Başkent Üniversitesi Elektrik-Elektronik Müh. Bölümü EEM 202 Devre Teorisi 2

Üç Fazlı Devreler

Yrd. Doç. Dr. Selda GÜNEY

İçerik

- Dengeli Üç Faz Gerilimler
- Üç Fazlı Gerilim Kaynakları
- Y-Y Devre Analizi
- Y-Δ Devre Analizi
- Dengeli Üç Fazlı Devrelerde Güç Hesabı
- Üç Fazlı Devrelerde Ortalama Gücün Ölçümü

Dengeli Üç Faz Gerilimler

 Üç fazlı kaynaklar Y veya Δ bağlı olabilir. Böylece 4 farklı devre yapısı ortaya çıkar :

<u>Kaynak</u>	<u>Yük</u>
Y	Y
Y	Δ
Δ	Y
Δ	Δ

Üç Fazlı Y-Y Sistemi

Tek Faz Eşdeğer Devresi

Hat- Hat ve Hat- Nötr Gerilimleri

Bir dengeli sistemde hat-hat gerilimler ile hat- nötr gerilimler arasındaki fazör diyagram

Örnek: Bir dengeli üç fazlı ve Y-Y bağlı, pozitif faz sırası olan bir <u>jeneratörün empedansı</u> $0.2+j0.5~\Omega/\Phi$ ve <u>iç gerilimi</u> $120~V~/\Phi$ 'dir. Jeneratör, üç fazlı Y-Y bağlı dengeli ve $39+j28~\Omega/\Phi$ empedanslı bir <u>yükü</u> beslemektedir. Jeneratörü yüke bağlayan <u>hattın empedansı</u> $0.8+j1.5~\Omega/\Phi$ 'dir. Jeneratörün a fazı iç gerilimi referans fazörü olarak belirlenmiştir.

- a) Sistemin a fazının eşdeğer devresini oluşturunuz.
- b) I_{aA} , I_{bB} , ve I_{cC} , hat akımlarını hesaplayınız.
- c) Yükteki üç faz gerilimi V_{AN} , V_{BN} , ve V_{CN} 'yi hesaplayınız.
- d) Yük terminallerinde V_{AB} , V_{BC} , ve V_{CA} hat gerilimlerini hesaplayınız.
- e) Jeneratör terminallerinde V_{an} , V_{bn} , ve V_{cn} faz gerilimlerini hesaplayınız.
- f) Jeneratör terminallerinde V_{ab} , V_{bc} , ve V_{ca} hat gerilimlerini hesaplayınız.
- g) a-f şıklarını negatif faz sırası için tekrarlayınız.

Örneğe devam...

 \ddot{O} rnek: Bir Y bağlı dengeli üç fazlı sistemde c fazının gerilimi 450 /-25° V'tur. Eğer faz sırası negatif ise V_{AB} değeri nedir.

Çalışma Sorusu:

1. Bir dengeli üç faz devrede A'dan N' ye gerilim 240 /-30° V'tur. Eğer faz sırası pozitif ise V_{BC} 'nin değeri nedir? (415.69 /-120° V)

Hat akımları ile faz akımları arasındaki ilişkiyi açıklayan devre

Örnek: Bir dengeli üç fazlı ve Y-Δ bağlı, pozitif faz sırası olan bir <u>jeneratörün empedansı</u> 0.2+j0.5 Ω/Φ ve <u>iç gerilimi</u> 120 V $/\Phi$ 'dir. Jeneratör, üç fazlı Δ bağlı dengeli ve 118.5+j85.8 Ω/Φ empedanslı bir <u>yükü</u> beslemektedir. Jeneratörü yüke bağlayan <u>hattın empedansı</u> 0.3+j0.9 Ω/Φ 'dir. Jeneratörün a fazı iç gerilimi referans fazörü olarak belirlenmiştir.

- a) Sistemin a fazının eşdeğer devresini oluşturunuz.
- b) I_{aA} , I_{bB} , ve I_{cC} , hat akımlarını hesaplayınız.
- c) Yük terminalindeki faz gerilimini hesaplayınız.
- d) Yükün faz akımlarını hesaplayınız.
- e) Kaynak terminalindeki hat gerilimlerini hesaplayınız.

Örneğe devam ...

Örnek: Dengeli üç fazlı ve Δ bağlı bir yükte I_{CA} akımı $8 / -15^{\circ}$ A'dir. Eğer faz sırası pozitif ise I_{cC} değeri nedir?

 $\ddot{O}rnek$: Δ bağlı, dengeli bir üç faz yük, dengeli bir üç faz devreden beslenmektedir. b fazındaki akım değeri $12 / 65^{\circ}$ A'dir. Eğer faz sırası negatif ise I_{AB} 'nin değeri nedir.

Problem Çözme Stratejisi

Adım 1: Bilinmeyen fazörleri elde etmek için yıldızyıldız bağlantısı kullanmak için üçgen bağlantılar yıldız bağlantıya dönüştürülmesi gerekir.

Adım 2: Üç fazlı sistem dengeli olduğu için, sadece devrenin a fazının bilinmeyen fazörlerinin belirlenmesine gerek vardır.

Adım 3: En sonunda hesaplanan fazörleri kullanarak orijinal sistemde bunlara karşılık gelen fazörleri bulunuz.

Not: yıldız bağlantıda hat ve faz akımı aynı, üçgen bağlantıda hat ve faz gerilimi aynıdır.

Dengeli Üç Fazlı Devrelerde Güç

Hesaplamaları

Dengeli Y Yükte Ortalama Güç

Dengeli Üç Fazlı Devrelerde Güç

Hesaplamaları

Dengeli A Yükte Ortalama Güç

Dengeli Üç Fazlı Devrelerde Güç Hesaplamaları

Örnek :Bir dengeli üç fazlı ve Y-Y bağlı, pozitif faz sırası olan bir <u>jeneratörün empedansı</u> 0.2+j0.5 Ω/Φ ve <u>iç gerilimi</u> 120 V /Φ 'dir. Jeneratör, üç fazlı Y-Y bağlı dengeli ve 39+j28 Ω/Φ empedanslı bir <u>yükü</u> beslemektedir. Jeneratörü yüke bağlayan <u>hattın empedansı</u> 0.8+j1.5 Ω/Φ 'dir. Jeneratörün a fazı iç gerilimi referans fazörü olarak belirlenmiştir.

- a) Y bağlı yükün her fazı için aktarılan ortalama gücü hesaplayınız.
- b) Yüke aktarılan toplam ortalama gücü hesaplayınız.
- c) Hattaki toplam ortalama kayıp gücü hesaplayınız.
- d) Jeneratörde(kaynakta) kaybedilen toplam ortalama gücü hesaplayınız.
- e) Yük tarafından soğurulan toplam mıknatıslanma (VAr) miktarını bulunuz.
- f) Kaynağın aktardığı toplam kompleks gücü hesaplayınız.

Dengeli Üç Fazlı Devrelerde Güç

Hesaplamaları

Örneğe devam...

Dengeli Üç Fazlı Devrelerde Güç Hesaplamaları

Örnek: Dengeli, üç fazlı bir yük, geri(gecikmeli) 0.8 güç çarpanında 480 kW güce gereksinim duymaktadır. Yük, empedansı 0.005+j0.025 Ω/ϕ olan bir hatla beslenmektedir. Yük terminalindeki hat gerilimi 600 V'tur.

- a) Sistemin tek faz eşdeğer devresini oluşturunuz.
- b) Hat akımının büyüklüğünü hesaplayınız.
- c) Hattın gönderen ucunda hat geriliminin büyüklüğünü hesaplayınız.
- d) Hattın gönderen ucundaki güç çarpanını hesaplayınız.

Dengeli Üç Fazlı Devrelerde Güç Hesaplamaları

Üç Fazlı Devrelerde Ortalama Gücün Ölçümü

Elektrodinanometre Wattmetre

Üç Fazlı Devrelerde Ortalama

Gücün Ölçümü

İki Wattmetre Yöntemi:

Üç Fazlı Devrelerde Ortalama Gücün Ölçümü

Örnek: Aşağıdaki şekilde yükteki faz gerilimi 120 V ve (a) Z_{Φ} =8+j6 Ω (b) Z_{Φ} =8-j6 Ω (c) Z_{Φ} =5+j5 $\sqrt{3}$ Ω (d) Z_{Φ} =10/-75° Ω ise her bir wattmetrenin okuması gereken gücü hesaplayınız.

Özet:

- Devre analizinde tüm Δ bağlantıları Y haline getirilmelidir.
- Tek faz eşdeğer devre, Y-Y yapının hat akımını ve bir fazın gerilimini bulmak için kullanılır.
- a fazı hat akımı ve faz gerilimi bulunduktan sonra;
- b ve c fazı gerilim ve akımları 120° faz farkı dışında aynı
- Hat gerilimlerinin kümesi, faz gerilimleri kümesinden genlik olarak √3 katı ve ±30° (pozitif negatif sıra)faz farklıdır.

Özet:

- Δ bağlı kaynak ve yük durumunda hat akımları kümesi faz akımları kümesinden √3 katı ve -/+ 30° farklıdır(pozitif – negatif sıra)
- Dengeli üç fazlı bir devrede toplam anlık güç sabittir ve faz başına ortalama gücün 1.5 katıdır.
- 3 fazda toplam aktif güç reaktif güç ve kompleks güç faz başına gücün 3 katı yada hat gerilimi ve akımıyla çarpımın √3 katıdır.

- Bir wattmetre yüke aktarılan ortalama gücü, yükle seri bağlanan bir akım bobini ve yüke paralel bağlanan bir gerilim bobini bağlanarak ölçer.
- Dengeli üç fazlı bir devrede ortalama güç iki farklı fazına bağlanan iki wattmetrenin okuması toplanarak ölçülebilir.