EE25BTECH11032 - Kartik Lahoti

Question:

Point **A** lies on the line segment **XY** joining **X**(6, -6) and **Y**(-4, -1) in such a way that $\frac{XA}{XY} = \frac{2}{5}$. if point **A** also lies on the line 3x + k(y + 1) = 0, find the value of k. **Solution:**

Given:

Symbol	Value	Description
X	$\begin{pmatrix} 6 \\ -6 \end{pmatrix}$	Given Point
Y	$\begin{pmatrix} -4 \\ -1 \end{pmatrix}$	Given Point
A	7	Desired Point

Using Section Formula,

$$\mathbf{A} = \frac{1}{1+p} \left(\mathbf{X} + p\mathbf{Y} \right) \tag{0.1}$$

From the question , $p = \frac{2}{3}$ Substituting the values, we get

$$\mathbf{A} = \frac{1}{1 + \frac{2}{3}} \left(\begin{pmatrix} 6 \\ -6 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} -4 \\ -1 \end{pmatrix} \right) = \begin{pmatrix} 2 \\ -4 \end{pmatrix} \tag{0.2}$$

Given Line Equation,

$$(3 \quad k)\mathbf{x} + k = 0$$
 (0.3)

Putting **A** in this equation,

$$(3 \quad k) \begin{pmatrix} 2 \\ -4 \end{pmatrix} + k = 0$$
 (0.4)

$$6 - 4k + k = 0 \tag{0.5}$$

$$k = 2 \tag{0.6}$$

Hence,

$$\mathbf{A} = \begin{pmatrix} 2 \\ -4 \end{pmatrix} \text{ and } k = 2 \tag{0.7}$$

