Limite	Interprétation géométrique		
$f(x) - f(x_0)$	(C_f) admet une tangente d'équation : $y = f'(x_0)(x - x_0) + f(x_0)$ au point d'abscisse x_0 .		
$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l$			
$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = l$	(\mathcal{C}_f) admet une demi-tangente d'équation :		
	$\begin{cases} y = f'_d(x_0)(x - x_0) + f(x_0) \\ x \ge x_0 \end{cases}$ au point d'abscisse x_0 .		
$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = l$	(\mathcal{C}_f) admet une demi-tangente d'équation :		
	$\begin{cases} y = f'_d(x_0)(x - x_0) + f(x_0) \\ x \le x_0 \end{cases}$ au point d'abscisse x_0 .		
$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0$	(\mathcal{C}_f) admet une tangente horizontale au point d'abscisse x_0 .		
$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$	(\mathcal{C}_f) admet une demi-tangente vertical dirigée vers le haut au point d'abscisse a .		
$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$	(\mathcal{C}_f) admet une demi-tangente vertical dirigée vers le bas au point d'abscisse a .		
$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$	(\mathcal{C}_f) admet une demi-tangente vertical dirigée vers le haut au point d'abscisse a .		
$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$	(C_f) admet une demi-tangente vertical dirigée vers le bas au point d'abscisse a .		

La fonction f	La fonction f'	Domaine de dérivabilité
$x \mapsto c \ (c \in \mathbb{R})$	$x \mapsto 0$	\mathbb{R}
$x \mapsto ax \ (a \in \mathbb{R})$	$x \mapsto a$	\mathbb{R}
$x \mapsto x^n$	$x \mapsto nx^{n-1}$	\mathbb{R}
$x \mapsto \frac{1}{x}$	$x \mapsto -\frac{1}{x^2}$	\mathbb{R}^*
$x \mapsto \sqrt{x}$	$x \mapsto \frac{1}{2\sqrt{x}}$	\mathbb{R}_+^*
$x \mapsto \sin x$	$x \mapsto \cos x$	\mathbb{R}
$x \mapsto \cos x$	$x \mapsto -\sin x$	\mathbb{R}
$x \mapsto \tan x$	$x \mapsto 1 + \tan x = \frac{1}{\cos^2 x}$	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[(k \in \mathbb{Z})$
$x \mapsto \sin(ax+b) \ (a,b \in \mathbb{R})$	$x \mapsto a\cos(ax+b)$	\mathbb{R}
$x \mapsto \cos(ax+b) \ (a,b \in \mathbb{R})$	$x \mapsto -a\sin(ax+b)$	\mathbb{R}

