				SP015 Pre-Lab Module
Name	»:			Practicum:
Matri	c Number:			
	EXPE	RIMENT 1	: MEASUREMENT A	ND UNCERTAINTY
Solve	rse Learning Outcomer problems related to PLO 4, CTPS 3, M	Physics of	0.	y, waves, matter and thermodynamics
At th	ning Outcomes: e end of this lesson, tainty of length of v			que of measurement and determine
Stud	ent Learning Time:	:		
	Face-to-face	Non face-	-to-face	
	1 hour	1 ho	ur	
Direc	ction: Read over the	lab manual	and then answer the foll	owing question.
	duction Complete Table 1			
	Basic Quantity	Symbol	SI Unit (with symbol)	Measuring Instrument
	Length	l		
	Mass	m		
	Time	t		
	Electric Current	I		

7	٦,	hl	^	1

T

2.	is used to measure the diameter of a coin.
3.	Micrometer screw gauge is usually used to measure the of a thin wire or the
	of paper.

4. Complete **Table 2**

Temperature

Measuring Apparatus	Sensitivity	Uncertainty
Meter rule	0.1 cm	±0.1cm
Vernier calipers	0.01 cm	
Micrometer screw gauge		±0.01mm
Travelling microscope		±0.01mm
Thermometer	0.1°C	
Voltmeter	0.1 V	
Ammeter		±0.1A

Measuring Apparatus	Sensitivity	Uncertainty
Electronic Balance	0.01 g	

Table 2

5. State **TWO** types of reading;

1.	 	 	

6. The repeated reading for a measurement is given as *a*, *b*, *c*, *d*, *e*, and *f*. Write the equation of Average Value and Uncertainty.

	EQUATION
Average Value, \bar{x}	
Uncertainty, Δx	

Experiment

7. Complete **Table 3**

ii.

Measurement	Measuring Instrument	Uncertainty/ Smallest scale	Type of reading (single point/two point/Vernier scale)
Length of a metal rod			Two points
Length and width of a laboratory book			Two points
Mass of a ball bearing			Single Point
Diameter of a ball bearing			Vernier scale
Diameter of a coin			Vernier scale
External diameter of a glass rod			Vernier scale

Table 3

8. Determine the reading for the following measurements:

i.

Main scale:

Vernier scale:

Actual reading:

Main scale

More than 11 cm

Main scale

Wernier scale

Actual reading:

, and the second second

iii.

Main scale

iv.

Main scale

Vernier scale

i.....

Actual reading :....

v.

Main scale

Vernier scale:.....

Actual reading:.....

- 9. The repeated readings of the diameter, d of a ball bearing are 2.50 mm, 2.52 mm, 2.51 mm and 2.50 mm.
 - i. Calculate the Average Value and Uncertainty. Write the result as $(\overline{d} \pm \Delta \overline{d})$

ii.	What instrument/apparatus is used for this measurement?
iii.	From 10.1, calculate the volume, V of the ball bearing.
iv.	Write the result as $(\overline{V} \pm \Delta \overline{V})$

Data Analysis

10. Complete **Table 4.**

No	Length of Scientific Calculator (Model Casio fx-570ES PLUS), L (cm)	$\left \overline{L}-L_{i}\right $ (cm)
1	15.42	
2	15.55	
3	15.30	
4	15.48	
5	15.49	
6	15.45	
7	15.55	
	Average, \overline{L} =	$\Delta ar{L} =$

Table 4

- 11. Express your answer as $(\overline{L} \pm \Delta \overline{L})$
- 12. Calculate the percentage of uncertainty,

13.	Sta	te	T	HF	RE	Έ	pı	ec	aı	ıti	or	ns	o	f t	hi	S.	ex	(p	er	ir	ne	en	ıt:																
	i.													. 				. 						• • •	 	· • •	 . 	 	 	 . 	 								
	ii.												 	 								
	iii.																								 		 	 	 	 	 								

N	Jame :		Practicum:
N	Matric Number:		
	EXPE	RIMENT 2 : FREE FALL A	ND PROJECTILE MOTION
So			d energy, waves, matter and thermodynamics
At		n, students will able to describe and projectile motion.	experiment to determine acceleration due to
Stı	ident Learning Tin	ne:	
	Face-to-face	Non face-to-face	
	1 hour	1 hour	
Di	rection: Read over t	he lab manual and then answer	the following question.
Int	roduction		
1.	What is meant by f	ree fall motion?	
2.			ct is also known as gravitational acceleration or d SI unit of this type of acceleration?
3.	What is the value of	of acceleration due to gravity at	the surface of Earth?
4.	Projectile motion of	of an object is the motion of a	n object which is projected or thrown. Under a
		·	present , projectile motion can be considered as
	a free fall motion.	State TWO differences between	n free fall motion and projectile motion?
5.	State the law applie	ed in these experiment	

Experiment

6.	How do we release the steel ball to	form	
	(a) free fall motion		
	(b) Projectile motion		
	(b) Projectile motion		
7.	State the measurement apparatus in	nvolved. (e.g. type / name of eq	quipment) for both experiment.
8.	State the related variables that need	to be recorded in this experim	ent?
		Free fall motion	Projectile motion
	Manipulated variable (change on purpose)		. ,
	Responding variable (what is measured)		
9.	Construct the table to record the rel	ated values for free fall and pro	piectile motion experiment
٠.	(a) Free Fall Motion	ated varies for free fair and pro	specific motion experiment.
	(1)		
	(b) Projectile Motion		

10.	How do you obtained the value of <i>t</i> for projectile motion from the graph of free fall motion experiment?						
	Do	ta Analysis					
11.	a)	Write the equations related to both experiments in order to determine the acceleration due to gravity, g.					
	b)	Sketch a suitable graph for i) Free fall motion ii) Projectile motion					
		i) Prec fair motion					
	c)	How the acceleration due to gravity, g can be determine from the graphs.					
12.		st down the precautions of the experiments.					
	a)						
	b)						
	c)						

Name:	Practicum:
Matric Number:	

EXPERIMENT 3: ENERGY

Course Learning Outcome:

Solve problems related to Physics of motion, **force and energy**, waves, matter and thermodynamics **(C4, PLO 4, CTPS 3, MQF LOD 6)**

Learning Outcomes:

At the end of this lesson, students will able to explain the experiment to determine the acceleration due to gravity, g from the experiment.

Student Learning Time:

Face-to-face	Non face-to-face		
1 hour	1 hour		

Direction: Read over the lab manual and then answer the following question.

Introduction

State the law of conservation of energy.
 State the gravitational potential energy and kinetic energy.

3. What is the symbol and SI unit of gravitational potential energy and kinetic energy?

Energy	gravitational potential energy	kinetic energy
Symbol		
Unit		

4. Based on the situations below, answer the questions:

		a)	Using the conservation of energy, determine the velocity of the ball just before it reaches the ground.
		1-1	From the arrange calculated in arrestion (a) what can use deduce about the relation
		b)	From the answers calculated in question (a), what can we deduce about the relation between the released height and the velocity of the ball before hitting the ground?
Ex	per	imen	
5.	W]		s the energy owned by the ball bearing when it is attached to the free fall adapter?
6.	W	hat is	s the usage of the photo gate?
	•••		
7.			e change in mechanical energy in this experiment.
8.	Sta a)		ne related variables that need to be recorded in this experiment? nipulated variable
	b)	Res	sponding variable
9.	Но	w th	e final velocity of ball bearing is determined?

Data Analysis

10. An equation for a straight line graph is y = mx + c, where y is the quantity on the vertical axis and x is the quantity on the horizontal axis as shown in **FIGURE 1**.

FIGURE 1

The velocity of ball bearing, v is related to the height of released (h) by the following equation:

$$v^2 = 2gh$$
_____(1)

where g is the acceleration due to the gravity.

- a) Based on the equation (1) and the graph, determine the variables for x axis and y axis
- b) From the graph what does the gradient, *m* represents?

.....

- c) From the gradient of the graph, how can we determine the value of g.
- 11. List **THREE** precautions of the experiment:

i.ii.

iii.

12. State two types of errors during experiment and give an example for each error.

13. Based on the situation below identify either random or systematic error.

Situation	Random Error/Systematic Error
Wind keeps blowing in the surrounding using the experiment. This shall affect the velocity measured in this experiment. The best way to solve this is by conducting this experiment in the closed area or vacuum space.	
Some of the numbers on the timer's display was broken and missing. Thus the reading can be taken only to the nearest decimal point.	
Instead of using the hand to release the ball bearing, it is suggested that the ball can be released using the automatic control or trigger.	
Sometimes the time measured is hardly detected by the photo gates. This is due to the position of the gates where the ball bearing failed to hit the motion sensor. Therefore, the free fall adapter and photo gates must be realigned properly.	

Name :			Practicum:
Matric Number:			
<u>EXPERII</u>	MENT 4: ROTATIO	NAL MOTION OF A	RIGID BODY
Course Learning Outcome Solve problems related to (C4, PLO 4, CTPS 3, Mo	Physics of motion, for	rce and energy, waves	, matter and thermodynamics
Learning Outcomes: At the end of this lesson, inertia of a fly-wheel from		plain the experiment to	o determine the moment of
Student Learning Time:		1	
Face-to-face	Non face-to-face		
1 hour	1 hour		
Direction: Read over the	lab manual and then ar	nswer the following qu	estion.
<u>Introduction</u>			
1. What is a rigid body?			
2. What is meant by mor	ment of inertia?		
3. What is the symbol ar	nd SI unit for moment	of inertia?	
4. Moment of inertia de	pends on	and	
5. Complete TABLE 4	with correct analogues	between linear motion	and rotational motion.
Linear Motion	Rotation	nal Motion]
Mass, m	Rotation		-
·			_
Acceleration, a Net force, F			_
Net force, F			

6. A motor capable of producing a constant torque of 100 Nm is connected to a flywheel which rotates with an angular acceleration of 1000 rad s^{-2} . Calculate moment of inertia of the flywheel.

Experiment

7.		a free body diagram ee body diagram of		b) Free body diagram of	falling slotted mass			
8.		erring to the free bod motion.	y diagram i	n 7(a) and 7(b), deduce equatio	n by using Newton's 2 nd			
9.	For this	s experiment, identif	ý					
	a) the	e manipulated variab	ole					
	b) the	e responding variable	e					
10.	Comple	ete the observation t	able with th	e suitable equation.				
		Acceleration		Angular acceleration	Tension in the string			
Do	ta Anal	vaja						
	<u>ta Anal</u>							
11.	Write t	he equation of the g	raph of α ag	ainst T				
12.	Base or	n the linear graph eq	uation $y =$	mx + c, fill in the suitable qua	ntity by referring the			
	equation in question 11:							
	a) <i>y-axis</i> :							
		x-axis						
	c)	gradient, m						
	1\	d) y-interception :						

13.	How d	o we	determine	the	value of	f inerti	a of	a fl	y-wheel	from	this	graph?
-----	-------	------	-----------	-----	----------	----------	------	------	---------	------	------	--------

14.	List	t THREE precautions of this experiment
	i.	
	ii.	
	iii.	

Name :		Practicum:
Matric Number:		
EXPE	RIMENT 5: SIMPLE	E HARMONIC MOTION (SHM)
Course Learning Ou Solve problems relate thermodynamics (C4, PLO 4, CTPS 3	ed to Physics of motion	, force and energy, waves, matter and
 explain the experi pendulum. 	son, students will able to iment to determine the	o: acceleration due to gravity, g using a simple cillation to the accuracy of g obtained from the
Student Learning Ti		
Face-to-face	Non face-to-face	
1 hour	1 hour	
Direction: Read over	the lab manual and the	en answer the following question.
Introduction		
1. What is a simple p	pendulum?	
2. Motion of an obje	ect that returns to its ini	tial position after a fixed time interval is called
3. In SHM, state two	o quantities that proport	tional to the object's displacement
i		
ii		
4. The condition for	the simple pendulum to	o perform SHM are
a) The mass of the	he spherical bob is	
b) The	of the stri	ng is negligible
c) Amplitude of	oscillation is	
-		
5. Does the period o (Yes / No)	f oscillation of simple J	pendulum depend on mass?

Experiment

6.	How to determine the period of a simple pendulum for a given number, n of oscillation?
7.	If we vary the length of a pendulum, the period will change. Construct an appropriate table to record the data of length, l , time taken, t and corresponding T and T ² .
8.	What is the title of the graph that needs to be plotted in this experiment?
9.	Which procedure that investigates the effect of large amplitude of oscillation and state the related angle used.
_	Data Analysis How to determine the value of g from the gradient of the graph.
11.	How to calculate the percentage of error between the value $g_{\text{experiment}}$ and g_{standard} ? Take $g_{\text{standard}} = 9.81 \text{ m s}^{-2}$.
12.	Predict what would happen to the value of g if large amplitude is used.
13.	List THREE precautions of this experiment i. ii. iii.

N	Name:			Practicum:				
N	Matric Number:							
		EXPERIMENT 6 2	STANDING WAV	ES				
So	ourse Learning Outcor olve problems related to C4, PLO 4, CTPS 3, MO	Physics of motion, for	ce and energy, waves	s, matter and thermodynamics				
At	earning Outcomes: t the end of this lesson, s rmed in stretched string		plain the experiment	to investigate standing waves				
S <u>t</u> ı	Student Learning Time:							
	Face-to-face	Non face-to-face						
	1 hour	1 hour						
Di	irection: Read over the	lab manual and then an	swer the following o	uestion.				
[n	<u>troduction</u>							
1.	What is the meaning of	of standing waves?						
2.	Sketch standing wave formed in a stretch string and label the node (N) and antinode (A).							
3	How standing wave is	formed?						
٥.								
4.	What is the symbol ar	nd SI unit for mass per	unit length?					
Ex	<u>xperiment</u>							
5.		e and responding variab	oles in this experimen	nt.				
•								

6.	Construct the table for the value of m and <i>l</i> .
7.	Sketch free body diagram to show that $T = W$.
8.	Suggest a way to determine the actual value for mass per unit length of the string/wire used in this experiment.
9.	Suggest how to identify the position of two consecutive nodes formed in the string / wire.
<u>Da</u>	ta analysis
10.	Write the equation that relates period, T and frequency, f.
11.	Sketch the graph to show the relationship between T and ℓ^2 .
12.	Construct the observation table.
13.	How do you determine the mass per unit length from this graph?
14.	Throughout the experiment the terminals are connected to AC power supply. In your opinion why does this essential?