APPM 4600 Homework 2

Dani Lisle — STID:109 97 2839

February 7, 2024

Problem 1

Part a

Given the binomial expansion,

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$$

As $x \to 0$, the higher-order terms grow in total at a significantly lower rate then x, so we have

$$(1+x)^n = 1 + nx + o(x).$$

Part b

To show that $x \sin(\sqrt{x}) = O(x^{3/2})$ as $x \to 0$, we consider the function $f(x) = x \sin(\sqrt{x})$ and compare its growth rate to that of $g(x) = x^{3/2}$. We evaluate the derivatives of both functions:

$$f'(x) = \frac{d}{dx} \left(x \sin(\sqrt{x}) \right) = \frac{\sqrt{x} \cos(\sqrt{x})}{2} + \sin(\sqrt{x})$$
$$g'(x) = \frac{d}{dx} \left(x^{3/2} \right) = 1.5x^{0.5}$$

We then examine the limit of the ratio of these derivatives as x approaches 0:

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\frac{\sqrt{x}\cos(\sqrt{x})}{2} + \sin(\sqrt{x})}{1.5x^{0.5}}$$

Evaluating this limit yields:

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = 1$$

This result indicates that the growth rate of f(x) is comparable to that of g(x) as x approaches 0. Additionally, f's growth slows as x increases close to 0, so $x \sin(\sqrt{x}) = O(x^{3/2})$ as $x \to 0$.

Part c

To show that $e^{-t} = o\left(\frac{1}{t^2}\right)$ as $t \to \infty$, we evaluate the limit of the ratio of e^{-t} to $\frac{1}{t^2}$ as t approaches infinity:

$$\lim_{t \to \infty} \frac{e^{-t}}{\frac{1}{t^2}} = \lim_{t \to \infty} \frac{t^2}{e^t} = \lim_{t \to \infty} \frac{t^2}{e^t} = \lim_{t \to \infty} \frac{2}{e^t} = 0$$

After repeated applications of L'Hopital's Rule, the exponential term e^{-t} in the numerator ensures that the limit approaches 0, as the exponential decay outpaces any polynomial decay, satisfying the condition for $e^{-t} = o\left(\frac{1}{t^2}\right)$.

Part d

The integral is bounded by a constant multiple of ϵ : $k\epsilon$ which is greater than or equal to the largest slice of the integral (which is that closest to zero). Therefore, the integral is $O(\epsilon)$. Bounded by a constant multiple of ϵ .

Problem 2

Part a

The change in the solution Δx due to the perturbation in b can be calculated using the formula $\Delta x = A^{-1} \Delta b$:

$$\Delta x = \begin{bmatrix} 1 - 10^{10} & 10^{10} \\ -10^{10} & 1 + 10^{10} \end{bmatrix} \begin{bmatrix} \Delta b_1 \\ \Delta b_2 \end{bmatrix} = \begin{bmatrix} -(10^{10} - 1)\Delta b_1 + 10^{10}\Delta b_2 \\ -10^{10}\Delta b_1 + (10^{10} + 1)\Delta b_2 \end{bmatrix}$$

Part b

The norm of A is 1, and the norm of A inverse is $2 \cdot 10^{10}$. See norm.py in the Homework 2 folder of the Git repository.

So the condition number is $1 \cdot 2 \cdot 10^{10} = 2 \cdot 10^{10}$.

Part c

The error in the solution is bounded above by $2 \cdot 10^{10} * P_r$, where P_r is the

The error in the solution is bounded above by
$$2 \cdot 10^{-3} * P_r$$
, we relative perturbation $\frac{||\Delta b||}{||b||}$.

If $\Delta b = \begin{bmatrix} p \times 10^{-5} \\ q \times 10^{-5} \end{bmatrix}$ then the upper bound is
$$2 \cdot 10^{10} \cdot \sqrt{(p^2 + q^2)} \cdot 10^{-5} = 2\sqrt{(p^2 + q^2)} \cdot 10^5$$

With the Euclidean norm, the behavior is not qualitatively different when the perturbations are the same. Given both components have same true value, equal perturbations are more likely.

Problem 3

Part a

Given the function $f(x) = e^x - 1$, the relative error can be bounded by the function's condition number $k_f(x)$:

$$\frac{|f(x) - \tilde{f}(x)|}{|f(x)|} \le k_f(x) \frac{|x - \tilde{x}|}{|x|}$$

where the condition number $k_f(x)$ is defined as:

$$k_f(x) = \left| \frac{xf'(x)}{f(x)} \right|$$

For the given function $f(x) = e^x - 1$, the condition number becomes:

$$k_f(x) = \left| \frac{xe^x}{e^x - 1} \right|$$

Evaluating the limit as x approaches 0:

$$\lim_{x \to 0} \frac{xe^x}{e^x - 1} = \lim_{x \to 0} \frac{e^x + xe^x}{e^x} = \lim_{x \to 0} (1 + x) = 1$$

Part b

When x is very large:

$$\lim_{x \to \infty} \frac{xe^x}{e^x - 1} = \lim_{x \to \infty} (1 + x) = \infty$$

This indicates that the algorithm is stable due to the condition number when x is not large.

Part c

The algorithm gives 8 correct digits, this is expected because the error is on the same order of magnitude as the relative error for x and f(x).

Part d

We seek a polynomial P_n such that:

$$\frac{|f - \tilde{f}|}{|f|} \le 10^{-16}$$

The polynomial approximation P(x) is given by:

$$P(x) = (e^{x_0} - 1) + (x - x_0)e^{x_0} + \frac{(x - x_0)^2 e^{x_0}}{2!} + \dots$$

The second-degree polynomial approximation P_2 is:

$$P_2 = f(0) + f'(0)x$$

Problem 4

Part a

Create vector t from 0 to pi incrementing by pi/30, vector y equal to cos(1). Write code that evaluates the specified sum and prints the result.

The sum is: -23.915381134014112

See t_y_sum.py in Git repository. The code simply creates vectors with np.arane() and evaluates with np.sum().

The true value is -2 (as can be trivially found with a single application of IBP).

The closest lowest error we can achieve using this algorithm requires us to to use a dt of pi/2. This error is due to cancellation from to the negative terms.

Part b

Plot a parametric curve for $x(\theta)$ with given parameters. Adjust the scale so that the axes have the same scale. In a second figure, plot 10 curves with varying parameters.

See wavy_circles.py in Git repository.