E-commerce Analysis

Divyansh Chawla

2025-09-24

R Markdown

1. Business Problem

We are examining e-commerce customer behavior to better understand purchasing patterns and support business growth. Our main goals are: - Increase revenue by identifying high-value customers - Reduce order cancellations - Understand buying patterns across weekdays and weekends - Provide actionable recommendations to improve customer engagement

2. Load scripts

```
# Source all R scripts
source("code/01_packages.R")

##
## The downloaded binary packages are in
## /var/folders/w5/mpsf811s6vv890vzk8xf1wxm0000gn/T//RtmpaMnaOi/downloaded_packages

source("code/02_load_clean_data.R")
source("code/03_eda.R")
source("code/04_hypothesis_tests.R")
source("code/05_modeling.R")
source("code/06_rfm_analysis.R")
```

3. Exploratory Data Summary

Below is a summary of the dataset and key insights from the EDA: # Show skim summary from EDA script

```
skim(data)
```

Table 1: Data summary

Name	data
Number of rows	541909

Number of columns	8
Column type frequency:	
character	5
numeric	3
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
invoice_no	0	1	6	7	0	25900	0
$stock_code$	0	1	1	12	0	4070	0
description	1454	1	1	35	0	4211	0
$invoice_date$	0	1	13	16	0	23260	0
country	0	1	3	20	0	38	0

Variable type: numeric

skim_variable	_missingcom	plete_ra	ite mean	sd	p0	p25	p50	p75	p100	hist
quantity	0	1.00	9.55	218.08	80995.00	1.00	3.00	10.00	80995	
unit_price	0	1.00	4.61	96.76	-	1.25	2.08	4.13	38970	
$customer_id$	135080	0.75	15287.69	1713.60	11062.06 12346.00	13953.00	15152.00	16791.00	18287	

Average Order Value (AOV) Distribution:

knitr::include_graphics("figures/aov_hist.png")

Weekend vs Weekday AOV:

knitr::include_graphics("figures/aov_weekend_box.png")

AOV: Weekend vs Weekday

Top 10 Countries by Cancellations:

knitr::include_graphics("figures/top10_countries_cancel.png")

Top 10 Countries by Cancellations

- Most invoices have lower AOV, with a few high-value purchases creating a right-skewed distribution. - Weekend vs weekday analysis shows differences in spending patterns.

4. Hypothesis Test Results

Display t-test results

Weekend vs Weekday AOV (t-test)

```
ttest_weekend
```

Top 20% Monetary Customers Frequency (t-test)

5.582376

##

5.592127

```
ttest_top20
##
##
   Welch Two Sample t-test
##
## data: frequency by top20
## t = -19.192, df = 881.82, p-value < 2.2e-16
## alternative hypothesis: true difference in means between group FALSE and group TRUE is not equal to
## 95 percent confidence interval:
## -12.59663 -10.25928
## sample estimates:
## mean in group FALSE mean in group TRUE
              2.788043
##
                                 14.216000
Chi-square Test: Cancellations by Top 10 Countries
chi_country
##
  Pearson's Chi-squared test with Yates' continuity correction
##
## data: chi_table
## X-squared = 100.16, df = 1, p-value < 2.2e-16
Chi-square Test: Weekend vs Weekday Cancellations
chi_weekend_test
##
   Pearson's Chi-squared test with Yates' continuity correction
## data: chi weekend
## X-squared = 19.331, df = 1, p-value = 1.099e-05
Interpretation: Weekend purchases appear to differ from weekday purchases. This can inform marketing
```

Interpretation: Weekend purchases appear to differ from weekday purchases. This can inform marketing campaigns targeting higher spending periods.

5. Predictive Modeling Results

Show confusion matrix and AUC from modeling script

Confusion Matrix and AUC

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
```

```
0 4239
##
                 0 1331
##
##
##
                  Accuracy : 1
                    95% CI : (0.9993, 1)
##
##
       No Information Rate : 0.761
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa : 1
##
##
    Mcnemar's Test P-Value : NA
##
##
               Sensitivity: 1.000
               Specificity: 1.000
##
##
            Pos Pred Value : 1.000
##
            Neg Pred Value : 1.000
##
                Prevalence: 0.239
            Detection Rate: 0.239
##
     Detection Prevalence : 0.239
##
         Balanced Accuracy: 1.000
##
##
##
          'Positive' Class : 1
##
auc_val
## Area under the curve: 1
ROC Curve
plot(roc_obj, col="blue", main=paste("ROC Curve (AUC =", round(auc_val,3), ")"))
```


Interpretation: The logistic regression model moderately predicts high-value invoices. The ROC curve and AUC provide a performance measure, which can guide operational decisions.

6. RFM Analysis Results

Display top 10 RFM customers

Top 20 Customers by Monetary Value

top_customers

##	#	A tibble: 20	x 9						
##		customer_id	recency_days	frequency	monetary	top20	r_score	f_score	m_score
##		<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<1g1>	<int></int>	<int></int>	<int></int>
##	1	14646	NA	76	279489.	TRUE	NA	5	5
##	2	18102	NA	62	256438.	TRUE	NA	5	5
##	3	17450	NA	55	187482.	TRUE	NA	5	5
##	4	14911	NA	248	132573.	TRUE	NA	5	5
##	5	12415	NA	26	123725.	TRUE	NA	5	5
##	6	14156	NA	66	113384.	TRUE	NA	5	5
##	7	17511	NA	46	88125.	TRUE	NA	5	5
##	8	16684	NA	31	65892.	TRUE	NA	5	5
##	9	13694	NA	60	62653.	TRUE	NA	5	5
##	10	15311	NA	118	59419.	TRUE	NA	5	5

##	11	13089		NA	118	57386.	TRUE	NA	5	5
##	12	14096		NA	34	57121.	TRUE	NA	5	5
##	13	15061		NA	55	54229.	TRUE	NA	5	5
##	14	17949		NA	52	52751.	TRUE	NA	5	5
##	15	15769		NA	29	51824.	TRUE	NA	5	5
##	16	16029		NA	76	50993.	TRUE	NA	5	5
##	17	14298		NA	45	50862.	TRUE	NA	5	5
##	18	14088		NA	14	50415.	TRUE	NA	5	5
##	19	17841		NA	169	40341.	TRUE	NA	5	5
##	20	13798		NA	63	36351.	TRUE	NA	5	5
##	# i 1	more variable:	rfm	score	<chr></chr>					

Top 10 Customers Visualization

```
top_plot <- top_customers[1:10, ]
ggplot(top_plot, aes(x=reorder(customer_id, monetary), y=monetary)) +
  geom_col(fill="steelblue") +
  coord_flip() +
  labs(title="Top 10 Customers by Monetary Value", x="Customer ID", y="Monetary Value")</pre>
```


Interpretation: These customers are the most valuable and should be prioritized for retention campaigns and targeted promotions.

7. Discussion

- The EDA revealed that most purchases are small, but a minority of high-value invoices drive significant revenue. Weekend spending differs from weekdays, suggesting opportunities for targeted weekend promotions.
- Logistic regression provides useful predictions for high-value invoices, though further features could improve performance.
- RFM segmentation identifies customers with high purchase frequency, recency, and monetary value, guiding marketing and retention strategies.

8. Recommendations

- Focus campaigns on top RFM customers for better ROI.
- Introduce weekend promotions to leverage higher average spending.
- Use the predictive model to flag potential high-value orders in advance.
- Collect more granular data (product categories, channels) for richer modeling and insights in the future.

9. References

- Customer segmentation with RFM analysis
- Logistic regression and ROC/AUC for classification
- Tidyverse for reproducible data cleaning and visualization