Quantum Approaches to Sequence Alignment

Vivatsathorn Thitasirivit

2023/1 2110581 Bioinformatics I
Faculty of Engineering, Chulalongkorn University
23 Nov 2023

Outlines

- The Sequence Alignment Problem
- Classical Sequence Alignment and Parallelization
- Basics of Quantum Computing
- Quantum Algorithms for Sequence Alignment
- Experimentations and Results
- Challenges and Prospects
- Summary and Further Research

Disclaimers

- This project focuses on <u>experimentations</u> on a real quantum device compared to a simulator.
- Methods proposed in this project are plausible and <u>practical to run</u> on a real quantum device.
- The author has suggested many possibilities to address and solve the stated problems in <u>further research</u>.

The Sequence Alignment Problem (Pairwise)

- Aims to align 2 sequence with most similarity.
- Global and Local Alignment

How similar is these two sequences?

AACGG TGCGT

The Sequence Alignment Problem (Pairwise)

- Aims to align 2 sequence with most similarity.
- Global and Local Alignment

How similar is these two sequences?

AACGG TGCGT

Classical Sequence Alignment

- Dynamic Programming
- $O(n^2)$ in both time and space (score matrix + backtracking)

$$F(0,j) = dj$$

$$F(i,0) = di$$

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + S(A_i, B_j) \\ F(i,j-1) + d \\ F(i-1,j) + d \end{cases}$$

$$S(a,b) = \begin{cases} c_1 & \text{if } a = b, \\ -c_2 & \text{if } a \neq b. \end{cases}$$

Classical Sequence Alignment

- Dynamic Programming
- $O(n^2)$ in both time and space (score matrix)

		Т	G	С	G	Т
	0	-2 I	-4	-6	-8	-10
А	-2 -	*				
А	-4					
С	-6					
G	-8					
G	-10					

Classical Sequence Alignment

- Sequential Sweeping
- 2 nested for loops
- Can it be parallelized?
- What if the array is too large?

Analyzing Cell's Dependencies

- Naïve Parallelization Method
- Doing each anti-diagonal wavefront in parallel
- Generally, slow access pattern for CPU
- Very slow in very large array that can't fit in CPU's cache (no spatial localization)
- Large threading overhead ratio.

Iterations

More thoughtful way:
 Split array into blocks conceptually

Normal sweeping within each block

 Now, you can parallelize a wavefront in "blocks."

- Reduce threading overhead ratio
- Can fix localization problem
- Still taking very large memory
- How can we improve further?

- Offloading and Lazy loading
- Load blocks currently in use at a time
- Drawback: disk access is typically slower.

• Block access referencing done in index array and lookup function.

Qubits

Classical bit

Qubit representation (Bloch sphere)

Superposition -> Parallelism & Searching

n qubits \rightarrow Superposition of 2^n states.

e.g., 000000, 000001, ..., 111110, 111111

6 qubits \rightarrow Superposition of 64 (2⁶) states.

Basics of Quantum Computing **Decoherence**

Measured qubit

Quantum Entanglement

"Spooky action at a distance" - Albert Einstein

Simplification

Any changes on q1 affects q2 instantly regardless of distance between them.

Quantum Entanglement: Example

Bell State

Bell basis [edit]

Four specific two-qubit states with the maximal value of Bell states and they form a maximally entangled basis, l

$$|\Phi^{+}
angle = rac{1}{\sqrt{2}}(|0
angle_{A}\otimes|0
angle_{B}+|1
angle_{A}\otimes|1
angle_{B})$$
 (1)

$$|\Phi^-
angle=rac{1}{\sqrt{2}}(|0
angle_A\otimes|0
angle_B-|1
angle_A\otimes|1
angle_B)$$
 (2)

$$|\Psi^{+}
angle = rac{1}{\sqrt{2}}(|0
angle_{A}\otimes|1
angle_{B}+|1
angle_{A}\otimes|0
angle_{B})$$
 (3)

$$|\Psi^{-}
angle = rac{1}{\sqrt{2}}(|0
angle_{A}\otimes|1
angle_{B}-|1
angle_{A}\otimes|0
angle_{B})$$
 (4)

Wikipedia

GHZ State

Definition [edit]

The GHZ state is an entangled quantum state for 3 qubits and its state is

$$\ket{ ext{GHZ}} = rac{\ket{000} + \ket{111}}{\sqrt{2}}.$$

Generalization [edit]

The generalized GHZ state is an entangled quantum state of M>2 subsystems. If each system has dimen to \mathbb{C}^d , then the total Hilbert space of an M-partite system is $\mathcal{H}_{\mathrm{tot}}=(\mathbb{C}^d)^{\otimes M}$. This GHZ state is also calle a tensor product is

$$|\mathrm{GHZ}
angle = rac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |i
angle \otimes \cdots \otimes |i
angle = rac{1}{\sqrt{d}} (|0
angle \otimes \cdots \otimes |0
angle + \cdots + |d-1
angle \otimes \cdots \otimes |d-1
angle).$$

In the case of each of the subsystems being two-dimensional, that is for a collection of M qubits, it reads

$$|\mathrm{GHZ}
angle = rac{|0
angle^{\otimes M} + |1
angle^{\otimes M}}{\sqrt{2}}.$$

Wikipedia

Quantum Algorithm Example

- Grover's Algorithm for searching database.
 - Focuses on unordered search
 - Query only $O(\sqrt{N})$ times.
- Oracle: mark correct answer by applying negative phase.
- **Diffuser**: amplify correct answer back to original phase.

Quantum Algorithm Example

• Quantum Fourier Transform ⇔ Quantum version of DFT

https://cnot.io

Some Basic Quantum Gates

Single qubit gates

Hadamard

$$-H$$

$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$-X$$

$$\sigma_X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$Z$$
 $-$

$$\sigma_Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Some Basic Quantum Gates

Two qubit gates

Controlled-NOT (CNOT, CX)

$$\begin{pmatrix} I & 0 \\ 0 & X \end{pmatrix}$$

$$\overset{\times}{+}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Hamming Edit Distance (Possible, Implementable)
- Levenshtein Edit Distance (Theoretical with qRAM)
- Needleman-Wunsch (Theoretical with qRAM)
- Smith-Waterman (Theoretical with qRAM)
- Cosine Similarity (Possible)
- Graph Edit Distance (Theoretical)
- Pattern Matching Approximation with QFT (Quantum DFT/FFT)
- BLAST Database Search Matching (Never proven as of now)
- Knuth-Morris-Pratt string search algorithm (Never proven as of now)

- Hamming Edit Distance (Possible, Implementable)
- Levenshtein Edit Distance (Theoretical with qRAM)
- Needleman-Wunsch (Theoretical with qRAM)
- Smith-Waterman (Theoretical with qRAM)
- Cosine Similarity (Possible)
- Graph Edit Distance (Theoretical)
- Pattern Matching Approximation with QFT (Quantum DFT/FFT)
- BLAST Database Search Matching (Never proven as of now)
- Knuth-Morris-Pratt string search algorithm (Never proven as of now)

- DNA Sequence string is represented by $\{A, T, C, G\}^n$
- Sequence Encoding
 - Minimal Encoding (2 bits): {00,01,10,11}
 - One-hot Encoding (4 bits): {0001,0010,0100,1000}
- #Qubits needed if:
 - 2 input quantum registers
 - 1 output quantum register
 - 1 output classical register (for measurement)
- = $3 \times N_{\text{encode length}} \times N_{\text{string length}}$
- Example: 127-qubit system supports 42-bit string (21 characters) maximum.

- Concept: "Pairwise Comparison"
- In classical term, we would use XOR operation.
- In quantum system, we can use Controlled-NOT (CNOT, CX).
- Naïve approach turns $|b
 angle
 ightarrow |a \oplus b
 angle$
- Input qubits are not conserved!

$$|a\rangle$$
: $|b\rangle$:

- We can add an output quantum register.
- CNOT is its own inverse, so we can "sandwich" operations.

- Now, input qubits can conserve (if they are not entangled).
- If input qubits are entangled, the output qubit will also be entangled with input qubits. Measurement will collapse the superposition.

• Method 1: Direct pairwise comparison using XOR

- Method 1: Direct pairwise comparison using XOR
- Example: 2-character (4-bit) input
- Potential improvements:
 - Implement quantum adder circuit
 - QFT Adder
 - Ripple Carry Adder
 - Adder using QPE

• Method 2: Direct pairwise comparison using Swap Test

- This utilizes quantum properties of putting a control qubit in a superposition.
- This causes qubits entanglement.
- How do we determine the output?
 - If s1 equals s2, the output measurement is always 0.
 - Else, the output measurement is 0 for 50% and 1 for 50%.

- Method 2: Direct pairwise comparison using Swap Test
- Example: 1-character (2-bit) input
- What if we treated it as a signal?
 - Time-domain Comparison
 - Frequency-domain Comparison

- Addition to Method 2: Compare in a Frequency Domain
- We can apply QFT and QFT⁻¹ on both input quantum registers.
 - The state after initialization can be described as:

$$(H |0\rangle)^{\otimes n} \otimes QFT |s_1\rangle \otimes QFT |s_2\rangle$$

- Can we combine both domain in 1 circuit?
 - Yes, but it would be impractical: large circuit, potential noise, rigorous post-processing.
 - After the Swap Test and measurement, qubits are not reusable.
 - Must initialize qubits again.*

- Further improvements:
 - I. Swap Test on every permutation of qubits.
 - From n to n^2

$$s_1 \{0, 1, ..., n-1\} \times s_2 \{0, 1, ..., n-1\}$$

- II. Using QPE for frequency domain
- III. Maybe go for a qudit (*d*-level quantum system)?

$$|\psi\rangle = \sum_{i=0}^{d-1} c_i |i\rangle$$
 ; $\sum_{i=0}^{d-1} ||c_i||^2 = 1$

A quantum computer

- There are many types of quantum computers!
- Analog Quantum Computer
 - Initializing a quantum state
 - Control the Hamiltonian to evolve the state directly
 - E.g., quantum annealing [D-Wave!], adiabatic computation, quantum simulation
- Digital Quantum Computer
 - It is "gate-based" with universal set of gates
 - Typically, is a two-level quantum system.
 - Digital outcomes by measurement
 - Similar to classical computing.

- There are also many qubit technologies used!
- Current technologies in NISQ era
 - Superconducting qubits
 - Transmon charge, nonlinear
 - Trapped ion
- Candidate technologies after NISQ
 - Photonic
 - Silicon-based
 - Topological

Superconducting phase, ϕ

Superconducting Qubits: Current State of Play (annualreviews.org)

• This is IBM's 127 qubit quantum computer on which the circuit was run.

• Courtesy: IBM Quantum

• Superconducting 5-qubit quantum processor (IBM).

Qubit Diagram

Courtesy: IBM Quantum

• Superconducting 127-qubit quantum processor lattice (IBM).

Courtesy: IBM Quantum

A quantum computer: IBM Roadmap

Experimentation Setup

Translate + Compile

• Used IBM Qiskit framework (Python) to generate and transpile circuits.

- Experiment Setups:
 - Control: Running circuits on IBM's matrix product state (MPS) simulator
 - Independent: Running circuits on 127-qubit IBM Eagle r3 (ibm_brisbane)
 - Trials on 8-bit, 16-bit, 32-bit, 40-bit controlled encoded sequences.
- Circuits Tested:
 - Time-domain comparison with XOR (t dom XOR)
 - Time-domain comparison with Swap Test (t dom SWAP)
 - Frequency-domain comparison with Swap Test (f dom SWAP)

Initial Results: 8 bits

Sequences TTGC and TGCT are the test sample.

Figure 31: 8-bit String Running Results Comparison

Initial Results: 16 bits

Sequences ATGCTTGC and TGCCTGCA are the test sample.

Figure 32: 16-bit String Running Results Comparison

Initial Results: 32 bits

Sequences ATGCTTGCGGGGGGG and TGCCTGCACGCGCGCA are the test sample.

Figure 33: 32-bit String Running Results Comparison

Initial Results: 40 bits

Sequences ATGCTTGCGGGGGGGACAG and TGCCTGCACGCGCGCATCAG are the test sample.

Figure 34: 40-bit String Running Results Comparison

Circuit Optimization

- Circuit & Transpilation Optimization:
 - Remove barrier separating each section entirely (except before measurement).
 - Increase optimization flag from 1 (default) to 3 (maximum).
- Sampler Primitive Improvement:
 - Increase sampling shot counts from 1,024 shots to 10,000 shots.

Noise Analysis

Optimized Results: 8 bits

Figure 37: Quasiprobability Distribution Comparison (8 bits)

Optimized Results: 16 bits

Figure 38: Quasiprobability Distribution Comparison (16 bits)

Optimized Results: 32 bits

Figure 39: Quasiprobability Distribution Comparison (32 bits)

Optimized Results: 40 bits

Figure 40: Quasiprobability Distribution Comparison (40 bits)

Summary

- Limited technology at this time.
 - Device noise, measurement error, etc.
 - Hope for future advancements
- Many potential alternatives in numerous research, this is only one of the approaches.

Further Research

- Mitigating Noise
- Interpreting QFT Result
- Alternative Problem Statements
 - Energy-Based Models
 - Graph-Theoretic Approaches
 - Quantum Machine Learning
- Quantum RNA Folding
- Motif Finding⁺
 - Algorithms proposed in this project may be more suitable for Motif finding problem.

References

- See the full report for more details.
- Visit vt.in.th/quantum for further readings, files and this slide.

• More on quantum computing: Qiskit and other reading.