

Upper bound. U: =-32-38 DOI KP FIFO-BB upper - fraction x 6=-38 ,- 10,-17,-18 lower - frantion ê=-32 Lower bund if ûxu redu ¿ < u kill 0=32 -22 -30 >-32 if lower bound > global upperts Kill the not 0 0=-22 N4=1 (10) Atter C=-32 0=-38 C=-20 0=-32 ¿>U knopsockins x,=1 nc=1 n3=0 ng=1

del

O-1 Knapsack BB Postit 10 10 12 12 weight 2 4 6 9 m=15, n=4 minimization problem: by pulling negative sign. LC-BB U= Epix: <m without traction C = ZPixi with fraction. S = {x1, mn} - Variable if c7 upper 5 = \$ 1,0,0,17 - fined size killtherode. subset of these objectives Upper = \$ -36-38 C= 10+10+12+ 18×3 D c=-38 U=-32 3) C=-32 KU=-22 = -38 212=0 $C = \frac{10 + 10 + 12 + 3 \times 5}{4 + 4 + 6}$ U=-32 U=-22 N3=0 070 U=-38 C = 10 16 + 12+13 C=-38 Slage 24=1/ 4 pc >U C= 10-10-16+18 An' 10+10+18=38 Solo: weight = 15

Dynamic programming O-1Knapasaek problem
Solving Optimization Problems
Principle of optimality! Every stage we take decisions.
$fib(n) = \begin{cases} 0 & \text{if } n = 0.9\\ 1 & \text{n=1} \end{cases}$ $fib(n-1) + f(n-2) & \text{if } n > 1$
fib(n-1)+f(n-2) if n>1
0,1,1,2,3,5,8,13 12345628918 Recurrence relation
int fib (int n) Ten = 2 (Ten-1)+1 Decreasing
int fib (int n) if $(n \le 1)$ return n; adding T(n) = 2 (f(n-1) + 1) Upper bund Decreasing Master theorem.
return fib(n-2)+fib(n-1);
1
if there arey to reduce the time this Top-down
F 1 2 3 5 fib(n) = n+1 (alls \$ 3)
$0 \mid 2 \mid 3 \mid 4 \mid 5 = O(n) \mid 2 \mid 3 \mid 3 \mid 3$
memorization-follower top down approach
Tabulation method (iterative furction)
othernour int \$6 (int n) 5 (b(n) + [0]1 [2.3]5)
if (nex=1)
F(0) =0; F(1)=1;
for (int i=2; i en; i++)
7 F(i) = F(i-2)+F(i-1), Page -1

ζ

Scanned by CamScanner

