Statistics 305/605: Introduction to Biostatistical Methods for Health Sciences

Chapter 11: Inference for Two Means

Jinko Graham

2018-09-13

Comparison of Two Means (Chapter 11)

Context

- ▶ We have measurements sampled from two populations.
- Want to make inference about the difference between the populations.
- ▶ In particular, interested in the difference between the two population means, denoted μ_1 and μ_2 .

Notation

- ▶ Let $x_{11},...,x_{1n_1}$ denote a sample from the first population and $x_{21},...,x_{2n_2}$ denote a sample from the second.
- ▶ The sample averages \bar{x}_1 and \bar{x}_2 estimate the population means μ_1 and μ_2 , respectively; so $\bar{x}_1 \bar{x}_2$ estimates $\mu_1 \mu_2$.
- ▶ We're interested in confidence intervals for $\mu_1 \mu_2$ and tests of $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 \neq 0$.

Example: Low Birthweight Infants

- Data on 100 infants with birth weight less than 1500g.
 - ▶ Variables are: head circumference (cm), birth length (cm), gestational age (wks), birth weight (g), mother's age (yrs), and mother's status for toxemia (1=high blood pressure during pregnancy, 0=not)
- ► Compare the distribution of variables such as age and birth weight in moms with to mom's without toxemia
- ▶ The first few rows of the data set are as follows:

##		headcirc	length	gestage	birthwt	momage	toxemia
##	1	27	41	29	1360	37	0
##	2	29	40	31	1490	34	0
##	3	30	38	33	1490	32	0
##	4	28	38	31	1180	37	0
##	5	29	38	30	1200	29	1
##	6	23	32	25	680	19	0

Gestational Age by Toxemia

- Question: Does the distribution of gestational age differ in moms with toxemia vs. moms without toxemia?
- Explore differences by toxemia status graphically, using boxplots (below) and histograms (next slide) in the sample.

Gestational Age by Toxemia: Histograms

Gestational Age by Toxemia: Summary Statistics

► The sample means and SDs of gestational age for each toxemia category are summarized below.

```
## # A tibble: 2 x 3
## toxCateg mean sd
## <fctr> <dbl> <dbl> *dbl>
## 1 0 28.35443 2.320687
## 2 1 30.90476 2.321740
```

- ► The sample means of the gestational ages differ between the toxemia groups, but the sample SDs look the same.
- Could the difference in the sample means be due to chance?

Outline of Inference Approach

- ▶ Same basic approach to inference as in the one-sample problem:
 - Inference is based on the sampling distribution of the statistic $\bar{X}_1 \bar{X}_2$
- ▶ Transform $\bar{X}_1 \bar{X}_2$ to a *pivotal quantity*, Z, if population SDs σ_1 and σ_2 are known.
- ▶ When σ 's are unknown, as is typically the case, we substitute estimates to obtain a *pivotal quantity* T.
- Confidence intervals and hypothesis tests follow from the sampling distribution of T.
- ▶ Note: We omit the following topics in this course:
 - ▶ Paired-samples *t*-test (Section 11.1 of text)
 - ► Two-sample *t*-test assuming equal SDs (Section 11.2.1)

Sampling Distribution of $\bar{X}_1 - \bar{X}_2$

- ▶ We have simple random samples (SRSs) of size n_1 for group 1 and n_2 for group 2.
- These samples are independent.
- ▶ Then the distribution of $\bar{X}_1 \bar{X}_2$ has
 - ▶ mean $\mu_1 \mu_2$ and
 - ▶ SD $\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}$, where σ_1 and σ_2 are the population SDs for group 1 and group 2, respectively.
- ▶ If the sample sizes are large enough, the CLT tells us that the shape of this distribution is approximately normal.

Z Transformation

- "Standardizing" a random variable by subtracting its population mean and dividing by its population SD gives a random variable with mean 0 & SD 1.
- For normal random variables, the transformation does not change the distribution; the standardized random variable is still normally distributed.
- ▶ Conclude that if $\bar{X}_1 \bar{X}_2$ is approximately normal with mean $\mu_1 \mu_2$ and SD $\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}$, then

$$Z = rac{(ar{X}_1 - ar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0, 1),$$

where \sim means "is distributed as".

T Transformation

▶ Inserting sample SDs s_1 and s_2 for the parameters σ_1 and σ_2 in Z gives

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$

- What is the distribution of T?
 - ▶ Turns out we can approximate it by a t-distribution with ν df.
 - We won't ever use the formula for ν but if you're curious it is given on page 270 of the text.
- ▶ Instead, computer software such as R automatically calculates ν for us, as shown next.

Illustration with Gestational Age and Toxemia

► The following is the output of the t.test() function for these data (see the R demo for details):

```
##
## Welch Two Sample t-test
##
## data: gestage by toxCateg
## t = -4.4745, df = 31.465, p-value = 9.365e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.712089 -1.388574
## sample estimates:
## mean in group 0 mean in group 1
## 28.35443 30.90476
```

- ▶ The df is $\nu = 31.465$.
- ▶ We can also see that the software computed a 95% confidence interval and p-value. More on these in a few slides.

Confidence Intervals for $\mu_1 - \mu_2$

▶ The level-*C* CI for $\mu_1 - \mu_2$ is of the form

estimate \pm margin of error

- ▶ The estimate is $\bar{x}_1 \bar{x}_2$
- ▶ The margin of error is $t^* \times SE$ where
 - t^* is the upper (1-C)/2 critical value of the t-distribution with ν df, and
 - ► SE is the **estimated SD** of $\bar{x}_1 \bar{x}_2$: $\sqrt{s_1^2/n_1 + s_2^2/n_2}$

Application to Gestational Age and Toxemia

- Calculate a 90% CI for the difference between mean gestational age in the toxemia and non-toxemia groups.
- ▶ The relevant sample statistics to four digits are as follows:

group	sample mean (\bar{x})	sample SD (s)	sample size (n)
1: non-toxemia	28.35	2.321	79
2: toxemia	30.90	2.322	21

- ► Estimate is $\bar{x}_1 \bar{x}_2 = 28.35 30.90 = -2.55$
- ▶ Margin of error is $t^* \times SE$ where
 - computer software calculates a critical value of $t^* = 1.695$ (see the R demo).
 - ► the SE is $\sqrt{s_1^2/n_1 + s_2^2/n_2} = \sqrt{2.321^2/79 + 2.322^2/21} = 0.570.$
 - ▶ Hence the margin of error is $1.696 \times 0.570 = 0.966$.
- ► CI is (-2.55 0.966, -2.55 + 0.966) = (-3.516, -1.584).

Interpretation

- ▶ The 90% CI is approximately (-3.5, -1.6).
- The text suggests an interpretation such as:
 - "90% of intervals constructed in this way cover the true difference between mean gestational age in the non-toxemia and toxemia groups."
- Another common style of interpretation is:
 - We are 90% confident that the true difference between mean gestational age in the non-toxemia and toxemia groups is between −3.5 and −1.6."
- ▶ Or, we might find it more natural to switch the order of the groups, which would switch the sign of the difference:
 - "We are 90% confident that the true difference between mean gestational age in the toxemia and non-toxemia groups is between 1.6 and 3.5"

Hypothesis Test

For the null hypothesis $H_0: \mu_1 - \mu_2 = 0$ of no difference between the groups, the formula for the observed t-statistic is

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$

- ▶ Observed values of t that are extreme in the sense of being more compatible with H_a are taken as evidence against $H_0: \mu_1 \mu_2 = 0$.
- ▶ The p-value is the chance of a value that is as or more extreme than what we observed, under H_0 .
- Using the same logic as in the one-sample problem (Ch 10), and taking T to be a random variable with a t distribution on ν df, we have:
 - for $H_a: \mu_1 \mu_2 \neq 0$, the *p*-value is $p = 2P(T \geq |t|)$,
 - for $H_a: \mu_1 \mu_2 > 0$, the *p*-value is $p = P(T \ge t)$ and
 - for $H_a: \mu_1 \mu_2 < 0$, the *p*-value is $p = P(T \le t)$.

Application to Gestational Age and Toxemia

We can re-use the calculations from the CI example (page 13), for the difference in sample means $(\bar{x}_1 - \bar{x}_2 = -2.55)$ and the SE of the difference $(\sqrt{s_1^2/n_1 + s_2^2/n_2} = 0.570)$:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} = \frac{-2.55}{0.570} = -4.474.$$

▶ Computer software (R demo) returns a p-value of 9.4×10^{-5} , or 0.000094, for a 2-sided alternative hypothesis.

Interpretation

- ► Small *p*-values (e.g. < .05) are taken as evidence against the null hypothesis.
- ▶ Our *p*-value of 9.4×10^{-5} is very small.
- If we had set a level of $\alpha=10\%$ for the test, we'd declare that: "We reject the null hypothesis that the mean gestational age is the same in the toxemia and non-toxemia groups at the 10% level."
- ▶ If we hadn't set a level of the test in advance, we might report our results as:

"There is strong evidence that the mean gestational age is different in the toxemia and non-toxemia groups (p < 0.001)."

Cause and Effect

- Our two-sample t test has revealed that toxemia and gestational age are associated.
 - The distribution of gestational age is different in the two toxemia groups (different means, lower in toxemia group).
- But, an association does not mean that toxemia has a causal effect on gestational age.
 - It could be that gestational age affects toxemia.
 - Or, there could be a hidden confounding variable that affects both toxemia and gestational age, that accounts for their association.

(More on confounding later, when we study multiple regression.)

Relationship Between Confidence Intervals and Tests

- ▶ In the low birth weight example, the 90% CI does not cover zero, and the hypothesis test of $H_0: \mu_1 \mu_2 = 0$ vs $H_a: \mu_1 \mu_2 \neq 0$ rejects the null hypothesis at the 10% level.
- Conversely, when a 90% CI does cover zero, the corresponding test against a two-sided alternative will retain the null hypothesis at the 10% level.
- ▶ This is a general property of tests of a population parameter θ .
 - ▶ A level- α test of H_0 : $\theta = \theta_0$ versus H_a : $\theta \neq \theta_0$ retains the null hypothesis if and only if the level $(1 \alpha) \times 100\%$ CI covers θ_0 .

Assumptions

- ▶ The assumptions for inference are that:
 - ► The data are two SRSs from the two parent populations (e.g. mothers with toxemia and mothers without toxemia).
 - Either
 - 1. the data measurements in the parent populations are normally distributed with mean μ_i and sd σ_i , written $N(\mu_i, \sigma_i)$, or
 - 2. the sample size $n=n_1+n_2$ is "large" enough to rely on the CLT for the sample means \bar{X}_1 and \bar{X}_2 .
- Guidelines for n (from the text Basic Practice of Statistics by D. Moore):
 - ► For *n* < 15, use the *t*-based CI and hypothesis test if the data look to be approximately normally distributed.
 - For $15 \le n < 40$, use the *t*-based CI and hypothesis test, *except* in the presence of outliers or strong skewness in the data distribution.
 - ▶ For large samples ($n \ge 40$), you can use the t-based CI and hypothesis test, even for clearly skewed distributions (because of the CLT).

Checking the assumptions for the low-birth-weight example

- ▶ There were n = 100 babies in this data set.
- According to the rules-of-thumb on the previous slide, we can use the t-based CI and hypothesis test even if the population distributions are skewed.

Summary

- Inference for the difference between two population means is based on either Z (SDs known) or T (SDs unknown).
- lacktriangle Confidence intervals are of the form estimate \pm margin of error
 - the margin of error is a critical value times SE
- ▶ To test the null hypothesis $H_0: \mu_1 \mu_2 = 0$ against an alternative H_a we compute a test statistic t (or z if SDs known) and p-value
 - ightharpoonup can compare p-value to a significance level lpha to obtain a test
- Inference is considered reliable when the parent populations are normal, or when rules of thumb for sample sizes are satisfied.