Orákula pre grafy reprezentujúce cestovné poriadky

František Hajnovič

FMFI UK

March 26, 2013

Supervisor: doc. RNDr. Rastislav Královič PhD.

Content

- Introduction
- 2 Contribution
 - Data
 - Underlying shortest paths
 - Neural networks
 - TTBlazer application
- Conclusion

Conclusion

Introduction

Introduction

- Given a timetable, we query (a, t, b) for
 - Earliest arrival (EA) $t^*_{(a,t,b)}$
 - Optimal connection (OC) $c_{(a,t,b)}^*$

What is it about?

- Given a timetable, we query (a, t, b) for
 - Earliest arrival (EA) $t^*_{(a,t,b)}$
 - Optimal connection (OC) $c^*_{(a,t,b)}$

Motivation

- connection
- Large-scale timetable search engines (cp.sk, imhd.sk...)
- Approach
 - (Distance) oracle-based approach [TZ05] pre-computation

Place		Time		
From	То	Departure	Arrival	
Α	В	10:00	10:45	
В	C	11:00	11:30	
В	C	11:30	12:10	
В	Α	11:20	12:30	
C	Α	11:45	12:15	

Table : **Timetable** - a set of **elementary connections** (between pairs of **cities**)

Figure : Underlying graph

Place		Time		
From	То	Departure	Arrival	
Α	В	10:00	10:45	
В	C	11:00	11:30	
В	C	11:30	12:10	
В	Α	11:20	12:30	
C	Α	11:45	12:15	

Table : **Timetable** - a set of **elementary connections** (between pairs of **cities**)

 $\textbf{Figure}: \ \textbf{Underlying graph}$

Goals

- Devise methods to tackle EA/OC problem
- Analyse properties of timetables

Contribution

Data

Data

Name	Description	El. conns.	Cities	UG arcs	Time range	Height (h)
air01	domestic flights (US)	601489	287	4668	1 month	24374
cpru	regional bus (SVK)	37148	871	2415	1 day	239
cpza	regional bus (SVK)	60769	1108	2778	1 day	370
montr	public transport (Montreal)	7153	217	349	1 day	363
sncf	country-wide rails (FRA)	90676	2646	7994	1 day	488
zsr	country-wide rails (SVK)	932052	233	588	1 year	60308

Table: Timetables datasets

ldea

• "Usually we go through the same sequence of cities"

Contribution

000000000

Odchod	Príchod	Dĺžka cesty*	Použité linky	Zóny	Cena*
21:59	22:10	11 min	95	-	0,70 €
22:09	22:20	11 min	95	-	0,70 €
22:19	22:30	11 min	95	-	0,70 €
22:29	22:40	11 min	95	-	0,70 €
22:39	22:50	11 min	95	-	0,70 €

- p is USP $\iff \exists t : path(c^*_{(a,t,b)}) = p$
- ullet we have USP o reconstruct $c^*_{(a,t,b)}$

ldea

"Usually we go through the same sequence of cities"

- p is USP $\iff \exists t : path(c^*_{(a.t.b)}) = p$
- we have USP \rightarrow reconstruct $c^*_{(a,t,b)}$
- Overtaking [MHSWZ07] causes problems, but can be easily removed

Odchod	Príchod	Dĺžka cesty*	Použité linky	Zóny	Cena*
21:59	22:10	11 min	95	-	0,70 €
22:09	22:20	11 min	95	-	0,70 €
22:19	22:30	11 min	95	-	0,70 €
22:29	22:40	11 min	95	-	0,70 €
22:39	22:50	11 min	95	-	0,70 €

Name	Overtaken edges (%)
air01	1%
cpru	2%
cpza	2%
montr	1%
sncf	2%
zsr	0%

USP-OR

- ullet Pre-compute all conn. space $\mathcal{O}(h\ n^3)$
 - \bullet daily height usually 200 < h < 800

USP-OR

- Pre-compute all conn. space $\mathcal{O}(h n^3)$
 - ullet daily height usually 200 < h < 800
- ullet Pre-compute all USPs space $\mathcal{O}(au\ n^3)$
 - $au_{A,B}$ # of USPs between A and B

Name	avg $\tau_{A,B}$	$\max au_{A,B}$
air01	5.8	30
cpru	7.0	64
cpza	5.1	42
montr	4.3	30
sncf	4.3	24
zsr	2.5	19

Table : Daily, 200 station timetables

Name	avg USP size
air01	3.0
cpru	13.8
cpza	11.1
montr	20.3
sncf	10.5
zsr	13.7

Table : Daily, 200 station timetables

USP-OR

- Pre-compute all conn. space $\mathcal{O}(h n^3)$
 - ullet daily height usually 200 < h < 800
- Pre-compute *all USPs* space $\mathcal{O}(\tau \ n^3)$
 - $\tau_{A,B}$ # of USPs between A and B

Prep-time		Q-time	Stretch
$\mathcal{O}(\mathit{hn}^3)$	$\mathcal{O}(\tau n^3)$	$\mathcal{O}(\tau n)$	1

Table: USP-OR parameters

- ullet au almost constant, USP size $pprox \sqrt{n}$
- Space $\mathcal{O}(n^{2.5})$ too big anyway

Name	avg $\tau_{A,B}$	$\max au_{A,B}$
air01	5.8	30
cpru	7.0	64
cpza	5.1	42
montr	4.3	30
sncf	4.3	24
zsr	2.5	19

Table: Daily, 200 station timetables

Name	avg USP size
air01	3.0
cpru	13.8
cpza	11.1
montr	20.3
sncf	10.5
zsr	13.7

Table: Daily, 200 station timetables

USP-OR - au evolution

Figure : Changing of τ with increased time range in air01 dataset. 1 day = about 800 in height

Figure : Changing of τ with increased # of stations in sncf dataset

USP-OR-A

- ullet Pre-compute USPs only among *some* cities in UG: set of access nodes ${\cal A}$
- We would like (r1 and r2 small constants w.r.t. n):

Contribution

0000000000

- Size $|\mathcal{A}| = \mathcal{O}(\sqrt{n})$
- Small node neighbourhoods: $\forall v \mid neigh_{\mathcal{A}}(v) \mid < r_1 \cdot \sqrt{n}$
- Few local access nodes: $\forall v | lan_{\mathcal{A}}(v) | \leq r_2$

Searching for optimal AN set

- NP-complete
 - Reduction to min-set-cover

Figure : text

Searching for optimal AN set

- NP-complete
 - Reduction to min-set-cover

Figure: text

• Heuristics: node v with low $|neigh_{\mathcal{A}}(v) \cap b\text{-}neigh_{\mathcal{A}}(v)|$ but high $\min\{|neigh_{\mathcal{A}}(v)|, |b\text{-}neigh_{\mathcal{A}}(v)|\}$ is good ANs

Existing methods

- Time-dependent SHARC [Del08], Time-dependent CH [BDSV09]
 - Speed-ups of about 26 / 1500, respectively (EA only)
 - Meant for time-dependent routing in road networks
- Time-expanded approach [DPW09]
 - Speed-ups of about 56
 - Remodelling unimportant stations
- Theory vs. practice difference
 - Inclusion of transfers, cost...

Neural networks

Neural network approaches

- Multi-layer perceptron, back propagation
- Input layer = events + cities. Output layer:

 - **2** Arcs of $UG \rightarrow routing$
 - 6 Earliest arrival value

Figure : Approach 1.)

Neural networks

Results

- Tendency to remember USPs
- Long training times

9	Conn.	Found	Was optimum (%)
	931	573	18.7%
	481	281	48%
r	527	346	86.7%
	672	307	76.2%
		931 481 r 527	931 573 481 281 r 527 346

Table: Tests of a trained NN on timetables with 30 cities (approach 1.)

References

Contribution

TTBlazer application

Timetable analyzer - TTBlazer

- Works with UG, TE, TD, TT
- Analysis (τ , HD, degrees...), oracles (USP-OR, Dijkstra...), modifications (remove overtaking...), generation (subgraphs, TT \rightarrow TD ...)
- Running & evaluating tests
- Easily extendible

Figure: It's blazing fast!

Conclusion

- Trying out novel approaches to solving EAP in timetables
 - USP-OR: Exact and quick answers but high space and time preprocessing
 - NN: Problem too challenging for NN/try different types of network
- Analysis of various real-world timetables
 - Better insight on properties of timetables
- Useful and easily extendible application

Bibliography I

- [BDSV09] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter, Time-dependent contraction hierarchies. In Irene Finocchi and John Hershberger, editors, ALENEX, pages 97-105, SIAM, 2009.
 - Daniel Delling. Time-dependent sharc-routing. In Dan Halperin and Kurt Mehlhorn, editors, ESA, [Del08] volume 5193 of Lecture Notes in Computer Science, pages 332-343. Springer, 2008. ISBN 978-3-540-87743-1
- [DPW09] Daniel Delling, Thomas Paior, and Dorothea Wagner. Engineering time-expanded graphs for faster timetable information. In Ravindra Ahuja, Rolf Möhring, and Christos Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages 182-206. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-05464-8.
- [MHSWZ07] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, chapter Timetable Information: Models and Algorithms, pages 67 – 90, Springer, 2007.
 - [TZ05] Mikkel Thorup and Uri Zwick, Approximate distance oracles, J. ACM, 52(1):1-24, 2005.

Thank you for the attention

