Machine Learning

Assignment 12.1

Submitted By: Ranji Raj

January 24, 2021

Association Rules

Supervised Learning	Unsupervised learning	Reinforcement learning
T :	T:	T:
Assign class labels	Find patterns and	Learn the
to instances	groupings among instances	optimal policy
E :	E:	E:
Classify/predict	Learns inherent	Performance feedback
output from input data	structures from data	1 eriormance reedback
P:	P:	P:
Confusion matrix,	Fowlkes-Mallows index,	Discounted rewards,
ROC/AUC, Boxplots,	Silhouette score, Purity,	Finite horizon reward,
R^2 , Adjusted- R^2 , SSE	AIC, BIC, SSE	Average reward
Classification:	Clustering:	Model-free RL:
Naive Bayes,	k-Means,	Q-Learning,
Logistic regression,	FCM,	Value iteration,
Decision Tree,	LVQ,	SARSA,
Perceptron,	HAC,	A3C, DQN,
Neural Networks,	Topic Modeling,	C51, AlphaZero,
kNN, LVQ	Neural Networks (Autoencoders)	HER
Regression:	Association rules:	Model-based RL:
Linear regression,	Apriori algorithm,	
Locally weighted regression,	Eclat,	I2A, MBMF,
Regression Tree	Frequent pattern-growth	MBVE, AlphaZero

Table 1: Supervised vs. Unsupervised learning vs. Reinforcement Learning

Association Rules Assignment 12.1

Supervision

Association rules are categorized under unsupervised learning techniques with no class labels assigned to instances.

Learning task

Derive all association rules with a given minimal confidence and minimal support threshold

Learning goal

To discover correlation between co-occurring attributes and find interesting relationships among them.

Support of an association rule

For a rule $X \to Y$, support is the subset of transactions from D, that satisfy the rule:

$$support(X \to Y) = \frac{|\{t \in D | (X \cup Y) \subseteq t\}|}{|D|}$$

Confidence of an association rule

For a rule $X \to Y$, support is the relation of the transactions of D, that satisfy the rule to the number of transactions that satisfy the rule body:

$$confidence(X \rightarrow Y) = \frac{|\{t \in D | (X \cup Y) \subseteq t\}|}{|\{t \in D | X \subseteq t\}|} = \frac{support(X \rightarrow Y)}{support(X)}$$