One way ANOVA

Session 3

MATH 80667A: Experimental Design and Statistical Methods for Quantitative Research in Management HEC Montréal

Outline

Recap

F tests

Parametrizations and interpretation

Planned comparisons and *post-hoc* tests

Refresher on hypothesis tests

General recipe of hypothesis testing

(1) Define variables

(2) Write down hypotheses

(3) Choose/compute a test statistic

(4) Benchmark

(5) Compute the *p*-value

(6) Conclude (reject/fail to reject)

(7) Report findings

Level

Level = probability of judicial error Analyst fixes **level** α **before** the experiment.

Choose α as small as possible (don't condemn the innocent!) (typical value is 5%)

Reject \mathcal{H}_0 if p-value less than α

Errors

Confidence intervals

Test statistics are standardized,

- Good for comparisons with benchmark
- typically meaningless (standardized = unitless quantities)

Two options for reporting:

- p-value: probability of more extreme outcome if no mean difference
- confidence interval: set of all values for which we fail to reject the null hypothesis at level α for the given sample

Interpretation of confidence intervals

confidence interval = [lower, upper] units

Interpretation: under the null, if we repeat the experiments 95%, of intervals will contain the true value (if model correctly calibrated)

Analogy: coin toss

One way analysis of variance

F-test for one way ANOVA

Global null hypothesis

No difference between treatments

- \mathscr{H} (null): all of the K treatment groups have the same average μ
- # (alternative): at least two treatments have different averages

F-test statistic

Omnibus test

With K groups and n observations, the statistic is

$$F = \frac{\text{between sum of squares}/(K-1)}{\text{within sum of squares}/(n-K)}$$

The null distribution (benchmark) is F(K-1, n-K).

Why does it work?

Denote

- y_{ik} is observation i of group k
- $\widehat{\mu}_1, \dots, \widehat{\mu}_K$ the sample average of groups $1, \dots, K$
- $\hat{\mu}$ is overall sample mean

Decomposing variability into bits

$$\sum_i \sum_k (y_{ik} - \widehat{\mu})^2 = \sum_i \sum_k (y_{ik} - \widehat{\mu}_k)^2 + \sum_k n_i (\widehat{\mu}_k - \widehat{\mu})^2.$$
total sum of squares within sum of squares between sum of squares

null model

alternative model

added variability

Degrees of freedom

The parameters of the null distribution are called degrees of freedom

- K-1 is the number of constraints imposed by the null
- n-K is the number of observations minus number of mean parameters estimated under alternative

Idea of *F*-statistic: under the null, both numerator and denominator are variance estimators.

- but the numerator is more variable...
- the F ratio should be approximately one on average

Parametrizations and interpretation

Parametrization 1: sample averages

Most natural parametrization, not useful for test

- Sample sizes in each group: n_1, \ldots, n_K , are known.
- sample average of each treatment group: $\widehat{\mu}_1, \dots, \widehat{\mu}_K$.

K means = K parameters

Overall mean is

$$n\widehat{\mu} = n_1\widehat{\mu}_1 + \cdots + n_K\widehat{\mu}_K$$

Parametrization 2: contrasts

In terms of differences, relative to a baseline category j

- Intercept = sample mean $\hat{\mu}_j$
- Coefficient for group $k \neq j$: $\widehat{\mu}_j \widehat{\mu}_k$
 - difference between averages of baseline and group k

In **R**, the baseline is the smallest alphanumerical value.

```
lm(response ~ group)
```

Parametrization 3: sum-to-zero

In terms of differences, relative to average of $\widehat{\mu}_1, \dots, \widehat{\mu}_K$

- Intercept = $(\widehat{\mu}_1 + \cdots + \widehat{\mu}_K)/K$
- Coefficient for group k: intercept minus $\hat{\mu}_k$

In **R**, the last factor level is dropped by default.

```
lm(response ~ group, contrasts = contr.sum(group))
```

Comparison for the arithmetic example

group	mean	contrasts	sum-to-zero
intercept		19.67	21.00
control 1	19.66		-1.33
control 2	18.33	-1.33	-2.66
praised	27.44	7.77	6.44
reproved	23.44	3.77	2.44
ignored	16.11	-3.55	

Planned comparisons and posthoc tests

Planned comparisons

Oftentimes, we are not interested in the global null hypothesis.

 Can formulate planned comparisons at registration time for effects of interest

What is the scientific question of interest?

Arithmetic example

- \mathscr{H}_{01} : $\mu_{ ext{praise}} = \mu_{ ext{reprove}}$ (attention)
- \mathscr{H}_{02} : $\frac{1}{2}(\mu_{\mathrm{control}_1} + \mu_{\mathrm{control}_2}) = \mu_{\mathrm{praise}}$ (encouragement)

Contrasts

With placeholders for each group, write $\mathscr{H}_{01}: \mu_{\text{praise}} = \mu_{\text{reprove}}$ as

$$0 \cdot \mu_{\text{control}_1} + 0 \cdot \mu_{\text{control}_2} + 1 \cdot \mu_{\text{praise}} - 1 \cdot \mu_{\text{reprove}} + 0 \cdot \mu_{\text{ignore}}$$

The sum of the coefficients, (0,0,1,-1,0), is zero.

Contrast = sum-to-zero constraint

Similarly, for $\mathscr{H}_{02}: rac{1}{2}(\mu_{ ext{control}_1} + \mu_{ ext{control}_2}) = \mu_{ ext{praise}}$

$$\frac{1}{2} \cdot \mu_{\mathrm{control}_1} + \frac{1}{2} \cdot \mu_{\mathrm{control}_2} - 1 \cdot \mu_{\mathrm{praise}} + 0 \cdot \mu_{\mathrm{reprimand}} + 0 \cdot \mu_{\mathrm{ignore}}$$

The contrast vector $(\frac{1}{2}, \frac{1}{2}, -1, 0, 0)$ sums to zero.

Equivalent formulation is obtained by picking (1,1,-2,0,0)

Contrasts in R

```
library(emmeans)
linmod <- lm(score ~ group, data = arithmetic)</pre>
linmod_emm <- emmeans(linmod, specs = 'group')</pre>
contrast_specif <- list(</pre>
  controlvspraised = c(0.5, 0.5, -1, 0, 0),
  praisedvsreproved = c(0, 0, 1, -1, 0)
contrasts res <-
  contrast(object = linmod_emm,
                     method = contrast_specif)
# Obtain confidence intervals instead of p-values
confint(contrasts_res)
```

Post-hoc tests

Maybe there is some difference between groups?

Unplanned comparisons: go fishing...

Comparing all pairwise differences = $\binom{K}{2}$ tests

With K = 5 groups, we get 10 pairwise comparisons.

```
emmeans(modlin, pairwise ~ group)
```

If there were no differences between the groups, how many do we expect to find significant by chance with $\alpha = 0.1$?

Pairwise differences and t-tests

Technical aside

The pairwise differences (p-values) and confidence intervals for groups j and k are based on the t-statistic:

$$t = rac{(\widehat{\mu}_j - \widehat{\mu}_k) - 0}{\mathsf{se}(\widehat{\mu}_j - \widehat{\mu}_k)}$$

which has a null T(n-k) distribution.

The standard error $se(\hat{\mu}_j - \hat{\mu}_k)$ uses the pooled variance estimate, i.e., the within sum of squares divided by n-K