ĻĻ

10

WHAT IS CLAIMED IS:

1. Recyclable heat-sealable multi-layer material suitable for the production of containers for beverages and foods, comprising a layer formed of a polyester resin foamed sheet having density lower than 700 kg/m³ and, adhered to the foamed sheet, a heat-sealable film of polyester resin, said material having creased on it a pattern suitable to develop by folding the shape of a container.

2. Multi-layer material according to claim 1 in which the polyester film is obtained from a low melting polyester having a melting point from 50° to 200°C.

3. Multi-layer material according to claim 2 in which the polyester film is obtained from a resin with melting point from 80 to 110°C.

4. Material according to claim 1 in which the polyester film is a coextruded dual layer film, one layer of which is formed of a low melting polyester having a melting point from 50° to 200°C and the other layer is a polyester having a melting point higher than 200°C.

5. Multi-layer material according to claim 1 in which the polyester film is a film subjected on one side to a treatment capable to impart gas barrier properties or coated with a layer of material having gas barrier properties.

6. Material according to chaim 5 in which the polyester film having barrier properties presents oxygen permeation rate lower than 70 ml/m³/24h/atm (ASTM 1434).

Material according to claim 6 in which the polyester film is metallized with Al or coaled with a layer of aluminum or silicon oxide.

8. Multi-layer material according to claim 6 in which the polyester film is coated with a layer of potassium or lithium polysilicates.

9. Material according to claim 1 in which the polyester film is obtained from a copolyethylene terephthalate in which more than 10% of the units deriving from terephthalic acid are substituted with units deriving from

20 H.H. (22) (23) of 15 Head of 1

30

isophthalic acid.

- Multi-layer material according to claim 1 in which the polyester film is made to adhere to the foamed sheet by using a polyester glue or by hot lamination.
- Multi-layer material according to claim 1 in which the foamed sheet has a density from 10 to 500 kg/m³.
- Multi-layer material according to claim 1 in which the foamed sheet has a density from 100 to 200 kg/m³.
- 13. Multi-layer material according to claim 1 having a thickness from 0.2 to 3 mm.
- 14. Multidayer material according to claim 13 having a thickness from 0.2 td1.5 mm.
- 15. Multi-layered material according to claim 1 in which the polyester resin of the foam sheet is selected from polyethylene terephthalate and copolyethylene terephthalates in which up to 20 % of the units derives from isophthalic acid.
- 16. Containers for beverages or foods manufactured from the multilayer material according to claim 1.
- 17. Containers according to claim 16 in which the layer that comes into contact with the beverage or food is made of a polyester film adhered to the foamed polyester sheet, and in which the closure is realized by heat sealing on itself the polyester film adhered to the foamed sheet.
- 18. Containers according to claim 17 for fruit juices or sterilized milk in which the polyester film is treated on the side adhered to the foamed sheet with a material capable of conferring barrier properties corresponding to oxygen permeation rate lower than 70 ml/m²/24h/atm.
- 19. Containers according to preceding claim 18 in which the oxygen permeation rate of the treated polyester film is less than 10 ml/m²/24h/atm.
- 20. Containers according to preceding claim 19 in which the oxygen permeation rate is less than 0.3 ml/m²/24h/atm.

15

20

25

30

5

10

21. Containers according to claim 19 in which the polyester film is coated with a layer aluminum or Al and/or Si oxide.

ADD BY ADD BY