2017 VA/SCD Guideline Data Supplement

Table of Contents

Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries for History and Physical Examination – (Section 4.1)	6
Data Supplement 2. Nonrandomized Trials, Observational Studies, and/or Registries of Noninvasive Evaluation (12-lead ECG, Exercise Testing and	
Electrocardiographic Monitoring) – (Section 4.2.1)	8
Data Supplement 3. RCTs Comparing Ambulatory Electrocardiography – (Section 4.2.2)	14
Data Supplement 4. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Monitors – (Section 4.2.2)	15
Data Supplement 5. Nonrandomized Trials, Observational Studies, and/or Registries of Implanted Cardiac Monitors – (Section 4.2.3)	
Data Supplement 6. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Noninvasive Cardiac Assessment – (Section 4.2.4)	
Data Supplement 7. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Biomarkers – (Section 4.2.5)	
Data Supplement 8. RCTs Evaluating EP Study for VA – (Section 4.3.2)	
Data Supplement 9. Nonrandomized Trials, Observational Studies, and/or Registries of EP Study for VA - (Section 4.3.2)	26
Data Supplement 10. RCTs for Preventing SCD with HF Medications - (Section 5.2)	
Data Supplement 11. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries Related to Surgery and Revascularization Procedures – ((Section
5.5)	
Data Supplement 12. Nonrandomized Trials, Observational Studies, and/or Registries of Arrhythmic Surgery and Revascularization for Arrhythmia	
Management – (Section 5.5.1)	44
Data Supplement 13. RCTs for Autonomic Modulation – (Section 5.6)	
Data Supplement 14. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Autonomic Modulation – (Section 5.6)	50
Data Supplement 15. RCTs Comparing Acute Management of Specific Arrythmias - (Section 6)	51
Data Supplement 16. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Acute Management of Specific Arrythmias – (Section 6)	6)58
Data Supplement 17. RCTs Secondary Prevention Sudden Death in Ischemic Heart Disease – (Section 7.1.1)	64
Data Supplement 18. Nonrandomized Trials, Observational Studies, and/or Registries for Secondary Prevention Sudden Death in Ischemic Heart Disease	e –
(Section 7.1.1)	69
Data Supplement 19. Nonrandomized Trials, Observational Studies, and/or Registries for Coronary Artery Spasm – (Section 7.1.1.1)	71
Data Supplement 20. Nonrandomized Trials, Observational Studies, and/or Registries for Post CABG VT/VF – (Section 7.1.1.2)	75
Data Supplement 21. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries of ICDs Primary Prevention VA and Sudden Death in Pat	tients
with Ischemic Cardiomyopathy – (Section 7.1.2)	77
Data Supplement 22. RCTs Evaluating Treatment and Prevention of Recurrent VA in Patients with Ischemic Heart Disease – (Section 7.1.3)	84
Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Recurrent Arrhythmias in IHD – (Section 7.1.3)	90
Data Supplement 24. Nonrandomized Trials, Observational Studies, and/or Registries of NICM – (Section 7.2)	98
Data Supplement 25. RCTs Secondary Prevention SCD in NICM – (Section 7.2.1)	
Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Secondary Prevention SCD in NICM – (Section 7.2.1)	112
Data Supplement 27. RCTs Primary Prevention SCD in NICM – (Section 7.2.2)	116
Data Supplement 28 Nonrandomized Trials, Observational Studies, and/or Registries of Primary Prevention of SCD in NICM – (Section 7.2.2)	119

Data Supplement 29. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Recurrent VA in Patients With NICM – 7.2.3)	
Data Supplement 30. Nonrandomized Trials, Observational Studies, and/or Registries of Arrhythmogenic Right Ventricular Cardiomyopathy – (Section	
Data Supplement 31. Nonrandomized Trials, Observational Studies, and/or Registries of Hypertrophic Cardiomyopathy – (Section 7.4)	145
Data Supplement 32. Nonrandomized Trials, Observational Studies, and/or Registries of Myocarditis – (Section 7.5)	159
Data Supplement 33. Nonrandomized Trials, Observational Studies, and/or Registries of Cardiac Sarcoidosis – (Section 7.6)	160
Data Supplement 34. Nonrandomized Trials, Observational Studies, and/or Registries of Other Infiltrative Cardiomyopathies – (Section 7.6.1)	168
Data Supplement 35. Nonrandomized Trials, Observational Studies, and/or Registries of Use of ICD and WCD in Patients with HFrEF - (Section 7.8.1)	
Data Supplement 36. Nonrandomized Trials, Observational Studies, and/or Registries Related to LVAD – (Section 7.8.3)	173
Data Supplement 37. Nonrandomized Trials, Observational Studies, and/or Registries Related to ICD Use After Heart Transplantation – (Section 7.8.4).	173
Data Supplement 38. Nonrandomized Trials, Observational Studies, and/or Registries Evaluating the Risk of Sudden Death or VA in Patients with	
Neuromuscular Disorders – (Section 7.8)	175
Data Supplement 39. Nonrandomized Trials Related to Cardiac Channelopathies – (Section 7.9)	184
Data Supplement 40. Nonrandomized Trials Related to Congenital LQTS – (Section 7.9.1.1.)	196
Data Supplement 41. Nonrandomized Trials Related to Catecholaminergic Polymorphic Ventricular Tachycardia – (Section 7.9.1.2.)	207
Data Supplement 42. Nonrandomized Trials Related to Brugada Syndrome – (Secction 7.9.1.3)	211
Data Supplement 43. Nonrandomized Trials Related to Early Repolarization "J-wave" Syndrome – (Secction 7.9.1.4)	221
Data Supplement 44. Nonrandomized Trials Related to Short-QT Syndrome – (Secction 7.9.1.5)	225
Data Supplement 45. RCTs Related to VA in the Structurally Normal Heart – (Section 8)	
Data Supplement 46. Nonrandomized Trials, Observational Studies, and/or Registries Related to Outflow Tract and AV Annular VA – (Section 8.1)	230
Data Supplement 47. Nonrandomized Trials, Observational Studies, and/or Registries of Catheter Ablation in Papillary Muscle VA - (Section 8.2)	238
Data Supplement 48. Nonrandomized Trials, Observational Studies, and/or Registries Related to Interfascicular Reentrant VT (Belhassen Tachycardia)	-
(Section 8.3)	241
Data Supplement 49. Nonrandomized Trials, Observational Studies, and/or Registries Related to Idiopathic Polymorphic VT/VF - (Section 8.5)	242
Data Supplement 50. Nonrandomized Trials, Observational Studies, and/or Registries of PVC-induced Cardiomyopathy - (Section 9)	247
Data Supplement 51. Nonrandomized Trials, Observational Studies, and/or Registries Related to Pregnancy - (Section 10.2)	
Data Supplement 52. RCTs Comparing Medication-Induced Arrhythmias - (Section 10.7)	
Data Supplement 53. Nonrandomized Trials, Observational Studies, and/or Registries of Medication-Induced Arrhythmias (Section 10.7)	268
Data Supplement 54. Nonrandomized Trials, Observational Studies, and/or Registries Related to ACHD - (Section 10.8)	
Data Supplement 55. Nonrandomized Trials, Observational Studies, and/or Registries of S-ICD - (Section 11.1)	293
Data Supplement 56. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for WCD – (Section 11.2)	299
Data Supplement 57. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Special Considerations for Catheter Ablation – (Second Consideration of Catheter Ablation of Catheter Ablation of Catheter Ablation of Catheter (Second Consideration of Catheter Ablation of Catheter (Second Consideration of Catheter (Second Considerati	ection
12)	
Data Supplement 58. Nonrandomized Trials, Observational Studies, and/or Registries Related to Post-Mortem Evaluation of SCD - (Section 13)	
Data Supplement 59. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries of Terminal Care - (Section 14)	
Data Supplement 60. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Shared Decision Making – (Section 15)	
Data Supplement 61. Randomized Trials, Observational Studies, and/or Registries Related to Cost and Value Considerations - (Section 16)	317

Methodology and Evidence Review

The recommendations listed in this guideline are, whenever possible, evidence based. An extensive evidence review was conducted from April through September 2016, that included literature published through September 2016. Other selected references published through March 2017 were incorporated by the writing committee. Literature included was derived from research involving human subjects, published in English, and indexed in MEDLINE (through PubMed), EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Key search words included but were not limited to the following: accelerated idioventricular rhythm, advanced cardiac life support, ambulatory electrocardiagraphy, amiodarone, amyloidosis, Antiarrhythmic drugs ARNI – Angiotensin Receptor-Neprilysin Inhibitor, arrhythmias, arrhythmogenic right ventricular dysplasia, atenolol, autonomic modulation, biomarkers, CABG, cardiac, catheter ablation, cardiac arrest, cardiac arrhythmia, cardiac catheterization, cardiac magnetic resonance imaging, cardiac sympathetic denervation, cardiac troponin, cardiomyopathy, catecholaminergic polymorphic ventricular tachycardia, carvedilol, choice behavior, coronary artery bypass surgery, coronary stent, cryoablation deactivation, decision-making, digoxin toxicity, dilated cardiomyopathy, dilated non ischemic cardiomyopathy, disease management, Dor Procedure, drug induced arrhythmia, drug induced long QT, emergency medical services, electrical storm, electrocardiography, electrophysiologic study, electrophysiologic techniques, electrophysiological testing, emergency management, end of life, endocardiectomy exercise test, Fabry's disease, fibrillation, flecainide, heart arrest, heart disease, hemochromatosis, hemodynamically stable ventricular tachycardia, holter monitor, hypertrophic, implantable cardiac monitor, incessant, infiltrative heart disease, intervention, lamin a/c left ventricular assist device, left ventricular reconstruction, lidocaine, long QT syndrome, loop recorder, LV dysfunction, metoprolol, monomorphic, muscular dystrophies, myocardial infarction/therapy, myotonic dystrophy, nadolol, natriuetic peptides, papillary muscle, patient perspective, patient preference, percutaneous coronary, polymorphic, Polymorphous Ventricular Tachycardia, premature ventricular contractions, procainamide, propranolol, pulseless electrical activity, PVC induced cardiomyopathy, resting ecg, renal denervation, resuscitation, risk stratification, secondary prevention, shared decision making, sotalol, spinal cord stimulation, subcutaneous implantable cardioverter defibrillators, sudden cardiac death, sudden death, syncope, tachycardia, torsades de pointes, vagal nerve stimulation ventricular, ventricular arrhythmias, ventricle extrasystole, ventricular fibrillation, ventricular premature complexes, ventricular tachycardia

Abbreviations: 1° indicates primary; 2°, secondary; AAD, antiarrhythmic drugs; ACA, aborted cardiac arrest; ACC, American College of Cardiology; ACHD, adult congenital heart disease; ACLS, advanced cardiac life support; ACS, acute coronary syndrome; AF, atrial fibrillation; AHA, American Heart Association; AMI, acute myocardial infarction; ARVC, arrhythmogenic right ventricular cardiomyopathy; AS, atrial stenosis; AT, atrial tachyarrhythmias; AV, atrioventricular; AVID, antiarrhythmics versus implantable defibrillators; BB, beta blocker; BBB, bundle branch block; BBRVT, bundle branch reentrant ventricular tachycardia; BID, two times a day; BNP, brain natriuretic peptide; BP, blood pressure; BrS, Brugada syndrome; CA, cardiac arrest; CABG, coronary artery bypass graft; CABG-PATCH, coronary artery bypass graft patch trial; CAD, coronary artery disease; CASH, cardiac arrest study Hamburg; CASS, coronary artery surgery study; CE, cardiac event; CHF, congestive heart failure; CHFSTAT, survival trial of antiarrhythmic therapy in congestive heart failure; CI, confidence interval; CIBIS II, cardiac insufficiency bisoprolol study II; CIDS, Canadian implantable defibrillator; ICD, cardiovascular implantable electronic device; CMRI, cardiac magnetic resonance imaging; COPD, chronic obstructive pulmonary disease; CPR, cardiopulmonary resuscitation; CPVT, catecholaminergic polymorphic ventricular tachycardia; CRT, cardiac reshynchronization therapy; CS, carotid sarcoidosis; CT, computed tomography; CV, cardiovascular; CVD, cardiovascular disease; CXR, chest x-ray; DCM, dilated cardiomyopathy; DEFINITE, defibrillator in nonischemic cardiomyopathy treatment evaluation; DFT, defibrillation threshold; DINAMIT, defibrillator in acute myocardial infarction trial; DM1, myotonic dystrophy 1; DM2, myotonic dystrophy; DYS, dystrophin; ECG, electrocardiogram; EDMD2, Emery-Dreifuss muscular dystrophy type 2; EF, ejection fraction; EFFORTLESS S-ICD, evaluation of factors impacting clinical outcome and cost effectiveness of the S-ICD; EGM, electrogram EMD, electromechanical dissociation; EP, electrophysiological; EPS, electrophysiological study; ERP, effective refractory period; ESRD, end stage renal disease; EURO-VT Study, Euro-ventricular tachycardia study; GDMT, guideline-directed management and therapy; GFR, glomerular filtration rate; HCM, hypertrophic cardiomyopathy; HELP-VT, heart center of Leipzig VT study; HF, heart failure;

HPS, His-Purkinje system; HR, hazard ratio; HTN, hypertension; Hx, history; HV, His Purkinje conduction rate; ICD, implantable cardioverter-defibrillator; ICU, intensive care unit; IDCM, idiopathic dilated cardiomyopathy; IDE, investigational device exemption; ILR, implantable loop recorder; IRIS, insulin resistance intervention after stroke; IV, intravenous; KM, Kaplan-Meier; LBBB, left bundle branch block; LCSD, left cardiac sympathetic denervation; LGE, late gadolinium enhancement; LQTS, long QT syndrome; LV, left ventricle; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; LVH, left ventricular hypertrophy; LVOT, left ventricular outflow tract; MACE, major adverse cardiac event; MADIT, multicenter automatic defibrillator implantation trial; MAGIC, magnesium in coronaries; MD, muscular dystrophy; MI, myocardial infarction; MR, mitral regurgitation; MRI, magnetic resonance imaging; MTWA, microvolt T-wave alternans; MUSTT, multicenter unsustained tachycardia trial; N/A, not available; NICM, nonischemic dilated cardiomyopathy; NPV, negative predictive value; NS, not significant; NSVT, nonsustained ventricular tachycardia; NYHA, New York Heart Association classification for heart failure; NT-proBNP, Nterminal pro b-type natriuretic peptide; OHCA, out-of-hospital cardiac arrest; OPTIC, optimal pharmacological therapy in cardioverter defibrillator patients; OR, odds ratio; PainFREE Rx II, pacing fast ventricular tachycardia reduces shock therapies; PARADIGM-HF, prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial; PCI, percutaneous coronary intervention; PE, physical examination; PES, programmed electrical stimulation; PM, papillary muscle; PMCD, Perimortem Cesarian Delivery; PMCS, Perimortem Cesarian Section; PMVT, polymorphic ventricular tachycardia; PO, per os; PROCAT, Parisian region out of hospital cardiac arrest; PVC, premature ventricular contractions; PVR, pulmonary valve replacement; QoL, quality of life; RBB, right bundle branch; RBBB, right bundle branch block; RCSD right cardiac sympathetic denervation; RCT, randomized controlled trials; RNA, radionuclide angiography; RR, relative risk; RRR relative risk ratio; RyR2, Ryanodine receptor type 2; S-ICD, subcutaneous implantable cardioverter-defibrillator; SAECG, signal averaged ECG; SBP, systolic blood pressure; SCA, sudden cardiac arrest; SCD, sudden cardiac death; SCD-HeFT, sudden cardiac death in heart failure trial; SCS, spinal cord stimulation; SHD, structural heart disease; SMASH VT, substrate mapping and ablation in sinus rhythm to halt ventricular tachycardia; SND, sinus node dysfunction; SQTS, short QT syndrome; STICH, surgical treatment for ischemic heart failure; STICHES, surgical treatment for ischemic heart failure extension study; SVT, supraventricular tachycardia; SYNTAX, synergy between PCI with Taxus and cardiac surgery; TdP, torsades de pointes; TIA, transient ischemic attack; TOF, tetralogy of Fallot; VA, ventricular arrhythmias; VALIANT, valsartan in acute myocardial infarction; VANISH, ventricular tachycardia ablation versus escalated antiarrhythmic drug therapy in ischemic heart disease; VERP, ventricular effective refractory period; VF, ventricular fibrillation; VFL, ventricular flutter; VHD, valvular heart disease; VT, ventricular tachycardia; VTE, ventricular tachycardythmic events; and WCD, wearable cardiac defibrillator.

Data Supplement 1. Nonrandomized Trials, Observational Studies, and/or Registries for History and Physical Examination – (Section 4.1)

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published	Study Size		& 95% CI)	Comment(s)
• Ruwald, et al. 2012 (1) • 22588456	Study type: Retrospective observational study from a registry cohort with matched controls. Size: 127,508 patients with first episode of syncope. Each subject paired with 5 age and sex matched controls.	Inclusion criteria: Patients hospitalized or seen in emergency department with first episode of syncope between 1997 and 2009. Exclusion criteria: Not specified	1° endpoint: Incidence of syncope and associations with comorbidities and pharmacotherapy Results: Age distribution peaked at 20, 60, and 80 y. Incidence was higher in women in all age groups, although the peak in the oldest age group occurred 5–7 y earlier in men. CVD was present in 28% of the subjects, and drug therapy was being used by 48%. There was an association between CVD and admission for syncope, inversely related to age -0–29 y (OR: 5.8); 30–49 y (OR: 4.4); 50–79 y (OR: 2.9), and ≥80 y (OR: 2.0). Cardiovascular pharmacotherapy associated with age and risk of syncope was similar.	 The incidence rates observed are higher than previously reported and the age distribution of syncope is widely different according to gender. Syncope is more common in females, in the elderly, is generally a diagnosis associated with considerable comorbidity. The data may be influenced by the fact that the study is dominated by syncope leading to hospitalization and emergency department visits.
 Soteriades et al. 2002 (2) 12239256 	Study type: Retrospective analysis of a prospectively enrolled long term population cohort (Framingham) Size: 727 patients with reported syncope and long term follow up from a population of 7814 participants (3563 men and 4251	Inclusion criteria: Reported episodes of syncope by subjects in Framingham study population examined between 1971 and 1998. Reports coded as "yes," "no," or "maybe." Exclusion criteria: Equivocal reports of syncope (N=120), participants who had not	1° endpoint: Death from any cause, MI or death from coronary heart disease, and fatal or nonfatal stroke. Results: Overall incidence of a first report of syncope was 6.2 per 1000 person-y, with an increase with increasing age, most prominent at 70 y. Age-adjusted incidence was 7.2 per 1000 person-y among both men and women. Causes among men and women were: cardiac causes (13.2% and 6.7%), unknown (31.0% 40.7%),	 Cardiac syncope constitutes a high-risk group for morbidity and premature mortality from CVD. Patients with unknown cause are a mixed group at apparent increased risk for death and warrant further diagnostic testing. Vasovagal syncope has a benign prognosis.

	women) followed for an average of 17 y in the outcome analysis.	had an examination within 4 y of the report (N=101), syncope due to head trauma (N=47), incomplete records (N=7).	stroke or TIA (4.3%and 4.0%), seizure disorder (7.2% and 3.2%), vasovagal (19.8% 22.2%), orthostatic (8.6% and 9.9%), medication (6.3% and 7.2%), and "other" (9.5% and 6.1%). Recurrences were reported in 21.6%). There were 847 deaths from all causes, 263 MI or deaths from coronary heart disease, and 178 fatal or nonfatal strokes during a mean follow-up of 8.6 y (median, 7.7). Participants with cardiac syncope had lower survival than those without syncope.	
Middlekauff et al.	Study type:	Inclusion criteria:	1° endpoint:	Patients with advanced HF and
1993 (3)	Retrospective analysis	Consecutive series of	SCD	syncope are at increased risk of all
• <u>8417050</u>	of a consecutive	patients with advanced		cause mortality, largely associated
	patient cohort	HF without a Hx of CA	Results: After a mean follow-up	with an increased risk of SCD.
		referred for optimization	of 365 <u>+</u> 419 d, 165 patients (35%)	
	Size: 491 patients	of medical therapy, often	were alive, 148 (30%) had	
		in conjunction with pre-	undergone heart transplantation, 69	
		transplant evaluation,	(14%) had died suddenly, 66 (13%)	
		between 1983 and 1991	had died of progressive HF, 19 (4%)	
			had died of noncardiac or unknown	
		Exclusion criteria:	causes and 24 (4%) were lost to	
		Prior Hx of CA.	follow-up. All-causes at I y	
			was 29% and sudden death was	
			15%. All cause mortality was greater	
			in patients with syncope	
			(65% vs. 25%, p<0.00001). SCD risk	
			was significantly greater in patients	
			with syncope (45% vs. 12%, p	
			<0.00001).	

Data Supplement 2. Nonrandomized Trials, Observational Studies, and/or Registries of Noninvasive Evaluation (12-lead ECG, Exercise Testing and Electrocardiographic Monitoring) – (Section 4.2.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Steinman et al. 1989 (4) 2915409 	Study type: retrospective cohort Size: 20 patients	Inclusion criteria: regular wide QRS tachycardia in conscious adults Exclusion criteria: hemodynamic instability	1° endpoint: diagnosis of VT Results: 75% of patients had atherosclerotic heart disease, with remote MI in 73% Diagnosis of VT established in 17/20 patients, by AV dissociation or the use of Wellens' criteria. EP testing in 17 patients confirmed the diagnosis of VT in 94%.	VT is the most common diagnosis in adults with stable, wide complex tachycardia
 Brugada et al. 1991 (5) 2022022 	Study type: prospective cohort Size: 554 tachycardias	Inclusion criteria: ECGs with wide QRS (>0.12 s) Exclusion criteria: AAD treatment	1º endpoint: mechanism confirmed by EPS Results: New criteria had sensitivity of 0.987 and specificity of 0.965.	Absence of RS in all precordial leads was highly specific for VT When RS is present in 1 or more precordial leads, RS interval of >100 ms is highly specific for VT Other criteria included AV dissociation and morphology in leads V1-2 and V6
• Wellens HJ et al. 1978 (6) • 623134	Study type: Prospective cohort Size: 140 ECGs, 70 of sustained VT and 70 SVT with aberrancy, in 122 patients	Inclusion criteria: Diagnosis confirmed by His bundle ECG recording Exclusion criteria: Atrial fibrillation or flutter in patients with SVT	1º endpoint: development of algorithm for differentiation of VT from SVT Results: Findings suggestive of VT: QRS >0.14 s; left axis deviation; QRS morphology; AV dissociation	Capture or fusion beats seen only infrequently
Elhendy et al.2002 (7)12106835	Study type: retrospective cohort analysis Size: 1460	Inclusion criteria: intermediate pre-test probability of CAD Exclusion criteria: Hx of MI or revascularization,	1° endpoint: cardiac death or nonfatal MI Results: Exercise-induced VA occurred in 146 patients (10%).	 41 patients had NSVT. Study was aimed more at ischemic outcomes than arrhythmias.

		CAD documented on angiography, or LBBB	During follow-up (median 2.7 y), 1° endpoint occurred in 36 patients. In multivariate analysis, independent predictors of cardiac events were exercise-induced VA (chi-square 4.7, p=0.03) and exercise heart rate (chi-square 18, p=0.0001).	
• Grady et al.	Study type: retrospective	Inclusion criteria:	1° endpoint: All-cause mortality,	• Exercise-induced LBBB predicts a
1998 (8) ● 9440667	matched control cohort study	Exercise-induced LBBB	PCI, open heart surgery, nonfatal	higher risk of death and major cardiac events.
● <u>9440007</u>	study	Exclusion criteria:	MI, documented symptomatic or sustained VT, or implantation of a	Cardiac events.
	Size: 70 cases and 70	preexcitation or	permanent pacemaker or an ICD.	
	matched controls	permanent pacemakers	Results: 37 events (28 in LBBB, 9	
			in controls) occurred during mean	
			3.7 y follow-up	
			Adjusted relative risk in LBBB was	
			2.78 (95% CI: 1.16–6.65, p=0.02)	
• ABCD	Study type: prospective,	Inclusion criteria:	1º endpoint: appropriate ICD	Combination of MTWA and EPS
• Costantini et al.	non-randomized cohort	ischemic	discharge or SCD	identifies a subset of patients most
2009 (9)	Size: 566 patients	cardiomyopathy, EF<40%, and NSVT	Paraltar 20 matiants (7.5%) mat	likely to benefit from ICD. • Negative predictive value is not
• <u>19195603</u>	size: 500 patients	aliu ivsv i	Results: 39 patients (7.5%) met the 1° endpoint after a median	100%, indicating that a small subset
		Exclusion criteria:	follow-up of 1.9 y; MTWA had a	of patients may still have events even
		unstable CAD, NYHA class	positive predictive value of 9% and	if both tests are negative.
		IV HF, prior CA, sustained	NPV of 95%, comparable to EPS	and the second and th
		VA, unexplained syncope;	(11% and 95% respectively)	
		recent (<28 d) MI, CABG,	Event rate with both positive	
		or PCI; permanent AF;	MTWA and EPS was 12%, vs. 2%	
		taking AAD at baseline	with both negative (p=0.017)	
• Desai et al.	Study type: retrospective	Inclusion criteria:	1° endpoint: cardiovascular death	• 801 patients (1.8%) had a QRS>120
2006 (10)		Patients with ECGs at a		ms; another 2300 had BBB
• <u>16828632</u>	Size: 46,933 consecutive	single center	Results: After adjustment in the	No specific information on
	patients with ECGs	Freshoot on outbouter	Cox model for age, gender, and	arrhythmic death
		Exclusion criteria:	heart rate, the QRS duration score	
		preexcitation; BBB or	was a strong independent	
			predictor of cardiovascular	

		paced patients considered separately	mortality. For every 10ms increase in QRS duration, there was an 18% increase in cardiovascular risk.	
Freedman et al.1987 (11)3597997	Study type: retrospective Size: 15,609 patients from the CASS study (Coronary Artery Surgery Study); 522 with BBB	Inclusion criteria: All patients from CASS; BBB patients compared to those without Exclusion criteria: preexcitation, ventricular pacing, nonspecific IVCD, previous myocardial surgery	1° endpoint: mortality Results: LBBB associated with 5- fold greater mortality; RBBB 2-fold greater mortality (p<0.0001 for both)	 Mean EF in LBBB patients 40% vs. 49% in RBBB and 57% in patients without BBB
● Baldasseroni et al. 2002 (12) ● <u>11868043</u>	Study type: retrospective analysis of outpatient registry Size: 5517 patients	Inclusion criteria: unselected outpatients with HF Exclusion criteria: N/A	1° endpoint: mortality Results: LBBB was present in 1391 patients (25.2%) and was associated with an increased 1y mortality rate from any cause (HR 1.70; 95% CI: 1.41–2.05) and sudden death (HR: 1.58; 95% CI: 1.21–2.06).	LBBB Is associated with higher mortality in CHF
• MUSTT • Zimetbaum et al. 2004 (13) • 15289365	Study type: retrospective substudy Size: 431	Inclusion criteria: CAD, EF<40%, NSVT Exclusion criteria: treatment with AAD or an ICD	1° endpoint: CA or arrhythmic death Results: LBBB and intraventricular conduction delay were associated with a 50% increase in the risk of both arrhythmic and total mortality. RBBB was not associated with arrhythmic or total mortality. LVH was the only ECG predictor of arrhythmic (HR 1.35; 95% CI: 1.08–1.69) but not total mortality.	Likely reflects the effect of ventricular dyssynchrony

 Buxton et al. 2005 (14) 16022960 	Study type: _retrospective substudy from PainFREE Rx II Size: 431 patients	Inclusion criteria: patients in the study with CAD and a baseline ECG. Exclusion criteria: HCM, BrS, LQTS	1° endpoint: recurrence of VT/VF Results: QRSd was ≤120 ms in 291 of 431 (68%) patients (LBBB 65, RBBB 48, IVCD 124). Over 12mo follow-up, VT/VF occurred in 95 (22%) patients (22% of patients with QRSd ≤120ms vs. 23% of patients with QRSd >120ms, p=NS).	QRS duration is not useful in predicting recurrent VT/VF.
• MADIT-II • Monasterio et al. 2013 (15) • 24028998	Study type: substudy of prospective clinical trial Size: 175 patients	Inclusion criteria: CAD, EF ≤30% Exclusion criteria: AF; heart rate <80 beats/min	1° endpoint: appropriate ICD therapy and SCD Results: Neither QTV nor TWA predicted SCD. Appropriate ICD therapy was predicted by combining IAA90 from T wave alternans testing and QTVN after adjusting for relevant correlates.	Increased TWA and QTV are independent predictors of appropriate ICD therapy in MADIT-II patients with elevated heart rate at baseline.
• MASTER • Chow et al. 2008 (16) • 18992649	Study type: prospective, non-randomized cohort study of MTWA testing Size: 575 patients; all received ICDs	Inclusion criteria: post- MI, EF≤30% Exclusion criteria: AF or atrial flutter, Hx of sustained VT/VF or CA, MI in past mo, revascularization within 3 mo, class IV CHF, advanced cerebrovascular disease	1° endpoint: SCD or appropriate ICD therapy Results: SCD or appropriate ICD therapy occurred in 48 of 361 (13%, 6.3%/y) MTWA nonnegative and 22 of 214 (10%, 5.0%/y) MTWA negative patients. A non-negative MTWA test result was not associated with 1° endpoint (HR: 1.26; 95% CI 0.76–2.09; p=0.37)	● Total mortality was significantly increased in MTWA non-negative patients (HR: 2.04; 95% CI: 1.10—3.78; p=0.02). MTWA did not identify patients at a higher risk of a VT.
Gupta et al.2012 (17)22424005	Study type: meta-analysis	Inclusion criteria: predominantly prior MI	1° endpoint: VT events were defined as the total and	Negative MTWA result would decrease the annualized risk of VTE from 8.85% to 6.37% in MADIT-II—

	Size: 20 prospective cohort studies consisting of 5,945 subjects	or left ventricular dysfunction Exclusion criteria: healthy patients; BrS; LQTS	arrhythmic mortality and nonfatal sustained or ICD-treated VT Results: Although there was a modest association between positive MTWA and VTE (RR: 2.45; 95% CI:1.58-3.79) and nonnegative MTWA and VTE (RR: 3.68; 95% CI: 2.23–6.07), test performance was poor (positive MTWA: LR+ 1.78, LR- 0.43; nonnegative MTWA: LR+ 1.38, LR- 0.56)	type patients and from 5.91% to 2.60% in SCD-HeFT-type patients. • Despite a modest association, results of spectrally derived MTWA testing do not sufficiently modify the risk of VTE to change clinical decisions
 MADIT-II Dhar et al. 2008 (18) 18534364 	Study type: substudy of randomized clinical trial that estimated the association of prolonged QRSd ≥140ms with arrhythmic outcomes Size: 1232 patients	Inclusion criteria: prior MI, EF ≤30% Exclusion criteria: indicated for an ICD; NYHA class IV; coronary revascularization within the preceding 3 mo; MI within the past mo; advanced cerebrovascular disease; other potentially life- threatening conditions	1° endpoint: SCD in the medically treated arm and SCD or first appropriate ICD therapy for rapid VT/VF in the ICD-treated arm Results: In the medically treated arm, prolonged QRS was a significant independent predictor of SCD (HR: 2.12; 95% CI1.20–3.76, p=0.01). In the ICD-treated arm, prolonged QRS did not predict SCD or rapid VT/VF (HR: 0.77; 95% CI 0.47–1.24, p=0.28).	Prolonged QRS does not predict SCD/VT/VF in ICD treated patients but does predict SCD in medically treated patients.
 Bloomfield et al. 2004 (19) 15451804 	Study type: prospective cohort Size: 177 patients	Inclusion criteria: prior MI, EF≤30% Exclusion criteria: AF or atrial flutter; requirement for ventricular pacing; unstable CAD; NYHA class IV HF; unable to exercise on a bicycle or treadmill	Provided to the second state of the second st	Among MADIT II—like patients, MTWA is better than QRS duration at identifying a high-risk group; it is also better at identifying a low-risk group unlikely to benefit from ICD therapy.

● Iuliano et al. 2002 (20) ● <u>12075267</u> ● Perez-Rodon, et	Study type: retrospective analysis of CHF-STAT Size: 669 patients Study type: Retrospective	Inclusion criteria: ischemic or nonischemic cardiomyopathy, NYHA class II-IV, ≥10 PVCs/h, EF <40% Exclusion criteria: recent MI, Hx of ACA, QRS >180ms, or a QTc >500ms Inclusion criteria:	the mortality rate in patients with a narrow QRS (12.0%; 95% CI: 5.6–18.5). 1° endpoint: total mortality and sudden death Results: Prolonged QRS (≥120 ms) was associated with a significant increase in mortality (49.3% vs 34.0%, p=0.0001) and sudden death (24.8% vs 17.4%, p=0.0004). LBBB was associated with worse survival (p=0.006) but not sudden death 1° endpoint: all-cause mortality	QRS prolongation is an independent predictor of both increased total mortality and sudden death in patients with HF. Although an abnormal ECG in
al. 2014 (21) • 24993462	observational study, aimed at studying the association between specific ECG abnormalities and mortality in patients with syncope from the GESINUR study. Size: 524 patients	Patients in the GESINUR study who had syncope and had available, readable ECG and 12 mo follow-up data	Results: Abnormal ECGs in 344 patients (65.6%). 33 Patients died during follow-up (6.3%): 1 due to SCD Atrial fibrillation (OR: 6.8; 95% CI: 2.8–16.3, p<0.001) intraventricular conduction disturbances (OR: 3.8; 95% CI: 1.7–8.3; p=0.001), LV hypertrophy ECG criteria (OR: 6.3, 95% CI: 1.5–26.3; p=0.011) ventricular pacing (OR 21.8, 95% CI 4.1–115.3, P <.001)	patients with syncope is a common finding, only the presence of atrial fibrillation, intraventricular conduction disturbances, left ventricular hypertrophy ECG criteria, and ventricular pacing is associated with 1-year all-cause mortality.

Data Supplement 3. RCTs Comparing Ambulatory Electrocardiography – (Section 4.2.2)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
 Barrett et al. 2014 (22) 24384108 	Aim: Compare Holter to a 14 d patch electrode Study type: Head to head comparison, simultaneous Size: 146 pt	Inclusion criteria: patients for evaluation of cardiac arrhythmia Exclusion criteria: skin allergies, conditions, or sensitivities to any of the components of the adhesive patch monitor, receiving or anticipated to receive pacing or external direct current cardioversion, or the anticipation of being exposed to high-frequency surgical equipment during the monitoring period	Intervention: 24 h Holter and 14 d adhesive patch Comparator: Detection of arrhythmia over total wear time. Any 1 of 6 arrhythmias, including supraventricular tachycardia, AF/flutter, pause greater than 3s, AV block, VT, or polymorphic VT/VF.	1º endpoint: Adhesive 96, Holter 61 events (p<0.001)	Prolonged duration monitoring for detection of arrhythmia events using single lead, less-obtrusive, Adhesive-patch monitoring platforms could replace conventional Holter monitoring in patients referred for ambulatory ECG monitoring.
 de Asmundis et al. 2014 (23) 24574492 	Aim: head to head comparison of 24 h Holter and hand held patient-activated even monitor (not loop) Study type: Sequential comparison (Holter, then monitor)	Inclusion criteria: Indication for monitor (palpitations 92.3%, dizziness 7.7%) Exclusion criteria: presence of a pacemaker or an ICD, syncope, structural heart diseases, ECG abnormalities, and a Hx of documented arrhythmia.	Intervention: 24 h monitor and 15 d HeartScan Comparator: Percent diagnosis of symptom- related arrhythmias	1º endpoint: Clinical diagnosis for symptoms: Holter 1.8% HeartScan 89% (p<0.01)	Longer time and patient- activated monitor improved yield. This was NOT a loop recorder

<u>s</u>	Size:		
6	<u>Size</u> : 525		

Data Supplement 4. Nonrandomized Trials, Observational Studies, and/or Registries of Ambulatory Monitors – (Section 4.2.2)

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published	Study 5.25		& 95% CI)	Commenquy
 Turakhia et al. 2013 (24) 23672988 	Study type: observational Size: 26,751	Inclusion criteria: Zio placed Exclusion criteria: N/A	1° endpoint: evaluated compliance, analyzable signal time, interval to arrhythmia detection, and diagnostic yield of the Zio Patch, COMPARED: first 48h with later (mean 7.6 d)	Demonstrates yield and compliance with patch monitor although VT/VF not a major issue here
			Results: Any arrhythmia: 62.2% vs 43.9% Symptomatic arrhythmia: 9.7% vs 4.4% VT 187 pt (0.7%) PMVT, TdP, VF 6 pt (0.0%)	
Linzer et al. 1990(25)2371954	Study type: observational	Inclusion criteria: Syncope with negative Holter	1° endpoint: Monitor up to 1 mo with Loop	 25% yield for syncope Dx after negative Holter VT/VF uncommon (1 pt)
	<u>Size</u> : 57	Exclusion criteria: Patients who had undergone EPS	Results: arrhythmia was the cause of symptoms (diagnostic yield 25%; 95% CI: 14–38%). VT (1 patient), high grade AV block (2 patients), SVT (1 patient), asystole or junctional bradycardia from neutrally mediated syncope (3 patients) and normal cardiac rhythms (the remaining 7 patients).	

Data Supplement 5. Nonrandomized Trials, Observational Studies, and/or Registries of Implanted Cardiac Monitors – (Section 4.2.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
• Turakhia et al. Am J	Study type:	Inclusion criteria: Zio placed	1° endpoint: evaluated	Demonstrates yield and compliance
Car 2013 (24)	observational		compliance, analyzable	with patch monitor although VT/VF
• <u>23672988</u>		Exclusion criteria: N/A	signal time, interval to	not a major issue here
	<u>Size</u> : 26,751		arrhythmia detection, and	
			diagnostic yield of the Zio	
			Patch	
			COMPARED: first 48 h with	
			later (mean 7.6 d)	
			Results:	
			Any arrhythmia: 62.2% vs	
			43.9%	
			Symptomatic arrhythmia:	
			9.7% vs 4.4%	
			VT 187 pt (0.7%)	
			PMVT, TdP, VF 6 patients	
			(0.0%)	
CARISMA	Study type:	Inclusion criteria: AMI and	1° endpoint: incidence and	 Intermittent AV block was
• Bloch Thomsen et al.	observational	reduced LVEF	prognostic significance of	associated with "very high risk of
2010 (26)			arrhythmias post MI with	cardiac death"
• <u>20837897</u>	Size:	Exclusion criteria: Refusal;	reduced LVEF	
	297 participants	inability of the patient to		
		participate in the study	Results:	
		because of other serious	Brady and	
		illness (N=312),	tachyarrhythmia's seen in	
		planned coronary bypass graft	137 patients (46%), with	
		surgery (N=184), or death	86% asymptomatic. 13%	
		(N=89).	incidence of NSVT (≥16 bts),	
			3% sustained VT (≥30 sec),	
			3% VF (≥16 bts). Also 28%	
			AF with fast vent response;	
			10% high degree AV block;	

			7% sinus brady, 5% sinus arrest	
• Linzer et al. 1990	Study type:	Inclusion criteria: Syncope	1° endpoint: Monitor up to	25% yield for syncope diagnosis
(25) • 2371954	observational	with negative Holter	1 mo with Loop	after negative Holter
	<u>Size</u> : 57 participants	Exclusion criteria: Prior EPS.	Results: arrhythmia was the cause of symptoms (diagnostic yield 25%; 95% CI 14–38%). VT (1 patient), high grade AV block (2 patients), SVT (1 patient), asystole or junctional bradycardia from neutrally mediated syncope (3 patients) and normal cardiac rhythms (the	
			remaining 7 patients).	
• Volosin et al. 2013	Study type:	Inclusion criteria: Patients	1° endpoint: Evaluate	• Sensitivity is high (96.5% or 99.3% if
(27)	Observational, for	who transmitted data studied	tachycardia detection of	programmed for slower VT.
• 23439867	CareLink monitoring	with induced VA at time of	device and software	Shows excellent detection in
	service	ICD implant testing.		artificial environment.
a Krahn at al. 1000	Size: 2190 patients overall who transmitted data. Also studied induced arrhythmias	Exclusion criteria: Patients who did not transmit over 4 mo period	Results: 15.1% had VT or FVT detected, although true VT was seen in only 10.4%. For induced 1909 tachycardia episodes reviewed. Sensitivity of VT/VF was 99.3%	
• Krahn et al. 1999	Study type:	Inclusion criteria: recurrent	1° endpoint: Detection of	Demonstrates utility of loop
(28)	Observational	undiagnosed syncope	arrhythmias related to	although no VT/VF seen in this
• <u>9918528</u>			recurrent syncope, with	relatively small study.
	<u>Size</u> : 85	Exclusion criteria: unlikely to survive 1y, were unable to	prior Holter	
		give informed consent, had a previously implanted programmable medical device, were pregnant, or	Results: 68% had syncope. Arrhythmia seen in 42% who transmitted rhythm during symptoms.	

		were women of childbearing potential not on a reliable form of contraception.	Bradyarrhythmia in 18, tachyarrhythmia in 3 (SVT 2, AFL 1; no VT/VF)	
 Solbiati et al. 2016 (29) 27092427 	Study type: Systematic review, Meta-analysis Size: 579 participants in 4 trials	Inclusion criteria: Unexplained Recurrent Syncope, evaluation of loop recorder vs no loop recorder Exclusion criteria: N/A	1º endpoint: To assess the incidence of mortality, QoL, adverse events and costs of ILRs vs. conventional diagnostic workup in people with unexplained syncope Results: No difference in long-term mortality 2 studies showed trend of reduction in syncope relapse after diagnosis with the ILR Higher rate of diagnosis (RR: 0.61; 95% CI: 0.54–0.68)	This confirmed the advantage of the ILR in making a diagnosis in unexplained syncope, with trend seen in reduction of relapse.

Data Supplement 6. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Noninvasive Cardiac Assessment – (Section 4.2.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
VALIANT	Aim: To evaluate	Inclusion criteria:	Intervention:	1° endpoint: The risk of	• Each 5% lower LVEF was
 Solomon et 	risk and predictors of	patients with first or	Analysis of rates of	sudden death was greatest in	associated with a 21%
al. 2005 (30)	SCD in patients post	subsequent MI with HF,	SCD. Evaluation of	the first 30 d after MI: 1.4%	increase in adjusted risk of
• <u>15972864</u>	MI with left ventricular	LV dysfunction, or both	EF determined by echocardiography	per mo, 95% CI: 1.2%–1.6% and decreased to 0.14% per	SCD or CA with resuscitation.
	dysfunction and/or	Exclusion criteria: ICD	as well as other	mo 95% CI: 0.11%-0.18%	
	HF	in place prior to randomization	parameters.	after 2 y after MI. Patients	

	Study type: Observational study of patients enrolled in a RCT Size: 14,609 patients		Comparator: N/A	with LVEF <30% were at the greatest risk for SCD	
• SCD-HEFT • Gula et al. 2008 (31) • 19033019	Aim: To determine with baseline assessment of EF being performed using echocardiography, RNA, or contrast angiography impacted the likelihood of survival. Study type: Observational analysis of patients enrolled into a RCT	Inclusion criteria: Patients with HF, NYHA class II-III and LVEF ≤35% Exclusion criteria: Contraindication to amiodarone or 1° prevention ICD	Intervention: Type of modality to evaluate LVEF and clinical outcomes. Comparator: N/A	1° endpoint: Multivariable analysis showed that there was no significant difference in survival between patients enrolled based on LVEF determined RNA vs. echocardiography (HR: 1.06; 95% CI: 0.88–1.28), RNA Vs. angiography (HR: 1.25; 95% CI: 0.97–1.62), or echocardiography vs. angiography (HR: 1.18; 95% CI: 0.94–1.48).	• Among HF patients with an LVEF between 20% and 35%, each 5% increase in LVEF was associated with a lower mortality risk (HR: 0.81; 95% CI: 0.75–0.88). The findings were similar for each initial EF imaging modality, with the interaction term combining imaging method and LVEF in the Cox model was NS (p=0.71).
	Size: 2,521 patients				

Data Supplement 7. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Biomarkers – (Section 4.2.5)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator	Endpoint Results (Absolute Event Rates, P values; OR or RR; &	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
• Korngold et al.	Aim: Evaluate	Inclusion criteria:	(# patients) Intervention: NT-	95% CI) 1° endpoint: Relationship	Women with NT-proBNP
•	l 				•
2009 (32)	baseline NT-proBNP	Women nurses 30–55 y	proBNP data at	of NT-proBNP and SCD	levels above the cut point of
• <u>19470888</u>	levels to predict risk	of age	baseline. 99 SCD	(RR for 1-standard	389 pg/mL were at increased
	of SCD in a general		cases and 294	deviation increment 1.49;	risk of SCD (RR 5.68; 95% CI:
	population of	Exclusion criteria:	matched controls.	95% Cl: 1.09–2.05;	1.78–18.2; p=0.003).
	women.	Blood sample not		p=0.01)	
		collected	Comparator: N/A		

	Study type: Case Control Size: 32,826 women with biomarker data out of 121,700 enrolled				
 Patton et al. 2011 (33) 21044699 	Aim: Evaluate risk of SCD as function of baseline NT-proBNP in a community cohort of older men and women Study type: Cohort study	Inclusion criteria: Men and women 65 y of age and older randomly selected from 4 communities Exclusion criteria: NT-proBNP levels not available	Intervention: NT- proBNP levels were analyzed both as a continuous variable, where the natural log of NT- proBNP was used, and as categorized into quintiles	1° endpoint: Higher NT- proBNP levels were associated with SCD, with an unadjusted HR: 4.2; 95% CI: 2.9, 6.1; p=0.001 for the highest vs. lowest quintile	• NT-proBNP was associated with SCD after adjustment for clinical characteristics and risk factors (age, sex, race, and other associated conditions), with an adjusted HR for the fifth vs. the first quintile of 2.5 (95% CI: 1.6, 3.8; p=0.001).
	<u>Size</u> : 5,447 men and women		Comparator: N/A		
• Scott et al. 2009 (34) • <u>19789399</u>	Aim: Evaluate whether BNP levels can predict SCD and VA in patients without ICDs Study type: Meta- Analysis of Observational Studies	Inclusion criteria: Studies evaluating BNP or NT-proBNP levels for SCD or VA Exclusion criteria: Overlapping studies	Intervention: BNP and NT-proBNP levels evaluated for SCD risk in patients without ICD or VA risk in patients with ICD Comparator: N/A	1° endpoint: Increased BNP or NT-proBNP predicted SCD with a RR: 3.68; 95% CI: 1.90–7.14 in patients without ICDs. Increased BNP or NT- proBNP predicted VA with a RR: 2.54; 95% CI: 1.87– 3.44.	• The risk of SCD associated with increased BNP or NT-proBNP tended to be higher in patients with a lower LVEF. However, there was not a significant interaction between BNP level and LVEF on risk prediction.
	Size: 14 studies (6 studies with 3,543 patients without ICD and 8 studies of 1,047 patients with ICD)				

Blangy et al.	Aim: Evaluate	Inclusion criteria:	Intervention: Serum	1° endpoint: In a	• In addition, LVEF < 0.35 (OR
2007 (35)	biomarkers on VT	Patients with	BNP, hs-CRP, and	multivariate analysis, an	2.19; 95% CI: 1.00–4.79) was
• <u>17526509</u>	risk in patients with	spontaneous sustained	procollagen levels	increased serum BNP (OR:	associated with a higher VT
	ICD post MI	VT post MI receiving	measures at baseline	3.75; 95% CI: 1.46-9.67),	incidence.
		ICD		an increased hs-CRP (OR:	
	Study type:		Comparator: N/A	3.2; 95% CI: 1.26-8.10,	
	Observational	Exclusion criteria: N/A		and an increased PINP	
				(OR: 3.71; 95% CI: 1.40-	
	Size: 121 men and			9.88 were associated with	
	women			a higher VT incidence.	
			_		
• HF ACTION	Aim: Evaluate	Inclusion criteria:	Intervention: NT-	1° endpoint: Elevations	NT-proBNP was more
• Ahmad et al.	biomarkers in	NYHA class II to IV	proBNP, galectin-3,	in each biomarker was	strongly predictive of pump
2014 (36)	prediction of sudden	chronic HF with	and ST2 levels were	associated with increased	failure (C statistic: 0.87)
• <u>24952693</u>	deathand	EF≤35%	assessed at baseline	risk for SCD death in both	Addition of ST2 and
	progressive HF death		in patients enrolled in	adjusted and unadjusted	galectin-3 led to improved net
	in patients with HF	Exclusion criteria:	the trial of exercise	analyses.	risk classification of 11% for
	with reduced EF	Biomarker data not	training vs. usual care	However, increases in the	SCD.
		obtained		biomarkers had stronger	There was no improvement
	Study type:	Inability to exercise	Comparator: N/A	associations with pump	in net risk reclassification for
	Observational			failure than SCD. Clinical	pump failure death with ST2 or
	analysis of subjects			variables along with NT-	galectin-3
	enrolled in a RCT			proBNP levels were	
				predictors sudden cardiac	
	Size: 813 subjects			death (C statistic: 0.73).	
• Levine et al.	Aim: To evaluate	Inclusion criteria: BNP	Intervention: BNP or	1° endpoint: In	Quartile analyses showed
2014 (37)	the ability of BNP or	or NT-proBNP levels	NT-proBNP levels to	multivariate analysis NT-	higher relative risk of VA
• <u>24837348</u>	NT-proBNP to	and 1° prevention ICD	predict risk of VA	proBNP was associated	compared to the relative risk
	predict VA in	Footonian estante DND	6	with increased risk of VA	of all-cause mortality for both
	patients with 1°	Exclusion criteria: BNP	Comparator: N/A	with HR: 5.75; p<0.001	BNP and NT-proBNP.
	prevention ICDs	or NT-proBNP not available within 12mo		and BNP was associated	
	Churchy homes			with increased risk with	
	Study type:	of ICD implantation.		HR: 3.40; p<0.01.	
	Observational				
	Size: 564 patients				

● Berger et al. 2002 (38) ● 12021226	Aim: To evaluate role of BNP in predicting SCD in patients with HF with LVEF <35%	Inclusion criteria: Patients with HF and reduced EF with BNP level measured at baseline	Intervention: BNP levels at baseline and association with subsequent SCD	1° endpoint: In multivariate analysis, log BNP level was the only independent predictor of sudden death	Using a cutoff point of log BNP 2.11 (130 pg/mL), the KM sudden death–free survival rates were significantly higher in patients below (99%)
	Study type: Observational Size: 452 patients	Exclusion criteria: Patients with heart transplantation or VAD	Comparator: N/A	sudden death	compared with patients above (81%) this cutoff point (p=0.0001)

Data Supplement 8. RCTs Evaluating EP Study for VA – (Section 4.3.2)

Study Acronym;	Aim of Study; Study Type;	Patient Population	Study Intervention (# patients) /	Endpoint Results (Absolute Event Rates,	Relevant 2° Endpoint (if any); Study Limitations;
Author; Year Published	Study Size (N)		Study Comparator (# patients)	P values; OR or RR; & 95% CI)	Adverse Events
Buxton AE, et	Aim: to analyze the	Inclusion criteria: CAD,	Intervention: AAD	1° endpoint:	• 61% of events were
al. Circ 2002	relationship of EF	EF <u><</u> 40%, and	or ICD for	 Total mortality and 	arrhythmic among inducible
(39)	and inducible VA to	asymptomatic,	inducible patients	arrhythmic deaths/cardiac	patients with EF ≥30% and only
• <u>12417544</u>	mode of death	unsustained VT		arrests more common in	42% among noninducible
			Comparator: EF	patients with EF <30%	patients, p=0.002
	Study type:	Exclusion criteria: History	30-40% vs. <30%	Arrhythmic deaths	
	Prospective,	of syncope, sustained		similar in patients with EF	
	randomized, RCT	VT/VF more		<30% and 30–40%	
		than 48 h after AMI,		Relative contribution of	
	Size: 1791 patients	unsustained VT		arrhythmic deaths to total	
		only in the setting of drug-		mortality was higher in	
		induced LQTS or AMI or		inducible patients (58% of	
		that was attributable		deaths vs. 46% of deaths	
		to acute metabolic		in noninducible patients,	
		disorders or drug toxicity,		p=0.004	
		or symptomatic,			
		unsustained VT			

usefulness of EPS for risk stratification for	EF <u><</u> 40%, and	or ICD	arrhythmic death	
risk stratification for		0	i arrnythinic death	death from arrhythmia among
	asymptomatic,		• At 5 y, inducible	patients who received
SCD	unsustained VT	Comparator:	patients treated with	treatment with ICDs was
		Patients with	AAD/ICD had a	significantly lower than that
Study type:	Exclusion criteria: History	inducible VT/VF at	significantly lower risk of	among the patients discharged
Prospective,	of syncope, sustained	EPS randomized to	arrhythmic death or CA	without receiving defibrillator
randomized, RCT	VT/VF more	treatment with	(25%) than patients not	treatment (RR: 0.24; 95% CI:
	than 48 h after AMI,	AAD or ICD vs. no	1	0.13-0.45; p<0.001).
Size: 704 patients	unsustained VT	specific	,	Reduction in 1° endpoint in
with inducible,	only in the setting of drug-	antiarrhythmic	95% CI: 0.53-0.99)	AAD/ICD arm was due to
sustained VA	induced LQTS or AMI or	treatment	,	reduction in events in patients
	that was attributable			treated with ICDs, not AAD
	to acute metabolic			
	disorders or drug toxicity,			
	or symptomatic,			
	unsustained VT			
Aim: to test the	Inclusion criteria: CAD, EF	Intervention: EPS	1° endpoint: CA or	Patients with ischemic
usefulness of EPS for	<40%, and asymptomatic,		arrhythmic death	cardiomyopathy and
risk stratification for	unsustained VT	Comparator:	At 2 and 5 y, noninducible	asymptomatic, unsustained VT
SCD		Inducible VT/VF at	patients had a	with inducible VT have a
	Exclusion criteria: History	EPS and not	significantly lower risk of	significantly greater risk of SCD
Study type:	of syncope, sustained	treated with AAD	arrhythmic death or CA	or CA and higher overall
Prospective,	VT/VF more	or ICD compared	(12%, 24%) than inducible	mortality than similar patients
randomized, RCT	than 48 h after AMI,	to noninducible	patients (18%. 32%)	who are noninducible
	unsustained VT	patients	(adjusted p<0.001).	
Size: 1750 patients	only in the setting of drug-		Overall mortality at 5 y	
(353 inducible; 1397	induced LQTS or AMI or		was lower in noninducible	
noninducible)	that was attributable		patients (44% vs. 48%,	
	to acute metabolic		adjusted p=0.005).	
	disorders or drug toxicity,			
	or symptomatic,		Safety endpoint (if	
	unsustained VT		relevant): N/A	
	Prospective, randomized, RCT Size: 704 patients with inducible, sustained VA Aim: to test the usefulness of EPS for risk stratification for SCD Study type: Prospective, randomized, RCT Size: 1750 patients (353 inducible; 1397	Prospective, randomized, RCT Size: 704 patients with inducible, sustained VA Aim: to test the usefulness of EPS for risk stratification for SCD Study type: Prospective, randomized, RCT Size: 1750 patients (353 inducible; 1397 noninducible) Prospective, randomized, RCT Size: 1750 patients (353 inducible; 1397 noninducible) of syncope, sustained VT only in the setting of drug-induced LQTS or AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, unsustained VT Exclusion criteria: History of syncope, sustained VT/VF more than 48 h after AMI, unsustained VT only in the setting of drug-induced LQTS or AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic,	Prospective, randomized, RCT VT/VF more than 48 h after AMI, unsustained VT only in the setting of druginduced LQTS or AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, unsustained VT Aim: to test the usefulness of EPS for risk stratification for SCD Exclusion criteria: History of syncope, sustained VT Study type: Prospective, randomized, RCT Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI, unsustained VT Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, unsustained VT Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, Size: 1750 patients (353 inducible; 1397 noninducible) The than 48 h after AMI or that was attributable to acute metabolic disorders or drug to	Prospective, randomized, RCT randomized, RCT randomized, RCT randomized, RCT Size: 704 patients with inducible, sustained VA with inducible, sustained VA Aim: to test the usefulness of EPS for risk stratification for SCD Study type: Prospective, randomized, RCT Size: 1750 patients (353 inducible; 1397 noninducible) Prospective, randomized, RCT Size: 1750 patients (353 inducible; 1397 noninducible) Prospective, randomized, RCT randomized, RCT soft syncope, sustained VT Only in the setting of druginduced LQTS or AMI or that was attributable to acute metabolic disorders or drug toxicity, or symptomatic, unsustained VT Inclusion criteria: CAD, EF ≤40%, and asymptomatic, unsustained VT Size: 1750 patients (353 inducible; 1397 noninducible) Size: 1750 patients (353 inducible) Comparator: Inducible VT/VF at EPS and not treated with AAD or ICD compared to noninducible patients (12%, 24%) than inducible patie

• MADIT-I	Aim: To evaluate	Inclusion: Previous MI,	Comparator:	All-cause mortality:	• In patients with a prior MI,
 Moss et al. 	whether	LVEF ≤35%, NSVT,	Control (101	Control 32% vs. ICD 13%	low EF who are at high risk for
1996 (42)	prophylactic ICD, as	inducible VT at EPS that	patients)	(RRR -59% ARR -19%)	VT, prophylactic therapy with
• <u>8960472</u>	compared with	was non-suppressed with			an ICD leads to improved
	conventional	IV procainamide or	Intervention:		survival as compared with
	medical therapy,	equivalent AAD	ICD (95 patients)		conventional medical therapy.
	would improve				
	survival in a high-risk	Exclusion: previous CA or			
	group of patients	VT causing syncope that			
	with NSVT, reduced	was not associated with an			
	LVEF and previous	AMI; symptomatic			
	MI.	hypotension while in a			
		stable rhythm; and MI <3			
	Study type:	wk, prior CABG <2 mo or			
	prospective	PCI <3 mo, as were			
	multicenter RCT	women of childbearing			
		age who were not using			
	Size: 196 patients	medically prescribed			
		contraceptives, patients			
		with advanced			
		cerebrovascular disease,			
		patients with any			
		condition other than			
		cardiac disease that was			
		associated with a reduced			
		likelihood of survival for			
		the duration of the trial,			
		and patients who were			
		participating in other			
		clinical trials			
• SCD-HeFT	Aim: Evaluate	Inclusion: NYHA class I-III	Intervention 1:	All-cause mortality:	• In patients with NYHA class II
 Bardy et al. 	whether	HF, LVEF≤35%	GDMT plus a ICD	control 36% vs. ICD 29%	or III HF and LVEF≤35%,
2005 (43)	amiodarone or a		(829 patients)	(RRR -23% and ARR -7%)	amiodarone has no favorable
• <u>15659722</u>	conservatively	Exclusion: <18 y, unable to			effect on survival, whereas
	programmed shock-	give consent	Intervention 2:		single-lead, shock-only ICD
	only, single-lead ICD				therapy reduces overall
	would decrease the				

	risk of death from any cause in a broad population of patients with mild-to-moderate HF Study type: prospective multicenter RCT		GDMT plus amiodarone (845 patients) Comparator 1: GDMT plus Placebo (847 patients)		mortality. This was the longest and largest ICD trial.
• MADIT-II • Moss et al. 2002 (44) • 11907286	Size: 2521 patients Aim: To evaluate the benefit of ICD in patients with prior MI and reduced LVEF Study type: RCT Size: 1232 patients	Inclusion: Prior MI (>1 mo), EF ≤30% Exclusion: existing indication for ICD; NYHA class IV at enrollment; had undergone coronary revascularization <3 mo; MI <30 d, advanced cerebrovascular disease, childbearing age and not using contraceptive, presence of any condition other than cardiac disease that was associated with a high likelihood of death during the trial, or unwilling to provide consent	Comparator: Control (490 patients) Intervention: ICD (742 patients)	All-cause mortality: control 22% vs. ICD 16% (RRR -28% and ARR -6%)	In patients with a prior MI and advanced left ventricular dysfunction, prophylactic ICD improves survival and should be considered as a recommended therapy.

Data Supplement 9. Nonrandomized Trials, Observational Studies, and/or Registries of EP Study for VA - (Section 4.3.2)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Hilfiker et al. 2015 (45) 26131339 	Study type: prospective cohort Size: 265 patients	Inclusion criteria: Patients who underwent EPS for SCD risk evaluation because of structural or functional heart disease and/or electrical conduction abnormality and/or after syncope/CA. Exclusion criteria: Not specified	1° endpoint: SCD or appropriate ICD therapy Results: Sustained VT was induced in 125 patients (47.2%) and non-sustained VT in 60 patients (22.6%) 153 patients (57.7%) underwent ICD implantation 1° endpoint event occurred in 49 patients (18.5%). Cox regression analysis showed that both sustained VT during EPS (HR: 2.26; 95% CI: 1.22–4.19, p=0.009) and EF<5% (HR: 2.00; 95% CI: 1.13–3.54, p=0.018) were independent predictors of 1°	Mixed population of patients EPS identifies patients who are likely to have recurrent VA or SCD.
 Bourke et al. 1991 (46) 1907984 	Study type: prospective cohort Size: 1209 patients	Inclusion criteria: recent AMI Exclusion criteria: early recurrence of angina requiring treatment; spontaneous VT or VF more than 48 h after MI; CHF not controlled with furosemide; significant noncardiac disease	endpoint events. 1º endpoint: documented sustained VT/VF or witnessed sudden death Results: Sustained monomorphic VT was inducible by programmed electrical stimulation in 75 (6.2%). 14 infarct survivors (19%) with inducible VT experienced spontaneous VT or VF compared with 34 (2.9%) of those without inducible VT (p<0.0005).	• EPS predicts VT/VF in follow-up of survivors of AMI

 Bailey et al. 2001 (47) 11738292 	Study type: meta- analysis Size: 4022 post-MI patients	Inclusion criteria: 44 reports for which incidence of major arrhythmic events and predictive accuracy could be inferred Exclusion criteria: N/A	1° endpoint: sustained VT/VF, CA, sudden death Results: positive EPS had 61.6% sensitivity and 84.1% specificity 2 y probability of event was 25.5% RR 6.6; OR 8.5	 Multiple tests evaluated: SAECG; heart rate variability; severe VA on ambulatory electrocardiography; EF; and EPS. Results for all tests evaluated were similar EPS has moderate predictive value for life-threatening VA.
• Schmitt et al. 2001 (48) • <u>11401129</u>	Study type: prospective cohort Size: 98 post-MI patients identified as high risk by noninvasive markers	Inclusion criteria: post-MI patents identified as high risk by scoring system including EF, PVCs, and abnormal SAECG Exclusion criteria: Hx of spontaneous sustained VT	1° endpoint: sudden death, symptomatic VT, CA Results: Patients underwent EPS. Event rate was 33% with a positive EPS vs. 2.6% (p<0.0001) with a negative EPS.	A subgroup of 96 high-risk patients declined EPS. In this non-consent group, cardiac mortality (combined sudden and nonsudden) was significantly higher (log-rank chi-square 9.38 RR 4.7; 95% CI: 1.6–13.9, p=0.0022) compared to group treated according to results of EPS. 20/21 patients with a positive EPS had ICD implanted.
● Brembilla-Perrot et al. 2004 (49) ● <u>15358027</u>	Study type: Prospective observational Size: 180 patients (119 CAD, group 1; 61 DCM, group 2)	Inclusion criteria: EF<40% and syncope Exclusion criteria: unstable angina; recent AMI; recent coronary angioplasty or CABG; second- or third-degree AV block; sustained supraventricular or ventricular arrhythmia; clinical HF not controlled by furosemide; uncontrolled electrolyte abnormalities; significant noncardiac disease; or amiodarone treatment.	1° endpoint: cardiac mortality Results: Sustained VT was induced in 44 group I patients (37%) and 13 group II patients (21%); VFL (>270 beats/min) or VF was induced in 24 group I patients (19%) and 9 group II patients (15%) VT or VF induction was predictive of mortality in CAD and identified a group with high cardiac mortality (46%), compared with patients with a negative study, who had a lower mortality (6%;	EPS may be useful to determine mechanism of syncope in patients with ischemic cardiomyopathy.

			p<0.001). Cardiac mortality was only correlated with EF in DCM.	
 Bhandari AK Circ 1985 (50) 2856866 	Study type: retrospective single center Size: 15	Inclusion criteria: LQTS with syncope or ACA Mean QTc 550 msec 11 control subjects, normal	1° endpoint: EP testing in LQTS Results: RV and LV EPS, 3 extrastimuli, with and without isuprel	 Inducibility of nonsust VT did not provide prognostic information. EP studies of limited value in diagnosis, treatment of LQTS patients.
	<u>5120</u> . 13	QTc Exclusion criteria: N/A	Rapid polymorphic VT: 40% No pt with inducible sustained VT or VF	
Giustetto C EHJ2006 (51)16926178	Study type: Retrospective single center	Inclusion criteria: Short QTc ≤340 msec and personal or family Hx of CA. 73% males.	1° endpoint: outcomes with AICD or hydroquinidine Results: Median age dx 30y (4-	 Short QTS may be a cause of SCD in infancy Hydroquinidine may be proposed in children or patients not suitable for
	<u>Size</u> : 29	Exclusion criteria: N/A	80); 62% symptomatic: syncope 24%, AF 31%. 34% ACA (10 patients); 2/10 had CA in infancy. In 28% ACA was initial symptom. ICD implanted in 14; 10 hydroquinidine. Median followup 23 mo (9-49), one pt with appropriate ICD shock. No pt on hydroquinidine had SCD or syncope. ES 18/29: Ventricular ERP 140-180 msec. VF induced in 61% (11/18); 3/6 with documented VF had inducible VF: sensitivity 50%. AERP CL 600: 120-180 ms, mean 157.	AICD ● PES sensitivity 50%
• Mahida S JACC	Study type:	Inclusion criteria: Patients	1° endpoint: Inducibility of VF in	EPS not useful to risk stratify patients with prior VF area to a d EP.
2015 (52) ● <u>25593056</u>	multicenter observational	with ER and ACA due to VF underwent EPS. Mean age 36 ± 13y. Followup with ICD	patients with ACA and ER on ECG and outcomes. Followup 7±4.9 y	with prior VF arrest and ER
	<u>Size</u> : 81	interrogations.	Results: VF inducible in 22%.	

		Exclusion criteria: N/A	Recurrent VF in 33% of inducible VF, vs. 33% of those with non-inducible VF. p=NS, 0.93. VF inducibility did not correlate with max J wave amplitude or distribution	
• Giustetto C JACC 2011 (53) • 21798421	Study type: retrospective multi- center Size: 53	Inclusion criteria: European Short QT Registry patients with QTc ≤360 msec with Hx sudden death, ACA, syncope; patients with QTc ≤340 msec included without symptoms. 75% males. Family Hx SCD/CA (11). Genotype positive 23% of probands: HERG in 4 families (N588K in 2, T6181 in 2; CACNB2b in one family) Exclusion criteria: N/A	1° endpoint: syncope, CA or approp ICD shocks SQTS Results: Mean Followup 64±27 mo. Median age 26 y (IQR 17–39). 62% symptomatic: 32% with ACA (13 patients) or sudden death (4), syncope (8), AF (6), palpatations (13). Age at CA 3 mo–62 y. Males: >90% of CA occurred between 14–40 y. Prevalence CA males 35%, females 30%. AICD in 24, hydroquinidine in 12. 11/12 with prior CA received ICD: 2 approp ICD shocks. 58% complications of ICD, inapprop shocks due to T wave oversensing 4/14. PES: 28 patients. VERP CL 600–500: mean 166 msec. AERP 166 msec. VF induced in 16/28: 3/28 with prior CA = sensitivity 37%,	 SQTS assoc with SCD in all ages Symptomatic patients have high risk of recurrent arrhythmic events Patients treated with Hydroquinidine did not have arrhythmic events Asymptomatic patients: no CA/ICD shocks. PES not sensitive
			NPVs 58%. Overall event rate 3.3%/y: 4.9% in patients without AA drugs. Asymptomatic patients: 27. ICD implanted in 9 due to + family Hx or induced VF. Two long term	

• Raczak et al. 2004 (54) • <u>15226627</u>	Study type: prospective cohort Size: 112 patients	Inclusion criteria: post-MI patients with documented VF, sustained VT, or syncope and NSVT Exclusion criteria: AF, SND or AV block, insulindependent DM, frequent (>5%) ectopic beats	quinidine. One syncope; 2 nonsust VT on ICD. 1º endpoint: appropriate ICD shock or sudden or unwitnessed death Results: Sustained VT induced in 84% and 77% of patients who did or did not develop arrhythmia in follow-up (p=0.34) Baroreflex sensitivity <3.3 ms/mmHg was only predictor of arrhythmia recurrence in patients with EF <35% (sensitivity 79%, specificity 74%, positive and NPVs 83% and 68%)	97 patients had ICDs implanted EPS not useful in predicting arrhythmias in follow-up
 • AVID • Brodsky et al. 2002 (55) • 12228785 	Study type: substudy from prospective clinical trial Size: 572 patients	Inclusion criteria: patients with VF, VT with syncope, or sustained VT in the setting of LV dysfunction who underwent EPS Exclusion criteria: N/A	1° endpoint: death or recurrent VT/VF Results: 384 (67%) had inducible sustained VT or VF. Inducible patients were more likely to have CAD, previous infarction, and VT as their index arrhythmic event. Inducibility of VT or VF did not predict death or recurrent VT or VF.	EPS is of limited value in patients with a Hx of sustained VA.
 MADIT II Daubert et al. 2006 (56) 16386671 	Study type: substudy from prospective clinical trial Size: 593 patients	Inclusion criteria: Patients from MADIT II (previous MI, EF≤30%) who received ICDs and underwent EPS Exclusion criteria: control patients; ICD patients with no EPS	1° endpoint: sustained VT/VF Results: The 2 y KM event rate for VT or VF was 29.4% for inducible patients and 25.5% for noninducible patients (p=0.280, by log-rank analysis).	• ICD therapy for spontaneous VF was less common (p=0.021) in inducible patients than in noninducible patients.

			Inducible patients had a greater likelihood of experiencing ICD therapy for VT than noninducible patients (p=0.023).	
• ABCD • Costantini et al. 2009 (9) • 19195603	Study type: Prospective cohort; patients underwent EPS and T wave alternans testing; ICDs were implanted if either test was positive Size: 566 patients	Inclusion criteria: ischemic cardiomyopathy (EF <40%) and NSVT Exclusion criteria: unstable CAD; NYHA class IV; prior CA, sustained VT, or unexplained syncope; <28 d from MI, CABG, or PCI; permanent AF; on an AAD.	1° endpoint: appropriate ICD discharge or sudden death Results: 39 (7.5%) met the 1° end point at 1y T wave alternans achieved 1 y positive (9%) and negative (95%) predictive values comparable to EPS (11% and 95%). Event rate with both tests negative was 2% vs. 12% with both tests positive (p=0.017).	Both tests somewhat helpful in risk stratification, but NPV is not 100%
• DEFINITE • Daubert et al. 2009 (57) • <u>19545338</u>	Study type: substudy of DEFINITE Size: 204 patients	Inclusion criteria: dilated cardiomyopathy (EF≤35%), NSVT or frequent PVCs, and NYHA class I-III, randomized to ICD arm; noninvasive EPS performed through ICD Exclusion criteria: NYHA class IV or permanent pacemaker	1° endpoint: appropriate ICD therapy for VT/VF or arrhythmic death Results: Inducibility was found in 29 of 204 patients (VT in 13, VF in 16). 34.5% of the inducible group (10 of 29) experienced ICD therapy for VT or VF or arrhythmic death vs. 12.0% (21 of 175) of the noninducible patients (HR: 2.60; p=0.014).	Inducibility of either VT or VF was associated with an increased likelihood of subsequent ICD therapy for VT or VF.
• Gold et al. 2000 (58) • <u>11127468</u>	Study type: prospective, multicenter Size: 215 patients	Inclusion criteria: patients undergoing diagnostic EPS who were in sinus rhythm and able to do bicycle exercise; reasons for EPS included syncope, CA, sustained VT, SVT	1° endpoint: SCD, sustained VT/VF or appropriate ICD therapy Results: KM survival analysis of the 1° end point showed that T-wave alternans predicted events	Both T-wave alternans testing and EPS predicted VT.

		Exclusion criteria: not specified	with a RR:10.9; EPS had a RR: 7.1; and SAECG had a RR: 4.5. Multivariate analysis of 11 clinical parameters identified only T-wave alternans and EPS as independent predictors of events.	
 Gatzoulis et al. 2013 (59) 23588627 	Study type: prospective cohort Size: 158 patients	Inclusion criteria: symptomatic idiopathic DCM >6 mo Exclusion criteria: Hx of aborted SCD or sustained VT; NYHA class IV; Hx of MI or myocarditis; significant VHD; hypertrophic or restrictive cardiomyopathy; alcohol-associated disease; cardiac toxicity	1º endpoint: total mortality and appropriate ICD activation Results: EPS performed in all patients; 44 (27.8%) had inducible VT/VF. ICDs implanted in 41/44 inducible patients and 28/114 noninducible patients. No difference in mortality Inducibility was associated with ICD activation events (30/41 inducible patients (73.2%) vs. 5/28 noninducible patients (17.9%), p=0.001.	EPS inducibility of sustained VT/VF is predictive of future ICD activation but not total mortality in patients with CDM

Data Supplement 10. RCTs for Preventing SCD with HF Medications - (Section 5.2)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
 CAPRICORN Dargie et al. 2001 (60) 11356434 	Study type: RCT Aim: to test whether carvedilol added to standard AMI care in	Inclusion criteria: Recent MI (3-12 d); EF <40% Exclusion criteria	Intervention: Carvedilol up to 25mg BID Comparator: Placebo	1° endpoint: All-cause mortality 12% vs 15%, HR: 0.77; 95% CI 0.60–0.98, p=0·03).	 BB improve mortality post-MI in patients with LV dysfunction VT/VF significantly reduced.

	patients with left ventricular dysfunction would improve outcomes. Size: 1959	Uncontrolled HF, unstable angina, hypotension, bradycardia		VT/VF: 3.9% vs. 0.9%. HR: 0.24; 95% CI 0.11–0.49; p<0.0001.	
• US CARVEDILOL • Packer et al. 1996 (61) • 8614419	Study type: RCT Aim: To determine the effects of carvedilol on survival and hospitalization Size: 1094	Inclusion criteria: CHF, LVEF<35% Exclusion criteria Major procedure or surgery within 3 mo.	Intervention: Carvedilol Comparator: Placebo	1° endpoint: survival and hospitalization - Mortality: 7.8% vs. 3.2 % - SCD 3.8% vs. 1.7%	BB have a large effect on all cause and SCD mortality.
• CIBIS II • No Authors listed (62) • 10023943	Study type: RCT Aim: To investigate the efficacy of bisoprolol in decreasing all-cause mortality in chronic HF Size: 2647	Inclusion criteria: EF <35%, class III, IV, standard therapy, Exclusion criteria N/A	Intervention: Bisoprolol Comparator: Placebo	1° endpoint: all-cause mortality CIBIS-II was stopped early, All-cause mortality 11.8% vs 17.3%. p<0.0001. SCD 3.6% vs 6.3% p=0.0011.	Bisoprolol reduces all-cause mortality and mortality from SCD.
• MERIT HF • Hjalmarson et al. (63)2000 • 10714728	Study type: RCT Aim: To examine the effects of metoprolol CR/XL on mortality,	Inclusion criteria: NYHA class II to IV, EF<40%; optimum standard therapy. Exclusion criteria	Intervention: Metoprolol succinate Comparator: Placebo	1° endpoint: mortality and hospitalization (time to event). - All-cause mortality: 34% - SCD: 41% RR	BB reduce mortality in patients with HF.

• V-HEFT-II • Cohn et al. 1991 (64) • 2057035	hospitalization, symptoms, and QoL in patients with HF. Size: 3991 Study type: RCT Aim: To better define vasodilator therapy in HF Size: 804	Inclusion criteria: NYHA Class II-III Exclusion criteria N/A	Intervention: Enalapril Comparator: Isosorbide Dinitrite	1° endpoint: mortality Mortality 18% vs. 25% p=0.016. SCD: 14% vs. 23%, p<0.05 favoring enalapril	• Enalapril in patients with HF reduces mortality and SCD compared to Isosorbide Dinitrite
• Val-HeFT • Cohn et al. 2001 (65) • 11759645	Study type: RCT. Aim: To explore the efficacy of the addition of ARB to ACE-I therapy. Size: 5010	Inclusion criteria: NYHA II, III Exclusion criteria N/A	Intervention: Valsartan (added to ACE-I) Comparator: Placebo	1° endpoint: all-cause mortality Result: no difference in all-cause mortality.	ARB added to ACE-I are not additionally helpful
• VALIANT • Pfeffer et al. 2003 (66) • 14610160	Study type: RCT Aim: To explore the effects of ARB added to ACE-I therapy. Size: 14,703	Inclusion criteria: Post-MI, LVEF<35%. Class I or II HF. Exclusion criteria N/A	Intervention: Valsartan 160 BID Comparator: Valsartan 80 BD Both added to enalapril	1º endpoint: all-cause or CV mortality No difference in either all-cause or CV related mortality	ARB added to ACE-I are not additionally helpful
• ELITE	Study type: RCT	Inclusion criteria:	Intervention: Losartan Comparator: Captopril	1° endpoint: tolerability measure	• ARB better than ACE,

Pitt et al. Lancet	Aim: To determine	NYHA II – IV, EF <40%,			Only ARB trial to
1997 (67)	the relative efficacy	age >65 y		2° measure: mortality	show a difference in
• <u>9074572</u>	of ACE vs. ARB in	Exclusion criteria			SCD.
	HF	N/A		All-cause mortality 4.8% vs.	• Small trial,
				8.7% (p=0.035)	Mortality was a 2°
	<u>Size:</u> 722				end-point.
				36% relative risk reduction	
				in SCD	
• ELITE II	Study type: RCT	Inclusion criteria:	Intervention: Losartan	1° endpoint: all-cause	There were no
• Pitt et al. 2000 (68)		Age >60 y, class II-IV	Comparator: Captopril	mortality and SCD	significant differences
• <u>10821361</u>	Aim: To confirm	HF, EF <40%.			in all-cause mortality or
	whether losartan is			all-cause mortality (11.7 vs	sudden death or
	superior to	Exclusion criteria		10.4%) p=0.16	resuscitated arrests
	captopril	N/A		or sudden death or	
				resuscitated arrests (9.0 vs	
	<u>Size:</u> 3152			7.3%) p=0.08	
•RALES	Study type: RCT	Inclusion criteria:	Intervention:	1° endpoint: all-cause	Spironolactone
●Pitt et al. 1999 (69)		Class III, IV HF, EF	spironolactone	mortality	reduced all-cause
• <u>10471456</u>	Aim: To explore	<35%,			mortality and SCD in
	whether a		Comparator: placebo	Death: 46% vs. 35%.	patients with HF.
	mineralocorticoid	Exclusion criteria		p<0.001	
	antagonist could	N/A		SCD: 13% vs. 10%, p=0.02	
	reduce mortality in				
	patients with HF.				
	Size: 1662				
• EPHESUS	Size: 1663 Study type: RCT	Inclusion criteria:	Intervention:	1° endpoint: All-cause	Eplerenone reduced
• Pitt et al. 2003 (70)	Study type. NCI	3-14 d post-MI	Eplerenone	mortality.	all-cause and SCD in
• 12668699	Aim: To determine	LVEF <40%	Comparator: Placebo	mortality.	patients with HF
12000099	the effect of	LVLI \40/0	comparator. Hacebo	Death: 14% vs. 17%. RR	patients with th
	eplerenone on	Exclusion criteria		0.85, p=0.008.	
	mortality among	Creatinine >2.5		υ.υ., μ-υ.υυδ.	
	patients with AMI	Ci Cutilille >2.5		SCD: 5% vs. 6% (p=0.03)	
	and LV dysfunction			3cD. 3/6 vs. 0/6 (μ-0.05)	
	und Ly dystutiction	1	1		
	<u>Size:</u> 6632			Safety endpoint (if	

				Hyperkalemia: 5.5% eplerenone vs. 3.9% Hypokalemia: 8.4% eplerenone vs. 13.1%	
• EMPHASIS • Zannad et al. 2011 (71) • 21073363	Study type: RCT Aim: To evaluate the effect of eplerenone on patients with chronic systolic HF.	Inclusion criteria: Class II HF EF <35% Exclusion criteria AMI, NYHA III, IV, GFR <30	Intervention: Eplerenone Comparator: Placebo	1° endpoint: composite – death and HF hospitalization 1° composite endpoint: 18.3% vs. 25.9% (p<0.001) SCD: 4.4% vs. 5.5%, p=0.12	Significant reduction on composite endpoint. Non- significant reduction in SCD.
	<u>Size:</u> 2737			Safety endpoint (if relevant): Hyperkalemia: 11.8% vs. 7.2%	
• PARADIGM	Study type: RCT	Inclusion criteria:	Intervention:	1° endpoint: CV death (2°	
• Desai et al. 2015		Class II-IV HF	Eplerenone	analysis exploring mode of	
(72)	Aim: 2° analysis of	EF <40%		death)	
• <u>26022006</u>	the original PARADIGM-HF trial to explore mode of death. Size: 8399	Guideline rec. med therapy Exclusion criteria AMI, NYHA III, IV, GFR <30	<u>Comparator</u> : Placebo	CV death: HR: 0.80; 95% CI 0.72–0.89, p<0.001. Among CV deaths, SCD: HR: 0.80; p=0.008 death due to worsening HF: HR: 0.79; p=0.034	

Data Supplement 11. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries Related to Surgery and Revascularization Procedures – (Section 5.5)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator	Endpoint Results (Absolute Event Rates, P values; OR or RR; &	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
	Study Size (ity		(# patients)	95% CI)	Adverse Events
• STICH • Carson et al. 2013 (73) • 24621972	Aim: Cause of death analysis for the 462 deaths during the original follow-up period of a median of 56 mo of the parent trial that compared CABG plus medical therapy to medical therapy alone to reduce death from any cause Study type: RCT Size: 1212 patients	Inclusion criteria: age ≥18 y, CAD amenable to CABG, and LVEF ≤35% Exclusion criteria: left main coronary stenosis ≥50% or Canadian Cardiovascular Society III-IV angina while receiving medical therapy	Intervention: CABG (plus medical therapy) Comparator: medical therapy alone	CABG therapy tended to reduce cardiovascular deaths (HR: 0.83; 95% CI: 0.68–1.03; p=0.09) and significantly reduced the most common modes of death: sudden death (HR: 0.73; 95% CI: 0.54–0.99; p=0.041) and fatal pump failure events (HR: 0.64; 95% CI: 0.41–1.00; p=0.05). Time-dependent estimates indicated that the protective effect of CABG principally occurred after 24 mo in both categories.	
• STICHES • Velazquez et al. 2016 (74) • 27040723	Aim: Compare CABG plus medical therapy to medical therapy alone to reduce death from any cause Study type: RCT Size: 1212 patients, with 9.8 y median followup	Inclusion criteria: age ≥18 y, CAD amenable to CABG, and LVEF ≤35% Exclusion criteria: left main coronary stenosis ≥50% or Canadian Cardiovascular Society III-IV angina while receiving medical therapy	Intervention: CABG (plus medical therapy) Comparator: medical therapy alone	1° endpoint: lower mortality with CABG (58.9%) than the medical therapy (66.1%) group. CABG vs. medical therapy, HR: 0.84; 95% CI: 0.73–0.97; p=0.02 by logrank test.	• Cardiac arrest outcomes: • Sudden/arrhythmic death 116 (19%) CABG, 154 (26%) medical therapy • Within 30 d after randomization • CA requiring CPR, 25 (4%) CABG and 2 (0.3%) medical therapy.

AVID Registry	Aim: determine	Inclusion criteria:	Intervention:	Patients who underwent	
• Cook et al.	whether patients	Ventricular fibrillation	revascularization; ICD	revascularization	
2002 (75)	with CAD who	or symptomatic VT		had better survival than	
• 12040343	underwent	(defined		those who did not after	
	revascularization	as VT with syncope or		the index event (HR: 0.67;	
	after a life-	VT with symptoms and		p=0.002). With a mean	
	threatening VA have	LVEF ≤0.40 [VT/VF]).		follow-up period of	
	improved survival	Also, patients with		24.2±13.5 mo, crude	
	rate when	unexplained syncope		death rates (with 95%	
	compared with	who had inducible and		confidence limits) were	
	those who did not	symptomatic VT during		21.4%±4.8% in the	
	undergo revasc; and	EPS.		revascularization group	
	evaluate the			and 29.4%±2.0% in the	
	interaction of			medically treated group.	
	revascularization				
	with ICD therapy			After adjustment, HR	
				unchanged at 0.67,	
	Study type:			significance decreased to	
	observational			p=0.01.	
	Size: 3117 patients			The association of better	
	with life-threatening			survival with ICD was	
	VA, of whom 2321			consistent regardless of	
	(77%) had CAD and			revascularization status	
	281 (17%)				
	underwent CABG				
	after the index				
	event				
 Mondésert et 	Aim: determine the	Inclusion criteria: LVEF	Intervention:	Revascularization was not	
al. 2016 (76)	impact of	≥40%, first clinical	coronary	associated with	
• <u>26806581</u>	revascularization on	sustained VA, without	revascularization	significantly lower rate of	
	recurrent VA or	ACS		recurrent VA or death	
	death			(multivariable HR: 0.86;	
				95% CI 0.60–1.24, p=0.43)	
	Study type:			regardless of whether	
	observational			complete or incomplete	
				(HR: 0.65; 95% CI 0.25-	

	Size: 274 patients, mean follow-up 6.2 y			1.69, p=0.37) or PCI or CABG (HR: 1.02; 95% CI 0.53–1.94, p=0.96). ICD associated with significantly lower mortality (HR: 0.23; 95% CI 0.09– 0.55, p=0.001).	
 Ngaage et al. 2008 (77) 18355509 	Aim: assess the outcomes in patients undergoing CABG after ischemic VT/VF (after MI, with exercise, with CA) Study type: observational Size: 93 patients undergoing CABG	Inclusion criteria: patients who underwent CABG with preceding VT or VF	Intervention: CABG	Perioperative mortality was 6.5%, and 5 y survival rate was 88%, comparable to patients without prior VT/VF.	
Every et al.1992 (78)1593036	Aim: estimate the possible effect of CABG on the subsequent outcome of patients who have been resuscitated from CA Study type: observational Size: 265 patients, 85 treated with CABG, 180 medical	Inclusion criteria: OHCA survivors, neurologically recovered, coronary disease, no prior CABG or other revascularization		Significant association of CABG with lower risk of subsequent CA during follow-up RR: 0.48; 95% CI 0.24–0.97, p=0.04). Also, lower cardiac mortality (RR: 0.65; 95% CI 0.39–1.10, p=0.10).	

• van der Burg et	Aim: determine	Inclusion criteria: VA	Intervention: N/A	Patients with	
al. 2003 (79)	relation between	CA survivors with CAD	intervention: N//	ischemic/viable	
• 14530201	ischemia, viability,	Crisaritors with cris		myocardium (N=73) were	
14330201	scar tissue (and			revascularized if possible.	
	revascularization),			ICD in 112 (72%) patients.	
	and the incidence of			15 cardiac deaths	
	VA (and survival) in			occurred and 42 (29%)	
	patients with CA and			patients had recurrent	
	coronary disease			VA. Patients with events	
	Study type:			(death or recurrence)	
	observational			exhibited more often a	
				severely depressed LVEF	
	Size: 153 patients,			(≤30%), more extensive	
	follow-up up to 3 y			scar tissue, and less	
	,			ischemic/viable	
				myocardium on perfusion	
				imaging and	
				less frequently	
				underwent	
				revascularization.	
				Multivariate analysis	
				identified extensive scar	
				tissue and LVEF ≤30% as	
				the only predictors of	
				death/recurrent VA	
• PROCAT	Aim: assess	Inclusion criteria:	Intervention:	At least 1 significant	
 Dumas et al. 	the effect of an	patients with OHCA	immediate PCI	coronary lesion was	
2010 (80)	invasive strategy for	with presumed cardiac		found in 304 (70%)	
• <u>20484098</u>	patients with OHCA	etiology and with		patients, in 128 (96%) of	
	on hospital survival.	coronary angiogram		134 patients with ST-	
	_	performed at admission		segment elevation, and in	
	Study type:			176 (58%) of 301 patients	
	observational			without ST-segment	
				elevation. Multivariable	
	Size: 435 patients			analysis showed	
	treated with an			successful coronary	

• PROCAT II registry • Dumas et al. 2016 (81) • 27131438	immediate coronary angiogram at admission with coronary angioplasty if possible Aim: assess the association between early PCI and favorable outcome (cerebral performance category 1 to 2 at discharge) Study type: observational Size: 695 patients treated with an immediate coronary angiogram at admission without ST elevation on post-resuscitation ECG	Inclusion criteria: patients with OHCA with presumed cardiac etiology and with coronary angiogram performed at admission	Intervention: immediate PCI	angioplasty to be an independent predictor of survival, regardless of the post resuscitation ECG pattern (OR: 2.06; 95% CI: 1.16–3.66). At least 1 significant coronary lesion was found in 403 of 695 patients (58%). A PCI was performed in 199 of 695 (29%). A favorable outcome was observed in 87 of 200 (43%) in patients with PCI compared with 164 of 495 (33%) in patients without PCI (p=0.02). After adjustment, PCI was associated with a better outcome (adjusted OR: 1.80; 95% CI: 1.09–2.97, p=0.02).	
• SYNTAX • Serruys et al. 2009 (82) • 19228612	Aim: To show PCI is noninferior to CABG for major adverse cardiac or cerebrovascular event (i.e., death from any cause, stroke, MI, or repeat revascularization) during 12 mo	Inclusion criteria: previously untreated three-vessel or left main CAD (or both) with stable/unstable angina or atypical chest pain Exclusion criteria:	Intervention: PCI with Taxus Express paclitaxel-eluting stents Comparator: CABG	1° endpoint: rates of major adverse cardiac or cerebrovascular events at 12 mo were significantly higher in the PCI group (17.8%, vs. 12.4% for CABG; p=0.002)	• At 12 mo, the rates of death and MI were similar between the 2 groups; stroke was significantly more likely to occur with CABG (2.2%, vs. 0.6% with PCI; p=0.003).

	Study type: RCT Size: 1800 patients with 12 mo follow- up	Previous PCI or CABG, AMI, or the need for concomitant cardiac surgery			
• SYNTAX • Milojevic et al. 2016 (83) • 26764065	Aim: to investigate specific causes of death, and its predictors, after revascularization for complex CAD in patients Study type: RCT Size: 1800 patients with 12 mo follow-up	Inclusion criteria: previously untreated 3- vessel or left main CAD (or both) with stable/unstable angina or atypical chest pain Exclusion criteria: Previous PCI or CABG, AMI, or the need for concomitant cardiac surgery	Intervention: PCI with Taxus Express paclitaxel-eluting stents Comparator: CABG	1° endpoint: 97 deaths after CABG and 123 deaths after PCI during a 5 y followup. After CABG, 49.4% of deaths were cardiovascular, with the greatest cause being heart failure, arrhythmia, or other causes (24.6%). After PCI, the majority of deaths were cardiovascular (67.5%) and as a result of MI (29.3%). Treatment with PCI vs. CABG was an independent predictor of cardiac death (HR: 1.55; 95% CI: 1.09–2.33; p = 0.045).	• SCD: 24 (2.8%) with PCI, 15 (1.9%) with CABG, HR: 1.61; 95% CI: 0.83–3.11, p=0.16.
• SCD-HeFT	Aim: examine the	Inclusion criteria:	Intervention: ICD	There was no significant	
• Al-Khatib et al.	effect of the ICD on	Overall SCD-HeFT,		difference in ICD benefit	
2008 (84) ● <u>18479330</u>	the outcomes of patients with prior	NYHA class II or III CHF symptoms and a LVEF	Comparator: no ICD	across the revascularization	
	coronary	≤35% due to ischemic		subgroups (all p>0.1).	
	revascularization	or nonischemic heart		There was a trend toward	
	enrolled in SCD-	disease.		improved survival with an	
	HeFT			ICD in patients who had	

	Study type: RCT Size: of the 882 patients who met these inclusion criteria, 255 (29%) had no prior revascularization, 178 (20%) had prior PCI only, 284 (32%) had prior CABG only, and 165 (19%) had prior PCI and CABG.	This substudy, patients with ischemic heart disease who were not randomized to amiodarone (N= 884) and who had complete revascularization data (revascularization data were missing on 2 patients).		their CABG >2 y before randomization (HR: 0.71; 95% CI: 0.49–1.04) that was not observed in patients who had their CABG ≤2 y before randomization (HR:1.40; 95% CI: 0.61–3.24)	
 Nageh et al. 2014 (85) 25146702 	Aim: assess the role of ICD in cardiac surgery patients with perioperative resuscitated VA arrest <3 mo post revascularization, and the role of ICDs in patients who had revascularization after SCD Study type: observational, evaluating total mortality and/or appropriate ICD therapy Size: 164 patients had cardiac surgery	Inclusion criteria: cardiac surgery and ICD within 3 mo	Overall group rates	The 1° endpoint of total mortality and appropriate shocks were observed in 52 35 (38%) and 28 (30%) of patients, respectively Conclusion was that recurrent VA are not prevented by CABG	

and ICD within 3 mo; 93/164 had an ICD for sustained		
pre- or		
postoperative VT or		
fibrillation requiring		
resuscitation, mean		
follow-up 49 mo		

Data Supplement 12. Nonrandomized Trials, Observational Studies, and/or Registries of Arrhythmic Surgery and Revascularization for Arrhythmia Management – (Section 5.5.1)

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Relevant 2° Endpoint (if any); Study Limitations;
Year Published	Study Size		& 95% CI)	Adverse Events
• Kumar et al. 2015	Aim: To characterized	Inclusion criteria: Sixty-	1° endpoint: abolishment of	The conclusion was that a
(86)	the reasons for VT	seven patients with VT	at least 1 inducible VT,	collaborative strategy of alternative
• <u>25925229</u>	ablation failure and	refractory to 4±2 AAD and	complete success, partial	interventional procedures offers the
	describe alternative	2±1 previous	success (abolishment of at	possibility of achieving arrhythmia
	interventional	endocardial/epicardial	least 1 spontaneous VT), and	control in high-risk patients with VT that
	procedures.	catheter ablation	failure (residual inducibility of	is otherwise uncontrollable with AAD
		attempts underwent	spontaneous VT).	and standard percutaneous catheter
	Study type: Single	transcoronary ethanol		ablation techniques.
	center experience	ablation, surgical	Results: Transcoronary	
		epicardial window (Epi-	ethanol ablation alone was	
	<u>Size</u> : 62	window), or surgical	attempted in 37 patients, OR-	
		cryoablation	Cryo alone in 21 patients, and	
			a combination of	
			transcoronary ethanol	
			ablation and OR-Cryo (5	
			patients), or transcoronary	
		Exclusion criteria: N/A	ethanol ablation and Epi-	
		=======================================	window (4 patients), in the	
			remainder. Overall,	
			alternative interventional	
			procedures abolished ≥1	
			inducible VT and terminated	

 Anter et al. 2011 (87) 21673018 	Aim: Evaluate the efficacy of preoperative electroanatomic and EP characterization of the VT substrate and circuit to guide surgical ablation in patients with NICM Study type: Single center experience Size: 62	Inclusion criteria: Eight patients with recurrent sustained VT refractory to AAD underwent endocardial and/or epicardial ablation procedures. After the unsuccessful percutaneous approach, surgical cryoablation was applied to the sites previously identified and targeted during the percutaneous procedure.	storm in 69% and 74% of patients, respectively, although 25% of patients had at least 1 complication. By 6 mo post procedures, there was a significant reduction in ICD shocks (from a median of 8/mo to 1; p<0.001) and AAD requirement although 55% of patients had at least 1 VT recurrence, and mortality was 17%. 1° endpoint: Clinical VT and ICD shocks Results: During a mean followup period of 23 ± 6 mo (range, 15–34 mo), 6 patients had significant reduction in VT burden as evident by a reduced number of ICD shocks after ablation (6.6–0.6 shocks per pt; p=0.026). Two patients died, 1 of progressive HF and 1 of sepsis.	The authors concluded that VT circuits inaccessible to percutaneous ablation techniques are rare but can be encountered in patients with nonischemic cardiomyopathy. These VTs can be successfully targeted by surgical cryoablation guided by preoperative electroanatomic and EP mapping.
		Exclusion criteria: N/A		
 Bhavani et al. 2007 (88) 18039225 	Aim: To present variety of ablation strategies and technologies for surgical cryoablation of VT	Inclusion criteria: 3 patients who underwent succeesful surgical cryoablation after catheter failed. Exclusion criteria: N/A	1° endpoint: Successful elimination of VT Results: Case report. The specific approach (endocardial vs. epicardial, beating heart vs. arrested) and ablation device must be	Patient with intraoperatively CARTO

	Study type: Single center experience-case report		tailored to the patient's anatomy and presentation	
	Size: 3			
 Sartipy et al. 2006 (89) 16368337 	Aim: The aim of this study was to evaluate the Dor procedure including VT surgery Study type: Single center experience Size: 53	Inclusion criteria: From July 1997 to December 2003, 53 consecutive patients with left ventricular aneurysm and VT underwent surgical ventricular restoration including nonguided endocardiectomy and cryoablation. Twenty-four patients had at least 1 preoperative episode of spontaneous VT, and 29 patients had inducible-only VT.	1° endpoint: Mortality and Vt inducible or spontaneous Results: Early mortality was 2 of 53 (3.8%). Mean followup was 3.7 y. At 1, 3, and 5 y overall actuarial survival was 94%, 80%, and 59%, respectively. Surgical success rate in patients with preoperative spontaneous VT was 91%. Inducible VT was found in 5 of 35 patients who underwent postoperative programmed stimulation. There was no arrhythmia-	Authors concluded that the Dor procedure including endocardiectomy and cryoablation yields a very high (90%) freedom from spontaneous VT and eliminates the need for an ICD in most patients Karolinska Institute is a specialized center.
		Exclusion criteria: N/A	related late death and there was no loss to follow-up.	
 Choi et al. 2015 (90) 25697752 	Aim: The aim is to describe surgical cryoablation of VA from the LVOT region inaccessible for ablation because of epicardial fat or overlying coronary arteries Study type: Single center experience Size: 4	Inclusion criteria: During the period from March 2009 to March 2014, 190 consecutive patients with focal VA originating from the LVOT underwent ablation at Brigham and Women's Hospital, Boston. The study describes 4 patients (2%) who underwent surgical cryoablation.	1º endpoint: Patients outcomes. Results: Surgical cryoablation was successful in 3 of the 4 patients. The 4 th patient subsequently had successful endocardial catheter ablation. During a mean followup of 22 ± 16 mo (range 4–42 mo), all patients showed abolition of or marked reduction in symptomatic VA. However, 1 patient subsequently required	• The authors concluded that surgical cryoablation is an option for highly symptomatic drug-resistant VAs emanating from the LVOT region. Yet, the procedure is not effective for all patients, and coronary injury is a risk.

 Patel et al. 2016 (91) 26377813 	Aim: to determine effectiveness of hybrid surgical epicardial mapping and ablation at the time to LVAD placement Study type: Single center experience. Retrospective review. Size: 5	Inclusion criteria: N/A Inclusion criteria: From March 2009 to October 2012, 5 patients (4 men and 1 woman, age range 52–73 y) underwent open chest EPS and epicardial mapping for recurrent VT while the heart was exposed during the period of LVAD implantation Exclusion criteria: N/A	percutaneous intervention to the LAD; another developed progressive left ventricular systolic dysfunction caused by NICM; and a third patient underwent permanent pacemaker implantation because of complete AV block after concomitant aortic valve replacement. Endpoint: post LVAD VA. Results: Epicardial mapping was considered if patients had recurrent VT despite failed prior endocardial ablation and/or electrocardiogram (EKG) features of an epicardial exit. Activation and/or a substrate mapping approach were employed during all procedures. 3 of 5 patients (60%) had acute procedural success. In all patients, VT was either eliminated or significantly reduced with epicardial ablation. 1 patient had mediastinal bleeding delaying sternal closure. During a follow-up period of 363±368 d, 4 patients died	Open-chest hybrid epicardial mapping and ablation for recurrent VT is feasible and can be considered in select patients during the period of LVAD implantation.
 Mulloy et al. 2013 (92) 22520722 	Aim: to determine whether intraoperative cryoablation in select	Inclusion criteria: 50 consecutive patients undergoing implantation of the HeartMate II LVAD	due to nonarrhythmic causes. 1° endpoint: post LVAD ventricualr arrhythmias.	Postoperative VA can be minimized by preoperative risk assessment and intraoperative treatment. Localized cryoablation in select patients offers

patients reduces the	were examined. 14 of	Results: Compared with	promising early feasibility when
incidence of	these patients had	NoCryo, the Cryo group had	performed during HeartMate II LVAD
postoperative VA after	recurrent preoperative	significantly decreased	implantation.
LVAD.	VA. Of those patients with	postoperative resource use	None of the Cryo patients had
	recurrent VA, half	and complications (p<0.05).	recurrent postoperative VA compared
Study type: Single	underwent intraoperative	Recurrent postoperative VA	with 4 (57%) of the NoCryo group
center experience.	cryoablation (Cryo: N=7)	did not develop in any of the	(p=0.02).
Retrospective review.	and half did not (NoCryo:	Cryo patients (p=0.02).	
	N=7).		
<u>Size</u> : 14			
	Exclusion criteria: N/A		

Data Supplement 13. RCTs for Autonomic Modulation – (Section 5.6)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
 Schwartz PJ et al. 	Study type:	Inclusion criteria:	Intervention: High risk:	1° endpoint: SCD.	LCSD may be considered
1992 (93)	RCT	Patients post-MI (30	1:1:1 BB (oxprenolol) vs.	22 mo	as a possible alternative for
		d); High risk (evidence	LCSD;	High Risk:	high-risk patients with
	Aim: To explore the	of Vfib or Vtach); low	Low risk: BB vs. placebo.	Placebo 21.3%	contraindications to BB.
	influence of BB vs.	risk (no evidence of VF		Oxprenolol 2.7%	
	LCSD in patients at	or VT.	Comparator: Placebo	LCSD 3.6%	
	high risk for SCD.				
		Exclusion criteria		Low Risk:	
	Size: 144 high risk;	N/A		Placebo: 5.2%	
	869 low risk			Oxprenolol: 1.6%	
 Krittayaphong et al. 	Study type:	Inclusion criteria:	Intervention:	1° endpoint:	BB may be useful for
2002 (94)	RCT	VA with LBBB, inferior	Atenolol 50-100mg/day	Atenolol significantly	patients with RVOT and
• <u>12486439</u>		axis morphology.		decreased PVC count	symptomatic VA.
	Aim: To determine	Symptomatic (VA	Comparator: Placebo	(p=0.001) and average	
	the efficacy of	disturbed their daily		heart rate (p<0.001)	
	atenolol in the	activities)		compared to placebo.	
	treatment of			Both placebo and	
	symptomatic VA	Exclusion criteria			

from RVOT	SHD.	atenolol decreased	
compared with		symptom frequency.	
placebo			
<u>Size:</u> 52			

Data Supplement 14. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Autonomic Modulation – (Section 5.6)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Vaseghi et al. 2014 (95) • 24291775 	Study type: retrospective chart review Aim: To describe the experiences of patients with VT storm who underwent cardiac sympathetic denervation. Size: N= 41 (14 LCSD; 27 BCSD)	Inclusion criteria: VT storm (>3 events requiring treatment in 24 h) or refractory VA and ICD shocks who underwent cardiac sympathetic denervation between April 2009 and December 2012. Exclusion criteria: N/A	1° endpoint: Survival free of ICD shocks. Results: Survival free of ICD shocks: 30% in LCSD; 48% in the BCSD. (p=0.04) number of shocks decrease from Mean of 19 pre CSD to 2.3 (p<0.001)	Bilateral cardiac sympathetic denervation appears better than LCSD
 Ajijola et al. 2012 (96) 22192676 	Study type: Case Series Aim: To describe the experiences of patients with bilateral cardiac sympathetic denervation (or RCSD after unsuccessful LCSD) Size: N=6	Inclusion criteria: Patients with ongoing VAs with LCSD and maximal med therapy Exclusion criteria: N/A	1° endpoint: Reduction in Ventricular events Results: Complete response in 4/6 Partial response in 1/6 No response in 1/6 (PMVT)	Our study suggests that patients with incessant VA for whom no other therapeutic options exist, bilateral cardiac sympathetic denervation may be beneficial.
 Ukena et al. (97) 27364940 	Study type: Multicenter (5) Case Series Aim: To describe the effect of renal denervation on refractory VT	Inclusion criteria: CHF; Recurrent VA refractory to medications and ablation Exclusion criteria: N/A	1º endpoint: Reduction in Ventricular events Results: Median VT/VF: • 4 wk prior =21 • 1 mo post =2 (p=0.004) • 3 mo post =0 (p=0.006)	Renal sympathetic denervation appeared safe and was associated with a reduction in VT/VF events.

	<u>Size</u> : N=13		No peri-procedural adverse events Baseline BP was low but no change in BP.	
• Grimaldi et al. 2012	Study type: Case	Inclusion criteria:	1° endpoint: Ventricular arrhythmia	• SCS may decrease the rate of
(98) • 22877745	Series (from patients enrolled in an under-	Patients with CM, ICDs and previous VF or 2xVT	Results:	VA.
22011143	enrolled RCT – trial was a 2 mo alternating on/off design.)	Exclusion criteria: N/A	Patient 1 had a 75% reduction in VA with SCS on Patient 2 had a 100% reduction in VA	
	Aim: To describe the experiences of patients with SCS on		with SCS on. (These are the authors reports, numbers in the table don't quite add to this. Not sure how the math was done)	
	Size: N=2			

Data Supplement 15. RCTs Comparing Acute Management of Specific Arrythmias - (Section 6)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
 Kudenchuk et 	Aim: Compare	Inclusion criteria: 18 y	Intervention: IV	1° endpoint: No	 Neurologic outcomes similar
al. 2016 (99)	amiodarone,	or older with OHCA and	amiodarone or	difference in survival to	More amiodarone patients
• <u>27043165</u>	lidocaine, placebo in	shock refractory VF or	lidocaine; repeated	hospital discharge:	required temporary pacing;
	OHCA with shock-	pulseless VT. IV access	once if VF/VT	amiodarone (24.4%),	otherwise, no difference in
	refractory VF or		persisted after initial	lidocaine (23.7%),	drug related adverse events
	pulseless VT	Exclusion criteria:	dose and repeat	placebo (21.0%).	Trial may have been
		Already received	shocks	Amiodarone vs. placebo	underpowered to show
	Study type: RCT	lidocaine or		3.2% points (95% CI: -0.4–	amiodarone benefit over
	double-blind,	amiodarone,	Comparator: IV	7.0; p=0.08); lidocaine vs.	placebo
	placebo controlled	hypersensitivity to	normal saline	placebo 2.6% points (95%	
		these drugs	repeated once if	CI: -1.0-6.3; p=0.16);	Note: An editorial (100)
	Size: 3,026 patients		VF/VT persisted after	Amiodarone vs. lidocaine	suggesting use of amiodarone

			initial dose and	0.7% points (95% CI: -3.2-	or lidocaine for witnessed
			repeat shocks	4.7; p=0.70)	arrest as there was a significant
					reduction in shocks and fewer
				In witnessed arrest,	CPR events in hospital.
				survival to hospital	
				discharge with	
				amiodarone and lidocaine	
				was higher than with	
				placebo. The absolute risk	
				difference for	
				amiodarone vs. placebo	
				was (5.0 % points, p=0.04)	
				and for lidocaine vs.	
				placebo was (5.2 %	
				points, p=0.05)	
 Jacobs et al. 	Aim: Compare	Inclusion criteria: Age	Intervention: 1 ml	1° endpoint: Survival to	Epinephrine improved return
2011 (101)	epinephrine with	≤18 y with OHCA, CPR	aliquots of	hospital discharge not	to spontaneous circulation but
• <u>21745533</u>	normal saline during	started by paramedics	epinephrine 1:1000	different: 1.9% for	not survival to hospital
	OHCA treated		following current	placebo and 4% for	discharge
	following ACLS	Exclusion criteria:	ACLS guidelines	epinephrine (OR: 2.2; 95%	Limitations: Inadequate
	guidelines	Traumatic OHCA		CI: 0.7-6.3). Return of	sample size to access hospital
			Comparator: 1 ml	spontaneous circulation	survival.
	Study type: RCT		aliquots of 0.9%	8.4% for placebo and	Quality of ACLS not
	double blind,		sodium chloride	23.5% for epinephrine	evaluated
	placebo controlled		following current	(OR: 3.4; 95% CI: 2.0-5.6)	Adverse events not listed
			ACLS guidelines		
	Size: 601 patients				

• Piccini et al.	Aim: Compare	Inclusion criteria:	Intervention: BB	1° endpoint: BB therapy	Sustained VT/VF was a major
2008 (102)	outcomes in	acute MI with sustained	within 24 h of MI	within 24 h was	predictor of in-hospital death
• <u>19026290</u>	patients with MI and	VT/VF and/or high Killip		associated with	(RR: 4.18; 95% CI: 2.91-5.93)
	sustained VT/VF	classification	Comparator: No BB	decreased in-hospital	
	treated or not			mortality in patients with	
	treated with BB	Exclusion criteria: N/A		sustained VT/VF (RR:	
				0.28; 95% CI: 0.10-0.75,	
	Study type:			p=0.013) without	
	Prospective,			evidence of worsening HF	
	multicenter registry			• 55.2% of patients with	
	of patients with			sustained VT/VF were	
	acute MI			treated with BB within 24	
				h of MI	
	Size: 306 patients				
	with sustained				
	VT/VF				
• Dorian et al.	Aim: Compare IV	Inclusion criteria: Age	Intervention:	1° endpoint: Amiodarone	Increased survival with
2002 (103)	lidocaine with IV	≤18 y with OHCA due to	Patients randomized	had higher survival to	shorter interval from dispatch
• <u>11907287</u>	amiodarone as	VF.	to IV amiodarone	hospital admission than	to receiving study drugs.
	adjunct to		plus IV lidocaine	lidocaine: 28% with	 Patients with VF had better
	defibrillation in	Exclusion criteria:	placebo or IV	amiodarone vs. 12% with	survival than those with
	OHCA	traumatic, or OHCA	lidocaine plus IV	lidocaine (OR: 2.17; 95%	asystole or PEA.
			amiodarone placebo	CI: 1.21–3.83; p=0.009).	Amiodarone did not improve
	Study type: RCT		to treat VF resistant	Of 42 patients surviving	survival to hospital discharge
	placebo controlled		to 3 shocks, at least 1	to hospital admission, 9	Limitation: not powered to
			dose of IV	(5%) survived to hospital	show amiodarone improved
	Size: 347 patients		epinephrine, and	discharge in the	survival to discharge.
			then 4 th shock. Or,	amiodarone group and of	No adverse events noted.
			recurrent VF after	20 initial survivors in the	
			successful initial	lidocaine group, 5 (3%)	
			shock.	were discharged (p=0.34).	
			Comparator: 1 ml		
			Comparator: 1 ml aliquots of 0.9%		
			sodium chloride		
			following current		
			ACLS guidelines		
			ACLS guidelines		

Hassan et al.	Aim: IV magnesium	Inclusion criteria:	Intervention:	1° endpoint: IV	No benefit from magnesium
2002 (104)	given early during	Patients ≥18 y with	Patients received 2–4	magnesium did not	Limitations: Possible
• <u>11777881</u>	CPR for VF will	OHCA and refractory or	g of magnesium	improve survival to	inadequate magnesium dose
	improve survival.	recurrent VF		hospital admission: 17%	No adverse effects listed
			Comparator:	for magnesium and 13%	
	Study type: RCT,	Exclusion criteria:	Placebo	for placebo (OR: 1.69;	
	double blind,	Traumatic OHCA		95% CI: -10%-18%)	
	placebo controlled				
	Size: 105 patients				
• MAGIC	Aim: Determine if	Inclusion criteria:	Intervention: IV	1° endpoint: Magnesium	 No benefit of magnesium fo
• Thel et al. 1997	IV magnesium	Adult patients with CA	magnesium bolus	did not improve return to	survival to 24 h or hospital
(105)	improves return to	in the ICU or hospital	followed by a 24 h	spontaneous circulation:	discharge
• <u>9357406</u>	spontaneous	wards	infusion	54% with magnesium and	No adverse effects
	circulation			60% with placebo (95%	
	(measurable BP and	Exclusion criteria:	<u>Comparator</u> : Normal	CI: 0.41–0.47; p=0.44)	
	pulse) for 1 h after	Patients in emergency	saline		
	in-hospital CA	department. Advanced			
		heart block, chronic			
	Study type: RCT,	renal failure, already on			
	placebo controlled	magnesium			
	Size: 156 patients				
• Somberg et al.	Aim: Establish the	Inclusion criteria:	Intervention: IV	1° endpoint:	Amiodarone was more
2002 (106)	effectiveness of IV	Patients with incessant	amiodarone (or IV	Amiodarone was more	effective than lidocaine for
• <u>12372573</u>	amiodarone for	(shock resistant) VT not	lidocaine) followed	effective than lidocaine:	terminating VT with improved
	shock resistant VT.	treated with prior	by a 24 h infusion. If	amiodarone terminated	24 h survival.
		antiarrhythmics	the first medication	VT in 78% and lidocaine	Limitations: Drug related
	Study type: RCT,		failed to terminate	27% (p<0.01). OR and CI	hypotension with amiodarone
	double-blinded,	Exclusion criteria:	VT, patients were	not listed. 24 h survival	less frequent than with
	parallel design	Already on AAD	crossed over to the	39% on amiodarone and	lidocaine.
	6 : 20		alternative	9% on lidocaine (p<0.01).	
i i	Size: 29 patients		medication.	More hypotension with	
	<u>9120</u> 1 23 patients			l 10-11 - 11	
	<u>5120</u> . 25 patients		Comparator:	lidocaine than amiodarone (28% vs. 7%,	

 Kudenchuk et al. 1999 (107) ◆ 10486418 	Aim: Determine if amiodarone improves the rate of successful resuscitation after OHCA Study type: RCT, double blinded, placebo controlled	Inclusion criteria: Patients <18 with OHCA due to VF or pulseless VT that remained present after ≥3 shocks, with IV access Exclusion criteria: Absence of IV access, VF, or pulseless VT	Intervention: IV amiodarone (single dose) after receiving 1 mg epinephrine Comparator: Placebo (polysorbate 80, dilutant, single dose) after receiving 1 mg epinephrine	p=0.06). Bradycardia equal 1º endpoint: Amiodarone improved survival to hospital admission: 44% on amiodarone and 34% on placebo (OR: 1.6; 95% CI: 1.1–2.4; p=0.02)	 Amiodarone improved survival to hospital with no difference in duration of resuscitation, number of shocks, need for other antiarrhythmics Limitations: lack for power to detect treatment effect on survival to hospital discharge More hypotension with amiodarone (59% vs. 48%,
	Size: 504 patients				p=0.04)
Callaham et al.1992 (108)1433686	Aim: To determine the relative efficacy of high vs. standard dose catecholamines in initial treatment of OHCA Study type: RCT, double blind Size: 816 patients	Inclusion criteria: Adults with OHCA who would receive epinephrine by AHA ACLS guidelines Exclusion criteria: None listed	Intervention: High dose epinephrine (15 mg), high dose norepinephrine (11 mg), or standard dose epinephrine blindly substituted for ACLS doses of epinephrine Comparator: standard dose epinephrine (no placebo)	1° endpoint: High dose epinephrine significantly improved the rate of return of spontaneous circulation: 13% for high dose epinephrine, 8% receiving standard dose epinephrine (p=0.01). 18% of high dose epinephrine and 10% of standard dose epinephrine patients admitted to hospital (p=0.02)	High dose epinephrine improved admission to hospital but no difference in dismissal from hospital Trends for norepinephrine were not different Limitations: low hospital dismissal rate No adverse effects

Gueugniaud et	Aim: compare	Inclusion criteria:	Intervention: High	1° endpoint: 40.4% of	Long-term survival after
al. 1998 (109)	repeated low dose	OHCA patients with	dose epinephrine, 5	1677 patients in the high	OHCA was no better with
• <u>9828247</u>	vs high dose	VF/VT despite	mg, up to 15 doses	dose group had a return	repeated high doses of
	epinephrine in	defibrillation shocks, or		of spontaneous	epinephrine than with
	OHCA	asystole /hypotensive	Comparator:	circulation compared to	repeated standard doses.
		VT	standard dose	36.4% of 1650 patients in	
	Study type:		epinephrine, 1 mg,	the standard dose group	
	Prospective,	Exclusion criteria:	following ACLS	(p=0.02). There was no	
	multicenter,	Inadequate data	protocol	difference in survival to	
	randomized			hospital discharge (2.3%	
				vs 2.8%. p=0.34).	
	Size: 3327 patients			, ,	
• Gorgels et al.	Aim: Determine the	Inclusion criteria:	Intervention: IV	1° endpoint:	Procainamide was superior
1996 (110)	relative efficacy of	Adult patients with	procainamide (10	Procainamide was more	to lidocaine for terminating VT
• <u>8712116</u>	procainamide and	spontaneous	mg/kg at 100	effective than lidocaine:	Limitations: No patients with
	lidocaine for	monomorphic VT	mg/min) or lidocaine	27% of VT episodes	AMI or ischemia
	treating		(1.5 mg/kg over 2	responded to lidocaine	Significant lengthening of
	spontaneous	Exclusion criteria:	min)	and 77% to procainamide	QRS and QT on procainamide
	monomorphic VT	Patients with AMI and		(p<0.01)	
		those with poor	Comparator:		
	Study type:	hemodynamic	Procainamide or		
	Randomized, open	tolerance	lidocaine (no		
	label, parallel study		placebo)		
	Size: 29 patients				
 Ho et al. 1994 	Aim: Determine the	Inclusion criteria:	Intervention: IV	1° endpoint: Sotalol was	No 2° endpoints
(111)	relative efficacy of	Adult patients with	sotalol (100 mg)	more effective than	Limitations: no placebo
• <u>7912296</u>	lidocaine and sotalol	sustained VT		lidocaine for terminating	control; small number of
	for terminating		Comparator: IV	VT: 69% with sotalol and	patients
	spontaneous VT not	Exclusion criteria:	lidocaine (100 mg)	18% with lidocaine (95%	• 1 death in each drug group
	causing CA	Already on an		CI: 22%-80%; p=0.003)	after the first drug and 1 death
		antiarrhythmic,	Cross-over to second		in each group after both drugs
	Study type: RCT,	hypotension requiring	drug if VT persisted		
	double blind	immediate	after 15 min		
		cardioversion, known			
	Size: 33 patients	adverse reaction to			
		either medicantion			

• Levine et al.,	Aim: Response rate	Inclusion criteria:	Intervention:	1° endpoint: 110 patients	Significantly longer time to
1996 (112)	and safety	Patients with recurrent	Patients	(40.3%) survived 24 h	first recurrence in the 2 higher
• <u>8522712</u>	of intravenous	hypotensive VT	were randomized to	without another	dose groups
	amiodarone in	refractory to lidocaine,	receive 1 of 3 doses	hypotensive VT episode	Hypotension required
	patients with VT	procainamide and	of intravenous		vasopressor therapy in 38
	refractory to	bretylium.	amiodarone: 525,	Safety endpoint: Adverse	patients (14%) and led to death
	standard therapies.		1,050 or 2,100 mg/24	events requiring drug	in 6 (2%).
		Exclusion criteria:	h by continuous	discontinuation	
	Study type:	Cardiogenic shock;	infusion over 24 h.		
	prospective,	significant hepatic			
	controlled	dysfunction or	Comparator: As		
		pulmonary disease; Hx	above		
	Size: 273 patients	of TdP; congenital QT			
		prolongation;			
		bradyarrhythmias or AV			
		block (unless			
		pacemaker present).			
• Teo et al. 1993	Aim: Assess the	Inclusion criteria:	Intervention: AAD	1° endpoint: 660 deaths	The routine use of Class I
(113)	effectiveness of AAD	Patients with AMI		in 11,712 patients	agents (lidocaine,
• <u>8371471</u>	on mortality in	randomized to AAD	Comparator:	receiving Class I agents	procainamide) was associated
	patients with AMI	therapy	Placebo, standard	and 571 deaths in 11,517	with increased mortality after
			agents	controls (OR: 1.14; 95%	MI.
	Study type:	Exclusion criteria:		CI: 1.01–1.28; p=0.03).	BB reduced morality
	Metanalysis	Inadequate study		778 patients received	The amiodarone data was
		design		amiodarone and 77 died,	limited "but promising"
	<u>Size:</u> 138			compared with 101	
	randomized trials,			deaths in 779 control	
	98,000 patients			patients (OR, 0.71; 95%	
				CI, 0.51–0.97, p=0.03).	
				26,973 patients received	
				BB and 1,464 died	
				compared with 1,727	
				deaths in 26,295 controls	
				(OR: 0.81; 95% CI, 0.75-	
				0.87, p=0.00001)	

• Elzari et al.	Aim: Assess the	Inclusion criteria:	Intervention: IV or	1° endpoint: The study	Amiodarone given by IV and
2000 (114)	mortality associated	Acute MI, no	PO amiodarone	was modified after the	PO to a total of 2,700 mg in the
• <u>10639301</u>	with amiodarone in	contraindications to		first 516 patients showed	first 48 h after MI was
	patients with AMI	study drug	Comparator: Placebo	higher mortality on	associated with increased
				amiodarone than placebo	mortality.
	Study type: Single			(16.30% vs. 10.16%;	Reducing the dose by half
	center, randomized			p=0.04).	showed amiodarone and
		Exclusion criteria:			placebo mortality were similar
	Size: 1,073 patients	Contraindication to		Safety endpoint:	
		amiodarone		Increased mortality on	
				high dose amiodarone	

Data Supplement 16. Nonrandomized Trials, Observational Studies, and/or Registries Comparing Acute Management of Specific Arrythmias

- (Section 6)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
• Piccini et al. 2008	Study type: Registry of	Inclusion criteria:	1° endpoint: death	Sustained VT/VF was common with AMI
(102)	patients in the	Patients with AMI who	Results 306 of 5,391 patients	In patients with sustained VT/VF, BB
• <u>19026290</u>	VALsartan In Acute	experienced sustained	(5.7%) in the VALIANT registry	therapy in the first 24 h after AMI was
	myocardial iNfarcTion	VT/VF	had sustained VT/VF with a	associated with decreased early mortality
	trial (VALIANT)	Exclusion criteria:	mortality of 20.3%. 55.2%	without worsening HF.
		inadequate data	were treated with IV or oral	
	Size: 306 patients		BB which were associated	
			with decreased in-hospital	
			mortality (RR: 0.28; 95% CI:	
			0.10-0.75, p=0.013)	
• Link et al 2015 (115)	Study type: Guidelines	Inclusion criteria: Acute	Expert developed guidelines	Electrical cardioversion is
• <u>26472995</u>		treatment of patients		recommended for the initial treatment of
		with VA	Reviews role of direct current	VF, poorly tolerated VT, and polymorphic
			cardioversion, epinephrine,	VT.
			magnesium, and AAD therapy	 The appropriate use of AAD,
			for the treatment of acute VA	epinephrine, and magnesium for the
				treatment of acute VA is discussed

Herlitz et al.1997	Study type:	Inclusion criteria: All	1° endpoint: Survival to	Lidocaine improved the return to
(116)	Retrospective,	patients with OHCA due	hospital discharge	spontaneous circulation and
• 9044490	observational study of	to VF. CPR by single		hospitalization
	patients with OHCA	center emergency	Results: Patients receiving	Lidocaine did not improve rate of
	due to VF	department	lidocaine had a higher return	discharge from hospital
			of spontaneous circulation	·
	Size: 1,212 cases; 405	Exclusion criteria:	(p<0.001) and hospitalized	
	receiving lidocaine	Traumatic cause of OHCA	alive (38% vs. 18%; p<0.01).	
			Survival to discharge did not	
			differ	
Markel et al. 2010	Study type:	Inclusion criteria:	1° endpoint: The association	Procainamide associated with more
(117)	Retrospective,	Witnesses, OHCA due to	between procainamide and	shocks, pharmacologic interventions, and
• <u>20624142</u>	observational, cohort	VF or pulseless VT	survival	longer resuscitations.
		treated by King County,		Procainamide did not improve survival
	Size: 665 patients,	WA, emergency services.	Results: Procainamide	
	176 received		associated with a lower	
	procainamide	Exclusion criteria:	survival to hospital discharge	
		Traumatic cause of	(OR: 0.52; 95% CI: 0.36–0.75)	
		OHCA, asystolic OHCA		
• Stiell et al. 2004	Study type:	Inclusion criteria: OHCA	1° endpoint: survival to	The addition of ACLS did not improve
(118)	Multicenter,		hospital admission and	the rate of survival over the use of rapid
• <u>15306666</u>	controlled prospective	Exclusion criteria:	discharge	defibrillation in OHCA.
	trial	traumatic cause of SCD		
			Results: The rate of hospital	
	Size: 5638 patients;		admission increased from the	
	1391 enrolled in the		defibrillation phase to the	
	rapid defibrillation		ACLS phase (10.9% vs 14.6%,	
	phase and 4247 in the		p<0.001). Survival after rapid	
	ACLS phase		defibrillation (OR: 3.4; 95% CI:	
			1.4–8.4) was better than ACLS	
			(OR: 1.1; 95% CI: 0.8–1.5) and	
			bystander CPR (OR: 3.7; 95%	
			CI: 2.5–5.4)	
Haqihara et al. 2012	Study type:	Inclusion criteria: Age	1° endpoint: Return of	Pre-hospital epinephrine for OHCA was
(119)	Prospective,	≥18 y with OHCA treated	spontaneous circulation,	associated with improved return to
• <u>22436956</u>	observational	by emergence medical	survival at 1 mo, neurologic	spontaneous circulation.
		service personnel	outcome	

	Size: 417,188 patients	Exclusion criteria: Traumatic cause of OHCA	Results: Epinephrine improved return of spontaneous circulation (OR: 2.36; 95% CI: 2.22–2.50; p<0.001); but had an adverse effect on long-term outcome measures (1 mo survival, OR: 0.46; 95% CI: 0.42–0.51; and neurologic, OR: 0.31; 95% CI: 0.26–0.36)	Pre-hospital epinephrine for OHCA was associated with worse 1 mo survival and neurologic outcomes.
 Donnino et al. 2014 (120) ◆ 24846323 	Study type: Prospective data collection, observational Size: 25,095 patients	Inclusion criteria: Adults with CA in hospital with asystole or pulseless VT as the initial rhythm Exclusion criteria: Cardiac arrest in emergency department, ICU, missing data, received vasopressin	1° endpoint: Survival to hospital discharge Results: Survival was increased by early administration of epinephrine: 1–3 min (reference group) (OR: 1.0); 4–6 min (OR: 0.91; 95% CI: 0.82–1.0; p=0.055); 7–9 min	Patients with non-shockable CA in hospital had improved return of spontaneous circulation, survival in hospital, and neurologically intact survival with earlier administration of epinephrine
		,	(OR: 0.63; 95% CI: 0.52–0.76; p<0.001).	
• Koscik et al. 2013 (121) • 23523823	Study type: Retrospective database analysis Size: 686 patients	Inclusion criteria: Adults with OHCA Exclusion criteria: Traumatic cause of OHCA	1° endpoint: Does timing of epinephrine administration improve outcome Results: Early epinephrine was more likely to have return of spontaneous circulation (32% vs. 23.4%; OR: 1.59; 95% CI: 1.07–2.38)	Early administration of epinephrine improved return of spontaneous circulation Early administration of epinephrine did not increase survival to admission or discharge Similar results were reported with PEA
 Spaulding et al. 1997 (122) 9171064 	Study type: Retrospective, observational, consecutive patients	Inclusion criteria: OHCA survival Exclusion criteria: Non-cardiac cause of arrest	1º endpoint: Incidence of acute coronary occlusion and role of reperfusion therapy	Acute coronary occlusion is frequent in survivors of OHCA and is predicted poorly by clinical and ECG findings Coronary angioplasty may improve survival

	Size: 84 patients		Results: 71% had significant	
			CAD and 48% had coronary	
			artery occlusion. In-hospital	
			survival 38%. Successful	
			angioplasty predicted survival	
			(OR: 5.2; 95% CI: 1.1–24.5;	
			p=0.04)	
• Cronier et al. 2011	Study type:	Inclusion criteria: OHCA	1° endpoint: Prognostic	Routine coronary angiography with
(123)	Retrospective,	survivor, age <80 y,	impact of routine PCI	percutaneous intervention may improve
• 21569361	observational,	treated with mild	Impact of Fourier of	survival following OHCA in patients
	consecutive patients	hypothermia,	Results: 73% had CAD. Time	treated with mild hypothermia who are
		hemodynamically stable	from collapse to return of	hemodynamically stable
	Size: 111 patients	,,	spontaneous circulation	' ' ' '
		Exclusion criteria: Non-	associated with mortality (OR:	
		cardiac cause of arrest	1.05; 25 th –75 ^{tth} percentile	
			range, 1.03–1.08; p<0.001);	
			Percutaneous intervention	
			associated with survival (OR:	
			0.30; 25 th –75 th percentile	
			range, 0.11–0.79; p=0.01)	
• Zanuttini et al. 2012	Study type:	Inclusion criteria: OHCA	1° endpoint: Independent	Emergency coronary angiography and
(124)	Retrospective,	survival, remained	determinants of in-hospital	PCI, if indicated, appeared to improve
• <u>22975468</u>	observational,	unconscious soon after	survival	survival.
	consecutive patients	recovery of spontaneous		The study has significant limitations: no
		circulation	Results: Coronary	control group; and unconscious patients
	Size: 93 patients		angiography performed in 66	who had delayed procedures 18 d after
		Exclusion criteria: Non-	patients (71%); 48 emergent	OHCA is a poor comparative group.
		cardiac cause of OHCA	and 18 at 13±10 d. PCI in	
			52%; in hospital survival 54%.	
			Emergency angiography (HR:	
			2.32; 95% CI: 1.23-4.38;	
			p=0.009) and PCI (HR: 2.54;	
			95% CI: 1.35–4.8; p=0.004)	
			related to in hospital survival	
• Dumas et al. 2016	Study type:	Inclusion criteria: OHCA	1° endpoint: Favorable	• 1/3 of OHCA patients without ST
(81)	Observational,	survivor without an ST-	neurologic outcome	elevation had a culprit lesion and had a
• <u>27131438</u>	multicenter registry	elevation MI		

	Size: 695 patients	Exclusion criteria: Inadequate data	Results: 199 patients (29%) had a PCI. 43% with PCI had a favorable outcome and 33% without PCI. (OR: 1.80; 95% CI: 1.09–2.97; p=0.02).	nearly 2-fold increase in favorable neurologic outcome. • A favorable outcome was also predicted by a shockable rhythm, lower epinephrine dose, and shorter resuscitation.
 Kudenchuk et al. 2013 (125) 23743237 	Study type: retrospective, cohort of patients with OHCA who did or did not receive prophylactic lidocaine Size: 1721 patients with OHCA due to VF or VT	Inclusion criteria: OHCA due to VF or VT. Age ≥18 y Exclusion criteria: Missing data points, no chance of survival when paramedics arrived	1° endpoint: re-arrest, hospital admission, survival Results: 1296 patients received prophylactic lidocaine and 425 did not. Prophylactic lidocaine reduced re-arrest from VF/VT (OR: 0.34; 95% CI: 0.26–0.44); non-shockable arrhythmias (OR: 0.47;95% CI: 0.29–0.78); higher hospital admission (OR: 1.88;95% CI, 1.28–2.76); and improved survival to discharge (OR, 1.49;95% CI: 1.15–1.95)	Patients receiving lidocaine had a shorter time to a return of spontaneous circulation and higher BP Use of prophylactic lidocaine upon return to a spontaneous circulation after OHCA was associated with less recurrent VF/VT and higher rates of admission to hospital and survival to discharge.
 Nademanee et al., 2000 (126) 10942741 	Study type: retrospective, observational Size: 49 patients	Inclusion criteria: ES with recent (72 h–3 mo) MI Exclusion criteria: MI <72 h	1° endpoint: Effect of beta blockade (left stellate ganglion blockade, esmolol, propranolol) on outcome (survival) Results: 1-wk mortality rate was higher in group not treated with beta blockade: 18 (82%) of the 22 patients died, all of refractory VF, compared to 6 (22%) of the 27 patients with beta blockade, 3 of refractory VF	Sympathetic blockade is superior to standard ACLS therapy in treating ES patients.

	1		/ 0.0004) 5 .:	
			(p<0.0001). Patients who	
			survived the initial ES event	
			did well over the 1 y followup	
			period: Overall survival was	
			67% with beta blockade	
			compared with 5% without it	
			(p<0.0001).	
• Sasson et al. 2010	Study type: Meta-	Inclusion criteria: OHCA	1° endpoint: survival	Witnessed OHCA and arrest due to
(127)	analysis OF OHCA			VF/VT treated with defibrillation had
• <u>20123673</u>	studies		Results: Survival to hospital	improved survival.
			discharge was more likely	
	Size: 79 studies		among OHCA patients	
	reporting 142,740		witnessed by a bystander	
	patients		(6.4% to 13.5%); witnessed by	
	P		EMS (4.9% to 18.2%),	
			received bystander CPR (3.9%	
			to 16.1%), or were found in	
			VF/VT (14.8% to 23%).	
Buxton et al 1987	Study type: single	Inclusion criteria:	1° endpoint: adverse	IV verapamil should not be used in
(128)	center, observational	Sustained VT treated		l '
, ,	center, observational		hemodynamics	patients with sustained VT
• <u>3578051</u>		with IV verapamil	Barrier 440/ of 25 maticute	
			Results: 44% of 25 patients	
	s. 25		with sustained VT receiving IV	
	Size: 25 patients		verapamil had severe	
			hypotension of loss of	
			consciousness.	
• Pellis et al. 2009	Study type:	Inclusion criteria: OHCA	1° endpoint: return of	A pre-cordial thump did not delay other
(129)	prospective,		spontaneous circulation and	aspects of CPR and had no adverse
• <u>19010581</u>	observational	Exclusion criteria:	hospital discharge	effects; but efficacy was lacking.
		Inadequate data		
	Size: 144 patients		Results: Precordial thump	
			had no effect on heart	
			rhythm in 96% of patients.	
			with return of spontaneous	
			circulation in only 3 patients.	

• Volkman et al. 1990	Study type: single	Inclusion criteria:	1° endpoint: VT conversion	A pre-cordial thump converted VT in 77%
(130)	center, observational,	patients with VT	following a pre-cordial thump	of patients with a rate ≤160 bpm but only
• <u>2087859</u>	consecutive patients			20% if the rate was faster. VF and VFL
			Results: VT with a heart rate	did not convert.
			≤160 BPM converted in 17 of	
			22 cases, and VT >160 bpm	
	Size: 47 patients		converted in 3 of 15 cases. 3	
			cases of VF and 7 cases of VFL	
			failed to convert.	

Data Supplement 17. RCTs Secondary Prevention Sudden Death in Ischemic Heart Disease – (Section 7.1.1)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint and Results	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
• AVID • The AVID Investigators 1997 (131) • 9411221	Aim: To examine the effect on overall survival of initial therapy with an ICD as compared with amiodarone or sotalol in patients resuscitated from VF or symptomatic, sustained VT with hemodynamic compromise. Study type: RCT Size: 1016 patients	Inclusion criteria: patients who were resuscitated from near-fatal VF; sustained VT with syncope; or sustained VT with an LVEF ≤0.40 and symptoms suggesting severe hemodynamic compromise. Exclusion criteria: arrhythmia was judged to have a transient or correctable cause, excessively high risk (life expectancy <1 y, class IV HF, awaiting a heart transplant, or	Intervention: Therapy with ICD Comparator: Antiarrhythmic drugs - amiodarone or sotalol, (only 2.6% received sotalol)	1° endpoint: Overall survival was greater with the ICD, with unadjusted estimates of 89.3% as compared with 82.3% in the antiarrhythmic-drug group at 1 y, 81.6% vs. 74.7% at 2 y, and 75.4% vs. 64.1% at 3 y (p<0.02). The corresponding reductions in mortality (with 95% CI) with the ICD were 39±20%, 27±21%, and 31±21%	Study terminated early after 1016 of 1200 patients enrolled 81% of patients had CAD Conclusion: Among survivors of VF or sustained VT causing severe symptoms, ICD is superior to AAD therapy for reducing overall mortality.

		requiring a balloon			
		pump, other			
		mechanical means, or			
		inotropic drug			
		administration for			
		hemodynamic			
		support)			
		or excessively low risk (event occurring			
		within 5 d of cardiac			
		surgery or			
		angioplasty, or			
		occurring in-hospital <5 d after MI),			
		previous			
		ICD implant (or			
		attempted implant),			
		chronic serious			
		bacterial infection, or			
		were unable to give			
		verbal			
		assent due to			
		neurologic			
		impairment, or a			
		contraindication to			
		amiodarone			
• CIDS	Aim: To compare	Inclusion criteria: in	Intervention: ICD	1° endpoint: Death from	82% had ischemic etiology
 Conolly et al. 	the efficacy of the	the absence of either		any cause.	Conclusions: CIDS provides
2000 (132)	ICD and	recent AMI or	Comparator:	A nonsignificant reduction	further support for the superiority
• <u>10725290</u>	amiodarone for the	electrolyte imbalance,	Amiodarone	in the risk of death was	of the ICD over amiodarone in the
	prevention of	they manifested any		observed with the ICD,	treatment of patients with
	death in patients	of the following: (1)		from 10.2%/y to 8.3%/y	symptomatic sustained VT or
	with previous	documented VF; (2)		(RRR 19.7%; 95% CI: -	resuscitated CA.
	sustained VA	OHCA requiring		7.7%–40%; p=0.142). A	
		defibrillation or		nonsignificant reduction	
	Study type: RCT	cardioversion; (3)		in the risk of arrhythmic	
		documented,		death was observed, from	

Size: 659 patients	sustained VT causing	4.5%/y to 3.0%/y (RRR
	syncope; (4) other	32.8%; 95% CI, -7.2%-
	documented,	57.8%; p=0.094).
	sustained VT at a rate	
	≥150 beats/min,	
	causing presyncope or	
	angina in a patient	
	with a LVEF ≤35%; or	
	(5) unmonitored	
	syncope with	
	subsequent	
	documentation of	
	either spontaneous	
	VT≥10 s or sustained	
	(≥30 s) monomorphic	
	VT induced by	
	programmed	
	ventricular	
	stimulation.	
	Exclusion criteria: (1)	
	ICD or amiodarone	
	not considered	
	appropriate, (2)	
	excessive	
	perioperative risk for	
	ICD implantation; (3)	
	previous amiodarone	
	therapy for ≥6 wk; (4)	
	nonarrhythmic	
	medical condition	
	making 1y survival	
	unlikely, and (5) long-	
	QT syndrome.	

• CASH	Aim: to study the	Inclusion criteria:	Intervention: ICD	1° endpoint: The 1° end	• In ICD patients, the percent
• Kuck et al.	impact on overall	patients resuscitated	therapy	point was all-cause	reductions in all-cause mortality
2000 (133)	survival of initial	from CA 2° to		mortality.	were 41.9%, 39.3%, 28.4%, 27.7%,
• <u>10942742</u>	therapy with an	documented	Comparator:	Over a mean followup of	22.8%, 11.4%, 9.1%, 10.6%, and
	ICD as compared	sustained VA	amiodarone,	57±34 mo, the death	24.7% at y 1 to 9 of followup.
	with that with 3		metoprolol, or	rates were 36.4% (95% CI	Coronary disease was etiology in
	AAD	Exclusion criteria: If	propafenone.	26.9% to 46.6%) in the	73%. A much larger reduction of
		CA occurred within 72	Assignment to	ICD and 44.4% (95% CI	61%, for SCD was observed
	Study type: RCT	h of an AMI, cardiac	propafenone was in	37.2% to 51.8%) in the	
		surgery, electrolyte	March 1992, after an	amiodarone/metoprolol	
	Size: 288 patients	abnormalities, or	interim analysis	arm. Overall survival was	
		proarrhythmic drug	showed a 61%	higher, though not	
		effect.	higher all-cause	significantly, in patients	
			mortality rate than	assigned to ICD than in	
			in 61 ICD patients	those assigned to drug	
			during a followup of	therapy (1-sided p=0.081,	
			11.3 mo.	HR: 0.766; 97.5% CI upper	
				bound 1.112)	
 Connolly et al. 	Aim: To obtain the	Inclusion criteria:	Intervention:	1° endpoint: Reduction	• 2° endpoints:
2000 (134)	most precise	RCTs	ICD (934 patients)	in death from any cause	Arrhythmic death, HR 0.50 (95% CI
• <u>11102258</u>	estimate of the	evaluating the ICD vs.		with the ICD, HR 0.72;	0.37-0.67; p<0.0001).
	efficacy of the ICD,	AAD therapy in	Comparator:	95% CI 0.60-0.87;	Survival was extended by a mean of
	compared to	patients with	Amiodarone (932	p=0.0006).	4.4 mo by the ICD over a followup
	amiodarone, for	sustained VA or SCD	patients)		period of 6 y.
	survival in patients				P heterogeneity=0.306
	with malignant VA.				Patients with LVEF ≤35% derived
					more benefit from ICD therapy
	Study type: Meta-				than those with more preserved
	analysis of RCTs				left ventricular function.
	Size: 3 RCTs				
MAVERIC	Aim: to test the	Inclusion criteria:	Intervention: EP-	1° endpoint: Of the 108	• 61% of patients had prior MI
Lau et al. 2004	possibility of	survivors of sustained	guided interventions	EP arm patients, 31 (29%)	EPS has a minimal impact on the
(135)	prospectively	VT, VF or SCD in the	(AAD, coronary	received an ICD, 46 (43%)	diagnosis of patients presented
• <u>15172648</u>	identifying patients	absence of an AMI in	revascularization,	received AAD only (mainly	with VT, VF or SCD.
	who would benefit	the last 48 h.	and ICD) (106	amiodarone or sotalol)	The trial does not support a role for
	most ICD by EPS in			and 18 (17%) received	EP testing in risk stratification.

	the context of 2° prevention. Study type: RCT Size: 214 patients	Exclusion criteria: life expectancy of <6 mo from a non-arrhythmic cause or child-bearing age	patients assigned to this arm) Comparator: therapy with amiodarone (108 patients assigned to this arm)	coronary revascularization but no ICD. No significant differences in survival or arrhythmia recurrence existed between the two treatment arms after 6 y. However, ICD recipients had a lower mortality than non-ICD recipients, regardless of allocated treatment (HR=0.54, p=0.0391).	
● Claro et al. 2015 (136) ● 26646017	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic. Study type: meta-analyses using a random-effects model Size: 24 studies (9,997 participants) with 6 studies identified as 2° prevention trials.	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	1° endpoint: For 2° prevention, amiodarone compared to placebo or no intervention (two studies, 440 participants) appeared to increase the risk of SCD (RR: 4.32; 95% CI: 0.87–21.49) and all-cause mortality (RR: 3.05;95% CI: 1.33–7.01). Compared to other AAD (four studies, 839 participants) amiodarone appeared to increase the risk of SCD (RR: 1.40; 95% CI: 0.56–3.52; very low quality of evidence), but there was no effect in all-cause mortality (RR: 1.03; 95% CI: 0.75–1.42; low quality evidence).	Conclusions: With very low quality evidence, amiodarone leads to a statistically non-significant increase in the risk of SCD and all-cause mortality (by 33% to 600%) when compared to placebo or no intervention. This meta-analysis did not effectively rule out benefit or harm for 2° prevention with amiodarone. Side effects: Amiodarone was associated with an increase in pulmonary and thyroid adverse events. Limitations: For 2° prevention, the evidence is inconsistent and the quality of the evidence was very low, so the authors concluded that there is uncertainty on the findings. There are some methodological issues that warrant certain caution when interpreting these results.

Data Supplement 18. Nonrandomized Trials, Observational Studies, and/or Registries for Secondary Prevention Sudden Death in Ischemic Heart Disease – (Section 7.1.1)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Endpoint and Results	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
● Raitt et al. 2001 (137) ● <u>11208684</u>	Aim: To determine prognostic implications of stable VT Study type: Observational, registry of patients with hemodynamically stable VT Size: The study population consisted of 440 patients with stable VT and 1029 patients with unstable VT. Of the 1029 patients with unstable VT. Of the 1029 patients with unstable VT, 330 had therapy determined by randomization in the AVID trial: 52% received an ICD, 47% amiodarone, and 2% sotalol. Therapy for the remaining 699 patients with unstable VT and the 440 patients with stable VT was determined at the discretion of the attending	Inclusion criteria: Patients with stable VT that were not enrolled in AVID, were included in a registry of patients screened for the study. Exclusion criteria: Patients who had an arrhythmia within 5 d of a MI, cardiac surgery, or coronary intervention were excluded, as were patients with class IV HF or those who were on a heart transplant list, had a prior ICD implant or attempted implant, or had a life expectancy of <1 y.	1° endpoint: Mortality Results: The mortality in 440 patients with stable VT tended to be greater than that observed in 1029 patients presenting with unstable VT (33.6% vs. 27.6% at 3 y; RR:1.22; p=0.07). After adjustment for baseline and treatment differences, the RR was little changed (RR: 1.25, p=0.06).	Sustained VT without serious symptoms or hemodynamic compromise is associated with a high mortality rate and may be a marker for a substrate capable of producing a more malignant arrhythmia.

Bass EB et al.	Study type: retrospective	Inclusion: unexplained	Results:	• Conclusion: patients with
1988 (138)	cohort	syncope EP study	EP study had positive results in 37	electrophysiologically positive
• 3195480		between April 1981 and	patients31 with VT, 3 with SVT	results had high rates of SCD and
	Size: 70 patients	April 1986.	and 3 with abnormal conduction.	total mortality
		Exclusion: N/A		-
			No difference in the 3 y recurrence	
			rate between the ± studies (32 vs	
			24%, respectively).	
			At 3 y, patients + had higher rates	
			of SCD than patients with - results	
			(48% vs 9%, respectively,	
			p<0.002).	
			3 y total mortality rate was also	
			higher with + results than among	
			those with - (61% vs 15%,	
			respectively, p<0.001).	
• Owens DK et al.	Aim: Evaluated whether	Markov model to	Results: cost-effectiveness	The cost-effectiveness of ICD use
2002 (139)	risk stratification based on	evaluate the cost-	becomes unfavorable at both low	relative to amiodarone depends on
• <u>12228780</u>	risk ofSCD alone was	effectiveness of ICD	and high total cardiac mortality	total cardiac mortality rates as well
	sufficient to predict the	implantation compared	rates.	as the ratio of sudden to
	effectiveness and cost-	with empiric amiodarone	If the annual total cardiac	nonsudden cardiac death.
	effectiveness of the ICD.	treatment. The model	mortality rate is 12%, the cost-	
		incorporated mortality	effectiveness of the ICD varies	
		rates from sudden and	from \$36,000 per quality-adjusted	
		nonsudden cardiac death,	life-year (QALY) gained when the	
		noncardiac death and	ratio of sudden cardiac death to	
		costs for each treatment	nonsudden cardiac death is 4 to	
		strategy. Model assumed	\$116,000 per QALY gained when	
		that the ICD reduced total	the ratio is 0.25.	
		mortality rates by 25%,		
		relative to use of		
		amiodarone.		

Data Supplement 19. Nonrandomized Trials, Observational Studies, and/or Registries for Coronary Artery Spasm – (Section 7.1.1.1)

Author;	or; Study Type/Design; Patient Population 1° Endpoin		1° Endpoint and Results	Summary/Conclusion
Year Published	Study Size		(P values; OR or RR;	Comment(s)
			& 95% CI)	
• Ahn et al. 2016	Study type:	188 patients with variant	1° endpoint: The 1° end point cardiac	Conclusions: The prognosis of
(140)	retrospective	angina with aborted SCD	death	patients with variant angina with
• <u>27386766</u>	multicenter cohort	and 1,844 patients with		ASCD was worse than other
		variant angina without	Cardiac death was significantly higher	patients with variant angina. In
	Size: 188 patients with	aborted SCD from 13 heart	in aborted SCD patients (24.1 /1,000	addition, our findings supported
	aborted SCD	centers in South Korea.	patient-y vs. 2.7/ 1,000 patient-y (HR:	ICDs in these high-risk patients as a
			7.26; 95% CI: 4.21-12.5; p<0.001)	2° prevention because current
	Median followup of 7.5			multiple vasodilator therapy
	У		Predictors included family Hx of SCD	appeared to be less optimal.
			(OR: 3.67; 95% CI: 1.27-10.6; p=0.016),	• Limitations: Retrospective study
			multivessel spasm (OR: 2.06; 95% CI:	and no accurate information for
			1.33-3.19; p=0.001), and LAD artery	response to medical therapy or
			spasm (OR: 1.40; 95% CI: 1.02-1.92;	compliance. This is an ethnically homogenous group raising
			p=0.04)	questions about extrapolation to
			A total of 24 aborted SCD patients	other ethnicities. It is unknown
			received ICD	what factors might have led
			Teccived 165	physicians to implant an ICD.
			6 ICD patients experienced VF and 1	, , , , , , , , , , , , , , , , , , ,
			died due to intractable VF.	
			In the aborted SCD patients who	
			received an ICD, mortality was 4.3%	
			compared with 19.3% of those that did	
			not receive an ICD (trend but	
			nonsignificant p=0.15)	
 Yamashina et 	Study type:	Resuscitated from CA with	1° endpoint: recurrent VT/VF	Conclusions: Medical therapy
al. 2014 (141)	retrospective single	1) documented VF/VT or		associated with favorable long-
• <u>23906527</u>	center cohort	PEA and 2) the absence of	Results: No recurrent VA, syncope, or	term outcomes for patients with
		significant narrowing due	CA during a mean followup of 67 mo	vasospastic angina associated with
	Size: 18 patients in	to coronary	(1 of 18 died during the initial	CA.
	Japan between 1992	atherosclerosis or any	hospitalization and another cancer).	
	and 2012	structural cardiac	All are treated with long-acting	

Eschalier et al.2014 (142)24373622	Study type: case reports Size: 3 patients.	abnormalities possibly causing CA; 3) absence of identifiable or reversible causes of lethal VA 4) documented ST elevation during chest pain or positive provocation test Patients with CA related to coronary artery vasospasm	CCBs/nitrates and successfully quit smoking. 6 received ICD – none received therapies Results: 2/3 patients underwent ICD implantation because of recurrent VT despite medical therapy. None had ICD shocks in follow-up.	Limitations: small, retrospective, and non-randomized study in a single Japanese center. Conclusions: Very small case series demonstrating ICD use in patients with coronary vasospasm.
 Matsue et al. 2012 (143) 22840527 	Study type: retrospective observational cohort Size: 23 patients. from 3 Japanese hospitals Mean followup period of 2.9 y	23 patients with aborted SCD receiving a 2° prevention ICD in the absence of SHD or CAD who had spasm of a major epicardial coronary artery induced with acetylcholine challenge	Endpoints: Appropriate ICD therapy, sudden CA, or death from all causes 26% of patients experienced event 4 patients had an episode of VF appropriately treated by their ICD and survived (all but 1 patient was compliant with vasodilator therapy). After the first episode of appropriate ICD therapy in these 4 patients, none received recurrent therapy during the limited follow-up. 1 additional patient survived CA 2° to pulseless electrical activity	 Results: The average time for appropriate ICD therapy from ICD insertion was about 1 y and only 2/5 patients with recurrent lethal arrhythmia had symptoms of chest pain prior to ICD therapy. Conclusions: These data support the use of ICD therapy in patients with coronary artery vasospasm who have survived an episode of life-threatening VT/VF Limitations: Non-randomized and relatively small number of Japanese patients in only 3 cardiovascular centers. The cohort in the present study included only patients with coronary vasospasm who had SCD, and thus the data shown here cannot be extrapolated to the whole coronary vasospasm population. Medication compliance was evaluated only by medical interview with patients, and that

• Takagi et al. 2011 (144) • 21406685	Study type: nationwide registry of patients with vasospastic angina Size: 35 patients with OHCA. Study type: Retrospective case	30 men and 5 women had OHCA within a registry of 1429 patients in Japan with vasospastic angina (definition: an angina attack at rest and/or on effort, accompanied by a transient ECG ST-segment elevation or depression of >0.1mV or a newly appearance of negative U wave in at least 2 related leads, and/or a total or subtotal coronary artery narrowing during the provocation test of coronary spasm, accompanied by chest pain and/or ischemic ECG changes mentioned above) Inclusion criteria: (1) typical chest pain at rest	1° endpoint: The 1° end point MACE included cardiac death, nonfatal MI, hospitalization for unstable angina pectoris and HF, and appropriate ICD shocks during the follow-up period, which began at the date of original VSA diagnosis. 2° endpoint: The 2° end point was all-cause mortality. Results: Survival rate free from MACE was significantly lower in the OHCA survivors compared with the non-OHCA patients (72% vs. 92% at 5 y, p<0.001). There was no difference in all-cause mortality between the groups.	may have caused over-estimation of compliance. • Results (continued): In the 35 OHCA survivors, 14 patients underwent ICD implantation while intensively treated with calcium channel blockers. Appropriate ICD shocks for VF in 2 of 14 patients despite intensive medical treatment. SCD occurred in 1 patient without an ICD who self-discontinued medication prior to the fatal event. • Rate of cardiac death and nonfatal MI in patients in whom medications were reduced or discontinued (8%, 2 of 25 patients) was 10-fold higher than that in the patients with continued medications (0.7%, 10 of 1404 patients, p=0.017). • Limitations: Appropriate ICD therapy is used as surrogate for sudden death. Retrospective observational study and there the association found in the present study is not necessarily causal and follow-up duration was variable possible many arrhythmic events were missed. • Conclusions: VF complicating variant angina is a higher risk
● <u>11988204</u>	review with multicenter survey	associated with transient ST-segment elevations not present on the baseline	antagonists. Ventricular arrhythmia reoccurred	population. Raises possibility that some patients such as those remaining symptomatic despite
		ECG and disappearing with relief of pain; (2)	after discharge in all patients. Median time to the first arrhythmia recurrence	medical therapy should be considered for an ICD.

	Size: 8 patients with vasospastic angina complicated by VF	documented VF immediately after the ischemic episode; (3) survival of the index episode of VF; (4) angiographically normal coronary arteries defined as patent arteries with no irregularities; (5) angiographic evidence of coronary spasm defined as transient narrowing of arterial lumen or recurrent episodes of ECG documented ischemia especially if occurring in different coronary territories; and (6) recurrent angina despite medical therapy	was 15 mo (range 2-112). An ICD was subsequently implanted in 7 patients. After ICD implantation, 4 patients received appropriate ICD shocks for VT/VF. 1 patient died with ICD and recurrent chest pain with EMD. 1 patient with recurrent VF and no ICD had recurrent VF out of hospital and subsequent brain damage and died several years later.	
• Chevalier et al. 1998 (146) • <u>9426018</u>	Study type: retrospective case review Size: 7 patients	Exclusion criteria: N/A Inclusion criteria: survivors of CA with positive ergonovine provocation test Mean age was 44 y; 3 were male and 4 females. All of them were habitual cigarette smokers.	Results: At a mean follow-up 58 mo, 6 patients remained free of symptoms. 1 patient who continued smoking had a new CA despite 10 y after and was discovered to have a new LAD and RCA stenosis and underwent CABG and ICD placement.	Conclusions: medical treatment with calcium channel antagonists appears to be associated with an event-free clinical course. Stopping smoking is important.
 Myerburg et al. 1992 (147) 1574091 	Study type: retrospective cohort Size: 5 patients	Exclusion criteria: N/A Inclusion: From 356 patients, included were 5 survivors of OHCA between 1980 and 1991	Results: Titration of calcium channel blocking drugs (verapamil, diltiazem, or nifedipine) against the ability of ergonovine to provoke spasm was	Conclusions: Silent MI due to coronary artery spasm can initiate potentially fatal

without epicardial with induced or spontaneous focal coronary artery spotsoth) Exclusion criteria:	arrhythmias in all 4 patients. 1/5 patients had a positive EPS with ventricular flutter despite propranolol	arrhythmias in patients without flow-limiting CAD. In patients with OHCA due to coronary vasospasm, treatment with calcium channel blocking agents appears to prevent recurrent arrhythmias.
---	--	--

Data Supplement 20. Nonrandomized Trials, Observational Studies, and/or Registries for Post CABG VT/VF – (Section 7.1.1.2)

Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Saxon et al. 1995 (148) 7856540 	Study type: retrospective single center cohort Size: 17 patients	17 patients UCLA medical center with new-onset sustatined VT/VF within 30 d of CABG between 1981-1993 compared to 119 control patients 1992-1993 without VT/VF post-CABG	VT/VF patients had lower LVEF, more likely to have had MI <2 w before CABG, graft to chronically occluded vessel Sustained MMVT 11/17 patients (65%) and most (64%) had no evidence of peri-op MI. Those with MMVT, 80% inducible at EPS Polymorphic VT/VF 6/17 patients (35%) and most had peri-op MI (67%) and only 2/6 (33%) had inducible VT at EPS	Conclusions: New onset MMVT is usually associated with old infarct/scarring (and many inducible at EPS) Polymorphic VT/VF usually associated with ischemia. Polymorphic VT/VF occurring after CABG warrants a therapeutic approach targeting treatment of MI.
Ascione et al.2004 (149)15120824	Study type: retrospective single center cohort Size: 4411 patients undergoing CABG	Cases CABG patients 4/1996-9/2001 with VT/VF post-op compared to controls without. Assessed	Factors associated with VT/VF age <65 y, female, low BMI, unstable angina, reduced LVEF, and need for inotrope or IABP	• Results (cont.): 5/12 (42%) intraoperative VT/VF died in the hospital, as compared with 10/55 (18%) with VT/VF in post-op period (p=0.08). Those with post-op VT/VF, 27

	including 69 patients with post op VF/VT	factors associated with post-op VT/VF None of the VT/VF patients underwent ICD placement.	Off-pump CABG associated with protective effect (OR: 0.53; 95% CI: 0.25–1.13) Long term survival was similar between groups (2 y 98.2% VT/VF surviving to discharge vs. 97% for control (HR: 0.96; 95% CI: 0.4–2.3)	(47.4%) had the event within the first 24 h. • Conclusion: incidence of VT/VF is low in patients undergoing CABG but associated with high in-hospital mortality. The late survival of those discharged is similar to controls.
• Steinberg et al. 1999 (150) • 10027813	Study type: cohort study Size: 12 patients	Patient with sustained post-op VT ≥24 hrs but <30 d after CABG among consecutive patients 382 patients undergoing CABG at a single institution Variables associated with the occurrence of VT was performed	Results: 12 patients (3.1%) experienced ≥1 episode of sustained VT 4.1±4.8 d after CABG In 11 /12 patients, no postoperative complication explained the VT. 1 patient had a perioperative MI. The in-hospital mortality rate was 25%. Among the 9 survivors, 5 had EPS with all inducible sustained monomorphic VT (matching clinical VT). 3/9 patients received an ICD before hospital discharge. Other 6/9 patients received chronic therapy with AAD (primarily amiodarone). All 9 patients are alive, with a mean followup of 2.5 y. 2 patients (1 with an ICD and 1 on amiodarone) had recurrent VT during follow-up.	 Results (cont.): Patients with VT were more likely to have prior MI (92% vs. 50%, p<0.01), severe CHF (56% vs. 21%, p<0.01), and LVEF <0.40 (70% vs. 29%, p<0.01). By multivariate analysis, the number of bypass grafts across a noncollateralized occluded vessel to an infarct zone was the only independent factor predicting VT. Conclusions: (1) Patients who developed VT had a high in-hospital mortality rate of 25% (2) However, long-term outcome was good (possibly related to antiarrhythmic or ICD). (3) predictors are MMVT previous MI scar and associated severe LV dysfunction. (4) Relationship was found between the development of VT and the placement of a bypass graft across a noncollateralized occluded coronary vessel to a chronic infarct zone. (5) The development of MMVT was typically not due to a detectable postoperative complication or ischemia.

Data Supplement 21. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries of ICDs Primary Prevention Ventricular

Arrhythmias and Sudden Death in Patients with Ischemic Cardiomyopathy – (Section 7.1.2)

Study Acronym;	Aim of Study; Study Type;	Patient Population	Randomized Subjects	Endpoint and Results	Conclusion:
Author;	Study Size (N)			Results	
Year Published	0.000, 0.00 (,				
• MADIT-I	Aim: To evaluate	Inclusion: Previous MI, LVEF ≤35%,	Comparator:	All-cause mortality:	• In patients with a prior
Moss et	whether	NSVT, inducible VT at EPS that was	Control (101 patients)	Control 32% vs. ICD	MI, low EF who are at
al.1996 (42)	prophylactic ICD,	non-suppressed with IV procainamide		13%	high risk for VT,
• <u>8960472</u>	as compared with conventional	or equivalent AAD	Intervention: ICD (95 patients)	(RRR -59% ARR - 19%)	prophylactic therapy with an ICD leads to
	medical therapy,	Exclusion: previous CA or VT causing	(33 patients)	1370)	improved survival as
	would improve	syncope that was not associated with			compared with
	survival in a high-	an AMI; symptomatic hypotension			conventional medical
	risk group of	while in a stable rhythm; and MI <3			therapy.
	patients with	wk, prior CABG <2 mo or PCI <3 mo,			incrapy.
	NSVT, reduced	as were women of childbearing age			
	LVEF and previous	who were not using medically			
	MI.	prescribed contraceptives, patients			
		with advanced cerebrovascular			
	Study type:	disease, patients with any condition			
	prospective	other than cardiac disease that was			
	multicenter RCT	associated with a reduced likelihood			
		of survival for the duration of the trial,			
	Size: 196 patients	and patients who were participating			
		in other clinical trials			
CABG-Patch	Aim: To evaluate	Inclusion: Coronary artery bypass	Comparator:	All-cause mortality:	No evidence of
Bigger et	the role of ICD in	surgery, EF <36, SAECG positive	Control (454 patients)	Control 18% vs. ICD	improved survival among
al.1997 (151)	patients after			18%	patients with CAD,
• <u>9371853</u>	CABG with high	Exclusion: sustained VT/VF, diabetes	Intervention:		reduced LVEF, and
	risk of SCD	mellitus with poor blood glucose	ICD (446 patients)		abnormal SAECG
		control or recurrent infections,			receiving prophylactic
	Study type: RCT	previous or concomitant aortic- or			ICD after CABG
	c: 000	mitral-valve surgery, concomitant			
	Size: 900 patients	cerebrovascular surgery, a serum			
		creatinine concentration greater than			
		3 mg/dl, emergency CABG, a			

• MUSTT	Aim: To evaluate	noncardiovascular condition with expected survival of less than 2 y, or an inability to attend followup visits Inclusion: CAD, LVEF ≤40%, NSVT,	If sustained VT/VF	Risk of CA or death	Patients with CAD, left
• Buxton et al. 2000 (41) • 10874061	the usefulness of EPS for risk stratification among patients with CAD, abnormal ventricular function, and NSVT Study type: RCT Size: 704 patients	inducible at EPS Exclusion: H/o of syncope or had sustained VT/VF >48 h after the onset of AMI, NSVT that occurred only in the setting of drug-induced LQTS or AMI or that was attributable to acute metabolic disorders or drug toxicity, or if they had symptomatic NSVT	were induced by EPS, patients were randomized to antiarrhythmic therapy, including AAD and possible ICD, as indicated by the results of EP testing, or no antiarrhythmic therapy. Comparator: Control (353 patients) Inducible but no antiarrhythmic Intervention: Inducible and failed suppression with AAD and given ICD (161 patients)	from arrhythmia among the patients who received treatment with ICDs was lower than that among the patients discharged without (HR: 0.24; 95% CI: 0.13–0.45; p<0.001) All-cause mortality: Control 55% vs. ICD 24% (RRR -58% and ARR -31%)	ventricular dysfunction, and asymptomatic, NSVT in whom sustained VAs cannot be induced have a significantly lower risk of SCD and lower overall mortality than similar patients with inducible sustained tachyarrhythmias. Important to point out that receipt of an ICD was not randomized treatment.
• MADIT-II • Moss et al. 2002 (44) • <u>11907286</u>	Aim: To evaluate the benefit of ICD in patients with prior MI and reduced LVEF Study type: RCT Size: 1232 patients	Inclusion: Prior MI (>1 mo), EF ≤30% Exclusion: existing indication for ICD; NYHA class IV at enrollment; had undergone coronary revascularization <3 mo; MI <30 d, advanced cerebrovascular disease, childbearing age and not using contraceptive, presence of any condition other than cardiac disease that was associated with a high likelihood of death during	Comparator: Control (490 patients) Intervention: ICD (742 patients)	All-cause mortality: control 22% vs. ICD 16% (RRR -28% and ARR - 6%)	• In patients with a prior MI and advanced left ventricular dysfunction, prophylactic ICD improves survival and should be considered as a recommended therapy.

		the trial, or unwilling to provide consent			
• DINAMIT	Aim:	Inclusion: Recent MI (6-40 d), EF	Comparator:	All-cause mortality:	Prophylactic ICD
 Hohnloser et 	To assess the	≤35%, standard deviation of normal-	Control (342 patients)	control 17% vs. ICD	therapy does not reduce
al. 2004 (152)	benefit of ICD in	to-normal RR intervals of 70 msec or		19%	overall mortality in high-
• <u>15590950</u>	patients with	less or a mean RR interval of 750 msec	Intervention:		risk patients who have
	recent MI and	or less, mean heart rate ≥80	ICD (332 patients)		recently had a MI.
	reduced LVEF	beats/min		2° outcome:	 Although ICD therapy
	Study type: RCT			arrhythmic death:	was associated with a
		Exclusion: CHF class IV; noncardiac		12 ICD group vs. 29	reduction in the rate of
	Size: 674 patients	disease that limited life expectancy;		in the control group	death due to arrhythmia,
		CABG performed since the qualifying		(HR ICD group, 0.42;	that was offset by an
		infarction or planned to be performed		95 95% CI 0.22 to	increase in the rate of
		within 4 wks after randomization;		0.83; p=0.009)	death from
		three-vessel PCI performed since the			nonarrhythmic causes.
		qualifying infarction; name on a			
		waiting list for a heart transplant;			
		current, ongoing ICD therapy; prior			
		implantation of a permanent			
		pacemaker; requirement for an ICD			
		(i.e., sustained VT or fibrillation more			
		than 48 h after the qualifying			
		infarction); low probability that the			
		study ICD could be implanted within 7			
		d after randomization; and expected			
		poor compliance with the protocol			
 SCD-HeFT 	Aim: Evaluate	Inclusion: NYHA class I-III HF, LVEF	Intervention 1:	All-cause mortality:	• In patients with NYHA
 Bardy et al. 	whether	≤35%	GDMT plus a ICD (829	control 36% vs. ICD	class II or III HF and
2005 (43)	amiodarone or a		patients)	29%	LVEF≤35%, amiodarone
• <u>15659722</u>	conservatively	Exclusion: Age <18 y, unable to give		(RRR: -23% and ARR:	has no favorable effect
	programmed	consent	Intervention 2:	-7%)	on survival, whereas
	shock-only, single-		GDMT plus		single-lead, shock-only
	lead ICD would		amiodarone (845		ICD therapy reduces
	decrease the risk		patients)		overall mortality. This
	of death from any				was the longest and
	cause in a broad		Comparator 1:		largest ICD trial.

	population of		GDMT plus Placebo		
	patients with mild-		(847 patients)		
	to-moderate HF				
	Study type:				
	prospective				
	multicenter RCT				
	Size: 2521 patients				
• IRIS	Aim: Test	Inclusion: Recent MI (5-31 d) plus HR	Comparator:	All-cause mortality:	Prophylactic ICD
 Steinbeck et 	whether patients	>90 bpm and LVEF ≤40% or NSVT	Control (453 patients)	control 23% vs. 22%	therapy did not reduce
al. 2009 (153)	at increased risk				overall mortality among
• <u>19812399</u>	who are treated	Exclusion: VAs that occurred before	Intervention:		patients with AMI and
	early with an ICD	the index MI or >48 h after the MI and	ICD (445 patients)		clinical features that
	will live longer	that required treatment, NYHA class			placed them at increased
	than those who	IV drug-refractory HF, an interval of			risk.
	receive GDMT	>31 d between MI and presentation,			
	alone	no ECG documentation within <48 h			
		after the onset of chest pain, an			
	Study type:	indication for CABG before study			
	prospective RCT	entry, a psychiatric disorder, severe			
		concomitant disease, a Hx of poor			
	Size: 898 patients	compliance with treatment, either the			
		inability to participate in this trial or			
		current participation in another trial,			
		and an unstable clinical condition			
 Piccini et al. 	Aim: To evaluate	Inclusion criteria: Studies in which	1° endpoint: SCD,	Amiodarone	• Conclusions:
2009 (154)	the cumulative	patients were randomized to	CVD, all-cause	reduces the risk of	Amiodarone reduced the
• <u>19336434</u>	evidence	amiodarone and placebo or inactive	mortality, and the	SCD by 29% and	risk of SCD but is neutral
	regarding the	control. Additional	incidences of drug	CVD by 18%,	with respect to all-cause
	safety and efficacy	inclusion criteria included: treatment	toxicities.	however,	mortality.
	of amiodarone in	for >30 d, followup >6 mo, and		amiodarone therapy	
	prevention of SCD	availability of all-cause mortality as an	Results: Amiodarone	is neutral with	Authors suggested
		endpoint	decreased the	respect to all-cause	amiodarone as a viable
	Study type: Meta-		incidence of SCD	mortality	alternative in patients
	analysis of all RCT	Exclusion criteria: Studies	(7.1% vs. 9.7% [OR:		who are not eligible for
	examining the use		0.71; 95% CI: 0.61-		or who do not have

	of amiodarone vs. placebo/control for the prevention of SCD Size: 15 trials, which randomized 8,522 patients	of patients with shock-refractory VA, OHCA, patients <18 y, randomization to amiodarone vs. a class Ic or class III AAD (without a placebo or standard of care arm). Studies of patients with ICDs were excluded unless used on both arms.	0.84, p<0.001]) and cardiovascular death (14.0% vs.16.3% [OR: 0.82;0.71–0.94, p=0.004]). There was a 1.5% absolute risk reduction in all-cause mortality which did not meet statistical significance (p=0.093). Amiodarone therapy increased the risk of pulmonary (2.9% vs. 1.5% [OR: 1.97;95% CI:1.27–3.04, p=0.002]), and thyroid (3.6% vs. 0.4%; [OR: 5.68; 95% CI:2.94–10.98, p<0.001]) toxicity.	Adverse events: associated with a 2- and 5-fold increased risk of pulmonary and thyroid toxicity.	access to ICD therapy for the prevention of SCD.
● Claro et al. 2015 (136) ● <u>26646017</u>	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic. Study type: meta-analyses using a random-effects model	Inclusion criteria: Randomized assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD.	Intervention: Amiodarone Comparator: placebo, no intervention, ICD or other antiarrhythmics	1° endpoint: There was a beneficial effect with amiodarone reducing the risk of SCD by 12%-34% and may reduce the risk of all-cause mortality by up to 22% when compared with placebo or no intervention in a 1° prevention setting.	Conclusions: There is low quality evidence that amiodarone reduces the risk of SCD and may reduce the risk of all-cause mortality when compared with placebo or no intervention in a 1° prevention setting. The evidence regarding the comparison with other antiarrhythmics is of moderate quality and goes in the same direction.

	Size: 24 studies			Adverse events:	• Stresses the
	(9,997			Amiodarone was	importance for people in
	participants) with			associated with	low-income countries,
	17 studies with			increased adverse	where an ICD may not be
	8383 patients			effects, both thyroid	available.
	identified as			and pulmonary	
	relevant 1°			(based on 12	
	prevention trials.			studies), and	
	'			increased risk of	
				discontinuation	
				(based on 13	
				studies) when	
				compared with	
				placebo.	
• Owens DK et	Aim: Evaluated	Markov model to evaluate the cost-	Results: cost-effectiven	ess becomes	The cost-effectiveness
al. 2002 (139)	whether risk	effectiveness of ICD implantation	unfavorable at both low	and high total	of ICD use relative to
• <u>12228780</u>	stratification	compared with empiric amiodarone	cardiac mortality rates.		amiodarone depends on
	based on risk	treatment. The model incorporated	If the annual total cardi	ac mortality rate is	total cardiac mortality
	ofSCD alone was	mortality rates from sudden and	12%, the cost-effectiver	ness of the ICD varies	rates as well as the ratio
	sufficient to	nonsudden cardiac death, noncardiac	from \$36,000 per qualit	y-adjusted life-year	of sudden to nonsudden
	predict the	death and costs for each treatment	(QALY) gained when the	ratio of sudden	cardiac death.
	effectiveness and	strategy. Model assumed that the ICD	cardiac death to nonsuc	dden cardiac death is	
	cost-effectiveness	reduced total mortality rates by 25%,	4 to \$116,000 per QALY	gained when the	
	of the ICD.	relative to use of amiodarone.	ratio is 0.25.		
• Cantero-	Aim: To evaluate	Inclusion criteria:	Results:		Appropriate ICD
Pérez EM, et al.	the effectiveness	Records from patients accepted for	Median follow-up of 77	d	therapies were recorded
2013 (155)	of ICDs for primary	heart transplantation from January 1,	overall mortality in the	ICD group was 7.1%	in 42.9% (12/28) in this
• <u>24314988</u>	prevention in	2006, to July 30, 2012, and whose	(2/28) and in the non-IC	D group was 17.6%	population.
	patients with LVEF	LVEF was <31% were reviewed	(9/51; p=0.062).		
	≤30% included on		Cause of death in patier	nts without ICDs:	
	the heart		Sudden death (5/9, 55.6	5%),	
	transplantation list		HF (4/9, 44.4%).		
			Cause of death in patier	nts with ICDs: HFheart	
	Size: Patients who				
	received ICDs for				
	primary				
	prevention (N=28)				

 Fröhlich GM, et al. 2013 (156) 23813845 	were compared with patients without ICDs (N=51) Aim: To delineate the role of ICD therapy for the primary and secondary prevention of SCD in patients listed for heart transplantation Size: N=1089	Inclusion criteria: Patients listed for heart transplantation in 2 tertiary heart transplant centres were enrolled. Of 550 patients (51%) on the transplant list with an ICD: primary prevention ICD: N=216 secondary prevention ICD: N=334	Results: Median time on the waiting list = 8 mo (estimated 1-year: 88±3% vs. 77±3% vs. 67±3%; p=0.0001). An independent beneficial effect of ICDs that was most pronounced in patients who had received an ICD for primary prevention (HR: 0.4, 95% CI: 0.19–0.85; p=0.016).	• ICDs appear to be associated with a reduction in all-cause mortality in patients implanted with the device for primary and secondary prevention compared to those without an ICD.
● Gandjbakhch E, et al. 2016 (157) ● <u>27344378</u>	Aim: To evaluate the ICD benefit on mortality in patients with endstage HF listed for heart transplantation Size: N=380 consecutive patients listed for heart transplantation between 2005 and 2009 in A tertiary heart transplant centre	Inclusion criteria: Patients with end-stage HF receiving an ICD before or within 3 mo after being listed for heart transplantation	Results: 15.6% of patients died while awaiting heart transplantation. Non-ICD patients presented more often haemodynamic compromise. ICD did not remain an independent predictor of death. Death by haemodynamic compromise (76.3% of deaths), which occurred more frequently in the non-ICD group (14.7% vs. 5.8%; logrank p=0.002). Unknown/arrhythmic deaths did not differ significantly between the two groups (3.9% vs. 1.7%; log-rank p=0.21).	● Need for mechanical circulatory support (p<0.001), low EF (p=0.001) and registration on the regular list (p=0.008) were the only independent predictors of death. ● ICD-related complications occurred in 21.4% of patients, mainly as a result of postoperative worsening of HF (11.9%).
• Vakil K, et al. 2016 (158)	Aim: To assess the impact of ICD on waitlist mortality in patients listed	Inclusion criteria: Adults (age ≥18 y) listed for first-time heart transplantation in the US between January 1, 1999, and September 30, 2014, were	Results: Median follow-up of 154 days, 3,638 patients (11%) died on the waitlist (9% in ICD group vs. 15% in no-ICD group;	• In the subgroup of patients with LVAD (N= 9,478), having an ICD was associated with an adjusted 19% relative

for heart	retrospectively identified from the	p<0.0001), whereas 63% underwent heart	reduction in mortality
transplantation	United Network for Organ Sharing	transplantation.	(HR: 0.81; 95% CI: 0.70-
	registry.	An ICD at listing was associated with an	0.94).
<u>Size:</u> N=32,599		adjusted 13% relative reduction in mortality	
		(HR: 0.87; 95% CI: 0.80-0.94).	

Data Supplement 22. RCTs Evaluating Treatment and Prevention of Recurrent Ventricular Arrhythmias in Patients with Ischemic Heart Disease – (Section 7.1.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
OPTIC	Aim: Determine	Inclusion criteria: Patients	Intervention:	1° endpoint: ICD	Amiodarone plus BB
 Connolly et 	whether	who had received an ICD	amiodarone plus BB	shock for any reason.	significantly reduced the risk of
al. 2006 (159)	amiodarone plus BB	within 21 d for inducible or	or sotalol	Shocks occurred in 41	shock compared with BB alone
• <u>16403928</u>	or sotalol are better	spontaneous VT/VF		patients (38.5%)	(HR: 0.27; 95% CI: 0.14–0.52;
	than BB alone for		Comparator: BB alone	assigned to BB alone,	p<0.001) and sotalol (HR: 0.43;
	prevention of ICD	Exclusion criteria: Long QT		26 (24.3%) assigned	95% CI: 0.22–0.85; p=0.02).
	shocks.	syndrome, corrected QT		to sotalol, and 12	There was a trend for sotalol to
		interval of more than 450		(10.3%) assigned to	reduce shocks compared with
	Study type: RCT	ms, already receiving or		amiodarone plus BB	②BB alone (HR: 0.61; 95% CI:
		recent treatment with a		(HR: 0.44; 95% CI:	0.37–1.01; p=0.055).
	Size: 412 patients	class I or class III		0.28–0.68; p<0.001).	Adverse pulmonary and
		antiarrhythmic agent,			thyroid events and
		creatinine clearance less		Safety endpoint: NA	symptomatic bradycardia were
		than 30 mL/min, AF likely to			more common among patients
		require use of a class I or class III antiarrhythmic			randomized to amiodarone.
		agent, absence of SHD,			Conclusions: Despite use of
		NYHA class IV HF			advanced ICD technology and
					treatment with a BB, shocks
					occur commonly in the first
					year after ICD implant.
					Amiodarone plus BB is effective

					for preventing these shocks and is more effective than sotalol but has an increased risk of drug-related adverse
 Pacifico et al. 1999 (160) 10369848 	Aim: Efficacy and safety of sotalol to prevent shocks from ICDs Study type: prospective, RCT double-blind Size: 302 patients	Inclusion criteria: age >18 y, life-threatening VT that were not due to a reversible cause; had received their first or a replacement ICD within 3 mo before enrollment (patients with replacement defibrillators had to have received at least one shock during the preceding 6 mo); had a ICD that provided tiered therapy with EGM and separate logging of shocks Exclusion criteria: incessant VT; had received AAD therapy <5 half-lives of the drug before randomization in the case of class I and III agents (and <3 mo before	Intervention: 160 to 320 mg of sotalol per day Comparator: matching placebo	1º endpoint: Treatment with sotalol was associated with a lower risk of death from any cause or the delivery of a first shock for any reason (reduction in risk 48%; p<0.001; first appropriate shock for a va or death from any cause was also reduced (reduction in risk, 44%; p=0.007), Safety endpoint: Bradycardia was more common in sotalol group, but	
		randomization in the case of amiodarone); had a QT interval of more than 450 msec (or a JT interval of more than 360 msec) in the absence of drug therapy; had a LQTS, including prolongation of the QT interval in response to specific drugs; had unstable coronary syndromes or had		only 2 patients discontinued therapy because of it; 3 patients in each group had HF.	

• Kettering et al. 2002 (161) • 12494613	Aim: Efficacy of metoprolol vs. sotalol in preventing recurrent VT in patients with ICDs Study type: prospective, RCT Size: 100 patients	had an AMI less than two weeks before screening; had intractable HF (NYHA class IV); were candidates for heart transplantation; or had a medical condition that was likely to be fatal in less than 2 y. Inclusion criteria: ICD implanted for sustained VT or VF Exclusion criteria: Contraindications for metoprolol or sotalol; AMI within the last 4 wk; unstable angina; severe concomitant diseases	Intervention: 40-480 mg sotalol daily Comparator: 25-200 mg daily metoprolol tartrate	1° endpoint: VT/VF recurrence requiring ICD intervention; 33 events in patients treated with metoprolol vs. 30 in patients receiving sotalol (p=0.68) Adverse Events: 5 metoprolol and 6 sotalol patients required dose reduction for fatigue, dizziness, HF	• Conclusions: No significant difference in freedom from ICD therapies between metoprolol and sotalol group (p=0.68)
• Echt et al. 1991 (162)	Aim: Examine the mortality and	Inclusion: 6 d - 2 y after MI if they had an average of ≥6	Intervention: encainide or	1° endpoint: arrhythmic death or	• Conclusions: Excess of deaths due to arrhythmia and deaths
• <u>1900101</u>	morbidity after randomization to encainide or flecainide or their respective placebo. Study type: RCT Size: 1498 patients	PVCs/h on ambulatory electrocardiographic monitoring of at least 18 h duration, and no runs of VT of ≥15 beats at a rate of ≥120 beats/mim. EF ≤0.55 if recruited within 90 d of the MI, or EF ≤0.40s if recruited 90 d or more after the MI. Exclusion: as above	flecainide Comparator: placebo	affrythinc death of cardiac arrest After a mean followup of 10 mo, 89 patients had died: 59 of arrhythmia (43 receiving drug vs. 16 receiving placebo; p=0.0004)	due to shock after acute recurrent MI in patients treated with encainide or flecainide. Nonlethal events, however, were equally distributed between the activedrug and placebo groups.

• Seidl et	Aim: efficacy of d,l-	Inclusion criteria: Patients	Intervention:	1° endpoint:	• Conclusions: The recurrence
al.1998 (163)	sotalol and	with ICD and Hx of VT/VF	metoprolol (mean	Actuarial rates for	rate of VT in patients treated
• <u>9761084</u>	metoprolol in		dosage 104 <u>+</u> 37 mg/d)	absence of VT	with metoprolol was lower
	preventing	Exclusion criteria: AMI		recurrence at 1 and 2	than in patients treated by d,l-
	recurrence of	within 1 wk;	Comparator: d,l-	y were significantly	sotalol. No difference in
	arrhythmic	contraindications	sotalol (mean dosage	higher in the	overall survival
	events after ICD	for BB; Hx of proarrhythmia	242± 109 mg/d)	metoprolol group	
	implantation.	caused by d,l-sotalol		compared with the	
				d,l-sotalol group (83%	
	Study type:			and 80% vs 57% and	
	prospective, RCT			51%, respectively,	
				p=0.016).	
	Size: _70 patients				
				Safety endpoint: HF	
				led to drug	
				discontinuation in 9%	
				in each group.	
				• 2 episodes of	
				proarrhythmia in	
				sotalol group.	
 Kuhlkamp et 	Aim: Evaluate	Inclusion criteria: Patients	Intervention: Patients	1° endpoint: 25	No difference in total mortality
al. 1999 (164)	efficacy of sotalol in	with inducible sustained VT	whose VT was	patients (53.2%) in	among the 3 groups
• <u>9935007</u>	preventing	or VF	suppressed on sotalol	the ICD-only	
	recurrences of VT		were treated with it;	group had a VT/VF	Conclusion: Sotalol significantly
		Exclusion criteria: non-	patients whose VT	recurrence in	reduces the incidence of
	Study type:	syncopal sustained VT;	was not suppressed	comparison to 15	recurrences of sustained VT in
	prospective, RCT	contraindications to BB;	on sotalol received an	patients (28.3%) in	comparison to no AAD
		limited projected survival	ICD and were	the sotalol group and	treatment
	Size: 146 patients	due to comorbid disease	randomized to	15 patients (32.6%) in	
			treatment with sotalol	the	
			or no antiarrhythmic	ICD/sotalol group (p 5	
			therapy	0.0013).	
			Comparator: no	Safety endpoint:	
			antiarrhythmic	Intolerance to	
				treatment with	
				d,lsotalol (overt	

				cardiac failure, symptomatic hypotension or Bradycardia)	
• MADIT-II substudy • Brodine et al. 2005 (165) • 16125497	Study type: Retrospective, observational Size: 720 patients who received ICDs	Inclusion criteria: ischemic cardiomyopathy, EF≤30%, randomized to ICD arm Exclusion criteria: Patients who were not randomized to ICD therapy	1° endpoint: Appropriate ICD therapy for VT/VF; survival Results: Patients in the top quartile of BB doses had a significant reduction in the risk of VT or VF requiring ICD therapy compared with patients not receiving BB (HR: 0.48; p=0.02). BB use was also associated with significant improvement in survival compared with the nonuse of BB (HR: 0.4; p<0.01).	The frequency of inappropriate ICD therapy for SVT was not significantly different among the 3 treatment groups (p=0.32).	Conclusion: Beta blockers reduce the risk for VT or VF and improve survival in ICD-treated patients with ischemic cardiomyopathy.
• SMASH VT • Reddy et al. 2007 (166) • 18160685	Aim: To determine whether prophylactic substrate based catheter ablation in sinus rhythm decreases ICD therapies after MI Study type: RCT prospective Size: 128 patients	Inclusion criteria: age ≥18 y with MI at least 1 mo previously and a Hx of VF, Hemodynamically unstable VT, or Syncope with inducible VT and ICD implantation Exclusion criteria: Treatment with AAD, ischemia induced VT/VF, or incessant VT or VF	Intervention: Substrate based catheter ablation of arrhythmogenic myocardium during sinus rhythm (N=64) Comparator: Standard ICD follow-up (N=64)	1° endpoint After 2 y of follow-up, ICD therapies occurred in 12% of patients randomized to catheter ablation and 33% in the control group (HR 0.35; CI 0.15–0.78, p=0.007)	 Trend towards reduced mortality after 2 y in the ablation group (9% vs 17%, p=0.06) No difference in left ventricular function or NYHA functional class during follow-up.

• VANISH	Aim: To determine	Inclusion criteria: Prior MI,	Intervention:	1° endpoint	VT storm occurred in 32
• Sapp J. et al.	whether catheter	ICD implantation, at least 1	Randomized 1:1 to	The 1° outcome	patients (24.2%) in the ablation
2016 (167)	ablation decreases	episode of VT during	catheter ablation or	occurred in 78 of 132	group and 42 patients (33.1%)
• <u>27149033</u>	ICD therapies in	treatment with amiodarone	escalated AAD	patients (59.1%) in	in the escalated-therapy group
	patients with	or another class I or class III	therapy (escalated-	the ablation group	(HR: 0.66; 95% CI: 0.42-0.05
	ischemic	AAD within the previous 6	therapy group),	and in 87 of 127	p=0.08). Appropriate ICD
	cardiomyopathy	mo	(N=132)	patients (68.5%) in	shocks occurred in 50 patients
	with a Hx of VT or	Exclusion criteria: Failure to		the escalated-therapy	(37.9%) and 54 patients
	VF despite the use	give informed consent	Comparator:	group. The rate of the	(42.5%), respectively (HR: 0.77;
	of AAD		Escalated drug	1° outcome was	95% CI: 0.53–1.14; p=0.19).
			therapy: Amiodarone	significantly lower in	
	Study type:		loading then amio 200	the ablation group	• 36 patients (27.3%) in the
	randomized,		mg/d (if on Sotalol) or	than in the escalated-	ablation group and 35 (27.6%)
	prospective		Amiodarone reloading	therapy group	in the escalated-therapy group
			then 300 mg/d if on	(HR:0.72; 95%	died (HR: 0.96; 95% CI: 0.60-
	Size: 259 patients		amiodarone <300	CI:0.53-0.98; p=0.04)	1.53; p=0.86).
			mg/d,		
			Or addition of	This difference was	
			mexiletine 200 mg TID	driven by trends	
			to amiodarone 300	toward reductions in	
			mg/d if on	rates of appropriate	
			amiodarone 300 mg/d	shocks and episodes	
			(N=127)	of VT storm	
VTACH Trial	To determine	Inclusion Criteria: Patients	Study Intervention	After 24 mo, 47% of	• Patients with LVEF >0.30 had
Kuck KH, et	whether catheter	age 18-80 y with prior MI,	ICD plus catheter	patients in the	greater reduction of VT with
al. 2010 (168)	ablation reduces	CAD, clinically	ablation of all	ablation group and	catheter ablation than did
• <u>20109864</u>	the risk of VT	hemodynamically stable VT,	inducible VTs or	29% of controls were	patients with more severe LV
	recurrence in	reduced LVEF <0.50, ICD	elimination of	free of recurrent VT	dysfunction (freedom from VT
	patients with	indication	substrate for non-	(HR: 0.61;95% CI	in 48% with ablation vs 27% of
	Ischemic		inducible VT	0.37–0.99, p=0.044).	controls, (HR:0.47; 95% CI
	Cardiomyopathy,	Exclusion Criteria	(N=52)		0.24–0.88, p=0.016).
	stable VT, and an	MI or Cardiac Surgery within			
	ICD compared with	1 mo, LV thrombus, artificial	Comparator		No difference in VT storm,
	ICD and continued	heart valve, incessant VT,	ICD and continued		syncope, or death between
	medical Rx alone	impaired renal function, life	medical therapy		ablation and controls.
	Study Type	expectancy <1 y.	(N=55)		
	RCT				

	Study Size 107 patients				
• CALYPSO	Aim	Inclusion Criteria	Intervention	1° Endpoint	• Of 243 screened patients, 27
Al-Khatib S.	Pilot study to	Patients with CAD, ICDs, who	Catheter ablation of	Mean time to	were enrolled.
et al. 2015	determine	had received >1 ICD shock or	VT (N=13)	recurrent VT was 75 d	• Presently on AAD (88, 41%),
(169)	feasibility of RCT of	≥3 ATP therapies for VT		in ablation arm and	VT due to reversible cause (23,
• <u>25332150</u>	catheter ablation of		Comparator	57 d in AAD arm.	11%), and incessant VT (20,
	VT vs. AAD when	Exclusion Criteria	AAD(N=14)		9%).
	used early in the	Present AAD, Incessant VT,		There were 2 deaths	
	course of patients	VT due to reversible cause		in both arms of the	
	with CAD who			study	
	experience ICD				
	therapies.				
	Study Type				
	Pilot RCT				
	Study size				
	27 patients				

Data Supplement 23. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Recurrent Arrhythmias in IHD – (Section 7.1.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Conclusions
 Blanck et al. 	Study type:	Inclusion criteria:	Results:	BBRVT typically occurs in patients
1993 (170)	Single Center Review	All patients at single center	45 of 48 patients had SHD	with SHD from a variety of causes in
• <u>8269297</u>		with BBRVT diagnosed at EPS	SHD was NICM in 16 patients,	patients with prolonged HV
	Size: 48 patients	between 1980-1992	ischemic cardiomyopathyin 23	conduction intervals.
		Criteria:	patients, V HD in 2 patients	
		1) Typical RBBB or LBBB		BBRVT is associated with aborted
		QRS morphology	Mean LVEF 23.2%	SCD, Syncope, and Palpitations
		during VT		

		 QRS preceded by His and appropriate bundle branch potential Stable HV, RB-V, or LB-V interval Induction dependent on HV delay Termination by block in HPS Noninducibility after RBB ablation 	Clinical Presentation Aborted SCD in 26% Syncope in 51% Sustained palpitations in 10% Mean HV interval in sinus 80.4 msec QRS morphology in VT LBBB in 46 patients RBBB in 5 patients Interfascicular reentry in 2 patients	BBRVT is most commonly associated with a LBBB QRS morphology, and less commonly with RBBB or Interfascicular QRS morphologies Catheter ablation targeting the RBB or LBB is highly effective and associated with a low risk of serious complications.
			Catheter Ablation Performed in 28 patients targeting the RBB in 26 patients and LBB in 2 patients Successful ablation of VT in 100% No Complications observed.	
 Brugada J et al. 2001 (171) 11216974 	Study type: prospective Size: 61 patients	Inclusion: prior MI, spontaneous VA not related to an acute ischemic event and coronary lesions requiring revascularization Exclusion: n/a Protocol: EP performed before and after revascularization	Results: 61 patients were inducible into sustained VA. After revascularization, 52 of 59 patients previously inducible were still inducible (group A), and 10 patients were noninducible (group B). No differences were found in clinical, hemodynamic, therapeutic and electrophysiological characteristics between both	 In patients with VA in the chronic phase of MI, probability of recurrence is high despite coronary artery revascularization, but mortality is low if combined with appropriate AAD. Recurrences: lower EF predicted higher recurrence rate but not ischemia before revascularization, amiodarone or BB therapy or EP study after revascularizationAn EF <30% predicted recurrent
			During 32 +/- 26 mo followup, 28/52 patients in group A (54%)	arrhythmic events (p=0.02), but not the presence of demonstrable ischemia before revascularization (p=0.42), amiodarone (p=0.69) or

• Sears et al. 1999 (172) • 10410293	Study type: literature review	Inclusion: studies assessing psychological impact of ICD and shocks	and 4/10 patients in group B (40%) had arrhythmic events (p =0.46). Total mortality was 10% in both groups. Results: 13-38% of recipients experiencing diagnosable levels of anxiety. Specific ICD-related concerns such as fear of shock, fear of device malfunction, fear of death, and fear of embarrassment have been identified.	Conclusions: Psychosocial adjustment risk profiles indicate that young ICD recipients and those with high discharge rates may experience the most adjustment difficulties
 Lopera et al. 2004 (173) 15028072 	Study type: Single Center Review Size: 20 patients	Inclusion criteria: His Bundle, LBB, or RBB potential closely associated with QRS with any of the following: 1) H-H interval variation preceding similar V-V interval variation; 2) Anterograde activation of the bundle branches during tachycardia; or, 3) Abolition of VT by bundle branch ablation. Exclusion criteria: None	Results: HPS VT induced in 20 of 234 consecutive patients referred for VT ablation NICM: 9 of 81 patients (11%) had HPS VT ICM: 11 of 153 patients (7.1%) had HPS VT Mean LVEF 29±17% 2 of 20 patients had normal LVEF Clinical Presentation ICD Shocks in 10 patients Syncope in 3 patients Other symptoms in 7 patients Other symptoms in 7 patients (all had LBBB QRS morphology) 13 of 16 patients BBRVT successfully ablated by RBB	 BBRVT occurs in patients with both NICM and ischemic cardiomyopathy, usually with impaired LVEF. BBRVT is most commonly associated with a LBBB QRS morphology, and less commonly with RBBB or Interfascicular QRS morphologies Catheter ablation targeting the RBB or LBB is highly effective and associated with a low risk of serious complications if only one BB is targeted and a higher risk of AV block if both BBs are targeted for ablation.

a Maladina di at			ablation and 3 of 16 by LBB ablation. HV interval prolonged from 70±5.9 msec to 83±17 msec after ablation. Typical BBRVT and Interfascicular VT in 2 of 20 patients. Ablation of both the RBB and portion of LBB eliminated VT in both patients, complicated by AV block in 1 pt. Focal Mechanism from BBs in 2 patients, one in RBB, one in LBB. Ablation eliminated focal VT in both patients, complicated by AV block in 1 pt.	Cotheter chiefing of the DDD is
Mehdirad et	Study type:	Inclusion criteria:	Results:	• Catheter ablation of the RBB is
al.1995 (174)	Single Center Review	All patients undergoing RF catheter ablation of the RBB	HV interval 68±8 msec at baseline LVEF mean 31+15%	effective for the treatment of BBRVT
• <u>8771124</u>	Size: 16 patients	for BBRVT	RBBB developed in 15/16 patients after RBB ablation AV block occurred in 1 pt After mean of 19±10 mo, one patient died suddenly, 2 received cardiac transplantation, and 1 died of CHF.	BBRVT is associated with prolonged HV conduction intervals. The medium term followup after catheter ablation of the RBB is overall quite good. Complications
HELP-VT Dingy B at all	Aim:	Inclusion criteria:	1° endpoint: At 1 y follow-up, VT	Complications
Dinov B, et al.2014 (175)	To determine the outcome of VT	Patients with SHD referred for catheter ablation of VT with	free survival was 57% for ischemic	Complications occurred in 11.1% of NICM and 11.1% of ischemic
● 24211823	catheter ablation in	either NICM (N=63) or	cardiomyopathyand 40.5% for NICM patients (HR: 1.62; 95% CI	cardiomyopathypatients, including
24211025	patients with NICM to	ischemic	1.12–2.34, p=0.01). ischemic	death in 4.8% of NICM and 3.7% of
	those with ICM	cardiomyopathy(N=164)	cardiomyopathyrequired epicardial	ischemic cardiomyopathy
	Study type:		ablation in only 2 of 164 (1.2%)	, , ,
	Prospective, non-	Exclusion criteria:	whereas NICM required epicardial	
	randomized	Failure of informed consent	ablation in 30.8% (p=0.0001).	
	Size: 227 patients			

• Euro-VT Study • Tanner H 2010 (176) • 19656251	Aim To determine the safety and efficacy of electroanatomic mapping and irrigated RF catheter ablation for VT after MI Study Type: Multicenter, non-randomized Study Size 63 patients	Intervention: Catheter ablation for patients with NICM Comparator: Catheter ablation in patients with ICM Inclusion Criteria Drug and device refractory, recurrent sustained VT after MI. ≥4 episodes of sustained VT in prior 6 mo. Exclusion Criteria Age <18 y MI within 2 mo LV Thrombus Unstable Angina Severe AS or MR Unwillingness to participate Intervention Electroanatomic mapping and ablation with open-tip irrigated catheter.	1° endpoint: Acute success with ablation was achieved in 83% of mappable VTs and 40% of non-mappable VTs (p<0.0001). During 12mo follow-up, VT recurred in 49% of patients. The mean number of therapies dropped from 60±70 prior to ablation to 14±15 in the same period of time (6 mo) after ablation (p= 0.02).	Complications Major complications occurred in 1.5% and minor complications in 5% of patients, particularly groin hematomas, with no procedural deaths.
 Post-approval Thermocool Trial Marchlinski F 2016 (177) 26868693 	Aim To evaluate long-term safety and effectiveness of RF catheter ablation for VT in patients with CAD Study Type: Multicenter, non-randomized	Inclusion Criteria Patient with coronary disease, age ≥18 y and LVEF ≥10% with recurrent VT (either ≥4 episode documented by ICD, ≥2 episode documented by ECG in patients without ICD, incessant VT or symptomatic VT despite AAD treatment Exclusion Criteria	1° endpoint: At 6 mo: 62% without VT recurrence, proportion of patients with ICD shock reduced from 81.2 (pre) to 26.8% and ≥50% reduction in VT episodes in 63.8% of patients. Safety Endpoint CV specific AE in 3.9% with no stroke	Comments Reduction in amiodarone usage and hospitalization Improvement in QoL

 International VT Collaborative Group Study Tung R 2015 (178) ≥ 26031376 	Aim: to determine the association of VT recurrence after ablation and survival in scar related VT Study type: Multicenter observational Size: 2061	Mobile LV thrombus, MI within 3 mo, idiopathic VT, class IV HF, creatinine ≥2.5, recent cardiac surgery, unstable angina, severe AS or MR. Intervention Electroanatomic mapping and ablation with open-tip irrigated catheter. Inclusion criteria: SHD with ischemic and non-ischemic cardiomyopathies with monomorphic VT and myocardial scar by electroanatomic mapping Exclusion criteria: absence of scar on electroanatomical mapping Intervention: Catheter ablation, either endocardial or epicardial, guided by EAM. End point of ablation with elimination of all induced VTs	1º endpoint: Freedom from VT recurrence, Heart Transplant, or death was 70% at 1 y follow-up. VT recurred in 55% of patients who died vs. 22% of patients who survived. Transplant free survival was 90% for patients without VT recurrence and 71% for those with VT recurrence (HR: 6.9; 95% CI: 5.3– 9.0, p<0.001).	Procedural complications occurred in 6%, including 2 deaths (0.1%), hemopericardium in 1.7%, and vascular access complications in 1.6%
 Meta-Analysis of Randomized and Non- Randomized Trials of Catheter Ablation for VT 	Aim: To determine the relative risk of VT recurrence in patients undergoing catheter ablation compared with medical therapy	PubMed, Embase, Cochrane searches of both randomized and nonrandomized clinical trials of catheter ablation of VT compared with a control group receiving AAD treatment alone	1° endpoint: VT recurred in 93 of 266 patients (35%) after Catheter Ablation compared with 105 of 191 (55%) on AAD (HR: 0.62; 95% CI: 0.51–0.76, p<0.001)	• Electrical Storm occurred in 17 of 116 (15%) after catheter ablation and 29 of 119 (25%) on AAD therapy (HR: 0.61; 95% CI: 0.36–1.03, p<0.066).
Mallidi J 2011 (179)21147263	Study type: Meta-Analysis of 5 Trials of VT Ablation	Intervention: Catheter ablation with or without AAD	Safety endpoint: Complications occurred in 6.3% after ablation, including death	Mortality occurred in 12% of patients treated with ablation and 14% on AAD.

	Size: 457 patients	Comparator: AAD alone.	(1%), tamponade (1%) and AV block (1.6%)	
• Cooled Tip Ablation of VT • Calkins 2000 (180) • 10841242	Aim: To determine the safety and efficacy of an internally cooled RF ablation catheter used for VT in SHD in patients with ≥2 episodes of VT in the prior 2 mo despite ≥2 AAD	Inclusion criteria: >2 episodes of hemodynamically stable VT in previous 2 mo, CAD, ICD implantation, failure of >2 AAD. Exclusion criteria: Failure to give informed consent	1° endpoint: Acute success with elimination of all mappable VTs in 75%, At a mean of 243±153 d of follow-up, VT recurred in 46% of patients Acute success defined by noninduciblity of VT after ablation did not predict VT recurrence	• <u>Complications</u> Complications occurred in 8% including death in 2.7%
	Study type: Non-Randomized trial of Cooled Tip ablation catheter for VT Size: 147 patients	Intervention: Catheter ablation using the Cooled RF catheter system Comparator: VT recurrence Hx prior to ablation		
Multicenter ThermoCool Ventricular Tachycardia Ablation Trial	Aim: To determine the outcome after catheter ablation of VT	Inclusion criteria: ≥4 episodes of sustained VT requiring cardioversion or AAD for termination in past 6 mo despite ICD or AAD THERAPY,	1° endpoint: Freedom from recurrent VT at 6 mo follow-up in 123/231 patients (53%).	• 1 y mortality was 18%
Stevenson WG, et al. 2008 (181)19064682	Study type: Non-randomized	age >18 y. Exclusion criteria: LVEF <0.10, LV thrombus,	VT ablation reduced the median number of VT episodes in 6 mo before ablation from 11.5 to 0 after ablation (p<0.0001)	
	Size: 231 patients	Creatinine >2.5, NYHA Class IV CHF, severe AS, unstable angina, pregnancy. Intervention:	Safety endpoint: Complications occurred in 7%, including 7 patients (3%) who died within 3 d of ablation, and groin complications in 4.7%.	

study operational VT ≥24 h but <30 d after CABG among consecutive patients 382 patients undergoing CABG at a single institution Variables associated with the occurrence of VT was performed The 25% EPS moon VT). before 6/9 ther amic	Log endpoint: 12 patients (3.1%) experienced ≥1 episode of sustained VT 4.1±4.8 d after CABG In 11 /12 patients, no costoperative complication explained the VT. 1 patient had a perioperative MI. The in-hospital mortality rate was 25%. Among the 9 survivors, 5 had EPS with all inducible sustained monomorphic VT (matching clinical AT). 3/9 patients received an ICD perfore hospital discharge. Other EVENT OF PATIENTS OF PATIENTS AND STATE OF PATIENTS AND	 Results (cont.): Patients with VT were more likely to have prior MI (92% vs. 50%, p<0.01), severe CHF (56% vs. 21%, p<0.01), and LVEF <0.40 (70% vs. 29%, p<0.01). By multivariate analysis, the number of bypass grafts across a noncollateralized occluded vessel to an infarct zone was the only independent factor predicting VT. Conclusions: (1) Patients who developed VT had a high in-hospital mortality rate of 25% (2) However, long-term outcome was good (possibly related to antiarrhythmic or ICD). (3) predictors are MMVT previous MI scar and associated severe LV dysfunction. (4) Relationship was found between the development of VT and the placement of a bypass graft across a noncollateralized occluded coronary vessel to a chronic infarct zone. (5) The development of MMVT was typically not due to a detectable postoperative complication or ischemia.
--	---	---

Data Supplement 24. Nonrandomized Trials, Observational Studies, and/or Registries of NICM – (Section 7.2)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
 Ackerman MJ 2011 	Study type: HRS/EHRA	Expert consensus	General: Class I: 1) sound clinical	LQTS: Note difference between
(182)	consensus statement.	statement on the state of	suspicion when positive	Class I if QTc >480 or 500 ms, and
• <u>21810866</u>		genetic testing for the	predictive value > 40%,	Class IIb if QTc >460/480 ms
		channelopathies and	signal/noise ratio >10; 2) AND/OR	
		cardiomyopathies	genetic test result provides either	
			diagnostic or prognostic info, or	
		<u>Panel:</u> geneticists,	influences therapeutic choices.	
		arrhythmia specialists	Screening of family members:	
		Agreement ≥ 84%	when genetic testing leads to the	
			adoption of therapy/protective	
			measures/ lifestyle adaptations.	
			LQTS: Class I: 1) any pt with	
			strong clinical index of suspicion	
			for LQTS; 2) any asymptomatic pt	
			with QT prolongation on serial	
			ECGs: QTc >480 ms prepuberty;	
			>500 ms, adult; 3) Mutation	
			specific genetic testing for family	
			members and other appropriate	
			relatives	
			Class IIb: any asymptomatic pt	
			with otherwise idiopathic QTc	
			values >460 ms (puberty) or 480	
			ms (183) on serial ECGs	
			CPVT: Class I: 1) any pt w strong	
			clinical index of suspicion of	
			CPVT;	

2) Mutation specific genetic testing is recommended for family members and appropriate relatives
Brugada: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIa: any pt w strong clinical index of suspicion of BrS, including with procainamide challenge Class III: not indicated in the
setting of an isolated type 2 or 3 Brugada ECG pattern Short QTS: Class I: Mutation
specific genetic testing is recommended for family members and appropriate relatives Class IIb: any pt with strong
clinical index of suspicion ARVC: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives
Class IIa: can be useful for patients satisfying task force diagnostic criteria Class IIb: may be considered for patients with possible ACM/ARVC
Class III: not recommended for patients with only a single minor

SCD/SIDS: Class I: 1) Collection of tissue sample recommended (blood or heart/liver/spleen tissue); 2) Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIb: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelpathy, is not indicated for the survivor of unexplained	criterion according to the 2010
tissue sample recommended (blood or heart/liver/spleen tissue); 2) Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIb: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
tissue sample recommended (blood or heart/liver/spleen tissue); 2) Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIb: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
(blood or heart/liver/spleen tissue); 2) Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIb: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
tissue); 2) Mutation specific genetic testing is recommended for family members and appropriate relatives Class Ilb: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	· ·
genetic testing is recommended for family members and appropriate relatives Class IIb: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
for family members and appropriate relatives Class IIb: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
appropriate relatives Class IIb: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
Class IIb: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	specifically
Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	ACA/recussitated: Class I:
by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
evaluation and is used for the 1° purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
purpose of screening at-risk family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
family members for sub-clinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
of suspicion for a specific cardiomyopathy or channelopathy, is not indicated	
cardiomyopathy or channelopathy, is not indicated	
channelopathy, is not indicated	
OHCA	
	Office
HCM: Class I: 1) any pt in whom	HCM: Class I: 1) any pt in whom
the clinical dx of HCM is	
established. 2) Mutation specific	
genetic testing is recommended	
for family members and	
appropriate relatives	

	Chudu hanga Thia is a	N/A	significant cardiac conduction disease and/or family Hx of premature unexpected sudden death. 2) Mutation specific genetic testing is recommended for family members and appropriate relatives LVNC: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives Class II: Mutation specific genetic testing is recommended for family members and appropriate relatives Class II: Mutation specific genetic testing is recommended dx of LVNC is established PCCD: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIb: may be considered as part of diagnostic evaluation for patients with either isolated CCD or CCD with concomitant congenital heart disease, especially w post family Hx of CCD.	
 Hershberger RE et al. 2010 (184) 20864896 	Study type: This is a review on clinical and genetic issues in DCM	N/A	N/A	• Idiopathic DCM, has been shown to have a familial basis in 20-35% of cases. Genetic studies in familial dilated cardiomyopathy have shown dramatic locus heterogeneity with mutations identified in >30 mostly autosomal genes showing primarily dominant transmission.

• Piers et al 2013 (185)	Study type: single center,	Inclusion criteria:	1° endpoint: VT recurrence over	VT recurrence is high in NICM
• <u>24036134</u>	observational	Patients with NICM and	mean follow up of 25±15 mo	patients, but significant reduction in
		VT treated with catheter		the frequency of VT episodes is
	<u>Size</u> : 45	ablation	Results: VT occurred in 24	observed in the majority of patients
			patients (53%), but the 6 mo VT	following ablation.
		Exclusion criteria: N/A	burden was reduced by ≥75% in	
			79%.	There was a suggestion that
			Recurrence rates were low after	patients treated with ablation early
			complete procedural success	(first VT or VT ICD therapy) had better
			(18%), but high after both partial	outcome than those treated late.
			success (77%) and failure (73%).	
• Greulich et al. 2013	Aim: study aimed to	Inclusion criteria: 155	1° endpoint: 1° endpoints were	Could not tell on additional LGE
(186)	demonstrate that the	consecutive patients with	death, aborted SCD, and	parameters due to low numbers.
• <u>23498675</u>	presence of late	systemic sarcoidosis who	appropriate ICD discharge.	
	gadolinium enhancement	underwent CMR for		
	is a predictor of death	workup of suspected	Results: LGE was present in 39	
	and other adverse events	cardiac sarcoid	patients (25.5%). The presence of	
	in patients with	involvement. The median	LGE yields a HR of 31.6 for death,	
	suspected CS	follow-up time was 2.6 y.	aborted SCD, or appropriate ICD	
			discharge, and of 33.9 for any	
	Study type: Multicenter	Exclusion criteria: N/A	event. This is superior to	
	prospective		functional or clinical parameters	
			such as left LVEF, LV end-diastolic	
	Size: 155 patients		volume, or presentation as HF,	
			yielding HRs between 0.99 (per %	
			increase LVEF) and 1.004	
			(presentation as HF), and	
			between 0.94 and 1.2 for	
			potentially lethal or other	
	ļ.,		adverse events, respectively.	2
• Kuruvilla et al. 2014	Aim: To assess the	Inclusion criteria: NICM	1° endpoint: Patients with LGE	Patients with LGE had increased
(187)	relation between CMR	Freelington authority	had an increased risk of SCA	overall mortality (OR: 3.27;
• <u>24363358</u>	LGE and cardiovascular	Exclusion criteria:	events (OR: 5.32; p<0.00001)	p<0.00001) and increased HF
	outcomes in NICM	Ischemic cardiomyopathy,	compared with those without	hospitalization (OR: 2.91; p=0.02),
	patients	HCM	LGE.	• The annualized event rates for SCA
		Intervention: CMR-LGE		was 6.0% in LGE detected patients vs.
		findings and subsequent		1.2% for those without LGE (p<0.001).

	Study type: Meta- Analysis Size: 9 studies and 1,488 patients	clinical outcomes in patients with NICM Comparator: N/A		
 HELP-VT Dinov B et al. 2014 (175) 24211823 	Study type: single center, observational Size: 227 (63 NICM)	Inclusion criteria: Patients with SHD referred for catheter ablation of VT with either NICM (N=63) or ischemic cardiomyopathy (N=164) Exclusion criteria: Failure of informed	1° endpoint: VT free survival at 1 y Results: VT free survival 40.5% in NICM vs. 57% in ICM HR for VT recurrence for NICM 1.62 (p=0.01)	VT free survival worse in NICM compared to ICM. Complete noninducibility after index procedure predicted better outcome
 Tokuda et al 2012 (188) • 22942218 	Study type: single center, observational Size: 226	Inclusion criteria: Patients with NICM and sustained monomorphic VT referred for catheter ablation Exclusion criteria: N/A	1° endpoint: All cause death or heart transplantation following ablation; 2° endpoint: composite of death, heart transplantation and admission for VT recurrence Results: After a mean of 1.4 ablation procedures 1° endpoint (4.4±3.3 y follow-up) reached in 66 (29%) patients reached the 1° end point: death in 50 (21%) and transplant in 16 (7%) 2° endpoint (12 mo): death 10%, transplant 3%, VT admission 18%	• Outcomes of ablation differ in individual etiologies of NICM. ARVC had better outcomes than DCM for 1° (p=0.002) and 2° end points (p=0.004). Sarcoidosis had worse outcome than DCM for 2° end point (p=0.002).
• Cantero-Pérez EM, et al. 2013 (155) • 24314988	Aim: To evaluate the effectiveness of ICDs for primary prevention in patients with LVEF ≤30%	Inclusion criteria: Records from patients accepted for heart transplantation from January 1, 2006, to July	Results: Median follow-up of 77 d overall mortality in the ICD group was 7.1% (2/28) and in the non-	Appropriate ICD therapies were recorded in 42.9% (12/28) in this population.

	included on the heart	20, 2012, and whose LVEE	ICD group was 17.69/ /0/51.	
		30, 2012, and whose LVEF	ICD group was 17.6% (9/51;	
	transplantation list	was <31% were reviewed	p=0.062).	
			Cause of death in patients	
	Size: Patients who		without ICDs:	
	received ICDs for primary		Sudden death (5/9, 55.6%),	
	prevention (N=28) were		HF (4/9, 44.4%).	
	compared with patients		Cause of death in patients with	
	without ICDs (N=51)		ICDs: HFheart	
 Fröhlich GM, et al. 	Aim: To delineate the	Inclusion criteria:	Results:	ICDs appear to be associated with a
2013 (156)	role of ICD therapy for	Patients listed for heart	Median time on the waiting list =	reduction in all-cause mortality in
• <u>23813845</u>	the primary and	transplantation in 2	8 mo (estimated 1-year: 88±3%	patients implanted with the device for
	secondary prevention of	tertiary heart transplant	vs. 77±3% vs. 67±3%; p=0.0001).	primary and secondary prevention
	SCD in patients listed for	centres were enrolled. Of	An independent beneficial effect	compared to those without an ICD.
	heart transplantation	550 patients (51%) on the	of ICDs that was most	·
		transplant list with an	pronounced in patients who had	
	Size: N=1089	ICD:	received an ICD for primary	
	<u> </u>	primary prevention ICD:	prevention (HR: 0.4, 95% CI:	
		N=216	0.19–0.85; p=0.016).	
		secondary prevention	σ.13 σ.σ3, β σ.σ1σ).	
		ICD: N=334		
• Gandjbakhch E, et al.	Aim: To evaluate the ICD	Inclusion criteria:	Results:	Need for mechanical circulatory
2016 (157)	benefit on mortality in	Patients with end-stage	15.6% of patients died while	support (p<0.001), low EF (p=0.001)
● <u>27344378</u>	patients with end-stage	HF receiving an ICD	awaiting heart transplantation.	and registration on the regular list
● <u>2/344376</u>	HF listed for heart	before or within 3 mo		1 -
			Non-ICD patients presented more	(p=0.008) were the only independent
	transplantation	after being listed for	often haemodynamic	predictors of death.
		heart transplantation	compromise.	ICD-related complications occurred
	Size: N=380 consecutive		ICD did not remain an	in 21.4% of patients, mainly as a result
	patients listed for heart		independent predictor of death.	of postoperative worsening of HF
	transplantation between		Death by haemodynamic	(11.9%).
	2005 and 2009 in A		compromise (76.3% of deaths),	
	tertiary heart transplant		which occurred more frequently	
	centre		in the non-ICD group (14.7% vs.	
			5.8%; log-rank p=0.002).	
			Unknown/arrhythmic deaths did	
			not differ significantly between	
I	1	i	1 aci sigiiiiicaiitiy betweeti	1

			the two groups (3.9% vs. 1.7%; log-rank p=0.21).	
• Vakil K, et al. 2016 (158)	Aim: To assess the impact of ICD on waitlist mortality in patients listed for heart transplantation Size: N=32,599	Inclusion criteria: Adults (age ≥18 y) listed for first-time heart transplantation in the US between January 1, 1999, and September 30, 2014, were retrospectively identified from the United Network for Organ Sharing registry.	Results: Median follow-up of 154 days, 3,638 patients (11%) died on the waitlist (9% in ICD group vs. 15% in no-ICD group; p<0.0001), whereas 63% underwent heart transplantation. An ICD at listing was associated with an adjusted 13% relative reduction in mortality (HR: 0.87; 95% CI: 0.80–0.94).	• In the subgroup of patients with LVAD (N= 9,478), having an ICD was associated with an adjusted 19% relative reduction in mortality (HR: 0.81; 95% CI: 0.70–0.94).
 Oloriz et al 2014 (189) ■ 24785410 	Study type: single center, observational Size: 87	Inclusion criteria: Patients with NICM and drug refractory VT treated with ablation Exclusion criteria: N/A	1° endpoint: VT recurrence, stratified to scar location (anteroseptal vs. basal lateral) determined by unipolar voltage mapping Results: Over a mean 1.5 y follow up, VT recurred in 44 patients (51%) during a median follow-up of 1.5 y. Anteroseptal scar was associated with higher VT recurrence (74% vs. 25%; logrank p<0.001) Death occurred in 15%	Multivariate predictors of VT recurrence included electrical storm (HR: 3.211; p=0.001) and NHYA class (HR: 1.608; p=0.018), anteroseptal scar pattern (HR: 5.547; p<0.001)
 Proietti et al 2015 (190) 25488957 	Study type: single center, observational Size: 142 (55 NICM)	Inclusion criteria: Patients with ischemic cardiomyopathyand NICM referred for catheter ablation for VT Exclusion criteria: N/A	1° endpoint: VT recurrence, determined by ICD interrogations over 641±301 d. Results: Recurrent VT occurred more frequently in the NICM group 51% than in the ischemic	Results of substrate guided ablation less favorable in NICM than ischemic cardiomyopathy patients

			cardiomyopathy group 26% (p=0.03) Acute results (defined by response to PES) correlated with likelihood of recurrence: for the	
			NICM group, recurrence was observed in 7, 75 and 100% of	
			successful, partially successful and failed ablations	
Haqqani et al 2011	Study type: single center,	Inclusion criteria:	1° endpoint: VT recurrence over	Isolated septal substrate in NICM
(191)	observational	Patients with NICM and	mean followup of 20±28 mo	portended a poor outcome, both in
• <u>21392586</u>		VT treated with catheter		terms of VT recurrence and transplant
	<u>Size</u> : 31	ablation who had isolated	Results: Following a mean of 1.6	free survival in followup
		intra-septal scar (11.65%	ablation procedures, VT	
		of total)	recurrence was observed in 32%;	
		Exclusion criteria: N/A	death and heart transplant occurred in 26% and 16%	
		EXCIUSION CITTERIA: N/A	respectively	
• Kuhne et al 2010	Study type: single center,	Inclusion criteria:	1° endpoint: VT recurrence over	
(192)	observational	Patients with NICM and	mean followup of 18±13 mo	
• 20384656		VT treated with catheter	mean tollowap of 10_13 mo	
	<u>Size</u> : 35	ablation	Results: Recurrence was	
			observed in 57%. In patients who	
		Exclusion criteria: N/A	had isolated late potentials	
			(targeted for ablation), freedom	
			from VT and major arrhythmia	
			related adverse events was	
			improved compared to those	
			without identified isolated late	
• Cano et al 2000 (102)	Study type, single contex	Inclusion critorios	potentials	The VT substrate in NICM is often
Cano et al 2009 (193)19695457	Study type: single center, observational	Inclusion criteria: Patients with NICM and	1° endpoint: VT recurrence over mean follow up of 18±7 mo	more prominent on the epicardial
<u> 15055457</u>	ODSCI VALIONAI	VT suspected to be	following endocardial and	than the endocardial surface.
	Size: 22	epicardial in origin (Prior	epicardial ablation	Epicardial ablation may improve
		failed endocardial		outcome in selected patients with VT in the setting of NICM.

		ablation or ECG	Results: Freedom from VT	
		characteristics during VT)	recurrence was observed in 15 of	
			21 patients in whom any ablation	
		Exclusion criteria: N/A	was performed, and 14 of 18 with	
			epicardial ablation	
Delacretaz et al 2000	Study type: single center,	Inclusion criteria:	1° endpoint: VT recurrence over	Recurrent monomorphic VT in NICM
(194)	observational	Patients with NICM and	mean followup of 15±12 mo	can be focal or reentrant; reentrant
• <u>10695454</u>		VT treated with catheter		causes can be scar related or 2° to
	<u>Size</u> : 26	ablation	Results: VT recurrence was	bundle branch reentry.
			observed in 23%, but differed	
		Exclusion criteria: N/A	depending on VT mechanism: 40,	
			0 and 14% in scar related VT,	
			focal VT and bundle branch	
			reentry, respectively.	

Data Supplement 25. RCTs Secondary Prevention SCD in NICM – (Section 7.2.1)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
• AVID	Aim: To examine	Inclusion criteria: patients who were	1° endpoint: Survival	 Study terminated
The AVID	the effect on overall	resuscitated from near-fatal VF; sustained		early after 1016 of 1200
Investigators	survival of initial	VT with syncope; or sustained VT with an	Results: Overall survival was greater	patients enrolled
1997 (131)	therapy with an ICD	LVEF ≤0.40 and symptoms suggesting	with the ICD, with unadjusted	• 81% of patients had
• <u>9411221</u>	as compared with	severe hemodynamic compromise.	estimates of 89.3 percent, as	CAD
	amiodarone or		compared with 82.3% in the AAD	
	sotalol in patients	Exclusion criteria: arrhythmia was judged	group at 1 y, 81.6% vs 74.7% at 2 y,	
	resuscitated from VF	to have a transient or correctable cause,	and 75.4% vs 64.1% at 3 y (p<0.02).	
	or symptomatic,	excessively high risk (life expectancy < I y,	The corresponding reductions in	
	sustained VT with	class IV CHF, awaiting a heart transplant, or	mortality (with 95% confidence	
	hemodynamic	requiring a balloon pump, other mechanical	limits) with the ICD were 39±20%,	
	compromise.	means, or inotropic drug administration for	27±21%, and 31±21%.	
		hemodynamic support)		
	Study type: RCT	or excessively low risk (event occurring		
		within 5 d of cardiac surgery or angioplasty,		

		or occurring in-hospital within 5 d after MI), had a previous ICD implant (or attempted implant), chronic serious bacterial infection, or were unable to give verbal assent due to neurologic impairment. Contraindications to amiodarone. Intervention: Therapy with ICD Comparator: AAD amiodarone or sotalol, but only 2.6% received sotalol, most received amiodarone		
• CIDS • Conolly et al. 2000 (132) • 10725290	Aim: To compare the efficacy of the ICD and amiodarone for the prevention of death in patients with previous sustained ventricular arrhythmia Study type: RCT Size: 659 patients	Inclusion criteria: in the absence of either recent AMI or electrolyte imbalance, they manifested any of the following: (1) documented VF; (2) OHCA requiring defibrillation or cardioversion; (3) documented, sustained VT causing syncope; (4) other documented, sustained VT at a rate ≥150 beats/min, causing presyncope or angina in a patient with a LVEF ≤35%; or (5) unmonitored syncope with subsequent documentation of either spontaneous VT ≥10 s or sustained (≥30 s) monomorphic VT induced by programmed ventricular stimulation. Exclusion criteria: (1) ICD or amiodarone not considered appropriate, (2) excessive perioperative risk for ICD implantation; (3) previous amiodarone therapy for ≥6 wk; (4) nonarrhythmic medical condition making 1 y survival unlikely, and (5) LQTS. Intervention: ICD Comparator: Amiodarone	1° endpoint: Death from any cause. Results: A nonsignificant reduction in the risk of death was observed with the ICD, from 10.2%/y to 8.3%/y (RRR: 19.7; 95% CI: -7.7%—40%; p=0.142). A nonsignificant reduction in the risk of arrhythmic death was observed, from 4.5%/y to 3.0%/y (RRR: 32.8%; 95% CI: -7.2%—57.8%; p=0.094).	• 82% had ischemic etiology

• CASH	Aim: to study the	Inclusion criteria: patients resuscitated	1° endpoint: The 1° end point was	• In ICD patients, the
• Kuck et al. 2000	impact on overall	from CA 2° to documented sustained VA	all-cause mortality.	percent reductions in
(133)	survival of initial		Results: Over a mean follow-up of	all-cause mortality were
• <u>10942742</u>	therapy with an ICD	Exclusion criteria: If CA occurred within 72	57±34 mo, the death rates were	41.9%, 39.3%, 28.4%,
	as compared with	h of an AMI, cardiac surgery, electrolyte	36.4% (95% CI: 26.9%–46.6%) in the	27.7%, 22.8%, 11.4%,
	that with 3 AAD.	abnormalities, or proarrhythmic drug	ICD and 44.4% (95% CI: 37.2%-	9.1%, 10.6%, and 24.7%
		effect.	51.8%) in the	at 1 y to 9 of follow-up.
	Study type: RCT		amiodarone/metoprolol arm.	 CAD was etiology in
		Intervention: ICD therapy	Overall survival was higher, though	73%
	Size: 288 patients		not significantly, in patients assigned	A much larger
		<u>Comparator</u> : amiodarone, metoprolol, or	to ICD than in those assigned to drug	reduction of 61%, for
		propafenone. Assignment to propafenone	therapy (HR: 0.766, 97.5% CI:1.112,	SCD was observed
		was in March 1992, after an interim analysis	p=0.081).	
		showed a 61% higher all-cause mortality		
		rate than in 61 ICD patients during a		
		followup of 11.3 mo.		
Desai et al.	Aim: To determine	Inclusion criteria: prospective RCT of ICD	1° endpoint: Two of the 3 2°	 Analysis of all 7 trials
2004 (195)	whether ICD therapy	or combined CRT defibrillator vs medical	prevention trials presented	(1° and 2° prevention)
• <u>15598919</u>	reduces all-cause	therapy enrolling at least some individuals	subgroup estimates for ICD efficacy	combined demonstrated
	mortality in patients	with NICM and reporting all-cause mortality	in NICM. Pooled analysis of these 2°	a statistically significant
	with NICM.	as an outcome.	prevention trials (N=256 patients	31% overall reduction in
			with NICM) indicated an equivalent	mortality with ICD
	Study type: meta-	Intervention: ICD	to 1 y prevention but nonsignificant	therapy (RR: 0.69; 95%
	analysis of RCT		mortality reduction with ICD therapy	CI: 0.56–0.86; p=0.002).
	6. 0 1 . 1	<u>Comparator</u> : Medical therapy.	(RR: 0.69; 95% CI: 0.39–1.24;	
	Size: 8 randomized		p=0.22).	
	trials enrolling a total of 2146			
	patients with NICM were included.			
MAVERIC	Aim: to test the	Inclusion criteria: survivors of sustained	1° endpoint: Survival and	• 61% of patients had
• Lau et al. 2004	possibility of	VT, VF or sudden cardiac death in the	arrhythmia recurrence	prior MI
(135)	prospectively	absence of an AMI in the last 48 h.	arriyullilla recurrefice	EPS has a minimal
• 15172648	identifying patients	absence of all Aivil in the last 40 II.	Results: Of the 108 EP arm patients,	impact on the diagnosis
1 : =:		Exclusion criteria: life expectancy of <6 mo	31 (29%) received an ICD, 46 (43%)	of patients presented
	most ICD by EPS in	from a non-arrhythmic cause or child-	received AAD only (mainly	with VT, VF or SCD.
	I THOSE ICD BY LES III	bearing age	amiodarone or sotalol) and 18 (17%)	WILLI VI, VI OI JCD.
	1	bearing age	ailiiouai oile oi sotaloij aliu 16 (17%)	

	the context of 2° prevention. Study type: RCT Size: 214 patients	Intervention: EP-guided interventions (AAD, coronary revascularization, and ICD) (106 patients assigned to this arm) Comparator: therapy with amiodarone (108 patients assigned to this arm)	received coronary revascularization but no ICD. No significant differences in survival or arrhythmia recurrence existed between the 2 treatment arms after 6 y. However, ICD recipients had a lower mortality than non-ICD recipients, regardless of allocated treatment (HR:0.54, p=0.0391).	• The trial does not support a role for EP testing in risk stratification.
• Claro et al. 2015 (136) • 26646017	Aim: To evaluate the effectiveness of amiodarone for 1° or 2° prevention of SCD compared with placebo or no intervention or any other antiarrhythmic. Study type: meta-analyses using a random-effects model Size: 24 studies (9,997 participants)	Inclusion criteria: Randomised and quasi- randomised trials assessing the efficacy of amiodarone vs. placebo, no intervention, or other antiarrhythmics in adults, either for 1° prevention or 2° prevention of SCD. Exclusion criteria: NA Intervention: Amiodarone Comparator: placebo, no intervention, or other antiarrhythmics	1° endpoint: SCD and overall mortality Results: For 2° prevention, amiodarone compared to placebo or no intervention (2 studies, 440 participants) appeared to increase the risk of SCD (RR: 4.32; 95% CI: 0.87–21.49) and all-cause mortality (RR:3.05;95% CI 1.33–7.01). However, the quality of the evidence was very low. Compared to other antiarrhythmics (4 studies, 839 participants) amiodarone appeared to increase the risk of SCD (RR:1.40; 95% CI: 0.56–3.52; very low quality of evidence), but there was no effect in all-cause mortality (RR: 1.03; 95% CI: 0.75–1.42; low	 For 2° prevention, the quality of the evidence was very low, so the authors concluded that there was uncertainty on the findings. Amiodarone was associated with an increase in pulmonary and thyroid adverse events.
• OPTIC Study • Connolly et al. 2006 (159)	Aim: To determine whether amiodarone plus BB	Inclusion criteria: Patients were eligible if they had received an ICD within 21 d for inducible or spontaneously occurring VT or	quality evidence). 1° endpoint: ICD shock for any reason.	Amiodarone plus BB is effective for preventing these shocks and is
• <u>16403928</u>	or sotalol are better than BB alone for prevention of ICD shocks.	VF. Exclusion criteria: Patients were excluded if they had LQTS, corrected QT interval of more than 450 millisec, were receiving a	Results: Shocks occurred in 41 patients (38.5%) assigned to BB alone, 26 (24.3%) assigned to sotalol, and 12 (10.3%) assigned to amiodarone plus BB. A reduction in	more effective than sotalol but has an increased risk of drug- related adverse effects

	Study type:	class I or class III antiarrhythmic agent, had	the risk of shock was observed with	Adverse pulmonary
	multicenter RCT	received amiodarone or sotalol for more	use of either amiodarone plus BB or	and thyroid events and
		than 20 consecutive d at anytime (patients	sotalol vs BB alone (HR: 0.44; 95%	symptomatic
	Size: 412 patients	who had received >10 d of amiodarone had	CI: 0.28–0.68; p<0.001). Amiodarone	bradycardia were more
		to be taken off amiodarone for 10 d before	plus BB significantly reduced the risk	common among
		randomization), a calculated creatinine	of shock compared with BB alone	patients randomized to
		clearance of less than 30 mL/min (<0.50	(HR: 0.27; 95% CI: 0.14-0.52;	amiodarone.
		mL/s), symptomatic AF likely to require use	p<0.001) and sotalol (HR: 0.43; 95%	
		of a class I or class III antiarrhythmic agent,	CI: 0.22–0.85; p=0.02). There was a	
		absence of SHD, contraindications to	trend for sotalol to reduce shocks	
		amiodarone or a β-blocker, or NYHA class IV	compared with BB alone (HR:	
		symptoms of HF.	0.61;95% CI, 0.37–1.01; p=0.055).	
		Intervention: amiodarone plus BB, sotalol	The rates of study drug	
		alone	discontinuation at 1y were 18.2% for	
			amiodarone, 23.5% for sotalol, and	
		<u>Comparator</u> : BB alone.	5.3% for BB alone.	
 Piccini et al. 	Aim: To evaluate	Inclusion criteria: Studies in which patients	1° endpoint: SCD, CVD, all-cause	 Amiodarone reduces
2009 (154)	the cumulative	were randomized to amiodarone and	mortality, and the incidences of drug	the risk of SCD by 29%
• <u>19336434</u>	evidence	placebo or inactive control. Additional	toxicities.	and CVD by 18%,
	regarding the safety	inclusion criteria included: treatment for		however, amiodarone
	and efficacy of	>30 d, follow-up >6 mo, and availability of	Results: Amiodarone decreased the	therapy is neutral with
	amiodarone in	all-cause mortality as an endpoint	incidence of SCD (7.1 vs. 9.7%; OR:	respect to all-cause
	prevention of SCD		0.71; 95% CI: 0.61–0.84; p<0.001)	mortality and was
		Exclusion criteria: Studies	and cardiovascular death (14.0%	associated with a two-
	Study type: Meta-	of patients with shock-refractory VA, OHCA,	vs.16.3%; OR: 0.82; 95% CI: 0.71-	and five-fold increased
	analysis of all RCT	patients <18 y, randomization to	0.94, p=0.004). There was a 1.5%	risk of pulmonary and
	examining the use of	amiodarone vs. a class Ic or class III AAD	absolute risk reduction in all-cause	thyroid toxicity.
	amiodarone vs.	(without a placebo or standard of care	mortality which did not meet	 Authors suggested
	placebo/control for	arm). Studies of patients with ICDs were	statistical significance (p=0.093).	amiodarone as a viable
	the prevention of	excluded unless used on both arms.	Amiodarone therapy increased the	alternative in patients
	SCD		risk of pulmonary (2.9% vs. 1.5%;	who are not eligible for
			OR: 1.97; 95% CI: 1.27–3.04,	or who do not have
	Size: 15 trials, which		p=0.002), and thyroid (3.6% vs.	access to ICD therapy
	randomized 8,522		0.4%; OR: 5.68; 95% CI: 2.94–10.98,	for the prevention of
	patients		p<0.001) toxicity.	SCD.

Data Supplement 26. Nonrandomized Trials, Observational Studies, and/or Registries of Secondary Prevention SCD in NICM – (Section 7.2.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
• Raitt et al. 2001 (137) • 11208684	Aim: To determine prognostic implications of stable VT Study type: Observational, registry of patients with hemodynamically stable VT Size: The study population consisted of 440 patients with stable VT and 1029 patients with unstable VT. Of the 1029 patients with unstable VT. Of the 1029 patients with unstable VT, 330 had therapy determined by randomization in the AVID trial: 52% received an ICD, 47% amiodarone, and 2% sotalol. Therapy for the remaining 699 patients with unstable VT and the 440 patients with stable VT was determined at the discretion of the attending physician.	Inclusion criteria: Patients with stable VT that were not enrolled in AVID, were included in a registry of patients screened for the study. Exclusion criteria: Patients who had an arrhythmia within 5 d of MI, cardiac surgery, or coronary intervention were excluded, as were patients with NYHA class IV HF or those who were on a heart transplant list, had a prior ICD implant or attempted implant, or had a life expectancy of <1y.	Results: The mortality in 440 patients with stable VT tended to be greater than that observed in 1029 patients presenting with unstable VT (33.6% vs 27.6% at 3 y; RR:1.22; p=0.07). After adjustment for baseline and treatment differences, the RR was little changed (RR:1.25, p=0.06).	Sustained VT without serious symptoms or hemodynamic compromise is associated with a high mortality rate and may be a marker for a substrate capable of producing a more malignant arrhythmia
Ruwald et al.2014 (196)24201303	Aim: to evaluate (1) the effects of innovative ICD programming with either a high-rate cutoff VT zone or delayed therapy on risk of syncope compared with conventional programming; (2) the independent prognostic factors associated	Inclusion criteria: 1500 patients from 98 hospital centers with a 1° prevention guideline indication to receive an ICD or CRT-D. Exclusion criteria: Patients were excluded	1° endpoint: Syncope was a prespecified safety end point that was adjudicated independently. Multivariable Cox models were used to identify risk factors associated with syncope and to analyze subsequent risk of mortality.	 21 syncopal events (33%) were classified as caused by VT or VF and 4 (6%) as caused by other or unspecified arrhythmias, whereas a total of 39 events (61%) were classified as nonarrhythmogenic. Syncope in HF patients (with a defibrillator) is primarily vasovagal, orthostatic, or otherwise

	with syncope; and (3) the	if they had experienced	Results: Prognostic factors for all-	nonarrhythmogenic in mechanism
	association between	AF within 1 mo before	cause syncope included the	and underscores the fact that the
	syncope, the cause of	implantation; if they	presence of ischemic	presence of heart disease (in this
	syncope, and the risk of	previously had been	cardiomyopathy (HR: 2.48; 95% CI	case, ischemic or nonischemic HF)
	death in patients enrolled in	implanted with a	1.42–4.34; p=0.002), previous VA	does not dictate that syncope has a
	MADIT-RIT	pacemaker, ICD, or CRT-	(HR: 2.99; 95% CI 1.18–7.59;	cardiac cause
	MADIT-KIT	D; or if they had a recent	p=0.021), LVEF ≤25% (HR: 1.65;	Syncope in HF patients is related
	Study type: Subgroup	MI or revascularization	95% CI 0.98–2.77; p=0.059), and	to an increased cardiovascular risk
	analysis of MADIT-RIT.	procedure (within 3	younger age (by 10 y; HR: 1.25;	profile and is associated with an
	alialysis of MADIT-KIT.	1 '	95% CI1.00–1.52; p=0.046).	increased risk of death regardless
	Size: 64 of 1500 patients	mo).	Syncope was associated with	of its cause
	(4.3%) had syncope		increased risk of death regardless	of its cause
	(4.3%) flad Syficope			
			of its cause (arrhythmogenic	
			syncope: HR: 4.51; 95% CI 1.39–	
			14.64, p=0.012; nonarrhythmogenic syncope: HR	
Middlekauff et	Chudu huma Datraspastiva	Indusion suitorio: 401	2.97; 95% CI 1.07–8.28, p=0.038).	• Authors concluded that nationts
	Study type: Retrospective	Inclusion criteria: 491	1° endpoint: Mortality	Authors concluded that patients
al.1993 (3)	cohort	consecutive patients	_ , , , , , , , , , , , , , , , , , , ,	with advanced HF and syncope are
• <u>8417050</u>	Since 401 postions to with CUE	with advanced CHF	Results: The actuarial incidence	at especially high risk for sudden
	Size: 491 patients with CHF,	(NYHA functional class III	of sudden death by 1 y was	death regardless of the etiology of
	of which 60 had a Hx of	or IV), no Hx of CA and a	significantly greater in patients	syncope.
	syncope; the condition had a	mean LVEF of 0.20 ± 0.07.	with (45%) than in those without	
	cardiac origin in 29 (48%)	0.07.	(12%, p<0.00001) syncope. In the	
	and was due to other causes		Cox proportional hazards model,	
	in 31 (52%).	Fuel veier existente AL/A	syncope predicted sudden death	
		Exclusion criteria: N/A	independent of AF, serum sodium,	
			cardiac index, angiotensin-	
			converting enzyme inhibition and	
			patient age. The actuarial risk of	
			sudden death by 1 y was similarly	
			high in patients with either cardiac	
			syncope or syncope from other	
			causes (49% vs. 39%, p=NS).	
• Knight et al.1999	Study type: Observational	Inclusion criteria	1° endpoint: Mortality	• The authors conclude that the
(197)	<u> </u>	consecutive patients		high incidence of appropriate ICD
• <u>10362200</u>	Size: 14 patients	who had a NICM,		shocks and the association of

		unexplained syncope and a negative electrophysiology test and who underwent defibrillator implantation (Syncope Group).19 consecutive patients with a NICM and a CA who were treated with a ICD (Arrest Group) served as a control group. Exclusion criteria: N/A	Results: Seven of 14 patients (50%) in the Syncope Group received appropriate shocks for VA during a mean follow-up of 24±13 mo, compared with 8 of 19 patients (42%) in the Arrest Group during a mean follow-up of 45±40 mo (p=0.1).	recurrent syncope with VA support the treatment of patients with NICM unexplained syncope and a negative electrophysiology test with ICD.
Brilakis et al.	Study type: Observational	Inclusion criteria:	Results: An EPS was done in 37 of	The authors conclude that
2001 (198)		Between 1990 and	the 54 patients. In the 17 patients	programmed ventricular
• <u>11816631</u>	Size: 54 patients	1998, 54 (mean age	who received an ICD, incidence of	stimulation is not useful in risk
		67±11 y, 76% men)	appropriate shocks at 1 and 3 y	stratification of patients with IDCM
		patients presented with	was 47% and 74%, respectively, in	and syncope and may delay
		IDCM and syncope.	the inducible sustained	necessary ICD implantation.
			monomorphic VT group, and 40%	
		Exclusion criteria: N/A	and 40%, respectively, in the	
			group without inducible sustained	
			monomorphic VT (p=0.29, log-	
			rank test)	
• Fonarow et al.	Study type: Observational	Inclusion criteria: 147	Results: During a mean follow-up	The authors conclude in patients
2000 (199)		patients with Hx of	of 22 mo, there were 31 deaths,	with nonischemic cardiomyopathy
• <u>10760339</u>	Size: 147 patients	syncope and no prior Hx	18 sudden, in patients treated	and syncope, therapy with an ICD is
		of sustained VT or CA	with conventional therapy,	associated with a reduction in
		were identified.	whereas there were 2 deaths,	sudden death and an improvement
		Outcomes were	none sudden, in patients treated	in overall survival.
		compared for the 25	with an ICD. An appropriate shock	
		patients managed with	occurred in 40% of the ICD	
		an ICD and 122 patients	patients. Actuarial survival at 2 y	
		managed with	was 84.9% with ICD therapy and	

		conventional medical	66.9% with conventional therapy	
		therapy.	(p=0.04).	
		Exclusion criteria: N/A		
 Olshansky et al. 	Study type: Subgroup	Inclusion criteria:	1° endpoint: Outcomes, including	Syncope was common in the
2008 (200)	analysis of SCD-HeFT trial.	Patients in the SCD-HeFT	mortality, ICD discharges and SCD.	SCD-HeFT population. Post-
• <u>18371559</u>		trial who reported		randomization syncope was
	Size: 472 patients	syncope prior of after	Results: In SCD-HeFT, 162 (6%)	associated with increased risk of
		randomization.	patients had syncope before	all-cause mortality, cardiovascular
			randomization, 356 (14%) had	mortality, and SCD (despite
		Exclusion criteria: N/A	syncope after randomization	randomization to an ICD). Those
			(similar incidence in each	patients randomized to an ICD,
			randomized arm), and 46 (2%) had	who had syncope, were more likely
			syncope before and after	to receive appropriate ICD shocks
			randomization. In the ICD arm,	than those without syncope; yet,
			syncope, before and after	did not protect patients against
			randomization, was associated	recurrent syncope and did not
			with appropriate ICD discharges	protect against the risk of death.
			(HR: 1.75;95% CI: 1.10-2.80,	
			p=0.019 and HR: 2.91;95% CI:	
			1.89–4.47, p=0.001, respectively).	
			Post-randomization syncope	
			predicted total and cardiovascular	
			death (HR: 1.41; 95% CI: 1.13–	
			1.76, p=0.002 and HR: 1.55; 95%	
			CI: 1.19–2.02, p=0.001,	
			respectively). The elevated	
			relative risk of mortality for	
			syncope vs. nonsyncope patients	
			did not vary significantly across	
			treatment arms (ICD, HR: 1.54;	
			95% CI: 1.04–2.27; amiodarone,	
			HR: 1.33; 95% CI: 0.91–1.93; and	
			placebo, HR: 1.39; 95% CI: 0.96–	
			2.02, test for difference p=0.86).	

Data Supplement 27. RCTs Primary Prevention SCD in NICM – (Section 7.2.2)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
• CAT • Bänsch D et al. 2002 (201) • 11914254	Aim: Multicenter RCT of ICD vs. conventional Therapy in NIDCM Study type: RCT Size: 104 patients	Inclusion criteria: Recent onset of DCM (≤9 mo) and an EF ≤30% and class II-III Exclusion criteria: CAD, excessive alcohol intake, prior MI or myocarditis.	Intervention: ICD (N=50) Comparator: Conventional therapy (N=54)	1° endpoint: The 1° end point of the trial was all-cause mortality at 1 y. • Cumulative survival was 92%, 86%, and 73% in the ICD treatment group vs. 93%, 80%, and 68% in the control group after 2, 4, and 6 y, respectively (log rank p=0.554)	 Enrollment was terminated early because the interim analysis showed that the overall1 y mortality rate for all patients was only 5.6%, well below the assumed value of 30%. Because the overall mortality rate was too low, the study was stopped for futility after the pilot phase. Even if 1,348 patients had been included, as initially planned, the trial would have been underpowered.
• AMIOVIRT • Strickberger et al. 2003 (202) • 12767651	Aim: Multicenter RCT of ICD vs. amiodarone Therapy in NIDCM and NSVT Study type: RCT Size: 103 patients	Inclusion criteria: EF ≤0.35, asymptomatic NSVT, NYHA class I to III. Exclusion criteria: Syncope, pregnancy, a contraindication to amiodarone or ICD or concomitant therapy with a Class I AAD	Intervention: ICD (N=51) Comparator: Amiodarone (N=52)	1° endpoint: Total Mortality • Survival at 1 y (90% vs. 96%) and 3 y (88% vs. 87%) was similar in the amiodarone and ICD groups respectively (p=0.8).	 Trial terminated early for futility in view of lower than expected mortality. With the observed mortality rates, approximately 12,000 patients would have been required to achieve a power of 80%.

• DEFINITE • Kadish A, et al. 2004 (203) • <u>15152060</u>	Aim: Multicenter RCT of ICD vs. standard medical therapy in NIDCM and ambient VA Study type: RCT Size: 458 patients	Inclusion criteria: EF ≤35%, and >10 PVCs/h or NSVT. Exclusion criteria: NYHA class IV HF, familial cardiomyopathy associated with sudden death, acute	Intervention: ICD (N=229) Comparator: Conventional therapy (N=229)	1° endpoint: Total Mortality Fewer patients died in the ICD group than in the Control group (28 vs. 40), but the difference in survival was NS (p=0.08)	• There were 3 sudden deaths from arrhythmia in the ICD group, as compared with 14 deaths in the • Control group (HR: 0.20; 95 % CI: 0.06–0.71; p=0.006)
		myocarditis or congenital heart disease.			
SCD-HeFTBardy et al.	Aim: Multicenter RCT of ICD vs	Inclusion criteria: Ischemic or non	Intervention: Amiodarone (N=845)	1º endpoint: After a median follow-up	Amiodarone showed no benefit in survival
2005 (43)	amiodarone vs.	ischemic DCM, NYHA	ICD therapy (N= 829)	of 4 y, the mortality rate	Non-ischemic DCM 48% of
• 15659722	optimal medical	class II or III HF and		was 22% in the ICD group,	cohort.
	therapy	LVEF ≤35%	Comparator:	28% in the amiodarone	Similar benefit ischemic vs.
			Optimal medical	group, and 29% in the	non-ischemic.
	Study type: RCT	Exclusion criteria: N/A	therapy (N=847)	control group. This	
				resulted in a 22% RR	
	<u>Size</u> : 2,521			reduction and a 7.2%	
	patients			absolute risk reduction in	
				the all-cause mortality in	
				the ICD group as compared with optimized	
				medical therapy alone	
				(p=0.007)	
• COMPANION	Aim: Multicenter	Inclusion criteria:	Intervention:	1° endpoint: The 1° end	A CRT pacemaker reduced
 Bristow et al. 	RCT of CRT vs. CRT-	1,520 Ischemic or non	CRT-D (N=595)	point was a composite of	the risk of the 2° end point of
2004 (204)	D vs. optimized	ischemic DCM, NYHA	CRT Pacer (N=617)	death or hospitalization	death from any cause by 24%
• <u>15152059</u>	medical therapy	class III or IV, LVEF		for any cause.	(p=0.059), and a CRT
		≤35% and QRS >120	Comparator: Optimal	CRT-P decreased the risk	pacemaker-defibrillator
	Study type: RCT	msec	medical therapy	of the 1° end point (HR:	reduced the risk by 36%
	6 4.520	Fundamental 1 N/2	(N=308)	0.81; p=0.014), as did CT-	(p=0.003)
	<u>Size</u> : 1,520	Exclusion criteria: N/A		D (HR: 0.80; p=0.01).	Non ischemic 44% of cohort
	patients				

• Desai et al.	Aim: To determine	Inclusion criteria:	Intervention: ICD	1° endpoint: Five 1°	Analysis of all 7 trials
2004 (195)	whether ICD	prospective RCTs of ICD		prevention trials enrolling	combined demonstrated a
• 15598919	therapy reduces all-cause mortality in patients with NICM. Study type: meta-analysis of RCTs Size: 8 RCTs enrolling a total of 2146 patients with NICM were included. 7 trials reported subgroup estimates for ICD efficacy in NICM	or combined cardiac resynchronization therapy and defibrillator (CRT-D) vs medical therapy enrolling at least some individuals with NICM and reporting all-cause mortality as an outcome	Comparator: Medical therapy	1854 patients with NICM were identified; pooled analysis suggested a significant reduction in total mortality among patients randomized to ICD or CRT-D vs medical therapy (RR: 0.69; 95% CI: 0.55–0.87; p=0.002). Mortality reduction remained significant even after elimination of CRT-D trials.	statistically significant 31% overall reduction in mortality with ICD therapy (RR: 0.69; 95% CI: 0.56–0.86; p=0.002).
DANISH	Aim: To evaluate	Inclusion criteria:	Intervention: ICD	1° endpoint: Death from	SCD (a 2° outcome) occurred
• Kober L, et al. 2016 (205) • 27571011	the benefit of prophylactic ICDs in patients with systolic HF that is	Symptomatic patients (NYHA class II or III, or NYHA class IV if CRT was planned) with	(N=556) Comparator: Usual care for CHF (N=560)	any cause. After a median follow-up period of 67.6 mo, the 1°	in 24 patients (4.3%) in the ICD group and in 46 patients (8.2%) in the control group (HR: 0.50; 95% CI: 0.31–0.82;
	not due to CAD	nonischemic systolic HF (LVEF ≤35%)	care for CIII (N=300)	outcome had occurred in 120 patients (21.6%) in	p=0.005) • 58% of patients received CRT
	Study type: RCT Size: 1116 patients	and an increased level (>200 pg/mL) of N-terminal pro-brain natriuretic peptide (NT-proBNP).		the ICD group and in 131 patients (23.4%) in the control group (HR: 0.87; 95% CI: 0.68–1.12; p=0.28).	system, which could have influenced overall results. • Younger patients did show survival benefit.
		Exclusion criteria: Patients who had permanent atrial fibrillation with a resting heart rate higher than			

	100 beats per minute or renal failure that was being treated with		
	dialysis.		

Data Supplement 28. Nonrandomized Trials, Observational Studies, and/or Registries of Primary Prevention of SCD in NICM – (Section 7.2.2)

	tudy Acronym; Study Type/Design; Patient Populat		1° Endpoint and Results	Summary/Conclusion
Author;	Study Size	r dilette i opulation	(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	Comment(3)
Marburg	Aim: To determine	Inclusion criteria: Men and	1° endpoint: During 52±21 mo	 Non invasive tests such as signal-
_	the	women with IDC between 16		
Cardiomyopathy			of follow-up, major arrhythmic	averaged ECG, baroreflex
Study	clinical value of	and 70 y of age and LVEF <45%	events were observed in 46	sensitivity, heart rate variability,
• Grimm et al. 2003	potential noninvasive	and a LV end-diastolic diameter	patients (13%), including sudden	and T-wave alternans did not seem
(206)	arrhythmia risk	>56 mm by echocardiography.	cardiac death in 23 patients and	to be helpful for arrhythmia risk
• <u>14623812</u>	predictors in a large		sustained VT or VF in another 23	stratification.
	patient cohort with	Exclusion criteria: CHF	patients	
	IDC	NYHA functional class IV; a Hx of		
		sustained VT or VF); an episode	Results: On multivariate	
		of unexplained syncope within	analysis, LVEF was the only	
	Study type:	the previous 12 mo; class I or	significant arrhythmia risk	
	Prospective	class III AAD therapy that could	predictor in patients with sinus	
	observational	not be withdrawn for at least 5	rhythm, with a relative risk of 2.3	
	monocenter study	drug half-lives; amiodarone	per 10% decrease of LVEF (95%	
		therapy within the previous 6	CI: 1.5-3.3; p=0.0001). NSVT on	
	Size: 343 patients	mo; pacemaker dependency;	Holter was associated with a	
		CAD diagnosed by evidence of	trend toward higher arrhythmia	
		any coronary artery stenosis	risk (RR: 1.7; 95% CI: 0.9-3.3;	
		>50% by angiography; or a Hx of	p=0.11), whereas BB therapy was	
		MI, systemic arterial	associated with a trend toward	
		hypertension, active	lower arrhythmia risk (RR: 0.6;	
		myocarditis, alcohol abuse, drug	95% CI: 0.3-1.2; p=0.13).	
		dependency, severe liver or		
		kidney disease, thyroid disease,		
		malignancies, or systemic		
		diseases.		

Goldberger et al.	Aim: To estimate	Inclusion criteria: 45 studies	Results: Test sensitivities ranged	Techniques incorporating
2014 (207)	performance of 12	involving human subjects of the	from 28.8% to 91.0%,	functional parameters,
• <u>24445228</u>	common risk	following tests: baroreflex	specificities from 36.2% to	depolarization abnormalities,
		sensitivity, heart rate	87.1%, and odds ratios from 1.5	repolarization abnormalities, and
	predictors of	turbulence, heart rate	to 6.7. Odds ratio was highest for	arrhythmic markers provide only
	arrhythmic events in	variability, LV end-diastolic	fragmented QRS and TWA (OR:	modest risk stratification for
	patients with DNICM	dimension, LVEF,	6.73 and 4.66; 95% CI: 3.85-	sudden cardiac death in patients
		electrophysiologic study, NSVT,	11.76 and 2.55–8.53,	with NICM.
	Study type: meta-	LBBB, signal-averaged	respectively) and lowest for QRS	• At best, the OR for any 1
	analysis of 12	electrocardiogram, fragmented	duration (OR: 1.51; 95% CI: 1.13-	predictor is generally in the range
	commonly reported	QRS, QRS-T angle, and T-wave	2.01). None of the autonomic	of 2 to 4, precluding their
	risk stratification	alternans	tests (heart rate variability, heart	usefulness in isolation for
	tests as predictors of		rate turbulence, baroreflex	individual patient decisions
	arrhythmic events	Exclusion criteria: N/A	sensitivity) were significant	
			predictors of arrhythmic	
	Size: 45 studies		outcomes.	
	enrolling 6,088			
	patients			
 Anselme et al. 	Aim: To evaluate a	Inclusion criteria ICD implant at	1° endpoint: Malignant VA	Life-threatening VAs are
2013 (208)	strategy of	any time during follow-up when		common in patients with LMNA
• <u>23811080</u>	prophylactic ICD in	any of the following	Results: ICD was implanted in 21	mutations and significant cardiac
	LMNA mutation	prespecified significant	out of the 47 patients. Among	conduction disorders, even if LVEF
	carriers with	conduction disorders was	ICD recipients, no patient died	is preserved
	significant cardiac	encountered: (1) requirement	suddenly and 11 (52%) patients	
	conduction disorders	for permanent ventricular	required appropriate ICD therapy	
		pacing for bradycardia; (2) PR	during a median follow-up of 62	
	Study type:	interval >0.24 s and either	mo. LVEF was ≥45% in 9 patients	
	Prospective single	complete LBBB (LBBB) or NSVT;	at the time of the event. Among	
	center observational	(3) patients already implanted	the 10 patients without	
		with a pacemaker at	malignant VA, device memory	
	Size: 47 patients	presentation to our center.	recorded NSVT in 8 (80%). The	
	with LMNA		presence of significant	
	mutations	Exclusion criteria: N/A	conduction disorders was the	
			only factor related to the	
			occurrence of malignant VA (HR:	
			5.20; 95% CI: 1.14–23.53;	
			p=0.03).	

• van Rijsingen et al.	Aim: The purpose of	Inclusion criteria: Mutation	1° endpoint: First occurring	Carriers of LMNA mutations with
2012 (209)	this study was to	carriers older than 15 y of age	MVA. MVA were defined as	a high risk of MVA can be identified
• 22281253	determine risk	with a previously published	appropriate ICD treatment, CPR,	using these risk factors.
	factors that predict	pathogenic <i>LMNA</i> mutation	or SCD	Conduction disturbances were
	malignant VA in	with cardiac involvement and		not a risk factor in this study.
	Lamin A/C mutation	persons with a newly identified	Results: At median follow-up	The 4 independent risk factors
	carriers	LMNA mutation with clinical or	period of 43 mo (interquartile	were NSVT, LVEF <45% at the first
		family evidence of a	range: 17–101 mo), 48 (18%)	clinical contact, male sex, and non-
	Study type:	laminopathy with possible	persons experienced a first	missense mutations (ins-del/
	Multicenter,	cardiac involvement.	episode of MVA. Independent	truncating or mutations affecting
	retrospective		risk factors for MVA were NSVT,	splicing).
	analysis	Exclusion criteria: N/A	LVEF <45% at the first clinical	. 5,
	,		contact, male sex, and non-	
	Size: 269 patients		missense mutations (ins-	
			del/truncating or mutations	
			affecting splicing). MVA occurred	
			only in persons with at least 2 of	
			these risk factors. There was a	
			cumulative risk for MVA per	
			additional risk factor.	
• Pasotti et al. 2008	Aim: The aim of this	Inclusion criteria: 27	1° endpoint: Events were death	Authors concluded that dilated
(210)	study was to analyze	consecutive families in which	from any cause, death from HF,	cardiomyopathies caused by LMNA
• <u>18926329</u>	the long-term follow-	LMNA gene defects were	heart transplantation, and SCD,	gene defects are highly penetrant,
	up of dilated	identified in the probands, all	including appropriate ICD	adult onset, malignant diseases
	cardiolaminopathies	sharing the DCM phenotype. Of	interventions	characterized by a high rate HF and
	in patients with	the 164 family members, 94 had		life-threatening arrhythmias.
	LAMIN gene	LMNA gene mutations	Results:	Neither AVB nor pacemaker
	mutations		• 60 of 94 (64%) were	implantation turned out to be
		Exclusion criteria: N/A	phenotypically affected whereas	predictors of events.
	Study type:		34 were only genotypically	NYHA class III to IV and highly
	Retrospective		affected.	dynamic
	observational		Of the 60 patients, 40 had DCM	Competitive sports for 10 y were
	longitudinal study		with AVB, 12 had DCM with	independent predictors of total
			VT/VF, 6 had DCM with AVB and	events.
	Size: 94 patients		EDMD2, and 2 had AVB plus	
			EDMD2.	

2005 (211) ● <u>15551023</u>	Aim: To evaluate common clinical characteristics of patients with lamin A/C gene mutations that cause either isolated DCM or DCM in association with skeletal muscular dystrophy. Study type: Metaanalysis (pooled data) Size: 299 carriers of lamin A/C mutations	Inclusion criteria: 21 publications between March 1999 and March 2002 reporting lamin A/C gene mutations Exclusion criteria: Patients with familial partial lipodystrophy, progeria, axonal neuropathy and mandibuloacral dysplasia caused by mutations in the lamin A/C gene were excluded	 During a median of 57 mo there were 49 events in 43 DCM patients. The events were related to HF (15 heart transplants, 1 death from end-stage HF) and VA (15 SCDs and 12 appropriate ICD interventions). 1º endpoint: Arrhythmias and sudden death Results: Cardiac dysrhythmias were reported in 92% of patients after the age of 30 y; HF was reported in 64% after the age of 50. 76 of the reported 299 patients (25%) died at a mean age of 46 y. Sudden death was the most frequently reported mode of death (46%) in both the cardiac and the neuromuscular phenotype. 	 Authors conclude that carriers of lamin A/C mutations carry a high risk of sudden death. Presence of pacemaker did not protect against sudden death.
	<u>Aim:</u> To evaluate the cumulative evidence	Inclusion criteria: Studies in which patients were	1º endpoint: SCD, CVD, all-cause	Amiodarone reduces the risk of SCD by 20% and CVD by 18%
` '	regarding the safety	randomized to amiodarone and	mortality, and the incidences of drug toxicities.	SCD by 29% and CVD by 18%, however, amiodarone therapy is
	and efficacy of	placebo or inactive control.		neutral with respect to all-cause
	amiodarone in	Additional	Results: Amiodarone decreased	mortality and was associated with
	prevention of SCD	inclusion criteria included:	the incidence of SCD [7.1 vs.	a 2- and 5-fold increased risk of
	Cturdu tuma Nata	treatment for >30 d, follow-up	9.7%; OR: 0.71; 95% CI 0.61–	pulmonary and thyroid toxicity.
	Study type: Meta-	>6 mo, and availability of all-	0.84; p<0.001] and	Authors suggested amiodarone Authors suggested amiodarone Authors suggested amiodarone Authors suggested amiodarone
	analysis of all RCT	cause mortality as an endpoint	cardiovascular death (CVD) [14.0% vs.16.3%; OR: 0.82; 95%	as a viable alternative in patients who are not eligible for or who do
I I	examining the use of amiodarone vs.	Exclusion criteria: Studies	CI 0.71–0.94, p=0.004]. There	not have access to ICD therapy for

	the prevention of SCD Size: 15 trials, which randomized 8,522 patients	of patients with shock-refractory VA, OHCA, patients <18 y, randomization to amiodarone vs. a class Ic or class III AAD (without a placebo or standard of care arm). Studies of patients with ICDs were excluded unless used on both arms.	reduction in all-cause mortality which did not meet statistical significance (p=0.093). Amiodarone therapy increased the risk of pulmonary [2.9% vs. 1.5%; OR: 1.97; 95% CI 1.27—3.04, p=0.002], and thyroid [3.6% vs. 0.4%; OR: 5.68; 95% CI 2.94—10.98, p<0.001] toxicity.	
• WEARIT-II • Kutyifa et al. 2015 (212) • 26316618	Study type: Observational Size: 2000	Inclusion criteria: All patients with LifeVest offered patients with LVEF and a high risk for SCD after MI, following coronary revascularization, with a new-onset dilated NICM, with high risk for SCD until stabilization, or with inherited or congenital heart disease Exclusion criteria: refused consent	Results: 805 patients (40%) had ischemic cardiomyopathy, 927 patients (46%) had nonischemic cardiomyopathy, and 268 (14%) patients were diagnosed with congenital or inherited heart disease The median age was 62 y; the median LVEF was 25%. The median WCD wear time was 90 d, with median daily use of 22.5 h.	 There was a total of 120 sustained ventricular tachyarrhythmias in 41 patients, of whom 54% received appropriate WCD shock. Only 10 patients (0.5%) received inappropriate WCD therapy. The rate of sustained ventricular tachyarrhythmias by 3 mo was 3% among patients with ischemic cardiomyopathy and congenital/inherited heart disease, and 1% among nonischemic patients (p=0.02). 90 sustained VT events in 22 patients were withheld from therapy, whereas 30 events in 22 patients required WCD shock therapy owing to hemodynamic instability (corresponding to 5 events per 100 patient y). All patients who required shock delivery had their VT/VF episodes successfully terminated with the first shock. 10 patients (0.5%, 2 per 100 patient-y) had inappropriate WCD

				therapy during the follow-up because of ECG artifacts. • Inappropriate shocks did not induce VT or VF.
● Singh et al. 2015 (213) ● <u>26670060</u>	Study type: observational single center Size: 691 (254 new NICM and 271 new ICM	Inclusion criteria: All consecutive patients prescribed a WCD between June 1, 2004 and May 30, 2015 at the hospitals comprising the University of Pittsburgh Medical Center to which access to clinical data was available. Exclusion criteria: Patients with an explanted ICD awaiting reimplantation, prior cardiac arrest unrelated to AMI, or elevated risk of SCD for reasons other than ICM or	1° endpoint: Appropriate WCD therapy Results: During 56.7 patient-y, 0 NICM patients received an appropriate WCD shock During 46.7 patient-y, 6 (2.2%) ischemic cardiomyopathypatients received an appropriate shock; 5 survived the episode, and 4 survived to hospital discharge	• Single center study
• Uyei et al. 2014 (214) • <u>24893969</u>	Study type: Systematic review Size:	N/A	1° endpoint: N/A Results: It appears that wearable defibrillator use compared with no defibrillator use reduces the chance of VT/VF associated deaths by an absolute risk reduction of approximately 1%, achieved by averting approximately 4/5th of all VT/VF associated deaths.	The quality of evidence was low to very low quality, such that our confidence in the reported estimates is weak.
 Al-Khatib et al. JAMA Cardiology 2017 (215) 28355432 	Study type: meta- analysis of RCTs Size: N=1,874	Inclusion criteria: 1° prevention ICDs in patients with NICM Exclusion criteria:	1° endpoint: all-cause mortality Results: Pooling data with fixed and RE models from these 4 studies	1° prevention ICDs are efficacious at reducing all-cause mortality in patients with NICM

CRT	showed a significant reduction in	
Antiarrhythmic medication arm	all-cause mortality with an ICD	
	(HR: 0.75; 95% CI 0.61-0.93, p=	
	0.008; p for	
	heterogeneity=0.873)	

Data Supplement 29. RCTs and Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Recurrent VA in Patients With NICM – (Section 7.2.3)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion	
Author; Year Published	Study Size		(P values; OR or RR; & 95% CI)	Comment(s)	
OPTIC Study	Aim: To determine	Inclusion criteria: Patients	,	Amiodarone plus BB is effective	
1	whether amiodarone	were eligible if they had	1° endpoint: ICD shock for any	for preventing these shocks and is	
• Connolly et al.		,	reason.		
2006 (159)	plus BB or sotalol are	received an ICD within 21 d	.	more effective than sotalol but has	
• <u>16403928</u>	better than BB alone	for inducible or	Results: Shocks occurred in 41	an increased risk of drug-related	
	for prevention of ICD	spontaneously occurring VT	patients (38.5%) assigned to BB	adverse effects	
	shocks.	or VF.	alone, 26 (24.3%) assigned to	Adverse pulmonary and thyroid	
	_		sotalol, and 12 (10.3%) assigned to	events and symptomatic	
	Study type:	Exclusion criteria: Patients	amiodarone plus BB. A reduction in	bradycardia were more common	
	multicenter RCT	were excluded if they had	the risk of shock was observed with	among patients randomized to	
		LQTS, corrected QT interval of	use of either amiodarone plus BB	amiodarone.	
	Size: 412 patients	more than 450 millisec, were	or sotalol vs BB alone (HR: 0.44;		
		receiving a class I or class III	95% CI: 0.28–0.68; p<0.001).		
		antiarrhythmic agent, had	Amiodarone plus BB significantly		
		received amiodarone or	reduced the risk of shock		
		sotalol for more than 20	compared with BB alone (HR: 0.27;		
		consecutive days at anytime	95% CI: 0.14-0.52; p<0.001) and		
		(patients who had received	sotalol (HR: 0.43; 95% CI: 0.22-		
		>10 d of amiodarone had to	0.85; p=0.02). There was a trend		
		be taken off amiodarone for	for sotalol to reduce shocks		
		10d before randomization), a	compared with BB alone (HR:		
		calculated creatinine	0.61;95% CI, 0.37–1.01; p=0.055).		
		clearance of less than 30	The rates of study drug		
		mL/min (<0.50 mL/s),	discontinuation at 1y were 18.2%		
		symptomatic AF likely to	for amiodarone, 23.5% for sotalol,		
		require use of a class I or	and 5.3% for BB alone.		

● International VT Collaborative Group Study ● Tung R 2015 (178)	Aim: to determine the association of VT recurrence after ablation and survival in scar related VT Study type: Multicenter observational Size: 2061	class III antiarrhythmic agent, absence of SHD, contraindications to amiodarone or a β-blocker, or NYHA class IV symptoms of HF. Intervention: amiodarone plus BB, sotalol alone Comparator: BB alone. Inclusion criteria: SHD with Ischemic and Non-Ischemic cardiomyopathies with monomorphic VT and myocardial scar by electroanatomic mapping Exclusion criteria: absence of scar on electroanatomical mapping Intervention: Catheter ablation, either endocardial or epicardial, guided by EAM. End point of ablation with elimination of all induced VTs	1° endpoint: Freedom from VT recurrence, Heart Transplant, or death was 70% at 1 y follow-up. VT recurred in 55% of patients who died vs. 22% of patients who survived. Transplant free survival was 90% for patients without VT recurrence and 71% for those with VT recurrence (HR 6.9; 95% CI 5.3–9.0, p<0.001).	Procedural complications occurred in 6%, including 2 deaths (0.1%), hemopericardium in 1.7%, and vascular access complications in 1.6%
• HELP-VT • Dinov 2014 (175) • 24211823	Aim: To determine the outcome of VT catheter ablation in patients with NICM to those with Ischemic Cardiomyopathy (ICM) Study type: Prospective, non-randomized	Inclusion criteria: Patients with SHD referred for catheter ablation of VT with either NICM (N=63) or ischemic cardiomyopathy(N=164) Exclusion criteria: Failure of informed consent Intervention:	1° endpoint: At 1y follow-up, VT free survival was 57% for ischemic cardiomyopathyand 40.5% for NICM patients (HR: 1.62; 95% CI: 1.12–2.34, p=0.01). ischemic cardiomyopathyrequired epicardial ablation in only 2 of 164 (1.2%) whereas NICM required epicardial ablation in 30.8% (p=0.0001).	• Complications Complications occurred in 11.1% of NICM and 11.1% of ischemic cardiomyopathypatients, including death in 4.8% of NICM and 3.7% of ischemic cardiomyopathy

Size:	227 patients	Catheter ablation for	
		patients with NICM	
		Comparator:	
		Catheter ablation in patients	
		with ischemic	
		cardiomyopathy	

Data Supplement 30. Nonrandomized Trials, Observational Studies, and/or Registries of Arrhythmogenic Right Ventricular Cardiomyopathy – (Section 7.3)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author; Year Published	Study Size		(P values; OR or RR; & 95% CI)	Comment(s)
• Quarta G, et al.	Study type:	Inclusion criteria:	1° endpoint: Familial evaluation for ARVC;	● >50% probands died suddenly
Circ 2011 (216)	national cohort	100 families with	followup 3.4±1.6 y. Deceased proband in 51	Desmosomal gene complexity in
• <u>21606390</u>		ARVC evaluated	families	10% of relatives, assoc with 5-fold
	<u>Size</u> : 255	2003-2009		increased risk of disease expression
			Results: in 88% of deceased: dx of ARVC made	
		first degree: 210	at autopsy	
		second degree: 45	SCD most common in young: 31% died	
			between 14-20 y	
		Exclusion criteria:	Definite or probable gene mutations; 58% of	
		N/A	families, 73% of living probands	
			42% of first degree relatives had disease	
			expression	
			62% of gene carriers had phenotypic	
			expression	
			Progressive disease expression beyond age 40	
			in 50%	
 Kapplinger JD 	Study type: Multi-	Inclusion criteria:	1° endpoint: Determine prevalence of	 Radical mutations are high-
JACC 2011 (217)	center Netherlands,	ARVC patients and	background "noise" in ARVC genetic testing	probablility ARVC associated
• <u>21636032</u>	retrospective	427 unrelated		mutations
		healthy controls	Results: Mutations present in 58% of ARVC	R Missense mutation should be
	Size: 93 probands		and 16% of controls	interpreted in context of race,
	and 427 controls		Radical mutations: 43% of ARVC, vs 0.5%	ethnicity, mutation location,
			controls	sequence conservation; more likely

		Tested for PKP2, DSP, DSG2, DSC2, TEME43 Added data from 82 patients in ARVD/C Registry in USA Exclusion criteria: N/A	Missense mutations: 21% of ARVC, 16% of controls	positive if Caucasian, within DSP and DSG2 hotspot, and conserved in PKP2 and DSG2 residue • R Background mutation rate = 16% (vs 5% for LQT1-3)
Bhonsale A, et al.	Study type:	Inclusion criteria:	1° endpoint: Risk stratification in ARVC	ARVC desmosomal mutation
CAE 2013 (218)		ARVC patients with	genotype positive: sustained VT, SCD/ADA,	carriers risk stratification:
• <u>23671136</u>	<u>Size</u> : 215	positive genotype:	appropriate ICD shock	 High risk: ECG ≥3 T wave
		desmosomal	Mean followup 7 y	inversions, Holter, proband status
		mutation carriers		Increasing PVC's on holter c/w
		PKP2 85%	Results: 40% ACE	arrhythmic events, > 760 PVC'
		53% males, mean	ECG: high risk ≥3 inverted precordial T waves;	"Benign" ECG conferred low
		age 32 ±18 y	intermediate risk = T wave inversion in leads	arrhythmic risk
		Presentation VT/VF 23%	V1, V2 + late depol; low risk = 02 T wave	
		25%	inversion without depol changes PVC count on holter higher in arrhythmic	
		Exclusion criteria:	outcomes, p<0.0001	
		N/A	Event free survival lowest among probands	
		,	p<0.001, and symptomatic patients p<0.001	
			Incremental risk: Proband, HR: 7.7; ≥3 T wave	
			inversions, HR: 4.2; male gender, HR: 1.8	
 Marcus FI, et al. 	Review paper for phy	sicians summarizing	ARVC: aut dominant, Desmosomes: cardiac,	Proband may not benefit from
JACC 2013 (219)	genetics of ARVC		skin, hair	gene testing, does not alter therapy.
• <u>23500315</u>			30-50% of patients with ARVC have abnormal	Patients with >1 gene abnormality
	5 genes:		gene, range 26-58%, highest in clinical familial	may have more severe course;
	Plakophilin- 2	73-78%	disease. 20-30% family Hx sudden death	earlier ICD.
	Desmoglein -2	10-13%	Negative genetic tesing (as disease as 100/	Benefits genetic testing ARVC: understand source of disease, identify
	Desmocollin-2	4-6%	Negative genetic tesing ≠ no disease, as >50% gene negative to date.	understand cause of disease, identify family members at risk, family
	Desmoplakin	3-8%	Abnormal gene = risk, but not disease;	planning, limited prognostic
	Junctional	1-4%	modified by additional gene modifiers, virus,	information.
	plakoglobin		athletics	

	Cost ~\$5400		PKP2 may require a second mutation to cause disease. The second mutation may not be tested in relatives, leading to false negative. ~48% of patients with ARVC have at least 2 different mutations; these patients have more severe disease. Truly abnormal gene should not be present in >1:400 controls; However, 1:200 Finnish have desmosomal mutation of ARVC; 6% of Asians carry PKP2 mutations. "the interpretation of genetic results for ARVC is not an exact science and is more complex than for other heart disorders caused by only a single gene and for which most patients will have an abnormal gene identified".	 For gene carriers: Recommend cardiac eval beginning at 10-12 y: ECG, SAECG, echo, holter, ± CMR Evaluate q 2 y between 10-20 y; then every 5 y, may stop at age 50-60 y.
● Bhonsale A et al. Eur Heart J 2015 (220) ● 25616645	Study type: Retrospective multicenter, Dutch, US Size: 577	Inclusion criteria: Genotype positive desmosomal and non-desmosomal mutations in ARVC. PKP2 80% Males 55%, mean age 35±17 y. 541 presenting alive: Presentation SCD=6% 41% probands. Exclusion criteria: non-genotyped ARVD	1° endpoint: Impact of genotype on clinical course in ARVC mutation carriers. Mean followup 6±7 y. Results: Presentation with SCD were younger (median 23 y) than those presenting with VT (36 y) (p<0.001). Death 2%, transplant 2%; Sustained VT/VF 30%, LVEF < 55 14%; CHF 5%. Compound mutations: earlier onset of symptoms, higher incidence VT/VF. PKP2 least ventricular dysfunction, 9%; Desmoplakin (DSP) mutations had more ventricular dysfunction/HF than PKP2 carriers: 40% ventricular dysfunction; more likely to present with SCD (11% of SCD) Male gender higher arrhythmic outcome, 53% vs 29%	 Among ARVC patients with known genotype: specific genotype affects clinical course and disease expression. Gene specific variation in SCD, LV dysfunction, HF. Males worse outcome: more likely to be probands, symptomatic earlier and more severe arrhythmic expression. Phenotypic variability—modifier genes/environmental influences.

Rigato I et al. Circ	Study type:	Inclusion criteria:	1° endpoint: ARVC gene carriers risk of	Multiple DS gene mutation status
CV Genetics 2013	Prospective	Desmosomal gene	arrhythmic outcome	was powerful predictor for major
(221)	Observational	mutations carriers	,	arrhythmic events.
• 24070718		Desmoplakin 39%,	Results: Median observation 39 y (22-52)	,
	<u>Size</u> : 134	plakophilin 2 34%,	16% major arrhythmic events.	
		desmoglein 2 26%,	Independent predictors:	
		desmocolliln 2 1%	Multiple desmosomal gene mutations HR:	
		16% complex	3.71; 95 CI:1.54–8.92, p=0.003.	
		genotype:	Male gender HR: 2.76; 95% CI: 1.19–6.41,	
		compound or	p=0.02.	
		dignenic		
		heterozygosity		
		Exclusion criteria:		
		N/A		
Groeneweg JA et	Study type:	Inclusion criteria:	1° endpoint: outcomes of ARVC patients	ARVC: 10% death/heart
al. Circ CV Genetics	retrospective	ARVC patients	median followup 7 y	transplantation during median
2015 (222)	multicenter, Europe	Probands 44%,	. ,	followup 7y.
• <u>25820315</u>	and USA	family members	Results: Sustained VT developed in 72% of	Probands: Mutations altered age of
		56%.	probands.	disease expression but not
	<u>Size</u> : 1001	Probands: 416/439	Probands with positive mutations presented	outcomes.
		presented alive (5%	at younger age.	Family members: mutation
		presented SCD).	Mortality 6%, transplantation 4%, not	carriers had more VA and increased
			different based on mutation status in	cardiac mortality.
		Overall 63%	probands.	
		mutation positive:	Family members: 1/3 developed ARVC.	
		PKP2 46%.	Sustained VT 8%, cardiac mortality 2%.	
		Family members:		
		73% mutation	Mutations in family members modified	
		carriers.	course: 8x increase in VT, increased cardiac	
			mortality.	
		Exclusion criteria:	ICD improved survival in index patients: SCD	
		N/A	0.6% vs 16% without ICD.	

• te Riele AS, et al.	Study type:	Inclusion criteria:	1° endpoint: ARVC first degree relatives: risk	ARVC first degree relatives' with
EHJ 2016 (223)	Multicenter	First degree	of ARVC dx and outcomes	increased likelihood of dx:
• <u>26314686</u>	retrospective	relatives of ARVC	Mean followup 6.7±3.7 y	symptoms, sibling, pathogenic
		proband		mutation, female gender.
	<u>Size</u> : 274	46% male, age	Results: 35% developed ARVC	Malignant family Hx was not
		36±19 y	Risk of ARVC dx: sibling, HR: 3.11; p<0 .001,	associated with arrhythmic events
			symptoms, p<0.001, pathogenic mutation	
		Exclusion criteria:	p<0.001, female, p=0.01.	
		N/A	8% developed sustained VA: neither	
			relatedness to proband nor malignant family	
			Hx were predictive of arrhythmic events.	
• Kamath GS, et al.,	Study type:	Inclusion criteria:	1° endpoint: SAECG abnormalities in ARVC	• SAECG: using 1/3 criteria increased
HR 2011 (224)	retrospective single	ARVC probands	Abnormal: fQRSD ≥114 ms, LASD >38 ms,	sensitivity and maintained specificity
• <u>20933608</u>	center	compared with 103	RMS-40 <20 μV	SAECG correlated with disease
		controls		severity on CMR, but not VT
	<u>Size</u> : 87		Results:	
		Mean age 37 y, 54%	SAECG sensitivity/specificity: 1-criteria 69%/	
		male	92%; 2-criteria 47%/95%; 3-criteria 33%/100%	
		Exclusion criteria:		
		N/A		
Marcus FI, et al.,	Study type: Single	Inclusion criteria:	1° endpoint: right ventricular abnormalities in	Characterize RV pathology in LBBB
Circ 1982 (225)	center	22 adults with	ARVC	VT
• <u>7053899</u>		recurrent VT w/		Consider dx in patients with VT of
	<u>Size</u> : 22	LBBB 21/22	Results: inverted T waves right precordium,	unknown cause, particularly if LBBB
		Mean age 39 y,	cardiac enlargement, delayed ventricular	pattern
		Males 2.7:1	potentials	
			RV dysplasia- inferior, apical or	
		Exclusion criteria:	diaphragmatic-diagnosed with angiography. 1	
		N/A	death.	
• Corrado D et al.	Study type:	Inclusion criteria:	1º endpoint: ARVC clinic-pathologic	• LV involvement in 76% of ARVC:
JACC 1997 (226)	retrospective	Pathologic dx of	manifestations	age dependent,
• <u>9362410</u>	multicenter	ARVC at autopsy or		more severe cardiomegaly
		heart transplant	Results: 80% died suddenly: 47% of SCD died	More CHF
	<u>Size</u> : 42	Mean age 29.6±18 y	during exertion	Prior syncope in 26%
		(9–65 y)	SCD first symptom in 35%.	SCD exercise related in 47%
			CHF 24%	

		Exclusion criteria: N/A	Syncope 26% Exercise related in 64% LV fibrofatty involvement 76% Isolated RV involvement 24%	
● Link MS ert al. JACC 2014 (227) ● 25011714	Study type: Prospective multicenter North American ARVC Registry Size: 137	Inclusion criteria: ARVC patients enrolled in registry 79% (108 patients) received ICD's Mean age enrollment 40±14 y. Prior symptoms, sustained VT or CA 41% Exclusion criteria: N/A	1° endpoint: Sustained VA in ARVC during followup 3.3±1.7 y Results: 44% (48 patients) had 502 episodes of sustained VT: 97% monomorphic VT. Inapprop shocks 17%. Independent predictors sust VT: prior spontaneous VT, inferior T wave inversion. Independent predictor life threatening VT (rate ≥240bpm or VF): younger age at enrollment. ATP successfully terminated 92% of VT Patients without ICD implantation: no SCD or SVT -followup 2.4 y	ARVC predictors of VT: sustained VT prior to ICD, inferior T wave inversion, younger age at enrollment 48% received ICD therapy Recommend programming ATP for termination of VT: successful 92% Syncope, family Hx SCD did not predict ICD therapy
• Corrado D et al. Circ 2015 (228) • 26216213	International Task Fo Treatment of ARVC: I Force Recommendati	rce nternational Task	No competitive or endurance sports; AAD's as adjunct in patients w frequent AICD shocks; BB for patients with recurrent VT, appropriate ICD rx, or ICD therapy for SVT; epicardial ablation for patients who fail endocardial approach; ICD for patients with hemo unstable sustained VT/ VF. EPS for suspected ARVC; restrict athletics to low intensity; BB for all ARVC patients irrespective of arrhythmias; cath ablation for recurrent VT fail meds other than amio. Vstim for risk stratification asymptomatic; endocardial voltage mapping; restrict comp sports in phenotype neg patients; cath ablation without ICD for selected patients	 ICD implantation: Hemodynamically unstable sust VT, or VF; severe systolic dysfunction RV or LVEF ≤ 35%; Hemodynamically stable sustained VT; unexplained syncope; mod vent dysfunction RV EF= 36-40% or LVEF= 36-45%; or NSVT Minor risk factors Prophylactic ICD in asymptomatic patients with no risk factors of healthy gene carriers.

			with drug refractory hemo stable single morphology VT. No BB for healthy gene carriers; cath ablation as alternative to ICD for prevention of SCD.	
• Corrado D et al.	Study type:	Inclusion criteria:	1° endpoint: ARVC appropriate ICD shocks	• 48% approp ICD shocks
Circ 2003 (229)	multicenter	ARVC patients with	Mean followup 39 mo	Predictors: ACA, unstable VT,
• <u>14638546</u>	retrospective	ICD	· ·	younger age, lower LVEF
		Mean age 40 y	Results: Approp shocks 48%, comps 14%,	PES not predictive of approp shock
	<u>Size</u> : 132	70% males	inapprop shocks 16%	Syncope not statistically important
		ICD indication: ACA	84% underwent PES: 69% inducible sust VT:	as risk factor in multivariable
		10%, sustained VT	neither sensitive nor specific: 51% no appropr	analysis.
		62%, syncope 16%;	shock, 54% of non-inducible had approp rx	• 4 patients implanted due to family
		nonsust VT 9%;	Syncope: 21 patients: none died, one	Hx SCD: no approp shocks
		family Hx 3%	underwent OHT; 38% approp shocks;	
			multivariate analysis p=0.07 for approp shock	
		83% on AA drugs	Independent predictors of VF: ACA, VT with	
		prior to ICD	hemodynamic compromise, younger age, LV	
		Evaluaion aritorio:	involvement	
		Exclusion criteria: N/A		
Piccini JP et al.	Study type: single	Inclusion criteria:	1° endpoint: ARVC clinical + EP	Multivariate predictor approp
Heart Rhythm 2005	center retrospective	Patients with	characteristics that predict appropriate ICD	shock: sustained VT/VF, OR:11.4;
(230)	center retrospective	definite or probable	shocks.	p=0.015;
• 16253908	Size: 67	ARVC with ICD's	Mean followup 4.4±2.9 y	• NSVT, OR: 6.29, p=0.051
		Mean age 36±14 y;	, mean remarks and a second	EPS did not predict ICD shocks in
		52% male	Results: Appropriate shocks in 94% of 2°	patients with 1° prevention ICD
		1° prevention 42%,	prevention, 39% of 1° prevention (p=0.001),	Further research to identify low
		2° 58%	overall 66%	risk patients who do not need ICD
		Sustained VT: 52%,	approp shocks: Definite ARVC: 73%;	placement
		syncope 36%, ACA	probable:33%	Syncope not statistically significant
		58/5	Overall 21% received shock for life	
			threatening VT/VF >240 bpm; no difference in	
			1° or 2° prevention patients	
		Exclusion criteria:	EPS did not predict ICD approp use in patients	
		N/A	with 1° prevention	
			All patients with VF had inducible VT/VF	

			Syncope: 43% approp shocks, 22% no rx, p=0.08	
Bhonsale A et al.	Study type:	Inclusion criteria:	1° endpoint: Incidence and predictors of	48% ARVC patients undergoing 1°
JACC 2011 (231)	Retrospective single	Definite or probable	appropriate ICD shocks for ARVC undergoing	prevention ICD received appropr
• 21939834	center	ARVC with ICD	ICD for 1° prevention	shocks
<u> </u>		implantation for 1°	Mean followup 4.7±3.4 y.	Approp shocks: proband, inducible at
	<u>Size</u> : 84	prevention	mean remark in zer. ,	EPS, clinical nonsust VT, PVCs
		63 patients	Results: 48% approp ICD shocks.	>1000/24 hrs
		genotyped: 43% +	Predictors: Multivariable analysis: Positive VT	·
		desmosomal	inducibility at PES, HR: 4.5; 95% CI: 1.4–15,	• Syncope NS predictor, HR: 0.91
		mutations	p=0.013), clinical nonsust VT, HR:10.5; 95% CI:	
			2.4–46.2, p=0.002); PVC's >1000/24 h, HR:	Non-inducible: 1/20 appropr ICD
		76% symptomatic, 63% >1000 PVC's	3.48; proband, HR:1.62.	shock
		on holter	Syncope: approp shocks 9%/y. 25% approp shocks, vs 30% no approp shocks	
		Syncope: 27%	Recent syncope <6 mo: 63% appropr shocks	
		Exclusion criteria:	vs 20% remote, p=0.046	
		N/A		
• Dalal D et al. JACC	Study type:	Inclusion criteria:	1° endpoint: Efficacy of ablation for ARVC.	High rate of recurrent VT after
2007 (232)	retrospective single	ARVC patients	Mean followup 32 mo.	ablation for ARVC
• <u>17662396</u>	center	undergoing ablation		"diffuse cardiomyopathy with
]	at Hopkins.	Results: 48 procedures. 46% eliminated all	evolving electrical substrate"
	<u>Size</u> : 24	M 2610	inducible VT	
		Mean age 36±9 y, 46% males	Recurrence: overall 85%. One procedural	
		40% Males	death 4%. VT recurrence free survival: 50% at	
		Exclusion criteria:	5 mos, 25% at 14 mo. Did not vary by procedural success, mapping, repeat	
		N/A	procedural success, mapping, repeat procedures.	
		'*/^	procedures.	

● Garcia FC et al. Circ 2009 (233) ● <u>19620503</u>	Study type: retrospective single center Size: 13	Inclusion criteria: ARVC patients undergoing epicardial ablation after failed endocardial ablation VT	1° endpoint: Endocardial vs epicardial ablation in ARVC Results: 27 VT's in 13 patients 85% epi ablation opposite endocardial ablation sites 77% no VT with 18±13 mo followup	Epicardial ablation in ARVC after failed endocardial ablation results in VT control
		Exclusion criteria:		
 Philips B et al. Circ AE 2012 (234) 22492430 	Study type: Retrospective multicenter	N/A Inclusion criteria: ARVC patients undergoing ablation 1992-2011 at 80	1° endpoint: ARVC Efficacy of epicardial ablation of VT. Results: 175 ablations in 87 patients: 53%	 Epicardial ablation of VT in ARVC associated with high recurrence rate, but reduces VT burden. Majority of VT circuits were
	<u>Size</u> : 87	centers. Mean age 33±11 y, 53% male 50% failed endocardial ablation Exclusion criteria: N/A	repeat procedures. 27% recurrent VT; VT reduction Freedom from VT at 1, 5, 10y: 47%, 21%, 15%. Epicardial ablation: freedom from VT at 1, 5 y: 64%, 45% Burden of VT reduced irrespective of ablation strategy: p<0.001 Complications: 2.3% major: death; delayed MI/occlusion RCA. Related to pericardial access.	epicardial.
Bai R, et al. CAE2011 (235)21665983	Study type: Multicenter prospective Size: 49	Inclusion criteria: Consecutive ARVC patients undergoing ablation All sust monomorphic VT; all with AICD's Exclusion criteria: N/A	1º endpoint: Comparison of outcomes for ARVC ablation, endocardial vs endoepicardial: non-inducibility of VT with isuprel. Followup 3 y Results: Freedom from VA or ICD therapies: Endocardial: 52%, endo-epi 85%, p=0.029	Combined endocardial-epicardial ablation approach in ARVC achieves longer term freedom from VA or shocks. Patients with frequent PVC's more likely to have recurrences
 Berruezo A et al. Circ AE 2012 (236) 22205683 	Study type: retrospective single center	Inclusion criteria: ARVC patients undergoing endo +	1° endpoint: ARVC patients: recurrence of VT after ablation endo + epicardial	ARVC combined endo + epi ablation reveals wider substrate, with good short/mid-term success

	<u>Size</u> : 11	epicardial ablation of VT	Results: ablation eliminated all clinical and induced VT 64% continued on sotalol	
		Exclusion criteria: N/A	9% VT recurrence with median 11 mo followup	
● Philips B Heart Rhythm 2015(237) ● <u>25530221</u>	Study type: retrospective single center Size: 30	Inclusion criteria: ARVC undergoing epicardial ablation at tertiary center Exclusion criteria: N/A	1° endpoint: Safety and efficacy of epicardial ablation at tertiary center for ARVC Results: VT circuits: 69% on epicardial surface, most sub-tricuspid. VT recurrence: 27%. Reduced VT burden (p<0.001)	 Epicardial ablation for VT in ARVC safe in tertiary center Freedom from VT 70% at 2 y. Reduces VT burden
		,	VT free survival at 1,2 y: 76%, 70% Complications: 3.3%, pericarditis. Fluoro 82 min (40-135)	
Santangeli P et al.Circ AE 2015 (238)26546346	Study type: Retrospective single center Size: 62	Inclusion criteria: ARVC patients undergoing ablation Endo + epi: 63% Exclusion criteria:	1° endpoint: ARVC ablation outcomes, followup 56±44 mos Epicardial ablation if failed endocardial ablation	ARVC VT ablation outcomes 'good'; most have VT control
		N/A	Results: VT recurrence: 29%; VT free survival 71% 64% on BB or no rx	
● James CA et al. JACC 2013 (239) ● <u>23871885</u>	Study type: Single center retrospective Size: 87	Inclusion criteria: ARVC patients interviewed about exercise from 10 y of age. Mean age 44±18 y Exclusion criteria: N/A	1° endpoint: ARVC exercise and VT/VF Results: Endurance athletes developed symptoms at younger age (30±13 y) vs 40 y, p=0.05; Increasing exercise Lower lifetime survival free of VT/VF p=0.013	• Endurance and frequent exercise increase the risk of VT/VF, HF in ARVC patients.
Sawant AC et al.JAHA 2014 (240)25516436	Study type: single center retrospective Size: 82	Inclusion criteria: ARVC patients interviewed re exercise	1° endpoint: ARVC: exercise and impact on desmosomal and gene-elusive patients	Gene-elusive non-familial ARVC is assoc with very high intensity exercise Recommend exercise restriction

		Desmosomal	Results: all gene-elusive patients were	
		mutations: 39	endurance athletes; more intense exerscie,	
		Gene-elusive 43	p<0.001	
			Family Hx more often neg in gene-elusive	
		Exclusion criteria:	Gene-elusive patients with most intense	
		N/A	exercise had younger age at presentation,	
			p=0.025, shorter survival free of VEA, p=0.002	
Ruwald AC et al.	Study type: North	Inclusion: ARVC	1° endpoint: ARVC exercise and VT/VF/SCD	Competitive sports associated with
EHJ 2015 (241)	Americal ARVC	Registry probands.	followup 3 y	HR: 2.05 for VTA/death and earlier
• 25896080	registry, 18 centers	0 /.	Results: Patients in competitive sports:	presentation of symptoms, c/w
	US, Canada	Exclusion criteria:	Younger at age of Dx, 71% inducible VT/VF,	recreational sports or inactive
		Age <12 y; ICD >2 y	increased risk death/VT.	·
	Size: 108 probands	before enrollment;	,	
		unknown exercise		
		level before dx		
Sawant AC Heart	Study type: Single	Inclusion criteria:	1° endpoint: ARVC and outcomes with	Recommend restricting unaffected
Rhythm 2016 (242)	center retrospective	ARVC first degree	exercise intensity (MET-HR/y)	desmosomal mutation carriers from
• <u>26321091</u>		relatives of	(<u>_</u>	endurance and high-intensity
	Size: 28	probands with PKP2	Results: After adjusting for age, sex, family;	athletics, but not from AHA
		mutation, interview	participation in endurance athletics, (OR: 7.4,	recommended minimum levels of
		re exercise since	p=0.03), higher intensity exercise (OR: 4.2,	exercise for heatlhy adults
		age 10 y; exercise	p=0.004) were associated with dx of ARVCD.	,
		vs AHA	b oloo if were associated with ax of rail est.	
		recommendations	Family members restricting exercise to ≤650	
		to restrict to 390-	MET-Hr/yr (AHA upper limits) were sig less	
		650 MET-HR/y	likely to have ARVC dx (OR: 0.07, p=0.002); no	
		000	VT/VF	
		Exclusion criteria:		
		N/A	(AHA/AC Sports Med recommend healthy	
		.,	adults participate in minimum, 450-750 MET-	
			min weekly =390–650 MET-Hr/y)	
Saberniak J et al.	Study type: single	Inclusion criteria:	1° endpoint: ARVC assess exercise ventricular	ARVC athletes showed reduced
Eur J Heart F 2014	center	ARVC probands and	function with echo, CMR	biventricular function compared with
(243)		mutation positive	Athlete: intensity ≥6 METS, duration ≥4 h/wk	non-athletes and mutation-positive
• <u>25319773</u>	Size: 110	family members	Results: Function reduced in athletes' vs non-	family members
÷ 23313773	<u></u> ,	is	athletes by echo and MRI, all p<0.01.	,
			attricted by cerio and with, all protot.	

		Genotyping in 100 patients 75% mutation positive, PKP 91%, Syncope 44%, ICD 47% Exclusion criteria: N/A	METs x min/wk correlated with reduced RV and LV function p<0.01 LVEF by MRI reduced in athletes, index and family members Exercise induced VA in 37% of patients, more likely in athletes p<0.001 and in those w increased duration exercise ≥2.5 h/wk x 6 y	Amount and intensity of exercise was assoc with impaired LV and RV function Exercise aggravates, accelerates myocardial dysfunction in ARVC
• Sen-Chowdry S et al. JACC 2008 (244) • 19095136	Study type: observational cohort Size: 42	Inclusion criteria: ARVC patients w clinical suggestion of LV involvement: one or more: RBBB morphology arrhythmia, isolated (infero) lateral T wave inversion, proven family dx LV ARVC or idiopathic myocardial fibrosis Clinical eval: includes CMR (41 patients): consensus >2 readers; echo, holter, exercise test, mutation screening Exclusion criteria: HCM, ischemia, other structural heart/lung/systemic disease	1º endpoint: ARVC presenting as LV dominant arrhythmogenic cardiomyopathy (LDAC): CMR & clinical Results: Desmosomal mutations present in 45% of probands, 33% of families Arrhythmia of RBBB morphology exceeding degree of ventricular dysfunction distinguished ARVC from dilated cardiomyopathy CMR: 88% RV segmental dil and/or wall motion abnormality; 27% low RVEF; LV involvement 34% dilation or decreased EF. LV late gadolinium enhancement Inflammatory myocarditis on genetic basis: 10% prior "myocarditis"	LV dominant ARVC subtype under-recognized Unexplained T wave inversion V5, V6± V4, I, aVL VT of RBBB morphology, LV aneurysms LV dilation and/or systolic impairment with arrhythmic presentation Extensive LGE of LV myocardium "inflammatory myocarditis part of nat Hx of ARVC"

● Vermes E et al. JACC CV Imaging 2011 (245) ● 21414577	Study type: retrospective cohort, single center Size: 294	Inclusion criteria: Patients referred for ARVC evaluation by CMR 2005–2010 Exclusion criteria: N/A	1° endpoint: Compare ARVC CMR criteria from 1994–2010; also, assessed 134 patients with full diagnostic evaluation for ARVC Results: original CMR criteria: 23.5% major; using 2010: 6.5% major Of 69 patients with major criteria 1994, only 23% had major criteria 2010 Of 172 with minoronly 1.1% minor criteria 2010 Also, assessed 10 patients with proven ARVC on complete evaluation: 4/10 met major criteria, none met minor Specificity for major/minor criteria: 1994-78/39%; 2010: 94/96%	2010 criteria reduced major + minor CMR criteria: from 23.5% to 6.5% new TFC for CMR improved specificity, but may have reduced sensitivity
• te Riele AS et al. JCE 2013(246) • 23889974	Study type: multicenter retrospective: international registry ARVC Size: 80	Inclusion criteria: ARVC mutation positive patients undergoing CMR, EPS. CMR 74, EPS in 11 patients PKP2 83% Exclusion criteria: N/A	1° endpoint: ARVC electro-anatomical correlates CMR, EPS Mean followup 6 y Results: CMR: abnl RV 96%, biventricular: 52%, LV only: 4%. ACE 41%: VT 67%, approp ICD shock 23%, ACA 10%. Arrhythmia free survival lower in patients with more abnormal RV segments 24 patients with advanced structural abnormalities: 1,5, 10 y arrhythmia free survival= 57%, 42%, 35% EPS: scar more extensive in epicardium vs endocardium, p<0.0001; scar map correlated with CMR locations: RV epicardial scar subtricuspid 100%, RV basal anterior wall 64%	 CMR: basal inferior (94%) and basal anterior RV (87%) and posterolateral LV involvement (80% subepicardial fat infiltration). RV apex involved only in advanced disease. Epicardial delayed activation particularly in perivalvar RV area and LV posterolat wall. RVOT involved late in disease.

			Ablation successful in 18/19 VT: 84% were from RV; no VT from RV apex	
● te Riele AS et al. JACC 2013 (247) ● 23810894	Study type: prospective registry based Size: 69	Inclusion criteria: ARVC mutation carriers without sustained VA 78%: first degree relatives 83% PKP2 mutations Mean age 27±15 y Exclusion criteria: ARVC with prior sustained VA	from RV; no VT from RV apex 1º endpoint: ARVC mutation carriers undergoing risk stratification: incremental value of ECG, Holter, CMR. Mean followup 6 y Results: 78% holter; ECG, CMR in all 68% asymptomatic at presentation Abnormal ECG: 57%, abnormal Holter 26% (PVC's >500/24 h, or nonsust VT >100 bpm Abnormal CMR 30% patients with abnormal ECG/Holter: 48% had abnormal CMR, vs 4% in patients with normal ECG/Holter, p<0.0001 Only 1 pt with normal ECG/holter had abnormal CMR. Development of sust VA: 16% mean time to arrhythmia 4.5 y All patients with sust VA presented with electrical abnormalities; all had abnormal CMR. Patients with both electrical and CMR abnormalities: higher VA, p <0.0001:	Presence of mutation alone did not confer arrhythmia risk. ECG & holter abnormalities preceded detectable CMR abnormalities in ARVC mutation carriers ECG PLUS CMR abnormalities identify high risk group; PlCD for 1° prevention "Evaluation of cardiac structure and function using CMR is probably not necessary in the absence of baseline electrical abnormalities"
• Liu T et al. J	Study type:	Inclusion criteria:	arrhythmia free survival at 1,5,10 y: 89%, 54%, 36%. 1° endpoint: ARVC: effect of revised TFC on	• 2010 criteria reduced number of
Cardiovasc magn Reson 2014 (248) • 24996808	retrospective cohort Size: 968	patients referred 1995-2010 for CMR with clinical suspicion of ARVC If quantitative RV measures not avail, repeat CMR performed Mean age 42 y	CMR criteria vs 1994 criteria. Results: 2010 criteria reduced no. of total patients meeting diagnostic CMR criteria from ~23% to 2.6%: 2.2% met major criteria, 0.4% met minor CMR identified alternatic dx in 9.2% of patients, and 4.4% of dx were "potential"	total patients meeting diagnostic CMR criteria Only 2.6% met diagnostic criteria on CMR More objective, quantified criteria in ARVC dx by CMR

		Males 52% Exclusion criteria: N/A	mimics" af ARVC-sarcoidosis, other cardiomyopathies.	
 Marcus FI et al. Circ 2010 (249) 20172911 	(249) ARVC		1º endpoint: Quantification, specificity of ARVC diagnostic criteria. Structural, ECG, arrhythmic and genetic features as major and minor, with quantitative criteria. SAECG: fQRS fQRSD >114 ms, LASD ≥38 ms, RMS-40 ≤20 μV, terminal activation duration QRS ≥55 ms V1,2, or 3	 Major criteria Dysfunction: echo, MRI, angio regional dyskinesia, akinesia, dyssynchrony AND dilation; echo FAC ≤33%, CMR RVEF ≤40%; RVEDVI ≥100–110 ml/m² (Female/male); localized RV aneurysms or severe segmental dilatiom Tissue bx: residual myocytes
			See major criteria at right Dx: 2 major, or 1 major plus 2 minor, or 4 minor from different groups RV fat not part of CMR criteria	<60%• ECG Repol: age >14 y: Twave inversion V1, V2, and V3; • Depolarization: epsilon V1-3; • Arrhythmia: nonsust/sust VT of LBBB, superior axis • Family hx: ARVC confirmed in first
			Added mutation status in proband	degree relative by TFC, surgery or autopsy; or pathogenic mutation in proband
• Corrado D et al. Circ 2010 • 20823389	Study type: Multicenter retrospective Size: 106	Inclusion criteria: consecutive ARVC patients with ICD implanted for 1° prevention Mean age 36 y Males 67%	1° endpoint: ARVC appropr ICD shocks in 1° prevention Mean followup 58 mo Results: approp shocks: 24%; inapprop shocks 19%; comps 17% PES: performed in 60% of patients: 40	 Overall group had high arrhythmic risk: Univariate analysis: approp shocks: younger, syncope, NSVT, LV dysfunction
		Syncope 39% NSVT 53%, family Hx SCD 46% Exclusion criteria: Prior sust VT/VF	patients (60%) inducible. 65% did not receive approp therapy; of non-inducible 30% received approp rx. PES PPV 35%, neg PV 70% Syncope: 43% approp shocks, 4 had recurrent syncope without arrhythmia	 Multivar analysis: syncope only predictor, HR: 3.16, p=0.005 No pt with ICD implanted for family Hx only had appropriate shocks
• Marcus GM et al. JACC 2009	Study type: Retrospective multi-	Inclusion criteria: ARVC patients in	1° endpoint: Suppression of VEA on AA meds in ARVC	Overall BB not associated with increase or decrease in VEA;

• 19660690	center North American ARVC Registry Size: 95	Registry treatment with ICD and AA drugs Exclusion criteria: N/A	Results: BB: used in 61%, (58 patients): no increase or decrease in VEA; atenolol (20 patients) assoc with decreased risk VEA, HR: 0.25; 95% CI: 0.08–0.80, p=0.018. Sotalol 38 patients: increased risk ICD shock; in high dose 320 mg (6 patients) VEA HR: 14.0; 95%CI: 1.6–125, p=0.018. Amio (10 patients) lower risk VEA, HR: 0.25; 95% CI: 0.07–0.95.	Atenolol associated with decreased risk VEA • Sotalol increased risk ICD shock Amio lower risk VEA
 Hershberger RE J Card Fail 2009 (250) 19254666 	Genetic evaluation of Cardiomyopathy		Guideline restricts the indication for genetic testing to that of facilitation of family screening and management. Ie, Testing is used for risk stratification of family members who have little or no clinical evidence of disease. Recommendations: Careful family Hx for ≥3 generations, for all patients. Clinical screening recommended at intervals for asymptomatic at-risk relatives who are mutation carriers; Clinical screening for asymptomatic first degree relatives when genetic testing has not been performed/or mutation not identified. Genetic screening for Fabry disease in all men w unexplained cardiac disease. Referral to centers expert in genetic evaluation and family based management.	 Details of clinical screening & intervals given: SAECG in ARVC only CMR in ARVC Childhood: screening intervals specified relative to ages and mutation status Especially LMNA mutations

			Genetic testing for the one most clearly affected person in a family to facilitate family screening and management. ICD may be considered before the LVEF falls below 35% in patients with CM and significant arrhythmia or known risk of arrhythmia.	
 Marcus FI et al. HR 2009 19560088 	Study type: Multicenter retrospective Size: 108	Inclusion criteria: North American ARVC/D Registry probands 57% male Mean age at dx 38 y 34% competitive athletes Symptoms: ~ all Syncope 21% VA 70% Sustained VT 35% Genotype: 100 patients: 33% positive: PKP2 present in 22%	1º endpoint: Study ARVC clinical eval and diagnostic utility of 7 tests: ECG, SAECG, holter, echo, MRI, RV angio, biopsy in 108 probands referred to core center. Followup mean 27 mo. Results: 78% of probands classified as affected after evaluation Biopsy performed in 59%: should not target septum but should target RV free wall; sarcoidosis found in 3 patients 15% viral infection: Parvovirus 4; enterovirus not found: ARVC may predispose to viral myocarditis and accelerate disease progression Among 86 patients referred with diagnosis, 23% did not meet TFC, reclassified as borderline, or not ARVC (2 patients)-mainly due to CMR interpretation at referring vs core	Biopsy and CMR least helpful Diagnostic eval favors: ECG, SAECG, echo, RV angio Recommend minimum diagnostic eval: ECG, SAECG, Holter, echo, RV angio Diagnostic performance of CMR and biopsy was less than with other tests
 Choudhary N et al. JCE 2016 26840461 	Study type: Multicenter Size: 125	N/A Inclusion criteria: ARVC probands in North American ARVC Registry Males 56% 109 genotype testing Exclusion criteria: N/A	lab-only 63% confirmed 1º endpoint: Presentation, outcomes ARVC by gender Mean followup 37 mo Results: ACE more likely in "affected" vs "borderline" ICD VT/VF or SCD: no difference Fast VT/VF or death in women trend to lower risk, HR: 0.41	No major gender differences in outcomes Women highest risk age: 31-40 y ARVC females: increased PVC's on Holter, 2200 vs 1089, p=0.016 SAECG: ACE in females-equal in patients w or w/out abnl SAEC In males, ACE more likely if abnl SAECG

			Males: Increase in Abnormal SAECG 81% vs 48%, p<0.001, inducible VT/VF 60% vs 40%, p=0.026	cardiac events not different in genotype positive vs negative
			Overall VT/VF shocks: 27% women, 41% men Genotype positive: 38%, of positive: PKP-2 71%; genotype = gender ≥2 mutations: 8%	
Saguner AM AJC	Study type:	Inclusion criteria:	1° endpoint: ARVC utility of V-stim to predict	• study included symptomatic
2013	Prospective single	ARVC patients	outcomes: positive EP = sustained	patients with clinical VT/VF/syncope
• <u>23103200</u>	center	undergoing EPS	monomorphic VT only, triple VEST, =/- isuprel	and ventricular dysfunction
		NOTE prior to	Results: 55% sustained monomorphic VT	
	<u>Size</u> : 62	study	inducible at PES correlated with increased risk	Cannot identify how many patients
		39% had clinical hemodynamically	adverse outcome	were asymptomatic with normal ventricular function
		compromised VT	Inducibility of sust monomorphic VT (HR:	
		or VF; 32% sust VT	2.52; 95% CI:1.03–6.16, p=0.043) and	
		stable; 50%	nonadherence to meds and activity	
		syncope;	restrictions (HR: 2.34; 95% CI: 1.1–4.99,	
		NYHA Class II-III	p=0.028)	
		31%;	PPV 65%, NPV 71%	
		LVEF <50% in 24%	Anti-tach pacing successfully terminated VT >	
		RV FAC <33% in	90% of cases	
		48%		
		Exclusion criteria:		
		N/A		

Data Supplement 31. Nonrandomized Trials, Observational Studies, and/or Registries of Hypertrophic Cardiomyopathy – (Section 7.4)

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published			& 95% CI)	
Maron et al. 2000	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: ICD shock	VT or VF are the principal
(251)	multicenter, observational	patients at high risk for	from VT or VF	mechanisms of SCD in HCM
• <u>10666426</u>		SCD treated with ICD		ICDs are highly effective in high risk
	Size: 128 patients		Results: At 3.1 y follow up,	patients
		Exclusion criteria:	the ICD delivered	
		Inadequate data	appropriate therapy in 23%	
			of patients (7%/y). 25% of	
			patients had an	
			inappropriate shock.	
			Therapy for 1° prevention	
			patients was 5%/y; and for	
			2° prevention 11%/y.	
 Christiaans et al. 	Study type: observational,	Inclusion criteria:	1° endpoint: satisfaction	The majority of genetic carriers of
2009 (252)	single center	Predictively tested HCM	with genetic counseling	HCM gene(s) were satisfied with
• <u>19533783</u>		mutation carriers		genetic counseling
	Size: 143 patients	followed by	Results: Genetic counseling	 Receiving information by mail was
		questionnaire	was valued positively and	satisfactory
			only 4 carriers would rather	
		Exclusion criteria:	not have known that they	
		inadequate data	were a mutation carrier.	
Hamang et al 2012	Study type: Prospective,	Inclusion criteria:	1° endpoint: Development	Patients with a clinical diagnosis of
(253)	multi-center observational	Norwegian patients	of heart-focused anxiety	HCM receiving genetic counseling
• <u>21773878</u>	study	with a clinical diagnosis		continue to experience anxiety.
		or genetic risk of HCM	Results: 1 y of follow-up	Patients with a genetic risk for HCM
	Size: 126 patients	attending genetic	questionnaires after genetic	had less anxiety if they experienced
		counseling	counseling. Patients with a	satisfaction with genetic counseling
			clinical diagnosis of HCM	
		Exclusion criteria:	compared to genetic risk	
		inadequate data	had higher avoidance	
			(p<0.002), attention	
			(p<0.005) and fear	
			(p<0.007).	

●Bos JM et al	Study type: Single center,	Inclusion criteria:	1° endpoint: Genetic	Predictors of a positive genetic test
2014 (254)	observational data registry	Established clinical HCM	testing for HCM	were reverse curve morphological
• 24793961		diagnosis		subtype, age <45 y, LV wall thickness
	Size: 1053 patients		Results: 1053 patients with	≥20 mm, family history of HCM, and
		Exclusion criteria:	clinical HCM (mean age	family history of SCD. Hypertension
		Inadequate data	44.4±19 y) had genetic	was not predictive.
		·	testing evaluating 9 HCM-	A positive genetic test was predicted
			associated myofilament	in 6% of patients with only
			genes. 34% were positive or	hypertension and 80% with all 5
			a HCM mutation	predictor markers.
• O'Mahony et al.	Study type: Prognostic	Inclusion criteria: HCM	1° endpoint: SCD or	Risk modifiers for SCD used in the
2014 (255)	model derived from a	patients	appropriate ICD shock	model were age, maximal LV wall
• 24126876	retrospective, multicenter			thickness, left atrial diameter, LV
	longitudinal cohort study	Exclusion criteria:	Results: Median follow-up	outflow tract gradient, family Hx of
	Clinical risk prediction	inadequate data	5.7 y; 5% of patients had	SCD, non-sustained VT, and
	model for SCD in HCM		SCD/ICD shock. 8 pre-	unexplained syncope
			specified predictors were	This is the first validated SCD risk
	Size: 3,675 patients		associated with SCD/ICD	prediction model for patients with
			shock at 15% significance	HCM and provides accurate
			level. Model developed to	individualized estimates for the
			estimate probability of SCD	probability of SCD using clinical
			at 5 y. For every 16 ICDs	parameters.
			implanted in patients with a	
			≥4% 5-y SCD risk, potentially	
			1 pt will be saved.	
• Elliott et al. 1999	Study type: single center,	Inclusion criteria: HCM	1° endpoint: Survival free	ICD therapy was better than
(256)	observational	patients surviving	from SCD or appropriate ICD	amiodarone at preventing recurrent
• <u>10334430</u>	Survival after SCD or	resuscitated VF or	shock	SCD
	sustained VT in HCM:	syncopal sustained VT		Small numbers and purely
	treated with amiodarone		Results: 8 patients on	observational without controls
	or ICD	Exclusion criteria:	amiodarone and 6 received	reported.
		inadequate data	an ICD. Mean follow-up	
	Size: 16 patients		6.1±4 y 2 patients on	
			amiodarone with SCD and 3	
			patients had appropriate	
			ICD shock.	

Maron et al. 2007	Study type:	Inclusion criteria: HCM	1° endpoint: ICD shock	ICDs are highly effective in high risk
(257)	Retrospective, multicenter,	patients at high risk for	from VT or VF	patients
• <u>17652294</u>	registry	SCD treated with ICD		One death due to VT/VF when ICD
	ICD to prevent SCD in HCM		Results: 20% had	failed to function
	Size: 506 patients	Exclusion criteria:	appropriate treatment of	 Inappropriate shocks in 27% of
		Inadequate data	VT/VF: 10.6% per y for 2°	patients
			prevention and 3.6%/y for	A single modifier of high risk for SCD
			1° prevention. Time to 1 st	may be sufficient to justify ICD
			appropriate shock was 10 y.	placement
			Appropriate discharge was	
			similar in patients with 1, 2,	
			or 3 risk factors (p=0.77)	
● Lin G et al. 2009	Study type: Retrospective,	Inclusion criteria:	1° endpoint: Inappropriate	 Inappropriate shocks and device
(258)	single center, registry	Patients with HCM	shocks and device	complications are significant in HCM
• <u>19282314</u>	Complications and	receiving ICD	complications	patients receiving an ICD
	inappropriate ICD shocks			 Younger patients and those with AF
	in HCM patients	Exclusion criteria:	Results: Mean follow up	more likely to have problems
		Inadequate data	4.92 y. 36% of patients had	
	Size: 181 patients		complications and 23%	
			inappropriate shocks (5.3%	
			per y). Appropriate shocks	
			4%/y.	
• Syska et al. 2010	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: ICD therapy	 ICD therapy is effective in HCM,
(259)	observational, single	patients at high risk for	and relation to clinical risk	although the complication rate is
• <u>20132378</u>	center	VT/VF treated with ICD	profile	significant.
	Efficacy and complications			• 1, 2, or more risk modifiers did not
	of ICD therapy in HCM	Exclusion criteria:	Results: Average follow up	predict appropriate ICD therapies
		Inadequate data	4.6 y. 53.8% of 2°	
	Size: 104 patients		prevention patients	
			received an appropriate	
			therapy and 16.7% of 1°	
			prevention patients.	
			Complications:	
			inappropriate shocks	
			(33.7%), lead dysfunction	
			(12.5%), and infections	
			(4.8%).	

• O'Mahony et al. 2012 (260)	Study type: Retrospective,	Inclusion criteria: HCM patients at high risk for	1° endpoint: ICD therapy and complications	HCM patients with an ICD are exposed to frequent inappropriate
• <u>21757459</u>	observational, single	VT/VF treated with ICD		shocks and implant complications
	center, cohort		Results: 8% of patients	
	Efficacy and complications	Exclusion criteria:	received appropriate shocks	
	of ICD therapy in HCM	Inadequate data	(2.3%/y). 16% of patients	
			received inappropriate	
	Size: 334 patients		shocks (4.6%/y). 18% had	
			implant complications	
			(5.1%/y) and 30% had	
			inappropriate shocks	
			(8.6%/y).	
 Melacini et al. 2007 	<u>Study type</u> : Retrospective,	Inclusion criteria: HCM	1° endpoint: Risk of sudden	Medical treatment is not absolutely
(261)	single center,	patients on AAD	death	protective against risk of SCD in HCM.
• <u>17502652</u>	observational			
	Pharmacological treatment	Exclusion criteria:	Results: 10% of patients	
	to prevent SCD in HCM	Inadequate data	had SCD over an average of	
			62 mo: 20% on amiodarone	
	Size: 173 patients		(6/30), 9% on verapamil	
			(4/46) and BB (7/76), and	
			0% on sotalol (0/21)	
• McKenna et al. 1985	Study type: single center,	Inclusion criteria: HCM	1° endpoint: SCD, recurrent	Amiodarone was better than
(262)	observational	patients with NSVT on	VT	conventional medications for
• <u>4039188</u>	Improved survival with	Holter		preventing SCD.
	amiodarone in HCM and		Results: 24 patients during	
	VT	Exclusion criteria:	1976-1977 had NSVT and	Study design was purely observational
		inadequate data	received conventional AAD:	
	Size: 86 patients		7 patients had SCD during 3	
			y follow-up. 21 patients	
			from 1978-1979 with NSVT	
			received amiodarone: no	
			SCD on amiodarone during 3	
			y follow-up.	
● Olivotto et al.1999	Study type: Prospective,	Inclusion criteria:	1° endpoint: Mortality	An abnormal BP response during
(263)	single center observational	Patients with HCM who		exercise in HCM was associated with
• <u>10362212</u>		underwent exercise	Results: 22% had an	CV mortality
		testing	abnormal BP response (9	

	Prognostic value of BP		with hypotension, 19 with	However, the positive predictive
	response during exercise in	Exclusion criteria:	failed BP rise). 4.7±3.7 y	value was only 14%. Negative
	HCM	Inadequate data	follow up, 7% died (3 SCD, 6	predictive value 95%
		·	HF). An abnormal BP	·
	Size: 128 patients		response predicted	
	<u> </u>		increased risk for CV	
			mortality (OR: 4.5; 95% CI:	
			1.1–20.1).	
• Sadoul et al.1997	Study type: Prospective,	Inclusion criteria:	1° endpoint: Mortality	A normal BP response during
(264)	single center observational	Patients with HCM who		exercise identifies low risk young
• <u>9386166</u>	Prognostic value of BP	underwent exercise	Results: 37% had an	patients with HCM.
	response during exercise in	testing	abnormal BP response.	An abnormal response had a low
	НСМ		During 44±22 mo follow up,	(15%) positive predictive value and a
		Exclusion criteria:	SCD occurred in 12 patients:	high (97%) predictive value.
	Size: 161 patients	Inadequate data	3% in normal BP group and	
			15% in abnormal BP	
			response group.	
• Sorajja et al. 2006	Study type: Single center,	Inclusion criteria: HCM	1° endpoint: Survival	Patients with HCM and massive LVH
(265)	retrospective, longitudinal	patients with LVH ≥ 30		are at increased risk of SCD, especially
• <u>16762758</u>	data base.	mm	Results: 10-y outcome	in the young.
			assessed. Survival less than	
	Clinical implications of	Exclusion criteria:	general population (77% vs	
	massive hypertrophy in	inadequate data	95%, p<0.001). SCD most	
	нсм		common cause of mortality	
			in younger patients (overall	
	Size: 107 patients		survival 80%)	
 Maki et al. 1998 	Study type: single center,	Inclusion criteria:	1° endpoint: SCD	Patients with exercise-related SCD
(266)	retrospective, data base	Patients with HCM		were younger and had smaller
• <u>9761089</u>	analysis		Results: Mean follow-up 9.4	increases in SBP during exercise.
	Hemodynamic predictors	Exclusion criteria:	y; SCD in 9%. Independent	
	of SCD in HCM	Inadequate data	predictors of SCD were a	
			smaller difference between	
	Size: 309 patients		peak and rest SBP during	
			exercise (p=0.006), and	
			higher LV outflow tract	
			pressure gradient at rest	
			(p=0.003). Exercise-related	

			SCD in 8 patients and	
			exercise-unrelated SCD in 20	
			patients (mean age 28 vs 47	
			y, p<0.05).	
• Elliott et al. 2006 (267)	Study type: Single center, retrospective, data base	Inclusion criteria: HCM patients with LV	1° endpoint: SCD	• LV outflow tract gradient ≥ 30 mmHg was an independent risk modifier for
• 16754630	LV outflow track	outflow tract gradient	Results: 31.4% had LV	SCD/ICD shock with a 2.4-fold
	obstruction and SCD risk in	measured	outflow tract gradient ≥ 30	(p=0.003) increase in the risk of
	нсм		mmHg, followed median of	SCD/ICD shock that is increased if other
		Exclusion criteria:	61 mo, 5.9% had SCD, VF, or	risk modifiers are present.
	Size: 917 patients	inadequate data	appropriate ICD shock. LV	·
		'	outflow tract gradient ≥30	Risk of SCD/ICD shock low (0.37%)
			mmHg associated with	annual risk) if the only risk modifier is
			reduced survival free from	an increased LV outflow tract gradient
			SCD and ICD shock (91.4% vs	_
			95.7%. p=0.004)	
Monserrat et al.	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: Sudden	NSVT was associates with a
2003 (268)	single center,	with Holter monitoring	cardiac death	substantial increased risk of SCD in
• <u>12957435</u>	observational	_		young patients with HCM
	NSVT and risk for SCD in	Exclusion criteria:	Results: 19.6% had NSVT.	No relationship between duration,
	young HCM patients	Inadequate data	Mean follow up 70±40 mo.	frequency and rate of NSVT runs and
			32 died from SCD, 21 had an	adverse events.
	Size: 531 patients		ICD placed with 4	
			appropriate shocks. The OR	
			of SCD in HCM 30 y or	
			younger was 4.35 (95% CI:	
			1.54-12.28; p=0.006);	
			compared with 2.16 (95% CI:	
			0.82-5.96; p=0.1) in patients	
			older than 30 y.	
• Spirito et al. 2000	Study type: Retrospective,	Inclusion criteria: HCM	1° endpoint: SCD	The cumulative risk of SCD was
(269)	single center,	patients		nearly 0 for a wall thickness of 19 mm
• <u>10853000</u>	observational		Results: 23 patients (4.8%)	or less; and was 40% The sudden death
	LVH and risk of SCD in	Exclusion criteria:	had SCD with a mean follow	risk in HCM was increased for a left
	нсм	Inadequate data	up of 6.5 y. The risk of SCD	ventricular wall thickness of 30 mm or
			increased with wall	more.
	Size: 480 patients		thickness: 0 per 1,000 pt y if	

			15 mm or less, to 18.2 per 1,000 pt y if 30 mm or more (95% CI: 7.3–37.6).	
Elliott et al. 2001 (270)11273061	Study type: Retrospective, single center, observational Severe hypertrophy and	Inclusion criteria: HCM patients Exclusion criteria:	1° endpoint: Sudden cardiac death Results: 39 patients (6.2%)	 A wall thickness in HCM of 30+ mm was associated with SCD. Most sudden deaths occur in patients with a thickness less than 30 mm so the
	SCD in HCM	Inadequate data	had SCD or appropriate ICD shock; 10 had a wall	presence of other risk factors is important
	Size: 630 patients		thickness of 30 mm or more. Wall thickness of 30 mm or more had a higher probability of SCD or shock: (RR: 2.07; 95% CI: 1.0–4.25;	
• Elliott et al. 2000	Study type: Retrospective,	Inclusion criteria: HCM	p=0.049) 1° endpoint: Sudden	Risk factors for SCD include NSVT,
(271) • <u>11127463</u>	single center, observational	patients	cardiac death	syncope, exercise BP response, family Hx of SCD, left ventricular wall
	Risk factors for SCD in HCM	Exclusion criteria: Inadequate data	Results: Follow up 3.6±2.5 y. The SCD free survival was	thickness • 2 or more risk factors had a high risk
	Size: 368 patients		95% with 0 risk factors, 93% for 1, 82% for 2, and 36% for 3. Six y SCD risk was 72% (95% CI: 56%–88%) for 2+	for SCD
			risk factors and 94% (95% CI: 91%–98%) for 1 or 0.	
Ackerman et al.2002 (272)12084606	Study type: Genetic analysis in unrelated HCM patients Malignant mutations in	Inclusion criteria: HCM patients consenting to genetic analysis	1° endpoint: Genetic abnormalities Results: 4 beta myosin	 There is profound heterogeneity in HCM Only1% of unrelated individuals had one of the 5 "malignant" mutations.
	HCM <u>Size</u> : 293 patients	Exclusion criteria: Inadequate data	heavy chain and one troponin T gene mutation assessed. 3 of the 293	
			patients had one of the 5 mutations and all 3 <25 y.	
• Lopes et al. 2013 (273)	Study type: Meta-analysis	Inclusion criteria: Studies evaluating	1° endpoint: Genetic mutation	HCM is a heterogeneous disease.

• <u>23674365</u>	Meta-analysis of genetic	genetic mutations in		The establishment of precise
	mutations in HCM	HCM	Results: Sarcomere gene	genotype-phenotype relationships
			mutation associated with	could not be established
	Size: 18 publications,	Exclusion criteria: Poor	younger age (p<0.0005),	
	2,459 patients	study design	family Hx of HCM	
			(p<0.0005), family Hx of SCD	
			(p<0.0005) and greater wall	
			thickness (p=0.03).	
• Bos et al. 2010 (274)	Study type: Multicenter,	Inclusion criteria: HCM	1° endpoint: SCD or	Patients receiving ICD for 1°
• <u>21059440</u>	consecutive patients,	patients with and	appropriate ICD discharge	prevention because of a family Hx of
	prospective data base,	without a family Hx of		SCD whether as an isolated risk factor
	observational	SCD in 1 st degree	Results: 4.6±3 y follow up,	or combined with other markers,
	Family Hx and SCD in HCM	relatives who received	25 patients (14%) had an	experience rates of appropriate ICD
		an ICD.	appropriate ICD therapy.	discharge comparable to that of other
	<u>Size</u> : 177 patients		Patients with a family Hx of	risk factors.
		Exclusion criteria:	SCD experience ICDs shocks	
		Inadequate data	at a rate (3.7/100 person-y)	
			similar to patients with	
			other risk factors (3.1/100	
			pt y).	
• Spirito et al. 2009	Study type:	Inclusion criteria: HCM	1° endpoint: Relationship	Unexplained syncope was a risk
(275)	Observational, prospective	patients	between syncope and SCD	factor for SCD in HCM
• <u>19307481</u>	data base entry			Patients ≤40 y with syncope
	Syncope and risk of SCD in	Exclusion criteria:	Results: 205 patients (14%)	occurring >5 y before evaluation did
	HCM	Inadequate data	had unexplained or neurally-	not show an increased risk of SCD.
	6. 4.544		mediated syncope. 5.6±5.2	Neurally mediated syncope was not
	Size: 1,511 patients		y follow up, 74 patients	predictive of SCD
			(4.9%) had SCD. Relative risk	
			of SCD was 1.78 (95% CI:	
			0.88–3.51; p=0.08) in	
			unexplained syncope and	
			0.91 (95% CI: 0.0– 3.83;	
			p=1.0) in neurally-mediated	
• Maron et al. 2009	Study type - Detroops still	Inclusion suitorio	syncope.	Athletes confined to United States
	Study type: Retrospective,	Inclusion criteria Athletes who died	1° endpoint: cause of SCD	CVD was found in 54% of the deaths
(276)	registry data			• CVD was found in 54% of the deaths
• <u>19221222</u>		suddenly		

	Sudden deaths in young competitive athletes. Size: 1,866 patients	Exclusion criteria: inadequate data	Results: Average age 19±6 y. The most common cardiovascular cause was HCM (36%)	HCM was the most common finding in young athletes experiencing SCD due to a cardiac cause.
◆ Kuck et al. 1988(277)◆ 3280318	Study type: observational, single center, consecutive Role of PVS in HCM Size: 54 patients	Inclusion criteria: symptomatic and asymptomatic patients with HCM Exclusion criteria: inadequate data	1° endpoint: results of PVS Results 11 symptomatic and 43 asymptomatic patients. 33% of had inducible rabid monomorphic or polymorphic VT, VF.	PVS induced VA in 33% of both symptomatic and asymptomatic HCM patients.
• Zhu et al. 1998 (278) • <u>9474693</u>	Study type: observational, single center, consecutive Role of PVS in HCM Size: 53 patients	Inclusion criteria: HCM patients with no Hx of SCD Exclusion criteria: inadequate data	1° endpoint: results of PVS and long term follow-up Results: Sustained polymorphic VT or VF induced in 35%. Mean follow-up 47±31 mo: no events (VT, VF, or ICD shock) in 34 patients with a negative PVS, 3 events in 19 patients with positive PVS.	Sustained polymorphic VT/VFinducible in 1/3 of patients with HCM with a low subsequent event rate.
 Christiaans et al. 2010 (279) 20019025 	Study type: observational, single center, registry data The yield of risk stratification for SCD in HCM myosin-binding C gene mutation carriers; focus on predictive screening Size: 245 patients	Inclusion criteria: Asymptomatic carriers of an MYBPC3 gene mutation Exclusion criteria: inadequate data	1° endpoint: diagnosis of HCM, long-term outcome Results: Clinical HCM was diagnosed in 53 of 235 mutation carriers (22.6%). Women were affected less than men (15% and 32% respectively, p=0.003)25 carriers (11%) with one or more risk factors for SCD and manifest HCM could be at risk for SCD.	At first cardiac evaluation 22.6% of asymptomatic carriers were diagnosed with HCM Risk factors for SCD were frequently present and 11% of carriers could be at risk for SCD. Predictive genetic testing in HCM families and frequent cardiac evaluation for the presence of HCM and risk factors for SCD are justified until advanced age.
• Olivotto et al. 2008 (280)	Study type: Multicenter, prospective, cohort	Inclusion criteria: Unrelated patients with	1º endpoint: clinical outcomes related to HCM	Screening for sarcomere protein gene mutations in HCM identifies a

• 18533079	Myofilament protein gene mutation screening and outcome of patients with HCM Size: 203 patients	HCM with genetic testing of the 8 HCM-susceptibility genes Exclusion criteria: inadequate data	Results: Mean follow-up 4 y. 62% of patients had mutations (Myofilament- positive HCM) and 38% were myofilament-negative. Myofilament-positive patients at increased risk for CV death, stroke, Class III or IV HF (25% vs 7% HR: 4.27; p=0.008)	broad subgroup of patients with increased propensity toward long-term impairment of LV function and adverse outcome • These findings were irrespective of the myofilament (thick, intermediate, or thin) involved.
 Ingles et al. 2013 (281) 23598715 	Study type: Multicenter, retrospective, data base analysis Clinical predictors of genetic testing outcomes in HCM Size: 265 patients	Inclusion criteria: Probands with HCM and genetic testing Exclusion criteria: inadequate data	1° endpoint: Identify clinical variables that can predict probands with HCM in whom a pathogenic mutation will be identified Results: 52% of 265 patients had at least one mutation. Detection rate was higher with positive family Hx (72 vs 29%, p<0.0001) and positive family Hx of SCD (89 vs 59%, p<0.0001).	 Family Hx is a key clinical predictor of a positive genetic diagnosis and has direct clinical relevance, particularly in the pretest genetic counseling setting. Multivariate analysis identified female gender, increased LV wall thickness, family Hx of SCD as being associated with the greatest chance of identifying a gene mutation.
• Jensen et al 2013 (282) • <u>23197161</u>	Study type: single center, observational, data registry Penetrance of HCM in children and adolescents: a 12-y follow-up study of clinical screening and predictive genetic testing Size: 90 probands and 361 relatives	Inclusion criteria: HCM patients and their relatives with clinical screening and predictive genetic testing Exclusion criteria: inadequate data	1° endpoint: Penetrance of HCM of child relatives of patients with HCM Results: After a mean follow-up of 12 y, 2 of the 36 (6%; 95% CI: 2-18) at-risk child relatives who were phenotype negative at conclusion developed HCM phenotype at 26 and 28 y of age.	 The penetrance of HCM in phenotype-negative child relatives at risk of developing HCM was 6% after 12 y of follow-up. The finding of phenotype conversion in the mid-20s warrants continued screening into adulthood. 42% of the child relatives were non-carriers, and repeat clinical follow-up could be safely limited to the remaining children.

Bos JM et al 2013	Study type: Single center,	Inclusion criteria:	1° endpoint: Genetic	Predictors of a positive genetic test
(274)	observational data registry	Established clinical HCM	testing for HCM	were reverse curve morphological
• 24793961	Characterization of a	diagnosis		subtype, age <45y, LV wall thickness
	phenotype-based genetic		Results: 1053 patients with	≥20mm, family Hx of HCM, and family
	test prediction score for	Exclusion criteria:	clinical HCM (mean age 44.4	Hx of SCD. Hypertension was not
	unrelated patients with	Inadequate data	± 19 y) had genetic testing	predictive.
	нсм .	'	evaluating 9 HCM-	A positive genetic test was predicted
	Size: 1053 patients		associated myofilament	in 6% of patients with only
	·		genes. 34% were positive or	hypertension and 80% with all 5
			a HCM mutation	predictor markers.
• Girolami F et al 2010	Study type: Multicenter,	Inclusion criteria:	1° endpoint: The presence	• 4 patients with HCM (0.8% of cohort)
(283)	observational data registry	Patients with clinical	of triple sarcomere gene	had triple sarcomere gene mutations
• 20359594	Clinical features and	HCM undergoing	mutations	The clinical outcome in the 4 patients
	outcome of HCM	genetic testing		included resuscitated SCD in 1; ICD
	associated with triple		Results: Of 488 unrelated	implantation due to risk factors in all 4
	sarcomere protein gene	Exclusion criteria:	index HCM patients, 4	with appropriate shocks in 2; and 3
	mutations	Inadequate data	(0.8%) had triple mutations	progressed to end-stage HCM by 4 th
			and significant events during	decade with transplant in 1 and
	Size: 488 patients		follow up.	biventricular pacing in 2.
 Hershberger RE J 		Genetic evaluation of	Guideline restricts the	Details of clinical screening &
Card Fail 2009 (250)		Cardiomyopathy	indication for genetic testing	intervals given:
• <u>19254666</u>			to that of facilitation of	SAECG in ARVC only
			family screening and	CMR in ARVC
			management. le, Testing is	
			used for risk stratification of	Childhood: screening intervals
			family members who have	specified relative to ages and mutation
			little or no clinical evidence	status
			of disease.	
			Recommendations:	Especially LMNA mutations
			Compfed formally 11 for 5.2	
			Careful family Hx for ≥3	
			generations, for all patients.	
			Clinical screening	
			recommended at intervals	
			for asymptomatic at-risk	

			relatives who are mutation carriers; Clinical screening for asymptomatic first degree relatives when genetic testing has not been performed/or mutation not identified. Genetic screening for Fabry disease in all men w unexplained cardiac disease. Referral to centers expert in genetic evaluation and family based management. Genetic testing for the one most clearly affected person in a family to facilitate family screening and management. ICD may be considered before the LVEF falls below 35% in patients with CM and significant arrhythmia or	
a Klusa IIC at al. 1005	A. T. I.	In altraion original	known risk of arrhythmia.	a la LICAA kha diakaih ukia a afi V
• Klues HG, et al. 1995 (284)	Aim: To achieve an understanding of the true	Inclusion criteria: Patients with LV	Results: LV wall thickness = 15–52	In HCM the distribution of LV hypertrophy is characteristically
• <u>7594106</u>	structural heterogeneity of	hypertrophy	mm (mean 22.3±5).	asymmetric and particularly
	HCM Size:		Various patterns of asymmetric LV hypertrophy were identified	heterogeneous, encompassing most possible patterns of wall thickening and with no single morphologic expression
	N=600 patients		Hypertrophy involved:	considered typical or classic.

			2 left ventricular segments (228 patients [38%]) or ≥3 segments (202 patients [34%]) 1 segment in a substantial number of patients (170 [28%]).	A greater extent of LV hypertrophy was associated with younger age and more marked mitral valve systolic anterior motion and outflow obstruction but showed no relation to either magnitude of symptoms or gender.
			The anterior portion of the ventricular septum: most frequently showed thickening (573 patients [96%]), and the predominant site of hypertrophy in most patients (492 patients [83%]).	
Adabag AS, et al. (285)17126660	Aim: To determine the clinical circumstances under which HCM is identified Size: N=711	Inclusion criteria: HCM patients who underwent a diagnostic echocardiography	1° endpoint: Clincail trigger Results: HCM was initially suspected only after the onset of cardiac symptoms or acute cardiac events in 384 patients.	• Patients with extreme hypertrophy (wall thickness ≥30 mm) and those at high risk for sudden death were more often asymptomatic and identified by routine or family screenings (p<0.0001 and p=0.004, respectively).
			In 327 patients, HCM was recognized while patients were asymptomatic: 225 by routine medical evaluations, 27 of whom HCM was recognized during preparticipation examinations for competitive sports or other activities.	

Africa IC at al		Women, older patients (age ≥50 years), and those with outflow obstruction at rest (gradient ≥30 mm Hg) were more likely suspected to have HCM by virtue of cardiac symptoms or events (p<0.0001).	
• Afonso LC, et al. 2008	Aim: To profile the utility and pitfalls of established		 At the time of this paper, tissue Doppler-derived strain and 2D strain or
• <u>19356516</u>	echocardiographic		speckle tracking imaging represent
	modalities and discuss the		robust and rapidly evolving
	evolving role of novel		technologies that have advanced our
	echocardiographic imaging		understanding of regional myocardial
	modalities such as tissue		mechanics in HCM.
	Doppler, Doppler-based		 Ongoing refinements and additional
	strain, 2-dimensional strain		research will define the incremental
	(speckle tracking imaging),		role and clinical utility of these
	and 3-dimensional imaging		promising techniques, including the
	in the assessment of HCM.		identification of preclinical disease in
			carriers of HCM mutations,
			improvement of diagnostic accuracy,
			risk stratification, planning therapeutic
			strategies, and monitoring treatment.

Data Supplement 32. Nonrandomized Trials, Observational Studies, and/or Registries of Myocarditis – (Section 7.5)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author; Year Published	Study Size		(P values; OR or RR; & 95% CI)	Comment(s)
• Cooper et al.1997 (286) • 9197214 • Kandolin et al. 2013 (287)	Study type: observational, multicenter data base Natural Hx of giant-cell myocarditis Size: 63 patients Study type: observational,	Inclusion criteria: Giant cell myocarditis Exclusion criteria: inadequate data Inclusion criteria: giant-cell myocarditis treated	1° endpoint: survival Results: Rate of death or cardiac transplantation 89%; median survival from onset of symptoms 5.5 mo. 1° endpoint: survival	Giant cell myocarditis is often fatal due to HF and VA 2/3 of patients with giant-cell myocarditis are free from severe HF or
• <u>23149495</u>	retrospective, single center Management of giant-cell myocarditis with immunosuppression Size: 32 patients	with immunosuppression Exclusion criteria: inadequate data, unable to use immunosuppression	Results: Transplant-free survival 69% at 1 y, 58% at 2 y, 52% at 5y. 59% experienced sustained VA during follow up and 3 received ICD shocks for VT or VF.	transplantation on immunosuppression • 59% experience life-threatening VT or VF
 Maleszewski et al. 2015 (288) 25882774 	Study type: retrospective, observational, multicenter data base Long-term risks in giant cell myocarditis Size: 26 patients	Inclusion criteria: Patients with giant-cell myocarditis surviving >1 y without heart transplantation Exclusion criteria: inadequate data, need for transplantation	1° endpoint: Survival free from death, transplant Results: mean age 54.6±13.9 y, follow up 5.5 y starting 1 y after diagnosis. 12% died; 19% transplanted; 23% had 19 episodes of VT or VF	The risk of disease recurrence and progression is high in giant-cell myocarditis treated with immunosuppression Life-threatening VT or VF occurred in 23% of patients during long-term follow up
• WEARIT/BIROAD • Feldman et al. 2004 (289) • 14720148	Study type: Prospective registries were combined Use of the wearable defibrillator. Size: 289 patients	Inclusion criteria: symptomatic HF and EF <0.30 (WEARIT) or patients at high risk for SCD after MI or bypass surgery (BIROAD)	1° endpoint: appropriate shock form the wearable defibrillator Results: 4 mo follow up. 6 of 8 defibrillation attempts successful; 6 inappropriate	The wearable defibrillator was successful in defibrillating 75% of events 24% of patients did not tolerate the device

		Exclusion criteria: inadequate data	shocks. 6 SCD during study: 5 not wearing and 1 incorrectly wearing device. 68 did not tolerate vest	
• Kao et al. 2012 (290) • <u>23234574</u>	Study type: multicenter, prospective registry Wearable defibrillator in HF Size: 82 patients	Inclusion criteria: HF patients awaiting transplantation, dilated cardiomyopathy, or receiving inotropic medicines Exclusion criteria: inadequate data	1° endpoint: sudden death Results: 75±58 d follow up. No episodes of sudden CA.	The event rate was too low to allow assessment of the wearable defibrillator

Data Supplement 33. Nonrandomized Trials, Observational Studies, and/or Registries of Cardiac Sarcoidosis – (Section 7.6)

Data Supplement	vata supplement 33. Nonrandomized Trials, Observational Studies, and/or Registries of Cardiac Sarcoldosis – (Section 7.6)				
Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion	
Author;	Study Size		(P values; OR or RR;	Comment(s)	
Year Published			& 95% CI)		
Naruse et al.	Aim: This study	Inclusion criteria: 37	1° endpoint: freedom from any VT		
2014 (291)	sought to describe	consecutive patients (11			
• <u>24837644</u>	both clinical and EP	men; age, 56±11 y) with a	Results: During a 39 mo follow-up, 23		
	characteristics and	diagnosis of sustained VT	(62%) patients were free from any VT		
	outcomes of	associated with CS. Clinical	episodes with medical therapy. Fourteen		
	systematic treatment	effects of a systematic	patients who experienced VT recurrences		
	approach to VT	treatment approach	even while on drug therapy underwent		
	associated with CS.	including medical therapy	radiofrequency catheter ablation. After a		
		(both steroid and	33 mo follow-up subsequent to the		
	Study type: Single	antiarrhythmic agents), in	radiofrequency catheter ablation, 6 of 14		
	center observational	association with	patients experienced VT recurrence. The		
		radiofrequency catheter	number of VTs sustained during EPS was		
	Size: 37 patients	ablation, were evaluated.	higher in the patients with VT recurrence		
			than in those without (3.7±1.4 vs 1.9±0.8;		
		Exclusion criteria: N/A	p<0.01).		

• Takaya Y, et al.	Aim: to assess	Inclusion criteria: Fifty-	1° endpoint: major adverse cardiac	Positive myocardial uptake of ⁶⁷
2015 (292)	outcomes in patients	three consecutive patients	events, including cardiac death, VF,	Ga or ¹⁸ F-FDG disappeared after
 Am J Cardiol. 	with AVB as an initial	with cardiac sarcoidosis,	sustained VT, and hospitalization for HF.	the initiation of steroid treatment
2015 Feb 15	manifestation of	who had high-degree AVB		in all patients, and high-degree
• <u>25529542</u>	cardiac sarcoidosis	(N=22) or VT and/or HF	Results: Over a median follow-up period	AVB recovered in some patients,
	compared with those	(N=31), were enrolled	of 34 mo, the outcomes of major adverse	indicating that steroid treatment
	in patients with VT		cardiac events were better in patients	was effective but might not be
	and/or HF.	Exclusion criteria: N/A	with high-degree AVB than in those with	sufficient for preventing the fatal
			VT and/or HF (log-rank test, p=0.046).	cardiac events in patients with
	Study type: single		However, this difference was due mainly	high-degree AVB.
	center observational		to HF hospitalization. The outcomes of	
			fatal cardiac events, including cardiac	
	Size: 53 pts		death, VF, and sustained VT, were	
			comparable between the 2 groups (log-	
			rank test, p=0.877	
 Kandolin et al. 	Aim: assess the	Inclusion criteria: adult	1º endpoint: serious cardiovascular	With current therapy, the
2015 (293)	epidemiology,	(>18y of age) patients	events	prognosis of CS appears better
• <u>25527698</u>	characteristics, and	diagnosed with		than generally considered, but
	outcome of CS in	histologically confirmed CS	Results: Altogether, 102 of the 110	patients presenting with HF still
	Finland	in Finland between 1988	patients received immunosuppressive	have poor long-term outcome.
		and 2012. A total of 110	therapy, and 56 received an ICD. Left	 Steroids appeared to stabilize
	Study type:	patients (71 women) 51±9 y	ventricular function was impaired (LVEF	disease but not reverse it. 10-y
	Retrospective	of age (mean±SD) were	<50%) in 65 patients (59%) at diagnosis	estimate of transplantation-free
		found and followed up for	and showed no overall change over 12	cardiac survival was as high as 91%
	Size: 110 patients	outcome events to the end	mo of steroid therapy. During follow-up	in patients who were diagnosed
		of 2013.	(median, 6.6 y), 10 patients died of a	clinically and received
			cardiac cause, 11 patients underwent	contemporary immunosuppressive
		Exclusion criteria: N/A	transplantation, and another 11 patients	and device therapy.
			suffered an aborted SCD. The KM	• EF <35% was most important
			estimates for 1-, 5-, and 10-y	predictor of outcomes
			transplantation-free cardiac survival were	
			97%, 90%, and 83%, respectively. HF at	
			presentation predicted poor outcome	
			(log-rank p=0.0001) with a 10 y	
			transplantation-free cardiac survival of	
			only 53%.	

• Yazaki et al.	Aim: To determine	Inclusion criteria: 95	1° endpoint: predictors of mortality	Authors concluded that the
2001 (294)	the significant	Japanese patients with CS.		severity of HF was one of the most
• 11703997	predictors of mortality and to assess the efficacy of corticosteroids Study type: retrospective multicenter in Japan Size: 95 patients	Twenty of the 95 patients had never received corticosteroid therapy because the sarcoidosis had not been diagnosed before their deaths; sarcoidosis was proved at autospy. The other 75 patients treated with corticosteroids were classified into 2 cohorts according to initial LVEF obtained by contrast left ventriculography or echocardiography: LVEF ≥50% (N=39) or LVEF <50% (36).	Results: During the mean follow-up of 68 mo, 29 patients (73%) died of CHF and 11 (27%) experienced sudden death. KM survival curves showed 5-y survival rates of 75% in the steroid-treated patients and of 89% in patients with a LVEF ≥ 50%, whereas there was only 10% 5 y survival rate in autopsy subjects. Multivariate analysis identified NYHA functional class HR: 7.72 per class I increase, p=0.0008), left ventricular end-diastolic diameter (HR: 2.60/10 mm increase, p=0.02), and sustained VT (HR: 7.20, p=0.03) as independent predictors of mortality.	significant independent predictors of mortality for CS. Starting corticosteroids before the occurrence of systolic dysfunction resulted in an excellent clinical outcome
		Exclusion criteria: N/A		
 Aizer A, et al. 2005 (295) Am J Cardiol. 2005 16018857 	Aim: To evaluate the utility of programmed ventricular stimulation to predict future arrhythmic events in patients with cardiac sarcoidosis Study type: Single center Size: 32 pts	Inclusion criteria: Consecutive patients with cardiac sarcoidosis underwent programmed ventricular stimulation. Patients with spontaneous or inducible sustained ventricular arrhythmias (N=12) underwent ICD insertion Exclusion criteria: NA	1° endpoint: appropriate ICD therapies or sudden death Results: 5 of 6 patients (83%) with spontaneous sustained ventricular arrhythmias and 4 of 6 patients (67%) without spontaneous but with inducible sustained ventricular arrhythmias received appropriate ICD therapy. 2 of 20 patients (10%) with neither spontaneous nor inducible sustained ventricular arrhythmias experienced sustained ventricular arrhythmias or sudden death. Programmed ventricular stimulation predicted subsequent arrhythmic events in the entire population (relative HR: 4.47; 95% CI: 1.30–15.39) and in patients	Most patients had syncope, NSVT or presysncope and mean EF in the inducible was 33.2±17.0

 Mehta D., et al. 2011 (296) Circ Arrhythm Electrophysiol. 2011 21193539 	Aim: to assess the value of programmed electric stimulation of the ventricle (PES) for risk stratification in patients with sarcoidosis Study type: Single center 1998-2008 Size: 76 pts	Inclusion criteria: Patients with biopsy-proven systemic sarcoidosis but without cardiac symptoms who had evidence of cardiac sarcoidosis on PET or CMR were included Exclusion criteria: prior history of ventricular arrhythmias or ICD	who presented without spontaneous sustained ventricular arrhythmias (relative HR: 6.97; 95% CI: 1.27–38.27). 1º endpoint: survival and arrhythmic events. Results: Eight (11%) were inducible for sustained VA and received an ICD. None of the noninducible patients received a defibrillator. LVEF was lower in patients with inducible VA (36.4±4.2% vs 55.8±1.5%, p<0.05). Over a median follow-up of 5 y, 6 of 8 patients in the group with inducible VA had VA or died, compared with 1 death in the negative group	Authors mention that based on present clinical indications, a significant proportion of patients with CS and LVEF of <35% would qualify for ICD implantation. There are no data to guide management of patients with minimal or mild LV dysfunction who lack evidence of VA or conduction system disease.
 Coleman et al. 2016 (297) 27450877 	Aim: This study sought to perform a systematic review and meta-analysis to understand the prognostic value of myocardial scarring as evidenced by late gadolinium enhancement (298) on CMR imaging in patients with known or suspected CS. Study type: Meta analysis Size: Ten studies were included, involving a total of 760 patients.	Inclusion criteria: Studies were considered eligible for inclusion if CMR was used to assess for myocardial scarring from biopsy-proven or clinically suspected sarcoidosis; in cohorts of >5 patients; with >1 y of prognostic follow-up data, including event data for ventricular arrhythmia, SCD, aborted cardiac death and/or appropriate ICD discharge, hospital admission for congestive HF, cardiac mortality, and allcause mortality. Exclusion criteria: Studies with populations known to	1º endpoint: all-cause mortality and a composite outcome of arrhythmogenic events plus all-cause mortality. Results: The average EF was 57.8±9.1%. Patients with LGE had higher odds for all-cause mortality (OR: 3.06; p<0.03) and higher odds of the composite outcome (OR: 10.74; p<0.00001) than those without LGE. Patients with LGE had an increased annualized event rate of the composite outcome (11.9% vs. 1.1%; p<0.0001).	• This analysis shows that the presence of LGE in sarcoid patients with normal or near-normal LVEF is prognostically significant and greatly increases the likelihood of adverse events.

		have CAD or cardiomyopathies of nonsarcoid etiology.		
 Murtagh et al. 2016 (299) ■ 26763280 	Aim: The aim of this study was to establish whether CMR with LGE imaging can be used to risk stratify patients with known extracardiac sarcoidosis and preserved LVEF (>50%). Study type: Single center retrospective Size: 205 patients	Inclusion criteria: 205 patients with LVEF >50% and extracardiac sarcoidosis who underwent cardiovascular magnetic resonance for LGE evaluation Exclusion criteria: N/A	1° endpoint: death or any VT Results: Forty-one of 205 patients (20%) had LGE; 12 of 205 (6%) died or had VT during follow-up; of these, 10 (83%) were in the LGE+ group. In the LGE+ group (1) the rate of death/VT/y was >20× higher than LGE- (4.9 vs. 0.2%, p<0.01); (2) death/VT were associated with a greater burden of LGE (14±11 vs. 5±5%, p<0.01) and right ventricular dysfunction (right ventricular EF 45±12 vs. 53±28%, p=0.04). LGE burden was the best predictor of death/VT (area under the receiver-operating characteristics curve, 0.80); for every 1% increase of LGE burden, the	The burden of LGE and the severity of RV dysfunction further refine the risk of death/VT in patients with CS The burden of LGE and the severity of RV dysfunction further refine the risk of death/VT in patients with CS
• Crawford et al. 2014 (300) • 25266311	Aim: to assess whether delayed enhancement (DE) on MRI is associated with VT/VF or death in patients with CS and LVEF>35%. Study type: Retrospective analysis from multicenter registry Size: 51 patients	Inclusion criteria: Fifty-one patients with CS and LVEF >35% underwent DE-MRI. DE was assessed by visual scoring and quantified with the full-width at half-maximum method. The patients were followed for 48.0±20.2 mo. Exclusion criteria: N/A	hazard of death/VT increased by 8%. 1° endpoint: death or VT/VF Results: Twenty-two of 51 patients (63%) had DE. Forty patients had no prior Hx of VT (1° prevention cohort). Among those, 3 patients developed VT and 2 patients died. DE was associated with risk of VT/VF or death (p=0.0032 for any DE and p<0.0001 for right ventricular DE). The positive predictive values of the presence of any DE, multifocal DE, and right ventricular DE for death or VT/VF at mean follow-up of 48 mo were 22%, 48%, and 100%, respectively.	• A cut-off value of ≥9 involved segments separated patients with and without future VTs, suggesting that a threshold effect may be present. Right ventricular involvement seems to be particularly important for arrhythmogenesis; it was predictive of adverse events in 1° prevention patients and for the group as a whole. Patients without DE on MRI have a low risk of VT.

• Greulich et al.	Aim: study aimed to	Inclusion criteria: 155	1° endpoint: 1° endpoints were death,	Could not tell on additional LGE
2013 (186)	demonstrate that the	consecutive patients with	aborted SCD, and appropriate ICD	parameters due to low numbers.
• <u>23498675</u>	presence of late	systemic sarcoidosis who	discharge.	
	gadolinium	underwent CMR for workup	_	
	enhancement (298) is	of suspected cardiac	Results: LGE was present in 39 patients	
	a predictor of death	sarcoid involvement. The	(25.5%). The presence of LGE yields a Cox	
	and other adverse	median follow-up time was	HR: 31.6 for death, aborted SCD, or	
	events in patients	2.6 y.	appropriate ICD discharge, and of 33.9	
	with suspected CS		for any event. This is superior to	
		Exclusion criteria: N/A	functional or clinical parameters such as	
	Study type:		LVEF, LV end-diastolic volume, or	
	Multicenter		presentation as HF, yielding HRs between	
	prospective		0.99 (per % increase LVEF) and 1.004	
			(presentation as HF), and between 0.94	
	Size: 155 patients		and 1.2 for potentially lethal or other	
			adverse events, respectively.	
Blankstein et al.	Aim: to relate	Inclusion criteria:	1° endpoint: Death or VT	Conclusion was that presence of
2014 (301)	imaging findings on	consecutive patients with		focal PD and FDG uptake on cardiac
• <u>24140661</u>	positron emission	no Hx of CAD, who were	Results: Among the 118 patients (age	PET identifies patients at higher
	tomography (PET) to	referred for PET, using	52±11 y; 57% males; mean EF: 47±16%),	risk of death or VT.
	adverse cardiac	(18)F-fluorodeoxyglucose to	47 (40%) had normal and 71 (60%) had	
	events in patients	assess for inflammation and	abnormal cardiac PET findings. Over a	
	referred for	rubidium-82 to evaluate for	median follow-up of 1.5 y, there were 31	
	evaluation of known	perfusion defects (PD),	(26%) adverse events (27 VT and 8	
	or suspected CS.	following a high-fat/low-	deaths). Cardiac PET findings were	
		carbohydrate diet to	predictive of AE, and the presence of	
	Study type: Single	suppress normal myocardial	both a PD and abnormal FDG (29% of	
	center observational	glucose uptake	patients) was associated with HR:3.9;	
			p<0.01 and remained significant after	
	Size: 118 patients	Exclusion criteria: N/A	adjusting for LVEF and clinical criteria.	
			Extra-cardiac FDG uptake (26% of	
			patients) was not associated with AE.	
• Kron et al. 2013	Aim: to evaluate the	Inclusion criteria:	1° endpoint: appropriate ICD therapy	Patients receiving appropriate
(302)	efficacy and safety of	consecutive patients with		therapies were more likely to be
• <u>23002195</u>	ICDs in patients with	CS and an ICD at 13		male, have a Hx of syncope, have a
	CS	academic centers.	Results: Over a mean follow-up of	lower LVEF, a 2° prevention ICD
			4.2±4.0 y, 85 of 234 (36.2%) patients	indication

	Study type: multicentre retrospective data review Size: 235 patients from 13 institutions	147 patients (62.6%) had their devices implanted for 1° prevention while 88 patients (37.5%) were implanted for 2° prevention, including 7 for VF (3.0%), 63 for VT (26.8%), and 18 for syncope presumed to be due to an arrhythmia (7.7%). Exclusion criteria: N/A	received an appropriate ICD therapy (shocks and/or anti-tachycardia pacing) and 67 of 226 (29.7%) received an appropriate shock.	Most patients receiving appropriate therapies had an LVEF >35%, suggesting that CS patients with mild or moderately reduced LVEF may be at risk for VA
 Mohsen et al. 2014 (303) 24433308 	Aim: to identify the predictors of life-threatening VA in patients with CS and to evaluate the role of the ICD in this patient population. Study type: multicentre retrospective data review Size: 32 patients. 84% received the ICD for symptoms.	Inclusion criteria: Patients with biopsy-proven systemic sarcoidosis but without cardiac symptoms who had evidence of CS on positron emission tomography (PET) or CMR were included Exclusion criteria: N/A	Results: The mean LVEF was 41±18%. Thirty patients received an ICD. Twelve patients (36.3%) had sustained VA. Eleven patients received appropriate therapies and 9 patients received inappropriate shocks, representing 36.7% and 30.0% of the ICD population, respectively. Patients who received appropriate ICD therapies were younger with mean age 47.4±7.8, and had a lower mean LVEF 33.0±12.0 compared to those who did not receive ICD therapies (p=0.0301 and 0.0341, respectively).	CS is strongly associated with malignant VA. No specific predictors of such tachyarrhythmias emerged, other than young age and low LVEF. Over 2/3 received ICD for 2° prevention
• Schuller et al. 2012 (304) • 22812589	Aim: identify the incidence and characteristics of ICD therapies in patients with CS Study type: multicentre observational	Inclusion criteria: Patients with CS and an ICD implanted for 1° or 2° prevention of sudden death. Additionally, authors included a comparison with historical controls of ICD therapy rates reported in clinical trials evaluating the	1° endpoint: Any ICD therapy Results: Of the 112 CS subjects identified, 36 (32.1%) received appropriate therapies VT over a mean follow-up period of 29.2 mo. VT storm (>3 episodes in 24 h) occurred in 16 (14.2%) CS subjects. Inappropriate therapies occurred in 13 CS subjects (11.6%).	Appropriate ICD therapies were higher than in historical control

	Size: 32 patients. 84% received the ICD for symptoms.	ICD for 1° and 2° prevention of sudden death. Exclusion criteria: N/A	Covariates associated with appropriate ICD therapies included LVEF <55% (OR 6.52; 95% CI: 2.43–17.5), right ventricular dysfunction (OR: 6.73; 95% CI: 2.69–16.8), and symptomatic HF (OR: 4.33; 95% CI: 1.86–10.1).	
 Yodogawa et al. 2011 (305) 21496164 	Aim: to evaluate the efficacy of corticosteroid therapy VA in CS Study type: Single center observational Size: 31 patients	Inclusion criteria: Patients presenting premature ventricular contractions (PVCs ≥300/d) were investigated. All were treated with steroids. Exclusion criteria: N/A	1° endpoint: PVCs and NSVT burden before and after steroid therapy. Results: The group with less advanced LV dysfunction patients (EF ≥35%, N=17) showed significant reduction in the number of PVCs (from 1820±2969 to 742±1425, p=0.048) and in the prevalence of NSVT (from 41 to 6%, p=0.039). Late potentials on SAECG were abolished in 3 patients. The less advanced LV dysfunction group showed a significantly higher prevalence of gallium-67 uptake compared with the advanced LV dysfunction group (EF <35 %, N=14). In the advanced LV dysfunction patients, there were no significant differences in these parameters.	Steroid therapy may be effective for VA in the early stage, but less effective in the late stage
● Segawa et al.2016 (306) ● <u>27301264</u>	Aim: to evaluate time course and factors correlating with VT after introduction of corticosteroid therapy in patients with CS remain to be elucidated. Study type: Single center observational	Inclusion criteria: Patients presenting with CS treated with steroids. Exclusion criteria: N/A	1° endpoint: Sustained VA. Results: During a mean follow-up of 5.5 y, 20 out of 68 patients (29%) experienced VTs after initiation of corticosteroid therapy, especially in the first 12 mo in 14 patients (70%). A multivariable analysis revealed that positive gallium scintigraphy had a significant correlation with VTs (HR: 11.33; 95% CI: 3.22–39.92; p<0.001), in addition to reduced LVEF (HR: 0.94; 95% CI: 0.90–0.97; p=0.001). Furthermore,	• These results indicate that VTs and electric storm frequently occur in the first 12mo after initiation of corticosteroid therapy, presumably because of inflammatory conditions, and that the positive gallium scintigraphy is a significant and independent predictor of VTs

Size: 68 patients	electrical storm was noted in 10 patients
	(14.7%), 8 within the first 12mo of
	treatment, whereas the recurrence of
	electric storm was relatively less.

Data Supplement 34. Nonrandomized Trials, Observational Studies, and/or Registries of Other Infiltrative Cardiomyopathies – (Section 7.6.1)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size		(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
• Varr et al. 2014 (307)	Aim: To test whether	Inclusion criteria: The	1° endpoint: VA	Of the 6 patients who received ICD
• <u>24121001</u>	there is a specific	Stanford Amyloid		therapies, 4 died within 18 mo and 3
	population of patients	Center's database to	Results: NSVT was common	received the ICD initially for 1°
	with cardiac	identify all patients with	and occurred in 23 of 31 (74%)	prevention.
	amyloidosis at risk of	AL or ATTR who had	patients. Sustained VT or VF	The authors proposed criteria for ICD
	SCD owing to VA (vs	ambulatory cardiac	occurred in 6 of 31 (19%)	implant
	EMD) who would	monitoring. This included	patients over the study	 That included syncope, VT or NSVT.
	benefit from ICD	patients who had	period. Of the 6 patients with	
		undergone interrogation	VT/VF, 1 patient had	
	Study type:	of an ICD or pacemaker	spontaneous resolution of VT	
	Retrospective registry	and those who had	before the delivery of ICD	
	Database analysis	ambulatory monitoring in	therapy. The remaining 5	
		the outpatient setting	patients had ICD therapies	
	<u>Size</u> : 31	with either a Holter	used, either antitachycardia	
		monitor or Ziopatch	pacing (ATP) or defibrillation.	
		(iRhythm technologies,	All patients had had	
		San Francisco, CA).	documented NSVT before ICD	
			therapy for VT/VF.	
		Exclusion criteria:		
		patients who did not		
		have any form of		
		telemetry monitoring		
		available		
• Kristen et al. 2008	Aim: to test whether	Inclusion criteria:	1° endpoint: mortality	Authors concluded that patients with
(308)	prophylactic placement	patients with		cardiac amyloidosis predominantly die as

• 18242546	of an ICD reduces SCD	histologically proven	Results: During a mean	a result of electromechanical
10242540	in patients with cardiac	cardiac amyloidosis and	follow-up of 811±151 d, 2	dissociation and other diagnoses not
	amyloidosis	risk of sudden death as	patients with sustained VT	amenable to ICD therapy. Selected
	amyloldosis	demonstrated by a Hx of	were successfully treated by	patients with cardiac amyloidosis may
	Study type: Single	syncope and/or	the ICD. Two patients	benefit from ICD placement.
	center observational	ventricular extra beats	underwent heart	benefit from teb placement.
	center observational	(Lown grade IVa or	transplantation, and 7	
	Size : 19	higher)	patients died due to	
	<u>512C</u> . 15	inglier,	electromechanical	
		Exclusion criteria: N/A	dissociation (N=6) or	
		<u>Exclusion criteria</u> . 14/70	glioblastoma (N=1).	
• Lubitz et al. 2008	Study type: Review	Inclusion criteria:	1° endpoint: NA	Data on sudden death prevention in
(309)	Article on SCD in	Review article on	T Chapolit. NA	diseases other than sarcoidosis is very
• <u>18634918</u>	infiltrative	infiltrative	Results: It is difficult to draw	scant
	cardiomyopathies:	cardiomyopathis and	substantive conclusions	
	sarcoidosis,	sudden death. Studies	regarding the appropriate risk	
	scleroderma,	related to sudden death	stratification and therapy of	
	amyloidosis,	and sudden death	patients with the infiltrative	
	hemachromatosis.	prevention were	cardiomyopathies. Few	
		discussed.	studies are prospective, many	
	Size: NA		use different diagnostic	
		Exclusion criteria: N/A	criteria, and therapies are	
			rarely randomized.	
			Furthermore, sample sizes are	
			small, studies are typically	
			single center, and the	
			heterogeneity of disease	
			manifestations may preclude	
			the generalization of results.	
			Patients in high-risk groups,	
			especially those with	
			significantly reduced left	
			ventricular function may be	
			best treated with prophylactic	
			ICD.	

Data Supplement 35. Nonrandomized Trials, Observational Studies, and/or Registries of Use of ICD and WCD in Patients with HFrEF - (Section 7.8.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Gandjbakhch E, et al. 2016 (157) 27344378 	Study type: single center retrospective observational study Size: 380 patients (122 with ICD)	Inclusion criteria: consecutive patients listed for heart transplantation at 1 center. ICD patients characterized as having ICD before or within 3 mo after being listed for heart transplant Exclusion criteria: N/A	1° endpoint: all-cause mortality Results: Patients with ICD were less likely to die on the waiting list (8.3% ICD patients and 19.0% non-ICD, p=0.001). However, in multivariable model, ICD did not remain an independent predictor. ICD-related complications 21% of patients of which 11.9% was post-op worsening of HF.	Conclusion: Patients with ICD were less likely to die on the waiting list but this did not appear in the multivariable model to be independently associated with mortality.
 Frohlich GM, et al. Heart 2013 (156) 23813845 . 	Study type: retrospective observational study Size: 1089 consecutive patients listed for heart transplantation of which 550 (51%) with ICD (216 1° and 334 2° prevention indications)	Inclusion criteria: consecutive patients listed for heart transplantation in two tertiary centers Exclusion criteria: N/A	1° endpoint: all-cause mortality Results: estimated 1 y survival 88% ICD vs. 77% without ICD (p=0.0001). Model adjustment suggested ICD independently associated with survival most pronounced for those with 1° prevention indication (HR: 0.4; 95% CI: 0.19–0.85; p=0.016)	Conclusion: ICD appears to be associated with a reduction in all-cause mortality compared to those without an ICD on the waiting list

• Sandner SE, et al. 2001	Study type:	Inclusion criteria:	1° endpoint and results: Total	Limitations: retrospective, older
(310)	Retrospective	Consecutive patients	·	study with MADIT I and MUSTT type
(310) • <u>11568051</u>	Retrospective observational study Size: 854 patients on the waiting list for heart transplant (102 patients with ICD, 11.9%). All patients had ICD implanted before listing for transplant	listed for heart transplant 1/1992 and 3/2000 Exclusion criteria: N/A Patient demographics: Indication for ICD was SCA (63%), 60% non-ischemic etiology	mortality while waiting for transplant was 13.2% with ICD and 25.8% without ICD (p=0.03). Rate of 12 mo sudden death was 20% in the non-ICD group and 0% in the ICD group. Cox proportional hazard model showed absence of ICD associated with increased mortality and sudden death.	study with MADIT I and MUSTT type indications for ICD and ICD patients were highly selected introducing confounding and baseline clinical variables were not comparable. Low use of BB. Conclusions: supports the use of ICD for improving survival to transplant
		Only 24% overall were		
 • Kao AC, et al. 2012 (290) • 23234574 	Study type: Observational multicenter cohort study Size: 82	Inclusion: WCD prescribed for either listed for cardiac transplantation, diagnosed with dilated cardiomyopathy, or receiving inotropic medications. Mean age 56.8±13.2, and 72% were male. Most patients (98.8%) were diagnosed with DCM with a low EF (<40%) and 12 were listed for cardiac transplantation.	Device worn for 75±58 d. 4 patients were on inotropes. There were no sudden cardiac arrests or deaths during the study. 41.5% of patients were much improved after WCD use, while 34.1% went on to receive an ICD.	Conclusions: WCD monitored HF patients until further assessment of risk. The leading reasons for end of WCD use were improvement in LVEF or ICD implantation if there was no significant improvement in LVEF.

	1		T	
• Opreanu M et al. 2015	Study type: registry of	Inclusion: patients	The patients wore the WCD for	• Conclusions: A significant
(311)	patients awaiting	awaiting heart	an average of 127±392 d	proportion of patients on the heart
• <u>26094085</u>	heart transplant with	transplant with WCD	(median 39d) with average daily	transplant waiting list will have VA.
	WCD		use of 17±7 h (median 20h).	WCD use in this registry associated with
			Seven patients (6%) received	a high compliance and efficacy and a
	Size: 121 patients		appropriate WCD shocks. Fifty-	low complication rate, suggesting that
			one patients (42%) ended use	the WCD is a reasonable bridge therapy
	Patient Demographics:		after ICD implantation and 13	for preventing SCD in patients awaiting
	consisting of 83 (69%)		patients (11%) after HT. There	HT.
	men and 38 (31%)		were 11 deaths (9%).	
	women. The mean age			
	was 44±18 y. Mean EF			
	was 25 ± 15%. Non-			
	ischemic			
	cardiomyopathy (CMP)			
	was the underlying			
	diagnosis in 67 (55%)			
	patients, whereas 21			
	(17%) patients had			
	ischemic CMP and 33			
	(27%) had a mixed or			
	uncharacterized CMP.			
	NYHA Class III HF was			
	present in 32% and			
	34% were in Class IV.			

Data Supplement 36. Nonrandomized Trials, Observational Studies, and/or Registries Related to LVAD – (Section 7.8.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)
Vakil, et al. JACCCEP	Study type:	Inclusion criteria: Adults	1° endpoint: all-cause waitlist	• Conclusion: ICD use was
2016 (312)	retrospective national	(age ≥18 y) listed for first-	mortality.	associated with improved survival
• <u>27395347</u>	registry	time HT in the United		on the HT waitlist in patients with
		States between January 1,	Results: 9% died on the wait	or without LVADs
	Size: 32,599 patients	1999, and September 30,	list in ICD group vs. 15% in	
		2014, were retrospectively	no-ICD group (p<0.0001),	
		identified from the United		
		Network for Organ Sharing	An ICD at listing was	
		registry.	associated reduction in	
			mortality (HR: 0.87; 95% CI:	
		Median follow-up of 154 d,	0.80–0.94).	
		3,638		
			In the subgroup of patients	
			with LVAD (N=9,478), having	
			an ICD was associated with	
			relative reduction in mortality	
			(HR: 0.81; 95% CI 0.70-0.94).	

Data Supplement 37. Nonrandomized Trials, Observational Studies, and/or Registries Related to ICD Use After Heart Transplantation – (Section 7.8.4)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)
 Tsai et al. 2009 	Study type:	Inclusion criteria:	1° endpoint: Descriptive:	Use of ICDs after heart
(313)	Retrospective cohort of	Patients with heart	Indications for ICDs and shocks	transplantation may be
• <u>19808340</u>	Heart Tx. Patients with	transplants and ICDs	(appropriate/inappropriate)	appropriate in selected high-risk
	ICDs across 5 centers.			patients.
	1995-2005	Exclusion criteria: N/A	Results:	 Very small number, no control
			indications for ICD	group, Pre-SCD-HeFT.
			severe allograft vasculopathy	
			(N=12),	

 McDowell et al. 2009 (314) 19632584 	Size: 36 (2612 patients with heart transplants, 36, with ICDs) Study type: Survey of transplant program directors. Asked about all transplant patients with an ICD	Inclusion criteria: Survey responses about heart transplant patients. With ICDs	2) unexplained syncope (N=9), 3) Hx of CA (N=8), 4) severe LV dysfunction (N=7). Shocks: 22 shocks in 10 patients (28%), Appropriate: 8 patients/12 shocks (100% - allograft vasculopathy) Inappropriate: 3 patients of whom 8 (80%) received 12 appropriate shocks for either rapid VT or VF. The shocks were effective in terminating the VA in all cases. Three (8%) patients received 10 inappropriate shocks. 1° endpoint: Indication, Results: Indication for implant*	Most common reason was allograft vasculopathy with LV dysfunction
• Novion et al. 2016	Size: 44 patients with heart transplants with ICD	Exclusion criteria: N/A	 1° VT/VF arrest 6 (13.3) Unexplained syncope 3 (6.7) CAV with LV dysfunction 20 (44.4) CAV without LV dysfunction 3 (6.7) Non-specific graft dysfunction 5 (11.1) High-grade arrhythmia determined by Non-invasive monitor 3 (6.7) Patients with appropriate therapies 6 (13.6); Total 19 Patients with inappropriate therapies 3 (6.8) Total 15 	• ICDs in transplant nationts
Neylon et al. 2016 (315)26856670	Study type: Single center review of transplant patients with ICDs	Inclusion criteria:	1° endpoint: Descriptive Results:	 ICDs in transplant patients – inconclusive.

Size: 10 patients	Review of all transplant patients with ICDs between 1983 and 2012.	 Allograft vasculopathy in 8/10 1/10 shocked, 1/10 ATP
	Exclusion criteria: N/A	

Data Supplement 38. Nonrandomized Trials, Observational Studies, and/or Registries Evaluating the Risk of Sudden Death or Ventricular Arrhythmias in Patients with Neuromuscular Disorders – (Section 7.8)

Study Acronym;	Study Type/Design;	Study Size (N); Patient	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size	Population	(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
Tanawuttiwat	Study type: Observational	Inclusion criteria: 136	1° endpoint: Conduction	Prevalence of critically prognostic
T, et al. 2017	retrospective cohort referred	patients with DM1 and	abnormalities were defined as PR	conduction abnormalities >20% and LV
(316)	for risk stratification at a	28 patients with DM2	of at least 240 msec and QRS of	dysfunction > 10% (defined LVEF <55%)
• <u>27829084</u>	single referral center	with genetically confirmed diagnosis	at least 120 msec	• Incident QRS prolongation > 10 ms is associated with decreased LV function
	Size: 155 patients	and baseline ECG	Results: In DM1, incidences of PR	the subsequent year.
		between January 1997	≥240 ms and QRS ≥120 ms during	Supports serial ECG examinations and
		and August 2014.	a mean 5.54 y were 19.2% and	symptom / QRS prolongation-
			11.7%, respectively.	prompted evaluation of LV function.
		Exclusion criteria:		Limitations include retrospective
		Exclusion of ECG's with	In contrast, DM2 patients there	design with potential for selection bias,
		paced or non-sinus	were no incident PR	differential clinical follow-up among
		rhythm	abnormalities, despite similar	subgroups.
			incidence of QRS abnormalities.	
			An incident 10 ms increase in	
			QRS duration was associated with	
			3.5% decrease in EF in the	
			subsequent year (-3.45; 95% CI:	
			-4.872.03; p<0.001).	
 Merino et al. 	Aim: To assess the	Inclusion: Consecutive	1° endpoint: N/A	Summary – A high clinical suspicion
1998 (317)	mechanism of sustained VT in	patients with myotonic		for bundle-branch reentry tachycardia
• <u>9714111</u>	myotonic dystrophy	dystrophy and	Results: Clinical tachycardia was	is reasonable in patients with wide
			inducible in all patients and were	

	Study type: Case series Size: 6 patients	sustained VT referred for EPS Exclusion: N/A	bundle branch reentry. VT was no longer inducible after bundle branch ablation except for a nonclinically documented and NSVT in a patient with SHD	complex tachycardia and myotonic dystrophy • Limitations – small case series. Does not prove a link between bundle branch reentry and sudden death in this population
Diegoli et al.2011 (318)21851881	Aim: To describe the outcome of patients with dilated cardiomyopathy and DYS defects Study type: Cohort study Size: 34 patients with DYS defects	Inclusion: 1/1995 – 12/2009, screened DYS in 436 unrelated male probands diagnosed with DCM who were male sex Exclusion: females, families with male to male transmission	1° endpoint: N/A Results: Of the 34 affected patients, 8 patients underwent heart transplant and 8 patients received an ICD (indications depressed LVEF). There were no appropriate interventions during a median follow-up 14 mo (IQR 5–25 mo).	 DYS-related DCM is characterized by severe impairment of LV function, marked LV dilation, and low arrhythmogenic risk; the only factor that impacts survival seems to be endstage HF. Limitations: relatively small number of patients and short follow-up, referral center.
 Anselme et al. 2013 (208) 23811080 	Aim: To evaluate a strategy of prophylactic ICD implantation in lamin A/C mutation carriers with significant cardiac conduction disorders Study type: Cohort study, single center Size: 47 patients	Inclusion criteria: • LMNA mutation carriers seen between 3/1999 and 4/2009 • 47 patients (mean age 38±11 y; 26 men) with LMNA mutation. • 21 (45%) had significant conduction disorders (defined as bradycardia requiring pacemaker or a PR interval of >240 ms and either complete LBBB or NSVT) and received a prophylactic ICD	1° endpoint: N/A Results: In those with ICD, 11/21 (52%) had appropriate ICD therapy during a median follow-up of 62 mo LVEF was ≥45% in 9/11 patients with appropriate therapy The presence of significant conduction disorders is associated with malignant VA (HR: 5.20; 95% CI: 1.14–23.53; p=0.03)	 Life-threatening VAs are common in patients with lamin A/C mutations and significant cardiac conduction disorders, even if LVEF is preserved. ICD is an effective treatment and should be considered in this patient population.

• van Rijsingen	Aim: To identify risk factors	Inclusion criteria:	1° endpoint: Occurrence of	Patients with lamin A/C mutations
et al. 2012 (209)	that predict malignant VAs in	Pathogenic lamin A/C	malignant VAs	with ≥2 risk factors may benefit from
• <u>22281253</u>	lamin A/C mutation carriers	mutation carriers		prophylactic ICD
		between 2000 and	Results:	
	Study type: Cohort,	2010	• 48 (18%) had malignant VAs (11	
	multicenter		successful CPR, 25 appropriate	
		Exclusion criteria:	ICD treatment, and 12 died	
	Size: 269 patients	 Patients ≤15 y of age 	suddenly)	
		Median follow up of	 Risk factors for VAs were NSVT, 	
		43 mo	LVEF <45%, male sex, and non-	
			missense mutations (ins-	
			del/truncating or mutations	
			affecting splicing). VA occurred	
			only in persons with at least 2 of	
			these risk factors.	
 Meune et al. 	<u>Aim</u> : To assess whether ICD is	Inclusion criteria:	1° endpoint: Not specified	• 1 inappropriate shock
2006 (319)	beneficial for 1° prevention of	Lamin A/C mutations		Summary: ICD rather than pacemaker
• <u>16407522</u>	SCD in patients with lamin A/C	associated with cardiac	Results:	should be considered in patients with
	gene mutations with	conduction defects	• 8/19 (42%) received	conduction disorders and lamin A/C
	preserved LVEF referred for		appropriate ICD therapy	mutation
	pacing due to presence of	Exclusion criteria:	• Follow up 33.9±21 mo	
	progressive conduction delay	• 19 patients received	 No factor (including LVEF, 	
	or SND	ICD (Muscular	spontaneous or induced VA or	
		phenotype: 9 Emery-	drug therapy) predicted VA	
	Study type: Cohort study	Dreifuss, 8 DCM plus	events	
		conduction disease, 1	 LVEF not reduced in patients 	
	<u>Size</u> : 19 patients	Limb-girdle, 1	receiving ICD therapies	
		shoulder-muscle		
		amyotrophy)		
		• Mean age 41.7±13.4		
		У		
		• Sex: 73% Male		
		• Mean LVEF 58%±12%		
 Pasotti et al. 	Aim: The aim of this study was	Inclusion criteria: 27	1° endpoint: Events were death	Authors concluded that dilated
2008 (210)	to analyze the long-term	consecutive families in	from any cause, death from HF,	cardiomyopathies caused by LMNA
• <u>18926329</u>	follow-up of dilated	which <i>LMNA</i> gene	heart transplantation, and SCD,	gene defects are highly penetrant,
	cardiolaminopathies in	defects were identified		adult onset, malignant diseases

	patients with Lamin A/C gene	in the probands, all	including appropriate ICD	characterized by a high rate of HF and
	mutations	sharing the DCM	interventions	life-threatening arrhythmias.
		phenotype. Of the 164		
	Study type: Retrospective	family members, 94	Results:	
	observational longitudinal	had LMNA gene	• 60 of 94 (64%) were	
	study	mutations	phenotypically affected whereas	
			34 were only genotypically	
	Size: 94 patients	Exclusion criteria: N/A	affected.	
			Of the 60 patients, 40 had DCM	
			with AVB, 12 had DCM with	
			VT/fibrillation, 6 had DCM with	
			AVB and EDMD2, and 2 had AVB	
			plus EDMD2.	
			•During a median of 57 mo there	
			were 49 events in 43 DCM	
			patients.	
			•The events were related to HF	
			(15 heart transplants, 1 death	
			from end-stage HF) and VA (15	
			SCDs and 12 appropriate ICD	
			interventions).	
• van Berlo et	Aim: To evaluate common	Inclusion criteria: 21	1° endpoint: Arrhythmias and	Authors conclude that carriers of
al. 2005 (211)	clinical characteristics of	publications between	sudden death	lamin A/C mutations carry a high risk of
• <u>15551023</u>	patients with lamin A/C gene	March		sudden death.
	mutations that cause either	1999 and March 2002	Results:	Presence of pacemaker did not
	isolated DCM or DCM in	reporting lamin A/C	Cardiac dysrhythmias were	protect against sudden death.
	association with skeletal	gene mutations	reported in 92% of patients after	
	muscular dystrophy.		30 y of age; HF was reported in	
		Exclusion criteria:	64% after 50 y of age.	
	Study type: Meta-analysis	Patients with familial	• 76 of the reported 299 patients	
	(pooled data)	partial lipodystrophy,	(25%) died at a mean of 46 y of	
		progeria, axonal	age.	
	Size: 299 carriers of	neuropathy and	Sudden death was the most	
	lamin A/C mutations	mandibuloacral	frequently reported mode of	
		dysplasia caused by	death (46%) in both the cardiac	
		mutations in the lamin	and the neuromuscular	
			phenotype.	

		A/C gene were excluded		
• Lallemand et	Aim: To analyze the natural Hx	Inclusion criteria:	1° endpoint: N/A	• In patients with normal initial EPS,
al. 2012 (320)	and predictors of change in	Patients with muscular		changes in the resting ECG and/or SA-
• <u>22038543</u>	infra-Hisian conduction time	dystrophy of which 25	Results: Mean HV interval	ECG on annual follow-up were
	in myotonic dystrophy	underwent a second	increased between the baseline	associated with change in infra-Hisian
	patients with normal baseline	EPS for new symptoms,	and follow-up EP	conduction
	EPS	new AV conduction	• Study – 52.1±1.6 ms to 61.4±2.2	
		abnormalities on ECG,	ms.	
	Study type: Cohort study	changes on SA-ECG,	Predictors of increased HV	
		ord asymptomatic	interval were change in resting	
	Size: 127 patients	patients >60 mo from	ECG and SA-ECG (QRSd ≥100 ms	
		first EPS	or low amplitude signal <40	
			microvolts)	
		Exclusion criteria: N/A	• 5 patients with HV ≥70 ms	
			received prophylactic pacemaker	
• Wahbi et al.	Aim: To determine whether	Inclusion criteria:	1° endpoint: All-cause mortality	In patients with myotonic dystrophy
2012 (321)	an invasive strategy based on	Genetically confirmed		type 1, an invasive strategy was
• <u>22453570</u>	EPS and prophylactic	myotonic dystrophy	Results:	associated with a higher rate of 9y
	pacemaker is associated with	type 1 with PR >200 ms	341 (70.2%) - EPS	survival than a noninvasive strategy
	longer survival in patients	and/or QRS >100 ms	compared to 145 (29.8%) -	
	presenting with myotonic	between 1/2000 to	noninvasive strategy	
	dystrophy type 1 and	12/2009		
	infranodal conduction delays		Median follow-up 7.4 y (322)	
	compared to a noninvasive	Exclusion criteria: N/A	• 50 patients died in EPS strategy	
	strategy using propensity		group	
	adjustments		30 died in the noninvasive	
			strategy group (HR: 0.74; 95% CI:	
	Study type: Cohort study		0.47-1.16; p=0.19)	
			Difference attributable to a	
	Size: 486 patients		lower incidence of SCD (10	
			patients invasive strategy group	
			vs. 16 patients noninvasive	
			strategy group, HR: 0.24; 95% CI:	
			0.10-0.56; p=0.001])	

• Ha et al. 2012	Aim: To define predictors of	Inclusion criteria:	1° endpoint: N/A	Despite identification of conduction
(323)	cardiac conduction disease in	Patients with DM1 and		disease and prophylactic pacing,
• <u>22385162</u>	myotonic dystrophy patients	25 DM2 after 2003	Results:	mortality remains high in patients with
			• Follow-up 57±46 mo	a severe ECG abnormality (most deaths
	Study type: Cohort study,	Exclusion criteria: N/A		non-sudden, suggesting that a severe
	single-center		A severe ECG abnormality was	ECG abnormality is also general marker
			defined as a PR interval of ≥240	of risk for all-cause mortality.)
	Size: 211 patients		ms or QRS duration of ≥120 ms	Of 3 patients who died suddenly, 2
				had pacemakers, suggesting that a
			Severe ECG abnormality	severe ECG abnormality does not
			present in 24% of DM1 patients	simply predict sudden death from AV
			and 17% of DM2 patients	block
			Pacemaker or ICD implanted in	
			14% of all patients, including 65%	
			of patients with severe ECG	
			abnormalities.	
			• 13 patients died (1.16%/y),	
			including 3 sudden (2 of whom	
			had pacemakers)	
• Laurent et al.	Aim: To determine whether	Inclusion criteria:	1° endpoint: All-cause mortality	• Implantation of a pacemaker when
2011(324)	implantation of prophylactic	Genetically confirmed		HV interval ≥70 seemed to identify a
• <u>20227121</u>	pacemaker in myotonic	MD1 between 1994	Results:	population likely to progress to high
	dystrophy patients with HV	and 2008 at single	• 10 deaths (9 respiratory failure,	grade AV block. A higher rate of
	interval ≥70 lowers the risk of	institution	1 sudden). 1 SCD occurred in a	sudden death would have been
	sudden death (due to		patient with pacemaker who had	expected based on previous studies of
	complete AV block)	Exclusion criteria:	no spontaneous VT suggesting a	comparable populations, implying that
		Infantile form of MD	non-cardiac etiology for this	prophylactic pacemaker implantation,
	Study type: Cohort study	• 100 patients enrolled	event.	based on these criteria, may have
		and 49 implanted with	• 1/51 with HV interval <70	prevented some deaths due to
	Size: 100 patients	pacemaker for HV	developed complete AV block	asystole.
		interval ≥70	• 19/49 patients with HV ≥ 70	
		Mean follow up	developed AV block	
		74±39 mo		
		• 46% had 1 or more		
		Groh criteria (rhythm		
		other than sinus, PR		
		≥240 ms, QRS ≥120 ms,		

		2 nd or 3 rd degree AV		
		block)		
 Bhakta et al. 	Aim: To assess implant rates	Inclusion criteria:	1° endpoint: N/A	 Adult DM1 patients commonly
2011 (325)	and indications for pacemaker	Genetically confirmed		receive pacemakers and ICDs.
• <u>22035077</u>	and ICDs and outcomes in	DM1	Results:	The risk of SCD in patients with
	patients with DM1		Follow up 9.5±3.2 y	pacemakers suggests that the ICD may
		Exclusion criteria: N/A	46 (11.3%) received a pacemaker	warranted but SCD was still observed in
	Study type: Cohort study,		and 21 (5.2%) an ICD	ICD patients raising uncertainty benefit.
	multicenter		Devices were primarily implanted	DM1 patients are at high risk of
			for asymptomatic conduction	respiratory failure. Therefore,
	Size: 406 patients		abnormalities or LV systolic	pacemaker or ICDs in asymptomatic
			dysfunction	patients moderate conduction disease
				and also severe skeletal muscle
			7 (15.2%) pacemakers were	involvement may not improve
			implanted for third-degree AV	outcomes.
			block and 6 (28.6%) ICDs were	
			implanted for VAs	
			5 (10.9%) pacemaker patients	
			underwent upgrade to an ICD (3	
			for LV systolic dysfunction, 1 for	
			VAs, and 1 for progressive	
			conduction disease).	
			17 (27.4%) of the 62 patients	
			with devices were pacemaker-	
			dependent at last follow-up	
			3 (14.3%) ICD patients had	
			appropriate therapies	
			24 (52.2%) pacemaker patients	
			died including 13 of respiratory	
			failure and 7 of sudden death	
			7 (33.3%) ICD patients died	
			including 2 of respiratory failure	
			and 3 of sudden death (1 death	
			was documented due to	
			inappropriate therapies)	

Nazarian et al.	Aim: To characterize the	Inclusion criteria:	1° endpoint: Time dependent PR	Patients with DM1 can develop rapid
2011 (326)	trends and predictors of time-	Patients with DM1	or QRS prolongation during	changes in cardiac conduction intervals.
• <u>20946286</u>	dependent ECG changes in	baseline ECG and then	follow-up	 AF or flutter, older age, and larger
	patients with DM1	routine follow-up		CTG expansions predict greater time-
			Results:	dependent PR and QRS interval
	Study type: Cohort study,	Exclusion criteria:	 Age, h/o AF or flutter, and 	prolongation and warrant particular
	single center	 History of second or 	number of cytosine-thymine-	attention in the arrhythmic evaluation
		third degree AV block,	guanine (CTG) repeats were	of this high-risk patient subset.
	Size: 70 patients	VAs, resuscitated SCD,	predictors of time-dependent PR	
		or persistent supraVA	and QRS prolongation	
		Mean follow-up 956	Lower LVEF associated greater	
		d	QRS progression	
		 Clinical predictors of 		
		conduction disease		
		progression were		
		assessed using		
		multivariate analysis		
Bhakta et al.	<u>Aim</u> : To assess the prevalence	Inclusion criteria:	1° endpoint: N/A	There is a notable incidence of LV
2010 (327)	of conduction disease and	Patients with DM1 with		systolic dysfunction and HF exists in
• <u>21146669</u>	LVEF in population of patients	confirmed abnormal	Results:	patients with DM1.
	with DM1	CTG repeat sequence	Cardiac imaging was performed	• The presence of LVSD/HF in DM1 is
		(one or both alleles ≥	on 180 (44.3%)	significantly associated with all-cause
	Study type: cohort study,	38 repeats)		and cardiac death.
	multicenter		Prevalence of LV systolic	
		Exclusion criteria:	dysfunction and HF in 41 (10.1%)	
	Size: 406 patients	Patients <18 y or	of 406 (risk factors were	
		unconfirmed DM1	increasing age, male sex, ECG	
		diagnosis as above	conduction abnormalities,	
			presence of atrial and VA, and	
			implanted devices)	
			Presence of decreased LVEF	
			was associated with all-cause	
			death (RR: 3.9; 95% CI: 2.3–6.4;	
			p<0.001) and cardiac death (RR:	
Į			5.7; 95% CI: 2.6–12.4; p<0.001).	

• Groh et al.	Aim: To identify whether the	Inclusion criteria:	1° endpoint: N/A	Patients with DM1 are at high risk for
2008 (328)	ECG is useful for prediction of	Genetically confirmed		sudden death (up to 1/3 of deaths are
• <u>18565861</u>	SCD risk in patients with DM1	DM1 (only patients	Results:	sudden)
ļ		with abnormal CTG	Defined: Severe abnormality on	 Severe abnormality on ECG (RR: 3.3;
	Study type: Cohort study,	repeat sequence ≥38	ECG includes rhythm other than	95% CI: 1.25-8.78) and diagnosis of
	multicenter	repeats)	sinus, PR interval ≥ 240 ms, QRS ≥	atrial tachyarrhythmia (RR: 5.18; 95%
			120 ms, or 2nd or 3rd degree AV	CI: 2.28–11.77) predictive of sudden
	Size: 406 patients	Exclusion criteria: N/A	block	death in patients with DM1
			• 96/406 had severe abnormality	 Severe abnormality on ECG PPV
			on ECG – 9 received ICD and 23	12.1% and NPV 97.1% for prediction of
			pacemakers	SCD
			• Follow-up 5.7 y during which	
			81/406 (20%) died (27 SCD, 32	
			respiratory failure, 5 non-sudden	
			cardiac deaths, 17 deaths from	
			other causes)	
			Of the 27 SCD, 17 had post-	
			collapse rhythm documented of	
			which only 9 was VT/VF	
			• Severe abnormality on ECG (RR:	
			3.3; CI: 1.25–8.78) and diagnosis	
			of atrial tachyarrhythmia (RR:	
			5.18; CI: 2.28-11.77) predictive of	
			sudden death in patients with	
			DM1	
			Rates of prophylactic pacing	
			increased during the study period	
			and we not associated with	
			decreased rates of SCD	
• Laforêt P et al.	Aim: Evaluate the incidence of	Inclusion criteria:	1° endpoint: N/A	Patients with FSHMD may have
1998 (329)	cardiac involvement in	Patients exhibiting		cardiac involvement.
• <u>9818880</u>	facioscapulohumeral muscular	clinical and molecular	Results: 5 patients had	Significant clinical cardiac
	dystrophy	features of	conduction defects or arrhythmia	involvement is rather rare in this form
		facioscapulohumeral	(IVCD or AF/flutter induced by	of muscular dystrophy, specific
	Study type: Cohort, single	muscular dystrophy	EPS), 1 case of AV block requiring	monitoring or treatment
	center			recommendations are not well defined.

	Size: 100 patients	Exclusion criteria: N/A	pacemaker, 1 case of VT possibly related to co-existing ARVC	Discussion of arrhythmia- related symptoms and yearly electrocardiograms has been recommended.
• Stevenson et al. 1990 (330) • 2299071	Aim: Evaluate incidence of cardiac involvement in fascioscapulohumeral muscular dystrophy Study type: cohort, single center Size: 30 patients	Inclusion criteria: Patients with fascioscapulohumeral muscular dystrophy (autosomal dominant inheritance, characteristic facial involvement, scapular/deltoid muscle weakness > biceps/triceps, myopathic changes on biopsy or EMG) Exclusion criteria: Elbow contractures, absence of scapular winging, and X-linked heredity	1° endpoint: Evidence of cardiac involvement Results: 30/30 had 12-lead ECG, 22/30 had 24 hr Holter, 15 had echocardiogram, 10 patients had 12 EP studies P wave abnormalities were common (60%) AF or Aflutter induced at EPS in 10/12 Evidence of abnormal AV node conduction or infranodal conduction present on EPS or ECG in 27% of patients Sinus node function abnormal in 3 patients	Evidence supporting cardiac involvement in this condition with minority of cases having abnormal sinus node function or AV conduction.

Data Supplement 39. Nonrandomized Trials Related to Cardiac Channelopathies – (Section 7.9)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
• Costa J et al. HR	Study type:	Inclusion criteria: LQT1	1° endpoint: LQT1 gender and mutation	 Combined assessment of clinical
2012 (331)	multicenter	gentoype, age 0-40 y	specific risk stratification ACA/SCD	and mutation location can identify
• <u>22293141</u>				gender specific risk factors for life-
	<u>Size</u> : 1051	Exclusion criteria:	Results: Increased risk:	threatening events
			Age 0-13 y: males; >13, Males =females	
			Loop mutations: HR: 2.7 for females, not	
			males	

			Time-dependent syncope increased risk for males, HR: 4.73 QTc ≥500 ms: higher risk for women	
● Bai R, et al.	Study type:	Inclusion criteria:	1° endpoint: Yield of genetic testing and	Yield in LQTS higher if confirmed
CAE 2009 (332)	Sigle center	consecutive probands	cost	dx present: 64%
• <u>19808439</u>	retrospective	referred with confirmed or		Yield in BrS increased if type 1 BrS
		suspected LQTS, BrS, or	Results: Yield and cost in US \$ per diagnosis:	ECG with AV block present
	<u>Size</u> : 1394	CPVT, or idiopathic VF/ACA	LQTS: 40%, \$13402	Yield in CPVT increased in males,
			Br S: 8%, \$33,148	prior CA, or confirmed bidirectional
		Exclusion criteria: N/A	CPVT: 35%, \$9170	VT present
			Idiopathic VF: 9%, \$71,430	LQTS, CPVT reasonable cost if
				strong clinical suspicion
				BrS less cost effective
				Idiopathic VF ineffective, costly
• Gehi AK, et al.	Study type:	Inclusion: Publications	1° endpoint: Identify risk predictors of	BrS ACE risk increased with prior
JCE 2006 (333)	Meta-analysis:	1/1990-3/2005 on	adverse natural history in patients with	syncope or SCD, RR: 3.24
• <u>16836701</u>	retrieved 30	prognosis of patients with a	Brugada ECG	• Males, RR: 3.47
	prospective	Brugada ECG:		• Spont type 1 ECG RR: 4.65
	studies on	Prospective cohort studies,	Results:	
	Brugada ECG	>10 subjects, primary data	Risk increased with prior hx syncope or ACA,	
	C:-a. 1545	on syncope, SCD, ICD shocks; followup >6 mo and	spont type 1 Br ECG, and male gender	
	<u>Size</u> : 1545	>90% followup	NOT sig rick factors: Fam by SCD	
		290% followup	NOT sig risk factors: Fam hx SCD SCN5A mutation, or inducibility by PES: (not	
		Exclusions: non-English;	a risk factor but heterogeneity of studies)	
		presence of cardiac disease	a risk factor but ficter of criefly or studies,	
• Kim JA et al. HR	Study type:	Inclusion criteria: genotype	1° endpoint: LQT2 genotype: trigger	Pore-loop mutations assoc with
2010 (334)	multicenter	+ LQT2	specific risk factors for SCD/ACA	arousal events;
• <u>20850565</u>	retrospective			BB not significanty protective for
		Exclusion criteria: N/A	Results: arousal 44%, exercise 13%, non-	this subset
	<u>Size</u> : 634		exercie/non-arousal 43%	
			Risk for arousal: female >13 y, pore-loop	
			mutation	

			Non-pore loop assoc with exercise events, HR:6.84 Beta-bl reduced risk for exercise events but not arousal/non-exercise events	
 Migdalovich D et al. HR 2011 (335) 21440677 	Study type: multicenter retrospective Size: 1166	Inclusion criteria: LQT2 genotype Exclusion criteria: N/A	1° endpoint: LQT2 genotype vs outcome ACA/SCD by age 40 y Pore-loop vs non-pore loop mutations Results: women w LQT2 much higher risk: 26% vs. men; For women, no sig difference in mutation site Risk similar at age <13 y; Age >13 y, females HR: 2.23 ACA/SCD vs males Males: pore loop mutations >2-fold increased risk Increased risk: QTc ≥ 500 msec (males 2x, females 4-fold increase) Highest risk: 5.3/1000 patient-y: prior syncope plus QTc ≥ 500 ms, pore loop male, or female >13 y old, HR: 17 BB: 61% reduced risk	Women w LQT2 much higher risk v men Overall, pore loop mutations sig increased risk ACA, SCD, greater risk for males vs females Pore loop mutations LQT2 males, HR:2.18 for ACA/SCD
 Ackerman MJ 2011 (182) 21810866 	Study type: HRS/EHRA consensus statement.	Expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies Panel: geneticists, arrhythmia specialists Agreement ≥ 84%	General: Class I: 1) sound clinical suspicion when positive predictive value > 40%, signal/noise ratio >10; 2) AND/OR genetic test result provides either diagnostic or prognostic info, or influences therapeutic choices. Screening of family members: when genetic testing leads to the adoption of therapy/protective measures/ lifestyle adaptations. LQTS: Class I: 1) any pt with strong clinical index of suspicion for LQTS; 2) any asymptomatic pt with QT prolongation on	• LQTS: Note difference between Class I if QTc >480 or 500 ms, and Class IIb if QTc > 460/480 ms

1
serial ECGs: QTc >480 ms prepuberty; >500
ms, adult; 3) Mutation specific genetic
testing for family members and other
appropriate relatives
Class IIb: any asymptomatic pt with
otherwise idiopathic QTc values >460 ms
(puberty) or 480 ms on serial ECGs
CPVT: Class I: 1) any pt w strong clinical
index of suspicion of CPVT;
2) Mutation specific genetic testing is
recommended for family members and
appropriate relatives
Brugada: Class I: Mutation specific genetic
testing is recommended for family members
and appropriate relatives
Class IIa: any pt w strong clinical index of
suspicion of BrS, including with
procainamide challenge
Class III: not indicated in the setting of an
isolated type 2 or 3 Brugada ECG pattern
Isolated type 2 of 3 brugada 200 pattern
Short QTS: Class I: Mutation specific genetic
testing is recommended for family members
and appropriate relatives
Class IIb: any pt with strong clinical index of
suspicion
Suspicion
ARVC: Class I: Mutation specific genetic
testing is recommended for family members
and appropriate relatives
Class IIa: can be useful for patients satisfying
task force diagnostic criteria
Class IIb: may be considered for patients
with possible ACM/ARVC

Class III: not recommended for patients with only a single minor criterion according to the 2010 task force criteria SCD/SIDS: Class I: 1) Collection of tissue sample recommended (blood or heart/liver/spleen tissue); 2) Mutation specific genetic testing is recommended for family members and appropriate relatives Class III: testing may be considered if circumstantial evidence suggests LQTS or CPVT specifically ACA/resuscitated: Class I: Genetic testing should be guided by the results of medical evaluation and is used for the 1° purpose of screening at-risk family members for subclinical disease Class III: Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated for the survivor of unexplained OHCA HCM: Class I: 1) any pt in whom the clinical dx of HCM is established. 2) Mutation specific genetic testing is recommended for family members and appropriate relatives DCM: Class I: 1) DCM and significant cardiac conduction disease and/or family Hx of premature unexpected sudden death. 2) Mutation specific genetic testing is recommended for family members and appropriate relatives

			LVNC: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIa: can be useful if clinical dx of LVNC is established PCCD: Class I: Mutation specific genetic testing is recommended for family members and appropriate relatives Class IIb: may be considered as part of diagnostic evaluation for patients with either isolated CCD or CCD with concomitant congenital heart disease, especially w post family Hx of CCD.	
Nannenberg EACirc CV Genetics2012 (336)22373669	Study type: Retrospective single center, Netherlands Size: 1170	Inclusion criteria: Genotype positive 6 inherited arrhythmia syndromes analyzed with Family Tree Mortality Ratio (FTMR): LQT1,2,3; Brugada Syndrome, SCN5A overlap syndrome (LQT3, BrS, conduction disease); RYR2 CPVT. Exclusion criteria: N/A	1° endpoint: Using FTMR method to achieve Standardized Mortality Ratio(SMR) (observed to expected mortality by genotype and age in inherited arrhythmias Results: LQTS1: in first 10 y of life SMR 2.9 (1.5–5.1) LQTS2: age 30-39 y, SMR 4.0 (1.1–10) LQTS3: age 15-19 y, SMR 5.8(1.2–16.9) SCN5A overlap syndrome: 20-39 y, SMR 3.8 (2.5–5.7) CPVT: age 20-39 y, SMR 3.0 (1.3–6.0) BrS: 40-59 y, SMR 1.79 (1.2–2.4), especially males	Identify age ranges of highest risk for specified inherited arrhythmia syndromes Asymptomatic patients over age ranges may not require rx
 Kimbrough J Circ 2001 (337) ◆ 11479253 	Study type: Retrospective multi-center Size: 791	Inclusion criteria: 791 first degree relatives of 211 LQTS probands Exclusion criteria: N/A	1° endpoint: Risk of ACE for family members of proband with LQTS Results: Severity of proband symptoms did not significantly influence family member's symptoms, although more likely to receive BB.	 Affected female parents have increased risk of cardiac event before age 40 y. Severity of proband symptoms did not significantly influence family members' symptoms.

			Female gender and duration of QTc important risk factors	
◆ Kaufman ESHeart Rhythm2008 (338)◆ 18534367	Study type: Retrospective registry: International LQTS Registry Size: 1915	Inclusion criteria: Patients with QTc ≥450 msec in registry, who had a sibling with SCD Exclusion criteria: N/A	1° endpoint: risk of death in LQTS when a sibling has died: ACA, SCD, or syncope Results: 270 patients with sibling SCD Sibling death did not correlate with risk ACA/SCD Was associated with increased risk of syncope Associations with increased risk death: QTc ≥530 msec, syncope, gender	 SCD of sibling did not predict risk of death or ACA Did correlate with increased risk of syncope ~6% Hx of syncope, QTc≥ 530 msec, female gender correlated with increased risk ACA/SCD
● Wedekind H Eur J Ped 2009 (339) ● <u>19101729</u>	Study type: Retrospective single center Size: 83	Inclusion criteria: Genotype positive probands, age ≤16 y LQTS: 89% LQT1, 2,3 Mean QTc 510±74 ms 61% symptoms: syncope 49%, ACA 33%, SCD 18% 78% with BB rx Exclusion criteria: N/A	1° endpoint: Recurrent syncope, ACA or SCD after dx LQTS. Mean followup 5.9±4.7 y Results: 92% treated: Followup: Propranolol 79%, atenolol 20%, metoprolol 12%, bisoprolol 8%, pindolol 2%; mexiletine 4% ICD 8%, pacer 5%. 31% recurrent symptoms: 14% ACA or SCD; syncope 86% Significant predictors: QTc >500 ms (HR: 2.9; 95% CI: 1.2–7.3 p=0.02); prior syncope HR: 4.04; 95% CI: 1.1–15, ACA HR:11.7; 95% CI: 3.1–43.4, p<0.001	 Risk predictors: QTc > 500 msec, prior syncope or ACA LQT2 highest rate SCD vs other
• Goldenberg I JACC 2011 (340) • 21185501	Study type: Multicenter international registry, retrospective Size: 469	Inclusion criteria: Genotyped patients with LQTS: 3386 patients Normal QTc: ≤440 ms Prolonged QTc >440 ms Unaffected: negative genotype	1° endpoint: LQTS with normal QTc: risk for ACE: ACA or SCD Results: Normal QTc =14% of total LQTS patients in study. Normal QTc risk ACA/SCD =4%, lower than those with prolonged QTc (15%) but higher than genotype neg family members.	 Genotype positive patients with normal QTc =25% of genotype positive patients. 4% ACA/SCD with normal QTc vs 15% if prolonged QTc

		Exclusion criteria: N/A	Increased risk: mutation characteristics; LQT1 vs LQTS 2, HR: 9.88; p=0.03; Duration of QTc and gender important only in those with prolonged QTc.	
• Tester DJ JACC 2006 (341) • 16487842	Study type: retrospective single center Size: 541	Inclusion criteria: consecutive patients undergoing Genetic testing LQTS 1997-2004 Exclusion criteria: N/A	1° endpoint: yield of LQTS genetic testing vs. clinical genotype Results: 50% positive genotype. Yield correlated with duration of QTc and phenotype: 0%: QTc<400 62%: QTc >480 ms (p<0.0001) Schwartz score ≥4: 72% positive	Genotype results more likely to be positive with QTc >480ms or with higher Schwartz score
• Priori S Circ 2002 (342) • 11901046	Study type: Multicenter retrospective Size: 200	Inclusion criteria: Brugada S with ECG changes, spont (51%) or induced 130 probands Exclusion criteria: N/A	1° endpoint: Brugada risk stratification for SCD PES performed in 86 Results: SCN5A identified in 22% probands, 46% of family members Risk analysis: gender; ECG, family hx, mutation status, symptoms Syncope without ST elevation on baseline ECG: not a risk Syncope AND ST elevation: increased risk SCD, HR: 6.4; p <0.002	Multivariable risk predictor: spontaneous ST elevation V1-V3 and Hx of syncope Syncope without spontaneous ST elevation not a risk factor PES not predictive Mutation carriers without phenotype: low risk
● FINGER ● Probst V Circ 2010 (343) ● 20100972	Study type: Multi-center registry, 11 centers in Europe Size: 1029	Inclusion criteria: Brugada Syndrome ECG spont (45%) or with drug challenge. Median 45 y (35-55). Hx ACA 6%, syncope 30%, asymptomatic 64% (654 patients). SCN5A positive 22%. Exclusion criteria: N/A	1° endpoint: ACE outcomes in BrS Results: PES performed in 62%: 41% positive, higher in symptomatic patients 46% vs 37%, p=0.02. PES performed in 369 asymptomatic patients: 37% positive (137/369); 85% (117/137) inducible asyx patients had ICD implanted ICD's implanted: 433/1029 patients (42%): of 433: 54 ACA (12.5%), 208 syncope (48%),	 Low event rate in asymptomatic patients 0.5%/y. Inducibility w PES or family Hx SCD or SCN5A mutation not predictors of ACE Predictors of ACE: symptoms, ACA, syncope, presence of ICD, spont type 1 ECG. Among asymptomatic patients: 37% positive PES; of these 85% had ICD implanted.

			171 asymptomatic (39%). 118/171 asymptomatic patients with ICD (69%) implanted due to positive EPS. ACE 51: approp ICD shocks 44, SCD 7. Mean ACE rate 1.6%/y: 7.7% in patients w Hx ACA;1.9% w prior syncope; 0.5% in asymp patients Predictors: symptoms (p<0.001): ACA (HR: 11; 95% CI: 4.8–24.3, p<0.001), syncope (HR: 3.4; 95% CI 1.6–7.4, p=0.002), ICD implantation (HR: 3.9; 95% CI: 1.4–10.6, p=0.007). spont type 1 ECG (HR: 1.8;95% CI: 1.03– 3.33, p=0.04); NOT predictive: gender, family Hx SCD, +PES (p=0.48), presence SCN5A mutation	 ICD implantation in asymptomatic patients was significant in multivariable analysis as predictor of ACE: HR:10.1; 95% CI: 1.7−58.7, p=0.01). No independent predictive value of PES (p=0.09), males (p=0.42, spont type 1 ECG (p=0.38) age (p=0.97)
Moss AJ Circ	Study type:	Inclusion criteria: LQTS	1° endpoint: Recurrent CE on b-bl in LQTS	For LQT 1 and 2, BB reduce risk
2000(344)	Retrospective	registry, Rochester, patients	2 Chapolite Recurrent CE on a billi EQ13	Highly symptomatic patients
• <u>10673253</u>	observational	treatment w BB age <41 y,	Results: B-BI significantly reduce risk LQT 1	prior to treatment at high risk
		80% syncope or ACA prior	and 2;	for recurrent events.
	<u>Size</u> : 869	to rx. Atenolol, metoprolol,	LQT 3: no effect	LQT 3 patients: BB did not
		nadolol, propranolol.	For symptomatic patients, HR 5.8 for	reduce risk
		139/869 genotyped: LQT	recurrent CE: 32% ACE within 5 y.	
		1(69), LQT 2 (42), LQT 3 (28)	Prior syncope: HR: 3.1.	
		Exclusion criteria: age >41 y	Prior ACA, HR: 12.9 for ACA or sudden	
		start rx	death: 14% recurrent CA.	
• Zareba JCE 2003	Study type:	Inclusion criteria: 125 LQTS	1º endpoint: Mortality of LQTS patients	Prior ACA or recurrent syncope on
(345)	Single center	patients with ICD's	treated with/without ICD:	b-bl treatment assoc with significant
• <u>12741701</u>	retrospective	compared with LQTS with	73 patients with syncope on treatment or	mortality without ICD during 8 y
	6:125	similar risk and no ICD. ICD	prior ACA and ICD compared with 161 LQTS	followup
	<u>Size</u> :125	Indications: 54 ACA, 19	patients without ICD (89 ACA, 72 rec	
		recurrent syncope on b-bl; 52 "other" (syncope; +	syncope on b-bl)	
		family Hx SCD)	Results: Deaths: ICD 1.3% (1 pt), followup	
		Tailing Fix 3CD)	av 3 y, vs. 16% (26 patients) in non-ICD	
		Exclusion criteria: N/A	patients during 8 y mean followup.	

 Monnig G Heart Rhythm 2005 (346) 15840474 	Study type: single center retrospective Size: 27	Inclusion criteria: symptomatic LQTS patients undergoing ICD implant. Mean QTc 540±64; 85% famle, 63% ACA, 33% recurrent syncope on b-bl, 4% "severe phenotype 81 genotype pos: LQT 1 28, LQT2 39; LQT3 1, LQT5 13. Exclusion criteria: N/A	1º endpoint: LQTS Appropriate ICD shocks or death during followup. Results: Mean followup 65±34 mo. Death 1 pt, non-cardiac. Approp shocks: 37%; 30% multiple shocks. Logistic regression: QTc >500 ms, prior ACA predictive. Shocks reduced from av 7.1 to 0.75 shocks annually by adding b-bl, increased rate antibrady pacing, rate smoothing algorithm.	Predictors of approp ICD shocks: QTc >500 msec, prior ACA Approp shocks reduced by antibrady pacing, b-bl rx, rate-smoothing
 ◆ Hayashi M Circ 2009 (347) ◆ 19398665 	Study type: single center retrospective Size: 101	Inclusion criteria: N/A Inclusion criteria: CPVT 50 probands, 51 family members, age at dx 15±10 y. Symptoms 60% (61 patients), all probands, 22% family members 93% symptomatic <21 y old 77% detection of mutations: RYR2 CASQ2 Exclusion criteria: N/A	1º endpoint: ACE in CPVT patients: syncope, ACA, approp ICD shocks, SCD Results: followup 7.9 y 8 y total event rate 32% total, 27% with b-bl, 58% without b-bl. 8 y event ACA/SCD 13% (8 patients) Increased risk: Absence BB HR: 5.54; 95% CI: 1.17–16.15, p=0.003), Hx ACA HR: 13.01; 95% CI: 2.48–68.21, p=0.002); younger age at dx (HR: 0.54/decade; 95% CI: 0.33–0.89, p=0.02) 32% with events on b-blockers did not take meds on day of event. Nadolol: ACE 19%	Higher risk for lack of BB, Hx ACA Prior syncope not associated with increased risk
 Delise P EHJ 2011(348) 20978016 	Study type: Multi- center prospective Size: 320	Inclusion criteria: Type 1 Brugada ECG: spontaneous 54%, drug-induced 46%. Median age 43 y. Males 81% Asymptomatic 66%, syncope 33% NO prior ACA	1° endpoint: predictors in Brugada S of ACE (approp ICD shocks, sudden death) Results: Median followup 40 mos (IQR 20-67) 5.3 % MACE (17 patients): VF on ICD (14), sudden death3 MACE occurred in 10.4% of symptomatic and 2.8% of asymptomatic patients (p=0.004) ICD's implanted in 34%(110 patients)	Combining 2 or more risk factors was useful risk stratification: Spontaneous type 1 ECG Family Hx sudden death, syncope, positive PES MACE occurred only in patients with 2 or more risk factors. MACE event rates: 3.0%/pt/yr in symptomatic, 0.8%/pt/yr in asymptomatic

 ◆ Hiraoka M JE 2013 (349) ◆ 23702150 	Study type: Prospective single center Size: 69	Exclusion criteria: N/A Inclusion criteria: Brugada S patients ages 18–35 y Mean age 30±6 y No genetic testing Exclusion criteria: N/A	PES performed in 245 (76%): positive in 50% of symptomatic and 32% of asymptomatic patients. MACE in 14% of positive PES, 0% of negative, 5.3% of no EPS: positive predictive values 14%, negative pred value 100% VF occurred in 15.5% of patients with inducible VF using doubles, 8.6% of triples Combination of risk factors most significant: spont ECG, family Hx sudden death, syncope, positive EPS: no events occurred in patients without any of above or with only one risk factor. Spontaneous type 1 ECG: if additional risk factors, 30% MACE (p<0.001) 1° endpoint: Brugada S ages 18-35 y at dx, outcomes of VF or SCD Followup 43±27 mos. Results: Based on presenting symptoms: VF 42%, syncope 12%, asymptomatic 2.5% Not predictive: gender, family Hx SCD, abnl SAECG, spontaneous vs drug-induced ECG, inducible VT/VF All ages 460 patients symptoms at presentation vs outcomes: VF 8.4%/y, Syncope 1.7%/y, asymptomatic 0.3%/y	PES can be useful in patients with spontaneous type 1 ECG and no other risk factors; may be helpful to identify low risk patients Brugada outcomes in young adults vs presenting symptoms: Events: VF 11.2% /y, syncope 3.3% y, asymptomatic 0.7%/y
 PRELUDE Priori SG et al. JACC 2012 22192666 	Study type: Prospective registry Size: 308	Inclusion criteria: Age >18 y, BrS type 1 ECG spont (56%, 171/308) or drug- induced, without prior ACA;	1° endpoint: Predictive accuracy of PES for sustained VT/VF or approp ICD shock in Brugada. Results: PES performed at enrollment; followup every 6 mo. Mean age 45±12 y.	PES did not predict high risk Predictors: spontaneous type BrS ECG and symptoms; f-QRS, VERP <200 msec VERP <200 msec was predictive: this data would only be obtained at EPS.

		21% with prior syncope (65	Cardiac arrest 4.5% (14/308), 13/14	NOTE that + PES used in decision
		patients: 16/65 {25%} > 1	resuscitated with ICD, EMS 1.	to implant ICD's: 13/137 patients
		1 *	PES positive in 41% (126/308); of these:	(9.5%) with ICD's were resuscitated
		syncope).	single stimulation 5.5%, double 44.5%,	with ICD.
		CONTA manifely 2007 of	-	WITH ICD.
		SCN5A positive 20% of	triples 50%.	N . 4/44 .:: .: .: .: .:
		tested patients.	ICD's implanted in 137 patients (78% of	Note 1/14 patients with VF had only
			inducible patients {98/126} and 21% of non-	spont type 1 ECG and no prior
		(f-QRS =2 or more spikes	inducible patients {39/182}.	syncope, neg family hx, neg EPS,
		within QRS leads V1-V3:	Annual event rate 1.5%:	VERP >200 msec but + SCN5A
		present 8.1%)		mutation and received ICD after EPS.
			Multivariable predictors: spont type 1 ECG	Only 1 pt without ICD had ACA: pt
		Exclusion criteria: N/A	and Hx of syncope (HR: 4.20; 95% CI: 1.38–	had spont type 1 ECG, VRP <200
			12.79, p=0.012), Ventricular ERP <200 msec	msec, and fQRS.
			(HR: 3.91; 95% CI: 1.03–12.79, p=0.045),	
			QRS fractionation (HR: 4.94, 95% CI: 1.54–	
			15.8, p=0.007).	
			Positive PES not predictive (HR: 1.03; 95%	
			CI: 0.34–3.16, p=0.96)	
 Wilde A et al. 	Study type:	Inclusion criteria: LQT3	<u>1º endpoint</u> : LQT3 ACE outcomes: syncope,	High risk LQT3:
Circ 2016	multicenter	SCN5A mutation carriers	ACA, SCD	Females;
• <u>27566755</u>	observational		Median followup 7 y	syncope, QTc 450-490
		In 8%, first cardiac		
	<u>Size</u> : 391	symptom: ACA, SCD	Results: Rx: B-bl 29%; LCSD 2%; pacer 5%; ICD 18%.	Hx of syncope—doubled risk
		Exclusion criteria:	Time dependent increase in ACE: by age	BB therapy significantly reduced
		symptoms during first year	40yrs, ~40% with ACE. ~ 50% of ACE =ACA or	risk for ACE, especially in females
		of life-12 patients;	SCD	
		Lost to followup after age 1:		Mutation type/location did not have
		3 patients;	B-blocker rx: 83% risk reduction in females	sig effect on outcome
		Patients with 2 mutations	(p=0.015); 49% risk reduction in males (not	_
			sig; too few events in males to assess)	
			BB not pro-arrhythmic	
			3% died on BB during followup	
1		1	Multivariate risk factors: QTc, syncope:	

			Each 10 msec increase in QTc up to 500 msec associated with 19% increase in ACE (no further risk with QTc >500 msec)	
 Probst V et al. Circ CV Gen 2009 20031634 	Study type: multicenter retrospective Size: 115	Inclusion criteria: BrS families with at least 5 family members genotype carries Exclusion criteria: N/A	1º endpoint: BrS assoc with SCN5A Results: BrS ECG present in 47% of mutation carriers Mutation carriers had longer PR and QRS intervals SCN5A mutations are not directly causal of Br pattern ECG	Poor genotype phenotype correlation for BrS SCN5A
● Crotti L et al. ACC 2012 ● <u>22840528</u>	Study type: Multicenter retrospective Size: 129	Inclusion criteria: BrS	1° endpoint: Genotype results Brugada S Results: 20% putative pathogenic mutations, (95% in SCN5A; 5% other genes) Yield similar with type 1 Brugada ECG only (23%) and those with symptoms (17%) Prolonged PQ interval > 200 msec: 38% positive vs 11% if PQ < 200 ms, (OR 8, 1.5- 16)	Brugada: no genotype/phenotype correlation
• Risgaard B et al. Clin Genet 2013 • 23414114	Study type: Exome Sequencing Project (ESP) analysis Size: 6258	Inclusion criteria: Genetic variants of Brugada Syndrome searched for in exome data Exclusion criteria: N/A	1° endpoint: Identify prevalence of mutations associated with BrS in general exome BrS prevalence ~ 1:2000 to 1:100,000 Results: 10% of variants identified in ESP, a frequency of 1:23	

Data Supplement 40. Nonrandomized Trials Related to Congenital LQTS – (Section 7.9.1.1.)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
---	-------------------------------------	--------------------	--	----------------------------------

Garson AJ Circ	Study type:	Inclusion criteria: Age	1° endpoint: ACA or SCD for LQTS children	• QTc at presentation >0.60 highest
1993 (350)	Retrospective	<21y, QTc >0.44,	during Mean followup 5 y.	risk group
• <u>8099317</u>	multicenter	unexplained syncope,		no difference between
		seizures, ACA triggered by	Results: Rx 68% BB, 8% other meds, LCSD	propranolol and atenolol
	<u>Size:</u> 287	emotion or exercise, or	2%, ICD 1%	• consider prophylactic treatment in
		family Hx LQTS.	Med treatment effective for symptoms in	asymptomatic patients with QTc
		Mean age presentation	76%, and for VEA 60%	>0.44
		8.8 y	Symptoms in first mo of life high risk group:	
		61% symptoms	16% died.	
		9% ACA was first	Asymptomatic patients with normal QTc and	
		symptom	positive family Hx may be low risk group (no	
			genotyping results)	
		Exclusion criteria: N/A	Predictors highest risk: symptoms at	
			presentation, propranolol failure	
• Hobbs JB et al.	Study type:	Inclusion criteria:	1° endpoint: ACA or SCD in adolescents with	 Risk factors: syncope, QTc ≥ 530
JAMA 2006 (351)	Retrospective	Adolescents in LQTS	LQTS	msec, males age 10–12 y
• <u>16968849</u>	multicenter	Registry alive at age 10 y,		
		followed until age 20 y	Results: 81 patients w ACA, 45 SCD	
	<u>Size</u> : 2772		Significant risk factors: recent syncope in	
		Exclusion criteria: N/A	prior 2 y, HR: 11.7; QTc ≥ 530 msec HR: 2.3;	
			males age 10-12 y, HR: 4; males = females	
			ages 13–20 y	
			Beta blocker therapy ↓by 64% in patients	
			with syncope in last 2 y	
 Goldenberg I 	Study type:	Inclusion criteria:	1° endpoint: LQTS with normal QTc: risk for	Genotype positive patients with
JACC 2011 (340)	Multicenter	Genotyped patients with	ACE: ACA or SCD	normal QTc =25% of genotype
• <u>21185501</u>	international	LQTS: 3386 patients		positive patients.
	registry,	Normal QTc: ≤440 ms	Results: Normal QTc =14% of total LQTS	• 4% ACA/SCD with normal QTc vs
	retrospective	Prolonged QTc >440 ms	patients in study.	15% if prolonged QTc
		Unaffected: negative	Normal QTc risk ACA/SCD =4%, lower than	
	<u>Size</u> : 469	genotype	those with prolonged QTc (15%) but higher	
			than genotype neg family members.	
		Exclusion criteria: N/A	Increased risk: mutation characteristics;	
			LQT1 vs LQTS 2, HR: 9.88; p=0.03;	
			Duration of QTc and gender important only	
			in those with prolonged QTc.	

• Priori SG NEJM	Study type:	Inclusion criteria:	1° endpoint: LQTS risk of ACE age <40 y and	Genetic locus and QTc
2003 (352)	Retrospective	Genotyped patients:	before rx: syncope, ACA, sudden	independent risk factors
• <u>12736279</u>		LQT1 60%, LQT2 32%,	deathbefore	 QTc risk factor for LQT1 and LQT2,
	<u>Size</u> : 647	LQT3 8%, mean followup		not LQT3
		28 y	Results: Incidence ACE: LQT1 30%, LQT2	•
			46%, LQT3 42%. 13% ACA or sudden	
		Exclusion criteria: N/A	deathbefore age 40 y,	
			Events highest among LQT2	
• Wedekind H Eur J	Study type:	Inclusion criteria:	1° endpoint: Recurrent syncope, ACA or SCD	• Risk predictors: QTc >500 msec,
Ped 2009 (339)	Retrospective	Genotype positive	after dx LQTS. Mean followup 5.9±4.7 y	prior syncope or ACA
• <u>19101729</u>	single center	probands, age ≤16 y		 LQT2 highest rate SCD vs other
		LQTS: 89% LQT1, 2,3	Results: 92% treated: Followup: Propranolol	
	<u>Size</u> : 83	Mean QTc 510±74 ms	79%, atenolol 20%, metoprolol 12%,	
		61% symptoms: syncope	bisoprolol 8%, pindolol 2%; mexiletine 4%	
		49%, ACA 33%, SCD 18%	ICD 8%, pacer 5%.	
		78% with BB rx	31% recurrent symptoms: 14% ACA or SCD;	
			syncope 86%	
		Exclusion criteria: N/A	Significant predictors: QTc >500 ms, p=0.02,	
			HR: 2.9; 95% CI: 1.2–7.3; prior syncope HR:	
			4.04; 95% CI: 1.1–15, ACA HR: 11.7; 95% CI:	
			3.1–43.4, p<0.001	
Jons C et al. JACC	Study type:	Inclusion criteria: LQTS	1° endpoint: Risk of ACE in LQTS patients	Recurrent syncope during BB
2010 (353)	Retrospective	patients, QTc ≥ 450 msec	with syncope	treatment assoc with increased risk
• <u>20170817</u>	International	with syncope as first	Severe = ACA, approp ICD shock, SCD	of recurrent events
	LQTS Registry	symptoms		●BB failure highest in children and
		20% with ICD	Results: Lowest risk in patients with single	females
	<u>Size</u> : 1059	52 patients LCSD	syncope before rx; intermediate risk:	
			multiple syncope before rx, HR: 1.8	
		Exclusion criteria: N/A	Higher risk: syncope after BB rx: HR:3.6	
			p<0.001. Does not state how many patients	
			died/aca.	
 Barsheshet Circ 	Study type:	Inclusion criteria: LQT1	1° endpoint: Risk for ACA/SCD vs. mutation	LQT1 patients with C-loop
2012 (354)	Retrospective	genotyped patients,	location in LQT1	mutations are at high risk for
• <u>22456477</u>	observational	mutations KCNQ1, ages		ACA/SCD, and derive pronounced
		birth-40	Results: 105 events: 27 ACA, 78 SCD	benefit from b-blocker rx

			•	
	Size: 860 patients	Exclusion criteria: N/A	C-loop mutations highest risk (HR: 2.75; 95% CI: 1.29–5.86, p=0.009) B-bl treatment sig greater risk reduction in C loop mutations (HR: 0.12; 95% CI: 0.02–0.73, p=0.02) vs all other mutations (HR: 0.82; 95% CI: 0.31–2.13, p=0.68) C-loop mutations showed sig reduction in channel activation in response to badrenergic stimulation	
● Vincent GM Circ 2009 (355) ● <u>19118258</u>	Study type: Retrospective observational Size: 216	Inclusion criteria: Genotype + LQT1 patients treatment with BB for minimum 2 y (unless CA/SCD), median followup 10 y. Median age 26 y (4–76 y); 73% symptomatic; prior CA in 12% (26 patients). Mean QTc 495±48 ms Exclusion criteria: N/A	1º endpoint: ACE (syncope, CA, SCD) in LQT 1 treatment with BB Results: 75% asymptomatic. ACE 25%. 5.5% CA/SCD (12 patients) after rx: 11/12 non-compliant or on QT prolonging med. None of 26 patients with prior CA had SCD on beta-bl, one had CA. Risk for CE reduced to 0.06 CE/y (0.05–0.07)	 Risk for CA in compliant patients << non-compliant (OR:0.03; 95% CI: 0.003–0.22, p=0.001) Beta-bl meds approp treatment for asxy patients, and symptomatic patients who have not had CA before b-bl rx. Risk of CA/SCD on beta bl not assoc with baseline QTc nor prior syx nor gender LQT1 patients with prior CA had very low risk CA/SCD on BB
 Moss AJ Circ 2000 (344) 10673253 	Study type: Retrospective observational Size: 869	Inclusion criteria: LQTS registry, Rochester, patients treatment w BB age <41 y, 80% syncope or ACA prior to rx. Atenolol, metoprolol, nadolol, propranolol. 139/869 genotyped: LQT 1(69), LQT 2 (42), LQT 3 (28) Exclusion criteria: age >41 y start rx	1° endpoint: Recurrent CE on b-bl in LQTS Results: B-Bl significantly reduce risk LQT 1 and 2; LQT 3: no effect For symptomatic patients, HR 5.8 for recurrent CE: 32% ACE within 5 y. Prior syncope: HR: 3.1. Prior ACA, HR: 12.9 for ACA or sudden death: 14% recurrent CA.	 For LQT 1 and 2, BB reduce risk Highly symptomatic patients prior to treatment at high risk for recurrent events. LQT 3 patients: BB did not reduce risk

 Abu-Zeitone JACC 2014 (356) 25257637 	Study type: Retrospective multicenter Size: 1530	Inclusion criteria: Patients in LQTS registry, Rochester, NY treatment with BB: atenolol (441), metoprolol (151), propranolol (679), nadolol (259), age <40 y, no AICD Exclusion criteria: simultaneous use of 2 beta Blockers	1° endpoint: First cardiac event: syncope, CA, sudden deathafter starting b-bl Results: LQT 1: risk reduction 57% any b-bl, no differential efficacy. LQT2: nadolol only med with sig risk reduction (HR: 0.4)	All BB reduce risk of events, without difference In LQT 2 nadolol appeared superior (HR: 0.40) For patients with recurrent events on beta-bl, propranolol offered least protection (HR: 0.52)
 Goldenberg I JCE 2010 (357) 20233272 	Study type: Retrospective observational Multi-center Size: 1393	Inclusion criteria: Genotyped LQT1 (971) and LQT2 (422) patients in International LQTS registry. Ages Birth-40 y. ICD 129 patients (LQT1 50, 9%; LQT2 79, 19%) LCSD 31 patients, LQT1 3%, LQT2 4% Exclusion criteria: N/A	1º endpoint: Age related, gender and genotype specific risk factors for ACE (syncope, approp shock, ACA, or SCD) Results: ACE LQT1 39%, LQT2 46% Risk for ACE: • Ages 0–14 y, LQT1 genotype vs LQT2 (HR: 1.49; 95% CI: 1.14–1.93, p<0.003); males vs females (HR: 1.31, p=0.04) • Ages 15–40 y, LQT2 vs LQT1, (HR 1.67; 95% CI: 1.31–2.13, p<0.001); females vs. males HR: 2.58; 95% CI: 1.90–3.49, p<0.001) • QTC≥500 msec at increased risk in both age groups: 0–14 y, HR: 2.3 (p<0.0001); age 15–40 y, HR: 2.22 (p<0.001) • Treatment in LQT1: atenolol decreased risk HR: 0.23; 95% CI: 0.08–0.67, p=0.008) nadolol was not associated with sig risk reduction (HR: 0.4; 95% CI: 0.14–1.16, p=0.09) • Treatment in LQT2: nadolol reduced risk (HR: 0.13; 95% CI: 0.03–0.62, p=0.01); atenolol did not (HR: 0.69; 95% CI: 0.32–1.49, p=0.34) • ACA or SCD rarely occurred during treatment with beta-bl	 B-blockers reduced risk in LQT1 and 2: LQT1 atenolol > nadolol LQT2 nadolol > atenolol ACA/SCD rarely occurred as presenting symptom in patients treatment with b-bl QTc ≥ 500 msec increased risk HR: 2.2–2.3 Syncope during b-bl treatment assoc with increased risk ACA/SCD Recommend BB therapy routinely to all high-risk LQT1 and LQT2 patients without contraindications as first rx 1° AICD therapy recommended for those with syncope during b-bl therapy

			Patients with syncope during b-bl treatment had rel high rate subsequent ADA/SCD (>1 event per 100 pt-y.	
• Sauer AJ JACC 2007 (358) • <u>17239714</u>	Study type: retrospective	Inclusion criteria: Genotype positive LQTS adults ≥18 y old	1° endpoint: ACE: syncope, ACA, SCD between ages 18-40 y in LQTS	Highest risk: females, QTc >500 msec, syncope after age 18 y LQT2 higher risk
	<u>Size:</u> 812	8% prior ACA Exclusion criteria: N/A	Results: Risk predictors: ACA or SCD: female gender HR: 32.68; QTc ≥500 ms HR: 3.34; QTc ≥550 msec HR: 6.35; syncope after age 18y, HR: 5.10 LQT2 33% recurrent ACE. LQT1 highest prior events 34%. BB reduced risk ACA, SCD by 60%; highest benefit in QTc ≥500 msec, LQT1 and LQT2.	• QTc ≤499 msec did not contribute to higher risk lethal event
• Steinberg C J Interv Card EP 2016 (359) • 27394160	Study type: retrospective cohort Size: 114	Inclusion criteria: Genotype positive LQT1 (62%) or LQT2 (38%) treated with bisoprolol 52%, (59 patients), nadolol 14%, (16	1° endpoint: syncope, SCD, ACA, documented polymorphic VT LQT1 or 2, on BB Median followup 3 y for bisoprolol and nadolol; 6 y for atenolol (p=0.03)	Bisoprolol (selective b-1 antagonist) well-tolerated, and shortened QTc similar to nadolol not powered to assess difference in BB
		patients) or atenolol 34%, (39 patients) 59% females	Results: Symptoms: 29%: syncope 27%, ACA 3.5%, documented VT; ICD's 7%. Dosing: bisoprolol 5 mg, nadolol 65–80 mg, atenolol 55 mg	
		Exclusion criteria: N/A	Nadolol patients highest proportion of probands vs bisoprolol (p=0.007) QTc shortening greater with bisoprolol and nadolol, vs. atenolol; QTc reduction greater in nadolol vs. atenolol, similar to bisoprolol	

			Cumulative incidence ACE 0.5%/pt-y. ACA in one pt on bisoprolol; syncope in 2 patients with atenolol; no events with nadolol NO difference events bisoprolol 0.4% vs other b-blocker 0.6%	
 Nannenberg EA Circ CV Genetics 2012 (336) 22373669 	Study type: Retrospective single center, Netherlands	Inclusion criteria: Genotype positive 6 inherited arrhythmia syndromes analyzed with Family Tree Mortality	1° endpoint: Using FTMR method to achieve Standardized Mortality Ratio(SMR) (observed to expected mortality by genotype and age in inherited arrhythmias	 Identify age ranges of highest risk for specified inherited arrhythmia syndromes Asymptomatic patients over age ranges may not require rx
	Size:	Ratio (FTMR): LQT1,2,3; Brugada Syndrome, SCN5A overlap syndrome (LQT3, BrS, conduction disease); RYR2 CPVT. Exclusion criteria: N/A	Results: LQTS1: in first 10 y of life SMR 2.9 (1.5–5.1) LQTS2: age 30-39 y, SMR 4.0 (1.1–10) LQTS3: age 15-19 y, SMR 5.8(1.2–16.9) SCN5A overlap syndrome: 20-39 y, SMR 3.8 (2.5–5.7) CPVT: age 20-39 y, SMR 3.0 (1.3–6.0) BrS: 40-59 y, SMR 1.79 (1.2–2.4), especially males	
• Villain E EHJ 2004 (360) • <u>15321698</u>	Study type: retrospective single center Size: 122	Inclusion criteria: LQTS in pt <18 y treated with BB, dx 1984-2002; 86% genotype pos. 26 patients dx in first mo of life; for others, median age 6y at dx 54% symptomatic probands Exclusion criteria: N/A	1° endpoint: ACA or SCD in LQTS patients <18yr old during followup median 7.5 y Results: BB: nadolol 50 mg/m²/d given bid; Propranolol 3-5 mg/kg/d, acebutolol 10 mg/kg/d., atenolol 50 mg/d, bisoprolol 10 mg/d. Monitored at least yearly with ecg, exercise test and/or holter, goal peak HR <130-150 bpm. Symptomatic patients w longer QTc. 3 neonates died; one pt died after pacemaker implantation. One pt died after meds discontinued. 4.5% recurrent syncope. Cumulative event-free survival 94%	BB highly effective in children, particularly in LQT1 Double mutations or LQT2,3 higher risk no LQT1 patient died while receiving BB

 Moltedo JM Ped Cardiol 2011 (361) 20960185 	Study type: retrospective Size: 57	Inclusion criteria: Pediatric patients with LQTS treated with atenolol. Genotyping not available Exclusion criteria: N/A	1° endpoint: Death, recurrent symptoms in young LQT1 ps treatment with atenolol during followup 5.4±4.5 y Results: Mean age dx 9 ±6 y, 60% females. Mean QTc 521± 54 msec Mean dose atenolol 1.5±0.5 mg/kg/d twice daily; dose titrated to achieve peak HR <150 bpm on holter and exercise. + family Hx sudden death22%. ICD's 10% Symptoms 42%: VT: 18%, syncope 10%, ACA 7%, AV block 4%. One death, non-compliant with meds. Recurrent symptoms: 8%, 4 patients: ¾ received ICD. All patients with recurrences had QTc > 500 msec 6% side effects (1 pt) or inadequate heart	Atenolol in twice daily dosing effective in pediatric patients in reducing events Assessing adequacy of betablockade by blunting peak HR recommended Recurrent syncope occurred in patients with QTc >500 msec
● Schwartz et al.2004 (362) ● <u>15051644</u>	Aim: To assess the long-term efficacy of LCSD in a group of high-risk patients. Study type: Multicenter global registry Size: 147 patients	Inclusion criteria: 162 LQTS patients who underwent LCSD between 1970 and 2002 were identified. Among them, 15 underwent left stellectomy that we regarded as inadequate denervation and therefore insufficient therapy. Accordingly, the analysis is on the 147 patients who underwent LCSD Exclusion criteria: N/A	rate control—change b-blocker 1º endpoint: Cardiac events and on survival free of cardiac events Results: Their QT interval was very prolonged (QTc, 543±65 ms); 99% were symptomatic; 48% had a CA; and 75% of those treated with BB remained symptomatic. The average follow-up periods between first CE and LCSD and post-LCSD were 4.6 and 7.8 y, respectively. After LCSD, 46% remained asymptomatic. Syncope occurred in 31%, ACA in 16%, and sudden death in 7%. The mean yearly number of CEs per patient dropped by 91% (p<0.001). Among 74 patients with only syncope before LCSD, all types of CEs decreased significantly as in the entire group, and a post-LCSD QTc <500 ms predicted very low risk. The percentage of patients with >5 CEs declined	 LCSD is associated with a significant reduction in the incidence of ACA and syncope in high-risk LQTS patients when compared with pre-LCSD events. However, LCSD is not entirely effective in preventing cardiac events including SCD during long-term follow-up. The study population included the vast majority of LQTS patients treated with LCSD worldwide. Among 51 genotyped patients, LCSD appeared more effective in LQT1 and LQT3 patients.

			from 55% to 8% (p<0.001). In 5 patients with preoperative implantable defibrillator and multiple discharges, the post-LCSD count of shocks decreased by 95% (p=0.02) from a median number of 25 to 0 per patient.	
Bos JM CircArrhythm Elect2013 (363)23728945	Study type: Single center retrospective Size: 52	Inclusion criteria: LQTS patients undergoing LCSD 2005-2010, mean QTc 528±74 msec; 33% 1° prevention. Mean age 14.1±10 y.	1° endpoint: LCSD for LQTS: ACE: syncope, ACA, SCD, approp ICD shock for VF F/U 3.6±1.3 y. Results: 23% recurrent ACE (not specified). 15% no reduction in events.	23% recurrent ACE after LCSD
		Exclusion criteria: N/A	No recurrence in patients with b-bl intolerance as indication (vs. recurrent events). (0/12 vs 17/40, p<0.001) Ptosis: 8%, pneumothorax 6%	
• Schneider, HE Clin Res Cardiol 2013 (364) • 22821214	Study type: Retrospective single center	Inclusion criteria: LQT 5, CPVT 5, with recurrent syncope, VT, ICD shocks or ACA on BB. Mean age 14 y (3.9–42 y).	1° endpoint: LCSD for LQT, CPVT: ACE LOS 3-9 d; followup median 2.3 y (0.6–3.9 y) Results: Decrease in arrhythmia burden,	 Reduction in ICD discharges 10% ACA Minor comps frequent
	<u>312e</u> . 10	2 ICD pre-surg; 6 ICD at LSCD. Exclusion criteria: N/A	ACE No ICD discharges for VT ACA: 10% Horner syndrome 70%, 20% pleural effusion	
 Collura CA Heart Rhythm 2009 (365) 19467503 	Study type: single center retrospective Size: 20	Inclusion criteria: LCSD 2005-2008, video- assisted. Mean age 9.1±9.7 y, (2mo-42 y) LQTS 12 geno +, 4 geno – LQT; CPVT 2	1° endpoint: LCSD for LQTS and CPVT: ACE followup mean 17 mo Results: 2° prev: ICD shocks eliminated 72%; 18% ineffective 2° prev 11, mean QTc 549 msec; 1° 9, mean QTc 480 msec.	LCSD reduced shocks in 72% during short term followup 18% ineffective
Hofferberth SCJTCS 2014(366)24268954	Study type: single center retrospective	Exclusion criteria: N/A Inclusion criteria: LCSD 2000-2011. LQTS 13	1° endpoint: ACE after LCSD: LQTS, CPVT, VF Median followup 28 mo, (4–131 mo)	LCSD recommended in patients with recurrent symptoms refractory to meds

	<u>Size</u> : 24	(median age 8 y), CPVT 9 (age 17 y), VF 2 (age 23). Exclusion criteria: N/A	Results: 73% marked reduction in arrhythmia burden; 55% arrhythmia free. 27% persistent symptoms	• 27% recurrent symptoms, non- responders
● Chattha IS Heart Rhythm 2010 (367) ■ 20226272	Study type: Retrospective single center Size: 75	Inclusion criteria: Exercise testing done on 3 groups: LQT1, LQT2, and controls Exclusion criteria: N/A	1° endpoint: Genotypic specific changes in QTc with exercise Results: Changes in QTc: LQT1: longer corrected QTc at peak and early recovery LQT2: QTc increased during recovery Controls: normal QTc during recovery	 End of recovery QTc >445 msec, usually at 4 min of recovery, distinguished 92% of LQTS from controls Start of recovery QTc >460 msec correctly identified 80% of LQT1 and 92% of LQT2
• Aziz PF CAE 2011 (368) • <u>21956039</u>	Study type: Single center retrospective Size: 158	Inclusion criteria: LQT1, LQT2, and controls undergoing cycle ergometer exercise testing Exclusion criteria: N/A	1° endpoint: QTc changes during exercise in LQTS Results: LQT1 and LQT2 with sig increase in QTc during recovery. Recovery delta QTc- (7 min-1 min) > 30 msec predicted LQT2	• QTc >460 msec at 7min of recovery predicted LQT1 or LQT2 vs controls with 96% sensitivity, 86% specificity, 91% PPV.
 Laksman ZW JCE 2013 (369) 23691991 	Study type: Single center retrospective Size: 123	Inclusion criteria: LQT1 patients undergoing exercise testing; 28% with C-loop mutations Exclusion criteria: N/A	1° endpoint: LQT1 patients undergoing exercise: assess QTc and response to BB Results: no difference in QTc response based on mutation location in LQT1; however, BB did not reduce QTc in c-loop mutation patients	LQT1 patients with c-loop mutations did not increase QTc with exercise BB reduced supine, standing and peak exercise QTc
• Sy RW Heart Rhythm 2011 (370) • 21315846	Study type: single center retrospective 33% presented <21 y Size: 27	Inclusion criteria: 27 patients with CPVT Median age 35 y 65% female CA 33%, syncope 56%, asymptomatic 11% ICD's in 15 patients with CA or recurrent syncope on b-blockers; Exclusion criteria: N/A	1º endpoint: CPVT outcomes: recurrent syncope, death or appropr shocks Results: followup 6.2±5.7y 63% exercise induced, 83% adrenalin induced; polymorphic VT more common than bidirectional. SVT in 26%, (AF in 3, focal LA tach in 1) caused ICD shocks	SVT occurred frequently (AF) and caused ICD shocks Patients presenting <21 y appeared to have increased risk death during followup Two deaths despite medications and ICD therapies

			2 deaths, both in patients with ICD's: one VF triggered by inappropriate shocks; one incessant VT not-responding to ICD 4 appropr shocks; 19% inappropriate shocks 5 y risk ACE on b-blockers 4.9% all CPVT, 5.8% for RYR2 carriers	
Spazzolini C JACC2009 (371)19695463	Study type: Retrospective International	Inclusion criteria: LQTS patients with ECG during first year of life	1° endpoint: Outcome of LQTS patients with ACA during infancy	ACA in first year of life are at very high risk of subsequent ACA/SCD during next 10 y of life
	LQTS Registry Size: 212	Exclusion criteria: N/A	Results: 70 patients events <1y: 20 SCD, 16 ACA, 34 syncope. Risk of ACE: HR <100, QTc ≥500 msec ACA in first year: HR: 23.4 for ACA/SCD in first 10y. BB reduced risk in patients with syncope but not ACA/SCD	BB not effective in preventing SCD/ACA in patients with prior ACA
● Zhang C, et al. JCE 2015 (372) ● <u>26149510</u>	Study type: LQT registry retrospective Size: 548	Inclusion criteria: LQTS patients 1979-2003, with followup to 2015, treated with Attention deficit/hyperactivity disorder (ADHD) medications Exclusion criteria: other LQT; patients with ICD's	1° endpoint: Identify major ACE (syncope, ACA, SCD) in patients with LQTS treatment with ADHD meds; mean followup 7.9y Results: 62% cumulative probablility of ACE in ADHD group, vs 28% in non-ADHD group. Time dependent use increased risk, HR: 3.07, p=0.03; increased riks in males, HR: 6.8	ADHD meds-stimulant or non- stimulants-associated with increased risk majory ACE, particularly in mlaes
• Choy et al. 1997 (373) • 9337183	Study type: Double-blind comparison of potassium infusion after quinidine and placebo sequentially in 12 healthy subjects.	Inclusion criteria: healthy subjects (12) and CHF (mean EF 17%) with agematched controls without CHF Exclusion criteria: N/A	1º endpoint: Effect on QTUc from KCl after quinidine or placebo. Results: KCl was IV, 0.5 mEq/kg (to maximum of 40 meEq) over 60-70 min resulted in normalization of quinidine-induced and CHF-related QTU prolongation	"Potentially arrhythmogenic QT abnormalities during quinidine treatment and in CHF can be nearly normalized by modest elevation of serum potassium"

	Also, study on QTU in patients with CHF and age-matched controls who receive IV KCI Size: 12 healthy, 8 CHF plus 8 age-matched			
Kannankeril P Pharmacol Rev 2010 (374)◆ 21079043	controls Study type: Review Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: N/A Results: N/A Lists drugs associated with torsades de pointes Genetic background-polymorphisms- may contribute to risk	Associated factors for drug induced LQTS; bradycardia, hypokalemia; hypomagnesemia by modulating L-type calcium channel function Drugs prolonging QT: block rapid component of delayed rectifier potassium current, IKr

Data Supplement 41. Nonrandomized Trials Related to Catecholaminergic Polymorphic Ventricular Tachycardia – (Section 7.9.1.2.)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Hayashi M Circ 	Study type:	Inclusion criteria: CPVT 50	1° endpoint: ACE in CPVT patients:	 Higher risk for lack of BB, Hx ACA
2009 (347)	single center	probands, 51 family	syncope, ACA, approp ICD shocks, SCD	 Prior syncope not associated with
• <u>19398665</u>	retrospective	members, age at dx 15±10		increased risk
		у.	Results: followup 7.9 y	
	<u>Size</u> : 101	Symptoms 60% (61	8 y total event rate 32% total, 27% with b-bl,	
		patients), all probands, 22%	58% without b-bl. 8 y event ACA/SCD 13% (8	
		family members	patients)	
		93% symptomatic <21 y old		

● Roston TM Circ Arrh EP 2015 (375) ● 25713214	Study type: multicenter retrospective cohort Size: 226	77% detection of mutations: RYR2 CASQ2 Exclusion criteria: N/A Inclusion criteria: age <19 y dx with CPVT Symptomatic 78%; 211 treatment with meds: B-blockers: 91% AICD: 54% Flecainide 24%, calcium channel blockers LCSD 8% Exclusion criteria: N/A	Increased risk: Absence BB HR: 5.54; 95% CI: 1.17–16.15, p=0.003), Hx ACA HR: 13.01; 95% CI: 2.48–68.21, p=0.002); younger age at dx (HR: 0.54/decade; 95% CI: 0.33–0.89, p=0.02) 32% with events on b-blockers did not take meds on day of event. Nadolol: ACE 19% 1° endpoint: ACE during followup in CPVT Treatment failure: syncope, CA Results: Median followup 3.5y (1.4–5.3 y) Deaths 3% (6 patients): 2 patients receiving b-blocker; one previously asymptomatic B-blockers: 25% recurrent events; 2% deaths Flecainide: 38% persistent VA, 16% failure (non-complaince, suboptimal dose); LCSD: 18 patients: 16% complications; 67% asymptomatic after rx; 11% recurrent VT, 5% CA (1 pt) ICD: electrical storm 18%; 46% approp shocks, 22% inappropriate shocks; complications 23%	CPVT 25% recurrent events on BB—compliant, non-compliant, inadequate dosing High complications with ICDs
◆ Chattha ISHeart Rhythm2010 (367)◆ 20226272	Study type: Retrospective single center Size: 75	Inclusion criteria: Exercise testing done on 3 groups: LQT1, LQT2, and controls Exclusion criteria: N/A	1° endpoint: Genotypic specific changes in QTc with exercise Results: Changes in QTc: LQT1: longer corrected QTc at peak and early recovery LQT2: QTc increased during recovery Controls: normal QTc during recovery	 End of recovery QTc >445 msec, usually at 4 min of recovery, distinguished 92% of LQTS from controls Start of recovery QTc >460 msec correctly identified 80% of LQT1 and 92% of LQT2
Wilde AA NEJM2008(376)18463378	Study type: Single center observational Size: 3	Inclusion criteria: CPVT patients, treatment BB, multiple ICD shocks: LCSD performed RYR2 mutations	1° endpoint: CPVT patients and LCSD: ACE after ICD implantation Results: no symptoms after LCSD	LCSD does not preclude ICD implantation LCSD Reduced symptoms and shocks

		Exclusion criteria: N/A		LCSD recommended in CPVT patients with symptoms on b-bl therapy
• Li J ATS 2008 (377) • <u>19022016</u>	Study type: Single center retrospective	Inclusion criteria: 11 patients LCSD for LQT 2002- 2007, BB not tolerated or	1º endpoint: LQTS treatment with LCSD: outcomes	 LCSD reduced syncopal episodes by 82%; Mortality: 9.1%
	<u>Size</u> : 11	refractory; followup time 37±26 mos. Exclusion criteria: N/A	Results: 7/11 no symptoms; 2 recurrent syncope; 1 SCD	
• Collura CA Heart Rhythm 2009 (365)	Study type: single center retrospective	Inclusion criteria: LCSD 2005-2008, video-assisted. Mean age 9.1±9.7 y, (2mo-	1° endpoint: LCSD for LQTS and CPVT: ACE followup mean 17 mos	LCSD reduced shocks in 72% during short term followup
• <u>19467503</u>	<u>Size</u> : 20	42y) LQTS 12 geno +, 4 geno – LQT; CPVT 2 Exclusion criteria: N/A	Results: 2° prev: ICD shocks eliminated 72%; 18% ineffective 2° prev 11, mean QTc 549 msec; 1° 9, mean QTc 480 msec.	• 18% ineffective
• Schneider HE Clin Res Cardiol 2013 (364) • 22821214	Study type: Retrospective single center	Inclusion criteria: LQT 5, CPVT 5, with recurrent syncope, VT, ICD shocks or ACA on BB.	1° endpoint: LCSD for LQT, CPVT: ACE LOS 3–9 d; followup median 2.3y (0.6–3.9 y)	 Reduction in ICD discharges 10% ACA Minor comps frequent
	<u>Size</u> : 10	Mean age 14 y (3.9–42 y). 2 ICD pre-surg; 6 ICD at LSCD. Exclusion criteria: N/A	Results: Decrease in arrhythmia burden, ACE No ICD discharges for VT ACA: 10% Horner syndrome 70%, 20% pleural effusion	
Hofferberth SCJTCS 2014 (366)24268954	Study type: single center retrospective Size: 24	Inclusion criteria: LCSD 2000-2011. LQTS 13 (median age 8 y), CPVT 9 (age 17 y), VF 2 (age 23 y). Exclusion criteria: N/A	1° endpoint: ACE after LCSD: LQTS, CPVT, VF Median followup 28mo, (4–131 mo) Results: 73% marked reduction in arrhythmia burden; 55% arrhythmia free. 27% persistent symptoms	LCSD recommended in patients with recurrent symptoms refractory to meds 27% recurrent symptoms, non-responders
Van der Werf CJACC 2011 (378)21616285	Study type: multicenter retrospective Size: 33	Inclusion criteria: Flecainide treatment for genotype positive CPVT patients, 8 European centers prior to 12/2009;	1º endpoint: reduction of VA in CPVT with flecainide during exercise testing. Median followup 20mo	• Flecainide suppresses VA in CPVT, up to 76%

		Exclusion criteria: N/A	Results: Median age 25 y (7–68y); 73% females 29/33 underwent exercise testing Median dose flecainide in responders 150 mg (100–300mg). 76% partial or complete suppression VA with exercise (p<0.001); no worsening of VA Appropr ICD shock in 1 pt, low serum flec level	
● Watanabe H Heart Rhythm 2013 (379) ● 23286974	Study type: Single center retrospective Size: 12	Inclusion criteria: Genotype negative CPVT with VA, syncope or ACA Exclusion criteria: N/A	1° endpoint: Flecainide efficacy for suppressing VA in CPVT during exercise testing Results: Mean followup 48 mo Reduced arrhythmias 8/12 patients, prevented VA 7/12 2/12 ACA/SCD, non-compliance	• Flecainide suppressed VA on exercise testing in 75% of patients
● Priori S circ 2002(342) ● <u>12093772</u>	Study type: multicenter retrospective Size: 148	Inclusion criteria: CPVT probands (30) underwent genotyping; and 118 family members screened Exclusion criteria: N/A	1° endpoint: CPVT genotype RyR2 vs outcome Results: RyR2 identified in 47% of probands, and 9 family members, 4 clinically silent 71% of gene positive were de novo; 29% familial: of familial, 75% asymptomatic, 55% VA on exercise test; 44% no syx or VA on exercise testing RyR2: events at younger age, males increased syncope Genotype positivity did not correlate with VA, SCD, beta-bl rx	Genotype positive RyR2 did not correlate with VA, SCD, or response to BB

Data Supplement 42. Nonrandomized Trials Related to Brugada Syndrome – (Secction7.9.1.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
• Gehi AK, et al. JCE	Study type: Meta-	Inclusion: Publications	1° endpoint: Identify risk predictors of	BrS ACE risk increased with
2006 (333)	analysis: retrieved	1/1990-3/2005 on	adverse natural history in patients with	prior syncope or SCD, RR: 3.24
• <u>16836701</u>	30 prospective	prognosis of patients	Brugada ECG	• Males, RR: 3.47
	studies on Brugada	with a Brugada ECG:		Spontaneous type 1 ECG, RR:
	ECG	Prospective cohort	Results:	4.65
		studies, >10 subjects,	Risk increased with prior hx syncope or	
	<u>Size</u> : 1545	primary data on syncope,	ACA, spontaneous type 1 Br ECG, and male	
		SCD, ICD shocks;	gender	
		followup >6 mo and		
		>90% followup	NOT sig risk factors: Fam hx SCD	
			SCN5A mutation, or inducibility by PES:	
		Exclusions: non-English;	(not a risk factor but heterogeneity of	
		presence of cardiac	studies)	
		disease		
• Somani R, et al. HR	Study type:	Inclusion criteria:	1° endpoint: Provocation of Brugada ECG	 Procainamide infusion provoked
2014 (380)	Multicenter	CASPER study of	with procainamide infusion 15 mg/kg,	Brugada ECG changes in ~7% of
• <u>24657429</u>	prospective	probands and first	maximum 1 gm	CASPER population.
		degree relatives of		
	<u>Size: 174</u>	Unexplained cardiac	Results: Mean age 47 yrs	
		arrest, SCD <60 y, VT or	Procainamide: increased HR, prolongation	
		VF undergoing	of QT.	
		cardioversion or	Brugada ECG provoked in 12/174 = 6.9%	
		defibrillation, syncope	10/12 pts with ECG changes had SCN5A	
		with polymorphic VT	mutation.	
		Exclusion criteria:		
		decreased LVEF, HCM,		
		CHD, overt Brugada ECG		
		pattern, prolonged QTc		
 Mizusawa Y, et al. 	Study type:	Inclusion criteria:	1° endpoint: compare effects of fever and	• 3 aymptomatic patients
HR 2016 (381)	multicenter	Brugada S pts with fever	drugs on BrS ECG	developed VF/SCA during
• <u>27033637</u>	retrospective	88 asymptomatic (79%)	Subgroup of asymptomatc pts, (N=52),	followup; 1/3 with spontaneous
		26% SCN5A mutation	serial ECG's	BrS ECG,

	<u>Size</u> : 112	Mean age 46 y	followup	
		76% males	Results: fever shortened PR, drug	Paper is hard to interpret
			challenge prolonged PR and QRS	
		Exclusion criteria: N/A		
			Drug challenge in 36 pts: ajmaline 24,	
			pilsicainide 7, flecainide 5	
• FINGER	Study type: Multi-	Inclusion criteria:	1° endpoint: ACE outcomes in BrS	Low event rate in asymptomatic
 Probst V Circ 2010 	center registry, 11	Brugada Syndrome		patients 0.5%/y.
(343)	centers in Europe	ECG spont (45%) or with	Results: PES performed in 62%: 41%	Inducibility w PES or family Hx
• <u>20100972</u>		drug challenge.	positive, higher in symptomatic patients	SCD or SCN5A mutation not
	Size: 1029	Median 45 y (35-55).	46% vs 37%, p=0.02.	predictors of ACE
		Hx ACA 6%, syncope 30%,	PES performed in 369 asymptomatic	Predictors of ACE: symptoms,
		asymptomatic 64% (654	patients: 37% positive (137/369); 85%	ACA, syncope, presence of ICD,
		patients).	(117/137) inducible asyx patients had ICD	spont type 1 ECG.
		SCN5A positive 22%.	implanted	Among asymptomatic patients:
		·	ICD's implanted: 433/1029 patients (42%):	37% positive PES; of these 85%
		Exclusion criteria: N/A	of 433: 54 ACA (12.5%), 208 syncope	had ICD implanted.
			(48%), 171 asymptomatic (39%). 118/171	ICD implantation in
			asymptomatic patients with ICD (69%)	asymptomatic patients was
			implanted due to positive EPS.	significant in multivariable
				analysis as predictor of ACE:
			ACE 51: approp ICD shocks 44, SCD 7.	HR:10.1; 95% CI: 1.7–58.7,
			Mean ACE rate 1.6%/y: 7.7% in patients w	p=0.01).
			Hx ACA;1.9% w prior syncope; 0.5% in	No independent predictive
			asymp patients	value of PES (p=0.09), males
			Predictors: symptoms (p<0.001): ACA (HR:	(p=0.42, spont type 1 ECG
			11; 95% CI: 4.8–24.3, p<0.001), syncope	(p=0.38) age (p=0.97)
			(HR: 3.4; 95% CI 1.6–7.4, p=0.002),	
			ICD implantation (HR: 3.9; 95% CI: 1.4–	
			10.6, p=0.007).	
			spont type 1 ECG (HR: 1.8;95% CI: 1.03–	
			3.33, p=0.04);	
			NOT predictive: gender, family Hx SCD,	
			+PES (p=0.48), presence SCN5A mutation	
Hiraoka M JE 2013	Study type:	Inclusion criteria:	1° endpoint: Brugada S ages 18-35 y at	Brugada outcomes in young
(349)	Prospective single	Brugada S patients ages	dx, outcomes of VF or SCD	adults' vs presenting symptoms:
• 23702150	center	18–35 y	Followup 43±27 mos.	

	<u>Size</u> : 69	Mean age 30±6 y No genetic testing Exclusion criteria: N/A	Results: Based on presenting symptoms: VF 42%, syncope 12%, asymptomatic 2.5% Not predictive: gender, family Hx SCD, abnl SAECG, spontaneous vs drug-induced ECG, inducible VT/VF All ages 460 patients symptoms at presentation vs outcomes: VF 8.4%/y, Syncope 1.7%/y, asymptomatic 0.3%/y	• Events: VF 11.2%/y, syncope 3.3%/y, asymptomatic 0.7%/y
 PRELUDE Priori SG et al. JACC 2012 (382) 22192666 	Study type: Prospective registry Size: 308	Inclusion criteria: Age >18 y, BrS type 1 ECG spont (56%, 171/308) or drug-induced, without prior ACA; 21% with prior syncope (65 patients: 16/65 {25%} >1 syncope). SCN5A positive 20% of tested patients. (f-QRS = 2 or more spikes within QRS leads V1-V3: present 8.1%) Exclusion criteria: N/A	1° endpoint: Predictive accuracy of PES for sustained VT/VF or approp ICD shock in Brugada S Results: PES performed at enrollment; followup every 6 mo. Mean age 45±12 y. Cardiac arrest 4.5% (14/308), 13/14 resuscitated with ICD, EMS 1. PES positive in 41% (126/308); of these: single stimulation 5.5%, double 44.5%, triples 50%. ICD's implanted in 137 patients (78% of inducible patients {98/126} and 21% of non-inducible patients {39/182}. Annual event rate 1.5%: Multivariable predictors: spont type 1 ECG and Hx of syncope (HR: 4.20; 95% CI: 1.38–12.79, p=0.012), Ventricular ERP < 200 msec (HR: 3.91; 95% CI: 1.03–12.79, p=0.045), QRS fractionation (HR: 4.94′ 95% CI: 1.54–15.8, p=0.007).	 PES did not predict high risk Predictors: spontaneous type BrS ecg AND symptoms; f-QRS, VERP <200 msec VERP <200 msec was predictive: this data would only be obtained at EPS. NOTE that + PES used in decision to implant ICD's: 13/137 patients (9.5%) with ICD's were resuscitated with ICD. Note 1/14 patients with VF had only spont type 1 ECG and no prior syncope, neg family hx, neg EPS, VERP >200 msec but + SCN5A mutation and received ICD after EPS. Only 1 pt without ICD had ACA: pt had spont type 1 ECG, VRP < 200 msec, and fQRS.

● Casado-Arroyo R JACC 2016 (383) ● <u>27491905</u>	Study type: Single center retrospective Size: 447	Inclusion criteria: Compare BrS early period ≤2002 vs. 2003-2014 Early: 165 Latter: 282 ICD's: 48% early, 44% latter	Positive PES not predictive (HR: 1.03; 95% CI: 0.34–3.16, p = 0.96) 1° endpoint: Long term trends Brugada S EPS Results: Early group more severe phenotype ACA 12% early, 4.6% latter, p =.005 PES positive 34% early, 19% latter,	Brugada s: changes over time Decrease in ACA over time as presentation PES predictive in early group but not latter
		Exclusion criteria: N/A	p<0.001 Spontaneous type 1 ECG: early 50%, latter 26%, p=0.0002 Recurrent VA: early 19%, latter 5%, p=0.007	
● Belhassen B et al, CAE 2015 (384) ● <u>26354972</u>	Study type: retrospective single center Size: 96	Inclusion criteria: Brugada S patients undergoing PES and treated with Class IA drugs Mean age 39±16 y 88% males Exclusion criteria: N/A	1° endpoint: Brugada S outcomes treated with IA drugs Mean followup 113±71 mo Results: Prior ACA 10, syncope 27, 59 asymptomatic PES: VF induced in 69% (100% of prior ACA, 74% of syncope, 61% of asymptomatic), PES RVA and RVOT in most, ≤3 extrastimuli. PES positive in 77% males, 9% females; in 88% with spont ECG vs 59% without spont ECG. Tested (60 patients) w quinidine (54), disopyramide (2), both (4). Quinidine prevented re-induction of VF in 90%; disopyramide 50% 30 Patients with neg PES were not treated: all remained asymptomatic. ICD implanted in 20 patients after PES (30% of inducible VF patients):	Brugada S: Class IA meds: No deaths on quinidine; 40% of ACA patients remained arrhythmia free off AAD (3 treatment with quinidine for many years then discontinued rx 38% side effects

				
			4 died of non-cardiac causes.	
			Recurrent syncope: vasovagal 10, non-	
			arrhythmic 2.	
			2/96 had recurrent arrhythmia: both with	
			prior ACA; both discontinued quinidine	
			and had VF storms.	
 Nademanee K et al. 	Study type:	Inclusion criteria: 9	1° endpoint: mapping and ablation of	BrS shows delayed
Circ 2011(385)	Retrospective single	Brugada patients,	RVOT in Brugada	repolarization over anterior RVOT
• <u>21403098</u>	center	symptomatic with	_	epicardium.
		recurrent VF	Results: Anterior aspect of RVOT	Ablation normalizes ECG and
	Size : 9		epicardium with late fractionate egms	reduces VT/VF
		median 4 episodes/mon;	Ablation successful in 78% (7/9) VF not	
		median age 38 y; all with	inducible, normalization of Brugada ECG in	
		ICD's	89%	
			Followup 20±6 mo, no recurrent VT/VF in	
		Exclusion criteria: N/A	all patients off meds (except one on	
			amiodarone)	
Sunsaneewitaykul B	Study type:	Inclusion criteria: BrS	1° endpoint: Ablation of zone of late	Ablation of late activation zone
et al. JCE 2012 (386)	Retrospective single	patient's EP mapping and	activation in RVOT	in RVOT may suppress VF storm
• <u>22988965</u>	center	ablation. between 8/07-		and reduce VF recurrence
		12/08	Results: Patients with VF storm: ablation	
	<u>Size</u> : 10	VF storm (4) and no VF	modified Brugada ECG in 75% (3/4) and	
		storm (6)	suppressed VF in all 4 during followup of	
		Exclusion criteria: N/A	12–30 mo. RBBB in ¼ patients	
• Zhang et al. HR 2016	Study type: Two	Inclusion criteria: BrS	1° endpoint: Brugada mapping and	Ablation epicardial RVOT results
(387)	center	patients, 9 spont, 2	ablation of RVOT epicardium	in normalization of Brugada ECG
• <u>27453126</u>	retrospective	induced	•	and reduces VT/VF
			Results: Normalization of spont Brugada	ICD needed despite ablation
	<u>Size</u> : 11	Exclusion criteria: N/A	ECG pattern in all	
			73% free of VT/VF at 25±11 mo	
Brugada J et al. Circ	Study type:	Inclusion criteria: BrS,	1° endpoint: Epicardial mapping and	Ablation may eliminate
A E 2015 (388)	Single center	spont ECG, median age	ablation RVOT in Brugada	spontaneous Brugada ECG pattern
• <u>26291334</u>	retrospective	39 y	Results: Ablation resolved spontaneous	
	<u>Size</u> : 14	Exclusion criteria: N/A	Brugada ECG	
			5 mo, no recurrence	

McNamara DA	Study type:	nclusion criteria:	1° endpoint: All-cause mortality, ACE in	Decreased mortality in patients
Cochrane Database	Cochrane search for	patients >18 y, ion	BrS and ICD	randomized to ICD in BrS: 9-fold
Syst Rev 2015 (389)	randomized trials of	channelopathies,		reduction
	ICD vs medical	randomized to ICD vs	Results: 2 studies identified, Brugada	
	treatment ion	medical rx, identified 2	Syndrome, same authors.	Brugada patients with prior
	channelopathy	studies including Brugada	ICD: assoc with decreased risk mortality	ACA: ICD treatment reduced
		patients	RR: 0.11; 95% CI: 0.01-0.83)	mortality
	<u>Size</u> : 86		Adverse events higher in ICD: 28% vs 10%,	
		Exclusion criteria: N/A	RR: 2.44; 95% CI: 0.92-6.44)	
			Non-fatal ACE higher in ICD: 26% vs 0%,	
			RR: 11.4; 95% CI: 1.57-83.3)	
Delise P et al. EHJ	Study type: Multi-	Inclusion criteria: Type 1	1° endpoint: predictors in Brugada S of	Combining ≥2 risk factors was
2011 (348)	center prospective	Brugada ECG:	ACE (approp ICD shocks, sudden death)	useful risk stratification:
• <u>20978016</u>		spontaneous 54%, drug-		Spontaneous type 1 ECG
	<u>Size</u> : 320	induced 46%.	Results: Median followup 40 mos (IQR	Family Hx sudden death, syncope,
			20–67)	positive PES
		Median age 43 y.	5.3 % MACE (17 patients): VF on ICD (14),	MACE occurred only in patients
		Males 81%	sudden death3	with ≥2 risk factors
			MACE occurred in 10.4% of symptomatic	MACE event rates:
		Asymptomatic 66%,	and 2.8% of asymptomatic patients	3.0%/pt/yr in symptomatic,
		syncope 33%	(p=0.004)	0.8%/pt/yr in asymptomatic
			ICD's implanted in 34%(110 patients)	PES can be useful in patients
		No prior ACA	PES performed in 245 (76%): positive in	with spontaneous type 1 ECG and
			50% of symptomatic and 32% of	no other risk factors; may be
			asymptomatic patients.	helpful to identify low risk
		Exclusion criteria: N/A	MACE in 14% of positive PES, 0% of	patients
			negative, 5.3% of no EPS: positive	
			predictive values 14%, negative pred value	
			100%	
			VF occurred in 15.5% of patients with	
			inducible VF using doubles, 8.6% of triples	
			Combination of risk factors most	
			significant: spont ECG, family Hx sudden	
			death, syncope, positive EPS: no events	
			occurred in patients without any of above	
			or with only one risk factor.	

			Spontaneous type 1 ECG: if additional risk factors, 30% MACE (p<0.001)	
Sieira J et al. Circ	Study type: Single	Inclusion criteria:	1° endpoint: Event-free survival in	Brugada S: Positive PES
Arrhyth EP 2015 (390)	center	Asymptomatic patients	Brugada S.	predictor of adverse events, HR:
● <u>26215662</u>	retrospective	type 1 BrS ECG, spont	Mean followup 73±59 mo.	9.1.
20213002	retrospective	(11%) or drug-induced.	Wiedli followup 73±35 filo.	• Event free survival 95.4% at 10
	Size: 363	Mean age 40.9±17 y,	Results: PES positive in 10% (32 patients)	and 15 y
	<u>5126</u> . 505	55% males.	ICD's implanted 17% (61 patients), 6	and 15 y
		321 patients underwent		
		PES.	approp rx.	
		-	Event free survival: 99% 1 y, 96% at 5 y,	
		22% genotype + SCN5A.	95.4% at 10 and 15 y.	
		Fuelveion mitorio, N/A	Arrhythmic events: 9, annual incidence	
		Exclusion criteria: N/A	0.5%	
			Multivariate analysis: Positive PES only	
			significant predictor (HR: 9.1, 95% CI: 1.8–	
			46.8, p<0.01)	
 Konigstein M et al. 	Study type:	Inclusion criteria:	1º endpoint: Outcomes of non-cardiac	Non-cardiac drug induced type
Heart Rhythm 2016	multicenter	Brugada database non-	drug-induced BrS	1 Brugada ECG:
(391)	retrospective	cardiac drug-induced		• 26% VF/pulseless VT
• <u>27131070</u>		Brugada patients; each	Results: By definition: "spontaneous type	• 13.5% mortality
	<u>Size</u> : 74	with 5 healthy controls	1" ECG:	
		Mean age 39±16 y.	49% psychotropic meds (lithium,	
		77% males	amitriptyline), 27% anesthetic/analgesic,	
			24% other; of total, 20% propofol	
		Exclusion criteria: N/A	occurred predominantly in adult males,	
			frequently due to drug toxicity, occurs late	
			after onset of treatment	
			Off-drug ECG's: 33% type IIC Brugada ECG	
• Sroubek J et al. Circ	Study type:	Inclusion criteria: BrS	1° endpoint: CA or appropriate ICD shock	Positive PES associated with
2016 (392)	Systematic review	patients without ACA	in Brugada S.	increased risk ACE during
• <u>26797467</u>	and pooled analysis	who underwent PES		followup; induction with 1–2
	of prospective	Mean age 44.9 ±13.3 yrs;	Results: PES induced sust VEA (40%).with	extrastimuli associated with
	observational	79% male; 53% spont	up to triple extrastimuli in 527 patients	higher risk.
	studies	type 1 ECG	(2%, single; double 18%; triples 28%	Specificity of induction as risk
			AICD's implanted in 576 patients: 77% of	predictor decreased with triple
	Size: 8 studies,	Prior Syncope 33%;	ICD implanted in PES positive patients	VEST
	1312 patients			

	Exclusion criteria: N/A	65 patients experienced ACE during	Negative PES did not identify
		median followup 38 mo: 5 CA, appropriate	low risk individuals
		ICD shock 60.	 Annual event rates varied based
		Positive PES assoc with increased risk ACE:	on syncope, spontaneous type 1
		HR: 2.66, 95% CI: 1.44–4.92, p <0.001);	ECG, and positive PES:
		greatest risk in those induced with single	 Asymptomatic patients with
		(HR: 1.99, 95% CI: 0.52–7.68, p=0.32); or	spont type ECG and positive PES:
		double extrastimuli (HR: 2.55, 95% CI:	annual incidence 1.70 (0.73–3.35)
		1.34–4.88, p=0.005), vs. triples (HR: 2.08,	 Aymptomatic patients with drug
		95% CI: 0.98–4.39, p=0.06)	ind ECG and + PES: annual
		Clinical variables useful: annual event	incidence 0.45 (0.01–2.49)
		rates for no syncope, drug induced type 1	Clinical factors important
		ECG: 0.27% (95% CI: 0.07–0.68); Positive	determinants of risk: syncope;
		syncope and spont type 1 ECG 3.22%;	spont type 1 ECG
		(95% CI: 2.23–4.5)	 Asymptomatic patients with
		Highest risk: + syncope, spont type 1 ECG:	drug induced ECG patterns: "PES
		neg PES HR: 2.55; 95% CI: 1.58–3.89;	may not be warranted"
		positive PES HR: 5.6; 95% CI: 2.98–9.58	Symptomatic patients:
		Annual incidence rates of CA or VT:	increased risk with positive PES,
		Asymptomatic, spont type 1 ECG: annual	but risk exists with neg PES:
		events 1.04 (95% CI: 0.61–1.67): positive	higher if spont type 1 ECG: ? value
		PES 1.70 (95% CI: 0.73–3.35); negative PES	of PES
		0.78 (95% CI: 0.36-1.47)	
		Asymptomatic, drug ind ECG: overall 0.27,	
		neg PES 0.23 (95% CI: 0.05–0.68), pos PES	
		0.45 (95% CI: 0.01–2.49)	
		Spont type 1 ECG: asymptomatic, with	
		neg PES: annual event incidence 0.78%	
		(95% CI: 0.36–1.47); pos PES 1.70 (95% CI:	
		0.73–3.35).	
		Prior syncope and neg PES 2.55% (95% CI:	
		1.58–3.89); Positive PES 5.60 (95% CI:	
		2.98–9.58)	
		Drug induced ECG: asymptomatic: neg	
		PES 0.23% (95% CI: 0.05–0.68); positive	
		PES 0.45 (95% CI: 0.01–2.49); prior	
		syncope and negative PES 1.29 (95% CI:	
I.	1	, , ,	

			0.52–2.67); positive PES 1.96 (95% CI: 0.40–5.73)	
• Sieira J et al. Heart 2016 (393)	Study type: Single center	Inclusion criteria: Women with BrS,	1° endpoint: Brugada outcomes in women, mean followup 73 mo	BrS Females: Less severe than males, less
• <u>26740482</u>	retrospective Size: 228	spontaneous 8%, or induced	Results: Mean age 41.5± 17.3 y women = 42% of Brugada population	spont type 1 ECG • Event rate 0.7%/y (males 1.9%/y)
		Exclusion criteria: N/A	Spontaneous type 1 ECG 7.9% vs males 23%, p<0.01 ICD implanted in 28%, event rate 0.7%/y vs 1.9% males	Higher risk: prior ACA, SND
 Priori S et al. Circ 2002 (394) 11901046 	Study type: Multicenter retrospective	Inclusion criteria: Brugada S with ECG changes, spont (51%) or induced	1º endpoint: Brugada risk stratification for SCD PES performed in 86	Multivariable risk predictor: spontaneous ST elevation V1-V3 and Hx of syncope Syncope without spontaneous
	<u>Size</u> : 200	130 probands Exclusion criteria: N/A	Results: SCN5A identified in 22% probands, 46% of family members Risk analysis: gender; ECG, family hx, mutation status, symptoms Syncope without ST elevation on baseline ECG: not a risk Syncope AND ST elevation: increased risk SCD, HR: 6.4, p<0.002	ST elevation not a risk factor • PES not predictive Mutation carriers without phenotype: low risk
 Fauchier L et al. IJC 2013 (395) 23642819 	Study type: meta- analysis Size: 1789	Inclusion criteria: Brugada S patients undergoing PES ACA 11%, syncope 31%, asymptomatic 57% Exclusion criteria: N/A	1º endpoint: utility of PES in Brugada S: adverse event = sust VT/VF, appropriate ICD shock, sudden death) Results: Inducible VT/VF associated with higher risk arrhythmic event in patients with prior syncope (OR: 3.30, 95% CI: 1.68–6.51, p=0.0006) and in asymptomatic patients (OR: 4.62, 95% CI: 2.14–9.97, p<0.0001)	Inducibility of VT in Brugada S patients with syncope or asymptomatic may identify an increased risk of subsequent events
 Rodriguez-Manero M et al. Heart Rhythm 2016 (396) 26538325 	Study type: retrospective multi center	Inclusion criteria: BrS patients with implantable ICD 1993-2014	1° endpoint: ICD usage and comps in Brugada S. followup mean 69 ± 54 mo Results: 13.7% at least one approp rx	BrS: ■ ICD approp use in ~14% ■ Monomorphic VT in 4.2%

	<u>Size</u> : 834	mean age 45±13.9 y	Monomorphic VT recorded in 4.2% (35	• Successful ablation in 80% of 10
		24% women	patients), sensitive to anti-tach pacing in 43%	patients with outflow tract VT
		Exclusion criteria: N/A	Monomorphic VT from RVOT 6, LVOT 2,	
			BBR 2 successfully ablated in 80%	
• Sacher F et al. Circ	Study type:	Inclusion criteria: BrS	1° endpoint: ICD outcomes in BrS,	Approp ICD shocks more
2013 (397)	Retrospective	patients with ICD	followup mean 77±42 mo	prevalent in symptomatic BrS;
• <u>23995538</u>	multi-center	Mean age 46±13 y		Asymptomatic patients had
		ACA 31, syncope 181,	Results: appropriate shocks 12%,	approp shocks 1%/y
	<u>Size</u> : 378	asymptomatic 166	Shock rates highest for ACA patients	Optimal programming may
			(48%), syncope 19%, 12% asymptomatic	reduce inapprop shocks
		Exclusion criteria: N/A	Inaapropriate shocks 24%; due to lead	Lead failure a significant
			failure, SVT, T wave oversensing or sinus	problem
			tach. Lead failure 29%	
• Rosso R et al. Isr	Study type:	Inclusion criteria: BrS	1° endpoint: Followup efficacy and comps	Appropriate shocks occurred
Med Assoc J 2008	retrospective multi-	patients with ICD	of ICD in Brugada;	only in symptomatic patients with
(398)	center, 12 centers,	Mean age 44.1 y	followup 45±35 mo	prior ACA
• <u>18669142</u>	1994-2007			VF inducibility did not predict
		Exclusion criteria: N/A	Results: Symptoms 71%: ACA 19%,	approp shocks
	<u>Size</u> : 59		syncope 53%, inducible VF in	High complication rate
			asymptomatic patients 24%, family Hx SCD 0.5%.	
			Appropriate shocks 8.4%, all with prior	
			ACA	
			Comps 32%	
			Inappropriate shocks 27%	
			Psych problems 13.5%, mainly related to	
			inappropriate shocks	
• Conte G et al. JACC	Study type:	Inclusion criteria: BrS	1° endpoint: Long term followup ICD in	ACA and VT inducibility on EPS
2015 (399) • 25744005	Prospective single center	patients with ICD's	BrS, mean followup 84±57 mo	were multi-variate predictors of appropriate shocks
25744005	Conto	Exclusion criteria: N/A	Results: Spontaneous VA in 17%.	Appropriate shocks occurred in
	Size: 176	ZASIMSION GITCHIA. N/A	Appropriate shocks 15.9%	13% of asymptomatic patients
	5.23.		Inappropriate shocks 18.7%	25.7 5. asymptomatic patients
			Electrical storm 2.3%	
			SCN5A mutation (22%) did not correlate	
			with approp shocks	
	1		approp snoons	

• Miyazaki S et al. AJC	Study type: single	Inclusion criteria:	1° endpoint: Brugada S ICD outcomes	• Brugada S + ICD's:
2013 (400)	center	Brugada S patients with	Median followup 76 mo	Complications 37%
• <u>23433764</u>	retrospective	ICD		
		Mean age 48±12 y	Results: Complications 37%: device related	
	<u>Size</u> : 41	93% males	20%, inappropriate shocks in 24%	
			Appropriate shocks: 12%	
		Exclusion criteria: N/A		
• Takaqi M et al.	Study type:	Inclusion criteria:	1° endpoint: ACE documented VT or SCD	• ICD implantation in Brugada:
Heart Rhythm	retrospective single	Brugada S patients	in Brugada S with ICD	Higher events in IIa vs IIb
2014(401)	center	undergoing ICD	Mean followup 60±31 mo	Spontaneous type 1 ECG AND
• <u>24981871</u>		implantation,		syncope useful for identifying
	<u>Size</u> : 213	Mean age 53±14 y	Results: indications classified as	intermediate risk
		Males 93%	IIa (66): spontaneous type 1 ECG and Hx	
			of cardiac syncope, or	
		Exclusion criteria: N/A	IIb (147): spont or drug induced type ECG	
			and inducible VF by PES.	
			Event rates: Ila 12%, 2.2%/y;	
			IIb 3%, 0.5%/y p=0.01	

Data Supplement 43. Nonrandomized Trials Related to Early Repolarization "J-wave" Syndrome – (Secction 7.9.1.4)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Rosso R et al. JACC 	Study type:	Inclusion criteria:	1° endpoint: Assess frequency of ER on	J point elevation occurs more
2008 (398)	Retrospective	Idiopathic VF patients	ECG vs controls	frequently in idiopathic VF
• <u>18926326</u>	single center	compared with 123		patients than healthy controls
		age/gender matched	Results: ER more common among VF	Athletes intermediate frequency
	<u>Size</u> : 45	controls.	patients, 42% vs 13%, p=0.001	of J point elevation between
		Mean age 38±15 y, 71%	J point elev in inferior leads: 27% vs 8%,	normal adults and idiopathic VF
		male	p=0.006	patients
		2/45 dx with Brugada	J point elev in leads I-aVL 13% vs 1%,	 ST segment elevation or QRS
			p=0.009	slurring did not add diagnostic
		Exclusion criteria: N/A	J point elev in V4-V6 equal among	values
			groups, 6.7 vs 7.3%	

			Males more often had J point elev vs females; young athletes more frequent than controls but less than VF patients	
 Haissaguerre M, et al. JACC 2009 (402) 19215837 	Study type: multicenter cohort Size: 122	Inclusion criteria: Idiopathic VF survivors with ER assessed for recurrent VF All pts had AICDs implanted Mean age of diagnosis 39 y Exclusion criteria:	1° endpoint: Recurrent VF >3 episodes Results: overall 27% with multiple (>3 episodes) of recurrent VF Inducible VF 28% in entire cohort Pts with >3 episodes recurrent VF: inducible VF 48%, p<0.01, prior syncope 58%, p<0.001 compared with pts with <3 episodes of recurrent VF. Antiarrhythmic meds not highly effective in preventing recurrent VF 1 death due to refractory VF	Recurrent VF high: 40% with mult episodes in 27% Meds not effective other than quinidine or hydroquinindine (9 pts)
 Tikkanen JT ET AL. NEJM 2009 (403) 19917913 	Study type: retrospective community based screen of ECG's in Finnish population 1962-1972 Size: 10864	Inclusion criteria: ECG's obtained in general population reviewed, Exclusion criteria: N/A	1º endpoint: Death from cardiac causes; 2º: death from any cause and from arrhythmia before end of 2007; mean followup 30±11 y. Results: Prevalence J point elev of at least 0.1 mV: 5.8%: inferior leads 3.5 %, 70% male; Lateral leads 2.4%, 58% male J point elev at least 0.2 mV inferior leads 0.3%, lateral 0.3% Cardiac death: ER patients (RR: 1.28, 95% CI: 1.04–1.59, p=0.03); arrhythmia death J point elev 0.2 mV: cardiac death RR: 2.98, 95% CI: 1.85–4.92, p=0.01; arrhythmic death RR: 2.92, 95% CI: 1.45–5.89, p=0.01 QTc (RR: 1.2, 95% CI: 1.02–1.42, p=0.03) and LVH (RR: 1.16, 95% CI: 1.05–1.27, p=0.004) weaker predictors cardiac death	ER pattern in inferior leads of ECG is associated with an increased risk of death from cardiac causes in middle-aged adults ER transmural heterogeneity in vent repolarization, increases risk during cardiac ischemia

• Sinner MF et al.	Study type: 3	Inclusion criteria: 452	1° endpoint: Combined meta-analysis	Unable to reliably identify
Heart Rhythm 2012	community based	patients with ER	failed to reach genome wide significance	genetic variants predisposing to ER
(404)	ECG cohorts	underwent genome wide		
• <u>22683750</u>	<u>Size</u> : 7482	association studies	Results: ER: 70% male	
		Exclusion criteria: N/A		
Adhikarla C et al. AJC	Study type:	Inclusion criteria: ER >	1° endpoint: assess changes in ER on	ER pattern lost in over half of
2011 (405)	retrospective	0.1 mV with ST segment	ECG during 10 y followup	young male cohort over 10 y
• <u>21907947</u>	Screening ECG's on	elevation, J wave as		period, not related to death
	veterans for ER	upward defection, slurs as	Results: 122/244 patients had second	
	1987-99	delay on R wave	ECG	
		downstroke: first 250	ER persisted in 38%; most no longer filled	
	<u>Size</u> : 29281	patients selected. Mean	criteria.	
		42±10 y		
		Exclusion criteria: other		
		ECG abnormalities		
 Siebermair J, et al. 	Study type: Single	Inclusion criteria:	1° endpoint: Appropriate VF shocks on	Recurrent VF high: 43%
Europace 2016 (406)	center	Idiopathic VF survivors	ICD in idiopathic VF pts; compare ER to	Recurrent VF higher in ER
• <u>26759124</u>	retrospective	assessed for ER and ICD	non-ER	patients
		interventions during		High incidence AF in VF survivors
	<u>Size</u> : 35	follow-up median 8.8 y	Results: overall 43% recurrent VF after	
			median 6.6 yrs.	
		Exclusion criteria: N/A	VF more frequent in ER patients: (HR:	
			3.9, 95% CI: 1.4-11.0, p=0.01)	
			40% inappropriate shocks: 66% due to AF	
◆Cheng YJ, et al. JAHA	Study type: meta-	Inclusion criteria: studies	1° endpoint: risk of SCA, cardiac death,	Early repolarization associated
2016	analysis	assessing link between ER	death any cause associated with early	with absolute risk increase of
• <u>27671315</u>		and risk of SCA, cardiac	repolarization pattern on ECG	139.6 additional SCAs/100,000 pt
	Size: 16 studies	death, and eath from any		y and responsible for 7.3% of SCA
	including 334,524	cause	Results: Increased risk of SCA (RR:2.18,	in general poulation
	patients identified		95% CI: 1.29–3.68), and cardiac death	
		Exclusion criteria: N/A	(RR: 1.48, 95% CI: 1.06–2.07) in patients	
			with early repolarization.	
			Increased risk predominantly in Asians	
			and whites but not African Americans.	
			J-point elevation in inferior leads,	
			notching configuration, and harizaontal	

			or descending ST segement connote higher risk.	
◆ Tikkanen JT et al. Circ AE 2012 (407) ◆ 22730409	Study type: Retrospective population based Size: 432	Inclusion criteria: Prevalence of ER in Baseline ECG's of 432 consecutive cases of SCD due to ischemia compared with 532 survivors of acute ischemic event Exclusion criteria: N/A	1° endpoint: Prevalence of ER in SCD vs survivors of acute ischemia Results: Prevalence ER ≥0.1 mV in at least 2 inf or lateral leads: 14.4% cases vs 7.9% controls. ER with horizontal or descending ST segment assoc with SCD 10.2% vs 5.3%, p=0.004; ER with ascending ST NS. SCD patients younger, more often male, smokers, lower BMI, elevated HR, prolonged QRS complex, lower prevalence of Hx of CVD	Higher prevalence of ER in SCD ischemic patients than in survivors of acute coronary event ER increases vulnerability to fatal arrhythmia during acute myocardial ischemia
• Junttila MJ et al. Heart Rhythm 2014 (408) • 24858812	Study type: Community based ECG's Finnish population, mean 44±8 yrs Size: 10,846	Inclusion criteria: arrhythmic outcomes and cardiac deaths in patients with ER on community screening Exclusion criteria: N/A	1° endpoint: Sustained VT or VF, arrhythmic death, non-arrhythmic cardia death, AF, CHF, CAD; mean followup 30±11 y Results: Inferior ER 3.5% prevalence: predicted VF-VT events (N=108), HR: 2.2 (1.1–4.5, p=0.03), not not nonarrhythmic cardiac death, CHF, or CAD Inferior ER predicted arrhythmic death in cases without other QRS abnormalities (HR: 1.68, 95% CI: 1.1–2.58, p=0.02) but not in those with coexisting abnormalities in QRS morphology (HR: 1.3, 95% CI: 0.86–1.96, p=0.22)	Inferior ER without other QRS morphology changes predicted occurrence of VT-VF but not non-arrhythmic cardiac events Suggests ER sign of increased vulnerability to ventricular tachyarrhythmias

Data Supplement 44. Nonrandomized Trials Related to Short-QT Syndrome – (Secction 7.9.1.5)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Gaita F et al. JACC 2004 (409) 15093889 	Study type: single center retrospective Size: 6	Inclusion criteria: Symptomatic patients with QTc <380 undergoing drug testing. One prior ACA age 6 y. PES 5 adult patients: 4/5 inducible VF. 5 adults received ICD's. Exclusion criteria: N/A	1° endpoint: Prolongation of QTc with medications Results: Flecainid, sotalol, ibutilide, hydroquinidine tested. Only hydroquinidine prlonged QTc from 263±12 to 363±25, prolonged VERP to ≥200 msec, and no VF induced.	 Hydroquinidine prolonged QTc and resulted in non-inducible VF use dependent block fast inward Na, blocks rapid IKr and IKs, IKATP, Ito.
● Giustetto C et al. EHJ 2006 (51) ● <u>16926178</u>	Study type: Retrospective single center Size: 29	Inclusion criteria: Short QTc ≤340 msec and personal or family Hx of CA. 73% males. Exclusion criteria: N/A	1º endpoint: outcomes with AICD or hydroquinidine Results: Median age dx 30 yrs (4-80); 62% symptomatic: syncope 24%, AF 31%. 34% ACA (10 patients); 2/10 had CA in infancy. In 28% ACA was initial symptom. AICD implanted in 14; 10 hydroquinidine. Median followup 23 mo (9-49), one pt with appropriate ICD shock. No pt on hydroquinidine had SCD or syncope. PES 18/29: VERP 140-180 msec. VF induced in 61% (11/18); 3/6 with documented VF had inducible VF: sensitivity 50%. AERP CL 600: 120-180 ms, mean 157.	 Short QTS may be a cause of SCD in infancy Hydroquinidine may be proposed in children or patients not suitable for AICD PES sensitivity 50%
● Gollob MH et al. JACC 2011 (410) • 21310316	Study type: Medline database search Size: 61	Inclusion criteria: review details of reported cases of SQTS Exclusion criteria: non-English journals	1° endpoint: review reported cases of Short QTS: 61 cases worldwide Results: Increased in males: 75% mean QTc 397 msec, 248–381 msec in symptomatic cases.	 Gollob criteria for SQTS, ≥4 points very likely QTc duration <370, <350, <330 J point-Tpeak <120 msec Clinical hx: ACA, SCD, AF, unexplained syncope;

				Family hx; Genotype results
• Giustetto C et al.	Study type:	Inclusion criteria:	1° endpoint: syncope, CA or approp ICD	SQTS assoc with SCD in all ages
JACC 2011 (53)	retrospective multi-	European Short QT	shocks SQTS	Symptomatic patients have high
• <u>21798421</u>	center	Registry patients with QTc		risk of recurrent arrhythmic events
		≤360 msec with Hx sudden	Results: Mean Followup 64±27 mo.	Patients treated with
	<u>Size</u> : 53	death, ACA, syncope;	Median age 26 y (IQR 17–39). 62%	Hydroquinidine did not have
		patients with QTc ≤340	symptomatic: 32% with ACA (13 patients)	arrhythmic events
		msec included without	or sudden death(4), syncope 8, AF 6,	Asymptomatic patients: no
		symptoms.	palps 13.	CA/ICD shocks.
		75% males.	Age at CA 3 mos-62 y.	PES not sensitive
		Family Hx SCD/CA (11).	Males: >90% of CA occurred between	
		Genotype positive 23% of	14-40 yrs.	
		probands: HERG in 4	Prevalence CA males 35%, females 30%.	
		families (N588K in 2,	AICD in 24, hydroquinidine in 12.	
		T6181 in 2; CACNB2b in	11/12 with prior CA received ICD: 2	
		one family)	approp ICD shocks. 58% complications of	
		·	ICD, inapprop shocks due to T wave	
		Exclusion criteria: N/A	oversensing 4/14.	
			PES: 28 patients. VERP CL 600-500: mean	
			166 msec. AERP 166 msec. VF induced in	
			16/28: 3/28 with prior CA = sensitivity	
			37%, NPVs 58%.	
			Overall event rate 3.3%/y: 4.9% in	
			patients without AA drugs.	
			Asymptomatic patients: 27. ICD	
			implanted in 9 due to + family Hx or	
			induced VF. Two long term quinidine.	
• Villafane J et al.	Chudu hun o	Indusian esitavia, patiente	One syncope; 2 nonsust VT on ICD.	modified Gollob score >5
JACC 2013 (411)	Study type: Multicenter	Inclusion criteria: patients <21 y old with short QTc	1° endpoint: ACE in short QT; Assess Gollob score	associated with likely clinical
• 23375927	retrospective	<360 msec.		events
• <u>255/592/</u>	retrospective	Median age 15 y	Mean followup 6 y.	High rate inappropriate shocks
	<u>Size</u> : 25	ivieuidii age 15 y	Results: Symptoms 56%: ACA 24%, syncope 16%	Tigil rate mappropriate shocks
	<u>3125</u> , 23	Exclusion criteria: N/A	84% personal or family Hx ACA/SCD	
		Exclusion cinteria. N/A	24% genotype +	
			AICD 11: 2 approp shocks; 64%	
			inappropriate shocks	
			ווומאאו סארומנב אווטכעא	

			10 nationts mad my aviaiding	
			10 patients med rx: quinidine	
			Gollob score <5 remained event free	
			(excluding patients for symptoms)	
 Mazzanti A et al. 	Study type:	Inclusion criteria: Short	1° endpoint: SQTS patients followed for	SQTS highly lethal at young age
JACC 2014 (412)	Registry	QTS: asymptomatic ≤340	median 56 mo	• 11% genotype positive
• <u>24291113</u>		msec, or QTc 340–360		• Prior ACA predicts recurrent CA:
	<u>Size</u> : 73	msec Plus ACA, family Hx	Results: 84% male Mean age 26±15 y,	recommend ICD for these patients
		SCD or family Hx SQTS	QTc 329±22 msec. 40% presented with	Gollob score did not predict risk
		53% symptomatic at	ACA, range 1 mo-41 y.	
		referral	CA during sleep 83%, 17%	
		Exclusion criteria: N/A	emotion/exertion	
			Rate CA 4% first yr of life, 1.3%/y	
			between 20-40 y.	
			Probability first occurrence CA by 40 y:	
			41%.	
			ACA only predictor of recurrence:	
			p<0.0000001	
• Iribarren C et al.	Study type:	Inclusion criteria:	1° endpoint: Prevalence, risk of death	• QTc ≤300 msec: 2.6 fold
Ann Noniny ECG	Retrospective	Screened 6,387,070 ECG's	associated with Short QT during 8.3 y	increased risk death
2014 (413)	Netrospective	in population of 1.7 million	median followup	ilici easeu iisk deatii
• 24829126	Size: 1026	persons for QTc ≤300 msec	median followup	
• <u>24629120</u>	<u>312e</u> : 1020	persons for QTC \$300 filsec	B	
		Fusion mitoria, N/A	Results: Prevalence 2.7/100,000, or	
		Exclusion criteria: N/A	1/141,935 ECG's.	
			Associations: age >65 y, AA race, prior Hx	
			VA, COPD, ST changes	
			QTc ≤300 msec assoc w increased	
			mortality: HR: 2.6 (95% CI: 1.9–3.7)	
• Guerrier K et al.	Study type: Single	Inclusion criteria:	1° endpoint: Prevalence short QTc ≤340	• Short QTc ≤340 msec prevalence
Circ Arrh EP 2015	center retrospective	Screened 272, 504 ECG's	msec in patients <21 y old, deaths	0.05% in <21 y old
(414)		<21 y for QTc≤340 msec		
• <u>26386018</u>	<u>Size</u> :		Results: Prevalence 0.05%, 76% males	Short QT rare, increased
		Exclusion criteria: N/A	Females shorter QTc 312 vs 323 msec,	prevalence in males
			p=0.03	
			2 deaths: respiratory; dilated	
			cardiomyopathy	

● Bun SS et al. JCE 2012 (415) ● <u>22493951</u>	Study type: case report Size: 1	Inclusion criteria: 28 y old ACA while asleep, QTc 320 msec, admitted with electrical storm, 8 VF arrests while sedated/hypothermia Exclusion criteria: N/A	1° endpoint: treatment electrical storm in short QTS Results: isoproterenol infusion resulted in sinus rhythm	Case report efficacy of isoproterenol in treating recurrent VF in short QT
 Dhutia H et al. Br J Sports Med 2016 (416) 26400956 	Study type: single center retrospective Size: screening 18,825 patients	Inclusion criteria: Healthy people ages 14–35 y undergoing screening with hx, PE, ECG Exclusion criteria: N/A	1° endpoint: Prevalence and significance of short QTS among healthy young individuals Results: QTc ≤320 msec: 0.1%, 26 patients QTc ≤330 msec: 0.2%, 44 patients QTc <380 msec: 7.9%, 1478 patients QTc <390 msec: 15.8%, 2973 patients Followup 5.3±1.2 y, no deaths	 Males, Afro-Caribbean ethnicity had strongest association with short QT Short QTc ≤320 msec: excellent medium term prognosis in young patients Recommend using QTc ≤320 msec to prevent over-diagnosis

Data Supplement 45. RCTs Related to VA in the Structurally Normal Heart – (Section 8)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Ling et al.	Aim: to compare the	Inclusion criteria:	Intervention: RF catheter	1° endpoint: The 1° end	 RF Catheter ablation is
2014 (417)	efficacy of	(1)	ablation of RVOT	point was recurrence of	more effective than AAD
• <u>24523413</u>	radiofrequency catheter	frequent	Comparator:	RVOT VPBs at a rate of	for treatment of frequent
	ablation (RFCA) vs.	symptomatic VPBs	Antiarrhythmic		premature beats arising
		from the RVOT	medications		from the RVOT.

AAD for treatment of	documented by 12-	≥300 beats per day
patients with frequent	lead	documented by 24 h
ventricular premature	ECG to have	Holter monitoring. The 2°
beats (VPBs) originating	inferior axis and left	variables of interest
from the right	bundle-branch	
		including the number of
ventricular outflow tract	block (LBBB) QRS	VPBs, the burden
(RVOT).	morphology	of VPBs (the number of
	(2) >6000 VPBs per	VPBs/ total QRS
Study type:	24h on Holter	complexes×100%), and
Prospective, RCT	monitoring.	LVEF at each follow-up
		time point were collected
<u>Size</u> : 330 patients	Exclusion criteria:	
	(1) the presence of	During the 1y follow-up
	non-RVOT	period, VPB
	origin for VPBs	recurrence was
	indicated by an S	significantly lower in
	wave in lead I, R-	patients randomized to
	wave duration	RFCA group (32 patients,
	index in V1 and	19.4%) vs. AAD group (146
	V2≥0.5, and R/S	patients, 88.6%; p<0.001,
	wave amplitude	log-rank test). In a Poisson
	index in V1 and	generalized estimating
	V2≥0.311;	equations regression
	(2) previous AAD	model, RFCA
	therapy;	was associated with a
	(3) evidence of any	greater decrease in the
	structural	burden of VPBs (incidence
	heart disease;	rate ratio: 0.105; 95% CI:
	(4) hyperthyroidism	0.104-0.105; p<0.001)
	or electrolyte	compared with AAD. In a
	disturbance;	liner GEE model, the LVEF
	(5) drug	had a tendency
	toxicity;	to increase after the
	(6) diabetes	treatment in both groups
	mellitus;	(coefficient, 0.584; 95% CI:
	(7) BP>165/100 mm	0.467–0.702; p<0.001).
	Hg;	0.407 0.702, p 10.001j.
	115,	

• Krittayaphong et al. 2002 (94)	Study type:	(8) significant impairment of renal function; (9) QT interval>450 ms in the absence of bundle-branch block; (10) significant AV conduction disease and left or right bundle-branch block Inclusion criteria: VA with LBBB,	Intervention: Atenolol 50-100mg/day	1° endpoint: Atenolol significantly	BB may be useful for patients with RVOT and
• <u>12486439</u>		inferior axis	7.1.0.10.10.100 200.11.8/ 0.07	decreased PVC count	symptomatic VA.
	Aim: To determine the efficacy of atenolol in	morphology. Symptomatic (VA	<u>Comparator</u> : Placebo	(p=0.001) and average heart rate (p<0.001)	
	the treatment of	disturbed their		compared to placebo.	
	symptomatic VA from	daily activities)		Both placebo and atenolol	
	RVOT compared with			decreased symptom	
	placebo	Exclusion criteria		frequency.	
		SHD.			
	<u>Size:</u> 52	<u> </u>			

Data Supplement 46. Nonrandomized Trials, Observational Studies, and/or Registries Related to Outflow Tract and AV Annular VA – (Section 8.1)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
• Liao et al. 2015 (418)	Study type:	Inclusion criteria:	Results:	Right ventricular outflow tract VAs may
• <u>26670064</u>	Single Center	Patients with idiopathic	Among 244 patients with	require ablation within the pulmonic
	Observational	VAs that were	LBBB and inferior QRS axis	valve sinus cusps.
		successfully ablated	VAs, 24 patients required	
	<u>Size</u> :	within the pulmonic	ablation within the pulmonic	
	24 patients	valve sinus cusps	sinus cusps.	

 Morady et al. 1990 (419) 2242533 	Study type: Single Center observational Size: 10 patients	Exclusion criteria: none Inclusion criteria: Consecutive patients undergoing DC Shock catheter ablation of RVOT VT Exclusion criteria: none	Successful ablation within the right PV sinus in 10 patients, the left sinus in 8, and anterior sinus in 6. There were no complications. Results: DC shock ablation in the RVOT rendered 9 of 10 patients free of VT over a mean follow-up of 33±18 mo. There were no complications.	RVOT VT can be successfully ablated with DC shock ablation with high efficacy and low complications.
 Yamada et al. 2008 (420) 18598894 	Study type: Single Center Observational Size: 265 patients	Inclusion criteria: none Inclusion criteria: Idiopathic VAs undergoing catheter ablation 44 patients with VAs mapped and ablated within the aortic sinuses	Results: Left coronary cusp in 24 patients (54.5%), Right coronary cusp in 14 patients (31.8%), Right-Left cusp junction in 5 patients (11.4%), and Noncoronary cusp in 1 pt. Successful catheter ablation in 44/44 patients (100%). No complications.	The aortic valve sinuses are a common location of outflow tract arrhythmias that can be effectively and safely ablated with RF current.
 Yamada et al. 2010 (421) 20855374 	Study type: Single Center Observational Size: 27 patients	Inclusion criteria: Among 221 consecutive patients with LV Idiopathic VAs, 27 patients had VAs mapped and ablated on the Summit of the LV Exclusion criteria: N/A	Results: Successful ablation from the Great Cardiac Vein in 14 patients and on the epicardial surface of the LV in 4. In 5 patients ablation abandoned because of origin in the inaccessible region. In 4 patients ablation abandoned due to close proximity to epicardial coronary artery.	LV summit VAs may be ablated within the GCV or inferior to the GCV on the epicardial surface, though sites superior to the GCV are often inaccessible to ablation.

 Mountantonakis et al. 2010 (422) 20855374 	Study type: Single Center Observational Size: 47 patients	Inclusion criteria: Among 511 consecutive patients with non-scar related VAs, 47 patients were found to have a site of origin within the Coronary Venous System (CVS). Exclusion criteria: N/A	Results: Twenty-five (53%) were in the great cardiac vein, 19 (40%) in the anterior interventricular vein, and 3(7%) in the middle cardiac vein. Successful ablation achieved in 17 of 18 (94%) ablated at the earliest CVS site and in 16 of 29 (55%) ablated at adjacent CVS or non-CVS sites.	• Although ablation at the earliest CVS site is effective, it is often (62%) precluded, mainly because of proximity to coronary arteries. Ablation at adjacent CVS and non-CVS sites can be successful in 55% of these anatomically challenging cases, for an overall ablation success rate of 70%.
 Doppalapudi et al. 2009 (423) 19121799 	Study type: Single Center Observational Size: 4 patients	Inclusion criteria: Among 340 patients with idiopathic VT referred for ablation, four were identified with VT that was mapped to the epicardium at the crux. Exclusion criteria: N/A	Results: VT was sustained and rapid (mean cycle length 264 msec) in all patients and was associated with syncope or presyncope in three. VT was induced with programmed stimulation or burst pacing in all 4 patients but required isoproterenol infusion in three.	Idiopathic VT may arise by a focal mechanism from the epicardium at the crux in close proximity to the posterior descending coronary artery. This syndrome can result in rapid, catecholamine-sensitive VT and requires careful attention to the posterior descending coronary artery during ablation.
 Konstantinidou et al. 2011 (424) ≥ 21307021 	Study type: Single Center Observational Size: 13 patients	Inclusion criteria: 13 patients presenting with VT suggestive of RVOT origin with ablation guided by Magnetic Navigation Exclusion criteria: N/A	Results: The RVOT was reached in all patients utilized solely with the Magnetic Navigation System. Successful RVOT ablation was achieved in (135) (92.3%) patients. No Complications occurred. During a mean follow-up of 252±211 d, clinical arrhythmia recurrence was observed in 1 of 13 (7.7%) patients.	RVOT access is feasible with the Magnetic Navigation System, while RVOT mapping and ablation appear to be safe, fast, and effective.

• Ouyang et al. 2002	Study type:	Inclusion criteria:	Results:	VAs may arise in either the right or left
(425)	Single Center	Consecutive patients	The RVOT was site of origin in	ventricular outflow tracts and can be
• <u>11823089</u>	Observational	with VAs from the right	7 patients and aortic sinuses	safely ablated with RF current.
		ventricular outflow tract	in 8 patients.	
	Size: 15 patients	or aortic sinuses	The left coronary cusp was	
			the site of origin in 5 of 7	
		Exclusion criteria: N/A	patients and the right	
			coronary cusp in 2 of 7	
			patients with aortic sinus VAs	
• Tada et al. 2005 (426)	Study type: Single	Inclusion criteria:	Results:	VAs may arise from the anterolateral,
• <u>15766824</u>	Center Observational	Consecutive patients	Among 352 patients with	posterior, and posteroseptal regions of
		with VAs mapped to the	idiopathic VAs, 19 (5%) had	the mitral annulus and can be effectively
	Size: 19 patients	mitral valve annulus	mitral annular VAs.	and safely ablated with RF current.
			11 (58%) originated from the	
		Exclusion criteria: N/A	anterolateral mitral annulus,	
			2 from the posterior mitral	
			annulus, and 6 from the	
			posteroseptal mitral annulus.	
			Successful ablation achieved	
			in 19/19 patients (100%).	
			No complications observed.	
			Over a follow-up period of	
			21±15 mo, there were no	
			recurrences of VAs after	
			ablation.	
• Tada et al. 2008 (427)	Study type: Single	Inclusion criteria:	Results:	A site of origin in the Pulmonary artery
• <u>18313601</u>	Center Observational	Cases of VAs mapped	Among 276 patients with VAs	should be suspected when mapping and
		and ablated within the	referred for RF ablation, 12	ablation of apparent RVOT VAs is not
	Size: 12 patients	Pulmonary Artery.	patients were identified with	successful within the RVOT. Ablation
			a successful site of catheter	within the pulmonary artery is safe and
		Exclusion criteria: N/A	ablation within the pulmonary	effectifve.
			artery.	
			All 12 patients had attempted	
			ablation within the RVOT with	

 Tada et al. 2007 (428) 18313601 	Study type: Single Center Observational Size: 38 patients	Inclusion criteria: Consecutive patients with idiopathic VAs mapped and ablated on the tricuspid annulus Exclusion criteria: N/A	a change in the QRS morphology after ablation. A characteristic prepotential was recorded within the pulmonary artery in all patients. Ablation was successful within the pulmonary artery in 12/12 patients (100%). There were no complications. No recurrences of VAs were observed over a follow-up period of 27±13 mo. Results: Among 454 consecutive patients with idiopathic VAs, 38 patients (8%) were found to originate from the tricuspid annulus. 28 (74%) originated from the septal tricuspid annulus 10 (26%) from the freewall portion of the annuls. Catheter ablation eliminated 90% of freewall VAs but only 57% of septal tricuspid annular VAs. There were no complications.	Tricuspid annular VAs are not rare and ablation has a higher efficacy for freewall than septal sites.
• Kamioka et al. 2015	Study type:	Inclusion criteria:	Results:	LVOT VAs may arise above or below the
(429)	Single Center	Consecutive patients	Twelve patients had VAs	aortic valve. Prepotentials are recorded
• <u>25633492</u>	Observational	with LVOT Vas	mapped in the Aortic cusps,	at the site of successful ablation in the
	Size: 34 patients		and 22 patients had VAs	majority of patients with origin within the
		Exclusion criteria: N/A	mapped below the Aortic valve.	aortic sinuses but are rarely recorded below the aortic valve.

	1	T		
			Pre-potentials recorded in	
			91% of Aortic Sinus VAs and	
			13% below the aortic valve.	
			VAs successfully ablated in	
			34/34 patients (100%)	
Nagashima et al.	Study type: Single Site	Inclusion criteria:	Results:	Ablation within the GCV requires
2014 (430)	observational	30 patients with VAs with	Angiography in 27 patients	careful attention to the proximity of
• <u>25110163</u>		early activation within	showed earliest GCV site	coronary arteries with the potential for
	Size: 30 patients	the Great Cardiac Vein	within 5 mm of a coronary	coronary arterial injury.
		(GCV).	artery in 20 (74%).	, , , , , , , , , , , , , , , , , , , ,
		(331).	Ablation was performed in the	
		Exclusion criteria: N/A	GCV in 15 patients and	
		<u>Exclusion enteria</u> . 1477	abolished VA in 8. Ablation	
			was attempted at adjacent	
			non-GCV sites in 19 patients	
			and abolished VA in 5 patients	
			(4 from the left ventricular	
			1 '	
			endocardium and 1 from the	
			left coronary cusp).	
			After a median of 2.8 mo, 13	
			patients remained free of VA.	
			Major complications occurred	
			in 4 patients, including	
			coronary injury requiring	
			stenting.	
• Yamada et al. 2015	Study type: Single	Inclusion criteria:	Results:	LVOT VAs originating from intramural
(431)	Center observational	64 consecutive patients	Among 64 patients, 14	foci could usually be eliminated by
• <u>25637597</u>	study	with symptomatic	patients were identified with	sequential unipolar radiofrequency
		idiopathic sustained VTs	intramural foci between the	ablation and sometimes required
	Size: 64 patients	(VTs) (N=14), NSVT	endocardium and epicardium	simultaneous ablation from both the
		(N=15), or premature	which required sequential or	endocardial and epicardial sides.
		ventricular contractions	simultaneous irrigated	•
		(PVCs) (N=35), which	unipolar radiofrequency	
		presumed origins	ablation from the endocardial	
		identified in the AMC, LV	asiation from the endocuration	
		identified in the Aivic, LV	1	

		summit, or intramural	and epicardial sides for their	
		sites between the	elimination.	
		endocardium and	Simultaneous ablation was	
		epicardium.	most likely to be required	
			when the distance between	
		Exclusion criteria: N/A	the endocardial and epicardial	
			ablation sites was >8 mm and	
			the earliest local ventricular	
			activation time relative to the	
			QRS onset during the VAs was	
			<30 ms at both ablation sites.	
• Hai et al. 2015 (432)	Study type: Single	Inclusion criteria:	Results:	Specific identification and targeting of
• 25637597	Center observational	All patients who	Among 21 patients,	PPs when ablating VAs at the AMC may
	study	underwent successful	prepotentials (PPs) were	improve procedural success.
	•	catheter ablation of VAs	found at the ablation sites	
	Size: 21 patients	at the Aortomitral	preceding the ventricular EGM	
	 .	Continuity (AMS)	during arrhythmias in 13	
		, , ,	(61.9%) patients and during	
		Exclusion criteria: N/A	sinus rhythm in 7 (53.8%)	
			patients.	
			VAs with PPs were associated	
			with a significantly higher	
			burden of premature	
			ventricular complexes (PVCs;	
			26.1±10.9% vs. 14.9±10.1%,	
			p=0.03), shorter ventricular	
			EGM to QRS intervals	
			(9.0±28.5 msec vs. 33.1±8.8	
			msec, p=0.03), lower pace	
			map scores (8.7±1.6 vs.	
			11.4±0.8, p=0.001), and a	
			trend toward shorter V-H	
			intervals during VA (32.1± 8.6	
			msec vs. 76.3±11.1 msec,	
			p=0.06) as compared to those	
			without PP.	

• Yamada et al. 2010	Study type: Single	Inclusion criteria:	Results:	The MDI has limited value for
(433)	Center observational	All patients who	48 consecutive patients	discriminating endocardial from
• <u>19804552</u>	study	underwent successful	undergoing successful	epicardial VA origins in sites adjacent to
		catheter ablation of VAs	catheter ablation of idiopathic	the LSOV probably due to preferential
	Size: 21 patients	at the Aortomitral	VAs originating from the left	conduction, intramural VA origins or
		Continuity (AMS)	coronary cusp (LCC, N= 29),	myocardium in contact
			aortomitral continuity (AMC,	with the LCC.
		Exclusion criteria: N/A	N=10) and great cardiac vein	
			or anterior interventricular	
			cardiac vein (Epi, N= 9).	
			An S wave in lead V5 or V6	
			occurred significantly more	
			often during both the VAs and	
			pacing from the AMC than	
			during that from the LCC and	
			Epi (p<0.05 vs. p=0.0001). For	
			discriminating whether VA	
			origins can be ablated	
			endocardially or epicardially,	
			the maximum deflection index	
			(MDI = the shortest time to	
			the maximum deflection in	
			any precordial lead/QRS	
			duration) was reliable for VAs	
			arising from the AMC (100%),	
			but was less reliable for LCC	
			(73%) and Epi (67%) VAs. In 3	
			(33%) of the Epi VAs, the site	
			of an excellent pace map was	
			located transmurally opposite	
			to the successful ablation site	
			(LCC = 1 and AMC = 2).	

Data Supplement 47. Nonrandomized Trials, Observational Studies, and/or Registries of Catheter Ablation in Papillary Muscle VA - (Section 8.2)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
 Doppalapudi et al. 2008 (434) 19808390 	Study type: Single Site Observational Size: 9 patients	Inclusion criteria: VT mapped to the Posterior Papillary Muscle of the LV Exclusion criteria: none	Among 290 patients with idiopathic VAs, 7 were found to have origin in the Posteromedial PM. All patients had RBBB and Superior QRS axis. No patient had SHD. VT had focal mechanism, sensitive to catecholamines Results: Successful catheter ablation in all patients without complications.	Posteromedial papillary muscle VT is catecholamine sensitive with a focal mechanism that is amendable to catheter ablation. Catheter stability may be difficult and multiple RF applications are usually required.
 Yamada et al. 2010 (435) 20558848 	Study type: Single Site Observational Size: 19 patients	Inclusion criteria: VT mapped to the Posteromedial or Anterolateral Papillary Muscles of the LV Exclusion criteria: none	Among 159 consecutive patients with idiopathic VAs mapped to the LV, the site of origin was in the Posteromedial PM in 12 and the Anterolateral PM in 7. Results: Successful ablation was achieved in 19/19 patients. Multiple QRS morphologies were observed in 47% of patients and in 7 patients ablation on both sides of the PM were required. No complications were observed. Recurrence of PM VAs was observed in 2/19 patients.	 VT of focal origin may occur in either the posteromedial of the anterolateral PMs of the LV. Catheter ablation often requires multiple RF applications over a wide area suggesting an origin deep within the PM. The recurrence risk after initially successful ablation is higher than for many other forms of idiopathic VT.

● Yokokawa et al. 2010 (436) ● 20637311	Study type: Single Site Observational Size: 40 patients	Inclusion criteria: VT mapped to the Posteromedial or anterolateral Papillary Muscles of the LV Exclusion criteria: None	Results 40 consecutive patients referred for ablation of symptomatic premature ventricular complexes (PVCs) (N=19) or VT (VT) (N=21) originating from a Papillary muscle in the LV (N=32) or RV (N=8). Antiarrhythmic drugs failed to control the VAs in 24 patients. 20 of 40 patients (50%) had SHD: prior MI in 10 patients, dilated cardiomyopathy in 9, and VHD in 1 pt. Catheter ablation was acutely successful in 33 of 40 patients (83%). Pleomorphic QRS morphologies observed in 31/40 patients. By MRI, the mass of the arrhythmogenic PM was greater in patients with failed than successful ablations. In follow-up, the PVC burden was reduced from 15%±11%	 VAs may originate in the papillary muscles of both the LV and the RV. PVCs from the papillary muscles are often pleomorphic. Catheter ablation is successful in over 80% of cases, with greater mass of the papillary muscle predicting lower efficacy of ablation.
			to 3%±3%; p<0.01) after successful ablation.	
• Crawford et al. 2010	Study type: Single	Inclusion criteria:	Results:	PVCs and VT may originate in the RV
			A total of 15 distinct PAP VAs	PAPs. Radiofrequency ablation is
(437)	Site observational		I A total of 13 district FAF VAS	I PAPS, Naululleuueliky abiatioil is

	Size: 8 patients	VAs mapped to the	(N=3), anterior (N=4), or	arrhythmias with low risk of
	opations	papillary muscles in the	septal (N=8).	complications.
		right ventricle.	Septar (IV 5).	complications.
			Successful ablation achieved	
		Exclusion criteria: none	in all 8 patients.	
			The PVC burden was reduced	
			from 17%+20% preablation to	
			0.6% <u>+</u> 0.8% postablation.	
Ban et al. 2013 (438)	Study type: Single	Inclusion criteria:	Results:	 In PMVT, a high-amplitude, discrete
• <u>24385992</u>	Site Observational	Among 284 patients with	Successful catheter ablation	potential before the QRS and slow down-
		idiopathic VAs	was achieved in 7 of 8 (87.5%)	stroke of the initial Q wave on the
	Size: 12 patients	undergoing ablation, 12	patients with high amplitude	unipolar electrogram at ablation sites are
		patients were identified	electrograms at the earliest	related to favorable outcome after RF
		with VAs originating from	site of origin.	catheter ablation.
		the Papillary Muscles of	The 4 patients with low	
		the LV.	amplitude and fractionated	
			electrograms had recurrences	
			of VAs after ablation.	
			The mean duration from	
			onset to peak downstroke (Δt)	
			on the unipolar electrogram	
			was significantly longer in the	
			successful group than in the	
			recurrence group (58±8 ms vs.	
			37±9 ms, p=0.04). A slow downstroke >50 ms of the	
			initial Q wave on the unipolar	
			electrogram at ablation sites	
			was also significantly	
			associated with successful	
			outcome (85.7% vs. 25.0%,	
			p=0.03).	
			p-0.05).	

Data Supplement 48. Nonrandomized Trials, Observational Studies, and/or Registries Related to Interfascicular Reentrant VT (Belhassen Tachycardia)- (Section 8.3)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
• Nogami et al. 2000	Study type:	Inclusion criteria:	Results:	 Verapamil sensitive idiopathic LV VT is
(439)	Multicenter	20 consecutive patients	Sustained VT could be	a reentrant tachycardia involving a
• <u>10987604</u>	Observational	with verapamil-sensitive	induced by programmed	discrete longitudinal pathway in the LV
		left VT	electrical stimulation,	septum and retrograde conduction over
	Size: 20 patients	exhibiting a RBBB and	entrained by rapid ventricular	the His Purkinje network. Catheter
		left-axis deviation QRS	pacing, and terminated by	ablation is highly successful with a low
		who underwent RF	verapamil in all patients.	risk of complications.
		ablation.	Two discrete potentials could	
			be recorded on the LV septum	
		Exclusion criteria:	with antegrade conduction	
		None	(P1) and retrograde	
			conduction (P2).	
			RF current applied to the exit	
			site of P1 terminated VT in all	
			patients.	
			The interval between the LV	
			and the P1 potential	
			demonstrated decremental	
			conduction and verapamil	
			sensitivity.	
• Liu et al. 2015 (440)	Study type:	Inclusion criteria:	Results:	Ablation of FVT guided by activation
• <u>10987604</u>	Single Center	Consecutive patients	120 patients with idiopathic	mapping is associated with a single
	Observational	with Idiopathic fascicular	fascicular VT (mean age,	procedural success rate of 80.3% without
	6. 420 1. 1	VT undergoing catheter	29.3±12.7 y; 82% men; all	the use of AAD.
	Size: 120 patients	ablation.	with normal EF).	22 matiants (200/) developed nov.
		Fuelusian eritaria.	Catheter ablation acutely	23 patients (20%) developed new onset
		Exclusion criteria:	successful in 117 of 120	LPF block, whereas 67 patients (58.3%)
		None	patients. Over median follow-	exhibited rightward shift in their frontal
			up of 55.7 mo, VT recurred in	axis compared with baseline.
			17 patients, all successfully re-	There were no complications from the
			ablated.	procedure.

• Lin et al. 2005 (441)	Study type:	Inclusion criteria:	Results:	A linear ablation lesion perpendicular
• <u>26386017</u>	Single Center	Consecutive patients	Among 15 patients with	to the long axis of the LV across the left
	Observational	with idiopathic fascicular	idiopathic fascicular VT, 6	side of the interventricular septum is an
		VT undergoing catheter	(40%) had VT that was not	effective ablation strategy for patients
	Size: 15 patients	ablation	inducible with programmed	with idiopathic fascicular VT that is non-
			stimulation and isoproterenol.	inducible.
		Exclusion criteria:	For these patients, a linear	
		N/A	lesion was placed	
			perpendicular to the long axis	
			of the ventricle approximately	
			midway from the base to the	
			apex in the region of the mid	
			to mid-inferior septum.	
			Left posterior fascicular block	
			developed in 2 of 6 patients.	
			No spontaneous arrhythmias	
			occurred during follow-up to	
			16±8 mo (range 6–30 mo).	

Data Supplement 49. Nonrandomized Trials, Observational Studies, and/or Registries Related to Idiopathic Polymorphic VT/VF - (Section 8.5)

Study Acronym;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Author; Year Published	Study Size		(P values, OK of KK, & 95% CI)	Comment(s)
 Haïssaguerre et 	Study type:	Inclusion criteria:	Results:	Idiopathic VF is often triggered by short
al. 2002 (442)	Multi-Center	16 patients with	16 patients with idiopathic VF	coupled PVCs from the RVOT or the
• <u>11879868</u>	Observational	idiopathic VF treated with	triggered by short coupled PVCs	Purkinje system. The initiating focus can
		catheter ablation	(mean 300 msec). The mean PVC	be successfully ablated with low risk of
	Size: 16 patients		frequency per day was 9618.	complications.
		Exclusion criteria: N/A	The initiating focus was in the	
			RVOT in 4 patients, the RV	
			Purkinje in 4 patients, the LV	
			Purkinje in 7 patients, and both	
			the RV and LV Purkinje in 1 pt.	

• VALIANT • Solomon et al. 2005 (30) • 15972864	Aim: To evaluate risk and predictors of SCD in patients post MI with left ventricular dysfunction and/or HF Study type: Observational study of patients enrolled in a RCT Size: 14,609 patients	Inclusion criteria: Patients with first or subsequent MI with HF, LV dysfunction, or both Exclusion criteria: ICD in place prior to randomization	Initially successful ablation of the triggering PVC focus in 16/16 patients. Long term freedom from VF observed in 13 patients. Intervention: Analysis of rates of SCD. Evaluation of EF determined by echocardiography as well as other parameters. Comparator: N/A 1° endpoint: The risk of sudden deathwas greatest in the first 30 d after MI: 1.4% per mo, 95% CI: 1.2%—1.6% and decreased to 0.14% per mo 95% CI: 0.11%—0.18% after 2 y after MI. Patients with LVEF <30% were at the greatest risk for SCD	Each 5% lower LVEF was associated with a 21% increase in adjusted risk of SCD or CA with resuscitation.
 Linzer et al. 1990 (25) 2371954 	Study type: observational Size: 57	Inclusion criteria: Syncope with negative Holter Exclusion criteria: Patients who had undergone electrophysiology study	1° endpoint: Monitor up to 1mo with Loop Results: arrhythmia was the cause of symptoms (diagnostic yield 25%; 95% CI: 14–38%). VT (1 patient), high grade AV block (2 patients), supraventricular tachycardia (1 patient), asystole or junctional bradycardia from neutrally mediated syncope (3 patients) and normal cardiac rhythms (the remaining 7 patients).	25% yield for syncope Dx after negative Holter VT/VF uncommon (1 pt)
• Noda et al. 2005 (443)	Study type: Single Center Observational	Inclusion criteria:	Results:	PVCs from the RVOT may trigger VF when the coupling interval is short (<320)

• <u>16198845</u>	Size: 16 patients	16 patients who had documented VF or syncope out of a total of 101 patients with RVOT VAs undergoing catheter ablation	Holter monitoring showed frequent PVCs with LBBB inferior QRS axis with mean coupling interval of 245±28 msec. RF ablation targeting the initiating PVC focus acutely successful in 16/16 patients. Over mean follow-up period of 54±39 mo, no recurrences of syncope or VF.	msec). The long term outcome after ablation of the triggering focus is excellent.
 Haissaguerre et al. 2002 (444) 12186801 	Study type: Multicenter Observational Size: 27 patients	Inclusion criteria: 27 patients undergoing catheter ablation of idiopathic VF without SHD	Results: Premature beats were elicited from the Purkinje conducting system in 23 patients: from the left ventricular septum in 10, from the anterior right ventricle in 9, and from both in 4, and from the RVOT in 4 patients. The interval from the Purkinje potential to the following myocardial activation varied from 10–150 ms during premature beat but was 11±5 ms during sinus rhythm, indicating location at peripheral Purkinje arborization. The accuracy of mapping was confirmed by acute elimination of premature beats during local radiofrequency delivery. During a follow-up of 24±28 mo, 24 patients (89%) had no recurrence of VF without drug	Idiopathic VF can be successfully ablated by targeting the initiating focus which is usually in the Purkinje system or RVOT.
• Van Herendael et al. 2014 (445)	Study type: Single Center Observational	Inclusion criteria: 30 patients from among	Results: In 21 patients, VF/PMVT occurred	Catheter ablation of VPD-triggered VF/PMVT is highly successful. Left
• <u>24398086</u>		1132 consecutive	in the setting of cardiomyopathy;	ventricular outflow tract and papillary
	Size: 30 patients	patients undergoing	in 9 patients, VF/PMVT was	muscles are common and are previously

• Sadek et al. 2015 (446) • <u>25240695</u>	Study type: Single Center Observationa. Size: 10 patients	Inclusion criteria: 10 patients with VAs mapped to moderator band in the RV undergoing catheter ablation	idiopathic. The origin of VPD trigger was from the Purkinje network in 9, papillary muscles in 8, left ventricular outflow tract in 9, and other low-voltage areas unrelated to Purkinje activity in 4. Acute VPD elimination was achieved in 26 patients (87%), with a decrease in VPDs in another 3 patients (97%). During median follow-up of 418 d (interquartile range [IQR] 144- 866), 5 patients developed a VF/PMVT recurrence after a median of 34 d. Results: VF was the clinical arrhythmia in 7 patients and monomorphic VT in 3 patients. Six patients required a repeat procedure. After mean follow-up of 21.5±11.6 mo, all patients were free of sustained VAs, with only 1 patient requiring AAD therapy and 1 patient having isolated PVCs no longer inducing VF. There were no procedural complications.	VAs originating from the moderator band may present with VF. Catheter ablation is effective, though the risk of requiring more than one procedure may be higher than for other sites.
• Tester DJ et al. Mayo Clinic Proc 2011 (447) • 21964171	Study type: retrospective single center Size: 35	Inclusion criteria: Unexplained drowning patients 1988-2010 molecular autopsy, mean age 17±12 y (4-69 y). 28 swimming (age 15.7 y), 7 bathtub (age 23 y). PCR	1° endpoint: genetic mutation yield in unexplained drowning victims Results: 23% positive mutations, 8/28 swimming, 0/7 bathtub Pos family Hx 43%: syncope, seizures, CA, near-drowning or	Recommend genetic screening for unexplained drowning, especially if positive family Hx of drowning, prolonged QTc

	DNA sequencing for LQTS 1-3, RYR2 Exclusion criteria: N/A N/A	drowning. Among 11 patients with positive personal or family hx, 64% gene positive	
Study type: retrospective Size: 171	Inclusion criteria: Genotyping performed in corpses found in water: drowning, unclear deaths. Exclusion criteria: N/A	1° endpoint: Testing mutations in 19 variants in drowning/water related deaths. Results: one SNP of KCNQ1 noted NOS1AP significance	 NOS1AP mutation of KCNq1 may be significant in drowning victims. Recommend molecular autopsy in unexplained water deaths.
Study type: retrospective single center Size: 32	Inclusion criteria: Exertion related SUDY decedents (sudden unexplained death in young) ages 1-19 y Mean age 11±5 y Family Hx SCD age <50 y in 10% Molecular autopsy 1998- 2010. DNA sequencing (PCR) followed by whole-exome sequencing	1° endpoint: yield of genetic testing in decedents with exercise related sudden death Results: PCR DNA testing putative mutation in 34% (11 patients, LQTS, CPVT). Subsequent WES performed in 21 patients, yield 3/21, 14% (calmodulin 2, PKP2 1-ARVC). Calmodulin deaths 2, 5 y. Yield higher among decedents aged 1–10 y (91%) vs. 11–19 y (19%), p=0.0001	 In decedents with exertion related SUD <20 y, overall yield 44%, Yield higher in probands <11 y.
Study type: Retrospective cohort Size: 274	Inclusion criteria: N/A Inclusion criteria: SUD channelopathy genetic testing in NYC 2008-2012. LQTS, RYR2 testing. Ages ≤1 y, 141 patients, 51%,	1° endpoint: Yield of channelopathy genetic screening in ethnically diverse population of SUCD Results: Gene positive: 13.5%	 Overall genetic testing positive in 13.5%–19.5% of autopsy negative sudden death "Genetic testing information should be provided to the family members with proper counseling along with the choices
	retrospective Size: 171 Study type: retrospective single center Size: 32 Study type: Retrospective cohort	Study type: retrospective Size: 171 Study type: retrospective Size: 171 Study type: retrospective single center Size: 32 Size: 32	Study type: retrospective Genotyping performed in corpses found in water: drowning, unclear deaths. Study type: retrospective single center Inclusion criteria: Exertion related SUDY decedents (sudden unexplained death in young) ages 1-19 y Mean age 11±5 y Family Hx SCD age <50 y in 10% Molecular autopsy 1998-2010. DNA sequencing (PCR) followed by whole-exome sequencing Study type: Retrospective cohort Study type: Inclusion criteria: Exclusion criteria: N/A Study type: Inclusion criteria: N/A Inclusion criteria: SUD channelopathy genetic testing in NYC 2008-2012. LQTS, RYR2 testing Ages \$1 y, 141 patients, 51%, Results: Gene positive mutations in 19 variants in drowning/water related deaths. Results: one SNP of KCNQ1 noted NOS1AP significance 1º endpoint: yield of genetic testing in decedents with exercise related sudden death unvalidation in 34% (11 patients, LQTS, CPVT). Subsequent WES performed in 21 patients, yield 3/21, 14% (calmodulin 2, PKP2 1-ARVC). Calmodulin deaths 2, 5 y. Vield higher among decedents aged 1-10 y (91%) vs. 11-19 y (19%), p=0.0001 Inclusion criteria: SUD channelopathy genetic testing in NYC 2008-2012. LQTS, RYR2 testing Ages \$1 y, 141 patients, SUCD Results: Gene positive: 13.5% Results: Gene positive: 13.5%

		African Americans 48%, Hispanic 22%, Caucasian 16% Exclusion criteria: autopsy positive	SCN5A positive, 68% infants, 50% non-infants AA carried more SCN5A, KCNQ1 variants vs other ethnic groups; Whites: more RYR2 LQTS more prevalent during sleep related deaths, RYR2 active	
 Kumar S et al. Heart Rhythm 2013 (451) 23973953 	Study type: Size: 502	Inclusion criteria: Autopsy negative sudden unexplained death syndrome (SADS) and unexplained CA (UCA) (patients resuscitated successfully), mean age 32 y. Clinical evaluation (ECG, EST, echo) w targeted genetic testing. SADS mean age 24 y, UCA 32 y. Exclusion criteria: N/A	1° endpoint: Evaluate yield of comprehensive evaluation of SADS and UCA Results: SADS: yield 18%; LQTS in young ≤20 y; Brugada in age ≥40 y. UCA: yield 62%: mainly LQTS and BrS; CPVT, ER, ARVC, Short QT. Targeted genetic tesing in patients with proven or suspected phenotoype: molecular dx SADS 35%, UCA 48%.	 Clinical + targeted genetics yield: SADS: 18%, UCA 62% Inherited cardiac disease diagnosed only in families with multiple events Recommend ongoing periodic clinical evaluation of children/young family members for developing disease

Data Supplement 50. Nonrandomized Trials, Observational Studies, and/or Registries of PVC-induced Cardiomyopathy - (Section 9)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
• Ban et al.	Study type:	Inclusion criteria:	Results:	• A PVC burden >26%/d
2013 (452)	Single Site	PVC burden >10%	Left ventricular dysfunction (EF	predicts LV dysfunction
• <u>23194696</u>	Observational	per 24 h and no	<50%) was present in 28 of 127	with sensitivity of 70%
		known SHD	patients (22.0%). The mean PVC	and specificity of 78%.
	<u>Size</u> : 127		burden (31 <u>+</u> 11 vs. 22 <u>+</u> 10%,	Thus, PVC induced LV
	patients		p<0.001), the presence of non-	dysfunction is reversible

		Exclusion	sustained VT (53.6 vs. 33.3%,	with catheter ablation
		criteria: SHD	p<0.05), and the presence of a	though there is wide
			retrograde P-wave following a	variability in the PVC
			PVC (64.3 vs. 30.3%, p=0.001)	burden associated with
			were significantly greater in those	reduced LVEF.
			with LV dysfunction than in those	
			with normal LV function. The cut-	
			off PVC burden related to LV	
			dysfunction was 26%/day, with a	
			sensitivity of 70% and a specificity	
			of 78%.	
			The origin sites of PVCs, the acute	
			success rate, and the recurrence	
			rate during follow-up after RFCA	
			were similar. In a multivariate	
			analysis, the PVC burden (OR:	
			2.94; 95% CI: 0.90-3.19, p=0.006)	
			and the presence of retrograde P-	
			waves (OR: 2.79; 95% CI: 1.08-	
			7.19, p=0.034) were	
			independently associated with	
			PVC-mediated LV dysfunction.	
•	Study type:	Inclusion criteria:	Results:	Idiopathic VF is often
Haïssaguerre	Multi-Center	16 patients with	16 patients with idiopathic VF	triggered by short
et al. 2002	Observational	idiopathic VF	triggered by short coupled PVCs	coupled PVCs from the
(442)		treated with	(mean 300 msec). The mean PVC	RVOT or the Purkinje
• <u>11879868</u>	<u>Size</u> : 16	catheter ablation	frequency per day was 9618.	system. The initiating
	patients		The initiating focus was in the	focus can be successfully
		<u>Exclusion</u>	RVOT in 4 patients, the RV	ablated with low risk of
		<u>criteria</u> : N/A	Purkinje in 4 patients, the LV	complications.
			Purkinje in 7 patients, and both	
			the RV and LV Purkinje in 1 pt.	
			Initially successful ablation of the	
			triggering PVC focus in 16/16	
			patients.	
			Long term freedom from VF	
			observed in 13 patients.	

● Haissaguerre et al. 2002 (444) ● 12186801	Study type: Multicenter Observational Size: 27 patients	Inclusion criteria: 27 patients undergoing catheter ablation of idiopathic VF without SHD	Results: Premature beats were elicited from the Purkinje conducting system in 23 patients: from the left ventricular septum in 10, from the anterior right ventricle in 9, and from both in 4, and from the RVOT in 4 patients. The interval from the Purkinje potential to the following myocardial activation varied from 10–150 ms during premature beat but was 11±5 ms during sinus rhythm, indicating location at peripheral Purkinje arborization. The accuracy of mapping was confirmed by acute elimination of premature beats during local radiofrequency delivery. During a follow-up of 24±28 mo, 24 patients (89%) had no recurrence	• Idiopathic VF can be successfully ablated by targeting the initiating focus which is usually in the Purkinje system or RVOT.
• Lee et al. 2015 (453) • 25940215	Study type: Single Center, Retrospective review, 2004– 2013 Size: 100	Inclusion criteria: Continuous Flow LVAD only Exclusion criteria: N/A	of VF without drug 1° endpoint: All cause mortality Results: • 64 patients. Had ICDs. • Death occurred in 15 (38%) patients in the no ICD group vs. 18 (30%) in the ICD group. Univariate analysis demonstrated a marginal early survival benefit at up to 1 y. No difference after 1 y. • Multivariate analysis did not show any significant predictor of survival.	ICD was not associated with improved survival.

			No patients died of SCD.	
 Carballeira 	Study type:	Inclusion criteria:	Results:	• A QRS duration >153
Pol et al.	Single Site	Consecutive	Of the 45 patients studied, 28	msec of high frequency
2014 (454)	Observational	patients without	patients (62%) developed PVC-	PVCs and a non-outflow
• <u>24184787</u>		SHD who had	related LV dysfunction and 17	tract site of origin are
	<u>Size</u> : 45	>10% PVCs/d and	patients (38%) remained with	predictors of developing
	patients	normal LVEF	normal LV function.	PVC-induced LV
		(>0.55) who were	The PVC burden was similar	dysfunction.
		observed.	(26.5% vs 26%) between the two	
			groups (p=NS).	
		<u>Exclusion</u>	The QRS duration was	
		<u>criteria</u> :	significantly greater for those who	
		Structural Heart	developed LV dysfunction than	
		Disease	those who did not (159 vs 142	
			msec, p<0.001).	
			A PVC QRS duration >153 msec	
			best predicted the development	
			of LV dysfunction (sensitivity 82%	
			and specificity 75%).	
			A non-outflow tract site of origin	
			was also an independent	
			predictor of LV dysfunction.	
 Deyell et al. 	Study type:	Inclusion criteria:	Results:	• For patients with a PVC
2012 (455)	Single Center	114 consecutive	Over a median follow-up of 10.6	burden >10%/d, LV
22640894	observational	patients with PVC	mo, 24 of 48 patients with LV	dysfunction may reverse
		burden >10%/d	dysfunction were classified as	after successful catheter
	<u>Size</u> : 114	undergoing	reversible and 13 of 48 as	ablation. The more
	patients	catheter ablation.	irreversible and 11 of 44 were	prolonged the QRS
		66 patients had	excluded due to failed ablation.	duration of the PVC the
		preserved LV		higher the risk that LV
		function and 48	There was a gradient of VPD QRS	dysfunction will not
		patients had	duration between the control,	improve.
		impaired LV	reversible, and irreversible groups	
		function	(mean VPD QRS 135, 158, and 173	
			ms, respectively; p<0.001). This	
		<u>Exclusion</u>	gradient persisted even for the	
		<u>criteria</u> :	same site of origin. In multivariate	

		Structural Heart Disease	analysis, the only independent predictor of irreversible LV function was VPD QRS duration OR: 5.07; 95% CI: 1.22–21.01 per 10-ms increase).	
 Del Carpio Munoz et al. 2011(456) 21332870 	Study type: Single Center Observational Size: 70 patients	Inclusion criteria: 70 patients undergoing PVC ablation without SHD. Exclusion criteria: Known SHD	Results: Patients with reduced LVEF (N=17) as compared to normal LVEF (N=53) had an increased burden of PVCs (29.3±14.6% vs 16.7±13.7%, p=0.004), higher prevalence of NSVT (VT) [13 (76%) vs 21 (40%), p=0.01], longer PVC duration (154.3±22.9 vs 145.6±20.8 ms, p=0.03) and higher prevalence of multiform PVCs [15 (88%) vs 31 (58%), p=0.04]. There was no significant difference in prevalence of sustained VT, QRS duration of normally conducted complexes, PVC coupling interval, or delay in PVC intrinsicoid deflection.	A higher PVC burden and prolonged QRS duration during PVCs may predict patients with reversible, PVC-induced CM.
• Olgun et al.	Study type:	Inclusion criteria:	Results:	• The presence of
2011 (457)	Single Center	51 consecutive	Fourteen of the 21 patients (67%)	interpolated PVCs was
• <u>21376837</u>	Observational	patients with PVCs undergoing	with cardiomyopathy had interpolated PVCs, compared with	predictive of the presence of PVC -related
	Size: 51	24 h Ambulatory	only 6 of 30 patients (20%)	cardiomyopathy.
	patients	Monitoring,	without PVC-induced	Interpolation may play an
		including 21	cardiomyopathy (p<0.001).	important role in the
		patients with	Patients with interpolated PVCs	generation of PVC-
		PVC-induced	had a higher PVC burden than	induced cardiomyopathy.
		cardiomyopathy	patients without interpolation	
		and 30 patients	(28%±12% vs. 15%±15%;	
		without	p=0.002). The burden of	
		cardiomyopathy.	interpolated PVCs correlated with	

			the presence of PVC	1
		Evaluation	cardiomyopathy (21%±30% vs.	
		Exclusion		
		criteria:	4%±13%; p=0.008). Both PVC	
		Structural Heart	burden and interpolation	
		Disease	independently predicted PVC-	
			induced cardiomyopathy (OR:	
			1.07; 95% CI: 1.01–1.13, p=0.02;	
			and OR: 4.43; 95% CI: 1.06–18.48,	
			p=0.04, respectively). The	
			presence of ventriculoatrial block	
			at a ventricular pacing cycle	
			length of 600 ms correlated with	
			the presence of interpolation	
			(p=0.004). Patients with	
			interpolation had a longer mean	
			ventriculoatrial block cycle length	
			than patients without	
			interpolated PVCs (520±110 ms	
			vs. 394±92 ms; p=0.01).	
Hasdemir	Chudu huna.	Inclusion criteria:	Results:	TICMP was relatively
et al. 2011	Study type:	Seventeen of 247	Patients with TICMP compared to	·
	Single Center		· ·	common (~1 in every 15
(458)	Observational	patients with	patients with preserved LVEF	patients) in our study
• <u>21235667</u>		PVCs (6.8%) who	were more likely to be male (65%	population. The
	<u>Size</u> : 247	had Ambulatory	vs 39%, p=0.043) and	predictors of TICMP were
	patients	monitoring and	asymptomatic (29% vs 9%,	male gender, absence of
		ECHO had	p=0.018), and were more likely to	symptoms, PVC burden
		tachycardia	have higher PVC burden (29.4±9.2	of ≥16%, persistence of
		induced	vs 8.1±7.4, p<0.001), persistence	PVCs throughout the day,
		cardiomyopathy	of PVCs throughout the day (65%	and the presence of
		(TICMP)	vs 22%, p=0.001), and repetitive	repetitive monomorphic
			monomorphic VT (24% vs 0.9%,	VT
		Exclusion	p<0.001). PVC burden of 16% by	
		<u>criteria</u> :	ROC curve analysis best separated	
		Structural Heart	the patients with TICMP	
		Disease	compared to patients with	
			preserved LVEF (sensitivity 100%,	
			preserved LVEF (Selisitivity 100%,	

			specificity 87%, area under curve 0.96).	
Baman et	Study type:	Inclusion criteria:	Results:	• A PVC burden of >24%
al. 2010 (459)	Single Center	Consecutive	A reduced LVEF (mean 0.37±0.10)	was independently
• <u>20348027</u>	Observational	group of 174	was present in 57 of 174 patients	associated with PVC-
		patients referred	(33%). Patients with a decreased	induced cardiomyopathy.
	<u>Size</u> : 174	for ablation of	EF had a mean PVC burden of	
	patients	frequent	33%±13% as compared with those	
		idiopathic PVCs	with normal left ventricular	
			function 13%±12% (p<0.0001). A	
		<u>Exclusion</u>	PVC burden of >24% best	
		<u>criteria</u> :	separated the patient population	
		Structural Heart	with impaired as compared with	
		Disease	preserved left ventricular function	
			(sensitivity 79%, specificity 78%,	
			area under curve 0.89) The lowest	
			PVC burden resulting in a	
			reversible cardiomyopathy was	
			10%.	
 Kanei et al. 	Study type:	Inclusion criteria:	Results:	• A new index, which
2008 (460)	Single Center	Consecutive	24 patients had <1000 PVCs/24 h,	incorporates PVC burden,
• <u>20348027</u>	Observational	group of 108	55 patients had 1000–10,000	QRS width and presence
		patients referred	PVCs/24 h, and 29 patients had	of SHD or suspected EPI
	<u>Size</u> : 108	for evaluation of	≥10,000 PVCs/24 h. The	origin that best predicted
	patients	frequent	prevalence of LV dysfunction was	PVC-CMP.
		idiopathic PVCs	4%, 12%, and 34%, respectively	
		from the RVOT	(p=0.02). With logistic regression	
			analysis, non-sustained VT was an	
		<u>Exclusion</u>	independent predictor of LV	
		criteria:	dysfunction with OR: 3.6; 95% CI:	
		Structural Heart	1.3–10.1).	
		Disease		
• Hamon et	Study type:	Inclusion criteria:	Results:	LV dysfunction in the
al. 2016 (461)	Single Center	107 consecutive	Patients with decreased LV	setting of frequent,
• <u>26924618</u>	Observational	patients (69 men;	function had a greater PVC	idiopathic PVCs may
		mean age =	burden on a 24-hour Holter	represent a form of

<u>Size:</u> 107	56±16 y) with	monitor than patients with cardiomyopathy that can
patients	frequent PVC	normal EF (37%±13% vs. be reversed by catheter
	(23.1±11.5%)	11%±10% of all QRS complexes; ablation of the PVCs.
	referred for PVC	p<0.0001). There was a significant
	ablation.	inverse correlation between the
		PVC burden and the EF before
	<u>Exclusion</u>	ablation (r=0.73, p<0.0001).
	<u>criteria</u> :	PVCs originated in the right
	Structural Heart	ventricular outflow tract in 31
	Disease	(52%) of 60 patients, the LV
		outflow tract in 9 (15%) of 60
		patients, and in other sites in 13
		(22%) of 60 patients. The site of
		PVC origin could not be
		determined in seven patients.
		Ablation was completely
		successful in 48 (80%) patients. In
		patients with an abnormal EF
		before ablation, LV function
		normalized in 18 (82%) of 22
		patients from a baseline of 34% to
		59%±7% (p<0.0001) within 6 mo.
		In the 4 patients in whom
		ablation was ineffective, the EF
		further declined from 34%±10%
		to 25%±7% (p=0.06) during
		follow-up. In a control group of 11
		patients with a similar PVC
		burden (30%±8%) and a reduced
		EF (28%±13%) who did not
		undergo ablation, the EF
		remained unchanged in 10/11
		patients over 19±17 mo of follow-
		up and one patient underwent
		heart transplantation.

• Bogun et al.	Study type:	Inclusion criteria:	Results:	• LV dysfunction in the
2007 (462)	Single Center	60 consecutive	Patients with decreased LV	setting of frequent,
• <u>17599667</u>	Observational	patients with	function had a greater PVC	idiopathic PVCs may
		idiopathic,	burden on a 24 h Holter monitor	represent a form of
	<u>Size</u> : 60	frequent PVCs	than patients with normal EF	cardiomyopathy that can
	patients	(>10/h), a	(37%±13% vs. 11%±10% of all QRS	be reversed by catheter
		reduced LV EF	complexes; p<0.0001). There was	ablation of the PVCs
		(EF; mean	a significant inverse correlation	
		34%±13%) was	between the PVC burden and the	
		present in 22	EF before ablation (r=0.73,	
		(37%) patients	p<0.0001).	
			PVCs originated in the right	
		<u>Exclusion</u>	ventricular outflow tract in 31	
		<u>criteria:</u>	(52%) of 60 patients, the LV	
		Structural Heart	outflow tract in 9 (15%) of 60	
		Disease	patients, and in other sites in 13	
			(22%) of 60 patients. The site of	
			PVC origin could not be	
			determined in seven patients.	
			Ablation was completely	
			successful in 48 (80%) patients. In	
			patients with an abnormal EF	
			before ablation, LV function	
			normalized in 18 (82%) of 22	
			patients from a baseline of 34% to	
			59%±7% (p<0.0001) within 6 mo.	
			In the 4 patients in whom	
			ablation was ineffective, the EF	
			further declined from 34%±10%	
			to 25%±7% (p=0.06) during	
			follow-up. In a control group of 11	
			patients with a similar PVC	
			burden (30%±8%) and a reduced	
			EF (28%±13%) who did not	
			undergo ablation, the EF	
			remained unchanged in 10/11	

			patients over 19±17 mo of follow- up	
 ◆ Zhong et al. 2014 (463) ◆ 24157533 	Study Type: Single Center Prospective observational Size: 510 patients	Inclusion Criteria: 510 patients with frequent PVCs (>1000/24 h) were treated either by RFA or with AAD from January 2005 through December 2010. Data from 24 h Holter monitoring and echocardiography before and 6–12 mo after treatment were compared between the treatment 2 groups Exclusion criteria: Structural Heart Disease	Results: Of 510 patients identified, 215 (40%) underwent RFA and 295 (60%) received AAD. The reduction in PVC frequency was greater by RFA than with AAD (- 21,799/24 h vs -8,376/24 h; p<0.001). The LVEF was increased significantly after RFA (53%–56%; p<0.001) but not after AAD (52%– 52%; p=0.6) therapy. Of 121 (24%) patients with reduced LVEF, 39 (32%) had LVEF normalization ≥50%. LVEF was restored in 25 of 53 (47%) patients in the RFA group compared with 14 of 68 (21%) patients in the AAD group (p=0.003). PVC coupling interval less than 450 ms, less impaired left ventricular function, and RFA were independent predictors of LVEF normalization performed by using multivariate analysis.	RFA appears to be more effective than AAD in PVC reduction and LVEF normalization
• Kawamura et al. 2014 (464) • 24157533	Study type: Single Center Observational Size: 214 patients	Inclusion criteria: 214 patients undergoing successful ablation of PVCs who had no other	Results: Among these patients, 51 (24%) had reduced LVEF and 163 (76%) had normal LV function. Patients with LV dysfunction had significantly longer coupling interval (CI) dispersion	• In addition to the PVC burden, the CI-dispersion and BMI are associated with PVC-induced cardiomyopathy

		causes of	(maximum-CI-minimum-CI) and	
			1 '	
		cardiomyopathy	had significantly higher PVC	
		Fuctories	burden compared to those with	
		Exclusion	normal LV function (CI-dispersion:	
		criteria:	115±25 msec vs. 94±19 msec;	
		Structural Heart	p<0.001; PVC burden: 19% vs.	
		Disease	15%; p=0.04). Furthermore,	
			patients with LV dysfunction had	
			significantly higher body mass	
			index (BMI) compared to those	
			with normal LV function (BMI>30	
			kg/m ² ; 37% vs. 13%; p=0.001).	
			Logistic regression analysis	
			showed that CI-dispersion, PVC	
			burden, and BMI (>30 kg/m²) are	
			independent predictors of PVC-	
			induced cardiomyopathy.	
Yokokawa	Study Type:	Inclusion Criteria:	Results:	PVC-induced
et al. 2013	Single Center	A consecutive	The majority of patients (51 of 75,	cardiomyopathy resolves
(465)	observational	series of 264	68%) with PVC-induced LV	within 4 mo of successful
• <u>24612052</u>	Size:	patients with	dysfunction had a recovery of LV	ablation in most patients.
	264 patients	frequent	function within 4 mo. In 24 (32%)	In about one-third of the
	-	idiopathic PVCs	patients, recovery of LV function	patients, recovery is
		referred for PVC	took more than 4 mo (mean 12±9	delayed and can take up
		ablation,	mo; range 5-45 mo). An epicardial	to 45 mo. An epicardial
		including 87 with	origin of PVCs was more often	origin predicts delayed
		LV dysfunction	present (13 of 24, 54%) in	recovery of LV function.
			patients with delayed recovery of	
		Exclusion	LV function than in patients with	
		criteria:	early recovery of LV function (2 of	
		Structural Heart	51, 4%; p<0.0001). The PVC-QRS	
		Disease	width was significantly longer in	
			patients with delayed recovery	
			than in patients with recovery	
			within 4 mo (170±21 ms vs	
			159±16 ms; p=0.02). In	
			multivariate analysis, only an	
			multivariate analysis, unity all	

	epicardial PVC origin was	
	predictive of delayed recovery of	
	LV function in patients with PVC-	
	induced cardiomyopathy	

Data Supplement 51. Nonrandomized Trials, Observational Studies, and/or Registries Related to Pregnancy - (Section 10.2)

Study Acronym;	Study Type/Design;	Patient Population	es, and/or Registries Related to Preg	Summary/Conclusion
Author;	Study Size	Tationt ropulation	(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	Commond(e)
● Jeejeebhoy et al. 2015(466) ● 26443610	Study type: Scientific Statement of the AHA Size: N/A	Inclusion criteria: Comprehensive review and recommendations for management of CA during pregnancy Exclusion criteria: N/A	1° endpoint: N/A Results: Specific recommendation for management of CA during late pregnancy and delivery. There are 2 of major importance that are given the force of Recommendations in the absence of supporting data on outcomes (LOE-C): Left Uterine Displacement during CPR when the uterus is above the umbilicus; and the 4-5 min rule for emergency C-section during CA PMCD.	● Both this Scientific Statement on Cardiac Arrest in Pregnancy and the 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care; Part 10: Special Circumstances of Resuscitation, recommend that in CA when the uterus is above the umbilicus, left uterine displacement (142) should be performed to relieve aortocaval compression during CPR. While there is limited data on the relief of aortocaval compression by this maneuver, there is no data on the effect of LUD on outcomes. This is a Class I Recommendation, with LOE C. ● There is no specific data to support these recommendations from the point of view of outcomes yet they are woven in to two recommendation documents recently released. ● The 4-5 min window for PMCD is also based on limited theoretic information, but does not have any scientific basis supporting improved maternal or fetal outcomes. It is a Class IIa

				recommendation, LOE C. It is led to the recommendation that a scalpel be available for response teams on the obstetrical units, and a recommendation against moving the patient to operating room or delivery suite, but rather doing the PMCD on site.
 Creagna A A, et al 2014 (467) ◆ 3880915 	Study type: Analysis of surveillance data accumulated by CDC (Division of Reproductive Health) Size: Absolute numbers not specified	Inclusion criteria: De-identified maternal and related fetal deaths reported to CDC by 52 voluntary reporting areas (50 U.S. states, New York City, and District of Columbia); based upon death certificate data Exclusion criteria: None specified	1° endpoint: Deaths during or within 1 y after pregnancy, with causes based upon death certificate data. Results: Pregnancy-related mortality ratio increased steadily from 7.2 deaths/100,000 live births in 1987 to 17.8 deaths/100,000 live births in 2009. The reasons for this increase are unclear. In parallel with this, there has been a decline in the contribution of the traditional causes of pregnancy-related mortality (i.e., hemorrhage, sepsis, hypertensive disorders of pregnancy), and the emergence of CV and other medical conditions as important contributors to mortality. For the most recent surveillance period shown (2006–2009), CV	Pregnancy-related mortality ratios are 3–4 times higher among black than white women The data do not distinguish CA from other mechanisms of CV death; nor do they distinguish tachyarrhythmic CA from other mechanisms.
			conditions alone accounted for over 1/3 of all pregnancy-related deaths.	
• ZAHARA II • Kampman et al. 2015 (468)	Study type: Prospective cohort	Inclusion criteria: Pregnant women with known congenital heart	1° endpoint: Cardiovascular events within 1 y postpartum	Postpartum risk is low among women free of events during pregnancy Women who have events during
• <u>25641540</u>	<u>Size</u> : 172	disease Exclusion criteria: N/A	Results: Women with events during pregnancy were 7.1 times more likely to have events postpartum	pregnancy should be followed postpartum for changes in cardiovascular status.

• ZAHARA • Drenthen et al. 2010 (469) • 20584777	Study type: retrospective analysis of registry data Size: 1302 pregnancies in 714 women with congenital heart disease	Inclusion criteria: Pregnant women with known congenital heart disease Exclusion criteria: Miscarriages at <20 wk of gestation; elective abortions.	1º endpoint: Cardiovascular events during pregnancy Results: Cardiovascular complications occurred in 7.6% of pregnancies, with "clinically significant" arrhythmias most common events – 4.7%; type not specified.	Arrhythmias were most common events, mostly atrial; others not specified Presence of cyanotic heart disease (corrected/uncorrected), use of cardiac medication before pregnancy, left heart obstruction, aortic or pulmonic regurgitation, and mechanical valves were most closely associated with cardiovascular complications.
 Mhyre et al. 2014 (470) 24694844 	Study type: Retrospective cohort study of CA during admissions for delivery from the Nationwide Inpatient Sample (NIS) Size: 56,900,512 hospitalizations for delivery between 1998 and 2011	Inclusion criteria: Diagnosis code indicating delivery or a procedure code related to delivery Exclusion criteria: Diagnosis code indicating abnormal products of conception or a procedure code indicating abortion.	1º endpoint: Cardiac arrest during hospitalization for delivery in the United States between 1998 and 2011. 2° outcomes included: (1) survival to hospital discharge; (2) the association between CA and demographic and socioeconomic characteristics, and medical and obstetric diagnoses and procedures; and (3) association between CA and the annual hospital delivery volume. Results: 4,843 cardiopulmonary arrests (CPA) between 1998 and 2011 (event rate = 8.5 CPA/100,000 hospitalizations, or 1: 12,000). Incidence was higher for older subjects (≥35 y), black women, and Medicaid patients. The conditions most strongly associated with CPA were pulmonary hypertension, malignancy, CVD (i.e., ischemic heart disease, congenital heart disease, cardiac valvular disease, and preexisting hypertension), liver disease,	 ◆ CPA is rare among patients hospitalized for delivery, but considerably higher than the age adjusted incidence of CPA in general population. ◆ There is a trend towards improving survival to hospital discharge over the 14 y observation period, but the incidence has not changed significantly. ◆ The most common etiologies numerically are those that are not associated with the tachyarrhythmic CA, but the incidence is highest among those conditions that are more likely to be associated with tachyarrhythmic events. ◆ The cumulative number of CPAs in the sample was 4,843 over 14 y (average = 346/y), but this number is based on the limitations of the sample size in the NIS.

● Siu et al. 2001 (471) ● 11479246	Study type: Retrospective analysis of a multicenter consecutive series of pregnant women with a Hx a heart disease. Size: 599 pregnancies in 562 consecutive referrals	Inclusion criteria: Congenital or acquired cardiac lesions or cardiac arrhythmias. Patients in whom cardiac arrhythmia was the 1° diagnosis must have had symptomatic sustained tachyarrhythmias or bradyarrhythmias requiring treatment before pregnancy. Exclusion criteria: Isolated mitral valve prolapse (moderate or mild mitral regurgitation) or those referred for termination of pregnancy.	and systemic lupus erythematosus. However, the absolute numbers were highest for postpartum or antepartum hemorrhage combined = 44.7%, HF, amniotic fluid embolism, and sepsis. 1º endpoint: Prepartum (2nd and 3rd trimesters), peripartum, and postpartum 1º cardiac, 2º cardiac, neonatal, or obstetric complications. Results: The principal cardiac lesion was congenital in 445 pregnancies (74%), acquired in 127 pregnancies (22%), and arrhythmic in 27 pregnancies (4%, with the majority being SVT's). 1º cardiac events occurred in 80 pregnancies (13%); 55% of which occurred prepartum. Pulmonary edema and/or cardiac arrhythmia accounted for most of the cardiac events, the majority SVT's. Predictors of 1º cardiac events were HF, TIA, CVA, or arrhythmia before pregnancy; baseline NYHA class >II or cyanosis; left heart obstruction; and LV EF<40%. A 2º cardiac event occurred in 37 (6%). Worsening of NYHA class by >2 classes occurred in 26 of the 579 pregnancies in which the baseline NYHA class was I or II.	 A subgroup at high risk for 1° or 2° cardiac complications of pregnancy is identifiable, with a combined incidence of 17%. Among 1° events, 55% occurred during the 2nd and 3rd trimesters. The majority of arrhythmias were SVT's. Careful scrutiny of high risk cardiac patients during pregnancy, beginning no later than the second trimester, is warranted for both arrhythmic and non-arrhythmic 1° and 2° complications.
• Einav et al. 2012 (472) • <u>22613275</u>	Study type: Retrospective analysis of published original	Inclusion criteria: (1) At least 5 clinical details regarding the case (e.g. age,	1° endpoint: Maternal and neonatal survival to hospital discharge and the	Maternal outcomes may not be as poor as in other CA populations. Mortality rates were higher among women who underwent PMCD compared

	articles, case series, case reports and letters to the editor regarding PMCD during CA in pregnancy Size: 94 cases selected from 108 publications that met review criteria.	gravidity, parity, obstetric and medical Hx, presenting rhythm, location of arrest), and the care provided (e.g. chest compression, ventilation, monitoring, drugs given); (2) At least one of the following outcomes: (a) maternal non- return/return of spontaneous circulation or non- survival/survival to hospital discharge; (b) fetal/neonatal outcome. Exclusion criteria Maternal arrest post- delivery, no data enabling relation of case details to	relationship between PMCD and this outcome. Results: ROSC was achieved in 60.6% of mothers (N=57), among whom 89.5% survived to hospital discharge (51/57). Time from arrest to PMCD was reported for only 57 cases of the 76 (75%) receiving PMCD; the average time was 16.6±12.5 min (median 10, range 1–60, IQR 8–25), with only 4 cases achieving the recommended 4-min target. Overall survival to hospital discharge was 54.3%. Among 23 with VT/VF, 15 survived to discharge. Overall, inhospital location and PMCD <10 min were statistically significant. Neurological outcomes of surviving mothers (N=51) were described as CPC 1/2 in 78.4% (40/51). The overall neonatal survival rate was 63.6% (42/66). Neurological outcomes of surviving neonates were	with those who did not, possibly because of a subgroup with spontaneous or rapid ROSC. • The 4-min time goal for PMCD usually remains unmet (4 of 57, 7%), yet neonatal survival is still likely if delivery occurs within 10 or even 15 min of arrest and neonatal survival was most-powerfully associated with maternal arrest occurring in-hospital, regardless of the cause of arrest.
			, , , ,	
• Citro et al. 2013 (473) • <u>23519095</u>	Study type: Case reports identified in systematic literature review Size: 15	Inclusion criteria: Diagnostic criteria for tako-tsubo syndrome based upon modified Mayo criteria Exclusion criteria: Preexisting cardiomyopathy or	1° endpoint: Diagnosis of TTS Results: 13 of 15 cases of TTS had onset 24 h after a C-section. 13 patients had cardiac complications (pulmonary edema, cardiogenic shock, or CA [N=1]) All patients had return of LV function	 Acute medical/surgical stressors are increasingly recognized as a trigger for TTS Distinction from peripartum cardiomyopathy is important for prognostic reasons. Cardiac arrest is infrequent in TTS. LQT2 more likely to have ACE postpartum vs LQT1 or 3

		other known cardiac defects		 Risk greatest during 9 mo postpartum: HR: 2.7, 95% CI: 1.8–4.3, p<0.001 risk reduced by using beta-bl, HR: 0.34, 95% CI: 0.14-0.84, p=0.02.
• Seth et al. 2007 (474) • <u>17349890</u>	Study type: Retrospective analysis of data from the International LQTS Registry Size: 391	Inclusion criteria: First live birth pregnancy in women with identified LQTS- related gene mutation or considered to be affected with LQTS on the basis of a QTc>470 ms Exclusion criteria: First live birth prior to 1980.	1º endpoint: LQTS-related death, ACA, and/or syncope before, during, and after pregnancy Results: Compared to frequency of endpoint events prior to pregnancy, event rates during pregnancy were lower, but significantly higher during the 9 mo postpartum period. Frequency of events returned to pre-pregnancy levels after 9 mo. The post-partum increase was greatest among those with HERG mutations.	The data have implications for observation and pharmacological management during the 9 mo post-partum. The data have implications for observation and pharmacological management during the 9 mo post-partum.
• Katz et al. 2005 (475) • <u>15970850</u>	Study type: Systematic MEDLINE review of outcomes from perimortem cesarian deliveries Size: 38	Inclusion criteria: Case reports of pregnant CA victims between 25 and 42 wk of gestation who underwent PMCD. Exclusion criteria: Cesarean deliveries performed on mothers who were dying from mortal injuries, but still had vital signs, were excluded.	1º endpoint: Outcomes for fetus and mothers as a result of PMCD Results: In 30 of 38 PMCD's surviving infants were delivered. One of the twins died in the neonatal period from anoxic injury and complications of prematurity. In 12 of 22 cases in which hemodynamic data was reported, sudden return of pulse and BP occurred when the uterus was emptied.	• The data reviewed supports, but does not prove, that PMCD within 4 minutes of onset of maternal CA improves maternal and neonatal outcomes. A controlled trial will never be feasible. The conclusion is based upon general data on survival free of neurological injury during CA as a function of downtime.
Dijkman et al.2010 (476)20078586	Study type: Retrospective cohort study of CA during pregnancy, with and without	Inclusion criteria: All cases of maternal CA during the second half of pregnancy in The Netherlands	1° endpoint: Frequency of use of PMCD over time and case fatality rate of those with PMCD (N=12) compared to those without PMCD (N=43).	 Use of PMCD is increasing over time. Outcome for pregnant women with CA and PMCD remains dismal, but this study is limited by small numbers and apparent long delays to initiation of PMCD.

	PMCD during a 15 y	identified by survey		The data are reasonable for trend to
	period.	from 1993-2008.	Results:	increased used of PMCD, but outcomes
	periou.	1101111333 2000.	A total of 8 of 55 mothers survived	cannot be relied upon because of factors
	Size:	Exclusion criteria:	(15%). Among the 12 women in	cited above.
	55 CA among	None specified	whom PMCS was performed, there	cited above.
	2,929,289 women,	None specifica	were two maternal survivors (17%).	
	12 of whom		In the 43 women in whom no PMCS	
	underwent PMCD.		was performed, there were six	
	anderwent rivies.		maternal survivors (14%).	
			No PMCD's were performed prior to	
			2000, and the use progressively	
			increased after 2000. The maternal	
			case fatality rate for PMCS for the	
			entire 15 y period was 83% (10/12).	
			For the period of August 2004 to	
			August 2006 the case fatality rate for	
			PMCS was 75% (3/4) and the case	
			fatality rate for resuscitation without	
			PMCS was 67% (6/9).	
			Neonatal case fatality rate with	
			PMCD was 58%. Corresponding data	
			for no PMCD is not provided.	
• Colletti et al. 2013	Study type:	Inclusion criteria:	1° endpoint:	• Even in light of these numbers, it is
(477)	Review and opinion	Studies of radiation	Magnitude of exposure risk to fetus	generally recommended that fluoroscopic
• <u>23436839</u>	article on radiation	exposure to fetus as a	based upon nature of radiation-	procedures be avoided until after the first
	during pregnancy	result of cardiovascular	associated procedure and stage of	trimester, unless clinical circumstances,
		procedures in pregnant	pregnancy	based on risk/potential benefit
	Size:	women.		considerations, warrant an earlier
	Not specified		Results:	intervention.
		Exclusion criteria:	Most procedures entail a fetal dose	
		N/A	well below the fetal risk threshold of	
			50 mGy. For the specific issue of	
			fluoroscopic radiation for ICD	
			implants, no specific data is available.	
			However, for groin-to-heart catheter	
			procedures, the fetal exposure is	
			0.094–0.244 mGy/min. Thus, a	

			fluoroscopic time of 1 h falls well-	
			below the fetal risk threshold.	
• Natale et al. 1997	Study type:	Inclusion criteria:	1° endpoint:	ICD's are effective and safe for the
(478)	Multicenter	Women with an ICD	Use, efficacy and safety of ICD's	pregnant female
• <u>9386142</u>	retrospective	who completed a	during pregnancy.	• There were no apparent adverse effects
	analysis of women	pregnancy or was	Results:	on the fetus.
	with an ICD who	currently pregnant.	The EF at the time of ICD	
	became pregnant.	(1). The clinical	implantation was 49.8±9.7% (present	
		presentation and	EF was 51.4±9.5%). Underlying	
	Size:	indication for ICD	cardiac diseases were long-QT	
	44	implantation were	syndrome (N=13), idiopathic VF (17),	
		sudden cardiac death	cardiomyopathy (8), congenital heart	
		in 33 patients, VT in 9	disease (3), CAD with an ischemic	
		patients, and VT with	cardiomyopathy (1), HCM (1), and	
		syncope in 2 patients.	ARVC (1). The indications for the ICD	
			were VF in 33 patients, VT in 9, and	
		Exclusion criteria: N/A	VT/syncope in 2.	
			During the first pregnancy after	
			implant, 33 women experienced no	
			ICD discharge, 8 received one shock;	
			1 experienced 5 firings in Afib; and 2	
			had 11 and 5 discharges, respectively,	
			for monomorphic VT. During delivery,	
			in the women in whom the ICD	
			remained active, none received any	
			shocks. In the 24 to 48 h period after	
			delivery, 1 patient had an ICD	
			discharge for VF. Overall, the total	
			number of ICD discharges during	
			pregnancy ranged from none to 11,	
			with an average of 0.66±1.9 shocks	
			(0.07 shock per mo).	
			There were no apparent adverse	
			effects on the fetus among the 11	
			shocks delivered during pregnancy	

theoretical fetus during simulated pregnancies during ablation procedures in female patients of childbearing age. Estimated radiation exposure was carried out for each projection of the cardiac ablation procedure, using fetal phantoms simulating pregnancy in the first, second, and third trimesters. Size: 20 women procedures for supraventricular tachycardias. Fexulusian procedures for supraventricular tachycardias. The average radiation dose to the fetus was <1 mGy in all periods of gestation. Average excess fatal cancer was 14.5/10° fetuses exposed during the first trimester. Corresponding values for the second and third trimesters were 30 and 55.7/10°, respectively. The risk for hereditary effects in future generations was 1.5/10° cases for irradiation during the first trimester. Corresponding values for the second and third trimesters were 3.0 and 5.6/10°, respectively. Size: 20 women	Damilakis et al.2001 (479)11514375	Study type: Radiation exposure and fluoroscopy tines to a	Inclusion criteria: Women of childbearing age undergoing catheter ablation	1° endpoint: Radiation exposure and fluoroscopy times estimated for phantom simulated fetus, calculated for first,	Catheter ablation procedures result in a very small increase in risk of potentially harmful radiation effects to the fetus.
		during simulated pregnancies during ablation procedures in female patients of childbearing age. Estimated radiation exposure was carried out for each projection of the cardiac ablation procedure, using fetal phantoms simulating pregnancy in the first, second, and third trimesters.	tachycardias. Exclusion criteria:	Results: The average radiation dose to the fetus was <1 mGy in all periods of gestation. Average excess fatal cancer was 14.5/10 ⁶ fetuses exposed during the first trimester. Corresponding values for the second and third trimesters were 30 and 55.7/10 ⁶ , respectively. The risk for hereditary effects in future generations was 1.5/10 ⁶ cases for irradiation during the first trimester. Corresponding values for the second and third trimesters were 3.0 and 5.6/10 ⁶ ,	

Data Supplement 52. RCTs Comparing Medication-Induced Arrhythmias - (Section 10.7)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
• CAST • The Cardiac Arrhythmia Suppression Trial Investigators. 1989 (480) • 2473403	Aim: Test hypothesis that suppression of ventricular ectopy post MI reduces incidence of SCA n patients whose ectopy was suppressed by encainide, flecainide or moricizine Study type: Randomized contolled, double- bllind Size: 1498	Inclusion criteria: Post MI, 6 d to 2 y; six or more PVCs/h and no VT over 15 beats at 120 bpm. 80% suppression of PVCs and 90% suppression of NSVT. Exclusion criteria: No flecainide for EF<30%. Moricizine was second choice if EF>30%	Intervention: Drugs as listed Encainide 432, placebo 425 Flecainide 323, placebo 318. Comparator: Placebo	1° endpoint: after 10 mo there was an excess in deaths due to arrhythmia (p=0.0004) in patients treated with encainide or flecainide. Safety endpoint (if relevant): n/a	• Excess in deaths due to shock due to recurrent MI.
• CAST II • The Cardiac Arrhythmia Suppression Trial II Investigators. 1992 (481) • 1377359	Aim: test hypothesis that suppression of ventricular ectopy post MI reduces incidence of SCA n patients whose ectopy was suppressed by moricizine	Inclusion criteria: Post MI, 6 d to 2 y; six or more PVCs/h and no VT over 15 beats at 120 bpm. 80% suppression of PVCs and 90% suppression of NSVT. Exclusion criteria: patients with any runs lasting 30 sec or	Intervention: Moricizine Comparator: Placebo,	1° endpoint: Terminated early due to excess mortality (17 of 665 with death or SCA with moricizine vs 3 of 660 with placebo) Safety endpoint: n/a	• N/A

Study type:	longer at a rate of		
Randomized	≥120 complexes/min		
contolled, double-			
bllind			
<u>Size</u> : 1335			

Data Supplement 53. Nonrandomized Trials, Observational Studies, and/or Registries of Medication-Induced Arrhythmias (Section 10.7)

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR;	Summary/Conclusion Comment(s)
Year Published	Study Size		& 95% CI)	Comment(s)
● Wyse et al. 2001 (482) ● <u>11704386</u>	Study type: Prospective study of the registry of AVID, examining the outcome of patients with "transient" or "correctable" causes of VT/VF Size 278 patients with transient or correctable cause, of 4450 in registry; only 18 (6.5%) had an AAD reaction	Inclusion criteria: Patients with "transient" or "correctable" VT/VF, compared with patients with high risk in AVID registry. Patients in registry could have EF >40% Exclusion criteria: N/A	1° endpoint: Mortality Results: mortality of patients with a transient or correctable cause of VT/VF was no different or perhaps even worse than that of the 1° VT/VF.	Mortality of patients with a transient or correctable cause of VT/VF was no different or perhaps even worse than that of the 1° VT/VF. However, the small number of patients with AAD reaction seemed to "most likely to presage better survival"
Monnig et al. 2012 (483)■ 21979994	Study type: Single center observational trial Size 43 patients	Inclusion criteria: survival of CA due to acquired QT prolongation/TdP who received an ICD. 79% had drug-induced TdP from an AAD. sotalol N=17; amiodarone N=12; quinidine	1° endpoint: ICD shock Results: Over mean followup of 84 mo, 44% had appropriate shocks and inappropriate shocks in 30% (Only inappropriate in 3 of 43)	 ICD therapy was appropriate in 44% of patients with drug-induced QT prolongation/TdP, (where DI-TdP was due to an AAD in 79%). However, EF was not normal (mean 41±12)

		N=3; propafenone N=1;		Appropriate shocks were most
		ajmaline N=1]		common in those with structural disease.
		Exclusion criteria: N/A		Beta blockers did not seem to reduce
				risk
• Antman et al. 1990	Study type: An open-	Inclusion criteria:	1° endpoint: Resolution of	• 90% of patients had a treatment
(484)	label multicenter	Digitalis intoxication with	toxicity and time course.	response in the setting of advanced and
• <u>2188752</u>	clinical trial of Fab	actual or potentially	Dosing requirements	potentially life-threatening digitalis
	treatment for life-	life-threatening cardiac		toxicity.
	threatening digitalis	rhythm disturbances,	Results: 80% had resolution	
	intoxication	hyperkalemia, or both	of all signs and symptoms of	
		caused by digitalis	toxicity, 10% improved, and	
		intoxication; refractory to	10% showed no response.	
		or likely to be refractory	Median initial response time	
		to treatment with	was 19 min. Time to complete	
	<u>Size</u> 150	conventional therapeutic	response was 88 min median	
		modalities.	(30–360 min).	
		46% had refractory VT	54% of those with CA survived	
		and 33% had VF.	hospitalization.	
			Adverse events in 14/148,	
		Exclusion criteria: N/A	with hypokalemia or	
			worsening CHF.	
• Chan et al. 2014	Study type: Review	Inclusion criteria: digoxin	1° endpoint: Resolution of	Confirms efficacy, onset of action.
(485)	of 10 case series	poisoning	toxicity, time course to effect.	Suggests that lower doses (at lower cost)
• <u>25089630</u>				are appropriate in many situations due to
		Exclusion criteria: N/A	Results: Response varied	pharmacokinetics of digoxin (unless CA is
			from 80-90% to 50%.	imminent).
	6: 2000		Reversal of toxicity 30–45	
	<u>Size</u> 2080		min.	
			Adverse events <10%	
			(exacerbated CHF, increased	
			HR and hypokalemia)	
			Lower dose requirements	
			(1/2 of the full neutralizing	
			dose) are appropriate unless	
			CA is imminent.	

• Hauptman et al. 1999 (486)	Study type: Review of treatment of	Inclusion criteria: N/A	1° endpoint: N/A	More common manifestations (including occasional ectopic beats,
• <u>10069797</u>	digoxin toxicity	Exclusion criteria: N/A	Results: N/A	marked first-degree AV block, or AF with
				a slow ventricular response) require only
	Size N/A			temporary withdrawal of the drug and monitoring.
				Administration of potassium salts is
				recommended for ectopic VA, even when the serum
				potassium is within the "normal" range.
• Kelly et al. 1992 (487)	Study type: Review	Inclusion criteria: N/A	1° endpoint N/A	Describes VT with digoxin toxicity.
• <u>1626485</u>				Notes exacerbation of digoxin toxicity
		Exclusion criteria: N/A	Results: N/A	with low and high K, hypothyroidism,
	Size: N/A			Notes benefit of magnesium administration.
• Osmonov et al. 2012	Study type: Single	Inclusion criteria: drug-	1° endpoint: improvement or	Digoxin-induced AV block (without)
(488)	center observational	related symptomatic type	need for pacer.	"toxicity") usually improved (28 of 39)
• <u>22530749</u>	series.	2 second degree or third		after withdrawal of the drug.
		degree AV block	Results: 39 patients had AV	
			block with digoxin dosing,	
		Exclusion criteria: MI,	with 28 of them improving	
	Size: 108	electrolyte abnormalities, digitalis toxicity, and	after withdrawal of the drug.	
	<u>5126.</u> 100	vasovagal syncope.		
		Digoxin toxicity (a digoxin		
		level from a blood		
		test of higher than 2		
		nmol/L with symptoms		
		such as nausea,		
		vomiting, and color vision abnormalities or		
		Above 2.5 nmol/L with or		
		without symptoms.		
• Tzivoni et al. 1988	Study type:	Inclusion criteria: TdP	1° endpoint Abolition of TdP	This established MgSO4 as treatment
(489)	Consecutive series	(9/12 due to AAD)		for TdP

2222422	B 11 10 11 11		- to 1 . C.1	
• <u>3338130</u>	Provided 2 gm IV with		Results: In nine of the	
	second bolus of 2 g	Exclusion criteria: N/A	patients a single bolus of 2 g	
	after 5-15 min. 9		completely abolished the TdP	
	received infusion at 3-		within 1 to 5 min, and in three	
	20 mg/min for 7-48 h.		others complete abolition of	
			the TdP was achieved after a	
	<u>Size</u> 12		second bolus was given 5 to	
			15 min later.	
• Keren et al. 1981	Study type: Single	Inclusion criteria: TdP,	1° endpoint: response to	This confirmed the effectiveness of V
(490)	center series	QTc>600 ms	therapy of isoproterenol	pacing for DI-TdP, even after
• <u>7296791</u>			and/or ventricular pacing.	isoproterenol was ineffective.
		Exclusion criteria: N/A		
			Results: Pacing effective in 4	This confirms the effectiveness of
			of 4 patients, 2 who had not	isoproterenol as a first line treatment.
	Size: 10 (9 on AAD, 4		responded to isoproterenol.	
	treated with pacing)		Continued up to 48 h and	Magnesium was not given in this
	. 0,		pacer removed after another	series.
			24 h. Pacing rate was "lowest	
			effective rate", 88-105 bpm.	
			chective rate , oo 100 bpiii.	
			In 2 cases atrial pacing was	
			tried, initially effective but	
			unstable so V pacing	
			provided.	
			provided.	
			Lidocaine was given in 4 cases	
			without improvement.	
			without improvement.	
			Isanrataranal /2 9	
			Isoproterenol (2-8	
			microgram/min) was given in	
- Ch 1 4007	Charles have a	to destant automote to 101	7 cases: effective in 5/7.	a ((Data antially a make the same as of OT
• Choy et al. 1997	Study type:	Inclusion criteria: healthy	1° endpoint: Effect on QTUc	"Potentially arrhythmogenic QT
(373)	Double-blind	subjects (12) and CHF	from KCl after quinidine or	abnormalities during quinidine treatment
• <u>9337183</u>	comparison of	(mean EF 17%) with age-	placebo.	and in CHF can be nearly normalized by
	potassium infusion	matched controls		modest elevation of serum potassium"
	after quinidine and	without CHF	Results:	

	placebo sequentially in 12 healthy subjects. Also, study on QTU in patients with CHF and age-matched controls who receive IV KCI <u>Size:</u> 12 healthy, 8 CHF plus 8 age- matched controls	Exclusion criteria: N/A	KCI was IV, 0.5 mEq/kg (to maximum of 40 meEq) over 60-70 min resulted in normalization of quinidine-induced and CHF-related QTU prolongation	
 Yang et al. 1996 (491) 8565156 	Study type: Basis EP (cardiac myocytes) Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: Change in IC50 for dofetilide and quinidine according to the extracellular K concentration Results: Elevating [K+]o from 1 to 8 mmol/L increased the IC50 for dofetilide block from 2.7±0.9 to 79±32 nmol/L and for quinidine block from 0.4±0.1 to 3.8±1.2 μmol/L.Increased K blunted drug effect of dofetilide and quinidine	• Extracellular potassium is a critical determinant of drug block of IKr, with substantial clinical implications. The increase in drug block with low [K+]o provides a mechanism to explain the link between hypokalemia and torsade de pointes
 Hellestrand et al. 1983 (492) 6195608 	Study type: Clinical research study Size: 28	Inclusion criteria: Group I:11 with temporary pacer; Group II:10 with chronic pacer at generator change; Group III: 7 with programmable pacer with pacing threshold testing Exclusion criteria: N/A	1° endpoint: Results: Given IV flecainide 2 mg/kg over 10 min. 7 with programmable pacers given oral 100-400 mg per day. I: 0.66–1.44 V II: 1.73–2.13 V III: 10 min: at 2.7 V: 0.14–0.22 msec; at 4.9 V 0.06–0.11 After 3 wk: at 2.7V 0.09–0.28 msec, at 4.9 V 0.06–0.16	Flecainide significantly increased both acute and chronic thresholds and the most marked rise (>200%) occurred during chronic oral therapy.

Echt et al. 1989 (493)2469545	Study type: Basic canine study Size: 78 protocols total	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: change in defibrillation threshold (DFT) Results: ED90 increased from 11 to 22 Joules (p<0.01)	Lidocaine doubled the defibrillation energy requirement
• Crijns et al. 1988 (494) 3143257	Study type: observational trial Size: 6 of 79 patients treated with flecainide developed this wide complex tachycardia	Inclusion criteria: Rate – related BBB giving wide QRS tachycardia Exclusion criteria: N/A	1° endpoint: N/A Results: 6 patients developed WCT, rates 145-200 BPM	Wide complex tachycardia resulted from tachycardia and flecainide slowing conduction. This can appear to be VT but is not.
• Bajaj et al. 1989 (495) 2551538	Study type: Basic canine Size: 30	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: After infusion of ODE, a potent metabolite of encainide, shortening in intervals (HV and QRS) with NaHCO3 or NaCl Results: With NaHCO3, QRS: 92–76 msec; HV 44 to 37	Short-term administration of NaHCO3 or NaCl can partially reverse ODE-induced conduction slowing, which may be an important factor in arrhythmia aggravation
• Myerburg et al. 1989 (496) 2480856	Study type: Case series Size: 4 (3 flecainide, 1 encainide)	Inclusion criteria: Prior CA or symptomatic sustained VT, treated with a Ic medication who developed runs of sustained VT, NSVT or increased ectopy Exclusion criteria: N/A	msec. 1º endpoint: suppression of drug-induced arrhythmias Results: Drug-induced arrhythmias were suppressed in all 4 patients	Propranolol had failed to prevent inducibility of sustained VT during previous programmed stimulation studies in three of the four patients, but it reproducibly suppressed drug-induced arrhythmias that appeared only after administration of the IC agents in each patient.
• Schwartz PJ et al. 2016 (497) • 27150690	Study type: Review	Inclusion criteria: N/A Exclusion criteria: N/A	N/A	 Review of Hx of drug-induced QT prolongation and TdP. crediblemeds.org categorizes drugs as possible, conditional and known TdP risk. Drugs associated with prolonged QT and TdP fall into a number of different

				pharmacologic classes, and the risk of TdP increases according to clinical and genetic factors. • Clinical decision support systems reduce prescription of QT prolonging drugs in patients at risk of TdP due to clinical or genetic factors.
Kannankeril P, et al.	Study type: Review	Inclusion criteria: N/A	1° endpoint N/A	Hypokalemia worsens risk of TdP
Pharcological Reviews				Although no randomized prospective trial
2010. (374)	Size: N/A	Exclusion criteria: N/A	Results: N/A	has been conducted, intravenous
				magnesium has become a first-line
				therapy for drug-induced TdP.

Data Supplement 54. Nonrandomized Trials, Observational Studies, and/or Registries Related to ACHD - (Section 10.8)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
• Basso C, et al.	Study type:	Inclusion criteria: N/A	1° endpoint: N/A	Discussed gross and microscopic
Virchows Arch	Review		Role of autopsy to establish cause of SCD: Assoc of	pathologic findings
2008 (498)		Exclusion criteria: N/A	European Cardiovascular Pathology developed	
• <u>17952460</u>	<u>Size</u> : N/A		guidelines	"Further tests in future":
			Includes ARVC, athlete's heart, HCM, myocarditis	molecular or toxicology
			Results: N/A	
• Thorne SA, et	Study type:	Inclusion criteria:	<u>1° endpoint</u> : Review side effects of chronic oral	Patients with CHD at higher risk
al.	Retrospective	ACHD, mean age 34.9	amiodarone	for amio adverse effects, esp
Circ 1999 (499)	multicenter	y, receiving		women, cyanosis, Fontan, or dose
• <u>10402444</u>		amiodarone for ≥6 mo;	Results: 36% developed thyroid dysfunction: 19	>200 mg
	<u>Size:</u> 92 pts	case-control group.	hyper, 14 hypothyroid. Sig risk factors: Female	
		Mean duration 3 y,	gender (OR: 3.0) cyanotic HD (OR: 7.0); Fontan	
		mean dose 191 mg	(OR: 4.0); dosage >200 mg/d (OR: 4.0)	
		Exclusion criteria: N/A		
• Deal B, et al.	Study type:	Inclusion criteria: TOF	<u>1° endpoint</u> : Induction of VT in TOF, response to	TOF EPS reproduces clinical
AJC 1987 (500)	single center	pts undergoing cath +	drug rx	sustained VT
• <u>3591695</u>	retrospective	EPS and drug testing	Mean 3.3 drugs/pt tested. Followup mean 2.2 y	Pts with freq PVC's: 60% inducible
		Sust VT: 4		sust VT

	Size : 9	PVC's: 5	Results: all pts with clinical sust VT had inducible sustained VT	Surgery to improve hemodynamics eliminated VT
		Exclusion criteria:	60% pts with frequent PVC's had inducible sust VT Pts with RV hypertension did not respond to any medications 4 pts underwent surgery: no recurrent VT	Elevated RV pressure: did not respond to medicationss
• Gatzoulis MA et al. Circ 1995 (501) • 7600655	Study type: Single center prospective	Inclusion criteria: TOF survivors Exclusion criteria: N/A	1° endpoint: TOF mechano-electrical interaction Mean followup 24 y Results: 41/178 patients evaluated serially, +	 TOF: QRS duration ≥ 180 msec predicts VT and SCD All patients with documented sustained VT and patients with SCD
	<u>Size</u> : 41		reviewed 4 SCD QRS duration correlated with RV size on Echo and heart size on CXR VT 9 patients: QRS mean 199 msec, CTR 0.67; significantly different than those without VT	had QRS duration ≥ 180 msec (100% sensitivity) • Chronic RV volume overload related to diastolic dysfunction
 Koyak Z et al. Circ 2012 (502) 22991410 	Study type: Retrospective multi-center with case- controls	Inclusion criteria: ACHD patients in Canadian database Exclusion criteria: N/A	1° endpoint: SCD in ACHD Results: 1,189 deaths among 25,790 ACHD patients: 19% SCD (213 patients) Arrhythmic cause 80%	• Risk for SCD in ACHD: SVT (OR: 3.5), mod-severe systemic ventricular dysfunction (OR: 3.4), mod-severe sub-pulmonary vent dysfunction (OR: 3.4), increased QRS duration (OR: 1.34 per 10 msec
	<u>Size</u> : 213		SCD vs severity of congenital heart disease Mild 12%, mod 33%, severe 55%	increase)
• Diller GP et al. Circ 2012 (503) • 22496160	Study type: Single center retrospective Size: 413	Inclusion criteria: TOF patients Mean age 36 y Median followup 2.9 y Exclusion criteria: N/A	1° endpoint: TOF: sustained VT, ACA/SCD, approp ICD shock Results: 4.6% sust VT/SCD/ACA (SCD 1.2%, Sustained VT, 2.2%, ICD shock 1.2%) Combination echo variables c/w poor outcome: RA area, RV fractional area change, LV global longitudinal strain, mitral annular systolic excursion	TOF: sust VT/SCD1.2/ACA 4.6% LV longitudinal function associated with greater risk SCD/VT
 Harrison DA et al. JACC 1997 (504) 9350941 	Study type: Single center retrospective Size: 18	Inclusion criteria TOF and VT, compared with 192 TOF patients without arrhythmia	1° endpoint: TOF and sustained VT Results: Patients with VT had frequent PVC's, low CI, RVOT aneurysms/PR/TR	TOF patients with VT have anatomic aneurysms of RVOT or PR Combined approach of correcting structural abnormalities + intra-op map-guided VT ablation may

		Exclusion criteria: N/A	14 patients reoperated: 10/14 cryoablation map- guided: recurrent VT in 3/10 Two patients with VT developed severe CHF, died.	reduce risk of deteriorating function and optimize VT management
• Knauth Al et al. Heart 2008 (505) • <u>17135219</u>	Study type: Single center retrospective Size: 88	Inclusion criteria: TOF patients with CMR Median postop interval: 21 y Exclusion criteria: N/A	1° endpoint: TOF major ACE: death, sustained VT, NYHA Class III/IV, clinical predictors Results: MACE: 20.5%: death 5%, Sustained VT 10%, worsening NYHA class 11% QRS duration ≥180 msec correlated with RV size	• TOF adverse outcomes predictors: RVEDV z score ≥7, OR: 4.55 LVEF <55%, OR: 8.05 RVEF <45% QRS duration ≥180 msec
• Therrien J et al. Circ 2001 (506) • <u>11369690</u>	Study type: cohort study Size: 70	Inclusion criteria: PVR for TOF VT preop 22% AT preop 17% Exclusion criteria: N/A	1° endpoint: Impact of PVR in TOF on QRS duration and VT, AT Mean followup 4.7 y Results: Cryoablation 15 patients with intraop mapping: 9 VT, 6 AFL: none had recurrence of preexisting arrhythmia VT post PVR 9% from 22%, p<0.001 AFL/AF decreased from 17% to 12%, p=0.32	PVR in TOF: QRS duration stabilized Concurrent cryoablation decreased incidence of VT
• Therrien J et al. AJC 2005 (507) • <u>15757612</u>	Study type: Single center retrospective Size: 17	Inclusion criteria adult TOF undergoing pulmonary valve replacement (PVR) Exclusion criteria: N/A	1° endpoint: TOF and PVR: effect on RV volume Mean followup 21 mo Results: PVR decreased RV volume: RVEDV: From 163 ml/m²-107 ml/m² RVESV: 109 to 69 ml/m² RVEF did not change: EF 32-34 Patients with RVEDV >170 ml/m² or RVESV >85 ml/m²: no pt had normalization of RV volume after surgery	TOF and PVR: Decreases RV volumes RVEF did not change PVR before marked RV volume increase?
 Harrild DM et al. Circ 2009 (508) 19139389 	Study type: Single center retrospective Size: 98	Inclusion criteria patients with late pulmonary valve replacement for RV dilation; matched controls with TOF, RV dilation but no PVR	1° endpoint: Impact of PVR in TOF on major adverse events followup median 1.4 y Results: Freedom from death or VT: 5 y: 80%, 10 y: 41%	TOF with late PVR: VT or death every 20 patient-y In matched comparison with TOF controls, PVR did not reduce the incidence of VT or death NOTE: advanced RV enlargement, empiric cryoablation

• Adamson L et al. Interact CTS 2009 (509) • 19567499 • Sabate Rotes A et al. CAE 2015	Study type: meta-analysis medline 1950- 2009 Size: 1070 Study type: Single center	Median age 21 y 6% preop VT QRS duration >180 msec: 19% Exclusion criteria: N/A Inclusion criteria PVR after TOF repair: 19 papers analyzed Exclusion criteria: N/A Inclusion criteria: N/A	Empiric cryoablation: 7 patients: 5/7 VT during followup Incidence death, VT, or both: 4.8/100 pt yrs All cause mortality: 6.1% No sig change in QRS duration after surgery 1° endpoint: Effect of PVR in TOF on RV size and function Results: summarizes all 19 papers' conclusions 1° endpoint: Impact of PVR in TOF on major adverse events: VT, SCD/ACA, appropriate ICD	PVR in TOF: Low mortality Reduces RV volumes RV function improves Symptoms and functional status improves TOF and PVR: Hx of VT and LV dysfunction
(510) • <u>25416756</u>	retrospective <u>Size</u> : 205	pulmonary valve replacement for RV dilation between 1988-2010 Median age 33 y Prior VT 8% LVEF <50%: 16% Exclusion criteria: N/A	shock Results: Freedom from MACE: 5 y: 95%, 10 y: 90%, 15 y: 79% More events occurred in patients without cryoablation Cryoablation of VT: 22 patients: (11%) 1/22 event after 7 y. Empiric Cryo performed in patients with VT, inducible VT at EPS not ablated, or Hx of unexplained syncope/pre-syncope; not mapguided	associated with higher risk, HR: 4.7 •QRS duration ≥180 msec predictive of arrhythmic event • Surgical cryoablation of VT may be protective Recommend patients with risk factors for VT undergo pre-or postop EPS
• Tsai SF et al. AJC 2010 (511) • 20723654	Study type: single center retrospective Size: 80	Inclusion criteria: ACHD patients ≥ 18y undergoing V stim Mean age 30 y Exclusion criteria: patients with clinical ventricular arrhythmias	1º endpoint: Inducible VT in ACHD patients without clinical VA Results: Inducible sust VT: 29% (TOF 52%, TGA 26%) Predictors: increased QRS, decreased VO2 on exercise, ventricular fibrosis on MRI (p < .05)	Inducible VT: 29% Combined fibrosis on MR and peak oxygen uptake <80% predicted had 100% sensitivity for sustained VT Consider using MRI, ex test as screening for V stim studies

• Garson A et al.	Study type:	Inclusion criteria: TOF	1° endpoint: Induction of VT in TOF	• TOF with inducible VT: more
JACC 1983 (512) • <u>6853902</u>	single center retrospective	patients undergoing EP	Results: patients with syncope had inducible	frequent PVC's, longer HV interval, elevated RV pressure, reduced RV
	<u>Size</u> : 27	Exclusion criteria: N/A	sustained or non-sust VT	F Poor hemodynamics correlated with VT induction
• Chandar JS et	Study type:	Inclusion criteria: TOF	1° endpoint: Inducible VT in TOF	Correlation poor hemodynamics
al. AJC 1990	Multicenter	patients undergoing		with inducible VT
(513)	retrospective	EPS	Results: Induced VT correlated with delayed age	
• <u>1689935</u>		Mean age repair 5 y	at repair, longer followup, syncope, elevated RV	
	<u>Size</u> : 359	Mean followup 7 y	pressure, frequent PVC's on holter	
		Exclusion criteria: N/A		
• Koyak Z et al.	Study type:	Inclusion criteria:	1° endpoint: SCD in ACHD	Risk for SCD in ACHD:
Circ 2012 (502)	Retrospective	ACHD patients in		SVT (OR: 3.5)
• <u>22991410</u>	multi-center	Canadian database	Results: 1189 deaths among 25790 ACHD	mod-severe systemic ventricular
	with case-		patients:	dysfunction (OR: 3.4)
	controls	Exclusion criteria: N/A	19% SCD (213 patients)	mod-severe sub-pulmonary vent
			Arrhythmic cause 80%	dysfunction (OR: 3.4)
	<u>Size</u> : 213		SCD vs severity of congenital heart disease	increased QRS duration (OR: 1.34
			Mild: 12%, mod: 33%, severe: 55%	per 10 msec increase)
• Kella DK et al.	Study type:	Inclusion criteria: ICD	1° endpoint: ICD outcomes in ACHD	Non-TOF patients less likely to
PCE 2014 (514)	Retrospective	in ACHD patients	Median followup 3.2 y	receive appropriate shocks
• <u>24889130</u>	single center	TOF 56%		ICD implantation indications
		TGA 25%	Results: 1° prevention 53%	should be ACHD lesion specific
	<u>Size</u> : 59		Approp ICD therapies 20%	
		Exclusion criteria: N/A	22% inapprop shocks	
			TOF: 27% approp shocks, non-TOF: 11% (p=0.043)	
• Santharam S et	Study type:	Inclusion criteria:	1° endpoint: ICD outcomes in ACHD	ACHD and ICD:
al. Europace	Retrospective	ACHD patients with	Mean followup 5 y	2.9%/y shock rate
2016 (515)	single center	ICD 2000-2014		Complications 9%/y
• <u>27234868</u>		Mean age 41 y	Results: Indications:	Disease specific indications, risks
	<u>Size</u> : 42	TOF 50%, TGA 12%	2° prev: 62%	must be clearly discussed
			1° 38%.	alternatives for 1° prevention
		Exclusion criteria: N/A	Appropriate shocks 14%	ablation
			Complications: 45%	

• Vehmeijer JT et	Study type:	Inclusion criteria: 24	1° endpoint: ICD implants in ACHD	High rate appropriate ICD therapy
al. EHJ 2016	Meta-analysis	studies with 2162	Mean followup 3.6 y	in both 1° and 2° ACHD
(516)	EMBASE,	ACHD patients with		High rates inappropriate shocks
• 26873095	MEDLINE,	ICD:	Results: 1° 53%, 2° 47%	and complications
	Google Scholar	Mean age 36 y	Approp intervention (ATP or shock): 24%;	Case-by-case analysis
		TOF 50%	1° 22%, 2° 35%.	costs/benefits essential
	<u>Size</u> : 2162		Inapprop shocks 25%; Complications: 26%	,
		Exclusion criteria: N/A	All-cause mortality 10%	
Moore JP et al.	Study type:	Inclusion criteria:	1° endpoint: Subcutaneous ICD in ACHD	Subcut ICD feasible in ACHD, most
CAE 2016 (517)	Retrospective	subcut ICD in ACHD	outcomes. Single ventricle 52%.	commonly single ventricle patients
• <u>27635073</u>	multi-center 7	starting 2011.	Median followup 14 mo.	with limited venous access
	centers	Median age 33.9 y	Results: 1ary prevention: 67%, 2ary 33%.	Successful conversion of induced
			Implant: VT induced 81%, converted ≤ 80 joules in	VT
	<u>Size</u> : 21	Indication: limited	all. Infection: 1 (5%);	"reasonable" rhythm
		venous access (10),	Shocks: inapprop 21%, appropriate 1 (5%). One	discrimination
		right-to-left cardiac	death due to asystole.	
		shunt 5	·	
		Exclusion criteria: N/A		
• Okamura H et	Study type:	Inclusion criteria:	1° endpoint: screening for suitability for	• for use of subcutaneous ICD in
al. Circ J 2016	Retrospective	ACHD patients	subcutaneous ICD use in ACHD patients	ACHD, screening of left and right
(518)	single center	undergong screening	Results: Left parasternal: failure 21%, reduced to	parasternal position may improve;
• <u>27109124</u>		for subcutaneous ICD	12% using right parasternal.	QT interval and T wave inversion
	<u>Size</u> : 100	Mean age 48 y		V2-V6 independent predictors of
		Exclusion criteria: N/A		left parasternal screening.
• Yap SC et al.	Study type:	Inclusion criteria:	1° endpoint: ICD outcomes in ACHD patients:	• ACHD Appropriate shocks 6%/yr,
EHJ 2007 (519)	Multicenter	ACHD patients ≥18 y	median followup 3.7 y	no difference in 1° or 2° prevention
• <u>17030523</u>	retrospective,	receiving ICD		Inappropriate shocks 41%
	Dutch national	Mean age 37±13 y	Results: Early comps 13%, late 17%	
	registry	2° prevention 60%	Approp shocks 23%, inapprop 41% -mainly SVT.	
			TOF fewer approp shocks vs other congenital heart	
	<u>Size</u> : 64	Exclusion criteria:	disease, HR 0.29	
• Khairy P et al.	Study type:	Inclusion criteria: TOF	1° endpoint: TOF: correlate V stim with outcomes	Multivariate analysis: inducible
Circ 2004 (520)	Multicenter	patients undergoing V	Results: sust monomorphic VT 30%, polymorphic	sustained VT independent risk for
• <u>15051640</u>	cohort	stim	VT 4.4%	subsequent clinical VT or SCD (RR:
		followup 6.5 y	Independent risk factors: age ≥18 y (OR: 3.3),	4.7)
	<u>Size</u> : 252		palpitations (OR: 2.8), frequent PVCs (OR: 5.6), CT	
		Exclusion criteria: N/A	ratio ≥0.6, prior shunt (OR: 3.1)	

• Khairy P et al. Circ 2008 (521) • 18172030	Study type: Retrospective multicenter, 11 sites Size: 121	Inclusion criteria: TOF patients receiving ICD Median age 33 y Exclusion criteria: N/A	1° endpoint: TOF ICD outcomes Median followup 3.7 y Results: 2° prevention: 44% Comps: total 30%, 5% early Approp shocks: 30% Annual rate approp: 1° 7.7%, 2° 9.8% (p=0.11)	Older age, prior shunts, frequent PVC's, cardiomegaly—increased likelihood of inducible VT TOF ICD shocks annual rate 7.7—9.8%, approx. equal for 1° and 2° prevention Approp shocks: elevated EDP (HR: 1.3), nonsust VT (HR: 3.7) Inappropriate shocks 5.8%/y Comps 30%: 21% leads, 6% generator
• Zeppenfeld K et al. Circ 2007 (522) • 17967973	Study type: Single center retrospective Size: 11	Inclusion criteria: repaired congenital heart disease patients with sustained VT, undergoing voltage map, ablation Exclusion criteria: N/A	1° endpoint: Ablation of VT in congenital heart disease followup 30 mo Results: SR voltage map, identify scar: anatomic isthmus: between TV-RVOT, pulm annulus and RV free wall, pulm annulus and septal scar, septal scar and TV Ablation of isthmus (most common between TV and anterior RVOT) abolished all 15 VT circuits.	VT ablation of anatomic isthmus successful: 91% without recurrence during 30 mo followup
• van Zyl M et al. HR 2016 (523) • 26961296	Study type: single center retrospective Size: 21	Inclusion criteria: repaired congenital heart disease patients with VT undergoing ablation Mean age 45 y 71% males Exclusion criteria: N/A	1º endpoint: outcome VT ablation in congenital heart disease: SCD or appropriate ICD shock Mean followup 33 mo Results: Reentrant VT 67%, Focal 33% Isthmus dependent VT mechanism in 67%, conduction block confirmed in 8	VT ablation in ACDH: reentrant VT targets anatomic isthmus: with confirmed block, no recurrent VT
• Kapel GF et a. CAE 2014 (524) • <u>25151630</u>	Study type: Retrospective, 2 centers Size: 28	Inclusion criteria: TOF patients with VT ablation Exclusion criteria: N/A	1° endpoint: TOF VT ablation in LV outcomes Results: Left sided mapping/ablation if right side RFA failed, part of circuit in LV 4/28 VT ablations used LV approach Target anatomic isthmus with transection	TOF VT ablation in LV successful in 4 patients: no recurrence during 20 mos Rt side failure: septal hypertrophy 2, pulmonary homograft 1, VSD patch 1

• Kapel GF, et al.	Study type: 2	Inclusion criteria:	1° endpoint: Ablation of VT in CHD	Predictors of lack of success:
Circ AE 2015	centers,	repaired CHD pts	followup 46 mo. 41% prior ICD	No complete procedural success,
(525)	retrospective	undergoing ablation		decreased LV function
• <u>25422392</u>			Results: complete success 25/34 pts: 74%; 18/25	• Transection of VT isthmus feasible
	<u>Size</u> : 34	Mean age 48 y	had preserved fxn	in 74%
		74% male	Procedural failure: hypertrophy, pulm homograft,	
		TOF 82%	prox to HBE, no critical reentry	
		TGA; VSD, AVSD, PS	79% discharged with ICD	
		Sustained VT 79%	15/18 complete success + preserved function d/c	
			on no AAD—no recurrences	
		Exclusion criteria: N/A	4 late deaths, 2 CHF, 2 CA	
• Kapel GF et al.	Study type:	Inclusion criteria:	1° endpoint: TOF VT isthmus identification	TOF VT: slow conducting
EHJ 2017 (526)	Single center	repaired TOF patients		anatomic isthmus is dominant
• <u>27233946</u>		with VT	Results: slow conducting anatomic isthmus	substrate
	<u>Size</u> : 74	induction/mapping	identified by electroanatomical mapping: targeted	
		63% male	for ablation	
		Mean age 40 y	28 patients with inducible VT. Ablation in 18 of	
		Exclusion criteria: N/A	isthmus	
 Khairy P et al. 	Study type:	Inclusion criteria: TGA	1° endpoint: TGA s/p atrial baffle ICD outcomes	TGA s/p atrial baffle: ICD
CAE 2008 (527)	Retrospective	s/p atrial baffle with		appropriate shocks mainly in
• <u>19808416</u>	multicenter, 7	ICD	Results: 2° prevention: 38%	patients with 2° prevention, (HR:
	sites	Mean age 28 y, 89%	Annual rates approp shocks:	18; p=0.034) and lack of BB, (HR:
		male	1° 0.5%, 2° 6%	16.7; p=0.03)
	<u>Size</u> : 37	Exclusion criteria: N/A	Independent predictors: 2° prevention, lack of BB	SVT preceded VT in 50% of
			Approp shocks: None with inducible VT;	approp shocks
			37% of patients without inducible VT (p=0.043)	Inducible VT did not predict
			Comps 38%, 33% lead, 3% generator	appropriate shock treatment in
				TGA
				Protective effect of BB
• Tutarel O et al.	Study type:	Inclusion criteria:	1° endpoint: all-cause mortality ACHD	• 9-fold (864%) increase in ACHD
Eur H J 2014	retrospective	ACHD patients ≥60 y at		patients >60 y between 2000 and
(528)	cohort, Royal	entry, followed	Results: 14.6% died (55/375)	2011
• <u>23882067</u>	Brompton	1/2000-3/2012, mean	Cardiac deaths: 40% CHF, CAD	
		age 65 y, median	Independent predictors mortality: CAD (HR: 5.05);	
	<u>Size</u> : 375	followup 5.5 y	CHF (HR: 2.36); NYHA class (HR: 1.96); mod-severe	
			systemic vent dysfunction (HR: 1.90)	
		Exclusion criteria: N/A		

• Koyak Z et al.	Study type:	Inclusion criteria:	1° endpoint: SCD in ACHD	Increased risk SCD: severe
Europace 2017	Multicenter	ACHD; age matched		ventricular dysfunction, increase
(529)	case-control:	controls; mean	Results: 131 SCD, mean age 36±14 y	QRS duration ≥5 ms/y
• <u>27247006</u>	CONCOR,	followup 7 y	Increased risk: increase in QRS duration ≥5 ms/y	
	Toronto, Leuven		(OR: 1.9), change in systemic vent fxn to severe	
	<u>Size</u> : 25,000	Exclusion criteria: N/A	(OR: 16.9; 95% CI: 1.8–120.1, p=0.008)	
• Engelfriet P et	Study type:	Inclusion criteria:	1° endpoint: ACHD morbidity	• VEA highest in TOF 14%;
al. EHJ 2005	multicenter	ACHD patients in	Median followup 5 y	Cyanotic 6%, VSD 3%,
(530)	retrospective	Europe: ASD, VSD,	Results: Ventricular arrhythmias:	
• <u>15996978</u>		TOF, coA, TGA,	TOF 14%, cyanotic 6%, VSD 3%, others 2% except	
	<u>Size</u> : 4110	Marfan, Fontan,	Fontan: 0	
		cyanotic	SVT: Fontan 45%, ASD 28%, TGA 26%, TOF 20%,	
			cyanotic 16%	
		Exclusion criteria: 8	Endocarditis: VSD 7%, cyanotic 6%, TOF 4%, others	
		lesions included	0-2%	
• Gallego P et al.	Study type:	Inclusion criteria: 936	1° endpoint: Causes SC arrest in ACHD	Highest SCA:
AJC 2012 (531)	single center	ACHD patients		TGA 10/1000
• 22464215	retrospective	followed single center	Results: SCA 2.6/1000 pt y	UVH, coarctation, TOF
		8387 patient-y of	SCA occurred in 23% of severe subaortic	Severe subaortic ventricular
	<u>Size</u> : 22	followup	ventricular dysfunction, vs 0.7% with nonsevere	dysfunction (HR: 29)
			dysfunction, p<0.001	
		Exclusion criteria: N/A	80% of SCA occurred in TGA, UVH, coarctation,	
			TOF	
• Engelings CC et	Study type:	Inclusion criteria:	1° endpoint: Identify cause of death in ACHD	• Leading causes of cardiac death:
al. Int J Cardiol	National cohort	ACHD patients >18 y,		CHF 28%, Sudden 23%
2016 (532)		mean followup 3.7 y;	Results: 239 deaths, 9.2%, mean age 39.8±17.8 y	• Sudden death highest: Marfan's,
• <u>26970963</u>	<u>Size</u> : 2596	between 1/01-1/15	Related to Cong HD: 72%: CHF 28%, SCD 23%	AS, Eisenmenger syndrome, cc TGA
			Leading causes: CHF-UVH, TGA	TGA, TOF, VSD, UVH
		Exclusion criteria: N/A	SCD: Eisenmenger, TOF, Marfan, AS	AICD under-utilized
			Comparing 2001-2008 with 2009-2015:	
			CHF increased from 23-30%, SCD decreased from	
			29-20%	

• Fish FA (533) • JACC 1992 • 1906902	Study type: Retrospective multi-center Size: 124 (entire study, 579)	Inclusion criteria: Use of class Ic AA meds in 124/579 young patients with VA Flecainide 103, encainide 21 Exclusion criteria: N/A	1° endpoint: Adverse events during treatment with flecainide or encainide for VA: Proarrhythmia, CA/SD Results: Flecainide: Pro-arrhythmia: 5.8%, CA 3.9%, sudden death4.9% Encainide: pro-arrhythmia 9.5%, CA 9.5%, sudden death9.5% Efficacy 71-76% 10 patients CA/Death: most on flecainide	 Deaths 5.6%, CA 4.8%, proarrhythmia 6.4% for patients treatment for VA with either flecainide or encainide for SVT patients, risk higher if structural HD, not for VT
• Stan MN et al., 2014 (534) • <u>22518347</u>	Retrospective single center 23	ACHD patients developing amio- induced thyrotoxicosis after ≥ 3 mos amio, Mayo Clinic 1987- 2009; median followup3.1 yrs.	1° endpoint: Identify incidence and risk factors amio Results: Thyrotoxicosis13.6% (23/169) ACHD patients developed amio thryrotoxicosis.	●Highest Risk: low BMI <21, cyanotic HD
• Silka MJ et al. JACC 1998 (535) • 9669277	Study type: Retrospective statewide registry Size: 41	Inclusion criteria: congenital heart disease surgery in Oregon 1958-1996 3589 patients Exclusion criteria: single ventricle not included	1° endpoint: Population based risk of SCD in congenital heart disease Results: SCD 1/1118 patient-y 37/41 late sudden deathoccurred in 4 lesions Causes SCD: arrhythmia 75%, CHF 10%, other cardiac 17% (embolic, aneurysm rupture)	Late SCD: 4 lesions: 1/454 patient-y Aortic stenosis Coarctation TGA TOF Cause SCD: arrhythmia 75%, CHF 10%
 Oechslin EN et al. AJC 2000 (536) 11074209 	Study type: single center retrospective Size: 197	Inclusion criteria: ACHD patients followed Toronto, 2609 adults Exclusion criteria: N/A	1° endpoint: Mortality causes in ACHD Results: Mean age death 37 y Causes: sudden 26%, CHF 21%, periop 18% Youngest age at death: TGA, tricuspid atresia, PA, aortic coarc <30 y >50 y; ASD, PDA	Highest mortality lesions congenital heart disease: univentricular 41%; ccTGA 26%, TOF or PA 16%, Ebstein 9% AVSD 7%,
• Nieminen HP et al. JACC 2007 (537)	Study type: National	Inclusion criteria: Finland national registry of congenital	1° endpoint: Causes of death in ACHD during 45 y followup	Causes of late death in congenital heart disease: cardiac 67%: CHF

• <u>17888844</u>	registry,	heart disease, 6024	Results: 45 y survival 89%, lower than gen	40%, periop 26%, SCD 22% other
	retrospective	patients surviving first	population	CV 12%
		operation	Highest risk CD: TGA, UVH, TOF, VSD	Highest risk of SCD: coA 42%, TOF
	<u>Size</u> : 592		Other CVD: stroke, arrhythmia, pulm emboli,	and TGA: 30%
		Exclusion criteria: N/A	endocarditis, aortic rupture	• Increased non-cardiac death 2
			Increased non-cardiac mortality	fold: neurologic, respiratory
• Verheugt C et	Study type:	Inclusion criteria:	1° endpoint: Complications in ACHD	Ventricular arrhythmias overall
al. IJC 2008 (538)	Meta-analysis	ASD, VSD, PS, TOF,		7%, highest TOF 14%
• 18687485	MEDLINE 1980-	coarctation, TGA	Results: Vent arrhythmias: TOF 14%, VSD 2.9%,	MI highest" coarctation 5%
	2007	Exclusion criteria:	TGA 1.9%	• SVT: all lesions: 18%
		univentricular heart	SVT: TGA 26%, ASD 28%TOF 20%	
	<u>Size</u> : 7894		Summarizes endocarditis, CHF, CVA, MI, SVT by	
			lesion	
• Pillutla P et al.	Study type:	Inclusion criteria: CDC	1° endpoint: ACHD death trends	Decline in mortality among TGA,
AHJ 2009 (539)	CDC registry	registry 1979-2005,		TOF
• <u>19853711</u>	causes of death	congenital heart	Results: Cyanotic lesions: arrhythmia, then HF	
		disease in USA	Non-cyanotic lesions, MI after 1990, arrhythmia	MI leading cause of death in
	Size:		prior to 1990	patients with non=cyanotic lesions
		Exclusion criteria: N/A		,
• Verheugt CL et	Study type:	Inclusion criteria:	1° endpoint: ACHD causes of death	• Lesions with highest mortality:
al. EHJ 2010	Dutch CONCOR	6933 ACHD patients:		Univentricular heart 25%,
(540)	national registry,	197 deaths: 2.8%	Results: Median age death 49 yrs	DORV + TOF 13%
• <u>20207625</u>	retrospective		77% CV cause: CHF 26% age 51 yrs, sudden	ccTGA 6%
		Exclusion criteria: N/A	death19% age 38 yrs	Ebstein 5%
	<u>Size</u> : 197		Ventricular arrhythmias predicted SCD, HR 1.5	AVSD 5%
			SVT and VT predicted CHF, HR 5.1 and 4.5	TGA 3%
			See complications by lesion analysis!	
• Zomer AC et al.	Study type:	Inclusion criteria:	1° endpoint: ACHD causes of death	SCD: 10% with exertion
IJC 2012 (541)	Retrospective	causes of death in	Total followup 26,500 pt y	Highest mortality: univentricular
• 20934226	national registry	ACHD patients		hearts 26%, TOF/DORV/PA 20%,
			Results: Median age at death 48 y	TGA and cc TGA 10%, AVSD 6%,
	<u>Size</u> : 231	Exclusion criteria: N/A	Causes of death: CHF 26%, SCD 22%, malignancy	Ebstein 6%,
			9%, pneumonia 4%	
			SCD exercise 8%,	
			Lower risk-ASD 3%, VSD 1.3%, AS 1%	
			Youngest age: TGA 33 y, AVSD 37 y, ASD age 61 y	

• Diller GP et al. Circ 2015 (542) • <u>26369353</u>	Study type: Single center cohort Size: 6969	Inclusion criteria: ACHD patients followed 1991-2013, median followup 9.1 yrs Exclusion criteria: N/A	1° endpoint: Cause of death ACHD compared with general age/gender matched, calculate SMR (standardized mortality ratio) Results: 7.7% died, 0.72%/pt y Leading causes: CHF 42%, pneumonia 10%, SCD 7%, cancer 6%, hemorrhage 5% SCD highest: TGA arterial switch 33%, AVSD 14%, Fontan and single RV 13% each, complex congenital heart disease 11%, Eisenmenger 9%, TOF 6%	• Highest mortality: Eisenmenger, complex congenital heart disease, UVH • SMR, p<0.001: Fontan: 23.4, Complex congenital heart disease 14.1, Eisenmenger 12.8, systemic RV 4.9, Ebstein 3.3, TGA arterial switch 2.6 (0.08), TOF 2.3, Marfan 2.2, coarctation 1.7
 Raissadati A et al. JACC 2016 (543) 27470457 	Study type: Nationwide cohort study, Finland Size: 10,964	Inclusion criteria: Patients undergoing cardiac surgery <15 y old between 1953- 2009 Exclusion criteria: N/A	Pesults: early mortality 5.6%; late 10.4% congenital heart disease related deaths: 6.6%: causes-CHF 28%, reop 14%, SCD 13%, other CV 8% Sudden deaths: arrhythmia/unknown 78%, MI 7%, aortic dissection 5% Sudden death ages: ASD 40 y, TOF 30 y, coarc 29 y, Cancer higher than general population, especially females, (RR: 5.9)	 Late 40 yr survival: simple defects 87%, complex 65% 40 y freedom sudden death: 99% simple, 91% severe, (HR: 9.9) Highest CV mortality: UVH, TGA, TOF, VSD, coarc Increased lung, neuro, infectious diseases
• Teuwen CP et al. IJC 2016 (544) • 26805391	Study type: retrospective cohort Size: 145	Inclusion criteria: ACHD patients with VA: Nonsust VT 71% Sustained VT 17% VF 12% Exclusion criteria: N/A	1° endpoint: ACHD Non-sustained VT: risk for sustained VT/VF Mean age 40±14 y Results: 5/103 nonsust VT patients developed sustained VT/VF	 Sustained VT/VF developed rarely in patients with only non-sust VT Recurrent sust VT/VF frequent in patients presenting with sust VT/VF recommend "wait and see approach" for nonsust VT; aggressive treatment for sust VT/VF

• Wells R et al. 2009 (545) • <u>19691680</u>	Study type: Retrospective multicenter Size: 20 patients	Inclusion criteria: ACHD, mean age 34.9 y, receiving amiodarone for ≥6 mo; case-control group.	Review side effects of chronic oral amio 36% developed thyroid dysfunction: 19 hyper, 14 hypothyroid. Sig risk factors: Female gender (OR: 3.0) cyanotic HD (OR: 7.0); Fontan (OR: 4.0);	Patients with congenital heart disease at higher risk for amio adverse effects, esp women, cyanosis, Fontan, or dose >200 mg
		Mean duration 3 y, mean dose 191 mg <u>Exclusion criteria</u> : N/A	dosage >200 mg/d (OR: 4.0)	
• Afilalo J et al. JACC 2011 (546) • 21939837	Study type: Quebec database 1993- 2005 Size: 3239	Inclusion criteria: ACHD patients ≥65 y old at entry, followed up to 15 y Exclusion criteria: N/A	1º endpoint: all-cause mortality ACHD Results: most common types congenital heart disease: shunt lesions 60%, valvar 37%, severe 3% Arrhythmias present: AF 25%, Ventricular arrhythmias 3–4% Mortality driven by co-morbidity: dementia (HR: 3.24), GI bleed (HR: 2.79), chronic kidney disease (HR: 2.5); CHF (HR: 1.98), diabetes (HR: 1.76), COPD (HR: 1.67)	Current ACHd populations surviving to age 65 y or greater, comorbid diseases most powerful predictors of mortality; increased CAD 7% vs 5% age matched Ventricular arrhythmias present in 3–4% Prevalence ACHD in geriatrics: 3.7 /1000 (vs 4.2/1000 in non-geriatric)
 El Malti R et al. EJ Human Genetics 2016 (547) 26014430 	Study type: retrospective Size: 154	Inclusion criteria: familial congenital heart disease genetic screening Exclusion criteria: N/A	1º endpoint: Screening congenital heart disease for FATA4, NKX2.5, ZIC3 Results: 10.4% identified with causal gene NKX2.5 identified in ASD/VSD and conduction disorders; 6/154, 3.9% ZIC3 1.9%, GATA4, 0.7%	 Familial AV block/ASD correlated with NKX2.5 Can be used to screen high risk SCD families
 Abou Hassan OK et al. Sci Rep 2015 (548) 25742962 	Study type: retrospective Size: 188	Inclusion criteria: congenital heart disease in Lebanon: high incidence of cosanguinity Exclusion criteria: N/A	1° endpoint: Screening NKX 2.5 gene defect in congenital heart disease Results: Familial ASD: 60% with NKX 2.5 Diversity of phenotypes: congenital heart disease, AV block, SCD, coronary sinus disease	• Familial septal defects and conduction disorders: high prevalence NKX2.5, SCD
Ellesoe SG et al.CHD 2016 (549)26679770	Study type: Size: 39	Inclusion criteria: Probands with familial	1° endpoint: NKX 2.5 occurrence in familial congenital heart disease	Screen familial ASD patients for NKX 2.5, esp if conduction disorders

		congenital heart disease	Results: NKX 2.5 found 2.5% of probands	
		Exclusion criteria: N/A		
• Cuypers JA et al. Heart 2013 (550) • 23886606	Study type: Longitudinal cohort	Inclusion criteria: ASD surgical repair 1968-1990	1° endpoint: ASD surgical repair long-term outcomes Mean Followup 35 y	Surgical repair ASD: late SCD 1.5%
	<u>Size</u> : 135	Exclusion criteria: N/A	Results: SVT: 16%, late SCD 1.5% Pacemaker 6%. LVEF 58%, RVEF 51%. Low RVEF 31%, dilated RV 20%	
• Kuijpers JM et al. EHJ 2015 (551) • 25883174	Study type: Dutch national registry	Inclusion criteria: ASD secundum in Dutch registry Mean age 45 y	1° endpoint: ASD secundum outcomes: gender differences Cumulative followup 13584 pt-y	ASD secundum outcomes: males higher risk conduction disturbances, SVT, CVA, CHF; decreased life expectancy c/w
	<u>Size</u> : 2207	Males 33% Exclusion criteria: N/A	Results: Median survival: men 79.7 y, women 85.6 y. Compared w age/sex matched gen pop, survival for males lower; equal for females.	general population
• Khairy P et al. Circ 2010 (552) • 20713900	Study type: Retrospective multi-center	Inclusion criteria: TOF repair Female 54% Mean age 37 y	1° endpoint: TOF arrhythmia outcomes & correlates Results: Sustained arrhythmia: 43%.	 TOF Ventricular arrhythmias 15%, increased with LV diastolic dysfunction AF and Vent arrhythmias
	<u>Size</u> : 556	Exclusion criteria: N/A	Prevalence AT 20%: RAE, HTN, number of surgeries ventricular 14.6%: number of surgeries, QRS duration, LV diastolic dysfunction (OR: 3.3)	increased after age 45 y
• Valente AM et al. Heart 2014 (553)	Study type: Prospective multi-center	Inclusion criteria: TOF adults Median age 24 y	1° endpoint: TOF risk factors death, VT Results: 3.7% death/VT, median age 38 y	TOF predictors SCD, VT: RVH, ventricular dysfunction (RV or LV), and AT
• 24179163	INDICATOR cohort	Exclusion criteria: N/A	Cos regression outcomes predictors: RV mass/volume ratio ≥0.3, (HR: 5.04) LVEF z score <2, (HR: 3.34)	Higher RV systolic pressure, HR 1.39
	<u>Size</u> : 873		AT, (HR: 3.65)	

• Arya S et al.	Study type:	Inclusion criteria: TOF	1° endpoint: TOF outcomes: risk changing?	• TOF late SCD: 1.8%
CHD 2014 (554)	Retrospective	Late followup		
• <u>24314315</u>	single center	Male 49%	Results: Arrhythmias 54%: older postop interval,	
		Ages 17-58 y	wide QRS mean 158 msec.	
	<u>Size</u> : 109		No correlation with surgical era, gender RV	
		Exclusion criteria: N/A	pressure, RVOT gradient, RVEDV	
• Wu MH et al.	Study type:	Inclusion criteria: TOF	1° endpoint: TOF late arrhythmia outcomes	• TOF tachycardia in adults: 6.6%:
HR 2015 (555)	National	repair Taiwan;		VT 18%, VF 3%,
• <u>25461497</u>	database Taiwan	database those born	Results: Prevalence TOF in adults 0.06/1000	Median age VT/VF 23–25 y
	retrospective	2000-2010 reviewed	Survival 10 y: 78%	Interventions for tachycardia
	(national health	for late outcomes	Arrhythmias 4.6%: 73% tachycardia	2.4% annually, adults
	insurance! Easily	58% males	Overall tachycardia: 3.3% (6.6% adults, 1.8% peds).	, ,
	accessible care!)		AF 29%. AVB 0.6%	
		Exclusion criteria: N/A	SVT/AT/AFL/AF = 80%, VT 18%, VF 3%	
	<u>Size</u> : 4781		Mortality with VT: 24%, VF 60%.	
• Heng EL et al.	Study type:	Inclusion criteria: TOF	1° endpoint: TOF outcomes and biomarkers	TOF: BNP level ≥15 pmol/L
Heart 2015 (298)	Single center	patients with	Median followup 10 y	associated with 5 fold increased
• 25351509	prospective	age/gender matched	Measured aldosterone, ANP, BNP, renin,	risk death
		controls.	endothelin	Incorporate BNP into risk
	Size: 90			stratification
		BNP 1pmol/L = 3.472	Results: Late deaths: 9%	
		pg/ml	BNP ≥15 pmol/L: increased mortality (HR: 5.4),	
			sustained VT, (HR: 2.06)	
		Exclusion criteria: N/A		
• Drago F et al.	Study type:	Inclusion criteria:	1° endpoint: TOF voltage mapping of ventricular	TOF scar extension correlates
IJC 2016 (556)	Retrospective		endocardium	with risk factors for life-threatening
• <u>27505328</u>	single center	Exclusion criteria:		arrhythmias
			Results: 97% with scar in RVOT.	
	<u>Size</u> : 146		Total scar extension c/w: QRS ≥180 ms, LV and RV	
			dysfunction, PVC, prior shunt, re-intervention,	
			duration of post surgical followup	
• Kriebel T et al.	Study type:	Inclusion criteria:	1° endpoint: TOF patients undergoing ablation,	TOF VT Ablation acute success
JACC 2007 (557)	single center	repaired TOF patients	contact mapping, RF ablation	100% (8 patients)
• 18036455	retrospective	with VT undergoing		Recurrence 25% in 35 mo
		ablation	Results: 13 VT circuits, 2 focal	
	Size: 10	Males 75%; Age 52 y	ICD pre in 2, recommended post in all	

-				
		Exclusion criteria: N/A		
• Witte KK et al. Europace 2008	Study type: single center	Inclusion criteria: TOF patients with ICD	1° endpoint: TOF patients with ICD vs dilated CM	• TOF patients: higher risk inapprop shocks 25% vs 4%,
(558)	retrospective	compared with dilated	Results: TOF appropr shocks 25%; inapprop 20%	• Death rate for TOF 5%, < DCM,
• <u>18442962</u>	<u>Size</u> : 20	Civi		21%
		Exclusion criteria:		
• Lange R et al.	Study type:	Inclusion criteria: TGA	1° endpoint: TGA atrial switch outcomes.	• TGA atrial baffle risk factors SCD:
Circ 2006 (559)	Single center	with atrial repair:	Mean followup 19 y	Prior VSD closure, Mustard repair
• <u>17060385</u>	retrospective	Senning 79%		
	<u>Size</u> : 417	Mustard 21%	Results: 25 y survival: Mustard 76%, Senning 91% (p=0.002)	
		Exclusion criteria: N/A	Mustard: die more often of arrhythmia (p<0.001),	
			reop baffles (p<0.0001);	
			Independent risk SCD: VSD closure (HR: 2.3),	
			Mustard (HR: 2.0)	
 Schwerzmann 	Study type:	Inclusion criteria: TGA	1° endpoint: TGA s/p Mustard outcomes	TGA s/p Mustard: late SCD or
M et al. EHJ 2009	Single center	s/p Mustard repair	Mean followup 9 y	sustained VT: 9%
(560)	retrospective	Mean age 28 y		• QRS duration ≥140 msec highest
• <u>19465439</u>			Results: Sustained VT/SCD 9%: risk factors:	risk sVT/SCD (HR: 13.6; 95% CI: 2.9–
	<u>Size</u> : 149		Associated anatomic lesion (HR: 4.9), NYHA ≥ III	63.4)
		Exclusion criteria: N/A	(HR: 9.8), impaired subaortic RVEF (HR: 2.2)	
			AT 44%, not predictor of VT/SCD (HR: 2.7; 95% CI:	
			0.6–13)	
• Wheeler M et	Study type:	Inclusion criteria: TGA	1° endpoint: TGA atrial switch late outcomes	TGA s/p atrial switch: 1°
al. CHD 2014	Single center	patients, s/p atrial	Results: SCD 5.6%	prevention ICD-no appropriate rx
(561)	retrospective	switch, Mustard or	ICD 5.6% 1° prevention: no appropriate therapy	Higher risk: older age at surgery,
• <u>24151816</u>		Senning	Patients with SCD: all with AT vs 29% AT in	presence of AT, earlier era of
	<u>Size</u> : 89		survivors	surgery
		Exclusion criteria: N/A		

• Bouzeman A et	Study type:	Inclusion criteria:	1° endpoint: TGA atrial switch and ICD outcomes	TGA atrial switch and ICD:
al. IJC 2014 (562)	Retrospective	TGA s/p atrial switch	Median followup 19 mo	• 9% appropriate therapy (1 pt, 1°
25499397	multicenter,	with ICD	Results: 2° prevention 33%;	prevention, successful ATP without
		Median age 34 y	Implant: one death during DFT (8%)	shock)
	<u>Size</u> : 12		All patients with severe vent dysfunction; 54%	•complications: 27%
		Exclusion criteria: N/A	worsening CHF, 5/11 (45%) transplanted.	HF determines outcomes
			50% sustained AT during followup	
• Buber J et al.	Study type:	Inclusion criteria: TGA	1° endpoint: TGA s/p atrial switch: ICD outcomes	AT most common cause for ICD
Europace 2016	Retrospective	s/p atrial switch with	Median followup 4 y	shocks in 1° prevention TGA s/p
(563)	single center	ICD implanted for 1°		atrial switch
• 26705566		prevention	Results: EPS performed 72%: sust VT 54%, AFL	NOT predictive: VT inducibility,
	<u>Size</u> : 18	Median age 26 y	31%. VT inducibility did not predict appropriate	QRS duration, age
			shock.	• 50% complications
		Exclusion criteria: N/A	One pt received shock for VT; 39% for SVT,	·
			Inappropriate shocks: 61%, mainly SVT/AFL	
Backhoff D et	Study type:	Inclusion criteria: TGA	1° endpoint: TGA s/p atrial switch: ICD rx	• TGA s/p atrial switch: low rate of
al. PCE 2016	Retrospective	s/p atrial switch with	Median followup 4.8 y	appropriate ICD shocks 9%
(564)	multicenter, 4	ICD.		<< <inapprop 24%<="" shocks="" td=""></inapprop>
• 27503213	German centers	Median age 27 y, 85%	Results: 2° prev 12%.	AT main cause of inappropriate
		male.	Shocks: Approp 9%, inapprop 24%	shocks
	<u>Size</u> : 33		Annual incidence approp rx: 1.9%/pt/yr.	Vigorous treatment of AT, careful
			Inducible VT/VF: no approp shock	ICD programming (inactivation VT
		Exclusion criteria: N/A	2° prev: no approp shock	zone, program VF zone 220-230
			No predictors of approp rx	bpm)
				• Complications 21%
• Pundi KN et al.	Study type:	Inclusion criteria:	1° endpoint: Fontan arrhythmia outcomes	Fontan late outcomes:
CHD 2016 (565)	Retrospective	Fontan patients		5% VT, 5% late SCD
• 27545004	single center	operated at Mayo	Results: Freedom from arrhythmia requiring	
27515004		1973-2012, with	treatment: 10 y: 71%; 20 y: 42%; 30 y 24%.	• Risk factors: arrhythmias (65%),
	Size: 996	questionnaire sent	AFL /AT 48%, AF 19%, SVT AC /AVN 4%,	AVV replacement, post bypass
			VT 5%, SND 13%.	Fontan pressure >20 mm Hg
		Exclusion criteria:	Predictors arrhythmia: AP Fontan, age at surgery	, p. 3333. 5 / 23 / 1111 / 13
		arrhythmia prior to	>16 y, AT postoperatively.	•Preop sinus rhythm was protective
		Fontan surgery	, , , , , , , , , , , , , , , , , , , ,	

• Sakamoto T et	Study type:	Inclusion criteria:	1° endpoint: Late outcomes Fontan	• Late SCD in Fontan: 10% overall
al. Asian CVTS	Retrospective	Fontan patients	20/40 (50%) died	• Timely conversion of AP Fontan,
2016 (566)	single center	operated 1974-1986	Results: Causes of death in 20 patients: CHF 30%,	medication to decrease ventricular
• <u>27563102</u>			SCD 20%, arrhythmia 20%, other 30%	volume and pressure load needed
	<u>Size</u> : 40	Surgery: AP 70%, RA-		
		RV 25%		
		Exclusion criteria: N/A		
 Alexander ME 	Study type:	Inclusion criteria:	1° endpoint: Sustained VT inducibility in	Positive V stim correlated
et al. JCE 1999	single center	congenital heart	congenital heart disease	decreased survival (HR: 6),
(567)		disease patients		arrhythmic events (HR: 3)
• 10466482	<u>Size</u> : 130	undergoing V-stim	Results: Sust VT inducible 25%	Patients with documented
		TOF 33%, TGA 25%,	Non-sust VT 12%, AFL or SVT: 32%	clinical VT: 33% negative V stim—
		LVOT lesions 12%		frequent false negative
		Median age 18 y		
		Exclusion criteria: N/A		
• Silka MJ et al.	Study type:	Inclusion criteria: 177	1° endpoint: ICD outcomes in younger patients	Early ICD study: 2° prevention
Circ 1993 (568)	Multicenter	patients age <20 y	Mean followup 2.6 y	86%
• <u>8443901</u>	retrospective	undergoing ICD;	Results: 2°: ACA 76%, refractory VT 10%. 1°:	• 5 y survival: 85%
		125 with data	Syncope with HD and inducible sustained VT: 10%	SCD free survival 5 yrs: 90%
	<u>Size</u> : 125	available.	Shocks: appropriate 68% of patients, inapprop	
		Mean age 14.5 y	20%. 5 late SCD.	
		Cardiomyopathy 54%,	Predictors late mortality: abnormal vent fxn	
		electrical 26%,	·	
		congenital heart		
		disease 18%		
		Exclusion criteria: N/A		
 Berul CI et al. 	Study type:	Inclusion criteria:	1° endpoint: ICD comps & therapies young	ICD in young patients: high
JACC 2008 (569)	Multicenter	Pediatric and	Mean followup 7.5 y	inappropriate shocks 28% in
• <u>18436121</u>	retrospective	congenital heart	Results: 2° prev 48%	congenital heart disease
		disease patients	Comps: early 14%, late 29%, electrical storm 5%	Complications 43%
	<u>Size</u> : 443	receiving ICD in 4	Appropriate shocks 26%, inapprop 21%higher in	
		centers 1992-2004	electrical disease (31%) vs cardiomyopathy (13%),	
		Median age 16 y; 69%	congenital heart disease (28%)	
		structural HD:	SCD 1%	
		TOF 19%, HCM 14%		

		Electrical 31%		
		Exclusion criteria: N/A		
 Khanna AD et 	Study type:	Inclusion criteria:	1° endpoint: ACHD patients with ICD outcomes	Appropriate ICD shock more likely
al. AJC 2011	Retrospective	ACHD patients with	Mean followup 2.2 y	in patients with elevated
(570)	single center,	ICD		subpulmonary pressure
• <u>21684513</u>	Mayo	TOF 44%	Results: 1° prevention 64%	
		cc-TGA 17%	Approp shock 19%, inapprop 15%	
	<u>Size</u> : 73	Exclusion criteria: N/A		
• Koyak Z et al.	Study type:	Inclusion criteria:	1° endpoint: ACHD ICD approp shock risk score.	Appropriate shocks for ACHD:
CAE 2012 (571)	Multicenter	ACHD patients	Median followup 4.6 y	2° prevention, (HR: 3.6)
• <u>22095638</u>	retrospective 10	receiving ICD	Results: 2° prevention 50%	CAD, (HR: 2.7), and symptomatic
	centers	Mean age 41 y	Shocks: approp 29%, inapprop 30%, (SVT 69%)	nonsust VT (HR: 9.1)
	Netherlands,	TOF 51%, Septal defect	Comps 29%	High morbidity with ICD
	Belgium	20%, ccTGA 13%	63% underwent PES: 73% inducible sust VT/pmVT,	No assoc between ICD treatment
			VF: no difference in appropriate shocks: 33% with	and QRS duration
	<u>Size</u> : 136		induc VT, 32% w/out	Inducible sustained VT did not
		Exclusion criteria: N/A	In 1° prev patients, univariable risks symptomatic	correlate with appropr shock
			nonsust VT HR: 8; 95% CI: 2.3–27.1, p=0.001 and	•TGA patients: appropriate
			subpulmonary ventricular dysfunction, HR: 3.0;	therapy: 29% 2° prev, 4.3% 1°
			95% CI: 1.2–12.6, p=0.02	TOF patients: not at higher risk
				approp rx
• Khairy P et al.	PACES/HRS Expert	Consensus Statement	1° endpoint:	
HR 2014 (572)	on recognition and management of			
• <u>24814377</u>	arrhythmias in AC	HD	Results:	
• <u>24814377</u>	arring triffiles in AC	טוו	nesuits.	

Data Supplement 55. Nonrandomized Trials, Observational Studies, and/or Registries of S-ICD - (Section 11.1)

Study Acronym;	Study	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Type/Design;		(P values; OR or RR;	Comment(s)
Year Published	Study Size		& 95% CI)	
 Bardy et al. 	Study type:	Inclusion criteria: Meeting	1° endpoint: Successful immediate	 In small, nonrandomized studies, an
2010 (573)	Prospective non-	class I, IIa, IIb criteria for an ICD	conversion of 2 consecutive episodes	entirely S-ICD consistently detected
• <u>20463331</u>	randomized clinical		of induced VF each with a single 65-j	and converted VF induced during EP
	trials (covered 4	Exclusion criteria: GFR <30	shock.	testing.
	trials)	ml/min, need for		The device also successfully detected
		antibradycardia pacing, Hx of	Results:	and treated all 12 episodes of
	<u>Size</u> : N=78 in	VT at rates <170 bpm and	 Mean age of the 78 patients was 	spontaneous, sustained VT
	temporary S-ICD	documented VT known to be	61±11 y	
	implantation for	reliably terminated with ATP	 All 6 patients underwent successful 	
	testing 4 electrode		implantation of the S-ICD, and in all the	
	configurations and		patients, defibrillation with 65-J	
	DFT testing; N=49		submaximal shocks was successful	
	in a trial that		during 2 consecutive episodes of	
	compared the best		induced VF. Of 18 induced VF episodes,	
	of the tested S-ICD		all were successfully detected by the	
	in the first trial		device. After 488 d of FU, there were	
	with a transvenous		no complications.	
	ICD system,		• In the 4 th trial, 53 patients were	
	comparing DFTs;		evaluated for sensing and defibrillation	
	N=6 followed by		during implantation. Of 137 episodes	
	N=55 in trials that		of induced VF, 100% were detected by	
	tested permanent		the S-ICD. After 10 mo of FU, 53 of 55	
	S-ICD implantation.		patients were alive. Pocket infection	
			developed in 2 patients. 12 episodes of	
			VT in 3 patients were successfully	
			treated during followup	
Olde Nordkamp	Study type:	Inclusion criteria: Class I or IIa	<u>1° endpoint</u> : Effectiveness and safety	The S-ICD is effective at terminating
et al. 2012 (574)	Retrospective	indication for a 1° or 2°	of the S-ICD	VA
• <u>23062537</u>	study	prevention ICD		Rate of inappropriate shocks was
		[_ 	Results: Mean age=50 y. After 18 mo	13%
	<u>Size</u> : N=118	Exclusion criteria: None	of followup, 8 patients experienced 45	The rate of complications decreased
			successful appropriate shocks (98%	with improved technology and
			first shock conversion efficacy). No	implanter's experience.

		I	I	
			sudden deaths occurred. Fifteen	
			patients (13%) received inappropriate	
			shocks, mainly due to T-wave	
			oversensing, which was mostly solved	
			by a software upgrade and changing	
			the sensing vector of the S-ICD. Sixteen	
			patients (14%) experienced	
			complications. Adverse events were	
			more frequent in the first 15	
			implantations/center compared with	
			subsequent implantations.	
• Kobe et al. 2013	Study type:	Inclusion criteria: Patients	1° endpoint: Short and long term	Failure of conversion of induced VF
(575)	Retrospective	with a 1° or 2° prevention	effectiveness and safety	with the S-ICD set to standard polarity
• <u>23032867</u>	case-control study	indication for an ICD		was 10.4%, and there were comparable
	(matching was		Results: Conversion rates of induced	inappropriate shock rates during short-
	done on the basis	Exclusion criteria: None	VF were 89.5% with a 65J shock, and	term follow-up.
	of sex and age)	mentioned	95.5% including reversed shock	
			polarity in the study group.	
	<u>Size</u> : N=138		Termination of induced VF was	
			successful in 90.8% of the control	
			patients (p=0.815). Procedural	
			complications were similar between	
			the 2 groups. During a mean follow-up	
			of 217 d, 3 patients with S-ICD were	
			appropriately treated for VA. Three	
			inappropriate shokcks (5.2%) occurred	
			in 3 S-ICD patients due to T-wave	
			oversensing, whereas AF with rapid	
			conduction was the predominant	
			reason for inappropriate therapy in	
			conventional devices (p=0.745).	
• de Bie et al.	Study type:	Inclusion criteria: All patients	1° endpoint: Suitability for an S-ICD	• After 5 y of follow-up, approximately:
2013 (576)	Retrospective	who received a single- or dual	defined as not reaching one of the	i. 55% of the patients would have
• <u>23704324</u>	study	chamber ICD in the Leiden	following endpoints during follow-up:	been suitable for an S-ICD.
		University Medical Center	(1) an atrial and/or right ventricular	ii. Significant predictors of
	<u>Size</u> : N=1,345	between 2002 and 2011.	pacing indication, (2) successful anti-	unsuitability for an S-ICD were: 2°
			tachycardia pacing without a	

		Exclusion criteria: Patients with a pre-existent indication for cardiac pacing were excluded.	subsequent shock or (3) an upgrade to a CRT-defibrilator device. Results: During a median follow-up of 3.4y, 463 patients (34%) reached an endpoint. The cumulative incidence of ICD recipients suitable for an initial S-ICD implantation was 55.5% after 5 y. Appropriate ATP and the necessity of cardiac pacing resulted in the unsuitability for an S-ICD in approximately 94% of the cases, whereas device upgrade was responsible for the unsuitability in approximately 6% of the cases.	prevention, severe HF and prolonged QRS duration. iii. No mention of patients with ESRD (mean GFR 85-89 ml/min)
● Weiss R. et. al 2013 (577) ● 23979626	Study type: Prospective non- randomized multicenter trial Size: N=321 (314 were implanted successfully)	Inclusion criteria: Adult patients with a standard indication for an ICD. Exclusion criteria: Patients who required pacing or had documented pace terminable VT.	1° endpoint: The 180 d S-ICD system complication-free rate compared with a pre-specified performance goal of 79%. The 1° effectiveness end point was the induced VF conversion rate compared with a pre-specified performance goal of 88%, with success defined as 2 consecutive VF conversions of 4 attempts. Results: Followup was for 11 mo. Mean age was 52 y. The 180 d system complication-free rate was 99%, and sensitivity analysis of the acute VF conversion rate was >90% in the entire cohort. There were 38 discrete spontaneous episodes of VT/VF recorded in 21 patients (6.7%), all of which successfully converted. Fortyone patients (13.1%) received an inappropriate shock.	This study supports the efficacy and safety of the S-ICD System for the treatment of life-threatening VA.

	1		There	
			There were no cases of lead failures,	
			endocarditis or bacteremia,	
			tamponade, cardiac perforation,	
			pneumothorax, hemothorax, or	
			subclavian vein occlusion associated	
			with the S-ICD System. There was no	
			electrode or pulse generator	
			movement in 99% of implanted	
			patients throughout the followup	
			period.	
 Olde Nordkamp 	Study type:	Inclusion criteria: Patients	1° endpoint: To determine the	In patients without an indication for
et al. 2014 (578)	Prospective non-	more than 18 y old with a prior	prevalence of patients who are not	bradycardia- or resynchronization
• <u>24320684</u>	randomized study	ICD implantation visiting the	suitable for	pacing, 7.3% were not suitable for S-
		ICD outpatient clinic.	a S-ICD according to the QRS-T	ICD implantation according to the QRS-
	<u>Size</u> : N=230		morphology screening-ECG; (2) to	T morphology screening-ECG. This
		Exclusion criteria: Patients	identify clinical characteristics of these	indicates that this prerequisite
		who were pacemaker-	patients; and (3) to analyze whether	screening method is not limiting S-ICD
		dependent or had an	standard 12-lead ECG parameters can	selection for most patients.
		indication for pacing during	be used to predict QRS-T morphology	
		implantation (i.e., ICD settings	screening failure.	
		other than VVI ≤40 or	Patients were defined suitable when at	
		DDI ≤40). Also patients with an	least 1 sensing vector was considered	
		indication for	appropriate in both supine and	
		resynchronization	standing position.	
		pacing.		
			Results:	
			In total, 7.4% of patients, who were all	
			male, were considered not suitable for	
			a S-ICD according to the QRS-T	
			morphology screening-ECG.	
			Independent predictors for TMS failure	
			were HCM (HCM; OR: 12.6), a heavy	
			weight (OR: 1.5), a prolonged QRS	
			duration (OR: 1.5) and a R:T ratio <3 in	
			the lead with the largest T wave on a	
			standard 12-lead surface ECG (OR:	
			14.6).	
	l	I .	1	

Randles et al.	Study type:	Inclusion criteria: ICD patients	1° endpoint: S-ICD eligibility that	About 85.2% of patients with an
2014 (579)	Prospective non-	with no ventricular pacing.	required ≥2 leads to satisfy the S-ICD	indication for a 1° or 2° prevention ICD
• <u>24351884</u>	randomized study		screening template in both erect and	have a surface ECG that is suitable for
		Exclusion criteria: Patients	supine positions.	S-ICD implantation when assessed with
	<u>Size</u> : N=196	with an S-ICD, patients with a		an S-ICD screening template. A
		paced QRS complex, and	Results: Overall, 85.2% of patients	prolonged QRS duration was the only
		patients who were unable to	(95% CI: 80.2–90.2%) fulfilled surface	baseline characteristic independently
		stand for the time required to	ECG screening criteria.	associated with ineligibility for S-ICD
		record an erect ECG.	The proportion of patients with 3, 2, 1,	implantation.
			and 0 qualifying leads were 37.2%	
			(95% CI: 30.4–44.0%), 48.0% (95% CI:	
			41.0-55.0%), 11.2% (95% CI: 6.8-	
			15.6%), and 3.6% (95% CI: 1.0–6.2%).	
			The S-ICD screening template was	
			satisfied more often by Lead III (1°	
			vector, 83.7%, 95% CI: 78.5–88.9%)	
			and Lead II (2° vector, 82.7%, 95% CI:	
			77.4–88.0%) compared	
			with Lead I (alternate vector, 52.6%,	
			95% CI: 45.6–59.6%).	
• EFFORTLESS S-	Study type:	Inclusion criteria: Patients	1° endpoint : Effectiveness and safety	This study showed appropriate
ICD Registry	Prospective and	receiving a S-ICD	of the S-ICD.	system performance with clinical event
 Lambiase et al. 	retrospective			rates and inappropriate shock rates
2014 (580)	observational	Exclusion criteria: Specific	Results: Complication-free rates were	comparable with those reported for
• <u>24670710</u>	study	contraindications include class	97 and 94%, at 30 d and 360 d,	transvenous ICDs.
		I indications for permanent	respectively. 317 spontaneous	
	<u>Size</u> : N=472 (241	pacing, pace-terminable VT,	episodes were recorded in 85 patients	
	studied	and previously implanted	during the follow-up period. Of these	
	prospectively)	functional unipolar pacing	episodes, 169 (53%) received therapy,	
		system.	93 for VT/VF. One patient died of	
			recurrent VF and severe bradycardia.	
			First shock conversion efficacy was	
			88% with 100% overall successful	
			clinical conversion after a maximum of	
			five shocks. The 360d inappropriate	
			shock rate was 7% with the vast	
			majority occurring for oversensing	

• Groh et al. 2014	Study type:	Inclusion criteria: Patients	(62/73 episodes), primarily of cardiac signals (94% of oversensed episodes). 1° endpoint: Rate of passing screening	More work is needed on sensing
(581) • <u>24755323</u>	Prospective non- randomized study	who had previously undergone implantation of a transvenous ICD for 1° or 2° prevention and	test and predictors of failure. Results: 8% of patients failed the	algorithms on S-ICDs to increase pt eligibility for this device.
	<u>Size</u> : N=100	who were not receiving bradycardia pacing and did not have an indication for pacing were identified. Exclusion criteria: See above.	screening test. Patients with T-wave inversions in the inferior leads had a 45% chance of failing the screening.	
• EFFORTLESS/ IDE Registry • Burke et al. 2015 (582) • 25908064	Study type: Prospective and retrospective Size: N=882 (568 from EFFORTLESS and 308 from the IDE trials)	Inclusion criteria: Patients indicated for an ICD. Exclusion criteria: Patients with recurrent VT reliably terminated with ATP and patients in need of pacing. Patients with ESRD were excluded from the IDE trials.	1° endpoint: Safety and effectiveness of the S-ICD Results: Followup was for 651 d. Spontaneous VT/VF events (N= 111) were treated in 59 patients; 100 (90.1%) events were terminated with 1 shock, and 109 events (98.2%) were terminated within the 5 available shocks. The estimated 3 y inappropriate shock rate was 13.1%. Estimated 3 y, all-cause mortality was 4.7% (95% CI: 0.9%–8.5%), with 26 deaths (2.9%). Device-related complications occurred in 11.1% of patients at 3 y. There were no electrode failures, and no S-ICD–related endocarditis or bacteremia occurred. Three devices (0.3%) were replaced for right ventricular pacing. Themo complication rate decreased by quartile of enrollment (Q1: 8.9%; Q4: 5.5%), and there was a	S-ICD demonstrated high efficacy for VT/VF. Complications and inappropriate shock rates were reduced consistently with strategic programming and as operator experience increased.

	inappropriate	shocks (Q1: 6.9% Q4:	
	4.5%).		

Data Supplement 56. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for WCD – (Section 11.2)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Summary/Conclusions Comment(s)
Chung MK. Cardiol Clin.2014. (583)24793801	Review article Study size: N/A	N/A	N/A	Description of WCD indications, efficacy and limitations.
● Chung MK, et al. J Am Coll Cardiol. 2010. (584) ■ 20620738	Study type: observational, post- market registry and Social Security Death Index Size: 3569	Inclusion criteria: All patients implanted and signed consent post-market Exclusion criteria: N/A	1º endpoint: Observational study of compliance and effectiveness	Asystole was an important cause of mortality in SCA events. Compliance was satisfactory with 90% wear time in >50% of patients and low sudden death mortality during usage. 80 sustained VT/VF events occurred in 59 patients (1.7%). First shock success was 76/76 (100%) for unconscious VT/VF and 79/80 (99%) for all VT/VF. 8 patients died after successful conversion of unconscious VT/VF (survival 89.5% of VT/VF events). Asystole occurred in 23 (17 died), PEA in 2 and respiratory arrest in 1 (3 died), representing 24.5% of SCA. During WCD use, 3541/3569 patients (99.2%) survived overall. Survival occurred in 72/80 (90%) VT/VF events. Survival was comparable to that of implantable ICD patients.
• Klein HU et al. Pacing Clin Electrophysiol. 2010. (585) • 19889186	Review article Study size: N/A	N/A	N/A	Description of WCD indications, efficacy and limitations.

Data Supplement 57. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Special Considerations for Catheter Ablation – (Section 12)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Blanck et al. 1993	Study type:	Inclusion criteria:	Results:	BBRVT typically occurs in patients
(170)	Single Center Review	All patients at single	45 of 48 patients had SHD	with SHD from a variety of causes in
• <u>8269297</u>		center with BBRVT	SHD was NICM in 16	patients with prolonged HV
	Size: 48 patients	diagnosed at EPS between	patients, Ischemic CM in 23	conduction intervals.
		1980-1992	patients, VHD in 2 patients	BBRVT is associated with aborted
		Exlcusion Criteria:		SCD, Syncope, and Palpitations
		7) Typical RBBB or	Mean LVEF=23.2%	BBRVT is most commonly
		LBBB QRS		associated with a LBBB QRS
		morphology	Clinical Presentation	morphology, and less commonly
		during VT	Aborted SCD in 26%	with RBBB or Interfascicular QRS
		8) QRS preceded by	Syncope in 51%	morphologies
		His and	Sustained palpitations in	 Catheter ablation targeting the
		appropriate BB	10%	RBB or LBB is highly effective and
		potential		associated with a low risk of serious
		9) Stable HV, RB-V,	Mean HV interval in sinus	complications.
		or LB-V interval	80.4 msec	
		10) Induction		
		dependent on HV	QRS morphology in VT	
		delay	LBBB in 46 patients	
		11) Termination by	RBBB in 5 patients	
		block in HPS	Interfascicular reentry in 2	
		12) Noninducibility	patients	
		after RBB ablation		
			Catheter Ablation	
			Performed in 28 patients	
			targeting the RBB in 26	
			patients and LBB in 2	
			patients	
			Successful ablation of VT in	
			100%	
			No Complications observed.	

• Lopera et al. 2004	Study type:	Inclusion criteria:	Results:	BBRVT occurs in patients with
(173)	Single Center Review	His Bundle, LBB, or RBB	HPS VT induced in 20 of 234	both NICM and ICM, usually with
• <u>15028072</u>		potential closely	consecutive patients	impaired LVEF.
	Size: 20 patients	associated with QRS with	referred for VT ablation	BBRVT is most commonly
		any of		associated with a LBBB QRS
		the following:	NICM: 9 of 81 patients	morphology, and less commonly
		4) H-H interval	(11%) had HPS VT	with RBBB or Interfascicular QRS
		variation	ICM: 11 of 153 patients	morphologies
		preceding similar	(7.1%) had HPS VT	Catheter ablation targeting the
		V-V interval	Mean LVEF 29 <u>+</u> 17%	RBB or LBB is highly effective and
		variation;	2 of 20 patients had normal	associated with a low risk of serious
		5) Anterograde	LVEF	complications if only one BB is
		activation of the		targeted and a higher risk of AV
		bundle branches	Clinical Presentation	block if both BBs are targeted for
		during	ICD Shocks in 10 patients	ablation.
		tachycardia; or,	Syncope in 3 patients	
		6) Abolition of VT by	Other symptoms in 7	
		bundle branch	patients	
		ablation.		
			Typical BBRVT in 16 of 20	
		Exclusion criteria: None	patients	
			(all had LBBB QRS	
			morphology)	
			13 of 16 patients BBRVT	
			successfully ablated by RBB	
			ablation and 3 of 16 by LBB	
			ablation.	
			HV interval prolonged from	
			70 <u>+</u> 5.9 msec to 83 <u>+</u> 17 msec	
			after ablation.	
			Typical BBRVT and	
			Interfascicular VT in 2 of 20	
			patients. Ablation of both	
			the RBB and portion of LBB	
			eliminated VT in both	

 Mehdirad et al.1995 (174) ■ 8771124 	Study type: Single Center Review Size: 16 patients	Inclusion criteria: All patients undergoing RF catheter ablation of the RBB for BBRVT	patients, complicated by AV block in 1 pt. Focal Mechanism from BBs in 2 patients, one in RBB, one in LBB. Ablation eliminated focal VT in both patients, complicated by AV block in 1 pt. Results: HV interval 68±8 msec at baseline LVEF mean 31±15% RBBB developed in 15/16 patients after RBB ablation AV block occurred in 1 pt After mean of 19+10 mo, one patient died suddenly, 2 received cardiac transplantation, and 1 died of CHF.	Catheter ablation of the RBB is effective for the treatment of BBRVT BBRVT is associated with prolonged HV conduction intervals. The medium-term follow-up after catheter ablation of the RBB is overall quite good.
• HELP-VT	Aim:	Inclusion criteria:	1° endpoint: At 1y follow-	• <u>Complications</u>
• Dinov 2014 (175)	To determine the outcome of	Patients with SHD referred	up, VT free survival was	Complications occurred in 11.1% of
• <u>24211823</u>	VT catheter ablation in patients with NICM to those	for catheter ablation of VT with either NICM (N=63)	57% for ischemic	NICM and 11.1% of ischemic cardiomyopathy patients, including
	with ischemic cardiomyopathy	or ischemic CM (N=164)	cardiomyopathy and 40.5% for NICM patients (HR: 1.62;	death in 4.8% of NICM and 3.7% of
	Study type:	Exclusion criteria:	95% CI: 1.12–2.34, p=0.01).	ischemic cardiomyopathy
	Prospective, non-randomized	Failure of informed	ischemic cardiomyopathy	ischemic cardiomyopathy
	Size: 227 patients	consent	required epicardial ablation	
		Intervention:	in only 2 of 164 (1.2%)	
		Catheter ablation for	whereas NICM required	
		patients with NICM	, , , ,	

		Comparator: Catheter ablation in patients with ischemic cardiomyopathy	epicardial ablation in 30.8% (p=0.0001).	
• Euro-VT Study • Tanner H 2010 (176) • 9656251	Aim To determine the safety and efficacy of electroanatomic mapping and irrigated RF catheter ablation for VT after MI	Inclusion Criteria Drug and device refractory, recurrent sustained VT after MI. >4 episodes of sustained VT in prior 6 mo.	1° Endpoint Acute success with ablation was achieved in 83% of mappable VTs and 40% of non-mappable VTs (p<0.0001).	• Complications Major complications occurred in 1.5% and minor complications in 5% of patients, particularly groin hematomas, with no procedural deaths.
	Study Type: Multicenter, non-randomized Study Size 63 patients	Exclusion Criteria Age <18 y MI within 2 mo LV Thrombus Unstable Angina Severe AS or MR Unwillingness to participate Intervention Electroanatomic mapping and ablation with open-tip irrigated catheter.	During 12 mo follow-up, VT recurred in 49% of patients. The mean number of therapies dropped from 60±70 prior to ablation to 14±15 in the same period of time (6 mo) after ablation (p=0.02).	
 Post-approval Thermocool Trial Marchlinski F 2016 (177) 26868693 	Aim To evaluate long-term safety and effectiveness of RF catheter ablation for VT in patients with coronary disease Study Type: Multicenter, non-randomized Study Size: 249 patients	Inclusion Criteria Patient with coronary disease, age ≥18 y and LV EF ≥10% with recurrent VT (either ≥4 episode documented by ICD, ≥2 episode documented by ECG in patients without ICD, incessant VT or symptomatic VT despite AAD treatment	1° Endpoint At 6 mo: 62% without VT recurrence, proportion of patients with ICD shock reduced from 81.2 (pre) to 26.8% and ≥ 50% reduction in VT episodes in 63.8% of patients. Safety Endpoint CV specific AE in 3.9% with no stroke	Comments Reduction in amiodarone usage and hospitalization Improvement in QoL

Mobile LV thrombus, MI	
1	
within 3 mo, idiopathic VT,	
class IV HF, creatinine	
≥2.5, recent cardiac	
surgery, unstable angina,	
severe AS or MR	
<u>Intervention</u>	
Electroanatomic mapping	
and ablation with open-tip	
irrigated catheter.	

Data Supplement 58. Nonrandomized Trials, Observational Studies, and/or Registries Related to Post-Mortem Evaluation of SCD - (Section 13)

Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Study type: consecutive prospective observational study Size: 720	Inclusion criteria: SCD cases referred by general pathologist to specialized cardiac pathology center; SCD defined as witnessed SCA or unwitnessed SCD in an individual alive and well up to 24 hs prior; non- cardiac causes ecluded at initial autopsy Exclusion criteria: Non-sudden death; sudden-death in the context of worsening CHF; absence of age, sex, and	1º endpoint: Determine cause of SCD and compare initial diagnosis with that determined at specialized center. Results: Data were skewed by age (median 32 y, range 1-98 y, 58% ≤35 y. Approximately 1/3 of the cases had a "cardiomyopathy", including idiopathic LVH (26%), HCM (20%) and ARVC (14%), and a category of obesity CM (14%) Coronary artery abnormalities accounted for 10%, with 79% of those being ASHD. In a comparison of diagnoses of 200 autopsies examined after referral, a disparity in final diagnosis was observed in 41% of the cases. A misdiagnosis of cardiomyopathy was reported in 37% referred cases, ultimately determined to have to be structurally normal.	 The specialized cardiac pathology exam appears to have value for determining specific causes of SCD in this population. Referring pathologists tended to have a more difficult time identifying anatomically normal hearts, and over-diagnoses cardiomyopathies. The etiological data are not generalizable to the overall population because of skewing of age at time of SCD for specialized cardiac evaluation.
	Type/Design; Study Size Study type: consecutive prospective observational study	Type/Design; Study Size Study type: consecutive prospective observational study Size: 720 Size: 720 Patient Population Inclusion criteria: SCD cases referred by general pathologist to specialized cardiac pathology center; SCD defined as witnessed SCA or unwitnessed SCD in an individual alive and well up to 24 hs prior; non- cardiac causes ecluded at initial autopsy Exclusion criteria: Non-sudden death; sudden-death in the context of worsening CHF;	Type/Design; Study Size Study type: consecutive prospective observational study Size: 720 Size: 720 Patient Population (P values; OR or RR; & 95% CI) 1º endpoint: Determine cause of SCD and compare initial diagnosis with that determined at specialized center. SCD defined as witnessed SCD in an individual alive and well up to 24 hs prior; noncardiac causes ecluded at initial autopsy Exclusion criteria: Non-sudden death; sudden-death in the context of worsening CHF; absence of age, sex, and Non-sudden deato, Study

• Wu et al. 2016	Study type:	Inclusion criteria: Deaths	1° endpoint: Causes of SCD, sub-grouped	The proportion of SCDs that
(587) • <u>26844513</u>	Retrospective observational	that occur within 1h of the sudden loss of	according to circumstances, sex and age groups Results:	were autopsy negative was strongly age-dependent, as was
	cohort study of anatomic and histopathological findings in SCD victims between 1998 and 2013 Size: 1656 SCD identified from a total of 3770 sudden deaths (43.9%) from all causes during the study period	consciousness due to various CVD, or during sleep or unwitnessed, in which the affected persons were considered healthy 24h before the event. Exclusion criteria: Deaths due to non-cardiac conditions, such as injuries, poisonings, epilepsy, acute pulmonary embolisms, and allergies.	The peak incidence occurred between the ages of 31 and 60, with a 5-7-fold excess of males/females in that age range. Both incidence and male preponderance markedly decreased in younger and older age groups. Overall, 42% were due to CAD, 12% viral myocarditis, and 5% cardiomyopathy, with 15% being unexplained by autopsy. In age group <35, CAD was 17% of cases, viral myocarditis 27%, and unexplained 32%. At age >55, CAD accounted for 86%, viral <2%, and unexplained <1%.	the common autopsy-provable causes. • The proportion of SCDs attributed to dilated cardiomyopathy was surprisingly low, especially in the age group older than 35 y.
Vassalini et al.2016 (588)25575272	Study type: Retrospective cohort autopsy study Size: 54	Inclusion criteria: SCD in subjects aged 1-40 y. Exclusion criteria: Prior Hx of heart disease; sudden infant death syndromes (under 1 y of age), extracardiac causes at autopsy; drug or alcohol abuse found at postmortem toxicology.	1º endpoint: Clinical and postmortem findings of patients who died suddenly without a Hx of prior heart disease. Results: Coronary artery abnormalities in 18.5% (including one with an anomalous coronary artery origin); ARVD/C in 11.1%; LVH in 5 cases (9.2%), 3 of whom had myocyte disarray; VHD in 7.4%; myocarditis in 7.4%; pathological changes in the specialized conducting system in 22.2%, in the absence of any other anatomic or histopathological findings; in 12 cases (22.2%), autopsy was completely negative in 22.2%. No postmortem genetics done in this group	 Although this is a small study, the exclusion of a prior Hx of heart disease restricts this study to SCD that occurred as a first cardiac event. One important finding is the association of SCD with the only abnormalities at postmortem found in the specialized conducting system in 22.2% A second is the autopsy being completely negative in another 22.2%. No postmortem genetics were done in this subgroup
Tester et al.2012 (589)22677073	Study type: Prospective cohort study Size: 173	Inclusion criteria: Autopsy-negative SUDs referred for molecular autopsy. Candidate genes restricted to KCNQ1,	1° endpoint: Identification of SUD-associated variants in KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, or RYR2.	Molecular autopsy provides a reasonable yield of putative SUD- associated variants, recognizing that the candidate genes were restricted to the common LQTS-
	<u>3126</u> . 1/3	KCNH2, SCN5A, KCNE1,	Results: Pathogenic mutations were identified in 45 autopsy-negative SUD cases (26.0%). LQT	restricted to the common EQ13-

		KCNE2, and RYR2. SUD- associated variants had to be nonsynonymous, involve a highly conserved residue, and absent from reference normal populations Exclusion criteria: A prior documented Hx of a channelopathy in either probands or family members (Exception: History of long QT on an ECG mentioned in autopsy)	variants more likely to be associated with SUD during sleep; CPVT (RyR2) more like associated with SUD during exercise. Family Hx of SCD positive among relatives of 11 of 45 variant-positive probands.	associated genes and the most common CPVT-associated gene. • It is likely that broader panels, including other genetic disorders, including structural disorders that may not be identified on routine autopsy, would increase this yield.
• Tang et al. 2014 (590) 24157219	Study type: Review article on molecular diagnostic protocol for SCD Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° endpoint: N/A Results: N/A	Comprehensive review on postmortem molecular studies of SUD and autopsy-defined structural genetic disorders
 Papadakis et al. 2013 (591) 23671135 	Study type: Retrospective cohort study, with prospective cardiogenetic evaluation of family members. Size: 340 families	Inclusion criteria: Family members of SCD probands who died suddenly and had been apparently healthy, death from natural causes, last seen alive and well within 12 h, with autopsy findings showing structural abnormalities of uncertain causal effect (e.g., ventricular hypertrophy, myocardial fibrosis, or minor CAD (N=41).	1° endpoint: Identification of genetic variants associated with inherited arrhythmia syndrome in ≥1 relative(s) of probands who had structural findings of uncertain significance (such as ventricular hypertrophy, myocardial fibrosis, and minor CAD). Comparison group was the cohort of 163 families in whom the findings were consistent with SUD based on normal autopsy. Results: 51% of the study group had genetic variants associated with SADS; for the comparison group, consistent with SADS, the proportion with positive genetic findings was 47%.	 Victims of SCD with structural findings of uncertain significance are as likely to have genetic variants associated with inherited arrhythmia syndromes as are those with normal autopsies. Findings call for caution in interpreting uncertain structural findings, with particular regard to implications for family members of probands.

		ı		ı
• Harmon et al. 2014 (592) • 24585715	Study type: Cohort study from NCAA registry of athletes who died suddenly Size: 45	Exclusion criteria: Incomplete postmortem report, presence of an extracardiac cause of death, or positive toxicology screen. Inclusion criteria: 36 of 45 athlete SCDs with sufficient autopsy information Exclusion criteria: N/A	1° endpoint: Autopsy-defined cause of SCD Results: Autopsy-negative SUD in 11 (31%); coronary artery abnormalities in 5 (14%), dilated CM in 3 (8%), myocarditis in 3 (8%), aortic dissection in 3 (8%), and idiopathic LVH (possible HCM) in 3 (8%). There was 1 case each (3%) of HCM, ARVC, LQTS, commotio cordis, commotio cordis, and Kawasaki disease. There was 1 case of death in a sickle cell positive athlete who also had LVH. There was 1 case of death in a sickle cell positive	The adjudicated diagnosis agreed with the official pathology report in only 59% of cases. Autopsy-negative SUD was common (31%)
Bagnall et al.2014 (593)■ 24440382	Study type: Retrospective analysis of de- identified cases of autopsy- negative SUDs Size: 28	Inclusion criteria: SUD in the 1–40 y age group, classified as SUD based upon sudden unexpected death with a negative autopsy. Exclusion criteria: Previous Hx of systemic disease or alternative cause of death identified after a complete autopsy, including histopathologic and toxicologic analysis	athlete who also had LVH. 1° endpoint: Comparison of the yield of whole exome sequencing to common candidate gene sequencing for identifying a potentially relevant variant associated with autopsy-negative SUDs in a population age 1–40 y. Results: Based upon likely variants identified by WES, the yield increased from approximately 10% of cases to as much as 30%.	 Study suggests the WES increases the yield of molecular autopsy in SUD by as much as 3-fold, compared to common candidate genes for LQTS and CPVT. Nonetheless, the majority of molecular autopsies still fail to identify a highly-likely or known disease-causing mutation.
• Anderson et al. 2016 (449) • 27114410	Study type: Whole exome sequencing of stored DNA from	Inclusion criteria: Stored DNA from SUD victims with previous negative molecular autopsies	1° endpoint: Putative variants identified by WES, excluding the previously studied common candidate genes.	There appears to be added valve to WES, compared to a limited candidate gene approach

	referred cases of	(21/32, 66%) using a	Results: WES increased the yield compared to	for molecular autopsies following
	SUDY with	common candidate gene	the candidate genes, to 44% from 34%.	SUD.
	negative	protocol (KCNQ1, KCNH2,		Whether a broader candidate
	autopsies	SCN5A, RYR2)		gene panel might achieve the
	Size:			same yield requires further study.
	32	Exclusion criteria:		The data suggest that the yield
		Previous identification of a		from WES is greater for the age
		putativelt significant		group 1-10 y, compared to 11-19
		variant in KCNQ1, KCNH2,		y, but this is not conclusive based
		SCN5A, or RYR2 (11/32,		upon the small numbers.
		34%)		
 Bagnall et al. 	Study type:	Inclusion criteria: 292	1° endpoint: Identification of relevant genetic	• 40% of SCDs in children,
2016 (594)	Prospective,	subjects with clinical and	variants among subjects without autopsy or	adolescents and young adults are
• <u>27332903</u>	population-	autopsy confirmed causes	clinical identification of cause of SCD.	classified as unidentified causes
	based, clinical,	of SCD (60%), and 198		based on autopsy and clinical
	toxicological,	(40%) subjects without	Results: Among the total cohort, 292 subjects	information.
	autopsy, and	identified cause based on	had clinical and/or autopsy identified causes of	 In the age group 30−35 y, a
	genetic study of	clinical or autopsy	SCD (60%). The most common identified causes	greater proportion of causes are
	sudden cardiac	information, among whom	were CAD (24%) and inherited	identified, and CAD is the
	death among	113 underwent genetic	cardiomyopathies (16%), while unexplained SCD	dominant cause.
	children and	testing.	accounted for 40% overall (N=198).	Based on a partial sample of
	young adults,		, ,	cases with unidentified causes
	age 1–35 y.	Exclusion criteria: De-	Among the 113 of 198 unexplained cases that	that underwent post-mortem
	,	identified cases; DNA	had post-mortem genetic testing, 31 (27%) were	genetic testing, an estimated 27%
	Size:	unavailable	identified as having a clinically genetic variant.	of such cases yielded evidence of
	490		a same	a clinically relevant genetic
				variant.

Data Supplement 59. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries of Terminal Care - (Section 14)

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	1° Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Hill et al. 2015(595)25239128	Study type: Systematic narrative review of	Inclusion criteria: Empirical studies published in English	<u>1° endpoint</u> : N/A – concept mapping was performed for	Three broad themes (1) Diverse preferences regarding discussion and deactivation.

	published studies (2008 – 2014) Aim: to evaluate the evidence on patients' perception of implantable cardioverter defibrillator deactivation at end of life. Size: N=18 studies	language between 2008 and 2014, primarily related to adults (above 18 y) with an implanted ICD and primarily related to the deactivation of ICDs at end of life	emergent themes from the set of studies Results: See conclusions	(2) Ethical and legal considerations were predominant in Canadian and American literature. Advance directives were uncommon in Europe. (3) 'Living in the now' was evident among patients.
• Lewis et al. 2014 (37) • 24668214	Study type: Integrative review Aim: To explore patients' decisionmaking experiences regarding ICDs from the decision to implant to the consideration of deactivation at end of life. Size: N=25 studies	Inclusion criteria: original quantitative and qualitative research articles that directly studied the patient response regarding ICD decision-making. 18 y of age orolder, Exclusion criteria articles that did not incorporate the patient's perspective, if they solely focused on living with or adjusting to the ICD.	1° endpoint: N/A – integrative review Results: See conclusions.	A significant degree of misunderstanding and inaccurate recall of information regarding ICD function at all decision In terms of deactivation decisions, the majority of patients were not aware of this option.
• Kramer et al. 2016 (596) • <u>27016104</u>	Study type: Retrospective cohort study (NCDR linked to Medicare) Aim: to describe the incidence and features	Inclusion Criteria: Patients >65 y who had ICDs inserted between January 1, 2006 through March 31, 2010 Exclusion criteria:	1º endpoint: Descriptive Results: 5 y after device implantation, 50.9% of patients were either deceased or in hospice.	 Half of patients over age 65 y don't survive 5 y. 1/3 of the decedents utilize hospice services.

	of hospice use in a large, nationally representative sample of older patients following ICD implantation, and to identify factors associated with hospice enrollment in this cohort. Size: N=194,969	Not fee-for-service Medicare patients. Patients enrolled in hospice before device placement.	Among decedents, 36.8% received hospice services. Factors most strongly associated with shorter time to hospice enrollment were: older age HR: 1.77; class IV HF HR: 1.79; EF <20% HR: 1.57 Greater regional hospice use	
• Buchhalter et al. 2014 (597) • 24276835	Study type: retrospective chart review – Mayo clinic Aim: To describe features and outcomes of patients who underwent ICD deactivation. Size: N=150	Inclusion criteria: Patients with ICD referred to the cardiac service for deactivation. Exclusion criteria N/A	Results: 150 patients who had their ICD deactivated. Median of 2 d between deactivation and death. Advance directives were present for 85 (57%) of these patients, but only 1 of these made any mention of the ICD. 6 of the ICD deactivations were for pacemaker- dependent patients, Surprisingly, surrogates were responsible for over half (51%) of the deactivation decisions. Palliative care consultation was obtained in 43% of patients.	 Patients have deactivation decisions very close to delay (median 2 d) Over half the time, this decision falls to a surrogate. Devices were not mentioned in advance directives.

• Goldstein et al. 2004	Study type: Telephone	Inclusion criteria:	1° endpoint: Descriptive	Deactivation discussions were not
(598)	survey with next-of-	Deceased patients:		common and occurred late in the illness
• <u>15583224</u>	kin of deceased	median age 76 y at death;	Results:	
	patients	27% women;	27% of next of kin recalled a	Limitations
		median implant time 27	discussion regarding	12 y old
	Aim: To describe the	mo.	deactivation of the ICD with	Relied on reports from the next-of-kin
	frequency, timing, and		their clinician.	Recall bias (interviews occurred a
	correlates of ICD	Interviewed next-of-kin:	21% chose to deactivate.	median of 2.3 y after patient death)
	deactivation	median age 67;	These discussions all took	
	discussions	majority were spouses.	place in the last few d or h of	
			the patient's life.	
	<u>Size:</u> 100		27 patients received shocks in	
			the last mo of life,	
			8 patients received a shock	
			from their ICD in the min	
			before death.	
• Goldstein et al. 2010	Study type:	Inclusion criteria:	1° endpoint: Descriptive	Over half of hospices had had a patient
(599)	Nationwide survey of	Hospice directors		get shocked by their ICD in the year prior
• <u>20194235</u>	hospice providers	(nursing, clinician, or	Results:	to their death.
		administrative)	97% of hospices admitted	
	Aim: To determine		patients with ICDs	Older survey: more hospices have a
	whether hospices are		58% reported that in the past	policy now.
	admitting patients		year, a patient had been	
	with ICDs, whether		shocked.	
	such patients are		Only 10% of hospices had a	
	receiving shocks, and		policy that addressed	
	how hospices manage		deactivation.	
	ICDs.		On average, 42% (95% CI, 37%	
			to 48%) of patients with ICDs	
	<u>Size:</u> 414		had the shocking function	
			deactivated.	

• Berger et al. 2006 (600) • <u>16689116</u>	Study type: self-administered survey Aim: To assess whether ICD recipients have considered preferences for disabling the ICD. Size: N=57	Inclusion criteria: Patients with ICDs Exclusion criteria: N/A	36/57 did not have preferences for disabling. 21/57 described situations in which they would want deactivation. Advanced directives were prepared by 35/57 subjects, none addressed the ICD.	Patients infrequently consider deactivation and rarely consider them in advance directives Limitations: Retrospective Selection bias
• Dodson et al. 2013 (601) • 23358714	Study type: telephone survey. Aim: To examine preferences for ICD deactivation in hypothetical scenarios Size: N=95.	Inclusion criteria: Patients with ICDs, >50 y, English speaking Exclusion criteria: N/A	Following an informational script regarding the benefits and harms of ICD therapy, 67/95 (71%) subjects wanted ICD deactivation in 1 or more scenarios.	Patients endorse preferences for ICD deactivation in hypothetical scenarios Limitations: Single center
• Goldstein et al. 2008 (602) • <u>18095037</u>	Study type: Qualitative focus groups. Aim: To identify barriers to ICD deactivation discussions in patients with advanced illness. Size: N=15	Inclusion criteria: Patients with ICDs	No participant had ever discussed deactivation with their physician, nor knew that deactivation was an option. Some subjects expressed that the physician should make the decision.	Patients did not consider and had some confusion about ICD deactivation Limitations: Single center Small sample size
• Habal et al. 2011 (603) • <u>21514785</u>	Study type: semi- structured survey study	Inclusion criteria: N=41 total patients N=19 with ICD	Focused on subset of patients with ICDs 2/19 (11%) reported discussing the possibility of	 Patients expressed varied impressions about deactivation Limitations:

	Aim: To determine HF		ICD deactivation with their	Convenience sampling
	patients' awareness,			Single center
	comprehension and		physician.	Small sample size
	utilization of advanced		Following clarification, 9/19	Sman sample size
			(47%) stated they would want	
	care directives		their ICD turned off should	
			their condition deteriorate.	
	<u>Size:</u> 41 (19 with ICDs)		5/19 (26%) would not want it	
			deactivated.	
Kirkpatrick et al. 2012	Study type: Non-		1° endpoint: Descriptive	Majority of patients are not addressing
(604)	experimental,	30% women;		their ICD in advance directives.
• <u>21943937</u>	descriptive, telephone	85% Caucasian;	Results:	Patients want their doctors to have the
	survey.	median age 61 y;	140 subjects either had a	conversation about deactivation.
		mean implant time 61	living will or a power of	
	Aim: To explore	mo;	attorney.	Limitations:
	patients' preferences	100% 2° education and	Only 3 (2%) of these subjects	Study objectives not explicitly stated
	for ICD deactivation in	higher;	included a plan for their ICD.	Single center
	the setting of a do not	38% with prior shock(s);	96% had never discussed what	
	resuscitate order	mean number of shocks	to do with their ICD at end-of-	
	and/or admission to	4.69.	life with a medical	
	hospice.		professional.	
			Nearly all wanted their	
	<u>Size:</u> N=278		physician to bring up the topic	
			of deactivation.	
Kramer et al. 2011	Study type:	Inclusion criteria:	1° endpoint: Descriptive	Legality of ICD deactivation is not well-
(605)	Non-experimental,	Members of Hypertrophic	1 Chaponic. Descriptive	known among patients
• <u>21296323</u>	descriptive, online	Cardiomyopathy	Results:	known among patients
<u> 21290323</u>	survey.	Association	Widespread uncertainty and	
	Survey.	Association	confusion regarding the legal	
	Aim: To identify the		status on implantable cardiac	
	ethical beliefs and		device deactivation was	
	legal knowledge of		found.	
	patients with HCM		57% were unsure if ICD	
	relating to end-of-life		deactivation was legal.	
	care and the		198 patients with an ICD had	
	withdrawal of		advanced directives, and only	
	implantable cardiac		15 (8%) specifically addressed	
	device therapy.		their ICD.	

<u>Size</u> : N=546		

Data Supplement 60. Nonrandomized Trials, Observational Studies, Guidelines, and/or Registries for Shared Decision Making – (Section 15)

Study Acronym;	Study Type/Design;	Patient Population	1° Endpoint and Results	Summary/Conclusion
Author;	Study Size	•	(P values; OR or RR;	Comment(s)
Year Published			& 95% CI)	
• Lewis et al. 2014 (606)	Study type:	Inclusion criteria:	1° endpoint: N/A – integrative review	A significant degree of
• <u>24668214</u>	Integrative review	Original quantitative and		misunderstanding and inaccurate
		qualitative research	Results: See conclusions	recall of information regarding
	Aim: To explore	articles that directly		ICD function at all decision
	patients' decision-	studied the patient		points.
	making experiences	response regarding ICD		The majority of patients were
	regarding ICDs from	decision-making.		not aware of deactivation.
	the decision to	age ≥18y		The desire to live trumped
	implant to the			inconveniences for most patients
	consideration of	Exclusion criteria articles		but this appeared to be a
	deactivation at end of	that did not incorporate		function of health state.
	life.	the patient's perspective,		
		if they		
	Size: 25 studies	solely focused on living		
		with or adjusting to the		
		ICD.		
• Dodson et al. 2013	Study type: telephone	Inclusion criteria:	Following an informational script	Patients endorse preferences
(601)	survey.	Patients with ICDs, age	regarding the benefits and harms of	for ICD deactivation in
• <u>23358714</u>		>50 y, English speaking	ICD therapy, 67/95 (71%) subjects	hypothetical scenarios
	Aim: To examine		wanted ICD deactivation in 1 or more	Limitations: Single center
	preferences for ICD	Exclusion criteria: N/A	scenarios.	
	deactivation in			
	hypothetical scenarios			
	<u>Size</u> : N=95.			
• Lewis et al. 2014 (607)	Study type: mailed	Inclusion criteria:	1° endpoint: 55 of 106 patients	Over half of patients were
• <u>25070249</u>	survey	Adult patients with ICDs	(51.9%) were unaware that ICD	unaware that there was an

	Aim: To assess patient awareness that ICD generator replacement is optional, to gauge their understanding of the risks and benefits of ICD replacement, and to gain insight into their decision-making process. Size: N=106 (response rate 72%).	Exclusion criteria: CRT	generator replacement was not compulsory. Results: If given the option, 15 of 55 (27.2%) stated that they would have considered nonreplacement. For 88 of 106 patients (83.0%), it was "important" or "very important" to discuss risks and benefits of continued therapy before deciding.	option to not replace the ICD and a portion of them would have considered it. • Limitations: Single center and Recall bias
 Hauptman et al. 2013 (608) 23420455 	Study type: Focus groups; standardized patients (providers) Aim: To examine patient-physician communication at the time the decision is made to implant an ICD. Size: 41 patients, 11 providers	Inclusion criteria: Adult patients with ICDs Cardiologists Exclusion criteria: N/A	1º endpoint: Patient focus group findings and the results of standardized patient interviews Results - Patients: 33/41 patients could not recall a discussion about complications. Patients felt a score of 5.7 on a scale of 1-10 on "feeling informed" Mean number of patients out of 100 who would be saved by the ICD was 87.9 Results - Clinicians: In 17 of 22 of interviews, cardiologists did not address or minimized or denied QOL issues and long-term consequences of ICD placement In 15 of 22 of the standardized patient interviews, cardiologists	Patients overestimated the benefits and felt uninformed regarding the risks. Patient-physician communication about ICDs is characterized by unclear representation and omission of information to patients

			used unexplained medical terms or jargon.	
• Stewart et al. 2010 (609) • 20142021	Study type: Survey Aim: To examine patient expectations from ICDs for 1° prevention of sudden death in HF. Size: 105	Inclusion criteria: Patients with EF <35% Symptomatic HF Exclusion criteria: N/A	or jargon. 1º endpoint/Results Most patients anticipated more than 10 y survival. 54% expected an ICD to save ≥50 lives per 100 during 5 y. 70% of ICD recipients indicated they would keep the ICD on even if dying of cancer, 55% even if having daily shocks, None would inactivate even if suffering constant dyspnea at rest.	Study demonstrated that patients overestimate the benefits of ICD therapy.
• Ottenberg et al. 2014 (610) • 24889010	Study type: Qualitative Focus Group Aim: To describe the reasons why patients decline ICD implantation Size: 13 patients (3 groups)	Inclusion criteria: Patients who had declined ICD (12 ICD, one CRT) Exclusion criteria: N/A	1° endpoint/Results: 5 Themes: (1) don't mess with a good thing; (2) my health is good enough; (3) independent decision making; (4) it's your job, but it's my choice; and (5) gaps in learning	• Interviews identified significant gaps for some patients in their understanding about the ICD.
• Yuhas et al. 2012 (611) • <u>22897624</u>	Study type: Qualitative interview Aim: To explore patients' attitudes and perceptions of ICDs to better understand potential patient-related barriers to appropriate utilization. Size: N=25. 12 who accepted referral, 13	Inclusion criteria: outpatient cardiology patients with EF ≤35% and without an ICD. Exclusion criteria: N/A	1° Endpoint/Results: 5 Themes: (1) Patients who refused ICD referral had a lack of insight into their own risk. (2) Many patients who accepted ICD referral perceived that this was strongly recommended by their physicians. (3) Concerns over recall, malfunction, and surgical risk were common in both.	People who decline had misunderstandings about their personal risk.

who declined referral	(4) Many patients demonstrated
(note: none had ICDs)	inaccurate perceptions of ICD-related
	risks
	(5) Feelings regarding invasive life-
	prolonging interventions played an
	important role in ICD referral refusal
	for some individuals.

Data Supplement 61. Randomized Trials, Observational Studies, and/or Registries Related to Cost and Value Considerations - (Section 16)

Study	Study Design	Patient Population	Costs	Effectiveness	Value	Summary/Conclusions
Name	Study Size	•				,
• AVID	Study type: RCT of ICD vs.	2° prevention:	Within trial:	Within trial:	Lifetime ICER=	 Intermediate value
Larsen G, et al.	antiarrhythimic drug	resuscitated CA or	ICD \$87,479,	ICD 2.48 y,	\$67,100	based on ACC/AHA
2002 (612)	therapy (largely	sustained VT, EF ≤40%.	Antiarrythmic	Antiarrythmic		benchmarks.
• <u>11980684</u>	amiodarone).		drug Tx	drug Tx 2.27 y	Within-trial	Authors concluded:
			\$73,564		ICER= \$66,700	ICD was "moderately
	Within trial costs and					cost-effective for 2°
	outcomes to 3 y; lifetime					prevention."
	projection.					
	Size:					
	1,008 patients					
• CIDS	Study type:	2° prevention:	Within trial:	Within trial:	12 year ICER;	 Intermediate value
 O'Brien BJ, et 	RCT of ICD vs.	Resuscitated VF or VT.	ICD C\$87,715;	ICD 4.58 y;	C\$99,400	based on ACC/AHA
al. 2001 (613)	amiodarone.		amiodarone	amiodarone	(US\$67,600)	benchmarks.
• <u>11245646</u>			C\$38,600	4.35 y	(with continued	 Authors concluded
	Within trial cost and				ICD benefit)	that "ICD therapy is not
	survival to 6 y; 12 y					attractive" based on
	projection of cost and				Within trial	Canadian standards.
	survival.				ICER=	No lifetime
	430 patients in economic				C\$213,500	projections of cost and
	substudy.				(US\$145,200)	life expectancy.
	Size: 659 total patients					

Weiss, et al.2002 (614)	Study type: Propensity score matched	2° prevention. Hospitalized with 1°	Within study: ICD \$78,700;	Within study: ICD 4.6 y;	Within study ICER= \$78,400	Intermediate value based on ACC/AHA
• <u>12015242</u>	analysis of Medicare patients. Costs and outcomes to 8 y. Size: 7,619 matched pairs	diagnosis of VT or VF.	conventional therapy \$37,200	conventional therapy 4.1 y	7.55.1	benchmarks. No lifetime projections of cost and life expectancy.
 Buxton et al. 2006 (615) 16904046 	Study type: Markov model, 20 y time horizons. Effectiveness inputs from RCTs, cost inputs from UK. Size: Cost data from 535 patients with ICD implants in Liverpool.	2° prevention.	ICD: £87,184; amiodarone: £18,379	Life-y: ICD 9.87; amiodarone 8.41 Quality- adjusted life-y: ICD 7.41, amiodarone 6.35	£48,700/life-y gained (\$64,700) £65,000/QALY gained (\$86,200)	Intermediate value based on ACC/AHA benchmarks. Authors concluded that ICDs were not cost-effective at the UK benchmark (<£30,000).
• SCD-HeFT • Mark DB, et al. (616) • 16818817	Study type: RCT of ICD vs. amiodarone or placebo. Costs and outcomes to 5 y; lifetime projection of costs and life expectancy. 1,692 patients in economic substudy (US centers), Size: 2,521 total patients	1° prevention: HF (NYHA II or III) and EF ≤35%.	Within trial: ICD \$61,938; placebo \$42,971 Lifetime: ICD \$158,840; placebo \$79,028	Life expectancy: ICD 10.87 y; placebo 8.41 y	Lifetime ICER= \$38,400 Within trial ICER= \$127,500	 High value based on ACC/AHA benchmarks. Authors concluded that ICD was "economically attractive" compared with placebo as long as ICD benefit was maintained for ≥8 y.
 MADIT-II Zwanziger J, et al. 2006 (617) 16750701 	Study type: RCT of ICD vs conventional medical therapy. Within trial costs and survival to 3.5 y; 12 y projection of cost and survival.	1° prevention: Patients with prior MI, EF ≤30%.	Within trial: ICD \$84,100, conventional \$44,900; 12 year projections: ICD \$173,700 to \$180,300,	Within trial: ICD 2.89 y, conventional 2.72 y	12 y ICER= \$78,600 to \$114,000 Within trial ICER =\$235,000;	• Intermediate value based on ACC/AHA benchmarks, based on long-term projections of ICD outcomes.

• MADIT-I • Mushlin AI, et al. 1998 (618) • 9626173	Size: 1,095 patients in economic substudy (US patients), 1,232 total patients Study type: RCT of ICD or medical therapy. Costs and outcomes to 4 y. Size: 181 patients in economic study (US centers), 196 total patients.	1° prevention. Prior MI, asymptomatic non-sustained VT, EF ≤35%, inducible VT not suppressed by procainamide.	conventional \$97,900 Within trial: ICD \$97,560; medical therapy \$78,980	Within trial: ICD 3.66 y, medical therapy 2.80 y	Within trial ICER= \$27,000	High value based on ACC/AHA benchmarks. Authors concluded that "ICD is costeffective in selected individuals at high risk" for sudden cardiac death.
• Al-Khatib, et al. 2005 (619) • 15838065	Study type: Duke database outcomes and costs for 15 y. Llifetime extrapolation by Markov model. Size: 1,285 patients	1° prevention. Post-MI, EF ≤30%.	ICD: \$131,490; medical: \$40,661	Life expectancy: ICD 8.59 y, medical 6.79 y	\$50,500 per life-y gained	Intermediate value by ACC/AHA benchmarks Authors concluded: ICD therapy for patients eligible for MADIT-II was "economically attractive" by conventional standards.
• Sanders, et al. 2005 (620) • 16207849	Study type: Markov model, lifetime projection, applied to data from each of eight randomized trials. Size: Not applicable	1° prevention. Trial subjects in CABG-PATCH, COMPANION, DEFINITE, DINAMIT, MADIT-I, MADIT-II, MUSTT, and SCD-HeFT.	ICD had higher costs in each population: \$55,700 to \$100,500	ICD had higher life expectancy in six trials, ranging from 1.46 to 4.14 life- y added	≤\$39,000 for COMPANION, DEFINITE, MADIT I, MADIT II, MUSTT; \$50,700 for SCD-HeFT Higher cost, worse outcomes for	High value by ACC/AHA benchmarks when projected life expectancy was increased by >1.4 y

• Smith, et al. 2013 (621) • 22584647	Study type: Markov model, lifetime projection. Effectiveness from meta-analysis of 6 RCTs. Size: Not applicable	1° prevention. Patients with EF <40%, due to either ischemic or non- ischemic causes.	ICD €86,759; conventional therapy €50,685	ICD 7.08 QALY; conventional therapy 6.26 QALY	CABG-PATCH, DINAMIT. ICER= €44,000 (\$49,200)	 High value by ACC/AHA benchmarks. Authors concluded: 1° prophylactic ICD therapy had high value in the European setting for patients with EF <40%.
• Cowie, et al.2009 (622) • 19359333	Study type: Markov model, lifetime projection. Effectiveness from meta-analysis of 6 RCTs. European costs. Size: Not applicable	1° prevention. Patients with EF <35%, ischemic or non-ischemic etiology.	ICD €64,600; conventional therapy €18,187	ICD 8.58 life-y (7.27 QALY); conventional therapy 6.71 life-y (5.70 QALY)	ICER= €24,800/ life-y gained (\$27,700) €29,500/QALY gained (\$33,000)	 High value by ACC/AHA benchmarks. Authors concluded: Prophylactic ICD implantation had high value if current guidelines for patients with EF <35% are followed.

References:

- 1. Ruwald MH, Hansen ML, Lamberts M, et al. The relation between age, sex, comorbidity, and pharmacotherapy and the risk of syncope: a Danish nationwide study. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2012; 14:1506-14.
- 2. Soteriades ES, Evans JC, Larson MG, et al. Incidence and prognosis of syncope. N. Engl. J. Med. 2002; 347:878-85.
- 3. Middlekauff HR, Stevenson WG, Stevenson LW, et al. Syncope in advanced heart failure: high risk of sudden death regardless of origin of syncope. J Am Coll Cardiol. 1993; 21:110-6.
- 4. Steinman RT, Herrera C, Schuger CD, et al. Wide QRS tachycardia in the conscious adult. Ventricular tachycardia is the most frequent cause. Jama. 1989; 261:1013-6.
- 5. Brugada P, Brugada J, Mont L, et al. A new approach to the differential diagnosis of a regular tachycardia with a wide QRS complex. Circulation. 1991; 83:1649-59.
- 6. Wellens HJ, Bar FW and Lie KI. The value of the electrocardiogram in the differential diagnosis of a tachycardia with a widened QRS complex. Am J Med. 1978; 64:27-33.
- 7. Elhendy A, Chandrasekaran K, Gersh BJ, et al. Functional and prognostic significance of exercise-induced ventricular arrhythmias in patients with suspected coronary artery disease. Am. J. Cardiol. 2002; 90:95-100.
- 8. Grady TA, Chiu AC, Snader CE, et al. Prognostic significance of exercise-induced left bundle-branch block. Jama. 1998; 279:153-6.
- 9. Costantini O, Hohnloser SH, Kirk MM, et al. The ABCD (Alternans Before Cardioverter Defibrillator) Trial: strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J Am Coll Cardiol. 2009; 53:471-9.
- 10. Desai AD, Yaw TS, Yamazaki T, et al. Prognostic significance of quantitative QRS duration. Am J Med. 2006; 119:600-6.
- 11. Freedman RA, Alderman EL, Sheffield LT, et al. Bundle branch block in patients with chronic coronary artery disease: angiographic correlates and prognostic significance. J Am Coll Cardiol. 1987; 10:73-80.
- 12. Baldasseroni S, Opasich C, Gorini M, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am. Heart J. 2002; 143:398-405.
- 13. Zimetbaum PJ, Buxton AE, Batsford W, et al. Electrocardiographic predictors of arrhythmic death and total mortality in the multicenter unsustained tachycardia trial. Circulation. 2004; 110:766-9.
- 14. Buxton AE, Sweeney MO, Wathen MS, et al. QRS duration does not predict occurrence of ventricular tachyarrhythmias in patients with implanted cardioverter-defibrillators. J Am Coll Cardiol. 2005; 46:310-6.
- 15. Monasterio V, Martinez JP, Laguna P, et al. Prognostic value of average T-wave alternans and QT variability for cardiac events in MADIT-II patients. Journal of electrocardiology. 2013; 46:480-6.
- 16. Chow T, Kereiakes DJ, Onufer J, et al. Does microvolt T-wave alternans testing predict ventricular tachyarrhythmias in patients with ischemic cardiomyopathy and prophylactic defibrillators? The MASTER (Microvolt T Wave Alternans Testing for Risk Stratification of Post-Myocardial Infarction Patients) trial. J Am Coll Cardiol. 2008; 52:1607-15.

- 17. Gupta A, Hoang DD, Karliner L, et al. Ability of microvolt T-wave alternans to modify risk assessment of ventricular tachyarrhythmic events: a meta-analysis. Am. Heart J. 2012; 163:354-64.
- 18. Dhar R, Alsheikh-Ali AA, Estes NA, III, et al. Association of prolonged QRS duration with ventricular tachyarrhythmias and sudden cardiac death in the Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II). Heart rhythm. 2008; 5:807-13.
- 19. Bloomfield DM, Steinman RC, Namerow PB, et al. Microvolt T-wave alternans distinguishes between patients likely and patients not likely to benefit from implanted cardiac defibrillator therapy: a solution to the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II conundrum. Circulation. 2004; 110:1885-9.
- 20. Iuliano S, Fisher SG, Karasik PE, et al. QRS duration and mortality in patients with congestive heart failure. Am. Heart J. 2002; 143:1085-91.
- 21. Perez-Rodon J, Martinez-Alday J, Baron-Esquivias G, et al. Prognostic value of the electrocardiogram in patients with syncope: data from the group for syncope study in the emergency room (GESINUR). Heart rhythm. 2014; 11:2035-44.
- 22. Barrett PM, Komatireddy R, Haaser S, et al. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med. 2014; 127:95-7.
- 23. de Asmundis C, Conte G, Sieira J, et al. Comparison of the patient-activated event recording system vs. traditional 24 h Holter electrocardiography in individuals with paroxysmal palpitations or dizziness. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2014; 16:1231-5.
- 24. Turakhia MP, Hoang DD, Zimetbaum P, et al. Diagnostic utility of a novel leadless arrhythmia monitoring device. Am. J. Cardiol. 2013; 112:520-4.
- 25. Linzer M, Pritchett EL, Pontinen M, et al. Incremental diagnostic yield of loop electrocardiographic recorders in unexplained syncope. Am. J. Cardiol. 1990; 66:214-9.
- 26. Bloch Thomsen PE, Jons C, Raatikainen MJ, et al. Long-term recording of cardiac arrhythmias with an implantable cardiac monitor in patients with reduced ejection fraction after acute myocardial infarction: the Cardiac Arrhythmias and Risk Stratification After Acute Myocardial Infarction (CARISMA) study. Circulation. 2010; 122:1258-64.
- 27. Volosin K, Stadler RW, Wyszynski R, et al. Tachycardia detection performance of implantable loop recorders: results from a large 'real-life' patient cohort and patients with induced ventricular arrhythmias. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2013; 15:1215-22.
- 28. Krahn AD, Klein GJ, Yee R, et al. Use of an extended monitoring strategy in patients with problematic syncope. Reveal Investigators. Circulation. 1999; 99:406-10.
- 29. Solbiati M, Costantino G, Casazza G, et al. Implantable loop recorder versus conventional diagnostic workup for unexplained recurrent syncope. Cochrane Database Syst. Rev. 2016; 4:CD011637.
- 30. Solomon SD, Zelenkofske S, McMurray JJ, et al. Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N. Engl. J. Med. 2005; 352:2581-8.

- 31. Gula LJ, Klein GJ, Hellkamp AS, et al. Ejection fraction assessment and survival: an analysis of the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Am. Heart J. 2008; 156:1196-200.
- 32. Korngold EC, Januzzi JL, Jr., Gantzer ML, et al. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. Circulation. 2009; 119:2868-76.
- 33. Patton KK, Sotoodehnia N, DeFilippi C, et al. N-terminal pro-B-type natriuretic peptide is associated with sudden cardiac death risk: the Cardiovascular Health Study. Heart rhythm. 2011; 8:228-33.
- 34. Scott PA, Barry J, Roberts PR, et al. Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: a meta-analysis. Eur. J Heart Fail. 2009; 11:958-66.
- 35. Blangy H, Sadoul N, Dousset B, et al. Serum BNP, hs-C-reactive protein, procollagen to assess the risk of ventricular tachycardia in ICD recipients after myocardial infarction. Europeae: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2007; 9:724-9.
- 36. Ahmad T, Fiuzat M, Neely B, et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC. Heart Fail. 2014; 2:260-8.
- 37. Levine YC, Rosenberg MA, Mittleman M, et al. B-type natriuretic peptide is a major predictor of ventricular tachyarrhythmias. Heart rhythm. 2014; 11:1109-16.
- 38. Berger R, Huelsman M, Strecker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation. 2002; 105:2392-7.
- 39. Buxton AE, Lee KL, Hafley GE, et al. Relation of ejection fraction and inducible ventricular tachycardia to mode of death in patients with coronary artery disease: an analysis of patients enrolled in the multicenter unsustained tachycardia trial. Circulation. 2002; 106:2466-72.
- 40. Buxton AE, Lee KL, Fisher JD, et al. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N. Engl. J. Med. 1999; 341:1882-90.
- 41. Buxton AE, Lee KL, DiCarlo L, et al. Electrophysiologic testing to identify patients with coronary artery disease who are at risk for sudden death. Multicenter Unsustained Tachycardia Trial Investigators. N. Engl. J. Med. 2000; 342:1937-45.
- 42. Moss AJ, Hall WJ, Cannom DS, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N. Engl. J. Med. 1996; 335:1933-40.
- 43. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 2005; 352:225-37.
- 44. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 2002; 346:877-83.
- 45. Hilfiker G, Schoenenberger AW, Erne P, et al. Utility of electrophysiological studies to predict arrhythmic events. World J Cardiol. 2015; 7:344-50.
- 46. Bourke JP, Richards DA, Ross DL, et al. Routine programmed electrical stimulation in survivors of acute myocardial infarction for prediction of spontaneous ventricular tachyarrhythmias during follow-up: results, optimal stimulation protocol and cost-effective screening. J Am Coll Cardiol. 1991; 18:780-8.

- 47. Bailey JJ, Berson AS, Handelsman H, et al. Utility of current risk stratification tests for predicting major arrhythmic events after myocardial infarction. J Am Coll Cardiol. 2001; 38:1902-11.
- 48. Schmitt C, Barthel P, Ndrepepa G, et al. Value of programmed ventricular stimulation for prophylactic internal cardioverter-defibrillator implantation in postinfarction patients preselected by noninvasive risk stratifiers. J Am Coll Cardiol. 2001; 37:1901-7.
- 49. Brembilla-Perrot B, Suty-Selton C, Beurrier D, et al. Differences in mechanisms and outcomes of syncope in patients with coronary disease or idiopathic left ventricular dysfunction as assessed by electrophysiologic testing. J Am Coll Cardiol. 2004; 44:594-601.
- 50. Bhandari AK, Shapiro WA, Morady F, et al. Electrophysiologic testing in patients with the long QT syndrome. Circulation. 1985; 71:63-71.
- 51. Giustetto C, Di MF, Wolpert C, et al. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur. Heart J. 2006; 27:2440-7.
- 52. Mahida S, Derval N, Sacher F, et al. Role of electrophysiological studies in predicting risk of ventricular arrhythmia in early repolarization syndrome. J Am Coll Cardiol. 2015; 65:151-9.
- 53. Giustetto C, Schimpf R, Mazzanti A, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011; 58:587-95.
- 54. Raczak G, Pinna GD, Maestri R, et al. Different predictive values of electrophysiological testing and autonomic assessment in patients surviving a sustained arrhythmic episode. Circ. J. 2004; 68:634-8.
- 55. Brodsky MA, Mitchell LB, Halperin BD, et al. Prognostic value of baseline electrophysiology studies in patients with sustained ventricular tachyarrhythmia: the Antiarrhythmics Versus Implantable Defibrillators (AVID) trial. Am. Heart J. 2002; 144:478-84.
- 56. Daubert JP, Zareba W, Hall WJ, et al. Predictive value of ventricular arrhythmia inducibility for subsequent ventricular tachycardia or ventricular fibrillation in Multicenter Automatic Defibrillator Implantation Trial (MADIT) II patients. J Am Coll Cardiol. 2006; 47:98-107.
- 57. Daubert JP, Winters SL, Subacius H, et al. Ventricular arrhythmia inducibility predicts subsequent ICD activation in nonischemic cardiomyopathy patients: a DEFINITE substudy. Pacing Clin. Electrophysiol. 2009; 32:755-61.
- 58. Gold MR, Bloomfield DM, Anderson KP, et al. A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J Am Coll Cardiol. 2000; 36:2247-53.
- 59. Gatzoulis KA, Vouliotis AI, Tsiachris D, et al. Primary prevention of sudden cardiac death in a nonischemic dilated cardiomyopathy population: reappraisal of the role of programmed ventricular stimulation. Circ. Arrhythm. Electrophysiol. 2013; 6:504-12.
- 60. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet (London, England). 2001; 357:1385-90.
- 61. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N. Engl. J. Med. 1996; 334:1349-55.
- 62. The cardiac insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet (London, England). 1999; 353:9-13.
- 63. Hjalmarson A, Goldstein S, Fagerberg B, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group, Jama, 2000: 283:1295-302.
- 64. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N. Engl. J. Med. 1991; 325:303-10.

- 65. Cohn JN and Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 2001; 345:1667-75.
- 66. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N. Engl. J. Med. 2003; 349:1893-906.
- 67. Pitt B, Segal R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet (London, England). 1997; 349:747-52.
- 68. Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial--the Losartan Heart Failure Survival Study ELITE II. Lancet (London, England). 2000; 355:1582-7.
- 69. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999; 341:709-17.
- 70. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 2003; 348:1309-21.
- 71. Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 2011; 364:11-21.
- 72. Desai AS, McMurray JJ, Packer M, et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur. Heart J. 2015; 36:1990-7.
- 73. Carson P, Wertheimer J, Miller A, et al. The STICH trial (Surgical Treatment for Ischemic Heart Failure): mode-of-death results. JACC. Heart Fail. 2013; 1:400-8.
- 74. Velazquez EJ, Lee KL, Jones RH, et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N. Engl. J. Med. 2016; 374:1511-20.
- 75. Cook JR, Rizo-Patron C, Curtis AB, et al. Effect of surgical revascularization in patients with coronary artery disease and ventricular tachycardia or fibrillation in the Antiarrhythmics Versus Implantable Defibrillators (AVID) Registry. Am. Heart J. 2002; 143:821-6.
- 76. Mondésert B, Khairy P, Schram G, et al. Impact of revascularization in patients with sustained ventricular arrhythmias, prior myocardial infarction, and preserved left ventricular ejection fraction. Heart rhythm. 2016; 13:1221-7.
- 77. Ngaage DL, Cale AR, Cowen ME, et al. Early and late survival after surgical revascularization for ischemic ventricular fibrillation/tachycardia. Ann. Thorac. Surg. 2008; 85:1278-81.
- 78. Every NR, Fahrenbruch CE, Hallstrom AP, et al. Influence of coronary bypass surgery on subsequent outcome of patients resuscitated from out of hospital cardiac arrest. J Am Coll Cardiol. 1992; 19:1435-9.
- 79. van der Burg AE, Bax JJ, Boersma E, et al. Impact of viability, ischemia, scar tissue, and revascularization on outcome after aborted sudden death. Circulation. 2003; 108:1954-9.
- 80. Dumas F, Cariou A, Manzo-Silberman S, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ. Cardiovasc Interv. 2010; 3:200-7.

- 81. Dumas F, Bougouin W, Geri G, et al. Emergency PCI in post-cardiac arrest patients without ST-segment elevation pattern: insights from the PROCAT II registry. JACC. Cardiovasc. Interv. 2016; 9:1011-8.
- 82. Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 2009; 360:961-72.
- 83. Milojevic M, Head SJ, Parasca CA, et al. Causes of death following PCI versus CABG in complex CAD: 5-year follow-up of SYNTAX. J Am Coll Cardiol. 2016; 67:42-55.
- 84. Al-Khatib SM, Hellkamp AS, Lee KL, et al. Implantable cardioverter defibrillator therapy in patients with prior coronary revascularization in the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). J. Cardiovasc. Electrophysiol. 2008; 19:1059-65.
- 85. Nageh MF, Kim JJ, Chen LH, et al. Implantable defibrillators for secondary prevention of sudden cardiac death in cardiac surgery patients with perioperative ventricular arrhythmias. Journal of the American Heart Association. 2014; 3.
- 86. Kumar S, Barbhaiya CR, Sobieszczyk P, et al. Role of alternative interventional procedures when endo- and epicardial catheter ablation attempts for ventricular arrhythmias fail. Circ. Arrhythm. Electrophysiol. 2015; 8:606-15.
- 87. Anter E, Hutchinson MD, Deo R, et al. Surgical ablation of refractory ventricular tachycardia in patients with nonischemic cardiomyopathy. Circ. Arrhythm. Electrophysiol. 2011; 4:494-500.
- 88. Bhavani SS, Tchou P, Saliba W, et al. Surgical options for refractory ventricular tachycardia. J Card Surg. 2007; 22:533-4.
- 89. Sartipy U, Albage A, Straat E, et al. Surgery for ventricular tachycardia in patients undergoing left ventricular reconstruction by the Dor procedure. Ann. Thorac. Surg. 2006; 81:65-71.
- 90. Choi EK, Nagashima K, Lin KY, et al. Surgical cryoablation for ventricular tachyarrhythmia arising from the left ventricular outflow tract region. Heart rhythm. 2015; 12:1128-36.
- 91. Patel M, Rojas F, Shabari FR, et al. Safety and Feasibility of Open Chest Epicardial Mapping and Ablation of Ventricular Tachycardia During the Period of Left Ventricular Assist Device Implantation. J. Cardiovasc. Electrophysiol. 2016; 27:95-101.
- 92. Mulloy DP, Bhamidipati CM, Stone ML, et al. Cryoablation during left ventricular assist device implantation reduces postoperative ventricular tachyarrhythmias. J Thorac. Cardiovasc. Surg. 2013; 145:1207-13.
- 93. Schwartz PJ, Motolese M and Pollavini G. Prevention of Sudden Cardiac Death After a First Myocardial Infarction by Pharmacologic or Surgical Antiadrenergic Interventions. Journal of cardiovascular electrophysiology. 1992; 3:2-16.
- 94. Krittayaphong R, Bhuripanyo K, Punlee K, et al. Effect of atenolol on symptomatic ventricular arrhythmia without structural heart disease: a randomized placebo-controlled study. Am. Heart J. 2002; 144:e10.
- 95. Vaseghi M, Gima J, Kanaan C, et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart rhythm. 2014; 11:360-6.
- 96. Ajijola OA, Lellouche N, Bourke T, et al. Bilateral cardiac sympathetic denervation for the management of electrical storm. J Am Coll Cardiol. 2012; 59:91-2.
- 97. Ukena C, Mahfoud F, Ewen S, et al. Renal denervation for treatment of ventricular arrhythmias: data from an International Multicenter Registry. Clin. Res. Cardiol. 2016.
- 98. Grimaldi R, de LA, Kornet L, et al. Can spinal cord stimulation reduce ventricular arrhythmias? Heart rhythm. 2012; 9:1884-7.

- 99. Kudenchuk PJ, Brown SP, Daya M, et al. Amiodarone, lidocaine, or placebo in out-of-hospital cardiac arrest. N. Engl. J. Med. 2016:1711-22.
- 100. Joglar JA and Page RL. Out-of-Hospital Cardiac Arrest--Are Drugs Ever the Answer? N. Engl. J. Med. 2016; 374:1781-2.
- 101. Jacobs IG, Finn JC, Jelinek GA, et al. Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebo-controlled trial. Resuscitation. 2011; 82:1138-43.
- 102. Piccini JP, Hranitzky PM, Kilaru R, et al. Relation of mortality to failure to prescribe beta blockers acutely in patients with sustained ventricular tachycardia and ventricular fibrillation following acute myocardial infarction (from the VALsartan In Acute myocardial iNfarcTion trial [VALIANT] Registry). Am J Cardiol. 2008; 102:1427-32.
- 103. Dorian P, Cass D, Schwartz B, et al. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N. Engl. J. Med. 2002; 346:884-90.
- 104. Hassan TB, Jagger C and Barnett DB. A randomised trial to investigate the efficacy of magnesium sulphate for refractory ventricular fibrillation. Emerg. Med. J. 2002; 19:57-62.
- 105. Thel MC, Armstrong AL, McNulty SE, et al. Randomised trial of magnesium in in-hospital cardiac arrest. Duke Internal Medicine Housestaff. Lancet (London, England). 1997; 350:1272-6.
- 106. Somberg JC, Bailin SJ, Haffajee CI, et al. Intravenous lidocaine versus intravenous amiodarone (in a new aqueous formulation) for incessant ventricular tachycardia. Am. J. Cardiol. 2002; 90:853-9.
- 107. Kudenchuk PJ, Cobb LA, Copass MK, et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N. Engl. J. Med. 1999; 341:871-8.
- 108. Callaham M, Madsen CD, Barton CW, et al. A randomized clinical trial of high-dose epinephrine and norepinephrine vs standard-dose epinephrine in prehospital cardiac arrest. Jama. 1992; 268:2667-72.
- 109. Gueugniaud PY, Mols P, Goldstein P, et al. A comparison of repeated high doses and repeated standard doses of epinephrine for cardiac arrest outside the hospital. European Epinephrine Study Group. N. Engl. J. Med. 1998; 339:1595-601.
- 110. Gorgels AP, van den Dool A, Hofs A, et al. Comparison of procainamide and lidocaine in terminating sustained monomorphic ventricular tachycardia. Am. J. Cardiol. 1996; 78:43-6.
- 111. Ho DS, Zecchin RP, Richards DA, et al. Double-blind trial of lignocaine versus sotalol for acute termination of spontaneous sustained ventricular tachycardia. Lancet (London, England). 1994; 344:18-23.
- 112. Levine JH, Massumi A, Scheinman MM, et al. Intravenous amiodarone for recurrent sustained hypotensive ventricular tachyarrhythmias. Intravenous Amiodarone Multicenter Trial Group. J Am Coll Cardiol. 1996; 27:67-75.
- 113. Teo KK, Yusuf S and Furberg CD. Effects of prophylactic antiarrhythmic drug therapy in acute myocardial infarction. An overview of results from randomized controlled trials. Jama. 1993; 270:1589-95.
- 114. Elizari MV, Martinez JM, Belziti C, et al. Morbidity and mortality following early administration of amiodarone in acute myocardial infarction. GEMICA study investigators, GEMA Group, Buenos Aires, Argentina. Grupo de Estudios Multicentricos en Argentina. Eur. Heart J. 2000: 21:198-205.
- 115. Link MS, Berkow LC, Kudenchuk PJ, et al. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015; 132:S444-S64.

- 116. Herlitz J, Ekstrom L, Wennerblom B, et al. Lidocaine in out-of-hospital ventricular fibrillation. Does it improve survival? Resuscitation. 1997; 33:199-205.
- 117. Markel DT, Gold LS, Allen J, et al. Procainamide and survival in ventricular fibrillation out-of-hospital cardiac arrest. Acad. Emerg. Med. 2010; 17:617-23.
- 118. Stiell IG, Wells GA, Field B, et al. Advanced cardiac life support in out-of-hospital cardiac arrest. N. Engl. J. Med. 2004; 351:647-56.
- 119. Hagihara A, Hasegawa M, Abe T, et al. Prehospital epinephrine use and survival among patients with out-of-hospital cardiac arrest. Jama. 2012; 307:1161-8.
- 120. Donnino MW, Salciccioli JD, Howell MD, et al. Time to administration of epinephrine and outcome after in-hospital cardiac arrest with non-shockable rhythms: retrospective analysis of large in-hospital data registry. BMJ. 2014; 348:g3028.
- 121. Koscik C, Pinawin A, McGovern H, et al. Rapid epinephrine administration improves early outcomes in out-of-hospital cardiac arrest. Resuscitation. 2013; 84:915-20.
- 122. Spaulding CM, Joly LM, Rosenberg A, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N. Engl. J. Med. 1997; 336:1629-33.
- 123. Cronier P, Vignon P, Bouferrache K, et al. Impact of routine percutaneous coronary intervention after out-of-hospital cardiac arrest due to ventricular fibrillation. Crit. Care. 2011; 15:R122.
- 124. Zanuttini D, Armellini I, Nucifora G, et al. Impact of emergency coronary angiography on in-hospital outcome of unconscious survivors after out-of-hospital cardiac arrest. Am. J. Cardiol. 2012; 110:1723-8.
- 125. Kudenchuk PJ, Newell C, White L, et al. Prophylactic lidocaine for post resuscitation care of patients with out-of-hospital ventricular fibrillation cardiac arrest. Resuscitation. 2013; 84:1512-8.
- 126. Nademanee K, Taylor R, Bailey WE, et al. Treating electrical storm: sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation. 2000; 102:742-7.
- 127. Sasson C, Rogers MA, Dahl J, et al. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes. 2010; 3:63-81.
- 128. Buxton AE, Marchlinski FE, Doherty JU, et al. Hazards of intravenous verapamil for sustained ventricular tachycardia. Am. J. Cardiol. 1987; 59:1107-10.
- 129. Pellis T, Kette F, Lovisa D, et al. Utility of pre-cordial thump for treatment of out of hospital cardiac arrest: a prospective study. Resuscitation. 2009; 80:17-23.
- 130. Volkmann H, Klumbies A, Kuhnert H, et al. Terminating ventricular tachycardias by mechanical heart stimulation with precordial thumps. Z. Kardiol. 1990; 79:717-24.
- 131. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. The Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. N. Engl. J. Med. 1997; 337:1576-83.
- 132. Connolly SJ, Gent M, Roberts RS, et al. Canadian implantable defibrillator study (CIDS): a randomized trial of the implantable cardioverter defibrillator against amiodarone. Circulation. 2000; 101:1297-302.

- 133. Kuck KH, Cappato R, Siebels J, et al. Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest: the Cardiac Arrest Study Hamburg (CASH). Circulation. 2000; 102:748-54.
- 134. Connolly SJ, Hallstrom AP, Cappato R, et al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg. Canadian Implantable Defibrillator Study. Eur. Heart J. 2000; 21:2071-8.
- 135. Lau EW, Griffith MJ, Pathmanathan RK, et al. The Midlands Trial of Empirical Amiodarone versus Electrophysiology-guided Interventions and Implantable Cardioverter-defibrillators (MAVERIC): a multi-centre prospective randomised clinical trial on the secondary prevention of sudden cardiac death. Europeae: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2004; 6:257-66.
- 136. Claro JC, Candia R, Rada G, et al. Amiodarone versus other pharmacological interventions for prevention of sudden cardiac death. Cochrane Database Syst. Rev. 2015; 12:CD008093.
- 137. Raitt MH, Renfroe EG, Epstein AE, et al. "Stable" ventricular tachycardia is not a benign rhythm: insights from the antiarrhythmics versus implantable defibrillators (AVID) registry. Circulation. 2001; 103:244-52.
- 138. Bass EB, Elson JJ, Fogoros RN, et al. Long-term prognosis of patients undergoing electrophysiologic studies for syncope of unknown origin. Am J Cardiol. 1988; 62:1186-91.
- 139. Owens DK, Sanders GD, Heidenreich PA, et al. Effect of risk stratification on cost-effectiveness of the implantable cardioverter defibrillator. Am Heart J. 2002; 144:440-8.
- 140. Ahn JM, Lee KH, Yoo SY, et al. Prognosis of variant angina manifesting as aborted sudden cardiac death. J Am Coll Cardiol. 2016; 68:137-45.
- 141. Yamashina Y, Yagi T, Namekawa A, et al. Favorable outcomes of patients with vasospastic angina associated with cardiac arrest. J Cardiol. 2014; 63:41-5.
- 142. Eschalier R, Souteyrand G, Jean F, et al. Should an implanted defibrillator be considered in patients with vasospastic angina? Arch. Cardiovasc Dis. 2014; 107:42-7.
- 143. Matsue Y, Suzuki M, Nishizaki M, et al. Clinical implications of an implantable cardioverter-defibrillator in patients with vasospastic angina and lethal ventricular arrhythmia. J Am Coll Cardiol. 2012; 60:908-13.
- 144. Takagi Y, Yasuda S, Tsunoda R, et al. Clinical characteristics and long-term prognosis of vasospastic angina patients who survived out-of-hospital cardiac arrest: multicenter registry study of the Japanese Coronary Spasm Association. Circ. Arrhythm. Electrophysiol. 2011; 4:295-302.
- 145. Meisel SR, Mazur A, Chetboun I, et al. Usefulness of implantable cardioverter-defibrillators in refractory variant angina pectoris complicated by ventricular fibrillation in patients with angiographically normal coronary arteries. Am. J. Cardiol. 2002; 89:1114-6.
- 146. Chevalier P, Dacosta A, Defaye P, et al. Arrhythmic cardiac arrest due to isolated coronary artery spasm: long-term outcome of seven resuscitated patients. J Am Coll Cardiol. 1998; 31:57-61.
- 147. Myerburg RJ, Kessler KM, Mallon SM, et al. Life-threatening ventricular arrhythmias in patients with silent myocardial ischemia due to coronary-artery spasm. N. Engl. J. Med. 1992; 326:1451-5.

- 148. Saxon LA, Wiener I, Natterson PD, et al. Monomorphic versus polymorphic ventricular tachycardia after coronary artery bypass grafting. Am. J. Cardiol. 1995; 75:403-5.
- 149. Ascione R, Reeves BC, Santo K, et al. Predictors of new malignant ventricular arrhythmias after coronary surgery: a case-control study. J Am Coll Cardiol. 2004; 43:1630-8.
- 150. Steinberg JS, Gaur A, Sciacca R, et al. New-onset sustained ventricular tachycardia after cardiac surgery. Circulation. 1999; 99:903-8.
- 151. Bigger JT, Jr. Prophylactic use of implanted cardiac defibrillators in patients at high risk for ventricular arrhythmias after coronary-artery bypass graft surgery. Coronary Artery Bypass Graft (CABG) Patch Trial Investigators. N. Engl. J. Med. 1997; 337:1569-75.
- 152. Hohnloser SH, Kuck KH, Dorian P, et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N. Engl. J. Med. 2004; 351:2481-8.
- 153. Steinbeck G, Andresen D, Seidl K, et al. Defibrillator implantation early after myocardial infarction. N. Engl. J. Med. 2009; 361:1427-36.
- 154. Piccini JP, Berger JS and O'Connor CM. Amiodarone for the prevention of sudden cardiac death: a meta-analysis of randomized controlled trials. Eur. Heart J. 2009; 30:1245-53.
- 155. Cantero-Perez EM, Sobrino-Marquez JM, Grande-Trillo A, et al. Implantable cardioverter defibrillator for primary prevention in patients with severe ventricular dysfunction awaiting heart transplantation. Transplantation proceedings. 2013; 45:3659-61.
- 156. Frohlich GM, Holzmeister J, Hubler M, et al. Prophylactic implantable cardioverter defibrillator treatment in patients with end-stage heart failure awaiting heart transplantation. Heart (British Cardiac Society). 2013; 99:1158-65.
- 157. Gandjbakhch E, Rovani M, Varnous S, et al. Implantable cardioverter-defibrillators in end-stage heart failure patients listed for heart transplantation: Results from a large retrospective registry. Archives of cardiovascular diseases. 2016; 109:476-85.
- 158. Vakil K, Duval S, Cogswell R, et al. Impact of implantable cardioverter-defibrillators on waitlist mortality among patients awaiting heart transplantation: an UNOS/OPTN analysis. JACCCEP. 2016.
- 159. Connolly SJ, Dorian P, Roberts RS, et al. Comparison of beta-blockers, amiodarone plus beta-blockers, or sotalol for prevention of shocks from implantable cardioverter defibrillators: the OPTIC Study: a randomized trial. Jama. 2006; 295:165-71.
- 160. Pacifico A, Hohnloser SH, Williams JH, et al. Prevention of implantable-defibrillator shocks by treatment with sotalol. d,l-Sotalol Implantable Cardioverter-Defibrillator Study Group. N. Engl. J. Med. 1999; 340:1855-62.
- 161. Kettering K, Mewis C, Dornberger V, et al. Efficacy of metoprolol and sotalol in the prevention of recurrences of sustained ventricular tachyarrhythmias in patients with an implantable cardioverter defibrillator. Pacing Clin. Electrophysiol. 2002; 25:1571-6.
- 162. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med. 1991; 324:781-8.
- 163. Seidl K, Hauer B, Schwick NG, et al. Comparison of metoprolol and sotalol in preventing ventricular tachyarrhythmias after the implantation of a cardioverter/defibrillator. Am. J. Cardiol. 1998; 82:744-8.
- 164. Kuhlkamp V, Mewis C, Mermi J, et al. Suppression of sustained ventricular tachyarrhythmias: a comparison of d,l-sotalol with no antiarrhythmic drug treatment. J Am Coll Cardiol. 1999; 33:46-52.
- 165. Brodine WN, Tung RT, Lee JK, et al. Effects of beta-blockers on implantable cardioverter defibrillator therapy and survival in the patients with ischemic cardiomyopathy (from the Multicenter Automatic Defibrillator Implantation Trial-II). Am. J. Cardiol. 2005; 96:691-5.

- 166. Reddy VY, Reynolds MR, Neuzil P, et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N. Engl. J. Med. 2007; 357:2657-65.
- 167. Sapp JL, Wells GA, Parkash R, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N. Engl. J. Med. 2016; 375:111-21.
- 168. Kuck KH, Schaumann A, Eckardt L, et al. Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. Lancet (London, England). 2010; 375:31-40.
- 169. Al-Khatib SM, Daubert JP, Anstrom KJ, et al. Catheter ablation for ventricular tachycardia in patients with an implantable cardioverter defibrillator (CALYPSO) pilot trial. Journal of cardiovascular electrophysiology. 2015; 26:151-7.
- 170. Blanck Z, Dhala A, Deshpande S, et al. Bundle branch reentrant ventricular tachycardia: cumulative experience in 48 patients. J. Cardiovasc. Electrophysiol. 1993; 4:253-62.
- 171. Brugada J, Aguinaga L, Mont L, et al. Coronary artery revascularization in patients with sustained ventricular arrhythmias in the chronic phase of a myocardial infarction: effects on the electrophysiologic substrate and outcome. J Am Coll Cardiol. 2001; 37:529-33.
- 172. Sears SF, Jr., Todaro JF, Lewis TS, et al. Examining the psychosocial impact of implantable cardioverter defibrillators: a literature review. Clinical cardiology. 1999; 22:481-9.
- 173. Lopera G, Stevenson WG, Soejima K, et al. Identification and ablation of three types of ventricular tachycardia involving the his-purkinje system in patients with heart disease. J. Cardiovasc. Electrophysiol. 2004; 15:52-8.
- 174. Mehdirad AA, Keim S, Rist K, et al. Long-term clinical outcome of right bundle branch radiofrequency catheter ablation for treatment of bundle branch reentrant ventricular tachycardia. Pacing Clin. Electrophysiol. 1995; 18:2135-43.
- 175. Dinov B, Fiedler L, Schonbauer R, et al. Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy: results from the Prospective Heart Centre of Leipzig VT (HELP-VT) Study. Circulation. 2014; 129:728-36.
- 176. Tanner H, Hindricks G, Volkmer M, et al. Catheter ablation of recurrent scar-related ventricular tachycardia using electroanatomical mapping and irrigated ablation technology: results of the prospective multicenter Euro-VT-study. J. Cardiovasc. Electrophysiol. 2010; 21:47-53.
- 177. Marchlinski FE, Haffajee CI, Beshai JF, et al. Long-term success of irrigated radiofrequency catheter ablation of sustained ventricular tachycardia: post-approval THERMOCOOL VT trial. J Am Coll Cardiol. 2016; 67:674-83.
- 178. Tung R, Vaseghi M, Frankel DS, et al. Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: An International VT Ablation Center Collaborative Group study. Heart rhythm. 2015; 12:1997-2007.
- 179. Mallidi J, Nadkarni GN, Berger RD, et al. Meta-analysis of catheter ablation as an adjunct to medical therapy for treatment of ventricular tachycardia in patients with structural heart disease. Heart rhythm. 2011; 8:503-10.
- 180. Calkins H, Epstein A, Packer D, et al. Catheter ablation of ventricular tachycardia in patients with structural heart disease using cooled radiofrequency energy: results of a prospective multicenter study. Cooled RF Multi Center Investigators Group. J Am Coll Cardiol. 2000; 35:1905-14.

- 181. Stevenson WG, Wilber DJ, Natale A, et al. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial. Circulation. 2008; 118:2773-82.
- 182. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2011; 13:1077-109.
- 183. American Geriatrics Society Expert Panel on the Care of Older Adults with M. Guiding Principles for the Care of Older Adults with Multimorbidity: An Approach for Clinicians. Journal of the American Geriatrics Society. 2012; 60:E1-E25.
- 184. Hershberger RE, Morales A and Siegfried JD. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 2010; 12:655-67.
- 185. Piers SR, Tao Q, CF vHvT, et al. Contrast-enhanced MRI-derived scar patterns and associated ventricular tachycardias in nonischemic cardiomyopathy: implications for the ablation strategy. Circ. Arrhythm. Electrophysiol. 2013; 6:875-83.
- 186. Greulich S, Deluigi CC, Gloekler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC. Cardiovasc. Imaging. 2013; 6:501-11.
- 187. Kuruvilla S, Adenaw N, Katwal AB, et al. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ. Cardiovasc. Imaging. 2014; 7:250-8.
- 188. Tokuda M, Tedrow UB, Kojodjojo P, et al. Catheter ablation of ventricular tachycardia in nonischemic heart disease. Circ Arrhythm Electrophysiol. 2012; 5:992-1000.
- 189. Oloriz T, Silberbauer J, Maccabelli G, et al. Catheter ablation of ventricular arrhythmia in nonischemic cardiomyopathy: anteroseptal versus inferolateral scar sub-types. Circ Arrhythm Electrophysiol. 2014; 7:414-23.
- 190. Proietti R, Essebag V, Beardsall J, et al. Substrate-guided ablation of haemodynamically tolerated and untolerated ventricular tachycardia in patients with structural heart disease: effect of cardiomyopathy type and acute success on long-term outcome. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015; 17:461-7.
- 191. Haqqani HM, Tschabrunn CM, Tzou WS, et al. Isolated septal substrate for ventricular tachycardia in nonischemic dilated cardiomyopathy: incidence, characterization, and implications. Heart rhythm. 2011; 8:1169-76.
- 192. Kuhne M, Abrams G, Sarrazin JF, et al. Isolated potentials and pace-mapping as guides for ablation of ventricular tachycardia in various types of nonischemic cardiomyopathy. Journal of cardiovascular electrophysiology. 2010; 21:1017-23.
- 193. Cano O, Hutchinson M, Lin D, et al. Electroanatomic substrate and ablation outcome for suspected epicardial ventricular tachycardia in left ventricular nonischemic cardiomyopathy. J Am Coll Cardiol. 2009; 54:799-808.
- 194. Delacretaz E, Stevenson WG, Ellison KE, et al. Mapping and radiofrequency catheter ablation of the three types of sustained monomorphic ventricular tachycardia in nonischemic heart disease. Journal of cardiovascular electrophysiology. 2000; 11:11-7.

- 195. Desai AS, Fang JC, Maisel WH, et al. Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy: a meta-analysis of randomized controlled trials. Jama. 2004; 292:2874-9.
- 196. Ruwald MH, Okumura K, Kimura T, et al. Syncope in high-risk cardiomyopathy patients with implantable defibrillators: frequency, risk factors, mechanisms, and association with mortality: results from the multicenter automatic defibrillator implantation trial-reduce inappropriate therapy (MADIT-RIT) study. Circulation. 2014; 129:545-52.
- 197. Knight BP, Goyal R, Pelosi F, et al. Outcome of patients with nonischemic dilated cardiomyopathy and unexplained syncope treated with an implantable defibrillator. J Am Coll Cardiol. 1999; 33:1964-70.
- 198. Brilakis ES, Shen WK, Hammill SC, et al. Role of programmed ventricular stimulation and implantable cardioverter defibrillators in patients with idiopathic dilated cardiomyopathy and syncope. Pacing Clin. Electrophysiol. 2001; 24:1623-30.
- 199. Fonarow GC, Feliciano Z, Boyle NG, et al. Improved survival in patients with nonischemic advanced heart failure and syncope treated with an implantable cardioverter-defibrillator. Am. J. Cardiol. 2000; 85:981-5.
- 200. Olshansky B, Poole JE, Johnson G, et al. Syncope predicts the outcome of cardiomyopathy patients: analysis of the SCD-HeFT study. J Am Coll Cardiol. 2008; 51:1277-82.
- 201. Bänsch D, Antz M, Boczor S, et al. Primary prevention of sudden cardiac death in idiopathic dilated cardiomyopathy: the Cardiomyopathy Trial (CAT). Circulation. 2002; 105:1453-8.
- 202. Strickberger SA, Hummel JD, Bartlett TG, et al. Amiodarone versus implantable cardioverter-defibrillator:randomized trial in patients with nonischemic dilated cardiomyopathy and asymptomatic nonsustained ventricular tachycardia--AMIOVIRT. J Am Coll Cardiol. 2003; 41:1707-12.
- 203. Kadish A, Dyer A, Daubert JP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N. Engl. J. Med. 2004; 350:2151-8.
- 204. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 2004; 350:2140-50.
- 205. Kober L, Bloch Thomsen PE, Moller M, et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Lancet (London, England). 2000; 356:2052-8.
- 206. Grimm W, Christ M, Bach J, et al. Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: results of the Marburg Cardiomyopathy Study. Circulation. 2003; 108:2883-91.
- 207. Goldberger JJ, Subacius H, Patel T, et al. Sudden cardiac death risk stratification in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2014; 63:1879-89.
- 208. Anselme F, Moubarak G, Savoure A, et al. Implantable cardioverter-defibrillators in lamin A/C mutation carriers with cardiac conduction disorders. Heart rhythm. 2013; 10:1492-8.
- 209. van Rijsingen IA, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol. 2012; 59:493-500.
- 210. Pasotti M, Klersy C, Pilotto A, et al. Long-term outcome and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol. 2008; 52:1250-60.

- 211. Van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J. Mol. Med. (Berl.). 2005; 83:79-83.
- 212. Kutyifa V, Moss AJ, Klein H, et al. Use of the wearable cardioverter defibrillator in high-risk cardiac patients: data from the Prospective Registry of Patients Using the Wearable Cardioverter Defibrillator (WEARIT-II Registry). Circulation. 2015; 132:1613-9.
- 213. Singh M, Wang NC, Jain S, et al. Utility of the wearable cardioverter-defibrillator in patients with newly diagnosed cardiomyopathy: a decade-long single-center experience. J Am Coll Cardiol. 2015; 66:2607-13.
- 214. Uyei J and Braithwaite RS. Effectiveness of wearable defibrillators: systematic review and quality of evidence. Int. J Technol. Assess. Health Care. 2014; 30:194-202.
- 215. Al-Khatib SM, Fonarow GC, Joglar JA, et al. Primary prevention implantable cardioverter defibiliators in patients with nonischemic cardiomyopathy: A meta-analysis. JAMA Cardiology. 2017.
- 216. Quarta G, Muir A, Pantazis A, et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation. 2011; 123:2701-9.
- 217. Kapplinger JD, Landstrom AP, Salisbury BA, et al. Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise. J Am Coll Cardiol. 2011; 57:2317-27.
- 218. Bhonsale A, James CA, Tichnell C, et al. Risk stratification in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. Circ. Arrhythm. Electrophysiol. 2013; 6:569-78.
- 219. Marcus FI, Edson S and Towbin JA. Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol. 2013; 61:1945-8.
- 220. Bhonsale A, Groeneweg JA, James CA, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur. Heart J. 2015; 36:847-55.
- 221. Rigato I, Bauce B, Rampazzo A, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ. Cardiovasc. Genet. 2013; 6:533-42.
- 222. Groeneweg JA, Bhonsale A, James CA, et al. Clinical Presentation, Long-Term Follow-Up, and Outcomes of 1001 Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patients and Family Members. Circ. Cardiovasc. Genet. 2015; 8:437-46.
- 223. te Riele AS, James CA, Groeneweg JA, et al. Approach to family screening in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Eur. Heart J. 2016; 37:755-63.
- 224. Kamath GS, Zareba W, Delaney J, et al. Value of the signal-averaged electrocardiogram in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart rhythm. 2011; 8:256-62.
- 225. Marcus FI, Fontaine GH, Guiraudon G, et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982; 65:384-98.
- 226. Corrado D, Basso C, Thiene G, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997; 30:1512-20.
- 227. Link MS, Laidlaw D, Polonsky B, et al. Ventricular arrhythmias in the North American multidisciplinary study of ARVC: predictors, characteristics, and treatment. J Am Coll Cardiol. 2014; 64:119-25.

- 228. Corrado D, Wichter T, Link MS, et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement. Circulation. 2015; 132:441-53.
- 229. Corrado D, Leoni L, Link MS, et al. Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2003; 108:3084-91.
- 230. Piccini JP, Dalal D, Roguin A, et al. Predictors of appropriate implantable defibrillator therapies in patients with arrhythmogenic right ventricular dysplasia. Heart rhythm. 2005; 2:1188-94.
- 231. Bhonsale A, James CA, Tichnell C, et al. Incidence and predictors of implantable cardioverter-defibrillator therapy in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy undergoing implantable cardioverter-defibrillator implantation for primary prevention. J Am Coll Cardiol. 2011; 58:1485-96.
- 232. Dalal D, Jain R, Tandri H, et al. Long-term efficacy of catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol. 2007; 50:432-40.
- 233. Garcia FC, Bazan V, Zado ES, et al. Epicardial substrate and outcome with epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2009; 120:366-75.
- 234. Philips B, Madhavan S, James C, et al. Outcomes of catheter ablation of ventricular tachycardia in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Arrhythm. Electrophysiol. 2012; 5:499-505.
- 235. Bai R, Di BL, Shivkumar K, et al. Ablation of ventricular arrhythmias in arrhythmogenic right ventricular dysplasia/cardiomyopathy: arrhythmia-free survival after endo-epicardial substrate based mapping and ablation. Circ. Arrhythm. Electrophysiol. 2011; 4:478-85.
- 236. Berruezo A, Fernandez-Armenta J, Mont L, et al. Combined endocardial and epicardial catheter ablation in arrhythmogenic right ventricular dysplasia incorporating scar dechanneling technique. Circ. Arrhythm. Electrophysiol. 2012; 5:111-21.
- 237. Philips B, te Riele AS, Sawant A, et al. Outcomes and ventricular tachycardia recurrence characteristics after epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Heart rhythm. 2015; 12:716-25.
- 238. Santangeli P, Zado ES, Supple GE, et al. Long-term outcome with catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy. Circ. Arrhythm. Electrophysiol. 2015; 8:1413-21.
- 239. James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62:1290-7.
- 240. Sawant AC, Bhonsale A, te Riele AS, et al. Exercise has a disproportionate role in the pathogenesis of arrhythmogenic right ventricular dysplasia/cardiomyopathy in patients without desmosomal mutations. Journal of the American Heart Association. 2014; 3:e001471.
- 241. Ruwald AC, Marcus F, Estes NA, 3rd, et al. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. European heart journal. 2015; 36:1735-43.
- 242. Sawant AC, te Riele AS, Tichnell C, et al. Safety of American Heart Association-recommended minimum exercise for desmosomal mutation carriers. Heart rhythm. 2016; 13:199-207.
- 243. Saberniak J, Hasselberg NE, Borgquist R, et al. Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members. Eur. J Heart Fail. 2014; 16:1337-44.

- 244. Sen-Chowdhry S, Syrris P, Prasad SK, et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol. 2008; 52:2175-87.
- 245. Vermes E, Strohm O, Otmani A, et al. Impact of the revision of arrhythmogenic right ventricular cardiomyopathy/dysplasia task force criteria on its prevalence by CMR criteria. JACC. Cardiovascular imaging. 2011; 4:282-7.
- 246. te Riele AS, Bhonsale A, James CA, et al. Incremental value of cardiac magnetic resonance imaging in arrhythmic risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62:1761-9.
- 247. Te Riele AS, James CA, Philips B, et al. Mutation-positive arrhythmogenic right ventricular dysplasia/cardiomyopathy: the triangle of dysplasia displaced. Journal of cardiovascular electrophysiology. 2013; 24:1311-20.
- 248. Liu T, Pursnani A, Sharma UC, et al. Effect of the 2010 task force criteria on reclassification of cardiovascular magnetic resonance criteria for arrhythmogenic right ventricular cardiomyopathy. Journal of cardiovascular magnetic resonance: official journal of the Society for Cardiovascular Magnetic Resonance. 2014; 16:47.
- 249. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010; 121:1533-41.
- 250. Hershberger RE, Lindenfeld J, Mestroni L, et al. Genetic evaluation of cardiomyopathy--a Heart Failure Society of America practice guideline. Journal of cardiac failure. 2009; 15:83-97.
- 251. Maron BJ, Shen WK, Link MS, et al. Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. N. Engl. J. Med. 2000; 342:365-73.
- 252. Christiaans I, van Langen IM, Birnie E, et al. Genetic counseling and cardiac care in predictively tested hypertrophic cardiomyopathy mutation carriers: the patients' perspective. American journal of medical genetics. Part A. 2009; 149a:1444-51.
- 253. Hamang A, Eide GE, Rokne B, et al. Predictors of heart-focused anxiety in patients undergoing genetic investigation and counseling of long QT syndrome or hypertrophic cardiomyopathy: a one year follow-up. Journal of genetic counseling. 2012; 21:72-84.
- 254. Bos JM, Will ML, Gersh BJ, et al. Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy. Mayo Clinic proceedings. 2014; 89:727-37.
- 255. O'Mahony C, Jichi F, Pavlou M, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur. Heart J. 2014; 35:2010-20.
- 256. Elliott PM, Sharma S, Varnava A, et al. Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999; 33:1596-601.
- 257. Maron BJ, Spirito P, Shen WK, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. Jama. 2007; 298:405-12.
- 258. Lin G, Nishimura RA, Gersh BJ, et al. Device complications and inappropriate implantable cardioverter defibrillator shocks in patients with hypertrophic cardiomyopathy. Heart (British Cardiac Society). 2009; 95:709-14.
- 259. Syska P, Przybylski A, Chojnowska L, et al. Implantable cardioverter-defibrillator in patients with hypertrophic cardiomyopathy: efficacy and complications of the therapy in long-term follow-up. J. Cardiovasc. Electrophysiol. 2010; 21:883-9.

- 260. O'Mahony C, Lambiase PD, Quarta G, et al. The long-term survival and the risks and benefits of implantable cardioverter defibrillators in patients with hypertrophic cardiomyopathy. Heart (British Cardiac Society). 2012; 98:116-25.
- 261. Melacini P, Maron BJ, Bobbo F, et al. Evidence that pharmacological strategies lack efficacy for the prevention of sudden death in hypertrophic cardiomyopathy. Heart (British Cardiac Society). 2007; 93:708-10.
- 262. McKenna WJ, Oakley CM, Krikler DM, et al. Improved survival with amiodarone in patients with hypertrophic cardiomyopathy and ventricular tachycardia. Br. Heart J. 1985; 53:412-6.
- 263. Olivotto I, Maron BJ, Montereggi A, et al. Prognostic value of systemic blood pressure response during exercise in a community-based patient population with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999; 33:2044-51.
- 264. Sadoul N, Prasad K, Elliott PM, et al. Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy. Circulation. 1997; 96:2987-91.
- 265. Sorajja P, Nishimura RA, Ommen SR, et al. Use of echocardiography in patients with hypertrophic cardiomyopathy: clinical implications of massive hypertrophy. J Am Soc. Echocardiogr. 2006; 19:788-95.
- 266. Maki S, Ikeda H, Muro A, et al. Predictors of sudden cardiac death in hypertrophic cardiomyopathy. Am. J. Cardiol. 1998; 82:774-8.
- 267. Elliott PM, Gimeno JR, Tome MT, et al. Left ventricular outflow tract obstruction and sudden death risk in patients with hypertrophic cardiomyopathy. Eur. Heart J. 2006; 27:1933-41.
- 268. Monserrat L, Elliott PM, Gimeno JR, et al. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients. J Am Coll Cardiol. 2003; 42:873-9.
- 269. Spirito P, Bellone P, Harris KM, et al. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N. Engl. J. Med. 2000; 342:1778-85.
- 270. Elliott PM, Gimeno Blanes JR, Mahon NG, et al. Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy. Lancet (London, England). 2001; 357:420-4.
- 271. Elliott PM, Poloniecki J, Dickie S, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol. 2000; 36:2212-8.
- 272. Ackerman MJ, VanDriest SL, Ommen SR, et al. Prevalence and age-dependence of malignant mutations in the beta-myosin heavy chain and troponin T genes in hypertrophic cardiomyopathy: a comprehensive outpatient perspective. J Am Coll Cardiol. 2002; 39:2042-8.
- 273. Lopes LR, Rahman MS and Elliott PM. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart (British Cardiac Society). 2013; 99:1800-11.
- 274. Bos JM, Maron BJ, Ackerman MJ, et al. Role of family history of sudden death in risk stratification and prevention of sudden death with implantable defibrillators in hypertrophic cardiomyopathy. Am. J. Cardiol. 2010; 106:1481-6.
- 275. Spirito P, Autore C, Rapezzi C, et al. Syncope and risk of sudden death in hypertrophic cardiomyopathy. Circulation. 2009; 119:1703-10.
- 276. Maron BJ, Doerer JJ, Haas TS, et al. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009; 119:1085-92.
- 277. Kuck KH, Kunze KP, Schluter M, et al. Programmed electrical stimulation in hypertrophic cardiomyopathy. Results in patients with and without cardiac arrest or syncope. Eur. Heart J. 1988; 9:177-85.

- 278. Zhu DW, Sun H, Hill R, et al. The value of electrophysiology study and prophylactic implantation of cardioverter defibrillator in patients with hypertrophic cardiomyopathy. Pacing Clin. Electrophysiol. 1998; 21:299-302.
- 279. Christiaans I, Birnie E, van Langen IM, et al. The yield of risk stratification for sudden cardiac death in hypertrophic cardiomyopathy myosin-binding protein C gene mutation carriers: focus on predictive screening. Eur. Heart J. 2010; 31:842-8.
- 280. Olivotto I, Girolami F, Ackerman MJ, et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin. Proc. 2008; 83:630-8.
- 281. Ingles J, Sarina T, Yeates L, et al. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet. Med. 2013; 15:972-7.
- 282. Jensen MK, Havndrup O, Christiansen M, et al. Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12-year follow-up study of clinical screening and predictive genetic testing. Circulation. 2013; 127:48-54.
- 283. Girolami F, Ho CY, Semsarian C, et al. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol. 2010; 55:1444-53.
- 284. Klues HG, Schiffers A and Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol. 1995; 26:1699-708.
- 285. Adabag AS, Kuskowski MA and Maron BJ. Determinants for clinical diagnosis of hypertrophic cardiomyopathy. Am J Cardiol. 2006; 98:1507-11.
- 286. Cooper LT, Jr., Berry GJ and Shabetai R. Idiopathic giant-cell myocarditis--natural history and treatment. Multicenter Giant Cell Myocarditis Study Group Investigators. N. Engl. J. Med. 1997; 336:1860-6.
- 287. Kandolin R, Lehtonen J, Salmenkivi K, et al. Diagnosis, treatment, and outcome of giant-cell myocarditis in the era of combined immunosuppression. Circ. Heart Fail. 2013; 6:15-22.
- 288. Maleszewski JJ, Orellana VM, Hodge DO, et al. Long-term risk of recurrence, morbidity and mortality in giant cell myocarditis. Am. J. Cardiol. 2015; 115:1733-8.
- 289. Feldman AM, Klein H, Tchou P, et al. Use of a wearable defibrillator in terminating tachyarrhythmias in patients at high risk for sudden death: results of the WEARIT/BIROAD. Pacing Clin. Electrophysiol. 2004; 27:4-9.
- 290. Kao AC, Krause SW, Handa R, et al. Wearable defibrillator use in heart failure (WIF): results of a prospective registry. BMC Cardiovasc Disord. 2012; 12:123.
- 291. Naruse Y, Sekiguchi Y, Nogami A, et al. Systematic treatment approach to ventricular tachycardia in cardiac sarcoidosis. Circ. Arrhythm. Electrophysiol. 2014; 7:407-13.
- 292. Takaya Y, Kusano KF, Nakamura K, et al. Outcomes in patients with high-degree atrioventricular block as the initial manifestation of cardiac sarcoidosis. Am. J. Cardiol. 2015; 115:505-9.
- 293. Kandolin R, Lehtonen J, Airaksinen J, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. 2015; 131:624-32.

- 294. Yazaki Y, Isobe M, Hiroe M, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am. J. Cardiol. 2001; 88:1006-10.
- 295. Aizer A, Stern EH, Gomes JA, et al. Usefulness of programmed ventricular stimulation in predicting future arrhythmic events in patients with cardiac sarcoidosis. Am. J. Cardiol. 2005; 96:276-82.
- 296. Mehta D, Mori N, Goldbarg SH, et al. Primary prevention of sudden cardiac death in silent cardiac sarcoidosis: role of programmed ventricular stimulation. Circ. Arrhythm. Electrophysiol. 2011; 4:43-8.
- 297. Coleman GC, Shaw PW, Balfour PC, Jr., et al. Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis: a systematic review and meta-analysis. JACC. Cardiovasc. Imaging. 2016.
- 298. Heng EL, Bolger AP, Kempny A, et al. Neurohormonal activation and its relation to outcomes late after repair of tetralogy of Fallot. Heart (British Cardiac Society). 2015; 101:447-54.
- 299. Murtagh G, Laffin LJ, Beshai JF, et al. Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging. 2016; 9:e003738.
- 300. Crawford T, Mueller G, Sarsam S, et al. Magnetic resonance imaging for identifying patients with cardiac sarcoidosis and preserved or mildly reduced left ventricular function at risk of ventricular arrhythmias. Circ. Arrhythm. Electrophysiol. 2014; 7:1109-15.
- 301. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014; 63:329-36.
- 302. Kron J, Sauer W, Schuller J, et al. Efficacy and safety of implantable cardiac defibrillators for treatment of ventricular arrhythmias in patients with cardiac sarcoidosis. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2013; 15:347-54.
- 303. Mohsen A, Jimenez A, Hood RE, et al. Cardiac sarcoidosis: electrophysiological outcomes on long-term follow-up and the role of the implantable cardioverter-defibrillator. J. Cardiovasc. Electrophysiol. 2014; 25:171-6.
- 304. Schuller JL, Zipse M, Crawford T, et al. Implantable cardioverter defibrillator therapy in patients with cardiac sarcoidosis. J. Cardiovasc. Electrophysiol. 2012; 23:925-9.
- 305. Yodogawa K, Seino Y, Ohara T, et al. Effect of corticosteroid therapy on ventricular arrhythmias in patients with cardiac sarcoidosis. Ann. Noninvasive. Electrocardiol. 2011; 16:140-7.
- 306. Segawa M, Fukuda K, Nakano M, et al. Time course and factors correlating with ventricular tachyarrhythmias after introduction of steroid therapy in cardiac sarcoidosis. Circ. Arrhythm. Electrophysiol. 2016; 9:e003353.
- 307. Varr BC, Zarafshar S, Coakley T, et al. Implantable cardioverter-defibrillator placement in patients with cardiac amyloidosis. Heart rhythm. 2014; 11:158-62.
- 308. Kristen AV, Dengler TJ, Hegenbart U, et al. Prophylactic implantation of cardioverter-defibrillator in patients with severe cardiac amyloidosis and high risk for sudden cardiac death. Heart rhythm. 2008; 5:235-40.
- 309. Lubitz SA, Goldbarg SH and Mehta D. Sudden cardiac death in infiltrative cardiomyopathies: sarcoidosis, scleroderma, amyloidosis, hemachromatosis. Prog. Cardiovasc Dis. 2008; 51:58-73.

- 310. Sandner SE, Wieselthaler G, Zuckermann A, et al. Survival benefit of the implantable cardioverter-defibrillator in patients on the waiting list for cardiac transplantation. Circulation. 2001; 104:I171-6.
- 311. Opreanu M, Wan C, Singh V, et al. Wearable cardioverter-defibrillator as a bridge to cardiac transplantation: A national database analysis. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation. 2015; 34:1305-9.
- 312. Vakil K, Kazmirczak F, Sathnur N, et al. Implantable cardioverter-defibrillator use in patients with left ventricular assist devices: a systematic review and meta-analysis. JACC. Heart Fail. 2016; 4:772-9.
- 313. Tsai VW, Cooper J, Garan H, et al. The efficacy of implantable cardioverter-defibrillators in heart transplant recipients: results from a multicenter registry. Circ. Heart Fail. 2009; 2:197-201.
- 314. McDowell DL and Hauptman PJ. Implantable defibrillators and cardiac resynchronization therapy in heart transplant recipients: results of a national survey. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation. 2009; 28:847-50.
- 315. Neylon A, Canniffe C, Parlon B, et al. Implantable cardioverter-defibrillators in a heart transplant population: A single-center experience.

 The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation. 2016; 35:682-4.
- 316. Tanawuttiwat T, Wagner KR, Tomaselli G, et al. Left ventricular dysfunction and conduction disturbances in patients with myotonic muscular dystrophy type i and ii. JAMA Cardiology. 2017; 2:225-8.
- 317. Merino JL, Carmona JR, Fernandez-Lozano I, et al. Mechanisms of sustained ventricular tachycardia in myotonic dystrophy: implications for catheter ablation. Circulation. 1998; 98:541-6.
- 318. Diegoli M, Grasso M, Favalli V, et al. Diagnostic work-up and risk stratification in X-linked dilated cardiomyopathies caused by dystrophin defects. J Am Coll Cardiol. 2011; 58:925-34.
- 319. Meune C, Van Berlo JH, Anselme F, et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. N. Engl. J. Med. 2006; 354:209-10.
- 320. Lallemand B, Clementy N, Bernard-Brunet A, et al. The evolution of infrahissian conduction time in myotonic dystrophy patients: clinical implications. Heart (British Cardiac Society). 2012; 98:291-6.
- 321. Wahbi K, Meune C, Porcher R, et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. Jama. 2012; 307:1292-301.
- 322. McMurray JJV, Östergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. The Lancet. 362:767-71.
- 323. Ha AH, Tarnopolsky MA, Bergstra TG, et al. Predictors of atrio-ventricular conduction disease, long-term outcomes in patients with myotonic dystrophy types I and II. Pacing Clin. Electrophysiol. 2012; 35:1262-9.
- 324. Laurent V, Pellieux S, Corcia P, et al. Mortality in myotonic dystrophy patients in the area of prophylactic pacing devices. Int. J. Cardiol. 2011; 150:54-8.

- 325. Bhakta D, Shen C, Kron J, et al. Pacemaker and implantable cardioverter-defibrillator use in a US myotonic dystrophy type 1 population. J. Cardiovasc. Electrophysiol. 2011; 22:1369-75.
- 326. Nazarian S, Wagner KR, Caffo BS, et al. Clinical predictors of conduction disease progression in type I myotonic muscular dystrophy. Pacing Clin. Electrophysiol. 2011; 34:171-6.
- 327. Bhakta D, Groh MR, Shen C, et al. Increased mortality with left ventricular systolic dysfunction and heart failure in adults with myotonic dystrophy type 1. Am. Heart J. 2010; 160:1137-41, 41.
- 328. Groh WJ, Groh MR, Saha C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N. Engl. J. Med. 2008: 358:2688-97.
- 329. Laforêt P, de TC, Eymard B, et al. Cardiac involvement in genetically confirmed facioscapulohumeral muscular dystrophy. Neurology. 1998; 51:1454-6.
- 330. Stevenson WG, Perloff JK, Weiss JN, et al. Facioscapulohumeral muscular dystrophy: evidence for selective, genetic electrophysiologic cardiac involvement. J Am Coll Cardiol. 1990; 15:292-9.
- 331. Costa J, Lopes CM, Barsheshet A, et al. Combined assessment of sex- and mutation-specific information for risk stratification in type 1 long QT syndrome. Heart rhythm. 2012; 9:892-8.
- 332. Bai R, Napolitano C, Bloise R, et al. Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing. Circ. Arrhythm. Electrophysiol. 2009; 2:6-15.
- 333. Gehi AK, Duong TD, Metz LD, et al. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J. Cardiovasc. Electrophysiol. 2006; 17:577-83.
- 334. Kim JA, Lopes CM, Moss AJ, et al. Trigger-specific risk factors and response to therapy in long QT syndrome type 2. Heart rhythm. 2010; 7:1797-805.
- 335. Migdalovich D, Moss AJ, Lopes CM, et al. Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart rhythm. 2011; 8:1537-43.
- 336. Nannenberg EA, Sijbrands EJ, Dijksman LM, et al. Mortality of inherited arrhythmia syndromes: insight into their natural history. Circ. Cardiovasc. Genet. 2012; 5:183-9.
- 337. Kimbrough J, Moss AJ, Zareba W, et al. Clinical implications for affected parents and siblings of probands with long-QT syndrome. Circulation. 2001; 104:557-62.
- 338. Kaufman ES, McNitt S, Moss AJ, et al. Risk of death in the long QT syndrome when a sibling has died. Heart rhythm. 2008; 5:831-6.
- 339. Wedekind H, Burde D, Zumhagen S, et al. QT interval prolongation and risk for cardiac events in genotyped LQTS-index children. Eur. J Pediatr. 2009; 168:1107-15.
- 340. Goldenberg I, Horr S, Moss AJ, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011; 57:51-9.
- 341. Tester DJ, Will ML, Haglund CM, et al. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 2006; 47:764-8.

- 342. Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002; 106:69-74.
- 343. Probst V, Veltmann C, Eckardt L, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada syndrome registry. Circulation. 2010; 121:635-43.
- 344. Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation. 2000; 101:616-23.
- 345. Zareba W, Moss AJ, Daubert JP, et al. Implantable cardioverter defibrillator in high-risk long QT syndrome patients. J. Cardiovasc. Electrophysiol. 2003; 14:337-41.
- 346. Monnig G, Kobe J, Loher A, et al. Implantable cardioverter-defibrillator therapy in patients with congenital long-QT syndrome: a long-term follow-up. Heart rhythm. 2005; 2:497-504.
- 347. Hayashi M, Denjoy I, Extramiana F, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009; 119:2426-34.
- 348. Delise P, Allocca G, Marras E, et al. Risk stratification in individuals with the Brugada type 1 ECG pattern without previous cardiac arrest: usefulness of a combined clinical and electrophysiologic approach. Eur. Heart J. 2011; 32:169-76.
- 349. Hiraoka M, Takagi M, Yokoyama Y, et al. Prognosis and risk stratification of young adults with Brugada syndrome. Journal of electrocardiology. 2013; 46:279-83.
- 350. Garson A, Jr., Dick M, Fournier A, et al. The long QT syndrome in children. An international study of 287 patients. Circulation. 1993; 87:1866-72.
- 351. Hobbs JB, Peterson DR, Moss AJ, et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. Jama. 2006; 296:1249-54.
- 352. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 2003; 348:1866-74.
- 353. Jons C, Moss AJ, Goldenberg I, et al. Risk of fatal arrhythmic events in long QT syndrome patients after syncope. J Am Coll Cardiol. 2010; 55:783-8.
- 354. Barsheshet A, Goldenberg I, Uchi J, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type 1 long-QT syndrome. Circulation. 2012; 125:1988-96.
- 355. Vincent GM, Schwartz PJ, Denjoy I, et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment "failures". Circulation. 2009; 119:215-21.
- 356. Abu-Zeitone A, Peterson DR, Polonsky B, et al. Efficacy of different beta-blockers in the treatment of long QT syndrome. J Am Coll Cardiol. 2014; 64:1352-8.
- 357. Goldenberg I, Bradley J, Moss A, et al. Beta-blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: implications for patient management. J. Cardiovasc. Electrophysiol. 2010; 21:893-901.
- 358. Sauer AJ, Moss AJ, McNitt S, et al. Long QT syndrome in adults. J Am Coll Cardiol. 2007; 49:329-37.
- 359. Steinberg C, Padfield GJ, Al-Sabeq B, et al. Experience with bisoprolol in long-QT1 and long-QT2 syndrome. J Interv. Card Electrophysiol. 2016.

- 360. Villain E, Denjoy I, Lupoglazoff JM, et al. Low incidence of cardiac events with beta-blocking therapy in children with long QT syndrome. Eur. Heart J. 2004; 25:1405-11.
- 361. Moltedo JM, Kim JJ, Friedman RA, et al. Use of a cardioselective beta-blocker for pediatric patients with prolonged QT syndrome. Pediatr. Cardiol. 2011; 32:63-6.
- 362. Schwartz PJ, Priori SG, Cerrone M, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004; 109:1826-33.
- 363. Bos JM, Bos KM, Johnson JN, et al. Left cardiac sympathetic denervation in long QT syndrome: analysis of therapeutic nonresponders. Circ. Arrhythm. Electrophysiol. 2013; 6:705-11.
- 364. Schneider HE, Steinmetz M, Krause U, et al. Left cardiac sympathetic denervation for the management of life-threatening ventricular tachyarrhythmias in young patients with catecholaminergic polymorphic ventricular tachycardia and long QT syndrome. Clin. Res. Cardiol. 2013; 102:33-42.
- 365. Collura CA, Johnson JN, Moir C, et al. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart rhythm. 2009; 6:752-9.
- 366. Hofferberth SC, Cecchin F, Loberman D, et al. Left thoracoscopic sympathectomy for cardiac denervation in patients with life-threatening ventricular arrhythmias. J Thorac. Cardiovasc. Surg. 2014; 147:404-9.
- 367. Chattha IS, Sy RW, Yee R, et al. Utility of the recovery electrocardiogram after exercise: a novel indicator for the diagnosis and genotyping of long QT syndrome? Heart rhythm. 2010; 7:906-11.
- 368. Aziz PF, Wieand TS, Ganley J, et al. Genotype- and mutation site-specific QT adaptation during exercise, recovery, and postural changes in children with long-QT syndrome. Circ Arrhythm Electrophysiol. 2011; 4:867-73.
- 369. Laksman ZW, Hamilton RM, Chockalingam P, et al. Mutation location effect on severity of phenotype during exercise testing in type 1 long-QT syndrome: impact of transmembrane and C-loop location. Journal of cardiovascular electrophysiology. 2013; 24:1015-20.
- 370. Sy RW, van der Werf C, Chattha IS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011; 124:2187-94.
- 371. Spazzolini C, Mullally J, Moss AJ, et al. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol. 2009; 54:832-7.
- 372. Zhang C, Kutyifa V, Moss AJ, et al. Long-QT Syndrome and Therapy for Attention Deficit/Hyperactivity Disorder. Journal of cardiovascular electrophysiology. 2015; 26:1039-44.
- 373. Choy AM, Lang CC, Chomsky DM, et al. Normalization of acquired QT prolongation in humans by intravenous potassium. Circulation. 1997; 96:2149-54.
- 374. Kannankeril P, Roden DM and Darbar D. Drug-induced long QT syndrome. Pharmacol. Rev. 2010; 62:760-81.
- 375. Roston TM, Vinocur JM, Maginot KR, et al. Catecholaminergic polymorphic ventricular tachycardia in children: analysis of therapeutic strategies and outcomes from an international multicenter registry. Circ. Arrhythm. Electrophysiol. 2015; 8:633-42.
- 376. Wilde AA, Bhuiyan ZA, Crotti L, et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N. Engl. J. Med. 2008; 358:2024-9.

- 377. Li J, Liu Y, Yang F, et al. Video-assisted thoracoscopic left cardiac sympathetic denervation: a reliable minimally invasive approach for congenital long-QT syndrome. Ann. Thorac. Surg. 2008; 86:1955-8.
- 378. van der Werf C, Kannankeril PJ, Sacher F, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011; 57:2244-54.
- 379. Watanabe H, van der Werf C, Roses-Noguer F, et al. Effects of flecainide on exercise-induced ventricular arrhythmias and recurrences in genotype-negative patients with catecholaminergic polymorphic ventricular tachycardia. Heart rhythm. 2013; 10:542-7.
- 380. Somani R, Krahn AD, Healey JS, et al. Procainamide infusion in the evaluation of unexplained cardiac arrest: from the Cardiac Arrest Survivors with Preserved Ejection Fraction Registry (CASPER). Heart rhythm. 2014; 11:1047-54.
- 381. Mizusawa Y, Morita H, Adler A, et al. Prognostic significance of fever-induced Brugada syndrome. Heart rhythm. 2016; 13:1515-20.
- 382. Priori SG, Gasparini M, Napolitano C, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive value) registry. J Am Coll Cardiol. 2012; 59:37-45.
- 383. Casado-Arroyo R, Berne P, Rao JY, et al. Long-term trends in newly diagnosed Brugada syndrome: implications for risk stratification. J Am Coll Cardiol. 2016; 68:614-23.
- 384. Belhassen B, Rahkovich M, Michowitz Y, et al. Management of Brugada Syndrome: Thirty-Three-Year Experience Using Electrophysiologically Guided Therapy With Class 1A Antiarrhythmic Drugs. Circ Arrhythm Electrophysiol. 2015; 8:1393-402.
- 385. Nademanee K, Veerakul G, Chandanamattha P, et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation. 2011; 123:1270-9.
- 386. Sunsaneewitayakul B, Yao Y, Thamaree S, et al. Endocardial mapping and catheter ablation for ventricular fibrillation prevention in Brugada syndrome. J. Cardiovasc. Electrophysiol. 2012; 23 Suppl 1:S10-S6.
- 387. Zhang P, Tung R, Zhang Z, et al. Characterization of the epicardial substrate for catheter ablation of Brugada syndrome. Heart rhythm. 2016.
- 388. Brugada J, Pappone C, Berruezo A, et al. Brugada syndrome phenotype elimination by epicardial substrate ablation. Circ. Arrhythm. Electrophysiol. 2015; 8:1373-81.
- 389. McNamara DA, Goldberger JJ, Berendsen MA, et al. Implantable defibrillators versus medical therapy for cardiac channelopathies. Cochrane Database Syst. Rev. 2015:CD011168.
- 390. Sieira J, Ciconte G, Conte G, et al. Asymptomatic Brugada syndrome: clinical characterization and long-term prognosis. Circ. Arrhythm. Electrophysiol. 2015; 8:1144-50.
- 391. Konigstein M, Rosso R, Topaz G, et al. Drug-induced Brugada syndrome: Clinical characteristics and risk factors. Heart rhythm. 2016; 13:1083-7.
- 392. Sroubek J, Probst V, Mazzanti A, et al. Programmed ventricular stimulation for risk stratification in the brugada syndrome: a pooled analysis. Circulation. 2016; 133:622-30.
- 393. Sieira J, Conte G, Ciconte G, et al. Clinical characterisation and long-term prognosis of women with Brugada syndrome. Heart (British Cardiac Society). 2016; 102:452-8.

- 394. Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002; 105:1342-7.
- 395. Fauchier L, Isorni MA, Clementy N, et al. Prognostic value of programmed ventricular stimulation in Brugada syndrome according to clinical presentation: an updated meta-analysis of worldwide published data. Int J Cardiol. 2013; 168:3027-9.
- 396. Rodriguez-Manero M, Sacher F, de AC, et al. Monomorphic ventricular tachycardia in patients with Brugada syndrome: A multicenter retrospective study. Heart rhythm. 2016; 13:669-82.
- 397. Sacher F, Probst V, Maury P, et al. Outcome after implantation of a cardioverter-defibrillator in patients with Brugada syndrome: a multicenter study-part 2. Circulation. 2013; 128:1739-47.
- 398. Rosso R, Kogan E, Belhassen B, et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J Am Coll Cardiol. 2008; 52:1231-8.
- 399. Conte G, Sieira J, Ciconte G, et al. Implantable cardioverter-defibrillator therapy in Brugada syndrome: a 20-year single-center experience. J Am Coll Cardiol. 2015; 65:879-88.
- 400. Miyazaki S, Uchiyama T, Komatsu Y, et al. Long-term complications of implantable defibrillator therapy in Brugada syndrome. Am J Cardiol. 2013; 111:1448-51.
- 401. Takagi M, Sekiguchi Y, Yokoyama Y, et al. Long-term prognosis in patients with Brugada syndrome based on Class II indication for implantable cardioverter-defibrillator in the HRS/EHRA/APHRS Expert Consensus Statement: multicenter study in Japan. Heart rhythm. 2014; 11:1716-20.
- 402. Haissaguerre M, Sacher F, Nogami A, et al. Characteristics of recurrent ventricular fibrillation associated with inferolateral early repolarization role of drug therapy. J Am Coll Cardiol. 2009; 53:612-9.
- 403. Tikkanen JT, Anttonen O, Junttila MJ, et al. Long-term outcome associated with early repolarization on electrocardiography. N. Engl. J. Med. 2009; 361:2529-37.
- 404. Sinner MF, Porthan K, Noseworthy PA, et al. A meta-analysis of genome-wide association studies of the electrocardiographic early repolarization pattern. Heart rhythm. 2012; 9:1627-34.
- 405. Adhikarla C, Boga M, Wood AD, et al. Natural history of the electrocardiographic pattern of early repolarization in ambulatory patients. Am. J. Cardiol. 2011; 108:1831-5.
- 406. Siebermair J, Sinner MF, Beckmann BM, et al. Early repolarization pattern is the strongest predictor of arrhythmia recurrence in patients with idiopathic ventricular fibrillation: results from a single centre long-term follow-up over 20 years. European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2016; 18:718-25.
- 407. Tikkanen JT, Wichmann V, Junttila MJ, et al. Association of early repolarization and sudden cardiac death during an acute coronary event. Circ. Arrhythm. Electrophysiol. 2012; 5:714-8.
- 408. Junttila MJ, Tikkanen JT, Kentta T, et al. Early repolarization as a predictor of arrhythmic and nonarrhythmic cardiac events in middle-aged subjects. Heart rhythm. 2014; 11:1701-6.
- 409. Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004; 43:1494-9.

- 410. Gollob MH, Redpath CJ and Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011; 57:802-12.
- 411. Villafane J, Atallah J, Gollob MH, et al. Long-term follow-up of a pediatric cohort with short QT syndrome. J Am Coll Cardiol. 2013; 61:1183-91.
- 412. Mazzanti A, Kanthan A, Monteforte N, et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014; 63:1300-8.
- 413. Iribarren C, Round AD, Peng JA, et al. Short QT in a cohort of 1.7 million persons: prevalence, correlates, and prognosis. Ann. Noninvasive. Electrocardiol. 2014; 19:490-500.
- 414. Guerrier K, Kwiatkowski D, Czosek RJ, et al. Short QT interval prevalence and clinical outcomes in a pediatric population. Circ. Arrhythm. Electrophysiol. 2015; 8:1460-4.
- 415. Bun SS, Maury P, Giustetto C, et al. Electrical storm in short-QT syndrome successfully treated with Isoproterenol. J. Cardiovasc. Electrophysiol. 2012; 23:1028-30.
- 416. Dhutia H, Malhotra A, Parpia S, et al. The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br. J Sports Med. 2016; 50:124-9.
- 417. Ling Z, Liu Z, Su L, et al. Radiofrequency ablation versus antiarrhythmic medication for treatment of ventricular premature beats from the right ventricular outflow tract: prospective randomized study. Circ. Arrhythm. Electrophysiol. 2014; 7:237-43.
- 418. Liao Z, Zhan X, Wu S, et al. Idiopathic ventricular arrhythmias originating from the pulmonary sinus cusp: prevalence, electrocardiographic/electrophysiological characteristics, and catheter ablation. J Am Coll Cardiol. 2015; 66:2633-44.
- 419. Morady F, Kadish AH, DiCarlo L, et al. Long-term results of catheter ablation of idiopathic right ventricular tachycardia. Circulation. 1990; 82:2093-9.
- 420. Yamada T, Litovsky SH and Kay GN. The left ventricular ostium: an anatomic concept relevant to idiopathic ventricular arrhythmias. Circ. Arrhythm. Electrophysiol. 2008; 1:396-404.
- 421. Yamada T, McElderry HT, Doppalapudi H, et al. Idiopathic ventricular arrhythmias originating from the left ventricular summit: anatomic concepts relevant to ablation. Circ. Arrhythm. Electrophysiol. 2010; 3:616-23.
- 422. Mountantonakis SE, Frankel DS, Tschabrunn CM, et al. Ventricular arrhythmias from the coronary venous system: Prevalence, mapping, and ablation. Heart rhythm. 2015; 12:1145-53.
- 423. Doppalapudi H, Yamada T, Ramaswamy K, et al. Idiopathic focal epicardial ventricular tachycardia originating from the crux of the heart. Heart rhythm. 2009; 6:44-50.
- 424. Konstantinidou M, Koektuerk B, Wissner E, et al. Catheter ablation of right ventricular outflow tract tachycardia: a simplified remote-controlled approach. Europeae : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2011; 13:696-700.
- 425. Ouyang F, Fotuhi P, Ho SY, et al. Repetitive monomorphic ventricular tachycardia originating from the aortic sinus cusp: electrocardiographic characterization for guiding catheter ablation. J Am Coll Cardiol. 2002; 39:500-8.
- 426. Tada H, Ito S, Naito S, et al. Idiopathic ventricular arrhythmia arising from the mitral annulus: a distinct subgroup of idiopathic ventricular arrhythmias. J Am Coll Cardiol. 2005; 45:877-86.

- 427. Tada H, Tadokoro K, Miyaji K, et al. Idiopathic ventricular arrhythmias arising from the pulmonary artery: prevalence, characteristics, and topography of the arrhythmia origin. Heart rhythm. 2008; 5:419-26.
- 428. Tada H, Tadokoro K, Ito S, et al. Idiopathic ventricular arrhythmias originating from the tricuspid annulus: Prevalence, electrocardiographic characteristics, and results of radiofrequency catheter ablation. Heart rhythm. 2007; 4:7-16.
- 429. Kamioka M, Mathew S, Lin T, et al. Electrophysiological and electrocardiographic predictors of ventricular arrhythmias originating from the left ventricular outflow tract within and below the coronary sinus cusps. Clin. Res. Cardiol. 2015; 104:544-54.
- 430. Nagashima K, Choi EK, Lin KY, et al. Ventricular arrhythmias near the distal great cardiac vein: challenging arrhythmia for ablation. Circ. Arrhythm. Electrophysiol. 2014; 7:906-12.
- 431. Yamada T, Maddox WR, McElderry HT, et al. Radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from intramural foci in the left ventricular outflow tract: efficacy of sequential versus simultaneous unipolar catheter ablation. Circ. Arrhythm. Electrophysiol. 2015; 8:344-52.
- 432. Hai JJ, Chahal AA, Friedman PA, et al. Electrophysiologic characteristics of ventricular arrhythmias arising from the aortic mitral continuity-potential role of the conduction system. J. Cardiovasc. Electrophysiol. 2015; 26:158-63.
- 433. Yamada T, McElderry HT, Okada T, et al. Idiopathic left ventricular arrhythmias originating adjacent to the left aortic sinus of valsalva: electrophysiological rationale for the surface electrocardiogram. J. Cardiovasc. Electrophysiol. 2010; 21:170-6.
- 434. Doppalapudi H, Yamada T, McElderry HT, et al. Ventricular tachycardia originating from the posterior papillary muscle in the left ventricle: a distinct clinical syndrome. Circ. Arrhythm. Electrophysiol. 2008; 1:23-9.
- 435. Yamada T, Doppalapudi H, McElderry HT, et al. Electrocardiographic and electrophysiological characteristics in idiopathic ventricular arrhythmias originating from the papillary muscles in the left ventricle: relevance for catheter ablation. Circ. Arrhythm. Electrophysiol. 2010; 3:324-31.
- 436. Yokokawa M, Good E, Desjardins B, et al. Predictors of successful catheter ablation of ventricular arrhythmias arising from the papillary muscles. Heart rhythm. 2010; 7:1654-9.
- 437. Crawford T, Mueller G, Good E, et al. Ventricular arrhythmias originating from papillary muscles in the right ventricle. Heart rhythm. 2010; 7:725-30.
- 438. Ban JE, Lee HS, Lee DI, et al. Electrophysiological characteristics related to outcome after catheter ablation of idiopathic ventricular arrhythmia originating from the papillary muscle in the left ventricle. Korean Circ. J. 2013; 43:811-8.
- 439. Nogami A, Naito S, Tada H, et al. Demonstration of diastolic and presystolic Purkinje potentials as critical potentials in a macroreentry circuit of verapamil-sensitive idiopathic left ventricular tachycardia. J Am Coll Cardiol. 2000; 36:811-23.
- 440. Liu Y, Fang Z, Yang B, et al. Catheter ablation of fascicular ventricular tachycardia: long-term clinical outcomes and mechanisms of recurrence. Circ. Arrhythm. Electrophysiol. 2015; 8:1443-51.
- 441. Lin D, Hsia HH, Gerstenfeld EP, et al. Idiopathic fascicular left ventricular tachycardia: linear ablation lesion strategy for noninducible or nonsustained tachycardia. Heart rhythm. 2005; 2:934-9.
- 442. Haïssaguerre M, Shoda M, Jais P, et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation. 2002; 106:962-7.

- 443. Noda T, Shimizu W, Taguchi A, et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J Am Coll Cardiol. 2005; 46:1288-94.
- 444. Haïssaguerre M, Shah DC, Jais P, et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet (London, England). 2002; 359:677-8.
- 445. Van HH, Zado ES, Haqqani H, et al. Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart rhythm. 2014; 11:566-73.
- 446. Sadek MM, Benhayon D, Sureddi R, et al. Idiopathic ventricular arrhythmias originating from the moderator band: Electrocardiographic characteristics and treatment by catheter ablation. Heart rhythm. 2015; 12:67-75.
- 447. Tester DJ, Medeiros-Domingo A, Will ML, et al. Unexplained drownings and the cardiac channelopathies: a molecular autopsy series. Mayo Clin. Proc. 2011; 86:941-7.
- 448. Tzimas I, Zingraf JC, Bajanowski T, et al. The role of known variants of KCNQ1, KCNH2, KCNE1, SCN5A, and NOS1AP in water-related deaths. Int. J Legal Med. 2016.
- 449. Anderson JH, Tester DJ, Will ML, et al. Whole-exome molecular autopsy after exertion-related sudden unexplained death in the young. Circ. Cardiovasc. Genet. 2016; 9:259-65.
- 450. Wang D, Shah KR, Um SY, et al. Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths. Forensic Sci. Int. 2014; 237:90-9.
- 451. Kumar S, Peters S, Thompson T, et al. Familial cardiological and targeted genetic evaluation: low yield in sudden unexplained death and high yield in unexplained cardiac arrest syndromes. Heart rhythm. 2013; 10:1653-60.
- 452. Ban JE, Park HC, Park JS, et al. Electrocardiographic and electrophysiological characteristics of premature ventricular complexes associated with left ventricular dysfunction in patients without structural heart disease. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2013; 15:735-41.
- 453. Lee W, Tay A, Subbiah RN, et al. Impact of Implantable Cardioverter Defibrillators on Survival of Patients with Centrifugal Left Ventricular Assist Devices. Pacing Clin. Electrophysiol. 2015; 38:925-33.
- 454. Carballeira Pol L, Deyell MW, Frankel DS, et al. Ventricular premature depolarization QRS duration as a new marker of risk for the development of ventricular premature depolarization-induced cardiomyopathy. Heart rhythm. 2014; 11:299-306.
- 455. Deyell MW, Park KM, Han Y, et al. Predictors of recovery of left ventricular dysfunction after ablation of frequent ventricular premature depolarizations. Heart rhythm. 2012; 9:1465-72.
- 456. Del Carpio Munoz F, Syed FF, Noheria A, et al. Characteristics of premature ventricular complexes as correlates of reduced left ventricular systolic function: study of the burden, duration, coupling interval, morphology and site of origin of PVCs. J. Cardiovasc. Electrophysiol. 2011; 22:791-8.
- 457. Olgun H, Yokokawa M, Baman T, et al. The role of interpolation in PVC-induced cardiomyopathy. Heart rhythm. 2011; 8:1046-9.
- 458. Hasdemir C, Ulucan C, Yavuzgil O, et al. Tachycardia-induced cardiomyopathy in patients with idiopathic ventricular arrhythmias: the incidence, clinical and electrophysiologic characteristics, and the predictors. J. Cardiovasc. Electrophysiol. 2011; 22:663-8.

- 459. Baman TS, Lange DC, Ilg KJ, et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart rhythm. 2010; 7:865-9.
- 460. Kanei Y, Friedman M, Ogawa N, et al. Frequent premature ventricular complexes originating from the right ventricular outflow tract are associated with left ventricular dysfunction. Ann. Noninvasive. Electrocardiol. 2008; 13:81-5.
- 461. Hamon D, Blaye-Felice MS, Bradfield JS, et al. A new combined parameter to predict premature ventricular complexes induced cardiomyopathy: impact and recognition of epicardial origin. J. Cardiovasc. Electrophysiol. 2016; 27:709-17.
- 462. Bogun F, Crawford T, Reich S, et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart rhythm. 2007; 4:863-7.
- 463. Zhong L, Lee YH, Huang XM, et al. Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions: a single-center retrospective study. Heart rhythm. 2014; 11:187-93.
- 464. Kawamura M, Badhwar N, Vedantham V, et al. Coupling interval dispersion and body mass index are independent predictors of idiopathic premature ventricular complex-induced cardiomyopathy. J. Cardiovasc. Electrophysiol. 2014; 25:756-62.
- 465. Yokokawa M, Good E, Crawford T, et al. Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Heart rhythm. 2013; 10:172-5.
- 466. Jeejeebhoy FM, Zelop CM, Lipman S, et al. Cardiac Arrest in Pregnancy: A Scientific Statement From the American Heart Association. Circulation. 2015; 132:1747-73.
- 467. Creanga AA, Berg CJ, Ko JY, et al. Maternal Mortality and Morbidity in the United States: Where Are We Now? Journal of Women's Health. 2014; 23:3-9.
- 468. Kampman MA, Balci A, Groen H, et al. Cardiac function and cardiac events 1-year postpartum in women with congenital heart disease. Am. Heart J. 2015; 169:298-304.
- 469. Drenthen W, Boersma E, Balci A, et al. Predictors of pregnancy complications in women with congenital heart disease. Eur. Heart J. 2010; 31:2124-32.
- 470. Mhyre JM, Tsen LC, Einav S, et al. Cardiac arrest during hospitalization for delivery in the United States, 1998-2011. Anesthesiology. 2014; 120:810-8.
- 471. Siu SC, Sermer M, Colman JM, et al. Prospective multicenter study of pregnancy outcomes in women with heart disease. Circulation. 2001; 104:515-21.
- 472. Einav S, Kaufman N and Sela HY. Maternal cardiac arrest and perimortem caesarean delivery: evidence or expert-based? Resuscitation. 2012; 83:1191-200.
- 473. Citro R, Giudice R, Mirra M, et al. Is Tako-tsubo syndrome in the postpartum period a clinical entity different from peripartum cardiomyopathy? J Cardiovasc Med (Hagerstown). 2013; 14:568-75.
- 474. Seth R, Moss AJ, McNitt S, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007; 49:1092-8.
- 475. Katz V, Balderston K and DeFreest M. Perimortem cesarean delivery: were our assumptions correct? Am J Obstet. Gynecol. 2005; 192:1916-20.

- 476. Dijkman A, Huisman CM, Smit M, et al. Cardiac arrest in pregnancy: increasing use of perimortem caesarean section due to emergency skills training? BJOG. 2010; 117:282-7.
- 477. Colletti PM, Lee KH and Elkayam U. Cardiovascular imaging of the pregnant patient. AJR. Am J Roentgenol. 2013; 200:515-21.
- 478. Natale A, Davidson T, Geiger MJ, et al. Implantable cardioverter-defibrillators and pregnancy: a safe combination? Circulation. 1997; 96:2808-12.
- 479. Damilakis J, Theocharopoulos N, Perisinakis K, et al. Conceptus radiation dose and risk from cardiac catheter ablation procedures. Circulation. 2001; 104:893-7.
- 480. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N. Engl. J. Med. 1989; 321:406-12.
- 481. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. The Cardiac Arrhythmia Suppression Trial II Investigators. N. Engl. J. Med. 1992; 327:227-33.
- 482. Wyse DG, Friedman PL, Brodsky MA, et al. Life-threatening ventricular arrhythmias due to transient or correctable causes: high risk for death in follow-up. J Am Coll Cardiol. 2001; 38:1718-24.
- 483. Monnig G, Kobe J, Loher A, et al. Role of implantable cardioverter defibrillator therapy in patients with acquired long QT syndrome: a long-term follow-up. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2012; 14:396-401.
- 484. Antman EM, Wenger TL, Butler VP, Jr., et al. Treatment of 150 cases of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments. Final report of a multicenter study. Circulation. 1990; 81:1744-52.
- 485. Chan BS and Buckley NA. Digoxin-specific antibody fragments in the treatment of digoxin toxicity. Clin. Toxicol. . 2014; 52:824-36.
- 486. Hauptman PJ and Kelly RA. Digitalis. Circulation. 1999; 99:1265-70.
- 487. Kelly RA and Smith TW. Recognition and management of digitalis toxicity. Am. J. Cardiol. 1992; 69:108G-18G.
- 488. Osmonov D, Erdinler I, Ozcan KS, et al. Management of patients with drug-induced atrioventricular block. Pacing Clin. Electrophysiol. 2012; 35:804-10.
- 489. Tzivoni D, Banai S, Schuger C, et al. Treatment of torsade de pointes with magnesium sulfate. Circulation. 1988; 77:392-7.
- 490. Keren A, Tzivoni D, Gavish D, et al. Etiology, warning signs and therapy of torsade de pointes. A study of 10 patients. Circulation. 1981; 64:1167-74.
- 491. Yang T and Roden DM. Extracellular potassium modulation of drug block of IKr. Implications for torsade de pointes and reverse use-dependence. Circulation. 1996; 93:407-11.
- 492. Hellestrand KJ, Burnett PJ, Milne JR, et al. Effect of the antiarrhythmic agent flecainide acetate on acute and chronic pacing thresholds. Pacing Clin. Electrophysiol. 1983; 6:892-9.
- 493. Echt DS, Black JN, Barbey JT, et al. Evaluation of antiarrhythmic drugs on defibrillation energy requirements in dogs. Sodium channel block and action potential prolongation. Circulation. 1989; 79:1106-17.
- 494. Crijns HJ, Van Gelder IC and Lie KI. Supraventricular tachycardia mimicking ventricular tachycardia during flecainide treatment. Am. J. Cardiol. 1988; 62:1303-6.

- 495. Bajaj AK, Woosley RL and Roden DM. Acute electrophysiologic effects of sodium administration in dogs treated with O-desmethyl encainide. Circulation. 1989; 80:994-1002.
- 496. Myerburg RJ, Kessler KM, Cox MM, et al. Reversal of proarrhythmic effects of flecainide acetate and encainide hydrochloride by propranolol. Circulation. 1989; 80:1571-9.
- 497. Schwartz PJ and Woosley RL. Predicting the Unpredictable: Drug-Induced QT Prolongation and Torsades de Pointes. J Am Coll Cardiol. 2016; 67:1639-50.
- 498. Basso C, Burke M, Fornes P, et al. Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch. 2008; 452:11-8.
- 499. Thorne SA, Barnes I, Cullinan P, et al. Amiodarone-associated thyroid dysfunction: risk factors in adults with congenital heart disease. Circulation. 1999; 100:149-54.
- 500. Deal BJ, Scagliotti D, Miller SM, et al. Electrophysiologic drug testing in symptomatic ventricular arrhythmias after repair of tetralogy of Fallot. Am J Cardiol. 1987; 59:1380-5.
- 501. Gatzoulis MA, Till JA, Somerville J, et al. Mechanoelectrical interaction in tetralogy of Fallot. QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation. 1995; 92:231-7.
- 502. Koyak Z, Harris L, de Groot JR, et al. Sudden cardiac death in adult congenital heart disease. Circulation. 2012; 126:1944-54.
- 503. Diller GP, Kempny A, Liodakis E, et al. Left ventricular longitudinal function predicts life-threatening ventricular arrhythmia and death in adults with repaired tetralogy of fallot. Circulation. 2012; 125:2440-6.
- 504. Harrison DA, Harris L, Siu SC, et al. Sustained ventricular tachycardia in adult patients late after repair of tetralogy of Fallot. J Am Coll Cardiol. 1997; 30:1368-73.
- 505. Knauth AL, Gauvreau K, Powell AJ, et al. Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart (British Cardiac Society). 2008; 94:211-6.
- 506. Therrien J, Siu SC, Harris L, et al. Impact of pulmonary valve replacement on arrhythmia propensity late after repair of tetralogy of Fallot. Circulation. 2001; 103:2489-94.
- 507. Therrien J, Provost Y, Merchant N, et al. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol. 2005; 95:779-82.
- 508. Harrild DM, Berul CI, Cecchin F, et al. Pulmonary valve replacement in tetralogy of Fallot: impact on survival and ventricular tachycardia. Circulation. 2009; 119:445-51.
- 509. Adamson L, Vohra HA and Haw MP. Does pulmonary valve replacement post repair of tetralogy of Fallot improve right ventricular function? Interactive cardiovascular and thoracic surgery. 2009; 9:520-7.
- 510. Sabate Rotes A, Connolly HM, Warnes CA, et al. Ventricular arrhythmia risk stratification in patients with tetralogy of Fallot at the time of pulmonary valve replacement. Circ Arrhythm Electrophysiol. 2015; 8:110-6.
- 511. Tsai SF, Chan DP, Ro PS, et al. Rate of inducible ventricular arrhythmia in adults with congenital heart disease. Am J Cardiol. 2010; 106:730-6.
- 512. Garson A, Jr., Porter CB, Gillette PC, et al. Induction of ventricular tachycardia during electrophysiologic study after repair of tetralogy of Fallot. J Am Coll Cardiol. 1983; 1:1493-502.

- 513. Chandar JS, Wolff GS, Garson A, Jr., et al. Ventricular arrhythmias in postoperative tetralogy of Fallot. Am J Cardiol. 1990; 65:655-61.
- 514. Kella DK, Merchant FM, Veledar E, et al. Lesion-specific differences for implantable cardioverter defibrillator therapies in adults with congenital heart disease. Pacing Clin Electrophysiol. 2014; 37:1492-8.
- 515. Santharam S, Hudsmith L, Thorne S, et al. Long-term follow-up of implantable cardioverter-defibrillators in adult congenital heart disease patients: indications and outcomes. Europeae pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2017; 19:407-13.
- 516. Vehmeijer JT, Brouwer TF, Limpens J, et al. Implantable cardioverter-defibrillators in adults with congenital heart disease: a systematic review and meta-analysis. European heart journal. 2016; 37:1439-48.
- 517. Moore JP, Mondesert B, Lloyd MS, et al. Clinical Experience With the Subcutaneous Implantable Cardioverter-Defibrillator in Adults With Congenital Heart Disease. Circ Arrhythm Electrophysiol. 2016; 9.
- 518. Okamura H, McLeod CJ, DeSimone CV, et al. Right Parasternal Lead Placement Increases Eligibility for Subcutaneous Implantable Cardioverter Defibrillator Therapy in Adults With Congenital Heart Disease. Circulation journal: official journal of the Japanese Circulation Society. 2016; 80:1328-35.
- 519. Yap SC, Roos-Hesselink JW, Hoendermis ES, et al. Outcome of implantable cardioverter defibrillators in adults with congenital heart disease: a multi-centre study. European heart journal. 2007; 28:1854-61.
- 520. Khairy P, Landzberg MJ, Gatzoulis MA, et al. Value of programmed ventricular stimulation after tetralogy of fallot repair: a multicenter study. Circulation. 2004; 109:1994-2000.
- 521. Khairy P, Harris L, Landzberg MJ, et al. Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation. 2008; 117:363-70.
- 522. Zeppenfeld K, Schalij MJ, Bartelings MM, et al. Catheter ablation of ventricular tachycardia after repair of congenital heart disease: electroanatomic identification of the critical right ventricular isthmus. Circulation. 2007; 116:2241-52.
- 523. van Zyl M, Kapa S, Padmanabhan D, et al. Mechanism and outcomes of catheter ablation for ventricular tachycardia in adults with repaired congenital heart disease. Heart rhythm. 2016; 13:1449-54.
- 524. Kapel GF, Reichlin T, Wijnmaalen AP, et al. Left-sided ablation of ventricular tachycardia in adults with repaired tetralogy of Fallot: a case series. Circ Arrhythm Electrophysiol. 2014; 7:889-97.
- 525. Kapel GF, Reichlin T, Wijnmaalen AP, et al. Re-entry using anatomically determined isthmuses: a curable ventricular tachycardia in repaired congenital heart disease. Circ. Arrhythm. Electrophysiol. 2015; 8:102-9.
- 526. Kapel GF, Sacher F, Dekkers OM, et al. Arrhythmogenic anatomical isthmuses identified by electroanatomical mapping are the substrate for ventricular tachycardia in repaired tetralogy of Fallot. European heart journal. 2017; 38:268-76.
- 527. Khairy P, Harris L, Landzberg MJ, et al. Sudden death and defibrillators in transposition of the great arteries with intra-atrial baffles: a multicenter study. Circ Arrhythm Electrophysiol. 2008; 1:250-7.
- 528. Tutarel O, Kempny A, Alonso-Gonzalez R, et al. Congenital heart disease beyond the age of 60: emergence of a new population with high resource utilization, high morbidity, and high mortality. European heart journal. 2014; 35:725-32.

- 529. Koyak Z, de Groot JR, Bouma BJ, et al. Sudden cardiac death in adult congenital heart disease: can the unpredictable be foreseen? Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2017; 19:401-6.
- 530. Engelfriet P, Boersma E, Oechslin E, et al. The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on adult congenital heart disease. European heart journal. 2005; 26:2325-33.
- 531. Gallego P, Gonzalez AE, Sanchez-Recalde A, et al. Incidence and predictors of sudden cardiac arrest in adults with congenital heart defects repaired before adult life. Am J Cardiol. 2012; 110:109-17.
- 532. Engelings CC, Helm PC, Abdul-Khaliq H, et al. Cause of death in adults with congenital heart disease An analysis of the German National Register for Congenital Heart Defects. Int J Cardiol. 2016; 211:31-6.
- 533. Fish FA, Gillette PC and Benson DW, Jr. Proarrhythmia, cardiac arrest and death in young patients receiving encainide and flecainide. The Pediatric Electrophysiology Group. J Am Coll Cardiol. 1991; 18:356-65.
- 534. Stan MN, Sathananthan M, Warnes C, et al. Amiodarone-induced thyrotoxicosis in adults with congenital heart disease-clinical presentation and response to therapy. Endocrine Practice. 2014; 21:33-40.
- 535. Silka MJ, Hardy BG, Menashe VD, et al. A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. J Am Coll Cardiol. 1998; 32:245-51.
- 536. Oechslin EN, Harrison DA, Connelly MS, et al. Mode of death in adults with congenital heart disease. Am J Cardiol. 2000; 86:1111-6.
- 537. Nieminen HP, Jokinen EV and Sairanen HI. Causes of late deaths after pediatric cardiac surgery: a population-based study. J Am Coll Cardiol. 2007; 50:1263-71.
- 538. Verheugt CL, Uiterwaal CS, Grobbee DE, et al. Long-term prognosis of congenital heart defects: a systematic review. Int J Cardiol. 2008; 131:25-32.
- 539. Pillutla P, Shetty KD and Foster E. Mortality associated with adult congenital heart disease: Trends in the US population from 1979 to 2005. Am Heart J. 2009; 158:874-9.
- 540. Verheugt CL, Uiterwaal CS, van der Velde ET, et al. Mortality in adult congenital heart disease. European heart journal. 2010; 31:1220-9.
- 541. Zomer AC, Vaartjes I, Uiterwaal CS, et al. Circumstances of death in adult congenital heart disease. Int J Cardiol. 2012; 154:168-72.
- 542. Diller GP, Kempny A, Alonso-Gonzalez R, et al. Survival Prospects and Circumstances of Death in Contemporary Adult Congenital Heart Disease Patients Under Follow-Up at a Large Tertiary Centre. Circulation. 2015; 132:2118-25.
- 543. Raissadati A, Nieminen H, Haukka J, et al. Late Causes of Death After Pediatric Cardiac Surgery: A 60-Year Population-Based Study. J Am Coll Cardiol. 2016; 68:487-98.
- 544. Teuwen CP, Ramdjan TT, Gotte M, et al. Non-sustained ventricular tachycardia in patients with congenital heart disease: An important sign? Int J Cardiol. 2016; 206:158-63.
- 545. Wells R, Khairy P, Harris L, et al. Dofetilide for atrial arrhythmias in congenital heart disease: a multicenter study. Pacing Clin Electrophysiol. 2009; 32:1313-8.
- 546. Afilalo J, Therrien J, Pilote L, et al. Geriatric congenital heart disease: burden of disease and predictors of mortality. J Am Coll Cardiol. 2011; 58:1509-15.

- 547. El Malti R, Liu H, Doray B, et al. A systematic variant screening in familial cases of congenital heart defects demonstrates the usefulness of molecular genetics in this field. European journal of human genetics: EJHG. 2016; 24:228-36.
- 548. Abou Hassan OK, Fahed AC, Batrawi M, et al. NKX2-5 mutations in an inbred consanguineous population: genetic and phenotypic diversity. Scientific reports. 2015; 5:8848.
- 549. Ellesoe SG, Johansen MM, Bjerre JV, et al. Familial Atrial Septal Defect and Sudden Cardiac Death: Identification of a Novel NKX2-5 Mutation and a Review of the Literature. Congenital heart disease. 2016; 11:283-90.
- 550. Cuypers JA, Opic P, Menting ME, et al. The unnatural history of an atrial septal defect: longitudinal 35 year follow up after surgical closure at young age. Heart (British Cardiac Society). 2013; 99:1346-52.
- 551. Kuijpers JM, van der Bom T, van Riel AC, et al. Secundum atrial septal defect is associated with reduced survival in adult men. European heart journal. 2015; 36:2079-86.
- 552. Khairy P, Aboulhosn J, Gurvitz MZ, et al. Arrhythmia burden in adults with surgically repaired tetralogy of Fallot: a multi-institutional study. Circulation. 2010; 122:868-75.
- 553. Valente AM, Gauvreau K, Assenza GE, et al. Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart (British Cardiac Society). 2014; 100:247-53.
- 554. Arya S, Kovach J, Singh H, et al. Arrhythmias and sudden death among older children and young adults following tetralogy of Fallot repair in the current era: are previously reported risk factors still applicable? Congenital heart disease. 2014; 9:407-14.
- 555. Wu MH, Lu CW, Chen HC, et al. Arrhythmic burdens in patients with tetralogy of Fallot: a national database study. Heart rhythm. 2015; 12:604-9.
- 556. Drago F, Pazzano V, Di Mambro C, et al. Role of right ventricular three-dimensional electroanatomic voltage mapping for arrhythmic risk stratification of patients with corrected tetralogy of Fallot or other congenital heart disease involving the right ventricular outflow tract. Int J Cardiol. 2016; 222:422-9.
- 557. Kriebel T, Saul JP, Schneider H, et al. Noncontact mapping and radiofrequency catheter ablation of fast and hemodynamically unstable ventricular tachycardia after surgical repair of tetralogy of Fallot. J Am Coll Cardiol. 2007; 50:2162-8.
- 558. Witte KK, Pepper CB, Cowan JC, et al. Implantable cardioverter-defibrillator therapy in adult patients with tetralogy of Fallot. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2008; 10:926-30.
- 559. Lange R, Horer J, Kostolny M, et al. Presence of a ventricular septal defect and the Mustard operation are risk factors for late mortality after the atrial switch operation: thirty years of follow-up in 417 patients at a single center. Circulation. 2006; 114:1905-13.
- 560. Schwerzmann M, Salehian O, Harris L, et al. Ventricular arrhythmias and sudden death in adults after a Mustard operation for transposition of the great arteries. European heart journal. 2009; 30:1873-9.
- 561. Wheeler M, Grigg L and Zentner D. Can we predict sudden cardiac death in long-term survivors of atrial switch surgery for transposition of the great arteries? Congenital heart disease. 2014; 9:326-32.
- 562. Bouzeman A, Marijon E, de Guillebon M, et al. Implantable cardiac defibrillator among adults with transposition of the great arteries and atrial switch operation: case series and review of literature. Int J Cardiol. 2014; 177:301-6.

- 563. Buber J, Ackley TJ, Daniels CJ, et al. Outcomes following the implantation of cardioverter-defibrillator for primary prevention in transposition of the great arteries after intra-atrial baffle repair: a single-centre experience. Europeae : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2016; 18:1016-22.
- 564. Backhoff D, Kerst G, Peters A, et al. Internal Cardioverter Defibrillator Indications and Therapies after Atrial Baffle Procedure for d-Transposition of the Great Arteries: A Multicenter Analysis. Pacing Clin Electrophysiol. 2016; 39:1070-6.
- 565. Pundi KN, Pundi KN, Johnson JN, et al. Sudden cardiac death and late arrhythmias after the Fontan operation. Congenital heart disease. 2017: 12:17-23.
- 566. Sakamoto T, Nagashima M, Hiramatsu T, et al. Fontan circulation over 30 years. What should we learn from those patients? Asian cardiovascular & thoracic annals. 2016; 24:765-71.
- 567. Alexander ME, Walsh EP, Saul JP, et al. Value of programmed ventricular stimulation in patients with congenital heart disease. Journal of cardiovascular electrophysiology. 1999; 10:1033-44.
- 568. Silka MJ, Kron J, Dunnigan A, et al. Sudden cardiac death and the use of implantable cardioverter-defibrillators in pediatric patients. The Pediatric Electrophysiology Society. Circulation. 1993; 87:800-7.
- 569. Berul CI, Van Hare GF, Kertesz NJ, et al. Results of a multicenter retrospective implantable cardioverter-defibrillator registry of pediatric and congenital heart disease patients. J Am Coll Cardiol. 2008; 51:1685-91.
- 570. Khanna AD, Warnes CA, Phillips SD, et al. Single-center experience with implantable cardioverter-defibrillators in adults with complex congenital heart disease. Am J Cardiol. 2011; 108:729-34.
- 571. Koyak Z, de Groot JR, Van Gelder IC, et al. Implantable cardioverter defibrillator therapy in adults with congenital heart disease: who is at risk of shocks? Circ Arrhythm Electrophysiol. 2012; 5:101-10.
- 572. Khairy P, Van Hare GF, Balaji S, et al. PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Heart rhythm. 2014; 11:e102-65.
- 573. Bardy GH, Smith WM, Hood MA, et al. An entirely subcutaneous implantable cardioverter-defibrillator. N. Engl. J. Med. 2010; 363:36-44.
- 574. Olde Nordkamp LR, Dabiri AL, Boersma LV, et al. The entirely subcutaneous implantable cardioverter-defibrillator: initial clinical experience in a large Dutch cohort. J Am Coll Cardiol. 2012; 60:1933-9.
- 575. Köbe J, Reinke F, Meyer C, et al. Implantation and follow-up of totally subcutaneous versus conventional implantable cardioverter-defibrillators: a multicenter case-control study. Heart rhythm. 2013; 10:29-36.
- 576. de Bie MK, Thijssen J, van Rees JB, et al. Suitability for subcutaneous defibrillator implantation: results based on data from routine clinical practice. Heart (British Cardiac Society). 2013; 99:1018-23.
- 577. Weiss R, Knight BP, Gold MR, et al. Safety and efficacy of a totally subcutaneous implantable-cardioverter defibrillator. Circulation. 2013; 128:944-53.
- 578. Olde Nordkamp LR, Warnaars JL, Kooiman KM, et al. Which patients are not suitable for a subcutaneous ICD: incidence and predictors of failed QRS-T-wave morphology screening. J. Cardiovasc. Electrophysiol. 2014; 25:494-9.

- 579. Randles DA, Hawkins NM, Shaw M, et al. How many patients fulfil the surface electrocardiogram criteria for subcutaneous implantable cardioverter-defibrillator implantation? Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2014; 16:1015-21.
- 580. Lambiase PD, Barr C, Theuns DA, et al. Worldwide experience with a totally subcutaneous implantable defibrillator: early results from the EFFORTLESS S-ICD Registry. Eur. Heart J. 2014; 35:1657-65.
- 581. Groh WJ. Arrhythmias in the muscular dystrophies. Heart rhythm. 2012; 9:1890-5.
- 582. Burke MC, Gold MR, Knight BP, et al. Safety and efficacy of the totally subcutaneous implantable defibrillator: 2-year results from a pooled analysis of the IDE study and EFFORTLESS registry. J Am Coll Cardiol. 2015; 65:1605-15.
- 583. Chung MK. The role of the wearable cardioverter defibrillator in clinical practice. Cardiol Clin. 2014; 32:253-70.
- 584. Chung MK, Szymkiewicz SJ, Shao M, et al. Aggregate national experience with the wearable cardioverter-defibrillator: event rates, compliance, and survival. J Am Coll Cardiol. 2010; 56:194-203.
- 585. Klein HU, Meltendorf U, Reek S, et al. Bridging a temporary high risk of sudden arrhythmic death. Experience with the wearable cardioverter defibrillator (WCD). Pacing Clin Electrophysiol. 2010; 33:353-67.
- 586. de Noronha SV, Behr ER, Papadakis M, et al. The importance of specialist cardiac histopathological examination in the investigation of young sudden cardiac deaths. Europeae : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2014; 16:899-907.
- 587. Wu Q, Zhang L, Zheng J, et al. Forensic Pathological Study of 1656 Cases of Sudden Cardiac Death in Southern China. Medicine (Baltimore). 2016; 95:e2707.
- 588. Vassalini M, Verzeletti A, Restori M, et al. An autopsy study of sudden cardiac death in persons aged 1-40 years in Brescia (Italy). J Cardiovasc Med (Hagerstown). 2016; 17:446-53.
- 589. Tester DJ, Medeiros-Domingo A, Will ML, et al. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsynegative sudden unexplained death referred for postmortem genetic testing. Mayo Clin. Proc. 2012; 87:524-39.
- 590. Tang Y, Stahl-Herz J and Sampson BA. Molecular diagnostics of cardiovascular diseases in sudden unexplained death. Cardiovasc Pathol. 2014; 23:1-4.
- 591. Papadakis M, Raju H, Behr ER, et al. Sudden cardiac death with autopsy findings of uncertain significance: potential for erroneous interpretation. Circ. Arrhythm. Electrophysiol. 2013; 6:588-96.
- 592. Harmon KG, Drezner JA, Maleszewski JJ, et al. Pathogeneses of sudden cardiac death in national collegiate athletic association athletes. Circ. Arrhythm. Electrophysiol. 2014; 7:198-204.
- 593. Bagnall RD, Das KJ, Duflou J, et al. Exome analysis-based molecular autopsy in cases of sudden unexplained death in the young. Heart rhythm. 2014; 11:655-62.
- 594. Bagnall RD, Weintraub RG, Ingles J, et al. A prospective study of sudden cardiac death among children and young adults. N. Engl. J. Med. 2016: 374:2441-52.
- 595. Hill L, McIlfatrick S, Taylor B, et al. Patients' perception of implantable cardioverter defibrillator deactivation at the end of life. Palliat. Med. 2015; 29:310-23.

- 596. Kramer DB, Reynolds MR, Normand SL, et al. Hospice use following implantable cardioverter-defibrillator implantation in older patients: results from the National Cardiovascular Data Registry. Circulation. 2016; 133:2030-7.
- 597. Buchhalter LC, Ottenberg AL, Webster TL, et al. Features and outcomes of patients who underwent cardiac device deactivation. JAMA Intern. Med. 2014; 174:80-5.
- 598. Goldstein NE, Lampert R, Bradley E, et al. Management of implantable cardioverter defibrillators in end-of-life care. Ann. Intern. Med. 2004; 141:835-8.
- 599. Goldstein N, Carlson M, Livote E, et al. Brief communication: Management of implantable cardioverter-defibrillators in hospice: A nationwide survey. Ann. Intern. Med. 2010; 152:296-9.
- 600. Berger JT, Gorski M and Cohen T. Advance health planning and treatment preferences among recipients of implantable cardioverter defibrillators: an exploratory study. J Clin. Ethics. 2006; 17:72-8.
- 601. Dodson JA, Fried TR, Van Ness PH, et al. Patient preferences for deactivation of implantable cardioverter-defibrillators. JAMA Intern. Med. 2013; 173:377-9.
- 602. Goldstein NE, Mehta D, Siddiqui S, et al. "That's like an act of suicide" patients' attitudes toward deactivation of implantable defibrillators.

 J Gen. Intern. Med. 2008; 23 Suppl 1:7-12.
- 603. Habal MV, Micevski V, Greenwood S, et al. How aware of advanced care directives are heart failure patients, and are they using them? Can. J Cardiol. 2011; 27:376-81.
- 604. Kirkpatrick JN, Gottlieb M, Sehgal P, et al. Deactivation of implantable cardioverter defibrillators in terminal illness and end of life care. Am. J. Cardiol. 2012; 109:91-4.
- 605. Kramer DB, Kesselheim AS, Salberg L, et al. Ethical and legal views regarding deactivation of cardiac implantable electrical devices in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2011; 107:1071-5.
- 606. Lewis KB, Stacey D and Matlock DD. Making decisions about implantable cardioverter-defibrillators from implantation to end of life: an integrative review of patients' perspectives. Patient. 2014; 7:243-60.
- 607. Lewis KB, Nery PB and Birnie DH. Decision making at the time of ICD generator change: patients' perspectives. JAMA Intern. Med. 2014; 174:1508-11.
- 608. Hauptman PJ, Chibnall JT, Guild C, et al. Patient perceptions, physician communication, and the implantable cardioverter-defibrillator. JAMA Intern. Med. 2013; 173:571-7.
- 609. Stewart GC, Weintraub JR, Pratibhu PP, et al. Patient expectations from implantable defibrillators to prevent death in heart failure. Journal of cardiac failure. 2010; 16:106-13.
- 610. Ottenberg AL, Mueller PS, Topazian RJ, et al. "It's not broke, so let's not try to fix it": why patients decline a cardiovascular implantable electronic device. Pacing Clin. Electrophysiol. 2014; 37:1306-14.
- 611. Yuhas J, Mattocks K, Gravelin L, et al. Patients' attitudes and perceptions of implantable cardioverter-defibrillators: potential barriers to appropriate primary prophylaxis. Pacing Clin. Electrophysiol. 2012; 35:1179-87.

- 612. Larsen G, Hallstrom A, McAnulty J, et al. Cost-effectiveness of the implantable cardioverter-defibrillator versus antiarrhythmic drugs in survivors of serious ventricular tachyarrhythmias: results of the Antiarrhythmics Versus Implantable Defibrillators (AVID) economic analysis substudy. Circulation. 2002; 105:2049-57.
- 613. O'Brien BJ, Connolly SJ, Goeree R, et al. Cost-effectiveness of the implantable cardioverter-defibrillator: results from the Canadian Implantable Defibrillator Study (CIDS). Circulation. 2001; 103:1416-21.
- 614. Weiss JP, Saynina O, McDonald KM, et al. Effectiveness and cost-effectiveness of implantable cardioverter defibrillators in the treatment of ventricular arrhythmias among medicare beneficiaries. Am J Med. 2002; 112:519-27.
- 615. Buxton M, Caine N, Chase D, et al. A review of the evidence on the effects and costs of implantable cardioverter defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context. Health Technol. Assess. 2006; 10:iii-xi, 1.
- 616. Mark DB, Nelson CL, Anstrom KJ, et al. Cost-effectiveness of defibrillator therapy or amiodarone in chronic stable heart failure: results from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Circulation. 2006; 114:135-42.
- 617. Zwanziger J, Hall WJ, Dick AW, et al. The cost effectiveness of implantable cardioverter-defibrillators: results from the Multicenter Automatic Defibrillator Implantation Trial (MADIT)-II. J Am Coll Cardiol. 2006; 47:2310-8.
- 618. Mushlin AI, Hall WJ, Zwanziger J, et al. The cost-effectiveness of automatic implantable cardiac defibrillators: results from MADIT. Multicenter Automatic Defibrillator Implantation Trial. Circulation. 1998; 97:2129-35.
- 619. Al-Khatib SM, Anstrom KJ, Eisenstein EL, et al. Clinical and economic implications of the Multicenter Automatic Defibrillator Implantation Trial-II. Ann. Intern. Med. 2005; 142:593-600.
- 620. Sanders GD, Hlatky MA and Owens DK. Cost-effectiveness of implantable cardioverter-defibrillators. N. Engl. J. Med. 2005; 353:1471-80.
- 621. Smith T, Jordaens L, Theuns DA, et al. The cost-effectiveness of primary prophylactic implantable defibrillator therapy in patients with ischaemic or non-ischaemic heart disease: a European analysis. Eur. Heart J. 2013; 34:211-9.
- 622. Cowie MR, Marshall D, Drummond M, et al. Lifetime cost-effectiveness of prophylactic implantation of a cardioverter defibrillator in patients with reduced left ventricular systolic function: results of Markov modelling in a European population. European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2009; 11:716-26.