COMP 182: Algorithmic Thinking 18 February 2014

- 1. Given a *sorted* array of *distinct* integers $A[0 \dots n-1]$, we'd like to find whether there is an index $i, 0 \le i \le n-1$, for which A[i] = i. Give the pseudo-code of a divide-and-conquer algorithm that runs in $O(\log n)$ time.
- 2. Let $A = \{a_1, \dots, a_n\}$ and $B = \{b_1, \dots, b_n\}$ be two sets of integers, whose intersection $(A \cap B)$ we're interested in.
 - (a) Give the pseudo-code of a brute-force algorithm for this problem, and determine its running time (using big-O notation).
 - (b) Give the pseudo-code of an $O(n \log n)$ algorithm for this problem.

The Master Theorem Consider the recurrence

$$T(n) = aT(n/b) + f(n).$$

If $f(n) = \Theta(n^d)$ where $d \ge 0$, then

$$T(n) = \begin{cases} \Theta(n^d) & \text{if} \quad a < b^d \\ \Theta(n^d \log n) & \text{if} \quad a = b^d \\ \Theta(n^{\log_b a}) & \text{if} \quad a > b^d \end{cases}.$$

Analogous results hold for the O and Ω notations as well.