Chapter 09

Time Series Analysis

Dr. Steffen Herbold herbold@cs.uni-goettingen.de

Outline

Overview

Methods for Time Series Analysis

Example of Time Series Analysis

420 in January

431 in February

415 in March

i

509 in July

i

Time Series Analysis

Data over time

- Sales
- Passengers
- Traffic
- ...

Our sales in the next two months will be ...

The General Problem

Data over time

- Value at time point 1
- Value at time point 2
- Value at time point 3
- Value at time point 4
- Value at time point 5
- Value at time point 6
- Value at time point 7
- Value at time point 8
- Value at time point 9

• ...

Time Series
Analysis

The Formal Problem

- Discrete values over time
 - $\{x_1, ..., x_T\} = \{x_t\}_{t=1}^T \text{ with } x_t \in \mathbb{R}$
 - Can be seen as a series of random variables or a stochastic process
 - Time between t and t+1 must be equal for all t=1,...,T-1
 - Minutes, hours, days, weeks, months, ...
- Components of a time series
 - General trend of the time series T_t
 - Seasonal effects on the time series S_t
 - Autocorrelation between observations R_t
 - $x_t = T_t + S_t + R_t$

Outline

Overview

Methods for Time Series Analysis

Time Series Analysis with Box-Jenkins

- For stationary data
 - Stationary means constant mean value and variance
 - → Requires de-trending and seasonal adjustment

- Models autocorrelation as a stochastic process
 - Observations depend on past observation and a random component
- Tries to model time series with only few parameters
 - Goal are simple models

Detrending Through Regression

Non-linear regression for non-linear trends

Seasonal Adjustment through the Mean

- Seasonal effect:
 - A regularly repeating pattern
 - Monthly, weekly, ...
- Seasonal adjustment through the seasonal mean value

Differencing for Detrending

- Instead of regression / removal of mean seasonal effects
- Differencing for detrending of order d
 - First difference for moving mean values (d = 1)
 - Similar to linear trends
 - $\bullet \ \Delta^1 x_t = x_t x_{t-1}$

• Second difference for moving mean and the change in the movement (d=2)

- · Similar to quadratic trends
- $\Delta^2 x_t = \Delta^1 x_t \Delta^1 x_{t-1} = x_t 2x_{t-1} + x_{t-2}$

Differencing for Seasonal Adjustment

- Seasonal differencing for seasons of periodicity S
 - $\Delta_S x_t = x_t x_{t-S}$
 - $\Delta_S^{12} x_t = x_t x_{t-12}$ would be seasonal differencing for monthly data

Comparison of Adjustments

Autocorrelation

Relationship between time series values with other time series values

Autocorrelation over Time

Partial Autocorrelation

- Autocorrelation that is not explained by "carrying over"
 - x_t and x_{t+1} are correlated
 - x_{t+1} and x_{t+2} are correlated
 - How much of the correlation between x_t and x_{t+2} is not explained by the above correlations?
 - In other words, how much of the correlation between x_t and x_{t+2} is independent of the correlation between x_t / x_{t+1} and x_{t+1} / x_{t+2} ?

ARMA Time Series Models

- Requires detrended and seasonally adjusted data
- Model for the autocorrelation part R_T of a time series

•
$$x_t = a_0 + \sum_{i=1}^p a_i x_{t-i} + \epsilon_t + \sum_{j=1}^q b_j \epsilon_{t-j}$$

 ϵ_i is a random variable with an expected value of 0 \rightarrow white noise

Autoregressive (AR) Moving Average (MA)

Constant plus linear combination of the p past values

Noise term + linear combination of last *q* noise values

Picking p and q

- Analyze (partial) autocorrelation function
 - p = 1 would model everything except the missing seasonal effect
 - p=12 would capture missing seasonal effect at the cost of a more complex model
 - q = 0 or q = 1 to account for low random fluctuations

Outline

Overview

Methods for Time Series Analysis

- Time series analysis considers data over time
 - Equal intervals
- More than just regression
 - Seasonal effects
 - Autocorrelation
- Complex topic with many options for modelling
 - Trend detection
 - Seasonal adjustment
 - Autocorrelation modelling
 - Completely different approaches, e.g., based on neural networks