Congruencia

$$aRb \Leftrightarrow a \equiv b(n) \Leftrightarrow n|a-b$$

La congruencia en modulo n es una relación de equivalencia, por lo tanto es **reflexiva**, **simétrica y transitiva**

Por ser una clase de equivalencia genera una partición en el cojunto.

Clases de equivalencia:

$$\bar{x}: \{y \in \mathbb{Z}/y = nk + x \text{ con } k \in \mathbb{Z}\}$$

Es decir, en la clase de x están todos los enteros cuyo resto al dividir por n es x.

Conjunto cociente:

$$Z_n = \{\bar{0}, \bar{1}, \bar{2}, \cdots, n-1\}$$

Está formado por las clases residuales, son todos los restos posibles al dividir por n.

Propiedad

$$\forall x, y \in \mathbb{Z} : x \in \bar{a}(n) \land y \in \bar{b}(n) \Rightarrow x + y \in a + b(n)$$

Es decir, al sumar dos elementos de clases de equivalencia no importa que elemento se tome de cada clase, el resultado de la operación siempre pertenece a la misma clase.

Lo mismo ocurre con el producto:

$$\forall x, y \in \mathbb{Z} : x \in \bar{a}(n) \land y \in \bar{b}(n) \Rightarrow x \cdot y \in \bar{a} \cdot b(n)$$

Función de Euler

$$\varphi(n) = |\{x \in \mathbb{N}/x \le n \land (x, n) = 1\}|$$

Esta función se aplica a los numeros enteros positivos, y nos da la cantidad de números menores o iguales al dado que son coprimos con dicho numero.

Propeidades de la funcion de Euler

1 de 4 22/11/2021 9:56 a. m.

1. Si p es un número primo, entonces:

$$\varphi(p) = p - 1$$
,

2. Si n es un numero natural cualquiera y p es un numero primo:

$$\varphi(p^n) = p^{n-1}(p-1)$$

3. Si $n, m \in \mathbb{N}$ y m. c. d(n, m) = 1 entonces:

$$\varphi(n \cdot m) = \varphi(n) \cdot \varphi(m)$$

Para cualquier *n*:

$$\varphi(n) = n \prod_{p_i \mid n} (1 - \frac{1}{p_i})$$

Siendo p_i los primos divisores de n.

Pequeño teorema de Fermat

Si p es primo y m. c. d(a, p) = 1 entonces: $a^{p-1} \equiv 1(p)$ o bien $a^p \equiv a(p)$

Este teorema se utiliza para investigar si un numero natural muy grande es o no primo. Si el numero dado fuera primo, con cualquier numero natural a menor que p debe cumplirse que $a^{p-1} \equiv 1(p)$. Se va calculando con distintos valores de a. Si para algún cvalor de a menor que n no se cumple la congruencia entonces n es compuesto.

Nosotros vamos a utilizarlo para hallar el resto de la división de un numero entero grando por un numero primo.

Ej:

Calculemos el resto de la division de 7^{122} por 11.

Como $122 = 10 \cdot 12 + 2$, se tiene que:

$$7^{122} = 7^{10 \cdot 12 + 2} = 7^{10 \cdot 12} \cdot 7^2 = 7^{(11-1) \cdot 12} \cdot 7^2 = [7^{(11-1)}]^{12} \cdot 7^2$$

Teniendo en cuenta que $a^{p-1} \equiv 1(p)$ resulta $[7^{(11-1)}] \equiv 1(11)$ entonces: $[7^{(11-1)}]^{12} \equiv 1(11)$

Entonces: $7^{122} \equiv 7^2(11) = 5$

Teorema de Euler Fermat

Si
$$m. c. d(a, n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1(n)$$

Ej:

Calculemos el resto de dividir $8^{1791485}$ por 21.

Como 21 no es primo, utilizaremos el teorema de Eueler-Fermat, para ello, primero calculamos $\varphi(21)=12$

Como:
$$8^{\varphi(21)} \equiv 1(21)$$
 entonces: $8^{12} \equiv 1(21)$

Para poder usar este resultado, decomponemos el numero 1791485

$$1791485 = 12 \cdot 149290 + 5 \Rightarrow 8^{1791485} = 8^{12 \cdot 149290 + 5} = (8^{12})^{149290} \cdot 8^{5}$$

Como
$$8^{12} \equiv 1(21)$$
 entonces $8^{1791485} \equiv 1 \cdot 8^{5}(21)$

Y ya tenemos un nuúmero bastante mas chico, aunque lo podemos escribir por ejemplo: $8^5 = 8^2 \cdot 8^2 \cdot 8$ y como $8^2 = 64 \equiv 1(21) \Rightarrow 8^5 \equiv 8(21)$

Y por lo tanto $8^{1791485} \equiv 8(21)$ con lo cual el resto de dividir $8^{1791485}$ por 21 es 8

Ecuaciones lineales de congruencia

Son de la forma $a \cdot x \equiv b(n)$ siendo a, x, b enteros y n natural.

Si $x \in \mathbb{Z}$ es una solución de $a \cdot x \equiv b(n)$ entonces x + kn también es una solución. Como son infintias soluciones consideramos, $0 \le x < n$ y las llamaremos soluciones principales.

Las eucuaciones lineal de congruencia pueden tener una, mas de una o niguna solución en \mathbb{Z}_n

Condición suficiente para que una ecuación de congruencia tenga solución

Sea $a \cdot x \equiv b(n)$ Si m. c. d(a, n) = 1 entonces hay solución. Y la solución será: $x = a^{\varphi(n)-1} \cdot b$

3 de 4 22/11/2021 9:56 a. m.

Condición necesaria y suficiente para que una ecuación de congruencia tenga solución

 $a\cdot x\equiv b(n)$ admite solución $\Leftrightarrow m.\ c.\ d(a,n)|b|$ la cantidad de soluciones es $m.\ c.\ d(a,n)$ y difieren en n

Propiedad

Si
$$a \cdot c \equiv b \cdot c(n)$$
 y $m. c. d(c, n) = 1$ entonces:
 $a \equiv b(n)$

4 de 4 22/11/2021 9:56 a. m.