

La Puissance d'un signal

On connait généralement la Puissance d'un signal exprimée en WATT

En électricité =

En optique =

En électromagnétisme =

La Puissance d'un signal

En télécommunication, la mesure des signaux électriques, optiques, électromagnétiques en WATT va poser un problème

Emission antenne relai 3G: 1 KiloWatts (103)

Emission téléphone mobile : 0,5 Watts

Réception box adsl: 10 milliWatts (10-3)

Réception box fibre optique : 0,1 milliWatts (10-4)

Réception télévision TNT: 10 nanoWatts (10-9)

Réception téléphone mobile : 100 picoWatts (10-12)

Réception satellite : quelques picoWatts (10-12)

On définit : Le décibel milliwatt (dBm)

$$P_{dbm} = 10.\log\left(\frac{Pwatt}{0.001}\right)$$

La Puissance d'un signal

Conversion en dBm

Emission antenne relai 3G:1 Kwatts = 60 dBm

Emission téléphone mobile : 1 Watts = 27 dBm

Réception box adsl: 10 milliWatts = 10 dBm

Réception box fibre optique : 0,1 milliWatts = -10 dBm

Réception télévision TNT : 10 nanoWatts = -50 dBm

Réception téléphone mobile : 100 picoWatts = -70 dBm

Réception satellite : quelques picoWatts = -90 dBm

P1 watt × N P2 watt = N×P1 watt

$$P2_{dbm} = 10.\log\left(\frac{P2watt}{0,001}\right) = 10.\log\left(\frac{N.P1watt}{0,001}\right)$$

 $\log(a.b) = \log(a) + \log(b)$

$$P2_{dbm} = 10.\log(N) + 10.\log\left(\frac{P1watt}{0,001}\right)$$

$$P2_{dbm} = 10.\log(N) + P1_{dbm}$$

P1 watt / N

P2 watt = P1 watt / N

$$P2_{dbm} = 10.\log\left(\frac{P2watt}{0,001}\right) = 10.\log\left(\frac{P1watt}{0,001.N}\right)$$

$$\log(a.b) = \log(a) + \log(b)$$

$$P2_{\text{db}m} = 10.\log(1/N) + 10.\log\left(\frac{P1watt}{0,001}\right)$$

$$P2_{dbm} = P1_{dbm} - 10.\log(N)$$

$$P2_{dbm} = 10.\log(N) + P1_{dbm}$$

Le signal est 2 fois plus puissant = je gagne 3 décibels

Le signal est 4 fois plus puissant = je gagne 6 décibels

Le signal est **10** fois plus puissant = je gagne **10** décibels

Le signal est **100** fois plus puissant = je gagne **20** décibels

Le signal est 2 fois moins puissant = je perd 3 décibels

Le signal est 4 fois moins puissant = je perd 6 décibels

Le signal est **10** fois moins puissant = je perd **10** décibels

$$P2_{dbm} = 10.\log(N) + P1_{dbm}$$

Le « Décibel » (dB) est une unité relative car elle exprime un rapport entre 2 valeurs, tout comme le %.

Lorsqu'on souhaite exprimer une grandeur absolue telle que la puissance émise ou reçues on utilise le dBm (m pour milliwatt).

Exemples d'affaiblissement en Décibels

MATÉRIAUX	AFFAIBLISSEMENT		EXEMPLES
	2,4 GHz	5 GHz	
Air	0 dB	0 dB	Espace ouvert intérieur ou extérieur
Porte de bois pleine	3 dB	6 dB	Porte, plancher, cloison
Porte en acier	15 dB	25 dB	Porte Coupe-feu, issue secours
Verre simple (5 mm)	1 dB	2 dB	Fenêtre simple vitrage
Double vitrage athermique	10 dB	18 dB	Fenêtre haute performance thermique
Cloison sèche (plaque plâtre)	3 dB	4 dB	Cloisons internes
Briques pleine, Béton (150 mm)	8 dB	15 dB	Murs porteurs

Wifi à 2,4GHz et Wifi à 5GHz