Práctica 9: Interacciones entre Partículas

10 de octubre de 2017

1. Tarea

Agregar a las partículas una masa y ver como afecta su velocidad. La manera en que se asigno una masa a las partículas fue la siguiente

$$masa = |100 \times carga|. \tag{1}$$

Y dado que la carga de las partículas esta entre [-1,1] el máximo valor para la masa de una partícula es de cien.

1.1. Resultados

Se puede ver claramente que cuando interviene la masa de la partícula además de la carga, la velocidad en partículas pequeñas se incrementa.

Figura 1: Visualización de las velocidades de las partículas cuando es afectada solo por la carga (izquierda) y cuando afecta la carga y la masa de la partícula (derecha). En la gráfica del lado derecho las cajas están ordenadas de menor a mayor masa.

1.2. Pruebas Estadísticas

Para corroborar la relación entre la masa, la carga y la velocidad se realizó una regresión lineal para tratar de explicar el comportamiento de la velocidad de las partículas con respecto a esas dos variables.

Si tomamos cada variable por separado es decir primero la carga y después la masa y vemos que tanto influye en la velocidad obtenemos lo siguiente,primero para las cargas

Figura 2: Distribución de las velocidades con respecto a la carga.

```
Residual standard error: 0.2268 on 18 degrees of freedom

R-squared: 0.001408 Adjusted R-squared: -0.05407

F-statistic: 0.02537 on 1 and 18 DF p-value: 0.8752
```

Podemos notar que la carga por si sola afecta poco la velocidad de las partículas, ahora si agregamos la masa en conjunto con la carga obtenemos lo siguiente

Figura 3: Distribución de las velocidades con respecto a la masa.

Residual standard error: 0.2086 on 18 degrees of freedom

R-squared: 0.1555 Adjusted R-squared: 0.1086

F-statistic: 3.314 on 1 and 18 DF p-value: 0.08537

Como vemos la variación en la masa en conjunto con la carga si influye la velocidad pero solo un $15\,\%.$

2. Reto 1

El reto 1 consistía solamente en agregar un radio también acorde a la masa para poder diferenciar mejor que partículas tiene una mayor masa y por lo tanto también una mayor carga.

La manera en que se asigno el radio de las partículas fue la siguiente

$$radio = \frac{masa}{10}. (2)$$

Figura 4: Visualización de partículas de diferentes tamaños según su masa y carga (rojo partículas con carga negativa, azul con carga positiva). La animacion donde se puede ver el movimiento de las partículas se puede encontrar en esta liga.