简述

- 疯狂Android讲义
 - 。 第十三章
 - 使用OkHttp发送和接受请求
 - 使用WebView游览网页、加载HTML代码、使用JavaScript
- Android Telephone
 - 。 第一章
 - Android Telephone作用
 - 智能手机、Android、Android Telephone的系统架构以及HAL
 - 如何在Linux中编译调试Android源码

疯狂Android第十三章

OkHttp

- 为了更好地处理向Web站点请求,包括处理Session、Cookie等细节问题,可以使用OkHttp用于发送HTTP请求,接收HTTP响应。
 - Android开发中的网络框架Retrofit 就是基于OkHttp 做的封装, Retrofit封装之后更符合 RESTful风格, 但Retrofit也丢失了部分灵活性。
- 使用OkHttp流程
 - 1. 创建OkHttpClient对象,如果只是发送简单的请求,则使用默认构造器创建即可;如果需要更有效地设置OkHttpClient,则应通过OkHttpClient. Builder对象。
 - 2. 通过Request. Builder构建Request对象。Request 代表一次请求,所有和请求有关的信息都通过Request.Builder进行设置。Request.Builder对象方法

方法	说明
url(String url)	设置请求的URL。该方法有三个重载版本,该方法的参数可以是String、URL、HttpUrl。
addHeader(String name, String value)	设置请求头。
removeHeader(String name)	删除请求头。
cacheControl(CacheControl cacheControl)	设置Cache-Control请求头 , 用于控制缓存。
method(String method, RequestBody body)	设置请求方法和请求参数。其中 RequestBody代表请求参数。
get()	method(method, body)方法的简化版本,用来发送GET请求。默认就是发送GET请求。默认就是发送GET请求的,所以这个方法通常无须执行。
delete/post/put/patch(RequestBody body)	这几个方法都是method(method, body)方法的简化版本,分别代表发送 DELETE、POST、PUT、PATCH请求, 这些请求对于RESTful服务很常用。

- 3. 调用OkHttpClient的newCall()方法,以Request对象为参数创建Call对象。
- 4. 如果要发送同步请求,则直接调用Call对象的execute()方法即可:如果要发送异步请求,则调用Call对象的enqueue()方法,在调用该方法时要传入一个Callback回调对象,该回调对象将会负责处理服务器响应成功和响应出错的情况。

WebView

- WebView组件本身就是一个浏览器实现, WebView 基于Chromium内核实现, 直接支持 WebRTC、WebAudio 和WebGL等。WebView 也允许执行JavaScript。
- Chromium也包括对Web组件规范的原生支持,如自定义元素、阴影DOM、HTML导入和模板等,这意味着开发者可以直接在WebView中使用聚合(Polymer)和Material设计。
- 混合开发方式: Android + HTML 5混合开发。对于一些偏重展示、广告,尤其是需要经常更新的页面内容,用WebView嵌入一个HTML5页面是比较常用的做法,这样AndroidApp不需要更新,运营商只要更新服务器端的网页,WebView中显示的内容就会改变。而且不需要受制于应用商店的审核。
- WebView方法

方法	说明
goBack()	后退。
goForward()	前进。
loadUrl(String url)	加载指定URL对应 的网页。
boolean zoomln()	放大网页。
boolean zoomOut()	缩小网页。
loadData(String data, String mime Type, String encoding)	用于加载并显示 data(HTML)代码。
loadDataWithBaseURL(String baseUrl, String data, String mimeType,String encoding, String historyUrl)	用于加载并显示 data(HTML)代码。

■ data:指定需要加载的HTML代码。

WebView中的JavaScript调用Android方法

- 使用流程
 - 1. 调用WebView的getSettings获得WebSettings对象。
 - 2. 调用WebSettings的setJavaScriptEnabled(true)启用JavaScript调用功能。
 - 3. 调用WebView的addJavascriptInterface(Object object, String name)方法将object 对象暴露给JavaScript脚本。
 - 4. 在JavaScript脚本中通过刚才暴露的name对象调用Android方法。

Android Telephone

序言

- 背景:Android Telephone作为Android手机中的核心模块,为手机提供了基础的通信能力,其逻辑处理、运行效率和稳定性是Android手机定制开发过程中的重点和难点
- Telephony模块作为一个智能手机的核心部件,是区别移动OS与桌面OS的重要标志。
- 从接打电话、网络服务、数据上网三方面解析Telephony。
 - 。 深入解析通话流程、详解Telecom、详解TeleService、Voice Call语音通话模型、 ServiceState 网络服务、Data Call移动数据业务、SMS & MMS业务、Radio Interface Layer.
- Android Telephony业务跨度大,涉及多个层之间的交互:应用层、系统框架层、HAL 硬件抽象层和 BP Modem。

初识Android

智能手机的系统结构

- 手机分类
 - o 功能手机(Feature Phone): 具有传统手机的基本功能, 如打电话、发短信、照相等。
 - 智能手机(Smart Phone): 具有开放的操作系统、硬件和软件的可扩充性和支持第三方的二次开发。

•

图 1 智能手机的硬件架构

- 智能手机的基本硬件结构大多采用双处理器架构:主处理器和从处理器。
 - 主处理器运行开放式操作系统以及操作系统之上的各种应用,负责整个系统的控制;
 - 从处理器负责无线通信基本能力,主要包括DBB (Digital Baseband,数字基带)和ABB(Analog Baseband,模拟基带), 完成语音信号和数字信号调制解调、信道编码解码和无线 Modem控制。
 - 主处理器AP (Application Processor,应用处理器),从处理器BP (Baseband Processor,基带处理器),它们之间通过串口、总线或USB等方式进行通信。

Android系统架构

- Android 是一个分层的基于Linux Kernel的智能手机操作系统,共分为四层,从上到下依次是应用层(Applications)、应用框架层(Framework)、系统运行库层(Libraries)和核心层(Linux Kernel)
 - 。 系统运行库层
 - 系统运行库层包含了Android Runtime,其核心为Dalvik虚拟机。每一个Andraid应用程序 都运行在Dalvik虚拟机之上,且每一个应用程序都有自己独立运行的进程空间; Dalvik 虚 拟机只执行DEX可执行文件。DEX(Dalvik Executable)格式是专为Dalvik 设计的一种压缩 格式,适合内存和处理器速度有限的系统。要生成DEX格式文件,首先通过Java程序编 译生成class文件,然后通过Android提供的dx工具将class文件格式转换成DEX格式。
 - 特征
 - 每一个Android应用运行在-个Dalvik虚拟机实例中,而每一个虚拟机实例都是一个独立的进程空间。
 - 虚拟机的线程机制、内存分配和管理、Mutex (进程同步)等的实现都依赖底层 Linux操作系统。
 - 所有Android应用的线程都对应一个Linux线程,因而虚拟机可以更多地使用 Linux操作系统的线程调度和管理机制。
 - Dalvik虚拟机并不是按照Java虚拟机的规范来实现的,两者并不兼容;它们之间最大的不同在于Java虚拟机运行的是Java字节码,而Dalvik虚拟机运行的是其专有的文件格式DEX (Dalvik Executable)文件。

Android Telephony框架结构

•

- o Android Telephony的业务应用跨越AP和BP, AP与BP相互通信,符合前面介绍的智能手机的硬件基本结构。
- o Android系统在AP上运行,而Telephony运行在Linux Kernel之上的用户空间。
- Android Telephony也采用了分层结构的设计,共跨越了三层:应用层、应用框架层和系统运行库层,与Android操作系统整体分层结构保持一致;
- o Android Telephony从上到下共分三层: Telephony 应用、Telephony 框架、RIL (Radio Interface Layer,无线通信接口层,主要位于系统运行库层的HAL中)
- 。 BP SoftWare在BP上运行,主要负责实际的无线通信能力处理

系统运行库层的HAL

- HAL (Hardware Abstraction Layer, 硬件抽象层)在Linux和Windows操作系统平台下有不同的实现方式。
 - Windows下的HAL位于操作系统的最底层,它直接操作物理硬件设备,用来隔离与不同硬件相关的信息,为上层的操作系统和设备驱动程序提供一个统一接口,起到对硬件的抽象作用。
 - Linux下的HAL并不是位于操作系统的最底层,它位于操作系统核心层和驱动程序之上,是一个运行在用户空间中的服务程序。

•

图 1-4 HAL 0.4.0 Specification

作用

- HAL是一个位于操作系统和驱动程序之上,运行在用户空间中的服务程序。其目的是对上层应用提供一个统一的查询硬件设备的接口。HAL所谓的抽象并不提供对硬件的实际操作,对硬件的操作仍然由具体的驱动程序来完成。
- 。 将原本应该包括在Linux Kernel中的某些驱动关键处理逻辑,转移到了HAL层中,从而达到了不必开源的目的。避免使用linux kernel的GPL(General Public License),而使用Android的ASL(Apache Software License)

HAL的运行结构

。 分类

- 老式HAL结构:应用或框架通过so动态链接库调用从而达到对硬件驱动的访问。在so动态链接库里,实现了对驱动的访问逻辑处理。
- 新式HAL结构:采用Stub代理方式调用。HAL Stub是一种代理概念,虽然Stub仍是以 *.so 的形式存在,但HAL已经将 *.so 的具体实 现隐藏了起来。Stub 向HAL提供operations方法,Runtime 通过Stub提供的so获取它的operations方法,并告知Runtime的callback方法。这样Runtime和Stub都有对方调

用的方法,一个应用的请求通过Runtime调用Stub的operations方法,而Stub响应operations方法并完成后,再调用Runtime的callback方法返回。

■ HAL Stub有一种包含关系,即HAL里包含了很多的Stub。Runtime 只要说明请求类型,就可以取得并操作Stub对应的operations方法。其实现主要在hardware.c 和hardware.h文件中。实质也是通过dlopen方法加载.so动态链接库,从而调用.so里的符号(symbol)实现。

搭建Android源代码编译调试环境

- 步骤
 - 1. 安装Ubuntu
 - 2. 安装JDK
 - 3. 更新Ubuntu系统工具包
 - 4. 安装Android源代码