IMPLEMENTAÇÃO DE MODULAÇÃO PWM PARA CONTROLE DE INVERSOR MONOFÁSICO EM FPGA

September 4, 2019

LINSE/EEL/CTC/UFSC

Setembro de 2019

Contents

1	visão geral	1
2	Gerador de referencia	2
3	Portadora	3
4	PWM	4
5	Dead Time	5
6	Simulações	6

Abstract

Neste documento será detalhado o processo de implementação do código para modulação AM em FPGA. Foi utilizado simulações em modelsim, visualização em matlab e testes com o kit de desenvolvimento DE2_115 e um osciloscópio. Neste documento somente será analisado a parte do controle digital usando FPGA e pulsos PWM. Os sinais de saída serão utilizados para comutar as chaves de um inversor monofásico.

visão geral

O esquema mostra o estágio de controle para o inversor de frequência monofásico. Nele a partir de um clock de 50 MHz são criados uma onda senoidal de 60 HZ e uma portadora dente de serra de 24,41KHz. O modulador PWM irá utilizar esses dois sinais de referencia para criar um sinal modulado. A partir deles e da maquina de estados do Dead Time os drivers de saída 1 e 2 serão criados.

Gerador de referencia

Esse bloco é responsável por gerar a onda senoidal de 60 Hz, com amplitude máxima de 820, baseado em uma memória ROM com os valores de uma senoide criada em Matlab. primeiramente um PLL usa o clock de 50 MHz como referência para criar um clock de 27 MHz, e em seguida passa por um divisor de clock para 18 KHZ. A partir dele um contador de 0 a 300 será usado para modificar os endereços da memória ROM e criar a senoide.

Portadora

Bloco responsável por gerar a portadora de 24,41 Khz dente de serra. Um contador de -1024 a 1023 com clock de 50 MHz é utilizado para criar a portadora.

PWM

Modulador para geração do sinal PWM. UM comparador compara os sinais da referência e da portadora, enquanto o sinal da referencia for maior que a portadora a saída estará em nível alto.

Dead Time

Bloco de extrema importância para evitar curtos no circuito. Impede que os dois drivers estejam ativos no mesmo instante de tempo. Uma máquina de estados é usado para deixar um intervalo de 4 ciclos de clock entre um sinal voltar a ser nível baixo e outro passar a ser nível alto.

Simulações

Para comprovação do funcionamento foram feitos simulações no modelsim e utilizado o Matlab para verificação da frequência de operação dos sinais.

Figure 6.1: Simulação realizada em Modelsim

Figure 6.2: Pulsos modulados em Modelsim

Figure 6.3: sinais em Matlab da portadora, referencia, driver 1 e driver 2 respectivamente

Figure 6.4: FFT em Matlab da portadora, referencia, driver 1 e driver 2 respectivamente

Também foram verificado os sinais utilizando a placa DE2_115. Foram externados no GPIO da placa DE2_115 os sinais de clock 50 MHz, driver 1 e driver 2 e utilizando um osciloscopio foi possível verificar a frequência dos sinais e o tamanho dos pulsos.

REFERENCES

1. AVELINO, W.O. Desenvolvimento de um Inversor Monofásico Utilizando Controlador Digital Baseado em FPGA. Trabalho de Conclusão de Curso (Graduação em Engenharia Elétrica). Fortaleza/CE: Universidade Federal do Ceará, 2010.