Before, During, and After Chaos

 $\bullet \bullet \bullet$

Creating foresight through a cyclic approach

Before, During, and After Chaos

 $\bullet \bullet \bullet$

Creating foresight through a cyclic approach

FACULTY OF ENGINEERING, LTH

MSc Programme | Learning Laboratories | FAQ | Lund | Staff | Videos

O'REILLY"

Chaos Engineering

Building Confidence in System Behavior through Experiments

AWS re:Invent 2017 - Nora Jones Describes Why We Need More Chaos - Chaos Engineering, That Is

Chaos Engineering is the **discipline of experimenting** on a system in order to **build confidence** in the system's capability to **withstand turbulent conditions** in production.

Setting Common Ground

The goal of Chaos Engineering isn't to use or build tooling to stop issues or find vulnerabilities for us.

The goal of Chaos Engineering isn't to use or build tooling to stop issues or find vulnerabilities for us.

The goal is to build a culture of resilience to the unexpected. If tools can **help** with this, excellent...but don't forget the main goal of chaos **as** you're building these tools.

"Resilience is not about reducing errors. It's about enhancing the positive capabilities of people and organizations that allow them to adapt effectively and safely under pressure" - Dekker, Woods, Cook

Chaos Engineering is one means to help us enhance.

@nora_js

The Before

Before the experiment

"All [mental] models are wrong, but some are useful"

- George Box

Story time

Fig. 6. ChAP experiment injecting failure into bookmarks from API

Who was running these experiments?

Who was running these experiments? Mostly, just the chaos team.

So, what did we do?

We attempted to solve in a very common Software Engineer way...

We attempted to solve in a very common Software Engineer way...

Any guesses on what we did?

We automated it!

A story on automating experiments

We had to collect information about services from a ton of different sources in order to do this:

- Timeouts
- Retries
- Fallbacks
- % of traffic it served

Source: Automating Chaos Experiments in Production, ICSE Report, 2019

@nora_js

The most insightful part of doing the Chaos Engineering experiment is not the experiment itself, but the process of designing it.

How do we design a meaningful experiment?

Pick a facilitator.

What do we want to experiment on?

Involve <u>all</u> people participating in the experiment preparation.

The Apollo 1 Launch Rehearsal Test

@nora_js

Apollo 1 Launch Rehearsal Test

Not all of the necessary parties were involved in the design of the experiment (like a rescue team or medical assistance team).

Novices vs. Experts

"The new employee could see the times when the system **broke down**, but not the times when it worked."

- Seeing the Invisible, Klein and Hoffman

Start looking at your incident data and make some observations.

If your incident data resembles the following:

- MTTR
- MTTD
- Date/Time
- Pager ID
- Severity
- Root Cause

•••••

You're going to want to spend some time gathering **more** meaningful data that helps you understand where gaps are.

You can derive more meaningful experiments with **this** kind of data:

- Which systems **haven't** failed in awhile?
- Which systems had failures that took us by surprise?
- Which incidents **involved "un-owned" systems** or ones that needed an "expert" to step in and resolve?
- Which incidents involved people that hadn't worked together much?
- What did recent "near misses" look like?
- Which incidents involved difficulties in figuring out what was even going on?

How teams decide what to experiment on, is just as revealing as the experiment itself.

Discuss Scope

Once you've chosen an experiment:

- **How** do you define a "normal" or "good" operation?
- **How** are we establishing the *scope* (*where we are injecting the failure*) of the experiment

Discuss Scope

- What do we expect to happen with this failure? (be explicit)
 - What do we expect from individual components?
 - What do we expect from the system as a whole?

Discuss Scope

- How do you know if the system is in a bad state?
 - Which metrics are most important for us to measure during the experiment?
 - "Observability is **feedback that provides insight in to a process** and refers to the work needed to extract meaning from available data." - Woods & Hollnagel, Joint Cognitive Systems
 - With this in mind, how are we **observing** the system?

Discuss Scope

• **How** are we limiting the blast radius?

Discuss Scope

- What is the perceived business value of the experiment (to the service team)?
 - What is the perceived value to the rest of the organization? (*Note: these might be different, and that's ok*)

Hypothesize

The During

I tell this story a lot, but the first time I ever did "chaos engineering", the tool I wrote took down all of QA...lesson learned. Creating the chaos is the easy part. Minimizing the blast radius, implementing safety, and understanding when things are not going well is difficult.

Sonia Gupta @soniagupta504

We don't talk about failure much in tech. So many rockstar ninja geniuses, and so much success. It's time for a change.

I'll start:...

Source: Automating Chaos Experiments in Production, ICSE Report, 2019

Roles

- **Designer** (the person leading the discussion)
- **Facilitator** (the person keeping the group on track)
- **Commander** (the person executing the commands)
- **Scribe** (takes notes in a communication tool (such as Slack or GDocs) on what is occurring in the room)
- **Observer** (looks at and shares relevant graphs with the rest of the group)
- **Correspondent** (keeps an eye on #alerts-type-channel and makes sure the current on-call is aware of the experiment occurring and what the expected impact is)

Steady State

"Start by defining steady state as some measurable output of a system that indicates normal behavior."

- principlesofchaos.org

Don't be lenient about the definition of the 'steady state'.

Apollo 1 Launch Rehearsal on: Steady State

"The morning of the test, the crew suited up and detected a foul odor in the breathing oxygen, which took about an hour to fix. Then the communications system acted up. Shouting through the noise, Grissom vented: "How are we going to get to the moon if we can't talk between two or three buildings?"

- Elizabeth Howell @HowellSpace

The After

"Resilience is the story of the outage that never happened"

- John Allspaw

If "resilience is the story of the outage that never happened"...

If "resilience is the story of the outage that never happened"...

what story are you telling and who is there to hear it?

Asking better questions will lead to better stories.

Forget templates, ask questions instead

- What did you experiment on?
- **Why** did you experiment on it?
- **What** were the reactions?
- What mental models got recalibrated?
- What was surprising?
- What was new?

Forget templates, ask questions instead

- **Who** was present?
- How did we assess ourselves?
- What are the relationships between the people that are present?
- **When** was the last time they worked together in an incident?
- **Did** the system gracefully degrade or fully collapse at any point?
- What were the necessary adaptations?

Forget templates, ask questions instead

• How long did it take to find the right graphs?

Looking at what went right in a chaos experiment, helps us understand what went wrong.

"The pursuit of success"... "what did we learn we are really good at" - Sidney Dekker

We can leverage Chaos Engineering to measure sources of resilience, and create feedback loops that enhance the organization's ability to:

- 1. Monitor and revise mental models
- 2. Target safety investments
- 3. Build expertise

Chaos Engineering reports can be used as a cultural artifact. You can give these to new employees as a way to understand how people work together under pressure and when the system breaks down.

This is not learning:

Key Takeaways: Creating Foresight

- You can't shortcut some of the work involved here
- Safety shouldn't just fall on ops or reliability-focused teams
- Don't give new employees vulnerabilities to go through and fix
- Use write-ups as learning opportunities
- Connect all phases of chaos and include incident data as well