GP8F非接触式射频ID接收模块说明书

一、概述

GP8F为125KHz非接触式射频ID卡专用模块、它采用先进的射频接收线路设计及嵌入式微控制器、结合高效解码算法、完成对64bits read-only μEM4100、TK4001等系列兼容式ID卡的接收、具有接收灵敏度高、单直流电源供电、多种输出选择、低价位高性能等特点、适合于门禁、考勤、收费、防盗、巡逻等各种射频识别应用领域。

二、特点

完全支持4100兼容格式ID卡 (64位, Manchester编码) 工作频率125KHz,产品外接天线,无需外接谐振电容 电感345μH,以标准圆形式或正方形效果最佳,面积80cm² 有效距离10cm以上 在有效距离内读数据接收时间小于100ms 单直流电源5或12V供电,工作电流小于60mA Wiegand26bits/ABA/RS232标准格式数据输出 尺寸24X41X10mm

三、接口描述(底部引脚图)

•Gnd	• Vcc	N/C	•	•CP	DATA●	• CLK
1	2		3	4	5	6
	GI	28F	-	XX		
11		10	9		8	7
• Ant		Ant●	•	I/C	•LÉD	•N/C

引脚号	RS232	Wiegand26	ABA
1	GND	GND	GND
2	Vcc	Vcc	Vcc
3	不接	不接	不接
4	不接	HOLD	CP
5	数据输出(TXD)	数据输出(TXD)	数据输出(DATA)
6	不接	数据输出(D1)	时钟(CLK)
7		不接	
8	LED输出	(需串接470Ω-	IKΩ电阻)
9		不接	
10		外接天线 (Ant)
11		外接天线 (Ant)

型号	电压 (Vcc)	输出格式				
GP8F-R5	5V	RE232				
GP8F-R2	12V	RS232				
GP8F-W5	5V	WEG26				
GP8F-W2	12V	WEG26				
GP8F-A5	5V	ABA				
GP8F-A2	12V	ABA				

四、数据结构

1、RS232 (串口ASC II 输出)

RE232输出格式: 9600, N, 8, 1

数据格式:

DECARDOS - CADA DORGO DO DO	Commission West Monte and	-		
STX (0X02)	DATA(10HEX)	CR	LF	ETX(0X03)

其中: STX为开始字符, 出厂设定为02 (十六进制)

DATA为10个十六进制字符

CR, LF为ASCII码

ETX为结束字符,设定为03(十六进制)

2 WIEGAND 26BIT

Wiegand 26BIT 格式由26位数据位构成,其中包括24BIT用户数据和2BIT校验位,24BIT数据的前12位做偶校验,后12位做奇校验,对于GP8F接收模块而言,24BIT数据对应于ID卡40位用户数据的后顾24位,即D40-D43、D50-53、D60-D63、D70-D73、D80-D83、D90-D93输出数据格式如下图:

	1 2 3 4 5 6	6	7	8	9	1	1	1	1	-1	1	1	1	1	1	2	2	2	2	2	2				
0										0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
P	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Р
	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	
	4	4	4	4	5	5	5	5	6	6	6	6	7	7	7	7	8	8	8	8	9	9	9	9	
	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	
P	Е	Е	Е	Е	E	E	Е	Е	Е	Е	Е	Е													
													0	0	0	0	0	0	0	0	0	0	0	0	P
					偶	校验	求和	1										奇	交验	求和					

其中:

P为奇偶校验位, D为数据位

DXX为对应于ID卡中的数据位

标记E为参与偶校验的数据位、标记O为参与奇校验的数据位

MSB: Normal01; LSB: Normal24

3.ABA Track 2 (Magstripe) 数据输出格式:

Magstripe Speed: Simulated to 40inches / ses

0000000000 SS DATA (14DIGITS)	ES	LRC	0000000000
-------------------------------	----	-----	------------

其中:

数据头标记由连续10个"0"组成

起始字符 (SS) 为十六进制的B (11010, 第一为低位: 1248P, P为奇校验位)

数据DATA为十四个十进制数字、数据传输的第一位为LSB

结束字符为十六进制的F (11111, 第一为低位: 1248P, P为奇校验位)

列向和校验(LRC)为偶校验;

数据尾标志由连续十个"0"组成

实例:

典型接线图:

Si bien la hoja de datos dice "RS232", en realidad se refiere a comunicación serie asincrónica a niveles TTL.

El pin "TXD" presenta niveles TTL (0 a 5V) para ser conectado directamente a un procesador, como puede inferirse del gráfico en la página anterior.

Esto es válido tanto para el GP8F-R2 como para el GP8F-R5 Para mayor información solicite las notas de aplicación: CAN-017 y CAN-024 de Cika