Circuits implemented with only **NAND** and/or **NOR**

- We can implement any circuit with AND, OR, and NOT gates, but we can implement any circuit using only NAND or NOR (or a combination of the two types).
- We might do this for certain considerations e.g., due to technology considerations where NAND and NOR gates are cheaper to implement.
- ► The ability to use only NAND or NOR follows from the observation that we can make AND, OR, and NOT gates with only NAND or NOR gates.

Circuits implemented with only **NAND** and/or **NOR**

Useful to note that an NAND gate performs the same operation as an OR gate that has inverted inputs:

Useful to note that an NOR gate performs the same operation as an AND gate that has inverted inputs:

Converting 2-level SOP to NAND only

- Given a SOP obtaining a NAND only implementation is trivial apply a double inversion and use the DeMorgan theorem being careful of where we leave the inversions in the final expression.
- Example...

$$f = x1!x2+!x1x2 + x3$$
= !(!f)
= !(!(x1!x2+!x1x2 + x3))
= !(!(x1!x2)!(!x1x2)!(x3))

NAND NAND INV

= !(!(x1!x2)!(!x1x2)!(x3))

Converting 2-level POS to NOR only

- Given a POS obtaining a NOR only implementation is trivial apply a double inversion and use the DeMorgan theorem being careful of where we leave the inversions in the final expression.
- Example...

$$f = (x1 + x2)(x3 + x4)(x5)$$
= !(!f)
= !(!((x1 + x2)(x3 + x4)(x5)))
= !(!(x1 + x2) + !(x3 + x4) + !(x5))
NOR
NOR
NOR
NOR

Multi-level circuit conversions

- For circuits which are not SOP or POS we can still do the conversion (note that this also works for SOP or POS)...
- Insert "double inversions" where necessary to convert gates appropriately.
- We might end up with some left-over inverters, but that's okay.

Multi-level circuit conversions — conversion to NAND

- To convert to NAND: 1. Insert double inversions prior to each OR; 2. Insert double inversions after every AND gate; 3. Convert gates and cancel out any remaining double inversions.
- Note that there might be some left-over inverters. Note that the use of double inversion ensures that the circuit doesn't change its operation.
- Example: Convert the following to NAND only gates.

Multi-level circuit conversions — conversion to NAND

- To convert to NAND: 1. Insert double inversions prior to each OR; 2. Insert double inversions after every AND gate; 3. Convert gates and cancel out any remaining double inversions.
- Note that there might be some left-over inverters. Note that the use of double inversion ensures that the circuit doesn't change its operation.
- Example: Convert the following to NAND only gates.

Multi-level circuit conversions — conversion to NAND

- To convert to NAND: 1. Insert double inversions prior to each OR; 2. Insert double inversions after every AND gate; 3. Convert gates and cancel out any remaining double inversions.
- ▶ Note that there might be some left-over inverters. Note that the use of double inversion ensures that the circuit doesn't change its operation.
- Example: Convert the following to NAND only gates.

Multi-level circuit conversions — conversion to NOR

- ▶ To convert to NOR: 1. Insert double inversions prior to each AND; 2. Insert double inversions after every OR gate; 3. Convert gates and cancel out any remaining double inversions.
- Note that there might be some left-over inverters. Note that the use of double inversion ensures that the circuit doesn't change its operation.
- Example: Convert the following to **NOR** only gates.

Multi-level circuit conversions — conversion to NOR

- ▶ To convert to NOR: 1. Insert double inversions prior to each AND; 2. Insert double inversions after every OR gate; 3. Convert gates and cancel out any remaining double inversions.
- Note that there might be some left-over inverters. Note that the use of double inversion ensures that the circuit doesn't change its operation.
- Example: Convert the following to **NOR** only gates.

Multi-level circuit conversions — conversion to NOR

- ▶ To convert to NOR: 1. Insert double inversions prior to each AND; 2. Insert double inversions after every OR gate; 3. Convert gates and cancel out any remaining double inversions.
- ▶ Note that there might be some left-over inverters. Note that the use of double inversion ensures that the circuit doesn't change its operation.
- Example: Convert the following to **NOR** only gates.

