Team 3 – Brendan Pernecky, Huan Chong, Jiawei Huang, Lily Botueva, Sia Savla, William Knibbs

1. It is critical to determine whether there is a relationship between the 30 attribute variables and the target myliking variable. To do so, run a regression with myliking as the dependent variable and all thirty independent variables as predictors. What do you find?

While the model is significant overall, we see that only Leather Seats and Shared Carpool are the only significant independent variables (with 0.043 and 0.02 p value).

This means that with other factors constant, an increase in a unit of Leather Seats increase Concept Liking by 0.248, and an increase in a unit of Shared Carpool decreases Concept Liking by 0.287.

			Coefficients			
		Unstandardize		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	.381	2.959		.129	.898
	kidtrans	.241	.165	.136	1.463	.14
	miniboxy	.178	.129	.098	1.376	.170
	lthrbetr	.248	.122	.140	2.030	.043
	secbiggr	105	.106	059	990	.32
	safeimpt	019	.134	010	139	.89
	buyhghnd	.113	.116	.065	.969	.33
	pricqual	.105	.105	.059	1.005	.31
	prmsound	.010	.108	.006	.093	.92
	perfimpt	.233	.128	.129	1.815	.070
	tkvacatn	.166	.125	.094	1.333	.18
	noparkrm	.178	.116	.101	1.538	.12
	homlrgst	209	.122	116	-1.705	.089
	envrminr	033	.123	019	271	.78
	needbetw	.128	.103	.074	1.252	.21
	suvcmpct	.215	.123	.120	1.754	.080
	next2str	.024	.107	.014	.227	.820
	carefmny	243	.134	138	-1.809	.07
	shdcarpl	287	.122	160	-2.343	.020
	imprtapp	.059	.104	.033	.567	.57
	lk4whldr	064	.127	035	506	.61
	kidsbulk	097	.122	053	794	.42
	wntguzlr	029	.116	016	250	.80
	nordtrps	.073	.127	.041	.573	.56
	stylclth	.016	.114	.009	.139	.89
	strngwrn	197	.113	110	-1.735	.084
	passnimp	.162	.119	.091	1.360	.17
	twoincom	.170	.096	.099	1.767	.078
	nohummer	.009	.096	.005	.095	.925
	aftrschl	026	.117	014	221	.82
	accesfun	003	.122	002	028	.97

2. The analyses run thus far address how well the 30 attribute variables explain the myliking variable. These results may be more interpretable by uncovering the degree of redundancy in the 30 attribute variables. How would you go about doing this? Conduct all of the necessary steps in this analysis. After identifying the underlying factors, determine their meaning and name them accordingly.

Total Variance Explained

		Initial Eigenvalu	ies	Extraction	Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	8.275	27.585	27.585	8.275	27.585	27.585
2	4.998	16.660	44.244	4.998	16.660	44.244
3	3.088	10.294	54.539	3.088	10.294	54.539
4	2.715	9.049	63.588	2.715	9.049	63.588
5	1.800	6.001	69.589	1.800	6.001	69.589
6	.626	2.088	71.676			
7	.569	1.896	73.572			
0		1 700	75.260			

		(Component		
	1	2	3	4	5
kidtrans	.123	.002	.933	019	.007
miniboxy	.123	.842	107	.051	.013
Ithrbetr	.710	186	.247	.292	.067
secbiggr	076	.759	.059	.033	082
safeimpt	.026	.047	.054	020	.907
buyhghnd	.815	.176	.023	.057	.098
pricqual	.783	190	081	133	.004
prmsound	.681	017	.168	.292	.073
perfimpt	.111	081	075	.026	884
tkvacatn	.652	031	.258	.460	.023
noparkrm	.174	.807	.012	087	016
homirgst	.330	679	.154	.318	.085
envrminr	171	035	.086	867	014
needbetw	.126	.758	011	.044	.042
suvcmpct	.083	.819	.202	.037	004
next2str	.258	743	.106	114	007
carefmny	762	145	198	310	080
shdcarpl	.161	028	055	.867	.078
imprtapp	.508	010	.346	.351	.200
lk4whldr	.167	.025	.032	.105	.856
kidsbulk	.179	.017	.825	.058	.022
wntguzir	355	.032	008	764	.015
nordtrps	063	102	867	014	041
stylclth	.602	.236	.183	.428	027
strngwrn	.273	259	.083	.062	.735
passnimp	646	020	400	279	.014
twoincom	.756	.117	093	072	.095
nohummer	.060	.706	.046	037	.038
aftrschl	.195	109	.776	112	.182
accesfun	.677	039	.301	.372	.003

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

On conducting Factor Analysis, we see that there are 5 factors. They can be categorized as the following:

FACTOR	NAME	VARIABLES	MEANING
Factor 1	Affluent &	buyhghnd (.815)	People falling under this value
	Premium	pricqual (.783)	high end features, are willing to
	Experience	prmsound (.681)	pay for quality, want stylish and
		tkvacatn (.652)	equipped cars, enjoy taking
		twoincom (.756)	vacations, lead an affluent
		accesfun (.677)	lifestyle, and are not frugal with

		Imprtapp (.508)	money, as they have higher
		lthrbetr (.710)	disposable income due to 2
		stylcith (.602)	income sources.
		passnimp (646)	
		carefmny (762)	
Factor 2	Compact and	miniboxy (.842)	They want a smaller, more
	Simple	secbiggr (.759)	manageable car, appreciate size
		noparkrm (.807)	of an SUV, and have parking
		needbetw (.758)	restraints. They also might not
		suvcmpct (.819)	have a high disposable income.
		nohummer (.706)	
		next2str (743)	
		homlrgst (679)	
Factor 3	Family	nordtrps (867)	They need it for practical needs
	Transport	kidtrans (.933)	of families. They need it to move
		kidsbulk (.825)	bulky things associated with
		aftrschl (.776)	children, and are unlikely to take
			road trips.
Factor 4	Environmental	envrminr (867)	They are environmentally
		shdcarpl (.867)	conscious.
		wntguzlr (764)	
Factor 5	Safety First	safeimpt (.907)	They care and prioritize safety
		lk4whldr (.856)	more than performance of the
		strngwrn (.735)	car.

	perfimpt (884)	

3. Run another regression, this time using the saved factor scores as the independent variables and again using concept liking (mvliking) as the dependent variable. What does this new regression suggest compared with the prior regression results?

ANOVA ^a							
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	967.512	5	193.502	39.717	<.001 ^b	
	Residual	1919.565	394	4.872			
	Total	2887.078	399				

a. Dependent Variable: myliking

b. Predictors: (Constant), Safety, Environmental, Family, Compact, Affluent

				Coefficients				
		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confider	nce Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	4.843	.110		43.878	<.001	4.626	5.059
	Affluent	1.044	.111	.388	9.448	<.001	.827	1.261
	Compact	.985	.111	.366	8.918	<.001	.768	1.203
	Family	.185	.111	.069	1.674	.095	032	.402
	Environmental	139	.111	052	-1.255	.210	356	.079
	Safety	557	.111	207	-5.041	<.001	774	340

a. Dependent Variable: mvliking

This new model suggests that the significant categories are Affluent, Compact, and Safety.

Therefore, this means that a change in any of these categories would change the Concept Liking.

Compared to the first regression we see that the underlying variables in these 3 factors do affect the liking, whereas the first one suggested only 2 variables.

4. Segment the market based on the factors that you identified, by going through all of the necessary steps. Do the clusters make sense? On what factors do they differ? Name the clusters based on their identifying characteristics.

ſ	Final Cluster Centers							
			Cluster					
		1	2	3				
J	Affluent	46927	.44551	.30047				
1	Compact	66717	1.07399	05497				
	Family	.12110	.40452	64604				
	Environmental	.33374	.44372	-1.04601				
	Safety	.07630	17404	.06234				

Report

Cluster No	umber of Case	Affluent	Compact	Family	Environmental	Safety
1	Mean	4692656	6671686	.1211022	.3337398	.0762960
	N	178	178	178	178	178
2	Mean	.4455104	1.0739869	.4045162	.4437226	1740403
	N	116	116	116	116	116
3	Mean	.3004724	0549667	6460384	-1.0460142	.0623396
	N	106	106	106	106	106
Total	Mean	.0000000	.0000000	.0000000	.0000000	.0000000
	N	400	400	400	400	400

Cluster Name	Description	Key Factor Characteristics
Practical &	Values practicality and	Affluent Lifestyle & Premium
Environmentally	environmental	Experience: Negative (469)
Aware	responsibility.	Compact Size Preference: Negative

		(667)
		Environmental Concern: Positive (.333)
Compact Prioritizers	Prioritizes a compact vehicle	Compact Size Preference: Positive
	above all else.	(1.073)
Unbothered	Is concerned about any of	Compact Size Preference: Negative
	the factor segments.	(054)
		Family Transportation Needs: Negative
		(646)
		Environmental Concern: Negative (-
		1.046)

5. Determine how the clusters vary on the concept liking (mvliking) variable. This can be done in many different ways (e.g., regression of mvliking on the cluster id categorical variable, t-tests of the mean of mvliking for the different clusters, cross tabulation of cluster membership and discrete levels of mvliking, etc.). How do they differ?

One-way ANOVA analysis tool shows that there is significant difference between at least one pair of clusters. Linear regression analysis with independent variable of cluster number also shows clusters significantly predict myliking.

Cross tabulation analysis in SPSS also supports the result is statistically significant, meaning

myliking scores differ significantly across the three clusters.

			mvliking									
			1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	Total
Cluster Number of Case	1	Count	49	18	27	26	22	11	13	5	7	178
		Expected Count	30.7	11.6	18.7	21.8	23.1	18.7	14.7	14.2	24.5	178.0
		Standardized Residual	3.3	1.9	1.9	.9	2	-1.8	4	-2.4	-3.5	
	2	Count	6	3	5	7	15	16	12	20	32	116
		Expected Count	20.0	7.5	12.2	14.2	15.1	12.2	9.6	9.3	16.0	116.0
		Standardized Residual	-3.1	-1.7	-2.1	-1.9	.0	1.1	.8	3.5	4.0	
	3	Count	14	5	10	16	15	15	8	7	16	106
		Expected Count	18.3	6.9	11.1	13.0	13.8	11.1	8.7	8.5	14.6	106.0
		Standardized Residual	-1.0	7	3	.8	.3	1.2	3	5	.4	
Total		Count	69	26	42	49	52	42	33	32	55	400
		Expected Count	69.0	26.0	42.0	49.0	52.0	42.0	33.0	32.0	55.0	400.0

Chi-Square Tests							
	Value	df	Asymptotic Significance (2-sided)				
Pearson Chi-Square	95.898 ^a	16	<.001				
Likelihood Ratio	100.391	16	<.001				

The standardized residuals for myliking = 1 in Cluster 1 are positive, meaning there are more low-liking scores than expected. Our findings suggest that Cluster 1 contains people who are less favorable toward the concept.

The standardized residuals are highly positive for myliking = 9 in Cluster 2, meaning people in this cluster have a strong preference for the concept.

The distribution of myliking in Cluster 3 is closer to expected counts, with somewhat moderate levels of liking.

Since the difference is significant, this means that cluster membership plays an important role in determining myliking levels. It is best to focus more on Cluster 2 "Compact Prioritizers" as a key target audience while investigating why Cluster 1 "Practical & Environmentally Aware" is less engaged.

6. As a final step, examine the demographic profile of each of the clusters. Given your findings about the "needs and wants" of each of the clusters, do their demographics make sense? Who are these people? Be sure to examine all available demographic variables.

Cluster Number of Case * female

Crosstab

			ale			
			.00	1.00	Total	
Cluster Number of Case	1	Count	64	114	178	
		Expected Count	81.9	96.1	178.0	
		Standardized Residual	-2.0	1.8		
	2	Count	49	67	116	
		Expected Count	53.4	62.6	116.0	
		Standardized Residual	6	.6		
	3	Count	71	35	106	
		Expected Count	48.8	57.2	106.0	
		Standardized Residual	3.2	-2.9		
Total		Count	184	216	400	
		Expected Count	184.0	216.0	400.0	

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	26.675 ^a	2	<.001
Likelihood Ratio	26.950	2	<.001
Linear-by-Linear Association	23.848	1	<.001
N of Valid Cases	400		

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 48.76.

	Age	Income	Miles	Numk ids	Female	Educ	Recycle
Practical &	30-45	<\$50k	15-20k	0-1	1:2 (more woman)	Undergra duate	Most
Environmentally						degree	
Aware							
Compact	40+	\$50- \$100k	15-30k	1-3	1:1	Undergra duate or	Moderate
Prioritizers		ΨΙΟΟΙΙ				higher	
Unbothered	25-40	<\$50k- \$150k	10-17k	0-1	2:1 (less woman)	Less formal education	Less

Cluster 1: This group is environmentally conscious and practical. They likely value sustainability and eco-friendly practices. They may prioritize cost-effective and fuel-efficient transportation. A higher proportion of women suggests possible preferences for vehicles with safety and environmental features.

Cluster 2: This group is older and more financially stable, likely balancing work, family, and practicality. Their moderate recycling habits indicate that while they care about sustainability, it is not their top priority. Since they drive more miles (15–30k), they might prioritize comfort, efficiency, and reliability in their vehicle choices. The presence of children (1–3) suggests they may value family-friendly features such as safety, space, and fuel economy.

Cluster 3: This group appears less concerned with environmental factors and more individualistic. A wider income range (\$50k-\$150k) suggests diverse financial backgrounds, from young professionals to higher earners. They drive fewer miles (10–17k), indicating less reliance on personal vehicles—possibly using alternative transportation or remote work. Less formal education might correlate with a preference for cost-effective, functional, and possibly performance-oriented vehicles. Since they recycle the least, sustainability is likely not a key factor in their decision-making.

7. Make a recommendation to GPA. Which segment(s) should they target? How can car manufacturers position the microvan to attract new customers?

Based on our analysis, GPA should target Cluster 2 (Compact Prioritizers) for the microvan market. This segment shows the strongest interest in the microvan concept, making them the most promising audience for adoption.

- The standardized residuals are highly positive for myliking = 9 in Cluster 2, indicating that people in this group strongly favor the microvan idea compared to other clusters.
- 2. With incomes between \$50k-\$100k, Compact Prioritizers have the financial means to afford a new vehicle.
- 3. They are likely to consider practical, high-value, and family-friendly options over luxury or performance-driven cars.
- 4. They drive 15k–30k miles per year, meaning they need reliable, fuel-efficient vehicles that balance daily commutes and family trips.
- 5. Many have 1–3 children, making space, safety, and practicality top considerations—all key advantages of microvans.

To attract this segment, car manufacturers should position the microvan as:

A Smart, Compact Family Vehicle: Highlight spaciousness, fuel efficiency, and advanced safety features for family appeal. Offer flexible seating and storage solutions to accommodate both kids and work-life balance.

Affordable & Value-Driven: Competitive pricing with good financing options to appeal to middle-income buyers.

Practical for Everyday Life: Position microvans as ideal for both urban and suburban lifestyles—easy to park, fuel-efficient, and adaptable for work and family needs. Market it as a "smart alternative" to SUVs, offering more space with better fuel economy.