

Exercise 20A

External volume of the box= $60 \times 45 \times 32 = 86400~cm^3$

Thickness of wood = 2.5 cm

 \therefore Internal length $=60-(2.5\times2)=55$ cm Internal width $=45-(2.5\times2)=40$ cm Internal height $=32-(2.5\times2)=27$ cm

Internal volume of the box= $55 \times 40 \times 27 = 59400 \, \mathrm{cm}^3$

Volume of wood = External volume - Internal volume = $86400 - 59400 = 27000 \, \mathrm{cm}^3$

Q21.

Answer:

External length = 36 cm

External width = 25 cm

External height = 16.5 cm

External volume of the box= $36\, imes\,25\, imes\,16.5\,=\,14850\,cm^3$

Thickness of iron = 1.5 cm

 \therefore Internal length $=36-\text{(}1.5\times2\text{)}=33\text{ cm}$

Internal width $=25-(1.5\times2)=22$ cm

Internal height $=16.5-\ 1.5=15\,\mathrm{cm}$ (as the box is open)

Internal volume of the box= $33 \times 22 \times 15 = 10890 \ cm^3$

Volume of iron = External volume – Internal volume = $14850 - 10890 = 3960 \, \mathrm{cm}^3$

Given:

 $1 \, \mathrm{cm}^3$ of iron $= 8.5 \, \mathrm{grams}$

Total weight of the box $=3960\, imes\,8.5\,=\,33660\,\,\mathrm{grams}\,=\,33.66\,\,\mathrm{kilograms}$

Q22.

Answer:

External length = 56 cm

External width = 39 cm

External height = 30 cm

External volume of the box= $56 \times 39 \times 30 = 65520 \ cm^3$

Thickness of wood = 3 cm

$$\therefore$$
 Internal length $=56-(3\times2)=50$ cm Internal width $=39-(3\times2)=33$ cm Internal height $=30-(3\times2)=24$ cm

Capacity of the box = Internal volume of the box $= 50 \times 33 \times 24 = 39600 \ \mathrm{cm^3}$

Volume of wood = External volume – Internal volume = $65520 - 39600 = 25920 \, \mathrm{cm}^3$

Q23.

Answer:

External length = 62 cm External width = 30 cm External height = 18 cm

 \therefore External volume of the box= $62\times30\times18=33480~cm^3$

Thickness of the wood = 2 cm

Now, internal length
$$=62-(2\times2)=58$$
 cm Internal width $=30-(2\times2)=26$ cm Internal height $=18-(2\times2)=14$ cm

 \therefore Capacity of the box = internal volume of the box= (58 \times 26 \times 14) $cm^3 = 21112$ cm^3

Q24.

Answer:

External length = 80 cm External width = 65 cm External height = 45 cm

 $\scriptstyle{...}$ External volume of the box= $80\times65\times45=234000~cm^3$

Thickness of the wood = 2.5 cm

Then internal length=
$$80-(2.5\times2)=75$$
 cm Internal width = $65-(2.5\times2)=60$ cm Internal height = $45-(2.5\times2)=40$ cm

Capacity of the box = internal volume of the box= $\left(75 \times 60 \times 40\right) \, cm^3 = 180000 \, cm^3$

Volume of the wood = external volume – internal volume= $(234000-180000)~cm^3=54000~cm^3$

It is given that $100~{\rm cm}^3~{\rm of~wood~weighs~8~g.}$

 \therefore Weight of the wood $=\frac{54000}{100}\times 8~g=4320~g=4.32~kg$

Q25.

Answer:

(i) Length of the edge of the cube = a = 7 m

Now, we have the following:

Volume =
$$a^3 = 7^3 = 343 \ m^3$$

Lateral surface area $=4a^2=4\times7\times7=196~m^2$

Total Surface area = $6a^2 = 6 \times 7 \times 7 = 294 \ m^2$

(ii) Length of the edge of the cube = a = 5.6 cm

Now, we have the following:

Volume =
$$a^3 = 5.6^3 = 175.616 \ cm^3$$

Lateral surface area $=4a^2=4\times5.6\times5.6=125.44~cm^2$

Total Surface area = $6a^2 = 6 \times 5.6 \times 5.6 = 188.16 \ cm^2$

(iii) Length of the edge of the cube = a = 8 dm 5 cm = 85 cm

Now, we have the following:

Volume =
$$a^3 = 85^3 = 614125 \ cm^3$$

Lateral surface area $=4a^2=4\times85\times85=28900~cm^2$

Total Surface area $=6a^2=6 imes85 imes85=43350~cm^2$

Q26.

Answer:

Let a be the length of the edge of the cube.

Total surface area
$$=6a^2=1176\ cm^2$$

$$\Rightarrow a = \sqrt{\frac{1176}{6}} = \sqrt{196} = 14 \ cm$$

$$: Volume = a^3 = 14^3 = 2744 \ cm^3$$

Q27.

Answer:

Let a be the length of the edge of the cube.

Then volume
$$=a^3=729~cm^3$$

Also,
$$a = \sqrt[3]{729} = 9 \ cm$$

$$\therefore$$
 Surface area = $6a^2 = 6 \times 9 \times 9 = 486 \ cm^2$

Q28.

Answer:

$$1 m = 100 cm$$

Volume of the original block = $225 \times 150 \times 27 = 911250 \ cm^3$

Length of the edge of one cube = 45 cm Then volume of one cube= $45^3 = 91125 \ cm^3$

 $\text{.. Total number of blocks that can be cast} = \frac{\text{volume}}{\text{volume}} \; \frac{\text{of}}{\text{of}} \; \frac{\text{the}}{\text{block}} = \frac{911250}{91125} = 10$

Q29.

Answer:

Let a be the length of the edge of a cube.

Volume of the cube $= a^3$

Total surface area $=6a^2$

If the length is doubled, then the new length becomes 2a.

Now, new volume $= (2a)^3 = 8a^3$

Also, new surface area== $6ig(2aig)^2=6 imes 4a^2=24a^2$

.. The volume is increased by a factor of 8, while the surface area increases by a factor of 4.

Q30.

Answer:

Cost of wood = Rs $500/m^3$

Cost of the given block = Rs 256

: Volume of the given block $=a^3=\frac{256}{500}=0.512~\text{m}^3~=~512000~\text{cm}^3$

Also, length of its edge = a = $\sqrt[3]{0.512} = 0.8~m$ = 80 cm

********** END ********