Generative Models I

Jisang Han

onground@korea.ac.kr

Artificial Intelligence in KU (AIKU)

Department of Computer Science and Engineering, Korea University

Supervised vs Unsupervised

	Supervised Learning	Unsupervised Learning
Data	(x,y): x is data, y is label	x
Goal	x ightarrow y 로 가는 function을 학습	Learn some underlying hidden structure of the data
Exam ples	Classification, regression, object detection, semantic segmantation, image captioning, etc.	Clustering, dimensionality reduction, feature learning, density estimation, etc.

Density Function

$$\int_X p(x) \, dx = 1$$

- Density Functions are normalized.
- Sum of probabilities are 1. If one is bigger then the other is smaller(compete each other).

Discriminative Model

- Learn a probability distribution p(y|x) that predicts probability of the label y conditioned on the input image x
- Input is x and Output is the probability. (x에 대한 label이 나올 확률)
- The probability is calculated even if an input different from the specified labels is given.

Generative Model

- Learn a probability distribution p(x)
- All possible images compete to the probability mass.
- A deep understanding of the image is needed. (Which is more plausible, sitting a dog or standing up?)
- The model can reject irrational inputs by giving them a very small value.

Conditional Generative Model

Recall **Bayes' Rule:**

Learn p(x|y)

Discriminative Model:

Learn a probability distribution p(y|x)

Assign labels to data Feature learning (supervised)

Generative Model:

Learn a probability distribution p(x)

Detect outliers

Feature learning (unsupervised)

Sample to **generate** new data

Conditional Generative

Model: Learn p(x|y)

Assign labels, while rejecting outliers!

Generate new data conditioned on input labels

Taxonomy of Generative Models

Explicit Density Estimation

Goal : Write down an explicit function for p(x) = f(x, W) (x: data, W: learnable weight matrix)

If dataset is $x^{(1)}, x^{(2)}, ..., x^{(N)}$,

$$\begin{split} W^* &= \argmax_{W} \prod_{i} p(x^{(i)}) \\ &= \argmax_{W} \sum_{i} \log p(x^{(i)}) \\ &= \argmax_{W} \sum_{i} \log f(x^{(i)}, W) \end{split}$$

Maximize the probability of training data

Loss Function. (Gradient Descent)

Explicit Density: Autoregressive Models

• 자기 자신을 입력으로 하여 자기 자신을 예측하는 모형

- x가 여러 subparts로 이루어져있다고 가정. x가 이미지라고 하면 subparts는 각 픽셀이다 $x=(x_1,x_2,x_3,...,x_T)$
- Chain rule을 사용하여 probability를 계산한다.

$$egin{aligned} p(x) &= p(x_1, x_2, ..., x_T) \ &= p(x_1) \ p(x_2|x_1) \ p(x_3|x_1, x_2) \ &= \prod_{t=1}^T p(x_t|x_1, ..., x_{t-1}) \end{aligned}$$

Explicit Density: Autoregressive Models

$$egin{aligned} p(x) &= p(x_1, x_2, ..., x_T) \ &= p(x_1) \; p(x_2|x_1) \; p(x_3|x_1, x_2) \ &= \prod_{t=1}^T p(x_t|x_1, ..., x_{t-1}) \end{aligned}$$

- 즉, sequence의 확률 p(x)는 이전 sequence가 주어졌을 때 다음 sequence가 나올 확률을 전부 곱한 것이다.
- https://wikidocs.net/22034

Explicit Density: Autoregressive Models

$$p(x_1) \quad p(x_2) \quad p(x_3) \quad p(x_4)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow h_4$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$x_0 \qquad x_1 \qquad x_2 \qquad x_3$$

PixelRNN

http://dmqm.korea.ac.kr/uploads/seminar/20190705_Autoregressive.pdf

PixelRNN

32x32 CIFAR-10

• 겉으로 보기에는 합리적으로 보이지만 사실 자세히 보면 거지같다..

- 그래도 edges, colors를 꽤나 그럴싸하게 생성하는 것에 의의를 가진다.
- 이는 unconditional generation이므로 test time에 내가 무엇을 생성하고 있는지 정할 수 없다

Pros and Cons

Pros

- Likelihood p(x)를 명시적으로 계산할 수 있다.
- 위의 장점 덕분에 좋은 evaluation metric을 얻는다. (training data와 유사한, 즉 얼마나 그럴듯한지에 대한 p(x) 값을 얻을 수 있기 때문이다.)
- 나름 괜찮은 결과를 얻을 수 있다. (진짜 사진같지는 않지만..)

Cons

• Sequential Generation 이므로 느리다.

- In PixelRNN, PixelCNN, they defined parametric density function p(x) = f(x, W) and calculate for each input. And train the model to maximize this output.
- In VAE, Instead of maximizing the actual density value, maximize the lower bound of the density.
- $p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i|x_1, ..., x_{i-1})$

(Regular, non-variational) Autoencoders

- Unsupervised method로, labels 없이 raw data x로부터 feature vectors를 학습한다. (Unsupervised method for learning feature vectors from raw data x, without any labels)
- Features extracts useful information that can be used for downstream tasks.
- Encoder extracts features from input data,
- Decoder reconstruct the input data from the features.
- Encoder:
 - Originally: Linear + nonlinearity (sigmoid)
 - Later: Deep, fully-connected
 - Later: ReLU CNN (upconv)

(Regular, non-variational) Autoencoders

- We expect the effect of compressing input data through Encoder.
- After learning, discard the decoder and use it for the downstream task using the encoder.
- Not probabilistic : 학습하지 않은 new data를 sampling할 수 없다.

Variational Autoencoders

Sample from conditional x $p_{\theta^*}(x \mid z^{(i)})$ Sample z from prior $p_{\theta^*}(z)$ z

- Autoencoder에 확률 개념을 도입하였다
- 1. raw data로부터 latent features z를 학습한다.
- 2. new data를 생성하기 위해 model로부터 sampling한다.

Variational Autoencoders

- Decoder: Generating new data x from latent features z that is similar to input data but completely new.
- Sampling latent variables from prior distribution $p_{\theta_*}(z)$, put sampled z into the decoder to predict image x
- At this time, output is not a single image but the distribution of images.
- $p_{\theta_*}(z)$: prior distribution. PDF of x. (Gaussian distribution)
- $p_{\theta_*}(x|z^{(i)})$: 주어진 z에서 특정 x가 나올 조건부 확률에 대한 PDF
- θ : parameter

Variational Autoencoders

- VAE에서의 z는 AE에서의 z(a value: low dimension of input data)와 다르게, 가우시안 확률분포에 기반한 확률값으로 나타낸다.
- input image가 들어오면 그 이미지의 다양한 특징들이 각각의 확률변수가 되는 확률분포를 만든다. 이 확률 분포를 잘 찾아내어 확률값이 높은 부분을 사용하면 그럴듯한 새로운 이미지를 생성할 수 있다.

AIKU @ Korea University

- 이때 각 feature가 가우시안 분포를 따른다고 가정하고 latent z는 각 feature의 평균과 분산값을 나타낸다.
- 예를 들어 한국인의 얼굴을 그리기 위해 눈, 코, 입 등의 feature를 Latent vector z에 담고, 그 z를 이용해 그럴듯한 한국인의 얼굴을 그려내는 것이다. latent vector z는 한국인 눈 모양의 평균 및 분산, 한국인 코 길이의 평균 및 분산 등등의 정보를 담고 있다고 생각할 수 있다.

Generative Models II

Jisang Han

onground@korea.ac.kr

Artificial Intelligence in KU (AIKU)

Department of Computer Science and Engineering, Korea University

Mathematical meaning

- If a model parameter θ is given, the higher $p_{\theta_*}(x)$ (The probability that the answer we want is x) the better model.
- Train parameters to maximize $p_{\theta_*}(x)$

Decoder

z latent variable의 확률분포 $p_{\theta}(z)$

z가 given일 때 x의 확률분포 $p_{ heta}(x|z^{(i)})$

어떻게 학습?

네트워크의 출력값이 있을 때 우리가 원하는 정답 x가 나올 확률이 높길바람

= x의 likelihood를 최대화하는 확률분포 찾자

Maximize

$$p_{\theta}(x) = \int p_{\theta}(z)p_{\theta}(x|z)dz$$

- When image comes in, p(z) is the appropriate Gaussian distribution for each pixel of image.
- That is, each pixel has a Gaussian distribution with μ , σ
- But if it's a **high resolution** image, it's going to have a lot of values. Therefore, the **diagonal gaussian distribution** is used instead of the general Gaussian distribution. That is, when z is given, there is no covariance between pixels of the generated image. **Pixels are independent.**

- **Decoder** outputs mean $\mu_{x|z}$ and diagonal covariance $\sum_{x|z}$ for the input z
- Then sample x from the above Gaussian distribution

Variational Autoencoders - Train

• Maximize likelihood of data $p_{\theta_*}(x)$

$$p_{\theta}(x) = \frac{p_{\theta}(x|z)p_{\theta}(z)}{p_{\theta}(z|x)} \qquad q_{\phi}(z|x) \approx p_{\theta}(z|x) \qquad p_{\theta}(x) = \frac{p_{\theta}(x|z)p_{\theta}(z)}{p_{\theta}(z|x)} \approx \frac{p_{\theta}(x|z)p_{\theta}(z)}{q_{\phi}(z|x)}$$

Variational Autoencoders - Train

Decoder network inputs latent code z, gives distribution over data x

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x|z)p(z)}{p_{\theta}(z|x)}$$

$$= \log \frac{p_{\theta}(x|z)p(z)q_{\phi}(z|x)}{p_{\theta}(z|x)q_{\phi}(z|x)}$$

$$= \log \frac{p_{\theta}(x|z)p(z)q_{\phi}(z|x)}{p_{\theta}(z|x)q_{\phi}(z|x)}$$

$$= \log p_{\theta}(x|z) - \log \frac{q\phi(z|x)}{p(z)} + \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$

wrap in an expectation since it doesn't depend on z

$$\log p_{\theta}(x) = E_{z \sim q\phi(z|x)}[\log p_{\theta}(x)]$$

$$=E_z[\log p_{ heta}(x|z)]-E_z\left[\lograc{q_{\phi}(z|x)}{p(z)}
ight]+E_z\left[\lograc{q_{\phi}(z|x)}{p_{ heta}(z|x)}
ight]$$

$$=E_{z\sim q_\phi(z|x)}[\log p_ heta(x|z)]-D_{KL}(q_\phi(z|x),p(z))+D_{KL}(q_\phi(z|x),p_ heta(z|x))$$

Variational Autoencoders - Train

$$\log p_{\theta}(x) = E_{z \sim q\phi(z|x)}[\log p_{\theta}(x)]$$

$$=E_z[\log p_{ heta}(x|z)]-E_z\left[\lograc{q_{\phi}(z|x)}{p(z)}
ight]+E_z\left[\lograc{q_{\phi}(z|x)}{p_{ heta}(z|x)}
ight]$$

$$=E_{z\sim q_\phi(z|x)}[\log p_ heta(x|z)]-D_{KL}(q_\phi(z|x),p(z))+D_{KL}(q_\phi(z|x),p_ heta(z|x))$$

$$\log p_{ heta}(x) \geq E_{z \sim q_{\phi}(z|x)}[\log p_{ heta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

Lower bound of likelihood

Through this, encoders and decoders are learned jointly to maximize the variable lower bound of datalike hood.

Jointly train **encoder** q and **decoder** p to maximize the **variational lower bound** on the data likelihood

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Encoder Network

Decoder Network

Example: Fully connected VAE

MNIST Dataset

- $x = 28 \times 28$ image, flattened to 784-dim vector
- z = 20-dim vector (hyper-parameter)

Encoder Network

Decoder Network

Example: Fully connected VAE

Variational Autoencoders

Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

- 1. Run input data through **encoder** to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output
- 4. Run sampled code through **decoder** to get a distribution over data samples
- 5. Original input data should be likely under the distribution output from (4)!
- 6. Can sample a reconstruction from (4)

32x32 CIFAR-10

Labeled Faces in the Wild

• VAE : Editing with z

Variational Autoencoders

The diagonal prior on p(z) causes dimensions of z to be independent

"Disentangling factors of variation"

Vary z₁

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

• VAE : Editing with z

• VAE : Editing with z

Variational Autoencoders

• VAE : Editing with z

Variational Autoencoders

VAE : Summary

Probabilistic spin to traditional autoencoders => allows generating data

Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:

- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:

- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian, e.g., Gaussian Mixture Models (GMMs)
- Incorporating structure in latent variables, e.g., Categorical Distributions

Autoregressive models

- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

Variational models

- Maximize lower-bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Generative Adversarial Networks

Models	설명
Autoregressive models	training data의 likelihood를 직접(directly) maximize한다. $p_{ heta}(x) = \prod_{i=1}^N p_{ heta}(x_i x_1,,x_{i-1})$
VAE	latent z 를 추가하였고, likelihood의 lower bound를 maximize한다. $p_{\theta}(x) = \int_{Z} p_{\theta}(x z)p(z)dz \geq E_{z\sim q_{\phi}(z x)}[\log p_{\theta}(x z)] - D_{KL}(q_{\phi}(z x),p(z))$
GANs	p(x)를 모델링하는 것을 포기한다. 그러나 $p(x)$ 로부터 샘플링할 수 있도록 한다.

Generative Adversarial Networks

Setup

- $p_{data}(x)$: real data distribution
- x_i : our train data from $p_{data}(x)$

Idea

- Suppose a latent variable z with p(z) which is a simple prior (diagonal Gaussian, unformed distribution, etc.).
- Sample z from p(z) and pass through **Generative Network** G.
- x = G(z)
- Then the x is from Generative distribution p_G .
- Therefore we want $p_G = p_{\rm data}$ (Our generative distribution to be real data distribution)

Generative Adversarial Networks

Generater

• By sampling x from p_G , train the model to generate an image that the Discriminator get fooled to think that the image was from p_{data} .

Discriminator

- Train to discriminate the generated sample and a real sample (real/fake(1/0)).
- Jointly train the two networks. Then p_G will converge to $p_{\mbox{data}}$.

GANs: Training Objective

Train Generator G and Discriminator D jointly by minmax game.

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} \left[\log D(x) \right] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

GANs: Training Objective

- x sampled from p_{data} , which is the real data to be REAL
- If D(x) < 1, it passes log term and becomes very small negative value. So we train D(x) = 1 that the whole term can be maximized by D.

GANs: Training Objective

- z sampled from p(z), pass it to Generator G, and G outputs generated sample G(z). Train Discriminator to discriminate the generated sample G(z) is fake. (fake to be FAKE)
- Generator G trains Discriminator D to discriminate G(z) is REAL. (fake to be REAL)

Generated samples

Nearest neighbor from training set

Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Wasserstein GAN (WGAN)

Arjovsky, Chintala, and Bouttou, "Wasserstein GAN", 2017

WGAN with Gradient Penalty (WGAN-GP)

Gulrajani et al, "Improved Training of Wasserstein GANs", NeurIPS 2017

256 x 256 bedrooms

Karras et al, "Progressive Growing of GANs for Improved Quality, Stability, and Variation", ICLR 2018

1024 x 1024 faces

512 x 384 cars

1024 x 1024 faces

Karras et al, "A Style-Based Generator Architecture for Generative Adversarial Networks", CVPR 2019

Images are licensed under CC BY-NC 4.0

This bird is red and brown in color, with a stubby beak The bird is short and stubby with yellow on its body A bird with a medium orange bill white body gray wings and webbed feet This small black bird has a short, slightly curved bill and long legs

A group of people on skis stand in the snow Eggs fruit candy nuts and meat served on white dish A street sign on a stoplight pole in the middle of a day

Zhang et al, "StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.", TPAMI 2018
Zhang et al, "StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks.", ICCV 2017
Reed et al, "Generative Adversarial Text-to-Image Synthesis", ICML 2016

bicubic (21.59dB/0.6423)

SRResNet (23.53dB/0.7832)

SRGAN (21.15dB/0.6868)

original

Ledig et al, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network", CVPR 2017

Isola et al, "Image-to-Image Translation with Conditional Adversarial Nets", CVPR 2017

Zhu et al, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV 2017

Park et al, "Semantic Image Synthesis with Spatially-Adaptive Normalization", CVPR 2019

Gupta, Johnson, Li, Savarese, Alahi, "Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks", CVPR 2018

Thank you! Q&A