

1

Agenda

- Introduction
- Mathematical Foundations
- Maximum Likelihood Estimation (MLE)
- Interpreting & Evaluating Model Coefficients

Brief Recap of Logistic Regression Basics

- Logistic Regression is a statistical method for binary classification. Unlike linear regression, it predicts the probability of a binary outcome.
- Real World Examples:
 - disease presence
 - customer churn
 - loan defaults
 - spam detection

SJSU SAN JOSÉ STATE UNIVERSITY **Summary Table of Different GLMs** Response Variable Type Suggested Distribution **Common Link Functions** Logit, Probit, Modeling probabilities of binary outcomes, Binary Outcome (e.g., success/failure) Binomial Complementary Log-Log such as presence/absence of a disease. Counting occurrences in fixed intervals, such Count Data (e.g., number of events) Poisson Log, Identity, Square Root as the number of calls received by a call center per hour. Count data that exhibit variability exceeding Count Data with Overdispersion Negative Binomial Log, Identity Poisson assumptions, such as the number of insurance claims per client. Proportions that vary between 0 and 1, such **Continuous Proportions** Beta Logit, Probit as the fraction of an area affected by a certain condition Modeling waiting times or service times, Positive Continuous Data Gamma Inverse, Log, Identity where the response variable is always positive. Continuous outcomes that are symmetrically Normally Distributed Data Normal (Gaussian) Identity distributed, such as test scores or heights.

Logistic Regression

- Objective
 - Making a predictive model for classification
- Extension of a Linear Regression (think GLM)
 - When the output Y is categorical.
- Classification
 - Classifying a new record, where its class is unknown, into one of the two classes, based on the values of its predictor variables X.
- Feature Selection
 - Finding factors distinguishing between records in different classes in terms of their predictor variables X, or "predictor profile" (odds).

9

Linear Regression vs Logistic Regression

- · Linear Regression (Prediction)
 - -Y: continuous value ($-\infty$, $+\infty$)

$$Y = \mathbf{X}^{T}\boldsymbol{\beta} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

$$Y | \mathbf{X} \sim \mathbf{N}(\mathbf{X}^{T}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$$

- Logistic Regression (Classification)
 - Y: discrete value from M classes

$$P(Y=C_j | \mathbf{x}; \boldsymbol{\beta}) \in [0,1] \text{ and } \Sigma_j P(Y=C_j | \mathbf{x}; \boldsymbol{\beta}) = 1$$

Logistic Function

- Logistic Function / Sigmoid Function:
 - map any real-valued number R into [0, 1]

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

• Note that the 1st derivative is simply:

$$\sigma'(x) = \left(\frac{1}{1 + e^{-x}}\right)' = \frac{e^{-x}}{(1 + e^{-x})^2} = \frac{1}{1 + e^{-x}} \frac{e^{-x}}{1 + e^{-x}} = \sigma(x) \left(1 - \sigma(x)\right)$$

11

Modeling Probabilities of Two Classes

• The probabilities of the 2 classes (0 and 1) are based on the logistic function $\sigma(x)$:

$$P(Y = 1|\mathbf{X}; \boldsymbol{\beta}) = \sigma(\mathbf{X}^T \boldsymbol{\beta}) = \frac{1}{1 + e^{-\mathbf{X}^T \boldsymbol{\beta}}} = \frac{e^{\mathbf{X}^T \boldsymbol{\beta}}}{1 + e^{\mathbf{X}^T \boldsymbol{\beta}}}$$

$$P(Y = 0|\mathbf{X}; \boldsymbol{\beta}) = 1 - P(Y = 1|\mathbf{X}; \boldsymbol{\beta}) = 1 - \sigma(\mathbf{X}^T \boldsymbol{\beta}) = \frac{e^{-\mathbf{X}^T \boldsymbol{\beta}}}{1 + e^{-\mathbf{X}^T \boldsymbol{\beta}}} = \frac{1}{1 + e^{\mathbf{X}^T \boldsymbol{\beta}}}$$

• So, it's just the Bernoulli distribution:

$$Y|X \sim Bern(\sigma(X^T\beta))$$

sjsum sj Nationalistika SJSU SAN JOSÉ STATE UNIVERSITY

1D (One Variable) Example

 Here's a simple logistic regression model for a single explanatory variable X₁:

$$P(Y=1 \mid X_1, \beta_0, \beta_1) = \sigma(\beta_0 + \beta_1 X_1) = \frac{1}{1 + e^{-\beta_0 - \beta_1 X_1}}$$

- What happens when β_1 increases?
- What does the coefficient β_0 represent?

13

Probability and Odds

• Probability (of class 1):

$$P(Y = 1) = \frac{P(Y = 1)}{P(Y = 0) + P(Y = 1)}$$

where

$$P(Y = 1 | X; \boldsymbol{\beta}) = \sigma(X^T \boldsymbol{\beta}) = \frac{1}{1 + e^{-X^T \boldsymbol{\beta}}}$$

• Odds - Ratio of P(Y = 1) to P(Y = 0):

Odds
$$(Y = 1) = \frac{P(Y = 1)}{P(Y = 0)} = \frac{P(Y = 1)}{1 - P(Y = 1)}$$
 Odds $= \frac{P}{1 - P}$ $P = \frac{\text{Odds}}{1 - \text{Odds}}$

15

SJSU SAN JOSÉ STATE UNIVERSITY

Probability and Odds

• Odds

$$P(Y = 1|X; \beta) = \sigma(X^{T}\beta) = \frac{1}{1 + e^{-X^{T}\beta}}$$

$$Odds = \frac{P}{1 - P} = \frac{\frac{1}{1 + e^{-X^{T}\beta}}}{1 - \frac{1}{1 + e^{-X^{T}\beta}}} = \frac{1}{e^{-X^{T}\beta}} = e^{X^{T}\beta}$$

• Log Transformation of Odds log(Odds(Y = 1)) aka "Logit (Transformation)":

$$\log(\operatorname{Odds}(Y=1)) = \log(e^{X^T\beta}) = X^T\beta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

log odds

linear combination of X

logit(P)

Relationship between Odds and Logit

logit function: $P(Y = 1|X; \beta) \Rightarrow Odds$

logistic function: $\sigma(X^T\beta) \in [0,1] \Rightarrow P(Y=1)$ using cutoff

SISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASI

17

Parameter Estimation with MLE

Maximum Likelihood Estimation (MLE)

- Given a dataset with N data points
- For a single data object with predictors X_i , and binary outcome Y_i
 - Let $p_i = P(Y_i = 1 | X_i; \beta)$: the probability of i in class 1
 - The probability of observing Y_i would be:

• Combining the two cases and include all datapoints \rightarrow Likelihood $L(\beta)$:

$$L(\pmb{\beta}) = \prod_{i} {p_{i}}^{Y_{i}} (1 - p_{i})^{1 - Y_{i}} = \prod_{i} \left(\frac{e^{X_{i}^{T} \pmb{\beta}}}{1 + e^{X_{i}^{T} \pmb{\beta}}}\right)^{Y_{i}} \left(\frac{1}{1 + e^{X_{i}^{T} \pmb{\beta}}}\right)^{1 - Y_{i}}$$

Parameter Estimation with MLE

• To find the coefficients β_i , it's more straightforward to maximize the log likelihood:

$$\log L(\boldsymbol{\beta}) = \sum_{i} Y_{i} \log p_{i} + (1 - Y_{i}) \log(1 - p_{i})$$

$$= \sum_{i} Y_{i} \log \left(\frac{e^{\boldsymbol{X}_{i}^{T} \boldsymbol{\beta}}}{1 + e^{\boldsymbol{X}_{i}^{T} \boldsymbol{\beta}}} \right) + (1 - Y_{i}) \log \left(\frac{1}{1 + e^{\boldsymbol{X}_{i}^{T} \boldsymbol{\beta}}} \right)$$

$$= \sum_{i} Y_{i} \boldsymbol{X}_{i}^{T} \boldsymbol{\beta} - \log (1 + e^{\boldsymbol{X}_{i}^{T} \boldsymbol{\beta}})$$
argmax of above
$$\frac{\partial \log L}{\partial \beta_{j}} = \sum_{i} (Y_{j} - p_{j}) X_{ij}$$
Use gradient ascend update to compute β_{i} numerically. :

• Use gradient ascend update to compute $oldsymbol{eta}_i$ numerically, :

$$\beta_i^{new} = \beta_i^{\text{old}} + \eta \frac{\partial \log L}{\partial \beta_i}$$

19

Logistic Regression and Neural Network

- Logistic Regression is similar to a single layer Neural Network:
 - Activation function → Sigmoid function
 - Input nodes → Predator variables X
 - Weights → Regression coefficients β
- Different optimizers normally used:
 - MLE for Logistic Regression
 - Adam, BP, ... for Neural Network
 - Linear model (LR) vs usually nonlinear (NN)

SUSSIBLE SUS

21

Model Coefficients

• The model coefficients $\widehat{m{\beta}_i}$ are computed from the maximum likelihood.

Generalized Linear Model Regression Results

Dep. Variable:	У	No. Observations:	173
Model:	GLM	Df Residuals:	171
Model Family:	Binomial	Df Model:	1
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-97.226
Date:	Thu, 26 Sep 2024	Deviance:	194.45
Time:	14:36:09	Pearson chi2:	165.
No. Iterations:	4	Pseudo R-squ. (CS):	0.1655
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-12.3508	2.629	-4.698	0.000	-17.503	-7.199
width	0.4972	0.102	4.887	0.000	0.298	0.697

The intercept coefficient of -12.3508 denotes the baseline log odds $\exp(-12.3508) = 0.0004326$ are the odds when width = 0

23

25

Log Odds Interpretation

• Logistic Model

$$logit(P) = log\left(\frac{P}{1 - P}\right) = \mathbf{X}^{T}\boldsymbol{\beta} = \beta_0 + \beta_1 X_1$$

• If X_1 is increased by one-unit

$$logit(P) = log\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1(X_1 + 1)$$

$$\mathrm{Odds} = \frac{P}{1-P} = e^{\beta_0 + \beta_1(X_1+1)} = e^{\beta_0 + \beta_1 X_1} e^{\beta_1} \qquad \text{odds are multiplied by } e^{\beta_1}$$

Profiling with Odds Ratio in Logistic Regression

Odds Ratio for a given predictor variable X_i quantifies the change in odds of the outcome occurring for a one-unit increase in that predictor, holding all other variables constant.

• For X_i , the odds ratio (OR) is given as:

$$OR(X_i) = \frac{odds_{new}}{odds_{orig}} = e^{\beta_i}$$

=========		l=======				=======
	coef	std err	z	P> z	[0.025	0.975]
Intercept	-12.3508	2.629	-4.698	0.000	-17.503	÷7.199
width	0.4972	0.102	4.887	0.000	0.298	0.697
=========		=======		_========		

27

Standard Error (SE)

The standard error measures the variability or precision of an estimated coefficient. It helps in assessing the reliability of the coefficient estimates. It's given by:

$$SE(\beta_i) = \sqrt{Var(\widehat{\beta_i})}$$

estimated variance of the coefficient

- It's used to construct confidence intervals and conduct hypothesis tests
- Smaller SE \rightarrow more precise estimate of β_i

	coef	std err	z	P> z	[0.025	0.975]
Intercept -	12.3508 0.4972	2.629 0.102	-4.698 4.887	0.000	-17.503 0.298	-7.199 0.697

Intercept width
Intercept 6.910 -0.267
width -0.267 0.010

covariance matrix

ISUM SJSUM S

Standard Error (SE)

- Flatter Peak
 - Maximum location harder to define
 - Larger SE

- Sharper Peak
 - Maximum location more clearly defined
 - Smaller SE

29

SJSU SAN JOSÉ STATE UNIVERSITY

Evaluation of Coefficients (z values)

The Z-statistic is used to test the significance of individual coefficients in a model:

$$z = \frac{\widehat{\beta_i}}{\text{SE}(\widehat{\beta_i})}$$

- Larger $z \rightarrow z \neq 0 \rightarrow \beta_i$ significant
- Rule of Thumb: cut-off value → ~2

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-12.3508	2.629	-4.698	0.000	-17.503	-7.199
width	0.4972	0.102	4.887	0.000	0.298	0.697
						

SISNW SISNW

Evaluation of Coefficients (p values)

The p values can be used to determine the significance of individual coefficient β_i :

Null Hypothesis H_0 : $\beta_i = 0$ (no impact to outcome)

Alternate Hypothesis H_1 : $\beta_i \neq 0$ (important)

- P-Value $\leq \alpha$ \rightarrow reject the null hypothesis
 - This indicates that the predictor X_i has a statistically significant relationship with outcome Y
- P-Value > α \rightarrow cannot reject the null hypothesis
 - This suggest insufficient evidence to conclude that the predictor variable X_i is statistically associated with outcome Y

31

			- 1			
	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Age	-0.0359	0.0673	-0.5340	0.5934	-0.1678	0.0959
Experience	0.0450	0.0668	0.6740	0.5003	-0.0859	0.1760
Income	0.0602	0.0030	20.2888	0.0000	0.0544	0.0660
Family	0.6182	0.0770	8.0239	0.0000	0.4672	0.7692
CCAvg	0.1634	0.0441	3.7078	0.0002	0.0770	0.2497
Mortgage	0.0007	0.0006	1.1961	0.2316	-0.0005	0.0019
SecuritiesAccount	-0.8701	0.3007	-2.8938	0.0038	-1.4595	-0.2808
CDAccount	3.8389	0.3416	11.2393	0.0000	3.1695	4.5084
Online	-0.7605	0.1657	-4.5886	0.0000	-1.0854	-0.4357
CreditCard	-1.0382	0.2131	-4.8720	0.0000	-1.4559	-0.6205
Education_Prof	0.0987	0.1888	0.5226	0.6012	-0.2714	0.4687
Education_Under	-3.9654	0.2696	-14.7084	0.0000	-4.4938	-3.4370
Intercept	-8.3452	1.7916	-4.6579	0.0000	11.8567	-4.8337

Evaluation of Coefficients (Confidence Intervals)

The confidence intervals can be used to determine the uncertainly of individual coefficients:

$$\left[\widehat{\beta}_i - z_{\alpha/2} \times SE(\widehat{\beta}_i), \widehat{\beta}_i + z_{\alpha/2} \times SE(\widehat{\beta}_i)\right]$$

• For 95% confidence intervals for β_i :

$$[\widehat{\beta}_i - 1.96 \times SE(\widehat{\beta}_i), \widehat{\beta}_i + 1.96 \times SE(\widehat{\beta}_i)]$$

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-12.3508	2.629	-4.698	0.000	-17.503	-7.199
width	0.4972	0.102	4.887	0.000	0.298	0.697

95% CI

Interval

99.5%

1.282

1.645 1.960

2.807 3.291

33

Example: Recap all the quantities

Generalized Linear Model Regression Results

	=====					
Dep. Variable:		У	No. Ob	No. Observations:		
Model:		GLM	Df Res	iduals:		171
Model Family:		Binomial	Df Mod	lel:		1
Link Function:		logit	Scale:			1.0000
Method:		IRLS	Log-Li	kelihood:		-97.226
Date:	Th	u, 26 Sep 2024	Devian	Deviance:		
Time:		14:36:09	Pearso	n chi2:		165.
No. Iterations:		4	Pseudo	R-squ. (CS):	0.1655
Covariance Type:		nonrobust				
	coef	std err	z	P> z	[0.025	0.975]

	coef	std err	z	P> z	[0.025	0.975]
Intercept width	-12.3508 0.4972	2.629 0.102	-4.698 4.887	0.000	-17.503 0.298	-7.199 0.697
========						

Regularization

- L1 (Lasso) Regularization
- L2 (Ridge) Regularization
- Elastic Net: Combining L1 and L2 regularization.

35

Model Evaluation

These are the standard model evaluation metrics for classification problems:

- Confusion Matrix
 - Summarizes the performance of the classification model.
- ROC Curve
 - Plots the true positive rate vs the false positive rate at various threshold/cutoff settings.
- AUC (Area Under the Curve)
 - Measures the overall performance of the model.

Actual

Predicted

Summary

- Logistic Regression is a powerful tool for binary classification problems, providing interpretable results through odds ratios and p-values.
- Formal mathematical formulation including using the MLE to estimate parameters.
- Logistic regression is similar to a single layer neural network with sigmoid function as the activation function.
- Hypothesis testing can be used to determine the significance of individual coefficients.
- L₁, L₂ and Elastic Net regularization can be used with logistic regression.
- Confusion matrix, ROC and AUC are popular model evaluation metrics for logistic regression.