Module 07: Efficiency

Topics:

- Basic introduction to run-time efficiency
- Analyzing recursive code
- Analyzing iterative code

Consider the following two ways to calculate the maximum of a nonempty list. Why is one so much slower than the other?

```
def list max(L):
    \max so far = L[0]
    for v in L:
        if v > max so far:
            \max so far = v
    return max_so_far
def list max1(L):
    if len(L) == 1:
        return L[0]
    elif L[0] > list max1(L[1:]):
        return L[0]
    else:
        return list max1(L[1:])
```

Comparing Algorithms

Suppose you have two algorithms to solve a problem. How can we determine which one is better?

Which is easier to understand? Implement?
 Accurate? More robust? Adaptable? Efficient?

We will use efficiency to compare algorithms.

Efficiency

The most common measure of efficiency is *time efficiency*, or how long it takes an algorithm to solve a problem.

Depends on its implementation

Another measure of efficiency is *space efficiency*, or how much space (memory) an algorithm requires to solve a problem.

Efficiency: measurement of Running Time of an algorithm

What is our unit of measurement? Seconds?

- Dependent on when statement made, what computer, how much RAM, what language used, what OS, etc.
- Do we consider the average time over all possible problems? Just one? Which one?

The actual time taken is not a great choice. Instead, we will count number of steps or basic operations performed.

Example

What is the number of operations executed when calling this function?

```
def sum_all(values):
    sum = 0
    ind = 0
    upper = len(values)
    while (ind < upper):
        sum = sum + values[ind]
        ind = ind + 1
    return sum</pre>
```

Input size

- Let n refer to the size of the problem
 - Length of list
 - Number of characters in a string
 - The number itself
 - Number of digits in a Nat
 - Meaning should be specified if not clear
- Running time is always stated as a function of n. We denote it by T(n)

Running time depends on data values, not just input size

- Assume n = len(L)
- How many steps are taken by the following code? What does it do?

```
ind = 0
length = len(L)
while (ind < length) and (L[ind] > 0):
    ind = ind + 1
```

Terminology

- We will be pessimistic, and determine the largest value of T(n) possible for a fixed n
 - Worst case running time
 - This is our default meaning of "run time"
- Sometimes we are interested in the **best case**, i.e. the minimum value of T(n) possible for a fixed value of n

Big O notation

- In practice, we are not concerned with the difference between the running times 6n + 6 and 174n + 32.
- We are interested in the *order* of a running time.
 The order is the *dominant* term without its coefficient.
- The dominant term in both 6n + 6 and 174n + 32 is n, so both are "Order n", denoted O(n)
- This is called the *asymptotic* run time

Big O Examples

- 2016 = O(1)
- $12 \log n + 45 = O(\log n)$
- $12 \log n + 45n = O(n)$
- $20 n \log n + 3n + 27 = O(n \log n)$
- $3 + n + n^2 + 2^n = O(2^n)$

Important Big O information

- In this course, we will encounter only a few orders (arranged from smallest to largest): $O(1) < O(\log n) < O(n) < O(n\log n) < O(n^2) < O(2^n)$
- Note that these relationships hold as $n \to \infty$
- When comparing algorithms, the most efficient algorithm is the one with the lowest order.
- If two algorithms have the same order, they are considered equivalent, but may not take exactly the same number of steps.

What is the running time of this code?

```
def list_max(values):
    max_so_far = values[0]
    for v in values:
        if v > max_so_far:
            max_so_far = v
    return max_so_far
```

Big O arithmetic

 When adding two orders, the result is the larger of the two orders.

$$-O(\log n) + O(n) = O(n)$$

$$-0(1) + 0(1) = 0(1)$$

- How can we use this result?
 - Break code into blocks that run one after the other
 - If you determine the asymptotic run times of the blocks independently, then just add them to get the overall run time.

Algorithm analysis

- An important skill in Computer Science is the ability to analyze a program and determine the order of its running time.
- In this course, you will not need to count operations exactly.
- Our goal is to give you experience and to work towards building your intuition.

```
sum=0
for x in lst:
   sum = sum + x
```

Each item in the list is retrieved once, so running time is O(n)

Basic Operations in Python

We will make the following assumptions

Numerical operations:

- \circ +, -, *, /, = are O(1)
- \circ max(a,b), min(a,b) are O(1) for numbers a and b
- \circ a==b is O(1) for numbers a and b

Basic Operations in Python

We will make the following assumptions

- String operations, where n = len(s)
 - -len(s), s[k] are O(1)
 - -s + t is O(n + len(t))
 - Most string methods (e.g. count, find, lower) are O(n)
- print and input are dependent on the length of what is being printed and read in

Basic List Operations, where n = len(L)

We will make the following <u>assumptions</u>:

- len(L), L[k] are O(1)
- L + M is O(n + len(M))-L + [x] is O(n)
- sum(L), max(L), min(L) are O(n)
- L[a:b] is O(b-a), so at most O(n)
 - -L[1:] is O(n)
 - -L[3:5] is O(1)
- L.append(x) is O(1)

More basic list operations, where n = len(L)

We will make the following *assumptions*:

- list(range(n)) is O(n)
- [x] *n is O(n)
- Most other list methods on L (e.g. count, index, insert, pop, remove) are
 O(n)
- L.sort() is $O(n \log n)$
- L.extend (M) is O(len(M))
 - Note that extend's run-time is independent of n

Here are two ways to duplicate a list. Which is most efficient?

```
def duplicate1(L):
    extra = []
    for x in L:
        extra.append(x)
    return extra
def duplicate2(L):
    extra = []
    for x in L:
        extra = extra + [x]
    return extra
```

General Procedure for analyzing a loop

- Determine the number of iterations
- For each iteration, determine the running time of body of the loop
 - Each loop body may have the same running time,
 but that is not guaranteed
- Add together the running time of each loop body to get the overall running time

More Big O arithmetic

 When multiplying two orders, the result is the product of the two orders.

- $-O(\log n) * O(n) = O(n \log n)$
- $-O(n) * O(n) = O(n^2)$
- How can we use this result?
 - Determine the asymptotic run time of the number of iterations of a loop
 - Determine the asymptotic run time of the body of the loop
 - Multiply them to get the overall asymptotic run time

Warning: The following code fragments do NOT have the same runtime. Why?

```
diff = 0
for x in L:
    diff += abs(x - sum(L)/len(L))

diff = 0
mean = sum(L)/len(L)
for x in L:
    diff += abs(x-mean)
```

Be very careful about what steps are put inside the loop body. Try to move non-O(1) steps outside the loop body, when possible.

What if there are nested loops?

- You can take different approaches:
 - Work from the innermost loop to the outermost
 - Work from the outermost loop to the innermost
- Nested loops can lead to nested sums

What is the running time of mult_table(n)?

```
def mult table(n):
    table = [0]*n
    row = 0
    columns = list(range(n))
    while row < n:
        this row = []
        for c in columns:
            this row.append((row+1)*(c+1))
        table[row] = this row
        row = row + 1
    return table
```

Useful summations

•
$$\sum_{i=1}^{n} 1 = O(n)$$

•
$$\sum_{i=1}^{n} i = O(n^2)$$

•
$$\sum_{i=1}^{n} n = O(n^2)$$

•
$$\sum_{i=1}^{n} \sum_{j=1}^{n} 1 = O(n^2)$$

How do we determine runtime of recursive code?

```
def list_max(L):
    if len(L) == 1:
        return L[0]
    else:
        return
        max(L[0],
        list_max(
        L[1:]))
```

- Count steps for:
 - Determine len (L)
 - Compare to 1
 - Calculate L [0]
 - Calculate L[1:]
 - Call list_maxrecursively on a list of length n-1
 - Determine max of two values
- T(n) = O(n) + T(n-1)

More generally ...

- To help in analyzing recursive code, we will use basic recurrence relations.
- We will express the running time of a problem of size n in terms of
 - Running time of the code other than recursion
 - Running time of recursive call(s)
- For example:

$$-T(n) = O(n) + T(n-1)$$

Helpful recurrence relations

 Once we have such a recurrence relation, use the following rules to determine the overall running time.

•
$$T(n) = O(1) + T(n-1) \rightarrow O(n)$$

•
$$T(n) = O(n) + T(n-1) \rightarrow O(n^2)$$

•
$$T(n) = O(1) + T(n/2) \rightarrow O(\log n)$$

•
$$T(n) = O(n) + 2T(n/2) \rightarrow O(n \log n)$$

$$-T(n) = O(n) + T(n/2) \rightarrow O(n)$$

•
$$T(n) = O(1) + T(n-1) + T(n-2) \rightarrow O(2^n)$$

$$-T(n) = O(1) + 2T(n-1) \rightarrow O(2^n)$$

$$-T(n) = O(n) + T(n-1) + T(n-2) \rightarrow O(2^n)$$

$$-T(n) = O(n) + 2T(n-1) \rightarrow O(2^n)$$

Here are two ways to find maximum in a list. Which is more efficient?

```
def list max1(L):
    if len(L) == 1:
        return L[0]
    elif L[0] > list max1(L[1:]):
        return L[0]
    else:
        return list max1(L[1:])
def remember max(m, L):
    if len(L) == 0:
        return m
    elif m > L[0]:
        return remember max(m, L[1:])
    else:
        return remember max(L[0], L[1:])
def list max2(L):
    return remember max(L[0], L[1:])
```

Analysing abstract list functions

- map(f,L), filter(f,L) are at least O(n)
- Actual running time depends on running time of £
- Hint: Analyse the program as if it were a loop instead of map or filter

Determine the running times

```
def duplicate3(L):
    return list(map(lambda x:x, L))
def first chars(words):
    return list(map(lambda t: t[0],
                    filter(lambda s:len(s)>0,
                           words)))
def list of lists(n):
    return list(map(lambda x:
                       list(range(n)),
                     range(n)))
```

Overall comments

- We've provided just a basic introduction to runtime analysis
 - Especially for recursive code
 - We have made some simplifications
- The topic is very important, though, and even an introduction can help you design better programs.
- Like this topic?
 - CS234 (non-majors)
 - CS240 (majors)

Summary of Common Runtimes

e quickly	
more	
grow	
Functions	

	Common Name
O(1)	Constant
O(log n)	Logarithmic
O(n)	Linear
O(n log n)	Log Linear
O(n ²)	Quadratic
O(2 ⁿ)	Exponential

Goals of Module 07

- Understand how to analyze Python code to determine its running time, including
 - Recursion
 - Iteration
 - Abstract list functions
- Understand basic run time categories