Анализ ЭКГ-сигналов для диагностики сердечных патологий

Описание задачи.

Определение отсутствия или локализации

инфаркта миокарда у пациента, на основе результатов его ЭКГ и некоторых физиологических данных (возраст, рост, вес и пол)

Как выглядит ЭКГ-сигнал

Предобработка сигнала

- 1. ecg_clean (библиотека neurokit2, функция нормализует сигнал относительно нулевой горизонтальной линии и убирает часть шума)
- 2. Скользящее среднее ([1, 2, 10, 2, 6] -> [1, 6.5, 7, 9, 6])
- 3. Скользящая медиана ([1, 2, 10, 2, 6] -> [1, 2, 2, 6, 6])
- 4. Обрезание сигнала после функции (1) (иногда получались артефакты на концах сигналов после использования этой функции)

Наши первые попытки

Сверточная нейронная сеть (Conv1D) на сегментах экг сигнала

Р-пик — Т-пик

(Разделяли при помощи функции ecg_segments библиотеки neurokit2, она нормализовывала все сегменты так, чтобы все R-пики находились в одном месте)

Best F1 - (0.36)

FullSignal_model_норма	0.7383	0.7516	14	Sun Oct 15, 16:27:54	1m 24s
FullSignal_model_перегородочный	0.6327	0.6057	84	Sun Oct 15, 15:55:26	1m 27s
FullSignal_model_передне-боковой	0.8488 ⁴⁰	0.8889	74 ⁰	Sun Oct 15, 16:16:20	1m 15s
FullSignal_model_передне-перегородочный	0.8868	0.91	84	Sun Oct 15, 16:04:21	1m 28s
FullSignal_model_передний	0.857	0.974	99	Sun Oct 15, 15:43:59	1m 42s
тапоідпа_тово_передітт	0.037	0.574	"	3di1 Oct 13, 13.43.39	1111 72
	0.7741	0.8208		Sun Oct 15, 16:27:55	
FullSignal_model_норма FullSignal_model_перегородочный			14		1m 23s
FullSignal_model_норма	0.7741	0.8208	14 84	Sun Oct 15, 16:27:55	1m 23s 1m 27s 1m 15s
FullSignal_model_норма FullSignal_model_перегородочный	0.7741 0.4477	0.8208 0.5143	14 84	Sun Oct 15, 16:27:55 Sun Oct 15, 15:55:26	1m 23s

DcGAN (Синтетические данные ЭКГ) (Неудача)

Пытались сделать генерацию ЭКГ- сигнала для каждого отведения в отдельности, но получались некорректные результаты, вследствие дефицита данных

Аугментация (Успех) (ТТА)

Новые сверточные сети (SeResnet).

Новые сверточные сети (SkipConnection)

Результаты новых сверточных сетей

ScipConnection

SeResNet

Генерация числовых фич на основе сигнала ЭКГ

Генерировали фичи на основе длины интервала R-R (HRV)

Used:

- 1. neurokit2 ecg_rate
- 2. neurokit2 hrv_time, hrv_frequency
- 3. neurokit2 entropy_sample

(Генерировали только для первого отведения так как это требует много вычислительной мощности для приемлимой скорости работы, а одного отведения достаточно, для того, чтобы делать выводы)

Объединение результатов всех моделей. CatBoost.

Генерация датасета для CatBoostClassifier:

- Предпоследние слои всех сверточных сетей (брали не все числа со слоя а какую то часть, чтобы избежать переобучения)
- Числовые фичи ЭКГ-сигнала
- МетаДанные пациента

Telegram-Bot. (@minions_AI_Challenge_Bot)

Возможности улучшения.

- 1. Генерация синтетических данных
- 2. Увеличение вариативности аугментации
- 3. Расширенный подбор гиперпараметров для сетей и градиентного бустинга
- 4. Тестирование разных новых архитектур сетей или изменение имеющихся (например: LSTM)
- 5. Тестирование обучения на неполном мульти-лейбле (например: передний; переднебоковой; боковой)
- 6. Другие градиентные бустинги (xgboost, lgbm ...)
- 7. Объединение нескольких отведений в одно, используя какую нибудь функцию (например сложение)
- 8. В случае использование мультилейбла mixup

Итог.

Мы смогли сделать алгоритм по определению локализации инфаркта, используя ЭКГ-сигнал пациента, а также его метаданные.

Итоговое решение включает в себя множество сверточных нейронных сетей, которые были обучены по методу OneVsRest, определение некоторых числовых фич на основе ЭКГ-сигнала и градиентный бустинг, который объединяет все эти методы и выдает результат.

Итогом нашего решения стал инференс, в который можно загрузить датасет и получить DataFrame ответ, как в условии задачи, а также telegram bot, в который можно загрузить один ЭКГ-сигнал и получить диагноз.