Total No.	\mathbf{of}	Questions	:8]
-----------	---------------	-----------	-----

P1728	
11/20	

SEAT No.:		
[Total	No. of Pages	:3

[5058] - 361 T.E. (E & TC)

SYSTEM PROGRAMMING AND OPERATING SYSTEM (End Sem.) (2012 Course) (Semester - VI) (304185)

		(End Sem.) (2012 Course) (Semester - VI) (304185)	
Time	e: 2	½ Hours] [Max. Me	arks :70
Instr	ucti	ons to the candidates:	
	<i>1)</i>	Solve Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.	
	2)	Neat diagrams must be drawn wherever necessary.	
	<i>3</i>)	Figures to the right side indicate full marks.	
	4)	Assume suitable data, if necessary.	
Q1)	a)	Explain the steps in program development.	[7]
	b)	Explain different assembly language statements with examples.	[7]
	c)	Explain with example use of Terminals and non-Terminal in repressing language grammer.	senting [6]
		OR	
Q2)	a)	What is the need for code optimization? Explain various code optim techniques.	ization [7]
	b)	List different loading schemes and explain any one in details.	[7]
	c)	Explain lexical analysis and syntactical analysis with example.	[6]
Q 3)	a)	List different types of operating systems with examples. Explain i any 2 functions of operating system.	n brief [6]
	b)	Explain various states of a process with diagram.	[6]

c) Consider the following processes where Arrival and Burst time are as shown below [6]

Process	Burst Time	Arrival Time
P1	06	0
P2	04	1
Р3	07	3
P4	02	5

Calculate the Average Waiting Time and Average Turn-around Time if the processes are scheduled using FCFS.

OR

- Q4) a) Draw and Explain Many to One, One to One and Many to Many multithreading models.[6]
 - b) Draw and explain process control block.

[6]

c) Find out the safe sequence for execution of 4 processes using Bankers algorithm. Maximum Resources: R1 = 5, R2 = 5. [6]

Allocation Matrix		Maximum Requirement Matrix			
	R1	R2		R1	R2
P1	1	0	P1	1	1
P2	1	1	P2	2	3
P3	1	2	P3	2	2
P4	1	1	P4	3	2

- **Q5)** a) List the page replacement algorithms. Explain LRU with example. [6]
 - b) Explain the techniques of managing memory using First fit, best fit and worst fit with suitable example. [6]
 - c) Define segmentation and its advantages. [4]

OR

Q 6)	a)	Explain the design issues for paging.	[6]
	b)	Consider the following Page reference string: 1, 2, 3, 4, 2, 3, 4, 5, 6, 7 2, 4. The number of page frames = 4, calculate the page faults and the ratio for First In First Out Page replacement algorithm.	
	c)	Explain demand paging with advantages.	[4]
Q 7)	a)	Explain Input/Output software layers.	[6]
	b)	Explain Linux Ext 2 I-node with diagram.	[6]
	c)	List the different file operations. Explain access rights in file sharing.	[4]
		OR	
Q8)	a)	Write short note on RAID disk and optical disk (CD and DVD).	[6]
	b)	Explain memory mapped I/O and direct memory access.	[6]
	c)	Explain different directory structures and directory operations.	[4]

(35)(35)