

Jings Sammes in the state of th

حل تعریبات سری دوم

مصطفى فضلى 26 مهر ماه 1400 1- ورودی مدار زیر عدد سه بیتی از 0 تا 7 است، مدار داخلی PROM آن را طوری طراحی کنید که 7segment نمایش دهد.

- 🗓 -> A,B,C,D,E,F
 - **5** -> A,C,D,E,F,G

• ¬-> A,B,C,F

- 2 -> A,B,D,E,G
- $\exists -> A,B,C,D,G$
- 4 -> C,D,F,G
- 5 -> A,C,D,F,G

• D0,D1,D2,D3,D4,D5

• **5** -> D0,D2,D3,D4,D5,D6

• D0,D1,D2,D5

- **2** -> D0,D1,D3,D4,D6
- **3** -> D0,D1,D2,D3,D6
- **5** -> D0,D2,D3,D5,D6

A0	A1	A2	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	1	1	1	1
0	0	1	0	0	0	0	1	1	0
0	1	0	1	0	1	1	0	1	1
0	1	1	1	0	0	1	1	1	1
1	0	0	1	1	0	0	1	1	0
1	0	1	1	1	0	1	1	0	1
1	1	0	1	1	1	1	1	0	1
1	1	1	0	0	0	0	1	1	1

 $D0 \rightarrow 0, 2, 3, 5, 6, 7$

D1 -> 0, 1, 2, 3, 4, 7

D2 -> 0, 1, 3, 4, 5, 6, 7

 $D3 \rightarrow 0, 2, 3, 5, 6$

 $D4 \rightarrow 0, 2, 6$

 $D5 \rightarrow 0, 4, 5, 6$

 $D6 \rightarrow 2, 3, 4, 5, 6$

D0	A1' - A2'	A1' - A2	A1 - A2	A1 - A2′
A0'	1	0	1	1
A0	0	1	1	1

$$D0 = A1 + A0'A2' + A0A2$$

$$D1 = A0' + A1A2 + A1'A2'$$

$$D2 = A0 + A2 + A1'$$

$$D3 = A0'A2' + A0'A1 + A1A2' + A0A1'A2$$

D4	A1' - A2'	A1' - A2	A1 - A2	A1 - A2′
A0'	1	0	0	1
A0	0	0	0	1

$$D4 = A0'A2' + A1A2'$$

$$D5 = A1'A2' + A0A1' + A0A2'$$

$$D6 = A0A1' + A0'A1 + A1A2'$$

توابع زیر را که دارای ورودی و خروجی 4 بیتی است را درنظر بگیرید.

W(A, B, C, D) = Σ (2, 6, 8, 9) X(A, B, C, D) = Σ (0, 1, 4, 5, 7, 10, 11, 13, 14, 15) Y(A, B, C, D) = Σ (2, 4, 5, 6, 8, 9, 10) Z(A, B, C, D) = Σ (2, 3, 6, 7, 9, 11, 13, 15)

PLA متناظر با آن را طوری رسم کنید که کمترین تعداد گیت های AND و OR استفاده شود. (بهینه ترین حالت)

W	C' - D'	C' - D	C - D	C - D'
A' - B'				1
A' - B				1
A - B				
A - B'	1	1		

$$F = A'CD' + AB'C'$$

$$F' = (A'C' + DC + AB + AC)$$

X	C' - D'	C' - D	C - D	C - D'
A' - B'	1	1		
A' - B	1	1	1	
A - B		1	1	1
A - B'			1	1

$$F = A'C' + BD + AC$$

$$F' = (A'CD' + AB'C' + A'B'C + AC'D')$$

Y	C' - D'	C' - D	C - D	C - D'
A' - B'				1
A' - B	1	1		1
A - B				
A – B'	1	1		1

$$F = A'CD' + AB'C' + A'BC' + B'CD'$$

$$F' = (AB + DC + A'B'C')$$

Z	C' - D'	C' - D	C - D	C - D'
A' - B'			1	1
A' - B			1	1
A - B		1	1	
A - B'		1	1	

$$F = AD + A'C$$
$$F' = (A'C' + AD')$$

PAL متناظر با آن را با توجه به اینکه گیت های OR سه ورودی هستند و فقط یکی از خروجی ها دارای خط فیدبک است (انتخاب آن اختیاری است)، رسم کنید.

W	C' - D'	C' - D	C - D	C - D'
A' - B'				1
A' - B				1
A - B				
A - B'	1	1		

$$F = A'CD' + AB'C'$$

$$F' = (A'C' + DC + AB + AC)$$

X	C' - D'	C' - D	C - D	C - D'
A' - B'	1	1		
A' - B	1	1	1	
A - B		1	1	1
A - B'			1	1

$$F = A'C' + BD + AC$$

$$F' = (A'CD' + AB'C' + A'B'C + AC'D')$$

Y	C' - D'	C' - D	C - D	C - D'
A' - B'				1
A' - B	1	1		1
A - B				
A – B'	1	1		1

$$F = A'CD' + AB'C' + A'BC' + B'CD'$$

$$F' = (AB + DC + A'B'C')$$

Z	C' - D'	C' - D	C - D	C - D'
A' - B'			1	1
A' - B			1	1
A – B		1	1	
A - B'		1	1	

$$F = AD + A'C$$
$$F' = (A'C' + AD')$$

