

Chapter 1: Interest Rates and Related Contracts

1.4 Duration and Convexity

Interest Rate Models

Damir Filipović

1.4 Duration and Convexity

- Duration
- Convexity
- Bond portfolio risk management

Sensitivity of Bond Prices

We consider a fixed coupon bond with

- cash flow dates $0 < T_1 < \cdots < T_n$
- cash flows c_i at T_i (for simplicity c_n contains the principal).

Its price at t = 0 is

$$p = \sum_{i=1}^n e^{-y_i T_i} c_i$$

where we write $y_i = y(0, T_i)$.

How does the price change under parallel shift of the yield curve, $y_i \mapsto y_i + s$?

Duration

The duration of the bond is defined as relative first-order sensitivity with respect to a parallel shift of the yield curve:

$$D = -\frac{1}{p} \frac{d}{ds} \left(\sum_{i=1}^{n} c_i e^{-(y_i + s)T_i} \right) |_{s=0} = \frac{\sum_{i=1}^{n} T_i c_i e^{-y_i T_i}}{p}.$$

Duration is a weighted average of the coupon dates T_1, \ldots, T_n .

Obtain first-order approximation for relative bond price change $\frac{\Delta p}{p}$ with respect to a parallel shift Δy of the yield curve:

$$\frac{\Delta p}{p} \approx -D\Delta y$$

Duration: Example 1

Assume a flat yield curve $y(0, T) \equiv 3\%$.

Price of a 10Y 6% bond with annual coupon and principal 100 is

$$p_{10} = \sum_{i=1}^{10} 6 \times e^{-0.03 \times i} + 100 \times e^{-0.03 \times 10} = 125.14$$

Its duration is

$$D_{10} = \frac{\sum_{i=1}^{10} i \times 6 \times e^{-0.03 \times i} + 10 \times 100 \times e^{-0.03 \times 10}}{p} = 8.06$$

Duration: Example 2

Assume a flat yield curve $y(0, T) \equiv 3\%$.

Price of a 5Y 3% bond with annual coupon and principal 100 is

$$p_5 = \sum_{i=1}^{5} 3 \times e^{-0.03 \times i} + 100 \times e^{-0.03 \times 5} = 99.79$$

Its duration is

$$D_5 = \frac{\sum_{i=1}^5 i \times 3 \times e^{-0.03 \times i} + 5 \times 100 \times e^{-0.03 \times 5}}{p_5} = 4.72$$

Duration Hedging

Aim: immunize the value of a bond portfolio with respect to small parallel shifts of the yield curve!

- $\Pi(s)$ value a portfolio to be hedged as function of yield shift s
- H(s) value of the hedging instrument as function of s

Find q such that

$$\frac{d}{ds}\left(\Pi(s)+q\,H(s)\right)|_{s=0}=0.$$

The solution is given by

$$q = \frac{-D_{\Pi} \times \Pi(0)}{D_{H} \times H(0)}$$

where $D_{\Pi} = \text{duration of } \Pi$, $D_{H} = \text{duration of } H$.

Duration Hedging: Examples 1 and 2 revisited

Immunize a long position in one 10Y 6% bond by holding q 5Y 3% bonds.

The solution is given by

$$q = \frac{-D_{10} \times p_{10}}{D_5 \times p_5} = -2.14.$$

This means that one should short 2.14 units of the 5Y bond in order to hedge one long unit of the 10Y bond.

Hedging Performance

Value change $(\Pi(s) - 2.14 H(s)) - (\Pi(0) - 2.14 H(0))$ of immunized portfolio as function of yield shift s.

Convexity

The convexity of the bond is defined as relative second-order sensitivity with respect to a parallel shift of the yield curve:

$$C = \frac{1}{\rho} \frac{d^2}{ds^2} \left(\sum_{i=1}^n c_i e^{-(y_i + s)T_i} \right) |_{s=0} = \frac{1}{\rho} \sum_{i=1}^n c_i e^{-y_i T_i} (T_i)^2.$$

Obtain second-order approximation for relative bond price change $\frac{\Delta p}{p}$ with respect to a parallel shift Δy of the yield curve:

$$\frac{\Delta p}{p} \approx -D\Delta y + \frac{1}{2}C(\Delta y)^2$$

Convexity Hedging

Aim: immunize the value of a bond portfolio with respect to small and not so small parallel shifts of the yield curve!

- $\Pi(s)$ value a portfolio to be hedged as function of yield shift s
- $H_1(s)$ value of 1st hedging instrument as function of s
- $H_2(s)$ value of 2nd hedging instrument as function of s

Find q_1 and q_2 such that

$$egin{aligned} rac{d}{ds} \left(\Pi(s) + q_1 \, H_1(s) + q_2 \, H_2(s)
ight) |_{s=0} &= 0 \ rac{d^2}{ds^2} \left(\Pi(s) + q_1 \, H_1(s) + q_2 \, H_2(s)
ight) |_{s=0} &= 0 \end{aligned}$$

Convexity Hedging: Solution

The above system is equivalent to

$$-q_1 D_{H_1} H_1(0) - q_2 D_{H_2} H_2(0) = D_{\Pi} \Pi(0)$$

 $q_1 C_{H_1} H_1(0) + q_2 C_{H_2} H_2(0) = -C_{\Pi} \Pi(0)$

The solution is

$$\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} -D_{H_1} H_1(0) & -D_{H_2} H_2(0) \\ C_{H_1} H_1(0) & C_{H_2} H_2(0) \end{pmatrix}^{-1} \begin{pmatrix} D_{\Pi} \Pi(0) \\ -C_{\Pi} \Pi(0) \end{pmatrix}$$

where $D_{\Pi}(C_{\Pi}) = \text{duration}(\text{convexity})$ of Π , $D_{H_i}(C_{H_i}) = \text{duration}(\text{convexity})$ of H_i .

Convexity Hedging: Example

Portfolio: price $\Pi = 32,863.5$

Duration 6.76 Convexity 85.329

1st hedging instrument: price $H_1 = 97.962$

Duration: 8.813 Convexity: 99.081

2nd hedging instrument: price $H_2 = 108.039$

Duration: 2.704

Convexity: 10.168

Convexity Hedging: Example Solution

The hedging portfolio is given by

$$\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} -8.813 \times 97.962 & -2.704 \times 108.039 \\ 99.081 \times 97.962 & 10.168 \times 108.039 \end{pmatrix}^{-1} \begin{pmatrix} 6.76 \times 32,863.5 \\ -85.329 \times 32,863.5 \end{pmatrix}$$

$$= \begin{pmatrix} -304.8 \\ 140.3 \end{pmatrix}$$

In order to hedge Π against parallel shifts of the yield curve you should buy 140.3 units of H_2 and sell 304.8 units of H_1 short.