Graphs

Department of Computer Science & Engineering The Pennsylvania State University

Graph

 A graph is a data structure with nodes (also called vertices) that are connected by edges

Graphs can be directed or undirected

Graph

The edges could represent distance or weight

• A graph might contain cycles

CYCLIC GRAPH

ACYCLIC GRAPI

acyclic

cyclic

Key Terms

- Vertex (Node): a fundamental part of a graph. It can have a name and additional information
- **Edge**: connects two vertices to show that there is a relationship between them. Edges may be one-way or two-way
- Weight: edges may be weighted to show that there is a cost to go from one vertex to another
- Path: sequence of vertices that are connected by edges
- **Cycle**: A cycle in a directed graph is a path that starts and ends at the same vertex. A graph with no cycles is called an acyclic graph. A directed graph with no cycles is called a directed acyclic graph (DAG)

A graph can be represented as G=(V,E), where V is a set of vertices and E is a set of edges. Each edge is a tuple (v,w) where $w,v \in V$.

Edges

- Tree Edge: edges that we encounter while down one path of a graph
- Non-tree edge:
 - ✓ Forward Edge: it allows us to move "forward" through the graph, and could potentially be part of another path down the tree.
 - ✓ Backward edge: connects a node in a graph "back up" to one of its ancestors (its parent, grandparent or itself).
 - ✓ Cross edge: connects to sibling nodes that don't necessarily share an ancestor in a tree path, but connects them anyways.
- In an undirected graph, there are no forward edges or cross edges. Every single edge must be either a tree edge or a back edge

Edges

Edges

Connected Components

Graph

G=(*V*,*E*) where:

 $V = \{A, B, C, D, E\}$ $E = \{(A,C,12), (A,D,60), (B,A,10), (C,B,20), (C,D,32), (E,A,7)\}$

Path from A to B = (A, C, B)

Cycle = (A, C, B, A)

Graph Implementation

Adjacency Matrix

ADJACENT NODES

When two vertices are connected by an edge, we say that they are adjacent

Graph Implementation

Adjacency List

When two vertices are connected by an edge, we say that they are adjacent


```
graph = {
    1: [4],
    2: [4, 5],
    3: [5],
    4: [1, 2, 5],
    5: [3, 2, 4],
}
```

Graph Representation

Graph traversals

- Breadth First Search: It starts at some arbitrary node in a graph and explores all of the neighbor nodes at the present depth prior to moving on to the nodes at the next depth level.
- Depth First Search: It starts at some arbitrary node in a graph and explores as far as possible along each branch before backtracking.

BFS for a graph

BFS:

DFS for a graph

DFS:

Topological Sorting

- A topological sort takes DAG and produces a linear ordering of all its vertices such that if the graph *G* contains an edge (*v,w*) then the vertex *v* comes before the vertex *w* in the ordering
- Any linear ordering in which all the arrows go to the right is a valid solution
- Topological sorting for a graph is not possible if the graph is not a DAG

Step 1: Perform DFS for graph *G*, keeping track of starting and ending times

DFS:

Step 1: Perform DFS for graph G

DFS: A, B, C, D, E

Step 2: Store the vertices in a list in decreasing order of finish time

Step 3: Return the ordered list as the result of the topological sort

Cycle Detection using DFS

Dijkstra's Algorithm

- Use to determine the shortest path from one node (or vertex) in a graph to every other node within the same graph data structure.
- The algorithm will run until all nodes in the graph have been visited, thus, the shortest path between any 2 nodes can be saved and look up after

Dijkstra's Algorithm

- From the starting node, visit the node with the smallest known distance
- Once you have moved to the smallest-distance node.
 Check each of its neighboring nodes
- For each neighboring node, compute the distance for the neighboring nodes by summing the distance of the edges leading from the start node
- If the distance to a node is less than a known distance, update the shortest distance for that node

Dijkstra's Algorithm

What is the shortest path between node A and E in the following weighted, undirected graph?

Dijkstra's Algorithm Initialization

visited = []

unvisited = [A, B, C, D, E]

Node	Shortest distance from A	Previous node
Α	0	
В	∞	
С	∞	
D	∞	
Е	∞	

Dijkstra's Algorithm Initialization

visited = []

unvisited = [A, B, C, D, E]

Node	Shortest distance from A	Previous node
А	0	
В	∞	
С	∞	
D	∞	
E	∞	

visited = []

unvisited = [A, B, C, D, E]

distance to B: 0+7=7

distance to C: 0+3=3

3 < ∞?

7 < ∞?

Node	Shortest distance from A	Previous node
Α	0	
В	8	
С	∞	
D	∞	
Е	∞	

visited = [A]

unvisited = [B, C, D, E]

Node	Shortest distance from A	Previous node
A	0	
В	7	А
С	3	А
D	∞	
E	∞	

visited = [A]

unvisited = [B, C, D, E]

distance to B: 3+1=4

4 < 7?

distance to D: 3+2=5

5 < ∞?

Node	Shortest distance from A	Previous node
Α	0	
В	7	Α
С	3	Α
D	8	
E	8	

visited = [A, C]

unvisited = [B, D, E]

Node	Shortest distance from A	Previous node
А	0	
В	4	С
С	3	Α
D	5	С
Е	∞	

visited = [A, C]

unvisited = [B, D, E]

distance to D: 4+2=6

6 < 5?

distance to E: 4+6=10

10 < ∞?

Node	Shortest distance from A	Previous node
А	0	
В	4	С
С	3	А
D	5	С
Е	∞	

visited = [A, C, B]

unvisited = [D, E]

Node	Shortest distance from A	Previous node
А	0	
В	4	С
С	3	Α
D	5	С
Е	10	В

visited = [A, C, B]

unvisited = [D, E]

Node	Shortest distance from A	Previous node
Α	0	
В	4	С
С	3	А
D	5	С
Е	10	В

distance to E: 5+4=9

9 < 10?

visited = [A, C, B, D]

unvisited = [E]

Node	Shortest distance from A	Previous node
Α	0	
В	4	С
С	3	А
D	5	С
Е	9	D

Previous

node

C

Α

D

3

5

9

D

Ε

visited = [A, C, B, D, E]

unvisited = []

Node	Shortest distance from A	Previous node
А	0	
В	4	С
С	3	А
D	5	С
E	9	D