Ground Cloud Dispersion Measurements During the Titan IV A-17 Mission (7 November 1997) at Cape Canaveral Air Station

20 February 1999

Assembled by

Environmental Systems Directorate Systems Engineering Space Launch Operations

Prepared for

Launch Programs
SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE MATERIEL COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

19990609 019

Space Systems Group

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Contract No. F04701-93-C-0094 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd., Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corporation by N. F. Dowling, Systems Director, Environmental Systems, Systems Engineering Directorate. Capt. David e. Painter was the Project Officer.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

David E. Painter, Capt, USAF

Chief, Titan Systems and Environmental Engineering

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

AGENCY USE ONLY (Leave blank)	2. REPORT DATE 20 February 1999	3. REPORT	T TYPE AND DATES COVERED	
4. TITLE AND SUBTITLE Ground Cloud Dispersion Measurer Mission (7 November 1997) at Capa	5. FUNDING NUMBERS F04701-93-C-0094			
6. AUTHOR(S) Environmental Systems Directorate				
7. PERFORMING ORGANIZATION NAME(S) AND The Aerospace Corporation Technology Operations El Segundo, CA 90245-4691	ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER TR-99(1413)-2	
9. SPONSORING/MONITORING AGENCY NAME Space and Missile Systems Cen Air Force Materiel Command 2430 E. El Segundo Boulevard Los Angeles Air Force Base, Ca	ter		10. SPONSORING/MONITORING AGENCY REPORT NUMBER SMC-TR-99-15	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distr	ribution unlimited		12b. DISTRIBUTION CODE	

13. ABSTRACT (Maximum 200 words)

This report presents plume imagery documenting the development and dispersion of the Titan IV A-17 launch ground cloud at Cape Canaveral Air Station on 7 November 1997 at 2105 EST. Also presented are pertinent meteorological data taken from towers, Doppler radars, and rawinsonde balloons.

IR cameras were used at four locations around the launch site to track the trajectory and time evolution of the exhaust ground cloud for 7.5 min following launch. Meteorological data were collected to improve understanding of cloud dispersion and to use as input during model simulations and evaluations. Rawinsonde balloon data, 915 MHz Doppler radar data, and meteorological tower data were collected and archived. These data and similar data from other launches will be used to determine the accuracy of atmospheric dispersion models such as the Rocket Exhaust Effluent Diffusion Model (REEDM) in predicting toxic hazard corridors (THCs) at the USAF Eastern and Western Ranges.

Analysis of imagery data from the first 9.5 min following launch yielded information on cloud rise and dispersion. The imagery showed that the middle of the launch cloud stabilized at an altitude of 1192 m AGL by 4.25 min after launch. REEDM 7.08 predicted that the middle of the launch cloud would stabilize at 947 m AGL at 4.65 min after launch. The middle of the actual launch cloud therefore stabilized 26% higher than predicted by REEDM 7.08. Analysis of the imagery also showed that the rising cloud had an air entrainment coefficient (ratio of increase in diameter to increase in altitude) of 0.33 (REEDM 7.08 default value is 0.64). The initial cloud radius extrapolated from the imagery was 168 m. (REEDM 7.08 default value is 72 m). REEDM 7.08 predictions for bearing, speed, and stabilization height were closer to the observed values when REEDM was initialized with the imagery-derived for the initial radius and the entrainment coefficient rather than with the default values.

14. SUBJECT TERMS Toxic launch cloud, To models, Launch cloud o imagery, HCl monitorin	15. NUMBER OF PAGES 70 16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT

Preface

The Air Force Space and Missile Systems Center's Launch Programs Office (SMC/CL) is sponsoring the Atmospheric Dispersion Model Validation Program (MVP). This program is collecting launch cloud dispersion data that will be used to determine the accuracy of atmospheric dispersion models, such as REEDM, in predicting toxic hazard corridors at the launch ranges. This report presents launch cloud dispersion and meteorological measurements performed during the Titan IVA-17 launch at Cape Canaveral Air Station on 7 November 1997.

An MVP Integrated Product Team (IPT) led by Capt. Bill Kempf (SMC/CLTE) is directing the MVP effort. Dr. Bart Lundblad of The Aerospace Corporation's Environmental Systems Directorate (ESD) is the MVP technical manager. This report was prepared by Mr. Norm Keegan (ESD) and Dr. Lundblad from materials contributed by personnel participating in the A-17 launch cloud dispersion measurements.

Infrared imagery measurements were made of the launch cloud by Ms. Karen Foster, Mr. Gary Harper, Mr. Brian Kasper, Mr. Luis Ortega, Dr. Don Stone, and Mr. Jess Valero of The Aerospace Corporation's Environmental Monitoring and Technology Department (EMTD). Mr. Doug Schulthess of Aerospace's Eastern Range Directorate coordinated camera site selection and logistical support. Also assisting imagery operations were Mr. John Ligda and Mr. Richard Reyes of the Aerospace Eastern Range Directorate. Ms. Foster digitized the imagery data for analysis by Dr. Robert Abernathy (EMTD). The description of the cloud imagery results was prepared by Dr. Abernathy.

The meteorological data displayed in this report was provided by Mr. Randy Evans of the NASA Applied Meteorology Unit.

The Titan IVA-17 mission was the thirteenth Titan IV launch for which usable launch cloud dispersion data was collected by MVP. The previous missions were K-7, K-23, K-19, K-21, K-15, K-16, K-22, K-2, K-13, B-24, B-33, and A-18.

Contents

1.	Intro	oduction								
2.	Imag	gery of the Titan IV A-17 Ground Cloud								
	2.1	Backgr	Background							
	2.2	Introdu	ction	3						
	2.3	Field D	Deployment	5						
		2.3.1	Planning	5						
		2.3.2	Equipment	5						
	2.4	Process	sing of Imagery Data	6						
	2.5	Results	and Discussion	10						
		2.5.1.	Correlation of Ground Cloud Bearing with Wind Direction	10						
		2.5.2.	Cloud Rise Times and Stabilization Heights	14						
		2.5.3.	Comparison of REEDM Prediction to Imagery Data—Rise Rate	16						
		2.5.4.	Comparison of REEDM Prediction to Imagery Data—Bearing and Speed	16						
		2.5.5.	Comparison of REEDM Prediction to Imagery Data—Summary Table	19						
2.6	Sum	mary and	Conclusions	22						
Appendix A—REEDM Version 7.08 Predictions for the A-17 Mission										
Appe	endix l	BMete	orological Data for Launch of Titan IVA-17	51						

Figures

1.	Implementation of the PLMTRACK "box" method with two imagers	7
2.	Comparison of the A-17 cloud extent derived from the polygon analysis and from the PLMVOL analysis	8
3.	PLMVOL approach illustrated by Titan IV K-23 ground cloud images	10
4.	A map documenting the imagery sites, the rawinsonde release site, the A-17 ground cloud's bearing (derived from infrared imagery), the T-0.6 h REEDM Version 7.08 predictions for the ground cloud's bearing (at stabilization height), and the 01:32 GMT (T-0.6 h) rawinsonde wind directions at the imagery-derived cloud stabilization heights (i.e., bottom, middle and top of the ground cloud).	11
5.	PLMVOL Reflection in T+0.25 min imagery from UCS-4, Press, STR, and SLC-34	12
6.	PLMVOL Reflection in T+1.25 min imagery from UCS-4, Press, STR, and SLC-34	12
7.	PLMVOL Reflection in T+2.25 min Imagery from UCS-4, Press, STR, and SLC-34	13
8.	PLMVOL Reflection in T+6.00 imagery from UCS-4, Press, STR, and SLC-34	13
9.	PLMVOL Reflection in T+7.00 min imagery from UCS-4, Press, STR, and SLC-34	14
10.	Cloud rise for the bottom of the A-17 cloud (PLMVOL analysis)	15
11.	Cloud rise for the middle of the A-17 cloud (PLMVOL analysis)	15
12.	Cloud rise for the top of the A-17 cloud (PLMVOL analysis)	16
13.	Predicted versus measured rise curves (PLMVOL analysis)	17
14.	Predicted and measured bearings (PLMVOL analysis)	17
15.	Predicted and measured cloud speed (PLMVOL analysis)	18
16.	Cloud volume versus time (PLMVOL analysis)	19
17	Sphere-equivalent radius versus altitude (PLMVOL analysis).	20

Tables

1.	Field of View (FOV) for Imagery Sites during A-17 Mission	6
2.	Summary of A-17 Ground Cloud Data Derived from Infrared Imagery,	
	T-0.6 h Rawinsonde Sounding Data, & T-0.6 h REEDM Version 7.08 Predictions	21

Executive Summary

This report presents plume imagery documenting the development and dispersion of the Titan IVA-17 launch ground cloud at Cape Canaveral Air Station (CCAS). The launch occurred on 7 November 1997 at 2105 EST. The report also presents pertinent meteorological data taken from towers, 915 MHz radars, and rawinsonde balloons.

The imaging team used infrared cameras at four locations around the launch site (LC-41) to track the trajectory and time evolution of the vehicle's exhaust ground cloud for 9.5 min following launch. Meteorological data were collected to improve understanding of cloud dispersion and to use as input during model simulations and evaluations. Rawinsonde balloon data from shortly before launch, radar data from shortly before and after launch, and meteorological tower data from shortly before and after launch were collected and archived. These data and similar data on other Titan IV launches (past and future) will be used to determine the accuracy of atmospheric dispersion models such as the Rocket Exhaust Effluent Diffusion Model (REEDM) in predicting toxic hazard corridors (THCs) at the USAF Eastern and Western Ranges. These THCs assess the risk of exposing the public to HCl exhaust from solid rocket motors or hypergolic propellant vapors accidentally released during launch operations.

Analysis of imagery data from the first 9.5 min following launch yielded information on cloud rise and dispersion. The imagery showed that the middle of the launch cloud stabilized at an altitude of 1192 m AGL by 4.25 min after launch. REEDM 7.08 predicted that the middle of the launch cloud would stabilize at 947 m AGL at 4.65 min after launch. The middle of the actual launch cloud therefore stabilized 26% higher than predicted by REEDM 7.08. Analysis of the imagery also showed that the rising cloud had an air entrainment coefficient (ratio of increase in diameter to increase in altitude) of 0.33 (REEDM 7.08 default value is 0.64). The initial cloud radius extrapolated from the imagery was 168 m. (REEDM 7.08 default value is 72 m). REEDM 7.08 predictions for bearing, speed, and stabilization height were closer to the observed values when REEDM was initialized with the imagery-derived for the initial radius and the entrainment coefficient rather than with the default values.

1. Introduction

Launch vehicles that employ solid propellant rocket motors release exhaust ground clouds containing large quantities of hydrogen chloride (HCl) into the launch areas at Cape Canaveral Air Station (CCAS) and Vandenberg Air Force Base (VAFB). Large quantities of hazardous liquid fuels and oxidizers could also be released as a result of propellant transfer accidents or launch vehicle failures. The Air Force uses atmospheric dispersion models to predict the downwind diffusion and concentration of toxic launch clouds. Collection of launch cloud data is required to test and validate the performance of these dispersion models.

The Air Force range safety organizations at Patrick Air Force Base (45 SW/SE) and VAFB (30 SW/SE) are responsible for assuring that launches occur only when meteorological conditions will not expose nearby public areas to hazardous levels of launch exhausts and propellant vapors. Predictions of toxic hazard corridors that extend into public areas can lead to costly launch delays. The use of non-validated models requires the use of conservative launch criteria. The development and validation of more accurate atmospheric dispersion models is expected to increase launch opportunities and significantly reduce launch costs. The Space and Missile Systems Center's Launch Programs Office (SMC/CL) established the Atmospheric Dispersion Model Validation Program (MVP) to collect launch cloud data and to use the data to test and validate current and future atmospheric dispersion models at the ranges.

The MVP effort involves the collection of data during Titan IV launches at CCAS and VAFB to characterize HCl launch cloud rise, growth, and stabilization, as well as launch cloud transport and diffusion. These data, along with data collected during tracer gas releases, will be used to determine the capability of the Rocket Exhaust Effluent Diffusion Model (REEDM) for predicting toxic hazard corridors at the ranges. REEDM is used at CCAS and VAFB to predict the locations of toxic hazard corridors in support of launch operations. It is applied to large heated sources of toxic air emissions such as nominal launches, catastrophic failure fireballs, and inadvertent ignitions of solid rocket motors. It uses launch vehicle and meteorological data to generate ground-level concentration isopleths of HCl, hydrazine fuels, nitrogen dioxide, and other toxic launch emissions. Launch holds may occur when REEDM toxic concentration predictions exceed adopted exposure standards. REEDM is a unique and complex model based on relatively simple modeling physics. It has a long development history with the Air Force and NASA, but has never been fully validated. Validation of REEDM has been identified as a range safety priority.

The MVP has been organized and is being directed by the MVP Integrated Product Team (IPT). SMC/CL is serving as the IPT leader, while The Aerospace Corporation's Environmental Systems Directorate serves as the IPT technical manager. The IPT consists of personnel with expertise in atmospheric dispersion modeling, meteorology, and atmospheric dispersion field studies. MVP participants include personnel from SMC, 30 SW, 45 SW, Armstrong Laboratory, The Aerospace Corporation, NASA, NOAA, and contractors. Key functions include program planning, field data collection, data review and compilation, range coordination, and model validation.

This report presents the results of measurements performed at CCAS during the Titan IVA-17 launch on 7 November 1997 at 2105 EST. Infrared camera imagery of the ground cloud was collected from four locations to monitor the cloud's growth, stabilization, and trajectory. The imagery results are presented in Section 2. REEDM predictions of ground cloud stabilization heights and surface concentrations are presented in Appendix A. Measurements of meteorological data are tabulated in Appendix B.

Analysis of the quantitative imagery determined the ground cloud's rise rate, stabilization height, expansion rate, bearing, and speed. The imagery-derived cloud stabilization height (middle of cloud) was 1192 m AGL. This is 26 % higher than the 947 m AGL height predicted by REEDM 7.08 (based on T-0.6 rawinsonde sounding). The measured cloud entrainment coefficient was 0.33, while the default value used in REEDM 7.08 is 0.64. Extrapolation of the imagery-derived sphere equivalent radius to ground level gives an initial cloud radius of 168 m (default value in REEDM 7.08 is 72 m). REEDM 7.08 predictions for cloud bearing, speed, and stabilization height were closer to the observed values when REEDM was initialized with the imagery-derived values for the initial cloud radius and the entrainment coefficient rather than the default values. The imagery results presented in this, as well as other MVP reports, will allow the accuracy of REEDM and other launch range atmospheric dispersion models to be determined over the range of possible meteorological conditions.

2. Imagery of the Titan IV A-17 Ground Cloud

[The material in this section was contributed by R. N. Abernathy, B. P. Kasper, and K. L. Foster of the Surveillance Technology Department of The Aerospace Corporation's Space and Environment Technology Center.]

2.1 Background

On 7 November 1997, the Titan IV A-17 mission was successfully launched from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Station (CCAS) at 21:05 EST (02:05 GMT). This section describes the quantitative exhaust cloud imagery data collected by each of four imagery sites during the 9.50 min immediately following the launch from SLC-41. This section also describes the data acquisition hardware and analysis software. The two-dimensional cloud images obtained by the various imagery sites were combined to produce stereoscopic 3-D information. This analysis yielded the cloud's rise rate, stabilization height, expansion rate, speed, and bearing during the first 0.25 to 9.50 min after launch.

The quantitative imagery-derived ground cloud data are reported here in several graphical formats to facilitate comparison with REEDM predictions (Appendix A) and rawinsonde sounding data (Appendix B). For clarity, this section includes some data from the appendices. It is apparent from review of this section, that these data are useful for validating current and future dispersion models.

The purpose of this report was to document the quality and quantity of the A-17 exhaust cloud imagery data available for validating dispersion models. To facilitate the comparison of these data to individual dispersion model runs, the imagery-derived A-17 exhaust cloud imagery data are available as comma-separated-variable files providing time and position for various ground cloud features. When collected, the raw visible imagery data are archived on VCR tapes. The raw infrared (IR) imagery is archived on DAT. The selected IR images analyzed for this report are also archived on magneto-optical disks as digital image files.

2.2 Introduction

This section summarizes the results of quantitative IR imagery of the exhaust cloud from the Titan IV A-17 launch from SLC-41 at CCAS on 7 November 1997 at 21:05 EST (02:05 GMT). Personnel from The Aerospace Corporation's Surveillance Technology Department (STD) supported this launch with the deployment of four complete platforms of the Titan IV dedicated Visible and IR Imaging System (VIRIS). For the A-17 evening launch, the IR imagery permitted the post-launch quantitative analysis of the ground cloud's movement and growth as a function of time.

The imagery sites chosen for the A-17 launch were

- on the road across from <u>UCS-4</u> (northwest of SLC-41),
- •at the sixth bollard along the northeast edge of the pond at <u>Press Site</u> (west of SLC-41),
- •at static test road viewing site (<u>STR</u>) (southwest of SLC-41), and
- •on a rise in the road to the east of <u>SLC-34</u> (south-southeast of SLC-41).

UCS stands for Universal Camera Site. Each site recorded only IR imagery of the exhaust cloud since it was too dark for visible imagery.

The IR imagery was digitized by the AGEMA scanner at 13 bits by an internal A/D converter. Due to a bug in the acquisition program, only the least-significant six bits (i.e., the intensity was "folded" to six bits of intensity) were stored to hard disk. In addition, the acquisition program averaged 7 images of the cloud with 5 unrelated images. As a result of this second error, the analyst had to subtract previous or subsequent images to reveal cloud details. Luckily, the 5 unrelated images were identical and were completely eliminated by image subtraction. In addition, the image subtraction removed some of the elevation-dependent atmospheric radiance gradient. Interestingly, the "folded" and background-subtracted imagery revealed all of the ground cloud with a single intensity span. Normally, one can only view a portion of the 13 bits of intensity spanned by the ground cloud and the elevation-dependent atmospheric radiance. A down side to the image subtraction was that the exhaust cloud was in all imagery subsequent to launch. Therefore, the processed images can contain both positive and negative images of the ground cloud when subsequent imagery serves as background. By wise selection of the images, the positive and negative exhaust cloud images had minimal overlap and posed little difficulty for image interpretation.

Quantitative analysis of the IR imagery for the first 9.50 min after launch documented the cloud's rise rate, stabilization height, expansion rate, bearing, and speed without recourse to other data. The "ground cloud" is defined as the lower and more concentrated portion of the rocket's exhaust cloud that can diffuse to the ground. The "launch column" or contrail is defined as the trail of the rapidly moving rocket that extends above the more spherical "ground cloud."

The T-0.6 h rawinsonde pre-launch meteorology data are documented in Appendix B and referenced in this section. Those rawinsonde wind data were used to run the "normal launch" REEDM version 7.08 predictions. The complete output for the T-0.6 h REEDM version 7.08 "default" predictions are documented in Appendix A and referenced in this section.

2.3 Field Deployment

2.3.1 Planning

The Aerospace Corporation's participants are listed in various teams below (members of the imaging teams for A-17 are indicated with asterisks):

Technology Operations

Space and Environment Technology Center

Surveillance Technology Department (STD)

J. T. Knudtson, Director of STD

G. N. Harper*

K. L. Foster*

D. K. Stone* and J. T. Valero*

B. P. Kasper* (Field Crew Team Leader)

L. J. Ortega*

R. S. Precious, Secretary of STD

(East of UCS-4)

(Press Site Pond)

(Static Test Road)

(East of SLC-34)

Space Launch Operations

Systems Engineering Directorate

Environmental Systems

N. F. Dowling, Systems Director

H. L. Lundblad

Eastern Range

Systems Engineering Directorate

D. R. Schulthess

J. R. Ligda* R. E. Reyes*

(East of UCS-4)

(Press Site Pond)

A. (Toni) Krell, Security

2.3.2 Equipment

The equipment at each site included all the hardware and software necessary to record and document the launch, to communicate between sites, and to supply backup power in case of an outage at the fixed power distribution points. The VIRIS consists of an array of three full and one back-up (excluding the IR imager) cloud tracking systems and was designed and fabricated at the request of Space Launch Operations, Systems Engineering Directorate, at The Aerospace Corporation. Each full tracking system consists of coaligned visible (CCD) and infrared (IR = 8–12 µm) imagers, mounted on an azimuth- and elevation-encoding tripod, with an associated data acquisition and display console. The combination of visible and IR imagers permits cloud tracking in both daylight and darkness. The unique capabilities built into the VCR hardware include digital insertion of imager azimuth (AZ), elevation (EL), time, and GPS location. The system electronics is integrated in a single package, which has been ruggedized for field use. Pre-wiring of this package makes deployment of these imager systems straightforward, usually requiring less than 45 min for instrumentation at a site to become fully operational.

For the Titan IV A-17 mission, the operators at each site set the FOV of the visible imager using the adjustable 10 to 110 mm electronic zoom lens. They also selected the best lens for the IR imager. A fourth AGEMA IR imager was borrowed from another program to support this mission. All operators rotated the tripod head to keep the ground cloud within the FOV as it moved from the launch pad. Table 1 documents the FOV used by each imagery site for the A-17 mission.

Table 1. Field of View (FOV) for Imagery Sites during A-17 Mission

Imagery Site	Imager Type (Visible or IR)	FOV(horizontal) (degrees)	FOV(vertical) (degrees)
East of UCS-4	AGEMA Infrared	40.85	20.59
Pond at Press Site	AGEMA Infrared	41.45	19.88
Static Test Road	AGEMA Infrared	40.80	20.81
East of SLC-34	AGEMA Infrared	40.69	21.03

All four imaging systems deployed for the Titan IV A-17 mission were capable of total autonomy. Each VIRIS has an on-board differential-ready Xybion GPS receiver that can be used to document each imager's position with moderate spatial resolution. Typically, 35 m is the precision in the horizontal plane and 100 m is the precision in the vertical plane. For the A-17 imagery sites, a Trimble differential GPS provided more accurate GPS data (5 m resolution) for each of the surveyed camera sites. Gasoline-powered AC generators (Honda Ex1000) are insurance against loss or absence of facility power. The Stirling cooler option for the AGEMA 900 series IR imager was chosen so that liquid nitrogen would not be required at the sites. Each unit is transportable in a standard utility wagon (e.g., Ford Explorer).

The AZ/EL angle encoder for all imager systems was calibrated using reference objects (e.g., SLC-41) within the field of view of the imager. When reference objects are not part of the geodetic survey database, the GPS location uncertainty is the dominant term in their positional accuracy. Imager pixelation and operator error in edge detection contribute as well to the error in defining the cloud boundary. The 0.07° step-size in the tripod angle encoders is a third source of error. The analysis accuracy is determined either by the availability of optimal references for AZ/EL calibration or by the step size for the tripod angle encoder. Typically the VIRIS system provides 0.1° accuracy in both elevation and azimuth.

2.4 Processing of Imagery Data

The processing of the imagery data requires several transformations that are performed upon return to The Aerospace Corporation:

- 1. Digitizing frames of the visible imagery (i.e., daylight launches).
- 2. Measuring the pixel locations of the reference sites within each image (i.e., FOV and angular calibration).
- 3. Measuring the pixel locations of cloud features in digitized images.
- 4. Converting pixel locations to azimuth and elevation readings.
- 5. Calculating cloud characteristics (i.e., position in Cartesian coordinates relative to the launch pad).

The processing requires the use of specialized hardware and software. When used, visible images of the cloud are digitized at precise times, beginning with time intervals of 15 s, then 30 s, then 1 min as the cloud evolves. The AGEMA 900 IR imagers produce digital images every 15 s in the field. A set of digitized images is selected for specific times following the launch and from each of the available imagery sites. Time, AZ, and EL are tabulated for each set. A setup file is created for each of these sets, containing all relevant information necessary to compute the cloud geometry using the imagery. The Aerospace program's **PLMTRACK** and **PLMVOL** are run to digitize the x, y, and z coordinates of cloud features and to estimate the volume of the exhaust cloud, respectively. These programs report the x and y coordinates relative to the launch pad and the z coordinate as height above MSL. We converted the height MSL to height above ground level (AGL) by subtracting the 7 m MSL for the height of SLC-41. This allows direct comparison of the imagery-derived data to REEDM's output.

PLMTRACK is a software program developed and maintained in the Surveillance Technology Department (STD) of The Aerospace Corporation by Brian P. Kasper. It is designed to analyze pairs of cloud images synchronized in time. In various versions, **PLMTRACK** has used the linear and rigorous (i.e., trigonometric) methods of interpreting pixels as AZ and EL and vice versa. **PLMTRACK** provides an absolute method of triangulating the position of the ground cloud without making any assumptions regarding the position of the ground cloud. This report presents the rigorous, trigonometric **PLMTRACK** results.

When using the **PLMTRACK Line Method**, the operator selects the location of a particular cloud feature in the images from the two imager sites by moving a screen pointer to the desired feature in each image and clicking a mouse button. **PLMTRACK** then calculates the point of nearest approach to the two rays defined by the selected points. The three-dimensional location of this feature is then written to a data file.

Another implementation of **PLMTRACK** is illustrated in Figure 1. When using the **PLMTRACK Box Method**, the operator draws a rectangle about the ground cloud in the images from the two sites

Figure 1. Implementation of the PLMTRACK "box" method with two imagers.

by moving a screen pointer to the extreme corners of the desired rectangles and clicking a mouse button. **PLMTRACK** then calculates the closest approach for various rays as illustrated in Figure 1 and described below. The top of the cloud is defined by rays determining T1 and T2 (i.e., T1 x T2); the bottom is determined by rays defining B1 and B2 (i.e., B1 x B2); and the middle is defined by the geometric mean of top and bottom (i.e., M1 x M2). To define the "faces" of the "box," the points of closest approach for ray M1 with L2 and R2 (the left and right tangents to the cloud from Imager 2) are defined (i.e., M1 x L2 and M1 x R2). A similar procedure is used to define the points of closest approach for M2 with L1 and R1, yielding M2 x R1 and M2 x L1. In addition to the centers of the faces of the "box," the intersects of the left and right rays document the four vertices for the XY polygon. Thus, eleven points are defined for the six-faced "box" surrounding the cloud (a point in the center of each of the six faces, four vertices for the XY polygon, plus a middle point for the "box"). These eleven sets of x, y, and z coordinates are written to a file.

When multiple imagery sites are viewing the cloud simultaneously, a multi-sided polygon method (documented in Figure 2) has been employed as a way to document the maximum extent of the cloud (i.e., a ground-plane projection) for all sets of images. With four imagers, there are redundant determinations of the top, middle, and bottom of the cloud by each pairing of imagery sites using **PLMTRACK**. The horizontal extent of the cloud is determined by defining the rays from each imager that are tangential to the widest part of the cloud as seen from that site. Projection of these

Figure 2. Comparison of the A-17 cloud extent derived from the polygon analysis and from the PLMVOL analysis (i.e., shaded area within the polygon). The imager positions and rays are actual A-17 data for T+02:15 (mm:ss) after launch.

extreme rays for each imager on the x-y ground plane forms a polygon that bounds all material in the cloud at all altitudes, as shown in Figure 2. Thus, when an aircraft is flown against the ground cloud (i.e., K-15, K-16, K-22, and K-23, missions), one expects to see aircraft HCl sampling "hits" fall within this polygon, regardless of the sampling altitude. When the polygon area is combined with the mean cloud height (i.e., the difference between the top and the bottom of the cloud), one can obtain an upper bound for cloud volume. As illustrated in Figure 2 (a ground projection of the cloud's extent), the shaded area within the polygon documents the extent of the cloud derived from **PLMVOL** analysis. There is excellent agreement between **PLMTRACK** and **PLMVOL** results.

The utility of the polygon method has been documented in previous reports for the K-152 and K-235 missions. In those reports, the polygons from imagery were correlated with aircraft's HCl measurements of cloud dimensions and average HCl concentrations for the Titan IV launch cloud. After correcting for Geomet time response, these datasets established that HCl concentrations detectable by an aircraft-based Geomet total HCl detector were mostly contained by the six-sided polygon areas for the first 10 to 20 min after launch. The K-15 and K-23 data established that the imagery-derived position and extent of the visible cloud correlates with the measurable HCl concentrations. A similar treatment is possible with the A-17 imagery (without aircraft data) and allows a mapping of the growth and position of the cloud over time.

Brian P. Kasper also created and maintains the PLMVOL program at The Aerospace Corporation. PLMVOL provides a convenient way of triangulating all of the volume elements that could be occupied by an object using imagery from two (or more) sites. Like PLMTRACK, PLMVOL uses a rigorous (i.e., trigonometric) method of interpreting pixels as AZ and EL and vice versa. For the A-17 mission, the **PLMVOL** algorithm provided an absolute method of triangulating the position and volume of the ground cloud. The analyst outlined the edge of the ground cloud in simultaneously acquired images from the four sites. PLMVOL determined all of the pixels that were within the outlines in each image and projected the rays for all of those pixels into space. PLMVOL defined volume elements in space and determined which volume elements were intercepted by the projected rays from all imagery sites. These intersected volume elements could be occupied by the ground cloud. PLMVOL reports the x,y,z coordinates for all "occupied" volume elements. The coordinates are relative to a reference (i.e., SLC-41 for x and y and mean sea level for z). PLMVOL calculates the total volume (i.e., sum of all occupied volume elements), the sphere-equivalent radius, and the mean altitude for the ground cloud (i.e., mean position of all occupied volume elements). For facile comparison to REEDM, this report uses altitude relative to SLC-41 pad (i.e., AGL) rather than MSL in all plots.

The **PLMVOL** approach is illustrated by Figure 3 for simultaneous images of the Titan IV K-23 normal launch cloud from three sites. We used the K-23 images to illustrate **PLMVOL** since that cloud had a complicated shape, and the imagery was not folded. The **PLMVOL**-derived reconstructed cloud is shown from a perspective similar to the middle image in Figure 3, but can be viewed from any perspective.

PLMVOL analysis of the A-17 imagery was possible between 0.25 and 9.50 min after the launch. In addition to the ground track, the rise rate, the stabilization height, and the extent that could also be derived from **PLMTRACK** analysis, **PLMVOL** provided volumetric data and altitude-dependent extent.

Figure 3. PLMVOL approach illustrated by Titan IV K-23 ground cloud images.

2.5 Results and Discussion

2.5.1. Correlation of Ground Cloud Bearing with Wind Direction

Figure 4 presents the imagery-derived cloud bearing and the T-0.6 h REEDM version 7.08 predicted ground cloud bearings as arrows originating from the launch pad and as text. The darkly bordered two REEDM 7.08 predictions (i.e., default and tuned runs that use 0 m as the initial cloud height). Figure 4 also documents the rawinsonde wind directions at the imagery-derived heights for the top, middle, and bottom of the stabilized ground cloud. The rawinsonde wind bearings are illustrated with narrow arrows originating from the rawinsonde release site and in a narrowly bordered text box. Lastly, Figure 4 documents the locations of SLC-41 launch pad, the rawinsonde release site, and the four imager sites (UCS-4, Press, STR, and SLC-34) used by The Aerospace Corporation for the A-17 mission. All directions are reported in rawinsonde convention [defined fully in Subsection 2.5.4]. Briefly, the arrows indicate the direction the cloud would move for a wind coming from the reported angle (clockwise from north).

As illustrated in Figure 4, there is reasonably good agreement between the imagery-derived cloud bearing, the REEDM version 7.08 predicted cloud bearing, and the rawinsonde wind directions at the equivalent heights. The quantitative imagery documented a cloud bearing of 293° by **PLMVOL** analysis (i.e., wide arrow in Figure 4) during the first 9.50 minutes after launch. REEDM version 7.08 predicted a shift in cloud bearing during rise: 281° at 13.0 m altitude to 299° at 893 m AGL. REEDM version 7.08 predicted the cloud's bearing as 299° (i.e., medium arrow in Figure 4) to the maximum cloud concentration at the predicted stabilization height (i.e., 947 m AGL). This is almost identical to the predicted cloud bearing of 298° to the maximum cloud concentration at ground level.

Figure 4. A map documenting the imagery sites, the rawinsonde release site, the A-17 ground cloud's bearing (derived from infrared imagery), the T-0.6 h REEDM Version 7.08 predictions for the ground cloud's bearing (at stabilization height), and the 01:32 GMT (T-0.6 h) rawinsonde wind directions at the imagery-derived cloud stabilization heights (i.e., bottom, middle and top of the ground cloud).

After stabilization, REEDM predicts a 299° cloud bearing at 947 m AGL (based upon the average wind in the first mixing layer). At ground level, the cloud's predicted bearing was 298° after stabilization. There are negligible differences in the predicted bearings at the stabilization height and at ground level due to almost negligible wind shear between the stabilization height and the ground. This is consistent with the imagery and with the T-0.6 h rawinsonde data. Figure 4 also presents the rawinsonde-derived wind directions (301°, 292°, and 277°) associated with the rawinsonde sounding heights (707, 1214, and 1824 m AGL) nearest the bottom, middle, and top of the stabilized ground cloud, respectively. These wind directions are from the T-0.6 h rawinsonde data and at the indicated sounding heights, which are closest to imagery-derived stabilization heights of 781, 1192, and 1775 m AGL for the bottom, middle, and top of the ground cloud, respectively.

Figures 5 through 9 document background-subtracted IR images for T+0.25 min, T+1.25 min, T+2.25 min, T+6.00 min, and T+7.00 min as recorded from (clockwise) UCS-4, Press, SLC-34, and STR sites. These images have the intensity "folded" to only 6 bits and include PLMVOL outlines and reflections. The outlines document the extent of the ground cloud in each perspective. The reflections are the centers of the intercepted volume elements reflected back into the image. For a perfect calibration, the reflections would be scattered throughout the outline. If the calibration were bad, PLMVOL's "reflected" rays would not fill a portion of the cloud outline. Therefore, these images document a good calibration of the imagery.

Figure 5. PLMVOL Reflection in T+0.25 min imagery from UCS-4, Press, STR, and SLC-34.

Figure 6. PLMVOL Reflection in T+1.25 min imagery from UCS-4, Press, STR, and SLC-34.

Figure 7. PLMVOL Reflection in T+2.25 min Imagery from UCS-4, Press, STR, and SLC-34.

Figure 8. PLMVOL Reflection in T+6.00 imagery from UCS-4, Press, STR, and SLC-34.

Figure 9. PLMVOL Reflection in T+7.00 min imagery from UCS-4, Press, STR, and SLC-34.

In Figure 5, the northwestern (USC-4) and southern (SLC-34) perspectives document asymmetry in the cloud's initial shape with a lobe to the east (i.e., left from UCS-4 and right from SLC-34 perspectives). This outcropping of exhaust resulted from ejection of exhaust to the east from the exhaust duct on SLC-41 pad. For Press and STR sites, there is a reflection of the ground cloud observable in the water between the sites and SLC-41. Narrow intensity bands document folding of the intensity at various elevations and about the launch cloud. The analyst drew the outlines after reviewing all available imagery and included only the portion of the cloud believed to be the ground cloud and launch column consumed by the rising ground cloud.

2.5.2. Cloud Rise Times and Stabilization Heights

Figures 10 through 12 present the imagery-derived, time-dependent altitude for the "bottom," the "middle," and the "top" of the ground cloud based upon **PLMVOL** analysis. In these plots, all data are plotted as height in meters above SLC-41 (i.e., m Above Ground Level). The analyst used **PLMVOL** to process imagery from all four sites simultaneously. Therefore, the plots in Figures 10 through 12 report only one result for each set of images. These data document the stabilization height for the bottom, the center, and the top of the ground cloud.

A polynomial fit is used when the cloud is tracked through stabilization. A polynomial fit is a convenient method to permit the representation of cloud overshoot and subsequent damped oscillation around the stabilization height. To be consistent with REEDM, stabilization time and height refer to the first maximum in polynomial fits. REEDM predicts that the cloud goes through damped oscillatory motion with a period of $2\pi/S^{1/2}$, where S is the static stability parameter [Ref. 6, Eq. (7)]⁶. Sensitivity of REEDM predictions to input parameters has been examined by Womack.

Figure 10. Cloud rise for the bottom of the A-17 cloud (PLMVOL analysis).

Figure 11. Cloud rise for the middle of the A-17 cloud (PLMVOL analysis).

Figure 12. Cloud rise for the top of the A-17 cloud (PLMVOL analysis).

2.5.3. Comparison of REEDM Prediction to Imagery Data—Rise Rate

Figure 13 presents the PLMVOL-derived heights for the ground cloud's top, middle, and bottom plotted as a function of time following the launch. For comparison, Figure 13 includes the predicted curves for the middle of the cloud based upon two T-0.6 h REEDM modeling runs. It is apparent that the "tuned" REEDM run more closely models the imagery-derived rise curve than the "default" REEDM run. The "tuned" run uses the imagery-derived values of 168 m for the initial radius, 0 m for the initial height, and 0.33 for the entrainment coefficient. The "default" REEDM run uses the default values of 72 m for the initial radius, 0 m for the initial height, and 0.64 for the entrainment coefficient. In both cases, one would obtain a higher value for the stabilization height by setting the initial height equal to the initial radius (i.e., 72 m for the default run and 168 m for the tuned run). This would raise the stabilization height accordingly and, therefore, provide an even better fit to the observed rise curve for the center of the ground cloud.

2.5.4. Comparison of REEDM Prediction to Imagery Data—Bearing and Speed

Figures 14 and 15 document the imagery-derived cloud bearing and speed, respectively. These figures document the results derived from **PLMVOL** analysis. The **PLMVOL** "center" is a weighted average based upon the locations of all intersected (i.e., "occupied") volume elements reported by **PLMVOL**.

Figure 14. Predicted and measured bearings (PLMVOL analysis).

In this report, the angles conform to the convention of rawinsonde wind vectors (the angle from which the wind originates that would push the cloud into its imaged position). Thus, the angles are related by

$$J = 180 + F$$
,

where ϑ is the equivalent rawinsonde wind angle and Φ is the measured polar angle of the cloud relative to SLC-41 and clockwise of true north. For example, when the cloud is due east of SLC-41, Φ is 90° and ϑ is 270°.

Figure 14 plots the Cartesian coordinates for the ground cloud between 0.25 and 9.50 min after launch. The **PLMVOL** results are for the center of the cloud and document a bearing of 293°. **PLMVOL** analysis uses a detailed outline about the ground cloud and uses imagery from all available sites simultaneously. The text box provides the average (293°) and standard deviation (8°) for a moving 0.5-min differential speed between PLMVOL data points (i.e., x,y data). For comparison, Figure 14 includes the predictions for both the "tuned" and "default" REEDM version 7.08 runs. The predictions stop at stabilization while the PLMVOL data continues past stabilization. It is apparent that there is reasonably good agreement between the predicted and measured bearings.

Figure 15 is a distance versus time plot and documents the PLMVOL-derived cloud speed as well as REEDM version 7.08 "tuned" and "default" predictions. The text box also documents the 1-min differential speed for the ground cloud during the 9.50 min of available imagery. The differential treatment documents an average (6.8 m/s) and a standard deviation (1.0 m/s) for the cloud's center speed. It is apparent that there is reasonably good agreement between the predicted and measured speeds.

Figure 15. Predicted and measured cloud speed (PLMVOL analysis).

Figure 16 documents **PLMVOL** results as an increase in cloud volume with time. Figure 17 conveys the same **PLMVOL** results as an increase in the cloud's sphere-equivalent radius (SER) with altitude. The SER is the radius of a sphere that has the same volume as measured by **PLMVOL**. The initial slope of a fit to SER plotted against altitude is, by definition, the entrainment coefficient used by REEDM. Therefore, Figure 17 documents a measured entrainment coefficient of 0.33 with 0.974 R² during the first 2.0 min of rise (i.e., 0.31 for first 1.75 min with 0.975 R² and 0.36 for first 2.25 min with 0.966 R²). These values are comparable to the imagery-derived entrainment coefficients for the 34D-9 abort cloud (i.e., 0.35), for three Titan IVA launches (i.e., 0.35 for K23, 0.37 for K19, and 0.39 for A18), and for two Titan IVB launch (i.e., 0.35 for B24 and 0.39 for B33). The average of all of the imagery-derived values (0.36 with a standard deviation of only 0.02) is substantially smaller than REEDM's default value of 0.64. Likewise, the average value for the initial radius (i.e., 179 m with a standard deviation of 20 m) is substantially larger than REEDM's default value of 72m.

2.5.5. Comparison of REEDM Prediction to Imagery Data -- Summary Table

Table 2 summarizes the imagery derived, the T-0.6 h rawinsonde measured, and the T-0.6 h REEDM predicted data for the A-17 ground cloud. Several conclusions can be derived from review of the contents of this table and from the discussions in previous sections of this chapter:

Figure 16. Cloud volume versus time (PLMVOL analysis).

Figure 17. Sphere-equivalent radius versus altitude (PLMVOL analysis).

- The imagery-derived stabilization height (1192 m AGL) is 26% higher than the "default" REEDM prediction (947 m AGL) and only 8% higher than the "tuned" REEDM prediction (1099 m AGL);
- The imagery-derived bearing (293°±8°) and speed (6.8±1.0 m/s) are in fair agreement with the T-0.6 h rawinsonde winds (292° and 7.7 m/s), with the T-0.6 h
 REEDM Version 7.08 "default" predictions (299° and 7.5 m/s) and with the T-0.6 h
 REEDM Version 7.08 "tuned" predictions (292° and 7.7 m/s);
- The imagery-derived entrainment coefficient (0.33) is 39% smaller than REEDM's default value (0.64);
- The imagery-derived extrapolated initial cloud radius (168 m) is 133% larger than REEDM's default value (72m); and
- The predicted ground concentration drops from 2.5 ppm for the "default" REEDM run to 1.8 ppm for the "tuned" REEDM run.

Table 2. Summary of A-17 Ground Cloud Data Derived from Infrared Imagery, T-0.6h Rawin-sonde Sounding Data, & T-0.6h REEDM Version 7.08 Predictions.

Attribute	Feature	Imagery (IR only)	Rawinsonde (T – 0.60 h)	REEDM 7.08 (Default)	REEDM 7.08 (Tuned)
Stabilization Height	Тор	1775		1671	1519
Meters Above SLC-41	Middle	1192		947	1099
(SLC-41 = 7 m MSL)	Bottom	781		300	707
Stabilization Time	Тор	3.50			
Minutes After Launch	Middle	4.25		4.65	4.95
	Bottom	6.25		•	
Bearing (deg)	Тор	297	277		
(rawinsonde)	Middle	293	292	299	299
at Specified Levels	Bottom	293	301		
Bearing (deg)	After Stab.	293		299	299
(rawinsonde)	To Max.	293		299	292
During Time Interval	During Rise	293		281-299	281-299
Speed (m/s)	Тор	7.7±3.3	11.5		
(along trajectory)	Middle	6.8±1.0	7.7	8.0	7.3
at Specified Levels	Bottom	8.7±2.1	7.7		
Speed (m/s)	After Stab.	6.8±1.0		8.0	7.3
(along trajectory)	To Max.	6.8±1.0			
During Time Interval	During Rise	6.8±1.0		7.5	7.7
Entrainment Coeff.	During Rise			0.64	0.33
Initial Radius (m)	At Height = 0	168		72	168
Initial Height (m)	At $t = 0$	0		0	0
Rise Rate (time)	During Rise	Linear		2 nd Order	Linear
Max Ground HCl (ppm)	Surface			2.5	1.8

We ran REEDM Version 7.08 in the research mode using the imagery-derived initial radius (168 m), an initial height equal to 0 m (the REEDM default), and the imagery-derived entrainment coefficient (0.33). This "tuned" research run was a better fit to the imagery-derived data. The predicted stabilization heights for the bottom, middle, and top of the cloud jumped from 299, 947, and 1672 m (i.e., the results of the normal run using the REEDM "default" settings) to 707, 1099, and 1519 m for the "tuned" research run. The predicted vertical extent of the cloud decreased by 41% while the predicted stabilization height increased by 16% by changing these two REEDM parameters. These differences shift the predicted ground-level HCl concentrations from 2.5 ppm for the "default" run to 1.8 ppm for the "tuned" run. Fortunately, there is imagery data for the vertical extent (994 m) of the cloud and its stabilization height (1192 m AGL) for the A-17 mission. The "tuned" run predicts a more accurate extent (i.e., 812 m is only 18% smaller than the imagery-derived extent) and a more accurate stabilization height (i.e., 1099 m is only 8% lower than the imagery-derived stabilization height). In contrast, the default run's predictions were too big for the vertical extent (1373 m is 38% larger than the imagery-derived extent) and too low for the stabilization height (i.e., 947 m AGL is 21% lower than the imagery-derived stabilization height). One obtains proportionately higher stabi-

2.6 Summary and Conclusions

The Titan IV A-17 mission was launched successfully from the Eastern Range (SLC-41) at 2105 EST (0205 GMT) on 7 November 1997. Personnel from The Aerospace Corporation imaged the ground cloud for 9.50 min after the launch from four camera sites. When combined with the AZ/EL readings and the IRIG-B time data, the quantitative imagery documented the rise, stabilization, growth, speed, and bearing of the ground cloud. This quantitative imagery data for the A-17 ground cloud will be useful for tuning current and future dispersion models.

The definition of the A-17 exhaust cloud's geometric features was complicated by its three-dimensional shape (i.e., not spherical). However, the imagery successfully documented this complex shape as the cloud evolved (i.e., asymmetric ejection from the exhaust duct, rapid rise of the hot ground cloud, and continued dispersion after reaching its stabilization height).

Analysis of the imagery data presented in this report has focused on determining parameters that are directly comparable to REEDM predictions. The imagery-derived cloud bearing and speed were similar to T-0.6h rawinsonde winds and to T-0.6h REEDM version 7.08 predictions. However, the imagery documented several differences between the ground cloud and REEDM predictions:

- The imagery-derived stabilization height (1192 m AGL) is 26% higher than the "default" REEDM prediction (947 m AGL) and only 8% higher than the "tuned" REEDM prediction (1099 m AGL);
- The imagery-derived bearing (293°±8°) and speed (6.8±1.0 m/s) are in fair agreement with the T-0.6 h rawinsonde winds (292° and 7.7 m/s), with the T-0.6 h REEDM Version 7.08 "default" predictions (299° and 7.5 m/s) and with the T-0.6 h REEDM Version 7.08 "tuned" predictions (292° and 7.7 m/s);
- The imagery-derived entrainment coefficient (0.33) is 39% smaller than REEDM's default value (0.64);
- The imagery-derived extrapolated initial cloud radius (168 m) is 133% larger than REEDM's default value (72m); and
- The predicted ground concentration drops from 2.5 ppm for the "default" REEDM run to 1.8 ppm for the "tuned" REEDM run.

The Aerospace Corporation has imaged 14 Titan IVA and 2 Titan IVB launches as part of the Model Validation Program. The available imagery documents that the default REEDM runs often underestimate the stabilization height of the ground cloud. Such overly conservative REEDM predictions can result in unnecessary launch holds at a considerable cost to the Air Force. The available imagery documents a larger initial radius and a smaller entrainment coefficient than the current default values used by REEDM version 7.08. Titan IV A and B exhaust cloud data are needed to validate and to tune current and future dispersion models for both ranges (Vandenberg AFB and CCAS) and for the various meteorological conditions associated with round-the-clock and year-round launch schedules.

References

- 1. R. N. Abernathy, "Titan 34D-9 Abort Cloud Measurements Quantitative Imagery from Two Camera Sites," The Aerospace Corporation Technical Report TR-98(1410)-1, The Aerospace Corporation, El Segundo, CA (20 February 1998).
- 2. R. N. Abernathy and K. L. Foster, "Ground Cloud Dispersion Measurements During The Titan IV Mission #K15 (5 December 1995) at Vandenberg Air Force Base Volume 2 Further Analysis of Quantitative Imagery and of Aircraft HCl Data," The Aerospace Corporation Technical Report TR-98(1410)-2, 12 May 1998.
- 3. R. N. Abernathy, B. P. Kasper, J. Y. Webb, and K. L. Foster, "Imagery of the Titan IV #K16 Ground Cloud," Chapter 2 and R. N. Abernathy and K. L. Foster, "Aircraft Elevated HCl Measurements," Chapter 3 in The Aerospace Corporation Report No. TR-97(1410)-4 and SMC-TR-97-10, "Ground Cloud Dispersion Measurements During the Titan IV #K16 (24 April 1996) at Cape Canaveral Air Station, Volume 1 Test Overview and Data Summary," 31 March 1997.
- R. N. Abernathy, K. L. Foster, and B. P. Kasper, "Imagery of the Titan IV #K22 Ground Cloud," Chapter 2 and R. N. Abernathy and K. L. Foster, "Aircraft Elevated HCl Measurements," Chapter 3 in The Aerospace Corporation Report No. TR-97(1410)-5 and SMC-TR-97-18, "Ground Cloud Dispersion Measurements During the Titan IV #K22 (12 May 1996) at Vandenberg Air Force Base, Volume 1 – Test Overview and Data Summary," 30 June 1997.
- R. N. Abernathy, R. F. Heidner III, B. P. Kasper, and J. T. Knudtson, "Visible and Infrared Imagery of the Launch of the Titan IV K-23 from Cape Canaveral Air Force Station on 14 May 1995," Aerospace Report No. TOR-96(1410)-1, The Aerospace Corporation, El Segundo, CA (15 September 1996).
- 6. J. R. Bjorklund, "User's Manual for the REEDM Version 7 (Rocket Exhaust Effluent Diffusion Model) Computer Program," Vol. I, TR-90-157-01, AF Systems Command, Patrick AFB, FL (April 1990).
- 7. J. M. Womack, "Rocket Exhaust Effluent Diffusion Model Sensitivity Study," TOR-95(5448)-3, The Aerospace Corporation, El Segundo, CA (May 1995).

Appendix A—REEDM Version 7.08 Predictions for the A-17 Mission

[The material in this section was contributed by R. N. Abernathy of the Surveillance Technology Department of The Aerospace Corporation's Space and Environment Technology Center]

This Appendix includes REEDM version 7.08 runs for impact at both the surface (0 m AGL, 7 m MSL) and stabilization height (predicted by REEDM). We include the plots of the rawinsonde meteorological data, the predicted maximum concentration versus downwind distance, and the predicted concentration isopleths overlayed on a range map. These plots are followed by the detailed REEDM report for that run.

Stabilization Height Predictions

The following figures and table are the REEDM version 7.08 output for the stabilization height run. These predictions were compared with actual A-17 ground cloud observations in Section 2 for the quantitative imagery. The first page of the REEDM output is its listing of errors and is not included in this appendix.

Figure 1A. Meteorological Output Plot from REEDM Version 7.08 for A-17 Mission Using T-0.6h Rawinsonde Data.

Figure 2A. HCl Stabilization Height Concentration Predictions from REEDM Version 7.08 for A-17 Mission Using T-0.6h Rawinsonde Data.

Figure 3A. HCl Stabilization Height Concentration Isopleth Predictions from REEDM Version 7.08 for A-17 Mission Using T-0.6h Rawinsonde Data.

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 2 VERSION 7.08 AT KSC 1005 EDT 16 JUN 1998 launch time: 2105 EST 07 NOV 1997 RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR ************************ ---- PROGRAM OPTIONS ----MODEL CONCENTRATION RUN TYPE OPERATIONAL WIND-FIELD TERRAIN EFFECTS MODEL NONE LAUNCH VEHICLE TITAN IV LAUNCH TYPE NORMAL LAUNCH COMPLEX NUMBER TURBULENCE PARAMETERS ARE DETERMINED FROM CLIMATOLOGICAL DATA SURFACE CHEMISTRY MODEL absorption coefficient SPECIES SURFACE FACTOR HCL 0.000 CLOUD SHAPE ELLIPTICAL CALCULATION HEIGHT STABILIZATION PROPELLANT TEMPERATURE (DEG. C) 22.86 CONCENTRATION AVERAGING TIME (SEC.) 3600.00 mixing layer reflection coefficient (RNG- 0 TO 1, no reflection=0) 1.0000 DIFFUSION COEFFICIENTS LATERAL 1.0000 VERTICAL 1.0000 VEHICLE AIR ENTRAINMENT PARAMETER GAMMAE 0.6400 DOWNWIND EXPANSION DISTANCE (METERS) LATERAL 100.00 100.00 VERTICAL ---- DATA FILES ----INPUT FILES RAWINSONDE FILE a17a0132.raw DATA BASE FILE rdmbase.ksc

PRINT FILE a17ah000.stb PLOT FILE a17ah000.stp

OUTPUT FILES

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 3

VERSION 7.08 AT KSC 1005 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS

TIME- 0132 Z DATE- 08 NOV 97

ASCENT NUMBER 0

---- T -0.6 HR SOUNDING -----

MET LEV		ALTITUD GND (FT)	GND	WIND DIR (DEG)		ED (KTS)	(DEG C)		AIR PRESS (MB)	AIR RH (%)		
1	16	0.0	0.0							1011.2	72.0		*
2	59	42.6	13.0		5.4	10.4	16.2	16.8		1009.7	72.2		*
3	101	85.2	26.0		6.6	12.8	16.1	16.9		1008.1	72.2		*
4	144	127.8	39.0		7.8	15.2	16.1	17.0		1006.6	72.2		*
5	186	170.4	51.9		9.1	17.6	16.0	17.1		1005.0	72.2	^	^
6	229	213.0	64.9		10.3	20.0	16.0	17.1		1003.5	72.0 72.4		*
7	278	262.0	79.9		10.0	19.5	15.9	17.1		1001.7		^	^
8	327	311.0	94.8		9.8	19.0	15.7 15.3	$17.1 \\ 17.2$	10.8	1000.0 994.0	73.0 74.3	4	*
9	495	479.3	146.1		9.6 9.5	18.7	14.9	17.2	10.7		76.0		*
10	664	647.5	197.4		9.5	18.4 18.1	14.9	17.3 17.4	10.7	982.0	77.7		*
11	832	815.8	248.6 299.9		9.3	17.8	14.4	17.4	10.5	976.1	79.0		
12	1000 1271	984.0 1255.0	382.5		8.7	17.0	13.3	17.4	10.5	966.7	83.0		
13 14	1510	1494.0	455.4		8.5	16.5	12.6	17.6	10.5	958.3	87.1	*	*
15	1749	1733.0	528.2		8.2	16.0	11.9	17.6	10.5	950.0	91.0	•	
16	1802	1786.0	544.4		8.2	16.0	11.8	17.7	10.5	948.3	92.0		
17	2000	1984.0	604.7		8.1	15.8	11.3	17.7	10.1	941.5	92.0		
18	2337	2321.0	707.4		7.7	15.0	10.4	17.8	9.4		93.0		
19	2947	2931.0	893.4		7.2	14.0	9.1	18.2	8.1	909.5	94.0		
20	3000	2931.0	909.5		7.2	14.0	9.0	18.3	8.0	907.7	94.0		
21	3227	3211.0	978.7		. 7.2	14.0	8.5	18.5	7.7	900.0	95.0		
22	3568	3552.0			7.2	14.0	7.8	18.7	7.2	889.0	96.0	*	
23	4000	3984.0			7.7	14.9	8.7	20.6	0.9	875.0	61.0		
24	4162	4146.0			7.7	15.0	9.0	21.3	-1.5	869.8	48.0		
25	4781	4765.0		286	9.3	18.0	10.0	24.1	-5.0	850.0	34.0		
26	5000	4984.0			9.3 9.5	18.4	9.6	24.4	-5.3	843.4	35.0		
27	5500	5484.0			10.5	20.4	9.0	25.4	-5.9	828.1	34.9	*	*
28	6000	5984.0			11.5	22.4	8.5	26.3	-6.5	813.0	34.0		
29	6426	6410.0			12.3	24.0	8.1	27.3	-7.1	800.0	33.0		
30	7000	6984.0			13.5	26.3	7.9	28.8	-7.6	783.6	32.0		
31	7500	7484.0			14.5	28.2	7.3	29.8	-8.2	769.2	33.2	*	*
32	8000	7984.0			15.5	30.1	6.7	30.8	-8.8		32.0		
33	8170	8154.0			15.9	31.0	6.5	31.1	-9.1		32.0		
34	9109	9093.0			18.0	35.0	5.1		-10.3	724.7	32.0		
*		ICATES 7				OF TH	E SURI	FACE MI	XING I	LAYER			

^{** -} INDICATES THAT DATA IS LINEARLY INTERPOLATED FROM INPUT METEOROLOGY

1*************	******	*****	*****
ROCKET EXHAUST EFFLUENT DE VERSION 7.08 A 1005 EDT 16 JU 1005 EDT 16 JU 1005 EDT 16 JU 1005 EDT 1005 E	AT KSC UN 1998 ST 07 NOV 1997 32 Z 8 NOV 9	97 T -0.6	
METEOROLOGICAL RAN	VINSONDE DATA		
SURFACE AIR DENSITY (GM/M**3) DEFAULT CALCULATED MIXING LAYER HEIGHT CLOUD COVER IN TENTHS OF CELESTIAL DOME CLOUD CEILING (M) PLUME RISE			1211.43 1082.65 0.0 9999.0
EXHAUST RATE OF MATERIAL INTO GRN CLD- TOTAL GROUND CLD MATERIAL- HEAT OUTPUT PER GRAM- VEHICLE RISE HEIGHT DEFINING GROUND CLD- VEHICLE RISE TIME PARAMETERS-	(GRAMS/SEC) (GRAMS) (CALORIES) (M) (TK=(A*Z**B)+C)	A= (B= (43E+07 1555.6 199.9 0.8677
EXHAUST RATE OF MATERIAL INTO CONTRAIL- CONTRAIL HEAT OUTPUT PER GRAM-	(GRAMS/SEC) (CALORIES)	4.2173	

1***********************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 5

VERSION 7.08 AT KSC 1005 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- EXHAUST CLOUD -----

MET.				CLOUD		
LAYER NO.				RISE BEARING (DEGREES)		CLOUD BEARING
110.	(MEIERS)	(SECONDS)	(MEIERS)	(DEGREES)	(METERS)	(DEGREES)
1	13.0	1.8	4.0	100.8	0.0	0.0
2	26.0	2.8	11.5	102.1	0.0	0.0
3	39.0	3.8	18.0	103.4	0.0	0.0
4	51.9	4.8	25.5	104.9	0.0	0.0
5	64.9	5.7	34.3	106.6	0.0	0.0
6	79.9 94.8	6.9	45.3	108.3	0.0	0.0
7	94.8	8.2	57.6	109.6 111.6	0.0	0.0
8	146.1	13.2	34.3 45.3 57.6 87.9	111.6	0.0	0.0
9	146.1 197.4	19.1	140.3	113.2	0.0	0.0
10	248.6	26.1	201.3	114.4	0.0	0.0
11	299.9	34.0	270.2	115.3	0.0	0.0
12	382.5			116.3		118.6
13		63.3		117.0		118.8
14				117.5		119.1
				117.8	2326.9	
				118.0		119.3
				118.4		
18				119.1		
19	909.5	220.3	1732.0	119.1		
20	978.7	279.3 *	2199.0	119.1		119.1
21	1082.6	279.3 *	2199.0	119.1	2199.0	119.1
22	1214.3	279.3 *	2199.0	119.1	2199.0	119.1
23			2199.0	119.1	2199.0	119.1
24	1452.4	279.3 *	2199.0	119.1 119.1	2199.0	119.1
25	1519.1	279.3 * 279.3 *	2199.0	119.1	2100 0	770 7
26				119.1	2199.0	119.1
27	1823.9	279.3 *	2199.0	119.1	2199.0	119.1
28	1953.8	279.3 *	2199.0	119.1	2199.0	119.1
29	2128.7	279.3 *	2199.0	119.1		
				119.1		
				119.1		
				119.1		
33	2771.5	279.3 *	2199.0	119.1	2199.0	119.1

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 6

VERSION 7.08 AT KSC 1005 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- EXHAUST CLOUD -----

CHEMICAL SPECIES = HCL

LAYER	OF LAYER	LAYER SOURCE STRENGTH (GRAMS)	UPDRAFT VELOCITY	RADIUS	ALONGWIND	N MATERIAL I CROSSWIND (METERS)	DIST.
1	13.0	0.00000E+00	11.5	0.0	0.0	0.0	
2	26.0	0.00000E+00	13.4	0.0	0.0	0.0	
3	39.0	0.00000E+00	13.6	0.0	0.0	0.0	
4	51.9	0.00000E+00	13.3	0.0	0.0	0.0	
5	64.9	0.00000E+00	12.8	0.0	0.0	0.0	
7	94.8	0.00000E+00	11.4	0.0	0.0	0.0	
8	146.1	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 5.32352E+04 3.40015E+05 6.18797E+05 1.70843E+05 7.33920E+05	9.4	0.0	0.0	0.0	
9	197.4	0.00000E+00	7.9	0.0	0.0	0.0	
10	248.6	0.00000E+00	6.9	0.0	0.0	0.0	
11	299.9	0.00000E+00	6.1	0.0	0.0	0.0	
12	382.5	5.32352E+04	5.3	20.3	9.4	9.4	
13	455.4	3.40015E+05	4.7	331.5	154.5	154.5	
14	528.2	6.18797E+05	4.2	446.7	208.2	208.2	
15	544.4	1.70843E+05	4.1	497.8	231.9	231.9	
		1.54277E+06					
18	893.4	3.39962E+06	1.5	657.2	306.2	306.2	
19 .	909.5	3.14576E+05	1.3	675.4	314.7	314.7	
20	978.7 *	1.59094E+06	0.0	677.3	315.6	315.6	
21	1082.6 *	2.73687E+06	0.0	670.8	312.6	312.6	
22	1214.3 *	2.73687E+06 3.17219E+06 1.06109E+06 3.12286E+06 6.61100E+05	0.0	638.6	297.6	297.6	
23	1263.7 *	1.06109E+06	0.0	593.2	276.4	276.4	
24	1452.4 *	3.12286E+06	0.0	497.0	231.6 143.7 102.8 93.2	231.6	
25	1519.1 *	6.61100E+05	0.0	308.4	143.7	143.7	
26	1671.5 *	8.94115E+05	0.0	220.6	102.8	102.8	
27		8.17373E+05		199.9	93.2	93.2	
28		6.67215E+05		199.9	93.2	93.2	
		8.61534E+05			93.2		
		7.19226E+05			93.2		
3.T	∠433.5 *	6.93253E+05	0.0		93.2		
3∠ 22	∠485.3 *	2.30241E+05	0.0	199.9	93.2		
33	2//1.5 *	1.22659E+06	0.0	199.9	93.2	93.2	

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 7

VERSION 7.08 AT KSC 1005 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR *****************

---- CLOUD STABILIZATION -----

CALCULATION HEIGHT	(METERS)	946.82
STABILIZATION HEIGHT	(METERS)	946.82
STABILIZATION TIME	(SECS)	279.27
FIRST MIXING LAYER HEIGHT-	(METERS)	TOP = 1082.65
		BASE= 0.00
SECOND SELECTED LAYER HEIGHT-	(METERS)	TOP = 2771.55
		BASE= 1082.65
SIGMAR(AZ) AT THE SURFACE	(DEGREES)	5.4936
SIGMER(EL) AT THE SURFACE	(DEGREES)	3.6919

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	4.95	1.23	281.40	2.80	4.7661	3.6919
2	5.97	1.23	284.20	2.80	3.8775	3.6919
3	7.20	1.23	287.00	2.80	3.7041	3.6919
4	8.44	1.23	289.80	2.80	3.6919	3.6919
5	9.67	1.23	292.60	2.80	3.6919	3.6919
6	10.16	0.26	294.25	0.50	3.6919	3.6919
7	9.90	0.26	294.75	0.50	3.6919	3.6919
8	9.70	-0.15	295.50	1.00	3.5937	3.5937
9	9.54	-0.15	296.50	1.00	3.4252	3.4252
10	9.39	-0.15	297.50	1.00	3.2847	3.2847
11	9.23	-0.15	298.50	1.00	3.1228	3.1228
12	8.95	-0.41	299.00	0.00	2.9246	2.9246
13	8.62	-0.26	299.25	0.50	2.7184	2.7184
14	8.36	-0.26	299.75	0.50	2.5577	2.5577
15	8.23	0.00	300.00	0.00	2.4443	2.4443
16	8.18	-0.10	300.00	0.00	2.2802	2.2802
17	7.92	-0.41	300.50	1.00	1.9709	1.9709
18	7.46	-0.51	300.00	-2.00	1.6348	1.6348
19	7.20	0.00	299.00	0.00	1.4379	1.4379
20	7.20	0.00	298.50	-1.00	1.2609	1.2609
21	7.20	0.00	297.00	-2.00	1.0712	1.0712
22	7.43	0.46	294.00	-4.00	1.0000	1.0000
23	7.69	0.05	291.50	-1.00	1.0000	1.0000
24	8.49	1.54	288.50	-5.00	1.0000	1.0000
25	9.36	0.21	285.50	-1.00	1.0000	1.0000
26	9.98	1.03	283.00	-4.00	1.0000	1.0000
27	11.01	1.03	279.00	-4.00	1.0000	1.0000
28	11.94	0.82	275.50	-3.00	1.0000	1.0000
29	12.94	1.18	272.00	-4.00	1.0000	1.0000
30	14.02	0.98	269.25	-1.50	1.0000	1.0000

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 8

VERSION 7.08 AT KSC

1005 EDT 16 JUN 1998 launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- CALCULATED METEOROLOGICAL LAYER PARAMETERS ----

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
31	15.00	0.98	267.75	-1.50	1.0000	1.0000
32	15.72	0.46	267.00	0.00	1.0000	1.0000
33	16.98	2.06	267.00	0.00	1.0000	1.0000

ALTITUDE RANGE USED IN COMPUTING TRANSITION LAYER AVERAGES IS 197.4 TO 2771.5 METERS.

TRANSITION LAYER NUMBER- 1

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	1082.65	291.90 289.86	7.20 8.04 4.12	0.74	296.00 299.16 280.00	1.38	1.0000 2.1008 5.4936	1.0000 2.1008 3.6919

TRANSITION LAYER NUMBER- 2

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	2771.55 1082.65	305.74 291.90	18.01 12.12 7.20	3.33	267.00 274.57 296.00	8.14	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

1*************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM VERSION 7.08 AT KSC

1005 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 946.8 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1082.6 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
3000.0051 4000.0288 5000.0000 6000.0015 7000.0000 8000.0005 9000.0010 10000.0059 12000.0098 13000.0088 14000.0078 15000.0078 15000.0078 16000.0059 18000.0059 19000.0059 20000.0059 20000.0059 21000.0059 22000.0059 23000.0059 24000.0059 24000.0059 25000.0059 24000.0059 25000.0059 24000.0059 25000.0059 25000.0059 25000.0039 25000.0039 26000.0039 30000.0039 31000.0039 31000.0039 33000.0039 33000.0039	119.2659 119.3777 119.1429 119.1677 119.1455 119.1283 119.1145 119.2328 119.2328 119.2273 119.2225 119.2184 119.2147 119.2115 119.2087 119.2062 119.2087 119.2062 119.3089 119.1966 119.1952 119.1966 119.1952 119.1966 119.1952 119.1966 119.1952 119.1988 119.1966 119.1952 119.1988 119.1966 119.1952 119.1988 119.1966 119.1952 119.1988 119.1966 119.1952 119.1988 119.1966 119.1966 119.1952 119.1988	25.1542 22.0962 19.6682 17.6732 15.9303 14.3550 12.9174 11.6028 10.4041 9.3177 8.3408 7.4684 6.6949 6.0136 5.4167 4.8957 4.4423 4.0483 3.7060 3.4081 3.1484 2.9212 2.7215 2.5450 2.3881 2.2478 2.1216 2.0072 1.9030 1.8076 1.7198 1.6386	4.0147 3.8257 5.8178 7.8754 9.9289 11.9786 14.0246 16.0445 18.0596 20.0746 22.0896 24.1045 26.1194 28.1343 30.1492 32.1641 34.1790 36.1939 38.2087 40.2236 42.2385 44.2533 46.2682 48.2830 50.2979 52.3127 54.3276 56.3424 58.3572 60.3721 62.3869 64.4018	7.7211 9.7964 11.8739 13.9538 16.0359 18.1202 20.2067 22.2953 24.3859 26.4784 28.5729 30.6691 32.7670 34.8666 36.9677 39.0703 41.1742 43.2795 45.3860 47.4937 49.6025 51.7124 53.8232 55.9349 58.0475 60.1609 62.2751 64.3900 66.5055 68.6218 70.7386 72.8559
35000.0039 36000.0039 37000.0039	119.1852 119.1846 119.1839	1.5633 1.4932 1.4277	66.4166 68.4314 70.4463	74.9738 77.0922 79.2111

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 10

VERSION 7.08 AT KSC 1005 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 946.8 METERS

DOWNWIND FROM A TITAN IV NORMAL LAUNCH

CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1082.6 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
38000.0039 39000.0039 40000.0039 41000.0039 42000.0039 43000.0039 45000.0039 46000.0039 47000.0039 49000.0039 50000.0039 51000.0039 52000.0039 53000.0039 55000.0039 55000.0039 55000.0039 56000.0039 57000.0039 57000.0039	119.1833 119.1827 119.1821 119.1816 119.1811 119.1806 119.1797 119.1793 119.1789 119.1785 119.1778 119.1778 119.1778 119.1775 119.1771 119.1768 119.1765 119.1765 119.1765 119.1765 119.1765 119.1765 119.1765 119.1765 119.1765	1.3664 1.3089 1.2549 1.2041 1.1562 1.1111 1.0684 1.0281 0.9899 0.9538 0.9195 0.8870 0.8562 0.8268 0.7989 0.7724 0.7471 0.7230 0.7000 0.6781 0.6571 0.6371	72.4611 74.4759 76.4908 78.5056 80.5204 82.5353 84.5501 86.5649 88.5798 90.5946 92.6094 94.6242 96.6391 98.6539 100.6687 102.6835 104.6984 106.7132 108.7280 110.7429 112.7577 114.7725 116.7873	81.3305 83.4502 85.5704 87.6909 89.8118 91.9330 94.0545 96.1764 98.2985 100.4209 102.5436 104.6665 106.7896 108.9130 111.0366 113.1603 115.2843 117.4085 119.5328 121.6573 123.7819 125.9068
0000.0000	119.1/49	0.6180	116.7873	128.0317

						RAN	GE	BEARING
25.154	IS	THE	MAXIMUM	PEAK	CONCENTRATION	300	0.0	119.3

1************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM VERSION 7.08 AT KSC

1005 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 946.8 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1082.6 METERS

60.0 MIN. CLOUD MEAN CLOUD CONCEN-RANGE BEARING ARRIVAL DEPARTURE FROM PAD FROM PAD TRATION TIME TIME (METERS) (DEGREES) (PPM) (MIN) (MIN) _____ 3000.0051 119.2659 0.6852 4.0147 7.7211 119.3777 0.5999 3.8257 9.7964 4000.0288 5.8178 5000.0000 119.1429 0.5343 11.8739 7.8754 6000.0015 119.1972 0.4808 13.9538 7000.0000 119.1677 0.4339 9.9289 16.0359 0.3914 11.9786 18.1202 8000.0005 119.1455 14.0246 20.2067 9000.0010 119.1283 0.3531 22.2953 10000.0029 119.1145 0.3186 16.0445 11000.0059 119.1032 0.2877 18.0596 24.3859 12000.0098 119.2328 0.2602 20.0746 26.4784 13000.0088 119.2273 0.2357 22.0896 28.5729 14000.0078 119.2225 0.2140 24.1045 30.6691 15000.0078 119.2184 0.1949 26.1194 32.7670 28.1343 16000.0068 119.2147 0.1781 34.8666 36.9677 17000.0059 119.2115 0.1634 30.1492 18000.0059 119.2087 0.1505 32.1641 39.0703 0.1393 34.1790 41.1742 19000.0059 119.2062 0.1296 36.1939 43.2795 20000.0059 119.2039 0.1211 38.2087 45.3860 21000.0059 119.2018 0.1138 40.2236 47.4937 22000.0059 119.1999 23000.0059 119.1982 0.1075 42.2385 49.6025 51.7124 24000.0039 119.1966 0.1019 44.2533 53.8232 0.0971 25000.0039 119.1952 46.2682 0.0928 55.9349 26000.0039 119.1938 48.2830 0.0891 50.2979 58.0475 27000.0039 119.1926 0.0857 52.3127 60.1609 28000.0039 119.1915 29000.0039 119.1904 0.0827 54.3276 62.2751 64.3900 0.0800 56.3424 30000.0039 119.1894 0.0775 58.3572 66.5055 31000.0039 119.1885 68.6218 0.0752 60.3721 32000.0039 119.1876 70.7386 33000.0039 119.1868 0.0731 62.3869 34000.0039 119.1860 0.0712 64.4018 72.8559 0.0694 66.4166 74.9738 35000.0039 119.1852 77.0922 0.0676 68.4314 119.1846 36000.0039

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.08 AT KSC 1005 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 946.8 METERS
DOWNWIND FROM A TITAN IV NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1082.6 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
37000.0039 38000.0039 39000.0039 40000.0039 41000.0039 42000.0039 43000.0039 45000.0039 46000.0039 47000.0039 48000.0039 50000.0039 51000.0039 52000.0039 52000.0039 54000.0039 55000.0039 55000.0039 57000.0039 57000.0039 58000.0039 59000.0039	119.1839 119.1833 119.1827 119.1821 119.1816 119.1811 119.1806 119.1802 119.1797 119.1793 119.1789 119.1785 119.1778 119.1778 119.1775 119.1771 119.1768 119.1765 119.1765 119.1765 119.1757 119.1757 119.1757 119.1757 119.1754 119.1751	0.0660 0.0645 0.0630 0.0616 0.0603 0.0590 0.0578 0.0566 0.0555 0.0544 0.0534 0.0524 0.0514 0.0505 0.0496 0.0487 0.0479 0.0471 0.0463 0.0456 0.0449 0.0441	70.4463 72.4611 74.4759 76.4908 78.5056 80.5204 82.5353 84.5501 86.5649 88.5798 90.5946 92.6094 94.6242 96.6391 98.6539 100.6687 102.6835 104.6984 106.7132 108.7280 110.7429 112.7577 114.7725	79.2111 81.3305 83.4502 85.5704 87.6909 89.8118 91.9330 94.0545 96.1764 98.2985 100.4209 102.5436 104.6665 106.7896 108.9130 111.0366 113.1603 115.2843 117.4085 119.5328 121.6573 123.7819
60000.0000	119.1749	0.0428	116.7873	128.0317

	RANGE	BEARING
0.685 IS THE MAXIMUM 60.0 MIN. MEAN CONCENTRATION	3000.0	119.3

*** REEDM HAS TERMINATED

Surface Impact Predictions

This section includes the REEDM version 7.08 output for the surface impact run. For the surface impact run, we included the plots of the rawinsonde meteorological data, the predicted maximum concentration versus downwind distance, and the predicted concentration isopleths overlayed on a range map. The rawinsonde meteorological data is identical to the data plotted in Figure 1 for the stabilization height run. Lastly this section includes the detailed REEDM report for this run. The first page of the REEDM output is its listing of errors and is not included in this appendix.

Figure 4A. Meteorological output plot from REEDM Version 7.08 for A-17 mission Uusing T-0.6h rawinsonde data.

Figure 5A. HCl surface height concentration predictions from REEDM Version 7.08 for A-17 mission using T-0.6h rawinsonde data.

Figure 6A. HCl surface height concentration isopleth predictions from REEDM Version 7.08 for A-17 mission using T-0.6h rawinsonde data.

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 2

VERSION 7.08 AT KSC 0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR ********************

---- PROGRAM OPTIONS ----

MODEL		CON	CENTRATION
RUN TYPE		٠ 0	PERATIONAL
WIND-FIELD TERRAIN EFFECTS MODEL			NONE
LAUNCH VEHICLE			TITAN IV
LAUNCH TYPE			NORMAL
LAUNCH COMPLEX NUMBER			41
TURBULENCE PARAMETERS ARE DETERMINED FROM		CLIMATOLO	GICAL DATA
SURFACE CHEMISTRY MODEL		absorption c	oefficient
SPECIES SURFACE FACTOR		HCL	0.000
CLOUD SHAPE			ELLIPTICAL
CALCULATION HEIGHT			SURFACE
PROPELLANT TEMPERATURE (DEG. C)			22.86
CONCENTRATION AVERAGING TIME (SEC.)			3600.00
mixing layer reflection coefficient (RNG- (0 TO 1, no	reflection=0)	1.0000
DIFFUSION COEFFICIENTS		LATERAL	1.0000
		VERTICAL	1.0000
VEHICLE AIR ENTRAINMENT PARAMETER		GAMMAE	0.6400
DOWNWIND EXPANSION DISTANCE (METERS)		LATERAL	100.00
		VERTICAL	100.00

---- DATA FILES ----

INPUT FILES

RAWINSONDE FILE a17a0132.raw DATA BASE FILE rdmbase.ksc

OUTPUT FILES

PRINT FILE u17ah000.sur PLOT FILE u17ah000.sup

PAGE

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.08 AT KSC 0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR *************************

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS TIME- 0132 Z DATE- 08 NOV 97 ASCENT NUMBER 0

---- T -0.6 HR SOUNDING ----

MET LEV		ALTITUI GND	DE GND						DPTEMP	AIR PRESS	AIR RH		INT-
NO.	(FT)	(FT)	(M)	(DEG)	(M/S)	(KTS)		(DEG C)		(MB)	(육)	M	ERP
1		0.0	0.0	280	4.1	8.0				1011.2			
2	59	42.6	13.0			10.4				1009.7	72.2		* *
3	101	85.2	26.0	286		12.8	16.1		11.1	1008.1	72.2		**
4	144	127.8	39.0		7.8	15.2	16.1	17.0	11.1	1006.6	72.2		**
5	186	170.4			9.1	17.6	16.0	17.1	11.0	1005.0	72.2		* *
6	229	213.0			10.3	20.0	16.0	17.1		1003.5	72.0		
7	278		79.9		10.0	19.5	15.9		10.9	1001.7	72.4		**
8	327		94.8		9.8	19.0	15.7	17.1	10.8	1000.0	73.0		
9	495	479.3			9.6	18.7	15.3	17.2	10.7		74.3		**
10	664	647.5	197.4		9.5	18.4	14.9	17.3	10.7		76.0		* *
11	832	815.8	248.6		9.3	18.1	14.4	17.4	10.6	982.0	77.7		* *
12	1000	984.0	299.9	299	9.2 8.7	17.8	14.0	17.4	10.5	976.1	79.0		
13	1271	1255.0	382.5	299	8.7	17.0	13.3	17.6	10.5	966.7	83.0		
14	1510	1494.0	455.4	300	8.5	16.5	12.6	17.6	10.5	958.3	87.1		* *
15	1749	1733.0	528.2	300	8.2	16.0	11.9	17.6	10.5		91.0		
16	1802	1786.0	544.4		8.2	16.0	11.8	17.7	10.5		92.0		
17	2000	1984.0			8.1	15.8	11.3	17.7			92.0		
18	2337	2321.0	707.4		7.7	15.0	10.4				93.0		
19	2947	2931.0	893.4		7.2		9.1		8.1		94.0		
20	3000	2984.0	909.5		7.2	14.0	9.0		8.0		94.0		
21	3227	3211.0	978.7	298	7.2 7.2 7.7	14.0	8.5	18.5	7.7		95.0		
22	3568		1082.6	296	7.2	14.0 14.9	7.8		7.2		96.0	*	
23	4000		1214.3	292	7.7	14.9	8.7	20.6	0.9		61.0		
24	4162		1263.7	291	7.7	15.0		21.3	-1.5		48.0		
25	4781	4765.0			9.3	18.0		24.1	-5.0		34.0		
26	5000	4984.0			9.5		9.6	24.4	-5.3		35.0		
27	5500	5484.0			10.5	20.4		25.4	-5.9		34.9		* *
28	6000		1823.9		11.5		8.5	26.3	-6.5		34.0		
29	6426		1953.8		12.3	24.0	8.1	27.3	-7.1		33.0		
30	7000	6984.0			13.5	26.3	7.9	28.8			32.0		
31		7484.0			14.5	28.2	7.3	29.8		769.2	33.2		**
32	8000		2433.5		15.5	30.1	6.7			755.2	32.0		
33	8170		2485.3				6.5			750.0	32.0		
34	9109		2771.5			35.0				724.7	32.0		
*	- INDI	CATES 1	THE CAL	CULAT	ED TOP	OF TH	E SURF	ACE MI	XING L	AYER			

^{** -} INDICATES THAT DATA IS LINEARLY INTERPOLATED FROM INPUT METEOROLOGY

1 * * * * * * * * * * * * * * * * * * *			
ROCKET EXHAUST EFFLUENT DO VERSION 7.08 A 0948 EDT 16 JU launch time: 2105 ES RAWINSONDE ASCENT NUMBER 0, 013	IFFUSION MODEL RE AT KSC JN 1998 ST 07 NOV 1997	CEDM	PAGE 4
*********	*****	*****	*****
METEOROLOGICAL RAV	VINSONDE DATA		
SURFACE AIR DENSITY (GM/M**3) DEFAULT CALCULATED MIXING LAYER HEIGHT CLOUD COVER IN TENTHS OF CELESTIAL DOME CLOUD CEILING (M) PLUME RISE	,		1211.43 1082.65 0.0 9999.0
EXHAUST RATE OF MATERIAL INTO GRN CLD- TOTAL GROUND CLD MATERIAL- HEAT OUTPUT PER GRAM- VEHICLE RISE HEIGHT DEFINING GROUND CLD- VEHICLE RISE TIME PARAMETERS-	(GRAMS) (CALORIES)	A= 0 B= 0	3E+07 .555.6 199.9
EXHAUST RATE OF MATERIAL INTO CONTRAIL- CONTRAIL HEAT OUTPUT PER GRAM-	(GRAMS/SEC) (CALORIES)	4.2173 1	3E+06 555.6

1************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 5 VERSION 7.08 AT KSC

0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- EXHAUST CLOUD -----

	OF LAYER	RISE TIME	RISE RANGE	CLOUD RISE BEARING (DEGREES)	CLOUD RANGE	CLOUD BEARING
1	13.0	1.8	4.0	100.8	0.0	0.0
2	26.0	2.8	11.5	102.1	0.0	0.0
3	39.0	3.8	18.0	103.4	0.0	0.0
4	51.9	4.8	25 5	104 9	0 0	0.0
5	64 9	5.7	34.3	106.6	0.0	0.0
6	79.9	6.9	45.3	108.3	0.0	0.0
7	79.9 94.8	8.2	57.6	109.6	0.0	0.0
8	146.1	5.7 6.9 8.2 13.2	87.9	106.6 108.3 109.6 111.6 113.2	0.0	0.0
9	197.4	19.1	140.3	113.2	0.0	0.0
10	248.6	26.1	201.3	114.4	0.0	0.0
11	299.9	34.0	270.2	115.3	0.0	0.0
12	382.5	48.5	372.2	116.3	2437.3	118.6
13	455.4	63.3	500.6	117.0	2361.4	118.8
14	528.2	79.8	633.3	117.5	2300.1	119.1
15	544.4	83.8	718.2	117.8	2326.9	119.3
				118.0		
17	707.4	129.3	981.8	118.4	2169.3	119.6
18	803 1	208 6	1300 6	119.1	1926.7	119.3
19	909.5	220.3	1732.0	119.1	2157.0	119.1
20	978.7	279.3 *	2199.0			
21	1082.6	279.3 *	2199.0	119.1	2199.0	119.1
22	1214.3	220.3 279.3 * 279.3 * 279.3 * 279.3 * 279.3 *	2199.0	119.1 119.1 119.1 119.1 119.1 119.1	2199.0	119.1
23	1263.7	279.3 *	2199.0	119.1	2199.0	119.1
24	1452.4	279.3 *	2199.0	119.1	2199.0	119.1
25	1519.1	279.3 *	2199.0	119.1	2199.0	119.1
26	16/1.5	2/9.3 *	2199.0	119.1	2199.0	119.1
27	1823.9	279.3 *	2199.0	119.1	2199.0	119.1
28		279.3 *	2177.0	447.4	2100.0	117.1
29		279.3 *			2199.0	
	2281.1				2199.0	
31	2433.5	279.3 *	2199.0	119.1		
32		279.3 *		119.1		
33	2771.5	279.3 *	2199.0	119.1	2199.0	119.1

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1*************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 6

VERSION 7.08 AT KSC 0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR **********

---- EXHAUST CLOUD -----

CHEMICAL SPECIES = HCL

LAYER	TOP OF LAYER (METERS)	LAYER SOURCE STRENGTH (GRAMS)	UPDRAFT VELOCITY	RADIUS	ALONGWIND	N MATERIAL DIST CROSSWIND (METERS)	•
1	13.0	0.00000E+00	11.5	0.0	0.0	0.0	
2	26.0	0.00000E+00 0.00000E+00	13.4	0.0	0.0	0.0	
3	39.0	0.00000E+00	13.6	0.0	0.0	0.0	
4	51.9	0.00000E+00	13.3	0.0	0.0	0.0	
	64.9				0.0		
5 6	79.9	0.00000E+00	12.1	0.0	0.0	0.0	
7	94.8		11.4	0.0	0.0	0.0	
8	146.1	0.00000E+00	9.4	0.0	0.0	0.0	
9	197.4	0.00000E+00 0.00000E+00 0.00000E+00 5.32352E+04 3.40015E+05 6.18797E+05	7.9	0.0	0.0	0.0	
10	248.6	0.0000E+00	6.9	0.0	0.0	0.0	
11	299.9	0.00000E+00	6.1	0.0	0.0	0.0	
12	382.5	5.32352E+04	5.3	20.3	9.4	9.4	
13	455.4	3.40015E+05	4.7	331.5	154.5	154.5	
14	528.2	6.18797E+05	4.2	446.7	208.2	208.2	
15	544.4	1.70843E+05	4.1	497.8	231.9	231.9	
Τρ	604./	7.33920E+05	3./	534.1	248.9	248.9	
		1.54277E+06					
		3.39962E+06					
		3.14576E+05					
20	978.7 *	1.59094E+06	0.0	677.3	315.6		
	1082.6 *	2.73687E+06	0.0	670.8	312.6	312.6	
22	1214.3 *	3.17219E+06	0.0	638.6	297.6	297.6	
23	1263.7 *	1.06109E+06	0.0	593.2	276.4	276.4	
24	1452.4 *	3.12286E+06 6.61100E+05 8.94115E+05 8.17373E+05	0.0	497.0	231.6 143.7 102.8	231.6	
25	1519.1 *	6.61100E+05	0.0	308.4	143.7	143.7	
26	1671.5 *	8.94115E+05	0.0	220.6	102.8	102.8	
27	1823.9 *	8.17373E+05	0.0	199.9	93.2	93.2	
28	1953.8 *	6.67215E+05	0.0	199.9	93.2		
29		8.61534E+05			93.2		
		7.19226E+05			93.2		
		6.93253E+05			93.2		
32	2485.3 *	2.30241E+05	0.0	199.9	93.2		
33	2771.5 *	1.22659E+06	0.0	199.9	93.2	93.2	

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 7

VERSION 7.08 AT KSC 0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- CLOUD STABILIZATION ----

CALCULATION HEIGHT	(METERS)	0.00
STABILIZATION HEIGHT	(METERS)	946.82
STABILIZATION TIME	(SECS)	279.27
FIRST MIXING LAYER HEIGHT-	(METERS)	TOP = 1082.65
		BASE= 0.00
SECOND SELECTED LAYER HEIGHT- '	(METERS)	TOP = 2771.55
		BASE= 1082.65
SIGMAR(AZ) AT THE SURFACE	(DEGREES)	5.4936
SIGMER(EL) AT THE SURFACE	(DEGREES)	3.6919

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	4.95	1.23	281.40	2.80	4.7661	3.6919
2	5.97	1.23	284.20	2.80	3.8775	3.6919
3	7.20	1.23	287.00	2.80	3.7041	3.6919
4	8.44	1.23	289.80	2.80	3.6919	3.6919
5	9.67	1.23	292.60	2.80	3.6919	3.6919
6	10.16	0.26	294.25	0.50	3.6919	3.6919
7	9.90	0.26	294.75	0.50	3.6919	3.6919
8	9.70	-0.15	295.50	1.00	3.5937	3.5937
9	9.54	-0.15	296.50	1.00	3.4252	3.4252
10	9.39	-0.15	297.50	1.00	3.2847	3.2847
11.	9.23	-0.15	298.50	1.00	3.1228	3.1228
12	8.95	-0.41	299.00	0.00	2.9246	2.9246
13	8.62	-0.26	299.25	0.50	2.7184	2.7184
14	8.36	-0.26	299.75	0.50	2.5577	2.5577
15	8.23	0.00	300.00	0.00	2.4443	2.4443
16	8.18	-0.10	300.00	0.00	2.2802	2.2802
17	7.92	-0.41	300.50	1.00	1.9709	1.9709
18	7.46	-0.51	300.00	-2.00	1.6348	1.6348
19	7.20	0.00	299.00	0.00	1.4379	1.4379
20	7.20	0.00	298.50	-1.00	1.2609	1.2609
21	7.20	0.00	297.00	-2.00	1.0712	1.0712
22	7.43	0.46	294.00	-4.00	1.0000	1.0000
23	7.69	0.05	291.50	-1.00	1.0000	1.0000
24	8.49	1.54	288.50	-5.00	1.0000	1.0000
25	9.36	0.21	285.50	-1.00	1.0000	1.0000
26	9.98	1.03	283.00	-4.00	1.0000	1.0000
27	11.01	1.03	279.00	-4.00	1.0000	1.0000
28	11.94	0.82	275.50	-3.00	1.0000	1.0000
29	12.94	1.18	272.00	-4.00	1.0000	1.0000
30	14.02	0.98	269.25	-1.50	1.0000	1.0000

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 8

VERSION 7.08 AT KSC 0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- CALCULATED METEOROLOGICAL LAYER PARAMETERS ----

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
31	15.00	0.98	267.75	-1.50	1.0000	1.0000
32	15.72	0.46	267.00	0.00	1.0000	1.0000
33	16.98	2.06	267.00	0.00	1.0000	1.0000

ALTITUDE RANGE USED IN COMPUTING TRANSITION LAYER AVERAGES 0.0 TO 1671.5 METERS.

TRANSITION LAYER NUMBER- 1

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	1082.65	291.90 289.86	7.20 8.19 4.12	0.99	296.00 298.07 280.00	2.69	1.0000 2.3866 5.4936	1.0000 2.3723 3.6919

TRANSITION LAYER NUMBER- 2

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	2771.55 1082.65	305.74	18.01 8.65 7.20	1.12	267.00 287.77 296.00	4.79	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.08 AT KSC 0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS

DOWNWIND FROM A TITAN IV NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1082.6 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
5000.0771 6000.0771 7000.0396 8000.0835 9000.0605 10000.0439 11000.0313 12000.1328 13000.1230 14000.1143 15000.1064 16000.0996 17000.0938 18000.0879 19000.0840 20000.0801 21000.0762 22000.0723 23000.0684 24000.0664 25000.0664 25000.0665 27000.0586 28000.0566 29000.0527 31000.0508 32000.0488 33000.0469 34000.0469	118.3876 118.3600 118.2621 118.3311 118.2800 118.2392 118.2058 118.3387 118.3180 118.3002 118.2848 118.2713 118.2594 118.2488 118.2713 118.2594 118.2488 118.2308 118.2308 118.2308 118.231 118.2161 118.2097 118.2038 118.1985 118.1985 118.1985 118.1935 118.1985 118.1935 118.1935 118.1846 118.1769 118.1769 118.1734 118.1701 118.1671 118.1642 118.1615	0.0612 0.3364 0.7278 1.1417 1.5164 1.8227 2.0596 2.2353 2.3584 2.4352 2.4716 2.4733 2.4460 2.3952 2.3264 2.2444 2.1536 2.0578 1.9597 1.8619 1.7660 1.6733 1.5846 1.5005 1.4212 1.3467 1.2770 1.2118 1.1509 1.0942 1.0412	5.7198 7.7304 9.7345 11.7138 13.6748 15.6357 17.5966 19.5574 21.5183 23.4791 25.4399 27.4006 29.3614 31.3222 33.2829 35.2436 37.2044 39.1651 41.1259 43.0866 45.0473 47.0081 48.9688 50.9295 52.8902 54.8510 56.8117 58.7724 60.7331 62.6938 64.6546	11.0884 13.7964 15.8472 17.9017 19.9596 22.0207 24.0849 26.1521 28.2219 30.2944 32.3692 34.4462 36.5253 38.6063 40.6890 42.7734 44.8593 46.9465 49.0351 51.1248 53.2156 55.3074 57.4001 59.4937 61.5881 63.6832 65.7791 67.8755 69.9726 72.0702 74.1683
36000.0430 37000.0430 38000.0430 39000.0391	118.1589 118.1565 118.1542 118.1520	0.9918 0.9457 0.9025 0.8621	66.6153 68.5760 70.5367 72.4974	76.2669 78.3660 80.4654 82.5653

1**********************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 10 VERSION 7.08 AT KSC

0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- MAXIMUM CENTERLINE CALCULATIONS -----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1082.6 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
40000.0391	118.1499	0.8243	74.4581	84.6655
41000.0391	118.1479	0.7888	76.4189	86.7661
42000.0391	118.1461	0.7555	78.3796	88.8670
43000.0352	118.1443	0.7242	80.3403	90.9682
44000.0352	118.1426	0.6947	82.3010	93.0697
45000.0352	118.1409	0.6670	84.2617	95.1714
46000.0352	118.1394	0.6408	86.2224	97.2734
47000.0352	118.1379	0.6162	88.1831	99.3757
48000.0313	118.1364	0.5929	90.1438	101.4782
49000.0313	118.1350	0.5709	92.1046	103.5808
50000.0313	118.1337	0.5500	94.0653	105.6837
51000.0313	118.1325	0.5302	96.0260	107.7868
52000.0313	118.1312	0.5115	97.9867	109.8901
53000.0313	118.1301	0.4937	99.9474	111.9935
54000.0313	118.1289	0.4769	101.9081	114.0971
55000.0273	118.1278	0.4608	103.8688	116.2009
56000.0273	118.1268	0.4456	105.8295	118.3048
57000.0273	118.1258	0.4310	107.7902	120.4088
58000.0273	118.1248	0.4172 ·	109.7509	122.5130
59000.0273	118.1239	0.4040	111.7117	124.6173
60000.0273	118.1229	0.3914	113.6724	126.7217

					RANG	E	BEARING
2.473	IS TH	MAXIMUM	PEAK	CONCENTRATION	16000	.1	118.3

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 11

VERSION 7.08 AT KSC 0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS

DOWNWIND FROM A TITAN IV NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1082.6 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
6000.0771	118.3600	0.0030	7.7304	13.7964
7000.0396	118.2621	0.0096	9.7345	15.8472
8000.0835	118.3311	0.0190	11.7138	17.9017
9000.0605	118.2800	0.0294	13.6748	19.9596
10000.0439	118.2392	0.0393	15.6357	22.0207
11000.1445	118.3632	0.0483	17.5966	24.0849
12000.1328	118.3387	0.0561	19.5574	26.1521
13000.1230	118.3180	0.0627	21.5183	28.2219
14000.1143	118.3002	0.0681	23.4791	30.2944
15000.1064	118.2848	0.0723	25.4399	32.3692
16000.0996	118.2713	0.0754	27.4006	34.4462
17000.0938	118.2594	0.0775	29.3614	36.5253
18000.0879	118.2488	0.0786	31.3222	38.6063
19000.0840	118.2393	0.0790	33.2829	40.6890
20000.0801	118.2308	0.0788	35.2436	42.7734
21000.0762	118.2231	0.0780	37.2044	44.8593
22000.0723	118.2161	0.0769	39.1651	46.9465
23000.0684	118.2097	0.0755	41.1259	49.0351
24000.0664	118.2038	0.0739	43.0866	51.1248
25000.0645	118.1985	0.0721	45.0473	53.2156
26000.0605	118.1935	0.0703	47.0081	55.3074
27000.0586	118.1889	0.0685	48.9688	57.4001
28000.0566 29000.0547	118.1846	0.0666	50.9295	59.4937
30000.0547	118.1806 118.1769	0.0648	52.8902	61.5881
		0.0631	54.8510	63.6832
31000.0508	118.1734	0.0614	56.8117	65.7791
32000.0488	118.1701	0.0598	58.7724	67.8755
33000.0469 34000.0469	118.1671 118.1642	0.0582	60.7331	69.9726
35000.0469		0.0567	62.6938	72.0702
36000.0489	118.1615 118.1589	0.0553 0.0539	64.6546	74.1683
37000.0430	118.1565		66.6153	76.2669
38000.0430	118.1542	0.0526 0.0514	68.5760 70.5367	78.3660
39000.0430	118.1542	0.0514	70.5367	80.4654 82.5653
35000.0351	110.1340	0.0302	14.4714	02.5053

1***********************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 12 VERSION 7.08 AT KSC

0948 EDT 16 JUN 1998

launch time: 2105 EST 07 NOV 1997

RAWINSONDE ASCENT NUMBER 0, 0132 Z 8 NOV 97 T -0.6 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS
DOWNWIND FROM A TITAN IV NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1082.6 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
40000.0391 41000.0391	118.1499 118.1479	0.0491 0.0480	74.4581 76.4189	84.6655 86.7661
42000.0391	118.1461	0.0470	78.3796	88.8670
43000.0352	118.1443	0.0460	80.3403	90.9682
44000.0352	118.1426	0.0450	82.3010	93.0697
45000.0352	118.1409	0.0441	84.2617	95.1714
46000.0352	118.1394	0.0433	86.2224	97.2734
47000.0352	118.1379	0.0424	88.1831	99.3757
48000.0313	118.1364	0.0416	90.1438	101.4782
49000.0313	118.1350	0.0408	92.1046	103.5808
50000.0313	118.1337	0.0401	94.0653	105.6837
51000.0313	118.1325	0.0393	96.0260	107.7868
52000.0313	118.1312	0.0386	97.9867	109.8901
53000.0313	118.1301	0.0380	99.9474	111.9935
54000.0313	118.1289	0.0373	101.9081	114.0971
55000.0273	118.1278	0.0367	103.8688	116.2009
56000.0273	118.1268	0.0361	105.8295	118.3048
57000.0273	118.1258	0.0355	107.7902	120.4088
58000.0273	118.1248	0.0349	109.7509	122.5130
59000.0273	118.1239	0.0344	111.7117	124.6173
60000.0273	118.1229	0.0338	113.6724	126.7217

	RANGE	BEARING
0.079 IS THE MAXIMUM 60.0 MIN. MEAN CONCENTRATION	19000.1	118.2

*** REEDM HAS TERMINATED

Appendix B—Meteorological Data for Launch of Titan IVA-17

This appendix contains three types of meteorological data recorded before and after the Titan IVA-17 launch at Cape Canaveral Air Station. The launch occurred at 2105 EST on 7 November 1997 (0205Z on 8 November 1997).

Rawinsonde Data

This vertical meteorological data file was provided by a rawinsonde balloon released from CCAS at 0132Z (T-33 minutes).

915-MHz Radar Profiler Data

These vertical meteorological data files were provided by five 915-MHz radar profilers located on and near CCAS. The data are 10-min averages of windspeed and direction that begin at 0150Z and end at 0215Z.

Meteorological Tower Data

These data files were provided by a series of meteorological towers located on and adjacent to CCAS. The data are averaged over 5 min. The first entry is at 0205Z and the last entry is at 0215Z. Data are taken at the elevation (Z) above tower base, and includes wind direction (DIR), windspeed (SPD) in knots, temperature (T) in "F, and dewpoint (TD) in "F.

Rawinsonde File

RS013120132 TEST NBR A0597 WS7 RAWINSONDE MSS/MSS CAPE CANAVERAL AFS, FLORIDA 0132Z 08 NOV 97

1500

ALT DIR SPD SHR TEMP DPT PRESS RH ABHUM DENSITY I/R V/S VPS GEOMFT DEG KTS /SEC DEG C DEG C MBS N KTS MBS PCT G/M3 G/M3 16 280 8.0 .000 16.2 11.2 1011.20 72 9.95 1211.43 330 665 13.28 14.0 10.5 976.13 79 9.58 1178.42 321 662 12.69 1000 299 17.8 .018 11.3 10.1 941.46 92 9.41 1147.40 314 659 12.35 6 9.0 8.0 907.71 94 8.27 1115.79 300 656 10.77 8 8.7 .9 874.96 61 5.20 1078.45 273 655 6.76 11 2000 300 15.8 .003
 11.3
 10.1
 941.46
 92
 9.41
 1147.40
 314
 659

 9.0
 8.0
 907.71
 94
 8.27
 1115.79
 300
 656

 8.7
 .9
 874.96
 61
 5.20
 1078.45
 273
 655

 9.6
 -5.3
 843.44
 35
 3.16
 1037.46
 251
 656

 8.5
 -6.5
 813.01
 34
 2.89
 1003.90
 242
 655

 7.9
 -7.6
 783.58
 32
 2.65
 969.69
 233
 654

 6.7
 -8.8
 755.15
 32
 2.44
 938.53
 224
 653

 5.3
 -10.2
 727.63
 32
 2.19
 909.09
 216
 651
 3000 299 14.0 .003 4000 292 14.9 .003 5000 285 18.4 .007 4.12 12 6000 277 22.4 .008 3.75 13 3.44 13 3.15 14 2.82 15 7000 270 26.3 .008 8000 267 30.1 .007 9000 267 34.0 .007 4.1 -11.4 700.97 31 2.00 879.74 209 649 10000 265 39.1 .009 2.56 16 4.6 -11.5 675.24 30 1.97 845.77 201 650 11000 262 43.8 .009 2.53 16 2.1 -12.8 650.40 32 1.80 821.98 195 647 12000 259 45.3 .004 2.28 17 -.2 -14.8 626.26 32 1.54 798.31 188 644 1.94 17 13000 259 45.2 .001 45.2 .001 -2.8 -16.9 602.82 33 1.31 775.87 181 641 14000 259 1.63 18 1.34 18 46.2 .002 -5.5 -19.2 580.02 33 1.08 754.29 175 638 15000 260 48.1 .003 -8.1 -21.1 557.89 34 16000 261 .92 732.68 169 635 1.13 18 49.9 .003 -10.5 -22.8 536.39 36 .80 711.05 164 632 17000 261 .80 /11.05 104 652 .67 690.59 158 629 .55 669.87 153 626 .47 650.33 148 622 .98 19 51.2 .003 -13.2 -25.0 515.52 36 18000 262 .80 19 52.3 .002 -15.7 -27.2 495.27 36 19000 263 .66 19 20000 264 53.5 .003 -18.5 -29.0 475.62 39 .55 19 .40 630.99 143 619 .32 611.47 138 616 21000 264 54.9 .003 -21.2 -30.9 456.55 41 .46 19 22000 264 56.4 .003 -23.6 -33.4 438.05 40 .36 19 .26 592.68 134 613 .21 574.44 129 609 23000 264 58.0 .003 -26.3 -35.4 420.14 41 .29 19 24000 264 60.1 .004 -28.9 -37.7 402.77 42 .23 19 25000 265 63.3 .005 -31.0 -40.0 385.96 40 .16 555.12 125 607 .18 20 26000 266 67.9 .008 -31.4 -41.6 369.77 36 .14 532.88 120 606 .16 20 27000 267 74.2 .011 -32.8 -42.8 354.21 36 .12 513.32 115 604 .14 20 28000 268 81.7 .013 -33.3 -43.5 339.24 35 .11 492.68 111 604 .13 20 29000 270 87.3 .010 -34.4 -44.4 324.86 35 .10 473.93 106 602 .12 20 30000 272 90.7 .007 -35.3 -45.2 311.05 35 .10 455.58 102 601 .11 20 31000 999 999.0 .999 -36.5 -46.3 297.76 35 .09 438.20 98 600 .09 20 32000 999 999.0 .999 -38.9 -48.9 284.94 33 .06 423.71 95 597 .07 20 TERMINATION 32304 GEOPFT 9846 GEOPM 279.9 MBS TROPOPAUSE 0 FEET .00 MB .0 C .0 C

MANDATORY LEVELS

GEOPFT DIR KTS TEMP DPT PRESS RH 327 295 19 15.7 10.8 1000.0 73 16 1749 300 11.9 10.5 950.0 91 3227 298 7.7 14 8.5 900.0 95 4781 286 18 10.0 -5.0 850.0 34 8.1 -7.1 800.0 33 6.5 -9.1 750.0 32 6426 274 24 8170 267 31

```
10018 265
                 4.0 -11.4
                             700.0
                                   31
            39
 11992 259
            45
                 2.1 - 12.9
                             650.0
                                    32
                -3.1 -17.1
 14092 259
            45
                             600.0
                                    33
               -8.9 -21.7
 16327 261
            49
                             550.0
                                    34
            52 -15.1 -26.7
 18720 263
                             500.0
                                    36
 21298 264
            55 -22.1 -31.8
                             450.0
                                    41
 24100 264
            61 -29.3 -38.1
                             400.0
                                    42
 27203 267
            76 -33.2 -43.1
                             350.0
                                    36
30739 272
            92 -36.3 -46.0
                             300.0
                                   35
SIGNIFICANT LEVELS
                       DPT PRESS
GEOMFT DIR KTS
                TEMP
                                    IR
                                        RH
    16 280
             8
                16.2
                     11.2 1011.2 330
                                        72
   229 294
            20
                16.0
                      11.0 1003.5 328
                                        72
 1271 299
            17
                13.3
                      10.5
                             966.7 320
                                        83
 1802 300
            16
                11.8
                      10.5
                             948.3 317
                                        92
            15
                10.4
                      9.4
                             930.0 309
                                        93
  2337 301
                9.1
 2947 299
            14
                       8.1
                             909.5 301
                                        94
 3568 296
            14
                 7.8
                      7.2
                             889.0 294
                                        96
 4162 291
            15
                9.0 - 1.5
                             869.8 265
                                        48
                             850.5 253
 4772 287
            17 10.0 -5.0
                                        34
 9109 267
            35
               5.1 -10.3
                             724.7 216
                                        32
 11004 262
            44
               4.6 - 11.5
                             675.1 201
                                        30
            55 -21.5 -31.2
                             454.3 143
                                        41
 21121 264
                             416.9 133
                                        42
            58 -26.8 -35.9
 23185 264
                                        42
            61 -30.2 -38.9
                             394.3 127
 24503 264
           93 -36.4 -46.2
                             298.0 98
                                        35
 30979 272
                             288.3 96
                                       33
 31737 999 999 -38.3 -48.4
                                       33
 32401 999 999 -39.8 -49.7
                            279.9 94
TERMINATION
040 040
NNNN
```

915 Mhz Radar Files

DATE: 11/08/1997 SITE NAME: RWP0001 LATITUDE: 28.44 LONGITUDE: -80.58 ELEVATION: 10 ft AZIMUTH 1: 174 AZIMUTH 2: 84 NYQUIST: 19.6 kts

	BTIMEZ hhmmss	NM min	HGT ft	WS kts	WD deg	RV1 kts	NS1 #	SNR1 db	RV2 kts	NS2 #	SNR2 db	VV kts	NSV #	NMN #	SNRV db
020050	015024	10	383 /	999.9	0000	-5.5	4	3	-4.3	5	14	0.1	7	_	10
020050		10		999.9		-4.9	4	7	-3.9	5	19	-0.1	7 7	5 5	12 13
020050		10		999.9		-6.4	4	5	-3.4	6	35	0.3	7	5 5	14
020050		10	1330.5			-6.0	3	5	-2.6	5	38	-1.0	7	5 5	
020050		10	1646.3		9999	-5.0	3	3	-2.5	6	22	-0.2	7	5 5	18 30
020050		10	1962.0	14.6	316	-4.8	8	6	-3.7	6	16	-0.2	7	5 5	
020050		10	2277.7		9999	-4.8	5	4	-3.7	4	30	-0.2	7	5 5	26
020050		10	2593.4		9999	-5.6	4	0	2.5	2	3 U 7	0.0	5	5 5	16 -6
020050		10	2909.1			-7.8	3	- 5	9.2	3	7	0.0	5 7	5 5	-6 -7
020050		10	3224.9			-2.3	6	-9	10.2	3	10	0.0	8	5 5	- <i>i</i> -3
020050		10	3540.6	8.2	289	-1.2	8	0	-2.8	6	<u>-</u> 7	0.0	8	5 5	-3 0
020050		10	3856.3	9.3	281	-1.0	8	-4	-3.4	6	- 7 - 5	0.0	8	5	-5
020050		10	4172.0		9999	-2.0	8	-7	-3.4	4	-9	14.7	3	5	-17
020050		10	4487.7		9999	-3.1	8	-12	-4.7	3	-17	-0.8	3	5	-17
020050		10	4803.5	20.0	274	-1.2	5	-17	-7.6	5	-19	1.1	4	5	-12
020050		10	5119.2	12.8	291	-2.2	5	-18	-4.4	5		-16.6	2	5	-18
020050		10	5434.9			2.8	4	-17	10.4	4	-18	-3.5	3	5	-4
020050		10	5750.6			4.1	4	-17	12.4	3		-17.7	3	5	-19
020050		10	6066.3			2.8	3	-20	16.7	4	-20	5.0	2	5	-19
020050		10	6382.1		9999	3.4	3	-16	-6.1	2		-11.8	4	5	-17
020050		10	6697.8			6.8	4		-10.7	2	-14	18.6	4	5	-20
020050		10	7013.5			-0.4	3	7	10.0	2	-18	10.2	3	5	-18
020050		10	7329.2		9999	11.9	3	-19	14.3	3	-18	-4.9	3	5	-19
020050	015024	10	7644.9	999.9	9999	-2.6	2	-18	4.2	2		-11.9	2	5	-19
020050	015024	10	7960.7	999.9	9999	-2.0	4	-20	4.1	3	-15	13.8	3	5	-19
020050	015024	10	8276.4	999.9	9999	3.3	2	-12	-17.3	2		-17.0	4	5	-15
020050	015024	10	8592.1	999.9	9999	-4.9	3	-20	6.4	3	-18	5.0	3	5	-17
020050	015024	10	8907.8	999.9	9999	11.2	3	-14	14.1	3	-19	6.2	3	5	-19
020050	015024	10	9223.5	999.9	9999	16.6	3	-18	16.0	2	-18	-13.7	3	5	-17
020050	015024	10	9539.3	999.9	9999	-7.2	2	-18	11.8	2	-17	6.7	3	5	-16
020050	015024	10	9855.0	999.9	9999	-17.5	3	-19	-1.3	2	-20	-6.4	3	5	-16
020050	015024	10	10170.7	999.9	9999	-16.3	4	-16	10.0	3	-15	11.5	3	5	-17
021534	020528	9	383.4	999.9	9999	-7.1	2	6	-3.3	3	32	0.1	7	5	30
021534	020528	9	699.1	999.9	9999	-12.4	3	16	-4.0	4	35	0.1	7	5	32
021534	020528	9	1014.8	999.9	9999	-17.0	3	22	4.3	3	30	0.2	7	5	25
021534	020528	9	1330.5	999.9	9999	-14.0	4	23	-4.3	3	29	0.0	7	5	34
021534	020528	9	1646.3	999.9	9999	0.0	2	13	-5.7	3	29	0.0	6	5	26
021534	020528	9	1962.0	999.9	9999	-4.7	4	7	8.9	2	19	-0.4	6	5	22
021534	020528	9	2277.7	999.9	9999	-5.3	3	6	7.5	2	13	-0.9	5	5	14
021534		9	2593.4			-6.3	3	23	-0.7	2	14	0.6	6	5	-1
021534		9	2909.1			-4.7	2	-5	-1.5	3	5	0.2	8	5	-12
021534		9	3224.9		9999	-0.9	4	-11	-1.3	3	-11	0.0	8	5	3
021534		9	3540.6		277	-0.5	7	-1	-2.6	7	1	0.0	8	5	8
021534		9	3856.3		282	-1.0	7	2	-3.5	6	3	0.2	8	5	8
021534		9	4172.0			-2.6	7	0	-3.8	4	-1	0.3	8	5	-4
021534	020528	9	4487.7	999.9	9999	-3.0	6	-7	-4.5	4	-10	0.4	3	5	31

0.2 31 9 4803.5 17.9 283 -2.0 6 0 -6.3 5 -13 021534 020528 9 5119.2 17.7 297 -3.5 5 -7 -5.4 6 -11 0.3 6 5 14 021534 020528 2 5 021534 020528 9 5434.9 999.9 9999 -3.2 4 -15 -6.8 5 -13 -5.4 -20 5 3 -16 16.5 3 -12 -1.33 18 021534 020528 9 5750.6 999.9 9999 17.4 2 5 3 -12 12.7 3 -12 -12.2 -16 9 6066.3 999.9 9999 -11.3 021534 020528 3 -17 14.9 2 -19 -1.7 3 5 -7 9 6382.1 999.9 9999 17.8 021534 020528 2 -11 -6.6 3 -19 11.8 4 5 -6 9 6697.8 999.9 9999 -12.4 021534 020528 9 7013.5 999.9 9999 15.1 2 -18 18.3 2 -16 10.7 2 5 -14 021534 020528 -9.3 5 021534 020528 9 7329.2 999.9 9999 -10.0 2 -18 3 -17 11.1 3 -18 2 5 2 -20 -13.4 2 -20 -15.4 -19 021534 020528 9 7644.9 999.9 9999 -13.5 3 5 3 -19 -18.3 3 -17 15.7 -19 9 7960.7 999.9 9999 4.8 021534 020528 3 5 9 2 -18 8.2 4 -18 -18.3 -19 8276.4 999.9 9999 -11.8 021534 020528 9 2 -18 2 -15 12.6 3 5 -17 8592.1 999.9 9999 -9.2 4.7 021534 020528 9 -3.0 5 8907.8 999.9 9999 -17.3 2 -18 2 -18 13.4 3 -17 021534 020528 5 3 -15 2 -18 5.9 4 -18 021534 020528 9 9223.5 999.9 9999 11.4 10.8 2 -19 6.6 3 5 -16 9539.3 999.9 9999 -9.6 -2 10.3 3 9 021534 020528 3 5 -19 1.9 3 -19 -8.1 2 -18 2.1 9 9855.0 999.9 9999 021534 020528 2 -18 -11.7 2 5 -17 3 -18 -17.2 9 10170.7 999.9 9999 16.3 021534 020528

DATE: 11/08/1997 SITE NAME: RWP0002

LATITUDE: 28.60 LONGITUDE: -80.59 ELEVATION: 10 ft

AZIMUTH 1: 2 AZIMUTH 2: 272

NYQUIST: 19.6 kts

	BTIMEZ hhmmss	NM min	HGT ft	WS kts	WD deg	RV1 kts	NS1 #	SNR1 db	RV2 kts	NS2 #	SNR2 db	VV kts	NSV #	NMN #	SNR! db
020013	015017	9	383.4	999.9	9999	4.6	5	7	8.7	4	23	0.1	7	5	27
020013	015017	9	699.1	999.9	9999	4.8	4	8	6.0	3	21	-0.2	7	5	36
020013	015017	9	1014.8	999.9	9999	4.7	6	7	12.9	2	15	0.0	7	5	23
020013	015017	9	1330.5	999.9	9999	5.1	7	13	9.4	4	22	0.4	7	5	32
020013	015017	9	1646.3	999.9	9999	3.3	3	9	10.7	4	20	0.9	7	5	26
020013	015017	9	1962.0	999.9	9999	1.4	7	12	11.8	4	17	-0.8	6	5	32
020013	015017	9	2277.7	999.9	9999	0.8	6	1	1.0	4	0	-0.1	8	5	18
020013	015017	9	2593.4	3.1	338	0.7	7	-7	0.1	5	12	-0.3	8	5	0
020013	015017	9	2909.1	3.1	188	-1.0	6	-11	0.3	5	2	0.1	7	5	-7
020013	015017	9	3224.9	999.9	9999	0.0	5	-10	3.8	2	-14	-0.3	8	5	-12
020013	015017	9	3540.6	999.9	9999	-0.5	5	-13	3.0	4	-14	-0.1	8	5	-1
020013	015017	9	3856.3	5.4	283	0.3	7	-5	2.0	7	-7	0.0	8	5	1
020013	015017	9	4172.0	8.7	293	1.0	7	3	2.9	7	-2	-0.2	8	5	-5
020013	015017	9	4487.7	8.6	296	1.6	7	-1	3.3	7	-4	0.3	5	5	-13
020013	015017	9	4803.5	12.2	303	2.5	7	-12	4.1	7		-12.8	2	5	-12
020013	015017	9	5119.2	999.9	9999	2.7	4	-16	5.4	4	-17	-0.9	3	5	-15
020013	015017	9	5434.9	999.9	9999	2.9	5	-16	-4.5	3		-10.2	2	5	-20
020013	015017	9	5750.6	999.9	9999	11.5	2	-15	-17.4	2	-19	10.8	3	5	-17
020013	015017	9	6066.3		9999	17.7	3	-11	3.5	2	-19	-3.6	3	5	-20
020013	015017	9	6382.1		9999	-3.3	2	-18	-8.4	3	-16	7.6	3	5	-17
020013	015017	9	6697.8			19.3	2	-18	14.6	3	-15	-1.3	3	5	-17
020013	015017	9	7013.5		9999	2.2	2	-19	-2.6	2	-20	-5.5	2	5	-18
020013	015017	9	7329.2		9999	-9.9	4	-18	11.9	3		-10.0	3	5	-17
020013	015017	9	7644.9		9999	-14.3	3	-17	11.8	2	-15	7.7	3	5	-18
020013	015017	9	7960.7	999.9	9999	-14.6	2	-16	7.3	2	-16	-5.8	2	5	-15
020013	015017	9	8276.4		9999	6.7	3	-19	3.2	3	-17	13.5	2	5	-16
020013	015017	9	8592.1		9999	13.7	2		-10.2	3		-16.8	3	5	-20
020013	015017	9	8907.8		9999	16.2	3		-13.2	3	-18	10.2	3	5	-18
020013	015017	9	9223.5	999.9	9999	4.7	3	-18	-0.2	2	-20	-14.6	4	5	-20

020013	015017 015017 015017	9 9 9	9855.0	999.9	9999	-5.3 0.1 4.5	3 2 2	-18 -20 -17	7.4 -11.4 -4.4	3 3 2	-19 -19 -19	2.9 4.5 -8.2	3 3 3	5 5 5	-21 -19 -18
	020520	9		999.9		4.1	6	11	4.7	4	26	-0.2	7	5	8
	020520	9	699.1	999.9	9999	4.3	5	17	4.9	3	27	0.1	5	5	4
021524	020520	9	1014.8	999.9	9999	4.1	7	15	4.2	3	8	0.0	8	5	11
021524	020520	9	1330.5	999.9	9999	4.8	6	21	6.1	3	20	0.6	7	5	8
	020520	9	1646.3			5.2	5	21	10.2	3	18	0.1	6	5	7
021524	020520	9	1962.0			4.6	4	4	4.5	2	22	0.7	7	5	-1
	020520	9	2277.7	999.9	9999	2.4	5	-9	14.4	3	8	0.0	8	5	-6
021524	020520	9	2593.4	999.9	9999	1.1	7	-11	7.7	4	-7	0.0	8	5	-7
	020520	9	2909.1	999.9	9999	0.6	7	-10	6.3	4	-11	0.2	7	5	-13
	020520	9	3224.9			-0.3	4	-13	6.2	4	-18	-0.1	7	5	-15
	020520	9	3540.6		9999	1.4	6	-16	1.9	2	-20	0.0	8	5	-4
021524		9	3856.3	7.2	289	0.8	8	-2	2.6	7	-5	0.0	8	5	-1
021524	020520	9	4172.0	9.7	290	1.1	8	1	3.6	7	-4	0.0	8	5	-9
021524	020520	9	4487.7	11.5	295	1.8	8	-6	4.1	7	-11	4.1	3	5	-19
021524	020520	9	4803.5	999.9	9999	3.5	4	-19	4.3	2	-15	3.1	3	5	-18
021524	020520	9	5119.2	999.9	9999	-7.8	3	-17	5.4	4	-19	-15.1	3	5	-18
021524		9	5434.9	999.9	9999	-4.7	3	-18	7.8	3	-18	2.7	2	5	-18
021524		9	5750.6	999.9	9999	-14.7	3	-18	6.0	3	-7	8.6	3	5	-19
021524		9	6066.3		9999	10.9	3	-18	5.8	2	-5	-19.3	2	5	-18
021524		9	6382.1	999.9	9999	-7.5	2	-16	3.2	2	-18	-7.7	2	5	-17
021524		9	6697.8	999.9	9999	4.2	2	-18	-10.7	3	-19	-12.3	6	5	-18
021524		9	7013.5		9999	2.4	3	3	6.4	3	-19	-5.2	3	5	-18
021524		9	7329.2		9999	3.4	3	2	-15.8	2	-21	-2.2	2	5	-16
021524		9	7644.9		9999	-3.0	3	-18	-4.5	2	-17	11.7	3	5	-17
021524		9	7960.7	999.9	9999	-3.7	2	-20	8.1	4	-18	-2.9	3	5	-18
021524		9	8276.4		9999	-8.3	3	-18	17.3	2	-18	14.5	4	5	-18
021524	020520	9	8592.1	999.9	9999	-4.9	2	-19	2.0	3	-20	-10.2	2	5	-18
021524		9	8907.8		9999	-13.3	3	-19	14.2	3	-19	2.9	3	5	-16
021524		9	9223.5		9999	13.9	2	-18	15.4	3	-21	8.0	3	5	-17
021524		9	9539.3		9999	2.5	3	-19	9.2	2	-18	-3.8	3	5	-16
021524		9	9855.0		9999	-10.1	3	-17	-9.7	2	-18	6.9	3	5	-18
021524	020520	9	10170.7	999.9	9999	16.4	3	-19	18.2	2	-16	0.3	3	5	-19

DATE: 11/08/1997 SITE NAME: RWP0003 LATITUDE: 28.56 LONGITUDE: -80.66 ELEVATION: 10 ft AZIMUTH 1: 287 AZIMUTH 2: 17 NYQUIST: 19.6 kts

	BTIMEZ hhmmss	NM min	HGT ft	WS kts	WD deg	RV1 kts	NS1 #	SNR1 db	RV2 kts	NS2 #	SNR2 db	VV kts	NSV #	NMN #	SNRV db
020153	015014	10	383.4	999.9	9999	3.5	4	28	2.2	5	20	0.2	5	5	26
020153	015014	10	699.1	999.9	9999	3.3	4	34	1.8	5	28	0.3	7	5	27
020153	015014	10	1014.8	999.9	9999	3.6	4	28	2.3	5	21	1.0	5	5	27
020153	015014	10	1330.5	999.9	9999	5.2	4	31	1.9	5	36	0.5	6	5	28
020153	015014	10	1646.3	999.9	9999	6.8	4	38	1.4	5	34	0.0	5	5	24
020153	015014	10	1962.0	999.9	9999	6.9	4	32	1.4	5	24	0.0	4	5	16
020153	015014	10	2277.7	999.9	9999	8.0	5	22	1.1	4	15	0.3	7	5	6
020153	015014	10	2593.4	19.4	291	7.5	6	10	0.5	5	6	0.0	8	5	1
020153	015014	10	2909.1	17.5	284	6.7	8	7	-0.3	5	0	0.0	5	5	-4
020153	015014	10	3224.9	19.2	278	6.9	7	-4	-1.5	5	-6	-0.4	6	5	-7
020153	015014	10	3540.6	8.0	283	2.9	8	1	-0.3	6	-1	-0.2	8	5	8

020153	015014	10	3856.3	8.6	278	3.5	8	9	-0.2	7	9	0.2	7	5	5
020153	015014	10	4172.0	11.1	296	4.4	8	5	0.8	7	6	0.1	7	5	~5
	015014	10	4487.7	12.8	301	4.9	8	-4	1.2	7	-3	0.0	7	5	-13
	015014	10	4803.5	14.4	303	5.5	7	-11	1.7	7	-8	0.2	7	5	-14
	015014	10	5119.2	21.0	295	7.9	8	-13	0.9	5	16	-0.1	5	5	-12
	015014	10	5434.9			8.1	7	-13	-0.6	4	19	7.8	4	5	-20
	015014	10	5750.6			9.5	5	-16	-0.8	4	8	18.1	2	5	-18
	015014	10	6066.3			7.8	5	-15	13.3	3	-18	4.9	3	5	-17
	015014	10	6382.1			-6.1	3	-18	-0.5	2	-7	0.9	4	5	-17
	015014	10	6697.8			-8.8	2	-19		2	-19	11.7	2	5	-18
	015014	10	7013.5			8.4	3	-18	-2.8	3	-19	12.2	3	5	-17
	015014	10	7329.2			-3.0	3	-18	-7.2	3	-17	8.6	2	5	-18
	015014	10	7644.9			14.3	2	-20	8.9	3	-18	17.8	2	5	-18
	015014	10	7960.7			6.0	2	-17		2	-20	4.4	2	5	-17
	015014	10	8276.4			16.1	2	-16	8.4	2	-16	14.6	2	5 5	-16
	015014	10	8592.1			12.4	4	-17	-7.7	2	-17	-4.7	2	5 5	-21 -17
	015014	10	8907.8			-15.6	4	-17	-2.8	3	-20	8.1	2	5 5	
	015014	10	9223.5			-2.9	3	-19	12.3	2	-19	4.2	3	5 5	-19
	015014	10	9539.3			-6.5	2	-18	-2.2	2	-19	-4.0	3		-18
	015014	10	9855.0			-2.0	2	-19	9.1	2	-19	6.5	2	5	-17
020153	015014	10	10170.7	999.9	9999	-12.5	3	-1/	-15.5	2	-20	-17.0	3	5	-17
021519	020144	13	383.4	999.9	9999	7.5	5	27	2.0	5	9	-0.1	9	7	33
	020144	13		999.9		3.3	5	31	3.1	3	40	-0.1	10	7	36
	020144	13	1014.8			4.8	6	19	2.8	6	35	0.0	9	7	34
021519		13	1330.5			4.0	6	23	2.6	4	16	-0.3	8	7	44
021519		13	1646.3			6.4	8	16	3.3	6	30	0.0	9	7	33
021519		13	1962.0			8.4	7	19	4.7	4	33	0.0	9	7	27
021519		13	2277.7	999.9	9999	7.3	6	7	3.1	6	22	-0.1	10	7	12
021519	020144	13	2593.4	999.9	9999	8.0	8	5	1.3	6	10	0.0	9	7	10
021519	020144	13	2909.1	999.9	9999	7.9	9	-2	-1.8	6	4	-0.2	9	7	-2
021519	020144	13	3224.9	17.5	274	6.3	9	~5	-1.8	8	0	-0.3	9	7	-6
021519	020144	13	3540.6	10.5	275	3.7	10	-4	-1.1	9	-4	-0.3	11	7	5
021519	020144	13	3856.3	10.1	287	3.6	10	5	-0.3	9	4	-0.3	11	7	2
021519	020144	13	4172.0	12.1	297	4.3	10	2	0.5	10	2	-0.2	11	7	-7
021519		13	4487.7	11.7	296	4.6	10	-6	0.8	10	-6	0.0	7	7	4
021519		13	4803.5			5.7	9	-11	-6.9	4	-19	-0.3	6	7	17
021519		13	5119.2		9999	6.7	4	-14	-0.3	5	9	-0.7	10	7	5
021519		13	5434.9	19.4	273	7.3	8	-11	-1.8	8	25	2.7	5	7	-3
	020144	13	5750.6			10.0	6	-13	-2.2	6		-12.2	3	7	-15
021519		13	6066.3			8.4	6	-10	-2.6	5	8	14.8	4	7	-12
	020144	13						-19	-3.5						
	020144	13	6697.8			10.0	4	-18	-2.8	3		-11.3	4	7	-17
	020144	13	7013.5			7.9	4	-16	10.7	3		-11.6	4	7	-18
	020144	13	7329.2			4.6	4	-18	9.6	3	-16	4.9	4 5	7 7	-18 -4
	020144	13	7644.9				3 3	-16	-3.7 11.6	3 3	-12 -8	6.1 9.7		7	-18
	020144	13	7960.7			3.8		-18	-14.9				3		-17
	020144	13 13	8276.4 8592.1			3.8 3.0	2	-17 -17	12.6	4 3	-18 -9	-6.7 -11.2	4 4	7 7	-17 -16
	020144 020144	13	8592.1			-8.2	3	-20	17.7	5		-11.2	3	7	-17
	020144	13	9223.5				3	-14	-7.4	3	-20	6.7	3	7	-17
	020144	13	9539.3				4	-17	2.4	4	-20		3	7	-17
	020144	13	9855.0				3	-18	7.7	4	-18		4	7	-18
	020144		10170.7				3		-13.2	4		-13.4	2	7	-17
							-								

DATE: 11/08/1997 SITE NAME: RWP0004
LATITUDE: 28.69 LONGITUDE: -80.72 ELEVATION: 10 ft
AZIMUTH 1: 130 AZIMUTH 2: 220
NYQUIST: 19.6 kts

	BTIMEZ hhmmss	NM min		WS kts	WD deg	RV1 kts	NS1 #	SNR1 db	RV2 kts	NS2 #	SNR2 db	VV kts	NSV #	NMN #	SNRV db
020021	015029	9	383.4	999.9	9999	-7.0	7	13	-4.0	4	22	-0.2	8	5	31
020021	015029	9	699.1	17.7	338	-6.4	6	15	-3.5	6	27	-0.3	8	5	26
020021	015029	9	1014.8	18.1	331	-7.1	7	15	-3.0	5	23	-0.6	7	5	40
020021	015029	9	1330.5	24.5	330	-9.2	5	18	-3.6	5	32	-0.3	8	5	33
020021	015029	9	1646.3	999.9	9999	-7.6	4	17	-1.1	5	20	0.3	8	5	28
020021	015029	9	1962.0	999.9	9999	-12.9	3	31	-2.0	5	13	-0.2	8	5	21
020021	015029	9	2277.7	999.9	9999	-13.4	3	25	-1.1	5	7	-0.5	8	5	14
	015029	9	2593.4	999.9	9999	-7.2	3	-4	0.0	4	-1	-0.3	8	5	5
	015029	9	2909.1			-6.0	3	-7	2.2	5	-5	0.0	8	5	1
	015029	9	3224.9		9999	-5.2	5	-8	-0.7	4	-4	-0.3	8	5	2
	015029	9	3540.6	10.9	285	-3.6	7	-9	1.9	6	-10	0.2	8	5	1
	015029	9	3856.3	9.3	284	-2.9	7	1	1.8	7	-1	0.3	8	5	1
020021		9	4172.0	11.5	289	-3.7	7	-1	2.0	7	-1	0.5	8	5	-6
020021		9	4487.7	11.5	291	-4.0	7	-7	1.5	7	-8	0.1	8	5	-7
020021 020021		9	4803.5	14.2	306	-4.9	7	-11	0.9	7	-9	0.6	8	5	-3
020021		9 9	5119.2 5434.9	17.3	298	-5.8	7 7	-6	2.1	7	-6	0.8	8	5	-5
020021		9	5750.6	17.9	288	-6.4 -7.3	6	-5 -11	2.7	7	-7 12	0.3	4	5	-12
020021		9	6066.3		9999	9.2	4	-11	15.7	4	-13 -17	-0.6 -16.3	4	5 5	-15
020021		9	6382.1		9999	7.4	3	-18	13.7	3 2	-15	-16.3	3 3	5 5	-20 1
020021		9	6697.8		9999	11.6	3	-17	-6.0	2	-18	6.4	3	5	-17
020021		9	7013.5		9999	12.9	2	-16	16.9	2	-15	-7.4	3	5	-18
020021		9	7329.2		9999	-8.2	2		-11.6	2	-	-12.1	3	5	-18
020021		9	7644.9		9999	3.8	2	-20	12.1	3	-18	3.6	3	5	-17
020021		9	7960.7		9999	-9.7	3	-17	-5.8	2	-17	-6.1	4	5	-20
020021	015029	9	8276.4	999.9	9999	13.4	4	-20	-16.5	3		-13.8	3	5	-20
020021		9	8592.1		9999	-6.5	3	-18	-5.8	3	-18	14.1	4	5	-19
020021		9	8907.8	999.9	9999	-5.9	3	-19	-7.5	2	-18	-7.5	3	5	-18
020021		9	9223.5			13.2	3		-17.3	3	-18	15.6	2	5	-17
020021		9	9539.3		9999	13.3	3	-17	-9.9	3	-19	4.7	3	5	-17
020021		9	9855.0				2	-19	5.6	2	-17	13.1	2	5	-18
020021	015029	9	10170.7	999.9	9999	16.5	3	-19	-5.3	4	-17	6.5	2	5	-18
021522		9		999.9		-8.3	5	23	-0.5	4	29	0.3	8	5	17
021522		9		999.9		-6.6	4	21	-0.9	5	27	0.2	8	5	27
021522		9	1014.8		9999	-7.5	5	25	-0.5	4 .	21	0.0	8	5	18
	020521	9	1330.5		9999	-9.2	4	26	-1.4	5	31	0.0	8	5	29
	020521	9	1646.3		9999	-11.1	4	36	-1.5	4	28	-0.7	7	5	41
021522		9	1962.0				4	32	1.0	5	11	-0.6	8	5	31
021522		9	2277.7			-0.3	3	2	0.5	5	7	-0.2	8	5	22
021522		9	2593.4			-7.1	5	4	0.2	4	5	0.0	8	5	11
021522 021522		9	2909.1 3224.9	18.1 17.7	300 292	-6.9 -6.6	7 8	-1 -3	1.1	6	-2	0.0	8	5	7
021522		9	3540.6	13.6	282	-6.6 -4.7	8	-5	2.0 2.4	7 7	-2 -4	-0.1 -0.1	8 8	5	1
021522		9	3856.3	9.5	276	-3.0	8	1	2.4	7	0	0.0	8	5 5	2 3
021522		9	4172.0	10.5	283	-3.6	8	2	1.9	7	1	0.0	8	5	-4
021522		9	4487.7	11.5	300	-4.0	8	-4	1.2	7	-4	0.4	8	5	1
021522		9	4803.5	14.2	307	-5.2	8	-8	0.5	7	-7	0.3	7	5	-6
021522		9	5119.2	16.9	304	-6.3	8	-9	0.8	7	-10	0.1	8	5	-10

021522 020521 5434.9 16.9 298 -6.4 6 0.0 -141.3 6 5 6 -145750.6 18.7 278 021522 020521 9 -6.9 5 -15 3.1 6 -13 -0.8 5 5 -15 021522 020521 6066.3 999.9 9999 -9.7 2 2.7 3 5 9 -15 5 -16 -2.0 0 021522 020521 6382.1 999.9 9999 -10.0 2 2 2 5 -20 9 2 2.8 4 -18.6 021522 020521 6697.8 999.9 9999 3 3 3 5 9 11.0 -6 3.1 -6 9.1 -18 5 -19 021522 020521 9 7013.5 999.9 9999 7.0 3 -18 1.8 3 22 5.9 3 021522 020521 9 7329.2 999.9 9999 12.3 3 -15 -18.1 2 -18 -12.93 5 -19 021522 020521 9 7644.9 999.9 9999 14.4 2 -183.7 3 23 2.1 2 5 -17 2 5 021522 020521 9 7960.7 999.9 9999 -14.2 3 -11 5.9 3 13 14.8 -16 5 021522 020521 9 8276.4 999.9 9999 9.6 3 -15 3.2 3 2 9.5 3 -18 021522 020521 -17 9 8592.1 999.9 9999 11.1 5 -18 - 15.53 -14 8.4 2 5 021522 020521 9 8907.8 999.9 9999 -14.9 4 -17 7.4 4 -18 -13.2 4 5 -18 021522 020521 9 9223.5 999.9 9999 -16.9 3 -16 7.0 2 -17 - 16.02 5 -19 021522 020521 9 9539.3 999.9 9999 5.7 3 -18 -14.4 3 -16 8.0 2 5 -17 021522 020521 9 9855.0 999.9 9999 5.5 2 -18 5.2 3 -19 -3.74 5 -16 021522 020521 9 10170.7 999.9 9999 -11.1 5 -16 9.5 3 -17 15.1 4 5 -18

DATE: 11/08/1997 SITE NAME: RWP0005

LATITUDE: 28.50 LONGITUDE: -80.79 ELEVATION: 10 ft

AZIMUTH 1: 43 AZIMUTH 2: 133

NYQUIST: 19.6 kts

	BTIMEZ	NM	HGT	WS	WD	RV1	NS1 #	SNR1		NS2	SNR2	VV		NMN #	SNRV
hhmmss	hhmmss	mın	ft	kts	deg	kts	Ŧ	db	kts	#	db	kts	#	#	db
020029	015019	9	383.4	12.4	295	-1.7	6	8	-4.9	5	-7	-0.3	8	5	7
020029	015019	9	699.1	999.9	9999	1.0	6	33	-6.8	3	16	0.1	8	5	26
020029	015019	9	1014.8	999.9	9999	1.0	5	24	-7.7	3	30	0.5	8	5	42
020029	015019	9	1330.5	999.9	9999	4.8	4	31	-10.6	4	27	-0.9	5	5	46
020029	015019	9	1646.3	999.9	9999	2.0	4	20	-11.4	4	32	0.0	5	5	41
020029	015019	9	1962.0	999.9	9999	-1.9	5	22	-2.7	4	13	-0.1	5	5	30
020029	015019	9	2277.7	17.1	310	-0.2	5	6	-6.6	5	-2	0.0	7	5	10
020029	015019	9	2593.4	999.9	9999	-0.8	4	-7	-7.3	7	1	0.0	6	5	-2
020029	015019	9	2909.1	999.9	9999	-1.8	3	-11	-7.1	7	5	0.0	4	5	-12
020029	015019	9	3224.9	999.9	9999	-1.4	7	-11	-6.8	4	-1	0.1	6	5	-9
020029	015019	9	3540.6	999.9	9999	-1.7	4	-9	-4.7	7	-9	0.3	8	5	-6
	015019	9	3856.3	11.1	303	-0.4	6	-6	-3.9	8	-8	0.3	8	5	4
020029	015019	9	4172.0	20.6	292	0.0	8	-4	-4.6	7	-7	3.1	6	5	29
020029	015019	9	4487.7	999.9	9999	-0.8	3	-8	-5.2	4	-14	-15.4	2	5	-15
020029	015019	9	4803.5		9999	-10.4	2	-20	3.4	3	-19	1.9	3	5	10
020029	015019	9	5119.2		9999	-3.7	2	-6	12.9	2	-18	2.0	2	5	-11
020029	015019	9	5434.9		9999	-2.4	4	-14	13.4	2	-17	8.6	3	5	-17
020029	015019	9	5750.6		9999	-2.0	4	-7	17.0	2		-11.5	2	5	-18
020029	015019	9		999.9	9999	5.7	3		-12.4	3	-16	-0.5	2	5	-20
		9	6382.1		9999	-12.9	3	-18	17.5	3	-17	7.6	3	5	-18
	015019	9	6697.8			17.8	3		-14.1	2	-9	-8.0	4	5	-18
	015019	9	7013.5			-16.2	3	-19	2.7	2		-10.1	3	5	-18
	015019	9	7329.2		9999	17.5	3	-17	11.0	2	-18	-1.4	2	5	-19
	015019	9	7644.9		9999	-2.5	2	-19	-7.6	3	-18	16.6	3	5	-16
	015019	9	7960.7			-13.6	3	-19	4.3	2		-11.7	3	5	-17
	015019	9	8276.4		9999	-4.1	4	-20	12.7	2	-16	-6.0	4	5	-17
	015019	9	8592.1		9999	10.7	4	-18	12.1	2	-20	-8.9	3	5	-19
	015019	9			9999	-6.5	4	-18	18.3	3	-17	5.9	4	5	-19
020029	015019	9	9223.5			-4.8	3	-18	10.3	4	-18	-0.2	2	5	-19
020029		9	9539.3			17.4	3	-19	10.6	3	-20	-2.8	4	5	-18
	015019	9	9855.0		9999	2.8	3	-19	13.6	3	-11	-9.9	3	5	-19
020029	015019	9	10170.7	999.9	9999	-4.8	2	2	14.5	2	-6	-11.3	3	5	-17

021510	020515	9	383.4	999.9	9999	-2.6	5	23	-9.0	3	24	0.0	4	5	29
021510	020515	9	699.1	999.9	9999	0.3	6	31	-10.0	3	30	0.2	7	5	27
021510	020515	9	1014.8	999.9	9999	2.1	4	22	-1.0	4	35	0.4	8	5	26
021510	020515	9	1330.5	999.9	9999	1.1	4	18	-1.1	4	32	0.1	7	5	31
021510	020515	9	1646.3	999.9	9999	0.1	4	39	-1.9	3	14	0.0	7	5	25
021510	020515	9	1962.0	999.9	9999	0.0	4	34	-8.8	4	24	1.0	8	5	23
021510	020515	9	2277.7	999.9	9999	1.1	5	18	-2.2	4	19	1.3	7	5	21
021510	020515	9	2593.4	10.7	306	0.1	6	-1	-3.4	5	3	0.7	7	5	6
021510	020515	9	2909.1	999.9	9999	-2.0	5	11	-6.2	4	-8	0.8	4	5	-11
021510	020515	9	3224.9	14.2	287	-2.1	7	-11	-4.7	7	-10	0.3	7	5	-8
021510	020515	9	3540.6	11.7	297	-0.9	8	-7	-4.0	8	-5	0.3	8	5	-3
021510	020515	9	3856.3	10.5	300	-0.5	8	-2	-3.6	8	-4	0.3	8	5	-5
021510	020515	9	4172.0	13.8	297	-0.3	8	-4	-4.0	8	-7	1.2	7	5	-17
021510	020515	9	4487.7	11.1	298	-1.0	5	-9	-4.1	5	-19	5.8	2	5	-19
021510	020515	9	4803.5	999.9	9999	-8.1	4	-17	-7.3	3	-14	3.9	3	5	-18
021510	020515	9	5119.2	999.9	9999	-2.9	3	-7	13.7	3	-16	-0.5	4	5	-15
021510	020515	9	5434.9	999.9	9999	-3.9	3	-17	17.4	3	-23	9.1	3	5	-17
021510	020515	9	5750.6	999.9	9999	-3.3	4	-16	16.1	3	-18	-17.2	2	5	-19
021510	020515	9	6066.3	999.9	9999	14.1	2	-18	3.3	3	-17	9.6	3	5	-18
021510	020515	9	6382.1	999.9	9999	14.0	3	-17	-16.4	3	-17	10.1	2	5	-18
021510	020515	9	6697.8	999.9	9999	16.8	3	-18	18.0	4	-18	18.4	2	5	-17
021510	020515	9	7013.5	999.9	9999	-10.1	3	-18	11.9	2	-20	-11.2	3	5	-17
021510	020515	9	7329.2	999.9	9999	-6.0	2	-19	-18.4	2	-18	5.2	3	5	-19
021510	020515	9	7644.9	999.9	9999	-9.3	4	-21	10.4	4	-18	-3.9	3	5	-3
021510	020515	9	7960.7	999.9	9999	~5.2	2	-20	-17.0	5	-18	6.3	3	5	-20
021510	020515	9	8276.4	999.9	9999	-6.7	3	-16	-16.6	3	-17	-2.5	3	5	16
021510	020515	9	8592.1	999.9	9999	-4.8	4	-19	-15.8	3	-11	-2.7	2	5	0
021510	020515	9	8907.8	999.9	9999	-12.6	3	-18	-17.2	2	-2	-19.0	2	5	-16
021510	020515	9	9223.5	999.9	9999	14.8	2	-18	-9.4	3	-19	-16.6	3	5	-16
021510	020515	9	9539.3		9999	6.6	4	-19	3.1	4	-17	-5.1	3	5	-19
021510		9	9855.0			17.4	3	-16	11.5	4	14	-10.6	3	5	-18
021510	020515	9	10170.7	999.9	9999	-14.1	2	-18	14.7	3	9	4.4	3	5	-17

Meteorological Tower Data

DAY	TIME	LAT	LON	Z	DIR	SPD	т	רוים	TIDN
97312	20500	28.4338	80.5734	6	DIK	51.0	60	110	1
97312	20500	28.4338	80.5734	12	295	2.9	00		1
97312	20500	28.4338	80.5734	54	267	7.0	60		1
97312	20500	28.4443	80.5621	6			60	52	2
97312	20500	28.4443	80.5621	12	300	2.9			2
97312	20500	28.4443	80.5621	54	302	6.0	60	52	2
97312	20500	28.4443	80.5621	90	301	8.0			2
97312	20500	28.4443	80.5621	162	302	8.9			2
97312	20500	28.4443	80.5621	204	300	11.1	60	52	2
97312	20500	28.4443	80.5621	6			59	52	2
97312	20500	28.4443	80.5621	12	300	1.9			2
97312	20500	28.4443	80.5621	54	301	5.1	60	53	2
97312	20500	28.4443	80.5621	90	300	7.0			2 2
97312	20500	28.4443	80.5621 80.5621	162 204	302 288	8.0 8.9	60	52	2
97312	20500	28.4443	80.5621	204	288	8.9	59	52	3
97312	20500 20500	28.4598 28.4598	80.5267	12	303	6.0	33		3
97312 97312	20500	28.4598	80.5267	54	296	7.0			3
97312	20500	28.4466	80.5652	6	200	7.0			17
97312	20500	28.7435	80.7005	6			61	54	19
97312	20500	28.7435	80.7005	54	324	14.0	01	<i>3</i> 1	19
97312	20500	28.7975	80.7378	6			61	53	22
97312	20500	28.7975	80.7378	54	305	13.0			22
97312	20500	28.4721	80.5393	6					36
97312	20500	28.4721	80.5393	90	311	8.9			36
97312	20500	28.5622	80.5785	6					40
97312	20500	28.5622	80.5785	54	301	11.1			40
97312	20500	28.5836	80.5842	_ 6					41
97312	20500	28.5836	80.5842	54	291	9.9	63	F 0	41
97312	20500	28.5130	80.5613	6	201	2.0	63	58	61
97312	20500	28.5130 28.5130	80.5613 80.5613	12 54	301 299	2.9 6.0	59	51	61 61
97312 97312	20500 20500	28.5130	80.5613	162	301	9.9	29	21	61
97312	20500	28.5130	80.5613	204	306	11.1	60	52	61
97312	20500	28.5130	80.5613	6	500		59	52	62
97312	20500	28.5130	80.5613	12	293	2.9		-	62
97312	20500	28.5130	80.5613	54	293	6.0	60	53	62
97312	20500	28.5130	80.5613	162	296	8.9			62
97312	20500	28.5130	80.5613	204	298	9.9	59	56	62
97312	20500	28.5358	80.5747	6			60		108
97312	20500	28.5358	80.5747		298	5.1			108
97312	20500	28.5358	80.5747		293	8.0	60		108
97312	20500	28.6141	80.6203	. 6	000	1 0	56		112
97312	20500	28.6141	80.6203		292	1.9	E 0		112
97312	20500	28.6141	80.6203	54 6	292	6.0	58 62	55	112 300
97312 97312	20500 20500	28.4048 28.4048	80.6519 80.6519	54	294	8.9	UZ	33	300
97312	20500	28.4600	80.5711	6	274	0.9	58		303
97312	20500	28.4600	80.5711		297	1.9			303
97312	20500	28.4600	80.5711	54	294	6.0	59		303
97312	20500	28.6027	80.6414	6			59		311
97312	20500	28.6027	80.6414	12	302	2.9			311
97312	20500	28.6027	80.6414	54	261	1.0	59		311
97312	20500	28.6105	80.6069	6					393

97312	20500	28.6105	80.6069		291	8.9	59	53	393
97312	20500	28.6057	80.6016	6	004		58	52	394
97312 97312	20500 20500	28.6057 28.6294	80.6016 80.6235	60 6	294	8.9	58	52	394
97312	20500	28.6294	80.6235	60	292	8.9	58	52	397 397
97312	20500	28.6248	80.6182	6	2,2	0.5	58	52	398
97312	20500	28.6248	80.6182	60	292	8.9	58	52	398
97312	20500	28.4586	80.5923	6			60		403
97312	20500	28.4586	80.5923	12	305	5.1			403
97312	20500	28.4586	80.5923	54	298	8.0	60		403
97312	20500	28.6062	80.6739	6	004		57		412
97312	20500	28.6062 28.6062	80.6739	12	291	1.0	F.0		412
97312 97312	20500 20500	28.6586	80.6739 80.6998	54 6	298	5.1	58 58		412
97312	20500	28.6586	80.6998	12	275	1.0	28		415 415
97312	20500	28.6586	80.6998	54	300	2.9	58		415
97312	20500	28.7055	80.7265	6	500	2.5	61	55	418
97312	20500	28.7055	80.7265	54	305	7.0	0 1	33	418
97312	20500	28.7755	80.8043	6			61	56	421
97312	20500	28.7755	80.8043	54	289	11.1			421
97312	20500	28.5158	80.6400	6			59		506
97312	20500	28.5158	80.6400	12	295	4.1			506
97312 97312	20500 20500	28.5158 28.5623	80.6400	54	302	6.0	60		506
97312	20500	28.5623	80.6694 80.6694	6 12	318	2.9	58		509 509
97312	20500	28.5623	80.6694	54	310	5.1	59		509
97312	20500	28.5986	80.6817	6	310	3.1	22		511
97312	20500	28.5986	80.6817	30	300	8.0			511
97312	20500	28.6160	80.6930	6			61	52	512
97312	20500	28.6160	80.6930	30	301	8.0			512
97312	20500	28.6307	80.7027	6	201				513
97312 97312	20500 20500	28.6307 28.6431	80.7027 80.7482	30 6	304	8.0	F.0		513
97312	20500	28.6431	80.7482	12	318	2.9	58		714 714
97312	20500	28.6431	80.7482	54	302	6.0	58		714
97312	20500	28.4632	80.6702	6		0.0	58		803
97312	20500	28.4632	80.6702	12	299	1.0			803
97312	20500	28.4632	80.6702	54	297	2.9	59		803
97312	20500	28.5184	80.6962	6			69		805
97312	20500	28.5184	80.6962	12	293	4.1			805
97312 97312	20500 20500	28.5184 28.7464	80.6962 80.8707	54 6	287	7.0	59.	E 2	805
97312	20500	28.7464	80.8707		294	5.1	57	52	819 819
97312	20500	28.4079	80.7604	6	274	3.1	58	53	1000
97312	20500	28.4079	80.7604	54	291	7.0	30	55	1000
97312	20500	28.5272	80.7742	6			59	54	1007
97312	20500	28.5272	80.7742		276	7.0			1007
97312	20500	28.6056	80.8248	6			60	52	1012
97312	20500	28.6056	80.8248	54	301	5.1			1012
97312 97312	20500	28.5697	80.5864	6	202	<i>c</i> 0	60	55	1101
97312	20500 20500	28.5697 28.5697	80.5864 80.5864	12 54	302 295	6.0 12.1	60	53	1101
97312	20500	28.5697	80.5864		305	$12.1 \\ 14.0$	00	23	1101 1101
97312	20500	28.5697	80.5864		302	14.0	59	51	1101
97312	20500	28.5697	80.5864	6			60		1102
97312	20500	28.5697	80.5864	12	303	5.1			1102
97312	20500	28.5697	80.5864	54	292	11.1	60	52	1102

97312	20500	28.5697	80.5864	162	298	12.1			1102
97312	20500	28.5697	80.5864	204	298	12.1	59	51	1102
97312	20500	28.4843	80.7856	6			59	53	1204
					283	2 0	رد	23	
97312	20500	28.4843	80.7856	54	283	2.9			1204
97312	20500	28.6445	80.9034	6					1215
97312	20500	28.4114	80.9284	6			56	51	1500
97312	20500	28.4114	80.9284	54	280	4.1			1500
97312	20500	28.4475	80.8538	6					1502
97312	20500	28.4960	80.8843	6					1605
97312	20500	28.4960	80.8843	54					1605
97312	20500	28.5583	80.9132	6					1609
97312	20500	28.6173	80.9581	6			56	55	1612
97312	20500	28.6173	80.9581	54	266	5.1			1612
97312	20500	28.6762	80.9987	6			58	54	1617
97312	20500	28.6762	80.9987	54	305	7.0		-	1617
					505	7.0	E 7	E 2	
97312	20500	28.5231	81.0100	6			57	52	2008
97312	20500	28.5231	81.0100	54	274	5.1			2008
97312	20500	28.6489	81.0693	6			56	52	2016
97312	20500	28.6489	81.0693	54	298	6.0			2016
97312	20500	28.4417	81.0291	6					2202
97312	20500	28.4417	81.0291	54					2202
-				6			57	E 2	3131
97312	20500	28.6256	80.6571		000	0 0	5/	52	
97312	20500	28.6256	80.6571	12	292	2.9			3131
97312	20500	28.6256	80.6571	54	302	6.0	58	51	3131
97312	20500	28.6256	80.6571	162	296	11.1			3131
97312	20500	28.6256	80.6571	204	297	12.1	58	51	3131
97312	20500	28.6256	80.6571	295	302	14.0			3131
97312	20500	28.6256	80.6571		299	15.0			3131
97312	20500	28.6256	80.6571	492	294	15.9	57	51	3131
					234	13.9			
97312	20500	28.6256	80.6571	6			57	52	3132
97312	20500	28.6256	80.6571	12	296	2.9			3132
97312	20500	28.6256	80.6571	54	304	6.0	58	52	3132
97312	20500	28.6256	80.6571	162	304	11.1			3132
97312	20500	28.6256	80.6571	204	308	12.1	58	51	3132
97312	20500	28.6256	80.6571	295	305	14.0			3132
97312	20500	28.6256	80.6571	394	309	15.0			3132
				492	310	11.1	56	E 0	3132
97312	20500	28.6256	80.6571		310	11.1			
97,312	20500	28.3932	80.8211	6			59	53	9001
97312	20500	28.3932	80.8211	54	294	6.0			9001
97312	20500	28.3382	80.7321	6			59	54	9404
97312	20500	28.3382	80.7321	54	290	4.1			9404
DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD	TIDN
97312	21000	28.4338	80.5734	6			59		1
97312	21000	28.4338	80.5734	12	287	2.9	22		1
							60		
97312	21000	28.4338	80.5734	54	266	8.0	60		1
97312	21000	28.4443	80.5621	6			60	52	2
97312	21000	28.4443	80.5621	12	301	2.9			2
97312	21000	28.4443	80.5621	54	307	7.0	60	52	2
97312	21000	28.4443	80.5621	90	307	8.9			2
97312	21000	28.4443	80.5621			11.1			2
97312	21000	28.4443	80.5621	204		12.1	60	52	2
			80.5621	6	200	14.1	59	52	2
97312	21000	28.4443			200	2 2	שכנ	52	2
97312	21000	28.4443	80.5621	12	300	2.9			2
97312	21000	28.4443	80.5621			6.0	60	53	2
97312	21000	28.4443	80.5621		305	8.0			2
97312	21000	28.4443	80.5621	162	305	9.9			2

97312	21000	28.4443	80.5621	204	291	9.9	60	52	2
97312	21000	28,4598	80.5267	6			59		3
97312	21000	28.4598	80.5267	12	310	5.1	2,7		
97312	21000								3
		28.4598	80.5267	54		8.0			3
97312	21000	28.4466	80.5652	6					17
97312	21000	28.7435	80.7005	6			61	55	19
97312	21000	28.7435	80.7005	54	322	11.1			19
97312	21000	28.7975	80.7378	6	922		C 1	Ε 4	
97312					204	40.4	61	54	22
	21000	28.7975	80.7378	54	304	12.1			22
97312	21000	28.4721	80.5393	6					36
97312	21000	28.4721	80.5393	90	312	8.0			36
97312	21000	28.5622	80.5785	6					40
97312	21000	28.5622	80.5785	54	299	11.1			40
97312	21000	28.5836	80.5842		400	11.1			
				6					41
97312	21000	28.5836	80.5842	54	288	11.1			41
97312	21000	28.5130	80.5613	6			63	58	61
97312	21000	28.5130	80.5613	12	303	2.9			61
97312	21000	28.5130	80.5613	54	303	7.0	59	51	61
97312	21000	28.5130	80.5613	162	302	12.1	22	31	
	21000							F.0	61
97312		28.5130	80.5613	204	310	13.0	60	52	61
97312	21000	28.5130	80.5613	6			59	52	62
97312	21000	28.5130	80.5613	12	295	2.9			62
97312	21000	28.5130	80.5613	54	296	7.0	59	53	62
97312	21000	28.5130	80.5613	162	297	11.1			62
97312	21000	28.5130	80.5613	204	300	11.1	59	56	62
97312	21000	28.5358	80.5747	6	300	****	60	50	
97312	21000	28.5358	80.5747	12	207	Г 1	00		108
					297	5.1			108
97312	21000	28.5358	80.5747	54	294	8.0	60		108
97312	21000	28.6141	80.6203	6			56		112
97312	21000	28.6141	80.6203	12	290	1.9			112
97312	21000	28.6141	80.6203	54	290	6.0	58		112
97312	21000	28.4048	80.6519	6			62	55	300
97312	21000	28.4048	80.6519	54	294	9.9			300
97312	21000	28.4600	80.5711	6		٠.,	57		303
97312	21000	28.4600	80.5711	12	290	1 0	57		
97312	21000					1.9			303
		28.4600	80.5711	54	293	5.1	59		303
97312	21000	28.6027	80.6414	6			59		311
97312	21000	28.6027	80.6414	12	304	2.9			311
97312	21000	28.6027	80.6414	54	300	4.1	58		311
97312	21000	28.6105	80.6069	6					393
97312	21000	28.6105	80.6069	60	288	8.0	58	53	393
97312	21000	28.6057	80.6016	6		0.0	57	52	394
97312	21000	28.6057	80.6016		293	0 0			
					233	8.0	58	52	394
97312	21000	28.6294	80.6235	6					397
97312	21000	28.6294	80.6235	60	293	8.9	58	52	397
97312	21000	28.6248	80.6182	6			58	52	398
97312	21000	28.6248	80.6182	60	290	8.0	58	52	398
97312	21000	28.4586	80.5923	6			60		403
97312	21000	28.4586	80.5923	12	301	5.1	00		403
97312	21000	28.4586	80.5923	54	295		60		
97312	21000				433	8.0	60		403
		28.6062	80.6739	6	0.55		57		412
97312	21000	28.6062	80.6739	12	297	1.9			412
97312	21000	28.6062	80.6739	54	299	4.1	58		412
97312	21000	28.6586	80.6998	6			57		415
97312	21000	28.6586	80.6998		280	1.9			415
97312	21000	28.6586	80.6998	54	307	1.9	58		415
97312	21000	28.7055	80.7265	6		,	61	55	418
			55205	J			O.T.	77	470

97312 21000 28.7755 80.8043 6 61 56 421 97312 21000 28.7755 80.8043 6 59 506 97312 21000 28.5158 80.6400 6 59 506 97312 21000 28.5158 80.6400 54 298 2.9 506 97312 21000 28.5623 80.6604 54 305 5.1 60 506 97312 21000 28.5623 80.6694 6 58 509 97312 21000 28.5623 80.6694 54 308 5.1 59 509 97312 21000 28.5986 80.6817 6 51 50 509 97312 21000 28.6160 80.6930 6 61 5 512 97312 21000 28.6307 80.7027 30 306 8.0 513 97312 21000 28.6337 80.7462 <th></th>										
97312 21000 28.7755 80.8043 54 291 9.9 59 421 97312 21000 28.5158 80.6400 6 59 506 97312 21000 28.5158 80.6400 12 298 2.9 506 97312 21000 28.5523 80.6694 6 58 509 97312 21000 28.5623 80.6694 16 58 509 97312 21000 28.5623 80.6694 54 308 5.1 59 509 97312 21000 28.5986 80.6817 6 511 59 509 97312 21000 28.6160 80.6930 30 300 8.9 512 97312 21000 28.6307 80.7027 6 58 714 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 12 311	97312	21000	28.7055	80.7265	54	309	7.0			418
97312 21000 28.7555 80.8043 54 291 9.9 59 506 97312 21000 28.5158 80.6400 6 59 506 97312 21000 28.5158 80.6400 12 298 2.9 506 97312 21000 28.5623 80.6694 6 58 509 97312 21000 28.5623 80.6694 12 317 2.9 509 97312 21000 28.5623 80.6694 54 308 5.1 59 509 97312 21000 28.5986 80.6817 6 511 59 512 97312 21000 28.6160 80.6930 30 300 8.9 512 511 97312 21000 28.6307 80.7027 6 58 714 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 54 302 8.0 58<								61	56	
97312 21000 28.5158 80.6400 6 59 506 97312 21000 28.5158 80.6400 54 305 5.1 60 506 97312 21000 28.5623 80.6694 6 58 509 97312 21000 28.5623 80.6694 54 308 5.1 59 509 97312 21000 28.5623 80.6694 54 308 5.1 59 509 97312 21000 28.5663 80.6817 6 511 59 509 97312 21000 28.6160 80.6930 6 6 61 52 512 97312 21000 28.6307 80.7027 6 58 714 97312 21000 28.6331 80.7082 6 8.0 58 714 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431						291	9 9	0.1	30	
97312 21000 28.5158 80.6400 54 305 5.1 60 506 97312 21000 28.5623 80.6694 6 58 509 97312 21000 28.5623 80.6694 12 317 2.9 509 97312 21000 28.5623 80.6694 12 317 2.9 509 97312 21000 28.5623 80.66917 6 51 59 509 97312 21000 28.6160 80.6930 30 302 8.0 61 52 512 97312 21000 28.6160 80.6930 30 300 8.9 512 97312 21000 28.6307 80.7027 6 58 714 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 54 302 8.0 58 714 97312 21000						271	2.2	59		
97312 21000 28.5158 80.6694 6 58 509 97312 21000 28.5623 80.6694 6 58 509 97312 21000 28.5623 80.6694 12 317 2.9 509 97312 21000 28.5986 80.6817 6 511 59 509 97312 21000 28.5986 80.6817 30 302 8.0 511 59 512 97312 21000 28.6160 80.6930 6 6 512 52 512 97312 21000 28.6307 80.7027 6 513 573 573 58 714 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 40 80 58 714 97312 21000 28.4632 80.6702 54 297 2.9 58 803 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>298</td><td>2 9</td><td>22</td><td></td><td></td></t<>						298	2 9	22		
97312 21000 28.5623 80.6694 6 58 509 97312 21000 28.5623 80.6694 12 317 2.99 509 97312 21000 28.5986 80.6817 6 511 591 509 97312 21000 28.5986 80.6817 6 511 591 511 97312 21000 28.6160 80.6930 6 61 52 512 97312 21000 28.6307 80.7027 6 513 573 97312 21000 28.6307 80.7027 30 306 8.0 513 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 54 302 8.0 58 714 97312 21000 28.4632 80.6702 12 305 1.0 803 97312 21000 28.5184 80.6962 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>60</td><td></td><td></td></td<>								60		
97312 21000 28.5623 80.6694 12 317 2.9 509 97312 21000 28.5986 80.66917 6 511 59 509 97312 21000 28.5986 80.6817 6 511 59 509 97312 21000 28.6160 80.6930 30 302 8.0 512 512 97312 21000 28.6307 80.7027 6 513 513 97312 21000 28.6307 80.7027 6 58 714 97312 21000 28.6331 80.7482 6 11 1.9 714 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 6 58 803 97312 21000 28.6431 80.7482 12 305 1.0 803 97312 21000 28.4632 80.6702 54 29						305	5.1			
97312 21000 28.5923 80.6694 54 308 5.1 59 501 97312 21000 28.5986 80.6817 6 61 52 511 97312 21000 28.6160 80.6930 6 61 52 512 97312 21000 28.6307 80.7027 6 80.7027 6 513 97312 21000 28.6331 80.7027 6 58 714 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 12 311 1.9 714 97312 21000 28.4632 80.6702 6 58 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 54 297 29 58 803 97312 21000 28.5184 80.6962 12 <td></td> <td></td> <td></td> <td></td> <td></td> <td>245</td> <td></td> <td>28</td> <td></td> <td></td>						245		28		
97312 21000 28.5986 80.6817 30 302 8.0 511 97312 21000 28.6160 80.6930 6 61 52 512 97312 21000 28.6160 80.6930 30 300 8.9 512 97312 21000 28.6307 80.7027 6 58 513 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 54 302 8.0 58 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962										
97312 21000 28.5986 80.6817 30 302 8.0 61 52 511 97312 21000 28.6160 80.6930 30 300 8.9 512 97312 21000 28.6307 80.7027 6 6 513 97312 21000 28.6307 80.7027 3 306 8.0 513 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 12 311 1.9 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 12 305 1.0 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 12 298 4.1 805 97312 21000 28.7464 80.8707 6						308	5.1	59		
97312 21000 28.6160 80.6930 30 30.300 8.9 512 512 97312 21000 28.6307 80.7027 6 513 513 97312 21000 28.6307 80.7027 6 513 513 97312 21000 28.6431 80.7027 30 306 8.0 513 97312 21000 28.6431 80.7482 66 58 714 97312 21000 28.6431 80.7482 54 302 8.0 58 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 69 805 97312 21000 28.5184 80.6962 54 297 2.9 58 803 97312 21000 28.7464 80.8707 6 57 59 55 75 52 819 97312										
97312 21000 28.6160 80.6930 30 300 8.9 512 97312 21000 28.6307 80.7027 6 513 97312 21000 28.6431 80.7027 30 306 8.0 513 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 54 302 8.0 58 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 12 305 1.0 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>302</td><td>8.0</td><td></td><td></td><td></td></td<>						302	8.0			
97312 21000 28.6307 80.7027 6 30 80 513 97312 21000 28.6307 80.7027 30 306 8.0 513 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 54 302 8.0 58 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 12 298 4.1 805 97312 21000 28.5184 80.6962 12 298 4.1 805 97312 21000 28.5184 80.6962 12 298 4.1 805 97312 21000 28.4079 80.7	97312		28.6160					61	52	
97312 21000 28.6307 80.7027 30 306 8.0 513 97312 21000 28.6431 80.7482 6 58 714 97312 21000 28.6431 80.7482 12 311 1.9 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 12 298 4.1 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.7464 80.8707 6 51 819 97312 21000 28.572 80.7742 6 </td <td>97312</td> <td>21000</td> <td></td> <td>80.6930</td> <td>30</td> <td>300</td> <td>8.9</td> <td></td> <td></td> <td></td>	97312	21000		80.6930	30	300	8.9			
97312 21000 28.6431 80.7482 12 311 1.9 714 97312 21000 28.6431 80.7482 54 302 8.0 58 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.4079 80.7604 5 291 8.0 1000 97312 21000 28.5272 80.7742 54 291 8.0 1007 97312	97312	21000	28.6307	80.7027						513
97312 21000 28.6431 80.7482 54 302 8.0 58 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.7464 80.8707 54 296 5.1 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.5072 80.7742 54 299 8.0 1007 97312	97312	21000	28.6307	80.7027	30	306	8.0			513
97312 21000 28.6431 80.7482 54 302 8.0 58 714 97312 21000 28.4632 80.6702 6 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.7464 80.8707 54 296 5.1 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.5072 80.7742 54 299 8.0 1007 97312	97312	21000	28.6431	80.7482	6			58		714
97312 21000 28.6431 80.7482 54 302 8.0 58 803 97312 21000 28.4632 80.6702 12 305 1.0 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 54 296 5.1 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.5072 80.7742 54 291 8.0 1007 97312 21000 28.5056 80.8248 6 59 54 1007		21000	28.6431	80.7482	12	311	1.9			714
97312 21000 28.4632 80.6702 12 305 1.0 803 97312 21000 28.4632 80.6702 12 305 1.0 803 97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.4079 80.7604 54 291 8.0 1000 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.5656 80.8248 6 60 55 1012 97312 21000 28.5697 80.5864 6 60 5								58		
97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6902 6 69 805 97312 21000 28.5184 80.6962 12 298 4.1 805 97312 21000 28.5184 80.6962 12 298 4.1 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.7464 80.8707 54 296 5.1 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.5656 80.8248 6 59 8.0 1007 97312 21000 28.5697 80.5864 52 297 2.9 1012 97312 21000 28.5697										
97312 21000 28.4632 80.6702 54 297 2.9 58 803 97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 12 298 4.1 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.5272 80.7742 54 297 8.0 1007 97312 21000 28.5656 80.8248 6 60 52 1012 97312 21000 28.5697 80.5864 12 301 6.0 51 101 97312 21000						305	1.0	•		
97312 21000 28.5184 80.6962 6 69 805 97312 21000 28.5184 80.6962 12 298 4.1 805 97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.4079 80.7604 6 59 54 1000 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.5272 80.7742 54 279 8.0 1007 97312 21000 28.5697 80.5864 6 60 52 1012 97312 21000 28.5697 80.5864 12 301 6.0 51 1101 97312 21000								5.8		
97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.7464 80.8707 54 296 5.1 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.5272 80.7742 6 59 54 1000 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.6056 80.8248 6 59 54 1007 97312 21000 28.6056 80.8248 6 60 55 1012 97312 21000 28.5697 80.5864 6 60 55 1012 97312 21000 28.5697 80.5864 12 301 6.0 1012 97312 21000						2)	2.5			
97312 21000 28.5184 80.6962 54 292 7.0 59 805 97312 21000 28.7464 80.8707 6 57 52 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.4079 80.7604 54 291 8.0 1000 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.5697 80.7742 54 279 8.0 1007 97312 21000 28.5697 80.5864 6 60 55 1012 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 12 301 13.0 59 51 1101						200	1 1	03		
97312 21000 28.7464 80.8707 6 54 296 5.1 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.5272 80.7742 6 6 59 54 1007 97312 21000 28.6056 80.8248 6 60 52 1012 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 6 60 53 1101 97312 21000 28.5697 80.5864 54 294 11.1 60 53 1101 97312 21000 28.5697 80.5864 54 294 11.1 60								EO		
97312 21000 28.7464 80.8707 54 296 5.1 819 97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.4079 80.7604 54 291 8.0 1000 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.6056 80.8248 6 60 52 1012 97312 21000 28.6056 80.8248 54 297 2.9 1012 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 12 301 6.0 51 101 97312 21000 28.5697 80.5864 54 294 11.1 60 53 1101 97312 21000 28.5697 80.5864 12 304 13.0 1101 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>292</td><td>7.0</td><td></td><td>50</td><td></td></t<>						292	7.0		50	
97312 21000 28.4079 80.7604 6 58 53 1000 97312 21000 28.5272 80.7742 6 59 54 1000 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.5272 80.7742 54 279 8.0 1007 97312 21000 28.6056 80.8248 6 60 52 1012 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 6 60 53 1101 97312 21000 28.5697 80.5864 54 294 11.1 60 53 1101 97312 21000 28.5697 80.5864 162 304 13.0 1101 97312 21000 28.5697 80.5864 204 301 13.0 59 51 1101 <td></td> <td></td> <td></td> <td></td> <td></td> <td>206</td> <td>E 1</td> <td>57</td> <td>52</td> <td></td>						206	E 1	57	52	
97312 21000 28.4079 80.7604 54 291 8.0 59 54 1007 97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.6056 80.8248 6 60 52 1012 97312 21000 28.5697 80.5864 6 60 55 1012 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 6 60 53 1101 97312 21000 28.5697 80.5864 12 304 13.0 1101 97312 21000 28.5697 80.5864 162 304 13.0 59 51 1101 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>290</td> <td>5.1</td> <td>E O</td> <td>E 2</td> <td></td>						290	5.1	E O	E 2	
97312 21000 28.5272 80.7742 6 59 54 1007 97312 21000 28.5272 80.7742 54 279 8.0 1007 97312 21000 28.6056 80.8248 6 60 52 1012 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 12 301 6.0 1101 97312 21000 28.5697 80.5864 162 304 13.0 59 51 1101 97312 21000 28.5697 80.5864 162 304 13.0 59 51 1101 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 162 296 12.1						201	0 0	56	53	
97312 21000 28.5272 80.7742 54 279 8.0 1007 97312 21000 28.6056 80.8248 6 297 2.9 1012 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 12 301 6.0 50 1101 97312 21000 28.5697 80.5864 12 301 6.0 53 1101 97312 21000 28.5697 80.5864 162 304 13.0 1101 97312 21000 28.5697 80.5864 204 301 13.0 59 51 1101 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 12 296 12.1						231	0.0	E 0	E 4	
97312 21000 28.6056 80.8248 6 60 52 1012 97312 21000 28.6056 80.8248 54 297 2.9 1012 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 12 301 6.0 1101 97312 21000 28.5697 80.5864 54 294 11.1 60 53 1101 97312 21000 28.5697 80.5864 162 304 13.0 59 51 1101 97312 21000 28.5697 80.5864 6 60 54 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1902 97312 21000 28.5697 80.5864 162 296 12.1						270	0 0	59	54	
97312 21000 28.6056 80.8248 54 297 2.9 1012 97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 12 301 6.0 1101 97312 21000 28.5697 80.5864 54 294 11.1 60 53 1101 97312 21000 28.5697 80.5864 162 304 13.0 59 51 1101 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.4843 80.7856 6 58						219	8.0	CO	5 0	
97312 21000 28.5697 80.5864 6 60 55 1101 97312 21000 28.5697 80.5864 12 301 6.0 1101 97312 21000 28.5697 80.5864 54 294 11.1 60 53 1101 97312 21000 28.5697 80.5864 162 304 13.0 1101 97312 21000 28.5697 80.5864 6 60 54 1102 97312 21000 28.5697 80.5864 6 60 54 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 59 51 1102 97312 21000 28.4843 80.7856 6 58 53 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>207</td><td>2 0</td><td>60</td><td>52</td><td></td></td<>						207	2 0	60	52	
97312 21000 28.5697 80.5864 12 301 6.0 1101 97312 21000 28.5697 80.5864 54 294 11.1 60 53 1101 97312 21000 28.5697 80.5864 162 304 13.0 59 51 1101 97312 21000 28.5697 80.5864 6 60 54 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 24 297 12.1 59 51 1102 97312 21000 28.5697 80.5864 24 297 12.1 59 51 1102 97312 21000 28.4843 80.7856 54 279 2.9 1204 97312 21000 28.4414 80.9284 <td></td> <td></td> <td></td> <td></td> <td></td> <td>297</td> <td>2.9</td> <td></td> <td></td> <td></td>						297	2.9			
97312 21000 28.5697 80.5864 54 294 11.1 60 53 1101 97312 21000 28.5697 80.5864 162 304 13.0 1101 97312 21000 28.5697 80.5864 204 301 13.0 59 51 1101 97312 21000 28.5697 80.5864 6 60 54 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 204 297 12.1 59° 51 1102 97312 21000 28.4843 80.7856 6 279 2.9 1204 97312 21000 28.4445 80.9034 6 56 51 1500 97312 21000 28.4114 80.9284						201		60	55	
97312 21000 28.5697 80.5864 162 304 13.0 1101 97312 21000 28.5697 80.5864 204 301 13.0 59 51 1101 97312 21000 28.5697 80.5864 6 60 54 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 54 290 9.9 60 52 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 204 297 12.1 59° 51 1102 97312 21000 28.4843 80.7856 6 58 53 1204 97312 21000 28.44445 80.9934 6 56 51 1500 97312 21000 28.44114 80.9284 54 285 4.1 1500 97312 21000 28.4475 80.8538 <td></td>										
97312 21000 28.5697 80.5864 204 301 13.0 59 51 1101 97312 21000 28.5697 80.5864 6 60 54 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 54 290 9.9 60 52 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 204 297 12.1 59' 51 1102 97312 21000 28.4843 80.7856 6 58 53 1204 97312 21000 28.4443 80.934 6 29 2.9 1204 97312 21000 28.4114 80.9284 54 285 4.1 1500 97312 21000 28.4960 80.8843 54 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>60</td><td>53</td><td></td></t<>								60	53	
97312 21000 28.5697 80.5864 6 60 54 1102 97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 54 290 9.9 60 52 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 204 297 12.1 59 51 1102 97312 21000 28.4843 80.7856 6 58 53 1204 97312 21000 28.4843 80.7856 54 279 2.9 1204 97312 21000 28.6445 80.9034 6 56 51 1500 97312 21000 28.4114 80.9284 54 285 4.1 1500 97312 21000 28.4960 80.8843 54 285 4.1 1605 97312 21000 28.6173 80.9581 6 56										
97312 21000 28.5697 80.5864 12 304 5.1 1102 97312 21000 28.5697 80.5864 54 290 9.9 60 52 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 204 297 12.1 59° 51 1102 97312 21000 28.4843 80.7856 6 58 53 1204 97312 21000 28.4843 80.7856 54 279 2.9 1204 97312 21000 28.6445 80.9034 6 56 51 1500 97312 21000 28.4114 80.9284 6 56 51 1500 97312 21000 28.4475 80.8538 6 56 51 1500 97312 21000 28.4960 80.8843 54 54 56 55 1612 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>301</td><td>13.0</td><td></td><td></td><td></td></td<>						301	13.0			
97312 21000 28.5697 80.5864 54 290 9.9 60 52 1102 97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 204 297 12.1 59 51 1102 97312 21000 28.4843 80.7856 6 58 53 1204 97312 21000 28.4843 80.7856 54 279 2.9 1204 97312 21000 28.6445 80.9034 6 56 51 1500 97312 21000 28.4114 80.9284 6 56 51 1500 97312 21000 28.4475 80.8538 6 56 51 1500 97312 21000 28.4960 80.8843 54 54 54 56 55 1605 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6<								60	54	
97312 21000 28.5697 80.5864 162 296 12.1 1102 97312 21000 28.5697 80.5864 204 297 12.1 59' 51 1102 97312 21000 28.4843 80.7856 6 58 53 1204 97312 21000 28.4843 80.7856 54 279 2.9 1204 97312 21000 28.6445 80.9034 6 56 51 1500 97312 21000 28.4114 80.9284 6 56 51 1500 97312 21000 28.4475 80.8538 6 56 51 1500 97312 21000 28.4960 80.8843 6 56 1605 97312 21000 28.5583 80.9132 6 56 55 1612 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 58 54 1617 973										
97312 21000 28.5697 80.5864 204 297 12.1 59' 51 1102 97312 21000 28.4843 80.7856 6 58 53 1204 97312 21000 28.4843 80.7856 54 279 2.9 1204 97312 21000 28.6445 80.9034 6 56 51 1500 97312 21000 28.4114 80.9284 6 56 51 1500 97312 21000 28.4475 80.8538 6 56 1502 97312 21000 28.4960 80.8843 6 6 1605 97312 21000 28.4960 80.8843 54 56 56 55 1605 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 6 56 55								60	52	
97312 21000 28.4843 80.7856 6 58 53 1204 97312 21000 28.4843 80.7856 54 279 2.9 1204 97312 21000 28.6445 80.9034 6 56 51 1500 97312 21000 28.4114 80.9284 6 56 51 1500 97312 21000 28.4475 80.8538 6 56 1502 97312 21000 28.4960 80.8843 6 1605 97312 21000 28.4960 80.8843 54 1605 97312 21000 28.5583 80.9132 6 56 55 1612 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 58 54 1617 97312 21000 28.6762 80.9987										
97312 21000 28.4843 80.7856 54 279 2.9 1204 97312 21000 28.6445 80.9034 6 56 51 1500 97312 21000 28.4114 80.9284 54 285 4.1 1500 97312 21000 28.4475 80.8538 6 1502 97312 21000 28.4960 80.8843 6 1605 97312 21000 28.4960 80.8843 54 1605 97312 21000 28.5583 80.9132 6 56 55 1612 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312					297	12.1			
97312 21000 28.6445 80.9034 6 1215 97312 21000 28.4114 80.9284 6 56 51 1500 97312 21000 28.4114 80.9284 54 285 4.1 1500 97312 21000 28.4475 80.8538 6 1502 97312 21000 28.4960 80.8843 54 1605 97312 21000 28.5583 80.9132 6 1609 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312		28.4843					58	53	
97312 21000 28.4114 80.9284 6 56 51 1500 97312 21000 28.4114 80.9284 54 285 4.1 1500 97312 21000 28.4475 80.8538 6 1502 97312 21000 28.4960 80.8843 54 1605 97312 21000 28.5583 80.9132 6 1609 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312	21000	28.4843			279	2.9			
97312 21000 28.4114 80.9284 54 285 4.1 1500 97312 21000 28.4475 80.8538 6 1502 97312 21000 28.4960 80.8843 6 1605 97312 21000 28.4960 80.8843 54 1605 97312 21000 28.5583 80.9132 6 56 55 1612 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312	21000	28.6445	80.9034	6					
97312 21000 28.4475 80.8538 6 1502 97312 21000 28.4960 80.8843 6 1605 97312 21000 28.4960 80.8843 54 1605 97312 21000 28.5583 80.9132 6 56 55 1609 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312	21000	28.4114	80.9284				56	51	1500
97312 21000 28.4960 80.8843 6 1605 97312 21000 28.4960 80.8843 54 1605 97312 21000 28.5583 80.9132 6 1609 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312	21000	28.4114	80.9284	54	285	4.1			1500
97312 21000 28.4960 80.8843 54 1605 97312 21000 28.5583 80.9132 6 1609 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6173 80.9581 54 272 5.1 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312	21000	28.4475	80.8538	6					1502
97312 21000 28.5583 80.9132 6 1609 97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6173 80.9581 54 272 5.1 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312	21000	28.4960	80.8843	6					1605
97312 21000 28.6173 80.9581 6 56 55 1612 97312 21000 28.6173 80.9581 54 272 5.1 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312	21000	28.4960	80.8843	54					1605
97312 21000 28.6173 80.9581 54 272 5.1 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008	97312	21000	28.5583	80.9132	6					1609
97312 21000 28.6173 80.9581 54 272 5.1 1612 97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008					6			56	55	
97312 21000 28.6762 80.9987 6 58 54 1617 97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008				80.9581	54	272	5.1			
97312 21000 28.6762 80.9987 54 301 7.0 1617 97312 21000 28.5231 81.0100 6 57 52 2008								58	54	
97312 21000 28.5231 81.0100 6 57 52 2008						301	7.0			
								57	52	
H000	97312	21000	28.5231	81.0100	54	277	5.1			2008

97312	21000	28.6489	81.0693	6			55	52	2016
97312	21000	28.6489	81.0693	54	297	5.1			2016
97312	21000	28.4417	81.0291	6					2202
97312	21000	28.4417	81.0291	54					2202
97312	21000	28.6256	80.6571	6			56	51	3131
97312	21000	28.6256	80.6571	12	287	2.9	30	71	3131
97312	21000	28.6256	80.6571	54	299	6.0	57	E 1	3131
							57	21	
97312	21000	28.6256	80.6571	162	297	11.1			3131
97312	21000	28.6256	80.6571		296	12.1	58	51	3131
97312	21000	28.6256	80.6571	295	303	15.0			3131
97312	21000	28.6256	80.6571		299	15.9			3131
97312	21000	28.6256	80.6571	492	295	16.9	57		3131
97312	21000	28.6256	80.6571	6			57	52	3132
97312	21000	28.6256	80.6571	12	287	2.9			3132
97312	21000	28.6256	80.6571	54	302	6.0	58	52	3132
97312	21000	28.6256	80.6571	162	305	11.1			3132
97312	21000	28.6256	80.6571		308	12.1	58	51	3132
97312	21000	28.6256	80.6571	295	306	14.0			3132
97312	21000	28.6256	80.6571		310	15.9			3132
97312	21000	28.6256	80.6571	492	311	15.9	57	50	3132
97312	21000	28.3932	80.8211	6	211	13.9	59		9001
					201	E 1	59	53	
97312	21000	28.3932	80.8211	54	294	5.1	F.0	_ ^	9001
97312	21000	28.3382	80.7321	6	200	- 1	59	54	9404
97312	21000	28.3382	80.7321	54	290	5.1			9404
DAY	TIME	LAT	LON	Z	DIR	SPD	\mathbf{T}	מיד	TIDN
97312	21500	28.4338	80.5734	6			59		1
97312	21500	28.4338	80.5734		292	4.1			1
97312	21500	28.4338	80.5734	54	266	8.0	60		1
97312	21500	28.4443	80.5621	6	200	0.0	59	52	2
97312	21500	28.4443	80.5621	12	309	2.9	33	34	2
97312	21500	28.4443	80.5621		313	5.1	60	52	2
97312	21500	28.4443	80.5621		311	8.0	00	52	2
						9.9			2
97312	21500	28.4443	80.5621	162	308		F.0	F 0	2
97312	21500	28.4443	80.5621	204	308	11.1	59	52	2
97312	21500	28.4443	80.5621	6	210		59	52	2
97312	21500	28.4443	80.5621		310	2.9			2
97312	21500	28.4443	80.5621		311	5.1	60	53	2
97312	21500	28.4443	80.5621		308	7.0			2
97312	21500	28.4443	80.5621		307	8.0			2
97312	21500	28.4443	80.5621		294	8.0	59	52	2
97312	21500	28.4598	80.5267	6			59		3
97312	21500	28.4598	80.5267		311	6.0			3
97312	21500	28.4598	80.5267	54	301	8.0			3
97312	21500	28.4466	80.5652	6					17
97312	21500	28.7435	80.7005	6			61	55	19
97312	21500	28.7435	80.7005	54	318	11.1			19
97312	21500	28.7975	80.7378	6			60	54	22
97312	21500	28.7975	80.7378		300	14.0			22
97312	21500	28.4721	80.5393	6					36
97312	21500	28.4721	80.5393		309	8.9			36
97312	21500	28.5622	80.5785	6	505	5.5			40
97312	21500	28.5622	80.5785	54	299	9.9			40
97312	21500	28.5836	80.5842	6	433	9.9			41
97312	21500		80.5842	54	290	9.9			
		28.5836			4JU	3.3	63	EO	41
97312	21500	28.5130	80.5613	12	207	4 1	63	58	61
97312	21500	28.5130	80.5613	12	297	4.1			61

97312	21500	28.5130	80.5613	54	300	7.0	59	51	61
97312	21500	28.5130	80.5613	162	299	11.1			61
97312	21500	28.5130	80.5613	204	308	13.0	59	52	61
97312	21500	28.5130	80.5613	6			59	52	62
97312	21500	28.5130	80.5613	12	289	2.9			62
97312	21500	28.5130	80.5613	54	294	6.0	59	53	62
97312	21500	28.5130	80.5613	162	294	9.9			62
97312	21500	28.5130	80.5613	204	300	11.1	59	56	62
97312	21500	28.5358	80.5747	6			60		108
97312	21500	28.5358	80.5747	12	294	4.1			108
97312	21500	28.5358	80.5747	54	292	8.0	60		108
97312	21500	28.6141	80.6203	6			56		112
97312	21500	28.6141	80.6203	12	294	1.9			112
97312	21500	28.6141	80.6203	54	291	6.0	57		112
97312	21500	28.4048	80.6519	6			61	55	300
97312	21500	28.4048	80.6519	54	294	11.1			300
97312	21500	28.4600	80.5711	6			57		303
97312	21500	28.4600	80.5711	12	303	1.9			303
97312	21500	28.4600	80.5711	54	295	5.1	59		303
97312	21500	28.6027	80.6414	6			59		311
97312	21500	28.6027	80.6414	12	304	4.1			311
97312	21500	28.6027	80.6414	54	307	7.0	58		311
97312	21500	28.6105	80.6069	6					393
97312	21500	28.6105	80.6069	60	287	8.0	58	53	393
97312	21500	28.6057	80.6016	6			57	52	394
97312	21500	28.6057	80.6016	60	293	8.0	58	52	394
97312	21500	28.6294	80.6235	6					397
97312	21500	28.6294	80.6235	60	292	7.0	58	52	397
97312	21500	28.6248	80.6182	6			57	52	398
97312	21500	28.6248	80.6182	60	290	8.0	58	52	398
97312	21500	28.4586	80.5923	6		_	60		403
97312	21500	28.4586	80.5923	12	308	5.1			403
97312	21500	28.4586	80.5923	54	300	8.9	60		403
97312	21500	28.6062	80.6739	6			57		412
97312	21500	28.6062	80.6739	12	294	1.0			412
97312	21500	28.6062	80.6739	54	299	5.1	58		412
97312	21500	28.6586	80.6998	6	260	1 0	57		415
97312	21500	28.6586	80.6998	12	269	1.9			415
97312 97312	21500 21500	28.6586 28.7055	80.6998 80.7265	54	295	2.9	57	- 4	415
97312	21500	28.7055	80.7265	6 54	310	8.0	61	54	418
97312	21500	28.7755	80.8043	6	310	0.0	60	56	418 421
97312	21500	28.7755	80.8043		292	11.1	00	56	421
97312	21500	28.5158	80.6400	6	232	11.1	59		506
97312	21500	28.5158	80.6400	12	296	2.9	39		506
97312	21500	28.5158	80.6400	54	308	4.1	59		506
97312	21500	28.5623	80.6694	6	300	4.1	58		509
97312	21500	28.5623	80.6694		317	4.1	20		509
97312	21500	28.5623	80.6694	54	308	6.0	58		509
97312	21500	28.5986	80.6817	6	300	0.0	30		511
97312	21500	28.5986	80.6817	30	301	8.0			511
97312	21500	28.6160	80.6930	6		0.0	61	52	512
97312	21500	28.6160	80.6930	30	300	8.0		~-	512
97312	21500	28.6307	80.7027	6					513
97312	21500	28.6307	80.7027	30	307	8.0			513
97312	21500	28.6431	80.7482	6			58		714
97312	21500	28.6431	80.7482		310	2.9			714

97312	21500	28.6431	80.7482	54	302	8.0	58		714
97312	21500	28.4632	80.6702	6			58		803
97312	21500	28.4632	80.6702	12	306	1.0			803
97312	21500	28.4632	80.6702	54	300	2.9	58		803
97312	21500	28.5184	80.6962	6			69		805
97312	21500	28.5184	80.6962	12	292	4.1	0,5		805
97312	21500	28.5184	80.6962	54	295	8.0	59		805
97312	21500	28.7464	80.8707	6	475	0.0		F 2	
97312	21500	28.7464	80.8707		205	4 1	57	52	819
97312	21500	28.4079		54	295	4.1			819
97312			80.7604	6	006		57	53	1000
	21500	28.4079	80.7604	54	296	7.0			1000
97312	21500	28.5272	80.7742	6			59	54	1007
97312	21500	28.5272	80.7742	54	278	7.0			1007
97312	21500	28.6056	80.8248	6			59	52	1012
97312	21500	28.6056	80.8248	54	288	4.1			1012
97312	21500	28.5697	80.5864	6			60	55	1101
97312	21500	28.5697	80.5864	12	303	6.0			1101
97312	21500	28.5697	80.5864	54	296	11.1	60	53	1101
97312	21500	28.5697	80.5864	162	304	12.1			1101
97312	21500	28.5697	80.5864	204	300	13.0	58	51	1101
97312	21500	28.5697	80.5864	6			60	54	1102
97312	21500	28.5697	80.5864	12	304	5.1			1102
97312	21500	28.5697	80.5864	54	292	9.9	60	52	1102
97312	21500	28.5697	80.5864	162	296	11.1	00	32	1102
97312	21500	28.5697	80.5864	204	297	11.1	58	52	1102
97312	21500	28.4843	80.7856	6	23.		58	53	1204
97312	21500	28.4843	80.7856	54	273	4.1	50	33	1204
97312	21500	28.6445	80.9034	6	2.5				1215
97312	21500	28.4114	80.9284	6			56	51	1500
97312	21500	28.4114	80.9284	54	284	4.1	50	31	1500
97312	21500	28.4475	80.8538	6	204	4.1			1502
97312	21500	28.4960	80.8843	6					1605
97312	21500	28.4960	80.8843	54					1605
97312	21500	28.5583	80.9132	6					1609
97312	21500	28.6173	80.9581	6			56	55	1612
97312	21500	28.6173	80.9581	54	271	5.1	30	22	1612
97312	21500	28.6762	80.9987	6	271	5.1	58	54	1617
97312	21500	28.6762	80.9987	54	300	7.0	30	24	1617
97312	21500	28.5231	81.0100	6	300	7.0	57	52	2008
97312	21500	28.5231	81.0100	54	274	4.1	31	22	2008
97312	21500	28.6489	81.0693	6	2/1	4.1	55	52	2016
97312	21500	28.6489	81.0693	54	289	5.1	55	22	2016
97312	21500	28.4417	81.0291	6	200	3.1			2202
97312	21500	28.4417	81.0291	54					2202
97312	21500	28.6256	80.6571	6			56	51	3131
97312	21500	28.6256	80.6571		287	2.9	20	21	3131
97312	21500	28.6256	80.6571	54	299	6.0	E 7	E 1	3131
97312	21500	28.6256	80.6571	162	296	11.1	57	21	
97312	21500	28.6256	80.6571		297	12.1	E 0	E 1	3131
97312	21500	28.6256	80.6571		303	15.0	58	21	3131
97312	21500	28.6256	80.6571						3131
97312	21500	28.6256		394		16.9	F 77	F 0	3131
97312	21500	28.6256	80.6571	492	296	16.9	57		3131
97312			80.6571	6	200	2 2	57	52	3132
97312	21500	28.6256	80.6571		288	2.9			3132
97312	21500	28.6256	80.6571		302	6.0	57	52	3132
	21500	28.6256	80.6571	162		11.1	F 0		3132
97312	21500	28.6256	80.6571	204	308	12.1	58	51	3132

97312	21500	28.6256	80.6571	295	306	15.0			3132	
97312	21500	28.6256	80.6571	394	311	15.9			3132	
97312	21500	28.6256	80.6571	492	312	15.9	56	50	3132	
97312	21500	28.3932	80.8211	6			58	53	9001	
97312	21500	28.3932	80.8211	54	298	6.0			9001	
97312	21500	28.3382	80.7321	6			59	54	9404	
97312	21500	28.3382	80.7321	54	291	4.1			9404	