"A Walrasian Theory of Sovereign Debt Auctions with Asymmetric Information"

by Harold L. Cole, Guillermo Ordonez and

Daniel Neuhann

Discussed by Sergei Glebkin, INSEAD

FIRS 2018

Summary

A theory of divisible goods auctions, that allows for

- UP and DP auction formats
- Asymmetric info and info acquisition
- Short sale and borrowing constraints
- General utility function for bidders
- (Key simplification): bidders have no market power

Key result: info acquisition incentives are different with DP and UP auction formats

Setting

- Two assets: risk-free bond and risky sovereign bond
 - Q: real-life counterpart to the risk-free bond?
- Risky bond pays off $\{1,0\}$ w.p. $\{1 \kappa_{\theta}, \kappa_{\theta}\}$
- Quality shock $\kappa_{\theta} \in \{\kappa_g, \kappa_b > \kappa_g\}$ w.p. $\{f_g, f_b = 1 f_g\}$
- Investors can acquire info: pay cost $K \Rightarrow \text{know } \theta$
 - Q: can the model handle more general distributions for bond's payoff and quality shock?

Setting

- Investors $\in [0,1]$: utility U(x). Closed-form solutions with $U(x) = \log(x)$ with symmetric info.
 - Cannot short sell and/or borrow
 - C: contrast general U(x) to commonly assumed specifications: CARA, mean-variance. Wealth effects? Contrast to the case of no financial constraints.
- Demand shock η : only fraction 1η of investors show up to the auction. Distribution of η is general.
 - η is a source of noise in the price
 - C: contrast to standard ways of introducing noise, e.g. random supply.

Comments

Why sovereign debt?

 Authors' response: assumptions are well justified: "Sovereign bonds are highly divisible, usually of uncertain quality, and auctioned ... to a large number of investors."

Insights can be applied to other markets!

- E.g., competitive REE models consider stocks as being divisible, of uncertain quality and assume traders have no market power
- REE models assume UPA, even though stocks are traded in (price-discriminating) limit-order books
- Are insights under DPA and UPA similar?

Info acquisition: DPA vs UPA

Figure 7: Equilibrium with Information Acquisition

Complementarities in info acquisition with DPA but not UPA! Why?

Comments

REE models assume UPA, even though stocks are traded in (price-discriminating) limit-order books

- It seems some of the insights from REE models are not robust to DPA vs UPA – interesting insight!
 - Info acquisition incentives are different

Minor comments

Clarify notation:

$$-U'\left(W-\mathbf{P}\times\vec{B}^{U}\right)\cdot\vec{P}\cdot\kappa^{U}+U'\left(W+\left[\mathbf{1}-\mathbf{P}\right]\times\vec{B}^{U}\right)\cdot\left[1-\vec{P}\right]*\left[1-\kappa^{U}\right]=0.$$

Conclusion

I enjoyed reading the paper!

- Potential for addressing more questions with the same machinery
 - DPA with asy info is particularly interesting
- Clarify modeling choices
- Compare your results to benchmarks

GOOD LUCK!