Tópicos em Aprendizado Estatístico Métodos de Reamostragem

Prof. George von Borries

Departamento de Estatística Universidade de Brasília

2024

Borries

Qualidade do Modelo

George

Nota: Tendenciosidade e precisão.

Quatro rifles (A,B,C,D) foram testados em relação a tendenciosidade e precisão. Especialistas efetuaram 15 tiros com cada rifle.

Nota: Tendenciosidade e precisão.

Quatro rifles (A,B,C,D) foram testados em relação a tendenciosidade e precisão. Especialistas efetuaram 15 tiros com cada rifle.

- Estimador não viesado ou não tendencioso: $\hat{\theta}$ é um estimador não tendencioso de θ se $E(\hat{\theta}) = \theta$ para todo θ , i.e., se a média da distribuição amostral de $\hat{\theta}$ é igual ao verdadeiro valor da população.
- Esitmador Preciso: quando os valores do estimador tem pequena variância amostral, i.e., diferentes estimativas estão sempre próximas umas das outras.
- Procuramos sempre um estimador não tendencioso e preciso.

• Suponha que observamos uma resposta \mathbf{Y} e um conjunto de preditores $\mathbf{X} = \{\mathbf{X}_1, \dots, \mathbf{X}_p\}$. Seja a relação de \mathbf{Y} e \mathbf{X} obtida por

$$\mathbf{Y} = f(\mathbf{X}) + \epsilon$$
, $\mathrm{E}[\epsilon] = 0$ e $\mathrm{Var}[\epsilon] = \sigma^2$.

f é a função verdadeira (fixa desconhecida) e ϵ é independente de ${\bf X}$.

- Uma boa escolha de f fornece boas predições¹ de \mathbf{Y} em novos pontos de $\mathbf{X} = \mathbf{x}$.
- Obtemos um dado de treinamento D i.i.d. da distribuição geradora e aplicamos um algoritmo de aprendizado A.
 A estimativa de f via D será ÎD (X).
- Nossa preocupação é verificar a performance do modelo num conjunto de teste. Para um ponto arbritrário \mathbf{X}^* , $\mathbf{Y}^* = f(\mathbf{X}^*) + \epsilon$.
- O desempenho do modelo treinado poderá ser avaliado para Y* através do erro quadrático (SE)

$$SE = [\mathbf{Y}^* - \hat{f}_{\mathcal{D}}(\mathbf{X}^*)]^2$$

 O erro quadrático médio (MSE) é obtido da média do erro quadrático de estimativas obtidas para vários conjuntos de

Fonte: Akinkunle, 2020.

Então, MSE² será³

$$\begin{split} \mathrm{E}\left[\mathbf{Y} - \hat{f}_{\mathcal{D}}(\mathbf{X})\right]^2 &= \mathrm{E}\left[\left(\mathbf{Y} - \hat{f}_{\mathcal{D}}(\mathbf{X})\right)\left(\mathbf{Y} - \hat{f}_{\mathcal{D}}(\mathbf{X})\right)\right] \\ &= \mathrm{E}\left[\mathbf{Y}^2 - 2\mathbf{Y}\hat{f}_{\mathcal{D}}(\mathbf{X}) + \hat{f}_{\mathcal{D}}^2(\mathbf{X})\right] \\ &= \mathrm{E}\left[\mathbf{Y}^2\right] + \mathrm{E}\left[\hat{f}_{\mathcal{D}}^2(\mathbf{X})\right] - 2\mathrm{E}\left[\mathbf{Y}\right] \; \mathrm{E}\left[\hat{f}_{\mathcal{D}}(\mathbf{X})\right] \\ &= \underbrace{\left(\mathrm{E}\left[\hat{f}_{\mathcal{D}}(\mathbf{X})\right] - f(\mathbf{X})\right)^2}_{\text{vi\'es do modelo}} + \mathrm{E}\left[\left(\hat{f}_{\mathcal{D}}(\mathbf{X}) - \mathrm{E}[\hat{f}_{\mathcal{D}}(\mathbf{X})]\right)^2\right]}_{\text{variância do modelo}} + \underbrace{\mathrm{Var}(\epsilon)}_{\text{irredutível}} \end{split}$$

- Em geral, um modelo mais flexível (logo mais complicado) terá maior variância e menor viés.
- Em geral, um modelo mais flexível terá menor interpretabilidade.

Prof. George von Borries

²Para detalhes do cálculo, ver Akinkunle, 2020

 $^{^3}$ Utilizando \mathbf{Y} e \mathbf{X} em vez de \mathbf{Y}^* e \mathbf{X}^* para facilitar a notação.0

Exemplo: Relação entre $\mathbf{Y} = \mathbf{Renda}$ e $\mathbf{X} = \{\mathbf{Forma}$ ção, Senioridade $\}$

Borries

Validação Cruzada

George

- Validação Cruzada é um procedimento de partição de dados (treinamento e teste) que permite avaliar:
 - estabilidade das estimativas dos parâmetros;
 - performance do modelo (Model assessment);
 - nível de flexibilidade (Model selection);
 - precisão de algoritmos de classificação.
- A performance do modelo ajustado para os dados de treinamento pode ser feita via RMSE ou MSE do ajuste utilizando os dados de teste.

Fonte: James et al. (2021)

Procedimento de Validação Cruzada LOOCV⁴

Seja um vetor resposta $\mathbf{Y}_{(n\times 1)}$ e matriz de covariáveis $\mathbf{X}_{(p\times n)}$.

- O modelo de interesse é ajustado n vezes, eliminando um elemento em cada ajuste.
- **2** A cada passo, eliminamos uma observação de **Y** e **X**. Estimamos o modelo (ex. Regressão) para as n-1 observações restantes e calculamos $\mathrm{MSE}_i = (y_i \hat{y}_i)^2$ para a i-ésima observação eliminada.
- 3 A estimativa de Validação Cruzada será,

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$$

⁴ Leave-One-Out Cross Validation, também conhecido como Jackknife.

Procedimento de Validação Cruzada LOOCV

- $CV_{(n)}$ é um procedimento pouco viesado, uma vez que utiliza quase toda amostra para treinamento.
- É uma estimativa mais estável que outros procedimentos de validação cruzada.
- Não existe aleatoriedade na divisão treinamento/validação, logo o resultado será sempre o mesmo para um mesmo conjunto dados.
- É um procedimento geral e pode ser utilizado com qualquer modelo preditivo.

Procedimento de Validação Cruzada de Ordem k (ou k-fold)

Seja um vetor resposta $\mathbf{Y}_{(n\times 1)}$ e matriz de covariáveis $\mathbf{X}_{(p\times n)}$.

- ① O modelo de interesse é ajustado k vezes, em grupos de tamanhos aproximados n_k , tal que $\sum_k n_k = n$.
- ② A cada passo estimamos o modelo (ex. Regressão) para as $n n_k$ observações restantes e calculamos $\mathrm{MSE}_i = \frac{1}{n_k} \sum_{i=1}^{n_k} (y_i \hat{y}_i)^2$ para as n_k observações eliminadas.
- Então, calculamos

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

Procedimento de Validação Cruzada de Ordem k (ou k-fold)

- $CV_{(k)}$ usa menos recurso computacional, mas se torna mais instável a medida que n_k aumenta (ou k diminui).
- $\mathrm{CV}_{(n)}$ tem menor viés que a estimativa $\mathrm{CV}_{(k)}$, pois utiliza mais informação.
- Entretanto, os modelos ajustados por LOOCV são mais correlacionados resultando em maior variância para a média destas quantidades (lembre de colinearidade). Desta forma, validação cruzada de ordem k resulta em menor variância para o erro de teste.

Exemplo: (James et al., 2021) Dados gerados e diferentes ajustes. MSE estimado por validação cruzada.

Diferentes polinômios ajustados para três conjuntos de dados gerados com diferentes graus de linearidade (linear, suavização intermediária, suavização forte). Figuras 2.9, 2.10 e 2.11 de James et al., 2021.

MSE verdadeiro, LOOCV e $\mathrm{CV}_{(10)}$. X representa o mínimo de cada curva MSE.

O programa Reamostragem.R possui os seguintes exemplos de CV:

Exemplo 1. Validação cruzada em Regressão por Componentes Principais.

Exemplo2. LOOCV para seleção de modelos. Exemplo de Rizzo⁵ (2019). Este exemplo utiliza o arquivo ironslag do pacote DAAG do R. Este arquivo 53 medidas de teor de ferro utilizando dois métodos, *chemical* e *magnetic*. Rizzo tenta verificar se o método *magnetic* pode ser predito pelos resultados do método *chemical*.

Fonte: Hand, D.J., Daly, F., McConway, K., Lunn, D., and Ostrowski, E. eds (1993) A Handbook of Small Data Sets. London: Chapman & Hall.

Obs: Em situações reais, o objetivo é inverso, uma vez que o método chemical é mais complicado que o magnetic.

 $^{^5 \}mbox{Rizzo}, \mbox{ M.L. (2019)}$ Statistical Computing with R. Chapman and Hall / CRC, Segunda Edição.

Borries

Bootstrap

George

O termo Bootstrap foi citado pela primeira vez por Bradley Efron em 1979. Neste texto, Efron faz uma breve descrição do método e procura ressaltar diversas técnicas que sofreram influência do advento da computação.

A denominação *Bootstrap* (Cadarço de Bota) é justificada como sendo um termo eufônico ao termo *Jacknife* (Canivete) de Quenouille (1949) que procurava indicar um método útil em uma grande variedade de situações.

Definição

Seja $\mathcal{X} = \{x_1, \dots, x_n\}$ uma amostra aleatória, de tamanho n, de uma população com função de distribuição F. Estamos interessados em estimar a característica populacional θ definida pelo funcional $\theta = Q(F)$. O estimador Bootstrap será $\hat{\theta} = Q(\hat{F})$, resultante da aplicação do mesmo funcional sobre a função de distribuição \hat{F} (substituição de F por F) obtida de uma amostra de F.

A distribuição empírica é uma possível escolha para \hat{F} . A função de distribuição empírica de $\mathcal X$ é dada por

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1^n} I(X_i \le x),$$

tal que

$$I(X_i \le x) = \left\{ egin{array}{ll} 1 & ext{se } X_i \le x \ 0 & ext{caso contrário,} \end{array}
ight.$$

em que $I(X_i \le x)$ é denominada função indicadora.

Efron e Tibshrirani⁶ (1986) apresentam um esquema simples que permite a compreensão rápida da idéia central em estimação bootstrap, envolvendo a relação entre $\theta = Q(F)$ e $\hat{\theta} = Q(\hat{F})$.

Figura 1: Ilustração Esquemática da Estimação Bootstrap.

⁶Efron, B. e Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1, 1 (1986), 54-77.

Exemplo: Suponha que estamos interessados em estimar a média populacional

$$\mu = \int x dF(x) = Q(F) = \theta.$$

O estimador bootstrap de μ será obtido através da aplicação do mesmo funcional sobre a função distribuição empírica \hat{F} ,

$$\bar{X} = \int x d\hat{F}(x) = Q(\hat{F}) = \hat{\theta},$$

que na realidade é a média amostral

Princípio Bootstrap: princípio de substituição da população por uma distribuição obtida da amostra e o cálculo da estimativa através de um processo de reamostragem. Hall compara o princípio com uma boneca russa denominada "matryoska", que é uma sequência de figuras de madeira com pequenas diferenças em cada boneca.

Figura: Boneca denominada Matryoska.

Neste caso, a boneca menor representa a população e n_1 o valor populacional desconhecido. A ideia central é a suposição de que o comportamento em algo que não observamos é semelhante ao comportamento de algo que conseguimos observar nas bonecas maiores.

Algoritmo de Monte Carlo para Estimação Bootstrap

Este algoritmo é uma aproximação numérica para o processo de substituição de F por \hat{F} citado na Definição e que corresponde a substituição de F_0 (população) por F_1 (amostra) e F_1 por F_2 (reamostragem) no Princípio Bootstrap.

Etapas do algoritmo de Monte Carlo para estimação bootstrap:

- ① Através da seleção aleatória, com reposição, obter um número B de amostras de \mathcal{X} , que representaremos por $\mathcal{X}_1^*,\ldots,\mathcal{X}_B^*$ e denominaremos de amostras bootstrap (amostras obtidas via F_2);
- 2 Para cada amostra \mathcal{X}_b^* calcular a estatística de interesse $\hat{\theta}_b^* = \hat{\theta}(\mathcal{X}_b^*), b = 1, 2, \dots, B$, utilizando a mesma fórmula que define $\hat{\theta} = \theta(F_1)$;
- 3 Calcular a estimativa bootstrap ou equação funcional do parâmetro θ_0 ,

$$\hat{\theta}_{\mathrm{B}}^* = \frac{\sum_{b=1}^B \hat{\theta}_b^*}{\mathrm{B}}.$$

Seu desvio-padrão bootstrap será,

$$\hat{\sigma}_{\rm B}^* = \left(\frac{\sum_{b=1}^{\rm B} \left\{\hat{\theta}_b^* - \hat{\theta}_{\rm B}^*\right\}^2}{{\rm B} - 1}\right)^{1/2}$$

Bootstrap Paramétrico

Neste caso, assumimos que a distribuição populacional F_0 tem forma funcional conhecida com alguns parâmetros θ_0 desconhecidos. Desta maneira, $F_0=F_{\theta_0}$ representa um elemento da família $\mathcal{F}=\{F_{\theta},\theta\in\Omega\}$ de distribuições possíveis. Neste contexto tomamos F_1 como $F_{\hat{\theta}_1}$, onde $\hat{\theta}_1$ representa um estimador de θ_0 . Neste processo \mathcal{X}^* será uma amostra (bootstrap) obtida da função de distribuição $F_{\hat{\theta}_1}$ e o parâmetro calculado para uma amostra de $F_{\hat{\theta}_1}$, pelo mesmo método que gerou o cálculo de $\hat{\theta}_1$), será representado por $\hat{\theta}_2^*=\hat{\theta}_2(\mathcal{X}^*)$. Assim F_2 representa o processo de reamostragem da população definida pela função de distribuição $F_{\hat{\theta}_1}$.

Exemplo: Bootstrap Paramétrico

Considere n observações de uma população bivariada (X,Y). Suponha que desejamos calcular uma estimativa bootstrap do coeficiente de correlação ρ , entre X e Y, i.e,

$$\rho = \frac{\sum_{i=1}^{N} (X_i - \mu_x)(Y_i - \mu_y)}{\left[\sum_{i=1}^{N} (X_i - \mu_x)^2\right] \left[\sum_{i=1}^{N} (Y_i - \mu_y)^2\right]}$$

Suponha ainda que por alguma razão, acreditamos que a distribuição populacional F_0 é uma função de distribuição normal bivariada com vetor de médias μ e matriz de covariância Σ desconhecidos.

Após determinarmos $F_1=N_2(\hat{\mu},\hat{\Sigma})$, podemos aplicar as etapas 1 a 3 do algoritmo de Monte Carlo, obtendo assim uma estimativa bootstrap da estatística ρ calculando

$$r = \frac{\sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\mu}_{\mathbf{x}}) (\mathbf{y}_{i} - \hat{\mu}_{\mathbf{y}})}{\left[\sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\mu}_{\mathbf{x}})^{2}\right] \left[\sum_{i=1}^{n} (\mathbf{y}_{i} - \hat{\mu}_{\mathbf{y}})^{2}\right]}$$

sobre n observações (x,y) amostradas de uma normal bivariada com parâmetros $\hat{\mu}$ e $\hat{\Sigma}$.

Bootstrap Não-Paramétrico

Na estimação bootstrap **não-paramétrica** nada se assume sobre F_0 além de que seja uma função de distribuição. A função de distribuição F_1 corresponde à distribuição empírica da amostra \mathcal{X} , i.e, se \mathcal{X} é uma amostra aleatória de tamanho n de F_0 , F_1 é a distribuição que atribui peso 1/n a cada observação em \mathcal{X} . De modo análogo, F_2 é a função de distribuição empírica de uma amostra aleatória de uma população com distribuição F_1 , i.e., a distribuição empírica de uma amostra \mathcal{X}^* retirada aleatoriamente, com reposição, da amostra original \mathcal{X} . Note que se simbolizarmos a população por \mathcal{X}_0 , então \mathcal{X} constitui uma amostra aleatória de \mathcal{X}_0 e \mathcal{X}^* uma amostra aleatória de \mathcal{X} .

Intervalos de Confiança Bootstrap

Intervalo Percentil (I_e):

A idéia do intervalo Percentil é muito simples. Seja $\alpha \in (0,1)$ e $\hat{\mathrm{H}}(x) = \mathrm{P}(\hat{\theta}^* \leq x/\mathcal{X})$ a função de distribuição de probabilidade calculada sobre a distribuição bootstrap de $\hat{\theta}^*$. Calculando,

$$H^{-1}(\alpha) = \inf\{x : \hat{H}(x) \ge \alpha\}$$

para essa distribuição, o intervalo Percentil (bicaudal) ao nível de $(1-2~\alpha)~100\%$ será

$$I_e = (\hat{H}^{-1}(\alpha), \hat{H}^{-1}(1-\alpha)).$$

Intervalo Percentil Víés Corrigido (I_{vc}):

Seja

$$\hat{y}_{\alpha} = \hat{\mathbf{H}}^{-1}(\alpha) = \hat{\mathbf{H}}^{-1}(\Phi(z_{\alpha})).$$

A sequência de quantis $\{\hat{y}_{\alpha}, 0 < \alpha < 1\}$ estará centralizada empiricamente se $\hat{y}_{0.5}$ for igual a $\hat{\theta}$, i.e., se $H(\hat{\theta}) = 0.5$. Quando isto não acontece, uma correção em \hat{y}_{α} poderia ser efetuada através da relação,

$$\hat{y}_{vc,\alpha} = \hat{H}^{-1}[\Phi(\hat{m} + (\hat{m} + z_{\alpha}))] = \hat{H}^{-1}(\Phi(2 \hat{m} + z_{\alpha}))$$

em que

$$\hat{m} = \Phi^{-1}(\hat{\mathrm{H}}(\hat{ heta}))$$

é a estimativa da correção de viés e $\hat{y}_{vc,\alpha}$ o quantil viés-corrigido. O intervalo Percentil Viés Corrigido bilateral com nível de confiança $(1-2\alpha)$ será,

$$I_{vc} = (\hat{y}_{vc,\alpha}; \hat{y}_{vc,1-\alpha}).$$

Intervalo Percentil Víés Corrigido Acelerado (I_{vca}):

Este intervalo é obtido através da introdução da assimetria na correção do intervalo percentil. Assim,

$$\hat{y}_{\nu c a, lpha} = \hat{\mathrm{H}}^{-1} (\Phi[\hat{m} + (\hat{m} + z_lpha) (1 - \hat{a}(\hat{m} + z_lpha))^{-1}])$$

sendo \hat{m} o fator de correção do viés e \hat{a} o fator de correção de assimetria.

O intervalo de confiança bilateral, viés corrigido acelerado, ao nível $(1-2 \ \alpha)$ será $I_{vca}=(\hat{y}_{vca,\alpha};\hat{y}_{vca,1-\alpha})$.

Uma aproximação para a constante de aceleração é utilizar 1/6 do coeficiente de assimetria da distribuição do estimador bootstrap.

Intervalo Percentil-ta:

Seja
$$\mathrm{P}\left[\mathit{n}^{1/2} \; (\hat{\theta}_1 - \theta_0) / \sigma_0 \leq \mathit{ta}_{(1-lpha)} | \mathrm{F}_0
ight] = 1 - lpha.$$

Os quantis obtidos irão produzir o intervalo teórico percentil-ta,

$$\mathcal{I}_{ta} = (\hat{\theta}_1 - n^{-1/2} \sigma_0 \ ta_{(1-\alpha/2)}; \hat{\theta}_1 - n^{-1/2} \sigma_0 \ ta_{(\alpha/2)})$$

Este intervalo possui caudas iguais e tem nível de confiança $(1-2\alpha)\%$.

A versão bootstrap do intervalo \mathcal{I}_{ta} será

$$\mathcal{I}_{\hat{t}a} = (\hat{\theta}_1 - n^{-1/2} \sigma_0 \hat{t} a_{(1-\alpha/2)}; \hat{\theta}_1 - n^{-1/2} \sigma_0 \hat{t} a_{(\alpha/2)})$$

Intervalo Percentil-tb:

Seja P
$$\left[n^{1/2} \left(\hat{\theta}_1 - \theta_0 \right) / \hat{\sigma}_1 \leq t b_{(1-lpha)} | \mathrm{F}_0
ight] = 1 - lpha.$$

Os quantis obtidos irão produzir o intervalo teórico percentil-ta,

$$\mathcal{I}_{tb} = (\hat{\theta}_1 - n^{-1/2} \ \hat{\sigma}_1 \ tb_{(1-\alpha/2)}; \hat{\theta}_1 - n^{-1/2} \ \hat{\sigma}_1 \ tb_{(\alpha/2)})$$

Este intervalo possui caudas iguais e tem nível de confiança $(1-2\alpha)\%$.

A versão bootstrap do intervalo \mathcal{I}_{ta} será

$$\mathcal{I}_{ib} = (\hat{\theta}_1 - n^{-1/2} \, \hat{\sigma}_1 \, \hat{t} \, a_{(1-\alpha/2)}; \hat{\theta}_1 - n^{-1/2} \, \hat{\sigma}_1 \, \hat{t} \, a_{(\alpha/2)})$$

Bootstrap em Regressão Linear

Considere o modelo univariado de regressão linear múltipla

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

em que \mathbf{Y} é o vetor $n \times 1$ das observações da variável dependente, \mathbf{X} é a matriz $n \times p$, de rank p, das obsevações de p variáveis independentes, $\boldsymbol{\beta}$ é um vetor $p \times 1$ de parâmetros desconhecidos e ϵ é um vetor aleatório $n \times 1$ de variáveis iid com distribuição comum \mathbf{F} tendo média nula e variância finita σ^2 desconhecida.

O estimador de mínimos quadrados ordinários (MQO) de $oldsymbol{eta}$ é o valor que minimiza

$$SSE(\beta) = (\mathbf{Y} - \mathbf{X}\beta)^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\beta)$$
$$= \mathbf{Y}^{\mathsf{T}} \mathbf{Y} - 2 \beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{Y} + \beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\beta$$

cuja solução \hat{eta} satisfaz o sistema de equações normais

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathsf{T}}\mathbf{Y}.$$

É claro que

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}.$$

e obtida a estimativa $\hat{oldsymbol{eta}}$ de $oldsymbol{eta}$. o vetor de resíduos estimados será

$$\hat{\boldsymbol{\epsilon}} = \mathbf{Y} - X\hat{\boldsymbol{\beta}}.$$

Nesta etapa o processo de estimação bootstrap se inicia. Seja $\hat{\mathrm{F}}$ a função de distribuição estimada para a distribuição dos resíduos (por exemplo, a distribuição empírica dos resíduos $\hat{\epsilon}_i$, $i=1,\ldots,n$). Obtêm-se uma amostra bootstrap Y* calculando-se

$$\mathbf{Y}^* = \mathbf{X}\hat{oldsymbol{eta}} + oldsymbol{\epsilon}^*$$

 $\mathbf{Y}^* = \mathbf{X}\boldsymbol{\hat{\beta}} + \boldsymbol{\epsilon}^*$ em que $\boldsymbol{\epsilon}^{*\mathsf{T}} = (\epsilon_1^*,\dots,\epsilon_n^*)$ é o vetor de amostras iid de $\hat{\mathbf{F}}$. O novo vetor \mathbf{Y}^* fornecerá uma estimativa bootstrap $\hat{\boldsymbol{\beta}}^*$ de $\boldsymbol{\beta}$, calculada através da substituição de Y por Y*, i.e.,

$$\hat{\boldsymbol{\beta}}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{Y}^*.$$

Obtenção das Amostras Bootstrap Y*

Modelo Paramétrico

Assumindo que os elementos do vetor $\epsilon_{n\times 1}$ pertencem a uma distribuição $F \sim N(0,\sigma^2)$, podemos estimar a distribuição residual e obter ϵ^* através do seguinte procedimento:

f 0 Estime σ^2 através de MSE da estimação de m eta por MQO, i.e.,

$$\hat{\sigma}^2 = \text{MSE} \Rightarrow \hat{\sigma} = \sqrt{\text{MSE}},$$

(ou utilize o EMV de σ , que difere de $\hat{\sigma}$ na utilização do fator $\frac{1}{n}$ ao invés de $\frac{1}{n-n}$ na fórmula para o cálculo do MSE).

- Use um método convencional para gerar uma amostra $\mathcal{Z} = \{z_1, \dots, z_n\}$ com n observações da distribuição N(0, 1).
- 3 Obtenha $\epsilon_i^* = \hat{\sigma} \times z_i \Rightarrow \epsilon^* \sim \mathrm{N}(0, \hat{\sigma}^2 \mathbf{I}).$

Desta forma se tivermos indícios suficientes de que a distribuição F é normal com média nula e variância σ^2 , a distribuição \hat{F} será consistente para F.

Obtenção das Amostras Bootstrap Y*

Modelo Não-Paramétrico

A abordagem não-paramétrica possui dois procedimentos de estimação para a distribuição residual ${\rm F.}$

Procedimento 1: $\hat{\mathbf{F}}$ é a distribuição empírica dos resíduos resultantes da estimação por MQO. Assim $\boldsymbol{\epsilon}^{*\mathsf{T}} = \{\epsilon_1^*, \dots, \epsilon_n^*\}$ será uma amostra aleatória tomada com reposição do vetor $\hat{\boldsymbol{\epsilon}}$ centralizado (a menos que X tenha uma coluna de 1's) resultante da estimação por MQO no modelo original.

Este procedimento tem a vantagem de estar livre de algumas suposições sobre a distribuição F. A desvantagem é não permitir que pontos não pertencendo à amostra original façam parte da amostra bootstrap, fazendo com que estruturas espúrias dos dados originais sejam reproduzidas na amostra bootstrap de $\hat{\epsilon}$.

Obtenção das Amostras Bootstrap Y*

Modelo Não-Paramétrico

Procedimento 2: é uma alternativa intermediária baseada na utilização de um kernel. Nesta solução, a função de distribuição F deverá ter, adicionalmente, uma densidade e o resíduo bootstrap será uma estimativa suavizada de $\hat{\epsilon}$, simbolizada por $\hat{\epsilon}_h^*$.

Este procedimento é descrito em detalhes em von Borries⁷ (1993) descreve este procedimento e apresenta alguns exemplos utilizando o SAS.

⁷ von Borries, G. Método Bootstrap: Inferência Estatística e Aplicação em Modelos com Estrutura Não-Linear Dissertação de Mestrado. UnB. 1993.

Exemplos: Reamostragem-Bootstrap.R

- Bootstrap Paramétrico e Não-Paramétrico.
- 2 Estimativa da Média Harmônica.
- 3 O pacote boot do R.
- Bootstrap em Regressão Linear

