Appendix: A New Fact to Discipline Models of Beliefs

Julio Ortiz

$March\ 2020$

Contents

A	Derivations	2
	A.1 Deriving Errors and Revisions for SI Model	2
	A.2 Proof of Proposition 2	5
	A.3 Equating β_1 Across Models	5
	A.4 Proof of Proposition 3	6
В	Overconfidence Model	8
	B.1 Mapping Overconfidence to Diagnostic Expectations	9
\mathbf{C}	Empirics	11
D	Simulation Results	12

Appendix A Derivations

A.1 Deriving Errors and Revisions for SI Model

In state space form, we have

$$\begin{bmatrix} x_t \\ F_t \end{bmatrix} = \begin{bmatrix} \rho & 0 \\ \lambda \rho & (1 - \lambda)\rho \end{bmatrix} \begin{bmatrix} x_{t-1} \\ F_{t-1} \end{bmatrix} + \begin{bmatrix} 1 \\ \lambda \end{bmatrix} w_t$$
$$y_t^i = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_t \\ F_t \end{bmatrix} + v_t^i$$

Or more compactly,

$$\mathbf{s_t} = \mathbf{A}\mathbf{s_{t-1}} + \mathbf{B}w_t$$
$$y_t^i = \mathbf{C}\mathbf{s_t} + v_t^i$$

Invoking the Kalman filter

$$\begin{aligned} \mathbf{s_{t|t}^i} &= (\mathbf{I} - \kappa \mathbf{C}) \mathbf{A} \mathbf{s_{t-1|t-1}^i} + \kappa \mathbf{C} \mathbf{A} \mathbf{s_{t-1}} + \kappa \mathbf{C} \mathbf{B} w_t + \kappa v_t^i \\ \mathbf{s_{t|t-1}^i} &= \mathbf{A} \mathbf{s_{t-1|t-1}^i} \end{aligned}$$

which implies that

$$\begin{aligned} x_{t|t}^i &= (1 - \kappa_1)\rho x_{t-1|t-1}^i + \kappa_1 y_t^i \\ F_{t|t}^i &= (\lambda - \kappa_2)\rho x_{t-1|t-1}^i + (1 - \lambda)\rho F_{t-1|t-1}^i + \kappa_2 y_t^i \end{aligned}$$

and

$$\begin{split} x_{t|t-1}^i &= \rho x_{t-1|t-1}^i \\ F_{t|t-1}^i &= \lambda \rho x_{t-1|t-1}^i + (1-\lambda) \rho F_{t-1|t-1}^i \end{split}$$

where $\lambda = \frac{\kappa_1 + R\kappa_2}{1+R}$ and κ_1, κ_2 are the Kalman gains belonging to the two-dimensional column vector κ . Letting $\xi = \begin{bmatrix} \frac{1}{1+R} & \frac{R}{1+R} \end{bmatrix}$, we have

$$\begin{split} &\widetilde{x}_{t|t}^{i} = \xi \mathbf{s_{t|t}^{i}} \\ &= \frac{1}{1+R} x_{t|t}^{i} + \frac{R}{1+R} F_{t|t}^{i} \\ &= \frac{1}{1+R} \bigg[(1-\kappa_{1}) \rho x_{t-1|t-1}^{i} + \kappa_{1} y_{it} \bigg] + \frac{R}{1+R} \bigg[(\lambda - \kappa_{2}) \rho x_{t-1|t-1}^{i} + (1-\lambda) \rho F_{t-1|t-1}^{i} + \kappa_{2} y_{it} \bigg] \\ &= \frac{1-\kappa_{1} + R(\lambda - \kappa_{2})}{1+R} x_{t|t-1}^{i} + \lambda y_{it} + \frac{(1-\lambda)R\rho}{1+R} F_{t-1|t-1}^{i} \\ &= \frac{1-\lambda}{1+R} x_{t|t-1}^{i} + \frac{(1-\lambda)R\rho}{1+R} F_{t-1|t-1}^{i} + \lambda y_{it} \end{split}$$

and

$$\begin{split} \widetilde{x}_{t|t-1}^i &= \xi \mathbf{s_{t|t-1}^i} \\ &= \frac{1}{1+R} \rho x_{t-1|t-1}^i + \frac{R}{1+R} \bigg[\lambda \rho x_{t-1|t-1}^i + (1-\lambda) \rho F_{t-1|t-1}^i \bigg] \\ &= \frac{1+R\lambda}{1+R} x_{t|t-1}^i + \frac{(1-\lambda) \rho R}{1+R} F_{t-1|t-1}^i \end{split}$$

Hence,

$$\begin{split} \widetilde{x}_{t|t}^i &= \frac{1-\lambda}{1+R} x_{t|t-1}^i + \frac{(1-\lambda)R\rho}{1+R} F_{t-1|t-1}^i + \lambda y_t^i \\ \widetilde{x}_{t|t-1}^i &= \frac{1+R\lambda}{1+R} x_{t|t-1}^i + \frac{(1-\lambda)\rho R}{1+R} F_{t-1|t-1}^i \end{split}$$

Furthermore,

$$F_t = \widetilde{x}_{t|t} = (1 - \lambda)\rho F_{t-1} + \lambda x_t$$
$$\widetilde{x}_{t|t-1} = \lambda \rho x_{t-1|t-1} + (1 - \lambda)\rho F_{t-1}$$

From here, it follows that

$$\begin{split} x_t - \widetilde{x}_{t|t}^i &= x_t - \frac{1 - \kappa_1 + (\lambda - \kappa_2)R}{1 + R} x_{t|t-1}^i - \lambda y_t^i - \frac{(1 - \lambda)R\rho}{1 + R} F_{t-1|t-1}^i \\ &= (1 - \lambda)x_t - \frac{1 - \kappa_1 + (\lambda - \kappa_2)R}{1 + R} x_{t|t-1}^i - \lambda v_t^i - \frac{(1 - \lambda)R\rho}{1 + R} F_{t-1|t-1}^i \\ &= (1 - \lambda)x_t - \frac{1 - \lambda}{1 + R} x_{t|t-1}^i - \frac{(1 - \lambda)R\rho}{1 + R} F_{t-1|t-1}^i - \lambda v_t^i \\ &= (1 - \lambda) \left[x_t - \frac{1}{1 + R} x_{t|t-1}^i - \frac{R}{1 + R} \rho F_{t-1|t-1}^i \right] - \lambda v_t^i \end{split}$$

and the forecast revision is

$$\widetilde{x}_{t|t}^{i} - \widetilde{x}_{t|t-1}^{i} = \frac{(1 - \kappa_{1}) + (\lambda - \kappa_{2})R - (1 + R\lambda)}{1 + R} x_{t|t-1}^{i} + \lambda x_{t} + \lambda v_{t}^{i}$$

$$= -\frac{\kappa_{1} - \kappa_{2}R}{1 + R} x_{t|t-1}^{i} + \lambda x_{t} + \lambda v_{t}^{i}$$

$$= \lambda (x_{t} - x_{t|t-1}^{i} + v_{t}^{i})$$

A.2 Proof of Proposition 2

$$\begin{split} \beta_1^{SI} &= \frac{\operatorname{Cov}(x_t - \widetilde{x}_{t|t}^i, \widetilde{x}_{t|t}^i - \widetilde{x}_{t|t-1}^i)}{\operatorname{Var}(\widetilde{x}_{t|t}^i - \widetilde{x}_{t|t-1}^i)} \\ &= \frac{(1 - \lambda)\lambda \operatorname{Cov}(x_t, x_t - x_{t|t-1}^i) - \lambda^2 \sigma_v^2}{\lambda^2 \left[\operatorname{Var}(x_t - x_{t|t-1}^i) + \sigma_v^2 \right]} \\ &= \frac{1 - \lambda}{\lambda} \frac{\operatorname{Var}(x_t) - \operatorname{Cov}(x_t, x_{t|t-1}^i)}{\operatorname{Var}(x_t - x_{t|t-1}^i) + \sigma_v^2} - \frac{\sigma_v^2}{\operatorname{Var}(x_t - x_{t|t-1}^i) + \sigma_v^2} \\ &= \frac{1 - \lambda}{\lambda} \frac{\frac{\sigma_w^2}{1 - \rho^2} - \frac{\rho^2 \kappa_1 \cdot \frac{\sigma_w^2}{1 - \rho^2}}{1 - (1 - \kappa_1) \rho^2}}{\operatorname{Var}(x_t - x_{t|t-1}^i) + \sigma_v^2} - (1 - \kappa_1) \\ &= \frac{1 - \lambda}{\lambda} \frac{\frac{\sigma_w^2}{1 - \rho^2} \frac{1 - \rho^2}{1 - (1 - G)\rho^2}}{\operatorname{Var}(x_t - x_{t|t-1}^i) + \sigma_v^2} - (1 - \kappa_1) \\ &= \frac{1 - \lambda}{\lambda} \frac{\operatorname{Var}(x_t - x_{t|t-1}^i)}{\operatorname{Var}(x_t - x_{t|t-1}^i) + \sigma_v^2} - (1 - \kappa_1) \\ &= \frac{1 - \lambda}{\lambda} \frac{\operatorname{Var}(x_t - x_{t|t-1}^i)}{\operatorname{Var}(x_t - x_{t|t-1}^i) + \sigma_v^2} - (1 - \kappa_1) \\ &= \frac{1 - \lambda}{\lambda} \kappa_1 - (1 - \kappa_1) \\ &= \frac{1 - \kappa_1 + R(1 - \kappa_2)}{\kappa_1 + R\kappa_2} \kappa_1 - (1 - \kappa_1) \\ &= \frac{R(\kappa_1 - \kappa_2)}{\kappa_1 + R\kappa_2} \end{split}$$

A.3 Equating β_1 Across Models

 $DE \rightarrow SI$

$$\beta_1^{DE} = \tfrac{-\theta(1+\theta)}{(1+\theta)^2 + \rho^2 \theta^2} \text{ and } \beta_1^{SI} = \tfrac{R(\kappa_1 - \kappa_2)}{\kappa_1 + R\kappa_2}.$$

Given $\{\rho, \sigma_w, \sigma_v, \theta\}$ we solve for R by setting $\beta_1^{DE} = \beta_1^{SI}$

$$\frac{R(\kappa_1 - \kappa_2)}{\kappa_1 + R\kappa_2} = \beta_1^{DE}$$

$$R(\kappa_1 - \kappa_2) = \beta_1^{DE}(\kappa_1 + R\kappa_2)$$

$$R(\kappa_1 - \kappa_2) = \beta_1^{DE}\kappa_1 + \beta_1^{DE}R\kappa_2$$

$$R(\kappa_1 - \kappa_2) - \beta_1^{DE}R\kappa_2 = \beta_1^{DE}\kappa_1$$

$$R = \frac{\beta_1^{DE}\kappa_1}{\kappa_1 - (1 + \beta_1^{DE})\kappa_2}$$

SI→DE

Given $\{\rho, \sigma_w, \sigma_v, R\}$ we solve for θ by setting $\beta_1^{DE} = \beta_1^{SI}$

$$\begin{split} \frac{-\theta(1+\theta)}{(1+\theta)^2 + \rho^2 \theta^2} &= \beta_1^{SI} \\ -\theta(1+\theta) &= \beta_1^{SI} (1+\theta)^2 + \beta_1^{SI} \rho^2 \theta^2 \\ -\theta &- \theta^2 = \beta_1^{SI} (1+2\theta+\theta^2) + \beta_1^{SI} \rho^2 \theta^2 \\ 0 &= \beta_1^{SI} + 2\beta_1^{SI} \theta + \theta + \beta_1^{SI} \theta^2 + \theta^2 + \beta_1^{SI} \rho^2 \theta^2 \\ 0 &= \beta_1^{SI} + (2\beta_1^{SI} + 1)\theta + [1+(1+\rho^2)\beta_1^{SS}]\theta^2 \end{split}$$

A.4 Proof of Proposition 3

It suffices to show that $Cov(\widetilde{x}_{t|t}^i - \widetilde{x}_{t|t-1}^i, \widetilde{x}_{t|t-1}^i - \widetilde{x}_{t|t-2}^i) = 0$. The current period revision is

$$\widetilde{x}_{t|t}^{i} - \widetilde{x}_{t|t-1}^{i} = \frac{1 - \lambda - 1 - R\lambda}{1 + R} x_{t|t-1}^{i} + \lambda y_{it}$$
$$= \lambda (y_{it} - x_{t|t-1}^{i})$$

and the previous period revision can be expressed as

$$\begin{split} \widetilde{x}_{t|t-1}^i - \widetilde{x}_{t|t-2}^i &= \frac{1}{1+R} (x_{t|t-1}^i - x_{t|t-2}^i) + \frac{R}{1+R} (F_{t|t-1}^i - F_{t|t-2}^i) \\ &= \frac{\rho}{1+R} (x_{t-1|t-1}^i - x_{t-1|t-2}^i) + \frac{R}{1+R} \left[\lambda \rho x_{t-1|t-1}^i + (1-\lambda) \rho F_{t-1|t-1}^i - \lambda \rho x_{t-1|t-2}^i \right. \\ &- (1-\lambda) \rho F_{t-1|t-2}^i \right] \\ &= \frac{\rho}{1+R} \left[\kappa_1 (y_{it-1} - x_{t-1|t-2}^i) \right] + \frac{R}{1+R} \left[\lambda \rho (x_{t-1|t-1}^i - x_{t-1|t-2}^i) + (1-\lambda) \rho (F_{t-1|t-1}^i - F_{t-1|t-2}^i) \right] \\ &= \frac{\rho \kappa_1}{1+R} \left[x_{t-1} - x_{t-1|t-2}^i + v_{it-1} \right] + \frac{R}{1+R} \left[\lambda \rho \kappa_1 (x_{t-1} - x_{t-1|t-2}^i + v_{it-1}) \right. \\ &+ (1-\lambda) \rho \kappa_2 (x_{t-1} - x_{t-1|t-2}^i + v_{it-1}) \right] \\ &= \left[\frac{\rho \kappa_1 + R \lambda \rho \kappa_1 + R (1-\lambda) \rho \kappa_2}{1+R} \right] (x_{t-1} - x_{t-1|t-2}^i + v_{it-1}) \\ &= \frac{\rho (\kappa_1 + R \kappa_2) + \rho R \lambda (\kappa_1 - \kappa_2)}{1+R} (x_{t-1} - x_{t-1|t-2}^i + v_{it-1}) \\ &= \rho \lambda \left(1 + \frac{R (\kappa_1 - \kappa_2)}{1+R} \right) (x_{t-1} - x_{t-1|t-2}^i + v_{it-1}) \end{split}$$

Then,

$$\operatorname{Cov}(\widetilde{x}_{t|t}^{i} - \widetilde{x}_{t|t-1}^{i}, \widetilde{x}_{t|t-1}^{i} - \widetilde{x}_{t|t-2}^{i}) = \operatorname{Cov}\left[\lambda(y_{it} - x_{t|t-1}^{i}), \rho\lambda\left(1 + \frac{R(\kappa_{1} - \kappa_{2})}{1 + R}\right)(x_{t-1} - x_{t-1|t-2}^{i} + v_{it-1})\right] \\
= \operatorname{Cov}\left[\lambda(1 - \kappa_{1})\rho(x_{t-1} - x_{t-1|t-2}^{i}) - \lambda\kappa_{1}\rho v_{it-1} + \lambda(v_{it} + w_{t}), \\
\rho\lambda\left(1 + \frac{R(\kappa_{1} - \kappa_{2})}{1 + R}\right)(x_{t-1} - x_{t-1|t-2}^{i} + v_{it-1})\right] \\
= (\lambda\rho)^{2}\left[1 + \frac{R(\kappa_{1} - \kappa_{2})}{1 + R}\right]\left[(1 - \kappa_{1})\Psi - \kappa_{1}\sigma_{v}^{2}\right] \\
= 0$$

By definition, $\kappa_1 = \frac{\Psi}{\Psi + \sigma_v^2}$ where Ψ is the steady state forecast error variance (i.e. the variance that solves the Ricatti equation: $\Psi = (1 - \kappa_1)\rho^2\Psi + \sigma_w^2$). From this it follows that the last term in hard brackets is zero.

Appendix B Overconfidence Model

Overconfidence Model

Daniel (1993) presents a theory of overconfidence in which individuals perceive their private signals to be more precise than they truly are. Specifically, forecasters perceive

$$y_t^i = x_t + v_t^i$$
 $v_t^i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \check{\sigma}_v^2)$

where $\check{\sigma}_v = \alpha \sigma_v$ such that $\alpha < 1$.

As a matter of notation, let the forecaster's current period forecast as $\check{x}^i_{t|t}$ and his one step ahead forecast as $\check{x}^i_{t|t-1}$. Forecasters invoke the Kalman filter for the model in order for formulate their expectations. As a result, expectations are determined according to the following predict-update procedure

$$\widecheck{\boldsymbol{x}}_{t|t-1}^i = \rho \widecheck{\boldsymbol{x}}_{t-1|t-1}^i \tag{Predict}$$

$$\widecheck{x}_{t|t}^i = \widecheck{x}_{t|t-1}^i + \widecheck{\kappa}(y_t^i - \widecheck{x}_{t|t-1}^i) \quad \text{(Update)}$$

Proposition 1. The OLS coefficient arising from an errors-on-revisions regression in the overconfidence model is

$$\beta_1^{OC} = \frac{\mathbb{C}(x_t - \check{x}_{t|t}^i, \check{x}_{t|t}^i - \check{x}_{t|t-1}^i)}{\mathbb{V}(\check{x}_{t|t}^i - \check{x}_{t|t-1}^i)} = \frac{(\alpha^2 - 1)\sigma_v^2}{\mathbb{V}(x_t - \check{x}_{t|t-1}^i) + \sigma_v^2} < 0$$

Proof.

$$\begin{split} \beta_1^{OC} &= \frac{\mathbb{C}(x_t - \widecheck{x}_{t|t}^i, \widecheck{x}_{t|t}^i - \widecheck{x}_{t|t-1}^i)}{\mathbb{V}(\widecheck{x}_{t|t}^i - \widecheck{x}_{t|t-1}^i)} \\ &= \frac{(1 - \widecheck{\kappa})\widecheck{\kappa}\mathbb{V}(x_t - x_{t|t-1}^i) - \widecheck{\kappa}^2\sigma_v^2}{\widecheck{\kappa}^2[\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) + \sigma_v^2]} \\ &= \frac{(1 - \widecheck{\kappa})\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) - \widecheck{\kappa}\sigma_v^2}{\widecheck{\kappa}[\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) + \sigma_v^2]} \\ &= \frac{\frac{(1 - \widecheck{\kappa})\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) - \widecheck{\kappa}\sigma_v^2}{\widecheck{\kappa}[\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) + \sigma_v^2]} \\ &= \frac{\frac{\widecheck{\sigma}_v^2\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i)}{\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) + \widecheck{\sigma}_v^2} - \frac{\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) + \widecheck{\sigma}_v^2}{\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) + \widecheck{\sigma}_v^2} \\ &= \frac{(\alpha^2 - 1)\sigma_v^2\widecheck{\kappa}}{\widecheck{\kappa}[\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) + \sigma_v^2]} \\ &= \frac{(\alpha^2 - 1)\sigma_v^2}{\mathbb{V}(x_t - \widecheck{x}_{t|t-1}^i) + \sigma_v^2} \end{split}$$

The coefficient β_1^{OC} is always negative since $\alpha < 1.1$ Hence, the underlying overconfidence on the part of forecasters generates overreactions. In essence, forecasters believe their signals to be more precise than they truly are thereby leading them to place more weight on new information.

B.1 Mapping Overconfidence to Diagnostic Expectations

A model of overconfidence can deliver the same β_1 coefficient as a model of diagnostic expectations. Since the variance of the error depends nonlinearly on α , this is done by finding the α parameter such that

$$\alpha^2 - \frac{\beta_1^{DE}}{\sigma_v^2} \check{\Psi}_{t|t-1}^i(\alpha) = \beta^{DE} + 1$$

where $\check{\Psi}_{t|t-1}^{i}(\alpha)$ is the forecast error variance in the overconfidence model. Note that this is itself a function of α .

¹In the absence of overconfidence, $\alpha = 1$ and $\beta_1 = 0$.

Given $\{\rho, \sigma_w, \sigma_v, \theta\}$, we solve for α by setting $\beta_1^{DE} = \beta_1^{OC}$

$$\frac{(\alpha^2 - 1)\sigma_v^2}{\mathbb{V}(x_t - \check{x}_{t|t-1}^i) + \sigma_v^2} = \beta_1^{DE}$$

$$\alpha^2 = \frac{\beta_1^{DE}}{\sigma_v^2} [\mathbb{V}(x_t - \check{x}_{t|t-1}^i) + \sigma_v^2] + 1$$

$$\alpha^2 - \frac{\beta_1^{DE}}{\sigma_v^2} \mathbb{V}(x_t - \check{x}_{t|t-1}^i) = \beta_1^{DE} + 1$$

and solving for the α parameter for which the above equality holds. Note that due to the recursive nature of the OC model, $\mathbb{V}(x_t - \check{x}^i_{t|t-1}) \equiv \check{\Psi}^i_{t|t-1}(\alpha)$ is itself a function of α .

Empirics Appendix C

Variable	Mnemonic	β_1
Consumer price index	CPI	-0.205***
		(0.067)
Employment	EMP	-0.083
		(0.197)
Housing starts	HOUSING	0.093**
		(0.041)
Industrial production	IP	-0.212***
	11000	(0.045)
Nominal GDP	NGDP	0.113***
CDD D C	DCDD	(0.027)
GDP Deflator	PGDP	-0.302***
D1	DOONGIIM	(0.045) -0.303***
Real consumption	RCONSUM	
Deal foderal government granding	RFEDGOV	(0.065) -0.240***
Real federal government spending	RF EDGOV	(0.060)
Real GDP	RGDP	-0.169***
iteai GD1	IGDI	(0.038)
Real nonresidential investment	RNRESIN	-0.180***
	101110120111	(0.056)
Real residential investment	RRESINV	-0.152**
		(0.074)
Real state/local government spending	RSLGOV	-0.236***
, 5		(0.058)
3-month Treasury bill	TBILL	0.056
		(0.071)
10-year Treasury bond	TBOND	-0.004
		(0.045)
Unemployment rate	UNEMP	0.167**
		(0.068)

Table B1: Pooled Revision Persistence Regressions at h=0, by Variable Note: The table reports the OLS coefficients from revision persistence regressions across 15 macroeconomic variables

forecaster-level. The revisions are for current period forecasts (h = 0). *** denotes 1% significance, ** denotes 5% significance, and * denotes 10% significance.

reported in the Survey of Professional Forecaters. Column (3) reports the coefficient in front of the revision at the

11

Appendix D Simulation Results

Figure C1: Mapping Over-reactions to Strategic Substitutability

Note: The figure plots the simulated densities of the various γ_1 coefficients across the two models described in the main text and a model of overconfidence.