

Ausgewählte Methoden der Künstlichen Intelligenz

Vorlesung 2, Praktikum 2

Prof. Dr. Tatyana Ivanovska

<t.ivanovska@oth-aw.de>

24. Oktober, 25. Oktober 2023

Plan für heute

- Die Komplexität von Algorithmen (Groß \mathcal{O} -Notation) (Wiederholung)
- Graphen

Arten von Komplexität

- **Zeit** (englisch: "computational time complexity"): die Ausführungszeit in Abhängigkeit der Größe der Eingabedaten
 - Um wie viel verlangsamt sich ein Algorithmus, wenn die Menge der Eingabedaten größer wird?
- Platz (englisch: "space complexity"): wie viel zusätzlichen
 Speicherplatz ein Algorithmus in Abhängigkeit von der Größe der Eingabedaten benötigt.
 - Damit ist nicht der Speicherbedarf für die Eingabedaten selbst gemeint.
- Wir werden vor allem über die Zeitkomplexität reden
- Die Komplexitätsklassen können nur verwendet werden , um Algorithmen einzuordnen, nicht aber, um deren genaue Laufzeit oder Platzbelegung zu berechnen
- Die Änderung der benötigten Zeit (oder Platz) in Abhängigkeit von der Änderung der Eingabegröße

https://www.happycoders.eu/de/algorithmen/o-notation-zeitkomplexitaet/

Big-O-Notation: $\mathcal{O}(n)$

- Der systematische Weg, die Obergrenze der Laufzeit eines Algorithmus auszudrücken
- Es berechnet die Worst-Case-Zeitkomplexität oder die maximale Zeit, die ein Algorithmus benötigt, um die Ausführung abzuschließen.
- am häufigsten verwendete Notation

$\mathcal{O}(1)$: konstanter Aufwand

- Ausgesprochen: "O von 1"
- Die Ausführungszeit ist konstant, also unabhängig von der Anzahl der Eingabeelemente n.
- Beispiele:
 - ▶ Zugriff auf einen Wert mit einem Array-Index: a = arr[i]
 - push() und pop() beim Stack (Stapel)

$\mathcal{O}(n)$: linearer Aufwand

- Ausgesprochen: "O von n"
- Der Aufwand wächst linear mit der Anzahl der Eingabeelemente n
- Verdoppelt sich n, dann verdoppelt sich auch ungefähr der Aufwand.
- Beispiel: Summieren aller Elemente eines Arrays

$\mathcal{O}(n)$: linearer Aufwand


```
C C++ Java Python3 C# Javascript

# A function to calculate the sum of the elements in an array
def list_sum(A, n):
    sum = 0
    for i in range(n):
        sum += A[i]
    return sum

# A sample array
A = [5, 6, 1, 2]
# Finding the number of elements in the array
n = len(A)

# Call the function and print the result
print(list_sum(A, n))
```

https://www.geeksforgeeks.org/understanding-time-complexity-simple-examples/

$\mathcal{O}(n^2)$: quadratischer Aufwand

- Ausgesprochen: "O von n Quadrat"
- Der Aufwand wächst linear zum Quadrat der Anzahl der Eingabeelemente
- Beispiele:
 - Bubble Sort
 - ▶ Simple checking of duplicates in der Liste (2 Nested *for* Schleifen)

$\mathcal{O}(n)$ vs $\mathcal{O}(n^2)$: Faktoren sind auch wichtig!

Im folgenden Beispiel-Diagramm werden drei fiktive Algorithmen gegenübergestellt: einer mit der Komplexitätsklasse $O(n^2)$ und zwei mit O(n), wobei einer davon schneller ist als der andere. Es ist gut zu sehen, wie bis zu n = 4 der orangene $O(n^2)$ -Algorithmus weniger Zeit benötigt als der gelbe O(n)-Algorithmus. Und sogar bis n = 8 weniger Zeit als der türkise O(n)-Algorithmus.

Ab hinreichend großem n – also ab n = 9 – ist und bleibt $O(n^2)$ der langsamste Algorithmus.

$\mathcal{O}(\log(n))$: logarithmischer Aufwand

- Ausgesprochen: "O von log n"
- Der Aufwand wächst ungefähr um einen konstanten Betrag, wenn sich die Anzahl der Eingabeelemente verdoppelt.
- Beispiel: Binäre Suche (wir besprechen's heute)

$\mathcal{O}(n \log(n))$: quasi-linearer Aufwand

- Ausgesprochen: "O von n log n"
- Der Aufwand wächst etwas stärker als linear, da die lineare Komponente mit einer logarithmischen multipliziert wird
- Beispiele: Quick Sort, Merge Sort, Heap Sort

O-Notation Reihenfolge

- 1. $\mathcal{O}(1)$ konstanter Aufwand
- 2. $\mathcal{O}(\log(n))$ logarithmischer Aufwand
- 3. $\mathcal{O}(n)$ linearer Aufwand
- 4. $\mathcal{O}(n \log(n))$ quasi-linearer Aufwand
- 5. $\mathcal{O}(n^2)$ quadratischer Aufwand

Was gibt's noch?

- 1. $\mathcal{O}(n^m)$ polynomieller Aufwand
- 2. $\mathcal{O}(2^n)$ exponentieller Aufwand
- 3. $\mathcal{O}(n!)$ faktorieller Aufwand

Beispiel $\mathcal{O}(2^n)$: Fibonacci

The Fibonacci series is a great way to demonstrate exponential time complexity. Given below is a code snippet that calculates and returns the nth Fibonacci number:

```
long long int fib(int n)
{
    if (n <= 1)
        return n;
    return fib(n-1) + fib(n-2);
}</pre>
```

https://www.crio.do/blog/time-complexity-explained/

Vergleichen

$$\mathcal{O}(1) < \mathcal{O}(\log(n)) < \mathcal{O}(\sqrt{n}) < \mathcal{O}(n) < \mathcal{O}(n\log(n))$$

$$\mathcal{O}(n\log(n)) < \mathcal{O}(n^2) < \mathcal{O}(n^3) < \dots < \mathcal{O}(2^n) < \dots < \mathcal{O}(n!) < \mathcal{O}(n^n)$$

Graphen

- Ein Graph ist eine abstrakte Struktur, die eine Menge von Objekten zusammen mit den zwischen diesen Objekten bestehenden Verbindungen repräsentiert.
- Die Objekte sind Knoten
- Die Verbindungen sind Kanten

Graph

- Graph G = (V, E)
- V sind die Knoten (vertices)
- E sind die Kanten (edges)

Quelle: https://de.wikipedia.org/wiki/Graph_(Graphentheorie)

Typen von Graphen

- Ungerichtete Graphen (Die Kanten haben keine Richtung)
- Gerichtete Graphen (Die Kanten haben eine Richtung)
- Gewichtete Graphen (Kanten sind gewichtet)
- Beispiel: eine Landkarte

Graphen

https://www.geeksforgeeks.org/introduction-to-graphs-data-structure-and-algorithm-tutorials/

Baum ist ein spezieller Graph

https://www.geeksforgeeks.org/introduction-to-graphs-data-structure-and-algorithm-tutorials/

Beispiel: Landkarte von Rumänien

Welcher Graph ist das?

Abbildung 3.2: Eine vereinfachte Straßenkarte eines Teiles von Rumänien.

Source: Russel Norvig, KI Buch

Noch ein Beispiel: Twitter Followers

1: Alice, 2: Bob, 3: Chuck

Wie kann man Graphen beschreiben?

Adjacency Matrix

https://www.geeksforgeeks.org/introduction-to-graphs-data-structure-and-algorithm-tutorials/

Wie kann man Graphen beschreiben?

Adjacency List

https://www.geeksforgeeks.org/introduction-to-graphs-data-structure-and-algorithm-tutorials/

Adjacency Matrix vs List

Action	Adjacency Matrix	Adjacency List
Adding Edge	O(1)	O(1)
Removing an edge	O(1)	O(N)
Initializing	O(N*N)	O(N)

Wie kann man einen Graph implementieren?

Was brauchen wir denn?

Wie kann man einen Graph implementieren?

- Was brauchen wir denn?
- Knoten
- Kanten
- Gewichte

Paket in Python

Über pip installieren, Version ab 3.0

Beispiel mit Bob, Alice und Chuck


```
import networkx as nx

6 = nx.Graph()
G.add_node('Alice')
G.add_node('Bob')
G.add_node('Chuck')

print (G.nodes())

6.add_edge('Alice', 'Bob')

6.add_edge('Alice', 'Bob')

f.add_edge('Bob', 'Chuck')

print (G.edges())

nx.draw_circular(G, with_labels=True, node_size=1800, node_color="skyblue", node_shape="o", alpha=0.5, linewidths=40)

['Alice', 'Bob', 'Chuck']
[('Alice', 'Bob', 'Chuck')]
```

Beispiel mit Bob, Alice und Chuck

Was für ein Graph ist das?

Beispiel mit Bob, Alice und Chuck


```
import networkx as nx

G = nx.Graph()
G.add_node('Alice')
G.add_node('Chick')

print (G.nodes())

G.add_edge('Chick')

print (G.nodes())

G.add_edge('Alice', 'Bob')

G.add_edge('Bob', 'Chuck')

print (G.edges())

nx.draw_circular(G, with_labels=True, node_size=1000, node_color="skyblue", node_shape="o", alpha=0.5, linewidths=40)

['Alice', 'Bob', 'Chuck']
[('Alice', 'Bob', 'Chuck')]
```

Noch ein Beispiel mit Bob, Alice und Chuck

Was für ein Graph ist das?

```
61 = rx.DiGraph()
61.add node('Alice')
61.add node('Alice')
61.add node('Alice')
61.add node('Chuck')
print (61.nodes())
61.add edge('Alice', 'Bob')
61.add edge('Bob', 'Alice')
61.add edge('Bob', 'Chuck')
print (61.edges())
rx.draw_circular(61, with_labels=True, node_size=1000, node_color="red", node_shape="o", alpha=0.5, linewidths=40)

['Alice', 'Bob', 'Chuck']
[('Alice', 'Bob', 'Chuck'), ('Bob', 'Alice'), ('Bob', 'Chuck')]
```

Noch ein Beispiel mit Bob, Alice und Chuck

Was für ein Graph ist das?

Zufallsgraphen: Erdös-Renyi (ER) Model (1960)

Dieses Modell wurde in den 1960er Jahren von den Mathematikern Paul Erdős und Alfréd Rényi vorgestellt.

ER Graph G(n, p)

- n ist die Anzahl von Knoten
- p ist die Wahrscheinlichkeit, dass eine Kante zwischen zwei Knoten gibt.
- In dieser Variante wird ein Netzwerk mit n Knoten erzeugt, wobei jede mögliche Kante zwischen zwei Knoten mit Wahrscheinlichkeit p vorhanden ist, unabhängig von den anderen Kanten.

Einige charakteristische Eigenschaften des Erdös-Renyi-Modells

- Eine scharfe Schwelle (p^*) in Bezug auf die Entstehung einer Riesenkoponente (einer zusammenhängenden Komponente, die einen signifikanten Teil des Netzwerks umfasst).
- Wenn die Wahrscheinlichkeit $p > p^*$, entsteht plötzlich eine Riesenkoponente im Netzwerk
- $p^* = \frac{\ln(n)}{n}$

Implementierung

Wir werden uns mit einer eigenen Nachimplementierung beschäftigen

NetworkX

https://www.geeksforgeeks.org/erdos-renyl-model-generating-random-graphs/

Ein vollständiger Graph

- Jeder Knoten ist mit jedem anderen Knoten durch eine Kante verbunden
- Was ist die Anzahl von Kanten in einem solchen Graphen mit n Knoten?
- Welche Bedingungen müssen beachtet werden?

https://de.wikipedia.org/

Ein vollständiger Graph

- Jeder Knoten ist mit jedem anderen Knoten durch eine Kante verbunden
- Was ist die Anzahl von Kanten in einem solchen Graphen mit n Knoten?
- Welche Bedingungen müssen beachtet werden?

•
$$\frac{n!}{(n-2)!2!} = \frac{n(n-1)}{2}$$

https://de.wikipedia.org/

Ein vollständiger Graph


```
import networkx as nx
import matplotlib.pyplot as plt

G = nx.complete_graph(15)

nx.draw_circular(G, with_labels=True, font_weight='bold')
plt.show()
```

https://de.wikipedia.org/

Wie kann man das selbst implementieren?

10 Minuten für die Implementierung in Python (oder Pseudocode)

Wie kann man überprüfen, ob ein Graph vollständig ist?

- Wie kann man das selbst implementieren?
- Bei welchen Bedingungen ist es relativ einfach?

10 Minuten für die Implementierung in Python (oder Pseudocode)

Ein zusammenhängender Graph (Connected Graph)

 Zwischen jedem Paar von Knoten existiert ein Pfad, der sie verbindet.

Wie kann man überprüfen, ob ein Graph connected wäre?

• Ideen? Z.B. wir starten mit Alice. Was muss man machen?

Reachable Nodes

Connectivity

To check whether a graph is connected, we'll start by finding all nodes that can be reached, starting with a given node:

```
def reachable nodes(G, start):
    seen = set()
    stack = [start]
    while stack:
        node = stack.pop()
    if node not in seen:
        seen.add(node)
        stack.extend(G.neighbors(node))
    return seen
```

In the complete graph, starting from node 0, we can reach all nodes:

```
reachable_nodes(complete, θ)
```

Quelle: A. Downey Think Complexity Buch

Was ist die Zeit Complexity von dieser Funktion?

- pop: eine konstante Zeit
- in seen?: eine konstante Zeit
- seen.add: eine konstante Zeit bei einem Knoten (Insgesamt $\mathcal{O}(n)$ für n Knoten)
- extend: $\mathcal{O}(nbh)$, wobei nbh ist die Anzahl von den Nachbarn (Insgesamt $\mathcal{O}(m)$ für m Kanten)
- Komplexität: $\mathcal{O}(n+m)$, n ist die Anzahl von Knoten, m ist die Anzahl von Kanten
- Was ist es für einen kompletten Graph? (Wir wissen ja die Verbindung zwischen n und m in diesem Fall)

Übung

- 1. Implementieren Sie den Connectivity Test
- 2. Implementieren Sie die Generierung von ER Graphen (Die Numpy Funktion *np.random.random*() wird nützlich sein)
- 3. Wie schnell ist Ihre Implementierung? Messen Sie die Zeit und vergleichen sie mit der NetworkX Implementierung.
- 4. Generieren Sie 20 ER Graphen mit n = 10 Knoten und p = 0.1. Wie viele Graphen sind zusammenhängend?
- 5. Wie ändert sich die Anzahl von connected ER Graphen, wenn $p=0.3,\ p=0.5,\ p=0.8?$
- 6. Nutzen Sie matplotlib um diese Verbindungen zu visualisieren

Danke für die Aufmerksamkeit!

