CAAM 452: Homework 3 Posted online on March 7

Due March 18 in class

Printout of codes are to be included and codes are to be uploaded in owlspace.

Problem 1 (20 points)

Let X_h be a finite element space with basis functions ϕ_1, \ldots, ϕ_N . Let u_h be the finite element solution satisfying the variational problem:

$$\forall v_h \in X_h \quad a(u_h, v_h) = \ell(v_h)$$

Show that the following two statements are equivalent.

(i)
$$\forall v_h \in X_h \quad a(u_h, v_h) = \ell(v_h)$$

(ii)
$$\forall 1 \leq i \leq N \quad a(u_h, \phi_i) = \ell(\phi_i)$$

Problem 2 (20 points)

Let X be an inner-product space with inner-product (\cdot, \cdot) . Define

$$\forall v \in X, \quad \|v\| = (v, v)^{1/2}$$

(a) Show that for any $u, v \in X$

$$\begin{aligned} \forall \alpha \in I\!\!R, \ \|\alpha v\| &= |\alpha| \|v\| \\ \|u+v\| &\leq \|u\| + \|v\| \end{aligned}$$
 if $(u,v)=0$, then $\|u+v\|^2 = \|u\|^2 + \|v\|^2$

(b) Let $\{\Phi_1, \dots, \Phi_n\}$ be a basis for a subspace $Y \subset X$, and let G be the matrix defined by: $G_{ij} = (\Phi_j, \Phi_i)$. Show that G is positive definite: i.e. show that $x \cdot Gx > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$. Deduce that G is non-singular.

Problem 3 (30 points)

Let $f:[a,b]\to \mathbb{R}$ that is \mathcal{C}^1 (i.e. f is continuous, and f' is continuous). Assume that f(a)=f(b)=0. Prove that

$$||f||_{L^2(a,b)} \le \frac{b-a}{\sqrt{2}} ||f'||_{L^2(a,b)}$$

Problem 4 (30 points)

Write a code that generates automatically a structured finite element mesh with $2N^2$ triangles as given in the figure. Note that N=6 in the example of the figure. Upload the code in owlspace.

TRIANGLES numbers

NODES numbers

The code should generate two arrays triangle, nodes.

- nodes(k,1) is the x coordinate of the node number k.
- nodes(k,2) is the y coordinate of the node number k.
- nodes(k,3) is equal to -1 if the node is constrained (i.e. on the boundary of the domain) and +1 if the node is a free node (i.e. interior to the domain). Note that the free nodes are numbered first (from 1 to 25 on the figure).
- triangle(k,i) is the global number of the local node number i of element k, for i = 1, 2, 3. The local numbering is done counterclockwise, starting with the node at the square angle of the triangle.

Test your code for N=2 and N=4: give the entries of the arrays described above and plot the grids.