

Universidad Carlos III de Madrid

Problemas fundamentos matemáticos. Cuerpos de Galois

SOLUCIONES

CSI Curso 2016/2017

1. Sea CG(28) definido por el polinomio irreducible $p(x) = x^8 + x^4 + x^3 + x + 1$.

Sea a(x) = x + 1 y b(x) =
$$x^7 + x^5 + x^4 + x^3 + x^2 + x + 1$$

Calcule: $a(x) * b(x) \mod p(x)$

Solución: $x^7 + x^6 + x^4 + x^3 + x$

2. Sea CG(28) definido por el polinomio irreducible $p(x) = x^8 + x^4 + x^3 + x + 1$.

Sea
$$f(x) = x^6 + x^4 + x^2 + x + 1$$
 y $g(x) = x^7 + x + 1$

Calcule: f(x) * g(x) mod p(x)

Solución: $x^7 + x^6 + 1$

3. Sea CG(2^8) definido por el polinomio irreducible p(x) = $x^8 + x^4 + x^3 + x + 1$.

Calcule: $(02)*(D4) + (03)*(BF) + (5D) + (30) \mod p(x)$

Considere que cada dígito (0...9 A B C D E F) se codifica con 4 bits (código hexadecimal).

Por ejemplo: $(02) --> (0000\ 0011) = x + 1$

Por ejemplo: (BF) --> (1011 1111) = $x^7 + x^5 + x^4 + x^3 + x^2 + x + 1$

Es decir, cada pareja de dígitos contenida en un paréntesis del cálculo que debe hacer, representa un polinomio de grado 7 o menor que pertenece por tanto al CG(28) donde se realiza el cálculo.

Solución: $(04) = (0000\ 0100) = x^2$