Complex Numbers

Contents

Basics	2
Argand Diagrams	
The Diagram	3
Loci	3

Basics

The imaginary number i is defined to satisfy

 $i^2 \equiv -1$

.

A complex number a + bi is the sum of a real number and an imaginary number (which is a real multiple of i).

Complex numbers are added element-by-element, and multiplied by expanding brackets à la foil.

The *complex conjugate* for a complex number z = a + bi is $z^* = a - bi$.

For a polynomial f(x) with real coefficients, complex roots must occur in conjugate pairs.

Argand Diagrams

The Diagram

An Argand diagram is a way of representing complex numbers on a 2D plane. The horizontal axis is the real numbers, and the vertical axis is the imaginary numbers.

The modulus |z| of a complex number z is the distance from the point to the origin. The argument $\arg z$ is the angle between the vector line and the positive real axis.

For a modulus |z|=r and an argument arg $z=\theta$, the modulus-argument form of z is $r(\cos\theta+i\sin\theta)$.

Multiplication is unaffected by the modulus, so |zw|=|z||w| and $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$.

Multiplication is additive over arg, so $\arg(zw) = \arg z + \arg w$ and $\arg\left(\frac{z}{w}\right) = \arg z - \arg w$.

|z - w| is the distance between z and w.

Loci

For a complex number $w_1 = x + yi$, the locus of points $|z - w_1| = r \Leftrightarrow |z - (x + yi)| = r$ is a circle of radius r around the point w.

 $|z - w_1| = |z - w_2|$ is the perpendicular bisector of the line joining w_1 and w_2 .

 $\arg(z-w_2)=\theta$ is a half-line from, but not including, the point w making an angle θ from the real axis.