INFORMACIÓN QUE NOS DA EL RADIO DE CONVERGENCIA

Demostración del resultado

ÍNDICE

- > Enunciado del resultado
- > Demostración

ENUNCIADO

Si *J* es el intervalo de convergencia de una serie de potencias $\sum_{n\geqslant 0} c_n(x-a)^n$, entonces

dicha serie converge absoluta y uniformemente en cada subconjunto compacto de J. En particular, converge absolutamente en J. Por otra parte, la serie no converge en ningún punto de $\mathbb{R} \setminus (\overline{J} \cup \{a\})$.

DEMOSTRACIÓN (I)

Sea R el radio de convergencia de nuestra serie de potencias. Para la primera afirmación del enunciado, podemos suponer que $R \neq 0$ pues en otro caso $J = \emptyset$ y no hay nada que demostrar. Fijado un conjunto no vacío y compacto $K \subset J$, como la función continua $x \mapsto |x-a|$ tiene máximo en K, existe $b \in K$ que nos permite escribir

$$r = \max \left\{ |x - a| : x \in K \right\} = |b - a|$$

DEMOSTRACIÓN (II)

En el caso $R \in \mathbb{R}^+$, como $b \in K \subset J$, se tiene que r = |b - a| < R, lo que nos permite entonces fijar $\rho \in \mathbb{R}^+$ con $r < \rho < R$, para obtener que

$$\limsup_{n\to\infty} \sqrt[n]{|c_n|} = \frac{1}{R} < \frac{1}{\rho}$$

En el caso $R = +\infty$, tomamos $\rho \in \mathbb{R}^+$ con $r < \rho$ y tenemos la misma desigualdad, ya que el límite superior del primer miembro se anula.

DEMOSTRACIÓN (III)

Por definición de límite superior, existe un $m \in \mathbb{N}$ tal que, para $k \in \mathbb{N}$ con $k \ge m$, se tiene que $\sqrt[k]{|c_k|} < 1/\rho$, o lo que es lo mismo, $|c_k|\rho^k < 1$. Esto implica que la sucesión $\{|c_n|\rho^n\}$ está mayorada, es decir,

$$\exists M \in \mathbb{R}^+ : |c_n| \rho^n \leqslant M \qquad \forall n \in \mathbb{N} \cup \{0\}$$

Deducimos entonces que, para cualesquiera $x \in K$ y $n \in \mathbb{N} \cup \{0\}$, se tiene

$$|c_n(x-a)^n| = |c_n| |x-a|^n \le |c_n| r^n = |c_n| \rho^n \frac{r^n}{\rho^n} \le M \left(\frac{r}{\rho}\right)^n$$

Como $r/\rho < 1$, la serie $\sum_{n\geqslant 0} (r/\rho)^n$ converge, y tomando $M_n = M(r/\rho)^n$ para todo $n \in \mathbb{N} \cup \{0\}$,

la serie $\sum_{n\geq 0} M_n$ también es convergente. Por tanto, la desigualdad (9) nos permite usar el test de

Weierstrass, con lo que obtenemos que la serie de potencias $\sum_{n\geqslant 0} c_n(x-a)^n$ converge absoluta

y uniformemente en K. En particular, para cada $x \in J$ podemos tomar $K = \{x\}$, para concluir que dicha serie converge absolutamente en J.

π DEMOSTRACIÓN (IV)

Para la última afirmación del enunciado, suponemos que $R \neq +\infty$, pues en otro caso $J = \mathbb{R}$ y no hay nada que demostrar. Fijado $x_0 \in \mathbb{R} \setminus \{a\}$, y suponiendo que la sucesión $\{c_n(x_0-a)^n\}$ está acotada, probaremos que $|x_0 - a| \le R$, con lo que $x_0 \in \overline{J}$. Esto implica obviamente que la serie $\sum c_n(x-a)^n$ no converge en ningún punto de $\mathbb{R}\setminus (\overline{J}\cup \{a\})$.

Sean pues $x_0 \in \mathbb{R} \setminus \{a\}$ y $M \in \mathbb{R}^+$ verificando que

$$|c_n| |x_0 - a|^n \leqslant M \quad \forall n \in \mathbb{N}, \quad \text{es decir,} \quad \sqrt[n]{|c_n|} \leqslant \frac{M^{1/n}}{|x_0 - a|} \quad \forall n \in \mathbb{N}$$

Vemos entonces que la sucesión $\{\sqrt[n]{|c_n|}\}$ está acotada, con

$$\limsup_{n\to\infty} \sqrt[n]{|c_n|} \leqslant \lim_{n\to\infty} \frac{M^{1/n}}{|x_0-a|} = \frac{1}{|x_0-a|}$$

Deducimos claramente que $|x_0 - a| \le R$, como se quería.