# WEI KMeans

#### December 2, 2023

- import
- explore
- define groupby dataframes
  - k\_cats, by Region, question category, 1971-2020
  - k pivot, by question category, 2020
  - y\_animate, by year for animation
- define functions
  - ElbowCurve(), plots a linechart with kmeans scores in range(k1, k2)
  - N\_Clusters(), plots a barchart, adds 'k\_cluster' column to df with n numbers of groups
  - N\_Clusters\_S(), plots a barchart, adds 'k\_cluster' column to df with n numbers of groups from scaled data
  - PlotlyGroups(), plots 2D scatter plot and histogram, with trendline, colored grouping
  - PlotlyGroups3D(), plots 3D scatter plot, colored grouping
  - PlotlyGroups3D Animate(), plots 3D scatter plot, colored grouping, animation variable
- KMeans Visualizations
  - initial exploration of k\_pivot, 2D/3D scatterplots, and non-scaled kmeans clusters
- GDP, Life Exp, WEI Score
  - exploration of three main variables' kmeans clustering
- Life Exp, GDP, Population
- Year Animation (GDP, Index Score, Life Exp)
  - Animation through the years 1971-2020
- Conclusion
  - Thoughts and next steps

## 1 Import

• import libraries and data

```
[1]: import pandas as pd
  import numpy as np
  from sklearn.cluster import KMeans
  from sklearn.preprocessing import StandardScaler
  import matplotlib.pyplot as plt
  import os
  import plotly.express as px
path = r'/Users/amritambe/Desktop/Analysis_Project/Women_Empowerment'
```

Data Imported:

```
[1]:
       Country_Name
                     Year
                            GDP_Growth
                                        Index_1971
                                                     Index_2020
                                                                 Fifty_Year_Change \
        Afghanistan
                      1971
                                   0.0
                                              210.0
                                                          305.0
                                                                               95.0
                                   0.0
                                                          305.0
                                                                               95.0
     1 Afghanistan
                     1971
                                              210.0
     2 Afghanistan
                                   0.0
                                              210.0
                                                          305.0
                                                                               95.0
                     1971
     3 Afghanistan 1971
                                   0.0
                                              210.0
                                                          305.0
                                                                               95.0
     4 Afghanistan 1971
                                   0.0
                                              210.0
                                                          305.0
                                                                               95.0
            Region Income_Group Question_Category
        South Asia
                      Low income
                                             Assets
        South Asia
                     Low income
                                             Assets
     2 South Asia
                     Low income
                                             Assets
     3 South Asia
                     Low income
                                             Assets
     4 South Asia
                      Low income
                                             Assets
                                                             Index_Score \
     O Do female and male surviving spouses have equa...
                                                                    0.0
     1 Do men and women have equal ownership rights t...
                                                                   20.0
     2 Do sons and daughters have equal rights to inh...
                                                                    0.0
     3 Does the law grant spouses equal administrativ...
                                                                   20.0
     4 Does the law provide for the valuation of nonm...
                                                                    0.0
        2020_Data_Rank
                        2020_1GB_Price(USD)
                                               Life_Exp
                                                                      GDP_Per_Cap
                                                         Population
     0
                  59.0
                                                 36.088
                                         1.55
                                                         13079460.0
                                                                       739.981106
     1
                  59.0
                                        1.55
                                                 36.088
                                                         13079460.0
                                                                       739.981106
                                                                       739.981106
     2
                  59.0
                                        1.55
                                                 36.088
                                                         13079460.0
     3
                  59.0
                                        1.55
                                                 36.088
                                                         13079460.0
                                                                       739.981106
     4
                  59.0
                                                 36.088
                                                         13079460.0
                                         1.55
                                                                       739.981106
        Avg_WEI_Score
     0
             6.288571
     1
             6.288571
     2
             6.288571
     3
             6.288571
             6.288571
```

# 2 Explore

- EDA
- df\_k, df set to easily decide which variables to choose

• k, df set for the year 2020

```
[2]: #create country id dataframe
     country_id = pd.DataFrame(df['Country_Name'].unique()).reset_index()
     country_id.columns = ['Country_Id', 'Country_Name']
     country_id['Country_Id'] = country_id['Country_Id'] + 1
     country_id
[2]:
          Country_Id
                              Country_Name
     0
                   1
                               Afghanistan
     1
                   2
                                   Albania
     2
                   3
                                   Algeria
     3
                   4
                                    Angola
     4
                   5
                      Antigua and Barbuda
                                   Vietnam
     185
                 186
     186
                 187
                                 West Bank
     187
                 188
                                     Yemen
     188
                 189
                                    Zambia
                                  Zimbabwe
     189
                 190
     [190 rows x 2 columns]
[3]: #merge df to create country_id column
     df_ = pd.merge(df, country_id, on='Country_Name', how='inner')
[4]: df_.columns.tolist()
[4]: ['Country_Name',
      'Year',
      'GDP_Growth',
      'Index_1971',
      'Index_2020',
      'Fifty_Year_Change',
      'Region',
      'Income_Group',
      'Question_Category',
      'Question',
      'Index_Score',
      '2020_Data_Rank',
      '2020_1GB_Price(USD)',
      'Life_Exp',
      'Population',
      'GDP_Per_Cap',
      'Avg_WEI_Score',
      'Country_Id']
```

```
[5]: df_k = df_[[
      'Country_Id',
      'Country_Name',
      'Year',
      'GDP_Growth',
      'Index_1971',
      'Index_2020',
      'Fifty_Year_Change',
      'Region',
      'Income_Group',
      'Question_Category',
      'Question',
      'Index_Score',
      '2020_Data_Rank',
      '2020_1GB_Price(USD)',
      'Life_Exp',
      'Population',
      'GDP_Per_Cap',
      'Avg_WEI_Score'
            ]].copy()
```

## 3 Groupby Categories 1971-2020

• k\_cats, df, categories for index scores by category and year

```
[6]:
      Question_Category
                          Year
                                                    Region
                                                            Index_Score \
                          1971
                                       East Asia & Pacific
                                                                 12.960
                  Assets
     1
                  Assets
                          1971
                                     Europe & Central Asia
                                                                 19.520
     2
                  Assets
                          1971
                                         High income: OECD
                                                                 16.125
     3
                                 Latin America & Caribbean
                  Assets
                          1971
                                                                 15.125
                                Middle East & North Africa
     4
                         1971
                                                                  8.600
```

```
Region_Code
0 0
1 1
2 2
3 3
```

## 4 Groupby Question Category, 2020

• k\_pivot, df of year 2020, grouping by question category

| [7]: | Question_Category | Country_Name                         |        | e Life | Life_Exp Pop                             |            | on         | GDP_Per_C | ap | \ |
|------|-------------------|--------------------------------------|--------|--------|------------------------------------------|------------|------------|-----------|----|---|
|      | 187               | Yemen Mexico Denmark Solomon Islands |        | n 62   |                                          |            | 2280.7699  | 06        |    |   |
|      | 107               |                                      |        | o 76   |                                          |            | 11977.5749 |           |    |   |
|      | 41                |                                      |        | k 78   |                                          |            | 35278.4187 | 418740    |    |   |
|      | 150               |                                      |        | s 77   |                                          |            | 25768.2575 | . 257590  |    |   |
|      | 100               | M                                    | Malawi |        |                                          |            | 759.349910 |           |    |   |
|      | Question_Category | Avg_WEI_Sc                           | ore    | Assets | Entr                                     | repreneurs | hip        | Marriage  | \  |   |
|      | 187               | 5.600                                |        | 40.0   |                                          | -          | 5.0        | 0.0       |    |   |
|      | 107               | 15.291                               | 429    | 100.0  |                                          | 10         | 0.0        | 60.0      |    |   |
|      | 41                | 19.160                               | 0000   | 100.0  |                                          | 10         | 0.0        | 100.0     |    |   |
|      | 150               | 12.400000<br>12.060000               |        | 80.0   | 80.0       75.0         100.0       75.0 |            | 100.0      |           |    |   |
|      | 100               |                                      |        | 100.0  |                                          |            | 75.0 10    |           |    |   |
|      | Question_Category | Mobility                             | Pare   | nthood | Pay                                      | 7 Pension  | Wo         | orkplace  |    |   |
|      | 187               | 25.0                                 |        | 0.0    | 25.0                                     | 25.0       |            | 25.0      |    |   |
|      | 107               | 100.0                                |        | 60.0   | 75.0                                     | 75.0       |            | 100.0     |    |   |
|      | 41                | 100.0                                |        | 100.0  | 100.0                                    | 100.0      |            | 100.0     |    |   |
|      | 150               | 75.0                                 |        | 0.0    | 25.0                                     | 75.0       |            | 25.0      |    |   |
|      | 100               | 50.0                                 |        | 20.0   | 100.0                                    | 100.0      |            | 100.0     |    |   |

## 5 Groupby Year

• y\_animate, df with all variables, Index Scores grouped by Year

```
[8]: df_.columns.tolist()
```

```
[8]: ['Country_Name',
      'Year',
      'GDP Growth',
      'Index_1971',
      'Index 2020',
      'Fifty_Year_Change',
      'Region',
      'Income_Group',
      'Question_Category',
      'Question',
      'Index_Score',
      '2020_Data_Rank',
      '2020_1GB_Price(USD)',
      'Life_Exp',
      'Population',
      'GDP_Per_Cap',
      'Avg_WEI_Score',
      'Country_Id']
[9]: y_animate = df_.groupby(['Country_Name', 'Year', 'Region',
                               'Income_Group', 'Life_Exp', 'Population',
                               'GDP_Per_Cap'])['Index_Score'] \
                               .agg('sum') \
                               .reset_index()
     # y_pivot = y_ani.pivot_table(index=['Country_Id', 'Year', '
      →'Index_1971', 'Index_2020', 'Fifty_Year_Change', 'Avg_WEI_Score',
                                           'Life_Exp', 'Population', 'GDP_Per_Cap'],
     #
                                    columns='Index_Score',
     #
                                    values='Index_Score',
     #
                                    aggfunc='sum') \
     #
                                    .reset_index()
     #change dtypes, make categorical codes for income and region
     y_animate['Income_Category'] = y_animate['Income_Group'].astype('category') \
                                                               .cat.codes \
                                                               .astype('int32')
     y_animate['Region_Category'] = y_animate['Region'].astype('category') \
                                                               .cat.codes \
                                                               .astype('int32')
     print(y_animate.dtypes) #check dtypes
     floats = ['Life_Exp', 'Population', 'GDP_Per_Cap', 'Index_Score']
     y_animate[floats] = y_animate[floats].round().astype('int64')
     print(y_animate.dtypes) #check dtypes
```

# y\_animate.sample(5)

|             | Counti                                              | ry_Name         | obje    | ct      |             |                        |                  |         |   |
|-------------|-----------------------------------------------------|-----------------|---------|---------|-------------|------------------------|------------------|---------|---|
|             | Year                                                | • –             | int     |         |             |                        |                  |         |   |
|             | Regior                                              | ı               | obje    | ct      |             |                        |                  |         |   |
|             | Income_Group                                        |                 |         | ct      |             |                        |                  |         |   |
|             | Life_E                                              | _               | float64 |         |             |                        |                  |         |   |
|             | Popula                                              | float           | 64      |         |             |                        |                  |         |   |
|             | GDP_Per_Cap                                         |                 |         | float64 |             |                        |                  |         |   |
|             | Index                                               | float           | 64      |         |             |                        |                  |         |   |
|             | Income                                              | int             | 32      |         |             |                        |                  |         |   |
|             | Region_Category<br>dtype: object                    |                 |         | 32      |             |                        |                  |         |   |
|             |                                                     |                 |         |         |             |                        |                  |         |   |
|             | Counti                                              | ry_Name         | objec   | t       |             |                        |                  |         |   |
|             | Year                                                | int6            | 4       |         |             |                        |                  |         |   |
|             | Region Income_Group Life_Exp Population GDP_Per_Cap |                 |         | t       |             |                        |                  |         |   |
|             |                                                     |                 |         | t       |             |                        |                  |         |   |
|             |                                                     |                 |         | 4       |             |                        |                  |         |   |
|             |                                                     |                 |         | 4       |             |                        |                  |         |   |
|             |                                                     |                 |         | int64   |             |                        |                  |         |   |
| Index_Score |                                                     |                 | int6    | int64   |             |                        |                  |         |   |
|             | Income                                              | e_Category      | int3    | 2       |             |                        |                  |         |   |
|             | Regior                                              | Region_Category |         | 2       |             |                        |                  |         |   |
|             | dtype:                                              | : object        |         |         |             |                        |                  |         |   |
| [9]         |                                                     | Count           | ry_Name | Year    |             | Pogi                   | on Incom         | o Croun | \ |
| [9]         | 9247                                                |                 | nezuela | 2018    | Intin Amo   | Regi<br>rica & Caribbe |                  | e_Group | \ |
|             | 7044                                                | v e.            | Samoa   | 2015    |             | t Asia & Pacif         | = =              |         |   |
|             | 4033                                                | Twor            | y Coast | 2013    |             | b-Saharan Afri         |                  |         |   |
|             | 6353                                                | Papua New       | •       | 1974    |             | t Asia & Pacif         |                  |         |   |
|             | 5312                                                | -               | uritius | 1983    |             | b-Saharan Afri         |                  |         |   |
| 5512        |                                                     | 110             | urrorus | 1300    | bu          | b banaran kiri         | .ca opper middie | THCOME  |   |
|             |                                                     | Life_Exp        | Populat | ion (   | GDP_Per_Cap | Index_Score            | Income_Category  | . \     |   |
|             | 9247                                                | 76              | 3447    |         | 10611       | 680                    | 3                |         |   |
|             | 7044                                                | 46              | 8860    |         | 863         | 640                    | 3                |         |   |
|             | 4033                                                | 81              | 58147   |         | 28570       | 555                    | 2                |         |   |
|             | 6353                                                | 76              | 3242    |         | 9809        | 385                    | 2                |         |   |
|             | 5312                                                | 67              | 9920    | 040     | 3688        | 505                    | 3                |         |   |
|             |                                                     |                 |         |         |             |                        |                  |         |   |
| Region_     |                                                     | Region_Ca       | ategory |         |             |                        |                  |         |   |
|             | 9247                                                |                 | 3       |         |             |                        |                  |         |   |
|             | 7044                                                |                 | 0       |         |             |                        |                  |         |   |
|             | 4033                                                |                 | 6       |         |             |                        |                  |         |   |
|             | 6353                                                |                 | 0       |         |             |                        |                  |         |   |
|             | 5312                                                |                 | 6       |         |             |                        |                  |         |   |
|             |                                                     |                 |         |         |             |                        |                  |         |   |

## 6 Groupby Country

- km\_country, df made from y\_animate to devise country specific k\_clusters
- aim is to create country-specific k clusters that don't change through the years, for comparison

```
[10]: km_country = y_animate.groupby(['Country_Name', 'Income_Category', __
       ⇔'Region_Category']) \
                               [['Life_Exp', 'GDP_Per_Cap', 'Index_Score']] \
                               .agg(['min', 'max', 'std', 'mean']) \
                               .reset_index()
      km_country.columns.tolist()
[10]: [('Country_Name', ''),
       ('Income_Category', ''),
       ('Region_Category', ''),
       ('Life_Exp', 'min'),
       ('Life_Exp', 'max'),
       ('Life_Exp', 'std'),
       ('Life_Exp', 'mean'),
       ('GDP_Per_Cap', 'min'),
       ('GDP_Per_Cap', 'max'),
       ('GDP_Per_Cap', 'std'),
       ('GDP_Per_Cap', 'mean'),
       ('Index_Score', 'min'),
       ('Index Score', 'max'),
       ('Index_Score', 'std'),
       ('Index Score', 'mean')]
[11]: km_country.head()
[11]:
                Country_Name Income_Category Region_Category Life_Exp
                                                                     min max
                                                                                    std
      0
                  Afghanistan
                                                              5
                                                                      36
                                                                          44
                                                                              2.634233
                                             1
      1
                      Albania
                                             3
                                                              1
                                                                      44
                                                                          76
                                                                              5.023861
      2
                                             3
                                                              4
                      Algeria
                                                                      55
                                                                          76
                                                                              6.115354
      3
                       Angola
                                             2
                                                              6
                                                                      38
                                                                          72
                                                                              4.695808
         Antigua and Barbuda
                                                              3
                                                                      43
                                                                          43
                                                                              0.000000
               GDP_Per_Cap
                                                         Index_Score
          mean
                        min
                              max
                                            std
                                                    mean
                                                                  min
                                                                       max
                                                                                    std
      0 41.14
                              978
                                                  824.50
                        635
                                    133.250761
                                                                  205
                                                                       305
                                                                             26.678165
      1 72.16
                        975
                             5937
                                   1290.804780
                                                 4132.86
                                                                  475
                                                                       730
                                                                             98.457543
      2 66.48
                             6223
                                                 5423.88
                                                                  260
                                                                       460
                                                                             73.215157
                       4183
                                    668.988687
      3 41.48
                       2277
                             6223
                                   1224.904752
                                                 3602.32
                                                                  245
                                                                       585
                                                                            125.130177
      4 43.00
                       4797
                             4797
                                       0.000000
                                                 4797.00
                                                                  435
                                                                       530
                                                                             23.413758
```

mean

```
1 570.7
     2 344.5
      3 409.7
      4 512.4
                                                            defining viz functions
     7
        ElbowCurve()
[12]: k_pivot.columns.tolist()
[12]: ['Country_Name',
       'Life_Exp',
       'Population',
       'GDP_Per_Cap',
       'Avg_WEI_Score',
       'Assets',
       'Entrepreneurship',
       'Marriage',
       'Mobility',
       'Parenthood',
       'Pay',
       'Pension',
       'Workplace']
[13]:
          \#k means for k\_pivot df
          #implement Kmeans algo
          #Define function for K Means Elbow
      def ElbowCurve(df, k1, k2):
              get k-means elbow curve using plotly
              - df, dataframe to use for kmeans
              - k1, low end of range for number of clusters
              - k2, high end of range for number of clusters, exclusive
              #decide on the variables:
              features_for_clustering = df
              scaler = StandardScaler()
              features_scaled = scaler.fit_transform(features_for_clustering)
```

0 220.1

## 9 N\_Clusters()

```
[14]: #updates df
      def N Clusters(df, cols, n):
              - df, dataframe for kmeans predictions
              - cols, df columns with dtype(int, float)
              - n, number of clusters
              temp_df = df[cols].copy() #temporary df to work with only int/floats
             kmeans = KMeans(n_clusters=n, n_init=10) #kmeans algo init
             temp_df['k_clusters'] = kmeans.fit_predict(temp_df)
              df = df.drop(columns=['k_clusters'], errors='ignore')
                                                                     #delete
       ⇒kcluster from old function calls
              df = pd.concat([df, temp_df['k_clusters']], axis=1) #concatenate the_
       →temp df with original, now with kcluster groupings
              #Use plotly to show value counts of new kmeans groups
              clusters = px.bar(df['k_clusters'].value_counts() \
                                                .sort values(ascending=False),
                               title='K Means')
              clusters.update_layout(xaxis_title='Clusters (k)',
```

## 10 N\_Clusters\_S()

```
[15]: #updates df
      def N_Clusters_S(df, cols, n):
              Scaled data
              - df, dataframe for kmeans predictions
              - cols, df columns with dtype(int, float)
              - n, number of clusters
              111
              temp_df = df[cols].copy() #temporary df to work with only int/floats
              #scale data
              scaler = StandardScaler()
              temp_df_scaled = scaler.fit_transform(temp_df)
              #fit kmeans
              kmeans = KMeans(n_clusters=n, n_init=10) #kmeans algo init
              temp_df['k_clusters'] = kmeans.fit_predict(temp_df_scaled)
              #Merge k_cluster to df
              df = df.drop(columns=['k_clusters'], errors='ignore')
                                                                      #delete
       →kcluster from old function calls
              df = pd.concat([df, temp_df['k_clusters']], axis=1) #concatenate the_
       stemp of with original, now with kcluster groupings
              #Use plotly to show value counts of new kmeans groups
              clusters = px.bar(df['k_clusters'].value_counts() \
                                                .sort_values(ascending=False),
                               title='K Means Scaled')
              clusters.update_layout(xaxis_title='Clusters (k)',
                        yaxis_title='Number',
                        width=500, height=500)
              clusters.show()
              return df
```

## 11 PlotlyGroups()

## 12 PlotlyGroups3D()

```
[17]: def PlotlyGroups3D(df, x, y, z, color, hover):
              - df, dataframe
              - x, xaxis
              - y, yaxis
              - z, zaxis
              - color, groupings (df column)
              - hover, info data (df columns)
              111
              fig3 = px.scatter_3d(df, x, y, z,
                                color=color,
                                hover_name=hover,
                                color_continuous_scale=['red', 'green', 'blue', _
       title='K Means Clusters')
              # Update marker color for all traces and layout
              fig3.update_layout(scene=dict(
                                  xaxis_title=x,
                                  yaxis_title=y,
                                  zaxis_title=z),
                                  width=1000, height=700,
                                  showlegend=False)
              fig3.show()
```

# 13 PlotlyGroups3D\_Animate()

```
[18]: def PlotlyGroups3D_Animate(df, x, y, z, color, size=None, hover=None,
       ⇒animate=None):
              111
              - df, dataframe
              - x, xaxis
              - y, yaxis
              - z, zaxis
              - color, group variable (df column)
              - size, size variable (df column)
              - hover, info variable (df column) [can be list]
              - animate, animated variable (df column)
              fig3 = px.scatter_3d(df, x, y, z,
                                color=color,
                                hover data=hover,
                                animation_frame=animate,
                                color_continuous_scale=['green', 'red', 'blue', _
       title='K Means Clusters')
              # Update marker color for all traces and layout
              fig3.update_layout(scene=dict(
                                  xaxis=dict(range=[0, df[x].max()]),
                                  yaxis=dict(range=[0, df[y].max()]),
                                  zaxis=dict(range=[0, df[z].max()]),
                                  xaxis_title=x,
                                  yaxis_title=y,
                                  zaxis_title=z),
                                  width=1000, height=700,
                                  showlegend=False)
             fig3.show()
```

14 \_\_\_\_\_ Visualizations

#### 15 KMeans Visualizations

```
'Assets',
       'Entrepreneurship',
       'Marriage',
       'Mobility',
       'Parenthood',
       'Pay',
       'Pension',
       'Workplace']
[20]: kcol = [
       'Life_Exp',
       'Population',
       'GDP_Per_Cap',
       'Avg_WEI_Score',
       'Assets',
       'Entrepreneurship',
       'Marriage',
       'Mobility',
       'Parenthood',
       'Pay',
       'Pension',
       'Workplace']
[21]: ElbowCurve(k_pivot[kcol], 1, 16)
        • It seems that 4 or 5 clusters are optimal, lets check and update the dataframe:
[22]: k_un = N_Clusters(k_pivot, kcol, 4) #without scaling data
      k_sc = N_Clusters_S(k_pivot, kcol, 4) #with scaling data
[23]: k_sc.columns
[23]: Index(['Country_Name', 'Life_Exp', 'Population', 'GDP_Per_Cap',
             'Avg_WEI_Score', 'Assets', 'Entrepreneurship', 'Marriage', 'Mobility',
             'Parenthood', 'Pay', 'Pension', 'Workplace', 'k_clusters'],
            dtype='object')
[24]: PlotlyGroups(k_sc, 'Life_Exp', 'Avg_WEI_Score', 'k_clusters')
[25]: PlotlyGroups3D(k_sc, 'Life_Exp', 'Avg_WEI_Score', 'GDP_Per_Cap', 'k_clusters', _
       GDP, Life Exp, WEI Score
[26]: k_pivot.columns.tolist()
```

```
[26]: ['Country_Name',
        'Life_Exp',
        'Population',
        'GDP_Per_Cap',
        'Avg_WEI_Score',
        'Assets',
        'Entrepreneurship',
        'Marriage',
        'Mobility',
        'Parenthood',
        'Pay',
        'Pension',
        'Workplace']
[27]: k_p = [
           'GDP_Per_Cap',
           'Avg_WEI_Score',
           'Life_Exp'
      ]
[28]: ElbowCurve(k_pivot[k_p], 1, 11)
[29]: k_ = N_{\text{clusters}}(k_{\text{pivot}}, k_{\text{p}}, 4)
      k_scaled = N_Clusters_S(k_pivot, k_p, 4)
```

Here, non scaled data results in a kmeans clustering that reflects GDP per Cap strongly, while scaled data

```
[30]: print('First the unscaled clusters:')
PlotlyGroups3D(k_, 'GDP_Per_Cap', 'Avg_WEI_Score', 'Life_Exp', 'k_clusters', \( \times' \)
\[ \times' \cdot \]
print('\nNow the clusters using scaled data:')
PlotlyGroups3D(k_scaled, 'GDP_Per_Cap', 'Avg_WEI_Score', 'Life_Exp', \( \times' \)
\[ \times' \times' \cdot \]
\[ \times' \times' \cdot \cdot \]
\[ \times' \times' \cdot \cdot
```

First the unscaled clusters:

#### Now the clusters using scaled data:

It appears that the unscaled data is mostly marking 4 groups by gdp per capita, <6k, 6k-15k, 15k-30k, >30k

The scaled data is showing a similar affinity for grouping by gdp, with a 4th group having overall having low empowerment scores relative to their peers in gdp per capita.

## 17 Life Exp, GDP, Pop

```
[31]: k_pivot.columns.tolist()
[31]: ['Country_Name',
       'Life_Exp',
       'Population',
       'GDP_Per_Cap',
       'Avg_WEI_Score',
       'Assets',
       'Entrepreneurship',
       'Marriage',
       'Mobility',
       'Parenthood',
       'Pay',
       'Pension',
       'Workplace']
[32]: #choose k_pivot quantitative variables
      lgp = [
       'Life_Exp',
      'Population',
      'GDP_Per_Cap'
[33]: ElbowCurve(k_pivot[lgp], 1, 11)
[34]: lgp_ = N_Clusters(k_pivot, lgp, 4)
      lgp_scaled = N_Clusters_S(k_pivot, lgp, 4)
[35]: lgp_.columns
[35]: Index(['Country_Name', 'Life_Exp', 'Population', 'GDP_Per_Cap',
             'Avg_WEI_Score', 'Assets', 'Entrepreneurship', 'Marriage', 'Mobility',
             'Parenthood', 'Pay', 'Pension', 'Workplace', 'k_clusters'],
            dtype='object')
[36]: PlotlyGroups3D(lgp_, 'Life_Exp', 'Population', 'GDP_Per_Cap', 'k_clusters', __
      PlotlyGroups3D(lgp_scaled, 'Life_Exp', 'Population', 'GDP_Per_Cap', |

¬'k_clusters', 'Country_Name')
 []:
```

#### 18 Year Animation

Elbow Method for Optimal KMeans Clustering



It looks like the optimal number of clusters is 4.







Using both scaled and unscaled kmeans groups can be useful.

• y\_ is unscaled, y\_scaled is scaled.

```
[41]: PlotlyGroups3D(y_scaled, 'Index_Score', 'Life_Exp', 'GDP_Per_Cap', \
\( \times' \text{k_clusters'}, 'Country_Name') \)
```

K Means Clusters



```
[42]: PlotlyGroups3D_Animate(y_scaled, 'Index_Score', 'Life_Exp', 'GDP_Per_Cap', \
\[ \times' \times \] hover=['Country_Name', 'Region', 'Income_Group'], \( \times \) animate='Year')
```

#### K Means Clusters



Lets see the animation of the index categories by year, using k\_cats

```
[43]: k_cat_group = k_cats.groupby(['Question_Category', 'Year'])['Index_Score'].
       →agg('sum').reset_index()
     k_cat_group.head()
[43]:
       Question_Category
                          Year
                                Index_Score
      0
                  Assets
                          1971
                                   90.330000
      1
                  Assets
                          1972
                                   90.746667
      2
                  Assets
                          1973
                                   90.913333
      3
                                   91.830000
                  Assets
                          1974
      4
                                   92.525000
                          1975
                  Assets
[44]: PlotlyGroups(k_cat_group, 'Year', 'Index_Score', 'Question_Category')
```

K Means Clusters



## 19 Country K Clusters

The goal here is to create k clusters that are grouped on individual countries, set on y\_animate\_c, and compare the animation through the years with k clusters that are not country specific.

```
[45]: cntry = [
       ('Income_Category', ''),
       ('Region_Category', ''),
       ('Life_Exp', 'min'),
       ('Life_Exp', 'max'),
       ('Life_Exp', 'std'),
       ('Life_Exp', 'mean'),
       ('GDP_Per_Cap', 'min'),
       ('GDP_Per_Cap', 'max'),
       ('GDP_Per_Cap', 'std'),
       ('GDP_Per_Cap', 'mean'),
       ('Index_Score', 'min'),
       ('Index_Score', 'max'),
       ('Index_Score', 'std'),
       ('Index_Score', 'mean')
      ElbowCurve(km_country[cntry], 1, 11) #4 clusters seem appropriate
      km_ = N_Clusters(km_country, cntry, 4)
                                                   #Scaled and Unscaled clusters
```

```
km_scaled = N_Clusters_S(km_country, cntry, 4)  # Scaled clusters are better
[46]: km_scaled['Country Name'] = km_scaled[('Country Name', '')] #rename, prepping_
       ⇔for merge
      #now we merge km_scaled['k_clusters'] and y_animate on 'Country_Name'
      print('shape of two df before merge:', y_animate.shape, km_scaled.columns,_
       ⇒km_scaled.shape) #checks, merge,
      y animate c = pd.merge(y animate, km_scaled[['Country Name', 'k_clusters']],
                             how='inner', on='Country_Name',
                             indicator=True)
      # print('shape of merged df:', y_animate_c.shape) #check merge col, drop col
      print('\nmerge counts:\n', y_animate_c['_merge'].value_counts(), y_animate_c.
       ⇔shape)
      y_animate_c.drop(columns='_merge', axis=1, inplace=True)
      y_animate_c = y_animate_c[y_animate_c['Year'] != 1971] #delete erroneous data_
       ⇔from 1971 (gapminder data starts in 72)
      print('merge col, year 1971 dropped', y_animate_c.columns) #checks
     shape of two df before merge: (9500, 10) Index([
                                                        ('Country_Name', ''),
     ('Income_Category', ''),
                                         ('Life_Exp', 'min'),
            ('Region_Category', ''),
                ('Life_Exp', 'max'),
                                       ('Life_Exp', 'std'),
               ('Life_Exp', 'mean'), ('GDP_Per_Cap', 'min'),
             ('GDP_Per_Cap', 'max'), ('GDP_Per_Cap', 'std'),
            ('GDP_Per_Cap', 'mean'), ('Index_Score', 'min'),
                                      ('Index_Score', 'std'),
             ('Index_Score', 'max'),
            ('Index Score', 'mean'),
                                                'k clusters',
                     'Country_Name'],
           dtype='object') (190, 17)
     merge counts:
      both
                    9500
     left_only
                      0
     right_only
                      0
     Name: _merge, dtype: int64 (9500, 12)
     merge col, year 1971 dropped Index(['Country Name', 'Year', 'Region',
     'Income_Group', 'Life_Exp',
            'Population', 'GDP_Per_Cap', 'Index_Score', 'Income_Category',
            'Region_Category', 'k_clusters'],
           dtype='object')
[47]: PlotlyGroups3D_Animate(y_animate_c, 'GDP_Per_Cap', 'Life_Exp', 'Index_Score',
                             'k_clusters', hover=['Country_Name'], animate='Year')
```

20 \_\_\_\_\_ Conclusions

#### 21 4 Clusters over the Years

```
[48]: PlotlyGroups3D_Animate(y_animate_c, 'Index_Score', 'Life_Exp', 'GDP_Per_Cap', \upsilon \upsilon
```

# 22 4 main Groups:

K Means Clusters

groups (1, 3) and (0, 2) are worth analyzing further

(1, 3): in 1970s groups 1 is head and shoulders above the rest re: life expectancy and gdp per capita, but have one differentiating factor-Index Score—with group 3.

from 2000s on group 3 takes the lead, but a huge factor is growth. group 1 basically remained static re: life exp and gdp. further study of these groups and underlying differences and outcomes will be needed.

(0, 2): Both groups struggle with low gdp per capita, where they differ is life exp/ index score.

group 0 - they are ahead in gdp per capita vs group 2, but those countries that overperform tend to have high index scores group 1 - struggle on all variables. even with relatively high index scores, low gdp and life exp.

## 23 descriptive stats for k clusters

- The clusters make sense when visualizing the countries' trajectory through time, however some of the stats have quite a lot of overlap.
- Group 0 and 2 have similar profiles.
  - Group 2 has remarkaby low mean life expectancy (54)
  - Group 0 has gdp and life profile similar to Group 2, but much better index scores (highest min index score, 2nd higheset mean)
- Group 1 and 3 have similar profiles.
  - Group 1 has highest GDP per capita by a wide margin
  - Group 3 has the highest avg index score and highest max gdp per capita

| [49]: | k_clusters             |        | 0            | 1             | 2            | 3            |
|-------|------------------------|--------|--------------|---------------|--------------|--------------|
| 2     | Life_Exp               | min    | 24.000000    | 63.000000     | 50.000000    | 36.000000    |
|       | _                      | max    | 79.000000    | 83.000000     | 79.000000    | 64.000000    |
|       |                        | std    | 9.781977     | 3.527054      | 5.148599     | 5.860364     |
|       |                        | mean   | 55.567055    | 76.715154     | 70.839703    | 52.442602    |
|       |                        | median | 55.000000    | 77.000000     | 72.000000    | 53.000000    |
|       | <pre>GDP_Per_Cap</pre> | min    | 241.000000   | 3031.000000   | 677.000000   | 347.000000   |
|       |                        | max    | 34168.000000 | 109348.000000 | 25768.000000 | 13206.000000 |
|       |                        | std    | 5585.881772  | 11894.666917  | 5084.568296  | 3015.468999  |
|       |                        | mean   | 3976.705904  | 25821.142423  | 7442.900186  | 2014.896046  |
|       |                        | median | 1483.000000  | 25116.000000  | 6466.000000  | 1043.000000  |
|       | <pre>Index_Score</pre> | min    | 140.000000   | 185.000000    | 210.000000   | 140.000000   |
|       |                        | max    | 705.000000   | 800.000000    | 775.000000   | 780.000000   |
|       |                        | std    | 127.706601   | 136.612093    | 114.023240   | 115.629488   |
|       |                        | mean   | 379.323980   | 578.043856    | 492.269017   | 461.192602   |
|       |                        | median | 370.000000   | 585.000000    | 485.000000   | 460.000000   |

Next steps and analysis:

- 1) Uncover key disparities between Groups 1 and 3 in the 1970s, focusing on Group 3's surge post-2000.
- 2) Analysis of Groups 0 and 2 regarding Index Scores and GDP.
- 3) Scrutinize outliers within clusters for potential success stories or areas requiring attention.
- 4) Integrate insights into a forward-looking scenario planning exercise to optimize decision strategies.

## 24 export visualizations

```
[50]: #groupby region for gdp per cap
      y_region = y_scaled.query('Year < 2007 and Year > 1972') \
                         .groupby(['Year', 'Region'])['GDP_Per_Cap'] \
                         .agg('mean') \
                         .reset index()
      #groupby region for life exp
      y_lifeexp = y_scaled.query('Year < 2007 and Year > 1972') \
                         .groupby(['Year', 'Region'])['Life_Exp'] \
                         .agg('mean') \
                         .reset_index()
      #groupby region for index score
      y_score = y_scaled.query('Year < 2007 and Year > 1972') \
                         .groupby(['Year', 'Region'])['Index_Score'] \
                         .agg('mean') \
                         .reset_index()
      #chart GDP per cap
      gdp_r = px.line(y_region, 'Year', 'GDP_Per_Cap',
                     line_group='Region',
                     color='Region',
                     title='GDP Per Capita by Region: 1972-2007',
                     width=800, height=500)
      gdp_r.show()
      #chart life exp
      life_r = px.line(y_lifeexp, 'Year', 'Life_Exp',
                     line_group='Region',
                     color='Region',
                     title='Life Expectancy by Region: 1972-2007',
                     width=800, height=500)
      life_r.show()
      #chart index score
      score_r = px.line(y_score, 'Year', 'Index_Score',
                     line_group='Region',
                     color='Region',
                     title="Women's Empowerment Score by Region: 1972-2007",
                     width=800, height=500)
      score_r.show()
[51]: | # life r.write image(os.path.join(path, '4 Analysis', 'Regional Life Exp.png'))
      # qdp_r.write_image(os.path.join(path, '4 Analysis', 'Regional GDP percap.png'))
```

```
# score_r.write_image(os.path.join(path, '4 Analysis', 'Regional_WEI_Score.
→png'))
```

#### 25 export Data

```
[52]: y_animate_c.shape, y_animate_c.columns
[52]: ((9310, 11),
       Index(['Country_Name', 'Year', 'Region', 'Income_Group', 'Life_Exp',
              'Population', 'GDP_Per_Cap', 'Index_Score', 'Income_Category',
              'Region_Category', 'k_clusters'],
             dtype='object'))
[53]: df_k.shape, df_k.columns
[53]: ((332500, 18),
       Index(['Country_Id', 'Country_Name', 'Year', 'GDP_Growth', 'Index_1971',
              'Index_2020', 'Fifty_Year_Change', 'Region', 'Income_Group',
              'Question_Category', 'Question', 'Index_Score', '2020_Data_Rank',
              '2020_1GB_Price(USD)', 'Life_Exp', 'Population', 'GDP_Per_Cap',
              'Avg_WEI_Score'],
             dtype='object'))
[54]: | y_c = y_animate_c[['Country_Name', 'k_clusters']].drop_duplicates()
                                                                            #prep_
       →data into just country_name, k cluster
      k cluster df = pd.merge(df k, y c[['Country Name', 'k clusters']],
                                                                                #merge_
       \hookrightarrow dfs
                              how='left', on='Country_Name',
                              indicator=True)
      print('Merge value counts:\n', k_cluster_df['_merge'].value_counts(),_

¬'\n\nshape:', k_cluster_df.shape)

                                            #print checks
      k_cluster_df.drop(columns='_merge', axis=1, inplace=True) #drop _merge_
       ⇔column
      print('\nMerge col dropped:', k_cluster_df.shape)
      k_cluster_df = k_cluster_df[k_cluster_df['Year'] != 1971] #delete data from_
      ⇒1971, erroneous data
      print('\nnew shape after dropping erroneous 1971 data:', k_cluster_df.shape)
     Merge value counts:
      both
                    332500
     left only
                        0
     right only
     Name: _merge, dtype: int64
```

```
shape: (332500, 20)
     Merge col dropped: (332500, 19)
     new shape after dropping erroneous 1971 data: (325850, 19)
[55]: | \text{\#export new df--} k \text{ clusters included and no erroneous } 1971 \text{ data}
      k_cluster_df.to_csv(os.path.join(path, '2 Data', 'Clean_Data', L

¬'12_01_2023_Kmeans_WEI_.csv'), encoding='utf-8')
     Check errors in exporting. - it seems encoding needs to be set to utf-8
[56]: what = pd.read_csv(os.path.join(path, '2 Data', 'Clean_Data', u

¬'12_01_2023_Kmeans_WEI_.csv'))
      india_b = k_cluster_df.query('Country_Name == "India"')['k_clusters'].mean()
      india_a = what.query('Country_Name == "India"')['k_clusters'].agg('mean')
      #print checks
      print('\nIndia k cluster before exporting:', india_b )
      print('India k cluster after exporting:', india_a)
      china_b = k_cluster_df.query('Country_Name == "China"')['k_clusters'].mean()
      china_a = what.query('Country_Name == "China"')['k_clusters'].agg('mean')
      #print checks
      print('\nChina k cluster before exporting:', china_b )
      print('China k cluster after exporting:', china_a)
     India k cluster before exporting: 0.0
     India k cluster after exporting: 0.0
     China k cluster before exporting: 2.0
     China k cluster after exporting: 2.0
 []:
```