2024/9/25(水)

参考問題

- 1. 質量 m の物体を t=0 に原点から初速度 (v_{x0},v_{y0}) で打ち上げる。物体は xy 平面内を運動するとし、水平方向を x 軸、鉛直方向を y 軸にとる。重力加速度の大きさを g とする。
 - (a) 物体に重力のみがかかるとき、運動方程式をとき物体の位置の x,y 座標を時間の関数として表わせ。 また t を消去すると、物体の軌道は放物線になることを示せ。
 - (b) (a) において、y が最大になるときのx, y の座標を v_{x_0} , v_{y_0} , g などを用いてあらわせ。
 - (c) (a) において、 $v_0 = \sqrt{v_{x0}^2 + v_{y0}^2}$ が一定のとき、水平到達距離が最大になる仰角 θ_0 を求めよ。(ヒント: $v_{x_0} = v_0 \cos \theta_0, v_{y_0} = v_0 \sin \theta_0$ として代入)

課題 (LETUS より提出)

(非同期遠隔のため、締め切り前に提出した場合は、課題のみ)

参考問題において重力に加え速度に比例する抵抗力 (比例定数 $\beta m(>0)$) がはたらくとする。このとき、運動方程式をとき、物体の位置の x,y 座標を時間の関数として表わせ。また十分時間がたったときの x 方向と y 方向の速度を求めよ。