L14: More group actions

Ptop Led $H \leq G$ be a substeap. Then $G \times G/H - G/H \quad \text{defined a stomp action.}$ $(3, V) \vdash, gV = fgv \mid v \in Vf$

If .) We show first that the same formula defines a group action $G \circ P(G) := f \lor I \lor a$ subset of $G \not = g \lor I$.

i) g. (g. V) = 1 g. v | v e g. V l = 1 g. g. v | v e V l - (g. g.) · V

ii) e·V = seu | u = V + = V

.) It remains to show that the above action restricts to $G/H \subseteq P(G)$, i.e. that $g.V \in G/H$ whenever $V \in G/H$. By definition $V \in G/H = -3g_2 \in G$ st. $V = g_2 \cdot H$. But then $g.(g_2 \cdot H) = (g.g_2) \cdot H \in G/H$.

Det Let a be a group.

· A G-set (X,S) is a suple consisting of a set X together with a group action $G \times X \to X$.

· A map $\varphi: X_2 \to X_2$ is a homomorphism of G-octs if $\varphi(gx) = g \varphi(x)$

· We call 4 on ion of G-sels of it is furthermore a bijection.

Recall translive = style abil

· Staba (x) = Gx = { g + G | g.x = x }

Prop Let GCX be forsitive and $x \in X$. Then there is an isomorphism of G-sels $G/Stab_G(x) \stackrel{\sim}{=} X$ (3) $f \mapsto g.x$

Pf Exercise!

Cor (Orbit-Stabilizer formula)

Let $GO \times .$ Then $G \cdot x = G / Staba(x)$ and thus $|G \cdot x| = |G| / Staba(x)|$ if G is finite

Application

Prop $|S_n| = n!$ Prop $|S_n| = n!$ We claim that the action is transitive e.g. $X = S_n \cdot x$ for $x = n \in X$.

This is dear $\{ \sigma_i = (n \cdot \ell) \mid satisfier \mid \sigma(n) = \ell \}$.

Moreovar $Slob_{S_n}(n) = \{ \sigma : \{1,...,n!-1!1,...,n! \mid \sigma \mid b'j \mid \& \sigma(n) = n \}$ $= S_{n-3}$ $= s_{n-3}$

Thuy (Class equotion) GCX $|X| = |Fix_G(X)| + \sum_{i=1}^{d} |S_{ab_G}(x_i)|$ where $Fix_G(X) = \{x \in X \mid g.x = x \mid Jg \in G\}$ and $J_{11...}$, Xe are a set of representative for $X/G \setminus Fix_G(X)$ i.e. $X/G = \bigcup_{x \in Fix_G(X)} \bigcup_{i=1}^{d} G. Z_i$

Pf We have
$$|X| = \sum_{(x) \in X/G} |G \cdot x|$$

$$= \sum_{(x) \in X/G} 1 + \sum_{(x) \in X/G} |G \cdot x|$$

$$= \sum_{(x) \in X/G} 1 + \sum_{(x) \in X/G} |G \cdot x|$$

$$= \sum_{(x) \in X/G} 1 + \sum_{(x) \in X/G} |G \cdot x|$$

$$= \sum_{(x) \in X/G} |G \cdot x|$$