

Licenciatura em Engenharia Informática
Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

Capítulo que exemplifica algumas características inerentes aos sistemas de transmissão:

- possibilidade dos sistemas de transmissão não serem "perfeitos", podendo provocar alguma distorção nos sinais que são transmitidos
- limites relativos à banda de transmissão suportada pelo sistema de transmissão
- possibilidade de atenuação da potência dos sinais transmitidos
- ...

1

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

Capítulo que aborda:

- Sistemas de Transmissão
 - ... aborda alguns modelos/funções ilustrativas do comportamento de determinados sistemas de transmissão
- Largura de Banda de Transmissão
 - ... definição teórica de largura de banda de transmissão ...
- Perdas e Ganhos de Potências
 - ... calcular a atenuação sofrida pelos sinais durante a transmissão (ou a amplificação introduzida)
- Filtros
 - ... diferentes tipos de filtros e seus objectivos

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

- Transmissão: "processo pelo qual uma forma de onda transita de uma fonte para um determinado destino, desejavelmente sem sofrer alteração de forma"
- Filtragem: "operação que, propositadamente, altera o espectro do sinal e, consequentemente, a sua forma"
 - Modelados de forma semelhante por funções entrada saída sinal que se obtém à saída designa-se por resposta do sistema ao sinal de entrada [função de transferência]
 - No contexto das comunicações elétricas, o capítulo aborda alguns modelos matemáticos de funções de transferência

3

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

Sistemas LIT (Lineares e Invariantes no Tempo)

 Nota: ver definição/características completas destes sistemas no Cap. III (.... <u>lineares</u> & <u>invariantes</u>)

características do sistema permanecem fixas ao longo do tempo

- Sistemas com características próprias possuindo uma função de transferência, H(f), em que:
 - a. |H(f)| representa a <u>característica de amplitude</u> do sistema
 - b. |H(f)|² representa <u>caraterística de potência</u> do sistema

VI. ANÁLISE DE SISTEMAS

Sistemas LIT (Lineares e Invariantes no Tempo)

- As exponenciais complexas, ou seja, os sinais oscilatórios no tempo passam pelo sistema sem alteração de forma a menos de um factor multiplicativo constante...
- ou seja: "qualquer sinal vê cada uma das suas componentes espectrais passar no sistema sem alteração de forma mas com alteração de amplitude consoante a frequência"

5

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

FUNÇÃO DE TRANSFERÊNCIA:

Resposta em Frequência do sistema, H(f)

$$Y(f) = H(f) \cdot X(f)$$
$$|Y(f)| = |H(f)| \cdot |X(f)|$$

VI. ANÁLISE DE SISTEMAS

FUNÇÃO DE TRANSFERÊNCIA:

Sinal de Potência (Sinal Periódico)

$$|C_y(nf_0)|^2 = |H(nf_0)|^2 \cdot |C_x(nf_0)|^2$$

$$S_y = \sum_{n=-\infty}^{\infty} |H(nf_0)|^2 \cdot |C_x(nf_0)|^2$$

Sinal de Energia (Sinal Não Periódico)

$$|Y(f)|^2 = |H(f)|^2 \cdot |X(f)|^2$$

 $E_y = \int_{-\infty}^{\infty} |H(f)|^2 |X(f)|^2$

7

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

DEFINIÇÕES:

Banda de Transmissão de um Sistema:

É o intervalo de frequências positivas no qual o ganho do sistema é não inferior a $\frac{1}{2}$ do ganho máximo.

Largura de Banda de um Sistema:

 \acute{E} a amplitude da banda de transmissão desse sistema.

Frequências de Corte de um Sistema:

São as frequências positivas limites da banda de transmissão do sistema.

VI. ANÁLISE DE SISTEMAS

SISTEMAS DE PRIMEIRA ORDEM

- Sistemas que facilmente podem ser modelados por circuitos eléctricos RC
- Qual a equação que rege estes circuitos?
- Função de Transferência do sistema de primeira ordem?

$$H(f) = \frac{1}{1 + \jmath 2\pi fRC}$$

9

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

SISTEMA DE PRIMEIRA ORDEM:

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

SISTEMA DE PRIMEIRA ORDEM:

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

PERDAS DE TRANSMISSÃO E DECIBÉIS

- Os sistemas de transmissão, além de <u>distorcer</u> o sinal, também <u>reduzem a potência</u> do sinal introduzindo uma <u>perda/atenuação na</u> transmissão
- Estudar os conceitos de ganho e perda de transmissão, e decibel como medida de razão de potências
 - por forma a relacionar as potências à entrada e à saída de um sistema de transmissão

VI. ANÁLISE DE SISTEMAS

GANHO DE POTÊNCIA

 Consideremos um sistema que introduz uma ganho de potência por forma que a potência média do sinal à saída seja proporcional à potência média de entrada

Ganho de potência é definido por:

$$g = \frac{P_s}{P_e}$$

13

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

GANHO DE POTÊNCIA

- Sistemas amplificadores possuem normalmente valores de g muito elevados, para melhor lidar com esses valores é usual a utilização de uma escala logarítmica
- Ganho em decibéis (dB)

$$g_{dB} = 10 \log_{10} g$$

 Dado um valor de ganho em dB o valor linear correspondente é:

$$g = 10^{\frac{g_{dB}}{10}}$$

VI. ANÁLISE DE SISTEMAS

POTÊNCIA DE SINAIS EXPRESSA EM dB

- A potência de um sinal pode também ser expressa em dB se se considerar relativa a uma potência fixa
- A potência de referência em telecomunicações para se expressar potências em dB é o miliwatt, ao que corresponde uma unidade designada por dBm (mas podem-se usar outras unidades)

$$P_{dBm} = 10 \log_{10} \frac{P}{1 \text{ mW}}$$

15

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

POTÊNCIA DE SINAIS E GANHOS EM dB

- Como relacionar a potência do sinal em dBm e o ganho (ou atenuação) em dB?
- Formula mais simples de relacionamento dado que envolve unicamente somas (ou subtrações)

$$P_{s_{dBm}} = g_{dB} + P_{e_{dBm}}$$

VI. ANÁLISE DE SISTEMAS

PERDA OU ATENUAÇÃO DE SINAIS

- Todo o meio de transmissão passivo envolve uma perda de potência, logo P_s < P_e
- Neste caso é preferível trabalhar em termos de atenuação de transmissão (L)

$$L = \frac{1}{g} = \frac{P_e}{P_s}$$

$$L_{dB} = -g_{dB} = 10 \log_{10} \frac{P_e}{P_s}$$

17

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

PERDA OU ATENUAÇÃO DE SINAIS

 Da mesma forma é possível relacionar as potências dos sinais e as atenuações por:

$$P_{s_{dBm}} = P_{e_{dBm}} - L_{dB}$$

 No caso de linhas de transmissão, cabos coaxiais, fibras, etc. é usual apresentar um coeficiente de atenuação (α) em dB por unidade de comprimento

$$L_{dB} = \alpha d$$

VI. ANÁLISE DE SISTEMAS

PERDA OU ATENUAÇÃO DE SINAIS

 Percursos com grandes atenuações exigem amplificação, processo que é realizado através da introdução de amplificadores repetidores ao longo do percurso

$$P_s = (g_1 g_2 g_3 g_4) P_e = \frac{g_2 g_4}{L_1 L_3} P_e$$

$$P_{s_{dBm}} \; = \; (g_{2_{dB}} + g_{4_{dB}}) \; - \; (L_{1_{dB}} + L_{3_{dB}}) \; + \; P_{e_{dBm}}$$

19

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

FILTROS

- Podem ser usados para <u>separar o sinal portador de</u> <u>informação de contaminações indesejáveis</u> (interferências, ruídos, contaminações...)
- <u>Modelados de forma semelhante</u> aos sistemas de transmissão (diferem é no objectivo)
- Filtros ideais caracterizados por fornecerem transmissão isenta de distorção em uma ou mais bandas de frequência

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

- Largura de Banda deste filtro <u>passa-banda ideal</u> = f_s f_i
- Para um filtro <u>passa-baixo ideal</u> temos f_i=0
- Para um filtro <u>passa-alto ideal</u> temos $f_i > 0$ e $f_s = \infty$

21

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

FILTROS REAIS

- Os filtros ideais <u>são irrealizáveis</u>, não é possível obter transições abruptas
- Exemplo de um filtro passa-banda típico

Banda de Transmissão; Largura de Banda = fs - fi (também designada largura de banda de meia potência)

VI. ANÁLISE DE SISTEMAS

FILTROS REAIS

- Bandas de Rejeição: onde |H(f)|² está consistentemente abaixo de 10% do seu valor máximo
- Bandas de Transição: "... o filtro (ou o sistema) nem deixa passar nem rejeita as correspondentes componentes de frequência..."

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

FILTROS (OU SISTEMAS) DE ORDEM SUPERIOR

- Filtros (e sistemas de transmissão) podem ser de ordem superior aos sistemas de primeira ordem anteriormente referidos
- Uma classe desses filtros é denominada por filtros de Butterworth de ordem n
- Quanto maior for a ordem do filtro mais "perfeito" é o filtro

23

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

FILTROS DE BUTTERWORTH Característica de amplitude de um filtro passa-baixo butterworth com K=1. Normalnente se K<=1 o filtro diz-se atenuador se K>1 o filtro diz-se amplificador $|H(f)| = \frac{1}{\sqrt{1+\left(\frac{f}{B_T}\right)^{2n}}}$ poderia aparecer f - valor; nesse caso seria passa-banda

 Com n=1 - mesma característica de um sistema de primeira ordem

25

* 〇

H(f) =

 $H_1(f) \cdot H_2(f)$

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

EXEMPLOS DE COMPOSIÇÃO DE FILTROS

$$H(f) = H_1(f) + H_2(f)$$

$$X(f)$$

$$H_1(f) = H_1(f) \times (f)$$

$$H_2(f) \times (f) \times (f)$$

$$H_2(f) \times (f) \times (f)$$

$$X(f)$$
 $H_1(f)$ $X(f)$ $H_2(f)$ $H_2(f$