

Learning and Using Abstractions for Robot Planning

Naman Shah, Abhyudaya Srinet, and Siddharth Srivastava

Arizona State University, Tempe, AZ, USA

Motivation

- SBMPs with uniform sampling struggle to solve complex problems
- Our approach learns regions of the C-space that are critical to solve the problem and use them to bootstrap abstraction.

Structuring Training Data

Shape: (n_d, n_d, m) $n_d = \text{height/width}$ $m = depth = n_{dof} + 1$

Channel 1: Occupancy matrix Channel 2-m: Goals for each joint Labels

Shape: (n_d, n_d, n) $n_d = \text{height/width}$ $n = \text{depth} = \left((n_{dof} - k) * p \right) + 1$

Channel 1: CRs for end-effector's location Channel 2-n: CRs for each joint

Network Architecture

Evaluation

 SE^2 Robot (3 DOF)

Simple Car

Hinged Robot (4 DOF)

Overall Approach

