- 1. A method of producing a soft tissue paper product, the method comprising the steps of:
 - a) providing a chemical softening composition, said chemical softening composition comprising:
 - a vehicle;
 - a softening active ingredient, wherein said softening active ingredient comprises a quaternary ammonium compound;
 - an electrolyte; and
 - a bilayer disrupter;
 - b) diluting said chemical softening composition to a use concentration;
 - c) providing a slurry of papermaking fibers;
 - d) treating said slurry of papermaking fibers with said diluted chemical softening composition;
 - e) depositing said treated slurry of said papermaking fibers on a foraminous forming wire; and
 - f) dewatering said treated slurry by drainage through said foraminous forming wire to form an embryonic web.
- 2. The method of Claim 1 wherein said method comprises the additional steps of after step f:
 - a) transferring said embryonic web to a carrier fabric; and
 - b) drying said dewatered slurry while said slurry is supported by said carrier fabric to form a predried paper web.
- 3. The method of Claim 2 wherein said method comprises the additional steps of after step b:
 - a) transferring said predried paper web to a drying cylinder; and
 - b) drying said predried web to form a paper sheet.
- 4. The method of Claim 1 wherein:
 - a) said slurry of papermaking fibers comprises separate slurries, a first slurry of relatively short papermaking fibers and a second slurry of relatively long papermaking fibers;
 - b) only said second slurry is treated with said diluted chemical softening composition; and

- said first slurry is disposed on said Foraminous fabric between said wire and said second slurry.
- 5. The method of Claim 1 wherein said softening active ingredient comprises at least about 25% of said composition.
- 6. The method of Claim 4 wherein said softening active ingredient comprises at least about 35% of said composition.
- 7. The method of Claim 1 wherein said softening active ingredient comprises a quaternary ammonium compound.
- 8. The method of Claim 7 wherein said quaternary ammonium compound has the formula:

$$(R_1)_{4-m} - N^+ - [(CH_2)_n - Y - R_3]_m X^-$$

wherein Y is -O-(O)C-, or -C(O)-O-, or -NH-C(O)-, or -C(O)-NH-;

m is 1 to 3;

n is 0 to 4;

each R₁ is a C₁-C₆ alkyl or alkenyl group, hydroxyalkyl group, hydrocarbyl or substituted hydrocarbyl group, alkoxylated group, benzyl group, or mixtures thereof;

each R_3 is a C_{13} - C_{21} alkyl or alkenyl group, hydroxyalkyl group, hydrocarbyl or substituted hydrocarbyl group, alkoxylated group, benzyl group, or mixtures thereof; and

X is any softener-compatible anion.

- 9. The method of Claim 8 wherein m is 2, n is 2, R₁ is methyl, R₃ is C₁₅-C₁₇ alkyl or alkenyl, and Y is -O-(O)C-, or -C(O)-O-.
- 10. The method of Claim 9 wherein X⁻ is chloride or methyl sulfate.
- 11. The method of Claim 7 wherein said composition further comprises a plasticizer.
- 12. The method of Claim 11 wherein said plasticizer is selected from the group consisting of polyethylene glycol, polypropylene glycol and mixtures thereof.
- 13. The method of Claim 2 wherein said vehicle is water and said electrolyte is a salt selected from the group consisting of the chloride salts of sodium, calcium, and magnesium.

- 14. The method of Claim 13 wherein said salt is present at a level between about 0.1% and about 20% by weight of said composition.
- 15. The method of Claim 1 wherein said bilayer disrupter is used at a level of between about 2% and about 15% of the level of said softening active ingredient.
- 16. The method of Claim 1 wherein said bilayer disrupter is selected from the group consisting of:
 - 1. nonionic surfactants derived from saturated and/or unsaturated primary, secondary, and/or branched, amine, amide, amine-oxide fatty alcohol, fatty acid, alkyl phenol, and/or alkyl aryl carboxylic acid compounds having from about 6 to about 22 carbon atoms in a hydrophobic chain, wherein at least one active hydrogen of said compounds is ethoxylated with ≤ 50 ethylene oxide moieties to provide an HLB of from about 6 to about 20;
 - 2. nonionic surfactants with bulky head groups selected from:
 - a. surfactants having the formulas:

$$R^5$$
 R^5
 R^5
 R^5
 R^5

wherein Y" = N or O; and each R^5 is selected independently from the following:

-H, -OH, -(CH₂)xCH₃, -O(OR²)_z-H, -OR¹, - OC(O)R¹, and -CH(CH₂-(OR²)_z-H)-CH₂-(OR²)_z-C(O) R¹, x and R¹ are as defined above and $5 \le z$, z', and z'' ≤ 20 ; and

b. polyhydroxy fatty acid amide surfactants of the formula:

$$R^2 - C(O) - N(R^1) - Z$$

wherein: each R^1 is H, C_1 - C_4 hydrocarbyl, C_1 - C_4 alkoxyalkyl, or hydroxyalkyl; R^2 is a C_5 - C_{21} hydrocarbyl moiety; and each Z is a polyhydroxyhydrocarbyl moiety having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an ethoxylated derivative thereof; and

3. cationic surfactants having the formula:

$$\{R^{1}_{m} - Y - [(R^{2} - O)_{z} - H]_{p}\}^{+} X^{-}$$

wherein R^1 is selected from the group consisting of saturated or unsaturated, primary, secondary or branched chain alkyl or alkyl-aryl hydrocarbons; said hydrocarbon chain having from about 6 to about 22 carbon atoms; each R^2 is selected from the following groups or combinations of the following groups: $-(CH_2)_n$ - and/or $-[CH(CH_3)CH_2]$ -;Y is selected from the following groups: $= N^+$ - $(A)_q$; $-(CH_2)_n$ - N^+ - $(A)_q$; -B- $(CH_2)_n$ - N^+ - $(A)_2$; -(phenyl)- N^+ - $(A)_q$; -(B-phenyl)- N^+ - $(A)_q$; with n being from about 1 to about 4, wherein each A is independently selected from the following groups: H; C_{1-5} alkyl; R^1 ; $-(R^2O)_z$ -H; $-(CH_2)_x$ C H_3 ; phenyl, and substituted aryl; where $0 \le x \le about 3$; and each B is selected from the following groups: -O-; -NA-; $-NA_2$; -C(O)O-; and -C(O)N(A)-; wherein R^2 is defined as hereinbefore; q = 1 or 2; total z per molecule is from about 3 to about 50; and X^- is an anion which is compatible with fabric softener actives and adjunct ingredients.

- 17. The method of Claim 16 wherein said bilayer disrupter is a nonionic surfactant having a hydrophobic moiety that is selected from the group consisting of: fatty alcohols having between about 8 and about 18 carbon atoms and alkyl phenols having between about 8 and about 18 carbon atoms wherein said hydrophobic moiety is ethoxylated with between about 3 and about 15 ethylene oxide moieties.
- 18. The method of Claim 1 wherein said use concentration is between about 0.5% and about 10%.
- 19. The method of Claim 18 wherein said use concentration is between about 0.5% and about 5%.
- 20. The method of Claim 19 wherein said use concentration is about 1%.