Maximum Weighted Matching

Ran Duan

In this lecture

- Hall's theorem
- Maximum weighted bipartite matching
- Hungarian algorithm

Hall's Theorem

- Given a bipartite graph $G=(L \cup R, E)$, where |L|=|R|,
 - It contains a perfect matching if and only if:
 - For every subset $S\subseteq L$, $|\Gamma(S)| \ge |S|$
 - Γ (Γ (S) is the set of vertices adjacent to S)

- Let n=|L|=|R|
- When n=1, trivial
- Suppose it holds for all $n \le k$, for n = k+1, two cases:

- Let n=|L|=|R|
- When n=1, trivial
- Suppose it holds for all $n \le k$, for n = k+1, two cases:
- Case I: For every subset $S\subseteq L$, $|\Gamma(S)| \ge |S| + 1$
 - Then we arbitrarily put an edge (u,v) in the matching
 - In G-{u,v}, it still satisfies the condition $|\Gamma(S)| \ge |S|$, so the result holds by the induction condition

• Case II: there exists a $T\subseteq L$ which has $|\Gamma(T)|=|T|$, then the subgraphs of G on:

 \Box $T \cup \Gamma(T)$

 \Box (L\T) \cup (R\ Γ (T))

both satisfies the Hall's condition

• Case II: there exists a $T\subseteq L$ which has $|\Gamma(T)|=|T|$, then the subgraphs of G on:

 \Box $T \cup \Gamma(T)$

 \Box (L\T) \cup (R\ Γ (T))

both satisfies the Hall's condition

There may be an edge between L\T and $\Gamma(T)$ But there are no edge between T and R\ $\Gamma(T)$

• In $T \cup \Gamma(T)$, every $S \subseteq T$ have $\Gamma(S) \subseteq \Gamma(T)$, so it satisfies the Hall's condiction

• In $(L\backslash T)\cup (R\backslash \Gamma(T))$, if $\exists S\subseteq L\backslash T$ having $|\Gamma(S)\cap (R\backslash \Gamma(T))|<|S|$, then $T\cup S$ will also break the Hall's condition for G, a contradiction

So $(L\T)\cup(R\\Gamma(T))$ satisfies the Hall's condition

- Case II: there exists a T⊆L which has |Γ(T)|=|T|, then the two subgraphs of G on:
 - TUΓ(T)
 - $(L \setminus T) \cup (R \setminus \Gamma(T))$

both satisfies the Hall's condition

So we can find perfect matchings in these two subgraphs, and finally get a perfect matching of G.

Weighted Bipartite Matching

- Maximum Weighted Matching (MWM)
 - □ Maximize $\sum_{e \in M} w(e)$

Assignment Problem

- In operation research:
 - Some agents, some tasks
 - Assign each task to a agent
 - Maximize efficiency or minimize cost

	Cleaning	Sweeping	Washing
Jim	\$2	\$6	\$4
Steve	\$3	\$1	\$2
Alan	\$5	\$4	\$3

Weighted Bipartite Matching

- When not every pair of vertices of L and R has an edge, we can consider two problems:
- Maximum (Minimum) perfect matching
 - The maximum or minimum among all perfect matchings
- Maximum matching
 - Not necessarily perfect

Weighted Bipartite Matching

- When not every pair of vertices of L and R has an edge, we can consider two problems:
- Maximum (Minimum) perfect matching (MWPM)
 - The maximum or minimum among all perfect matchings
- Maximum matching (MWM)
 - Not necessarily perfect

• MWM=>MWPM

- □ We add zero-weight edge for any pair of (u,v) if there is no edge between (u,v). $(u \in L, v \in R)$
- In the new graph any matching can be extend to a perfect matching of the same weight, so the maximum perfect matching must have maximum weight.

- MWM=>MWPM
 - □ We add zero-weight edge for any pair of (u,v) if there is no edge between (u,v). $(u \in L, v \in R)$
 - In the new graph any matching can be extend to a perfect matching of the same weight, so the maximum perfect matching must have maximum weight.
 - It will increase the number of edges

- MWM=>MWPM
 - Duplicate G, we have $G_1=(L_1,R_1)$ and $G_2=(L_2,R_2)$.
 - Link the two copies of every vertex of G by an edge with weight zero
 - Still a bipartite graph: one side $L_1 \cup R_2$, the other side $L_2 \cup R_1$

- MWM=>MWPM
 - Duplicate G, we have $G_1 = (L_1, R_1)$ and $G_2 = (L_2, R_2)$.
 - Link the two copies of every vertex of G by an edge with weight zero
 - Still a bipartite graph: one side $L_1 \cup R_2$, the other side $L_2 \cup R_1$

- MWM=>MWPM
 - Duplicate G, we have $G_1=(L_1,R_1)$ and $G_2=(L_2,R_2)$.
 - Link the two copies of every vertex of G by an edge with weight zero
 - Still a bipartite graph: one side $L_1 \cup R_2$, the other side $L_2 \cup R_1$

- MWM=>MWPM
 - Duplicate G, we have $G_1 = (L_1, R_1)$ and $G_2 = (L_2, R_2)$.
 - Link the two copies of every vertex of G by an edge with weight zero
 - Still a bipartite graph: one side $L_1 \cup R_2$, the other side $L_2 \cup R_1$
 - The number of vertices and edges are still O(n) and O(m), respectively.

• MWPM=>MWM

- If the weights are in [0,...,N], add nN to the weight of every edge, and get a new graph G'
- □ The weight of a matching of k edges in G' is $\leq k(n+1)N$ (when $k\leq n-1$, $k(n+1)N< n^2N$)
- The weight of a perfect matching in G' is ≥n²N
- So the maximum matching in G' must be a perfect matching.

- By Harold Kuhn in 1955, who gave the name because it was largely based on the earlier works of two Hungarian mathematicians: Dénes Kőnig and Jenő Egerváry.
- In 2006, it was discovered that Carl Jacobi had solved the assignment problem in the 19th century.

- By Harold Kuhn in 1955, who gave the name because it was largely based on the earlier works of two Hungarian mathematicians: Dénes Kőnig and Jenő Egerváry.
- In 2006, it was discovered that Carl Jacobi had solved the assignment problem in the 19th century.
- We will first talk about the maximum perfect matching.

- Dual variable y: $L \cup R \rightarrow Z$ satisfies:
- For every e=(u,v), $y(u)+y(v) \ge w(e)$

- Dual variable y: $L \cup R \rightarrow Z$ satisfies:
- For every e=(u,v), $y(u)+y(v)\geq w(e)$
- So for every perfect matching M,

$$w(M) = \sum_{e \in M} w(e) \le \sum_{v \in L \cap R} y(v)$$

- Dual variable y: $L \cup R \rightarrow Z$ satisfies:
- For every e=(u,v), $y(u)+y(v)\geq w(e)$
- So for every perfect matching M,

$$w(M) = \sum_{e \in M} w(e) \le \sum_{v \in L \cap R} y(v)$$

- Our aim: obtain a perfect matching M* s.t.
 - for every $e \in M^*$, y(u) + y(v) = w(e)

Throughout the algorithm:

• Throughout the algorithm:

$$\neg y(u)+y(v)\ge w(e)$$
 $\forall e=(u,v)$ (domination)
 $\neg y(u)+y(v)=w(e)$ if e∈M (tightness)

- Tight edges:
 - An edge e=(u,v) is tight if y(u)+y(v)=w(e)
 - Denote the subgraph of tight edges by G_v

Procedure

- Let y(u)=N, y(v)=o ($u\in L$, $v\in R$)
- Repeat
 - Augment M in G_y (subgraph of tight edges), until there is no augmenting path any more.
 - If M is not perfect, do the dual adjustment to make more edges tight.
- Until M is perfect

Procedure

- Let y(u)=N, y(v)=o ($u\in L$, $v\in R$)
- Repeat
 - Augment M in G_y (subgraph of tight edges), until there is no augmenting path any more. (Augmentation step)
 - If M is not perfect, adjust the dual variable y to make more edges tight. (Dual adjustment step)
- Until M is perfect

Augmentation step

- Find G_v (subgraph of tight edges)
 - $\mbox{\tiny \circ}$ From the tightness condition, all matching edges are in $G_{\rm v}$
- Finding augmenting path as in cardinality matching
- Until there is no augmenting paths any more.

Augmentation step

• An example:

Augmentation step

• An example:

Augmentation Step

- We can use breath-first search to find augmenting paths
- It takes O(m) time for one path.

Dual-adjustment step

- We assign directions to edges in G_y and get G_y':
 - Non-matching edges: from L to R
 - Matching edges from R to L
 - □ A path between free vertices of L and R in G_y ' \Leftrightarrow An augmenting path in G_y

Dual-adjustment step

- We assign directions to edges in G_y and get G_y':
 - Non-matching edges: from L to R
 - Matching edges from R to L
 - $^{□}$ A path between free vertices of L and R in G_y ' \Leftrightarrow An augmenting path in G_y

- We have to guarantee there is no augmenting path in G_y before the dual-adjustment
- So there is no directed path between free vertices of L and R in G_v'

Dual-adjustment

- In G_y', find the vertices reachable from free vertices of L, call this set Z
 - Since there is no directed path between free vertices of L and R in G_v', Z does not contain free vertices of R

Dual-adjustment

- In G_y', find the vertices reachable from free vertices of L, call this set Z
 - Since there is no directed path between free vertices of L and R in G_v', Z does not contain free vertices of R
- Let $y(u)=y(u)-\Delta$ for $u \in L \cap Z$
- Let $y(v)=y(v)+\Delta$ for $v \in R \cap Z$
 - $^{\text{-}}$ Δ can bring more tight edges without breaking the domination condition
 - □ For integer-weighted graph, we can set Δ =1

- Tight edges
- Matching edges

(Dual adjustment step)

Let Z be the set of vertices reachable from

free vertices of L

Let $y(u)=y(u)-\Delta$

for $u \in L \cap Z$

Let $y(v)=y(v)+\Delta$

- Tight edges
- Matching edges

(Dual adjustment step)

Let Z be the set of vertices reachable from

free vertices of L

Let $y(u)=y(u)-\Delta$

for $u \in L \cap Z$

Let $y(v)=y(v)+\Delta$

Correctness

- Z is the set of vertices reachable from free vertices of L
- all vertices in L-Z are matched
- all vertices in R∩Z are matched

Correctness

- Z is the set of vertices reachable from free vertices of L
- for a matching edge (u,v), either:
 - u and v are both in Z
 - u and v are neither in Z
 - (If v is in Z, u must be in Z)
 - u can only be reached from v)

Correctness

- Z is the set of vertices reachable from free vertices of L
- for a matching edge (u,v), either:
 - u and v are both in Z
 - u and v are neither in Z
- So after the dual-adjustment, all matching edges still satisfy y(u)+y(v)=w(u,v)

- Z is the set of vertices reachable from free vertices of L by tight edges
- There is no tight edges (u,v) from $L \cap Z$ to R-Z
 - Otherwise v will be in Z

R

- Z is the set of vertices reachable fron free vertices of L by tight edges
- There is no tight edges (u,v) from L∩Z to R-Z
- For edges (u,v) from L-Z to $R \cap Z$
 - Only v increase
 - $^{-}$ The domination condition $y(u)+y(v)\ge w(u,v)$ still holds

R

- Z is the set of vertices reachable from free vertices of L by tight edges
- There is no tight edges (u,v) from L∩Z to R-Z
- So the amount of adjustment $\Delta=\min\{y(u)+y(v)-w(u,v)\mid u\in L\cap Z, v\in R-Z\}$
 - So we can have more tight edges, and Z will get larger.

- So the amount of adjustment $\Delta=\min\{w(u,v)-y(u)-y(v)\mid u\in L\cap Z, v\in R-Z\}$
 - So we can have more tight edges,
 and Z will get larger.
 - Until some free vertex is added to Z

- Let y(u)=N, y(v)=o ($u\in L$, $v\in R$)
- Repeat
 - Augment M in G_y (subgraph of tight edges), until there is no augmenting path any more. (Augmentation step)
 - If M is not perfect, adjust the dual variable y to make more edges tight. (Dual adjustment step)
 - Let Z be the set of vertices reachable from free vertices of L
 - Let $y(u)=y(u)-\Delta$ for $u \in L \cap Z$
 - Let $y(v)=y(v)+\Delta$ for $v \in R \cap Z$
- Until M is perfect

Running Time

- M can be augmented n times
- There can be at most O(n) dual-adjustment steps before M can be augmented
 - Every time Z becomes larger
- The time needed by searching for an augmenting path or a dual-adjustment step is O(m)
- The total time is O(mn²)

(Augmenting step) find augmenting path

An example

Tight edges

- Tight edges
- Matching edges

- Tight edges
- Matching edges

(Dual adjustment step)

Let Z be the set of vertices reachable from

free vertices of L

Let $y(u)=y(u)-\Delta$

Let $y(v)=y(v)+\Delta$

for $u \in L \cap Z$

- Tight edges
- Matching edges

L中的第一个点和第四个点可以看做是L中自由点的闭包。也就是说他们已经是可到达的点。

这里的Z就是L中第一个点和第四个点。

(Dual adjustment step)

Let Z be the set of vertices reachable from

free vertices of L

Let $y(u)=y(u)-\Delta$

for $u \in L \cap Z$

Let $y(v)=y(v)+\Delta$

(Augmenting step) find augmenting path

An example

- Tight edges
- Matching edges

- Tight edges
- Matching edges

- Tight edges
- Matching edges

(Dual adjustment step)

Let Z be the set of vertices reachable from

free vertices of L

Let $y(u)=y(u)-\Delta$

for $u \in L \cap Z$

Let $y(v)=y(v)+\Delta$

- Tight edges
- Matching edges

(Dual adjustment step)

Let Z be the set of vertices reachable from

free vertices of L

Let $y(u)=y(u)-\Delta$

for $u \in L \cap Z$

Let $y(v)=y(v)+\Delta$

- Tight edges
- Matching edges

(Dual adjustment step)

Let Z be the set of vertices reachable from

free vertices of L

Let $y(u)=y(u)-\Delta$

for $u \in L \cap Z$

Let $y(v)=y(v)+\Delta$

- Tight edges
- Matching edges

(Dual adjustment step)

Let Z be the set of vertices reachable from

free vertices of L

Let $y(u)=y(u)-\Delta$

for $u \in L \cap Z$

Let $y(v)=y(v)+\Delta$

(Augmenting step) find augmenting path

An example

- Tight edges
- Matching edges

Finally

• Note that y-value can be negative

• If we want a maximum (minimum) perfect matching, then we stop when we get a perfect matching M*

• Now
$$w(M^*) = \sum_{e \in M^*} w(e) = \sum_{v \in L \cap R} y(v)$$

- For every other perfect M, $w(M) = \sum_{e \in M} w(e) \le \sum_{v \in L \cap R} y(v)$
- So $w(M^*) \ge w(M)$

- If we want a maximum matching, then we stop when the free vertices of L have zero y-value.
 - The y-value of free vertices are decreased by the same amount in every step, so they remain equal throughout the algorithm

- Since at the beginning, y(L)=N, y(R)=0
- In the dual-adjustment step:

```
• y(u)=y(u)-\Delta for u\in L\cap Z
• y(v)=y(v)+\Delta for v\in R\cap Z
```

- Z does not contain free vertices in R, otherwise there will be augmenting paths
- So the free vertices of R have zero y-value throughout the algorithm

- If we want a maximum matching, then we stop when the free vertices of L have zero y-value, and get M*
- Then all free vertices have zero y-value.

• Now
$$w(M^*) = \sum_{e \in M^*} w(e) = \sum_{v \in L \cap R} y(v)$$

• For every other M,
$$w(M) = \sum_{e \in M} w(e) \le \sum_{v \in L \cap R} y(v)$$

• So $w(M^*) \ge w(M)$

In the example

For maximum perfect matching

For maximum matching

Approximate matching (optional)

- Add a little relaxation on the tightness condition
- Converge more quickly

Original conditions

• Throughout the algorithm:

```
- y(e)≥w(e)
```

 $\neg y(e)=w(e) \text{ if } e\in M$

(domination)

(tightness)

Relaxed conditions

• Throughout the algorithm:

```
    y(e)≥w(e)-1/k (domination)
    y(e)=w(e) if e∈M (tightness)
```

Relaxed conditions

Throughout the algorithm:

```
    y(e)≥w(e)-1/k (domination)
    y(e)=w(e) if e∈M (tightness)
```

- Then we run the Hungarian search on eligible edges:
 - y(e)=w(e)-1/k if e not in M
 - all the matching edges

• After augmentation, we add 1/k to the R-side vertex of every new matching edges, so the tightness for matching edges still holds.

- After augmentation, we add 1/k to the R-side vertex of every new matching edges, so the tightness for matching edges still holds.
- So other edges associated with these vertices will not be eligible any more

- After augmentation, we add 1/k to the R-side vertex of every new matching edges, so the tightness for matching edges still holds.
- So other edges associated with these vertices will not be eligible any more
- We just need to find a maximal set of augmenting paths in O(m) time, then there will be no augmenting path before dual-adjustment
- After kN dual-adjustments we can get a (1-1/k)approximate maximum weighted matching

About the exam time

- All students are now asked to register in HISPOS for the exams for the summer term 2012.
- Please inform the students about the obligatory examination registration.
- In case of problems with the registration, the students can send an email to
 - studium@cs.uni-saarland.de

Next lecture

- Maximum weighted matching in general graphs
- Some applications of matching