Non Deterministic Automata Class 3

An NFA accepts a string:

when there is a computation of the NFA that accepts the string

AND

all the input is consumed and the automaton is in a final state

An NFA rejects a string:

when there is no computation of the NFA that accepts the string:

• All the input is consumed and the automaton is in a non final state

OR

· The input cannot be consumed

Remarks:

- ·The $\,\lambda\,\,$ symbol never appears on the input tape
- ·Simple automata:

$$M_2$$

$$L(M_1) = \{\}$$

$$L(M_2) = \{\lambda\}$$

•NFAs are interesting because we can express languages easier than DFAs

NFA M₁

$$-q_0$$
 a q_1

$$-q_0$$
 a q_1

$$L(M_1) = \{a\}$$

$$L(M_2) = \{a\}$$

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$

 δ : Transition function

 q_0 : Initial state

F: Final states

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

 $\delta(q_1,0) = \{q_0,q_2\}$

 $\delta(q_0,\lambda) = \{q_0,q_2\}$

11

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a \quad a$$

$$a \quad a$$

$$\lambda$$

$$\delta^*(q_0, ab) = \{q_2, q_3, \underline{q_0}\} \quad ab \in L(M)$$

$$\epsilon F$$

NFAs accept the Regular Languages

Equivalence of Machines

Definition for Automata:

Machine M_1 is equivalent to machine M_2

if
$$L(M_1) = L(M_2)$$

0.0

Example of equivalent machines

$$L(M_1) = \{10\} *$$

$$Q_0 \longrightarrow Q_1$$

$$Q_1 \longrightarrow Q_1$$

$$L(M_2) = \{10\} * \underbrace{\begin{array}{cccc} & \text{DFA } M_2 & 0,1 \\ 0 & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

We will prove:

NFAs and DFAs have the same computation power

82

by DFAs

Step 1

Proof: Every DFA is trivially an NFA

Any language $\,L\,$ accepted by a DFA is also accepted by an NFA

Step 2

Proof: Any NFA can be converted to an equivalent DFA _

Any language L accepted by an NFA is also accepted by a DFA

 q_0, q_1, q_2, \dots

 $\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$

the DFA has states in the powerset

If the NFA has states

Procedure NFA to DFA

NFA to DFA: Remarks

We are given an NFA $\,M\,$

We want to convert it

With

to an equivalent DFA M'

L(M) = L(M')

1. Initial state of NFA: q_0

Initial state of DFA: $\{q_0\}$

Example NFAMDFA M'

Exampe NFA M $\delta * (q_0, a) = \{q_1, q_2\}$ DFA M' $\{q_0\}$ $\{q_1, q_2\}$ $\delta(\{q_0\},a) = \{q_1,q_2\}$

Procedure NFA to DFA

If some q_j is a final state in the NFA

Then, $\{q_i, q_j, ..., q_m\}$ is a final state in the DFA

Apply procedure to obtain DFA $\,M^{\prime}\,$

M' are equivalent: Then M and L(M) = L(M')

<u>Proof</u>

$$L(M) = L(M')$$

$$L(M) \subseteq L(M')$$
 AND $L(M) \supseteq L(M')$

First we show: $L(M) \subseteq L(M')$

Take arbitrary: $w \in L(M)$

We will prove: $w \in L(M')$

$$M: \rightarrow \widehat{q_0}$$
 W

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$M: \rightarrow @^{\sigma_1} \bigcirc \xrightarrow{\sigma_2} \bigcirc \xrightarrow{\sigma_k} @f$$

We will show that if $w \in L(M)$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$M : \xrightarrow{\sigma_0} \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} \xrightarrow{\sigma_$$

 $w \in L(M')$

More generally, we will show that if in M:

(arbitrary string) $v = a_1 a_2 \cdots a_n$

$$M: -q_0 \xrightarrow{a_1} q_i \xrightarrow{a_2} q_j -q_m$$

$$M': \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_1} \xrightarrow{a_n} \xrightarrow{a_n} \xrightarrow{q_n,\ldots}$$

Proof by induction on |v|

Induction Basis: $v = a_1$

 $M: -q_0 \xrightarrow{a_1} q_i$

 $M': \xrightarrow{\{q_0\}} \xrightarrow{a_1} \underbrace{\qquad \qquad \qquad }_{\{q_i,\dots}$

108

Induction hypothesis:
$$1 \le |v| \le k$$

$$v = a_1 a_2 \cdots a_k$$

$$M: \longrightarrow q_0 \xrightarrow{a_1} q_i \xrightarrow{a_2} q_j \longrightarrow q_c \xrightarrow{a_k} q_d$$

$$M': \longrightarrow a_1 \xrightarrow{\{q_0\}} a_2 \xrightarrow{\{q_i,\ldots\}} a_2 \xrightarrow{\{q_c,\ldots\}} a_k \xrightarrow{\{q_c,\ldots\}} a_{q_d,\ldots\}}$$

We have shown: $L(M) \subseteq L(M')$ We also need to show: $L(M) \supseteq L(M')$ (proof is similar)