Corso di Laurea: Ingegneria Informatica

Esame di Fisica Generale, Sessione del: 16/7/2025 Cognome: Matricola:

Nome: Anno di Corso:

Problema 1

La ruota in figura si trova nel piano verticale ed è composta da una corona circolare di spessore trascurabile, massa M e raggio a, e da sei aste sottili ed omogenee disposte radialmente rispetto al centro della ruota, ciascuna di massa m e lunghezza a. La ruota può muoversi, rotolando senza strisciare, su un piano orizzontale. Una molla di lunghezza a riposo nulla e costante elastica k ha un estremo fisso in O e l'altro ancorato all'asse della ruota. Si assuma che all'istante t=0 la ruota sia ferma e il punto di contatto P sia ad una distanza non nulla da O.

Si richiede di determinare:

- 1. il momento d'inerzia I_r della ruota rispetto all'asse orizzontale passante per il suo centro;
- 2. le componenti F_x e F_y della forza elastica che agisce sulla ruota in funzione della coordinata x_{CM} del centro di massa;
- 3. il periodo delle oscillazioni compiute dal centro di massa della ruota per t > 0;
- 4. le componenti R_x e R_y della reazione esercitata dal piano orizzontale nel punto di contatto, in funzione della coordinata x_{CM} del centro di massa.

Nota

Per il sistema di coordinate cartesiane, fare riferimento alla figura.

Problema 2

Il circuito in figura giace nel piano orizzontale, ed è attraversato da un campo magnetico \vec{B} uniforme, costante, e diretto ortogonalmente (uscente) rispetto al piano. I lati paralleli all'asse x sono delle piste conduttrici su cui può scorrere senza attrito una sbarra massiva di lunghezza L e resistenza trascurabile. Sia le piste che il ramo di circuito (fisso) ad esse ortogonale, hanno resistenza per unità di lunghezza r. Sulla sbarra, è esercitata una forza esterna $\vec{F}_{\rm ext}$ tale da mantenerla in moto con velocità costante \vec{v} diretta come in figura. All'istante iniziale t=0, la sbarra dista h dal ramo fisso.

Si richiede di determinare per t > 0:

- 1. la forza elettromotrice \mathcal{E} indotta nel circuito;
- 2. la corrente *i* che scorre nel circuito durante il moto della sbarra, indicando il verso di circolazione (orario o antiorario);
- 3. la forza $\vec{F}_{\rm ext}$ necessaria affinché il moto della sbarra avvenga con velocità costante.

Soluzione del problema 1

Fissiamo un sistema di coordinate cartesiane come in figura. Il versore \hat{i} è diretto verso destra e il versore \hat{j} è diretto verso l'alto. Durante il moto della ruota, il suo centro di massa (che coincide con il centro della ruota) ha coordinate x_{CM} e $y_{CM} = a$. Poiché il moto del centro di massa della ruota avviene in orizzontale, abbiamo: $\dot{y}_{CM} = 0$ e $\ddot{y}_{CM} = 0$.

I dati noti dall'enunciato sono:

Massa corona: M, massa di ciascuna asta: m, raggio: a, costante elastica della molla: k.

1. Momento d'inerzia I_r della ruota

Il momento d'inerzia della corona (anello sottile) rispetto al centro è:

$$I_{\text{corona}} = Ma^2$$
.

Il momento d'inerzia di una singola asta (asta sottile rispetto a un'estremità) è:

$$I_{\rm asta} = \frac{1}{3} ma^2.$$

Sommando le sei aste:

$$I_{\text{aste}} = 6 \cdot \frac{1}{3} ma^2 = 2ma^2.$$

Quindi il momento d'inerzia totale della ruota, rispetto al centro, è:

$$I_r = I_{\text{corona}} + I_{\text{aste}} = (M + 2m) a^2.$$

2. Forza elastica

La forza elastica esercitata dalla molla è:

$$\vec{F}_e = -k \, \vec{r}_{CM}.$$

dove

$$\vec{r}_{CM} = x_{CM}\,\hat{\imath} + a\,\hat{\jmath}.$$

Quindi:

$$\vec{F}_e = -k \, x_{CM} \, \hat{\imath} - k \, a \, \hat{\jmath}.$$

Le componenti sono:

$$F_x = -k x_{CM}, \qquad F_y = -k a.$$

3. Periodo delle oscillazioni del centro di massa

Nel moto della ruota, si conserva l'energia meccanica. La massa totale della ruota è:

$$M_r = M + 6m$$
.

Dalla condizione di puro rotolamento ricaviamo:

$$\dot{x}_{CM} = a \, \dot{\theta} \Rightarrow \dot{\theta} = \frac{\dot{x}_{CM}}{a}.$$

L'energia cinetica totale è:

$$K = \frac{1}{2}M_r\dot{x}_{CM}^2 + \frac{1}{2}I_r\dot{\theta}^2 = \frac{1}{2}\left(M_r + \frac{I_r}{a^2}\right)\dot{x}_{CM}^2.$$

Se definiamo la massa efficace:

$$m_{\text{eff}} = M_r + \frac{I_r}{a^2} = (M + 6m) + (M + 2m) = 2M + 8m,$$

abbiamo:

$$K = \frac{1}{2} m_{\text{eff}} \dot{x}_{CM}^2.$$

L'energia potenziale è quella elastica:

$$U = \frac{1}{2} k \left(x_{CM}^2 + y_{CM}^2 \right) = \frac{1}{2} k x_{CM}^2 + \frac{1}{2} k a^2.$$

L'energia meccanica è:

$$E = K + U = \frac{1}{2} m_{\text{eff}} \dot{x}_{CM}^2 + \frac{1}{2} k x_{CM}^2 + \frac{1}{2} k a^2 = \text{costante.}$$

Derivando questa equazione rispetto al tempo, imponendo $\frac{dE}{dt}=0$ e semplificando, abbiamo:

$$m_{\text{eff}} \ddot{x}_{CM} + k x_{CM} = 0,$$

che è l'equazione differenziale di un oscillatore armonico con pulsazione

$$\Omega = \sqrt{\frac{k}{m_{\text{eff}}}}.$$

Il periodo è pertanto:

$$T = \frac{2\pi}{\Omega} = 2\pi \sqrt{\frac{2M + 8m}{k}}.$$

4. Reazione del vincolo nel punto di contatto

Applichiamo la seconda legge di Newton al centro di massa:

$$\vec{F}_e + \vec{R} + M_r \vec{g} = M_r \, \vec{a}_{CM},$$

dove $M_r \vec{g} = -M_r g \,\hat{\jmath}$ è il peso.

Componente x:

$$F_x + R_x = M_r \ddot{x}_{CM} \Rightarrow R_x = M_r \ddot{x}_{CM} - F_x.$$

Poiché:

$$\ddot{x}_{CM} = -\frac{k}{m_{cG}} x_{CM},$$

allora:

$$R_x = (M + 6m) \left(-\frac{k}{2M + 8m} x_{CM} \right) + k x_{CM},$$

$$\Rightarrow R_x = k x_{CM} \left(1 - \frac{M + 6m}{2M + 8m} \right) = k x_{CM} \cdot \frac{M + 2m}{2M + 8m},$$

$$R_x = k x_{CM} \cdot \frac{M + 2m}{2M + 8m}.$$

Componente y:

$$F_y + R_y - M_r g = 0 \Rightarrow R_y = M_r g - F_y = (M + 6m)g + ka,$$

$$R_y = (M + 6m) g + k a.$$

Soluzione del problema 2

Fissiamo il sistema di coordinate cartesiane con l'asse x come in figura, l'asse y lungo il ramo fisso del circuito e l'asse z uscente dal piano. Il circuito giace nel piano x, y ed è immerso nel campo magnetico uniforme

$$\vec{B} = B\,\hat{k}, \qquad B > 0,$$

uscente dal piano. La sbarra conduttrice di lunghezza L è parallela all'asse y e scorre sulle piste conduttrici parallele all'asse x con velocità costante:

$$\vec{v} = v \,\hat{\imath}, \qquad v > 0.$$

Al tempo t=0, la sbarra si trova a distanza h dal ramo fisso (cioè l'area racchiusa dal circuito inizialmente è $A_0=Lh$). Le piste e il ramo fisso hanno resistenza lineare r (in Ω/m), mentre la sbarra ha resistenza trascurabile.

1. Forza elettromotrice indotta

Poiché la sbarra si muove, l'area del circuito varia con il tempo:

$$A(t) = (h + x) L = (h + vt) L = A_0 + vt L.$$

Il campo magnetico è uniforme e costante, di conseguenza il flusso del campo magnetico è:

$$\Phi_B(t) = B A(t) = B L(h + vt).$$

Dalla legge di Faraday-Neumann-Lenz:

$$\mathcal{E}(t) = -\frac{d\Phi_B}{dt} = -B L v.$$

Si noti che, essendo \vec{B} uscente dal piano, il segno – per la forza elettromotrice $\mathcal E$ indica che la corrente circola in senso orario nel circuito. Ciò è coerente con l'attesa che il circuito risponda all'aumento del flusso di \vec{B} generando un campo magnetico antiparallelo a \vec{B} stesso (ovvero entrante nel piano), come avviene se la corrente circola in senso orario. Si noti anche che essendo \vec{v} costante per ipotesi (così come \vec{B}), $\mathcal E$ non dipende dal tempo.

2. Corrente indotta nel circuito

Resistenza del circuito: Il ramo fisso ha lunghezza L; ognuno dei rami percorsi da corrente lungo le piste ha lunghezza h + vt; la sbarra ha resistenza trascurabile. Al tempo t > 0, la resistenza del circuito è pertanto:

$$R(t) = rL + 2r(h + vt) = r(L + 2h + 2vt).$$

Intensità della corrente:

$$i(t) = \frac{|\mathcal{E}|}{R(t)} = \frac{BLv}{r(L+2h+2vt)}$$

$$i(t) = \frac{BLv}{r(L+2h+2vt)},$$
 verso orario.

La corrente diminuisce nel tempo in quanto la resistenza del circuito aumenta.

3. Forza esterna necessaria

Poiché nella sbarra scorre corrente, il campo magnetico esercita una forza su di essa. In particolare, ogni elemento infinitesimo $d\vec{\ell}$ subisce la forza $d\vec{F}_{\rm mag}$ data da

$$d\vec{F}_{\rm mag} = i\,d\vec{\ell} \times \vec{B} = i\,d\ell\,(-\hat{j}) \times B\hat{k} = -i\,d\ell\,B\,(\hat{j} \times \hat{k}) = -i\,d\ell\,B\,\hat{i}.$$

in cui si è usato il fatto che la corrente scorre lungo la sbarra in verso opposto al versore \hat{j} . Essendo $d\ell$ ortogonale a \vec{B} , e poiché il modulo B è uniforme in tutto lo spazio, integrando in $d\ell$ si ricava la forza magnetica su tutta la sbarra:

$$\vec{F}_{\text{mag}} = -iLB\,\hat{\imath}.$$

Per mantenere il moto a velocità costante, è necessario applicare sulla sbarra una forza esterna opposta:

$$\vec{F}_{\text{ext}} = -\vec{F}_{\text{mag}} = iLB\,\hat{\imath}.$$

Sostituendo i(t):

$$\vec{F}_{\text{ext}}(t) = \frac{BLv}{r(L+2h+2vt)} \cdot LB\,\hat{\imath} = \frac{B^2L^2v}{r(L+2h+2vt)}\,\hat{\imath}.$$

$$\vec{F}_{\text{ext}}(t) = \frac{B^2 L^2 v}{r(L + 2h + 2vt)} \,\hat{\imath}.$$