

Analisis Multivariat – Pertemuan 10

Discriminant Analysis

Prodi S1 Sains Data Universitas Negeri Surabaya 15 April 2025

Introduction

Table II.I		-		
π ₁ : Riding-m	nower owners	π ₂ : Nonowners		
x ₁ (Income in \$1000s)	x_2 (Lot size in 1000 ft ²)	x ₁ (Income in \$1000s)	x_2 (Lot size in 1000 ft ²)	
90.0	18.4	105.0	19.6	
115.5	16,8	82.8	20.8	
94.8	21.6	94.8	17.2	
91.5	20.8	73.2	20.4	
117.0	23.6	114.0	17.6	
140.1	19.2	79.2	17.6	
138.0	17.6	89.4	16.0	
112.8	22.4	96.0	18.4	
99.0	20.0	77.4	16.4	
123.0	20.8	63.0	18.8	
81.0	22.0	81.0	14.0	
111.0	20.0	93.0	14.8	

Figure 11.1 Income and lot size for riding-mower owners and nonowners.

Analisis Diskriminan

satu metode statistika multivariat yang digunakan untuk mengklasifikasikan beberapa variabel prediktor ke dalam observasi pada kelompok khusus dan

Analisis Diskriminan

Metode dependensi

Tujuan: Mendapatkan suatu fungsi yang disebut dengan fungsi diksrikminan yang dapat memisahkan objek sesuai dengan grupnya. Fungsi juga dapat digunakan untuk memprediksi grup dari suatu objek baru yang diamati (Sharma, 1996)

 $f_i(\mathbf{x})$

Probabilitas densitas populasi ke-i

k populasi: $\pi_1, \pi_2, ..., \pi_k$

$$R_1, R_2,, R_k$$

Ruang sekat yang memisahkan populasi $(x_1, x_2, ..., x_p)$ Setiap observasi hanya Dikelompokkan dalam s kelas Dikelompokkan dalam satu

Asumsi

Asumsi

Populasi berdistribusi Multivariat Normal

Kehomogenan varians

Bayes' Rule Applied to the Classification Problem

- Suppose that we have g populations (groups) and that the ith population is denoted as πi.
- We are interested in $P(\pi i \mid x)$, the conditional probability that observation came from population πi given that the observed values of the multivariate vector of variables x.
- We will classify an observation to the population for which the value of $P(\pi i \mid x)$ is greatest. This is the most probable group given the observed values of x.

$$P(\text{member of } \pi_i | \text{ we observed } \mathbf{x}) = \frac{P(\text{member of } \pi_i \text{ and we observe } \mathbf{x})}{P(\text{we observe } \mathbf{x})}$$
$$p(\pi_i | \mathbf{x}) = \frac{p_i f(\mathbf{x} | \pi_i)}{\sum_{j=1}^g p_j f(\mathbf{x} | \pi_j)}$$

Decision Rule – Two Population

We would classify to population 1 when

$$rac{p_1 f(\mathbf{x}|\pi_1)}{p_2 f(\mathbf{x}|\pi_2)} > 1$$

$$rac{f(\mathbf{x}|\pi_1)}{f(\mathbf{x}|\pi_2)} > rac{p_2}{p_1}$$

Linear Discriminant Analysis

We assume that in population π_i the probability density function of x is multivariate normal with mean vector μ_i and variancecovariance matrix Σ (same for all populations). As a formula, this is...

$$f_{\mathbf{x}} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{\mathbf{x}-\mu}{\sigma})^{2}}$$

$$f(\mathbf{x}|\pi_{i}) = \frac{1}{(2\pi)^{p/2}|\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu_{i})'\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu_{i})\right)$$

Simple Example

s.no	Height (cm)	Gender
1	140	F
2	145	F
3	135	F
4	169	M
5	165	F
6	142	M
7	168	M
8	141	F
9	159	F
10	160	M
11	172	M

Predicting the gender of a person through his/her height

The question?

What will be gender of a person whose height is 152 cm?

Simple Example – Solution

$$p(\pi_i|\mathbf{x}) = rac{p_i f(\mathbf{x}|\pi_i)}{\sum_{j=1}^g p_j f(\mathbf{x}|\pi_j)}$$

```
P(gender = male \mid height = 152)
                                                                                                                                                                                                                                                                                                                                                                P(height = 152 \mid gender = male)P(gender = male)
= \frac{152 \mid gender = male \mid P(gender = male) + P(height = 152 \mid gender = female) \mid P(gender =
```

```
P(gender = female \mid height = 152)
                       P(height = 152 \mid gender = female)P(gender = female)
```

 $= \frac{152 \mid gender = male \mid P(gender = male) + P(height = 152 \mid gender = female) \mid P(gender =$

s.no	Height (cm)	Gender
1	140	F
2	145	F
3	135	F
4	169	M
5	165	F
6	142	M
7	168	M
8	141	F
9	159	F
10	160	M
11	172	M

$$f_{X} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}}$$

Male Class	Female Class
$\sigma^2 = 117 \ (\sigma = 10.8)$	$\sigma^2 = 117 \ (\sigma = 10.8)$
$\mu_{M} = 162.2$	$\mu_F = 147.33$
Probability distribution = $0.037e^{-\frac{1(x-162.2)^2}{2}}$	Probability distribution = $0.037e^{-\frac{1(x-147.33)^2}{2}}$
Probability when x = 152	Probability when x = 152
= 0.0237 (substitute x = 152 in the dist. equation)	= 0.033 (substitute x = 152 in the dist. equation)

P (gender = male | height = x) =
$$\frac{0.037e^{\frac{(x-162.2)^2}{117}} *0.454}{\frac{(x-162.2)^2}{0.037e^{\frac{117}{117}} *0.454 + 0.037e^{\frac{(x-147.33)^2}{117}} *0.545}}$$

$$P(gender = male \mid height = 152) = \frac{0.0237x0.454}{0.0237x0.454 + 0.033x0.545} = 0.37$$

$$P(gender = female \mid height = 152) = \frac{0.033x0.545}{0.0237x0.454 + 0.033x0.545} = 0.625$$

we can classify the height of 152 cm in the female class.

Expected Cost Misclassification (ECM)

- There are additional features that an "optimal" classification rule should possess.
- Classification schemes are often evaluated in terms of their misclassification.
 - A good classification procedure should result in few misclassifications.
- The idea is to create a rule that minimizes the chances of making these mistakes.
 - The probabilities of misclassification should be small
 - An optimal classification procedure should, whenever possible, account for the costs associated with misclassification
- An optimal classification rule should take "prior probabilities of occurrence" into account.

Bayes' Rule (Review)

Consider any two events A and B. To find P(B|A), the probability that B occurs given that A has occurred, Bayes' Rule states the following.

$$P(B|A) = rac{P(A ext{ and } B)}{P(A)}$$
 $P(A ext{ and } B) = P(A)P(B|A)$

Expected Cost Misclassification (ECM)

The costs of misclassification can be defined by a cost matrix

True population:
$$\begin{array}{c|c} & \text{Classify as:} \\ \hline \pi_1 & \pi_2 \\ \hline \pi_2 & c(1 \mid 2) & 0 \\ \end{array}$$

$$ECM = c(2|1)P(2|1)p1 + c(1|2)P(1|2)p2$$

A reasonable classification rule should have an ECM as small, or nearly as small, as possible

$$P(\text{observation is misclassified as } \pi_1) = P(\text{observation comes from } \pi_2$$

and is misclassified as $\pi_1)$
 $= P(\mathbf{X} \in R_1 | \pi_2) P(\pi_2) = P(1 | 2) p_2$
 $P(\text{observation is misclassified as } \pi_2) = P(\text{observation comes from } \pi_1$
and is misclassified as $\pi_2)$
 $= P(\mathbf{X} \in R_2 | \pi_1) P(\pi_2) = P(2 | 1) p_1$

Decision Rule that minimize the ECM

$$R_{1}: \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} \geq \left(\frac{c(112)}{c(211)}\right) \left(\frac{p_{2}}{p_{1}}\right)$$

$$\begin{pmatrix} \text{density} \\ \text{ratio} \end{pmatrix} \geq \begin{pmatrix} \text{cost} \\ \text{ratio} \end{pmatrix} \begin{pmatrix} \text{prior} \\ \text{probability} \\ \text{ratio} \end{pmatrix}$$

$$R_{2}: \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} < \left(\frac{c(112)}{c(211)}\right) \left(\frac{p_{2}}{p_{1}}\right)$$

$$\begin{pmatrix} \text{density} \\ \text{ratio} \end{pmatrix} < \begin{pmatrix} \text{cost} \\ \text{ratio} \end{pmatrix} \begin{pmatrix} \text{prior} \\ \text{probability} \\ \text{ratio} \end{pmatrix}$$

Example – ECM Rule

Goal: Classifying a new observation into one of the two populations

- Suppose c(2|1) = 5 units and c(112) = 10 units.
- It is known that about 20% of all objects (for which the measurements x can be recorded) belong to population 2.
 - Thus, the prior probabilities are p1 = 0.8 and p2 = 0.2.
- Suppose the density functions evaluated at a new observation Xo give f1(x0) = 0.3 and f2(x0) = 0.4.

Do we classify the new observation as population 1 or 2?

$$\frac{f_1(\mathbf{x}_0)}{f_2(\mathbf{x}_0)} = .75 > \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_2}{p_1}\right) = .5$$

classify it as belonging to population 1

Special Cases of Minimum Expected Cost Regions

(a) $p_2/p_1 = 1$ (equal prior probabilities)

$$R_1$$
: $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \frac{c(1|2)}{c(2|1)}$ R_2 : $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \frac{c(1|2)}{c(2|1)}$

(b) c(1|2)/c(2|1) = 1 (equal misclassification costs)

$$R_1: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \frac{p_2}{p_1} \qquad R_2: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \frac{p_2}{p_1}$$

(c) $p_2/p_1 = c(1|2)/c(2|1) = 1 \text{ or } p_2/p_1 = 1/(c(1|2)/c(2|1))$ (equal prior probabilities and equal misclassification costs)

$$R_1: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge 1 \qquad R_2: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < 1$$

The Estimated Minimum ECM Rule

Suppose that the joint densities of $\mathbf{X}' = [X_1, X_2, \dots, X_p]$ for populations π_1 and π_2 are given by

$$f_i(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)' \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)\right] \quad \text{for } i = 1, 2 \quad (11-10)$$

Decision Rule that minimize the ECM

$$R_{1}: \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{1})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{1}) + \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{2})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{2}) \right]$$

$$\geq \left(\frac{c(1|2)}{c(2|1)} \right) \left(\frac{p_{2}}{p_{1}} \right)$$

$$R_{2}: \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{1})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{1}) + \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{2})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{2}) \right]$$

$$< \left(\frac{c(1|2)}{c(2|1)} \right) \left(\frac{p_{2}}{p_{1}} \right)$$

Classification Rule

Allocate \mathbf{x}_0 to $\boldsymbol{\pi}_1$ if

$$(\mu_1 - \mu_2)' \Sigma^{-1} \mathbf{x}_0 - \frac{1}{2} (\mu_1 - \mu_2)' \Sigma^{-1} (\mu_1 + \mu_2) \ge \ln \left[\left(\frac{c(1 \mid 2)}{c(2 \mid 1)} \right) \left(\frac{p_2}{p_1} \right) \right]$$

Allocate \mathbf{x}_0 to π_2 otherwise.

Allocate \mathbf{x}_0 to π_1 if

$$(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} \mathbf{x}_0 - \frac{1}{2} (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} (\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2) \ge \ln \left[\left(\frac{c(1|2)}{c(2|1)} \right) \left(\frac{p_2}{p_1} \right) \right]$$

$$(11-18)$$

Allocate \mathbf{x}_0 to π_2 otherwise.

Fisher's Approach

Fisher's rule is equivalent to the minimum ECM rule with equal prob and equal cost of misclassification. Two normal populations have the same covariance matrix.

Allocate \mathbf{x}_0 to π_1 if

$$(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} \mathbf{x}_0 - \frac{1}{2} (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} (\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2) \ge \ln \left[\left(\frac{c(1 \mid 2)}{c(2 \mid 1)} \right) \left(\frac{p_2}{p_1} \right) \right]$$

$$(11-18)$$

Allocate \mathbf{x}_0 to π_2 otherwise.

$$\left(\frac{c(1 \mid 2)}{c(2 \mid 1)}\right) \left(\frac{p_2}{p_1}\right) = 1$$

Discriminant Function

$$\hat{y} = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} \mathbf{x} = \hat{\mathbf{a}}' \mathbf{x}$$

Critical cutting score

$$\hat{m} = \frac{1}{2} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} (\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2)$$
$$= \frac{1}{2} (\bar{y}_1 + \bar{y}_2)$$

$$\bar{y}_1 = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} \bar{\mathbf{x}}_1 = \hat{\mathbf{a}}' \bar{\mathbf{x}}_1$$

$$\bar{y}_2 = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} \bar{\mathbf{x}}_2 = \hat{\mathbf{a}}' \bar{\mathbf{x}}_2$$

$\bar{\mathbf{x}}_{1} = \frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \mathbf{x}_{1j}, \quad \mathbf{S}_{1} = \frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}} (\mathbf{x}_{1j} - \bar{\mathbf{x}}_{1}) (\mathbf{x}_{1j} - \bar{\mathbf{x}}_{1})'$

$$\bar{\mathbf{x}}_{2}_{(\rho \times 1)} = \frac{1}{n_{2}} \sum_{j=1}^{n_{2}} \mathbf{x}_{2j}, \quad \mathbf{S}_{2}_{(\rho \times \rho)} = \frac{1}{n_{2} - 1} \sum_{j=1}^{n_{2}} (\mathbf{x}_{2j} - \bar{\mathbf{x}}_{2}) (\mathbf{x}_{2j} - \bar{\mathbf{x}}_{2})'$$

$$\mathbf{S}_{\text{pooled}} = \left[\frac{n_1 - 1}{(n_1 - 1) + (n_2 - 1)} \right] \mathbf{S}_1 + \left[\frac{n_2 - 1}{(n_1 - 1) + (n_2 - 1)} \right] \mathbf{S}_2$$

Classification Rule

Allocate
$$\mathbf{x}_0$$
 to π_1 if $\hat{y}_0 = \hat{\mathbf{a}}' \mathbf{x}_0 \ge \hat{m}$
Allocate \mathbf{x}_0 to π_2 if $\hat{y}_0 = \hat{\mathbf{a}}' \mathbf{x}_0 < \hat{m}$

Example - Fisher

Detection of hemophilia A carriers by two variables

log₁₀(AHF activity) log₁₀(AHF-like antigen)

normal group carrier group

$$\bar{\mathbf{x}}_1 = \begin{bmatrix} -.0065 \\ -.0390 \end{bmatrix}, \quad \bar{\mathbf{x}}_2 = \begin{bmatrix} -.2483 \\ .0262 \end{bmatrix} \quad \mathbf{S}_{\text{pooled}}^{-1} = \begin{bmatrix} 131.158 & -90.423 \\ -90.423 & 108.147 \end{bmatrix} \quad \begin{array}{c} \text{discriminant function} \\ \hat{\mathbf{y}} = \hat{\mathbf{a}}' \mathbf{x} = [\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2]' \mathbf{S}_{\text{pooled}}^{-1} \mathbf{x} \end{bmatrix}$$

discriminant function

$$\hat{y} = \hat{\mathbf{a}}' \mathbf{x} = [\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2]' \mathbf{S}_{\text{pooled}}^{-1} \mathbf{x}$$

$$= [.2418 \quad -.0652] \begin{bmatrix} 131.158 & -90.423 \\ -90.423 & 108.147 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= 37.61x_1 - 28.92x_2$$

critical cutting score

$$\bar{y}_1 = \hat{\mathbf{a}}'\bar{\mathbf{x}}_1 = \begin{bmatrix} 37.61 & -28.92 \end{bmatrix} \begin{bmatrix} -.0065 \\ -.0390 \end{bmatrix} = .88$$

$$\bar{y}_2 = \hat{\mathbf{a}}'\bar{\mathbf{x}}_2 = \begin{bmatrix} 37.61 & -28.92 \end{bmatrix} \begin{bmatrix} -.2483 \\ .0262 \end{bmatrix} = -10.10$$

$$\hat{m} = \frac{1}{2}(\bar{y}_1 + \bar{y}_2) = \frac{1}{2}(.88 - 10.10) = -4.61$$

Allocate
$$\mathbf{x}_0$$
 to π_1 if $\hat{y}_0 = \hat{\mathbf{a}}' \mathbf{x}_0 \ge \hat{m} = -4.61$
Allocate \mathbf{x}_0 to π_2 if $\hat{y}_0 = \hat{\mathbf{a}}' \mathbf{x}_0 < \hat{m} = -4.61$

Example – Classification New Data

Measurements of AHF activity and AHF-like antigen on a woman who may be a hemophilia A carrier give X1 = -.210 and X2 = -.044. Should this woman be classified as normal or obligatory carrier?

$$\hat{y}_0 = \hat{\mathbf{a}}' \mathbf{x}_0 = \begin{bmatrix} 37.61 & -28.92 \end{bmatrix} \begin{bmatrix} -.210 \\ -.044 \end{bmatrix} = -6.62 < -4.61$$
obligatory carrier

A pictorial representation of Fisher's procedure for two populations with p = 2.

Evaluating Classification Functions

Apparent error rate (APER), is defined as the fraction of observations in the training sample that are misclassified by the sample classification function

Predicted membership

π_1	π_2		
n_{1C}	$n_{1M}=n_1-n_{1C}$	n	
$n_{2M}=n_2-n_{2C}$	n_{2C}	n	

$$APER = \frac{n_{1M} + n_{2M}}{n_1 + n_2}$$

 n_{1C} = number of π_1 items correctly classified as π_1 items

 n_{1M} = number of π_1 items misclassified as π_2 items

 n_{2C} = number of π_2 items correctly classified

 n_{2M} = number of π_2 items misclassified

Actual

membership

Calculating the APER

Predicted membership

 π_1 : riding-mower owners π_2 : nonowners

Actual membership

riding- π_1 : mower owners

 π_2 : nonowners

$n_{1C} = 10$	$n_{1M}=2$	$n_1 = 12$
$n_{2M}=2$	$n_{2C} = 10$	$n_2 = 12$

APER =
$$\left(\frac{2+2}{12+12}\right)100\% = \left(\frac{4}{24}\right)100\% = 16.7\%$$

Assignment (Classifying Alaskan and Canadian salmon)

- Lakukan klasifikasi pada data berikut menggunakan EXCEL.
- Buat plot visualisasi (scatter plot) terlebih dahulu
- Gunakan hanya variabel freshwater dan marine
- Lakukan perhitungan detail untuk mendapatkan fungsi diskriminan, critical cutting score, confusion matrix, dan APER

Table 11.2 Salmon Data (Growth-Ring Diameters)						
	Alaskan		Canadian			
Gender Freshwater		Marine	Gender	Freshwater	Marine	
2	108	368	1	129	420	
$\bar{1}$	131	355	1	148	371	
1	105	469	1	179	407	
2	86	506	2	152	381	
1	99	402	2	166	377	
2	87	423	2 ·	124	389	
l ī	94	440	1	156	419	
$\bar{2}$	117	489	2	131	345	
2	79	432	1	140	362	
1 1	99	403	2	144	345	
l î	114	428	2	149	393	
2	123	372	1	108	330	
1 - 2	100	272	1	125	245	

Link dataset here

The salmon data contains two measurements of the growth rings on the scale of Alaskan and Canadian salmon

Assignment (Classifying The Gender of Snake)

- Lakukan klasifikasi pada data berikut menggunakan EXCEL.
- Buat plot visualisasi (scatter plot) terlebih dahulu
- Gunakan hanya variabel tail length dan snout to vent length
- Lakukan perhitungan detail untuk mendapatkan fungsi diskriminan, critical cutting score, confusion matrix, dan APER

Tab	Table 11.10 Concho Water Snake Data								
	Gender	Age	TailLength	Snto VnLength		Gender	Age	TailLength	Snto VnLength
1	Female	2	127	441	1	Male	2	126	457
2	Female	2	171	455	2	Male	2	128	466
3	Female	2	171	462	3	Male	2	151	466
4	Female	2	164	446	4	Male	2	115	361
5	Female	2	165	463	5	Male	2	138	473
6	Female	2	127	393	6	Male	2	145	477
7	Female	2	162	451	7	Male	3	145	507
8	Female	2	133	376	8	Male	3	145	493
9	Female	2	173	475	9	Male	3	158	558
10	Female	2	145	398	10	Male	3	152	495
11	Female	2	154	435	11	Male	3	159	521
12	Female	3	165	491	12	Male	3	138	487

Link dataset here

Classification with Several Populations

Minimum ECM Rule

KEEP IN MIND.

Minimum ECM have 3 components: prior probabilities, misclassification costs, and density functions.

Allocate \mathbf{x}_0 to $\boldsymbol{\pi}_k$ if

$$p_k f_k(\mathbf{x}) > p_i f_i(\mathbf{x})$$
 for all $i \neq k$

Allocate xo to the one that maximizes the posterior probability

$$P(\pi_k | \mathbf{x}) = \frac{p_k f_k(\mathbf{x})}{\sum_{i=1}^g p_i f_i(\mathbf{x})} = \frac{(\text{prior}) \times (\text{likelihood})}{\sum [(\text{prior}) \times (\text{likelihood})]}$$
for $k = 1, 2, ..., g$

Example

True population

		-	77-	77-2
_		$-\pi_1$	π_2	π_3
	π_1	$c(1 \mid 1) = 0$	c(1 2) = 500	c(1 3) = 100
Classify as:	π_2	c(2 1)=10	c(2 2)=0	c(2 3) = 50
	π_3	c(3 1) = 50	c(3 2) = 200	c(3 3)=0
Prior probabilities:		$p_1 = .05$	$p_2 = .60$	$p_3 = .35$
Densities at x ₀ :		$f_1(\mathbf{x}_0) = .01$	$f_2(\mathbf{x}_0) = .85$	$f_3(\mathbf{x}_0)=2$

Assign this observation to one of 3 population

$$p_1 f_1(\mathbf{x}_0) = (.05)(.01) = .0005$$

$$p_2 f_2(\mathbf{x}_0) = (.60)(.85) = .510$$

$$p_3 f_3(\mathbf{x}_0) = (.35)(2) = .700$$

$$p_3 f_3(\mathbf{x}_0) = .700 \ge p_i f_i(\mathbf{x}_0), i = 1, 2$$

Allocate xo to population 3

$$P(\pi_1 | \mathbf{x}_0) = \frac{p_1 f_1(\mathbf{x}_0)}{\sum_{i=1}^{3} p_i f_i(\mathbf{x}_0)}$$

$$= \frac{(.05)(.01)}{(.05)(.01) + (.60)(.85) + (.35)(2)} = \frac{.0005}{1.2105} = .0004$$

$$P(\pi_2 | \mathbf{x}_0) = \frac{p_2 f_2(\mathbf{x}_0)}{\sum_{i=1}^{3} p_i f_i(\mathbf{x}_0)} = \frac{(.60)(.85)}{1.2105} = \frac{.510}{1.2105} = .421$$

$$P(\pi_3 | \mathbf{x}_0) = \frac{p_3 f_3(\mathbf{x}_0)}{\sum_{i=1}^{3} p_i f_i(\mathbf{x}_0)} = \frac{(.35)(2)}{1.2105} = \frac{.700}{1.2105} = .578$$

Allocate xo to population 3

Fisher Approach

Calculating fisher discriminant

1. Define the *sample between groups* matrix (B)

$$\mathbf{B} = \sum_{i=1}^{g} (\bar{\mathbf{x}}_i - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_i - \bar{\mathbf{x}})'$$

 $\mathbf{B} = \sum_{i=1}^{g} (\bar{\mathbf{x}}_i - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_i - \bar{\mathbf{x}})'$ 2. Define the *sample within groups* matrix (B)

$$\mathbf{W} = \sum_{i=1}^{g} (n_i - 1) \mathbf{S}_i = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (\mathbf{x}_{ij} - \bar{\mathbf{x}}_i) (\mathbf{x}_{ij} - \bar{\mathbf{x}}_i)'$$

3. Find eigenvector of $W^{-1}B$

Classification rule

Allocate x to π_k if

$$\sum_{j=1}^{r} (\hat{y}_j - \bar{y}_{kj})^2 = \sum_{j=1}^{r} [\hat{\mathbf{a}}_j'(\mathbf{x} - \bar{\mathbf{x}}_k)]^2 \le \sum_{j=1}^{r} [\hat{\mathbf{a}}_j'(\mathbf{x} - \bar{\mathbf{x}}_i)]^2$$

(11-67)

where $\hat{\mathbf{a}}_j$ is defined in (11-62), $\bar{y}_{kj} = \hat{\mathbf{a}}_j' \bar{\mathbf{x}}_k$ and $r \leq s$.

Example

Consider the observations on p=2 variables from g=3 populations

$$\pi_1 (n_1 = 3)$$
 $\pi_2 (n_2 = 3)$ $\pi_3 (n_3 = 3)$

$$\mathbf{X}_1 = \begin{bmatrix} -2 & 5 \\ 0 & 3 \\ -1 & 1 \end{bmatrix}; \quad \mathbf{X}_2 = \begin{bmatrix} 0 & 6 \\ 2 & 4 \\ 1 & 2 \end{bmatrix}; \quad \mathbf{X}_3 = \begin{bmatrix} 1 & -2 \\ 0 & 0 \\ -1 & -4 \end{bmatrix}$$

$$\bar{\mathbf{x}}_1 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}; \quad \bar{\mathbf{x}}_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}; \quad \bar{\mathbf{x}}_3 = \begin{bmatrix} 0 \\ -2 \end{bmatrix} \quad \bar{\mathbf{x}} = \begin{bmatrix} 0 \\ \frac{5}{3} \end{bmatrix}$$

Assuming that the populations have a common covariance matrix let us obtain the Fisher discriminants

$$\bar{\mathbf{x}}_1 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}; \quad \bar{\mathbf{x}}_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}; \quad \bar{\mathbf{x}}_3 = \begin{bmatrix} 0 \\ -2 \end{bmatrix} \quad \bar{\mathbf{x}} = \begin{bmatrix} 0 \\ \frac{5}{3} \end{bmatrix}$$

$$\mathbf{B} = \sum_{i=1}^{3} (\bar{\mathbf{x}}_i - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_i - \bar{\mathbf{x}})' = \begin{bmatrix} 2 & 1 \\ 1 & 62/3 \end{bmatrix}$$

$$\mathbf{W} = \sum_{i=1}^{3} \sum_{j=1}^{n_i} (\mathbf{x}_{ij} - \overline{\mathbf{x}}_i) (\mathbf{x}_{ij} - \overline{\mathbf{x}}_i)' = (n_1 + n_2 + n_3 - 3) \mathbf{S}_{\text{pooled}}$$

$$= \begin{bmatrix} 6 & -2 \\ -2 & 24 \end{bmatrix}$$

$$\mathbf{W}^{-1} = \frac{1}{140} \begin{bmatrix} 24 & 2 \\ 2 & 6 \end{bmatrix}; \qquad \mathbf{W}^{-1}\mathbf{B} = \begin{bmatrix} .3571 & .4667 \\ .0714 & .9000 \end{bmatrix}$$

Find eigenvector of $W^{-1}B$

$$\hat{\mathbf{a}}_{1}' = [.386 \quad .495]$$

$$\hat{\mathbf{a}}_2' = [.938 -.112]$$

The two discriminants are

$$\hat{y}_1 = \hat{\mathbf{a}}_1' \mathbf{x} = [.386 \quad .495] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = .386 x_1 + .495 x_2$$

$$\hat{y}_2 = \hat{\mathbf{a}}_2' \mathbf{x} = [.938 -.112] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = .938x_1 - .112x_2$$

$$\hat{y}_1 = \hat{\mathbf{a}}_1' \mathbf{x} = .386x_1 + .495x_2$$

 $\hat{y}_2 = \hat{\mathbf{a}}_2' \mathbf{x} = .938x_1 - .112x_2$

classify the new observation $\mathbf{x}_0' = \begin{bmatrix} 1 & 3 \end{bmatrix}$

$$\hat{y}_1 = .386x_{01} + .495x_{02} = .386(1) + .495(3) = 1.87$$

 $\hat{y}_2 = .938x_{01} - .112x_{02} = .938(1) - .112(3) = .60$

$$\bar{y}_{kj} = \hat{\mathbf{a}}_j' \bar{\mathbf{x}}_k$$

$$\sum_{j=1}^{2} (\hat{y}_j - \bar{y}_{1j})^2 = (1.87 - 1.10)^2 + (.60 + 1.27)^2 = 4.09$$

$$\sum_{j=1}^{2} (\hat{y}_j - \bar{y}_{2j})^2 = (1.87 - 2.37)^2 + (.60 - .49)^2 = .26$$

$$\sum_{j=1}^{2} (\hat{y}_j - \bar{y}_{3j})^2 = (1.87 + .99)^2 + (.60 - .22)^2 = 8.32$$

We allocate x0 to Population 2, the smallest value

Semangat guys ©