EME 152 Discussion 8

November 17, 2021

Agenda

- Midterm and project overview
- Quick Animation revisit + tips
- Angular velocity analysis
- Angular acceleration analysis
- Instant center analysis example

Midterm

- Monday, November 22
- Midterm will cover up to last Friday's lecture on angular acceleration
- Open book/notes
- Hand calculations and Ch programs, similar to the homework
- During normal lecture time (must be logged into Zoom)
- WORK ALONE

Project

- Due Friday, December 3 (week 10)
- Work in teams of 2
- Two parts:
 - Software package portion. Need at least 3 files:
 - *.c/*.ch code with the main() function
 - *.h code for your header file + class definition
 - *.chf file as your function file
 - Report portion
 - LaTeX preferred, but Word, Google Docs, is fine
 - Requirements in project description
- Form a team: https://forms.gle/YznRXLTYiD8kDVN58


```
// To help clean up code
struct Slider {
    double width;
    double height;
    char color[32];
```

To draw the ground, use:

ground X1 Y1 X2 Y2

Make sure to subtract half of the slider height for y_1 and y_2 ! Subtract half the slider width for x_1 and add half the slider width for x_2 .

Add a double backslash (\\) before the newline (\n) to render primitives in the same frame. Add a second newline (\n) to move on to the next frame.

Example in Ch:

```
printf("link 0 0 %lf %lf \\\n", ...);
Equivalent in .qnm:
   link 0 0 2.49 -0.15 \
    # empty line
   link 0 0 2.50 1.20 \
```

Quick Animation Code Demo

Angular Velocity Analysis Example

A four-bar linkage has the following dimensions: r1 = 6cm, r2 = 2cm, r3 = 4cm, r4 = 5.5cm, theta1 = 10 deg, rp = 3.5cm, and beta = 20 deg. Link 2 is the input link. When theta2 = 35 deg and the input link is rotating at a constant clockwise angular velocity 20 rad/s, write a program that uses CFourbar to calculate the angular velocities omega3 and omega4 for the coupler and output links.

Angular Velocity Analysis Example

Solution:

```
fourbar.angularVel(theta_1, omega_1, FOURBAR_LINK2);
fourbar.angularVel(theta_2, omega_2, FOURBAR_LINK2);
theta_1 and theta_2 are the two solutions computed by
fourbar.angularPos().omega_1 and omega_2 are the function outputs,
which are outputted as an array of 4 angular velocities of the 4 links. The enum
FOURBAR_LINK2 tells the function that link 2 is the input link.
```

Angular Acceleration Analysis Example

A four-bar linkage has the following dimensions: r1 = 6cm, r2 = 2cm, r3 = 4cm, r4 = 5.5cm, theta1 = 10 deg, rp = 3.5cm, and beta = 20 deg. Link 2 is the input link. When theta2 = 35 deg and the input link is rotating at a clockwise angular velocity 20 rad/s and counterclockwise angular acceleration of 5 rad/s², write a program that uses CFourbar to calculate the angular accelerations alpha3 and alpha4 for the coupler and output links.

Angular Acceleration Analysis Example

Solution:

```
fourbar.angularAccel(theta_1, omega_1, alpha_1, FOURBAR_LINK2);
fourbar.angularAccel(theta_2, omega_2, alpha_2, FOURBAR_LINK2);
```

theta_1, theta_2, omega_1, and omega_2 are arrays of 4 doubles and should already be solved. alpha_1 and alpha_2 are the function outputs which will output an array of 4 doubles. The enum FOURBAR_LINK2 tells the function that link 2 is the input link.

Find the instantaneous center of motion of link 5 of the mechanism

Thank you!

Questions?