

Formularium

 $Academieja ar\ 2024-2025$

Timo Vandevenne

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
PV = nRT	$\mathbf{P} \text{ Druk } [1 \text{ atm} = 1013\text{hPa} = 760 \text{ mmHg}]$
	V Volume
	n Aantal deeltjes [mol]
	R Gasconstante
	T Temperatuur [K]
$\Delta U = U_{prod.} - U_{reag.} = q + w$	ΔU Verandering van interne energie [J]
	q warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
	(w>0: arbeid op systeem)
$\mathbf{w} = -P\Delta V$	ΔV Volumeverandering
Wet van Hess:	ΔH^0_{rxn} Reactieenthalpie [kJ/mol]
$\Delta H_{rxn}^0 = \sum i\Delta H_f^0(prod.) - \sum j\Delta H_f^0(reag.)$	$(\Delta H_{rxn}^0 > 0)$: endotherme reactie)
	$\mathbf{H_f^0}$ Standaardvormingsenthalpie [kJ/mol]
	\mathbf{i}, \mathbf{j} coefficiënten in reactievergelijking
$q = ms\Delta T = C\Delta T$	m massa [g]
	s Specifieke warmte $\left[\frac{J}{g^{\circ}C}\right]$
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$	ΔT Temperatuurverandering [K]
$q_{rxn} = n\Delta H_{rxn}^0$	C Warmtecapaciteit [J/K]
$\frac{q_{rxn} = n\Delta H_{rxn}^0}{E = h\mathbf{v} = h\frac{c}{\lambda}}$	E Energie [J]
^	h constante van Planck = $6.62 \cdot 10^{-34}$ Js
	$ \mathbf{v} $ frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
	λ Golflengte [m]
$E_{kin,e^-} = h\nu - W$	W Werkfunctie: maat voor hoe sterk e^- in metaal worden
	vastgehouden
De Broglie: $\lambda = \frac{h}{p} = \frac{h}{mu}$	\mathbf{p} Impuls $\left[\frac{kg \cdot m}{s}\right]$
•	m Massa bewegend deeltje [kg]
	u Snelheid [m/s]
Wet van Dalton: $P_i = y_i P_{tot}$	$\mathbf{P_i}$ Partieeldruk
•	$\mathbf{y_i}$ Molfractie \mathbf{gas} [%]
Wet van Raoult: $P_i = x_i P_i^0$	x _i Molfractie vloeistof [%]
~	$\mathbf{P_{i}^{0}}$ Dampdruk
Wet van Henry: $P_i = x_i H_i = \frac{C_i}{k}$	$\mathbf{C_i}$ Concentratie
10	H _i Henry constante
	${f k}$ gegeven constante bij bep. temp

Formule	Variabelen en uitleg
$\Delta T_b = iK_b m$	ΔT_b Kookpuntsverhoging
$\Delta T_f = iK_f m$	$\Delta T_{ m f}$ Vriespuntsverlaging
	i Van 't Hoff factor: aantal opgeloste deeltjes waarin een
	verbinding voorkomt in oplossing $\mathbf{K_b}, \mathbf{K_f}$ karakteristiek van het oplosmiddel
	m Molaliteit [mol/kg]
$\pi = iMRT$	π Osmotische druk
$\Delta P = x_{\text{opgeloste stof}} P_{\text{oplosmiddel}}^{0}$ $v = k[A]^{x}[B]^{y}$	ΔP Dampdrukverlaging
$v = k[A]^x[B]^y$	$aA+bB \rightleftharpoons cC+dD$
	v Reactiesnelheid [M/s]
Annhanina	k Snelheidsconstante [Eenheid afh. van reactieorde]
Arrhenius: $k = Ae^{\frac{-Ea}{RT}}$	x=a, y=b indien elementaire stap
	$\mathbf{E_a}$ Activeringsenergie [kJ/mol]
$\ln k = \frac{-E_a}{RT} + \ln A$	A Botsingsfrequentiefactor
$\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$ $K = \frac{[C]^c[D]}{[A]^a[B]^b}$	Dezelfde reactie op verschillende temperaturen vergelijken
$K = \frac{[C]^{\top}[D]}{[A]a[B]b}$	K Evenwichtsconstante (K>1: Evenwicht naar rechts)
[H]	K_p bij gassen (druk), K_c bij concentraties
	[X] Concentratie van stof X [M] = [mol/l] Q Reactieconstante, K met actuele concentraties
	(Q>K: systeem naar links voor evenwicht)
$K_p = K_c(RT)^{\Delta n}$	$\Delta \mathbf{n} = (c+d)-(a+b)$ bij $aA+bB \rightleftharpoons cC+dD$
Principe van Le Châtelier	Systeem compenseert uitwendige stress gedeeltelijk
	• Concentratieverandering
	• Druk & volumeverandering
	 Temperatuursverandering → K verandert Katalysator & inert gas hebben geen invloed
$pH = -\log[H^+] = -\log[H_3O^+]$	1 Tuttal, Satter to Mere Sat Hessen Seen Miller
$pOH = -\log[OH^-] = 14 - pH$	
$K - \frac{[H^+][A^-]}{}$	$\mathbf{K_a}$ Aciditeitsconstante ($p\mathbf{K_a} = -\log K_a$)
$H_a = \begin{bmatrix} HA \end{bmatrix}$	Tig Heldrensconsume (prig = log rig)
$K_a = \frac{[H^+][A^-]}{[HA]}$ $K_b = \frac{[OH^-][B^+]}{[B]}$	$\mathbf{K_b}$ Basiciteits constante $(\boldsymbol{pK_b} = -\log K_b)$
$K_a K_b = K_w$	$\mathbf{K_{w}}$ Dissociatie constante van water
$pK_a + pK_b = pK_w$	$K_{\rm w} = [H^+][OH^-] = 10^{-14} \text{ bij } 25^{\circ}\text{C}$
$K_{sp} = [C]^c [D]^d$	$\mathbf{K_{sp}}$ Oplosbaarheidsproduct: beschrijf het oplossen van
$Q = [C]_0^c[D]_0^d$	een ionische verbinding in water \mathbf{Q} Reactiequotiënt, \mathbf{K}_{sp} met actuele concentraties
$\alpha = \lceil C \rceil 0 \lceil T \rceil 0$	$[X]_0$ Concentratie voor reactie
	• $Q < K_{sp}$: Onverzadigde oplossing \rightarrow Geen neerslag
	• Q= K_{sp} : Verzadigde oplossing \rightarrow Net geen neerslag
Henderson-Hasselbalch:	• Q> K_{sp} : Oververzadigde oplossing \rightarrow Neerslag onstaat
$pH = pK_a + \log \frac{[\text{geconj. base}]_b}{[\text{geonj. base}]_b}$	
$[\operatorname{zuur}]_b$	
Nernst: $E = E^0 - \frac{nT}{nF} \log Q$	${f F}$ Faraday constante: lading 1 mol e $^-$
$pH = pK_a + \log \frac{[\text{geconj. base}]_b}{[\text{zuur}]_b}$ $Nernst: E = E^0 - \frac{RT}{nF} \log Q$ $\xrightarrow{A(s) \mid A^{a+} (xM) \mid} \begin{vmatrix} B^{b+} (yM) \mid B(s) \\ B^{b+} (yM) \mid B(s) \end{vmatrix}$ $\xrightarrow{Anode: \text{ oxidatie}} PT$ $Kathode: \text{ reductie}$	Notatie celdiagram
Anode: oxidatie Kathode: reductie RT	
$\begin{split} E^0_{cel} &= \frac{RT}{nF} \log K \\ E^0_{cel} &= E^0_{ox} + E^0_{red} = E^0_{red,anode} + E^0_{red,kathode} \end{split}$	$\mathbf{E_{cel}^0}$ Celpotentiaal ($E_{cel}^0 > 1$: Formatie producten)
$E_{cel}^0 = E_{ox}^0 + E_{red}^0 = E_{red,anode}^0 + E_{red,kathode}^0$	$\mathbf{E_{red}^0}$ Reductiepotentiaal (afleesbaar in de tabel) $\mathbf{E_{ox}^0}$ Oxidatiepotentiaal $E_{ox}^0 = -E_{red}^0$

Timo Vandevenne 2/2