UNIVERSITY OF LONDON

E2.9 Mathematics 4

B.ENG. AND M.ENG. EXAMINATIONS 2006

For Internal Students of Imperial College

This paper is also taken for the relevant examination for the Associateship of the City & Guilds of London Institute

PART II : MATHEMATICS 4 (ELECTRICAL ENGINEERING)

Wednesday 31st May 2006 2.00 - 4.00 pm

Answer FOUR questions.

Please answer questions from Section A and Section B in separate answerbooks.

A statistics data sheet is provided.

Corrected Copy

[Before starting, please make sure that the paper is complete; there should be 5 pages, with a total of 6 questions. Ask the invigilator for a replacement if your copy is faulty.]

Copyright of the University of London 2006

SECTION A

- 1. Consider a real $n \times n$ symmetric matrix A with distinct eigenvalues λ_i and corresponding normalized eigenvectors e_i for $i = 1, \ldots n$.
 - (a) Show that all the λ_i are real.
 - (b) Show that the eigenvectors e_i obey the orthogonality relation

$$e_i^T e_j = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

(c) Show that the $n \times n$ matrix $P = \{e_1 e_2 \dots e_n\}$ satisfies the relation

$$P^TP = I$$

where I is the $n \times n$ unit matrix.

2. Show that the quadratic form

$$Q = 4x_1^2 - 4x_1x_2 + x_2^2 + 6x_3^2$$

can be written as

$$Q = \mathbf{x}^T A \mathbf{x},$$

where $x = (x_1, x_2, x_3)^T$ and A is a real symmetric matrix, which is to be found.

Hence show that Q can be re-expressed in the diagonal form

$$Q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2,$$

where the λ_i are to be determined, by finding a matrix P that satisfies x = Py where $y = (y_1, y_2, y_3)^T$.

Find y_1 , y_2 and y_3 in terms of x_1 , x_2 and x_3 from the matrix P.

SECTION B

- 3. (i) The discrete random variable X₁ takes values 0, 1 and 2 with probabilities 1/2, 1/3 and 1/6, respectively. A second random variable X₂ takes values 1 and 3 with probabilities 1/4 and 3/4, respectively, and is independent of X₁. Compute the probabilities:
 - (a) $P(X_1 + X_2 = 3)$
 - (b) $P(3X_1/X_2 < 2)$
 - (ii) The probability that a job running on a CPU (Central Processor Unit) will fail has been estimated to be q=0.05. Assume there is a cluster with n=10 of these CPUs all working independently. What is the probability that:
 - (a) no jobs fail?
 - (b) exactly one job fails?
 - (c) at least one job fails?
 - (iii) The breakdowns of a piece of electrical equipment occur in a Poisson process of rate $\lambda=0.1$ per year. Find the probability of:
 - (a) one breakdown in 5 years;
 - (b) no more than 2 breakdowns in one year.

- 4. (i) Let the positive random variable T represent the lifetime of an electrical component.
 - (a) Carefully define the hazard function h(t) of the component.

Now suppose that the distribution of the lifetime is exponential, so that the probability density function is $f(t) = \lambda e^{-\lambda t}$, $t \ge 0$.

(b) Show that, for $s, t \geq 0$, T is memoryless, that is

$$P(T > s + t | T > t) = P(T > s)$$
.

- (c) Calculate the hazard function in this case, and interpret the answer.
- (ii) Let the independent positive random variables T_A and T_B represent the lifetime of electrical components A and B, respectively.
 - (a) If $f_{T_A}(t)$ and $f_{T_B}(t)$ are the probability density functions for T_A and T_B , respectively, what is the joint probability density function $f_{T_A, T_B}(t_A, t_B)$ for T_A, T_B ?
 - (b) Show that the probability that A fails before B is given by

$$\int_{0}^{\infty} F_{T_{A}}(t) f_{T_{B}}(t) dt.$$

(c) Assuming that T_A and T_B both have exponential failure time distributions, i.e.

$$f_{T_{A}}\left(t\right) \; = \; \begin{cases} \lambda_{A} \, e^{-\lambda_{A}t} & \text{if} \quad t \; \geq \; 0 \; , \\ 0 & \text{otherwise} \; , \end{cases} \qquad \text{and} \quad f_{T_{B}}\left(t\right) \; = \; \begin{cases} \lambda_{B} \, e^{-\lambda_{B}t} & \text{if} \quad t \; \geq \; 0 \\ 0 & \text{otherwise} \; , \end{cases}$$

with λ_A , $\lambda_B > 0$, find the odds ratio

 $P\{A \text{ fails before B }\}/P\{B \text{ fails before A }\}$.

5. (i) A certain process for producing an industrial chemical yields a product containing two types of impurities. For a specified sample from this process, let Y₁ denote the proportion of impurities in the sample and Y₂ the proportion of type I impurity among all impurities found. Suppose that the joint distribution of Y₁ and Y₂ can be modelled by the following probability density function:

$$f_{Y_1,Y_2}\left(y_1,y_2\right) \ = \ \begin{cases} 2(1-y_1) & 0 \le y_1 \le 1, \ 0 \le y_2 \le 1, \\ 0 & \text{otherwise} \end{cases}.$$

Find the expected value of the proportion of type I impurities in the sample.

- (ii) Two brands of CPU processors, denoted A and B, are each guaranteed for one year. In a random sample of 50 CPUs of brand A, 12 were observed to fail before the guarantee period ended. A random sample of 60 brand B CPUs also revealed 12 failures during the guarantee period. Estimate the 98% confidence interval for the true difference between proportions of failures during the guarantee period.
- 6. (i) Let X_1, \ldots, X_n be iid random variables from a Poisson distribution with unknown parameter λ . Assume $n \geq 2$.
 - (a) Show that $\Lambda_1 = \frac{1}{n} \sum_{i=1}^n X_i$ and $\Lambda_2 = \frac{1}{2} (X_1 + X_2)$ are both unbiased estimators of λ .
 - (b) Which estimator is more efficient? Justify your answer.
 - (ii) An MA(3) process is defined as

$$y_t = e_t + \frac{1}{2}e_{t-1} + \frac{1}{4}e_{t-2}$$
,

where $\{e_t\}$ is the white noise with $\mathrm{E}(e_t) = 0$ and $\mathrm{var}(e_t) = \sigma_e^2$.

- (a) Evaluate the expected value $E(y_t)$ and variance $var(y_t)$.
- (b) Evaluate the covariance $cov(y_t, y_{t-s})$ for $s \ge 1$.
- (c) Is the process $\{y_t\}$ stationary? Justify your answer.

MATHEMATICS DEPARTMENT

MATHEMATICAL FORMULAE

1. VECTOR ALGEBRA

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} = (a_1, a_2, a_3)$$

Scalar (dot) product: a.b =

: $a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$

Vector (cross) product:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar triple product:

[a, b, c] = a.b × c = b.c × a = c.a × b =
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Vector triple product: a ×

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$

 $a \times (a \times c) = (c \cdot a)a - (a \cdot a)c$

2. SERIES

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots \quad (\alpha \text{ arbitrary, } |x| < 1)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots,$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{(n+1)} + \dots (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$;

 $\cos(a+b) = \cos a \cos b - \sin a \sin b.$

 $\cos iz = \cosh z$; $\cosh iz = \cos z$; $\sin iz = i \sinh z$; $\sinh iz = i \sin z$.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} Df D^{n-1}g + \ldots + \binom{n}{r} D^{r}f D^{n-r}g + \ldots + D^{n}f g.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h) = f(a) + hf'(a) + h^2f''(a)/2! + \ldots + h^nf^{(n)}(a)/n! + \epsilon_n(h),$$

where $\epsilon_n(h) = h^{n+1} f^{(n+1)}(a+\theta h)/(n+1)!$, $0 < \theta < 1$.

(c) Taylor's expansion of f(x, y) about (a, b):

$$f(a+h, b+k) = f(a, b) + [hf_x + kf_y]_{a,b} + 1/2! \left[h^2 f_{xx} + 2hkf_{xy} + k^2 f_{yy} \right]_{a,b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If
$$y = y(x)$$
, then $f = F(x)$, and $\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$.

ii. If
$$x = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

iii. If x = x(u, v), y = y(u, v), then f = F(u, v), and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.$$

(e) Stationary points of f(x, y) occur where $f_x = 0$, $f_y = 0$ simultaneously. Let (a, b) be a stationary point: examine $D = [f_{xx}f_{yy} - (f_{xy})^2]_{a.b.}$. If D > 0 and $f_{xx}(a, b) < 0$, then (a, b) is a maximum; If D > 0 and $f_{xx}(a, b) > 0$, then (a, b) is a minimum; If D < 0 then (a, b) is a saddle-point.

(f) Differential equations:

i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor $I(x) = \exp[\int P(x)(dx)$, so that $\frac{d}{dx}(Iy) = IQ$.

ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.

5. INTEGRAL CALCULUS

- (a) An important substitution: $\tan(\theta/2) = t$: $\sin \theta = 2t/(1+t^2)$, $\cos \theta = (1-t^2)/(1+t^2)$, $d\theta = 2\,dt/(1+t^2)$.
- (b) Some indefinite integrals:

$$\int (a^2 - x^2)^{-1/2} dx = \sin^{-1} \left(\frac{x}{a}\right), |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a} \right) = \ln \left\{ \frac{x}{a} + \left(1 + \frac{x^2}{a^2} \right)^{1/2} \right\}.$$

$$\int (x^2 - a^2)^{-1/2} dx = \cosh^{-1} \left(\frac{x}{a} \right) = \ln \left| \frac{x}{a} + \left(\frac{x^2}{a^2} - 1 \right)^{1/2} \right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

 $s/(s^2 + \omega^2)$, (s > 0) $H(t - T) = \begin{cases} 0, & t < T \\ 1, & t > T \end{cases}$ e^{-sT}/s , (s, T > 0)

cosmt

6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of f(x) = 0 occurs near x = a, take $x_0 = a$ and $x_{n+1} = x_n - [f(x_n)/f'(x_n)], n = 0, 1, 2 \dots$

(Newton Raphson method).

- (b) Formulae for numerical integration: Write $x_n = x_0 + nh$, $y_n = y(x_n)$.
- i. Trapezium rule (1-strip): $\int_{x_0}^{x_1} y(x) dx \approx (h/2) \left[y_0 + y_1 \right]$.
- ii. Simpson's rule (2-strip): $\int_{x_0}^{x_2} y(x) dx \approx (h/3) [y_0 + 4y_1 + y_2]$.
- (c) Richardson's extrapolation method: Let $I=\int_a^b f(x)dx$ and let I_1 , I_2 be two estimates of I obtained by using Simpson's rule with intervals h and h/2.

$$I_2 + (I_2 - I_1)/15$$
,

Then, provided h is small enough,

is a better estimate of I.

7. LAPLACE TRANSFORMS

Transform	aF(s) + bG(s)	$s^2F(s) - sf(0) - f'(0)$	-dF(s)/ds	F(s)/s		$n!/s^{n+1}$, $(s>0)$	$\omega/(s^2 + \omega^2), \ (s > 0)$
Function	af(t) + bg(t)	d^2f/dt^2	tf(t)	$\int_0^t f(t)dt$		$t^n(n=1,2\ldots)$	sin wt
Transform	$F(s) = \int_0^\infty e^{-st} f(t) dt$	sF(s)-f(0)	F(s-a)	$(\partial/\partial lpha)F(s,lpha)$	F(s)G(s)	1/s	1/(s-a), (s>a)
Function	f(t)	df/dt	$e^{at}f(t)$	$(\partial/\partial\alpha)f(t,\alpha)$	$\int_0^t f(u)g(t-u)du$	ч	eat

8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L)=f(x), and

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \text{ where}$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
, $n = 0, 1, 2, ...$, and

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, 3, \dots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} [f(x)]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) .$$

1. Probabilities for events

For events A, B, and C
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

More generally
$$P(\bigcup A_i) = \sum P(A_i) - \sum P(A_i \cap A_j) + \sum P(A_i \cap A_j \cap A_k) - \cdots$$

The odds in favour of
$$A$$
 $P(A)/P(\overline{A})$

Conditional probability
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 provided that $P(B) > 0$

Chain rule
$$P(A \cap B \cap C) = P(A) P(B \mid A) P(C \mid A \cap B)$$

Bayes' rule
$$P(A \mid B) = \frac{P(A) P(B \mid A)}{P(A) P(B \mid A) + P(\overline{A}) P(B \mid \overline{A})}$$

A and B are independent if
$$P(B \mid A) = P(B)$$

A, B, and C are independent if
$$P(A \cap B \cap C) = P(A)P(B)P(C)$$
, and

$$P(A \cap B) = P(A)P(B), P(B \cap C) = P(B)P(C), P(C \cap A) = P(C)P(A)$$

2. Probability distribution, expectation and variance

The probability distribution for a discrete random variable X is the complete set of

probabilities
$$\{p_x\} = \{P(X = x)\}$$

$$\underline{ \text{Expectation}} \quad E(X) \ = \ \mu \ = \ \sum_x x p_x$$

Sample mean
$$\overline{x} = \frac{1}{n} \sum_{k} x_k$$
 estimates μ from random sample x_1, x_2, \dots, x_n

Variance
$$var(X) = \sigma^2 = E\{(X - \mu)^2\} = E(X^2) - \mu^2$$
, where $E(X^2) = \sum_x x^2 p_x$

Sample variance
$$s^2 = \frac{1}{n-1} \left\{ \sum_k x_k^2 - \frac{1}{n} \left(\sum_j x_j \right)^2 \right\}$$
 estimates σ^2

Standard deviation
$$sd(X) = \sigma$$

If value y is observed with frequency n_y

$$n = \sum_{y} n_{y} \, , \; \; \sum_{k} x_{k} = \sum_{y} y n_{y} \, , \; \; \sum_{k} x_{k}^{2} = \sum_{y} y^{2} n_{y}$$

For function g(x) of x, $E\{g(X)\} = \sum_{x} g(x)p_x$

$$\underline{\mathsf{Skewness}} \quad \beta_1 \ = \ E \left(\frac{X - \mu}{\sigma} \right)^3 \qquad \text{is estimated by } \frac{1}{n-1} \ \sum \left(\frac{x_i - \overline{x}}{s} \right)^3$$

Kurtosis
$$\beta_2 = E\left(\frac{X-\mu}{\sigma}\right)^4 - 3$$
 is estimated by $\frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s}\right)^4 - 3$

Sample median \widetilde{x} . If the sample values x_1, \ldots, x_n are ordered $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ $\widetilde{x} = x_{(\frac{n+1}{2})}$ if n is odd, and $\widetilde{x} = \frac{1}{2}(x_{(\frac{n}{2})} + x_{(\frac{n+2}{2})})$ if n is even.

 $\underline{\alpha\text{-quantile}} \ \ Q(\alpha) \ \text{is such that} \ \ P(X \leq Q(\alpha)) \ = \ \alpha$

Sample α -quantile $\widehat{Q}(\alpha)$ is the sample value for which the proportion of values $\leq \widehat{Q}(\alpha)$ is α (using linear interpolation between values on either side)

The sample median \tilde{x} estimates the population median Q(0.5).

3. Probability distribution for a continuous random variable

The <u>cumulative distribution function</u> (cdf) $F(x) = P(X \le x) = \int_{x=-\infty}^{x} f(x_0) dx_0$

The probability density function (pdf) $f(x) = \frac{dF(x)}{dx}$

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$
, $var(X) = \sigma^2 = E(X^2) - \mu^2$,

where
$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

4. Discrete probability distributions

Discrete Uniform Uniform(n)

$$p_x = \frac{1}{n} \quad (x = 1, 2, \dots, n)$$

$$\mu = \frac{1}{2}(n+1)$$
, $\sigma^2 = \frac{1}{12}(n^2-1)$

Binomial distribution Binomial (n, θ)

$$p_x = \binom{n}{x} \theta^x (1-\theta)^{n-x} \quad (x=0,1,2,\ldots,n) \qquad \quad \mu = n\theta \,, \quad \sigma^2 = n\theta(1-\theta)$$

Poisson distribution $Poisson(\lambda)$

$$p_x = rac{\lambda^x e^{-\lambda}}{x!}$$
 $(x = 0, 1, 2, \ldots)$ (with $\lambda > 0$) $\mu = \lambda$, $\sigma^2 = \lambda$

Geometric distribution $Geometric(\theta)$

$$p_x = (1 - \theta)^{x-1}\theta$$
 $(x = 1, 2, 3, ...)$ $\mu = \frac{1}{\theta}$, $\sigma^2 = \frac{1 - \theta}{\theta^2}$

5. Continuous probability distributions

Uniform distribution $Uniform(\alpha, \beta)$

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & (\alpha < x < \beta), \qquad \mu = (\alpha + \beta)/2, \\ 0 & \text{(otherwise)}. \end{cases}$$

$$\sigma^2 = (\beta - \alpha)^2/12.$$

Exponential distribution Exponential (λ)

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & (0 < x < \infty), & \mu = 1/\lambda, \\ 0 & (-\infty < x \le 0). & \sigma^2 = 1/\lambda^2. \end{cases}$$

Normal distribution $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\} \quad (-\infty < x < \infty)$$

$$E(X) = \mu, \quad \text{var}(X) = \sigma^2$$

Standard normal distribution N(0,1)

If
$$X$$
 is $N(\mu, \sigma^2)$, then $Y = \frac{X - \mu}{\sigma}$ is $N(0, 1)$

6. Reliability

For a device in continuous operation with failure time random variable T having pdf $f(t) \ (t>0)$

The reliability function at time t R(t) = P(T > t)

The failure rate or hazard function h(t) = f(t)/R(t)

The <u>cumulative hazard</u> $H(t) = \int_0^t h(t_0) dt_0 = -\ln\{R(t)\}$

The Weibull (α, β) distribution has $H(t) = \beta t^{\alpha}$

7. System reliability

For a system of k devices, which operate independently, let

$$R_i = P(D_i) = P(\text{"device } i \text{ operates"})$$

The system reliability, R, is the probability of a path of operating devices

A system of devices in series operates only if every device operates

$$R = P(D_1 \cap D_2 \cap \dots \cap D_k) = R_1 R_2 \cdots R_k$$

A system of devices in parallel operates if any device operates

$$R = P(D_1 \cup D_2 \cup \cdots \cup D_k) = 1 - (1 - R_1)(1 - R_2) \cdots (1 - R_k)$$

8. Covariance and correlation

The covariance of X and Y $\operatorname{cov}(X,Y) = E(XY) - \{E(X)\}\{E(Y)\}$

From pairs of observations $(x_1, y_1), \dots, (x_n, y_n)$ $S_{xy} = \sum_k x_k y_k - \frac{1}{n} (\sum_i x_i) (\sum_j y_j)$

$$S_{xx} = \sum_{k} x_{k}^{2} - \frac{1}{n} (\sum_{i} x_{i})^{2}, \qquad S_{yy} = \sum_{k} y_{k}^{2} - \frac{1}{n} (\sum_{j} y_{j})^{2}$$

Sample covariance
$$s_{xy} = \frac{1}{n-1} S_{xy}$$
 estimates $cov(X,Y)$

Correlation coefficient
$$\rho = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\operatorname{sd}(X) \cdot \operatorname{sd}(Y)}$$

Sample correlation coefficient
$$r=\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$
 estimates ρ

9. Sums of random variables

$$\begin{split} E(X+Y) &= E(X) + E(Y) \\ \text{var}\,(X+Y) &= \text{var}\,(X) + \text{var}\,(Y) + 2 \cos{(X,Y)} \\ \cos{(aX+bY)}, \ cX+dY) &= (ac) \, \text{var}\,(X) + (bd) \, \text{var}\,(Y) + (ad+bc) \cos{(X,Y)} \\ \text{If} \ X \ \text{is} \ N(\mu_1,\sigma_1^2), \ Y \ \text{is} \ N(\mu_2,\sigma_2^2), \ \text{and} \ \text{cov}\,(X,Y) = c, \\ \text{then} \ \ X+Y \ \text{is} \ N(\mu_1+\mu_2, \ \sigma_1^2+\sigma_2^2+2c) \end{split}$$

10. Bias, standard error, mean square error

If t estimates θ (with random variable T giving t)

Bias of
$$t$$
 bias $(t) = E(T) - \theta$

Standard error of
$$t$$
 se (t) = sd (T)

Mean square error of
$$t$$
 $\underline{\mathsf{MSE}}(t) = E\{(T-\theta)^2\} = \{\operatorname{se}(t)\}^2 + \{\operatorname{bias}(t)\}^2$

If \overline{x} estimates μ , then $\mathrm{bias}(\overline{x})=0$, $\mathrm{se}\left(\overline{x}\right)=\sigma/\sqrt{n}$, $\mathrm{MSE}(\overline{x})=\sigma^2/n$, $\widehat{\mathrm{se}}\left(\overline{x}\right)=s/\sqrt{n}$

Central limit property if n is fairly large, \overline{x} is from $N(\mu, \sigma^2/n)$ approximately

11. Likelihood

The <u>likelihood</u> is the joint probability as a function of the unknown parameter θ . For a random sample x_1, x_2, \ldots, x_n

$$\ell(\theta; x_1, x_2, \dots, x_n) = P(X_1 = x_1 \mid \theta) \cdots P(X_n = x_n \mid \theta)$$
 (discrete distribution)

$$\ell(\theta; x_1, x_2, \dots, x_n) = f(x_1 \mid \theta) f(x_2 \mid \theta) \cdots f(x_n \mid \theta)$$
 (continuous distribution)

The maximum likelihood estimator (MLE) is $\widehat{\theta}$ for which the likelihood is a maximum.

12. Confidence intervals

If x_1,x_2,\ldots,x_n are a random sample from $N(\mu,\sigma^2)$ and σ^2 is known, then the 95% confidence interval for μ is $(\overline{x}-1.96\frac{\sigma}{\sqrt{n}},\ \overline{x}+1.96\frac{\sigma}{\sqrt{n}})$ If σ^2 is estimated, then from the Student t table for t_{n-1} we find $t_0=t_{n-1,0.05}$ The 95% confidence interval for μ is $(\overline{x}-t_0\frac{s}{\sqrt{n}},\ \overline{x}+t_0\frac{s}{\sqrt{n}})$

13. Standard normal table

Values of pdf $\phi(y)=f(y)$ and cdf $\Phi(y)=F(y)$

y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\Phi(y)$
0	.399	.5	.9	.266	.816	1.8	.079	.964	2.8	.997
.1	.397	.540	1.0	.242	.841	1.9	.066	.971	3.0	.999
.2	.391	.579	1.1	.218	.864	2.0	.054	.977	0.841	.8
.3	.381	.618	1.2	.194	.885	2.1	.044	.982	1.282	.9
.4	.368	.655	1.3	.171	.903	2.2	.035	.986	1.645	.95
.5	.352	.691	1.4	.150	.919	2.3	.028	.989	1.96	.975
.6	.333	.726	1.5	.130	.933	2.4	.022	.992	2.326	.99
.7	.312	.758	1.6	.111	.945	2.5	.018	.994	2.576	.995
.8	.290	.788	1.7	.094	.955	2.6	.014	.995	3.09	.999

14. Student t table

Values $t_{m,p}$ of x for which P(|X|>x)=p , when X is t_m

m	p= 0.10	0.05	0.02	0.01	m	p = 0.10	0.05	0.02	0.01
1	6.31	12.71	31.82	63.66	9	1.83	2.26	2.82	3.25
2	2.92	4.30	6.96	9.92	10	1.81	2.23	2.76	3.17
3	2.35	3.18	4.54	5.84	12	1.78	2.18	2.68	3.05
4	2.13	2.78	3.75	4.60	15	1.75	2.13	2.60	2.95
5	2.02	2.57	3.36	4.03	20	1.72	2.09	2.53	2.85
6	1.94	2.45	3.14	3.71	25	1.71	2.06	2.48	2.78
7	1.89	2.36	3.00	3.50	40	1.68	2.02	2.42	2.70
8	1.86	2.31	2.90	3.36	∞	1.645	1.96	2.326	2.576

15. Chi-squared table

Values $\chi^2_{k,p}$ of x for which P(X>x)=p, when X is χ^2_k and p=.995, .975, etc

									100	A STATE OF THE STA			
k	.995	.975	.05	.025	.01	.005	k	.995	.975	.05	.025	.01	.005
1	.000	.001	3.84	5.02	6.63	7.88	18	6.26	8.23	28.87	31.53	34.81	37.16
2	.010	.051	5.99	7.38	9.21	10.60	20	7.43	9.59	31.42	34.17	37.57	40.00
3	.072	.216	7.81	9.35	11.34	12.84	22	8.64	10.98	33.92	36.78	40.29	42.80
4	.207	.484	9.49	11.14	13.28	14.86	24	9.89	12.40	36.42	39.36	42.98	45.56
5	.412	.831	11.07	12.83	15.09	16.75	26	11.16	13.84	38.89	41.92	45.64	48.29
6	.676	1.24	12.59	14.45	16.81	18.55	28	12.46	15.31	41.34	44.46	48.28	50.99
7	.990	1.69	14.07	16.01	18.48	20.28	30	13.79	16.79	43.77	46.98	50.89	53.67
8	1.34	2.18	15.51	17.53	20.09	21.95	40	20.71	24.43	55.76	59.34	63.69	66.77
9	1.73	2.70	16.92	19.02	21.67	23.59	50	27.99	32.36	67.50	71.41	76,15	79.49
10	2.16	3.25	13.31	20.48	23.21	25.19	60	35.53	40.48	79.08	83.30	88.38	91.95
12	3.07	4.40	21.03	23.34	26.22	28.30	70	43.28	48.76	90.53	95.02	100.4	104.2
14	4.07	5.63	23.68	26.12	29.14	31.32	80	51.17	57.15	101.9	106.6	112.3	116.3
16	5.14	6.91	26.30	28.85	32.00	34.27	100	67.33	74.22	124.3	129.6	135.8	140.2

16. The chi-squared goodness-of-fit test

The frequencies n_y are grouped so that the fitted frequency \widehat{n}_y for every group exceeds about 5

$$X^2 = \sum_y \frac{(n_y - \widehat{n}_y)^2}{\widehat{n}_y}$$
 is referred to the table of χ_k^2 with significance point p ,

where k is the number of terms summed, less one for each constraint, eg matching total frequency, and matching \overline{x} with μ .

17. Joint probability distributions

$$\begin{array}{lll} \underline{\text{Discrete distribution}} & \{p_{xy}\}, & \text{where} & p_{xy} = P(\{X=x\} \cap \{Y=y\}) \,. \\ \\ \underline{\text{Let}} & p_{x\bullet} = P(X=x), & \text{and} & p_{\bullet y} = P(Y=y), & \text{then} \\ \\ p_{x\bullet} & = & \sum_y p_{xy}, & \text{and} & P(X=x \, \big| \, Y=y) & = & \frac{p_{xy}}{p_{\bullet y}} \end{array}$$

Continuous distribution

$$\mathsf{Marginal}\ \mathsf{pdf}\ \mathsf{of}\ X$$

Conditional pdf of
$$X$$
 given $Y = y$ $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$ (provided $f_Y(y) > 0$)

18. Linear regression

To fit the linear regression model y=lpha+eta x by $\widehat{y}_x=\widehat{lpha}+\widehat{eta} x$ from observations $(x_1,y_1),\ldots,(x_n,y_n)$, the least squares fit is

$$\widehat{\alpha} = \overline{y} - \overline{x}\widehat{\beta}, \quad \widehat{\beta} = S_{xy}/S_{xx}$$

The <u>residual sum of squares</u> RSS = $S_{yy} - \frac{S_{xy}^2}{S}$

$$\widehat{\sigma^2} = \frac{\mathrm{RSS}}{n-2} \; , \qquad \frac{n-2}{\sigma^2} \; \widehat{\sigma^2} \; \text{ is from } \; \chi^2_{n-2}$$

$$E(\widehat{\alpha}) = \alpha$$
, $E(\widehat{\beta}) = \beta$,
 $\operatorname{var}(\widehat{\alpha}) = \frac{\sum x_i^2}{n S_{-n}} \sigma^2$, $\operatorname{var}(\widehat{\beta}) = \frac{\sigma^2}{S}$, $\operatorname{cov}(\widehat{\alpha}, \widehat{\beta}) = -\frac{\overline{x}}{S} \sigma^2$

$$\widehat{y}_x = \widehat{\alpha} + \widehat{\beta}x$$
, $E(\widehat{y}_x) = \alpha + \beta x$, $\operatorname{var}(\widehat{y}_x) = \left\{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}\right\} \sigma^2$

$$\frac{\widehat{\alpha} - \alpha}{\widehat{\operatorname{se}} \; (\widehat{\alpha})} \; , \qquad \frac{\widehat{\beta} - \beta}{\widehat{\operatorname{se}} \; (\widehat{\beta})} \; , \qquad \frac{\widehat{y}_x - \alpha - \beta \, x}{\widehat{\operatorname{se}} \; (\widehat{y}_x)} \quad \text{are each from} \quad t_{n-2}$$

19. Design matrix for factorial experiments With 3 factors each at 2 levels

	EXAMINATION QUESTIONS/SOLUTIONS 2005-06	Course
		Paper 4
Question		Marks &
EE(4)1		seen/unseen
Parts	A ei = diei j eitei=1 i=1,,n	Seen
a)	et Ae: = liete by LH multiplying by et	
	Alternatively, * + transpose & RH multiply by Pi	
	e*TA*T = λ;* e; T → e; TA*Te; = λ;* e; Te;	6
	If A is a real symm mx, we have A*T=AT=A:	
	thus $\lambda_i = \lambda_i^* \rightarrow so \lambda_i$ are real.	
6)	Now we have li real (0 thus eireal), write	
	e: TAe; = Lietja) e: TAT = LieiT	(8
	where we've H RH multiply by E	7
	multiplied by eit subtack eit A e; = lieite;	-
	$(\lambda_j - \lambda_i) e_i^T e_j = 0$	
ET.	Because i = i; (distinct evs), thus e:Te=0.	
c)	With P=(e,e2en)	
	PTD - /eil (ele elez ele)	
	$PTP = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} \begin{pmatrix} e_1 e_1 \dots e_n \end{pmatrix} = \begin{pmatrix} e_1 e_1 & e_1 e_2 \dots & e_1 e_n \\ e_1 e_1 & e_2 \\ \vdots & \vdots & \vdots \\ e_n e_n \end{pmatrix}$	7
	$= \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) = I$	æ
		2
	Setter's initials Checker's initials	Page number
	J.D. G. AOG	

	EXAMINATION QUESTIONS/SOLUTIONS 2005-06	Course
		Paper 4
Question EE(4)2		Marks & seen/unseen
Parts	$Q = 4x_1^2 - 4x_1x_1 + x_2^2 + 643^2 = x^T A x$ $A = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 6 \end{pmatrix} \lambda_3 = 6$ $\lambda^2 - 5\lambda + 0 = 0$	Unseen but seen examples
	$\lambda_1 = 0, \lambda_2 = 5.$	2
	$\lambda_{1} = 0 \begin{pmatrix} 4 & 2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} P \\ q \\ r \end{pmatrix} = 0 q = 2p , r = 0$ $\underline{\alpha_{1}} = (1, 2, 0) / \sqrt{5}$	4
	$\lambda_{2} = 5 \left(\frac{-1 - 2 \circ 0}{-2 - 4 \circ 0} \right) \left(\frac{p}{2} \right) = 0 p = -2q r = 0$ $\alpha_{2} = (-2, 1, 0) / \sqrt{5}$	4
	$\lambda_3 = 6 \qquad \underline{a_3 = (0,0,1)^7}$	2
	Note: 11, T12 = x, T23 = 212 113 = 0 Cherry.	
	Define $P = (9_1 9_2 9_3) = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{5}} & 0 \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
	$4 \underline{n} = Py (0)$	4
	Q= NTAN = yT(PTAP)y.	
	However PTAP=1 (hookwork)	Bookwork
	= diag (0,5,6) ~~	
	Thus Q = yT (050) = 5y2+6y32	
*	$y = P^{-1} \underline{1} = P^{-1} \underline{1} = \begin{bmatrix} 1 & 2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & \sqrt{5} \end{bmatrix} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} y_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} n_1 + 2n_2 \\ -1n_1 + n_2 \end{pmatrix} \\ y_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -1n_1 + n_2 \\ -1n_2 + n_2 \end{pmatrix}$	4
	Setter's initials Checker's initials ADG	Page number

GH/RC

Solutions

Note: U means UNSEEN

3 (i) The required probabilities are

(a)
$$P(X_1 + X_2 = 3) = P\{(X_1 = 0 \cap X_2 = 3) \cup (X_1 = 2 \cap X_2 = 1)\}$$

 $= P(\{X_1 = 0 \cap X_2 = 3\}) + P(\{X_1 = 2 \cap X_2 = 1\})$
 $= \frac{1}{2} \times \frac{3}{4} + \frac{1}{3} \times \frac{1}{4} = \frac{11}{24}$

$$(2 U)$$

(b)
$$P(3X_1/X_2 < 2) = P\{(X_1 = 0) \cup (X_1 = 1 \cap X_2 = 3)\}$$

= $P(\{X_1 = 0\}) + P(\{X_1 = 1\})P(\{X_2 = 3\})$
= $\frac{1}{2} + \frac{1}{3} \times \frac{3}{4} = \frac{3}{4}$

2 U

(ii) Define the random variable $X = \{$ number of completed jobs $\}$ and notice that X follows a binomial distribution with success probability p = 1 - q = 0.95. The required probabilities are:

(a)
$$P(X = 10) = (0.95)^{10} = 0.598$$

3 U

(b)
$$P(X = 9) = 10(0.95)^90.05 = 0.315$$

3 U

(c)
$$1 - P(X = 10) = 1 - 0.598 = 0.402$$

3 U

(iii) Define the random variable $X = \{$ number of breakdowns in 5 years $\}$ and notice that X follows a Poisson(λt) distribution, where $\lambda t = 0.5$. The required probability is

(a)
$$P(X = 1) = e^{(-0.5)}0.5 = 0.303$$

3 U

Now define the random variable $Y = \{$ number of breakdowns in 1 year $\}$ and notice that Y follows a Poisson(λt) distribution, where $\lambda t = 0.1$. The required probability is

(b)
$$P(Y = 0) + P(Y = 1) + P(Y = 2) = e^{-0.1} + 0.1e^{-0.1} + \frac{0.1^2e^{-0.1}}{2!} = 0.999$$

4U (2

4. (i) (a) The hazard function is the conditional density that a t-unit-old system will fail in the imminent future given that has survived so far. It is defined as

$$h(t) = \frac{f(t)}{1 - F(t)}$$

2 U

(b) For an exponential distribution we have $F(t) = 1 - e^{-\lambda t}$, $t \ge 0$ so that $1 - F(t) = e^{-\lambda t}$. Hence with s, t > 0,

$$P(T > s + t \mid T > t) = \frac{P(T > s + t)}{P(T > t)} = \frac{e^{-\lambda(t + s)}}{e^{-\lambda t}} = P(T > s)$$

3 U

(c) The hazard function in this case is

$$h(t) = \frac{f(t)}{1 - F(t)} = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda$$

This is sensible since components with exponential lifetime are memoryless, and hence the probability of failure in $(t, t + \delta t)$ is independent of t

3 U

(ii) (a) Since T_A and T_B are independent, $f_{T_A,T_B}(t_A,t_B)=f_{T_A}(t_A)f_{T_B}(t_B)$

4 U

(b)
$$\begin{split} \mathsf{P}(T_A < T_B) &= \int_0^\infty dt_B \int_0^{t_B} dt_A f_{T_A, T_B}(t_A, t_B) \\ &= \int_0^\infty dt_B \int_0^{t_B} dt_A f_{T_A}(t_A) f_{T_B}(t_B) \\ &= \int_0^\infty dt_B f_{T_B}(t_B) \int_0^{t_B} dt_A f_{T_A}(t_A) \\ &= \int_0^\infty dt_B f_{T_B}(t_B) F_{T_A}(t_B) \\ &= \int_0^\infty F_{T_A}(t) f_{T_B}(t) dt \end{split}$$

4 U

(c) From the assumptions made, we have that $F_{T_A}(t) = 1 - e^{-\lambda_A t}$ and

$$P(T_A < T_B) = \int_0^\infty [1 - e^{-\lambda_A t}] \lambda_B e^{-\lambda_B t} dt = \int_0^\infty \lambda_B e^{-\lambda_B t} dt - \lambda_B \int_0^\infty e^{-(\lambda_A + \lambda_B) t} dt$$

but $(\lambda_A + \lambda_B) \int_0^\infty e^{-(\lambda_A + \lambda_B)t} dt = 1$ because this is the integral of an exponential probability density function with parameter $\lambda_A + \lambda_B > 0$. Hence

$$P(T_A < T_B) = 1 - \frac{\lambda_B}{\lambda_A + \lambda_B} = \frac{\lambda_A}{\lambda_A + \lambda_B}$$

By using symmetry,

$$\frac{P(T_A < T_B)}{P(T_B < T_A)} = \frac{\lambda_A}{\lambda_A + \lambda_B} \times \frac{\lambda_A + \lambda_B}{\lambda_B} = \frac{\lambda_A}{\lambda_B}$$

This is the ratio of decay parameters

5. (i) Since Y_1 is the proportion of impurities in the sample and Y_2 is the proportion of type I impurities among the sample impurities, it follows that Y_1Y_2 is the proportion of type I

impurities in the entire sample. Thus we want to find

$$E(Y_1Y_2) = \int_0^1 \int_0^1 2y_1y_2(1-y_1)dy_2dy_1 = 2\int_0^1 y_1(1-y_1)\frac{1}{2}dy_1$$
$$= \int (y_1 - y_1^2)dy_1 = \left[\frac{y_1^2}{2} - \frac{y_1^3}{3}\right]_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

10 U

(ii) The confidence interval for the difference of two proportions is given by

$$(\hat{p_1} - \hat{p_2}) \pm z_{lpha/2} \sqrt{rac{p_1(1-p_1)}{n_1} + rac{p_2(1-p_2)}{n_2}}$$

In our case, we have $p_1 = 0.24$, $p_2 = 0.20$, $n_1 = 50$, $n_2 = 60$ and $z_{.01} = 2.33$. Substituting $\hat{p_1}$ and $\hat{p_2}$ for p_1 and p_2 in the computation of the standard deviation, we obtain

$$(0.24 - 0.20) \pm 2.33\sqrt{\frac{(0.24)(0.76)}{50} + \frac{(0.20)(0.80)}{60}} = 0.04 \pm 0.185 = (-0.145, 0.225)$$

10 U

6. (i) (a) They are both unbiased estimators of λ because

$$\mathrm{E}(\Lambda_1) = \frac{1}{n} \sum_i \mathrm{E}(X_i) = \frac{1}{n}(n\lambda) = \lambda \qquad \text{and} \qquad \mathrm{E}(\Lambda_2) = \frac{1}{2} \{ \mathrm{E}(X_1) + \mathrm{E}(X_2) \} = \frac{1}{2}(2\lambda) = \lambda$$

3 U

(b) The corresponding variances are

$$\operatorname{Var}(\Lambda_1) = \frac{1}{n^2} \sum_i \operatorname{Var}(X_i) = \frac{1}{n^2} (n\lambda) = \frac{\lambda}{n}$$

and

$$\operatorname{Var}(\Lambda_2) = \frac{1}{4}(2\lambda) = \frac{\lambda}{2}$$

Thus if n > 2, Λ_1 is a more efficient estimator of λ than Λ_2 because $\frac{\lambda}{n} < \frac{\lambda}{2}$

5 U

(ii) (a)
$$E(y_t) = 0 \qquad Var(y_t) = \left(1 + \frac{1}{4} + \frac{1}{16}\right) \sigma_e^2 = \frac{21}{16} \sigma_e^2$$

3 U

$$\begin{array}{ll} (b) & \mathrm{Cov}(y_t,y_{t-s}) = & \mathrm{Cov}\left(e_t + \frac{1}{2}e_{t-1} + \frac{1}{4}e_{t-2}, e_{t-s} + \frac{1}{2}e_{t-s-1} + \frac{1}{4}e_{t-s-2}\right) \\ & = \begin{cases} \left(\frac{1}{2} + \frac{1}{8}\right)\sigma_e^2 = \frac{5}{8}\sigma_e^2 & \text{for } s = 1 \\ \frac{1}{4}\sigma_e^2 & \text{for } s = 2 \\ 0 & \text{for } s > 2 \end{cases}$$

6 U

variance

(c) The process is stationary because mean and covariance are independent of t

3 U