Классификация известных алгоритмов блокчейн-консенсуса

Студент: Марченко Владислав ИУ7-53Б

Научный руководитель: Исаев Андрей Львович

Москва - 2022 г.

Цель и задачи

Цель: провести обзор существующих алгоритмов консенсуса для блокчейна и сравнить их по сформулированным критериям.

Задачи:

- 1) исследовать технологию блокчейн;
- 2) исследовать основные механизмы, которые используются в рамках этой технологии;
- 3) проанализировать известные алгоритмы блокчейн-консенсуса;
- 4) сформулировать критерии для сравнения алгоритмов блокчейн-консенсуса;
- 5) сравнить алгоритмы блокчейн-консенсуса по сформулированным критериям.

Структура блока

Размер	Поле	Описание		
4 байта	Размер блока	Размер блока в байтах		
80 байт	Заголовок блока	Несколько полей, формирующих заголовок блока		
1—9 байт	Счетчик транзакций	Количество проведенных транзакций		
Переменный	Транзакции	Транзакции, записанные в этом блоке		

Структура заголовка блока

Размер	Поле	Описание		
4 байта	Версия	Номер версии для отслеживания обновлений программного обеспечения/протокола		
32 байта	Хэш предыдущего блока	Ссылка на хэш предыдущего (родительского) блока в цепи		
32 байта	Корень дерева Меркла	Хэш корня дерева Меркла транзакций этого блока		
4 байта	Отметка времени	Примерное время создания этого блока в секундах (Unix-время)		
4 байта	Сложность	Сложность алгоритма Proof of Work для этого блока		
4 байта	Одноразовый номер	Счетчик, используемый для алгоритма Proof of Work		

Общая структура блокчейна

Алгоритм Proof of Work

Алгоритм Proof of Stake

- Основан на процессе отбора, учитывающем долю валидаторов (одобренных аккаунтов).
- 2. Создателем следующего блока в цепи выбирается узел, который обладает большим балансом количеством ресурсов (например, монет в криптовалюте).
- 3. За создание блока узел вознаграждение не получает.
- 4. Вознаграждение выплачивается за проведение транзакции.

Алгоритм Hybrid Consensus (PoW/PoS)

Алгоритм Proof of Capacity

- 1. Для майнинга выделяется определенный объем дискового пространства.
- 2. Вместо того, чтобы выполнять большую работу по проверке блоков, работа выполняется заранее с использованием процесса, называемого «построением графика».
- 3. В ходе этого процесса майнер генерирует файлы, в которых хранится большое количество хэшей, вычисленных заранее с использованием различных одноразовых номеров.
- 4. Эти хэши могут быть повторно использованы в процессе майнинга следующих блоков.

Алгоритм Proof of Importance

- 1. Узлы должны блокировать определенное количество монет.
- 2. Вместо простой поддержки работы узла у Pol есть некоторые дополнительные требования для поощрения за использование сети и расчета «важности» кошелька.
- 3. Кошельки должны иметь на балансе не менее 10000 NEM монет в течение определенного периода.
- 4. Взвешивание «важности» учетных записей для защиты от атак.

Сравнение алгоритмов блокчейн-консенсуса

Критерий	PoW	PoS	НС	PoC	Pol
Среднее время создания блока, с	12-600	4.5-60	300	240	60
Стойкость к двойному расходованию, %	51	33 или 51	51	50	51
Количество транзакций в секунду	7–500	173–1000	14	80	4000

Заключение

В ходе выполнения научно-исследовательской работы была достигнута поставленная цель, а также решены все задачи.

В результате проведения сравнения алгоритмов блокчейн-консенсуса по трем критериям получены следующие результаты.

- 1. Лучшее среднее время создания блока показывает алгоритм Proof of Stake.
- 2. Наиболее стойкими к двойному расходованию являются Proof of Work, Hybrid Consensus и Proof of Importance.
- 3. Наибольшее количество транзакций в секунду обеспечивает алгоритм Proof of Importance.