1. 根据List-Scheduling算法求解如下负载平衡问题。

```
List-Scheduling (m, n, t_1, ..., t_n)
For i = 1 to m
   L[i] = 0.
                                                  Н
   S[i] \leftarrow \emptyset.
                                        machine 1
For j = 1 to n
                                        machine 2
   i \leftarrow argmin_k L[k].
                                        machine 3
   S[i] \leftarrow S[i] \cup \{j\}.
                                                                            time
   L[i] \leftarrow L[i] + t_i.
```

Return S[1], S[2], ..., S[m].

根据VCOVER-APPROX算法找出下图的一个顶点 覆盖。

VCOVER-APPROX算法 е

输入: 无向图 G=(V, E)

输出: G的一个顶点覆盖C

- 1. C ← { }
- 2. while $E \neq \{\}$
- 设 e=(u, v)为E中的任意边 3.
- $C \leftarrow C \cup \{u, v\}$
- 删除 e 和 E中所有与u和v相关联的边
- 6. end while

选择(b,c)边,并删去b、c所连接的边

选择(e,f)边,并删去e、f所连接的边

选择(d, g)边

产生一个覆盖: b, c, d, e, f, g

最小覆盖为b, d, e

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

- (1) 把上述形式转成标准型的线性规划问题。
- (2) 用单纯型法求解z的最大值,并且给出z最大时各个变量的值。

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

(1) 把上述形式转成标准型的线性规划问题。

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 + x_3 = 4$
 $2x_1 + 3x_2 + x_4 = 6$
 $x_i \ge 0$ $(i = 1,2,3,4)$

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

(2) 用单纯型法求解z的最大值,并且给出z最大时各个变量的值。

		1	3	0	0		
		x1	x2	x 3	x4	RHS	Ratio
0	хЗ	2	1	1	0	4	4/2
0	x4	2	3	0	1	6	6/2
 检验数		3	2	0	0		

当前基本可行解: (0, 0, 4, 6), z=0

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

(2) 用单纯型法求解z的最大值,并且给出z最大时各个变量的值。

		1	3	0	0		
		x1	x2	х3	x4	RHS	Ratio
0	x1	1	1/2	1/2	0	2	2/(1/2)
0	x4	0	2	-1	1	2	2/2
 检验数		0	1/2	-3/2	0		

当前基本可行解: (2, 0, 0, 2), z=6

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
 $x_i \ge 0 \ (i = 1,2)$

(2) 用单纯型法求解z的最大值,并且给出z最大时各个变量的值。

		1	3	0	0		
		x1	x2	х3	x4	RHS	Ratio
0	x1	1	0	3/4	-1/4	3/2	
0	x2	0	1	-1/2	1/2	1	
 检验数		0	0	-5/4	-1/4		

当前基本可行解: (3/2, 1, 0, 0), z=13/2