Kapitel 1

Arbeit im Gange - Grundlagen

1.1 is' klar 'ne?

Bekannt aus Analysis I-III

- Banachraum: vollständiger normierter Vektorraum (wir schreiben $(X, \|\cdot\|_X)$
- Hilbertraum: vollständiger Skalarproduktvektorraum mit $\|\cdot\| = \sqrt{(\cdot,\cdot)_X}$. Wobei (\cdot,\cdot) das Skalarprodukt bezeichnet.
- Cauchy-Folge: $(x_n), \forall \varepsilon > 0 \ \exists n \in \mathbb{N} : \forall m \geq n : ||x_m x_n|| < \varepsilon$
- vollständiger metrischer Raum, Topologie.

Definition 1.1 (Halbnorm, Seminorm). Sei X ein $\mathbb{K} - Vektorraum$, wobei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Für $x, y \in X$, $\lambda \in \mathbb{K}$ ist eine Halbnorm oder Seminorm eine Abbildung $||| \cdot ||| : X \to \mathbb{R}$, die die folgenden Eigenschaften erfüllt:

- (i) $|||x||| \ge 0$
- (ii) $|||\lambda x||| = |\lambda| \cdot |||x|||$
- (iii) $|||x + y||| \le |||x||| + |||y|||$

Eine Norm efüllt zusätzlich noch die Bedingung, dass sie nur dann verschwindet, wenn das Argument verschwindet.

Bemerkung 1.2. (a) $N := \{x \in X : |||x||| = 0\}$ bildet einen Unterraum von X.

- (b) X/N ist ein normierter Raum über(?) ||x + N|| := |||x|||
- (c) X ist ein vollständiger seminormierter Raum $\Rightarrow X/N$ ist ein Banachraum

Beispiel 1.3 (wichtige Vektorräume). Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum

- (a) $p \in [1, \infty)$ $\mathcal{L}^p(\Omega, \mu) = \{f : \Omega \to \mathbb{C} \text{ messbar}, \int_{\Omega} |f|^p d\mu < \infty \}$ ist ein seminormierter Raum mit $|||f|||_p := (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}}$. $L^p(\Omega, \mu)$ ist ein vollständiger normierter Raum (\nearrow Ana III).
- (b) $\mathcal{L}^{\infty}(\Omega,\mu) := \{f: \Omega \to \mathbb{C} \text{ messbar und essentiell beschränkt} \}$ ist ebenfalls seminormiert mit $|||f|||_{\infty} := \underset{x \in \Omega}{\operatorname{ess sup}} |f(x)|.$ $L^{\infty}(\Omega,\mu)$ ist ein vollständiger normierter Raum.
- (c) $p \in [1, \infty], |\cdot|$ sei das Zählmaß auf $\mathbb N$ und der Maßraum sei gegeben durch $(\mathbb N, P(\mathbb N), |\cdot|)$. $\ell^p := \mathcal L^p(\mathbb N, |\cdot|)$ heißt Folgenraum und ist ein normierter unendlichdimensionaler Raum.

- (d) $\Omega \subseteq \mathbb{R}$ messbar, λ^n Lebesgue-Maß auf \mathbb{R}^n . $L^p(\Omega) := L^p(\Omega, \lambda^n)$ heißt Lebesgue-Raum.
- (e) Sei (Ω, \mathcal{T}) ein topologischer Raum. $BC(\Omega) := \{f : \Omega \to \mathbb{C} \mid f \text{ stetig und beschränkt} \}$ versehen mit der Suprenumsnorm ist ein Banachraum.

Bemerkung 1.4 (diverse Fakten). Seien $p, q, r \in [1, \infty)$

- (a) $L^p(\Omega,\mu)$ ist ein Banachraum, $L^2(\Omega,\mu)$ ist ein Hilbertraum mit $(f,g)_2 := \int_{\Omega} f\overline{g}d\mu$
- (b) Falls $\mu(\Omega) < \infty$, $p \ge r \Rightarrow L^p(\Omega, \mu) \subseteq L^r(\Omega, \mu)$
- (c) Wenn $p \geq r \Rightarrow L^r(\Omega, \mu) \cap L^{\infty}(\Omega, \mu) \subseteq L^p(\Omega, \mu)$
- (d) $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p(\Omega, \mu)$, $g \in L^q(\Omega, \mu) \Rightarrow fg \in L^1(\Omega, \mu)$ mit $\|fg\|_1 \leq \|f\|_p \|g\|_q$ (Hölder-Ungleichung). Dies gilt auch für $p = 1, q = \infty$ wobei $\underline{\text{hier}} \frac{1}{\infty} := 0$.
- (e) Sei $\Omega \subseteq \mathbb{R}^n$ ein Gebiet. $C_0^k := \{f : \Omega \to \mathbb{C} \mid \text{supp} f \text{ kompakt und } f \in C^k(\Omega, \mathbb{C})\}$ ist dicht in $L^p(\Omega) \ \forall p \in [1, \infty)$. Dies gilt nicht für $p = \infty$, da f = const oder f = sign sich nicht durch Funktionen aus C_0^k approximieren lassen.
- (f) $BC(\Omega)$ ist abgeschlossen in $L^{\infty}(\Omega)$, aber nicht in $L^{p}(\Omega)$ für $p < \infty$, dennoch ist $BC(\Omega)$ in beiden Fällen ein Unterraum.

1.2 Lineare Operatoren

Definition 1.5 (linearer Operator). Seien X,Y \mathbb{K} -Vektorräume. Eine Abbildung $T:X\to Y$ heißt $linearer\ Operator\ wenn$

$$T(\lambda x + \mu y) = \lambda T(x) + \mu T(y) \ \forall \lambda, \mu \in \mathbb{K}, \ x, y \in X$$

wir schreiben Tx statt T(x).

Wenn $Y = \mathbb{K}$ dann heißt ein linearer Operator $T: X \to \mathbb{K}$ Funktional.

Wenn X, Y normierte \mathbb{K} -Vektorräume sind, heißt ein linearer Operator T beschränkt, wenn $T(U_1(0)) \subseteq Y$ beschränkt ist. $(\Leftrightarrow \exists M \in \mathbb{R}_{>0}, \text{ so dass } ||Tx||_Y \leq M \ \forall x \in X \text{ mit } ||x||_X < 1)$

Aus der Definition erkennt man, dass Bilder beschränkter Mengen M unter einem beschränkten linearen Operator T beschränkt sind. Denn $\exists R>0: M\subseteq U_R(0),$ sodass $T(M)\subseteq T(U_R(0))=T(R\cdot U_1(0))=R\cdot T(U_1(0)),$ und dies ist beschränkt.

Beispiel 1.6. a) $X = \mathbb{K}^n$, $Y = \mathbb{K}^m$, $\{T : X \to Y : T \text{ linearer Operator}\} = \mathbb{K}^{m \times n}$. $T \in \mathbb{K}^{n \times m}$ ist beschränkt. Denn:

$$||T||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |t_{ij}| < \infty$$
, t_{ij} sind die Einträge der Matrix T .

Da auf einem endlichdimensionalen Vektorraum alle Normen äquivalent sind, ist T beschränkt.

b) $T: L^1(\Omega, \mu) \to \mathbb{K}$, $Tf:=\int_{\Omega} f d\mu$. Es gilt $|Tf|=|\int_{\Omega} f d\mu| \le \int_{\Omega} |f| d\mu=\|f\|_1$. Also |Tf|<1 $\forall f\in L^1(\Omega, \mu):\|f\|_1<1\Rightarrow T$ beschränkt

Satz 1.7. Seien X, Y normierte Räume, $T: X \to Y$ ein linearer Operator. Dann sind äquivalent:

- (i) T beschränkt,
- (ii) T ist lipschitz stetiq,
- (iii) T ist gleichmäßig stetig,
- (iv) T ist stetig,

- (v) T stetig in 0,
- (vi) $\exists x \in X : T \text{ stetig in } x.$

Beweis: "(i) \Rightarrow (ii)" : Sei M > 0, so dass $||Tx||_Y \leq M \ \forall x \in U_1(0)$. Es gilt T0 = 0. Weiterhin gilt für $x \in X \setminus \{0\}$:

$$||Tx||_Y = ||2||x||_X T\left(\frac{x}{2||x||_X}\right)|| = 2||x||_X ||T\underbrace{\left(\frac{x}{2||x||_X}\right)}_{\in U_1(0)} ||_Y \le 2M||x||_X.$$

Also gilt $\|Tx\|_Y \leq 2M\|x\|_X \ \forall x \in \|x\|_X$ und daraus folgt die Lipschitz Stetigkeit wegen

$$||Tx_1 - Tx_2|| = ||T(x_1 - x_2)|| \le 2M||x_1 - x_2||_X \ \forall x_1, x_2 \in X$$

" $(ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi)$ ": Der Beweis dieser Implikationskette ist Gegenstand der Grundvorlesungen 1.

" $(vi) \Rightarrow (v)$ ": Sei $x \in X$, so dass T stetig in x ist. Sei (x_n) Nullfolge in X

$$\Rightarrow \lim_{n \to \infty} (x + x_n) = x \Rightarrow \lim_{n \to \infty} T(x + x_n) = Tx \xrightarrow{\text{stetig in } 0} \lim_{n \to \infty} Tx_n = 0 = T$$

" $(v) \Rightarrow (i)$ ": Beweis durch Widerspruch: Angenommen T ist unbeschränkt $\Rightarrow \forall n \in \mathbb{N} \ \exists x_n \in U_1(0)$, so dass $\|Tx_n\|_Y \geq n \ (\Rightarrow x_n \neq 0 \ \forall n \in \mathbb{N})$. Dann gilt $\frac{x_n}{n} \stackrel{n \to \infty}{\longrightarrow} 0$, aber $\|T\frac{x_n}{n}\|_Y = \frac{1}{n}\|Tx_n\|_Y \geq \frac{1}{n} \cdot n = 1$ Das hieße aber T ist unstetig in 0.

Bemerkung 1.8. a) $\mathcal{B}(X,Y) := \{T : X \to Y : T \text{ beschränkt}\}\$

- b) $\mathcal{B}(X) := \mathcal{B}(X, X)$ beides sind $\mathbb{K} VR$.
- c) $X' := \mathcal{B}(X, \mathbb{K})$ topologischer Dualraum von X.

Bemerkung 1.9. c) Ker T, Im T sind UVR.

- d) (i) (vi) äquivalent zu (vii): Jede beschränkte Menge wird auf eine beschränkte Menge abgebildet.
- e) Es gibt beschränkte lineare Operatoren, so dass Im T nicht abgeschlossen \nearrow Übung
- f) $Ker\ T$ abgeschlossen $\forall\ T\in\mathcal{B}(X,Y)$, da T stetig und $Ker\ T=T^{-1}(\{0\})$, wobei $\{0\}$ abgeschlossen in Y.

Satz 1.10 (Operatornormen). X, Y normierte Räume. $\mathcal{B}(X,Y)$ normierter Raum mit folgendener Norm $||T|| := \sup_{x \in U_1(0)} ||Tx||_Y$.

Beweis: (Positivität:) ||0|| = 0. Sei $||T|| = 0 \Rightarrow Tx = 0 \ \forall \ x \in U_1(0)$. Sei $x \in X$ beliebig. $\Rightarrow Tx = 2||x||_X T\left(\frac{x}{2||x||_X}\right) = 0 \Rightarrow T = 0$.

(Homogenität:) Sei $\lambda \in \mathbb{K}$, $T \in \mathcal{B}(X,Y)$. Dann $\|\lambda T\| = \sup_{x \in U_1(0)} \|(\lambda T)x\|_Y = |\lambda| \sup_{x \in U_1(0)} \|Tx\| = |\lambda| \|T\|$.

 $(\textit{Dreiecksungleichug:}) \; \text{Seien} \; T_1, T_2 \in \mathcal{B}(X,Y). \; \text{Dann} \; \|T_1 + T_2\| = \sup_{x \in U_1(0)} (\|T_1x + T_2x\|_Y) \leq \sup_{x \in U_1(0)} (\|T_1x\|_Y + \|T_2x\|_Y) \leq \sup_{x_1, x_2 \in U_1(0)} (\|T_1x_1\|_Y + \|T_2x_2\|_Y) \leq \sup_{x_1, x_2 \in U_1(0)} \|T_1x_1\|_Y + \sup_{x_2 \in U_1(0)} \|T_1x_2\|_Y = \|T_1\| + \|T_2\|$

 $Bemerkung \ 1.11. \ \text{Es gilt} \ \|T\| = \sup_{x \in \overline{U_1(0)}} \|Tx\|_Y = \sup_{x \in \partial U_1(0)} \|Tx\|_Y = \sup_{\substack{x \in X \\ x \neq 0}} \frac{\|Tx\|_Y}{\|x\|_X} \ (\nearrow \ \ddot{\text{U}} \text{bung}).$

Satz 1.12. X normierter Raum, Y Banachraum. Dann ist $\mathcal{B}(X,Y)$ Banachraum.

¹Damit meinen wir stets Sätze, die in Analysis/LA I,II oder Höhere Analysis bewiesen wurden.

Beweis: Sei (T_n) CF in $\mathcal{B}(X,Y)$, d.h. $\forall \varepsilon > 0 \exists N \in \mathbb{N} \ \forall n,m > N : \|T_n - T_m\| < \varepsilon$. Also $\|T_n x - T_m x\|_Y \le \|T_n - T_m\| \cdot \|x\| < \varepsilon \cdot \|x\| \ \forall x \in X$. Daraus folgt wegen der Vollständigkeit von Y, dass $(T_n x)$ in Y für alle $x \in X$ konvergiert. Wir setzen den Grenzwert auf $T: X \to Y$, $Tx := \lim_{n \to \infty} T_n x$. Die so definierte Abbildung, also dieser Grenzwert, erfüllt folgende Eigenschaften:

- a) T ist ein linearer Operator.
- b) T ist beschränkt.
- c) $\lim_{n\to\infty} \|T-T_n\|=0$ (also Normkonvergenz bzw. gleichmäßige Konvergenz)

$$\frac{\operatorname{Zu} a):}{\lambda T x_1 + \mu T x_2} T_n(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} T_n(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} (\lambda T_n x_1 + \mu T_n x_2) = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty$$

 $\underline{\mathrm{zu}\ \mathrm{b}}$: Wegen $\|T_n - T_m\| \ge (\|T_n\| - \|T_m\|)$ gilt $\|T_n\|$ ist CF in \mathbb{R} , also beschränkt: $M := \sup_{n \in \mathbb{N}} \|T_n\| < \infty$.

Für
$$x \in U_1(0)$$
 gilt $||Tx||_Y = \lim_{n \to \infty} ||T_n x||_Y \le \lim_{n \to \infty} ||T_n|| \cdot ||x||_X \le M \cdot ||x||_X \le M$. (vgl. Def 1.5, " \Leftrightarrow ")

zu c): Sei $\varepsilon > 0 \Rightarrow \exists N \in \mathbb{N} \ \forall m, n > N : ||T_n - T_m|| < \frac{\varepsilon}{2}$. Für $x \in U_1(0)$ gilt somit

$$\|(T - T_n)x\| = \lim_{m \to \infty} \|(T_m - T_n)x\| \le \frac{\varepsilon}{2} \Rightarrow \|T - T_n\| = \sup_{x \in U_1(0)} \|(T - T_n)x\| \le \frac{\varepsilon}{2} < \varepsilon \ \forall n \ge N$$

Also ist $T \in \mathcal{B}(X,Y)$ und aufgrund der Beliebigkeit der CF, folgt die Vollständigkeit.

Korollar 1.13. X normierter Raum $\Rightarrow X'$ Banachraum.

Bemerkung 1.14. a) $T \in \mathcal{B}(X,Y)$, $S \in \mathcal{B}(Y,Z) \Rightarrow ST \in \mathcal{B}(X,Z)$ und $||ST|| \leq ||S|| \cdot ||T||$ (gilt wegen $||S(Tx)||_Z \leq ||S|| \cdot ||Tx||_Y \leq ||S|| \cdot ||T|| \cdot ||x||_X \leq M||x||_X \ \forall x \in X$ und der Linearität von ST.)

- b) $id \in \mathcal{B}(X, X), ||id|| = 1.$
- c) Aus punktweise Konvergenz $T_n x \to T x$ folgt i.A. $\underline{\text{nicht}} \lim_{n \to \infty} T_n = T \text{ (d.h. } \lim_{n \to \infty} \|T_n T\| = 0).$

Bsp:
$$X = \ell^p, p \in [1, \infty), T_n : \ell^p \to \ell^p, T_n(x_k) = (x_1, \dots, x_n, 0, 0, \dots)$$
 wobei $(x_k) = (x_1, \dots, x_n, \dots)$. Man kann zeigen, dass $T_n \in \mathcal{B}(x) \ \forall n \in \mathbb{N} \ (\nearrow \ \text{Übung})$. Sei $(x_k) \in \ell^p, \forall \epsilon > 0 \ \exists N \in \mathbb{N} : (\sum_{k=N+1}^{\infty} |x_k|^p)^{1 \setminus p} < \epsilon. \ \|T_n(x_k) - x_n\|_X = (\sum_{k=N+1}^{\infty} |x_k|^p)^{1 \setminus p} \ \forall n \geq N$. Also $\forall x \in X \ \|T_n - x\|_X \to 0 \ (n \to \infty)$. Frage: $\|T_n - T\|_X \to 0$? Nein! Sei $(x_k^n) = (0, \dots, 0, 1, 0, \dots), \|T_n(x_k^n) - x\|_X = \|(0, \dots, 0, -1, 0, \dots)\|_Y = 1 \ \|T_n - T\| \stackrel{Def}{=} \sup_{x \in U_1(0)} \|(T_n - T)x\|_X \geq \|(T_n - T)(\frac{1}{2}(x_k^n)\| = \frac{1}{2} \cdot 1 \ (T = idx) \ \forall n \in \mathbb{N} \Rightarrow \|T_n - T\| \not\to 0 \ (n \to \infty)$

d) $T \in \mathcal{B}(X,Y)$ und T bijektiv. Dann ist T^{-1} i.A. nicht beschränkt.

$$\mathbf{Bsp.}\ \ X\in C[0,1], Y=\{f\in C^1([0,1]): f(0)=0\} \ \mathrm{mit}\ \|x\|_X=\sup_{t\in [0,1]}|x(t)|\ \mathrm{und}\ \|\cdot\|_X=\|\cdot\|_Y$$

und $T: X \to Y$, $(Tx)(t) = \int_0^t x(s)ds$.

- $T^{-1} = S: Y \to X, Sy = y'$. (Zeige $ST = id_x$ und $TS = id_Y$)
- $T^{-1} \notin \mathcal{B}(Y,X)$ (Sei $y_n(t) = t^n \in Y$, $(T^{-1}y_n)(t) = n \cdot t^{n-1} \Rightarrow \|y_n\|_Y = 1 \ \forall n \in \mathbb{N}$, $\|T^{-1}y\|_X = n \ \forall n \in \mathbb{N} \Rightarrow T^{-1}$ kann nicht beschränkt sein. $(\|T^{-1}\frac{1}{2}y_n\|_X = \frac{1}{2} \cdot n \text{ mit } \|\frac{1}{2}y_n\| = \frac{1}{2})$

Bem: Y ist nicht vollständig.

Satz 1.15. Sei X, Y normierte $\mathbb{K} - VR$, $T \in \mathcal{B}(X, Y)$. Dann sind äquivalent:

- (i) T ist injektiv und $T^{-1} \in \mathcal{B}(im(T), X)$ normierter UVR von Y.
- (ii) $\exists m > 0 : ||Tx||_Y \ge m||x||_X \ \forall x \in X$.

Beweis: "(i) \Rightarrow (ii)": $\exists M > 0, \|T^{-1}y\| \le M\|y\| \ \forall y \in imT$. Sei $x \in X \ \exists y \in imT : x = T^{-1}y \Rightarrow \|x\|_Y \le M\|Tx\|_Y \Rightarrow \|Tx\|_Y \ge \frac{1}{M}\|x\|_X = m\|x\|_X$

"(ii) \Rightarrow (i)": Sei $x \in X$: Tx = 0. Aus $||Tx|| \geq m||x||$ folgt x = 0 und damit ist Tinjektiv. Sei $y \in imT \ \exists x \in X : Tx = y \ \text{und} \ T^{-1}y = x \stackrel{(ii)}{\Rightarrow} ||T^{-1}y|| = ||x|| \leq \frac{1}{m}||Tx||_Y = \frac{1}{m}||y||_Y$, also $\exists M = \frac{1}{m}$, $||T^{-1}y||_X \leq M||y||_Y \ \forall v \in imT \Rightarrow T^{-1} \in \mathcal{B}(imT, X)$

Die Negation dieser Aussage halten wir explizit fest mit folgendem

Korollar 1.16. $T \in \mathcal{B}(X,Y)$ (X,Y) normierte $\mathbb{K} - VR$. Dann sind äquivalent:

- (i) T besitzt <u>keine</u> stetige Inverser $T^{-1}: imT \to X$.
- (ii) \exists Folge (x_n) in X, so dass $||x_n|| = 1 \ \forall n \in \mathbb{N}$ und $\lim_{n \to \infty} ||Tx_n|| = 0$

Definition 1.17. $X - \mathbb{K} - VR$ mit Norm $\|\cdot\|_1, \|\cdot\|_2$. Dann heißt $\|\cdot\|_1$

- (a) "stärker" als $\|\cdot\|_2$, falls gilt $\lim_{n\to\infty} \|x_n x\|_1 = 0 \Rightarrow \lim_{n\to\infty} \|x_n x\|_2$
- (b) "schwächer" als $\|\cdot\|_2$, falls $\|\cdot\|_2$ stärker ist als $\|\cdot\|_1$.
- (c) "äquivalent" falls $\|\cdot\|_1$ stärker und schwächer ist als $\|\cdot\|_2$

Satz 1.18. $X \mathbb{K} - VR$ mit Norm $\|\cdot\|_1, \|\cdot\|_2$. Dann gilt

- (a) $\|\cdot\|_1$ ist stärker als $\|\cdot\|_2 \Leftrightarrow \exists M > 0 : \|x\|_2 \leq M\|x\|_1 \ \forall x \in X$
- (b) $\|\cdot\|_1$ ist schwächer als $\|\cdot\|_2 \Leftrightarrow \exists M > 0 : \|x\|_1 \leq M\|x\|_2 \ \forall x \in X$
- (c) $\|\cdot\|_1$ ist äquivalent zu $\|\cdot\|_2 \Leftrightarrow \exists m, M > 0 : m\|x\|_1 \leq \|x\|_2 \leq M\|x\|_1 \ \forall x \in X$

 $\begin{aligned} \mathbf{Beweis} \colon & \mathrm{zu} \; (\mathrm{a}) \colon \text{"} \Rightarrow \text{"} \; id \; \colon (X, \| \cdot \|_1) \to (X, \| \cdot \|_2) \; \text{ist stetig wegen Vor.} \; \overset{S.1,15}{\Rightarrow} \; \mathrm{und} \; \mathrm{weil} \; id \; \mathrm{linear}, \; id \; \\ & \mathrm{beschr\"{a}nkt}, \; id \in \mathcal{B}((X, \| \cdot \|_1), (X, \| \cdot \|_2) \; \mathrm{d.h.} \; \exists M > 0 : \| id(X) \|_2 \leq M \|x\|_1 \; \forall x \in X. \\ & \text{"} \Leftarrow \text{"} \; \mathrm{Wissen} \; \exists M > 0 : \|x\|_2 \leq M \|x\|_1 \; \forall x \in X. \; \mathrm{Sei} \; \|x_n - x\|_1 \to 0 \Rightarrow \|x_n - x\|_2 \leq M \|x_n - x\|_1 \to 0 \\ & 0 \; (n \to \infty) \Rightarrow \| \cdot \|_1 \; \mathrm{st\"{a}rker} \; \mathrm{als} \; \| \cdot \|_2. \end{aligned}$

Definition 1.19. . Zwei normierte $\mathbb{K} - VR$ X,Y heißen "topologisch isomorph", falls es ein Isomorphismus $T:X\to Y$ mit $T\in\mathcal{B}(X,Y)$ und $T^{-1}\in\mathcal{B}(Y,X)$. Dann heißt T topologischer Isomorphismus,

Satz 1.20. X,Y topologisch isomorph $\Leftrightarrow \exists m,M>0: T\in \mathcal{B}(X,Y)$ und injektiv: $m\|x\|_X\leq \|Tx\|_Y\leq M\|x\|_X \ \forall x\in X$

Beweis: 'Klar' wegen Satz 1.17 und Satz 1.15.

Bemerkung 1.21. 1. Falls, m = M = 1, dann nenn wir T "Isometrie".

- 2. Falls $\dim X = \dim Y = n \in \mathbb{N}$: X, Y topologisch isomorph und topologischer Isomorphismus = lineare Bijektion.
- **Satz 1.22** (Fortsetzung von stetigen Operatoren). X, Y normierte $\mathbb{K} VR$, Y ein Banachraum, $Z \subset X$, Z dichter UVR. $T \in \mathcal{B}(Z,Y)$. Dann existiert ein eindeutiger Operator $\tilde{T} \in \mathcal{B}(X,Y)$, so dass $T|_{Z} = T$.

Beweis: TODO: Beweis tippen.

Satz 1.23. Ist T normerhaltend (in \mathbb{R}^n die unitären Matrizen ||Tx|| = ||x||), so ist \tilde{T} ebenfalls normerhaltend.

(sonst auch Homöomorphismus)? Beweis: TODO: Kurze Begründung. Eigentlich Korollar?

Beispiel 1.24 (Konstruktion eines unbeschränkten Funktionals). Sei $X=\ell^1$ (Raum der absolut konvergenten Folgen)

Betrachte: $x_0 = (1, \frac{1}{4}, \frac{1}{9}, \dots) \in \ell^1$, $||x_0|| = \sum_{n=1}^{\infty} |\frac{1}{n^2}| = \frac{\pi^2}{6}$,

Einheitsvektor $e_k = (\delta_{nk})_{n \in \mathbb{N}}$.

 \nearrow Erzeugnis: <u>endliche</u> linear Kombination der Einheitsvektoren \Rightarrow span $\{e_k\}_{k_{\mathbb{N}}} = \{(x_1, x_2, \dots, 0, \dots)\}$ (Folgen, die irgendwann zu 0 werden.)

Die Familie $B:=(x_0,e_1,e_2,e_3,\dots)$ ist linear unabhängig. $\Rightarrow B_i$ lässt sich zu Basis $B=(b_i)_{i\in I}$ mit $\mathbb{N}_0\subset I$ und $b_0=x_0,b_i=e_i\ \forall i\in\mathbb{N}$ erweitern (überabzählbar).

Sei $x \in X = \ell^1 \Rightarrow \exists$ eindeutige Darstellung $x = \alpha_0 x_0 + \sum_{\substack{n \in \mathbb{N} \\ endlich}} \alpha_n e_n + \sum_{\substack{i \in I \setminus N_0 \\ endlich}} \alpha_i b_i$.

Definiere das Funktional: $f : \ell^1 \to \mathbb{K}\mathbb{N}$? mit $x = \alpha_0 x_0 + \sum_{\substack{n \in \mathbb{N} \\ endlich}} \alpha_n e_n + \sum_{\substack{i \in I \setminus N_0 \\ endlich}} \alpha_i b_i \mapsto \alpha_0$

Wir zeigen: Kerf nicht abeschlossen.

Betrachte Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n\sum_{k=1}^n\frac{1}{k^2}\Rightarrow x_n\in Kerf\ \forall n\in\mathbb{N},\ \mathrm{da}\ x_n\in span\{e_k\}_{k\in\mathbb{N}}$. Es gilt jedoch $x_n\to x_0\not\in Kerf,\ \mathrm{da}\ f(x_0)=1$.

Nun versuchen wir mit Erfolgt einer waghalsige Verallgemeinerung der geometrischen Reihe im Reellen für Operatoren und Banachräume. $\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}\ \forall q\in\mathbb{C}$ mit normq<1

Satz 1.25 (Neumanansche Reihe). X Banachraum. Sei $T \in \mathcal{B}(X)$. Dann sind äquivalent:

i) Die Reihe
$$\sum_{i=0}^{\infty} T^k = I_X + T^1 + T^2 + \dots$$
 ist konvergent bzgl. der Operatornorm.

$$ii$$
) $\lim_{n\to\infty} ||T^n|| = 0$

$$iii) \ \exists N \in \mathbb{N} : ||T^N|| < 1$$

$$|iv|$$
 $\lim_{n\to\infty} \sup \sqrt[n]{\|T^n\|} < 1.$

In diesem Fall besitzt (I-T) eine beschränkte Inverse. Dies erfüllt $(I-T)^{-1} = \sum_{k=0}^{\infty} T^k$.

Beweis: "i) $\Rightarrow ii$) $\Rightarrow iii$)": "klar"

$$(iii) \Rightarrow iv)$$
": Sei $n \in \mathbb{N} \Rightarrow \exists \ell \in \mathbb{N}, k \in \{q_0, \dots, N-1\}$, s.d. $n = \ell \cdot N + k \Rightarrow \ell \leq \frac{n}{N} \Rightarrow ||T^n|| = ||(T^n)^{\ell} T^k|| \leq ||T^N||^{\ell} \cdot ||T^k||$

Sei $M := \max\{1, ||T||, ||T^2||, \dots, ||T^{N-1}||\} \Rightarrow ||T^n|| \le M ||T^N||^{\ell}$

$$\Rightarrow \sqrt[n]{\|T^n\|} = \sqrt[n]{\|T^N\|^{\ell}} \sqrt[n]{M} \le \sqrt[n]{\|T^N\|} \sqrt[n]{N} \cdot \sqrt[n]{M} = \underbrace{\sqrt[n]{\|T^N\|}}_{<1} \cdot \underbrace{\sqrt[n]{M}}_{\text{für } n \to \infty} \cdot \sqrt[n]{\frac{1}{\|T^N\|}}$$

 $\Rightarrow \lim_{n \to \infty} \sup \sqrt[n]{\|T^n\|} < 1 \ (\nearrow \text{Wurzelkriterium})$

$$(iv) \Rightarrow i)$$
 \mathbb{TODO}

Noch zu zeigen, wenn (i)-(iv) gilt $\Rightarrow (I-T)\cdot\sum_{k=0}^{\infty}T^k=(\sum_{k=0}^{\infty}T^k)\cdot(I-T)=I$: Es gilt: $(I-T)\cdot S_n=(I-T)\cdot(\sum_{k=0}^{\infty}T^k)=\sum_{k=0}^{n}T^k$

Bemerkung 1.26. 1. Wenn ||T|| < 1, dann konvergiert die Neumannsche Reihe.

2. $\limsup_{n\to\infty} \sqrt[n]{\|T^n\|} < 1$ ist nur hinreichend für Invertierbarkeit von I-T, wie das Gegenbeispiel T=2I zeigt.

Beispiel 1.27 (Fredholmsche Integralgleichung). Sei $k \in C([a,b]^2)$. Der Fredholmsche Integraloperator

$$K: C([a,b]) \to C([a,b]), \ (Kx)(s) := \int_a^b K(s,t)x(t)dt$$

wenn $||T|| \le 1$ haben wir gewonnen, aber ||T|| kann groß
sein (nilpotente
Matrizen)

ist stetig, wenn x stetig ist. Die Fredholmsche Integralgleichung lautet:

$$(I - K)x = y, \quad y \in C([a, b]).$$

Und es gilt: $\|Kx\|_{\infty} \leq \max_{s \in [a,b]} \int_a^b |K(s,t)| dt \cdot \|x\|_{\infty}.$

Wenn nun $\max_{s \in [a,b]} \int_a^b |K(s,t)| dt < 1$, dann gilt für alle $y \in C([a,b])$: Die Fredholmsche Integralgleichung (I-K)x = y hat genau eine Lösung $x \in C([a,b])$. Diese hängt stetig von $y \in C[a,b]$ ab.

1.3 Metrische und topologische Räume, Satz von Baire

Bemerkung 1.28 (Erinnerung). - (X, d) metrischer Raum mit Metrik d.

- Kompaktheit, Satz von Bolzano-Weierstraß

Lemma 1.29. Sei (X, d) ein metrischer Raum. Dann gilt die Vierecksungleichung:

$$|d(x,y) - d(x_1,y_1)| \le d(x,x_1) + d(y,y_1) \quad \forall x, x_1, y, y_1 \in X$$

Beweis:
$$d(x_1, y_1) \le d(x_1, x) + d(x, y_1) \le d(x_1, x) + d(x, y) + d(y, y_1)$$

 $\Rightarrow d(x_1, y_1) - d(x, y) \le d(x, x_1) + d(y, y_1)$. Analog: $d(x, y) - d(x_1, y_1) \le d(x, x_1) + d(y, y_1)$
 $\Rightarrow |d(x, y) - d(x_1, y_1)| \le d(x, x_1) + d(y, y_1)$

Bemerkung 1.30. Rekapitulieren Sie folgende Begriffe: $U_r(x)$ Kugel mit Radius r, \overline{M} Abschluss, M Innere, ∂M Rand, Kompakt, offene Überdeckung.

Definition 1.31. Seien $(X, d_X), (Y, d_Y)$ metrische Räume. Eine Abbildung $f: X \to Y$ heißt

- (a) abstandserhaltend falls $d_X(x,y) = d_Y(f(x), f(y))$
- (b) Isometrie falls abstandserhaltend und surjektiv.

Eine abstandserhaltende Abbildung heißt auch Einbettung. Eine Einbettung heißt dicht, falls f(X) dicht in Y ist.

Notation: Wir schreiben $X \subset Y$, falls X in Y eingebettet ist.

Satz 1.32. Jeder metrische Raum (X, d) lässt sich in einen bis auf Isometrie eindeutig bestimmten vollständigen metrischen Raum (\hat{X}, \hat{d}) dicht einbetten. (\hat{X}, \hat{d}) heißt Vervollständigung von (X, d).

Beweis: (1) Konstruktion von \hat{X}

Sei CF(X) die Menge aller Cauchyfolgen in X. Seien $\overline{x} := (x_n), \ \overline{y} := (y_n) \in CF(X)$.

Wir betrachten den "Abstand"

$$d(\overline{x}, \overline{y}) := \lim_{n \to \infty} d_X(x_n, y_n),$$

der dank Lemma 1.29 wohldefiniert ist, und die Relation $\sim\,\subseteq CF(X)\times CF(X)$ mit

$$\overline{x} \sim \overline{y} : \Leftrightarrow d(\overline{x}, \overline{y}) = 0.$$

" ~ " ist tatsächlich eine Äquivalenz
relation und unterteilt CF(X) in Äquivalenzklassen. Sei [x] die Äquivalenzklasse
 des Repräsentanten \overline{x} und \hat{X} die Menge aller Äquivalenzklassen.

Für $\overline{x}, \overline{x}' \in [x] \in \hat{X}, \ \overline{y}, \overline{y}' \in [y] \in \hat{X}$ gilt:

$$0 = d(\overline{x}, \overline{x}') = \lim_{n \to \infty} d_X((x_n), (x'_n))$$
$$0 = d(\overline{y}, \overline{y}') = \lim_{n \to \infty} d_X((y_n), (y'_n)).$$

Wegen $d_x(x_n, y'_n) \le d_X(x'_n, x'_n) + d_X(x_n, y_n) + d_X(y_n, y'_n)$ $d_x(x_n, y_n) \le d_X(x_n, x'_n) + d_X(x'_n, y'_n) + d_X(y'_n, y_n)$ ist

$$\lim_{n \to \infty} d_X(x'_n, y'_n) \le \lim_{n \to \infty} d_X(x_n, y_n) \le \lim_{n \to \infty} d_X(x'_n, y'_n) \Rightarrow d(\overline{x}, \overline{y}) = d(\overline{x}', \overline{y}')$$

und wir können wohldefinieren: $\hat{d}([x],[y]) := d(\overline{x},\overline{y}) \Rightarrow \hat{d}$ ist Metrik auf \hat{X} .

(2) Konstruktion einer dichten Einbettung $f: X \to \hat{X}$

Für $x \in X$ sei $f(x) := [(x, x, x, \dots)].$

Es gilt für $x, y \in X$: $\hat{d}(f(x), f(y)) = \lim_{n \to \infty} d_X(x, y) = d_X(x, y)$.

Wir zeigen nun, dass f(X) dicht in \hat{X} liegt. Sei $[x] \in \hat{X}$, $\overline{x} = (x_n)$, da nun (x_n) eine Cauchyfolge in X ist, ist:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : d(x_n, x_m) < \varepsilon \ \forall n, m \ge N$$

Wir betrachten nun $\overline{x}_N := (x_N, x_N, x_N, \dots)$

$$\Rightarrow \hat{d}(f(x_N), [x]) = \lim_{x \to \infty} d_X(x_N, x_n) \le \varepsilon$$

Damit ist $f(x_N) \to [x]$ für $\varepsilon \to 0$ (oder $N \to \infty$?).

(3) Vollständigkeit von \hat{X}

Sei $([x]_j)$ eine Cauchyfolge in \hat{X} . Zu jedem $[x]_j \in \hat{X} \exists y_j \in X$ so dass $\hat{d}([x]_j, f(y_j)) < \frac{1}{j}$, da f(X) dicht in \hat{X} ist.

$$\Rightarrow d_X(y_j, y_k) = \hat{d}(f(y_j), f(y_k)) \le \hat{d}(f(y_j), [x]_j) + \hat{d}([x]_j, [x]_k) + \hat{d}([x]_k, f(y_k)) < \frac{1}{i} + \hat{d}([x]_j, [x]_k) + \frac{1}{k}$$

 \Rightarrow (y_j) ist eine Cauchyfolge in $X, y := (y_j) \in CF(X) \Rightarrow [y] \in \hat{X}$ ist der Kandidat für den Grenzwert der Cauchyfolge:

$$\hat{d}([x]_j, [y]) \le \hat{d}([x]_j, f(y_j)) + \hat{d}(f(y_j), [y]) < \frac{1}{i} + \lim_{k \to \infty} d_X(y_j, y_k) \Rightarrow \lim_{j \to \infty} \hat{d}([x]_j, [y]) = 0$$

das heißt $[x]_j \to [y]$ für $j \to \infty$

(4) Eindeutigkeit von \hat{X} im folgenden Sinne: ist \tilde{X} eine weitere Vervollständigung von X, so sind \hat{X}, \tilde{X} isometrisch zueinander.

Sei also (H, d_H) ein vollständiger metrischer Raum mit $X \subseteq H$, $d_H(x, y) = d_X(x, y) \ \forall x, y \in X$ und $\overline{X} = H$.

Unser Ziel ist es, eine Isometrie $g:\hat{X}\to H$ zu bauen.

Sei $[x] \in \hat{X}$, $\overline{x} = (x_n) \in [x] \in \hat{X}$, da H vollständig ist $\exists h \in H$ so dass $\lim_{n \to \infty} d_H(x_n, h) = 0$

Wir betrachten $g: \hat{X} \to H$, $[x] \mapsto h$ wie oben.

g ist surjektiv, da für $h \in H \Rightarrow \exists \overline{x} = (x_n) \in CF(X)$ so dass $\lim_{n \to \infty} d_H(x_n, h) = 0$, also g([x]) = h g ist abstandserhaltend, da für $[x], [y] \in \hat{X}$ gilt

$$\hat{d}([x],[y]) = \lim_{n \to \infty} d_X(x_n, y_n) = \lim_{n \to \infty} d_H(x_n, y_n) = d_H(g([x]), g([y])).$$

Definition 1.33. Sei (X, d) ein metrischer Raum, $M \subseteq X$, $M \neq \emptyset$. Wir definieren den Durchmesser von M durch

$$\delta(M):=\sup\left\{d(x,y):x,y\in M\right\}.$$

Der folgende Satz ist eine Verallgemeinerung des Intervallschachtelungsprinzips aus \mathbb{R} .

Satz 1.34 (Cantorscher Durchschnittssatz). Sei (X,d) ein metrischer Raum, der vollständig ist. (F_n) eine Folge von abgeschlossen Teilmengen mit $F_n \neq \emptyset \ \forall n \in \mathbb{N}, \ F_1 \supseteq F_2 \supseteq \ldots$ und $\lim_{n \to \infty} \delta(F_n) = 0$

$$\Rightarrow \exists! x_0 \in X : \bigcap_{n \in \mathbb{N}} F_n = \{x_0\}$$

Beweis: Für jedes $n \in \mathbb{N}$ wählen wir ein $x_n \in F_n$. Sei $\varepsilon > 0$ vorgegeben. Da $\lim_{n \to \infty} \delta(F_n) = 0 \ \exists N \in \mathbb{N} : \delta(F_n) < \varepsilon \ \forall n \ge N$

$$\Rightarrow \forall n, m \geq N : d(x_n, x_m) < \varepsilon \text{ da } x_n, x_m \in F_N \text{ und } \delta(F_N) < \varepsilon$$

$$\Rightarrow$$
 (x_n) ist eine Cauchyfolge $\stackrel{X \text{ vollst.}}{\Rightarrow} \exists x_0 \in X : \lim_{n \to \infty} d(x_n, x_0) = 0$

Weil $x_k \in F_n \ \forall k \geq n \ \text{und} \ F_n \ \text{abgeschlossen ist, ist}$

$$x_0 \in F_n \Rightarrow x_0 \in \cap_{n \in \mathbb{N}} F_n \Rightarrow \cap_{n \in \mathbb{N}} F_n \neq \emptyset$$

Angenommen $\exists y \in \cap_{n \in \mathbb{N}} F_n$, mit $x_0 \neq y$

$$\Rightarrow 0 < d(x_0, y) \le d(x_0, x_n) + d(x_n, y_0) \le 2\delta(F_n) \stackrel{n \to \infty}{\longrightarrow} 0$$
 Widerspruch!

Eigene Bemerkung. Der Heuser beschreibt den folgenden Satz folgendermaßen:

Es gibt wohl keinen Satz in der Funktionalanalysis, der glanzloser und gleichzeitig kraftvoller wäre als der Bairesche Kategoriensatz. Von seiner Glanzlosigkeit wird sich der Leser *sofort* überzeugen können; für seine Kraft müssen wir ihn auf die folgenden Nummern vertrösten.

Satz 1.35 (Bairescher Kategoriensatz). Sei (X, d) ein vollständiger metrischer Raum, $\bigcup_{n=1}^{\infty} F_n = X$, wobei $F_n \subseteq X$ abgeschlossen für alle $n \in \mathbb{N}$. Dann gilt:

$$\exists n_0 \in \mathbb{N} : \mathring{F}_{n_0} \neq \emptyset.$$

Es gibt also ein F_{n_0} dessen Inneres nichtleer ist.

Beweis: Wir bemerken zuerst: $x \in M \Leftrightarrow \exists \varepsilon > 0 : \overline{U_{\varepsilon}(x)} \subseteq M$.

Angenommen es gelte für alle $n \in \mathbb{N}$ $\mathring{F}_n = \emptyset$, also kein F_n enthalte eine abgeschlossene Kugel.

Sei $n \in \mathbb{N}$ beliebig, r > 0 und $x_0 \in X \Rightarrow \overline{U_{\frac{r}{2}}(x_0)} \setminus F_n \neq \emptyset$

Seien nun $x_n \in \overline{U_{\frac{r}{2}}(x_0)} \setminus F_n \neq \emptyset$. Da F_n kein Inneres hat (offiziell: abgeschlossen?!), existiert ein $r_n \in (0, \frac{r}{2})$ mit $\overline{U_{r_n}(x_0)} \cap F_n = \emptyset$, und für ein $y \in \overline{U_{r_n}(x_n)}$ gilt:

$$d(y, x_0) \le d(y, x_n) + d(x_n, x_0) \le r_n + \frac{r}{2} \le r$$

So erhalten wir $\overline{U_{r_n}(x_n)} \subseteq \overline{U_r(x_0)}$. Wir betrachten nun $\overline{U_1(x_0)}$ und nach obiger Überlegung

$$\exists r_1 > 0, x_1 \in X : \overline{U_{r_1}(x_1)} \subseteq \overline{U_1(x_0)} \text{ mit } r_1 \leq \frac{1}{2} \text{ und } \overline{U_{r_1}(x_1)} \cap F_1 = \emptyset$$

Ebenso

$$\exists r_2>0, x_2\in X: \overline{U_{r_2}(x_2)}\subseteq \overline{U_{r_1}(x_1)} \text{ mit } r_2\leq \frac{1}{4} \text{ und } \overline{U_{r_2}(x_2)}\cap F_2=\emptyset$$

Sukzessive erhalten wir so eine Folge $\left(\overline{U_{r_n}(x_n)}\right)_{n\in\mathbb{N}}$ mit folgenden Eigenschaften:

- (1) $\overline{U_{r_{n+1}}(x_{n+1})} \subseteq \overline{U_{r_n}(x_n)} \quad \forall n \in \mathbb{N}$
- (2) $r_n \leq \frac{1}{2^n} \quad \forall n \in \mathbb{N}$
- (3) $\overline{U_{r_n}(x_n)} \cap F_n = \emptyset \quad \forall n \in \mathbb{N}$

Wegen (1) und

$$0 \le \delta\left(\overline{U_{r_n}(x_n)}\right) = 2r_n \le \frac{1}{2^{n-1}} \stackrel{n \to \infty}{\longrightarrow} 0$$

sind wir in der Situation des Cantorschen Durchschnittsatzes und es gibt ein eindeutiges $\hat{x} \in X$ mit $\hat{x} \in \bigcap_{n \in \mathbb{N}} U_{r_n}(x_n)$. Dann ist wegen (3) $\hat{x} \notin F_n \ \forall n \in \mathbb{N} \Rightarrow \hat{x} \in X \setminus \bigcup_{n \in \mathbb{N}} F_n = \emptyset$ Widerspruch!

Korollar. Hier kommt ziemlich fancy Zeug, von wegen der Polynomraum kann nicht vollständig sein, rein. TODO Behauptung und Beweis erstellen.

Beweis: klar! (Ja, selbst ohne eine Behauptung)

Definition 1.36. Sei (X, d) ein metrischer Raum. $M \subseteq X$ heißt...

- (a) nirgends dicht, wenn $\dot{\overline{M}} = \emptyset$.
- (b) mager oder von 1. Kategorie, wenn M eine abzählbare Vereinigung von nirgends dichten Mengen ist, also $M = \bigcup_{n \in \mathbb{N}} A_n$, A_n nirgends dicht für alle $n \in \mathbb{N}$, gilt.
- (c) von 2.Kategorie oder fett, wenn M nicht von 1.Kategorie ist.

Eigene Bemerkung (Trivia am Rande). Direkt aus der Definition folgt, das jede nirgends dichte Menge insbesondere von 1.Kategorie ist. Andersrum gilt dies nicht, was das Beispiel $\mathbb{Q} \subset \mathbb{R}$ zeigt. Ein Beispiel für eine nirgends dichte Menge ist die Cantor-Menge.

"Anschaulich" bedeutet nirgends dicht, wenn sie in keiner Teilmenge (mit nichtleeren Innerem) dicht liegt.

Mithilfe dieser Definition können wir den Baireschen Kategoriensatz Umformulieren zu

(X,d) ist ein vollständiger metrischer Raum $\Rightarrow X$ ist von 2.Kategorie

Korollar 1.37. (X, d) sei ein vollständiger metrischer Raum, $U \subseteq X$ offen und nichtleer. Dann ist U von 2.Kategorie.

Beweis (Eigener Beweis): Da U offen ist, gibt es ein $\varepsilon > 0$, so dass für $x \in U$, $\overline{U_{\varepsilon}(x)} \subseteq U$ ist. Nun können wir den Baireschen Kategoriensatz auf $\overline{U_{\varepsilon}(x)}$ anwenden.

 $\textbf{Korollar 1.38.} \ (X,d) \ sei \ ein \ vollständiger \ metrischer \ Raum. \\$

Dann gilt:

$$M \subseteq X \ mager \Rightarrow X \setminus M \ ist \ dicht \ in X.$$

Beweis: Sei $M \subseteq X$ mager, angenommen $X \setminus M$ sei nicht dicht, also $X \setminus \overline{(X \setminus M)} \neq \emptyset$ $\Rightarrow O := X \setminus \overline{(X \setminus M)}$ ist (als Komplement einer abgeschlossenen Menge) offen und nichtleer. $\Rightarrow O \subseteq M$ ist von 1. Kategorie, Widerspruch zu Korollar 1.37!

Korollar 1.39. (X,d) sei ein vollständiger metrischer Raum. Für $n \in \mathbb{N}$ sei $B_n \subseteq X$ so dass $X \setminus B_n$ mager. $B := \cap_{n \in \mathbb{N}} B_n$

$$\Rightarrow \overline{B} = X$$

Beweis: $X \setminus B = X \cap (\bigcap_{n \in \mathbb{N}} B_n)^c = X \cap (\bigcup_{n \in \mathbb{N}} B_n^c)$ ist wegen Korollar 1.38 dicht in X.

Definition 1.40. Der metrische Raum (X, d) heißt ...

- (a) kompakt, wenn für alle offenen Überdeckungen $(U_i)_{i\in I}$ von X ein endliches $I'\subseteq I$ existiert, so dass $X=\cup_{i\in I'}U_i$
- (b) $pr\ddot{a}kompakt$, wenn $\forall \varepsilon > 0$ eine endliche Menge $M = \{x_1, \ldots, x_n\}$ existiert, so dass $X = \bigcup_{i=1}^n U_{\varepsilon}(x_i)$. M heißt auch ε -Netz von X.

Satz 1.41. Sei (X, d) ein metrischer Raum. Dann ist äquivalent:

- (1) X kompakt.
- (2) Jede abzählbare offene Überdeckung von X enthält eine endliche Teilüberdeckung.

- (3) Ist (A_n) eine Folge von abgeschlossenen Teilmengen von X mit $A_n \supseteq A_{n+1} \neq \emptyset \ \forall n \in \mathbb{N}$. Dann $qilt: \cap_{n\in\mathbb{N}} A_n \neq \emptyset.$
- (4) Jede Folge in X besitzt eine konvergente Teilfolge.
- (5) X ist vollständig und präkompakt.

Beweis: $(1) \Rightarrow (2)$: Man nimmt nur weniger mögliche Vereinigungen.

 $(2) \Rightarrow (3)$: Angenommen $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$, $A_n = \overline{A_n}$, $\emptyset \neq A_{n+1} \subseteq A_n \ \forall n \in \mathbb{N}$

$$\Rightarrow U_n := X \setminus A_n \text{ offen und } \cup_{n \in \mathbb{N}} U_n = X$$

$$\stackrel{(2)}{\Rightarrow} \exists n_1, \dots, n_m \in \mathbb{N} : X = \cup_{i=1}^m U_{n_i} = \cup_{i=1}^m (X \setminus A_{n_i})$$

$$= X \setminus (\cap_{i=1}^m A_{n_i})$$

$$= X \setminus A_k \qquad \text{für } k := \max\{n_1, \dots, n_m\}$$

$$\Rightarrow A_k = \emptyset \text{ Widerspruch!}$$

 $(3) \Rightarrow (4)$: Sei (x_n) eine Folge in X. Für $n \in \mathbb{N}$ sei

$$A_n := \overline{\{x_k : k \ge n\}}.$$

Es ist $A_n \supseteq A_{n+1}$ und $A_n \neq \emptyset$ abgeschlossen $\forall n \in \mathbb{N} \stackrel{(3)}{\Rightarrow} \exists x_0 \in \cap_{n \in \mathbb{N}} A_n$. Deshalb ist

$$\forall \varepsilon > 0 \ \forall n \in \mathbb{N} : U_{\varepsilon}(x_0) \cap \{x_k : k \ge n\} \ne \emptyset$$

 $\Rightarrow x_0$ ist Häufungspunkt der Folge (x_n) und damit Grenzwert einer Teilfolge von (x_n) .

 $(4) \Rightarrow (5)$: Sei (x_n) eine Cauchyfolge. Wegen (4) hat (x_n) eine konvergente Teilfolge mit Grenzwert $x \in X$. Dann ist $x_n \stackrel{n \to \infty}{\longrightarrow} x \Rightarrow X$ vollständig.

Angenommen X sei nicht präkompakt

$$\Rightarrow \exists \varepsilon_0 > 0 : \forall \{x_1, \dots, x_n\} \subseteq X \ \exists x_{n+1} \in X \ \text{mit} \ x_{n+1} \not\in \bigcup_{i=1}^n U_{\varepsilon_0}(x_i).$$

Konstruiere so eine Folge (x_n) in X. Dann gilt

$$\forall n \in \mathbb{N} : d(x_{n+1}, x_j) \ge \varepsilon_0 \quad \forall j \in \{1, \dots, n\}$$

 \Rightarrow (x_n) hat keine Cauchy-Teilfolge \Rightarrow (x_n) hat keine konvergente Teilfolge.

 $(5) \Rightarrow (1)$: Sei $(U_i)_{i \in I}$ eine offene Überdeckung von X. Angenommen es existiere keine endliche Teilüberdeckung. Wir definieren induktiv Kugeln K_n , $n \in \mathbb{N}$, wie folgt:

Da X präkompakt ist, gibt es zu $\varepsilon = 1$ endliche viele Kugeln $U_1(x_0, j)$ mit

$$X \subseteq \bigcap_{i=0}^{m_1} U_1(x_{0,j}).$$

Dann ist mindestens eine dieser Kugeln nicht durch endlich viele Mengen aus $(U_i)_{i\in I}$ überdeckbar.

OBdA $U_1(x_{0,0})$, setze $x_0 := x_{0,0}$.

Konstruiere so eine Folge (x_n) , so dass $U_{\frac{1}{2n}}(x_1)$ nicht durch endlich viele Mengen aus $(U_i)_{i\in I}$ überdeckt werden kann.

Sei
$$y \in U_{\frac{1}{2^{n-1}}}(x_{n-1}) \cap U_{\frac{1}{2^n}}(x_1) \neq \emptyset$$

Dann gilt
$$d(x_{n-1}, x_n) \le d(x_{n-1}, y) + d(y, x_1) \le \frac{1}{2n-1} + \frac{1}{2n} \le \frac{1}{2n-2}$$

Dann gilt
$$d(x_{n-1}, x_n) \le d(x_{n-1}, y) + d(y, x_1) \le \frac{1}{2^{n-1}} + \frac{1}{2^n} \le \frac{1}{2^{n-2}}$$

Für $n \le p \le q$ gilt dann $d(x_p, x_q) \le d(x_p, x_{p+1}) + \dots + d(x_{q-1}, x_q) \le \frac{1}{2^{p-1}} + \dots + \frac{1}{2^{q-2}} < \frac{1}{2^{n-2}} \Rightarrow (x_n)$

ist eine Cauchyfolge in $X \stackrel{X \text{ vollst.}}{\Rightarrow} \exists \hat{x} \in X$, so dass $\lim_{n \to \infty} d(x_n, \hat{x}) = 0$

Wegen $X = \bigcup_{i \in I} U_i$ gilt $\exists i_0 \in I : \hat{x} \in U_{i_0}$

Weil U_{i_0} offen: $\exists r > 0$, so dass $U_r(\hat{x}) \subseteq U_{i_0}$

Sei $n \in \mathbb{N}$, so dass $\frac{1}{2^n} < \frac{r}{2}$ und $d(\hat{x}, x_n) < \frac{r}{2}$

$$\Rightarrow U_{\frac{1}{2}}(x_n) \subseteq U_r(\hat{x}) \subseteq U_{i_0}$$

Das ist ein Widerspruch dazu, dass $U_{\frac{1}{2n}}(x_n)$ nicht durch endliche viele U_i überdeckt werden kann.

Korollar 1.42. (X, d) metrischer Raum

- a) (X,d) kompakt $\Rightarrow X$ vollständig
- b) $M \subset X$, so dass jede Folge in M eine in M konvergente Teilfolge hat ("M folgenkompakt") $\Leftrightarrow M \subset X$ kompakt ("M Überdeckungskompakt")
- c) $M \subset X$ kompakt $\Rightarrow M$ beschränkt und abgeschlossen.
- d) $X \text{ kompakt}, A \subset X \text{ abgeschlossen} \Rightarrow A \text{ kompakt}.$

Definition 1.43. (X, d) metrischer Raum. $M \subset X$ heißt "relativ kompakt", wenn \overline{M} kompakt ist.

Definition 1.44. (X, d) vollständiger metrischer Raum, $M \subset X$ relativ kompakt. \Leftrightarrow jede Folge in M besitzt eine in X konvergente Teilfolge.

Satz 1.45. (X,d) metrischer Raum. $M,N\subset X$ seien relativ kompakt (bzw. präkompakt). Dann gilt

- 1. $S \subset M \Rightarrow S \ relativ \ kompakt \ (bzw. \ präkompakt)$
- 2. $M \cup N$ relativ kompakt (bzw präkompakt)
- 3. M, N präkompakt
- 4. Ist (X, d) vollständig, so gilt M relativ kompakt $\Leftrightarrow M$ präkompakt

Beweis: "a) - c)": mündlicher Beweis. TODO. folgt aus Definition.

```
d) " \Rightarrow " folgt aus c) " \Leftarrow " Sei M präkompakt \forall \varepsilon > 0 \; \exists p \in \mathbb{N}, \{x_1, \dots, x_p\} \subset X \; \text{mit} \; M \subset \cup_{j=1}^p \overline{U_{\frac{\varepsilon}{2}}(x_j)}. \; \text{Wegen} \; \overline{U_{\frac{\varepsilon}{2}}(x_j)} \subset U_{\varepsilon}(x_j) \; \text{gilt} \; \overline{M} \subset \cup_{j=1}^p \overline{U_{\frac{\varepsilon}{2}}(x_j)} \subset \cup_{j=1}^p U_{\varepsilon}(x_j) \; \Rightarrow \; \overline{M} \; \text{präkompakt.} \; \text{Da} \; (\overline{M}, d) \; \text{vollständig ist} \; \overline{M} \; \text{kompakt.} \; (\text{Satz } 1.41) \; \Rightarrow \; M \; \text{relativ kompakt.}
```

Bemerkung 1.46 (Fakten). $(X, \|\cdot\|)$ normierter Raum.

- a) Aussagen über metrischer Räume übertragen sich
- b) Die Vervollständigung von X ist ein Banachraum.
- c) Wenn $dim X < \infty$, dann
 - i) X Banachraum
 - ii) $M \subset X$ kompakt $\Leftrightarrow M$ beschränkt und abgeschlossen (Heine Borel)
 - iii) $M \subset X$ relativ kompakt $\Leftrightarrow M$ präkompakt $\Leftrightarrow M$ beschränkt

Lemma 1.47 (Lemma von Riesz). \mathbb{TODO} : Beweis vervollständigen. $(X, \| \cdot \|)$ normierter Raum, $E \subset X$ abgeschlossener Unterraum mit $E \neq X$, $\eta \in (0,1)$. Dann existiert ein $x_{\eta} \in X$ mit $\|x_{\eta}\| = 1$ und $\|x_{\eta} - y\| \ge \eta \ \forall y \in E$.

```
 \begin{aligned}  & \textbf{Beweis} : \text{ Sei } x_0 \in X \backslash E. \ \delta = \inf_{y \in E} \|x_0 - y\| \\ & \text{ E abgeschlossen} \Rightarrow \delta > 0. \ \text{Sei } (y_n) \ \text{ Folge in } E \ \text{mit } \|x_0 - y_n\| \to \delta. \ \text{Sei } \eta \in (0,1) \Rightarrow \frac{\delta}{\eta} > \delta \\ & \Rightarrow \exists z \in E \ \text{mit } \|x_0 - z\| \leq \frac{\delta}{\eta}. \ \text{Definiere } x_\eta := \frac{x_0 - z}{\|x_0 - z\|} \Rightarrow \|x_\eta\| = 1 \ \text{Für } y \in E \ \text{gilt } \|x_\eta - y\| = \|y - \frac{x_0 - z}{\|x_0 - z\|}\| = \\ & \|y + \frac{z}{\|x_0 - z\|} - \frac{x_0}{\|x_0 - z\|}\| = \frac{1}{\|x_0 - z\|} \|(\|x_0 - z\|y + z) - x_0\| \geq > \delta \cdot \frac{1}{\|x_0 - z\|} \geq \frac{\eta}{\delta} \cdot \delta = \eta \end{aligned}
```

Korollar 1.48. $(X, \|\cdot\|)$ normierter Raum.

- 1. $\overline{U_1(0)} \Leftrightarrow dim X < \infty$
- 2. Jede beschränkt Folge besitzt konvergente Teilfolge $\Leftrightarrow dim X < \infty$

Beweis: a) "← "Folgt aus Heine-Borel

 \Rightarrow Angenommen, $dimX = \infty$ (Nicht endlichdimensional). Wähle $x_0 \in X$ mit $||x_0|| = 1$. Nach Lemma von Riesz, wähle $x_1 \in X$, so dass $||x_1 - y|| \ge \frac{1}{2} \forall y \in \text{span}\{x_0\}$.

Konstruiere so Folge (x_n) mit $||x_n|| = 1$ und $||x_n - y|| \ge \frac{1}{2} \forall y \in \text{span}\{x_0, \dots, x_{n-1}\} \ \forall n \in \mathbb{N}.$

 $\Rightarrow ||x_n - x_m|| \ge \frac{1}{2} \ \forall n, m \in \mathbb{N} \ \text{mit} \ n \ne m. \Rightarrow (x_n) \ \text{hat keine konvergente Teilfolge}.$

b) genauso.

1.3.1 Skalarprodukträume

Wiederholung: $X \mathbb{K} - VR$. Ein "Skalarprodukt" ist eine Abb $(\cdot, \cdot) \to \mathbb{K}$ mit (S1) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z) \ \forall x, y, z \in X, \alpha, \beta \in \mathbb{K}$ (S2) (x, y) = (y, x) (S3) $(x, x) > 0 \forall x \in X \setminus 0$.

Bemerkung 1.49. 1. $||x|| := \sqrt{(x,x)}$ ist Norm.

- 2. vollständig Skalarproduktraum heißt "Hilbertraum".
- 3. $||x|| \cdot ||y|| \ge |(x,y)| \ \forall x,y \in X$ (Cauchy-Schwartz-Ungleichung)
- 4. Für $x, y \in X$ mit (x, y) = 0 (x und y orthogonal, xorhy) gilt $||x + y||^2 = ||x||^2 + ||y||^2$ (Satz des Pythagoras)
- 5. Für $x,y\in X$ gilt die Parallelogrammgleichung: $\|x+y\|^2+\|x-y\|^2=2\|x\|^2+2\|y\|^2$
- 6. Für $(x_n), (y_n)$ mit $(x_n) \to x$, $(y_n) \to y$ gilt $(x_n, y_n) \to (x, y)$, da $|(x_n, y_n) (x, y)| \le ||x_n|| \cdot ||y_n y|| + ||x_n x|| ||y||$ (Stetigkeit des Skalarprodukts)

Satz 1.50. Sei (X, ||||) normierter Raum mit $||x + y||^2 + ||x - y||^2 = 2... \forall x, y \in X$ Dann existiert Skalarprodukt auf X, welches $||\cdot||$ induziert.

Beweis: Skizze! a) $\mathbb{K} = \mathbb{R} (x, y) := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$. b) $\mathbb{K} = \mathbb{C}$

Definition 1.51. $(X, (\cdot, \cdot))$ Skalarprodukt, $x, y \in X$. $M, N \subset X$, $(x_i)_{i \in I}$ Famile.

- 1. x orthogonoal zu y (x \perp y), wenn (x,y) = 0.
- 2. x orthogonoal zu N (x \perp M), wenn $x \perp y \forall x \in N$
- 3. M orthogonal zu N (N \perp M), wenn $x \perp M \forall x \in N$.
- 4. $M^\perp = \{x \in X : x \perp M\}$ "Orthogonalraum zu M"
- 5. $(x_i)_{i \in I}$ heißt Orthogonalsystem, wenn $x \perp y, \forall i, j \in I, i \neq j$
- 6. $(x_i)_{i \in I}$ heißt Orthonormalsystem, wenn
- 7. $(x_i)_{i\in I}$ heißt Orthogonalbasis, wenn es linear unabhängig OGS ist und $\overline{span((x_i)_{i\in I})} = X$.
- 8. $(x_i)_{i\in I}$ heißt Orthonomalbais (ONB), wenn es OGB und ONS ist.

Beispiel 1.52. a) $e_n = (\delta_{in})_{i \in I} \in \ell^2$ $(e_n)_{n \in \mathbb{N}}$ ist ONS Es ist auch ONB.

Sei
$$x = (a_n)_{n \in \mathbb{N}}, \varepsilon > 0. \Rightarrow \exists N \in \mathbb{N}. \sum_{k=N+1}^{\infty} |a_k| < \varepsilon^2$$
. Für $v = a_1 e_1 + \dots + a_N e_N \in span(e_n)_{n \in \mathbb{N}}$ $\|v - x\|_2 = (\sum_{k=N+1}^{\infty} |a_k|^2)^{\frac{1}{2}} < \varepsilon$

b) $(u_k)_{k\in\mathbb{Z}}$ mit $u_k(x)=\frac{1}{\sqrt{2\pi}}e^{ikx}$ $u_k\in L^2([0,2\pi])$ ist ONS, da $\int_0^{2\pi}u_k(x)\overline{u_j(x)}dx=\delta_{kj}$ Auch ONB? Beachte: V^\perp immer abgeschlossen, da für eine Folge (v_i) in V^\perp mit $v_i\to V$ gilt $(x,v)\leftarrow (x,v_i)=0\ \forall x\in V$

Satz 1.53 (Besselsche Ungleichung). X Skalarproduktraum, $(u_i)_{i\in I}$ ONS, $x\in X$, $i_1,\ldots,i_n\in I$. Dann $||x||^2\geq \sum_{k=1}^n |(x,u_{ik})|^2$

Beweis:
$$x_n := x - \sum_{k=1}^n (x, u_{ik}) u_{ik} \ j \in \{1, \dots, n\}$$

 $(x_n, u_{ij}) = (x, u_{ij} - \sum_{k=1}^n (x, u_{ik}) \underbrace{(u_{i_k}, u_{i_j})}_{\delta_{kj}} = (x, u_{i_j} - (x, u_{i_j})) = 0$

$$\Rightarrow \sum_{k=1}^n (x, u_{i_k}) \cdot u_{i_k} \perp x_n \Rightarrow ||x||^2 = \mathbb{TODO}$$

Korollar 1.54. Voraussetzung wie vorhin.

- 1. $(x, u_i) \neq 0$ für höchstens abzählbar viele $i \in I$.
- 2. $\sum_{i \in I} |(x, u_i)|^2 \le ||x||^2$ (Besselsche Ungleichung II)
- 3. Die Reihe $\sum_{i \in I} (x, u_i) u_i$ (Fourierreihe) ist CF in X.

Beweis: 1. Für $n \in \mathbb{N}$ gilt nach Bessel (I), dass für $S_{x,n} = \{i \in I : |(x,u_i)|^2 > \frac{1}{n}\}$ gilt $|S_{x,n}| \le n||x||^2$, also endlich.

Dann gilt $\{i \in I : (x, u_i) \neq 0\} = \bigcup_{n \in \mathbb{N}} S_{x,n}$ abzählbar, als Vereinigung abzählbarer Mengen.

- 2. Seien $(i_n)_{n\in\mathbb{N}}$ paarweise disjunkt mit $\{i_n:n\in\mathbb{N}\}=\{i\in I:(x,u_i)\neq 0\}$. Dann gilt $foralln\in\mathbb{N}:\|x\|^2\geq\sum_{k=1}^n|(x,u_{i_k})|^2$. \Rightarrow Mit Grenzübergang $n\to\infty\sum_{k=1}^\infty|(x,u_{i_k})|^2=\sum_{i\in I}|(x,u_i)|^2$.
- 3. (i_n) wie oben, $\varepsilon > 0 \stackrel{b)}{\Rightarrow} \exists N \in \mathbb{N}$, so dass $\forall n \geq mN$ gilt $\sum_{k=m+1}^{n} |(x, u_k)|^2 < \varepsilon^2 \Rightarrow \|\sum_k (x, u_{i_k}) u_{i_k} \sum_{k=m+1}^{n} |(x, u_{i_k}) u_{i_k}|^2 = \|\sum_{k=m+1}^{n} (x, u_{i_k} u_{i_k})\|^2 < \varepsilon^2 \Rightarrow \sum_{k=m+1}^{\infty} (x, u_{i_k}) u_{i_k} \text{ CF.}$

Satz 1.55 (Projektionssatz). X Skalarproduktraum, V vollständig UVR, $x \in X$. Dann existiert ein eindeutiges $v_0 \in V$, so dass $||x - v_0|| = \inf_{v \in U} ||x - v||$. Dieses v_0 erfüllt $x - v_0 \in V^{\perp}$

Beweis: Sei
$$(v_n)$$
 Folge in V mit $\underbrace{\|x-v_n\|}_{=:d_n} \to \underbrace{\inf_{v \in V} \|x-v\|}_{=:d_n}$. $\overset{Parallelogrammgleichung!}{\Rightarrow} \|x-\frac{v_n+v_m}{2}\|^2 + \underbrace{\inf_{v \in V} \|x-v\|}_{=:d_n}$.

Eindeutigkeit: $||x - v_{01}|| = ||x - v_{02}|| = d \Rightarrow ||v_{01} - v_{02}||^2 = 2(||x - v_{01}||^2 + ||x - v_{02}|| \Rightarrow v_{01} = v_{02}$ noch zu zeigen: $x - v_0 \in V^{\perp}$:

Sei
$$\lambda \in \mathbb{K}, v \in V$$
. Dann $||x - v_0||^2 \le ||x - v_0 + \lambda v||^2 = ||x - v_0||^2 - \overline{\lambda}(x - v_0, v)$. Wähle $\lambda = \frac{(x - v_0, v)}{||v||^2}$ $-\lambda(v, x - v_0) + |\lambda|^2 ||v||^2 \Rightarrow ||x - v_0||^2 \le ||x - v_0||^2 - \frac{(x - v_0, v)}{||v||^2} \le ||x - v_0||^2 \Rightarrow (x - v_0, v) = 0 \Rightarrow x - v_0 \perp v$

Korollar 1.56. X Hilbertraum, V abgeschlossen UVR. Dann gilt

- 1. $X = V \perp V^{\perp}$, also $V \perp V^{\perp}$ und $X = V + V^{\perp}$ Insbesondere gilt wegen $V \cap V^{\perp} = \{0\}$, dass $\forall x \in X$ die Zerlegung x = v + w eindeutig ist.
- 2. Sei $(u_i)_{i\in I}$ ONB von $V, x \in X$. Dann gilt $v = \sum_{i\in I} (x, u_i)u_i$ ist Bestapproximation von x in V.

Beweis: 1. $x \in X$. Sei $v \in V$, so dass, $||x - v|| = \inf_{u \in V} ||x - u|| \Rightarrow x = v \in v + (x - v) \in v^{\perp}$

2. Es gilt für $v = \sum_{i \in I} (x, u_i) u_i$ (konvergiert), dass $x - v \in V^{\perp}$ (wie im Beweis der Besselschen Ungleichung) $\Rightarrow v$ ist Bestapproximation von x in V.

Lemma 1.57. X Skalaproduktraum. V UVR. Dann $V^{\perp} = \overline{V}^{\perp}$

Beweis: \supset klar

$$\subset x \in V^{\perp}, v \in V \Rightarrow \exists \text{ Folge } (v_i) \text{ in } V \text{ mit } v_n \to v \Rightarrow (x, v) \leftarrow (x, v_n) = 0$$

Oben reinschieben: V_0 bestapproximation von x in V Leftrightarrow $||v_0 - x|| = \inf_{v \in V} ||v - x||$

Etwaige Begriffe

- 1. **Hausdorffsch, Hausdorffeigenschaft** Eine Menge heißt *hausdorffsch*, wenn je zwei versch. Punkte stets disjunkte Umgebungen haben. Metrische Räume sind zum Beispiel hausdorffsch, da zwei versch. Punkte stets einen Abstand > 0 haben. Für ein Gegenbeispiel ≯ topologischer Raum
- 2. **essentiell beschränkt** $(\Omega, \mathfrak{A}, \mu)$ sei ein Maßraum. Eine Funktion $f : \Omega \to \mathbb{R}$ heißt essentiell beschränkt, falls

$$\operatorname*{ess\,sup}_{x\in\Omega}|f(x)|:=\inf_{\substack{N\in\mathfrak{A}\\\mu(N)=0}}\sup_{x\in\Omega\backslash N}|f(x)|<\infty$$

oder auch: f ist fast überall beschränkt. Ein Beispiel ist $f(x) := x \cdot \chi_{\mathbb{Q}}(x)$ und $\mu = \lambda$, da f nur auf \mathbb{Q} nicht null ist, und \mathbb{Q} ist Lesbesgue-Nullmenge.

- 3. **topologischer Raum** (X, \mathcal{T}) Sei X eine Menge und $\mathcal{T} \subseteq P(X)$. Die Elemente von \mathcal{T} sind die offenen Mengen. \mathcal{T} definiert eine Topologie, wenn folgende Eigenschaften erfüllt sind:
 - (i) \emptyset , $X \in \mathcal{T}$
 - (ii) $A_i \in \mathcal{T}$ für $i \in I$, $\mathbb{N} \supset I$ endlich $\Rightarrow \cap_{i \in I} A_i \in \mathcal{T}$
 - (iii) $A_i \in \mathcal{T}$ für $i \in I$, I bel. Indexmenge $\Rightarrow \bigcup_{i \in I} A_i \in \mathcal{T}$

 (X, \mathcal{T}) ist der topologische Raum.

Ein Beispiel, für einen topologischen Raum sind die metrischen Räume (X, d): d induziert dann eine Topologie auf X, die offenen Mengen sind nämlich durch d bestimmt.

Sei
$$M := \{1, 2\}, \dots$$

 $\mathcal{T} := \{\emptyset, M\}$. Die triviale Topologie, nur \emptyset und M sind offen.

 $\mathcal{T}:=P(M)$. Die diskrete Topologie, alle Mengen sind offen. Die diskrete Metrik induziert genau diese Topologie.

 $\mathcal{T} := \{\emptyset, \{1\}, \{1, 2\}\}$. M ist hier nicht hausdorffsch, denn egal welche Umgebung man um 2 betrachtet, man kann nicht erreichen, dass 1 nicht in der gleichen ist.