Chapter 3

Determinants

- 9/29: The determinant, geometrically, is the volume of the object (in \mathbb{R}^3) you get when you take linear combinations of the vectors.
 - In 2D:
 - Let v_1, v_2 be two vectors. Put tail to tail and forming a parallelogram, the determinant of the matrix (v_1, v_2) is the area of said parallelogram.
 - Linearity 1: $D(av_1, v_2, \ldots, v_n) = aD(v_1, \ldots, v_n)$ is the same as saying that if you stretch one vector by a, you scale up the area by that much, too.
 - Linearity 2: $D(v_1, \ldots, v_{k+} + v_{k-}, \ldots, v_n) = D(-) + D(+)$.
 - Antisymmetry: $D(v_1, \ldots, v_k, \ldots, v_j, \ldots, v_n) = -D(v_1, \ldots, v_j, \ldots, v_k, \ldots, v_n)$. Interchanging columns flips the sign of the determinant.
 - Basis: $D(e_1, ..., e_n) = 1$.
 - Determinant: Denoted by $D(v_1, \ldots, v_n)$, where (v_1, \ldots, v_n) is an $n \times n$ matrix.
- 10/1: Consider an $n \times n$ matrix A consisting of n columns containing vectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$.
 - D(A) is the volume of the solid $V = \sum_{i=1}^{n} \alpha_i v_i$.
 - $-D(\mathbf{e}_1,\ldots,\mathbf{e}_n)=1.$

Figure 3.1: Visualizing properties of determinants.

- Basic properties of the determinant.
 - If A has a zero column, then $\det A = 0$: Scalar property.
 - If A has two equal columns, then $\det A = 0$: Multiply one by minus and add.

- If A has a column which is a multiple of another, then $\det A = 0$: Pull out the multiple and then you have the previous one.
- If columns are linearly dependent, then $\det A = 0$: Decompose it into sums, split, add back up with previous properties.
- The determinant is preserved under column reduction.
- $-\det A^T = \det A$: Put everything in rref.
- If A is not invertible, then $\det A = 0$ (not invertible implies linearly dependent columns, implies $\det A = 0$).
- $-\det(AB) = \det A \det B.$

• Determinant of...

- A diagonal matrix: The product of the diagonal entries (pull out the terms, and then note that the remaining identity matrix has determinant 1).
- An upper triangular matrix: The product of the diagonal entries (column reduction to make it into a diagonal matrix, and then the property above).