Graphs-Modularity

$$M_c = \sum_{c=1}^{n_c} \left[\frac{L_c}{L} - \left(\frac{k_c}{2L} \right)^2 \right]$$

Measure the quality of a partition

$$M_c = \sum_{c=1}^{n_c} \left[\frac{L_c}{L} - \left(\frac{k_c}{2L} \right)^2 \right]$$

"the fraction of edges that fall within communities, minus the expected value of the same quantity if edges fall at random without regard for the community structure"

Community 1:
$$\left[\frac{6}{20} - \left(\frac{14}{40} \right)^2 \right]$$

Community 2:
$$\left[\frac{7}{20} - \left(\frac{16}{40} \right)^2 \right]$$

Community 3:
$$\left[\frac{4}{20} - \left(\frac{10}{40} \right)^2 \right]$$

Community 1:
$$\left[\frac{2}{20} - \left(\frac{8}{40} \right)^2 \right]$$

Community 2:
$$\left[\frac{9}{20} - \left(\frac{22}{40} \right)^2 \right]$$

Community 3:
$$\left[\frac{4}{20} - \left(\frac{10}{40} \right)^2 \right]$$