Lab 8

Alexander Hernandez

09/20/2022

1) Generate 500 random numbers from a standard normal distribution and display them using a histogram.

```
q1 = rnorm(500)
hist(q1,
    main='500 Random Numbers of Normal Distribution',
    xlab='Random Numbers',
    col=c(1,2,3,4))
```

500 Random Numbers of Normal Distribution

2) The National Highway System designation Act

Speed limit and Traffic Fatalities

3) All registered elevators in New York City are provided in the link below

https://www.kaggle.com/new-york-city/nyc-elevators/discussion/39528

a) Import the data in R.

```
nyc = read.csv('C:/repos/STAT 50001/Lab 8/NYC.csv', header=TRUE)
```

b) How many elevators are active?

```
nrow(nyc[nyc$Device.Status == "A",])
```

```
## [1] 66885
```

c) How many elavators are active in Manhattan borough?

```
s = subset(nyc, Borough=="Manhattan")
nrow(s[s$Device.Status == "A",])
```

[1] 39379

4) Plot pdf of a standard normal distribution by generating data in (-4.4)

```
curve(dnorm, -4, 4, xlab= "Probability", ylab="Value")
axis(1, at=-4:4, labels=c(-4,-3,-2,-1,0,1,2,3,4))
```


5) Generate 100 random numbers from a normal dist with mean=5 and var=64

```
rnorm(100, mean=5, sd=sqrt(64))
    [1]
          1.8462583 -8.5940100 16.7430797
                                             22.5669981
                                                         7.8226274
                                                                    -6.2916258
##
##
    [7]
         -5.5673355 -0.1595954 -1.2076404
                                              7.1480715
                                                         5.3380908
                                                                     0.1797402
          7.2951492 -1.8589688
##
  [13]
                                6.3984054
                                             4.8444478 -7.4756381
                                                                     4.4798499
```

```
##
    [19]
           3.1579872 -12.3885144
                                    -1.3674717
                                                 -5.9377475
                                                               0.4382590
                                                                            2.6808131
##
    [25]
                        9.4266040
                                    10.9654043
                                                  3.5811906
          -5.4835301
                                                              18.1743577
                                                                           -7.1477724
##
    [31]
           7.3971669
                       -4.0982745
                                     5.7572412
                                                 10.1339615
                                                              -2.4343606
                                                                           -1.0184899
    [37]
##
           8.7087954
                        4.0442221
                                     6.2730038
                                                 -4.0817552
                                                              15.2888993
                                                                           -3.3093307
##
    [43]
          17.4501787
                       -2.3387456
                                    -1.6429966
                                                  3.5929798
                                                              14.3774067
                                                                           24.0560144
    [49]
          23.1374893
                                    -1.3733029
                                                 -1.2574509
                                                              -2.5505947
##
                       13.1126718
                                                                           -4.3393157
         -14.2589159
                                                  2.4929030
##
    [55]
                        2.3862451
                                    14.2887495
                                                              10.4379211
                                                                           -6.5248547
##
    [61]
          21.9372168
                        8.9188540
                                     4.2164748
                                                 17.9859778
                                                               8.3079639
                                                                            1.0396185
##
    [67]
           3.3616420
                       -2.1327580
                                     1.0174223
                                                  7.4229545
                                                              -3.0946968
                                                                            6.3566964
##
    [73]
           4.9755764
                        3.4963434
                                    -1.1701848
                                                  9.6676718
                                                               7.0198572
                                                                           -9.3883710
    [79]
          -0.1034717
                       15.3251436
                                     8.0431584
                                                  4.3713371
                                                               1.7575473
                                                                           11.6919869
##
    [85]
           5.8620304
                       13.7758280
                                    16.9758719
                                                  9.9431210
                                                              13.4569431
                                                                           -3.1550692
##
    [91]
          29.4173605
                       17.0438041
                                     3.5385145
                                                  9.6894557
                                                              -1.8268672
                                                                           10.8248101
##
    [97]
           4.1635843
                        7.1238156
                                     3.8904762
                                                  4.7895814
```

6) Generate 100 random sample from each of the following distributino and draw their normal qq plots

a) Normal

```
qqnorm(rnorm(100), main="Normal Distribution QQ Plot")
```

Normal Distribution QQ Plot

b) Student's t (df=20)

qqnorm(rt(100, 20), main="T Distribution QQ Plot")

T Distribution QQ Plot

c) Exponential (rate=1)

qqnorm(rexp(100), main="Exponential Distribution QQ Plot")

Exponential Distribution QQ Plot

d) Uniform

qqnorm(runif(100), main="Uniform Distribution QQ Plot")

