Notation and Math

Regularization intuition

Minimization toy example: Choose a value for λ and then minimize: $\frac{1}{2}(3-w)^2 + \lambda w^2$

The first term $\frac{1}{2}(3-w)^2$ is minimized when w=3

The second term λw^2 is minimized when w = 0

- If $\lambda = \frac{1}{2}$ we can use calculus to minimize this function $\frac{d\frac{1}{2}(3-w)^2 + \frac{1}{2}w^2}{dw} = -(3-w) + w$, so it is minimized when w = 3/2
- If $\lambda = \frac{1}{4}$ we can use calculus to minimize this function $\frac{d\frac{1}{2}(3-w)^2 + \frac{1}{4}w^2}{dw} = -(3-w) + \frac{1}{2}w$, so it is minimized when w = 2

 λ determines how much we prioritize the first term over the second term. Smaller λ means we are closer to 3, larger λ means we are closer to 0

The next slide was not presented in class

Regularization intuition

Maximization toy example. Choose a value for λ and then maximize: $-\frac{1}{2}(3-w)^2 - \lambda w^2$

The first term
$$-\frac{1}{2}(3-w)^2$$
 is maximization when $w=3$

- If $\lambda = \frac{1}{2}$ we can use calculus to maximization this function $\frac{d \frac{1}{2}(3 w)^2 \frac{1}{2}w^2}{dw} = (3 w) w$, so it is maximization when w = 3/2
- If $\lambda = \frac{1}{4}$ we can use calculus to maximization this function $\frac{d \frac{1}{2}(3 w)^2 \frac{1}{4}w^2}{dw} = (3 w) \frac{1}{2}w$, so it is maximization when w = 2

 λ determines how much we prioritize the first term over the second term. Smaller λ means we are closer to 3, larger λ means we are closer to 0