1

Assignment 2

Shaik Zeeshan Ali AI20MTECH11001

Abstract—This document explains how to find the shortest distance between two lines if and when the two lines are not intersecting with each other.

Download all python codes from

https://github.com/Zeeshan-IITH/IITH-EE5609/new/master/codes

and latex-tikz codes from

https://github.com/Zeeshan-IITH/IITH-EE5609

1 Problem

Find the shortest distance between the lines

$$L_1 \colon \boldsymbol{x} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \tag{1}$$

$$L_2 \colon \boldsymbol{x} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \tag{2}$$

2 construction

When two lines are not intersecting the distance between them is non-zero. The equation of above mentioned lines in symmetric form is

$$L_1: x - 1 = 2 - y = z - 1$$
 (3)

$$L_2$$
: $\frac{x-2}{2} = y + 1 = \frac{z+1}{2}$ (4)

The above line equations have no point of intersection as for no value of x, y, z both the equations (3) and (4) are satisfied.

3 solution

Let A be a point on line L_1 and B be point on the line L_2 . Then the shortest distance between two skew lines will be the length of line perpendicular to both the lines L_1, L_2 and passing through A and B.

The shortest distance between the lines will be the projection of any line between the points on L_1, L_2

on to the unit vector which is perpendicular to both L_1, L_2 .

The unit vector perpendicular to lines

Line₁:
$$x = x_1 + \lambda_1 b_1$$

Line₂: $x = x_2 + \lambda_1 b_2$

can be found by calculating

$$\frac{b_1 \times b_2}{\|b_1 \times b_2\|}$$

In our question the value of $b_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $b_2 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$

So the unit vector perpendicular to both L_1 and L_2 is

$$\boldsymbol{u} = \frac{\begin{pmatrix} 1\\-1\\1 \end{pmatrix} \times \begin{pmatrix} 2\\1\\2 \end{pmatrix}}{\|\begin{pmatrix} 1\\-1\\1 \end{pmatrix} \times \begin{pmatrix} 2\\1\\2 \end{pmatrix}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

The points $\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ lie on the line

 L_1, L_2 respectively.

The shortest distance between the lines is the absolute value of projection of the vector $\mathbf{B} - \mathbf{A}$ on to the unit vector \mathbf{u} .

$$\|(\mathbf{B} - \mathbf{A})^T \mathbf{u}\| = \|\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-3\\-2 \end{pmatrix}^T \begin{pmatrix} -1\\0\\1 \end{pmatrix} \| = \frac{3}{\sqrt{2}}$$

Therefore the shortest distance between the given lines is $\frac{3}{\sqrt{2}}$