This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office europeen des brevets

Publication number:

0 680 049 A2

(3)

EUROPEAN PATENT APPLICATION

2 Application number: 94309206.4

(1) Int. CL⁵ G11C 7/00, G11C 11/409

22 Date of filing: 09.12.94

(2) Priority: 29.04.94 US 235647

Date of publication of application: 02.11.95 Bulletin 95/44

Designated Contracting States:

DE FR GB IT

 Applicant: Mosaid Technologies Incorporated P.O. Box 13579
 Kanata,
 Ontario K2K 1X6 (CA)

② Inventor: Millar, Bruce 6066 Fernbank Road Stittsville Ontario, K2S 1B6 (CA) Inventor: Foss, Richard C. 28 Raith Gardens Kirkcaldy Fife, KY2 5NJ Scotland (GB) Inventor: Wojcicki, Tomasz 323 Knudson Drive Kanata Ontario K2K 2P1 (CA)

Representative: O'Connell, David Christopher HASELTINE LAKE & CO. Hazlitt House 28 Southampton Buildings Chancery Lane London WC2A 1AT (GB)

Synchronizer.

3) A flip-flop circuit for driving an input circuit of a synchronous dynamic random access memory (SDRAM) comprised of a complementary pair of data inputs for receiving data pulses, a clock input for receiving clock pulses, a capture latch circuit for capturing a bit, having a pair of complementary inputs and a pair of complementary outputs, apparatus for applying data pulses from the complementary data inputs to the inputs of the capture latch, apparatus for triggering the capture latch from the clock

pulses, and apparatus for connecting the complementary outputs to each other through a bidirectional holding latch, whereby during coincidence of a rising edge of a clock pulse and the presence of a data pulse of one polarity, the capture latch is enabled to store a bit corresponding to the data pulse, and to drive the pair of complementary outputs, and following the leading edge of a clock pulse and the one polarity of the data pulse the complementary outputs remain driven by the holding latch.

Rank Xerox (UK) Business Services

20

25

FIELD OF THE INVENTION

This invention relates to semiconductor memories, and in particular to a latch useful to capture data entering a dynamic random access memory (DRAM) such as a synchronous dynamic random access memory (SDRAM).

BACKGROUND TO THE INVENTION

When data is to be stored in a DRAM, it is typically captured in latches where it is temporarily stored while the bit lines which are to receive the data prior to storage in storage cell capacitors are precharged. In modern DRAMs, it is desirable to minimize the current drawn, and one of the sources of wasted current is in the latches.

CMOS circuits which have inputs compatible with other logic families, such as TTL, may consume significant static power while inputs remain at static logic levels. In the TTL case, logic "1", inputs can be as low as 2.4 volts, while in a 5 volt CMOS part the input is typically positioned midvoltage rail, resulting in wasted current.

The standby current in a DRAM is significant because many chips are typically needed for large memory banks. For example, a 4 Mb DRAM has 11 address inputs and several other inputs which must be latched at the start of a memory cycle. Instead of using static latches, DRAM circuits typically make use of dynamic latches in which current can only flow during the actual latching sequence.

Such a circuit is shown in Figure 1, which is a schematic diagram of a dynamic latch circuit in accordance with the prior art. This circuit is shown in an article by Miyamoto et al in IEEE Journal of Solid State Circuits. 4/90.

A flip flop 1 is used to store a bit and present it to output inverters 3 and 5 for provision to output leads Ai and Ai. Field effect transistors (FETs) 6 and 7, which have their source-drain circuits in parallel with the output FETs of flip flop 1 are driven from a clock source RA1. Two circuits 68 and 69 each comprised of a series of three FETs are connected respectively between the outputs of the flip flop 1 and ground. Two opposite FETs of the both series circuits have a clock source RA3 applied to their gates, and two opposite FETs of both series circuits have a clock source RA1 applied to their gates. A data input terminal receives data pulses and applies them to the gate of a third FET 11 in one of the series circuits. The gate of the third FET 13 of the other series circuit is connected to a voltage reference.

A clock signal RA2 is applied to the common terminal of the flip flop 1.

Figure 1A is a timing diagram of the clock signals RA1. RA2 and RA3, which are derived

from a master clock signal RAS. When the input FET 11 conducts due to the presence of a high logic level input data signal, it is compared with the current in a matched reference FET which is preferably set between minimum and maximum TTL input logic levels, the reference level being exhibited as a reference voltage Vref at the gate of FET 13. When the input data exceeds the reference in one polarity direction, the flip flop stores an input data pulse of one polarity, and when it exceeds the reference in the other polarity direction, the flip flop stores an input data pulse of the other polarity.

A reference voltage generator is shown in Figure 1B. A pair of complementary FETs 15 and 16 have their source-drain circuits connected in series, between a current source I and ground. The gates and drains of both transistors are connected together.

While the latch itself consumes virtually zero static power, the reference voltage generator does consume standby power. In addition, it cannot be used in an SRAM, because it is necessary to synchronize data and clock prior to presentation of the data to the latch, while in an SRAM there is no certainty of whether the data will precede or be later than the clock.

Synchronous DRAMs can utilize different CAS latency modes of operation. For example, for a CAS latency of 1, data which is read by its data bus read amplifier arrives at its output buffer after the clock. For a CAS latency of 3, the data waits for the clock at a stage preceding the output buffer. For a latency of 2 there is a race condition between the data and the clock to the output buffer.

A description of SDRAMs may be found in the article "Synchronous DRAMs: Designing to the JEDEC Standard", in MICRON Design Line, volume 2, Issue 2, No 2093.

SUMMARY OF THE PRESENT INVENTION

The present invention is a static flip-flop which utilitizes low or zero standby power, and thus is very desirable for use in modern DRAMs, particularly SDRAMs.

In addition, the present invention is high speed, and is edge triggered, and synchronizes data that it captures to the active edge of a clock, thus making it very useful for SDRAMs. Its propagation delay and its propagation delay dispersion have been found to be very low. It has low dynamic power consumption, while still providing a high edge drive for both Q and Q* outputs. The present invention has been found to be robust, and functional over wide process, temperature and voltage variations.

In accordance with an embodiment of the present invention, a flip-flop circuit for driving an input circuit of a synchronous dynamic random

access memory (SDRAM) is comprised of complementary data inputs for receiving data pulses or reference voltage, a clock input for receiving clock pulses, a capture latch circuit for the temporary storage of a bit, having a pair of complementary inputs and a pair of complementary outputs, apparatus for applying data pulses from the data input to the input of the capture latch, apparatus for enabling and disabling the capture latch from the clock pulses, apparatus for precharging the capture latch, apparatus for strongly driving the complementary outputs, and apparatus for connecting the complementary outputs to each other through a bidirectional holding latch, whereby during coincidence of a rising edge of a clock pulse and the presence of a data pulse of one polarity, the capture latch is enabled to store a bit corresponding to the data pulse, and to strongly drive the pair of complementary outputs, and following said leading edge of the clock and said one polarity of the data pulse, the capture latch is precharged and disabled thereby removing strong drive to the complementary outputs which remain driven by the holding

In accordance with another embodiment of the invention, a flip-flop circuit for driving an input circuit of a synchronous dynamic random access memory (SDRAM) comprised of a complementary pair of data inputs for receiving data pulses, a clock input for receiving clock pulses, a capture latch circuit for capturing a bit, having a pair of complementary inputs and a pair of complementary outputs, apparatus for applying data pulses from the complementary data inputs to the inputs of the capture latch, apparatus for triggering the capture latch from the clock pulses, and apparatus for connecting the complementary outputs to each other through a bidirectional holding latch, whereby during coincidence of a rising edge of a clock pulse and the presence of a data pulse of one polarity, the capture latch is enabled to store a bit corresponding to the data pulse, and to drive the pair of complementary outputs, and following the leading edge of a clock pulse and the one polarity of the data pulse the complementary outputs remain driven by the holding latch.

BRIEF INTRODUCTION TO THE DRAWINGS

A better understanding of the invention will be obtained by a consideration of the detailed description below of a preferred embodiment, with reference to the following drawings, in which:

Figure 1 is a schematic diagram of a dynamic latch circuit in accordance with the prior art,

Figure 1A is a timing diagram of clock signals used in the circuit of Figure 1,

Figure 1B is a schematic diagram of a reference circuit used in conjunction with the circuit shown in Figure 1.

Figure 2 is a schematic diagram of a synchronizer flip-flop in accordance with a preferred embodiment of the invention.

Figures 3A and 3B are timing diagrams showing various signals in the present invention.

Figures 4A, 4B, 4C and 4D illustrate in block diagram applications for the synchronizer flip-flop with various imports, and

Figure 5 illustrates in block diagram a number of synchronizer flip-flops applied to the front end of an SDRAM.

DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION

Turning to Figure 2, a capture latch 21 has a common lead A and a pair of complementary output leads C and B, as in the prior art Miyamoto et al circuit noted above. Also, as in Miyamoto et al, a pair of field effect transistors (FETs) 23 and 24, similar in type to the two FETs 25 and 26 in capture latch 21 that are connected to voltage source Vdd have their source-drain circuits connected in parallel with FETs 25 and 26, and their gates connected together, for receipt of a clocksignal CLK. The source-drain circuits of three FETs 27, 28 and 29 of opposite polarity to FET 23 are connected in series, between the junction of FETs 23 and 25 and ground, and the source-drain circuits of three FETs 30, 31 and 32 of opposite polarity to FET 24 are connected in series, between the junction of FETs 24 and 26 and ground. The gates of FETs 23, 24, 27 and 30 are connected together, and the gates of FETs 28 and 31 are connected together and to the sources of crosscoupled FETs 33 and 34 of capture latch 21.

An FET 37 of the same polarity type as FETs 29 and 32 has its drain-source circuit connected between the sources of FETs 33 and 34, and ground.

A clock input CLK is connected to the gates of FETs 23, 27, 24 and 30, and through a series pair of inverters 19 and 20 to the gate of FET 37.

A data input D for supplying the data bits to be stored is connected to the gate of FET 32 and the complementary data input D* is connected to the gate of FET 29.

The outputs C and B of the capture latch 21 are connected to the gates of respective output drive FETs 44 and 45, which are the same polarity types as FETs 23 and 24. The source-drain circuits of FETs 44 and 45 are connected respectively from voltage source Vdd through the drain-source circuits of opposite polarity type FETs 46 and 47 to ground. Output signals are obtained at complemen-

tary output terminals Q' and Q respectively.

Capture latch output B is connected through an inverter 49 to the gate of FET 46, and capture latch output C is connected through an inverter 48 to the gate of FET 47. A bidirectional holding latch 121, formed of crosscoupled inverters 50 and 51 is connected between output terminals Q' and Q.

To understand the operation of the circuit, refer now also to the timing diagrams of Figures 3 and 3B.

A clock pulse is received at the clock input CLK. This is applied to the gates of FETs 23, 27, 24 and 30, and after a short delay caused by passage through inverters 19 and 20, is applied to the gate of FET 37. The flip flop is thus enabled, to capture and store a data bit.

Following the setup of the data pulse D' and D at FET 29 and 32 input, the leading edge 55 of the clock pulse is received at FETs 23, 27, 24 and 30. As in prior art Miyamoto et al, VREF may be applied to the gate of FET 29, which is held at a logic midpoint level by the threshold circuit described above. However, in the preferred embodiment of this invention, data pulse D' is applied to the gate of FET 29. Since whatever polarity constitutes the data pulse, as it is applied with complementary polarities to the gates of FETs 29 and 32, either FET 29 or FET 32 conducts, and the other FET is inhibited from conducting. Following delay, common terminal A is connected to ground through FET 37 due to the high logic level clock pulse (for the FET polarities shown), and therefore at this time there is no additional effect caused to lead A. However, either one of FETs 29 or 32 has become conductive, causing the source of either of FET 28 or 31 to be connected through to ground.

When lead A goes to ground potential, FETs 28 and 31 are cut off thus blocking effect of D and D' through FETs 29 and 32. Either of capture latch nodes B and C will be pulsed low momentarily through FETs 27 and 30 to disbalance the capture latch as lead A is in transit towards ground. The capture latch amplifies the tiny voltage difference between leads C and B to capture the data.

With leads B and C carrying low and high logic level signals respectively, the inverse logic levels of these signals appear at the gates of FETs 46 and 47 respectively. FET 46 thus conducts, and FET 47 is inhibited. FET 45 conducts, and FET 44 is inhibited. The result is a high logic level signal (conducted from Vdd through FET 45) applied to the output lead Q, and a low logic level signal (conducted from ground through FET 46) applied to the output lead Q.

The clock pulse ends with a transistion from a high to low logic level, whereby FETs 27 and 30 become non-conductive and FETs 23 and 24 become conductive and after a short delay FET 37

becomes non-conductive. With FETs 27, 30 and 37 non-conductive and FETs 23 and 24 conductive, capture latch output leads B and C "precharge" to the source Vdd causing output driver FETs 44, 45, 46 and 47 to become non-conductive and common lead A to charge towards Vdd through FETs 33 and 34 acting as source followers. Common lead A eventually changes to Vdd minus the threshold voltage of FETs 33 and 34 thereby causing FETs 28 and 31 to become conductive. The synchronizer flip flop is now fully precharged and ready to capture data on the rising edge of the next clock pulse.

The complementary logic levels, which appear across the holding latch formed by inverters 50 and 51, are stored in that latch when the clock goes low and FETs 44, 45, 46 and 47 are off.

Thus it may be seen that the appearance of the complementary logic levels result in data being driven strongly to output leads Q and Q*, with the timing of the clock pulse establishing a high logic level. This is shown in Figure 3 with the leading edge 59 of high logic level at lead Q, and its complement on lead Q*.

It is important to recognize that maximum current draw occurs during the switching time while the flip flop is flipping into a stable state in one or the other polarity directions. Very low current is drawn when the clock pulse is at a low or high logic level. At no time do FETs 44 and 46 or FETs 45 and 47 conduct simultaneously. As a result, no "crowbar" current is drawn by the output stages Q and Q*. After the circuit has reached a stable state with the holding latch storing the data bit, the amount of current drawn by the circuit drops again to a very low level.

Subsequently, the high logic level pulse of the data may drop to a low level at any time without current being drawn since at this time capture latch common lead A is at ground potential and FETs 28 and 31 are non-conducting. The high logic level at output Q remains at high logic level, and the low logic level at output Q remains at low logic level.

During the switchover and storage and output of a new bit logic level, the circuit temporarily draws maximum current, as described above with reference to the storage of the initial logic level.

It may thus be seen that the circuit receives, stores and presents a bit to complementary output leads Q and Q*, using maximum current only during the bit logic level storage intervals, but once stored, only minimal current is drawn, except for a short intermediate period at the trailing edge of the high logic level portion of the clock signal where FETs 23 and 24 have become conductive and the capture latch is precharging. While the capture latch is precharging, there is a temporary increase in operation current to a low level that is higher

10

15

30

35

than the aforenoted very low level.

It should be noted that the circuit has the advantage that it synchronizes the data with the clock, which is a necessary requirement should this circuit be used in an SDRAM.

Figures 4A, 4B, 4C and 4D illustrate optimal input connections to the synchronizer described above (shown as element 60). In Figure 4A, an inverter 62 inverts DIN' input data to DIN input data, both being presented to the D' and D inputs respectivesly to the circuit. In Figure 4B, complementary data DIN and DIN' are input to the D and D' inputs of the circuit. In Figure 4C DIN data is applied to the D input with VREF to the D' input white in Figure 4D VREF is input to the D input with DIN' data to the D' input. VREF being a precise TTL threshold voltage.

Figure 5 illustrates the use of a group of synchronizers 60 for correction to the front end of an SDRAM, to provide synchronized command and address inputs thereto. The various SDRAM command address inputs are applied through JTL input buffers 64 as DIN inputs to the synchronizers. Inverters 62 provide the DIN* inputs from the DIN inputs, as described with reference to Figure 4A. A common clock signal for each synchronizer 60 is obtained via input buffer 66.

A person skilled in the art understanding the description above may now design alternative embodiments and variations using the principles described herein. All those falling within the scope of the claims appended hereto are considered to be part of the present invention.

Claims

- A flip-flop circuit for driving an input circuit of a synchronous dynamic random access memory (SDRAM) comprising:
 - a) a complementary pair of data inputs for receiving data pulses,
 - b) a clock input for receiving clock pulses,
 - c) a capture latch circuit for capturing a bit, having a pair of complementary inputs and a pair of complementary outputs,
 - d) means for applying data pulses from the complementary data inputs to the inputs of the capture latch,
 - e) means for triggering the capture latch from the clock pulses, and
 - f) means for connecting the complementary outputs to each other through a bidirectional holding latch.

whereby during coincidence of a rising edge of a clock pulse and the presence of a data pulse of one polarity, the capture latch is enabled to store a bit corresponding to the data pulse, and to drive the pair of comple-

mentary outputs, and following said leading edge of a clock pulse and said one polarity of the data pulse the complementary outputs remain driven by the holding latch.

- A circuit as defined in claim 1 in which drive current of said outputs is lower when driven by the holding latch than when driven by flip flop output drivers.
- A circuit as defined in claim 2 in which the holding latch is comprised of a pair of crosscoupled inverters.
- 4. A circuit as defined in claim t in which one of said complementary data inputs is connected to a voltage reference, and further including means for providing one polarity of data pulses to another of said complementary data inputs of the flip flop circuit.
 - 5. A circuit as defined in claim 4, in which the voltage reference is comprised of a complementary pair of field effect transistors having their gates and drains connected together and to said complementary data input, one of said transistors having its source connected to a source of voltage and the other having its source connected to ground.
 - A circuit as defined in claim 1 in which one of the data pulses is virtually infinitely long, being formed as a constant reference voltage.

FIG. 3B

EP 0 680 049 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 17.01.1996 Bulletin 1996/03
- (51) Int. CL6: G11C 7/00, G11C 11/409

- (43) Date of publication A2: 02.11.1995 Bulletin 1995/44
- (21) Application number: 94309206.4
- (22) Date of filing: 09.12.1994
- (84) Designated Contracting States: DE FR GB IT
- (30) Priority: 29.04.1994 US 235647
- (71) Applicant: Mosaid Technologies Incorporated Kanata, Ontario K2K 1X6 (CA)
- (72) Inventors:
 - · Millar, Bruce Stittsville Ontario, K2S 1B6 (CA)
 - Foss, Richard C. Kirkcaldy Fife, KY2 5NJ Scotland (GB)
 - Wojcicki, Tomasz Kanata Ontario K2K 2P1 (CA)
- (74) Representative: O'Connell, David Christopher London WC2A 1AT (GB)

(54)Synchronizer

A flip-flop circuit for driving an input circuit of a synchronous dynamic random access memory (SDRAM) comprised of a complementary pair of data inputs for receiving data pulses, a clock input for receiving clock pulses, a capture latch circuit for capturing a bit, having a pair of complementary inputs and a pair of complementary outputs, apparatus for applying data pulses from the complementary data inputs to the inputs of the capture latch, apparatus for triggering the capture latch from the clock pulses, and apparatus for connecting

the complementary outputs to each other through a bidirectional holding latch, whereby during coincidence of a rising edge of a clock pulse and the presence of a data pulse of one polarity, the capture latch is enabled to store a bit corresponding to the data pulse, and to drive the pair of complementary outputs, and following the leading edge of a clock pulse and the one polarity of the data pulse the complementary outputs remain driven by the holding latch.

EUROPEAN SEARCH REPORT

EP 94 30 9206

utegory	Citation of document with indication, where appropriate, of refevant passages		Relevant to claim		CLASSIFICATION OF THE APPLICATION (Int.CL6)	
*	EP-A-0 326 296 (TEXA * abstract * * column 3, line 26 figure 1 *	S INSTRUMENTS INC.)	1,3	G11C7/00 G11C11/409)	
	EP-A-0 259 861 (NEC	CORP.)	1,3			
	* abstract * * column 4, line 23 figure 3 *	- column 5, line 34;				
),A	IEEE JOURNAL OF SOLI vol.25, no.2, April pages 525 - 530 MIYAMOTO ET AL. 'IMP TTL INPUT CURRENT RE REFRESH TEST MODE IN	1990, NEW YORK US ROVED ADDRESS BUFFERS DUCTION AND HIDDEN	1,3			
	* page 525, right co 526, left column, li	lumn, line 24 - page				
				TECHNICAL P SEARCHED	TELDS (Inc.CL6)	
				G11C		
		•			:	
1						
	÷					
		+				
		1 .				
	The present search report has been					
THE HAGUE 20 November 1995			France acchies A			
X : par Y : par doc A : tect	CAFEGURY OF CITED DOCLMEN I ticularly relevant if taken alone ticularly relevant if combined with anoth timent of the same category hoological background a-written disclosure	S I: theory or princ E: rearlier patent after the filing er D: document circl L: document circl	iple underlying th ocument, but pul date I in the application for other reason:	elished on, of	-	
	imediate document	6 : momber of the document	same patent fam	ily, correspon∉ing		