

ISIS-1104-01 Matemática Estructural y Lógica

Parcial 1

Fecha: 11 de septiembre de 2014

- Esta prueba es INDIVIDUAL.
- Sólo está permitido el del documento de fórmulas publicada en sicua+.
- Está prohibido el uso de cualquier dispositivo electrónico.
- El intercambio de información relevante a esta prueba con otro estudiante está terminantemente prohibido.
- Cualquier irregularidad con respecto a estas reglas podría ser considerada fraude.
- Responda el examen en los espacios proporcionados. No se aceptarán hojas adicionales.
- No olvide marcar el examen antes de entregarlo.

IMPORTANTE: Soy consciente de que cualquier tipo de fraude en los exámenes es considerado como una falta grave en la Universidad. Al firmar y entregar este examen doy expreso testimonio de que este trabajo fue desarrollado de acuerdo con las normas establecidas. Del mismo modo, aseguro que no participé en ningún tipo de fraude.

Nombre	Carné
Firma	Fecha

NO ESCRIBIR NADA BAJO ESTA LÍNEA

1.1	15 %	
1.2	15 %	
2.1	15 %	
2.2	20%	
3.1	15 %	
3.2	20%	
Total	100 %	

1. [30%] Demostraciones Cálculo Proposicional

Suponga que deseamos agregar el operador binario \otimes al cálculo proposicional. El siguiente axioma define su significado:

$$(p \otimes q) \equiv ((p \wedge q) \equiv p)$$

1.1. [15%] Demuestre o refute la siguiente equivalencia: $(p \otimes true) \equiv true$

```
\begin{array}{ll} p \otimes true \\ & \langle \ \mathrm{Definici\acute{o}n} \ \rangle \\ & (p \wedge true) \equiv p \\ = & \langle \ \mathrm{Identidad} \ \wedge \ \rangle \\ & \mathrm{true} \end{array}
```

1.2. $[15\,\%]$ Muestre por contradicción que sería válido agregar la siguiente regla de inferencia

$$\frac{\neg(p\ \otimes\ q)}{\neg q}$$

Por contradicción, vamos a suponer q y llegar a false.

Debemos entonces probar que $\neg(p \otimes q) \Rightarrow false$ Usando q = true como supuesto.

```
 \begin{array}{l} \neg(p \otimes q) \\ \Rightarrow & \langle \text{ Supuesto } \rangle \\ \neg(p \otimes true) \\ = & \langle \text{ Ejercicio } 1.1 \rangle \\ \neg true \\ = & \langle \text{ Deficición de } false \rangle \end{array}
```

Por lo tanto q = false que equivale a decir que $\neg q$ es cierto.

2. Cálculo deductivo [35 %]

Tenemos tres sospechosos de un crimen: A, B y C. Se han podido constatar los siguientes hechos.

- 1. Al menos uno de los tres es culpable. $A \lor B \lor C$
- 2. Si A es culpable, entonces B es inocente y C es culpable. $A \Rightarrow \neg B \wedge C$
- 3. Si C es culpable, entonces B es culpable o A es inocente $C \Rightarrow B \vee \neg A$
- 4. Si A es inocente entonces C también es inocente. $\neg A \Rightarrow \neg C$
- 5. Concluimos? $\neg A \land B \land \neg C$

2.1. Modelaje [15 %]

Usando las siguientes variables booleanas A, B, C, y D para A participó, B participó y C participó, modele las hipótesis y la conclusión de quiénes son participaron y quiénes no. (Escriba su respuesta arriba, escribiendo la traducción a lógica proposicional al lado de cada item: hipótesis y conclusión).

2.2. Deducción [20%]

Demuestre FORMALMENTE que la conclusión es válida a partir de las hipótesis. Primero demostramos

que A no es culpable. Est plo hacemos por contradicción. Suponemos que A es culpable y llegamos a false:

	Expresión	Justificación
1	A	Supuesto
2	$A \Rightarrow \neg B \wedge C$	Hipótesis
3	$\neg B \wedge C$	Modus Ponens (1,2)
4	C	Simplificación (3)
5	$C \Rightarrow B \vee \neg A$	Hipótesis
6	$B \vee \neg A$	Modus Ponens (4,5)
7	$\neg B$	Simplificación (3)
8	$\neg A$	Silogismo Disyuntivo (7,6)
9	false	Contradicción (1,9)

Ahora que demostramos $\neg A$, vamos a demostrar lo demás.

	Expresión	Justificación
1	$\neg A$	Lema
2	$A \vee B \vee C$	Hipótesis
3	$B \vee C$	Silogismo Disyuntivo (1,2)
4	$\neg A \Rightarrow \neg C$	Hipótesis
5	$\neg C$	Modus Ponens (1,4)
6	B	Silogismo Disyuntivo (3,4)
7	$\neg A \wedge B \wedge \neg C$	Composición (1,6,5)

3. Cálculo de predicados [35%]

Tenemos las siguientes hipótesis:

- 1. Las brujas que tienen escoba tienen poderes mágicos. $(\forall x \mid e(x) : m(x))$
- 2. No existen brujas que no tengan poderes mágicos y pue
aen volar. $\neg(\exists\ x\mid \neg m(x)\ :\ v(x)\)$
- 3. A y B son brujas donde sólo una y exactamente una de las dos tiene poderes mágicos. $m(A) \not\equiv m(B)$

De acá podemos concluir que si A puede volar, B no tiene escoba. $v(A) \Rightarrow \neg e(B)$

3.1. Modelaje [15 %]

Modele el problema (hipótesis y conclusión) con predicados y cuantificadores. Use los siguientes predicados:

- \bullet e(b): b tiene escoba
- m(b) : b tiene poderes mágicos
- $\mathbf{v}(b)$: b puede volar

Escriba su respuesta arriba al lado de cada hipótesis y de la conclusión.

3.2. Deducción $[20\,\%]$

Muestre, usando cálculo de predicados, que la conclusión se deduce de las hipótesis.

	Expresión	Justificación
1	$(\forall \ x \mid e(x) \ : \ m(x) \)$	Hipótesis
2	$\neg(\exists \ x \mid \neg m(x) \ : \ v(x) \)$	Hipótesis
3	$m(A) \not\equiv m(B)$	Hipótesis
4	v(A)	Premisa
5	$(\forall \ x \mid \neg m(x) \ : \ \neg v(x) \)$	de Morgan (2)
6	$\neg \neg v(A)$	Doble negación 4
7	$\neg \neg m(A)$	Modus Tollens - \forall (6,5)
8	m(A)	Doble negación 4
9	$\neg(m(A) \equiv m(B))$	Definición $\not\equiv$ (3)
10	$(m(A) \equiv \neg m(B))$	$Negaci\'on_2 \equiv (3)$
11	$\neg m(B)$	Deducción con \equiv
12	$\neg e(B)$	Modus Tollens - \forall (11,1)

Nota: podríamos haber obviado algunos pasos y la demostración quedaría así:

	Expresión	Justificación
1	$(\forall \ x \mid e(x) \ : \ m(x) \)$	Hipótesis
2	$\neg(\exists \ x \mid \neg m(x) \ : \ v(x) \)$	Hipótesis
3	$m(A) \not\equiv m(B)$	Hipótesis
4	v(A)	Premisa
5	$(\forall \ x \mid \neg m(x) \ : \ \neg v(x) \)$	de Morgan (2)
6	m(A)	Modus Tollens - \forall (5,4)
7	$\neg m(B)$	Deducción con $\not\equiv$
8	$\neg e(B)$	Modus Tollens - \forall (11,1)