EPITA

Mathématiques

Partiel (S3)

décembre 2017

Nom:
Prénom:
Entourer le nom de votre professeur de TD : M. Cartailler / M. Euvrard / M. Goron / M. Rodot
Classe:
NOTE:

Exercice 1 (6 points)

Soient
$$A = \begin{pmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$.

A et B sont-elles diagonalisables dans $\mathcal{M}_3(\mathbb{R})$? Si oui, déterminer D et P.

N.B. : l'obtention des sous-espaces propres sous forme de sous-espaces engendrés doit découler d'un raisonnement clair et non pas d'une manière hasardeuse en prenant directement des valeurs particulières.

[suite du cadre page suivante]

Exercice 2 (4 points)
Soient
$$a \in \mathbb{R}$$
 et $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ a^2 - a & -a - 1 & a^2 + 1 \end{pmatrix}$.

Discuter de la diagonalisabilité de A dans $\mathcal{M}_3(\mathbb{R})$ suivant les valeurs de a.

 ${\rm N.B.}$: la diagonalisation dans les cas favorables n'est pas demandée.

[suite du cadre page suivante]

	\
Exercice 3 (4 points)	
Tivotoro o (a homes)	

1. Soient $n \in \mathbb{N}$ et $f : \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \longrightarrow & \mathbb{R} \\ P & \longmapsto & \int_0^1 P(t) \mathrm{d}t \end{array} \right.$

Déterminer la matrice de f relativement aux bases canoniques des espaces de départ et d'arrivée.

2. Soient $E = \mathbb{R}_3[X]$ et $f: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ P(X) & \longmapsto & (X^2 - 1)P''(X) + 2XP'(X) \end{array} \right.$

Déterminer la matrice de f relativement à la base canonique $(1, X, X^2, X^3)$ de $\mathbb{R}_3[X]$.

E	xer	cice	4	(4	po	ints)
_		_	-				

Soient E un \mathbb{R} -ev de dimension finie, F et G deux sev supplémentaires dans E, $\mathscr{B}=(e_1,\ldots,e_p)$ une base de F et $\mathscr{B}'=(f_1,\ldots,f_q)$ une base de G. Montrer, SANS utiliser l'assertion $\dim(E)=\dim(F)+\dim(G)$, que la concaténation de \mathscr{B} et \mathscr{B}' est une base de E.

