# tags:

- Machine Learning
- Hands on ML book

# **Chapter 5 - Hands on**

- SVMs are powerful models for classification, regression, and novelty detection.
- They work best on small to medium-sized, nonlinear datasets but don't scale well to very large datasets.

## **Linear SVM Classification**

- Goal: Find a straight line (decision boundary) that separates two classes with the largest margin.
- Large / hard Margin Classification: SVM chooses the line that leaves the widest possible street between classes.
- Support Vectors: Only the instances on the edge of the street (circled points) determine the decision boundary.
- important Warning
  - SVMs are sensitive to feature scales.
  - If features aren't scaled (e.g., vertical much bigger than horizontal), the SVM decision boundary can be wrong.
  - After feature scaling (like using StandardScaler), the boundary becomes better and more balanced. illustration [1]

# **Soft Margin Classification**

- Hard Margin Classification forces all points to stay outside the margin works only if data is perfectly separable and is very sensitive to outliers.
- Soft Margin Classification allows some violations (some points inside the margin or misclassified) to balance between margin size and errors for better generalization.
- C Hyperparameter controls the trade-off:
  - Small C → Larger margin, more violations → Less overfitting but risk of underfitting.
  - Large C → Smaller margin, fewer violations → Risk of overfitting but fits training data better.

- Tip: If the SVM overfits, reduce C to regularize.
- Code Example: Using LinearSVC inside a Pipeline (with StandardScaler) to classify Iris Virginica flowers.

 Decision Function: Outputs a score showing how far each instance is from the decision boundary.

```
svm_clf.decision_function(X_new) # 0/P => array([ 0.66163411,
-0.22036063])
```

- Note: LinearSVC doesn't support probability predictions, but SVC(probability=True)
  - Normally, LinearSVC only gives a score, not a probability.
  - If you use SVC(probability=True):
    - The model learns to map scores to probabilities (e.g., 80% confidence).
    - To do that, it must:
      - Run 5-fold cross-validation during training.
      - Train a Logistic Regression model on the cross-validation results to map scores to probabilities.
  - This extra work makes training slower.

## **Nonlinear SVM Classification**

- Many datasets are not linearly separable.
- You can add new features (like polynomials) to make the data linearly separable in a higher-dimensional space.

• Example: Adding a second feature like  $x_2=x_1^2$  makes a previously non-separable dataset separable.



#### How to do it:

- Use PolynomialFeatures to create new features.
- Then scale features with StandardScaler.
- Then train a LinearSVC model.
- Example code:

```
from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.svm import LinearSVC

X, y = make_moons(n_samples=100, noise=0.15, random_state=42)

polynomial_svm_clf = Pipeline([
    ("poly_features", PolynomialFeatures(degree=3)),
    ("scaler", StandardScaler()),
    ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))
])

polynomial_svm_clf.fit(X, y)
```



## **Polynomial Kernel**

- Adding polynomial features can help models handle nonlinearity, but:
  - Low degrees can't model complex patterns well.
  - High degrees cause too many features → slow models.
- Kernel trick: SVMs can act like they added high-degree polynomial features without actually creating them — no feature explosion!
- Use SVC with kernel="poly" to apply the polynomial kernel easily.
- Example:

```
from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

poly_kernel_svm_clf = make_pipeline(
    StandardScaler(),
    SVC(kernel="poly", degree=3, coef0=1, C=5)
)
poly_kernel_svm_clf.fit(X, y)
```

- Important hyperparameters:
  - degree : degree of the polynomial (higher = more flexible, but risk of overfitting).
  - coef0: controls balance between high-degree and low-degree features.

- Tips:
  - If overfitting → lower the degree.
  - If underfitting → raise the degree.
- Even when hyperparameters are tuned automatically, it's important to **understand them** to limit the search space. use randomized search

## **Similarity Features**

- Another way to handle nonlinear data is by adding features based on similarity to certain landmarks.
- Example:
  - Landmarks placed at x=−2 and x=1.
  - Use **Gaussian RBF** (Radial Basis Function) with γ=0.3 to measure similarity.
  - Similarity is high (near 1) if close to a landmark, and low (near 0) if far.



- For instance x=-1:
  - Similarity to first landmark: about 0.74.
  - Similarity to second landmark: about 0.30.
- After transformation, the dataset can become linearly separable.



- Landmark selection:
  - Easiest way: make every training instance a landmark.
  - Downside: if you have m instances, you get m features can be very computationally heavy for large datasets.

### Gaussian RBF Kernel

- Like polynomial features, similarity features can be useful but computationally heavy.
- The kernel trick in SVMs allows getting the same effect without explicitly adding features.
- Example: using SVC(kernel="rbf", gamma=5, C=0.001).
- Gamma (γ):
  - Higher γ → narrower bell curve → smaller influence → more irregular (overfitting) decision boundary.
  - Lower γ → wider bell curve → larger influence → smoother (underfitting) decision boundary.



- γ acts like a regularization hyperparameter (similar to C).
- Other kernels exist (e.g., for text or DNA sequences) but are less common.
- Tip:
  - Try a linear kernel first (preferably LinearSVC for speed).
  - If the dataset is small enough, try Gaussian RBF kernel next.
  - Experiment with other specialized kernels if needed.

## **SVM Classes and Computational Complexity**

- LinearSVC:
  - Based on liblinear.
  - No kernel trick.
  - Fast: O(m × n) time complexity.
  - Needs scaling.

No out-of-core learning. explain -> [2]

#### SVC:

- Based on libsym.
- Supports kernel trick (for nonlinear problems).
- Slow on large datasets: O(m² × n) to O(m³ × n).
- Needs scaling.
- No out-of-core learning.

#### SGDClassifier:

- Uses stochastic gradient descent.
- O(m × n) time complexity.
- Supports out-of-core learning (good for huge datasets).
- Needs scaling.
- No kernel trick.

# **SVM Regression**

#### SVM for Regression:

- Instead of separating classes, SVM tries to fit as many points inside a margin ("street") as possible.
- The width of the street is controlled by epsilon (ε).
- Points inside the margin **don't affect** the model  $\rightarrow$  called  $\epsilon$ -insensitive.
- LinearSVR: from sklearn.svm import LinearSVR
  - For linear regression (like a straight line).
  - Fast and scales well to large datasets.
- SVR (with kernel): from sklearn.svm import SVR
  - For nonlinear regression (curves, etc.).
  - Slow on large datasets because it uses the kernel trick.

#### C hyperparameter:

- Controls how strict the model is about margin violations.
- Small C → more flexible (allow violations, more regularization).
- Large C → less flexible (less violations, tries to fit the training data closely).

### epsilon (ε) hyperparameter:

- Controls the width of the margin ("street") where no penalty is given for errors.
- Small  $\epsilon \rightarrow$  narrow margin  $\rightarrow$  more support vectors  $\rightarrow$  more complex model.
- Large  $\epsilon \rightarrow$  wide margin  $\rightarrow$  simpler model.

| Concept        | C (penalty)                              | epsilon (street width)                |
|----------------|------------------------------------------|---------------------------------------|
| Controls       | How much you allow errors outside margin | How wide the no-penalty zone is       |
| Small<br>value | More regularization, allow more errors   | Narrower street, more support vectors |
| Large<br>value | Fit more tightly to training data        | Wider street, fewer support vectors   |

## **Under the Hood of Linear SVM Classifiers**

• A linear SVM classifier predicts the class of an input by computing a decision function:

$$w^{ op}x + b$$

- If the result is **positive**, it predicts class **1**.
- If the result is **negative**, it predicts class **0**.
- This is similar to Logistic Regression in prediction style.
- Two notations for parameters:
  - **Old way**: Combine weights and bias into one vector  $\theta$  (with a fake feature  $x_0 = 1$ ).
  - New way (standard):
    - **w** = weights vector
    - **b** = bias (separate) So, prediction =  $w^{T}x + b$ .
- Training a Linear SVM:
  - Goal:
    - Maximize the margin (make the street between classes as wide as possible).
    - Minimize margin violations (keep instances outside the street as few as possible).
  - Key ideas:
    - Smaller w o larger margin (margin  $\propto 1/\|w\|$ ).
    - Bias b only shifts the street but does not change its width.
- Optimization Problem (Hard Margin SVM):
  - Minimize:

$$rac{1}{2} w^ op w$$

Subject to:

$$t^{(i)}(w^{ op}x^{(i)}+b)\geq 1$$
 for all instances where  $t^{(i)}$  = 1 if positive class, -1 if negative class.

- We minimize  $\frac{1}{2}w^{\top}w$  instead of  $\|w\|$  because:
  - It's differentiable (makes optimization easier).

• Derivative of  $\frac{1}{2}w^{\top}w$  is simply w.

| Concept         | Meaning                                                            |
|-----------------|--------------------------------------------------------------------|
| <b>w</b> small  | Larger margin (better separation)                                  |
| b               | Shifts the decision boundary (no size change)                      |
| Objective       | Minimize ½  w  ² while keeping predictions correct                 |
| Prediction Rule | Positive if $wTx+b>0w^{top} x + b > 0wTx+b>0$ , negative otherwise |

- In real-world data, **perfect separation** may be impossible.
- To handle this, we introduce **slack variables**  $\zeta^{(i)} \geq 0$  for each instance:
  - Each  $\zeta$  measures **how much margin violation** is allowed for that instance.

### Soft Margin SVM Objective:

- We want to Minimize both:
  - The model complexity (½||w||² → wider margin)
  - The total margin violations (sum of ζ's)
- C hyperparameter controls the trade-off between margin size and violations:
  - High C → less tolerance for margin violations (harder margin).
  - Low C → more tolerance (softer margin).
- The optimization problem becomes: Minimize  $\frac{1}{2} w^{\top} w + C \sum_{i=1}^{m} \zeta^{(i)}$
- subject to:  $t^{(i)}(w^ op x^{(i)} + b) \geq 1 \zeta^{(i)}, \quad \zeta^{(i)} \geq 0$

### Optimization Techniques:

- These are convex quadratic programming (QP) problems (special type of optimization with linear constraints).
- Training options:
  - Use a QP solver (specialized software).
  - Use gradient descent by minimizing:
    - **Hinge loss** (linear penalty)
    - Squared hinge loss (quadratic penalty, more sensitive to outliers).

### Hinge Loss Behavior:

|                                        | Positive class (t=1) | Negative class (t=−1) |
|----------------------------------------|----------------------|-----------------------|
| Correctly classified & far from margin | Loss = 0             | Loss = 0              |
| Inside margin or wrong side            | Loss > 0             | Loss > 0              |

Hinge loss grows linearly with error.

• Squared hinge loss grows quadratically with error (faster convergence if clean data).



- In Scikit-Learn:
  - LinearSVC: uses squared hinge loss by default.
  - SGDClassifier: uses hinge loss by default.
  - SVC: similar to minimizing hinge loss but with kernels.

| Name                      | What it Is                                                                   | Controls                                                                               | Used in                                |
|---------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|
| <b>C</b> (capital letter) | Hyperparameter chosen by you                                                 | Trade-off between margin size and margin violations                                    | Classification & Regression            |
| ε<br>(epsilon)            | Width of the "street" (margin) where no penalty happens in <b>regression</b> | Tolerance for errors inside the margin (in regression)                                 | SVM Regression (SVR)                   |
| ζ (zeta)                  | Slack variables computed during training                                     | How much each individual training point <b>violates</b> the margin (in classification) | SVM<br>Classification<br>(Soft margin) |

## **The Dual Problem**

- → What is happening?
- SVM training can be done using the primal problem or the dual problem.
- In SVM, the dual and primal give the same solution (because of special conditions).
- The dual problem is often easier when:
  - The number of training samples **m** is **less than** the number of features.
  - You want to use the kernel trick later.
- Dual Problem Equation We \*\*solve for  $\alpha$  by minimizing:

$$\text{minimize} \quad \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(i)} \alpha^{(j)} t^{(i)} t^{(j)} \left( x^{(i)} \cdot x^{(j)} \right) - \sum_{i=1}^{m} \alpha^{(i)}$$

subject to:  $\alpha^{(i)} \geq 0$  for all  $i = 1, 2, \ldots, m$ 

$$\sum_{i=1}^m lpha^{(i)} t^{(i)} = 0$$

- $\alpha^{(i)}$  = slack related values (Lagrange multipliers).
- $t^{(i)}$  = class label (+1 or -1).
- $x^{(i)}$  = feature vectors.
- From Dual Solution to Primal Solution

Once you find the optimal  $\hat{\alpha}$ , you can **rebuild** your model:

• Weights vector  $\hat{w}$  :

$$\hat{w}=\sum_{i=1}^m\hat{lpha}^{(i)}t^{(i)}x^{(i)}$$

\*\*Bias term b̂:

$$\hat{b} = rac{1}{n_s} \sum_{ ext{support vectors}} \left( t^{(i)} - \hat{w}^ op x^{(i)} 
ight)$$

- · where:
  - $n_s$  = number of **support vectors** (i.e., data points where  $\hat{lpha}^{(i)} > 0$ .
- Quick notes:
  - **Support vectors** are the important data points that "touch" the margin.
  - If the dataset is very big, dual can be slower (but necessary for kernels).
  - Primal is faster for very large datasets with simple (linear) relationships.

### **Kernelized SVMs**

- Problem:
  - You want to apply a second-degree polynomial transformation φ(x)\phi(x)φ(x) to your 2D data to make it easier to separate with a linear SVM.
     Transformation (Equation 5-5):

$$\phi(\mathbf{x}) = egin{pmatrix} x_1^2 \ \sqrt{2}x_1x_2 \ x_2^2 \end{pmatrix}$$

After transformation, the data becomes **3D** instead of 2D.

- Kernel Trick:
  - Instead of explicitly computing φ(x)\phi(x)φ(x), notice:

$$\phi(a)^ op\phi(b)=(a^ op b)^2$$

Key insight:

- You can just compute  $(a^{T}b)^{2}$  without ever computing  $\phi(x)$  directly! (Thus saving a lot of computation.)
- Common Kernels (Equation 5-7):

• Linear kernel:  $K(a,b) = a^{\top}b$ 

• Polynomial kernel:  $K(a,b) = (\gamma a^{ op} b + r)^d$ 

• Gaussian RBF kernel:  $K(a,b) = \exp\left(-\gamma \|a-b\|^2\right)$ 

• Sigmoid kernel:  $K(a,b) = \tanh(\gamma a^{\top}b + r)$ 

- Mercer's Theorem:
  - If K(a,b) satisfies some properties (continuous, symmetric, positive semi-definite), then there exists a mapping  $\phi$  such that:  $K(a,b) = \phi(a)^{\top}\phi(b)$ This guarantees that you can safely use kernels **without needing to know**  $\phi$
  - **Example**: For Gaussian RBF,  $\phi(x)$  is infinite-dimensional but we never actually compute it.
  - Note:
     Some kernels (like sigmoid) violate Mercer's conditions, but work well in practice.
- Predictions with Kernelized SVMs:
  - When you train with kernels, you **can't compute**  $\hat{w}$  explicitly anymore (because  $\phi(x)$  may be huge/infinite).

Instead, you use only dot products to make predictions!

• Equ(decision function):

$$f(x) = \sum_{i=1}^m \hat{lpha}(i)\,t(i)\,K(x(i),x) + \hat{b}$$

Only involves **kernel evaluations**, no explicit transformation.

- Final Note:
  - For very large-scale nonlinear problems, Random Forests or Neural Networks can sometimes be better choices than SVMs.

## Resources:

.

## Related notes:

# References:

Internal:

.

•

### • External :

- hegab videos
- the book
- the notebook

•

#### 1. Without scaling (left plot in Figure 5-2):

- Suppose one feature (like  $x_0$ ) is between **0** and **6**, but another feature ( $x_1$ ) is between **0** and **80**.
- The SVM looks for the widest street based on these raw values.
- Because  $\chi_1$  is so much bigger than  $\chi_2$ , the SVM **thinks**  $\chi_1$  **is more important**, and the decision boundary becomes almost horizontal **biased**.

#### With scaling (right plot in Figure 5-2):

- After scaling, both features have similar ranges (like -2 to +2).
- Now, the SVM treats x<sub>0</sub> and x<sub>1</sub> equally.
- As a result, the **street is more natural**, better separating the points.

#### In short:

- → Scaling fixes the balance between features so SVM can find the true best boundary without being tricked by big numbers.
- 2. Out-of-core learning means training a model without loading all the data into RAM at once.
  - Instead, it **loads small chunks of the data little by little**, processes them, and updates the model gradually.
  - → This way, you can train on very large datasets that don't fit into memory.

### Simple example:

- Your data is 500 GB.
- Your RAM is only 8 GB.
- → Out-of-core learning reads, say, 100 MB at a time, trains on it, then moves to the next 100 MB.

 $\subseteq$