Condensé de la 1ère Mathématiques

Notations non vues en cours

:=	Égal par définition
$\mathbb{A}\cap\mathbb{B}$	Appartient à la fois à \mathbb{A} et à \mathbb{B}
$\lceil x \rceil$	Arrondir x à l'entier supérieur. ($\lceil 5.1 \rceil = 6$)
1.5	Séparateur ,
$x \cdot y$	Séparateur ,
$\vec{v} \perp \vec{u}$	\vec{v} et \vec{u} orthogonaux

Contents

1	Pol	ynômes du second degré $ax^2 + bx + c$	1
	1.1	Δ : Trouver les racines	1
	1.2	Étudier le signe	1
	1.3	α,β : Trouver l'extremum	1
		1.3.1 Maximum ou minimum?	1
		1.3.2 Calcul	
	1.4	Différentes formes	
2	Vec	teurs \vec{v} , équations cartésiennes $ax + by + c = 0$	2
	2.1	Colinéarité	
	2.2	Vecteur directeur	
	2.2	2.2.1 Équation réduite $y = mx + p$	
		2.2.1 Equation redutte $y = mx + p$	
	2.2		
	2.3	Décomposer un vecteur	
	2.4	Relation de Chasles	2
3	Stat	tistiques	3
3	3.1	tistiques Caractéristiques	3
	3.2	Transformation de valeurs selon $y = mx + p$	
	3.2		
		3.2.1 Démonstrations	3
1	Dro	babilités	4
4	4.1	Notions	4
	4.2	Loi de probabilité de X	
	4.3	Caractéristiques	4
	4.4	Issues, évennements	4
	4.5	Loi binomiale \mathscr{B}	
		4.5.1 Définitions	
		4.5.2 Loi de X	5
		4.5.3 Caractéristiques	5
_	~ .		_
5		$\operatorname{tes}U_n$	6
	5.1	Types de suites	
		5.1.1 Fonctionnelle	
		5.1.2 Récursive	
	5.2	Suites remarquables	6
		5.2.1 Arithmétiques	6
		5.2.2 Géométriques	6
	5.3	Sommes	
		5.3.1 Suites arithmétiques	6
		5.3.2 Suites géométriques	6
	5.4	Variations	6
	0.1	5.4.1 Fonction associée	6
		5.4.2 Méthode 2	6
		5.4.3 Méthode 3	6
		5.4.5 Methode 5	Ü
6	Pro	oduit Scalaire $ec{u}\cdotec{v}$	7
U	6.1	Calcul	7
	6.2	Multiplication de segments liés	7
	-	Identités remarquables	7
	6.3		
	6.4	Angle aigu et obtu	7
7	É+	de de fonctions	8
1			
	7.1	Fonctions de bases	8
	7.0	7.1.1 Démonstration: $\sqrt{\text{est croissante sur sont intervalle de définition}}$	8
	7.2	Opérations sur fonctions	8
	7.3	Dérivées	9
		7.3.1 Nombre dérivé $f'(a)$	9
		7.3.2 Tangeante T au point a	9

		7.3.3 Dérivées remarquables	9
		7.3.4 Opérations sur les dérivées	9
		7.3.5 Utilisations de $f'(x)$	9
	7.4	Positions relatives	9
		7.4.1 Justifier les positions relatives des courbes représentatives des fonctions identité, carré et racine	
		carrée	10
8	Trig		11
	8.1	Notions	11
	8.2	Valeurs remarquables	
	8.3	Formules de trigonométrie	
		8.3.1 Démonstration	11
9	Géo	ométrie	13
	9.1	Médiane	13
	9.2	Centre de gravité d'un triangle	
	9.3	Théorèmé de la médiane	
	9.4	Équation de cercle	

- 1 Polynômes du second degré $ax^2 + bx + c$
- 1.1 Δ : Trouver les racines

$$\Delta := b^2 - 4ac$$

$$\begin{cases} \Delta > 0 & x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{4a} \\ \Delta = 0 & x_0 = \frac{b}{2a} \\ \Delta < 0 & \emptyset \end{cases}$$

1.2 Étudier le signe

Le signe du polynôme est celui de a, et, si $\Delta>0$, est celui de -a entre x_1 et x_2

- 1.3 α,β : Trouver l'extremum
- 1.3.1 Maximum ou minimum?

$$a > 0$$
 minimum $a < 0$ maximum

1.3.2 Calcul

$$\alpha := \frac{b}{2a}$$

$$\beta := \frac{\Delta}{4a}$$
Sommet = $(\alpha; \beta)$

Le polynôme atteint un extremum en α de valeur β

1.4 Différentes formes

Canonique
$$(x - \alpha)^2 + \beta$$

Factorisée $a(x - x_1)(x + x_2)$
 $a(x_0 - x)^2$

Développée $ax^2 + bx + c$

- **2** Vecteurs \vec{v} , équations cartésiennes ax + by + c = 0
- 2.1 Colinéarité

$$\vec{v} \& \vec{u} \text{ colinéaires} \iff x_u y_v - y_u x_v = 0$$

$$\iff (u) \parallel (v)$$

$$\iff \vec{u} = \lambda \vec{v} \quad (\forall \ \lambda \in \mathbb{R})$$

- 2.2 Vecteur directeur
- **2.2.1** Équation réduite y = mx + p

$$\vec{v} \begin{pmatrix} 1 \\ m \end{pmatrix}$$

2.2.2 Équation cartésienne ax + by + c = 0

Vecteur directeur (-b; a)

Coefficient directeur $m = -\frac{a}{b}$

Vecteur normal (a; b)

2.3 Décomposer un vecteur

$$(\forall \lambda, \lambda' \in \mathbb{R}) \quad \vec{w} = \lambda \vec{v} + \lambda' \vec{u}$$

2.4 Relation de Chasles

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

3 Statistiques

3.1 Caractéristiques

Nom	Type	Définition	
Effectif total	/	N :=	$\sum_{i=0}^{p} n_i$
Moyenne	Centrale	$\bar{x} :=$	$\frac{1}{N} \sum_{i=0}^{p} n_i x_i$
Médiane	Centrale	Me :=	$\begin{cases} N \text{ pair } & \frac{1}{2} \left(x_{\frac{N}{2}} + x_{\frac{N+1}{2}} \right) \\ N \text{ impair } & x_{\left \lceil \frac{N}{2} \right \rceil} \end{cases}$
Mode	Centrale	Mo :=	Valeur ou classe qui a l'effectif le plus grand
Premier Quartil	Non-centrale	$Q_1 :=$	$x_{\lceil \frac{N}{4} \rceil}$
Troisième Quartil	Non-centrale	$Q_3 :=$	$x_{\left\lceil rac{3}{4}N ight ceil}$
Étendue	Dispersion	e :=	$x_{max} - x_{min}$
Écart inter-quartil	Dispersion		$Q_3 - Q_1$
Variance	Dispersion	V :=	$\frac{1}{N} \sum_{i=0}^{p} (n_i x_i^2) - \bar{x}$
Écart type	Dispersion	$\sigma :=$	\sqrt{V}

3.2 Transformation de valeurs selon y = mx + p

$$\bar{y} = m\bar{x} + p$$

$$V_y = m^2 V_x$$

$$\sigma_y = |m|\sigma_x$$

3.2.1 Démonstrations

$$\overline{y} = \frac{1}{N} \sum_{n=1}^{p} n_i m x_i + p$$

$$= m \frac{1}{N} \sum_{n=1}^{p} (n_i x_i) + p$$

$$= m \overline{x} + p$$

$$\sigma_y = \sqrt{V_y}$$

$$= \sqrt{m^2 V_x}$$

$$= \sqrt{m^2} \sqrt{V_y}$$

$$= |m|\sigma_x$$

4 Probabilités

4.1 Notions

Nom	Symbole	Description
Univers Ω		Ensemble des issues possibles
Variable aléatoire	X	Fonction qui renvoie un nombre aléatoire dans Ω

4.2 Loi de probabilité de X

Exemple:

- $\Omega = \{0; 1; 2\}$
- $p(X=0) = p(X=2) = \frac{1}{4}$
- $p(X=1) = \frac{1}{2}$

4.3 Caractéristiques

Nom	Description	Formule	
Espérance	Résultat moyen espéré	E(X) :=	$\sum_{i=1}^{n} p_i x_i$
Variance		V(X) :=	$\sum_{i=1}^{n} (p_i x_i) - E(X)^2$
Écart type		$\sigma(X) :=$	$\sqrt{V(X)}$

4.4 Issues, évennements

Exemple:

$$\begin{array}{c|cc} x_i & A & B \\ \hline p(X = x_i) & \frac{1}{3} & \frac{2}{3} \end{array}$$

Calcul de l'issue AB $(A \rightarrow B)$:

$$p(AB) = p(A) \cdot p(B)$$

Calcul de l'évenement Θ « au moins une fois A »:

$$p(\Theta) = p(AB) + p(BA) + p(AA)$$

Calcul de l'évennement contraire $\bar{\Theta}$:

$$p(\bar{\Theta}) = 1 - p(\Theta)$$

4

4.5 Loi binomiale \mathscr{B}

4.5.1 Définitions

Épreuve de Bernoulli	
Évenement « succès »	S
Évenement « échec »	$ar{S}$
Probabilité de succès	p := p(S)
Probabilité d'échec	$q := p(\bar{S})$
	=1-p
Schéma de Bernouilli	$\mathscr{B}(n;p)$
Nombre de répétitions	n
Nombre de succès	k
Univers	$\Omega = [0; n] \cap \mathbb{N}$

4.5.2 Loi de X

Si $X \sim \mathscr{B}(n;p)$

k	0	2	3	 n
p(X=k)	$\binom{n}{k} p^k q^{n-k}$	$\binom{n}{k} p^k q^{n-k}$	$\binom{n}{k} p^k q^{n-k}$	 $\binom{n}{k} p^k q^{n-k}$

4.5.3 Caractéristiques

$$\forall k \in [0;n] \cap \mathbb{N}$$

$$E(X) = np$$
$$V(X) = npq$$

- 5 Suites U_n
- 5.1 Types de suites
- 5.1.1 Fonctionnelle

$$U_n = 2n$$

5.1.2 Récursive

$$\begin{cases} U_{n+1} &= U_0 + U_n \\ U_0 &= 5 \end{cases}$$

- 5.2 Suites remarquables
- 5.2.1 Arithmétiques

$$\begin{cases} U_{n+1} &= U_n + r \\ U_0 &= k \end{cases}$$

$$U_n = U_0 + r \cdot n$$

5.2.2 Géométriques

$$\begin{cases} U_{n+1} &= U_n \cdot q \\ U_0 &= k \end{cases}$$

$$U_n = U_0 \cdot q^n$$

- 5.3 Sommes
- 5.3.1 Suites arithmétiques

$$\sum_{\mu=i}^{j} U_{\mu} = \frac{U_{i} + U_{j}}{2} \cdot (j - i + 1)$$

5.3.2 Suites géométriques

$$\sum_{\mu=i}^{j} U_{\mu} = U_{i} \cdot \frac{1 - q^{j-i+1}}{1 - q}$$

- 5.4 Variations
- 5.4.1 Fonction associée

$$(\forall n \in \mathbb{N}) f : n \mapsto U_n$$

Si $f \nearrow / \searrow \implies U_n \nearrow / \searrow$

5.4.2 Méthode 2

$$U_{n+1} - U_n \le 0 \iff U_n \setminus / \nearrow$$

5.4.3 Méthode 3

$$\frac{U_{n+1}}{U_n} \leq 1 \iff U_n \nearrow / \searrow$$

6 Produit Scalaire $\vec{u} \cdot \vec{v}$

Note: pour éviter les confusions, la multiplication normale est notée \times dans ce chapitre.

6.1 Calcul

 $\vec{\mu}, \vec{\kappa}$ projetés orthogonaux de \vec{u} et \vec{v}

$$\begin{split} \vec{u} \cdot \vec{v} &= ||\vec{u}|| \times ||\vec{v}|| \times \cos{(\vec{u}; \vec{v})} \\ &= x_u \times x_v + y_u \times y_v * \\ &= \vec{u} \perp \vec{v} \\ &= \vec{\mu} \cdot \vec{\kappa} \\ &= \frac{1}{2} \left(||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{v} - \vec{u}||^2 \right) ** \end{split}$$

- * Seulement dans un repère orthonormé
- ** Si \vec{u} et \vec{v} sont vecteurs directeurs des segments formant un triangle:

Figure 1

6.2 Multiplication de segments liés

Si A, H, B alignés dans cet ordre

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH$$

Sinon, si H, A, B alignés dans cet ordre

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AH$$

6.3 Identités remarquables

$$\begin{split} ||\vec{u} \pm \vec{v}||^2 &= ||\vec{u}||^2 \pm 2\vec{v} \cdot \vec{u} + ||\vec{v}||^2 \\ (\vec{u} - \vec{v})(\vec{u} + \vec{v}) &= ||\vec{u}||^2 - ||\vec{v}||^2 \end{split}$$

6.4 Angle aigu et obtu

$$\vec{u}\cdot\vec{v}>0\iff (\vec{u};\vec{v})$$
aigu

Et inversement

7 Étude de fonctions

7.1 Fonctions de bases

7.1.1 Démonstration: $\sqrt{}$ est croissante sur sont intervalle de définition

Soit $a, b \in \mathbb{R}_+$ tels que a < b.

$$\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b}) \cdot (\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}}$$
$$= \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

Or \sqrt{a} et \sqrt{b} sont positifs ou nuls, donc, comme $a < b \implies a \neq b, \sqrt{a} + \sqrt{b}$ est strictement positif. De plus, $a < b \iff a - b < 0$, donc $\frac{a - b}{\sqrt{a} + \sqrt{b}}$. Finalement:

$$\sqrt{a} - \sqrt{b} < 0 \iff \sqrt{a} < \sqrt{b}$$

L'ordre est conservé, $\sqrt{}$ est croissante sur \mathbb{R}_{+}

7.2 Opérations sur fonctions

 \leftrightarrows : Changement de variation

⇒ : Même variation

$$\forall k \in \mathbb{R}, \ \forall \lambda_{+} \in \mathbb{R}^{+}, \ \forall \lambda_{-} \in \mathbb{R}^{-}$$

$$u = -\infty \quad 0 \quad +\infty$$

$$u + k \quad \Rightarrow \quad k \quad \Rightarrow$$

$$u \cdot \lambda_{+} \quad \Rightarrow \quad 0 \quad \Rightarrow$$

$$u \cdot \lambda_{-} \quad \Leftrightarrow \quad 0 \quad \Leftrightarrow$$

$$\sqrt{u} \quad ///// \quad 0 \quad \nearrow$$

$$1/u \quad \Rightarrow \quad \parallel \quad \Rightarrow$$

7.3 Dérivées

7.3.1 Nombre dérivé f'(a)

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

7.3.2 Tangeante T au point a

$$T: y = \underbrace{f'(a)}_{\text{coef dir}} (x-a) + f(a)$$

7.3.3 Dérivées remarquables

$$f(x) \qquad f'(x)$$
constante 0
$$\forall n \in \mathbb{N} \qquad x^n \qquad nx^{n-1}$$

$$\sqrt{x} \qquad 1/2\sqrt{x}$$

$$\frac{1}{x} \qquad -1/x^2$$

7.3.4 Opérations sur les dérivées

(u+v)' et (ku)' fonctionne normalement.

$$(uv)' = u'v + v'u$$
$$\left(\frac{u}{v}\right)' = -\frac{v'u - u'v}{v^2}$$

7.3.5 Utilisations de f'(x)

Sens de variation de f

Si
$$f$$
 dérivable sur $[I;J]$

$$\begin{array}{c|cccc}
x & I & J \\
\hline
f'(x) & + & - \\
\hline
f(x) & \nearrow & \searrow
\end{array}$$

Extrema (et pas «extremums» bordel de merde)

Trouver le(s)
$$x$$
 pour $f'(x) = 0$

7.4 Positions relatives

Soit f et g deux fonctions avec pour coubres représentatives C_f et C_g

1. Etudier le signe de f(x) - g(x) pour tout x dans $D_f \cap D_g$

$$2. \begin{cases} f(x) - g(x) > 0 & C_f \text{ est au dessus de } C_g \text{ à } x \\ f(x) - g(x) > 0 & C_f \text{ est au dessous de } C_g \text{ à } x \\ f(x) - g(x) = 0 & C_f \text{ et } C_g \text{ sont confondues en } x \end{cases}$$

7.4.1 Justifier les positions relatives des courbes représentatives des fonctions identité, carré et racine carrée

Soit, pour toute fonction f, C_f sa courbe représentative. Soit, pour x dans $D_i = \mathbb{R}$, $i = x \mapsto x$, pour tout x dans $D_c = \mathbb{R}$, $c = x \mapsto x^2$ et, pour tout x dans $D_r = \mathbb{R}_+$, $r = x \mapsto \sqrt{x}$.

Soit $x \in C_i \cup C_c \cup C_r = \mathbb{R}_+$

Etudions d'abord la position relative de C_i et C_c . On étudie le signe de i(x) - c(x).

$$i(x) - c(x) = x - x^2$$
$$= x(1 - x)$$

Or x > 0 et 1 - x est strictement positif pour x > 1. Pour x = 1, x(1 - x) = 0 et, pour x < 1, x(1 - x) < 0. On en conclu que, pour x < 1, C_i est au dessus de C_c , puis que les courbes ont un point d'intersection à x = 1, puis que C_i est en dessous de C_c pour x > 1.

Etudions ensuite la position relative de C_i et de C_r : on étudie le signe de i(x) - r(x).

$$i(x) - r(x) = x - \sqrt{x}$$

$$= x - x^{0.5}$$

$$= x(1 - x^{-0.5})$$

$$= x\left(1 - \frac{1}{\sqrt{x}}\right)$$

x	0		1		$+\infty$
x	0	+	0	+	
$1-\frac{1}{\sqrt{x}}$		_	0	+	
i(x)-r(x)		_	0	+	

8 Trigonométrie

8.1 Notions

Radians unité d'angle, 1 radian équivaut à 180 degrés

Mesure principale mesure dans $[0; 2\pi[$ d'un angle. Par ex. la mesure principale de 4π est 0.

Cercle trigonométrique cercle de rayon 1 $(2\pi r \rightarrow 2\pi)$

Angle orienté les angles ont un signe selon le sens avec lequel ils sont mesurés

8.2 Valeurs remarquables

Figure 2

8.3 Formules de trigonométrie

$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

$$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$

$$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$$

$$\cos 2a = \cos^2 a - \sin^2 a$$

$$= 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$\sin 2a = 2\sin a \cos a$$

$$\cos^2 a = \frac{1 + \cos 2a}{2}$$

$$\sin^2 a = \frac{1 - \cos 2a}{2}$$

8.3.1 Démonstration

Soient $a, b \in \mathbb{R}$. Soit (O, \vec{i}, \vec{j}) un repère orthonormé.

On note A le point tel que OA = 1 et tel que l'angle $(\vec{i}, \overrightarrow{OA}) = a$.

On note B le point tel que OB = 1 et tel que l'angle $(\vec{i}, \overrightarrow{OB}) = a + b$.

On note A' le point tel que OA' = 1 et tel que l'angle $(\vec{i}, \overrightarrow{OA'}) = a + \frac{\pi}{2}$.

On a donc

$$\overrightarrow{OA} = \cos a\vec{i} + \sin a\vec{j}$$

$$\overrightarrow{OB} = \cos(a+b)\vec{i} + \sin(a+b)\vec{j}$$

$$\overrightarrow{OA'} = \cos(a+\frac{\pi}{2})\vec{i} + \sin(a+\frac{\pi}{2})\vec{j}$$

$$= -\sin a\vec{i} + \cos a\vec{j}$$

Or, dans $(O, \overrightarrow{OA}, \overrightarrow{OA'})$:

$$\overrightarrow{OB} = \cos(b)\overrightarrow{OA} + \sin(b)\overrightarrow{OA'}$$

Donc:

$$\overrightarrow{OB} = \cos a \cos b \vec{i} + \sin a \cos b \vec{j} - \sin a \sin b \vec{i} + \cos a \sin b \vec{j}$$
$$= (\cos a \cos b - \sin a \sin b) \vec{i} + (\sin a \cos b + \cos a \sin b) \vec{j}$$

Par unicité des coordonnées dans (O, \vec{i}, \vec{j}) , on a:

$$cos(a + b) = cos a cos b - sin a sin b$$

$$sin(a + b) = sin a cos b + cos a sin b$$

9 Géométrie

9.1 Médiane

Médiane issue d'un sommet $A \iff$ Droite passant par A et par le milieu du côté opposé à A

9.2 Centre de gravité d'un triangle

Centre de gravité de $\overrightarrow{ABC} \iff$ Unique point G tel que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$

9.3 Théorèmé de la médiane

- Les médianes d'un triangle se coupent au centre de gravité
- Soit G le centre de gravité de $\triangle ABC$ et $M \in A, B, C$. Pour chaque médiane du triangle issue du sommet M $[MM'], \overrightarrow{M'G} = \frac{1}{3}\overrightarrow{M'M}$

9.4 Équation de cercle

Soit (x_0, y_0) le centre du cercle et r sont rayon.

$$r^2 = (x_0 - x)^2 + (y_0 - y)^2$$

Si l'on connait un point A sur le cercle ainsi que son centre O, il faut trouver r:

$$r = \operatorname{distance}(A, O)$$
$$= \sqrt{(A_x - O_x)^2 + (A_y - O_y)^2}$$