NPN-Silizium-Fototransistor Silicon NPN Phototransistor

BPX 43

Wesentliche Merkmale

- Speziell geeignet f
 ür Anwendungen im Bereich von 450 nm bis 1100 nm
- · Hohe Linearität
- Hermetisch dichte Metallbauform (TO-18) mit Basisanschluß, geeignet bis 125 °C
- · Gruppiert lieferbar

Anwendungen

- Lichtschranken für Gleich- und Wechsellichtbetrieb
- Industrieelektronik
- "Messen/Steuern/Regeln"

Typ Type	Bestellnummer Ordering Code
BPX 43	Q62702-P16
BPX 43-2/3	Q62702-P3580
BPX 43-3	Q62702-P16-S3
BPX 43-3/4	Q62702-P3581
BPX 43-4	Q62702-P16-S4
BPX 43-4/5	Q62702-P3582
BPX 43-5	Q 62702-P16-S5

Features

- Especially suitable for applications from 450 nm to 1100 nm
- High linearity
- Hermetically sealed metal package (TO-18) with base connection suitable up to 125 °C
- Available in groups

Applications

- Photointerrupters
- Industrial electronics
- For control and drive circuits

2001-02-21

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit °C °C	
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 40 + 125		
Löttemperatur bei Tauchlötung Lötstelle ≥ 2 mm vom Gehäuse, Lötzeit $t \leq 5$ s Dip soldering temperature ≥ 2 mm distance from case bottom, soldering time $t \leq 5$ s	$T_{\mathbb{S}}$	260		
Löttemperatur bei Kolbenlötung Lötstelle ≥ 2 mm vom Gehäuse, Lötzeit $t \leq 3$ s Iron soldering temperature ≥ 2 mm distance from case bottom, soldering time $t \leq 3$ s	$T_{\mathbb{S}}$	300	°C	
Kollektor-Emitterspannung Collector-emitter voltage	V_{CE}	50	V	
Kollektorstrom Collector current	I_{C}	50	mA	
Kollektorspitzenstrom, τ < 10 μ s Collector surge current	I_{CS}	200	mA	
Emitter-Basisspannung Emitter-base voltage	V_{EB}	7	V	
Verlustleistung, $T_{\rm A}$ = 25 °C Total power dissipation	P _{tot}	220	mW	
Wärmewiderstand Thermal resistance	R_{thJA}	450	K/W	

Kennwerte ($T_{\rm A}$ = 25 °C, λ = 950 nm) Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit	
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	λ _{S max}	880	nm	
Spektraler Bereich der Fotoempfindlichkeit $S=10\%$ von $S_{\rm max}$ Spectral range of sensitivity $S=10\%$ of $S_{\rm max}$	λ	450 1100	nm	
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	0.675	mm ²	
Abmessung der Chipfläche Dimensions of chip area	$L \times B$ $L \times W$	1 × 1	$mm \times mm$	
Abstand Chipoberfläche zu Gehäuseoberfläche Distance chip front to case surface	Н	2.4 3.0	mm	
Halbwinkel Half angle	φ	± 15	Grad deg.	
Fotostrom der Kollektor-Basis-Fotodiode Photocurrent of collector-base photodiode $E_{\rm e}$ = 0.5 mW/cm², $V_{\rm CB}$ = 5 V $E_{\rm v}$ = 1000 lx, Normlicht/standard light A, $V_{\rm CB}$ = 5 V	I_{PCB} I_{PCB}	11 35	μ Α μ Α	
Kapazität Capacitance $V_{\rm CE}=0~{\rm V}, f=1~{\rm MHz}, E=0$ $V_{\rm CB}=0~{\rm V}, f=1~{\rm MHz}, E=0$ $V_{\rm EB}=0~{\rm V}, f=1~{\rm MHz}, E=0$	C_{CE} C_{CB} C_{EB}	23 39 47	pF pF pF	
Dunkelstrom Dark current $V_{\rm CE}$ = 25 V, E = 0	$I_{\sf CEO}$	20 (≤ 300)	nA	

Die Fototransistoren werden nach ihrer Fotoempfindlichkeit gruppiert und mit arabischen Ziffern gekennzeichnet.

The phototransistors are grouped according to their spectral sensitivity and distinguished by arabian figures.

Bezeichnung Parameter	Symbol Symbol	Wert Value				Einheit Unit
		-2	-3	-4	-5	
Fotostrom, λ = 950 nm Photocurrent $E_{\rm e}$ = 0.5 mW/cm², $V_{\rm CE}$ = 5 V $E_{\rm v}$ = 1000 lx, Normlicht/standard light A,	I_{PCE} I_{PCE}	0.8 1.6 3.8	1.25 2.5 6.0	2.0 4.0 9.5	≥ 3.2 15.0	mA mA
$V_{\rm CE}$ = 5 V Anstiegszeit/Abfallzeit Rise and fall time $I_{\rm C}$ = 1 mA, $V_{\rm CC}$ = 5 V, $R_{\rm L}$ = 1 k Ω	t _r , t _f	9	12	15	18	ms
Kollektor-Emitter-Sättigungsspannung Collector-emitter saturation voltage $I_{\rm C} = I_{\rm PCEmin}^{-1)} \times 0.3$ $E_{\rm e} = 0.5 \ {\rm mW/cm^2}$	V_{CEsat}	200	220	240	260	mV
Stromverstärkung Current gain $E_{\rm e}$ = 0.5 mW/cm², $V_{\rm CE}$ = 5 V	$\frac{I_{PCE}}{I_{PCB}}$	110	170	270	430	_

 $I_{\rm PCEmin}$ ist der minimale Fotostrom der jeweiligen Gruppe.

 $^{^{\}rm 1)}~I_{\rm PCEmin}$ is the min. photocurrent of the specified group.

Relative Spectral Sensitivity

Photocurrent

Total Power Dissipation

Output Characteristics

600

800

1000 nm 1200

400

Output Characteristics

Dark Current

Photocurrent

Dark Current

Collector-Emitter Capacitance

Collector-Base Capacitance

Emitter-Base Capacitance

Directional Characteristics

Maßzeichnung Package Outlines

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Published by OSRAM Opto Semiconductors GmbH & Co. OHG Wernerwerkstrasse 2, D-93049 Regensburg © All Rights Reserved.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. ² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

2001-02-21

