Getting Started (StandardDemo)

- ここではAndroid上で動作するHVC-Cのサンプ ルプログラム(StandardDemo)を動作させる手 順を説明します。
- ○このサンプルはデバイスの検索、接続、実行(1 検出のみ、実行機能は選択可能)、結果取得、切 断処理を行います。検出結果は画面上に矩形表 示され、その他の結果は右横に一覧表示されま す。

1. 用意するもの

- HVC-C
- Bluetooth 4.0 (Bluetooth Low Energy)搭載 のAndroid端末
- Androidプログラムをビルド可能な環境
 - ※本サンプルプロジェクトはEclipseを使用 Android SDK: Android 4.4W

Java Compiler: 1.7以上

2. サンプルコードの取得

HVC-C用サンプルコードをPC上の任意のフォルダにコピーして下さい。

- o HVC-C用クラスライブラリ
- https://github.com/OmronSensingEggProject/HVC-C1B_SDK-Android
- サンプルデモアプリ

https://github.com/OmronSensingEggProject/HVC-C1B_StandardDemo-Android

3. プロジェクトの作成

○ Eclipseを起動し「File>Project」を選択します。

3-2. Projectの選択

「Android>Android Project from Existing Code」を選択します

3-3. プロジェクトの選択

○ PC上に保存した「StandardDemo」フォル ダを選択します。

3-4. ライブラリの確認

○「hvc_c1b_sdk.jar」ファイルを確認します。 最新のHVC-C用クラスライブラリは以下より取得 してください。

3-5. プロパティの確認(1)

○ 「Project>properties」を選択します。

3-6. プロパティの確認②

o Android SDKが「Android 4.4 W」であることを確認

3-7. プロパティの確認③

● Java Compilerバージョンが1.7以上であることを確認

3-8. プロジェクトのビルド

• StandardDemoプロジェクトをビルドします。

3-9. ビルドの確認

○ Problemsタブにエラー表示がないことを確認

4. Android端末の接続

○ PCとAndroid端末をUSBケーブルで接続します。

5. Android端末のBluetooth有効化

- HVC-C は通信するために Bluetooth 4.0 (Bluetooth Low Energy) を使用します。 そのためアプリを実行する前に Android デバイスの Bluetooth 機能を有効にします。
- ○「設定>Bluetooth」をONにします。
- ただしペアリング設定はしないでください。 ペアリングした状態ではアプリ側で接続でき ない可能性があります。

6. HVC-CをAndroid端末から動かす

HVC-Cにmicro USBケーブルを接続して電源を供給し、プロジェクトを「Run」 してください。

7. Android端末の選択

○ デモを実行するAndroid端末を選択します。

8. アプリ起動の確認

○下記の画面が表示されていればアプリは正常の動作しています。

9. BLEデバイスのスキャン

○「HVCデバイス選択」ボタンをタップして接続可能なBLEデバイスを探します。

₽ ₩									
HVC-C 標準デモ									
		HVCデバイス選択							
パラメータ設定									
デモ実行									
人体検出									
手検出									
顔検出									
顔向き推定									
年齢推定									
性別推定									
視線推定									
目つむり推定									
表情推定									
	Ð	企							

10. 接続するデバイスの選択

接続可能なBLEデバイスの一覧が表示されますので、HVC-C(「omron_hvc_xxxx」)を 選択します。

11. パラメータの設定

「パラメータの設定」ボタンをタップすると 検出パラメータの設定が可能です。

⊕ ∰				8 N +5% 7:13
HVC-C 標準デモ				
	н	VCデバイス選択		
	,	パラメータ設定		
		デモ実行		
人体検出				
手検出				
顔検出				
顔向き推定				
年齢推定				
性別推定				
視線推定				
目つむり推定				
表情推定				
	⊅	硷		

11. パラメータの設定

○ 検出処理に使用するパラメータを設定できます。

12. 検出処理の実行

○「デモ実行」ボタンをタップすると選択された 検出処理が連続実行されます。

∳ ■ ⊕				8 1 7 28	7:2:
HVC-C 標準デモ					
	н	VCデバイス選択			
パラメータ設定					
		デモ実行			
人体検出					V
手検出					v
顔検出					V
顔向き推定					V
年齢推定					V
性別推定					V
視線推定					V
目つむり推定					V
表情推定					V
	Ð	硷			

13. 検出結果の出力

- ○検出結果画面に移行します。
- ○「戻る」ボタンをタップするまで、検出処理 は連続して実行されます。

14. 使ってみよう!

- サンプルデモを実行しながら、まずは1m~1.5m位 離れたところからHVC-Cのセンサ部を真っ直ぐ見 てみて下さい。
- 顔、人体、手の位置に合わせて矩形が表示されます。
- ※本サンプルデモは処理速度が遅く感じる場合は、 実行する機能を選択したり検出設定を変更すること により処理速度を速くすることができます。