History of Programmable Logic

- Programmable Logic Arrays ~ 1970
 - Incorporated in VLSI devices
 - Can implement any set of SOP logic equations
 - Outputs can share common product terms
- Programmable Logic Devices ~ 1980
 - MMI Programmable Array Logic (PAL)
 - 16L8 combinational logic only
 - 8 outputs with 7 programmable PTs of 16 input variables
 - 16R8 sequential logic only
 - 8 registered outputs with 8 programmable PTs of 16 input variables
 - Lattice 16V8
 - 8 outputs with 8 programmable PTs of 16 input variables
 - Each output programmable to use or bypass flip-flop
 - Complex PLDs arrays of PLDs with routing network
- Field Programmable Gate Arrays ~ 1985
 - Xilinx Logic Cell Array (LCA)
- CPLD & FPGA architectures became similar ~ 2000

PLD Basic Structure

- Programmable product terms (AND plane)
 - AND gates can connect to any input/FF bit or bit-bar
- Fixed OR plane determine maximum # PTs
- Programmable macrocell
 - XOR gate selects SOP or POS for fewer PTs
 - FF for sequential logic or bypass for combinational logic
 - Feedback current state into array for FSM design

Field Programmable Gate Arrays

Typical Complexity = 5M - 1B transistors

Basic FPGA Operation

Write Configuration Memory

- Defines system function
 - Input/Output Cells
 - Logic in PLBs
 - Connections between
 PLBs & I/O cells
- Changing configuration memory data => changes system function
- Can change at anytime
 - Even while system function is in operation
 - Run-time reconfiguration (RTR)

Combinational Logic Fucntions

- Gates are combined to create complex circuits
- Multiplexer example

$$- If S = 0, Z = A$$

- If S = 1, Z = B
- Very common digital circuit
- Heavily used in FPGAs
 - S input controlled by configuration memory bit
 - We'll see it again

Look-up Tables

- Recall multiplexer example
- Configuration memory holds outputs for truth table
- Internal signals connect to control signals of multiplexers to select value of truth table for any given input value

Truth table	
SAB	Z
000	0
0 0 1	0
0 1 0	1
0 1 1	1
100	0
101	1
1 1 0	0
111	1

Look-up Table Based RAMs

- Normal LUT mode performs read operations
- Address decoder with write enable generates clock signals to latches for write operations
- Small RAMs but can be combined for larger RAMs

A Simple PLB

- Two 3-input LUTs
 - Can implement any4-input combinational logic function

Interconnect Network

- Wire segments of varying length
 - -xN = N PLBs in length
 - 1, 2, 4, 6, and 8 are most common
 - -xH = half the array in length
 - -xL = length of full array
- Programmable Interconnect Points (PIPs)
 - Also known as Configurable Interconnect Points (CIPs)
 - Transmission gate connects to 2 wire segments
 - Controlled by configuration memory bit
 - 0 = wires disconnected
 - 1 = wires connected

PIPs

- Break-point PIP
 - Connect or isolate 2 wire segments
- Cross-point PIP
 - Turn corners
- Compound cross-point PIP
 - Collection of 6 break-point PIPs
 - Can route to two isolated signal nets
- Multiplexer PIP
 - Directional and buffered
 - Select 1-of-N inputs for output
 - Decoded MUX PIP N config bits select from 2^N inputs
 - Non-decoded MUX PIP 1 config bit per input

Input/Output Cells

- Bi-directional buffers
 - Programmable for input or output
 - Tri-state control for bi-directional operation
 - Flip-flops/latches for improved timing
 - Set-up and hold times
 - Clock-to-output delay
 - Pull-up/down resistors
- Routing resources
 - Connections to core of array
- Programmable I/O voltage & current levels

FPGAs

- Recent trend incorporate specialized cores
 - RAMs single-port, dual-port, FIFOs
 - 128 bits to 36K bits per RAM
 - 4 to 575 per FPGA
 - DSPs 18x18-bit multiplier, 48-bit accumulator, etc.
 - up to 512 per FPGA
 - Microprocessors and/or microcontrollers
 - up to 2 per FPGA
 - Hard core processor
 - Support soft core processors
 - Synthesized from HDL into programmable resources