Quiver Varieties and Symmetric Pairs

Yiqiang Li

University at Buffalo, The State University of New York

REPRESENTATION THEORY COMBINATORICS AND GEOMETRY October 2018

Motivations: Schur dualities
 —based on joint works with H. Bao, J. Kujawa and W. Wang.

- Motivations: Schur dualities
 —based on joint works with H. Bao, J. Kujawa and W. Wang.
- Results on nilpotent Slodowy slices

- Motivations: Schur dualities
 —based on joint works with H. Bao, J. Kujawa and W. Wang.
- Results on nilpotent Slodowy slices
- The construction of iQuiver Varieties (iQV)

- Motivations: Schur dualities
 —based on joint works with H. Bao, J. Kujawa and W. Wang.
- Results on nilpotent Slodowy slices
- The construction of iQuiver Varieties (iQV)
- Connection with real classical groups

Background: Schur duality and beyond

Schur duality and its generalizations.

• Schur duality: $U(\mathfrak{gl}_n) \curvearrowright (\mathbb{C}^n)^{\otimes d} \curvearrowright \mathbb{C}[S_d]$. (Schur \sim 1901)

Background: Schur duality and beyond

Schur duality and its generalizations.

- Schur duality: $U(\mathfrak{gl}_n) \curvearrowright (\mathbb{C}^n)^{\otimes d} \curvearrowright \mathbb{C}[S_d]$. (Schur \sim 1901)
- qSchur duality: $U_q(\mathfrak{gl}_n) \curvearrowright T_{n,d} \curvearrowright \mathbf{H}_d$, with $T_{n,d} = (\mathbb{C}(q)^n)^{\otimes d}$. (Jimbo, 1986)

Background: Schur duality and beyond

Schur duality and its generalizations.

- Schur duality: $U(\mathfrak{gl}_n) \curvearrowright (\mathbb{C}^n)^{\otimes d} \curvearrowright \mathbb{C}[S_d]$. (Schur \sim 1901)
- qSchur duality: $U_q(\mathfrak{gl}_n) \curvearrowright T_{n,d} \curvearrowleft \mathbf{H}_d$, with $T_{n,d} = (\mathbb{C}(q)^n)^{\otimes d}$. (Jimbo, 1986)
- iSchur duality: $U_q^{\sigma}(\mathfrak{gl}_n) \curvearrowright T_{n,d} \curvearrowright \mathbf{H}_d^{B/C/D}$. (Green 1997, Bao-Wang 2013)

 $U_q^{\sigma}(\mathfrak{gl}_n)$ is a coideal: $\Delta(U_q^{\sigma}(\mathfrak{gl}_n)) \subseteq U_q^{\sigma}(\mathfrak{gl}_n) \otimes U_q(\mathfrak{gl}_n)$.

 $U_q^{\sigma}(\mathfrak{gl}_n)$ is a coideal: $\Delta(U_q^{\sigma}(\mathfrak{gl}_n)) \subseteq U_q^{\sigma}(\mathfrak{gl}_n) \otimes U_q(\mathfrak{gl}_n)$. The pair $(U_q(\mathfrak{gl}_n), U_q^{\sigma}(\mathfrak{gl}_n))$ is a quantum symmetric pair.

 $U_q^{\sigma}(\mathfrak{gl}_n)$ is a coideal: $\Delta(U_q^{\sigma}(\mathfrak{gl}_n)) \subseteq U_q^{\sigma}(\mathfrak{gl}_n) \otimes U_q(\mathfrak{gl}_n)$. The pair $(U_q(\mathfrak{gl}_n), U_q^{\sigma}(\mathfrak{gl}_n))$ is a quantum symmetric pair. These algebras were studied previously by Noumi, Letzter, Kolb, etc.

• A symmetric pair $(\mathfrak{g}, \mathfrak{g}^{\theta})$ is a complex semisimple Lie algebra \mathfrak{g} together with its fixed-point subalgebra \mathfrak{g}^{θ} under an involution θ .

- A symmetric pair $(\mathfrak{g}, \mathfrak{g}^{\theta})$ is a complex semisimple Lie algebra \mathfrak{g} together with its fixed-point subalgebra \mathfrak{g}^{θ} under an involution θ .
- Classification of symmetric pairs goes back to É Cartan, and is equivalent to the classification of *real simple* Lie algebras, via Satake diagrams= bicolor Dynkin diagrams with diagram involution.

- A symmetric pair $(\mathfrak{g}, \mathfrak{g}^{\theta})$ is a complex semisimple Lie algebra \mathfrak{g} together with its fixed-point subalgebra \mathfrak{g}^{θ} under an involution θ .
- Classification of symmetric pairs goes back to É Cartan, and is equivalent to the classification of real simple Lie algebras, via Satake diagrams= bicolor Dynkin diagrams with diagram involution.
- When specialized to q=1, the pair $(U_q(\mathfrak{gl}_n), U_q^{\sigma}(\mathfrak{gl}_n))$ is of type Aiii/Aiv, with Satake diagram (all vertices are white):

- A symmetric pair $(\mathfrak{g}, \mathfrak{g}^{\theta})$ is a complex semisimple Lie algebra \mathfrak{g} together with its fixed-point subalgebra \mathfrak{g}^{θ} under an involution θ .
- Classification of symmetric pairs goes back to É Cartan, and is equivalent to the classification of real simple Lie algebras, via Satake diagrams= bicolor Dynkin diagrams with diagram involution.
- When specialized to q=1, the pair $(U_q(\mathfrak{gl}_n), U_q^{\sigma}(\mathfrak{gl}_n))$ is of type Aiii/Aiv, with Satake diagram (all vertices are white):

$$\theta: \circ \stackrel{\longleftarrow}{\longrightarrow} \circ \stackrel{\longleftarrow}{\longrightarrow} \circ \stackrel{\longrightarrow}{\longrightarrow} \circ$$

• Caution: $U_q^{\sigma}(\mathfrak{gl}_n)$ NOT a fixed-point subalgebra of $U_q(\mathfrak{gl}_n)$.

• iSchur duality is used by Bao-Wang to solve Kazhdan-Lusztig problem for $\mathfrak{osp}_{m|n}$, following Brundan's approach to $\mathfrak{gl}_{m|n}$.

- iSchur duality is used by Bao-Wang to solve Kazhdan-Lusztig problem for $\mathfrak{osp}_{m|n}$, following Brundan's approach to $\mathfrak{gl}_{m|n}$.
- iHowe duality is used by Ehrig-Stroppel to solve problems for \mathfrak{so}_{2m} .

- iSchur duality is used by Bao-Wang to solve Kazhdan-Lusztig problem for $\mathfrak{osp}_{m|n}$, following Brundan's approach to $\mathfrak{gl}_{m|n}$.
- iHowe duality is used by Ehrig-Stroppel to solve problems for so_{2m}.
- Bao-Wang's work contains an icanonical basis (iCB for short) for representations of coideal subalgebras of quantum st_n.

- iSchur duality is used by Bao-Wang to solve Kazhdan-Lusztig problem for $\mathfrak{osp}_{m|n}$, following Brundan's approach to $\mathfrak{gl}_{m|n}$.
- iHowe duality is used by Ehrig-Stroppel to solve problems for \mathfrak{so}_{2m} .
- Bao-Wang's work contains an icanonical basis (iCB for short) for representations of coideal subalgebras of quantum st_n.
- Bao-Wang's work on iCB has been extended by themselves to any coideal subalgebras of quantum groups of finite type.

 qSchur duality was realized geometrically by Beilinson, Lusztig and MacPherson (BLM) and Grojnowski and Lusztig ~1990.

- qSchur duality was realized geometrically by Beilinson, Lusztig and MacPherson (BLM) and Grojnowski and Lusztig ~1990.
- Geometric iSchur duality by Bao, Kujawa, L. and Wang (BKLW) in 2014.

- qSchur duality was realized geometrically by Beilinson, Lusztig and MacPherson (BLM) and Grojnowski and Lusztig ~1990.
- Geometric iSchur duality by Bao, Kujawa, L. and Wang (BKLW) in 2014.
- BKLW obtained an iCB for quantum symmetric pairs of type Aiii/iv.
 A slight modification leads to remarkable positivity (L.-Wang, Fan-L.). (weak categorification)

- qSchur duality was realized geometrically by Beilinson, Lusztig and MacPherson (BLM) and Grojnowski and Lusztig ~1990.
- Geometric iSchur duality by Bao, Kujawa, L. and Wang (BKLW) in 2014.
- BKLW obtained an iCB for quantum symmetric pairs of type Aiii/iv.
 A slight modification leads to remarkable positivity (L.-Wang, Fan-L.). (weak categorification)
- Genuine categorification of (part of) BKLW's work has been done by H. Bao, P. Shan, W. Wang and B. Webster.

*i*Quiver varieties?

There is a 'type A' line of research:

$$\mathcal{F}_{n,d} \rightsquigarrow T^* \mathcal{F}_{n,d} \rightsquigarrow \text{Nakajima varieties}$$
 \mathfrak{sl}_n dual \mathfrak{g}_{ADE}

iQuiver varieties?

There is a 'type A' line of research:

$$\mathcal{F}_{n,d} \leadsto T^* \mathcal{F}_{n,d} \leadsto \text{Nakajima varieties}$$
 $\mathfrak{sl}_n \qquad \text{dual} \qquad \mathfrak{g}_{ADE}$

In light of the previous work, We should have a line of research, based on "classical type" geometry:

$$\mathcal{F}_{n,d}^{\sigma} \leadsto T^* \mathcal{F}_{n,d}^{\sigma} \leadsto \mathsf{iQV}????$$

 $\mathfrak{sl}_n^{\sigma} \qquad \mathsf{dual} \qquad \mathfrak{g}_{ADE}^{\theta}$

The existence of iQV is also conjectured by Weiqiang Wang.

A simple answer

The simple answer to construct iQV:

Analogue

$$\mathfrak{M}_{\zeta}(\mathbf{w}) \quad \leadsto \quad \mathfrak{g}$$

A simple answer

The simple answer to construct iQV:

Analogue

```
\mathfrak{M}_{\zeta}(\mathbf{w}) \quad \stackrel{\leadsto}{\leadsto} \quad \mathfrak{g}
iQV?? \quad \stackrel{\leadsto}{\leadsto} \quad \mathfrak{g}^{\theta}, \text{ for } \theta \in \operatorname{Aut}(\mathfrak{g})
```

A simple answer

The simple answer to construct iQV:

Analogue

```
\mathfrak{M}_{\zeta}(\mathbf{w}) \longrightarrow \mathfrak{g}

iQV?? \longrightarrow \mathfrak{g}^{\theta}, for \theta \in \operatorname{Aut}(\mathfrak{g})
```

Answer: $iQV = \mathfrak{M}_{\mathcal{C}}(\mathbf{w})^{\sigma}$: the fixed point locus of $\mathfrak{M}_{\mathcal{C}}(\mathbf{w})$ under an σ .

Nakajima varieties=QV	iQV
symplectic resolution	symplectic partial resolution

Nakajima varieties=QV	iQV
symplectic resolution	symplectic partial resolution
π semismall	π^{σ} semismall

Nakajima varieties=QV	iQV
symplectic resolution	symplectic partial resolution
π semismall	π^{σ} semismall
nilpotent Slodowy slices of GL _n	GL_n , Sp_{2n} , O_n ,

Nakajima varieties=QV	iQV
symplectic resolution	symplectic partial resolution
π semismall	π^{σ} semismall
nilpotent Slodowy slices of GL _n	GL_n , Sp_{2n} , O_n ,
Weyl groups action of type $A_{\ell}/D_{\ell}/E_{6,7,8}$	ADE , $B_{\ell}/C_{\ell}/F_4/G_2$

Nakajima varieties=QV	iQV
symplectic resolution	symplectic partial resolution
π semismall	π^{σ} semismall
nilpotent Slodowy slices of GL _n	GL_n , Sp_{2n} , O_n ,
Weyl groups action of type $A_{\ell}/D_{\ell}/E_{6,7,8}$	ADE , $B_{\ell}/C_{\ell}/F_4/G_2$
\mathfrak{M}_{ζ} connected, ζ generic	not connected in general

Nakajima varieties=QV	iQV
symplectic resolution	symplectic partial resolution
π semismall	π^{σ} semismall
nilpotent Slodowy slices of GL _n	GL_n , Sp_{2n} , O_n ,
Weyl groups action of type $A_{\ell}/D_{\ell}/E_{6,7,8}$	ADE , $B_{\ell}/C_{\ell}/F_4/G_2$
\mathfrak{M}_{ζ} connected, ζ generic	not connected in general
\mathfrak{M}_0 normal	not normal in general

We have the following comparison of results in QV and iQV.

Nakajima varieties=QV	iQV
symplectic resolution	symplectic partial resolution
π semismall	π^{σ} semismall
nilpotent Slodowy slices of GL _n	GL_n , Sp_{2n} , O_n ,
Weyl groups action of type $A_{\ell}/D_{\ell}/E_{6,7,8}$	ADE , $B_{\ell}/C_{\ell}/F_4/G_2$
\mathfrak{M}_{ζ} connected, ζ generic	not connected in general
\mathfrak{M}_0 normal	not normal in general
Unitary instantons	Sp/SO instantons (Nakajima)

Caution: the automorphism σ is not always an involution. For the Weyl group action of type G_2 , σ is of order 6.

Application I: Rectangular symmetry

One of the rectangular symmetries reads as follows

$$\begin{array}{ccc} \widetilde{S}^{\mathfrak{sp}}_{\mu',\lambda} \stackrel{\cong}{\longrightarrow} \widetilde{S}^{\mathfrak{o}}_{\nu',\widehat{\lambda}} \\ \pi^{\sigma} & & \downarrow^{\pi^{\widetilde{\sigma}}} \\ S^{\mathfrak{sp}}_{\mu',\lambda} \stackrel{\cong}{\longrightarrow} S^{\mathfrak{o}}_{\nu',\widehat{\lambda}}, \end{array}$$

where each pair $(\mu', \tilde{\mu}')$ and $(\lambda, \tilde{\lambda})$ can be fit into a rectangle:

Special case: two-row Slodowy slices

As a special case of the rectangular symmetry, we recover

Henderson-Licata, 2013

$$\mathcal{S}_{n^1,k^1(n-k)^1}^{\mathfrak{sp}_n}\cong \mathcal{S}_{1^1(n+1)^1,(k+1)^1(n+1-k)^1}^{\mathfrak{o}_{n+2}}.$$

Special case: two-row Slodowy slices

As a special case of the rectangular symmetry, we recover

Henderson-Licata, 2013

$$S_{n^1,k^1(n-k)^1}^{\mathfrak{sp}_n} \cong S_{1^1(n+1)^1,(k+1)^1(n+1-k)^1}^{\mathfrak{o}_{n+2}}.$$

Simultaneously, we also deduce

Wilbert, 2015; Ehrig-Stroppel, 2013

 $\mathcal{B}_{e_0}^{\mathfrak{sp}_n}\cong\mathcal{B}_{\widehat{e}_o}^{\mathfrak{so}_{n+2}}$ — Springer fibers of the associated Slodowy slices.

Special case: two-row Slodowy slices

As a special case of the rectangular symmetry, we recover

Henderson-Licata, 2013

$$S_{n^1,k^1(n-k)^1}^{\mathfrak{sp}_n} \cong S_{1^1(n+1)^1,(k+1)^1(n+1-k)^1}^{\mathfrak{o}_{n+2}}.$$

Simultaneously, we also deduce

Wilbert, 2015; Ehrig-Stroppel, 2013

 $\mathcal{B}_{e_0}^{\mathfrak{sp}_n}\cong\mathcal{B}_{\widehat{e}_o}^{\mathfrak{so}_{n+2}}$ — Springer fibers of the associated Slodowy slices.

And we solve a conjecture of Henderson-Licata for free:

$$\widetilde{S}_{n^1,k^1(n-k)^1}^{\mathfrak{sp}_n} \cong \widetilde{S}_{1^1(n+1)^1,(k+1)^1(n+1-k)^1}^{\mathfrak{o}_{n+2}}.$$

Application II: Column removal reduction

Enhancement of Kraft-Procesi's column removal reduction

We have $\mathcal{S}_{\widecheck{\mu}',\widecheck{\lambda}}^{\mathfrak{sp}|\widecheck{\lambda}|}\cong \mathcal{S}_{\mu',\lambda}^{\mathfrak{o}|\lambda|}$, if the partitions are related as follows.

Application II: Row removal reduction

An introduction to Nakajima varieties

One starts with a quiver Q with underlying graph Γ , and its framed version Q^f by adding an extra copy of vertex set and arrow connecting to the original vertices. For example

Consider the geometries:

Consider the geometries:

Each step yields rich geometries and contains much representation theoretical information for the Lie algebra \mathfrak{g}_Γ associated to Γ .

Hamiltonian reduction

Specifically, consider the cotangent space $T^*\mathrm{rep}Q^{\mathrm{f}}_{\mathbf{v},\mathbf{w}}$ of representations of $Q^{\mathrm{f}}_{\mathbf{v},\mathbf{w}}$ of fixed dimension vectors \mathbf{v},\mathbf{w} . There is a (reductive/gauge) group $G_{\mathbf{v}}$ acts nicely on $T^*\mathrm{rep}Q^{\mathrm{f}}_{\mathbf{v},\mathbf{w}}$. General machinery in symplectic geometry says that there is a moment map

$$\mu: T^* \operatorname{rep} Q^f_{\mathbf{v},\mathbf{w}} \to (\operatorname{Lie} G_{\mathbf{v}})^*.$$

Hamiltonian reduction

Specifically, consider the cotangent space $T^*\mathrm{rep} Q^{\mathrm{f}}_{\mathbf{v},\mathbf{w}}$ of representations of $Q^{\mathrm{f}}_{\mathbf{v},\mathbf{w}}$ of fixed dimension vectors \mathbf{v},\mathbf{w} . There is a (reductive/gauge) group $G_{\mathbf{v}}$ acts nicely on $T^*\mathrm{rep} Q^{\mathrm{f}}_{\mathbf{v},\mathbf{w}}$. General machinery in symplectic geometry says that there is a moment map

$$\mu: T^* \operatorname{rep} Q^f_{\mathbf{v},\mathbf{w}} \to (\operatorname{Lie} G_{\mathbf{v}})^*.$$

Nakajima (quiver) variety is defined to be the Hamiltonian reduction

$$\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) = \mu^{-1}(\zeta_{\mathbb{C}})///\zeta_{\mathbb{R}}G_{\mathbf{v}}, \quad \zeta = (\zeta_{\mathbb{C}},\zeta_{\mathbb{R}}).$$

Rank one: $\zeta = (0, 1)$ or (0, 0)

In rank one case,

$$\mathcal{T}^* \mathrm{rep} \mathcal{Q}_{\boldsymbol{v},\boldsymbol{w}}^{\mathrm{f}} = \mathrm{Hom}(\mathbb{C}^{\boldsymbol{w}},\mathbb{C}^{\boldsymbol{v}}) \oplus \mathrm{Hom}(\mathbb{C}^{\boldsymbol{v}},\mathbb{C}^{\boldsymbol{w}})$$

and the fiber at 0 of the moment map is given by

$$\mu^{-1}(0) = \{(p,q)|pq = 0\}.$$

Rank one: $\zeta = (0, 1)$ or (0, 0)

In rank one case,

$$\mathcal{T}^* \mathrm{rep} \mathcal{Q}_{\boldsymbol{v},\boldsymbol{w}}^f = \mathrm{Hom}(\mathbb{C}^{\boldsymbol{w}},\mathbb{C}^{\boldsymbol{v}}) \oplus \mathrm{Hom}(\mathbb{C}^{\boldsymbol{v}},\mathbb{C}^{\boldsymbol{w}})$$

and the fiber at 0 of the moment map is given by

$$\mu^{-1}(0) = \{(p,q)|pq = 0\}.$$

Rank one Nakajima variety

Nakajima varieties are

$$\mathfrak{M}_{(0,1)}(\mathbf{v},\mathbf{w}) = \{(p,q) \in \mu^{-1}(0) | q \text{ injective} \}/GL(\mathbb{C}^{\mathbf{v}}), \text{(GIT quotient)}$$

 $\mathfrak{M}_{(0,0)}(\mathbf{v},\mathbf{w}) = \mu^{-1}(0)//GL(\mathbb{C}^{\mathbf{v}}) \quad \text{(categorical quotient)}$

Rank one: Cotangent bundle of Grassmannian (Nakajima)

Nakajima varieties and cotangent bundle of Grassmannian

The assignment $(p, q) \mapsto (qp, \operatorname{im}(q))$ identifies Nakajima varieties with the cotangent bundle of Grassmannian and its affinization.

Ginzburg's setting

In general, the cotangent bundle $T^*\mathcal{F}_{n,d}$ used in Ginzburg's construction is a very special case of Nakajima varieties of type A.

Let $a : \Gamma \to \Gamma$ be a diagram automorphism.

Naive diagram isoomorphism

 $a:\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) o \mathfrak{M}_{a(\zeta)}(a(\mathbf{v}),a(\mathbf{w})).$

Let $a : \Gamma \to \Gamma$ be a diagram automorphism.

Naive diagram isoomorphism

$$a:\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) o \mathfrak{M}_{a(\zeta)}(a(\mathbf{v}),a(\mathbf{w})).$$

Rank one

a = 1.

Let $a : \Gamma \to \Gamma$ be a diagram automorphism.

Naive diagram isoomorphism

 $a:\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) o \mathfrak{M}_{a(\zeta)}(a(\mathbf{v}),a(\mathbf{w})).$

Rank one

a = 1.

Associate to each $\mathbb{C}^{\mathbf{v}_i}$ and $\mathbb{C}^{\mathbf{w}_i}$ a non-degenerate bilinear form.

Let $a : \Gamma \to \Gamma$ be a diagram automorphism.

Naive diagram isoomorphism

 $a:\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})\to\mathfrak{M}_{a(\zeta)}(a(\mathbf{v}),a(\mathbf{w})).$

Rank one

a = 1.

Associate to each $\mathbb{C}^{\mathbf{v}_i}$ and $\mathbb{C}^{\mathbf{w}_i}$ a non-degenerate bilinear form. One can define automorphisms, via taking adjoints, on Nakajima's varieties:

Isomorphism au_{ζ}

 $au_{\zeta}:\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) o\mathfrak{M}_{-\zeta}(\mathbf{v},\mathbf{w}).$

Let $a : \Gamma \to \Gamma$ be a diagram automorphism.

Naive diagram isoomorphism

 $a:\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) o \mathfrak{M}_{a(\zeta)}(a(\mathbf{v}),a(\mathbf{w})).$

Rank one

a = 1.

Associate to each $\mathbb{C}^{\mathbf{v}_i}$ and $\mathbb{C}^{\mathbf{w}_i}$ a non-degenerate bilinear form. One can define automorphisms, via taking adjoints, on Nakajima's varieties:

Isomorphism au_{ζ}

 $au_{\zeta}:\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) o\mathfrak{M}_{-\zeta}(\mathbf{v},\mathbf{w}).$

Rank one

 $\tau_{\mathcal{C}}: (p,q) \mapsto (-q^*,p^*) \text{ (modulo } G_{\mathbf{V}}).$

Isomorphisms cont'd

Recall W_{Γ} be the Weyl group of Γ .

Reflection functors S_{ω} of Nakajima, Lusztig and Maffei

$$\mathcal{S}_{\omega}:\mathfrak{M}_{\zeta}(\textbf{v},\textbf{w})\rightarrow\mathfrak{M}_{\omega(\zeta)}(\omega*_{\textbf{w}}\textbf{v},\textbf{w}),\,\forall\omega\in\mathcal{W}_{\Gamma}.$$

Isomorphisms cont'd

Recall W_{Γ} be the Weyl group of Γ .

Reflection functors S_{ω} of Nakajima, Lusztig and Maffei

$$\textit{S}_{\omega}: \mathfrak{M}_{\zeta}(\textbf{v},\textbf{w}) \rightarrow \mathfrak{M}_{\omega(\zeta)}(\omega *_{\textbf{w}} \textbf{v},\textbf{w}), \, \forall \omega \in \mathcal{W}_{\Gamma}.$$

Rank one

$$S_i:(p,q)\mapsto (p',q'),\,\mathbb{C}^{\mathbf{v}}\stackrel{q}{\hookrightarrow}\mathbb{C}^{\mathbf{w}}\stackrel{p'}{\twoheadrightarrow}\mathbb{C}^{\mathbf{w}-\mathbf{v}}$$
 is exact and $qp=q'p'.$

Taking the composition of the above three isomorphisms yields:

Isomorphism σ

$$\sigma \equiv \sigma_{\boldsymbol{a},\zeta,\omega} := \boldsymbol{a} \mathcal{S}_{\omega} \tau_{\zeta} : \mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) \to \mathfrak{M}_{-\boldsymbol{a}\omega(\zeta)}(\boldsymbol{a}(\omega *_{\mathbf{w}} \mathbf{v}), \boldsymbol{a}\mathbf{w}).$$

Taking the composition of the above three isomorphisms yields:

Isomorphism σ

$$\sigma \equiv \sigma_{\mathbf{a},\zeta,\omega} := \mathbf{a} \mathcal{S}_{\omega} \tau_{\zeta} : \mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) \to \mathfrak{M}_{-\mathbf{a}\omega(\zeta)}(\mathbf{a}(\omega *_{\mathbf{w}} \mathbf{v}), \mathbf{a}\mathbf{w}).$$

Definition of iQV

$$\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}$$
, if $\zeta = -a\omega(\zeta)$, $\mathbf{v} = a(\omega *_{\mathbf{w}} \mathbf{v})$ and $\mathbf{w} = a\mathbf{w}$.

Taking the composition of the above three isomorphisms yields:

Isomorphism σ

$$\sigma \equiv \sigma_{\boldsymbol{a},\zeta,\omega} := \boldsymbol{a} \mathcal{S}_{\omega} \tau_{\zeta} : \mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) \to \mathfrak{M}_{-\boldsymbol{a}\omega(\zeta)}(\boldsymbol{a}(\omega *_{\mathbf{w}} \mathbf{v}), \boldsymbol{a}\mathbf{w}).$$

Definition of iQV

$$\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}, \quad \text{ if } \zeta = -a\omega(\zeta), \, \mathbf{v} = a(\omega *_{\mathbf{w}} \mathbf{v}) \text{ and } \mathbf{w} = a\mathbf{w}.$$

The projective morphism π^{σ}

It comes equipped with a projective morphism:

$$\pi^{\sigma}:\mathfrak{M}_{\mathcal{C}}(\mathbf{v},\mathbf{w})^{\sigma} o\mathfrak{M}_{0}(\mathbf{v},\mathbf{w})^{\sigma}.$$

Taking the composition of the above three isomorphisms yields:

Isomorphism σ

$$\sigma \equiv \sigma_{a,\zeta,\omega} := aS_{\omega}\tau_{\zeta} : \mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w}) o \mathfrak{M}_{-a\omega(\zeta)}(a(\omega *_{\mathbf{w}} \mathbf{v}), a\mathbf{w}).$$

Definition of iQV

$$\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}, \quad \text{ if } \zeta = -a\omega(\zeta), \mathbf{v} = a(\omega *_{\mathbf{w}} \mathbf{v}) \text{ and } \mathbf{w} = a\mathbf{w}.$$

The projective morphism π^{σ}

It comes equipped with a projective morphism:

$$\pi^{\sigma}:\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}\to\mathfrak{M}_{0}(\mathbf{v},\mathbf{w})^{\sigma}.$$

Quiver variety is an iQV

$$\mathfrak{M}_{\zeta}^{\Gamma \times \Gamma}(\mathbf{w})^{\sigma} \cong \mathfrak{M}_{\zeta}(\mathbf{w}) \text{ for } \sigma = \mathbf{a}\tau_{\zeta}.$$

Rank one

Rank one iQV

The assignment $(p, q) \mapsto (qp, \operatorname{im}(q))$ identifies iQV with the cotangent bundles of maximal isotropic Grassmannians.

$$\begin{split} \mathfrak{M}_{(0,1)}(\mathbf{v},\mathbf{w})^{\sigma} & \stackrel{\cong}{\longrightarrow} & \mathcal{T}^{*}\mathrm{Gr}(\mathbf{v},\mathbf{w})^{\sigma'} \\ \downarrow & & \downarrow \\ \mathfrak{M}_{(0,0)}(\mathbf{v},\mathbf{w})^{\sigma} & \longrightarrow & \{x \in \mathrm{End}(\mathbb{C}^{\mathbf{w}}) | x^{2} = 0, \ldots\}^{\sigma'} \end{split}$$

here σ' depends on the form on $\mathbb{C}^{\mathbf{w}}$.

Proof

The action of σ on (p,q) is $(p,q) \stackrel{\tau_{\zeta}}{\mapsto} (-q^*,p^*) \stackrel{S_i}{\mapsto} (-(q^*)',(p^*)')$.

Proof

The action of σ on (p,q) is $(p,q) \stackrel{\tau_{\zeta}}{\mapsto} (-q^*,p^*) \stackrel{S_i}{\mapsto} (-(q^*)',(p^*)')$. So it sends

$$qp\mapsto -(p^*)'(q^*)'=-p^*q^*=-(qp)^*\longleftrightarrow x\mapsto -x^*$$

Proof

The action of σ on (p,q) is $(p,q) \stackrel{\tau_{\zeta}}{\mapsto} (-q^*,p^*) \stackrel{S_i}{\mapsto} (-(q^*)',(p^*)')$. So it sends

$$qp\mapsto -(p^*)'(q^*)'=-p^*q^*=-(qp)^*\longleftrightarrow x\mapsto -x^*$$

$$\operatorname{im} q \mapsto \operatorname{im}(p^*)' = \ker q^* \longleftrightarrow F \mapsto F^{\perp}.$$

 \perp is taken with respect to the form on $\mathbb{C}^{\mathbf{w}}$.

Kraft-Procesi considered an A_n quiver with alternating forms, say:

Kraft-Procesi considered an A_n quiver with alternating forms, say:

Consider the fixed-points $\mu^{-1}(0)^{\sigma}$, $G_{\mathbf{v}}^{\sigma} = O_{\mathbf{v}_1} \times Sp_{\mathbf{v}_2} \times O_{\mathbf{v}_3} \times \cdots$.

Kraft-Procesi considered an A_n quiver with alternating forms, say:

Consider the fixed-points $\mu^{-1}(0)^{\sigma}$, $G_{\mathbf{v}}^{\sigma} = O_{\mathbf{v}_1} \times Sp_{\mathbf{v}_2} \times O_{\mathbf{v}_3} \times \cdots$.

Theorem (Kraft-Procesi, 1982): classical nilpotent orbits

 $\mu^{-1}(0)^{\sigma}//G_{\mathbf{v}}^{\sigma}\cong\overline{\mathcal{O}_{\mu'}}^{\mathfrak{sp}_{\mathbf{w}_1}}$, for certain \mathbf{v} , \mathbf{w} and the associated μ' .

Kraft-Procesi considered an A_n quiver with alternating forms, say:

Consider the fixed-points $\mu^{-1}(0)^{\sigma}$, $G^{\sigma}_{\mathbf{v}} = O_{\mathbf{v}_1} \times Sp_{\mathbf{v}_2} \times O_{\mathbf{v}_3} \times \cdots$.

Theorem (Kraft-Procesi, 1982): classical nilpotent orbits

 $\mu^{-1}(0)^{\sigma}//G_{\mathbf{v}}^{\sigma}\cong\overline{\mathcal{O}_{\mu'}}^{\mathfrak{sp}_{\mathbf{w}_{1}}}$, for certain \mathbf{v} , \mathbf{w} and the associated μ' .

Theorem: iQV and Kraft-Procesi

In Kraft-Procesi's setting, $\mathfrak{M}_0(\mathbf{v},\mathbf{w})^{\sigma}\cong \mu^{-1}(0)^{\sigma}//G^{\sigma}_{\mathbf{v}}$, for a=1

Cotangent bundles of flag varieties of classical groups

GIT in Kraft-Procesi's approach (one of my mental blocks)

Geometric invariant theory does not seem to apply to Kraft-Procesi's approach: essentially no non-trivial character of $G_{\mathbf{v}}^{\sigma}$.

Cotangent bundles of flag varieties of classical groups

GIT in Kraft-Procesi's approach (one of my mental blocks)

Geometric invariant theory does not seem to apply to Kraft-Procesi's approach: essentially no non-trivial character of $G_{\mathbf{v}}^{\sigma}$.

Theorem: iAnalogue of Ginzburg: Cotangent bundles of isotropic flag varieties

In Kraft-Procesi's setting, we get

$$\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma} \cong T^*\mathcal{F}_{\mathbf{v},\mathbf{w}}^{\mathfrak{sp}_{\mathbf{w}_1}}, \quad \text{if } \zeta = (1,0), \omega = \omega_0.$$

where ω_0 is the longest element in W_{Γ} and a = 1.

Nakajima's generalization: nilpotent Slodowy slices

In more general type-A setting of Kraft-Procesi, say:

Nakajima's generalization: nilpotent Slodowy slices

In more general type-A setting of Kraft-Procesi, say:

Nakajima asserted at several places that

$$\mu^{-1}(0)^{\sigma}//G_{\mathbf{v}}^{\sigma} \leadsto S_{\mu',\lambda}^{\mathfrak{sp}} \text{ or } S_{\mu',\lambda}^{\mathfrak{o}},$$

where $\mathcal{S}^{\mathfrak{sp}}_{\mu',\lambda} = \overline{\mathcal{O}_{\mu'}} \cap \mathcal{S}_{\lambda} \cap \mathfrak{sp}_{\widetilde{\mathbf{W}}_1}$ is a nilpotent Slodowy slice in $\mathfrak{sp}_{\widetilde{\mathbf{W}}_1}$.

Nakajima's generalization: nilpotent Slodowy slices

In more general type-A setting of Kraft-Procesi, say:

Nakajima asserted at several places that

$$\mu^{-1}(0)^{\sigma}//G_{\mathbf{v}}^{\sigma} \rightsquigarrow S_{\mu',\lambda}^{\mathfrak{sp}} \text{ or } S_{\mu',\lambda}^{\mathfrak{o}},$$

where $S_{\mu',\lambda}^{\mathfrak{sp}} = \overline{\mathcal{O}_{\mu'}} \cap S_{\lambda} \cap \mathfrak{sp}_{\widetilde{\mathbf{W}}_{1}}$ is a nilpotent Slodowy slice in $\mathfrak{sp}_{\widetilde{\mathbf{W}}_{1}}$.

Proposition

In the above setting, there is a closed immersion (isomorphism expected):

$$\mu^{-1}(0)^{\sigma}//G_{\mathbf{v}}^{\sigma} \hookrightarrow S_{\mu',\lambda}^{\mathfrak{sp}},$$

which relies on a result of quiver-analogue of classical invariants.

Partial Resolutions of nilpotent Slodowy slices

Theorem: Partial Resolutions of nilpotent Slodowy slices

Moreover, in the above type A Dynkin diagram setting, we have

(where
$$\widetilde{\mathbf{w}} = \sum_{i \in I} i \mathbf{w}_i$$
, $\widetilde{\mathbf{v}} = \mathbf{v}_i + \sum_{j \geq i} (j - i) \mathbf{w}_j$.)

This result leads to previous applications in classical geometries.

Instantons on ALE space and Nakajima varieties of type A, due to Nakajima

Unitary

Regular part of Nakajima varieties = unitary intantons on ALE spaces.

It is known to Nakajima that

Classical type

Regular part of iQV (of some σ) = SP/SO instantons on ALE spaces. (arxiv: 1801.06286.)

Now we return to the general setting:

Proposition: Independence of forms on V

The $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}$ is independent of choices of forms on V.

Now we return to the general setting:

Proposition: Independence of forms on V

The $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}$ is independent of choices of forms on V.

From now on, forms on W are either *orthogonal* or *symplectic*.

Propositioin: Symplectic structure, semismallness

(1) The $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}$ is a symplectic submanifold of $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})$.

Now we return to the general setting:

Proposition: Independence of forms on V

The $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}$ is independent of choices of forms on V.

From now on, forms on W are either *orthogonal* or *symplectic*.

Propositioin: Symplectic structure, semismallness

- (1) The $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}$ is a symplectic submanifold of $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})$.
- (2) The map $\pi^{\sigma}: \mathfrak{M}_{\zeta}(\mathbf{v}, \mathbf{w})^{\sigma} \to \operatorname{im}(\pi^{\sigma})$ is semismall.

Now we return to the general setting:

Proposition: Independence of forms on V

The $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}$ is independent of choices of forms on V.

From now on, forms on W are either orthogonal or symplectic.

Propositioin: Symplectic structure, semismallness

- (1) The $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}$ is a symplectic submanifold of $\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})$.
- (2) The map $\pi^{\sigma}: \mathfrak{M}_{\zeta}(\mathbf{v}, \mathbf{w})^{\sigma} \to \operatorname{im}(\pi^{\sigma})$ is semismall.

Proposition: Weyl group action

Let $\mathcal{W}_{\Gamma}^{a\omega}=\{x\in\mathcal{W}_{\Gamma}|x\omega=\omega x,a(x)=x\}$. There exists a $\mathcal{W}_{\Gamma}^{a\omega}$ -action:

$$\mathcal{W}_{\Gamma}^{a\omega} \curvearrowright H^*(\mathfrak{M}_{\zeta}(\mathbf{v},\mathbf{w})^{\sigma}), \quad \mathbf{w} - \mathbf{C}_{\Gamma}\mathbf{v} = 0.$$

 $\mathcal{W}_{\Gamma}^{a\omega}$ includes Weyl groups of $B_{\ell}/C_{\ell}/F_4/G_2$ types.

Conjectures

Conjecture

There is an action

$$\mathfrak{g}^{\theta} \curvearrowright H^*(\mathfrak{M}_{\zeta}(\mathbf{w})^{\sigma}), \quad (\zeta \text{ generic})$$

where $(\mathfrak{g},\mathfrak{g}^{\theta})$ for a symmetric pair of type Ai, Aiii, Di, Ei, Eii, Ev, Eviii, whose Satake diagram has no black dots. Note \mathfrak{g}^{θ} of type Ai is \mathfrak{so}_n .

It holds for Aiii/Aiv. There are several supporting evidence.

Connection to real simple groups

Symmetric pairs have been pervasive in the study of representations of real simple/reductive groups.

QV and real simple groups

Does QV/iQV have more direct connections with real classical groups?

To any symmetric pair $(\mathfrak{g},\mathfrak{g}^{\theta})$, it yields a complex Cartan decomposition

$$\mathfrak{g}=\mathfrak{g}^{ heta}\oplus\mathfrak{p},$$

 $\mathfrak p$ the eigenspace of eigenvalue -1.

To any symmetric pair $(\mathfrak{g},\mathfrak{g}^{\theta})$, it yields a complex Cartan decomposition

$$\mathfrak{g}=\mathfrak{g}^{ heta}\oplus\mathfrak{p},$$

 $\mathfrak p$ the eigenspace of eigenvalue -1. The geometry surrounding the nilcone $\mathcal N(\mathfrak p)$ also has significant representation theoretic information, especially in the orbit method of real reductive groups (Kirillov, Kostant, Vogan, etc.).

To any symmetric pair $(\mathfrak{g}, \mathfrak{g}^{\theta})$, it yields a complex Cartan decomposition

$$\mathfrak{g}=\mathfrak{g}^{ heta}\oplus\mathfrak{p},$$

 $\mathfrak p$ the eigenspace of eigenvalue -1. The geometry surrounding the nilcone $\mathcal N(\mathfrak p)$ also has significant representation theoretic information, especially in the orbit method of real reductive groups (Kirillov, Kostant, Vogan, etc.).

Quiver model of $\mathcal{N}(\mathfrak{p})$: Lagrangian version of iQV

The anti-symplectic version, say $\mathfrak{M}_{\zeta}(\mathbf{w})^{\hat{\sigma}}$, of iQV yields a quiver/linear model of $\mathcal{N}(\mathfrak{p})$ and associated Slodowy slices. Almost all results from symplectic version have an anti-symplectic counterpart, such as rectangular symmetry etc. (But not the semismallness of projection from π .)

This correspondence works for all symmetric pairs $(\mathfrak{g},\mathfrak{g}^{\theta})$ of classical type.

subvarieties

subvarieties

varieties

A correspondence

This correspondence works for all symmetric pairs $(\mathfrak{g},\mathfrak{g}^{\theta})$ of classical type. Note that $\mathcal{N}(\mathfrak{p})\cong\mathcal{N}(G_{\mathbb{R}})$, the Kostant-Sekiguchi homeomorphism of Chen-Nadler. It is reasonable to expect the same holds in quiver setting.

Kostant-Sekiguchi correspondence for quiver varieties

There should be a homeomorphism $\mathfrak{M}_0(\mathbf{w})_{\mathbb{R}} \cong \mathfrak{M}_0(\mathbf{w})^{\hat{\sigma}}$.

Through the work of Harish-Chandra, the following two classes of representations are the same (very roughly speaking).

• Unitary representations of $G_{\mathbb{R}}$, a real simple group.

Through the work of Harish-Chandra, the following two classes of representations are the same (very roughly speaking).

- Unitary representations of $G_{\mathbb{R}}$, a real simple group.
- Harish-Chandra (\mathfrak{g}, K) -modules where $\mathfrak{g} = \mathbb{C} \otimes \operatorname{Lie} G_{\mathbb{R}}$ and $(G_{\mathbb{C}}, K)$ is a symmetric pair on group level.

Through the work of Harish-Chandra, the following two classes of representations are the same (very roughly speaking).

- Unitary representations of $G_{\mathbb{R}}$, a real simple group.
- Harish-Chandra (\mathfrak{g}, K) -modules where $\mathfrak{g} = \mathbb{C} \otimes \operatorname{Lie} G_{\mathbb{R}}$ and $(G_{\mathbb{C}}, K)$ is a symmetric pair on group level.

Through the work of Harish-Chandra, the following two classes of representations are the same (very roughly speaking).

- Unitary representations of $G_{\mathbb{R}}$, a real simple group.
- Harish-Chandra (\mathfrak{g}, K) -modules where $\mathfrak{g} = \mathbb{C} \otimes \operatorname{Lie} G_{\mathbb{R}}$ and $(G_{\mathbb{C}}, K)$ is a symmetric pair on group level.

A shadow of the (\mathfrak{g},K) -module: Harish-Chandra $(\mathfrak{g},\mathrm{Lie}K)$ -modules. $\mathrm{Lie}K=\mathfrak{g}^{\theta}$ for some θ , studied by Diximier, Lepowsky, Zuckerman, etc. On the other hand, there is a Yangian $\mathfrak{Y}\equiv \mathfrak{Y}(\mathfrak{g}_{\Gamma})$ action on the torus equivariant cohomology $H^*_{\mathbb{T}}(\mathfrak{M}_{\zeta}(\mathbf{w}))$ of Nakajima variety, due to Varagnolo (via correspondence), Maulik-Okounkov (via R-matrix).

Through the work of Harish-Chandra, the following two classes of representations are the same (very roughly speaking).

- Unitary representations of $G_{\mathbb{R}}$, a real simple group.
- Harish-Chandra (\mathfrak{g}, K) -modules where $\mathfrak{g} = \mathbb{C} \otimes \operatorname{Lie} G_{\mathbb{R}}$ and $(G_{\mathbb{C}}, K)$ is a symmetric pair on group level.

A shadow of the (\mathfrak{g},K) -module: Harish-Chandra $(\mathfrak{g},\mathrm{Lie}K)$ -modules. $\mathrm{Lie}K=\mathfrak{g}^{\theta}$ for some θ , studied by Diximier, Lepowsky, Zuckerman, etc. On the other hand, there is a Yangian $\mathfrak{Y}\equiv \mathfrak{Y}(\mathfrak{g}_{\Gamma})$ action on the torus equivariant cohomology $H^*_{\mathbb{T}}(\mathfrak{M}_{\zeta}(\mathbf{w}))$ of Nakajima variety, due to Varagnolo (via correspondence), Maulik-Okounkov (via R-matrix).

(g, Lie K)-structure in Nakajima varieties

There is an action of an (affine) symmetric pair $(\mathcal{Y}, \mathcal{Y}_{\sigma}) \curvearrowright H_{\mathbb{T}}^*(\mathfrak{M}_{\zeta}(\mathbf{w}))$, where \mathcal{Y}_{σ} is a twisted Yangian, i.e., an affinization of $U(\mathfrak{g}_{\Gamma}^{\theta})$.

Through the work of Harish-Chandra, the following two classes of representations are the same (very roughly speaking).

- Unitary representations of $G_{\mathbb{R}}$, a real simple group.
- Harish-Chandra (\mathfrak{g}, K) -modules where $\mathfrak{g} = \mathbb{C} \otimes \operatorname{Lie} G_{\mathbb{R}}$ and $(G_{\mathbb{C}}, K)$ is a symmetric pair on group level.

A shadow of the (\mathfrak{g},K) -module: Harish-Chandra $(\mathfrak{g},\mathrm{Lie}K)$ -modules. $\mathrm{Lie}K=\mathfrak{g}^{\theta}$ for some θ , studied by Diximier, Lepowsky, Zuckerman, etc. On the other hand, there is a Yangian $\mathfrak{Y}\equiv\mathfrak{Y}(\mathfrak{g}_{\Gamma})$ action on the torus equivariant cohomology $H^*_{\mathbb{T}}(\mathfrak{M}_{\zeta}(\mathbf{w}))$ of Nakajima variety, due to Varagnolo (via correspondence), Maulik-Okounkov (via R-matrix).

(g, Lie K)-structure in Nakajima varieties

There is an action of an (affine) symmetric pair $(\mathcal{Y}, \mathcal{Y}_{\sigma}) \curvearrowright H_{\mathbb{T}}^*(\mathfrak{M}_{\zeta}(\mathbf{w}))$, where \mathcal{Y}_{σ} is a twisted Yangian, i.e., an affinization of $U(\mathfrak{g}_{\Gamma}^{\theta})$.

How to lift $(g, \mathrm{Lie} \mathcal{K})$ -structure to a (g, \mathcal{K}) -structure remains to be done.

 The above result is obtained via Maulik-Okounkov's R-matrix approach.

- The above result is obtained via Maulik-Okounkov's R-matrix approach.
- We show that certain fixed-point subvarieties of iQV is a product of QV of smaller ranks.

- The above result is obtained via Maulik-Okounkov's R-matrix approach.
- We show that certain fixed-point subvarieties of iQV is a product of QV of smaller ranks.
- Stable envelopes exist.

- The above result is obtained via Maulik-Okounkov's R-matrix approach.
- We show that certain fixed-point subvarieties of iQV is a product of QV of smaller ranks.
- Stable envelopes exist.
- The *R*-matrix (or rather *K*-matrix) satisfies the reflection equation *RKRK* = *KRKR*.

- The above result is obtained via Maulik-Okounkov's R-matrix approach.
- We show that certain fixed-point subvarieties of iQV is a product of QV of smaller ranks.
- Stable envelopes exist.
- The R-matrix (or rather K-matrix) satisfies the reflection equation RKRK = KRKR.
- The twisted Yangian y_{σ} is then constructed using K-matrix via Faddeev, Reshetikhin, and Takhtajan's construction.

Nakajima varieties	iQV / Igrngn version
symp. resolution	symp. partial resolution/ lgrngn
π semismall	π^{σ} semismall / proper
Slodowy slices of type GL _n	symmetric pairs of classical type
Weyl groups action of type ADE	$ADE, B_{\ell}/C_{\ell}/F_4/G_2$
Rectangular symmetry of GL _n	symmetric pairs of classical type
Column/row removal reduct. of GL_n	symmetric pairs of classical type

Nakajima varieties	iQV / Igrngn version
symp. resolution	symp. partial resolution/ lgrngn
π semismall	π^σ semismall / proper
Slodowy slices of type GL _n	symmetric pairs of classical type
Weyl groups action of type ADE	ADE , $B_{\ell}/C_{\ell}/F_4/G_2$
Rectangular symmetry of GL _n	symmetric pairs of classical type
Column/row removal reduct. of GL _n	symmetric pairs of classical type
$\mathfrak{g} \curvearrowright H_{top}(\mathfrak{M}_{\zeta}(\mathbf{w}))$	$\mathfrak{g}^{ heta} \curvearrowright H^*(\mathfrak{M}_{\zeta}(\mathbf{w})^{\sigma})$ (conj.)

Nakajima varieties	iQV / Igrngn version
symp. resolution	symp. partial resolution/ lgrngn
π semismall	π^{σ} semismall / proper
Slodowy slices of type GL _n	symmetric pairs of classical type
Weyl groups action of type ADE	ADE, $B_{\ell}/C_{\ell}/F_4/G_2$
Rectangular symmetry of GL _n	symmetric pairs of classical type
Column/row removal reduct. of GL_n	symmetric pairs of classical type
$\mathfrak{g} \curvearrowright H_{top}(\mathfrak{M}_{\zeta}(\mathbf{w}))$	$\mathfrak{g}^{ heta} \curvearrowright H^*(\mathfrak{M}_{\zeta}(\mathbf{w})^{\sigma})$ (conj.)
Geometric Rep(g)	Geometric Rep (\mathfrak{g}^{θ}) (conj.)

Nakajima varieties	iQV / Igrngn version
symp. resolution	symp. partial resolution/ lgrngn
π semismall	π^{σ} semismall / proper
Slodowy slices of type GL _n	symmetric pairs of classical type
Weyl groups action of type ADE	$ADE, B_{\ell}/C_{\ell}/F_4/G_2$
Rectangular symmetry of GL _n	symmetric pairs of classical type
Column/row removal reduct. of GL_n	symmetric pairs of classical type
$\mathfrak{g} \curvearrowright \mathcal{H}_{top}(\mathfrak{M}_{\zeta}(\mathbf{w}))$	$\mathfrak{g}^{ heta} \curvearrowright H^*(\mathfrak{M}_{\zeta}(\mathbf{w})^{\sigma})$ (conj.)
Geometric Rep(g)	Geometric $Rep(\mathfrak{g}^{\theta})$ (conj.)
Maulik-Okounkov -matrix	\mathfrak{K} -matrix

Nakajima varieties	iQV / Igrngn version
symp. resolution	symp. partial resolution/ lgrngn
π semismall	π^{σ} semismall / proper
Slodowy slices of type GL _n	symmetric pairs of classical type
Weyl groups action of type ADE	$ADE, B_{\ell}/C_{\ell}/F_4/G_2$
Rectangular symmetry of GL _n	symmetric pairs of classical type
Column/row removal reduct. of GL_n	symmetric pairs of classical type
$\mathfrak{g} \curvearrowright H_{top}(\mathfrak{M}_{\zeta}(\mathbf{w}))$	$\mathfrak{g}^{ heta} \curvearrowright H^*(\mathfrak{M}_{\zeta}(\mathbf{w})^{\sigma})$ (conj.)
Geometric Rep(g)	Geometric Rep (\mathfrak{g}^{θ}) (conj.)
Maulik-Okounkov ℜ-matrix	\mathcal{K} -matrix
Yang-Baxter equation	Reflection equation

Nakajima varieties	iQV / Igrngn version	
symp. resolution	symp. partial resolution/ lgrngn	
π semismall	π^{σ} semismall / proper	
Slodowy slices of type GL _n	symmetric pairs of classical type	
Weyl groups action of type ADE	$ADE, B_{\ell}/C_{\ell}/F_4/G_2$	
Rectangular symmetry of GL _n	symmetric pairs of classical type	
Column/row removal reduct. of GL_n	symmetric pairs of classical type	
$\mathfrak{g} \curvearrowright H_{top}(\mathfrak{M}_{\zeta}(\mathbf{w}))$	$\mathfrak{g}^{ heta} \curvearrowright H^*(\mathfrak{M}_{\zeta}(\mathbf{w})^{\sigma})$ (conj.)	
Geometric Rep(g)	Geometric $Rep(\mathfrak{g}^{\theta})$ (conj.)	
Maulik-Okounkov ℜ-matrix	\mathfrak{K} -matrix	
Yang-Baxter equation	Reflection equation	
RTT formalism of Yangian	Twisted Yangian	
$(\mathcal{Y},\mathcal{Y}_{\sigma}) \curvearrowright H_{\mathbb{T}}^*(\mathfrak{M}_{\zeta}(\mathbf{w}))$		
Kostant-Sekiguchi homeomorphism in quiver varieties (conj.)		

Thank you very much!