CHAPTER 알기 쉬운 연구방법론

10

세 기간 이상의 평균비교

반복측정 분산분석 Repeated measured ANOVA

반복적으로 변인들을 측정하여 얻어지는 측정치는 일정하지 않으며, 어느 정도의 분산을 가진다. 이 경우, 여러가지 조건을 구체적으로 음미해서 몇개의 인자수준으로 분해해서 측정치의 분산이 어떠한 요인에 의해서 설명되는지를 분석하는 방법. 변량에 영향을 미치는 요인을 분석하는 방법으로 표본 전체로서의 분산=총변동을 그 요인에 기인하는부분(요인변동)과 그렇지 않는 부분(잔차변동)으로 분해하여, 요인변동이 잔차변동에 비하여 어느 정도큰가에 따라 그 요인의 의의를 분석하려는 통계적 수법을 일컫는다.

분산분석[ANOVA(ANalysis Of VAriance)]은

각 케이스의 관찰값과 편차를 제곱해 합산한 후 표본크기로 나눈 분산을 이용하여

2개 이상 집단 간 평균 차이를 검증하는 방법입니다.

일원배치분산분석 (One-way ANOVA)은

영향을 받는 변수 (종속변수)가 3개 이상의 범주로 구성된 범주형 변수이고,

영향을 주는 변수 (독립변수)가 수치형 변수일 때

1개의 종속변수와 1개의 독립변수를 가지는 경우 사용하는 방법입니다.

t 검정과 마찬가지로 그룹간에 반응치의 평균을 비교하는 방법 이나,

t검정의 경우에는 2개의 그룹간 비교이고,

일원배치분산분석은 3개 이상의 그룹간 비교라는 차이점이 있습니다.

K(K) 2)개 집단의 평균비교: one way ANOVA

(1) 각 그룹은 정규 모집단으로 부터 무작위 추출된 것이어야 한다. (독립성, 정규성)

(2) 모집단에서 집단의 변동은 동일해야 한다. (등분산성)

일원배치분산분석의 가설

귀무가설: A, B, C 그룹의 평균이 같다.

대립가설: A, B, C 그룹의 평균이 <u>모두 같지는 않다.</u> (세 그룹 중 적어도 두 그룹 간의 평균에 차이가 있다.)

이때, 귀무가설을 기각하고 대립가설을 채택하는 경우

모든 그룹이 같지는 않다는 것은 알 수 있으나,

어느 그룹 간에 차이가 있는지 자세히는 알 수 없습니다.

따라서, 사후 검정 (다중비교)을 통해 두 그룹씩 비교를 해야 합니다.

흔히 사용되는 사후검정 방법은

모든 가능한 두 그룹간에 대하여 평균을 비교하는

LSD, Tukey, Duncan, Bonferroni, Scheffe 등 과

하나의 대조군에 대해 다른 실험군들의 평균을 비교하는

Dunnet 이 있습니다.

	시간(A)					
	1주일	2주일	3주일	4주일		
51	150	120	100	80		
52	145	130	109	79		
S 3	155	135	110	90		
54	149	130	120	100		
S 5	145	140	110	90		

[본석]-[일반선형모형]-[반복측정]

(<u>F</u>) 편집	집(E) 보기(V)	데이터(D)	변환(<u>T</u>)	분석(A) 다이렉트 마케팅	(<u>M</u>) 그래프(<u>G</u>) 유틸리티(<u>U</u>) 총
=			1	보고서(P) ▶ 기술통계량(E) ▶	
				표 ▶	
	일주일	미주일	삼주	평균 비교(<u>M</u>) ▶	수 변수 변수
1	150.00	120.00	1	일반선형모형(<u>G</u>) ▶	關 일변량(U)
2	145.00	130.00	1	일반화 선형 모형(Z)▶	
3	155.00	135.00	1	혼합 모형(X) ▶	᠁ 다변량(M)
4	149.00	130.00	1		∰ 반복측정(<u>R</u>)
5	145.00	140.00	1	상관분석(<u>C</u>) ▶	분산성분 (⊻)
6				회귀분석(<u>R</u>) ▶	
7				로그선형분석(<u>O</u>) ▶	
8				신경망(<u>W</u>) ▶	
9				분류분석 <u>(Y</u>) ▶	
10				차원 감소(<u>D</u>) ▶	
11				척도(<u>A</u>) ▶	
12				비모수 검정(N) ▶	
13				예측(T) ▶	
14				생존확률(<u>S</u>) ▶	
15				다중응답(민)	
16				_	
17				🌠 결측값 분석(<u>V</u>)	

^{&#}x27;개체-내 요인이름'에 '시간'을 적는다

^{&#}x27;수준의 수'에 4를 입력한다

^{&#}x27;정의'클릭

'개체-내 요인이름'에 '시간'을 적는다 '수준의 수'에 4를 입력한다 '정의'클릭

'개체-내 변수'에 '1주일','2주일','3주일','4주일'을 클릭한다 '모형'클릭 - '완전요인모형' 클릭 - '제곱합'에 '제III유형' 클릭 (이건 굳이 안해도됨, 기본적으로 되어있음).

'옵션'클릭 - '기술통계량' 체크

3개를 봐야하는데 ~ 구형성검정,

〈구형성검정〉

기터 집합 요인 비량 검정 의 구형성 효과 검정 대비 검정 효과 검정

Mauchly의 구형성 검정^a

축도: MEASURE_1

						옙실권 ^b	
개체-내 효과	Mauchly의 W	근사 카이제곱	자유도	유의확률	Greenhouse- Geisser	Huynh-Feldt	하한값
시간	.526	1.751	5	.889	.794	1.000	.333

정규화된 변형 종속변수의 오차 공분산행렬이 단위행렬에 비례하는 영가설을 검정합니다.

a. Design: 절편

개체-내계획:시간

b. 유의성 평균검정의 자유도를 조절할 때 사용할 수 있습니다. 수정된 검정은 개체내 효과검정 표에 나타납니다.

영가설 : 이 모형 = 등분산 (이 모형은 등분산이다) ★ 기각하지 않고 채택해야 한다. 따라서 유의확률이 0,05보다 커야함

위의 표에서 유의확률을 보면 .889로 유의수준 0,05보다 크므로 영가설 채택. 따라서 이 모형의 **등분산성이 증명** 되었다.

등분산성이 증명되었기에 구형성 가정의 유의확률을 보고 해석한다.

	개체-내 효과 검정								
축도: MEASURE_1									
소스		제 III 유형 제곱합	자유도	평균 제곱	F	유의확률			
시간	구형성 가정	10448.150	3	3482.717	111.121	.000			
	Greenhouse-Geisser	10448.150	2.381	4387.713	111.121	.000			
	Huynh-Feldt	10448.150	3.000	3482.717	111.121	.000			
	하한값	10448.150	1.000	10448.150	111.121	.000			
오차(시간)	구형성 가정	376.100	12	31.342					
	Greenhouse-Geisser	376.100	9.525	39.486					
	Huynh-Feldt	376.100	12.000	31.342	두 번 눌	51 Y1			
	하한값	376.100	4.000	94.025					

유의확률이 0,000로서 유의수준 0,05보다 작기 때문에 시간 흐름에 따른 수면시간은 차이가 있는 것으로 나타났다.

〈추세검정〉

개체-내 대비 검정

축도: MEASURE_1

소스	시간	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
시간	선형모형	10424.410	1	10424.410	241.950	.000
	2차모형	22.050	1	22.050	.762	.432
	3차모형	1.690	1	1.690	.077	.795
오차(시간)	선형모형	172.340	4	43.085		
	2차모형	115.700	4	28.925		
	3차모형	88.060	4	22.015		

(유의확률만 본다)

선형모형 즉, 선형 효과는 존재한다.

MEASURE_1의 추정된 주변평균 140.00 추정된 주변평균 120.00 100.00 80.00

3

시간

01 모수적 방법

1) 반복측정 분산분석

- 반복측정 분산분석(repeated measured ANOVA)은

동일 집단에 대하여 셋 이상의 조건에 노출이 되어 측정된 종속변수의 결과를 분석하거나 하나 이상의 집단이 동일한 조건에 대하여 반복적으로 노출되는 경우 시간에 따라 종속변수의 변화량을 측정하기 위하여적용되는 분석기법

(1) 반복측정 분산분석의 예제

1/11/20

뇌졸중 환자를 대조군과 실험1군, 실험2군으로 나누어 각 실험군에게 마비측어깨에 운동치료를 다르게 적용한 뒤 대조군과 비교하여 통증정도가 운동시작전과 운동 5주 후, 운동 10주 후 어떻게 차이가 나는지를 분석하기 위하여 SPSS 프로그램을 이용하여 실습해보도록 하자.

① 통계학적 가설

H0: 운동 전과 운동 5주 후, 운동 10주 후의 실험1군과 실험2군 그리고 대조군의 어깨통증에는 차이가 없다.

HA: 운동 전과 운동 5주 후, 운동 10주 후의 실험1군과 실험2군 그리고 대조군의 어깨통증에는 차이가 있다.

② 자료 입력하기

자료의 입력 시 집단은 범주형 변수로 어깨의 통증은 연속형 변수로 입력한다

③ 반복측정분산분석 대화상자열기

메뉴에서 ①[분석(A)] →②[일반선형모형(G)] →③[반복측정(R)]순으로

④ 변수 입력 및 옮기기

대화상자에서 수준의 수(L)에 총 3회 측정을 하였으므로 3을 입력하고, [추가 (A)]를 클릭한 후 [정의]를 클릭하면 다시 대화상자가 열린다.

개체-내 요인	Processor Control of the Control of	
스즈이 스피스	요민1	
수준의 수(L)		
奉进(A)	요민1(3)	
世平기(C)		
AI 71(R)		
측정 이름(N):	
奉刀(A)		
바꾸기(c)		
Contract to the later of		
对对(R)		

④ 변수 입력 및 옮기기

왼쪽 변수 중 통증치료 전과 5주후, 10주후를 개체-내 변수(W)로 옮기고, 집단을 개체-간 요인(B)으로 옮긴 후 [모형(M)]을 클릭하여 대화상자를 연다.

사용자 정의(C)를 클릭한 후 요인1과 집단을 각각 오른쪽으로 옮긴 후 [계속]을

클릭 한다.

[대비(C)]를 클릭하여 대화상자를 연 후 요인1과 집단을 각각 클릭한 후 대비(N)를 단 순으로, 참조범주는 첫 번째로 체크한 후 [바꾸기(C)]를 클릭하면 요인과 집단이 단순 (첫 번째)로 바뀌는 것을 볼 수 있다. 참조범주를 첫 번째로 하는 것은 처음 측정한 값을 기준으로 하기 위해서이다. [계속]을 클릭한다.

[도표(T)]를 클릭하여 대화상자를 열고 집단은 선구분 변수(S)로, 요인1은 수평축 변수 (H)로 옮긴 후 [추가(A)]를 클릭하면 도표(T)에 요인1*집단이 표시가 된다.

[계속]을 클릭한다.

요인(E): 집단 요인1	수평축 변수(H): 유인1 선구분 변수(S): 집단 도표구분 변수(P):
도표(T): 요인1*집단	추가(A) [바꾸기(C) 제거(R)
	계속 취소 도움말

[옵션(O)]을 클릭하여 대화상자를 열고 왼쪽의 변수를 모두 오른쪽으로 옮긴후 기술통계(D)량, [계속]을 클릭한다.

집단 간의 차이를 보기 위하여 [사후분석(H)]을 클릭하여 요인(F)의 집단을 사후 검정 변수(P)로 옮기고 원하는 사후분석 방법을 선택한다. 예로 Tukey 방법(T)과 Scheffe(C)를 체크하고 [계속], [확인]을 클릭한다.

개체–내 요인

측도: MEASURE_1

요인1	종족변수
1	통증_치료전
2	통증_5주후
3	통증_10주후

개체--간 요인

		변수값 설명	N
집단	1.00	대조군	15
	2.00	실험1군	15
	3.00	실험2군	15

기술통계량

	집단	평균	표준편차	N
통증_치료전	대조군	4.4333	.78619	15
	실험1군	4.4200	.98648	15
	실험2군	4.3467	1.23916	15
	합계	4.4000	.99818	45
통증_5주후	대조군	3.9133	1.06821	15
	실험1군	3.7667	1.20811	15
	실험2군	2.6533	1.19634	15
	합계	3.4444	1.26483	45
통증 _10주후	대조군	3.7733	.88678	15
	실험1군	2.7333	1.11590	15
	실험2군	2.1467	1.16366	15
	합계	2.8844	1.24096	45

다변량검정

효과		값	F	가설 자유도	오차 자유도	유의확률
요인1	Pillai의 트레이스 Wilks의 람다 Hotelling의 트레이스 Roy의 최대근	.761 .239 3.181 3.181	65.204 ^b 65.204 ^b 65.204 ^b 65.204 ^b	2.000 2.000 2.000 2.000	41.000 41.000 41.000 41.000	.000 .000 .000
요인1* 집단	Pillai의 트레이스 Wilks의 람다 Hotelling의 트레이스 Roy의 최대근	.585 .490 .890 .658	8.683 8.793 ^b 8.898 13.817 ^c	4.000 4.000 4.000 2.000	84.000 82.000 80.000 42.000	.000 .000 .000

- a. DEsign: 절편+집단 개체-내 계획: 요인1
- b. 정확한 통계량
- c. 해당 유의 수준에서 하한값을 발생하는 통계량은 F에서 상한값입니다.

Mauchly의 구형성 검정에서 유의확률이 0.081로 구형성을 가정한다는 영가설을 기각하지 못하므로 구형성이 가정된다. 따라서 개체 내 효과검정을 알고 만일 영가설이 기각된다면 다변량검정을 읽으면 된다.

동일 대상자를 반복적으로 측정하기 때문에 측정된 값들 간의 등분산이 가정되어야 하는데 모클리의 구형성이 가정되었을 때 등분산이 가정되어 개체 내 효과검정을 하면 되고 구형성이 가정되지 않으면 다변량 검정을 실시한다.

Mauchly의 구형성 검정®

영가설 구형성을 가정한다.

측도: MEASURE 1

개체-내	Mauchly의	-111			엡실런 ^b		
효과	W	근사 카이제곱	자유도	유의확률	Greenhouse- Geisser	Huynh- Feldt	하한값
요인1	.884	5.034	2	.081	.896	.978	.500

정규화된 변형 종속변수의 오차 공분산행렬이 단위행렬에 비례하는 영가설을 검정합니다.

a. Design: 절편+집단 개체-내 계획: 요인1

b. 유의성 평균검정의 자유도를 조절할 때 사용할 수 있습니다. 수정된 검정은 개체 내 효과검정 표에 나타납니다.

개체-내 효과 검정

측도: MEASURE_1

	소스	제 ॥유형 제곱합	자유도	평균 제곱	F	유의확률
요인1	구형성가정 Greenhouse-Geisser Huynh-Feldt 하한값	52.854 52.854 52.854 52.854	2 1.793 1.957 1.000	26.427 29.481 27.010 52.854	81.590 81.590 81.590 81.590	.000 .000 .000
요인1* 집단	구형성가정 Greenhouse-Geisser Huynh-Feldt 하한값	12.292 12.292 12.292 12.292	4 3.586 3.914 2.000	3.073 3.428 3.141 6.146	9.487 9.487 9.487 9.487	.000 .000 .000
오차 (요인1)	구형성가정 Greenhouse-Geisser Huynh-Feldt 하한값	27.208 27.208 27.208 27.208	84 75.299 82.186 42.000	.324 .361 .331 .648		

요인과 집단 간 상호작용이 존재함을 알 수 있고 종속변수가 집단에 따라 영향을 받는다.

개체-내 대비 검정

측도: MEASURE_1

소스	요인1	제 ॥유형 제곱합	자유도	평균 제곱	F	유의확률
요인1	수준2 및 수준1 수준3 및 수준1	41.089 103.361	1 1	41.089 103.361	85.135 120.677	.000
요인1* 집단	수준2 및 수준1 수준3 및 수준1	12.380 18.446	2	6.190 9.223	12.826 10.768	.000
오차 (요인1)	수준2 및 수준1 수준3 및 수준1	20.271 35.973	42 42	.483 .857		

개체–간 효과 검정

측도: MEASURE_1 변환된 변수: 평균

소스	제 Ⅲ유형 제곱합	자유도	평균 제곱	F	유의확률
절편	575.545	1	575.545	603.743	.000
집단	7.459	2	3.729	3.912	.028
오차	40.038	42	.953		

다중비교

측도: MEASURE_1

	(I)집단 (J)집단	평균차(I-J)	표준오차	유의확률	95% 신뢰구간		
		(기업건	8판시(١-))	표근고시	ㅠㅋㅋㅋ	하한값	상한값
Tukey 실험1 HSD	대조군	실험1군 실험2군	.4000 .9911*	.3562 .3562	.506 .022	4662 .1249	1.2662 1.8573
	실험1군	대조군 실험2군	4000 .5911	.3562 .3562	.506 .233	-1.2662 2751	.4662 1.4573
	실험2군	대조군 실험1군	9911 5911*	.3562 .3562	.022 .233	-1.8573 -1.4573	1249 .2751
Scheffe 실험	대조군	실험1군 실험2군	.4000 .5911	.3562 .3562	.538 .029	5047 .0864	1.3047 1.8958
	실험1군	대조군 실험1군	.4000 .5911	.3562 .3562	.538 .264	-1.3047 3136	.5047 1.4958
	실험2군	대조군 실험1군	9911 [*] 5911	.3562 .3562	.029 .264	-1.8958 -1.4958	864 .3136

관측평균을 기준으로 합니다.

오류 조건은 평균 제곱(오류) = 0.953입니다.

^{*}평균차는 0.05수준에서 유의합니다.

♣ 동일집단군

MEASURE_1

집단		N	집단군		
		IN	1	2	
Tukey HSD ^{a,b,c}	실험2군 실험1군 대조군 유의확률	15 15 15	3.0489 3.6400 .233	3.6400 4.0400 .506	
Scheffe ^{a,b,c}	실험2군 실험1군 대조군 유의확률	15 15 15	3.0489 3.6400 .264	3.6400 4.0400 .538	

동일 집단군에 있는 집단에 대한 평균이 표시됩니다.

관측평균을 기준으로 합니다.

오류조건은 평균 제곱(오류)=0.953입니다.

- a. 조화평균 표본크기 15.000을(를)사용합니다.
- b. 집단크기가 동일하지 않습니다. 집단크기의 조화평균이 사용됩니다. I 유형 오차수준은 보장되지 않습니다.
- c. 유의수준=0.05.

논문에 실제로 적용하기

대조군에서 어깨 통증이 운동 전에는 4.43±0.79이었고, 운동 5주 후에는 3.91±1.06, 운동 10주 후에는 3.77±0.89 로 통증감소의 폭이 작았는데 비해, 실험1군에서는 운동 전에는 4.42±0.97, 운동 5주 후에는 3.77±1.21이었으며 운동 10주 후에는 2.73±1.12였고, 실험2군에서도 운동 전에는 4.35±1.24, 운동 5주 후에는 2.65±1.20 이었으며 운동 10주 후에는 2.15±1.16로 측정시점에 따라 통증감소가 대조군에 비해 현저하게 감소의 폭이 더 크게 나타났고 개체 간 효과검정에서 측정시점 별 집단 간 통증의 감소는 유의한 차이를 보였다(p,0.05).

의내 된기!

표 10-1. 대조군과 실험군의 측정 시점에 따른 어깨 통증의 변화

집단	운동 전	운동 5주 후	운동 10주 후	사후분석
대조군(A)	4.43±.79	3.91±1.06	3.77±.89	A, B > B, C
실험1군(B)	4.42±.97	3.77±1.21	2.73±1.12	
실험2군(C)	4.35±1.24	2.65±1.20	2.15±1.16	

개체--간 효과 검정

소스	제 III 유형 제곱합	자유도	평균 제곱	F	p값
절편 집단 오차	575.545 7.459 40.038	1 2 42	575.545 3.729 .953	603.743 3.912	.000 .028

02 비모수적 방법

1) 프리드만 검정

- 프리드만 검정(Friedman test)은

: 정규성 검정을 통해 정규성을 지니지 않은 것으로 결과가 나온 한 개의 집단, 3개 이상의 측정 결과를 분석하는 통계 방법으로서 대응 K-표본이 라고도 한다.

이 통계방법은 모수검정의 개체 간 요인이 없는 반복측정 분산분석으로 볼 수 있다.

(1) 프리드만 검정의 예제

1411

어깨관절의 가동범위에 제한이 있는 환자에게 운동치료를 실시하였을 때, 운동 전과 운동 1주 그리고 운동 2주에 어떠한 변화가 나타났는지는 분석하기 위하 여 SPSS 프로그램을 이용하여 실습해보도록 하자.

① 통계학적 가설

Ho: 운동전과운동1주,운동2주에서 가동범위의 차이가 없다.

HA: 운동전과운동1주,운동2주에서 가동범위의 차이가 있다.

② 자료 입력하기

: 자료의 입력 시 집단은 범주형 변수로 가동범위는 연속형 변수로 입력 한다

③ 반복측정분산분석 대화상자열기

메뉴에서 ①[분석(A)] →②[비모수검정(N)] →③[레거시 대화상자(L)] →④[대 응K-표본(S)]을 클릭한다.

④ 변수 옮기기

검정변수(T)에 가동범위 실험 전, 가동범위 실험1주, 가동범위 실험2주를 이동시키고 검정유형은 Friedman(F)으로 그대로 둔다.

[옵션(O)]을 클릭하여 기술통계(D)를 체크한 후 [계속], [확인]을 클릭한다.

기술통계량

평균	표준편차	최소값	최대값
96.078	7.4630	77.0	108.2
			115.9 120.7
		96.078 7.4630 101.784 7.7615	96.078 7.4630 77.0 101.784 7.7615 83.8

♣ Friedman 검정

순위

	평균순위
가동범위 실험 전	1.00
가동범위 실험1주	2.00
가동범위 실험2주	3.00

검정 통계량

N	24
카이제곱	48.000
자유도	2
근사 유의확률	.000

a, Friedman 검정

논문에 실제로 적용하기

어깨관절의 관절가동범위가 운동치료 전에는 96.0767.468이었으나 운동치료 1주 후에는 101.7867.768이었고 운동치료 2주 후에는 106.8768.088로 운동치료 전에 비해 1주 후와 2주 후에 지속적으로 증가하였으며 통계적으로 유의하였다(p,0.05).

표 10-2, 측정 시점에 따른 어깨관절 관절가동범위

(단위: °)

운동치료 전	운동치료 1주 후	운동치료 2주 후	X ²	<i>p</i> 값
96.07±7.46	101.78±7.76	106.87±8.08	48.000	.000