A Unified Framework for Automatic Wound Segmentation and Analysis with Deep Convolutional Neural Networks

Changhan Wang, Xinchen Yan, Max Smith, Kanika Kochhar, Marcie Rubin, Stephen M. Warren, James Wrobel and Honglak Lee

Background

- According to the report published in 2009, chronic wounds affect 6.5 million patients in the United States.
- An estimated excess of US\$25 billion is spent annually on treatment of chronic wounds.
- The burden is growing due to increasing healthcare costs, an aging population and a sharp rise in diabetes and obesity worldwide.

Background

 Care is given in patient's homes, clinics, acute care hospitals, rehabilitation facilitie and extended care facilities.

 However, accurate diagnosis and timely treatment will highly rely on expertise and experience.

Motivations

 Automate the process of wound surface area measurement & wound infection detection with lower cost

Proposed Solution

 Automatic process of wound surface estimation, infection detection & condition analysis

	Silhouette Star	Manual Judgement	Our proposed solution
Auxiliary device	high-resolution camera	scalpels	digital camera
Machine Learning	no	no	yes
Accuracy	gold-standard	rough estimation	finer estimation
Time	medical admission	time-consuming	photograph: one-click process: a few secs
Cost	high	low	low

Related work

- Wound segmentation/area estimation: hand-crafted features [Kolesnik et al. 2005][Kolesnik et al. 2006][Veredas et al. 2010]
- Healing progress prediction: short-term predictions based on simple color histogram features [Gurtner et al. 2008][Loizou et al. 2012]
- Dataset for evaluation
 - lack diversity in wound types
 - limited number of subjects/wound images
 - Images have to be manually preprocessed

Our system: a unified framework

Task I: wound segmentation

 Foreground/background segmentation: binary classification for each pixel in the scene

classification for each pixel

Wound Image

Wound Mask

Overlay

Task II: infection detection

Infection detection as a binary classification problem

Infected or not?

Infected

Infected

Not infected

Task III: healing progress prediction

Predicting the trend and date of healing

Convolutional Neural Networks

- LeCun et al. 1989
- Neural network with specialized connectivity structure

Convolutional Neural Networks

- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised
- Train convolutional filters by back-propagating classification error

LeCun et al. 1998

Filtering

- Convolutional
- Dependencies are local
- Translation equivariance
- Tied filter weights (few params)

- Stride 1, 2, ... (faster, less mem)

Input

Feature Map

Non-Linearity

- Non-linearity
 - Per-element (independent)
 - Tanh
- Sigmoid: 1/(1+exp(-x))
- Rectified linear
 - Simplifies backprop
 - Makes learning faster
 - Avoids saturation issues

Pooling

- Spatial Pooling
- Non-overlapping / overlapping regions
- Sum or max
- Boureau et al. ICML'10 for theoretical analysis

Convolutional Neural Networks

Contributions

- Learning & evaluations on a large-scale dataset
 - Large number of patients and wound images
 - Weekly wound images that enables temporal analysis
 - Various wound types that ensures generalization
 - Annotated by wound experts for supervised learning

venous wound

arterial wound

pressure ulcer wound

Contributions

- Learning & evaluations on a large-scale dataset
- Automatic system for wound region segmentation in wound images
- Accurate wound surface area estimation based on the segments
- Infection detection based on learned visual wound features
- First attempt to automate long-term predictions of wound healing rates and healing dates

Results: Segmentation

Crop images by Grabcut

Mark background areas with strokes. Automated by sampling strokes in marginal areas.

Grabcut:
segment the
wound area and
the background
(indicated by the
strokes)

Crop the image to the bounding box

Locate a bounding box by the center of the wound area

Results: Segmentation

	Pixel Accuracy	Mean IoU
SVM (RGB)	77.60%	26.40%
ConvNet	95.00%	47.30%

- Intersection over union (IoU)
- Larger IoU suggests better overlap between the prediction and groundtruth (hence better prediction)

Results: Infection Detection

Results: Infection Detection

Results: Infection Detection

					F-1	
	p	Accuracy	Recall	Precision	Score	AUC
Random	10%	86.90%	10%	3.83%	0.055	
	50%	50%	50%	3.83%	0.071	50%
	100%	3.83%	100%	3.83%	0.074	
CNN featu Linear SV		95.30%	23.10%	33.30%	0.273	76.30%
CNN features + Kernel SVM		95.60%	30.80%	40.00%	0.348	84.70%

- It is well known that wound surface area changes at 4 weeks are highly predictive of subsequent wound closure.
- Construct Gaussian process regression model to capture healing dynamics

- We analyzed the time (weeks) it took until the wound size became 10%, 5%, and 0% of the original wound area.
- Measured using mean absolute error (MAE); namely, the average of the absolute errors:

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |f_i - y_i| = \frac{1}{n} \sum_{i=1}^{n} |e_i|$$
.

We also report the average MAE across all time frames

	MAE _{time} (10%)	MAE _{time} (5%)	MAE _{time} (0%)	Avg. MAE _{area}
CNN feature				
+ Linear regression	8.84	18.64	3.3	6.06%
CNN feature				
+ Polynomial regression	16.7	5.11	3.81	6.07%
CNN feature				
+ GP regression	10.07	2.94	2.17	3.95%

Methods

- ConvNets for wound segmentation
- Gaussian Process Regression for healing progress prediction

Our ConvNet Model

Features for Wound Analysis

Gaussian Process Regression

- Bayesian linear regression
- Anisotropic Gaussian kernel

Value Add

What our work adds to the general community

- save money
- better diagnostic
- etc.

Reference

- [1] Kolesnik, Marina, and Ales Fexa. "Multi-dimensional color histograms for segmentation of wounds in images." *Image Analysis and Recognition* (2005): 1014-1022.
- [2] Kolesnik, Marina, and Aleš Fexa. "How robust is the SVM wound segmentation?." *Signal Processing Symposium, 2006. NORSIG 2006. Proceedings of the 7th Nordic.* IEEE, 2006.
- [3] Veredas, Francisco, Héctor Mesa, and Laura Morente. "Binary tissue classification on wound images with neural networks and bayesian classifiers." *Medical Imaging, IEEE Transactions on*29.2 (2010): 410-427.
- [4] Gurtner, Geoffrey C., et al. "Wound repair and regeneration." Nature 453.7193 (2008): 314-321.
- [5] Loizou, Christos P., et al. "Evaluation of wound healing process based on texture analysis." Bioinformatics & Bioengineering (BIBE), 2012 IEEE 12th International Conference on. IEEE, 2012.

Q & A

filter visualization by projection

filter visualization by finding the patches (in particular image) that maximize the activation

filter visualization by finding the patches (in entire training set) that maximize the activation

