AULA 6 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS (NÚMEROS DE MOTZKIN)

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Os números de Motzkin

são definidos pela seguinte relação de recorrência:

$$\mathsf{Motzkin}\,(n) \ \ = \begin{cases} 1 \ , \ \mathsf{se} \ \mathsf{n} = \ 0 \ \mathsf{e} \ \mathsf{n} = \ 1 \\ \mathsf{Motzkin}\,(n-1) + \sum_{k=0}^{n-2} \mathsf{Motzkin}(k) \times \mathsf{Motzkin}\,(n-2-k) \ , \ \mathsf{se} \ \mathsf{n} \ > \ 1 \end{cases}$$

Função Recursiva

- Implemente uma função recursiva Motzkin(n) que use diretamente a relação de recorrência acima, sem qualquer simplificação.
- Construa um programa para executar a função **Motzkin(n)** para **sucessivos valores de n** e que permita **contar o número total de multiplicações efetuadas** para cada valor de n.
- Preencha a as primeiras colunas tabela seguinte com o resultado da função recursiva e o número de multiplicações efetuadas para os sucessivos valores de n.

		_		
index	value	recursive	dynamic	
0	1	0	0	
1	1	0	0	
2	2	1	1	
3	4	3	3	
4	9	8	6	
5	21	20	10	
6	51	49	15	
7	127	119	21	
8	323	288	28	
9	835	696	36	
10	2188	1681	45	
11	5798	4059	55	
12	15511	9800	66	
13	41835	23660	78	
14	113634	57121	91	
15	310572	137903	105	

Analisando os dados da tabela, estabeleça uma ordem de complexidade para a função recursiva.

Observando a tabela, o algoritmo parece ter uma ordem de complexidade de multiplicações exponencial.

Programação Dinâmica

- Uma forma alternativa de resolver alguns problemas recursivos, para evitar o cálculo repetido de valores, consiste em efetuar esse cálculo de baixo para cima ("bottom-up"), ou seja, de Motzkin(0) para Motzkin(n), e utilizar um array para manter os valores entretanto calculados. Este método designa-se por programação dinâmica e reduz o tempo de cálculo à custa da utilização de mais memória para armazenar os valores intermédios.
- Usando **programação dinâmica**, implemente uma **função iterativa** para calcular Motzkin(n). **Não utilize um array global.**
- Construa um programa para executar a função iterativa que desenvolveu para **sucessivos valores de n** e que permita **contar o número de multiplicações efetuadas** para cada valor de n.
- Preencha as últimas colunas tabela anterior com o resultado da função iterativa e o número de multiplicações efetuadas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma **ordem de complexidade** para a **função iterativa**.

Observando a tabela, o algoritmo parece ter uma ordem de complexidade de multiplicações polinomial (quadrática).

Função Recursiva - Análise Formal da Complexidade

• Escreva uma expressão recorrente (direta) para o número de multiplicações efetuadas pela função recursiva Motzkin(n). Obtenha, depois, uma expressão recorrente simplificada. Note que $\sum_{k=0}^{n-2} \text{Mult}(k) = \sum_{k=0}^{n-2} \text{Mult}(n-2-k)$. Sugestão: efetue a subtração Mult(n) – Mult(n-1).

$$M(n-1) + \sum_{k=0}^{n-2} (1+M(k)+M(n-2-k)) = M(n-1) + \sum_{k=0}^{n-2} (1+M(k)+M(k)) =$$

$$M(n-1) + \sum_{k=0}^{n-2} (1+2*M(k)) = M(n-1) + 2* \sum_{k=0}^{n-2} (\frac{1}{2}+M(k))$$

$$0 0$$

$$1 0$$

$$M(n) - M(n-1) = M(n-1) + 2* \sum_{k=0}^{n-2} (\frac{1}{2}+M(k)) - M(n-2) - 2* \sum_{k=0}^{n-3} (\frac{1}{2}+M(k)) =$$

$$M(n-1) - M(n-2) + 2* \left(\sum_{k=0}^{n-2} (\frac{1}{2}+M(k)) - \sum_{k=0}^{n-3} (\frac{1}{2}+M(k))\right) =$$

$$M(n-1) - M(n-2) + 2* \left(\sum_{k=0}^{n-3} (\frac{1}{2}+M(k)) - \sum_{k=0}^{n-3} (\frac{1}{2}+M(k)) + (\frac{1}{2}+M(n-2))\right) =$$

$$M(n-1) - M(n-2) + 2* \left(\sum_{k=0}^{n-3} (\frac{1}{2}+M(k)) - \sum_{k=0}^{n-3} (\frac{1}{2}+M(k)) + (\frac{1}{2}+M(n-2))\right) =$$

$$M(n-1) - M(n-2) + 2* M(n-2) + 1 =$$

$$M(n) - M(n-1) = M(n-1) + M(n-2) + 1 =$$

$$M(n) = 2* M(n-1) + M(n-2) + 1 =$$

$$M(n) = 1/4((1-\sqrt{(2}))^n + (1+\sqrt{(2}))^n - 2)$$

$$9 696$$

• A equação de recorrência obtida é uma equação de recorrência linear não homogénea. Considere a correspondente equação de recorrência linear homogénea. Determine as raízes do seu polinómio característico. Sem determinar as constantes associadas, escreva a solução da equação de recorrência linear não homogénea.

Usando a solução da equação de recorrência obtida acima, determine a ordem de complexidade do
número de multiplicações efetuadas pela função recursiva. Compare a ordem de complexidade que
acabou de obter com o resultado da análise experimental.

A ordem de complexidade do algoritmo é exponencial, a mesma ordem de complexidade prevista através da analise experimental. $(O(k^n))$

Programação Dinâmica – Análise Formal da Complexidade

 Considerando o número de multiplicações efetuadas pela função iterativa, efetue a análise formal da sua complexidade. Obtenha uma expressão exata e simplificada para o número de multiplicações efetuadas.

Dos for loops no programa podemos extrair os somatórios

$$M_d(n) = \sum_{i=2}^n \left(\sum_{k=0}^{i-2} (1)\right) = \frac{n(n-1)}{2}$$

Os valores obtidos com a fórmula fechada corroboram os valores experimentais obtidos

n	$\frac{1}{2} \left(n - 1 \right) n$
1	0
2	1
3	3
4	6
5	10
6	15
7	21
8	28
9	36
10	45

•	Usando	a	expressão	obtida	acima,	determine	a	ordem	de	complexidade	do	número	de
	multipli	ca	ções efetua	das pela	a função	iterativa.	Cor	npare a	orde	m de complexida	ide o	que acabou	ı de
	obter co	m	o resultado	da anál	ise exp	erimental.							

A ordem de complexidade do algoritmo iterativo é polinomial (quadrática), a mesma obtida através da observação dos dados experimentais. O(n^2)