Advanced Machine Learning

Likhit Nayak

Bayesian Networks to Markov Networks

AB	0	1
0	0.25	0.75
1	0.50	0.50

P(B|A)

Bayesian Networks to Markov Networks

Markov Networks to Bayesian Networks

Markov Networks to Bayesian Networks

Let ${\cal H}$ be a chordal Markov network. Then there is a Bayesian network ${\cal G}$ such that ${\cal I}({\cal H})={\cal I}({\cal G})$

Let $X_1 - X_2 - \cdots - X_k - X_1$ be a loop in the graph; a chord in the loop is an edge connecting X_i and X_j for two nonconsecutive nodes X_i, X_j . An undirected graph \mathcal{H} is said to be chordal if any loop $X_1 - X_2 - \cdots - X_k - X_1$ for $k \geq 4$ has a chord.

Chordal Graphs

Gaussian Mixture Models (GMM)

Gaussian Mixture Models (GMM)

A Gaussian Mixture Model (GMM) is a function that is comprised of several Gaussians, each identified by $k \in \{1,...,K\}$, where K is the number of clusters of our dataset. Each Gaussian k in the mixture is comprised of the following parameters:

- 1. A mean μ that defines its centre.
- 2. A covariance **Σ** that defines its width.
- 3. A mixing probability π that defines how big or small the Gaussian function will be

Gaussian Mixture Models (GMM)

