Picard Groups

Xu Gao

February 9, 2020

§ I Picard groups of locally ringed spaces

I.1 Definition. Let (X, \mathcal{O}_X) be a locally ringed space. A sheaf \mathcal{L} is **invertible** if there is a sheaf \mathcal{L}' such that $\mathcal{L} \otimes \mathcal{L}' \cong \mathcal{O}_X$ in the category of \mathcal{O}_X -modules. The group of isomorphism classes of invertible sheaves is called the **Picard group** of X, denoted by $\mathsf{Pic}(X)$.

I.2 Theorem (St:09NT). There is a canonical isomorphism of abelian groups

$$H^1(X, \mathcal{O}_X^{\times}) \cong \operatorname{Pic}(X).$$

Here \mathbb{O}_X^{\times} denotes the sheaf of units in \mathbb{O}_X .

Hint: Give a bijection between invertible sheaves and \mathcal{O}_X^{\times} -tosors. Show that for any abelian sheaf \mathcal{F} , $H^1(X,\mathcal{F})$ classifies \mathcal{F} -torsors.

§ II Picard groups of integral schemes

II.1 Definition. Let X be an integral Noetherian scheme. Let \mathcal{K} be the sheaf of rational functions. Then a **Cartier divisor** is a global section of the quotient sheaf $\mathcal{K}^{\times}/\mathcal{O}_{X}^{\times}$. A Cartier divisor is **principal** if it is in the image of

$$\Gamma(X, \mathcal{K}^{\times}) \longrightarrow \Gamma(X, \mathcal{K}^{\times}/\mathcal{O}_{X}^{\times}).$$

Two Cartier divisors are linearly equivalent if their difference is principal.

Exercise 1. Show that, the group $H^1(X, \mathcal{O}_X^{\times})$ classifies Cartier divisors up to linearly equivalence.

II.2 Definition. A fractional ideal sheaf is a \mathcal{O}_X -submodule of \mathcal{K} . A fractional ideal sheaf is invertible if it is an invertible \mathcal{O}_X -module.

Exercise 2. Show that any Cartier divisor D defines an invertible fractional ideal sheaf $\mathcal{I}(D)$ and vice versa. (*Hint: prove this locally.*)

II.3 Definition. A Cartier divisor D is **effective** if it is in $\Gamma(X, (\mathcal{K}^{\times} \cap \mathcal{O}_X)/\mathcal{O}_X^{\times})$. In this case, we denote $D \geq 0$. For two Cartier divisors D and D', we write $D \geq D'$ if $D - D' \geq 0$.

Exercise 3. Show that: $D \geqslant D'$ if and only if $\mathcal{I}(D) \subseteq \mathcal{I}(D')$

II.4 Definition. For D a Cartier divisor, let $\mathcal{O}_X(D)$ denote the inverse of $\mathcal{I}(X)$.

Exercise 4. Show that, $D \mapsto \mathcal{O}_X(D)$ induces an isomorphism from the class group of Cartier divisors to Pic(X).

Remark. This gives a proof of Theorem I.2 for integral Noetherian schemes.

II.5 Definition. Let D be a Cartier divisor, then its **support** is

$$supp(D) := \{ x \in X \mid D_x \neq 1 \}.$$

Here $D_x \in (\mathcal{K}^{\times}/\mathcal{O}_X^{\times})_x$ is the germ of D at the x.

II.6 Example. If D is an effective Cartier divisor, then $\mathcal{I}(D)$ is an ideal sheaf and supp(D) is the closed subscheme defined by $\mathcal{I}(D)$. In this case, we also denote supp(D) by D and we have short exact sequence

$$0 \longrightarrow \mathcal{O}_X(-D) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_D \longrightarrow 0.$$

Exercise 5. Show that the codimension of $\operatorname{supp}(D)$ is at least 1. (*Hint: what* $if \dim(\mathcal{O}_{X,x}) = 0$ at $some \ x \in \operatorname{supp}(D)$?)

§ III Picard groups of normal schemes

III.1 Definition. Let X be a normal integral Noetherian scheme. A **prime** divisor is an irreducible closed subscheme of codimension 1. A **Weil divisor** is an element of the free abelian group Div(X) generated by prime divisors. A Weil divisor is **effective** if all its coefficients are non-negative.

III.2 Definition. Let C be an irreducible closed subscheme of X with generic point η . Denote the local ring $\mathcal{O}_{X,\eta}$ by $\mathcal{O}_{X,C}$. Then $\operatorname{codim}(C) = \dim(\mathcal{O}_{X,C})$. In the case of C being a prime divisor, $\mathcal{O}_{X,C}$ is a discrete valuation ring. Denote its valuation by ord_C . For any section f of \mathcal{K}^{\times} , define $\operatorname{ord}_C(f)$ as $\operatorname{ord}_C(f_{\eta})$, where f_{η} is the germ of f at η . In particular, any $f \in \Gamma(X, \mathcal{K}^{\times})$ defines a Weil divisor

$$\operatorname{div}(f) := \sum_{C} \operatorname{ord}_{C}(f)[C].$$

Such kind of Weil divisor is called **principal**. The (Weil) divisor class group Cl(X) is the quotient of Div(X) by principal Weil divisors.

Exercise 6. Locally, a Cartier divisor D is presented by a section f of \mathcal{K}^{\times} on some open U, hence $\operatorname{ord}_{C}(f)$ is defined if $U \cap C \neq \emptyset$. Let $\operatorname{ord}_{C}(D)$ be $\operatorname{ord}_{C}(f)$. Show that it does not depend on the choice of (U, f) and furthermore we get a Weil divisor

$$\sum_{C} \operatorname{ord}_{C}(D)[C].$$

Exercise 7. Let $\sum_C n_C[C]$ be a Weil divisor, defines a sheaf by letting its sections on U the sections f of \mathcal{K}^{\times} such that $\operatorname{ord}_C(f) \geqslant -n_C$ for any $C \cap U \neq \emptyset$. Show that, this defines an invertible fractional ideal sheaf.

Exercise 8. Show that, the above constructions induce isomorphisms between the groups Pic(X) and Cl(X).

§ IV The exact sequence

Exercise 9. Let X be a onormal integral Noetherian scheme. Let $j: U \hookrightarrow X$ be a dense open subscheme and $Z = X \setminus U$.

- 1. Show that the morphism $\mathcal{O}_X^{\times} \to j_* j^{-1} \mathcal{O}_X^{\times}$ is a monomorphism. (*Hint: look at stalks.*)
- 2. Show that the cokernel of that morphism is the direct sum of skyscraper sheaves

$$\bigoplus_{C\subseteq Z} \iota_{\eta}{}_*(\mathcal{K}_{\eta}^\times/\mathcal{O}_{X,\eta}^\times),$$

where C varies through prime divisors contained in Z, η is its generic point and $\iota_{\eta} : \eta \hookrightarrow X$ is the inclusion.

3. Conclude that there is an exact sequence.

$$1 \longrightarrow \mathcal{O}_X(X)^\times \longrightarrow \mathcal{O}_X(U)^\times \longrightarrow \bigoplus_{C \subseteq Z} \mathcal{H}_\eta^\times/\mathcal{O}_{X,\eta}^\times \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(U) \longrightarrow 1.$$

Exercise 10. Let X be a one-dimensional integral Noetherian scheme. Let $\pi \colon \widetilde{X} \to X$ be its normalization.

1. Show that the cokernel of the canonical morphism $\pi^{\flat} : \mathscr{O}_{X}^{\times} \to \pi_{*}\mathscr{O}_{\widetilde{X}}^{\times}$ is the direct sum of skyscraper sheaves

$$\bigoplus_{s} \iota_{s*} \left(\widetilde{\mathcal{O}}_{X,s}^{\times} / \mathcal{O}_{X,s}^{\times} \right),$$

where s varies through singular points of X, $\iota_s : s \hookrightarrow X$ is the inclusion and $\widetilde{\mathcal{O}}_{X,s}$ is the integral closure of $\mathcal{O}_{X,s}$ in its fraction field.

2. Conclude that there is an exact sequence.

$$1 \longrightarrow \mathcal{O}_X(X)^\times \longrightarrow \mathcal{O}_{\widetilde{X}}(\widetilde{X})^\times \longrightarrow \bigoplus_s \widetilde{\mathcal{O}}_{X,s}^\times / \mathcal{O}_{X,s}^\times \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(U) \longrightarrow 1.$$