NAME- RAJANANDINI MOHARANA

COLLEGE- FAKIR MOHAN MEDICAL COLLEGE & HOSPITAL

STREAM- MBBS

YEAR- 1ST

```
#MAJOR PROJECT-1
```

#Choose any dataset of your choice and apply a suitable CLASSIFIER/REGRESSOR

```
#DATASET-BRAIN-STROKE
#URL-/content/brain_stroke.csv
```

```
#CREATION OF DATAFRAME
```

import pandas as pd df=pd.read_csv('/content/brain_stroke.csv')

```
work_type Residence_type avg_glucose_level bmi smoking_status stroke
      gender age hypertension heart_disease ever_married
  0
        Male 67.0
                                                      Yes
                                                                Private
                                                                                Urban
                                                                                                 228.69 36.6 formerly smoked
        Male 80.0
                                                      Yes
                                                                 Private
                                                                                 Rural
                                                                                                 105.92 32.5
                                                                                                                never smoked
     Female 49.0
                                                      Yes
                                                                Private
                                                                                                 171.23 34.4
                                                                                Urban
                                                                                                                     smokes
      Female 79.0
                                                                                                 174.12 24.0
                                           0
                                                      Yes Self-employed
                                                                                 Rural
                                                                                                                never smoked
                             0
                                                      Yes
        Male 81.0
                                           0
                                                                 Private
                                                                                Urban
                                                                                                  186.21 29.0 formerly smoked
                                           0
                                                                                                  70.15 29.8 formerly smoked
        Male 41.0
                                                       No
                                                                 Private
                                                                                 Rural
        Male 40.0
                                                                Private
                                                                                                  191.15 31.1
                                                                                                                                 0
                                           0
                                                      Yes
                                                                                Urban
                                                                                                                     smokes
4978 Female 45.0
                                           0
                                                      Yes
                                                                                 Rural
                                                                                                  95.02 31.8
                                                                                                                                 0
                                                               Govt_job
                                                                                                                     smokes
4979
       Male 40.0
                                                      Yes
                                                                 Private
                                                                                 Rural
                                                                                                  83.94 30.0
                                                                                                                     smokes
                                                                                                                                 0
4980 Female 80.0
                                                      Yes
                                                                 Private
                                                                                Urban
                                                                                                   83.75 29.1
                                                                                                                never smoked
4981 rows × 11 columns
```

df.shape

#Rows-4981,Columns-11

(4981, 11)

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4981 entries, 0 to 4980 Data columns (total 11 columns): # Column Non-Null Count Dtype -------gender 4981 non-null object 4981 non-null float64 1 age hypertension 4981 non-null int64 4981 non-null int64 heart_disease ever_married 4981 non-null object work_type 4981 non-null object 4981 non-null object Residence_type avg_glucose_level 4981 non-null float64 4981 non-null float64 8 4981 non-null object smoking_status 10 stroke 4981 non-null int64 dtypes: float64(3), int64(3), object(5) memory usage: 428.2+ KB

#Here I create another dataframe from the existing one which contains only float and int datatypes values df_num= df.select_dtypes(include = ['float64','int64'])

age	hypertension	heart_disease	avg_glucose_level	bmi	stroke	1
67.0	0	1	228.69	36.6	1	
80.0	0	1	105.92	32.5	1	
49.0	0	0	171.23	34.4	1	
79.0	1	0	174.12	24.0	1	
81.0	0	0	186.21	29.0	1	
41.0	0	0	70.15	29.8	0	
40.0	0	0	191.15	31.1	0	
45.0	1	0	95.02	31.8	0	
40.0	0	0	83.94	30.0	0	
80.0	1	0	83.75	29.1	0	
	67.0 80.0 49.0 79.0 81.0 41.0 40.0 45.0	67.0 0 80.0 0 49.0 0 79.0 1 81.0 0 41.0 0 40.0 0 45.0 1	67.0 0 1 80.0 0 1 49.0 0 0 79.0 1 0 81.0 0 0 41.0 0 0 40.0 0 0 45.0 1 0 40.0 0 0	67.0 0 1 228.69 80.0 0 1 105.92 49.0 0 0 171.23 79.0 1 0 174.12 81.0 0 0 186.21 41.0 0 0 70.15 40.0 0 0 191.15 45.0 1 0 95.02 40.0 0 0 83.94	67.0 0 1 228.69 36.6 80.0 0 1 105.92 32.5 49.0 0 0 171.23 34.4 79.0 1 0 174.12 24.0 81.0 0 0 186.21 29.0 41.0 0 0 70.15 29.8 40.0 0 0 191.15 31.1 45.0 1 0 95.02 31.8 40.0 0 83.94 30.0	67.0 0 1 228.69 36.6 1 80.0 0 1 105.92 32.5 1 49.0 0 0 171.23 34.4 1 79.0 1 0 174.12 24.0 1 81.0 0 0 186.21 29.0 1 41.0 0 0 70.15 29.8 0 40.0 0 0 191.15 31.1 0 45.0 1 0 95.02 31.8 0 40.0 0 0 83.94 30.0 0

4981 rows × 6 columns

#I want to know how many no of stokes are there df['stroke'].value_counts()

0 4733

248 Name: stroke, dtype: int64

#Visualisation

df['stroke'].value_counts().plot(kind = 'bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7f46afa0c6d0> 4000 3000 2000 1000

#Divide the data into input and output #input data

x = df_num.iloc[:,0:5].values

```
array([[ 67. , 0. , 1. , 228.69, 36.6 ],
        [ 80. , 0. , 1. , 105.92, 32.5 ],
      [ 49. , 0. , 0. , 171.23, 34.4 ],
      ...,
[ 45. , 1. , 0. , 95.02, 31.8 ],
      [ 40. , 0. , 0. , 83.94, 30. ],
[ 80. , 1. , 0. , 83.75, 29.1 ]])
```

#output data y = df_num.iloc[:,5].values

array([1, 1, 1, ..., 0, 0, 0])

#Train_test_split/train and test variables

from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(x,y,random_state = 0)

print(x.shape) print(x_train.shape) print(x_test.shape)

(4981, 5)

(3735, 5)(1246, 5)

print(y.shape)

print(y_train.shape) print(y_test.shape)

(4981,)

(3735,) (1246,)

#NORMALISATION or SCALING from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler()

x_train = scaler.fit_transform(x_train)

#Apply Classifier/Regressor #Here I apply Regressor from sklearn.linear_model import LogisticRegression model = LogisticRegression() #Fitting the model model.fit(x_train,y_train) LogisticRegression() #Predict the output y_pred = model.predict(x_test) y_pred #PREDCITED VALUES array([0, 0, 0, ..., 0, 0, 0]) y_test array([0, 0, 0, ..., 0, 0, 0]) #Accuracy from sklearn.metrics import accuracy_score accuracy_score(y_pred,y_test)* 100 95.26484751203851 #Individual Prediction m= scaler.transform([[81.0,0,0,186.21,29.0]]) model.predict(m) array([0]) , 0.61970098, 0.42816092]]) array([[0.98779297, 0. , 0.

x_test = scaler.fit_transform(x_test)

Colab paid products - Cancel contracts here

✓ 0s completed at 12:29 AM • X

```
#MAJOR PROJECT 2
```

#Choose any dataset of your choice and apply K Means Clustering

```
#DATASET-CORRUPTION
#URL-/content/corruption (1).csv
```

#Create DataFrame import pandas as pd df=pd.read_csv('/content/corruption (1).csv')

	country	annual_income	corruption_index
0	Denmark	68110	12
1	Finland	53660	12
2	New Zealand	45340	12
3	Norway	84090	15
4	Singapore	64010	15
105	Yemen	670	84
106	Venezuela	13080	86
107	Somalia	450	87
108	Syria	1170	87

460

89

110 rows × 3 columns

109 South Sudan

df.shape #Rows=110 #Columns=3

(110, 3)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 110 entries, 0 to 109 Data columns (total 3 columns): # Column Non-Null Count Dtype --------110 non-null object 0 country 1 annual_income 110 non-null int64 2 corruption_index 110 non-null int64 dtypes: int64(2), object(1) memory usage: 2.7+ KB

#I want to create a dataframe having numeric values only df_num = df.select_dtypes(include = ['int64']) df_num

	annual_income	corruption_index
0	68110	12
1	53660	12
2	45340	12
3	84090	15
4	64010	15
105	670	84
106	13080	86
107	450	87
108	1170	87
109	460	89

110 rows × 2 columns

df_num.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 110 entries, 0 to 109

Data columns (total 2 columns): # Column Non-Null Count Dtype --------0 annual_income 110 non-null int64 1 corruption_index 110 non-null int64 dtypes: int64(2)

#Input-'annual_income' and 'corruption_index' column #Divide the data ino input #Slicing of input columns x=df_num.iloc[:,0:2].values

#Visualisation before clustering

memory usage: 1.8 KB

import matplotlib.pyplot as plt plt.scatter(df['corruption_index'],df['annual_income'])

import numpy as np np.sqrt(110)#110 is the total number of points #No of cluster=k

10.488088481701515

plt.plot(k,sse)

#Find out the value of k #1.Elbow method from sklearn.cluster import KMeans k=range(2,11)#k range is in b/w 2 and 11 sse=[]

for i in k: model_demo=KMeans(n_clusters=i,random_state=0) model_demo.fit(x) sse.append(model_demo.inertia_) plt.scatter(k,sse)

[<matplotlib.lines.Line2D at 0x7f285878cfd0>]

#2.Silhouette score method to find out k value from sklearn.metrics import silhouette_score k=range(2,11) for i in k:

model_demo=KMeans(n_clusters=i,random_state=0)

```
model_demo.fit(x)
 y_pred=model_demo.predict(x)
 print(f"{i} Clusters ,Score={silhouette_score(x,y_pred)}")
 plt.bar(i,silhouette_score(x,y_pred))
    2 Clusters ,Score=0.8250423417665396
    3 Clusters ,Score=0.7873768660102557
    4 Clusters ,Score=0.7445340205192341
    5 Clusters ,Score=0.6727183336946292
    6 Clusters ,Score=0.6372161082857853
    7 Clusters ,Score=0.6546866089993955
    8 Clusters ,Score=0.6456656559747936
    9 Clusters ,Score=0.5859720648427018
    10 Clusters ,Score=0.5947956746599683
     0.7
     0.6
     0.3
     0.2 -
#Apply clusterer
from sklearn.cluster import KMeans
model=KMeans(n_clusters=k,random_state=0)
model.fit(x)
    KMeans(n_clusters=2, random_state=0)
#Output prediction
y=model.predict(x)
   dtype=int32)
y.size
    110
x[y==1,0]
#The value of input when cluster 1 is selcted and column index 0 is selected
    array([68110, 53660, 45340, 84090, 64010, 58890, 90360, 56370, 81110,
         51040, 45380, 54450, 52210, 48310, 64410, 74520, 56760, 50510,
         42620, 43880, 39410, 70430, 57120, 34980, 49560, 35710])
np.unique(y,return_counts=True)
    (array([0, 1], dtype=int32), array([84, 26]))
#Final Visualisation after clustering
plt.figure(figsize=(10,5))
for i in range(k):
 plt.scatter(x[y==i,0],x[y==i,1],label=f'Cluster {i}')
plt.scatter(model.cluster_centers_[:,0],model.cluster_centers_[:,1],s=300,c='red',label='Centroids')
plt.legend()
    <matplotlib.legend.Legend at 0x7f28584b1650>

    Cluster 0

                                                          Cluster 1
                                                          Centroids
```

90 Cluster 0 Cluster 1 Centroids 70 40 30 20 10 20000 40000 60000 80000

Colab paid products - Cancel contracts here

Os completed at 1:12 AM

• ×