

2011 - 2012 学年第 2 学期

考试统一用答题册

考试课程		线性代数	(B)
班	级	学号	
姓	8		

题号	-	三	三	四	五	六	总分
成绩							
阅卷人签字							
校对人签字							

《线性代数》试卷

注意事项: 1. 六道大题共10页

- 2. 考试时间:120分钟
- 3. 文科系、理科系应做题目的区别

题目:

一、填空题 (24 分)

二、单项选择题(24分)

三、计算题 (13 分)

四、讨论题 (13 分)

五、综合题 (26分) (此题理科院系做,文科不做)

六、综合题 (26 分) (此題文科院系做,理科不做)

填空题 (本题共8×3分=24分)

- 1. 设n阶矩阵 A 满足 A²+3A-E=O,则(A+3E)⁻¹=_____
- 2. 设矩阵 $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, E为2阶单位矩阵,矩阵 B满足 BA = B + 2E, 则 |B|= ______.
- 3. 设 $\alpha_1 = \begin{bmatrix} 0, & 0, & -1, & 1 \end{bmatrix}^T$, $\alpha_2 = \begin{bmatrix} 1, & 1, & -1, & 0 \end{bmatrix}^T$, $\alpha_3 = \begin{bmatrix} -5, & -5, & 5, & 0 \end{bmatrix}^T$, 则 $\alpha_1, \alpha_2, \alpha_3$ 的一个最大线性无关组为
- 4. 在 R^3 中,向量 $\alpha = (2, 0, 0)^T$ 在基 $\alpha_1 = (1, 1 0)^T$, $\alpha_2 = (1, 0, 1)^T$,

 $\alpha_{3} = (0, 1, 1)^{T}$ 下的坐标为_____

5. 己知
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似 , 则 $x =$ ______ $y =$ ______

- 6. 设A为n阶方阵,|A|≠0,A*为A的伴随阵,若A有特征值 λ ,则 (A')2必有特征值
- 7. 设A为n阶方阵, $|A|\neq 0$,将A的第i行与第j行互换得到矩阵B,则
- 8. 若二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 是正定的,则t的取值 范围是_____

二、单项选择题 (本题共 8x3 分=24 分)

1. 设A是3阶矩阵,|A|=1,则 $(-2A)^2=($

A04; B. 64; C4; D. 4.
2. 设 A, B 是两个 n 阶矩阵, 满足(AB)²=E, 则 () 成立.
A. $AB=E$; B. $ A $ $ B =-1$; C. $AB=BA$; D. $(BA)^2=E$.
3. 若 n 维基本单位向量组 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 可由 n 维向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表
出则向景组。。。如此()
出,则向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的秩().
A. 小于n; B. 大于n; C. 等于n; D. 很难说.
4. 若方程组 AX=0 只有零解, 则 AX= β(≠0) ().
A. 必有无穷多组解; B. 必有唯一解;
C. 必定没有解; D. A、B、C 都不对.
5. 向量空间 $V = \{(x_1, x_2, \dots, x_n) \mid x_1 + x_2 + \dots + x_n = 0\}$ 的维数是
().
A. n; B. 1; C. n-1; D. 4.
11111 00000
6. 设 A= 1 1 1 1 1 1 , B= 0 0 0 0 0 , 则 A 与 B ().
6. $\mathfrak{P}A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$
(1 1 1 1 1) (0 0 0 0 0)
A. 合同且相似; B. 合同但不相似;
C. 不合同但相似; D. 不合同且不相似.
- 37 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7
7. 设 A, B 为满足 AB=0 的任意两个非零矩阵,则必有 (). A. A 的列向量线性相关, B 的行向量线性相关;
B. A的列向量线性相关, B的列向量线性相关;
C A 的行向量线性相关, B 的行向量线性相关;
D. A 的行向量线性相关, B 的列向量线性相关.
8. 二次型 $f(x_1,x_2,x_3)=x_1^2+2x_2^2+x_3^2-2x_1x_2$ 的正惯性指数、负惯性指数
8. 二次型 $f(x_1, x_2, x_3) = x_1 + 2x_2 + x_3$

与符号差分别为 ().

A. 0,3,3; B.3,3,0; C. 3,0,3; D. 0,0,2.

三、(本题共13分)

1. (本題 4分)

已知 3 阶行列式 $|\alpha,\beta,\gamma|=3$,求 $|3\alpha-\beta+2\gamma,-\alpha+\beta+\gamma,2\alpha+5\beta-7\gamma|$.

2. (本題9分)

设矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$, 矩阵 X 满足 $X = AX + B$, 求 X .

四、(本題 13 分) 设方程组
$$\begin{cases} a.x_1 + x_2 + x_3 = 4 \\ x_1 + bx_2 + x_3 = 3 \\ x_1 + 2bx_2 + x_3 = 4 \end{cases}$$

问当a, b 取何值时,

- (1) 方程组有唯一解;
- (2) 方程组无解:
- (3) 方程组有无穷多解, 求其通解(用解向量形式表示).

五、(本题共 26 分 此题理科院系做, 文科不做)

- 1. (本題滿分 14 分) 已知二次型 $f(x_1, x_2, x_3) = x_1^2 + tx_2^2 + 2x_3^2 + 2x_1x_2$ 的秩为 2,
 - (1) 求 t, 并写出此二次型对应的矩阵 A;
 - (2) 求正交变换 x=Qy, 把二次型 $f(x_1, x_2, x_3)$ 化为标准型.

(2) 设入为4阶方阵、不为4的件随矩阵、数0×0、当点(4)=n=1 时

SER. R(QA*)=1

- 2. 证明题 (本题共 6×2 分=12 分)
 - (1) 设 A 为 2n+1 阶正交矩阵,且 | A | =1,试证: A 必有特征值 1.

(2) 设A为n阶方阵,A*为A的伴随矩阵,数 $a \neq 0$,当R(A) = n-1时,

证明: $R(aA^*)=1$.

六、(本题共 26 分 此题文科院系做, 理科不做)

1. (本題满分 12 分) 求齐次线性方程组
$$\begin{cases} x_1 + 2x_2 - x_3 + 2x_4 = 0, \\ 2x_1 + 4x_2 + x_3 + x_4 = 0, \\ -x_1 - 2x_2 - 2x_3 + x_4 = 0; \end{cases}$$

的一个基础解系,并写出通解.

2. (本题满分 14 分)试用配方法将二次型 $f(x,y,z)=x^2+2y^2+5z^2+2xy+2xz+6yz$ 化为标准形,并写出所用可逆线性变换.