

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: CM4F1 Curso: Análisis y Modelamiento Numérico I]

Solucionario Cuarta Práctica Calificada

- 1. Indique y justifique la veracidad (V) o falsedad (F) de cada una de las siguientes afirmaciones:
 - (a) [1 pto.] Si f es continua tal que f(a)f(b) < 0 con a < b, entonces es posible aplicar el algoritmo de la regla falsa en [a, b].
 - (b) $[1\ pto.]$ Dados $x,y\in\mathbb{R}^n$ no nulos, existe una matriz Q con columnas ortogonales tal que Qx=y.
 - (c) [1 pto.] Dado $b \in \mathbb{R}^n$, se cumple que $A^TAx = A^Tb$ si y solo si $Ax = b P_{\ker(A^T)}b$, donde $P_{\ker(A^T)}$ es la proyección sobre el nucleo de A^T
 - (d) $[1 \, pto.]$ Dado una matriz cuadrada M con columnas no nulas, existe P producto de trasformaciones de Givens tal que PM es una matriz diagonal.

Solución:

(a) [1 pto.] (F) Sea $f(x) = \frac{1}{x}$, es continua con f(-1)f(1) < 0, el primer iterado es

$$x^1 = rac{rac{-1}{1} - rac{1}{-1}}{rac{1}{1} - rac{1}{-1}} = 0,$$

pero $x^1 \notin Dom(f)$ por tanto no es posible continuar con el algoritmo.

- (b) $[1 \ pto.]$ (V) Sea Q la matriz de housholder $(Q^TQ = QQ^T = I)$ tal que $Q\frac{x}{||x||} = \frac{y}{||y||}$. Luego considerando $S = \frac{||y||}{||x||}Q$ se cumple que Sx = y y $S^TS = SS^T = \frac{||y||^2}{||x||^2}I_n$ (columnas ortogonales).
- (c) [1 pto.] (V) Se sabe que $A^T A x = A^T b$ si y solo si $||Ax b|| = \min_z ||Az b||$ si y solo si $Ax = P_{Im(A)}(b) = b P_{Im(A)}(b) = b P_{Im(A)}(b) = b P_{Im(A)}(b)$.
- (d) $[1 \ pto.]$ (F) Sea $M = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ supongamos que existe P como en (d) tal que $PM = diag(c_1, c_2)$, como P es una proyección $c_1 = \left\| \begin{pmatrix} c_1 \\ 0 \end{pmatrix} \right\| = \left\| P \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\| = 1$, de igual manera $c_2 = 1$, por tanto al ser P invertible se obtiene que M es invertible lo cual es una contradicción.

- 2. Un comerciante vende quesos de 3 tipos curado, semicurado y tierno. Los precios de cada uno de ellos son S/12, S/10 y S/9 el kilogramo, respectivamente. Se sabe que el total de kilos vendidos son 44, siendo el importe total de la venta S/ 436 y que el número de kilos vendidos del queso semicurado es el doble que del curado. Ayudale al comerciante ha determinar los kilos de queso que vendió.
 - (a) [1 pto.] Modele el problema.
 - (b) [1 pto.] Determine la solución usando el método de Householder.
 - (c) [1 pto.] Determine la solución usando el método de Givens.
 - (d) [1 pto.] Indique que método recomienda.

Solución:

(a) [1 pto.] Sean:

x: Queso tipo curado.

y: Queso tipo semicurado.

z: Queso tipo tierno.

Donde, el sistema ha resolver es:

$$x + y + z = 44$$

 $12x + 10y + 9z = 436$
 $2x - y + 0z = 0$

(b) [1 pto.] Por el método de Householder se obtienen las matrices siguientes:

$$H_1 = \left[\begin{array}{cccc} -0.999994444491 & 0 & -0.003333314815 \\ 0 & 1 & 0 \\ -0.003333314815 & 0 & 0.999994444491 \end{array} \right] \wedge H_2 = \left[\begin{array}{ccccc} 1 & 0 & 0 \\ 0 & -0.999999500006 & 0.000999993944 \\ 0 & 0.000999993944 & 0.999999500006 \end{array} \right]$$

Luego

$$H_2H_1A=R=egin{bmatrix} 12.20655561573 & 9.748859854177 & 8.929627933658 \\ 0 & 2.638130312101 & 1.495873311008 \\ 0 & 0 & -0.155267523511 \end{bmatrix} \ H_1H_2=Q=egin{bmatrix} 0.081923192052 & 0.076320066888 & -0.993712150471 \\ 0.983078304623 & 0.157728138236 & 0.093160514107 \\ 0.163846384104 & -0.984528862857 & -0.062107009404 \end{bmatrix} \ Q'b=c=egin{bmatrix} 432.2267612658 \\ 72.12755121377 \\ -3.105350470223 \end{bmatrix}$$

$$H_1H_2=Q= egin{bmatrix} 0.081923192052 & 0.076320066888 & -0.993712150471 \ 0.983078304623 & 0.157728138236 & 0.093160514107 \ 0.163846384104 & -0.984528862857 & -0.062107009404 \end{bmatrix}$$

$$Q'b=c=\begin{bmatrix} 432.2267612658\\ 72.12755121377\\ -3.105350470223 \end{bmatrix}$$

Al resolver, se tiene

$$x = \left[\begin{array}{c} 8\\16\\20 \end{array}\right]$$

(c) [1 pto.] Por el método de Givens tenemos las matrices siguientes:

$$G_{21} = \left[egin{array}{ccccc} 0.083045479854 & -0.996545758245 & 0 \ 0.996545758245 & 0.083045479854 & 0 \ 0 & 0 & 1 \end{array}
ight],$$

$$G_{31} = \left[egin{array}{cccc} 0.98648586529 & 0 & -0.163846384104 \\ 0 & 1 & 0 \\ 0.163846384104 & 0 & 0.98648586529 \end{array}
ight]$$

 \mathbf{y}

$$G_{32} = \left[egin{array}{cccc} 1 & & & & & & 0 \ 0 & -0.062957830000 & & 0.998016188066 \ 0 & -0.998016188066 & -0.062957830000 \end{array}
ight]$$

Luego

$$G_{32}G_{31}G_{21}A = R = \begin{bmatrix} 12.20655561573 & 9.748859854177 & 8.929627933658 \\ 0 & -2.638130312101 & -1.495873311008 \\ 0 & 0 & 0.155267523511 \end{bmatrix}$$

$$G_{21}G_{31}G_{32} = Q = \begin{bmatrix} 0.081923192052 & -0.076320066888 & 0.993712150471 \\ 0.983078304623 & -0.157728138236 & -0.093160514107 \\ 0.163846384104 & 0.984528862857 & 0.062107009404 \end{bmatrix}$$

$$G_{21}G_{31}G_{32} = Q = \begin{bmatrix} 0.081923192052 & -0.076320066888 & 0.993712150471 \\ 0.983078304623 & -0.157728138236 & -0.093160514107 \\ 0.163846384104 & 0.984528862857 & 0.062107009404 \end{bmatrix}$$

$$Q'b=c=\left[egin{array}{c} 432.2267612658 \ -72.12755121377 \ 3.105350470223 \end{array}
ight].$$

Al resolver, se tiene:

$$x = \left[\begin{array}{c} 8 \\ 16 \\ 20 \end{array} \right]$$

- (d) [1 pto.] Se recomienda el método de Householder para este problema en particular, porque se reduce el número de operaciones.
- 3. Dado el circuito de una red

Determine la solución aproximada del circuito, según el siguiente requerimiento.

- (a) [1 pto.] Modele el problema.
- (b) [1 pto.] Determine la solución usando el método de Gram-Schmidt.
- (c) [1 pto.] Determine la solución usando el método de Gram-Schmidt Modificado.
- (d) [1 pto.] Indique que método recomienda.

Solución:

(a) [1 pto.] Sean

 I_1 : Intensidad 1. I_2 : Intensidad 2. I_3 : Intensidad 3.

Por la segunda Ley de Kirchhoff:

$$300I_1$$
 + $150I_3$ = 7.5
 $1000I_2$ - $150I_3$ = 11.5

Por la primera Ley de Kirchhoff:

$$I_1 - I_2 - I_3 = 0.$$

Donde, el sistema es

$$300I_1$$
 + $150I_3$ = 7.5
 $1000I_2$ - 150_3 = 11.5
 I_1 - I_2 - I_3 = 0

(b) [1 pto.] Por el método de Gram-Schmidt, tenemos:

$$E = \begin{bmatrix} 0.999994444491 & 0.000003333295 & 0.003333313148 \\ 0 & 0.999999500006 & -0.000999993944 \\ 0.003333314815 & -0.000999988389 & -0.999993944499 \end{bmatrix}$$

$$U = \begin{bmatrix} 300.001666662 & -0.003333314815 & 149.9958333588 \\ 0 & 1000.000499994 & -149.9984250183 \\ 0 & 0 & 1.649990008424 \end{bmatrix}$$

$$c = \begin{bmatrix} 7.499996666569 \\ 11.49999425007 \\ 0.013499994638 \end{bmatrix} \Rightarrow x = \begin{bmatrix} 0.0209090909099 \\ 0.012727272727 \\ 0.008181818182 \end{bmatrix}$$

(c) [1 pto.] Por el método de Gram-Schmidt Modificado, tenemos:

$$E = \begin{bmatrix} 0.999994444491 & 0.000003333295 & 0.003333313148 \\ 0 & 0.999999500006 & -0.000999993944 \\ 0.003333314815 & -0.000999988389 & -0.999993944499 \end{bmatrix}$$

$$c = \begin{bmatrix} 7.499996666569\\ 11.49999425007\\ 0.013499994638 \end{bmatrix} \Rightarrow x = \begin{bmatrix} 0.020909090909\\ 0.012727272727\\ 0.008181818182 \end{bmatrix}$$

- (d) [1 pto.] Ambos métodos son eficientes para el problema presentado.
- 4. Dado una función $f:[0,+\infty)\to]0,+\infty)$ diferenciable acotado. Se busca determinar p>0 tal que sean iguales las áreas bajos las gráficas de f y la función identidad y=x, tomados desde el origen hasta p.
 - (a) [1 pto.] Muestre que bajo las hipótesis sobre f, existe p.
 - (b) $[0.5\,pts.]$ Si $f(x)=\frac{x}{x^2+1}+1$, verificar que f cumple las hipótesis del problema e indique el intervalo I donde aplicar el método de la bisección para aproximar p, obtener la información de I a partir del gráfico conjunto de f y la función identidad.
 - (c) [2.5 pts.] De (b) aproxime p, utilizando el método de la bisección y regla de falsa modificada $(\alpha = \frac{1}{2})$, con una tolerencia de 10^{-5} .

Solución:

(a) [1 pto.] Considerar la función

$$\psi(x) = \int_0^x f(s) \, ds - \frac{x^2}{2},$$

la cual por TFC es continua en $[0, +\infty)$. La existencia de p es equivalente a mostrar la existencia de un cero de ψ .

Se tiene que f(x) - x es continua, luego al ser f(0) - 0 > 0 existe $\delta > 0$ tal que

$$f(x)-x>rac{f(0)}{2},\, orall x\in [0,\delta[,$$

luego integrando se tiene $\psi(\delta) > 0$. Por otro lado como $f(s) \leq M, \forall s \in [0, +\infty)$, se obtiene que

$$\int_0^x f(s) \, ds - \frac{x^2}{2} \le Mx - \frac{x^2}{2} \ \Rightarrow \ \psi(3M) < 0.$$

Finalmente el TFI garantiza la existencia de un cero de ψ en el intervalo $[\delta, 3M]$.

(b) $[0.5\,pts.]$ Se observa que f es diferenciable con $f(x)\geq 1, \forall x\in [0,+\infty)$. Ademas es acotado, $0< f(x)<\frac{1}{2}+1=\frac{3}{2}$. De la prueba anterior se observa que el intervalo donde aplicar los metodos serian [c,d], siendo $c< x_0$, siendo x_0 el menor escalar tal que $f(x_0)=x_0;$ y d>2M. Por tanto consideraremos el intervalo [1,3], para hallar el zero de $\psi(x)=\frac{1}{2}ln(x^2+1)+x-\frac{x^2}{2}$

(c) $[2.5\,pts.]$ Al aplicar el método de la bisección se obtiene la tabla:

k	a_k	b_k	$Error \ b_k - a_k$
0	1	3	2
1	2	3	1
2	2.5	3	0.5
:			
18	2.77937316	2.77938079	0.00000762

Al aplicar el método de la regla de falsa modificada ($\alpha = \frac{1}{2}$) se obtiene la tabla:

k	a_k	b_k	$Error b_k - a_k $	$Error \ f(c_k) $
0	2	3	2	0.458091
1	3	2.416526	0.583473	0.045563
2	3	2.747816	0.252183	0.030453
:				
5	2.800065	2.779376	0.020689	0.000002685899
6	2.779376	2.779379	0.000003	0.000000000001

06 de Julio del 2022