

Handling Non-Linear Data

- Option 1: Add features by hand that make the data separable
 - Requires feature engineering
- Option 2: Learn a small number of additional features that will suffice
 - Today
- Option 3: Kernel trick

2

Motivation

- Where do features come from?
 - We build them by hand
- What if we wanted to *learn* features?
 - Goal: learn features that give linearly separable data
- After learning features apply usual linear classifier

Perceptron: Graphical Representation Output Features Automorphisms Automorphi

Why?

- Constraints from X
 - When D = M, likely to copy the features from X to Z
 - When D < M, cannot make an exact copy of X
 - Must come up with a representation that is more efficient
- Constraints from Y
 - Z should be a representation that helps learn Y
 - Forces the low-dimensional representation to capture properties of X useful in predicting Y

9

Why Non-Linear

- Generalized linear classifiers!
 - Start with linear function
 - W·X
 - Pass the output through a non-linear function
 - $\hat{y} = h(w \cdot x)$
 - What is h?
 - Non-linear function
 - Logistic function
 - Sign function
- Each Z is the output of a non-linear function
 - Combinations of Z are now non-linear in X

10

Multi-Layer Perceptrons

Fitting a function to data

- Fitting: what type of optimization algorithm?
- Function: non-linear: linear combination of generalized linear functions
- Data: Data/model assumptions? How we use data?

How Will We Learn?

- Perceptron: a training method for generalized linear classifiers
 - Training method for linear classifiers
 - Minimize the error of the training data
 - Chain multiple Perceptrons together
 - Update rule:

$$W^{j+1} = W^j + \nabla f(x, y)$$

• The real work will be in computing the gradient

Network Terminology

- Input nodes: x
- Output node: y
- Hidden nodes: z
 - This network has 1 hidden layer
 - 2 layer network (two layers to learn)
- h for hidden nodes are called activation functions
- h for output depends on task
 - Identity for regression
 - Logistic for classification

14

Deep Networks

- Learn multiple levels of features at higher and higher abstractions
- Same learning techniques
 - Just more complex gradients

Outline

- Lecture 1: Neural Networks
 - Nonlinearities
 - Objective Functions
 - Training
 - Gradient Computations
- Lecture 2: Deep Learning
 - Supervised and unsupervised training
 - Pre-training
 - Auto-encoders

18

An Non-linear Example

- Consider the xor function
 - $y(x) = 1 \text{ iff } x_1 \text{ xor } x_2$
- Clearly non-linear
 - No values for w will produce desired output
- We could solve this by adding a new feature
 - $x_3 = x_1 \text{ xor } x_2$

The Neural Network Solution

• Learn new features that are linearly separable

(always 1) (0 or 1) (0 or 1)

- We now have a linear classifier for XOR
- How do we learn these features?

The Neural Network Solution

- The new features are learned by linear classifiers
 - All other hidden nodes (not shown) just replicate input
- The activation function makes the feature 1 or 0

Non-linear Activation Functions

- What non-linear function should we use for activation function h?
 - Typically use sigmoid functions
 - Logistic function

$$g_{\alpha}(x) = \frac{1}{1 + e^{-\alpha x}}$$

- Each hidden node has a threshold for activation
 - Will be 0 and then quickly transition to 1
- This is what we use when we stack Perceptror
- This is why we think of hidden nodes as features
- They are off and then when enough input they turn on
- Learning input weights turns on the feature!

22

Hypothesis Class

- What can a neural network learn?
 - Obviously highly non-linear outputs
- Universal approximators
 - With enough hidden layers and hidden nodes a neural network can model any continuous function on compact input domain (some number of inputs)
 - The power of the networks depends on its structure
 - General result independent of activation functions

Decision Boundary

- 0 hidden layers: linear classifier
 - Hyperplanes

Example from to Eric Postma via Jason Eisner

Classification Objective

- Define an error function and minimize
- Cross entropy error function

$$E(w) = -\sum_{i=1}^{N} \{ y_i \ln \hat{y}_i + (1 - y_i) \ln(1 - \hat{y}_i) \}$$

- This arises naturally when we consider a logistic probability model and take the negative log likelihood
 - Details in the book

Regression Objective

• For regression we use the sum of squares error

$$E(w) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

- If we assume a Gaussian model for y, the error function arises from maximizing the likelihood function
 - We saw the same thing for linear regression

Combined Model

(See lecture notes for derivation)

30

Combined Model

 Writing the generalized linear classifier with generalized non-linear basis functions

$$y(x, w) = h^{(2)} \left(\sum_{j=1}^{D} w_j^{(2)} h^{(1)} \left(\sum_{i=1}^{M} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_0^{(2)} \right)$$

- h⁽¹⁾ is the non-linear function for the basis function
- h⁽²⁾ is the non-linear function for the output
- w⁽¹⁾ are the parameters for the basis function
- w⁽²⁾ are the parameters for the linear model
- w₀ are the bias parameters (shown here for clarity)

Training

- Prediction is relatively easy
- Learning is where the magic happens
- Strategy: compute the gradient of the objective function
 - Similar to perceptron
 - Gradient based update

3:

Training

- Prediction is relatively easy
- Learning is where the magic happens
- Strategy: compute the gradient of the objective function
 - Similar to perceptron
 - Gradient based update
- For the moment: assume black box computes gradient

34

Gradient Based Optimization

- The objective function is now non-convex
- Gradient based optimization NOT guaranteed to find global optimum
- For now: use gradient stochastic gradient and hope for the best
- Next time: tricks for non-convexity key to learning good networks

Computing the Gradient

 For arbitrary Neural Network architectures we can use Backpropagation!

(See lecture notes for derivation)

Algorithm: Neural Network

- Train: Given examples X and Y
 - Y can be multiple outputs
 - Define a network structure
 - ex. 2 layer feed forward, D nodes in hidden layer
 - Learn parameters w
- Predict: given example x
 - For 2 layer feed forward, compute output as

$$\hat{y} = h^{(2)} \left(\sum_{j=1}^{D} w_j^{(2)} h^{(1)} \left(\sum_{i=1}^{M} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_0^{(2)} \right)$$

37

Next Time Deep(er) Networks

Multi-Layer Perceptrons Fitting a function to data

- Fitting: gradient based optimization with back-propogation
- Function: non-linear: linear combination of generalized linear functions
 - Universal approximations
 - can model any continuous function on compact input domain (some number of inputs)
- Data: Batch training using stochastic methods