

Probing vortex cores with trapped magnon condensates in ³He-B

Samuli Autti Vladimir Eltsov Petri Heikkinen Matti Krusius Mihail Silaev Grigori Volovik

Vladislav Zavjalov

Superfluid ³He-B

Cooper pairing with L=1 and S=1.

B-phase order parameter:

$$A_{jk} = \Delta(P, T) e^{i\phi} R_{jk}(\mathbf{n}, \theta).$$

 R_{jk} – rotation matrix

 $\theta \approx 104.5^\circ$ because of spin-orbit interaction.

Distribution of n (texture):

NMR in ³He-B, magnons

Spin dynamics:

- * order parameter is involved in the motion of magnetization
- * texture changes precession frequency
- * superfluid spin currents transfer magnetization

Magnons: [Volovik, JLTP 153 (2008)]

- \star tipping angle and phase \to wave function
- \star frequency \rightarrow energy

Pulsed NMR

Relaxation vs temperature in rotation

Dissipation of energy in vortex cores

— Magnetic anisotropy energy

Friction in vortex cores

Equation of motion:

$$f \frac{d\phi}{dt} = -\frac{\delta F}{\delta \phi}$$

Rotation velocity, number of vortices

Relaxation: $R_v \propto \Omega f \left(T_D/T_H\right)^2$

[Kopnin, Volovik, 1998, PRB 57(14) 8526]

This theory also works for the interaction between HPD and vortices.

> [Kondo et.al., 1991, PRL 67(1) 81]

Relaxation in vortex cores

Pressure dependence:

$R_v/\Omega \propto g_D^2 \Delta_0^4 \xi_0^2 \frac{(1.5 + F_0^a)^3 (1 + F_0^a)^2}{1 + F_1^s/3}$ 8.0 0.6 R_v/Ω 0.2 H=25.5mT0 0 r 5 10 15 20 P, bar

Magnetic field dependence:

Relaxation peaks in frequency dependence

Bound states in the vortex core:

Minigap: $\omega_0 \sim \frac{\Delta}{a~p_F}$, 100 kHz

Thermal behavior of relaxation peaks

Thermal behavior of relaxation peaks

Conclusions

- 1. Magnon BEC is a good probe for vortices in superfluid ³He-B.
- 2. We observed dissipation of energy in vortex cores and it is in agreement with the theory and with previous measurements an higher temperatures.
- 2. We also observed periodic dissipation peaks at frequency dependence. This effect can be related to vortex cores, but the explanation does not exist yet.