Factorisation & irreducibility of polynomials

Problem: Given $p(x) \in \mathbb{Q}[x]$ Determine if p(x) is irreducible.

(2) For irred in ZL[x] use 'mod p' techniques, cleverly.

Ex:
$$p(x) = x^3 + 2x + 20$$
 is irred in $\mathbb{Z}[x]$.

Pf: Suppose $p(x) = f(x) \cdot g(x)$ in $\mathbb{Z}[x]$

Hornomorphism $\mathbb{Z}[x] \rightarrow \mathbb{Z}/3z$ [x]

 $h(x) \longmapsto h[x]$

Gives $p(x) = f(x) \cdot g(x)$
 $x^3 + 2x + 2 = (f(x)) \cdot (g(x))$

Let's rule out a linear factor \leftrightarrow root.

Check 0:1,2.

No root \Rightarrow LHS is irred in $\mathbb{Z}/3z$ [x]. \Rightarrow f or g is a constant.

Then f is either a constant in Z[x] or its non-const terms are div. by 3.} can't happen. $X+2x+20=p(x)=f(x)\cdot g(x)$ $\overline{g}(x)$ has deg $3 \Rightarrow g(x)$ deg $\geq 3 \Rightarrow f(x)$ deg 0. Lead tem of f(x) | leading term of p(x) = 3 cannot divide The only constant dividing $x^3+2x+20$ in Zase ± 1 \rightarrow $f(x) = \pm 1$.

Thm: Let $f(x) \in \mathbb{Z}[x]$ be such that leading coeff of f(x) not divisible by prime P. If $f(x) \in \mathbb{Z}/p_{\mathbb{Z}}[x]$ is irreducible then does not factor as a fixed weighte company by product of poly of Lower deg. Pf (Sketch): Consider $f(x) = h(x) \cdot g(x) \in \mathbb{Z}[x]$ Want h(x) or g(x) is a constant. Get $\overline{f}(x) = \overline{h}(x) \cdot \overline{g}(x)$. $\in \mathbb{Z}/p\mathbb{Z}[x]$. f(x) irred =) h(x) or g(x) is constant. Then $deg \overline{g}(x) = deg \overline{f}(x) = deg f(x)$. dgg(x). So deg f(x) must be = dgg(x) = h(x) constant.

 $x^4+2x+20$ mod 3 X4+2x+2 — irred or red in Z/3Z[X]? Quadr. Qudr. T check all nouts No roots Eliminated (X) (X+1) (X+2) x^{2} $x^{2}+x+1$ $x^{2}+2x+2$ $x^{2}+2x+1$ $x^{2}+2x+1$ $x^{2}+2x+1$ $x^{2}+2x+1$