

Latch and Flip Flops

Shinwoong Kim

Storage Elements

A storage element

✓ It can maintain a binary state indefinitely (as long as power is delivered to the circuit)

Type of storage element

- ✓ Latch: operate with signal level (rather than signal transition)
 - Level sensitive device
 - Building blocks of flip-flops
- ✓ Flip-flop: controlled by a clock transition
 - Clock edge-sensitive device

Simple Memory Element

- Two inverters with feedback loop
 - ✓ There are two nodes, A and B
 - ✓ Two possible states
 - A=0, B=1
 - A=1, B=0

How can we change the state of the circuit?

Simple Memory Element

How can we change the state of the circuit?

- √ (1) Replace inverters with NORs
- √ (2) We can control the input of NOR gate to change the state
 of the circuit

- SR latch (Set/Reset latch)
 - ✓ Cross-coupled circuit with NOR gates

S R	Q	Q'
0 0	Hold	Hold
0 1	0	1
1 0	1	0
1 1	Forbidden	Forbidden

<Functional truth table>

*State change from SR=11 to SR=00 at the same time is strongly forbidden

→ oscillation occurs

SR latch (Set/Reset latch)

✓ Cross-coupled circuit with NAND gates

S R	\overline{S} \overline{R}	Q	Q'
0 0	1 1	Hold	Hold
0 1	1 0	0	1
1 0	0 1	1	0
1 1	0 0	Forbidden	Forbidden

<Functional truth table>

Timing Waveform

*State change from SR=11 to SR=00 $(\bar{S}\bar{R}=00\ to\ \bar{S}\bar{R}=11)$ at the same time is strongly forbidden \rightarrow oscillation occurs

- Gated SR latch (Set/Reset latch)
 - ✓ Cross-coupled circuit with NAND gates

En	S R	Q	Q'
0	XX	Hold	Hold
1	0 0	Hold	Hold
1	0 1	0	1
1	1 0	1	0
1	1 1	Forbidden	Forbidden

<Functional truth table>

- ✓ 'En' acts as an enable signal for the other two inputs
 - En=0 case, the circuit remains in its current state, not in Reset.

D latch (Transparent latch)

- ✓ One way to eliminate the undesirable condition (SR=11) is to ensure that inputs S and R are never equal to '1' at the same time → D latch *D means 'data'
- ✓ If 'En'=1, output Q changes depends on the input
 - Q=0 @ D=0
 - Q=1 @ D=1

En	D	Q	Q'
0	Χ	Hold	Hold
1	0	0	1
1	1	1	0

<Functional truth table>

D latch (Transparent latch)

✓ Timing diagram

En	D	Q	Q'
0	Χ	Hold	Hold
1	0	0	1
1	1	1	0

<logic< th=""><th>diagram></th></logic<>	diagram>
---	----------

<Functional truth table>

Flip Flops

Clocked binary storage device

- ✓ Output will only change on the transition of the clock
- ✓ So it is referred to as edge-triggered circuit
 - 1) positive-edge triggered
 - 2) negative-edge triggered

기초회로 및 논리실습 Handong Global Univ.

Flip Flops

D flip-flop

✓ Master-slave architecture: using two D-latches

Flip Flops

D flip-flop

✓ Timing diagram

Clk	D	Q _(t+1)
0 or 1	Χ	Hold
	0	0
_	1	1

<Positive edge triggered type>

ICs

실험 1

- NAND based SR-latch를 활용한 D-latch 설계 (74LS00, 74LS04 사용)
 - ✓ CLK (AWG ch1)
 - Type: Square, Freq: 1KHz, Amp: 2.5V, Offset: 2.5V
 - Symmetry: 50%, phase: 0°
 - ✓ D (AWG ch2)
 - Type: Square, Freq: 500Hz, Amp: 2.5V, Offset: 2.5V
 - Symmetry: 50%, phase: 45°
 - ✔ EEboard Oscilloscope로 파형 측정 (y축:2V/div, x축: 0.5ms/div)
 - Ch1: CLK, ch2: D, ch3: Q
 - DC coupling mode로 측정

<Logic diagram>

CLK	D	Q	Q'
0	Χ	Hold	Hold
1	0	0	1
1	1	1	0

<Functional truth table>

14

*Waveform SW에서 설정 및 Ch1, Ch2 *synchronization* 하기

실험 2

- D-latch-based rising edge triggered D Flip-Flop 설계
 - ✓ 입력 신호 및 오실로스코프 setting은 이전과 동일
 - ✓ EEboard Oscilloscope로 파형 측정 (y축:2V/div, x축: 0.5ms/div)
 - Ch1: CLK, ch2: D, ch3: Q
 - DC coupling mode로 측정

