METHODS FOR LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

$$L(y) = a_n \frac{d^n y}{dx^n} + \ldots + a_1 \frac{dy}{dx} + a_0 y = g(x),$$
 $a_i \text{ constants},$ $f(x) = \frac{g(x)}{a_n}$

Solutions
$$y(x) = y_c(x) + y_p(x)$$

Technique	Situation	Substitution	Details
Reduction of Order	Homogeneous Order 2 $y_1(x)$ known	$y_2(x) = u(x)y_1(x)$	$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = 0$ $\implies \frac{du}{dx} = \frac{e^{-\int P dx}}{y_1^2(x)}$
Auxiliary Polynomial	Homogeneous Order n	$y(x) = e^{mx}$	Case I: m real, distinct $\implies y = e^{mx}$ $ \text{Case II: } m \text{ real, multiplicity k} $ $ \implies e^{mx} \ , \ \dots \ , \ x^{k-1}e^{mx} $ $ \text{Case III: } m = a \pm bi \implies e^{ax}\cos(bx) \ \& \ e^{ax}\sin(bx) $
Undetermined Coefficients	Nonhomogeneous Order n	y_c from Table 4.4.1	Solve Homogeneous equation for y_p Substitute y_c into the non-homogeneous and solve for c_i
Annihilators	Nonhomogeneous Order n	-	Find Annihilator L_1 so that $L_1(g(x)) = 0$ Solve $L_1(L(y)) = 0$ Identify which terms comprise of y_p Plug in $L(y_p) = g(x)$ to find constants.
Variation of Parameters	Nonhomogeneous Order n	$y_c = u_1 y_1 + \ldots + u_n y_n$	Solve Homogeneous equation for y_c $\frac{du_i}{dx} = \frac{W_i}{W}$
Wronskian: $W = \det$	$ \begin{array}{ccc} y_1 & y_2 \\ \frac{dy_1}{dx} & \frac{dy_2}{dx} \\ \vdots & \vdots \\ \frac{d^{n-1}y_1}{dx^{n-1}} & \frac{d^{n-1}y_2}{dx^{n-1}} \end{array} $	$ \begin{array}{c c} \dots & \frac{dy_n}{dx} \\ \vdots & \vdots & \end{array} \bigg . \qquad W_i $	replaces i th column with $ \left[\begin{array}{c} 0 \\ \vdots \\ 0 \\ f(x) \end{array} \right] $

CAUCHY-EULER EQUATION

$$L(y) = a_n x^n \frac{d^n y}{dx^n} + \ldots + a_1 x \frac{dy}{dx} + a_0 y = g(x),$$
 a_i constants, $f(x) = \frac{g(x)}{a_n}$

Solutions
$$y(x) = y_c(x) + y_p(x)$$

Technique	Situation	Substitution	Details
Auxiliary Polynomial		$y(x) = x^m$	Case I: m real, distinct $\implies y = x^m$
	Homogeneous		Case II: m real, multiplicity k
	Order n		$\implies x^m \ , \ \ln(x)x^m \ , \ \dots \ , \ \ln^{k-1}(x)x^m$
			Case III: $m = a \pm bi \implies x^a \cos(b \ln(x)) \& x^a \sin(b \ln(x))$
Variation of Parameters	Nonhomogeneous	$y_c = u_1 y_1 + \ldots + u_n y_n$	Solve Homogeneous equation for y_c
	Order n		$rac{du_i}{dx} = rac{W_i}{W}$

APPROXIMATIONS

Technique	Situation	Details
Euler's Method		Choose step size h to increment x
	$\frac{dy}{dx} = f(x,y) \qquad y(x_0) = y_0$	$x_{n+1} = x_n + h$
		$y_{n+1} = y_n + hf(x_n, y_n)$
Improved Euler's Method		Choose step size h to increment x
	$\frac{dy}{dx} = f(x,y) \qquad y(x_0) = y_0$	$x_{n+1} = x_n + h$
		$y*_{n+1} = y_n + hf(x_n, y_n)$
		$y_{n+1} = y_n + h \frac{f(x_n, y_n) + f(x_{n+1}, y *_{n+1})}{2}$
Taylor Polynomial Method	Order n	
	$y(x_0) = y_0$	$y = y(x_0) + y'(x_0)(x - x_0) + \frac{y''(x_0)(x - x_0)^2}{2} + \dots + \frac{y^k(x_0)(x - x_0)^k}{k!}$
	i i	Find later $y^k(x_0)$ by plugging into the ODE
	$y^{n-1}(x_0) = y_{n-1}$	