CHAPTER 2

视觉感知要素

人视觉是由眼睛中锥状体和杆状体组成的。低照明级别杆状体起作用。在背景照明增强时锥状体起作

光和电磁波谱

 $\lambda = \frac{c}{c} E = hv$ 可见光的波长范围: 约 400 700nm $\Delta I_{\epsilon}/I$ 称为韦伯比

辐射强度:光源流出能量总量;光通量给出观察者从光源感受到的能量,用流明数度量;亮度是光感受的 主观描绘,不能测量,描述彩色感觉参数之一;灰度级用来描述单色光图像的亮度

图像感知与森取

传感器:CCD.CMOS

简单的成像模型

f(x,y)=i(x,y)r(x,y),其中i(x,y)为入射分量(低频),r(x,y)为反射分量(高频)

其中 $0 \le f(x,y), i(x,y) < \infty \ 0 \le r(x,y) \le 1$;r=0 全吸收,1 全反射

图像取样和量化

对坐标值进行数字化称为取样,对幅度值进行数字化称为量化,原点位于图像的左上角, x 轴向下, y 轴 向右

坐标索引: 像二维坐标(x,y);线性索引通过计算到坐标(0,0)的偏移量得到的,行/列扫描

空间分辨率: 图像中可辨别的最小细节 灰度分辨率: 灰度级中可分辨的最小变化;打印机单位距离可 以分辨的最小线对数 DPI;数字图像:图像大小,即行数 x 列数 PPI

图像对比度:一幅图像中最高和最低灰度级间的灰度差为对比度。

基本的图像重取样方法:图像内插。有最近邻内插;常选用双线性(v(x, y) = ax + by + cxy + d 四个系数 可用 4 个最近邻点的 4 个未知方程求出)和双三次内插。

像素间的一些基本关系

 $N_4(p)$ 上下左右, $N_{D(p)}$ 四个对角, $N_8(p)=N_4(p)\cup N_{D(p)}$

值域 V, V 是 0 到 255 中的任一个子集

4 邻接:点 q 在 $N_4(p)$ 中,并 q 和 p 具有 V 中的数值

8 邻接:点 q 在 $N_8(p)$ 中,并 q 和 p 具有 V 中的数值

m 邻接(混合邻接): 1.q 在 p 的 $N_4(p)$ 或者 2.q 在 p 的 $N_{D(p)}$ 中, $N_4(P) \cap N_4(Q)$ 中没有 V 值的像素

欧氏距离(De): $D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$ 街区距离(D4): $D_4(p,q) = |x-s| + |y-t|$

棋盘距离(D8): $D_8(p,q) = \max(|x-s|,|y-t|)$

对应元素运算和矩阵运算

图像相加:取平均降噪。相减:增强差别。相乘和相除:校正阴影。

三个基本量用干描绘彩色光源的质量: 发光强度、光通量和亮度。

一幅数字图像占用的空间, M×N×k。

CHAPTER 3

基本的灰度变换

反转变换S = L - 1 - r;增强暗色区域中的白色或灰色细节;

对数变换 $S = c \log(1+r)$;将范围较窄的低灰度值映射为范围较宽的

幂律(伽马)变换 $s=cr^{\gamma}$; $\gamma<1$ 变亮,加强暗细节;反之变暗,加强亮细节;可增强对比度

1.对比度拉伸:提高灰度级的动态范围,改善对比度;

2.灰度级分层:突出某区间灰度,其他位置可不变也可降级;

3.比特平面分层:8bit 灰度图分割成 8 个比特面,(左)高位表示主体信息,低位给出不同程度的细节

直方图容器: $h(r_k)=n_k,\quad k=0,1,2,\cdots,L-1\;;n_k$ 是 f 中灰度为 r_k 的像素的数量 ; k 越大越白

直方图:对容器归一化 $p(r_k)=\frac{h(r_k)}{MN}=\frac{n_k}{MN}$ 无空间信息,不同图像可能直方图相似,同一图像切片的直方图有可加性;若一幅图像其像素占有全部可 能的灰度级并且分布均匀,这样的图像灰度对比 度高、细节会相对明显

假设s=T(r)在 $0 \le r \le L-1$,T(r)严格单调递增且 $0 \le T(r) \le L-1$ 。

变换前后的 pdf 为 $p_{r(r)}, p_{s(s)}$

若T(r)还可微,有 $p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$

连续情况 $s=T(r)=(L-1)\int_0^r p_r(w)dw$ 变换后 $p_s=\frac{1}{L-1}$ 完全平坦离散情况 $s_k=T(r_k)=(L-1)\sum_{j=0}^k p_r(r_j)=(L-1)\sum_{j=0}^k \frac{n}{MN}$ 无法得到完全平坦的分布目的:使图像产生灰度级丰富且动态范围大的图像灰度;期望得到均匀分布直方图,数字图像均衡化只是

连续情况的近似;简并:灰度级减少了(不同的灰度变换到同一灰度)

匹配(规定化)

使得直方图变换到规定的分布;均衡可以看作是匹配的特例

输入原始图 $p_{r(r)}$,目标图像 $p_{z(z)}$,求输入r到输出z的变换公式 把原始图像和目标图像都用均衡化的作为桥梁

连续: 原图均衡化 $s=T(r)=(L-1)\int_0^r p_r(w)\,\mathrm{d}w$;目标图均衡化 $s=G(z)=(L-1)\int_0^z p_z(\nu)\,\mathrm{d}\nu$ 均衡化图求逆得到目标 $z=G^{-1}(s)=G^{-1}[T(r)]$

离散: $q, k \in [0, L-1]$ $s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j)$; $s_k = G(z_q) = (L-1) \sum_{i=0}^q p_z(z_i)$; $z_q = (L-1) \sum_{i=0}^q p_z(z_i)$ $G^{-1}(\boldsymbol{s}_k)$

 s_k 定义域和值域都是离散且有限,可用一表格记录其对应关系,并采样遍历方式找到最优匹配值,无需 求逆

局部处理

图像/图像块(全局/局部)的统计距计算

设 $p(r_i) = \frac{n_i}{n}, \quad i = 0, 1, 2, ..., L - 1$

灰度级r相对于均值 m的n阶中心矩为: $\mu_n(r) = \sum_{i=0}^{L-1} (r_i - m)^n p(r_i)$

m 是 r 的均值: $m = \sum_{i=0}^{L-1} r_i p(r_i)$ 衡量明暗程度 n = 2为方差: $\sigma^2 = \mu_2(r) = \sum_{i=0}^{L-1} (r_i - m)^2 p(r_i)$ 衡量灰度变化的程度

局部直方图处理:设置一个函数,对满足特定的 m 和σ的邻域进行变换,其他不变

空间滤波

对于大小为 $m \times n$ (行 x 列)的核,m = 2a + 1 和 n = 2b + 1,其中 a 和 b 是非负整数。

w 是个二维矩阵,左上角从(-a,-b)开始,f 左上角从(0,0)开始 $g(x,y) = \sum_{a}^{a} \sum_{b}^{b} w(s,t)f(x+s,y+t)$

w(s,t)f(x+s,y+t)

 $D_{s=-a} = D_{t=-b} = D_{t=-b} = D_{t=-b}$ 新像素是旧像素线性组合;核中心和原图左上角开始对齐运算

空间相关与卷积

一维核旋转 180°相当于这个核绕相对于其轴进行翻转。

维旋转 180°等效于核关于其一个轴翻转,然后关于另一个轴翻转。

相关 $(w\star f)(x,y)=\sum_{a=-a}^{a}\sum_{b=-b}^{b}w(s,t)f(x+s,y+t)$ 卷积 $(w\star f)(x,y)=\sum_{s=-a}^{a=-a}\sum_{t=-b}^{t=-b}w(s,t)f(x-s,y-t)$ 等同于将核旋转 180 度后再做相关卷积满足交换,结合,分配律:相关只满足分配律

N 输出大小,W 输入大小,P 填充大小,S 步长 F 卷积核大小 $N=\frac{(W-F+2P)}{1}+1$

两个滤波器大小为 MxM 和 NxN, 卷积后的大小是(M+N-1)x(M+N-1)

大小为 m x n 的滤波核可表示为两个向量的积 $w=w_1w_2^T=w_1\star w_2$

w₁w₂为mx1,nx1列向量

(一个列向量和一个行向量的积等于这两个向量的二维卷积)

可分离核执行卷积相对不可分离核执行卷积的计算优势: $C=rac{MNmn}{MN(m+n)}=rac{mn}{m+n}$ 可分离核条件: rank(w) = 1

分离方法: 在核w中找到任何一个非零元素a,值为E; 提取a所在的列与行,形成列向量c和r;;

 $w_1 = c, w_2^T = \frac{r}{E}$

平滑(低通)空间滤波器

降低相邻灰度的急剧过度,以减少无关细节(噪声); 平滑通过对相邻像素求和(积分)实现. 归一化 确保亮度不变;低通滤波可去除"无关"细节:即比其核小很多的点/区域

$$g(x,y) = \frac{\sum_{s=-at=-b}^{a} \sum_{-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-at=-b}^{a} \sum_{-b}^{b} w(s,t)}$$

盒式滤波器:每个元素相同;核越大,对越多像素做平均,其平滑程度越明显,细节丢失越多;

高斯核函数 $w(s,t)=G(s,t)=Ke^{-\frac{s^2+t^2}{2\sigma^2}}$ 一般选核大小奇数接近 6σ 对同一图像,高斯核越大越模糊; 圆对称: 到中心点距离r一样,则对应系数一样的;可分离:可写成两个一维的高斯分布相乘形式 对比: 高斯核更适合去噪和平滑处理;盒式核更适合锐化和边缘增强。

锐化 (高通) 空间滤波器

凸显灰度的过渡部分,以增强图像中的细节。锐化用相邻像素差分(导数)来实现. 一维差分 $\frac{\partial f}{\partial x}=f(x+1)-f(x)$ $\frac{\partial^2 f}{\partial x^2}=f(x+1)+f(x-1)-2f(x)$

连续: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

离散: $\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4f(x,y)$ 常见拉普拉斯滤波器特点:1. 中心对称; 2. 中间值的绝对值大; 3. 和为零。

 $g(x,y)=\{egin{array}{ll} f(x,y)abla^2f(x,y), &$ 当拉普拉斯滤波中心系数为负 $f(x,y)+
abla^2f(x,y), &$ 当拉普拉斯滤波中心系数为正

镇化椿蔽和高提升滤波

用于增强图像的细节和边缘

模糊图像 $\hat{f}(x,y)$ 模板 $g_{mask}(x,y)=f(x,y)-\hat{f}(x,y)$ 加权相加 $g(x,y)=f(x,y)+kg_{mask}(x,y)$ k=1 为钝化掩蔽 k>1 为高提升滤波 k<1 不强调钝化模板的贡献

低通、高通、带阻和带通滤波器

单位冲激中心和滤波器核中心重合

低通 lp(x,y), 高通 $hp(x,y) = \delta(x,y) - lp(x,y)$

帶照 $br(x,y)=lp_1(x,y)+hp_2(x,y),=lp_1(x,y)+[\delta(x,y)-hp_2(x,y)]$, 帶通 $bp(x,y)=\delta(x,y)-br(x,y)=\delta(x,y)-[lp_1(x,y)+[\delta(x,y)-lp_2(x,y)]]$

CHAPTER 4

采样

沖激串采样 $s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} \delta(\text{x-n }\Delta T)$

 $\tilde{f}(t) = f(t) s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} f(t) \delta(t - n \Delta T)$

单变量的离散傅里叶变换

DFT: $F(u) = \sum_{x=0}^{M-1} f(x) e^{-j2\pi ux/M} \quad u = 0, 1, \cdots, M-1$

IDFT: $f(x) = \frac{1}{M} \sum_{x=0}^{M-1} F(u) e^{j2\pi ux/M} \quad x=0,1,\cdots\!,M-1$

二变量函数的傅里叶变换

二维傅里叶变换是一维情 形向两个方向的简单扩展

$$F(u,v)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(t,z)e^{-j2\pi(ut+vz)}dtdz$$

 $f(t,z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,v)e^{j2\pi(\mu t + vz)}dudv$

采样:
$$\tilde{f}(t,z) = f(t,z) s_{\Delta T \Delta Z}(t,z) = \sum_{m=-\infty}^{m=\infty} \sum_{n=-\infty}^{n=\infty} f(t,z) \sigma(t-m\Delta T,z-n\Delta Z)$$

 $\begin{array}{l} \text{DTF:} \ \ F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M+vy/N)} \\ \text{IDFT:} \ \ f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1N-1} F(u,v) e^{j2\pi(ux/M+vy/N)} \end{array}$

二维 DFT 和 IDFT 性质

谱 $|F(u,\nu)| = [R^2(u,\nu) + I^2(u,\nu)]^{1/2}$, R = Real(F), I = Imag(F) 相 角 $\phi(u,v) = \arctan\left[\frac{I(u,v)}{R(u,v)}\right]$

极坐标 $F(u, \nu) = |F(u, \nu)|e^{j\phi(u, \nu)}$

周期性(k 为整数) $F(u,v) = F(u+k_1M,v+k_2N)$

 $f(x,y) = f(x+k_1M,y+k_2N)$

卷积 $(f\star h)(x,y)=\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}f(m,n)h(x-m,y-n)$

相关 $(f \star h)(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m,n)h(x+m,y+n)$

可分离性 使用 DFT 算法求 IDFT $MNf^*(x,y)=\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F^*(u,v)\mathrm{e}^{-\mathrm{j}2\pi(ux/M+\nu y/N)}$ 结果取 复共轭 并除以 MN 就可得到反变换

离散单位冲激 $\delta(x,y) \Leftrightarrow 1,1 \Leftrightarrow MN\delta(u,v)$

巻积定理 $(f\star h)(x,y)\Leftrightarrow (F\cdot H)(u,v)\parallel (f\cdot h)(x,y)\Leftrightarrow \frac{1}{MN}(F\star H)(u,v)$

平移性 $f(x,y)\mathrm{e}^{\mathrm{j}2\pi(u_0x/M+v_0y/N)}\Leftrightarrow F(u-u_0,v-v_0)\parallel f(x-x_0,y-y_0)\Leftrightarrow F(u,v)\mathrm{e}^{-\mathrm{j}2\pi(ux_0/M+\nu y_0/N)}$

频率域滤波

(1)对图像 f(x,y)进行零填充(长宽均变为两倍,变为 $P \times Q$

(2) 频谱中心化: $\Pi(-1)^x + y$ 乘以填充后的图像;

(3) 计算(2)结果的 DFT, 即F(u, v);

(4) 用滤波器函数H(u,v)乗以 $F(u,v): \mathcal{G}(u,v) = H(u,v)F(u,v)$

(5)计算(4)中结果的 IDFT, $g(x,y) = \mathfrak{J}^{-1}G(u,v)$

—理论值为实数,计算误差会导致寄生复成分;

(6)得到(5)结果中的实部;

(7) 用 $(-1)^x + y$ 乘以(6)中的结果;

(8)提取(7)中的左上角(与输入图像同大小)。

低通频率域滤波器

理想低通滤波器 D_0 为截止频率 $D(u,v) = [(u-M/2)^2 + (v-N/2)^2]$

 $H(u,\!v){=}^{1,\ D(u,v){\leq}D_0}_{0,\ D(u,v){>}D_0}$

总功率 $P_T = \sum_{u=0}^{P-1} \sum_{v=0}^{Q-1} P(u,v) = \sum_{u=0}^{P-1} \sum_{v=0}^{Q-1} |F(u,v)|^2$

在 $\mathbf{D}(\mathbf{u},\mathbf{v})$ 内的功率占比 $\alpha=100\sum_{u}\sum_{v}\dot{P(u,v)}/P_{T}$ where $D(u,v)\leq D_{0}$

巴特沃斯 $H(u,v) = \frac{1}{1+[D(u,v)/D_0]^{2n}} D(u,v) = \left[(u-M/2)^2 + (v-N/2)^2\right]^{1/2}$

高斯 $H(u,v) = e^{-D^2(u,v)/2D_0^2}$

高通滤波器

普通锐化: $H_{hp}(u,v) = 1 - H_{ip}(u,v)$

理想: $H(u,v) = {0, \ D(u,v) \le D_0 \atop 1, \ D(u,v) > D_0}$

巴特沃斯: $H(u,v) = \frac{1}{1 + [D_0/D(u,v)]^{2r}}$

高斯: $H(u, v) = 1 - e^{-D^2(u, v)/2D_0^2}$

频率域的拉普拉斯算子: $H(u,v) = -\left(u^2 + v^2\right) = -\left[\left(u - \frac{M}{2}\right)^2 + \left(v - \frac{N}{2}\right)^2\right]$

高提升滤波: $H_{hb}(u,v) = (A-1) + H_{hp}(u,v)$

高频加强滤波: $H_{hfe}(u,v)=a+bH_{hp}(u,v)$ a 控制原始贡献,b 控制高通贡献

同态滤波器 $H(u,v) = (\gamma_H - \gamma_L) \left[1 - e^{-c(D^2(u,v)/D_0^2)}\right] + \gamma_L$

其中 $\gamma_L < 1$ 且 $\gamma_H > 1$, c用于控制滤波器函数斜面的锐化

快速傅里叶变换

基本思想:利用傅里叶变换基底性质,将M个数据的傅里叶变换转为 2 组 $\frac{M}{2}$ 个数据的傅里叶变换,此 时计算量从 M^2 降低为 $\frac{M^2}{2}$

 $F(u) = \sum_{x=0}^{K-1} f(2x) W_{2K}^{u(2x)} + \sum_{x=0}^{K-1} f(2x+1) W_{2K}^{u(2x+1)}$ 偶数部分+奇数部分

 $W_{M}=e^{-j2\pi/{\rm M}}, \quad W_{2K}{}^{2ux}=W_{k}{}^{ux}$

 $F_{even}(u) = \sum_{x=0}^{K-1} f(2x) W_K^{ux} \quad F_{odd}(u) = \sum_{x=0}^{K-1} f(2x+1) W_K^{ux}$

 $F(u) = F_{even}(u) + F_{odd}(u)W_{2K}^u$

 $F(u+K) = F_{even}(u) - F_{odd}(u) W^u_{2K} \label{eq:fuk}$

CHAPTER 5

图像退化/复原模型

空域: $g(x,y) = (h \star f)(x,y) + \eta(x,y)$

频域: G(u,v) = H(u,v)F(u,v) + N(u,v)

高斯 $p(z)=\frac{1}{\sqrt{2\pi}\sigma}e^{-(z-\bar{z})^2/2\sigma^2}$

伽马 $p(z) = \frac{1}{2} z^{\{\gamma-1\}} e^{-z-\gamma}$

指数 $p(z) = \frac{\gamma}{\stackrel{(b-1)!}{(b-1)!}} e^{-az}, z \ge 0$ $\|\bar{z} = \frac{1}{a}, \sigma^2 = \frac{1}{a^2}$

均匀 $p(z)=\frac{1}{0}$, $a\leq z\leq b$, $a\leq z\leq b$

椒盐 $p(z) = P_s \atop P_p \atop z=0 \atop 1-(P_s+P_p) ,z=V$

参数估计 $\mu = \sum_{z_i \in S} z_i p(z_i)$ $\sigma^2 = \sum_{z_i \in S} (z_i - \mu)^2 p(z_i)$

只存在噪声的复原——空间滤波

加性噪声退化后: $g(x,y) = f(x,y) + \eta(x,y)$ G(u,v) = F(u,v) + N(u,v) (噪声未知)

均值滤波

算术平均滤波 $\hat{f}(x,y) = \frac{1}{mn} \sum_{(r,c) \in S_{xy}} g(r,c)$

S表示中心在(x,y),尺寸为mxn的图像;平滑了一幅图像的局部变化;在模糊了结果的同时减少了噪声

几何平均滤波 $\hat{f}(x,y) = \left[\prod_{(r,c) \in S_{xy}} g(r,c)\right]^{\frac{1}{mn}}$

平滑度可以与算术均值滤波器相比;图像细节丢失更少

谐波平均滤波 $\hat{f}(x,y)=rac{mn}{\sum_{(r,c)\in S_{xy}}}$ 对于"盐粒"效果好,不适用于"胡椒",善于处理像高斯噪声的噪

反谐波平均 $\hat{f}(x,y) = \frac{\sum_{(r,c) \in S_{xy}} g(r,c)^{Q+1}}{\sum_{(r,c) \in S_{xy}} g(r,c)^{Q}} Q$ 称为滤波器的阶数,>0 用于胡椒,<0 用于盐粒,=0 变为算数平均,=1 流生,1 流生型基 均.=-1 变为谐波平均

统计排序

中值 $\hat{f}(x,y) = median((r,c) \in S_{xy})\{g(r,c)\}$ 与大小相同的线性平滑滤波(均值滤波)相比,有效地 降低某些随机噪声,且模糊度要小得多

最大值 $\hat{f}(x,y) = \max_{(r,c) \in S_{xy}} g^{(r,c)}$ 发现最亮点,过滤胡椒

最小值 $\hat{f}(x,y) = \min_{(r,c) \in S_{xy}} {\it g}^{(r,c)}$ 发现最暗点,过滤盐粒

中点 $\hat{f}(x,y) = \frac{1}{2} \left[\max_{(r,c) \in S_{xy}} \{g(r,c)\} + \min_{(r,c) \in S_{xy}} \{g(r,c)\} \right]$ 适合处理随机分布的噪声,如高斯噪声 和均匀噪声

修正后的阿尔法均值滤波 $\hat{f}(x,y) = \frac{1}{mn-d} \sum_{(r,c) \in S_{xy}} g_R(r,c)$

在S邻域内去掉 $g(\mathbf{r},\mathbf{c})$ 最高灰度值的d/2 和最低灰度值的d/2。 代表剩余的mn-d个像素 d=0 变为算数 平均.=mn-1 变为中值

白话应

g(x,y)表示噪声图像在点(x,y)上的值

σ2噪声方差

 $\overline{z}_{S_{xy}}$ 在 S_{xy} 上像素点的局部平均灰度

 $\sigma_{S_{xy}}^2$ 在 S_{xy} 上像素点的局部方差

局部降噪

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_{\mathrm{S}}^2} \left[g(x,y) - \overline{z}_{S_{xy}} \right]$$

 $c_{x_{min}} \mathcal{E}S_{(xy)}$ 中的最小灰度值; $z_{max} \mathcal{E}S_{(xy)}$ 中的最大灰度值; $z_{med} \mathcal{E}S_{(xy)}$ 中的灰度值的中值; $z_{(xy)}$ 是坐标 (x,y)处的灰度值; $S_{max} \mathcal{E}S_{(xy)}$ 允许的最大尺寸。

层次 A: 若 $z_{min} < z_{med} < z_{max}$,则转到层次B

否则,增 $S_{\{xy\}}$ 的尺寸,

若 $S_{\{xy\}}l = S_{max}$,则重复层次 A

否则,输出 z_{med}

层次 B: 若 $z_{min} < z_{\{xy\}} < z_{max}$,则输出 $z_{\{xy\}}$

否则,输出 z_{med}

陷波滤波器

 $H_{\rm NR}(u,\nu)=\prod_{k=1}^Q H_k(u,\nu)H_{-k}(u,\nu)$

陷波带通滤波器 $H_{\rm NP}(u,\nu)=1-H_{\rm NR}(u,\nu)$

 $N(u,\nu) = H_{\rm NP}(u,\nu)G(u,\nu) \; \eta(x,y) = \mathfrak{T}^{-1}\{H_{\rm NP}(u,\nu)G(u,\nu)\} \; \hat{f}(x,y) = g(x,y) - w(x,y)\eta(x,y) \; = 0 \; \text{for } x \in \mathbb{R}^{n} \; \text{for } x \in \mathbb{R}^{n}$ $w(x, y) = \frac{\overline{g}\overline{\eta} - \overline{g}\overline{\eta}}{\overline{\eta^2} - \overline{\eta}^2}$

线性位置不变退化

如果退化模型为线性和位置不变的

$$g(x,y) = (h \star f)(x,y) + \eta(x,y)$$

$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$

估计退化函数

观察法 收集图像自身的信息

试验法 使用与获取退化图像的设备相似的装置

数学建模法 建立退化模型,模型要把引起退化的环境因素考虑在内

逆滤波

 $\hat{F}(u, v) = \frac{G(u, v)}{H(u, v)} = F(u, v) + \frac{N(u, v)}{H(u, v)}$

最小均方误差(维纳)滤波

 $\hat{F}(u, v) = \left[\frac{1}{H(u, v)} \frac{|H(u, v)|^2}{|H(u, v)|^2 + S_{\eta}(u, v)/S_f(u, v)}\right] G(u, v)$

 $\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}\right] G(u,v)$ (假设两个功率谱之比为常数 K)

 $S_{f(u,v)}=|F(u,v)|^2$ 为未退化函数功率; $S_{\eta}(u,v)=|N(u,v)|^2$ 为噪声功率谱;

信噪比頻域 SNR = $\frac{\sum_{k=0}^{M-1}\sum_{\nu=0}^{N-1}|F(u,\nu)|^2}{\sum_{k=0}^{M-1}\sum_{\nu=0}^{N-1}|N(u,\nu)|^2}$ 空域SNR = $\frac{\sum_{x=0}^{M-1}\sum_{\nu=0}^{N-1}f(x,y)^2/\sum_{x=0}^{M-1}}{\sum_{\nu=0}^{M-1}f(x,y)-\hat{f}(x,y)}$

均方误差 $\text{MSE} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[f(x,y) - \hat{f}(x,y) \right]^2$

约束最小二乘方滤波

约束 $|g - H\hat{f}|^2 = |\eta|^2$

准则函数最小化 $C = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\nabla^2 f(x,y) \right]^2$

最佳问题的解 $\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2}\right] G(u,v)$ 当 $\gamma = 0$ 时,退变成逆滤波

P(u, v) 为 p(x, y) 的傅里叶变换 p(x, y) 为拉普拉斯空间卷积核

几何均值滤波

$$\hat{F}(u,v) = \begin{bmatrix} H^*(u,v) \\ |H(u,v)|^2 \end{bmatrix}^a \begin{bmatrix} H^*(u,v) \\ |H(u,v)|^2 + \beta \begin{bmatrix} S_{f(u,v)} \\ S_{f(u,v)} \end{bmatrix} \end{bmatrix}^{1-\alpha}$$

当 $\alpha=0$ 时,滤波器退化为逆滤波器。当 $\alpha=0$ 时,滤波器退化为参数维纳滤波器。当 $\alpha=0,\beta=1$ 时, 滤波器退化为标准维纳滤波器。当 $\alpha=\frac{1}{2}$ 时,滤波器为几何均值滤波器。当 $\beta=1, \alpha$ 减到 $\frac{1}{2}$ 以上,它接 近逆滤波器,当 $\beta = 1, \alpha$ 减到 $\frac{1}{5}$ 以下,它接近维纳滤波器。当 $\beta = 1, \alpha = \frac{1}{5}$ 时,它被称为谱均衡滤波器。

CHAPTER 6

红,绿,蓝量用 X,Y,Z 表示,叫三色值

三色系数定义: $x = \frac{X}{X+Y+Z}$; ...; x + y + z = 1

彩色模型

RGB

显示器显示,一个颜色有8比特,2^8=256种颜色,全彩色则是24比特图像

颜料颜色;CMY(青色、深红、黄色)是 RGB 的补色;K 是黑色,用于调节色彩

RGB->CMY:
$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

RGB->CMYK:

 $K=1-\max(R,G,B)$ $C=\frac{1-R-K}{1-K}$ $M=\frac{1-G-K}{1-K}$

 $Y = \frac{1-B-K}{1-B-K}$

CMY->CMYK: K = min(C, M, Y) K=1, 其他=0

k!=1,其他为C=(C-K)/(1-K); M=(M-K)/(1-K); Y=(Y-K)/(1-K)CMYK->CMY: C = C(1 - K) + K; M = M(1 - K) + K; Y = Y(1 - Y) + K

h 色调(角度),s 饱和度(鲜艳程度),i 强度(颜色的明暗程度)

$$\begin{split} H &= 360 - \arccos\Big(\frac{(R-G) + (R-B)}{2\sqrt{(R-G)^2 + (R-B)(G-B)}}\Big)(G < B) \\ H &= \arccos\Big(\frac{(R-G) + (R-B)}{2\sqrt{(R-G)^2 + (R-B)(G-B)}}\Big)(G \geq B) \end{split}$$

$$S = 1 - \frac{3}{R \cdot G \cdot R} \cdot \min(R, G, B)$$

 $-\frac{3}{R+G+B} \cdot \min(R, G, B)$

 $I = \frac{R+G+B}{3}$

HSI->RGB

 $1.0^{\circ} \leq H < 120^{\circ}$

$$R = I \cdot \left(1 + \frac{S \cdot \cos(H)}{\cos(60^\circ - H)}\right); G = I \cdot (1 + S \cdot (1 - \cos(H)/\cos(60^\circ - H))); B = I \cdot (1 - S)$$

 $2.120^{\circ} < H < 240^{\circ}$

 $H'=H-120^\circ$

$$G = I \cdot \left(1 + \frac{S \cdot \cos(H')}{\cos(60^\circ - H')}\right); B = I \cdot (1 + S \cdot (1 - \cos(H')/\cos(60^\circ - H'))); R = I \cdot (1 - S)$$

 $3.240^{\circ} \leq H < 360^{\circ}$

 $H'=H-240^\circ$

$$B = I \cdot \left(1 + \frac{S \cdot \cos(H')}{\cos(60^\circ - H')}\right); R = I \cdot (1 + S \cdot (1 - \cos(H')/\cos(60^\circ - H'))); G = I \cdot (1 - S)$$

CIELAB

$$L_{\star} = 116 * h\left(\frac{Y}{Y_W}\right) - 16$$

$$a_{\star} = 500 * \left[h \left(\frac{X}{X_W} \right) - h \left(\frac{Y}{Y_W} \right) \right]$$

$$b_{\star} = 200*\left[h\!\left(\frac{Y}{Y_W}\right) - h\!\left(\frac{Z}{Z_W}\right)\right]$$

$$h(q) = \begin{cases} q > 0.008856 \Rightarrow (\frac{3}{2}) * q^{\frac{1}{3}} \\ q \le 0.008856 \Rightarrow 7.787 * q + \frac{16}{116} \end{cases}$$

L 表示亮度, 范围从 0 (黑色) 到 100 (白色)。 a 表示从绿色到红色的轴。 b 表示从蓝色到黄色的 轴。 h(q)是一个辅助函数, 用于处理非线性变换。

[0,L-1]灰度级别,分为 P+1 个区间, I_1,I_2,\cdots,I_{P+1} ,属于某个区间就赋值一个彩色

也可以设置 f_R, f_G, f_B 把灰度映射为不同通道的颜色

彩色变换

 $s_i = T_i(r_i), \quad i = 1, 2, \cdots, n$

提高亮度:RGB 三个分量乘以常数 k;CMY 求线性变化 $s_i = kr_i + (1-k), \quad i = 1,2,3$;CMYK 只需改变 第四个分量(K) $s_i = kr_i + (1-k)$, i = 4

突出图像中某个特定的彩色范围,有助于将目标从周围分离出来

感兴趣的颜色被宽度为W、中心在原型(即平均)颜色并具有分量 a_i 的立方体(n>3时为超立方体)包围,

$$s_i = \begin{cases} 0.5,, & \left[|r_j - a_j| > W/2 \right]_{1 \leq j \leq n} & i = 1, 2, \cdots, n \\ r_i,, & \text{ the } \end{cases}$$

用一个球体来规定感兴趣的颜色时

$$s_i = \begin{cases} 0.5,, & \sum_{j=1}^n \left(r_j - a_j \right)^2 > R_0^2 \\ r_i,, & \text{ if it} \end{cases} \quad i = 1, 2, \cdots, n$$

平滑和锐化

平滑

$$\overline{c}(x,y) = \begin{pmatrix} \frac{1}{K} \sum_{(s,t) \in S_{sy}} R(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S_{sy}} G(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S_{sy}} B(s,t) \end{pmatrix}$$

锐化

$$\nabla^{2} c(x,y) = \begin{pmatrix} \nabla^{2} R(x,y) \\ \nabla^{2} G(x,y) \\ \nabla^{2} B(x,y) \end{pmatrix}$$

分割图像

HSI:用饱和度(S),大于某个阈值分割

RGB: 令 z 表示 RGB 空间中的任意一点,RGB 向量 a 来表示平均颜色

$$D(z,a) = |z-a|$$

$$= [(z-a)^{\mathrm{T}}(z-a)]^{\frac{1}{2}}$$

欧氏距离为
$$= \left[(z_R - a_R)^2 + (z_G - a_G)^2 + (z_B - a_B)^2 \right]^{\frac{1}{2}}$$

 $D(z,a) \le D_0$ 的点的轨迹是半径为 D_0 的一个实心球体

马哈拉诺比斯距离 $D(z,a) = [(z-a)^{\mathrm{T}}C^{-1}(z-a)]^{\frac{1}{2}}$

 $D(z,a) \leq D_0$ 的点的轨迹是半径为 D_0 的一个实心三维椭球体

两个方法都计算代价也很高昂,一般用边界盒关于 a 居中,它沿各坐标轴的长度与样本沿坐标轴的标 准差成比例

CHAPTER 9

二值图像形态学运算小结

运算	公式	注释
平移	$(B)_z = \{c \mid c=b+z, b \in B\}$	将 B 的原点平移到点 z
反射	$\hat{B} = \{w \mid w = -b, b \in B\}$	相对于B的原点反射

补集	$A^c = \{w \mid w \not\in A\}$	不属于 A 的点集
差集	$A-B=\{w\mid w\in A, w\notin B\}=\\A\bigcap B^\circ$	属于A但不属于B的点集
腐蚀 $A \in$	$B = \{z \mid (B)_z \subseteq A\} = \{z \mid (B)_z \cap A^c = C\}$	$\mathbb{R}[0]$ 腐蚀 A 的边界 (I)
膨胀	$A \oplus B = \left\{z \mid \left(\hat{B}\right)_z \cap A \neq \varnothing\right\}$	膨胀 A 的边界 (I)
开运算	$A\circ B=(A\ominus B)\oplus B$	平滑轮廓,断开狭窄区域,删除小孤岛和尖刺(I)
闭运算	$A \bullet B = (A \oplus B) \ominus B$	平滑轮廓, 弥合狭窄断裂和细长沟 道, 删除小孔洞(I)
击中与击不中	$\begin{array}{c} I \circledast B_{1,2} = \left\{z \mid \left(B_1\right)_z \subseteq \right. \\ A \not \Leftrightarrow \left. \left(B_2\right)_z \subseteq A^c \right\} \end{array}$	在图像1中寻找结构元B的实例
边界提取	$\beta(A) = A - (A \ominus B)$	提取集合 A 的边界上的点集(I)
孔洞填充	$X_k = (X_{k-1} \oplus B) \bigcap I^c, k = \\ 1, 2, 3, \cdots$	填充 A 中的孔洞, X_0 初始化为 I 边框 (I)
连通分量	$X_k = (X_{k-1} \oplus B) \cap I, k = \\ 1, 2, 3, \cdots$	寻找I中的连通分量(I)
凸壳	$X_k^i = \left(X_{k-1}^i \otimes B^i\right) \bigcup X_{k-1}^i, i = 1, 2, 3, 4$	计算I中前景像素的凸壳(I)
细化	$A\otimes B=A-(A\circledast B)$	细化集合 A ,移除多余分支(I)
粗化	$A\odot B=A\bigcup (A\circledast B)$	使用结构元粗化集合A(I)
骨架	$\begin{array}{c} S(A) = \bigcup_{k=0}^K S_{k(A)}, S_{k(A)} = \\ (A \ominus k_B) - (A \ominus k_B) \circ B \end{array}$	寻找集合A的骨架(I)
裁剪	$\begin{split} X_1 &= A \otimes \{B\} X_2 = \bigcup_{k=1}^8 \left(X_1 \otimes B^k\right) \\ X_3 &= \left(X_2 \oplus H\right) \cap A X_4 = X_1 \cup X_3 \end{split}$	X_4 是裁剪集合 A 后的结果。结构元(V)用于前两个公式, H 用于第三个公式(I)
大小为1的测地膨胀	$D^1_G(F) = (F \oplus B) \cap G$	F和G分别称为标记图像和模板图像(I)
大小为1的测地腐蚀	$E^1_{\{G\}}(F) = (F \odot B) \cup G$	F和G分别称为标记图像和模板图像(I)
大小为n的测地腐蚀	$E^n_{\{G\}}(F) = E^1_{\{G\}} \Big(E^{n-1}_{\{G\}}(F) \Big)$	n表示重复迭代次数(I)
膨胀形态学重建	$R^D_G(F) = D^k_G(F), ks.t.$ $D^k_G(F) = D^{k+1}_G(F)$	通过迭代膨胀完成形态学重建(I)
腐蚀形态学重建	$\begin{split} R_G^{E(F)} &= E_G^k(F), ks.t. \\ E_G^k(F) &= E_G^{k+1}(F) \end{split}$	通过迭代腐蚀完成形态学重建(I)
重建开运算	$O_R^n(F) = R_F^{D(F \ominus n_B)}$	$(F\odot n_B)$ 表示 B 对 F 的 n 次腐蚀, B 的形式依赖于应用(I)
重建闭运算	$C_R^n(F) = R_F^{E(F \oplus n_B)}$	$(F \oplus n_B)$ 表示 B 对 F 的 n 次膨胀, B 的形式依赖于应用(I)
孔洞填充	$H = \left[R_{I^c}^{D(F)} ight]^c$	H等于输入图像 I ,但所有孔洞均被填充 (I)
边界清除	$X = I - R_I^{D(F)}$	X等于输入图像 I ,但删除了所有接触边界的标记(I)

灰度级形态学

灰度腐蚀[$f\ominus b$] $(x,y)=\min_{(s,t)\in b}\{f(x+s,y+t)\}$ 非平坦[$f\ominus b_N$] $(x,y)=\min_{(s,t)\in b_N}\{f(x+s,y+t)\}$ $t)-b_N(s,t)\}$

灰度膨胀 $[f \oplus b](x,y) = \max_{(s,t) \in b} \{f(x-s,y-t)\}$ 非平坦 $[f \oplus b_N](x,y) = \max_{(s,t) \in b_N} \{f(x-s,y-t)\}$ $t) + \hat{b}_N(s,t)$

开运算 $f \circ b = (f \ominus b) \oplus b$ 闭运算 $f \bullet b = (f \oplus b) \ominus b$

形态学梯度 $g = (f \oplus b) - (f \oplus b)$

顶帽变换 $T_{hat}(f) = f - (f \circ b)$ 底帽变换 $B_{hat}(f) = (f \bullet b) - f$

CHAPTER 10

背景知识

差分: 前向 $\frac{\partial f(x)}{\partial x} = f(x+1) - f(x)$ 后向 $\frac{\partial f(x)}{\partial x} = f(x) - f(x-1)$ 中值 $\frac{\partial f(x)}{\partial x} = \frac{f(x+1) - f(x-1)}{2}$ 二阶 $\frac{\partial^2 f(x)}{\partial x^2} = f(x+1) - 2f(x) + f(x-1)$

(1)一阶导产生粗边缘; (2)二阶导对精细细节(如细线、孤立点和噪声)有更强的响应; (3)二阶导在灰度 斜坡和台阶过渡处会产生双边缘响应; (4)二阶导的符号可用于确定边缘的过渡是从亮到暗(正)还是从 暗到亮(负)。

孤立点检测

拉普拉斯 $abla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$ 超过阈值 T 的标记 $g(x,y) = \begin{cases} 1, |Z(x,y)| > T \\ 0, & \neq \ell \end{cases}$

直线检测

	水平			+45"			÷χ			-45°	
-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	. 2	-1	-1	-1	2	-1	-1	-1	2

边缘检测

梯度 $\nabla f(x,y) \equiv \operatorname{grad}[f(x,y)] \equiv \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial x} \end{bmatrix}$

欧几里得向量范数 $M(x,y) = \|\nabla f(x,y)\| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$ 绝对值来近似梯度幅度:

$$M(x,y) \approx |g_x| + \left|g_y\right|$$

梯度方向(垂直边缘) $\alpha(x,y) = \arctan \left[\frac{g_y(x,y)}{g_x(x,y)} \right]$

$$\begin{pmatrix} z_1 & z_2 & z_3 \\ z_4 & z_5 & z_6 \\ z_7 & z_8 & z_9 \end{pmatrix}$$

Robert 算子 $g_x = \frac{\partial f}{\partial x} = (z_9 - z_5) g_y = \frac{\partial f}{\partial y} = (z_8 - z_6)$

Prewitt 算子
$$g_x = \frac{\partial f}{\partial x} = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$$
 $g_y = \frac{\partial f}{\partial y} = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$

Sobel 算子
$$g_x = \frac{\partial f}{\partial x} = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$
 $g_y = \frac{\partial f}{\partial y} = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$

二维高斯函数, $G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$

高斯拉普拉斯(LoG)函数: $\nabla^2 G(x, y) = \left(\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$

Marr-Hildreth 算法 $g(x,y) = [\nabla^2 G(x,y)] \star f(x,y) = \nabla^2 [G(x,y) \star f(x,y)]$ 寻找 g(x,y)的过零点来确定

高斯差分(DoG)来近似式的 LoG 函数 $D_G(x,y)=rac{1}{2\pi\sigma_1^2}e^{-rac{x^2+y^2}{2\sigma_1^2}}-rac{1}{2\pi\sigma_2^3}e^{-rac{x^2+y^2}{2\sigma_2^2}}$

满足条件则连接 $|M(s,t)-M(x,y)| < E |\alpha(s,t)-\alpha(x,y)| < A$

霍夫变换 $\rho(\theta) = x\cos\theta + y\sin\theta = R\cos(\theta - \phi) = \sqrt{x^2 + y^2}\cos(\theta - \arctan\frac{x}{y})$

子值

多分类
$$g(x,y) = \begin{cases} a, & f(x,y) > T_2 \\ b, T_1 < f(x,y) \le T_2 \\ c, f(x,y) \le T_1 \end{cases}$$

基本的全局阈值化

- 1. 为全局阈值T选择一个初始估计值。 2. 在 $g(x,y) = \begin{cases} 1.f(x,y)>T & \text{中用}T$ 分割图组成的 G_1 ,由所有小于等于T的像素组成的 G_2 中用T分割图像。这将产生两组像素: 由灰度值大于T的所有像素
- 3. 对 G_1 和 G_2 中的像素分别计算平均灰度值(均值) m_1 和 m_2
- 4. 在 m_1 和 m_2 之间计算一个新的阈值: $T = \frac{m_1 + m_2}{2}$
- 5. 重复步骤 2 到步骤 4 ,直到连续迭代中的两个 2 值间的差小于某个预定义的值 $^\Delta T$ 为止。

OSTU 方法 n_i 表示灰度级 i 的像素数, $M*N=\sum_{i=0}^{L-1}n_i; p_i=\frac{n_i}{MN}; \sum_{i=0}^{L-1}p_i=1,\quad p_i\geq 0$

分为两类 c_1,c_2 累计概率 $P_1(k)=\sum_{i=0}^k p_i; P_2(k)=\sum_{i=k+1}^{L-1} p_i=1-P_1(k)$ 平均灰度 $m_1(k)=\frac{1}{P_1(k)}\sum_{i=0}^k ip_i; m_2(k)=\frac{1}{P_2(k)}\sum_{i=k+1}^{L-1} ip_i$ k 级累计灰度 $m(k)=\sum_{i=0}^k ip_i$ 整个图像平均灰度 $m_G=\sum_{i=0}^{L-1} ip_i$

约束条件 $P_1m_1 + P_2m_2 = m_G; P_1 + P_2 = 1$

全局方差
$$\sigma_G^2 = \sum_{i=0}^{L-1} \left(i - m_G\right)^2 p_i$$
 类间方差 $\sigma_B^2 = P_1(m_1 - m_G)^2 + P_2(m_2 - m_G)^2 = P_1P_2(m_1 - m_2)^2 = \frac{m_GP_1 - m_1^2}{P_1(1 - P_1)}$ (选择 k 最大化 σ_B^2)

也可以多个阈值约束 $\sigma_B^2\big(k_1^*,k_2^*,\cdots,k_{K-1}^*\big) = \max_{0 < k_1 < k_2 < \cdots k_K < L-1} \sigma_B^2(k_1,k_2,\cdots,k_{K-1})$

区域生长 分离 聚合

- 1. 种子选择: 选择一组"种子"点,这些种子点通常是具有某些特定属性的像素,如灰度或颜色范围。 种子点的选择可以根据问题的性质或图像的特性来确定。
- 2. 相似性准则: 定义一个相似性准则, 用于判断邻域像素是否应被添加到当前区域。相似性准则可 以基干灰度、颜色、纹理等属性。
- 3. **区域扩展**:从种子点开始,将满足相似性准则的邻域像素逐步添加到当前区域中。这个过程会不 断重复,直到没有更多的像素满足加入准则。
- 4. **连通性考虑**:在区域生长过程中,必须考虑像素的连通性,以确保生成的区域是连通的。通常使 用8连通或4连通来定义邻域。
- 5. **停止规则**:定义一个停止规则,当没有更多的像素满足加入准则时,区域生长过程停止。
- 6. 区域标记:使用不同的标记(如整数或字母)来标识每个生成的区域,形成分割后的图像。

1. 初始分割: 将图像初步划分为一组不相交的区域(如基于像素的颜色、灰度值等),形成初始区 域。这些区域可以用细网格单元表示。

- 根据定义的判别准则(如区域的均值、方差、纹理等特性),对某一特定区域 R 判断其是否满足 某些属性。如果不满足,则将其细分为更小的不相交区域。
- 例如,可以将 Q(R) = FALSE 的任何区域划分为 4 个子区域。

- 如果满足某些逻辑条件(如两个相邻区域的属性接近,满足 $Q(R_i \cup R_j) = \text{TRUE}$),则将这些区
- 通过不断聚合区域,减少过度分割的可能性。

- 当区域无法进一步分割或聚合时, 停止操作。
- 最终的分割结果应满足所有区域均符合准则。

• 结合区域的统计特性(如均值 m_R 和标准差 σ_R)和用户定义的阈值范围,可以定义规则 Q(R)(例如: $\sigma_R > a$, AND, $m_R < b$)。

- 1. 梯度图像:,算法使用图像的梯度图像 g(x,y),其中包含多个区域极小值 $M_{\{1\}}, M_{\{2\}}, M_{\{g\}}$ 。这些 极小值对应于图像中的局部低谷。
- 2. 汇水盆地:每个区域极小值 $M_{\{i\}}$ 都有一个与之相关联的汇水盆地 $C(M_i)$,这些汇水盆地中的点形 成一个连通分量。
- 3. 淹没过程: 算法通过模拟水位从最小值 min 逐渐上升到最大值 max 的过程来分割图像。在每个水 位 n,集合 T[n] 包含所有灰度值小于 n 的点。
- 4. 二值图像: 在每个水位 n, T[n] 可以被视为一幅二值图像, 其中黑点表示位于平面 g(x,y)=n 下
- 5. 汇水盆地分割: 随着水位上升,算法通过比较当前水位 n 的连通分量与前一水位 n-1 的汇水盆 地,来确定是否需要构建水坝以防止不同汇水盆地的水流溢出。
- 6. 水坝构建: 当水位上升到某个点时, 如果发现有多个汇水盆地的水流可能溢出, 算法会在这些汇 水盆地之间构建水坝(即分割线),以阻止水流混合。

缺点:受噪声影响大:容易讨度分割

CHAPTER 11

边界预处理

跟踪二值图像中1值区域 R 的边界算法:从左上角标记为1的点开始,按顺时针找8 邻域中下一个1,然 后继续从下一个1开始执行算法,直到回到起点

弗里曼链码:基于线段的4连通或8连通,使用一种编号方案对每个线段的方向进行编码。用于表示 由顺次连接的具有指定长度和方向的直线段组成的边界。

从起点开始,往哪个箭头方向走就标记哪个数字,直到回到起点;形状和链码是一一对应的;改变起点会让

归一化:循环位移后数字最小的链码

差分:相邻的做差,i 为当前 a[i+1] - a[i],最后加一个起点-终点;之后对 4 或者 8 取 $mod;D = [(C_5 C_1) \, \mathrm{mod} \, m, (C_3 - C_2) \, \mathrm{mod} \, m, ..., (C_1 - C_n) \, \mathrm{mod} \, m]$

形状数(差分+归一化): 将码按一个方向循环,使其构成的自然数最小序列;形状数的阶n 定义为形状 数中的数字的数量。

斜率链码:在曲线周围放置**等长**的直线段得到,其中的直线段的端点与曲线相接,直线段的斜率记录 链码

最小周长多边形:使用尽量少的线段来得到给定边界的基本形状;abc 三点行列式,逆时针为正,顺时针为 负,共线为0;先找所有凸起和凹陷点,然后凹顶点需要镜像;

标记图:把质心到边界的距离画成角度的函数。将原始的二维边界简化为一维函数表示。

边界特征描述子

边界 B 的直径 $\operatorname{diameter}(B) = \max_{i,j}[D(pi,pj)]$ 式中 D 为距离测度,pi 和 pj 是边界上的点。

长度length_m =
$$\left[\left(\mathbf{x}_2 - \mathbf{x}_1\right)^2 + \left(\mathbf{y}_2 - \mathbf{y}_1\right)^2\right]^{1/2}$$
方向angle_m = $\arctan\left[\frac{y_2 - y_1}{x_2 - x_1}\right]$

曲线的曲折度定义为斜率链码链元素的绝对值之和: $au = \sum_{i=1}^n |\alpha_i|$ 式中的 $\mathbf n$ 是斜率链码中的元素数量, $|\alpha_i|$ 是链码中元素的值(斜率变化)。

傳里叶描述子:二维边界可以被视为复数从而一维化表示为 $\mathbf{s}(\mathbf{k}) = \mathbf{x}(\mathbf{k}) + \mathbf{j}\mathbf{y}(\mathbf{k})$ 边界的傅里叶描述子 $a(u) = \sum_{k=0}^{K-1} s(\mathbf{k}) e^{-j2\pi u k/K}$ $\mathbf{s}(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u) e^{j2\pi u k/K};$ 只采用前 P 个系数 $\hat{\mathbf{s}}(k) = \frac{1}{K} \sum_{u=0}^{P-1} a(u) e^{j2\pi u k/K}$

统计矩: 1.把 g(r)的幅度视为离散随机变量 z,形成幅度直方图 p(zi),A 是灰度值最大的区间数量。将 p

归一化,使其元素之和等于 1,那么 p(zi)是灰度值 zi 的概率估计; z 关于其平均值的 n 阶矩为 $\mu_n(z) = \sum_{i=0}^{A-1} (z_i - m)^n p(z_i)$ m 是 z 的均值, μ_2 是 z 的方差,只需要前几个矩来区分明显不同形状的标记图。

2.将 g(r)面积归一化为 1,并视为直方图,g(ri)可被视为值 ri 出现的概率。r 是随机变量 K 是边界上的

点数, $\mu_{n(r)}$ 与标记图 g(r)形状直接相关 矩是 $\mu_n(r)=\sum_{i=0}^{K-1}\left(r_i-m\right)^ng(r_i)$ 其中 $m=\sum_{i=0}^{K-1}r_ig(r_i)$

区域特征描述子

面积 A 为区域中的像素数量。周长 p 是其边界的长度;紧致度(无量纲) $\frac{p^2}{4}$;圆度(无量纲) $\frac{4\pi A}{n^2}$; 有 效直径 $d_e = 2\sqrt{\frac{A}{\pi}}$

偏心率 标准椭圆 eccentricity = $\frac{c}{a} = \frac{\sqrt{a^2-b^2}}{2} = \sqrt{1-(b/a)^2} \quad a \geq b$ 任意方向椭圆(协方差矩阵的特征值) eccentricity = $\sqrt{1-(\lambda_2/\lambda_1)^2}$ $\lambda_1 \geq \lambda_2$

拓扑描述子:孔洞的数量 H 和连通分量 C 的数量,定义欧拉数 E = C - H 顶点数表示为V,将边数表示为Q,将面数表示为F时,V-Q+F=E

纹理:统计方法(和统计矩 1 类似),光滑度 $R=1-\frac{1}{1+\sigma^2(z)}\,\sigma^2$ 是方差 μ_2 ;一致性 $U=\sum_{i=0}^{L-1}p^2(z_i)$ 熵 $p = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i)$

共生矩阵中的元素 g_{ij} 值定义为图像f中灰度 (z_i,z_j) 的像素对出现的次数;像素对不一定是左右的,可以跨 格子;从 z_i 到 z_i

共生矩阵(KxK)的描述子, $p_i j$ 等于 G 中第 i,j 项处于 G 的元素之和

描述子	解释	公 式
最大概率	度量 G 的最强响应,值域是 $[0,1]$	$\max_{i,j} p_{ij}$
相关	一个像素在整个图像上与其相邻像素有多相关的测度,值域是 [1,-1],1对应于完全正相关,-1对应于完全负相关。标准差为零时,这个测度无定义	$\sum_{i=1}^{K} \sum_{J=1}^{k} \frac{(i-m_r)(j-m_c)p_{ij}}{\sigma_r \sigma_c}, \ \sigma_r \neq 0, \ \sigma_c \neq 0$
对比度	一个像素在整个图像上与其相邻像素之间的灰度对比度的测度,值域是从 0 到(G 为常数时)到 $(K-1)^2$	$\sum_{i=1}^K \sum_{j=1}^K (i-j)^2 p_{ij}$
均匀性 (也称能量)	均匀性的一个测度,值域为[0,1]。恒定图像的均匀性为1	$\sum_{i=1}^K \sum_{j=1}^K p_{ij}^2$
同质性	G中对角分布的元素的空间接近度的测度,值域是 $[0,1]$, G 是对角阵时同质性为最大值,即 1	$\sum_{i=1}^K \sum_{j=1}^K \frac{p_{ij}}{1+ i-j }$
熵	G 中元素的随机性的测度。当所有 P_{ij} 均为 0 时,熵是 0 ; 当 P_{ij} 均匀分布时,熵取最大值,因此最大值为 $2\log_2 K$	$-\sum_{i=1}^K \sum_{j=1}^K p_{ij} \log_2 p_{ij}$

极坐标下的频谱函数 $S(r) = \sum_{\theta=0}^{\pi} S_{\theta}(r)$ $S(\theta) = \sum_{r=1}^{R_0} S_r(\theta)$

矩不变量:大小为 MxN 的数字图像 f(x,y)的二维(p+q)阶矩为 $m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x,y)$; (p+q)阶中心矩为 $\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x-\overline{x})^p (y-\overline{y})^q f(x,y)$ $\overline{x} = \frac{m_0}{m_{00}}$, $\overline{y} = \frac{m_{00}}{m_{00}}$

归一化(p+q)阶中心矩为 $\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{(p+q)/2+1}}$

主成分描述子

 \mathbf{x} 是 \mathbf{n} 维列向量,总体平均向量 $m_x = E(x)$,向量总体的协方差矩阵 $(\mathbf{n}\mathbf{x}\mathbf{n})C_x = E\left\{(x-m_x)(x-m_x)^T\right\}$ 霍特林变换:令 A 是一个矩阵,这个矩阵的各行由 Cx 的特征向量构成; $y = A(x - m_x)$