Idris

2014 г.

Idris

- Haskellоподобный,
- с зависимыми типами,
- строгий по-умолчанию,
- с опциональной проверкой на тотальность,
- с тактиками,
- **.** . . .

Haskellоподобный

data
$$MyList\ a = Nil \mid (::)\ a\ (MyList\ a)$$

 $(++): MyList\ a \to MyList\ a \to MyList\ a$
 $[] ++ ys = ys$
 $(x::xs) ++ ys = x::(xs ++ ys)$
instance $Functor\ MyList\$ where
 $map\ f\ Nil = Nil$
 $map\ f\ (x::xs) = f\ x::map\ f\ xs$

Haskellоподобный

instance Applicative MyList where

pure
$$x = [x]$$

 $[] < > _ = []$
 $(f :: fs) < > xs = map f xs ++ (fs < > xs)$

instance Monad MyList where

test : $MyList\ Int$ test = \mathbf{do} $f \leftarrow [id, (*2)]$ $x \leftarrow [3, 4]$ return $\$ f \times$

С зависимыми типами

(x :: xs) !! fZ = x

(x :: xs) !! (fS y) = xs !! y

```
data MyVect : Nat \rightarrow (a : Type) \rightarrow Type where
   Nil: MyVect 0 a
   (::): a \rightarrow MyVect \ n \ a \rightarrow MyVect \ (S \ n) \ a
(++): MyVect\ n\ a \rightarrow MyVect\ m\ a \rightarrow MyVect\ (n+m)\ a
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
infix 9!!
(!!): MyVect n \rightarrow Fin \rightarrow a
```

Строгий по-умолчанию

```
broken · Int \rightarrow Int
broken 0=1
broken n = n * broken (n - 1)
ifThenElse : Bool \rightarrow a \rightarrow a \rightarrow a
ifThenElse\ True\ t = t
ifThenElse\ False\ f=f
> ifThenElse True 0 (broken (-1))
Интерпретатор:
  0 : Int
Скомпилированный код(с точностью до оптимизаций):
  segmentation fault ./a.out
```

С опциональной проверкой на тотальность

total myHead : List
$$a \rightarrow a$$
 myHead $(x :: xs) = x$

> Main.myHead is not total as there are missing cases

%default total

go : Int

go = go

> Main.go is possibly not total due to recursive path Main.go

Стактиками

trivial

```
lemma applicative identity : (vs : MyList a) \rightarrow (pure id \ll vs = vs)
lemma applicative identity [] = refl
lemma \ applicative \ identity (v :: vs) =
  let rec = lemma applicative identity vs
  in ?lemma_applicative_identity_rhs
lemma applicative identity rhs = proof
  intro a, x, xs, rec
  rewrite rec
```

► Effects вместо трансформеров

Именованные инстансы

▶ Idiom brackets(для аппликативных функторов)

$$f: Maybe\ Int o Maybe\ Int o Maybe\ Int$$
 $f imes y = [|x + y|]$

!-нотация(для монад)

$$f: Maybe \ Bool \rightarrow Maybe \ a \rightarrow Maybe \ a \rightarrow Maybe \ a$$

 $f \times t \ f = \mathbf{if} \ !x \ \mathbf{then} \ t \ \mathbf{else} \ f$

▶ Опциональная ленивость

data Lazy : Type
$$\rightarrow$$
 Type **where** Delay : $a \rightarrow$ Lazy a

Force : Lazy
$$a \rightarrow a$$

Изменяемый синтаксис

syntax if [test] then [t] else [e] = boolElim test (Delay t) (Delay e)

▶ Минимальный вывод типов в where

Гетерогенное равенство

data (=) :
$$a \rightarrow b \rightarrow Type$$
 where $refl : x = x$

- Type providers TODO
- ► FFI with C TODO

. . .

▶ public, abstract, private спецификаторы видимости

%access public

abstract $f:Int \rightarrow Int$

records

record R: Type where

 $\textit{MkR}: (\textit{f1}: \textit{Int}) \rightarrow (\textit{f2}: \textit{String}) \rightarrow \textit{R}$