INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Computer Science and Engineering

Switching Circuits and Logic Design (CS21002)

Class Test – I (Spring)

Name:		Roll number:	
Date: Wed, Jan 20, 2021	Marks: 35	<i>Time:</i> 8:10-9am (FN)	

Answer ALL the questions using xournal or similar software to edit the PDF

Q1: Your roll number is of the form $nnDDx_2nnx_1x_0$. Consider the decimal number $x_2x_1x_0 =$ _____. Let B be its binary equivalent. Run the *double dabble* (also called *add-3 and shift*) algorithm to convert the binary number B to BCD showing each step clearly. The operations should be either L Sft for left shift or Add 3. The entries for D2, D1 and D0 should be their values after application of the indicated operation.

25

Operation	B2	B1	В0	$r_0r_1r_0 =$
				$x_2x_1x_0 = $
Initial	0000	0000	0000	B =
L Sft	0000	0000		
L Sft	0000	0000		
L Sft	0000	0000		
Finish	$r_2 =$	$r_1 =$	$r_0 =$	
1 1111311	<u> </u>	<u> </u>		

Q 2:	Your roll number is of the form $nnDDnnnx_1x_0$. Consider the decimal number $x_1x_0 =$
	Represent 49 and $-x_1x_0$ in 8-bit signed 2's complement representation; then perform the following
	operations on your representations, showing each step clearly:

(a) $49+(-x_1x_0)$	5
$(a) \rightarrow 2 + (-a + a)$	5

Item	Binary representation
$x_1x_0 =$	
$-x_1x_0$ (2's complement)	
49	
$+ (-x_1x_0)$	
Result	

/4 \	$(-x_1x_0)+(-49)$	_
101	$(\omega_1\omega_1)(1)(\Xi_2)$	

Item	Binary representation
49	
-49 (2's complement)	
$-x_1x_0$	
+ (-49)	
Result	