Math 4400/6400 – Review for the final exam April 27, 2013

Learning objectives

Gaussian integers

- Give the basic definitions concerning the Gaussian integers, including the definition of the set $\mathbf{Z}[i]$, conjugation, the norm map, and associates.
- Demonstrate that $N(\alpha\beta) = N(\alpha)N(\beta)$ for all $\alpha, \beta \in \mathbf{Z}[i]$.
- Demonstrate the equivalence between two elements being associates and each being a unit multiple of the other.
- Describe the chain of reasoning that culminates in the proof of the unique factorization theorem.
- Formulate and prove the division algorithm for Gaussian integers.
- Explain the definition of the greatest common divisor in $\mathbf{Z}[i]$ and prove that every two Gaussian integers have a greatest common divisor. Be able to compute the greatest common divisor via Euclid's algorithm.
- Formulate the fundamental lemma, Euclid's lemma, and the theorem on unique factorization in $\mathbf{Z}[i]$. Give the main ideas of all of these proofs.
- Characterize the Gaussian primes π by determining how rational primes factor in $\mathbf{Z}[i]$. Relate this characterization back to the question of which primes can be written as sums of two squares.

Practice problems

- 1. If m and n are relatively prime, show that gcd(m+n, mn) = 1.
- 2. How many incongruent solutions x are there to the congruence

$$15x \equiv 85 \pmod{2005}$$
?

(Incongruent means distinct modulo 2005.) Do not find the solutions.

- 3. What are the last two digits of 107⁸⁴²? *Hint:* Look mod 100 and use Euler's theorem.
- 4. Show that if a and b are positive integers and $a^3 \mid 2b^3$, then $a \mid b$.
- 5. Is there an integer solution (x, y) to the equation $15x^2 105y^3 = 7$?
- 6. Show that if p and p+2 are both prime numbers, then

$$4((p-1)!+1)+p \equiv 0 \pmod{p(p+2)}.$$

Hint: Show that the left-hand side is divisible by both p and by p + 2. Why is this enough? [You can also prove that the converse is true; whenever this congruence holds for an integer p, both p and p + 2 have to be prime.]

- 7. The integer 2117 factors as $29 \cdot 73$.
 - (a) Show that there are four incongruent solutions modulo 2117 to the equation $x^2 \equiv 1 \pmod{2117}$.
 - (b) Say that the solutions solutions from (a) are x_1, x_2, x_3, x_4 . Find the product $x_1x_2x_3x_4$ modulo 2117.

Hint: Represent the solutions as elements of the ring $\mathbf{Z}_{29} \times \mathbf{Z}_{73}$.

- 8. Show that 3 is a primitive root modulo 17.
- 9. Let p be the prime 3331. Show that the list 1^3 , 2^3 , 3^3 , ..., $(p-1)^3$ contain a repetition mod p. Hint: Notice that $p \equiv 1 \pmod{3}$; use this to Show that in fact 1 is repeated.
- 10. Show that if p is an odd prime, then every primitive root modulo p is a quadratic nonresidue modulo p. Is the converse true?
- 11. Compute $\phi(450)$, $\tau(450)$, and $\sigma(450)$.
- 12. Let $\omega(n)$ represent the number of distinct primes dividing n. For example, $\omega(1) = 0$, and $\omega(6) = \omega(12) = 2$.
 - (a) Show that $2^{\omega(n)}$ is a multiplicative function of n.
 - (b) Explain why $\tau(n^2)$ is a multiplicative function of n. You may assume that τ is multiplicative.

(c) Show that for every natural number n,

$$\sum_{d|n} 2^{\omega(d)} = \tau(n^2).$$

- 13. Find all positive integers n for which $\sigma(n) = n + 6$. Hint: $\sigma(n) n$ represents the sum of all of the divisors of n that are less than n.
- 14. Let p be an odd prime.
 - (a) Prove that there are $\frac{p-1}{2}$ quadratic residues modulo p and $\left(\frac{p-1}{2}\right)$ quadratic nonresidues modulo p. [This proof should be in your notes.]
 - (b) Show that

$$\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0.$$

(c) Explain why, if $p \equiv 1 \pmod{4}$, we in fact have

$$\sum_{a=1}^{(p-1)/2} \left(\frac{a}{p}\right) = 0.$$

- 15. Is there a solution x to the congruence $x^2 \equiv -10 \pmod{719}$? Note that 719 is a prime number.
- 16. Is there an integer x for which $x^4 \equiv -1 \pmod{2013}$? Justify your answer. Note that $2013 = 3 \cdot 11 \cdot 61$.
- 17. Let $\alpha = a + bi \in \mathbf{Z}[i]$. Show that if $1 + i \mid a + bi$ exactly when a and b have the same parity (i.e., are both even or both odd).
- 18. Suppose that π is a Gaussian integer of norm 49.
 - (a) Show that $\pi \mid 7$. Hint: Recall from class we already showed that π divides some rational prime p.
 - (b) Show that π is one of 7, -7, 7i or -7i.
- 19. Find a greatest common divisor of 4 + 6i and 4 6i. (You do not have to use the Euclidean algorithm to solve this problem, but you may if you like!)
- 20. Find all Gaussian integers of norm 289. Justify your answer.