50.012 Networks

Lecture 13: IP

2021 Term 6

Assoc. Prof. CHEN Binbin

Outline

IP: Internet Protocol

- datagram format
- fragmentation
- IPv4 addressing
- DHCP
- NAT
- IPv6

The Internet network layer

host, router network layer functions:

IP datagram format

IP fragmentation, reassembly

- network links have MTU (max.transfer size) - largest possible link-level frame
 - different link types,
 different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP fragmentation, reassembly

Outline

IP: Internet Protocol

- datagram format
- fragmentation
- IPv4 addressing
- DHCP
- NAT
- IPv6

IP addressing: introduction

- *IP address:* 32-bit identifier for host, router *interface*
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface

IP addressing: introduction

Q: how are interfaces actually connected?

A: wired Ethernet interfaces connected by Ethernet switches

For now: don't need to worry about how one interface is connected to another

connected by WiFi base station

Subnets

• IP address:

- —subnet part high order bits
- -host part low order bits

what 's a subnet ?

- -device interfaces with same subnet part of IP address
- -can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a *subnet*

subnet mask: /24

Subnets

how many?

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

200.23.16.0/23

In-class activity

 (textbook chapter 4, problem P8) Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and Subnet 3. Suppose all of the interfaces in each of these three subnets are required to have the prefix 223.1.17.0/24. Also suppose that Subnet 1 is required to support at least 60 interfaces, Subnet 2 is to support at least 90 interfaces, and Subnet 3 is to support at least 12 interfaces. Provide three network addresses (of the form a.b.c.d/x) that satisfy these constraints.

Outline

IP: Internet Protocol

- datagram format
- fragmentation
- IPv4 addressing
- DHCP
- NAT
- IPv6

IP addresses: how to get one?

Q: How does a *host* get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from a server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected / "on")
- support for mobile users who want to join network

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP client-server scenario

DHCP client-server scenario

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

DHCP: example

- connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802. I Ethernet
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

DHCP: example

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router

IP addresses: how to get one?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	11001000	00010111	0001000	00000000	200.23.16.0/23
Organization 1					200.23.18.0/23
Organization 2	11001000	00010111	0001010	00000000	200.23.20.0/23
•••					
Organization 7	<u>11001000</u>	00010111	00011110	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

hierarchical addressing allows efficient advertisement of routing information:

Hierarchical addressing: more specific routes

ISP B has a more specific route to Organization I

Q: how does an ISP get block of addresses?

- A: ICANN: Internet Corporation for Assigned
 Names and Numbers http://www.icann.org/
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes

Outline

IP: Internet Protocol

- datagram format
- fragmentation
- IPv4 addressing
- DHCP
- NAT
- IPv6

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one
 IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose ross/interactive/

- 16-bit port-number field:
 - 60,000+ simultaneous connections with a single WAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - address shortage should be solved by IPv6
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - NAT traversal: what if client wants to connect to server behind NAT?

STUN, ICE, TURN

- A set of IETF standard protocols for negotiating traversing NATs when establishing peer-to-peer communication sessions.
- STUN [RFC5389]: Session Traversal Utilities for NAT
 - A request/response protocol over UDP or TCP (port 3478)
 - Somewhat like http://whatismyip.com
- ICE [RFC5245]: Interactive Connectivity Establishment
- TURN [RFC5766]: Traversal Using Relay around NAT
 - A server which relays media between two peers

Outline

IP: Internet Protocol

- datagram format
- fragmentation
- IPv4 addressing
- DHCP
- NAT
- IPv6

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify traffic class
flow Label: identify datagrams in same "flow"

(concept of "flow" not well defined)

next header: identify upper layer protocol for data

IPv6 vs. IPv4

ver pr	i	flow label			
payload len		next hdr	hop limit		
source address (128 bits)					
(128 bits) destination address (128 bits)					
data					

- checksum: removed entirely to reduce processing time at each hop
- Fragmentation in routers: not allowed
- options: allowed, but outside of header, indicated by "Next Header" field

ver	head. len	type of service	length	
16-bit identifier		flgs	fragment offset	
time to upper live layer		header		
li	ve	layer	checksum	

32 bit source IP address

32 bit destination IP address

options (if any)

data
(variable length,
typically a TCP
or UDP segment)

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

IPv6: adoption

- Google: 8% of clients access services via IPv6
- NIST: 1/3 of all US government domains are IPv6 capable

- Long (long!) time for deployment, use
 - -20 years and counting!
 - -think of application-level changes in last 20 years: WWW, Facebook, streaming media, Skype, ...
 - -Why?