SIMULATION OF METAL FATE AND TRANSPORT IN THE NAUGATUCK RIVER (CONNECTICUT) WITH MEXAMS(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH S E STREIFERT 29 NOV 84 OFTITICINE-85-21 F/G 11/6 AD-A152 192 1/2 UNCLASSIFIED NL

1. REPORT N 4BER

REFORT DOCUMENTAL.

1		
个	i Al	

AFIT/CI/NR 85-21T 4. TITLE (and Subtitio)

Simulation Of Metal Fate And Transport In The Naugatuck River (Connecticut) With Mexams

TYPE OF REPORT & PERIOD COVERED THESIS/DYYYYPRYMYYWM/

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a)

Scott Edward Streifert

8. CONTRACT OR GRANT NUMBER(4)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

AFIT STUDENT AT: University of Colorado

THE PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

AFIT/NR

12. HEPORT DATE

1984

WPAFB OH 45433 13. NUMBER OF PAGES

AGE

15. SECURITY CLASS. (of this report)

UNCLASS

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

14. MONITORING AGENCY HAME & ADDRESS(If different from Controlling Office)

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11

18. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAN AFR

LYMN E. WOLAVER 25/elf) Dean for Research and Professional Development AFIT, Wright-Patterson AFB OH

19. KEY "ORDS (Continue on reverse side if nec senary en-

.Ify by bloc's number)

V. ABSTRAC . (Continue of reverse alde if necess .,

ATTACHED

DD : FORM 1473

03 11 85

046

ICLASS

ICATION OF THIS SAGE (When Date Entered)

Streifert, Scott Edward (M.S., Civil Engineering)
Simulation of Metal Fate and Transport in the Naugatuck
River (Connecticut) with MEXAMS
Thesis directed by Dr. Allen J. Medine

Metal transport in the Naugatuck River is currently being investigated to provide important data for waste allocation decisions. The development of suitable metals modeling capability is a necessary part of the management activities. The calibration, testing and evaluation of MEXAMS (Metal Exposure Analysis Modeling System) computer program was performed to meet the above requirement.

Results indicate that the log K_d and percent groundwater flow into the benthic compartments value were the most sensitive and were used as the major calibration variables. The model very accurately predicted both the particulate concentration of all benthic compartments and the total and aqueous concentration for all water water column compartments. Now that the initial calibration has been achieved, the verification procedure will be performed and the initial calibration will be fine tuned.

Access	sion For			
NTIS	GRA&I			
DTIC 3	DTIC TAB			
Unanno	Unannounced []			
Justi	Justification			
Ву				
Distribution/				
Availability Codes				
	Avail and/or			
Dist	Special			
	1			
14-1	}			
K+	L			

SIMULATION OF METAL FATE AND TRANSPORT

IN THE

NAUGATUCK RIVER (CONNECTICUT) WITH MEXAMS

by

Scott Edward Streifert

B.S.C.E., Norwich University, 1980

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment
of the requirements for the degree of

Master of Science

Department of Civil, Environmental,
and Architectural Engineering

This thesis for the Master of Science Degree by
Scott Edward Streifert
has been approved for the
Department of
Civil, Environmental and Architectural Engineering
by

Allen J. Medine

JoAnn Silverstein

Date 11/29/84

DEDICATION

This is dedicated to my parents, Jack and Jane.

Their love, support and encouragement during all of my endeavors have been invaluable.

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and thanks to Dr. Allen J. Medine for his continued support throughout my research. His guidance and encouragement were invaluable and helped me over the rough areas.

Additional thanks are extended to Arthur H. Hirsch, for his continued positive review of my work. I would also like to thank Dr. Donald D. Runnells and Dr. JoAnn Silverstein for their critiques and recommendations of this report.

CONTENTS

CHA	APTER	
1.	INTRODUCTION	1
	1.1 General	נ
	1.2 Background Information	2
2.	MODEL DESCRIPTIONS	4
	2.1 EXAMS General Description	4
	2.2 MINTEQ General Description	8
	2.3 MEXAMS General Description	12
3.	MODEL INPUTS AND OUTPUTS	18
	3.1 Input Description (MINTEQ)	18
	3.2 Input Description (EXAMS)	25
	3.3 Output (MINTEQ)	33
	3.4 Output (EXAMS)	39
	3.5 Output (MISP)	55
4.	MODEL RESULTS	63
	4.1 Calibration Parameters	63
	4.2 Model Results	70
	4.3 Future Loadings	79
	4.4 Limitations and Recommendations	79
5.	CONCLUSIONS	85

88

REFERENCES.

A.	DESCRIPTION OF THE MINTEQ INPUT FILE	90
в.	DESCRIPTION OF THE EXAMS INPUT FILE	99
c.	MINTEQ OUTPUT	107

TABLES

Table		
1.	MINTEQ Components	19
2.	MINTEQ Input	21
3.	Water Quality Data	23
4.	Compartment K _d Data	24
5.	EXAMS Input	27
6.	MISP Input	34
7.	MINTEQ Output	36
8.	MINTEQ Output	38
9.	MINTEQ Output	40
10.	MINTEQ Output	41
11.	EXAMS Output	43
12.	EXAMS Output	49
13.	EXAMS Output	56
14.	MISP Output	60
15.	Model Results	75
16.	Model Results	77
17.	Comparative K _d	78

FIGURES

Figure		
1.	Compartmentalization Examples	ϵ
2.	MEXAMS Flowchart	13
3.	Compartmentalization	26
4.	Naugatuck River	29
5.	Calibration Configurations	63
6.	Effect of Groundwater Routing on Sediment Residence Times	64
7.	Effect of Groundwater Routing on Sediment Concentration in Benthic Compartments	66
8.	Dispersion Coefficients vs. Concentration in Benthic Compartments	67
9.	K _d vs. Adsorbed Concentration in Benthic Compartments	69
10.	Effect of Advective Flow from Compartment 6 to Compartment 5	73
11.	Final Calibration Configuration	72
12.	Model Calibration Results	74
13.	Model Calibration Results	76
14.	Effects of Simulated Increased Metal Loadings to Compartment 1	80
15.	Effect of Complexing Organic upon Adsorption in Compartment 1	82
16.	Total Concentration vs. Distance in Water Column	Q.

CHAPTER 1

INTRODUCTION

1.1 General

transport processes, environmental distributions and biological effects have been the focus of increasing concern. Direct toxicity to aquatic organisms and indirect toxicity to higher organisms and man are the center of this concern. Although heavy metals are natural constituents of aquatic environments, additional quantities introduced by man's presence may result in an altered chemical composition of the aqueous and sediment phases, often with detrimental impacts on the environment. In an effort to reduce these impacts, environmental transport/fate models of heavy metals in aquatic ecosystems are being developed.

The purpose of this study was to evaluate the Metal Exposure Assessment Modeling System (MEXAMS). This program is the result of linking MINTEQ, a geochemical model, and the Aquatic Exposure Assessment Model, EXAMS. MEXAMS was developed for the Environmental Protection Agency (EPA) (Felmy et al., 1983) to allow assessment of

the impacts of priority pollutant metals (As, Cd, Cu, Pb, Ni, Ag and Zn). The evaluation consisted of calibrating, testing, and assessing the model response for actual site application on the Naugatuck River located in the Housatonic River Basin in western Connecticut.

1.2 Background Information

The Naugatuck River is located in western Connecticut and has a long history of industrialization along its length. Hydropower generation was responsible for the initial development of the valley, with light metal production soon to follow. Three of the world's largest brass firms were located on its banks and, at the turn of the century, sixty percent of the world's brass products produced annually were manufactured in the valley. As a result of the light metal production industry, the electroplating industry emerged, and approximately 30,300 cubic meters/day of treated electroplating waste is currently being discharged into the Naugatuck River.

Most industrial discharges on the river currently adhere to Best Available Technology (BAT) guidelines. However, both long-term biological monitoring and recent toxicity testing have shown toxic impacts of metals. As a result, the Connecticut Department of Environmental Protection is presently developing allocation guidelines for the discharge of metals into the river. These

guidelines will be based upon results of mathematical modeling being performed by the State Department of Environmental Protection. The data set available was used herein to calibrate MEXAMS to the Naugatuck River and the output will provide a direct comparison of two model formulations for predicting fate and transport of heavy metals in a riverine ecosystem.

CHAPTER 2

MODEL DESCRIPTIONS

2.1 EXAMS General Description

The Exposure Assessment Model System (EXAMS) was developed in response to a need to describe fate, transport and impacts of organic contaminants in aquatic systems. The program is a deterministic, predictive systems model, based on a core of mechanistic process equations derived from fundamental theoretical concepts (Burns et al., 1981).

The model estimates exposure, fate, and persistence following a priority pollutant metal discharge. Exposure is defined as the steady-state pollutant concentration after loadings are balanced with transport and transformation processes. Fate is defined as the distribution of the pollutant in the system, and persistence is the time required for effective purification of the system. The program uses conservation of mass to balance loadings, transport and transformation of the compound.

The chemical loadings can be entered into EXAMS by way of :

1., Point Source Loadings

- 2.) Non-Point Source Loadings
- 3., Aerial Drift
- 4.) Atmospheric Washout
- 5., Groundwater Seepage

These chemicals can then be transformed by photolysis, hydrolysis, biochemical and oxidation reactions in particular compartments of the environment under simulation. In addition to the above transformation processes, EXAMS is capable of three transport processes: advection (dependent on the hydrologic data input), dispersion (dependent on the description of each dispersive pathway) and volatilization (the air/water interface). Advective and dispersive transport are possible for dissolved species, sediment sorbed material and bio-sorbed materials. Transport through the ecosystem compartments may be represented by whole sediment bed loads, suspended sediment washloads, exchanges with fixed volume sediment beds and ground water infiltration.

EXAMS can also be used to simulate the ionization and sorption of up to fifteen molecular species of an organic chemical. The chemical can be the parent uncharged, singly or doubly charged cations and anions, each of which can occur in the dissolved, sediment-sorbed or bio-sorbed forms. However, EXAMS, like all models, contains important assumptions. These assumptions are listed as follows:

1., A first order evaluation can be executed

COMPARTMENTALIZATION EXAMPLES

Figure 1.

independently of the chemicals actual effects on the system,

- 2.) Linear sorption isotherms and second order expressions are used, rather than Michaelis-Menten-Monod expressions, for biolysis,
- 3.) EXAMS was developed for long-term or steadystate loadings rather than dynamic transitory (spills) loadings, and
- 4., Sorption is treated as an equilibrium process, that is, sorption/desorption are assumed to be rapid compared to other processes.

EXAMS is capable of simulating both lotic and lentic aquatic systems. These systems are initially compartmentalized and classified as littoral, epilimnion, hypolimnion or benthic (Figure 1 illustrates compartmentalization of a lake system and a river system). Each compartment is assumed to be completely mixed. The computer then develops single differential equations for each compartment. The form of the equation and the variables are defined as:

$$V\left(\frac{dc}{dt}\right) = L_e + L_i - VKC \tag{1}$$

V = volume of water in compartment (1)C = total chemical concentration in compartment (mg/l) e = total external loading (mg hr, e = total internal loading (mg hr) k = overall pseudo-first order loss constant (/hr)

t = time

EXAMS was not originally designed to describe

metal transport and fate and has been modified so that it can interface with MINTEQ. The first modification involved bypassing calculations that are unnecessary for heavy metal speciation or duplicated by MINTEQ. The second modification included provisions for describing migration and fate of precipitated fractions. Ionization is not utilized in EXAMS, because MINTEQ calculates dissolved species in each compartment. Finally, priority metals are generally unaffected by the transformation and degradation processes that effect the fate of organics in natural waters and these processes are bypassed in the modified EXAMS version.

2.2 MINTEQ General Description

MINTEQ is a computer program for calculating aqueous geochemical equilibria and was developed for incorporation into MEXAMS. The major objective of MINTEQ is the development of a predictive methodology for the assessment of the metal speciation including sorption, precipitation and ion exchange of priority pollutant metals in aquatic environments. This chemical equilibrium problem is described as a set of mass balance equations, one for each component, and a set of mass action equations, one for each specie. The equilibrium constant approach is utilized to solve the equilibrium problem. This method solves nonlinear mass action expressions

using linear mass balance equations. The typical mass action and mass balance equations are as follows:

Mass Action:

$$\gamma_{i}C_{i} = \kappa_{i}\sum_{j=1}^{n} x_{j} a(i,j)$$
 (2)

where:

Mass Balance:

$$T_{j} = \sum_{j=1}^{m} a(i,j) C_{i}$$
(3)

where:

T = total analytical concentration of
 component j
m = number of aqueous species

Both of the above equations are definitions for systems with no solid phases. Solid phases are dealt with using the "transformation of basis" method (Felmy et al., 1983). This method reduces the number of independent variables to be determined and allows the solution of a wider range of chemical equilibrium problems.

MINTEQ is also capable of modeling adsorption in

a number of ways. Six different algorithms are accessible through the use of MINTEQ for describing sorption phenomena:

"activity" Kd
 "activity" Langmiur equation
 "activity" Freundlich equation
 ion exchange

5.) constant capacitance surface complexation model

6.) triple layer surface complexation model

The "activity" K_d approach is the ratio of the amount of metal adsorbed to the amount remaining in solution (activity of the free ion). The K_d equation can then be written as follows:

$$K_{d} = \frac{SCu}{\{Cu\}}$$
 (4)

where:

K_d = distribution coefficient
SCU = particulate concentration (molal units)
{Cu} = activity concentration of the free
 metal (molal units)

The "activity" Langmuir equation has an advantage over the K_d approach, because a mass balance on surface sites is considered. The "activity" Langmuir equation is written as follows:

$$SCu = \frac{K_L S_T \{Cu\}}{1 + K_L \{Cu\}}$$
 (5)

where:

 \textbf{S}_{T} = maximum quantity that can be adsorbed \textbf{K}_{L} = Langmuir adsorption constant

The third approach, the "activity" Freundlich, is used when laboratory data obtained does not conform to the "activity" Langmuir. The "activity" Freundlich equation is written as follows:

$$SCu = \kappa_{f} \{ cu \}^{1/n}$$
 (6)

where:

K_f = Freundlich adsorption constant
h = a constant

The above three activity approaches are preferred over their concentration counterparts, due to their ability to deal with a wider range of natural waters. However, the activity approach is not without limitations. The activity approach does not charge balance surface sites and adsorbed species. Secondly, electrostatic interactions between adsorbing ion and charged surfaces are not considered. Finally, the reaction of solid with aqueous constituents other then adsorbate ion is not considered. In order to reduce the above limitations, surface complexation models have been developed which may be more applicable, but also more complex (Felmy et al., 1983).

The constant capacitance model and triple layer models, both based on theoretical approaches, consider charge potential differences and changing properties of the surface with changing pH and ionic strength. Both of these methods require a great deal of detailed laboratory investigation to determine the critical parameters and are primarily research tools.

The ion exchange approach is only useful when the selectivity coefficients for the exchange reactions are known. These coefficients are generally only available for bulk electrolyte ions such as sodium, potassium and calcium. The ion exchange model is inadequate for predicting metal adsorption, because metals usually form covalent bonds with surface sites (Felmy et al., 1983).

Finally, the equilibrium composition of an aquatic environment is determined by minimization of Gibbs free energy of the system within the mass balance constraints. This chemical equilibrium will determine metal speciation in addition to precipitation/dissolution and sorption, and is used in EXAMS to determine the metal fate and migration.

2.3 MEXAMS General Description

The two previous sections described the two individual models that have been linked to form the MEXAMS model (Figure 2). The MEXAMS program can be used

Figure 2.

in both batch and interactive mode with three different modes of operation available. The first mode is the MINTEQ only, which allows the operator to determine how changes in water chemistry will affect metal speciation and solid phase interactions without regard to transport processes. Secondly, the EXAMS only mode, which deals with the ionization, sorption, transport and transformation of a given pollutant. Finally, the third mode, which links EXAMS and MINTEQ together, allows the user to determine the effect of transport processes and chemical interactions on priority pollutant concentration. This section will describe the operation and use of the coupled mode.

The first step is to create an EXAMS input file that describes the characteristics of the aquatic environment being assessed. The user then enters the MEXAMS Interactive Software Package (MISP). MISP will call for a MINTEQ file for each compartment that contains different water quality data. The programmer will also input runspecific information that controls the number of times MINTEQ updates metal concentrations. MEXAMS is now set to simulate metal behavior, migration and fate.

Initial calculations by EXAMS are made assuming no adsorption or precipitation, and the initial distribution of dissolved metals in each compartment is obtained. These concentrations, along with suspended sediment and

biota concentrations, are sent on to MISP. MISP then passes the dissolved metal concentration in the first compartment on to MINTEQ, which simultaneously reads the water quality data for that compartment. MINTEQ then improves the estimate of the concentration of metal in solution, adsorbed to sediments and biota and in a precipitated form. These results are returned to MISP and metal fractions are determined.

MISP then proceeds to the second compartment and, unless the water quality is different and the total metal varies by more than 5%, MINTEQ is not called. MISP utilizes the same fractions from the previous compartment. If total metal varies by more than 5%, MINTEQ is called, but an entire new calculation is only performed when the water quality data differs from one compartment to the next.

After metal fractions have been computed for all compartments, MISP sends the information to EXAMS and the metal transport and transformation are computed. EXAMS then predicts new exposure levels and iterates with MINTEQ again. Calculations of fate and persistence are not performed until all iterations are complete.

EXAMS then sums the flux rate of metal attributable to each transport and transformation process,
in which the significance of each process is then obtained by dividing flux rate by the total of the external

loadings. Finally, the persistence is calculated by terminating the external loading and computing the dissipation over two system half lives. In order to reduce computer time the two half lives have been divided into twelve equal time increments. Since metal concentration will change with time, the updating of each compartment metal fraction is possible. The user specifies the number of times the metal fractions are to be updated. The metal fractions will change with each time increment, and thus, after each persistence calculation they should be updated. The EXAMS output provides exposure, fate and persistence estimations, the MINTEQ output provides chemical interaction information and the MISP output provides information on EXAMS-MINTEQ interactions.

The MEXAMS computer program is capable of solving a wide variety of pollution problems. A list of possible uses follows:

- Rapid evaluation of synthetic organic pollutants
- 2., Rapid hazard evaluation for priority pollutant metals
- 3.) Assess impact of point source discharge from mine drainage
- 4., Provide support interpretations of metal bioassays
- 5.) Framework for what is or what is not known about the behavior of priority pollutant metals in aquatic systems
- 6.) Management tool

Now that the three individual programs have been presented, the specific input files used for the

Naugatuck River will be discussed. This discussion will include a description of the compartmentalized system used, and a line by line explanation of the computer inputs. The explanation will state any limitations, the variable names and their computer format code. Some of the parameters were not used in this report due to the fact that the pollutants are priority metals, as opposed to synthetic organic chemical contaminants.

CHAPTER 3

MODEL INPUTS AND OUTPUTS

3.1 Input Description (MINTEQ)

This section will present information regarding the operation of the MINTEQ program. The MINTEQ program has a great deal of flexibility in the way the user defines the chemistry of the ecosystem being modeled. The program is capable of dealing with six different specie types, as described in the MINTEQ manual. The Type I specie is the component. The component is defined as the chemical specie chosen to represent each chemical constituent. Each component corresponds to a MINTEQ identification (ID) number. Table 1 provides a complete list of the components in MINTEQ. Type II complexes are defined as aqueous species which are combinations of two or more components. These complexes are not input by the user, but instead are output by the computer as a result of the Type I species input. Type III species are defined as a species with a fixed activity.

Some examples of Type III species are components at fixed activity such as pH or pE, solid phases present in infinite supply, gases present at a fixed partial

TABLE 1. COMPONENTS IN MINTEQ

Component	I.D. Number	Component	I.D. Number
Ε	001	NH4 ⁺	490
H ₂ 0 Ag +	002	NO2-	491
Ağ ⁺	020	NU ₃ -	492
A13+	030	Na [¥]	500
H ₃ AsO ₃	060	Ni 2+	540
H3As04	061	P03-	580
H ₃ BO ₃ Ba ²⁺ 3	090	₽ ₽	600
	100	Rb+	680
Br ²	130	HS-	730
CO ₃ 2- Fulvate	140	S 2-	731
Fulvate	141	50 ² -4	732
Humate Ca ²⁺ Cd ²⁺	142	H4Si04	770
Cd2+	150 160	\$52+ U3+ U4+	800
Cli	180	u4+	890 891
Γc ⁺	220	un+	892
~ \+	230	U02+ U02+	893
Cu2+	231	002	033
Fe ²⁺	280		
Cu2+ Fe2+ Fe3+ H ⁺	281		
H ⁺	330	Zn ²⁺	950
I-	380	SOH1	990
K ⁺ .	410	S0H2	991
14+	440	XPSI0	992
Mg 2+ Mn 2+	460	XPSIB	993
Mn 2+	470	XPSID	994
Mn 3+	471	SOHB	995

(from Felmy et. al., 1983)

pressure, and redox reactions between two components. Type IV species are precipitated solids subject to complete dissolution. The Type III and Type IV solids are similar, except that Type IV solids have a finite mass. Type V species are dissolved solids subject to precipitation. These solid phases will only precipitate when the saturation index is exceeded. Finally, Type VI species are species not considered during equilibrium calculations. Instead, these species are considered after the equilibrium calculations are complete.

An example input file for the Naugatuck River is presented in Table 2, with the numbers on the left corresponding to line numbers, for explanation purposes. The first two lines are descriptive information for the sample site. The third line describes the water temperature (C), analytical units, and fixed ionic strength designation. If ionic strength is not to be fixed, 0.00 is input. Line four contains nine run specific user options, inorganic carbon input, debug print option. charge balance option, considered solids and print option, number of iterations, pH variation option, fixed ionic strength, numerical method selection and output option. The fifth line contains adsorption paramaters. Line six through 24 are the component input lines, and the three fields correspond to the specie ID number, total analytical mass and a guess for the log of the

TABLE 2

MINTEQ INPUT

```
1.
     NAUGATUCK RIVER CONDITIONS (16-17 AUGUST 1983)
     COMPARTMENT 1 ZN-CU-PB ADSORPTION
 2.
     KD MODEL: MATRIX OBTAINED FROM BEST AVAILABLE
     DATA PH=7.14
 3.
     25.00 MG/L
                     0.00
     0 0 1 0 0 0 0 0
 4.
 5.
                 0.00
          0.00
                         0.00
                                 0.00
 6.
          150 2.000E+01
                          -3.80
 7.
          460 3.500E+00
                          -3.90
 8.
          500 1.890E+01
                          -2.50
 9.
          140 3.422E+01
                          -5.50
10.
          732 2.500E+01
                          -2.90
11.
          180 3.800E+01
                          -2.80
12.
          090 8.361E-02
                          -5.10
13.
          410 3.090E+00
                          -4.25
14.
          580 4.906E-01
                          -11.0
15.
          770 8.320E+00
                          -6.50
16.
          231 5.450E-02
                          -9.00
17.
          950 1.750E-02
                          -8.00
18.
          492 7.083E+00
                          -8.00
19.
          470 3.550E-02
                          -7.00
20.
          281 2.140E-01
                          -7.00
21.
          600 6.000E-03
                          -8.00
22.
          330 0.000E-00
                          -7.14
23.
          991 0.000E-00
                           0.00
24.
          990 0.000E+00
                           0.00
25.
26.
27.
          330
                   7.14
28.
          990
29.
          991
30.
31.
        2
            3
                                             -.24
32.
     9909500 SOH-ZN
                  1.00 950
                               1.00 990
33.
34.
                                             1.33
     9916000 SOH-PB
35.
            2
                 1.00 600
                               1.00 991
36.
37.
                                             0.20
     9912310 SOH-CU
38.
                  1.00 231
                               1.00 991
39.
            2
40.
41.
```

component activity. This section is the water quality data for each compartment of the ecosystem. The water quality data for the Naugatuck River was obtained from three sources (A.J. Medine et al., 1982, Curtis 1982, and USGS Water Resources Data-Connecticut, 1982). The water quality data used is presented in Table 3. The next line is a blank line separating specie Type I from specie Type III. Line 26 corresponds to the specie type and the number of species of that type. The next three lines are for fixed pH and two surface sites for adsorption. After another blank line, the adsorption information is input. This input section consists of nine lines. The first line contains the type of modification and number of these modifications. Then each adsorption input has three corresponding lines of input. The first line is the adsorption description and the log $\boldsymbol{K}_{\boldsymbol{d}}$ value for the reaction.

The adsorption routine chosen in this case was the "activity" K_d approach. The $\log K_d$ values were obtained by running the MINTEQ program without adsorption. By using the activity results and the field-observed particulate concentration for each metal in Equation 4, the "activity" K_d was obtained ($\log K_d$ was then utilized as an input to the program). Table 4 presents the data obtained for each compartment, and the respective K_d values. The second line corresponds to the components and

Table 3 Water Quality Data

150 - Ca 460 - Mg	1.50 E+01	
4 h ii - M ()	3.50 E+00	U.S.G.S. (1983) U.S.G.S. (1983)
•	1.89 E+01	Medine & Conway (1982)
410 - K	3.09 E+00	Medine & Conway (1982)
470 - Mn	*	Conn DEP (1982)**
281 - Fe	*	Conn DEP (1982)**
770 - SiO2	8.32 E+00	U.S.G.S. (1983)
950 - Zn	*	Conn DÉP (1982)**
090 - B	8.36 E-02	Medine & Conway (1982)
231 - Cu	*	Conn DEP (1982)**
732 - \$i04	2.50 E+01	U.S.G.S. (1982)
180 - Cl	3.80 E+01	U.S.G.S. (1982)
140 - CO3	3.42 E+01	Medine & Conway (1982)
492 - NO3	7.08 E+00	U.S.G.S. (1982)
580 P04	4.91 E-01	U.S.G.S. (1982)
600 - Pb	*	Conn DEP**
330 - H	*	Conn DEP**

^{*}These inputs are compartment dependent **Connecticut State Department of Environmental Protection

TABLE 4 Compartment Kd Data

Compart- ment #-Type		Free Ion Activity (M)	Particulate Conc. (M)	Log Kd
1-E	Cu	9.741 E-08	1.50 E-07	.20
	Pb	9.940 E-10	2.17 E-08	1.33
	Zn	1.321 E-07	7.65 E-08	24
2-8	Cu	8.467 E-07	4.41 E-03	3.73
	Pb	9.300 E-07	2.79 E-03	3.48
	In	5.451 E-05	3.89 E-03	1.85
3-E	Cu	1.634 E-07	1.34 E-07	09
	Pb	2.551 E-09	2.17 E-08	.93
	In	1.830 E-07	9.94 E-08	26
4 - B	Cu	1.796 E-06	1.59 E-03	2.95
	Pb	1.834 E-06	3.00 E-04	2.21
	Zn	4.637 E-05	3.49 E-03	1.88
5-E	Cu	4.422 E-08	3.93 E-08	05
	Pb	2.234 E-09	2.17 E-08	.99
	In	9.065 E-08	5.35 E-08	23
6-8	C u	3.225 E-06	1.51 E-03	2.67
	P b	2.543 E-06	3.07 E-04	2.08
	Z n	2.177 E-05	3.66 E-03	2.23

E - Eplimnion B - Benthic

the stoichiometry of the reaction. Finally, the next two lines are blank to signify the end of the input file.

This section described the input file for the Naugatuck River. Also included in the appendices is a copy of the MINTEQ input description (Felmy et al., 1983). This description includes computer format, possible options and a more in-depth description of the MINTEQ input file itself. Following the input of the MINTEQ data file, the next step is the creation of an EXAMS input file.

3.2 Input Description (EXAMS)

The EXAMS input file is generated based on a compartmentalization of the riverine ecosystem. EXAMS, as stated previously, is responsible for the metal fate and migration calculations. Figure 3 displays the initial compartmentalization scheme used for the Naugatuck River system. Once the compartmentalization is selected, the EXAMS input file is generated. The file consists of 67 lines of input, which will be explained next (Table 5).

The first two lines are descriptive lines for the ecosystem, the chemical name and ecosystem name, both a maximum of three characters. The third line corresponds to the number of chemical loadings. In this case, there are five loadings and the next five lines describe the loading as one of five types (units of input for each

COMPARTMENTALIZATION

Figure 3.

Table 5

EXAMS Input

```
NAG
      1.264E-02
2 0.
3 4.404E-03
                                                                       0.
0. 6.505E-04
                                      0.
                                                       ŏ.
                                      Ŏ.
                                                                        0.
0.
                                                                                        0.
         3.361E-02
                                      0.
                                                       n.
                                                                            3.538E-04
HVM
Heavy Meta:
NAG
NAUGATUCK RIVER CALIBRATION TEST RUN
L
B
  41.80
0.0000
  0.000 0.000
0.000 0.000
3.538E+02 3.538E-02
                                                    0.000
  00.00
100.0
0.000
                                                                                    0.000
0.000
0.000
0.000
                                                                                                     0.000
0.000
0.000
                                                  0.000
0.000
0.000
0.000
0.000
                                                                                                                      0.000
0.000
                                                                    0.000
                 0.000
                                  0.000
0.000
0.000
        0.000
  0.000
                                                                                                                      0.000
                                                                   0.000
0.000
0.000
  0.000
                                                                                                                      0.000
                                                                                     0.000
                                                                                                     0.000
                                                           00.00
                                                                            00.00
                                                                                             00.00
                                                                                             00.00
                                                           00.00
                                                                    7.500
0.000
                                                   1.530
115.2
                                                                                     1.530
115.2
  3.000
0.000
       6
                                                          6
5
                                2
1
                        5
                                                  6
                                                                                                                        0.100
                                                     0.900
                                                                                      0.100
                                                                     0.900
   1.000
                   1.000
                                    1.000
                3
4
 2 4 6
5.386E+04 1.257E+04 2.627E+04
8.992E-02 9.449E-02 1.570E-01
5.000E-07 5.000E-07 5.000E-07
C.3600E-010.3800E-010.3800E-010.3800E-010.3800E-01
25.00 25.00 25.00 25.00 25.00 25.00
25.00 25.00 25.00 25.00 25.00
25.00 25.00 25.00 25.00 25.00
25.00 25.00 25.00 25.00 25.00
27.143 7.143 7.007 7.007 7.078 7.078
6.857 6.857 6.857 6.993 6.993 6.992
6.922
6.922
                              0.00.1000E-080.5000E-09
00.00 00.00
                                                                                0.00.1000E-08
  0.1000E-08
                                                                      00.00
    00.00
                    00.00
                                                                     00.00
23.50
00.00
00.00
00.00
                                                      00.00
23.50
                                                                                      00.00
                                     00.00
23.50
00.00
    0(.00
                    00.00
                                                                                       23.50
    23.50
00.00
00.00
                    23.50
00.00
00.00
                                                      00.00
                                                      00.00
00.00
00.00
                                                                                        00.00
                                     00.00
                                                                                        00.00
    00.00
                     00.00
                                                                                        00.00
                                                                       00.00
                                      00.00
                     00.00
                                                                       00.00
                                      00.00
    00.00
                     00.00
```

chemical loading are Kg/hr,. The five types of loadings are point source, non-point source, rainfall, aerial drift and ground water seepage. The loadings are input from left to right for each compartment in the order previously stated. The next two lines are a description of the chemical, followed by a line of flags denoting which species of the organic toxicant can occur. A zero is used for no occurrence and a one for occurrence, and in this case, zeros are input because the pollutant being investigated is a heavy metal. The next two lines are an ecosystem description.

The ecosystem was divided into unequal compartment lengths representing well-defined segments based on actual point loadings. Compartments one and two are 1.3 miles long, compartments three and four are .3 miles long and compartments five and six are 6.7 miles long. Figure 4 displays the four different sample sites (East Albert St., Gulf Stream, Bogue Road, Bridge Abutment) within the stream segment selected for compartmentalization and modeling.

The next seven lines are the number of compartments, and the compartment code for each compartment. The compartments are classified as epilimnion (E), hypolimnion (H), littoral (L) or benthic (B). The compartment classification is then followed by the latitude input in degrees, and the wind velocity at 10 cm above the water

NAUGATUCK RIVER

APPROX. SCALE: I" == 10 KILOMETERS

Figure 4.

surface (m/sec, for each compartment. Line 24 is the environmental volume (cubic meters) for each compartment followed by entries of area (square meters, and average depth (m) for each compartment.

The next section, lines 27 through 31, represent flows entering the ecosystem compartments. These flows are of the following type: stream flow (cubic meters/hr), stream-born sediment load (Kg/hr), non-point source water flow (cubic meters/hr), non-point source sediment loads (Kg/hr), and ground water seepage flow (cubic meters/hr). The next input is average rainfall (mm/mo) in the geographic area, then the average cloudiness in tenths of full sky cover is input. From this point on in the data set, many parameters are input as zero because they deal with transformation of organic toxicants and not priority pollutant heavy metals.

The next six lines are inputs for average spectral irradiance immediately below the water surface. These inputs are not required for transformation of heavy metals. Line 40 corresponds to the evaporative water losses (mm/mo) from each compartment. The next line is where suspended sediment concentrations (mg/l) are input if dealing with water column compartments and bulk density (g/cc) for benthic compartments. These inputs are followed by percent water in bottom sediments of benthic compartments. Water column compartments have inputs of

zero for this variable.

The transport mechanisms of advection and dispersion are input in lines 43 - 52. Advection is input first, with the first line corresponding to the number of advective pathways. The next three lines are the source compartment, the receiving compartment and the proportion of the advective flow. The dispersive pathways are then input. The first line equates to the number of dispersive pathways. The source compartments are then entered followed by the receiving compartment and the description of the exchange pathway. The cross-sectional area (square meters), characteristic length (m), and eddy dispersion coefficients (square meters/hr) are the parameters required to describe the dispersive pathway. The characteristic length is defined as the distance from compartment center to compartment center.

The next three lines correspond to the organic carbon content of compartment sediment, cation and anion exchange capacity of the sediments. Line 56 is the average temperature for each compartment. The pH and pOH of each compartment are the next two inputs. Finally, the remaining lines are not required for the modeling of the Naugatuck riverine ecosystem for the migration and fate of priority pollutant metals.

Included in the appendices is a copy of the EXAMS input file description (Burns et al., 1981). The descrip-

tion provides a detailed description of the computer format, and the parameters which were not used, but can be used for organic toxicants.

For each compartment there is a corresponding MINTEQ input file, and it should be re-emphasized that each compartment is assumed to be completely mixed after the priority pollutant enters the compartment. After input files have been created for each compartment (MINTEQ), and the transformation and transport model (EXAMS) input file is complete, the MISP interactive input file is created.

This file encompasses twenty-five lines in this example. These lines allow the interaction of MINTEQ with EXAMS and produce the MEXAMS system model. The first line corresponds to the selection of the computer mode (MINTEQ only, or coupled version). The metal selection is made next from the list of metals (As, Cd, Cu, Pb, Ni, Ag and In) and corresponding identification numbers in the MINTEQ components list. The next line corresponds to how many MINTEQ files are needed. The number of required files is dependent on the water quality data for the aquatic system. If the water quality data does not change significantly for each compartment, then one file is sufficient. Water quality fluctuations could be a result of wastewater treatment plant discharges, industrial discharges, overland runoff, etc.

The next group of lines corresponds to the number of compartments that match up with each MINTEQ file, followed by the compartment number that corresponds to each MINTEQ file. The next input is the number of times the programmer wants the steady state metal concentration updated. EXAMS initially assumes all metal is in the dissolved form and by providing MINTEQ with these results, the actual dissolved, sediment sorbed, biosorbed and precipitated metal concentrations are obtained. EXAMS uses these updated calculations in the next simulation for fate and transport of the pollutant. Line seventeen relates to how often MINTEQ is used for persistence calculations. After steady state has been achieved, the pollutant loading is ceased and persistence calculations begin. These calculations are based on two system halflives, which are divided into twelve equal time increments. This input will continue metal fraction updating throughout the persistence calculations. The next three inputs correspond to the output option, the MINTEQ file names for each compartment, and the EXAMS input file name. There are three output options available: the full MINTEQ output, aqueous species distribution and all mass totals, and all mass totals. This concludes the MISP interactive input file. Table 6 is a sample of the MISP file.

3.3 Output (MINTEQ)

Table 6

MISP Input

NAUG1. DAT NAUG2. DAT NAUG3. DAT NAUG4. DAT NAUG5. DAT NAUG5. DAT NAUG6. DAT The MINTEQ output data received when the uncoupled mode is operated can be divided into seven sections. The first section is a duplication of the first five lines of the input file. Section two corresponds to the initial charge balance of the solution being modeled, prior to aqueous speciation. A large percent difference can be indicative that one or more major cations or anions may have been neglected when preparing the water quality input file. However, the water analysis may be entirely correct with the final speciation indicating an acceptable charge balance. Therefore, initial charge imbalance should be evaluated on a case by case basis (section 2 is presented in Table 7).

The third section provides an iterative output displaying the convergence of the first component in the input file to its actual speciated activity (Table 7). Also included in this section is the calculated molality, activity, Log activity, activity coefficient, and new Log K for all input components. The new Log K is the effective equilibrium constant after temperature and ionic strength corrections. This section can be used to enable the user to make a better guess for the activity in the input file.

The fourth section provides the output data for the six different specie types. The output for Type I components and Type II complexes are similar with the

Table 7

MINTEQ Output

CHARGE BALANCE: UNSPECIATED
SUM OF CATIONS= 2.203E-03 SUM OF ANIONS = 2.863E-03
PERCENT DIFFERENCE = -13.04 (CATIONS - ANIONS)/(ANIONS + CATIONS)

	LOG ACTVTY	-3.80000	-3.38469	-3.32420	-3.43010	-3.62025	-3.41555
	DIFF FXN	-2.910E-04	-6.766E-05	1.439E-04	2.858E-04	-1.933E-04	3.429E-06
SOLVE	TOTAL MOL	4.991E-04	4.991E-04	4.991E-04	4.991E-04	4.991F-04	4.9915-04
TERATIONS DURING	NAME	V	CA	CA	₹5	₹3	₹3
ITERAT	I TER	-	0	၈	4	ID.	9

		-3.620E			
	NEW LO	1009	. 100	.026	. 102
		. 792686	٠	٠	•
		-3.41830			
	ACTIVITY	4.815E-04 3.817E-04	1.107E-04	7.734E-04	2.996E-07
	CALC MOL	4.815E-04	1.393E-04	8.211E-04	3.792E-07
ERATIONS = 6	ANAL MOL	4.991E-04	1.440E-04	8.222E-04	5.703E-04
UTPUT DATA: 1TI	NAME	150 CA	#G	4	CQ3
OUTPUT	<u>0</u>	150	460	200	140

following headings: calculated molality, activity, Log activity, activity coefficient (GAMMA), new Log K, and the enthalpy of the reaction (DH). Type III fixed solids are of four basic categories, redox reactions, components at fixed activity, solid phases and gases at a fixed partial pressure. The output for these type species consists of calculated molality, Log molality, new Log K and the DH. In our case the Type III species fall into the category of fixed activities, thus any intuitive information from this section cannot be obtained. However, if solid phases were being dealt with, a positive calculated molality would equal the mass of solid precipitated. On the other hand, a negative calculated molality would equal the dissolved mass or mass added to the solution. No Type IV or Type V species were permitted from the list of solids which were supersaturated as indicated by MINTEQ. Chemical precipitation has not been observed in the Naugatuck River although it cannot be precluded. Type V calculated molality would correspond to saturation index values. Type VI has two different interpretations for the calculated molality. If solid phase, it corresponds to saturation index. If aqueous species, it corresponds to activity of specie. A sample of section four output is displayed in Table 8.

Section five presents the percentage distribution of Type I components and Table 9 is an example. The sixth

Table 8

MINTEQ Output

SPECI	ES. TYPE	1 - COMPONENTS				NEW LOCK	DH
10	NAME	CALC MOL		LOG ACTVTY	GAMMA	. 101	۵ س
150	CA	4.815E-04	3.817E-04	-3.41830	792686	. 100	ŏ
460	MG	1.393E-04	1.107E~04	-3, 95593	. 794378	. 026	ŏ
	NA	8.211E-04	7.734E-04	-3.11159	. 941939		ŏ
	COS	3.792E-07	2.996E-07	-6.52348	. 789951	102	ŏ
732	504	2 408E-04	1.891E-04	~3.72333	785348	. 105	
180	CL	1.072E-03	1.008E-03	-2,99650	. 94 0572	. 027	0
90	H3B03	1.341E-06	1 342E-06	-5.87224	1.000697	000	0
	K	7 892E-05	7.423E-05	-4.12945	. 940572	. 027	o
	PO4	1.940E-11	1,137E-11	-10.94412	. 586236	. 232	0
580		8 643E-05	8 649E-05	-4.06305	1.000697	000	0
770	H45104	1 223E-07	9.686E-08	-7 01385	.791776	. 101	0
231	CU+2	1 671E-07	1.323E-07	-6.87842	.791776	. 101	0
950	ZN	1 142E-04	1.074E-04	-3.96888	940473	027	0
492	NO3		4 925E-07	-6.30758	791776	. 101	0
470	WN+5	6 220E-07	7 545E-15	-14.12233	606033	. 218	0
281	FE+3	1.245E-14		-8.99549	785813	. 105	0
600	PB	1.286E-09	1.010E-09	-0.93349	. 7030.0		_
SPEC	ES: TYPE	11 - COMPLEXE					n -
. 5, 20,	HAME	CALC MOL	FULLINGTO	I'DU VERVEN	Ubmmy	MELL I WAK	
503320	CACH +	1.409E-09	1 329E-09	-8.87633	. 943302	-12.573	14.535
1501400	CAHCG3 +	1.944E-06	1.834E-06	-5.73669	943302	11.370	1.790
501401	CACO3 AO	1.624E-07	1.625E-07	-6.78917	1 000697	3.152	4 030
507320	CASOA AG	1 469E-05	1.4702-05	-4.83263	1.000697	2 309	1.470
505800	CAHPO4 AO	3 8228-07	3.825E-07	-6 41742	1 000697	15.085	230
505801	CAPO4 -	1.325E-08	1.249E-08	-7.90342	. 942758	6 485	3.100
505802	CAHZPO4 +	2.204E-08	2.078E-08	-7.68242	942758	20.986	-1.120
3001400	NACO3 -	4.555E-09	4.295E-09	-8.36707	942758	1.294	8.911
	NAHCOS AQ	2.017E-07	2.018E-07	-6.69507	1.000697	10.080	0
3001401					. 941520	1 626	4.380
5001800	PBCL +	4.307E-11	4 055E-11	-10.39199		1.800	1.080
1081008	PBCL2 AG	6.475E-14	6.479E-14	-13.18849	1.000697	1.725	2.170
600:602	PBCL3 -	5 498E-17		-16 28599	. 941520		3.530
600:803	PBCL4 -2	3.186E-20	2.503E-20	-19 60149	785813	1,485	
600.100	PB(C03)2-2	5 006E-12	3.9596-12	-11 40245	. 785813	10.745	0
6003300	PBOH +	2.388E-10	2.7193-10	-9.56552	941520	-7.684	0
6003301	PB(OH)2 AQ	1.459E-12	1.4608-12	-11.83554	1.000697	-17.120	0
6003302	PB (OH) 3 -	2.458E-16	2.314E-16	-15.63557	. 941520	-28.034	0
6003303	PB20H +3	1 0585-17	6.152E-18	-17 21101	. 561390	-6.124	0
6004920	PB1103 +	1 705E-12	1.606E-12	-11.79437	. 941520	1.196	0
6007320	P3504 AQ	1 074E-10	1.074E-10	-9.96882	1.000697	2.750	0
	PB3(OH)4+2	6.282E-23	4.937E-23	-22.30658	. 785813	-23 775	26.500
6003304	PBC03 AQ	5.257E-09	5.261E-09	-8.27897	1.000697	7 240	0
5001401	PB(OH)4 -2	9 334E-21	7.335E-21	-20.13460	.785813	-39.594	D
6003335	PB(504)2-2	1.357E-13	1.066E-13	-12.97214	.785813	3.575	0
		111 - FIXED		- · · · ·			
	CIES TYPE	CALC MOL	LOG MOL	NEW LOCK	DH		
10		-9.247E-06			J., 0		
2	H20	-1.751E-07			ŏ		
991	S6H2				ŏ		
990	SOH1	-7 613E-08			ŏ		
330	н	-6.125E-04	-3.19	, 140	U		
SPE	CIES TYPE	VI - SPECIES	NOT CONSIDE	ERED			
10	NAME	CALC MOL	LOG MOL	NEW LOCK	DH		
2201403		2 273F-03		3 18.160	530		

section presents the amount of each Type I component in solution (aqueous mass), sorbed (sorbed mass) and precipitated (precipitated mass). The final charge balance is also presented, and if the final percent difference after aqueous speciation is less than five percent, the run is acceptable. A sample of section six output is presented in Table 9. The heavy metal under investigation in this case study is copper, and from Table 9 it can be seen that 14.3 percent of the copper is in the free ion form, 16.9% bound to surface sites with the remainder as inorganic complexes.

The final section provides the saturation indices for all minerals and solids in the data base. This section is used to determine if the saturation index of a particular mineral or solid has been exceeded. A positive Log SI means the solid is oversaturated. This also tells you that this solid could precipitate, and thus, if your environment favors this solid, the solid could be input as a Type IV solid and allowed to precipitate. Finally, a line will be printed "NORMAL TERMINATION OF MINTEQ" and the output is complete. The final section is presented in Table 10. An example of the entire MINTEQ output is presented in the appendices.

3.4 Output (EXAMS)

The EXAMS output obtained when the coupled mode

Table 9

MINTEQ Output

PERCENTAGE DISTRIBUTION OF COMPONENTS

CA								
	96	5	PERCENT	BOUND	IN	SPECIES	150	CA
	5	9	PERCENT	BOUND	ΙN	SPECIES	1507320	CASO4 AQ
ĊŨ+2								
	14.	3	PERCENT	BOUND	IN	SPECIES	231	CU+2
	17	9	PERCENT	BOUND	İN	SPECIES	9912310	SOH-CU
	18.	2	PERCENT	BOUND	IN	SPECIES	2311400	CUCO3 AQ
	1.	7	PERCENT	BOUND	IN	SPECIES	2313300	CUOH +
	44	9	PERCENT	BOUND	IN	SPECIES	2313301	CU(OH)2 AQ
	2	6	PERCENT	BOUND	IN	SPECIES	2311402	CUHCO3 +
ZN								
	62	4	PERCENT	BOUND	IN	SPECIES	950	ZN
	2	2	PERCENT	BOUND	IN	SPECIES	9507320	ZNSO4 AQ
	2	9	PERCENT	BOUND	IN	SPECIES	9501400	ZNHCO3 +
	3	0	PERCENT	COUND	IN	SPECIES	9501401	ZNCO3 AQ
	28	4	PERCENT	BOUND	IN	SPECIES	9909500	SOH-ZN

IDX	NAME	AQUEDUS MASS	SORBED MASS	PRECIPITATED MASS
150	CA	4 987E-04	0	0
460	MG	1 439E-04	0	0
500	NA	9 221E-04	٥	0
140	CO3	5 702E-04	0	0
732	504	2.601E-04	0	ò
180	CL	1.072E-03	0	0
90	нзвоз	1 352E-06	0	o
410	K	7.3025-05	0	0
580	P04	5.164E-06	0	ō
770	H45104	8.658E-05	0	0
231	CU+2	7. 042E -07	1.535E-07	Ó
950	ZN	1.915E-07	7.613E-08	ō
492	NO3	1 142E-04	0	ŏ
470	MN+2	6 -38E-07	0	o
281	FE+3	3 832E-06	0	Ō
600	PB	7 360E-09	2.160E-08	0
2	H20	9.247E-06	0	Ö
330	H	6.425E-04	0	Ö
CHA	POE BALANCE	CRECIATED		

CHAPGE DALANCE SPECIATED

SUI OF CATIONS = 2 149E-03 SUI OF ANIONS 2.168E-03

PERCENT DIFFERENCE = -.43 (CATIONS - ANIONS)/(ANIONS + CATIONS)

NOMCARBONATE ALKALINITY = 0

IONIC STRENGTH = 3 026E-03

SATURATION INDICES FOR	ALL MI	AND SOLIDS	SO			
	16 S1	100 X	NIN LOG	MAX LOGK	L06 1AP	돔
-	-2.505	4.637	0	0	-7.142	3.769
_	-1.606	8.336	0	0	-9.942	2.615
•	-9.755	-9.600	0	0	155	28.742
_	-6.463	-16.792	0	0	10.324	25.840
_	-1.467	8.475	8.560	0	-9.942	2.585
_	540	3,523	С	0	-4.063	-4.615
_	-9.542	-32, 188	0	0	22.846	52.485
_	-5.077	-11,338	-10.972	-11.632	6.261	20.015
_	476	3.587	0	0	-4.063	-5.500
_	-6.826	-19.886	0	0	13.060	32.280
-	-3,421	17.000	0	0	-20.421	8.290
_	-5.539	2.140	0	0	-7.679	-2.820
••	-7.454	-15.913	0	0	8.459	27.268
_	2.407	-4.891	-1.557	-4.996	7.298	0
_	7.297	3.040	0	0	4.257	0
_	-42.995	-3.580	. 650	0	-39.415	59.120
_	-11.713	-28.298	0	0	16.585	48.510
_	6.798	500	0	0	7.298	14.480
_	-2.294	4.848	0	0	-7.142	261
_	-7.690	-1.582	0	0	-6.108	918
_	18.603	4.008	0	0	14.595	30.845
_	-11.412	29.968	0	0	-41.380	25.760
-	-22.828	8.766	0	0	-31.594	52.210
•	1.13	11.200	0	0	-10.085	36.180
_	-6.197	-12.996	0	0	6.799	19.498
_	-7.047	-13.846	0	0	6.799	21.068
_	-19.989	-37,649	0	0	17.660	54.695
~	-21.481	-39, 141	0	0	17.660	57.238
_	-45.345	-73.867	0	0	28.522	106.335
_	-13.149	-20.272	0	0	17.123	49.421
_	-23.551	-47.472	0	0	23.921	76.445
_	-33.750	-68,543	0	0	34.783	107.111
3028102 LEPIDOCROCIT	5.927	-1.371	0	0	7.298	0
	MORMAL TERMINATION OF MINTER	INATION O	F MINTEO			

is selected is dependent upon the MISP file configuration. The parameter which controls the EXAMS output is the number of times EXAMS uses MINTEQ to update steady state metal concentrations. EXAMS utilizes MINTEQ three times to update steady-state metal concentrations in the Naugatuck River test case. The selection of this parameter is based on trial and error; the programmer examines the output obtained while varying the input and determines when system steady state is achieved. System steady state is defined as an equilibrium between the partioning achieved with EXAMS and MINTEQ.

The EXAMS output file received after each steady state calculation will be divided into three sections. The first section consists of 13 tables, which were obtained from the initial EXAMS calculation. The initial EXAMS calculation assumes the pollutant is in the aqueous form. Tables 2 - 8 (all shown in Table 11) are echoes of the EXAMS input data. Table 1 is not printed because the pollutant in question is a heavy metal and not an organic. If the pollutant had been an organic, Table 1 would have been an echo of the organic input data.

The next section includes Tables 9 - 14 (all shown in Table 12). These five tables are the transport profile, the kinetic profile, the canonical profile, toxicant loadings by system element, the distribution of the chemical at steady state (the water column and

Table 11 EXAMS Output

	JBAL PARAMETERS.	1.0E+02
ECOSYSTEM: NAUGATUCK RIVER CALIBRATION TEST RUN	IRONMENT:	
NAUGATUCK RIVER C	NPUT DATA DESCRIBING ENV	RAI .00 .00 .00 .00
ECOSYSTEM:	TABLE 2. I	KOUNT = 10 IRRADIANCE . 0 . 0 . 0 . 0 . 0 . 0

Table 11 (continued)

TABLE	3. INPUT	TABLE 3. INPUT DATA DESCRIBING ENVIRONMENT: BIOLOGICAL PARAMETERS.	BING ENVIRON	IMENT: BIOL	OGICAL PA	RAMETERS.
>	BIOMS (1)	PLRA (2)	BIOTM DEG C.	BACT0 (3)	ACBAC (2)	CHL MG/L
- 1	0.	0.	23.50	0.	0.	0.
28	0.	0.	23.50	0.	٥.	•
35	0.	0.	23.50	Φ.	0	٥.
48	0.	٥.	23.50	0.	0.	
5L	0.	0.	23.50	0.	0.	0.
68	0,	0.	23.50	0.	0.	
77	0.	0.	23.50	0.	0.	0.
88	0.	0.	23.50	0.	0.	
16	0.	0.	23.50	0.	0.	0.
108	0.	0.	23.50	0	0.	
(1)	UNITS: MG/	L IN WATER C	01 UMN (L, H, E	3); G (D.W.)/SQUARE	UNITS: MG/L IN WATER COLUMN (L, H, B); G (D. W.)/SQUARE METER IN (B).
(3)	DIMENSIONL UNITS: CEL	DIMENSIONLESS NUMBERS. UNITS: CELLS/ML IN L.	E, H; CELLS/100 G D.W. IN B.	/100 G D.W.	IN B.	

Table 11 (continued)

TABLE	4. INPUT DA	TABLE 4. INPUT DATA DESCRIBING ENVIRONMENT: DEPTHS AND INFLOWS.	G ENVIRONM	IENT: DEPTHS	AND INFLO	.s.
<u> </u>	DEPTH	STFLO CU M/HR	STSED KG/HR	NPSFL CU M/HR	NPSED KG/HR	INTFL CU M/HR
; ; ;	.1707	988.8	2.967	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		162.5
3F 3F	9.140E-03 .1798	46.94	.4890			1.020E-U2
48	9.140E-03					
3048	770.8	5.528			117.9	
68	9.140E-03					1.179E-02
7/	. 3048					117.7
88	9.140E-03					. 1179
6	. 3048					117.7
108	9.140E-03					.1533

Table 11 (continued)

TABLE 5.		DATA DESCRI	INPUT DATA DESCRIBING ENVIRONMENT: SEDIMENT CHARACTERISTICS	ENT: SEI	JIMENT CHARAC 1	TERISTIC	s:
<u></u>	SDCHR (1)	PCTWA (2)	FR0C (3)	CEC (4)	AEC (4)	M6/L	1 1 1
11 28	3.000	115.2	3.800E-02 3.800F-02		25.00	0.	! ! !
3L 4R	3.000	115.2	3.800E-02	25.00	25.00	0.	
	7.500) !	3.800E-02			0.	
وو ا	1.530 7.500	115.2	3.800E-02 3.800E-02			0.	
88	1.530	115.2	3.800E-02				
9L 10R	7.500	115 2	3.800E-02			0.	
) ! } !	; ; ; ; ; ; ; ; ; ;	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				1 1 1 1 1	1
(1) (2) 1	JNITS: MG/1	UNITS: MG/L SUSPENDED 100 * F.W./D.W. IN B.	SEDIMENT IN L, E,	, E, H;	BULK DENSITY	(G/CC) IN	INB
	JIMENSIONE 1EO/100 GRI	JIMENSIONLESS. AEO/100 GRAMS DRY WEIGHT.	SHT.				

Table 11 (continued)

[}	!	0.4	04	04	-04	04	-04	-04	-04	0.4	04
MISC.	AREA SQ M	5.386E+04	5.386E+04	1.257E+04	1.257E+04	8.757E+04	8.757E+04	8.757E+04	8.757E+04	8.757E+	8.757E+04
LIGHT,	EVAP MM/MON	0		0		0		0		0	
AERATION,				·.		`.		Ξ.		٠.	
ONMENT: /	DFAC M/M	0,		0.		0.		0.		0.	
NG ENVIR	CMPET /M	1.161		1.161		2.691		2.691		2.691	
TABLE 6. INPUT DATA DESCRIBING ENVIRONMENT: AERATION, LIGHT, MISC.	WIND M/S @10 CM	0.		0.		0.		0.		0.	
6. INPUT	K02 CM/HR @20	0.		0.		0.		0.		0.	
TABLE	★	11	28	31	48	5	99	7	88	16	108

Table 11 (continued)

TABLE 7.		ATA DES	CRIBING	INPUT DATA DESCRIBING ENVIRONMENT: ADVECTIVE INTERCONNECTIONS	NT: A	DVECTIVE	INTERCON	INECTIONS.
COMP. NO.	(JFRAD)	!	! ! ! !	: : : : : : : : : :	2	1 1 1 1 1 1 1	7	5
CONNECTED	_	က		2	7		6	0
ADVECTION		1.00	1	. 00	ĵŷ:	1:00	û	1.00
COMP. NO.	(JFRAD)			4	9		80	10
CONNECTED				က	ഹ		7	6
ADVECTION	_		•	900	006.	. 240	0	. 380
COMP. NO.	-			4	9		8	10
CONNECTED				9	∞		01	0
ADVECTION	-		•	001	.100	. 76	20	.620

1	NNECTIONS.	თ	10	8.76E+04	. 157	5.00E-07
	T INTERCO	7	œ	8.76E+04	.157	5.00E-07
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: TURBULEN	5	9			
	ENVIRONMENT: TURBULENT INTERCONNECTIONS.	ო	4	1.26E+04 8		
! ! ! ! ! ! ! ! ! ! ! ! !	NPUT DATA DESCRIBING	-	2	5.39E+04 1		
	INPUT DATA	(JTURB)	(ITURB)			
1 1 1 1 1	TABLE 8.	OCUMP. NO.	CONNECTED	X-SECTION	CHAR. LN.	FUDY DISP. (DSP)

Table 12

EXAMS Output

TABLE	9. TRANSPO	RT PROFILE	TABLE 9. TRANSPORT PROFILE OF ECOSYSTEM	· ·		
* \ \	VOLUME (CUBIC M)	SEDIMENT MASS (KG)	SEDIMENT WATER FLOW MASS (KG) (CU. M/DAY)	SED. FLOW (KG/DAY)	RESIDENCE WATER	RESIDENCE TIME (DAYS) WATER SEDIMENTS
11	9.32E+03	27.9	2.76E+04	313.	. 337	8.93E-02
28	495.	6.58E+05		9.80E+03	54.3	67.1
31	3.35E+03	10.1		114.	. 117	8.85E-02
48	115.	1.53E+05		2.15E+03	64.2	71.1
35	2.63E+04	198.		471.	. 526	. 420
68	801.	1.06E+06	1.64		98.7	117.
71	2.63E+04	198.	5.29E+04		. 498	7.34E-02
88	801.	1.06E+06	•		38.4	45.9
16	2.63E+04	198.	5.57E+04		. 473	. 112
108	801.	1.06E+06	7.20	3.28E+04	22.4	32.5
+ COMP.	. TYPE: "L"	=LITTORAL;	TYPE: "L"=LITTORAL; "E"=(EPI) AND "H"=(HYPO)LIMNION;	TH. = (HYP	O)LIMNION;	"B"=BENTHIC

Table 12 (continued)

TABLE 1 FROM CO	O. KII	TABLE 10. KINETIC PROFILE OF ORGANIC TOXICANT. RATE CONSTANTS DERIVED FROM COUPLING OF TOXICANT CHARACTERISTICS TO ECOSYSTEM PROPERTIES.	OF ORGANIC HARACTERIST	TOXICANT.	RATE CONSTAI YSTEM PROPEI	NTS DERIVED RTIES.
CP T*		WARPON YOU'S BUSTON OF TO SELECT THE CONSTANTS (/HR)	IRST-ORDER	RATE CONSTA	NTS (/HR)	
- !		ISIS FRUIULISIS	S UALUALIUR	BIOLISIS	VOLATILIT	VOLAIILIIY IRANSPORI
11	0.	0.	0.	0.	0.	. 197
28	0.	٥.	0.	0.	0.	6.21E-04
31	0.	0.	0.	0.	0.	. 369
46	0.	0.	0.	0.	0.	5.86E-04
21	0.	0.	0.	0.	0.	8.56E-02
6 8	0.	0.	0.	0.	0.	3.56E-04
٦,	0.	0.	c.	0.	0.	. 146
8E	0.	0.	0.	0.	0.	9.08E-04
16	0.	0.	0.	0.	0.	. 133
108	0.	0.	0.	0.	0.	1.28E-03
* COMP.		TYPE: "L"=LITTORAL; "E"=(EPI) AND "H"=(HYPO)LIMNION;	"E"=(EPI)	AND "H"=(HY	PO)LIMNION;	"B"=BENTHIC

Table 12 (continued)

CANONICAL PROFILE OF ECOSYSTEM.

DISSOLVED PERCENT	6.91E-03 89.8 3.11E-02 68.1 2.28E-02 87.2 3.01E-03 84.3	"B"=BENTHIC
OXIDANT CONC. (MOLAR)	. 0 1. 00E-09 5. 00E-10 1. 00E-09 1. 00E-09 5. 00E-10	- •
BACTERIAL POP. SIZE CELLS/**	28.50.00.00.00.00.00.00.00.00.00.00.00.00.	"H"=(HYPO)LIMNION; ML IN WATER COLUMN N BOTTOM SEDIMENTS
COMPOSITE LIGHT AVE	1.00E-09 .0 .0 .0 .0 .0	"E"=(EPI) AND IONS AS CELLS/I OF SEDIMENTS I
REAERATION COEFF.	00000000	- II
TEMP DEG. C.	23.55 23.55 23.55 23.55 23.55 23.55	=LITT
POH	6.92 6.92 6.92 6.92 6.92 6.92 6.92	E: "L' ACTER] 0 G ([
± d	7. 14 7. 01 7. 01 7. 08 7. 08 7. 08 7. 08	. COMP. TYPE: "L"=LITTORAL; * ACTIVE BACTERIAL POPULA CFILS/100 G (DRY WEIGHT)
* > d	28 31 48 48 51 68 71 71 88 91	* COMP * ACT CEL

Table 12 (continued)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i					
ELEMENT.	NPS LOAD					1 1 1 1 1 1
BY SYSTEM	INTERFLOW NPS LOAD	6.505E-04		1.179E-04	1.179E-04	1.179E-04
JABLE 12. TOXICANT LOADINGS (KG/HR) BY SYSTEM ELEMENT.	RAINFALL					1.179E-04
TOXICANT LO	STREAM FLOW RAINFALL	1.284E-02	4.404E-03	3.361E-02		
1ABLE 12.	EI EMENT		√ m ·	4 rv rc	. ~ 8	9 10

Table 12 (continued)

UMP STEADY-ST	ATE RESIDENT	MASS	****** TOTAL	** TOXICAN DISSOLVED	T CONCENTRA	ATIONS ***	****** PRECIP
ລ					BIOTA	SEDIMENTS	SEDIME
NIS G/M	KILOS	×	*/9W	MG/L	06/6	MG/KG	/9W
1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1	1 1 1 1 1 1	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0-	. 1073	æ	.15E-0	05E-	0.	826.	0.
9	5.005E-02	2	.49E-0	34E-0	0.	507.	o.'
5 7 43F-03	6504	1.6		E-0	0.	1.05E+03	٥.
0-	4235	7.1	.61E-0	40E-0	0.	274.	<u>.</u>
0	. 3311	21.19	$\overline{0-3}$	0-390	0.	263.	0.
SUBTOTAL:	1.562 TIOM SENTME	1.9					
	13 79	7.		53E-0	0.	_;	0.
100	1 370	1.7	8.98	1.84E-02	0.	8.98	0.
6 137	12.03	9.9	Ξ.	70E-0	0.	٠.	ဘ (
332	29, 10	6.1	7	42E-0	0.		⊃.'
10 . 277	24.23	30.10	2	09E-0	0.	2	٥.
SUBTOTAL:	80.53	8.1					
TOTAL MASS (K)	(LOGRAMS) =	۲,	60				

STEARY STATE. AND MINIMUM CONCENTRATIONS AT Table 12 (continued) MAXEMUM AVERAGE, TABLE 14.

4	(P)	CP)TOTAL	CF 1D	PIDISSOLVED	CF)S	CPISEDIMENTS	B (a)	CPIBIOTA	(P)P	CP)PRECIP	CP)MASS	ທ ປາ V
	1	W6/*	: 	M6/L	1	MG/KG	1 7 t 1	9/96	1	MG/L	: 1 1 1	₩/9
43 ×	ت ن ن			1.286-02		584.		0.		0.		4.4E-03
Σ :	5)	2.47E-02	5)	1.685-02	5)	1.05E+03	6	e;	6)	0.	5)	7.4E-03
Σ.	(1	1.15E-02	1)	9.05E-03	6	263.	6)	^> •	6	0.	-1	2.0E-03
BOT AV	±0 ™ 0	BOTTOM SEDIMENTS: AV 18.3		1.135-02		18.5		0.		ల.		.22
₹.	8	27.4	4	1.845-02	8	27.4	10)	<u>.</u>	101	ઝ	8)	.33
Σ	4)	9° 98	3)	5,428-03	4	8.98	10)	G.	10)	0.	4)	. 11

I NUMBER IN HALF-PARENS CP) INDICATES COMPARTMENT WHERE VALUE WAS FOUND. * TOTAL CONCENTRATION AS MG/L IN WATER COLUMN, AS MG/KG IN SEDIMENTS.

sediments), the average, maximum and minimum concentrations at steady state. Table 10, the kinetic profile is for organic toxicants only. These five tables are repeated the number of times EXAMS uses MINTEQ to update steady state metal concentrations. For the Naugatuck River test case, this occurred three times. The most important of the three outputs is the last repetition, because it is the output obtained when system steady state has been achieved for the water column and sediments.

The third section of output is encompassed in Table 15 - 17, the analysis of steady state fate, the simulation of system response after load ceases, and the exposure analysis summary. These three tables contain the persistence calculation performed by EXAMS. These tables are presented in Table 13. The final portion of the program output is the MISP output.

3.5 Output (MISP)

This section as previously stated provides a summary of the EXAMS-MINTEQ interactions. These interactions include steady state calculations made to achieve system steady state, and calculations made during the persistence to update metal fractions. For the Naugatuck River test case, steady state concentrations were updated three times to obtain system equilibrium, and updated

Table 13

EXAMS Output

	Z
	TEST R
	* NAUGATUCK RIVER CALIBRATION TEST RUN
	RIVER
Heavy Metal	NAUGATUCK
HLMICAL:	COSYSTEM:

1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TABLE 15. ANALYSIS OF STEADY-STATE FATE OF ORGANIC TOXICANT	FAIE OF ORG	ANIC TOXICANT.	
PROCESS	MASS FLUX KG/DAY	# OF LOAD	HALF-LIFE*
HYDROLYSIS OXIDATION PHGTOLYSIS ALL CHEMICAL PROCESSES	0000	0.000.000.00	1
WATER COLUMN (BACTERIA) BUITOM SEDIMENTS (BACTERIA) TUTAL BIOLYSIS	000	0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VOLATILIZATION WATER-BORNE EXPORT	. 0	0.0	45.72
TRANSFORMATION AND TRANSPORT TOTAL SYSTEM LOAD RESIDUAL ACCUMULATION RATE:	1.245 1.245 1.341E-06	100.00	

* HALF-LIVES ARE ESTIMATES BASED ON A FIRST-ORDER RATE APPROXIMATION.

Table 13 (continued)

CHEMIC ECOSYS	CHEMICAL: Heavy Metal ECOSYSTEM: NAUGATUCK RIVER CALIBRATION TEST RUN	tal JCK RIVER	CALIBRATION	TEST RUN		1
TABLE	TABLE 16. SIMULATION OF SYSTEM RESPONSE AFTER LOAD CEASES.	ION OF SY	STEM RESPONS	E AFTER LOA	D CEASES.	1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
TIME	AVERAGE	POLLUTAN	AVERAGE POLLUTANT CONCENTRATIONS	SNOI	MASS OF	MASS OF POLLUTANT
DAYS	WATER COLUMN	UMN	BOTTOM SEDIMENTS	DIMENTS	WATER COL	SEDIMENTS
٠ سـ	FREE(MG/L) SED(MG/KG)	ED(MG/KG)	PORE (MG/L)	PORE(MG/L) SED(MG/KG)	TOTAL KG	TOTAL KG
C	1,28E-02	584.	1.13E-02		1.562	80.5
«	3, 75E-03	165.	1.06E-02		. 4264	74.5
16.	3.46E-03	153.	9.91E-03	15.6	. 3934	68.4
24.	3, 20E-03	142.	9.26E-03		. 3630	62.7

Table 13 (continued)

again two times during the persistence calculation. This totals five interactions between EXAMS and MINTEQ, and the MISP output file is presented in Table 14.

Table 14

MISP Output

UPDATED CONC	ENTRATIONS F	ROM MINTEQ ((MG/L)
UPDATED CONC			MG/L)
COMPARTMENT	AQUEOUS	ADSORBED	PRECIPITATED
COMPARTMENT	AQUEOUS	ADSORBED	PRECIPITATED
1	9.024E-03	2.478E-03	0.0
2	9.532E-03	1.379E+02	0.0
3	1.341E-02	1.519E-03	0.0
4	1.836E-02	5.897E+01	0.0
5	1.684E-02	7.880E-03	0.0
6	1.697E-02	7.435E+01	0.0
7 8	1.404E-02	2.065E-03	0.0
8	5.420E-03	1.798E+02	0.0
9	1.061E-02	1.970E-03	0 .0
10	6.094E-03	1.500E+02	0.0
CONCENTRATIO	INS COMPUTED	BY EXAMS IN	MG/L
CONCENTRATIO	INS COMPUTED	BY EXAMS IN	MG/L

CHAPTER 4

MODEL RESULTS

4.1 Calibration Parameters

Metal transport in the Naugatuck River is currently being investigated to provide important data for waste allocation decisions. Included within this investigation is the calibration of MEXAMS to a compartmentalized river reach. The reach being calibrated (Figure 3) was originally composed of three water column compartments and three benthic compartments. However, the final model configuration consisted of a ten compartment model; five benthic compartments and five water column compartments. A diagram of the final configuration will be presented herein. This calibration consisted of adjusting certain model inputs to yield results that were the same as the field data obtained on August 16-18, 1983.

The first step in the calibration was to determine which model inputs have the least reliability. These are the parameters that will be adjusted to perform a sensitivity analysis. Any sensitivity analysis is system dependent because certain input parameters may be more or less sensitive depending on the system being modeled.

Therefore, the first decision to be made was to select a system configuration. There are many possible configurations due to the possible advective and dispersive pathways. The two initial configurations chosen for this test case are presented in Figure 5. The main difference between configuration one and configuration two is the advective pathways. Configuration one allows flow to exit the system through the sediments via compartment six and has no advective flow through compartment four, configuration two is just the opposite. Originally, both of these configurations had the entire groundflow routed through the benthic compartments (2 & 6). This caused a considerable problem because the sediment residence time within the benthic compartments was so low that the priority pollutant was being flushed out of the system. This problem was corrected by routing a portion of the groundwater into the water column compartments (1 & 5). This increased the sediment residence time and thus, increased the concentration of adsorbed pollutant within the bed sediments. Figure 6 displays the effect of routing various percentages of groundwater through the benthic compartments for both configurations. Compartments two and four were not shown in configuration one because the residence time changed very little. This slight change is a result of no flow being advected through these compartments. On the other hand, compartment six is

CALIBRATION CONFIGURATIONS

CONFIGURATION I

CONFIGURATION 2

KEY: I COMPARTMENT # 8

1.0 - ADVECTIVE PROPORTION

Figure 5.

% GROUNDWATER FLOW (BENTHICS) CONFIGURATION 2 ROUTING TIMES EFFECT OF GROUNDWATER ON SEDIMENT RESIDENCE RESIDENCE TIME R 2 (SYAD) S GROUNDWATER FLOW (BENTHIC CONFIGURATION 500 (EYAG) SMIT RESIDENCE

not shown for configuration two because it also had very little change. Again, this is a result of no flow being advected through compartment six. At this point a decision was made to perform the remaining sensitivity analysis and calibration on configuration two.

The effect of the percent groundwater flow into the benthic compartments for configuration two allowed adjustment of the particulate concentration in the benthic regions (Figure 7). The next parameter adjusted for configuration two was the dispersion coefficient. This parameter was adjusted from 5.00*E-05 to 5.00*E-08 (meters square/hr; to obtain the relationship between dispersion coefficient and adsorbed concentration in the benthic compartments (Figure 8). The above range for dispersion coefficients did not result from a calculation because the slope of the river bed, the magnitude of the diffusive exchange coefficients for the water column and the interstitial water, and the characteristic length of the gradient were not known. However, a range of possible dispersion coefficients was obtained from Analysis of Fate of Chemicals in Receiving Waters - Phase I (1981, DiToro and St. John,.

The trend shown by varying the dispersion coefficient resulted in the sensitivity analysis of a final parameter. This parameter was the \mathbf{K}_d and originally it was not to be a calibration variable. The reason behind

Figure 7.

Figure 8.

the change stemmed from the inability to achieve the required adsorbed concentration within the benthic compartments. The decision to increase the K_d values from their field-determined values was reasonable considering the accuracy of benthic K_d determinations made in the field. It is very difficult to obtain a sediment sample without entrainment of water from the water column. The aqueous concentration of contaminant within the water column is much lower than that within the bed sediments, and the result would be a dilution. This dilution would result in a \boldsymbol{K}_{d} value that was too low, and for this reason the $\mathbf{K}_{\mathbf{d}}$ parameter has been changed to achieve higher particulate concentrations within the bed sediments. The adjustment of the K_d value and its affect on the benthic compartment adsorbed concentrations are shown in Figure 9.

Another problem was encountered after the calibration of configuration two which resulted in a final adjustment of the advective pathways. The problem was that the total concentration in compartment five was too high, and to reduce this an advective pathway from the benthic compartment (compartment six) was established. The advective flow proportions from compartment six to compartment five were varied in effort to reduce the total concentration in compartment five. The results obtained from varying the advective flow are

Figure 9.

presented in Figure 10.

The required concentrations for compartment five could not be obtained by varying the advective flow. As a result, a ten compartment configuration was developed. Since the model establishes instantaneous equilibrium, the 6.7 mile compartment was to large and the concentration could not be lowered by adjusting any of the calibration parameters. The final ten compartment configuration is presented in Figure 11. The final configuration was calibrated by adjusting three variables; the percent ground water flow into the benthic compartments (8 & 10), the advective flow between compartments (8 to 7, and 10 to 9), and the K_d value for the benthic compartments.

4.2 Model Results

After a good understanding was achieved for the sensitivity of the calibration parameters, the calibration continued for the ten compartment model. The two models being compared are slightly different, because the incremental flow model utilizes point source loads as incremental loadings to the an existing concentration. This new concentration is then transported downstream. On the other hand, the MEXAMS model establishes instantaneous equilibrium with the point source load, and as a result, the model outputs are mean compartment outputs

FINAL CALIBRATION CONFIGURATION

KEY: I-COMPARTMENT ".s. I.O - ADVECTIVE PROPORTION

Figure 11.

and not outputs at various points within the r Thus, the MEXAMS model will not predict the co where a point load enters (Bogue Rd.), and the tion measured will be higher than predicted. I calibration was compared to an incremental flo Curtis, State of Connecticut, Dept. of Enviror Protection, and laboratory results obtained fr collected at various sites along the river. The compartment model calibration to particulate c tions within the benthic compartments was very The model calibration to aqueous concentration the water column was not as accurate because c five concentration were too high. As a result, compartment was further divided into smaller c ments. The six compartment model results are p Figure 12 and Table 15.

This model was improved by dividing the river segment into smaller compartments. The compartments of compartments five and six into segment ments would allow for a greater control model calibration. The third segment has been figured by splitting compartments five and six The calibration results obtained from the final figuration are presented in Figure 13 and Tabirespectively. As stated previously, three paradjusted to achieve a calibrated model. Table

Figure 12.

Table 15
MODEL RESULTS FOR CONFIGURATION 3

Location	Model Compartment	Total Field	1 Mode 1	% Diff.	Dissolved Field P	ved *	% Diff.
WATER COLUMN (Pg	Jg/1)		ı	•	!		,
Palmer Br. Rd.		12.	11.5	-4.1	9.5	9.1	-4.7
Bogue Rd	က	0N	No Segment Data	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ON	No Segment Data	3
Rte. 118	_						
Campville Rd.	2	18.3	20.3	+10.9	14.3	17.7	+23.7
Br. Abutment	_						
BENTHIC REGION	(mg/1)				Particulate	late	
Palmer Br. Rd.	2	140.	138.	-1.5	140.	138.	-1.5
Bogue Rd.	4	62.	59.	-4.8	62.	59.	-5.0
Rte. 118	_						
Campville Rd.	9	128.	133.	+3.5	127.	133.	+4.7
Br. Abutment							

* The benthic region is shown as particulate copper in mg/l

Figure 13.

Table 16 MEXAMS - NAUGATUCK RIVER MODEL RESULTS

	MODEL	TOTAL	TOTAL COPPER	∂ €	DISSOLVE	DISSOLVED COPPER	56
LOCATION	COMPARTMENT	FIELD	MODEL	DIFF.	FIELD	MODEL	DIFF.
MATER COLUMN (.9/1)	(1/g·						
Palmer Br. Rd.		12.	11.5	-4.1	9.5	9.1	-4.7
Boque Rd.	ო	0N	Segment Data	ta	V	No Segment Da	ta
Rte. 118	ъ	24.	24.6	+2.5	17.	16.8	-1.2
Campville Rd.	7	16.	16.6	+3.8	14.	14.	0.0
Br. Abutment	6	14.	12.6	-10.0	11.	10.6	3.6
BENTHIC REGION (9/	1 (9/1)				PARTICULATE	ATE COPPER	
Palmer Br. Rd.	7	140.	138.	-1.5	140.	138.	-1.5
Bogue Rd.	4	62.	59.	-4.8	62.	59.	-5.0
Rte. 118	9	73.	74.	+1.4	72.	73.	+1.4
Campville Rd.	æ	177.	179.	+1.1	176.	178.	9.0+
Br. Abutment and Campville Rd.	and 10 1.	154.*	150.	-2.6	154.*	150.	-2.6

* The average copper concentration measured at Campville Rd. and the Bridge Abutment was used for comparison (based on model compartmentalization).

Table 17
Comparative Kd Data

Compartment #	Original log Kd	Calibrated log Kd
1	0.30	0.30
2	3.72	5.02
3	-0.25	-0.25
4	2.95	4.20
5	-0.05	-0.05
6	2.67	4.42
7	-0.05	-0.05
8	2.67	5.30
9	-0.05	-0.05
10	2.67	5.17

the original log K_d's and the final log K_d's used to obtain the ten compartment calibration. The advective flow paths for the new compartmentalizations were presented in Figure 11, and the percent ground water routed into benthic compartments eight and ten were changed from .01% to .1% and .13%, respectively. The final calibration for the ten compartment model was very accurate, and the concentrations predicted by the model were well within the error bars of the field data.

4.3 Future Loadings

Since the purpose of this report is to illustrate the usefulness of the modeling system, the effect of an increase in metal loading to compartment one was simulated. This increase could be an additional discharger at some point in the future, or an increase in production by an existing discharger. The existing contaminant loading is 1.284 E-02 K_d/hr and this was increased to 1.284 E-01 and 1.284 E+00. The effect of this increased metal loading on both water column and benthic compartments is displayed in Figure 14. This model, however, has some limitations, and they will be discussed next, along with recommendations for solving these drawbacks.

4.4 Limitations and Recommendations

The first limitation encountered dealt with the

availability of organic complexes within the thermodynamic data base of MINTEQ. MINTEQ had only a few
fulvate and humate complexes. To alleviate this limitation, organic complexes with EDTA were added. A plot was
obtained by varying the EDTA concentration. This graph is
presented in Figure 15, and the effect of organic complexation with EDTA for three pollutant metals is displayed.

Another limitation to the model occurs during the persistence calculation. The program calculates how long it would take to purify the riverine system, which is incorrect and should instead calculate the time required to achieve a certain concentration. This concentration could correspond to a toxic level for a certain aquatic specie, or a desired concentration level, as required by some regulatory agency. This problem can be solved very easily by including an input parameter in the MISP input file. This parameter would correspond to the final concentration desired by the programmer (concentration due to upstream loadings).

To simulate concentrations within the water column prior to pollutant loadings, the point source chemical loads were removed and the model was utilized to obtain concentrations due to upstream loadings only. A comparison of the model results is presented in Figure 16.

EFFECT OF COMPLEXING ORGANIC UPON ADSORPTION IN COMPARTMENT 1.

Figure 15

Other limitations include the ability to only run the program with one metal. This allows no competition and is unrealistic for an aquatic ecosystem. Also, on the subject of competition, when using the K_d "activity" approach, unlimited surface sites are assumed which is unrealistic. It is recommended that an input be established that would limit surface sites and make the model more realistic.

CHAPTER 5

CONCLUSIONS

The behavior of total, dissolved and particulate (adsorbed copper within an 8.3 mile reach of the Naugatuck River (East Albert St. to Thomaston Bridge Abutment) was modeled using the Metals Exposure Assessment Modeling System (MEXAMS). Data provided by the Department of environmental Protection, State of Connecticut concerning mass metal loading, system physical and chemical characteristics was used to calibrate the MEXAMS computer model for this test case.

The most important aspect of this model calibration was the compartmentalization (configuration) of the river reach. The model was initially calibrated for a six compartment configuration. However, the six compartment configuration did not predict adequately (within 10% error) the total and dissolved concentrations in the furthermost downstream water column compartment (compartment five). The inability for the six compartment model to adequately predict the target (field) concentrations in compartment five was due to the length of the compartment (6.7 miles), and the fact that the model assumes

complete mixing and creates instantaneous equilibrium within each compartment. As a result, a ten compartment configuration was utilized to obtain the final calibration. This configuration was obtained by dividing compartments five (water column) and six (adjacent benthic) into three equal compartments. This division was performed to achieve a greater compartment sensitivity to obtain the target (field measured) concentrations.

This final configuration (based upon the data provided) accurately predicted total, dissolved and particulate concentrations for all water column and benthic compartments. The major parameters adjusted to obtain this final calibration were the percent groundwater routed through the benthic compartments, the percent advected flow from benthic to water column compartments, and the "activity" K_d's were kept at field determined values. However, the calibration of this model is only the initial phase of accurately modeling this river reach, and model validation to another data set is required.

The validation process could also include a reduction of the following model limitations that were discovered during the calibration process; the need for additional organic complexes within the thermodynamic data base, the ability for the model to simulate more than one priority pollutant metal simultaneously, and the

ability for the user to adjust the concentration to be obtained during the system self-purification (persistence calculation). The validation of this model could result in possible future applications and provide additional assistance to the Department of Environmental Protection, State of Connecticut in determining waste discharge allocations for present and future dischargers within this reach of the Naugatuck River.

In conclusion, the results of the study suggest that MEXAMS is a potentially powerful management tool that could be utilized for a variety of environmental problems. Future activity using the model should continue the application to actual field situations so that continued refinement of the model and appropriate modifications are made to promote its use.

REFERENCES

- Burns L. A. et al. (1981) Exposure Analysis Modeling Modeling System: User Manual and System Documentation EPA Athens, Georgia.
- Chapra S. C. and Reckhow K. H. (1983) Engineering
 Approaches for Lake Management Vol I pp 29-42, 250299. Butterworth Publishers, Massachusetts.
- Chapra S. C. and Reckhow K. H. (1983) Engineering
 Approaches for Lake Management Vol II pp 65-66, 435455. Butterworth Publishers, Massachusetts.
- Curtis M. D. and Dunbar L. E. (1984) Total Maximum
 Daily Load Development Using a Integrated Allocation
 Approach Proceedings of ASCE Environmental Division
 National Conference held in Los Angeles, California.
- Felmy A. R. et al. (1982; MINTEQ: A Computer Program for Calculating Aqueous Geochemical Equilibria Office of Research and Development EPA Athens, Georgia.
- Felmy A. R. et al. (1983) MEXAMS: The Metal Exposure Analysis Modeling System Office of Research and Development EPA Athens, Georgia.
- Medine A. J. and Conway M. F. (1982, Heavy Metal Interactions and Dynamics in Simulated Naugatuck River Microcosms Institute of Water Resources University of Connecticut.
- Orlob G. T. (1983, Mathematical Modeling of Water Quality pp 425-460. John Wiley and Sons, New York.
- Thomas C. E. et al. (1983) U.S.G.S. Water Resources Data Connecticut.

APPENDIX A

DESCRIPTION OF THE MINTEQ INPUT FILE (Felmy et al., 1983)

This appendix describes how to setup the sample description file for running the VAX and PDP 11/70 versions of MINTEQ. A detailed description of the options available to the user accompanies the file descriptions.

The file is broken into three sections. Each section is separated by a blank line. There should be three and only three blank lines in the sample file. The three sections will be called Basic Input Data, Type Modifications and Insertion of Species. The format field designations for each line are given in parenthesis following the line designation.

Section 1 - Basic Input Data

Line 1 (A80). Alphanumeric description of the sample.

Line 2 (A80). Alphanumeric description of the sample.

Line 3. Water temperature, analytical units and fixed ionic strength designation

The water temperature in degrees Celcius is entered followed by the analytical units. In the VAX free-format version, the temperature and units must be separated by a space and the units enclosed in quote marks. The PDP 11//0 version follows the designated format fields. The analytical unit designations can be either 'PPM', 'MG/l',

'MOL', or 'MEQ/L'. These designations stand for parts per million, milligrams per liter, molality and milliequivalents per liter, respectively. The fixed ionic strength is entered following the analytical units. In the VAX version there must be a space between the analytical units and the ionic strength. If the ionic strength is not fixed, enter 0.0 following the analytical units.

<u>Line 4.8(I1,IX)</u>]. This line contains the run specific user options.

- Option 1. The inorganic carbon input option.
 - (0) = Total inorganic carbon.
 - (1) = Total alkalinity.

Option 2. The Debug print option. This is generally used only when modifications have been made to the code and the values of certain arrays must be checked.

- (0) = No Debug printout.
- (1) = Prints the value of the IDX, C, IDY, GAMMA, C and Y arrays.
- (3) = Prints the NNN, NN(1), NN(2) and the IDY, GK, GK1 arrays in subroutine KCORR.

added to the phase assemblage in subroutine SOLIDX.

Option 3. The charge balance option.

- (0) = Terminates execution of the program if the initial charge in balance is greater than 30 percent.
- (1) = Does not terminate execution regardless of the initial computed charge imbalance.

Option 4. Considered solids and print option.

- (0) = Do not allow all of the solids in the data base to precipitate or dissolve. The only solids considered will be those entered in the next input section under type changes. Print the problem results after the initial aqueous speciation plus solids problem is solved and after all Type V solids are either in equilibrium or undersaturated.
- (1) = Allow all solids in the data base to precipitate if they become oversaturated. That is, designate all solids in the data base as Type V. Print the problem results only after the entire problem has been solved.
- (2) = Consider all solids in the data base.

Print the problem results after the initial user specified problem has been solved and again after all Type V solids are undersaturated or in equilibrium.

(3) = Consider all solids in the data base. Print the problem results following the selection of every solid and after all of the solids are in equilibrium or undersaturated.

Option 5. The total number of iterations option.

- (0) = Allow 40 iterations.
- (1) = Allow 10 iterations.
- (2) = Allow 100 iterations.
- (3) = Allow 200 iterations.

The 100 or 200 iteration options should be selected if a large number of solids have been designated as considered solids. The ten iteration option is only useful when debugging the program.

Option 6. The pH variation option.

- (0) = Do not allow the pH to automatically vary during precipitation/dissolution of solid phases.
- (1) = Allow the pH to vary during precipitation/dissolution of solid phases. Not for this option to work all solid phases must

be declared Type V in the initial input.

Option 7. The fixed ionic strength option.

- (0) = Allow MINTEQ to compute the ionic
 strength.
- (1) = Fix the ionic strength at the value designated on line 3.

Option 8. The numerical method option.

- (0) = Use only Newton-Raphson iteration.
- (1) = Use a combination of Newton-Raphson and a modified line search. This option should only be used after consulting the technical manual.
- Option 9. Output Option (available only on VAX)
 - (0) = Do not print on initial listing of the thermodynamic data.
 - (1) = Print a listing of the thermodynamic data.

Line 5 [11,1X,4(F6.2,1X)]. This line is for input of adsorption parameters other than the mass total and activity guesses. The first parameter on this line is the adsorption model being used (II field). The options are:

- 0 No Adsorption
- 1 Activity Kd, Langmiur isotherm
 Freundlich isotherm

- 2 Constant Capacitance Double Layer Model
- 3 Triple Layer Site Binding Model.

The next four inputs on this line are:

- Solid Concentration (g/l)
- Specific Surface Area (m2/g)
- Inner Layer Capacitance (F/m2)
- Outer Layer Capacitance (F/m2)

input in this order. None of the last four inputs are required for the activity Kd. The constant capacitance model does not require an outer layer capacitance. The triple layer model requires all four data inputs.

Line 6+ (17,1X,E9.3,IX,F6.2). Component input lines.

There are as many of these lines as there are components.

A blank line must follow the last component.

The first specification (17) is the component ID number. Component ID numbers are given in Table 3. The second specification (E9.3 field) is the total analytical mass in the units designated on line 3. The only exception occurs when the constant capacitance of triple layer models are used. In such cases the analytical mass for the surface sites (SOH1 or SOH2 components) must be specified in sites per gram. The third specification on this line is a guess at the log of the component activity. If you leave this field blank the initial estimate of the activity will be the analytical molality divided by 100. Remember you need one line for every

component and a blank line after the last component.

Section 2 - Type Modification

This section is for changing the default species designations. The default type specification have been described in Section 5.

The first line of this section contains the first species type designation and the number of species of this type Format (I3, 1X, I3). The type designations can range from two to six. Then for each species of the entered type, a line is included (I7, 1X, E9.3, 1X, F6.2) designating information for that species. The first field specification is for the species ID number. Species ID numbers for components (Type I) are given in Table 3. All other species ID numbers can be found in the listing of Thermodynamic Data given in the MINTEQ Technical Report. The next two specifications are for the new log K and enthalpy of reaction. These are both optional and if not included the default values in the thermodynamic data base are used. A blank line also ends this section. In the case of Type IV species with an initial mass total (in moles/1) there is an additional input field for the initial mass. This input field follows the input of the enthalpy of reaction resulting in four inputs on one line. The input format for Type IV species is (I7, 1X, E9.3, 1X. F6.2, 1X, E10.3). For examples of necessary species modifications to solve specific problems see

Section 5.

<u>Section 3 - Insertion of Species Not in the Data Base</u>

The first line is for designating the species type and the number of new species of this type (Format I3, 1%, I3). The species type can only range from two to six. The next lines contain the data for the new species of the specified type. There are three lines for each species. The first line of species data is in Format (17, 1X, A12, 2F10.4, 2F8.3, 3F5.2, F9.4). The format fields correspond to the following data: ID number, name, enthalpy of reaction, log K, minimum log K, maximum log K, charge, Debye-Huckel A parameter, Debye-Huckel B parameter and molecular weight respectively. Only the ID number and log K are absolutely essential. For a description of the Debye-Huckel parameters see the MINTEQ Technical Report. The second line of data is in Format [F5.2, 1X, I1, 1X, 6(F7.3, 1X, I3, 1X)]. The format fields correspond to: carbonate alkalinity factor, number of components in the reaction and the stoichiometry and ID number for up to six components. The carbonate alkalinity factor is only useful if the input inorganic carbon is an alkalinity value. A description of the carbonate alkalinity factor is given in the MINTEQ Technical Report. The third line is in Format [3(F7.3, 1X, I3, 1X)] and is merely a continuation of the component entries for the inserted species. In the VAX version, the third line

is in format [3(F7.3, 1X, I3, 1X), I1, 3(F7.3, 1X, I3, 1X)]. The format field beginning with I1 is for inserting species information into the "B" matrix. Such information is only useful when the component stoichiometries in the mass action expressions are different from the stoichiometries in the mass balance equation. The latter format fields correspond to the number of components in the "B" matrix, stoichiometry of the component and component ID number. This section is also terminated with a blank line.

APPENDIX B

DESCRIPTION OF THE EXAMS INPUT FILE (Burns et al., 1981,

The narrative associated with each database references the format codes listed below.

Code	Format
1	60 characters, left justified.
	Format: (60A1)
2	Columns 1-5 right justified.
	Format: (2015)
3	Column 1, one character/record. The
	maximum number of records is equal
	to the number of compartments.
	Format: (A1)
4	Columns 1-10. Format: (F10.0)
5	Each record contains 8 10-column
	fields, maximum 2 records per
	variable. Format: (8F10.0)

Record 1	Columns 1-10 11-20	Compartment 1 2
	•	•
	•	•
Record 2	1-10	9
(if needed)	11-20	10

Five record layout containing 39 values. Four records contain eight 10-column fields; the fifth contains seven. Format: (8F20.0)

Record 1	Columns 1-10 11-20	Value 1 2
	•	•
	•	•
Record 2	71-80 1-10	8 9
	•	•
	•	•

			71	-80			1	6	
	•			•				•	
	•			•				•	
	Record	5	1	-10			3	3	
				•				•	
				•			_	•	
			61	-70			3	9	
7		The numbe	rof	rec	cords	is equ	al	to	•
		NSPEC1 or record co	NSP ntai	EUZ ns]	aivia 16 fiv	ea by e-colu	uu To	. Eac	ì
		fields. F	or J	FRAC	OG and	ITOAD	G	use	
		NSPEC1 an							•
		NSPEC2. E fied. For	mat:	(20	14 15 1 () [5]	right	Ju	SC 1-	
				•	•				
				umn s	S			ar>	
	Record	1		-5 -10				1	
			О	-10				2	
				•				•	
			76	-80			1	6	
	Record	2		-50 -5			1		
				•			_	•	
				•				•	
	Record	n	41	-50			2	9	
				-60			3	0'	
8		Format: (5(I1	,1X))				
		·	•				_,		
				lumi 1			FI	ag 1	
				3				2	
				5				3	
				3 5 7 9				1 2 3 4 5	
				-				-	
9		Format: (8F10	. 0.1					
,		i ormac. (-					
				umn	S			lue	
				-10 -20				1 2 3	
				-30				3	

10 Format: (8F10.0)

Columns	Value
1-10	1
11-20	2
21-30	3
31-40	4

11 Format: (8F10.0)

Columns	Value
1-10	1
11-20	2

The number of records is equal to NSPEC1 or NSPEC2 divided by eight. Each record contains eight 10-column fields. For ADVPRG use NSPEC1 and for XSTURG, CHARLG, and DSPG use NSPEC2. Format: (8F10.0)

		Columns	Value
Dagaad	1	1-10	1
Record	1	11-20	2
		•	•
		•	•
		•	•
		71-80	8
Record	2	•	•
•		•	•
•		•	•
•		•	•
Record	n	41-50	29
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••	51-60	30

Creating or Changing the User Run Information

This sequential file contains chemical name, ecosystem, name, and loads.

Record 1: (CHEM1) Chemical name - three characters maximum. Format: (A3)

Record 2: (ECO1) Ecosystem name - three characters maximum. Format: (A3)

Record 3: (NLOAD) Number of Loads. Format: (I5)

Record 4,...,NLOAD+3:(I, STRLDG, NPSLDG, PCPLDG, DRFLDG, IFLLDG) Each of NLOAD records contain the load number and the Ith STRLDG, NPSLDG, PCPLDG, DRFLDG, IFLLDG. Format (I5,5F10.0)

STRLDG - Stream loadings.

NPSLDG - Non-point source loadings.

PCPLDG - Precipitation loadings.

DRFLDG - Drift loadings

IFLLDG - Interflow loadings.

Columns Field
Record 4 1-5 I
6-15 STRLDG(I)
16-25 NPSLDG(I)
26-35 PCPLDG(I)
36-45 DRFLDG(I)
46-55 IFLLDG(I)

Creating or Changing the Environment Database

The compartment parameter data are located in the following sequential record layout. (The format code list provides detailed format specifications.)

Record: (SYSTYP) Ecosystem name, maximum 60 characters
Format: 1

Record: (KOUNT) Number of compartments, maximum number of compartments is NPX, which is fixed for a particular installation.

Format: 2

Record: (TYPEE) The next KOUNT records each contain a one character compartment code, KOUNT the number of compartments. Format: 3

Record: (LATG) Ecosystem latitude, columns 1-10, degrees and seconds as whole number and decimal fraction, e.g. 10.15.
Format: 4

Record: (WINDG; Wind velocity per compartment, eight per record. Format: 5

Record: (VOLG) Total environmental volume per compartment. Format: 5

Record: (AREAG) Area of each ecosystem compartment. Format: 5

Record: (DEPTHG) Average depth of each compartment. Format: 5

Record: (STDLOG) Stream flow entering ecosystem compartments. Format: 5

Record: (STSEDG) Stream-born sediment load entering ecosystem compartments. Format: 5

Record: (NPSFLG) Non-point-source water flow entering ecosystem compartments. Format: 5

Record: (NPSEDG) Non-point-source sediment loads entering ecosystem compartments. Format: 5

Record: (INTFLG) Interflow (groundwater seepage) entering each ecosystem compartment.

Format: 5

Record: (RAING) Average rainfall in geographic area of

system. Columns 1-10. Format: 4

Record: (CLOUDG) Average cloudiness in tenths of full

sky cover. Columns 1-10. Format: 4

Record: (WLAMG) Temporally averaged spectral irradiance

immediately below the water surface. This is five record layout containing 39 values, ten columns per value,

eight values per record. Format: 6

Record: (DFACG) Distribution function (optical path)

for each compartment. Format: 5

Record: (EVAPG) Evaporative water losses from ecosystem

compartments. Format: 5

Record: (SDCHRG) For water column compartments the

suspended sediment concentration; for benthic sediment compartments the bulk

density of the bottom sediment.

Format: 5

Record: (PCTWAG) Percent water in bottom sediments of

benthic compartments. Elements corresponding to water column compartments are not used (dummy values). Format: 5

Record: (NSPEC1) Number of active advective transport

pathways. Format: 2

Record: (JFRADG) Source compartment (J) for advective

flow. Format: 7

Record: (ITOADG) Receiving compartment (I) for advective

flow. Format: 7

Record: (ADVPRG) Proportion of total advective flow from

compartment J that flows to compart-

ment I. Format: 12

Record: (NSPEC2) Number of active dispersive transport

pathways. Format: 2

Record: (JTURBG) Source compartment for dispersive flow.

Format: 7

Record: (ITURBG) Receiving compartment for dispersive

flow. Format: 7

Record: (XSTURG) Cross-sectional areas for dispersive

exchanges. Format: 12

Record: (CHARLG) Characteristic length of dispersive

exchange pairings. Format: 12

Record: (DSPG) Eddy dispersion coefficients for

dispersive exchange pairings.

Format 12

Record: (FROCG) Organic carbon content of compartment

sediments. Format: 5

Record: (CECG) Cation exchange capacity of sediments

in each compartment. Format: 5

Record: (AECG) Anion exchange capacity of sediments in

each compartment. Format: 5

Record: (TCELG) Average temperature of ecosystem

compartments. Format: 5

Record: (PHG) Negative value of log of temporal

average of [H+] concentration for each

compartment. Format: 5

Record: (POHG) Negative value of log of temporally

averaged [OH-] concentration for each

compartment. Format: 5

Record: (OXRADG) Molar concentration of environmental

oxidants in each ecosystem compart-

ment Format: 5

Record: (BIOMSG) Total actively sorbing biomass in each

compartment. Format: 5

Record: (PLRAG) Planktonic fraction of total biomass in

each compartment. Format: 5

Record: (BIOTMG) Biotemperature in each compartment.

Format: 5

Record: (BACTOG) Bacterial population density in each

compartment. Format: 5

Record: (ACBAXG) Proportion of bacterial population that

actively degrades toxicant. Format: 5

Record: (KO2G) Rearation parameter in each compart-

ment. Format: 5

Record: (CMPETG) Single-valued zenith light extinction

coefficient for water columns, dummy variable for benthic compartments.

Format: 5

Record: (DOCG) Dissolved organic carbon concentration

in water column compartments, dummy variable in benthic compartments. Format: 5

Record: (CHLG) Concentration of chlorophyll and

chlorophyll-like pigments in water column compartments, dummy variable in benthic compartments. Format: 5

APPENDIX C

MINIEQ Output

EO-MINTEO-	ATINTECI-ATINTECI-ATINTECI ALINTECI-AT	EO MINIEU-MI	TEO-MINIED	MINTEG*MIN	TEO*MINTEO*MIN	TEG#MINTEO#M	INTED#MINT	EO#MINTEO#	INTEG
ONAUGATUCK	X RIVER CONDIT	TIONS (16-17	AUGUST 1983	3) COMPARTM	-	ZN-CU-PR ADSORPTION			
KD MODEL	KD MODEL. MATRIX OBTAINED FROM BEST AVAILABLE DATA PHE7 14	INED FROM BES	ST AVAILABLE	DATA PHE 7	•				
T = 25.0	± 25.00 MG/L 0	•							
00-00	0000								
	0	0							
	CHARGE BALANCE UNSPECIATED	JHISPECIATED							
•	SUM OF CATIC	SUJE-			63E-03				
0	PERCENT DIFFERENCE		-13.04 (C	(CATIONS - AN	- ANIONS > (ANIONS + CATIONS)	· CATIONS)			
	LIGHE	SOLVE							
O ITEM		TOTAL MOL			LOG ACTVTY				
1		4.991E-04	•	7	80000				
	Z CV	4.991E-04	7	ę,	38469				
	۷.	4 991E-04	-		32420				
•	<u>۲</u>	4.991E-04	N		-3.43010				
	5	4.991E-04	-		-3.62025				
	₹	4 991E-04	C	429E-06 -3.	41555				
· o outPut	4	T.CMS = 6							
=	RAME	ANAL MOL	CALC HOL	ACT I VI TY	LOG ACTVTY	GAMMA	NEV LOOK	DIFF FXN	
20	5	4. 991E-04		3.8176-04	-3,41830	792686	1009	-3 620E-07	
9	-	1.440E-04	1.393E-04	1.107E-04	- 3, 95593	794378		-1 034F-07	
9	_	8. 222E - 04		7. 734E - 04	-3.11159	941939		-1 6446-07	
2		5, 703E-04		2. 996E-07	-6 52348	789951		- BO- EL- O-	
732		2.603E-04	2.408E-04	. 891E-04	-3 72333	785348		1 0846 07	
- 90	ರ	1.072E-03	1 072E-03	008F-03	05900 27	940872		20 26 26 64	
8	HOBOS	1.352E-06	1 341E-06	342E-06	-S A7224	1 000697		4 282E-12	
410	¥	7.904E · 05	7.892E-05	7. 423E - 05	-4 12945	940572		1 6605-08	
200	_	S. 167E-06	1 9406-11	1.1376-11	-10.94412	586236		-2 220F-09	
770		8.658E-05	8.643E-05	3. 649E-05	-4 06305	1 000697		4 0655-10	
231	-	8.578E-07	1.223E-07	9 GB6E-08	-7.01385	791776	7101	-9 ASKF - 11	
9		2.677E-07	1.671E-07 1	1.3235-07	-6.87842	791776		-1 273F-10	
492		1, 1436-04	1.142E-04	. 074E-04	-3 96888	940473		-2 409F - 0A	
470	3.1 5	6 463E-07	6 220E-07 4	1.9255-07	-6.30758	791776		-4 708E 10	
281			1 245E-14 7	7. 545E - 15	-14 12233	606033		-6.464E-10	
900	2	E-08		0.0106-03	-8.99549	785813		-1.1506-12	
~	2			3. 399E - 01	- 00003	1.000000	0000	0	
8		•		000€+00	0	000000	0	•	
966	NOS:			. 000E + 00	0	000000	0	0	
933	Į.		-6 425E -04 7	7.244E-08	-7.14000	945873	7.1400	•	
SPEC	SPECIES: TYPE	· COTPONENTS	<u>.</u>						
=	2	CALC MOL	ACTIVITY	LOG ACTVTY	Y GAMMA	No. of Contract of	2		
55	•	4 815E-04	3 6175-04	-3 41830		101	, i		
460	Ŷ	1 3935 - 04	1 107E-04	-3 95593		8	• •		
900		8 211E - 04	7 7345-04	3 11159		026	• •		
- 5	_	3 792E -07	2 996£ -07	-6.52348		105	•		
732		2 403E · 04	1.891E - 04	-3.72333	3 785348	5	•		
2		1 072E-03	1 008E -03	-2 99650		027	0		
3	EDGCH 1	3415-06	3426 - 06	-5.87224	-	00	•		
2 5		7 692E · 05	7 423E · 05	-4.12945		027	0		
000	P	1 9405-11	1 1375 11	-10 94412		202	•		
?;		6 6435 05	8 6196 05		-	000	0		
2		1 223E - 07	9 6865-08			<u></u>	•		
000	E 9	1 671E 07	1 3236-07	-6 B74.42	2 791776	5	•		
26.		177 - 04	- 07.11.0	7 96,AFE		:	c		

000		•		6	2005	•			•	
200		, ,	1	2	2		76.00	94 1 44 /	456	
000000	מוניים ש	,	76/2	50	703C - 13		42:42	1.000697	450	200
200 006		4	333E - 16	4.296	286E - 16		36792	941447	.526	9.560
9501303	ZMCL4 -2	~	7396-19	2.161	61-3191	_	66542	788717	305	10.960
9503300	ZNOH +	N	127E-09	2 002	002E - 09	9	69845	. 941520	-8.934	13.399
9503301		9	1796-10	3.181	181E-10	-9	49747	1 000697	-16.899	•
9503302	ZN(OH)3 -	-	4756-14	-	388E - 14	-13.8	85750	941520		•
9503303	•	ė.	865E - 20	ė	037E-20	-19.5	51753	. 785813		•
9501604	ZHOHCL AD	•	0926-11	6.096	096E - 1 I	-10.2	21495	1.000697	-7.480	0
9507320	2MS04 AQ	an	. 861E-09	5.865	965E-09	-8.2	23175	1 000697		1.360
9507321	ZN(SO4) 2-2	2	. 147E-11	9.014	014E-12	-	04507	785813	3.385	0
9501400	ZNHC03 +	•	. 661E-09	7.213	213E-09		14190	.941520		0
9501401	ZNC03 AQ	^	903E-09	7.909	903E - 09	- 9	10190	1 000697		· c
9501402	ZN(C03)2-2	9	446E-11	5.065	11-3590	-10	29538	785813		•
6001800	- -	4	307E-11	4.055	0556-11	-10	39199	941520	1 626	780
6001901	PBCL2 AO	•	475E-14	6.479	479E-14		18849	1 000697	900	2
600 1802	PBCL3	'n	498E-17	5.176	176E-17	- 3	28599	941520	222	2 1 20
6001803	PBCL4 -2	6	186E-20	2 503	503E - 20		60 109	785813	465	3.530
6001400	PB(C03)2:2	8	. 038E-12	3, 939	939E - 12	-11	40245	785813	10 745	
6003300	PBOH	æ	888E - 10	2.719	71.00	6	56552	941520		
6003301	PB(OH) 2 AG	- q	1596-12	1 450	460E-12	-1.8	83554	1 000697	120	•
6003302	- E(HO)9-	~	458E-16	2.314	3145-16		63557	941520		•
6003303	PB20H :3	-	.058E-17	6 152	152E-18		21101	381390		•
6004920	PBM03 +	-	705E-12	- 606	606E-12	-	79437	941520		
6007320	PBSO4 AQ	-	074E-10	1 074	07 4E - 10		96882	1.000697		· c
6003304	PB3(0H)4+2	9	. 282E - 23	4, 937	9376-23	-22,30658	96590	785813		5
6001401	PBC03 AQ	•	257E - 09	5.261	261E-09	8	27897	1 000697		
6002308	18(OH) 4	.2	334E-21	7 3351	335E-21	-20.13460	3460	785813		•
6007321	PB: 50412-	-2	357E-13	1 066	066E-13	-12 9	97214	285813		•
6001402	РВИСОЗ •	•	.691E-10	3.476	47GE-10	9	45897	941520		• •
3301400	. CO3	•	917E-04	4 633	6356-04	ç	33392	942758		-3 617
3301701	H2C03 A0	^	200E - 05	7 505	505E-05		. 12466	1 000697		-2 247
9903800	30H-2N	•	613E-08	7,613	6135-08	-7.1	11642	1 000000		
9516000	SOT - P.	~	150E-08	2.160E	-08	-7.6	.66549	1 000000	1 330	0
0		:								•
	2	=	FIXED SOCIDS	SOCIOS						
•		ا د		8		MEN LOOK	Š	ž		
•		1					000	•		
5		- '		7			0	0		
25.	į,		4366	•		•	٥ :	6		
	:	•	10.30	í	36 .	•	5	0		
O SPECIES		5	SPECIES NOT CONSIDERED	NOT CO	4S I DE RE	9				
<u>-</u>	NAME	J		207	LUG HOL	MEN LC#	*5	3		
2	-	~		7	-2.643	13	160	930		
O PERCENTAGE		DISTRIBUTION	b	COMPONENTS						
0 6										
5		1710030	9		•	:	;			
		PERCENT			SPECIES 150	2 5		,		
•	•				000	7,0	TA YOU	9		
940										
	•	PERCENT NOUND	DOUND 11	IN SPECIES	S	460	£			
	5.6	PEPCFNT ROUND	ROHMU 11	111 SPECIES 4607720	5 4607	021	175 504 AO	٧o		
c										

200									
	95	9	PEFCENT	BOUND		SPECIES		504	
	-	4	PERCENT	BOUND		SPECIES			
	n	9	PERCENT	DOUND	Z	SPECIES	1507320	CAS04 AQ	
0									
J'O					3		:		
	3	,	PERCEN	BOOMB	Z	SPECIES	180	2	
043803									
	66	~	PERCENT	BOUND	z	SPECIES	90	н3803	
o i									
ś	8		-		3		;	•	
•	n	n	LENCE	0M009	<u> </u>	SPECIES	0	¥	
000									
	4	•	PERCENT	BOUND		SPECIES	3305800	HP01 -2	
	4		PERCENT	BOUND	ï	SPECIES	3305801	H2P04 -	
	N	6	PERCENT	BCHIMD		SPECIES	4605802	INCHPO4 AO	
	^	4	PEHCENT	POUND	Ξ	SPECIES	1505800	CAHPRA 40	
0									
0H4S104									
,	66	•	PERCENT	ONO(N)	ž	SPECIES	770	H45104	
0									
2.00	:	,							
	4	n .	PERCENT	BOUND	z	SPECIES	231	2005	
		σ,	PERCENT	COUND	ž	SPECIFS	9912310	SOH-CU	
	•	N I	PERCENT	COUNC	Z	ES.	2311400	CUCO3 AQ	
	- :	٠,	PERCENT	BOUND	z	ES	2313300		
	4 (on 1	PERCENT	200	Z.	ES	2313301	CU(OM) 2 AQ	
	N	9	PERCENT	BOCING	Ž		2311402	CUISCO3 +	
200									
		,			1				
	8	4.	PERCENT	90	Z :	SPECIES	930		
	40	. 0	100000	00000	2	SPECIES	9507350		
		n c	20000			SPECIES	001-1006		
	, 6	٠,	PERCEN		Z :	SPECIES	9501401	ZHCU3 AQ	
c	9	,		2000	Ē	SPECIES	0055066	N7-HOS	
0403									
	8	0	PERCENT	BOHIND	z	SPECIES	492	NO.	
0							•	.	
OFFIN-2									
	8	C	PERCENT	EGIUMD	Z	SPECIES		1M+2	
	N	ی	PERCENT	BOUND		SPECIES	4707320	HINSO4 AO	
0									
OFE+3									
	2	_	PERCENT	BOUND	Œ.	SPECIES	2813301	FEOHS .	
	2	0	PERCENT	OCC NO		SPECIES	2013302	FEOH3 AG	
	_	on.	PERCENT	BOUND		SPECIES	2013303	FEOH4 .	
9									
.	•	•	PEDCENT			0010000	Š	8	
	•	۰ م	PERCENT		2	STEEL STEEL	9	5	
	-		PFFCCTIT	ON ICE		2011		DV : O'IO'	
	7	د :	PE C.C. NT	Control	<u> </u>	Service Control			
c		,				,		1	

1											
		67 7	PERCENT 3CUND	20125	Z	PECLES	SPECIES 9912310	DO-HOS	no-		
		12.3	PERCENT	GUNNO	ž	SECIES	SPECIES 9916000		61.		
0											
Š	050H1										
		0 001	PERCENT	COUND	ž.	PECIES	PERCENT BOUND IN SPECIES 9909500	SOH - ZN	NZ.		
0											
ē											
			PERCENT	BOUND IN	Z.	SECIES	SPECIES 3301400	HC03	- 6		
		23 3	PERCENT BOUND IN	ONTEG	z	SPECIES	3301401	HZC	HZCON AO		
0	ě	MAFIE	¥	AUDE OUS MASS	MSS	SOURE	SOURCED MASS	PRE	PRECIPITATED MASS	SS	
	30	₹		4 987E-04	-04		0		0		
	460	£		3000	-0		0		0		
	200	ž		8.221E	221E - 04		0				
	140	COO		5. 702E	702E - 04		0		0		
	732	SU4		2 GOIE-04	-04		0				
	180	บ		1 072	077E-33		¢				
	8	н3003		1525	1525 - 06		0				
	410	¥		7 302	302E - 05		c				
	580	204		5	164E - 06		c				
	770	143104		3050	50-3050		c				
	231	co.		7 012	0 12E - 07		1.535E-07	^	٥		
	950	ZN		915	9156-07		7.613E-08		•		
	492	MO3		1.1428	142E - 04		0		•		
	470	- N- 2		9957 9	458E-07		0				
	281	FE+3		3.8326	832E-06		0				
	900	£		7 3606	360E-09	•••	2 160E - 08	60	٥		
	8	н20		9 2478	247E - 06		0		•		
	330	I		6.425E-04	9		o		•		
0	CHARGE	ROE BALANCE	DE SPECI	SPECIATED							
0		SUM OF	SUM OF CATIONS :	. 2 .)O-361	ξ	JF ANIONS		2.168E-03		
0		PERCENT	PERCENT DIFFERENCE	¥C€ •	•		(CATIONS	ANIC	ANIONSI/(ANIONS . CATIONS)	· CATIONS!	
0	Ž	MONCARBOHATE ALKALINITY	ALKAL 1N	17Y ×		0					
۰.	NO	IONIC STRENGTH	"	3 N26E-03	8						
- (AND WE	SATURALION INDICES	č	ALL HINERALS	RALS	S Car	- 2				
0	000	NAME	w !		,	2 ×		MIN LOCK	MAX LOOK	L00 1AP	¥
					000		<u>.</u>	0	0	-7.142	
	5046000	_		- 0	9 5	6 9	900	0 0	0 6	9.942	_
	2046000	_			16.8		200	•	•		
	5015001			- 1	16.7			200		0 364	
	2077000		THI.	540	9				•		000
	3646000		37.	3.	275		138	0			
	8246000		21.135	.5 07	220	-11 3	336 .10	6	.11.632		
	2077001		A LTE	. 4	476	3		•	9		
	9213000		led.	6 92	326	-19 8	986	0	0		
	201 1002		LJ.		421		000	0	0	-20.421	
	6046000	_	עו		539	~	1.40	c	0		
	8546003		1E(C)	-7	424	-13 9	913	0	0	459	
	2028100		DRITE		407	7		-1.557	966 1-	7 298	c
	4128100		יכר ז		297		040	0	0		•
	6028100	_	0		995		580	6.50	0	-39 413	59 120
	3045000		<u>س</u>	=	713	-28	298	0	0	16 585	
	2014-02				798	ř	500	c	0	7 7.93	14 480
	1000	L GYPS-UIT		•	7.1	4 . 18	Œ	Ξ	c	. 7 113	

6028101	JAROSI TE H	Ņ	9.4	12	901	0	•	-14,114	55.150
8450300	MAGAD! I TE	-10	113	-	300	0	0	-24 413	
3028191	MAGHETH TE	•	203	9	386	٥	0	14.595	•
5046002	MACNESITE		450	•	620	8 279	7.779	-10,479	691.9
6050001	MIPABILITE	•	833	-	1.4	0	0	-9 947	-18.987
3050500	NATRON	=	136	-	31	0	0	-12.747	-15,745
5046003	NE SOUE HOM! TE	7	828	ın ·	120	\$ 133	4.546	-10.479	5 789
2077002	OUARTZ SEDICI 115 (A)		33	4	900	0 0	0 (-4 063	-6 220
2077003	SIOZ(A.OL)	7	045		960	0	o C	804°9	0 44 0
2077004	S102(A, PT)	,	353	٠.	210	•	• •	. 4-	7 5
7028100	STRENG! TE	-	333	56	400	29 123	26.235		
8646002	TALC	•	332	- 23	022	-18 988	-23.088		
6050002	THENARDITE	Ģ	760		179	0	0		572
2020001	THCRHOUA IR	-15	872	. !	125	0	•		
9213001	TREPOLITE	-	206	9	546	0 (
2047000	PHOOCHEDS I T			2	5 -	2	10.00	2/6 /	22.590
4147000	MANCE 2 AH2G	-			2			100	
604 7000	MN304	- 12	200	Ç	60	•			
70:17000	HB13(P04)2	9	0.8.4	23	427	0	0		- 2 1 20
4123100	MELANOTHALLI	-16	737	÷	230	0	4.450	13 007	
5023100	_	٠,	. 907	c	630	9.650	9.610	-13.537	0
2023100	~	7	374	•	640		-9.200	7 266	15,250
4123101	ATACAMI TE	-	944	- 7	340	-7.240	-7.490	4.396	18.690
5123100	_	io.	317	6	240	•	-9.310	0.423	17.350
6023100	-	4 .	493	•	30			3, 795	0
201000	STOCHANI I IE	7 1	6/2		96	-15, 150	15.500	190	
2022106	TEMORITE	ņ	27	2 1	2 6	9	-17.400	190 11	39.610
6023103	CINCISON		, S	;	950	066 /-	068.	7.266	15.240
7023100	CU3(POL)2	. 9	90	36		•	36 900	-42 930	00.00
7023101	CU31PO412, 3W		9	8	120	0			
6023104	CU504	-13	747	ç.	010	-2 630	-3.420	-10 737	18.140
6027105	CHAL CANTHI TE	•	097	Q	640	2.960	2.135	-10,737	-1.440
2023102	DIOPTASE	e.	297	9	200		•		960
3023100	CUPRICFERIT	2	8	ı,	990	-5,350		٦.	
5093000	SMCL2	9.	9 6		88	9	7.060	-12 871	17.480
5035001	ZNC03 1H20		142	2	9		30.0	13 402	000
2095000	€.	'n	8	- 12	150	-12 260	-12.480	4	• •
2095001		4	342	-12	200	0	0	7 402	0
2005602		4	348	= :	750	-11.320	-11 890	7.402	0
2095003	ZM(0H)Z (G)	4 4	000		0 2	060	. 1. 940	7 402	0 (
4195001		- 10	233		8 8		2	402	•
4195002	ZNS(GH) 8CL 2		200		9	•		4.7	•
6095000	ZM2(OH)2:504	01.	8		000	•		.3 200	
6095001	2N4(OH) 05/14	. 16	797	28	400	c	0	11 603	•
5194000	ZHN0312, CH20	- 18	256	e.	440	•	•	-14 815	-5.510
2095005	PHOLACTIVE		903	=	910	11 370	-11 860	201/2	0
20.12003	ZINCITE	e.	738	-	140	066 01-	11.540	7 402	21.860
6095002	•	20		6	020	0	0	~	62 000
000000	ZMS 1003	-	404		040	c	0 (-42 521	
9002008	•	7		: 2	ב ב ב	130	o c	- CE - C4	18 270

END

FILMED

5-85

DTIC