

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China

Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report No.: CHTEW19100186

Report verificaiton:

Project No.....: SHT1909064402EW

FCC ID.....: 2AJZP-G450A1

Applicant's name.....: Mason America, Inc

Address...... 2101 4th Avenue Suite 1550, Seattle WA, 98121

Manufacturer...... Mason America, Inc

Test item description: PAD

Trade Mark MASON, yprime

Model/Type reference...... G450A1

Listed Model(s) -

Standard: FCC 47 CFR Part2.1093

IEEE Std C95.1, 1999 Edition

IEEE 1528: 2013

Date of receipt of test sample........... Sep. 27, 2019

Date of testing...... Sep. 28, 2019-Oct. 28, 2019

Result...... PASS

Compiled by

(position+printedname+signature) ...: File administrators: Xiaodong Zhao

Xiaodong Zheo

Supervised by

(position+printedname+signature)...: Test Engineer: Xiaodong Zhao

Xiaodong Zheo

Approved by

(position+printedname+signature)...: Manager: Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No: CHTEW19100186 Page: 2 of 105 Issued: 2019-10-31

Contents

<u>1.</u>	Test Standards and Report version	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	Summary	4
2.1.	Client Information	4
2.2.	Product Description	4
<u>3.</u>	Test Environment	6
3.1.	Test laboratory	6
3.2.	Test Facility	6
3.3.	Environmental conditions	6
<u>4.</u>	Equipments Used during the Test	7
<u>5.</u>	Measurement Uncertainty	8
<u>6.</u>	SAR Measurements System Configuration	12
6.1.	SAR Measurement Set-up	12
6.2.	DASY5 E-field Probe System	13
6.3.	Phantoms	14
6.4.	Device Holder	14
<u>7.</u>	SAR Test Procedure	15
7.1.	Scanning Procedure	15
7.2.	Data Storage and Evaluation	17
<u>8.</u>	Dielectric Property Measurements & System Check	19
8.1.	Tissue Dielectric Parameters	19
8.2.	System Check	21
<u>9.</u>	SAR Exposure Limits	
<u>10.</u>	Conducted Power Measurement Results	35
	WCDMA	35
_	LTE	38
	WiFi Bluetooth	55 57
		57
<u>11.</u>	Maximum Tune-up Limit	
<u>12.</u>		68
	Antenna Location	68
	Standalone SAR test exclusion considerations Required Test Configurations	69 71
<u>13.</u>	Measured and Reported SAR Results	
<u>14.</u>	SAR Measurement Variability	
<u>15.</u>	Simultaneous Transmission analysis	79
	Simultaneous Transmission	79
	SPLSR Evaluation and Analysis	89
<u>16.</u>	TestSetup Photos	105
<u>17.</u>	External and Internal Photos of the EUT	105

Report No: CHTEW19100186 Page: 3 of 105 Issued: 2019-10-31

1. Test Standards and Report version

1.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices.

<u>IEEE Std C95.1, 1999 Edition:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

<u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

248227 D01 802 11 Wi-Fi SAR v02r02: SAR Measurement Proceduresfor802.11 a/b/g Transmitters

941225 D01 3G SAR Procedures v03r01: SAR Measurement Procedures for 3G Devices

941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

<u>KDB 616217 D04 SAR for laptop and tablets v01r02:</u> SAR Evaluation Requirements for Laptop, Notebook, Netbook and Tablet Computers

TCB workshop April, 2019; Page 19, Tissue Simulating Liquids (TSL)

1.2. Report version

Revision No.	Date of issue	Description
N/A	2019-10-31	Original

Report No: CHTEW19100186 Page: 4 of 105 Issued: 2019-10-31

2. **Summary**

2.1. Client Information

Applicant:	Mason America, Inc			
Address: 2101 4th Avenue Suite 1550, Seattle WA, 98121				
Manufacturer:	Mason America, Inc			
Address:	2101 4th Avenue Suite 1550, Seattle WA, 98121			

2.2. Product Description

Name of EUT:	PAD	PAD						
Trade Mark:	MASON,yprime	MASON,yprime						
Model No.:	G450A1							
Listed Model(s):	-							
Power supply:	DC 3.8V							
Device Category:	Portable							
Product stage:	Production unit							
RF Exposure Environment:	General Population	on/Uncontrolle	ed					
IMEI:	35933309050485	5						
Hardware version:	PVT2.0	PVT2.0						
Software version:	N2G48H							
Device Dimension:	Overall (Length x	Width x Thick	(ness):262 x	153 x 10mm				
Maximum SAR Value								
Separation Distance:	Body-worn:	0mm						
Max Report SAR Value	Test location:	PCB	DTS	U-NII	Simultaneous Tx			
(W/kg):	Body-worn:	1.352	1.105	1.492	1.586			
WCDMA								
Operation Band:	FDD Band II FDD Band IV FDD Band V							
Power Class:	Class 3							
Operating Mode:	UMTS Rel. 99 (Voice & Data) HSDPA HSUPA							
Antenna Type:	FPC							

Report No: CHTEW19100186 Page: 5 of 105 Issued: 2019-10-31

LTE	
Operation Band:	FDD Band 2 FDD Band 4 FDD Band 5 FDD Band 7 FDD Band 12 FDD Band 17 TDD Band 17
Power Class:	Class 3
Operating Mode:	QPSK 16QAM
Antenna Type:	FPC
WiFi 2.4G	
Operating Mode:	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)
Antenna Type:	FPC
WiFi 5G	
Operation Band:	U-NII-1 U-NII-2A U-NII-2C U-NII-3
Operating Mode:	802.11a 802.11n(HT20) 802.11n(HT40) 802.11ac(VHT20) 802.11ac(VHT40) 802.11ac(VHT80)
Antenna Type:	FPC
Bluetooth	
Version:	BT4.2+EDR
Operating Mode:	GFSK π/4DQPSK 8DPSK
Antenna Type:	FPC
Bluetooth	
Version:	BT4.2+BLE
Operating Mode:	GFSK
Antenna Type:	FPC
Remark:	· ·

Remark:

- 1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.
- 2. The Test EUT support two SIM card(SIM1,SIM2),so all the tests are performed at each SIM card (SIM1,SIM2) mode, the datum recorded is the worst case for all the mode at SIM1 Card mode.

Report No: CHTEW19100186 Page: 6 of 105 Issued: 2019-10-31

3. Test Environment

3.1. Test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

3.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature	18 °C to 25 °C
Ambient humidity	30%RH to 70%RH
Air Pressure	950-1050mbar

Report No: CHTEW19100186 Page: 7 of 105 Issued: 2019-10-31

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
•	Data Acquisition Electronics DAEx	SPEAG	DAE4	1549	2019/03/19	2020/03/18
•	E-field Probe	SPEAG	EX3DV4	7494	2019/03/25	2020/03/24
•	Universal Radio Communication Tester	R&S	CMW500	137681	2019/06/27	2020/06/26
● Ti	issue-equivalent liquids Va	lidation				
•	Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	N/A	N/A
0	Dielectric Assessment Kit	SPEAG	DAK-12	1130	N/A	N/A
•	Network analyzer	Keysight	E5071C	MY46733048	2019/09/21	2020/09/20
• S	ystem Validation					
0	System Validation Antenna	SPEAG	CLA-150	4024	2018/02/21	2021/02/20
0	System Validation Dipole	SPEAG	D450V3	1102	2018/02/23	2021/02/22
•	System Validation Dipole	SPEAG	D750V3	1180	2018/02/07	2021/02/06
•	System Validation Dipole	SPEAG	D835V2	4d238	2018/02/19	2021/02/18
•	System Validation Dipole	SPEAG	D1750V2	1164	2018/02/06	2021/02/05
•	System Validation Dipole	SPEAG	D1900V2	5d226	2018/02/22	2021/02/21
•	System Validation Dipole	SPEAG	D2450V2	1009	2018/02/05	2021/02/04
•	System Validation Dipole	SPEAG	D2600V2	1150	2018/02/05	2021/02/04
•	System Validation Dipole	SPEAG	D5GHzV2	1273	2018/02/21	2021/02/20
•	Signal Generator	R&S	SMB100A	114360	2019/08/15	2020/08/14
•	Power Viewer for Windows	R&S	N/A	N/A	N/A	N/A
•	Power sensor	R&S	NRP18A	101010	2019/08/15	2020/08/14
•	Power sensor	R&S	NRP18A	101011	2019/08/15	2020/08/14
•	Power Amplifier	BONN	BLWA 0160-2M	1811887	2018/11/15	2019/11/14
•	Dual Directional Coupler	Mini-Circuits	ZHDC-10-62-S+	F975001814	2018/11/15	2019/11/14
•	Attenuator	Mini-Circuits	VAT-3W2+	1819	2018/11/15	2019/11/14
•	Attenuator	Mini-Circuits	VAT-10W2+	1741	2018/11/15	2019/11/14

Note:

^{1.} The Probe, Dipole and DAE calibration reference to the Appendix B and C.

^{2.} Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justifcatio. The dipole are also not physically damaged or repaired during the interval.

Report No: CHTEW19100186 Page: 8 of 105 Issued: 2019-10-31

5. Measurement Uncertainty

Measurement uncertainty evaluation for DUT SAR test										
	(0.3-3GHz)									
No.	Error Description	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom	
Measureme	ent System									
1	Probe calibration	6.05%	N	1	1	1	6.05%	6.05%	∞	
2	Axial isotropy	0.60%	R	$\sqrt{3}$	0.7	0.7	0.24%	0.24%	8	
3	Hemispherical isotropy	1.60%	R	$\sqrt{3}$	0.7	0.7	0.65%	0.65%	8	
4	Boundary Effects	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	8	
5	Probe Linearity	0.45%	R	$\sqrt{3}$	1	1	0.26%	0.26%	∞	
6	System Detection Limits	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	∞	
7	Modulation response	2.40%	R	$\sqrt{3}$	1	1	1.39%	1.39%	∞	
8	Readout electronics	0.30%	N	1	1	1	0.30%	0.30%	∞	
9	Response time	0.80%	R	$\sqrt{3}$	1	1	0.46%	0.46%	∞	
10	Integration time	2.60%	R	$\sqrt{3}$	1	1	1.50%	1.50%	∞	
11	RF Ambient Noise	3.00%	R	$\sqrt{3}$	1	1	1.73%	1.73%	∞	
12	RF Ambient Reections	3.00%	R	$\sqrt{3}$	1	1	1.73%	1.73%	∞	
13	Probe Positioner	0.02%	R	$\sqrt{3}$	1	1	0.01%	0.01%	∞	
14	Probe Positioning	0.40%	R	$\sqrt{3}$	1	1	0.23%	0.23%	∞	
15	Max. SAR Eval.	2.00%	R	$\sqrt{3}$	1	1	1.15%	1.15%	∞	
Test Sample	e Related									
16	Test sample positioning	2.90%	N	1	1	1	2.90%	2.90%	145	
17	Device holder uncertainty	3.60%	N	1	1	1	3.60%	3.60%	11	
18	Power Drift	5.00%	R	$\sqrt{3}$	1	1	2.89%	2.89%	∞	
19	Power Scaling	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞	
Phantom ar	nd Setup									
20	Phantom uncertainty	6.10%	R	$\sqrt{3}$	1	1	3.52%	3.52%	∞	
21	SAR correction	0.00%	N	1	1	0.84	0.00%	0.00%	∞	
22	Liquid conductivity (meas.)	2.50%	N	1	0.78	0.71	1.95%	1.78%	∞	
23	Liquid permittivity (meas.)	2.50%	N	1	0.23	0.26	0.58%	0.65%	∞	
24	Temp. unc Conductivity	3.60%	R	$\sqrt{3}$	0.78	0.71	1.62%	1.48%	∞	
25	Temp. unc Permittivity	0.50%	R	$\sqrt{3}$	0.23	0.26	0.07%	0.08%	∞	
Co	mbined standard unce	rtainty	RSS				10.29%	10.22%		
Expanded	l uncertainty (confiden 95%)	ce interval of	K=2				20.57%	20.44%		

Report No: CHTEW19100186 Page: 9 of 105 Issued: 2019-10-31

	Measu	rement un			tion fo	or DUT	SAR tes	st	
			(3-60	GHZ)					
No.	Error Description	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measuremer	nt System								
1	Probe calibration	6.65%	N	1	1	1	6.65%	6.65%	8
2	Axial isotropy	0.60%	R	$\sqrt{3}$	0.7	0.7	0.24%	0.24%	8
3	Hemispherical isotropy	1.60%	R	$\sqrt{3}$	0.7	0.7	0.65%	0.65%	∞
4	Boundary Effects	2.00%	R	$\sqrt{3}$	1	1	1.15%	1.15%	8
5	Probe Linearity	0.45%	R	$\sqrt{3}$	1	1	0.26%	0.26%	8
6	System Detection Limits	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	8
7	Modulation response	2.40%	R	$\sqrt{3}$	1	1	1.39%	1.39%	8
8	Readout electronics	0.30%	N	1	1	1	0.30%	0.30%	8
9	Response time	0.80%	R	$\sqrt{3}$	1	1	0.46%	0.46%	∞
10	Integration time	2.60%	R	$\sqrt{3}$	1	1	1.50%	1.50%	8
11	RF Ambient Noise	3.00%	R	$\sqrt{3}$	1	1	1.73%	1.73%	8
12	RF Ambient Reections	3.00%	R	$\sqrt{3}$	1	1	1.73%	1.73%	8
13	Probe Positioner	0.04%	R	$\sqrt{3}$	1	1	0.02%	0.02%	∞
14	Probe Positioning	0.80%	R	$\sqrt{3}$	1	1	0.46%	0.46%	8
15	Max. SAR Eval.	4.00%	R	$\sqrt{3}$	1	1	2.31%	2.31%	∞
Test Sample	Related			•	•		•		
16	Test sample positioning	2.90%	N	1	1	1	2.90%	2.90%	145
17	Device holder uncertainty	3.60%	N	1	1	1	3.60%	3.60%	5
18	Power Drift	5.00%	R	$\sqrt{3}$	1	1	2.89%	2.89%	8
19	Power Scaling	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
Phantom an	d Setup								
20	Phantom uncertainty	6.60%	R	$\sqrt{3}$	1	1	3.81%	3.81%	∞
21	SAR correction	0.00%	N	1	1	0.84	0.00%	0.00%	8
22	Liquid conductivity (meas.)	2.50%	N	1	0.78	0.71	1.95%	1.78%	8
23	Liquid permittivity (meas.)	2.50%	N	1	0.23	0.26	0.58%	0.65%	8
24	Temp. unc Conductivity	3.60%	R	$\sqrt{3}$	0.78	0.71	1.62%	1.48%	8
25	Temp. unc Permittivity	0.50%	R	$\sqrt{3}$	0.23	0.26	0.07%	0.08%	8
Con	nbined standard unce	rtainty	RSS				11.06%	11.00%	
Expanded	uncertainty (confiden 95%)	ce interval of	K=2				22.12%	21.99%	

Report No: CHTEW19100186 Page: 10 of 105 Issued: 2019-10-31

	Measu	rement und	certainty e	valuat	ion fo	r Syst	em Chec	k	
			(0.3-3	GHz)					
No.	Error Description	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measureme	ent System				•				
1	Probe calibration	6.05%	N	1	1	1	6.05%	6.05%	8
2	Axial isotropy	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	∞
3	Hemispherical isotropy	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	∞
4	Boundary Effects	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
5	Probe Linearity	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
6	System Detection Limits	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
7	Modulation response	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	Readout electronics	0.00%	N	1	1	1	0.00%	0.00%	8
9	Response time	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
10	Integration time	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
11	RF Ambient Noise	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
12	RF Ambient Reections	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
13	Probe Positioner	0.02%	R	$\sqrt{3}$	1	1	0.01%	0.01%	∞
14	Probe Positioning	0.40%	R	$\sqrt{3}$	1	1	0.23%	0.23%	8
15	Max. SAR Eval.	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
System che	ck source (dipole)			_					
16	Dev. of experimental dipole	0.00%	N	1	1	1	0.00%	0.00%	8
17	Dipole Axis to Liquid Dist.	2.00%	R	$\sqrt{3}$	1	1	1.15%	1.15%	8
18	Input power & SAR drift	5.00%	R	$\sqrt{3}$	1	1	2.89%	2.89%	∞
Phantom ar	nd Setup								
19	Phantom uncertainty	7.20%	R	$\sqrt{3}$	1	1	4.16%	4.16%	∞
20	SAR correction	0.00%	N	1	1	0.84	0.00%	0.00%	∞
21	Liquid conductivity (meas.)	2.50%	N	1	0.78	0.71	1.95%	1.78%	8
22	Liquid permittivity (meas.)	2.50%	N	1	0.23	0.26	0.58%	0.65%	8
23	Temp. unc Conductivity	3.60%	R	$\sqrt{3}$	0.78	0.71	1.62%	1.48%	∞
24	Temp. unc Permittivity	0.50%	R	$\sqrt{3}$	0.23	0.26	0.07%	0.08%	∞
	mbined standard unce	-	RSS				8.65%	8.57%	
Expanded	l uncertainty (confiden 95%)	ce interval of	K=2				17.30%	17.14%	

Report No: CHTEW19100186 Page: 11 of 105 Issued: 2019-10-31

	Measu	rement und	certainty ev		ion fo	r Syst	em Chec	k	
No.	Error Description	Uncertainty Value	Probably Distribution	Div.	(Ci)	(Ci) 10g	Std. Unc.	Std. Unc. (10g)	Degree of freedom
Measureme	ent System				. 3	_ 3	(3/	1 (- 3/	
1	Probe calibration	6.65%	N	1	1	1	6.65%	6.65%	∞
2	Axial isotropy	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	∞
3	Hemispherical isotropy	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	∞
4	Boundary Effects	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
5	Probe Linearity	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
6	System Detection Limits	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
7	Modulation response	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	Readout electronics	0.00%	N	1	1	1	0.00%	0.00%	∞
9	Response time	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
10	Integration time	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
11	RF Ambient Noise	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
12	RF Ambient Reections	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
13	Probe Positioner	0.04%	R	$\sqrt{3}$	1	1	0.02%	0.02%	∞
14	Probe Positioning	0.80%	R	$\sqrt{3}$	1	1	0.46%	0.46%	∞
15	Max. SAR Eval.	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
System che	eck source (dipole)								
16	Dev. of experimental dipole	0.00%	N	1	1	1	0.00%	0.00%	∞
17	Dipole Axis to Liquid Dist.	2.00%	R	$\sqrt{3}$	1	1	1.15%	1.15%	∞
18	Input power & SAR drift	5.00%	R	$\sqrt{3}$	1	1	2.89%	2.89%	8
Phantom a	nd Setup								
19	Phantom uncertainty	7.60%	R	$\sqrt{3}$	1	1	4.39%	4.39%	∞
20	SAR correction	0.00%	N	1	1	0.84	0.00%	0.00%	∞
21	Liquid conductivity (meas.)	2.50%	N	1	0.78	0.71	1.95%	1.78%	∞
22	Liquid permittivity (meas.)	2.50%	N	1	0.23	0.26	0.58%	0.65%	∞
23	Temp. unc Conductivity	3.60%	R	$\sqrt{3}$	0.78	0.71	1.62%	1.48%	∞
24	Temp. unc Permittivity	0.50%	R	$\sqrt{3}$	0.23	0.26	0.07%	0.08%	∞
Co	mbined standard unce	rtainty	RSS				9.25%	9.18%	
Expanded	d uncertainty (confiden 95%)	ce interval of	K=2				18.51%	18.36%	

Report No: CHTEW19100186 Page: 12 of 105 Issued: 2019-10-31

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.

Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

Report No: CHTEW19100186 Page: 13 of 105 Issued: 2019-10-31

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 4 MHz to 10 GHz;

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range 10 μ W/g to > 100 W/kg;

Linearity: ± 0.2 dB

Dimensions Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 1.0 mm

Application General dosimetry up to 6 GHz

Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Compatibility DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

• Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

Report No: CHTEW19100186 Page: 14 of 105 Issued: 2019-10-31

6.3. Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

Report No: CHTEW19100186 Page: 15 of 105 Issued: 2019-10-31

7. SAR Test Procedure

7.1. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5%.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1 \text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- · boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Report No: CHTEW19100186 Page: 16 of 105 Issued: 2019-10-31

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04

		•	≤3 GHz	> 3 GHz	
Maximum distance fro (geometric center of p		measurement point rs) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \hat{\delta} \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle surface normal at the i			30° ± 1°	20° ± 1°	
			\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz}$: $\leq 12 \text{ mm}$ $4 - 6 \text{ GHz}$: $\leq 10 \text{ mm}$	
Maximum area scan s	patial resol	ution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 3 - 4 GHz: \leq 5 m 2 - 3 GHz: \leq 5 mm* 4 - 6 GHz: \leq 4 m		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz}$: $\leq 4 \text{ mm}$ $4 - 5 \text{ GHz}$: $\leq 3 \text{ mm}$ $5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid $ \begin{array}{c} \Delta z_{Zoom}(1): \text{ between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \end{array} $ $ \frac{\Delta z_{Zoom}(n): \text{ between subsequent}}{\Delta z_{Zoom}(n): \text{ between subsequent}} $		≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$	
			$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No: CHTEW19100186 Page: 17 of 105 Issued: 2019-10-31

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), s together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: Sensitivity: Normi, ai0, ai1, ai2

> Conversion factor: ConvFi Diode compression point: Dcpi

Device parameters: Frequency:

> Crest factor: cf Conductivity: σ

Media parameters: Density: ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

crest factor of exciting field (DASY parameter) cf: dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:
$$E-\mathrm{fieldprobes}: \qquad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H – field
probes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

compensated signal of channel (i = x, y, z) Vi: Normi: sensor sensitivity of channel (i = x, y, z),

[mV/(V/m)2] for E-field Probes

ConvF: sensitivity enhancement in solution

sensor sensitivity factors for H-field probes aij:

f: carrier frequency [GHz]

Ei: electric field strength of channel i in V/m Hi: magnetic field strength of channel i in A/m Report No: CHTEW19100186 Page: 18 of 105 Issued: 2019-10-31

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.
$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in W/kg

Etot: total field strength in V/m

conductivity in [mho/m] or [Siemens/m] σ: equivalent tissue density in g/cm3 ρ:

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

Report No: CHTEW19100186 Page: 19 of 105 Issued: 2019-10-31

8. Dielectric Property Measurements & System Check

8.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The dielectric constant (ε_r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ε_r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	Tissue dielectric parameters for Head and Body												
Target Frequency	H	ead		Body									
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)									
750	41.9	0.89	55.5	0.96									
835	41.5	0.90	55.2	0.97									
1750	40.1	1.37	53.4	1.49									
1800-2000	40.0	1.40	53.3	1.52									
2450	39.2	1.80	52.7	1.95									
2600	39.0	1.96	52.5	2.16									
5200	36.0	4.66	49.0	5.30									
5300	35.9	4.76	48.9	5.42									
5500	35.6	4.96	48.6	5.65									
5600	35.5	5.07	48.5	5.77									
5800	35.3	5.27	48.2	6.00									

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Report No: CHTEW19100186 Page: 20 of 105 Issued: 2019-10-31

Dielectric Property Measurements Results:

Dielectric Property Measurements Results:														
Dielectric performance of Head tissue simulating liquid														
Frequency		ϵ_{r}	σ(S/m)		Delta	Delta	1.5	Temp	D .					
(MHz)	Target	Target Measured Target Measured (ϵ_r) (σ)	(σ)	Limit	(℃)	Date								
750	41.90	43.77	0.890	0.884	4.46%	-0.67%	±5%	22.5	2019-10-11					
835	41.50	43.49	0.900	0.916	4.80%	1.78%	±5%	22.5	2019-10-12					
1750	40.10	41.69	1.370	1.362	3.97%	-0.58%	±5%	22.5	2019-10-14					
1900	40.00	41.48	1.400	1.453	3.70%	3.79%	±5%	22.5	2019-10-24					
2450	39.20	40.71	1.800	1.857	3.85%	3.17%	±5%	22.5	2019-10-15					
2600	39.00	40.43	1.960	1.984	3.67%	1.22%	±5%	22.5	2019-10-16					
5200	36.00	35.69	4.660	4.618	-0.87%	-0.90%	±5%	22.5	2019-10-17					
5300	35.90	35.49	4.760	4.729	-1.13%	-0.65%	±5%	22.5	2019-10-17					
5500	35.64	35.13	4.963	4.956	-1.44%	-0.14%	±5%	22.5	2019-10-18					
5600	35.50	34.92	5.070	5.076	-1.64%	0.12%	±5%	22.5	2019-10-18					
5800	35.30	34.55	5.270	5.306	-2.13%	0.68%	±5%	22.5	2019-10-24					

Report No: CHTEW19100186 Page: 21 of 105 Issued: 2019-10-31

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥15.0 cm for SAR measurements ≤3 GHz and ≥10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.

 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- The results are normalized to 1 W input power.

System Performance Check Setup

Photo of Dipole Setup

Report No: CHTEW19100186 Page: 22 of 105 Issued: 2019-10-31

System Check Result:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within ±10% of the manufacturer calibrated dipole SAR target.

	Head													
Frequency	1g SAR			10g SAR			Delta	Delta		Temp	Data			
(MHz)	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW	(1g)	(10g)	Limit	(℃)	Date			
750	8.22	8.48	2.12	5.39	5.56	1.39	3.16%	3.15%	±10%	22.5	2019-10-11			
835	9.51	9.80	2.45	6.15	6.36	1.59	3.05%	3.41%	±10%	22.5	2019-10-12			
1750	36.60	36.72	9.18	19.40	19.64	4.91	0.33%	1.24%	±10%	22.5	2019-10-14			
1900	40.30	41.60	10.40	21.10	21.40	5.35	3.23%	1.42%	±10%	22.5	2019-10-24			
2450	51.50	52.80	13.20	24.10	24.72	6.18	2.52%	2.57%	±10%	22.5	2019-10-15			
2600	55.60	57.20	14.30	25.00	25.80	6.45	2.88%	3.20%	±10%	22.5	2019-10-16			

	Head														
Frequency		1g SAR		10g SAR			Delta	Delta	Limit	Temp	Date				
(MHz)	Target 1W	Normalize to 1W	Measured 100mW	Target 1W	Normalize to 1W	Measured 100mW	d (1g) (10g)	(10g)	LIIIII	(℃)	Date				
5200	79.90	78.20	7.82	22.80	22.70	2.27	-2.13%	-0.44%	±10%	22.5	2019-10-17				
5300	81.40	78.80	7.88	23.40	23.20	2.32	-3.19%	-0.85%	±10%	22.5	2019-10-17				
5500	86.00	84.60	8.46	24.40	24.20	2.42	-1.63%	-0.82%	±10%	22.5	2019-10-18				
5600	83.90	84.50	8.45	24.00	24.30	2.43	0.72%	1.25%	±10%	22.5	2019-10-18				
5800	79.40	77.50	7.75	22.50	22.10	2.21	-2.39%	-1.78%	±10%	22.5	2019-10-24				

Report No: CHTEW19100186 Page: 23 of 105 Issued: 2019-10-31

Plots of System Performance Check

System Performance Check-Head 750MHz

DUT: D750V3; Type: D750V3; Serial: 1180

Date: 2019-10-11

Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.884$ S/m; $\epsilon = 43.773$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.2 °C;Liquid Temperature:21.9 °C;

DASY5 Configuration:

Probe: EX3DV4 - SN7494; ConvF(10.74, 10.74, 10.74) @ 750 MHz; Calibrated: 3/25/2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1549; Calibrated: 3/19/2019

Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=15mm, Pin=250mW/Area Scan (41x111x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 2.87 W/kg

Head/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 57.86 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.89 W/kg

0 dB = 2.89 W/kg = 4.61 dBW/kg

Report No: CHTEW19100186 Page: 24 of 105 Issued: 2019-10-31

System Performance Check-Head 835MHz

DUT: D835V2; Type: D835V2; Serial: 4d238

Date: 2019-10-12

Communication System: UID 0, CW (0); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.916$ S/m; $\varepsilon_r = 43.488$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.1 °C;Liquid Temperature:21.9 °C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.41, 10.41, 10.41) @ 835 MHz; Calibrated: 3/25/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=15mm, Pin=250mW/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 3.33 W/kg

Head/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 61.58 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.96 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.38 W/kg

0 dB = 3.38 W/kg = 5.29 dBW/kg

Report No: CHTEW19100186 Page: 25 of 105 Issued: 2019-10-31

System Performance Check-Head 1750MHz

DUT: D1750V2; Type: D1750V2; Serial: 1164

Date: 2019-10-14

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.362$ S/m; $\epsilon_r = 41.694$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.2°;Liquid Temperature:22.0°C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.91, 8.91, 8.91) @ 1750 MHz; Calibrated: 3/25/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm, Pin=250mW/Area Scan (51x51x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 14.8 W/kg

Head/d=10mm, Pin=250mW/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 103.1 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.18 W/kg; SAR(10 g) = 4.91 W/kg Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Report No: CHTEW19100186 Page: 26 of 105 Issued: 2019-10-31

System Performance Check-Head 1900MHz

DUT: D1900V2; Type: D1900V2; Serial: 5d226

Date:2019-10-24

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.453$ S/m; $\varepsilon_r = 41.481$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.3 °C;Liquid Temperature:22.1 °C;

DASY5 Configuration:

Probe: EX3DV4 - SN7494; ConvF(8.57, 8.57, 8.57) @ 1900 MHz; Calibrated: 3/25/2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1549; Calibrated: 3/19/2019

Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=250mW/Area Scan (51x51x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 17.3 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 108.8 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.35 W/kg Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dBW/kg

Report No: CHTEW19100186 Page: 27 of 105 Issued: 2019-10-31

SystemPerformanceCheck-Head 2450MHz

DUT: D2450V2; Type: D2450V2; Serial: 1009

Date:2019-10-15

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.857 \text{ S/m}$; $\epsilon_r = 40.706$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:22.3°C;Liquid Temperature:22.0°C;

DASY5 Configuration:

Probe: EX3DV4 - SN7494; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 3/25/2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1549; Calibrated: 3/19/2019

Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm

Maximum value of SAR (interpolated) = 22.2 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 111.6 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Report No: CHTEW19100186 Page: 28 of 105 Issued: 2019-10-31

SystemPerformanceCheck-Head 2600MHz

DUT: D2600V2; Type: D2600V2; Serial: 1150

Date: 2019-10-16

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.984$ S/m; $\epsilon_r = 40.425$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.5 °C;Liquid Temperature:22.2 °C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 3/25/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm

Maximum value of SAR (interpolated) = 24.9 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 112.7 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.45 W/kg Maximum value of SAR (measured) = 24.4 W/kg

0 dB = 24.4 W/kg = 13.87 dBW/kg

Report No: CHTEW19100186 Page: 29 of 105 Issued: 2019-10-31

SystemPerformanceCheck-Head 5200MHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1273

Date: 2019-10-17

Communication System: UID 0, CW (0); Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; $\sigma = 4.618$ S/m; $\epsilon r = 35.687$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.5°C;Liquid Temperature:22.2°C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(5.56, 5.56, 5.56) @ 5200 MHz; Calibrated: 3/25/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=100mW/Area Scan (31x31x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 19.8 W/kg

Head/d=10mm,Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 62.37 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

Report No: CHTEW19100186 Page: 30 of 105 Issued: 2019-10-31

SystemPerformanceCheck-Head 5300MHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1273

Date: 2019-10-17

Communication System: UID 0, A-CW (0); Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5300 MHz; $\sigma = 4.729 \text{ S/m}$; $\epsilon_r = 35.494$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature:22.3 °C;Liquid Temperature:22.1 °C;

DASY5 Configuration:

Probe: EX3DV4 - SN7494; ConvF(5.37, 5.37, 5.37) @ 5300 MHz; Calibrated: 3/25/2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1549; Calibrated: 3/19/2019

Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 19.2 W/kg

Head/d=10mm,Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 66.58 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.32 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 18.4 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

Report No: CHTEW19100186 Page: 31 of 105 Issued: 2019-10-31

SystemPerformanceCheck-Head 5500MHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1273

Date: 2019-10-18

Communication System: UID 0, CW (0); Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; $\sigma = 4.956$ S/m; $\epsilon_r = 35.126$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.4℃;Liquid Temperature:22.2℃;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(5, 5, 5) @ 5500 MHz; Calibrated: 3/25/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=100mW/Area Scan (41x41x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 21.5 W/kg

Head/d=10mm,Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 53.24 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 37.3 W/kg

SAR(1 g) = 8.46 W/kg; SAR(10 g) = 2.42 W/kg Maximum value of SAR (measured) = 21.2 W/kg

0 dB = 21.2 W/kg = 13.26 dBW/kg

Report No: CHTEW19100186 Page: 32 of 105 Issued: 2019-10-31

SystemPerformanceCheck-Head 5600MHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1273

Date: 2019-10-18

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 5.076$ S/m; $\varepsilon_r = 34.918$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.7°C;Liquid Temperature:22.4°C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(4.89, 4.89, 4.89) @ 5600 MHz; Calibrated: 3/25/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=100mW/Area Scan (41x41x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 21.8 W/kg

Head/d=10mm,Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 43.18 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 37.0 W/kg

SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 20.1 W/kg

-6.07
-12.13
-18.20
-24.26
-30.33

0 dB = 20.1 W/kg = 13.03 dBW/kg

Report No: CHTEW19100186 Page: 33 of 105 Issued: 2019-10-31

SystemPerformanceCheck-Head 5800MHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1273

Date: 2019-10-24

Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 5.306$ S/m; $\varepsilon_r = 34.549$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature:22.6°C;Liquid Temperature:22.3°C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(4.85, 4.85, 4.85) @ 5800 MHz; Calibrated: 3/25/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=100mW/Area Scan (41x41x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 21.5 W/kg

Head/d=10mm,Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 55.92 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 36.5 W/kg

SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

Report No: CHTEW19100186 Page: 34 of 105 Issued: 2019-10-31

9. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

	Limit (W/kg)					
Type Exposure	General Population/ Uncontrolled Exposure Environment	Occupational/ Controlled Exposure Environment				
Spatial Average SAR (whole body)	0.08	0.4				
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0				
Spatial Peak SAR (10g for limb)	4.0	20.0				

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

Report No: CHTEW19100186 Page: 35 of 105 Issued: 2019-10-31

10. Conducted Power Measurement Results

10.1. WCDMA

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS34.121 specification.
- 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode to determine SAR test exclusion

A summary of thest setting are illustrated belowe:

HSDPA Setup Configureation:

- a) The EUT was connected to base station RS CMU200 referred to the setup configuration
- b) The RF path losses were compensated into the measurements
- A call was established between EUT and base station with following setting:
 - i. Set Gain Factors (βc and βd) and parameters were set according to each specific sub-test in the following table, C10.1.4, Quoted from the TS 34.121
 - ii. Set RMC 12.2Kbps + HSDPA mode
 - iii. Set Cell Power=-86dBm
 - iv. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - v. Select HSDPA uplink parameters
 - vi. Set Delta ACK, Delta NACK and Delta CQI=8
 - vii. Set Ack-Nack repetition Factor to 3
 - viii. Set CQI Feedback Cycle (K) to 4ms
 - ix. Set CQI repetition factor to 2
 - x. Power ctrl mode= all up bits
- d) The transmitter maximum output power waw recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βd	β _d (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and Δ_{CQI} = 24/15 with β_{hs} = 24/15 * β_c .
- Note 3: CM = 1 for β_e/β_d =12/15, β_{hs}/β_e =24/15. For all other combinations of DPDCH, DPCCH and HSDPCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15.

Setup Configuration

HSUPA Setup Configureation:

- a) The EUT was connected to base station RS CMU200 referred to the setup configuration
- b) The RF path losses were compensated into the measurements
- c) A call was established between EUT and base station with following setting:
 - Call configs = 5.2b, 5.9b, 5.10b, and 5.13.2B with QPSK
 - ii. Set Gain Factors (βc and βd) and parameters (AG index) were set according to each specific subtest in the following table, C11.1.3, Quoted from the TS 34.121
 - iii. Set Cell Power=-86dBm
 - iv. Set channel type= 12.2Kbps + HSPA mode
 - v. Set UE Target power
 - vi. Set Ctrl mode=Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal the target E-TFCI of 75 for Sub-test 1, and other subtest's E-TFCI
- d) The transmitter maximum output power waw recorded.

Report No: CHTEW19100186 Page: 36 of 105 Issued: 2019-10-31

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βε	βd	β _d (SF)	β _c /β _d	β _H s (Note 1)	βες	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{ks} = 30/15 * β_c .
- Note 2: CM = 1 for β_c/β_d =12/15, β_hs/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: βed can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

General Note:

- Per KDB 941225 D01, SAR for Head / Hotsport / Body-worn Exposure is measured using a 12.2Kbps RMC with TPC bit ocnfigured to all 1s
- Per KDB 941225 D01 RMC12.2Kbps setting is used to evaluate SAR. If the maximum output power and Tune-up tolerance specified for production units in HSDPA/HSUPA is ≤ 1/4dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio fo specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC 12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.

		1	NCDMA Band	H	WCDMA Band IV				
Mode		Conc	lucted Power	(dBm)	Conducted Power (dBm)				
		CH9262	CH9400	CH9538	CH1312	CH1413	CH1513		
		1852.4MHz	1880MHz	1907.6MHz	1712.4MHz	1732.6MHz	1752.6MHz		
AMF	R 12.2K	22.47	22.90	22.76	22.92	23.07	23.16		
RMO	C 12.2K	22.50	22.93	22.79	22.95	23.10	23.19		
	Subtest-1	21.56	22.01	21.92	21.95	22.12	22.18		
HSDPA	Subtest-2	19.65	21.50	21.37	21.48	21.62	21.69		
ПОПРА	Subtest-3	18.87	21.50	21.40	21.50	21.61	21.73		
	Subtest-4	18.76	21.56	21.39	21.50	21.63	21.70		
	Subtest-1	18.43	18.26	18.35	18.11	18.64	18.76		
	Subtest-2	18.51	18.83	18.58	18.32	18.82	1886		
HSUPA	Subtest-3	18.82	18.91	18.74	18.41	18.96	18.92		
	Subtest-4	19.11	19.02	18.95	18.85	18.95	18.91		
	Subtest-5	19.98	19.68	19.46	19.92	19.75	20.05		

Report No: CHTEW19100186 Page: 37 of 105 Issued: 2019-10-31

		V	/CDMA Band	V				
		Conducted Power (dBm)						
N	Mode	CH4132	CH4183	CH4233				
		826.4MHz	836.6MHz	846.6MHz				
AMI	R 12.2K	22.92	23.05	23.25				
RM	C 12.2K	22.95	23.08	23.28				
	Subtest-1	22.19	22.16	22.20				
HSDPA	Subtest-2	21.71	21.65	21.69				
ПЗДРА	Subtest-3	21.71	21.64	21.73				
	Subtest-4	21.72	21.63	21.70				
	Subtest-1	19.02	1852	18.28				
	Subtest-2	18.97	18.96	18.70				
HSUPA	Subtest-3	19.51	18.98	18.71				
	Subtest-4	19.56	19.11	19.18				
	Subtest-5	20.58	20.54	20.20				

Report No: CHTEW19100186 Page: 38 of 105 Issued: 2019-10-31

10.2. LTE

General Note:

- 1. CMW500 base station simulator was used to setup the connection with EUT; the frequency band, channel, bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUTtransmitting at maximum power and at different configurations which are requested to be reported to FCC, forconducted power measurement and SAR testing.
- 2. Per KDB 941225 D05v02r03, when a properly configured base station simulator is used for the SAR and powermeasurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RBallocation, using the RB offset and required test channel combination with the highest maximum output power for RBoffsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r03, for QPSK with 100% RB allocation, SAR is not required when the highest maximumoutput power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highestoutput power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also betested.
- 6. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not $\frac{1}{2}$ dB higher than thesame configuration in QPSK and the reported SAR for the QPSK configuration is \leq 1.45 W/kg; Per KDB 941225D05v02r03, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r03, smaller bandwidth output power for each RB allocation configuration is > not $\frac{1}{2}$ dBhigher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supportedbandwidth is \leq 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required.

TCB workshop October, 2014: Page 37, Other LTE Considerations.

Report No: CHTEW19100186 Page: 39 of 105 Issued: 2019-10-31

	LTE-FDD	Band 2		Conducted Power(dBm)		
Band-	NA. I lada	RB	RB	18607	18900	19193
width	Modulation	allocation	offset	1850.7MHz	1880MHz	1909.3MHz
			0	22.60	23.05	22.47
		1	2	22.64	22.98	22.57
			5	22.59	22.96	22.49
	QPSK		0	22.62	22.95	22.48
		3	1	22.60	23.00	22.45
			3	22.62	22.96	22.49
4 41411-		6	0	21.68	22.04	21.53
1.4MHz			0	21.81	22.10	21.43
		1	2	21.74	22.24	21.53
			5	21.80	22.12	21.39
	16QAM		0	21.73	21.97	21.42
		3	1	21.72	21.96	21.39
			3	21.65	21.96	21.32
		6	0	20.53	20.95	20.61
Band-	Modulation	RB	RB	18615	18900	19185
width	Modulation	allocation	offset	1851.5MHz	1880MHz	1908.5MHz
			0	22.43	22.36	22.22
		1	8	22.25	22.30	22.19
			14	22.31	22.25	22.18
	QPSK		0	21.54	21.42	21.45
		8	4	21.59	21.39	21.45
			7	21.51	21.35	21.39
3MHz		15	0	21.52	21.33	21.38
SIVITZ			0	21.51	21.29	21.63
		1	8	21.65	21.26	21.52
			14	21.50	21.27	21.39
	16QAM		0	20.57	20.39	21.56
		8	4	20.56	20.38	21.63
			7	20.55	20.38	21.66
		15	0	20.59	20.49	20.49

Report No: CHTEW19100186 Page: 40 of 105 Issued: 2019-10-31

	LTE-FDD	Band 2		Conducted Power(dBm)		
Band-		RB	RB	18625	18900	19175
width	Modulation	allocation	offset	1852.5MHz	1880MHz	1907.5MHz
			0	22.21	22.70	22.63
		1	12	22.20	22.53	22.48
			24	22.17	22.55	22.47
	QPSK		0	21.30	21.61	21.61
		12	7	21.26	21.59	21.55
			13	21.31	21.58	21.51
5N411-		25	0	21.30	21.55	21.57
5MHz			0	21.59	21.72	21.73
		1	12	21.44	21.58	21.66
			24	21.28	21.61	21.56
	16QAM		0	20.46	20.60	20.58
		12	7	20.36	20.69	20.60
			13	20.35	20.67	20.53
		25	0	20.56	20.65	20.53
Band-	Modulation	RB	RB	18650	18900	19150
width	Modulation	allocation	offset	1855MHz	1880MHz	1905MHz
			0	22.28	22.64	22.65
		1	24	22.16	22.52	22.44
			49	22.37	22.61	22.48
	QPSK		0	21.25	21.58	21.62
		25	24	21.21	21.49	21.60
			49	21.27	21.52	21.58
10MHz		50	0	21.26	21.56	21.54
TOWNIZ			0	21.70	21.65	21.90
		1	24	21.40	21.41	21.78
			49	21.64	21.61	21.79
	16QAM		0	20.39	20.60	20.56
		25	24	20.48	20.65	20.58
			49	20.34	20.55	20.49
		50	0	21.37	20.51	20.52

Report No: CHTEW19100186 Page: 41 of 105 Issued: 2019-10-31

	LTE-FDD	Band 2		Conducted Power(dBm)		
Band-	Maria de Cara	RB	RB	18675	18900	19125
width	Modulation	allocation	offset	1857.5MHz	1880MHz	1902.5MHz
			0	22.89	23.09	22.18
		1	38	22.57	22.77	22.74
			74	22.73	22.86	22.83
	QPSK		0	22.20	21.76	22.07
		38	18	21.92	21.67	22.09
			37	22.10	22.01	22.25
45141-		75	0	21.80	21.84	21.90
15MHz			0	22.12	21.99	22.12
		1	38	21.97	21.65	22.17
			74	22.08	21.86	22.10
	16QAM		0	22.02	22.00	22.06
		38	18	21.75	21.69	22.05
			37	21.95	21.77	22.21
		75	0	20.73	20.82	20.85
Band-	Modulation	RB	RB	18700	18900	19100
width	Modulation	allocation	offset	1860MHz	1880MHz	1900MHz
			0	22.86	22.72	22.88
		1	49	22.71	22.81	22.80
			99	22.56	22.68	22.64
	QPSK		0	22.00	21.86	21.91
		50	25	21.93	21.82	21.96
			50	21.79	21.78	21.90
20MHz		100	0	21.91	21.85	21.96
ZUIVITZ			0	21.74	21.94	22.10
		1	49	21.92	21.89	21.96
			99	21.59	21.69	21.83
	16QAM		0	21.00	20.79	20.95
		50	25	20.96	20.79	20.95
			50	20.80	20.76	20.94
		100	0	20.89	20.80	20.87

Report No: CHTEW19100186 Page: 42 of 105 Issued: 2019-10-31

	LTE-FDD	Band 4		Conducted Power(dBm)		
Band-		RB	RB	19957	20175	20393
width	Modulation	allocation	offset	1710.7MHz	1732.5MHz	1754.3MHz
			0	22.39	22.57	22.48
		1	2	22.38	22.56	22.59
			5	22.35	22.55	22.51
	QPSK		0	22.30	22.48	22.52
		3	1	22.30	22.48	22.52
			3	22.30	22.49	22.47
4 45411-		6	0	21.32	21.45	21.51
1.4MHz			0	21.41	21.42	21.75
		1	2	21.57	21.40	21.71
			5	21.45	21.35	21.65
	16QAM		0	21.29	21.36	21.42
		3	1	21.29	21.38	21.43
			3	21.27	21.27	21.36
		6	0	20.46	20.50	20.60
Band-	Modulation	RB	RB	19965	20175	20385
width	Modulation	allocation	offset	1711.5MHz	1732.5MHz	1753.5MHz
			0	22.51	22.64	22.72
		1	8	22.46	22.63	22.64
			14	22.49	22.58	22.65
	QPSK		0	21.42	21.63	21.66
		8	4	21.43	21.63	21.59
			7	21.41	21.62	21.66
2ML1-		15	0	21.43	21.55	21.67
3MHz			0	21.58	21.51	21.82
		1	8	21.66	21.52	21.87
			14	21.51	21.48	21.73
	16QAM		0	20.48	20.68	20.68
		8	4	20.49	20.68	20.68
			7	20.48	20.56	20.67
		15	0	20.41	20.53	20.64

Report No: CHTEW19100186 Page: 43 of 105 Issued: 2019-10-31

	LTE-FDD	Band 4		Conducted Power(dBm)		
Band-		RB	RB	19975	20175	20375
width	Modulation	allocation	offset	1712.5MHz	1732.5MHz	1752.5MHz
			0	22.65	22.83	22.85
		1	12	22.55	22.72	22.68
			24	22.54	22.72	22.72
	QPSK		0	21.42	21.67	21.61
		12	7	21.54	21.66	21.62
			13	21.40	21.56	21.64
5N411-		25	0	21.42	21.55	21.60
5MHz			0	21.65	21.80	22.04
		1	12	21.56	21.66	21.91
			24	21.58	21.71	21.83
	16QAM		0	20.51	20.69	20.74
		12	7	20.51	20.63	20.74
			13	20.49	20.56	20.67
		25	0	20.51	20.61	20.63
Band-	Modulation	RB	RB	20000	20175	20350
width	Modulation	allocation	offset	1715MHz	1732.5MHz	1750MHz
			0	22.70	22.92	22.91
		1	24	22.52	22.66	22.57
			49	23.01	23.14	23.08
	QPSK		0	21.58	21.60	21.66
		25	24	21.47	21.71	21.64
			49	21.67	21.73	21.81
10MU=		50	0	21.57	21.69	21.75
10MHz			0	21.95	21.73	22.06
		1	24	21.61	21.49	21.77
			49	22.21	22.10	22.27
	16QAM		0	20.58	20.69	20.62
		25	24	20.52	20.66	20.63
			49	20.65	20.80	20.87
		50	0	20.62	20.71	20.69

Report No: CHTEW19100186 Page: 44 of 105 Issued: 2019-10-31

	LTE-FDD	Band 4		Conducted Power(dBm)		
Band-		RB	RB	20025	20175	20325
width	Modulation	allocation	offset	1717.5MHz	1732.5MHz	1747.5MHz
			0	22.53	22.63	22.62
		1	38	22.44	22.64	22.35
			74	22.63	22.56	22.49
	QPSK		0	21.38	21.62	22.08
		38	18	21.29	21.82	21.77
			37	21.48	21.68	21.88
45141-		75	0	21.33	21.49	21.55
15MHz			0	21.36	21.73	21.91
		1	38	21.20	21.60	21.69
			74	21.50	21.78	21.89
	16QAM	1	0	21.34	21.78	21.96
		38	18	21.28	21.60	21.76
			37	21.46	21.74	21.80
		75	0	20.39	20.45	20.57
Band-	Modulation	RB	RB	20050	20175	20300
width	Modulation	allocation	offset	1720MHz	1732.5MHz	1745MHz
			0	22.39	22.39	22.41
		1	49	22.55	22.80	22.39
			99	22.66	22.56	22.35
	QPSK		0	21.36	21.45	21.56
		50	25	21.40	21.45	21.55
			50	21.47	21.50	21.50
20MHz		100	0	21.48	21.46	21.46
201011 12			0	21.43	21.63	21.51
		1	49	21.49	21.75	21.47
			99	21.73	21.80	21.58
	16QAM		0	20.38	20.44	20.64
		50	25	20.38	20.51	20.65
			50	20.49	20.54	20.61
		100	0	20.49	20.49	20.52

Report No: CHTEW19100186 Page: 45 of 105 Issued: 2019-10-31

	LTE-FDD	Band 5		Conducted Power(dBm)		
Band-	NA. Liede	RB	RB	20407	20525	20643
width	Modulation	allocation	offset	824.7MHz	836.5MHz	848.3MHz
			0	22.84	22.86	22.54
		1	2	22.93	22.87	22.66
			5	22.92	22.83	22.56
	QPSK		0	22.91	22.89	22.67
		3	1	22.99	22.79	22.69
			3	22.93	22.83	22.49
4 45411-		6	0	21.92	21.96	21.73
1.4MHz			0	21.98	22.04	21.86
		1	2	22.24	22.04	22.04
			5	22.18	21.91	21.93
	16QAM		0	21.94	21.71	21.60
		3	1	21.94	21.75	21.59
			3	21.93	21.73	21.48
		6	0	20.79	20.79	20.73
Band-	Modulation	RB	RB	20415	20525	20635
width	Modulation	allocation	offset	825.5MHz	836.5MHz	847.5MHz
			0	22.80	23.00	22.75
		1	8	22.86	22.87	22.71
			14	22.95	22.81	22.65
	QPSK		0	22.00	21.88	21.78
		8	4	22.00	21.87	21.79
			7	22.01	21.86	21.74
3MHz		15	0	22.03	21.90	21.77
SIVIFIZ			0	22.00	21.96	21.89
		1	8	22.25	21.83	22.01
			14	22.08	21.80	21.74
	16QAM		0	21.03	20.93	20.86
		8	4	21.08	20.92	20.88
			7	21.00	20.84	20.81
		15	0	20.92	20.83	20.74

Report No: CHTEW19100186 Page: 46 of 105 Issued: 2019-10-31

	LTE-FDD	Band 5		Cond	Conducted Power(dBm)		
Band-		RB	RB	20425	20525	20625	
width	Modulation	allocation	offset	826.5MHz	836.5MHz	846.5MHz	
			0	22.89	22.81	22.81	
		1	12	22.95	22.86	22.84	
			24	22.90	22.73	22.65	
	QPSK		0	21.97	21.94	21.81	
		12	7	21.97	21.94	21.84	
			13	21.93	21.90	21.63	
51411		25	0	22.00	21.87	21.72	
5MHz			0	22.07	21.91	21.84	
		1	12	22.02	21.91	21.88	
			24	22.00	21.79	21.71	
	16QAM		0	21.00	20.85	20.80	
		12	7	20.99	20.85	20.76	
			13	20.93	20.90	20.70	
		25	0	21.01	20.84	20.78	
Band-	Modulation	RB	RB	20450	20525	20600	
width	Modulation	allocation	offset	829MHz	836.5MHz	844MHz	
			0	22.92	22.98	22.98	
		1	24	22.85	22.74	22.64	
			49	23.14	22.97	22.85	
	QPSK		0	21.94	21.89	21.96	
		25	24	21.90	21.87	21.93	
			49	22.04	21.89	21.80	
10MU=		50	0	21.96	21.89	21.81	
10MHz			0	21.93	22.18	22.13	
		1	24	21.75	21.92	21.99	
			49	22.16	22.16	22.13	
	16QAM		0	20.96	20.96	20.94	
		25	24	20.98	20.80	20.96	
			49	21.02	20.78	20.83	
		50	0	20.99	20.84	20.85	

Report No: CHTEW19100186 Page: 47 of 105 Issued: 2019-10-31

	LTE-FDD	Band 7		Cond	Conducted Power(dBm)		
Band-	Madulatian	RB	RB	20775	21100	21425	
width	Modulation	allocation	offset	2502.5MHz	2535MHz	2567.5MHz	
			0	23.07	22.99	22.48	
		1	12	23.02	22.89	22.55	
			24	22.90	22.86	22.47	
	QPSK		0	22.01	21.89	21.59	
		12	7	22.01	21.91	21.55	
			13	21.96	21.86	21.54	
CNALL-		25	0	21.95	21.94	21.55	
5MHz			0	21.98	22.28	21.65	
		1	12	21.97	22.14	21.55	
			24	21.97	22.10	21.57	
	16QAM		0	21.03	20.99	20.58	
		12	7	21.07	21.01	20.57	
			13	21.01	20.92	20.51	
		25	0	21.02	20.90	20.61	
Band-	Modulation	RB	RB	20800	21100	21400	
width	Modulation	allocation	offset	2505MHz	2535MHz	2565MHz	
			0	22.70	22.66	22.32	
		1	24	22.43	22.37	22.05	
			49	22.61	22.46	22.13	
	QPSK		0	21.61	21.57	21.21	
		25	24	21.62	21.59	21.18	
			49	21.56	21.41	21.05	
10MHz		50	0	21.62	21.48	21.16	
IOIVITZ			0	22.05	21.62	21.61	
		1	24	21.69	21.26	21.32	
			49	21.93	21.43	21.37	
	16QAM		0	20.64	20.61	20.41	
		25	24	20.62	20.61	20.43	
			49	20.57	20.52	20.57	
		50	0	20.60	20.46	20.45	

Report No: CHTEW19100186 Page: 48 of 105 Issued: 2019-10-31

	LTE-FDD	Band 7		Conducted Power(dBm)		
Band-		RB	RB	20825	21100	21375
width	Modulation	allocation	offset	2507.5MHz	2535MHz	2562.5MHz
			0	22.55	22.49	22.24
		1	38	22.47	22.37	22.01
			74	22.40	22.23	21.79
	QPSK		0	22.03	21.67	21.88
		38	18	21.78	21.47	21.30
			37	21.75	21.13	21.12
45141-		75	0	21.62	21.50	21.21
15MHz			0	21.84	21.83	21.58
		1	38	21.80	21.33	21.35
			74	22.00	21.34	21.41
	16QAM		0	21.86	21.70	21.54
		38	18	21.79	21.29	21.39
			37	21.89	21.32	21.42
		75	0	20.60	20.49	20.48
Band-	Modulation	RB	RB	20850	21100	21350
width	Modulation	allocation	offset	2510MHz	2535MHz	2560MHz
			0	22.52	22.74	22.43
		1	49	22.58	22.47	22.17
			99	22.58	22.32	21.88
	QPSK		0	21.71	21.67	21.40
		50	25	21.70	21.65	21.38
			50	21.71	21.53	21.30
20MHz		100	0	21.81	21.62	21.27
ZUIVIMZ			0	21.81	21.90	21.65
		1	49	21.75	21.56	21.45
			99	21.89	21.71	21.41
	16QAM		0	20.75	20.65	20.38
		50	25	20.70	20.66	20.42
			50	20.72	20.56	20.49
		100	0	20.81	20.66	20.78

Report No: CHTEW19100186 Page: 49 of 105 Issued: 2019-10-31

	LTE-FDD E	Band 12		Conducted Power(dBm)		
Band-		RB	RB	23017	23095	23173
width	Modulation	allocation	offset	699.7MHz	707.5MHz	715.3MHz
			0	22.94	22.81	22.91
		1	2	22.91	22.90	22.83
			5	22.94	22.77	22.84
	QPSK		0	22.85	22.85	22.73
		3	1	22.83	22.84	22.71
			3	22.90	22.78	22.77
4 45411-		6	0	21.79	21.88	21.77
1.4MHz			0	21.92	21.98	21.87
		1	2	22.01	21.99	21.89
			5	21.95	21.87	21.84
	16QAM		0	21.70	21.76	21.70
		3	1	21.77	21.76	21.77
			3	21.75	21.76	21.68
		6	0	20.71	20.90	20.62
Band-	Modulation	RB	RB	23025	23095	23165
width	Modulation	allocation	offset	700.5MHz	707.5MHz	714.5MHz
			0	22.95	22.81	22.84
		1	8	23.07	22.85	22.74
			14	22.73	22.85	22.72
	QPSK		0	21.71	21.67	21.81
		8	4	21.79	21.67	21.79
			7	21.65	21.73	21.74
2MH=		15	0	21.67	21.83	21.72
3MHz			0	21.99	21.86	21.69
		1	8	22.00	21.93	21.63
			14	21.90	21.88	21.62
	16QAM		0	20.87	20.80	20.80
		8	4	20.86	20.72	20.83
			7	20.81	20.79	20.79
		15	0	20.84	20.72	20.71

Report No: CHTEW19100186 Page: 50 of 105 Issued: 2019-10-31

	LTE-FDD E	Band 12		Conducted Power(dBm)			
Band-	NA. Liede	RB	RB	23035	23095	23155	
width	Modulation	allocation	offset	701.5MHz	707.5MHz	713.5MHz	
			0	22.91	22.78	22.93	
		1	12	22.84	22.89	22.84	
			24	22.69	22.92	22.84	
	QPSK		0	21.70	21.69	21.80	
		12	7	21.60	21.72	21.81	
			13	21.69	21.70	21.75	
5N411-		25	0	21.67	21.67	21.83	
5MHz			0	21.82	21.90	21.94	
		1	12	21.81	22.12	21.95	
			24	21.70	22.11	21.83	
	16QAM		0	20.72	20.82	20.86	
		12	7	20.70	20.83	20.87	
			13	20.72	20.81	20.82	
		25	0	20.71	20.67	20.87	
Band-	Modulation	RB	RB	23060	23095	23130	
width	Modulation	allocation	offset	704MHz	707.5MHz	711MHz	
			0	23.17	23.13	23.14	
		1	24	22.88	22.80	22.92	
				49	23.02	23.06	23.00
	QPSK		0	21.90	21.88	21.87	
		25	24	21.83	21.89	21.87	
			49	21.73	21.90	21.82	
10MHz		50	0	21.82	21.89	21.96	
IOIVIMZ			0	22.22	22.34	22.02	
		1	24	21.84	22.01	21.79	
			49	22.08	22.18	21.97	
	16QAM		0	20.87	20.98	20.91	
		25	24	20.98	20.97	20.91	
			49	20.81	20.95	20.97	
		50	0	20.87	20.95	20.93	

Report No: CHTEW19100186 Page: 51 of 105 Issued: 2019-10-31

	LTE-FDD E	Band 17		Conducted Power(dBm)			
Band-		RB	RB	23755	23790	23825	
width	Modulation	allocation	offset	706.5MHz	710MHz	713.5MHz	
			0	22.91	22.95	23.15	
		1	12	22.91	22.92	23.06	
			24	22.97	23.05	22.99	
	QPSK		0	21.88	21.80	21.94	
		12	7	21.81	21.82	21.97	
			13	21.79	21.77	21.98	
5NALL-		25	0	21.81	21.76	21.96	
5MHz			0	22.14	21.93	22.13	
		1	12	22.08	21.95	22.02	
			24	22.07	22.00	22.08	
	16QAM		0	20.93	20.88	21.04	
		12	7	20.93	20.89	21.01	
			13	20.90	20.92	20.98	
		25	0	20.84	20.85	21.06	
Band-	Modulation	RB	RB	23780	23790	23800	
width	Modulation	allocation	offset	709MHz	710MHz	711MHz	
			0	23.19	23.12	23.19	
		1	24	22.83	22.84	23.00	
			49	23.01	23.03	22.96	
	QPSK		0	21.98	21.90	21.84	
		25	24	21.87	21.88	21.86	
			49	21.94	21.92	21.88	
10MHz		50	0	21.84	21.95	21.97	
IOIVITZ			0	22.30	22.25	22.35	
		1	24	22.02	21.99	22.08	
			49	22.21	22.21	22.11	
	16QAM		0	20.93	20.93	20.93	
		25	24	20.92	20.93	20.88	
			49	21.02	20.89	20.93	
		50	0	20.87	20.91	20.98	

Report No: CHTEW19100186 Page: 52 of 105 Issued: 2019-10-31

LTE (TDD) Considerations

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

SAR was tested with the highest transmission duty factor (63.33%) using Uplink-downlink configuration 0 and Special subframe configuration 7.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplinkdownlink configurations and Table 4.2-1 for Special subframe configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS)

	N	lormal cyclic prefix in	downlink	Ex	tended cyclic prefix ir	n downlink
Special <u>DwPTS</u>			PTS	DwPTS	Up)	PTS
subframe configuration		Normal eyelic prefix in uplink	Extended dyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink
0	6592 <i>-T</i> ,			7680 · I',		
1	19760 - T _e			20480 <i>∙T</i> ,	(1+X)·2192·፲	(1+X)·2560·T,
2	21952 · T,	(1+X)·2192·T,	(1+X)·2560·T,	23040 · T,	(1+4)-2192-2,	(1+4)-2300-2,
3	24144 · Γ _ε			25600 ·T,		
4	26336 · T,			7680 · T _e		
5	6592 <i>∙T</i> ,			20480 · T,	(2+X)·2192·፲	(2+X)·2560·I,
6	19760 - T _e			23040 · T,	(2+2).2192.2,	(2+2).200.2,
7	21952 · T,	(2+X)·2192·I,	(2+X)·2560·I,	12800 ⋅ ፲		
8	24144 · T,				-	-
9	13168 - Г			-	-	-
10	13168 ⋅ ፲	13152 - ₹,	12800 · T,	-	-	-

Table 4.2-2: U plink-downlink configurations

Uplin k-downlin k	Downlink-to-Uplink	Subframe number									
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	Э	U	5	٥	S	U	U	U
1	5 ms	D	S	U	U	٥	٥	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	٥	۵	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	0	U	5	٥	S	U	U	D

Calculated Duty Cycle = Extended cyclic prefix in uplink x (Ts) x # of S + # of U

Example for Calculated Duty Cycle for Uplink-Downlink Configuration 0: Calculated Duty Cycle = $5120 \times [1/(15000 \times 2048)] \times 2 + 6 \text{ ms} = 63.33\%$ where

 $Ts = 1/(15000 \times 2048)$ seconds

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used-configuration 0 at 63.3% duty cycle.

Report No: CHTEW19100186 Page: 53 of 105 Issued: 2019-10-31

	LTE-TDD E	Band 41			Conducted Power(dBm)					
Band-		RB	RB	39750	40185	40620	41055	41490		
width	Modulation	allocation	offset	2506MHz	2549.5MHz	2593MHz	2636.5MHz	2680MHz		
			0	22.01	22.00	22.07	22.26	21.83		
		1	12	21.78	21.93	22.07	22.11	21.61		
			24	22.06	22.11	22.00	22.25	21.93		
	QPSK		0	21.11	20.91	21.13	21.35	21.06		
		12	7	21.11	21.04	21.07	21.20	20.91		
			13	21.02	21.09	21.10	21.12	21.08		
5MHz		25	0	21.01	21.01	21.10	21.30	20.92		
SIVITZ			0	20.98	21.15	21.33	21.35	21.46		
		1	12	20.95	21.32	21.16	21.46	21.27		
			24	20.94	21.10	21.29	21.53	21.11		
	16QAM		0	20.45	20.44	20.86	20.38	20.62		
		12	7	20.95	20.95	20.97	20.33	20.91		
			13	20.88	20.88	20.91	20.55	20.65		
		25	0	20.65	20.62	20.47	20.63	20.94		
Band-	Modulation	RB	RB	39750	40185	40620	41055	41490		
width	Modulation	allocation	offset	2506MHz	2549.5MHz	2593MHz	2636.5MHz	2680MHz		
			0	22.01	22.00	22.21	22.30	21.97		
		1	24	21.87	21.99	22.06	21.93	21.92		
			49	22.53	22.42	22.37	22.54	21.48		
	QPSK		0	20.95	20.84	21.07	21.14	21.15		
		25	24	20.85	21.01	21.13	21.04	20.98		
			49	20.98	21.07	21.23	21.30	21.10		
10MHz		50	0	21.06	20.88	21.18	21.23	20.93		
TOWNIZ	TOMHZ		0	21.44	21.43	21.60	21.60	21.40		
		1	24	20.99	21.13	21.19	21.34	21.09		
			49	21.42	21.60	21.49	21.65	20.75		
	16QAM		0	20.95	20.45	20.88	20.74	20.85		
		25	24	20.93	20.90	20.94	20.89	20.93		
			49	20.96	20.69	20.85	20.77	20.99		
		50	0	20.86	20.97	20.56	20.96	20.45		

Report No: CHTEW19100186 Page: 54 of 105 Issued: 2019-10-31

	LTE-TDD E	Band 41			Conducted Power(dBm)					
Band-		RB	RB	39750	40185	40620	41055	41490		
width	Modulation	allocation	offset	2506MHz	2549.5MHz	2593MHz	2636.5MHz	2680MHz		
			0	22.21	22.04	22.01	22.22	22.24		
		1	38	21.78	21.81	21.78	22.00	21.82		
			74	22.50	22.15	21.97	22.28	21.49		
	QPSK		0	21.15	21.31	21.35	21.62	21.58		
		38	18	20.93	21.04	21.07	21.25	21.05		
			37	21.65	21.31	21.34	21.43	20.82		
15MHz		75	0	20.88	20.91	20.97	21.31	21.09		
ISIVITZ			0	21.22	21.24	21.21	21.27	21.37		
		1	38	20.96	21.09	20.97	21.21	21.07		
			74	21.33	21.28	21.37	21.59	20.81		
	16QAM	16QAM 38	0	21.26	21.31	21.33	21.45	21.47		
			18	20.95	20.93	21.02	21.23	21.11		
			37	21.42	21.36	21.39	21.60	20.83		
		75	0	20.65	20.94	20.61	20.43	20.56		
Band-	Madulation	I Modulation	RB	RB	39750	40185	40620	41055	41490	
width	Modulation	allocation	offset	2506MHz	2549.5MHz	2593MHz	2636.5MHz	2680MHz		
			0	21.84	21.88	21.80	22.10	21.95		
		1	49	21.79	21.82	21.75	22.04	21.95		
			99	22.15	22.16	21.99	22.10	21.36		
	QPSK		0	20.90	20.95	21.17	21.17	21.31		
		50	25	21.13	20.98	21.12	21.22	21.27		
			50	21.10	21.10	21.20	21.30	21.23		
20MHz		100	0	21.03	21.02	20.94	21.42	21.30		
2011112			0	20.91	20.95	21.01	21.22	21.15		
		1	49	20.90	20.91	20.86	21.21	21.13		
			99	21.31	21.33	21.31	21.39	20.49		
	16QAM		0	20.88	20.95	20.99	20.41	20.42		
		50	25	20.53	20.54	20.96	20.74	20.63		
			50	20.52	20.74	20.52	20.83	20.66		
		100	0	20.52	20.55	20.79	20.32	20.44		

Report No: CHTEW19100186 Page: 55 of 105 Issued: 2019-10-31

10.3. WiFi

For 2.4GHz WiFi SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were for SAR evaluation.

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

	WiFi 2.4G									
Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)						
	1	2412	18.62	16.78						
802.11b	6	2437	17.92	15.45						
	11	2462	18.56	16.31						
	1	2412	16.86	14.43						
802.11g	6	2437	16.95	14.32						
	11	2462	16.74	14.12						
	1	2412	15.24	12.61						
802.11n (HT20)	6	2437	15.92	13.42						
(11120)	11	2462	16.60	14.18						
	3	2422	15.32	13.40						
802.11n (HT40)	6	2437	15.40	13.49						
(11140)	9	2452	15.28	13.46						

	WiFi 5G U-NII-1								
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)						
	36	5180	16.21						
802.11ac (VHT20)	44	5220	16.34						
(11120)	48	5240	16.36						
	36	5180	16.67						
802.11n (HT20)	44	5220	16.47						
(11120)	48	5240	16.57						
	36	5180	16.54						
802.11a	44	5220	17.05						
	48	5240	16.48						
802.11ac	38	5190	16.37						
(VHT40)	46	5230	16.91						
802.11n	38	5190	16.55						
(HT40)	46	5230	17.09						
802.11ac (VHT80)	42	5210	11.69						

Report No: CHTEW19100186 Page: 56 of 105 Issued: 2019-10-31

		WiFi 5G U-NII-2A	
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
	52	5260	16.43
802.11ac (VHT20)	56	5280	16.45
(****20)	64	5320	16.45
	52	5260	17.11
802.11n (HT20)	56	5280	17.02
(11120)	64	5320	16.99
	52	5260	17.64
802.11a	56	5280	17.82
	64	5320	17.13
802.11ac	54	5270	15.47
(VHT40)	62	5310	14.92
802.11n	54	5270	15.67
(HT40)	62	5310	15.74
802.11ac (VHT80)	58	5290	10.55

		WiFi 5G U-NII-2C	
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
	100	5500	16.67
802.11ac (VHT20)	120	5600	16.97
(****25)	140	5700	15.58
	100	5500	17.53
802.11n (HT20)	120	5600	17.54
(11120)	140	5700	16.03
	100	5500	17.88
802.11a	120	5600	18.65
	140	5700	16.41
	102	5510	15.51
802.11ac (VHT40)	118	5590	16.24
(**************************************	134	5670	14.68
	102	5510	15.47
802.11n (HT40)	118	5590	16.10
(11140)	134	5670	12.95
	106	5530	11.04
802.11ac (VHT80)	122	5610	14.22
(٧١١١٥٥)	138	5690	12.76

Report No: CHTEW19100186 Page: 57 of 105 Issued: 2019-10-31

		WiFi 5G U-NII-3	
Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
	149	5745	16.57
802.11ac (VHT20)	157	5785	16.64
(*****25)	165	5825	17.18
	149	5745	17.55
802.11n (HT20)	157	5785	17.70
(11120)	165	5825	17.32
	149	5745	17.46
802.11a	157	5785	17.52
	165	5825	18.16
802.11ac	151	5755	14.65
(VHT40)	159	5795	15.14
802.11n	151	5755	15.97
(HT40)	159	5795	15.80
802.11ac (VHT80)	155	5775	10.21

10.4. Bluetooth

	Bluetooth								
Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)					
	0	2402	5.27	5.19					
GFSK	39	2441	4.71	4.65					
	78	2480	4.13	4.10					
	0	2402	5.46	4.78					
π/4QPSK	39	2441	4.78	4.19					
	78	2480	4.23	3.65					
	0	2402	5.75	5.02					
8DPSK	39	2441	5.08	4.38					
	78	2480	3.75	3.08					
	0	2402	-0.15	-0.20					
GFSK(BLE)	19	2440	-0.47	-0.48					
	39	2480	-0.41	-0.44					

Report No: CHTEW19100186 Page: 58 of 105 Issued: 2019-10-31

11. Maximum Tune-up Limit

WCDMA					
Mode	Maximum Tune-up (dBm)				
iviode	FDD Band II	FDD Band IV	FDD Band V		
AMR 12.2Kbps	23.00	23.50	23.50		
RMC 12.2Kbps	23.00	23.50	23.50		
HSDPA Subtest-1	22.50	22.50	22.50		
HSDPA Subtest-2	22.00	22.00	22.00		
HSDPA Subtest-3	22.00	22.00	22.00		
HSDPA Subtest-4	22.00	22.00	22.00		
HSUPA Subtest-1	18.50	19.00	19.50		
HSUPA Subtest-2	19.00	19.00	19.00		
HSUPA Subtest-3	19.00	19.00	20.00		
HSUPA Subtest-4	19.50	19.00	20.00		
HSUPA Subtest-5	20.00	20.50	21.00		

Report No: CHTEW19100186 Page: 59 of 105 Issued: 2019-10-31

		LTE		
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)
			1	23.50
		QPSK	3	23.00
	4.4		6	22.50
	1.4		1	22.50
		16QAM	3	22.00
			6	21.00
			1	22.50
		QPSK	8	22.00
	3		15	22.00
	ა		1	22.00
		16QAM	8	22.00
			15	21.00
			1	23.00
		QPSK	12	22.00
	5		25	22.00
		16QAM	1	22.00
			12	21.00
FDD Band 2			25	21.00
FDD Ballu 2	10	QPSK	1	23.00
			25	22.00
			50	22.00
			1	22.00
		16QAM	25	21.00
			50	21.50
			1	23.50
		QPSK	38	22.50
	15		75	22.00
	15		1	22.50
		16QAM	38	22.50
			75	21.00
			1	23.00
		QPSK	50	22.50
	20		100	22.00
	20		1	22.50
		16QAM	50	21.50
			100	21.00

Report No: CHTEW19100186 Page: 60 of 105 Issued: 2019-10-31

		LTE		
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)
			1	23.00
		QPSK	3	23.00
	4.4		6	22.00
	1.4		1	22.00
		16QAM	3	21.50
			6	21.00
			1	23.00
		QPSK	8	22.00
	3		15	22.00
	3		1	22.00
		16QAM	8	21.00
			15	21.00
			1	23.00
	5	QPSK	12	22.00
			25	22.00
		16QAM	1	22.50
			12	21.00
FDD Band 4			25	21.00
FDD Ballu 4	10	QPSK	1	23.50
			25	22.00
			50	22.00
			1	22.50
		16QAM	25	21.00
			50	21.00
			1	23.00
		QPSK	38	22.50
	15		75	22.00
	15		1	22.00
		16QAM	38	22.00
			75	21.00
			1	23.00
		QPSK	50	22.00
	20		100	21.50
	20		1	22.00
		16QAM	50	21.00
			100	21.00

Report No: CHTEW19100186 Page: 61 of 105 Issued: 2019-10-31

LTE						
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)		
			1	23.00		
		QPSK	3	23.00		
	4.4		6	22.00		
	1.4		1	22.50		
		16QAM	3	22.00		
			6	21.00		
			1	23.00		
		QPSK	8	22.50		
	3		15	22.50		
		16QAM	1	22.50		
			8	21.50		
FDD Band 5			15	21.00		
FDD Band 5	5	QPSK	1	23.00		
			12	22.00		
			25	22.00		
		16QAM	1	22.50		
			12	21.00		
			25	21.50		
			1	23.50		
		QPSK	25	22.50		
	10		50	22.00		
	10	16QAM	1	22.50		
			25	21.50		
			50	21.00		

Report No: CHTEW19100186 Page: 62 of 105 Issued: 2019-10-31

LTE						
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)		
			1	23.50		
		QPSK	12	22.50		
	_		25	22.00		
	5		1	22.50		
		16QAM	12	21.50		
			25	21.50		
			1	23.00		
		QPSK	25	22.00		
	10		50	22.00		
		16QAM	1	22.50		
			25	21.00		
			50	21.00		
FDD Band 7	15	QPSK	1	23.00		
			38	22.50		
			75	22.00		
			1	22.00		
		16QAM	38	22.00		
			75	21.00		
			1	23.00		
		QPSK	50	22.00		
	20		100	22.00		
	20		1	22.00		
		16QAM	50	21.00		
			100	21.00		

Report No: CHTEW19100186 Page: 63 of 105 Issued: 2019-10-31

LTE						
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)		
			1	23.00		
		QPSK	3	23.00		
	4.4		6	22.00		
	1.4		1	22.50		
		16QAM	3	22.00		
			6	21.00		
			1	23.50		
		QPSK	8	22.00		
	3		15	22.00		
		16QAM	1	22.00		
			8	21.00		
EDD D = = 4.40			15	21.00		
FDD Band 12	5	QPSK	1	23.00		
			12	22.00		
			25	22.00		
		16QAM	1	22.50		
			12	21.00		
			25	21.00		
			1	23.50		
		QPSK	25	22.00		
	40		50	22.00		
	10	16QAM	1	22.50		
			25	21.00		
			50	21.00		

Report No: CHTEW19100186 Page: 64 of 105 Issued: 2019-10-31

		LTE		
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)
			1	23.50
		QPSK	12	22.00
	5		25	22.00
	FDD Band 17	16QAM	1	22.50
			12	21.50
EDD Donal 47			25	21.50
FDD Ballu 17		QPSK	1	23.50
			25	22.00
10	10		50	22.00
	10		1	22.50
		16QAM	25	21.50
			50	21.00

Report No: CHTEW19100186 Page: 65 of 105 Issued: 2019-10-31

LTE						
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)		
			1	22.50		
		QPSK	12	21.50		
	5		25	21.50		
	5		1	22.00		
		16QAM	12	21.00		
			25	21.00		
			1	23.00		
		QPSK	25	21.50		
	10		50	21.50		
		16QAM	1	22.00		
TDD Band 41			25	21.00		
			50	21.00		
	15	QPSK	1	23.00		
			38	22.00		
			75	21.50		
		16QAM	1	22.00		
			38	22.00		
			75	21.00		
			1	22.50		
		QPSK	50	21.50		
	20		100	21.50		
	20		1	21.50		
		16QAM	50	21.00		
			100	21.00		

The allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

Modulation	Channel bandwidth / Transmission bandwidth (NRB)					MPR (dB)	
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	<u> </u>	± 4	<u>≴8</u>	± 12	± 16	<u>≠ 18</u>	<u> </u>
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≴5	≾ 4	≰ 8	± 12	± 16	≤ 18	± 2
64 QAM	> 5	> 4	>8	> 12	> 16	> 18	± 3
256 QAM		•		≥ 1	•	•	≴5

Report No: CHTEW19100186 Page: 66 of 105 Issued: 2019-10-31

WiFi 2.4G			
Mode	Maximum Tune-up (dBm) Conducted Average Power		
802.11b	17.00		
802.11g	14.50		
802.11n(HT20)	14.50		
802.11n(HT40)	13.50		

WiFi 5G U-NII-1				
Mode	Maximum Tune-up (dBm) Conducted Average Power			
802.11ac(VHT20)	16.50			
802.11n(HT20)	17.00			
802.11a	17.50			
802.11ac(VHT40)	17.00			
802.11n(HT40)	17.10			
802.11ac(VHT80)	12.00			

WiFi 5G U-NII-2A				
Mode	Maximum Tune-up (dBm) Conducted Average Power			
802.11ac(VHT20)	16.50			
802.11n(HT20)	17.50			
802.11a	18.00			
802.11ac(VHT40)	15.50			
802.11n(HT40)	16.00			
802.11ac(VHT80)	11.00			

Report No: CHTEW19100186 Page: 67 of 105 Issued: 2019-10-31

WiFi 5G U-NII-2C							
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power					
	100	17.00					
802.11ac(VHT20)	120	17.00					
	140	17.00					
	100	18.00					
802.11n(HT20)	120	18.00					
	140	18.00					
	100	18.00					
802.11a	120	19.00					
	140	17.00					
	102	16.00					
802.11ac(VHT40)	118	16.50					
	134	15.00					
	102	16.00					
802.11n(HT40)	118	16.50					
	134	13.00					
	106	11.50					
802.11ac(VHT80)	122	14.50					
	138	13.00					

WiFi 5G U-NII-3							
Mode Maximum Tune-up (dBm) Conducted Average Power							
802.11ac(VHT20)	17.50						
802.11n(HT20)	18.00						
802.11a	18.50						
802.11ac(VHT40)	15.50						
802.11n(HT40)	16.00						
802.11ac(VHT80)	10.50						

Bluetooth							
Maximum Tune-up (dBm) Conducted Average Power							
GFSK	5.50						
π/4QPSK	5.00						
8DPSK	5.50						
GFSK(BLE)	0.00						

Report No: CHTEW19100186 Page: 68 of 105 Issued: 2019-10-31

12. RF Exposure Conditions (Test Configurations)

12.1. Antenna Location

Rear View.

Report No: CHTEW19100186 Page: 69 of 105 Issued: 2019-10-31

12.2. Standalone SAR test exclusion considerations

KDB 447498 with KDB 616217:

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance,

mm)] · [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR

When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine SAR test exclusion.

- b) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:
- 1) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz
- 2) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and ≤6 GHz

Antennas ≤ 50mm to adjacent edges

Tx	Frequency Output Power				separa	ation distance	s (mm)		Calculated Threshold Value				
Interface	(MHz)	dBm	mW	Rear	Left	Right	Тор	Bottom	Rear	Left	Right	Тор	Bottom
WCDMA Band II	1880	23.00	199.5	2	83	10	252	3	54.7 MEASURE	> 50 mm	27.4 MEASURE	> 50 mm	54.7 MEASURE
WCDMA Band IV	1752.6	23.50	223.9	2	83	10	252	3	59.3 MEASURE	> 50 mm	29.6 MEASURE	> 50 mm	59.3 MEASURE
WCDMA Band V	846.6	23.50	223.9	2	83	10	252	3	41.2 MEASURE	> 50 mm	20.6 MEASURE	> 50 mm	41.2 MEASURE
LTE Band 2	1900	23.00	199.5	2	83	10	252	3	55.0 MEASURE	> 50 mm	27.5 MEASURE	> 50 mm	55.0 MEASURE
LTE Band 4	1732.5	23.00	199.5	2	83	10	252	3	52.5 MEASURE	> 50 mm	26.3 MEASURE	> 50 mm	52.5 MEASURE
LTE Band 5	829	23.50	223.9	2	83	10	252	3	40.8 MEASURE	> 50 mm	20.4 MEASURE	> 50 mm	40.8 MEASURE
LTE Band 7	2535	23.00	199.5	2	83	10	252	3	63.5 MEASURE	> 50 mm	31.8 MEASURE	> 50 mm	63.5 MEASURE
LTE Band 12	704	23.50	223.9	2	83	10	252	3	37.6 MEASURE	> 50 mm	18.8 MEASURE	> 50 mm	37.6 MEASURE
LTE Band 17	709	23.50	223.9	2	83	10	252	3	37.7 MEASURE	> 50 mm	18.9 MEASURE	> 50 mm	37.7 MEASURE
LTE Band 41	2549.5	22.50	177.8	2	83	10	252	3	56.8 MEASURE	> 50 mm	28.4 MEASURE	> 50 mm	56.8 MEASURE
WIFI 2.4G	2412	17.00	50.1	2	35	88	3	250	15.6 MEASURE	2.2 EXEMPT	> 50 mm	15.6 MEASURE	> 50 mm
WIFI 5G U- NII-1	5220	17.50	56.2	2	35	88	3	250	25.7 MEASURE	3.7 MEASURE	> 50 mm	25.7 MEASURE	> 50 mm
WIFI 5G U- NII-2A	5280	18.00	63.1	2	35	88	3	250	29.0 MEASURE	4.1 MEASURE	> 50 mm	29.0 MEASURE	> 50 mm
WIFI 5G U- NII-2C	5600	19.00	79.4	2	35	88	3	250	37.6 MEASURE	5.4 MEASURE	> 50 mm	37.6 MEASURE	> 50 mm
WIFI 5G U- NII-3	5825	18.50	70.8	2	35	88	3	250	34.2 MEASURE	4.9 MEASURE	> 50 mm	34.2 MEASURE	> 50 mm
Bluetooth	2441	5.50	3.5	2	35	88	3	250	1.1 EXEMPT	0.2 EXEMPT	> 50 mm	1.1 EXEMPT	> 50 mm

Report No: CHTEW19100186 Page: 70 of 105 Issued: 2019-10-31

Antennas > 50mm to adjacent edges

Tx	Frequency	Output F				ation distances	s (mm)		Calculated Threshold Value				
Interface	(MHz)	dBm	mW	Rear	Left	Right	Тор	Bottom	Rear	Left	Right	Тор	Bottom
WCDMA Band II	1880	23.00	199.5	2	83	10	252	3	≤ 50mm	439 mW EXEMPT	≤ 50mm	2129 mW EXEMPT	≤ 50mm
WCDMA Band IV	1752.6	23.50	223.9	2	83	10	252	3	≤ 50mm	443 mW EXEMPT	≤ 50mm	2133 mW EXEMPT	≤ 50mm
WCDMA Band V	846.6	23.50	223.9	2	83	10	252	3	≤ 50mm	349 mW EXEMPT	≤ 50mm	1303 mW EXEMPT	≤ 50mm
LTE Band 2	1900	23.00	199.5	2	83	10	252	3	≤ 50mm	439 mW EXEMPT	≤ 50mm	2129 mW EXEMPT	≤ 50mm
LTE Band 4	1732.5	23.00	199.5	2	83	10	252	3	≤ 50mm	444 mW EXEMPT	≤ 50mm	2134 mW EXEMPT	≤ 50mm
LTE Band 5	829	23.50	223.9	2	83	10	252	3	≤ 50mm	347 mW EXEMPT	≤ 50mm	1281 mW EXEMPT	≤ 50mm
LTE Band 7	2535	23.00	199.5	2	83	10	252	3	≤ 50mm	424 mW EXEMPT	≤ 50mm	2114 mW EXEMPT	≤ 50mm
LTE Band 12	704	23.50	223.9	2	83	10	252	3	≤ 50mm	334 mW EXEMPT	≤ 50mm	1127 mW EXEMPT	≤ 50mm
LTE Band 17	709	23.50	223.9	2	83	10	252	3	≤ 50mm	334 mW EXEMPT	≤ 50mm	1133 mW EXEMPT	≤ 50mm
LTE Band 41	2549.5	22.50	177.8	2	83	10	252	3	≤ 50mm	424 mW EXEMPT	≤ 50mm	2114 mW EXEMPT	≤ 50mm
WIFI 2.4G	2412	17.00	50.1	2	35	88	3	250	≤ 50mm	≤ 50mm	477 mW EXEMPT	≤ 50mm	2097 mW EXEMPT
WIFI 5G U- NII-1	5220	17.50	56.2	2	35	88	3	250	≤ 50mm	≤ 50mm	446 mW EXEMPT	≤ 50mm	2066 mW EXEMPT
WIFI 5G U- NII-2A	5280	18.00	63.1	2	35	88	3	250	≤ 50mm	≤ 50mm	445 mW EXEMPT	≤ 50mm	2065 mW EXEMPT
WIFI 5G U- NII-2C	5600	19.00	79.4	2	35	88	3	250	≤ 50mm	≤ 50mm	443 mW EXEMPT	≤ 50mm	2063 mW EXEMPT
WIFI 5G U- NII-3	5825	18.50	70.8	2	35	88	3	250	≤ 50mm	≤ 50mm	442 mW EXEMPT	≤ 50mm	2062 mW EXEMPT
Bluetooth	2441	5.50	3.5	2	35	88	3	250	≤ 50mm	≤ 50mm	476 mW EXEMPT	≤ 50mm	2096 mW EXEMPT

Report No: CHTEW19100186 Page: 71 of 105 Issued: 2019-10-31

12.3. Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 13.2:

Test Configurations	Rear	Left	Right	Тор	Bottom
WCDMA Band II	Yes	No	Yes	No	Yes
WCDMA Band IV	Yes	No	Yes	No	Yes
WCDMA Band V	Yes	No	Yes	No	Yes
LTE B2	Yes	No	Yes	No	Yes
LTE B4	Yes	No	Yes	No	Yes
LTE B5	Yes	No	Yes	No	Yes
LTE B7	Yes	No	Yes	No	Yes
LTE B12	Yes	No	Yes	No	Yes
LTE B17	Yes	No	Yes	No	Yes
LTE B41	Yes	No	Yes	No	Yes
WIFI 2.4G	Yes	No	No	Yes	No
WIFI 5G U-NII-1	Yes	Yes	No	Yes	No
WIFI 5G U-NII-2A	Yes	Yes	No	Yes	No
WIFI 5G U-NII-2C	Yes	Yes	No	Yes	No
WIFI 5G U-NII-3	Yes	Yes	No	Yes	No
Bluetooth	No	No	No	No	No

Report No: CHTEW19100186 Page: 72 of 105 Issued: 2019-10-31

13. Measured and Reported SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 941225 D01 SAR test for 3G SAR Test Reduction Procedure:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

W-CDMA Guidance

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC (Head) and other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC (Body-Worn Accessory) as the primary mode.

SAR measurement is not required for the HSDPA, HSUPA, DC-HSDPA and HSPA+. When primary mode and the adjusted SAR is ≤ 1.2 W/kg and secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM and 64-QAM modulation is not required because the reported SAR for QPSK is <
 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Report No: CHTEW19100186 Page: 73 of 105 Issued: 2019-10-31

KDB 248227 D01 SAR meas for 802.11:

When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

Report No: CHTEW19100186 Page: 74 of 105 Issued: 2019-10-31

	WCDMA Band II														
Mode	Test	Freq	uency	Conducted Power	Tune up limit	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Plot					
	Position	СН	MHz	(dBm)	(dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	No.					
		9262	1852.4	22.50	23.00	1.12	-0.17	1.170	1.313	-					
	Rear	9400	1880	22.93	23.00	1.02	0.03	1.330	1.352	1					
RMC 12.2K		9538	1907.6	22.79	23.00	1.05	-0.09	1.200	1.259	-					
	Right	9400	1880	22.93	23.00	1.02	0.12	0.697	0.708	-					
	Bottom	9400	1880	22.93	23.00	1.02	-0.18	0.528	0.537	-					

				WCD	MA Ban	d IV				
Mode	Test	Fred	quency	Conducted Power	Tune up limit	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Plot
ivioue F	Position	СН	MHz	(dBm)	(dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	No.
	Rear	1513	1752.6	23.19	23.50	1.07	-0.16	0.375	0.403	2
RMC 12.2K	Right	1513	1752.6	23.19	23.50	1.07	0.03	0.204	0.219	-
	Bottom	1513	1752.6	23.19	23.50	1.07	-0.10	0.162	0.174	-

				WCE	OMA Ban	d V				
Mode	Test	Freq	uency	Conducted	Tune up limit	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Plot
Mode	Position	СН	MHz	Power (dBm)	(dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	No.
	Rear	4233	846.6	23.28	23.50	1.05	-0.11	0.213	0.224	3
RMC 12.2K	Left	4233	846.6	23.28	23.50	1.05	-0.09	0.159	0.167	•
	Right	4233	846.6	23.28	23.50	1.05	-0.03	0.128	0.135	-

				LTE	Band 2					
Mode	Test	Frequ	uency	Conducted Power	Tune up	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Plot
	Position	СН	MHz	(dBm)	limit (dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	No.
		18700	1860	22.86	23.00	1.03	-0.11	1.170	1.208	-
20M	Rear	18900	1880	22.72	23.00	1.07	0.08	1.110	1.184	-
QPSK		19100	1900	22.88	23.00	1.03	-0.19	1.240	1.275	4
1RB	Right	19100	1900	22.88	23.00	1.03	-0.07	0.699	0.719	-
	Bottom	19100	1900	22.88	23.00	1.03	-0.14	0.413	0.425	-
		18700	1860	22.00	22.50	1.12	0.08	0.747	0.838	-
20M	Rear	18900	1880	21.86	22.50	1.16	-0.03	0.695	0.805	-
QPSK		19100	1900	21.91	22.50	1.15	-0.07	0.711	0.814	-
50RB	Right	18700	1860	22.00	22.50	1.12	-0.17	0.492	0.552	-
	Bottom	18700	1860	22.00	22.50	1.12	0.09	0.301	0.338	-
20M		18700	1860	21.91	22.00	1.02	-0.05	0.691	0.705	-
QPSK	Rear	18900	1880	21.85	22.00	1.04	-0.11	0.704	0.729	-
100RB		19100	1900	21.96	22.00	1.01	0.02	0.712	0.719	-

Report No: CHTEW19100186 Page: 75 of 105 Issued: 2019-10-31

				LTE	Band 4					
Mada	Test	Frequ	uency	Conducted Power	Tune up	Tune up	Power	Measured	Report	Plot
Mode	Position	СН	CH MHz (d		limit (dBm)	scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	No.
20M	Rear	20175	1732.5	22.80	23.00	1.05	-0.15	0.289	0.303	5
QPSK	Right	20175	1732.5	22.80	23.00	1.05	-0.03	0.177	0.185	-
1RB	Bottom	20175	1732.5	22.80	23.00	1.05	-0.16	0.122	0.128	-
20M	Rear	20300	1745	21.56	22.00	1.11	-0.08	0.224	0.248	-
QPSK	Right	20300	1745	21.56	22.00	1.11	-0.03	0.144	0.159	1
50RB	Bottom	20300	1745	21.56	22.00	1.11	0.12	0.101	0.112	-

	LTE Band 5														
Mode	Test	Frequ	iency	Conducted Power	Tune up	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Plot					
	Position	СН	MHz	(dBm)	limit (dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	No.					
10M	Rear	20450	829	23.14	23.50	1.09	0.18	0.206	0.224	6					
QPSK	Right	20450	829	23.14	23.50	1.09	0.06	0.136	0.148	-					
1RB	Bottom	20450 829 20450 829		23.14	23.50	1.09	-0.07	0.085	0.093	-					
10M	Rear	20450	829	22.04	22.50	1.11	0.13	0.159	0.177	-					
QPSK	Right	20450	829	22.04	22.50	1.11	0.03	0.112	0.125	-					
OFDD	Bottom	20450	829	22.04	22.50	1.11	0.05	0.071	0.079	-					

	LTE Band 7														
Mada	Test	Frequ	ency	Conducted	Tune up	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Plot					
Mode	Position	СН	MHz	Power (dBm)	limit (dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	No.					
20M	Rear	21100	2535	22.74	23.00	1.06	0.14	0.136	0.144	7					
QPSK	Right	21100	2535	22.74	23.00	1.06	-0.02	0.007	0.007	-					
1RB	Bottom	21100	2535	22.74	23.00	1.06	-0.12	0.006	0.006	-					
20M	Rear	20850	2510	21.71	22.00	1.07	0.03	0.104	0.111	-					
QPSK	Right	20850	2510	21.71	22.00	1.07	-0.03	0.005	0.005	-					
50RB	Bottom	20850	2510	21.71	22.00	1.07	0.15	0.004	0.004	-					

	LTE Band 12														
Mode	Test	Frequ	iency	Conducted Power	Tune up	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Plot					
mode	Position	СН	MHz	(dBm)	limit (dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	No.					
10M	Rear	23060	704	23.17	23.50	1.08	-0.05	0.130	0.140	8					
QPSK	Right	23060	704	23.17	23.50	1.08	-0.14	0.119	0.128	-					
1RB	Bottom			23.17	23.50	1.08	-0.07	0.125	0.135	-					
10M	Rear	23060	704	21.90	22.00	1.02	0.03	0.089	0.091	-					
QPSK	Right	23060	704	21.90	22.00	1.02	0.01	0.074	0.076	-					
25RB	Bottom	23060	704	21.90	22.00	1.02	-0.11	0.071	0.073	-					

Report No: CHTEW19100186 Page: 76 of 105 Issued: 2019-10-31

	LTE Band 17														
Mode	Test	Frequ	iency	Conducted Power	Tune up	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Plot					
	Position	СН	MHz	(dBm)	limit (dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	No.					
10M	Rear	23780	709	23.19	23.50	1.07	-0.10	0.139	0.149	9					
QPSK	Right	23780	709	23.19	23.50	1.07	0.12	0.122	0.131	-					
1RB	Bottom	23780	709	23.19	23.50	1.07	0.11	0.130	0.140	-					
10M	Rear	23780	709	21.98	22.00	1.00	0.08	0.094	0.094	-					
QPSK	Right	23780	709	21.98	22.00	1.00	0.09	0.072	0.072	-					
25RB	Bottom	23780	709	21.98	22.00	1.00	-0.16	0.076	0.076	-					

	LTE Band 41														
		Frequ	uency	Conducted	Tuna	Tunaum	Duty		Measured	Report					
Mode	Test Position	СН	MHz	Conducted Power (dBm)	Tune up limit (dBm)	Tune up scaling factor	Cycle Scaling Factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot No.				
20M	Rear	40185	2549.5	22.16	22.50	1.081	1.006	-0.10	0.042	0.045	10				
QPSK	Right	40185	2549.5	22.16	22.50	1.081	1.006	-0.18	0.014	0.015	-				
1RB	Bottom	40185	2549.5	22.16	22.50	1.081	1.006	-0.15	0.007	0.008	-				
20M	Rear	41490	2680	21.31	21.50	1.045	1.006	-0.11	0.040	0.042	-				
QPSK	Right	41490	2680	21.31	21.50	1.045	1.006	0.06	0.011	0.012	-				
50RB	Bottom	41490	2680	21.31	21.50	1.045	1.006	0.02	0.005	0.006	-				

Note:

For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9%) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.

Report No: CHTEW19100186 Page: 77 of 105 Issued: 2019-10-31

					\	ViFi 2.4	G					
Mode	Test	Fre	equency	Conducted Power	Tune- up limit	Tune- up	Duty	Duty Cycle	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot
Wode	Position	СН	MHz	(dBm)	(dBm)	scaling factor	Cycle	Scaling Factor	(dB)	(W/kg)	(W/kg)	No.
		1	2412	16.78	17.00	1.05	100.00%	1.00	0.14	1.050	1.105	11
802.11b	Rear	6	2437	15.45	17.00	1.43	100.00%	1.00	-0.17	0.711	1.016	-
002.110		11	2462	16.31	17.00	1.17	100.00%	1.00	-0.05	0.914	1.071	1
	Тор	1	2412	16.78	17.00	1.05	100.00%	1.00	-0.12	0.380	0.400	-

					WiF	i 5G U-I	NII-1					
Mode	Test	Fre	equency	Conducted Power	Tune- up limit	Tune- up	Duty	Duty Cycle	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot
Ivioue	Position	CH MHz		(dBm)	(dBm)	scaling factor	Cycle	Scaling Factor	(dB)	(W/kg)	(W/kg)	No.
	Rear	44	5220	17.05	17.50	1.11	100%	1.00	-0.19	0.292	0.324	12
802.11a	Left	44	5220	17.05	17.50	1.11	100%	1.00	-0.14	0.130	0.144	-
	Тор	44	5220	17.05	17.50	1.11	100%	1.00	-0.15	0.121	0.134	-

	WiFi 5G U-NII-2A											
	Test	Fre	quency	Conducted Power	Tune- up limit	Tune- up	Duty	Duty Cycle	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot
	Position	СН	MHz	(dBm)		scaling factor	Cycle	Scaling Factor	(dB)	(W/kg)	(W/kg)	No.
	Rear	56	5280	17.82	18.00	1.04	100%	1.00	-0.12	0.432	0.450	13
802.11a	Left	56	5280	17.82	18.00	1.04	100%	1.00	-0.09	0.177	0.184	-
	Тор	56	5280	17.82	18.00	1.04	100%	1.00	-0.17	0.158	0.165	-

	WiFi 5G U-NII-2C												
Mode Test Position	Test	Frequency		Conducted Power (dBm)	Tune- up limit	Tune- up	Duty	Duty Cycle	Power Drift	Measured SAR(1g)	Report SAR(1g) (W/kg)	Plot	
	СН	MHz	(dBm)		scaling factor	Cycle	Scaling Factor	(dB)	(W/kg)	No.			
		100	5500	17.88	18.00	1.03	100%	1.00	-0.08	0.945	0.971	-	
	Rear	120	5600	18.65	19.00	1.08	100%	1.00	-0.11	1.170	1.268	14	
802.11a		140	5700	16.41	17.00	1.15	100%	1.00	-0.11	0.744	0.852	-	
	Left	120	5600	18.65	19.00	1.08	100%	1.00	-0.14	0.462	0.501	-	
	Тор	120	5600	18.65	19.00	1.08	100%	1.00	-0.18	0.433	0.469	-	

	WiFi 5G U-NII-3											
Mode Test Position		Frequency		Conducted Power	Tune- up limit	Tune- up	Duty	Duty Cycle	Power Drift	Measured SAR(1g)	Report SAR(1g) (W/kg)	Plot
	СН	MHz	(dBm)	(dBm)	scaling factor	Cycle	Scaling Factor	(dB)	(W/kg)	No.		
		149	5745	17.46	18.50	1.27	100%	1.00	-0.14	1.040	1.321	-
	Rear	157	5785	17.52	18.50	1.25	100%	1.00	0.08	1.070	1.341	-
802.11a		165	5825	18.16	18.50	1.08	100%	1.00	0.10	1.380	1.492	15
	Left	165	5825	18.16	18.50	1.08	100%	1.00	0.02	0.703	0.760	•
	Тор	165	5825	18.16	18.50	1.08	100%	1.00	-0.19	0.712	0.770	•

Note:SAR Test Data Plots to the Appendix A.

Report No: CHTEW19100186 Page: 78 of 105 Issued: 2019-10-31

14. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 or 3.6 W/kg (\sim 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

	Test	Frequency		Highest Measured	Fii Repe	rst eated	Second Repeated		
Band	Position Position		MHz	SAR (W/kg)	Measured SAR(W/kg)	Largest to Smallest SAR Ratio	Measured SAR(W/kg)	Largest to Smallest SAR Ratio	
WCDMA Band II	Rear	9400	1880	1.33	1.25	1.064	N/A	N/A	
LTE Band 2	Rear	19100	1900	1.24	1.17	1.060	N/A	N/A	
WIFI 2.4G	Rear	1	2412	1.05	1.00	1.050	N/A	N/A	
WIFI 5G U-NII-2C	Rear	120	5600	1.17	1.08	1.083	N/A	N/A	
WIFI 5G U-NII-2C	Rear	165	5825	1.37	1.29	1.062	N/A	N/A	

Report No: CHTEW19100186 Page: 79 of 105 Issued: 2019-10-31

15. Simultaneous Transmission analysis

15.1. Simultaneous Transmission

No.	Simultaneous Transmission Configurations	Body	Note
3	WCDMA(voice) + Bluetooth (data)	Yes	
4	WCDMA(voice) + WIFI (data)	Yes	
7	WCDMA (data) + Bluetooth (data)	Yes	
8	WCDMA (data) + WIFI (data)	Yes	
9	LTE + Bluetooth (data)	Yes	
10	LTE + WIFI (data)	Yes	

General note:

- WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 2. EUT will choose either WCDMA LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment.
- 3. The reported SAR summation is calculated based on the same configuration and test position
- For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the formula below
 - a) [(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] * [$\sqrt{f(GHz)/x}$]W/kg for test separation distances \leq 50mm; whetn x=7.5 for 1-g SAR, and x=18.75 for 10-g SAR.
 - b) When the minimum separation distance is <5mm, the distance is used 5mm to determine SAR test exclusion
 - c) 0.4 W/kg for 1-g SAR and 1.0W/kg for 10-g SAR, when the test separation distances is >50mm.

		Estimated SAR(W/kg)		
Test Configurations	Rear	Left Side	Right Side	Top Side	Bottom Side
WCDMA Band II	MEASURE	0.400	MEASURE	0.400	MEASURE
WCDMA Band IV	MEASURE	0.400	MEASURE	0.400	MEASURE
WCDMA Band V	MEASURE	0.400	MEASURE	0.400	MEASURE
LTE Band 2	MEASURE	0.400	MEASURE	0.400	MEASURE
LTE Band 4	MEASURE	0.400	MEASURE	0.400	MEASURE
LTE Band 5	MEASURE	0.400	MEASURE	0.400	MEASURE
LTE Band 7	MEASURE	0.400	MEASURE	0.400	MEASURE
LTE Band 12	MEASURE	0.400	MEASURE	0.400	MEASURE
LTE Band 17	MEASURE	0.400	MEASURE	0.400	MEASURE
LTE Band 41	MEASURE	0.400	MEASURE	0.400	MEASURE
WIFI 2.4G	MEASURE	0.299	0.400	MEASURE	0.400
WIFI 5G U-NII-1	MEASURE	MEASURE	0.400	MEASURE	0.400
WIFI 5G U-NII-2A	MEASURE	MEASURE	0.400	MEASURE	0.400
WIFI 5G U-NII-2C	MEASURE	MEASURE	0.400	MEASURE	0.400
WIFI 5G U-NII-3	MEASURE	MEASURE	0.400	MEASURE	0.400
Bluetooth	0.148	0.021	0.400	0.148	0.400

Report No: CHTEW19100186 Page: 80 of 105 Issued: 2019-10-31

		PCB -	- WLAN DTS	}		
		Exposure	Standalone	e SAR (W/kg)	Σ 1-g SAR	
WWA	WWAN Band		PCB	WLAN DTS	(W/kg)	SPLSR
		Rear	1.352	1.105	See Note 1	0.02
		Left side	0.400	0.299	0.699	N/A
	Band II	Right side	0.708	0.400	1.108	N/A
		Top side	0.400	0.400	0.800	N/A
		Bottom side	0.537	0.400	0.937	N/A
		Rear	0.403	1.105	1.508	N/A
		Left side	0.400	0.299	0.699	N/A
WCDMA	Band IV Band V	Right side	0.219	0.400	0.619	N/A
		Top side	0.400	0.400	0.800	N/A
		Bottom side	0.174	0.400	0.574	N/A
		Rear	0.224	1.105	1.329	N/A
		Left side	0.400	0.299	0.699	N/A
		Right side	0.167	0.400	0.567	N/A
		Top side	0.400	0.400	0.800	N/A
		Bottom side	0.135	0.400	0.535	N/A
		Rear	1.275	1.105	See Note 1	0.01
	B2 1RB	Left side	0.400	0.299	0.699	N/A
		Right side	0.719	0.400	1.119	N/A
		Top side	0.400	0.400	0.800	N/A
		Bottom side	0.425	0.400	0.825	N/A
		Rear	0.838	1.105	See Note 1	0.01
		Left side	0.400	0.299	0.699	N/A
	B2 50RB	Right side	0.552	0.400	0.952	N/A
	00112	Top side	0.400	0.400	0.800	N/A
LTE		Bottom side	0.338	0.400	0.738	N/A
LIE		Rear	0.303	1.105	1.408	N/A
		Left side	0.400	0.299	0.699	N/A
	B4 1RB	Right side	0.185	0.400	0.585	N/A
	1RB	Top side	0.400	0.400	0.800	N/A
		Bottom side	0.128	0.400	0.528	N/A
		Rear	0.248	1.105	1.353	N/A
		Left side	0.400	0.299	0.699	N/A
	B4 50RB	Right side	0.159	0.400	0.559	N/A
	JOIND	Top side	0.400	0.400	0.800	N/A
		Bottom side	0.112	0.400	0.512	N/A

Report No: CHTEW19100186 Page: 81 of 105 Issued: 2019-10-31

		PCB -	+ WLAN DTS			
WWA	AN Band	Exposure Position			Σ 1-g SAR (W/kg)	SPLSR
		Rear	0.224	1.105	1.329	N/A
		Left side	0.400	0.299	0.699	N/A
	B5 1RB	Right side	0.148	0.400	0.548	N/A
		Top side	0.400	0.400	0.800	N/A
		Bottom side	0.093	0.400	0.493	N/A
		Rear	0.177	1.105	1.282	N/A
		Left side	0.400	0.299	0.699	N/A
	B5 25RB	Right side	0.125	0.400	0.525	N/A
	25RB	Top side	0.400	0.400	0.800	N/A
		Bottom side	0.079	0.400	0.479	N/A
	B7 1RB	Rear	0.144	1.105	1.249	N/A
		Left side	0.400	0.299	0.699	N/A
		Right side	0.007	0.400	0.407	N/A
		Top side	0.400	0.400	0.800	N/A
LTE		Bottom side	0.006	0.400	0.406	N/A
LIE		Rear	0.111	1.105	1.216	N/A
		Left side	0.400	0.299	0.699	N/A
	B7 50RB	Right side	0.005	0.400	0.405	N/A
	OUND	Top side	0.400	0.400	0.800	N/A
		Bottom side	0.004	0.400	0.404	N/A
		Rear	0.140	1.105	1.245	N/A
		Left side	0.400	0.299	0.699	N/A
	B12 1RB	Right side	0.128	0.400	0.528	N/A
	IND	Top side	0.400	0.400	0.800	N/A
		Bottom side	0.135	0.400	0.535	N/A
		Rear	0.091	1.105	1.196	N/A
		Left side	0.400	0.299	0.699	N/A
	B12 25RB	Right side	0.076	0.400	0.476	N/A
	2010	Top side	0.400	0.400	0.800	N/A
		Bottom side	0.073	0.400	0.473	N/A

Report No: CHTEW19100186 Page: 82 of 105 Issued: 2019-10-31

		PCB -	- WLAN DTS			
		Exposure	Standalone	e SAR (W/kg)	Σ 1-g SAR	001.00
WWA	N Band	Position	PCB	WLAN DTS	(W/kg)	SPLSR
		Rear	0.149	1.105	1.254	N/A
		Left side	0.400	0.299	0.699	N/A
	B17 1RB	Right side	0.131	0.400	0.531	N/A
	III.D	Top side	0.400	0.400	0.800	N/A
		Bottom side	0.140	0.400	0.540	N/A
		Rear	0.094	1.105	1.199	N/A
		Left side	0.400	0.299	0.699	N/A
	B17 25RB	Right side	0.072	0.400	0.472	N/A
		Top side	0.400	0.400	0.800	N/A
LTC		Bottom side	0.076	0.400	0.476	N/A
LTE		Rear	0.045	1.105	1.150	N/A
		Left side	0.400	0.299	0.699	N/A
	B41 1RB	Right side	0.015	0.400	0.415	N/A
	III.D	Top side	0.400	0.400	0.800	N/A
		Bottom side	0.008	0.400	0.408	N/A
		Rear	0.042	1.105	1.147	N/A
		Left side	0.400	0.299	0.699	N/A
	B41 50RB	Right side	0.012	0.400	0.412	N/A
	30115	Top side	0.400	0.400	0.800	N/A
		Bottom side	0.006	0.400	0.406	N/A

Report No: CHTEW19100186 Page: 83 of 105 Issued: 2019-10-31

		PCB +	- WLAN U-NI	I		
		Exposure	Standalone	e SAR (W/kg)	Σ 1-g SAR	
WWA	N Band	Position	PCB	WLAN U-NII	(W/kg)	SPLSR
		Rear	1.352	1.492	See Note 1	0.02
		Left side	0.400	0.760	1.160	N/A
	Band II	Right side	0.708	0.400	1.108	N/A
		Top side	0.400	0.770	1.170	N/A
		Bottom side	0.537	0.400	0.937	N/A
		Rear	0.403	1.492	See Note 1	0.01
		Left side	0.400	0.760	1.160	N/A
WCDMA	Band IV	Right side	0.219	0.400	0.619	N/A
		Top side	0.400	0.770	1.170	N/A
		Bottom side	0.174	0.400	0.574	N/A
		Rear	0.224	1.492	See Note 1	0.01
	Band V	Left side	0.400	0.760	1.160	N/A
		Right side	0.167	0.400	0.567	N/A
		Top side	0.400	0.770	1.170	N/A
		Bottom side	0.135	0.400	0.535	N/A
		Rear	1.275	1.492	See Note 1	0.02
	B2 1RB	Left side	0.400	0.760	1.160	N/A
		Right side	0.719	0.400	1.119	N/A
		Top side	0.400	0.770	1.170	N/A
		Bottom side	0.425	0.400	0.825	N/A
		Rear	0.838	1.492	See Note 1	0.02
		Left side	0.400	0.760	1.160	N/A
	B2 50RB	Right side	0.552	0.400	0.952	N/A
	00.12	Top side	0.400	0.770	1.170	N/A
LTE		Bottom side	0.338	0.400	0.738	N/A
LIE		Rear	0.303	1.492	See Note 1	0.01
		Left side	0.400	0.760	1.160	N/A
	B4 1RB	Right side	0.185	0.400	0.585	N/A
	1112	Top side	0.400	0.770	1.170	N/A
		Bottom side	0.128	0.400	0.528	N/A
		Rear	0.248	1.492	See Note 1	0.01
	_	Left side	0.400	0.760	1.160	N/A
	B4 50RB	Right side	0.159	0.400	0.559	N/A
	50RB	Top side	0.400	0.770	1.170	N/A
		Bottom side	0.112	0.400	0.512	N/A

Report No: CHTEW19100186 Page: 84 of 105 Issued: 2019-10-31

		PCB +	- WLAN U-NI	li .		
10/10/0	WWAN Band		Standalone	e SAR (W/kg)	Σ 1-g SAR	SPLSR
VVVV	. Dana	Position	PCB	WLAN U-NII	(W/kg)	OI LOIK
		Rear	0.224	1.492	See Note 1	0.01
	D.F.	Left side	0.400	0.760	1.160	N/A
	B5 1RB	Right side	0.148	0.400	0.548	N/A
		Top side	0.400	0.770	1.170	N/A
		Bottom side	0.093	0.400	0.493	N/A
		Rear	0.177	1.492	See Note 1	0.01
	B5 25RB	Left side	0.400	0.760	1.160	N/A
		Right side	0.125	0.400	0.525	N/A
		Top side	0.400	0.770	1.170	N/A
		Bottom side	0.079	0.400	0.479	N/A
		Rear	0.144	1.492	See Note 1	0.01
	B7 1RB	Left side	0.400	0.760	1.160	N/A
		Right side	0.007	0.400	0.407	N/A
		Top side	0.400	0.770	1.170	N/A
LTE		Bottom side	0.006	0.400	0.406	N/A
		Rear	0.111	1.492	See Note 1	0.01
		Left side	0.400	0.760	1.160	N/A
	B7 50RB	Right side	0.005	0.400	0.405	N/A
	00112	Top side	0.400	0.770	1.170	N/A
		Bottom side	0.004	0.400	0.404	N/A
		Rear	0.140	1.492	See Note 1	0.01
		Left side	0.400	0.760	1.160	N/A
	B12 1RB	Right side	0.128	0.400	0.528	N/A
	1112	Top side	0.400	0.770	1.170	N/A
		Bottom side	0.135	0.400	0.535	N/A
		Rear	0.091	1.492	1.583	N/A
		Left side	0.400	0.760	1.160	N/A
	B12 25RB	Right side	0.076	0.400	0.476	N/A
	2010	Top side	0.400	0.770	1.170	N/A
		Bottom side	0.073	0.400	0.473	N/A

Report No: CHTEW19100186 Page: 85 of 105 Issued: 2019-10-31

		PCB +	- WLAN U-NI	I		
140444		Exposure	Standalone	e SAR (W/kg)	Σ 1-g SAR	051.05
VVVVA	N Band	Position	PCB	WLAN U-NII	(W/kg)	SPLSR
		Rear	0.149	1.492	See Note 1	0.01
		Left side	0.400	0.760	1.160	N/A
	B17 1RB	Right side	0.131	0.400	0.531	N/A
	IND	Top side	0.400	0.770	1.170	N/A
		Bottom side	0.140	0.400	0.540	N/A
		Rear	0.094	1.492	1.586	N/A
		Left side	0.400	0.760	1.160	N/A
	B17 25RB	Right side	0.072	0.400	0.472	N/A
	2511.15	Top side	0.400	0.770	1.170	N/A
LTE		Bottom side	0.076	0.400	0.476	N/A
LIE		Rear	0.045	1.492	1.537	N/A
		Left side	0.400	0.760	1.160	N/A
	B41 1RB	Right side	0.015	0.400	0.415	N/A
	IND	Top side	0.400	0.770	1.170	N/A
		Bottom side	0.008	0.400	0.408	N/A
		Rear	0.042	1.492	1.534	N/A
		Left side	0.400	0.760	1.160	N/A
	B41 50RB	Right side	0.012	0.400	0.412	N/A
	30112	Top side	0.400	0.770	1.170	N/A
		Bottom side	0.006	0.400	0.406	N/A

Report No: CHTEW19100186 Page: 86 of 105 Issued: 2019-10-31

		Р	CB + BT			
		Evnocuro	Standalone	e SAR (W/kg)	Σ 1-g SAR	
WWA	N Band	Exposure Position	PCB	ВТ	(W/kg)	SPLSR
		Rear	1.352	0.148	1.500	N/A
		Left side	0.400	0.021	0.421	N/A
	Band II	Right side	0.708	0.400	1.108	N/A
		Top side	0.400	0.148	0.548	N/A
		Bottom side	0.537	0.400	0.937	N/A
		Rear	0.403	0.148	0.551	N/A
		Left side	0.400	0.021	0.421	N/A
WCDMA	Band IV	Right side	0.219	0.400	0.619	N/A
		Top side	0.400	0.148	0.548	N/A
		Bottom side	0.174	0.400	0.574	N/A
		Rear	0.224	0.148	0.372	N/A
		Left side	0.400	0.021	0.421	N/A
	Band V	Right side	0.167	0.400	0.567	N/A
		Top side	0.400	0.148	0.548	N/A
		Bottom side	0.135	0.400	0.535	N/A
		Rear	1.275	0.148	1.423	N/A
		Left side	0.400	0.021	0.421	N/A
	B2 1RB	Right side	0.719	0.400	1.119	N/A
	1RB	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.425	0.400	0.825	N/A
		Rear	0.838	0.148	0.986	N/A
		Left side	0.400	0.021	0.421	N/A
	B2 50RB	Right side	0.552	0.400	0.952	N/A
	COND	Top side	0.400	0.148	0.548	N/A
LTE		Bottom side	0.338	0.400	0.738	N/A
LIE		Rear	0.303	0.148	0.451	N/A
		Left side	0.400	0.021	0.421	N/A
	B4 1RB	Right side	0.185	0.400	0.585	N/A
1RB	1112	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.128	0.400	0.528	N/A
		Rear	0.248	0.148	0.396	N/A
	_	Left side	0.400	0.021	0.421	N/A
	B4 50RB	Right side	0.159	0.400	0.559	N/A
	COND	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.112	0.400	0.512	N/A

Report No: CHTEW19100186 Page: 87 of 105 Issued: 2019-10-31

		Р	CB + BT			
WWA	AN Band	Exposure Position	Standalone PCB	e SAR (W/kg) BT	Σ 1-g SAR (W/kg)	SPLSR
		Rear	0.224	0.148	0.372	N/A
		Left side	0.400	0.021	0.421	N/A
	B5 1RB	Right side	0.148	0.400	0.548	N/A
		Top side	0.400	0.148	0.548	N/A
		Bottom side	0.093	0.400	0.493	N/A
		Rear	0.177	0.148	0.325	N/A
		Left side	0.400	0.021	0.421	N/A
	B5 25RB	Right side	0.125	0.400	0.525	N/A
	2511.0	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.079	0.400	0.479	N/A
		Rear	0.144	0.148	0.292	N/A
		Left side	0.400	0.021	0.421	N/A
	B7 1RB	Right side	0.007	0.400	0.407	N/A
		Top side	0.400	0.148	0.548	N/A
LTE		Bottom side	0.006	0.400	0.406	N/A
LTE		Rear	0.111	0.148	0.259	N/A
		Left side	0.400	0.021	0.421	N/A
	B7 50RB	Right side	0.005	0.400	0.405	N/A
	30112	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.004	0.400	0.404	N/A
		Rear	0.140	0.148	0.288	N/A
		Left side	0.400	0.021	0.421	N/A
	B12 1RB	Right side	0.128	0.400	0.528	N/A
	IND	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.135	0.400	0.535	N/A
		Rear	0.091	0.148	0.239	N/A
		Left side	0.400	0.021	0.421	N/A
	B12 25RB	Right side	0.076	0.400	0.476	N/A
	23110	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.073	0.400	0.473	N/A

Report No: CHTEW19100186 Page: 88 of 105 Issued: 2019-10-31

		Р	CB + BT			
10/10/0	N.D I	Exposure	Standalone	e SAR (W/kg)	Σ 1-g SAR	001.00
VVVVA	N Band	Position	PCB	ВТ	(W/kg)	SPLSR
		Rear	0.149	0.148	0.297	N/A
		Left side	0.400	0.021	0.421	N/A
	B17 1RB	Right side	0.131	0.400	0.531	N/A
	5	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.140	0.400	0.540	N/A
		Rear	0.094	0.148	0.242	N/A
		Left side	0.400	0.021	0.421	N/A
	B17 25RB	Right side	0.072	0.400	0.472	N/A
	2011	Top side	0.400	0.148	0.548	N/A
LTE		Bottom side	0.076	0.400	0.476	N/A
LIE		Rear	0.045	0.148	0.193	N/A
		Left side	0.400	0.021	0.421	N/A
	B41 1RB	Right side	0.015	0.400	0.415	N/A
	1110	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.008	0.400	0.408	N/A
		Rear	0.042	0.148	0.190	N/A
		Left side	0.400	0.021	0.421	N/A
	B41 50RB	Right side	0.012	0.400	0.412	N/A
	50RB	Top side	0.400	0.148	0.548	N/A
		Bottom side	0.006	0.400	0.406	N/A

Notes:

^{1.} No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 15.2 for detailed SPLS ratio analysis.

Report No: CHTEW19100186 Page: 89 of 105 Issued: 2019-10-31

15.2. SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6W/kg for 1g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is \leq 0.04 for 1g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance_{TX1-TX2}=
$$R_i$$
= [(x1-x2)² + (y1-y2)² + (z1-z2)²]^{0.5}
SPLS Ratio= (SAR1 + SAR2)^{1.5}/Ri

	Donal	Danitian	1g SAR	Gap	SAR p	eak location	n(mm)	Peak SAR Separation	Summed	SPLS	Simultaneous
No.1	Band	Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
140.1	WCDMA Band II	Rear	1.352	0	66.3	108.3	-0.35	252.46	2.457	0.02	No required
	WIFI 2.4G	rteal	1.105	0	-26.2	126.6	-0.98	202.40	2.401	0.02	No required

Report No: CHTEW19100186 Page: 90 of 105 Issued: 2019-10-31

			5 3	1g SAR	Gap	SAR p	eak location	n(mm)	Peak SAR Separation	Summed	SPLS	Simultaneous
		Band	Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
N	0.2	LTE Band 2 1RB	Rear	1.275	0	66.3	108.3	-0.33	252.46	2.38	0.01	No required
		WIFI 2.4G		1.105	0	-26.2	126.6	-0.98				

Report No: CHTEW19100186 Page: 91 of 105 Issued: 2019-10-31

			:	1g SAR	Gap	SAR p	eak location	n(mm)	Peak SAR Separation	Summed	SPLS	Simultaneous
		Band	Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
No	0.3	LTE Band 2 50RB	Rear	0.838	0	66.3	108.3	-0.33	252.46	1.943	0.01	No required
		WIFI 2.4G		1.105	0	-26.2	126.6	-0.98				

Report No: CHTEW19100186 Page: 92 of 105 Issued: 2019-10-31

	Dond	Desition	1g SAR	Gap	SAR p	eak location	n(mm)	Peak SAR Separation	Summed	SPLS	Simultaneous
No.4	Band	Position	(W/kg)	(mm)	Х	Y	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
140.4	WCDMA Band II	Rear	1.352	0	66.3	108.3	-0.35	270.95	2.844	0.02	No required
	WIFI 5G	rtodi	1.492	0	-79	-120.4	-0.95	270.00	2.011	0.02	140 Toquilou
		FI 5G									

WCDMA Band II

Report No: CHTEW19100186 Page: 93 of 105 Issued: 2019-10-31

Band Position (W/kg) SAR Distance OA/kg	SPLS	Simultaneous
No.5 (W/kg) (mm) X Y Z Distance (W/kg)	Ratio	SAR
WCDMA Band IV Rear 0.403 0 52.6 94.8 -0.41 252.25 1.895	0.01	No required
WIFI 5G 1.492 0 -79 -120.4 -0.95	0.01	No required

Report No: CHTEW19100186 Page: 94 of 105 Issued: 2019-10-31

		5	1g SAR	Gap	SAR p	peak location	n(mm)	Peak SAR Separation	Summed	SPLS	Simultaneous
No.6	Band	Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
140.0	WCDMA Band V	Rear	0.224	0	40.1	94.9	-0.52	246.05	1.716	0.01	No required
	WIFI 5G	rtoui	1.492	0	-79	-120.4	-0.95	210.00	1.710	0.01	140 roquirou
	(<u> </u>										
	WIFI										

Report No: CHTEW19100186 Page: 95 of 105 Issued: 2019-10-31

		5 3	1g SAR	Gap	SAR p	eak location	n(mm)	Peak SAR Separation	Summed	SPLS	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
No.7	LTE Band 2 1RB	Rear	1.275	0	66.3	108.3	-0.33	270.95	2.767	0.02	No required
	WIFI 5G		1.492	0	-79	-120.4	-0.95				

Report No: CHTEW19100186 Page: 96 of 105 Issued: 2019-10-31

		5 3	1g SAR	Gap	SAR p	eak location	n(mm)	Peak SAR Separation	Summed	SPLS	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
No.8	LTE Band 2 50RB	Rear	0.838	0	66.3	108.3	-0.33	270.95	2.330	0.01	No required
	WIFI 5G		1.492	0	-79	-120.4	-0.95				

Report No: CHTEW19100186 Page: 97 of 105 Issued: 2019-10-31

		5 3	1g SAR	Gap	SAR p	eak location	n(mm)	Peak SAR Separation	Summed	SPLS	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
No.9	LTE Band 4 1RB	Rear	0.303	0	64.5	90.3	-0.53	254.93	1.795	0.01	No required
	WIFI 5G		1.492	0	-79	-120.4	-0.95				

Report No: CHTEW19100186 Page: 98 of 105 Issued: 2019-10-31

No.1 0	Band	5	1g SAR	Gap	SAR peak location(mm)			Peak SAR Separation Summed	SPLS	Simultaneous	
		Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
	LTE Band 4 50RB	Rear	0.248	0	64.5	90.3	-0.53	254.93	1.740	0.01	No required
	WIFI 5G		1.492	0	-79	-120.4	-0.95				

Report No: CHTEW19100186 Page: 99 of 105 Issued: 2019-10-31

No.1 1	Band	5	1g SAR	Gap	SAR peak location(mm)			Peak SAR Separation	Summed	SPLS	Simultaneous
		Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
	LTE Band 5 1RB	Rear	0.224	0	50.6	91.8	-0.57	248.65 1.716	0.01	No required	
	WIFI 5G		1.492	0	-79	-120.4	-0.95				

Report No: CHTEW19100186 Page: 100 of 105 Issued: 2019-10-31

No.1 2	Band	5	1g SAR	Gap	SAR p	eak location	n(mm)	Peak SAR Separation Summe		SPLS	Simultaneous
		Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	Simultaneous SAR No required
	LTE Band 5 25RB	Rear	0.177	0	50.6	91.8	-0.57	248.65 1.669	0.01	No required	
	WIFI 5G		1.492	0	-79	-120.4	-0.95				

Report No: CHTEW19100186 Page: 101 of 105 Issued: 2019-10-31

No.1 3	Band	5	1g SAR	Gap	SAR peak location(mm)			Peak SAR Separation	Summed	SPLS	Simultaneous
		Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
	LTE Band 7 1RB	Rear	0.144	0	41.2	104	-0.74	254.57 1.636	0.01	No required	
	WIFI 5G		1.492	0	-79	-120.4	-0.95				

Report No: CHTEW19100186 Page: 102 of 105 Issued: 2019-10-31

No.1 4	Band	5	1g SAR	Gap	SAR peak location(mm)			Peak SAR Separation	Summed	SPLS	Simultaneous
		Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio	SAR
	LTE Band 7 50RB	Rear	0.111	0	41.2	104	-0.74	254.57 1.603	0.01	No required	
	WIFI 5G		1.492	0	-79	-120.4	-0.95				

Report No: CHTEW19100186 Page: 103 of 105 Issued: 2019-10-31

N- 45	Band	5 %	1g SAR	Gap	SAR p	SAR peak location(mm)			Summed	SPLS	Simultaneous
		Position	(W/kg)	(mm)	Х	Υ	Z	Separation Distance (mm)	SAR (W/kg)	Ratio	SAR No required
No.15	LTE Band 12	- Rear	0.140	0	55	96.4	-0.49	- 254.87	1.632	0.01	No required
	WIFI 5G		1.492	0	-79	-120.4	-0.95				

Report No: CHTEW19100186 Page: 104 of 105 Issued: 2019-10-31

	No.16	Band	5 33	1g SAR	Gap	SAR peak location(mm)			Peak SAR Separation Summed	SPLS	Simultaneous
			Position	(W/kg)	(mm)	Х	Υ	Z	Distance (mm)	SAR (W/kg)	Ratio
		LTE Band 17	- Rear	0.149	0	55	96.4	-0.49	1.641 254.87	0.01	No required
		WIFI 5G		1.492	0	-79	-120.4	-0.95		254.07	0.01

Report No: CHTEW19100186 Page: 105 of 105 Issued: 2019-10-31

16. TestSetup Photos

Liquid depth in the Body phantom

Rear (0mm)

Left Side (0mm)

Right Side (0mm)

Top Side (0mm)

Bottom Side (0mm)

17. External and Internal Photos of the EUT

Please reference to the report No.: CHTEW19100128

----End of Report-----