

1st - Preparation task

170 lines (125 sloc) 4.25 KB

Table with connection of push buttons on Nexys A7 board

Button	Pin
BTNL	P17
BTNR	M17
BTNU	M18
BTND	P18
BTNC	N17

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400000	x"6_1A80"	b"0110_0001_1010_1000_0000"
10 ms	1000000	x"F_4240"	b"1111_0100_0010_0100_0000"
250 ms	25000000	x"17D_7840	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50000000	x"2FA_F080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100000000	x"5F5_E100"	b"0101_1111_0101_1110_0001_0000_0000"

2nd - Bidirectional counter

Listing of VHDL code of the process (p_cnt_up_down)

Listing of VHDL reset and stimulus process from testbench (tb_cnt_up_down.vhd)

Reset process

```
p_reset_gen : process
    begin
    s_reset <= '1';</pre>
```

```
wait for 20 ns;

s_reset <= '0';
wait for 150 ns;

-- Reset activated
s_reset <= '1';
wait for 30 ns;

assert ((s_cnt = "00000") and (s_cnt_up = '1') and (s_reset = '1'))
report "Test failed for input combination: 0, 1, 1" severity error;

s_reset <= '0';
wait;
end process p_reset_gen;</pre>
```

Stimulus process

```
p_stimulus : process
   begin
       report "Stimulus process started" severity note;
        -- Enable counting
        s_en <= '1';
        -- Change counter direction
        s_cnt_up <= '1';
        wait for 380 ns;
        assert ((s cnt = "10010") and (s cnt up = '1') and (s reset = '0'))
        report "Test failed for input combination: 18, 1, 0" severity error;
        s_cnt_up <= '0';
       wait for 220 ns;
        assert ((s_cnt = "11100") and (s_cnt_up = '0') and (s_reset = '0'))
        report "Test failed for input combination: 28, 0, 0" severity error;
        -- Disable counting
        s_en <= '0';
        report "Stimulus process finished" severity note;
       wait;
   end process p_stimulus;
```

Screenshot of simulated waweforms

3rd - Top level

Listing of VHDL code of top.vhd

```
-- Instance (copy) of clock_enable entity
clk_en0 : entity work.clock_enable
    generic map(
        g_MAX => 100000000
    )
    port map
        clk => CLK100MHZ,
        reset => BTNC,
        ce_o => s_en
    );
-- Instance (copy) of cnt_up_down entity
bin_cnt0 : entity work.cnt_up_down
    generic map(
        g_CNT_Width => 4
    port map
        clk
                  => CLK100MHZ,
                  => BTNC,
        reset
```

en i

=> s en,

```
cnt_up_i \Rightarrow SW(0),
          cnt_o
                      => s_cnt
     );
-- Display input value on LEDs
LED(3 downto 0) <= s_cnt;</pre>
-- Instance (copy) of hex_7seg entity
hex2seg : entity work.hex_7seg
     port map(
          hex_i
                    => s_cnt,
          seg_o(6) \Rightarrow CA,
          seg_o(5) \Rightarrow CB,
          seg_o(4) \Rightarrow CC,
          seg_o(3) \Rightarrow CD,
          seg_o(2) \Rightarrow CE
          seg_o(1) \Rightarrow CF,
          seg_o(0) \Rightarrow CG
     );
```

Images of the top layer including both counters

