Context-Free Languages

$$\{a^nb^n: n \ge 0\}$$
 $\{ww^R\}$

Regular Languages
$$a*b* (a+b)*$$

Context-Free Languages

Context-Free Grammars

Example

A context-free grammar G:

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$
Usily reg \rightarrow left, right linear gramma only

A derivation:

SIGNOSTA Samphonson

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

A context-free grammar
$$G\colon S\to aSb$$
 $S\to \lambda$

Another derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$S \to aSb$$
$$S \to \lambda$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

$$\text{follows a follows}$$

Describes parentheses:

Example

A context-free grammar G:

$$S \rightarrow aSa$$

aab | baa

$$S \rightarrow bSb$$

 $S \to \lambda$

A derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

A context-free grammar
$$G\colon S\to aSa$$

$$S\to bSb$$

$$S\to \lambda$$

Another derivation:

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$

$$S \to aSa$$

$$S \to bSb$$

$$S \to \lambda$$

$$L(G) = \{ww^R: w \in \{a,b\}^*\}$$

Example

A context-free grammar
$$G: S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow ab$$

A context-free grammar
$$G\colon S\to aSb$$

$$S\to SS$$

$$S\to \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSb \Rightarrow abab$$

$$S \to aSb$$

$$S \to SS$$

$$S \to \lambda$$

$$L(G) = \{w : n_a(w) = n_b(w), \text{ from some and } n_a(v) \ge n_b(v)$$

$$\text{in any prefix } v \}$$

$$\text{ibes}$$

Describes matched parentheses:

() ((())) (())

สาขาร เรายากเสียงร เล้า

Definition: Context-Free Grammars

rustally regula grama Grammar G = (V, T, S, P)Terminal Start Variables symbols variable Productions of the form: $A \longrightarrow \widehat{(x)} \rightarrow \in \{v, \tau\}^{+} \rightarrow \text{Measural Not in }$ Variable String of variables and terminals

$$G = (V, T, S, P)$$

$$L(G) = \{w \colon S \Longrightarrow w, w \in T^*\}$$

Definition: Context-Free Languages

A language L is context-free

if and only if

there is a context-free grammar G with L = L(G)

language Lessazion context-tree language noisesto unsansnasis context free grammar a não nasis

Derivation Order

1. $S \rightarrow AB$

 $2. A \rightarrow aaA$

 $4. B \rightarrow Bb$

antivorment derivation

11 ÚSCÁL

3. $A \rightarrow \lambda$

5. $B \rightarrow \lambda$

Leftmost derivation:

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

21 Dimmis let l'unan derive variable m'instissan

Rightmost derivation:

$$S o aAB$$
 Surficiently $A o bBb$ $B o A \mid \lambda$

Leftmost derivation:

$$S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB$$

 $\Rightarrow abbbbB \Rightarrow abbbb$

Rightmost derivation:

$$S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb$$

 $\Rightarrow abbBbb \Rightarrow abbbb$

Derivation Trees

Parse Trees

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda$$

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$B \rightarrow Bb \mid \lambda$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb$

$$S \to AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$B \to Bb \mid \lambda$$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

Partial Derivation Trees

$$S \to AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB$$

$S \Rightarrow AB \Rightarrow aaAB$

$$S \Rightarrow AB \Rightarrow aaAB$$
 sentential form

Sometimes, derivation order doesn't matter

Leftmost:

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$

อรพเจรงแพ นๆ ก็เรื่องของ ฆัง Rightmost:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

ambigous innoz

$$E \to E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$
2 insum 4 production rule

$$E \to E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

devine x ogurnizon

$$E \to E + E \mid E * E \mid (E) \mid a$$
$$a + a * a$$

The grammar
$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

is ambiguous:

วางเหตุ gramman ขึ้งกักรม \rightarrow กับและที่ทางขึ้งและ าธาบ a + a * a has two derivation trees

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Definition:

A context-free grammar $\,G\,$ is ambiguous

if some string $w \in L(G)$ has:

two or more derivation trees

In other words:

A context-free grammar $\,G\,$ is ambiguous

if some string $w \in L(G)$ has:

two or more leftmost derivations (or rightmost)

Why do we care about ambiguity?

2 + 2 * 2

$$2 + 2 * 2 = 6$$

$$2 + 2 * 2 = 8$$

Correct result: 2+2*2=6

Ambiguity is bad for programming languages

· We want to remove ambiguity → or more ambiguity

We fix the ambiguous grammar:

$$E \to E + E \qquad | E * E | (E) | a$$

$$| (E) | (E) |$$

Metalialistical most consideration of the contraction of the contracti

New non-ambiguous grammar: $E \rightarrow E + T$

ambiguous > non-ambiguousi

$$E \rightarrow T$$

$$T \to T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

Unique derivation tree

The grammar $G: E \to E + T$

$$E \to E + T$$

$$E \rightarrow T$$

$$T \to T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

is non-ambiguous:

Every string $w \in L(G)$ has a unique derivation tree

Another Ambiguous Grammar

Grammar sites andi quous

 $IF_STMT \rightarrow if EXPR then STMT$ | if EXPR then STMT else STMT

If expr1 then if expr2 then stmt1 else stmt2

Inherent Ambiguity

| 122037201342276.00.00.00 | Ne

Some context free languages have only ambiguous grammars

The string $a^n b^n c^n$

has two derivation trees

Compilers alumn

Machine Code

Program

```
v = 5;
if (v>5)
  x = 12 + v
while (x !=3) {
 x = x - 3:
 v = 10;
```


Add v,v,0 cmp v,5 jmplt ELSE THEN: add x, 12, v ELSE: WHILE: cmp x,3

Compiler

A parser knows the grammar of the programming language

Parser & SOUN Grammon 14 parser

```
PROGRAM \rightarrow STMT\_LIST
STMT\_LIST \rightarrow STMT; STMT\_LIST | STMT;
STMT \rightarrow EXPR | IF\_STMT | WHILE\_STMT
| \{ STMT\_LIST \}
```

EXPR → EXPR + EXPR | EXPR - EXPR | ID

IF_STMT → if (EXPR) then STMT

| if (EXPR) then STMT else STMT

WHILE_STMT → while (EXPR) do STMT

The parser finds the derivation of a particular input

derivation tree

derivation tree

Duazionemsiencosal tree leison machine code

แต่สนิชั่ง สินรูโคอบูเปรรเตอง derivation แบบในม Parsing

Example:

Exhaustive Search

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$
 brule force

$$S \Longrightarrow SS$$

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Longrightarrow \lambda$$

Find derivation of aahh

All possible derivations of length 1

$$S \Rightarrow SS$$
 $S \Rightarrow aSb$
 $S \Rightarrow bSa$
 $S \Rightarrow 2$

64

aabb

Phase 2
$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

aabb

Phase 1

$$S \Rightarrow SS \Rightarrow bSaS$$

$$S \Rightarrow SS$$

$$S \Longrightarrow SS \Longrightarrow S$$

HONGE AND (380)

$$S \Rightarrow aSb$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$S \Rightarrow aSb \Rightarrow abSab$$

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

Phase 3

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

Final result of exhaustive search (top-down parsing)

Time complexity of exhaustive search

Suppose there are no productions of the form

$$A \longrightarrow \lambda$$

$$A \rightarrow B$$

Number of phases for string w: 2|w|

For grammar with k rules

Time for phase 1: k

k possible derivations

Time for phase 2: k^2

bh

 k^2 possible derivations

J= 2 W

Time for phase
$$2|w|$$
: $k^{2|w|}$

 $k^{2|w|}$ possible derivations

[39) MUSTON [5] RSDU

Total time needed for string w:

Extremely bad!!!

There exist faster algorithms for specialized grammars Jahunnsmichenium los Jahans Jahan Jah string of variables

Pair (A,a) appears once

S-grammar example:

$$S \to \underline{a}S$$

$$S \to bSS$$

$$S \to c$$

Each string has a unique derivation

$$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$$

For S-grammars:

In the exhaustive search parsing there is only one choice in each phase

Time for a phase: 1

Total time for parsing string w: w

For general context-free grammars:

There exists a parsing algorithm that parses a string |w| in time $|w|^3$ adjoint xound |w|

(we will show it in the next class)