Todas las respuestas han de justificarse

Ejercicios

Ejercicio 1

Describir dos lenguajes que pertenezcan a cada una de las siguientes familias de lenguajes:

- (a) $\mathcal{L} = \{ L \subseteq \Sigma^* : \Sigma^2 \subseteq L \}$
- (b) $\mathscr{L} = \{L \subseteq \Sigma^* : \forall n \ge 0, |L \cap \Sigma^n| \le 1\}$
- (c) $\mathscr{L} = \{ L \subseteq \Sigma^* : x \in L \Leftrightarrow x^r \in L \}$
- (d) $\mathcal{L} = \{ L \subseteq \Sigma^* : L \cap (\Sigma \Sigma)^* = \emptyset \}$

Ejercicio 2

Dado el lenguaje $L=\{x\in\{a,b\}^*\ :\ ab\not\in Suf(x)\}$ y el autómata:

obtener un AFD para los siguientes lenguajes:

- (a) $L \cap L(A)$
- (b) $L \cap L(A)^r$
- (c) $\overline{L} \cup L(A)$
- (d) $\overline{L} \cup \overline{L(A)^r}$
- (e) $L \cup \overline{L(A)}$

Ejercicio 3

Dados el lenguaje $L=\{axb\ :\ x\in\{a,b\}^*\},$ el autómata:

y el homomorfismo:

$$\begin{cases} h(0) = ba \\ h(1) = ab \end{cases}$$

obtener un AFD para los siguientes lenguajes:

- (a) $(aab)^{-1}L$
- (b) $(aba)^{-1}L(A)$
- (c) $(aba)^{-1}\overline{L}$
- (d) $h^{-1}(L(A))$
- (e) $\overline{h^{-1}(L)}$
- (f) $h^{-1}(L) \cap h^{-1}(\overline{L(A)})$
- (g) $\overline{L(A)^r}$

Ejercicio 4

Dados los autómatas:

y el homomorfismo:

$$\begin{cases} h(0) = ba \\ h(1) = ab \end{cases}$$

obtener un AFD para el lenguaje $\overline{h^{-1}(L(A_1))} \cap L(A_2)$

Ejercicio 5

Dadas las siguientes familias de lenguajes:

$$\mathcal{L}_p = \{ L \subseteq \Sigma^* : \Sigma^2 \subseteq L \}$$

$$\mathcal{L}_t = \{ L \subseteq \Sigma^* : \forall n \ge 0, |L \cap \Sigma^n| \le 1 \}$$

$$\mathcal{L}_r = \{ L \subseteq \Sigma^* : x \in L \Leftrightarrow x^r \in L \}$$

- (a) ¿Es la operación unión cerrada en \mathcal{L}_p ?
- (b) ¿Es la clase \mathscr{L}_p cerrada bajo la operación intersección?
- (c) ¿Es la operación reverso cerrada en \mathcal{L}_p ?

- (d) ¿Es la operación unión de cierre para la clase \mathcal{L}_t ?
- (e) ¿Es la operación intersección cerrada para la clase \mathcal{L}_t ?
- (f) ¿Es la clase \mathcal{L}_t cerrada bajo la operación complementario?
- (g) ¿Es la operación reverso cerrada en \mathcal{L}_r ?
- (h) ¿Es la operación producto cerrada para la clase \mathcal{L}_r ?

Sea n un entero positivo, se define la familia de lenguajes \mathscr{L}_n como:

$$\mathscr{L}_n = \{ \Sigma^* - D : card(D) > n \}$$

¿Es la clase \mathcal{L}_r cerrada respecto a las operaciones booleanas (unión, intersección y complementario)?

Ejercicio 7

Obtener un AFD mínimo equivalente a los siguientes autómatas

(a)

Pronunciarse acerca de la siguiente afirmación:

Sea un AFD A, tal que todos sus estados son finales. Entonces $L(A) = \Sigma^*$.

Ejercicio 9

Dados los autómatas:

Justificar algoritmicamente si $L(A_1) \subseteq L(A_2)$

Ejercicio 10

Representar los siguientes lenguajes mediante una expresión regular:

- (a) $L = \{x \in \{a, b\}^* : |x| \mod 2 = 0\}$
- (b) $L = \{x \in \{a,b\}^* : ab \not\in Seg(x)\}$
- (c) $L = \{x \in \{a, b\}^* : ab \not\in Seg(x) \land ba \in Seg(x)\}$

Enumerar las 10 primeras palabras en orden canónico de los siguientes lenguajes representados mediante expresiones regulares:

- (a) $bb^*a^* + a^*$
- (b) $(bab + a)^*$
- (c) $a(b+ba)^* + b(a+ab)^*$

Ejercicio 12

Obtener el autómata de posición a partir de las siguientes expresiones regulares:

- (a) $(ab^*a)^*$
- (b) $a(b + ba)^*$
- (c) $(ba)^* + (aa + bb)^*$
- (d) $(a + b(ca)^*)^*$
- (e) $(a+bb)^*a(b+aa)^*$
- (f) $b(bb)^*a^*(cc)^* + \lambda$
- (g) $ab^*a + b(aa)^*b$

Ejercicio 13

Obtener el autómata follow que acepta los lenguajes representados por las siguientes expresiones regulares:

- (a) $(ab^*a)^*$
- (b) $b(a+ab)^*$
- (c) $(ab)^* + (bb + aa)^*$
- (d) $(a + b(ca)^*)^*$
- (e) $(a + bb)^*a(b + aa)^*$
- (f) $b(bb)^*a^*(cc)^* + \lambda$
- (g) $ab^*a + b(aa)^*b$
- (h) $(bb^*a + (aa)^*)^*$

Ejercicio 14

Dada la expresión regular $\alpha = a^*ba^* + b^*ab^*$ y el homomorfismo:

$$\begin{cases} h(0) = ba \\ h(1) = ab \end{cases}$$

obtener el AFD mínimo para el lenguaje $h^{-1}(L(\alpha))$

Obtener una expresión regular que describa los lenguajes aceptados por los siguientes autómatas:

(a)

(b)

(c)

(d)

(e)

(f)

