR SEO ID NO:28:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 100 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	CAGGAAACAG CTATGACGCG GCCGCCACCA TGGGATGGAG CTGGATCTTT CTCTTCCTCC	
	TGTCAGGAAC TGCAGGTGTC CTCTCTGAGG TGCAGCTGGT	100
20	(2) INFORMATION FOR SEQ ID NO:29:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 100 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
30	AGTCAGTGAA GGTGTATCCG GAAGCCTTGC AGGAGACCTT CACTGAGGCC CCAGGCTTCT	60
	TCACCTCTGC TCCAGACTGC ACCAGCTGCA CCTCAGAGAG	100
	(2) INFORMATION FOR SEQ ID NO:30:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 100 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
40	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	CGGATACACC TTCACTGACT ACAACATGGA CTGGGTGCGA CAGGCCCCTG GACAAGGGCT	60
45	CGAGTGGATG GGATATATTT ATCCTAACAA TGGTGGTACT	100
	(2) INFORMATION FOR SEQ ID NO:31:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 94 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
5	AGCTCCATGT AGGCTGTGCT CGTGGATGTG TCTACGGTAA TGGTGACCTT GCTCTTGAAC	60
	TTCTGGTTGT AGCCAGTACC ACCATTGTTA GGAT	94
10	(2) INFORMATION FOR SEQ ID NO:32:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 96 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
20	AGCACAGCCT ACATGGAGCT GCACAGCCTG AGATCTGAGG ACACGGCCGT GTATTACTGT	60
	GCGACCTACG GTCATTACTA CGGCTACATG TTTGCT	96
	(2) INFORMATION FOR SEQ ID NO:33:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	GTTTTCCCAG TCACGACGGG CCCTTGGTGG AGGCTGAGGA GACGGTGACC AGGGTTCCCT	60
35	GGCCCCAGTA AGCAAACATG TAGCCGTAGT	90
	(2) INFORMATION FOR SEQ ID NO:34:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 68 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	GTACTACTGC CAGCAAAGGA GTAGTTACCC GTACACGTTC GGCGGGGGGA CCAAGGTGGA	60
50	AATCAAAC	68
	(2) INFORMATION FOR SEQ ID NO:35:	
55		

5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
10	ACTCTGTCAC CTGGGCTAGC GCTCA	25
	(2) INFORMATION FOR SEQ ID NO:36:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
00	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
	TGAGCGCTAG CCCAGGTGAC AGAGT	25
25	(2) INFORMATION FOR SEQ ID NO:37:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 390 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid, synthetic DNA 	
35	(ix) FEATURES: (A) NAME/KEY: sig peptide (B) LOCATION: -221 (C) IDENTIFICATION METHOD: S (A) NAME/KEY: domain (B) LOCATION: 2433 (C) IDENTIFICATION METHOD: S	
40	(D) OTHER INFORMATION: hypervariable region 1 (A) NAME/KEY: domain (B) LOCATION: 4955 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 2 (A) NAME/KEY: domain (B) LOCATION: 8696 (C) IDENTIFICATION METHOD: C	
45	(C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 3	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
50	ATG CAT TIT CAA GTG CAG ATT TIC AGC TIC CTG CTA ATC AGT GCC TCA Met His Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser 1 5 15	48
J.	GTC ATA ATG TCC AGA GGA GAT ATC CAG CTG ACC CAG AGC CCA AGC AGC Val Ile Met Ser Arg Gly Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser 20 25	96

	CTG Leu	AGC Ser	GCT Ala 35	AGC Ser	CCA Pro	GGT Gly	GAC Asp	AGA Arg 40	GTG Val	ACC Thr	ATC Ile	ACG Thr	TGC Cys 45	AGT Ser	GCC Ala	AGC Ser	144
5	TCA Ser	AGT Ser 50	GTA Val	AGT Ser	TAC Tyr	ATG Met	CAC His 55	TGG Trp	TAT Tyr	CAG Gln	CAG Gln	AAA Lys 60	CCA Pro	GGT Gly	AAG Lys	GCT Ala	192
10	CCA Pro 65	AAG Lys	CTT Leu	CTG Leu	ATC Ile	TAC Tyr 70	AGC Ser	ACA Thr	TCC Ser	AAC Asn	CTG Leu 75	GCT Ala	TCT Ser	GGT Gly	GTG Val	CCA Pro 80	240
<i>15</i>	TCT Ser	AGA Arg	TTC Phe	AGC Ser	GGT Gly 85	AGC Ser	GGT Gly	AGC Ser	GGT Gly	ACA Thr 90	GAC Asp	TTC Phe	ACC Thr	TTC Phe	ACC Thr 95	ATC Ile	288
	AGC Ser	AGC Ser	CTC Leu	CAG Gln 100	CCA Pro	GAG Glu	GAC Asp	ATC Ile	GCT Ala 105	ACA Thr	TAC Tyr	TAC Tyr	TGC Cys	CAG Gln 110	C AA Gln	AGG Arg	336
20	AGT Ser	AGT Ser	TAC Tyr 115	CCG Pro	TAC Tyr	ACG Thr	TTC Phe	GGC Gly 120	GGG Gly	GGG Gly	ACC Thr	AAG Lys	GTG Val 125	GAA Glu	ATC Ile	AAA Lys	384
25	CGT Arg																390
	(2)	INFO	RMAT	CION	FOR	SEQ	ID N	10:38	B:								
30		(i)	(A (B (C	L) LE 3) TY 3) ST	NGTH PE: RAND	IARAC I: 25 nucl EDNE GY:	bas eic SS:	e pa acid sing	irs l								
35									clei			synt	heti	c DN	Ά		
	GTGC							N: S	EQ I	D NO	:38:						25
40	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:39	:								
45		(i)	(A (B (C) LE) TY) ST	NGTH PE: RAND	ARAC : 25 nucl EDNE GY:	bas eic SS:	e pa acid sing	irs								
		(ii)	MOL	ECUL	E TY	PE:	othe	r nu	clei	c ac	id,	syntl	heti	c DN	A		
50								N: S	EQ I	D NO	:39:						
	CTCC.	HAAG	CT T	1GGA	TCTA	C AG	CAC										25

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: 4	0:								
5		(i	(A) L B) T C) S	ENGT YPE: TRAN	HARA H: 3 nuc DEDN OGY:	90 b leic ESS:	ase aci dou	pair d	:s							
		(ii) MO	LECU	LE T	YPE:	oth	er n	ucle	ic a	.cid,	syn	thet	ic E	NA		
10		(ix	()	B) L C) I A) N	AME/ OCAT DENT AME/	KEY: ION: IFIC KEY:	-22 ATIO dom	−1 N ME ain									
15			(; (; (;	C) I D) O A) N B) L C) I	DENT THER AME/: OCAT DENT	KEY: ION: IFIC.	ATIO ORMA dom 49. ATIO	N ME TION ain .55 N ME	: hy THOD	perv							
20		(xi	(, () ()	A) N. B) L(C) I! D) O'	AME/I OCAT DENT THER	KEY: ION: IFIC INF	dom 86. ATIO ORMA	ain .96 N ME TION	THOD : hy		aria	ble					
25	ATG Met	CAT	TTT	CAA	GTG	CAG	ATT	TTC	AGC		CTG	CTA	ATC Ile	AGT Ser	GCC Ala 15	TCA Ser	48
30	GTC Val	ATA Ile	ATG Met	TCC Ser 20	AGA Arg	GGA Gly	GAT Asp	ATC Ile	CAG Gln 25	CTG Leu	ACC Thr	CAG Gln	AGC Ser	CCA Pro 30	AGC Ser	AGC Ser	96
	CTG Leu	AGC Ser	GCT Ala 35	AGC Ser	GTG Val	GGT Gly	GAC Asp	AGA Arg 40	GTG Val	ACC Thr	ATC Ile	ACG Thr	TGC Cys 45	AGT Ser	GCC Ala	AGC Ser	144
35	TCA Ser	AGT Ser 50	GTA Val	AGT Ser	TAC Tyr	ATG Met	CAC His 55	TGG Trp	TAT Tyr	CAG Gln	CAG Gln	AAA Lys 60	CCA Pro	GGT Gly	AAG Lys	GCT Ala	192
40	CCA Pro 65	AAG Lys	CTT Leu	TGG Trp	ATC Ile	TAC Tyr 70	AGC Ser	ACA Thr	TCC Ser	AAC Asn	CTG Leu 75	GCT Ala	TCT Ser	GGT Gly	GTG Val	CCA Pro 80	240
	TCT Ser	AGA Arg	TTC Phe	Ser	GGT Gly 85	AGC Ser	GGT Gly	AGC Ser	GGT Gly	ACA Thr 90	GAC Asp	TTC Phe	ACC Thr	TTC Phe	ACC Thr 95	ATC Ile	288
45	AGC Ser	AGC Ser	CTC Leu	CAG Gln 100	CCA Pro	GAG Glu	GAC Asp	ATC Ile	GCT Ala 105	ACA Thr	TAC Tyr	TAC Tyr	TGC Cys	CAG Gln 110	CAA Gln	AGG Arg	336
50	AGT Ser	AGT Ser	TAC Tyr 115	CCG Pro	TAC Tyr	ACG Thr	TTC Phe	GGC Gly 120	GGG Gly	GGG Gly	ACC Thr	AAG Lys	GTG Val 125	GAA Glu	ATC Ile	AAA Lys	384
50	CGT Arg	ACG Thr 130															390

	(2) INFORMATION FOR SEQ ID NO:41:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
	ACGTAGCAGC ATCTTCAGCC TGGAG	25
15	(2) INFORMATION FOR SEQ ID NO:42:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
25	CTCCAGGCTG AAGATGCTGC TACGT	25
	(2) INFORMATION FOR SEQ ID NO:43:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 390 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
35	(ix) FEATURES: (A) NAME/KEY: sig peptide	
	(B) LOCATION: -221 (C) IDENTIFICATION METHOD: S (A) NAME/KEY: domain (B) LOCATION: 2433	
40	 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 1 (A) NAME/KEY: domain (B) LOCATION: 4955 	
45	(C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 2 (A) NAME/KEY: domain (B) LOCATION: 8696	
	<pre>(C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 3 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:</pre>	
50	ATG CAT TTT CAA GTG CAG ATT TTC AGC TTC CTG CTA ATC AGT GCC TCA Met His Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser 1 5 10 15	48

	GTC Val	ATA Ile	ATG Met	TCC Ser 20	AGA Arg	GGA Gly	GAT Asp	ATC Ile	CAG Gln 25	CTG Leu	ACC Thr	CAG Gln	AGC Ser	CCA Pro 30	AGC Ser	AGC Ser	96
5							GAC Asp										144
10							CAC His 55										192
			-				AGC Ser										240
15							GGT Gly										288
20							GAT Asp										336
							TTC Phe										384
25		ACG Thr 130															390
30	(2)		SEQ (<i>I</i>	QUENC	CE CI	HARAC	ID N CTERI 5 bas leic	STIC	CS:								
35			O IOM	C) ST C) TO LECUI	TRANI DPOLO	DEDNI DGY: YPE:	ESS: line othe	sinq ear er nu	gle ucle:			_	heti	.c DN	AI		
40	ATG	gtg a /	AAG A	AGTA.	\GAT(GT A	CCGC										25
45	(2)		SE((<i>I</i> (E	QUENC A) LE B) TY	CE CI ENGTI (PE:	HARACH: 25	ID N TERI 5 bas leic ESS: line	STIC se pa acio sino	CS: airs								
50							othe					-	heti	LC DN	IA.		
	GCG					rc a			× *	***							25

	(2)	INFO	JKMA'	LION	FOR	SEQ	ו עו	NO: 4	b:								
5		(i)	(1	A) LI B) T' C) S'	ENGT YPE: TRAN	nuc DEDNI	CTER 90 ba leic ESS: line	ase p acidoul	pair: d	s							
		(ii)	MO	LECU:	LE T	YPE:	oth	er n	ucle.	ic a	cid,	syn	thet	ic D	NA		
10		(ix)	(1	A) N B) L	AME/I	ON:	sig -22 ATIO	ì		: S							
15			(1 (1 (1 (1 (1	A) N. B) L(C) II D) O' A) N. B) L(AME/I OCAT: DENT: THER AME/I OCAT:	KEY: ION: IFICA INFO KEY: ION:	doma 24. ATION ORMA doma 49.	ain .33 N ME' TION ain .55	rнod : hyl	: S perv	aria	ole .	regi	on 1			
20			(1 (2 (1 (0 (1	D) O' A) NZ B) L(C) II D) O'	THER AME/I OCATI DENTI	INFO	doma 86. 101TA CAMAC	FION ain .96 N MET	: hyl	perva : S perva	arial	ole :					
25										ID N							
20		CAT															48
30		ATA Ile															96
		AGC Ser															144
35		AGT Ser 50															192
40		AAG Lys															240
		AGA Arg															288
45	AGC Ser	AGC Ser	CTC Leu	CAG Gln 100	CCA Pro	GAG Glu	GAC Asp	ATC Ile	GCT Ala 105	ACA Thr	TAC Tyr	TAC Tyr	TGC Cys	CAG Gln 110	CAA Gln	AGG Arg	336
50		AGT Ser															384
	CGT Arg																390

	(2) INFORMATION FOR SEQ ID NO:47:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
	TCTGGCTCCA TTCGGCTGAT GGTGAAAGAG TAAGATGTAC	40
15	(2) INFORMATION FOR SEQ ID NO:48:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
25	GTACATCTTA CTCTTTCACC ATCAGCCGAA TGGAGCCAGA	40
	(2) INFORMATION FOR SEQ ID NO:49:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 390 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
35	<pre>(ix) FEATURES: (A) NAME/KEY: sig peptide (B) LOCATION: -221 (C) IDENTIFICATION METHOD: S</pre>	
40	 (A) NAME/KEY: domain (B) LOCATION: 2433 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 1 (A) NAME/KEY: domain (B) LOCATION: 4955 (C) IDENTIFICATION METHOD: S 	
45	(D) OTHER INFORMATION: hypervariable region 2 (A) NAME/KEY: domain (B) LOCATION: 8696 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 3	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
50	ATG CAT TTT CAA GTG CAG ATT TTC AGC TTC CTG CTA ATC AGT GCC TCA Met His Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser 1 5 10 15	48

												CAG Gln					96
5												ACG Thr					144
10												AAA Lys 60					192
												GCT Ala					240
15												TAC Tyr					288
20												TAC Tyr					336
	AGT Ser	AGT Ser	TAC Tyr 115	CCG Pro	TAC Tyr	ACG Thr	TTC Phe	GGC Gly 120	GGG Gly	GGG Gly	ACC Thr	AAG Lys	GTG Val 125	GAA Glu	ATC Ile	AAA Lys	384
25	CGT Arg																390
30	(2)		(E		E CH NGTH PE:	IARAC I: 20 nucl DEDNE	TERI bas eic	STIC se pa acid sing	S: irs								
35			MOL	ECUL	E TY	PE:	othe	r nu	clei EQ I			synt	heti	c DN	IA		
40			GA A				ID N	10:51	•								20
45			SEQ (A (B		E CH NGTH PE: RAND	IARAC I: 20 nucl EDNE	TERI bas eic SS:	STIC e pa acid sing	S: irs								
50	N ECC	(xi)	SEQ	UENC	E DE	SCRI			clei EQ I			synt	heti	c DN	A ·		
	ATGC	AUTG	GT T	CCAG	CAGA	A											20

	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	10:5	2:								
5		(i)	() () ()	A) LI B) T' C) S'	ENGTI YPE: IRANI	HARAG H: 39 nuc: DEDNI DGY:	90 ba leic ESS:	ase p acid doub	pair d	s							
		(ii)) MOI	LECUI	LE T	YPE:	othe	er ni	ucle	ic a	cid,	syn	thet	ic D	AV		
10		(ix)	(1 (0 (2	A) NA 3) L(C) II A) NA	AME/I OCATI DENTI AME/I	KEY: ION: IFICA KEY:	-22 ATION doma	1 N ME: ain		: S							
15			(1 (1 (1	C) II O) O' A) NI B) L(DENT: THER AME/I DCAT:	ION: IFICA INFO KEY: ION: IFICA	ATION ORMA: doma 49.	N ME' TION: ain .55	: hy	perva	arial	ole :	regio	on 1			
20		(xi)	(1 (1 (1	A) NA B) L(C) II O) Of	AME/H OCATI DENTI THER	KEY: ION: IFICA INFO	doma 86. ATION	ain .96 N MET	ГНОD : hyj	perva : S perva ID No	arial	ole i	_				
25		CAT	TTT	CAA	GTG	CAG	ATT	TTC	AGC	TTC Phe 10	CTG	СТА					48
30										CTG Leu							96
										ACC Thr							144
35										CAG Gln							192
40										AAC Asn							240
		Arg	Phe	Ser	Gly		Gly	Ser	Gly	ACA Thr 90	Ser		Ser	Phe	Thr	Ile	288
45										ACA Thr							336
50										GGG Gly							384
JU	CGT Arg																390

	(2) INFORMATION FOR SEQ ID NO:53:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
	TGGAGTCGGC TGATGGTGAG AGAGT	25
15	(2) INFORMATION FOR SEQ ID NO:54:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
25	ACTCTCTCAC CATCAGCCGA CTCCA	25
	(2) INFORMATION FOR SEQ ID NO:55:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 390 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
35	<pre>(ix) FEATURES: (A) NAME/KEY: sig peptide (B) LOCATION: -221 (C) IDENTIFICATION METHOD: S</pre>	
40	(A) NAME/KEY: domain (B) LOCATION: 2433 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 1 (A) NAME/KEY: domain (B) LOCATION: 4955 (C) IDENTIFICATION METHOD: S	
4 5	(D) OTHER INFORMATION: hypervariable region 2 (A) NAME/KEY: domain (B) LOCATION: 8696 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 3	
	(mi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
50	ATG CAT TTT CAA GTG CAG ATT TTC AGC TTC CTG CTA ATC AGT GCC TCA Met His Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser 1 15	48

								ATC Ile									96
5	CTG Leu	AGC Ser	GCT Ala 35	AGC Ser	CCA Pro	GGT Gly	GAC Asp	AGA Arg 40	GTG Val	ACC Thr	ATC Ile	ACG Thr	TGC Cys 45	AGT Ser	GCC Ala	AGC Ser	144
10								TGG Trp									192
								ACA Thr									240
15	TCT Ser	AGA Arg	TTC Phe	AGC Ser	GGT Gly 85	AGC Ser	GGT Gly	AGC Ser	GGT Gly	ACA Thr 90	TCT Ser	TAC Tyr	TCT Ser	CTC Leu	ACC Thr 95	ATC Ile	288
20								ATC Ile									336
								GGC Gly 120									384
25	CGT Arg																390
30	(2)		SEÇ (F	UENC	E CH	IARAC	CTERI l bas	NO:56	S:								
35			O) IOM) ST) TO ECUI	RANI POLO E TY	DEDNE DGY: PE:	SS: line othe	sing ear er nu	le clei			-	heti	c DN	ΊΑ		
	CAGG							N: S	_				<i>ር</i> አጥጥ	innan o	ארכיי	TCCTO	. 60
40								CAGA			mo	IGCA	.GAII	11 0	AGCI	rccre	94
45	(2)	INFC	RMAT	NOI	FOR	SEQ	ID N	10:57	:								
45		(i)	(A (B (C) LE) TY) SI	NGTH PE: RAND	: 88 nucl EDNE	bas eic	STIC e pa acid sing	irs								
50		(ii)	MOL	ECUL	E TY	PE:	othe	er nu	clei	c ac	id,	synt	heti	c DN	Α		

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
	ACAAGTGATG GTGACTCTGT CTCCTGGAGA TGCAGACATG GAGGATGGAG ACTGGGTCAG	60
5	CTGGATGTCT CCTCTGGACA TTATGACT	88
	CIGGATOTET CETETGACA TIATGACT	00
	(2) INFORMATION FOR SEQ ID NO:58:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 92 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
20	ACAGAGTCAC CATCACTTGT AGTGCAAGTT CAAGTGTAAG TTACATGCAC TGGTTTCAGC	60
20	AGAAACCAGG GAAATCACCT AAGCTCTGGA TC	92
	(O) THEORYPHICA TOD ONE TO NO FO	
25	(2) INFORMATION FOR SEQ ID NO:59:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
35	AAGATGTACC GCTACCGCTA CCGCTGAATC TAGATGGCAC ACCAGAAGCT AAATTTGAAG	60
	TTGAGTAGAT CCAGAGCTTA GGTGATT	87
40	(2) INFORMATION FOR SEQ ID NO:60:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 89 base pairs(B) TYPE: nucleic acid(D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
50	TAGCGGTAGC GGTACATCTT ACTCTCAC CATCAGCAGC ATGCAGCCTG AAGATTTTGC	60
	AACTTATTAC TGTCAGCAAA GGAGTAGTT	89

	(2) INFORMATION FOR SEQ ID NO:61:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 84 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
70	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
	GTTTTCCCAG TCACGACCGT ACGTTTGATT TCCAGCTTGG TCCCCTGGCC GAACGTGTA	C 60
15	GGGTAACTAC TCCTTTGCTG ACAG	84
	(2) INFORMATION FOR SEQ ID NO:62:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
	ACTCGAGGCT CTTTCCAGGG CTCTGCTTCA CCCAG	35
30	(2) INFORMATION FOR SEQ ID NO:63:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
	CTGGGTGAAG CAGAGCCCTG GAAAGAGCCT CGAGT	35
	(2) INFORMATION FOR SEQ ID NO:64:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
50	(ii) MOLECULE TYPE: other nucleic acid, synthetic ENA	

5		(ix)	(1 (1 (2 (1 (1 (1	B) L(C) II A) N/ B) L(C) II D) O'	AME/FOCATION OF THE REPORT IN	ION: IFICA KEY: ION: IFICA INFO	doma 31. ATION DRMA	1 N MET ain .35 N MET	THOD:	: S	arial	ole :	regio	on 1		
10			(1 (0 (1 (1 (1	B) L(C) II D) O'(A) N/ B) L(C) II	DENT: DENT: THER AME/I DENT:	ION: IFICA INFO KEY: ION: IFICA	ORMAT doma 99.	.66 N ME' TION: ain .109 N ME'	rhod:	perva			regio			
15		(xi)	SE	QUEN	CE DE	ESCR	IPTIC	ON: S	SEQ :	D N	0:64	:				
		GGA Gly														48
20		CTC Leu														96
25		GGG Gly														144
		GAC Asp 50														192
30		TGG Trp														240
35		AAG Lys														288
		GCC Ala														336
40		TAC Tyr														384
45		GGC Gly 130														432
	С															433
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	10:65	5:							
50		(i)	(I	Ā) LI 3) TY	ENGTI	1: 24	CTERI 1 bas leic ESS:	se pa acio	airs 1							

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
	TGTCCAGGGC TCTGCTTCAC CCAG	24
	(2) INFORMATION FOR SEQ ID NO:66:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 24 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
	CTGGGTGAAG CAGAGCCCTG GACA	24
20		
	(2) INFORMATION FOR SEQ ID NO:67:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67: TCTACGGTCA AGGTGGCCTT GCTCT	25
	TOTACOGRAM AGGIGGETT GETET	25
	(2) INFORMATION FOR SEQ ID NO:68:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
	AGAGCAAGGC CACCTTGACC GTAGA	25
45	(2) INFORMATION FOR SEQ ID NO:69:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 433 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	

		(iv)	FE	ATURE	7. S.											
5		(111)	(A) NA B) L(C) II A) NA B) L(AME/E CATI CENTI AME/E CATI	KEY: ION: IFICA KEY: ION: IFICA	-19 ATION doma 31.	1 V MES ain .35	THOD:							
10			() () ()	A) NA B) L(C) II O) O1	ME/F CAT CENT CHER	INFO KEY: ION: IFIC! INFO KEY:	doma 50. ATION DRMA	ain .66 N MET	THOD:	: S			J			
15			(E	3) LC C) II	CAT :	ION: FICA INFO	.99 10174	.109 1 ME:			aria	ol e 1	regio	on 3		
		(xi)	SE	QUENC	CE DE	ESCRI	PTIC	ON: S	SEQ I	ID NO	0:69:	:				
20															GCA Ala 15	48
25															AAG Lys	96
															ACC Thr	144
30															GGG Gly	192
35															TAC Tyr	240
															ACG Thr 95	288
40															GCC Ala	336
45															GCT Ala	384
50															AAG Lys	432
	С															433

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:7	0:								
5		(i	((QUEN A) L B) T C) S D) T	ENGT YPE: TRAN	H: 4 nuc DEDN	33 b leic ESS:	ase aci dou	pair d	S							
		(ii) MO	LECU	LE T	YPE:	oth	er n	ucle	ic a	cid,	syn	thet	ic D	NA		
10		(ix	· (ATUR A) N B) L C) I A) N	AME/ OCAT DENT	ION: IFIC	19- 10 ATI	1 N ME									
15			(B) L C) I	OCAT DENT THER AME/ OCAT	ION: IFIC INF KEY: ION:	31. ATIO OR M A dom 5 0 .	.35 N ME TION ain .66	: hy	perv	aria	ble	regi	on 1			
20			((, (,	D) O A) N B) L C) I	THER AME/ OCAT DENT	INF KEY: ION: IFIC	OR M A dom 9 9. ATIO	TION ain .109 N ME'	: hy	perv : S			regi regi				
25		(xi) SE	QUEN	CE D	ESCR.	IP T I	ON:	SEQ	ID N	0:70	:					
	ATG Met 1	GGA Gly	TGG Trp	AGC Ser	TGG Trp 5	ATC Ile	TTT Phe	CTC Leu	TTC Phe	CTC Leu 10	CTG Leu	TCA Ser	GGA Gly	ACT Thr	GCA Ala 15	GGT Gly	48
30	GTC Val	CTC Leu	TCT Ser	GAG Glu 20	GTG Val	CAG Gln	CTG Leu	GTG Val	CAG Gln 25	TCT Ser	GGA Gly	GCA Ala	GAG Glu	GTG Val 30	AAG Lys	AAG Lys	96
<i>35</i>	CCT Pro	GGG Gly	GCC Ala 35	TCA Ser	GTG Val	AAG Lys	GTC Val	TCC Ser 40	TGC Cys	AAG Lys	GCT Ala	TCC Ser	GGA Gly 45	TAC Tyr	ACC Thr	TTC Phe	144
	ACT Thr	GAC Asp 50	TAC Tyr	AAC Asn	ATG Met	GAC Asp	TGG Trp 55	GTG Val	AAG Lys	CAG Gln	AGC Ser	CCT Pro 60	GGA Gly	AAG Lys	AGC Ser	CTC Leu	192
40	GAG Glu 65	TGG Trp	ATG Met	GGA Gly	TAT Tyr	ATT Ile 70	TAT Tyr	CCT Pro	AAC Asn	AAT Asn	GGT Gly 75	GGT Gly	ACT Thr	GGC Gly	TAC Tyr	AAC Asn 80	240
45	CAG Gln	AAG Lys	TTC Phe	AAG Lys	AGC Ser 85	AAG Lys	GCC Ala	ACC Thr	TTG Leu	ACC Thr 90	GTA Val	GAC Asp	ACA Thr	TCC Ser	ACG Thr 95	AGC Ser	288
	ACA Thr	GCC Ala	TAC Tyr	ATG Met 100	GAG Glu	CTG Leu	CAC His	AGC Ser	CTG Leu 105	AGA Arg	TCT Ser	GAG Glu	GAC Asp	ACG Thr 110	GCC Ala	GTG Val	336
50	TAT Tyr	TAC Tyr	TGT Cys 115	GCG Ala	ACC Thr	TAC Tyr	Gly	CAT His 120	TAC Tyr	TAC Tyr	GGC Gly	TAC Tyr	ATG Met	TTT Phe	GCT Ala	TAC Tyr	384

	TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA GCC TCC ACC AAG GGC 43 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly 130 135 140 144	2
5	C 43	3
	(2) INFORMATION FOR SEQ ID NO:71:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: other nucleic acid, synthetic DNA	
20	<pre>(ix) FEATURES: (A) NAME/KEY: sig peptide (B) LOCATION: -191 (C) IDENTIFICATION METHOD: S (A) NAME/KEY: domain (B) LOCATION: 3135 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 1</pre>	
25	(A) NAME/KEY: domain (B) LOCATION: 5066 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 2 (A) NAME/KEY: domain (B) LOCATION: 99109 (C) IDENTIFICATION METHOD: S (D) OTHER INFORMATION: hypervariable region 3	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
	ATG GGA TGG AGC TGG ATC TTT CTC TTC CTC CTG TCA GGA ACT GCA GGT Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Thr Ala Gly 1 10 15	8
35	GTC CTC TCT GAG GTG CAG CTG GTG CAG TCT GGA GCA GAG GTG AAG AAG 9 Val Leu Ser Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys 20 25 30	6
	CCT GGG GCC TCA GTG AAG GTC TCC TGC AAG GCT TCC GGA TAC ACC TTC 14 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45	4
40	ACT GAC TAC AAC ATG GAC TGG GTG AAG CAG AGC CCT GGA CAA GGG CTC 19 Thr Asp Tyr Asn Met Asp Trp Val Lys Gln Ser Pro Gly Gln Gly Leu 50 55 60	2
45	GAG TGG ATG GGA TAT ATT TAT CCT AAC AAT GGT GGT ACT GGC TAC AAC 24 Glu Trp Met Gly Tyr Ile Tyr Pro Asn Asn Gly Gly Thr Gly Tyr Asn 65 70 75 80	0
	CAG AAG TTC AAG AGC AAG GCC ACC TTG ACC GTA GAC ACA TCC ACG AGC 28 Gln Lys Phe Lys Ser Lys Ala Thr Leu Thr Val Asp Thr Ser Thr Ser 85 90 95	8
50	ACA GCC TAC ATG GAG CTG CAC AGC CTG AGA TCT GAG GAC ACG GCC GTG Thr Ala Tyr Met Glu Leu His Ser Leu Arg Ser Glu Asp Thr Ala Val 100 105	6

5		TAC Tyr														384
5		GGC Gly 130														432
10	С															433
	(2)	INFO	RMA1	NOI	FOR	SEQ	ID 1	NO:72	2:							
15		(i)	(F (C	A) LE 3) TY	ENGTH (PE: [RAN]	H: 20 nucl	bas leic SSS:	STIC se pa acic sinc ear	irs i							
20		(ii)	MOI	LECUI	LE TY	PE:	othe	er nu	ıclei	.c ac	cid,	synt	heti	c Di	JA	
		(xi)	SEÇ	QUENC	CE DE	ESCRI	PTIC	ON: S	EQ I	D NO	72:	:				
	TGA	ATCTA	AGC I	"GGC <i>I</i>	ACACO	CA						*				20
25	(2)	INFO	RMAT	CION	FOR	SEQ	ID N	10:73	3:							
30		(i)	(<i>I</i> (E	A) LE 3) TY	NGTH PE: RANI	i: 20 nucl EDNE	bas eic SS:	STIC se pa acic sing	irs l							
		(ii)	MOI	ECUI	E TY	PE:	othe	er nu	clei	.c ac	cid,	synt	heti	.c DN	IA	
35		(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NC	:73:					
	TGGT	GTGC	CA G	CTAG	SATTO	:A										20

Claims

40

- 45 1. A human CDR-grafted antibody which specifically reacts with ganglioside GM₂, wherein said antibody comprises CDR 1, CDR 2 and CDR 3 of heavy chain (H chain) variable region (V region) comprising amino acid sequences of SEQ ID NO:1, SEQ ID NO:2 and SEQ ID NO:3 or functional equivalents thereof, and CDR 1, CDR 2 and CDR 3 of light chain (L chain) V region comprising amino acid sequences of SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6 or functional equivalents thereof, and wherein at least one of the frameworks (FR) of said H chain and L chain V regions comprises an amino acid sequence selected from common sequences (HMHCS; human most homologous consensus sequence) derived from human antibody subgroups.
 - The human CDR-grafted antibody according to claim 1, wherein said FR is an amino acid sequence of an FR of an HMHCS having a high homology with an FR of a monoclonal antibody originated from nonhuman animal which specifically reacts with ganglioside GM₂.
 - 3. The human CDR-grafted antibody according to claim 1 or 2, wherein said FR of H chain or L chain V region of the human CDR-grafted antibody comprises an amino acid sequence in which at least one amino acid is replaced by

an other amino acid, and wherein said antibody has antigen-binding activity and binding specificity comparable to those of a human chimeric antibody having a V region of a monoclonal antibody derived from nonhuman animal which specifically reacts with ganglioside GM_2 .

4. The human CDR-grafted antibody according to any one of claims 1 to 3, wherein said FR of H chain or L chain V region of the human CDR-grafted antibody comprises an amino acid sequence in which at least one amino acid is replaced by an other amino acid, and wherein said antibody has antibody dependent cell mediated cytotoxicity (ADCC) comparable to that of a human chimeric antibody having a V region of a monoclonal antibody derived from nonhuman animal which specifically reacts with ganglioside GM₂`

10

15

45

- 5. The human CDR-grafted antibody according to any one of claims 1 to 4, wherein said FR of H chain or L chain V region of the human CDR-grafted antibody comprises an amino acid sequence in which at least one amino acid is replaced by an other amino acid, and wherein said antibody has complement dependent cytotoxicity (CDC) comparable to that of a human chimeric antibody having a V region of a monoclonal antibody originated from nonhuman animal which specifically reacts with ganglioside GM₂.
- 6. The human CDR-grafted antibody according to any one of claims 3 to 5, wherein said other amino acid is selected from amino acids in a position corresponding to the FR of the monoclonal antibody derived from nonhuman animal.
- 7. The human CDR-grafted antibody according to any one of claims 3 to 6, wherein at least one amino acid of positions 38, 40, 67, 72, 84 and 98 in the FR of H chain V region and positions 4, 11, 15, 35, 42, 46, 59, 69, 70, 71, 72, 76, 77 and 103 in the FR of L chain V region is replaced by an other amino acid.
- 8. The human CDR-grafted antibody according to any one of claims 1 to 7, therein said H chain C region of the antibody is derived from an antibody belonging to the human antibody IgG class.
 - 9. The human CDR-grafted antibody according to any one of claims 1 to 4 and 6 to 8, which is KM8966 comprising the H chain V region of the antibody having an amino acid sequence of SEQ ID NO:7 and the L chain V region of the antibody having an amino acid sequence of SEQ ID NO:8.
 - 10. The human CDR-grafted antibody according to any one of claims 1 to 4 and 6 to 8, which is KM8967 comprising the H chain V region of the antibody having an amino acid sequence of SEQ ID NO:7 and the L chain V region of the antibody having an amino acid sequence of SEQ ID NO:9.
- 35 11. The human CDR-grafted antibody and according to any one of claims 1 to 4 and 6 to 8, which is KM8970 comprising the H chain V region of the antibody having an amino acid sequence of SEQ ID NO:10 and the L chain V region of the antibody having an amino acid sequence of SEQ ID NO:8.
- 12. The human CDR-grafted antibody according to any one of claims 1 to 8, which is KM8969 comprising the H chain V region of the antibody having an amino acid sequence of SEQ ID NO:10 and the L chain V region of the antibody having an amino acid sequence of SEQ ID NO:11.
 - 13. A DNA fragment encoding an amino acid sequence of the H chain V region and L chain V region of the antibody according to any one of claims 1 to 12.
 - 14. A recombinant vector comprising the DNA fragment according to claim 13 or a part thereof.
 - **15.** The recombinant vector according to claim 14, which is derived from a tandem cassette vector, pKANTEX 93, for expressing a human chimeric antibody and a human CDR-grafted antibody.
 - **16.** A transformant comprising the recombinant vector according to daim 14 or 15.
 - 17. A transformant cell line KM8966 (FERM BP-5105), which produces the antibody KM8966 according to claim 9.
- 55 18. A transformant cell line KM8967 (FERM BP-5106), which produces the antibody KM8967 according to claim 10.
 - 19. A transformant cell line KM8970 (FERM BP-5528), which produces the antibody KM8970 according to claim 11.

	20.	A transformant cell line KM8969 (FERM BP-5527), which produces the antibody KM8969 according to claim 12.
5	21.	A method for producing the antibodies according to any one of claims 1 to 12 using said transformant according to any one of claims 17 to 20.
	22.	An anti-tumor agent comprising the antibody of any one of claims 1 to 12 as an active ingredient.
	23.	A diagnostic agent for cancer comprising the antibody of any one of claims 1 to 12 as an active ingredient.
10		
15		
,,		
20		
25		
30		
35		
40		
45		
50		
55		

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 21

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG. 36

FIG. 37

FIG. 40

FIG. 41

FIG. 42

FIG. 43

FIG. 45

FIG. 47

FIG. 48

FIG. 49

FIG. 50

FIG. 51

FIG. 52

FIG. 54

FIG. 55

FIG. 56

FIG. 59

FIG. 61

