G53FUZ Fuzzy Sets and Systems

Fuzzy Concepts

Bob John

ASAP Research Group

Classical (Crisp) Sets

Overview

- Basic concepts of fuzzy sets
 - definitions; notation
 - membership functions
- Essential properties of fuzzy sets
 - α -cuts, support, normality, convexity
- Basic operations
 - complement, intersection, union
- Advanced operations
 - axioms, operators families

Characteristic Functions

- Elements of the universal set X are defined to be either members or not of a set A by a characteristic function
 - for a given set A, this function assigns a value $\mu_A(x)$ to every $x \in X$, such that

$$\mu_A(x) = \begin{cases} 1 & \text{if and only if (iff) } x \in A \\ 0 & \text{if and only if (iff) } x \notin A \end{cases}$$

- Thus, the function maps elements of the universal set to the set containing 0 and 1
 - this can be denoted by $\mu_{\Delta}(x): X \rightarrow \{0, 1\}$

Diagramatically

• The set of real numbers greater than 4, $\mu_A(x) = 1$ iff $x \ge 4$, may be illustrated as

Fuzzy Sets

Tall People

• But what about the set of tall people? Say, $\mu_{tall}(x) = 1$ iff $x \ge 66$ (inches, i.e. 5' 6")???

Fuzzy Tall People

• Let's modify the sharp (crisp) cut-off for the set of tall people into a smooth transition, e.g.

Formal Definition

- The Boolean characteristic function of conventional sets is replaced by a membership function that returns a real value in [0, 1]
 - this can be denoted by $\mu_A(x): X \rightarrow [0, 1]$
- So, for the tall example previously

$$\mu_{tall}(x) = \begin{cases} 1 & x \ge 72^{"} \\ \frac{x - 60}{12} & 60^{"} < x < 72^{"} \\ 0 & x \le 60^{"} \end{cases}$$

• Note that membership values can also be listed tall = { 0/Danny DeVito, 0.9/Bob J, 1/Michael Jordan }

Examples

· Examples of further fuzzy sets for height

Notation

- Fuzzy sets (as with crisp sets) can be either discrete or continuous
 - fuzzy set notation can (initially) be confusing
- Discrete sets

$$A = \mu_1/x_1 + \mu_2/x_2 + \mu_3/x_3 + ... + \mu_n/x_n$$

or

$$A = \sum_{i=1,n} \mu_i / x_i$$

Continuous sets

$$A = \int_{x} \mu(x) / x$$

Multiple Memberships

 A given element or value can belong to multiple fuzzy sets with differing memberships

Exercises

- Write down the fuzzy set (memberships/ elements) of your three closest neighbours for the fuzzy set tall
- On the universe of real numbers, draw a fuzzy set of the concept about five
- Draw a fuzzy set for the concept middle-aged (people)
 - write down the lower and upper age limit of the set of middle-aged people

Meaning of Grades?

- Consider
 - membership of *Bob* in set of *tall people* is 0.7
- Likelihood view
 - 70% of the population would describe Bob as tall
- Random set view
 - 70% of the population described 'tall' as an interval containing Bob's height
- Typicality view
 - Bob's height is 70% along the scale of tallness

Meaning of Fuzzy Grades

Fuzzy Sets and Probabilities

- Fuzzy memberships are *not* probabilities
 - there is no probability involved in a person's height
 - memberships are better interpreted as compatibilities
- Consider you are given two bottles of liquid
 - bottle A
 - the liquid is drinkable with probability 0.9
 - bottle B
 - the liquid is drinkable with fuzzy membership 0.9
- Which do you drink, and why?

Fuzzy Sets and Probabilities

- Bottle A:
 - there is 0.9 chance bottle is drinkable
 - 0.1 chance bottle is filled with undrinkable (poison?)
 - potentially risky!
- Bottle B:
 - 0 is fuzzy totally undrinkable (poison?)
 - 1 is fuzzy totally drinkable (beer? red wine?)
 - 0.9 is close to fully drinkable (water?)

α-Cuts

- An important concept which establishes a relationship between crisp sets and fuzzy sets is the concept of an α -cut
 - an α -cut of a fuzzy set A is a crisp set A_{α} that contains all the elements of A with membership greater than or equal to the specified value of α
 - this can be written as

$$A_{\alpha} = \{ x \in X \mid \mu_{\Delta}(x) \geq \alpha \}$$

• The strong α -cut, $A_{\alpha+}$, can also be defined

$$A_{\alpha+} = \{ x \in X \mid \mu_A(x) > \alpha \}$$

Properties

Support

- The *support* of a fuzzy set, A, is the stong α -cut of A for $\alpha = 0$ (A_{0+})
 - i.e. the crisp set of elements where the membership is greater than zero

Normality

- The *height* of a fuzzy set is the largest membership grade attained by any element of that set
- A fuzzy set is normalised if at least one of its elements attains the maximum possible grade
 - if membership grades are in [0,1], it is normalised when at least one element has height 1

Exercises

- Given the following fuzzy sets
 - A = 0.0/1 + 0.1/2 + 0.7/3 + 0.6/4 + 0.7/5 + 0.4/6 + 0.1/7
 - B = 0.1/1 + 0.3/2 + 0.6/3 + 0.7/4 + 0.8/5 + 0.5/6 + 0.1/7
 - C = 0.1/1 + 0.3/2 + 0.6/3 + 0.7/4 + 0.8/5 + 0.9/6 + 1.0/7
- What are the alpha cuts
 - $-A_{0.2}, B_{0.5}, C_{0.9}$
- What is the support of each?
- Which of the sets are normal? / convex?

Convexity

• A fuzzy set is convex if and only if each of its α cuts is a convex set

- iff
$$\mu_A$$
 ($\lambda \mathbf{r} + (1 - \lambda)\mathbf{s}$) > min[$\mu_A(\mathbf{r})$, $\mu_A(\mathbf{s})$] $\forall \mathbf{r}, \mathbf{s} \in \Re^n$ and $\forall \lambda \in [0, 1]$

Basic Operations

Complement

• The fuzzy complement, \bar{A} , of fuzzy set A is given by $\mu_{\bar{A}}(x) = 1 - \mu_{A}(x)$, $\forall x \in U$

Union

• The fuzzy union, $A \cup B$, of two fuzzy sets A and B, is given by $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$

Intersection

• The fuzzy intersection, $A \cap B$, of two fuzzy sets A and B, is given by $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$

Exercises

- Given the following two fuzzy sets
 - A = 0.0/1 + 0.1/2 + 0.5/3 + 1.0/4 + 0.7/5 + 0.4/6 + 0.1/7
 - B = 0.1/1 + 0.3/2 + 0.6/3 + 0.7/4 + 0.8/5 + 0.9/6 + 1.0/7
 - write down the fuzzy sets
 - NOT B
 - A AND B
 - A OR B
 - A AND Ā

Parameterised Operations

Complement

- Very often (in most cases), further requirements may be placed
 - axiom c3: c should be a continuous function
 - axiom c4: c should be involutive
 - that is c(c(a)) = a for all $a \in [0,1]$
- Functions satisfying axiom 3 form a special sub-class of general fuzzy complements
 - all functions satisfying axiom 4 are necessarily continuous, and so form a further nested sub-class

Complement

• A complement is a function which converts a fuzzy set, A, to another set, \bar{A}

$$-c: [0,1] \rightarrow [0,1]$$

- The function *must* satisfy the following axioms
 - **axiom** c1: c(0) = 1 and c(1) = 0
 - must behave like crisp sets (boundary conditions)
 - **axiom** c2: for all $a, b \in [0,1]$: if a < b, then $c(a) \ge c(b)$
 - c is monotonic non-increasing
 - where $a = \mu_A(x)$ and $b = \mu_B(x)$

Example Complements

$$(a) \quad \overline{\mu(x)} = \begin{cases} 1 & \text{if } a \le t \\ 0 & \text{if } a > t \end{cases}$$

$$(b) \quad \overline{\mu(x)} = \frac{1}{2}(1 + \cos(\pi a))$$

Example Complements

$$(c)$$
 $\overline{\mu(x)} = \frac{1-a}{1+\lambda a}$

$$(d) \quad \overline{\mu(x)} = \left(\frac{1 - a^w}{1 + \lambda a^w}\right)^{1/w}$$

Intersection Axioms

- The function *must* satisfy the following axioms
 - axiom i1: i(1,1)=1, i(0,1)=i(1,0)=i(0,0)=0
 - must behave like crisp sets (boundary conditions)
 - sometimes written like $1 \otimes a = a$
 - axiom i2: i(a, b) = i(b, a) (commutative)
 - **axiom** *i***3**: if $a \le a'$ and $b \le b'$, then $i(a,b) \le i(a',b')$ (monotonic)
 - axiom i4: i(i(a,b), c) = i(a, i(b,c)) (associative)

Intersection

- Fuzzy intersections are represented by an established class of functions called *triangular* norms or t-norms
- A t-norm is a function which takes two arguments in [0,1] and returns a value in [0,1]
 i: [0,1] x [0,1] → [0,1]
- Thus

$$-\mu_{A\cap B}(x)=i(\mu_{A}(x),\,\mu_{B}(x))$$

Optional Intersection Axioms

- The function *may* satisfy the following axioms
 - axiom *i5*: *i* is continuous
 - axiom i6: i(a, a) = a (idempotent)
- The minimum min(a, b) is the only t-norm which satisfies axioms i1 to i6

Common T-Norms

Schweizer and Sklar (1963)

$$a \otimes b = \max(0, a^p + b^p - 1)^{1/p}$$

• This gives

$$a \otimes_{-\infty} b = \min(a, b)$$
 (standard)
 $a \otimes_0 b = ab$ (product)
 $a \otimes_1 b = \max(0, a + b - 1)$ (bounded diff.)
 $a \otimes_{\infty} b = (a \text{ if } b = 1; b \text{ if } a = 1;$
else 0) (drastic sum)

Union Axioms

- The function must satisfy the following axioms
 - axiom u1: u(0,0)=0, u(0,1)=u(1,0)=u(1,1)=1
 - must behave like crisp sets (boundary conditions)
 - sometimes written like $0 \oplus a = a$
 - axiom u2: u(a, b) = u(b, a) (commutative)
 - **axiom** u3: if $a \le a'$ and $b \le b'$, then $u(a,b) \le u(a',b')$ (monotonic)
 - axiom u4: u(u(a,b), c) = u(a, u(b,c)) (associative)

Union

- Fuzzy unions are represented by an established class of functions called *triangular* conorms or t-conorms
- A t-conorm is a function which takes two arguments in [0,1] and returns a value in [0,1]
 u: [0,1] x [0,1] → [0,1]
- Thus

$$-\mu_{A\cup B}(x)=u(\mu_{A}(x),\,\mu_{B}(x))$$

Optional Union Axioms

- The function *may* satisfy the following axioms
 - axiom u5: u is continuous
 - **axiom** u6: u(a, a) = a (idempotent)
- The maximum max(a, b) is the only t-conorm which satisfies axiom u6
 - as well as all the others!

Common T-Conorms

Schweizer and Sklar (1963)

$$a \oplus b = 1 - \max(0, (1-a)^{-p} + (1-b)^{-p} - 1)^{1/p}$$

• This gives

$$a \oplus_{-\infty} b = \max(a, b)$$
 (standard)
 $a \oplus_{0} b = a + b - ab$ (probabilistic sum)
 $a \oplus_{1} b = \min(1, a + b)$ (bounded sum)
 $a \oplus_{\infty} b = (a \text{ if } b = 0; b \text{ if } a = 0;$
else 1) (drastic)

Other Operations

Exercises

- Given the following two fuzzy sets
 - A = 0.0/1 + 0.1/2 + 0.5/3 + 1.0/4 + 0.7/5 + 0.4/6 + 0.1/7
 - B = 0.1/1 + 0.3/2 + 0.6/3 + 0.7/4 + 0.8/5 + 0.9/6 + 1.0/7
 - write down (A AND B) and (A OR B), using
 - min, max
 - product, probabilistic sum
 - bounded difference, bounded sum
- Calculate ANDs using min and product for
 - Jack is 0.9/tall and 0.9/old
 - Fred is 0.9/tall and 0.2/old
 - which do you think makes more sense, and why?

Summary

- Lecture summary
 - fuzzy sets are extensions of conventional (crisp)
 sets that allow everyday notions to be represented
 - fuzzy memberships are not probabilities
 - but their precise meaning is open to interpretation
 - min and max are used for basic AND and OR
 - there are many alternative operator families
- Next lecture
 - linguistic variables