Apunte de árboles

Definiciones generales

Un árbol es un grafo G conexo y acíclico.

Todas las aristas de un árbol son críticas (si la eliminás del grafo, ya no es conexo).

Un nodo $v \in V(G)$ es hoja \iff grado(v) = 1

Un **bosque** es un conjunto de árboles, donde cada componente conexa es árbol.

Sea G = (V, E) un árbol, es equivalente decir:

- 1. G es árbol
- 2. G es acíclico, y si agregamos una arista $e \notin E$, entonces G + e tendrá exactamente un ciclo, y ese ciclo contiene a e.
- 3. Existe un solo camino entre cada par de nodos $v \in V$
- 4. G es acíclico y |E| = |V| 1
- 5. G es conexo y |E| = |V| 1

Lema 1:

- Sea G = (V, E) un grafo conexo, $e \in E$:
- G e es conexo \iff e existe en un ciclo de G

Lema 2:

• Todo arbol con $|V| \ge 2$ tiene al menos 2 hojas.

Lema 3:

• Si G = (V, E) es árbol, entonces |E| = |V| - 1

Corolario 1:

• Si G = (V, E) es un bosque de C componentes conexas, entonces |E| = |V| - C

Corolario 2:

• Dado G = (V, E) con C componentes conexas, $|E| \ge |V| - C$

Árboles enraizados

Sea G = (V, E) un grafo conexo y un nodo $v \in V$ al que llamaremos raiz.

Un **árbol enraizado** es un árbol $T = (V_T, E_T)$ tal que:

- $V_T \subseteq V, E_T \subseteq E$
- T tiene raiz v
- Existe un nodo raiz $v \in V_T$ tal que $\forall w \in V_T$, existe un único camino en T de v a w

Tenemos una función padre : $(V_T \setminus v) \rightarrow V_T$ tal que:

• padre(w) es el nodo anterior a w en el camino único $v \rightsquigarrow w$ en T

Árbol generador

Sea G = (V, E) un grafo conexo.

Un **árbol generador** de G es un subgrafo $T = (V, E_T)$, es decir, tiene los mismos nodos que G y:

- $E_T \subseteq E$ tal que $|E| \ge |E_T|$
- T es árbol
- T tiene todos los nodos de G

Árbol generador mínimo/máximo

Sea G=(V,E) un grafo pesado, $c:E\to\mathbb{R}$ una función de peso.

Un **árbol generador mínimo** (AGmin) es un árbol generador $T_{\min} = (V, E_{\min})$ que minimiza el peso total de sus aristas, la idea intuitiva es que sea el peso mínimo posible tal que sea conexo y mantenga los nodos originales.

En otras palabras, es el que minimo $c(T_{\min}) = \sum_{e \in E_{\min}} c(e)$ posible entre todos los árboles generadores de G.

Un árbol generador máximo (AGMáx) es análogo al AGMin, pero maximizando.

$$T_{\max} = (V, E_{\max})$$
tal que maximiza $c(T_{\max}) = \sum_{e \in E_{\max}} c(e).$

BFS

Input:

- Un grafo G = (V, E)
- un nodo raiz $v \in V$

Output:

- Función de distancias $\delta: V \to \mathbb{N} \cup \{\infty\}$ donde $\delta(w)$ es la mínima cantidad de aristas entre v y w.
- Árbol enraizado T con raiz v, tal que todo $w \in V$ es alcanzable desde v, y el camino $v \rightsquigarrow w$ en T es mínimo.

Definición de v-geodésico:

• Sea $\operatorname{dist}(v,w)$ la distancia mínima de v a w en G, entonces el camino $v \rightsquigarrow w$ en el árbol generado por $\operatorname{BFS}(G,v)$ tiene longitud $\operatorname{dist}(v,w)$.

Esto quiere decir que un árbol v-geodésico es un árbol enraizado en un nodo v, tal que el camino desde v a cualquier vértice w es el más corto posible en cantidad de aristas dentro del grafo original G.

Invariante:

- Si $\delta(w) = k$, entonces no existe camino $v \rightsquigarrow w$ con menos de k aristas.
- Genera un árbol v-geodésico

Complejidad:

- Temporal: O(|V| + |E|)
- Espacial: O(|V|)

Usos

- Ver si G es conexo: G es conexo \iff BFS(G, v) visita todos los nodos de V
- Construir árboles v-geodésicos. $\delta(u) = \delta(\text{padre}(u)) + 1$
- Calcular el diámetro de un árbol:
- • BFS $(G, u) \rightarrow \text{ver el nodo } v \text{ más lejano.}$
- • BFS $(G, v) \rightarrow \text{ver el nodo } w \text{ más lejano.}$
- • $\operatorname{dist}(v, w)$ es el diámetro. Esto es O(|V|)

Dijkstra

Sea G = (V, E) un grafo con **pesos positivos** en las aristas.

Dijkstra encuenta los caminos mínimos de un nodo raiz $v \in V$ a todo nodo $w \in V$

 $\operatorname{dist}(v,w)=\infty \Longleftrightarrow v$ está en una componente conexa distinta a la de w.

Input:

- G = (V, E) un grafo.
- una función de peso $c: E \to \mathbb{R}_{>0}$
- Un nodo raiz $v \in V$

Output:

- $\forall w \in V$, la distancia mínima $\operatorname{dist}(w)$ desde v hasta w, o sea, $\operatorname{dist}(w) = \delta(v, w)$ el peso mínimo del camino $v \rightsquigarrow w$.
- Un árbol de caminos mínimos definido por una función padre que nos permite reconstruir los caminos mínimos.

Invariante:

- Sea S el conjunto de nodos ya extraidos y la raiz $v \in V$, en cada iteración vale $\forall w \in S$: $\mathrm{dist}(w) = \delta(v, w)$, donde $\delta(v, w)$ es la distancia mínima de v a w en G.
- Además sabemos que $\forall u \in V \setminus S : \mathrm{dist}(u) \geq \delta(v,u)$

Complejidad

- Con heap binario: $O((|V| + |E|) \log |V|)$
- Con Fibonacci heap: $O(|E| + |V| \log |V|)$
- Con cola no ordenada: $O(|V|^2)$

Usos:

- Al igual que BFS, genera un árbol v-geodésico.
- st-eficiencia:
- • Dijkstra $(G,s) \to \delta_s$
- • Invertimos toda $(u, w) \in E$ tal que quedan $(w, u) \in E$
- • Dijkstra $(G,t) \to \delta_t$
- • Vale $\delta(s,t) = \delta(s,u) + c(u,w) + \delta(w,t)$

Prim

Input:

- Un grafo G = (V, E) no dirigido con pesos positivos.
- Un nodo raiz $v \in V$

Output:

• Un árbol generador mínimo $T=(V,E_T)\subseteq G$

Invariante:

- En cada iteración, T es un subárbol conexo y mínimo entre todos los $w \in V_T$
- La arista elegida para expandir T es la de menor peso saliente del nodo actual.

Complejidad:

- Con heap binario: $O(|E|\log|V|)$
- Con Fibonacci heap: $O(|E| + |V| \log |V|)$

Usos:

- Obtener un árbol generador mínimo
- Obtener un árbol generador máximo, tal que dado $G = (V, E), v \in V$:
- • $\forall e \in E :: c(e) = -c(e)$ invertimos los pesos.

- • $Prim(G, v) \rightarrow T = (V, E_T)$
- • $\forall e \in E_T :: c(e) = -c(e)$ para recuperar los pesos originales.

Kruskal

Input:

• Un grafo G = (V, E) no dirigido y pesado

Output:

- Un **bosque** generador mínimo de G. $T=(V,E_T)$

Invariante:

• El conjunto actual de aristas forma un bosque generador mínimo.

Complejidad:

• Heapsort + DSU: $O(|E|\log|E|)$

Usos:

- Dar un bosque generador mínimo de un grafo G.
- Dar un bosque generador máximo, misma estrategia que Prim.

MaxiMin/MiniMax

MiniMax:

Dado G = (V, E) y $\mathcal{T}(G)$ un conjunto de árboles generadores de G.

El MiniMax es el árbol $T\in\mathcal{T}(G)$ donde su arista más pesada es de menor peso posible. Es decir **Mini**-miza el **Máx**-imo.

Importante: Todo árbol generador mínimo es MiniMax

MaxiMin:

Misma intuición que en Minimax, con la diferencia de que MaxiMin lo que hace es \mathbf{Maxi} -mizar el \mathbf{Min} -imo, o sea, es el árbol T(G) tal que su arista menos pesada sea lo más pesada posible.

Importante: Todo árbol generador máximo es MaxiMin

Ejemplo:

Máximo: 4

Mínimo: 5