2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

gondola

Language: en-BGR

Вагончета

Вагончетата в Мяо-Конг са известна атракция в Тайпе. Вагончетата са върху кръгова линия, която има една станция. Броят на вагончетата е n, номерирани последователно от 1 до n, според разположението им по линията при фиксирана посока. При тази номерация, когато вагончето с номер i премине през станцията, следващото вагонче, което ще премине ще е с номер i+1, ако i< n, или ще е с номер 1, ако i=n.

Някои вагончета се повреждат. Обаче управлението на атракцията разполага е неограничен запас от резервни вагончета, които имат номера n+1, n+2, и т.н. При откриване на повредено вагонче, работниците го заменят (на неговата позиция) с първото налично резервно вагонче, т.е. с това, което има най-малък номер от наличните резервни. Например, ако има 5 вагончета и вагонче номер 1 се окаже повредено, работниците го заменят с вагончето с номер 6

Вие сте на станцията и наблюдавате преминаващите вагончета. *Последователност от вагончета* наричаме последователността от *п*-те номера на вагончета, които преминават през станцията. Възможно е едно или повече вагончета да са се повредили и да са ги заменили с резервни, преди вие да сте дошли на станцията, но това не може да се случи, докато наблюдавате.

Забелязваме, че една и съща конфигурация от вагончета върху линията може даде различни последователности от вагончета, в зависимост от номера на първото вагонче пристигнало на станцията. Например, ако няма повредени вагончета, тогава (2, 3, 4, 5, 1) и (4, 5, 1, 2, 3) са възможни последователности от вагончета, но (4, 3, 2, 5, 1) не е такава последователност, защото вагончетата не са правилно поредени.

Ако вагонче 1 се повреди (и го заменят с вагонче 6), тогава бихме могли да наблюдаваме следната последователност от вагончета: (4, 5, 6, 2, 3). Ако след това, вагонче 4 се повреди и го заменят с вагонче 7, бихме могли да наблюдаваме последователността (6, 2, 3, 7, 5). Ако пък, след това, вагонче 7 се повреди и го заменят с вагонче 8, бихме могли да наблюдаваме последователността от вагончета: (3, 8, 5, 6, 2).

повредено вагонче	ново вагонче	възможна последователност от вагончета
1	6	(4, 5, 6, 2, 3)
4	7	(6, 2, 3, 7, 5)
7	8	(3, 8, 5, 6, 2)

Замествана последователност наричаме последователността от номерата на вагончетата, които са се повредили по реда на времето на повреждането им. В примера, замествана последователност е: (1, 4, 7). Всяка замествана последователност \boldsymbol{r} произвежда последователност от вагончета \boldsymbol{g} , което означава че, ако вагончетата се повреждат според заместваната последователност \boldsymbol{r} и се заместват по правилата, последователността от

вагончета g би могла да бъде наблюдавана.

Проверка за последователност от вагончета

При първите 3 подзадачи вие трябва да проверите дали дадена входна последователност е последователност от вагончета. Вижте таблицата по-долу за примери на последователности, които са и които не са последователности от вагончета. Вие трябва да имплементирате функцията valid.

- valid(n, inputSeq)
 - п: дължина на входната последователност.
 - lacktriangledown inputSeq[i] е i-тият елемент от входната последователност за 0 < i < n-1.
 - Функцията трябва да върне 1, ако входната последователност е последователност от вагончета, или 0, ако не е такава.

Подзадачи 1, 2, 3

подзадача	точки	\boldsymbol{n}	inputSeq
1	5	$n \leq 100$	има всеки номвр от 1 до <i>п</i> точно по ведньж
2	5	$n \leq 100000$	$1 \le \text{inputSeq[i]} \le n$
3	10	$n \leq 100000$	$1 \le \text{inputSeq[i]} \le 250000$

Примери

подзадача	inputSeq	връщана стойност	забележка
1	(1, 2, 3, 4, 5, 6, 7)	1	
1	(3, 4, 5, 6, 1, 2)	1	
1	(1, 5, 3, 4, 2, 7, 6)	0	1 не може да се появи непосредствно пред 5
1	(4, 3, 2, 1)	0	4 не може да се появи непосредствно пред 3
2	(1, 2, 3, 4, 5, 6, 5)	0	две вагончета са номерирани с 5
3	(2, 3, 4, 9, 6, 7, 1)	1	заместваща последователност (5, 8)
3	(10, 4, 3, 11, 12)	0	4 не може да се появи непосредствно пред 3

Замествана последователност

При следващите 3 подзадачи, вие трябва да конструирате замествана последователност, която създава дадена последователност от вагончета. Ако е възможно да се конструира повече от една такава замествана последователност, вие трябва да конструирате коя да е от тях. Трябва да имплементирате функция replacement.

- replacement(n, gondolaSeq, replacementSeq)
 - n е дължината на последователността от вагончета.
 - lacktriangledown gondolaSeq: масив с дължина n; Гарантирано е, че този масив задава последователност от вагончета. gondolaSeq[i] е i-тият елемент от тази последователност за $0 \leq i \leq n-1$.
 - lacktriangle Функцията трябва да върне дължината $m{l}$ на заместваната последователност.
 - replacementSeq: масив с достатъчна дължина за да може да съхрани заместваната последователност. Функцията трябва да постави в i-тия елемент от вашата замествана последователност в replacementSeq[i] за $0 \le i \le l-1$.

Подзадачи 4, 5, 6

подзадача	точки	n	gondolaSeq
4	5	$n \leq 100$	$1 \le \text{gondolaSeq[i]} \le n+1$
5	10	$n \leq 1000$	$1 \le \text{gondolaSeq[i]} \le 5000$
6	20	$n \leq 100000$	$1 \le \text{gondolaSeq[i]} \le 250000$

Примери

Подзадача	gondolaSeq	върната стойност	replacementSeq
4	(3, 1, 4)	1	(2)
4	(5, 1, 2, 3, 4)	0	()
5	(2, 3, 4, 9, 6, 7, 1)	2	(5, 8)

Преброяване на заместваните последователности

В следващите 4 подзадачи вие трябва да преброите възможните замествани последователности, които създават една и съща дадена последователност (която може да е, но може и да не е последователност от вагончета) и да изведете този брой по модул 1 000 000 009. Трябва да имплементирате функцията countReplacement.

- countReplacement(n, inputSeq)
 - п: дължина на дадената входна последователност.
 - inputSeq: масив с дължина n; inputSeq[i] е i-тият елемент от дадената входна последователнист за $0 \le i \le n-1$.
 - Ако дадената последователност е последователност от вагончета, тогава трябва

да бъдат преброени всички замествани последователности, които създават дадената последователност от вагончета (броят може да е много голям) и функцията трябва да върне този брой, взет по модул 1 000 000 009. Ако дадената входна последователност не е последователност от вагончета, функцията трябва да върне 0. Ако дадената входна последователност е последователност от вагончета, но е нямало повредени вагончета, функцията трябва да върне 1.

Подзадачи 7, 8, 9, 10

подзадача	точки	\boldsymbol{n}	inputSeq
7	5	$4 \le n \le 50$	$1 \leq \text{inputSeq[i]} \leq n+3$
8	15	$4 \le n \le 50$	$1 \leq \text{inputSeq[i]} \leq 100$ и поне $n-3$ от началните вагончета $1, \ldots, n$ не се повреждат.
9	15	$n \leq 100000$	$1 \le \text{inputSeq[i]} \le 250000$
10	10	$n \leq 100000$	$1 \le \text{inputSeq[i]} \le 1000000000$

Примери

подзадача	inputSeq	върната стойност	заместваща последователност
7	(1, 2, 7, 6)	2	(3, 4, 5) или (4, 5, 3)
8	(2, 3, 4, 12, 6, 7, 1)	1	(5, 8, 9, 10, 11)
9	(4, 7, 4, 7)	0	inputSeq не е последователност от вагончета
10	(3, 4)	2	(1, 2) или (2, 1)

Бележки за имплементацията

Трябва да изпратите един файл с име gondola.c или gondola.cpp. Този файл трябва да съдържа функциите, описани по-долу. Трябва да включите gondola.h.

```
int valid(int n, int inputSeq[]);
int replacement(int n, int gondolaSeq[], int replacementSeq[]);
int countReplacement(int n, int inputSeq[]);
```

Примерен грейдер

Той чете вход със следния формат::

- ред 1: Т, номер на подзадача (1 ≤ T ≤ 10).
- ред 2: n, дължина на входната последователност.
- ред 3: Ако T е 4, 5 или 6, този ред съдържа inputSeq[0],..., inputSeq[n-1]. В останалите случаи този ред съдържа gondolaSeq[0],..., gondolaSeq[n-1].