Análisis de Algoritmos ICI-522

Sergio Hernández. PhD computer science

Departamento de Computación e Informática Universidad Católica del Maule. shernandez@ucm.cl

Clase de Complejidad

Tipos de Problemas

- Un problema de decisión es aquel que tiene una solución del tipo SI/NO.
- Un problema de **optimización** es aquel que requiere mininizar o maximizar una función objetivo.

Clase de Complejidad

Tipos de Problemas

- Un problema de decisión es aquel que tiene una solución del tipo SI/NO.
- Un problema de optimización es aquel que requiere mininizar o maximizar una función objetivo.

Clase de Complejidad

Una clase de complejidad es un conjunto de problemas de decisión que puede ser resuelto por una máquina.

Clases de Complejidad

• Hemos visto que el rendimiento de los algoritmos puede ser medido en términos de tiempo y espacio (memoria).

Clases de Complejidad

- Hemos visto que el rendimiento de los algoritmos puede ser medido en términos de tiempo y espacio (memoria).
- La mayor parte de los algoritmos vistos (ordenamiento, algebra lineal, etc) pueden ser resueltos en tiempo polinomial $\mathcal{O}(n^k)$.

Clases de Complejidad

- Hemos visto que el rendimiento de los algoritmos puede ser medido en términos de tiempo y espacio (memoria).
- La mayor parte de los algoritmos vistos (ordenamiento, algebra lineal, etc) pueden ser resueltos en tiempo polinomial $\mathcal{O}(n^k)$.
- Sin embargo, no todos los problemas comparte esta textbfclase de complejidad.

Clases P y NP

• La clase P corresponde a todos los problemas que pueden ser resuletos en tiempo polinomial, es decir poseen complejidad del orden $\mathcal{O}(n^k)$, donde n es el tamaño del problema y k es una constante.

Clases P y NP

- La clase P corresponde a todos los problemas que pueden ser resuletos en tiempo polinomial, es decir poseen complejidad del orden $\mathcal{O}(n^k)$, donde n es el tamaño del problema y k es una constante.
- En cambio, la clase NP corresponde a problemas que son verificables en tiempo polinomial.

Clases P y NP

- La clase P corresponde a todos los problemas que pueden ser resuletos en tiempo polinomial, es decir poseen complejidad del orden $\mathcal{O}(n^k)$, donde n es el tamaño del problema y k es una constante.
- En cambio, la clase NP corresponde a problemas que son verificables en tiempo polinomial.
- Sin embargo, no todos los problemas comparten esta clase de complejidad.

Verificación en Tiempo Polinomial

Ciclo Euleriano

Dado un grafo G, un ciclo Euleriano es aquel que visita todos las aristas del grafo exactamente una vez.

Verificación en Tiempo Polinomial

Ciclo Euleriano

Dado un grafo G, un ciclo Euleriano es aquel que visita todos las aristas del grafo exactamente una vez.

Ciclo Hamiltoniano

Dado un grafo G, un ciclo Hamiltoniano es aquel que visita todos los vértices del grafo exactamente una vez.

Ejemplos de Problemas

Clase P	Clase NP
Ciclo Euleriano	Ciclo Hamiltoniano
Encontrar el subgrafo sin ciclos de	Encontrar el subgrafo completo de
mayor tamaño en $\it G$	mayor tamaño en $\it G$
Encontrar el camino más corto en-	Encontrar el camino más largo en-
tre dos vértices	tre dos vértices

Clases NP-completo

• Un problema puede Q ser reducido a otro problema Q^* si cada instancia del problema original puede ser re-escrito como una instancia de Q^* .

Clases NP-completo

- Un problema puede Q ser reducido a otro problema Q^* si cada instancia del problema original puede ser re-escrito como una instancia de Q^* .
- Los problemas NP-dificiles son aquellos para los cuales no se conocen algoritmos polinomiales ni tampoco pueden ser verificados en tiempo polinomial.

Clases NP-completo

- Un problema puede Q ser reducido a otro problema Q^* si cada instancia del problema original puede ser re-escrito como una instancia de Q^* .
- Los problemas NP-dificiles son aquellos para los cuales no se conocen algoritmos polinomiales ni tampoco pueden ser verificados en tiempo polinomial.
- La clase NP-completo corresponde a una intersección entre la clase NP y NP-dificil.