CS1259 芯片用户手册 V1.0



# CS1259 芯片用户手册

带 24bits ADC 和 BIM 的高性能 AFE REV0.1

通讯地址:深圳市南山区蛇口南海大道 1079 号花园城数码大厦 A座 9楼

邮政编码: 518067

公司电话: +(86 755)86169257 传 真: +(86 755)86169057 公司网站: www.chipsea.com



# CS1259 芯片用户手册

# 版本历史

|     | 修改记录 | 日期         |
|-----|------|------------|
| 0.1 | 预览版本 | 2017/10/27 |
|     |      |            |



# 目 录

| 版 | 在历史        |                      | 2  |
|---|------------|----------------------|----|
| E | Ⅰ 录        |                      | 3  |
|   |            |                      |    |
|   |            |                      |    |
| 衣 |            |                      |    |
| 1 | 简介         |                      | 6  |
|   | 1.1        | 主要特性                 | 6  |
|   | 1.2        | 应用场合                 | 6  |
|   | 1.3        | 功能说明                 | 6  |
|   | 1.4        | 极限值                  | 8  |
|   | 1.5        | 电气特性                 | 9  |
|   | 1.6        | 可靠性指标                |    |
|   | 1.7        | 产品型号及引脚              |    |
|   | 1.8        | 典型应用电路               | 12 |
| 2 | 功能寄        | 存器说明                 | 13 |
|   | 2.1        | 功能寄存器列表              | 13 |
|   | 2.2        | 功能寄存器说明              |    |
|   | 2.2.1      | SYS —系统配置寄存器         | 13 |
|   | 2.2.2      | ADC0— ADC 配置寄存器      | 14 |
|   | 2.2.3      | ADC1— ADC 配置寄存器 1    | 14 |
|   | 2.2.4      | ADC2— ADC 配置寄存器 2    |    |
|   | 2.2.5      | ADC3— ADC 配置寄存器 3    |    |
|   | 2.2.6      | ADC4— ADC 配置寄存器 4    |    |
|   | 2.2.7      | ADC5— ADC 配置寄存器 5    |    |
|   | 2.2.8      | BIM0— BIM 配置寄存器 0    |    |
|   | 2.2.9      | BIM1— BIM 配置寄存器      |    |
|   | 2.2.10     | ADO— ADC 转换数据寄存器     |    |
|   | 2.2.11     | ADS— ADC 转换数据读取标准寄存器 | 18 |
| 3 | 功能描述       | 述                    | 19 |
|   | 3.1        | 输入选择                 | 19 |
|   | 3.2        | 输入电平移位器              | 19 |
|   | 3.3        | IDAC1/IDAC0 和输入通道    | 20 |
|   | 3.4        | PGA 和 ADC            |    |
|   | 3.5        | 数字滤波器                |    |
|   | 3.5.1      | 频率响应                 |    |
|   | 3.5.2      | 建立时间                 |    |
|   | 3.6        | 人体阻抗测量               |    |
|   | 3.6.1      | 正弦信号发生器              |    |
|   | 3.6.2      | 激励电极及测量电极            |    |
|   | 3.6.3      | 整流                   |    |
|   | 3.6.4      | 阻抗校准                 |    |
|   | 3.7        | 参考电压源<br>内部时钟源       |    |
|   | 3.8<br>3.9 | 温度传感器                |    |
|   | 3.10       | 测量模式及其切换             |    |
|   | 5.10       | 以毛伏科及六切仄             | ∠c |



|   | 3.11  | 多种工作模式                | 29 |
|---|-------|-----------------------|----|
|   | 3.12  | 复位和断电(POR&power down) | 30 |
| 4 | 转换有   | 效位                    | 31 |
| 5 | 典型特   | 性                     | 32 |
|   | 5.1   | ADC 典型特性              | 32 |
|   | 5.2   | LDO/VREF 典型特性         | 32 |
|   | 5.3   | 内部时钟典型特性              | 32 |
|   | 5.4   | IDAC 典型特性             |    |
|   | 5.5   | BIM 典型特性              |    |
| 6 | 三线串   | 行通讯接口                 | 37 |
|   | 6.1.1 | 读时序                   | 38 |
|   | 6.1.2 | 写时序                   | 38 |
| 7 | 封装    |                       | 40 |



# 图目录

| 图 1.1 CS1259 原理框图                                   | 7  |
|-----------------------------------------------------|----|
| 图 1.2 CS1259 引脚图                                    | 11 |
| 图 1.3 CS1259 典型应用电路                                 | 12 |
| 图 3.1 模拟输入结构图                                       | 19 |
| 图 3.2 电平移位模块                                        |    |
| 图 3.3 IDAC1/IDAC0 结构及与输入通道关系                        | 20 |
| 图 3.4 PGA 和 ADC 结构图                                 |    |
| 图 3.5 COMB 滤波器的频率响应特性(Fs=331Hz, DR=10Hz, 3 阶 COMB). | 23 |
| 图 3.6 COMB 建立过程                                     | 24 |
| 图 3.7 BIM 模块结构图                                     |    |
| 图 3.8 CS1259 低功耗工作示意图                               |    |
| 图 5.1 内部时钟全电压全温度范围的典型特性                             |    |
| 图 5.2 FWR 模式下 220 欧姆纯电阻网络的测试结果                      |    |
| 图 5.3 FWR 模式下 1000 欧姆纯电阻网络的测试结果                     |    |
| 图 5.4 FWR 模式下 1958 欧姆纯电阻网络的测试结果                     |    |
| 图 5.5 FWR+MIX 模式 510ohm+470pF 并联网络的阻抗绝对值测试结果        |    |
| 图 5.6 FWR+MIX 模式 510ohm+470pF 并联网络的相位角测试结果          |    |
| 图 5.7 FWR+MIX 模式 1018Ohm+10nF 并联网络的阻抗绝对值测试结果        |    |
| 图 5.8 FWR+MIX 模式 1018Ohm+10nF 并联网络的相位角测试结果          |    |
| 图 6.1 读操作时序 1(读 AD 值)                               | 38 |
| 图 6.2 读操作时序 2(除 AD 值之外的寄存器)                         |    |
| 图 6.3 写操作时序                                         |    |
| 图 7.1 芯片 LQFP32 封装尺寸信息(天水)                          | 40 |
| <b>→</b> H ⊐                                        |    |
| 表目录                                                 |    |
| 表 1.1 CS1259 极限值                                    | 8  |
| 表 1.2 CS1259 电气特性                                   | 9  |
| 表 1.3 CS1259 引脚说明                                   | 11 |
| 表 2.1 功能寄存器列表                                       | 13 |
| 表 2.2 SYS 寄存器说明                                     | 13 |
| 表 2.3 ADC0 寄存器说明                                    |    |
| 表 2.4 ADC1 寄存器说明                                    |    |
| 表 2.5 ADC2 寄存器说明                                    |    |
| 表 2.6 ADC3 寄存器说明                                    |    |
| 表 2.7 ADC4 寄存器说明                                    |    |
| 表 2.8 ADC5 寄存器说明                                    |    |
| 表 2.9 BIM0 寄存器说明                                    |    |
| 表 2.10 BIM1 寄存器说明                                   |    |
| 表 2.11 ADO 寄存器说明                                    |    |
| 表 2.12ADO 寄存器说明                                     |    |
| 表 3.1 PGA 和 ADGN 与 Gain 及输入信号的关系                    | 22 |
| 表 4.1 ADC 信号链不同 GAIN 及 DR 下的有效位(ENOB) <sup>1</sup>  |    |
| 表 6.1 串口通讯命令列表                                      |    |
| 表 6 2 三线串行通讯接口时序表                                   | 30 |



# 1 简介

#### 1.1 主要特性

- ◆ 输入
  - 支持单端输入
  - 支持组成多个差分输入对
  - 支持输入电平移位功能

#### ◆ PGA

- 1/2/4/8/16/32/64/128 倍可选增益
- 高达 100Mohm 的等效输入阻抗

#### ♦ BIM

- 支持 4/6/8 电极测量
- 支持 5K/10K/25K/50K/100K/250KHz 多档频率测量
- 支持阻抗绝对值和相角测量

#### ◆ ADC

- 24 bit 分辨率
- 输出速率 10~1280Hz 8 档可选
- ◆ 有效位
  - 2.35V 参考、40Hz 速率、128 倍增益下 19.5bits 有效位
- ◆ LDO 及内部参考电压
  - 自带 LDO,输出 2.35/2.45/2.8/3.0V 可选,精度±1%
  - 自带低漂移基准,内部参考电压 2.048V 可选,精度±1%
- ◆ 支持性能、普通、低功耗、休眠模式
- ◆ 支持电压测量、温度测量、BIM 测量及手动测量模式,单命令切换
- ◆ 低漂移片上时钟
- ◆ 三线串行通讯

### 1.2 应用场合

桥式传感器 四角平衡称重 压力检测 人体阻抗分析 交流测脂 心率测量

#### 1.3 功能说明

CS1259原理框图如图1所示。





图 1.1 CS1259 原理框图

CS1259 是一个包括一个 ADC 信号链和人体阻抗测量模块(BIM),其中 ADC 信号链包括有输入 MUXP/MUXN,可编程低噪声增益放大器(PGA),以及一个 Sigma-delta ADC 及数字滤波器 Digital Filter; 其中 MUXP/MUXN 分别具有 8 输入通道,包括 5 个外部模拟输入通道和 3 个内部输入通道; MUXP/MUXN 之后有电平移位模块 LVSHIFT,可以对地轨附近的输入信号移位后送入 PGA; 还具有可调电流源 IDAC1/0,可以调节输入信号的共模电压或补偿失调电压。PGA 和 ADC 具有多种增益选择,数字滤波器可配置为多种输出速率。人体阻抗测量模块采用正弦激励源,将人体阻抗转化为电压信号送到 ADC 信号链进行测量,可以支持多电极、多频率人体阻抗测量。

CS1259 内置有低漂移 LDO 和电压基准 VREF, 高精度温度传感器 TempSensor, 可调电流源 IDAC1/0, 高精度振荡器 OSC 等。

CS1259 可以通过 3 线串行接口进行多种功能模式的配置,例如用作桥式传感器应用、 人体阻抗分析、温度检测、单端输入应用等等。



# 1.4 极限值

表 1.1 示出了CS1259的极限值。

表 1.1 CS1259 极限值

| 名称           | 符号  | 最小   | 最大      | 单位                     | 说明                                |
|--------------|-----|------|---------|------------------------|-----------------------------------|
| 电源电压         | VDD | -0.3 | 6       | V                      | VDD to GND                        |
| 电源瞬间电流       |     |      | 100     | mA                     | Input Current momentary           |
| 电源恒定电流       |     |      | 10      | mA                     | Input Current continuous          |
| 数字管脚输入<br>电压 |     | -0.3 | VDD+0.3 | V                      | Digital Output                    |
| 数字输出管脚<br>电压 |     | -0.3 | VDD+0.3 | V                      | Voltage to GND                    |
| 节温           |     |      | 150     | $^{\circ}$             | Max. Junction<br>Temperature      |
| 工作温度         |     | -40  | 85      | $^{\circ}\!\mathbb{C}$ | Operating<br>Temperature          |
| 储存温度         |     | -60  | 150     | $^{\circ}\!\mathbb{C}$ | Storage<br>Temperature            |
| 芯片管脚焊接<br>温度 |     |      | 300     | $^{\circ}$             | Lead Temperature (Soldering, 10s) |



# 1.5 电气特性

整个芯片供电电压为 2.4V-3.6V, 工作温度为-40℃-85℃, 设计指标如下所示:

表 1.2 CS1259 电气特性

(Test Condition: VDD=3.0V,25°C,VS=2.35V;)

|       | <b>全</b> 粉    | 夕供                               | 見小店     | 曲刑店           | 見上店     | 出户         |
|-------|---------------|----------------------------------|---------|---------------|---------|------------|
| 1     | 参数            | 条件                               | 最小值     | 典型值           | 最大值     | 单位         |
|       | 满幅输入电压        |                                  |         | ±VREF/Gain    |         | V          |
|       | 共模输入电压        | PGA Buffer美闭                     | GND-0.1 | 1             | VS+0.1  | V          |
| 模拟输入  |               | PGA Buffer 打开                    |         | 参见"PGA&ADC"一节 |         |            |
|       | 差分输入阻抗        | PGA Buffer美闭                     |         | 参见"PGA&ADC"一节 | r       |            |
|       |               | PGA Buffer打开                     |         | 100           |         | ΜΩ         |
|       | 分辨率           | 无失码                              |         | 24            |         | Bits       |
|       | Data Rate     |                                  | 10      | 40            | 1280    | SPS        |
|       | 建立时间          |                                  |         | 4             |         | 转换周期       |
|       | 噪声性能          | Gain=32×2<br>160Hz <sup>1)</sup> |         | 95            |         | nV         |
| PGA   |               | Gain=1×1,<br>160Hz <sup>2)</sup> |         | 2.3           |         | uV         |
| &     | 积分线性度         | Gain=128                         |         | 0.0015        |         | % of FS    |
| ADC   | 失调误差          | Gain=128                         |         | ±8            |         | uV         |
|       | J (11 J (12 ) | Gain=1                           |         | ±100          |         | uV         |
|       | 失调误差漂移        | Gain=128                         |         | ±0.5          |         | nv/℃       |
|       | 八啊叭在抓炒        | Gain=1                           |         | 0.4           |         | uv/℃       |
|       | 增益误差          | Gain=128                         |         | -5            |         | %          |
|       | - 日 火江        | Gain=1                           |         | -1            |         | %          |
|       | 增益误差漂移        | Gain=128                         |         | 8             |         | ppm/℃      |
|       |               | Gain=1                           |         | TBD           |         | ppm/℃      |
|       | DCDD          | PGA=1,DC                         |         | 95            |         | dB         |
|       | PSRR          | PGA≠1,DC                         |         | 80            |         | dB         |
|       | CMDD          | PGA=1,DC                         |         | 100           |         | dB         |
|       | CMRR          | PGA≠1,DC                         |         | 85            |         | dB         |
|       | 输入REFP        |                                  | VS/2    |               | VDD+0.1 |            |
|       | 输入REFN        |                                  | GND-0.1 | GND           | VS/2    |            |
|       | DAC 分辨率       |                                  |         | 6             |         | bit        |
| DD/   | DAC 速率        |                                  |         | 1             |         | MSPS       |
| BIM   | 正弦激励波频率       |                                  | 5       | 50            | 250     | KHz        |
|       | 正弦激励电流        |                                  |         | 3753)         |         | uA         |
|       | 动态范围          |                                  | 0       |               | 2*限流电阻  | ohm        |
|       | 线性度           | 0~1*限流电阻                         |         | 0.5           |         | %          |
|       |               | 0~2*限流电阻                         |         | 1             |         | %          |
| LDO   | VS电压          | LDOS[1:0]=00                     | 2.32    | 2.35          | 2.38    | V          |
| & -   | VS温漂          |                                  | 2.020   | TBD           | 2050    | ppm/℃      |
| VREF  | VREF电压        |                                  | 2.028   | 2.048         | 2.068   | V          |
|       | VREF温漂        |                                  |         | TBD           |         | ppm/℃      |
| 温度传感器 | 精度            | 单点校准                             |         | TBD           |         | °C         |
| нн    | 分辨率           |                                  |         | 0.01          |         | $^{\circ}$ |
|       | 频率            |                                  | 5.9     | 5.96          | 6.02    | MHz        |
| 时钟    | 频率全温度变化       |                                  |         | 2             |         | %          |
|       | 频率全电压变化       |                                  |         | 1             | VDD:04  | %          |
| ļ     | VIH           |                                  | 0.7×VDD |               | VDD+0.1 | V          |
| ļ     | VIL           |                                  | GND     |               | 0.2×VDD | V          |
| 数字    | VOH           | Ioh=1mA                          | VDD-0.4 |               | VDD     | V          |
|       | VOL           | IoL=1mA                          | GND     |               | 0.2+GND | V          |
|       | IIH           | VI=VDD                           |         |               | 1       | uA         |
|       | IIL           | VI=GND                           | -1      |               |         | uA         |



|             | Fsclk              |              |     |                   | Fosc/4 | MHz |
|-------------|--------------------|--------------|-----|-------------------|--------|-----|
|             | 电源电压               | VDD          | 2.4 | 3                 | 3.6    | V   |
|             |                    | 普通模式         |     | 0.6               |        | mA  |
|             | ADC工作电流            | 性能模式         |     | 1.1               |        | mA  |
|             |                    | Power down   |     | 0.1               | 1      | uA  |
| _L \r = 1 H | LDO工作电流            |              |     | 160 <sup>4)</sup> |        | uA  |
| 电源及模<br>块功耗 | VREF工作电流           | 启动温度补偿       |     | 280 5)            |        |     |
| 30,301      |                    | 不启动温度补偿      |     | 210 6)            |        | uA  |
|             | BIM工作电流            | 正弦波50KHz     |     | 1.1               |        | mA  |
|             | OSC工作电流            | Freq=5.96MHz |     | 78                |        | uA  |
|             | 数字工作电流             | 正常工作         |     | 230               |        | uA  |
|             | <b>数于工作电</b> 机     | Power down   |     | 0.2               | 1.3    | uA  |
|             | ADC+LDO+数字         | ADC普通模式      |     | 1                 |        | mA  |
| 整体功耗        | ADC+LDO+数字         | ADC性能模式      |     | 1.5               |        | mA  |
|             | ADC+LDO+数字         | ADC占空比模式     |     | 0.4               |        | mA  |
|             | ADC+BIM+LDO+<br>数字 | BIM测量模式      |     | 1.5               |        | mA  |

<sup>1),2):</sup> 以上噪声特性是指 PMODE[1:0]=01、BUFBP=0, 且 CHOPM[1:0]、IDAC、LVSHIFT、FIL\_EN 为默 认配置时的噪声特性; 使用以上选项的一项或多项时的噪声特性请参考 第四章 "噪声和有效位"的相关 描述:

- 3):该电流值为限流电阻为 2Kohm 时,正弦频率为 50KHz 时的典型值;调节限流电阻可以调节该电流大小,且电流随正弦频率不同略有差别。
- 4),5),6):LDO 和 VREF工作电流均包括了内部 Bandgap 模块的工作电流;因此两个模块同时打开时,电流不是简单相加;LDO+VREF(不启动温度补偿)电流为 260uA。

### 1.6 可靠性指标

- (1) ESD > = +/-4KV(成品接触放电+/-4KV; 空气放电+/-8KV), 芯片不损坏
- (2) 80M~2G 射频干扰, 18 位 ADC 跳动小于 30 个码



## 1.7 产品型号及引脚

CS1259 具有 5 个模拟输入通道,8 电极 BIM 测量通道,采用 LQFP-32 封装。



图 1.2 CS1259 引脚图

表 1.3 CS1259 引脚说明

| 引脚序号 | 引脚名称 | 输入/输出 | 说明         |
|------|------|-------|------------|
| 1    | VDD  | P     | 电源         |
| 2    | GND  | P     | 地          |
| 3    | VS   | О     | LDO 输出端口   |
| 4    | REFP | I     | 正端参考电压输入端口 |
| 5    | REFN | I     | 负端参考电压输入端口 |
| 6    | AIN0 | I     | 模拟信号输入通道 0 |
| 7    | AIN1 | I     | 模拟信号输入通道 1 |
| 8    | AIN2 | I     | 模拟信号输入通道 2 |
| 9    | AIN3 | I     | 模拟信号输入通道 3 |
| 10   | AIN4 | Ι     | 模拟信号输入通道 4 |



| 11 | CIP    | I/O | 模拟信号滤波端口        |
|----|--------|-----|-----------------|
| 12 | CIN    | I/O | 模拟信号滤波端口        |
| 13 | GND    | P   | 地               |
| 14 | RFC1   | 0   | 整流输出端口1         |
| 15 | RFC0   | 0   | 整流输出端口 0        |
| 16 | VSEN3  | I   | 电压检测电极输入通道3     |
| 17 | VSEN2  | I   | 电压检测电极输入通道 2    |
| 18 | VSEN1  | I   | 电压检测电极输入通道 1    |
| 19 | VSEN0  | I   | 电压检测电极输入通道 0    |
| 20 | ISIN3  | 0   | 激励电流输出电极通道 3    |
| 21 | ISIN2  | О   | 激励电流输出电极通道 2    |
| 22 | ISIN1  | 0   | 激励电流输出电极通道 1    |
| 23 | ISIN0  | 0   | 激励电流输出电极通道 0    |
| 24 | VRES1  | I   | 参考电阻 1 接入通道     |
| 25 | VRES0  | I   | 参考电阻 0 接入通道     |
| 26 | SINI   | I   | 正弦激励输入端口        |
| 27 | SINO   | О   | 正弦激励输出端口        |
| 28 | CS/VPP | I   | 片选信号端口/烧录电压 VPP |
| 29 | SCLK   | I/O | 串行通讯时钟端口        |
| 30 | SDA    | I/O | 串行通讯数据端口        |
| 31 | GND    | P   | 地               |
| 32 | VDD    | P   | 电源              |

# 1.8 典型应用电路



图 1.3 CS1259 典型应用电路



# 2 功能寄存器说明

## 2.1 功能寄存器列表

表 2.1 功能寄存器列表

| 答   | <b>F</b> 存器 |           |         |          | t         | 比特位         |          |           |          | 默认  |
|-----|-------------|-----------|---------|----------|-----------|-------------|----------|-----------|----------|-----|
| 地址  | 名称          | BIT7      | BIT 6   | BIT 5    | BIT 4     | BIT 3       | BIT 2    | BIT 1     | BIT 0    | 值   |
| 00H | SYS         | TMOE      | DE[1:0] | PMOD     | DE[1:0]   | ENREF       | ENADC    | ENLDO     | ENBIM    | 00H |
| 01H | ADC0        | IMOD      | FS_SEL  |          | INNS[2:0] |             |          | INPS[2:0] |          | 00H |
| 02H | ADC1        |           | DR[2:0] |          | BUFBP     | PG.         | A[1:0]   | ADC       | SN[1:0]  | 00H |
| 03H | ADC2        | IDAC      | 1[1:0]  | IDAC     | 0[1:0]    | IDAM        | UX1[1:0] | IDAM      | UX0[1:0] | 00H |
| 04H | ADC3        | GTCSL     |         | GTC[2:0] |           | LVSCP       | LVSHIFT  | IDASL     | IDACP    | 00H |
| 05H | ADC4        | CHOP      | M[1:0]  | ACCU_NU  | M[1:0]    | ADREFS[1:0] |          | LDOS[1:0] |          | 40H |
| 06H | ADC5        |           |         |          | EXFIL_EN  | REG_NC      | FIL_EN   | FIL_CON1  | FIL_CON0 | 00H |
| 07H | BIM0        | ISINO     | D[1:0]  | ISIN     | I[1:0]    | VSE         | NP[1:0]  | VSE       | NN[1:0]  | 00H |
| 08H | BIM1        |           | MIX_EN  | BIMMO    | DE[1:0]   |             | DACFR    | EQ[3:0]   |          | 00H |
| 09H | ADOH        |           |         |          | AD        | O[23:16]    |          |           |          | 00H |
|     | ADOM        | ADO[15:8] |         |          |           |             | 00H      |           |          |     |
|     | ADOL        | ADO[7:0]  |         |          |           |             |          | 00H       |          |     |
| 0AH | ADS         | ADS       | RST     |          | ·         |             |          |           |          | 00H |
|     |             |           |         |          |           |             |          |           |          |     |

# 2.2 功能寄存器说明

## 2.2.1 SYS —系统配置寄存器

表 2.2 SYS 寄存器说明

| Bits  | 描述         |                                                                                                    | 权限    | 默认值  |
|-------|------------|----------------------------------------------------------------------------------------------------|-------|------|
| [7:6] | TMODE[7:6] | 测量模式控制位                                                                                            | r/w   | 00'b |
|       |            | 11:BIM 测量模式                                                                                        |       |      |
|       |            | (置 INPS[2:0]=110, INNS[2:0]=110, LVSHIFT=0,<br>PGA[1:0]=00, BUFBP=0, ADGN[1:0]=00, ADREFS[1:0]=00, |       |      |
|       |            | FS_SEL=0, IMOD=0, 相应寄存器 配置无效;其他由寄存器决                                                               |       |      |
|       |            | 定)                                                                                                 |       |      |
|       |            | 10:电源电压测量模式<br>  (置ENREF=1,INPS 2:0 =100, INNS 2:0 =100, LVSHIFT=0,                                |       |      |
|       |            | PGA[1:0]=00, BUFBP=0, ADGN[1:0]=00, ADREFS[1:0]=10,                                                |       |      |
|       |            | FS_SEL=0,IMOD=0,相应寄存器配置无效;其他由寄存器决定)                                                                |       |      |
|       |            | 01:温度测量模式                                                                                          |       |      |
|       |            | (置 ENREF=1, INPS[2:0]=111, INNS[2:0]=111, LVSHIFT=0,                                               |       |      |
|       |            | PGA[1:0]=00, BUFBP=0, ADGN[1:0]=10, ADREFS[1:0]=10, FS_SEL=0, IMOD=0.相应寄存器配置无效;其他由寄存器决             |       |      |
|       |            | 定)                                                                                                 |       |      |
|       |            | 00:手动测量模式                                                                                          |       |      |
| [5:4] | PMODE[1:0] | (自由配置)  工作模式控制位(仅在TMODE=00 时)                                                                      | r/w   | 00'b |
| [3.4] |            | <i>工作模式投制型(仅在 IMODE=00 时)</i><br>  11:自由模式                                                         | 1/ W  | 00 0 |
|       |            | 11.日 田代天八<br>  (ADC 自由配置)                                                                          |       |      |
|       |            | 10:占空比模式,DR=640Hz                                                                                  |       |      |
|       |            | (FS_SEL=0, BUFBP=0, IMOD=0, ENADC 和 ENLDO 受控制)                                                     |       |      |
|       |            | 01:性能模式                                                                                            |       |      |
|       |            | (FS_SEL=1, BUFBP=0, IMOD=1, 相应寄存器配置无效;其他配置由相应寄存器决定)                                                |       |      |
|       |            | 00:普通模式(当前不可用)                                                                                     |       |      |
|       |            | (FS_SEL=0,BUFBP=1,IMOD=0,相应寄存器配置无效;其他配                                                             |       |      |
| [2]   | ENDEE      | 置由相应寄存器决定)                                                                                         | 4/222 | 0'1  |
| [3]   | ENREF      | VREF 模块使能信号                                                                                        | r/w   | 0'b  |
|       |            | 1:VREF 使能                                                                                          |       |      |
|       |            | 0:VREF 关闭                                                                                          |       |      |



| [2] | ENADC | ADC 模块使能位 | r/w | 0'b |
|-----|-------|-----------|-----|-----|
|     |       | 1:ADC 使能  |     |     |
|     |       | 0:ADC 关闭  |     |     |
| [1] | ENLDO | LDO 模块使能位 | r/w | 0'b |
|     |       | 1:LDO 使能  |     |     |
|     |       | 0:LDO 关闭  |     |     |
| [0] | ENBIM | BIM 模块使能位 | r/w | 0'b |
|     |       | 1:BIM 使能  |     |     |
|     |       | 0:BIM 关闭  |     |     |

### 2.2.2 ADC0—ADC 配置寄存器

表 2.3 ADC0 寄存器说明

| Bits  | 描述        |                              | 权限  | 默认值   |
|-------|-----------|------------------------------|-----|-------|
| [7]   | IMOD      | 调制器MOD 电流控制位                 | r/w | 0'b   |
|       |           | 1:性能模式电流=普通模式电流×2            |     |       |
|       |           | 0:普通模式电流                     |     |       |
| [6]   | FS_SEL    | 采样频率选择位                      | r/w | 0'b   |
|       |           | 1:662.22KHz                  |     |       |
|       |           | 0:331.11KHz                  |     |       |
| [5:3] | INNS[2:0] | PGA 负端输入信号选择位                | r/w | 000'b |
|       |           | 111:TSN,TS 负端                |     |       |
|       |           | 110:BIMN(仅在 TMODE=11 时有效)    |     |       |
|       |           | 101:1/2 VS(共模电压)             |     |       |
|       |           | 100:GND(仅在 TMODE=10 有效)      |     |       |
|       |           | 011~000:AIN4~AIN1            |     |       |
| [2:0] | INPS[2:0] | PGA 正端输入信号选择位                | r/w | 000'b |
|       |           | 111:TSP,TS 正端                |     |       |
|       |           | 110:BIMP(仅在 TMODE=11 时有效)    |     |       |
|       |           | 101: 1/2 VS(共模电压)            |     |       |
|       |           | 100: 1/8 VDD(仅在 TMODE=10 有效) |     |       |
|       |           | 011~000:AIN3~AIN0            |     |       |

## 2.2.3 ADC1—ADC 配置寄存器 1

表 2.4 ADC1 寄存器说明

| Bits  | 描述       |                    | 权限  | 默认值   |
|-------|----------|--------------------|-----|-------|
| [7:5] | DR[2:0]  | ADC 输出速率选择位        | r/w | 000'b |
|       |          | 111:1280Hz         |     |       |
|       |          | 110:640Hz          |     |       |
|       |          | 101:320Hz          |     |       |
|       |          | 100:160Hz          |     |       |
|       |          | 011:80Hz           |     |       |
|       |          | 010:40Hz           |     |       |
|       |          | 001:20Hz           |     |       |
|       |          | 000:10Hz           |     |       |
| [4]   | BUFBP    | Buffer 控制位         | r/w | 0'b   |
|       |          | 1:Buffer 关闭(当前不可用) |     |       |
|       |          | 0:Buffer 开启        |     |       |
| [3:2] | PGA[1:0] | PGA 增益选择位          | r/w | 00'b  |



|       |           | 11:Gain =32 |     |      |
|-------|-----------|-------------|-----|------|
|       |           | 10:Gain=16  |     |      |
|       |           | 01:Gain=1   |     |      |
|       |           | 00:Gain=1   |     |      |
| [1:0] | ADGN[1:0] | 调制器增益选择位    | r/w | 00'b |
|       |           | 11:Gain=8   |     |      |
|       |           | 10:Gain=4   |     |      |
|       |           | 01:Gain=2   |     |      |
|       |           | 00:Gain=1   |     |      |

## 2.2.4 ADC2—ADC 配置寄存器 2

表 2.5 ADC2 寄存器说明

| Bits  | 描述           |                  | 权限  | 默认值  |
|-------|--------------|------------------|-----|------|
| [7:6] | IDAC1[1:0]   | IDAC1 电流选择位      | r/w | 00'b |
|       |              | 11:40uA          |     |      |
|       |              | 10:30uA          |     |      |
|       |              | 01:20uA          |     |      |
|       |              | 00:10uA          |     |      |
| [5:4] | IDAC0[1:0]   | IDAC0 电流选择位      | r/w | 00'b |
|       |              | 11:40uA          |     |      |
|       |              | 10:30uA          |     |      |
|       |              | 01:20uA          |     |      |
|       |              | 00:10uA          |     |      |
| [3:2] | IDAMUX1[1:0] | IDAC1 连接通道选择位    | r/w | 00'b |
|       |              | 11: AIN3         |     |      |
|       |              | 10:AIN2          |     |      |
|       |              | 01:AIN1          |     |      |
|       |              | 00:不连接任何通道(模块关闭) |     |      |
| [1:0] | IDAMUX0[1:0] | IDAC0 连接通道选择位    | r/w | 00'b |
|       |              | 11: AIN2         |     |      |
|       |              | 10:AIN1          |     |      |
|       |              | 01:AIN0          |     |      |
|       |              | 00:不连接任何通道(模块关闭) |     |      |

## 2.2.5 ADC3—ADC 配置寄存器 3

表 2.6 ADC3 寄存器说明

| Bits  | 描述       |                     | 权限  | 默认值  |
|-------|----------|---------------------|-----|------|
| [7]   | GTCSL    | 增益温漂补偿粗细选择位:        | r/w | 00'b |
|       |          | 1:粗调=精调×6,用于补偿传感器温漂 |     |      |
|       |          | 0:精调,用于调整芯片自身温漂     |     |      |
| [6:4] | GTC[2:0] | 增益温漂补偿选择位(CTCSL=0): | r/w | 00'b |
|       |          | 111:15 ppm/℃        |     |      |
|       |          | 110:10 ppm/°C       |     |      |
|       |          | 101:5 ppm/℃         |     |      |
|       |          | 100:0               |     |      |
|       |          | 000:0               |     |      |
|       |          | 001:-5 ppm/°C       |     |      |
|       |          | 010:-10 ppm/℃       |     |      |
|       |          | 011:-15ppm/℃        |     |      |



| [3] | LVSCP   | 电平移位模块斩波使能位(LVSHIFT=1 时有 | r/w | 0'b   |
|-----|---------|--------------------------|-----|-------|
|     |         | 效):                      |     |       |
|     |         | 1:斩波使能,斩波频率=Fs/128       |     |       |
|     |         | 0:斩波不使能                  |     |       |
| [2] | LVSHIFT | 电平移位模块使能位:               | r/w | 0'b   |
|     |         | 1:电平移位使能                 |     |       |
|     |         | 0:电平移位不使能                |     |       |
| [1] | IDASL   | IDAC1/IDAC0 粗细档选择位:      | r/w | 000'b |
|     |         | 1:粗调=精调×13, 可调整输入共模电压    |     |       |
|     |         | 0:精调,可补偿输入失调电压           |     |       |
| [0] | IDACP   | IDACI/IDAC0 斩波开关使能位:     | r/w | 0'b   |
|     |         | 1:斩波使能,斩波频率=Fs/128       |     |       |
|     |         | 0:斩波不使能                  |     |       |

CS1259 芯片用户手册 V1.0

### 2.2.6 ADC4—ADC 配置寄存器 4

表 2.7 ADC4 寄存器说明

| Bits  | 描述             |                   |                | 权限  | 默认值  |
|-------|----------------|-------------------|----------------|-----|------|
| [7:6] | CHOPM[1:0]     | 仪放(IA)及调制器(MOD)   | 斩波频率控制位        |     | 01'b |
|       |                | 11: 仪放斩波频率为 fs_cl | k/64,调制器斩波频    | r/w |      |
|       |                | 率为 fs clk/128     |                |     |      |
|       |                | 10: 仪放斩波频率为 fs_cl | k/32,调制器斩波频    |     |      |
|       |                | 率为 fs clk/128     |                |     |      |
|       |                | 01:仪放斩波频率为 fs_clk | /32,调制器斩波频     |     |      |
|       |                | 率为 fs clk/256     |                |     |      |
|       |                | 00:不开斩波           |                |     |      |
|       |                | fs_clk 为 MOD 采样频率 |                |     |      |
| [5:4] | ACCU_NUM [1:0] | 占空比模式下COMB 数a     | <i>据累加个数选择</i> | r/w | 00'b |
|       |                | ACCU_NUM          | 累加个数           |     |      |
|       |                | 00                | 8              |     |      |
|       |                | 01                | 16             |     |      |
|       |                | 10                | 32             |     |      |
|       |                | 11                | 64             |     |      |
|       |                | 注意: (COMB 数据累加/   | *              |     |      |
|       |                | 速率不能大于 COMB 速率    | 率 640Hz。       |     |      |
| [3:2] | ADREFS[1:0]    | ADC 参考电压选择位       |                | r/w | 00'b |
|       |                | 11:正参考=内部 VREF,负  | 参考=GND         |     |      |
|       |                | 10: 正参考=内部 VREF,负 | 设参考=GND        |     |      |
|       |                | 01:正参考=VREF 外接 RI | EFP 再接回 ADC    |     |      |
|       |                | 负参考=外部 REFN       |                |     |      |
|       |                | 00:正参 考=外部 REFP,负 | 参考=外部 REFN     |     |      |
| [1:0] | LDOS [1:0]     | 内部LDO 输出VS 电压边    | <i>选择位</i>     | r/w | 00'b |
|       |                | 11:3.0V           |                |     |      |
|       |                | 10:2.8V           |                |     |      |
|       |                | 01:2.45V          |                |     |      |
|       |                | 00:2.35V          |                |     |      |

## 2.2.7 ADC5—ADC 配置寄存器 5

表 2.8 ADC5 寄存器说明



| Bits  | 描述       |                            | 权限  | 默认值  |
|-------|----------|----------------------------|-----|------|
| [7:5] | NA       | NA                         |     |      |
| [4]   | EXFIL_EN | PGA 输入信号接外部滤波器使能位          | r/w | 0'b  |
|       |          | 1:使用外部 RC 滤波器              |     |      |
|       |          | 0:不使用外部 RC 滤波器             |     |      |
| [3]   | REG_NC   | 保留位                        |     |      |
| [2]   | FIL_EN   | COMB之后的低通滤波器使能控制信号         | r/w | 00'b |
|       |          | 1:滤波器打开                    |     |      |
|       |          | 0:滤波器关闭                    |     |      |
|       |          | 注:在占空比模式下不可以使用;速率为         |     |      |
|       |          | 10Hz、20Hz、40Hz、80Hz 不可以使用。 |     |      |
| [1]   | FIL_CON1 | 滤波器级联控制                    | r/w | 0'b  |
|       |          | 0:滤波器使用级联结构                |     |      |
|       |          | 1:滤波器不使用级联结构               |     |      |
| [0]   | FIL_CON2 | 滤波器系数控制                    | r/w | 0'b  |
|       |          | 0:使用系数 1                   |     |      |
|       |          | 1:使用系数 2                   |     |      |

#### 2.2.8 BIM0—BIM 配置寄存器 0

表 2.9 BIM0 寄存器说明

| Bits  | 描述         |                | 权限  | 默认值  |
|-------|------------|----------------|-----|------|
| [7:6] | ISINO[1:0] | 正弦激励电流输出通道选择位  | r/w | 00'b |
|       |            | 11: ISIN3      |     |      |
|       |            | 10:ISIN2       |     |      |
|       |            | 01:ISIN1       |     |      |
|       |            | 00: ISIN0      |     |      |
| [5:4] | ISINI[1:0] | 正弦激励电流接收 通道选择位 | r/w | 00'b |
|       |            | 11: ISIN3      |     |      |
|       |            | 10:ISIN2       |     |      |
|       |            | 01:ISIN1       |     |      |
|       |            | 00: ISIN0      |     |      |
| [3:2] | VSENP[1:0] | 电压检测正电极通道选择位   | r/w | 00'b |
|       |            | 11:VSEN3       |     |      |
|       |            | 10:VSEN2       |     |      |
|       |            | 01:VSEN1       |     |      |
|       |            | 00:VSEN0       |     |      |
| [1:0] | VSENN[1:0] | 电压检测负电极通道选择位   | r/w | 00'b |
|       |            | 11:VSEN3       |     |      |
|       |            | 10:VSEN2       |     |      |
|       |            | 01:VSEN1       |     |      |
|       |            | 00:VSEN0       |     |      |

### 2.2.9 BIM1—BIM 配置寄存器

表 2.10 BIM1 寄存器说明

| Bits | 描述 |  | 权限  | 默认值 |
|------|----|--|-----|-----|
| [7]  | NA |  | r/w | 0'b |



| [6]   | MIX_EN       | 解调模式选择位      | r/w | 0'b    |
|-------|--------------|--------------|-----|--------|
|       |              | 1:MIX 解调模式   |     |        |
|       |              | 0:全波整流模式     |     |        |
| [5:4] | BIMMODE      | BIM 模式选择位    | r/w | 00'b   |
|       | [1:0]        | 11:内短模式      |     |        |
|       |              | 10:校准电阻 1 模式 |     |        |
|       |              | 01:校准电阻 0 模式 |     |        |
|       |              | 00:测量模式      |     |        |
| [3:0] | DACFREQ[3:0] | 正弦电流输出频率选择位  | r/w | 0000'b |
|       |              | 101:250KHz   |     |        |
|       |              | 100:100KHz   |     |        |
|       |              | 011:50KHz    |     |        |
|       |              | 010:25KHz    |     |        |
|       |              | 001:10KHz    |     |        |
|       |              | 000:5KHz     |     |        |

## 2.2.10 ADO— ADC 转换数据寄存器

表 2.11 ADO 寄存器说明

| Bits      | 描述         |                  | 权限 | 默认值 |
|-----------|------------|------------------|----|-----|
| ADOH[7:0] | ADO[23:16] | ADC 转换值的[23:16]位 | r  | 00H |
| ADOM[7:0] | ADO[15:8]  | ADC 转换值的[15:8]位  | r  | 00H |
| ADOL[7:0] | ADO[7:0]   | ADC 转换值的[7:0]位   | r  | 00H |

## 2.2.11 ADS—ADC 转换数据读取标准寄存器

表 2.12ADO 寄存器说明

| Bits  | 描述  |                | 权限 | 默认值      |
|-------|-----|----------------|----|----------|
| [7]   | ADS | ADO 中数据读取标志    | r  | 0'b      |
|       |     | 1:数据已经被读取      |    |          |
|       |     | 0:数据尚未被读取      |    |          |
| [6]   | RST | 芯片上电复位标志位      | r  | 0'b      |
|       |     | 1:芯片上电复位完成     |    |          |
|       |     | 0:用户查询该标志后自动清零 |    |          |
| [5:0] | NA  |                |    | 000000'b |



# 3 功能描述

### 3.1 输入选择

CS1259 中模拟输入通道及内部若干信号分别通过 MUXP 和 MUXN 后,再经过输入电平移位模块 LVSHIFT 接到 PGA 正端和负端,如图 3.1 所示。



图 3.1 模拟输入结构图

输入信号中 AINx(x=0~4)来自相应的模拟输入引脚,可以任意组合成差分对; GND 用来和 AINx 配对组成单端测量; 1/8 VDD 和 REFN 配对进行电源电压测量; 1/2 VS 用于内短进行失调校正; BIMP/BIMN 是来自 BIM 模块的差分信号; TSP 和 TSN 是来自温度传感器的差分信号。

#### 3.2 输入电平移位器

在某些应用场合,输入信号的共模电压接近地轨、或者输入为一端接地的单端信号, 此时 PGA 将不能将信号进行正常放大。输入电平移位模块可以将上述接近地轨的信号的共 模电压抬高约 0.9V 使其可以被 PGA 正常放大。

如图 3.2 所示,当 LVSHIFT=1 时,INP 和 INN 经过电平移位器之后输出给 PGAP 和 PGAN;反之则 INP 和 INN 直通 PGAP 和 PGAN; LVSCP 控制是斩波控制位,开启后可以减小由于电平移位器自身引入的失调和低频噪声。





图 3.2 电平移位模块

### 3.3 IDAC1/IDAC0 和输入通道

CS1259 内部具有 2 个 2bits 电流型 DAC,包括 DAC1 和 IDAC0,可以通过多路开关连接到输入通道 AINx,具有从输入口 sink 电流的能力。

如图 3.3 所示,IDAC0 可以通过 IDAMUX0[1:0]控制连接到 AIN0~AIN2; 而 IDAMUX0[1:0]=00'b 时,则表示不与任何输入通道连接; IDAC1 可以通过 IDAMUX0[1:0] 控制连接到 AIN1~AIN3; 而 IDAMUX1[1:0]=00'b 时,则表示不与任何输入通道连接; IDACx 的 sink 电流大小由 IDACx[1:0]控制,选择真值表如表 2.5 所示。



图 3.3 IDAC1/IDAC0 结构及与输入通道关系

IDAC1/IDAC0的主要功能有三个方面:

- 1) 为外部器件提供恒流偏置;
- 2) 调节外部桥式传感器的共模电压;例如桥式传感器的阻值为10Kohm,其差分信号 正端接 AIN0,负端接 AIN1;同时 IDAC1接 AIN1,IDAC0接 AIN0,DAC1, IDAC0都 sink 10uA 电流,则该传感器差分信号的共模电压下降100mV。



3) 调节外部桥式传感器的失调电压;例如桥式传感器的阻值为10Kohm,其差分信号正端接入AIN0,负端接入AIN1,存在一个失调电压100V;为了消除这个失调电压,可将IDAC0接AIN0,IDAC0都 sink 10uA电流,则该传感器差分信号的失调电压被抵消。但该IDAC也会引入一部分噪声,造成测量精度下降。

IDAC1/IDAC0 还受 ICP 信号控制,用于开启内部斩波功能,但只能用于 IDAC1 和 IDAC0 具有相同输出电流选择 的情况,例如用于调整共模电压时。开启斩波后有利于消除 IDAC 本身引入的噪声和失调。

开启 IDACx 后必须注意,AINx 的电压必须在 GND-0.3V<AINx<VDD+0.3V 的范围内,否则会触发内部 ESD 保护电路,使芯片不能正常工作。

#### 3.4 PGA 和 ADC

CS1259 通过一个低噪声,低漂移的 PGA 放大器将输入信号放大后送入一个 2 阶的 Sigma-Delta ADC 进行模数转换。 如图 3.4 所示为 PGA 和 ADC 的结构图,其中 PGA 的增益由 PGA[1:0]选择,具有 1\8\16\32 四档可选; ADC 的增益由 ADGN[1:0]所选择、具有 1\2\4\8 四档可选; 另外 ADC 参考电压来自输入的 REFP-REFN。



图 3.4 PGA 和 ADC 结构图

输入信号的增益 Gain 由 PGA 和 ADC 各自增益的乘积决定。

$$Gain = PGA \times ADGN \tag{ $\sharp} 3-1)$$$

为了提高信号的建立表现,PGA 输出到 ADC 调制器输入还有 Buffer 作为缓冲;但同时提供 Buffer 旁路功能,将 BUFBP 置'1',则 Buffer 被旁路,PGA 输出信号直接接入 ADC 的调制器。CS1259 的差分满幅输入范围 FS 由 Gain 决定,

$$FS = (REFP - REFN)/Gain$$
 ( $\sharp$  3-2)

若差分输入通道 AINp-AINn=VIN,则为保证不溢出,VIN 的范围必须小于 FS。

在 PGA 开启的情况(包括 PGA $\neq$ 1 和 PGA=1&BUFBP=0 的情况)下,输入通道的输入信号范围需要保证 PGA 能够正常工作,一般



$$VDD-1.0V > AINx > GND+0.2V$$

(式 3-3)

输入信号的共模电压为 VCM, VCM=(AINp+AINn)/2,则 VCM 的范围也受 PGA 决定,

$$VDD-1.0V-VIN \times PGA/2 > VCM > GND+0.2V+VIN \times PGA/2$$
 (式 3-4)

当 PGA=1 且 BUFBP=1 时,PGA 被旁路,此时输入信号直接进入 ADC,则输入信号的范围由 ADC 决定,一般

$$VDD + 0.1V > AINx > GND - 0.1V$$
 (式 3-5)

VCM 的范围也受 ADC 决定,

 $VDD+0.1V-VIN\times ADGN/2>VCM>GND-0.1V+VIN\times ADGN/2$  (式 3-6) 以上各种情况还会影响输入通道的等效输入阻抗,详细请参考表 3.1。

| Gain = | PGA | × ADGN | BUFBP | 输入阻抗     | 输入信号范围  | 共模输入范围  |
|--------|-----|--------|-------|----------|---------|---------|
| 1      | 1   | 1      | 0     | >100Mohm | (式 3-3) | (式 3-4) |
| 2      | 1   | 2      | 0     |          |         |         |
| 4      | 1   | 4      | 0     |          |         |         |
| 8      | 1   | 8      | 0     |          |         |         |
| 16     | 16  | 1      | 0     |          |         |         |
| 32     | 32  | 1      | 0     |          |         |         |
| 64     | 32  | 2      | 0     |          |         |         |
| 128    | 32  | 4      | 0     |          |         |         |
| 1      | 1   | 1      | 1     | ~800Kohm | (式 3-5) | (式 3-6) |
| 2      | 1   | 2      | 1     | ~400Kohm |         |         |
| 4      | 1   | 4      | 1     | ~200Kohm |         |         |
| 8      | 1   | 8      | 1     | ~100Kohm |         |         |
| 16     | 16  | 1      | 1     |          |         |         |
| 32     | 32  | 1      | 1     |          |         |         |
| 64     | 32  | 2      | 1     |          |         |         |
| 128    | 32  | 4      | 1     |          |         |         |

表 3.1 PGA 和 ADGN 与 Gain 及输入信号的关系

当输入信号接近地轨,例如单端信号,同时又希望开启 PGA 以获得大的 Gain 和输入阻抗时,可以开启 LVSHIFT 功能,可以将输入信号上移约 0.9V 后送入 PGA 中,这也等效于开启 LVSHIFT 功能后,开启 PGA 情况下的输入信号下限下移约 0.9V。

对于桥式传感器,当输入信号共模电压较高又需要开启 PGA 时,可以开启 IDACx 来进行共模电压调节。



CS1259的 ADC 采用 2 阶 sigma-delta 调制器实现,内部采样频率为 331.11KHz(普通模式)或 662.22KHz(性能模式);增益 ADGN 可由电容倍增和频率倍增实现。

CS1259 的 ADC 带有内部增益温漂补偿功能,通过 GTCSL 以及 GTC[2:0]可以配置。当 GTCSL=1 时为粗调档,此时对应 GTC[2:0]增益温漂补偿的一个步长为  $30ppm/\mathbb{C}$ ,可用于补偿外部传感器的温漂;而当 GTCSL=0 时,相应步长为  $5ppm/\mathbb{C}$ ,可用于调整芯片内部的增益温漂。

#### 3.5 数字滤波器

从 Sigma-delta ADC 出来的数据是 1 位的高速比特流数据,并且包含了大量的高频噪声,因此需要数字滤波器对该比特流数据进行滤波和比特率转换,将高频噪声滤除、同时完成降采样,将 1 位高速比特流数据变成 24-bit 的二进制码数据。这个工作通过多阶的COMB 滤波器完成。COMB 滤波器之后可以选择是否使用滤波器进一步进行滤波。

#### 3.5.1 频率响应



图 3.5 COMB 滤波器的频率响应特性(Fs=331Hz, DR=10Hz, 3 阶 COMB)

### 3.5.2 建立时间

正常模式下数字 COMB 在低速是 3 阶(10Hz、20Hz、40Hz、80Hz), 高速时是 4 阶或 5 阶(160Hz、320Hz、640Hz、1280Hz); 占空比模式下, 数字 COMB 是 4 阶或 5 阶。数据建立时间跟 COMB 的阶数有关, 3 阶 COMB 的数据在第三个能够建立好; 4 阶 COMB 的数据在第四个能够建立好; 5 阶 COMB 的数据在第五个能够建立好。





图 3.6 COMB 建立过程

如果 FIL\_EN 设置为 1,数据建立时间更长,所需时间如下表所示(数据误差收敛到在 万分之一以内的时间)。

| FILCON1 | FILCON0 | 建立时间              |
|---------|---------|-------------------|
| 0       | 0       | COMB 数据建立时间+300ms |
| 0       | 1       | COMB 数据建立时间+590ms |
| 1       | 0       | COMB 数据建立时间+230ms |
| 1       | 1       | COMB 数据建立时间+460ms |



### 3.6 人体阻抗测量

人体阻抗测量的原理是将人体等效为一个阻容网络,然后让一路电流流过该网络产生一个和网络阻抗成正比的压降,通过 ADC 测得该压降即可换算出阻容网络的等效阻抗; 然后通过查询一个表格,将人体等效阻抗换算成人体的组成成分。这个表格通常和人的年龄、性别、身高体重、以及人种有关。(关于人体等效阻抗的阻容网络模型、各成分的电学模型、人体阻抗和人体脂肪含量的关系、以及分段测量、多频率测量原理等请参考人体阻抗测量的相关专业知识。)。 本芯片内部集成了一个交流人体阻抗测量(BIM)模块。



图 3.7 BIM 模块结构图

如

图 3.7 所示为 BIM 的模块结构图,其中正弦信号发生器(包括 DDS、DAC、LPF等)可以产生正弦波信号,该信号经过 CO、RO 做高通滤波及限流后转换为正弦电流,并通过至少一对激励电极(端口 ISINx,x=0,1,2,3,安装在人体不同的两个部位,一个负责发射正弦电流激励信号,一个负责接受该激励信号)在人体的等效阻容网络上形成一个电压降;通过测量电极(端口 VSENy,y=0,1,2,3)探知该电压降信号后,芯片内部对其进行整流滤波等处理,然后送入 ADC 中测量将模拟电压信号转换为数字信号,从而得到人体阻抗上的电压降值。

#### 3.6.1 正弦信号发生器



如图 3.7 BIM 模块结构图所示,正弦信号发生器包括一个直接数字合成器(DDS)、DAC 以及 LPF 低通滤波器;其中 DDS 可以生成正弦波码值序列驱动一个 1-MSPS/6-bit 的DAC;而 DAC 输出送入一个两阶滤波器,截至频率约 150KHz 的 LPF 中进行滤波,以消除高次谐波;LPF 的输出接一个外部电容 C0 进行隔直,避免有直流电流流入人体,再通过一个限流电阻 R0 接到内部运算放大器 OPA1 的负输入端,将电压信号转换为电流信号,同时将电流限定在安全值 500uA 以内。设激励电流为 I(t),DAC 输出电压为 VDAC,正弦波幅度为 AMP,角频率为ω₀,

$$I(t) = VDAC/R0 = AMP \bullet \sin(\omega_0 \bullet t)$$
 (\(\pi \)3-7)

若电阻 R0 具有±20%的容差,通常可将 R0 设置为 2Kohm,此时输出电流的 RMS 属于安全区域。减小 R0 可以增大电流,提高增益,但要考虑电流对人体的作用。通常平均电流达到 1mA 时,人体将有所感觉。另外,电容 C0 可以选择 10uF(推荐)或 1uF等。

正弦波频率通过 DACFREQ[3:0]配置,支持 5KHz、10KHz、25KHz、50KHz、100KHz、250KHz 等频率。

#### 3.6.2 激励电极及测量电极

激励电极 ISIN3~ISIN0 可通过 MUX 任意组合成发射电极-接收电极对,用于将激励电流信号 I(t)从一端注入人体,然后在另一端接收; ISINO[1:0]控制 MUX 可将任一激励电极接 OPA1 的输入负端作为发射电极,而 ISINI[1:0]控制 MUX 可将任一激励电极接入 OPA1 的输出端作为接收电极,但发射和接收电极不能为同一电极。

在发射电极和接收电极之间是人体等效阻抗 Z,流过 I(t)后形成一个压降 V(t),

$$V(t) = I(t) \bullet Z = A|Z| * \sin(\omega_0 \bullet t + \theta)$$
 (\$\times 3-8)

其中|Z|是等效阻抗 Z 的绝对值,  $\theta$  是等效阻抗 Z 的相角。对于纯阻性阻抗,  $\theta$  =0。测量电极  $VSEN3\sim VSEN0$  可通过 MUX 任意组合成正负测量电极测得上述电压 V(t); 其中正测量电极接入差分运放 OPA2 的正输入端,可通过 VSENP[1:0]进行配置;负测量电极接入差分运放 OPA2 的负输入端,可通过 VSENN[1:0]进行配置。

#### 3.6.3 整流

电压信号 V(t)经过差分运放 OPA2 处理后变成一对差分正弦信号送入全波整流模块 Recf, 经整流后再通过 RCF0 和 RCF1 外接电容滤波,产生 DC 信号送入 MUXP/MUXN,进入 ADC 信号链进行测量。在处理的过程中,包括 LPF 环节,会对电流 I(t)和电压 V(t)的幅值有调整,总括起来形成一个增益 G0,换算到最后整流后的有效值中。

当采用全波整流(FWR)模式时,整流后的电压有效值 V<sub>rms</sub>为:

$$V_{rms\ f} = |I(t) \bullet Z| = G0 \bullet AMP \bullet |Z|/\pi \tag{\vec{\textsterling} 3-9}$$



当采用 MIX 整流(MIX)模式时,整流后的电压有效值 V<sub>rms</sub>为:

$$V_{rms,m} = |I(t) \bullet Z| = (G0 \bullet AMP \bullet |Z|/\pi) \bullet \cos \theta \qquad (\vec{x} 3-10)$$

因此,对于只需要知道阻抗绝对值的场景,采用 FWR 模式得到  $V_{rms,f}$ 值即可换算得到 |Z|;对于既需要知道阻抗绝对值又希望了解相角变化的场景,可以在采用 FWR 基础上,再使用 MIX 模式得到  $V_{rms,m}$ ,

$$\cos \theta = V_{rms,m} / V_{rms,f} \tag{\vec{\pi}. 3-11}$$

因为人体阻抗网络是阻容网络,因此 θ <0,所以

$$\theta = -\arccos(V_{rms,m}/V_{rms,f}) \tag{\vec{x} 3-12}$$

#### 3.6.4 阻抗校准

由于非理想因素存在,BIM 在使用前需要校准信号增益和失调。通过 BIMD[1:0]可以 调整 BIM 模式,从测量模式切换到校准模式。

在校准电阻 0 模式下,在 SINO 和 VRESO 之间接电阻 Rsd0, 经过 BIM 信号链和 ADC 信号链后, ADC 可以测得的电压有效值:

$$V_{rms\,0} = Kb \bullet Rsd0 + V_{os} \tag{\ddagger 3-13}$$

在校准电阻 1 模式下,在 SINO 和 VRESO 之间接电阻 Rsd1,经过 BIM 信号链和 ADC 信号链后,ADC 可以测得的电压为:

$$V_{rms,1} = Kb \bullet Rsd1 + V_{os} \tag{\ddagger 3-14}$$

式 3-13 和式 3-14 中  $V_{os}$  为失调电压,可在内短模式下测得;而 Kb 表示信号增益,理想情况下(MIX 模式和 FWR 模式存在微小区别,高精度要求场合可分别校正),

$$Kb = (G0 \bullet AMP / \pi) \tag{\vec{\pm} 3-15}$$

但实际上由于 G0 随着工艺偏差、信号频率都有变化,因此需要通过联立两方程求得 Kb, 用于人体等效阻抗的计算, 因

$$Kb = [(V_{rms,1} - V_{os}) - (V_{rms,0} - V_{os})]/(Rsd1 - Rsd2)^{1}$$
 ( $\vec{x}$  3-16)

得到了 Vos 及 Kb 的值后,对于实际阻抗 Z,则有

$$V_{rms,f} = Kb_f \bullet |Z| + V_{os,f}$$
 (FWR 模式)  
 $V_{rms,m} = Kb_m \bullet |Z| \bullet \cos \theta + V_{os,m}$  (MIX 模式)

求得:

$$|Z| = (V_{rms, f} - V_{os f}) / Kb_f$$
 ( $\vec{x}$  3-17)

$$\theta = -\arccos[(V_{rms,m} - V_{os,m})/(V_{rms,f} - V_{os,f}) \bullet (Kb_f/Kb_m)]$$
 (\$\frac{1}{\times} 3-18)

<sup>1)</sup> 当前版本 Kb 需要加 0.005 的校正因子



### 3.7 参考电压源

CS1259 内部集成一个低漂移的 LDO,可以输出电压给 VS 和/或 REFP,具有 4 档可选,其中 2.4V/2.6V/2.8V/3.0V 主要提供给 VS 使用,用于给外部桥式传感器供电、以及内部 ADC 部分供电,负载电流最大 10mA。还包括一个内部参考电压源 VREF,输出为 2.048V,主要用于做测量的参考电压提供给 REFP(外接电容提高精度)或者作为内部参考电压 VREF。参考电压源的输出电压初始精度为±1%,典型的温漂系数为 30ppm/°C(-40~85°C)。

#### 3.8 内部时钟源

CS1259 内部提供一个低漂移的 RC 时钟,时钟频率为 **5.96MHz**,在-40~85℃变化范围内漂移小于 2%,在 2.4~3.6V 的 VDD 电压范围内,变化小于 1%。

#### 3.9 温度传感器

CS1259 内部集成一个高精度 的温度传感器,分辨率为±0.01℃,采用单点校正、在 0~70℃范围精度为±2℃,-40~85℃范围精度为±3℃。使用温度传感器时,应切换到温度 测量模式档位,并且将 CHOPM[1:0]置为 00 关掉内部斩波以及 EXFIL\_EN 置 0。温度传感器测量时是固定使用内部参考电压 VREF。温度传感器使用前需要进行校正。设校正时的 当前温度为  $T_0$ ℃,校正时 KT 的计算方法是:

#### KT = DOUT/(T0 + 273.15)

每次测量温度时,将 ADC 实际转换的值除以该增益校正值 KT,并减去 273.15K 得到 摄氏温度。此时芯片温度 Ta 和 ADC 输出码值 DOUT 的关系为:

Ta=DOUT/KT-273.15 (°C)

#### 3.10 测量模式及其切换



CS1259除了 5 个外部模拟信号输入通道,内部也具有多个模拟信号通道,包括温度传感器信号、BIM 信号以及电源电压信号。选择不同的输入信号时,通常涉及到通道切换、增益设置、输出速率选择等操作,需要 2~3 条操作指令才能完成配置,切换回来也需要同样的操作指令,上位机软件设计较为繁琐。CS1259 内部有三种不同类型输入信号,加上外部输入信号,则有多达四种输入信号需要处理,在某些应用环境下,例如称重和 BIM 测量应用下,需要频繁在称重和 BIM 测量之间切换,每次切换上位机都要发送 4~6 条指令,较为不便。为了简化软件设计,本芯片内部设计了单命令切换测量模式的结构,通过配置TMODE[1:0]寄存器在温度测量、电源电压测量、BIM 测量以及手动模式之间切换。前三种模式下,通道选择、增益配置及输出速率三个参数都是内部固定配置好,不需要用户干预,手动模式下用户可以随意配置相关参数;手动模式下切换至其余任意模式再切换回手动模式时,用户的设置保持不变。

#### 3.11 多种工作模式

CS1259 提供了多种工作模式可以选择,包括性能模式、正常模式、低功耗模式。

性能模式下,PGA 中 Buffer 打开,ADC 调制器的采样频率为 662.22KHz,此时 ADC 信号链精度最高,增益温漂、线性表现最好,同时 ADC 信号链功耗达到 1.5mA,可应用于需要 10Hz SPS,10000 点以上分度的测量场合。正常模式对性能和功耗进行了平衡,Buffer 旁路,采样频率降低为 331.11KHz,可应用于 10000 分度以下测量场合(例如人体称重),ADC 信号链功耗为 1.2mA。低功耗模式是采用占空比的方式来达到节省功耗的目的。在一个 10Hz 数据更新频率的周期内,数字滤波器以 640Hz 的输出速率工作,开启ADC 后丢弃前 5 个数据,然后累加相应个数进行平均。

占空比模式下 VREF 输出和数字电路间歇性工作,以降低芯片功耗。

在占空比模式下,COMB 是 4 阶的,工作在高速,SPI 数据输出速率只有 10Hz,COMB 数据输出速率为 640Hz,64 个 COMB 周期 SPI 才输出一个数据,我们可以使COMB 只输出前 21 个数据(COMB 前 5 个数据丢失,累加 16 个数据平均输出(第 6 个到第 21 个)),后面 43 个数据周期关闭 COMB 和 VREF 输出,示意图如下。



图 3.8 CS1259 低功耗工作示意图

注: COMB 数据输出速率和累加数据个数可以配置。



# 3.12 复位和断电(POR&power down)

当芯片上电时,内置上电复位电路会产生复位信号,使芯片自动复位。

当 SCLK 从低电平变高电平并保持在高电平超过 172 μs, CS1259 即进入 PowerDwon 模式。当 SCLK 重新回到低电平时,芯片会重新进入正常工作状态。

当系统由 Power down 重新进入正常工作模式时,此时所有功能配置为 PowerDown 之前的状态,不需要进行功能配置。



# 4 转换有效位

表 4.1 ADC 信号链不同 GAIN 及 DR 下的有效位(ENOB)1)

VDD=3V, VS=2.35V, VIN= $\pm$ VS/Gain, Tc=25°C, TT

| VDD=5V, VS=2.35V, VIN=± VS/Gaiii, 1c=25 C, 11  DR |       |      |       |      |      |       |        |
|---------------------------------------------------|-------|------|-------|------|------|-------|--------|
| Gain =                                            | PGA × | ADGN | BUFBP | 10Hz | 40Hz | 160Hz | 1280Hz |
| 1                                                 | 1     | 1    | 0     |      |      |       |        |
| 1                                                 | 1     | 1    | 0     | 22.3 | 21.2 | 20.9  | 18.8   |
| 2                                                 | 1     | 2    | 0     | 21.6 | 20.6 | 19.7  | 18.2   |
| 4                                                 | 1     | 4    | 0     | 21.2 | 20.3 | 19.3  | 17.7   |
| 8                                                 | 1     | 8    | 0     | 20.3 | 19.7 | 18.8  | 17.2   |
| 16                                                | 16    | 1    | 0     | 22   | 21.2 | 20.3  | 18.7   |
| 32                                                | 32    | 1    | 0     | 21.4 | 20.8 | 19.7  | 18.3   |
| 64                                                | 32    | 2    | 0     | 20.8 | 20   | 19    | 17.5   |
| 128                                               | 32    | 4    | 0     | 20   | 19.5 | 18.6  | 16.9   |
| 1                                                 | 1     | 1    | 1     | TBD  | TBD  | TBD   | TBD    |
| 2                                                 | 1     | 2    | 1     | TBD  | TBD  | TBD   | TBD    |
| 4                                                 | 1     | 4    | 1     | TBD  | TBD  | TBD   | TBD    |
| 8                                                 | 1     | 8    | 1     | TBD  | TBD  | TBD   | TBD    |
| 8                                                 | 8     | 1    | 1     | TBD  | TBD  | TBD   | TBD    |
| 16                                                | 16    | 1    | 1     | TBD  | TBD  | TBD   | TBD    |
| 32                                                | 32    | 1    | 1     | TBD  | TBD  | TBD   | TBD    |
| 64                                                | 32    | 2    | 1     | TBD  | TBD  | TBD   | TBD    |
| 128                                               | 32    | 4    | 1     | TBD  | TBD  | TBD   | TBD    |

1): 以上噪声特性是指没有使用 PMODE[1:0]=01, IDAC\LVSHIFT 关闭, FIL\_EN=0 时的噪声特性; 信号源为桥式电阻,输入共模电压 VS/2,内阻为 2Kohm,共模电容 100pF,差模滤波电容为 0.1uF;

表 4.2 ADC 信号链不同配置下的有效位(ENOB)

| PGA | ADGN | BUFBP | IDAC               | LVSHIFT | PMODE | TMODE | DR   | ENOB |
|-----|------|-------|--------------------|---------|-------|-------|------|------|
| 32  | 2    | ON    | OFF                | OFF     | 00    | 00    | 10Hz | TBD  |
| 32  | 2    | OFF   | OFF                | OFF     | 01    | 00    | 10Hz | 20.8 |
| 32  | 2    | OFF   | OFF                | OFF     | 10    | 00    | 10Hz | TBD  |
| 32  | 2    | OFF   | 40uA <sup>1)</sup> | OFF     | 00    | 00    | 10Hz | 19.0 |
| 32  | 2    | OFF   | 40uA <sup>2)</sup> | OFF     | 00    | 00    | 10Hz | 17.0 |
| 32  | 2    | OFF   | OFF                | ON      | 00    | 00    | 10Hz | TBD  |
| X   | X    | X     | OFF                | X       | XX    | 01    | 10Hz | 19.5 |
| X   | X    | X     | OFF                | X       | XX    | 10    | 10Hz | 18.2 |
| X   | X    | X     | OFF                | X       | XX    | 11    | 10Hz | 21.2 |

- 1):IDAC 配置 IDAC0[1:0]=11,IDAC1[1:0]=11, IDACP=1,IDASL=0
- 2) :IDAC 配置 IDAC0[1:0]=11,IDAC1[1:0]=11, IDACP=0,IDASL=0



# 5 典型特性

# 5.1 ADC 典型特性

**TBD** 

# 5.2 LDO/VREF 典型特性

**TBD** 

## 5.3 内部时钟典型特性



图 5.1 内部时钟全电压全温度范围的典型特性

## **5.4 IDAC** 典型特性

TBD

## 5.5 BIM 典型特性





图 5.2 FWR 模式下 220 欧姆纯电阻网络的测试结果



图 5.3 FWR 模式下 1000 欧姆纯电阻网络的测试结果





图 5.4 FWR 模式下 1958 欧姆纯电阻网络的测试结果



图 5.5 FWR+MIX 模式 510ohm+470pF 并联网络的阻抗绝对值测试结果





图 5.6 FWR+MIX 模式 510ohm+470pF 并联网络的相位角测试结果



图 5.7 FWR+MIX 模式 1018Ohm+10nF 并联网络的阻抗绝对值测试结果





图 5.8 FWR+MIX 模式 1018Ohm+10nF 并联网络的相位角测试结果



# 6 三线串行通讯接口

CS1259 中,采用 3 线串行通信,其中 $\overline{CS}$ 为片选/复位信号,SCLK 为通讯时钟、SDA 是双向数据线及数据转换完成标志。

**CS**: 串行接口片选信号,低电平有效,输入信号,内部悬空,建议外接上拉电阻; **CS** 由高电平变为低电平时,表示当前芯片被选中,处于通讯状态; **CS** 由低变电平变为高电平,表示通讯结束,通讯口复位处于空闲状态。

SCLK: 串行时钟输入脚,决定数据移出或移入 SPI 口的传输速率。所有的数据传输操作均与 SCLK 同步,在上升沿将数据从 SDA 引脚输出;在下降沿读取 SDA 上的数据。

SDA: 串行数据输入/输出脚。 $\overline{CS}$ =1,SDA 输出 DRDY,表示 ADC 转换数据已准备好, $\overline{CS}$ =0,SDA 串行通讯数据端口。

串行通讯的命令寄存器是一个 8bit 宽的寄存器。对于读写操作,命令寄存器的 bit7 用来确定本次数据传输操作的类型是读操作还是写操作,命令寄存器的 bit6-0 是读写的寄存器的地址。对于特殊命令操作,命令寄存器的 bit7-0 固定为 0xEA。

注: 当 SCLK 保持低电平 687us 左右进入通讯复位模式(只复位串行通讯接口,防止串行通讯接口进入异常无法通讯,不复位芯片)。

| 命令名称 | 命令寄存器            | 数据         | 描述                                            |
|------|------------------|------------|-----------------------------------------------|
| 读命令  | {0,REG_ADR[6:0]} | Read_Data  | 从地址为 REG_ADR[6:0]的寄存器中读数据。<br>注:读无效地址,返回值为00h |
| 写命令  | {1,REG_ADR[6:0]} | Write_Data | 向地址为 REG_ADR[6:0]的寄存器中写数据                     |
| 复位指令 | 0xEA             | 0x96       | 复位指令,接收到指令之后,芯片复位。                            |

表 6.1 串口通讯命令列表



#### 6.1.1 读时序

工作过程:

外部设备在CS有效后,先通过 SDA 写入读命令字节, CS1259 接收到读命令后,在 SCLK 的上升沿将数据按位从 SDA 引脚输出。注意:

- 1).以字节为单位传输,高比特位在前,低比特位在后;
- 2). 多字节寄存器, 先输出高字节内容, 再传输低字节内容;
- 3).外部设备在 SCLK 上升沿写命令字节, CS1259 在 SCLK 上升沿将数据从 SDA 输出;
  - 4).数据字节之间的时间 t1 要大于等于 2 个系统时钟周期;
- 5).最后一个字节的 LSB 传送完毕, $\overline{\text{CS}}$ 由低变高结束数据传输。SCLK 下降沿和 $\overline{\text{CS}}$ 上 升沿之间的时间 t2 要大于等于 2 个系统时钟周期;



图 6.1 读操作时序 1(读 AD 值)



图 6.2 读操作时序 2(除 AD 值之外的寄存器)

#### 6.1.2 写时序

工作过程:

外部设备在 $\overline{CS}$ 有效后,先通过 SDA 写入命令字节,再写入数据字节。注意:

- 1).以字节为单位传输,高比特位在前,低比特位在后;
- 2).多字节寄存器, 先传输高字节内容, 再传输低字节内容;
- 3).外部设备在 SCLK 上升沿写数据, CS1259 在 SCLK 下降沿沿读取数据;



- 4).数据字节之间的时间 t1 要大于等于 2 个系统时钟周期;
- 5).最后一个字节的 LSB 传送完毕, $\overline{\text{CS}}$ 由低变高结束数据传输。SCLK 下降沿和 $\overline{\text{CS}}$ 上升 沿之间的时间 t2 要大于等于 2 个系统时钟周期。
- 注意: 有写保护功能的寄存器在写操作之前要先写入写使能命令。



图 6.3 写操作时序

表 6.2 三线串行通讯接口时序表

#### (VDD=3V, GND=0V, Fosc=5.96MHz,常温)

| 名称 | 解释                            | Min      | Тур | Max | Unit |
|----|-------------------------------|----------|-----|-----|------|
| t1 | 数据字节之间 SCLK 维持低电平的时间          | 2*sysclk | -   | -   | ns   |
| t2 | 最后一个 SCLK 下降沿与 CS 上升沿之间的时间间隔  | 2*sysclk | -   | -   | ns   |
| t3 | CS 下降沿之前 SCLK 保持为低的时间         | 5        | -   | -   | ns   |
| t4 | CS 上升沿之后 SCLK 保持为低的时间         | 5        | -   | -   | ns   |
| t5 | 在 SCLK 上升沿之前,SDA 上有效数据的建立时间   | 5        | -   | -   | ns   |
| t6 | 在 SCLK 下降沿之后,SDA 上有效数据的保持时间   | sysclk   | -   | -   | ns   |
| t7 | 在 SCLk 上升沿之后, SDO 能稳定输出所需要的时间 | 50       | -   | -   | ns   |
| t8 | SCLK 的高电平宽度                   | 2*sysclk | -   | 170 | us   |
| t9 | SCLK 的低电平宽度                   | 2*sysclk | -   | 680 | us   |



# 7 封装

CS1259 采用 LQFP32 封装。



LQFP32L(0707×1.4)产品外形图

| SYMBOL             |          | MILLIMETER |       |  |  |
|--------------------|----------|------------|-------|--|--|
| LQFP32L (0707×1.4) | MIN      | NOM        | MAX   |  |  |
| A                  | _        | _          | 1.60  |  |  |
| A1                 | 0. 05    | _          | 0. 20 |  |  |
| A2                 | 1.35     | 1. 40      | 1. 45 |  |  |
| A3                 | 0. 59    | 0.64       | 0. 69 |  |  |
| b                  | 0.32     | _          | 0. 43 |  |  |
| b1                 | 0. 31    | 0.35       | 0. 39 |  |  |
| С                  | 0. 13    | _          | 0. 18 |  |  |
| c1                 | 0.12     | 0. 13      | 0.14  |  |  |
| D                  | 8. 80    | 9. 00      | 9. 20 |  |  |
| D1                 | 6. 90    | 7. 00      | 7. 10 |  |  |
| Е                  | 8. 80    | 9. 00      | 9. 20 |  |  |
| E1                 | 6. 90    | 7. 00      | 7. 10 |  |  |
| eВ                 | 8. 10    | _          | 8. 25 |  |  |
| е                  |          | 0.80BSC    |       |  |  |
| L                  | 0.40     | _          | 0. 65 |  |  |
| L1                 | 1. 00BSC |            |       |  |  |
| θ                  | 0        |            | 7°    |  |  |
| L/F载体尺寸            | 150*150  |            |       |  |  |
| (mil)              |          | 205*205    |       |  |  |

图 7.1 芯片 LQFP32 封装尺寸信息(天水)