Probabilidad y estadística

Clase 5

Estimación no paramétrica

Función de distribución empírica

Tenemos tal que

Función de distribución empírica (ECDF):

Es una aproximación a la función de distribución , que pone peso 1/n a cada observación

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n 1\{X_i \le x\}$$

Propiedades de la ECDF

Para cada $x \in \mathbb{R}$,

$$\mathbb{E}\left(\widehat{F}_n(x)\right) = F(x),$$

$$\mathbb{V}\left(\widehat{F}_n(x)\right) = \frac{F(x)(1 - F(x))}{n},$$

$$MSE = \frac{F(x)(1 - F(x))}{n} \to 0,$$

$$\widehat{F}_n(x) \stackrel{P}{\longrightarrow} F(x).$$

All of Statistics, Wasserman

Usemos el <u>Advertising Sales Dataset</u>. Allí se presentan valores del presupuesto asignado (en 1000\$) en distintos medios (TV, radio, diarios) y las ventas asociadas.

- 1. A partir de la muestra 8.7, 14.2, 18.3, 18.4, 23.2, 25.9, 29.7, 35.2 51.2, 54.7, 65.9, 75 obtener la función de distribución empírica a mano.
- Utilizar la columna "Newspaper" del archivo "advertising.csv" y calcular la func. de distribución empírica usando Python.

Estimación de densidades (smoothing)

A la hora de estimar funciones de densidad, queremos tener una medida de cuán buena es la estimación. (Equivalente al ECM para parámetros)

Para densidades vamos a definir el riesgo:

$$egin{align} R(g,\hat{g}_n) &= \mathbb{E}[\int_{-\infty}^{\infty}\{g(x)-\hat{g}_n(x)\}^2 dx] \ &= \int_{-\infty}^{\infty} b^2(x) dx + \int_{-\infty}^{\infty} v(x) dx \ \end{aligned}$$

 $egin{aligned} b(x) &= \mathbb{E}[\hat{g}_n(x)] - g(x) \ v(x) &= \mathbb{E}[\{\hat{g}_n(x) - \mathbb{E}[\hat{g}_n(x)]\}^2] \end{aligned}$

Histogramas

- 1. Se toman los valores máximo y mínimo y se divide el intervalo en m sub-intervalos de longitud h. A cada subintervalo lo llamaremos B_j .
- 2. Se cuenta la cantidad de observaciones que caen en cada B_j : $u_j = \sum_{i=1}^n 1\{X_i \in B_j\}$
- 3. Normalizamos dividiendo por la cantidad total de muestras n , y por la longitud del subintervalo h.

$$\hat{f}_n(x)=rac{1}{nh}\sum_{j=1}^m
u_j 1\{x\in B_j\}$$
 $\hat{f}_n(x)=rac{1}{h}\sum_{j=1}^m \hat{p}_j 1\{x\in B_j\}$ donde $\hat{p}_j=
u_j/n$

A partir de los datos del ejercicio 1,

- 1. Calcular a mano, el histograma de 6 bins
- 2. A partir de todos los datos del dataset graficar el histograma utilizando Python

Propiedades del histograma

Teorema: Sea x y m fijos, y sea B_n el bin que contiene a x, luego

$$\mathbb{E}(\widehat{f}_n(x)) = \frac{p_j}{h} \qquad \mathbb{V}(\widehat{f}_n(x)) = \frac{p_j(1-p_j)}{nh^2}.$$

Obs: Al aumentar la cantidad de bins (*m*), Disminuye el sesgo, pero aumenta la varianza. Acá esta el tradeoff.

Estimación de densidad por kernel

Los histogramas son discontinuos

Existen los estimadores de densidad por kernel (KDE), que son más suaves y convergen más rápido a la verdadera densidad de los datos.

Estos estimadores asignan un peso a cada muestra que se "desparrama" a los puntos vecinos

Primero:

marcamos las observaciones en el eje x

Segundo:

Montamos una función (kernel) sobre cada muestra

Segundo:

Montamos una función (kernel) sobre cada muestra

Segundo:

Montamos una función (kernel) sobre cada muestra

Tercero: dividimos todo por n y sumamos las curvas

Kernels

Se define un kernel como una función K suave tal que:

$$K(x)\geq 0$$
, $\int K(x)dx=1$, $\int xK(x)dx$ =0, y $\sigma_K^2=\int x^2K(x)dx>0$.

Algunos kernels comunes:

ullet Epanechinkov: $K(x)=\left\{egin{array}{ll} rac{3}{4}(1-x^2/5)/\sqrt{5}, & |x|<5 \ 0 & e.\,o.\,c. \end{array}
ight.$

Es óptima en el sentido de error cuadrático medio

• Gaussiano (simple)

KDE

Def: Dado un kernel K y un número positivo h, llamado ancho de banda, el estimador de densidad por kernel se define como

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} H(\frac{x - X_i}{h})$$

Nuevamente el parámetro h es el que nos controla el tradeoff sesgovarianza

A partir de la columna 'Newspaper' del dataset estimar la densidad por el método de KDE.

Intervalos de confianza

Motivación

Hasta ahora habíamos visto estimadores puntuales, que, dada un muestra, nos devuelven un único valor $\hat{\theta}$ que se aproxima al valor verdadero del parámetro deseado θ .

Una forma de obtener información sobre la precisión de la estimación, en el caso de que θ sea unidimensional, es proporcionar un intervalo [a(X),b(X)] de manera que la probabilidad de que dicho intervalo contenga el verdadero valor θ sea alta, por ejemplo, 0.95.

Región de confianza

Def: Dada una m.a. \underline{X} con distribución perteneciente a una familia $F_{\theta}(x)$, con $\theta \in \Theta$, una región de confianza $S(\underline{X})$ para θ con nivel de confianza $1-\alpha$ será un conjunto tal que

$$\mathbb{P}(\theta \in S(\underline{X})) = 1 - \alpha.$$
 (*)

Obs: θ **no** es aleatorio, lo aleatorio es (*) es $S(\underline{X})$.

Obs: Si $S(\underline{X})=(a(\underline{X}),b(\underline{X}))$ diremos que es un intervalo de confianza.

Si $S(\underline{X}) = (\min(\Theta), b(\underline{X}))$ diremos que es una cota superior.

Si $S(\underline{X}) = (a(\underline{X}), \max(\Theta))$ diremos que es una cota inferior.

Juguemos un poquito

Usemos la siguiente <u>api</u> para entender mejor qué es un IC

Método del pivote

Teorema: Sea \underline{X} una muestra aleatoria con distribución perteneciente a una familia $F_{\theta}(x)$, con $\theta \in \Theta$, y sea $U=g(\underline{X},\theta)$ una variable cuya distribución **no** depende de θ . Sean a y b tales que

$$\mathbb{P}(a \leq U \leq b) = 1 - \alpha$$
. Luego,

$$S(\underline{X}) = \{\theta : a < g(\underline{X}, \theta) \le b\}$$

es una región de confianza para θ . A U se lo llama pivote.

Sea $\underline{X}=(X_1,\ldots,X_n)$ una muestra aleatoria de tamaño n de una población con distribución normal de media μ y varianza 4. Hallar una cota inferior del 95% para μ .

Suponer n=20 y μ =3, simular la muestra y obtener el valor de la cota.

-														
-														
-														
-														
-														
-														
-				-										
-														
				-										
-														
-														
				-										
-				-										
-														-
-														
							-1							

Algunos resultados importantes

Teorema: Sea $\underline{X} = X_1, \dots, X_n$ una m.a. de una distribución $\mathcal{N}(\mu, \sigma^2)$

$$Z = \sqrt{n} rac{(ar{X} - \mu)}{\sigma} \sim \mathcal{N}(0, 1)$$

$$W = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{\sigma^2} \sim \chi_{n-1}^2$$

V y W son independientes

Si
$$S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-ar{X})^2$$
 , $U=\sqrt{n}rac{(X-\mu)}{S}\sim t_{n-1}$

Obs: en general vale que si $X\sim \mathcal{N}(0,1)$ y $Y\sim \chi_n^2$, con X e Y independientes vale que $\frac{X}{\sqrt{Y/n}}\sim t_n$

Algunos pivotes para variables normales

Dada \underline{X}_n una m.a. de una distribución $\mathcal{N}(\mu, \sigma^2)$. Definimos algunos pivotes:

Para la media con σ^2 conocida: $U(\underline{X},\mu)=rac{X-\mu}{\sigma}\sqrt{n}\sim\mathcal{N}(0,1)$

Para la media con σ^2 desconocido: $U(\underline{X},\mu)=rac{ar{X}-\mu}{S}\sqrt{n}\sim t_{n-1}$

Para el desvío con media conocida $rac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma} \sim \chi_n^2$.

Para el desvío con media desconocida $rac{\sum_{i=1}^n (X_i - ar{X})^2}{\sigma} \sim \chi^2_{n-1}$.

Dada también Y_m una m.a. de una distribución $\mathcal{N}(\lambda, \sigma^2)$

Comparación de medias con varianzas conocida e iguales: $\frac{\bar{X}-Y-(\mu-\lambda)}{\sqrt{\frac{\sigma_X^2}{n}+\frac{\sigma_Y^2}{m}}}$

Comparación de medias con varianzas conocida e iguales: $\frac{\bar{X} - \bar{Y} - \Delta}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$, con

$$S_p^2 = rac{(n-1)S_X^2 + (m-1)S_Y^2}{m+n-2}$$

Algunos pivotes para variables normales

Dada \underline{X}_n una m.a. de una distribución $\mathcal{N}(\mu, \sigma^2)$ definimos algunos pivotes:

- ullet Para la media con varianza conocida: $U(\underline{X},\mu)=rac{(\overline{X}-\mu)}{\sigma}\sqrt{n}\sim\mathcal{N}(0,1)$
- ullet Para la media con varianza desconocida: $U(\underline{X},\mu)=rac{(\overline{X}-\mu)}{\underline{S}}\sqrt{n}\sim t_{n-1}$
- ullet Para el desvío con media conocida: $U(\underline{X},\sigma)=rac{\sum_{i=1}^n(X_i-\mu)^2}{\sigma}\sim\chi_n^2$
- ullet Para el desvío con media desconocida: $U(\underline{X},\sigma)=rac{\sum_{i=1}^n(X_i-\overline{X})^2}{\sigma}\sim\chi^2_{n-1}$

Dada también \underline{Y}_m una m.a. de una distribución $\mathcal{N}(\lambda,\sigma^2)$ y sea :

- Comparación de medias con varianzas conocidas: $U(\underline{X}, \Delta) = \frac{X Y \Delta}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \mathcal{N}(0, 1)$
- Comparación de medias con varianzas desconocidas e iguales:

$$U(\underline{X},\Delta)=rac{\overline{X}-\overline{Y}-\Delta}{S_p\sqrt{rac{1}{p}+rac{1}{m}}}\sim t_{n+m-2}$$
 , con $S_p^2=rac{(m-1)S_X^2+(n-1)S_Y^2}{n+m-2}$

Dada una muestra aleatoria $\underline{X} = (X_1, ..., X_n)$ de una población con distribución normal con media y varianza desconocidas, hallar el intervalo de confianza de nivel 0.99 para la media de la población.

Suponer n=50, $\mu=2, \sigma=3$, simular la muestra y calcular el IC resultante de la misma.

- .

-														
-														
-														
-														
-														
-														
-				-										
-														
-														
-														
				-										
-				-										
-														-
-														
							-1							

Regiones de confianza asintóticas

Def: Sea $\underline{X}_n = X_1, \ldots, X_n$ una m.a de una población con distribución perteneciente a la flía. $F_{\theta}(x)$, con $\theta \in \Theta$. Se dice que $S_n(\underline{X}_n)$ es una sucesión de regiones de confianza de nivel asintótico $1 - \alpha$ si:

$$\lim_{n o\infty}\mathbb{P}_{ heta}(heta\in S_n(oldsymbol{X}_n))=1-lpha$$

Teorema: Sea \underline{X}_n una m.a. de una población con distribución $F_{\theta}(x)$, con $\theta \in \Theta$. Supongamos que para cada n se tiene $U_n = g(\underline{X}_n, \theta)$ que converge en distribución a U, donde U es una v.a. cuya distribución no depende de θ . Entonces si a y b son tales que $\mathbb{P}(a < U < b) = 1 - \alpha$ se tiene que $S_n(\underline{X}_n) = \{\theta : a < U_n < b\}$ es una región de confianza de nivel asintótico $1 - \alpha$ para θ .

Se arroja 50 veces una moneda con probabilidad p de salir cara. Hallar un intervalo de confianza asintótico de nivel 0.95 para p basado en la observación x=50.

IC para la media de una población desconocida

En general, dada una m.a \underline{X}_n de una población desconocida, una buena forma de aproximarse a la media de dicha población es considerar el promedio de las muestras (\bar{X}_n).

Por TCL, sabemos que \bar{X}_n tiende en distribución a una v.a. normal. En particular,

$$rac{ar{X}_n - \mathbb{E}[X]}{\sqrt{var(X)/n}} \stackrel{(a)}{\sim} \mathcal{N}(0,1)$$

Se puede probar que si se desconoce también la varianza de la población (que es lo más común) vale que

$$rac{ar{X}_n - \mathbb{E}[X]}{S/\sqrt{n}} \stackrel{(a)}{\sim} \mathcal{N}(0,1)$$

De un experimento en los efectos de un medicamento para la ansiedad se midió el puntaje en un test de memoria antes y después de tomar el medicamento. A partir de los datos que se encuentran en el archivo Islander_data.csv hallar un IC para la media del tiempo de respuesta después de consumir el medicamento.

Bibliografía

- <u>"Notas de Estadística"</u>, Graciela Boente y Víctor Yohai, FCEyN, UBA.
- "All of Statistic: A concise Course in Statistical Inference", Larry Wasserman