SEOUENCE LISTING -

```
<110> Lanahan, Mike
<120> Self-processing Plants and Plant Parts
<130> 109846.317
<140> US 60/315,281
<141> 2001-08-27
<160> 112
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 436
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 1
Met Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val Ile Met Gln Ala
                                   10
Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg
                                                   30
          20
                               25
Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile
                           40
        35
Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp
  5.0
                       55
Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val
                                      75
                   70
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr
              85
Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His
                               105
           100
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr
                           120
                                               125
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
                                           140
                       135
Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe
                                    155
                  150
Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp
                                                   175
              165
                                   170
Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
                                                   190
        180
                               185
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val
                                               205
       195
                           200
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
                       215
                                           220
  210
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly
                  230
                                       235
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe
                                   250
               245
Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly
```

Page 1

```
260
                                  265
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
         275
                              280
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
                          295
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
                      310
                                          315
 Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn
                 325
                                      330
 Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met
             340
                                 345
                                                      350
 Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
         355
                             360
                                                  365
 Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys
     370
                         375
                                              380
 Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385
                     390
                                         395
 Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
                 405
                                     410
                                                          415
 Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
             420
                                 425
 Cys Gly Val Gly
         435
 <210> 2
 <211> 1308
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400>2
atggccaagt acctggagct ggaggaggc ggcgtgatca tgcaggcgtt ctactgggac 60
gtcccgagcg gaggcatctg gtgggacacc atccgccaga agatccccga gtggtacqac 120
gccggcatct ccgcgatctg gataccgcca gcttccaagg gcatgtccgg gggctactcg 180
atgggctacg accegtacga ctacttegae eteggegagt actaceagaa gggcaeggtg 240
gagacgcgct tegggteeaa geaggagete ateaacatga teaacaegge geacgcetae 300
ggcatcaagg tcatcgcgga catcgtgatc aaccacaggg ccggcggcga cctggagtgg 360
aaccegiteg teggegaeta cacetggaeg gaetteteca aggtegeete eggeaagtae 420
accgccaact acctcgactt ccaccccaac gagetgcacg cgggcgactc cggcacgttc 480
ggcggctacc cggacatctg ccacgacaag tcctgggacc agtactggct ctgggcctcg 540
caggagteet acgeggeeta ectgegetee ateggeateg acgegtggeg ettegactae 600
gtcaagggct acggggcctg ggtggtcaag gactggctca actggtgggg cggctgggcg 660
gtgggcgagt actgggacac caacgtcgac gcgctgctca actgggccta ctcctccggc 720
gccaaggtgt tegaetteee cetgtaetae aagatggaeg eggeettega caacaagaac 780
atcccggcgc tcgtcgaggc cctgaagaac ggcggcacgg tggtctcccg cgacccgttc 840
aaggoogtga cottogtogo caaccacgao acggacatca totggaacaa gtaccoggog 900
tacgccttca tcctcaccta cgagggccag cccacgatct tctaccgcga ctacgaggag 960
tggctgaaca aggacaagct caagaacctg atctggattc acgacaacct cgcgggcggc 1020
tecaetagta tegitgiaeta egaeteegae gagaigatet tegicegeaa eggetaegge 1080
tccaagcccg gcctgatcac gtacatcaac ctgggctcct ccaaggtggg ccgctgggtg 1140
tacgtcccga agttcgccgg cgcgtgcatc cacgagtaca ccggcaacct cggcggctgg 1200
gtggacaagt acgtgtactc ctccggctgg gtctacctgg aggccccggc ctacgacccc 1260
gccaacggcc agtacggcta ctccgtgtgg tcctactgcg gcgtcggc
                                                                   1308
```

<210> 3

<212> PRT <213> Artificial Sequence <220> <223> synthetic <400> 3 Met Gly His Trp Tyr Lys His Gln Arg Ala Tyr Gln Phe Thr Gly Glu 10 Asp Asp Phe Gly Lys Val Ala Val Val Lys Leu Pro Met Asp Leu Thr 20 3.0 25 Lys Val Gly Ile Ile Val Arg Leu Asn Glu Trp Gln Ala Lys Asp Val 40 Ala Lys Asp Arg Phe Ile Glu Ile Lys Asp Gly Lys Ala Glu Val Trp 55 Ile Leu Gln Gly Val Glu Glu Ile Phe Tyr Glu Lys Pro Asp Thr Ser 70 75 Pro Arg Ile Phe Phe Ala Gln Ala Arg Ser Asn Lys Val Ile Glu Ala 85 90 Phe Leu Thr Asn Pro Val Asp Thr Lys Lys Glu Leu Phe Lys Val 100 105 Thr Val Asp Gly Lys Glu Ile Pro Val Ser Arg Val Glu Lys Ala Asp 115 120 125 Pro Thr Asp Ile Asp Val Thr Asn Tyr Val Arg Ile Val Leu Ser Glu 135 140 Ser Leu Lys Glu Glu Asp Leu Arg Lys Asp Val Glu Leu Ile Ile Glu 150 155 Gly Tyr Lys Pro Ala Arg Val Ile Met Met Glu Ile Leu Asp Asp Tyr 170 165 175 Tyr Tyr Asp Gly Glu Leu Gly Ala Val Tyr Ser Pro Glu Lys Thr Ile 180 185 190 Phe Arg Val Trp Ser Pro Val Ser Lys Trp Val Lys Val Leu Leu Phe 200 205 Lys Asn Gly Glu Asp Thr Glu Pro Tyr Gln Val Val Asn Met Glu Tyr 215 220 Lys Gly Asn Gly Val Trp Glu Ala Val Val Glu Gly Asp Leu Asp Gly 230 235 Val Phe Tyr Leu Tyr Gln Leu Glu Asn Tyr Gly Lys Ile Arg Thr Thr 250 245 Val Asp Pro Tyr Ser Lys Ala Val Tyr Ala Asn Asn Gln Glu Ser Ala
260 265 270 265 Val Val Asn Leu Ala Arg Thr Asn Pro Glu Gly Trp Glu Asn Asp Arg 280 285 Gly Pro Lys Ile Glu Gly Tyr Glu Asp Ala Ile Ile Tyr Glu Ile His 295 Ile Ala Asp Ile Thr Gly Leu Glu Asn Ser Gly Val Lys Asn Lys Gly 310 315 320 Leu Tyr Leu Gly Leu Thr Glu Glu Asn Thr Lys Gly Pro Gly Gly Val 325 330 Thr Thr Gly Leu Ser His Leu Val Glu Leu Gly Val Thr His Val His 345 340 350 Ile Leu Pro Phe Phe Asp Phe Tyr Thr Gly Asp Glu Leu Asp Lys Asp 355 360 365 Phe Glu Lys Tyr Tyr Asn Trp Gly Tyr Asp Pro Tyr Leu Phe Met Val $_{\rm 370}$ $_{\rm 375}$ $_{\rm 380}$ Pro Glu Gly Arg Tyr Ser Thr Asp Pro Lys Asn Pro His Thr Arg Ile

<211> 800

```
Arg Glu Val Lys Glu Met Val Lys Ala Leu His Lys His Gly Ile Gly
                                            415
          405
                   410
Val Ile Met Asp Met Val Phe Pro His Thr Tyr Gly Ile Gly Glu Leu
          420
                       425
                                        430
Ser Ala Phe Asp Gln Thr Val Pro Tyr Tyr Phe Tyr Arg Ile Asp Lys
                      440
Thr Gly Ala Tyr Leu Asn Glu Ser Gly Cys Gly Asn Val Ile Ala Ser
                              460
  450 455
Glu Arg Pro Met Met Arg Lys Phe Ile Val Asp Thr Val Thr Tyr Trp
       470
                             475
Val Lys Glu Tyr His Ile Asp Gly Phe Arg Phe Asp Gln Met Gly Leu
                           490 495
          485
Ile Asp Lys Lys Thr Met Leu Glu Val Glu Arg Ala Leu His Lys Ile
       500
                505
Asp Pro Thr Ile Ile Leu Tyr Gly Glu Pro Trp Gly Gly Trp Gly Ala 515 525
Pro Ile Arg Phe Gly Lys Ser Asp Val Ala Gly Thr His Val Ala Ala
                                  540
                 535
Phe Asn Asp Glu Phe Arg Asp Ala Ile Arg Gly Ser Val Phe Asn Pro
              55Ō
                             555
Ser Val Lys Gly Phe Val Met Gly Gly Tyr Gly Lys Glu Thr Lys Ile
            565
                         570 575
Lys Arg Gly Val Val Gly Ser Ile Asn Tyr Asp Gly Lys Leu Ile Lys
        580
                       585
                                  590
Ser Phe Ala Leu Asp Pro Glu Glu Thr Ile Asn Tyr Ala Ala Cys His
 595
                      600
Asp Asn His Thr Leu Trp Asp Lys Asn Tyr Leu Ala Ala Lys Ala Asp
  610 615 620
Lys Lys Glu Trp Thr Glu Glu Glu Leu Lys Asn Ala Gln Lys Leu
                             635
             630
Ala Gly Ala Ile Leu Leu Thr Ser Gln Gly Val Pro Phe Leu His Gly
                             650
            645
Gly Gln Asp Phe Cys Arg Thr Thr Asn Phe Asn Asp Asn Ser Tyr Asn
        660
                       665 670
Ala Pro Ile Ser Ile Asn Gly Phe Asp Tyr Glu Arg Lys Leu Gln Phe
             680 685
Ile Asp Val Phe Asn Tyr His Lys Gly Leu Ile Lys Leu Arg Lys Glu
                695
His Pro Ala Phe Arg Leu Lys Asn Ala Glu Glu Ile Lys Lys His Leu
                710 715
705
Glu Phe Leu Pro Gly Gly Arg Arg Ile Val Ala Phe Met Leu Lys Asp
            725
                          730
His Ala Gly Gly Asp Pro Trp Lys Asp Ile Val Val Ile Tyr Asn Gly
         740
                         745
                                         750
Asn Leu Glu Lys Thr Thr Tyr Lys Leu Pro Glu Gly Lys Trp Asn Val
                                     765
                      760
      755
Val Val Asn Ser Gln Lys Ala Gly Thr Glu Val Ile Glu Thr Val Glu
             775
Gly Thr Ile Glu Leu Asp Pro Leu Ser Ala Tyr Val Leu Tyr Arg Glu
785 790
                               795
```

<220>

<210> 4

<211> 2400

<212> DNA

<213> Artificial Sequence

<223> synthetic

<400> 4 atgggccact ggtacaagca ccagcgcgcc taccagttca ccggcgagga cgacttcggg 60 aaggtggccg tggtgaaget cocgatggac etcaccaagg tgggcatcat cgtgcgcete 120 aacgagtggc aggcgaagga cgtggccaag gaccgcttca tcgagatcaa ggaccgccaag 180 gccgaggtgt ggatactcca gggcgtggag gagatcttct acgagaagcc ggacacctcc 240 cogogoatet tettogocca ggoodgetee aacaaggtga togaggeett cetcaccaac 300 ccgqtqqaca ccaaqaaqaa qqaqctqttc aaqqtqaccq tcqacqqcaa qqaqatcccq 360 gtgtcccgcg tggagaaggc cgacccgacc gacatcgacg tgaccaacta cgtgcgcatc 420 gtgctctccg agtccctcaa ggaggaggac ctccgcaagg acgtggagct gatcatcgag 480 ggctacaage eggeeegegt gateatgatg gagateeteg acgaetacta etacgaegge 540 gagetggggg eggtgtacte eeeggagaag accatettee gegtgtggte eeeggtgtee 600 aagtgggtga aggtgctcct cttcaagaac ggcgaggaca ccgagccgta ccaggtggtg 660 aacatggagt acaagggcaa cggcgtgtgg gaggccgtgg tggagggcga cctcgacggc 720 gtgttctacc tctaccagct ggagaactac ggcaagatcc gcaccaccgt ggacccgtac 780 . tocaaggoog tgtacgocaa caaccaggag totgoagtgg tgaacctogo cogocaac 840 ccggagggct gggagaacga ccgcggcccg aagatcgagg gctacgagga cgccatcatc 900 tacgagatcc acategeega cateacegge etggagaact eeggegtgaa gaacaaggge 960 ctctacctcg gcctcaccga ggagaacacc aaggccccgg gcggcgtgac caccggcctc 1020 teceaecteg tggagetggg egtgacecae gtgeaeatee tecegttett egaettetae 1080 accggcgacg agctggacaa ggacttcgag aagtactaca actggggcta cgacccgtac 1140 ctcttcatgg tgccggaggg ccgctactcc accgacccga agaacccgca cacccgaatt 1200 cgcgaggtga aggagatggt gaaggccctc cacaagcacg gcatcggcgt gatcatggac 1260 atggtgttcc cgcacaccta cggcatcggc gagctgtccg ccttcgacca gaccgtgccg 1320 tactacttct accgcatcga caagaccggc gcctacctca acgagtccgg ctgcggcaac 1380 gtgatcgcct ccgagcgccc gatgatgcgc aagttcatcg tggacaccgt gacctactgg 1440 gtgaaggagt accacatega eggetteege ttegaceaga tgggeeteat egacaagaag 1500 accatgetgg aggtggageg egeetteeae aagategace egaccateat eetetaegge 1560 gagccgtggg gcgctgggg ggccccgatc cgcttcggca agtccgacgt ggccggcacc 1620 cacqtqqccq ccttcaacqa cqaqttccqc qacqccatcc qcqqctccqt qttcaacccq 1680 teegtgaagg gettegtgat gggeggetae ggeaaggaga eeaagateaa gegeggegtg 1740 gtgggctcca tcaactacga cggcaagctc atcaagtcct tcgccctcga cccggaggag 1800 accateaact acgoogoety coacgacaac cacacetet gggacaagaa etacetegee 1860 gccaaggccg acaagaagaa ggagtggacc gaggaggagc tgaagaacgc ccagaagctc 1920 gccggcgcca tcctcctcac tagtcagggc gtgccgttcc tccacggcgg ccaggacttc 1980 tgoogcacca ccaacttcaa cgacaactco tacaacgooc cgatetecat caacggette 2040 gactacgage geaageteea gtteategae gtgtteaaet accaeaaggg ceteateaag 2100 ctccgcaagg agcacccggc cttccgcctc aagaacgccg aggagatcaa gaagcacctg 2160 gagtteetee egggegggeg eegeategtg geetteatge teaaggacea egeeggegge 2220 gacccgtgga aggacatcgt ggtgatctac aacggcaacc tggagaagac cacctacaag 2280 ctcccqqaqq qcaaqtqqaa cqtqqtqqtq aactcccaqa aqqccqqcac cqaqqtqatc 2340 gagaccgtgg agggcaccat cgagctggac ccgctctccg cctacgtgct ctaccgcgag 2400 <210> 5

Gly Asn Lys Val Ile Val Glu Lys Ser Leu Asp Leu Lys Glu His Ile

	50					55					60				_
Ile 65	Gly	Leu	Gly	/ Glu	Lys 70	: Ala	Phe	Glu	Leu	Asp 75	Arg	Lys	Arg	Lys	Arg 80
Tyr	Val	Met	Туг	Asn 85	Val	Asp	Ala	Gly	, Ala 90	Tyr	Lys	Lys	Tyr	Gln 95	Asp
Pro	Leu	Tyr	Val		Ile	Pro	Leu	Phe		Ser	Val	Lys	Asp 110		Val
Ala	Thr	Gly 115	Tyr		Phe	Asn	Ser 120		Ser	Lys	Val	Ile 125	Phe	Asp	Val
Gly	Leu 130	Glu		Tyr	Asp	Lys 135	Val		Val	Thr	Ile 140	Pro	Glu	Asp	Ser
Val 145			Tyr	Val	Ile 150	Glu		Pro	Arg	Ile 155	Glu		Val	Leu	Glu 160
	Tyr	Thr	Glu	Leu 165	Thr		Lys	Pro	Phe 170	Leu		Pro	Met	Trp 175	Ala
Phe	Gly	Tyr	Met 180	Ile		Arg	Tyr	Ser 185	Tyr		Pro	Gln	Asp 190		
Val	Glu	Leu 195	Val		Ile	Met	Gln 200	Lys		Gly	Phe	Arg 205	Val	Ala	Gly
Val	Phe 210			Ile	His	Tyr 215			Ser	Tyr	Lys 220		Phe	Thr	Trp
His 225		Tyr	Arg	Phe	Pro 230	Glu	Pro	Lys	Lys	Leu 235		Asp	Glu	Leu	His 240
	Arg	Asn	Val	Lys 245			Thr	Ile	Val 250	Asp	His	Gly	Ile	Arg 255	
Asp	Gln	Asn	Tyr 260		Pro	Phe	Leu	Ser 265			Gly	Lys	Phe		Glu
Ile	Glu	Ser 275		Glu	Leu	Phe	Val 280		Lys	Met	Trp	Pro 285	Gly	Thr	Thr
Val	Tyr 290		Asp	Phe	Phe	Arg 295		Asp	Thr	Arg	Glu 300		Trp	Ala	Gly
Leu 305		Ser	Glu	Trp	Leu 310		Gln	Gly	Val	Asp 315		Ile	Trp	Leu	Asp 320
	Asn	Glu	Pro	Thr 325		Phe	Ser	Arg	Ala 330		Glu	Ile	Arg	Asp 335	
Leu	Ser	Ser	Leu 340		Val	Gln	Phe	Arg 345		Asp	Arg	Leu	Val 350		Thr
Phe	Pro	Asp 355		Val	Val	His	Tyr 360		Arg	Gly	Lys	Arg 365	Val	Lys	His
Glu	-		Arg	Asn	Ala	Tyr 375		Leu	Tyr	Glu	Ala 380		Ala	Thr	Phe
-	370 Gly	Phe	Arg	Thr			Arg	Asn	Glu			Ile	Leu	Ser	Arg 400
385 Ala	Gly	Tyr	Ala	-	390 Ile	Gln	Arg	Tyr		395 Phe	Ile	Trp	Thr		
Asn	Thr	Pro		405 Trp	Asp	Asp	Leu		410 Leu	Gln	Leu	Gln	Leu	415 Val	Leu
Gly	Leu		420 Ile	Ser	Gly	Val		425 Phe	Val	Gly	Cys		430 Ile	Gly	Gly
		435 Gly	Arg	Asn	Phe		440 Glu	Ile	Asp	Asn		445 Met	Asp	Leu	Leu
Val	450 Lys	Tyr	Tyr	Ala		455 Ala	Leu	Phe	Phe		460 Phe	Tyr	Arg	Ser	
465 Lys .	Ala	Thr	Asp		470 Ile	Asp	Thr	Glu		475 Val	Phe	Leu	Pro		480 Tyr
Tyr :	Lys	Glu		485 Val	Lys	Glu	Ile		490 Glu	Leu	Arg	Tyr	Lys	495 Phe	Leu
			500					505					510	His	

```
520
                                                 525
         515
Val Ile Arg Pro Leu Phe Tyr Glu Phe Gln Asp Asp Asp Met Tyr
                         535
                                             540
Arg Ile Glu Asp Glu Tyr Met Val Gly Lys Tyr Leu Leu Tyr Ala Pro
                     550
                                         555
Ile Val Ser Lys Glu Glu Ser Arg Leu Val Thr Leu Pro Arg Gly Lys
                                     570
                                                         575
                 565
Trp Tyr Asn Tyr Trp Asn Gly Glu Ile Ile Asn Gly Lys Ser Val Val
                                 585
Lys Ser Thr His Glu Leu Pro Ile Tyr Leu Arg Glu Gly Ser Ile Ile
                                                 605
                             600
        595
Pro Leu Glu Gly Asp Glu Leu Ile Val Tyr Gly Glu Thr Ser Phe Lys
                                             620
                         615
    610
Arg Tyr Asp Asn Ala Glu Ile Thr Ser Ser Ser Asn Glu Ile Lys Phe
625
                     630
                                         635
Ser Arg Glu Ile Tyr Val Ser Lys Leu Thr Ile Thr Ser Glu Lys Pro
                645
                                     650
Val Ser Lys Ile Ile Val Asp Asp Ser Lys Glu Ile Gln Val Glu Lys
                                 665
            660
Thr Met Gln Asn Thr Tyr Val Ala Lys Ile Asn Gln Lys Ile Arg Gly
                             680
        675
Lys Ile Asn Leu Glu
    690
<210> 6
<211> 2082
<212> DNA
<213> Sulfolobus solfataricus
<400> 6
atggagacca tcaagatcta cgagaacaag ggcgtgtaca aggtggtgat cggcgagccg 60
ttcccgccga tcgagttccc gctcgagcag aagatctcct ccaacaagtc cctctccgag 120
ctgggcctca ccatcgtgca gcagggcaac aaggtgatcg tggagaagtc cctcgacctc 180
aaggagcaca tcatcggcct cggcgagaag gccttcgagc tggaccgcaa gcgcaagcgc 240
tacqtqatgt acaacgtgga cgccggcgcc tacaagaagt accaggaccc gctctacgtg 300
tccatcccgc tcttcatctc cgtgaaggac ggcgtggcca ccggctactt cttcaactcc 360
gcctccaagg tgatcttcga cgtgggcctc gaggagtacg acaaggtgat cgtgaccatc 420
ccggaggact ccgtggagtt ctacgtgatc gagggcccgc gcatcgagga cgtgctcgag 480
aagtacaccg agctgaccgg caagccgtte etecegeega tgtgggeett eggetacatg 540
atctcccgct actcctacta cccgcaggac aaggtggtgg agctggtgga catcatgcag 600
aaggaggget teegegtgge eggegtgtte etegacatee actacatgga eteetacaag 660
ctcttcacct ggcacccgta ccgcttcccg gagccgaaga agctcatcga cgagctgcac 720
aagegeaacg tgaageteat caccategtg gaccaeggea teegegtgga ceagaactae 780
teccegttee teteeggeat gggcaagtte tgegagateg agteeggega getgttegtg 840
ggcaagatgt ggccgggcac caccgtgtac ccggacttct tccgcgagga cacccgcgag 900
tggtgggccg gcctcatctc cgagtggctc tcccagggcg tggacggcat ctggctcgac 960
atgaacgage cgaccgactt etecegegee ategagatee gegacgtget etecteete 1020
ccggtgcagt tccgcgacga ccgcctcgtg accaccttcc cggacaacgt ggtgcactac 1080
ctccgcggca agcgcgtgaa gcacgagaag gtgcgcaacg cctacccgct ctacgaggcg 1140
atggccacct tcaagggctt ccgcacctcc caccgcaacg agatcttcat cctctcccgc 1200
geoggetacg eeggeateca gegetacgee tteatetgga eeggegacaa cacecegtee 1260
tgggacgaco tcaageteca getecagete gtgeteggee tetecatete eggegtgeeg 1320
ttegtggget gegacategg eggetteeag ggeegeaact tegeogagat egacaacteg 1380
atggacetee tegtgaagta etaegeeete geeetettet teeegtteta eegeteeeae 1440
aaggccaccg acggcatcga caccgagccg gtgttcctcc cggactacta caaggagaag 1500
gtgaaggaga tegtggaget gegetacaag tteeteeegt acatetaete eetegeeete 1560
gaggeeteeg agaagggeea eeeggtgate egecegetet tetacgagtt ceaggacgae 1620
```

```
gacgacatgt accgcatcga ggacgagtac atggtgggca agtacctcct ctacgccccg 1680
atcgtgtcca aggaggagtc ccgcctcgtg accctcccgc gcggcaagtg gtacaactac 1740
tggaacggcg agatcatcaa cggcaagtcc gtggtgaagt ccacccacga gctgccgatc 1800
tacctccgcg agggctccat catcccgctc gagggcgacg agctgatcgt gtacggcgag 1860
acctecttea agegetacga caaegeegag ateaecteet ectecaaega gateaagtte 1920
tecegegaga tetaegtgte caageteace ateaecteeg agaageeggt gtecaagate 1980
atcgtggacg actccaagga gatccaggtg gagaagacca tgcagaacac ctacgtggcc 2040
aagatcaacc agaagatccg cggcaagatc aacctcgagt ga
                                                                   2082
<210> 7
<211> 1818
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400> 7
atggcggctc tggccacgtc gcagctcgtc gcaacgcgcg ccggcctggg cgtcccggac 60
gcgtccacgt teegeegegg egeegegeag ggeetgaggg gggeeeggge gteggeggeg 120
geggacaege teageatgeg gaceagegeg egegeggege ceaggeacea geaceageag 180
acgcaccac gagacaggtt accatagate atagtaga acagaacaga cataaacata 240
gtottogtog gegeogagat ggegoegtgg agcaagaceg gaggeotegg egacgtoote 300
ggeggeetge egeeggeeat ggeegegaac gggeacegtg teatggtegt eteteeege 360
tacgaccagt acaaggacge ctgggacacc agcgtcgtgt ccgagatcaa gatgggagac 420
gggtacgaga cggtcaggtt cttccactgc tacaagcgcg gagtggaccg cgtgttcgtt 480
gaccacccac tgttcctgga gagggtttgg ggaaagaccg aggagaagat ctacgggcct 540
gtcgctggaa cggactacag ggacaaccag ctgcggttca gcctgctatg ccaggcagca 600
cttgaagete caaggateet gageeteaac aacaaceeat aetteteegg accataeggg 660
gaggacgtcg tgttcgtctg caacgactgg cacaccggcc ctctctcgtg ctacctcaag 720
agcaactace agteceaegg catetacagg gaegeaaaga cegetttetg cateeacaae 780
atotoctace agggeoggtt egeettetee gactaceegg agetgaacet eecegagaga 840
ttcaagtcgt ccttcgattt catcgacggc tacgagaagc ccgtggaagg ccggaagatc 900
aactggatga aggccgggat cctcgaggcc gacagggtcc tcaccgtcag cccctactac 960
gccgaggagc tcatctccgg catcgccagg ggctgcgagc tcgacaacat catgcgcctc 1020
accggcatca ccggcatcgt caacggcatg gacgtcagcg agtgggaccc cagcagggac 1080
aagtacateg eegtgaagta egaegtgteg aeggeegtgg aggeeaagge getgaacaag 1140
gaggcgctgc aggcggaggt cgggctcccg gtggaccgga acatcccgct ggtggcgttc 1200
ateggeagge tggaagagea gaagggeee gaegteatgg eggeegeeat eeegeagete 1260
atggagatgg tggaggacgt gcagatcgtt ctgctgggca cgggcaagaa gaagttcgag 1320
cgcatgetea tgagegeega ggagaagtte ecaggeaagg tgegegeegt ggteaagtte 1380
aacgcggcgc tggcgcacca catcatggcc ggcgccgacg tgctcgccgt caccagccgc 1440
ttcgagcctt gcggcctcat ccagctgcag gggatgcgat acggaacgcc ctgcgcctgc 1500
gcgtccaccg gtggactcgt cgacaccatc atcgaaggca agaccgggtt ccacatgggc 1560
cgcctcagcg tcgactgcaa cgtcgtggag ccggcggacg tcaagaaggt ggccaccacc 1620
tiqcaqcgcg ccatcaaggt ggtcggcacg ccggcgtacg aggagatggt gaggaactgc 1680
atgatccagg atctctcctg gaagggccct gccaagaact gggagaacgt gctgctcagc 1740
ctcggggtcg ccggcggcga gccaggggtt gaaggcgagg agatcgcgcc gctcgccaag 1800
                                                                  1818
gagaacgtgg ccgcgccc
<210> 8
<211> 606
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
```

<400> 8 Met Ala Ala Leu Ala Thr Ser Gln Leu Val Ala Thr Arg Ala Gly Leu Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gln Gly Leu Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg Thr Ser Ala Arg Ala Aro Arg His Gln His Gln Gln Ala Arg Arg Gly Ala Arg Phe Pro Ser Leu Val Val Cys Ala Ser Ala Gly Met Asn Val Val Phe Val Gly Ala Glu Met Ala Pro Trp Ser Lys Thr Gly Gly Leu Gly Asp Val Leu Gly Gly Leu Pro Pro Ala Met Ala Ala Asn Gly His Arg Val Met Val Val Ser Pro Arg Tyr Asp Gln Tyr Lys Asp Ala Trp Asp Thr Ser Val Val Ser Glu Ile Lys Met Gly Asp Gly Tyr Glu Thr Val Arg Phe Phe His Cys Tyr Lys Arg Gly Val Asp Arg Val Phe Val Asp His Pro Leu Phe Leu Glu Arg Val Trp Gly Lys Thr Glu Glu Lys Ile Tyr Gly Pro Val Ala Gly Thr Asp Tyr Arg Asp Asn Gln Leu Arg Phe Ser Leu Leu Cys Gln Ala Ala Leu Glu Ala Pro Arg Ile Leu Ser Leu Asn Asn Asn Pro Tyr Phe Ser Gly Pro Tyr Gly Glu Asp Val Val Phe Val Cys Asn Asp Trp His Thr Gly Pro Leu Ser Cys Tyr Leu Lys Ser Asn Tyr Gln Ser His Gly Ile Tyr Arg Asp Ala Lys Thr Ala Phe Cys Ile His Asn Ile Ser Tyr Gln Gly Arg Phe Ala Phe Ser Asp Tyr Pro Glu Leu Asn Leu Pro Glu Arg Phe Lys Ser Ser Phe Asp Phe Ile Asp Gly Tyr Glu Lys Pro Val Glu Gly Arg Lys Ile Asn Trp Met Lys Ala Gly Ile Leu Glu Ala Asp Arg Val Leu Thr Val Ser Pro Tyr Tyr Ala Glu Glu Leu Ile Ser Gly Ile Ala Arg Gly Cys Glu Leu Asp Asn Ile Met Arg Leu Thr Gly Ile Thr Gly Ile Val Asn Gly Met Asp Val Ser Glu Trp Asp Pro Ser Arg Asp Lys Tyr Ile Ala Val Lys Tyr Asp Val Ser Thr Ala Val Glu Ala Lys Ala Leu Asn Lys Glu Ala Leu Gln Ala Glu Val Gly Leu Pro Val Asp Arg Asn Ile Pro Leu Val Ala Phe Ile Gly Arg Leu Glu Glu Gln Lys Gly Pro Asp Val Met Ala Ala Ala Ile Pro Gln Leu Met Glu Met Val Glu Asp Val Gln Ile Val Leu Leu Gly Thr Gly Lys Lys Phe Glu Arg Met Leu Met Ser Ala Glu Glu Lys Phe Pro Gly Lys Val Arg Ala Val Val Lys Phe Asn Ala Ala Leu

```
455
                                              460
     450
Ala His His Ile Met Ala Gly Ala Asp Val Leu Ala Val Thr Ser Arg
                     470
                                          475
 Phe Glu Pro Cys Gly Leu Ile Gln Leu Gln Gly Met Arg Tyr Gly Thr
                                      490
                 485
 Pro Cys Ala Cys Ala Ser Thr Gly Gly Leu Val Asp Thr Ile Ile Glu
                                  505
             500
Gly Lys Thr Gly Phe His Met Gly Arg Leu Ser Val Asp Cys Asn Val
                                                  525
                             520
Val Glu Pro Ala Asp Val Lys Lys Val Ala Thr Thr Leu Gln Arg Ala
                          535
                                              540
Ile Lys Val Val Gly Thr Pro Ala Tyr Glu Glu Met Val Arg Asn Cys
                                          555
                     550
545
Met Ile Gln Asp Leu Ser Trp Lys Gly Pro Ala Lys Asn Trp Glu Asn
                 565
                                      570
Val Leu Leu Ser Leu Gly Val Ala Gly Gly Glu Pro Gly Val Glu Gly
                                  585
                                                       590
             580
Glu Glu Ile Ala Pro Leu Ala Lys Glu Asn Val Ala Ala Pro
                             600
         595
<210> 9
<211> 2223
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400> 9
atggccaagt acctggagct ggaggaggc ggcgtgatca tgcaggcgtt ctactgggac 60
gtcccgagcg gaggcatctg gtgggacacc atccgccaga agatccccga gtggtacgac 120
geoggeatet eegegatetg gatacegeea getteeaagg geatgteegg gggetacteg 180
atgggctacg acccgtacga ctacttcgac ctcggcgagt actaccagaa gggcacggtg 240
gagacgcgct tcgggtccaa gcaggagctc atcaacatga tcaacacggc gcacgcctac 300
gcatcaagg tcatcgcgga catcgtgatc aaccacaggg ccggcggcga cctggagtgg 360
aacccgttcg tcggcgacta cacctggacg gacttctcca aggtcgcctc cggcaagtac 420
accgccaact acctcgactt ccaccccaac gagctgcacg cgggcgactc cggcacgttc 480
ggcggctacc cggacatctg ccacgacaag tcctgggacc agtactggct ctgggcctcg 540
caggagteet acgeggeeta cetgegetee ateggeateg acgegtggeg ettegaetae 600
gtcaagggct acggggcctg ggtggtcaag gactggctca actggtgggg cggctgggcg 660
gtgggcgagt actgggacac caacgtcgac gcgctgctca actgggccta ctcctccggc 720
gccaaggtgt togacttooc octgtactac aagatggacg oggccttoga caacaagaac 780
atcocggcgc tcgtcgaggc cctgaagaac ggcggcacgg tggtctcccg cgacccgttc 840
aaggccgtga ccttcgtcgc caaccacgac acggacatca tctggaacaa gtacccggcg 900
tacgcettea tecteaceta egagggeeag eccaegatet tetacegega etacgaggag 960 tggetgaaca aggacaaget caagaacetg atetggatte acgacaacet egegggegge 1020
tocactagta togtgtacta ogactoogac gagatgatot togtoogoaa oggotacggo 1080
tocaagooog gootgatoac gtacatoaac otgggotoot ocaaggtggg cogotgggtg 1140
tacqtcccga agttcgccgg cgcgtgcatc cacgagtaca ccggcaacct cggcggctqg 1200
gtqqacaagt acgtgtactc ctccggctgg gtctacctgg aggccccggc ctacgacccc 1260
gccaacggcc agtacggcta ctccgtgtgg tcctactgcg gcgtcggcac atcgattgct 1320
ggcatceteg aggcegacag ggteeteace gteageeect actaegeega ggageteate 1380
teeggeateg ceaggggetg egagetegae aacateatge geeteacegg cateacegge 1440
atcqtcaacq qcatggacgt cagcgagtgg gaccccagca gggacaagta catcgccgtg 1500
aagtacgacg tgtcgacggc cgtggaggcc aaggcgctga acaaggaggc gctgcaggcg 1560
gaggtcgggc tcccggtgga ccggaacatc ccgctggtgg cgttcatcgg caggctggaa 1620
gagcagaagg gccccgacgt catggcggcc gccatcccgc agctcatgga gatggtggag 1680
```

```
gacgtgcaga tcgttctgct gggcacgggc aagaagaagt tcgagcgcat gctcatgagc 1740
gccgaggaga agttcccagg caaggtgcgc gccgtggtca agttcaacgc ggcgctggcg 1800
caccacatca tggccggcgc cgacgtgctc gccgtcacca gccgcttcga gccctgcggc 1860
ctcatccage tgcaggggat gcgatacgga acgeeetgeg eetgegegte caeeggtgga 1920
ctcgtcgaca ccatcatcga aggcaagacc gggttccaca tgggccgcct cagcgtcgac 1980
tgcaacgtcg tggagccggc ggacgtcaag aaggtggcca ccaccttgca gcgcgccatc 2040
aaggtggtcg gcacgccggc gtacgaggag atggtgagga actgcatgat ccaggatctc 2100
tectggaagg geeetgeeaa gaactgggag aacgtgetge teageetegg ggtegeegge 2160
ggcgagccag gggttgaagg cgaggagatc gcgccgctcg ccaaggagaa cgtggccgcg 2220
CCC
<210> 10
<211> 741
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 10
Met Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val Ile Met Gln Ala
                                                         15
                                     10
Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg
                                                     30
                                 25
            20
Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile
                                                 45
                             40
        35
Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp
                                             60
                        55
    50
Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val
                                         75
                    70
65
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr
                                                         95
                85
                                     90
Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His
                                105
            100
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr
                                                 125
                            120
        115
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
                        135
                                             140
    130
               Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe
                                         155
                    150
Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp
                                                         175
                                    170
                165
Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
                                                     190
                                185
            180
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val
                                                 205
                            200
        195
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
                                             220
                        215
    210
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly
                                         235
                                                             240
                    230
225
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe
                                    250
                245
Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly
                                                     270
            260
                                265
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
                                                 285
        275
                            280
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
                        295
```

						_				_	_			C1	C 1
305					310					Tyr 315					320
				325					330	Ile				335	
Leu	Ala	Gly	Gly 340	Ser	Thr	Ser	Ile	Val 345	Tyr	Tyr	Asp	Ser	Asp 350	Glu	Met
Ile	Phe	Val 355	Arg	Asn	Gly	Tyr	Gly 360	Ser	Lys	Pro	Gly	Leu 365	Ile	Thr	Tyr
Ile	Asn 370	Leu	Gly	Ser	Ser	Lys 375		Gly	Arg	Trp	Val 380	Tyr	Val	Pro	Lys
Phe 385	Ala	Gly	Ala	Cys	Ile 390		Glu	Tyr	Thr	Gly 395	Asn	Leu	Gly	Gly	Trp 400
	Asp	Lys	Tyr	Val 405		Ser	Ser	Gly	Trp 410	Val	Tyr	Leu	Glu	Ala 415	Pro
Ala	Tyr	Asp	Pro 420		Asn	Gly	Gln	Tyr 425		Tyr	Ser	Val	Trp 430	Ser	Tyr
Cys	Gly	Val 435		Thr	Ser	Ile	Ala 440		Ile	Leu	Glu	Ala 445	Asp	Arg	Val
Leu	Thr 450	Val	Ser	Pro	Tyr	Tyr 455		Glu	Glu	Leu	Ile 460	Ser	Gly	Ile	Ala
Arg 465	Gly	Cys	Glu	Leu	Asp 470		Ile	Met	Arg	Leu 475	Thr	Gly	Ile	Thr	Gly 480
Ile				485	Asp				490	Asp				495	
Tyr	Ile	Ala	Val 500	Lys	Tyr	Asp	Val	Ser 505	Thr	Ala	Val	Glu	Ala 510	Lys	Ala
Leu	Asn	Lys 515	Glu	Ala	Leu	Gln	Ala 520	Glu	Val	Gly	Leu	Pro 525	Val	Asp	Arg
Asn	Ile 530	Pro	Leu	Val	Ala	Phe 535	Ile	Gly	Arg	Leu	Glu 540	Glu	Gln	Lys	Gly
Pro 545	Asp	Val	Met	Ala	Ala 550	Ala	Ile	Pro	Gln	Leu 555	Met	Glu	Met	Val	Glu 560
Asp				565					570	Lys				575	
Met	Leu	Met	Ser 580	Ala	Glu	Glu	Lys	Phe. 585	Pro	Gly	Lys	Val	Arg 590	Ala	Val
Val	Lys	Phe 595	Asn	Ala	Ala	Leu	Ala 600	His	His	Ile	Met	Ala 605	Gly	Ala	Asp
Val	Leu 610	Ala	Val	Thr	Ser	Arg 615	Phe	Glu	Pro	Cys	Gly 620	Leu	Ile	Gln	Leu
625	Gly				630					Cys 635					640
Leu	Val	Asp	Thr	Ile 645	Ile	Glu	Gly	Lys	Thr 650	Gly	Phe	His	Met	Gly 655	Arg
Leu	Ser	Val				Val	Val	Glu 665	Pro	Ala	Asp	Val	Lys 670	Lys	Val
Ala	Thr	Thr 675	Leu	Gln	Arg	Ala	Ile 680	Lys	Val	Val	Gly	Thr 685	Pro	Ala	Tyr
Glu	Glu 690	Met	Val	Arg	Asn	Cys 695	Met	Ile	Gln	Asp	Leu 700	Ser	Trp	Lys	Gly
705	Ala				710	Asn				Ser 715					720
Gly	Glu	Pro	Gly	Val 725	Glu	Gly	Glu	Glu	Ile 730	Ala	Pro	Leu	Ala	Lys 735	Glu
Asn	Val	Ala	Ala 740												

```
<210> 11
<211> 1515
<212> DNA
<213> Zea mays
<400> 11
ggagagetat gagaegtatg teetcaaage caetttgeat tgtgtgaaae caatategat 60
ctttgttact tcatcatgca tgaacatttg tggaaactac tagcttacaa gcattagtga 120
cagcicagaa aaaagttatc tatgaaaggt ttcatgtgta ccgtgggaaa tgagaaatgt 180
tgccaactca aacaccttca atatgttgtt tgcaggcaaa ctcttctgga agaaaggtgt 240
ctaaaactat gaacgggtta cagaaaggta taaaccacgg ctgtgcattt tggaagtatc 300
atctatagat gtctgttgag gggaaagccg tacgccaacg ttatttactc agaaacagct 360 tcaacacaca gttgtctgct ttatgatggc atctccaccc aggcacccac catcacctat 420
ctctcgtgcc tgtttatttt cttgcccttt ctgatcataa aaaaacatta agagtttgca 480
aacatgcata ggcatatcaa tatgctcatt tattaatttg ctagcagatc atcttcctac 540
totttacttt atttattgtt tgaaaaatat gtootgoaco tagggagoto gtatacagta 600
ccaatgcatc ttcattaaat gtgaatttca gaaaggaagt aggaacctat gagagtattt 660
ttcaaaatta attagegget tetattatgt ttatageaaa ggecaaggge aaaattggaa 720
cactaatgat ggttggttgc atgagtctgt cgattacttg caagaaatgt gaacctttgt 780
ttctgtgcgt gggcataaaa caaacagctt ctagcctctt ttacggtact tgcacttgca 840
agaaatgtga acteetttte atttetgtat gtggacataa tgeeaaagca teeaggettt 900
ticatggttg ttgatgtctt tacacagttc atctccacca gtatgccctc ctcatactct 960
atataaacac atcaacagca togcaattag coacaagato acttogggag goaagtgoga 1020
tttcgatctc gcagccacct ttttttgttc tgttgtaagt ataccttccc ttaccatctt 1080
tatotgttag tttaatttgt aattgggaag tattagtgga aagaggatga gatgctatca 1140 totatgtact otgcaaatgc atotgacgtt atatgggotg ottcatataa tttgaattgc 1200
tocattottg cogacaatat attgcaaggt atatgcotag ttocatcaaa agttotgttt 1260
tttcattcta aaagcatttt agtggcacac aatttttgtc catgagggaa aggaaatctg 1320 ttttggttac tttgcttgag gtgcattctt catatgtcca gttttatgga agtaataaac 1380
ttcagtttgg tcataagatg tcatattaaa gggcaaacat atattcaatg ttcaattcat 1440
cgtaaatgtt ccctttttgt aaaagattgc atactcattt atttgagttg caggtgtatc 1500
                                                                          1515
tagtagttgg aggag
<210> 12
<211> 673
<212> DNA
<213> Zea mays
<400> 12
gatcatccag gtgcaaccgt ataagtccta aagtggtgag gaacacgaaa caaccatgca 60
ttggcatgta aagetecaag aatttgttgt ateettaaca aeteacagaa cateaaceaa 120
aattgcacgt caagggtatt gggtaagaaa caatcaaaca aatcctctct gtgtgcaaag 180
aaacacggtg agtcatgccg agatcatact catctgatat acatgcttac agctcacaag 240 acattacaaa caactcatat tgcattacaa agatcgtttc atgaaaaata aaataggccg 300
gacaggacaa aaatccttga cgtgtaaagt aaatttacaa caaaaaaaa gccatatgtc 360
aagctaaatc taattcgttt tacgtagatc aacaacctgt agaaggcaac aaaactgagc 420
cacgcagaag tacagaatga ttccagatga accatcgacg tgctacgtaa agagagtgac 480
gagicatata cattiggcaa gaaaccatga agctgcctac agccgtctcg gtggcataag 540
aacacaagaa attgtgttaa ttaatcaaag ctataaataa cgctcgcatg cctgtgcact 600
totocatoac caccactggg tottoagaco attagottta totactocag agogoagaag 660
                                                                          673
aacccqatcq aca
<210> 13
<211> 454
<212> PRT
<213> Artificial Sequence
<220>
```

<223> synthetic

<400> 13 Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser Ala Thr Ser Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val Ile Met 2.5 Gln Ala Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly 230 235 Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp

Page 14

445 ... Ser Tyr Cys Gly Val Gly <210> 14 <211> 460 <212> PRT <213> Artificial Sequence <220> <223> synthetic <400> 14 Met Arg Val Leu Leu Val Ala Leu Ala Leu Ala Leu Ala Ala Ser Ala Thr Ser Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val Ile Met Gln Ala Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp 130 135 Tyr Thr Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr 330 335 Glu Glu Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His

Page 15

```
Asp Asn Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp
                                              365
                           360
        355
Glu Met Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile
                      375
                                          380
Thr Tyr Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val
                   390
                                      395
Pro Lys Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly
                           410
               405
Gly Trp Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu
                                        430
                              425
Ala Pro Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp
                  440
                                              445
    435
Ser Tyr Cys Gly Val Gly Ser Glu Lys Asp Glu Leu
                       455
    450
<210> 15
<211> 518
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 15
Met Leu Ala Ala Leu Ala Thr Ser Gln Leu Val Ala Thr Arg Ala Gly
               5
                                  10
1
Leu Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gln Gly
                              25
          20
Leu Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg
                          40
       35
Thr Ser Ala Arg Ala Ala Pro Arg His Gln His Gln Gln Ala Arg Arg
                      55
                                         60
Gly Ala Arg Phe Pro Ser Leu Val Val Cys Ala Ser Ala Gly Ala Met
                                      75
                   70
65
Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val Ile Met Gln Ala Phe
                                  90
              8.5
Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg Gln
                                                 110
                             105
Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile Pro
                          120
      115
Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp Pro
                                         140
                       135
Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val Glu
                  150
                                     155
Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr Ala
                                  170
              165
His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His Arg
           180
                              185
                                                 190
Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr Trp
                         200
                                             205
       195
Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu
                                         220
                      215
Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe Gly
                  230
                                     235
Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp Leu
                                 250
                                                    255
              245
Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Ile
```

```
265
Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val Val
              280
   275
Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp
 290
               295
Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly Ala
           310 315
Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe Asp
                             330
                                                  335
        325
Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly Thr
                                              350
           340
                          345
Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His
                                          365
                       360
Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu
                                       380
                      375
Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu Trp
                                 395
              390
Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn Leu
                                       415
            405
                        410
Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met Ile
          420
                            425
                                              430
Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr Ile
                                        445
                        440
       435
Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys Phe
                             460
                    455
Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val
                                   475
                 470
Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro Ala
                      490
           485
Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr Cys
                           505
        500
Gly Val Gly Thr Ser Ile
    515
<210> 16
<211> 820
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 16
Met Leu Ala Ala Leu Ala Thr Ser Gln Leu Val Ala Thr Arg Ala Gly
                                                  15
                             10
Leu Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gln Gly
          20
Leu Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg
                        4.0
                                          45
       35
Thr Ser Ala Arg Ala Ala Pro Arg His Gln His Gln Gln Ala Arg Arg
                     55
                                       60
Gly Ala Arg Phe Pro Ser Leu Val Val Cys Ala Ser Ala Gly Ala Met
                                   75
               70
Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val Ile Met Gln Ala Phe
                               90
             85
Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg Gln
                            105
                                              110
          100
```

Page 17

Lys	Ile	Pro	Glu	Trp	Tyr	Asp	Ala	Gly	Ile	Ser	Ala	Ile	Trp_	Ile	Pro
		115	Lys				120					125			
	130					135					140				
1 4 5	-		Phe		150					155					160
Thr	Arg	Phe	Gly	Ser 165	Lys	Gln	Glu	Leu	Ile 170	Asn	Met	Ile	Asn	Thr 175	Ala
His	Ala	Tyr	Gly 180	Ile	Lys	Val	Ile	Ala 185	Asp	Ile	Val	Ile	Asn 190	His	Arg
Ala	_	195	Asp				200					205			
	210		Ser			215					220				
225			Pro		230					235				Phe	Gly 240
			Asp	245					250					Trp 255	
=			Gln 260					265					270		
-		275	Arg				280					285			
-	290	_	Leu			295					300				
305			Val		310					315					320
_			Asp	325					330					335	
	=		Ile 340					345					350		
		355	Arg				360					365			
	370	Asp	Ile			375					380				
385	_		Gly		390					395					400
Leu	Asn	Lys	Asp	405					410					415	
	-	_	Ser 420					425		Asp			430		
		435	Asn				440					445			
	450	_	Ser			455					460				
465			Cys		470					475					480
=			Val	485					490					495	
Tyr	Asp	Pro	Ala 500	Asn	Gly	Gln	Tyr	Gly 505	Tyr	Ser	Val	Trp	Ser 510	Tyr	Cys
-		515	Thr				520					525			
Thr	Val 530	Ser	Pro	Tyr	Tyr	Ala 535	Glu	Glu	Leu	Ile	Ser 540	Gly	Ile	Ala	Arg
Gly 545	Cys	Glu	Leu	Asp	Asn 550	Ile	Met	Arg	Leu	Thr 555	Gly	Ile	Thr	Gly	Ile 560
Val	Asn	Gly	Met	Asp 565		Ser	Glu	Trp	Asp 570		Ser	Arg	Asp	Lys 575	Tyr

```
Ile Ala Val Lys Tyr Asp Val Ser Thr Ala Val Glu Ala Lys Ala Leu
                                585
            580
 Asn Lys Glu Ala Leu Gln Ala Glu Val Gly Leu Pro Val Asp Arg Asn
        595
                           600
                                               605
 Ile Pro Leu Val Ala Phe Ile Gly Arg Leu Glu Glu Gln Lys Gly Pro
                      615
                                           620
Asp Val Met Ala Ala Ala Ile Pro Gln Leu Met Glu Met Val Glu Asp
                                    635
            630
Val Gln Ile Val Leu Leu Gly Thr Gly Lys Lys Phe Glu Arg Met
                645
                                    650
                                                      655
Leu Met Ser Ala Glu Glu Lys Phe Pro Gly Lys Val Arg Ala Val Val
                               665
                                                   670
Lys Phe Asn Ala Ala Leu Ala His His Ile Met Ala Gly Ala Asp Val
     675
                           680
                                               685
Leu Ala Val Thr Ser Arg Phe Glu Pro Cys Gly Leu Ile Gln Leu Gln
                                           700
    690
                       695
Gly Met Arg Tyr Gly Thr Pro Cys Ala Cys Ala Ser Thr Gly Gly Leu
                    710
                                      715
Val Asp Thr Ile Ile Glu Gly Lys Thr Gly Phe His Met Gly Arg Leu
                                   730
                                                       735
                725
Ser Val Asp Cys Asn Val Val Glu Pro Ala Asp Val Lys Lys Val Ala
                               745
            740
Thr Thr Leu Gln Arg Ala Ile Lys Val Val Gly Thr Pro Ala Tyr Glu
                                              765
                           760
        755
Glu Met Val Arg Asn Cys Met Ile Gln Asp Leu Ser Trp Lys Gly Pro
                        775
                                           780
Ala Lys Asn Trp Glu Asn Val Leu Leu Ser Leu Gly Val Ala Gly Gly
                                    795
                 790
Glu Pro Gly Val Glu Gly Glu Ile Ala Pro Leu Ala Lys Glu Asn
               805
                                   810
Val Ala Ala Pro
            820
<210> 17
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 17
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser
1
                                   10
Ala Thr Ser
<210> 18
<211> 444
<212> PRT
<213> Thermotoga maritima
<400> 18
Met Ala Glu Phe Phe Pro Glu Ile Pro Lys Ile Gln Phe Glu Gly Lys
                5
                                   10
                                                      15
```

Glu Ser Thr Asn Pro Leu Ala Phe Arg Phe Tyr Asp Pro Asn Glu Val

			20					25					30		
	Asp	35					40					45			
	His 50					55					60				
65	Glu				70					75					80
Ala	Arg			8.5					90					95	
	Phe		100					105					110		
	Glu	115					120					125			
-	Met 130					135					140				
145	Ser				150					155					160
	Val			165					170					1/5	
	Lys		180					185					190		
	Tyr	195					200					205			
	Ala 210	_				215					220				
225	Thr	-			230					235					240
	Gln			245					250					255	
	Gly		260					265					270		
	Leu	275					280					285			
	Gly 290	-				295					300				
305	Trp				310					315					320
	Met			325					330					335	
	Phe		340					345					350		
	Ile	355					360					365			
	Ala 370					375					380				
385	Lys				390					395					400
Gly	Lys			405					410					415	
-	Ile		420					425				Glu	Ser 430	Leu	Leu
Asn	Ser	Tyr 435	Ile	Val	Lys	Thr	11e 440	Ala	Glu	Leu	Arg				

<210> 19 <211> 1335 <212> DNA

<213> Thermotoga maritima <400> 19 atggccgagt tcttcccgga gatcccgaag atccagttcg agggcaagga gtccaccaac 60 cogotogoot toogottota ogacoogaac gaggtgatog acggcaagoo gotoaaggac 120 cacctcaagt totoogtggc ottotggcac accttcgtga acgagggccg cgacccgttc 180 ggcgacccga ccgccgagcg cccgtggaac cgcttctccg acccgatgga caaggccttc 240 gcccgcgtgg acgccctctt cgagttctgc gagaagctca acatcgagta cttctgcttc 300 cacgacegeg acategeece ggagggeaag acceteegeg agaceaacaa gateetegae 360 aaggtggtgg agcgcatcaa ggagcgcatg aaggactcca acgtgaagct cctctggggc 420 accgccaacc tottotocca occgcgctac atgcacggcg cogccaccac ctgctccgcc 480 gacgtgttcg cctacgccgc cgcccaggtg aagaaggccc tggagatcac caaggagctg 540 ggeggegagg getaegtgtt etggggegge egegaggget acgagaecet ecteaacace 600 gaccteggee tggagetgga gaacctegee egetteetee geatggeegt ggagtaegee 660 aagaagatcg gcttcaccgg ccagttcctc atcgagccga agccgaagga gccgaccaag 720 caccagtacg acttogacgt ggccaccgcc tacgccttcc tcaagaacca cggcctcgac 780 gagtacttca agttcaacat cgaggccaac cacgccaccc tcgccggcca caccttccag 840 cacgagetge geatggeeg cateetegge aagetegget ceategaege caaceaggge 900 gacctectee teggetggga caccgaccag tteecgacca acatetacga caccaccete 960 gccatgtacg aggtgatcaa ggccggcggc ttcaccaagg gcggcctcaa cttcgacgcc 1020 aaggtgcgcc gcgcctccta caaggtggag gacctcttca tcggccacat cgccggcatg 1080 gacaccttcg ccctcggctt caagatcgcc tacaagctcg ccaaggacgg cgtgttcgac 1140 aagttcatcg aggagaagta ccgctccttc aaggagggca tcggcaagga gatcgtggag 1200 ggcaagaccg acttcgagaa gctggaggag tacatcatcg acaaggagga catcgagctg 1260 ccgtccggca agcaggagta cctggagtcc ctcctcaact cctacatcgt gaagaccatc 1320 gccgagctgc gctga <210> 20 <211> 444 <212> PRT <213> Thermotoga neapolitana <400> 20 Met Ala Glu Phe Pro Glu Ile Pro Lys Val Gln Phe Glu Gly Lys 10 Glu Ser Thr Asn Pro Leu Ala Phe Lys Phe Tyr Asp Pro Glu Glu Ile 25 30 20 Ile Asp Gly Lys Pro Leu Lys Asp His Leu Lys Phe Ser Val Ala Phe 35 4.0 Trp His Thr Phe Val Asn Glu Gly Arg Asp Pro Phe Gly Asp Pro Thr 55 60 Ala Asp Arg Pro Trp Asn Arg Tyr Thr Asp Pro Met Asp Lys Ala Phe 7.0 7.5 Ala Arg Val Asp Ala Leu Phe Glu Phe Cys Glu Lys Leu Asn Ile Glu 90 95 8.5 Tyr Phe Cys Phe His Asp Arg Asp Ile Ala Pro Glu Gly Lys Thr Leu 110 105 100 Arg Glu Thr Asn Lys Ile Leu Asp Lys Val Val Glu Arg Ile Lys Glu 125 120 115 Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr Ala Asn Leu 140 135 Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr Cys Ser Ala 150 155 Asp Val Phe Ala Tyr Ala Ala Ala Gln Val Lys Lys Ala Leu Glu Ile

Page 21

170

Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly Gly Arg Glu 185

Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Phe Glu Leu Glu Asn

165

180

175

190

```
200
        195
Leu Ala Arg Phe Leu Arg Met Ala Val Asp Tyr Ala Lys Arg Ile Gly
                                              220
                         215
    210
Phe Thr Gly Gln Phe Leu Ile Glu Pro Lys Pro Lys Glu Pro Thr Lys
                                                               240
                                          235
                     230
   Gln Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe Leu Lys Ser
                                      250
                 245
   Gly Leu Asp Glu Tyr Phe Lys Phe Asn Ile Glu Ala Asn His Ala
                                 265
            260
Thr Leu Ala Gly His Thr Phe Gln His Glu Leu Arg Met Ala Arg Ile
                                                  285
                             280
Leu Gly Lys Leu Gly Ser Ile Asp Ala Asn Gln Gly Asp Leu Leu Leu
                                              300
                         295
    290
Gly Trp Asp Thr Asp Gln Phe Pro Thr Asn Val Tyr Asp Thr Thr Leu
                                          315
                     310
305
Ala Met Tyr Glu Val Ile Lys Ala Gly Gly Phe Thr Lys Gly Gly Leu
                                                           335
                                      330
                 325
Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val Glu Asp Leu
                                 345
            340
Phe Ile Gly His Ile Ala Gly Met Asp Thr Phe Ala Leu Gly Phe Lys
                                                  365
                             360
        355
Val Ala Tyr Lys Leu Val Lys Asp Gly Val Leu Asp Lys Phe Ile Glu
                                              380
                         375
Glu Lys Tyr Arg Ser Phe Arg Glu Gly Ile Gly Arg Asp Ile Val Glu
                                                               400
                                          395
                     390
Gly Lys Val Asp Phe Glu Lys Leu Glu Glu Tyr Ile Ile Asp Lys Glu
                                                           415
                                      410
                 405
Thr Ile Glu Leu Pro Ser Gly Lys Gln Glu Tyr Leu Glu Ser Leu Ile
                                                      430
                                 425
            420
Asn Ser Tyr Ile Val Lys Thr Ile Leu Glu Leu Arg
                             440
        435
<210> 21
<211> 1335
<212> DNA
<213> Thermotoga neapolitana
<400> 21
atggccgagt tcttcccgga gatcccgaag gtgcagttcg agggcaagga gtccaccaac 60
cegetegeet teaagtteta egaceeggag gagateateg aeggeaagee geteaaggae 120
cacctcaagt totoogtggc ottotggcac accttcgtga acgagggccg cgacccgttc 180
ggcgaccega cegeegaceg eccettggaac egetacaceg accegatgga caaggeette 240
gcccgcgtgg acgccctctt cgagttctgc gagaagctca acatcgagta cttctgcttc 300
cacgaccgcg acategeece ggagggeaag acceteegeg agaccaacaa gateetegae 360
aaggtggtgg agcgcatcaa ggagcgcatg aaggactcca acgtgaagct cctctggggc 420
acegocaace tettetecca ecegogotae atgeaeggeg eegecaecae etgeteegee 480
gacgtgttcg cctacgccgc cgcccaggtg aagaaggccc tggagatcac caaggagctg 540
ggcggcgagg gctacgtgtt ctggggcggc cgcgagggct acgagaccct cctcaacacc 600
gaccicggct tcgagctgga gaaccicgcc cgcttcctcc gcatggccgt ggactacgcc 660
aagcgcatcg gcttcaccgg ccagttcctc atcgagccga agccgaagga gccgaccaag 720 caccagtacg acttcgacgt ggccaccgcc tacgccttcc tcaagtccca cggcctcgac 780
gagtactica agitcaacat cgaggccaac cacgccacce tegeoggcca cacettecag 840
cacgagetge geatggeeeg cateetegge aagetegget ceategaege caaceaggge 900
gaccteetee teggetggga caccgaccag tteecgacca acgtgtacga caccaccete 960
gccatgtacg aggtgatcaa ggccggcggc ttcaccaagg gcggcctcaa cttcgacgcc 1020
aaggtgegee gegeeteeta caaggtggag gacetettea teggeeacat egeeggeatg 1080
gacacetteg eceteggett caaggtggee tacaageteg tgaaggaegg egtgetegae 1140
```

```
aagttcatcg aggagaagta ccgctccttc cgcgagggca tcggccgcga catcgtggag 1200
ggcaaggtgg acttcgagaa gctggaggag tacatcatcg acaaggagac catcgagctg 1260
cogtocggca agcaggagta cotggagtoc otcatoaact cotacatogt gaagaccato 1320
ctggagctgc gctga
<210> 22
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400> 22
                                                                   28
agcgaattca tggcggctct ggccacgt
<210> 23
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400> 23
                                                                   29
agctaagctt cagggcgcgg ccacgttct
<210> 24
<211> 825
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 24
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser
                                    10
Ala Thr Ser Ala Gly His Trp Tyr Lys His Gln Arg Ala Tyr Gln Phe
                                25
                                                     30
            20
Thr Gly Glu Asp Asp Phe Gly Lys Val Ala Val Val Lys Leu Pro Met
                            40
                                                 45
        35
Asp Leu Thr Lys Val Gly Ile Ile Val Arg Leu Asn Glu Trp Gln Ala
                        55
    50
Lys Asp Val Ala Lys Asp Arg Phe Ile Glu Ile Lys Asp Gly Lys Ala
                                                             80
                                        75
                    70
65
Glu Val Trp Ile Leu Gln Gly Val Glu Glu Ile Phe Tyr Glu Lys Pro
                                                         95
                                    90
                8.5
Asp Thr Ser Pro Arg Ile Phe Phe Ala Gln Ala Arg Ser Asn Lys Val
                                105
            100
Ile Glu Ala Phe Leu Thr Asn Pro Val Asp Thr Lys Lys Glu Leu
                                                125
                            120
       115
Phe Lys Val Thr Val Asp Gly Lys Glu Ile Pro Val Ser Arg Val Glu
                                            140
                        135
   130
Lys Ala Asp Pro Thr Asp Ile Asp Val Thr Asn Tyr Val Arg Ile Val
                                        155
                    150
145
Leu Ser Glu Ser Leu Lys Glu Glu Asp Leu Arg Lys Asp Val Glu Leu
                165
                                    170
```

Ile	Ile	Glu	Gly	Tyr	Lys	Pro	Ala	Arg	Val	Ile	Met	Met	Glu	Ile	Leu
Asp	Asp	Tyr	180 Tyr	Tyr	Asp	Gly	Glu	185 Leu	Gly	Ala	Val	Tyr	190 Ser	Pro	Glu
		195					200					205			
-	Thr 210				Val	215					220				
225	Leu				Gly 230					235					240
Met	Glu	Tyr	Lys	Gly 245	Asn	Gly	Val	Trp	Glu 250	Ala	Val	Val	Glu	Gly 255	Asp
Leu	Asp	Gly	Val 260	Phe	Tyr	Leu	Tyr	Gln 265	Leu	Glu	Asn	Tyr	Gly 270	Lys	Ile
Arg	Thr	Thr 275	Val	Asp	Pro	Tyr	Ser 280	Lys	Ala	Val	Tyr	Ala 285	Asn	Asn	Gln
Glu	Ser 290	Ala	Val	Val	Asn	Leu 295		Arg	Thr	Asn	Pro 300	Glu	Gly	Trp	Glu
Asn 305	Asp	Arg	Gly	Pro	Lys 310	Ile	Glu	Gly	Tyr	Glu 315	Asp	Ala	Ile	Ile	Tyr 320
Glu	Ile	His	Ile	Ala 325	Asp	Ile	Thr	Gly	Leu 330	Glu	Asn	Ser	Gly	Val 335	Lys
Asn	Lys	Gly	Leu 340	Tyr	Leu	Gly	Leu	Thr 345	Glu	Glu	Asn	Thr	Lys 350	Ala	Pro
Gly	-	355	Thr		Gly		360					365			
His	Val 370	His	Ile	Leu	Pro	Phe 375	Phe	Asp	Phe	Tyr	Thr 380	Gly	Asp	Glu	Leu
385	Lys				Lys 390					395	_		Pro		400
Phe				405	Gly				410					415	
Thr	-		420	Glu	Val			425					430		
Gly	Ile	Gly 435	Val	Ile	Met	Asp	Met 440	Val	Phe	Pro	His	Thr 445	Tyr	Gly	Ile
-	450	Leu			Phe	4`55					460				
Ile 465	Asp	Lys	Thr	Gly	Ala 470	Tyr	Leu	Asn	Glu	Ser 475	Gly	Cys	Gly	Asn	Val 480
Ile	Ala	Ser	Glu	Arg 485	Pro	Met	Met	Arg	Lys 490	Phe	Ile	Val	Asp	Thr 495	Val
Thr	Tyr	Trp	Val 500	Lys	Glu	Tyr	His	Ile 505	Asp	Gly	Phe	Arg	Phe 510	Asp	Gln
Met		515	Ile		Ļys		520					525			
	530	Ile			Thr	535					540				
545	Gly				Arg 550					555					200
Val	Ala	Ala	Phe	Asn 565	Asp	Glu	Phe	Arg	Asp 570	Ala	Ile	Arg	Gly	Ser 575	Val
			580	Val	Lys			585	Met				590		
		595	Lys		Gly		600					605			
	610	Lys			Ala	615					620				
Ala 625	Cys	His	Asp	Asn	His 630	Thr	Leu	Trp	Asp	Lys 635	Asn	Tyr	Leu	Ala	Ala 640

```
Lys Ala Asp Lys Lys Glu Trp Thr Glu Glu Glu Leu Lys Asn Ala
                                     650
                645
Gln Lys Leu Ala Gly Ala Ile Leu Leu Thr Ser Gln Gly Val Pro Phe
                                                     670
                                665
            660
Leu His Gly Gly Gln Asp Phe Cys Arg Thr Thr Asn Phe Asn Asp Asn
                                                 685
                            680
Ser Tyr Asn Ala Pro Ile Ser Ile Asn Gly Phe Asp Tyr Glu Arg Lys
                                            700
                         695
    690
Leu Gln Phe Ile Asp Val Phe Asn Tyr His Lys Gly Leu Ile Lys Leu
                                         715
                                                             720
                    710
705
Arg Lys Glu His Pro Ala Phe Arg Leu Lys Asn Ala Glu Glu Ile Lys
                                    730
                                                         735
                725
Lys His Leu Glu Phe Leu Pro Gly Gly Arg Arg Ile Val Ala Phe Met
                                745
Leu Lys Asp His Ala Gly Gly Asp Pro Trp Lys Asp Ile Val Val Ile
                                                765
                            760
        755
Tyr Asn Gly Asn Leu Glu Lys Thr Thr Tyr Lys Leu Pro Glu Gly Lys
                                            780
                        775
Trp Asn Val Val Asn Ser Gln Lys Ala Gly Thr Glu Val Ile Glu
                                        795
                    790
785
Thr Val Glu Gly Thr Ile Glu Leu Asp Pro Leu Ser Ala Tyr Val Leu
                                    810
Tyr Arg Glu Ser Glu Lys Asp Glu Leu
            820
<210> 25
<211> 2478
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400> 25
atgagggtgt tgctcgttgc cctcgctctc ctggctctcg ctgcgagcgc caccagcgct 60
ggccactggt acaagcacca gcgcgcctac cagttcaccg gcgaggacga cttcgggaag 120
gtggccgtgg tgaagctccc gatggacctc accaaggtgg gcatcatcgt gcgcctcaac 180
gagtggcagg cgaaggacgt ggccaaggac cgcttcatcg agatcaagga cggcaaggcc 240
gaggtgtgga tactccaggg cgtggaggag atcttctacg agaagccgga cacctccccg 300
egeatettet tegeceagge eegeteeaac aaggtgateg aggeetteet eaceaaceeg 360
gtggacacca agaagaagga gctgttcaag gtgaccgtcg acggcaagga gatcccggtg 420
tecegegtgg agaaggeega eeegacegae ategaegtga eeaaetaegt gegeategtg 480
ctctccgagt ccctcaagga ggaggacctc cgcaaggacg tggagctgat catcgagggc 540
tacaageegg eeegegtgat catgatggag atectegaeg actactacta egaeggegag 600
ctgggggggg tgtactcccc ggagaagacc atcttccgcg tgtggtcccc ggtgtccaag 660
tgggtgaagg tgctcctctt caagaacggc gaggacaccg agccgtacca ggtggtgaac 720
atggagtaca agggcaacgg cgtgtgggag gccgtggtgg agggcgacct cgacggcgtg 780
ttctacctct accagetgga gaactacgge aagateegea ceaeegtgga eeegtactee 840
aaggeegtgt aegeeaacaa eeaggagtet geagtggtga aeetegeeeg eaceaaceeg 900
gagggetggg agaacgaccg eggeeegaag ategaggget acgaggaege cateatetae 960
gagatecaca tegeogacat caceggeetg gagaacteeg gegtgaagaa caagggeete 1020
tacctcggcc tcaccgagga gaacaccaag gccccgggcg gcgtgaccac cggcctctcc 1080
cacctegigg agetgggegt gacceaegtg cacatectee egitettega ettetacace 1140
ggcgacgagc tggacaagga cttcgagaag tactacaact ggggctacga cccgtacctc 1200
ttcatggtgc cggagggccg ctactccacc gacccgaaga acccgcacac ccgaattcgc 1260
gaggtgaagg agatggtgaa ggccctccac aagcacggca tcggcgtgat catggacatg 1320
```

gtgttcccgc acacctacgg catcggcgag ctgtccgcct tcgaccagac cgtgccgtac 1380

```
tacttctacc gcatcgacaa gaccggcgcc tacctcaacg agtccggctg cggcaacgtg 1440
ategecteeg agegeegat gatgegeaag tteategtgg acacegtgae etaetgggtg 1500
aaggagtace acategaegg etteegette gaccagatgg geeteatega caagaagaee 1560
atgctggagg tggagcgcgc cctccacaag atcgacccga ccatcatcct ctacggcgag 1620
ccgtgggggg gctggggggc cccgatccgc ttcggcaagt ccgacgtggc cggcacccac 1680
gtggccgcct tcaacgacga gttccgcgac gccatccgcg gctccgtgtt caacccgtcc 1740
gtgaaggget tegtgatggg eggetaegge aaggagacea agateaageg eggegtggtg 1800 ggeteeatea actaegaegg caageteate aagteetteg eeetegaeee ggaggagaee 1860
atcaactacg ccgcctgcca cgacaaccac accetetggg acaagaacta cetegeegec 1920
aaggoogaca agaagaagga gtggacogag gaggagotga agaacgooca gaagotogoo 1980
ggcgccatco tootoactag toagggogtg cogttoctoc acggcggcca ggacttotgc 2040
cgcaccacca acttcaacga caactcctac aacgccccga tetecatcaa eggettegae 2100
tacgagegea agetecagtt categaegtg tteaactace acaagggeet cateaagete 2160
cgcaaggage acceggeett cegeeteaag aacgeegagg agateaagaa geacetggag 2220
ttcctcccgg gcgggcgccg catcgtggcc ttcatgctca aggaccacgc cggcggcgac 2280
ccgtggaagg acatcgtggt gatctacaac ggcaacctgg agaagaccac ctacaagctc 2340
ccggagggca agtggaacgt ggtggtgaac tcccagaagg ccggcaccga ggtgatcgag 2400
accettgagg gcaccatcga gctggacccg ctctccgcct acgtgctcta ccgcgagtcc 2460
                                                                     2478
gagaaggacg agctgtga
<210> 26
<211> 718
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 26
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser
                                                          15
                                     10
1
                 5
Ala Thr Ser Met Glu Thr Ile Lys Ile Tyr Glu Asn Lys Gly Val Tyr
            20
                                 2.5
Lys Val Val Ile Gly Glu Pro Phe Pro Pro Ile Glu Phe Pro Leu Glu
        35
Gln Lys Ile Ser Ser Asn Lys Ser Leu Ser Glu Leu Gly Leu Thr Ile
                         55
                                              60
Val Gln Gln Gly Asn Lys Val Ile Val Glu Lys Ser Leu Asp Leu Lys
                                         75
                     70
Glu His Ile Ile Gly Leu Gly Glu Lys Ala Phe Glu Leu Asp Arg Lys
                                                          95
                                     90
                85
Arg Lys Arg Tyr Val Met Tyr Asn Val Asp Ala Gly Ala Tyr Lys Lys
                                 105
                                                      110
            100
Tyr Gln Asp Pro Leu Tyr Val Ser Ile Pro Leu Phe Ile Ser Val Lys
                                                  125
                             120
        115
Asp Gly Val Ala Thr Gly Tyr Phe Phe Asn Ser Ala Ser Lys Val Ile
                         135
                                             140
    130
Phe Asp Val Gly Leu Glu Glu Tyr Asp Lys Val Ile Val Thr Ile Pro
                                         155
                    150
Glu Asp Ser Val Glu Phe Tyr Val Ile Glu Gly Pro Arg Ile Glu Asp
                                                          175
                                     170
                165
Val Leu Glu Lys Tyr Thr Glu Leu Thr Gly Lys Pro Phe Leu Pro Pro
                                                      190
                                 185
            180
Met Trp Ala Phe Gly Tyr Met Ile Ser Arg Tyr Ser Tyr Tyr Pro Gln
                             200
                                                  205
Asp Lys Val Val Glu Leu Val Asp Ile Met Gln Lys Glu Gly Phe Arg
                                             220
                         215
    210
Val Ala Gly Val Phe Leu Asp Ile His Tyr Met Asp Ser Tyr Lys Leu
```

225					230					235			_		240
				245	Tyr				250					255	
Glu	Leu	His	Lys 260		Asn	Val	Lys	Leu 265	Ile	Thr	Ile	Val	Asp 270	His	Gly
Ile	Arg	Val 275			Asn	Tyr	Ser 280	Pro		Leu	Ser	Gly 285		Gly	Lys
Phe	Cys 290		Ile	Glu	Ser	Gly 295			Phe	Val	Gly 300			Trp	Pro
Gly 305		Thr	Val	Tyr	Pro 310		Phe	Phe	Arg	Glu 315	Asp	Thr	Arg	Glu	Trp 320
	Ala	Gly	Leu	11e 325	Ser	Glu	Trp	Leu	Ser 330		Gly	Val	Asp	Gly 335	Ile
Trp	Leu	Asp	Met 340		Glu	Pro	Thr	Asp 345	Phe	Ser	Arg	Ala	Ile 350	Glu	Ile
Arg	Asp	Val 355	Leu	Ser	Ser	Leu	Pro 360		Gln	Phe	Arg	Asp 365		Arg	Leu
	370				Asp	375					380				
385	-				Val 390					395					400
				405	Phe				410					415	
			420		Tyr			425					430		
	_	435			Pro		440					445			
	450				Ser	455					460				
465					Gly 470					475					480
-				485	Tyr				490					495	
_			500		Thr			505					510		
	-	515			Glu		520					525			
	530				Ile	535					540				
545					Arg 550					555					560
-		-		565	Glu				570					575	
-			580		Ser			585					590		
		595			Asn		600					605			
	610		_		Thr	615					620				
625					Glu 630					635					640
				645	Asp				650					655	
	-		660		Glu -			665					670		
	_	675			Lys		680					685			
Val	Glu	Lys	Thr	Met	Gln	Asn	Thr	Tyr	∨al	Ala	Lys	IIe	Asn	GID	rys

```
695
Ile Arg Gly Lys Ile Asn Leu Glu Ser Glu Lys Asp Glu Leu
                 710
<210> 27
<211> 712
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 27
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser
          5
Ala Thr Ser Met Glu Thr Ile Lys Ile Tyr Glu Asn Lys Gly Val Tyr
                            25
          20
Lys Val Val Ile Gly Glu Pro Phe Pro Pro Ile Glu Phe Pro Leu Glu
                                       45
 35
                        40
Gln Lys Ile Ser Ser Asn Lys Ser Leu Ser Glu Leu Gly Leu Thr Ile
                   55
                                     60
 50
Val Gln Gln Gly Asn Lys Val Ile Val Glu Lys Ser Leu Asp Leu Lys
                                   75
               70
Glu His Ile Ile Gly Leu Gly Glu Lys Ala Phe Glu Leu Asp Arg Lys
                               90
             85
Arg Lys Arg Tyr Val Met Tyr Asn Val Asp Ala Gly Ala Tyr Lys Lys
                                           110
                            105
          100
Tyr Gln Asp Pro Leu Tyr Val Ser Ile Pro Leu Phe Ile Ser Val Lys
                                125
                      120
       115
Asp Gly Val Ala Thr Gly Tyr Phe Phe Asn Ser Ala Ser Lys Val Ile
                   135 140
Phe Asp Val Gly Leu Glu Glu Tyr Asp Lys Val Ile Val Thr Ile Pro
                                155
                150
Glu Asp Ser Val Glu Phe Tyr Val Ile Glu Gly Pro Arg Ile Glu Asp
                               170
                                                 175
             165
Val Leu Glu Lys Tyr Thr Glu Leu Thr Gly Lys Pro Phe Leu Pro Pro
                           185
                                              190
          180
Met Trp Ala Phe Gly Tyr Met Ile Ser Arg Tyr Ser Tyr Tyr Pro Gln
                                          205
                        200
      195
Asp Lys Val Val Glu Leu Val Asp Ile Met Gln Lys Glu Gly Phe Arg
           215
                         220
Val Ala Gly Val Phe Leu Asp Ile His Tyr Met Asp Ser Tyr Lys Leu
              230 235
Phe Thr Trp His Pro Tyr Arg Phe Pro Glu Pro Lys Lys Leu Ile Asp
           245
                                250
Glu Leu His Lys Arg Asn Val Lys Leu Ile Thr Ile Val Asp His Gly
                                             270
                            265
          260
Ile Arg Val Asp Gln Asn Tyr Ser Pro Phe Leu Ser Gly Met Gly Lys
                       280
                                       285
Phe Cys Glu Ile Glu Ser Gly Glu Leu Phe Val Gly Lys Met Trp Pro
                    295
                                       300
Gly Thr Thr Val Tyr Pro Asp Phe Phe Arg Glu Asp Thr Arg Glu Trp
                                  315
                 310
Trp Ala Gly Leu Ile Ser Glu Trp Leu Ser Gln Gly Val Asp Gly Ile
                                      335
                      330
Trp Leu Asp Met Asn Glu Pro Thr Asp Phe Ser Arg Ala Ile Glu Ile
                            345
                                              350
          340
```

Page 28

```
Arg Asp Val Leu Ser Ser Leu Pro Val Gln Phe Arg Asp Asp Arg Leu
             360 365
      355
Val Thr Thr Phe Pro Asp Asn Val Val His Tyr Leu Arg Gly Lys Arg
          375
                                    380
Val Lys His Glu Lys Val Arg Asn Ala Tyr Pro Leu Tyr Glu Ala Met
                                395
      390
385
Ala Thr Phe Lys Gly Phe Arg Thr Ser His Arg Asn Glu Ile Phe Ile
                            410
            405
Leu Ser Arg Ala Gly Tyr Ala Gly Ile Gln Arg Tyr Ala Phe Ile Trp
                         425
Thr Gly Asp Asn Thr Pro Ser Trp Asp Asp Leu Lys Leu Gln Leu Gln
                                445
                       440
      435
Leu Val Leu Gly Leu Ser Ile Ser Gly Val Pro Phe Val Gly Cys Asp
                           460
                455
Ile Gly Gly Phe Gln Gly Arg Asn Phe Ala Glu Ile Asp Asn Ser Met
                       475
             470
Asp Leu Leu Val Lys Tyr Tyr Ala Leu Ala Leu Phe Phe Pro Phe Tyr
                    490
          485
Arg Ser His Lys Ala Thr Asp Gly Ile Asp Thr Glu Pro Val Phe Leu
                                510
                         505
         500
Pro Asp Tyr Tyr Lys Glu Lys Val Lys Glu Ile Val Glu Leu Arg Tyr
                                    525
                520
      515
Lys Phe Leu Pro Tyr Ile Tyr Ser Leu Ala Leu Glu Ala Ser Glu Lys
                          540
  530
                  535
Gly His Pro Val Ile Arg Pro Leu Phe Tyr Glu Phe Gln Asp Asp Asp
       550 555
545
Asp Met Tyr Arg Ile Glu Asp Glu Tyr Met Val Gly Lys Tyr Leu Leu
            565
                             570
Tyr Ala Pro Ile Val Ser Lys Glu Glu Ser Arg Leu Val Thr Leu Pro
                   585
Arg Gly Lys Trp Tyr Asn Tyr Trp Asn Gly Glu Ile Ile Asn Gly Lys
                               605
                      600
      595
Ser Val Val Lys Ser Thr His Glu Leu Pro Ile Tyr Leu Arg Glu Gly
                                    620
                  615
Ser Ile Ile Pro Leu Glu Gly Asp Glu Leu Ile Val Tyr Gly Glu Thr
                             635
                630
Ser Phe Lys Arg Tyr Asp Asn Ala Glu Ile Thr Ser Ser Ser Asn Glu
            645 650 655
Ile Lys Phe Ser Arg Glu Ile Tyr Val Ser Lys Leu Thr Ile Thr Ser
                                 670
         660
                         665
Glu Lys Pro Val Ser Lys Ile Ile Val Asp Asp Ser Lys Glu Ile Gln
                      680 685
     675
Val Glu Lys Thr Met Gln Asn Thr Tyr Val Ala Lys Ile Asn Gln Lys
  690 695
Ile Arg Gly Lys Ile Asn Leu Glu
                710
<210> 28
<211> 469
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 28
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser
```

Page 29

1				5					10		_	_	~) .	15	DI
			20					25					30	Gln	
		35					40					45		Asp	
Asn	Glu 50	Val	Ile	Asp	Gly	Lys 55	Pro	Leu	Lys	Asp	His 60	Leu	Lys	Phe	Ser
Val 65	Ala	Phe	Trp	His	Thr 70	Phe	Val	Asn	Glu	Gly 75	Arg	Asp	Pro	Phe	Gly 80
Asp	Pro	Thr	Ala	Glu 85	Arg	Pro	Trp	Asn	Arg 90	Phe	Ser	Asp	Pro	Met 95	Asp
Lys	Ala	Phe	Ala 100	Arg	Val	Asp	Ala	Leu 105	Phe	Glu	Phe	Cys	Glu 110	Lys	Leu
Asn	Ile	Glu 115	Tyr	Phe	Cys	Phe	His 120	Asp	Arg	Asp	Ile	Ala 125	Pro	Glu	Gly
-	130	Leu				135					140			Glu	
145	Lys				150					155				Gly	160
Ala				165					170					Thr 175	
			180					185					190	Lys	
		195					200					205		Trp	
	210					215					220			Leu	
225					230					235				Ala	240
				245					250					Lys 255	
			260					265					2/0	Ala	
	_	275					280					285		Glu	
	290					295					300			Arg	
305					310					315				Gly	320
Leu				325					330					Tyr 335	
			340					345					350	Thr	
-	_	355					360					365		Lys	
	370					3/5					380			Ala	
385					390					395				Asp	400
				405					410					Lys 415	
			420					425					430	Ile	
-	-	435					440					445		Leu	
	450				Tyr	Ile 455	Val	Lys	Thr	Ile	Ala 460	Glu	Leu	Arg	Ser
Glu	Lys	Asp	Glu	Leu											

465

<210> 29 <211> 469 <212> PRT <213> Artificial Sequence <220> <223> synthetic <400> 29 Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser 10 5 Ala Thr Ser Met Ala Glu Phe Phe Pro Glu Ile Pro Lys Val Gln Phe 25 20 Glu Gly Lys Glu Ser Thr Asn Pro Leu Ala Phe Lys Phe Tyr Asp Pro 4.5 40 35 Glu Glu Ile Ile Asp Gly Lys Pro Leu Lys Asp His Leu Lys Phe Ser 55 60 Val Ala Phe Trp His Thr Phe Val Asn Glu Gly Arg Asp Pro Phe Gly 75 70 Asp Pro Thr Ala Asp Arg Pro Trp Asn Arg Tyr Thr Asp Pro Met Asp 90 85 Lys Ala Phe Ala Arg Val Asp Ala Leu Phe Glu Phe Cys Glu Lys Leu 105 100 Asn Ile Glu Tyr Phe Cys Phe His Asp Arg Asp Ile Ala Pro Glu Gly 120 125 115 Lys Thr Leu Arg Glu Thr Asn Lys Ile Leu Asp Lys Val Val Glu Arg 130 135 140 Ile Lys Glu Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr 145 150 155 160 Ala Asn Leu Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr 175 170 165 Cys Ser Ala Asp Val Phe Ala Tyr Ala Ala Ala Gln Val Lys Lys Ala 185 180 Leu Glu Ile Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly 205 200 195 Gly Arg Glu Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Phe Glu 220 215 Leu Glu Asn Leu Ala Arg Phe Leu Arg Met Ala Val Asp Tyr Ala Lys 225 230 235 Arg Ile Gly Phe Thr Gly Gln Phe Leu Ile Glu Pro Lys Pro Lys Glu 250 255 245 Pro Thr Lys His Gln Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe 270 265 Leu Lys Ser His Gly Leu Asp Glu Tyr Phe Lys Phe Asn Ile Glu Ala 285 280 275 Asn His Ala Thr Leu Ala Gly His Thr Phe Gln His Glu Leu Arg Met 295 300 Ala Arg Ile Leu Gly Lys Leu Gly Ser Ile Asp Ala Asn Gln Gly Asp 315 310 Leu Leu Gly Trp Asp Thr Asp Gln Phe Pro Thr Asn Val Tyr Asp 330 325 Thr Thr Leu Ala Met Tyr Glu Val Ile Lys Ala Gly Gly Phe Thr Lys 345 350 340 Gly Gly Leu Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val 360

Page 31

```
Glu Asp Leu Phe Ile Gly His Ile Ala Gly Met Asp Thr Phe Ala Leu
                           380
                   375
   370
Gly Phe Lys Val Ala Tyr Lys Leu Val Lys Asp Gly Val Leu Asp Lys
                              395
                390
Phe Ile Glu Glu Lys Tyr Arg Ser Phe Arg Glu Gly Ile Gly Arg Asp
                              410
            405
Ile Val Glu Gly Lys Val Asp Phe Glu Lys Leu Glu Glu Tyr Ile Ile
                               430
                        425
         420
Asp Lys Glu Thr Ile Glu Leu Pro Ser Gly Lys Gln Glu Tyr Leu Glu
                 440 445
Ser Leu Ile Asn Ser Tyr Ile Val Lys Thr Ile Leu Glu Leu Arg Ser
                   455
Glu Lys Asp Glu Leu
465
<210> 30
<211> 463
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 30
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser
                                               1.5
                            10
             5
Ala Thr Ser Met Ala Glu Phe Phe Pro Glu Ile Pro Lys Val Gln Phe
                        25
  20
Glu Gly Lys Glu Ser Thr Asn Pro Leu Ala Phe Lys Phe Tyr Asp Pro
                     40
                                       45
      35
Glu Glu Ile Ile Asp Gly Lys Pro Leu Lys Asp His Leu Lys Phe Ser
                   55
                                    60
Val Ala Phe Trp His Thr Phe Val Asn Glu Gly Arg Asp Pro Phe Gly
                                7.5
                70
Asp Pro Thr Ala Asp Arg Pro Trp Asn Arg Tyr Thr Asp Pro Met Asp
                 90
            85
Lys Ala Phe Ala Arg Val Asp Ala Leu Phe Glu Phe Cys Glu Lys Leu
               105
Asn Ile Glu Tyr Phe Cys Phe His Asp Arg Asp Ile Ala Pro Glu Gly
                       120 125
 115
Lys Thr Leu Arg Glu Thr Asn Lys Ile Leu Asp Lys Val Val Glu Arg
                                   140
                 135
Ile Lys Glu Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr
                        155
                150
145
Ala Asn Leu Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr
                                        175
                              170
            165
Cys Ser Ala Asp Val Phe Ala Tyr Ala Ala Ala Gln Val Lys Lys Ala
                          185
                                           190
          180
Leu Glu Ile Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly
              200
 195
Gly Arg Glu Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Phe Glu
                                    220
         215
Leu Glu Asn Leu Ala Arg Phe Leu Arg Met Ala Val Asp Tyr Ala Lys
             230
                               235
Arg Ile Gly Phe Thr Gly Gln Phe Leu Ile Glu Pro Lys Pro Lys Glu
                           250
                                               255
           245
Pro Thr Lys His Gln Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe
```

```
265
          260
Leu Lys Ser His Gly Leu Asp Glu Tyr Phe Lys Phe Asn Ile Glu Ala
    275 280
Asn His Ala Thr Leu Ala Gly His Thr Phe Gln His Glu Leu Arg Met
           295
Ala Arg Ile Leu Gly Lys Leu Gly Ser Ile Asp Ala Asn Gln Gly Asp
                                  315
                 310
Leu Leu Gly Trp Asp Thr Asp Gln Phe Pro Thr Asn Val Tyr Asp
                                                 335
                               330
              325
Thr Thr Leu Ala Met Tyr Glu Val Ile Lys Ala Gly Gly Phe Thr Lys
                            345
                                              350
         340
Gly Gly Leu Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val
      355
                        360
Glu Asp Leu Phe Ile Gly His Ile Ala Gly Met Asp Thr Phe Ala Leu
                                       380
                  375
   370
Gly Phe Lys Val Ala Tyr Lys Leu Val Lys Asp Gly Val Leu Asp Lys
              390
                                   395
Phe Ile Glu Glu Lys Tyr Arg Ser Phe Arg Glu Gly Ile Gly Arg Asp
                             410
             405
Ile Val Glu Gly Lys Val Asp Phe Glu Lys Leu Glu Glu Tyr Ile Ile
                                            430
          420 425
Asp Lys Glu Thr Ile Glu Leu Pro Ser Gly Lys Gln Glu Tyr Leu Glu
    435
                     440
                                          445
Ser Leu Ile Asn Ser Tyr Ile Val Lys Thr Ile Leu Glu Leu Arg
   450 455
<210> 31
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 31
Met Gly Lys Asn Gly Asn Leu Cys Cys Phe Ser Leu Leu Leu Leu
          5
Leu Ala Gly Leu Ala Ser Gly His Gln
         2.0
<210> 32
<211> 30
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 32
Met Gly Phe Val Leu Phe Ser Gln Leu Pro Ser Phe Leu Leu Val Ser
       5
                             10
Thr Leu Leu Phe Leu Val Ile Ser His Ser Cys Arg Ala
                            2.5
          20
```

<210> 33

```
<211> 460
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 33
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser
                              10
Ala Thr Ser Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val Ile Met
                                            30
                         25
       2.0
Gln Ala Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr
                                         45
    35
                       40
Ile Arg Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile
                                   60
                    55
Trp Ile Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly
                                                80
              70
                               75
Tyr Asp Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly
                                               95
           85
                            90
Thr Val Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile
                        105
          100
Asn Thr Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile
                            125
                      120
115
Asn His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp
                                  140
                   135
Tyr Thr Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala
                150 155
Asn Tyr Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly
          165 170
                                                175
Thr Phe Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln 180 185
    180
Tyr Trp Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser
             200
     195
Ile Gly Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala
                                     220
                  215
 210
Trp Val Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly
                230
                                                   240
                                 235
Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser
                 250
                                            255
             245
Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala
       260 265 270
Ala Phe Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn
              280
                                         285
     275
Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val
                                   300
                 295
Ala Asn His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala
                               315
              310
Phe Ile Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr
                                                335
                              330
            325
Glu Glu Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His
                                            350
                           345
          340
Asp Asn Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp
      355 360
                                         365
Glu Met Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile
                    375
                                    380
Thr Tyr Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val
                                  395
                 390
```

 Pro
 Lys
 Phe
 Ala
 Gly
 Ala
 Cys
 Ile
 His
 Glu
 Tyr
 Thr
 Gly
 Asn
 Leu
 Gly

 Gly
 Trp
 Val
 Asp
 Lys
 Tyr
 Val
 Tyr
 Ser
 Ser
 Gly
 Trp
 Val
 Tyr
 Leu
 Glu
 Asn
 Gly
 Gln
 Tyr
 Ser
 Val
 Trp
 Asn
 Gly
 Gln
 Tyr
 Ser
 Val
 Trp
 Asn
 Gly
 Gln
 Tyr
 Ser
 Val
 Trp
 Asn
 Gly
 Glu
 Leu
 Asn
 Glu
 Asn
 Glu
 Asn
 Asn

<210> 34 <211> 825

<211> 823 <212> PRT

<213> Artificial Sequence

<220>

<223> synthetic

<400> 34 Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser 10 Ala Thr Ser Ala Gly His Trp Tyr Lys His Gln Arg Ala Tyr Gln Phe 25 Thr Gly Glu Asp Asp Phe Gly Lys Val Ala Val Lys Leu Pro Met 35 40 45 Asp Leu Thr Lys Val Gly Ile Ile Val Arg Leu Asn Glu Trp Gln Ala 55 50 60 Lys Asp Val Ala Lys Asp Arg Phe Ile Glu Ile Lys Asp Gly Lys Ala 70 75 Glu Val Trp Ile Leu Gln Gly Val Glu Ile Phe Tyr Glu Lys Pro 85 90 Asp Thr Ser Pro Arg Ile Phe Phe Ala Gln Ala Arg Ser Asn Lys Val 105 100 110 Ile Glu Ala Phe Leu Thr Asn Pro Val Asp Thr Lys Lys Lys Glu Leu 120 Phe Lys Val Thr Val Asp Gly Lys Glu Ile Pro Val Ser Arg Val Glu 135 140 130 Lys Ala Asp Pro Thr Asp Ile Asp Val Thr Asn Tyr Val Arg Ile Val 155 145 150 Leu Ser Glu Ser Leu Lys Glu Glu Asp Leu Arg Lys Asp Val Glu Leu 170 Ile Ile Glu Gly Tyr Lys Pro Ala Arg Val Ile Met Met Glu Ile Leu 180 185 190 Asp Asp Tyr Tyr Tyr Asp Gly Glu Leu Gly Ala Val Tyr Ser Pro Glu 195 200 205 Lys Thr Ile Phe Arg Val Trp Ser Pro Val Ser Lys Trp Val Lys Val 210 215 215 220 Leu Leu Phe Lys Asn Gly Glu Asp Thr Glu Pro Tyr Gln Val Val Asn 230 235 Met Glu Tyr Lys Gly Asn Gly Val Trp Glu Ala Val Val Glu Gly Asp 245 250 255 Leu Asp Gly Val Phe Tyr Leu Tyr Gln Leu Glu Asn Tyr Gly Lys Ile 260 265 270 Arg Thr Thr Val Asp Pro Tyr Ser Lys Ala Val Tyr Ala Asn Asn Gln 275 280 285 Glu Ser Ala Val Val Asn Leu Ala Arg Thr Asn Pro Glu Gly Trp Glu 295 300 Asn Asp Arg Gly Pro Lys Ile Glu Gly Tyr Glu Asp Ala Ile Ile Tyr

Page 35

305					310					315					320
Glu				325	Asp				330	Glu				333	
			340					345		Glu			350		
		355					360			Val		365			
	370	His				375				Tyr	380				
325	Lys				390					Gly 395					400
Phe				405					410	Asp				415	
			420					425		Lys			430		
		135					440			Pro		445			
	150					455				Pro	460				
165					470					Ser 475					480
Ile				485					490	Phe				495	
	-		500					505		Gly			510		
		515					520			Glu		525			
	530					535				Gly	540				
515					550					Asp 555					200
				565					570	Ala				5/5	
			580					585		Gly			590		
		595					600			Ile		605			
	610					615				Glu	620				
625					630					Lys 635					640
				645					650	Glu				655	
			660					665		Ser			6/0		
		675					680			Thr		683			
	690					695				Phe	700				
705					710					Lys 715					/20
				725					730	Asn				130	
			740					745		Arg			150		
		755					760			Lys		/65			
Tyr	Asn	Gly	Asn	Leu	Glu	Lys	Thr	Thr	Tyr	Lys	Leu	Pro	GIU	оту	гуз

780

```
Trp Asn Val Val Asn Ser Gln Lys Ala Gly Thr Glu Val Ile Glu
        790 795
Thr Val Glu Gly Thr Ile Glu Leu Asp Pro Leu Ser Ala Tyr Val Leu
              805 810
Tyr Arg Glu Ser Glu Lys Asp Glu Leu
<210> 35
<211> 460
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 35
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser
                                 10
1.
Ala Thr Ser Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val Ile Met
           2.0
                             25
                                               3.0
Gln Ala Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr
                         40
Ile Arg Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile
                  55
                                      60
Trp Ile Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly
                                    75
                  70
Tyr Asp Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly
                                90
Thr Val Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile
          100
                            105
                                              110
Asn Thr Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile
                        120
                                        125
       115
Asn His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp
                            140
                    1:35
Tyr Thr Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala
                 150
                                    155
145
Asn Tyr Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly
                                170
                                                  175
              165
Thr Phe Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln
                            185
Tyr Trp Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser
       195
                        200
                                           205
Ile Gly Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala
                    215
                                       220
   210
Trp Val Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly
                 230
                                  235
Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser
                             250
             245
Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala
          260
                             265
                                               270
Ala Phe Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn
    275
                      280
Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val
                  295
                                     300
Ala Asn His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala
                  310
                                   315
                                                      320
```

775

770

Page 37

```
Phe Ile Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr
                                               335
                                  330
               325
Glu Glu Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His
                            345
          340
Asp Asn Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp
              360
                                             365
Glu Met Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile
                      375
                                         380
Thr Tyr Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val
                  390
                                     395
Pro Lys Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly
                                 410
              405
Gly Trp Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu
                                         430
           420
                            425
Ala Pro Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp
435
440
445
Ser Tyr Cys Gly Val Gly Ser Glu Lys Asp Glu Leu
                      455
<210> 36
<211> 718
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 36
Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser
               5
                                  10
Ala Thr Ser Met Glu Thr Ile Lys Ile Tyr Glu Asn Lys Gly Val Tyr
                             25
 20
Lys Val Val Ile Gly Glu Pro Phe Pro Pro Ile Glu Phe Pro Leu Glu
                          4.0
    35
Gln Lys Ile Ser Ser Asn Lys Ser Leu Ser Glu Leu Gly Leu Thr Ile
                      55
                                      60
Val Gln Gln Gly Asn Lys Val Ile Val Glu Lys Ser Leu Asp Leu Lys 65 70 75 80
                 70
Glu His Ile Ile Gly Leu Gly Glu Lys Ala Phe Glu Leu Asp Arg Lys
                                 90
              85
Arg Lys Arg Tyr Val Met Tyr Asn Val Asp Ala Gly Ala Tyr Lys Lys 100 105 110
Tyr Gln Asp Pro Leu Tyr Val Ser Ile Pro Leu Phe Ile Ser Val Lys
                          120
    115
Asp Gly Val Ala Thr Gly Tyr Phe Phe Asn Ser Ala Ser Lys Val Ile
                                        140
                      135
Phe Asp Val Gly Leu Glu Glu Tyr Asp Lys Val Ile Val Thr Ile Pro
                                     155
                   150
Glu Asp Ser Val Glu Phe Tyr Val Ile Glu Gly Pro Arg Ile Glu Asp
165 170 175
Val Leu Glu Lys Tyr Thr Glu Leu Thr Gly Lys Pro Phe Leu Pro Pro
                  185
                                              190
           180
Met Trp Ala Phe Gly Tyr Met Ile Ser Arg Tyr Ser Tyr Tyr Pro Gln
                   200
   195
                                          205
Asp Lys Val Val Glu Leu Val Asp Ile Met Gln Lys Glu Gly Phe Arg
              215
   210
Val Ala Gly Val Phe Leu Asp Ile His Tyr Met Asp Ser Tyr Lys Leu
```

										225					240
225	Thr	T	uin	D×o	230	Ara	Dha	Pro	Glu	235 Pro	Tve	Lvs	I.en	Ile	
				245					250					255	
	Leu		260			,		265					270		
	Arg	275					280					285			
Phe	Cys 290	Glu	Ile	Glu	Ser	Gly 295	Glu	Leu	Phe	Val	Gly 300		Met	Trp	Pro
Gly 305	Thr	Thr	Val	Tyr	Pro 310	Asp	Phe	Phe	Arg	Glu 315	Asp	Thr	Arg	Glu	Trp 320
Trp	Ala	Gly	Leu	Ile 325		Glu	Trp	Leu	Ser 330		Gly	Val	Asp	Gly 335	Ile
Trp	Leu	Asp	Met 340		Glu	Pro	Thr	Asp 345		Ser	Arg	Ala	Ile 350	Glu	
Arg	Asp			Ser	Ser	Leu	Pro 360		Gln	Phe	Arg	Asp 365			Leu
Val	Thr	355 Thr	Phe	Pro	Asp	Asn 375		Val	His	Tyr	Leu 380		Gly	Lys	Arg
	370 Lys	His	Glu	Lys	Val 390		Asn	Ala	Tyr	Pro 395		Tyr	Glu	Ala	Met 400
385 Ala	Thr	Phe	Lys	Gly 405	Phe	Arg	Thr	Ser	His 410		Asn	Glu	Ile	Phe 415	
Leu	Ser	Arg	Ala 420		Tyr	Ala	Gly	Ile 425		Arg	Tyr	Ala	Phe 430		Trp
Thr	Gly	Asp 435		Thr	Pro	Ser	Trp		Asp	Leu	Lys	Leu 445		Leu	Gln
Leu	Val 450	Leu	Gly	Leu	Ser	Ile 455		Gly	Val	Pro	Phe 460		Gly	Cys	Asp
	Gly	Gly	Phe	Gln	Gly 470		Asn	Phe	Ala	Glu 475		Asp	Asn	Ser	Met 480
465 Asp	Leu	Leu	Val	Lys 485		Tyr	Ala	Leu	Ala 490		Phe	Phe	Pro	Phe 495	
Arg	Ser	His	Lys 500		Thr	Asp	Gly	Ile 505		Thr	Glu	Pro	Val 510	Phe	Leu
Pro	Asp	Tyr 515		Lys	Glu	Lys	Val 520		Glu	Ile	Val	Glu 525		Arg	Tyr
Lys	Phe		Pro	Tyr	Ile	Tyr 535		Leu	Ala	Leu	Glu 540		Ser	Glu	Lys
Gly 545	530 His	Pro	Val	Ile	Arg 550		Leu	Phe	Tyr	Glu 555		Gln	Asp	Asp	Asp 560
Asp	Met	Tyr	Arg	Ile 565		Asp	Glu	Tyr	Met 570		Gly	Lys	Tyr	Leu 575	
Tyr	Ala	Pro	Ile 580		Ser	Lys	Glu	Glu 585		Arg	Leu	Val	Thr 590		Pro
Arg	Gly	Lys 595	Trp	Tyr	Asn	Tyr	Trp 600		Gly	Glu	Ile	Ile 605		Gly	Lys
Ser	Val 610	Val	Lys	Ser	Thr	His 615		Leu	Pro	Ile	Tyr 620		Arg	Glu	Gly
	lìe	Ile	Pro	Leu	Glu 630		Asp	Glu	Leu	Ile 635		Tyr	Gly	Glu	Thr 640
625 Ser	Phe	Lys	Arg	Tyr 645		Asn	Ala	Glu	Ile 650		Ser	Ser	Ser	Asn 655	
Ile	Lys	Phe	Ser 660		Glu	Ile	Tyr	Val 665		Lys	Leu	Thr	Ile 670		Ser
Glu	Lys	Pro 675	Val	Ser	Lys	Ile	Ile 680		Asp	Asp	Ser	Lys 685		Ile	Gln
V-1	Glu	Lys	Thr	Met	Gln	Asn		Tyr	Val	Ala	Lys		Asn	Gln	Lys

```
695
     690
                                               700
 Ile Arg Gly Lys Ile Asn Leu Glu Ser Glu Lys Asp Glu Leu
                      710
 <210> 37
 <211> 1434
 <212> DNA
 <213> Thermotoga maritima
 <400> 37
 atgaaagaaa ccgctgctgc taaattcgaa cgccagcaca tggacagccc agatctgggt 60
 accetggtge caegeggtte catggeegag ttetteeegg agateeegaa gateeagtte 120
gagggcaagg agtccaccaa cccgctcgcc ttccgcttct acgacccgaa cgaggtgatc 180
gacggcaagc cgctcaagga ccacctcaag ttctccgtgg ccttctggca caccttcgtg 240 aacgagggcc gcgacccgtt cggcgacccg accgccgagc gcccgtggaa ccgcttctcc 300
gaccogatgg acaaggeett egecegegtg gacgeeetet tegagttetg egagaagete 360
aacatcgaqt acttetgett ceacgacege gacategeee eggagggeaa gaceeteege 420
gagaccaaca agateetega caaggtggtg gagegeatea aggagegeat gaaggaetee 480
aacgtgaage teetetgggg caeegeeaac etetteteee accegegeta catgeaegge 540
gccgccacca cctgctccgc cgacgtgttc gcctacgccg ccgcccaggt gaagaaggcc 600
ctggagatca ccaaggaget gggeggegag ggetaegtgt tetggggegg cegegaggge 660
tacqaqaccc tecteaacac egacetegge etggagetgg agaacetege eegetteete 720
cgcatggccg tggagtacgc caagaagatc ggcttcaccg gccagttcct catcgagccg 780
aagccgaagg agccgaccaa gcaccagtac gacttcgacg tggccaccgc ctacgccttc 840
ctcaaqaacc acggcctcga cgagtacttc aagttcaaca tcgaggccaa ccacgccacc 900
ctcgccggcc acaccttcca gcacgagctg cgcatggccc gcatcctcgg caagctcggc 960
tocatogacy coaaccaggy cyacotocto ctoggotygy acaccyacca gttocogaco 1020
aacatctacg acaccacct cgccatgtac gaggtgatca aggccggcgg cttcaccaag 1080
ggcggcctca acttcgacgc caaggtgcgc cgcgcctcct acaaggtgga ggacctcttc 1140
ateggeeaca tegeeggeat ggacacette gecetegget teaagatege etacaagete 1200
gccaaggacg gcgtgttcga caagttcatc gaggagaagt accgctcctt caaggagggc 1260
atcggcaagg agatcgtgga gggcaagacc gacttcgaga agctggagga gtacatcatc 1320
gacaaggagg acatcgagct gccgtccggc aagcaggagt acctggagtc cctcctcaac 1380
toctacateg tgaagaccat egeegagetg egeteegaga aggaegaget gtga
<210> 38
<211> 477
<212> PRT
<213> Thermotoga maritima
<400> 38
Met Lys Glu Thr Ala Ala Ala Lys Phe Glu Arg Gln His Met Asp Ser
                                     10
Pro Asp Leu Gly Thr Leu Val Pro Arg Gly Ser Met Ala Glu Phe Phe
            20
Pro Glu Ile Pro Lys Ile Gln Phe Glu Gly Lys Glu Ser Thr Asn Pro
                             40
Leu Ala Phe Arg Phe Tyr Asp Pro Asn Glu Val Ile Asp Gly Lys Pro
                         55
Leu Lys Asp His Leu Lys Phe Ser Val Ala Phe Trp His Thr Phe Val
65
                     70
                                         75
                                                              80
Asn Glu Gly Arg Asp Pro Phe Gly Asp Pro Thr Ala Glu Arg Pro Trp
                                     90
Asn Arg Phe Ser Asp Pro Met Asp Lys Ala Phe Ala Arg Val Asp Ala
            100
                                 105
                                                      110
Leu Phe Glu Phe Cys Glu Lys Leu Asn Ile Glu Tyr Phe Cys Phe His
        115
                             120
                                                  125
```

```
Asp Arg Asp Ile Ala Pro Glu Gly Lys Thr Leu Arg Glu Thr Asn Lys
                         135
                                             140
    130
Ile Leu Asp Lys Val Val Glu Arg Ile Lys Glu Arg Met Lys Asp Ser
                                                              160
                    150
                                         155
145
Asn Val Lys Leu Leu Trp Gly Thr Ala Asn Leu Phe Ser His Pro Arg
                                     170
                                                          175
                165
Tyr Met His Gly Ala Ala Thr Thr Cys Ser Ala Asp Val Phe Ala Tyr
                                                     190
                                 185
            180
Ala Ala Ala Gln Val Lys Lys Ala Leu Glu Ile Thr Lys Glu Leu Gly
                                                 205
                             200
        195
Gly Glu Gly Tyr Val Phe Trp Gly Gly Arg Glu Gly Tyr Glu Thr Leu
                                             220
                         215
Leu Asn Thr Asp Leu Gly Leu Glu Leu Glu Asn Leu Ala Arg Phe Leu
                                         235
                    230
225
Arg Met Ala Val Glu Tyr Ala Lys Lys Ile Gly Phe Thr Gly Gln Phe
                                                          255
                245
                                     250
Leu Ile Glu Pro Lys Pro Lys Glu Pro Thr Lys His Gln Tyr Asp Phe
                                 265
                                                     270
            260
Asp Val Ala Thr Ala Tyr Ala Phe Leu Lys Asn His Gly Leu Asp Glu
                                                 285
                             280
        275
   Phe Lys Phe Asn Ile Glu Ala Asn His Ala Thr Leu Ala Gly His
                                             300
                        295
    290
Thr Phe Gln His Glu Leu Arg Met Ala Arg Ile Leu Gly Lys Leu Gly
                                         315
                    310
Ser Ile Asp Ala Asn Gln Gly Asp Leu Leu Leu Gly Trp Asp Thr Asp
                                     330
                                                          335
                325
Gln Phe Pro Thr Asn Ile Tyr Asp Thr Thr Leu Ala Met Tyr Glu Val
                                                     350
            340
                                 345
Ile Lys Ala Gly Gly Phe Thr Lys Gly Gly Leu Asn Phe Asp Ala Lys
                             360
                                                 365
        355
Val Arg Arg Ala Ser Tyr Lys Val Glu Asp Leu Phe Ile Gly His Ile
                         375
                                             380
    370
Ala Gly Met Asp Thr Phe Ala Leu Gly Phe Lys Ile Ala Tyr Lys Leu
                                         395
385
                     390
Ala Lys Asp Gly Val Phe Asp Lys Phe Ile Glu Glu Lys Tyr Arg Ser
                                                         415
                                     410
                405
Phe Lys Glu Gly Ile Gly Lys Glu Ile Val Glu Gly Lys Thr Asp Phe
                                                     430
                                 425
            420
Glu Lys Leu Glu Glu Tyr Ile Ile Asp Lys Glu Asp Ile Glu Leu Pro
                                                 445
        435
                             440
Ser Gly Lys Gln Glu Tyr Leu Glu Ser Leu Leu Asn Ser Tyr Ile Val
                        455
    450
Lys Thr Ile Ala Glu Leu Arg Ser Glu Lys Asp Glu Leu
                                         475
                    470
465
<210> 39
<211> 1434
<212> DNA
<213> Thermotoga neapolitana
<400> 39
atgaaagaaa ccgctgctgc taaattcgaa cgccagcaca tggacagccc agatctgggt 60
accetggtge cacgeggtte catggeegag ttetteeegg agateeegaa ggtgeagtte 120
gagggcaagg agtccaccaa cccgctcgcc ttcaagttct acgacccgga ggagatcatc 180
gacggcaage egeteaagga ceaceteaag tteteegtgg cettetggea cacettegtg 240
aacgagggc gcgacccgtt cggcgacccg accgccgacc gcccgtggaa ccgctacacc 300
gacccgatgg acaaggeett egeegggtg gacgeeetet tegagttetg egagaagete 360
```

Page 41

```
aacatcgagt acttctgctt ccacgaccgc gacatcgccc cggagggcaa gaccctccgc 420
gagaccaaca agatectega caaggtggtg gagegeatea aggagegeat gaaggaetee 480
aacgtgaage teetetgggg cacegeéaac étettetece accegegeta catgeacgge 540
gccgccacca cetgeteege cgacgtgtte gcctacgeeg cegeecaggt gaagaaggee 600
ctggagatca ccaaggagct gggcggcgag ggctacgtgt tctgggggcgg ccgcgagggc 660
tacgagacco tecteaacac egacetegge ttegagetgg agaacetege eegetteete 720
cgcatggccg tggactacgc caagcgcatc ggcttcaccg gccagttcct catcgagccg 780
aágccgáagg agccgaccáa gcaccágtac gácttcgacg tggccaccgc ctacgccttc 840
ctcaagtccc acggcctcga cgagtacttc aagttcaaca tcgaggccaa ccacgccacc 900
etegeogge acacetteca geacgagetg egeatggee geatectegg caagetegge 960
tecategacy ccaaccaggy egacetecte eteggetggg acaccgacea gttecegace 1020
aacgtgtacg acaccacct cgccatgtac gaggtgatca aggccggcgg cttcaccaag 1080
ggeggeetea acttegaege caaggtgege egegeeteet acaaggtgga ggaeetette 1140
atcggccaca tcgccggcat ggacacette gecetegget tcaaggtgge étacaagete 1200
gtgaaggacg gcgtgctcga caagttcatc gaggagaagt accgctcctt ccgcgagggc 1260
áteggeegeg acategtoga gogeaaggto gacttegaga agetggagga gtácáteate 1320
gacaaggaga ccatcgaget geegteegge aagcaggagt acetggagte eeteateaac 1380
tectacateg tgaagaceat eetggagetg egeteegaga aggaegaget gtga
<210> 40
<211> 477
<212> PRT
<213> Thermotoga neapolitana
<400> 40
Met Lys Glu Thr Ala Ala Ala Lys Phe Glu Arg Gln His Met Asp Ser
                                    10
Pro Asp Leu Gly Thr Leu Val Pro Arg Gly Ser Met Ala Glu Phe Phe
                                                     30
                                25
            20
Pro Glu Ile Pro Lys Val Gln Phe Glu Gly Lys Glu Ser Thr Asn Pro
                                                4.5
                            40
        35
Leu Ala Phe Lys Phe Tyr Asp Pro Glu Glu Ile Ile Asp Gly Lys Pro
                        55
Leu Lys Asp His Leu Lys Phe Ser Val Ala Phe Trp His Thr Phe Val
                                        7.5
Asn Glu Gly Arg Asp Pro Phe Gly Asp Pro Thr Ala Asp Arg Pro Trp
                                    90
                85
Asn Arg Tyr Thr Asp Pro Met Asp Lys Ala Phe Ala Arg Val Asp Ala
                                105
            100
Leu Phe Glu Phe Cys Glu Lys Leu Asn Ile Glu Tyr Phe Cys Phe His
                                                125
                            120
        115
Asp Arg Asp Ile Ala Pro Glu Gly Lys Thr Leu Arg Glu Thr Asn Lys
                                            140
                        135
Ile Leu Asp Lys Val Val Glu Arg Ile Lys Glu Arg Met Lys Asp Ser
                                        155
                    150
145
Asn Val Lys Leu Leu Trp Gly Thr Ala Asn Leu Phe Ser His Pro Arg
                                                         175
                                    170
                165
Tyr Met His Gly Ala Ala Thr Thr Cys Ser Ala Asp Val Phe Ala Tyr
                                                     190
                                185
            180
Ala Ala Ala Gln Val Lys Lys Ala Leu Glu Ile Thr Lys Glu Leu Gly
                                                205
                            200
        195
Gly Glu Gly Tyr Val Phe Trp Gly Gly Arg Glu Gly Tyr Glu Thr Leu
                                            220
                        215
    210
Leu Asn Thr Asp Leu Gly Phe Glu Leu Glu Asn Leu Ala Arg Phe Leu
                                        235
                    230
Arg Met Ala Val Asp Tyr Ala Lys Arg Ile Gly Phe Thr Gly Gln Phe
                                    250
Leu Ile Glu Pro Lys Pro Lys Glu Pro Thr Lys His Gln Tyr Asp Phe
```

265

260

270

```
Asp Val Ala Thr Ala Tyr Ala Phe Leu Lys Ser His Gly Leu Asp Glu
                                                  285
                             280
        275
Tyr Phe Lys Phe Asn Ile Glu Ala Asn His Ala Thr Leu Ala Gly His
                                              300
                         295
Thr Phe Gln His Glu Leu Arg Met Ala Arg Ile Leu Gly Lys Leu Gly
                                          315
305
                     310
Ser Ile Asp Ala Asn Gln Gly Asp Leu Leu Leu Gly Trp Asp Thr Asp
                                                          335
                                     330
                 325
Gln Phe Pro Thr Asn Val Tyr Asp Thr Thr Leu Ala Met Tyr Glu Val
                                 345
                                                      350
            340
Ile Lys Ala Gly Gly Phe Thr Lys Gly Gly Leu Asn Phe Asp Ala Lys
                                                  365
        355
                             360
Val Arg Arg Ala Ser Tyr Lys Val Glu Asp Leu Phe Ile Gly His Ile
                                              380
                         375
    370
Ala Gly Met Asp Thr Phe Ala Leu Gly Phe Lys Val Ala Tyr Lys Leu
                                          395
                     390
Val Lys Asp Gly Val Leu Asp Lys Phe Ile Glu Glu Lys Tyr Arg Ser
                                                          415
                                     410
                 405
Phe Arg Glu Gly Ile Gly Arg Asp Ile Val Glu Gly Lys Val Asp Phe
                                 425
            420
Glu Lys Leu Glu Glu Tyr Ile Ile Asp Lys Glu Thr Ile Glu Leu Pro
                                                  445
                             440
        435
Ser Gly Lys Gln Glu Tyr Leu Glu Ser Leu Ile Asn Ser Tyr Ile Val
                                              460
                         455
Lys Thr Ile Leu Glu Leu Arg Ser Glu Lys Asp Glu Leu
                                         475
                     470
465
<210> 41
<211> 1435
<212> DNA
<213> Thermotoga maritima
<400> 41
atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60
atggctagca tgactggtgg acagcaaatg ggtcggatcc ccatggccga gttcttcccg 120
gagatecega agatecagtt egagggeaag gagtecacea accegetege etteegette 180
tacgacccga acgaggtgat cgacggcaag ccgctcaagg accacctcaa gttctccgtg 240
geettetgge acaeettegt gaacgaggge egegaceegt teggegacee gaeegeegag 300
cgcccgtgga accgcttete cgacccgatg gacaaggeet tegecegegt ggacgeeete 360
ttcgagttct gcgagaaget caacatcgag tacttctgct tccacgaccg cgacatcccc 420
cggagggcaa gacceteege gagaceaaca agateetega caaggtggtg gagegeatea 480
aggagegeat gaaggaetee aaegtgaage teetetgggg cacegecaae etetteteee 540
accegegeta catgeacgge geogecacca cetgeteege egacgtgtte geetacgeeg 600
ccgcccaggt gaagaaggcc ctggagatca ccaaggagct gggcggcgag ggctacgtgt 660
tetggggegg eegegagge tacgagaeee teetcaacae egacetegge etggagetgg 720
agaacctege eegetteete egeatggeeg tggagtaege caagaagate ggetteaceg 780
gccagtteet categageeg aageegaagg ageegaeeaa geaeeagtae gettegaegt 840
ggccaccgcc tacgccttcc tcaagaacca cggcctcgac gagtacttca agttcaacat 900
cgaggccaac cacgccacc tegeoggcca cacettecag cacgagetge geatggeeg 960 cateetegge aagetegget ceategacge caaccaggge gaceteetee teggetggga 1020
caccgaccag ttcccgacca acatctacga caccaccete gecatgtacg aggtgatcaa 1080
ggccggcggc ttcaccaagg gcggcctcaa cttcgacgcc aaggtgcgcc gcgcctccta 1140
caaggiggag gacetettea teggecacat egeeggeatg gacacetteg ceeteggett 1200
caagatogec tacaageteg ccaaggacgg cgtgttegae aagtteateg aggagaagta 1260
cegeteette aaggagggea teggeaagga gategtggag ggeaagaeeg acttegagaa 1320
getggaggag tacatcateg acaaggagga categagetg eegteeggea ageaggagta 1380
```

cetggagtee etecteaact ectacategt gaagaceate geegagetge getga 1435 <210> 42 <211> 478 <212> PRT <213> Thermotoga maritima <400> 42 Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 10 Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg 3.0 25 2.0 Ile Pro Met Ala Glu Phe Phe Pro Glu Ile Pro Lys Ile Gln Phe Glu 45 40 Gly Lys Glu Ser Thr Asn Pro Leu Ala Phe Arg Phe Tyr Asp Pro Asn 55 5.0 Glu Val Ile Asp Gly Lys Pro Leu Lys Asp His Leu Lys Phe Ser Val 7.5 70 Ala Phe Trp His Thr Phe Val Asn Glu Gly Arg Asp Pro Phe Gly Asp 90 85 Pro Thr Ala Glu Arg Pro Trp Asn Arg Phe Ser Asp Pro Met Asp Lys 110 105 Ala Phe Ala Arg Val Asp Ala Leu Phe Glu Phe Cys Glu Lys Leu Asn 125 120 115 Ile Glu Tyr Phe Cys Phe His Asp Arg Asp Ile Ala Pro Glu Gly Lys 135 140 Thr Leu Arg Glu Thr Asn Lys Ile Leu Asp Lys Val Val Glu Arg Ile 150 155 Lys Glu Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr Ala 165 170 175 Asn Leu Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr Cys 190 185 180 Ser Ala Asp Val Phe Ala Tyr Ala Ala Ala Gln Val Lys Lys Ala Leu 205 200 195 Glu Ile Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly Gly 220 215 Arg Glu Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Leu Glu Leu 230 235 Glu Asn Leu Ala Arg Phe Leu Arg Met Ala Val Glu Tyr Ala Lys Lys 255 250 245 Ile Gly Phe Thr Gly Gln Phe Leu Ile Glu Pro Lys Pro Lys Glu Pro 270 265 260 Thr Lys His Gln Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe Leu 285 280 275 Lys Asn His Gly Leu Asp Glu Tyr Phe Lys Phe Asn Ile Glu Ala Asn 295 His Ala Thr Leu Ala Gly His Thr Phe Gln His Glu Leu Arg Met Ala 315 310 Arg Ile Leu Gly Lys Leu Gly Ser Ile Asp Ala Asn Gln Gly Asp Leu 335 330 325 Leu Leu Gly Trp Asp Thr Asp Gln Phe Pro Thr Asn Ile Tyr Asp Thr 350 345 340 Thr Leu Ala Met Tyr Glu Val Ile Lys Ala Gly Gly Phe Thr Lys Gly 365 360 355 Gly Leu Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val Glu 375 380 Asp Leu Phe Ile Gly His Ile Ala Gly Met Asp Thr Phe Ala Leu Gly 395 390

```
Phe Lys Ile Ala Tyr Lys Leu Ala Lys Asp Gly Val Phe Asp Lys Phe
                                                         415
                                    410
                405
Ile Glu Glu Lys Tyr Arg Ser Phe Lys Glu Gly Ile Gly Lys Glu Ile
                                                    430
                                425
            420
Val Glu Gly Lys Thr Asp Phe Glu Lys Leu Glu Glu Tyr Ile Ile Asp
                                                445
                            440
        435
Lys Glu Asp Ile Glu Leu Pro Ser Gly Lys Gln Glu Tyr Leu Glu Ser
                        455
Leu Leu Asn Ser Tyr Ile Val Lys Thr Ile Ala Glu Leu Arg
                    470
<210> 43
<211> 1436
<212> DNA
<213> Thermotoga neapolitana
<400> 43
atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60
atggctagca tgactggtgg acagcaaatg ggtcggatcc ccatggccga gttcttcccg 120
gagatecega aggtgeagtt egagggeaag gagteeacea accegetege etteaagtte 180
tacgaccegg aggagateat egacggeaag cegeteaagg accaecteaa gtteteegtg 240
geettetgge acacettegt gaacgaggge egegaceegt teggegacee gaeegeegae 300
egecegtigga acceptacae egaceegatig gacaaggeet tegecegegt ggacgeeete 360
ttcgagttct gcgagaagct caacatcgag tacttctgct tccacgaccg cgacatcccc 420
cggagggcaa gacceteege gagaceaaca agateetega caaggtggtg gagegeatea 480
aggagegeat gaaggactee aacgtgaage teetetgggg caeegeeaac etetteteee 540
accegegeta catgeacgge geogecacca cetgeteege egacgtgtte geetaegeeg 600
ccgcccaggt gaagaaggcc ctggagatca ccaaggagct gggcggcgag ggctacgtgt 660
totgggggg cogogagggo tacgagacco tootcaacac cgacotoggo ttogagotgg 720
agaacctege eegetteete egeatggeeg tggactaege caagegeate ggetteaceg 780
gccagttect categageeg aageegaagg ageegaecaa gcaccagtae gaettegaeg 840
tggccaccgc ctacgccttc ctcaagtccc acggcctcga cgagtacttc aagttcaaca 900
tegaggecaa ceaegecace etegeeggee acaeetteea geaegagetg egeatggeee 960
gcatcotogg caagetogge tocatogacy coaaccaggg cgacetoete etoggetggg 1020
acaccgacca gttcccgacc aacgtgtacg acaccaccct cgccatgtac gaggtgatca 1080
aggccggcgg cttcaccaag ggcggcctca acttcgacgc caaggtgcgc cgcgcctcct 1140
acaaggtgga ggacetette ateggecaca tegeoggeat ggacacette geeetegget 1200
tcaaggtggc ctacaagctc gtgaaggacg gcgtgctcga caagttcatc gaggagaagt 1260
accectectt cogogagge atcegeces acategtega gegeaaggte gacttegaga 1320
agctggagga gtacatcatc gacaaggaga ccatcgagct gccgtccggc aagcaggagt 1380
acctggagtc cctcatcaac tcctacatcg tgaagaccat cctggagctg cgctga
<210> 44
<211> 478
<212> PRT
<213> Thermotoga neapolitana
<400> 44
Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro
                                    1.0
Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg
                                25
                                                    3.0
            20
Ile Pro Met Ala Glu Phe Phe Pro Glu Ile Pro Lys Val Gln Phe Glu
                            40
        35
Gly Lys Glu Ser Thr Asn Pro Leu Ala Phe Lys Phe Tyr Asp Pro Glu
                        55
                                            60
    50
Glu Ile Ile Asp Gly Lys Pro Leu Lys Asp His Leu Lys Phe Ser Val
```

```
7.5
                 70
Ala Phe Trp His Thr Phe Val Asn Glu Gly Arg Asp Pro Phe Gly Asp
                                             95
                               90
            85
Pro Thr Ala Asp Arg Pro Trp Asn Arg Tyr Thr Asp Pro Met Asp Lys
          100
                 105
Ala Phe Ala Arg Val Asp Ala Leu Phe Glu Phe Cys Glu Lys Leu Asn
              120
                                      125
 115
Ile Glu Tyr Phe Cys Phe His Asp Arg Asp Ile Ala Pro Glu Gly Lys
 130
                                      140
Thr Leu Arg Glu Thr Asn Lys Ile Leu Asp Lys Val Val Glu Arg Ile
              150
                                 155
Lys Glu Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr Ala
                                                175
                           170
            165
Asn Leu Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr Cys
        180
                           185
                                            190
Ser Ala Asp Val Phe Ala Tyr Ala Ala Ala Gln Val Lys Lys Ala Leu
              200
                                        205
      195
Glu Ile Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly Gly
                           220
           215
Arg Glu Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Phe Glu Leu
              230
                                  235
225
Glu Asn Leu Ala Arg Phe Leu Arg Met Ala Val Asp Tyr Ala Lys Arg
          245
                             250
                                               255
Ile Gly Phe Thr Gly Gln Phe Leu Ile Glu Pro Lys Pro Lys Glu Pro
                        265
         260
Thr Lys His Gln Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe Leu
275 280 285
                       280
    275
Lys Ser His Gly Leu Asp Glu Tyr Phe Lys Phe Asn Ile Glu Ala Asn
                            300
              295
  290
His Ala Thr Leu Ala Gly His Thr Phe Gln His Glu Leu Arg Met Ala
       310 315
Arg Ile Leu Gly Lys Leu Gly Ser Ile Asp Ala Asn Gln Gly Asp Leu 325 330 335
Leu Leu Gly Trp Asp Thr Asp Gln Phe Pro Thr Asn Val Tyr Asp Thr
                          345
          340
                                            350
Thr Leu Ala Met Tyr Glu Val Ile Lys Ala Gly Gly Phe Thr Lys Gly
                       360
                                         365
Gly Leu Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val Glu
                    375
                                      380
Asp Leu Phe Ile Gly His Ile Ala Gly Met Asp Thr Phe Ala Leu Gly
                390
                               395
Phe Lys Val Ala Tyr Lys Leu Val Lys Asp Gly Val Leu Asp Lys Phe 405 410 415
Ile Glu Glu Lys Tyr Arg Ser Phe Arg Glu Gly Ile Gly Arg Asp Ile 420 425 430
Val Glu Gly Lys Val Asp Phe Glu Lys Leu Glu Glu Tyr Ile Ile Asp
                     440
                                        445
      435
Lys Glu Thr Ile Glu Leu Pro Ser Gly Lys Gln Glu Tyr Leu Glu Ser
                   455 460
Leu Ile Asn Ser Tyr Ile Val Lys Thr Ile Leu Glu Leu Arg
```

<210> 45

<211> 1095

<212> PRT

<213> Aspergillus shirousami

-10	0 > 4	c											-		
Ala 1	0> 4 Thr	Pro	Ala	Asp	Trp	Arg	Ser	Gln	Ser 10	Ile	Tyr	Phe	Leu	Leu 15	Thr
Asp	Arg	Phe	Ala 20	Arg	Thr	Asp	Gly	Ser 25		Thr	Ala	Thr	Cys 30	Asn	Thr
		35					40					45		Asp	
Leu	50					55					60			Thr	
Val 65					70					75				Tyr	80
	_			85					90					Gly 95	
			100					105					110	Gly	
_		115					120					125		Gly	
	130					135					140			Gln	
145					150					155				Thr	160
				165					170					Asp 175	
			180					185					190	Val	
		195					200					205		Thr	
-	210					215					220			Ala Thr	
225				Val	230					235					240 Tyr
	_			245					250					255 Asp	-
			260					265					270	Thr	
=		275					280					285		Ser	
	290					295					300			Ile	
305					310					315				Tyr	320
	_	_		325					330					335 Gly	
_			340					345					350	Ala	
		355					360					365		Lys	
-	370					375					380			Gly	
385					390					395				Ser	400
-	_			405					410					415 Gly	
-			420	Val				425					430	Ser	
		435					440					445		Leu	
- 1 y			0									_			-

	450					455					460				
Pro 465	Thr				Ala 470					475					480
Ala				485	Trp				490					495	
Ala			500		Ile			505					510		
Asp	Ser	515			Val		520					525			
Phe	Tyr 530				Arg	535					540				
545					Gly 550					555					560
-				565	Ala				570					575	
-			580		Gly			585					590		
		595			Ser		600					605			
Leu	610				Met	615					620				
Gly 625	=				Ala 630					635					640
_				645	Ala				650					655	
-			660		Gly			665					670		
Arg	Ala	675			Gly		680					685			
,	Ser 690	_	_		Ser	695					700				
Ser 705					Ser 710					715					720
Ser				725	Asn				730					735	
Pro			740		Asp			745					750		
Ala		755			Lys		760					765			
	770				Leu	775					780				
785					Tyr 790					795					800
				805	Gln				810					815	
			820		Ile			825					830		
	-	835			Ala		840					845			
Tyr	Ser 850	Ser	Ile	Val	Ser	Ala 855	Val	Lys	Thr	Phe	Ala 860	Asp	Gly	Phe	Val
Ser 865	Ile				His 870					875					880
Phe				885	Gly				890					895	
Ser	Tyr	Ala	Ala 900	Leu	Leu	Thr	Ala	Asn 905	Asn	Arg	Arg	Asn	Ser 910	Val	Val
Pro	Pro	Ser		Gly	Glu	Thr	Ser		Ser	Ser	Val	Pro	Gly	Thr	Суѕ

Page 48

```
925
                             920
       915
Ala Ala Thr Ser Ala Ser Gly Thr Tyr Ser Ser Val Thr Val Thr Ser
                         935
                                             940
    930
Trp Pro Ser Ile Val Ala Thr Gly Gly Thr Thr Thr Ala Thr Thr
                                         955
                     950
Thr Gly Ser Gly Gly Val Thr Ser Thr Ser Lys Thr Thr Thr Ala
                                     970
                                                          975
                965
Ser Lys Thr Ser Thr Thr Ser Ser Thr Ser Cys Thr Thr Pro Thr
                                                      990
                                 985
            980
Ala Val Ala Val Thr Phe Asp Leu Thr Ala Thr Thr Tyr Gly Glu
                                                 1005
                             1000
Asn Ile Tyr Leu Val Gly Ser Ile Ser Gln Leu Gly Asp Trp Glu Thr
                         1015
                                             1020
    1010
Ser Asp Gly Ile Ala Leu Ser Ala Asp Lys Tyr Thr Ser Ser Asn Pro
                                       1035
                    1030
1025
Pro Trp Tyr Val Thr Val Thr Leu Pro Ala Gly Glu Ser Phe Glu Tyr
                                     1050
                1045
Lys Phe Ile Arg Val Glu Ser Asp Asp Ser Val Glu Trp Glu Ser Asp
                                 1065
                                                     1070
            1060
Pro Asn Arg Glu Tyr Thr Val Pro Gln Ala Cys Gly Glu Ser Thr Ala
                             1080
        1075
Thr Val Thr Asp Thr Trp Arg
<210> 46
<211> 3285
<212> DNA
<213> Aspergillus shirousami
<400> 46
gecacecegg eegactggeg eteccagtee atetaettee teetcacega eegettegee 60
cgcaccgacg getecaccae egecacetge aacacegeeg accagaagta etgeggegge 120
acctggcagg gcatcatcga caagctcgac tacatccagg gcatgggctt caccgccatc 180
tggatcacco cggtgaccgc ccagctcccg cagaccaccg cctacggcga cgcctaccac 240
ggctactggc agcaggacat ctactcctc aacgagaact acggcaccgc cgacgacctc 300
aaggeeetet eeteegeeet eeaegagege ggeatgtace teatggtgga egtggtggee 360
aaccacatgg gctacgacgg cgccggctcc tccgtggact actccgtgtt caagccgttc 420
tecteccagg actaetteca ecegttetge tteatecaga actaegagga ecagaeceag 480
gtggaggact gctggctcgg cgacaacacc gtgtccctcc cggacctcga caccaccaag 540
gacgtggtga agaacgagtg gtacgactgg gtgggctccc tcgtgtccaa ctactccatc 600
gacggcctcc gcatcgacac cgtgaagcac gtgcagaagg acttctggcc gggctacaac 660
aaggccgccg gcgtgtactg catcggcgag gtgctcgacg tggacccggc ctacacctgc 720 ccgtaccaga acgtgatgga cggcgtgctc aactacccga tctactaccc gctcctcaac 780
gccttcaagt ccacctccgg ctcgatggac gacctctaca acatgatcaa caccgtgaag 840
tecgaetgee eggaeteeae eeteetegge acettegtgg agaaceaega eaaceegege 900
ttegeeteet acaccaacga categeeete gecaagaacg tggeegeett cateateete 960
aacgacggca tocogatoat otacgoogge caggagcage actacgoogg oggcaacgae 1020
ceggecaace gegaggecae etggetetee ggetaceega eegacteega getgtacaag 1080
ctcatcgcct ccgccaacgc catccgcaac tacgccatct ccaaggacac cggcttcgtg 1140
acctacaaga actggccgat ctacaaggac gacaccacca tcgccatgcg caagggcacc 1200
gacggetece agategtgae catectetee aacaagggeg ceteeggega etectacace 1260
ctctccctct ccggcgccgg ctacaccgcc ggccagcagc tcaccgaggt gatcggctgc 1320
accaccytya ccytygyctc cyacyycaac ytyccygtyc cyatyyccyg cygcctcccy 1380
cgcgtgctct acccgaccga gaagctcgcc ggctccaaga tatgctcctc ctccaagccg 1440
gccacceteg acteetgget etecaacgag gccaccgtgg ecegeacege cateetcaac 1500
aacatcggcg ccgacggcgc ctgggtgtcc ggcgccgact ccggcatcgt ggtggcctcc 1560
ccqtccaccq acaacccqga ctacttctac acctggaccc gcgactccgg catcgtgctc 1620
```

```
aagaccctcg tggacctctt ccgcaacggc gacaccgacc tcctctccac catcgagcac 1680
tacateteet eccaggeeat cateeaggge gtgteeaace egteeggega ceteteetee 1740
ggcggcctcg gcgagccgaa gttcaacgtg gacgagaccg cctacgccgg ctcctggggc 1800
cgcccgcage gegacggccc ggccctccgc gccaccgcca tgatcggctt cggccagtgg 1860
ctectégaéa acggetaeac étecgeegée accgagateg tgtggééget egtgegéaac 1920
gaceteteet acgtggeeca gtactggaac cagacegget acgacetetg ggaggaggtg 1980
aacggeteet cettetteac categoegtg cageacegeg ceetegtgga gggeteegee 2040
ttcgccaccg ccgtgggctc ctcctgctcc tggtgcgact cccaggcccc gcagatcctc 2100
tgctacctcc agtccttctg gaccggctcc tacatcctcg ccaacttcga ctcctcccgc 2160
tccggcaagg acaccaacac cctcctcggc tccatccaca ccttcgaccc ggaggccggc 2220
tgcgacgact ccaccttcca gccgtgctcc ccgcgcgccc tcgccaacca caaggaggtg 2280
gtggacteet teegeteeat etacaceete aacgacgee teteegaete egaggeegtg 2340
gccgtgggcc gctacccgga ggactcctac tacaacggca acccgtggtt cctctgcacc 2400
ctcgccgccg ccgagcagct ctacgacgcc ctctaccagt gggacaagca gggctccctg 2460
gagatcaccg acgtgtccct cgacttcttc aaggccctct actccggcgc cgccaccggc 2520
acctactect ectectecte cacetactee tecategtgt eegeogtgaa gacettegee 2580
gacggetteg tgtecategt ggagaceeae geegeeteea aeggeteeet eteegageag 2640
ttcqacaagt ccgacggcga cgagctgtcc gcccgcgacc tcacctggtc ctacgccgcc 2700
ctecteaceg ceaacaaceg eegcaactee gtggtgeege egteetgggg egagacetee 2760
geotectecg tgeogggeac etgegeegee acetecgeet eeggeaceta etectecgtg 2820
accytgacct cotggoogto catcytygec accygoggea ceaecaceae cyceaecace 2880
accggctccg gcggcgtgac ctccacctcc aagaccacca ccaccgcctc caagacctcc 2940
accaccact cotocacct otgcaccacc ocgaccgocg tggcogtgac ottogacctc 3000
accgccacca ccacctacgg cgagaacatc tacctcgtgg gctccatctc ccagctcggc 3060
gactgggaga cctccgacgg catcgccctc tccgccgaca agtacacctc ctccaacccg 3120
ccgtggtacg tgaccgtgac cctcccggcc ggcgagtcct tcgagtacaa gttcatccgc 3180
gtggagtccg acgactccgt ggagtgggag tccgacccga accgcgagta caccgtgccg 3240
caggeetgeg gegagteeae egecacegtg accgaeacet ggege
                                                                   3285
<210> 47
<211> 679
<212> PRT
<213> Thermoanaerobacterium thermosaccharolyticum
<400> 47
Val Leu Ser Gly Cys Ser Asn Asn Val Ser Ser Ile Lys Ile Asp Arg
                                    10
 1
Phe Asn Asn Ile Ser Ala Val Asn Gly Pro Gly Glu Glu Asp Thr Trp
                                25
            20
Ala Ser Ala Gln Lys Gln Gly Val Gly Thr Ala Asn Asn Tyr Val Ser
        35
                            40
                                                45
Arg Val Trp Phe Thr Leu Ala Asn Gly Ala Ile Ser Glu Val Tyr Tyr
    50
                        55
Pro Thr Ile Asp Thr Ala Asp Val Lys Glu Ile Lys Phe Ile Val Thr
                                        7.5
                    70
Asp Gly Lys Ser Phe Val Ser Asp Glu Thr Lys Asp Ala Ile Ser Lys
                                    90
                                                        95
                8.5
Val Glu Lys Phe Thr Asp Lys Ser Leu Gly Tyr Lys Leu Val Asn Thr
                                                    110
                                105
            100
Asp Lys Lys Gly Arg Tyr Arg Ile Thr Lys Glu Ile Phe Thr Asp Val
        115
                            120
                                                125
Lys Arg Asn Ser Leu Ile Met Lys Ala Lys Phe Glu Ala Leu Glu Gly
                        135
                                            140
    130
Ser Ile His Asp Tyr Lys Leu Tyr Leu Ala Tyr Asp Pro His Ile Lys
                                        155
                                                            160
                    150
Asn Gln Gly Ser Tyr Asn Glu Gly Tyr Val Ile Lys Ala Asn Asn Asn
                                                        175
                                    170
Glu Met Leu Met Ala Lys Arg Asp Asn Val Tyr Thr Ala Leu Ser Ser
```

			180					185					190		
Asn	Ile	Gly 195	Trp	Lys	Gly	Tyr	Ser 200	Ile	Gly	Tyr	Tyr	Lys 205	Val	Asn	Asp
Ile	Met 210	Thr	Asp	Leu	Asp	Glu 215	Asn	Lys	Gln	Met	Thr 220	Lys	His	Tyr	Asp
225	Ala	_			230		Glu			235					240
				245	Ile	Val	Leu		250					255	
		_	260				Thr	265					270		
-		275					Trp 280					285			
	290		_			295	Ser				300				
305					310		Thr			315					320
				325			Gly		330					335	
-			340				Asp	345					350		
		355					Ser 360					365			
Ala	370					375	Gly				380				
Ser 385	_	_			390		Ser			395					400
				405			Leu		410					415	
		_	420				Phe	425					430		
		435					Ile 440					445			
	450					455	Thr				460				
465	_				470		Gln			475					480
_				485			Leu		490					495	
_			500				Arg	505					510		
	_	515					Ala 520					525			
_	530					535	Phe				540				
545					550		Ile			555					560
				565			Pro		570					575	
			580				Pro	585					590		
	_	595					Pro 600					605			
	610					615	Asp				620				
625	-				630		Gly			635					640
Asp	Thr	Gly	Leu	Pro	Thr	Asp	Ser	Ala	Ser	Pro	Leu	ASN	Trp	нта	nıs

```
650
                 645
Ala Glu Tyr Val Ile Leu Phe Ala Ser Asn Ile Glu His Lys Val Leu
                              665
             660
Asp Met Pro Asp Ile Val Tyr
         675
<210> 48
<211> 2037
<212> DNA
<213> Thermoanaerobacterium thermosaccharolyticum
<220>
<223> synthetic
<400> 48
gtgctctccg gctgctccaa caacgtgtcc tccatcaaga tcgaccgctt caacaacatc 60
tccgccgtga acggcccggg cgaggaggac acctgggcct ccgcccagaa gcagggcgtg 120
ggcaccgcca acaactacgt gtcccgcgtg tggttcaccc tcgccaacgg cgccatctcc 180 gaggtgtact acccgaccat cgacaccgcc gacgtgaagg agatcaagtt catcgtgacc 240
gacggcaagt cottegtgte egacgagace aaggacgcea tetecaaggt ggagaagtte 300
accgacaagt coctoggota caagetogtg aacaccgaca agaagggoog ctaccgcate 360
accaaggaaa tetteacega egtgaagege aacteeetea teatgaagge caagttegag 420
geoetegagg getecateca egactacaag etetaceteg cetacgacee geacateaag 480
aaccagggct cctacaacga gggctacgtg atcaaggcca acaacaacga gatgctcatg 540
gecaagegeg acaaegtgta cacegeette tectecaaca teggetggaa gggetactee 600
atcggctact acaaggtgaa cgacatcatg accgacctcg acgagaacaa gcagatgacc 660
aagcactacg acteegeeg eggeaacate ategagggeg eegagatega eeteaceaag 720 aacteegagt tegagategt geteteette ggeggeteeg acteegagge egecaagace 780
geeetegaga eeeteggega ggaetacaac aaceteaaga acaactacat egaegagtgg 840
accaagtact gcaacacct caacaacttc aacggcaagg ccaactccct ctactacaac 900
tocatgatga toctoaaggo otocgaggao aagaccaaca agggogoota catogootoo 960
ctctccatcc cgtggggcga cggccagcgc gacgacaaca ccggcggcta ccacctcgtg 1020
tggtcccgcg acctctacca cgtggccaac gccttcatcg ccgccggcga cgtggactcc 1080
gccaaccgct ccctcgacta cctcgccaag gtggtgaagg acaacggcat gatcccgcag 1140
aacacctgga totocggcaa googtactgg acctocatoo agotogacga goaggccgac 1200
cogateatec tetectaceg ceteaagege tacgacetet acgaetecet egtgaageeg 1260
ctcgccgact tcatcatcaa gatcggcccg aagaccggcc aggagcgctg ggaggagatc 1320
ggeggetact ecceggeeac gatggeegee gaggtggeeg geeteacetg egeegeetac 1380
atogoogage agaacaagga ctacgagtoo goocagaagt accaggagaa ggoogacaac 1440
tggcagaage teategacaa ecteacetae acegagaacg geeegetegg caacggeeag 1500
tactacatée geategeegg ecteteegae ecgaaegeeg aetteatgat caacategee 1560
aacggcggcg gcgtgtacga ccagaaggag atcgtggacc cgtccttcct cgagctggtg 1620
cgcctcggcg tgaagtccgc cgacgacccg aagatcctca acaccctcaa ggtggtggac 1680
tecaccatea aggtggacae ceegaaggge cegteetggt ategetacaa ecacgaegge 1740
tacggcgagc cgtccaagac cgagctgtac cacggcgccg gcaagggccg cctctggccg 1800
ctcctcaccg gcgagcgcgg catgtacgag atcgccgccg gcaaggacgc caccccgtac 1860
gtgaaggcga tggagaagtt cgccaacgag ggcggcatca tctccgagca ggtgtgggag 1920
gacaccggcc tocogaccga ctocgcotco cogotcaact gggcccacgc cgagtacgtg 1980
atcetetteg cetecaacat egageacaag gtgetegaca tgeeggacat egtgtae
<210> 49
<211> 579
<212> PRT
<213> Rhizopus oryzae
Ala Ser Ile Pro Ser Ser Ala Ser Val Gln Leu Asp Ser Tyr Asn Tyr
```

1				5					10					15	
			20	Phe				25				Asn	30		
Ser	Lys	Lys 35	Val	Thr	Val	Ile	Tyr 40	Ala	Asp	Gly	Ser	Asp 45	Asn	Trp	Asn
	50					55					60	Pro			
65					70					75		Asn			80
				85					90			Tyr		95	
			100					105				Pro	110	Thr	
		115					120		Pro			125		Thr	
	130					135					140	Gly			
145					150					155		Arg			160
Leu	Arg			165					170			Phe		175	
	Leu		180					185				Trp	190		
		195					200					Asn 205			
	210					215					220	Tyr			
225					230					235		Cys			240
	-			245					250			Ala		255	
			260					265				Phe	270		
		275				•	280					Tyr 285			
	290	_				295					300	Val			
305					310					315		Asn			320
				325					330			Leu		335	
			340					345				Thr	350		
	Ala	355					360					Trp 365			
	370					375					380	Gly			
385	_				390					395		Leu			400
-		_		405					410			Leu		415	
			420					425				Ile	430		
		435					440					Pro 445			
_	450					455					460	Phe			
Thr	Gly	Tyr	Ala	Glu	Leu	Tyr	Tyr	Arg	Ala	Ile	Lys	Glu	Trp	Ile	Gly

```
475
                                                              480
                     470
Asn Gly Gly Val Thr Val Ser Ser Ile Ser Leu Pro Phe Phe Lys Lys
                                                          495
                                     490
                485
Phe Asp Ser Ser Ala Thr Ser Gly Lys Lys Tyr Thr Val Gly Thr Ser
                                                      510
                                 505
            500
Asp Phe Asn Asn Leu Ala Gln Asn Ile Ala Leu Ala Ala Asp Arg Phe
                                                  525
                             520
Leu Ser Thr Val Gln Leu His Ala His Asn Asn Gly Ser Leu Ala Glu
                         535
                                             540
    530
Glu Phe Asp Arg Thr Thr Gly Leu Ser Thr Gly Ala Arg Asp Leu Thr
                                          555
                     550
Trp Ser His Ala Ser Leu Ile Thr Ala Ser Tyr Ala Lys Ala Gly Ala
                                     570
                565
Pro Ala Ala
<210> 50
<211> 1737
<212> DNA
<213> Rhizopus oryzae
<400> 50
geotecated egtecteege etecgtgeag etegacteet acaactaega eggeteeace 60
ttctccggca aaatctacgt gaagaacatc gcctactcca agaaggtgac cgtgatctac 120
geogaegget ecgaeaactg gaacaacaac ggeaacacca tegeogeete etacteegee 180
ccgatctccg gctccaacta cgagtactgg accttctccg cctccatcaa cggcatcaag 240
gagttetaca teaagtacga ggtgteegge aagacetact acgacaacaa caacteegee 300
aactaccagg tgtccacctc caagecgace accaccaccg ccaccgccac caccaccacc 360
geoegteca cetecaceae cacecegeeg tecegeteeg ageoggeeae ettecegace 420
ggcaacteca coatetecte etggateaag aageaggagg geateteeeg ettegeeatg 480
etcogcaaca toaaccogco gggotocgco accggottoa togcogcoto cototocaco 540
geoggeogg actactacta egeotggace egegacgeog eceteacete caaegtgate 600
gtgtacgagt acaacaccac cctctccggc aacaagacca tcctcaacgt gctcaaggac 660
tacgtgacet teteogtgaa gacceagtee acetecaceg tgtgcaactg ceteggegag 720
ccgaagttea acceggaege étecggetae accggegeet ggggeegeee geagaacgae 780
ggcccggccg agcgccac caccttcatc ctcttcgccg actcctacct cacccagacc 840
aaggacgeet ectaegtgae eggeaceete aageeggeea tetteaagga eetegaétae 900 gtggtgaacg tgtggteeaa eggetgette gaeetetggg aggaggtgaa eggegtgeae 960
ttctacaccc tcatggtgat gcgcaagggc ctcctcctcg gcgccgactt cgccaagcgc 1020
aacggcgact ccacccgcgc ctccacctac tcctccaccg cctccaccat cgccaacaaa 1080
atctcctcct totgggtgtc ctccaacaac tggatacagg tgtcccagtc cgtgaccggc 1140
ggcgtgtcca agaagggcct cgacgtgtcc accetecteg eegecaacet eggeteegtg 1200
gacgacgget tetteacece gggeteegag aagateeteg eeacegeegt ggeegtggag 1260
gactectteg ecteceteta ecegateaac aagaacetee egtectacet eggeaactee 1320
ateggeeget acceggagga cacetacaac ggeaacggea acteccaggg caacteetgg 1380
tteetegeeg tgaceggeta egeegagetg tactacegeg ceateaagga gtggategge 1440
aacggcggcg tgaccgtgtc ctccatctcc ctcccgttct tcaagaagtt cgactcctcc 1500
gccacctccg gcaagaagta caccgtgggc acctccgact tcaacaacct cgcccagaac 1560
ategeceteg eegeegaceg ettectetee acegtgeage tecaegeeca caacaacgge 1620
tecetegoog aggagttega eegeaceace ggeeteteea eeggegeeeg egaceteace 1680
tggtcccacg cctccctcat caccgcctcc tacgccaagg ccggcgcccc ggccgcc
<210> 51
<211> 439
<212> PRT
```

<213> Artificial Sequence

<223> synthetic <400> 51 Met Ala Lys His Leu Ala Ala Met Cys Trp Cys Ser Leu Leu Val Leu 10 1 5 Val Leu Leu Cys Leu Gly Ser Gln Leu Ala Gln Ser Gln Val Leu Phe 2.0 25 Gln Gly Phe Asn Trp Glu Ser Trp Lys Lys Gln Gly Gly Trp Tyr Asn 45 40 Tyr Leu Leu Gly Arg Val Asp Asp Ile Ala Ala Thr Gly Ala Thr His 55 Val Trp Leu Pro Gln Pro Ser His Ser Val Ala Pro Gln Gly Tyr Met 70 75 Pro Gly Arg Leu Tyr Asp Leu Asp Ala Ser Lys Tyr Gly Thr His Ala 90 Glu Leu Lys Ser Leu Thr Ala Ala Phe His Ala Lys Gly Val Gln Cys 105 110 100 Val Ala Asp Val Val Ile Asn His Arg Cys Ala Asp Tyr Lys Asp Gly 120 115 Arg Gly Ile Tyr Cys Val Phe Glu Gly Gly Thr Pro Asp Ser Arg Leu 135 140 Asp Trp Gly Pro Asp Met Ile Cys Ser Asp Asp Thr Gln Tyr Ser Asn 150 155 Gly Arg Gly His Arg Asp Thr Gly Ala Asp Phe Ala Ala Pro Asp 165 170 Ile Asp His Leu Asn Pro Arg Val Gln Glu Leu Ser Asp Trp Leu 180 185 190 Asn Trp Leu Lys Ser Asp Leu Gly Phe Asp Gly Trp Arg Leu Asp Phe 195 200 205 195 Ala Lys Gly Tyr Ser Ala Ala Val Ala Lys Val Tyr Val Asp Ser Thr 215 210 Ala Pro Thr Phe Val Val Ala Glu Ile Trp Ser Ser Leu His Tyr Asp 230 235 Gly Asn Gly Glu Pro Ser Ser Asn Gln Asp Ala Asp Arg Gln Glu Leu 250 255 245 Val Asn Trp Ala Gln Ala Val Gly Gly Pro Ala Ala Ala Phe Asp Phe 260 265 Thr Thr Lys Gly Val Leu Gln Ala Ala Val Gln Gly Glu Leu Trp Arg 275 280 285 Met Lys Asp Gly Asn Gly Lys Ala Pro Gly Met Ile Gly Trp Leu Pro 295 300 Glu Lys Ala Val Thr Phe Val Asp Asn His Asp Thr Gly Ser Thr Gln 310 315 305 Asn Ser Trp Pro Phe Pro Ser Asp Lys Val Met Gln Gly Tyr Ala Tyr 330 335 325 Ile Leu Thr His Pro Gly Thr Pro Cys Ile Phe Tyr Asp His Val Phe 340 345 350 Asp Trp Asn Leu Lys Gln Glu Ile Ser Ala Leu Ser Ala Val Arg Ser 360 355 Arg Asn Gly Ile His Pro Gly Ser Glu Leu Asn Ile Leu Ala Ala Asp 375 380 Gly Asp Leu Tyr Val Ala Lys Ile Asp Asp Lys Val Ile Val Lys Ile 390 395 385 Gly Ser Arg Tyr Asp Val Gly Asn Leu Ile Pro Ser Asp Phe His Ala 405 410 415 Val Ala His Gly Asn Asn Tyr Cys Val Trp Glu Lys His Gly Leu Arg 425

<220>

Page 55

```
Val Pro Ala Gly Arg His His
         435
<210> 52
<211> 1320
<212> DNA
<213> Artificial Sequence
<220> -
<223> synthetic
<400> 52
atggcgaage acttggctge catgtgctgg tgcagectee tagtgcttgt actgetetge 60
ttgggctccc agetggccca atcccaggtc ctcttccagg ggttcaactg ggagtcgtgg 120
aagaagcaag gtgggtggta caactacctc ctggggcggg tggacgacat cgccgcgacg 180
ggggccacgc acgtctggct cccgcagccg tcgcactcgg tggcgccgca ggggtacatg 240
cccqqccqqc tctacqacct ggacqcqtcc aagtacqqca cccacqcqqa gctcaaqtcq 300
ctcaccgcgg cgttccacgc caagggcgtc cagtgcgtcg ccgacgtcgt gatcaaccac 360
cgctgcgccg actacaagga cggccgcggc atctactgcg tettcgaggg cggcacgccc 420
gacageegee tegactgggg eccegacatg atetgeageg acgacaegea gtactecaae 480
gggcgcgggc accgcgacac gggggccgac ttcgccgccg cgcccgacat cgaccacctc 540
aacccgcgcg tgcagcagga gctctcggac tggctcaact ggctcaagtc cgacctcggc 600
ttcgacggct ggcgcctcga cttcgccaag ggctactccg ccgccgtcgc caaggtgtac 660
gtcgacagca ccgccccac cttcgtcgtc gccgagatat ggagctccct ccactacgac 720
ggcaacggcg agccgtccag caaccaggac gccgacaggc aggagctggt caactgggcg 780
caggoggtgg geggeeeege egeggegtte gactteacea ceaagggegt getgeaggeg 840
gccgtccagg gcgagctgtg gcgcatgaag gacggcaacg gcaaggcgcc cgggatgatc 900 ggctggctgc cggagaaggc cgtcacgttc gtcgacaacc acgacaccgg ctccacgcag 960
aactogtggc cattococto cgacaaggto atgoagggot acgoctatat cotoacgcac 1020
ccaggaactc catgcatctt ctacgaccac gttttcgact ggaacctgaa gcaggagatc 1080
agegegetgt etgeggtgag gteaagaaac gggateeace eggggagega getgaacate 1140 etegeegeeg aeggggatet etaegtegee aagattgaeg acaaggteat egtgaagate 1200
gggtcacggt acgacgtcgg gaacctgatc ccctcagact tccacgccgt tgcccctggc 1260
aacaactact gcgtttggga gaagcacggt ctgagagttc cagcggggcg gcaccactag 1320
<210> 53
<211> 45
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 53
Ala Thr Gly Gly Thr Thr Thr Ala Thr Thr Thr Gly Ser Gly Gly
                                      10
                  5
Val Thr Ser Thr Ser Lys Thr Thr Thr Ala Ser Lys Thr Ser Thr
                                  25
Thr Thr Ser Ser Thr Ser Cys Thr Thr Pro Thr Ala Val
                              40
<210> 54
<211> 137
<212> DNA
<213> Artificial Sequence
```

Page 56

```
<220>
<223> synthetic
<400> 54
gccaccggcg gcaccaccac caccgccacc accaccggct ccggcggcgt gacctccacc 60
tocaaqacca ccaccaccgc ctccaagacc tccaccacca cctcctccac ctcctgcacc 120
accccgaccg ccgtgtc
<210> 55
<211> 300
<212> PRT
<213> Pyrococcus furiosus
<400> 55
Ile Tyr Phe Val Glu Lys Tyr His Thr Ser Glu Asp Lys Ser Thr Ser
                                    10
 1
                5
Asn Thr Ser Ser Thr Pro Pro Gln Thr Thr Leu Ser Thr Thr Lys Val
                                                    30
                                2.5
            20
Leu Lys Ile Arg Tyr Pro Asp Asp Gly Glu Trp Pro Gly Ala Pro Ile
                            40
                                                45
Asp Lys Asp Gly Asp Gly Asn Pro Glu Phe Tyr Ile Glu Ile Asn Leu
                        55
   50
Trp Asn Ile Leu Asn Ala Thr Gly Phe Ala Glu Met Thr Tyr Asn Leu
                                        75
                    7.0
Thr Ser Gly Val Leu His Tyr Val Gln Gln Leu Asp Asn Ile Val Leu
                                    90
                                                        95
                8.5
Arg Asp Arg Ser Asn Trp Val His Gly Tyr Pro Glu Ile Phe Tyr Gly
                                105
            100
Asn Lys Pro Trp Asn Ala Asn Tyr Ala Thr Asp Gly Pro Ile Pro Leu
                                                125
        115
                            120
Pro Ser Lys Val Ser Asn Leu Thr Asp Phe Tyr Leu Thr Ile Ser Tyr
                                            140
                        135
Lys Leu Glu Pro Lys Asn Gly Leu Pro Ile Asn Phe Ala Ile Glu Ser
                                       155
                   150
Trp Leu Thr Arg Glu Ala Trp Arg Thr Thr Gly Ile Asn Ser Asp Glu
                                                        175
                                    170
               165
Gln Glu Val Met Ile Trp Ile Tyr Tyr Asp Gly Leu Gln Pro Ala Gly
                                185
                                                    190
Ser Lys Val Lys Glu Ile Val Val Pro Ile Ile Val Asn Gly Thr Pro
                            200
                                                205
       195
Val Asn Ala Thr Phe Glu Val Trp Lys Ala Asn Ile Gly Trp Glu Tyr
                                            220
                        215
Val Ala Phe Arg Ile Lys Thr Pro Ile Lys Glu Gly Thr Val Thr Ile
                    230
                                        235
Pro Tyr Gly Ala Phe Ile Ser Val Ala Ala Asn Ile Ser Ser Leu Pro
                245
                                   250
Asn Tyr Thr Glu Leu Tyr Leu Glu Asp Val Glu Ile Gly Thr Glu Phe
                                                   270
                               265
Gly Thr Pro Ser Thr Thr Ser Ala His Leu Glu Trp Trp Ile Thr Asn
       275
                            280
                                                285
Ile Thr Leu Thr Pro Leu Asp Arg Pro Leu Ile Ser
                        295
    290
<210> 56
<211> 903
<212> DNA
<213> Pyrococcus furiosus
```

Page 57

```
<400> 56
atctacttcg tggagaagta ccacacctcc gaggacaagt ccacctccaa cacctcctcc 60
accongrege agaceacet etecaceace aaggtgetea agateegeta eeeggacgae 120
ggcgagtggc ccggcgccc gatcgacaag gacggcgacg gcaacccgga gttctacatc 180
gagatcaacc totggaacat cotcaacgoo accggottog cogagatgac ctacaacoto 240
actagtggcg tgctccacta cgtgcagcag ctcgacaaca tcgtgctccg cgaccgctcc 300
aactgggtgc acggctaccc ggaaatcttc tacggcaaca agccgtggaa cgccaactac 360
gccaccgacg gcccgatece gctcccgtcc aaggigtcca acctcaccga citetaccte 420
accateteet acaagetega geegaagaac ggteteeega teaaettege categagtee 480
tggctcaccc gcgaggcctg gcgcaccacc ggcatcaact ccgacgagca ggaggtgatg 540
atotggatet actacgacgg ectecagece gegggeteea aggtgaagga gategtggtg 600
ccgatcatcg tgaacggcac cccggtgaac gccaccttcg aggtgtggaa ggccaacatc 660
ggctgggagt acgtggcctt ccgcatcaag accccgatca aggagggcac cgtgaccatc 720
cogtacggog cottoatete egiggeogec aacateteet coetecegaa ciacacegag 780
aagtacctcg aggacgtgga gatcggcacc gagttcggca ccccgtccac cacctccgcc 840
cacctegagt ggtggateac caacateace etcacceege tegacegeec geteatetee 900
<210> 57
<211> 387
<212> PRT
<213> Thermus flavus
<400> 57
Met Tyr Glu Pro Lys Pro Glu His Arg Phe Thr Phe Gly Leu Trp Thr
                                                15
                                  10
1
Val Asp Asn Val Asp Arg Asp Pro Phe Gly Asp Thr Val Arg Glu Arg
                                                    30
                                25
            20
Leu Asp Pro Val Tyr Val Val His Lys Leu Ala Glu Leu Gly Ala Tyr
                           40
Gly Val Asn Leu His Asp Glu Asp Leu Ile Pro Arg Gly Thr Pro Pro
                                           60
                        55
Gln Glu Arg Asp Gln Ile Val Arg Arg Phe Lys Lys Ala Leu Asp Glu
                                        75
                    70
Thr Val Leu Lys Val Pro Met Val Thr Ala Asn Leu Phe Ser Glu Pro
                                   90
                8.5
Ala Phe Arg Asp Gly Ala Ser Thr Thr Arg Asp Pro Trp Val Trp Ala
                                                   110
                               105
           100
Tyr Ala Leu Arg Lys Ser Leu Glu Thr Met Asp Leu Gly Ala Glu Leu
                                                125
                            120
       115
Gly Ala Glu Ile Tyr Met Phe Trp Met Val Arg Glu Arg Ser Glu Val
                                           140
                        135
    130
Glu Ser Thr Asp Lys Thr Arg Lys Val Trp Asp Trp Val Arg Glu Thr
                    150
                                       155
Leu Asn Phe Met Thr Ala Tyr Thr Glu Asp Gln Gly Tyr Gly Tyr Arg
                                    170
                                                        175
                165
Phe Ser Val Glu Pro Lys Pro Asn Glu Pro Arg Gly Asp Ile Tyr Phe
                                185
Thr Thr Val Gly Ser Met Leu Ala Leu Ile His Thr Leu Asp Arg Pro
                            200
                                               205
        195
Glu Arg Phe Gly Leu Asn Pro Glu Phe Ala His Glu Thr Met Ala Gly
                                            220
                       215
Leu Asn Phe Asp His Ala Val Ala Gln Ala Val Asp Ala Gly Lys Leu
                                        235
225
Phe His Ile Asp Leu Asn Asp Gln Arg Met Ser Arg Phe Asp Gln Asp
                                   250
                                                       255
                245
Leu Arg Phe Gly Ser Glu Asn Leu Lys Ala Gly Phe Phe Leu Val Asp
                                265
            260
```

```
Leu Leu Glu Ser Ser Gly Tyr Gln Gly Pro Arg His Phe Glu Ala His
                              280
         275
Ala Leu Arg Thr Glu Asp Glu Glu Gly Val Trp Thr Phe Val Arg Val
                                                300
                          295
Cys Met Arg Thr Tyr Leu Ile Ile Lys Val Arg Ala Glu Thr Phe Arg
                                                                 320
                                           315
                      310
305
Glu Asp Pro Glu Val Lys Glu Leu Leu Ala Ala Tyr Tyr Gln Glu Asp
                                       330
                 325
Pro Ala Thr Leu Ala Leu Leu Asp Pro Tyr Ser Arg Glu Lys Ala Glu
                                                        350
             340
                                   345
Ala Leu Lys Arg Ala Glu Leu Pro Leu Glu Thr Lys Arg Arg Arg Gly
                              360
                                                    365
Tyr Ala Leu Glu Arg Leu Asp Gln Leu Ala Val Glu Tyr Leu Leu Gly
                          375
     370
Vai Arg Gly
385
<210> 58
<211> 978
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400> 58
atggggaaga acggcaacct gtgctgcttc tctctgctgc tgcttcttct cgccgggttg 60
gegteeggee ateaaateta ettegtggag aagtaceaea eeteegagga eaagteeaee 120
tecaacact ectecacee geogragace acceteteca ceaccaaggt geteaagate 180
cgctacccgg acgacggtga gtggcccggc gccccgatcg acaaggacgg cgacggcaac 240
ceggagttet acategagat caacetetgg aacateetea acgeeacegg ettegeegag 300
atgacctaca acctcactag tggcgtgctc cactacgtgc agcagctcga caacatcgtg 360
ctccgcgacc gctccaactg ggtgcacggc tacccggaaa tcttctacgg caacaagccg 420
tggaacgcca actacgccac cgacggcccg atcccgctcc cgtccaaggt gtccaacctc 480
accgacttet accteaceat etectacaag etegageega agaaeggtet eccgateaae 540
ttcgccatcg agtcctggct cacccgcgag gcctggcgca ccaccggcat caactccgac 600
gagcaggagg tgatgatctg gatctactac gacggcctcc agcccgcggg ctccaaggtg 660
aaggagateg tggtgeegat categtgaac ggcacceegg tgaacgecae ettegaggtg 720 tggaaggeea acateggetg ggagtaegtg geetteegea teaagaceee gateaaggag 780
ggcaccgtga ccatcccgta cggcgccttc atctccgtgg ccgccaacat ctcctccctc 840
ccgaactaca ccgagaagta cctcgaggac gtggagatcg gcaccgagtt cggcaccccg 900
tocaccacet eggeecacet egagtggtgg atcaccaaca teacceteae ecegetegae 960
cgcccgctca tctcctag
<210> 59
<211> 1920
<212> DNA
<213> Aspergillus niger
<400> 59
atgtccttcc gctcctcct cgccctctcc ggcctcgtgt gcaccggcct cgccaacgtg 60
atotocaage gegecaceet egacteetgg etetecaaeg aggecacegt ggecegeaee 120 gecateetea acaacategg egeegaegge geetgggtgt eeggegeega eteeggeate 180
gtggtggcct coccgtccac cgacaacccg gactacttet acacctggac ccgcgactcc 240
ggcctcgtgc tcaagaccct cgtggacctc ttccgcaacg gcgacacctc cctcctctcc 300
accategaga actacatete egeceaggee ategtgeagg geateteeaa ecegteegge 360
gaccteteet eeggegeegg eeteggegag eegaagttea aegtggaega gacegeetae 420
```

```
accggetect ggggeegeee geagegegae ggeeeggeee teegegeeae egeeatgate 480
ggetteggee agtggeteet egacaaegge tacaceteea eegecaeega categtgtgg 540
ccgctcgtgc gcaacgacct ctcctacgtg gcccagtact ggaaccagac cggctacgac 600
ctctgggagg aggtgaacgg ctcctccttc ttcaccatcg ccgtgcagca ccgcqccctc 660
qtqqaqqqct ccqccttcqc caccqccqtq ggctcctcct gctcctggtg cgactcccag 720
gccccggaga tcctctgcta cctccagtcc ttctggaccg gctccttcat cctcgccaac 780
ttcgactcct cccgctccgg caaggacgcc aacaccctcc tcggctccat ccacaccttc 840
gaccoggagg cogcotogga coactocaco ttocagoogt gotoccogeg coccotogco 900
aaccacaagg aggtggtgga ctccttccgc tccatctaca ccctcaacga cggcctctcc 960
gactecgagg eegtggeegt gggeegetae eeggaggaea eetactacaa eggeaaceeg 1020
tggttcctct gcaccctcgc cgccgccgag cagctctacg acgccctcta ccagtgggac 1080
aagcaggget eeetegaggt gacegaegtg teeetegaet tetteaagge eetetaetee 1140 gacgeegeea eeggeaeeta eteeteetee teeteeacet aeteeteeat egtggaegee 1200
gtgaagacet tegeegaegg ettegtgtee ategtggaga eccaegeege etecaaegge 1260
tocatgtocg agoagtacga caagtocgac ggogagcago totocgocog cgacotoaco 1320
tggtcctacg ccgccctcct caccgccaac aaccgccgca actccgtggt gccggcctcc 1380
tggggcgaga cctccgcctc ctccgtgccg ggcacctgcg ccgccacctc cgccatcggc 1440
acctactect eegtgacegt gaceteetgg eegtecateg tggecacegg eggeaceace 1500
accaccgcca ccccgaccgg etccggetec gtgaceteca cetecaagae caccgccace 1560
geetecaaga ectecacete cacetectee acetectgea ecacecegae egeegtggee 1620
gtgacetteg aceteacege caccaccace taeggegaga acatetaeet egtgggetee 1680
atctcccage teggegactg ggagacetee gaeggeateg eceteteege egacaagtae 1740
acctecteng acceptete gtangingace gtgaccetee eggeoggega gteettegag 1800
tacaagttca teegeatega gteegaegae teegtggagt gggagteega eeegaacege 1860
gagtacaceg tgccgcagge etgcggcace tccacegcca ecgtgacega cacetggege 1920
<210> 60
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 60
Ser Glu Lys Asp Glu Leu
<210> 61
<211>
       561
<212>
       DNA
<213> Artificial Sequence
<220>
<223> Xylanase BD7436
<220>
<221> CDS
<222> (1)..(561)
<400> 61
atg gct age ace tto tac tgg cat ttg tgg ace gac ggc atc ggc ace
                                                                         48
Met Ala Ser Thr Phe Tyr Trp His Leu Trp Thr Asp Gly Ile Gly Thr
```

gtg Val	aac Asn	gct Ala	acc Thr 20	aac Asn	ggc Gly	agc Ser	gac Asp	ggc Gly 25	aac Asn	tac Tyr	agc Ser	gtg Val	agc Ser 30	tgg Trp	agc Ser	96
aac Asn	tgc Cys	ggc Gly 35	aac Asn	ttc Phe	gtg Val	gtg Val	ggc Gly 40	aag Lys	ggc Gly	tgg Trp	acc Thr	acc Thr 45	ggc Gly	agc Ser	gct Ala	144
acc Thr	agg Arg 50	gtg Val	atc Ile	aac Asn	tac Tyr	aac Asn 55	gct Ala	cat His	gct Ala	ttc Phe	agc Ser 60	gtg Val	gtg Val	ggc Gly	aac Asn	192
gct Ala 65	tac Tyr	ttg Leu	gct Ala	ttg Leu	tac Tyr 70	ggc Gly	tgg Trp	acc Thr	agg Arg	aac Asn 75	agc Ser	ttg Leu	atc Ile	gag Glu	tac Tyr 80	240
tac Tyr	gtg Val	gtg Val	gac Asp	agc Ser 85	tgg Trp	ggc Gly	acc Thr	tac Tyr	agg Arg 90	cca Pro	acc Thr	ggc Gly	acc Thr	tac Tyr 95	aag Lys	288
ggc Gly	acc Thr	gtg Val	acc Thr 100	agc Ser	gac Asp	ggc Gly	ggc Gly	acc Thr 105	tac Tyr	gac Asp	atc Ile	tac Tyr	acc Thr 110	acc Thr	acc Thr	336
agg Arg	acc Thr	aac Asn 115	gct Ala	cca Pro	agc Ser	atc Ile	gac Asp 120	ggc Gly	aac Asn	aac Asn	acc Thr	acc Thr 125	ttc Phe	acc Thr	caa Gln	384
ttc Phe	tgg Trp 130	agc Ser	gtg Val	agg Arg	caa Gln	agc Ser 135	aag Lys	agg Arg	cca Pro	atc Ile	ggc Gly 140	acc Thr	aac Asn	aac Asn	acc Thr	432
atc Ile 145	acc Thr	ttc Phe	agc Ser	aac Asn	cat His 150	gtg Val	aac Asn	gct Ala	tgg Trp	aag Lys 155	agc Ser	aag Lys	ggc Gly	atg Met	aac Asn 160	480
ttg Leu	ggc Gly	agc Ser	agc Ser	tgg Trp 165	agc Ser	tac Tyr	caa Gln	gtg Val	ttg Leu 170	gct Ala	acc Thr	gag Glu	ggc	tac Tyr 175	caa Gln	528
agc Ser	agc Ser	ggc Gly	tac Tyr 180	agc Ser	aac Asn	gtg Val	acc Thr	gtg Val 185	tgg Trp	tag						561
<210 <211 <212 <213	> 1 > P	2 86 RT rtif	icia	l Se	quen	ce										
<220 <223		ynth	etic	Con	stru	ct										
< 4 0 0	> 6	2														
Met 1	Ala	Ser	Thr	Phe 5	Tyr	Trp	His	Leu	Trp 10	Thr	Asp	Gly	Ile	Gly 15	Thr	

Page 61

Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser Asn Cys Gly Asn Phe Val Val Gly Lys Gly Trp Thr Thr Gly Ser Ala Thr Arg Val Ile Asn Tyr Asn Ala His Ala Phe Ser Val Val Gly Asn Ala Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu Ile Glu Tyr Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp Ile Tyr Thr Thr Thr 105 Arg Thr Asn Ala Pro Ser Ile Asp Gly Asn Asn Thr Thr Phe Thr Gln Phe Trp Ser Val Arg Gln Ser Lys Arg Pro Ile Gly Thr Asn Asn Thr 130 Ile Thr Phe Ser Asn His Val Asn Ala Trp Lys Ser Lys Gly Met Asn 150 Leu Gly Ser Ser Trp Ser Tyr Gln Val Leu Ala Thr Glu Gly Tyr Gln Ser Ser Gly Tyr Ser Asn Val Thr Val Trp 180 <210> 63 <211> 561 <212> DNA <213> Artificial Sequence <220> <223> Xylanase BD6002A <220> <221> CDS <222> (1)..(561)

Page 62

-	
<400> 63 atg gct agc acc gac tac tgg caa aac tgg acc gac ggc ggc acc Met Ala Ser Thr Asp Tyr Trp Gln Asn Trp Thr Asp Gly Gly Gly Thr 1 1 1 1	48
gtg aac gct acc aac ggc agc gac ggc aac tac agc gtg agc tgg agc Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser 20 25 30	96
aac tgc ggc aac ttc gtg gtg ggc aag ggc tgg acc acc ggc agc gct Asn Cys Gly Asn Phe Val Val Gly Lys Gly Trp Thr Thr Gly Ser Ala 35 40 45	144
acc agg gtg atc aac tac aac gct ggc gct ttc agc cca agc ggc aac Thr Arg Val Ile Asn Tyr Asn Ala Gly Ala Phe Ser Pro Ser Gly Asn 50 55 60	192
ggc tac ttg gct ttg tac ggc tgg acc agg aac agc ttg atc gag tac Gly Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu Ile Glu Tyr 65 70 75 80	240
tac gtg gtg gac agc tgg ggc acc tac agg cca acc ggc acc tac aag Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys 85 90 95	288
ggc acc gtg acc agc gac ggc ggc acc tac gac atc tac acc acc Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp Ile Tyr Thr Thr 100 105 110	336
agg acc aac gct cca agc atc gac ggc aac aac acc acc ttc acc caa Arg Thr Asn Ala Pro Ser Ile Asp Gly Asn Asn Thr Thr Phe Thr Gln 115 120 125	384
ttc tgg agc gtg agg caa agc aag agg cca atc ggc acc aac aac acc Phe Trp Ser Val Arg Gln Ser Lys Arg Pro Ile Gly Thr Asn Asn Thr 130 135 140	432
atc acc ttc agc aac cat gtg aac gct tgg aag agc aag ggc atg aac Ile Thr Phe Ser Asn His Val Asn Ala Trp Lys Ser Lys Gly Met Asn 145 150 155 160	480
ttg ggc agc tgg agc tac caa gtg ttg gct acc gag ggc tac caa Leu Gly Ser Ser Trp Ser Tyr Gln Val Leu Ala Thr Glu Gly Tyr Gln 165 170 175	528
age age gge tae age aac gtg ace gtg tgg tag Ser Ser Gly Tyr Ser Asn Val Thr Val Trp 180 185	561
<210> 64 <211> 186 <212> PRT <213> Artificial Sequence	
<220> <223> Synthetic Construct	

Page 63

<400> 64

Met Ala Ser Thr Asp Tyr Trp Gln Asn Trp Thr Asp Gly Gly Gly Thr

Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser 25

Asn Cys Gly Asn Phe Val Val Gly Lys Gly Trp Thr Thr Gly Ser Ala

Thr Arg Val Ile Asn Tyr Asn Ala Gly Ala Phe Ser Pro Ser Gly Asn

Gly Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu Ile Glu Tyr

Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys

Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp Ile Tyr Thr Thr 105

Arg Thr Asn Ala Pro Ser Ile Asp Gly Asn Asn Thr Thr Phe Thr Gln

Phe Trp Ser Val Arg Gln Ser Lys Arg Pro Ile Gly Thr Asn Asn Thr

Ile Thr Phe Ser Asn His Val Asn Ala Trp Lys Ser Lys Gly Met Asn 155

Leu Gly Ser Ser Trp Ser Tyr Gln Val Leu Ala Thr Glu Gly Tyr Gln

Ser Ser Gly Tyr Ser Asn Val Thr Val Trp 180

<210> 65

<211> 561 <212> DNA <213> Artificial Sequence

<223> Xylanase BD6002B

Page 64

<22 <22 <22	1>	CDS	. (56	1)													
<40 atg Met 1	gcc	65 tcc Ser	acc Thr	gac Asp 5	tac Tyr	tgg Trp	cag Gln	aac Asn	tgg Trp 10	acc Thr	gac Asp	ggc Gly	ggc ggc	ggc Gly 15	acc Thr		48
gtg Val	aac Asn	gcc Ala	acc Thr 20	aac Asn	ggc Gly	tcc Ser	gac Asp	ggc Gly 25	aac Asn	tac Tyr	tcc Ser	gtg Val	tcc Ser 30	tgg Trp	tcc Ser		96
aac Asn	tgc Cys	ggc Gly 35	aac Asn	ttc Phe	gtg Val	gtg Val	ggc Gly 40	aag Lys	ggc Gly	tgg Trp	acc Thr	acc Thr 45	ggc Gly	tcc Ser	gcc Ala	1	44
acc Thr	cgc Arg 50	gtg Val	atc Ile	aac Asn	tac Tyr	aac Asn 55	gcc Ala	ggc Gly	gcc Ala	ttc Phe	tcc Ser 60	ccg Pro	tcc Ser	ggc Gly	aac Asn	1	92
ggc Gly 65	tac Tyr	ctc Leu	gcc Ala	ctc Leu	tac Tyr 70	ggc Gly	tgg Trp	acc Thr	cgc Arg	aac Asn 75	tcc Ser	ctc Leu	atc Ile	gag Glu	tac Tyr 80	2	40
tac Tyr	gtg Val	gtg Val	gac Asp	tcc Ser 85	tgg Trp	ggc Gly	acc Thr	tac Tyr	cgc Arg 90	ccg Pro	acc Thr	ggc Gly	acc Thr	tac Tyr 95	aag Lys	2	88
ggc Gly	acc Thr	gtg Val	acc Thr 100	tcc Ser	gac Asp	ggc Gly	ggc Gly	acc Thr 105	tac Tyr	gac Asp	atc Ile	tac Tyr	acc Thr 110	acc Thr	acc Thr	3.	36
cgc Arg	acc Thr	aac Asn 115	gcc Ala	ccg Pro	tcc Ser	atc Ile	gac Asp 120	ggc Gly	aac Asn	aac Asn	acc Thr	acc Thr 125	ttc Phe	acc Thr	cag Gln	31	8 4
ttc Phe	tgg Trp 130	tcc Ser	gtg Val	cgc Arg	cag Gln	tcc Ser 135	aag Lys	cgc Arg	ccg Pro	atc Ile	ggc Gly 140	acc Thr	aac Asn	aac Asn	acc Thr	4:	32
atc Ile 145	acc Thr	ttc Phe	tcc Ser	aac Asn	cac His 150	gtg Val	aac Asn	gcc Ala	tgg Trp	aag Lys 155	tcc Ser	aag Lys	ggc Gly	atg Met	aac Asn 160	4 8	30
ctc Leu	ggc Gly	tcc Ser	tcc Ser	tgg Trp 165	tcc Ser	tac Tyr	cag Gln	gtg Val	ctc Leu 170	gcc Ala	acc Thr	gag Glu	ggc Gly	tac Tyr 175	cag Gln	52	28
		ggc Gly								tga						5 €	51

<210> 66 <211> 186

<212> PRT <213> Artificial Sequence

<223> Synthetic Construct

<400> 66

Met Ala Ser Thr Asp Tyr Trp Gln Asn Trp Thr Asp Gly Gly Thr

Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser

Asn Cys Gly Asn Phe Val Val Gly Lys Gly Trp Thr Thr Gly Ser Ala

Thr Arg Val Ile Asn Tyr Asn Ala Gly Ala Phe Ser Pro Ser Gly Asn

Gly Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu Ile Glu Tyr

Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys 8.5

Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp Ile Tyr Thr Thr

Arg Thr Asn Ala Pro Ser Ile Asp Gly Asn Asn Thr Thr Phe Thr Gln 115

Phe Trp Ser Val Arg Gln Ser Lys Arg Pro Ile Gly Thr Asn Asn Thr 135

Ile Thr Phe Ser Asn His Val Asn Ala Trp Lys Ser Lys Gly Met Asn

Leu Gly Ser Ser Trp Ser Tyr Gln Val Leu Ala Thr Glu Gly Tyr Gln

Ser Ser Gly Tyr Ser Asn Val Thr Val Trp 180

<210> 67 <211> 2071

Page 66

<212> DNA <213> Oryza sativa <220> <221> misc feature $\langle 222 \rangle$ (1)...(2071) $\langle 223 \rangle$ Promoter <400> 67 60 tecatgetgt cetactactt getteatece ettetacatt ttgttetggt ttttggeetg catttcggat catgatgtat gtgatttcca atctgctgca atatgaatgg agactctgtg 120 ctaaccatca acaacatgaa atgcttatga ggcctttgct gagcagccaa tcttgcctgt 180 240 qtttatqtct tcacaqqccq aattcctctq ttttgttttt caccctcaat atttggaaac 300 atttatctaq qttqtttqtq tccagqccta taaatcatac atgatqttqt cqtattqqat 360 qtqaatqtqq tqqcqtqttc agtqccttqq atttqaqttt gatqaqaqtt gcttctqqqt 420 caccactcac cattatcgat gctcctcttc agcataaggt aaaagtcttc cctgtttacg ttattttacc cactatqqtt qcttqqqttq qttttttcct gattqcttat gccatqqaaa 480 gtcatttgat atgttgaact tgaattaact gtagaattgt atacatgttc catttgtgtt 540 gtacttcctt cttttctatt agtagcctca gatgagtgtg aaaaaaacag attatataac 600 ttgccctata aatcatttga aaaaaatatt gtacagtgag aaattgatat atagtgaatt 660 tttaagagca tgttttccta aagaagtata tattttctat gtacaaaggc cattgaagta 720 780 attqtaqata caqqataatq taqacttttt ggacttacac tgctaccttt aagtaacaat catgagcaat agtgttgcaa tgatatttag gctgcattcg tttactctct tgatttccat 840 900 gagcacqctt cccaaactgt taaactctgt gttttttgcc aaaaaaaaat gcataggaaa 960 qttqctttta aaaaatcata tcaatccatt ttttaagtta tagctaatac ttaattaatc atgcqctaat aagtcactct gtttttcgta ctagagagat tgttttgaac cagcactcaa 1020 1080 qaacacagee ttaacecage caaataatge tacaacetae cagtecacae etettgtaaa gcatttgttg catggaaaag ctaagatgac agcaacctgt tcaggaaaac aactgacaag 1140 gtcataggga gagggagett ttggaaaggt geegtgeagt teaaacaatt agttageagt 1200 1260 agggtgttgg tttttgctca cagcaataag aagttaatca tggtgtaggc aacccaaata aaacaccaaa atatgcacaa ggcagtttgt tgtattctgt agtacagaca aaactaaaag 1320 taatgaaaga agatgtggtg ttagaaaagg aaacaatatc atgagtaatg tgtgggcatt 1380 atgggaccac gaaataaaaa gaacattttg atgagtcgtg tatcctcgat gagcctcaaa 1440

agttctctca	ccccggataa	gaaaccctta	agcaatgtgc	aaagtttgca	ttctccactg	1500
acataatgca	aaataagata	tcatcgatga	catagcaact	catgcatcat	atcatgcctc	1560
tctcaaccta	ttcattccta	ctcatctaca	taagtatctt	cagctaaatg	ttagaacata	1620
aacccataag	tcacgtttga	tgagtattag	gcgtgacaca	tgacaaatca	cagactcaag	1680
caagataaag	caaaatgatg	tgtacataaa	actccagagc	tatatgtcat	attgcaaaaa	1740
gaggagagct	tataagacaa	ggcatgactc	acaaaaattc	atttgccttt	cgtgtcaaaa	1800
agaggagggc	tttacattat	ccatgtcata	ttgcaaaaga	aagagagaaa	gaacaacaca	1860
atgctgcgtc	aattatacat	atctgtatgt	ccatcattat	tcatccacct	ttcgtgtacc	1920
acacttcata	tatcatgagt	cacttcatgt	ctggacatta	acaaactcta	tcttaacatt	1980
tagatgcaag	agcctttatc	tcactataaa	tgcacgatga	tttctcattg	tttctcacaa	2040
aaagcattca	gttcattagt	cctacaacaa	С			2071

<210> 68 <211> 79 <212> PRT <213> Zea mays

<220>

<221> SIGNAL <222> (1)..(79) <223> Maize waxy signal sequence.

Met Leu Ala Ala Leu Ala Thr Ser Gln Leu Val Ala Thr Arg Ala Gly

Leu Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gln Gly

Leu Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg

Thr Ser Ala Arg Ala Ala Pro Arg His Gln His Gln Gln Ala Arg Arg

Gly Ala Arg Phe Pro Ser Leu Val Val Cys Ala Ser Ala Gly Ala 70 75

<210> 69 <211> 1005

Page 68

<21 <21		DNA Arti	fici	al S	eque	nce										
<22 <22	0 > 3 >	Synt	heti	c Br	omel	ain	Segu	ence								
<22 <22 <22 <22	1 > 2 >	CDS (1). Synt			omel.	ain										
<40 atg Met 1	qcc	69 tgg Trp	aag Lys	gtg Val 5	cag Gln	gtg Val	gtg Val	ttc Phe	ctc Leu 10	ttc Phe	ctc Leu	ttc Phe	ctc Leu	tgc Cys 15	gtg Väl	48
atg Met	tgg Trp	gcc Ala	tcc Ser 20	ccg Pro	tcc Ser	gcc Ala	gcc Ala	tcc Ser 25	gcg Ala	gac Asp	gag Glu	ccg Pro	tcc Ser 30	gac Asp	ccg Pro	96
atg Met	atg Met	aag Lys 35	cgc Arg	ttc Phe	gag Glu	gag Glu	tgg Trp 40	atg Met	gtg Val	gag Glu	tac Tyr	ggc Gly 45	cgc Arg	gtg Val	tac Tyr	144
aag Lys	gac Asp 50	aac Asn	gac Asp	gag Glu	aag Lys	atg Met 55	cgc Arg	cgc Arg	ttc Phe	cag Gln	atc Ile 60	ttc Phe	aag Lys	aac Asn	aac Asn	192
gtg Val 65	aac Asn	cac His	atc Ile	gag Glu	acc Thr 70	ttc Phe	aac Asn	tcc Ser	cgc Arg	aac Asn 75	gag Glu	aac Asn	tcc Ser	tac Tyr	acc Thr 80	240
ctc Leu	ggc Gly	atc Ile	aac Asn	cag Gln 85	ttc Phe	acc Thr	gac Asp	atg Met	acc Thr 90	aac Asn	aac Asn	gag Glu	ttc Phe	atc Ile 95	gcc Ala	288
cag Gln	tac Tyr	acc Thr	ggc Gly 100	ggc Gly	atc Ile	tcc Ser	cgc Arg	ccg Pro 105	ctc Leu	aac Asn	atc Ile	gag Glu	cgc Arg 110	gag Glu	ccg Pro	336
gtg Val	gtg Val	tcc Ser 115	ttc Phe	gac Asp	gac Asp	gtg Val	gac Asp 120	atc Ile	tcc Ser	gcc Ala	gtg Val	ccg Pro 125	cag Gln	tcc Ser	atc Ile	384
gac Asp	tgg Trp 130	cgc Arg	gac Asp	tac Tyr	ggc Gly	gcc Ala 135	gtg Val	acc Thr	tcc Ser	gtg Val	aag Lys 140	aac Asn	cag Gln	aac Asn	ccg Pro	432
tgc Cys 145	ggc Gly	gcc Ala	tgc Cys	tgg Trp	gcc Ala 150	ttc Phe	gcc Ala	gcc Ala	atc Ile	gcc Ala 155	acc Thr	gtg Val	gag Glu	tcc Ser	atc Ile 160	480
tac Tyr	aag Lys	atc Ile	aag Lys	aag Lys 165	ggc Gly	atc Ile	ctc Leu	gag Glu	ccg Pro 170	ctc Leu	tcc Ser	gag Glu	cag Gln	cag Gln 175	gtg Val	528
ctc	gac	tgc	gcc	aag	ggc	tac	ggc	tgc	aag	ggc	ggc	tgg	gag	ttc	cgc	576

Leu Asp Cys	Ala Lys 180	Gly Tyr	Gly C	Cys Lys .85	Gly G	Sly Trp	Glu 190	Phe	Arg	
gcc ttc gag Ala Phe Glu 195	ttc atc Phe Ile	atc tcc Ile Ser	aac a Asn L 200	ag ggc Lys Gly	gtg g Val A	gcc tcc Ala Ser 205	ggc Gly	gcc Ala	atc Ile	624
tac ccg tac Tyr Pro Tyr 210	aag gcc Lys Ala	gcc aag Ala Lys 215	ggc a Gly T	acc tgc Thr Cys	ras i	acc gac Thr Asp 220	ggc Gly	gtg Val	ccg Pro	672
aac tcc gcc Asn Ser Ala 225	tac atc Tyr Ile	acc ggc Thr Gly 230	tac g Tyr A	gcc cgc Ala Arg	gtg c Val P 235	ecg ege Pro Arg	aac Asn	aac Asn	gag Glu 240	720
tcc tcc atg Ser Ser Met	atg tac Met Tyr 245	gcc gtg Ala Val	tcc a Ser L	aag cag Lys Gln 250	ccg a Pro I	atc acc [le Thr	gtg Val	gcc Ala 255	gtg Val	768
gac gcc aac Asp Ala Asn	gcc aac Ala Asn 260	ttc cag Phe Gln	Tyr T	ac aag Tyr Lys 265	tcc ç Ser G	ggc gtg Sly Val	ttc Phe 270	aac Asn	ggc Gly	816
ccg tgc ggc Pro Cys Gly 275	acc tcc Thr Ser	ctc aac Leu Asn	cac g His A 280	gee gtg Ala Val	acc o	gcc atc Ala Ile 285	ggc Gly	tac Tyr	ggc Gly	864
cag gac tcc Gln Asp Ser 290	atc atc Ile Ile	tac ccg Tyr Pro 295	aag a Lys L	aag tgg Lys Trp	GIY F	gcc aag Ala Lys 300	tgg Trp	ggc Gly	gag Glu	912
gcc ggc tac Ala Gly Tyr 305	atc cgc Ile Arg	atg gcc Met Ala 310	cgc g Arg A	gac gtg Asp Val	tcc t Ser S	cc tcc Ser Ser	tcc Ser	ggc Gly	atc Ile 320	960
tgc ggc atc Cys Gly Ile	gcc atc Ala Ile 325	gac ccg Asp Pro	ctc t Leu T	ac ccg Tyr Pro 330	acc o	ctc gag Leu Glu	gag Glu	tag		1005
<210> 70 <211> 334 <212> PRT <213> Arti	ficial S	equence								
<220> <223> Synt	hetic Co	nstruct								
<400> 70										
Met Ala Trp 1	Lys Val 5	Gln Val	Val F	Phe Leu 10	Phe I	Leu Phe	Leu	Cys 15	Val	
Met Trp Ala	Ser Pro 20	Ser Ala	Ala S	Ser Ala 25	Asp (Glu Pro	Ser 30	Asp	Pro	

Page 70

Met	Met	Lys 35	Arg	Phe	Glu	Glu	Trp 40	Met	Val	Glu	Tyr	Gly 45	Arg	Val	Tyr
Lys	Asp 50	Asn	Asp	Glu	Lys	Met 55	Arg	Arg	Phe	Gln	Ile 60	Phe	Lys	Asn	Asn
Val 65	Asn	His	Ile	Glu	Thr 70	Phe	Asn	Ser	Arg	Asn 75	Glu	Asn	Ser	Tyr	Thr 80
Leu	Gly	Ile	Asn	Gln 85	Phe	Thr	Asp	Met	Thr 90	Asn	Asn	Glu	Phe	Ile 95	Ala
Gln	Tyr	Thr	Gly 100	Gly	Ile	Ser	Arg	Pro 105	Leu	Asn	Ile	Glu	Arg 110	Glu	Pro
Val	Val	Ser 115	Phe	Asp	Asp	Val	Asp 120	Ile	Ser	Ala	Val	Pro 125	Gln	Ser	Ile
Asp	Trp 130	Arg	Asp	Tyr	Gly	Ala 135	Val	Thr	Ser	Val	Lys 140	Asn	Gln	Asn	Pro
Cys 145	Gly	Ala	Cys	Trp	Ala 150	Phe	Ala	Ala	Ile	Ala 155	Thr	Val	Glu	Ser	Ile 160
Tyr	Lys	Ile	Lys	Lys 165	Gly	Ile	Leu	Glu	Pro 170	Leu	Ser	Glu	Gln	Gln 175	Val
Leu	Asp	Cys	Ala 180	Lys	Gly	Tyr	Gly	Cys 185	Lys	Gly	Gly	Trp	Glu 190	Phe	Arg
Ala	Phe	Glu 195	Phe	Ile	Ile	Ser	Asn 200	Lys	Gly	Val	Ala	Ser 205	Gly	Ala	Ile
Tyr	Pro 210	Tyr	Lys	Ala	Ala	Lys 215	Gly	Thr	Cys	Lys	Thr 220	Asp	Gly	Val	Pro
Asn 225	Ser	Ala	Tyr	Ile	Thr 230	Gly	Tyr	Ala	Arg	Val 235	Pro	Arg	Asn	Asn	Glu 240
Ser	Ser	Met	Met	Туг 245	Ala	Val	Ser	Lys	Gln 250	Pro	Ile	Thr	Val	Ala 255	Val
Asp	Ala	Asn	Ala 260	Asn	Phe	Gln	Tyr	Tyr 265	Lys	Ser	Gly	Val	Phe 270	Asn	Gly

Page 71

```
Pro Cys Gly Thr Ser Leu Asn His Ala Val Thr Ala Ile Gly Tyr Gly
                280
        275
Gln Asp Ser Ile Ile Tyr Pro Lys Lys Trp Gly Ala Lys Trp Gly Glu
                                             300
                         295
Ala Gly Tyr Ile Arg Met Ala Arg Asp Val Ser Ser Ser Gly Ile
                                         315
305
Cys Gly Ile Ala Ile Asp Pro Leu Tyr Pro Thr Leu Glu Glu
                 325
<210> 71
<211> 78
<212> DNA
<213> Artificial Sequence
<223> Bromealin signal sequence
<400> 71
atggcctgga aggtgcaggt ggtgttcctc ttcctcttcc tctgcgtgat gtgggcctcc
                                                                        60
                                                                         78
ccgtccgccg cctccgcc
<210> 72
<211> 26
<212> PRT
<213> Artificial Sequence
<220>
<223> Bromealin signal peptide
<400> 72
Met Ala Trp Lys Val Gln Val Val Phe Leu Phe Leu Cys Val
                                     10
Met Trp Ala Ser Pro Ser Ala Ala Ser Ala
<210> 73
<211> 1050
<212> DNA
<213> Artificial Sequence
<220>
<223> pSYN11000
```

gcggcatctc	ccgcccgctc	aacatcgagc	gcgagccggt	ggtgtccttc	gacgacgtgg	420
acatctccgc	cgtgccgcag	tccatcgact	ggcgcgacta	cggcgccgtg	acctccgtga	480
agaaccagaa	cccgtgcggc	gcctgctggg	ccttcgccgc	catcgccacc	gtggagtcca	540
tctacaagat	caagaagggc	atcctcgagc	cgctctccga	gcagcaggtg	ctcgactgcg	600
ccaagggcta	cggctgcaag	ggcggctggg	agttccgcgc	cttcgagttc	atcatctcca	660
acaagggcgt	ggcctccggc	gccatctacc	cgtacaaggc	cgccaagggc	acctgcaaga	720
ccgacggcgt	gccgaactcc	gcctacatca	ccggctacgc	ccgcgtgccg	cgcaacaacg	780
agtcctccat	gatgtacgcc	gtgtccaagc	agccgatcac	cgtggccgtg	gacgccaacg	840
ccaacttcca	gtactacaag	tccggcgtgt	tcaacggccc	gtgcggcacc	tccctcaacc	900
acgccgtgac	cgccatcggc	tacggccagg	actccatcat	ctacccgaag	aagtggggcg	960
ccaagtgggg	cgaggccggc	tacatccgca	tggcccgcga	cgtgtcctcc	tcctccggca	1020
tctgcggcat	cgccatcgac	ccgctctacc	cgaccctcga	ggagtag		1067
<220>	3 ificial Sequ N11587 Seque					
<400> 75 atggcctgga	aggtgcaggt	ggtgttcctc	ttcctcttcc	tctgcgtgat	gtgggcctcc	60
ccgtccgccg	cctccgcgga	cgagccgtcc	gacccgatga	tgaagcgctt	cgaggagtgg	120
atggtggagt	acggccgcgt	gtacaaggac	aacgacgaga	agatgcgccg	cttccagatc	180
ttcaagaaca	acgtgaacca	catcgagacc	ttcaactccc	gcaacgagaa	ctcctacacc	240
ctcggcatca	accagttcac	cgacatgacc	aacaacgagt	tcatcgccca	gtacaccggc	300
ggcatctccc	gcccgctcaa	catcgagcgc	gagccggtgg	tgtccttcga	cgacgtggac	360
atctccgccg	tgccgcagtc	catcgactgg	cgcgactacg	gcgccgtgac	ctccgtgaag	420
aaccagaacc	cgtgcggcgc	ctgctgggcc	ttcgccgcca	tcgccaccgt	ggagtccatc	480
tacaagatca	agaagggcat	cctcgagccg	ctctccgagc	agcaggtgct	cgactgcgcc	540
aagggctacg	gctgcaaggg	cggctgggag	ttccgcgcct	tcgagttcat	catctccaac	600
aagggcgtgg	cctccggcgc	catctacccg	tacaaggccg	ccaagggcac	ctgcaagacc	660
gacggcgtgc	cgaactccgc	ctacatcacc	ggctacgccc	gcgtgccgcg	caacaacgag	720

teetecatga tgtaegeeg	gtccaagcag	ccgatcaccg	tggccgtgga	cgccaacgcc	780
aacttccagt actacaagt	c cggcgtgttc	aacggcccgt	gcggcacctc	cctcaaccac	840
gccgtgaccg ccatcggct	a cggccaggac	tccatcatct	acccgaagaa	gtggggcgcc	900
aagtggggcg aggccggct	a catccgcatg	gcccgcgacg	tgtcctcctc	ctccggcatc	960
tgcggcatcg ccatcgacc	gctctacccg	accctcgagg	agtccgagaa	ggacgagctg	1020
tag					1023
<210> 76 <211> 990 <212> DNA <213> Artificial Sec <220> <223> pSYN12169 Seq					
<400> 76	201100				
atgagggtgt tgctcgttg	c cotogototo	ctggctctcg	ctgcgagcgc	cacctccatg	60
gcggacgage cgtccgacc	c gatgatgaag	cgcttcgagg	agtggatggt	ggagtacggc	120
cgcgtgtaca aggacaacg	a cgagaagatg	cgccgcttcc	agatcttcaa	gaacaacgtg	180
aaccacatcg agaccttca	a ctcccgcaac	gagaactcct	acaccctcgg	catcaaccag	240
ttcaccgaca tgaccaaca	a cgagttcatc	gcccagtaca	ccggcggcat	ctcccgcccg	300
ctcaacatcg agcgcgagc	c ggtggtgtcc	ttcgacgacg	tggacatctc	cgccgtgccg	360
cagtocatog actggcgcg	a ctacggcgcc	gtgacctccg	tgaagaacca	gaacccgtgc	420
ggcgcctgct gggccttcg	c cgccatcgcc	accgtggagt	ccatctacaa	gatcaagaag	480
ggcatecteg ageogetet	c cgagcagcag	gtgctcgact	gcgccaaggg	ctacggctgc	540
aagggcggct gggagttcc	g cgccttcgag	ttcatcatct	ccaacaaggg	cgtggcctcc	600
ggcgccatct acccgtaca	a ggccgccaag	ggcacctgca	agaccgacgg	cgtgccgaac	660
teegeetaca teacegget	a cgcccgcgtg	ccgcgcaaca	acgagtcctc	catgatgtac	720
gccgtgtcca agcagccga	caccgtggcc	gtggacgcca	acgccaactt	ccagtactac	780
aagtccggcg tgttcaacg	g cccgtgcggc	acctccctca	accacgccgt	gaccgccatc	840
ggctacggcc aggactcca	catctacccg	aagaagtggg	gcgccaagtg	gggcgaggcc	900
ggctacatcc gcatggccc	g cgacgtgtcc	tcctcctccg	gcatctgcgg	catcgccatc	960
gacccgctct acccgaccc	cgaggagtag				990

```
<210> 77
<211> 1170
<212> DNA
<213> Artificial Sequence
<220>
<223> pSYN12575 Sequence
<400> 77
atgctggcgg ctctggccac gtcgcagctc gtcgcaacgc gcgccggcct gggcgtcccg
                                                                   . 60
gacgcgtcca cgttccgccg cggcgccgcg cagggcctga ggggggcccg ggcgtcggcg
                                                                     120
geggeggaca egeteageat geggaceage gegegegeg egeceaggea ceageaceag
                                                                     180
caggogogoc geggggccag gttcccgtcg ctcgtcgtgt gcgccagcgc eggcgccatg
                                                                     240
geggaegage egteegaeee gatgatgaag egettegagg agtggatggt ggagtaegge
                                                                     300
cgcgtgtaca aggacaacga cgagaagatg cgccgcttcc agatcttcaa gaacaacgtg
                                                                     360
aaccacatcg agaccttcaa ctcccgcaac gagaactcct acaccctcgg catcaaccag
                                                                     420
ttcaccgaca tgaccaacaa cgagttcatc gcccagtaca ccggcggcat ctcccgcccg
                                                                     480
ctcaacatcg agegegagee ggtggtgtee ttegacgaeg tggacatete egeegtgeeg
                                                                     540
cagtocatog actggogoga ctacggogoc gtgacotocg tgaagaacca gaaccogtgo
                                                                     600
ggcgcctgct gggccttcgc cgccatcgcc accgtggagt ccatctacaa gatcaagaag
                                                                     660
ggcatceteg ageogetete egageageag gtgetegaet gegeeaaggg etaeggetge
                                                                     720
aagggcggct gggagttccg cgccttcgag ttcatcatct ccaacaaggg cgtggcctcc
                                                                     780
ggcgccatct acccgtacaa ggccgccaag ggcacctgca agaccgacgg cgtgccgaac
                                                                     840
tecgeetaca teaceggeta egecegegtg eegegeaaca aegagteete catgatgtae
                                                                     900
gccgtgtcca agcagccgat caccgtggcc gtggacgcca acgccaactt ccagtactac
                                                                     960
aagtccggcg tgttcaacgg cccgtgcggc acctccctca accacgccgt gaccqccatc
                                                                    1020
ggctacggcc aggactccat catctacccg aagaagtggg gcgccaagtg gggcgaggcc
                                                                    1080
ggctacatce gcatggcccg cgacgtgtcc tectectecg gcatetgegg categccate
                                                                    1140
                                                                    1170
gacccgctct acccgaccct cgaggagtag
<210> 78
<211> 1068
<212> DNA
<213> Artificial Sequence
<220>
```

<223> pSM270 Sequence

<400> 78 atggcctgga aggtgcaggt ggtgttcctc ttcctcttcc tctgcgtgat gtgggcctcc	60
cogtocgoog cotocgooto otcotoctoo ttogoogact coaaccogat cogoooggtg	120
accgaccgcg ccgcctccac cgacgagccg tccgacccga tgatgaagcg cttcgaggag	180
tggatggtgg agtacggccg cgtgtacaag gacaacgacg agaagatgcg ccgcttccag	240
	300
atcttcaaga acaacgtgaa ccacatcgag accttcaact cccgcaacga gaactcctac	360
acceteggea teaaceagtt cacegacatg accaacaacg agtteatege ceagtacace	
ggcggcatet ecegeceget caacategag egegageegg tggtgteett egaegaegtg	420
gacateteeg cegtgeegea gtecategae tggegegaet aeggegeegt gaceteegtg	480
aagaaccaga accegtgegg egeetgetgg geettegeeg ecategeeae egtggagtee	540
atctacaaga tcaagaaggg catcetegag eegeteteeg ageageaggt getegaetge	600
gccaagggct acggctgcaa gggcggctgg gagttccgcg ccttcgagtt catcatctcc	660
aacaagggcg tggcctccgg cgccatctac ccgtacaagg ccgccaaggg cacctgcaag	720
accgacggcg tgccgaactc cgcctacatc accggctacg cccgcgtgcc gcgcaacaac	780
gagteeteea tgatgtaege egtgteeaag eageegatea eegtggeegt ggaegeeaae	840
gccaacttcc agtactacaa gtccggcgtg ttcaacggcc cgtgcggcac ctccctcaac	900
cacgccgtga ccgccatcgg ctacggccag gactccatca tctacccgaa gaagtggggc	960
gccaagtggg gcgaggccgg ctacatccgc atggcccgcg acgtgtcctc ctcctccggc	1020
atotgoggoa togocatoga ocogototao ocgacootog aggagtag	1068
<210> 79 <211> 1497 <212> DNA <213> Trichoderma reesei	
<221> CDS <222> (1)(1497) <223> Trichoderma reesei cellobiohyrodlase I	
<pre><400> 79 atg cag tcg gcg tgt act ctc caa tcg gag act cac ccg cct ctg aca Met Gln Ser Ala Cys Thr Leu Gln Ser Glu Thr His Pro Pro Leu Thr 1</pre>	48
tgg cag aaa tgc tcg tct ggt ggc acg tgc act caa cag aca ggc tcc Trp Gln Lys Cys Ser Ser Gly Gly Thr Cys Thr Gln Gln Thr Gly Ser 20 25 30	96

gtg Val	gtc Val	atc Ile 35	gac Asp	gcc Ala	aac Asn	tgg Trp	cgc Arg 40	tgg Trp	act Thr	cac His	gct Ala	acg Thr 45	aac Asn	agc Ser	agc Ser	144
acg Thr	aac Asn 50	tgc Cys	tac Tyr	gat Asp	ggc Gly	aac Asn 55	act Thr	tgg Trp	agc Ser	tcg Ser	acc Thr 60	cta Leu	tgt Cys	cct Pro	gac Asp	192
aac Asn 65	gag Glu	acc Thr	tgc Cys	gcg Ala	aag Lys 70	aac Asn	tgc Cys	tgt Cys	ctg Leu	gac Asp 75	ggt Gly	gcc Ala	gcc Ala	tac Tyr	gcg Ala 80	240
tcc Ser	acg Thr	tac Tyr	gga Gly	gtt Val 85	acc Thr	acg Thr	agc Ser	ggt Gly	aac Asn 90	agc Ser	ctc Leu	tcc Ser	att Ile	ggc Gly 95	ttt Phe	288
gtc Val	acc Thr	cag Gln	tct Ser 100	gcg Ala	cag Gln	aag Lys	aac Asn	gtt Val 105	ggc Gly	gct Ala	cgc Arg	ctt Leu	tac Tyr 110	ctt Leu	atg Met	336
gcg Ala	agc Ser	gac Asp 115	acg Thr	acc Thr	tac Tyr	cag Gln	gaa Glu 120	ttc Phe	acc Thr	ctg Leu	ctt Leu	ggc Gly 125	aac Asn	gag Glu	ttc Phe	384
tct Ser	ttc Phe 130	gat Asp	gtt Val	gat Asp	gtt Val	tcg Ser 135	cag Gln	ctg Leu	ccg Pro	tgc Cys	ggc Gly 140	ttg Leu	aac Asn	gga Gly	gct Ala	432
ctc Leu 145	tac Tyr	ttc Phe	gtg Val	tcc Ser	atg Met 150	gac Asp	gcg Ala	gat Asp	ggt Gly	ggc Gly 155	gtg Val	agc Ser	aag Lys	tat Tyr	ccc Pro 160	480
acc Thr	aac Asn	acc Thr	gct Ala	ggc Gly 165	gcc Ala	aag Lys	tac Tyr	ggc Gly	acg Thr 170	ggg Gly	tac Tyr	tgt Cys	gac Asp	agc Ser 175	cag Gln	528
tgt Cys	ccc Pro	cgc Arg	gat Asp 180	ctg Leu	aag Lys	ttc Phe	atc Ile	aat Asn 185	ggc Gly	cag Gln	gcc Ala	aac Asn	gtt Val 190	gag Glu	ggc Gly	576
tgg Trp	gag Glu	ccg Pro 195	tca Ser	tcc Ser	aac Asn	aac Asn	gcg Ala 200	aac Asn	acg Thr	ggc Gly	att Ile	gga Gly 205	gga Gly	cac His	gga Gly	624
agc Ser	tgc Cys 210	tgc Cys	tct Ser	gag Glu	atg Met	gat Asp 215	atc Ile	tgg Trp	gag Glu	gcc Ala	aac Asn 220	tcc Ser	atc Ile	tcc Ser	gag Glu	672
gct Ala 225	ctt Leu	acc Thr	ccc Pro	cac His	cct Pro 230	tgc Cys	acg Thr	act Thr	gtc Val	ggc Gly 235	cag Gln	gag Glu	atc Ile	tgc Cys	gag Glu 240	720
ggt Gly	gat Asp	ggg Gly	tgc Cys	ggc Gly 245	gga Gly	act Thr	tac Tyr	tcc Ser	gat Asp 250	aac Asn	aga Arg	tat Tyr	ggc Gly	ggc Gly 255	act Thr	768
tgc Cys	gat Asp	ccc Pro	gat Asp	ggc Gly	tgc Cys	gac Asp	tgg Trp	aac Asn	cca Pro	tac Tyr	cgc Arg	ctg Leu	ggc Gly	aac Asn	acc Thr	816

Page 78

			260					265					270			
agc Ser	ttc Phe	tac Tyr 275	ggc Gly	cct Pro	ggc Gly	tct Ser	agc Ser 280	ttt Phe	acc Thr	ctc Leu	gat Asp	acc Thr 285	acc Thr	aag Lys	aaa Lys	864
ttg Leu	acc Thr 290	gtt Val	gtc Val	acc Thr	cag Gln	ttc Phe 295	gag Glu	acg Thr	tcg Ser	ggt Gly	gcc Ala 300	atc Ile	aac Asn	cga Arg	tac Tyr	912
tat Tyr 305	gtc Val	cag Gln	aat Asn	ggc Gly	gtc Val 310	act Thr	ttc Phe	cag Gln	cag Gln	ccc Pro 315	aac Asn	gcc Ala	gag Glu	ctt Leu	ggt Gly 320	960
agt Ser	tac Tyr	tct Ser	ggc Gly	aac Asn 325	gag Glu	ctc Leu	aac Asn	gat Asp	gat Asp 330	tac Tyr	tgc Cys	aca Thr	gct Ala	gag Glu 335	gag Glu	1008
gca Ala	gaa Glu	ttc Phe	ggc Gly 340	gga Gly	tcc Ser	tct Ser	ttc Phe	tca Ser 345	gac Asp	aag Lys	ggc Gly	ggc Gly	ctg Leu 350	act Thr	cag Gln	1056
ttc Phe	aag Lys	aag Lys 355	gct Ala	acc Thr	tct Ser	ggc Gly	ggc Gly 360	atg Met	gtt Val	ctg Leu	gtc Val	atg Met 365	agt Ser	ctg Leu	tgg Trp	1104
gat Asp	gät Asp 370	tac Tyr	tac Tyr	gcc Ala	aac Asn	atg Met 375	ctg Leu	tgg Trp	ctg Leu	gac Asp	tcc Ser 380	acc Thr	tac Tyr	ccg Pro	aca Thr	1152
aac Asn 385	gag Glu	acc Thr	tcc Ser	tcc Ser	aca Thr 390	ccc Pro	ggt Gly	gcc Ala	gtg Val	cgc Arg 395	gga Gly	agc Ser	tgc Cys	tcc Ser	acc Thr 400	1200
agc Ser	tcc Ser	ggt Gly	gtc Val	cct Pro 405	gct Ala	cag Gln	gtc Val	gaa Glu	tct Ser 410	cag Gln	tct Ser	ccc Pro	aac Asn	gcc Ala 415	aag Lys	1248
gtc Val	acc Thr	ttc Phe	tcc Ser 420	aac Asn	atc Ile	aag Lys	ttc Phe	gga Gly 425	ccc Pro	att Ile	ggc Gly	agc Ser	acc Thr 430	ggc Gly	aac Asn	1296
cct Pro	agc Ser	ggc Gly 435	ggc Gly	aac Asn	cct Pro	ccc Pro	ggc Gly 440	gga Gly	aac Asn	ccg Pro	cct Pro	ggc Gly 445	acc Thr	acc Thr	acc Thr	1344
acc Thr	cgc Arg 450	cgc Arg	cca Pro	gcc Ala	act Thr	acc Thr 455	act Thr	gga Gly	agc Ser	tct Ser	ccc Pro 460	gga Gly	cct Pro	acc Thr	cag Gln	1392
tct Ser 465	cac His	tac Tyr	ggc Gly	cag Gln	tgc Cys 470	ggc Gly	ggt Gly	att Ile	ggc Gly	tac Tyr 475	agc Ser	ggc Gly	ccc Pro	acg Thr	gtc Val 480	1440
tgc Cys	gcc Ala	agc Ser	ggc Gly	aca Thr 485	act Thr	tgc Cys	cag Gln	gtc Val	ctg Leu 490	aac Asn	cct Pro	tac Tyr	tac Tyr	tct Ser 495	cag Gln	1488

1497 tgc ctg taa Cys Leu

<210> 80 <211> 498 <212> PRT

<213> Trichoderma reesei

<400> 80

Met Gln Ser Ala Cys Thr Leu Gln Ser Glu Thr His Pro Pro Leu Thr

Trp Gln Lys Cys Ser Ser Gly Gly Thr Cys Thr Gln Gln Thr Gly Ser

Val Val Ile Asp Ala Asn Trp Arg Trp Thr His Ala Thr Asn Ser Ser 40

Thr Asn Cys Tyr Asp Gly Asn Thr Trp Ser Ser Thr Leu Cys Pro Asp

Asn Glu Thr Cys Ala Lys Asn Cys Cys Leu Asp Gly Ala Ala Tyr Ala

Ser Thr Tyr Gly Val Thr Thr Ser Gly Asn Ser Leu Ser Ile Gly Phe

Val Thr Gln Ser Ala Gln Lys Asn Val Gly Ala Arg Leu Tyr Leu Met

Ala Ser Asp Thr Thr Tyr Gln Glu Phe Thr Leu Leu Gly Asn Glu Phe

Ser Phe Asp Val Asp Val Ser Gln Leu Pro Cys Gly Leu Asn Gly Ala 135

Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Val Ser Lys Tyr Pro 155

Thr Asn Thr Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln 165

Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Gln Ala Asn Val Glu Gly 185

Trp	Glu	Pro 195	Ser	Ser	Asn	Asn	Ala 200	Asn	Thr	Gly	Ile	Gly 205	Gly	His	Gly
Ser	Cys 210	Cys	Ser	Glu	Met	Asp 215	Ile	Trp	Glu	Ala	Asn 220	Ser	Ile	Ser	Glu
Ala 225	Leu	Thr	Pro	His	Pro 230	Cys	Thr	Thr	Val	Gly 235	Gln	Glu	Ile	Cys	Glu 240
Gly	Asp	Gly	Cys	Gly 245	Gly	Thr	Tyr	Ser	Asp 250	Asn	Arg	Tyr	Gly	Gly 255	Thr
Cys	Asp	Pro	Asp 260	Gly	Cys	Asp	Trp	Asn 265	Pro	Tyr	Arg	Leu	Gly 270	Asn	Thr
Ser	Phe	Tyr 275	Gly	Pro	Gly	Ser	Ser 280	Phe	Thr	Leu	Asp	Thr 285	Thr	Lys	Lys
Leu	Thr 290	Val	Val	Thr	Gln	Phe 295	Glu	Thr	Ser	Gly	Ala 300	Ile	Asn	Arg	Tyr
Tyr 305	Val	Gln	Asn	Gly	Val 310	Thr	Phe	Gln	Gln	Pro 315	Asn	Ala	Glu	Leu	Gly 320
Ser	Tyr	Ser	Gly	Asn 325	Glu	Leu	Asn	Asp	Asp 330	Tyr	Cys	Thr	Ala	Glu 335	Glu
Ala	Glu	Phe	Gly 340	Gly	Ser	Ser	Phe	Ser 345	Asp	Lys	Gly	Gly	Leu 350	Thr	Gln
Phe	Lys	Lys 355	Ala	Thr	Ser	Gly	Gly 360	Met	Val	Leu	Val	Met 365	Ser	Leu	Trp
Asp	Asp 370	Tyr	Tyr	Ala	Asn	Met 375	Leu	Trp	Leu	Asp	Ser 380	Thr	Tyr	Pro	Thr
Asn 385	Glu	Thr	Ser	Ser	Thr 390	Pro	Gly	Ala	Val	Arg 395	Gly	Ser	Cys	Ser	Thr 400
Ser	Ser	Gly	Val	Pro 405	Ala	Gln	Val	Glu	Ser 410	Gln	Ser	Pro	Asn	Ala 415	Lys

Page 81

Val	Thr	Phe	Ser 420	Asn	Ile	Lys	Phe	Gly 425	Pro	Ile	Gly	Ser	Thr 430	Gly	Asn	
Pro	Ser	Gly 435	Gly	Asn	Pro	Pro	Gly 440	Gly	Asn	Pro	Pro	Gly 445	Thr	Thr	Thr	
Thr	Arg 450	Arg	Pro	Ala	Thr	Thr 455	Thr	Gly	Ser	Ser	Pro 460	Gly	Pro	Thr	Gln	
Ser 465	His	Tyr	Gly	Gln	Cys 470	Gly	Gly	Ile	Gly	Tyr 475	Ser	Gly	Pro	Thr	Val 480	
Cys	Ala	Ser	Gly	Thr 485	Thr	Cys	Gln	Val	Leu 490	Asn	Pro	Tyr	Tyr	Ser 495	Gln	
Cys	Leu															
<21 <21 <21 <21	1 > 2 >	81 1365 DNA Trich	node	cma 1	reese	e i										
<22 <22 <22 <22	1>	CDS (1). tricl	. (13) node:	65) rma 1	ceese	ei ce	ello	bioh	ydrol	lase	ΙΙ					
<22 <22 <22 <40	1> 2> 3> 0>	(1)	node	rma 1	asa	caa	caa	act	tac	tca	agc	gtc Val	tgg Trp	ggc Gly 15	caa Gln	48
<22 <22 <22 <40 atg Met 1	1> 2> 3> 0> gtg Val	(1). trich 81	cta Leu	gag Glu 5	gag Glu	cgg Arg	caa Gln	gct Ala	tgc Cys 10	tca Ser	agc Ser	act	tcc	15 gga	agc	48 96
<22 <22 <22 <40 atg Met 1 tgt Cys	l> 2> 3> 0> gtg Val ggt Gly	(1). trich 81 cct Pro	cta Leu cag Gln 20	gag Glu 5 aat Asn	gag Glu tgg Trp	cgg Arg tcg Ser	caa Gln ggt Gly	gct Ala ccg Pro 25	tgc Cys 10 act Thr	tca Ser tgc Cys	agc Ser tgt Cys	gct Ala	tcc Ser 30	15 gga Gly	agc Ser	
<22 <22 <22 <40 atg Met 1 tgt Cys	1> 2> 3> 0> gtg Val ggt Gly tgc Cys	(1). trick 81 cct Pro ggc Gly gtc Val	cta Leu cag Gln 20 tac Tyr	gag Glu 5 aat Asn tcc Ser	gag Glu tgg Trp aac Asn	cgg Arg tcg Ser gac Asp	caa Gln ggt Gly tat Tyr 40	gct Ala ccg Pro 25 tac Tyr	tgc Cys 10 act Thr tcc Ser	tca Ser tgc Cys cag Gln	agc Ser tgt Cys tgt Cys	gct Ala ctt Leu 45	tcc Ser 30 ccc Pro	gga Gly ggc Gly	agc Ser gct Ala	96
<22 <22 <40 atg Met l tgt Cys aca Thr	1> 2> 3> 0> gtg Val ggty cys agc Ser	(1). trick 81 cct Pro ggc Gly gtc Val 35	cta Leu cag Gln 20 tac Tyr	gag Glu 5 aat Asn tcc Ser tcg	gag Glu tgg Trp aac Asn tcc	cgg Arg tcg Ser gac Asp acg Thr	caa Gln ggt Gly tat Tyr 40 cgc Arg	gct Ala ccg Pro 25 tac Tyr	tgc Cys 10 act Thr tcc Ser	tca Ser tgc Cys cag Gln tcg Ser	agc Ser tgt Cys tgt Cys	gct Ala ctt Leu 45 act Thr	tcc ser 30 ccc Pro tca ser	gga Gly ggc Gly cga Arg	agc Ser gct Ala gta Val	96 144

Page 82

				85					90					95		
ggc Gly	aac Asn	cct Pro	ttt Phe 100	gtt Val	ggg Gly	gtc Val	act Thr	cct Pro 105	tgg Trp	gcc Ala	aat Asn	gca Ala	tat Tyr 110	tac Tyr	gcc Ala	336
tct Ser	gaa Glu	gtt Val 115	agc Ser	agc Ser	ctc Leu	gct Ala	att Ile 120	cct Pro	agc Ser	ttg Leu	act Thr	gga Gly 125	gcc Ala	atg Met	gcc Ala	384
act Thr	gct Ala 130	gca Ala	gca Ala	gct Ala	gtc Val	gca Ala 135	aag Lys	gtt Val	ccc Pro	tct Ser	ttt Phe 140	atg Met	tgg Trp	cta Leu	gat Asp	432
act Thr 145	ctt Leu	gac Asp	aag Lys	acc Thr	cct Pro 150	ctc Leu	atg Met	gag Glu	caa Gln	acc Thr 155	ttg Leu	gcc Ala	gac Asp	atc Ile	cgc Arg 160	480
acc Thr	gcc Ala	aac Asn	aag Lys	aat Asn 165	ggc Gly	ggt Gly	aac Asn	tat Tyr	gcc Ala 170	gga Gly	cag Gln	ttt Phe	gtg Val	gtg Val 175	tat Tyr	528
gac Asp	ttg Leu	ccg Pro	gat Asp 180	cgc Arg	gat Asp	tgc Cys	gct Ala	gcc Ala 185	ctt Leu	gcc Ala	tcg Ser	aat Asn	ggc Gly 190	gaa Glu	tac Tyr	576
tct Ser	att Ile	gcc Ala 195	gat Asp	ggt Gly	ggc Gly	gtc Val	gcc Ala 200	aaa Lys	tat Tyr	aag Lys	aac Asn	tat Tyr 205	atc Ile	gac Asp	acc Thr	624
att Ile	cgt Arg 210	caa Gln	att Ile	gtc Val	gtg Val	gaa Glu 215	tat Tyr	tcc Ser	gat Asp	atc Ile	cgg Arg 220	acc Thr	ctc Leu	ctg Leu	gtt Val	672
att Ile 225	gag Glu	cct Pro	gac Asp	tct Ser	ctt Leu 230	gcc Ala	aac Asn	ctg Leu	gtg Val	acc Thr 235	aac Asn	ctc Leu	ggt Gly	act Thr	cca Pro 240	720
aag Lys	tgt Cys	gcc Ala	aat Asn	gct Ala 245	cag Gln	tca Ser	gcc Ala	tac Tyr	ctt Leu 250	gag Glu	tgc Cys	atc Ile	aac Asn	tac Tyr 255	gcc Ala	768
gtc Val	aca Thr	cag Gln	ctg Leu 260	aac Asn	ctt Leu	cca Pro	aat Asn	gtt Val 265	gcg Ala	atg Met	tat Tyr	ttg Leu	gac Asp 270	gct Ala	ggc Gly	816
cat His	gca Ala	gga Gly 275	tgg Trp	ctt Leu	ggc Gly	tgg Trp	ccg Pro 280	gca Ala	aac Asn	caa Gln	gac Asp	ccg Pro 285	gcc Ala	gct Ala	cag Gln	864
cta Leu	ttt Phe 290	gca Ala	aat Asn	gtt Val	tac Tyr	aag Lys 295	aat Asn	gca Ala	tcg Ser	tct Ser	ccg Pro 300	aga Arg	gct Ala	ctt Leu	cgc Arg	912
gga Gly 305	ttg Leu	gca Ala	acc Thr	aat Asn	gtc Val 310	gcc Ala	aac Asn	tac Tyr	aac Asn	999 Gly 315	tgg Trp	aac Asn	att Ile	acc Thr	agc Ser 320	960

ccc cca tcg Pro Pro Ser	tac acg Tyr Thr 325	caa ggc Gln Gly	aac gc† Asn Ala	t gtc a Val 330	tac Tyr	aac Asn	gag Glu	aag Lys	ctg Leu 335	tac Tyr	1008
atc cac gct Ile His Ala	att gga Ile Gly 340	cct ctt Pro Leu	ctt gcc Leu Ala 34	a Asn	cac His	ggc Gly	tgg Trp	tcc Ser 350	aac Asn	gcc Ala	1056
ttc ttc atc Phe Phe Ile 355	Thr Asp	caa ggt Gln Gly	cga tcc Arg Se: 360	g gga r Gly	aag Lys	cag Gln	cct Pro 365	acc Thr	gga Gly	cag Gln	1104
caa cag tgg Gln Gln Trp 370	gga gac Gly Asp	tgg tgc Trp Cys 375	aat gt Asn Va	g atc l Ile	ggc Gly	acc Thr 380	gga Gly	ttt Phe	ggt Gly	att Ile	1152
cgc cca tcc Arg Pro Ser 385	gca aac Ala Asn	act ggg Thr Gly 390	gac to Asp Se	g ttg r Leu	ctg Leu 395	gat Asp	tcg Ser	ttt Phe	gtc Val	tgg Trp 400	1200
gtc aag cca Val Lys Pro	ggc ggc Gly Gly 405	gag tgt Glu Cys	gac gg Asp Gl	c acc y Thr 410	agc Ser	gac Asp	agc Ser	agt Ser	gcg Ala 415	cca Pro	1248
cga ttt gac Arg Phe Asp	tcc cac Ser His 420	tgt gcg Cys Ala	ctc cc Leu Pr 42	o Asp	gcc Ala	ttg Leu	caa Gln	ccg Pro 430	gcg Ala	cct Pro	1296
caa gct ggt Gln Ala Gly 435	Ala Trp	ttc caa Phe Gln	gcc ta Ala Ty 440	c ttt r Phe	gtg Val	cag Gln	ctt Leu 445	ctc Leu	aca Thr	aac Asn	1344
gca aac cca Ala Asn Pro 450	tcg ttc Ser Phe	ctg tag Leu									1365
<210> 82 <211> 454 <212> PRT <213> Tric	hoderma	reesei									
<400> 82											
Met Val Pro 1	Leu Glu 5	Glu Arg	Gln Al	a Cys 10	Ser	Ser	Val	Trp	Gly 15	Gln	
Cys Gly Gly	Gln Asn 20	Trp Ser	Gly Pr 25	o Thr	Cys	Cys	Ala	Ser 30	Gly	Ser	
Thr Cys Val	Tyr Ser	Asn Asp	Tyr Ty 40	r Ser	Gln	Cys	Leu 45	Pro	Gly	Ala	
Ala Ser Ser 50	Ser Ser	Ser Thr	Arg Al	a Ala	Ser	Thr 60	Thr	Ser	Arg	Val	

Page 84

Ser 65	Pro	Thr	Thr	Ser	Arg 70	Ser	Ser	Ser	Ala	Thr 75	Pro	Pro	Pro	Gly	Ser 80
Thr	Thr	Thr	Arg	Val 85	Pro	Pro	Val	Gly	Ser 90	Gly	Thr	Ala	Thr	Tyr 95	Ser
Gly	Asn	Pro	Phe 100	Val	Gly	Val	Thr	Pro 105	Trp	Ala	Asn	Ala	Tyr 110	Tyr	Ala
Ser	Glu	Val 115	Ser	Ser	Leu	Ala	Ile 120	Pro	Ser	Leu	Thr	Gly 125	Ala	Met	Ala
Thr	Ala 130	Ala	Ala	Ala	Val	Ala 135	Lys	Val	Pro	Ser	Phe 140	Met	Trp	Leu	Asp
Thr 145	Leu	Asp	Lys	Thr	Pro 150	Leu	Met	Glu	Gln	Thr 155	Leu	Ala	Asp	Ile	Arg 160
Thr	Ala	Asn	Lys	Asn 165	Gly	Gly	Asn	Tyr	Ala 170	Gly	Gln	Phe	Val	Val 175	Tyr
Asp	Leu	Pro	Asp 180	Arg	Asp	Cys	Ala	Ala 185	Leu	Ala	Ser	Asn	Gly 190	Glu	Tyr
Ser	Ile	Ala 195	Asp	Gly	Gly	Val	Ala 200	Lys	Tyr	Lys	Asn	Tyr 205	Ile	Asp	Thr
Ile	Arg 210		Ile	Val	Val	Glu 215	Tyr	Ser	Asp	Ile	Arg 220	Thr	Leu	Leu	Val
Ile 225		Pro	Asp	Ser	Leu 230	Ala	Asn	Leu	Val	Thr 235	Asn	Leu	Gly	Thr	Pro 240
Lys	Cys	Ala	Asn	Ala 245	Gln	Ser	Ala	Tyr	Leu 250	Glu	Cys	Ile	Asn	Tyr 255	Ala
Val	Thr	Gln	Leu 260	Asn	Leu	Pro	Asn	Val 265	Ala	. Met	Tyr	Leu	Asp 270	Ala	Gly
His	Ala	Gly 275	Trp	Leu	Gly	Trp	Pro 280	Ala	Asn	Gln	Asp	Pro 285	Ala	Ala	Gln

Page 85

Le	u Phe 290		Asn	Val	Tyr	Lys 295		Ala	Ser	ser	300	Arg	АІА	Leu	Arg
G1 30	y Leu 5	ı Ala	Thr	Asn	Val 310	Ala	Asn	Tyr	Asn	Gly 315	Trp	Asn	Ile	Thr	Ser 320
Pr	o Pro) Ser	Tyr	Thr 325	Gln	Gly	Asn	Ala	Val 330	Туr	Asn	Glu	Lys	Leu 335	Tyr
11	e His	: Ala	Ile 340	Gly	Pro	Leu	Leu	Ala 345	Asn	His	Gly	Trp	Ser 350	Asn	Ala
Ph	e Phe	lle 355		Asp	Gln	Gly	Arg 360	Ser	Gly	Lys	Gln	Pro 365	Thr	Gly	Gln
Gl	n Gln 370		Gly	Asp	Trp	Cys 375	Asn	Val	Ile	Gly	Thr 380	Gly	Phe	Gly	Ile
Ar 38	g Pro 5	Ser	Ala	Asn	Thr 390	Gly	Asp	Ser	Leu	Leu 395	Asp	Ser	Phe	Val	Trp 400
۷a	l Lys	Pro	Gly	Gly 405	Glu	Cys	Asp	Gly	Thr 410	Ser	Asp	Ser	Ser	Ala 415	Pro
Ar	g Phe	Asp	Ser 420	His	Cys	Ala	Leu	Pro 425	Asp	Ala	Leu	Gln	Pro 430	Ala	Pro
Gl	n Ala	Gly 435	Ala	Trp	Phe	Gln	Ala 440	Tyr	Phe	Val	Gln	Leu 445	Leu	Thr	Asn
Al	a Asn 450		Ser	Phe	Leu										
<2 <2	11> 12>	83 1317 DNA Trich	nodei	rma i	reese	ei									
<2 <2	22>	CDS (1) Trich	. (131 noder	l7) cma r	reese	ei er	ndogl	.ucar	nase	I					
ati	00> g cag t Gln	83 caa Gln	ccg Pro	gga Gly	acc Thr	agc Ser	acc Thr	ccc Pro	gag Glu	gtc Val	cat His	ccc Pro	aag Lys	ttg Leu	aca Thr

48

1				5					10					15		
acc Thr	tac Tyr	aag Lys	tgc Cys 20	aca Thr	aag Lys	tcc Ser	G] À ddd	ggg Gly 25	tgc Cys	gtg Val	gcc Ala	cag Gln	gac Asp 30	acc Thr	tcg Ser	96
gtg Val	gtc Val	ctt Leu 35	gac Asp	tgg Trp	aac Asn	tac Tyr	cgc Arg 40	tgg Trp	atg Met	cac His	gac Asp	gca Ala 45	aac Asn	tac Tyr	aac Asn	144
tcg Ser	tgc Cys 50	acc Thr	gtc Val	aac Asn	ggc Gly	ggc Gly 55	gtc Val	aac Asn	acc Thr	acg Thr	ctc Leu 60	tgc Cys	cct Pro	gac Asp	gag Glu	192
gcg Ala 65	acc Thr	tgt Cys	ggc Gly	aag Lys	aac Asn 70	tgc Cys	ttc Phe	atc Ile	gag Glu	ggc Gly 75	gtc Val	gac Asp	tac Tyr	gcc Ala	gcc Ala 80	240
tcg Ser	ggc Gly	gtc Val	acg Thr	acc Thr 85	tcg Ser	ggc Gly	agc Ser	agc Ser	ctc Leu 90	acc Thr	atg Met	aac Asn	cag Gln	tac Tyr 95	atg Met	288
ccc Pro	agc Ser	agc Ser	tct Ser 100	ggc Gly	ggc Gly	tac Tyr	agc Ser	agc Ser 105	gtc Val	tct Ser	cct Pro	cgg Arg	ctg Leu 110	tat Tyr	ctc Leu	336
ctg Leu	gac Asp	tct Ser 115	gac Asp	ggt Gly	gag Glu	tac Tyr	gtg Val 120	atg Met	ctg Leu	aag Lys	ctc Leu	aac Asn 125	ggc	cag Gln	gag Glu	384
ctg Leu	agc Ser 130	ttc Phe	gac Asp	gtc Val	gac Asp	ctc Leu 135	tct Ser	gct Ala	ctg Leu	ccg Pro	tgt Cys 140	gga Gly	gag Glu	aac Asn	ggc Gly	432
tcg Ser 145	ctc Leu	tac Tyr	ctg Leu	tct Ser	cag Gln 150	atg Met	gac Asp	gag Glu	aac Asn	ggg Gly 155	ggc	gcc Ala	aac Asn	cag Gln	tat Tyr 160	480
aac Asn	acg Thr	gcc Ala	ggt Gly	gcc Ala 165	aac Asn	tac Tyr	ggg Gly	agc Ser	ggc Gly 170	tac Tyr	tgc Cys	gat Asp	gct Ala	cag Gln 175	tgc Cys	528
ccc Pro	gtc Val	cag Gln	aca Thr 180	tgg Trp	agg Arg	aac Asn	ggc Gly	acc Thr 185	ctc Leu	aac Asn	act Thr	agc Ser	cac His 190	cag Gln	ggc Gly	576
ttc Phe	tgc Cys	tgc Cys 195	Asn	gag Glu	atg Met	gat Asp	atc Ile 200	Leu	gag Glu	ggc Gly	aac Asn	tcg Ser 205	agg Arg	gcg Ala	aat Asn	624
gcc Ala	ttg Leu 210	Thr	cct Pro	cac His	tct Ser	tgc Cys 215	acg Thr	gcc Ala	acg Thr	gcc Ala	tgc Cys 220	Asp	tct Ser	gcc Ala	ggt Gly	672
tgc Cys 225	Gly	ttc Phe	aac Asn	ccc Pro	tat Tyr 230	GIA	agc Ser	ggc Gly	tac Tyr	aaa Lys 235	361	tac Tyr	tac Tyr	ggc Gly	ccc Pro 240	720

gga ga Gly As	t acc p Thr	gtt Val	gac Asp 245	acc Thr	tcc Ser	aag Lys	acc Thr	ttc Phe 250	acc Thr	atc Ile	atc Ile	acc Thr	cag Gln 255	ttc Phe	768
aac ac Asn Th	g gac r Asp	aac Asn 260	ggc Gly	tcg Ser	ccc Pro	tog Ser	ggc Gly 265	aac Asn	ctt Leu	gtg Val	agc Ser	atc Ile 270	acc Thr	cgc Arg	816
aag ta Lys Ty	c cag r Gln 275	caa Gln	aac Asn	ggc Gly	gtc Val	gac Asp 280	atc Ile	ccc Pro	agc Ser	gcc Ala	cag Gln 285	ccc Pro	ggc Gly	ggc Gly	8,64
gac ac Asp Th 29	r Ile	tcg Ser	tcc Ser	tgc Cys	ccg Pro 295	tcc Ser	gcc Ala	tca Ser	gcc Ala	tac Tyr 300	ggc Gly	ggc Gly	ctc Leu	gcc Ala	912
acc at Thr Me 305	g ggc t Gly	aag Lys	gcc Ala	ctg Leu 310	agc Ser	agc Ser	ggc Gly	atg Met	gtg Val 315	ctc Leu	gtg Val	ttc Phe	agc Ser	att Ile 320	960
tgg aa Trp As	c gac n Asp	aac Asn	agc Ser 325	cag Gln	tac Tyr	atg Met	aac Asn	tgg Trp 330	ctc Leu	gac Asp	agc Ser	ggc Gly	aac Asn 335	gcc Ala	1008
ggc cc Gly Pr	c tgc o Cys	agc Ser 340	agc Ser	acc Thr	gag Glu	ggc Gly	aac Asn 345	cca Pro	tcc Ser	aac Asn	acc Thr	ctg Leu 350	gcc Ala	aac Asn	1056
aac cc Asn Pr	c aac o Asn 355	acg Thr	cac His	gtc Val	gtc Val	ttc Phe 360	tcc Ser	aac Asn	atc Ile	cgc Arg	tgg Trp 365	gga Gly	gac Asp	att Ile	1104
ggg tc Gly Se 37	r Thr	acg Thr	aac Asn	tcg Ser	act Thr 375	gcg Ala	ccc Pro	ccg Pro	ccc Pro	ccg Pro 380	cct Pro	gcg Ala	tcc Ser	agc Ser	1152
acg ac Thr Th 385	g ttt r Phe	tcg Ser	act Thr	aca Thr 390	cgg Arg	agg Arg	agc Ser	tcg Ser	acg Thr 395	act Thr	tcg Ser	agc Ser	agc Ser	ccg Pro 400	1200
agc tg Ser Cy	c acg	cag Gln	act Thr 405	cac His	tgg Trp	G] y ggg	cag Gln	tgc Cys 410	ggt Gly	ggc Gly	att Ile	ggg Gly	tac Tyr 415	agc Ser	1248
ggg tg Gly Cy	c aag s Lys	acg Thr 420	tgc Cys	acg Thr	tcg Ser	ggc Gly	act Thr 425	acg Thr	tgc Cys	cag Gln	tat Tyr	agc Ser 430	aac Asn	gac Asp	1296
tac ta Tyr Ty	c tcg r Ser 435	Gln	tgc Cys	ctt Leu	tag										1317
<210><211><212><213>		hode	rma	rees	ei										

<400> 84

Thr Tyr Lys Cys Thr Lys Ser Gly Gly Cys Val Ala Gln Asp Thr Ser 25

Val Val Leu Asp Trp Asn Tyr Arg Trp Met His Asp Ala Asn Tyr Asn 35 40 45

Ser Cys Thr Val Asn Gly Gly Val Asn Thr Thr Leu Cys Pro Asp Glu 50 55

Ala Thr Cys Gly Lys Asn Cys Phe Ile Glu Gly Val Asp Tyr Ala Ala 65 70 75 80

Ser Gly Val Thr Thr Ser Gly Ser Ser Leu Thr Met Asn Gln Tyr Met 85 90 95

Pro Ser Ser Ser Gly Gly Tyr Ser Ser Val Ser Pro Arg Leu Tyr Leu 100 105 110

Leu Asp Ser Asp Gly Glu Tyr Val Met Leu Lys Leu Asn Gly Gl
n Glu 115 120 125

Leu Ser Phe Asp Val Asp Leu Ser Ala Leu Pro Cys Gly Glu Asn Gly 130 135

Ser Leu Tyr Leu Ser Gln Met Asp Glu Asn Gly Gly Ala Asn Gln Tyr 145 150 155 160

Asn Thr Ala Gly Ala Asn Tyr Gly Ser Gly Tyr Cys Asp Ala Gln Cys 165 170 175

Pro Val Gln Thr Trp Arg Asn Gly Thr Leu Asn Thr Ser His Gln Gly 180 185

Phe Cys Cys Asn Glu Met Asp Ile Leu Glu Gly Asn Ser Arg Ala Asn 195 200 205

Ala Leu Thr Pro His Ser Cys Thr Ala Thr Ala Cys Asp Ser Ala Gly 210 215 . 220

Cys Gly Phe Asn Pro Tyr Gly Ser Gly Tyr Lys Ser Tyr Tyr Gly Pro Gly Asp Thr Val Asp Thr Ser Lys Thr Phe Thr Ile Ile Thr Gln Phe 245 Asn Thr Asp Asn Gly Ser Pro Ser Gly Asn Leu Val Ser Ile Thr Arg Lys Tyr Gln Gln Asn Gly Val Asp Ile Pro Ser Ala Gln Pro Gly Gly Asp Thr Ile Ser Ser Cys Pro Ser Ala Ser Ala Tyr Gly Gly Leu Ala Thr Met Gly Lys Ala Leu Ser Ser Gly Met Val Leu Val Phe Ser Ile 315 Trp Asn Asp Asn Ser Gln Tyr Met Asn Trp Leu Asp Ser Gly Asn Ala Gly Pro Cys Ser Ser Thr Glu Gly Asn Pro Ser Asn Thr Leu Ala Asn 340 Asn Pro Asn Thr His Val Val Phe Ser Asn Ile Arg Trp Gly Asp Ile 360 355 Gly Ser Thr Thr Asn Ser Thr Ala Pro Pro Pro Pro Ala Ser Ser Thr Thr Phe Ser Thr Thr Arg Arg Ser Ser Thr Thr Ser Ser Pro 385 Ser Cys Thr Gln Thr His Trp Gly Gln Cys Gly Gly Ile Gly Tyr Ser Gly Cys Lys Thr Cys Thr Ser Gly Thr Thr Cys Gln Tyr Ser Asn Asp Tyr Tyr Ser Gln Cys Leu 435

Page 90

<210> 85 <211> 954

<21 <21		DNA Arti	fici	al S	eque	nce											
<22 <22		6GP1															
<22 <22 <22 <22	1 > 2 >	CDS (1). 6GP1	. (95	4)													
<40 atg Met 1	0> ggc Gly	85 gtg Val	gac Asp	ccg Pro 5	ttc Phe	gag Glu	cgc Arg	aac Asn	aag Lys 10	atc Ile	ctc Leu	ggc Gly	cgc Arg	ggc Gly 15	atc Ile		48
aac Asn	atc Ile	ggc Gly	aac Asn 20	gcc Ala	ctg Leu	gag Glu	gcc Ala	ccg Pro 25	aac Asn	gag Glu	ggc Gly	gac Asp	tgg Trp 30	ggc	gtg Val		96
gtg Val	atc Ile	aag Lys 35	gac Asp	gag Glu	ttc Phe	ttc Phe	gac Asp 40	atc Ile	atc Ile	aag Lys	gag Glu	gcc Ala 45	ggc Gly	ttc Phe	tcc Ser]	144
cac His	gtg Val 50	cgc Arg	atc Ile	ccg Pro	atc Ile	cgc Arg 55	tgg Trp	tcc Ser	acc Thr	cac His	gcc Ala 60	tac Tyr	gcc Ala	ttc Phe	ccg Pro	1	192
ccg Pro 65	tac Tyr	aag Lys	atc Ile	atg Met	gac Asp 70	cgc Arg	ttc Phe	ttc Phe	aag Lys	cgc Arg 75	gtg Val	gac Asp	gag Glu	gtg Val	atc Ile 80		240
aac Asn	ggc Gly	gcc Ala	ctc Leu	aag Lys 85	cgc Arg	ggc Gly	ctc Leu	gcc Ala	gtg Val 90	gcc Ala	atc Ile	aac Asn	atc Ile	cac His 95	cac His	2	288
tac Tyr	gag Glu	gag Glu	ctc Leu 100	atg Met	aac Asn	gac Asp	ccg Pro	gag Glu 105	gag Glu	cac His	aag Lys	gag Glu	cgc Arg 110	ttc Phe	ctc Leu	3	336
gcc Ala	ctc Leu	tgg Trp 115	aag Lys	cag Gln	atc Ile	gcc Ala	gac Asp 120	cgc Arg	tac Tyr	aag Lys	gac Asp	tac Tyr 125	ccg Pro	gag Glu	acc Thr	3	884
ctc Leu	ttc Phe 130	ttc Phe	gag Glu	atc Ile	ctc Leu	aac Asn 135	gag Glu	ccg Pro	cac His	ggc Gly	aac Asn 140	ctc Leu	acc Thr	ccg Pro	gag Glu	4	32
aag Lys 145	tgg Trp	aac Asn	gag Glu	ctg Leu	ctc Leu 150	gag Glu	gag Glu	gcc Ala	ctc Leu	aag Lys 155	gtg Val	atc Ile	cgc Arg	tcc Ser	atc Ile 160	4	80
gac Asp	aag Lys	aag Lys	cac His	acc Thr 165	atc Ile	atc Ile	att Ile	ggc Gly	acc Thr 170	gca Ala	gag Glu	tgg Trp	gga Gly	ggc Gly 175	atc Ile	5	28
tcc	gcc	ctc	gag	aag	ctc	tcc	gtg	ccg	aag	tgg	gag	aag	aat	tcc	atc	5	76

Ser	Ala	Leu	Glu 180	Lys	Leu	Ser	Val	Pro 185	Lys	Trp	Glu	Lys	Asn 190	Ser	Ile		
gtg Val	acc Thr	atc Ile 195	cac His	tac Tyr	tac Tyr	aac Asn	ccg Pro 200	ttc Phe	gag Glu	ttc Phe	acg Thr	cac His 205	cag Gln	ggc Gly	gcc Ala		624
gag Glu	tgg Trp 210	gtg Val	gag Glu	ggc Gly	tcc Ser	gag Glu 215	aag Lys	tgg Trp	ctt Leu	ggc Gly	cgc Arg 220	aag Lys	tgg Trp	ggc Gly	tcc Ser		672
ccg Pro 225	gac Asp	gac Asp	cag Gln	aag Lys	cac His 230	ctc Leu	atc Ile	gag Glu	gag Glu	ttc Phe 235	aac Asn	ttc Phe	atc Ile	gag Glu	gag Glu 240		720
tgg Trp	tcc Ser	aag Lys	aag Lys	aac Asn 245	aag Lys	cgc Arg	ccg Pro	atc Ile	tac Tyr 250	atc Ile	ggc Gly	gag Glu	ttt Phe	ggc Gly 255	gcc Ala		768
tac Tyr	cgc Arg	aag Lys	gcc Ala 260	gac Asp	ctc Leu	gag Glu	tcc Ser	cgc Arg 265	atc Ile	aag Lys	tgg Trp	acc Thr	tcc Ser 270	ttc Phe	gtg Val		816
gtg Val	cgt Arg	gag Glu 275	atg Met	gag Glu	aag Lys	cgc Arg	cgc Arg 280	tgg Trp	tcc Ser	tgg Trp	gcc Ala	tac Tyr 285	tgg Trp	gag Glu	ttc Phe	;	864
tgc Cys	tcc Ser 290	ggc Gly	ttc Phe	ggc Gly	gtg Val	tac Tyr 295	gac Asp	acc Thr	ctc Leu	cgc Arg	aag Lys 300	acc Thr	tgg Trp	aac Asn	aag Lys	,	912
gac Asp 305	ctc Leu	ctc Leu	gag Glu	gcc Ala	ctc Leu 310	atc Ile	ggc Gly	ggc Gly	gac Asp	tcc Ser 315	atc Ile	gag Glu	tag			٠,	954
<210 <211 <212 <213	> 3 > P	6 17 RT rtif	icia	al Se	quer	ıce											
<220 <223		ynth	netio	Con	stru	ct											
< 400	> 8	6															
Met (Gly	Val	Asp	Pro 5	Phe	Glu	Arg	Asn	Lys 10	Ile	Leu	Gly	Arg	Gly 15	Ile		
Asn :	Ile	Gly	Asn 20	Ala	Leu	Glu	Ala	Pro 25	Asn	Glu	Gly	Asp	Trp 30	Gly	Val		
Val :		Lys 35	Asp	Glu	Phe	Phe	Asp 40	Ile	Ile	Lys	Glu	Ala 45	Gly	Phe	Ser		

His Val Arg Ile Pro Ile Arg Trp Ser Thr His Ala Tyr Ala Phe Pro 50 55 60

Pro Tyr Lys Ile Met Asp Arg Phe Phe Lys Arg Val Asp Glu Val Ile 65 70 75 80

Asn Gly Ala Leu Lys Arg Gly Leu Ala Val Ala Ile Asn Ile His His 90 95

Tyr Glu Glu Leu Met Asn Asp Pro Glu Glu His Lys Glu Arg Phe Leu 100 105 110

Ala Leu Trp Lys Gln Ile Ala Asp Arg Tyr Lys Asp Tyr Pro Glu Thr $115 \,$ $120 \,$ 125

Leu Phe Phe Glu Ile Leu Asn Glu Pro His Gly Asn Leu Thr Pro Glu 130 135 140

Lys Trp Asn Glu Leu Leu Glu Glu Ala Leu Lys Val Ile Arg Ser Ile 145 150 155 160

Asp Lys Lys His Thr Ile Ile Gly Thr Ala Glu Trp Gly Gly Ile 165 170 175

Ser Ala Leu Glu Lys Leu Ser Val Pro Lys Trp Glu Lys Asn Ser Ile 180 185 190

Val Thr Ile His Tyr Tyr Asn Pro Phe Glu Phe Thr His Gln Gly Ala 195 200 205

Glu Trp Val Glu Gly Ser Glu Lys Trp Leu Gly Arg Lys Trp Gly Ser 210 215 220

Pro Asp Asp Gln Lys His Leu Ile Glu Glu Phe Asn Phe Ile Glu Glu 225 230 235 240

Trp Ser Lys Lys Asn Lys Arg Pro Ile Tyr Ile Gly Glu Phe Gly Ala 245 250 255

Tyr Arg Lys Ala Asp Leu Glu Ser Arg Ile Lys Trp Thr Ser Phe Val 260 265 270

Val Arg Glu Met Glu Lys Arg Arg Trp Ser Trp Ala Tyr Trp Glu Phe 275 280 285

Page 93

Cys	Ser 290	Gly	Phe	Gly	Val	Tyr 295	Asp	Thr	Leu	Arg	Lys 300	Thr	Trp	Asn	Lys	
Asp 305	Leu	Leu	Glu	Ala	Leu 310	Ile	Gly	Gly	Asp	Ser 315	Ile	Glu				
<21 <21 <21 <21	1 > 2 >	87 1248 DNA Hord	eum '	vulga	are											
<22 <22 <22 <22	1 >	CDS (1). Barl			amyla	ase										
<400 atg Met 1	aca	87 cac His	caa Gln	gtc Val 5	ctc Leu	ttt Phe	cag Gln	ggg Gly	ttc Phe 10	aac Asn	tgg Trp	gag Glu	tcg Ser	tgg Trp 15	aag Lys	48
cag Gln	agc Ser	ggc Gly	999 Gly 20	tgg Trp	tac Tyr	aac Asn	atg Met	atg Met 25	atg Met	ggc Gly	aag Lys	gtc Val	gac Asp 30	gac Asp	atc Ile	96
gcc Ala	gct Ala	gcc Ala 35	gga Gly	gtc Val	acc Thr	cac His	gtc Val 40	tgg Trp	ctg Leu	cca Pro	ccg Pro	ccg Pro 45	tcg Ser	cac His	tcc Ser	144
gtc Val	tcc Ser 50	aac Asn	gaa Glu	ggt Gly	tac Tyr	atg Met 55	cct Pro	ggt Gly	cgg Arg	ctg Leu	tac Tyr 60	gac Asp	atc Ile	gac Asp	gcg Ala	192
tcc Ser 65	aag Lys	tac Tyr	ggc Gly	aac Asn	gcg Ala 70	gcg Ala	gag Glu	ctc Leu	aag Lys	tcg Ser 75	ctc Leu	atc Ile	ggc Gly	gcg Ala	ctc Leu 80	240
cac His	ggc Gly	aag Lys	ggc Gly	gtg Val 85	cag Gln	gcc Ala	atc Ile	gcc Ala	gac Asp 90	atc Ile	gtc Val	atc Ile	aac Asn	cac His 95	cgc Arg	288
tgc Cys	gcc Ala	gac Asp	tac Tyr 100	aag Lys	gat Asp	agc Ser	cgc Arg	ggc Gly 105	atc Ile	tac Tyr	tgc Cys	atc Ile	ttc Phe 110	gag Glu	ggc Gly	336
ggc Gly	acc Thr	tcc Ser 115	gac Asp	ggc Gly	cgc Arg	ctc Leu	gac Asp 120	tgg Trp	ggc Gly	ccc Pro	cac His	atg Met 125	atc Ile	tgt Cys	cgc Arg	384
gac Asp	gac Asp 130	acc Thr	aaa Lys	tac Tyr	tcc Ser	gat Asp 135	ggc Gly	acc Thr	gca Ala	aac Asn	ctc Leu 140	gac Asp	acc Thr	gga Gly	gcc Ala	432

Page 94

gac Asp 145	Phe	gcc Ala	gcc Ala	gcg Ala	ccc Pro 150	Asp	atc Ile	gac Asp	cac His	ctc Leu 155	Asn	gac Asp	cgg Arg	gtc Val	cag Gln 160	480
cgc Arg	gag Glu	ctc	aag Lys	gag Glu 165	tgg Trp	ctc Leu	ctc Leu	tgg Trp	ctc Leu 170	Lys	agc Ser	gac Asp	ctc Leu	ggc Gly 175	ttc Phe	528
gac Asp	gcg Ala	tgg Trp	cgc Arg 180	ctt Leu	gac Asp	ttc Phe	gcc Ala	agg Arg 185	ggc Gly	tac Tyr	tcg Ser	ccg Pro	gag Glu 190	atg Met	gcc Ala	5,76
aag Lys	gtg Val	tac Tyr 195	atc Ile	gac Asp	ggc Gly	aca Thr	tcc Ser 200	ccg Pro	agc Ser	ctc Leu	gcc Ala	gtg Val 205	gcc Ala	gag Glu	gtg Val	624
tgg Trp	gac Asp 210	Asn	atg Met	gcc Ala	acc Thr	ggc Gly 215	ggc Gly	gac Asp	ggc Gly	aag Lys	ccc Pro 220	aac Asn	tac Tyr	gac Asp	cag Gln	672
gac Asp 225	gcg Ala	cac His	cgg Arg	cag Gln	aat Asn 230	ctg Leu	gtg Val	aac Asn	tgg Trp	gtg Val 235	gac Asp	aag Lys	gtg Val	ggc Gly	ggc Gly 240	720
gcg Ala	gcc Ala	tcg Ser	gca Ala	ggc Gly 245	atg Met	gtg Val	ttc Phe	gac Asp	ttc Phe 250	acg Thr	acc Thr	aaa Lys	ggg Gly	ata Ile 255	ctg Leu	768
aac Asn	gct Ala	gcc Ala	gtg Val 260	gag Glu	ggc Gly	gag Glu	ctg Leu	tgg Trp 265	agg Arg	ctg Leu	atc Ile	gac Asp	ccg Pro 270	cag Gln	ggg Gly	816
aag Lys	gcc Ala	ccc Pro 275	ggc Gly	gtg Val	atg Met	gga Gly	tgg Trp 280	tgg Trp	ccg Pro	gcc Ala	aag Lys	gcc Ala 285	gtc Val	acc Thr	ttc Phe	864
gtc Val	gac Asp 290	aac Asn	cac His	gat Asp	aca Thr	ggc Gly 295	tcc Ser	acg Thr	cag Gln	gcc Ala	atg Met 300	tgg Trp	cca Pro	ttc Phe	ccc Pro	912
tcc Ser 305	gac Asp	aag Lys	gtc Val	atg Met	cag Gln 310	ggc Gly	tac Tyr	gcg Ala	tac Tyr	atc Ile 315	ctc Leu	acc Thr	cac His	ccc Pro	ggc Gly 320	960
atc Ile	cca Pro	tgc Cys	atc Ile	ttc Phe 325	tac Tyr	gac Asp	cat His	ttc Phe	ttc Phe 330	aac Asn	tgg Trp	ggg Gly	ttt Phe	aag Lys 335	gac Asp	1008
cag Gln	atc Ile	gcg Ala	gcg Ala 340	ctg Leu	gtg Val	gcg Ala	Ile	agg Arg 345	aag Lys	cgc Arg	aac Asn	ggc Gly	atc Ile 350	acg Thr	gcg Ala	1056
				aag Lys												1104
gag Glu	ata Ile	gac Asp	ggc Gly	aag Lys	gtg Val	gtg Val	gtg Val	aag Lys	atc Ile	ggg Gly	tcc Ser	agg Arg	tac Tyr	gac Asp	gtc Val	1152

WO 2005/096804			PCT/US2004/007182
370	375	380	
ggg gcg gtg atc ccg gc Gly Ala Val Ile Pro Al 385	a Gly Phe Val Thr Ser	gca cac ggc aac Ala His Gly Asn	gac 1200 Asp 400
tac gcc gtc tgg gag aa Tyr Ala Val Trp Glu Ly 405	g aac ggt gcc gcg gca s Asn Gly Ala Ala Ala 410	aca cta caa cgg Thr Leu Gln Arg 415	agc 1248 Ser
<210> 88 <211> 416 <212> PRT <213> Hordeum vulgare			
<400> 88			
Met Ala His Gln Val Lea 1 5	Phe Gln Gly Phe Asn 10	Trp Glu Ser Trp 15	Lys
Gln Ser Gly Gly Trp Ty: 20	Asn Met Met Met Gly 25	Lys Val Asp Asp 30	Ile
Ala Ala Ala Gly Val The 35	His Val Trp Leu Pro 40	Pro Pro Ser His 45	Ser
Val Ser Asn Glu Gly Tyn 50	Met Pro Gly Arg Leu 55	Tyr Asp Ile Asp 60	Ala
Ser Lys Tyr Gly Asn Ala 65 70	Ala Glu Leu Lys Ser 75	Leu Ile Gly Ala	Leu 80
His Gly Lys Gly Val Glr 85	Ala Ile Ala Asp Ile 90	Val Ile Asn His 95	Arg
Cys Ala Asp Tyr Lys Asp 100	Ser Arg Gly Ile Tyr 105	Cys Ile Phe Glu 110	Gly
Gly Thr Ser Asp Gly Ard	Leu Asp Trp Gly Pro 120	His Met Ile Cys 125	Arg
Asp Asp Thr Lys Tyr Ser	Asp Gly Thr Ala Asn	Leu Asp Thr Gly	Ala

Page 96

Asp Phe Ala Ala Ala Pro Asp Ile Asp His Leu Asn Asp Arg Val Gln 145 155 160

130

Arg	Glu	Leu	Lys	Glu 165	Trp	Leu	Leu	Trp	Leu 170		Ser	Asp	Leu	Gly 175	Phe	
Asp	Ala	Trp	Arg 180	Leu	Asp	Phe	Ala	Arg 185	Gly	Tyr	Ser	Pro	Glu 190	Met	Ala	
Lys	Val	Tyr 195	Ile	Asp	Gly	Thr	Ser 200	Pro	Ser	Leu	Ala	Val 205	Ala	Glu	Val	
Trp	Asp 210	Asn	Met	Ala	Thr	Gly 215	Gly	Asp	Gly	Lys	Pro 220	Asn	Tyr	Asp	Gln	
Asp 225	Ala	His	Arg	Gln	Asn 230	Leu	Val	Asn	Trp	Val 235	Asp	Lys	Val	Gly	Gly 240	
Ala	Ala	Ser	Ala	Gly 245	Met	Val	Phe	Asp	Phe 250	Thr	Thr	Lys	Gly	Ile 255	Leu	
Asn	Ala	Ala	Val 260	Glu	Gly	Glu	Leu	Trp 265	Arg	Leu	Ile	Asp	Pro 270	Gln	Gly	
Lys	Ala	Pro 275	Gly	Val	Met	Gly	Trp 280	Trp	Pro	Ala	Lys	Ala 285	Val	Thr	Phe	
Val	Asp 290	Asn	His	Asp	Thr	Gly 295	Ser	Thr	Gln	Ala	Met 300	Trp	Pro	Phe	Pro	
Ser 305	Asp	Lys	Val	Met	Gln 310	Gly	Tyr	Ala	Tyr	Ile 315	Leu	Thr	His	Pro	Gly 320	
Ile	Pro	Cys	Ile	Phe 325	Tyr	Asp	His	Phe	Phe 330	Asn	Trp	Gly	Phe	Lys 335	Asp	
Gln	Ile	Ala	Ala 340	Leu	Val	Ala	Ile	Arg 345	Lys	Arg	Asn	Gly	Ile 350	Thr	Ala	
Thr	Ser	Ala 355	Leu	Lys	Ile	Leu	Met 360	His	Glu	Gly	Asp	Ala 365	Tyr	Val	Ala	
Glu	Ile 370	Asp	Gly	Lys	Val	Val 375	Val	Lys	Ile	Gly	Ser 380	Arg	Tyr	Asp	Val	
Gly 385	Ala	Val	Ile	Pro	Ala 390	Gly	Phe	Val	Thr	Ser 395	Ala	His	Gly	Asn	Asp 400	

Page 97

Tyr Ala Val Trp Glu Lys Asn Gly Ala Ala Ala Thr Leu Gln Arg Ser 405 410 415

<21 <21 <21 <21	1 > 2 >	89 1401 DNA Arti	fici	al S	eque	nce										
<22 <22		Tric	hode	rma	rees	ei ß	-Glu	cosi	dase	2						
<22 <22 <22 <22	1 > 2 >	CDS (1). Tric			rees	ei ß	-Glu	cosi	dase	2						
<400 atg Met 1	tta	89 ccc Pro	aag Lys	gac Asp 5	ttt Phe	cag Gln	tgg Trp	ggg Gly	ttc Phe 10	gcc Ala	acg Thr	gct Ala	gcc Ala	tac Tyr 15	cag Gln	48
atc Ile	gag Glu	ggc Gly	gcc Ala 20	gtc Val	gac Asp	cag Gln	gac Asp	ggc Gly 25	cgc Arg	ggc Gly	ccc Pro	agc Ser	atc Ile 30	tgg Trp	gac Asp	96
acg Thr	ttc Phe	tgc Cys 35	gcg Ala	cag Gln	ccc Pro	ggc Gly	aag Lys 40	atc Ile	gcc Ala	gac Asp	ggc Gly	tcg Ser 45	tcg Ser	ggc Gly	gtg Val	144
acg Thr	gcg Ala 50	tgc Cys	gac Asp	tcg Ser	tac Tyr	aac Asn 55	cgc Arg	acg Thr	gcc Ala	gag Glu	gac Asp 60	att Ile	gcg Ala	ctg Leu	ctg Leu	192
aag Lys 65	tcg Ser	ctc Leu	ggg Gly	gcc Ala	aag Lys 70	agc Ser	tac Tyr	cgc Arg	ttc Phe	tcc Ser 75	atc Ile	tcg Ser	tgg Trp	tcg Ser	cgc Arg 80	240
atc Ile	atc Ile	ccc Pro	gag Glu	ggc Gly 85	ggc Gly	cgc Arg	ggc Gly	gat Asp	gcc Ala 90	gtc Val	aac Asn	cag Gln	gcg Ala	ggc Gly 95	atc Ile	288
gac Asp	cac His	tac Tyr	gtc Val 100	aag Lys	ttc Phe	gtc Val	gac Asp	gac Asp 105	ctg Leu	ctc Leu	gac Asp	gcc Ala	ggc Gly 110	atc Ile	acg Thr	336
ccc Pro	ttc Phe	atc Ile 115	acc Thr	ctc Leu	ttc Phe	cac His	tgg Trp 120	gac Asp	ctg Leu	ccc Pro	gag Glu	ggc Gly 125	ctg Leu	cat His	cag Gln	384
cgg Arg	tac Tyr 130	ggg Gly	ggg Gly	ctg Leu	ctg Leu	aac Asn 135	cgc Arg	acc Thr	gag Glu	ttc Phe	ccg Pro 140	ctc Leu	gac Asp	ttt Phe	gaa Glu	432
aac	tac	gcc	cgc	gtc	atg	ttc	agg	gcg	ctg	ccc	aag	gtg	cgc	aac	tgg	480

Page 98

Asn 145	-	Ala	Arg	Val	Met 150	Phe	Arg	Ala	Leu	Pro 155		: Val	Arg	Asn	Trp 160	
ato Ile	acc Thr	ttc Phe	aac Asn	gag Glu 165	Pro	ctg Leu	tgc Cys	tcg Ser	gcc Ala 170	Ile	ccg Pro	ggc Gly	tac Tyr	ggc Gly 175	Ser	528
				Pro		cgg Arg								Thr		576
ggc Gly	cac His	aac Asn 195	atc Ile	ctc Leu	gtc Val	gcc Ala	cac His 200	ggc Gly	cgc Arg	gcc Ala	gtc Val	aag Lys 205	gcg Ala	tac Tyr	cgc Arg	624
gac Asp	gac Asp 210	ttc Phe	aag Lys	ccc Pro	gcc Ala	agc Ser 215	Gly	gac Asp	ggc Gly	cag Gln	atc Ile 220	Gly	atc Ile	gtc Val	ctc Leu	672
aac Asn 225	ggc Gly	gac Asp	ttc Phe	acc Thr	tac Tyr 230	ccc Pro	tgg Trp	gac Asp	gcc Ala	gcc Ala 235	gac Asp	ccg Pro	gcc Ala	gac Asp	aag Lys 240	720
gag Glu	gcg Ala	gcc Ala	gag Glu	cgg Arg 245	cgc Arg	ctc Leu	gag Glu	ttc Phe	ttc Phe 250	acg Thr	gcc Ala	tgg Trp	ttc Phe	gcg Ala 255	gac Asp	768
ccc Pro	atc Ile	tac Tyr	ttg Leu 260	ggc Gly	gac Asp	tac Tyr	ccg Pro	gcg Ala 265	tcg Ser	atg Met	cgc Arg	aag Lys	cag Gln 270	ctg Leu	ggc Gly	816
gac Asp	cgg Arg	ctg Leu 275	ccg Pro	acc Thr	ttt Phe	acg Thr	ccc Pro 280	gag Glu	gag Glu	cgc Arg	gcc Ala	ctc Leu 285	gtc Val	cac His	ggc Gly	864
tcc Ser	aac Asn 290	gac Asp	ttt Phe	tac Tyr	ggc Gly	atg Met 295	aac Asn	cac His	tac Tyr	acg Thr	tcc Ser 300	aac Asn	tac Tyr	atc Ile	cgc Arg	912
cac His 305	cgc Arg	agc Ser	tcg Ser	ccc Pro	gcc Ala 310	tcc Ser	gcc Ala	gac Asp	gac Asp	acc Thr 315	gtc Val	ggc Gly	aac Asn	gtc Val	gac Asp 320	960
gtg Val	ctc Leu	ttc Phe	acc Thr	aac Asn 325	aag Lys	cag Gln	ggc Gly	aac Asn	tgc Cys 330	atc Ile	ggc Gly	ccc Pro	gag Glu	acg Thr 335	cag Gln	1008
tcc Ser	ccc Pro	tgg Trp	ctg Leu 340	cgc Arg	ccc Pro	tg t Cys	gcc Ala	gcc Ala 345	ggc Gly	ttc Phe	cgc Arg	gac Asp	ttc Phe 350	ctg Leu	gtg Val	1056
tgg Trp	atc Ile	agc Ser 355	aag Lys	agg Arg	tac Tyr	ggc Gly	tac Tyr 360	ccg Pro	ccc Pro	atc Ile	tac Tyr	gtg Val 365	acg Thr	gag Glu	aac Asn	1104
ggc Gly	acg Thr 370	agc Ser	atc Ile	aag Lys	ggc Gly	gag Glu 375	agc Ser	gac Asp	ttg Leu	ccc Pro	aag Lys 380	gag Glu	aag Lys	att Ile	ctc Leu	1152

Page 99

Glu 385	gat Asp	gac Asp	ttc Phe	agg Arg	gtc Val 390	aag Lys	tac Tyr	tat Tyr	aac Asn	gag Glu 395	tac Tyr	atc Ile	cgt Arg	gcc Ala	atg Met 400	1200
gtt Val	acc Thr	gcc Ala	gtg Val	gag Glu 405	ctg Leu	gac Asp	Gly Ggg	gtc Val	aac Asn 410	gtc Val	aag Lys	ggg Gly	tac Tyr	ttt Phe 415	gcc Ala	1248
tgg Trp	tcg Ser	ctc Leu	atg Met 420	gac Asp	aac Asn	ttt Phe	gag Glu	tgg Trp 425	gcg Ala	gac Asp	ggc Gly	tac Tyr	gtg Val 430	acg Thr	agg Arg	1296
ttt Phe	G] y	gtt Val 435	acg Thr	tat Tyr	gtg Val	gat Asp	tat Tyr 440	gag Glu	aat Asn	ggg Gly	cag Gln	aag Lys 445	cgg Arg	ttc Phe	ccc Pro	1344
aag Lys	aag Lys 450	agc Ser	gca Ala	aag Lys	agc Ser	ttg Leu 455	aag Lys	ccg Pro	ctg Leu	ttt Phe	gac Asp 460	gag Glu	ctg Leu	att Ile	gcg Ala	1392
-	gcg Ala	tga														1401
<21 <21 <21 <21	1 > 4 2 > 1	90 166 PRT Arti1	ficia	al Se	equer	nce										
<220)>															
<22	3> \$	Synth	netio	c Cor	stru	ıct										
< 400		Synth 90	netio	c Cor	nstru	ıct										
< 400		90					Trp	Gly	Phe 10	Ala	Thr	Ala	Ala	Tyr 15	Gln	
<400 Met 1	O> 9	90 Pro	Lys	Asp 5	Phe	Gln			10					15		
<400 Met 1)> 9 Leu	Pro Gly	Lys Ala 20	Asp 5 Val	Phe Asp	Gln Gln	Asp	Gly 25	10 Arg	Gly	Pro	Ser	Ile 30	15 Trp	Asp	
<400 Met l Ile	D> 9 Leu Glu	Pro Gly Cys	Lys Ala 20 Ala	Asp 5 Val Gln	Phe Asp Pro	Gln Gln Gly	Asp Lys 40	Gly 25	10 Arg	Gly Asp	Pro Gly	Ser Ser 45	Ile 30 Ser	Trp	Asp Val	
<400 Met l Ile Thr	D> 9 Leu Glu Phe	Pro Gly Cys 35 Cys	Lys Ala 20 Ala Asp	Asp 5 Val Gln Ser	Phe Asp Pro	Gln Gln Gly Asn 55	Asp Lys 40 Arg	Gly 25 Ile Thr	10 Arg Ala Ala	Gly Asp Glu	Pro Gly Asp	Ser Ser 45	Ile 30 Ser Ala	Trp Gly Leu	Asp Val Leu	

Asp	His	Tyr	Val 100	Lys	Phe	Val	Asp	Asp 105	Leu	Leu	Asp	Ala	Gly 110	Ile	Thi
Pro	Phe	Ile 115	Thr	Leu	Phe	His	Trp 120	Asp	Leu	Pro	Glu	Gly 125	Leu	His	Glr
Arg	Tyr 130	Gly	Gly	Leu	Leu	Asn 135	Arg	Thr	Glu	Phe	Pro 140	Leu	Asp	Phe	Glu
Asn 145	Tyr	Ala	Arg	Val	Met 150	Phe	Arg	Ala	Leu	Pro 155	Lys	Val	Arg	Asn	Trp 160
Ile	Thr	Phe	Asn	Glu 165	Pro	Leu	Суѕ	Ser	Ala 170	Ile	Pro	Gly	Tyr	Gly 175	Ser
Gly	Thr	Phe	Ala 180	Pro	Gly	Arg	Gln	Ser 185	Thr	Ser	Glu	Pro	Trp 190	Thr	Val
Gly	His	Asn 195	Ile	Leu	Val	Ala	His 200	Gly	Arg	Ala	Val	Lys 205	Ala	Tyr	Arg
Asp	Asp 210	Phe	Lys	Pro	Ala	Ser 215	Gly	Asp	Gly	Gln	Ile 220	Gly	Ile	Val	Leu
Asn 225	Gly	Asp	Phe	Thr	Tyr 230	Pro	Trp	Asp	Ala	Ala 235	Asp	Pro	Ala	Asp	Lys 240
Glu	Ala	Ala	Glu	Arg 245	Arg	Leu	Glu	Phe	Phe 250	Thr	Ala	Trp	Phe	Ala 255	Asp
Pro	Ile	Tyr	Leu 260	Gly	Asp	Tyr	Pro	Ala 265	Ser	Met	Arg	Lys	Gln 270	Leu	Gly
qs <i>P</i>	Arg	Leu 275	Pro	Thr	Phe	Thr	Pro 280	Glu	Glu	Arg	Ala	Leu 285	Val	His	Gly
Ser	Asn 290	Asp	Phe	Tyr	Gly	Met 295	Asn	His	Tyr	Thr	Ser 300	Asn	Туr	Ile	Arg
His		Ser			Ala 310		Ala	Asp	Asp	Thr 315	Val	Gly	Asn	Val	Asp 320

Page 101

Val Leu Phe Thr Asn Lys Gln Gly Asn Cys Ile Gly Pro Glu Thr Gln 325 Ser Pro Trp Leu Arg Pro Cys Ala Ala Gly Phe Arg Asp Phe Leu Val 345 340 Trp Ile Ser Lys Arg Tyr Gly Tyr Pro Pro Ile Tyr Val Thr Glu Asn Gly Thr Ser Ile Lys Gly Glu Ser Asp Leu Pro Lys Glu Lys Ile Leu Glu Asp Asp Phe Arg Val Lys Tyr Tyr Asn Glu Tyr Ile Arg Ala Met 390 385 Val Thr Ala Val Glu Leu Asp Gly Val Asn Val Lys Gly Tyr Phe Ala 410 Trp Ser Leu Met Asp Asn Phe Glu Trp Ala Asp Gly Tyr Val Thr Arg 425 Phe Gly Val Thr Tyr Val Asp Tyr Glu Asn Gly Gln Lys Arg Phe Pro 440 435 Lys Lys Ser Ala Lys Ser Leu Lys Pro Leu Phe Asp Glu Leu Ile Ala 460 455 Ala Ala 465 <210> 91 <211> 2103 <212> DNA <213> Artificial Sequence <220> <223> Trichoderma reesei ß-Glucosidase D <220> <221> CDS <222> (1)..(2103) <223> Trichoderma reesei β-Glucosidase D <400> 91 atg att ctc ggc tgt gaa agc aca ggt gtc atc tct gcc gtc aaa cac 48 Met Ile Leu Gly Cys Glu Ser Thr Gly Val Ile Ser Ala Val Lys His 1.0

														_		
ttt Phe	gtc Val	gcc Ala	aac Asn 20	gac Asp	cag Gln	gag Glu	cac His	gag Glu 25	cgg Arg	cga Arg	gcg Ala	gtc Val	gac Asp 30	tgt Cys	ctc Leu	96
atc Ile	acc Thr	cag Gln 35	cgg Arg	gct Ala	ctc Leu	cgg Arg	gag Glu 40	gtc Val	tat Tyr	ctg Leu	cga Arg	ccc Pro 45	ttc Phe	cag Gln	atc Ile	144
gta Val	gcc Ala 50	cga Arg	gat Asp	gca Ala	agg Arg	ccc Pro 55	ggc Gly	gca Ala	ttg Leu	atg Met	aca Thr 60	tcc Ser	tac Tyr	aac Asn	aag Lys	192
gtc Val 65	aat Asn	ggc Gly	aag Lys	cac His	gtc Val 70	gct Ala	gac Asp	agc Ser	gcc Ala	gag Glu 75	ttc Phe	ctt Leu	cag Gln	ggc Gly	att Ile 80	240
ctc Leu	cgg Arg	act Thr	gag Glu	tgg Trp 85	aat Asn	tgg Trp	gac Asp	cct Pro	ctc Leu 90	att Ile	gtc Val	agc Ser	gac Asp	tgg Trp 95	tac Tyr	288
ggc Gly	acc Thr	tac Tyr	acc Thr 100	act Thr	att Ile	gat Asp	gcc Ala	atc Ile 105	aaa Lys	gcc Ala	ggc Gly	ctt Leu	gat Asp 110	ctc Leu	gag Glu	336
atg Met	ccg Pro	ggc Gly 115	gtt Val	tca Ser	cga Arg	tat Tyr	cgc Arg 120	ggc Gly	aaa Lys	tac Tyr	atc Ile	gag Glu 125	tct Ser	gct Ala	ctg Leu	384
cag Gln	gcc Ala 130	cgt Arg	ttg Leu	ctg Leu	aag Lys	cag Gln 135	tcc Ser	act Thr	atc Ile	gat Asp	gag Glu 140	cgc Arg	gct Ala	cgc Arg	cgc Arg	432
gtg Val 145	ctc Leu	agg Arg	ttc Phe	gcc Ala	cag Gln 150	aag Lys	gcc Ala	agc Ser	cat His	ctc Leu 155	aag Lys	gtc Val	tcc Ser	gag Glu	gta Val 160	480
gag Glu	caa Gln	ggc Gly	cgt Arg	gac Asp 165	ttc Phe	cca Pro	gag Glu	gat Asp	cgc Arg 170	gtc Val	ctc Leu	aac Asn	cgt Arg	cag Gln 175	atc Ile	528
tgc Cys	ggc Gly	agc Ser	agc Ser 180	att Ile	gtc Val	cta Leu	ctg Leu	aag Lys 185	aat Asn	gag Glu	aac Asn	tcc Ser	atc Ile 190	tta Leu	cct Pro	576
ctc Leu	ccc Pro	aag Lys 195	tcc Ser	gtc Val	aag Lys	aag Lys	gtc Val 200	gcc Ala	ctt Leu	gtt Val	ggt Gly	tcc Ser 205	cac His	gtg Val	cgt Arg	624
cta Leu	ccg Pro 210	gct Ala	atc Ile	tcg Ser	gga Gly	gga Gly 215	ggc Gly	agc Ser	gcc Ala	tct Ser	ctt Leu 220	gtc Val	cct Pro	tac Tyr	tat Tyr	672
gcc Ala 225	ata Ile	tct Ser	cta Leu	tac Tyr	gat Asp 230	gcc Ala	gtc Val	tct Ser	gag Glu	gta Val 235	cta Leu	gcc Ala	ggt Gly	gcc Ala	acg Thr 240	720
atc	acg	cac	gag	gtc	ggt	gcc	tat	gcc	cac	caa	atg	ctg	ccc	gtc	atc	768

Ile	Thr	His	Glu	Val 245	Gly	Ala	Tyr	Ala	His 250	Gln	Met	Leu	Pro	Val 255	Ile	
gac Asp	gca Ala	atg Met	atc Ile 260	agc Ser	aac Asn	gcc Ala	gta Val	atc Ile 265	cac His	ttc Phe	tac Tyr	aac Asn	gac Asp 270	ccc Pro	atc Ile	816
gat Asp	gtc Val	aaa Lys 275	gac Asp	aga Arg	aag Lys	ctc Leu	ctt Leu 280	ggc Gly	agt Ser	gag Glu	aac Asn	gta Val 285	tcg Ser	tcg Ser	aca Thr	864
tcg Ser	ttc Phe 290	cag Gln	ctc Leu	atg Met	gat Asp	tac Tyr 295	aac Asn	aac Asn	atc Ile	cca Pro	acg Thr 300	ctc Leu	aac Asn	aag Lys	gcc Ala	912
atg Met 305	ttc Phe	tgg Trp	ggt Gly	act Thr	ctc Leu 310	gtg Val	ggc Gly	gag Glu	ttt Phe	atc Ile 315	cct Pro	acc Thr	gcc Ala	acg Thr	gga Gly 320	960
att Ile	tgg Trp	gaa Glu	ttt Phe	ggc Gly 325	ctc Leu	agt Ser	gtc Val	ttt Phe	ggc Gly 330	act Thr	gcc Ala	gac Asp	ctt Leu	tat Tyr 335	att Ile	1008
gat Asp	aat Asn	gag Glu	ctc Leu 340	gtg Val	att Ile	gaa Glu	aat Asn	aca Thr 345	aca Thr	cat His	cag Gln	acg Thr	cgt Arg 350	gga Gly	acc Thr	1056
gcc Ala	ttt Phe	ttc Phe 355	gga Gly	aag Lys	gga Gly	acg Thr	acg Thr 360	gaa Glu	aaa Lys	gtc Val	gct Ala	acc Thr 365	agg Arg	agg Arg	atg Met	1104
gtg Val	gcc Ala 370	ggc Gly	agc Ser	acc Thr	tac Tyr	aag Lys 375	ctg Leu	cgt Arg	ctc Leu	gag Glu	ttt Phe 380	ggg Gly	tct Ser	gcc Ala	aac Asn	1152
acg Thr 385	acc Thr	aag Lys	atg Met	gag Glu	acg Thr 390	acc Thr	ggt Gly	gtt Val	gtc Val	aac Asn 395	ttt Phe	ggc Gly	ggc Gly	ggt Gly	gcc Ala 400	1200
gta Val	cac His	ctg Leu	ggt Gly	gcc Ala 405	tgt Cys	ctc Leu	aag Lys	gtc Val	gac Asp 410	cca Pro	cag Gln	gag Glu	atg Met	att Ile 415	gcg Ala	1248
cgg Arg	Ala	Val	Lys	Ala	gca Ala	Ala	Asp	gcc Ala 425	gac Asp	tac Tyr	acc Thr	atc Ile	atc Ile 430	tgc Cys	acg Thr	1296
gga Gly	ctc Leu	agc Ser 435	ggc Gly	gag Glu	tgg Trp	gag Glu	tct Ser 440	gag Glu	ggt Gly	ttt Phe	gac Asp	cgg Arg 445	cct Pro	cac His	atg Met	1344
gac Asp	ctg Leu 450	ccc Pro	cct Pro	ggt Gly	gtg Val	gac Asp 455	acc Thr	atg Met	atc Ile	tcg Ser	caa Gln 460	gtt Val	ctt Leu	gac Asp	gcc Ala	1392
gct Ala 465	ccc Pro	aat Asn	gct Ala	gta Val	gtc Val 470	gtc Val	aac Asn	cag Gln	tca Ser	ggc Gly 475	acc Thr	cca Pro	gtg Val	aca Thr	atg Met 480	1440

Page 104

agc Ser	tgg Trp	gct Ala	cat His	aaa Lys 485	gca Ala	aag Lys	gcc Ala	att Ile	gtg Val 490	cag Gln	gct Ala	tgg Trp	tat Tyr	ggt Gly 495	ggt Gly	1488
aac Asn	gag Glu	aca Thr	ggc Gly 500	cac His	gga Gly	atc Ile	tcc Ser	gat Asp 505	gtg Val	ctc Leu	ttt Phe	ggc Gly	aac Asn 510	gtc Val	aac Asn	1536
ccg Pro	tcg Ser	999 Gly 515	aaa Lys	ctc Leu	tcc Ser	cta Leu	tcg Ser 520	tgg Trp	cca Pro	gtc Val	gat Asp	gtg Val 525	aag Lys	cac His	aac Asn	1584
cca Pro	gca Ala 530	tat Tyr	ctc Leu	aac Asn	tac Tyr	gcc Ala 535	agc Ser	gtt Val	ggt Gly	gga Gly	cgg Arg 540	gtc Val	ttg Leu	tat Tyr	ggc Gly	1632
gag Glu 545	gat Asp	gtt Val	tac Tyr	gtt Val	ggc Gly 550	tac Tyr	aag Lys	ttc Phe	tac Tyr	gac Asp 555	aaa Lys	acg Thr	gag Glu	agg Arg	gag Glu 560	1680
gtt Val	ctg Leu	ttt Phe	cct Pro	ttt Phe 565	ggg Gly	cat His	ggc Gly	ctg Leu	tct Ser 570	tac Tyr	gct Ala	acc Thr	ttc Phe	aag Lys 575	ctc Leu	1728
cca Pro	gat Asp	tct Ser	acc Thr 580	gtg Val	agg Arg	acg Thr	gtc Val	ccc Pro 585	gaa Glu	acc Thr	ttc Phe	cac His	ccg Pro 590	gac Asp	cag Gln	1776
ccc Pro	aca Thr	gta Val 595	gcc Ala	att Ile	gtc Val	aag Lys	atc Ile 600	aag Lys	aac Asn	acg Thr	agc Ser	agt Ser 605	gtc Val	ccg Pro	ggc Gly	1824
gcc Ala	cag Gln 610	gtc Val	ctg Leu	cag Gln	tta Leu	tac Tyr 615	att Ile	tcg Ser	gcc Ala	cca Pro	aac Asn 620	tcg Ser	cct Pro	aca Thr	cat His	1872
cgc Arg 625	ccg Pro	gtc Val	aag Lys	gag Glu	ctg Leu 630	cac His	gga Gly	ttc Phe	gaa Glu	aag Lys 635	gtg Val	tat Tyr	ctt Leu	gaa Glu	gct Ala 640	1920
ggc Gly	gag Glu	gag Glu	aag Lys	gag Glu 645	gta Val	caa Gln	ata Ile	ccc Pro	att Ile 650	gac Asp	cag Gln	tac Tyr	gct Ala	act Thr 655	agc Ser	1968
ttc Phe	tgg Trp	gac Asp	gag Glu 660	att Ile	gag Glu	agc Ser	atg Met	tgg Trp 665	aag Lys	agc Ser	gag Glu	agg Arg	ggc Gly 670	att Ile	tat Tyr	2016
gat Asp	gtg Val	ctt Leu 675	gta Val	gga Gly	ttc Phe	tcg Ser	agt Ser 680	cag Gln	gaa Glu	atc Ile	tcg Ser	ggc Gly 685	aag Lys	ggg Gly	aag Lys	2064
ctg Leu	att Ile 690	gtg Val	cct Pro	gaa Glu	acg Thr	cga Arg 695	ttc Phe	tgg Trp	atg Met	ggg Gly	ctg Leu 700	tag				2103

<210 > 92
<211 > 700
<212 > PRT
<213 > Artificial Sequence

<220 >
<223 > Synthetic Construct

<400 > 92

Met Ile Leu Gly Cys Glu Ser Thr Gly Val Ile Ser Ala Val Lys His
1

Phe Val Ala Asn Asp Gln Glu His Glu Arg Arg Ala Val Asp Cys Leu
20

Ile Thr Gln Arg Ala Leu Arg Glu Val Tyr Leu Arg Pro Phe Gln Ile
45

Val Ala Arg Asp Ala Arg Pro Gly Ala Leu Met Thr Ser Tyr Asn Lys
50

Val Asn Gly Lys His Val Ala Asp Ser Ala Glu Phe Leu Gln Gly Ile
65

Leu Arg Thr Glu Trp Asn Trp Asp Pro Leu Ile Val Ser Asp Trp Tyr
61y Thr Tyr Thr Thr Ile Asp Ala Ile Lys Ala Gly Leu Asp Leu Glu
110

Met Pro Gly Val Ser Arg Tyr Arg Gly Lys Tyr Ile Glu Ser Ala Leu

Gln Ala Arg Leu Leu Lys Gln Ser Thr Ile Asp Glu Arg Ala Arg Arg

Val Leu Arg Phe Ala Gln Lys Ala Ser His Leu Lys Val Ser Glu Val 145 150 150 160

Glu Gln Gly Arg Asp Phe Pro Glu Asp Arg Val Leu Asn Arg Gln Ile 165 170 175

Cys Gly Ser Ser Ile Val Leu Leu Lys Asn Glu Asn Ser Ile Leu Pro 180 185 190

Leu Pro Lys Ser Val Lys Lys Val Ala Leu Val Gly Ser His Val Arg 195 200 205

Leu Pro Ala Ile Ser Gly Gly Gly Ser Ala Ser Leu Val Pro Tyr Tyr 210 215 220

Ala Ile Ser Leu Tyr Asp Ala Val Ser Glu Val Leu Ala Gly Ala Thr 225 230 235 240

Ile Thr His Glu Val Gly Ala Tyr Ala His Gln Met Leu Pro Val Ile 245 250 255

Asp Ala Met Ile Ser Asn Ala Val Ile His Phe Tyr Asn Asp Pro Ile 260 265 270

Asp Val Lys Asp Arg Lys Leu Leu Gly Ser Glu Asn Val Ser Ser Thr

Ser Phe Gln Leu Met Asp Tyr Asn Asn Ile Pro Thr Leu Asn Lys Ala 290 295 300

Met Phe Trp Gly Thr Leu Val Gly Glu Phe Ile Pro Thr Ala Thr Gly 305 310 315

Ile Trp Glu Phe Gly Leu Ser Val Phe Gly Thr Ala Asp Leu Tyr Ile 325 330 335

Asp Asn Glu Leu Val Ile Glu Asn Thr Thr His Gln Thr Arg Gly Thr 340 345 350

Ala Phe Phe Gly Lys Gly Thr Thr Glu Lys Val Ala Thr Arg Arg Met 355 360 365

Val Ala Gly Ser Thr Tyr Lys Leu Arg Leu Glu Phe Gly Ser Ala Asn 370 380

Thr Thr Lys Met Glu Thr Thr Gly Val Val Asn Phe Gly Gly Gly Ala 385 390 395

Val His Leu Gly Ala Cys Leu Lys Val Asp Pro Gln Glu Met Ile Ala 405 410 415

Arg Ala Val Lys Ala Ala Ala Asp Ala Asp Tyr Thr Ile Ile Cys Thr 420 425430

Gly	Leu	Ser 435	Gly	Glu	Trp	Glu	Ser 440	Glu	Gly	Phe	Asp	Arg 445	Pro	His	Met
Asp	Leu 450	Pro	Pro	Gly	Val	Asp 455	Thr	Met	Ile	Ser	Gln 460	Val	Leu	Asp	Ala
Ala 465	Pro	Asn	Ala	Val	Val 470	Val	Asn	Gln	Ser	Gly 475	Thr	Pro	Val	Thr	Met 480
Ser	Trp	Ala	His	Lys 485	Ala	Lys	Ala	Ile	Val 490	Gln	Ala	Trp	Tyr	Gly 495	Gly
Asn	Glu	Thr	Gly 500	His	Gly	Ile	Ser	Asp 505	Val	Leu	Phe	Gly	Asn 510	Val	Asn
Pro	Ser	Gly 515	Lys	Leu	Ser	Leu	Ser 520	Trp	Pro	Val	Asp	Val 525	Lys	His	Asn
Pro	Ala 530	Tyr	Leu	Asn	Tyr	Ala 535	Ser	Val	Gly	Gly	Arg 540	Val	Leu	Tyr	Gly
Glu 545	Asp	Val	Tyr	Val	Gly 550	Tyr	Lys	Phe	Tyr	Asp 555	Lys	Thr	Glu	Arg	Glu 560
Val	Leu	Phe	Pro	Phe 565	Gly	His	Gly	Leu	Ser 570	Tyr	Ala	Thr	Phe	Lys 575	Leu
Pro	Asp	Ser	Thr 580	Val	Arg	Thr	Val	Pro 585	Glu	Thr	Phe	His	Pro 590	Asp	Gln
Pro	Thr	Val 595	Ala	Ile	Val	Lys	Ile 600	Lys	Asn	Thr	Ser	Ser 605	Val	Pro	Gly
Ala	Gln 610	Val	Leu	Gln	Leu	Tyr 615	Ile	Ser	Ala	Pro	Asn 620	Ser	Pro	Thr	His
Arg 625	Pro	Val	Lys	Glu	Leu 630	His	Gly	Phe	Glu	Lys 635	Val	Tyr	Leu	Glu	Ala 640

Page 108

Gly Glu Glu Lys Glu Val Gln Ile Pro Ile Asp Gln Tyr Ala Thr Ser 645 655

Phe Trp Asp Glu Ile Glu Ser Met Trp Lys Ser Glu Arg Gly-Ile Tyr 665 660 Asp Val Leu Val Gly Phe Ser Ser Gln Glu Ile Ser Gly Lys Gly Lys 675 Leu Ile Val Pro Glu Thr Arg Phe Trp Met Gly Leu 695 <210> 93 1496 <211> <212> DNA <213> Artificial Sequence <220> <223> Maize optimized CBHI <400> 93 tgcagtccgc ctgcaccctc cagtccgaga cccacccgcc gctcacctgg cagaagtgct 60 cctccggcgg cacctgcacc cagcagaccg gctccgtggt gatcgacgcc aactggcgct 120 ggacccacge caccaactee tecaccaact getacgacgg caacacetgg tectecacee 180 tetgecegga caacgagace tgegecaaga actgetgeet egaeggegee geetaegeet 240 ccacctacgg cgtgaccacc tccggcaact ccctctccat cggcttcgtg acccagtccg 300 cccagaagaa cgtgggcgcc cgcctctacc tcatggcctc cgacaccacc taccaggagt 360 teaccetect eggeaacgag tteteetteg aegtggaegt gteecagete eegtgeggee 420 480 teaacggege cetetactte gtgtecatgg acgeegacgg eggegtgtee aagtaceega ccaacacege eggegeeaag taeggeaceg getaetgega eteccagtge eegegegaee 540 tcaagttcat caacggccag gccaacgtgg agggctggga gccgtcctcc aacaacgcca 600 acaccggcat cggcggccac ggctcctgct gctccgagat ggacatctgg gaggccaact 660 ccatctccga ggccctcacc ccgcacccgt gcaccaccgt gggccaggag atctgcgagg 720 gegacggetg eggeggeace tacteegaca accgetacgg eggeacetge gacceggacg 780 gctgcgactg gaacccgtac cgcctcggca acacctcctt ctacggcccg ggctcctcct 840 teaccetega caccaccaag aageteaceg tggtgaceca gttegagace teeggegeea 900 tcaaccgcta ctacgtgcag aacggcgtga ccttccagca gccgaacgcc gagctcggct 960 cctactccgg caacgagete aacgacgaet actgeacege egaggaggee gagtteggeg 1020 getecteett eteegacaag ggeggeetea eecagtteaa gaaggeeaee teeggeggea 1080

Page 109

1140

tggtgctcgt gatgtccctc tgggacgact actacgccaa catgctctgg ctcgactcca

cctacccgac caacgagac	c tectecacee	cgggcgccgt	gcgcggctcc	tgctccacct	1200
cctccggcgt gccggccca	g gtggagtccc	agtccccgaa	cgccaaggtg	accttctcca	1260
acatcaagtt cggcccgat	ggctccaccg	gcaacccgtc	cggcggcaac	ccgccgggcg	1320
gcaacccgcc gggcaccac	c accacccgcc	gcccggccac	caccaccggc	tecteceegg	1380
gecegaceca gteccaeta	c ggccagtgcg	gcggcatcgg	ctactccggc	ccgaccgtgt	1440
gegeeteegg caccacetge	c caggtgctca	acccgtacta	ctcccagtgc	ctctag	1496
<210> 94 <211> 1365 <212> DNA <213> Artificial Sec <220> <223> Maize optimize					
<400> 94 atggtgccgc tcgaggagc	g ccaggeetge	tectecgtgt	ggggccagtg	cggcggccag	60
aactggtccg gcccgacct					120
tactoccagt gcctcccgg					180
acctcccgcg tgtccccga					240
accaccacce gegtgeege					300
gtgggegtga cecegtggg					360
cogtocotca coggogoca					420
atgtggctcg acaccctcg					480
accgccaaca agaacggcg	g caactacgcc	ggccagttcg	tggtgtacga	cctcccggac	540
cgcgactgcg ccgccctcg	c ctccaacggc	gagtactcca	tegeegaegg	cggcgtggcc	600
aagtacaaga actacatcg	a caccatccgc	cagatcgtgg	tggagtactc	cgacatccgc	660
accetecteg tgategage	ggactccctc	gccaacctcg	tgaccaacct	cggcaccccg	720
aagtgcgcca acgcccagt	c cgcctacctc	gagtgcatca	actacgccgt	gacccagctc	780
aacctcccga acgtggcca	gtacctcgac	gccggccacg	ccggctggct	cggctggccg	840
gccaaccagg acceggeeg	c ccagctcttc	gccaacgtgt	acaagaacgc	ctcctccccg	900
egegeeetee geggeetege	c caccaacgtg	gccaactaca	acggctggaa	catcacctcc	960
ccgccgtcct acacccagg	g caacgccgtg	tacaacgaga	agctctacat	ccacgccatc	1020
ggcccgctcc tcgccaacca	a cggctggtcc	aacgccttct	tcatcaccga	ccagggccgc	1080

tccggcaagc	agccgaccgg	ccagcagcag	tggggcgact	ggtgcaacgt	gatcggcacc	1140
ggcttcggca	tccgcccgtc	cgccaacacc	ggcgactccc	tcctcgactc	cttcgtgtgg	1200
gtgaagccgg	gcggcgagtg	cgacggcacc	tccgactcct	ccgccccgcg	cttcgactcc	1260
cactgcgccc	teceggaege	cctccagccg	gccccgcagg	ccggcgcctg	gttccaggcc	1320
tacttcgtgc	agctcctcac	caacgccaac	ccgtccttcc	tctag		1365
<210> 95 <211> 131 <212> DNA <213> Art:	7 ificial Sequ	lence				
<223> Mai:	ze optimized	d EGLI				
<400> 95 atgcagcagc	cgggcacctc	caccccggag	gtgcacccga	agctcaccac	ctacaagtgc	60
accaagtccg	gcggctgcgt	ggcccaggac	acctccgtgg	tgctcgactg	gaactaccgc	120
tggatgcacg	acgccaacta	caactcctgc	accgtgaacg	gcggcgtgaa	caccaccctc	180
tgcccggacg	aggccacctg	cggcaagaac	tgcttcatcg	agggcgtgga	ctacgccgcc	240
tccggcgtga	ccacctccgg	ctcctccctc	accatgaacc	agtacatgcc	gtcctcctcc	300
ggcggctact	cctccgtgtc	cccgcgcctc	tacctcctcg	actccgacgg	cgagtacgtg	360
atgctcaagc	tcaacggcca	ggagctctcc	ttcgacgtgg	acctctccgc	cctcccgtgc	420
ggcgagaacg	gctccctcta	cctctcccag	atggacgaga	acggcggcgc	caaccagtac	480
aacaccgccg	gcgccaacta	cggctccggc	tactgcgacg	cccagtgccc	ggtgcagacc	540
tggcgcaacg	gcaccctcaa	cacctcccac	cagggcttct	gctgcaacga	gatggacatc	600
ctcgagggca	actcccgcgc	caacgccctc	accccgcact	cctgcaccgc	caccgcctgc	660
gactccgccg	gctgcggctt	caacccgtac	ggctccggct	acaagtccta	ctacggcccg	720
ggcgacaccg	tggacacctc	caagaccttc	accatcatca	cccagttcaa	caccgacaac	780
ggctccccgt	ccggcaacct	cgtgtccatc	acccgcaagt	accagcagaa	cggcgtggac	840
atcccgtccg	cccagccggg	cggcgacacc	atctcctcct	gecegteege	ctccgcctac	900
ggcggcctcg	ccaccatggg	caaggccctc	tecteeggea	tggtgctcgt	gttctccatc	960
tggaacgaca	actcccagta	catgaactgg	ctcgactccg	gcaacgccgg	cccgtgctcc	1020
tccaccgagg	gcaacccgtc	caacaccctc	gccaacaacc	cgaacaccca	cgtggtgttc	1080
tccaacatcc	gctggggcga	catcggctcc	accaccaact	ccaccgcccc	gccgccgccg	1140

ccggcctcct ccaccacctt	ctccaccacc	cgccgctcct	ccaccacctc	ctcctccccg	1200
teetgeacee agacecactg					1260
tgcacctccg gcaccacctg					1317
<210> 96 <211> 1401 <212> DNA <213> Artificial Sequ	uence				
<220> <223> Maize optimized	d BGLII				
<400> 96 atgctcccga aggacttcca	gtggggcttc	gccaccgccg	cctaccagat	cgagggcgcc	60
gtggaccagg acggccgcgg	cccgtccatc	tgggacacct	tctgcgccca	gccgggcaag	120
atcgccgacg gctcctccgg	cgtgaccgcc	tgcgactcct	acaaccgcac	cgccgaggac	180
atogocotco toaagtooct	cggcgccaag	tcctaccgct	tctccatctc	ctggtcccgc	240
atcatcccgg agggcggccg	cggcgacgcc	gtgaaccagg	ccggcatcga	ccactacgtg	300
aagttegtgg acgaectect	cgacgccggc	atcaccccgt	tcatcaccct	cttccactgg	360
gacetecegg agggeeteca	ccagcgctac	ggcggcctcc	tcaaccgcac	cgagttcccg	420
ctcgacttcg agaactacgc	ccgcgtgatg	ttccgcgccc	tcccgaaggt	gcgcaactgg	480
atcacettea acgageeget	ctgctccgcc	atcccgggct	acggctccgg	caccttcgcc	540
ccgggccgcc agtccacctc	cgagccgtgg	accgtgggcc	acaacatcct	cgtggcccac	600
ggccgcgccg tgaaggccta	ccgcgacgac	ttcaagccgg	cctccggcga	cggccagatc	660
ggcatcgtgc tcaacggcga	cttcacctac	ccgtgggacg	ccgccgaccc	ggccgacaag	720
gaggeegeeg agegeegeet	cgagttcttc	accgcctggt	tcgccgaccc	gatctacctc	780
ggcgactacc cggcctccat	gcgcaagcag	ctcggcgacc	gcctcccgac	cttcaccccg	840
gaggagegeg ceetegtgea	cggctccaac	gacttctacg	gcatgaacca	ctacacctcc	900
aactacatcc gccaccgctc	ctccccggcc	tccgccgacg	acaccgtggg	caacgtggac	960
gtgctcttca ccaacaagca	gggcaactgc	atcggcccgg	agacccagtc	cccgtggctc	1020
cgcccgtgcg ccgccggctt	ccgcgacttc	ctcgtgtgga	tctccaagcg	ctacggctac	1080
ccgccgatct acgtgaccga	gaacggcacc	tccatcaagg	gcgagtccga	cctcccgaag	1140
gagaagatcc tcgaggacga	cttccgcgtg	aagtactaca	acgagtacat	ccgcgccatg	1200
gtgaccgccg tggagctcga	cggcgtgaac	gtgaagggct	acttcgcctg	gtccctcatg	1260

and the second transfer of the second transfe	1320
gacaacttcg agtgggccga cggctacgtg acccgcttcg gcgtgaccta cgtggactac	1380
gagaacggcc agaagcgctt cccgaagaag tccgccaagt ccctcaagcc gctcttcgac	
gageteateg eegeegeeta g	1401
<210> 97 <211> 2103 <212> DNA <213> Artificial Sequence	
<220> <223> Maize optimized CEL3D	
<400> 97 atgatecteg getgegagte caceggegtg ateteegeeg tgaageaett egtggeeaae	60
gaccaggage acgagegeeg egeogtggae tgeeteatea eccagegege ecteegegag	120
gtgtacetec gecegtteea gategtggee egegacgeec geeegggege ceteatgace	180
toctacaaca aggtgaacgg caagcacgtg googactoog cogagttoot coagggcate	240
ctccgcaccg agtggaactg ggacccgctc atcgtgtccg actggtacgg cacctacacc	300
accategacy coateaagge eggeetegae etegagatge egggegtgte eegetacege	360
ggcaagtaca togagtoogo octocaggoo ogootootoa agcagtocao catogacgag	420
	480
cgcgcccgcc gcgtgctccg cttcgcccag aaggcctccc acctcaaggt gtccgaggtg	540
gagcagggcc gcgacttccc ggaggaccgc gtgctcaacc gccagatctg cggctcctcc	600
atogtgotoc toaagaacga gaactocato otocogotoc ogaagtoogt gaagaaggtg	660
gccctcgtgg gctcccacgt gcgcctcccg gccatctccg gcggcggctc cgcctccctc	
gtgccgtact acgccatete ectetacgae geegtgteeg aggtgetege eggegeeaee	720
atcacccacg aggtgggcgc ctacgcccac cagatgctcc cggtgatcga cgccatgatc	780
tecaaegeeg tgatecaett etaeaaegae eegategaeg tgaaggaeeg eaageteete	840
ggeteegaga aegtgteete caceteette eageteatgg aetacaacaa cateeegaee	900
ctcaacaagg ccatgttctg gggcaccctc gtgggcgagt tcatcccgac cgccaccggc	960
atctgggagt teggeetete egtgttegge acegeegace tetacatega caacgagete	1020
gtgatcgaga acaccaccca ccagacccgc ggcaccgcct tcttcggcaa gggcaccacc	1080
gagaaggtgg ccacccgccg catggtggcc ggctccacct acaagctccg cctcgagttc	1140
ggctccgcca acaccaccaa gatggagacc accggcgtgg tgaacttcgg cggcggcgcc	1200
gtgcacctcg gcgcctgcct caaggtggac ccgcaggaga tgatcgcccg cgccgtgaag	1260

gccgccgccg	acgccgacta	caccatcatc	tgcaccggcc	tctccggcga	gtgggagtcc	1320
gagggcttcg	accgcccgca	catggacctc	ccgccgggcg	tggacaccat	gatctcccag	1380
gtgctcgacg	ccgccccgaa	cgccgtggtg	gtgaaccagt	ccggcacccc	ggtgaccatg	1440
tectgggeec	acaaggccaa	ggccatcgtg	caggcctggt	acggcggcaa	cgagaccggc	1500
cacggcatct	ccgacgtgct	cttcggcaac	gtgaacccgt	ccggcaagct	ctccctctcc	1560
tggccggtgg	acgtgaagca	caacccggcc	tacctcaact	acgcctccgt	gggcggccgc	1620
gtgctctacg	gcgaggacgt	gtacgtgggc	tacaagttct	acgacaagac	cgagcgcgag	1680
gtgctcttcc	cgttcggcca	cggcctctcc	tacgccacct	tcaagctccc	ggactccacc	1740
gtgcgcaccg	tgccggagac	cttccacccg	gaccagccga	ccgtggccat	cgtgaagatc	1800
aagaacacct	cctccgtgcc	gggcgcccag	gtgctccagc	tctacatctc	cgccccgaac	1860
tccccgaccc	accgcccggt	gaaggagctc	cacggcttcg	agaaggtgta	cctcgaggcc	1920
ggcgaggaga	aggaggtgca	gatcccgatc	gaccagtacg	ccacctcctt	ctgggacgag	1980
atcgagtcca	tgtggaagtc	cgagcgcggc	atctacgacg	tgctcgtggg	cttctcctcc	2040
caggagatet	ccqqcaaqqq	caagctcatc	gtgccggaga	cccgcttctg	gatgggcctc	2100
54994944	22 232	=				
tag		- -				2103
	33 333					2103
						2103
<pre>tag <210> 98 <211> 420</pre>						2103
<210> 98 <211> 420 <212> DNA						2103
<210> 98 <211> 420 <212> DNA <213> Zea	mays					2103
<210> 98 <211> 420 <212> DNA <213> Zea <220>						2103
<pre>tag <210> 98 <211> 420 <212> DNA <213> Zea <220> <223> Q p <400> 98</pre>	mays rotein promo	oter				
<pre>tag <210> 98 <211> 420 <212> DNA <213> Zea <220> <223> Q p <400> 98</pre>	mays	oter				2103
<210> 98 <211> 420 <212> DNA <213> Zea <220> <223> Q p <400> 98 gggctggtaa	mays rotein promo	oter agcaatggta	tgcaaatcct	ttgcatgtac	gcaaaactag	
<210> 98 <211> 420 <212> DNA <213> Zea <220> <223> Q p <400> 98 gggctggtaa ctagttgtca	mays rotein promo attacttggg	oter agcaatggta atcgattcgt	tgcaaatcct cgcgtttcaa	ttgcatgtac caactcatgc	gcaaaactag aacattacaa	60
<pre>tag <210> 98 <211> 420 <212> DNA <213> Zea <220> <223> Q p <400> 98 gggctggtaa ctagttgtca acaagtaaca</pre>	mays rotein promo attacttggg caagttgtat	oter agcaatggta atcgattcgt aagttagttt	tgcaaatcct cgcgtttcaa catacaaagc	ttgcatgtac caactcatgc aagaaaagga	gcaaaactag aacattacaa caataatact	60
<pre>tag <210> 98 <211> 420 <212> DNA <213> Zea <220> <223> Q p <400> 98 gggctggtaa ctagttgtca acaagtaaca tgacatgtaa</pre>	mays rotein promo attacttggg caagttgtat caatattaca	agcaatggta atcgattcgt aagttagttt attatacttc	tgcaaatcct cgcgtttcaa catacaaagc ctaatccaac	ttgcatgtac caactcatgc aagaaaagga acaaaacaaa	gcaaaactag aacattacaa caataatact aaaaagttgc	60 120 180
tag <210> 98 <211> 420 <212> DNA <213> Zea <220> <223> Q p <400> 98 gggctggtaa ctagttgtca acaagtaaca tgacatgtaa acaaagtcc	mays rotein promo attacttggg caagttgtat caatattaca agtgaagctt	agcaatggta atcgattcgt aagttagttt attatacttc	tgcaaatcct cgcgtttcaa catacaaagc ctaatccaac aacctatacg	ttgcatgtac caactcatgc aagaaaagga acaaaacaaa	gcaaaactag aacattacaa caataatact aaaaagttgc gatgagtcac	60 120 180 240
tag <210> 98 <211> 420 <212> DNA <213> Zea <220> <223> Q p <400> 98 gggctggtaa ctagttgtca acaagtaca tgacatgtaa acaaaggtcc attatccaac	mays rotein promo attacttggg caagttgtat caatattaca agtgaagctt aaaaatccac	agcaatggta atcgattcgt aagttagttt attatacttc atcaaccatt caatgtggta	tgcaaatcct cgcgtttcaa catacaaagc ctaatccaac aacctatacg tcatacaagc	ttgcatgtac caactcatgc aagaaaagga acaaaacaaa	gcaaaactag aacattacaa caataatact aaaaagttgc gatgagtcac cataaatgca	60 120 180 240 300

<210> 99 <211> 1188

```
<212> DNA
<213> artificial sequence
<220>
<223> synthetic ferulic acid esterase
<400> 99
atggccgcct ccctcccgac catgccgccg tccggctacg accaggtgcg caacggcgtg
                                                                      60
                                                                     120
ccgcgcggcc aggtggtgaa catctcctac ttctccaccg ccaccaactc cacccgcccg
gcccgcgtgt acctcccgcc gggctactcc aaggacaaga agtactccgt gctctacctc
                                                                     180
ctccacggca tcggcggctc cgagaacgac tggttcgagg gcggcggccg cgccaacgtg
                                                                     240
ategeogaca aceteatege egagggeaag ateaageege teateategt gaceeegaae
                                                                     300
accaacgeeg eeggeeeggg categeegae ggetaegaga actteaccaa ggaeeteete
                                                                     360
aacteeetea teeegtacat egagteeaac tacteegtgt acacegaceg egageaeege
                                                                     420
gccatcgccg gcctctctat gggcggcggc cagtccttca acatcggcct caccaacctc
                                                                     480
                                                                     540
gacaagtteg ectacategg ecegatetee geegeeeega acacetacee gaaegagege
ctcttcccgg acggcggcaa ggccgcccgc gagaagctca agctcctctt catcgcctgc
                                                                    600
ggcaccaacg acteceteat eggettegge cagegegtge aegagtaetg egtggecaae
                                                                     660
                                                                    720
aacatcaacc acgtgtactg gctcatccag ggcggcggcc acgacttcaa cgtgtggaag
cegggeetet ggaactteet ecagatggee gacgaggeeg geeteaceeg egacggeaac
                                                                    780
accccggtgc cgaccccgtc cccgaagccg gccaacaccc gcatcgaggc cgaggactac
                                                                     840
                                                                    900
gacggcatca actectecte categagate ateggegtge egeeggaggg eggeegegge
                                                                    960
ateggetaca teaceteegg egactacete gtgtacaagt ecategaett eggeaaegge
gecaecteet teaaggecaa ggtggecaae gecaacaeet ceaacatega gettegeete
                                                                    1020
                                                                    1080
aacggcccga acggcaccct catcggcacc ctctccgtga agtccaccgg cgactggaac
acctacgagg agcagacctg ctccatctcc aaggtgaccg gcatcaacga cctctacctc
                                                                    1140
                                                                    1188
gtgttcaagg gcccggtgaa catcgactgg ttcaccttcg gcgtgtag
<210>
      100
<211>
       395
<212> PRT
<213> artificial sequence
<220>
<223> synthetic ferulic acid esterase
```

<400> 100

Met Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr Asp Gln Val 1 5 10

Arg Asn Gly Val Pro Arg Gly Gln Val Val Asn Ile Ser Tyr Phe Ser 20 25 30

Thr Ala Thr Asn Ser Thr Arg Pro Ala Arg Val Tyr Leu Pro Pro Gly 35 40 45

Tyr Ser Lys Asp Lys Lys Tyr Ser Val Leu Tyr Leu Leu His Gly Ile 50 55

Gly Gly Ser Glu Asn Asp Trp Phe Glu Gly Gly Gly Arg Ala Asn Val 65 70 75 80

Ile Ala Asp Asn Leu Ile Ala Glu Gly Lys Ile Lys Pro Leu Ile Ile 85 90 95

Val Thr Pro Asn Thr Asn Ala Ala Gly Pro Gly Ile Ala Asp Gly Tyr 100 105 110

Glu Asn Phe Thr Lys Asp Leu Leu Asn Ser Leu Ile Pro Tyr Ile Glu 115 120 125

Ser Asn Tyr Ser Val Tyr Thr Asp Arg Glu His Arg Ala Ile Ala Gly 130 135 140

Leu Ser Met Gly Gly Gly Gln Ser Phe Asn Ile Gly Leu Thr Asn Leu 145 150 155

Asp Lys Phe Ala Tyr Ile Gly Pro Ile Ser Ala Ala Pro Asn Thr Tyr 165 170 175

Pro Asn Glu Arg Leu Phe Pro Asp Gly Gly Lys Ala Ala Arg Glu Lys 180

Leu Lys Leu Leu Phe Ile Ala Cys Gly Thr Asn Asp Ser Leu Ile Gly 195 200

Phe Gly Gln Arg Val His Glu Tyr Cys Val Ala Asn Asn Ile Asn His 210 215 220

Val Tyr Trp Leu Ile Gln Gly Gly Gly His Asp Phe Asn Val Trp Lys 235 230 235

Page 116

Pro	Gly	Leu	Trp	Asn 245	Phe	Leu	Gln	Met	Ala 250	Asp	Glu	Ala	Gly	Leu 255	Thr		
Arg	Asp	Gly	Asn 260	Thr	Pro	Val	Pro	Thr 265	Pro	Ser	Pro	Lys	Pro 270	Ala	Asn		
Thr	Arg	Ile 275	Glu	Ala	Glu	Asp	Tyr 280	Asp	Gly	Ile	Asn	Ser 285	Ser	Ser	Ile		
Glu	Ile 290	Ile	Gly	Val	Pro	Pro 295	Glu	Gly	Gly	Arg	Gly 300	Ile	Gly	Tyr	Ile		
Thr 305	Ser	Gly	Asp	Tyr	Leu 310	Val	Tyr	Lys	Ser	Ile 315	Asp	Phe	Gly	Asn	Gly 320		
Ala	Thr	Ser	Phe	Lys 325	Ala	Lys	Val	Ala	Asn 330	Ala	Asn	Thr	Ser	Asn 335	Ile		
Glu	Leu	Arg	Leu 340	Asn	Gly	Pro	Asn	Gly 345	Thr	Leu	Ile	Gly	Thr 350	Leu	Ser		
Val	Lys	Ser 355	Thr	Gly	Asp	Trp	Asn 360	Thr	Tyr	Glu	Glu	Gln 365	Thr	Cys	Ser		
Ile	Ser 370	Lys	Val	Thr	Gly	Ile 375	Asn	Asp	Leu	Tyr	Leu 380	Val	Phe	Lys	Gly		
Pro 385	Val	Asn	Ile	Asp	Trp 390	Phe	Thr	Phe	Gly	Val 395							
<210 <211 <212 <213	> 1 ?> 5	101 1188 DNA artif	icia	ıl se	equen	ice											
<220 <223		olasm	nid 1	3036	j												
<400 atgg)> 1 Jeege	.01 :ct c	cctc	ccga	ıc ca	tgcc	gccg	tcc	:ggct	acg	acca	iggtg	cg c	aacg	ıgcgtç	3	60
ccgc	:gcgg	jcc a	ggtg	gtga	а са	tctc	ctac	ttc	tcca	ccg	ccac	caac	tc c	acco	gcccg	j	120
gccc	gcgt	gt a	cctc	ccgc	c gg	gcta	ctcc	aag	gaca	aga	agta	ctcc	gt g	ctct	accto	2	180
ctcc	acgg	ıca t	cggc	ggct	c cg	agaa	cgac	tgg	ttcg	agg	gcgg	cggc	cg c	gcca	acgtg	J	240

		0000000000	atcaadccdc	tcatcatcat	gaccccgaac	300
atcgccgaca	acctcatcgc	cyayyycaay	accaugeege	ccaccaccgc	gassesgass	
accaacgccg	ccggcccggg	catcgccgac	ggctacgaga	acttcaccaa	ggacctcctc	360
aactccctca	tcccgtacat	cgagtccaac	tactccgtgt	acaccgaccg	cgagcaccgc	420
gccatcgccg	gcctctctat	gggcggcggc	cagtccttca	acatcggcct	caccaacctc	480
gacaagttcg	cctacatcgg	cccgatctcc	gccgccccga	acacctaccc	gaacgagcgc	540
ctcttcccgg	acggcggcaa	ggccgcccgc	gagaagctca	agctcctctt	catcgcctgc	600
ggcaccaacg	actccctcat	cggcttcggc	cagcgcgtgc	acgagtactg	cgtggccaac	660
aacatcaacc	acgtgtactg	gctcatccag	ggcggcggcc	acgacttcaa	cgtgtggaag	720
ccgggcctct	ggaacttcct	ccagatggcc	gacgaggccg	gcctcacccg	cgacggcaac	780
accccggtgc	cgaccccgtc	cccgaagccg	gccaacaccc	gcatcgaggc	cgaggactac	840
gacggcatca	actcctcctc	catcgagatc	atcggcgtgc	cgccggaggg	cggccgcggc	900
atcggctaca	tcacctccgg	cgactacctc	gtgtacaagt	ccatcgactt	cggcaacggc	960
gccacctcct	tcaaggccaa	ggtggccaac	gccaacacct	ccaacatcga	gcttcgcctc	1020
aacggcccga	acggcaccct	catcggcacc	ctctccgtga	agtccaccgg	cgactggaac	1080
acctacgagg	agcagacctg	ctccatctcc	aaggtgaccg	gcatcaacga	cctctacctc	1140
gtgttcaagg	gcccggtgaa	catcgactgg	ttcaccttcg	gcgtgtag		1188

<210> 102 <211> 395 <212> PRT <213> artificial sequence

<220>

<223> plasmid 13036

<400> 102

Met Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr Asp Gln Val

Arg Asn Gly Val Pro Arg Gly Gln Val Val Asn Ile Ser Tyr Phe Ser 20

Thr Ala Thr Asn Ser Thr Arg Pro Ala Arg Val Tyr Leu Pro Pro Gly 35

Tyr Ser Lys Asp Lys Lys Tyr Ser Val Leu Tyr Leu Leu His Gly Ile

Gly 65	Gly	Ser	Glu	Asn	Asp 70	Trp	Phe	Glu	Gly	Gly 75	Gly	Arg	Ala	Asn	Val 80
Ile	Ala	Asp	Asn	Leu 85	Ile	Ala	Glu	Gly	Lys 90	Ile	Lys	Pro	Leu	Ile 95	Ile
Val	Thr	Pro	Asn 100	Thr	Asn	Ala	Ala	Gly 105	Pro	Gly	Ile	Ala	Asp 110	Gly	Tyr
Glu	Asn	Phe 115	Thr	Lys	Asp	Leu	Leu 120	Asn	Ser	Leu	Ile	Pro 125	Tyr	Ile	Glu
Ser	Asn 130	Tyr	Ser	Val	Tyr	Thr 135	Asp	Arg	Glu	His	Arg 140	Ala	Ile	Ala	Gly
Leu 145	Ser	Met	Gly	Gly	Gly 150	Gln	Ser	Phe	Asn	Ile 155	Gly	Leu	Thr	Asn	Leu 160
Asp	Lys	Phe	Ala	Tyr 165	Ile	Gly	Pro	Ile	Ser 170	Ala	Ala	Pro	Asn	Thr 175	Tyr
Pro	Asn	Glu	Arg 180	Leu	Phe	Pro	Asp	Gly 185	Gly	Lys	Ala	Ala	Arg 190	Glu	Lys
Leu	Lys	Leu 195	Leu	Phe	Ile	Ala	Cys 200	Gly	Thr	Asn	Asp	Ser 205	Leu	Ile	Gly
Phe	Gly 210	Gln	Arg	Val	His	Glu 215	Tyr	Cys	Val	Ala	Asn 220	Asn	Ile	Asn	His
Val 225	Tyr	Trp	Leu	Ile	Gln 230	Gly	Gly	Gly	His	Asp 235	Phe	Asn	Val	Trp	Lys 240
Pro	Gly					Leu				Asp	Glu	Ala	Gly	Leu 255	Thr
Arg	Asp	Gly	Asn 260	Thr	Pro	Val	Pro	Thr 265	Pro	Ser	Pro	Lys	Pro 270	Ala	Asn
Thr	Arg	Ile 275	Glu	Ala	Glu	Asp	Tyr 280	Asp	Gly	Ile	Asn	Ser 285	Ser	Ser	Ile

Page 119

Glu Ile Ile C 290	Gly Val Pro	Pro Glu 295	Gly Gly	Arg Gly 300	Ile Gly	Tyr Ile	
Thr Ser Gly A	Asp Tyr Leu 310	Val Tyr	Lys Ser	Ile Asp 315	Phe Gly	Asn Gly 320	
Ala Thr Ser F	Phe Lys Ala 325	Lys Val	Ala Asn 330	Ala Asn	Thr Ser	Asn Ile 335	
Glu Leu Arg L	Leu Asn Gly 840	Pro Asn	Gly Thr 345	Leu Ile	Gly Thr 350	Leu Ser	
Val Lys Ser T 355	hr Gly Asp	Trp Asn 360	Thr Tyr	Glu Glu	Gln Thr 365	Cys Ser	
Ile Ser Lys V 370	al Thr Gly	Ile Asn 375	Asp Leu	Tyr Leu 380	Val Phe	Lys Gly	
Pro Val Asn I 385	le Asp Trp 390	Phe Thr	Phe Gly	Val 395			
<210> 103 <211> 1245 <212> DNA <213> artifi	cial sequer	nce					
<220> <223> plasmi	d 13038						
<400> 103 atgagggtgt tg	ctcgttgc cc	tegetete	ctggctc	tcg ctgc	gagcgc (cacctccatg	60
geegeeteee te	ccgaccat go	cgccgtcc	ggctacg	acc aggt	gcgcaa (cggcgtgccg	120
cgcggccagg tg	gtgaacat ct	cctacttc	tccaccg	cca ccaa	ctccac (ccgcccggcc	180
cgcgtgtacc tc	ccgccggg ct	actccaag	gacaaga	agt acto	cgtgct	ctacctcctc	240
cacggcatcg gc	ggctccga ga	acgactgg	ttcgagg	gcg gcgg	ccgcgc (caacgtgatc	300
gccgacaacc tc	atogooga gg	gcaagatc	aagccgc	tca tcat	cgtgac (cccgaacacc	360
aacgccgccg gc	ccgggcat cg	ccgacggc	tacgaga	act tcac	caagga d	cctcctcaac	420
teceteatee eg	tacatoga gt	ccaactac	tccgtgta	aca ccga	ccgcga q	gcaccgcgcc	480
atcgccggcc tc	tctatggg cg	gcggccag	tccttcaa	aca togg	cctcac d	caacctcgac	540
aagttcgcct ac	atoggooo ga	tctccgcc	gccccgaa	aca ccta	cccgaa d	cgagcgcctc	600
ttcccggacg gc	ggcaaggc cg	cccgcgag	aagctcaa	agc tcct	cttcat o	egectgegge	660

accaacgact	ccctcatcgg	cttcggccag	cgcgtgcacg	agtactgcgt	ggccaacaac	720
atcaaccacg	tgtactggct	catccagggc	ggcggccacg	acttcaacgt	gtggaagccg	780
ggcctctgga	acttcctcca	gatggccgac	gaggccggcc	tcacccgcga	cggcaacacc	840
ccggtgccga	ccccgtcccc	gaagccggcc	aacacccgca	tcgaggccga	ggactacgac	900
ggcatcaact	cctcctccat	cgagatcatc	ggcgtgccgc	cggagggcgg	ccgcggcatc	960
ggctacatca	cctccggcga	ctacctcgtg	tacaagtcca	tcgacttcgg	caacggcgcc	1020
acctccttca	aggccaaggt	ggccaacgcc	aacacctcca	acatcgagct	tegeeteaac	1080
ggcccgaacg	gcaccctcat	cggcaccctc	tccgtgaagt	ccaccggcga	ctggaacacc	1140
tacgaggagc	agacctgctc	catctccaag	gtgaccggca	tcaacgacct	ctacctcgtg	1200
ttcaagggcc	cggtgaacat	cgactggttc	accttcggcg	tgtag		1245

<210> 104

<211> 414

<212> PRT <213> artificial sequence

<220>

<223> plasmid 13038 aa

<400> 104

Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser

Ala Thr Ser Met Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr

Asp Gln Val Arg Asn Gly Val Pro Arg Gly Gln Val Val Asn Ile Ser

Tyr Phe Ser Thr Ala Thr Asn Ser Thr Arg Pro Ala Arg Val Tyr Leu

Pro Pro Gly Tyr Ser Lys Asp Lys Lys Tyr Ser Val Leu Tyr Leu Leu
70 75 80 70

His Gly Ile Gly Gly Ser Glu Asn Asp Trp Phe Glu Gly Gly Arg

Ala Asn Val Ile Ala Asp Asn Leu Ile Ala Glu Gly Lys Ile Lys Pro 100

Page 121

Leu	Ile	Ile 115	Val	Thr	Pro	Asn	Thr 120	Asn	Ala	Ala	Gly	Pro 125	Gly	Ile	Ala
Asp	Gly 130	Tyr	Glu	Asn	Phe	Thr 135	Lys	Asp	Leu	Leu	Asn 140	Ser	Leu	Ile	Pro
Tyr 145	Ile	Glu	Ser	Asn	Tyr 150	Ser	Val	Tyr	Thr	Asp 155	Arg	Glu	His	Arg	Ala 160
Ile	Ala	Gly	Leu	Ser 165	Met	Gly	Gly	Gly	Gln 170	Ser	Phe	Asn	Ile	Gly 175	Leu
Thr	Asn	Leu	Asp 180	Lys	Phe	Ala	Tyr	Ile 185	Gly	Pro	Ile	Ser	Ala 190	Ala	Pro
Asn	Thr	Tyr 195	Pro	Asn	Glu	Arg	Leu 200	Phe	Pro	Asp	Gly	Gly 205	Lys	Ala	Ala
Arg	Glu 210	Lys	Leu	Lys	Leu	Leu 215	Phe	Ile	Ala	Cys	Gly 220	Thr	Asn	Asp	Ser
Leu 225	Ile	Gly	Phe	Gly	Gln 230	Arg	Val	His	Glu	Tyr 235	Cys	Val	Ala	Asn	Asn 240
Ile	Asn	His	Val	Tyr 245	Trp	Leu	Ile	Gln	Gly 250	Gly	Gly	His	Asp	Phe 255	Asn
Val	Trp	Lys	Pro 260	Gly	Leu	Trp	Asn	Phe 265	Leu	Gln	Met	Ala	Asp 270	Glu	Ala
Gly	Leu	Thr 275	Arg	Asp	Gly	Asn	Thr 280	Pro	Val	Pro	Thr	Pro 285	Ser	Pro	Lys
Pro	Ala 290	Asn	Thr	Arg	Ile	Glu 295	Ala	Glu	Asp	Tyr	Asp 300	Gly	Ile	Asn	Ser
Ser 305	Ser	Ile	Glu	Ile	Ile 310	Gly	Val	Pro	Pro	Glu 315	Gly	Gly	Arg	Gly	Ile 320
Gly	Tyr	Ile	Thr	Ser 325	Gly	Asp	Tyr	Leu	Val 330	Tyr	Lys	Ser	Ile	Asp 335	Phe

Gly Asn Gly Ala Thr Ser Phe Lys Ala Lys Val Ala Asn Ala Asn Thr 350 345 340 Ser Asn Ile Glu Leu Arg Leu Asn Gly Pro Asn Gly Thr Leu Ile Gly 355 Thr Leu Ser Val Lys Ser Thr Gly Asp Trp Asn Thr Tyr Glu Glu Gln Thr Cys Ser Ile Ser Lys Val Thr Gly Ile Asn Asp Leu Tyr Leu Val 395 Phe Lys Gly Pro Val Asn Ile Asp Trp Phe Thr Phe Gly Val 410 405 <210> 105 <211> 1425 <212> DNA <213> artificial sequence <220> <223> plasmid 13039 <400> 105 atgctggcgg ctctggccac gtcgcagctc gtcgcaacgc gcgccggcct gggcgtcccg 60 gacgcgtcca cgttccgccg cggcgccgcg cagggcctga ggggggcccg ggcgtcggcg 120 geggeggaca egeteageat geggaceage gegegegeg egeceaggea ecageaceag 180 caggogogoc goggggocag gttocogtog etogtogtgt gogocagogo oggogocatg 240 geogeotece tecegaceat geogeogtee ggetacgace aggtgegeaa eggegtgeeg 300 egeggeeagg tggtgaacat etectaette tecacegeea ecaaeteeae eegeeeggee 360 cgcgtgtacc tcccgccggg ctactccaag gacaagaagt actccgtgct ctacctcctc 420 cacqqcatcq gcggctccga gaacqactqq ttcgagggcq gcggccgcgc caacqtgatc 480 geogacaaco teategeoga gggeaagate aageogetea teategtgae eeegaacace 540 aacgeegeeg geeegggeat egeegaegge taegagaaet teaceaagga eeteeteaae 600 teceteatee egtacatega gtecaaetae teegtgtaca eegaeegega geaeegegee 660 ategeeggee tetetatggg eggeggeeag teetteaaca teggeeteae caacetegae 720 aagttegeet acateggeee gateteegee geeeegaaca eetaeeegaa egagegeete 780 ttcccggacg gcggcaaggc cgcccgcgag aagctcaagc tcctcttcat cgcctgcggc 840 accaacgact coctcatogg ottoggocag ogogtgoacg agtactgogt ggocaacaac 900

atcaaccacg	tgtactggct	catccagggc	ggcggccacg	acttcaacgt	gtggaagccg	960
ggcctctgga	acttcctcca	gatggccgac	gaggccggcc	tcacccgcga	cggcaacacc	1020
ccggtgccga	ccccgtcccc	gaagccggcc	aacacccgca	tcgaggccga	ggactacgac	1080
ggcatcaact	cctcctccat	cgagatcatc	ggcgtgccgc	cggagggcgg	ccgcggcatc	1140
ggctacatca	cctccggcga	ctacctcgtg	tacaagtcca	tcgacttcgg	caacggcgcc	1200
acctccttca	aggccaaggt	ggccaacgcc	aacacctcca	acatcgagct	tcgcctcaac	1260
ggcccgaacg	gcaccctcat	cggcaccctc	tccgtgaagt	ccaccggcga	ctggaacacc	1320
tacgaggagc	agacctgctc	catctccaag	gtgaccggca	tcaacgacct	ctacctcgtg	1380
ttcaagggcc	cggtgaacat	cgactggttc	accttcggcg	tgtag		1425

<210> 106

<211> 474 <212> PRT <213> artificial sequence

<220>

<223> plasmid 13039 aa

<400> 106

Met Leu Ala Ala Leu Ala Thr Ser Gln Leu Val Ala Thr Arg Ala Gly

Leu Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gln Gly 20

Leu Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg

Thr Ser Ala Arg Ala Ala Pro Arg His Gln His Gln Gln Ala Arg Arg

Gly Ala Arg Phe Pro Ser Leu Val Val Cys Ala Ser Ala Gly Ala Met 75 70

Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr Asp Gln Val Arg

Asn Gly Val Pro Arg Gly Gln Val Val Asn Ile Ser Tyr Phe Ser Thr 100

Ala	Thr	Asn 115	Ser	Thr	Arg	Pro	Ala 120	Arg	Val	Tyr	Leu	Pro 125	Pro	-Gly	Tyr
Ser	Lys 130	Asp	Lys	Lys	Tyr	Ser 135	Val	Leu	Tyr	Leu	Leu 140	His	Gly	Ile	Gly
Gly 145	Ser	Glu	Asn	Asp	Trp 150	Phe	Glu	Gly	Gly	Gly 155	Arg	Ala	Asn	Val	Ile 160
Ala	Asp	Asn	Leu	Ile 165	Ala	Glu	Gly	Lys	Ile 170	Lys	Pro	Leu	Ile	Ile 175	Val
Thr	Pro	Asn	Thr 180	Asn	Ala	Ala	Gly	Pro 185	Gly	Ile	Ala	Asp	Gly 190	Tyr	Glu
Asn	Phe	Thr 195	Lys	Asp	Leu	Leu	Asn 200	Ser	Leu	Ile	Pro	Tyr 205	Ile	Glu	Ser
Asn	Tyr 210	Ser	Val	Tyr	Thr	Asp 215	Arg	Glu	His	Arg	Ala 220	Ile	Ala	Gly	Leu
Ser 225	Met	Gly	Gly	Gly	Gln 230	Ser	Phe	Asn	Ile	Gly 235	Leu	Thr	Asn	Leu	Asp 240
Lys	Phe	Ala	Tyr	Ile 245	Gly	Pro	Ile	Ser	Ala 250	Ala	Pro	Asn	Thr	Tyr 255	Pro
Asn	Glu	Arg	Leu 260	Phe	Pro	Asp	Gly	Gly 265	Lys	Ala	Ala	Arg	Glu 270	Lys	Leu
Lys	Leu	Leu 275	Phe	Ile	Ala	Cys	Gly 280	Thr	Asn	Asp	Ser	Leu 285	Ile	Gly	Phe
Gly	Gln 290	Arg	Val	His	Glu	Tyr 295	Cys	Val	Ala	Asn	Asn 300	Ile	Asn	His	Val
Tyr 305	Trp	Leu	Ile	Gln	Gly 310	Gly	Gly	His	Asp	Phe 315	Asn	Val	Trp	Lys	Pro 320
Gly	Leu	Trp	Asn	Phe 325	Leu	Gln	Met	Ala	Asp 330	Glu	Ala	Gly	Leu	Thr 335	Arg
Asp	Gly	Asn	Thr 340	Pro	Val	Pro	Thr	Pro 345	Ser	Pro	Lys	Pro	Ala 350	Asn	Thr

Arg	Ile	Glu 355	Ala	Glu	Asp	Tyr	Asp 360	Gly	Ile	Asn	Ser	Ser 365	Ser	Ile	Glu	
Ile	Ile 370	Gly	Val	Pro	Pro	Glu 375	Gly	Gly	Arg	Gly	Ile 380	Gly	Tyr	Ile	Thr	
Ser 385	Gly	Asp	Tyr	Leu	Val 390	Tyr	Lys	Ser	Ile	Asp 395	Phe	Gly	Asn	Gly	Ala 400	
Thr	Ser	Phe	Lys	Ala 405	Lys	Val	Ala	Asn	Ala 410	Asn	Thr	Ser	Asn	Ile 415	Glu	
Leu	Arg	Leu	Asn 420	Gly	Pro	Asn	Gly	Thr 425	Leu	Ile	Gly	Thr	Leu 430	Ser	Val	
Lys	Ser	Thr 435	Gly	Asp	Trp	Asn	Thr 440	Tyr	Glu	Glu	Gln	Thr 445	Cys	Ser	Ile	
Ser	Lys 450	Val	Thr	Gly	Ile	Asn 455	Asp	Leu	Tyr	Leu	Val 460	Phe	Lys	Gly	Pro	
Val 465	Asn	Ile	Asp	Trp	Phe 470	Thr	Phe	Gly	Val				,			
<210 <211 <211 <211	l> 1 2> [3> a	l07 l263 DNA arti	fícia	al se	equer	nce										
<220 <220		olası	mid :	13347	7											
<400 atga)>] agggt	107 :gt	tgcto	cgtt	ge ed	ctcg	ctctc	c ct	ggcto	ctcg	ctg	cgago	cgc (cacct	ccatg	60
gcc	geete	ccc	tacc	gacca	at go	ccgc	egte	c gg	ctacç	gacc	aggt	gcg	caa (cggc	gtgccg	120
cgc	ggcca	agg '	tggt	gaaca	at ct	ccta	actto	t to	cacco	gcca	ccaa	actco	cac (ccgc	ccggcc	180
cgc	gtgta	acc '	tccc	geeg	gg ct	acto	ccaaç	g gad	caaga	agt	acto	ccgt	gct (ctac	ctcctc	240
cac	ggcat	cg (gcggd	ctccç	ga ga	acga	actgo	g tto	gag	ggcg	gcg	gccg	cgc (caac	gtgatc	300
gcc	gacaa	acc ·	tcato	cgccq	ga go	ggcaa	agato	c aaq	gccgo	ctca	tcat	cgt	gac (cccga	aacacc	360
aacq	geege	cg (gccc	gggca	at co	gccga	acggo	c tac	cgaga	act	tcad	ccaaq	gga (cctc	ctcaac	420
tcc	tcat	cc (cgtac	catco	ga gt	ccaa	actac	t tc	cgtgt	aca	ccga	accgo	cga (gcaco	cgcgcc	480

ategeeggee	tctctatggg	cggcggccag	tccttcaaca	tcggcctcac	caacctcgac	540
aagttcgcct	acatcggccc	gatctccgcc	gccccgaaca	cctacccgaa	cgagcgcctc	600
ttcccggacg	gcggcaaggc	cgcccgcgag	aagctcaagc	tcctcttcat	cgcctgcggc	660
accaacgact	ccctcatcgg	cttcggccag	cgcgtgcacg	agtactgcgt	ggccaacaac	720
atcaaccacg	tgtactggct	catccagggc	ggcggccacg	acttcaacgt	gtggaagccg	780
ggcctctgga	acttcctcca	gatggccgac	gaggccggcc	tcacccgcga	cggcaacacc	840
ccggtgccga	ccccgtcccc	gaagccggcc	aacacccgca	tcgaggccga	ggactacgac	900
ggcatcaact	cctcctccat	cgagatcatc	ggcgtgccgc	cggagggcgg	ccgcggcatc	960
ggctacatca	cctccggcga	ctacctcgtg	tacaagtcca	tcgacttcgg	caacggcgcc	1020
acctccttca	aggccaaggt	ggccaacgcc	aacacctcca	acatcgagct	tegeeteaae	1080
ggcccgaacg	gcaccctcat	cggcaccctc	tccgtgaagt	ccaccggcga	ctggaacacc	1140
tacgaggagc	agacctgctc	catctccaag	gtgaccggca	tcaacgacct	ctacctcgtg	1200
ttcaagggcc	cggtgaacat	cgactggttc	accttcggcg	tgtccgagaa	ggacgaactc	1260
tag						1263

<210> 108 <211> 420 <212> PRT <213> artificial sequence

<220>

<223> plasmid 13347

<400> 108

Met Arg Val Leu Leu Val Ala Leu Ala Leu Ala Leu Ala Ala Ser

Ala Thr Ser Met Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr 20 25

Asp Gln Val Arg Asn Gly Val Pro Arg Gly Gln Val Val Asn Ile Ser 40

Tyr Phe Ser Thr Ala Thr Asn Ser Thr Arg Pro Ala Arg Val Tyr Leu 55 50

Pro Pro Gly Tyr Ser Lys Asp Lys Lys Tyr Ser Val Leu Tyr Leu Leu

His Gly Ile Gly Gly Ser Glu Asn Asp Trp Phe Glu Gly Gly Arg 90 Ala Asn Val Ile Ala Asp Asn Leu Ile Ala Glu Gly Lys Ile Lys Pro 105 Leu Ile Ile Val Thr Pro Asn Thr Asn Ala Ala Gly Pro Gly Ile Ala Asp Gly Tyr Glu Asn Phe Thr Lys Asp Leu Leu Asn Ser Leu Ile Pro Tyr Ile Glu Ser Asn Tyr Ser Val Tyr Thr Asp Arg Glu His Arg Ala Ile Ala Gly Leu Ser Met Gly Gly Gly Gln Ser Phe Asn Ile Gly Leu 170 Thr Asn Leu Asp Lys Phe Ala Tyr Ile Gly Pro Ile Ser Ala Ala Pro Asn Thr Tyr Pro Asn Glu Arg Leu Phe Pro Asp Gly Gly Lys Ala Ala Arg Glu Lys Leu Lys Leu Leu Phe Ile Ala Cys Gly Thr Asn Asp Ser 215 Leu Ile Gly Phe Gly Gln Arg Val His Glu Tyr Cys Val Ala Asn Asn Ile Asn His Val Tyr Trp Leu Ile Gln Gly Gly His Asp Phe Asn Val Trp Lys Pro Gly Leu Trp Asn Phe Leu Gln Met Ala Asp Glu Ala 265 Gly Leu Thr Arg Asp Gly Asn Thr Pro Val Pro Thr Pro Ser Pro Lys 280 Pro Ala Asn Thr Arg Ile Glu Ala Glu Asp Tyr Asp Gly Ile Asn Ser

Page 128

295

290

Ser Ser Ile Glu Ile Ile Gly Val Pro Pro Glu Gly Gly Arg Gly Ile 305 310 315											
Gly Tyr Ile Thr Ser Gly Asp Tyr Leu Val Tyr Lys Ser Ile Asp Phe 325 330 335											
Gly Asn Gly Ala Thr Ser Phe Lys Ala Lys Val Ala Asn Ala Asn Thr 340 345 350											
Ser Asn Ile Glu Leu Arg Leu Asn Gly Pro Asn Gly Thr Leu Ile Gly 355 360 365											
Thr Leu Ser Val Lys Ser Thr Gly Asp Trp Asn Thr Tyr Glu Glu Gln 370 380											
Thr Cys Ser Ile Ser Lys Val Thr Gly Ile Asn Asp Leu Tyr Leu Val 385 390 395 400											
Phe Lys Gly Pro Val Asn Ile Asp Trp Phe Thr Phe Gly Val Ser Glu 405											
Lys Asp Glu Leu 420											
<210> 109 <211> 1296 <212> DNA <213> artificial sequence											
<220> <223> plasmid 11267											
<400> 109 atgagggtgt tgctcgttgc cctcgctctc ctggctctcg ctgcgagcgc caccagcgct	60										
gcgcagtccg agccggagct gaagctggag tccgtggtga tcgtgtcccg ccacggcgtg	120										
cgcgccccga ccaaggccac ccagctcatg caggacgtga ccccggacgc ctggccgacc	180										
tggccggtga agctcggcga gctgaccccg cgcggcggcg agctgatcgc ctacctcggc	240										
cactactggc gccagcgcct cgtggccgac ggcctcctcc cgaagtgcgg ctgcccgcag	300										
tccggccagg tggccatcat cgccgacgtg gacgagcgca cccgcaagac cggcgaggcc	360										
ttegeegeeg geetegeeee ggaetgegee ateacegtge acacecagge egacacetee	420										
toccoggaco ogotottoaa ocogotoaag acoggogtgt gocagotoga caacgocaac	480										
gtgaccgacg ccatectgga gegegeegge ggeteeateg eegaetteae eggeeactae	540										

cagaccgcct	tccgcgagct	ggagcgcgtg	ctcaacttcc	cgcagtccaa	cctctgcctc	600
aagcgcgaga	agcaggacga	gtcctgctcc	ctcacccagg	ccctcccgtc	cgagctgaag	660
gtgtccgccg	actgcgtgtc	cctcaccggc	gccgtgtccc	tcgcctccat	gctcaccgaa	720
atcttcctcc	tccagcaggc	ccagggcatg	ccggagccgg	gctggggccg	catcaccgac	780
tcccaccagt	ggaacaccct	cctctccctc	cacaacgccc	agttcgacct	cctccagcgc	840
accccggagg	tggcccgctc	ccgcgccacc	ccgctcctcg	acctcatcaa	gaccgccctc	900
accccgcacc	cgccgcagaa	gcaggcctac	ggcgtgaccc	tcccgacctc	cgtgctcttc	960
ategeeggee	acgacaccaa	cctcgccaac	ctcggcggcg	ccctggagct	gaactggacc	1020
ctcccgggcc	agccggacaa	caccccgccg	ggcggcgagc	tggtgttcga	gcgctggcgc	1080
cgcctctccg	acaactccca	gtggattcag	gtgtccctcg	tgttccagac	cctccagcag	1140
atgcgcgaca	agaccccgct	ctccctcaac	accccgccgg	gcgaggtgaa	gctcaccctc	1200
gccggctgcg	aggagcgcaa	cgcccagggc	atgtgctccc	tcgccggctt	cacccagatc	1260
		ggcctgctcc				1296

<210> 110 <211> 431

<212> PRT <213> artificial sequence

<223> plasmid 11267 aa sequence

<400> 110

Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser

Ala Thr Ser Ala Ala Gln Ser Glu Pro Glu Leu Lys Leu Glu Ser Val 25

Val Ile Val Ser Arg His Gly Val Arg Ala Pro Thr Lys Ala Thr Gln 40 45

Leu Met Gln Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val Lys 55

Leu Gly Glu Leu Thr Pro Arg Gly Glu Leu Ile Ala Tyr Leu Gly 70 75

His	Tyr	Trp	Arg	Gln 85	Arg	Leu	Val	Ala	Asp 90	Gly	Leu	Leu	Pro	Lys 95	Cys
Gly	Cys	Pro	Gln 100	Ser	Gly	Gln	Val	Ala 105	Ile	Ile	Ala	Asp	Val 110	Asp	Glu
Arg	Thr	Arg 115	Lys	Thr	Gly	Glu	Ala 120	Phe	Ala	Ala	Gly	Leu 125	Ala	Pro	Asp
Cys	Ala 130	Ile	Thr	Val	His	Thr 135	Gln	Ala	Asp	Thr	Ser 140	Ser	Pro	Asp	Pro
Leu 145	Phe	Asn	Pro	Leu	Lys 150	Thr	Gly	Val	Cys	Gln 155	Leu	Asp	Asn	Ala	Asn 160
Val	Thr	Asp	Ala	Ile 165	Leu	Glu	Arg	Ala	Gly 170	Gly	Ser	Ile	Ala	Asp 175	Phe
Thr	Gly	His	Tyr 180	Gln	Thr	Ala	Phe	Arg 185	Glu	Leu	Glu	Arg	Val 190	Leu	Asn
Phe	Pro	Gln 195	Ser	Asn	Leu	Cys	Leu 200	Lys	Arg	Glu	Lys	Gln 205	Asp	Glu	Ser
Cys	Ser 210	Leu	Thr	Gln	Ala	Leu 215	Pro	Ser	Glu	Leu	Lys 220	Val	Ser	Ala	Asp
Cys 225	Val	Ser	Leu	Thr	Gly 230	Ala	Val	Ser	Leu	Ala 235	Ser	Met	Leu	Thr	Glu 240
Ile	Phe	Leu	Leu	Gln 245	Gln	Ala	Gln	Gly	Met 250	Pro	Glu	Pro	Gly	Trp 255	Gly
Arg	Ile	Thr	Asp 260	Ser	His	Gln	Trp	Asn 265	Thr	Leu	Leu	Ser	Leu 270	His	Asn
Ala	Gln	Phe 275	Asp	Leu	Leu	Gln	Arg 280	Thr	Pro	Glu	Val	Ala 285	Arg	Ser	Arg
Ala	Thr 290	Pro	Leu	Leu	Asp	Leu 295	Ile	Lys	Thr	Ala	Leu 300	Thr	Pro	His	Pro
Pro 305	Gln	Lys	Gln	Ala	Tyr 310	Gly	Val	Thr	Leu	Pro 315	Thr	Ser	Val	Leu	Phe 320

Page 131

Ile	Ala	Gly	His	Asp 325	Thr	Asn	Leu	Ala	Asn 330	Leu	Gly	Gly	Ala	Leu 335	Glu	
Leu	Asn	Trp	Thr 340	Leu	Pro	Gly	Gln	Pro 345	Asp	Asn	Thr	Pro	Pro 350	Gly	Gly	
Glu	Leu	Val 355	Phe	Glu	Arg	Trp	Arg 360	Arg	Leu	Ser	Asp	Asn 365	Ser	Gln	Trp	
Ile	Gln 370	Val	Ser	Leu	Val	Phe 375	Gln	Thr	Leu	Gln	Gln 380	Met	Arg	Asp	Lys	
Thr 385	Pro	Leu	Ser	Leu	Asn 390	Thr	Pro	Pro	Gly	Glu 395	Val	Lys	Leu	Thr	Leu 400	
Ala	Gly	Cys	Glu	Glu 405	Arg	Asn	Ala	Gln	Gly 410	Met	Cys	Ser	Leu	Ala 415	Gly	
Phe	Thr	Gln	Ile 420	Val	Asn	Glu	Ala	Arg 425	Ile	Pro	Ala	Суѕ	Ser 430	Leu		
<210 <210 <210 <210	l > 1 2 > [111 1314 DNA arti	ficia	al se	equer	nce										
<220 <221		olası	mid 1	1268	3											
<400 atga)>] agggt	lll gt	tgcto	egtte	ic co	ctcgc	ctctc	ctç	gete	ctcg	ctgo	gago	ege -	cacca	agcgct	60
gcg	cagto	ccg .	agcc	ggago	t ga	agct	ggaç	g tco	gtg	gtga	tcgt	gtco	ccg	ccac	ggcgtg	120
cgc	gece	cga ·	ccaaç	ggcca	ic co	cagct	cato	g cag	gaco	gtga	cccc	ggad	cgc ·	ctgg	ccgacc	180
tggd	ccggt	ga .	agcto	ggcg	ja go	ctgad	cacag	g cgo	ggcg	ggcg	agct	gato	cgc ·	ctaco	ctcggc	240
cact	acto	ggc (gccaç	geged	et cg	gtggd	ccgac	ggo	ctc	ctcc	cgaa	gtgo	cgg ·	ctgc	ccgcag	300
tcc	ggcca	agg	tggc	catca	nt c	geega	acgto	g gad	gago	gca	ccc	gcaaq	gac	cggc	gaggcc	360
ttc	geege	ccg (gccto	egece	c go	gacto	gegee	ato	acco	gtgc	acac	ccaç	ggc	cgaca	acctcc	420
tcc	ccgga	acc (cgct	cttca	a co	ccgct	caaç	g acc	ggc	gtgt	gcca	gcto	cga -	caac	gccaac	4 8 C
gtga	accga	acg (ccato	cctg	ja go	gcgc	cggc	ggo	tcca	tcg	ccga	ctto	cac ·	cggc	cactac	5 4 C
caga	accgo	cct	tçege	cgago	t go	gagco	gegte	g cto	aact	tcc	cgca	gtco	caa	cctct	gcctc	600

Page 132

aagcgcgaga	agcaggacga	gtcctgctcc	ctcacccagg	ccctcccgtc	cgagctgaag	660
gtgtccgccg	actgcgtgtc	cctcaccggc	gccgtgtccc	tegeetecat	gctcaccgaa	720
atcttcctcc	tccagcaggc	ccagggcatg	ccggagccgg	gctggggccg	catcaccgac	780
tcccaccagt	ggaacaccct	cctctccctc	cacaacgccc	agttcgacct	cctccagcgc	840
accccggagg	tggcccgctc	ccgcgccacc	ccgctcctcg	acctcatcaa	gaccgccctc	900
accccgcacc	cgccgcagaa	gcaggcctac	ggcgtgaccc	tecegaeete	cgtgctcttc	960
atcgccggcc	acgacaccaa	cctcgccaac	ctcggcggcg	ccctggagct	gaactggacc	1020
ctcccgggcc	agccggacaa	caccccgccg	ggcggcgagc	tggtgttcga	gcgctggcgc	1080
cgcctctccg	acaactccca	gtggattcag	gtgtccctcg	tgttccagac	cctccagcag	1140
atgegegaca	agaccccgct	ctccctcaac	accccgccgg	gcgaggtgaa	gctcaccctc	1200
gccggctgcg	aggagcgcaa	cgcccagggc	atgtgctccc	tcgccggctt	cacccagatc	1260
		ggcctgctcc				1314

<210> 112 <211> 437 <212> PRT <213> artificial sequence

<223> plasmid 11268 amino acid sequence

<400> 112

Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser

Ala Thr Ser Ala Ala Gln Ser Glu Pro Glu Leu Lys Leu Glu Ser Val

Val Ile Val Ser Arg His Gly Val Arg Ala Pro Thr Lys Ala Thr Gln 45 40

Leu Met Gln Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val Lys 50

Leu Gly Glu Leu Thr Pro Arg Gly Glu Leu Ile Ala Tyr Leu Gly 7.0

His Tyr Trp Arg Gln Arg Leu Val Ala Asp Gly Leu Leu Pro Lys Cys 90

Gly	Cys	Pro	Gln 100	Ser	Gly	Gln	Val	Ala 105	Ile	Ile	Ala	Asp	Val 110	Asp	Glu
Arg	Thr	Arg 115	Lys	Thr	Gly	Glu	Ala 120	Phe	Ala	Ala	Gly	Leu 125	Ala	Pro	Asp
Cys	Ala 130	Ile	Thr	Val	His	Thr 135	Gln	Ala	Asp	Thr	Ser 140	Ser	Pro	Asp	Pro
Leu 145	Phe	Asn	Pro	Leu	Lys 150	Thr	Gly	Val	Cys	Gln 155	Leu	Asp	Asn	Ala	Asn 160
Val	Thr	Asp	Ala	Ile .165	Leu	Glu	Arg	Ala	Gly 170	Gly	Ser	Ile	Ala	Asp 175	Phe
Thr	Gly	His	Tyr 180	Gln	Thr	Ala	Phe	Arg 185	Glu	Leu	Glu	Arg	Val 190	Leu	Asn
Phe	Pro	Gln 195	Ser	Asn	Leu	Cys	Leu 200	Lys	Arg	Glu	Lys	Gln 205	Asp	Glu	Ser
Cys	Ser 210	Leu	Thr	Gln	Ala	Leu 215	Pro	Ser	Glu	Leu	Lys 220	Val	Ser	Ala	Asp
Cys 225	Val	Ser	Leu	Thr	Gly 230	Ala	Val	Ser	Leu	Ala 235	Ser	Met	Leu	Thr	Glu 240
Ile	Phe	Leu	Leu	Gln 245	Gln	Ala	Gln	Gly	Met 250	Pro	Glu	Pro	Gly	Trp 255	Gly
Arg	Ile	Thr	Asp 260	Ser	His	Gln	Trp	Asn 265	Thr	Leu	Leu	Ser	Leu 270	His	Asn
Ala	Gln	Phe 275	Asp	Leu	Leu	Gln	Arg 280	Thr	Pro	Glu	Val	Ala 285	Arg	Ser	Arg
Ala	Thr 290	Pro	Leu	Leu	Asp	Leu 295	Ile	Lys	Thr	Ala	Leu 300	Thr	Pro	His	Pro
Pro 305	Gln	Lys	Gln	Ala	Tyr 310	Gly	Val	Thr	Leu	Pro 315	Thr	Ser	Val	Leu	Phe 320

Page 134

Ile Ala Gly His Asp Thr Asn Leu Ala Asn Leu Gly Gly Ala Leu Glu 325 330 335

Leu Asn Trp Thr Leu Pro Gly Gln Pro Asp Asn Thr Pro Pro Gly Gly 340 345

Glu Leu Val Phe Glu Arg Trp Arg Arg Leu Ser Asp Asn Ser Gln Trp 355 360 365

Ile Gln Val Ser Leu Val Phe Gln Thr Leu Gln Gln Met Arg Asp Lys 370 380

Thr Pro Leu Ser Leu Asn Thr Pro Pro Gly Glu Val Lys Leu Thr Leu 385 390 395

Ala Gly Cys Glu Glu Arg Asn Ala Gln Gly Met Cys Ser Leu Ala Gly 405 410

Phe Thr Gln Ile Val Asn Glu Ala Arg Ile Pro Ala Cys Ser Leu Ser 420 425

Glu Lys Asp Glu Leu 435