Math 114, Problem Set 3 (due Monday, September 30)

September 24, 2013

(1) Let $E \subseteq \mathbb{R}^n$ be a measurable set with $\mu(E) < \infty$. Show that for each $\epsilon > 0$, there exists a set $E' \subseteq \mathbb{R}^n$ which is a finite disjoint union of open boxes satisfying

$$\mu(E - E'), \mu(E' - E) < \epsilon.$$

(2) Let $f_1, f_2, \ldots : \mathbb{R}^n \to \mathbb{R}$ be a sequence of measurable functions and suppose that for each $\vec{x} \in \mathbb{R}^n$, the sequence $\{f_i(\vec{x})\}$ is bounded. Show that the function $f(\vec{x}) = \limsup\{f_i(\vec{x})\}$ is measurable.

Let $f: \mathbb{R} \to \mathbb{R}$ be a function. We say that f is *Borel measurable* if, for every real number t, the set $\{x \in \mathbb{R}: f(x) \leq t\}$ is Borel measurable.

- (3) Prove that if $f, g : \mathbb{R} \to \mathbb{R}$ are Borel measurable functions, then the composition $g \circ f$ is Borel measurable.
- (4) Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function. Show that there exists a Borel measurable function g which is equal to f almost everywhere.

(1) Let $E \subseteq \mathbb{R}^n$ be a measurable set with $\mu(E) < \infty$. Show that for each $\epsilon > 0$, there exists a set $E' \subseteq \mathbb{R}^n$ which is a finite disjoint union of open boxes satisfying

$$\mu(E - E'), \mu(E' - E) < \epsilon.$$

From Problem Set II. we know that for EZO.

 $\frac{1}{2}$ compact set $K \subseteq E$ s.t. $\mu(E) - E \leq \mu(K) \leq \mu(E)$

=> let [Bil: covering of K with countably many open boxes.

S.t. $\mu(k) \leq \mu(\mathcal{O}_{i=0}^{\infty} B_i) \leq \mu(k) + \varepsilon$

Since K is compact.

= finite subcover of $K = E' = \bigcup_{k \in O} B_k (= \bigcup_{i=0}^{n} B_i)$

We can assume that {BK} are disjoint.

(: closure contains K, boundaries of the boxes have measure zero.

 $\Rightarrow M(E-E') = M(E) - M(E\cap E') \leq M(E) - M(K) \leq 2$ $M(E'-E') = M(E) - M(E\cap E') \leq M(E') - M(K) \leq 2$

(: E>K. E'>K =) ENE'>K =) M(ENE') > M(K))

(2)	Let $f_1, f_2, \ldots : \mathbb{R}^n \to \mathbb{R}$ be a sequence of measurable	e functions and suppose that for each $\vec{x} \in \mathbb{R}^n$, the
	sequence $\{f_i(\vec{x})\}\$ is bounded. Show that the functio	$f(\vec{x}) = \limsup\{f_i(\vec{x})\}\ $ is measurable.

$$\{f_i(\vec{x})\}$$
: bounded $\Rightarrow limsup\{f_i(\vec{x})\}$ exists.

For each $\mathcal{R} \in \mathbb{R}^n$, $f(\mathbf{z}) \leq \alpha$

hon-increasing sequence
$$\sup_{m\geq M} f_m(\vec{x})$$
 converges to some number $\leq \alpha$ as $M\to\infty$.

$$\Leftrightarrow$$
 for each $n \in \mathbb{Z}_+$, $\sup_{m \ge M} f_m(\frac{1}{2}) \le d + \frac{1}{n}$ for sufficiently large M .

$$=$$
 sufficiently large M s.t. $f_n(\vec{x}) \leq d + \frac{1}{n}$ for all $m \geq M$

$$\therefore \{x \in \mathbb{R}^n : f(\vec{x}) \leq \alpha \}$$

$$= \bigcap_{n=1}^{\infty} \bigcap_{m \ge n} \left(\overrightarrow{z} \in \mathbb{R}^n : f_m(\overrightarrow{z}) \le d + \frac{1}{n} \right)$$

[©] countable intersection or union of measurable sets is also measurable

Let $f: \mathbb{R} \to \mathbb{R}$ be a function. We say that f is *Borel measurable* if, for every real number t, the set $\{x \in \mathbb{R}: f(x) \leq t\}$ is Borel measurable.

(3) Prove that if $f, g : \mathbb{R} \to \mathbb{R}$ are Borel measurable functions, then the composition $g \circ f$ is Borel — measurable.

(E.T. S.) if

$$\forall t \in \mathbb{R}$$
. $f^{-1}((-\infty t)) = \{x \in \mathbb{R} : f(x) \leq t\}$ is Borel,

then, for all Borel sets ECIR. f-I(E) is Borel.

For
$$\alpha \in \mathbb{R}$$
. $\{x: (f \circ g)(\alpha) > \alpha \} = (f \circ g)^{-1} [(\alpha.\infty)]$
= $g^{-1} [f^{-1} [(\alpha.\infty)]]$
Borel set

Bore [Set ECIR can be constructed by taking countable unions. intersections, and complements of the sets

((-∞.tj]:j∈N).

 \Rightarrow f-1(E) expressible by taking countable unions. intersections, and complements of $\{f^{-1}((-\infty.t_j)): j \in IV\}$

=) Since $(f^{-1}((-\infty.+5)): j \in |N|)$ contains only Borel Sets, $f^{-1}(E)$ is Borel.

(4)		$ ightarrow \mathbb{R}$ be a me f almost ev	easurable func erywhere.	tion. Show	that the	ere exists a	Borel me	easurable f	function g	which
	D Prove	Lusin's	Theorem	on all	of	IR.				

tix some small 770.

Apply the finite-measure version of Lusin's Thm to each of the intervals
$$I_K = \left[\frac{1}{2^{|K|}}, \frac{1}{k+1} - \frac{1}{2^{|K|}} \right]$$
 for $K \in \mathbb{Z}$.

$$\Rightarrow \exists \text{ continuous functions } g_{k}: |R \rightarrow |R \text{ s.t. on some } E_{k}' \subset I_{k}$$
with $m(I_{k} - E_{k}') < \epsilon_{k}$ s.t $f|_{E_{k}'} = g(k)$
Let $E' = \bigcup_{k \in -\infty} E_{k}' \Rightarrow \text{Note that } m(|R - E'|) < q.\eta$

: for any
$$1>0$$
, $=$ continuous ftn $G: |R \rightarrow R|$
s.t. $f|_{E'} = G$. $m(R-E') < 9.7 \rightarrow 0$

3) By Lusin on all of IR, we can get a sequence of continuous
functions G(1). G(2) Such that for each j ∈ IV.
f=G(j) except on a set of measure at most j.
Take G:1R-1R to be the Borel function defined by
$G(x) := \lim_{x \to \infty} G^{(x)}(x)$
Since $m(R-(E')^{(j)}) = \frac{1}{j}$ for all $j \in \mathbb{N} \rightarrow measure : 0$.
f(x) = G(x) a.e.
ELT.