23.5 void Insertin Sort (Arr, n): } if n=1, return; Insertion Sort (Arrin-1); int j= n-2, int last = arrin-1] while (j 20 && avrcj27/ast) avrjjtil:avvoj1; running time: arrbjall = last [n-1)+ 0(n) n=1 [(N) =

2-1			1
a. Using	inscrtion s	ort boort one	leopth K
gablist	will cost	(1) time	then,
there	are w/1c si	ublists. so u	ill wst
O1k.	n r) = Olnk) in total	F IP 15
b. Let	Meye Sort 18	Tuy time.	i tri
the			3/:NW
Out #	od Pred Sort	mente	Link
7	Lamos.	(m)	
中一	工(年)十	0(n)	J YYP T
37	1 [n] = (+) (n/g(-101)	
ρ,			

(Standard merge sort: @Inlogn) when k=1. It has the same runing time as standard merge sort d. let filmk+nlg(x) $\int (k) = n + k \cdot \left(-\frac{k}{k^2}\right) = h - \frac{n}{k}$ 80 f { } k (co.1)

K (co.1) 50 f has minimum with k=1 Imin = 1. However. 1 will choose to with experiment's result.

4.2-3

$$T(n) = k T(\frac{1}{3}) + O(n^2)$$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(n^2)$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(\frac{n^2}{2})$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(\frac{n^2}{2})$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(\frac{n^2}{2})$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(\frac{n^2}{2})$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2})) + O(\frac{n^2}{2})$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2}) + O(\frac{n^2}{2})$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2}) + O(\frac{n^2}{2})$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2}) + O(\frac{n^2}{2})$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2}) + O(\frac{n^2}{2})$
 $T(n) = k (k T(\frac{n}{2}) + O(\frac{n^2}{2}) + O(\frac{n^2}{2})$
 $T(n) = k (k$