Clustering

Intro to clustering

Overview

- Clustering task definition
- Classes of clustering methods
 - Flat
 - Hierarchical
 - etc.
- Distance metrics

Task definition: clustering gene expression profiles

- Given: expression profiles for a set of genes or experiments/individuals/time points (whatever columns represent)
- Do: organize profiles into clusters such that
 - profiles in the same cluster are highly similar to each other
 - profiles from different clusters have low similarity to each other

Example output of clustering

Motivation for clustering

- Exploratory data analysis
 - understanding general characteristics of data
 - visualizing data
- Generalization
 - infer something about an object (e.g. a gene) based on how it relates to other objects in the cluster

The clustering landscape

- There are many different clustering algorithms
- They differ with respect to several properties
 - hierarchical vs. flat
 - hard (no uncertainty about which profiles belong to a cluster) vs. soft clusters
 - overlapping (a profile can belong to multiple clusters)
 vs. non-overlapping
 - deterministic (same clusters produced every time for a given data set) vs. stochastic
 - distance (similarity) measure used

Distance measures

- Central to all clustering algorithms is a measure of distance between objects being clustered
- Clustering algorithms aim to group "similar" things together
 - Optimize some measure of within cluster similarity
- Defining the right similarity or distance is an important factor in getting good clusters
- Most algorithms will work with symmetric dissimilarities
- Dissimilarities may not be distances

Notation for gene expression data

Different dissimilarity measures

• Euclidean distance between two vectors x_i and x_k

$$d(x_i, x_k) = \sqrt{\sum_{j=1}^{p} (x_{ij} - x_{kj})^2}$$

Manhattan distance

$$d(x_{i}, x_{k}) = \sum_{i=1}^{p} |x_{ij} - x_{kj}|$$

Distance Metrics

Properties of a metric or distance function

$$\begin{aligned} \operatorname{dist}(x_i, x_j) &\geq 0 \\ \operatorname{dist}(x_i, x_j) &= 0 \text{ if and only if } x_i = x_j \\ \operatorname{dist}(x_i, x_j) &= \operatorname{dist}(x_j, x_i) \\ \operatorname{dist}(x_i, x_j) &\leq \operatorname{dist}(x_i, x_k) + \operatorname{dist}(x_k, x_j) \end{aligned} \tag{symmetry}$$

Summary

- Clustering involves grouping similar entities into sets
- A common exploratory data analysis technique
- There are many variations of clustering methods
- Core to clustering is the definition of "similarity" or "distance"