

Klasifikasi Sentimen Masyarakat Indonesia terhadap Mobil Listrik

By White Fans Team Final Data Competition ISFEST 2024

Daftar Isi

Business Understanding

Melalui Peraturan Presiden (Perpres) Nomor 55 Tahun 2019, Indonesia didorong untuk mempercepat program kendaraan bermotor listrik berbasis baterai

TARGET:

2 JUTA UNIT TERJUAL

pada tahun 2030

Kementrian ESDM (2024)

PENJUALAN MOBIL LISTRIK SEBANYAK

20.414 UNIT

Mentri ESDM, Arifin Tasrif (2023)

Penyebab:

Business Understanding

Determine Business Objectives

> Determine Data Mining Goals

Produce Project Plan

Data Preprocessing

Data Preprocessing

Exploratory Data Analysis

Distribusi Tipe Sentimen

Distribusi Komentar terhadap waktu

	Month	Count
Date	2023-06-06 2023-06-08	308 100
Top	2023-06-07	441
	Date	Count

	Month	Count
Тор	2023-06	1235
Month	2023-07	123
	2023-03	93

Terdapat lonjakan signifikan dalam jumlah komentar antara tanggal 6 hingga 8 Juni 2023. Selain itu, secara keseluruhan, bulan Juni mencatatkan jumlah komentar tertinggi dalam dataset ini.

Kata yang paling banyak muncul

Word Cloud: negatif

Word Cloud: netral

5 Kata yang Paling Sering Muncul untuk Sentimen 'positif':

- 1) harga: 240
- 2) mahal: 117
- 3) laku: 80
- 4) ev: 77
- 5) juta: 77

5 Kata yang Paling Sering Muncul untuk Sentimen 'negatif':

- 1) harga: 195
- 2) subsidi: 171
- 3) rakyat: 150
- 4) indonesia: 146
- 5) ev: 129

5 Kata yang Paling Sering Muncul untuk Sentimen 'netral':

- 1) subsidi: 43
- 2) juta: 14
- 3) mahal: 12
- 4) laku: 12
- 5) indonesia: 12

Analisis dari kata-kata yang paling sering muncul menunjukkan bahwa diskusi berfokus pada aspek harga dan subsidi.

Frekuensi Banyak Kata Pada Setiap Komentar

Dari plot, kita dapat melihat bahwa terdapat minimnya perbedaan pada tipe sentimen positif dan negatif. Sentimen netral memiliki kata-kata yang jauh lebih dikit.

Model dan Evaluasi

Model Klasifikasi

Random Forest 01

06

Logistic Regression

Multinomial Naive Bayes Classifier 02

07

Decision Tree Classifier

Gaussian Naive Bayes classifier 03

80

Bagging Classifier

Support Vector Classifier

04

09

Adaptive Boosting Classifier

XGBoost (Extreme Gradient Boosting)

05

10

Gradient Boosting Classifier

Problem: Imbalance Data

Sentimen	Banyak Data
Positif	504
Netral	144
Negatif	<mark>869</mark>

Tabel di atas adalah distribusi dari jumlah data tiap sentimen.

Terdapat kondisi data yang tidak seimbang (imbalance data).

Imbalance data menyebabkan **performa** dan **akurasi** model yang **menurun** (Hawari, 2024)

Handling Imbalance Data: SMOTE (Synthetic Minority Over-sampling Technique)

Akan dibandingkan 10 model sebelumnya 1)**dengan** dan 2)**tanpa SMOTE** melalui beberapa metrik penilaian

Model

Vektorisasi untuk mengubah data teks komentar menjadi vektor numerik.

4. Training Model

Data akan di-*train* dengan 10 model sebelumya

1.Split Data

Data komentar dibagi menjadi data *train* dan data *test*. Digunakan **test size** sebesar 30%

3. Imbalance Data

Akan dicoba 1) **dengan SMOTE** dan 2) **tanpa SMOTE**

Next Slide

Electric Car Infographics

Previous Slide

5. Evaluasi

Akan digunakan beberapa metrik evaluasi: accuracy, precision, recall, f1-score, cross-validation, ROC AUC

6. SMOTE vs No SMOTE

Memilih model 1) **dengan** atau 2) **tanpa SMOTE** berdasarkan metrik evaluasi

7. Pilih Model Klasifikasi

Akan dipilih 1 dari 10 model klasifikasi berdasarkan metrik evaluasi

Hyperparameter Tuning dengan GridSearchCV pada model yang dipilih sebelumnya

9. Training dengan Parameter Hasil GridSearch CV

Akan dipilih 1 dari 10 model klasifikasi berdasarkan metrik evaluasi

SMOTE vs No SMOTE

Tanpa SMOTE:

- 1. Akurasi lebih tinggi pada beberapa algoritma
- CV Mean Accuracy lebih rendah pada <u>semua</u> algoritma

Keputusan:

- SMOTE diperlukan untuk meningkatkan kinerja model secara umum.
- Pilih model dengan SMOTE untuk performa yang lebih stabil.

Dipilih Model dengan SMOTE

Memilih 1 dari 10 Algoritma dengan SMOTE

Evaluasi dilakukan berdasarkan **Accuracy**, **CV Mean Accuracy**, **Precision**, **Recall**, **dan F1-Score**.

SVM Classifier dipilih sebagai **model terbaik** dalam mengklasifikasikan sentimen pada dataset ini.

Evaluasi

Evaluasi	Nilai
Test Accuracy	73.03%
CV Mean	
Accuracy	89.17%
CV Std Dev	0.0834
ROC AUC	0.8126

Classification Report

Class	Precision	Recall	F1-Score	Support
Class 0	0.71	0.96	0.82	269
Class 1	1.00	0.05	0.09	42
Class 2	0.79	0.50	0.61	145

Overall Metrics	Nilai
Accuracy	73.03%
Macro Avg F1-Score	0.51
Weighted Avg F1-Score	0.69

Dipilih Model SVM Classifier dengan SMOTE

Perbandingan Model SVC dengan SMOTE Sebelum dan Sesudah Hyperparameter Tuning

Setelah tuning, model SVC menghasilkan performa yang lebih baik pada semua metrik, khususnya pada CV Mean Accuracy dan ROC AUC.

Stabilitas model meningkat dengan CV Std Dev yang lebih rendah.

Perbandingan Evaluasi

Model SVC Setelah Tuning Menunjukkan Performa Lebih Baik

Evaluasi	Nilai	
Test Accuracy	73.03%	
CV Mean Accuracy	89.17%	
CV Std Dev	0.0834	
ROC AUC	0.8126	

Perbandingan Classification Report

Class	Metric	Sebelum Tuning	Setelah Tuning
Class 0	Precision	0.71	0.79
	Recall	0.96	0.88
	F1-Score	0.82	0.83
	Precision	1.00	0.23
Class 1	Recall	0.05	0.12
	F1-Score	0.09	0.16
	Precision	0.79	0.72
Class 2	Recall	0.50	0.66
	F1-Score	0.61	0.69
Overall	Accuracy	0.73	0.74
Macro Avg	Precision	0.83	0.58
	Recall	0.50	0.55
	F1-Score	0.51	0.56
147 ° -1 1 1	Precision	0.76	0.71
Weighted	Recall	0.73	0.74
Avg	F1-Score	0.69	0.72

CONCLUSION & SUGGESTION

KESIMPULAN

SARAN

IMPLEMENTASI TEKNIK SMOTE

Pertimbangkan untuk menggunakan teknik SMOTE dalam menangani ketidakseimbangan kelas pada data.

EKSPLORASI MODEL SVM

Eksplorasi penggunaan model SVM yang lebih kompleks dapat meningkatkan daya prediktif dan keakuratan analisis sentimen

sentimen yang lebih akurat

PERLUAS PENGGUNAAN MODEL SVM

Perluas penggunaan model SVM dalam analisis sentimen kendaraan listrik dengan menguji data baru secara berkala

PEMANTAUAN SENTIMEN

Pantau sentimen secara berkelanjutan untuk menangkap perubahan tren dan masalah baru.

Daftar Pustaka

- [1] Hawari, I. F., Najib, M. K., Nurdiati, S., Marpaung, Y. F. Y., Kusumawati, N., Nurfadila, M., ... & Hernawan, B. F. (2024). PENGARUH TEKNIK OVERSAMPLING PADA ALGORITMA MACHINE LEARNING DALAM KLASIFIKASI BODY MASS INDEX (BMI). Jurnal Riset dan Aplikasi Matematika (JRAM), 8(1), 51-68.
- [2] Suryani, S., Fayyad, M. F., Savra, D. T., Kurniawan, V., & Estanto, B. H. (2023). Sentiment Analysis of Towards Electric Cars using Naive Bayes Classifier and Support Vector Machine Algorithm. Public Research Journal of Engineering, Data Technology and Computer Science, 1(1), 1-9.
- [3] Suresha, H. P., & Kumar Tiwari, K. (2021). Topic Modeling and Sentiment Analysis of Electric Vehicles of Twitter Data. Asian Journal of Research in Computer Science, 12(2), 13-29.
- [4] Jiang, X., & Everts, J. (2021). Making sense of electrical vehicle discussions using sentiment analysis on closely related news and user comments. arXiv preprint arXiv:2112.12327.

Terima Kasih.