BME Gépészmérnöki Kar	DINAMIKA	Név:	
Műszaki Mechanikai Tanszék	Neptun kód: AHU27Z		
2025/26 I.	Határidő: 2025.10.20. 12:00	Késedelmes beadás: □ Javítás: □	
Nyilatkozat: Aláírásommal igazolom, l készítettem el, az abban leírtak saját meg	Aláírás:		

Csak a formai követelményeknek megfelelő és az ellenőrző program által helyesnek ítélt végeredményeket tartalmazó házi feladatokat értékeljük! https://www.mm.bme.hu/hwchk

Feladatkitűzés

Az ábrán vázolt mechanizmus az (x, y) síkban síkmozgást végez. Feladatunk a mechanizmus egyes tagjainak pillanatnyi sebesség- és gyorsulásállapotának vizsgálata.

- 1. Rajzolja meg a mechanizmus méretarányos szerkezeti ábráját az adott konfigurációban!
- 2. Határozza meg a (2) test szögsebességét és az S_2 súlypont sebességét (ω_2 , v_{S_2})!
- 3. Jelölje be a szerkezeti ábrán, hogy hol található a (2) test sebességpólusa, és rajzolja be a B, S₂ és C pontok sebességét!
- 4. Határozza meg a (2) test szöggyorsulását és az S_2 súlypont gyorsulását (ε_2 , \mathbf{a}_{S_2})!
- 5. Rajzolja be a szerkezeti ábrára a B, S2 és C pontok gyorsulását!
- 6. Számítsa ki a (2) test gyorsulásszögét és rajzolja be a szerkezeti ábrába a B, S₂ és C pontok gyorsulásvektorainál! Jelölje be az ábrán, hogy hol található a (2) test gyorsuláspólusa!
- 7. Határozza meg az S_2 súlypont gyorsulásvektorának tangenciális és normális irányú komponenseit $(\mathbf{a}_{S_2t}, \mathbf{a}_{S_2n})!$ Rajzolja be azokat a szerkezeti ábrába!
- 8. Számítsa ki az S_2 súlypont pályájának pillanatnyi görbületi sugarát $(\rho_{S_2})!$

Adatok

$$\varphi =$$
 65 $^{\circ}$

$$l_1 = 0.07 \text{ m}$$

$$l_2 = 0.19 \text{ m}$$

$$l_3 = 0.04 \text{ m}$$

$$\omega_{1z} = 5 \text{ rad/s} = \text{áll}.$$

(Rész)eredmények

ω_{2z}	$arepsilon_{2z}$	$v_{ m S_2}$	a_{S_2}	$a_{\mathrm{S}_{2}\mathrm{t}}$	$a_{\mathrm{S}_{2}\mathrm{n}}$	$ ho_{\mathrm{S}_2}$
[rad/s]	[rad/s ²]	[m/s]	$[m/s^2]$	$[m/s^2]$	$[m/s^2]$	[m]

(A feladatokban levő egyenletrendszereket egy általam készített **Python** program segítségével oldottam meg, így azoknak csak a megoldása szerepel itt. Emellett a feladathoz szükséges ábrákat **Latex**-ban a **tikz** könyvtár segítségével ábrázoltam.)

Adatok:

$$\varphi=65^{\circ} \quad l_1=0.07 \; [\mathrm{m}] \quad l_2=0.19 \; [\mathrm{m}] \quad l_3=0.04 \; [\mathrm{m}] \quad \underline{w}_{1z}=5 \; [\mathrm{rad/s}]=\mathrm{\acute{a}ll}.$$

1. Feladat:

 $1.~{\rm abra.}~{\rm Az}~{\rm abrán}~1$ egység $0.1~{\rm méternek}$ felel ${\rm meg}$

(2)-es test szögsebességének meghatározásához felírhatjuk egy <u>pont</u> sebességét két oldalról, majd a két oldalt egyenlővé téve megoldhatjuk a kijövő egyenletrendszert.

Legyen ez a pont \underline{S}_2 súlypont. Ezt írjuk fel \underline{v}_B majd \underline{v}_C segítségével:

$$\underline{\mathbf{v}}_{\underline{S}_2} = \underline{v}_B + \underline{\omega}_2 \times \underline{r}_{B\underline{S}_2} \text{ és } \underline{\mathbf{v}}_{\underline{S}_2} = \underline{v}_C + \underline{\omega}_2 \times \underline{r}_{C\underline{S}_2}$$

2. ábra. Segítség a vektorok számításához

Első egyenletet át tudjuk alakítani: $\underline{v}_{\underline{S}_2} = \underline{v}_B + \underline{\omega}_2 \times \underline{r}_{B\underline{S}_2} = \underline{v}_A + \underline{\omega}_1 \times \underline{r}_{AB} + \underline{\omega}_2 \times \underline{r}_{B\underline{S}_2}$, ahol:

Az előző feladatban felhasznált értékekkel vissza tudunk helyettesíteni, így:

$$\underline{\mathbf{V}_{\underline{B}}} = \begin{bmatrix} -0.317 \\ 0.148 \\ 0 \end{bmatrix} \text{ [m/s]} \quad \underline{\mathbf{V}_{\underline{S}_2}} = \begin{bmatrix} -0.271 \\ 0.00907 \\ 0 \end{bmatrix} \text{ [m/s]} \quad \underline{\mathbf{V}_{\underline{C}}} = \begin{bmatrix} -0.225 \\ -0.1298 \\ 0 \end{bmatrix} \text{ [m/s]}$$

 \underline{P}_2 pont megtalálásához pedig elegendő $\underline{\mathbf{V}_B},\,\underline{\mathbf{V}_{S_2}}$ és $\underline{\mathbf{V}_C}$ vektorokból merőlegest húzni, majd bejelölni metszéspontjukat.

Ezt le is tudjuk ellenőrizni a következő számítással:

$$\underline{\mathbf{r}}_{B\underline{P}_{2}} = \frac{\underline{\omega}_{2} \times \underline{v}_{\underline{B}}}{\omega_{2}^{2}} = \begin{bmatrix} 0.09603\\ 0.206\\ 0 \end{bmatrix} \text{ [m]}$$

3. ábra. Az ábrán 1 egység $0.5~\mathrm{m/s}$ -nak felel meg

Kinalit Daniel

4. Feladat:

(2)-es test szöggyorsulásának meghatározásához felírhatjuk egy <u>pont</u> gyorsulását két oldalról, majd a két oldalt egyenlővé téve megoldhatjuk a kijövő egyenletrendszert.

Legyen ez a pont \underline{S}_2 súlypont. Ezt írjuk fel \underline{a}_B majd \underline{a}_C segítségével:

$$\underline{\mathbf{a}}_{\underline{S}_2} = \underline{a}_B + \underline{\varepsilon}_2 \times \underline{r}_{B\underline{S}_2} - \omega_2^2 \cdot \underline{r}_{B\underline{S}_2} \text{ \'es } \underline{\mathbf{a}}_{\underline{S}_2} = \underline{a}_C + \underline{\varepsilon}_2 \times \underline{r}_{C\underline{S}_2} - \omega_2^2 \cdot \underline{r}_{C\underline{S}_2}$$

El segyen let ett tudjuka laktani:

$$\underline{a}_{\underline{S}_2} = \underline{a}_B + \underline{\varepsilon}_2 \times \underline{r}_{B\underline{S}_2} - \omega_2^2 \cdot \underline{r}_{B\underline{S}_2} = \underline{a}_A + \underline{\varepsilon}_1 \times \underline{r}_{AB} - \omega_1^2 \cdot \underline{r}_{AB} + \underline{\varepsilon}_2 \times \underline{r}_{B\underline{S}_2} - \omega_2^2 \cdot \underline{r}_{B\underline{S}_2}, \text{ ahol:}$$

$$\underline{\mathbf{a}}_A = \underline{\mathbf{0}}, \, \text{mert k\"o\'t\"o\'tt} \boldsymbol{\varepsilon}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \underline{\mathbf{0}}, \, \omega_1 \, \, \text{\'alland\'o} \boldsymbol{\varepsilon}_2 = \begin{bmatrix} 0 \\ 0 \\ \boldsymbol{\varepsilon}_2 \end{bmatrix}, \, \text{s\'akmozg\'asr\'ol besz\'el\"unk} \underline{\mathbf{r}}_{AB}, \, \underline{\mathbf{r}}_{B\underline{S}_2}, \, \omega_1, \, \omega_2 \, \, \text{adottakM\'asodik egyenlete}$$

Az előző feladatban felhasznált értékekkel vissza tudunk helyettesíteni, így:

$$\underline{\mathbf{a}_B} = \begin{bmatrix} -0.7396 \\ -1.586 \\ 0 \end{bmatrix} \begin{bmatrix} \mathrm{m/s^2} \end{bmatrix} \quad \underline{a}_{\underline{S}_2} = \begin{bmatrix} -1 \\ -1.51 \\ 0 \end{bmatrix} \begin{bmatrix} \mathrm{m/s^2} \end{bmatrix} \quad \underline{a}_{\underline{C}} = \begin{bmatrix} -1.266 \\ -1.433 \\ 0 \end{bmatrix} \begin{bmatrix} \mathrm{m/s} \end{bmatrix}$$

 \underline{G}_2 pont megtalálásához pedig elegendő $\underline{\mathbf{a}}_{\underline{B}},\ \underline{\mathbf{a}}_{\underline{S}_2}$ és $\underline{\mathbf{a}}_{\underline{C}}$ vektorokból merőlegest húzni, majd bejelölni metszéspontjukat.

Ezt le is tudjuk ellenőrizni a következő számítással:

$$\underline{\mathbf{r}}_{\underline{S}_2\underline{G}_2} = \frac{\underline{\varepsilon}_2 \times \underline{a}_{\underline{S}_2} + \omega_2^2 \cdot \underline{a}_{\underline{S}_2}}{\varepsilon_2^2 + \omega_2^4} = \begin{bmatrix} 0.01171 \\ -0.628 \\ 0 \end{bmatrix} \text{ [m]}$$

4. ábra. Az ábrán 1 egység 3 m/s^2 felel meg

6. Feladat:

 \underline{S}_2 súlypont gyorsulásvektorának tangenciális és normális irányú komponenseihez először meg tudjuk határozni a tangenciális irányát és nagyságát, majd ebből a normálist is:

$$\underline{\mathbf{e}}_{\underline{S}_{2_t}} = \frac{\underline{v}_{\underline{S}_2}}{\left|\underline{v}_{\underline{S}_2}\right|}, \text{ mivel sebesség irányú}$$

$$\underline{\mathbf{a}}_{\underline{S}_{2_t}} = (\underline{a}_{\underline{S}_2} \cdot \underline{e}_{\underline{S}_{2_t}}) \cdot \underline{e}_{\underline{S}_{2_t}} \text{ (így megvan a nagysága)} = \begin{bmatrix} -0.951 \\ 0.0318 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{m/s^2} \end{bmatrix} \quad \left| \underline{a}_{\underline{S}_{2_t}} \right| = 0.952$$

$$\underline{\mathbf{a}}_{\underline{S}_{2_n}} = \underline{a}_{\underline{S}_2} - \underline{a}_{\underline{S}_{2_t}} = \begin{bmatrix} -0.0516 \\ -1.5411 \\ 0 \end{bmatrix} \begin{bmatrix} \mathrm{m/s^2} \end{bmatrix} \quad \left| \underline{a}_{\underline{S}_{2_n}} \right| = 1.542$$

5. ábra. Az ábrán zölddel jelölve $\underline{\mathbf{a}}_{\underline{S}_{2_{n}}}$ és $\underline{\mathbf{a}}_{\underline{S}_{2_{t}}}$

 \underline{S}_2 súlypont pályájának pillanatnyi görbületi sugarát könnyen meg tudjuk határozni:

$$\left|\underline{a}_{\underline{S}_{2n}}\right| = \frac{\underline{v}_{\underline{S}_2}^2}{\rho_{\underline{S}_2}} \rightarrow \rho_{\underline{S}_2} = 0.04768 \; [\mathrm{m}]$$