FACULTY OF ENGINEERING	Project				Job Ref.	
UNIVERSITY OF RUHUNA	Section				Sheet no./rev.	
Learning Tool for					1	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design	-					

DEFLECTION CALCULATION (BS8110:PART1:1997)

STEP 1

Calculate the curvature for uncracked section.

$$\frac{1}{r_b} = \frac{M}{E_C I}$$

$$\frac{1}{r_b} =$$

STEP 2

Calculate the neutral axis depth of the cracked section

$$x = \frac{-\alpha_e A_s \pm \sqrt{(\alpha_e A_s)^2 + 2b\alpha_e A_s d}}{b}$$

$$x =$$

 $\overline{\text{Calculate}}$ the design service stress at steel f_s

$$f_s = \frac{M}{\left(d - \frac{x}{3}\right)A_S}$$

$$f_s =$$

STEP 4

Calculate the curvature for cracked section

$$\frac{1}{r} = \frac{f_S}{(d-x)E_S}$$

$$\frac{1}{2} = \frac{1}{2}$$

STEP 5

Calculate the Deflection

$$a=Kl^2\frac{1}{r_b}$$

$$a =$$

