Esercizi sulla teoria degli anelli Corso di Laurea in Matematica A.A. 2015-2016 Docente: Andrea Loi

1. (Es 9.19) Sul gruppo abeliano $A = (\mathbb{R}, +) \times (\mathbb{R}, +)$ si consideri la moltiplicazione definita da

$$(x,y) \cdot (x',y') = (xx' + yy', xy' + x'y).$$

- (a) Dimostrare che in questo modo $(A,+,\cdot)$ risulta un anello unitario e $\mathbb{R}\times\{0\}$ è un suo sottoanello.
- (b) Caratterizzare gli elementi invertibili ed i divisori dello zero di A.
- (c) Dire se esistono elementi che non sono né divisori dello zero né invertibili.
- (d) Trovare gli ideali massimali di A.
- 2. (Es. 9.29-9.36) Sia A un anello commutativo unitario e I e J ideali di A. Definiamo

$$IJ = \{i_1 j_1 + \dots + i_n j_n \mid n \in \mathbb{N}, i_k \in I, j_k \in J, k = 1, \dots, n\}.$$

- (a) Provare che IJ è un ideale di A contenuto nell'ideale $I\cap J$ e mostrare con un esempio che $IJ\neq I\cap J$.
- (b) Provare che se A = I + J allora $IJ = I \cap J$.
- (c) Provare che l'affermazione in (b) non è vera se A non è un anello unitario.
- (d) se I e J sono due ideali massimali distinti, allora $IJ = I \cap J$;
- (e) se I e J sono ideali principali, I = (a) e J = (b), allora IJ = (ab).
- (f) descrivere IJ e $I \cap J$ in $A = \mathbb{Z}$ e dedurre quando $IJ = I \cap J$.
- 3. (Es.9.37) Sia $A = \{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{Z}_3 \}$. Provare che A è un sottocampo di $M_2(\mathbb{Z}_3)$. Dimostrare inoltre che (A^*, \cdot) è un gruppo ciclico, determinare l'ordine di A^* e un suo generatore.
- 4. (Es.9.38) Sia $A = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \}$. Provare che A è un sottocampo di $M_2(\mathbb{R})$ isomorfo a \mathbb{C} .
- 5. (Es.9.39) Sia A un anello unitario e I un ideale bilatero di A. Dimostrare che l'insieme $U_I = \{x \in U(A) \mid x 1 \in I\}$ è un sottogruppo normale di U(A).
- 6. (Es.9.41) Sia $A = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{R} \}.$

- (a) Provare che A è un anello commutativo unitario, ma non è un dominio.
- (b) Determinare l'ideale N(A) degli elementi nilpotenti di A.
- (c) Mostrare che ogni ideale proprio di A è contenuto in N(A) e dedurre che A è un anello locale.
- (d) Determinare tutti gli ideali di A.
- 7. (Es.9.42) Nell'anello $M_2(\mathbb{Z}_8),$ sia $A=\{\left(\begin{array}{cc}a&5b\\4b&a\end{array}\right)\mid a,b\in\mathbb{Z}_8\}.$
 - (a) Provare che A è un sottoanello commutativo di $M_2(\mathbb{Z}_8)$.
 - (b) Dire se A è un dominio.
- 8. (Es.9.43) Fissato un numero razionale m, si consideri l'insieme

$$R_m = \{ \left(\begin{array}{cc} a & b \\ mb & a \end{array} \right) \mid a, b \in \mathbb{Q} \}.$$

Provare che:

- (a) R_m è un sottoanello commutativo unitario di $M_2(\mathbb{Q})$;
- (b) R_m è un campo se e solo m non è un quadrato di un numero razionale.
- 9. (Es.9.49) Sia p un primo e $\mathbb{Z}_{(p)}=\{\frac{m}{n}\in\mathbb{Q}\mid p\nmid n\}.$
 - (a) Provare che $\mathbb{Z}_{(p)}$ è un sottoanello di \mathbb{Q} .
 - (b) Determinare gli elementi invertibili di $\mathbb{Z}_{(p)}$.
 - (c) Determinare gli ideali di $\mathbb{Z}_{(p)}$.
 - (d) Determinare gli ideali primi e massimali di $\mathbb{Z}_{(p)}$.
 - (e) Provare che $\mathbb{Z}_{(p)}$ è un anello locale.
- 10. (Es.9.50) Dimostrare che:
 - (a) ogni campo è un anello locale senza elementi nilpotenti non nulli;
 - (b) se \mathbb{Z}_m è locale e non ha elementi nilpotenti non nulli allora \mathbb{Z}_m è un campo;
 - (c) dare un esempio di anello locale senza elementi nilpotenti non nuli che non sia un campo.
- 11. (Es.9.51) Un anello commutativo unitario si dice regolare se per ogni $x \in A$ esiste $y \in A$ tale che $x = yx^2$. Dimostrare che:
 - (a) ogni campo è un anello regolare e se A è un dominio regolare allora A è un campo;

- (b) l'anello quoziente di un anello regolare è regolare;
- (c) in un anello regolare ogni ideale primo e massimale;
- (d) in un anello regolare ogni ideale principale è generato da un idempotente;
- (e) se I e J sono due ideali di un anello regolare allora $IJ = I \cap J$;
- (f) per ogni insieme non vuoto S e per ogni campo K, l'anello K^S è regolare.
- 12. (Es.10.5-10-6) Sia G un gruppo abeliano ed End(G) l'insieme degli endomorfismi di G. Siano $f,g\in End(G)$ e si definisca (f+g)(x)=f(x)+g(x), per $x\in G$. Sia \circ l'usuale composizione di funzioni, cioè $(f\circ g)(x)=f(g(x))$ per $x\in G$.
 - (a) Si dimostri che $(End(G), +, \circ)$ è un anello unitario.
 - (b) Sia A un anello unitario. Si dimostri che A si può identificare con un sottoanello di End(G) per qualche gruppo abeliano G.
- 13. (Es.10.8-10.9) Sia G un gruppo abeliano e $f \in A = End(G)$.
 - (a) Dimostrare che se f è suriettivo, allora f non è divisore destro dello zero in A.
 - (b) Dimostrare che se f è iniettivo, allora f non è divisore sinistro dello zero in A.
 - (c) Trovare un anello dove esistono divisori sinistri dello zero che non sono divisori destri dello zero (suggerimento: considerare l'anello $\mathbb{Z}^{\mathbb{N}}$).
- 14. (Es.10.10) Sia S un insieme. Nell'insieme $\mathcal{P}(S)$ definiamo l'operazione Δ , chiamata differenza simmetrica,

$$X\Delta Y = (X \cup Y) \setminus (X \cap Y),$$

per ogni coppia di sotto
insiemi di S.

- (a) Provare che la struttura algebrica $(\mathcal{P}(S), \Delta, \cap)$ è un anello commutativo unitario e che ogni sottoinsieme proprio di S è un divisore dello zero di A.
- (b) Sia $Y \in \mathcal{P}(S)$: provare che l'applicazione $\varphi : \mathcal{P}(S) \to \mathcal{P}(S)$, definita da $\varphi(X) = X \setminus Y$ è un omomorfismo di anelli e determinare ker φ e $Im\varphi$.
- (c) Sia $Y \in \mathcal{P}(S)$: determinare l'ideale (Y).
- (d) Se S è finito, provare che ogni ideale di $\mathcal{P}(S)$ è principale.
- (e) Determinare la caratteristica di $\mathcal{P}(S)$.

15. (Es.10.11) Sia
$$A = \{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \mid \alpha, \beta \in \mathbb{C} \}.$$

(a) Dimostrare che A è un sottoanello di $M_2(\mathbb{C})$.

(b) Sia q=a+bi+cj+dk un elemento del corpo dei quaternioni $\mathbb H$. Si dimostri che l'applicazione $\varphi:\mathbb H\to A$ definita da

$$\varphi(q) = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}, \ \alpha = a + bi, \ \beta = c + id \in \mathbb{C}$$

è un isomorfismo di anelli e pertanto di corpi.

(c) Si verifichi che

$$\det(\varphi(q)) = ||q||^2 = a^2 + b^2 + c^2 + d^2.$$

Si deduca che $||q_1q_2|| = ||q_1|| ||q_2||$, per ogni $q_1, q_2 \in \mathbb{H}$.

- (d) Si verifichi che l'insieme dei quaternioni di norma 1 è un sottogruppo del gruppo moltiplicativo (\mathbb{H}^*,\cdot) .
- 16. (Es.10.12) Determinare l'insieme degli endomorfismi unitari dei seguenti anelli: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}[i], \mathbb{Z}[\sqrt{n}]$.
- 17. (Es.10.13) Sia $f:A_1\to A_2$ un omomorfismo di anelli unitari.
 - (a) Provare che $f(U(A_1)) \subset U(A_2)$.
 - (b) Considerando l'omomorfismo canonico $f: \mathbb{Z} \to \mathbb{Z}_n$, mostrare che in (a) non vale l'uguaglianza se n > 6.
- 18. (Es. 10.16) Sia A l'anello $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5$
 - (a) Trovare la caratteristica di A.
 - (b) Descrivere gli ideali (primi, massimali e principali) di A.
 - (c) Determinare a quale degli anelli $\mathbb{Z}_4 \times \mathbb{Z}_{15}$, $\mathbb{Z}_6 \times \mathbb{Z}_{10}$ e \mathbb{Z}_{60} è isomorfo l'anello A.
 - (d) Descrivere quali sono gli elementi invertibili e gli elementi nilpotenti di A.
- 19. (Es. 10.20) Sia \mathbb{K} un campo e $A = \mathbb{K} \times \mathbb{K} \times \cdots \times \mathbb{K}$ (*n* fattori). Trovare gli ideali primi e massimali di A e dire quanti sono.
- 20. (Es. 10.44) Nell'anello $A = \mathbb{Z}[\sqrt{2}]$ si considerino gli ideali I = (2) e J = (3). Dire se gli anelli quoziente A/I e A/J sono campi.
- 21. (Es. 10.45) Nell'anello $A = \mathbb{Z}[\sqrt{5}]$ sia A = (5) e si consideri l'anello quoaziente A/I.
 - (a) Provare che se $a \equiv 0 \mod 5$, allora l'elemento $a + b\sqrt{5} + I$ è nilpotente.
 - (b) Provare che se $a \not\equiv 0 \mod 5$, allora l'elemento $a + b\sqrt{5} + I$ è invertibile.
 - (c) Determinare gli ideali di A/I.
- 22. (Es. 10.46) Sia $A = \mathbb{Z}[\sqrt{5}]$. Per $\alpha = x + \sqrt{5}y \in A$ definiamo la norma di α come $N(\alpha) = x^2 5y^2$. Dimostrare che $M = \{\alpha \in A \mid N(\alpha) \text{ pari}\}$ è un ideale massimale di A.