Навчальна дисципліна: **Дискретна математика**

Лектор:

професор Кучук Георгій Анатолійович

E-mail: <u>kuchuk56@ukr.net</u>

2 семестр навчання на бакалавраті Наприкінці семестру - іспит

Тема 5. Графи Лекція 5.4. Планарні графи

Питання лекції

- 1 Планарні графи
- 2 Умови планарності
- 3 Грані плоского графа
- 4 Алгоритм побудови плоского зображення графа

Рекомендована література

- 1. Конспект лекцій.URL: https://drive.google.com/drive/folders/12QYRD4L8kQr0g48DJVN386FrISDuy https://drive.google.com/drive/folders/12QYRD4L8kQr0g48DJVN386FrISDuy https://drive.google.com/drive/folders/12QYRD4L8kQr0g48DJVN386FrISDuy https://drive.google.com/drive/folders/12QYRD4L8kQr0g48DJVN386FrISDuy
- 2. Олійник Л.О. Дискретна математика: Навч. посібник. 2015. 256 с. URL:: https://www.dstu.dp.ua/Portal/Data/3/17/3-17-b2.pdf
- 3. Балога С.І. Дискретна математика. Навчальний посібник. Ужгород: ПП «АУТДОР-. ШАРК», 2021. 124 с. https://dspace.uzhnu.edu.ua/jspui/bitstream/lib/3415/1/%D0%BD%D0%BC%D0%B5%D1%82%D0%B8%D0%B8%D0%B8%D0%B5%D1%82%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B6%D0%BF%D0%BE%D1%81%D0%B1%D0%BD%D0%B8%D0%B8%D0%BA.pdf

1. Планарні графи

Планарний граф — це граф, допускає укладання площині, тобто. він може бути зображений на площині так, що жодні ребра не мають спільних точок, крім своїх вершин.

Зображення графа на площині з дотриманням цієї умови називається **плоским графом**.

Мінімальне число ребер, яке треба видалити для отримання плоского зображення, називається **числом планарності графа** та позначається $\theta(G)$.

Для повних графів K_n з числом вершин n ≥ 4 :

$$\theta(K_n) = (n-3)(n-4)/2.$$

Мінімальне число площин, при якому граф розбивається на плоскі частини, називається товщиною графа та позначається t (G).

Товщина довільного графа задовольняє нерівності

$$t(G) \ge \frac{\left[q + 3p - 7\right]}{\left[3p - 6\right]}$$

[х] - ціла частина х, р - число вершин, q - число ребер.

Товщина повних графів задовольняє рівності

$$t(K_n) = \frac{[n+7]}{6}$$

за винятком n = 9, 10, для яких товщина дорівнює 3.

2. Умови планарності

У зв'язного плоского графа з *числом вершин р*≥ 3 число ребер *q* задовольняє умові

$$q \le 3p - 6$$
.

У зв'язного плоского дводольного графа q ≤ 2p - 4.

a)
$$p = 4$$
, $q = 6$ $6 \le 3 \cdot 4 - 6 = 6$.

- можливо планарний
- б) варіант плоского зображення графа а);

в)
$$p = 5$$
, $q = 10$ $10 \le 3.5 - 6 = 9$. - не планарний K_5

г)
$$p = 6$$
, $q = 9$ $9 \le 2 \cdot 6 - 4 = 8$. - не планарний $K_{3,3}$

Теорема. У тривимірному просторі без перетину ребер може бути зображений будь-який кінцевий граф.

Непланарність графів K_5 і $K_{3,3}$ використовується для оцінки планарності великих графів:

Теорема Понтрягіна-Куратовського: граф планарний тоді і тільки тоді, якщо він не містить підграфи виду K_5 або $K_{3,3}$, або зведені до них.

3. Грані плоского графа

Область площини, обмежена ребрами зв'язкового плоского графа і містить у собі ні ребер, ні вершин, називається його **гранню**.

Зовнішня необмежена грань називається нескінченною гранню.

Граф на рис. 1, б має 4 грані: f_1 , f_2 , f_3 , f_4 де f_4 - нескінченна грань

У графа без циклів одно грань — нескінченна. Вона якась виняткова. При укладанні графа на сферу ця грань нічим не відрізнятиметься від інших.

Число граней f у зв'язному плоскому графі визначається як

$$f = q - p + 2,$$

де p — число вершин, q - число ребер.