

Imputation of missing covariates: when standard methods may fail

Nicole S. Erler^{1,2}, Dimitris Rizopoulos¹, Oscar H. Franco², Emmanuel M.E.H. Lesaffre^{1,3}

 $^{^{1}}$ Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands

² Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands

³ L-Biostat, KU Leuven, Leuven, Belgium

Motivation (1)

Vitamin D concentration during fetal life and bone health at age 6

- bone mineral content (BMC)
- serum vitamin D concentration (※)
- sun exposure (※), season at measurement (※)
- gender, age at measurement
- ... (*)

(**※**) incomplete

Analysis model:

$$BMD = (age + VitD + VitD^2) \times gender + season + sun_exposure + \dots$$

Motivation (2)

Maternal sugar-sweetened bevarage consumption and child's body composition

- child BMI at up to 13 time points
- maternal sugar-sweetened bevarage consumption (SBC)
- ◆ child's physical activity, TV watching (※)
- gender, age at measurement
- ... (*****)

(ℜ) incomplete

Analysis model:

$$BMI_{ij} = SBC_i + age_{ij} + \ldots + u_{0i} + u_{1i} \times age_{ij}$$

impute → analyze → pool

impute → analyze → pool

fully conditional specification (FCS) chained equations (MICE)

joint model imputation

impute → analyze → pool

fully conditional specification (FCS) chained equations (MICE)

In iteration $k = 1, \dots, K$:

for variable $j = 1, \ldots, p$:

impute → analyze → pool

fully conditional specification (FCS) chained equations (MICE)

In iteration $k = 1, \ldots, K$:

for variable $j = 1, \ldots, p$:

keep last iteration → 1 imputed data set → repeat m times

Requirements for MICE

- all relevant variables must be included
 - covariates (from all analyses)
 - the outcome
- **compatibility**: a joint model exists that has the imputation models as its conditional distributions
- congeniality: compatibility between analysis model and imputation model
- imputation models should fit the data
- M(C)AR (in most implementations)

When MICE might fail

Imputation model not congenial with analysis:

- quadratic, logarithmic, . . . effects
- interactions between covariates

Complex (non univariate) outcomes:

- survival
- longitudinal

True model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \dots$ (quadratic association)

Imputation model: $x_1 = \theta_{10} + \theta_{11} y + \dots$ (linear association)

True model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \dots$ (quadratic association)

Imputation model: $x_1 = \theta_{10} + \theta_{11} y + \dots$ (linear association)

> X₁

True model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \dots$ (quadratic association)

Imputation model: $x_1 = \theta_{10} + \theta_{11} y + \dots$ (linear association)

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \dots$ (quadratic association) True model:

Imputation model: $x_1 = \theta_{10} + \theta_{11}y + \dots$ (linear association)

Simple approaches

• passive normal imputation:

standard MICE → calculate interactions & non-lin. terms afterwards

(Can be done in SPSS)

Simple approaches

- passive normal imputation:
 standard MICE → calculate interactions & non-lin. terms afterwards
- predictive mean matching (pmm) (also passive) use pmm instead of linear regression for imputation

(Can be done in SPSS)

Simple approaches

- passive normal imputation:
 standard MICE → calculate interactions & non-lin. terms afterwards
- predictive mean matching (pmm) (also passive) use pmm instead of linear regression for imputation
- just another variable
 - calculate interactions & non-lin. terms before imputation
 - add as columns to data set

(Can be done in SPSS)

- smcfcs: Substantive Model Compatible FCS
 - → MICE type approach

- smcfcs: Substantive Model Compatible FCS
 - → MICE type approach
- jomo: joint modeling MI using multivariate normal distribution
 - → joint model MI

- smcfcs: Substantive Model Compatible FCS
 - → MICE type approach
- jomo: joint modeling MI using multivariate normal distribution
 - → joint model MI
- JointAI: joint analysis and imputation
 - → not MI, but simultaneous analysis & imputation

- smcfcs: Substantive Model Compatible FCS
 - → MICE type approach
- jomo: joint modeling MI using multivariate normal distribution
 - → joint model MI
- JointAI: joint analysis and imputation
 - → not MI, but simultaneous analysis & imputation

Explicitly take into account the **analysis model** in the sampling distribution for \hat{x}_i

Simulation study (I): Data setup

Models: linear regression with

- interaction
- logarithmic or quadratic effect
- combinations

Simulation study (I): Data setup

Models: linear regression with

- interaction
- logarithmic or quadratic effect
- combinations

Missing values:

- in one or two covariates
- MAR, depending on outcome (and other covariate)
- 20%, 40%, 60%

Simulation study (I): Methods

Approaches using the **mice** package:

- norm
- pmm
- JAV (using pmm)

other packages:

• smcfcs: smcfcs()

• jomo: jomo.lm()

• JointAl: lm_imp()

qdr. with interaction: $y \sim c_1 + (c_2^{(*)} + c_2^{2(*)}) \times b^{(*)}$

(effect of $c_2^2 \times b$)

Summary of Simulation Study (I)

	interaction	log	quadratic	interact & qdr
norm	<u>:</u>			
pmm		\bigcirc		
JAV		\odot		
smcfcs		4	\odot	\odot
jomo		4	\odot	
JointAl		\odot		

When MICE might fail

Imputation model not congenial with analysis:

- quadratic, logistic, . . . , effects
- interactions between covariates

Complex (non univariate) outcomes:

- survival
- longitudinal

Imputation for survival data (Cox PH model)

Outcome: event time (T) and event indicator (D)

MICE strategies: represent outcome by including

- D
- ullet T and/or f(T)
- ullet Nelson-Aalen estimator of $H_0(T)$

White & Royston (2009). Imputing missing covariate values for the Cox model. *Stat Med* 28(15), 1982–1998.

Bartlett et al.(2015). Multiple imputation of covariates by fully conditional specification: accommodating the substantive model. *Stat Methods Med Res*, 24(4), 462 - 487.

Imputation for survival data (Cox PH model)

Outcome: event time (T) and event indicator (D)

MICE strategies: represent outcome by including

- $\bullet \ T \ {\rm and/or} \ f(T)$
- T and/or J(T)• Nelson-Aalen estimator of $H_0(T)$

→ use D + Nelson-Aalen
small bias towards zero when large covariate effect

White & Royston (2009). Imputing missing covariate values for the Cox model. Stat Med 28(15), 1982–1998.

Bartlett et al.(2015). Multiple imputation of covariates by fully conditional specification: accommodating the substantive model. Stat Methods Med Res, 24(4), 462 - 487.

Imputation for survival data (Cox PH model)

Outcome: event time (T) and event indicator (D)

MICE strategies: represent outcome by including

- $\bullet \ T \ {\rm and/or} \ f(T)$
- Nelson-Aalen estimator of $H_0(T)$

→ use D + Nelson-Aalen
small bias towards zero when large covariate effect

smcfcs:

unbiased in simulation study

improvement over MICE

White & Royston (2009). Imputing missing covariate values for the Cox model. Stat Med 28(15), 1982–1998.

Bartlett et al.(2015). Multiple imputation of covariates by fully conditional specification: accommodating the substantive model. Stat Methods Med Res, 24(4), 462 - 487.

Multi-level imputation

id	y	x_1	x_2	x_3	x_4	time
1	√	√	NA	\checkmark	\checkmark	1.16
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	2.28
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	3.27
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	3.42
2	\checkmark	NA	\checkmark	√	\checkmark	0.82
2	\checkmark	NA	\checkmark	\checkmark	\checkmark	0.93
2	\checkmark	NA	\checkmark	\checkmark	\checkmark	2.29
2	\checkmark	NA	\checkmark	\checkmark	\checkmark	4.01
3	\checkmark	\checkmark	NA	\checkmark	NA	2.94
3	\checkmark	\checkmark	NA	\checkmark	NA	4.23
3	\checkmark	\checkmark	NA	\checkmark	NA	4.36
:	√	√	\checkmark	NA	\checkmark	:

Multi-level imputation: strategies

Imputation in long format:

- **clustering** needs to be taken into account
- consistency of incomplete baseline covariates

id	y	x_1	x_2	x_3	x_4	time
1	√	√	NA	\checkmark	\checkmark	1.16
1	√	\checkmark	NA	\checkmark	\checkmark	2.28
1	√	\checkmark	NA	\checkmark	\checkmark	3.27
1	√	\checkmark	NA	\checkmark	\checkmark	3.42
2	\checkmark	NA	\checkmark	\checkmark	\checkmark	0.82
2	√	NA	\checkmark	\checkmark	\checkmark	0.93
2	√	NA	\checkmark	\checkmark	\checkmark	2.29
2	√	NA	\checkmark	\checkmark	\checkmark	4.01
3	√	\checkmark	NA	\checkmark	NA	2.94
3	√	\checkmark	NA	\checkmark	NA	4.23
3	\checkmark	\checkmark	NA	\checkmark	NA	4.36
:	\checkmark	\checkmark	\checkmark	NA	\checkmark	:

Multi-level imputation: strategies

Imputation in long format:

- clustering needs to be taken into account
- consistency of incomplete baseline covariates

Imputation in wide format: difficult with unbalanced data, ideas:

- create intervals to balance data
- use **summary** of the outcome:
 - only baseline observation
 - random effects from preliminary model

id	y	x_1	x_2	x_3	x_4	time
1	√	√	NA	√	√	1.16
1	√	\checkmark	NA	\checkmark	\checkmark	2.28
1	√	\checkmark	NA	\checkmark	\checkmark	3.27
1	√	\checkmark	NA	\checkmark	\checkmark	3.42
2	\checkmark	NA	\checkmark	\checkmark	\checkmark	0.82
2	√	NA	\checkmark	\checkmark	\checkmark	0.93
2	√	NA	\checkmark	\checkmark	\checkmark	2.29
2	√	NA	\checkmark	\checkmark	\checkmark	4.01
3	\checkmark	\checkmark	NA	\checkmark	NA	2.94
3	\checkmark	\checkmark	NA	\checkmark	NA	4.23
3	\checkmark	\checkmark	NA	\checkmark	NA	4.36
:	\checkmark	\checkmark	\checkmark	NA	\checkmark	:

Simulation study (II): Data setup

Models: linear mixed model with random intercept & slope

- interaction
- quadratic effect
- interaction & quadratic effect

Missing values: (as before)

- in one or two covariates
- MAR, depending on outcome (and other covariate)
- 20%, 40%, 60%

Simulation study (II): Methods

Approaches using **MICE**:

```
mice miceadds
norm 2lonly.norm 2lonly.function (+ norm & logreg)
pmm 2lonly.pmm 2lonly.function (+ pmm3 & logreg)
```

other packages:

- jomo:
 - (jomo.lmer(): problems with missing baseline covariates)
 - jomo2(): no functionality for non-linear terms → JAV
- JointAl: lme_imp()

interaction & qdr.: $y \sim c_1 \times b^{(*)} + c_2^{(*)} + c_2^{(*)} + t + (t \mid id)$ (effect of c_2^2)

Summary of Simulation Study (II)

	longitudinal	interaction	quadratic & interaction
norm	<u>:</u>	<u> </u>	
pmm			
jomo	\odot	<u>:</u>	
jomo JAV			
JointAl			

Discussion

- Missing data is common challenge
- standard implementations may be biased
- but more and more software is available
 - extensions of mice package
 - stand-alone packages: smcfcs, jomo, JointAl, . . .
- easy to use:

(https://github.com/NErler/JointAI)

Thank you for your attention.

- n.erler@erasmusmc.nl
- **У** N_Erler
- NErler

Dep. Biostatistics: www.erasmusmc.nl/biostatistiek

ErasmusAGE: www.erasmusage.com