I : max regulate depth (Starting from 0) $\Rightarrow \sum_{i \in \alpha} 2^{-i i} \leq 1$

7

-

		6			
	PAGE	E			
	DATE	€			
	(<) l:= mox lt, so we then have	ϵ			
	$\sum_{i} 2^{J-J_{i}} \leq 2^{l}$	E			
	1 x x x x x x x x x x x x x x x x x x x	6			
	the same technique.	6			
		6			
Problem .	Given a random variable X on R, find an source code C	_6			
	that minimizes the operted ade longth.				
		_€			
	$E[J(x)] = \sum_{n \in \mathcal{N}} P(n)J(n)$.	6			
* * * *		-6			
Optimal or	de Formulate the following opt problem:	- 6			
C pania a		_ €			
	min I Pi Si				
	* * * * * * * * * * * * * * * * * * * *	€			
9.	sit. I g-di < 1 (by Kraft meg)	-6			
		€			
	$li \in \mathbb{Z}_+, \forall i \in \mathcal{X}$	-6			
•	Relaxation:				
	lizo tiex.	-6			
^	Further simplification: if like, 2-1-> 1	-6			
	Further simplification: if like, 2-lity !! > hence, we can drop sign constraints				
		6			
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6			
6	Want to find a "lower bound" of the above prob.				
		9			
ę f	min $\sum_{k \in \mathbb{Z}} p_i l_i + 2 \left(\sum_{i \in \mathbb{Z}} 2^{-l_i} + 1 \right) S_i t_i $	6			
	≥o ≤o far feas l				
٥	Concertible the obj func is "convex" white				
	LERM. The min is attained when the padrent =0.				
	ine min is another men the brightest to				

Suboptimal Consider $\mathcal{X}=41.28$ of $P_1=1-8$ Δ $P_2=8$.

Then $I_1\leftarrow 1$ & $I_2\leftarrow V$ by $I_3\leftarrow V$ by $I_3\leftarrow V$ on $I_4\leftarrow V$ consider $I_4\leftarrow V$ on $I_4\leftarrow V$

Mco KEUK

binary tree. & prob PAGE
DATE . . IE[H tosses] = I py. ly = I py. ly py. = Jest (Jesten Jey) since Py = Pa $\geq \frac{1}{P_A} \left(\frac{\sum P_y}{P_A} \right) = H(X)$. M . If I Pate are all power of two, easy to find an opt alg. What if not? Split into powers of two! e.g., 7 = 1 + 1 + 1 = 4 + 4 + 4 + 4 + m 2 treat each as distinct outcomes of Y. For this ale, Œ[#tosses] < H(X)+ pf) I[# tosses] = In Py. of Py = \(\sum_{\text{yet}} \) \(\text{yet} = $\sum_{x \in X} (\underbrace{\sum_{y \in \mathcal{T}(x)} P'_{y}}) \cdot \underbrace{J_{g}}_{P_{x}} + \underbrace{\sum_{x \in \mathcal{X}} (\underbrace{\sum_{y \in \mathcal{T}(x)} P'_{y}})}_{y \in \mathcal{T}(x)} \cdot \underbrace{J_{g}}_{P'_{y}} \cdot \underbrace{J_{g}}_{P'_{x}})$ = H(X)Suffices to show that 4x ex I Py . lo Pa & 4Pa. Spse 241 < /2 for some I. Then, a subset of of 2011, 2102, ... & constitute of Py's; hence, (1-45) < \(\sigma_{\text{tr}}\) \(\frac{1}{20\text{tr}}\) \(\frac{1}{20\text{tr}}\) \(\frac{1}{20\text{tr}}\) \(\frac{1}{20\text{tr}}\) \(\frac{1}{20\text{tr}}\) \(\frac{1}{20\text{tr}}\)

McoKeuk

As	500	K	_	0	we	have
	K=I	2K	-	2,		

Intextbook #[#tossts] < H(X)+2. gron.