IN THE CLAIMS

Please amend the Claims as follows:

1	1. (Original) A powered boating comprising.
2	a plurality of support legs;
3	a boat lifting structure moveably mounted to said plurality of support legs;
4	a cable assembly having a connecting end and a lifting end connected in
5	cooperation with said boat lifting structure for causing said boat lifting structure to be
6	raised or lowered;
7	an electric drive unit having a drive shaft capable of rotating in a first direction in
8	response to a first input signal or rotating in a second direction in response to a second
9	input signal;
10	a drive coupling structure coupled to said drive shaft;
11	a ball screw assembly having a first portion coupled to said coupling structure and
12	a second portion coupled to said connecting end.
1	2. (Original) A powered boatlift as in Claim 1, wherein
2	said first portion of said ball screw assembly includes an elongated ball screw
3	having a driving end coupled to said coupling structure wherein said coupling structure
4	rotatably supports said driving end; and
5	said second portion of said ball screw assembly includes a ball nut associated with
6	said elongated ball screw, said ball screw having a cable connection coupled to said
7	connecting end of said cable assembly.
1	3. (Original) A powered boatlift as in Claim 2, wherein said drive coupling
2	structure includes:
3	a drive train assembly having
4	an input drive coupled to said drive shaft for receiving high-speed low-torque
5	input from said electric drive unit;
6	a torque conversion mechanism coupled to said input drive for converting said
7	high-speed low-torque input to a low-speed high-torque output at an output drive; and

8	an output coupling intermediate said output drive of said torque conversion
9	mechanism and said driving end of said elongated ball screw.
1	4. (Original) A powered boatlift as in Claim 3, wherein said torque conversion
2	mechanism includes:
3	a speed-reducing structure driven by said input drive and having an output drive
4	shaft; and
5	a torque-increasing structure driven by said output drive shaft and coupled to said
6	output coupling.
1	5. (Original) A powered boatlift as in Claim 4, wherein
2	said speed-reducing structure is a pulley assembly and is belt driven; and
3	said torque-increasing structure is a gear assembly and is chain driven.
1	6. (Original) A powered boatlift as in Claim 3, wherein said torque conversion
2	mechanism includes:
3	a first drive pulley having a first predetermined diameter coupled to said input
4	drive;
5 .	a pulley drive shaft having a driven end and a driving end;
6	a second drive pulley having a second predetermined diameter larger than said
7	first predetermined diameter, said second drive pulley rotatably supported by said pulley
8	drive shaft at said driven end;
9	a belt intercoupling said first drive pulley and said second drive pulley;
10	a first drive gear having a third predetermined diameter mounted on said driving
11	end of said pulley drive shaft;
12	a gear drive shaft having a driven end and a driving end;
13	a second drive gear having a fourth predetermined diameter larger than said third
14	predetermined diameter, said first drive gear rotatably supported by said gear drive shaft
15	at said driven end;
16	a chain intercoupling said first drive gear and said second drive gear; and

17	an output coupling intercoupling said driving end of said gear drive shaft and said
18	driving end of said elongated ball screw.
1	7. (Original) A boatlift structure as in Claim 6, wherein
2	a first ratio of said first predetermined diameter to said second predetermined
3	diameter establishes a predetermined speed reduction at said pulley drive shaft; and
4	a second ratio of said third predetermined diameter to said fourth predetermined
5	diameter establishes a predetermined torque increase at said output coupling.
1	8. (Original) A powered boatlift structure as in Claim 3, and further including a
2	lift movement limiting mechanism comprising:
3	a lift measuring mechanism capable of determining the extent of upward and
4	downward movement of said lifting structure;
5	a first disabling structure coupled to said lift measuring mechanism to disable
6	power to said electric drive unit when said lift measuring mechanism determines that a
7	predetermined permissible upward movement of said lifting structure has been achieved;
8	and
9	a second disabling structure coupled to said lift measuring mechanism to disable
10	power to said electric drive unit when said lift measuring mechanism determines that a
11	predetermined permissible downward movement of said lifting structure has been
12	achieved.
1	9. (Original) A powered boatlift structure as in Claim 3, wherein said electric
2	drive unit includes:
3	a reversible electric motor; and
4	a control circuit coupled to said electric motor to selectively control the direction
5	of rotation or said electric motor in response to said first signal and said second signal.
1	10. (Original) A powered boatlift structure as in Claim 9, wherein said control
2	circuit includes:

3	a load limit detecting circuit to provide a disabling signal to disable application of
4	power to said reversible electric motor when electrical current flow to said reversible
5	electric motor is detected to be in excess of a predetermined permissible level.
1	11. (Original) A power boatlift structure as in Claim 10, and further including:
2	a manual reset actuator coupled to said control circuit to enable operation of said
3	control circuit after a said disabling signal has been provided by said load circuit
4	detecting circuit.
1	12. (Original) A powered boatlift structure as in Claim 9, wherein said control
2	circuit includes:
3	a first manually operable switch to provide said first signal to apply electrical
4	circuit to said reversible electric motor to cause rotation in a first direction; and
5	a second manually operable switch to provide said second signal to apply
6	electrical current to said reversible electric motor to cause rotation in a second direction.
1	13. (Original) A powered boatlift structure as in Claim 9, wherein said control
2	circuit includes a
3	receiver circuit responsive to a first remote signal to provide said first signal to
4	apply electrical current to said reversible electric motor to cause rotation in a first
5	direction; and responsive to a second remote signal to provide said second signal to apply
6	electrical current to said reversible electric motor to cause rotation in a second direction.
1	14. (Original) A powered boatlift structure as in Claim 9, wherein said control
2	circuit includes:
3	a first switch to provide said first signal;
4	a second switch to provide said second signal;
5	a receiver responsive to a first remote signal to protect said first signal and
6	responsive to a second remote signal to provide said second signal.

1	15. (Original) A powered boatlift structure as in Claim 9, wherein said control
2	circuit includes:
3	a reversal delay circuit to delay application of said first signal or said second
4	signal by a predetermined delay time interval to delay reversal of rotation of said
5	reversible electric motor.
1	16. (Original) A powered boatlift structure as in Claim 1, and further including:
2	a brake mechanism for holding said boat lifting structure in place when said
3	electric device unit does not have electrical current applied.
1	17. (Original A powered boatlift structure as in Claim 1, wherein one or more of
2	said plurality of support legs includes a boatlift leveling mechanism.
1	18. (Original) A powered boatlift structure as in Claim 17, wherein said boatlift
2.	leveling mechanism includes:
3	a footpad;
4	a height adjustment mechanism for use in colinear alignment with an associated
5	boatlift leg and having a first end portion coupled to said footpad and having a second
6	end portion; and
7	a height adjustment actuator accessible along an associated one of said plurality of
8	boatlift legs and coupled to said second end portion at a predetermined angle with respect
9	to said alignment,
10	whereby the relationship of said footpad with respect to an associated one of said
11	plurality boatlift legs can be controlled.
1	19. (Original) A boatlift leveling mechanism as in Claim 18, wherein said height
2	adjustment mechanism includes:
3	a leg extension member having said first end portion and said second end portion;
4	a height adjusting screw mechanism in cooperation with said leg extension
5	member, said height adjusting screw mechanism including an elongated screw having an
6	activating end and having a screw nut coupled to said leg extension member; and

7	an affixed bevel gear coupled to said activating end,
8	whereby said leg extension member is caused to move with respect to an
9	associated boatlift leg when said height adjusting screw mechanism is activated by
10	rotation of said affixed bevel gear.
1	20. (Original) A boatlift leveling mechanism as in Claim 19, wherein said height
2	adjustment mechanism further includes:
3	a height adjustment actuator having a mating bevel gear in cooperation with said
4	affixed bevel gear and having a height adjustment actuator for causing said mating bevel
5	gear to impart rotational movement to said affixed bevel gear,
6	whereby said screw is caused to rotate and move said screw nut long the length of
7	said screw.
1	21. (Amended) For use with a boatlift having at least one boatlift leg, a boatlift
2	leveling mechanism comprising:
3	a footpad;
4	a height adjustment mechanism for use in colinear alignment with an associated
5	boatlift leg and having a first end portion coupled to said footpad and having a second
6	end portion; and
7	a height adjustment actuator accessible along an said associated boatlift leg and
8	coupled to said second end portion at a predetermined angle with respect to said
9	alignment,
10	whereby the relationship of said footpad with respect to an said associated boatlift
1	leg can be controlled.
1	22. (Original) A boatlift leveling mechanism as in Claim 21, wherein said height
2	adjustment mechanism includes:
3	a leg extension member having said first end portion and said second end portion;
4	a height adjusting screw mechanism in cooperation with said leg extension
5	member, said height adjusting screw mechanism including an elongated screw having an
6	activating end and having a screw nut coupled to said leg extension member; and

7	an affixed bevel gear coupled to said activating end,
8	whereby said leg extension member is caused to move with respect to an
9	associated boatlift leg when said screw mechanism is activated by rotation of said affixed
10	bevel gear.
1	23. (Original) A boatlift leveling mechanism as in Claim 22 wherein said leg
2	extension member further comprises:
3	an elongate structure having a predetermined length longer than the length of said
4	screw mechanism, said elongated structure capable of slidable engagement with at least a
5	portion of an associated boatlift leg, and said elongated structure having a predetermined
6	tubular cross-section, wherein said screw mechanism is positioned within at least a
7	portion of the tubular opening.
1	24. (Original) A boatlift leveling mechanism as in Claim 22, wherein said height
2	adjustment mechanism further includes:
3	a height adjustment actuator having a mating bevel gear in cooperation with said
4	affixed bevel gear and having a height adjustment actuator for causing said mating bevel
5	gear to impart rotational movement to said affixed bevel gear,
6	whereby said screw is caused to rotate and move said screw nut long the length of
7	said screw.
1	25. (Original) A boatlift leveling mechanism as in Claim 24, wherein said height
2	adjustment actuator further includes:
3	a shaped head that is accessible along a boatlift leg; and
4	a shaft having a first shaft end coupled to said shaped head and a second shaft end
5	coupled to said mating bevel gear,
6	whereby said leg extension member is caused to be moved in a first direction
7	when said mating bevel gear is rotated in a first direction and in a second direction when
8	said mating bevel gear is rotated in a second direction be selective activation of rotation
9	of said shaped head in a first rotation direction or in a second rotation direction,
10	respectively.

1	26. (Original) A boatlift leveling mechanism as in Claim 25, wherein said shaft is
2	oriented substantially perpendicular to said elongated screw.
1	27. (Original) A boatlift leveling mechanism as in Claim 25 and further
2	including:
3	a bracket having a first structure to hold said mating bevel gear in a rotatable
4	cooperative relation with said affixed bevel gear and having a second structure for
5	coupling said bracket to a boatlift leg.
1	28. (Original) For use in a boatlift having at least one boatlift leg, a boatlift
2	leveling mechanism comprising:
3	footpad means for supporting an associated boatlift leg on a surface;
4	height adjustment means for linearly altering the spacing of said footpad means
5	with respect to the end of an associated boatlift leg; and
6	height adjustment actuator means for selectively activating said height adjustment
7	means, said height adjustment actuator means positioned for accessibility along the
8	length of an associated boatlift leg.
1	29. (Original) A boatlift leveling mechanism as in Claim 28, wherein said height
2	actuator means includes:
3	driving means coupled to said height adjustment means for linearly increasing
4	said spacing when rotated in a first direction and for linearly decreasing said spacing
5	when rotated in a second direction;
6	shaft means coupled to said driving means for rotating said driving means; and
7	head means coupled to said shaft means for imparting rotation thereto, said head
8	means for receiving activating force to cause said driving means to be rotated in either
9	said first direction or in said second direction.
1	30. (Original) A boatlift leveling mechanism as in Claim 29 and further
2.	including:

3	mounting means for coupling said height actuator means to said height adjustment
4	means.
1	31. (Original) A boatlift leveling mechanism as in Claim 30 wherein said
2	mounting means includes:
3	first structural means for positioning said shaft means at a predetermined angle in
4	the order of about 90 degrees with respect to said height adjustment means; and
5	second structural means for affixing said height actuator means to an associated
6	boatlift leg.
1	32. (Original) A powered boatlift comprising:
2	boat lifting means for supporting a boat;
3	cable means for leveling said boat lifting means and maintaining said both lifting
4	means level during raising;
5	a plurality of leg means for supporting said cable means;
6	winch cable means for raising and lowering said boat lifting means;
7	electric drive means for driving a drive shaft in a first direction in response to a
8	first input signal and for driving said drive shaft in a second direction in response to a
9	second input signal;
10	drive train means coupled to said electric drive means for converting high-speed
11	low-torque rotation input of said drive shaft to low-speed high-torque rotation output;
12	linear driving means coupled to said drive train means for controlling said winch
13	cable means to effect control of said raising and lowering of said boat lifting means; and
14	one or more boatlift leveling means, each coupled to an associated one of said
15	plurality of leg means, for leveling the boatlift.
1	33. (Original) A powered boatlift as in Claim 32, wherein said boatlift leveling
2	means includes
3	height adjusting means accessible along the length of an associated one of said
4	plurality of leg means for adjusting the height of said associated leg.

1	34. (Original) A powered boatlift as in Claim 32, wherein said electric drive
2	means includes
3	input means for coupling to a source of electrical power; and
4	switch means for applying said first signal and said signal.
1	35. (Original) A powered boatlift as in Claim 34, wherein said switch means
2	includes
3	manual switch means for applying said first signal and said second signal directly
4	to said electric drive means; and
5	remote switch means for remotely applying said first signal and said second signal
6	to said electric drive means without physical connection.
1	36. (Original) A powered boatlift as in Claim 33, and further including
2	load limiting means for sensing load current and disabling said electric drive
3	means when the sensed load current exceeds a predetermined level.
1	37. (Original) A powered boatlift as in Claim 33, and further including
2	delay means for delaying application of either said first signal or said second
3	signal that would cause a change of direction of movement of said boat lifting means, by
4	a predetermined time interval sufficient to allow said boat lifting means to come to a stop
5	before reversing direction.
1	38. (Original) For use with a power boatlift having a lifting structure including a
2	ball screw mechanism and a winch cable for raising and lowering a lifting structure, a
3	drive unit comprising:
4	electric drive means for providing power to the lifting structure for causing raising
<u>.</u>	and lowering of the lifting structure by controlling the direction of rotation of the ball
6	screw mechanism, said drive motor means including power input means for connecting to
7	a source of electrical power;
8	switch means for applying direction control signals to said electric drive means;
9	and `

1

1	logic means responsively coupled to said control signals for controlling the
2	operation of said electric drive means to control the raising or lowering of the lifting
3	structure.
1	39. (Original) A drive unit as in Claim 38, wherein said switch means includes:
2	manual switch means for applying to said electric drive means a first direction
3	control signal indicative of raising and a second direction control signal indicative of
4	lowering; and
5	remote switch means for remotely applying said first direction control signal and
6	said second direction control signal without physical connection.
1	40. (Original) A drive unit as in Claim 38, wherein said logic means includes:
2	light switching means for selecting operation of one or more auxiliary lights; and
3	light actuating means responsively coupled to said light switching means for
4	applying power to said one or more auxiliary lights.
1	41. (Original) A drive unit as in Claim 40, wherein said light actuating means
2	includes:
3	timing means for removing power to said one or more auxiliary lights after a
4	predetermined time has elapsed.
1	42. (Original) A drive unit as in Claim 38, wherein said logic means includes:
2	conflict detection means for detecting concurrent conflicting ones of said
3	direction control signals and inhibiting application of said conflicting direction control
4	signals to said electric drive means.
1	43. (Original) A drive unit as in Claim 38, wherein said logic means includes:
2	overload means responsively coupled to said electric drive means for sensing an
3	overload condition when a load exceeds the capacity of the lifting structure and for
4	disabling said electric drive means when said overload condition is sensed.

44. (Original) A drive unit as in Claim 38, wherein said logic means includes:

2	delay means coupled to said electric drive means for delaying by a predetermined
3	time interval application of said direction control signals that signal change of direction
4	of the lifting structure to thereby allow the lifting structure to come to a halt before
5	reversing
1	45. (Original) A drive unit as in Claim 38, and further including:
2	limiting means for limiting the movement of the lifting structure to a predetermined
3	upper level of travel and to a predetermined lower level of travel.