Módulo 3 Lógica Boleana

El álgebra boleana es una rama del álgebra en donde los posibles valores de variables son sólo **verdadero** y **falso**.

Los operadores más comunes son:

El álgebra boleana es una rama del álgebra en donde los posibles valores de variables son sólo **verdadero** y **falso**.

Los operadores más comunes son:

AND

Permiten representar expresiones boleanas que usaremos más adelante para programar.

El álgebra boleana es una rama del álgebra en donde los posibles valores de variables son sólo **verdadero** y **falso**.

Los operadores más comunes son:

- AND
- OR

Permiten representar expresiones boleanas que usaremos más adelante para programar.

El álgebra boleana es una rama del álgebra en donde los posibles valores de variables son sólo **verdadero** y **falso**.

Los operadores más comunes son:

- AND
- OR
- NOT

Permiten representar expresiones boleanas que usaremos más adelante para programar.

E1 E2 S1

E1	E2	S1
FALSE	FALSE	FALSE

E1	E2	S1
FALSE	FALSE	FALSE
FALSE	TRUE	FALSE

E1	=2	S1
FALSE	FALSE	FALSE
FALSE	TRUE	FALSE
TRUE	FALSE	FALSE

E1	E2	S1
FALSE	FALSE	FALSE
FALSE	TRUE	FALSE
TRUE	FALSE	FALSE
TRUE	TRUE	TRUE

La unión representa la gente que le gustan los gatos y perros.

E1 E2 S1

E1	E2	S1
FALSE	FALSE	FALSE

E1	E2	S1
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE

E1	E2	S1
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE

E1	E2	S1
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

La suma de la gente que le gustan los perros y gatos.

Recibe una entrada, **E1**. Realiza la negación del argumento, *también llamado complemento*.

Recibe una entrada, **E1**. Realiza la negación del argumento, *también llamado complemento*.

E1 \$1

Recibe una entrada, **E1**. Realiza la negación del argumento, también llamado complemento.

Recibe una entrada, **E1**. Realiza la negación del argumento, *también llamado complemento*.

E1	S 1
FALSE	TRUE
TRUE	FALSE

La gente a la que NO le gustan los gatos.

Tablas de Verdad

Las tablas de verdad son una representación de las posibles entradas y salidas de un proceso. En una tabla de verdad, cada uno de los componentes debe ser representado en binario como TRUE o FALSE.

Tablas de Verdad

Input		Out	:put	
Α	В	В	Υ	Z
FALSE	FALSE	FALSE	TRUE	FALSE
FALSE	FALSE	TRUE	TRUE	FALSE
FALSE	TRUE	FALSE	FALSE	TRUE
FALSE	TRUE	TRUE	TRUE	TRUE
TRUE	FALSE	FALSE	TRUE	TRUE
TRUE	FALSE	TRUE	TRUE	FALSE
TRUE	TRUE	FALSE	FALSE	FALSE
TRUE	TRUE	TRUE	FALSE	TRUE

Ejemplo - Entrada a Bar

Dos reglas:

Ejemplo - Entrada a Bar

Dos reglas:

1. Sólo se puede entrar después de las 10:00 PM.

Ejemplo - Entrada a Bar

Dos reglas:

1. Sólo se puede entrar después de las 10:00 PM.

2. Sólo pueden entrar personas que traigan su credencial de elector.

A = La persona trae su credencial de elector

B = Es después de las 10 PM

Salidas:

A = La persona trae su credencial de elector

B = Es después de las 10 PM

Salidas:

A = La persona trae su credencial de elector

B = Es después de las 10 PM

Salidas:

Input		Output
Α	В	Z
FALSE	FALSE	FALSE

A = La persona trae su credencial de elector

B = Es después de las 10 PM

Salidas:

Input		Output
Α	В	Z
FALSE	FALSE	FALSE
FALSE	TRUE	FALSE

A = La persona trae su credencial de elector

B = Es después de las 10 PM

Salidas:

Input		Output	
Α	В	Z	
FALSE	FALSE	FALSE	
FALSE	TRUE	FALSE	
TRUE	FALSE	FALSE	

A = La persona trae su credencial de elector

B = Es después de las 10 PM

Salidas:

Input		Output	
Α	В	Z	
FALSE	FALSE	FALSE	
FALSE	TRUE	FALSE	
TRUE	FALSE	FALSE	
TRUE	TRUE	TRUE	

A = La persona trae su credencial de elector

B = Es después de las 10 PM

Salidas:

Z = La persona entra al bar

Input		Output	
Α	В	Z	
FALSE	FALSE	FALSE	
FALSE	TRUE	FALSE	
TRUE	FALSE	FALSE	
TRUE	TRUE	TRUE	

¿Y si agregamos una nueva regla? Sólo entra la gente vestida de verde o de blanco.

In	put			Output
A ID	B >10 pm	C Verde	D Blanco	Z
FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE	TRUE	FALSE
FALSE	FALSE	TRUE	FALSE	FALSE
FALSE	FALSE	TRUE	TRUE	FALSE
FALSE	TRUE	FALSE	FALSE	FALSE
FALSE	TRUE	FALSE	TRUE	FALSE
FALSE	TRUE	TRUE	FALSE	FALSE
FALSE	TRUE	TRUE	TRUE	FALSE
TRUE	FALSE	FALSE	FALSE	FALSE
TRUE	FALSE	FALSE	TRUE	FALSE
TRUE	FALSE	TRUE	FALSE	FALSE
TRUE	FALSE	TRUE	TRUE	FALSE
TRUE	TRUE	FALSE	FALSE	FALSE
TRUE	TRUE	FALSE	TRUE	TRUE
TRUE	TRUE	TRUE	FALSE	TRUE
TRUE	TRUE	TRUE	TRUE	TRUE