AI504: Programming for Artificial Intelligence

Week 10: Recurrent Neural Network

Edward Choi
Grad School of AI
edwardchoi@kaist.ac.kr

Today's Topic

- Recurrent Neural Network
 - Vanilla RNN
 - Bidirectional RNN
 - GRU, LSTM
- Sequence-to-sequence
 - Neural Machine Translation
- Attention

Recurrent Neural Network

Handling Variable-Length Sequences

Image-to-LabelVS

• Sentence-to-Label

Handling Variable-Length Sequences

- Image-to-Label
 → Input size is fixed
- Sentence-to-Label
 Input size varies by sample

Bag-of-Words

- Classical way to handle variable length sentences/documents
- I gave the ball to John, who gave it to Mary
 - I:1, gave:2, the:1, ball:1, to:2, John:1, who:1, it:1, Mary:1

Bag-of-Words

- I gave the ball to John, who gave it to Mary
 - I:1, gave:2, the:1, ball:1, to:2, John:1, who:1, it:1, Mary:1

All vocab	Word count
а	0
aardvark	0
ab	0
•••	
•••	
ball	2
gave	2
•••	

Bag-of-Words

- I gave the ball to John, who gave it to Mary
 - I:1, gave:2, the:1, ball:1, to:2, John:1, who:1, it:1, Mary:1
- I gave the ball to Mary, who gave it to John
 - I:1, gave:2, the:1, ball:1, to:2, John:1, who:1, it:1, Mary:1

Different meaning, same representation!

Classical NLP

- Syntax, Semantic, Discourse, Pragmatic
- Part-of-speech tagging
- Parsing
- Named entity recognition
- Semantic role labeling

- Many of them made obsolete by deep learning
- Or are they...?

Recurrent Neural Network

- Represent variable-length input
- $h_t = f(Wx_t + Uh_{t-1} + b)$
 - f: non-linear activation function (originally tanh)

RNN

- Represent variable-length input
- Same weights at each timestep to handle variable-length sequence
 - U: h_{t-1} to h_t
 - W: x_t to h_t

RNN

- Represent variable-length input
- Feedforward Neural Network with new information at each timestep.
 - But use the same weights repeatedly.

Application

- Sequence-level classification/regression
 - Sentiment classification
 - Topic classification
- Classification/regression at each step.
 - Language modeling
 - Part-of-speech tagging
- Sequence-to-sequence
 - Translation
 - Question answering

Sequence-level Classification

- Sentiment classification: Positive or Negative?
 - "This movie is as impressive as a preschool Christmas play"

- Sentiment classification: Positive or Negative?
 - "This movie is as impressive as a preschool Christmas play"

- Sentiment classification: Positive or Negative?
 - "This movie is as impressive as a preschool Christmas play"

- Sentiment classification: Positive or Negative?
 - "This movie is as impressive as a preschool Christmas play"

- Sentiment classification: Positive or Negative?
 - "This movie is as impressive as a preschool Christmas play"

Language Modeling

- p("This movie is as impressive as a preschool Christmas play")
 - What is the probability of this sentence?
 - (Probably super small...)

Language Modeling

• p("This movie is as impressive as a preschool Christmas play")

• p(This)*p(movie | This)*p(is | This, movie)*...*p(play | This, movie, ..., Christmas)

- Need a model that can perform:
 - $p(W_t \mid W_1, W_2, ... W_{t-1})$

Language Modeling

- p("This movie is as impressive as a preschool Christmas play")
 - p(This)*p(movie | This)*p(is | This, movie)*...*p(play | This, movie, ..., Christmas)
- Need a model that can perform:
 - p(w_t | w₁, w₂, ... w_{t-1})
- Traditionally:
 - Unigram, bigram, trigram
 - Bigram \rightarrow p(w_t | w_{t-1}), Trigram \rightarrow p(w_t | w_{t-2}, w_{t-1})
 - Limited horizon
- With RNN
 - Theoretically, can model full $p(w_t | w_1, w_2, ... w_{t-1})$

Language Modeling with RNN

• "This movie is as impressive as a preschool Christmas play"

Language Modeling with RNN

• "This movie is as impressive as a preschool Christmas play"

Bidirectional RNN

Encode a sequence in two directions

Bidirectional RNN

Encode a sequence in two directions

Limitation

- Vanishing gradient still exists.
 - Long sequence means long backpropagation chain!
- Input from a distant past is forgotten!
 - Ex: "Jane walked into the room. John walked in too. It was late in the day. Jane said hi to "
- How to remedy this?
 - Some old tricks: Initialize weight matrices to identity matrices, use ReLU.
- Exploding gradient also exists.
 - Popular remedy: gradient clipping

- More complex hidden unit computation in recurrence!
- Gated Recurrent Units (GRU)
 introduced by Cho et al. 2014 (see reading list)
- Main ideas:
 - keep around memories to capture long distance dependencies
 - allow error messages to flow at different strengths depending on the inputs

- Standard RNN computes hidden layer at next time step directly: $h_t = f\left(W^{(hh)}h_{t-1} + W^{(hx)}x_t\right)$
- GRU first computes an update gate (another layer)
 based on current input word vector and hidden state

$$z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$$

Compute reset gate similarly but with different weights

$$r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$$

- Update gate $z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$
- Reset gate $r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$
- New memory content: $\tilde{h}_t = \tanh{(Wx_t + r_t \circ Uh_{t-1})}$ If reset gate unit is ~0, then this ignores previous memory and only stores the new word information
- Final memory at time step combines current and previous time steps: $h_t = z_t \circ h_{t-1} + (1-z_t) \circ \tilde{h}_t$

$$z_{t} = \sigma \left(W^{(z)} x_{t} + U^{(z)} h_{t-1} \right)$$

$$r_{t} = \sigma \left(W^{(r)} x_{t} + U^{(r)} h_{t-1} \right)$$

$$\tilde{h}_{t} = \tanh \left(W x_{t} + r_{t} \circ U h_{t-1} \right)$$

$$h_{t} = z_{t} \circ h_{t-1} + (1 - z_{t}) \circ \tilde{h}_{t}$$

Long Short Term Memory

- We can make the units even more complex
- Allow each time step to modify

• Input gate (current cell matters)
$$i_t = \sigma \left(W^{(i)} x_t + U^{(i)} h_{t-1}
ight)$$

• Forget (gate 0, forget past)
$$f_t = \sigma \left(W^{(f)} x_t + U^{(f)} h_{t-1} \right)$$

• Output (how much cell is exposed)
$$o_t = \sigma \left(W^{(o)} x_t + U^{(o)} h_{t-1} \right)$$

• New memory cell
$$ilde{c}_t = anh\left(W^{(c)}x_t + U^{(c)}h_{t-1}
ight)$$

• Final memory cell:
$$c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$$

• Final hidden state:
$$h_t = o_t \circ \tanh(c_t)$$

Sequence-to-Sequence

Sequence-to-Sequence

- Given variable-length sequence input,
 Predict (Generate) variable-length sequence output
 - Machine translation
 - Question answering
 - Chatbot

- Naturally, we need two RNNs!
 - Why?

Machine Translation

- "Je suis etudiant" → "I am a student"
 - French-to-English

$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4 \longrightarrow s_4$$

Decoder

student <eos>

Encoder

$$h_1 \longrightarrow h_2 \longrightarrow h_3 \longrightarrow h_4$$
 $\uparrow \qquad \uparrow \qquad \uparrow$

Je suis etudiant

Machine Translation

- What is the output of Encoder?
- What is the input of Decoder?

Decoder

Machine Translation

- Encoder's last hidden layer is the initial state of Decoder
 - **h**₄ represents the input sentence
- Autoregressive input to Decoder

Machine Translation

- At training phase:
 - Decoder input is the ground true tokens.
 - Apply negative log-likelihood to predicted outputs.

Machine Translation

- At test phase:
 - Decode input is the previous predicted token.
 - Autoregressive input

Attention

- Bahdanau, Cho, Bengio, 2014
 - English-French translation using RNN
- Let's use hidden layers from all timesteps to make predictions

- Bahdanau, Cho, Bengio, 2014
 - English-French translation using RNN
- Let's use hidden layers from all timesteps to make predictions

- Bahdanau, Cho, Bengio, 2014
 - English-French translation using RNN
- Let's use hidden layers from all timesteps to make predictions

- Bahdanau, Cho, Bengio, 2014
 - English-French translation using RNN
- Let's use hidden layers from all timesteps to make predictions

• Attention, what is it good for besides improved performance?

• Attention, what is it good for besides improved performance?

- Now c is an explicit combination of all past information
 - $\alpha_1, \alpha_2, \cdots, \alpha_{10}$ denote the usefulness from each word
 - We can tell which word was used the most/least to the outcome
- Attentions α_i are generated using an MLP

How to generate the attentions α_i ?

Use another feedforward neural network model

How to generate the attentions α_i ?

- Use function a(.) for each **h**_i
 - Feed the scores y_1 , y_2 , ..., y_{10} into the Softmax function

How to generate the attentions α_i ?

- Use function a(x) for each word: Justice, League, ..., Christmas, play
 - Feed the scores y_1 , y_2 , ..., y_{10} into the Softmax function

Attention in Seq2Seq

- Each y_i is predicted based on s_i
- Each s_i is derived based on s_{i-1}, y_{i-1}

Attention in Seq2Seq

• Each y_i is predicted based on s_i

• Each s_i is derived based on s_{i-1}, y_{i-1}, c_i

etudiant

<eos>

• c_i is derived from s_{i-1} and $h_{1:T}$

suis

Je

Assuming we are predicting y₂

Attention in Seq2Seq

- Each y_i is predicted based on s_i
 - $y_i = Softmax(W_w s_i + b)$
- Each s_i is derived based on s_{i-1}, y_{i-1}, c_i
 - $s_i = RNN(s_{i-1}, [y_{i-1}; c_i]_{concat})$
- c_i is derived from s_{i-1} and $h_{1:T}$
 - $c_i = sum(\alpha_i * h_i)$
 - $\alpha_i = Softmax(f(s_{i-1}, h_1), ..., f(s_{i-1}, h_T))$
 - $f(s_{i-1}, h_j) = s_{i-1}^T W_f h_j$

Attention Example

- English-French translation
 - Bahdanau, Cho, Bengio 2014

AI504: Programming for Artificial Intelligence

Week 10: Recurrent Neural Network

Edward Choi
Grad School of AI
edwardchoi@kaist.ac.kr