線性代數期中考

- 1.(16points)True or False(2 points each)
 - (a) If T:V→W is linear and invertible, then V=W.
 - (b) If $T:V \to W$ is linear and $\dim(V) \ge \dim(W)$, then $\operatorname{nullity}(T) \ge \dim(V) \dim(W)$.
 - (c) Let $V=\{(a_1,a_2,a_3,a_4,a_5)\in \mathbb{R}^5\mid a_1-a_2=0,a_2-a_3=0,a_1-a_3=0\}$, then $\dim(V)=2$.
- **(b)** $V = \{ f \in P_{10}(R) \mid f(0) = 0, f'(0) = 0, f''(0) = 0 \}$ is a subspace of $P_{10}(R)$.
- (c) V={ $A \in M_{m \times n}(R) \mid A_{ij}$ are integers} is a subspace of $M_{m \times n}(R)$.
- (f) $V = \{A \in M_{m \times n}(R) \mid A_{ij} \text{ are rational numbers}\}\$ is a subspace of $M_{m \times n}(R)$.
- (g) If $A \in M_{m \times n}(R)$ and $A^2 = 0$, then A = 0.
- (h) Let $I_v: V \to V$, let β and β' be two ordered bases of V, then $(\{I_v\}_{\beta}^{\beta'})^{-1} = [I_v]_{\alpha}^{\beta}$.

- (a) Linearly independent set of vectors
- (b) Inverse of a matrix
- (c) Span(G), where $G \underline{\wedge} \{v_1, v_2, ..., v_n\}$ is a subset of a vector space V over a field F For (d),(e), assume that T: V \rightarrow W is a linear transformation, where V and W are vector spaces.
- (d) Null space of T
- (c) Rank of T

3.(10points) Let $T:R^2 \to R^2$ denote reflection about the line y=2x as shown in this figure. Find T(a,b) for any $(a,b) \in R^2$

- 4.(10points) Let V and W be vector spaces and T: V→W be a linear/transformation. Prove that T is one to one if and only if T carries linearly independent subsets of V onta linearly independent subsets of W.
- 5.(10points) Let $\beta \triangleq \{1-x, 1+2x\}$ be an ordered basis for $P_1(R)$. Furthermore, let $T: P_1(R) \to \mathbb{R}^+$ be a linear transformation such that $T(1-x) = \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix}$ and $T(1+2x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - (a) For any $f(x) \triangle a_0 + a_1 x \in P_1(R)$, find $T(a_0 + a_1 x)$ in terms of a_0 and $a_1 = (5points)$
- (b) Let $\beta' \underline{\Delta} \{1,x\}$ and $\gamma' \underline{\Delta} \{(1,0),(0,1)\}$ be ordered bases for $P_1(R)$ and R^2 , respectively. Find $[T]_{r_1}^{r_2}$. (Spoints
- 6.(10points) Let $f(x) \triangleq a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1} + x^n$, where $a_0 \ge ... + a_{n-1} \in \mathbb{R}$. Prove that $\{f(x), f'(x), ..., f^{(n)}(x)\}$ is a basis for $P_n(R)$.
- 7.(15points) Let T and U be linear transformations from $M_{n \times n}(F)$ to $M_{n \times n}(F)$ defined by $T(A) = \frac{A + A^{t}}{2}$ and $T(A) = \frac{A A^{t}}{2}$, respectively. Find the rank of T,U and T+U, respectively.

8.(10points)Let W={f(x); $f(x)=g(x)(x^2+1)$, $g(x) \in P_{n-2}(F)$ } where $\mathfrak C$ is the set of all the complex numbers.

- (a) Show that W is a subspace of $P_n(F)$. (5points)
- (b) Find the dimension of W.(5points)
- 9.(10points)Let A and B be $n \times n$ matrices such that AB is invertible. Prove that A and B are invertible.

