

Classification d'images de chiens via des méthodes de Deep Learning

LO Ousmane, Ingénieur Machine Learning

TABLE OF CONTENTS

CONTEXTE

Here you could describe the topic of the section

04

GENERALISATION

Généraliser le meilleur modele sur 120 races

02

EXPLORATION DES DONNEES

Explorer les images de la base de données

05

CONCLUSIONS

Here you could describe the topic of the section

03

1 ER ESSAIS

D'un CNN from scratch au transfer learning

06

AMELIORATIONS A ENVISAGER

Envisager

CONTEXTE

Agrandissement de la base de données et difficulté à référencer les nouveaux pensionnaires

PROBLEMATIQUE

Comment automatiser la reconnaissance des pensionnaires de l'association grâce au Deep Learning ?

CONTEXTE

- Une association de protection des animaux souhaite référencer les photos des animaux automatiquement
- Développer un algorithme de classification d'image pour déterminer la race du chien sur l'image
- Utiliser la base de donnée Stanford Dogs Dataset
- Démarches :
 - Explorer les images de la base de données
 - Tester différents pré-traitement d'images
 - Développer mon propre NN
 - Tester différents modèles pré-entrainés

EXPLORATION DES DONNEES

rs

EXPLORATION DES DONNÉES : LABELS

- Nombre d'images par race :
 - Toutes les races ont au moins 148 images
 - Le choix des races pour le développement à peu d'importance
- Exemples d'images :
 - Tailles différentes
 - Qualités différentes

coated_retriever

Pomeranian

Irish_wolfhound

EXPLORATION DES DONNÉES :TAILLE

Nombre d'images par race :

- La taille des images dépend de l'orientation (portrait / paysage)
 - Utilisation de la méthode resize pour changer la taille
 - Le choix de la taille est important :
 - Compromis entre mémoire et précision

EXPLORATION DES DONNÉES : SIFT FEATURES

- Extraction des zones d'intérêts de l'image par la méthode SIFT
 - Extraction des descripteurs
 - Extraction de la localisation des points d'intérêts
 - Utilisation de la librairie openCV
- Les points d'intérêts ne sont pas forcément sur le chien
 - Difficile à utiliser directement dans un classifieur

TRAITEMENT DES IMAGES : CORRECTION LUMINOSI

Principe : Etirement de l'histogramme des intensités par une règle de trois

03

PREMIER ESSAI

D'un CNN from scratch au transfer learning

ETAPE PAR ETAPE

Préparation

Data augmentation : oucomment obtenir artificiellement des données

CNN from sCratCh

A la découverte des réseaux de neurones convolutionnels

Transfer Learning

Le transfert de connaissance pour améliorer les performances

Choix Du moDèle

Analyse des résultats avant généralisation

- nput Cell
- Backfed Input Cell
- Noisy Input Cell
- Hidden Cell
- Probablistic Hidden Cell
- Spiking Hidden Cell
- Capsule Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- Gated Memory Cell
- Kernel
- O Convolution or Pool

Deep Convolutional Network (DCN)

- Génération (artificielle) d'un nombre
- Couche Input et Rescaling
- Couche de convolution (3) : rôle de masque
- Couche de pooling (3) : réduction des features à utiliser dans le modèle
- Couche "Flatten" (1): Réduction des dimensions pour la prédiction
- Couche "Dense" (2): Couche complètement connectée avec une fonction d'activation "softmax"

CONVENET: Résultats

292 sec. Précision:03% 388 sec. Précision :18%

7.5

10.0

epoch

12.5

15.0

17.5

• Grande différence entre le jeu d'apprentissage et le jeu de validation :

0.0

2.5

5.0

Sur apprentissage

DATA AUGMENTATION

- Génération (artificielle) d'un nombre plus importants d'images pour l'apprentissage
- Gestion des cas où l'image n'a pas été uploadé dans le bon sens

- Faible différence entre le jeu d'apprentissage et le jeu de validation
- Erreur de précision plus faible

Exemple de data augmentation

TRANSFERT LEARNING: THEORIE

Transfer Learning : Résultats

621 sec. Précision :88%

ResETN50

358 sec. Précision :92%

Transfer Learning : Résultats

Inception V3

Efficient NET B7

333 sec. Précision: 94%

Précision: 97%

866 sec.

GENERALISATION

Efficient NETB7 sur les 120 races

EffiCient NETB7: Architecture

- Développé en 2019
- Très puissant en apprentissage par transfert
- EfficientNet -B7 :
 - Meilleure performance
 - Dernière version d'EfficientNet
 - Grande précision

Résultats Après entraînement

CONCLUSIONS

- La base de données comporte des photos de 120 races de chiens contenant environ 150 images chacunes
- Des essais de traitements d'images ont été réalisés pour corriger et débruiter les images
- La création d'un réseau de neurones fromscratch ne permet pas d'obtenir des performances satisfaisantes
- Le transfer learning permet d'améliorer fortement les performances
- Tous les modèles donnent des performances similaires, mais on des couts d'utilisation différents
- Des modèles sont plus simples à ajuster avec un faible nombre de paramètres

05

AMELIORATIONS A ENVISAGER

S

AMÉLIORATIONS

- Augmenter la taille de la base de données pour lutter contre le sur apprentissage
- Optimiser le modèle sur la totalité des données
 - Utilisation d'un compte pro Google Colab ou AWS avec un GPU
- Essayer d'introduire des données transformées en entrée du modèle
 - Correction du contraste et de la luminosité
 - Images débruitées

DO YOU HAVE ANY QUESTIONS?

ousmanelo78@gmail.com +33 644 06 89 45

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

