THE THE PROPERTY IN THE PROPER

Exercice 1.5.3

Montrer que pour tout $x \in \mathbb{R}_+^*$, $x + \frac{1}{x} \ge 2$.

Exercice 1.5.4

Montrer que, pour tous $a, b \in \mathbb{R}$ et tout $n \in \mathbb{N} \setminus \{0; 1\} : a^n - b^n = (a - b) \left(\sum_{k=0}^{n-1} a^{n-1-k} b^k \right)$

Exercice 1.5.5

En utilisant la Propriété 1.1.1 et la complétude de $\mathbb R$ pour l'ordre \leq , montrer que toute partie non vide et minorée de $\mathbb R$ possède un infimum dans $\mathbb R$

Exercice 1.5.6

Pour tous $a, b \in \mathbb{R}$, montrer que,

- 1. $\sup a; b[=b \text{ ct inf }]a; b[=a.$
- 2. $\sup[a;b[=b \text{ et inf } [a;b[=a=\min[a;b[.$

Exercice 1.5.7

Soient $n \in \mathbb{N} \setminus \{0; 1\}$ et $(x_i)_{1 \le i \le n}$, $(y_i)_{1 \le i \le n}$ des éléments de \mathbb{R}^n . Montrer que

1.
$$x_i \le y_i, i = 1, ..., n \text{ implique } \sum_{i=1}^n x_i \le \sum_{i=1}^n y_i.$$

2.
$$x_i \leq y_i$$
, $i = 1, \ldots, n$ et $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$ implique $x_i = y_i$ pour tout $i = 1, \ldots, n$.

2.
$$x_i \le y_i, i = 1, ..., n$$
 et $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$ implique x_i

Exercice 1.5.8

Soient $n \in \mathbb{N}$ et $(x_i)_{1 \le i \le n}$, $(y_i)_{1 \le i \le n}$ des éléments de \mathbb{R}^n . Montrer que

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \leq \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right)$$

Exercice 1.5.9

Soit $E=\left\{\frac{p}{q}|p+q=s,p,q\in\mathbb{N}\right\}$. Vérifier que E est borné et déterminer sup E et inf E.

Exercice 1.5.10

Soit $E = \left\{ \frac{1}{n} | n \in \mathbb{N} \right\}$. Vérifier que E est borné et déterminer sup E et inf E.

Exercice 1.5.11

Soit $E = \{x | x > 0\}$. Vérifier que E est borné inférieurement mais pas supérieurement et déterminer inf E.