Validity Evaluation and Modeling for Colorimetric Sensor Array

Purpose

- 개발된 비색센서 어레이의 소화기암 관련 VOC 검출 가능 여부 검증
- 주어진 자료를 통해 예측 모형 구축
- 분석 결과와 새로운 자료에 대한 분석 및 예측 결과 시각화 툴 개발

Data

- 총 90개의 VOC를 어레이에 각각 5번 반복하여 노출시켰을 때, 어레이의 35개 spot의 색 변화 데이터
- VOC 종류(1-90), spot 번호(1-35), 색(R,G,B), 반복 회차(1-5)

 r_{ijk} , g_{ijk} , b_{ijk} i = 1,2...,5 (number of iteration) j = 1,2...,35 (number of spot) k = 1,2...,90 (VOC type)

Issues

- 1) VOC 노출과 무관한 체계적인 편향에 의한 RGB 값의 변화 관측 (특정 spot에서 큰 변동 관측, 밝기의 정도가 동일하지 않음)
- 2) 원 데이터는 실제 환자의 날숨이 아닌 VOC를 각각 노출 시켰을 때의 데 이터
- 3) 예측 모형의 목적에 따라 성능 평가 지표의 중요도 차이 존재

Methodology

- PCA 후 k-means, 계층적 군집분석
- LDA, Logistic Regression, SVM, XGBoost 모형 이용
- R Shiny 이용한 시각화 웹페이지 개발 후 Docker로 배포

Environment

R 3,6,1

shiny; shinydashboard; shinymanager; plotly; dendextend

RColorBrewer; MASS; xgboost; e1071

	itero	ation	= 1		iter	ation	= 2		iter	ation	= 3			iter	ation	= 4		ite	ratio)	i = 5	
		0		•		0	0	•		0	0			•	0	0		•	0	0	•
					•			•					0	•				•		0-	
																					9
			0	-	•				•					•				•		0	
		•			•	•		•				Ī						•	•		•
											0	Ī									
9												ı									

Solutions

- 1) 문제가 있는 spot의 이미지를 읽어와 전체 spot에서의 RGB 값의 평균값으로 보정(품질 관리), 밝기를 보정한 RGB 값으로 변환(RGB 정규화)
- 2) 암 환자와 일반인의 호기가스에서 나오는 **VOC의 상대 비율을 이용해** 암 환자와 일반인 데이터 생성
- 3) 진단의 목적인 경우, 양성, 음성이라고 예측한 사람들 중 실제로 양성, 음성인 사람의 비율이 중요하다고 판단(PPV, NPV)

Validity Evaluation and Modeling for Colorimetric Sensor Array

1) 소화기암 관련 VOC 검출 가능 여부 검증

$$\left(\mathbf{r}' = \frac{\mathbf{r}}{\mathbf{r}+\mathbf{g}+\mathbf{b}}, \mathbf{g}' = \frac{\mathbf{g}}{\mathbf{r}+\mathbf{g}+\mathbf{b}}, \mathbf{b}' = \frac{\mathbf{b}}{\mathbf{r}+\mathbf{g}+\mathbf{b}}\right)$$

Validity Evaluation and Modeling for Colorimetric Sensor Array

1) 소화기암 관련 VOC 검출 가능 여부 검증

주성분 분석 후 2개의 주성분과 3개의 주성분을 사용했을 때의 산점도

세개의 주성분을 이용하여 계층적 군집분석을 수행한 결과 소화기 암과 관련된 VOC가 하나의 군집으로 묶이는 것을 볼 수 있다.

Validity Evaluation and Modeling for Colorimetric Sensor Array

2) 임의 데이터 생성 후 모델링

① 자료생성

$$r^*_{jk} = \tilde{r}_{,jk} + normal\ (0\ , \hat{\sigma}_{r\ jk\ c}\)$$
 $g^*_{jk} = \tilde{g}_{,jk} + normal\ (0\ , \hat{\sigma}_{g\ jk\ c})$ $b^*_{jk} = \tilde{b}_{,jk} + normal\ (0\ , \hat{\sigma}_{b\ jk\ c})$ $j=1,...,35\ (number\ of\ spot\),\ k=1,...,10\ (voc\ type)\ ,\ c=1,2,3\ (cluster)$ $normal\ (\mu,\sigma)$: 평균이 μ , 표준편차가 σ 인 정규분포에서 난수 생성

② 호기 가스 상대 비율과 선형 결합

암환자와 일반인을 구분하기 위해 사람의 호기 가스에서 나오는 VOC별 선형 결합 $\underline{w_n} = (w_{1n}, w_{2n}, ..., w_{10n})'$: 일반인의 호기 가스 상대 비율 n = 일반인 $w_c = (w_{1c}, w_{2c}, ..., w_{10c})'$: 암환자의 호기 가스 상대 비율 c = 암환자

voc.name	w_n	w_c
Isoprene	0.7414	0.7414
Acetone	1	1
Dichloromethane	0.0138	0.0138
ocatane	0.069	0.069
Hexane	0.069	0.069
toluene	0.0862	0.0862
Propionic acid	0.0017	0.4828
Butyric acid	0	0.0345
Isovaleric acid	0.0017	0.0016
2-Methylbutyric acid	0	0.0138

③ Euclidian distance로 변경

$$\underline{d_n} = (d_{1n}, d_{2n}, ..., d_{35n})'$$
 $\underline{d_c} = (d_{1c}, d_{2c}, ..., d_{35c})'$
 $d_{jn} = \sqrt{R_{jn}^2 + G_{jn}^2 + B_{jn}^2} + normal(0, \xi)$
 $d_{jc} = \sqrt{R_{jc}^2 + G_{jc}^2 + B_{jc}^2} + normal(0, \xi)$
 $j = 1, ..., 35 (number of spot), n = 일반인, c = 암환자 \xi = noise level(0,0.1,1,5,10)$

$$r^*_{j1} * w_{1n} + r^*_{j2} * w_{2n} + \dots + r^*_{j10} * w_{10n} \equiv R_{jn}$$

$$r^*_{j1} * w_{1c} + r^*_{j2} * w_{2c} + \dots + r^*_{j10} * w_{10c} \equiv R_{jc}$$

Validity Evaluation and Modeling for Colorimetric Sensor Array

2) 임의 데이터 생성 후 모델링

모델링 결과

임의로 생성한 자료를 사용했기 때문에 전반적으로 모든 모형이 좋은 성능을 보였다.

Validity Evaluation and Modeling for Colorimetric Sensor Array

3) 시각화 툴 개발

시각화 툴 화면

연구 결과를 포함하여, 새로운 실험 자료를 업로드하면 해당 자료에 대해주성분 분석, 군집분석을 수행한 결과를 볼 수 있게 구현하였고, 환자의 호기가스를 어레이에 노출시킨 결과를 업로드하면 앞서 구축한 모델로 소화기암 여부를 판단한 결과를 확인할 수 있다.