

Data Science

Session 6 - Working with text

hadrien.salem@centralelille.fr

<u>introduction-to-data-science</u>

Introduction

What did we do last time?

The CRISP-DM method

Cross-Industry Standard Process for Data Mining

- → Published in 1999
- Common in the industry
- → Still relevant today

Course outline

Data science course

Session 1: Understanding data

Session 2: Collaborative development

Session 3: Preparing data - Managing missing data

Session 4: Preparing data - Dimensionality reduction

Session 5: Imbalanced data and deidentification

Session 6: Working with text

Machine learning course

What is NLP?

Natural Language Processing

NLP has many applications in healthcare

In healthcare in particular, a lot of unstructured textual data is generated every day.

The automated processing of this data is a major challenge today.

EHR Analysis

Clinical coding

Outbreak detection

Healthcare chatbots

The difficulties of working with text

What challenges does one face when dealing with textual data?

What challenges does one face when dealing with textual data?

Language, dialects and slang Contextual words and phrases, homonyms **Synonyms** Irony and sarcasm **Ambiguity** Misspellings **Domain-specific language** Long-range dependencies 13

Pre-processing is absolutely crucial in NLP

Text is extremely noisy by nature.

Processing the text helps algorithms learn from the meaningful parts of it.

How to prepare textual data for ML

Text contains many elements that can typically be cleaned up

Removal of punctuations

Removal of frequent words

Removal of rare words

Removal / conversion of emojis

Removal of URLs

Spelling correction

Stemming vs Lemmatization

TURING

Stemming and Lemmatization

Both are techniques that reduce words to their root form.

They help reducing the dimensionality of the vocabulary.

Some information may be lost in the process.

Stemming

- Consists in chopping off prefixes and suffixes
- Fast and simple
- Has limitations for complex word morphologies

Lemmatization

- Using the context to find the dictionary form
- More accurate than stemming
- Computationally expensive

The cleaned up text needs to be converted into vectors: this is called **embedding**

How do you convert tokens into vectors?

Embedding method #1: Bag of Words

	she	loves	pizza	is	delicious	а	good	person	people	are	the	best
She loves pizza, pizza is delicious	1_	1	2	1	1	0	0	0	0	0	0	0
She is a good person	1_	0	0	1	0	1	1	1	0	0	0	0
good people are the best	0	0	0	0	0	0	1	0	1	1	1	1

Problem: Gives a lot of weight to common words like "the"

Embedding method #2: TF-IDF

Embedding method #3: Word2Vec

Shallow neural network that creates word embeddings such that words that are close in meaning are close in the embedding space.

Embedding method #3: Word2Vec

You can create the embedding either by predicting the current word...

Embedding method #3: Word2Vec

... Or by predicting the words before and after the target word.

Preparing data for NLP - Summary

Practical work

Get the latest version of the notebook from GitHub

Don't forget to upload your work!

Debrief

Debrief

What did we learn today?

What could we have done better?

What are we doing next time?

Closing words on this first course

Course outline

Data science course

Session 1: Understanding data

Session 2: Collaborative development

Session 3: Preparing data - Managing missing data

Session 4: Preparing data - Dimensionality reduction

Session 5: Imbalanced data and deidentification

Session 6: Working with text

Machine learning course

What we saw so far

1. Understanding data

- Asking the right questions
- How to visualize data

3. Managing missing data

- Sources of missing data
- Removing or imputing missing values

5. Imbalanced data and deidentification

- Undersampling and oversampling
- Deidentifying data

2. Collaborative development

- How to use Git and GitHub
- The basics of collaborative development

4. Dimensionality reduction

- Feature selection and feature extraction
- Principal Component Analysis

6. Working with text

- Introduction to NLP
- Cleaning, tokenizing and embedding

