$k \approx 8$	(0.1)
k = 3.9	(0.2)
γ	(0.3)
α	(0.4)
α	(0.5)
α	(0.6)
γ	(0.7)
α	(0.8)
γ	(0.9)
α	(0.10)
lpha	(0.11)
lpha	(0.12)
$E_{ m A}$	(0.13)
$p_{ m partial}$	(0.14)
au	(0.15)
A_S^D	(0.16)
$t_{ m relax}$	(0.17)
t = 59	(0.18)
t = 65	(0.19)
t = 75	(0.20)
t = 85	(0.21)
t = 95	(0.22)
t = 100	(0.23)
n	(0.24)
1	(0.25)
1	(0.26)
1	(0.27)
n	(0.28)
n	(0.29)

(0.30)

n

n	(0.31)
$n \log n$	(0.32)
n	(0.33)
n	(0.34)
n	(0.35)
n	(0.36)
1	(0.37)
n	(0.38)
$rac{r_c^3}{s^3}n^2$	(0.39)
n	(0.40)
1	(0.41)
1	(0.42)
1	(0.43)
r_s^3	(0.44)
r_s^3	(0.45)
c	(0.46)
n+c	(0.47)
$n \log c$	(0.48)
$\log c$	(0.49)
$\log c$	(0.50)
1	(0.51)
$r_s^3 \log c$	(0.52)
$r_s^3 \log c$	(0.53)
$\log c$	(0.54)
$n+c^{\frac{2}{3}}$	(0.55)
$n \log n$	(0.56)
$\log n$	(0.57)
$\log n$	(0.58)
$\log n$	(0.59)

(0.60)

 $r_s^3 \log n$

$r_s^3 \log n$	(0.61)
$\log n$	(0.62)
n	(0.63)
$n \log n$	(0.64)
$k \log k$	(0.65)
$k \log k$	(0.66)
$k \log k$	(0.67)
$r_s^3 + n^{\frac{1}{3}}$	(0.68)
r_s^3	(0.69)
1	(0.70)
nk	(0.71)
n	(0.72)
1	(0.73)
1	(0.74)
1	(0.75)
n	(0.76)
n	(0.77)
n	(0.78)
n	(0.79)
n	(0.80)
k	(0.81)
b	(0.82)
k_r	(0.83)
$d \le r_c$	(0.84)
r_c	(0.85)
r_s	(0.86)
s	(0.87)
k	(0.88)
k	(0.89)

(0.90)

k

k+1	(0.91)
atoms	(0.92)
size[3]	(0.93)
depth	(0.94)
atoms, space size, depth	(0.95)
$cellsize[0] \leftarrow spacesize[0] \cdot 2^{-depth}$	(0.96)
$cellsize[1] \leftarrow spacesize[1] \cdot 2^{-depth}$	(0.97)
$cellsize[2] \leftarrow spacesize[2] \cdot 2^{-depth}$	(0.98)
$root \leftarrow$	(0.99)
depth	(0.100)
atom	(0.101)
atoms	(0.102)
$cellindex[0] \leftarrow \lfloor atom.pos[0]/cellsize[0] \rfloor$	(0.103)
$cellindex[1] \leftarrow \lfloor atom.pos[1]/cellsize[1] \rfloor$	(0.104)
$cellindex[2] \leftarrow \lfloor atom.pos[2]/cellsize[2] \rfloor$	(0.105)
$cell \leftarrow$	(0.106)
root, cell index	(0.107)
root	(0.108)
root	(0.109)
i[3]	(0.110)
allocate	(0.111)
cell, id, allocate	(0.112)
$d \leftarrow$	(0.113)
d = 0	(0.114)
cell.children	(0.115)
$cell.children \leftarrow$	(0.116)
$childid \leftarrow$	(0.117)
2^{d-1}	(0.118)
$2\cdot$	(0.119)
2^{d-1}	(0.120)

$4\cdot$	(0.121)
2^{d-1}	(0.122)
cell.children [childid], i, allocate	(0.123)
=	(0.124)
N	(0.125)
points	(0.126)
k	(0.127)
$points, dim \leftarrow 0$	(0.128)
$n \leftarrow$	(0.129)
n = 0	(0.130)
points, dim	(0.131)
points	(0.132)
dim	(0.133)
$root \leftarrow points\left[\lfloor \frac{n}{2} \rfloor\right]$	(0.134)
$dim \leftarrow (dim + 1) \mod k$	(0.135)
$root.left \leftarrow$	(0.136)
$points\left[0:\lfloorrac{n}{2} floor-1 ight],dim$	(0.137)
$root.right \gets$	(0.138)
$points\left\lfloor \lfloor \frac{n}{2} \rfloor + 1: n-1 \right\rfloor, dim$	(0.139)
root	(0.140)
C	(0.141)
\Leftrightarrow	(0.142)
C	(0.143)
\Rightarrow	(0.144)
k_d	(0.145)
0	(0.146)
$_{0}\in$	(0.147)
$ eq \emptyset$	(0.148)
€	(0.149)

$$\begin{array}{c} \ \ \, & (0.150) \\ \ \ \, \in \\ \ \ \, & (0.151) \\ \ \ \, \cap \\ \ \ \, & (0.152) \\ \ \ \, \cap \\ \ \ \, & (0.153) \\ \ \ \, & (0.154) \\ \ \ \, & (0.155) \\ \ \ \, & (0.155) \\ \ \ \, & (0.156) \\ \ \ \, & (0.156) \\ \ \ \, & (0.156) \\ \ \ \, & (0.156) \\ \ \ \, & (0.157) \\ \ \ \, & (0.157) \\ \ \ \, & (0.158) \\ \ \ \, & (0.158) \\ \ \ \, & (0.158) \\ \ \ \, & (0.168) \\ \ \ \, & (0.163) \\ \ \ \, & (0.164) \\ \ \ \, & (0.162) \\ \ \ \, & (0.163) \\ \ \ \, & (0.164) \\ \ \ \, & (0.164) \\ \ \ \, & (0.164) \\ \ \ \, & (0.164) \\ \ \ \, & (0.165) \\ \ \ \, & (0.166) \\ \ \ \, & (0.166) \\ \ \ \, & (0.166) \\ \ \ \, & (0.166) \\ \ \ \, & (0.166) \\ \ \ \, & (0.166) \\ \ \ \, & (0.169) \\ \ \ \, & (0.170) \\ \ \ \, & (0.170) \\ \ \ \, & (0.172) \\ \ \ \, & (0.172) \\ \ \ \, & (0.173) \\ \ \ \, & (0.173) \\ \ \ \, & (0.175) \\ \ \ \, & (0.175) \\ \ \ \, & (0.175) \\ \ \ \, & (0.177$$

(0.150)

(0.177)

$$\rho_{\beta}(r_{ij}) \qquad (0.178)$$

$$\alpha \qquad (0.179)$$

$$\beta \qquad (0.180)$$

$$E = \sum_{i} \left[F_{\alpha} \left(\sum_{j \neq i} \rho_{\beta} \left(r_{ij} \right) \right) + \frac{1}{2} \sum_{j \neq i} V_{\alpha\beta} \left(r_{ij} \right) \right] \qquad (0.181)$$

$$E = \sum_{i} \left[F_{\alpha} \left(\bar{\rho}_{i} \right) + \frac{1}{2} \sum_{j \neq i} V_{ij} \left(r_{ij} \right) \right] \qquad (0.182)$$

$$\sigma \qquad (0.183)$$

$$\pi \qquad (0.184)$$

$$\pi \qquad (0.184)$$

$$\pi \qquad (0.185)$$

$$E_{\text{system}} = E_{\text{bond}} + E_{\text{lp}} + E_{\text{over}} + E_{\text{under}} + E_{\text{val}} + E_{\text{pen}} + E_{\text{coa}} + E_{\text{C2}} \qquad (0.186)$$

$$+ E_{\text{tors}} + E_{\text{conj}} + E_{\text{H-bond}} + E_{\text{vdWaals}} + E_{\text{Coulomb}}$$

$$E_{\text{bond}} \qquad (0.187)$$

$$E_{\text{lp}} \qquad (0.188)$$

$$E_{\text{over}} \qquad (0.189)$$

$$E_{\text{under}} \qquad (0.190)$$

$$\pi \qquad (0.191)$$

$$E_{\text{val}} \qquad (0.192)$$

$$E_{\text{pen}} \qquad (0.193)$$

$$E_{\text{coa}} \qquad (0.194)$$

$$^{2} \qquad (0.195)$$

$$E_{\text{C2}} \qquad (0.196)$$

(0.198) $E_{\rm tors}$ $E_{\rm conj}$ (0.199)

 $E_{\text{H-bond}}$ (0.200)

 E_{vdWaals} (0.201)

(0.202) E_{Coulomb}

(0.203) $t_{\rm relax}$

2

```
(0.205)
                                    t_{\rm relax}
                                      \tau
                                                                                          (0.206)
                              t_{\rm relax} = 50\,\mathrm{ps}
                                                                                          (0.207)
                                \tau=0.02\,\mathrm{fs}
                                                                                          (0.208)
                                      \Downarrow
                                                                                          (0.209)
                                \sigma_z = 1.2 \,\text{Å}
                                                                                          (0.210)
                                \sigma_z = 6.4 \, \text{Å}
                                                                                          (0.211)
                                \sigma_z = 8.0\,\text{Å}
                                                                                          (0.212)
                                      ê
                                                                                          (0.213)
                                     X_0
                                                                                          (0.214)
                                      \mathbb{X}
                                                                                          (0.215)
                                   t_0 = 0
                                                                                          (0.216)
                                  X_n \in \mathbb{X}
                                                                                          (0.217)
                                     E_i
                                                                                          (0.218)
                                   X_{n-1}
                                                                                          (0.219)
                                     X_n^i
                                                                                          (0.220)
               E_i: X_{n-1} \to X_n^i \in \mathbb{X} \ , \quad i \in [1, N]
                                                                                          (0.221)
                                      E_i
                                                                                          (0.222)
                                      r_i
                                                                                          (0.223)
                                     R_i
                                                                                          (0.224)
                                     R_N
                                                                                          (0.225)
                                r_i = r(E_i)
                                                                                          (0.226)
                               R_i = \sum_{j \le i} r_j
                                                                                          (0.227)
                                                                                          (0.228)
                                      u
                                     X_n^i
                                                                                          (0.229)
                                     X_n
                                                                                          (0.230)
                                   N = 0
                                                                                          (0.231)
                                  R_N = 0
                                                                                          (0.232)
X_n = X_n^i : R_{i-1} \le uR_N < R_i , u \in [0,1) gleichverteilt
                                                                                          (0.233)
```

 τ

(0.204)

$$t_n = t_{n-1} + \frac{-\ln(u')}{R_N} \ , \quad u' \in [0,1) \ \text{gleichverteilt} \qquad (0.234)$$

$$X_{n+1} \qquad (0.235)$$

$$N = 0 \qquad (0.236)$$

$$R_N = 0 \qquad (0.237)$$

$$t_n > t_{\text{fin}} \qquad (0.238)$$

$$E_i \qquad (0.239)$$

$$X_n \qquad (0.240)$$

$$X_n^i \qquad (0.241)$$

$$\alpha \qquad (0.242)$$

$$\tau_p \qquad (0.243)$$

$$R \qquad (0.244)$$

$$R \qquad (0.244)$$

$$R \qquad (0.245)$$

$$m \qquad (0.246)$$

$$\vec{r} \qquad (0.247)$$

$$\vec{p} \qquad (0.248)$$

$$\vec{F}(R) \qquad (0.249)$$

$$N \qquad (0.250)$$

$$V \qquad (0.251)$$

$$E \qquad (0.252)$$

$$N = \text{const.} \quad V = \text{const.} \quad E = \text{const.} \qquad (0.253)$$

$$\dot{\tau}_i = \frac{\vec{p}_i}{m_i} \qquad (0.255)$$

$$\dot{\tau}_i = m\vec{a}_i = \vec{F}_i(R) \qquad (0.256)$$

$$T \qquad (0.257)$$

$$N = \text{const.} \quad V = \text{const.} \quad T = \text{const.} \qquad (0.258)$$

$$V = const$$
 $T = const$ (0.258)

$$T_{\text{Ziel}}$$
 (0.259)

$$\overline{E_{kin}} = \frac{1}{2}\overline{mv^2} = \frac{d}{2}k_BT\tag{0.260}$$

$$T_{\rm Ziel}$$
 (0.261)

$$au$$
 (0.262)

$$\vec{v}_i' = \vec{v}_i \cdot \sqrt{1 + \frac{\Delta t}{\tau} \left(\frac{T_{\text{Ziel}}}{T} - 1\right)} \tag{0.263}$$

$$s (0.264)$$

$$\dot{\vec{p}}_i = \vec{F}_i - s\vec{p}_i \tag{0.265}$$

$$s (0.266)$$

$$\tau \tag{0.267}$$

$$M \tag{0.268}$$

$$M \tag{0.269}$$

$$\tau \tag{0.270}$$

$$\dot{s} = \frac{1}{\tau M} \left(\sum_{i} \frac{p_i^2}{2m_i} - Ndk_B T \right) \tag{0.271}$$

$$N = \text{const.}$$
 $p = \text{const.}$ $T = \text{const.}$ (0.272)

$$PV = Nk_B T + \frac{1}{d} \sum_{i=1}^{N} \vec{r}_i \cdot \vec{F}_i$$
 (0.273)

$$\vec{X}_0 \tag{0.274}$$

$$\nabla E(X) \tag{0.275}$$

$$\alpha$$
 (0.276)

$$\Rightarrow$$
 (0.277)

$$\Rightarrow \qquad (0.278)$$

$$\vec{X}_i = \vec{X}_{i-1} - \alpha \nabla E(\vec{X}_{i-1}) \tag{0.279}$$

$$\left| \vec{X}_i - \vec{X}_{i-1} \right| < X_{\text{tol}} \tag{0.280}$$

$$\max_{k} |X_{i,k} - X_{i-1,k}| < X_{\text{tol}} \tag{0.281}$$

$$\left| \nabla E(\vec{X}_{i-1}) \right| < E_{\text{tol}} \tag{0.282}$$

$$i > i_{\text{tol}} \tag{0.283}$$

$$\min_{\alpha} f(X_i + \alpha \vec{s_i}) \to \alpha_i \tag{0.284}$$

$$\vec{X}_i = \vec{X}_{i-1} - \alpha_i \vec{s}_i \tag{0.285}$$

$$\vec{s}_i = \Delta \vec{X}_i + \beta_i \vec{s}_{i-1} \tag{0.287}$$

$$\beta_{i} = \max\left(0, \frac{\Delta \vec{X}_{i} \cdot \left(\Delta \vec{X}_{i} - \Delta \vec{X}_{i-1}\right)}{\Delta \vec{X}_{i-1} \cdot \Delta \vec{X}_{i-1}}\right) \text{ (Polak-Ribire)}$$
 (0.288)

$$Id (0.289)$$

$$_{2}$$
 (0.290)

(0.291)