Definice. Definujeme $d = \gcd(a, b)$ jako největší takové číslo, pro které platí $d \mid a$ a zároveň $d \mid b$.

Příklad 1 (Relace podobojí).

Najděte relaci na $\{1, 2, 3, 4\}$, která je zároveň symetrická i antisymetrická. Kolik takových relací existuje?

Příklad 2 (Relace podžádnou).

Najděte relaci na {1,2,3,4}, která není ani symetrická, ani antisymetrická.

Příklad 3 (Jaké mají vlastnosti?).

Rozhodněte, které z následujících relací jsou reflexivní, symetrické, tranzitivní nebo antisymetrické:

- (a) Relace $R = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}$ na množině $\{1,2,3\}$
- (b) Relace $R = \{(1,1), (1,2), (2,1), (3,3)\}$ na množině $\{1,2,3\}$
- (c) Relace \leq na množině \mathbb{N}
- (d) Relace $R = \{(x, y) : \gcd(x, y) = 1\}$ na množině $\{1, 2, 3, 4, 5\}$

Příklad 4 (Kolik jich je?).

Určete, kolik je na n-prvkové množině relací:

- (a) všech možných
- (b) reflexivních
- (c) symetrických
- (d) antisymetrických

Příklad 5 (Prostá \times na).

Dokaže, že máme-li konečnou množinu A, tak je funkce $f:A\to A$ prostá, právě tehdy když je na. Platí to i pro nekonečnou A?

Příklad 6 (Složená relace).

Jak vypadá relace $R \circ R$, je-li R definovaná jako:

- (a) relace = na \mathbb{N}
- (b) relace \leq na \mathbb{N}
- (c) relace < na \mathbb{N}
- (d) relace < na \mathbb{R}

Příklad 7 (Nekomutativita skládání).

Najděte relace R, S na libovolné množině X takové, že $R \circ S \neq S \circ R$.

Příklad 8 (Zachovávání vlastností).

Nechť X je konečná množina a R, S jsou relace na této množině.

Rozhodněte, zda pro $V \in \{\text{reflexivn}(\hat{A}, \text{symetrick}(\hat{A}, \text{tranzitivn}(\hat{A}))\} \mid P \in \{\cap, \cup, \setminus, \circ\} \text{ plat}(\hat{A}, \text{symetrick}(\hat{A}, \text{tranzitivn}(\hat{A}))\} \mid P \in \{\cap, \cup, \setminus, \circ\} \text{ plat}(\hat{A}, \text{symetrick}(\hat{A}, \text{tranzitivn}(\hat{A}))\} \mid P \in \{\cap, \cup, \setminus, \circ\} \text{ plat}(\hat{A}, \text{symetrick}(\hat{A}, \text{tranzitivn}(\hat{A}))\} \mid P \in \{\text{reflexivn}(\hat{A}, \text{symetrick}(\hat{A}, \text{symetrick}(\hat{A}, \text{tranzitivn}(\hat{A}))\} \mid P \in \{\text{reflexivn}(\hat{A}, \text{symetrick}(\hat{A}, \text{symet$

Příklad 9 (Skládání funkcí).

Rozhodněte o funkcích $f:X\to Y$ a $g:Y\to Z$ pro libovolné množiny $X,Y,Z\colon$

- (a) Jsou-li f,g prosté funkce, musí nutně i $g\circ f$ být prostá?
- (b) Jsou-li f, g funkce na, musí nutně i $g \circ f$ být na?
- (c) Je-li $g \circ f$ prostá, musí být f nebo g prostá?
- (d) Je-li $g \circ f$ na, musí být f nebo g na?