

دانشگاه صنعتی شریف دانشکده مهندسی برق آزمایشگاه اصول الکترونیک بهار ۱۳۹٦ گروه درس دکتر فخارزاده

گروه ()		شماره آزمایش (۵)
		نام و نام خانوادگی همکاران
		شماره دانشجویی
	حضور به موقع	
	پیش گزارش	ارزشیابی
	گزارش	
	نمره کل	

تاريخ:	نام دستيار تصحيح كننده:
--------	-------------------------

فيدبك

توجه: لطفا قبل از انجام آزمایش، متن دستور کار را به طور کامل مطالعه فرمایید.

چکیده

در این جلسه، از دانشجویان خواسته شده تا چند تقویت کننده ی ترانزیستوری با فیدبک را تحلیل و شبیه سازی نموده و در آزمایشگاه مدارها را پیاده سازی و مشخصات آنها را اندازه گیری نمایند.

وسايل مورد نياز

کامپیوتر و نرمافزار شبیهسازی Hspice، منبع تغذیه، مولتی متر، اسیلوسکوپ، سیگنال ژنراتور، بردبورد، تعدادی مقاومت، خازن، ترانزیستور و تقویتکننده LM741.

پیش گزارش

(پیش گزارش را باید قبل از جلسه آماده کرده و در ابتدای جلسه به دستیار مربوطه تحویل دهید.)

توجه: در مواردی که بهرهی مدار خواسته شده است، با توجه به نوع فیدبک، بهرهی مناسب را همراه با واحد

مناسب گزارش کنید.

۱-۱ مدار فیدبک اول

مدار شکل ۱ را در نظر بگیرید:

شكل ١: مدار فيدبك اول

الف- نوع این فیدبک چیست و چرا؟

ب- مشخصات زیر را به روش تحلیلی (به کمک روش فیدبک) محاسبه کرده و در جدول ۱ وارد کنید:

جدول ۱- محاسبهی تحلیلی مدار با فیدبک

A	R_{in}	R_{out}	$V_{ ext{out,max-PP}}$

(راهنمایی - مدارهای شبکه ی فوروارد و شبکه ی فیدبک را جداگانه رسم کرده و طبق روش فیدبک، قدم به قدم محاسبات لازم را انجام دهید.)

(راهنمایی- برای محاسبه ی مقاومت ورودی مدار با فیدبک، باید مقاومت ورودی را که از ۷۱ به سمت راست دیده می شود، به همان روش فیدبک محاسبه کرد و از روی آن مقاومت ورودی مدار کلی را محاسبه نمود. یعنی ابتدا با مقاومت R2 موازی و سپس با R1 سری کرد. در غیر اینصورت نتیجه ی درستی به دست نمی آید. علت این امر آن است که مقاومتهای R1 و R2 بیرون حلقه ی فیدبک هستند. یا می توان معادل تونن برای قسمت قبل از فیدبک را نوشت و محاسبات را انجام داد. برای توضیحات بیشتر به فایل NOTE-feedback.rar مراجعه کنید.)

ج- مشخصات خواسته شده را از شبیه سازی با نرم افزار Hspice به دست آورده و جدول ۲ را کامل کنید. نتایج جدول ۱ و ۲ را با هم مقایسه کنید.

جدول ۲- شبیهسازی مدار با فیدبک

A	R _{in}	$R_{ m out}$	V _{out,max-PP}

۱-۲ مدار فیدبک دوم

مدار شکل ۲ را در نظر بگیرید:

شکل ۲: مدار فیدبک دوم

الف- نوع این فیدبک چیست و چرا؟

ب- مشخصات زیر را به روش تحلیلی (به کمک روش فیدبک) محاسبه کرده و در جدول ۳ وارد کنید:

جدول ۳- محاسبهی تحلیلی مدار با فیدبک

A	R _{in}	R _{out}	$V_{ m out,max-PP}$

(راهنمایی- برای محاسبه ی مقاومت خروجی مدار با فیدبک، باید مقاومت خروجی را که از v2 به سمت پایین دیده می شود، به همان روش فیدبک محاسبه کرد و از روی آن مقاومت خروجی مدار کلی را محاسبه نمود یعنی با مقاومت v2 با مقاومت که مقاومت که مقاومت که مقاومت که مقاومت که مقاومت که مقاومت v3 بیرون حلقه ی فیدبک است.)

ج- برای این مدار، مشخصات خواسته شده را از شبیه سازی با نرمافزار Hspice به دست آورده و در جدول ۶ وارد کنید. نتایج جدول ۳ و ۶ را با هم مقایسه کنید.

جدول ۴- شبیهسازی مدار با فیدبک

A	R _{in}	R _{out}	V _{out,max-PP}

۱ - ۳ مدار فیدبک سوم

در این قسمت به بررسی یک مدار فیدبک مثبت می پردازیم. این نوع مدار فیدبک مثبت، نوسانساز نام دارد. با آپامپ در درس اصول مهندسی برق و آزمایشگاه آشنا شده اید. آپامپ در واقع یک تقویت کننده ی ولتاژ به ولتاژ است. مدار شکل ٤، مدار یک نوسانساز است:

شكل ٤: مدار نوسانساز

حال این مدار را تحلیل می کنیم. با فرض این که جریان ورودی آپامپ ایده آل صفر است، مسئله را پیش می بریم:

$$\begin{split} i_1 &= \frac{v_{out} - v_+}{R} = \frac{v_+ - 0}{R} \Rightarrow v_{out} = 2v_p \\ i_2 &= \frac{v_{out} - v_-}{R} = C\frac{dv_-}{dt} \Rightarrow v_{out} = 2v_+ = v_- + RC\frac{dv_-}{dt} \ (\text{Note of } v_-) \) \end{split}$$

میدانیم اگر $v_+ > v_-$ آنگاه $v_+ > v_-$ و اگر $v_+ < v_-$ و اگر $v_+ > v_-$ آنگاه $v_+ > v_-$ آنگاه اگر $v_+ > v_-$

If $v_{out} = 2v_+ > v_- \Rightarrow 2v_+ - v_- = RC \frac{dv_-}{dt} > 0 \Rightarrow v_-$ is increasing.

 $v_- < \frac{\mathrm{VCC}}{2}$ پس مقدار v_- افزایش خواهد یافت. از طرفی ماکزیمم مقدار آن با مقدار $v_+ = \frac{\mathrm{VCC}}{2}$ است. تا زمانی که مقدار v_- است، مقدار آن افزایش خواهد یافت. در نهایت مقدار آن با مقدار v_+ برابر می شود و داریم $v_+ = v_- = \frac{\mathrm{VCC}}{2}$ در این لحظه v_- در این لحظه v_- خواهد شد، زیرا ورودی های آپ امپ دقیقا برابر شده اند. پس v_+ می شود. دقیقا لحظه ای بعد، مقدار خروجی برابر با VEE خواهد شد؛ زیرا v_- است و v_- است و v_- خواهد شد. این بار طبق

معادله ی ۱، مقدار v_- نزولی خواهد بود تا به مقدار v_- ی برسد. دوباره v_- برسد خواهد شد و مشابه v_- خواهد شد و این جریان تکرار می شود. قسمت قبل پس از یک مرحله تغییر v_+ ، مقدار v_+ مقدار v_+ خواهد شد و این جریان تکرار می شود.

تحلیل این فیدبکِ مثبت با روش کتاب گری قابل توجیه نیست. (امتحان کنید!)

آ- با توجه به توضیحات دادهشده، شکل موج خروجی مدار و هردو ورودی تقویتکننده را تحلیل و رسم کنید.

ب- فركانس سيگنال خروجي برحسب R و C چقدر است؟

پ- آیا می توان روشی پیدا کرد که خروجی را به سینوسی نزدیک ساخت؟ توضیح دهید.

گزارش کار

توجه: صفحات ۷ الی ۱۲ را پس از انجام آزمایش تکمیل کرده و به عنوان گزارشکار تحویل دهید.

	آزمایش شمارهی:
نام و نام خانوادگی:	نام و نام خانوادگی:
شمارهی دانشجویی:	شمارهی دانشجویی:
	شمارهی گروه:
	تاریخ انجام آزمایش:

توجه: در مواردی که بهرهی مدار خواسته شده است، با توجه به نوع فیدبک، بهرهی مناسب را همراه با واحد

مناسب گزارش کنید.

۲-۱ مدار بدون فیدبک

مدار شکل ٥ را بر روى بردبورد ببنديد.

شكل ٥: مدار بدون فيدبك

الف- ورودی را با فرکانس ٥ کيلوهرتز اعمال کنيد و جدول ٥ را کامل کنيد.

جدول ۵- اندازهگیری مدار بدون فیدبک

A	R_{in}	R_{out}	V _{out,max-PP}	$ m f_H$

۲-۲ مدار فیدبک اول

یک مقاومت ۱۰ کیلو اهم بین کلکتور خروجی و امیتر Q1 قرار دهید.

الف- ورودي را با فركانس ٥ كيلوهرتز اعمال كنيد و جدول ٦ را كامل كنيد.

جدول ۶- اندازهگیری مدار با فیدبک ولتاژ

A	R _{in}	R_{out}	V _{out,max-PP}	f_H

ب- نتایج را با شبیهسازی مقایسه کنید.

ج- رابطهی میان بهرهی ولتاژ در دو مدار بدون فیدبک و با فیدبک چگونه است؟

د- رابطهی میان پهنای باند در دو مدار بدون فیدبک و با فیدبک چگونه است؟

۲-۳ مدار بدون فیدبک

مدار شکل 7 را، بدون مقاومت R8 و خازن C4، بر روی بردبورد ببندید:

شکل ٦: مدار فیدبک دوم

الف- ورودی را با فرکانس ٥ کيلوهرتز اعمال کنيد و جدول ٧ را کامل کنيد.

جدول ۷– اندازه گیری مدار بدون فیدبک

$A_{\rm I}$	R_{in}	R_{out}	$V_{out,max-PP}$	$ m f_H$

آزمايشگاه اصول الكترونيك

آزمایش شماره (۵) فیدبک

۲-۲ مدار فیدبک دوم

مقاومت R8 و خازن C4 را به مدار قبل اضافه کنید. (مدار شکل 7 را به طور کامل، روی بردبورد ببندید.)

الف- ورودی را با فرکانس ٥ کيلوهرتز اعمال کنيد و جدول ٨ را کامل کنيد.

جدول ۸- اندازه گیری مدار با فیدبک جریان

A _I	R _{in}	R _{out}	V _{out,max-PP}	f_H

ب- نتایج را با شبیهسازی مقایسه کنید.

ج- رابطهی میان بهرهی جریان در دو مدار بدون فیدبک و با فیدبک چگونه است؟

د- رابطهی میان یهنای باند در دو مدار بدون فیدبک و با فیدبک چگونه است؟

۲-۲ مدار فیدبک سوم

در این قسمت میخواهیم از تقویت کننده ی LM741 به عنوان یک آپامپ برای ساختن نوسانساز (Oscillator) استفاده کنیم. وضعیت قرارگیری پایه های آی سی در شکل ۷ نشان داده شده است. برای به دست آوردن اطلاعات بیشتر به دیتاشیت آی سی مراجعه کنید.

Dual-In-Line or S.O. Package

شكل ٧: آي سى LM741

ابتدا تمام Function Generator ها را خاموش کنید! زیرا در این آزمایش خودتان موج تولید خواهید کرد! مقادیر R و C را به گونه ای محاسبه کنید که فرکانس خروجی در بازه ی C تا حدود C باشد.مدار نوسانساز را به صورت زیر بر روی بردبورد ببندید:

شکل ۸: مدار نوسان ساز به کمک آپ امپ ۷٤۱

الف– با قرار دادن مقادیر مناسب از R,C شکل موج خروجی و ورودی پایهی منفی تقویتکننده را رسم کنید.

ب- مقدار THD خروجی را با گرفتن FFT بهدست آورید.

محاسبه ی THD خروجی

