

Implementación del internet de las cosas

Lourdes Badillo, A01024232 Martha del Río, A01023890 Valeria Pineda , A01023979 Eduardo Villalpando, A01023646

Contenido

Inicio

Descripción y análisis de requerimientos

Monitoreo y Control

Construcción del proyecto

Planeación

Plan y evolución del trabajo

Cierre

Conclusiones, limitaciones y soluciones

Ejecución

Vídeo del prototipo

01 Inicio

Descripción y análisis de requerimientos

Descripción

A finales del 2019, se registró en Wuhan, China el primer caso de SARS-CoV-2. En pocos meses se esparció por todo el mundo, ocasionando una pandemia con millones de muertos.

Se recomienda a la población vigilar de cerca su salud para poder detectar cualquier síntoma. Por ello se propone elaborar un dispositivo que monitoree signos vitales tales como frecuencia cardiaca y nivel de oxigenación sanguínea y detecte anomalías.

Realizamos mediciones de

CONCENTRACIÓN DE OXÍGENO EN LA SANGRE

Las enfermedades respiratorias deterioran el sistema respiratorio por lo que la sangre presenta una menor concentración de oxígeno.

RITMO CARDIACO

Debido a la misma razón, las enfermedades como el COVID-19 muestran síntomas tales como ritmo cardiaco anómalo.

Requerimientos de usuario

01

Sensores

Tener un medidor de nivel de saturación de oxígeno en la sangre y pulsaciones cardíacas.

Identificar anomalías

Indicar cualquier anomalía en estos niveles y qué puede significar.

03

Historial

Mostrar datos históricos estadísticos de forma intuitiva.

Registro

El registro debe ser rápido y puede realizarse varias veces.

Requerimientos del sistema

1. Cada persona que usa el producto tiene un usuario y contraseña, con lo cual tiene ciertos permisos para ver y cambiar los datos.

2. Mostrar los datos recuperados de cada medida en tiempo real y el historial y si existe alguna ar

3. Tener una interfaz que le dé instrucciones al usuario para tomar sus medidas en el Arduino.

Requerimientos funcionales

Promedio

Si hay más de una medición por persona al día hacer un promedio de dichos datos para enseñar en el historial.

Dashboard

Enseñar información de la base de datos de manera local usando el programa Tableau.

Módulos (Sensores)

Tener un módulo ESP8266, un módulo KY-039, y un módulo MAX30102.

Administración

Cada hogar tiene un usuario administrador que puede cambiar los permisos de cada usuario.

Requerimientos no funcionales

01.

Restringir consultas a la base de datos a 2GB.

03.

Usar 6 o menos puertos analógicos y 14 o menos puertos digitales en el Arduino.

05.

Registrar datos del Arduino en una base de datos usando MySQL.

02.

Comunicarse con la computadora para el tratamiento de los datos.

04.

Establecer comunicación de dispositivos en red mediante protocolo UDP.

06.

Documentación del proyecto.

Escenario del producto

El producto está orientado a ser utilizado por consumidores dentro del hogar. Por lo tanto, debe tener un tamaño compacto y no requerir de equipo adicional.

Referencias

Medidor de glucosa

Usuario	Pacientes con diabetes.	
Sensor	Mide glucosa con un sensor que se mantiene en el brazo.	
Арр	Guarda datos del sensor.	
Ventajas	Muy poco intrusivo. Múltiples interfaces en armonía.	

Abbot Laboratories, 203

Oxímetro

Interfaz	Clara y fácil de entender.	
Diseño	Diseño amigable, moderno e intuitivo.	
Usuario	Existen formas de ser utilizado por adultos y bebés.	

Hospeq, 202 Nedtronic, 202

Termómetro

Accesible	Mide la temperatura de forma sencilla.
Detalles	La pantalla muestra un color diferente dependiendo de la temperatura.
	dependiendo de la temperatura.
0	No necesitas conocimientos médicos para saber
Comprensible	cuando la temperatura está fuera de rango.

Apple Watch

Sensores	Sensores de ritmo y oxigenación.	
Claridad	Recomendaciones de salud.	
Cómodo	Diseño poco intrusivo. No se siente como un dispositivo médico.	

HKIO. (2020)

Experiencia de usuario deseada

Claridad

Lenguaje poco técnico.

Sencillez

Fácil de utilizar.

Ameno

Interfaz amigable.

Instintivo

Uso intuitivo.

Accesible

Que no tenga un diseño intimidante.

Nuestra propuesta

Paso 1. El usuario decide medir su oxigenación y pulsaciones.

Paso 2. Usa el oxímetro primero.

Paso 3. Procede a usar el monitor cardiaco.

Paso 4. El arduino recibe los datos y los envía a la computadora por wifi.

Paso 5. Los datos históricos son almacenados en la base de datos.

Paso 6. Se crean gráficas de monitoreo con los datos del usuario.

Charter Template

Objectives

Contexto: Este proyecto consta de un sistema que le permita a familias llevar un registro de sus niveles de oxigenación y ritmo cardiaco, debido a la pandemia que estamos viviendo. Objetivos:

- Crear una interfaz clara, donde se muestre la información importante medida por el dispositivo.
- Dar mediciones confiables usando medios no invasivos y fáciles de entender por cualquier persona.
- 3. Tener las solución lista para la semana del 30 de noviembre.

In Scope

- Desarrollo de la base de datos
- Interfaz gráfica
- Prototipo con Arduino

Out of Scope

- Aplicación móvil
- Wearable

Assumptions

Los usuarios cuentan con una computadora y el dispositivo para hacer las mediciones.

Los usuarios no tienen características médicas anómalas.

Stakeholders		
Nombre(s)	Rol(es)	
Eduardo Villalpando, Lourdes Badillo, Martha del Río, Valeria Pineda	Desarrolladores	
Angélica, Gualberto, Jorge, Octavio	Consultores	
Familias de los miembros del equipo	Usuarios Beta	

Risks/Issues/Challenges/Dependencies	% de que suceda	Tipo
Corto en los sensores, compuertas, cables	Alto	Riesgo de tecnología
Falla en el protoboard	Medio	Riesgo de tecnología
Corrupción de los datos en base de datos	Bajo	Riesgo de herramientas
Insuficiencia de tiempo	Medio	Riesgo de estimación
Los sensores no muestran los valores correctos	Bajo	Riesgo de tecnología
Algún integrante del equipo no se encuentra en las condiciones óptimas para el desarrollo	Bajo	Riesgo personal
Cambio de periodo de tiempo en el que se guardan los datos	Bajo	Riesgo de requerimientos
El programa excede las capacidades de almacenamiento del hardware	Bajo	Riesgo de estimación
Momentos de torpeza de algún miembro del equipo, rompiendo algún componente electrónico	Alto	Riesgo personal
Azure	-	Dependencia
Costo de base de datos	_	Issue

Key Milestones			
No.	Key Milestones	Due Date	Status
1.	Desarrollo de la base de datos y conexión a Azure	15/11	Listo
2.	Implementación de sensores y hardware	20/11	En proceso
3.	Lectura de los datos de los sensores	29/11	En proceso
4.	Visualización de los datos	30/11	No empezado
5.	Presentación del producto terminado	04/12	No empezado

RISKS			
Área / Function	Description	Mitigation Plan	
Tecnología	Corto en los sensores, compuertas, cables	Sustituir la parte dañada con las partes extras de los miembros del equipo.	
Tecnología	Falla en el protoboard	Identificar que no se haya dañado ningún otro componente, y sustituir.	
Herramientas Corrupción de los datos en base de datos		Tener respaldos constantes en documentos .mysql y usar respaldos locales si Azure quiebra.	
Estimación	Insuficiencia de tiempo	Usar una metodología de trabajo paralela.	
Tecnología	Los sensores no muestran los valores correctos	Asegurar que los sensores estén calibrados correctamente y que no tengan alguna falla.	
Personal	Algún integrante del equipo no se encuentra en las condiciones óptimas para el desarrollo	Pedirle un link al integrante del tema en el que se estaba enfocando para continuar lo que se estaba haciendo.	
Requerimientos	Cambio de periodo de tiempo en el que se guardan los datos	Aumentar la capacidad de la base de datos y modificar el funcionamiento del programa.	
Estimación	El programa excede las capacidades de almacenamiento del hardware	Mover ciertas variables a la memoria flash y simplificar (en la medida de lo posible) la lógica.	

Momentos de torpeza que rompan algún componente electrónico

Tratar cuidadosamente con el producto desarrollado.

Personal

ISSUES			
Área / Function	Description	Mitigation Plan	
Tecnología	Costo de base de datos	Establecer límites de uso y gestionar de forma efectiva la información.	
Requerimientos	Diseño intimidante e incómodo	Minimizar el uso de cables	
Estimación	Mucha información en la base de datos	Almacenar promedios diarios en lugar de cada registro	
Requerimientos Mala toma de datos		Escribir un manual de usuario, para que se usen los sensores de manera correcta y los datos almacenados sean correctos. Se puede implementar una función que detecte datos anómalos.	

Área / Function	Description	Mitigation Plan Conseguir una computadora en la nube o un equipo de bajo costo	
Planeación	Los usuarios cuentan con una computadora y el dispositivo para hacer las mediciones.		
Planeación	Los parámetros del usuario se encuentran dentro del promedio	Guardar variaciones clínicas en otra tabla	
Planeación	El usuario puede leer correctamente	Implementar características de accesibilidad	

Fiancación	correctamente	icci	accesibilidad
		DEPENDENCIES	
Área / Function	Description	Mitigation Plan	
Organizacional	Azure	Usar los respaldos en caso de que sea necesario migrar a otro servicio de almacenamiento.	
Tecnología	Python/MySQL	Actualizar librerías.	
Tecnología	Arduino	Verificar que todos los drivers estén bien instalados.	

Calendarización

Planeación de Actividades

03 Ejecución

Vídeo del prototipo

Conexión de sensores

Antena WiFi

Permite comunicarse de forma inalámbrica mediante el protocolo UDP con un servidor dentro de la red para almacenar los valores en una base de datos.

Conexión de sensores

Sensor de ritmo cardiaco

Un fotodiodo mide la cantidad de luz infrarroja del LED que recibe, para calcular el pulso. Los datos son transmitidos mediante uno de los puertos analógicos.

Conexión de sensores

Sensor de nivel de oxigenación

Emite pequeños rayos de luz y mide los cambios en la absorción de la misma, permitiendo obtener el nivel de oxigenación así como el pulso cardiaco.

Un puerto analógico controla la frecuencia de las mediciones mientras que otro se encarga de recibir datos.

Construcción del proyecto

01. Desarrollo de base de datos

 Comprender qué datos necesitamos y cómo se relacionan

Crear base de datos en MySQL

- Azure

02. Datos prueba por medio de Python

- Agregar datos aleatorios, para probar la funcionalidad de la base de datos, antes de tener el prototipo
- Conector
- Views

03. Agregar datos de los sensores

- Lectura y procesamiento de los datos recibidos por los sensores
- Arduino y Python
- Agregar datos a partir de las tomas de los sensores

Base de datos

Visualización de los datos

05 Conclusiones

La documentación es una de las acciones más importantes en el desarrollo de proyectos. Esta es la guía para lograr una buena entrega de un producto, pues ayuda a que el equipo de trabajo, el cliente, y todas las personas que interactúan/interactuarán con el producto, puedan hacerlo de la manera correcta y sin problemas.

Antes de realizar cualquier implementación, es necesario comprender cómo funciona todo lo que estaremos utilizando, por lo que este módulo fue una fase muy importante para poder comprender el funcionamiento lógico de diversos componentes y circuitos integrados.

Requerimientos de software

CONCLUSIONES

Arquitecturas y hardware

Se debe conocer el nivel más bajo de funcionamiento de los diferentes elementos que conforman el resultado, así como la manera en que el código y los datos son almacenados en la memoria. Esto nos permite desarrollar de forma más eficiente nuestra solución y seguir la misma lógica de cada componente y conexión.

El software es esencial para generar un espacio para almacenar nuestros datos, así como para recopilar e interpretar los mismos. De igual forma, esto nos permite desarrollar el dashboard para visualizar los datos y poder ofrecer la información relevante al usuario.

Riesgos/Limitaciones y nuestras soluciones

Cálculo de la saturación del oxígeno

Existieron anomalías en nuestros datos de oxígeno, por lo que tendríamos que calibrar nuestro sensor, o de plano reemplazarlo. Esto también pudo haber pasado porque fue soldado manualmente en casa sin previa práctica.

Conocimiento sobre el hardware

Fue complicado comprender el correcto funcionamiento de varias partes del hardware, y más aún que era nuestra primera vez trabajando con este tipo de componentes. En ciertos casos, se nos complicó integrar los componentes.

La situación global de la actualidad

Debido a las medidas sanitarias de la pandemia, no pudimos reunirnos físicamente para el desarrollo del proyecto. Esto fue especialmente complicado al momento de construir el prototipo, así como en la elaboración de los entregables.

•••

Mejoras

Pantalla

Permite visualizar en tiempo real el valor del sensor.

Batería

Permite utilizar el dispositivo sin conectarse a la corriente.

Botones

Indican qué usuario está utilizando el dispositivo.

Beneficios

Este producto permite a los usuarios estar conscientes del estado de sus signos vitales, para que puedan tomar las precauciones necesarias, visitar al médico a tiempo, y detectar las anomalías (de existir) oportunamente.

• • •

Aplicaciones futuras

Mantener un récord deportivo de signos vitales

Adaptación del producto para un deportista, quien debe de cuidar de constantemente su cuerpo y mantenerse al tanto de lo que está sucediendo con él.

Detectar mayor diversidad de síntomas

Pueden incluirse sensores adicionales (acelerómetro, termómetro) para detectar diferentes síntomas y enfermedades.

Repositorio de Github

https://github.com/louloubadillo /Equipo_no_1_Retolot

