1. Suppose the matrix equation $A\vec{x} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$ has the general solution

$$\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

- (a) How many rows and how many columns does A have?
- (b) Find null(A).
- (c) Find rank(A).
- (d) Find col(A).
- (e) Find row(A).
- 2. Let

$$\vec{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \vec{b}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \qquad \vec{b}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad \vec{c} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

and let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ and $\mathcal{S} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$. Suppose $T : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation and $T(\vec{b}_1) = 2\vec{b}_1$, $T(\vec{b}_2) = 3\vec{b}_2$, and $T(\vec{b}_3) = -\vec{b}_3$.

- (a) Compute $[\vec{c}]_{\mathcal{B}}$.
- (b) Compute $[T\vec{c}]_{\mathcal{B}}$ and $[T\vec{c}]_{\mathcal{S}}$.
- (c) Find a matrix for T in the \mathcal{B} basis (i.e., the matrix $[T]_{\mathcal{B}}$) and a matrix for T in the \mathcal{S} basis (i.e., $[T]_{\mathcal{S}}$).
- 3. Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & x \end{bmatrix}$.
 - (a) Compute det(A).
 - (b) Compute det(B). For what values of x is B not invertible?
- 4. Let $A = \begin{bmatrix} 1 & 2 \\ 5 & 9 \end{bmatrix}$.
 - (a) Find an equation for the function $p(x) = \det(A xI)$ (this is called the *characteristic polynomial* of A).
 - (b) For what values of x is A xI non-invertible?
 - (c) Compute p(A), the polynomial p with the matrix A plugged into it. When you plug a matrix into a polynomial, replace any constant terms k with the matrix kI. Can you guess why p is called an *annihilating* polynomial for A?
- 5. Playing with coordinate systems Let

$$\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ $\mathcal{B} = \{\vec{u}, \vec{v}\}$ $\mathcal{P} = \operatorname{span} \mathcal{B}.$

(a) For any point $\vec{x} \in \mathcal{P}$, $\vec{x} = \alpha \vec{u} + \beta \vec{v}$ for some α, β . So, we might say $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. Let $\|\cdot\|_{\mathcal{B}} : \mathbb{R}^2 \to \mathbb{R}$ be the *induced norm* on \mathbb{R}^2 defined by,

$$\|[\vec{x}]_{\mathcal{B}}\|_{\mathcal{B}} = \|\vec{x}\|.$$

(Remember, $[\vec{x}]_{\mathcal{B}}$ is a list of two numbers—it isn't the same thing as the vector \vec{x}). Write down a formula for $\left\| \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \right\|_{\mathcal{B}}$.

(b) Just like an induced norm, we can also have an induced dot-product. Let the inclusion map $\iota: \mathbb{R}^2 \to \mathcal{P}$ be defined as

$$\iota \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha \vec{u} + \beta \vec{v}.$$

Define the \mathcal{B} -dot-product, \odot , as

$$\vec{a} \odot \vec{b} = (\iota \vec{a}) \cdot (\iota \vec{b})$$

for any $\vec{a}, \vec{b} \in \mathbb{R}^2$. Verify that $\|\vec{a}\|_{\mathcal{B}} = \sqrt{\vec{a} \odot \vec{a}}$ for $\vec{a} \in \mathbb{R}^2$ and draw the set of all unit vectors in \mathbb{R}^2 under the norm $\|\cdot\|_{\mathcal{B}}$.

- (c) For $\vec{a}, \vec{b} \in \mathbb{R}^2$, we will define the angle between \vec{a} and \vec{b} to be the number θ so that $\vec{a} \odot \vec{b} = \|\vec{a}\|_{\mathcal{B}} \|\vec{b}\|_{\mathcal{B}} \cos \theta$. Let $\vec{c}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{c}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \vec{c}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. For each \vec{c}_i , draw the set of all vectors orthogonal to \vec{c}_i with respect to \odot . Is the notion of angle coming from \odot the same as from the standard dot product? Is it always different?
- (d) An *inner product* on a vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that is symmetric, bilinear, and positive definite. That is, for any $\vec{u}, \vec{v}, \vec{w} \in V$ and $\alpha \in \mathbb{R}$,
 - i. $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$ (symmetric)
 - ii. $\langle \alpha \vec{u}, \vec{v} \rangle = \alpha \langle \vec{u}, \vec{v} \rangle = \langle \vec{u}, \alpha \vec{v} \rangle$ and $\langle \vec{u} + \vec{w}, \vec{v} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{w}, \vec{v} \rangle$ and $\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$ (bilinear)
 - iii. $\langle \vec{u}, \vec{u} \rangle \geq 0$ and $\langle \vec{u}, \vec{u} \rangle = 0$ if and only if $\vec{u} = 0$ (positive definite).

Show that both the standard dot product and \odot are inner products on \mathbb{R}^2 .

(e) Notice that for $\vec{x}, \vec{y} \in \mathbb{R}^2$, $\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y} = \vec{x}^T I \vec{y}$. Find a matrix A such that $\vec{x} \odot \vec{y} = \vec{x}^T A \vec{y}$. Matrices like A show up in the study of relativity. When you are moving at relativistic speeds, the angle you perceive between two objects is different than someone at rest would perceive. Using a matrix like A or an inner product like \odot allows you compensate for how relativistic effects change your perceptions.