Project Report – Logistics Management System

Student Name: K.P.C.Manodya

Project repository URL link: https://github.com/chathuniM/My-Project-Report.git

1. Project Objective

The purpose of this project is to design and implement a menu-driven logistics management system in C. It uses arrays, structures, functions, loops, and conditionals to simulate real logistics operations like managing cities, delivery routes, vehicles, and calculating delivery costs.

System Functionalities

City Management • Add, rename, or remove up to 30 cities.

- City names are stored in a string array.
- Functions used: addCity(), renameCity(), removeCity(), findCityIndex()

Adding the addCity function:

Adding renameCity function:

```
2. Rename a city
3. Remove a city
4. Back
Enter choice: 1
Enter city name: galle
City Added.

City Management
1. Add a new city
3. Remove a city
4. Back
Enter choice: 1
Enter city name: galle
City Added.

City Management
1. Add a new city
3. Remove a city
4. Back
Enter city name: clombo
City Added.

City Management
1. Add a new city
3. Remove a city
4. Back
Enter city name: galle
City Added.

City Management
1. Add a few city
3. Remove a city
4. Back
Enter city name: galle
City name: clombo
City added.

City Management
1. Add a few city
3. Remove a city
4. Back
Enter city name: galle
City name city
5. Remove a city
6. Back
City Management
1. Add a few city
7. Remane a city
8. Remove a city
8. Remove a city
9. Remane a city
1. Remane a city
9. Remane a city
1. Rema
```

Adding removeCity function:

2. Distance Management

- Distances stored in a 2D array: int distance[MAX_CITIES][MAX_CITIES];
- Distance from a city to itself = 0
- Distance is symmetrical (distance[i][j] = distance[j][i])
- Functions used: editDistance(), displayDistanceTable(), initializeDistance()

3. Vehicle Management

Three vehicles are defined using structures:

```
struct Vehicle {
  char name[10];
  int capacity;
  int rate_per_km;
  int avg_speed; int fuel_eff;
  };
```

4. Delivery Request Handling

The user inputs:

- Source city
- Destination city
- Weight (kg)
- Vehicle type (Van/Truck/Lorry)

The system validates:

- Source ≠ Destination
- Weight ≤ Vehicle capacity

Then calculates: Delivery Cost = $D \times R \times (1 + W/10000)$

Time = D / S
Fuel Used = D / E
Fuel Cost = Fuel Used × 310
Total Cost = Delivery Cost + Fuel Cost
Profit = Delivery Cost × 0.25
Final Charge = Total Cost + Profit

5.Reports

- Shows number of deliveries, total distance, and total profit.
- Displays average delivery time and highest cost delivery.

DELIVERY COST ESTIMATION

From: Colombo

To: Jaffna

Minimum Distance: 400 km

Vehicle: Truck Weight: 2000 kg

Base Cost: 400 × 40 × (1 + 2000/10000) = 19200.00 LKR

Fuel Used: 66.67 L Fuel Cost: 20666.67 LKR

Operational Cost: 39866.67 LKR

Profit: 4800.00 LKR

Customer Charge: 44666.67 LKR Estimated Time: 8.00 hours

6.Conclusion

This project demonstrates how arrays, structures, functions, and algorithms can be used to simulate a real logistics management system in C.

It performs city management, vehicle handling, cost estimation, and profit calculations efficiently.

