Key Ideas

- Significance tests are used to determine whether an observed effect is within the range of chance variation for a null hypothesis model.
- The p-value is the probability that results as extreme as the observed results might occur, given a null hypothesis model.
- The alpha value is the threshold of "unusualness" in a null hypothesis chance model.
- Significance testing has been much more relevant for formal reporting of research than for data science (but has been fading recently, even for the former).

Further Reading

- Stephen Stigler, "Fisher and the 5% Level," *Chance* 21, no. 4 (2008): 12. This article is a short commentary on Ronald Fisher's 1925 book *Statistical Methods for Research Workers* (Oliver & Boyd), and on Fisher's emphasis on the 5% level of significance.
- See also "Hypothesis Tests" on page 93 and the further reading mentioned there.

t-Tests

There are numerous types of significance tests, depending on whether the data comprises count data or measured data, how many samples there are, and what's being measured. A very common one is the *t-test*, named after Student's t-distribution, originally developed by W. S. Gosset to approximate the distribution of a single sample mean (see "Student's t-Distribution" on page 75).

Key Terms for t-Tests

Test statistic

A metric for the difference or effect of interest.

t-statistic

A standardized version of common test statistics such as means.

t-distribution

A reference distribution (in this case derived from the null hypothesis), to which the observed t-statistic can be compared.

All significance tests require that you specify a test statistic to measure the effect you are interested in and help you determine whether that observed effect lies within the range of normal chance variation. In a resampling test (see the discussion of permutation in "Permutation Test" on page 97), the scale of the data does not matter. You create the reference (null hypothesis) distribution from the data itself and use the test statistic as is.

In the 1920s and 1930s, when statistical hypothesis testing was being developed, it was not feasible to randomly shuffle data thousands of times to do a resampling test. Statisticians found that a good approximation to the permutation (shuffled) distribution was the t-test, based on Gosset's t-distribution. It is used for the very common two-sample comparison—A/B test—in which the data is numeric. But in order for the t-distribution to be used without regard to scale, a standardized form of the test statistic must be used.

A classic statistics text would at this stage show various formulas that incorporate Gosset's distribution and demonstrate how to standardize your data to compare it to the standard t-distribution. These formulas are not shown here because all statistical software, as well as R and Python, includes commands that embody the formula. In R, the function is t.test:

```
> t.test(Time ~ Page, data=session_times, alternative='less')
        Welch Two Sample t-test
data: Time by Page
t = -1.0983, df = 27.693, p-value = 0.1408
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
     -Inf 19.59674
sample estimates:
mean in group Page A mean in group Page B
           126.3333
```

The function scipy.stats.ttest_ind can be used in *Python*:

```
res = stats.ttest_ind(session_times[session_times.Page == 'Page A'].Time,
                      session times[session times.Page == 'Page B'].Time,
                      equal_var=False)
print(f'p-value for single sided test: {res.pvalue / 2:.4f}')
```

The alternative hypothesis is that the session time mean for page A is less than that for page B. The p-value of 0.1408 is fairly close to the permutation test p-values of 0.121 and 0.126 (see "Example: Web Stickiness" on page 98).

In a resampling mode, we structure the solution to reflect the observed data and the hypothesis to be tested, not worrying about whether the data is numeric or binary, whether or not sample sizes are balanced, sample variances, or a variety of other factors. In the formula world, many variations present themselves, and they can be

bewildering. Statisticians need to navigate that world and learn its map, but data scientists do not—they are typically not in the business of sweating the details of hypothesis tests and confidence intervals the way a researcher preparing a paper for presentation might.

Key Ideas

- Before the advent of computers, resampling tests were not practical, and statisticians used standard reference distributions.
- A test statistic could then be standardized and compared to the reference distribution.
- One such widely used standardized statistic is the t-statistic.

Further Reading

- Any introductory statistics text will have illustrations of the t-statistic and its uses; two good ones are *Statistics*, 4th ed., by David Freedman, Robert Pisani, and Roger Purves (W. W. Norton, 2007), and *The Basic Practice of Statistics*, 8th ed., by David S. Moore, William I. Notz, and Michael A. Fligner (W. H. Freeman, 2017).
- For a treatment of both the t-test and resampling procedures in parallel, see *Introductory Statistics and Analytics: A Resampling Perspective* by Peter Bruce (Wiley, 2014) or *Statistics: Unlocking the Power of Data*, 2nd ed., by Robin Lock and four other Lock family members (Wiley, 2016).

Multiple Testing

As we've mentioned previously, there is a saying in statistics: "Torture the data long enough, and it will confess." This means that if you look at the data through enough different perspectives and ask enough questions, you almost invariably will find a statistically significant effect.

For example, if you have 20 predictor variables and one outcome variable, all *randomly* generated, the odds are pretty good that at least one predictor will (falsely) turn out to be statistically significant if you do a series of 20 significance tests at the alpha = 0.05 level. As previously discussed, this is called a *Type 1 error*. You can calculate this probability by first finding the probability that all will *correctly* test nonsignificant at the 0.05 level. The probability that *one* will correctly test nonsignificant is 0.95, so the probability that all 20 will correctly test nonsignificant is $0.95 \times 0.95 \times 0.95 \dots$, or