Prof. D. Kressner H. Lam

1 ▶ Operator monotonicity

a) Show that the logarithm is operator monotone by the integral representation:

$$\log(a) = \int_0^\infty [(1+x)^{-1} - (a+x)^{-1}] dx, \quad \text{for } a > 0.$$

b) Let $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ be defined as $f(B) = \operatorname{trace}(\exp(B))$. Prove that f is operator monotone, i.e., if $A, B \in \mathbb{R}^{n \times n}$ and $B - A \in \mathbb{R}^{n \times n}$ are symmetric positive semidefinite matrics, then $f(A) \leq f(B)$.

2 ► Largest eigenvalue of sum of symmetric independent matrices

Let X_1, \ldots, X_s be symmetric independent random matrices. Prove that

$$\mathbb{E}\left[\lambda_{\max}\left(\sum_{i=1}^{s} X_{i}\right)\right] \leq \inf_{\theta>0} \frac{1}{\theta} \log \operatorname{trace}\left(\exp\left(\sum_{i=1}^{s} \log\left(\mathbb{E}e^{\theta X_{i}}\right)\right)\right).$$

Hint: combine the proof and the Lemma from Lecture 4 slide 6.

3 ► Matrix sparsification

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. In this question, we design and analyze a sampling approach for approximating A by a sparse matrix.

- a) Express A as a sum of mn matrices, each with at most one nonzero entry.
- b) Show how to construct an unbiased estimator X of A by uniform sampling.
- c) Define

$$\tilde{X}_s = \frac{1}{s} \sum_{k=1}^s X_i$$
 where each X_i is an independent copy of X .

For $\epsilon \in [0, 1]$, using the Matrix Bernstein inequality to give an upper bound on the number of s needed to obtain

$$\mathbb{E}\left[\|\tilde{X}_s - A\|_2\right] \le 2\epsilon \|A\|_2.$$

d) Define the probability mass

$$p_{ij} = \frac{1}{2} \left[\frac{|a_{ij}|^2}{\|A\|_F^2} + \frac{|a_{ij}|}{\|A\|_{\ell_1}} \right]$$
 for $i = 1, ..., m$ and $j = 1, ..., n$.

Here, $\|\cdot\|_{\ell_1}$ is the entrywise ℓ_1 norm, i.e $\|A\|_{\ell_1} := \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|$. Using the Matrix Bernstein inequality to provide a bound on the number s of samples needed to achieve $\mathbb{E}\left[\|\tilde{X}_s - A\|_2\right] \le 2\epsilon \|A\|_2$. Express the result in terms of the stable rank of A.

e) Implement both procedures and apply them to the RBF kernel matrix, i.e., for h > 0,

$$a_{ij} = \exp(-\|x_i - x_j\|_2^2/(2h))$$
 for $i, j = 1, ..., n$

associated with randomly generated x_1, \ldots, x_n , uniformly drawn from the unit cube $[0,1]^d$. Plot the sampling distribution of the spectral norm error as a function of the number s of samples.