IE 400: Principles of Engineering Management Homework 2 Solutions

Spring 2022-2023

Question 1.

$$\begin{array}{ll} \text{maximize} & 17x_1 + 10x_2 + 25x_3 + 24x_4 \\ & \text{s.t. } 3x_1 + 2x_2 + 6x_3 + 5x_4 \leq 7 \\ & x_i \in \{0,1\}, \forall i \\ & \text{order} & x_1 > x_2 > x_4 > x_3 \end{array}$$

Question 2.

We can apply Ford-Fulkerson algorithm to find the max flow of below networks. At the beginning the residual network is the same with the original network.

Step 1) Send 2 units on the path so-1-si since along the path minimum capacity is 2 i.e, $\min\{2,2\}=2$

Step 2) Send 1 unit on the path so-2-si since along the path minimum capacity is 1 i.e, $\min\{8,1\}=1$

Step 3) Send 2 unit on the path so-2-3-si since along the path minimum capacity is 2 i.e, $\min\{7,2,5\}=2$

Step 4) Send 3 unit on the path so-2-4-si since along the path minimum capacity is 3 i.e, $\min\{3,3\}=3$

There is no path from source to sink in the residual network. Then the max flow value is 8. The minimum cut can be constructed. Let S be the set of nodes reachable from the source in the residual network and T be the set of remaining nodes. $S=\{so, 2\}$ and $T=\{1, 3, si\}$. (S, T) cut has a capacity of 8 which is equal to max flow value that we found. Strong duality states that if a flow x and a cut [S, T) has the same value, then they are individually optimal.

Question 3.

Activities	Slack	Activities	Slack
Α	0	F	10
В	0	G	0
С	0	Н	0
D	0	1	10
E	9	J	0

Critical path: A - B - C - D - G - H - J

Duration: 46

b) E can be delayed for 9 days.F can be delayed for 10 days.I can be delayed for 10 days.

c) Parameters:

 c_i : cost of reducing the duration of activity j

 d_i : duration of activity i

 r_i : maximum possible reduction in duration of activity j

Decision Variables:

 x_i : start time of activity j

 y_j : number of days duration of activity j is reduced

Model:

$$\begin{aligned} & \text{minimize} & & \sum_{j} c_{j} y_{j} \\ & \text{s.t.} & & y_{j} \leq r_{j}, \, \forall j \\ & & x_{j} \geq x_{i} + d_{i} - y_{j} \,\,, \, \forall i, j \\ & & x_{start} = 0 \\ & & x_{end} \leq \mathbf{M} \\ & & y_{j} \geq 0 \,\,\& \,\, \text{integer}, \, \forall j \end{aligned}$$

Question 4.

$$v[1] = 0$$

$$v[2] = 8$$

$$d[2] = 1$$

$$v[3] = 6$$

$$v[4] = v[5] = v[6] = \infty$$

$$v[4] = 8$$
 $d[4] = 3$ <-- Permanent

$$v[5] = 12$$
 $d[5] = 3$

$$v[2] = 8$$
 $d[2] = 1$ <-- Permanent

$$v[6] = 17$$
 $d[6] = 4$

$$v[5] = 9$$
 $d[5] = 2$ <-- Permanent

$$v[6] = 16$$
 $d[6] = 5 < -- Stop$