1 Surface 2

Problem 1.1. A surface is either a sphere or plane $\Leftrightarrow H^2 = K$.

Solution. Note that $K = \kappa_1 \kappa_2$ and $H = (\kappa_1 + \kappa_2)/2$. So $H^2 = K \Leftrightarrow \kappa_1 = \kappa_2$.

 $\bullet \Rightarrow$

Let's calculate the curvatures for spheres and planes. $? = -d\vec{r} \cdot d\vec{n}$.

- For planes we have $d\vec{n} = 0$. So everything is identically 0.
- For the unit sphere $r = (\cos u \cos v, \sin u \cos v, \sin v)$. And

$$\vec{r_u} = (-\sin u \cos v, \cos u \cos v, 0), \vec{r_v} = (-\cos u \sin v, -\sin u \sin v, \cos v)$$

$$\vec{n} = \vec{r_u} \times \vec{r_v}/|\vec{r_u}||\vec{r_v}|$$

$$= (\cos u \cos^2 v, \sin u \cos^2 v, \sin^2 u \cos v \sin v + \sin v \sin u \cos v \cos u)/\cos v$$

$$= (\cos u \cos v, \sin u \cos v, \sin v) \quad (1)$$

We have that $\vec{r} = \vec{n}$. So

$$d\vec{r} = (-\sin u \cos v, \cos u \cos v, 0)du + (-\cos u \sin v, -\sin u \sin v, \cos v)dv$$
$$= d\vec{n} \quad (2)$$

And

$$II = -d\vec{r} \cdot d\vec{n} = -\cos^2 v du^2 - \sin^2 v dv^2$$
 (3)

$$I = d\vec{r} \cdot d\vec{r} = -II = \cos^2 v du^2 + \sin^2 v dv^2 \tag{4}$$

So that the two principle curvatures are all 1.

• =

Problem 1.2. The helicoid $\vec{r} = (u \cos v, u \sin v, bv)$ is a minimal surface. And that besides planes, all ruled minimal surfaces must be helicoids.

Solution. Let's recall the definition of minimal surfaces: Let's calculate their principle curvature. **Problem 1.3.** If the ?? surface $\vec{r} = (u \cos v, u \sin v, \phi(v))$ is a minimal surface, then it must be the helicoid.

Solution. Let's calculate their principle curvatures.

Problem 1.4. A surface is a minimal surface \Leftrightarrow there exist two families of orthogonal asymptotes.

Solution.