HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG KHOA CO BÅN 1 BÔ MÔN TOÁN

ĐỀ MINH HOA THI HẾT HỌC PHẦN Môn: Giải tích 1

Số lượng câu hỏi: 40 câu Thời gian làm bài: 80 phút

..... Số báo danh: Ho và tên sinh viên:....

Mã đề thi 102

Lưu ý: Sinh viên không được sử dụng tài liệu.

Câu 1. Cho hàm số $f(x) = \frac{1}{(3 + \cos 5x^2)^4}$. Khẳng định nào dưới đây là **đúng**?

A. $f'(x) = -\frac{40x \sin 5x^2}{(3 + \cos 5x^2)^5}$. C. $f'(x) = -\frac{\sin 5x^2}{(3 + \cos 5x^2)^5}$. D. $f'(x) = \frac{\sin 5x^2}{(3 + \cos 5x^2)^5}$.

A.
$$f'(x) = -\frac{40x\sin 5x^2}{(3+\cos 5x^2)^5}$$
. $f'(x) = \frac{40x\sin 5x^2}{(3+\cos 5x^2)^5}$.

C.
$$f'(x) = -\frac{\sin 5x^2}{(3 + \cos 5x^2)^5}$$
. D. $f'(x) = \frac{\sin (5x^2)}{(3 + \cos (5x^2))^5}$

Câu 2. Khai triển hàm số $f(x) = (x-2)^3 e^{5x}$ thành chuỗi Taylor trong lân cận của điểm x=2. Khẳng định nào dưới

A.
$$f(x) = e^{10} \sum_{n=0}^{\infty} \frac{5^n}{n!} (x-2)^{n+3}, \forall x \in \mathbb{R}.$$

B.
$$f(x) = e^{10} \sum_{n=1}^{\infty} \frac{5^n}{n!} (x-2)^{n+3}, \forall x \in \mathbb{R}.$$

C.
$$f(x) = e^5 \sum_{n=0}^{\infty} \frac{5^n}{n!} (x-2)^{n+3}, \forall x \in \mathbb{R}$$
.

D.
$$f(x) = e^5 \sum_{n=1}^{\infty} \frac{5^n}{n!} (x-2)^{n+3}, \forall x \in \mathbb{R}.$$

Câu 3. Xét $S_n = \frac{1}{n} \left(1 + \cos \frac{a}{n} + \cos \frac{2a}{n} + \dots + \cos \frac{(n-1)a}{n} \right), \ a \neq 0$. Khẳng định nào dưới đây là **đúng**?

A.
$$\lim_{n\to\infty} S_n = \frac{\cos a}{a}$$
. **B.** $\lim_{n\to\infty} S_n = \frac{\sin a}{a}$.

$$\mathbf{B.} \lim_{n \to \infty} S_n = \frac{\sin a}{a}.$$

C.
$$\lim_{n\to\infty} S_n = \frac{1+\cos a}{a}$$
.

C.
$$\lim_{n\to\infty} S_n = \frac{1+\cos a}{a}$$
. D. $\lim_{n\to\infty} S_n = \frac{1+\sin a}{a}$.

Câu 4. Cho hàm số $y = x \cos 3x$. Giá trị của $y^{(2023)}(0)$ là **A.** $-3^{2021}.2022$. **B.** $3^{2022}.2021$.

$$\mathbf{A.} - 3^{2021}.2022$$

$$\bigcirc$$
 2023.3²⁰²².

X Câu 5. Khẳng định nào sau đây không đúng?

A. Nếu f, g liên tục tại x_0 thì f - g liên tục tại x_0 .

C. Hai hàm f, g liên tục tại $x_0 \Leftrightarrow f + g$ liên tục tại x_0 .

B. Nếp f liên tục tại x_0 thì |f| liên tục tại x_0 .

D. Nếu f liên tục tại x_0 thì f liên tục phải tại x_0 .

VCâu 6. Cho $I = \int_{1}^{1} e^{-3x} dx$. Khẳng định nào dưới đây là **đúng**?

A.
$$I < 0$$
.

C.
$$I = 3 - \frac{3}{e^3}$$
.

D.
$$I = 3 + 3e^3$$
.

√Câu 7. Tìm $F(x) = \int \frac{dx}{\sqrt{(4x+1)(1-x)}}$. Khẳng định nào dưới đây là **đúng**?

A.
$$F(x) = \frac{1}{2}\arcsin\frac{8x-3}{5} + C$$
.
C. $F(x) = \arccos\frac{8x-3}{5} + C$.

B.
$$F(x) = \arcsin \frac{8x - 3}{5} + C$$
.

D.
$$F(x) = \frac{1}{2} \arccos \frac{8x - 3}{5} + C.$$

Câu 8. Cho hàm số f(x) = x; 0 < x < 3. Khai triển hàm số thành chuỗi Fourier theo các hàm số **sin**. Khẳng định nào dưới đây là đúng?

A.
$$f(x) = \frac{6}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin \frac{n\pi x}{3}; 0 < x < 3.$$

B.
$$f(x) = f(x) = \frac{3}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi x}{6}; 0 < x < 3.$$

C.
$$f(x) = \frac{9}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi x}{3}; 0 < x < 3.$$

D.
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi x}{6}$$
; $0 < x < 3$.

Câu 9. Gọi X là miền hội tụ của chuỗi hàm $\sum_{n=1}^{\infty} \left(\frac{n+1}{3n+2}\right)^n x^n$. Khẳng định nào dưới đây là **đúng**? **A.** X = (-3,3]. **B.** X = (-1,1). **C.** X = (-3,3). **D.** X = [-3,3].

$$A.X = (-3, 3]$$

B.
$$X = (-1, 1)$$
.

$$\mathbf{C}.\ X = (-3,3)$$

D.
$$X = [-3, 3)$$

V Câu 10. Cho $I = \lim_{n \to \infty} \frac{3n+2}{\sqrt{n^2+8\arctan n^4}}$. Khẳng định nào dưới đây là **đúng**?

A.
$$I = 0$$
.

B. Giới hạn trên không tồn tại.
$$\mathbf{D.}\ I = \frac{3}{2\sqrt{\pi}}\ .$$

$$\mathbf{D.}\ I = \frac{3}{2\sqrt{\pi}}$$

Câu 11. Cho hàm số $y = \arctan ax, a > 0$. Khẳng định nào dưới đây là **đúng?** $y' = \frac{a}{1 + a^2 x^2}, \forall x \in \mathbb{R}.$ **B.** Miền giá trị củ

$$y' = \frac{a}{1 + a^2 x^2}, \, \forall x \in \mathbb{R}.$$

$${f B}$$
. Miền giá trị của hàm số là ${\Bbb R}$.

C. Miền xác định của hàm số là
$$D = (-\frac{\pi}{2}; \frac{\pi}{2})$$
.

D. $u_n = \frac{1}{2} + \frac{1}{0} + \ldots + \frac{1}{2n}$.

(I):
$$1+4+7+\ldots+(3n-2)=\frac{n(3n-1)}{2}$$
;

(II):
$$1 + \frac{1}{5} + \frac{1}{25} + \frac{1}{75} + \dots + \frac{1}{5^n} = \frac{5^{n+1} - 1}{4 \cdot 5^{n+1}}$$

Khẳng định nào dưới đây là dong?

$$\mathbf{A.}$$
 (I) đúng, (II) đúng.

V Câu 25. Để tính tích phân
$$\int \frac{x \sin x}{\cos^4 x} dx$$
, ta thực hiện các bước sau:
Bước 1: Sử dụng phương pháp tích phân từng phần $\int u dv = uv - \int v du$.

Bước 2:
$$\begin{cases} u = x \\ dv = \frac{\sin x}{\cos^4 x} dx \end{cases} \Rightarrow \begin{cases} du = dx \\ v = -\frac{1}{3\cos^3 x} \end{cases}.$$
Bước 3:
$$\int \frac{x \sin x}{\cos^4 x} dx = -\frac{x}{3\cos^3 x} - \int \frac{1}{3\cos^3 x} dx.$$
Bước 4: Suy ra
$$\int \frac{x \cos x}{\sin^3 x} dx = -\frac{x}{2\sin^2 x} + \frac{1}{2}\cot x + C.$$
Khẳng định nào dưới đây là đứng?

Buốc 3:
$$\int \frac{x \sin x}{\cos^4 x} dx = -\frac{x}{3 \cos^3 x} - \int \frac{1}{3 \cos^3 x} dx$$
.

Bước 4: Suy ra
$$\int \frac{x \cos x}{\sin^3 x} dx = -\frac{x}{2\sin^2 x} + \frac{1}{2}\cot x + C$$

Câu 26. Cho
$$0 < a < b < \frac{\pi}{2}$$
. Áp dụng định lý Lagrange, hãy chọc khẳng định **đúng**.
A. $\sin b - \sin a > (b - a) \cos a$.

A.
$$\sin b - \sin a > (b - a) \cos a$$
.
C. $\sin b - \sin a > \frac{b - a}{2} \cos a$.

$$\mathbf{B} \sin b - \sin a < (b - a) \cos a$$

D.
$$\sin b - \sin a < (b - a) \cos b$$
.

XCâu 27. Cho
$$\int_0^1 \frac{dx}{\sqrt[3]{x(e^{x^3}-e^{-x^3})}}$$
. Khẳng định nào dưới đây là **đúng**?

A. Tích phân trên là tích phân suy rộng có cực điểm x = 0, x = 1; phân kỳ.

1. Tích phân trên là tích phân suy rộng có cực điểm x=1, hội tụ.

.C. Tích phân trên là tích phân suy rộng có cực điểm x = 0, phân kì.

D. Tích phân trên là tích phân suy rộng có cực điểm x = 0, x = 1; hội tụ.

Câu 28. Viết khai triển Taylor của hàm số $f(x) = \ln(5+x)$ trong lân cận của điểm $x_0 = 1$ đến $0((x-1)^3)$. Khẳng định nao dươi đây là **đúng**?

$$f(x) = \ln 5 + \sum_{n=0}^{8} \frac{(-1)^n (x-1)^{n+1}}{(n+1) \cdot 5^{n+1}} + 0 \left((x-1)^3 \right)$$

B.
$$f(x) = \ln 6 + \sum_{n=1}^{3} \frac{(-1)^n (x-1)^n}{(n+1).6^n} + 0((x-1)^3).$$

$$f(x) = \ln 5 + \sum_{n=1}^{3} \frac{(-1)^n (x-1)^n}{(n+1) \cdot 5^{n+1}} + 0 \left((x-1)^3 \right)$$

B.
$$f(x) = \ln 5 + \sum_{n=0}^{3} \frac{(-1)^n (x-1)^{n+1}}{(n+1).5^{n+1}} + 0\left((x-1)^3\right).$$
B. $f(x) = \ln 6 + \sum_{n=1}^{3} \frac{(-1)^n (x-1)^n}{(n+1).6^n} + 0\left((x-1)^3\right).$
C. $f(x) = \ln 5 + \sum_{n=1}^{3} \frac{(-1)^n (x-1)^n}{(n+1).5^{n+1}} + 0\left((x-1)^3\right).$
D. $f(x) = \ln 6 + \sum_{n=0}^{3} \frac{(-1)^n (x-1)^n}{(n+1).6^{n+1}} + 0\left((x-1)^3\right).$

Câu 29. Xét dãy số $\{u_n\}$, $u_n = \frac{n-2}{3} - 5$. Khẳng định nào dưới đây là **đúng?**

A. $\{u_n\}$ bị chặn, tăng, hội tụ. **C.** $\{u_n\}$ bị chặn, giảm, hội tụ.

 $\{u_n\}$ không bị chặn, tăng, phân kỳ. $\{u_n\}$ không bị chặn, không đơn điệu, phân kỳ.

Câu 30. Cho $x(t) = t^3 + 2t$, $y(t) = t^5 + 4t + 1$. Đạo hàm y'(x) tại t = 2 là A. 5. B. $\frac{1}{6}$.

B.
$$\frac{1}{6}$$

D. $\frac{5}{2}$.

Câu 31. Cho $I = \int_0^1 \frac{dx}{\sqrt[5]{ax^2}}$ $a \in \mathbb{N}^*$. Khẳng định nào dưới đây là **đúng**?

A. Tích phân trên là tích phân suy rộng, hội tụ và $I = \frac{5}{3}a^{\frac{4}{5}}$.

B. Tích phân trên là tích phân suy rộng, hội tụ và $I = \frac{5}{3\sqrt[5]{a}}$

C. Tích phân trên là tích phân suy rộng, phân kì vì $\alpha = \frac{2}{5} < 1$.

D. Tích phân trên là tích phân xác định.

Câu 32. Cho chuỗi số $\sum_{n=2}^{\infty} u_n$ với $u_n = \left(\arctan n^5\right) \left(\ln(n^4+1) - \ln(n^4)\right)$. Khẳng định nào dưới đây **không đúng**?

$$\mathbf{A.} \lim_{n \to \infty} u_n = 0.$$

B.
$$\sum_{n=1}^{\infty} u_n$$
 là chuỗi số dương. **C.** $u_n \sim \frac{\pi}{2n^4}$ khi $n \to \infty$. Chuỗi $\sum_{n=1}^{\infty} u_n$ phân kỳ.

Chuỗi
$$\sum_{n=1}^{\infty} u_n$$
 phân kỳ

Câu 33. Xét $S_n = \sqrt[n]{e} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n} \right)$. Khẳng định nào dưới đây là **đúng**?

A. $\lim_{n \to \infty} S_n = 0$.

B. $\lim_{n \to \infty} S_n = \frac{\pi}{2}$.

C. $\lim_{n \to \infty} S_n = \ln 2$.

D. $\lim_{n \to \infty} S_n = \frac{\pi}{4}$.

$$\mathbf{A.} \lim S_n = 0.$$

$$\mathbf{B.} \lim_{n \to \infty} S_n = \frac{\pi}{2}.$$

C.
$$\lim_{n \to \infty} S_n = \ln 2$$
.

$$\mathbf{D.} \lim_{n \to \infty} S_n = \frac{\pi}{4}.$$

Câu 34. Khẳng định nào dưới đây là đúng?

A Dãy giảm và bi chăn dưới thì hội tu.

C. Dãy bi chăn là dãy đơn điệu.

B. Dãy tăng thì không bị chăn trên.

D. Dãy đơn điệu là dãy hội tu.

V Câu 35. Khẳng định nào dưới đây về tích phân bất định không đúng?

A. $\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx.$

C.
$$\int \lambda f(x)dx = \lambda \int f(x)dx \ (\lambda \in \mathbb{R}^*).$$

$$\mathbf{B}_{\bullet} \left(\int f(x) dx \right)' = f(x).$$

$$D. d \left(\int f(x) dx \right) = f(x).$$

 Câu 36. Khai triển hàm số $f(x) = \cos^2 2x$ thành chuỗi Maclaurin. Khẳng định nào dưới đây là **đúng**?

 A. $f(x) = \frac{1}{2} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}, \ x \in \mathbb{R}.$ B. $f(x) = \frac{1}{2} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}, \ x \in \mathbb{R}.$

 D. $f(x) = \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}, \ x \in \mathbb{R}.$

A.
$$f(x) = \frac{1}{2} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}, \ x \in \mathbb{R}$$

$$f(x) = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(2n)!}{(2n)!}, \ x \in \mathbb{R}.$$

B.
$$f(x) = \frac{1}{2} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}, \ x \in \mathbb{R}.$$

D.
$$f(x) = \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}, \ x \in \mathbb{R}.$$

Câu 37. Khai triển hàm số $f(x)=\frac{1}{(x+1)^2}$ thành chuỗi Maclaurin và tính tổng $S=\sum\limits_{n=1}^{\infty}\frac{(-1)^{n-1}n}{5^n}$. Khẳng định nào

dưới đây là đúng?

A.
$$f(x) = \sum_{n=1}^{\infty} (-1)^{n-1} nx^n, |x| < 1; S = \frac{25}{36}$$

C.
$$f(x) = \sum_{n=0}^{\infty} (-1)^{n-1} nx^{n-1}, |x| \le 1; S = \frac{1}{5}.$$

B.
$$f(x) = \sum_{n=1}^{\infty} (-1)^n nx^{n-1}, |x| < 1; S = \frac{25}{36}$$

A.
$$f(x) = \sum_{n=1}^{\infty} (-1)^{n-1} nx^n, |x| < 1; S = \frac{25}{36}.$$
B. $f(x) = \sum_{n=1}^{\infty} (-1)^n nx^{n-1}, |x| < 1; S = \frac{25}{36}.$
C. $f(x) = \sum_{n=0}^{\infty} (-1)^{n-1} nx^{n-1}, |x| \le 1; S = \frac{1}{5}.$
D. $f(x) = \sum_{n=1}^{\infty} (-1)^{n-1} nx^{n-1}, |x| < 1; S = \frac{5}{36}.$

V Câu 38. Tính tổng $S = \sum_{n=1}^{\infty} \frac{3^{n-2}}{n!}$. Khẳng định nào dưới đây là **đúng**?

$$\mathbf{A.S} = \frac{1}{9}(e^3 - 1).$$

B.
$$S = \ln \frac{3}{4}$$
.

C.
$$S = \frac{1}{9}e^3$$
.

D.
$$S = \frac{1}{9} \ln \frac{3}{4}$$
.

Câu 39. Cho dãy số $\{u_n\}$ với $u_n = n^{\alpha} \left(e^{\frac{1}{n^2}} - 1\right)$; α là tham số. Khẳng định nào dưới đây là **đúng**?

 $\underline{\mathbf{A}}$. Dãy phân kỳ với mọi α .

 \mathbf{C} . Dãy hội tụ khi và chỉ khi $\alpha \leq 1$.

B. Dãy hội tụ khi $\alpha > 3$.

D. Dãy hội tụ khi $\alpha \leq 2$.

Câu 40. Cho hai chuỗi số (I): $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{n^2+1}$; (II): $\sum_{n=1}^{\infty} \sin\left[\pi\left(\frac{1}{n}+2n\right)\right]$. Khẳng định nào dưới đây là **đúng**?

A. (I) hội tụ, (II) hội tụ.

B. (I) hội tụ, (II) phân kỳ.

B. (I) phân kỳ, (II) hội tụ.