

Robotics 1

Trajectory planning

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

for the robot controller

Trajectory planner interfaces

Robotics 1

(with possible exchange

of contact forces)

Trajectory definition a standard procedure for industrial robots

- 1. define Cartesian pose points (position+orientation) using the teach-box
- 2. program an (average) velocity between these points, as a 0-100% of a maximum system value (different for Cartesian- and joint-space motion)
- 3. linear interpolation in the joint space between points sampled from the built trajectory

examples of additional features

- a) over-fly A
- b) sensor-driven STOP c) circular path
 - c) circular path through 3 points

main drawbacks

- semi-manual programming (as in "first generation" robot languages)
- limited visualization of motion

a mathematical formalization of trajectories is useful/needed

From task to trajectory

```
TRAJECTORY

I

of motion p_d(t)

of interaction F_d(t)

GEOMETRIC PATH

parameterized by s: p=p(s)

(e.g., s is the arc length)

TIMING LAW

describes the time evolution of s=s(t)
```


example: TASK planner provides A, B
TRAJECTORY planner generates p(t)

Trajectory planning

operative sequence

additional issues to be considered in the planning process

- obstacle avoidance
- on-line/off-line computational load
- sequence 2 is more "dense" than 1

SATURN SEE

Example

Cartesian vs. joint trajectory planning

- planning in Cartesian space
 - allows a more direct visualization of the generated path
 - obstacle avoidance, lack of "wandering"
- planning in joint space
 - does not need on-line kinematic inversion
- issues in kinematic inversion
 - q e q (or higher-order derivatives) may also be needed
 - Cartesian task specifications involve the geometric path, but also bounds on the associated timing law
 - for redundant robots, choice among ∞^{n-m} inverse solutions, based on optimality criteria or additional auxiliary tasks
 - off-line planning in advance is not always feasible
 - e.g., when interaction with the environment occurs or sensor-based motion is needed

Path and timing law

 after choosing a path, the trajectory definition is completed by the choice of a timing law

$$p = p(s)$$
 $\Rightarrow s = s(t)$ (Cartesian space)
 $q = q(\lambda)$ $\Rightarrow \lambda = \lambda(t)$ (joint space)

- if s(t) = t, path parameterization is the natural one given by time
- the timing law
 - is chosen based on task specifications (stop in a point, move at constant velocity, and so on)
 - may consider optimality criteria (min transfer time, min energy,...)
 - constraints are imposed by actuator capabilities (max torque, max velocity,...) and/or by the task (e.g., max acceleration on payload)

note: on parameterized paths, a space-time decomposition takes place

e.g., in Cartesian
$$p(t) = \frac{dp}{ds}\dot{s}$$
 $p(t) = \frac{dp}{ds}\dot{s} + \frac{d^2p}{ds^2}\dot{s}^2$

Trajectory classification

- space of definition
 - Cartesian, joint
- task type
 - point-to-point (PTP), multiple points (knots), continuous, concatenated
- path geometry
 - rectilinear, polynomial, exponential, cycloid, ...
- timing law
 - bang-bang in acceleration, trapezoidal in velocity, polynomial, ...
- coordinated or independent
 - motion of all joints (or of all Cartesian components) start and ends at the same instants (say, t=0 and t=T) = single timing law or
 - motions are timed independently (according to the requested displacement and robot capabilities) – mostly only in joint space

Relevant characteristics

- computational efficiency and memory space
 - e.g., store only the coefficients of a polynomial function
- predictability (vs. "wandering" out of the knots) and accuracy (vs. "overshoot" on final position)
- flexibility (allowing concatenation, over-fly, ...)
- continuity (at least C^1 , but also up to jerk = $\frac{da}{dt}$)

STORYM VE

Trajectory planning in joint space

- q = q(t) or $q = q(\lambda)$, $\lambda = \lambda(t)$
- it is sufficient to work component-wise (q_i in vector q)
- an implicit definition of the trajectory, by solving a problem with specified boundary conditions in a given class of functions
- typical classes: polynomials (cubic, quintic,...), (co)sinusoids, clothoids, ...
- imposed conditions
 - passage through points (interpolation)
 - initial, final, intermediate velocity
 - initial, final acceleration
 - continuity up to the k-th order time derivative (C^k)

many of the following methods and remarks can be directly applied also to Cartesian trajectory planning (and vice versa)!

Cubic polynomial

$$q(0) = q_{in}$$
 $q(T) = q_{fin}$ $\dot{q}(0) = v_{in}$ $\dot{q}(T) = v_{fin}$ 4 conditions

$$q(\tau) = q_{in} + \Delta q [a\tau^{3} + b\tau^{2} + c\tau + d]$$

$$\tau = t/T, \tau \in [0, 1]$$

4 coefficients \longrightarrow "doubly normalized" polynomial $q_N(\tau)$

$$q_N(0) = 0 \Leftrightarrow d = 0$$
 $q_N(1) = 1 \Leftrightarrow a + b + c = 1$

$$q_N'(0) = dq_N/d\tau|_{\tau=0} = c = v_{in}T/\Delta q$$
 $q_N'(1) = dq_N/d\tau|_{\tau=1} = 3a + 2b + c$ $= v_{fin}T/\Delta q$

special case: $v_{in} = v_{fin} = 0$ (rest-to-rest)

$$q_N'(0) = 0 \Leftrightarrow c = 0$$

$$q_N(1) = 1 \Leftrightarrow a + b = 1$$

$$q_N'(1) = 0 \Leftrightarrow 3a + 2b = 0$$

$$\Rightarrow a = -2$$

$$b = 3$$

Quintic polynomial

$$q(\tau) = a\tau^5 + b\tau^4 + c\tau^3 + d\tau^2 + e\tau + f$$
 6 coefficients
$$\tau = t/T, \tau \in [0, 1]$$

allows to satisfy 6 conditions, for example (in normalized time τ)

$$q(0) = q_0$$
 $q(1) = q_1$ $q'(0) = v_0T$ $q'(1) = v_1T$ $q''(0) = a_0T^2$ $q''(1) = a_1T^2$

$$q(\tau) = (1 - \tau)^{3}[q_{0} + (3q_{0} + v_{0}T)\tau + (a_{0}T^{2} + 6v_{0}T + 12q_{0})\tau^{2}/2]$$
$$+ \tau^{3}[q_{1} + (3q_{1} - v_{1}T)(1 - \tau) + (a_{1}T^{2} - 6v_{1}T + 12q_{1})(1 - \tau)^{2}/2]$$

special case:
$$v_0 = v_1 = a_0 = a_1 = 0$$

$$q(\tau) = q_0 + \Delta q [6\tau^5 - 15\tau^4 + 10\tau^3]$$
 $\Delta q = q_1 - q_0$

4-3-4 polynomials

three phases (Lift off, Travel, Set down) in pick-and-place operations

boundary conditions

Higher-order polynomials

- a suitable solution class for satisfying symmetric boundary conditions (in a PTP motion) that impose zero values on higher-order derivatives
 - the interpolating polynomial is always of odd degree
 - the coefficients of such (doubly normalized) polynomial are always integers, alternate in sign, sum up to unity, and are zero for all terms up to the power = (degree-1)/2
- in all other cases (e.g., for interpolating a large number N of points), their use is not recommended
 - N-th order polynomials have N-1 maximum and minimum points
 - oscillations arise out of the interpolation points (wandering)

Numerical examples

- problem
 - interpolate N knots, with continuity up to the second derivative
- solution

spline: N-1 cubic polynomials, concatenated so as to pass through N knots and being continuous in velocity and acceleration in the N-2 internal knots

- 4(N-1) coefficients
- 4(N-1)-2 conditions, or
 - 2(N-1) of passage (for each cubic, in the two knots at its ends)
 - N-2 of continuity for velocity (at the internal knots)
 - N-2 of continuity for acceleration (at the internal knots)
- 2 free parameters are still left over
 - can be used, e.g., to assign initial and final velocities, v₁ and v_N
- presented next in terms of time t, but similar in terms of space λ

Building a spline

$$\theta_{K}(\tau) = a_{k0} + a_{k1} \tau + a_{k2} \tau^{2} + a_{k3} \tau^{3}$$

$$\theta_{K}(\tau) = a_{k0} + a_{k1} \tau + a_{k2} \tau^{2} + a_{k3} \tau^{3} \qquad \tau \in [0, h_{k}], \tau = t - t_{k} \quad (k = 1, ..., N-1)$$

continuity conditions for velocity and acceleration

$$\theta_{K}(h_{k}) = \theta_{K+1}(0)$$

$$\theta_{K}(h_{k}) = \theta_{K+1}(0)$$

$$k = 1, ..., N-2$$

SA JOHN WE

An efficient algorithm

 if all velocities v_k at internal knots were known, then each cubic in the spline would be uniquely determined by

2. impose the continuity for accelerations (N-2 conditions)

$$\theta_{K}(h_{k}) = 2 a_{K2} + 6 a_{K3} h_{K} = \theta_{K+1}(0) = 2 a_{K+1,2}$$

3. expressing the coefficients a_{k2} , a_{k3} , $a_{k+1,2}$ in terms of the still unknown knot velocities (see step 1.) yields a linear system of equations that is always (easily) solvable

$$\begin{array}{c} (v_2 \\ v_3 \\ \vdots \\ v_{N-1} \end{array}) = \begin{array}{c} (b(h,q,v_1,v_N)) \\ (b(h,q,v_1,v_N)) \\ (c) \\ (c$$

Structure of A(h)

diagonally dominant matrix (for $h_k > 0$) [the same matrix for all joints]

Structure of b(h,q,v₁,v_N)

$$\frac{3}{h_{1}h_{2}}[h_{1}^{2}(q_{3}-q_{2})+h_{2}^{2}(q_{2}-q_{1})]-h_{2}v_{1}$$

$$\frac{3}{h_{2}h_{3}}[h_{2}^{2}(q_{4}-q_{3})+h_{3}^{2}(q_{3}-q_{2})]$$

$$\vdots$$

$$\frac{3}{h_{N-3}h_{N-2}}[h_{N-3}^{2}(q_{N-1}-q_{N-2})+h_{N-2}^{2}(q_{N-2}-q_{N-3})]$$

$$\frac{3}{h_{N-2}h_{N-1}}[h_{N-2}^{2}(q_{N}-q_{N-1})+h_{N-1}^{2}(q_{N-1}-q_{N-2})]-h_{N-2}v_{N}$$

Properties of splines

- the spline is the solution with minimum curvature among all interpolating functions having continuous second derivative
- a spline is uniquely determined from the set of data $q_1,...,q_N$, $h_1,...,h_{N-1}$, v_1 , v_N
- the total transfer time is $T = \sum h_k = t_N t_1$
- the time intervals h_k can be chosen so as to minimize T (linear objective function) under (nonlinear) bounds on velocity and acceleration in [0,T]
- for cyclic tasks $(q_1=q_N)$, it is preferable to simply impose continuity of velocity and acceleration at $t_1=t_N$ as the "squaring" conditions
 - in fact, even choosing $v_1 = v_N$ doesn't guarantee acceleration continuity
 - in this way, the first=last knot will be handled as all other internal knots
- when initial and final accelerations are also assigned, the spline construction can be suitably modified

A modification

• two more parameters are needed in order to impose also the initial acceleration α_1 and final acceleration α_N

handling assigned initial and final accelerations

- two "fictitious knots" are inserted in the first and last original intervals, increasing the number of cubic polynomials from N-1 to N+1
- in these two knots only continuity conditions on position, velocity and acceleration are imposed
 - ⇒ two free parameters are left over (one in the first cubic and the other in the last cubic), which are used to satisfy the boundary conditions on acceleration
- depending on the (time) placement of the two additional knots, the resulting spline changes

A numerical example

- N=4 knots (3 cubic polynomials)
 - joint values $q_1 = 0$, $q_2 = 2\pi$, $q_3 = \pi/2$, $q_4 = \pi$
 - at $t_1 = 0$, $t_2 = 2$, $t_3 = 3$, $t_4 = 5$ (thus, $h_1 = 2$, $h_2 = 1$, $h_3 = 2$)
 - boundary velocities $v_1 = v_4 = 0$
- 2 added knots for imposing accelerations at ends (5 cubic polynomials)
 - boundary accelerations $\alpha_1 = \alpha_4 = 0$
 - two placements: at $t_1' = 0.5$ and $t_4' = 4.5$ (×), or $t_1'' = 1.5$ and $t_4'' = 3.5$ (*)

