Quiz 1

(Supplementary)

24th September, 2025

Time: 2 hrs Total marks: 26

On the real line \mathbb{R} , let \mathcal{T}_{\geq} be the collection of subsets consisting of \emptyset , along with the usual open sets $U \subset \mathbb{R}$ satisfying

$$\mathbb{Z}_{>n} \coloneqq \{n, n+1, n+2, \dots\} \subset U, \text{ for some } n \in \mathbb{Z}.$$

Attempt any question. You can get maximum 20.

- Q1. Show that \mathcal{T}_{\geq} is a topology on $\mathbb{R}.$
 - Q2. Compare (i.e., strictly fine, strictly coarse or incomparable) \mathcal{T}_{\geq} with the following. $[1 \times 4 = 4]$

[2]

[2]

- i) The usual topology on \mathbb{R} .
- ii) The lower limit topology \mathbb{R}_l .
- iii) The upper limit topology \mathbb{R}_u .
- iv) The topology $\mathcal{T}_{\to} = \{\emptyset, \mathbb{R}\} \bigcup \{(a, \infty) \mid a \in \mathbb{R}\}$ on \mathbb{R} .
- Q3. For $a \in \mathbb{R}$, determine (with justification) the closures of the following sets in $(\mathbb{R}, \mathcal{T}_{\geq})$. $[1 \times 5 = 5]$
 - i) (a, ∞) .
 - ii) $(-\infty, a)$.
 - iii) $\{a\}$.
 - iv) $A = \{a, a + 1, a + 2, \dots\}.$
 - v) $B = \{a, a 1, a 2, \dots\}.$
- Q4. Determine (with justification) whether $(\mathbb{R}, \mathcal{T}_{\geq})$ is T_0, T_1 , or T_2 . $[1 \times 3 = 3]$
- Q5. Prove or give counter-example to the following statements. $[1 \times 2 = 2]$
 - i) If a sequence (x_n) converges to x in $(\mathbb{R}, \mathcal{T}_{\to})$, then $x_n \to x$ in $(\mathbb{R}, \mathcal{T}_{\geq})$ as well.
 - ii) If a sequence (x_n) converges to x in $(\mathbb{R}, \mathcal{T}_{\geq})$, then $x_n \to x$ in $(\mathbb{R}, \mathcal{T}_{\rightarrow})$ as well.
- Q6. Prove or disprove : $(\mathbb{R}, \mathcal{T}_{\geq})$ is path connected.
- Q7. Consider the equivalence relation on \mathbb{R} : $a \sim b$ if and only if $a b \in \mathbb{Z}$. For any $x \in \mathbb{R}$, find the closure of the equivalence class [x] in the quotient topology induced from $(\mathbb{R}, \mathcal{T}_{\geq})$.
- Q8. Consider the equivalence relation on \mathbb{R} : $a \sim b$ if and only if either

$$a, b \in \mathbb{R} \setminus \mathbb{Z}$$
, and $a = b$, or, $a, b \in \mathbb{Z}$.

For any $x \in \mathbb{R}$, find the closure of the equivalence class [x] in the quotient topology induced from $(\mathbb{R}, \mathcal{T}_{>})$.