# **TensorFlow Regression Example**

More Realistic. More data points. Batches.

The tf.estimator is for things that are easier. TensorFlow is more for things that need a specific neural network, customized, whatever...

## **Imports**

```
In [2]: import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
%matplotlib inline

import tensorflow as tf

from sklearn.model_selection import train_test_split

# remember TensorFlow and SciKit-Learn up here
```

# **Creating Data**

#### One Million Points!

```
In [5]: x_data = np.linspace(0.0, 10.0, 1000000) # We're not quite ready for a real dataset
In [6]: x_data
Out[6]: array([0.000000e+00, 1.000001e-05, 2.000002e-05, ..., 9.999980e+00, 9.999990e+00, 1.0000000e+01])
```

#### Noise

### Now, for the data

y=mx+b+noise just to make it more difficult for the model Jose, seemingly arbitrarily, chooses b=5 and m=0.5 to start

4 0.00004

#### **Pandas**

Copied from the course notes version:

```
In [22]: my_data.head()
```

### Out[22]:

|   | X Data  | Y        |
|---|---------|----------|
| 0 | 0.00000 | 2.463328 |
| 1 | 0.00001 | 6.266351 |
| 2 | 0.00002 | 7.002196 |
| 3 | 0.00003 | 4.266070 |
| 4 | 0.00004 | 4.190047 |

In [23]: # my\_data.plot() might crash the kernel
my\_sample = my\_data.sample(n=250)

In [24]: my\_sample.head()

### Out[24]:

|        | X Data   | Y        |
|--------|----------|----------|
| 291390 | 2.913903 | 6.751199 |
| 844584 | 8.445848 | 9.808121 |
| 853946 | 8.539469 | 9.767452 |
| 206780 | 2.067802 | 6.574018 |
| 818116 | 8.181168 | 9.789130 |

```
In [25]: my_sample.plot(kind='scatter', x = 'X Data', y='Y')
```

Out[25]: <matplotlib.axes.\_subplots.AxesSubplot at 0x21b8caee6a0>



# **TensorFlow**

## **Batch Size**

We will take the data in batches (1 000 000 points is a lot to pass in at once).

```
In [26]: # random points to grab, If you had a trillion, probably use smaller batches
batch_size = 8
```

#### **Variables**

```
In [34]: m_pre, b_pre = np.random.randn(2)
```

```
In [35]:
         type(m_pre)
Out[35]: numpy.float64
         type(b_pre)
In [37]:
Out[37]: numpy.float64
         # I didn't follow this, because using 'dtype' instead of 'type' worked
In [42]:
         #tf.cast(m pre, tf.float32)
         #tf.cast(b pre, tf.float32)
         # DWB, I had to add the type
In [79]:
         #+ Jose just used, e.g. 'm = tf. Variable(0.81)'
         m = tf.Variable(m pre, dtype=tf.float32)
         b = tf.Variable(b pre, dtype=tf.float32)
         print("Initally: m = " + str(m pre) + " ; " + "b = " + str(b pre))
         Initally: m = -1.8207890158884688; b = 0.5308590971042547
```

#### **Placeholders**

```
In [50]: x_ph = tf.placeholder(tf.float32, [batch_size])
In [51]: y_ph = tf.placeholder(tf.float32, [batch_size])
```

So, I'm getting that placeholders get your data, while variables are what you're trying to predict. I'm not sure that's exactly correct, but it's what I'm getting right now.

### Graph

What are we trying to do here? Fit a line to some points. So it's a y=mx+b kind of graph

```
In [52]: y_model = m * x_ph + b # Had to mess with type to get this to work
```

#### **Loss Function**

```
In [54]: # Remember that y_value is the true value
#+ Also, we square it to punish the error more,
#+ and thus bring it closer more quickly.
#+ could use '() ** 2' instead of tf.square()
error = tf.reduce_sum(tf.square(y_ph - y_model))
```

### **Optimizer**

```
In [56]: optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
    train = optimizer.minimize(error)
```

#### **Initialize Variables**

```
In [57]: init = tf.global_variables_initializer()
```

### Session

```
In [61]: with tf.Session() as sess:
             sess.run(init)
             batches = 1000
             for i in range(batches):
                 rand_index = np.random.randint(len(x_data),
                                                 size=batch_size)
                 # DWB: it seems to me we'll only we doing 8000 out
                 #+ of the 1e6 points. That will make it go faster, I
                 #+ guess.
                 # Jose says we can play around with batches and
                 #+ batch_size to see if we have enough data to
                 #+ train it well. He seems to suggest that, if we
                 #+ were to use more of the training data, we would
                 #+ overfit to the training data. Not sure if that
                 #+ applies here ... wait, yes it kinda does but not
                 #+ in a way that's too concerning - we're taking
                 #+ random parts ...
                 feed = {x_ph:x_data[rand_index],
                         y_ph:y_true[rand_index]}
                 sess.run(train, feed_dict=feed)
                 # So, we have it fitting the data with 8 random points
                 #+ for each
             ##endof: for i
             # Fetch the slope and intercept values (run will go get the
             #+ m and b placeholders)
             model_m, model_b = sess.run([m, b])
```

```
##endof: with ... sess

In [62]: model_m # should come out close to our 0.5

Out[62]: 0.49369615

In [66]: model_b #should come out close to our 5

Out[66]: 4.944955
```

So, we went from whatever our original m and b values were - in my case m=-1.8 and b=0.5. The values used for this specific training can be found with the following cell.

```
In [67]: print("m_init = " + str(m_pre) + "; " + "b_init = " + str(b_pre))

m_init = -1.8207890158884688; b_init = 0.5308590971042547
```

And we ended up with the model\_m and model\_b shown above, which are quite close to the values before noise, m = 0.5, b = 5; Things would look even nicer if we took the error over the value.

## **Results**

```
In [71]: y_hat = x_data * model_m + model_b # rem. y_hat represents the predicted
```

Out[73]: [<matplotlib.lines.Line2D at 0x21b8e0478d0>]



Jose changes the above code for 10k batches, I'm going to have it all re-written, so I can compare better. I will stick it to the anti-Q&R voice by not renaming the variables. Wahahaha!

I though I might have to rename them, then I think I figured that I could get rid of an error that came up by initializing the variables. Nope, had to re-put-in all the code. But I'm not renaming the variables. Wahahaha!

```
In [80]: # DWB, I had to add the type
#+ Jose just used, e.g. 'm = tf.Variable(0.81)'
m = tf.Variable(m_pre, dtype=tf.float32)
b = tf.Variable(b_pre, dtype=tf.float32)
print("Initally: m = " + str(m_pre) + " ; " + "b = " + str(b_pre))
x_ph = tf.placeholder(tf.float32, [batch_size])
y_ph = tf.placeholder(tf.float32, [batch_size])
y_model = m * x_ph + b
error = tf.reduce_sum(tf.square(y_ph - y_model))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train = optimizer.minimize(error)
init = tf.global_variables_initializer()
```

Initally: m = -1.8207890158884688; b = 0.5308590971042547

```
In [82]: model_m
Out[82]: 0.5732456
In [83]: model_b
Out[83]: 4.9773397
```

After re-puttting-in the code, I got my answers.

```
print("m_init = " + str(m_pre) + "; " + "b_init = " + str(b_pre))
In [85]:
         print("m_final = " + str(model_m) + "; " + "b_fin = " + str(model_b))
         print("Delta m = " + str(abs(0.5 - model m)) + "; \n" + \
               "Delta_b = " + str(abs(5.0 - model b)))
         print()
         print("Hmmm ...")
         print()
         print("Compare to:" + '\n' + \
               "Delta m = 0.006303846836090088" + '\n' + "and" + \
               '\n' + "Delta b = 0.055045127868652344" + '\n' + \
               "for 8000 batches." + \
               '\n\n' + "... interesting ...")
         m init = -1.8207890158884688 ; b init = 0.5308590971042547
         m final = 0.5732456; b fin = 4.9773397
         Delta m = 0.0732455849647522;
         Delta b = 0.022660255432128906
         Hmmm ...
         Compare to:
         Delta m = 0.006303846836090088
         and
         Delta b = 0.055045127868652344
         for 8000 batches.
         ... interesting ...
```

Out[86]: [<matplotlib.lines.Line2D at 0x21b8d565d68>]



Jose stated that the noise might make it so they might not be so different.

He noted (as I'd been thinking) that we haven't been doing the train/test split. We will with tf.estimator

# tf.estimator API

Much simpler API for basic tasks like regression! We'll talk about more abstractions like TF-Slim later on.

```
In [ ]:
In [ ]:
```

| In [ ]: |  |
|---------|--|
|         |  |
| In [ ]: |  |

## **Train Test Split**

We haven't actually performed a train test split yet! So let's do that on our data now and perform a more realistic version of a Regression Task

```
In [ ]:

In [ ]:

In [ ]:
```

# **Set up Estimator Inputs**

| In |     | ]:[ |  |
|----|-----|-----|--|
| In |     | ]:[ |  |
| In | [ ] | ]:[ |  |
| In |     | ]:[ |  |

## **Train the Estimator**

```
In [ ]:
```

| In [ ]: |  |
|---------|--|
|---------|--|

## **Evaluation**

| In [ ]: |  |
|---------|--|
| In [ ]: |  |
|         |  |
| In [ ]: |  |
| In [ ]: |  |

## **Predictions**

```
In [ ]:

In [ ]:

In [ ]:

In [ ]:
```

That's all for now!