Cálculo das Probabilidades II - Prova de Segunda Chamada - 2019/1

Prof. Hugo Carvalho 10/07/2019

- TODOS OS PASSOS DEVEM SER DEVIDAMENTE JUSTIFICADOS EM TODAS AS QUESTÕES -

Questão 1: Seja $(\Omega, \mathcal{F}, \mathbb{P})$ um espaço de probabilidade, e defina defina

$$\mathcal{F}_0 = \{ A \in \mathcal{F} \mid \mathbb{P}(A) = 0 \text{ ou } \mathbb{P}(A) = 1 \}.$$

Mostre que \mathcal{F}_0 é uma σ -álgebra de conjuntos de Ω . (1,5)

Questão 2: Seja (X,Y) um vetor aleatório uniformemente distribuído em um disco centrado na origem e de raio a > 0. Faça o que se pede abaixo:

- a) Escreva a função densidade de probabilidade conjunta de X e Y. (0,5)
- b) Seja R a variável aleatória representando a distância do ponto (X, Y) até a origem. Encontre a função densidade de probabilidade de R. (1,0)
 Dica: Você pode encontrar a densidade conjunta de R e Θ, sendo Θ o ângulo do ponto (X, Y) com o eixo x, através do uso de coordenadas polares, e depois encontrar a marginal em R, mas esse caminho leva a contas em demasia. Existe uma maneira muito mais fácil de fazer essa conta. Minha dica é usar a geometria do problema em questão.
- c) Seja $(X_n, Y_n)_{n \in \mathbb{N}}$ uma sequência de vetores aleatórios independentes, onde cada (X_n, Y_n) tem distribuição uniforme no disco centrado na origem e de raio $n \in \mathbb{N}$. Seja $(R_n)_{n \in \mathbb{N}}$ a sequência de variáveis aleatórias representando as distâncias dos pontos (X_n, Y_n) até a origem, para $n \in \mathbb{N}$. A sequência $(R_n)_{n \in \mathbb{N}}$ converge para alguma variável aleatória? (1,0)

Questão 3: A quantia gasta por um consumidor em uma loja segue uma distribuição exponencial com média 50, medido em reais. Sabe-se que a quantidade de pessoas que compram diariamente nessa loja segue uma distribuição de Poisson de média 20. Calcule a média e variância do montante vendido pela loja em um determinado dia. Assuma independência tanto entre a quantia gasta pelos consumidores quanto com relação à quantidade de consumidores na loja. (2,0)

Questão 4: Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias independentes e identicamente distribuídas de média 0 e variância $0 < \sigma^2 < \infty$. Seja $(Y_n)_{n\in\mathbb{N}}$ outra sequência de variáveis aleatórias, também independente e identicamente distribuídas, todas independentes de X_n , porém de média μ finita, e nada é dito sobre sua variância. Podemos afirmar que $\overline{Y}_n - \sqrt{n} \ \overline{X}_n \stackrel{d}{\to} Z$, onde $Z \sim \mathcal{N}(\mu, \sigma^2)$? Justifique adequadamente a sua resposta. (1,5)

Questão 5: Seja X_1, X_2, \ldots, X_n variáveis aleatórias independentes e identicamente distribuídas, com distribuíção uniforme contínua no intervalo [-1, 1]. Defina $Y_n = \min(|X_1|, \ldots, |X_n|)$. Mostre que $Y_n \stackrel{p}{\to} 0$. Vale também que $Y_n \stackrel{qc}{\to} 0$? (1,5)

Questão 6: Sendo $a \in \mathbb{R}$ e $n \geq 1$, determine o limite em distribuição de $X_n \sim \mathcal{N}(a, 1/n)$. Tal sequência também converge em probabilidade ou quase certamente? (2,0)

- FORMULÁRIO -

- Derivada do arco-tangente: $\arctan'(z) = \frac{1}{1 + z^2}$
- Fórmula da soma da PG: $\sum_{k=-m}^{n} ar^{k} = a \frac{\left(r^{m} r^{n+1}\right)}{1 r}, \text{ se } r \neq 1.$
- Lemas de Borel-Cantelli: A_1, A_2, \ldots eventos no mesmo espaço de probabilidade, $\limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} A_k =$ "ocorrência de infinitos dos eventos A_n ":

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \implies \mathbb{P}(\limsup A_n) = 0$$

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \text{ e os eventos } A_n \text{ são independentes } \implies \mathbb{P}(\limsup A_n) = 1$$

- Distribuição de Poisson: $X \sim \operatorname{Poi}(\lambda) \implies \begin{cases} \mathbb{P}(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, \dots \\ \mathbb{E}[X] = \lambda, \quad \mathbb{V}(X) = \lambda \end{cases}$
- Distribuição Exponencial: $X \sim \text{Exp}(\lambda) \implies \begin{cases} f_X(x) = \lambda e^{-\lambda x}, x \geq 0 \\ \mathbb{E}[X] = 1/\lambda, \quad \mathbb{V}(X) = 1/\lambda^2 \end{cases}$
- Lei da esperança iterada: $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$
- Lei da variância iterada: $\mathbb{V}(X) = \mathbb{E}[\mathbb{V}(X|Y)] + \mathbb{V}(\mathbb{E}[X|Y])$
- Des. de Markov: X va positiva e t > 0: $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}$,
- Des. de Chebyshev: X va com média e variância finitas, t > 0: $\mathbb{P}(|X \mathbb{E}[X]| \ge t) \le \frac{\mathbb{V}(X)}{t^2}$
- Cota de Chernoff: X va cuja FGM $\psi_X(t)$ existe para t próximo de zero: $\begin{cases} \mathbb{P}(X \geq c) \leq e^{-ct}\psi_X(t), \ \forall t > 0 \\ \mathbb{P}(X \geq c) \leq \min_{t > 0} [e^{-ct}\psi_X(t)] \end{cases}$
- Convergência em distribuição: $X_n \stackrel{d}{\to} X \iff F_n(x) \to F_X(x)$, quando $n \to \infty$, para todo x onde F_X for contínua
- Convergência em probabilidade: $X_n \stackrel{p}{\to} X \iff \mathbb{P}(|X_n X| \ge \varepsilon) \to 0, \ \forall \varepsilon > 0, \ \text{quando} \ n \to \infty$
- Convergência quase certa: $X_n \stackrel{qc}{\to} X \iff \mathbb{P}\left(\lim_{n \to \infty} X_n = X\right) = 1 \iff \mathbb{P}\left(\lim_{n \to \infty} X_n \neq X\right) = 0$
- Convergência em média $r: X_n \xrightarrow{r} X \iff \mathbb{E}[|X_n X|^r] \to 0$, quando $n \to \infty$
- Convergencia em media $\begin{cases} X_n + Y_n \stackrel{d}{\to} X + c \\ X_n Y_n \stackrel{d}{\to} cX \end{cases}$ Teorema de Slutsky: $X_n \stackrel{d}{\to} X$ e $Y_n \stackrel{p}{\to} c$ constante: $\begin{cases} X_n + Y_n \stackrel{d}{\to} X + c \\ X_n Y_n \stackrel{d}{\to} cX \\ \frac{X_n}{Y_n} \stackrel{d}{\to} \frac{X}{c}, \text{ se } \mathbb{P}(Y_n = 0) = 0, \forall n \in c \neq 0 \end{cases}$
- Lei Fraca dos Grandes Números: $\overline{X}_n \mathbb{E}[\overline{X}_n] \stackrel{p}{\to} 0$
- Lei Forte dos Grandes Números: $\overline{X}_n \mathbb{E}[\overline{X}_n] \stackrel{qc}{\to} 0$
- Lei Fraca de Chebyshev: $(X_n)_{n\in\mathbb{N}}$ independentes dois-a-dois, com variância finita e uniformemente limitadas
- 1a. Lei Forte de Kolmogorov: $(X_n)_{n\in\mathbb{N}}$ independente, com média finita e satisfazendo $\sum_{n=1}^{+\infty} \frac{\mathbb{V}(X_n)}{n^2} < +\infty$
- Lei Forte de Kolmogorov: $(X_n)_{n\in\mathbb{N}}$ iid com média finita
- TCL para va's iid: $\frac{\sqrt{n}}{\sigma}(\overline{X}_n \mu) \stackrel{d}{\to} \mathcal{N}(0, 1)$, se cada X_i tem média μ finita e variância $0 < \sigma^2 < \infty$