HCS12 Instructions

A Sample of HCS12 Instructions

- It would be very helpful to learn a small set of HCS12 instructions that are used most often before we formally learn HCS12 assembly language programming.
- We will examine data movement, addition, and subtraction instructions.
- The HCS12 provides a large group of data movement instructions.
 - Some of them may transfer data <u>between a CPU register and a memory location</u>.
 - Some of them may transfer or exchange data <u>between two registers</u>.
 - Others may transfer data from one memory location to another memory location.

Load and Store Instructions

Load Instruction:

- Copies the contents of a memory location or places an immediate value into an accumulator or a register.
- Memory contents are not changed.

Store Instruction:

- Copies the contents of a CPU register into a memory location.
- The contents of the accumulator or CPU register are not changed.
- Store instructions automatically update the N and Z flags in the condition code register (CCR).

Load and Store Instructions

- Example 1:
 - Idaa 0,X
 - Loads the contents of the memory location pointed to by index register X into accumulator A
- Example 2:
 - Idab \$1004
 - Loads the contents of the memory location at \$1004 into accumulator B
- Example 3:
 - staa \$20
 - Stores the contents of accumulator A in the memory location at \$20
- Example 4:
 - stx \$8000
 - **Stores** the contents of index register X in memory locations at \$8000 and \$8001

Load Instructions				
Mnemonic	Function	Operation		
LDAA <opr> LDAB <opr> LDD <opr> LDS <opr> LDX <opr> LDY <opr> LEAS <opr> LEAX <opr> LEAX <opr> LEAY <opr></opr></opr></opr></opr></opr></opr></opr></opr></opr></opr>				
Store Instructions				
Mnemonic	Function	Operation		
STAA <opr> STAB <opr> STD <opr> STS <opr> STX <opr> STY <opr></opr></opr></opr></opr></opr></opr>	Store A in a memory location Store B in a memory location Store D in a memory location Store SP in a memory location Store X in a memory location Store Y in a memory location	$\begin{split} & m[opr] \leftarrow [A] \\ & m[opr] \leftarrow [B] \\ & m[opr]:m[opr+1] \leftarrow [A]:[B] \\ & m[opr]:m[opr+1] \leftarrow [SP] \\ & m[opr]:m[opr+1] \leftarrow [X] \\ & m[opr]:m[opr+1] \leftarrow [Y] \end{split}$		

Transfer and Exchange Instructions

- Transfer instructions:
 - Copy the contents of a register or accumulator into another register or accumulator.
 - Source content is not changed by the operation.

- Exchange instructions:
 - Exchange the contents of pairs of registers or accumulators.

CPU Registers

Transfer and Exchange Instructions

- Transfer Instruction:
 - It is possible to transfer from a smaller register to a larger one or vice versa.
 - When transferring from a smaller register to a larger one, the smaller register is signed-extended to 16-bit and then assigned to the larger register.
 - Example 1:
 - tfr A,X ; A is signed-extended to 16 bits and then assigned to X
 - When transferring from a larger register to a smaller one, the smaller register receives the value of the lower half of the larger register.
 - Example 2:
 - tfr X,B ; BI X[7:0], B receives bits 7 to 0 of X
- Exchange Instruction:
 - Example 1:
 - exg A, B ; Exchanges the contents of accumulator A and B.
 - exg D,X ;Exchanges the contents of double accumulator D and index register X.

Transfer Instructions				
Mnemonic	Function	Operation		
TAB TAP TBA TFR TPA TSX TSY TXS TYS	Transfer A to B Transfer A to CCR Transfer B to A Transfer register to register Transfer CCR to A Transfer SP to X Transfer SP to Y Transfer X to SP Transfer Y to SP	$\begin{split} B \leftarrow & [A] \\ CCR \leftarrow & [A] \\ A \leftarrow & [B] \\ A, B, CCR, D, X, Y, or SP \leftarrow [A, B, CCR, D, X, Y, or SP] \\ A \leftarrow & [CCR] \\ X \leftarrow & [SP] \\ Y \leftarrow & [SP] \\ SP \leftarrow & [X] \\ SP \leftarrow & [Y] \end{split}$		
Exchange Instructions				
Mnemonic	Function	Operation		
EXG XGDX XGDY	Exchange register to register Exchange D with X Exchange D with Y	$ \begin{aligned} & [A, B, CCR, D, X, Y, or SP] \Leftrightarrow [A, B, CCR, D, X, Y, or SP] \\ & [D] \Leftrightarrow [X] \\ & [D] \Leftrightarrow [Y] \end{aligned} $		
Sign Extension Instructions				
Mnemonic	Function	Operation		
SEX	Sign extend 8-bit operand	$X, Y, \text{ or } SP \leftarrow [A, B, CCR]$		

Move Instructions

- These instructions move data bytes or words from a source to a destination in memory.
- Six combinations of <u>immediate</u>, <u>extended</u>, and <u>indexed</u> **addressing** are allowed to specify source and destination addresses as shown:
 - IMM ⇒EXT,
 - IMM **→** DX,
 - EXT⇒EXT,
 - EXT⇒IDX,
 - IDX ⇒ EXT,
 - IDX \Rightarrow IDX.

Transfer Instructions				
Mnemonic	Function	Operation		
MOVB <src>, <dest> MOVW <src>, <dest></dest></src></dest></src>	Move byte (8-bit) Move word (16-bit)	$\begin{aligned} \text{dest} &\leftarrow [\text{src}] \\ \text{dest} &\leftarrow [\text{src}] \end{aligned}$		

- Move instructions allow the user to transfer data from memory to memory or from I/O registers to memory and vice versa.
- Example:
 - movb \$1000, \$2000 ;copies the contents of the memory location at
 - \$1000 to the memory location at \$2000
 - movw 0,X, 0,Y ;copies the 16-bit word pointed to by X to the memory location pointed to by Y

Add and Subtract Instructions

 Add and subtract instructions allow the HCS12 to perform fundamental arithmetic operations.

Add Instructions				
Mnemonic	Function	Operation		
ABA	Add B to A	A ← [A] + [B]		
ABX	Add B to X	$X \leftarrow [X] + [B]$		
ABY	Add B to Y	Y ← [Y] + [B]		
ADCA <opr></opr>	Add with carry to A	$A \leftarrow [A] + [opr] + C$		
ADCB <opr></opr>	Add with carry to B	$B \leftarrow [B] + [opr] + C$		
ADDA <opr></opr>	Add without carry to A	$A \leftarrow [A] + [opr]$		
ADDB <opr></opr>	Add without carry to B	B ← [B] + [opr]		
ADDD <opr></opr>	Add without carry to D	D ← [D] + [opr]		
Subtract Instructions				
Mnemonic	Function	Operation		
SBA	Subtract B from A	A ← [A] – [B]		
SBCA <opr></opr>	Subtract with borrow from A	$A \leftarrow [A] - [opr] - C$		
SBCB	Subtract with borrow from B	$B \leftarrow [B] - [opr] - C$		
SUBA <opr></opr>	Subtract memory from A	$A \leftarrow [A] - [opr]$		
SUBB <opr></opr>	Subtract memory from B	$B \leftarrow [B] - [opr]$		
SUBD <opr></opr>	Subtract memory from D	D ← [D] – [opr]		

Example 1:

• Write an instruction sequence to add 3 to the memory locations at \$10 and \$15.

Example1:

• Question: Write an instruction sequence to add 3 to the memory locations at \$10 and \$15.

Solution:

- A memory location cannot be the destination of an ADD instruction.
- Therefore, we need to copy the memory content into an accumulator, add 3 to it, and then store the sum back to the same memory location.

```
$10
Idaa
                      ; copy the contents of memory location at $10 to A
adda
              #3
                      : add 3 to A
              $10
                      ; store the sum back to memory location at $10
staa
              $15
                      ; copy the contents of memory location at $15 to A
Idaa
adda
              #3
                      ; add 3 to A
              $15
                      ; store the sum back to memory location at $15
staa
```

Example 2:

 Write an instruction sequence to add the byte pointed to by index register X and the following byte and place the sum at the memory location pointed to by index register Y.

Example 2:

 Question: Write an instruction sequence to add the byte pointed to by index register X and the following byte and place the sum at the memory location pointed to by index register Y.

Solution:

• The byte pointed to by index register X and the following byte can be accessed by using the indexed addressing mode.

```
    Idaa 0,X ; put the byte pointed to by X in A
    adda 1,X ; add the following byte to A
    staa 0,Y ; store the sum at the location pointed to by Y
```

Example 3:

• Write an instruction sequence to add the numbers stored at \$1000 and \$1001 and store the sum at \$1004.

Example 3:

• Question: Write an instruction sequence to add the numbers stored at \$1000 and \$1001 and store the sum at \$1004.

Solution:

To add these two numbers, we need to put one of them in an accumulator.

```
Idaa $1000 ; copy the number stored in memory location at $1000 to A adda $1001 ; add the second number to A $1004 ; save the sum at memory location at $1004
```

Example 4:

• Write an instruction sequence to swap the 2 bytes at \$100 and \$200.

Example 4:

• Question: Write an instruction sequence to swap the 2 bytes at \$100 and \$200.

Solution:

 To swap the 2 bytes, we need to make a copy of one of the 2 bytes and then the swapping can proceed.