

AD-A260 299

OFFICE OF NAVAL RESEARCH

(2)

Contract N00014-91-J-1910

R & T Code 4131025

Technical Report #51

Correlations Between the Ligand Electrochemical Parameter, $E_L(L)$ and the Hammett Substituent Parameter, σ

By

Hitoshi Masui and A.B.P. Lever*

in

Inorganic Chemistry

DTIC
SELECTED
FEB 08 1993

York University
Department of Chemistry, 4700 Keele St., North York
Ontario, Canada M3J 1P3

Reproduction in whole, or in part, is permitted for any purpose of the United States Government

*This document has been approved for public release and sale; its distribution is unlimited

*This statement should also appear in Item 10 of the Document Control Data-DD form 1473. Copies of the form available from cognizant contract administrator

93-02267

9

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

Submitting burden for this collection of information is estimated to require 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and maintaining the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services Directorate for Information Operations and Reports, 1215 Jefferson Avenue, Suite 1204, Arlington, VA 22202-4302 and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
			January 25, 1993	Technical - June 1991 to July 1992	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
Correlations Between the Ligand Electrochemical Parameter, $E_L(L)$ and the Hammett Substituent Parameter σ_L			C - N00014-91-J-1910		
6. AUTHOR(S)			PR - 4131025		
Hitoshi Masui and A.B.P. Lever *					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER		
A.B.P. Lever, Department of Chemistry York University, 4700 Keele St. North York, Ontario M3J 1P3 Canada			Report #51		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
Dr. Ronald A. De Marco Office of Naval Research, Chemistry Division 800 N. Quincy St., Arlington, VA 22217 U.S.A.					
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION / AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE		
13. ABSTRACT (Maximum 200 words)					
<p>Correlations of the electrochemical parameter, $E_L(L)$ with Hammett and Taft parameters, σ_p, σ_m, σ^+ and σ^* are presented and discussed. The correlations provide a means to extend the electrochemical parameter and the Hammett and Taft databases.</p>					
14. SUBJECT TERMS			15. NUMBER OF PAGES		
Electrochemistry, Hammett Parameter			14		
			16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT		18. SECURITY CLASSIFICATION OF THIS PAGE		19. SECURITY CLASSIFICATION OF ABSTRACT	
Unclassified		Unclassified		Unclassified	
20. LIMITATION OF ABSTRACT					

TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research (2)*
Chemistry Division, Code 1113
800 North Quincy Street
Arlington, Virginia 22217-5000

Dr. Richard W. Drisko (1)
Naval Civil Engineering
Laboratory
Code L52
Port Hueneme, CA 93043

Dr. James S. Murday (1)
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Harold H. Singerman (1)
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Robert Green, Director (1)
Chemistry Division, Code 385
Naval Air Weapons Center
Weapons Division
China Lake, CA 93555-6001

Dr. Eugene C. Fischer (1)
Code 2840
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Elek Lindner (1)
Naval Command, Control and Ocean
Surveillance Center
RDT&E Division
San Diego, CA 92152-5000

Defense Technical Information
Center (2)
Building 5, Cameron Station
Alexandria, VA 22314

Dr. Bernard E. Douda (1)
Crane Division
Naval Surface Warfare Center
Crane, Indiana 47522-5000

* Number of copies to forward

ABSTRACT DISTRIBUTION LIST

Professor Hector Abruna
Department of Chemistry
Cornell University
Ithaca, NY 14853

Dr. Allen J. Bard
Department of Chemistry
University of Texas at Austin
Austin, TX 78712-1167

Professor Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Professor Daniel Buttry
Department of Chemistry
University of Wyoming
Laramie, WY 82071

Professor Richard M. Crooks
Department of Chemistry
University of New Mexico
Albuquerque, NM 87131

Professor Andrew Ewing
Department of Chemistry
152 Davey Laboratory
Pennsylvania State University
University Park, PA 16802

Professor Gregory Farrington
University of Pennsylvania
Department of Materials Science and Engineering
3231 Walnut Street
Philadelphia, Pennsylvania 19104

Professor W. R. Fawcett
Department of Chemistry
University of California, Davis
Davis, CA 95616

Dr. John J. Fontanella
Physics Department
U.S. Naval Academy
Annapolis, MD 21402-5026

Professor Harry Gray
California Institute of Technology
127-72
Pasadena, California 91125

Professor Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

Dr. Adam Heller
Department of Chemical Engineering
University of Texas at Austin
Austin TX 78712-1062

Professor Pat Hendra
The University
Southampton SO9 5NH
England

Professor Joseph Hupp
Department of Chemistry
Northwestern University
Evanston, IL 60208

Professor Jiri Janata
Department of Bioengineering
University of Utah
Salt Lake City, UT 84102

Professor A. B. P. Lever
Department of Chemistry
York University
4700 Keele Street
North York, Ontario M3J 1P3

Professor Nathan S. Lewis
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

Dr. Bor Yann Liaw
University of Hawaii at Manoa
2540 Maile Way, Spalding 253
Honolulu, HI 96822

Professor Rudolph Marcus
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

Professor Charles Martin
Department of Chemistry
Colorado State University
Ft. Collins, CO 80523

Dr. Donald Maricle
International Fuel Cells
P. O. Box 739
195 Governors Highway
South Windsor, CT 06074

Dr. Melvin H. Miles
Energetic Materials Branch, Code 3853
Chemistry Division, Research Department
Naval Weapons Center
China Lake CA 93555

Professor Royce W. Murray
Department of Chemistry
University of North Carolina at Chapel Hill
Chapel Hill, NC 27514

Dr. David J. Nagel
Naval Research Laboratory
Code 460C
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5000

Dr. Michael R. Philpott
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

Professor B. S. Pons
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

Dr. Mark A. Ratner
Department of Chemistry
Northwestern University
Evanston, IL 60208

Dr. Debra Rolison
Code 6170
Naval Research Laboratory
Washington, DC 20375-5000

Dr. Michael J. Sailor
Department of Chemistry
University of California, San Diego
9500 Gilman Drive
La Jolla CA 92093-0506

Professor Jack Simons
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

Professor John L. Stickney
University of Georgia
Department of Chemistry
Cedar Street
Athens, GA 30602

Professor Eric M. Stuve
Dept. of Chemical Engineering, BF-10
University of Washington
Seattle, Washington 98195

Dr. Stanislaw J. Szpak
Code 574
Naval Ocean Systems Center
San Diego, CA 92152-5000

Dr. E. Jennings Taylor
Physical Sciences, Inc.
20 New England Business Center
Andover MA 01810

Dr. Petr Vanysek
Department of Chemistry
Northern Illinois University
DeKalb, IL 60115

Professor Michael Weaver
Department of Chemistry
Purdue University
West Lafayette, IN 49707

Professor Henry S. White
Department of Chemical Engineering
and Materials Science
421 Washington Avenue, SE
University of Minnesota
Minneapolis, MN 55455

Professor R. Mark Wightman
Department of Chemistry
CB #3290, Venable Hall
The University of North Carolina
Chapel Hill NC 27599-3290

Professor George Wilson
Department of Chemistry
University of Kansas
Lawrence, KS 66045

Professor Mark S. Wrighton
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139

Professor Ernest Yeager
Case Center for Electrochemical Sciences
Case Western Reserve University
Cleveland, OH 44106

Contribution from the Dept. of Chemistry,
York University, North York (Toronto),
Ontario, Canada, M3J 1P3.

Correlations Between the Ligand Electrochemical Parameter, $E_L(L)$ and the Hammett Substituent Parameter, σ .

By Hitoshi Masui and A. B. P. Lever.

Correlations of the electrochemical parameter, $E_L(L)$ with Hammett and Taft parameters, σ_p , σ_m , σ^+ and σ^* are presented and discussed. The correlations provide a means to extend the electrochemical parameter and the Hammett and Taft databases.

Recently, a ligand electrochemical parameter, $E_L(L)$, based upon the $\text{Ru}^{III}/\text{Ru}^{II}$ reduction potential as an electrochemical standard, was introduced¹⁻³ and developed.⁴⁻¹⁴ This parameter allows one to predict the metal-centred redox potential of a variety of complexes based on the additivity of the $E_L(L)$ parameters. The prediction is made using the linear relationship,

$$E_{(obs)} = S_M [\Sigma E_L(L_i)] + I_M \quad (1)$$

where the slope, S_M , and the intercept, I_M , are constant for all derivatives of a given metal undergoing a defined redox process; i.e. having a defined initial and final oxidation state, coordination number, stereochemistry, and spin state.

Hammett σ parameters have been shown to correlate with, inter alia, metal centered electrochemical potentials in a variety of substituted ligand complexes.¹⁵⁻³¹ It follows that, in these cases, Hammett parameters must also linearly correlate with $E_L(L)$ values, as briefly noted for substituted benzoquinonediimine species.^{3,32}

In this exploratory paper we consider possible relationships between Hammett or Taft parameters with $E_L(L)$ parameters. The question of whether it is better to use σ_p , σ_m , σ^+ or σ^* is discussed briefly. From a pragmatic point of view, correlation with σ_p or σ_m is preferred since there is a large database of these parameters for a wide variety of substituents. For example, σ_m and σ_p values for some 530 substituents are listed in Table I of ref. 33. However, when the substituent is closer to the metal and metal-substituent π interactions are possible, σ^* or σ^+ may be more appropriate.

It should be possible to use Hammett or Taft parameters to derive $E_L(L)$ values for a large variety of ligands not covered in ref. 1, thereby, greatly expanding the utility of the electrochemical parameter analysis. In particular the availability of Hammett parameters for a great number of organic functional groups should permit these $E_L(L)$ parameters to be used to derive redox potentials in a variety of organometallic species. Their availability should spur the synthesis of more exotic complexes by defining a potential range for their isolation. Further, electrochemically generated $E_L(L)$ values may then be used to obtain σ values for hitherto unreported substituents. This paper begins the exploration of such a correlation but is restricted to a single- rather than multi-parameter correlation.

The relationship between the $E_L(L)$ parameter and the σ parameter can be deduced from the mathematical definition of the $E_L(L)$ parameter (Eqn. 4b of Ref.¹), the Nernst equation³⁴ and the equations expressing the Hammett free-energy relationship.^{31,35,36} Thus, the $E_L(L)$ parameter of a substituted ligand, LX, (LH denotes a parent ligand substituted by X which may also generally represent a collection of substituents as in the case of poly-substituted ligands) is given by:³⁷

$$E_L(LX) = 2.303(RT/nF)\rho(L)_{Ru^{III}/II} \sum \sigma + E_L(LH) \quad (2)$$

Here, $\rho(L)_{Ru^{III}/II}$, the reaction parameter, characterizes the sensitivity of the Ru^{III/II} redox potential to substitution at L for the series, and $\sum \sigma$ is the sum of the Hammett or Taft parameters of the substituent(s) attached to L, and $E_L(LH)$ is the $E_L(L)$ parameter of the unsubstituted ligand. The remaining constants retain their usual meanings.^{1,33-36} The reaction parameter is the fitted parameter.

Based on previous literature,¹⁵⁻³¹ a correlation can be expected between $\sum \sigma$ and $E_L(L)$ for homologous series such as substituted pyridines R-Py, substituted bipyridines, 4-R,4'-R',5-R'',5'-R'''bpy, R, R',R''-phosphines, diketones (RCOCHR'COR''), and

Distribution/	
Availability Codes	
Dist	Avail and/or Special
A-1	

benzoquinonediimines, R-BQDI, for which a significant $E_L(L)$ database^{1,32} is available. In the pyridine and bipyridine series, it is reasonable to use the σ_p and σ_m parameters for substituents on the aromatic rings which are para or meta to the coordinating atoms; regression data are shown in Table 1. In the case of the phosphines and diketones, where the substituent is closer to the reaction centre, parameters such as σ^+ , σ^* or R ,^{33,39,40} which incorporate a resonance or π interaction may be more appropriate given the importance of these interactions in determining the ligand's $E_L(L)$ value.¹ In the case of the phosphines (including phosphites) there are too few available σ^+ parameter values to be very useful. A good correlation was observed with σ^* (Table 1) and fairly good correlations were also observed for σ_p and σ_m although they were statistically less well behaved than σ^* . Correlation with R was very poor. One may question whether σ^* values are truly additive when dealing with several substituents on the same atom (phosphorus) and a more detailed analysis of such an assumption is left for future analysis. An excellent correlation is observed for the diketone species with σ^+ , much better than with σ^* . Good correlations are also observed with both σ_p and σ_m , but the application of σ^+ is more appropriate in this case (Table 1).

While good linear correlations were obtained for all the homologous series studied (Table 1), one should note the narrow range of E_L parameters for each series (except perhaps the bipyridines) so that a good correlation while useful, is not so surprising or dramatic.

The $\rho_{RuIII/II}$ parameters do not vary greatly between these series and are largest for substituted benzoquinonediimines^{32,41} and phosphines, where electronic coupling to the metal centre is known to be very strong. Surprisingly, the reaction parameter for the pyridine series is twice that for the bipyridine series showing that substituent effects are transmitted much more readily to ruthenium in the pyridine series than in the bipyridine series. This may be due to a steric effect.

Of more profound value, a correlation with σ_p was also noted between a large number of neutral and anionic ligands which may be regarded as substituents of a hydrido $M(L')_nH$ species. Thus if the substituent is attached directly to the metal,

$$E_L(X^-) = 2.303(RT/nF)^\rho_{RuIII/II} \sum \sigma + E_L(H^-) \quad (3)$$

For example (Table 2), NH_3 and Cl^- ligands may replace the hydrido ligand on ruthenium just as NH_3^+ and Cl would replace the hydrogen of an organic molecule. Such analogies have been drawn

previously between organic and inorganic fragments.³⁸

The validity of Eqn. 3 may be tested by plotting the $E_L(L)$ data listed in Table 2 against σ_p as in Figure 1. Indeed, quite a good linear correlation is observed between the two parameters with the y-intercept gratifyingly close to the $E_L(H^-)$ value of the hydride ligand. As expected, the sensitivity of the Ru^{III/II} redox potential to direct substitution, as indicated by $\rho_{Ru^{III/II}}$, is much greater than that of the ligand substitutions in the homologous series identified above. Given the closeness of the interaction, the σ_p parameter is not necessarily the most appropriate parameter to use but pragmatically it works while parameters such as R^{33} do not, and σ^* and σ^+ cannot be adequately tested.

This direct correlation provides an exciting opportunity for greatly expanding the $E_L(L)$ database. Thus, the correlations shown in Tables 1 and 2 may now be used not only to derive $E_L(L)$ for many substituted ligands but also for a variety of exotic ligands chosen, for example, from Table I of ref. 33; ie. ligands which may be more common in organometallic chemistry. Some of these predicted $E_L(L)$ values are presented in Table 3.

It remains to be seen if ligands such as NH_2^- , which are likely to be strongly π -bonded to ruthenium, can be treated in such a simple fashion. One may also question in the future whether multiple substituents in the same ligand can be linearly treated with Eqn.(2); this does appear to be possible to the extent that it has been tested in the species discussed here. Future work will also address how the reaction parameters change with other metal ions, to see how substituent effects are transmitted to couples other than Ru^{III/II}, and whether multi-parameter fits⁴² may offer advantages. One may also expect that careful analysis of Hammett or Taft parameters giving good correlations with $E_L(L)$, compared with those that do not, will provide additional information about the factors determining such relationships.

Acknowledgements We are indebted to the Natural Sciences and Engineering Research Council (Ottawa), and the Office of Naval Research (Washington) for financial support. We also acknowledge useful discussion with Carlos da Cunha.

Table 1. Correlation parameters for $E_L(L)$ vs $\Sigma\sigma$ plots.^a

Ligand	$S' M$	$E_L(LH)$	ρ^b	R^c	sample size
benzoquinonediimines - σ_p	0.17	0.26	2.9	0.98	6
phosphines - σ_*	0.17	0.35	2.9	0.95	10
pyridines - $\Sigma\sigma^d$	0.13	0.24	2.2	0.95	17
bipyridines - $\Sigma\sigma$	0.07	0.25	1.2	0.99	16
diketones - σ^+	0.12	0.01	2.0	0.98	13
direct - σ_p^e	0.62	-0.37	10.5	0.95	20

a) Solutions to eqn. (3). See text for detail concerning parameter used. Values of σ_m and σ_p , of σ^* and of σ^+ were taken from Tables I, II and V, of ref.³³ respectively. Actual data are listed in the Appendix. b) Reaction parameter for $\text{Ru}^{III/II}L$. c) The regression coefficient. d) $\Sigma\sigma = \sigma_m + \sigma_p$ as appropriate for the species concerned. e) Solution to Eqn. 3; also see Tables 2 and 3.

Table 2. Species which act as ligands and substituents.

Species (X)	$\sigma_p(X)^a$	$E_L(X^-)^b$
OH	-0.37	-0.59
SPh	0.07	-0.53
F	0.06	-0.42
N ₃	0.08	-0.3
H	0	-0.3
NCO	0.19	-0.25
I	0.18	-0.24
Cl	0.23	-0.24
Br	0.23	-0.22
OCOCF ₃	0.46	-0.15
NO ₃	0.7	-0.11
NCS	0.52	-0.06
NO ₂	0.78	0.02
CN	0.66	0.02
NH ₃ ⁺	0.6	0.07
S(Me) ₂ ⁺	0.9	0.31
P(Me) ₃ ⁺	0.73	0.33
P(Et) ₃ ⁺	0.98	0.34
PMePh ₂ ⁺	1.18	0.37
N ₂ ⁺	1.91	0.68

a) Values obtained from ref.³³. b) Values obtained from ref.¹

Table 3. Predicted $E_L(L)$ Values

Species (X)	$\sigma_p(X)^a$	$E_L(X^-)^b$
NH ₂	-0.66	-0.78
NHPh	-0.56	-0.71
NMe ₃ ⁺	0.82	0.13
HS	0.15	-0.28
Me	-0.17	-0.47
CF ₃	0.54	-0.04
Acetate	-0.16	-0.47
SiMe ₃	-0.07	-0.41
CMe ₃	-0.2	-0.49
Ph	-0.01	-0.38
C ₆ F ₅	0.27	-0.20
Si(NMe ₂) ₃	-0.04	-0.39

a) Values obtained from ref.³³. b) Values obtained using Eqn. 3 (see Table 1, bottom entry).

References

1. Lever, A. B. P. Inorg. Chem. 1990, 29, 1271.
2. Lever, A. B. P. Inorg. Chem. 1991, 30, 1980.
3. Lever, A. B. P. Proc. NATO Advanced Research Workshop - "Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds", Sintra (Portugal), 1992.
4. Heath, G. A.; Humphrey, D. G., J. Chem. Soc.-Chem. Comm., 1991, 1668.
5. Auburn, P. R.; Dodsworth, E. S.; Haga, M.; Liu, W.; Nevin, W. A.; Lever, A. B. P., Inorg. Chem., 1991, 30, 3502.
6. Duff, C. M.; Schmid, R. A., Inorg. Chem., 1991, 30, 2938.
7. Duff, C. M.; Heath, G. A., Inorg. Chem., 1991, 30, 2528.
8. Haga, M. A.; Bond, A. M., Inorg. Chem., 1991, 30, 475.
9. Bautista, M. T.; Cappellani, E. P.; Drouin, S. D.; Morris, R. H.; Schweitzer, C. T.; Sella, A.; Zubkowski, J., J. Am. Chem. Soc., 1991, 113, 4876.
10. Jia, G.; Morris, R. H., J. Am. Chem. Soc., 1991, 113, 875.
11. Jia, G. C.; Lough, A. J.; Morris, R. H., Organometallics, 1992, 11, 161.
12. Denti, G.; Campagna, S.; Sabatino, L.; Serrini, S.; Ciano, M.; Balzani, V., Inorg. Chem., 1990, 29, 4750.
13. Lu, J.; Clarke, M. J., Inorg. Chem., 1990, 29, 4123.
14. Lu, J.; Yamano, A.; Clarke, M. J., Inorg. Chem., 1990, 29, 3483.
15. Hussain, G.; Leigh, G. J.; Ali, H. M.; Pickett, C. J.; Rankin, D. A. JCS Dalton. 1984, 1703.
16. Pombeiro, A. J. L. Portug. Electrochim. Acta. 1985, 3, 41.
17. Pombeiro, A. J. L. ; Pickett, C. J.; Richards, R. L. J. Organomet. Chem., 1982; 224, 285.
18. Ghosh, P.; Chakravorty, A. Inorg. Chem., 1984; 23: 2242-2248.
19. Tsiamis, C.; Karageorgiou, S.; Lalia-Kantouri, M.; Manoussakis, G. Gazz. Chim. Ital., 1987, 117, 317.
20. Tsiamis, C.; Hadjikostas, C. C.; Karageorgiou, S.; Manoussakis, G. Inorg. Chim. Acta, 1988, 143, 17.
21. Takeuchi, Y.; Endo, A.; Shimizu, K.; Sato, Gen P. J. Electroanal. Chem., 1985, 185, 185.
22. Endo, A. Bull. Chem. Soc. Jpn., 1983, 56, 2733.

23. Goswami, S.; Mukherjee, R.; Chakravorty, A. Inorg. Chem., 1983, 22, 2825.
24. Bohling, D. A.; Evans, J. F.; Mann, K. R. Inorg. Chem., 1982, 21, 3546.
25. Leising, R. A.; Ohman, J. S.; Takeuchi K. J. Inorg. Chem., 1988, 27, 3804.
26. Tsiamis, C.; Michael, C.; Jannakoudakis, A. J.; Jannakoudakis, P. D. Inorg. Chim. Acta 1986, 120, 1.
27. Lintvedt, R. L.; Russel, H. D.; Holtzclaw, H. F. Inorg. Chem., 1966, 5, 1603.
28. Tsiamis, S. I.; Michael, C.; Jannakoudakis, A. D.; Jannakoudakis, P. D. Inorg. Chim. Acta, 1986, 120, 1
29. Tsiamis, S. I.; Cambanis, S.; Hadjikostas, C. C., Inorg. Chem., 1987, 26, 26.
30. Lawrence, G. A.; Lay, P. A.; Sargeson, A. M. Inorg. Chem., 1990, 29, 4808.
31. Hino, J. K.; Dell Ciana, L.; Dressick, W. J.; Sullivan, B. P., Inorg. Chem., 1992, 31, 1072.
32. Masui, H.; Dodsworth, E. S.; Lever, A. B. P., Inorg. Chem., 1992, 31, 5172.
33. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev., 1991, 91, 165.
34. Bard, A. J.; Faulkner, R. "Electrochemical Methods"; Wiley: New York, 1980.
35. Hammett, L. P. J. Am. Chem. Soc., 1937, 59, 96.
36. March, J. "Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 3rd Ed", John Wiley & Sons Inc., New York, 1985, Chapter 6.
37. Consider a series of complexes having the general form, $M(L')_n^{(LH)}$ (I) and $M(L')_n^{(LX)}$ (II), where L' represents spectator ligands which may be of one or more types, then the half-cell oxidation potentials of these species, referenced to NHE, $E_o(I)$ and $E_o(II)$ may be written

$$[M(L')_n^{(LH)}]^n + e^- \rightleftharpoons [M(L')_n^{(LH)}]^{n-1} \quad K_{eq}(LH)$$

$$\text{and } E_o(I) = \sum E_L(L') + E_L(LH) = (RT/nF) \ln K_{eq}(LH)$$

$$[M(L')_n^{(LX)}]^m + e^- \rightleftharpoons [M(L')_n^{(LX)}]^{m-1} \quad K_{eq}(LX)$$

$$\text{and } E_o(II) = \sum E_L(L') + E_L(LX) = (RT/nF) \ln K_{eq}(LX)$$

Then,

$$E_o(LX) - E_o(LH) = E_L(LX) - E_L(LH) = (RT/nF)(\ln K_{eq}(LX) - \ln K_{eq}(LH))$$

$$E_L(LX) - E_L(LH) = 2.303(RT/nF)\log[K_{eq}(LX)/K_{eq}(LH)]$$

But,

$$\log[K_{eq}(LX)/K_{eq}(LH)] = \rho\sigma$$

Therefore,

$$E_L(LX) = 2.303(RT/nF)\rho\sigma + E_L(LH)$$

38. Hoffmann, R. Prix Nobel 1982, 173.

39. Taft, W. R.; Topsom, R. D. in "Progr. Phys. Org. Chem.", Ed. Taft, R. W., 1987, 16, 1.

40. Kosower, E. M. "An Introduction to Physical Organic Chemistry", John Wiley, New York, 1968,

Chapter 1

41. Masui, H.; Auburn, P. R.; Lever, A. B. P. Inorg. Chem., 1991, 30, 2402.

42. Charton, M. C. in "Progr. Phys. Org. Chem.", Ed. Taft, R. W., 1987, 16, 287.

43. Skarda, V.; Cook, M. J.; Lewis, A. P.; McAuliffe, G. S. G.; Thomson, A. J.; Robbins, D. J. J. Chem. Soc. Perkin II, 1984, 1309.

44. Juris, A.; Balzani, V.; Barigelli, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85.

Figures

Figure 1. A plot of the $E_L(L)$ parameter versus the Hammett σ_p parameter for substituents capable of acting directly as ligands (Data in Table 2)

Appendix; Data used to determine the regression statistics in Table 1.

Benzoquinonediimines, $E_L(L)$, $\Sigma\sigma = \Sigma\sigma_p$ (Electrochemical data, and hence $E_L(L)$ values from ref.⁴¹);
 4-NO₂BQDI, 0.38, 0.78; 4,5-Cl₂BQDI, 0.33, 0.46; BQDI, 0.28, 0; 4,5-(CH₃)BQDI, 0.25, -0.34;
 4,5-(OME)BQDI, 0.16, -0.54; 4,5-(NH₂)BQDI, 0.01, -1.32.

Phosphines, $E_L(L)$, Taft σ^* ($E_L(L)$ values from ref.¹); Me₃P, 0.33, -0.15; Me₂HP, 0.34, -0.1; Me₂PhP,
 0.34, 0; Pr₃P, 0.34, -0.15; Et₃P, 0.34, -0.15; MePh₂P, 0.37, 0.15; Tolyl₃P, 0.37, 0.15; Ph₃P, 0.39,
 0.3; (PhO)₃P, 0.58, 1.14; (MeO)₃P, 0.42, 0.69.

Pyridines, $E_L(L)$, $\Sigma\sigma = \sigma_m + \sigma_p$ ($E_L(L)$ values from ref.¹); 4-ViPy, 0.2, -0.04; 3,5-Me₂Py, 0.21, -0.14;
 4-PhPy, 0.23, -0.01; 4-MePy, 0.23, -0.17; 4-StPy, 0.23, -0.07; 4-t-BuPy, 0.23, -0.2; Py, 0.25, 0;
 3-CONH₂Py, 0.26, 0.28; 4-ClPy, 0.26, 0.23; 4-CONH₂Py, 0.28, 0.36; 3-IPy, 0.29, 0.35;
 4-COOHPy, 0.29, 0.45; 4-AcPy, 0.3, 0.5; 4-(CHO)Py, 0.31, 0.42; 4-CNPy, 0.32, 0.66; 4-CF₃Py,
 0.32, 0.54; 3,5-Cl₂Py, 0.33, 0.74.

Bipyridines, $E_L(L)$, $\Sigma\sigma = \sigma_m + \sigma_p$ (Electrochemical data, and hence $E_L(L)$ values from refs.^{1,43,44});
 4,4'-(NEt₂)₂bpy, 0.15, -1.44; 4,4'-(Me)₂bpy, 0.23, -0.34; 4,4'-(CH=CHPh)₂bpy, 0.24, -0.14;
 5,5'-(Me)₂bpy, 0.24, -0.14; 4,4'-(Ph)₂bpy, 0.25, -0.02; bpy, 0.26, 0; 4-Clbpy, 0.27, 0.23; 4-Brbpy,
 0.27, 0.23; 4,4-Cl₂bpy, 0.29, 0.46; 4,4-Br₂bpy, 0.29, 0.46; 4,4-(CO₂Et)₂bpy, 0.31, 0.9;
 4-Me,4'vinyl-bpy, 0.23, -0.21; 4-nitrobpy, 0.30, 0.78; 4,4-(CO₂Ph)₂bpy, 0.31, 0.88;
 5,5-(CO₂Et)₂bpy, 0.32, 0.88; 4,5,4,5-Me₄bpy, 0.22, -0.48.

Electrochemical data for the species 4,4'-(OEt)₂bpy, 4,4'-(NHCOMe)₂bpy, 4,4'-(OPh)₂bpy, and
 5,5'-(NHCOMe)₂bpy, from ref.⁴³ are excluded since they fit the correlation poorly; either the
 electrochemical or the Hammett data is suspect.

Diketones, E_L^+ , σ^+ (Electrochemical data, and hence $E_L(L)$ values from refs.^{1,21,22}); (listed as derivatives of RCOCR'COR") CF₃,H,Ph, 0.05, 0.43; CF₃,H,CH₃, 0.03, 0.30; CF₃,H,CF₃, 0.17, 1.22; Ph,H,Ph, -0.04, -0.36; Ph,H,Me, -0.06, -0.49; Me,H,Me, -0.08, -0.62; Me,Br,Me, -0.03, -0.47; Me,Cl,Me, -0.03, -0.51; Me,I,Me, -0.03, -0.48; Me,Me,Me, -0.11, -0.93; Me,Ph,Me, -0.09, -0.80; CF₃,H,3-thienyl, 0.05, 0.23; CF₃,H,tBu, 0.02, 0.35.

