Wintersemester 2023/2024

Physische Geographie 1

(Grundkursvorlesung PG 1 – Vorlesungsteil Klimatologie)

Prof. Dr. Christoph Beck

Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung

Institut für Geographie

Universität Augsburg

Charakterisierung horizontaler Luftbewegungen:

Zweidimensionaler (horizontaler) Windvektor W

 $\overrightarrow{W} = (u, v)$

2.)

u:

V:

zonale Windkomponente

meridionale Windkomponente

Charakterisierung horizontaler Luftbewegungen:

Maßeinheiten und Messung

Windgeschwindigkeit:

- m/s, kn
- Beaufort-Skala

Beau- fort- grad	Bezeichnung	Mittlere Windgeschwindigkeit in 10m Höhe über freiem Gelände		Beispiele für die Auswirkungen des Windes im Binnenland	
		m/s	km/h		
0	Windstille	0 - 0,2	< 1	Rauch steigt senkrecht auf	
1	leiser Zug	0,3 - 1,5	1 - 5	Windrichtung angezeigt durch den Zug des Rauches	
2	leichte Brise	1,6 - 3,3	6 - 11	Wind im Gesicht spürbar, Blätter und Windfahnen bewegen sich	
3	schwache Brise schwacher Wind	3,4 - 5,4	12 - 19	Wind bewegt dünne Zweige und streckt Wimpel	
4	mäßige Brise mäßiger Wind	5,5 - 7,9	20 - 28	Wind bewegt Zweige und dünnere Äste, hebt Staub und loses Papier	
5	frische Brise frischer Wind	8,0 - 10,7	29 - 38	kleine Laubbäume beginnen zu schwanken, Schaumkronen bilden sich auf Seen	
6	starker Wind	10,8 - 13,8	39 - 49	starke Äste schwanken, Regenschirme sind nur schwer zu halten, Telegrafenleitungen pfeifen im Wind	
7	steifer Wind	13,9 - 17,1	50 - 61	fühlbare Hemmungen beim Gehen gegen den Wind, ganze Bäume bewegen sich	
8	stürmischer Wind	17,2 - 20,7	62 - 74	Zweige brechen von Bäumen, erschwert erheblich das Gehen im Freien	
9	Sturm	20,8 - 24,4	75 - 88	Äste brechen von Bäumen, kleinere Schäden an Häusern (Dachziegel oder Rauchhauben abgehoben)	
10	schwerer Sturm	24,5 - 28,4	89 - 102	Wind bricht Bäume, größere Schäden an Häusern	
11	orkanartiger Sturm	28,5 - 32,6	103 - 117	Wind entwurzelt Bäume, verbreitet Sturmschäden	
12	Orkan	ab 32,7	ab 118	schwere Verwüstungen	

(www.dwd.de)

Charakterisierung horizontaler Luftbewegungen:

Maßeinheiten und Messung

Windgeschwindigkeit:

- m/s, kn
- Beaufort-Skala

Windrichtung:

Angabe der Richtung, aus der der Wind kommt

In der Klimatologie – nach achtteiliger Windrose

(www.dwd.de)

Im Rahmen der Wetterbeobachtung – nach 360°-Skala in 10°-Schritten

Charakterisierung horizontaler Luftbewegungen:

Maßeinheiten und Messung

Messgeräte:

- Schalenkreuzanemometer
- Hitzdrahtanemometer (thermische Anemometrie)
- Windfahne
- Windsack

Ursache horizontaler Luftbewegungen:

← Horizontale Luftdruckunterschiede (Luftdruckgradienten) lösen Luftbewegungen aus (Wind).

Entstehung horizontaler Luftdruckunterschiede:

- Thermische Druckgebilde (siehe kleinräumige Windsysteme)
- Dynamische Druckgebilde (siehe Allgemeine Zirkulation der Atmosphäre)

Hochdruckgebiete = Gebiete relativ hohen Luftdrucks

Tiefdruckgebiete = Gebiete relativ geringen Luftdrucks

Kleinräumige – großräumige horizontale Luftbewegungen:

- 1.) kleinräumig (Einfluss der Erdrotation kann unberücksichtigt bleiben)
 - direkte thermische Ausgleichszirkulation

z.B. Land-Seewind-System,

2.) großräumig (Einfluss der Erdrotation muss berücksichtigt werden)

Kleinräumige Windsysteme Beispiel: Land-See-Windsystem

- Tagesperiodisches Phänomen
- wechselnde Ausbildung thermischer Hochs und Tiefs
- und daraus resultierender Winde
- Ausprägung bei großräumig ungestörten Bedingungen
- Vertikalerstreckung bis ca. 0.5-2km
- Horizontalerstreckung bis ca. 30-100km

Einstrahlungsbedingungen

Thermische Ausgleichszirkulation (schematisch)

Kleinräumige Windsysteme Beispiel: Land-See-Windsystem

Tag-Situation

Nacht-Situation

(Beck 2007)

Aus Gebhardt/Glaser/Radtke/Reuber: Geographie. 1. Aufl., © 2007 Elsevier Gmbh

Kleinräumige – großräumige horizontale Luftbewegungen:

- 1.) kleinräumig (Einfluss der Erdrotation kann unberücksichtigt bleiben)
 - **←** direkte thermische Ausgleichszirkulation
 - z.B. Land-Seewind-System,
 Berg-Talwind-System,
 urbane Flurwinde

2.) großräumig (Einfluss der Erdrotation muss berücksichtigt werden)

Kleinräumige – großräumige horizontale Luftbewegungen:

- 2.) großräumig (Einfluss der Erdrotation muss berücksichtigt werden)
- (zunächst) für den Fall unbeschleunigter (stationärer) Bewegung (konst. Geschwindigkeit)
 - in der höheren Atmosphäre (nahezu reibungsfrei)
 - → geostrophischer Wind
 - in der Peplosphäre (mit Reibungseinfluss)
 - → geotriptischer Wind

Großräumige Luftbewegungen:

Einfluß der Erdrotation

Winkelgeschwindigkeit $\omega = \frac{2\pi}{1d}$

Mitführungsgeschwindigkeit

$$V_{\phi} = \frac{2\pi * R * \cos \phi}{1d} = \omega * R * \cos \phi$$

R: Erdradius

 ϕ : geograph. Breite

Großräumige Luftbewegungen: Einfluß der Erdrotation

Coriolisbeschleunigung

←Ablenkende Kraft der Erdrotation in Folge von Massenträgheit gegenüber unterschiedlichen Mitführungsgeschwindigkeiten

Breiten-Unterschiede der Mitführungsgeschwindigkeit:

am Äquator: 1 670 km/h

auf 30° Breite: 1 450 km/h

auf 60° Breite: 835 km/h

an den Polen: 0 km/h

Großräumige Luftbewegungen:

Einfluß der Erdrotation bei meridionaler Luftbewegung

Großräumige Luftbewegungen:

Einfluß der Erdrotation

bei zonaler Luftbewegung

F₁: verstärkte Zentrifugalbeschleunigung bei Westwinden
 F₂: abgeschwächte Zentrifugalbeschleunigung bei Ostwinden
 C₁: Horizontalkomponente der Coriolisbeschleunigung
 C₂: Horizontalkomponente der Coriolisbeschleunigung

Großräumige Luftbewegungen: Einfluß der Erdrotation

Coriolisbeschleunigung

$$C = 2\omega * \sin \phi * v$$

v: velocity

Coriolisbeschleunigung

- ←Ablenkende Kraft der Erdrotation in Folge von Massenträgheit gegenüber unterschiedlichen Mitführungsgeschwindigkeiten
- ⇒Ablenkung nach rechts auf der Nordhalbkugel / nach links auf der Südhalbkugel
- ⇒Breitenabhängigkeit der Coriolisbeschleunigung
- ⇒Coriolisbeschleunigung nimmt mit der Eigengeschwindigkeit zu
- ⇒kleiner Betrag der Coriolisbeschleunigung
 - ⇒ wirkt erst über große Entfernungen

Auswirkung der Corioliskraft auf bewegte Luftmassen

Schwarze Pfeile: Luftströmung ohne Erdrotation

Blaue Pfeile:

Luftströmung unter dem Einfluss der Erdrotation

Großräumige Luftbewegungen: Geostrophischer Wind (v_a)

Aus Gebhardt/Glaser/Radtke/Reuber: Geographie. 1. Aufl., © 2007 Elsevier GmbH

G: Druckgradientkraft

C: Corioliskraft

G=C

Großräumige Luftbewegungen:

Geostrophischer Wind (v_a)

$$G = \frac{1}{\rho} * \frac{dp}{dn}$$

$$C = 2\omega * \sin \phi * v_g$$

ρ: Luftdichte

dp/dn: Druckgradient (Druckänderung senkrecht zu den Isobaren)

$$v_g = \frac{1}{\rho} * \frac{dp}{dn} * \frac{1}{2\omega * \sin \phi}$$

Kehrwert des Coriolisparameters f

Nordhalbkugel

Großräumige Luftbewegungen: Einfluß der Reibung

Geostrophischer Wind

ohne Reibungseinfluß

G: Druckgradientkraft

C: Corioliskraft

Geotriptischer Wind

mit Reibungseinfluß

Nordhalbkugel

Großräumige Luftbewegungen:

Geostrophischer Wind

ohne Reibungseinfluß:

isobarenparallel

Geostrophischzyklostrophischer Wind

ohne Reibungseinfluß, bei gekrümmten Isobaren:

isobarenparallel zusätzlicher Einfluss der Fliehkraft

Geotriptischer Wind

mit Reibungseinfluß:

Ablenkung zum tiefen Druck (30 – 45°)

Vertikalaufbau der reibungsbeeinflussten unteren Troposphäre:

Aus Gebhardt/Glaser/Radtke/Reuber: Geographie. 1. Aufl., © 2007 Elsevier GmbH

Strömung im bodennahen Luftdruckfeld

Großräumige Luftbewegungen:

Nordhemisphäre:

Strömung im bodennahen Luftdruckfeld

Großräumige Luftbewegungen:

Nordhemisphäre:

Aus Gebhardt/Glaser/Radtke/Reuber: Geographie. 1. Aufl., © 2007 Elsevier GmbH

Großräumige Luftbewegungen:

Charakteristika in Hoch- und Tiefdruckgebieten

	НОСН	TIEF
Rotation	antizyklonal	zyklonal
bodennahe Strömung	divergentes Ausströmen	konvergentes Einströmen