| ECE  | 35,   | Fall  | 20 | 17 |
|------|-------|-------|----|----|
| Fina | I - S | Secti | on | Α  |

| Last name                 |  |
|---------------------------|--|
| First + middle<br>name(s) |  |
| PID                       |  |

## Instructions:

- Read each problem completely and thoroughly before beginning.
- All calculations should to be done in your blue book. It should be clear what question they belong to. Answers without supporting calculations will receive zero credit.
- Write clearly and make sure your answer is structured properly. We will not hunt for your work or answers.
- Write your final answers in the answer boxes on these question pages. Make sure you list units!
- (1) Answer the questions below.
  - (a) What is the current  $i_1$ ?



(b) What is the reading from the volt-meter?



(c) What is the power <u>supplied</u> by the current source?





(d) When  $R_1$  = 1  $\Omega$ , the current  $i_1$  = 4 A. When  $R_1$  = 2  $\Omega$ , the current  $i_1$  = 3 A. When is the current  $i_1$  when  $R_1$  = 3  $\Omega$ ?





(e) The graph below shows the current in a first order RL circuit. What is the equation of  $i_1(t)$  for t > 0?



(f) With the phasor  $V_R$  given on right, draw the phasors  $V_1$  and  $I_1$  in the same diagram. You can draw the same scale for A and V (i.e., a 1 A current phasor has the same length as a 1 V voltage phasor).





(2) What is the value of mesh current  $i_1$ ?



(3) (a) For the circuit below, what is the value of  $i_x$ ?





(4) What is the Norton equivalent current source  $I_N$  (for the Norton equivalent model between A and B). Write your final answer in the time domain (don't leave it in the phasor domain).



(5) Consider the circuit below. For t < 0, the switch is closed and the system has reached steady state. At t = 0, the switch opens and it remains open.

We measure that for t > 0,  $v_C(t) = 2 + 8 e^{-\frac{t}{12}}$ .

- (a) What was  $v_C$  at time  $t = 0^-$  (just before the switch was opened)?  $v_C(0^-)$
- (b) Find  $V_S$ , R and C.









(6) Consider the circuit below. At t < 0, the switch is open. At t = 0, the switch closes and it remains closed. We are given the capacitor voltage just before the switch closes:  $v_a(0^-) = V_1$  and  $v_b(0^-) = V_2$ .



(a) What are the capacitor voltages  $v_a$  and  $v_b$  at time  $t = \infty$ ?



(b) Find a concise expression of the total energy converted to heat during the transition.





(7) Consider the circuit below, where a load is connected to a power distribution network (consisting of a resistor, an inductor and an AC voltage source). The load itself consists of a resistor  $R_1$  in parallel with a mystery element  $Z_1$ , where  $Z_1$  is either a capacitor or an inductor. The goal is to maximize the average power received by the load.

(a) In the mystery element a capacitor or an inductor?

(b) What is the value of the resistor  $R_1$ ?

What is the value of the capacitor or inductor that makes up  $Z_1$ ?

(c) If  $Z_1$  is removed from the circuit and  $R_1$  is chosen to be  $1 \Omega$ . If the voltage source is  $v_S(t) = 2\cos\left(10t + \frac{\pi}{2}\right)$ , what is the complex power of the inductor?



