import pandas as pd
import matplotlib.pyplot as plt

df=pd.read_csv("/content/2_2015 - 2_2015.csv")
df

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	(
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.59201	
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.48450	
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.15684	
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.11850	
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.36453	
158 rd	ows × 12 colur	nns								
4										•

df=df.dropna()
data=df[["Country","Happiness Score"]]
data

	Country	Happiness Score	%	ıl.
0	Switzerland	7.587		
1	Iceland	7.561		
2	Denmark	7.527		
3	Norway	7.522		
4	Canada	7.427		
153	Rwanda	3.465		
154	Benin	3.340		
155	Syria	3.006		
156	Burundi	2.905		
157	Togo	2.839		

data.plot.box()

data.plot.scatter(x="Country",y="Happiness Score")

data.plot.bar()

<Axes: >

df2=pd.read_csv("/content/1_fiat500_VehicleSelection_Dataset - 1_fiat500_VehicleSelection_Dataset.csv") df2

	ID	model	engine_power	age_in_days	km	previous_owners	
0	1.0	lounge	51.0	882.0	25000.0	1.0	4
1	2.0	pop	51.0	1186.0	32500.0	1.0	4
2	3.0	sport	74.0	4658.0	142228.0	1.0	4
3	4.0	lounge	51.0	2739.0	160000.0	1.0	4
4	5.0	pop	73.0	3074.0	106880.0	1.0	4
1544	NaN	NaN	NaN	NaN	NaN	NaN	
1545	NaN	NaN	NaN	NaN	NaN	NaN	
1546	NaN	NaN	NaN	NaN	NaN	NaN	
1547	NaN	NaN	NaN	NaN	NaN	NaN	
4							•

data2=df2[["Unnamed: 9","Unnamed: 10"]]

data2=df2.drop(data2,axis=1)

data2=df2.drop(df2.index[1537:1549])

data2

	ID	model	engine_power	age_in_days	km	previous_owners
0	1.0	lounge	51.0	882.0	25000.0	1.0
1	2.0	рор	51.0	1186.0	32500.0	1.0
2	3.0	sport	74.0	4658.0	142228.0	1.0
3	4.0	lounge	51.0	2739.0	160000.0	1.0
4	5.0	pop	73.0	3074.0	106880.0	1.0
1532	1533.0	pop	51.0	1917.0	52008.0	1.0
1533	1534.0	sport	51.0	3712.0	115280.0	1.0
1534	1535.0	lounge	74.0	3835.0	112000.0	1.0
1535	1536.0	pop	51.0	2223.0	60457.0	1.0

data3=data2[["age_in_days","km"]]

data3

	age_in_days	km	1	ılı
0	882.0	25000.0		
1	1186.0	32500.0		
2	4658.0	142228.0		
3	2739.0	160000.0		
4	3074.0	106880.0		
153	1917.0	52008.0		
153	37 12.0	115280.0		
153	3835.0	112000.0		
153	35 2223.0	60457.0		
153	2557.0	80750.0		

data3.plot.line()

data3.plot.box()

data3.plot.scatter("age_in_days","km")

<Axes: xlabel='age_in_days', ylabel='km'>

data3.plot.bar()

data3.plot.hist()

df3=pd.read_csv("3_Fitness-1 - 3_Fitness-1.csv")
df3

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170

da=df3[["Row Labels","Sum of Total Sales"]]
.

	Row Labels	Sum of Total Sales	10-	ılı
C	Α	75		
1	В	160		
2	. C	101		
3	D	127		
4	E E	179		
5	5 F	167		
e	G G	171		
7	' н	170		

da.plot.box()

da.plot.scatter("Row Labels","Sum of Total Sales")

da.plot.hist()

df4=pd.read_csv("/content/4_drug200 - 4_drug200.csv")

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug	1	ılı	
0	23	F	HIGH	HIGH	25.355	drugY			
1	47	М	LOW	HIGH	13.093	drugC			
2	47	М	LOW	HIGH	10.114	drugC			
3	28	F	NORMAL	HIGH	7.798	drugX			
4	61	F	LOW	HIGH	18.043	drugY			
195	56	F	LOW	HIGH	11.567	drugC			
196	16	М	LOW	HIGH	12.006	drugC			
197	52	М	NORMAL	HIGH	9.894	drugX			
198	23	М	NORMAL	NORMAL	14.020	drugX			
199	40	F	LOW	NORMAL	11.349	drugX			
200 rows × 6 columns									

data4=df4[["Age","Na_to_K"]]
data4.plot.line()

data4.plot.box()

<Axes: xlabel='Age', ylabel='Na_to_K'>

data4.plot.hist()

data4.plot.box()

 $\label{def:def:def:def:def:def:def:def} $$ dfs=pd.read_csv("/content/5_Instagram data - 5_Instagram data.csv") $$ dfs $$$

Impressions From From From From Saves Comments Shares Likes Visits Follows Caption Hash1

uala

data5=df5[["Impressions","Likes"]]
data5

data5.plot.line()

data5.plot.box()

data5.plot.bar()

data5.plot.hist()

data5.plot.scatter("Impressions","Likes")

<Axes: xlabel='Impressions', ylabel='Likes'>

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease	Sales units	Turnover	Customer	Area (m2)	Opening hours
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0	398560.0	1226244.0	NaN	953.04	Type A
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0	82725.0	387810.0	NaN	720.48	Type A
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0	438400.0	654657.0	NaN	966.72	Type A
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0	309425.0	499434.0	NaN	1053.36	Type A
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0	165515.0	329397.0	NaN	1053.36	Туре А
7653	6.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	0.0	3886530.0	14538825.0	NaN	#NV	Type A
7654	6.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	0.0	245.0	0.0	NaN	#NV	Type A
7655	6.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	0.0	0.0	0.0	NaN	#NV	Type A
7656	6.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	0.0	245.0	0.0	NaN	#NV	Type A
7657	6.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	0.0	3886530.0	15056214.0	NaN	#NV	Type A

7658 rows × 14 columns

data6=df6[["Country","Sales units"]]
data6=data6.dropna()
data6["Sales units"]=data6["Sales units"].astype(int) data6

	Country	Sales units	1	th
0	United Kingdom	398560		
1	United Kingdom	82725		
2	United Kingdom	438400		
3	United Kingdom	309425		
4	United Kingdom	165515		
7653	Sweden	3886530		
7654	Sweden	245		
7655	Sweden	0		
7656	Sweden	245		
7657	Sweden	3886530		
7650 rc	ws × 2 columns			

data6.plot.line()

data6.plot.bar()

data6.plot.box()

data6.plot.hist()

```
<Axes: ylabel='Frequency'>

6000 - Sales units
```

data6.plot.scatter("Country", "Sales units")

United King@bilandNetDæedhrRdspDeblimarkSpain ItalyGerman@ranceBelgiun&weden
Country