# Information Retrieval

Block A
Big Oh notation

(based on material from Dan Melamed's course)

# Big Oh notation / Big O notation

 Goal: evaluate the run-time behaviour of your algorithm independent of particular hardware

Abstract away minor differences

 Compare the efficiency of programs in relation to the length of the input.

#### Example

Finding a word in a list of words (dictionary) of size N

- If dictionary in unsorted
  - This will take N comparisons (each with a time c1)
- If dictionary is sorted
  - This will take Log2 (N) comparisons at max (each with time c2)
- Which algorithm is faster?
- Constants are unknown and largely irrelevant for big

#### Big O

- The most common method and notation for discussing the execution time of algorithms is "Big O".
- For the alphabetized dictionary the algorithm requires O(log N) steps.
- For the unsorted list the algorithm requires O(N) steps.
- Big O is the asymptotic execution time of the algorithm.

## Big O Examples

- $3n^3 => O(n^3)$
- $\bullet$  3n<sup>3</sup> + 8 => O(n<sup>3</sup>)
- $8n^2 + 10n * log(n) + 100n + 10^{20} => O(n^2)$
- $3\log(n) + 2n^{1/2} => O(n^{1/2})$
- $^{\bullet}$  2<sup>100</sup> => O(1)
- $\blacksquare$   $T_{linearSearch}(n) => O(n)$
- $T_{binarySearch}(n) => O(log(n))$
- T<sub>mergingpostinglists</sub>(m,n)=> O(m+n)

#### **Summing Execution Times**

• If an algorithm's execution time is  $N^2 + N$  then it is said to have  $O(N^2)$  execution time, not  $O(N^2 + N)$ .

 When adding algorithmic complexities the larger value dominates.

• Formally, a function f(N) dominates a function g(N) if there exists a constant value  $n_0$  such that for all values  $N > N_0$  it is the case that g(N) < f(N).

# Ranking of Algorithmic Behaviors

| Function          | Common Name |
|-------------------|-------------|
| N!                | factorial   |
| 2 <sup>N</sup>    | Exponential |
| $N^{d}$ , $d > 3$ | Polynomial  |
| $N^3$             | Cubic       |
| $N^2$             | Quadratic   |
| $N\sqrt{N}$       |             |
| N log N           |             |
| N                 | Linear      |
| $\sqrt{N}$        | Root - n    |
| log N             | Logarithmic |
| 1                 | Constant    |

## Running Times

 Assume N = 100,000 and processor speed is 1,000,000 operations per second

| Function       | Running Time                   |
|----------------|--------------------------------|
| 2 <sup>N</sup> | over 100 years                 |
| $N^3$          | 31.7 years                     |
| $N^2$          | 2.8 hours                      |
| N/ N           | 31.6 seconds                   |
| N log N        | 1.2 seconds                    |
| N              | 0.1 seconds                    |
| $\sqrt{N}$     | 3.2 x 10 <sup>-4</sup> seconds |
| log N          | 1.2 x 10 <sup>-5</sup> seconds |

