### Universidade Federal de Pernambuco Centro de Tecnologia e Geociências Departamento de Engenharia de Produção

## <u>Tópicos Especiais em Pesquisa Operacional</u> (Período 2020.3)

## 4ª Atividade Assíncrona (Problema do Caixeiro Viajante)

- 1. Ler os capítulos/seções do livro "Pesquisa Operacional para cursos de engenharia" (de Arenales et al., 2015) abaixo mencionados e elaborar um resumo de no máximo uma página. (15%)
  - a) Capítulo 3 (seção 3.4.5);
- 2. Pesquise sobre o Problema do Caixeiro Viajante (PCV) e responda as seguintes questões:
  - a) Como pode ser definido o PCV? (10%)
  - b) Qual a diferença entre o PCV simétrico e o PCV assimétrico? (5%)
  - c) Apresente a formulação MTZ proposta por Miller, Tucker and Zemlin (1960) para o PCV e explique o significado de cada restrição. (15%)
  - d) Qual a vantagem da formulação MTZ em relação à formulação clássica de eliminação de subciclos (e.g., apresentada em Arenales et al., 2015)? (15%)
  - e) Cite três aplicações práticas do Problema do Caixeiro Viajante. (7.5%)
  - Além das variantes mencionadas no livro de Arenales et al. 2015 (m-caixeiros viajantes; caixeiro-viajante aquisição; e caixeiro-viajante lucro), cite outras duas variantes do PCV e explique como são definidas. (7.5%)
  - g) Qual a solução ótima para a instância do PCV abaixo: (25%)

Número de cidades (n): 10

| Coordenadas: |        |         | Matri | Matriz de distâncias: |    |    |     |     |     |     |    |     |     |  |
|--------------|--------|---------|-------|-----------------------|----|----|-----|-----|-----|-----|----|-----|-----|--|
| cidade       | X      | у       |       | 1                     | 2  | 3  | 4   | 5   | 6   | 7   | 8  | 9   | 10  |  |
| 1            | 651.19 | 2244.39 | 1     | 0                     | 88 | 97 | 110 | 127 | 136 | 114 | 95 | 82  | 76  |  |
| 2            | 676.60 | 2160.20 | 2     | 88                    | 0  | 25 | 51  | 77  | 58  | 31  | 8  | 26  | 52  |  |
| 3            | 701.99 | 2162.20 | 3     | 97                    | 25 | 0  | 26  | 51  | 39  | 20  | 27 | 51  | 77  |  |
| 4            | 727.40 | 2165.40 | 4     | 110                   | 51 | 26 | 0   | 26  | 33  | 34  | 52 | 76  | 102 |  |
| 5            | 752.79 | 2168.60 | 5     | 127                   | 77 | 51 | 26  | 0   | 44  | 57  | 78 | 102 | 127 |  |
| 6            | 727.40 | 2132.09 | 6     | 136                   | 58 | 39 | 33  | 44  | 0   | 27  | 55 | 82  | 109 |  |
| 7            | 701.99 | 2142.19 | 7     | 114                   | 31 | 20 | 34  | 57  | 27  | 0   | 27 | 55  | 82  |  |
| 8            | 676.60 | 2152.39 | 8     | 95                    | 8  | 27 | 52  | 78  | 55  | 27  | 0  | 27  | 55  |  |
| 9            | 651.19 | 2162.59 | 9     | 82                    | 26 | 51 | 76  | 102 | 82  | 55  | 27 | 0   | 27  |  |
| 10           | 625.80 | 2172.79 | 10    | 76                    | 52 | 77 | 102 | 127 | 109 | 82  | 55 | 27  | 0   |  |

OBS: Para simplificar o processo de resolução dos problemas, ao calcular a matriz de distâncias, arredondem os valores calculados para o inteiro inferior. Por exemplo, para todo i, j:

dx = coords[i,1]-coords[j,1]

dy = coords[i,2]-coords[j,2]

d[i,j] = floor(Int64, sqrt(dx \* dx + dy \* dy))

## **Enviar os seguintes arquivos:**

- Arquivo .pdf contendo o resumo dos capítulos e/ou seções mencionados e as respostas das questões.
  Nomear o arquivo da seguinte maneira: Atividade4-NOME-SOBRENOME.pdf
- Os códigos (arquivos .jl) implementados.
  Nomear os arquivos da seguinte maneira: Atividade4-codigo1-NOME-SOBRENOME.jl, Atividade4-codigo2-NOME-SOBRENOME.jl, etc.

#### Referência:

ARENALES, M.; ARMENTANO, V.; YANASSE, H.; MORABITO, R. Pesquisa operacional para cursos de engenharia. 2. ed. Elsevier, 2015.



### Universidade Federal de Pernambuco Centro de Tecnologia e Geociências Departamento de Engenharia de Produção

### Comandos básicos de Julia+JuMP

#### - Como declarar um vetor em Julia:

- myvec = Int64[] # Declara um vetor de valores inteiros
  myvec = Floar64[] # Declara um vetor de valores reais
- myvec = Bool[] # Declara um vetor de valores binários (booleanos)

# - Para inserir elementos (ou valores) em um vetor:

- push!(myvec, elem) # Insere o elemento "elem" no final do vetor "myvec"
- push!(myvec, 2) # Insere o valor 2 no final do vetor "myvec"
  pushfirst!(myvec, 10) # Insere o valor 10 no início do vetor "myvec"
- insert!(myvec, pos, elem) #Insere o elemento "elem" no vetor "myvec" antes do elmento de posição "pos"
  - O Por exemplo: Seja myvec = [5, 10, 15, 22, 28]. O comando insert!(myvec, 3, 999) irá inserir o elemento 999 antes do 3º elemento (15), resultando em: myvec = [5, 10, 999 15, 22, 28]

### - Para remover elementos de um vetor:

pop!(myvec) # remove o último elemento do vetor "myvec"
 popfirst!(myvec) # remove o primeiro elemento do vetor "myvec"
 deleteat!(myvec, pos) # remove o elemento da posição "pos"
 unique!(myvec) # remove os elementos repetidos de um vetor

#### - Para ordenar um vetor:

sort!(myvec) # ordena o vetor "myvec" em ordem crescente
 sort!(myvec, rev=true) # ordena o vetor "myvec" em ordem decrescente

### - Para arredondar um valor real ("v") para um valor inteiro:

- x = floor(Int64, v) # arredonda o valor de v para o inteiro inferior e armazena em x
  - o Por exemplo: x = floor(Int64, 5.75) irá salvar o valor 5 em x.

## - Como declarar uma matriz bi-dimensional:

modo1) matriz = Array{Int64}(undef, 2, 4) # Declara uma matrix 2x4 de valores inteiros modo2) matriz = zeros(Bool, 2, 3) # Declara uma matrix 2x3 de valores binários, inicializados com zeros modo3) matriz = [1 4 3 1; 1 1 1 2] # Declara uma matrix 2x4, atribuindo os valores manualmente Exemplos de outros tipos de variáveis: Float64 (real); Bool (binário); Char (caractere); Int64 (inteiro) Mais detalhes em: https://docs.julialang.org/en/v1/manual/types/

## - PI acessar um elemento de uma matriz bi-dimensional:

valor = matriz[1, 2] # acessa o elemento (valor) da (linha 1, coluna 2).

## - Como declarar uma restrição de igualdade em Julia+JuMP

Para uma restrição do tipo: x + y = 100, fazemos: @constraint(model, x + y == 100)

- P/ declarar um conj. de variáveis binárias com 2 índices (ex: x11, x12, ..., x19; x21, x22, ..., x29; (...) x91, x92, ..., x99) @variable(model, x[i=1:9, j=1:9], Bin). Após resolver o modelo, o valor da variável xij podem ser obtido assim: sol[i,j] = value.(x[i,j])

OBS: Atenção para distinguir uma variável de Julia com uma variável do modelo matemático. Variáveis do modelo matemático são declaradas com @variable(param1, param2, param3), onde param1 se refere ao nome modelo, param2 se refere ao nome da variavel e param3 ao tipo da variável.