鉛直下向きを正とする。

物体を投げ上げた地点を 0 として、 1,2,3秒後の位置を*y*₁,*y*₂,*y*₃とする。

$$y = \frac{1}{2}gt^2 + v_0t$$
 より、(等加速度運動の公式)
 $g = 9.8 \, m/_{S^2}$, $t = 1$, $v_0 = -9.8 \, m/_{S}$
 $g = 9.8 \, m/_{S^2}$, $t = 2$, $v_0 = -9.8 \, m/_{S}$
 $g = 9.8 \, m/_{S^2}$, $t = 3$, $v_0 = -9.8 \, m/_{S}$
を各々に代入して、
 $y_1 = \frac{1}{2} \cdot 9.8 \cdot 1^2 + (-9.8) \cdot 1$
 $= -4.9 m$
 $y_2 = \frac{1}{2} \cdot 9.8 \cdot 2^2 + (-9.8) \cdot 2$
 $= 0 m$
 $y_3 = \frac{1}{2} \cdot 9.8 \cdot 3^2 + (-9.8) \cdot 3$
 $= 14.7 m$

重力により2.0kgの物体がかかる力Fは、

$$F=mg$$
 より、 $g=9.8\,{}^m/_{S^2}$, $m=2.0kg$ を代入して、 $F=19.6N$

$$W = Fx$$
 より、 $F = 19.6N$, $x = \Delta y_{10} = y_1 - 0 = -4.9m$ $F = 19.6N$, $x = \Delta y_{21} = y_2 - y_1 = 4.9m$ $F = 19.6N$, $x = \Delta y_{32} = y_3 - y_2 = 14.7m$ を各々に代入して、 $W_{10} = 19.6 \cdot (-4.9)$ $= -96J$ $W_{21} = 19.6 \cdot 4.9$ $= 96J$ $W_{32} = 19.6 \cdot 14.7$ $= 288J$