Байесовские Методы. Лекция 4

БИВТ-23-9/10-ИСАД

29 сентября 2025 г.

Предсказательное распределение

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta) P(\theta \mid D) d\theta.$$

 В простых случаях (сопряжённые априоры) интеграл берётся аналитически.

Предсказательное распределение

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta) P(\theta \mid D) d\theta.$$

- В простых случаях (сопряжённые априоры) интеграл берётся аналитически.
- Но в реальных задачах:

Предсказательное распределение

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta) P(\theta \mid D) d\theta.$$

- В простых случаях (сопряжённые априоры) интеграл берётся аналитически.
- Но в реальных задачах:
 - lacktriangle высокая размерность параметров heta,

Предсказательное распределение

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta) P(\theta \mid D) d\theta.$$

- В простых случаях (сопряжённые априоры) интеграл берётся аналитически.
- Но в реальных задачах:
 - \bullet высокая размерность параметров θ ,
 - сложные модели без закрытой формы.

Идея Монте-Карло

Заменим интеграл на среднее по случайным выборкам.

Предсказательное распределение

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta) P(\theta \mid D) d\theta.$$

- В простых случаях (сопряжённые априоры) интеграл берётся аналитически.
- Но в реальных задачах:
 - \bullet высокая размерность параметров θ ,
 - сложные модели без закрытой формы.
- Пример: линейная регрессия с тысячами признаков или нейросеть.

Идея Монте-Карло

Заменим интеграл на среднее по случайным выборкам.

Предсказательное распределение

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta) P(\theta \mid D) d\theta.$$

- В простых случаях (сопряжённые априоры) интеграл берётся аналитически.
- Но в реальных задачах:
 - \bullet высокая размерность параметров θ ,
 - сложные модели без закрытой формы.
- Пример: линейная регрессия с тысячами признаков или нейросеть.
- Вычислить интеграл «вручную» невозможно.

Идея Монте-Карло

Заменим интеграл на среднее по случайным выборкам.

• Высокая размерность: интегралы по $\theta \in \mathbb{R}^d$ при большом d. Классические квадратурные методы (Ньютон-Котс, метод Гаусса) взрываются по стоимости, так как количество операций растет экспоненциально размерности. Сложность МС ($\sim 1/\sqrt{N}$) не зависит от размерности.

- Высокая размерность: интегралы по $\theta \in \mathbb{R}^d$ при большом d. Классические квадратурные методы (Ньютон-Котс, метод Гаусса) взрываются по стоимости, так как количество операций растет экспоненциально размерности. Сложность МС ($\sim 1/\sqrt{N}$) не зависит от размерности.
- Неизвестные нормировочные константы. В Байесе часто важен P(D) или $P(\theta \mid D) = \frac{P(D|\theta)P(\theta)}{2}$, где Z интеграл, который нельзя посчитать явно. МС позволяет оценить такие интегралы.

- Высокая размерность: интегралы по $\theta \in \mathbb{R}^d$ при большом d. Классические квадратурные методы (Ньютон-Котс, метод Гаусса) взрываются по стоимости, так как количество операций растет экспоненциально размерности. Сложность МС $(\sim 1/\sqrt{N})$ не зависит от размерности.
- Неизвестные нормировочные константы. В Байесе часто важен P(D) или $P(\theta \mid D) = \frac{P(D|\theta)P(\theta)}{Z}$, где Z интеграл, который нельзя посчитать явно. МС позволяет оценить такие интегралы.
- lacktriangle Редкие события. Вероятности вида $\mathbb{P}(heta \in A)$, где A область малой меры, трудно вычислить напрямую. Специальные варианты МС дают определенные оценки.

- Высокая размерность: интегралы по $\theta \in \mathbb{R}^d$ при большом d. Классические квадратурные методы (Ньютон-Котс, метод Гаусса) взрываются по стоимости, так как количество операций растет экспоненциально размерности. Сложность МС ($\sim 1/\sqrt{N}$) не зависит от размерности.
- Неизвестные нормировочные константы. В Байесе часто важен P(D) или $P(\theta \mid D) = \frac{P(D|\theta)P(\theta)}{Z}$, где Z интеграл, который нельзя посчитать явно. МС позволяет оценить такие интегралы.
- ullet Редкие события. Вероятности вида $\mathbb{P}(heta \in A)$, где A область малой меры, трудно вычислить напрямую. Специальные варианты МС дают определенные оценки.
- Сложные апостериоры. В многомодальных или плохо обусловленных распределениях невозможно получить аналитическое решение. МС позволяет хотя бы приблизить эти распределения выборкой с вариативной точностью.

- Высокая размерность: интегралы по $\theta \in \mathbb{R}^d$ при большом d. Классические квадратурные методы (Ньютон-Котс, метод Гаусса) взрываются по стоимости, так как количество операций растет экспоненциально размерности. Сложность МС ($\sim 1/\sqrt{N}$) не зависит от размерности.
- Неизвестные нормировочные константы. В Байесе часто важен P(D) или $P(\theta \mid D) = \frac{P(D|\theta)P(\theta)}{Z}$, где Z интеграл, который нельзя посчитать явно. МС позволяет оценить такие интегралы.
- ullet Редкие события. Вероятности вида $\mathbb{P}(heta \in A)$, где A область малой меры, трудно вычислить напрямую. Специальные варианты МС дают определенные оценки.
- Сложные апостериоры. В многомодальных или плохо обусловленных распределениях невозможно получить аналитическое решение. МС позволяет хотя бы приблизить эти распределения выборкой с вариативной точностью.

- Высокая размерность: интегралы по $\theta \in \mathbb{R}^d$ при большом d. Классические квадратурные методы (Ньютон-Котс, метод Гаусса) взрываются по стоимости, так как количество операций растет экспоненциально размерности. Сложность МС $(\sim 1/\sqrt{N})$ не зависит от размерности.
- Неизвестные нормировочные константы. В Байесе часто важен P(D) или $P(\theta \mid D) = \frac{P(D|\theta)P(\theta)}{Z}$, где Z интеграл, который нельзя посчитать явно. МС позволяет оценить такие интегралы.
- ullet Редкие события. Вероятности вида $\mathbb{P}(heta \in A)$, где A область малой меры, трудно вычислить напрямую. Специальные варианты МС дают определенные оценки.
- Сложные апостериоры. В многомодальных или плохо обусловленных распределениях невозможно получить аналитическое решение. МС позволяет хотя бы приблизить эти распределения выборкой с вариативной точностью.

Итого

MC-методы превращают невозможные аналитические задачи в численные, с контролируемой точностью.

 Детерминированные преобразования (например, метод обратной функции распределения).

- Детерминированные преобразования (например, метод обратной функции распределения).
- Вероятностные механизмы «принять/отклонить» (rejection sampling).

- Детерминированные преобразования (например, метод обратной функции распределения).
- Вероятностные механизмы «принять/отклонить» (rejection sampling).
- Взвешивание выборки (importance sampling).

- Детерминированные преобразования (например, метод обратной функции распределения).
- Вероятностные механизмы «принять/отклонить» (rejection sampling).
- Взвешивание выборки (importance sampling).
- Итеративные/цепные методы (локальное исследование распределений, будут рассмотрены позже).

- Детерминированные преобразования (например, метод обратной функции распределения).
- Вероятностные механизмы «принять/отклонить» (rejection sampling).
- Взвешивание выборки (importance sampling).
- Итеративные/цепные методы (локальное исследование распределений, будут рассмотрены позже).

Идея

Все методы Монте-Карло строятся на комбинации этих базовых принципов.

Метод обратной функции распределения

Идея

Если $U \sim \mathrm{Uniform}(0,1)$ и F — функция распределения (CDF) случайной величины X, то случайная величина

$$X = F^{-1}(U)$$

имеет распределение F.

ullet Универсальный способ получить выборку из произвольного распределения, если можно посчитать F^{-1} .

Метод обратной функции распределения

Идея

Если $U \sim \mathrm{Uniform}(0,1)$ и F — функция распределения (CDF) случайной величины X, то случайная величина

$$X = F^{-1}(U)$$

имеет распределение F.

- ullet Универсальный способ получить выборку из произвольного распределения, если можно посчитать F^{-1} .
- Очень удобен для простых распределений.

Метод обратной функции распределения

Идея

Если $U \sim \mathrm{Uniform}(0,1)$ и F — функция распределения (CDF) случайной величины X, то случайная величина

$$X = F^{-1}(U)$$

имеет распределение F.

- ullet Универсальный способ получить выборку из произвольного распределения, если можно посчитать F^{-1} .
- Очень удобен для простых распределений.

Пример: экспоненциальное распределение

CDF:
$$F(x) = 1 - e^{-\lambda x}, x \ge 0.$$

$$X = F^{-1}(U) = -\frac{1}{\lambda} \log(1 - U).$$

Задача

Хотим сэмплировать из сложной плотности f(x), но напрямую это сделать трудно.

• Берём простое распределение g(x), из которого легко сэмплировать (называется proposal).

Задача

Хотим сэмплировать из сложной плотности f(x), но напрямую это сделать трудно.

- Берём простое распределение g(x), из которого легко сэмплировать (называется proposal).
- Масштабируем его вверх: подбираем M так, чтобы для всех x

$$f(x) \leq Mg(x)$$
.

То есть Mg(x) — «крышка», которая накрывает целевую плотность f(x).

Задача

Хотим сэмплировать из сложной плотности f(x), но напрямую это сделать трудно.

- Берём простое распределение g(x), из которого легко сэмплировать (называется proposal).
- Масштабируем его вверх: подбираем M так, чтобы для всех x

$$f(x) \leq Mg(x)$$
.

То есть Mg(x) — «крышка», которая накрывает целевую плотность f(x).

● Генерируем $x \sim g(x)$ и дополнительное $u \sim \text{Uniform}(0,1)$.

Задача

Хотим сэмплировать из сложной плотности f(x), но напрямую это сделать трудно.

- Берём простое распределение g(x), из которого легко сэмплировать (называется proposal).
- Масштабируем его вверх: подбираем M так, чтобы для всех x

$$f(x) \leq Mg(x)$$
.

То есть Mg(x) — «крышка», которая накрывает целевую плотность f(x).

- **●** Генерируем $x \sim g(x)$ и дополнительное $u \sim \text{Uniform}(0,1)$.
- Принимаем x, если

$$u \leq \frac{f(x)}{Mg(x)}$$
.

Задача

Хотим сэмплировать из сложной плотности f(x), но напрямую это сделать трудно.

- Берём простое распределение g(x), из которого легко сэмплировать (называется proposal).
- Масштабируем его вверх: подбираем M так, чтобы для всех x

$$f(x) \leq Mg(x)$$
.

То есть Mg(x) — «крышка», которая накрывает целевую плотность f(x).

- **●** Генерируем $x \sim g(x)$ и дополнительное $u \sim \text{Uniform}(0,1)$.
- Принимаем x, если

$$u \leq \frac{f(x)}{Mg(x)}$$
.

В среднем каждая точка принимается с вероятностью 1/M.

Задача

Хотим сэмплировать из сложной плотности f(x), но напрямую это сделать трудно.

- Берём простое распределение g(x), из которого легко сэмплировать (называется proposal).
- Масштабируем его вверх: подбираем M так, чтобы для всех x

$$f(x) \leq Mg(x)$$
.

То есть Mg(x) — «крышка», которая накрывает целевую плотность f(x).

- Генерируем $x \sim g(x)$ и дополнительное $u \sim \text{Uniform}(0,1)$.
- Принимаем x, если

$$u \leq \frac{f(x)}{Mg(x)}$$
.

■ В среднем каждая точка принимается с вероятностью 1/M.

Смысл

Мы равномерно «разбрасываем точки» под кривой Mg(x). Оставляем только те, что попали под f(x) o их распределение в точности f.

Пример rejection sampling: Beta(2,2)

- Целевая плотность f(x) = Beta(2,2) (чёрная кривая).
- Proposal: g(x) = Uniform(0,1) (зелёная линия).
- Масштабированное Mg(x) (зелёный пунктир).
- Синие точки принятые выборки $\sim \text{Beta}(2,2)$.
- Красные крестики отклонённые точки.

Envelope (Delayed-acceptance) Rejection Sampling

Идея

Если вычислять f(x) дорого, используем дешёвую нижнюю оценку $\ell(x) \leq f(x)$, чтобы часть выборок принимать «заранее», без обращения к f.

- lacktriangle Сэмплируем $z \sim g$, $u \sim \text{Unif}(0,1)$.
- ullet Если $u \leq rac{\ell(Z)}{Ma(Z)}$, принять z (без вычисления f).
- lacktriangle Иначе вычислить f(z) и принять, если $u \leq rac{f(z)}{Ma(z)}$.

Envelope (Delayed-acceptance) Rejection Sampling

Идея

Если вычислять f(x) дорого, используем дешёвую нижнюю оценку $\ell(x) \leq f(x)$, чтобы часть выборок принимать «заранее», без обращения к f.

- lacktriangle Сэмплируем $z \sim g$, $u \sim \text{Unif}(0,1)$.
- ullet Если $u \leq rac{\ell(z)}{\mathsf{Ma}(z)}$, принять z (без вычисления f).
- ullet Иначе вычислить f(z) и принять, если $u \leq rac{f(z)}{Mg(z)}$.

Эффект

Доля быстрых приёмов $= \frac{1}{M} \int \ell(x) \, dx$, общая вероятность приёма также 1/M. Экономим вызовы f(x).

Основное правило: g(x) должно «похоже» аппроксимировать f(x).

- Основное правило: g(x) должно «похоже» аппроксимировать f(x).
- lacktriangle Чем ближе g(x) к форме f(x), тем меньше M и выше эффективность.

- **Основное правило:** g(x) должно «похоже» аппроксимировать f(x).
- Чем ближе g(x) к форме f(x), тем меньше M и выше эффективность.
- Хорошие кандидаты:

- **Основное правило:** g(x) должно «похоже» аппроксимировать f(x).
- Чем ближе g(x) к форме f(x), тем меньше M и выше эффективность.
- Хорошие кандидаты:
 - Простые распределения, у которых есть аналитический inverse CDF (Uniform, Exponential, Normal).

- **Основное правило:** g(x) должно «похоже» аппроксимировать f(x).
- Чем ближе g(x) к форме f(x), тем меньше M и выше эффективность.
- Хорошие кандидаты:
 - Простые распределения, у которых есть аналитический inverse CDF (Uniform, Exponential, Normal).
 - Адаптивные распределения, подобранные под конкретную задачу.

- **Основное правило:** g(x) должно «похоже» аппроксимировать f(x).
- Чем ближе g(x) к форме f(x), тем меньше M и выше эффективность.
- Хорошие кандидаты:
 - Простые распределения, у которых есть аналитический inverse CDF (Uniform, Exponential, Normal).
 - Адаптивные распределения, подобранные под конкретную задачу.
- Плохой выбор: слишком «плоское» $g(x) \to M$ большое, почти все выборки отклоняются.

Одномерный случай

Если $f(x) \le Mg(x)$, то вероятность принять сэмпл = 1/M.

Многомерный случай

Пусть $f_d(x)=\prod_{i=1}^d f(x_i),\; g_d(x)=\prod_{i=1}^d g(x_i)$, где $x=(x_1,\dots,x_d).$ Тогда

$$\frac{f_d(x)}{g_d(x)} = \prod_{i=1}^d \frac{f(x_i)}{g(x_i)} \le M^d.$$

lacktriangle Значит, в d-мерном случае нужно брать знаменатель $M^d g_d(x).$

Одномерный случай

Если $f(x) \le Mg(x)$, то вероятность принять сэмпл = 1/M.

Многомерный случай

Пусть $f_d(x)=\prod_{i=1}^d f(x_i),\ g_d(x)=\prod_{i=1}^d g(x_i)$, где $x=(x_1,\ldots,x_d).$ Тогда

$$\frac{f_d(x)}{g_d(x)} = \prod_{i=1}^d \frac{f(x_i)}{g(x_i)} \le M^d.$$

- ullet Значит, в d-мерном случае нужно брать знаменатель $M^d g_d(x)$.
- Вероятность принять сэмпл = $1/M^d$.

Одномерный случай

Если $f(x) \le Mg(x)$, то вероятность принять сэмпл = 1/M.

Многомерный случай

Пусть $f_d(x)=\prod_{i=1}^d f(x_i),\; g_d(x)=\prod_{i=1}^d g(x_i)$, где $x=(x_1,\dots,x_d).$ Тогда

$$\frac{f_d(x)}{g_d(x)} = \prod_{i=1}^d \frac{f(x_i)}{g(x_i)} \le M^d.$$

- ullet Значит, в d-мерном случае нужно брать знаменатель $M^dg_d(x)$.
- **●** Вероятность принять сэмпл = $1/M^d$.
- \bullet \Rightarrow эффективность убывает экспоненциально с размерностью d.

Одномерный случай

Если $f(x) \le Mg(x)$, то вероятность принять сэмпл = 1/M.

Многомерный случай

Пусть $f_d(x)=\prod_{i=1}^d f(x_i),\; g_d(x)=\prod_{i=1}^d g(x_i)$, где $x=(x_1,\dots,x_d).$ Тогда

$$\frac{f_d(x)}{g_d(x)} = \prod_{i=1}^d \frac{f(x_i)}{g(x_i)} \le M^d.$$

- Значит, в d-мерном случае нужно брать знаменатель $M^d g_d(x)$.
- **●** Вероятность принять сэмпл = $1/M^d$.
- lacktriangle \Rightarrow эффективность убывает *экспоненциально* с размерностью d.

Вывод

В высоких размерностях rejection sampling становится практически бесполезным. Требуется экспоненциальное число попыток, чтобы получить хоть один сэмпл.

Напоминание

Постериор:

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta).$$

Часто нормировочная константа p(D) недоступна.

ullet Для rejection sampling нормировка не нужна — достаточно знать $f(heta) \propto p(D \mid heta) p(heta).$

Напоминание

Постериор:

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta).$$

Часто нормировочная константа p(D) недоступна.

- ullet Для rejection sampling нормировка не нужна достаточно знать $f(heta) \propto p(D \mid heta) p(heta).$
- lacktriangle Выбираем простое proposal g(heta) (например, гауссиан), и $extbf{\emph{M}}$ так, что

$$f(\theta) \leq Mg(\theta) \quad \forall \theta.$$

Напоминание

Постериор:

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta).$$

Часто нормировочная константа p(D) недоступна.

- ullet Для rejection sampling нормировка не нужна достаточно знать $f(heta) \propto p(D \mid heta) p(heta).$
- lacktriangle Выбираем простое proposal g(heta) (например, гауссиан), и $extbf{\emph{M}}$ так, что

$$f(\theta) \leq Mg(\theta) \quad \forall \theta.$$

Алгоритм:

Напоминание

Постериор:

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta).$$

Часто нормировочная константа p(D) недоступна.

- ullet Для rejection sampling нормировка не нужна достаточно знать $f(heta) \propto p(D \mid heta) p(heta).$
- lacktriangle Выбираем простое proposal g(heta) (например, гауссиан), и M так, что

$$f(\theta) \leq Mg(\theta) \quad \forall \theta.$$

- Алгоритм:
 - Сэмплируем $\theta \sim g, \ u \sim \text{Unif}(0,1).$

Напоминание

Постериор:

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta)$$
.

Часто нормировочная константа p(D) недоступна.

- ullet Для rejection sampling нормировка не нужна достаточно знать $f(heta) \propto p(D \mid heta) p(heta).$
- lacktriangle Выбираем простое proposal g(heta) (например, гауссиан), и M так, что

$$f(\theta) \leq Mg(\theta) \quad \forall \theta.$$

- Алгоритм:
 - Сэмплируем $\theta \sim g, \ u \sim \mathrm{Unif}(0,1).$
 - ullet Принимаем, если $u \leq f(heta)/(Mg(heta)).$

Ограничение

Работает для малых размерностей; в больших d из-за проклятия размерности эффективность стремится к нулю.

Напоминание

Постериор:

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta).$$

Часто нормировочная константа p(D) недоступна.

- ullet Для rejection sampling нормировка не нужна достаточно знать $f(heta) \propto p(D \mid heta) p(heta).$
- lacktriangle Выбираем простое proposal g(heta) (например, гауссиан), и M так, что

$$f(\theta) \leq Mg(\theta) \quad \forall \theta.$$

- Алгоритм:
 - Сэмплируем $\theta \sim g, \ u \sim \mathrm{Unif}(0,1).$
 - ullet Принимаем, если $u \leq f(\theta)/(Mg(\theta))$.
- lacktriangle Принятые сэмплы распределены как $p(\theta \mid D)$.

Ограничение

Работает для малых размерностей; в больших d из-за проклятия размерности эффективность стремится к нулю.

Классический метод Монте-Карло

Задача

Хотим вычислить математическое ожидание

$$\mu = \mathbb{E}_{p}[f(x)] = \int f(x) \, p(x) \, dx,$$

когда интеграл аналитически не берётся.

- **●** Генерируем $x_1, ..., x_N \sim p(x)$.
- Оценка:

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} f(x_i).$$

- lacktriangle По закону больших чисел $\hat{\mu}
 ightarrow \mu$ при $N
 ightarrow \infty$.
- Стандартная ошибка:

$$SE(\hat{\mu}) = \frac{\sigma}{\sqrt{N}}, \quad \sigma^2 = Var_p[f(x)].$$

Пример: оценка числа π

- lacktriangle Рассмотрим единичный квадрат [0,1] imes [0,1].
- Площадь четверти круга радиуса $1 = \pi/4$.
- Алгоритм:
 - Сэмплируем *N* случайных точек (x, y) из $[0, 1]^2$.
 - Считаем долю точек внутри круга $x^2 + y^2 \le 1$.
 - Умножаем её на 4 ightarrow получаем приближение π .
- **●** При $N \to \infty$ оценка сходится к π .

• Плюсы:

Плюсы:

• Простая и универсальная идея.

Плюсы:

- Простая и универсальная идея.
- ullet Точность не зависит от размерности d напрямую.

- Плюсы:
 - Простая и универсальная идея.
 - Точность не зависит от размерности *d* напрямую.
- Минусы:

Плюсы:

- Простая и универсальная идея.
- Точность не зависит от размерности *d* напрямую.

• Минусы:

• Нужно уметь напрямую сэмплировать из p(x).

Плюсы:

- Простая и универсальная идея.
- Точность не зависит от размерности *d* напрямую.

• Минусы:

- Нужно уметь напрямую сэмплировать из p(x).
- Сходимость медленная: ошибка $\sim 1/\sqrt{N}$.

Плюсы:

- Простая и универсальная идея.
- Точность не зависит от размерности *d* напрямую.

• Минусы:

- Нужно уметь напрямую сэмплировать из p(x).
- Сходимость медленная: ошибка $\sim 1/\sqrt{N}$.
- Высокая дисперсия возможна для сложных f(x).

Плюсы:

- Простая и универсальная идея.
- Точность не зависит от размерности *d* напрямую.

• Минусы:

- Нужно уметь напрямую сэмплировать из p(x).
- Сходимость медленная: ошибка $\sim 1/\sqrt{N}$.
- Высокая дисперсия возможна для сложных f(x).
- Поэтому используются более умные методы: importance sampling, MCMC.

Зачем нужен importance sampling?

Проблемы классического МС

1 Высокая дисперсия оценок. Если f(x) сильно меняется, одни сэмплы дают огромный вклад, а другие почти ноль \rightarrow медленная сходимость.

Зачем нужен importance sampling?

Проблемы классического МС

- **1** Высокая дисперсия оценок. Если f(x) сильно меняется, одни сэмплы дают огромный вклад, а другие почти ноль → медленная сходимость.
- **2** Невозможность сэмплировать из p(x). Целевая плотность может быть известна лишь с точностью до константы (как постериор в Байесе: $p(\theta \mid D) \propto p(D \mid \theta)p(\theta)$). Напрямую сэмплировать из неё нельзя.

Зачем нужен importance sampling?

Проблемы классического МС

- **1** Высокая дисперсия оценок. Если f(x) сильно меняется, одни сэмплы дают огромный вклад, а другие почти ноль → медленная сходимость.
- **Ревозможность сэмплировать из** p(x). Целевая плотность может быть известна лишь с точностью до константы (как постериор в Байесе: $p(\theta \mid D) \propto p(D \mid \theta)p(\theta)$). Напрямую сэмплировать из неё нельзя.

Идея importance sampling

Сэмплировать из простого распределения q(x) и компенсировать разницу весами.

Importance sampling: основная идея

Задача

Оценить ожидание

$$\mu = \mathbb{E}_{p}[f(x)] = \int f(x) \, p(x) \, dx,$$

но из p(x) сэмплировать трудно.

lacktriangle Выбираем proposal q(x), из которого легко сэмплировать.

Importance sampling: основная идея

Задача

Оценить ожидание

$$\mu = \mathbb{E}_{p}[f(x)] = \int f(x) \, p(x) \, dx,$$

но из p(x) сэмплировать трудно.

- lacktriangle Выбираем proposal q(x), из которого легко сэмплировать.
- Переписываем интеграл:

$$\mu = \int f(x) \, \frac{p(x)}{q(x)} \, q(x) \, dx.$$

Importance sampling: основная идея

Задача

Оценить ожидание

$$\mu = \mathbb{E}_{p}[f(x)] = \int f(x) \, p(x) \, dx,$$

но из p(x) сэмплировать трудно.

- lacktriangle Выбираем proposal q(x), из которого легко сэмплировать.
- Переписываем интеграл:

$$\mu = \int f(x) \, \frac{p(x)}{q(x)} \, q(x) \, dx.$$

• Алгоритм:

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} f(x_i) w(x_i), \quad x_i \sim q, \ w(x) = \frac{p(x)}{q(x)}.$$

Проблема

В Байесе p(x) часто известна лишь с точностью до константы:

$$p(x) = rac{ ilde{p}(x)}{Z}, \quad Z$$
 неизвестно.

lacktriangle Обычные веса: w(x) = p(x)/q(x) — посчитать нельзя (нужен Z).

Проблема

В Байесе p(x) часто известна лишь с точностью до константы:

$$p(x) = rac{ ilde{p}(x)}{Z}, \quad Z$$
 неизвестно.

- Обычные веса: w(x) = p(x)/q(x) посчитать нельзя (нужен Z).
- Решение: использовать ненормированные веса

$$\tilde{w}(x) = \frac{\tilde{p}(x)}{q(x)}.$$

Проблема

В Байесе p(x) часто известна лишь с точностью до константы:

$$p(x) = rac{ ilde{p}(x)}{Z}, \quad Z$$
 неизвестно.

- **О**бычные веса: w(x) = p(x)/q(x) посчитать нельзя (нужен Z).
- Решение: использовать ненормированные веса

$$\tilde{w}(x) = \frac{\tilde{p}(x)}{q(x)}.$$

• Нормализуем их в выборке:

$$\hat{\mu} = \sum_{i=1}^{N} f(x_i) \frac{\tilde{w}(x_i)}{\sum_{j} \tilde{w}(x_j)}.$$

Проблема

В Байесе p(x) часто известна лишь с точностью до константы:

$$p(x) = rac{ ilde{p}(x)}{Z}, \quad Z$$
 неизвестно.

- **О**бычные веса: w(x) = p(x)/q(x) посчитать нельзя (нужен Z).
- Решение: использовать ненормированные веса

$$\tilde{w}(x) = \frac{\tilde{p}(x)}{q(x)}.$$

• Нормализуем их в выборке:

$$\hat{\mu} = \sum_{i=1}^{N} f(x_i) \frac{\tilde{w}(x_i)}{\sum_{j} \tilde{w}(x_j)}.$$

• Это называется auto-normalized importance sampling.

Проблема

В Байесе p(x) часто известна лишь с точностью до константы:

$$p(x) = rac{ ilde{p}(x)}{Z}, \quad Z$$
 неизвестно.

- **О**бычные веса: w(x) = p(x)/q(x) посчитать нельзя (нужен Z).
- Решение: использовать ненормированные веса

$$\tilde{w}(x) = \frac{\tilde{p}(x)}{q(x)}.$$

• Нормализуем их в выборке:

$$\hat{\mu} = \sum_{i=1}^{N} f(x_i) \frac{\tilde{w}(x_i)}{\sum_{j} \tilde{w}(x_j)}.$$

Это называется auto-normalized importance sampling.

Замечание

Метод даёт смещённую, но состоятельную оценку: при $N o \infty$ получаем μ .

Почему importance sampling снижает дисперсию?

Классический МС

$$\hat{\mu} = \frac{1}{N} \sum f(x_i), \quad x_i \sim p.$$

Если f(x) очень вариативна, дисперсия оценки велика.

Importance sampling

$$\hat{\mu} = \frac{1}{N} \sum f(x_i) \frac{p(x_i)}{q(x_i)}, \quad x_i \sim q.$$

lacktriangled Выбираем q(x) так, чтобы f(x)p(x) стало более «плоским». Тогда веса w(x) компенсируют, и итоговая дисперсия меньше.

Почему importance sampling снижает дисперсию?

Классический МС

$$\hat{\mu} = \frac{1}{N} \sum f(x_i), \quad x_i \sim p.$$

Если f(x) очень вариативна, дисперсия оценки велика.

Importance sampling

$$\hat{\mu} = \frac{1}{N} \sum f(x_i) \frac{p(x_i)}{q(x_i)}, \quad x_i \sim q.$$

- Выбираем q(x) так, чтобы f(x)p(x) стало более «плоским». Тогда веса w(x) компенсируют, и итоговая дисперсия меньше.
- Оптимально: $q(x) \propto |f(x)|p(x)$ (тогда дисперсия = 0, все сэмплы дают одинаковый вклад).

Почему importance sampling снижает дисперсию?

Классический МС

$$\hat{\mu} = \frac{1}{N} \sum f(x_i), \quad x_i \sim p.$$

Если f(x) очень вариативна, дисперсия оценки велика.

Importance sampling

$$\hat{\mu} = \frac{1}{N} \sum f(x_i) \frac{p(x_i)}{q(x_i)}, \quad x_i \sim q.$$

- Выбираем q(x) так, чтобы f(x)p(x) стало более «плоским». Тогда веса w(x) компенсируют, и итоговая дисперсия меньше.
- Оптимально: $q(x) \propto |f(x)|p(x)$ (тогда дисперсия = 0, все сэмплы дают одинаковый вклад).
- одинаковый вклад).

 На практике выбирают q «похожим» на p, но с более толстыми хвостами.

Проблема importance sampling

При сильной разбалансированности весов w_i по сути «работает» только несколько точек.

Определение

$$N_{\text{eff}} = \frac{\left(\sum_{i=1}^{N} w_i\right)^2}{\sum_{i=1}^{N} w_i^2}.$$

● Если все веса равны ($w_i = 1$) → $N_{\text{eff}} = N$.

Проблема importance sampling

При сильной разбалансированности весов w_i по сути «работает» только несколько точек.

Определение

$$N_{\text{eff}} = \frac{\left(\sum_{i=1}^{N} w_i\right)^2}{\sum_{i=1}^{N} w_i^2}.$$

- Если все веса равны ($w_i = 1$) → $N_{\text{eff}} = N$.
- lacktriangle Если один вес огромный, а остальные малы $ightarrow extit{N}_{ ext{eff}} pprox 1.$

Проблема importance sampling

При сильной разбалансированности весов w_i по сути «работает» только несколько точек.

Определение

$$N_{\text{eff}} = \frac{\left(\sum_{i=1}^{N} w_i\right)^2}{\sum_{i=1}^{N} w_i^2}.$$

- Если все веса равны ($w_i = 1$) $\rightarrow N_{\text{eff}} = N$.
- lacktriangle Если один вес огромный, а остальные малы $ightarrow extbf{ extit{N}}_{ ext{eff}} pprox 1.$
- Интерпретация: сколько независимых «честных» сэмплов у нас реально осталось.

Проблема importance sampling

При сильной разбалансированности весов w_i по сути «работает» только несколько точек.

Определение

$$N_{\text{eff}} = \frac{\left(\sum_{i=1}^{N} w_i\right)^2}{\sum_{i=1}^{N} w_i^2}.$$

- **●** Если все веса равны ($w_i = 1$) → $N_{\text{eff}} = N$.
- lacktriangle Если один вес огромный, а остальные малы $ightarrow \emph{N}_{ ext{eff}} pprox 1.$
- Интерпретация: сколько независимых «честных» сэмплов у нас реально осталось.

Применение

ESS используют для оценки качества importance sampling и для остановки/диагностики сходимости алгоритмов.

Идея

Сэмплы берём парами, симметрично, чтобы ошибки компенсировались.

lacktriangle Пример: $U \sim \mathrm{Uniform}(0,1)$. Вместо независимых u_1,u_2 берём пару $u,\,1-u.$

Идея

Сэмплы берём парами, симметрично, чтобы ошибки компенсировались.

- lacktriangle Пример: $U \sim \mathrm{Uniform}(0,1)$. Вместо независимых u_1,u_2 берём пару $u,\,1-u$.
- lacktriangle Для монотонных функций f(x) f(u) и f(1-u) имеют ошибки «в разные стороны».

Идея

Сэмплы берём парами, симметрично, чтобы ошибки компенсировались.

- lacktriangle Пример: $U \sim \text{Uniform}(0,1)$. Вместо независимых u_1, u_2 берём пару u, 1-u.
- lacktriangle Для монотонных функций f(x) f(u) и f(1-u) имеют ошибки «в разные стороны».
- Среднее по паре:

$$\hat{\mu} = \frac{f(u) + f(1-u)}{2}$$

имеет дисперсию меньше, чем по независимым сэмплам.

Идея

Сэмплы берём парами, симметрично, чтобы ошибки компенсировались.

- lacktriangle Пример: $U \sim \text{Uniform}(0,1)$. Вместо независимых u_1, u_2 берём пару u, 1-u.
- lacktriangle Для монотонных функций f(x) f(u) и f(1-u) имеют ошибки «в разные стороны».
- Среднее по паре:

$$\hat{\mu} = \frac{\mathit{f}(\mathit{u}) + \mathit{f}(1-\mathit{u})}{2}$$

имеет дисперсию меньше, чем по независимым сэмплам.

Вывод

Antithetic sampling снижает дисперсию за счёт введения отрицательной корреляции между сэмплами. Скажем, одна часть идет от толстого хвоста, а другая из тонкого.

Идея

Использовать вспомогательную функцию h(x), для которой $\mathbb{E}[h(x)]$ известно точно.

Новая оценка:

$$\hat{\mu}_{\text{CV}} = \frac{1}{N} \sum_{i=1}^{N} \left(f(x_i) - c(h(x_i) - \mathbb{E}[h]) \right).$$

Идея

Использовать вспомогательную функцию h(x), для которой $\mathbb{E}[h(x)]$ известно точно.

Новая оценка:

$$\hat{\mu}_{\text{CV}} = \frac{1}{N} \sum_{i=1}^{N} \left(f(x_i) - c(h(x_i) - \mathbb{E}[h]) \right).$$

Оптимальный коэффициент:

$$c^* = \frac{\operatorname{Cov}(f,h)}{\operatorname{Var}(h)}.$$

Идея

Использовать вспомогательную функцию h(x), для которой $\mathbb{E}[h(x)]$ известно точно.

• Новая оценка:

$$\hat{\mu}_{\text{CV}} = \frac{1}{N} \sum_{i=1}^{N} \left(f(x_i) - c(h(x_i) - \mathbb{E}[h]) \right).$$

• Оптимальный коэффициент:

$$c^* = \frac{\operatorname{Cov}(f,h)}{\operatorname{Var}(h)}.$$

ullet Если h(x) коррелирует с f(x), вариации компенсируются и дисперсия $\hat{\mu}_{\mathsf{CV}}$ уменьшается, так как $f(x_i) - ch(x_i)$ меньше изменяется

Идея

Использовать вспомогательную функцию h(x), для которой $\mathbb{E}[h(x)]$ известно точно.

• Новая оценка:

$$\hat{\mu}_{\text{CV}} = \frac{1}{N} \sum_{i=1}^{N} \left(f(x_i) - c(h(x_i) - \mathbb{E}[h]) \right).$$

• Оптимальный коэффициент:

$$c^* = \frac{\operatorname{Cov}(f,h)}{\operatorname{Var}(h)}.$$

ullet Если h(x) коррелирует с f(x), вариации компенсируются и дисперсия $\hat{\mu}_{\mathsf{CV}}$ уменьшается, так как $f(x_i) - ch(x_i)$ меньше изменяется

Интуиция

Можно рассмотреть сам variate $c(h(x_i)-\mathbb{E}[h])$ как добавку с нулевым матожиданием, которая может только изменить дисперсию, исходя из корреляции f(x) и h(x).