Examen d'Analyse I - Durée : 1h30 minutes.

Les calculatrices et les documents ne sont pas autorisés. (Barême donné à titre indicatif.)

Exercice 1 (Séries entières - 5 points)

Calculer le rayon de convergence et le domaine de convergence simple des séries entières :

1.
$$\sum_{n \in \mathbb{N}} nx^n, x \in \mathbb{R}.$$

$$2. \sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{n} x^n, \ x \in \mathbb{R}.$$

Dire si les affirmations suivantes sont vraies ou fausses. En donner une démonstration ou un contre-exemple.

- 1. Les séries $\sum a_n z^n$ et $\sum (-1)^n a_n z^n$ ont même rayon de convergence.
- 2. Les séries $\sum a_n z^n$ et $\sum (-1)^n a_n z^n$ ont même domaine de convergence.
- 3. Si $\sum a_n x^n$ a un rayon de convergence fini R > 0, alors sa somme admet une limite infinie en R^- (i.e. la limite à gauche de R).

Exercice 2 (Séries de fonctions - 7 points)

Pour $x \in \mathbb{R}^+$ et $n \in \mathbb{N}$, $n \geq 2$, on pose $f_n(x) = \frac{x \exp(-nx)}{\ln(n)}$ et $S(x) = \sum_{n=2}^{\infty} f_n(x)$ (sous réserve de convergence).

- 1. Etudier la convergence simple, normale et uniforme de la série $\sum f_n$ sur \mathbb{R}^+ .
- 2. Montrer que S est de classe C^1 sur \mathbb{R}_+^* .
- 3. Montrer que S n'est pas dérivable à droite en 0.
- 4. Montrer que $x^k S(x)$ tend vers 0 en $+\infty$ pour tout $k \in \mathbb{N}$.

Exercice 3 (Suites de fonctions - 4 points)

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue, non identiquement nulle, telle que f(0) = 0 et $\lim_{x \to +\infty} f(x) = 0$. On pose $f_n(x) = f(nx)$ et $g_n(x) = f\left(\frac{x}{n}\right)$.

- 1. Donner un exemple de fonction f.
- 2. Montrer que f_n et g_n convergent simplement vers la fonctions nulle.
- 3. Montrer que la convergence n'est pas uniforme.
- 4. Si $\int_0^\infty f(t)dt$ converge, chercher $\lim_{n\to+\infty}\int_0^\infty f_n(t)dt$ et $\lim_{n\to+\infty}\int_0^\infty g_n(t)dt$.

Exercice 4 (Espaces vectoriels normés - 5 points)

On considère E=C([0,1]), l'ensemble des fonctions continues sur \mathbb{R} . On rappelle que pour tout $f\in E$, la norme L^1 est définie par :

$$||f||_1 = \int_0^1 |f(t)|dt$$

Pour tout $n \in \mathbb{N}, n \geq 2$, on considère la fonction f_n définie pour tout $x \in [0,1]$ par :

$$f_n(x) = \begin{cases} 1 & \text{si } x \le \frac{1}{2} - \frac{1}{n} \\ -nx + \frac{n}{2} & \text{si } \frac{1}{2} - \frac{1}{n} \le x \le \frac{1}{2} \\ 0 & \text{si } \frac{1}{2} \le x \le 1. \end{cases}$$

- 1. Dessiner grossièrement la fonction f_n .
- 2. Déterminez la limite simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.
- 3. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ est de Cauchy.
- 4. En déduire que l'espace vectoriel normé $(E, \|\cdot\|_1)$ n'est pas complet.