Estimating Reduced Consumption for Dynamic Demand Response

Charalampos Chelmis, Saima Aman, Muhammad Saeed, Marc Frincu, Viktor Prasanna

Dynamic Demand Response

Demand Response (DR)

Adjustment of electricity consumption during peak load periods in response to a signal from the utility, via

- direct control, or
- voluntary participation

Dynamic Demand Response (D²R)

Deals with the decision making about when, by how much and how to reduce electricity use by the demand side.

Reduced Consumption Prediction (during DR)

Existing approaches focused on baseline prediction

- Sudden change in consumption profile
- DR events are not cyclic as they are scheduled when necessitated by energy demand or weather conditions

First to address reduced consumption prediction problem

Traditional time series methods are not applicable

Dynamic Demand Response Framework

- Reduced consumption prediction is used to estimate curtailment in energy consumption during DR
- Estimates help in planning for DR
- Used to select buildings and strategies for DR
- Useful for assessing success of a DR event

Problem Formulation and Approach

WtdAvSi / WtdAvTi / HistAv

Historical Averaging - HistAv

- Predicted Values during DR period are equal to the average of all historical values
- Motivation: Not enough DR events for each

 building, strategy> combination. Hence, an averaging of all events is a practical approach.

Weighted Averaging - WtdAv

• Predicted values during DR period are equal to the weighted average of all historical values

Time-wise Weighted Averaging – WtdAvTi

• Weights decrease exponentially with time

Similarity-wise Weighted Averaging – WtdAvSi

- Each day is represented as feature vector (kwh, weather, calendar)
- Similarity is defined as distance between feature vectors
- Weights decrease exponentially with decreasing similarity

Similarity-wise averaging

Experiments and Results

DR events

School of Engineering

Challenges

- Small number of historical observations
- Volatile and irregular consumption profiles
- Small shifts in usage affect curtailment
- Ramp period: Abrupt change for each customer starts at different times after a DR is initiated
- Recovery period: Abrupt change towards the end of DR also varies for each customer
- Unexpected events: e.g., automatic restart of HVAC units due to temp rising over a pre-defined threshold
- Reduction in consumption varies:
 - per customer for a DR event day
 - per DR event for each customer

Future Work

- Explore similarity based on more important features.
- Use dimensionality reduction to identify important features and then select similar days for averaging
- Combine models in an ensemble for better performance
- From micro-grid to city-scale: Apply reduced consumption prediction methods for individual consumers in the city of Los Angeles.

ACKNOWLEDGEMENT

CONTACT chelmis@usc.edu saman@usc.edu saeedm@usc.edu frincu@usc.edu prasanna@usc.edu

