Universidade de Brasília Engenharia de Reatores Químicos – IQD0048 Avaliação HW_2 – Turma 01 - 2023/1 - 06/07/2023 – Prof. Alexandre Umpierre

Instruções Gerais:

Esta avaliação **deve ser realizada individualmente ou em duplas**. Não serão consideradas avaliações realizadas por grupos maiores.

A avaliação deve ser entregue **até às 23h59 de 08/07/2023**. Respostas enviadas posteriormente serão desconsideradas. A avaliação deve ser elaborada **rigorosamente de acordo com os** *templates* **e com as instruções** disponibilizados na página da disciplina. Desvios do *tempate* e das regras implicarão em descontos na nota final, de acordo com cada caso. O documento com as respostas deve ser entregue **anexo em formato .pdf**. **Não serão aceitos links de repositórios em nuvem.**

O documento com as respostas deve enviado por um dos autores, de seu email institucional, para aumpierre@unb.br.

O documento entregue deve ser intitulado ERQ_T01_20231_HW2_20230706_matriculasonumeros.pdf.

Indícios de cópia implicarão a anulação das questões em tela de todos os envolvidos.

O documento entregue não pode ultrapassar 10 páginas (incluindo o cabeçalho do tempalate).

A correção levará em consideração a adequação e consistência das respostas com relação ao conteúdo abordado.

- 1) Um reator tubular deve ser usado para conduzir a reação $A \rightarrow B$. A taxa de consumo de A é dada por kc^n , em que $k = 0.87 \; (\text{mol/L})^{-0.7} \text{min}^{-1}$ é a constante cinética, n é a ordem de reação e c é a concentração de A. O reator tem 125 L e a alimentação é uma corrente de 30 L/min com 0,54 mol/L de A. O reator é submetido a um ensaio com traçador. Uma determinada quantidade do traçador é introduzida de uma vez à corrente de alimentação. A Tabela 1 apresenta a concentração do traçador registrada à saída do reator. Apresente uma avaliação crítica e a melhor estimativa possível para a conversão de A no reator. $(2.5 \; \text{pontos})$
- 2) Um reator de tanque agitado deve ser posto em operação. Inicialmente, ele se encontra vazio. A operação deve ser realizada em duas etapas. Na primeira etapa, a saída do tanque deve ser mantida fechada, enquanto o volume de operação de 1,2 L é preenchido com uma corrente de 4,7 L/h com 2,3 mol/L do reatante. Na segunda etapa, a saída do tanque é aberta mantendo a alimentação. A constante cinética da taxa de consumo é 0,15 min⁻¹. Determine o tempo necessário para que o reator atinja 98 % da conversão esperada para o estado estacionário. (2,5 pontos)

Tabela 1. Concentração c de traçador à saída do tanque em função do tempo t de ensaio para a Questão 1.

t (s min)	c (mg/L)
0	0,061
2	0,98
4	1,82
7	8,35
9	20,8
11	36,3
13	59,3
14	69,1
16	92,0
18	110,2
21	126,1
24	133,5
27	126,3
30	112,4
35	80,1
40	52,3
45	30,4
50	18,3
55	10,4
60	6,00
65	1,39
70	0,15
75	1,04

- 3) Um reator de tanque agitado produz conversão inferior ao esperado de um reator ideal. Deseja-se avaliar o ajuste ao modelo de volume de troca. 51,4 g de traçador foram alimentados de uma vez ao tanque. A Tabela 2 apresenta a concentração de traçador registrada à saída do tanque. A corrente de alimentação é de 30 L/min e o volume do meio reacional é 1250 L. Apresente uma análise crítica sobre o ensaio e estime a conversão esperada para a reação $A \rightarrow B$, cuja constante cinética é 0,098 min⁻¹. (2,5 pontos)
- 4) Um reator de tanque agitado com 45 L deve ser usado para conduzir a reação

$$A + B \rightarrow P$$
 $\Delta H = -480 \text{ kJ/mol}$

A alimentação é uma corrente de 66 L/h com 0,68 mol/L de *A*, 0,59 mol/L de *B* e 2,8 mol/L de um inerte *Q*, a 32 °C. As capacidades térmicas de *A*, *B*, *P* e *Q* são, respectivamente, 33 J/mol/°C, 38 J/mol/°C, 44 J/mol/°C e 67 J/mol/°C. Calor é removido do reator por uma camisa de resfriamento de 210 cm² a -5 °C com coeficiente de troca térmica global estimado em 1260 W/m²/°C. A taxa de consumo de *A* é dada por

$$-r_A = kc_A^{1,5}c_B^{1,1}$$
.

em que k é a constante cinética, dada por

$$\frac{k}{\frac{\text{mol}^{-1.6}}{\text{L}^{-1.6}\text{min}}} = 41,2 \times 10^{6} \exp{-\frac{6849}{\frac{T}{\text{K}}}}.$$

Determine conversão máxima esperada para *A* (2,5 pontos)

Tabela 2. Concentração *c* de traçador à saída do tanque em função do tempo *t* de ensaio para a Questão 3.

t (smin) c (mg/L) 0 74,8 1 70,8 2 67,1 5 57,2 7 51,4 10 43,8 15 33,8 20 26,2 30 16,2 40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46 250 0,43	. (•)	/ /T \
1 70,8 2 67,1 5 57,2 7 51,4 10 43,8 15 33,8 20 26,2 30 16,2 40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	t (smin)	c (mg/L)
2 67,1 5 57,2 7 51,4 10 43,8 15 33,8 20 26,2 30 16,2 40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	0	74,8
5 57,2 7 51,4 10 43,8 15 33,8 20 26,2 30 16,2 40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	1	70,8
7 51,4 10 43,8 15 33,8 20 26,2 30 16,2 40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	2	67,1
10 43,8 15 33,8 20 26,2 30 16,2 40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	5	57,2
15 33,8 20 26,2 30 16,2 40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	7	51,4
20 26,2 30 16,2 40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	10	43,8
30 16,2 40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	15	33,8
40 10,4 50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	20	26,2
50 6,94 60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	30	16,2
60 4,94 70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	40	10,4
70 3,71 80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	50	6,94
80 2,89 100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	60	4,94
100 2,00 120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	70	3,71
120 1,54 150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	80	2,89
150 1,09 180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	100	2,00
180 0,84 200 0,68 220 0,57 230 0,53 240 0,46	120	1,54
200 0,68 220 0,57 230 0,53 240 0,46	150	1,09
220 0,57 230 0,53 240 0,46	180	0,84
230 0,53 240 0,46	200	0,68
240 0,46	220	0,57
,	230	0,53
250 0,43	240	0,46
	250	0,43