We consider the Brun spectral sequence

$$E^2(BP\langle 2\rangle, BP\langle 0\rangle, S) = \text{THH}_*(H\mathbb{Z}_p) \otimes_{\mathbb{Z}_p} E_{\mathbb{Z}_p}(\sigma v_1, \sigma v_2) \Longrightarrow \text{THH}_*(BP\langle 2\rangle; H\mathbb{Z}_p).$$

First note that $E_{\mathbb{Z}_p}(\sigma v_1, \sigma v_2)$ consists of permanent cycles because all classes with positive filtration degree are p-torsion. Also note that the only possibly nonzero differentials are d^{2p} and d^{2p^2} .

Lemma 0.1. We have:

1. The class σv_1 maps under the edge homomorphism

$$E_{0,2p-1}^2 = E_{0,2p-1}^\infty \cong (F_0)_{2p-1} \subseteq \text{THH}_{2p-1}(BP\langle 2 \rangle; H\mathbb{Z}_p)$$

to $p\alpha\lambda_1$ for a unit $\alpha \in \mathbb{Z}_p$. The class γ_p is a permanent cycle. Up to a unit it is the image of λ_1 under $(F_{2p-1})_{2p-1} \to (F_{2p-1}/F_0)_{2p-1} = E_{2p-1,0}^{\infty}$.

2. The class σv_2 maps under the edge homomorphism

$$E_{0,2p^2-1}^2 = E_{0,2p^2-1}^\infty \cong (F_0)_{2p^2-1} \subseteq \text{THH}_{2p^2-1}(BP\langle 2 \rangle; H\mathbb{Z}_p)$$

to $p\beta\lambda_2$ for a unit $\beta \in \mathbb{Z}_p$. The class $p\gamma_{p^2}$ is a permanent cycle. Up to a unit it is the image of λ_2 under $(F_{2p^2-1})_{2p^2-1} \to (F_{2p^2-1}/F_0)_{2p^2-1} = E_{2p^2-1,0}^{\infty}$.

3. We have a differential

$$d^{2p}(\gamma_{p(p+1)}) = pn\gamma_{p^2}\sigma v_1$$

for an $n \in \mathbb{Z}$ with $p \nmid n$.

Proof. Item 1 is clear. For item 2 note that the image of γ_{p^2} in the Brun spectral sequence

$$E_{*,*}^*(BP\langle 2\rangle, BP\langle 0\rangle, V(0))$$

is $\lambda_1 \mu_1^{p-1}$ which has a nontrivial d^{2p} differential. Thus,

$$d^{2p}: \mathbb{Z}/p^2\{\gamma_{p^2}\} \to \mathbb{Z}/p\{\sigma v_1 \gamma_{p(p-1)}\}$$

is nontrivial and we get $E_{2p^2-1,0}^{\infty}=\mathbb{Z}/p\{p\gamma_{p^2}\}$. This shows claim 2. For item 3 note that in total degree $2p^2+2p-2$ the E^2 -page is given by

$$\mathbb{Z}_p\{\sigma v_1 \sigma v_2\} \oplus \mathbb{Z}/p\{\sigma v_2 \gamma_p\} \oplus \mathbb{Z}/p^2\{\sigma v_1 \gamma_{p^2}\}.$$

By item 1 and 2 the edge homomorphism

$$\mathbb{Z}_p\{\sigma v_1 \sigma v_2\} = E_{0,2p^2+2p-2}^{\infty} \to \mathrm{THH}_{2p^2+2p-2}(BP\langle 2\rangle; H\mathbb{Z}_p) = \mathbb{Z}_p\{\lambda_1 \lambda_2\}$$

maps $\sigma v_1 \sigma v_2$ to $p^2 \alpha \beta \lambda_1 \lambda_2$. This implies that

$$(F_{2p^2-1}/F_0)_{2p^2+2p-2} = \mathbb{Z}/p^2.$$

It also implies that the element $p\lambda_1\lambda_2$ does not lie in F_0 . Since λ_1 lies in F_{2p-1} and $p\lambda_2$ lies in F_0 by item 2, we have that $p\lambda_1\lambda_2$ lies in F_{2p-1} . Thus, $(F_{2p-1}/F_0)_{2p^2+2p-2}$ is not zero. We get that $\mathbb{Z}/p\{\sigma v_2\gamma_p\}$ consists of permanent cycles and that we have a nontrivial differential

$$d^{2p}: \mathbb{Z}/p\{\gamma_{p(p+1)}\} \to \mathbb{Z}/p^2\{\sigma v_1 \gamma_{p^2}\}.$$

Lemma 0.2. For k > 1 we have $d^{2p}(\gamma_{pk}) \neq 0$. We get an additive isomorphism

$$E_{*,*}^{2p+1} = \mathbb{Z}_p\{1\} \oplus \mathbb{Z}/p\{\gamma_p\} \oplus \bigoplus_{p|k} \mathbb{Z}/p^{v_p(k)}\{p\gamma_{pk}\}$$

$$\oplus \mathbb{Z}_p\{\sigma v_1\} \oplus \bigoplus_{p|k} \mathbb{Z}/p^{v_p(k)}\{\sigma v_1\gamma_{pk}\}$$

$$\oplus \mathbb{Z}_p\{\sigma v_2\} \oplus \mathbb{Z}/p\{\sigma v_2\gamma_p\} \oplus \bigoplus_{p|k} \mathbb{Z}/p^{v_p(k)}\{p\sigma v_2\gamma_{pk}\}$$

$$\oplus \mathbb{Z}_p\{\sigma v_1\sigma v_2\} \oplus \bigoplus_{p|k} \mathbb{Z}/p^{v_p(k)}\{\sigma v_1\sigma v_2\gamma_{pk}\}.$$

Proof. The image of γ_{pk} in the Brun spectral sequence

$$E_{**}^*(BP\langle 2\rangle, BP\langle 0\rangle, V(0))$$

is $\lambda_1 \mu_1^{k-1}$ which has d^{2p} -differential

$$d^{2p}(\lambda_1 \mu_1^{k-1}) = (k-1)\lambda_1 \sigma v_1 \mu_1^{k-2}.$$

If $p \nmid k-1$ (so in particular if $p \mid k$) then this is nonzero and we get that

$$d^{2p}: \mathbb{Z}/p^{1+v_p(k)}\{\gamma_{pk}\} \to \mathbb{Z}/p\{\sigma v_1 \gamma_{p(k-1)}\}$$

is nonzero. For $p \mid k-1$ we proceed by induction. The first case, $\gamma_{p(p+1)}$, has been treated in Lemma 0.1. Now suppose that k=pn+1 for an n>1 and that we have proven the statement for k'=p(n-1)+1. Since $THH_{2pk-1}(BP\langle 2\rangle, H\mathbb{Z}_p)$ is zero, $\mathbb{Z}/p\{\gamma_{pk}\}$ cannot survive to the E^{∞} -page. By induction hypothesis we know that the differential

$$d^{2p}: \mathbb{Z}/p\{\sigma v_2 \gamma_{pk'}\} \to \mathbb{Z}/p^{1+v_p(k'-1)}\{\sigma v_1 \sigma v_2 \gamma_{p(k'-1)}\}$$

is nontrivial. This implies that the target in

$$d^{2p^2}: E^{2p^2}_{2pk-1,0} \to E^{2p^2}_{2pk'-1,2p^2-1}$$

is trivial. Thus, we have to have a nontrivial differential

$$d^{2p}: \mathbb{Z}/p\{\gamma_{pk}\} \to \mathbb{Z}/p^{1+v_p(k-1)}\{\sigma v_1 \gamma_{p(k-1)}\}.$$

Lemma 0.3. For $p \mid k$ we have differentials

$$d^{2p^2}: \mathbb{Z}/p^{v_p(k+p)} \{ p \gamma_{p(k+p)} \} \xrightarrow{p^{v_p(k)-1} n_k} \mathbb{Z}/p^{v_p(k)} \{ p \sigma v_2 \gamma_{pk} \}$$

and

$$d^{2p^2}: \mathbb{Z}/p^{v_p(k+p)} \{ \sigma v_1 \gamma_{p(k+p)} \} \xrightarrow{p^{v_p(k)-1} m_k} \mathbb{Z}/p^{v_p(k)} \{ \sigma v_1 \sigma v_2 \gamma_{pk} \}$$

for certain $n_k, m_k \in \mathbb{Z}$ with $p \mid n_k, m_k$. Thus, we have

$$E_{*,*}^{\infty} = \mathbb{Z}_p\{1\} \oplus \mathbb{Z}/p\{\gamma_p\} \oplus \mathbb{Z}/p\{p\gamma_{p^2}\} \oplus \bigoplus_{i>0} \mathbb{Z}/p^{v_p(i)+1}\{p^2\gamma_{p^3i}\}$$

$$\oplus \mathbb{Z}_p\{\sigma v_1\} \oplus \mathbb{Z}/p\{\sigma v_1 \gamma_{p^2}\} \oplus \bigoplus_{i>0} \mathbb{Z}/p^{v_p(i)+1}\{p\sigma v_1 \gamma_{p^3i}\}$$

$$\oplus \mathbb{Z}_p\{\sigma v_2\} \oplus \mathbb{Z}/p\{\sigma v_2 \gamma_p\} \oplus \bigoplus_{i>0} \mathbb{Z}/p^{v_p(i)+1}\{p\sigma v_2 \gamma_{p^3 i}\}$$

$$\oplus \quad \mathbb{Z}_p\{\sigma v_1 \sigma v_2\} \oplus \bigoplus_{i>0} \mathbb{Z}/p^{v_p(i)+1}\{\sigma v_1 \sigma v_2 \gamma_{p^3 i}\}.$$

Proof. For $k \geq 1$ with $p \mid k$ we know that

$$\operatorname{THH}_{2p(k+p)-1}(BP\langle 2\rangle; H\mathbb{Z}_p) = \mathbb{Z}/p^{v_p(k+p)-1}$$

$$\operatorname{THH}_{2p^2+2p+2pk-3}(BP\langle 2\rangle; H\mathbb{Z}_p) = \mathbb{Z}/p^{v_p(k)-1}.$$

This implies the statement about the differentials. The statement about the E^{∞} -page now follows easily.