TS226

.

Codes correcteur d'erreur

Romain Tajan

2 octobre 2019

Plan

- Introduction au codage / définitions
- Sur la modélisation du canal
- Code correcteur d'erreur
- Probabilité d'erreur
- 2 Théorie de l'information / Capacité d'un canal
- Capacité d'un canal
- ▶ Théorème de Shannon
- Rappels de théorie de l'information (VA continues)
- 3 Codes Linéaires (binaires) en blocs

Dernier QCM

Plan

- Introduction au codage / définitions
- Sur la modélisation du canal
- Code correcteur d'erreur
- Probabilité d'erreur
- 2 Théorie de l'information / Capacité d'un canal
- 3 Codes Linéaires (binaires) en blocs

Décodage du Maximum a Posteriori

Définition

- Soit C un code (M, n) donné.
- Le décodeur du Maximum A Posteriori (MAP) est la fonction de y définie par :

$$\Psi_{\textit{MAP}}(\mathbf{y}) = \operatorname*{argmax}_{w \in \mathcal{M}} \mathbb{P}(\textit{W} = \textit{w} | \mathbf{Y} = \mathbf{y})$$

Le décodeur MAP minimise Pe

Plan

- Introduction au codage / définitions
- 2 Théorie de l'information / Capacité d'un canal
- Capacité d'un canal
- ▶ Théorème de Shannon
- ▶ Rappels de théorie de l'information (VA continues)
- 3 Codes Linéaires (binaires) en blocs

Capacité

La capacité d'un canal discret sans mémoire de sortie $Y \in \mathcal{Y}$ et d'entrée $X \in \mathcal{X}$ et de probabilité de transition p(y|x) est définie par

$$C = \sup_{p(x)} \mathbb{I}(X, Y)$$

La capacité du canal BSC

$$C(p) = 1 + p \log_2(p) + (1 - p) \log_2(1 - p)$$

est atteinte ssi $X \sim \mathcal{B}(0.5)$

Théorème du codage canal de Shannon

Soit $(\mathcal{X}, \mathcal{Y}, p(y|x))$ un **canal discret sans mémoire** de capacité $C \ge 0$ et soit R < C

1 Il existe une suite de codes $(C_n)_{n\geq 1}$ où C_n est de longueur n, de rendement R_n et de probabilité d'erreur maximale $\lambda^{(n)}$ telle que

$$\lambda^{(n)} \to 0$$
, et $R_n \to R$

2 Réciproquent, s'il existe une suite de codes $(C_n)_{n\geq 1}$ telle que $\lambda^{(n)}\to 0$ alors

$$\limsup_n R_n \leq C$$

- **1** Quelque soit $\epsilon > 0$, il existe **toujours** un code C_n de longueur n et de rendement $R_n < C$ tel que $\lambda^{(n)} < \epsilon$.
- 2 La remarque précédente ne dit cependant rien sur la longueur n de ce code, qui peut être éventuellement très grande.
- 3 L'item (2) du théorème montre que *C* est une borne supérieure des rendements de codes fiables
- 4 La preuve de (1) (Cover & Thomas **Information theory**) repose sur une génération aléatoire des codes C_n

La capacité d'un canal Gaussien sans mémoire avec contrainte d'énergie Es est

$$C = \sup_{p(x): \mathbb{V}(X) \le E_{\mathcal{S}}} \mathbb{I}(X, Y) = \frac{1}{2} \log_2 \left(1 + 2 \frac{E_{\mathcal{S}}}{N_0} \right)$$

- Le supremum est ici pris sur les densités de probabilités p(x) telles que $\mathbb{V}(X) \leq \sigma^2$.
- Le supremum est atteint par $p(x) = \mathcal{N}(0, E_s)$

Plan

- 1 Introduction au codage / définitions
- 2 Théorie de l'information / Capacité d'un canal
- 3 Codes Linéaires (binaires) en blocs

Avant de commencer...

Remarques

- 1 Dans cette section $\mathcal{X} = \mathcal{Y} = \{0,1\}$ et le canal considéré est le canal binaire symétrique
- 2 Dans cette section on notera \mathbb{F}_2 le **corps** $(\{0,1\},\oplus,\cdot)$ où :
 - Pour $x, y \in \mathbb{F}_2$, $x \oplus y = (x + y) \mod 2 (\equiv OU \text{ exclusif})$
 - Pour $x, y \in \mathbb{F}_2$, $x \cdot y$ est le produit "classique" entre x et $y \ (\equiv \mathsf{ET})$
- $\mathfrak{S}_{\mathbb{Z}}$ est un corps fini à deux éléments $(\mathbb{Z}/2\mathbb{Z})$
- 4 Par la suite on notera $\oplus \rightsquigarrow +$
- $(\mathbb{F}_2^n,+,\cdot)$ est un **espace vectoriel** où
 - Pour $\mathbf{x}, \mathbf{y} \in \mathbb{F}_2^n$, $\mathbf{x} + \mathbf{y} = [x_0 + y_0, x_1 + y_1, \dots, x_{n-1} + y_{n-1}]$
 - Pour $x \in \mathbb{F}_2$ et $\mathbf{y} \in \mathbb{F}_2^n$, $x \cdot \mathbf{y} = [x \cdot y_0, x \cdot y_1, \dots, x \cdot y_{n-1}]$

Code linéaire en bloc

Code linéaire

Soit $\mathcal C$ un code $(M=2^k,n)$. $\mathcal C$ est dit **linéaire** si et seulement si, il existe k vecteurs $\mathbf g_0,\mathbf g_1,\dots,\mathbf g_{k-1}\in\mathbb F_2^n$ tels que, pour tout $\mathbf c\in\mathcal C$,

$$\mathbf{c} = \sum_{i=0}^{k-1} u_i \mathbf{g}_i$$

avec $u_i \in \mathbb{F}_2$

Remarques

- 1 L'ensemble $\mathcal{B}_{\mathcal{C}} = \{\mathbf{g}_0, \mathbf{g}_1, \dots, \mathbf{g}_{k-1}\}$ est appelé base de \mathcal{C} .
- 2 \mathcal{C} est un sous-espace vectoriel de \mathbb{F}_2^n de dimension k (si $\mathcal{B}_{\mathcal{C}}$ est une base libre)

Code linéaire

Soit $\mathcal C$ un code $(M=2^k,n)$ linéaire, il existe une matrice G de taille $k\times n$ telle que pour tout $\mathbf c\in\mathcal C$,

$$\mathbf{c} = \mathbf{u}G$$

Par définition on a

$$G = \begin{pmatrix} \mathbf{g_0} \\ \mathbf{g_1} \\ \vdots \\ \mathbf{g_{k-1}} \end{pmatrix} = \begin{pmatrix} g_{0,0} & g_{0,1} & \dots & g_{0,n-1} \\ g_{1,0} & g_{1,1} & \dots & g_{1,n-1} \\ \vdots & \vdots & & \vdots \\ g_{k-1,0} & g_{k-1,1} & \dots & g_{k-1,n-1} \end{pmatrix}$$

 $oldsymbol{1}$ G est appelé matrice génératrice du code $\mathcal C$

Code linéaire

Soit $\mathcal C$ un code $(M=2^k,n)$ linéaire, il existe une matrice G de taille $k\times n$ telle que pour tout $\mathbf c\in\mathcal C$,

$$\mathbf{c} = \mathbf{u}G$$

$$G = \begin{pmatrix} \mathbf{g_0} \\ \mathbf{g_1} \\ \vdots \\ \mathbf{g_{k-1}} \end{pmatrix} = \begin{pmatrix} g_{0,0} & g_{0,1} & \cdots & g_{0,n-1} \\ g_{1,0} & g_{1,1} & \cdots & g_{1,n-1} \\ \vdots & \vdots & & \vdots \\ g_{k-1,0} & g_{k-1,1} & \cdots & g_{k-1,n-1} \end{pmatrix}$$

- $oldsymbol{1}$ G est appelé matrice génératrice du code \mathcal{C}
- 2 Pour ce cours G est de rang plein

Code linéaire

Soit $\mathcal C$ un code $(M=2^k,n)$ linéaire, il existe une matrice G de taille $k\times n$ telle que pour tout $\mathbf c\in\mathcal C$,

$$\mathbf{c} = \mathbf{u}G$$

$$G = \begin{pmatrix} \mathbf{g_0} \\ \mathbf{g_1} \\ \vdots \\ \mathbf{g_{k-1}} \end{pmatrix} = \begin{pmatrix} g_{0,0} & g_{0,1} & \cdots & g_{0,n-1} \\ g_{1,0} & g_{1,1} & \cdots & g_{1,n-1} \\ \vdots & \vdots & & \vdots \\ g_{k-1,0} & g_{k-1,1} & \cdots & g_{k-1,n-1} \end{pmatrix}$$

- \bigcirc G est appelé **matrice génératrice** du code \mathcal{C}
- 2 Pour ce cours G est de rang plein
- 3 Pour un code C, il existe plusieurs matrices génératrices

Code linéaire

Soit $\mathcal C$ un code $(M=2^k,n)$ linéaire, il existe une matrice G de taille $k\times n$ telle que pour tout $\mathbf c\in\mathcal C$,

$$\mathbf{c} = \mathbf{u}G$$

$$G = \begin{pmatrix} \mathbf{g_0} \\ \mathbf{g_1} \\ \vdots \\ \mathbf{g_{k-1}} \end{pmatrix} = \begin{pmatrix} g_{0,0} & g_{0,1} & \cdots & g_{0,n-1} \\ g_{1,0} & g_{1,1} & \cdots & g_{1,n-1} \\ \vdots & \vdots & & \vdots \\ g_{k-1,0} & g_{k-1,1} & \cdots & g_{k-1,n-1} \end{pmatrix}$$

- \bigcirc G est appelé **matrice génératrice** du code \mathcal{C}
- 2 Pour ce cours G est de rang plein
- 3 Pour un code C, il existe plusieurs matrices génératrices
- 4 Permuter / combiner les lignes de G ne change pas C

Code linéaire

Soit $\mathcal C$ un code $(M=2^k,n)$ linéaire, il existe une matrice G de taille $k\times n$ telle que pour tout $\mathbf c\in\mathcal C$,

$$\mathbf{c} = \mathbf{u}G$$

$$G = \begin{pmatrix} \mathbf{g_0} \\ \mathbf{g_1} \\ \vdots \\ \mathbf{g_{k-1}} \end{pmatrix} = \begin{pmatrix} g_{0,0} & g_{0,1} & \cdots & g_{0,n-1} \\ g_{1,0} & g_{1,1} & \cdots & g_{1,n-1} \\ \vdots & \vdots & & \vdots \\ g_{k-1,0} & g_{k-1,1} & \cdots & g_{k-1,n-1} \end{pmatrix}$$

- \bigcirc G est appelé matrice génératrice du code \mathcal{C}
- 2 Pour ce cours G est de rang plein
- 3 Pour un code C, il existe plusieurs matrices génératrices
- 4 Permuter / combiner les lignes de G ne change pas C
- $\ensuremath{\mathbf{5}}$ Permuter les colonnes de G change l'espace $\mathcal C$ mais ne change pas les performances du code

Soit C un code ($M = 2^k, n$) linéaire, on appelle **code dual** :

$$\mathcal{C}_d = \left\{ \mathbf{v} \in \mathbb{F}_2^n : \forall \mathbf{c} \in \mathcal{C} \right. \left. \left\langle \mathbf{v}, \mathbf{c} \right. \right\rangle = 0 \right\} (= \mathcal{C}^{\perp})$$

où
$$< \mathbf{v}, \mathbf{c} > = \sum_{i=0}^{n-1} v_i c_i$$

1 La dimension du sous-espace vectoriel C_d est n-k

Soit C un code $(M = 2^k, n)$ linéaire, on appelle **code dual** :

$$\mathcal{C}_{\textit{d}} = \left\{ \textbf{v} \in \mathbb{F}_2^n : \forall \textbf{c} \in \mathcal{C} \right. < \textbf{v}, \textbf{c} > = 0 \big\} \, (= \mathcal{C}^\perp)$$

où
$$<$$
 v, **c** $>=\sum_{i=0}^{n-1} v_i c_i$

- 1 La dimension du sous-espace vectoriel C_d est n-k
- 2 Soit $\mathcal{B}_{\mathcal{C}_d} = \{\mathbf{h}_0, \mathbf{h}_1, \dots, \mathbf{h}_{n-k-1}\}$ une base de \mathcal{C}_d , alors \mathcal{C}_d a pour matrice génératrice

$$H = \begin{pmatrix} \mathbf{h_0} \\ \mathbf{h_1} \\ \vdots \\ \mathbf{h_{n-k-1}} \end{pmatrix} = \begin{pmatrix} h_{0,0} & h_{0,1} & \dots & h_{0,n-1} \\ h_{1,0} & h_{1,1} & \dots & h_{1,n-1} \\ \vdots & \vdots & & \vdots \\ h_{n-k-1,0} & h_{n-k-1,1} & \dots & h_{n-k-1,n-1} \end{pmatrix}$$

Soit C un code ($M = 2^k, n$) linéaire, on appelle **code dual**:

$$\mathcal{C}_d = \left\{ \mathbf{v} \in \mathbb{F}_2^n : \forall \mathbf{c} \in \mathcal{C} \right. \left. \left\langle \mathbf{v}, \mathbf{c} \right. \right\rangle = 0 \right\} (= \mathcal{C}^{\perp})$$

où
$$< \mathbf{v}, \mathbf{c} > = \sum_{i=0}^{n-1} v_i c_i$$

- 1 La dimension du sous-espace vectoriel C_d est n-k
- 2 Soit $\mathcal{B}_{\mathcal{C}_d} = \{\mathbf{h}_0, \mathbf{h}_1, \dots, \mathbf{h}_{n-k-1}\}$ une base de \mathcal{C}_d , alors \mathcal{C}_d a pour matrice génératrice

$$H = \begin{pmatrix} \mathbf{h_0} \\ \mathbf{h_1} \\ \vdots \\ \mathbf{h_{n-k-1}} \end{pmatrix} = \begin{pmatrix} h_{0,0} & h_{0,1} & \dots & h_{0,n-1} \\ h_{1,0} & h_{1,1} & \dots & h_{1,n-1} \\ \vdots & \vdots & & \vdots \\ h_{n-k-1,0} & h_{n-k-1,1} & \dots & h_{n-k-1,n-1} \end{pmatrix}$$

 $\textbf{3} \ \, \text{Le code } \mathcal{C} \text{ peut être défini comme } \mathcal{C} = \left\{ \mathbf{c} \in \mathbb{F}_2^n : \mathbf{c} \mathcal{H}^T = \mathbf{0} \right\} (= (\mathcal{C}^\perp)^\perp)$

Soit C un code $(M = 2^k, n)$ linéaire, on appelle **code dual** :

$$\mathcal{C}_{d} = \left\{ \mathbf{v} \in \mathbb{F}_{2}^{n} : \forall \mathbf{c} \in \mathcal{C} \right. \left. \left\langle \mathbf{v}, \mathbf{c} \right. \right\rangle = 0 \right\} (= \mathcal{C}^{\perp})$$

où
$$< \mathbf{v}, \mathbf{c} > = \sum_{i=0}^{n-1} v_i c_i$$

- 1 La dimension du sous-espace vectoriel C_d est n-k
- 2 Soit $\mathcal{B}_{\mathcal{C}_d} = \{\mathbf{h}_0, \mathbf{h}_1, \dots, \mathbf{h}_{n-k-1}\}$ une base de \mathcal{C}_d , alors \mathcal{C}_d a pour matrice génératrice

$$H = \begin{pmatrix} \mathbf{h_0} \\ \mathbf{h_1} \\ \vdots \\ \mathbf{h_{n-k-1}} \end{pmatrix} = \begin{pmatrix} h_{0,0} & h_{0,1} & \dots & h_{0,n-1} \\ h_{1,0} & h_{1,1} & \dots & h_{1,n-1} \\ \vdots & \vdots & & \vdots \\ h_{n-k-1,0} & h_{n-k-1,1} & \dots & h_{n-k-1,n-1} \end{pmatrix}$$

- $\textbf{3} \ \, \text{Le code } \mathcal{C} \text{ peut être défini comme } \mathcal{C} = \left\{ \mathbf{c} \in \mathbb{F}_2^n : \mathbf{c} \mathcal{H}^T = \mathbf{0} \right\} (= (\mathcal{C}^\perp)^\perp)$
- 4 H est appelée matrice de parité du code C et vérifie $GH^T = 0_{k \times n k}$

Encodeur binaire systématique

Soit $\mathcal C$ un code $(M=2^k,n)$ pour un canal à entrées binaires. Un encodeur $\varphi(\cdot)$ est dit **systématique** ssi

$$orall \mathbf{u} \in \mathbb{F}_2^k, arphi(\mathbf{u}) = [\mathbf{p} \ \mathbf{u}] ext{ avec } \mathbf{p} \in \mathbb{F}_2^{n-k}$$

Encodeur binaire systématique

Soit $\mathcal C$ un code $(M=2^k,n)$ pour un canal à entrées binaires. Un encodeur $\varphi(\cdot)$ est dit **systématique** ssi

$$orall \mathbf{u} \in \mathbb{F}_2^k, arphi(\mathbf{u}) = [\mathbf{p} \ \mathbf{u}] ext{ avec } \mathbf{p} \in \mathbb{F}_2^{n-k}$$

Si C est linéaire alors il existe une matrice génératrice sous la forme

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

Encodeur binaire systématique

Soit $\mathcal C$ un code $(M=2^k,n)$ pour un canal à entrées binaires. Un encodeur $\varphi(\cdot)$ est dit **systématique** ssi

$$orall \mathbf{u} \in \mathbb{F}_2^k, arphi(\mathbf{u}) = [\mathbf{p} \ \mathbf{u}] ext{ avec } \mathbf{p} \in \mathbb{F}_2^{n-k}$$

Si C est linéaire alors il existe une matrice génératrice sous la forme

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

La matrice de parité associée à la matrice G précédente

$$H = \begin{pmatrix} 1 & 0 & \dots & 0 & p_{0,0} & \dots & p_{k,0} \\ 0 & 1 & \dots & 0 & p_{0,1} & \dots & p_{k,1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & p_{0,n-k-1} & \dots & p_{k,n-k-1} \end{pmatrix} = [I_{n-k} \quad P^T]$$

Remarques sur les encodeurs systématiques

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

1 Un encodeur systématique comporte le message en clair

Remarques sur les encodeurs systématiques

$$G = \begin{pmatrix} \rho_{0,0} & \dots & \rho_{0,n-k-1} & 1 & 0 & \dots & 0 \\ \rho_{1,0} & \dots & \rho_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{k,0} & \dots & \rho_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

- 1 Un encodeur systématique comporte le message en clair
- 2 Les encodeurs systématiques sont souvent moins complexes que leurs équivalents non-systématiques

Remarques sur les encodeurs systématiques

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

- 1 Un encodeur systématique comporte le message en clair
- 2 Les encodeurs systématiques sont souvent moins complexes que leurs équivalents non-systématiques
- 3 Une matrice d'encodage systématique peut être trouvée pour tout code linéaire en bloc de matrice génératrice **pleine** (à des permutations de colonnes près)
 - → Pivot de Gauss

Détection d'erreurs

Correction d'erreurs