Theorem (2.4.25). Let m be a positive integer. The closed form formula for $\sum_{k=0}^{m} \lfloor \sqrt{k} \rfloor$ is $\lfloor \sqrt{m} \rfloor \lfloor \frac{1}{6} (\lfloor \sqrt{m} \rfloor - 1) (4 \lfloor \sqrt{m} \rfloor + 1) + (m - \lfloor \sqrt{m} \rfloor^2 + 1) \rfloor$.

Proof. By the properties for floor functions, there exists an integer $n = \lfloor \sqrt{k} \rfloor$ such that $n^2 \leq k < n^2 + 2n + 1$. This means that each term less than $\lfloor \sqrt{m} \rfloor$ in the summation occurs exactly $2 \lfloor \sqrt{k} \rfloor + 1$ times. Since the last term of summation occurs $(m - \lfloor \sqrt{m} \rfloor^2 + 1)$ times, $(\sum_{k=0}^m \lfloor \sqrt{k} \rfloor) - \lfloor \sqrt{m} \rfloor (m - \lfloor \sqrt{m} \rfloor^2 + 1) = \lfloor \sqrt{0} \rfloor (2 \lfloor \sqrt{0} \rfloor + 1) + \cdots + (\lfloor \sqrt{m} \rfloor - 1) [2 (\lfloor \sqrt{m} \rfloor - 1) + 1]$. By the pattern in the terms of that summation the following equation holds, $\sum_{k=0}^m \lfloor \sqrt{k} \rfloor = (\sum_{k=0}^{\lfloor \sqrt{m} \rfloor^{-1}} k(2k+1)) + \lfloor \sqrt{m} \rfloor (m - \lfloor \sqrt{m} \rfloor^2 + 1)$. The summation on the right-hand side is the summation of squares, and the summation of integers. Thus, $\sum_{k=0}^m \lfloor \sqrt{k} \rfloor = (2\sum_{k=0}^{\lfloor \sqrt{m} \rfloor^{-1}} k^2) + (\sum_{k=0}^{\lfloor \sqrt{m} \rfloor^{-1}} k) + [\lfloor \sqrt{m} \rfloor (m - \lfloor \sqrt{m} \rfloor^2 + 1)]$. By Theorem 2.4.22, and by Theorem 2.4.21b, the formula is immediately derived $\sum_{k=0}^m \lfloor \sqrt{k} \rfloor = \frac{2}{6} \lfloor \sqrt{m} \rfloor (\lfloor \sqrt{m} \rfloor - 1) [2 (\lfloor \sqrt{m} \rfloor - 1) + 1] + \frac{3}{6} \lfloor \sqrt{m} \rfloor (\lfloor \sqrt{m} \rfloor - 1) + \lfloor \sqrt{m} \rfloor (m - \lfloor \sqrt{m} \rfloor^2 + 1)$. Factoring $\frac{1}{6} \lfloor \sqrt{m} \rfloor (\lfloor \sqrt{m} \rfloor - 1) \{2 \lfloor 2 (\lfloor \sqrt{m} \rfloor - 1) + 1\} + 3\} + \lfloor \sqrt{m} \rfloor (m - \lfloor \sqrt{m} \rfloor^2 + 1)$. Simplifying that is, $\sum_{k=0}^m \lfloor \sqrt{k} \rfloor = \frac{1}{6} \lfloor \sqrt{m} \rfloor (\lfloor \sqrt{m} \rfloor - 1) (4 \lfloor \sqrt{m} \rfloor + 1) + \lfloor \sqrt{m} \rfloor (m - \lfloor \sqrt{m} \rfloor^2 + 1)$. Factoring $\lfloor \sqrt{m} \rfloor$, $\sum_{k=0}^m \lfloor \sqrt{k} \rfloor = \lfloor \sqrt{m} \rfloor \lfloor \frac{1}{6} (\lfloor \sqrt{m} \rfloor - 1) (4 \lfloor \sqrt{m} \rfloor + 1) + (m - \lfloor \sqrt{m} \rfloor^2 + 1)]$.