Brain Stroke Prediction

Importing Libraries

In [2]: **import** numpy **as** np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import matplotlib.pyplot **as** plt #creating static, interactive, and animated visualizations in Python

import seaborn as sns #data visualizations

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline, make_pipeline

from sklearn.utils.validation import check_is_fitted

import warnings

warnings.filterwarnings('ignore')

Viewing the data in pandas

In [3]: #The dataframe is read from the csv file

df=pd.read_csv('brain_stroke.csv')
df.head(10)

	unicuu(15)										
Out[3]:		gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_gluco:		
	0	Male	67.0	0	1	Yes	Private	Urban			
	1	Male	80.0	0	1	Yes	Private	Rural			
	2	Female	49.0	0	0	Yes	Private	Urban			
	3	Female	79.0	1	0	Yes	Self- employed	Rural			
	4	Male	81.0	0	0	Yes	Private	Urban			
	5	Male	74.0	1	1	Yes	Private	Rural			
	6	Female	69.0	0	0	No	Private	Urban			
	7	Female	78.0	0	0	Yes	Private	Urban			
	8	Female	81.0	1	0	Yes	Private	Rural			
	9	Female	61.0	0	1	Yes	Govt_job	Rural			

In [4]: df.tail(5)

Out[4]:		gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_g		
	4976	Male	41.0	0	0	No	Private	Rural			
	4977	Male	40.0	0	0	Yes	Private	Urban			
	4978	Female	45.0	1	0	Yes	Govt_job	Rural			
	4979	Male	40.0	0	0	Yes	Private	Rural			
	4980	Female	80.0	1	0	Yes	Private	Urban			
4									>		
In [5]:		#Count of number of records and columns df.shape									
Out[5]:	(4981,	11)									
In [6]:	# Prov		lata ty	pe of all attribu	tes and the num	ber of NOT NUL	L values cour	nt is obtained			
In [7]:	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 4981 entries, o to 4980 Data columns (total 11 columns): # Column</class></pre>										
Out[7]:			age	hypertension	heart_disease	avg_glucose_le	vel	bmi strok	æ		
	count	4981.00	0000	4981.000000	4981.000000	4981.0000	00 4981.000	0000 4981.00000	00		
	mean	43.41	9859	0.096165	0.055210	105.9435	62 28.498	3173 0.04978	39		
	std	22.66	2755	0.294848	0.228412	45.0753	73 6.790	0.21753	31		
	min	0.08	0000	0.000000	0.000000	55.1200	000 14.000	0.00000	00		
	25%	25.00	0000	0.000000	0.000000	77.2300	00 23.700	0.0000	00		
	50%	45.00	0000	0.000000	0.000000	91.8500	00 28.100	0.00000	00		
	75%	61.00	0000	0.000000	0.000000	113.8600	00 32.600	0.00000	00		
	max	82.00	0000	1.000000	1.000000	271.7400	00 48.900	0000 1.00000	00		

```
gender
 Out[8]:
           age
           hypertension
                             o
           heart_disease
           ever_married
           work_type
           Residence_type
           avg_glucose_level
           bmi
           smoking_status
                              o
           stroke
           dtype: int64
           # Checking the values in the stroke column
 In [9]:
           print(df["stroke"].value_counts())
           0 4733
           1 248
           Name: stroke, dtype: int64
           sns.barplot(x="stroke", y='hypertension', data=df, hue="stroke")
In [11]:
           #label axis
           plt.xlabel("Stroke")
           plt.ylabel("Hypertension")
           plt.title("Distribution of Hypertension with Stroke");
```

Distribution of Hypertension with Stroke


```
In [12]: sns.barplot(x="stroke", y='heart_disease', data=df)
    #label axis
    plt.xlabel("Stroke")
    plt.ylabel("Heart Disease")
    plt.title("Distribution of Heart Disease with Stroke");
```

Distribution of Heart Disease with Stroke


```
In [13]: sns.barplot(x="stroke", y='avg_glucose_level', data=df)
    #label axis
    plt.xlabel("Stroke")
    plt.ylabel("Average Glucose Level")
    plt.title("Distribution of Average Glucose Level with Stroke");
```



```
In [14]: sns.barplot(x="stroke", y='bmi', data=df)
    #label axis
    plt.xlabel("Stroke")
    plt.ylabel("BMI")
    plt.title("Distribution of BMI with Stroke");
```

Distribution of BMI with Stroke


```
In [15]: sns.barplot(x="stroke", y='smoking_status', data=df)
    #label axis
    plt.xlabel("Stroke")
    plt.ylabel("Smoking status")
    plt.title("Distribution of Smoking Status with Stroke");
```

Distribution of Smoking Status with Stroke


```
In [16]: sns.barplot(x="stroke", y='age', data=df)
#label axis
plt.xlabel("Stroke")
plt.ylabel("Age")
plt.title("Distribution of Age with Stroke");
```


In [17]: print(df["smoking_status"].value_counts())

```
never smoked
                            1838
           Unknown
                          1500
           formerly smoked 867
           smokes
                         776
           Name: smoking_status, dtype: int64
           print(df["heart_disease"].value_counts())
In [18]:
           0 4706
           1 275
           Name: heart_disease, dtype: int64
In [19]:
           # Exluding the object datatype in the dataset
           df = df.select_dtypes(exclude=['object'])
           df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 4981 entries, o to 4980
           Data columns (total 6 columns):
                             Non-Null Count Dtype
           # Column
                          4981 non-null float64
           o age
                              4981 non-null int64
           1 hypertension
           2 heart_disease 4981 non-null int64
           3 avg_glucose_level 4981 non-null float64
           4 bmi
                          4981 non-null float64
           5 stroke
                           4981 non-null int64
           dtypes: float64(3), int64(3)
           memory usage: 233.6 KB
           y = df["stroke"].values
In [20]:
           x_data = df_drop(["stroke"], axis = 1)
           sns.pairplot(x_data)
           plt.show()
```


Data Normalization

In [21]: $x = (x_{data} - np.min(x_{data}))/(np.max(x_{data}) - np.min(x_{data})).values$ x.head()

Out[21]:		age	hypertension	heart_disease	avg_glucose_level	bmi
	0	0.816895	0.0	1.0	0.801265	0.647564
	1	0.975586	0.0	1.0	0.234512	0.530086
	2	0.597168	0.0	0.0	0.536008	0.584527
	3	0.963379	1.0	0.0	0.549349	0.286533
	4	0.987793	0.0	0.0	0.605161	0.429799

Correlation Matrix

df.corr() #calculates the correlation matrix between the numerical columns

Ο.	-4-	[22]	١.
Uί	ЛL		

	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke
age	1.000000	0.278120	0.264852	0.236763	0.373703	0.246478
hypertension	0.278120	1.000000	0.111974	0.170028	0.158762	0.131965
heart_disease	0.264852	0.111974	1.000000	0.166847	0.060926	0.134610
avg_glucose_level	0.236763	0.170028	0.166847	1.000000	0.186348	0.133227
bmi	0.373703	0.158762	0.060926	0.186348	1.000000	0.056926
stroke	0.246478	0.131965	0.134610	0.133227	0.056926	1.000000

Out[23]: <AxesSubplot:>

Spliting the dataset

```
In [24]: target = "stroke"
    X = df.drop(columns=target)
    y = df[target]
```

20% test set & 80% train set

```
In [25]:
           X_train, X_test, y_train, y_test = train_test_split(
              X, y, test_size=0.2, random_state=42
            print("X_train shape:", X_train.shape)
            print("y_train shape:", y_train.shape)
            print("X_test shape:", X_test.shape)
            print("y_test shape:", y_test.shape)
            X_train shape: (3984, 5)
            y_train shape: (3984,)
            X_test shape: (997, 5)
            y_test shape: (997,)
In [26]:
            acc_baseline = y_train.value_counts(normalize=True).max()
            print("Baseline Accuracy:", round(acc_baseline, 2))
            Baseline Accuracy: 0.95
            Building Model
            # Build model using Logistic Regression
In [27]:
            model = LogisticRegression(max_iter=1000)
            # Fit model to training data
            model.fit(X_train, y_train)
            LogisticRegression(max_iter=1000)
Out[27]:
            # Predicting the result
In [28]:
            y_pred=model.predict(X_test)
            model.score(X_test, y_test)
In [30]:
            0.9458375125376128
Out[30]:
            # Confusion Matrix
In [31]:
            from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,plot_confusion_matrix
            ac = accuracy_score(y_test,y_pred)*100
            cr= classification_report(y_test,y_pred)
            print("accuracy score : ",ac)
            print("classification report :",cr)
            accuracy score: 94.58375125376128
                                         precision recall fi-score support
            classification report :
                               1.00
                       0.95
                                      0.97
                                              943
                       0.00
                              0.00
                                      0.00
                                               54
              accuracy
                                      0.95
                                              997
              macro avg
                                   0.50
                           0.47
                                          0.49
                                                  997
            weighted avg
                            0.89
                                            0.92
            plot_confusion_matrix(model,X_test,y_test)
In [32]:
            <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at ox1e212924b2o>
Out[32]:
```


In []: