AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the present application.

amendment after final is entered.

Listing of Claims:

/William Cheung/

- 1. (Currently Amended) A method of producing a polymer in a continuously operated gas phase reactor, comprising:
 - polymerizing at least one monomer in a bed containing active catalyst formed by catalyst and polymer particles suspended in a fluid, said bed defining a fluidized bed level in said reactor,
 - continuously withdrawing polymer powder from the reactor;
 - adjusting the discharge rate of the polymer powder so as to maintain a constant bed level during polymerization; and
 - withdrawing particle agglomerates from the reactor:

wherein the discharge rate of the polymer powder is adjusted by using a continuously operated control valve.

2. (Canceled)

İ

3. (Currently Amended) The method according to claim $\frac{2}{7}$, wherein the continuously operated valve is a ball valve, a V-ball valve or a hose valve.

4. (Currently Amended) The method according to claim $\frac{2}{2}$ or 3, wherein the polymer powder is withdrawn via an outlet nozzle connected to the control valve, and said nozzle is provided with a grid flush mounted at the reactor wall to prevent lumps from entering the pipe.

- 5. (Currently Amended) The method according to any of claims 2 to 3, claim 1 or 3, wherein the operation of the control valve is adjusted by using a control signal obtained from a bed level controller.
- 6. (Currently Amended) The method according to claim $\frac{2}{r}$ $\frac{1}{r}$ wherein the control valve is adjusted to provide for pulsating operation to prevent clogging of the valve.
- 7. (**Previously Presented**) The method according to claim 1, wherein polymer powder is continuously withdrawn from a point above a fluidization plate.

8. (**Previously Presented**) The method according to claim 1, wherein polymer powder is continuously withdrawn from a point below the bed level.

- 9. (Previously Presented) The method according to claim 1, wherein the discharge line and the control valve are discontinuously backflushed with a flushing gas flow.
- 10. (**Previously Presented**) The method according to claim 1, comprising
 - using a gas phase reactor having a mechanically mixed zone
 of the fluidized bed, and
 - continuously withdrawing polymer powder from said mixed zone.
- 11. (Previously Presented) The method according to claim 1, wherein polymer powder is also separately withdrawn from the reactor using a discontinuous discharge device.
- 12. (**Previously Presented**) The method according to claim 1, wherein the polymer powder is withdrawn together with gas from the reactor, the gas is separated from the polymer powder, and the separated gas is recycled into the reactor.

13. (Previously Presented) The method according to claim 1, wherein polymer agglomerates are withdrawn from the reactor using a discharge line with a discontinuously operated discharge valve.

14. (**Previously Presented**) A method of discharging polymer from a continuously operated gas phase reactor, wherein at least one monomer is polymerized in a bed containing active catalyst formed by catalyst and polymer particles suspended in a fluid, said bed defining a fluidized bed level in said reactor, comprising:

- continuously withdrawing polymer powder from the reactor;
- feeding the withdrawn polymer powder into a collecting vessel, wherein lumps are separated from finely-divided polymer powder and at least a part of the gas is separated from the solid material;
- recovering the lumps; and
- adjusting the discharge rate of the polymer powder so as to maintain a constant bed level during polymerization.
- 15. (Original) The method according to claim 14, wherein the separated gas is recycled into the reactor, said collecting vessel being provided with a return valve for adjusting the gas flow recycled to the reactor.

16. (Original) The method according to claim 15, wherein the return valve is controlled by the fluidized bed level of the reactor.

17. (**Original**) The method according to claim 16, wherein the polymer level in the vessel is controlled by using a continuously operating control valve.

18. (Original) The method according to any of claims 14 to 17, wherein the collecting vessel is provided with a screen for separating lumps.

- 19. (Previously Presented) The method according to claim 1, wherein the catalyst is fed into the gas phase reactor as a stream comprising polymer and active catalyst together with reaction medium.
- 20. (Original) The method according to claim 19, wherein the catalyst is fed into the gas phase reactor from a slurry reactor.
- 21. (**Original**) The method according to claim 20, wherein the slurry reactor is a loop reactor.

olefins and mixtures thereof.

22. (**Previously Presented**) The method according to claim 1, wherein the monomers are selected from the group of C_2 to C_{16}

23. (**Previously Presented**) The method according to claim 1, wherein the monomer is selected from the group of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, dienes, and cyclic olefins, and mixtures thereof.

24. (**Previously Presented**) The method according to claim 1, wherein the polymer that is continuously withdrawn is either directly or indirectly fed into another gas phase reactor.

25. (**Previously Presented**) The method according to claim 14, wherein the collecting vessel is connected to a gas separator, said polymer powder being pneumatically conducted from the collecting vessel to the gas separator.

26-28. (Canceled)