CLAIMS

What is claimed is:

1 1.	A magnetic head having an air bearing surface (ABS), comprising:
2	an antiparallel (AP) pinned layer structure;
3	a bias layer spaced apart from the AP pinned layer structure, a magnetic moment
4	of the bias layer being pinned; and
5	a free layer positioned between the AP pinned layer structure and the bias layer;
6	wherein the bias layer provides magnetic stability to the free layer.
1 2.	A head as recited in claim 1, wherein the AP pinned layer structure includes at
2	least two pinned layers having magnetic moments that are self-pinned antiparalle
3	to each other, the pinned layers being separated by an AP coupling layer.
1 3.	A head as recited in claim 2, wherein a thickness of the AP coupling layer and
2	thicknesses of the pinned layers are selected to provide a saturation field above
3	about 10 KOe.
1 4.	A head as recited in claim 2, wherein the AP pinned layer structure has a positive
2	magnetostriction, the AP pinned layer structure having a magnetic anisotropy
3	oriented perpendicular to an ABS of the reading head.

- 1 5. A head as recited in claim 1, wherein the bias layer has a negative
- 2 magnetostriction, wherein a magnetic moment of the bias layer is pinned parallel
- 3 to a track width of the reading head.
- 1 6. A head as recited in claim 1, wherein a magnetic thickness of the bias layer is
- about the same as a magnetic thickness of the free layer for creating a flux closed
- 3 structure.
- 1 7. A head as recited in claim 1, wherein the bias layer comprises NiFe, wherein a
- 2 ratio of Ni/Fe in the bias layer is at least about 9/1.
- 1 8. A head as recited in claim 1, wherein the bias layer comprises CoNiNb.
- 1 9. A head as recited in claim 1, wherein a magnetic moment of the bias layer is
- 2 oriented antiparallel to the magnetic moment of the free layer.
- 1 10. A head as recited in claim 1, wherein the head forms part of a GMR head.
- 1 11. A head as recited in claim 1, wherein the head forms part of a CPP GMR sensor.
- 1 12. A head as recited in claim 1, wherein the head forms part of a CIP GMR sensor.
- 1 13. A head as recited in claim 1, wherein the head forms part of a tunnel valve sensor.

1	14.	A magnetic head having an air bearing surface (ABS), comprising:
2		an antiparallel (AP) pinned layer structure having two pinned layers having
3		magnetic moments that are self-pinned antiparallel to each other, the
4		pinned layers being separated by an AP coupling layer;
5.		a bias layer spaced apart from the AP pinned layer structure, a magnetic moment
6		of the bias layer being pinned; and
7		a free layer positioned between the AP pinned layer structure and the bias layer,
8	*	the free layer having a magnetic moment oriented antiparallel to the
9		magnetic moment of the bias layer and perpendicular to magnetic
10		moments of the pinned layers;
11		wherein the bias layer provides magnetic stability to free layer.
	•	
1	15.	A head as recited in claim 14, wherein a thickness of the AP coupling layer and
2		thicknesses of the pinned layers are selected to provide a saturation field above
3		about 10 KOe.
1	16.	A head as recited in claim 14, wherein the AP pinned layer structure has a
2		positive magnetostriction, the AP pinned layer structure having a magnetic
3	:	anisotropy oriented perpendicular to an ABS of the reading head.

- 1 17. A head as recited in claim 14, wherein the bias layer has a negative
- 2 magnetostriction, wherein a magnetic moment of the bias layer is pinned parallel
- 3 to a track width of the reading head.
- 1 18. A head as recited in claim 14, wherein a magnetic thickness of the bias layer is
- about the same as a magnetic thickness of the free layer for creating a flux closed
- 3 structure.
- 1 19. A head as recited in claim 14, wherein the bias layer comprises NiFe, wherein a
- ratio of Ni/Fe in the bias layer is at least about 9/1.
- 1 20. A head as recited in claim 14, wherein the bias layer comprises CoNiNb.
- 1 21. A head as recited in claim 14, wherein the head forms part of a GMR head.
- 1 22. A head as recited in claim 14, wherein the head forms part of a CPP GMR sensor.
- 1 23. A head as recited in claim 14, wherein the head forms part of a CIP GMR sensor.
- 1 24. A head as recited in claim 14, wherein the head forms part of a tunnel valve
- 2 sensor.
- 1 25. A magnetic storage system, comprising:

HIT1P019/HSJ9-2003-0105US1

2	magnetic media;
3	at least one head for reading from and writing to the magnetic media, each hea
4	having:
5	a sensor having the structure recited in claim 1;
6	a write element coupled to the sensor;
7	a slider for supporting the head; and
8	a control unit coupled to the head for controlling operation of the head.