Übungen zum Ferienkurs Analysis II

Implizite Funktionen und Differentialgleichungen

4.1 Umkehrbarkeit \star

Man betrachte die durch $g(s,t)=(e^s\cos(t),e^s\sin(t))$ gegebene Funktion $g:\mathbb{R}^2\to\mathbb{R}^2$. Zeigen Sie, dass g die Bedingungen des Satzes über Umkehrfunktionen erfüllt, aber nicht injektiv ist

4.2 Implizite Funktionen \star

Zeigen Sie, dass es eine Umgebung $U \subset \mathbb{R}^3$ von (0,0,0) gibt , in der das Gleichungssystem

$$\sin(x - y^2 + z^3) - \cos(x + y + z) + 1 = 0$$

$$\sin(y + x^2 - z^3) + \cos(x - y) - 1 = 0$$

eindeutig nach (x,y) aufgelöst werden kann (d.h. (x,y)=h(z) mit einer geeigneten Funktion h). Berechnen Sie weiterhin die Ableitung von h im Nullpunkt.

4.3 Umkehrbarkeit II

Zeige: die Abbildung $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2, (x,y) \mapsto (x^2 - y^2, 2xy)$ ist in allen Punkten ein lokaler \mathcal{C}^1 -Diffeomorphismus.

4.4 Umkehrbarkeit III

Zeige, dass die Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x^3 + 3xe^y, y - x^2)$ ein \mathcal{C}^1 -Diffeomorphismus auf \mathbb{R}^2 ist

4.5 Separierbare Differentialgleichungen \star

Geben Sie alle Lösungen der folgenden Differentialgleichungen an:

- (a) y'x = 2y
- (b) $y' = \frac{2x}{x^2 + 1}y$
- (c) $y'(y+1)^2 + x^3 = 0$

4.6 Lineare Differentialgleichungen

Gegeben ist die Differentialgleichung y''' + 7y'' + 15y' + 9y = 0.

- (a) Welche Dimension hat der Lösungsraum der Gleichung?
- (b) Welche der folgenden Funktionen von x sind Lösungen der Gleichung?
 - (i) $-\ln x$
 - (ii) 0
 - (iii) 1
 - (iv) $2e^{-x}$
 - (v) $1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$
- (c) Geben Sie ein Fundamentalsystem der Gleichung an!
- (d) Geben Sie die Menge aller reellen Lösungen der Differentialgleichung y''' + 7y'' + 15y' + 9y = 3

4.7 Separierbare Differentialgleichungen \star

- (a) Finden Sie auf ganz \mathbb{R} definierte Lösungen von $yy'=x(1-y^2)$ mit $y(0)=y_0,y_0\in\mathbb{R}\setminus\{0\}$
- (b) Wie viele konstante Lösungen gibt es?
- (c) Wie viele auf ganz \mathbb{R} definierte Lösungen mit y(0) = 0 gibt es?

4.8 Lineares Differentialgleichungssystem *

Lösen sie das AWP $\dot{x}=Ax$ mit $\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ -1 & 1 & 0 \end{pmatrix}, x(0)=\begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix}.$

Hinweis: Schreiben Sie das System als eine Differentialgleichung höherer Ordnung für x_1 .