

FCC PART 22H, PART 24E MEASUREMENT AND TEST REPORT

For

CONEDERA S.A.

ALBORADA 10 ETAPA AVE. BENJAMIN, CARRION C.C.LA ROTONDA LOCAT 2, Guayaquil, Ecuador

FCC ID: 2ACG9X6

Report Type:
Original Report

Mobile Phone

Report Number: RDG180803002-00C

Report Date: 2018-08-16

Jerry Zhang

Reviewed By: EMC Manager

Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan)

No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China

Jerry Zhang

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	6
SUPPORT EQUIPMENT LIST AND DETAILS	6
CONFIGURATION OF TEST SETUPBLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §1.1310 & §2.1093- RF EXPOSURE	9
APPLICABLE STANDARD	
TEST RESULT	
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF OUTPUT POWER	11
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST F ROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH	14
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	
FCC §2.1051, §22.917(A) & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	17
APPLICABLE STANDARD	17
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	17
FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS	20
APPLICABLE STANDARD	20
Test Procedure	20
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	21
FCC §22.917(A) & §24.238(A)- BAND EDGES	23
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	24

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY	27
APPLICABLE STANDARD	
Test Procedure	27
TEST EQUIPMENT LIST AND DETAILS	28
TEST DATA	28

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	EUT Name:	Mobile Phone
	EUT Model:	X6
	FCC ID:	2ACG9X6
Ra	ated Input Voltage:	DC3.7V from Battery or DC5V from adapter
4.1	Trade Name:	VANTEC
Adapter Information	Input:	AC110-250V~ 50/60Hz
inioi mation	Output:	DC5.0V, 500mA
E	xternal Dimension:	Length (125 mm)*Width (53 mm)*High (16 mm)
Serial Number:		180803002
E	UT Received Date:	2018.08.03

Objective

This report is prepared on behalf of *CONEDERA S.A.* in accordance with: Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communications Commission's rules.

The objective is to determine compliance with FCC Rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15C DSS submissions with FCC ID: 2ACG9X6. FCC Part 15B JBP submissions with FCC ID: 2ACG9X6.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Part 24 Subpart E - Personal Communication Services

Applicable Standards: TIA/EIA 603-D-2010.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp.(Dongguan).

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Unwanted Emissions, radiated	30MHz ~ 1GHz:5.85 dB 1G~26.5GHz: 5.23 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1 °C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D 2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universial Radio Communication Tester	CMU200	106 891
N/A	ANTENNA	N/A	N/A

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result	
§1.1310, §2.1093	RF Exposure	Compliance	
\$2.1046; \$ 22.913 (a); \$ 24.232 (c);	RF Output Power	Compliance	
§ 2.1047	Modulation Characteristics	Not Applicable	
§ 2.1049; § 22.905 § 22.917; § 24.238	Occupied Bandwidth	Compliance	
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliance	
§ 2.1053 § 22.917 (a); § 24.238 (a)	Spurious Radiation Emissions	Compliance	
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliance	
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance	

FCC §1.1310 & §2.1093- RF EXPOSURE

Report No.: RDG180803002-00C

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RDG180803002-20.

Page 9 of 29

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC $\S 2.1047(d)$, Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Page 10 of 29

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §24.232 (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Procedure

GSM/GPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850 > 30 dBm for GPRS 1900 > 27 dBm for EGPRS 850 > 26 dBm for EGPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stable)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel]

Channel Type > Off P0 > 4 dB

Slot Config > Unchanged (if already set under MS signal)

TCH > choose desired test channel

Hopping > Off Main Timeslot > 3

Network Coding Scheme > CS4 (GPRS) and MCS5 (EGPRS)

Bit Stream > 2E9-1 PSR Bit Stream

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input

Connection Press Signal on to turn on the signal and change settings

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-12-11	2018-12-11
Sunol Sciences	Antenna	ЈВ3	A060611-1	2017-11-10	2020-11-10
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2017-09-05	2018-09-05
Unknown	Unknown Coaxial Cable		C-0200-02	2017-09-05	2018-09-05
HP	HP Amplifier		2727A05902	2017-09-05	2018-09-05
R&S	Universal Radio R&S Communication Tester		106 891	2017-12-14	2018-12-14
Agilent	Signal Generator	E8247C	MY43321350	2017-12-11	2018-12-11
Agilent	Spectrum Analyzer	E4440A	SG43360054	2018-01-04	2019-01-04
TDK RF	Horn Antenna	HRN-0118	130 084	2016-01-05	2019-01-04
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2017-09-05	2018-09-05
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2017-09-05	2018-09-05
Agilent	Signal Generator	E8247C	MY43321350	2017-12-11	2018-12-11

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.8~27.8 °C
Relative Humidity:	33~36 %
ATM Pressure:	100.1~100.5 kPa

^{*} The testing was performed by Kami Zhou, Tyler Pan, Sunny Cen from 2018-08-08 to 2018-08-09.

Conducted Output Power

Cellular Band & PCS Band

Report No.: RDG180803002-00C

	Channel	Conducted Peak Output Power (dBm)						
Band	No.	GSM	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot		
	128	33.20	33.13	31.56	28.93	26.83		
Cellular	190	33.30	33.25	31.38	29.18	27.01		
	251	33.40	33.32	31.52	29.35	27.17		
	512	29.90	26.79	24.37	22.63	20.46		
PCS	661	29.80	26.49	23.80	22.00	19.78		
	810	29.80	26.98	23.72	21.87	19.59		

ERP & EIRP

Part 22H

Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	bstituted Met Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
	GSM 850 Middle Channel								
836.60	Н	98.78	23.86	0.00	0.97	22.89	38.45	15.56	
836.60	V	105.04	33.25	0.00	0.97	32.28	38.45	6.17	

Part 24E

_										
			Receiver	Substituted Method Absolut		Substituted Method Absolute				
	Frequency (MHz)	Polar (H/V)	Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	
	PCS 1900 Middle Channel									
	1880.00	Н	88.48	15.87	11.66	2.66	24.87	33.00	8.13	
	1880.00	V	89.77	17.30	11.66	2.66	26.30	33.00	6.70	

Note

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = Substituted Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH

Applicable Standard

FCC §2.1049, §22.917, §22.905, §24.238

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
R&S	Universal Radio Communication Tester	CMU200	106 891	2017-12-14	2018-12-14
Unknown	Attenuator	UNAT-3+	15529	Each time	N/A
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
E-Microwave	Two-way Spliter	ODP-1-6-2S	OE0120142	Each Time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.5 °C
Relative Humidity:	49 %
ATM Pressure:	100.5 kPa

^{*} The testing was performed by Kami Zhou on 2018-08-08.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

Band	Test Channel	Mode	99% Occupied Bandwidth (MHz)	26 dB Occupied Bandwidth (MHz)
Cellular	М	GSM	0.246	0.328
PCS	M	PCS	0.244	0.324

GSM 850 Cellular Band

Report No.: RDG180803002-00C

Date: 8.AUG.2018 09:52:02

GSM PCS1900 Cellular Band

Date: 8.AUG.2018 09:16:20

FCC §2.1051, §22.917(a) & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §22.917(a), §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
R&S	Universal Radio Communication Tester	CMU200	106 891	2017-12-14	2018-12-14
Unknown	Attenuator	UNAT-3+	15529	Each time	N/A
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
E-Microwave	Two-way Spliter	ODP-1-6-2S	OE0120142	Each Time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.5 °C	
Relative Humidity:	49 %	
ATM Pressure:	100.5 kPa	

^{*} The testing was performed by Kami Zhou on 2018-08-08.

Please refer to the following plots.

GSM850_Middle Channel

PCS 1900_ Middle Channel

FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917, § 24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

Manufacturer	Description	Model	Serial	Calibration	Calibration
			Number	Date	Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-12-11	2018-12-11
Sunol Sciences	Antenna	ЈВ3	A060611-1	2017-11-10	2020-11-10
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2017-09-05	2018-09-05
HP	Amplifier	8447D	2727A05902	2017-09-05	2018-09-05
R&S	Universal Radio Communication Tester	CMU200	106 891	2017-12-14	2018-12-14
Agilent	Signal Generator	E8247C	MY43321350	2017-12-11	2018-12-11
Agilent	Spectrum Analyzer	E4440A	SG43360054	2018-01-04	2019-01-04
TDK RF	Horn Antenna	HRN-0118	130 084	2016-01-05	2019-01-04
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2017-09-05	2018-09-05
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2017-09-05	2018-09-05
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2016-11-18	2019-11-18
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-02 1304	2016-11-18	2019-11-18
Quinstar	Amplifier	QLW-18405536- JO	15964001001	2018-06-27	2019-06-27
Agilent	Signal Generator	E8247C	MY43321350	2017-12-11	2018-12-11

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.8~27.8°C
Relative Humidity:	33~36 %
ATM Pressure:	100.5 kPa

^{*} The testing was performed by Tyler Pan & Sunny Cen on 2018-08-08.

EUT Operation Mode: Transmitting

Cellular Band (PART 22H)

Report No.: RDG180803002-00C

30 MHz-10 GHz:

	Dansiyan		Substituted Method			A11 4.		
Frequency (MHz) Polar (Reading (dBμV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
	GSM850, Frequency:836.600 MHz							
1673.200	Н	76.73	-37.48	10.6	0.73	-27.6	-13.0	14.6
1673.200	V	82.33	-32.48	10.6	0.73	-22.6	-13.0	9.6
2509.800	Н	71.07	-41.95	13.1	1.25	-30.1	-13.0	17.1
2509.800	V	69.31	-43.74	13.1	1.25	-31.9	-13.0	18.9
3346.400	Н	50.12	-60.54	13.8	1.61	-48.3	-13.0	35.3
3346.400	V	51.33	-59.38	13.8	1.61	-47.2	-13.0	34.2
264.000	Н	46.85	-62.22	0.0	0.51	-62.7	-13.0	49.7
264.000	V	48.52	-63.39	0.0	0.51	-63.9	-13.0	50.9

PCS Band (PART 24E)

30 MHz-20 GHz:

		D	Su	bstituted Met	hod	Albara lasta		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
GSM1900, Frequency:1880.000 MHz								
3760.000	Н	67.57	-41.23	13.8	1.63	-29.1	-13.0	16.1
3760.000	V	66.26	-42.41	13.8	1.63	-30.3	-13.0	17.3
5640.000	Н	53.42	-52.61	14.0	1.31	-39.9	-13.0	26.9
5640.000	V	59.72	-46.19	14.0	1.31	-33.5	-13.0	20.5
517.000	Н	45.82	-58.05	0.0	0.72	-58.8	-13.0	45.8
517.000	V	46.72	-60.22	0.0	0.72	-60.9	-13.0	47.9

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = Substituted Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

FCC §22.917(a) & §24.238(a)- BAND EDGES

Applicable Standard

FCC § 2.1053, §22.917, § 24.238.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
R&S	Universal Radio Communication Tester	CMU200	106 891	2017-12-14	2018-12-14
Unknown	Attenuator	UNAT-3+	15529	Each time	N/A
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A
E-Microwave	Two-way Spliter	ODP-1-6-2S	OE0120142	Each Time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Page 23 of 29

Test Data

Environmental Conditions

Temperature:	28.5 °C	
Relative Humidity:	49 %	
ATM Pressure:	100.5 kPa	

^{*} The testing was performed by Kami Zhou on 2018-08-08.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following plots.

GSM 850, Left Band Edge

Date: 8.AUG.2018 09:38:13

Report No.: RDG180803002-00C

GSM 850, Right Band Edge

Date: 8.AUG.2018 09:36:38

GSM 1900, Left Band Edge

Date: 8.AUG.2018 09:34:06

Report No.: RDG180803002-00C

GSM 1900, Right Band Edge

Date: 8.AUG.2018 09:32:28

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §22.355, §24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Tolerance for Transmitters in the Public M	obile Services

Frequency Range (MHz)	Base, fixed (ppm)	Mobile > 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Dongzhixu	High Temperature Test Chamber	DP1000	201105083-4	2017-08-28	2018-08-28
R&S	Universal Radio Communication Tester	CMU200	106 891	2017-12-14	2018-12-14
Unknown	Attenuator	UNAT-3+	15529	Each time	N/A
Unknown	Coaxial Cable	C-SJ00- 0010	C0010/01	Each time	N/A
Pro instrument	DC Power Supply	pps3300	3300012	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.5 °C		
Relative Humidity:	49 %		
ATM Pressure:	100.5 kPa		

^{*} The testing was performed by Kami Zhou on 2018-08-08.

Cellular Band (Part 22H)

GMSK, Middle Channel, f _c = 836.6 MHz					
Temperature	Voltage Frequency Error		Frequency Error	Limit	
°C	V_{DC}	Hz	ppm	ppm	
-30		-1	-0.00120		
-20		-4	-0.00478		
-10		-2	-0.00239		
0		1	0.00120		
10	3.7	-1	-0.00120		
20		-2	-0.00239	2.5	
30		-3	-0.00359		
40		-4	-0.00478		
50		-2	-0.00239		
25	3.5	3	0.00359		
25	4.2	4	0.00478		

PCS Band (Part 24E)

GMSK, Middle Channel, f _c = 1880.0 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Results	
℃	V_{DC}	Hz	ppm		
-30		-4	-0.00213		
-20		-7	-0.00372		
-10		-1	-0.00053		
0		2	0.00106		
10	3.7	-4	-0.00213		
20		2	0.00106	Pass	
30		-5	-0.00266		
40		-4	-0.00213		
50		-5	-0.00266		
25	3.5	-7	-0.00372		
25	4.2	-5	-0.00266		

Note: The fundamental emissions stay within the authorized bands of operation based on the frequency deviation measured is small, the extreme voltage was declared by applicant.

***** END OF REPORT *****