

2.500 Desalination and Water Purification Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

History

Solar distillation unit (300 m²) built in Source-Phillip near Port-au-Prince in Haiti.

Water usage

Desalination options

Criteria	Complexity	Appropriate for small-scale	Availability of Energy type	Energy Efficiency
RO	-	++	-	++
EDR	-	-	-	++
MVC	N*	++	-	N
MSF	-		-	-
MEE	-		-	N
HDH	+	++	+	-
Solar still	++	++	+	

Energy options

All values are in \$/m ³	Generator (PPO)	Windmill	Kites	Solar thermal
RO	0.20	0.03	0.03	NA
MVC	3.74	0.53	0.50	NA
HDH	NA	NA	NA	0.96

A cost analysis which estimates the total energy cost (the energy system cost + the fuel cost was carried out).

Desalination cost

	RO with Kite power	Solar HDH	VCD with Kite power
Equipment cost ¹	12,460	273,375	363,000
Energy system cost	5694	182,250	94,900
Total Cost (US\$)	18,154	455,625	457,900
Water cost ² (US\$/m ³)	0.096	2.4	2.412
Cost-to-villagers ³ (US\$/m ³)	0.03	<0.96	0.5
Level of Maintenance	High	Low	Medium
Skill required	High	Low	Medium

¹Assuming membrane replacement every 2 years.

²Assuming 20 years life time.

³Assuming a benefactor pays the initial investment.

Design – RO with Kite power

Polyamide Thin-Film Composite spiral

wound 8" element, 40 bar feed pressure,

34 m² active area, 99% Salt rejection.

Images removed due to copyright restrictions.

Please see

http://www.dow.com/liquidseps/images/element_family.jpg http://www.catpumps.com/select/photos/pump/6020.jpg http://www.naturalhealthland.com/catalog/images/1962.jpg

60 GPM, 100-1000 psi, 500 rpm Frame piston pump.

Pre-filter contains a coconut shell, activated carbon filter to remove excess sediment and chlorine to extend the life of the reverse osmosis membrane.

Kite power

High average wind speed

Image removed due to copyright restrictions.

Please see Fig. 5 in: Canale, Massimo, Lorenzo Fagiano, and Mario Milanese. "Power Kites for Wind Energy Generation." *IEEE Control Systems Magazine* 27 (December 2007): 25-38.

jeppmagic. "Kitegen Stem." July 6, 2009. YouTube. Accessed November 5, 2009.

 $http://www.youtube.com/watch?v=Zl_tqnsN_Tc$

Why Kites?

➤ High altitude wind

➤ More efficient

Realization: Kite power

Haitian Textile factory

Image removed due to copyright restrictions.

Please see Fig. 2 in: Canale, Massimo, Lorenzo Fagiano, and Mario Milanese. "Power Kites for Wind Energy Generation." *IEEE Control Systems Magazine* 27 (December 2007): 25-38.

KiteGen 40kW @ 15 m/s

Main Components:

- ➤ Metal Spool
- ➤ Generator (min. 2kW)
- ➤ Car Battery

Operation:

1 person to operate the system

Design –HDH

Design – Solar FPC

Figure by MIT OpenCourseWare.

Average Insolation ~4-4.9 kWh/m²/day

Courtesy of EERE.

Easy to manufacture using local materials

Conclusions

Optimized water usage

RO with kite power

- + Possible low cost option (min. capital investment)
- Requires training of localites for skilled labor
- Dependence on imports

Solar HDH

- + Highly sustainable option (min. imports)
- Costlier in terms of water cost (US\$/m³) and capital investment

Thank you!