Homework 7

1. Show that (i) the free product G * H of nontrivial groups G and H has trivial center, and (ii) the only elements of G * H of finite order are conjugates of finite-order elements of G and H.

Proof (i) Let $g \in G$, $h \in H$. If z is in the center of G * H, then zg = gz which means that z is either g, g^{-1} , or the empty word [e]. Similarly, zh = hz which means that z is either h, h^{-1} , or [e]. Thus if G, H are nontrivial then for nontrivial g, h we have $g \neq g^{-1} \neq h \neq h^{-1}$, so z must be [e].

Proof (ii) Let $x \in G * H$ with $x^n = [e]$. By simplifying, we can write x as a word of alternating letters in G and H, so $x = (g_1h_1g_2 \dots g_{k-1}h_kg_k)$. Then for as many letters as possible (potentially none), we group the letters on the ends of the word which are inverses; i.e.

$$x = (g_1 h_1)(g_2 \dots g_{k-1})(h_k g_k)$$

$$x = (g_1 h_1)(g_2 \dots g_{k-1})(h_1^{-1} g_1^{-1}).$$

$$x = (g_1 h_1)(z)(h_1^{-1} g_1^{-1}),$$

where we let z be the alternating word $(g_2 \dots g_{k-1})$. Now we consider x^n . We know that everything must cancel, and the ends of course cancel, which means

$$[e] = x^{n}$$

$$= (g_{1}h_{1})(z)(h_{1}^{-1}g_{1}^{-1}) (g_{1}h_{1})(z)(h_{1}^{-1}g_{1}^{-1}) \cdots (g_{1}h_{1})(z)(h_{1}^{-1}g_{1}^{-1})$$

$$= (g_{1}h_{1})(z)^{n}(h_{1}^{-1}g_{1}^{-1})$$

which means that z must be of order n. However, no alternating word of g's and h's with length at least 2 is of finite order, since self-multiplying would just concatenate the same word with itself. Therefore z must be a single letter of order n in either G or H, and x is a conjugate of z.

3. Show that the complement of a finite set of points in \mathbb{R}^n is simply connected if $n \geq 3$.

Proof Without loss of generality Let $X = \mathbb{R}^n - \{\vec{x}_i\}_{i=1}^k$, with basepoint the origin.

- (i) To see that X is path-connected, let $x \in X$. If x is not a multiple of x_i for any i, then there is a straight-line path from x to the origin. Otherwise suppose $x \parallel x_i$ for some i. Then choose a point x' near x such that x is not a multiple of x_i for any i (we know we can do this since there are infinitely many directions orthogonal to x in which to find x', and only infinitely many x_i), and there is a straight-line path from x to x to 0. Thus for every $x \in X$ we have a path $\rho_x : I \to X$ connecting x to 0, so X is path-connected.
- (ii) To see that $\pi_1(X) = 0$, observe that for any loop γ in X, we can find a homotopy from γ to the constant loop 0 by using ρ_x . Let $R: X \times I \to X$ be given by $R(x,t) = \rho_x(t)$. Then $R(\gamma(s),t)$ is the desired homotopy.

4. Let $X \subset \mathbb{R}^3$ be the union of n lines through the origin. Compute $\pi_1(\mathbb{R}^3 - X)$. We can deformation retract X to a ball with n lines missing, and since the origin is missing, we can deformation retract to a sphere with 2n antipodal points missing.

This sphere is diffeomorphic via spherical projection to a disk with 2n-1 points missing, which deformation retracts to a wedge of 2n-1 circles. Thus $\pi_1(\mathbb{R}^3-X)$ is the free group on 2n-1 generators.

7. Let X be the quotient space of S^2 obtained by identifying the north and south poles to a single point. Put a cell complex structure on X and use it to compute $\pi_1(X)$.

Answer: First observe that X the following shapes have the same homotopy type:

The last figure is the same because the center disc is contractible, and modding it out yields the middle figure. It is on the last figure that we put a cell structure. X has one 0-cell, two 1-cells and a 2-cell to form a torus, with one additional 2-cell attached spanning the center. We know that a torus has fundamental group $\mathbb{Z} \times \mathbb{Z}$, and if we attach the additional 2-cell along the loop (1,0), then

$$\pi_1(X) = \mathbb{Z} \times \mathbb{Z} / \langle (1,0) \rangle = \mathbb{Z} \times \mathbb{Z} / \mathbb{Z} = \mathbb{Z}.$$

8. Compute the fundamental group of the space obtained from two tori $S^1 \times S^1$ by identifying a circle $S^1 \times \{x_0\}$ with the corresponding circle in the other torus.

Answer: We can put a cell structure on this space as a wedge of 3 circles a, b, c, with 2-cells attached along $ab\overline{a}\overline{b}$ and $ac\overline{a}\overline{c}$, respectively.

Thus
$$\pi_1(X) = \underset{i=1}{\overset{3}{*}} \mathbb{Z}_i / \underset{aca^{-1}c^{-1}}{aba^{-1}b^{-1}}$$
.

Remark: Is the above notation equivalent to $\pi_1(X) = \langle a, b, c \mid ab = ba, ac = ca \rangle$? I'm not totally clear on how that notation works.

17. Show that $\pi_1(\mathbb{R}^2 - \mathbb{Q}^2)$ is uncountable.

Proof Let $(\pi,0)$ be the basepoint. For every irrational number α , let γ_{α} be the straight line path from $(\pi,0)$ to (π,π) to (α,π) to $(\alpha,-\pi)$ to $(\pi,-\pi)$ to $(\pi,0)$.

Clearly $\gamma_{\alpha} \not\simeq \gamma_{\beta}$ for $\alpha \neq \beta$, since any homotopy between the corresponding third segments of the paths would have to pass through points in \mathbb{Q}^2 as the x-coordinates moved from α to β . Thus we have an injective function from irrational numbers to loops in $\pi_1(X)$, so we're done.

Collaborators:

None for this homework.