

The extended NuGrid stellar evolution, nucleosynthesis and yield data set

Outline

- Stellar yield modeling: 1-25Msun, Z=0.0001 ... 0.02
- Properties of the NuGrid yield sets
 - C13-pocket s process
 - Hot-bottom burning & hot-dredge up
 - Fallback in massive stars
- Simple stellar populations with Stellar Yields for Galactic Modeling Applications (SYGMA)

P. A. Denissenkov, J. Navarro, NuGrid collaboration, F. Herwig, C. Fryer, S. Jones, M. Pignatari, E. Starkenburg, R. Hirschi, N. Nishimura,

Puzzling yield sets for chemical evolution

Yield data sets for galactic modeling applications

The NuGrid approach:

- Complete dataset including full mass range of AGB and massive stars
- Same rate input in stellar simulations and postprocessing
- All stable elements + isotopes in complete network
- Mass- and metallicity coverage
- Semi-analytical model for SNII
- No rotation, no B fields

Set 1: astro-ph Pignatari13+, arxiv:

Set 1 extension

C. Ritter, S. Jones, M. Pignatari, F. Herwig, R. Hirschi, C. Fryer, N. Nishimura, P. A. Denissenkov & the NuGrid collaboration

Reference data available at http://data.nugridstars.org w/ Python tools to analyse and explore data.

- <1000 isotope
- 2000 grid zones
- 10⁵ models

+

Stellar evolution data for each time step and mass zone

S process in NuGrid models

S process in NuGrid models

0.1-

- Gravity-wave induced mixing (Battino15, in prep)
- Better agreement with observations
- He, C, O in agreement with post-AGB stars

[hs/ls]

Hot-bottom burning AGB stars

Hot-bottom burning in massive AGB stars

Hybrid approach

- Mixing and burning on same time scale
- Need coupling of mixing and burning
- BUT: with large networks to model s-process synthesis too expensive

Hybrid approach

How much fallback in core-collapse SN?

- Classical approach: Set Fallback to prevent ejection of neutron-rich material (e.g. Colgate71)
- We adopt mass-and metallicity dependent fallback from Fryer12
- NuGrid provides yields with mass cut deduced from ye jump, Fryer12 with delay, rapid fallback

Challenge below [Fe/H] ~ -2.3

Below this metallicity:

- He-core flashes (e.g. Campbell10)
- He-shell flashes (e.g Sudao10)
- VLTP pulses (Herwig11)
- SAGB stars (Jones+ 15, submitted)
- Massive stars

Jones 2015

Dark Matter, Gas and Stars in the Local Group

A cosmological hydrodynamical simulation of the Local-Group environment, where the formation of stars and the enrichment of the interstellar medium is followed self-consistently.

VIRGO consortium Julio Navarro Fattahi+ '15

Dark Matter, Gas and Stars in the Local Group

A cosmological hydrodynamical simulation of the Local-Group environment, where the formation of stars and the enrichment of the interstellar medium is followed self-consistently.

VIRGO consortium Julio Navarro Fattahi+ '15

Dark Matter, Gas and Stars in the Local Group

A cosmological hydrodynamical simulation of the Local-Group environment, where the formation of stars and the enrichment of the interstellar medium is followed self-consistently.

VIRGO consortium Julio Navarro Fattahi+ '15

SYGMA

- Stellar yields for galactic modeling applications
- Fold yields into simple stellar populations
- Simple and easy accessible web interface

SYGMA interface

SYGMA

- Second goal: Probe the impact of nuclear physics and model assumptions on chemical evolution
 - Test impact by varying reaction rates
 - Test impact of CCSN prescription
 - Test of impact of resolving hot-bottom burning
 - Test of physics assumption: Convective boundary mixing assumption

Impact of resolving HBB

Relevant especially low Z

Impact of convective boundary mixing on SSP's

 At all conv. boundaries 109 Msun] in AGB models motivated by multidimensional simulations 1.2 (e.g. Miller-Bertolami06, 0.8 Weiss09; Herwig14, Woodward15)

Intershell O in low-mass 108
AGB stars:
CBM: 15%
DO CBM/K10: 206

no CBM/K10: 2%

• Conflict with O in GCE?

K10: Karakas10

Next plans

- Test impact of rates on whole mass-metallicity yield grid and chemical evolution
- Update physics:
 - Improved 1D explosion (Chris Fryer)
 - Yields from SNIa (Kathrin, Claudia, Dean)
 - Gravity wave mixing (Umberto)
- Increase sparsity of grid

Thank you very much!

Backup slides

Evolution of [O/Fe] at solar Z

AGB stars: convective boundaries

This is the 13 C pocket for low-mass AGB Stars, with exponential CBM with f_ce = 0.126.

M=2Msun, Z=0.0001

If we use such a large f in low-Z high-M models:

Extreme hot dredge-up

(Herwig 2004, Goriely & Siess 2004)

AGB stars at low-Z

Hot dredge-up in massive and super-AGB stars

AGB stars at low-Z

- What is the right f_ce for low-Z?
 - Convective-reactive feedback reduces f_ce
 - f_ce cannot be zero but could be very small

Reduce by a factor of at high mass & low Z to f_ce = 0.002

Still HDUP luminosity is higher than He peak luminosity!

Scheme of H ingestion

Surface

Center