Proposed Methodology (ALTAR-H): Attentive, Lexicographic, Temporal-Aware Routing with Hyperclique Priors

We propose **ALTAR-H**, a CPU-only heuristic for Vehicle Routing with Time Windows (VRPTW) tailored to low-memory machines (≤12 GB RAM, no GPU). ALTAR-H integrates: (i) **dual spatial-temporal potentials** to build a high-quality "giant tour" skeleton; (ii) **temporal-feasibility graphs** and **hyperclique priors** that mine short, mutually feasible customer sequences; (iii) **dynamic programming (DP) splitting** and **capacity/time consolidation**; and (iv) a **route-count-first local search** with zero-lateness guards and a route-elimination mechanism. The pipeline is modular and reproducible, mirroring the clarity of recent methodology sections that combine data-driven insights with metaheuristics (we emulate the structured, two-phase exposition style of the attached reference while pursuing a distinct algorithmic path).

1. Problem Setting and Objective

Given a depot (0) and customers $(V=\{1,\dots,n\})$ with coordinates $((x_i,y_i))$, time windows $([a_i,b_i])$, service times (s_i) , and demands (q_i) , find a set of depot-to-depot routes such that each customer is visited exactly once, vehicle load never exceeds capacity (Q), and all arrivals respect time windows (no lateness). The **lexicographic objective** is:

- 1. minimize number of routes (vehicles), then
- 2. minimize total Euclidean distance.

All feasibility checks use **earliest-arrival-with-waiting** updates; lateness is strictly disallowed (hard constraint).

2. Pipeline Overview

ALTAR-H proceeds in five stages:

1. Dual-Potential Construction & APCA Skeleton

Build spatial and temporal potentials, then construct a giant tour via **Alternating Potential Competitive Attention (APCA)**.

2. Temporal Feasibility Graph (TFG) & Hyperclique Mining

Create a directed feasibility graph and mine small **hypercliques** (size 3–5) that are simultaneously feasible sequences; store at least one feasible order per hyperclique.

3. Tour Shaping & Candidate Generation

Generate several time-window-aware giant tours (angle-time sweep, clustering-time order, TW-aware nearest neighbor) and refine each with a light **TW-2opt**.

4. Split-DP and Consolidation (DSTB)

For each tour, run **DP splitting** (lexicographic) into feasible routes; consolidate using depot-sandwich time buffers and clique-respecting merges.

5. Route-Count-First Local Search (RCF-LS)

Apply intra-route 2-opt/Or-opt, inter-route relocate/swap, and an **ejection-reinsertion route-elimination** pass; maintain zero lateness and capacity feasibility.

3. Dual Potentials & APCA Skeleton

3.1 Spatial potential

Compute Euclidean distance matrix (D_{ij}) and normalize:

$$\widehat{D}_{ij} = rac{D_{ij}}{\max_{u.v} D_{uv}} \in [0,1].$$

3.2 Temporal potential

From depot time (a_0), define the **temporal tension** for arc (i!\to! j):

$$au_{ij} = \max\{0, a_j - (t_i + s_i + D_{ij})\} \quad ext{(early wait)},$$

and its normalized complement (\widehat{\tau} /ij /=1-|frac| |fau {ij}} {\max \tau}), so edges that **leave little slack** get higher temporal pressure.

3.3 Composite attention cost

$$C_{ij} = \lambda \, \widehat{D}_{ij} + (1-\lambda) \, \widehat{ au}_{ij}, \quad \lambda \in [0,1].$$

A small (\lambda) emphasizes time feasibility; larger (\lambda) emphasizes compactness.

3.4 APCA giant tour construction

Starting at the depot, APCA alternates between (A) **temporal-first** attention (choose (j) minimizing (C_{ij}) among feasible (j)) and (B) **spatial-first** attention, with a cooling schedule that gradually shifts weight toward temporal safety as the tour grows. Short tabu lists prevent 2-cycles; capacity is checked cumulatively. The output is a **skeleton order** over all customers.

Rationale: APCA greedily aligns the tour with both proximity and time-window pressure, producing a split-friendly order.

4. Temporal Feasibility Graph & Hypercliques

4.1 TFG construction

Build a directed graph (G=(V,E)) where $((i,j)\setminus E)$ iff serving (i) and driving to (j) allows an **earliest feasible arrival** at (j) with **zero lateness** (under cumulative load and service). We also precompute **KNN lists** in spatial and temporal spaces to bound candidate neighborhoods.

4.2 Hyperclique mining (3–5 nodes)

Enumerate small candidate sets (S) from neighborhood unions and retain those admitting **at least one topological order** $((v_1, dots, v_k))$ that is time-feasible (forward simulation) and

capacity-safe. Store ((S, \text{one feasible order})). These **hypercliques act as priors**: short "phrases" likely to remain together during split and search.

Rationale: Hypercliques capture mutually consistent micro-sequences that reduce destructive moves and guide consolidation.

5. Tour Shaping & Candidate Generation

We generate several tour candidates:

- **Angle–Time Sweep (ATS):** bucket by polar angle around the depot; sort within buckets by ((a_j,b_j)).
- **K-cluster Time (KCT):** farthest-point clustering in ((x,y)); visit clusters by center angle; order within clusters by time.
- **TW-aware NN (TW-NN):** greedily pick next (j) with minimal predicted lateness (tiebreak by due time then distance).
- **TW-2opt refinement:** a lightweight 2opt pass that minimizes a "TW-conflict score" along the tour.

This set plus the APCA skeleton(s) feed the DP splitter.

6. Split-DP and DSTB Consolidation

6.1 DP splitting (lexicographic)

For a fixed tour (u_1,\dots,u_n), precompute segment tables (F(i,j)) that indicate whether (u_i!\to!\dots!\to!u_j) is feasible and the cost to close to depot. Then solve: $[\mbox{min \big(\#\text{text}{routes}, \text{total distance}\}big) }]$

via 1-D DP over segment endpoints; keep the split with **fewest routes** (and least distance). We evaluate all tour candidates and select the best split.

6.2 DSTB consolidation

With feasible routes in hand, apply **Depot-Sandwich Time Buffering**: attempt pairwise merges ($R_a \subset R_b$) if cumulative demand $\leq (Q)$ and the concatenation stays zero-late after inserting **buffer waits** at the depot boundaries. Respect stored hyperclique orders to avoid breaking known feasible phrases.

Rationale: DP ensures contiguous, feasible blocks; DSTB converts "many short routes" into fewer balanced ones when slack allows.

7. Route-Count-First Local Search (RCF-LS)

We then run a bounded-time local search that **lexicographically** optimizes ((#\text{routes}, \text{distance})) subject to zero lateness:

- **Intra-route:** 2-opt; Or-opt (block sizes 1/2/3).
- **Inter-route:** relocate $(1\rightarrow 0)$, swap $(1\leftrightarrow 1)$ with feasibility checks by forward simulation.
- **Route elimination:** choose a small route; **eject** its customers and greedily reinsert them into other routes by best-feasible insertion. If all reinsertions succeed, the route disappears.

We iterate until no improving move is found or a time budget is reached. Hypercliques bias candidate positions during insertion/relocation (try clique-consistent slots first).

8. Feasibility Engine and Guards

All moves use a **single-pass forward simulator**:

```
t_j = \max\{a_j,\, t_i+s_i+D_{ij}\}, \quad \text{lateness} = \max\{0,\, t_i+s_i+D_{ij}-b_j\}.
```

A move is admissible iff (i) no lateness occurs anywhere and (ii) cumulative load never exceeds (Q). This strict guard makes the search robust under tight windows and long services.

9. Complexity, Memory, and Runtime Budgets

- **Precompute:** (D\in\mathbb{ $R}^{(n+1)}$): (O(n^2)) time/space.
- **APCA:** $(O(n \setminus K))$ with bounded neighborhoods.
- **TFG & hypercliques:** neighborhood-restricted enumeration; practical $(O(n \cdot K^2))$.
- **DP split:** $(O(n^2))$ per tour (fast in practice with feasibility early-breaks).
- **RCF-LS:** time-capped (e.g., 3–5 min).
- **Memory:** always $(O(n^2))$ dominated by (D); fits in ≤ 12 GB for standard VRPTW sizes (e.g., Solomon/R-C/RC sets).

10. Parameters and Defaults (robust across datasets)

- Distance-time blend (\lambda\in[0.4,0.6]) (start 0.5).
- KNN neighborhood (K\in[8,16]) (default 10).
- Hyperclique sizes 3–5; cap stored cliques (e.g., 300).
- TW-2opt iterations (\approx 1.5!\times!10^3).
- DP evaluated on \geq 5 tours (APCA, ATS, KCT, TW-NN, NN-distance).
- RCF-LS time budget 180–300 s; 2–5 seeds for robustness.
- Objective tie-breaks: (#routes, distance).

11. Reproducibility Protocol

- **Hardware:** single CPU core, ≤ 12 GB RAM, no GPU.
- **Seeds:** {7, 42, 99} (report best-of-k and mean±sd).
- **Budgets:** APCA \leq 10 s, hypercliques \leq 20 s, DP per tour \leq 1 s, RCF-LS 180–300 s.
- **Outputs:** final routes (JSON/CSV), per-route and per-stop tables, route map, slack histogram, pipeline curves (initial—consolidated—final).

12. Why ALTAR-H is novel and useful

Unlike GA-centric or surrogate/XAI-guided sequencing frameworks, ALTAR-H **does not rely on learned surrogates**; instead, it **mines feasibility structure directly** (TFG + hypercliques) and couples it with **dual-potential attention** and **lexicographic DP + elimination LS** to prioritize **vehicle count** without sacrificing feasibility. The method remains **fully CPU-bound**, reproducible, and scales to real-world instances while producing **paper-ready** solution artifacts. The structured, two-stage organization (construction → improvement) follows best practice while being **algorithmically distinct** from GA/XAI hybrids.

Algorithm 1 (high-level pseudo-workflow)

- Build (D), (\widehat{D}), temporal pressures (\widehat{\tau}); construct APCA skeleton.
- 2. Build **TFG**; mine **hypercliques** with at least one feasible order.
- 3. Generate **candidate tours** (APCA, ATS, KCT, TW-NN) + **TW-2opt**.
- 4. For each tour, run **Split-DP** (**lexicographic**); pick best split; apply **DSTB consolidation** with clique priors.
- 5. Run **RCF-LS** (2-opt/Or-opt, relocate/swap, route elimination) under hard feasibility; stop at budget; return best.

This methodology section is intentionally concise yet complete so reviewers can reproduce the pipeline and understand **where** each improvement comes from (potentials, mined priors, DP split, elimination LS), **why** it is effective (lexicographic feasibility-first design), and **how** it runs on modest hardware.