Assignment - 2 Data Visualization and pre-processing

Assignment submission	26 September 2022
Student Name	Prasanth S
Student Roll Number	951919CS068
Maximum Marks	2 Marks

1. Download the Dataset

2. Import required library

import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np sns.set_style('darkgrid') sns.set(font_scale=1.3)

3. Read dataset and do pre-processing

df=pd.read_csv("/content/drive/MyDrive/IBM/Assignment - 2 /Churn_Modelling.csv") df.head()

0		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

Drop the columns that are not required for the neural network. df.drop(["RowNumber","CustomerId","Surname"],axis=1,inplace=True) df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10000 entries, 0 to 9999
    Data columns (total 11 columns):
     # Column
                           Non-Null Count Dtype
                           10000 non-null int64
     0 CreditScore
     1 Geography
                           10000 non-null object
                           10000 non-null object
     3 Age
4 Tenure
                           10000 non-null int64
                           10000 non-null int64
                           10000 non-null float64
     6 NumOfProducts 10000 non-null int64
     7 HasCrCard 10000 non-null int64
8 IsActiveMember 10000 non-null int64
     9 EstimatedSalary 10000 non-null float64
10 Exited 10000 non-null int64
    dtypes: float64(2), int64(7), object(2)
    memory usage: 859.5+ KB
```

4.A. Perform Univariate Analysis

```
plt.figure(figsize=(8,8))
sns.countplot(x='Tenure',data=df)
plt.xlabel('0:Customers with Bank, 1: exited from bank')
plt.ylabel('No.of.Customers')
plt.title("Bank Customers viz")
plt.show()
```


plt.figure(figsize=(8,8))
sns.kdeplot(x=df['Balance'])

4.B. Perform Bi-variate Analysis

plt.scatter(df.Age,df.Balance)

<matplotlib.collections.PathCollection at 0x7fa0d35a7dd0>

df.corr()

		CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	CreditScore	1.000000	0.007888	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
	Gender	0.007888	1.000000	0.022812	0.003739	0.069408	0.003972	-0.008523	0.006724	-0.001369	0.035943
	Age	-0.003965	0.022812	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
	Tenure	0.000842	0.003739	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
	Balance	0.006268	0.069408	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
Νι	umOfProducts	0.012238	0.003972	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
	HasCrCard	-0.005458	-0.008523	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
ls/	ActiveMember	0.025651	0.006724	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
Es	stimatedSalary	-0.001384	-0.001369	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
	Exited	-0.027094	0.035943	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

#Perform Bivariate Analysis import statsmodels.api as sm

#define response variable y = df['CreditScore']

#define explanatory variable x = df[['EstimatedSalary']]

#add constant to predictor variables x = sm.add_constant(x)

#fit linear regression model model = sm.OLS(y, x).fit()

#view model summary print(model.summary())

H	Dep. Variable:	Cı	reditScore	R-squared:			0.000		
	Model:		OLS	Adj. R-squa	red:	-0.000			
	Method:	Leas	st Squares	F-statistic	:	0.01916			
	Date:			Prob (F-statistic):		0.890			
	Time:		05:06:19	Log-Likelihood:		-59900.			
	No. Observations	:	10000	AIC:		1.19	8e+05		
	Df Residuals:		9998 1	BIC:		1.19	8e+05		
	Df Model:								
	Covariance Type:		nonrobust						
		coef	std err	t	P> t	[0.025	0.975]		
	const			335.407			654.565		
	EstimatedSalary	-2.3266-66	1.686-62			-3.53e-05			
	Omnibus:		2.014						
	Prob(Omnibus):		0.000	Durbin-Wats Jarque-Bera					
	Skew:		-0.072				0e-19		
	Kurtosis:		2,574				2e+05		
			2.3/4	cond. No.					

4.C. Perform Multi-variate Analysis

#Perform Multivariate Analysis plt.figure(figsize=(4,4))

sns.pairplot(data=df[["Balance","CreditScore","EstimatedSalary","NumOfProducts","Tenure",

"Exited"]],hue="Exited")

5.Perform descriptive statistics on the datasets:

df=pd.DataFrame(df)
print(df.sum())


```
#Perform Descriptive Statistics
print("----Sum Value-----")
print(df.sum(1))
print("------")
print("-----")
print(df.prod())
print("------")
```

```
{x}
         0
94567.63
205492.92
                Length: 10000, dtype: float64
                ----Product Value--
CreditScore
                Age
Tenure
Balance
NumOfProducts
HasCrCard
IsActiveMember
                EstimatedSalary
Exited
dtype: float64
              /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a futur This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.7/dist-packages/numpy/core/_methods.py:52: RuntimeWarning: overflow encountered in reduce return umr_prod(a, axis, dtype, out, keepdims, initial, where) /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a futur
==:
   #Perform Descriptive Statistics
   print("-----")
   print(df.mean())
   print("----")
   print("-----")
   print(df.median())
   print("-----")
   print("-----")
   print(df.mode())
   print("-----")
                     ditScore 650.528800
                                                                                                                                                                                                                       ↑ ↓ © □ ‡ 🖟 🖥 🗄
         O CreditScore
         Age
Tenure
               rge 38.921800
Tenure 5.012800
Balance 76485.889288
NumOFProducts 1.530200
HasCrCard 0.705500
IsActiveNember 0.515100
EstimatedSalary 100090.239881
{x}
dtype: float64
              Age 37.000
Tenure 5.000
Balance 97198.540
NumOfProducts 1.000
HasCrCard 1.000
EstimatedSalary 100193.915
Evited a page
                   /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a futur This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a futur
...
```

6.Handle the missing values:

df.isnull()#Checking values are null

#Handling with missing Values

df.notnull()#Checking values are not null

7.Find outlier and replace the outlier:

sns.boxplot(df['Balance'])

print(np.where(df['Balance']>100000))

```
Q (array([ 2, 4, 5, ..., 9987, 9993, 9999]),)
```

#Find outliers & replace the outliers from scipy import stats import numpy as np

z = np.abs(stats.zscore(df["EstimatedSalary"]))
print(z)

```
0 0.021886
1 0.216534
2 0.240687
3 0.168918
4 0.365276
...
9995 0.66419
9996 0.027988
9997 1.008643
9998 0.125231
9999 1.076370
Name: Estimatedsalary, Length: 10000, dtype: float64
```

8.Check for categorical columns & performs encoding:

from sklearn.preprocessing import LabelEncoder df['Gender'].unique()

```
array(['Female', 'Male'], dtype=object)
```

df['Gender'].value_counts()

```
Male 5457
Female 4543
Name: Gender, dtype: int64
```

#Check for categorical columns & performs encoding encoding=LabelEncoder() df["Gender"]=encoding.fit_transform(df.iloc[:,1].values) df

```
CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
  619 France 0 42 2 0.00 1 1 1 1 101348.88
       608
                  2 41
                          1 83807.86
2 502 France 0 42 8 159660.80 3 1 0 113931.57
       699
            France
                  0 39
                          1 0.00
  850 Spain 2 43 2 125510.82 1 1 1
9995 771 France 0 39 5 0.00
9996
       516
           France
                   0 35
                         10 57369.61
                                                              101699.77
      709 France 0 36 7 0.00
9997
                                                             42085.58
       772 Germany
                  1 42
   772 Germany 1 42 3 75075.31
792 France 0 28 4 130142.79
                                                              38190.78 0
```

9.Split the data into Dependent & Independent Variables:

```
print("------")

X=df.iloc[:,1:4]

print(X)

print("------")

print("------")

Y=df.iloc[:,4]

print(Y)

print("------")

**Perfective twist besselves the second s
```

10.Scale the independent variables:

```
from sklearn.preprocessing import StandardScaler
object= StandardScaler()
# standardization
scale = object.fit_transform(df)
print(scale)
```

```
    [-0.32622142 0.29351742 -1.04175968 ... 0.97024255 0.02188649
    1.97716468]
    [-0.44003995 0.19816383 -1.38753759 ... 0.97024255 0.21653375
    -0.50577476]
    [-1.53679418 0.29351742 1.03290776 ... -1.03067011 0.2406869
    1.97716468]
    [ 0.60498839 -0.27860412 0.68712986 ... 0.97024255 -1.00864308
    1.97716468]
    [ 1.25683526 0.29351742 -0.69598177 ... -1.03067011 -0.12523071
    1.97716468]
    [ 1.46377078 -1.04143285 -0.35020386 ... -1.03067011 -1.07636976
    -0.50577476]]
```

11. Split the data into training & testing:

y_train ≥ 2558 727 7642 811 8912 623 3319 430 6852 600 ... 456 733 6617 487 709 686 8366 637 1146 614 Name: Creditscore, Length: 9996, dtype: int64

```
y_test

| 1603 | 576 |
| 8713 | 786 |
| 4561 | 562 |
| 6600 | 505 |
| Name: CreditScore, dtype: int64
```