Serial No.: 10/643,438 Filed: August 19, 2003

Page : 2 of 8

Pending Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

<u>Listing of Claims</u>:

Claims 1-12. (canceled)

Claim 13 (Previously presented): A method, comprising:

at a processing engine within a processor having multiple processing engines:

executing at least one instruction of a first thread having a first program counter, the at least one instruction including at least one instruction to issue a request to a resource shared by the multiple processing engines;

swapping execution to a second thread having a second program counter after processing engine execution of the at least one instruction to issue the request to the shared resource; and

swapping execution to the first thread after detection of a signal generated in response to the request to the shared resource.

Claim 14 (Previously presented): The method of claim 13, further comprising selecting a thread to execute by the processing engine.

Claim 15 (Previously presented): The method of claim 14,

wherein threads of the processing engine comprise threads having one of the following states:

currently being executed by the engine;

available for execution, but not currently executing;

waiting for detection of a signal before being available for execution; and wherein the selecting comprises selecting a thread from among threads available for execution, but not currently executing.

Serial No.: 10/643,438 Filed: August 19, 2003

Page : 3 of 8

Claim 16 (Previously presented): The method of claim 15, wherein the selecting the thread comprises selecting the thread based on a round-robin among the threads available for execution.

Claim 17 (Previously presented): The method of claim 14, wherein selecting the thread comprises selecting a thread other than the first thread after detection of the signal and before swapping execution to the first thread.

Claim 18 (Previously presented): The method of claim 13, wherein swapping execution comprises selecting a program counter associated with a selected thread.

Claim 19 (Previously presented): The method of claim 13, further comprising executing additional instructions of the first thread after the at least one instruction to issue the request to the shared resource and before swapping the first thread out.

Claim 20 (Previously presented): The method of claim 13, further comprising executing an instruction of the first thread explicitly requesting thread swapping; and swapping execution to the second thread in response to the instruction explicitly requesting thread swapping.

Claim 21 (Previously presented): The method of claim 20, wherein the instruction of the first thread explicitly requesting thread swapping does not comprise an instruction to issue a request to a shared resource.

Claim 22 (Previously presented): The method of claim 13, wherein the at least one instruction identifies the signal.

Claim 23 (Previously presented): The method of claim 13, wherein the signal comprises a signal generated in response to servicing of the request.

Serial No.: 10/643,438 Filed: August 19, 2003

Page : 4 of 8

Claim 24 (Previously presented): The method of claim 13, wherein the shared resource comprises one of the following: a memory shared by the multiple processing engines internal to the processor and a memory shared by the multiple processing engines external to the processor.

Claim 25 (Previously presented): The method of claim 13, further comprising: receiving a packet; and processing the packet using the first thread.

Claim 26 (Previously presented): A network device, comprising:

at least one Ethernet media access controller;

at least one network processor communicatively coupled to the at least one Ethernet media access controller, the at least one network processor comprising:

multiple, multi-threaded processing engines, individual ones of the engines including an arbiter to select a thread to execute;

a memory internal to the network processor shared by the multiple processing engines;

at least one interface to at least one memory external to the network processor; and

at least one interface to the at least one Ethernet media access controller.

Claim 27 (Previously presented): The device of claim 26,

wherein threads of the individual ones of the processing engines comprise threads having one of the following states:

currently being executed by the processing engine;

available for execution, but not currently executed by the processing engine;

waiting for detection of a signal associated with a request to a resource shared by the processing engines before being available for execution; and

wherein the arbiter of an individual processing engine selects a thread from among threads available for execution, but not currently executing.

Serial No.: 10/643,438 Filed: August 19, 2003

Page : 5 of 8

Claim 28 (Previously presented) The device of claim 27, wherein the arbiter selects based on a round-robin among the threads available for execution.

Claim 29 (Previously presented): The device of claim 26, wherein the individual processing engines use a program counter associated with the thread selected by the processing engine's arbiter.

Claim 30 (Previously presented): The device of claim 26, wherein the processing engines feature an instruction set that includes at least one instruction explicitly requesting a currently thread swap.

Claim 31 (Previously presented): A network processor comprising: multiple, multi-threaded processing engines, individual ones of the engines including an arbiter to select a thread to execute;

a memory internal to the network processor shared by the multiple processing engines; at least one interface to at least one memory external to the network processor; and at least one interface to at least one media access controller.

Claim 32 (Previously presented): The network processor of claim 31,

wherein threads of individual ones of the processing engines comprise threads having one of the following states:

currently being executed by the processing engine;

available for execution, but not currently executed by the processing engine;

waiting for detection of a signal associated with a request to a resource shared by the processing engines before being available for execution; and

wherein the arbiter of the processing engine selects a thread from among threads available for execution, but not currently executing.

Serial No.: 10/643,438 Filed: August 19, 2003

Page : 6 of 8

Claim 33 (Previously presented) The network processor of claim 32, wherein the arbiter selects based on a round-robin among the threads available for execution.

Claim 34 (Previously presented): The network processor of claim 31, wherein the processing engines use a program counter associated with the thread selected by the processing engine's arbiter.

Claim 35 (Previously presented): The network processor of claim 31, wherein the processing engines feature an instruction set that includes at least one instruction explicitly requesting a thread swap.