Symulator obwodów elektrycznych II

1. Wstęp

W tej aktualizacji zostaną wprowadzone usprawnienia w obliczeniach oraz zostanie dodany nowy element obwodowy – idealne źródło prądowe. Do kontynuacji projektu zostaną wykorzystane te same narzędzia co w 1 części.

2. Część teoretyczna

Usprawnienia w obliczeniach wydają się konieczne, ponieważ wraz z pojawieniem się nowych elementów obwodowych pojawiłaby się znaczna ilość nadmiarowych równań definicyjnych i niewiadomych, których wartość jest znana bez obliczeń. Nadmiarowość ta obecnie wpływa na czas:

- wyboru niezależnych liniowo oczek występuje o 1 kolumna więcej niż potrzeba dla każdej zerowej rezystancji,
- obliczenia równania macierzowego w przypadku rezystancji zerowej równanie definicyjne i niewiadomą spadku napięcia można pominąć, ponieważ bez obliczeń wiadome jest, że jej wartość będzie zerowa: -I * R + U = 0 => U = 0, dla R = 0.

Po zaimplementowaniu powyższej zmiany, każda niezerowa rezystancja w obwodzie będzie wprowadzać do równania macierzowego jedną niewiadomą – spadek napięcia oraz jedno równanie definicyjne. Źródło napięciowe nie wprowadza ani nowych niewiadomych ani dodatkowych równań.

Wprowadzenie idealnego źródła prądowego:

• źródło prądowe będzie wymuszać przepływ prądu w gałęzi, w której się znajduje o wartości równej wartości źródła prądowego; kierunek prądu jest zgodny z kierunkiem strzałki symbolu elementu,

- dochodzi nowa niewiadoma napięcie na źródle prądowym, które trzeba będzie uwzględnić w równaniach NPK,
- źródło prądowe o wartości 0 jest równoznaczne z przerwą w obwodzie, podczas gdy źródło napięciowe lub rezystancja o wartości 0 były równoznaczne z ich brakiem w danej gałęzi; zatem użytkownik będzie musiał zadeklarować się czy w danej gałęzi występuje źródło prądowe,
- każde źródło prądowe będzie rozwiązywać jedną niewiadomą (prąd gałęziowy) oraz dodawać nową niewiadomą napięcia źródła prądowego; rozwiązanie niewiadomej prądu gałęziowego odbywać się będzie poprzez równanie definicyjne źródła prądowego:

 $I_x = I_{Jx}$

 $I_{Jx\,-}$ wartość źródła prądowego w gałęzi x

 I_x – prąd w gałęzi x

3. Opis zmian programu

Wprowadzono 2 nowe pola do klasy "galaz" – IZP i J. Pierwsze z nich będzie zawierać informację prawda/fałsz o obecności źródła prądowego w danej gałęzi. Do drugiego pola wprowadzana będzie wartość idealnego źródła prądowego o ile istnieje w danej gałęzi. Wymagało to modyfikacji konstruktora klasy galaz, metody "dodaj_galaz" oraz dodania obsługi wprowadzania tych danych w konstruktorze klasy obwod. W programie przyjęto następujące strzałkowanie idealnych źródeł prądowych:

- strzałka symbolu źródła prądowego wskazuje węzeł2 gałęzi (kierunek prądu źródła jest zgodny z kierunkiem prądu gałęzi)
- strzałka napięcia źródła pradowego wskazuje węzeł2 gałęzi

Stworzono listy R_zero i J_zero, w których przechowywana jest informacja, w których gałęziach nie występuje rezystancja i źródła prądowe. Wartości w liście źródeł prądowych zostały zwiększone o liczbę gałęzi. Zadaniem tych list będzie wskazywanie kolumn macierzy tym_A, które zostaną w pewnym miejscu programu usunięte. Dodano również listy R_index i J_index, które wskazują na gałęzie zawierające te elementy obwodowe i zostaną użyte do wskazywania (indeksowania) wyników równania macierzowego oraz do tworzenia równań definicyjnych R i J. Informację o liczbie gałęzi z rezystancjami i źródłami prądowymi umieszczono do zmiennych R_len i J_len. Ułatwiają one ustalenie, które wiersze/kolumny przypadają na który typ równań.

W związku z usprawnieniami zmodyfikowano wielkość macierzy A, wektorów B i wynik do: liczba gałęzi + liczba niezerowych rezystancji + liczba źródeł prądowych. Wymiary macierzy połączeniowej P pozostały niezmienione. Algorytm wyznaczania oczek oraz wprowadzenie równań PPK nie zostały zmodyfikowane.

Zwiększono dwukrotnie liczbę kolumn w macierzy tym_A i wprowadzono do nich napięcia na źródłach prądowych. Następnie usunięto z tym_A kolumny odpowiadające za spadki napięcia na zerowych rezystancjach oraz napięcia na źródłach prądowych, których nie ma w obwodzie (w danej gałęzi pole IZP jest równe False). Według pomiarów z metodą time.perf_counter() przez usunięcie nadmiarowych kolumn z tym_A skrócono czas wykonania metody oblicz() dla rozbudowanego obwodu o połowę. Po wyznaczeniu

niezależnych liniowo wierszy zredukowanej macierzy tym_A wprowadzono wyznaczone wiersze tym_A i tym_B do macierzy A i B w miejsce równań NPK, tak żeby kolumny tym_A odpowiadały spadkom napięcia na rezystancjach i napięciom źródeł prądowych.

Do równań definicyjnych wprowadzono tylko tyle równań Ohma ile jest niezerowych rezystancji oraz tyle przyrównań prądu gałęziowego do wartości źródła prądowego gałęzi ile jest źródeł prądowych w obwodzie. W ten sposób wprowadzono do macierzy A i B tyle równań ile jest niewiadomych (kolumn macierzy A).

Na końcu programu umieszczono do 3 list obliczone parametry tj. prądy gałęziowe, spadki napięcia oraz napięcia na źródłach prądowych.

Rozważono usprawnienie mające na celu pozbycie się równań definicyjnych źródeł prądowych, usuwając niewiadomą (znaną wartość) prądu gałęzi, w której znajduje się źródło i bezpośrednie dodanie wartości w równaniu PPK do macierzy B. Jednak podejście te powodowałoby problem w sytuacji:

- obwodu z pojedynczą gałęzią połączoną do samej siebie wtedy w obwodzie nie pojawi się ani jedno równanie PPK i informacja o źródle prądowym gałęzi zostanie utracona,
- kiedy w obwodzie występują gałęzie połączone do samych siebie w pojedynczym węźle; w tej sytuacji w macierzy połączeniowej występuje 0 dla tej gałęzi (ponieważ prąd wpływa i wypływa) co powodowałoby brak wprowadzenia informacji o źródle prądowym w równaniu PPK

Jedynym ograniczeniem na które użytkownik musi zwrócić uwagę, jest brak możliwości wprowadzenia źródła prądowego do wszystkich gałęzi połączonych do wspólnego węzła. Najprostszym przykładem jest brak możliwości połączenia szeregowo 2 gałęzi zawierających źródła prądowe, nawet jeżeli wartości źródeł są sobie równe. W tej sytuacji kiedy prądy wpływające równałyby się prądom wypływającym, pojawiłoby się równanie tożsamościowe 0 = 0 w równaniu PPK węzła a kiedy nie zachodziłaby taka równość równanie sprzeczne.

4. Przykłady

1.
$$E_5 = E_7 = E_9 = 10[V]$$
, $J_1 = 1[A]$, $J_2 = 2[A]$, $J_3 = 3[A]$, $J_7 = 7[A]$, $J_8 = 8[A]$, $J_{11} = 11[A]$
 $R_0 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = R_{10} = R_{11} = R_{12} = 10[\Omega]$, we example 10 where $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = R_{10} = R_{11} = R_{12} = 10[\Omega]$, we calculate $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = R_{10} = R_{11} = R_{12} = 10[\Omega]$, where $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = R_{10} = R_{11} = R_{12} = 10[\Omega]$, where $R_1 = R_2 = R_3 = R_4 = R_5 = R_5 = R_6 = R_8 = R_9 = R_{10} = R_{11} = R_{12} = 10[\Omega]$, where $R_1 = R_2 = R_3 = R_4 = R_5 = R_5$

IO = -	7.9999999999995 [A]
I1 = 6	.999999999999818 [A]
12 = 2	2.0000000000000058 [A]
13 = 2	2.99999999999999 [A]
	8.0 [A]
I5 = -	2.9999999999995 [A]
T6 = -	3.99999999999995 [A]
17 = 6	5.9999999999999 [A]
	3.0 [A]
19 = 1	
I10 =	0.99999999999998 [A]
I11 =	
I12 =	4.00000000000000036 [A]
	-79.999999999999 [V]
	20.000000000000057 [V]
Ur3 =	29.999999999999 [V]
	-80.0 [V]
	-29.999999999995 [V]
	-39.999999999999 [V]
	80.0 [V]
Ur9 =	1.7763568394002505e-15 [V]
Ur10 =	9.9999999999999 [V]
Ur11 =	= 110.0 [V]
Ur12 =	40.000000000000036 [V]
Uj1 =	79.999999999999 [V]
	-59.999999999994 [V]
	109.999999999999 [V]
	139.9999999999986 [V]
	90.0 [V]
Uj11 =	= 150.00000000000003 [V]

	- Operating Point	-
V(1):	-80	voltage
V(n001):	-190	voltage
V(3):	-200	voltage
V(4):	-50	voltage
V(n004):	-60	voltage
V(5):	-40	voltage
V(n005):	-50	voltage
V(n002):	-140	voltage
V(n003):	-190	voltage
V(n007):	-130	voltage
V(n006):	110	voltage
V(2):	-160	voltage
I(I12):	11	device current
I(I9):	8	device current
I(I8):	7	device_current
I(I4):	3	device_current
I(I3):	2	device current
I(I2):	1	device_current
I (R13):	4	device current
I (R12):	-11	device_current
I (R11):	1	device current
I (R10):	-7.10543e-016	device current
I(R9):	-8	device_current
I(R7):	4	device_current
I(R6):	3	device current
I(R5):	8	device current
I(R4):	-3	device_current
I(R3):	2	device current
I(R1):	-8	device_current
I (V10):	-8.88178e-016	device_current
I(V8):	-7	device_current
I(V6):	3	device current

2.
$$E_3 = 1$$
 [V], $J_0 = 5$ [A], $J_1 = 1$ [A] $R_1 = 1$ [Ω], $R_2 = 2$ [Ω], $R_3 = 3$ [Ω], $R_4 = 4$ [Ω] $R_5 = 5$ [Ω], we zel masy (0)


```
I0 = 4.99999999999999 [A]

I1 = 1.0 [A]

I2 = 4.99999999999998 [A]

I3 = 0.333333333333333 [A]

I4 = -0.0 [A]

I5 = 4.99999999999999 [A]

Ur1 = 1.0 [V]

Ur2 = 9.9999999999999 [V]

Ur3 = 1.0 [V]

Ur4 = 0.0 [V]

Ur5 = 24.9999999999999 [V]

Uj0 = 34.999999999999 [V]
```

--- Operating Point ---

rrent
rrent

5.Podsumowanie

Udało się zmniejszyć liczbę operacji podczas sprawdzania liniowej niezależności wierszy macierzy tym_A oraz przy rozwiązywaniu równania macierzowego co skróciło czas wykonywania programu. W tej chwili zwracane są w terminalu spadki napięcia tylko na niezerowych rezystancjach oraz napięcia na źródłach prądowych, które występują w obwodzie, co ułatwia odczyt obliczonych danych. Dodano nowy element do symulatora – idealne źródło prądowe i zweryfikowano obecną wersję programu pod różnym kątem wykonując przykłady.