3D data visualization and potential relationship visualization

Author: Yinghao Li

This project is to visualize data points in 3D and visualize the potential relationship between dimensions.

1. Information and Package to use

We will use the matplotlib to plot graph, and numpy to store the data.

Also, we use sklearn to do linear regression analysis.

In [3]:

```
from mpl_toolkits import mplot3d
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
```

Generating Data

We make a data set with 30 random points,

Data range:

X coordinates and Y coordinates are beteween 0 and 100

w is between -1 and 1

b is between -50 and 50

Z = w1 X+w2 Y+b+r where r is a random number between -10 and 10

In [115]:

```
w1=random.random()*2-1
w2=random.random()*2-1
b=random.random()*100-50
X=np.random.rand(30,1)*100
Y=np.random.rand(30,1)*100
random_part=np.random.rand(30,1)*20-10
Z=w1*X+w2*Y+random_part+b
data=np.hstack((X,Y,Z))
print(f"the weight w1 = {w1}")
print(f"the weight w2 = {w2}")
print(f"the bias b = {b}")
```

```
the weight w1 = 0.5088680906763454
the weight w2 = -0.018649206189010004
the bias b = -29.953803121018353
```

Ploting data by scatter points and lines

Plot scatter points in 3D

In [116]:

```
ax = plt.axes(projection='3d')
ax.set_title("Scatter plot")
ax.scatter3D(X, Y, Z, c=Z, cmap='Greens');
```


Plot line crossing all points

In [124]:

```
data_sorted=sorted(data, key=lambda x : x[2])
data_sorted=np.array(data_sorted)
xline = data_sorted[:,0]
yline = data_sorted[:,1]
zline = data_sorted[:,2]
ax = plt.axes(projection='3d')
ax.set_title("Line across all points from bottom (lowest z) to top (highest z)")
ax.plot3D(xline, yline, zline, 'gray')
```

Out[124]:

[<mpl_toolkits.mplot3d.art3d.Line3D at 0x7f1c7190dd90>]

Line across all points from bottom (lowest z) to top (highest z)

Linear Regresion Analysis

Here we use "LinearRegression" from Sklearn to get the weights and bias and the R^2 score.

In [125]:

```
data = data
ones=np.ones((X.shape[0],1))
XY = np.hstack((X,Y,ones))
LR = LinearRegression()
LR.fit(XY, Z)
Z_pred=LR.predict(XY)
ax = plt.axes(projection='3d')
ax.set_title("Predicted plot")
ax.scatter3D(X, Y, Z_pred, c=zdata, cmap='Oranges');
print(f"The weights analyzed to w1 = {LR.coef_[0,0]}, w2 = {LR.coef_[0,1]}")
print(f"The bias analyzed to b = {LR.coef_[0,2]}")
```

The weights analyzed to w1 = 0.5513347933325786, w2 = -0.02270608730756946The bias analyzed to b = 0.0

Show the predicted plane and the original points

In [128]:

```
ax = plt.axes(projection='3d')
ax.set_title("Predicted plane and original points")
ax.scatter3D(X, Y, Z, c=Z, cmap='Greens');
x = y = np.arange(0, 100)
xcord, ycord = np.meshgrid(x, y)
stacked=(np.ravel(xcord).reshape(-1,1), np.ravel(ycord).reshape(-1,1),np.ones((10000,1))
)))
zcord=LR.predict(np.hstack(stacked))
zcord=zcord.reshape(100,100)
ax.plot_surface(xcord, ycord, zcord)
```

Out[128]:

<mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7f1c6f85fb10>

Calculates the R^2 score

In [129]:

```
score=LR.score(XY, Z)
print(f"The R^2 score is {score}")
```

The R^2 score is 0.8706152128863179

Plot the residue graph

In [131]:

```
Z=Z
ones=np.ones((X.shape[0],1))
XY = np.hstack((X,Y,ones))
Z_pred=LR.predict(XY)
ax = plt.axes(projection='3d')
ax.set_title("The Residue graph")
ax.scatter3D(X, Y, Z_pred-Z, c=zdata, cmap='Greens');
```


Reference

sklearn linear_model : https://scikit-

learn.org/stable/modules/generated/sklearn.linear model.LinearRegression.html (https://scikit-<u>learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html)</u>

Matplotlib 3D scatterplot: https://matplotlib.org/stable/gallery/mplot3d/scatter3d.html (https://matplotlib.org/stable/gallery/mplot3d/scatter3d.html)