#### LABORATORIO 1 - R Intro

STATISTICA E LABORATORIO (CDL in INTERNET OF THINGS, BIG DATA, MACHINE LEARNING)

Anno Accademico 2023-2024

# R (http://www.r-project.org)



Mhat is R?
Contributors
Screenshots
What's new?

Download, Packages CRAN

R Project
Foundation
Members & Donors
Mailing Lists
Bug Tracking
Developer Page
Conferences
Search

Documentation
Manuals
FAQs
The R Journal
Wiki
Books
Certification
Other

Misc Bioconductor Related Projects

The R Project for Statistical Computing



#### Getting Started:

- R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To <u>download R</u>, please choose your preferred <u>CRAN</u> mirror.
- If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

News:

## R-studio (https://www.rstudio.com)



#### Download the RStudio IDE

#### **Choose Your Version**



## RMarkdown (https://rmarkdown.rstudio.com/)



R Markdown documents are fully reproducible.
Use a productive notebook interface to weave together narrative text and code to produce elegantly formatted output. Use multiple languages including R, Python, and SOL.

Your data tells a story. Tell it with R Markdown. Turn your analyses into high quality documents, reports, presentations and dashboards.



### **RMarkdown**

RMarkdown si basa sull'idea di integrare in uno stesso documento codice eseguibile e testo.

RMarkdown utilizza knitr per processare la parte di codice, creare l'output ed includerli in un file che viene poi trasformato in un documento (ad esempio html, pdf o word).

Il linguaggio Markdown è un linguaggio di formattazione per testi estremamente semplice.

#### Installare Rmarkdown

Per usare RMarkdown è necessario installare la corrispondente libreria.

install.packages("rmarkdown")

install.packages("knitr")



### Pacchetti e librerie di R

```
# install.packages("package") installa un pacchetto
# library("package") carica un pacchetto
# update.packages() aggiorna i pacchetti
```

### Anatomia di RMarkdown

La prima parte di un documento RMarkdown è una sezione che descrive i metadati del documento: titolo, autore, data di creazione, abstract.

```
title: "Untitled"
author: " "
date: "06/10/21"
output: html_document
```

Il resto del documento integra delle parti testuali, scritte in Markdown, con dei chunk di codice R

Un chunk è un pezzo di codice

```
```{r}
1+2+3
2+3*4
3/2+1
2+(3*4)
(2 + 3) * 4
```

### Utilizzare R

```
\# q(), oppure usa il menu' grafico, per uscire da R.
# savehistory("history.r")
# loadhistory("history.r")
# source("command.r")
# save.image("myfile.Rdata")
# load("myfile.RData")
# R non utilizza specificazioni del percorso file del tipo
# C:\mydocuments\myfile.txt
# Questo perche' R utilizza "\" come carattere di "escape".
# Bisogna quindi usare C:/mydocuments/myfile.txt
# considerando il "back slash"
```

```
# getwd()
# stampa la directory di lavoro corrente
# setwd("c:/docs/mydirectory")
# cambia la directory di lavoro in mydirectory
# ls()
# stampa la lista di oggetti presenti nella directory
# di lavoro corrente
# rm()
# rimuove oggetti presenti nella directory
# di lavoro corrente
\# rm(list = ls())
# rimuove tutti qli oqqetti presenti nella directory di lavoro
```

#### R come calcolatrice

```
# + and - somma e sottrazione
# * and / moltiplicazione e divisione
# ^ esponente
# %% operatore modulo
# %\% divisione intera
# print() # stampa contenuto oggetti
# log() # logaritmo
# exp() # funzione esponenziale
# sqrt() # radice quadrata
```

- # abs() # valore assoluto
- # sin() # funzione seno
- # cos() # funzione coseno
- # tan() # funzione tangente
- # asin() # funzione arcoseno
- # factorial() # fattoriale
- # choose() coefficiente binomiale
- # sign() funzione segno (negativo, nullo o positivo)
- # round() arrotondamento alla cifra decimale specificata.

```
1+2+3
## [1] 6
2+3*4
## [1] 14
3/2+1
## [1] 2.5
2+(3*4)
## [1] 14
(2 + 3) * 4
## [1] 20
```

```
4*3^3
## [1] 108
27^(1/3)
## [1] 3
2/0 # il risultato è infinito (positivo)
## [1] Inf
0/0 # il risultato non è un numero, NaN (Not a Number)
## [1] NaN
23%%3
## [1] 2
```

```
23%/%3
## [1] 7
sqrt(2)
## [1] 1.414214
sin(3.14159)
## [1] 2.65359e-06
sin(pi)
## [1] 1.224606e-16
```

### **Operatori** logici

```
# < minore
# <= minore o uquale
# > maggiore
# >= maggiore o uquale
# == uquale
# != diverso
# & operatore and
# | operatore or
# xor disgiunzione esclusiva
```

1 == 1

## [1] TRUE

1 == 2

## [1] FALSE

1 != 2

## [1] TRUE

1 <= 2 & 1 <= 3

## [1] TRUE

1 == 1 | 1 == 2

## [1] TRUE

## [1] FALSE

1 > 1 & 1 > 2 & 1 > 3

## [1] FALSE

xor(TRUE, TRUE)

## [1] FALSE

xor(TRUE, FALSE)

## [1] TRUE

### L'help di R

```
?1m
## starting httpd help server ... done
help(lm)
# ??lm ricerca oqni funzione collegata a lm
apropos("mean")
   [1] ".colMeans"
                       ".rowMeans"
                                       "colMeans"
                                                       "kmeans"
##
                    "mean.Date"
                                       "mean.default"
##
   [5] "mean"
                                                       "mean.difft:
##
    [9] "mean.POSIXct" "mean.POSIXlt" "rowMeans"
                                                       "weighted.me
# quando il nome della funzione
# non è noto in modo preciso
```

### **Assegnamento**

```
1 + 2 # il risultato viene solo stampato sullo schermo
## [1] 3
a <- 1+2 # il risultato viene salvato nell'oggetto a
typeof(a)
## [1] "double"
class(a)
## [1] "numeric"
is(a)
## [1] "numeric" "vector"
```

```
str(a)
## num 3
x <- sqrt(2) #
x # per stampare il contenuto di x
## [1] 1.414214
typeof(x)
## [1] "double"
class(x)
## [1] "numeric"
is(x)
## [1] "numeric" "vector"
```

```
str(x)
## num 1.41
b <-"hello"
typeof(b)
## [1] "character"
class(b)
## [1] "character"
is(b)
## [1] "character"
                                                      "data.frameRowLal
                              "vector"
## [4] "SuperClassMethod"
str(b)
##
    chr "hello"
```

```
x^3
## [1] 2.828427
y < - x^3
У
## [1] 2.828427
x <- pi # un nuovo assegnamento cancella quello precedente
х
## [1] 3.141593
is(x)
## [1] "numeric" "vector"
# b <-"hello"
# typeof(b)
# class(b)
# is(b)
```

### **Vettori**

```
Vector1 <- c(1,2,3,4,5,6,7,8,9,10) # vettore numerico
Vector1
## [1] 1 2 3 4 5 6 7 8 9 10
x \leftarrow c(2,3,5,7)
х
## [1] 2 3 5 7
x \leftarrow c(x,11)
х
## [1] 2 3 5 7 11
Vector2 <- c("a", "b", "c", "d") # vettore di caratteri</pre>
Vector2
## [1] "a" "b" "c" "d"
```

```
Vector3 <- c("1","2","3","4") # vettore di caratteri
#(i numeri vengono interpretati come caratteri)
Vector3
## [1] "1" "2" "3" "4"
x = c(TRUE, FALSE, TRUE, FALSE)
y = !x
х
## [1] TRUE FALSE TRUE FALSE
у
## [1] FALSE TRUE FALSE TRUE
x & y
## [1] FALSE FALSE FALSE FALSE
x \mid y
## [1] TRUE TRUE TRUE TRUE
```

```
Vector4 <- c(Vector2 , Vector3 , Vector2 , Vector2)</pre>
Vector4
## [1] "a" "b" "c" "d" "1" "2" "3" "4" "a" "b" "c" "d" "a" "b" "c"
## [20] "d"
xx < -1:10
XX
## [1] 1 2 3 4 5 6 7 8 9 10
5:-5
## [1] 5 4 3 2 1 0 -1 -2 -3 -4 -5
seq(from=0,to=10) # si possono omettere i nomi degli argomenti
## [1] 0 1 2 3 4 5 6 7 8 9 10
# e il passo della sequenza,
# se non è indicato, corrisponde a 1 (valore di default)
```

```
seq(0,10)
    [1]
          1 2 3 4 5 6 7 8
                                  9 10
##
seq(0,10,by=2) # per definire il passo della sequenza
## [1] 0 2 4 6 8 10
seq(0,10,length.out=25) # per definire la lunghezza della sequenza
    [1]
##
        0.0000000
                   0.4166667
                             0.8333333
                                        1.2500000
                                                   1.6666667
                                                             2.08
##
    [7] 2.5000000
                   2.9166667
                             3.3333333
                                        3.7500000
                                                   4.1666667
                                                             4.58
   [13] 5.0000000 5.4166667 5.8333333 6.2500000 6.6666667
##
                                                             7.08
   [19] 7.5000000 7.9166667 8.3333333 8.7500000
                                                   9.1666667
                                                             9.58
##
## [25] 10.0000000
rep(0,time=10) # ripete l'elemento 10 volte
    [1] 0 0 0 0 0 0 0 0 0 0
##
```

```
rep("Hello",3) # ripete l'elemento 3 volte
## [1] "Hello" "Hello" "Hello"
rep(Vector1,2) # il vettore viene ripetuto 2 volte
   [1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8
##
rep(Vector2, each=2)
## [1] "a" "a" "b" "b" "c" "c" "d" "d"
# oqni elemento del vettore
# viene ripetuto 2 volte
```

### Operazioni con vettori

```
# vengono applicate elemento per elemento
# sum() somma qli elementi del vettore
# prod() prodotto degli elementi del vettore
# min() minimo degli elementi del vettore
# max() massimo degli elementi del vettore
# mean() media aritmetica
# median() mediana
# range() campo di variazione (minimo e massimo)
# var() varianza (divisione per n-1)
```

```
# sd() deviazione standard
# cov() covarianza (due argomenti, ad esempio cov(x,y))
# cor() coefficiente di correlazione
# (due argomenti, ad esempio cor(x,y))
# sort() ordinamento degli elementi
# (come default decreasing = FALSE)
# order() indice degli elementi ordinati con ordinamento crescente
# length() lunghezza del vettore
# summary() fornisce opportune sintesi statistiche
```

- # which() fornisce l'indice dell'elemento compatibile
- # con una affermazione logica

- # which.min() fornisce l'indice del minimo
- # which.max() fornisce l'indice del massimo
- # unique() fornisce un vettore senza elementi ripetuti
- # round() arrotonda i valori fino alla
- # cifra decimale indicata (il valore di default è 0)

```
x < -0:10
x+1
## [1] 1 2 3 4 5 6 7 8 9 10 11
y < -5:5
abs(y)
## [1] 5 4 3 2 1 0 1 2 3 4 5
x+y
   [1] -5 -3 -1 1 3 5 7 9 11 13 15
##
x*y
## [1] 0 -4 -6 -6 -4 0 6 14 24 36 50
y <- 0:8
```

```
x+y
## Warning in x + y: la lunghezza più lunga dell'oggetto non è un m
## lunghezza più corta dell'oggetto
## [1] 0 2 4 6 8 10 12 14 16 9 11
x
## [1] 0 1 2 3 4 5 6 7 8 9 10
x > 5
```

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE

## [1] 26

x <- 3:26 max(x)

TRUE

TRUE

```
min(x)
## [1] 3
sum(x)
## [1] 348
prod(x)
## [1] 2.016457e+26
x \leftarrow c(32,18,25:21,40,17)
х
## [1] 32 18 25 24 23 22 21 40 17
sort(x) # ordine crescente
## [1] 17 18 21 22 23 24 25 32 40
```

```
order(x) # posizione degli elementi in ordine crescente
## [1] 9 2 7 6 5 4 3 1 8
Vector1+Vector1
    [1] 2 4 6 8 10 12 14 16 18 20
##
Vector1/Vector1
  [1] 1 1 1 1 1 1 1 1 1 1
log(Vector1)
    [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595
##
    [8] 2.0794415 2.1972246 2.3025851
##
round(log(Vector1))
    [1] 0 1 1 1 2 2 2 2 2 2
```

```
round(log(Vector1),digit = 3)

## [1] 0.000 0.693 1.099 1.386 1.609 1.792 1.946 2.079 2.197 2.303

which(Vector1>=5) # indice degli elementi >=5

## [1] 5 6 7 8 9 10
```

## Selezione di elementi di un vettore

```
Vector6 <- c ("The", "Starlab", "Fellow", "is", "a Fool")</pre>
Vector6[3]
## [1] "Fellow"
Vector6[2:4]
## [1] "Starlab" "Fellow" "is"
Vector6[c(1,3,4)]
## [1] "The" "Fellow" "is"
Vector6[-2] # tutti qli elementi ad esclusione del secondo
## [1] "The" "Fellow" "is" "a Fool"
Vector6[5] <- "great"</pre>
```

```
Vector6
## [1] "The"
            "Starlab" "Fellow" "is"
                                               "great"
xx <- 100:1
xx[7]
## [1] 94
xx[c(2,3,5,7,11)]
## [1] 99 98 96 94 90
xx[85:91]
## [1] 16 15 14 13 12 11 10
xx[91:85]
## [1] 10 11 12 13 14 15 16
```

```
xx[c(1:5,8:10)]
## [1] 100 99 98 97 96 93 92 91
xx[c(1,1,1,1,2,2,2,2)]
## [1] 100 100 100 100 99 99 99 99
yy \leftarrow xx[c(1,2,4,8,16,32,64)]
уу
## [1] 100 99 97 93 85 69 37
x \leftarrow c(32,18,25:21,40,17)
Х
## [1] 32 18 25 24 23 22 21 40 17
sort(x)
## [1] 17 18 21 22 23 24 25 32 40
```

```
x[order(x)]
## [1] 17 18 21 22 23 24 25 32 40
x \leftarrow c(1,2,4,8,16,32)
Х
## [1] 1 2 4 8 16 32
x[-4]
## [1] 1 2 4 16 32
x[-c(3,4)]
## [1] 1 2 16 32
x < -8:7
x<0
    [1]
         TRUE
               TRUE
                     TRUE
                          TRUE
                                 TRUE
                                       TRUE TRUE TRUE FALSE FALSE
##
```

[13] FALSE FALSE FALSE

```
x[x<0]
```

$$x[x<0&x<(-2)]$$

$$x[x!=6]$$

$$x[x==6]$$

#### Altre funzioni

## [1] 11

```
z < -c(2,3,4,3,NA,NA,6,6,10,11,2,NA,4,3)
max(z) # questa funzione non si può utilizzare in presenza di NA
## [1] NA
na.omit(z) # fornisce il vettore senza NA
## [1] 2 3 4 3 6 6 10 11 2 4 3
## attr(,"na.action")
## [1] 5 6 12
## attr(,"class")
## [1] "omit"
max(na.omit(z))
```

```
max(z,na.rm=TRUE) # l'argomento na.rm=TRUE
## [1] 11
# permette la rimozione degli NA
is.na(z)
   [1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
## [13] FALSE FALSE
z.noNA <- subset(z,is.na(z)==FALSE )</pre>
z.noNA
   [1] 2 3 4 3 6 6 10 11 2 4 3
X < -1:70
Multiple7 <- subset(X,X%%7==0) # operatore modulo
Multiple7
    [1] 7 14 21 28 35 42 49 56 63 70
```

#### **Fattori**

```
treat <- factor(c("a", "b", "b", "c", "a", "b"))
treat
## [1] a b b c a b
## Levels: a b c
levels(treat) # i livelli del fattore treat
## [1] "a" "b" "c"
resp \leftarrow c(10,3,7,6,4,5)
resp[treat=="a"]
## [1] 10 4
# le osservazioni riferite ai
# soggetti con trattamento "a"
```

```
sum(resp[treat=="b"])
## [1] 15
# la somma delle osservazioni
# riferite ai soggetti con trattamento "b"
treat1 <- ordered(c("a","b","b","c","a","b"), levels=c("c","b","a")
# si ha un ordinamento diverso rispetto a quello
# naturale (alfabetico)
treat1
## [1] a b b c a b
## Levels: c < b < a
levels(treat1)
## [1] "c" "b" "a"
```

```
x \leftarrow c(1:12,25:38,-3:0,13:24)
x1 \leftarrow cut(x, c(-5, 5, 25, 40), labels = c("B", "M", "A"))
# classi(-5,5],(5,25],(25,40] che corrispondono ai livelli~B,~M,~A
x1
   [39] M M M M
## Levels: B M A
levels(x1)
## [1] "B" "M" "A"
f x1 <- table(x1) # frequenze assolute per ogni livello (classe)
f x1
## x1
##
  B M A
```

9 20 13

##

```
x < -1:20
y \leftarrow factor(rep(0:1,10))
У
   ## Levels: 0 1
tapply(x,y,sum)
## 100 110
# la funzione sum viene applicata ai dati x
 classificati sulla base degli associati livelli
# osservati del fattore y
```

## Array e matrici

```
Matrix1 <- matrix(data=1,nrow=3,ncol=3)</pre>
# tutti qli elementi pari a 1
Matrix1
## [,1] [,2] [,3]
## [1,] 1 1
## [2,] 1 1 1
## [3,] 1 1 1
dim(Matrix1) # la dimensione della matrice
## [1] 3 3
Vector8 <- 1:12
Vector8
   [1] 1 2 3 4 5 6 7 8 9 10 11 12
```

```
Matrix3 <- matrix(data=Vector8, nrow=4) # come default byrow=FALSE
Matrix3
## [,1] [,2] [,3]
## [1,] 1 5 9
## [2,] 2 6 10
## [3,] 3 7 11
## [4,] 4 8 12
Matrix4 <- matrix(data=Vector8,nrow=4,byrow=TRUE)</pre>
# matrice popolata per righe
Matrix4
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
## [3,] 7 8 9
```

## [4,] 10

11 12

```
Vector9 <- 1:10
Vector9
    [1]
##
        1 2 3 4 5 6 7 8 9 10
Vector10 <- Vector9^2</pre>
Vector10
   Г17
              4 9 16 25 36 49 64 81 100
##
Matrix5 <- rbind(Vector9, Vector10)</pre>
Matrix5
            [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##
## Vector9
                    2
                         3
                                    5
                                         6
                                                   8
                                                              10
                               4
                    4
                         9
                              16
                                   25
                                                       81
## Vector10
                                        36
                                             49
                                                  64
                                                             100
```

```
Matrix6 <- cbind(Vector9, Vector10, Vector9)</pre>
Matrix6
##
         Vector9 Vector10 Vector9
##
    [1,]
   [2,]
##
   [3,]
                          9
##
## [4,]
                         16
   [5,]
                5
                         25
                                   5
##
## [6,]
                6
                         36
                                   6
## [7,]
                         49
```

```
colnames (Matrix6)
```

## [8,]

## [9,]

##

[10,]

```
## [1] "Vector9" "Vector10" "Vector9"
```

64

81

100

8

10

10

#### rownames(Matrix6) # le righe non hanno nome

```
rownames(Matrix6) <- c("a","b","c","d","e","f","g","h","i","j")
Matrix6
##
## a 1 1 1
## b 2 4 2
## c 3 9 3
## d 4 16 4
## e 5 25 5
## f 6 36 6
## g 7 49 7
## h 8 64 8
     9 81 9
    10 100 10
```

colnames(Matrix6) <- c("A", "B", "C")</pre>

## NULL.

```
Matrix7 <- diag(5) # crea una matrice identica
Matrix7
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1
## [2,] 0 1 0 0
## [3,] 0 0 1 0 0
## [4,] 0 0 0 1 0
## [5,] 0 0 0 0 1
Vector11 \leftarrow c(1,2,3,4,5)
Matrix8 <- diag(Vector11) # matrice con Vector11 come
# diagonale principale
```

```
Matrix8
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] 1 0 0 0 0

## [2,] 0 2 0 0 0

## [3,] 0 0 3 0 0

## [4,] 0 0 0 4 0

## [5,] 0 0 0 5
```

 ${\tt diag(Matrix7)}$  # estrae la diagonale della matrice

# Operatori per il calcolo matriciale

```
# + - * / operazioni standard scalari o elemento per elemento
# %*% moltiplicazione tra matrici
# t() calcolo della matrice trasposta
# solve() calcolo della matrice inversa
# det() calcolo del determinante
# chol() decomposizione di Cholesky
# eigen() calcolo di autovalori e autovettori
# crossprod() prodotto incrociato
# \%x\% prodotto di Kronecker
```

## Selezione di elementi di una matrice

```
Matrix9 \leftarrow matrix(1:9,3)
Matrix9
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
Matrix9[1,1] # primo elemento della prima riga
## [1] 1
Matrix9[2,3] # terzo elemento della seconda riga
## [1] 8
Matrix9[,1] # prima colonna
## [1] 1 2 3
```

```
Matrix9[2,] # seconda riga
## [1] 2 5 8
Matrix9[1:2, ] # prima e seconda riga
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
Matrix9[Matrix9[,2]>4,]
## [,1] [,2] [,3]
## [1,] 2 5 8
## [2,] 3 6 9
# tutte le righe che
# come secondo elemento hanno un numero maggiore di 4
```

```
x \leftarrow matrix(1:16,ncol=4)
x
##
     [,1] [,2] [,3] [,4]
## [1,]
         1 5 9 13
## [2,] 2 6 10 14
## [3,] 3 7 11 15
## [4,] 4 8 12 16
apply(x,1,sum) # si applica sum alle righe (margine=1)
## [1] 28 32 36 40
y<-apply(x,2,prod) # si applica prod alle colonne (marqine=2)
У
## [1] 24 1680 11880 43680
```

```
x < -1:5
y < -1:5
outer(x,y)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 2 4 6 8 10
## [3,] 3 6 9 12 15
## [4,] 4 8 12 16 20
## [5.] 5 10 15 20 25
# matrice con elementi dati dal prodotto
# (funzione di default) di tutte le combinazioni
# di elementi di x e y
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] 2 3 4 5 6

## [2,] 3 4 5 6 7

## [3,] 4 5 6 7 8

## [4,] 5 6 7 8 9

## [5,] 6 7 8 9 10

# matrice con elementi dati dalla somma di tutte le

# combinazioni di elementi di x e y
```

outer(x,y,"+")

#### Liste

```
Lst <- list(name="Fred", wife="Mary", no.children=3,
            child.ages=c(4,7,9))
Lst
## $name
## [1] "Fred"
##
## $wife
## [1] "Mary"
##
## $no.children
## [1] 3
##
## $child.ages
## [1] 4 7 9
```

```
Lst[[1]] # il primo oggetto della lista
## [1] "Fred"
Lst[[4]] # il quarto oggetto della lista
## [1] 4 7 9
Lst$child.ages # l'oggetto chiamato child.ages
## [1] 4 7 9
Lst$child.ages[2] # il secondo elemento dell'oggetto child.ages
## [1] 7
```

## **Data frame**

```
data(airquality) # viene caricato il data set
dim(airquality)

## [1] 153 6

# dimensione del data frame:
# 153 osservazioni su 6 variabili

# help(airquality) # descrizione del data frame
names(airquality) # nomi delle variabili

## [1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day"
```

```
# fornisce le prime 6 righe del data frame, in alternativa
# si può usare airquality[1:6,]
head(airquality)
##
    Ozone Solar.R Wind Temp Month Day
       41
              190 7.4
                               5 1
## 1
                        67
## 2
       36
              118 8.0
                        72
                               5
              149 12.6 74 5
                                  3
## 3
    12
                               5
                                  4
## 4
    18
              313 11.5 62
## 5
       NA NA 14.3 56
                               5
                                  5
              NA 14.9
                        66
                               5
                                  6
## 6
       28
str(airquality) # struttura del data frame airquality
##
   'data.frame': 153 obs. of 6 variables:
##
   $ Ozone : int
                  41 36 12 18 NA 28 23 19 8 NA ...
##
   $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
   $ Wind
                  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
##
            : num
##
   $ Temp : int
                  67 72 74 62 56 66 65 59 61 69 ...
##
   $ Month : int
                  5 5 5 5 5 5 5 5 5 5 ...
```

1 2 3 4 5 6 7 8 9 10 ...

##

\$ Dav

: int

#### airquality\$0zone

```
##
      Г17
            41
                  36
                       12
                            18
                                 NA
                                       28
                                            23
                                                 19
                                                       8
                                                            NA
                                                                  7
                                                                      16
                                                                           11
                                                                                 14
                                                                                      18
     Γ197
                                       32
##
            30
                  11
                        1
                            11
                                   4
                                            NA
                                                 NA
                                                      NA
                                                            23
                                                                 45
                                                                     115
                                                                           37
                                                                                NA
                                                                                      N
##
     [37]
            NA
                  29
                       NA
                            71
                                  39
                                       NA
                                            NA
                                                 23
                                                      NA
                                                            NA
                                                                 21
                                                                      37
                                                                           20
                                                                                 12
                                                                                      13
     [55]
                       NA
                                            NA
                                                                      64
                                                                           40
                                                                                77
##
            NA
                  NA
                            NA
                                 NA
                                       NA
                                                135
                                                      49
                                                            32
                                                                 NA
     [73]
                       NA
                                  48
                                       35
                                                 79
                                                      63
                                                                      NA
                                                                           80
                                                                               108
                                                                                      20
##
             10
                  27
                                            61
                                                            16
                                                                 NA
     [91]
            64
                  59
                       39
                             9
                                       78
                                            35
                                                 66
                                                     122
                                                            89
                                                                110
                                                                      NA
                                                                           NΑ
                                                                                44
                                                                                      28
##
                                  16
    [109]
             59
                  23
                                        9
                                                 45
                                                     168
                                                            73
                                                                 NA
                                                                      76
##
                       31
                            44
                                 21
                                            NA
                                                                         118
                                                                                84
##
    [127]
            91
                  47
                       32
                            20
                                 23
                                       21
                                            24
                                                 44
                                                      21
                                                            28
                                                                  9
                                                                      13
                                                                           46
                                                                                 18
    [145]
             23
                  36
                            14
                                  30
                                       NA
                                            14
                                                 18
                                                      20
##
```

airquality\$0zone[1:5]

## [1] 41 36 12 18 NA

# airquality\$0zone + airquality\$Wind/airquality\$Temp

36.111111

19.233898

59.079747 23.097368

[1]

[7]

Γ1097

##

##

41.110448

23.132308

| ## | [13]  | 11.139394 | 14.160294  | 18.227586  | 14.179688 | 34.181818  | 6.  |
|----|-------|-----------|------------|------------|-----------|------------|-----|
| ## | [19]  | 30.169118 | 11.156452  | 1.164407   | 11.227397 | 4.159016   | 32. |
| ## | [25]  | NA        | NA         | NA         | 23.179104 | 45.183951  | 115 |
| ## | [31]  | 37.097368 | NA         | NA         | NA        | NA         |     |
| ## | [37]  | NA        | 29.118293  | NA         | 71.153333 | 39.132184  |     |
| ## | [43]  | NA        | 23.097561  | NA         | NA        | 21.193506  | 37. |
| ## | [49]  | 20.141538 | 12.157534  | 13.135526  | NA        | NA         |     |
| ## | [55]  | NA        | NA         | NA         | NA        | NA         |     |
| ## | [61]  | NA        | 135.048810 | 49.108235  | 32.113580 | NA         | 64. |
| ## | [67]  | 40.131325 | 77.057955  | 97.068478  | 97.061957 | 85.083146  |     |
| ## | [73]  | 10.195890 | 27.183951  | NA         | 7.178750  | 48.085185  | 35. |
| ## | [79]  | 61.075000 | 79.058621  | 63.135294  | 16.093243 | NA         |     |
| ## | [85]  | 80.100000 | 108.094118 | 20.104878  | 52.139535 | 82.084091  | 50. |
| ## | [91]  | 64.089157 | 59.113580  | 39.085185  | 9.170370  | 16.090244  | 78. |
| ## | [97]  | 35.087059 | 66.052874  | 122.044944 | 89.114444 | 110.088889 |     |
| ## | [103] | NA        | 44.133721  | 28.140244  | 65.121250 | NA         | 22. |

31.139744

LABORATORIO 1 - R Intro

12.170270

8.329508

18.185484

44.132051

NA

NΑ

7.093243

21.201299

Anno Accademico 2023-2024

9

66 / 87

28

16

#### with(airquality, Ozone + Wind/Temp) # stesso risultato [1] 41.110448 36.111111 12.170270 28 ## 18.185484 NA## [7] 23.132308 19.233898 8.329508 NA7.093243 16 [13] 11.139394 14.160294 18.227586 14.179688 34.181818 ## [19] 30.169118 11.156452 1.164407 11.227397 4.159016 32 ## [25] NANANA 23.179104 45.183951 ## 115 ## [31] 37.097368 NANANANA## [37] NA29.118293 NA71.153333 39.132184 [43] NANA21.193506 37 ## 23.097561 NA[49] 20.141538 NA ## 12.157534 13.135526 NA ## [55] NA NA NA NA NA [61] ## NA 135.048810 49.108235 32.113580 NA [67] ## 40.131325 77.057955 97.068478 97.061957 85.083146

6

67 / 87

Anno Accademico 2023-2024

64 ## [73] 10.195890 27.183951 NA 7.178750 48.085185 35 ## [79] 61.075000 79.058621 63.135294 16.093243 NA

## [85] 80.100000 108.094118 20.104878 52.139535 82.084091 50 ## [91] 64.089157 59.113580 39.085185 9.170370 16.090244 78 ## [97] 35.087059 66.052874 122.044944 89.114444 110.088889 ## [103] NA 44.133721 28.140244 65.121250 NA 22 ## Γ1097 59.079747 23.097368 31.139744 44.132051 21.201299 9

LABORATORIO 1 - R Intro

| ## |    | Ozone | ${\tt Solar.R}$ | Wind | Temp | ${\tt Month}$ | Day |
|----|----|-------|-----------------|------|------|---------------|-----|
| ## | 1  | 41    | 190             | 7.4  | 67   | 5             | 1   |
| ## | 4  | 18    | 313             | 11.5 | 62   | 5             | 4   |
| ## | 7  | 23    | 299             | 8.6  | 65   | 5             | 7   |
| ## | 10 | NA    | 194             | 8.6  | 69   | 5             | 10  |
| ## | 12 | 16    | 256             | 9.7  | 69   | 5             | 12  |
| ## | 13 | 11    | 290             | 9.2  | 66   | 5             | 13  |
| ## | 14 | 14    | 274             | 10.9 | 68   | 5             | 14  |
| ## | 16 | 14    | 334             | 11.5 | 64   | 5             | 16  |
| ## | 17 | 34    | 307             | 12.0 | 66   | 5             | 17  |
| ## | 19 | 30    | 322             | 11.5 | 68   | 5             | 19  |
| ## | 22 | 11    | 320             | 16.6 | 73   | 5             | 22  |
| ## | 26 | NA    | 266             | 14.9 | 58   | 5             | 26  |
| ## | 29 | 45    | 252             | 14.9 | 81   | 5             | 29  |
| ## | 30 | 115   | 223             | 5.7  | 79   | 5             | 30  |
| ## | 31 | 37    | 279             | 7.4  | 76   | 5             | 31  |

```
x<-1:5
y<-factor(c("a","b","a","a","b"))
z<-matrix(rep(7,15),nrow=5,byrow=F)
es.df<-data.frame(z,uno=x,due=y)
es.df
## X1 X2 X3 uno due
## 1 7 7 7 1 a</pre>
```

## 2 7 7 7 2

## 3 7 7 7 3 a

h

a b

```
z < -matrix(rep(7,15), nrow=5, byrow=F)
z
## [,1] [,2] [,3]
## [1,] 7 7
## [2,] 7 7 7
## [3,] 7 7 7
## [4,] 7 7 7
## [5,] 7 7 7
class(z)
## [1] "matrix" "array"
z_df <- as.data.frame(z) # matrice trasformata in un data frame
```

```
z_df

## V1 V2 V3
## 1 7 7 7
## 2 7 7 7
## 3 7 7 7
## 4 7 7 7
## 5 7 7 7
class(z_df)

## [1] "data.frame"
```

#### Caricare e salvare data set

```
# dat <- read.table("file.txt", sep=" ", header=T)
# legge il file di testo con sep=" "
# (il default per read.table) come separatore
# dat <- read.table("file.csv", sep=",", header=T)
# legge il file di testo con sep="," (il default per read.csv)
# come separatore</pre>
```

```
airq <- airquality[!is.na(airquality$0zone),]</pre>
# write.table(airq, file="airq.txt", sep=" ", row.names=F)
# per salvare il data set con lo spazio come
# separatore, row.names=F assicura che i nomi delle
# righe non vengono riportati in airq
# write.table(airq,file="airq.csv",sep=",",row.names=F)
# per salvare il data set con la virgola come separatore
# airq1<-read.table("airq.txt",header=T,sep=" ")</pre>
# per caricare il nuovo data frame
# airq2<-read.table("airq.csv", header=T, sep=", ")</pre>
# per caricare il nuovo data frame
```

```
attach(airquality)
Ozone[1:3]
## [1] 41 36 12
detach(airquality)
#0zone[1:3]
```

## Ulteriori funzioni utili

```
# is.numeric()
# is.vector()
# is.factor()
# is.matrix()
# is.data.frame()
# is.character()
# as.numeric() trasforma vettori e matrici
# di altre classi nella classe numeric
# as.character() trasforma vettori e matrici
# di altre classi/di altro tipo in character
```

- # as.integer() trasforma vettori e
- # matrici di altro tipo in integer
- # as.factor() trasforma vettori e matrici in fattori
- # as.matrix() trasforma un vettore o un data frame
- # in una matrice
- # as.vector() trasforma una matrice in un vettore
- # as.data.frame() trasforma vettori e matrici
- # in data frame
- # as.list() trasforma vettori e matrici in liste

## Comandi grafici

```
# plot(x,y) se x e y sono vettori,
# produce lo scatterplot di y rispetto a x

# plot(x) se x e' una serie temporale,
# produce il grafico della serie;
# se x e' un vettore numerico, produce il grafico
# dei valori di x rispetto agli indici corrispondenti
```

```
# funzione grafica di alto livello curve(x^3-3*x,-2,2) # opzioni from=-2 e to=2
```

```
curve(x^3-3*x,-2,2) # opzioni from=-2 e to=2
curve(x^2-2,add=T,col="red")
```

```
# il colore selezionato è il rosso
# funzione grafica di basso livello, poiché con l'opzione add=T
# si aggiunge una curva al grafico esistente
```

```
# lo stesso risultato si ottiene con
x <- seq(-2,2,0.01)
plot(x,x^3-3*x,type='l')
# opzione type='l' per
# rappresentare una linea continua invece dei punti
lines(x,x^2-2,col="red") # il colore selezionato è il rosso</pre>
```

## **Funzioni**

```
# Indice di massa corporea sulla base di peso (chilogrammi)
# e altezza (metri)
bmi<-function(weight, height)</pre>
  x<- weight/height^2
  return(x)
}
bmi(75, 1.7)
## [1] 25.95156
x < -c(60,65,75,80,90)
y < -c(1.5, 1.6, 1.7, 1.8, 1.9)
bmi(x,y)
```

[1] 26.66667 25.39062 25.95156 24.69136 24.93075

## **Funzioni**

```
bmi(1.7, y)
  [1] 0.7555556 0.6640625 0.5882353 0.5246914 0.4709141
# Indice di massa corporea con altezza in metri o centimetri
bmi1<-function(weight,height,cm=F)</pre>
{
  if(cm==T) height<-height/100</pre>
  weight/height ^2
}
bmi1(75,1.7)
## [1] 25.95156
bmi1(75,170,cm=T)
   [1] 25.95156
```

```
x<-seq(50,100,by=0.1)
y<-seq(1.5,1.95, by=0.01)
index<-outer(x,y,bmi)
# rappresentazione grafica tridimensionale
persp(x,y,index,xlab="weight",ylab="height",zlab="bmi",
ticktype ="detailed",col="blue", border="blue")</pre>
```

contour(x,y,index,xlab="weight",ylab="height") # linee di livello

```
contour(x,y,index,xlab="weight",ylab="height",col=2:11,levels=20:30)
# linee di livello da 20 a 30 con colori diversi
# to add a grid
abline(h=seq(1.5,1.9,by=0.05),lty=2,col="grey")
# funzione grafica di secondo livello
abline(v=seq(50,100,by=5),lty=2,col="grey")
```

```
# i primi n termini di una serie geometrica
# con valore iniziale a0 e ragione r
geom <- function (n,r,a0)
  ser <- numeric(n)</pre>
  ser[1] <- a0
  for (i in 2:n)
    ser[i] <- ser[i-1]*r
  return(ser)
}
geom(10,0.5,1)
```

## [1] 1.000000000 0.500000000 0.250000000 0.125000000 0.062500000 ## [7] 0.015625000 0.007812500 0.003906250 0.001953125