BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

62

Deutsche Kl.: 15 d, 24/03

Behördeneigentum

(1) (1)

Offenlegungsschrift 1761595

Aktenzeichen:

P 17 61 595.1

2

Anmeldetag:

12. Juni 1968

€3

Offenlegungstag: 9. September 1971

Ausstellungspriorität:

ூ

Unionspriorität

82 83 Datum:

Land:

Aktenzeichen:

30. Juni 1967 V. St. v. Amerika

650338

64)

3

Bezeichnung:

Rotationsdruckmaschine

閾

Zusatz zu:

Ausscheidung aus:

@

Anmelder:

Cameron Machine Co., Dover, N. J. (V. St. A.)

Vertreter:

Glawe, R., Dr.-Ing.; Delfs, K., Dipl.-Ing.;

Moll, W., Dipl.-Phys. Dr. rer. nat.; Patentanwälte,

8000 München und 2000 Hamburg

@

. Als Erfinder benannt;

Antrag auf Nichtnennung

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGB1. I S. 960): 21. 11. 1965 Prüfungsantrag gemäß § 28b PatG ist gestellt

A 95

CAMERON MACHINE COMPANY

Dover, New Jersey, V.St.A.

Rotationsdruckmaschine.

Die Erfindung betrifft eine Rotationsdruckmaschine mit einer geordneten Anordnung von Druckplatten auf einem umlaufenden Band zur Herstellung einer fortlaufenden Reihe von Abdrucken auf einer Papierbahn in geordneter Reihenfolge für das kontinuierliche Drucken von Büchern, Broschüren od.dgl. Die Erfindung sielt hauptelichlich derauf ab, eine derartige Vorrichtung su schaffen, die für extrem hohe Druckgeschwindigkeiten geeignet ist. Hierzu ist insbesondere eine neuartige und verbesserte Ausbildung des Druckbandes vorgesehen. Bei der erfindungsgemäßen Ausbildung eines Druckbandes, das für eine Hochgeschwindigkeitsrotationsdruckmaschine für automatisch betriebenen Druck von hoher Qualität geeignet sein soll; stellt sich insbesondere die Aufgabe, die dynamischen Trägheitskräfte der Druckplatten, die in geordneter Reihenfolge auf einem endlosen umlaufenden Druckband angeordnet sind, zu beherrschen und dadurch eine Wanderung der Druckplatten auf der Bandfläche und damit eine Anhäufung von Fehldrucken zu verhindern.

Ein weiteres Ziel der Erfindung besteht darin, den Druckmechanismus einer derartigen Rotationsdruckmaschine so auszubilden, daß er in rascher und einfacher Weise montierbar
und demontierbar ist und leicht für das Drucken von Büchern
von verschiedenem Format und verschiedenem Umfang angepaßt
werden kann, wobei Einrichtungen für die entsprechende richtige Einstellung und Spannung des Druckbandes vorgesehen
sind.

Eine Ausführungsform der Erfindung wird im folgenden an Hand der Zeichnungen näher beschrieben. Es zeigen:

- Fig. 1 eine schematische perspektivische Ansicht einer erfindungsgemäßen Druckmaschine;
- Fig. 2 Ja größerem Maßstab eine schematische Seitenansicht des Druckwerks der Maschine;
- Fig. 3 in noch größerem Maßstab einen Schnitt längs der Linie 3-3 von Fig. 1;
- Fig. 4 in größerem Maßstab einen Schnitt durch eine bevorzugte Ausführungsform einer Lagerung für einen Druckzylinder, einen Gegendruckzylinder und ein Antriebsritzel für das Druckband;
 - Fig. 5 einen Schnitt längs der Linie 5-5 von Fig. 2;
 - Fig. 6 einen Schnitt längs der Linie 6-6 von Fig. 5;
 - Fig. 7 einen Schnitt längs der Linie 7-7 von Fig. 5;
- Fig. 8 ein Schaltschema für die automatische Spanneinrichtung der erfindungsgemäßen Maschine.

Bei der in Fig. 1 gezeigten erfindungsgemäßen Rotationsdruckmaschine lo ist eine Rolle 12 einer Papierbahn an einer Abwickelvorrichtung 14 gelagert, die eine Spannrolle 16 aufweist. Die Papierbahn 18 wird längs eines Weges geführt der durch eine Vielzahl von Führungs- und Förderwalzen bestimmt ist, die in der Zeichnung schematisch angedeutet sind. Das Gestell der Maschine, an dem die Führungs- und Förderwalzen drehbar gelagert sind, ist in Fig. 1 der Deutlichkeit halber weggelassen. Für den Antrieb der Förderwalzen (z.B. 20) von einem Elektromotor 22 aus sind in üblicher Weise Getriebezüge vorgesehen, wie dies durch gestrichelte Linien schematisch angedeutet ist.

Die Papierbahn ¹⁸ läuft über einen Gegendruckzylinder 24 und kommt in Berührung mit einem endlosen Druckband 26 des Druckwerkes 28, nachdem dieses Druckband 26 durch ein Farbwerk 30 eingefürbt worden ist. Die Papierbahn 18 wird hierdurch auf einer Seite bedruckt und dann durch ein Farbtrockenwerk 32 geführt. Sie wird über zwei Kühlwalzen 34 gezogen und läuft dann über ümlenkstangen 36, 38 und einen zweiten Gegendrucksylinder 40, so das die andere Seite der Papierbahn 80 für das Bedrucken durch ein zweites Druckwerk 42 zugänglich gemacht wird. Danach wird die Papierbahn 18 durch ein zweites Trockenwerk 44 und über ein zweites Paar von Kühlwalsen 46 gesogen. Über eine Umlenkwalze 48 wird die Bahn durch eine Förderwalze 50 nach unten gesogen und einem Längsschneider 52 zugeführt, welcher die Papier-

Länge zerschneidet. Die Bänder 54 werden jeweils zu einem eigenen Paar von Faltzylindern (z.B. 56) geführt und dann in Form eines Stapels 58 von gefalteten Streifen durch ein Paar von angetriebenen Greifwalzen 60 zu einem Schneidwerk 62 geführt. Ausgleichwalzen (z.B. 64) sind vorgesehen, um eine einwandfreie Deckung der gestapelten Streifen 58, die dem Schneidwerk 62 zugeführt werden, zu erreichen. Das Schneidwerk besteht aus einem feststehenden Gegenmesser 66, welches mit einem drehbaren, angetriebenen Querschneider 68, der mit der Förderwalze 60 synchronisiert ist, zusammenarbeitet, um die gestapelten Streifen 58 in Blätterstapel 70 von gleicher Länge zu zerschneiden, die dann durch einen Hochgeschwindigkeitsförderer 72 zur Kollationierung und gegebenenfalls zu einer Buchbindestation gefördert werden.

Die verliegende Erfindung betrifft die Druckwerke 28 und 42, wobei die beiden Druckwerke identisch ausgebildet sind und daher im folgenden der Einfachheit halber nur das Druckwerk 42 beschrieben wird.

Unterhalb des Gegendruckzylinders 40 (impression cylinder)
befindet sich (vgl. auch Fig. 2) ein Druckzylinder 80
(plate cylinder), der zusammen mit einer Anzahl von in Abständen parallel zueinander angeordneten Lenkrollen 82,

84, 86 ein endloses Druckband 88 trägt, welches in einer Umlaufrichtung kontinuierlich umläuft und an einem Farbwerk 90 vorbeigeführt wird, bevor es mit der über den Gegendruck. zylinder 40 laufenden Papierbahn 18 in Berührung kommt.

Wie man aus Fig. 3 erkennt, besteht das endlose Druckband 88 aus einer äußeren Lage von flexiblen Druckplatten 99, die an einem perforierten Grundband 92 befestigt sind. In diesem Grundband ist längs der beiden Seitenkanten je eine Reihe von Löchern 96 ausgestanst, in die zwei Stiftträgereingreifen können, die an den beiden Enden des Drucksylinders 80 koaxial zu diesen angeordnet sind und von denen nur eines hei loo gezeigt ist.

Im einselnen besteht das Grundband 94 aus einem linearen Polyesterbahmaterial, vorzugsweise aus dem unter der Beseichnung "Mylar" erhältlichen Polyäthylenterephthalat, einer zähen, selbsttragenden, flexiblen, festen Bahn von beispielsweise o,25 mm (lo-mils) Stärke, die vorzugsweise sowohl in Querrichtung als auch in Längsrichtung orientiert ist durch Streckung, s.B. bis oder nahesu bi zur Streckgrenze, und anschließende Wärmefixierung unter Spannung. Die physikalischen Eigenschaften des so gewonnenen Bahnmaterials sind in allen Richtungengleichförnig, wobei diese

Eigenschaften optimale Werte haben, so daß das Material eine hohe Spannungs- und Scherfestigkeit über einen großen Temperatur- und Feuchtigkeitsbereich sowie eine hohe Dehnungsfestigkeit und Stoßfestigkeit sowohl in Querrichtung als auch in Längsrichtung aufweisen. Außer seiner Dimensionsstabilität ist das Material auch chemisch widerstandsfähig und ist unempfindlich gegenüber Öl, Fett, Druckfarben. Es ergibt sich somit ein robustes und unempfindliches Druckband 94, das speziell zur Verwendung in einer Rotationsdruckmaschine geeignet ist.

Die flexiblen Druckplatten 92 bestehen vorzugsweise aus Gummi und sind an dem Grundband 94 durch einen geeigneten Klebstoff befestigt, der mit dem Polyäthylenterephthalat-Material des Bandes verträglich ist. Jede Platte 92 weist erhabene Druckflächen für das Drucken einer einzelnen Seite auf. Die Platten sind in geeigneter Weise angeordnet, um eine geordnetere Folge von Abdrucken auf der Papierbahn 18 herzustellen. Die Gesamtzahl der Druckplatten 92 entspricht der Gesamtzahl der Seiten des zu druckenden Buches, so daß für die jeweils vorliegende Druckaufgabe das Druckband 88 eine feste, vorbestimmte Länge hat.

Diese Konstruktion besitzt den weiteren Vorteil, daß das Grundband eine sehr geringe Stärke hat, so daß das Druckband mit einem Druckzylinder 80 von sehr geringem Durchmesser, beispielsweise 20 cm, und dem sich dadurch ergebenden kleinen Biegeradius verwendbar ist und trotzdem noch eine sehr hohe Druckqualität ergibt. Ferner hat die perforierte Ausbildung des Grundbandes 95 den weiteren Vorteil, daß die Montage für eine speziell vorliegende Druckaufgabe erleichtert wird, da die Platten 92 rasch und leicht entsprechend den Ferforationen 96 an den beiden Längskanten des Bandes 94 ausgerichtet werden können.

Das Grundband 94 besitzt ein gewisses, wenn auch besich grenztes Maß an Elastizität, so daß in dem Band, wenn es beim Umlaufen um den Druckzylinder 80 schrittweise gespannt wird, Spannungen ergeben, die das Band anschließend wieder in seine ursprüngliche Form zurückführen. Hierdurch wird in wirksamer Weise eine Ausdehnung der Perforationen 96 vermieden und zwar auch bei Hochgeschwindigkeitsbetrieb in der Größenordnung von etwa 300 m pro Minute.

Bei bisher bekannten Maschinen dieser Art wird eine Folge von Druckplattenträgern verwendet, die durch Scharniere miteinander verbunden sind, deren Stifte von Ketten getragen werden, in welche ein am Druckzylinder starr befestigtes Kettenrad eingreift. Hierdurch wird der Plattensylinder synchron mit den die Druckplattenträger tragenden Ketten angetrieben. Derartige Vorrichtungen arbeiten zwar zufriedenstellend bei niedrigeren Geschwindigkeiten. Dabei tritt jedoch zwischen dem Druckzylinder und den inneren Plächen der Träger entlang der Linie der Druckberührung mit der Papierbahm ein sich ständig verändernder Druck auf, was bei hohen Druckgeschwindigkeiten dazu führt, daß sich die Verschiebungen übermäßig akkumulieren und daß sich starke Zugspannungen in dem Material der Druckplattenträger entwickeln, wodurch eine "Oberflächenwanderung" der Druckplatten, eine Durchbiegung der Scharnierstifte und unter Umständen eine Zerstörung der Scharnierverbindungen zwischen den Trägern verursacht wird.

Diese Nachteile werden gemäß der vorliegenden Erfindung dadurch vermieden, daß der Druckzylinder So mittel eines Freilaufs gelagert ist, so daß das Druckband 94 direkt unter der Wirkung der Stifträder loo und unabhängig vom Zylinder So bewegt wird und nur ein kleiner, jedoch stets gleichförmiger Schlupf zwischen Band und Zylinder auftritt. Das Band 94 besitzt eine größere Breite als der Drucksylinder So, und nur die vom Zylinder nicht gestütsten seitlichen Ränder des Bandes werden von den Antriebsrädern ergriffen. Durch diese Anordnung ist sichergestellt, daß die innere Oberfläche des Bandes 94, das in Berührung mit dem Druck-

zylinder 80 steht und die Druckplatten 92 trägt, gleichförmig und in Lingsrichtung gespannt wird derart, daß
die Flächen der Druckplatten 92 mit einer absolut gleichförmigen Momentangeschwindigkeit über den frei/laufenden
Druckzylinder 80 an der Linie des Druckkontaktes mit der
über den Gegendruckzylinder 40 laufenden Papierbahn laufen.
Hierdurch ergibt sich ein störungsfreier Präzisionsdruckvorgang, wobei eine erhebliche Steigerung der Druckgeschwindigkeiten möglich ist.

Rine bevorsugte Ausführungsform der Lagerung für den Gegendrucksylinder to und den Drucksylinder 80 ist in Fig. 4 dargestellt. Die Sylinder sind an beiden Enden in gleicher Weise gelagert. Der Drucksylinder 80 und der Gegendruckzylinder 40 sind jeweils mit einstückig daran ausgebildeten Lagerzapfen 102 und 104 versehen, die in handelsüblichen, mehrreihigen Kegelrollen lagern 106 und 108 und drehbar gelagert sind. Diese Lager sind ihrerseits in üblicher Weise an einem Gestell 110 so befestigt, das sie die axialen und radialen, auf die Zylinder ausgeübten Krüfte aufnehmen.

Bei der gezeigten Ausführungsform ist eine exzentrische Hülse 112 vorgesehen, die als radiale Befestigung für das Lager 108 des Gegendrucksylinders dient. Es sind geeignete Mittel vorgesehen, um die exzentrische Hülse 102 in eine gewünschte Drehstellung zu drehen umd in dieser Stellung festzulegen, wodurch der Gegendrucksylinder 40 auf einen gewünschten Abstand vom Druckzylinder 80 eingestellt werden kann.

Eine Antriebsnabe 114 ist auf einem Paar von Kugellagern 116 und 118 gelagert, die auf entsprechenden Lagerflächen 120 und 122 des Druckzylinders 80 sitzen. Auf dem in Axialrichtung inneren Ende der Nabe 114 sitzt das Stiftrad loo und auf dem Hußeren Ende der Nabe ein Stirnzahnrad 124, die beide durch geeignete Befestigungsmittel 126 und 128 koaxial zueinander befestigt sind. Das Stiftrad 100 besitzt an seinem Umfang in Abständen angeordnete Stifte 130, die mit den oben erwähnten Perforationen 96 in dem endlosen Band 94 in Eingriff gebracht werden können. Um Beschädigungen des Bandes zu vermeiden, sind die Stifte 130 abgerundet, um zackige Ecken und scharfe Kanten zu beseitigen. Die Drehung des Stirnzahnrades wird durch ein Ubliches (nicht dargestelltes) Getriebe mit veränderlichem Übersetzungsverhältnis oder durch eine andere Antriebsvorrichtung bewirkt, um zwar synchron mit dem Hauptantrieb der Maschine. Wie man sieht, sind die Stifträder loo unabhängig von dem ihnen gegenüber frei drehbaren Druckzylinder 80 antreibbar, um das Druckband 88 über den Druckzylinder synchron mit der Bewegung der Papierbahn 18 Uber den Gegendruckzylinder 40 zu bewegen.

Um bei einer Beschleunigung oder Bremsung des Druckbandes 88 zwischen dem Ruhezustand und einer gewünschten Betriebsgeschwindigkeit in exakter zeitlicher Abstimmung zu der Bewegung der Papierbahn 80 eine übermäßige Belastung der die Perforationen 96 umgebenden Teile des Grundbandes 94 zu vermeiden, ist vorzugsweise eine Reibungskupplung 132 zwischen den Stifträdern loo und dem frei laufenden Druckzylinder 80 vorgesehen.

Zu dieserReibungskupplung gehört ein Kupplungsring 134, der auf einer Anzahl von kranzförmig angeordneten Stiften 136 verschiebbar gelagert ist, die an der Antriebsnabe 114 mit Preßsitz gehalten sind und sich durch das Stiftrad loo hindurch erstrecken, so daß der Kupplungsring 37 drehfest mit der Antriebsnabe verbunden ist, jedoch gegenüber dieser in Axialrichtung frei verschiebbar ist. Eine Scheibe oder ein Kupplungsbelag 138 aus einem geeigneten Reibungsmaterial ist starr an einer inneren Fläche des Kupplungsringes 134 befestigt und liegt an einer Kupplungsfläche 140 einer Ringplatte 142 an, die auf einer Schulter 164 des Druckzylinders 80 konzentrisch zu diesem sind und durch eine Schraube 144 gesichert ist.

Um den wirksamen Bereich der die Stifträder loo an den Drucksylinder So kuppelnden Reibungskupplung 132 verändern zu können, sind eine Anzahl von gleichen Winkelabständen angeordneten Kammern 148 vorgesehen, die sich in Axial-richtungen durch jedes Stiftrad loo hindurch und in die angrenzenden Teile der Antriebsnabe 114 und des Kupplungs-ringes 134 hinein erstrecken. In jeder Kammer 148 ist eine schraubenförmige Druckfeder 150 angeordnet, deren eines Ende gegen den Kupplungsring 134 anliegt und deren anderes Ende gegen einen verbreiterten Kopf 152 einer Justierschraube 154 drückt, die sich in Axialrichtung durch eine Bohrung in der Antriebsnabe 114 erstreckt und auf der eine Sperrautter 156 sitzt. Diese ist so fest gegen die Nabe angezogen, wie es der gewünschten Spannung der Druckfeder entspricht.

Die wirksame Grenze des von der Reibungskupplung 132 auf den Drucksylinder 80 übertragenen Drehmomentes kann daher in einfacher Weise auf einen ausreichend hohen Wert eingestellt werden, damit einerseits eine einwandfreie Beschleunigung bzw. Bremsung des Druckbandes 88 bewirkt wird, andererseits aber eine umabhängige Bewegung des Grundbandes 94 in gleichbleibendem Verhältnis zu dem frei laufenden Drucksylinder 80, wie oben erwähnt, sicherge-

stellt wird, um einem Präsisionsdruckvorgang bei extrem hohen Geschwindigkeiten zu erzielen.

Man kann den Gegendruckzylinder 40 leer mitlaufen lassen und dabei in einem breiten Geschwindigkeitsbereich befriedigende Resultate und einem störungsfreien Betrieb erzielen. Es kann jedoch vorteilhaft sein, ein angetriebenes Zahnrad, wie es in Fig. 4 bei 158 strichpunktiert dargestellt ist, auf dem Gegendruckzylinder 40 zu befestigen, welches mit dem Stirnzahnrad 124 auf dem Druckzylinder 80 zusammenwirkt. Eine derartige Anordnung sichert eine einwandfreie Synchronisierung des Gegendruckzylinders 40 und verringert die Gefahr, daß die Papierbahn 18 bei verhältnismäßig raschen Beschleunigungen oder Bremsungen der Maschine 10 eingeklemmt wird.

Um die Maschine 10 in möglichst geringer Zeit für den Druck von Büchern verschiedenen Formats einstellen zu können, ist erfindungsgemäß eine Spannvorrichtung 116 für das Druckband (Fig. 5 bis 7) vorgesehen, um wahlweise Druckbänder von verschiedener Länge entsprechend verschiedenen Buchformaten spannen zu können.

Das Druckband 88 von ausgewählter länge wird über den Druckzylinder 80 und eine Umlenkrolle 82 gelegt, und kann automatisch gespennt werden durch eine gesteuerte Bewegung der Umlenkrolle 82 relativ zum frei laufenden Druckzylinde: 80. Wie am besten aus Fig. 2 ersichtlich, sind Zwischenrollen 84, 86 wahlweise vorgesehen für den Fall, daß das Druckband 88 so lang ist, daß eine Abstützung an Zwischenpunkten erforderlich oder erwünscht ist. Auch diese Zwischenrollen sind in nicht dargestellter Weise an dem Maschinengestell drehbar gelagert.

Die Umlenkrolle 82 ist, wie dargestellt, rohrförmig ausgebildet und drehbar gelagert auf einer waagerechten Tragwelle 162, welche an ihren Enden mit Gabeln 164 und 166 versehen ist, die um senkrechte Schwenkachsen schwenkbar an beweglichen Trägern 168, 170 befestigt sind. Die Träger 168 und 170 werden von Rollen 172 getragen, so daß sie auf horizontalen Führungsschienen 176, 177 des Maschinengestells eine leichte und glatte Rollbewegung ausführen können. Mit Leitspindeln 178, 180, die sich neben den Führungsschienen 174, 176 und parallel zu diesen erstrecken, kann den Trägern 168, 170 eine gesteuerte Bewegung erteilt werden.

Jede Leitspindel 178,180 ist vorzugsweise in gleicher Weise gelagert, so daß es ausreicht, die Lagerung an einer Spindel zu beschreiben. Das rechte Ende der Leitspindel 178 Lagergehäuse 182 gelagert, während das linke Ende der Spindel 178 drehbar in einem Lagergehäuse 186 gelagert ist, welches die Axialbewegung der Spindel mitmachen kann, begrenzt durch Anschläge 188, 190, die an einem Teil 192 des Maschinengestells vorgesehen sind. Das Lagergehäuse 186 ist auf Reibungsarmen -Kugelbahnen 194, 196 gelagert, die von an den Anschlägplatten 188, 190 befestigten Stangen 198, 200 gehalten werden.

Jede Leitspindel 178, 180 befindet sich in gewindemsBigem Bingriff mit einer Mutter 202 (Fig. 6), die lose in
einen in jedem Träger 168, 170 gelagerten schwenkbaren
Block 204, 205 eingepaßt ist. Jede Mutter 202 ist in dem
entsprechenden Träger mit einem bestimmten Betrag von
radialem Spiel, jedoch ohne Spiel in Axialrichtung festgehalten.

Um die Umlenkwalze 82 auf den Bruckzylinder 80 zu und von ihm weg zu bewegen, ist eine gleichzeitige Brehung der Leitspindeln 178, 180 erforderlich. Diese wird bewirkt durch Kettenräder 206, 208, die mit den Leitspindeln 178, 180 antriebsmäßig verbunden sind und in eine endlose Antriebskette 210 eingreifen, die ihrerseits von eines auf der Ausgangswelle 214 eines umkehrbaren Klektromotore 216 befestigten Kettenrad 212 angetrieben wird.

Wenn die Leitspindeln so gedreht werden, daß sich die Umlenkwalzen 200 nach links in Fig. 2 von dem Druckzylinder 80 weg bewegt, wird die Umlenkwalze 82 normalerweise zuerst mit einem Ende das Druckband 88 berühren und spannen, da die Gewinde auf den beiden Spindeln 178, 180 wahrscheinlich nicht exakt gleich sind. Wenn das eine Ende der Umlenkwalze 82 (z.B. das Ende beim Träger 168) beginnt, das Druckband 88 zu spannen, hört die lineare Bewegung der entsprechenden Mutter 102 und des entsprechenden Trägers 168 auf, so daß bei fortgesetzter Drehung der Leitspindel 178 unter dem Antrieb des Motors 216 eine axiale Bewegung der Leitspindel 178 nach rechts in Richtung auf den Druckzylinder 80 erfolgt.

Die automatische Steuerung der Spannung des Druckbandes 88 ist am besten an Hand von Fig. 6 verständlich. Man sieht hier, daß eine durch den Motor 216 ausgeübte Kraft, welche die Leitspindel 178 axial nach rechts bewegt, ausreichend groß sein muß, um eine ständig vorhandene Gegenkraft zu überwinden, welche auf das Lagergehäuse 186 durch einen reibungsarmen hydraulischen oder pneumatischen Zylinder 18 vom Membrantyp über dessen hin- und hergehenden Arm 220 und ein am Gestell 192 schwenkbar gelagerten Verbindungslenker 222 ausgeübt wird.

Venn sich das die Leitspindel tragende Lagergebluse 186 aufgrund einer Axialbewegung der Leitspindel 178 nach rechts gegen die Kraft des Drucksittelsylinders 218 von seiner Anschlagplatte 188 weg nach rechts bewegt, bleibt das auf dem Träger bzw. Wagen befestigte Lagergehäuse 168 auch bei einer weiteren Drehung der Leitspindel ortefest in Bezug auf das Maschinen-gerüst stehen, und zwar aufgrund der beschriebenen Anordnung der Leitspindel und der auf ihr sitzenden Mutter. Das andere, sich verschiebende Lagergehäuse 170 setzt seine Vorwärtsbewegung nach links fort, bis das gesamte Spiel im Druckband 88 aufgebraucht Dann werden auch die Leitspindel 180 und ihr Lagergehäuse 224 in gleicher Weise axial nach links verschoben gegen die Gegenkraft eines Zylinders, die gleich der auf die Leitspindel 178 ausgeübten Gegenkraft ist. Genauer gesagt, wird das Lagergehäuse 224 in der gleichen Weise wie das Lagergehäuse 186 durch die Kraft eines Druckmittelzylinders nach links belastet, wobei dessen wirksame Fläche gleich der des Druckmittelzylinders 218 ist und beide Druckmittelzylinder an eine gemeinsame Druckmittelquelle angeschlossen sind.

Da beide Druckmittelsylinder eine gleiche Vorspannungskraft auf die Lagergehäuse 186, 224 ausüben, wenn diese von ihren Anschlagplatten 188 nach links verscheben werden, wird die Vorspannungskraft über die Leitspindeln 178, 180 auf die wandernden Lagergehäuse 168, 170 übertragen, und das Druckband 88 befindet sich dann unter gleichförmiger Spannung, wobei die Umlenkwalze 82 automatisch parallel zum Druckband 88 ausgerichtet ist.

Wenn sich die Lagergehäuse 186, 224 für die Leitspindeln noch weiter nach links verschieben, wird durch die dadurch verursachte Schwenkbewegung der Lenker 222, 223 ein Paar von normalerweise offenen Mikroschaltern 226, 227 geöffnet, die parallel zueinander und in Serie zum Motor 216 geschaltet sind (Fig. 8), so daß der Antriebsstromkreis automatisch geöffnet und der Motor 216 abgeschaltet wird. Die Mikroschalter 226, 227 werden durch die Lenker 222, 223 wieder geschlossen, wenn diese in der Ausgangsstellung bezüglich der linken Anschlagplatten 188 sich befinden.

Bei ausgeschaltetem Motor, und wenn ein dem Motor 216 vorgeschalteter Hauptschalter 228 geöffnet ist, kann das gespannte Druckband 88 dann, falls gewünscht, von Hand justiert werden mittels eines Druckreglers 229, der in den Druckmittelkreis der Druckmittelzylinder 218 eingeschaltet ist. Damit kann eine präzise Einstellung der Spannung des Druckbandes für ein einwandfreies Arbeiten bei den beträchtlich erhöhten Geschwindigkeiten der erfindungsgemäßen

Vorrichtung sichergestellt werden.

Jede Gefahr, daß sich die verschiebbaren Träger 168, 170 bezüglich der Muttern 202 bzw. der Leitspindeln 178, 180 verschieben, wirkt die oben beschriebene gabelförmige Lagerung der Umlenkwalze 162 und das ausgewählte radiale Spiel zwischen jeder Mutter 202 und ihrem entsprechenden Lagerblock 204, 205 entgegen. Die richtige seitliche Einstellung der verschiebbaren Träger 168, 170 wird durch zwei Seitenrollen 230, 232 unterstützt, die an dem Träger 178 vorgesehen sind und an beiden Seiten einer Führungsschiene 178 angreifen. Ein einzelnes Paar von Seitenrollen 234 ist an dem anderen Träger 170 gelagert und greift an einer Führungsschiene 176 ein, so daß die Möglichkeit, daß sich die Spannvorrichtung gegen die Schienen 174, 176 verteilt oder festsetzt, praktisch ausgeschlossen wird.

Als Sicherheitsvorrichtung zur Aufrechterhaltung der eingestellten Spannung des Druckbandes und damit zur Aufrechterhaltung des Betriebes auch bei Druckgeschwindigkeiten von etwa 300 m pro Minute beim Ausfall des Druckmittels, und als Ausgleichseinrichtung zur Berticksichtigung von Spiel oder Totgang aufgrund von Herstellungstoleransen der Bestandteile der Spannvorrichtung 160 ist jeder wandernde Träger 168, 170 mit einer aus einem Handgriff und

Klemmschuhen bestehenden Verriegelungsvorrichtung, z.B.

236, versehen, um die Träger 168, 170 an den entsprechenden Führungsschienen 174, 176 festzuklemmen. Perner ist vorzugsweise eine Klemmeinrichtung 238 vorgesehen, um die Verriegelungshandgriffe 236 an jedem der Träger festzustellen und zu sichern. Wenn dies geschehen ist, kömmen die Druckmittelzylinder 218 abgeschaltet werden, wobei die Spannvorrichtung 160 in der Betriebsstellung verbleibt.

Aus der vorstehenden Beschreibung dürfte hervorgehen, daß die Hauptvorteile der erfindungsgemäßen Vorrichtung darin liegen, daß eine Maschine für extrem hohe Druckgeschwindigkeiten geschaffen wird, bei der Fehler aufgrund einer Oberflächenwanderung (surface walking) der Druckplatten praktisch ausgeschlossen sind, undbei der eine hinreichende Flexibilität für den Druck von Büchern verschiedenen Formates gegeben ist, einschließlich eines geringen Arbeits- und Zeitaufwandes für die bei den verschiedenen Druckaufgaben erforderlichen Einstellungsänderungen der Maschine.

Patentansprüche

- 1. Hochgeschwindigkeits-Rotationsdruckmaschine mit einem Gerüst, einem endlosen Druckband, Mitteln zur Lagerung des Druckbandes an dem Gerüst für dessen Umlauf in einer Richtung, einem am Gerüst gelagerten Gegendruckzylinder, Vorschubmittel für den Vorschub einer Papierbahn über den Gegendruckzylinder in Berührung mit dem Druckband, und ein am Gerüst gelagertes Farbwerk zur Übertragung von Druckfarbe auf das Druckband an einer Stelle vor dessen Berührung mit der zu bedruckenden Bahn, dadurch geken endlosen Grundband und darauf befestigten flexiblen Druckplatten besteht, wobei das Grundband aus einem biaxial orientierten, ausgeglichenen, wärmefixierten Polyäthylenterephthalat band mit für den Hochgeschwindigkeitsbetrieb ausreichender Dimensionsstabilität besteht.
- 2. Hochgeschwindigkeits-Rotationsdruckmaschine mit einem Gerüst, einem an diesem gelagerten Gegendrucksylinder, Fördermittel für den Vorschub einer zu bedruckenden Bahn über den Gegendruckzylinder, und mit einem Druckwerk, bestehend

_ 22 .

aus einem über eine Anzahl von Führungs- und Antriebswalzen in einer Richtung umlaufenden endlosen Band, auf dessen Außenseite eine Anzahl von flexiblen Druckplatten befestigt sind, wobei eine der Führungs- und Umlenkwalzen als mit dem Gegendruckzylinder zusammenwirkender Druckzylinder ausgebildet ist, dadurch gekennzeichnet, daß der Druckzylinder sowie an dem Druckband formschlüssig angreifende Antriebsmittel unabhängig voneinander drehbar an dem Maschinengerüst gelagert sind derart, daß durch die Antriebsmittel eine gleichförmige Längsspannung an der inneren Oberfläche des mit dem Druckzylinder in Berührung stehenden Druckbandes ausgelibt wird, so daß die Arbeitsflächen der Druckplatten an der Berührungslinie mit der über den Gegendruckzylinder laufenden zu bedruckenden Bahn mit einer gleichförmigen momentanen Oberflächengeschwindigkeit über den frei laufenden Druckzylinder laufen.

- J. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das endlose Band aus einem biaxial orientierten, ausgeglichenen, wärmefixierten Polyäthylenterephthalatband besteht.
- 4. Vorrichtung nach Anspruch 2, g e k e n n z e i c h n e t durch eine einstellbare Spannvorrichtung mit einem Paar von wandernden Trägern, die an dem Gerüst

verschiebbar geführt sind und an denen eine der Führungerollen für das Druckband gelagert ist, so daß deren Abstand
vom Druckzylinder entsprechend verschiedenen Längen des
endlosen Druckbandes veränderbar ist.

- 5. Vorrichtung nach Anspruch 2, dadurch gekenn zeich net, daß das endlose Druckband mit Perforationen in Form von an beiden Bandrändern angeordneten Lochreihen versehen ist und daß die formschlüssigen Antriebsmittel aus zwei angetriebenen Stifträdern bestehen, die in die Löcher eingreifen und an den beiden Enden einer der Führungswalzen für das Druckband unabhängig von dieser drehbar gelagert sind.
- 6. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Spannvorrichtung weiterhin eine
 kraftgetriebene automatische Antriebsvorrichtung zur Bewegung der einen Führungswalze des Druckbandes in den Eingriff mit dem Druckband zur Herstellung einer gleichmäßigen
 Längsspannung in dem Druckband ist.
- 7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß an den beiden Enden eines frei drehbaren Druckzylinders zwei Stifträder frei drehbar gelagert
 sind, und daß zwischen dem Druckzylinder und den Stifträdern

eine Antriebsverbindung vorgesehen ist, die aus einer Kupplung besteht, welche wahlweise betätigbar ist, um einen Schlupf zwischen dem Druckband und dem Druckzylinder während der Beschleunigung und Verzögerung der Stifträder zu unterbinden.

- 8. Vorrichtung nach Anspruch 5, dadurch gekennzeit eich net, daß die Stifte der Stifträder zur Vermeidung von Beschädigungen des Druckbandes abgerundet sind.
- 9. Vorrichtung nach Anspruch 7, dadurch gekennzeich net, daß die Kupplung zwischen den Stifträdern
 und dem Druckzylinder aus einer in Kupplungsrichtung federbelasteten Reibungskupplung besteht, um bei einer Drehung
 der Stifträder aus der Ruhestellung bis zu einer vorbestimmten Drehzahl eine Reibungskraft auf den Druckzylinder
 zu übertragen, wobei die Federkraft der Reibungskupplung
 einstellbar ist derart, daß bei einem Ansteigen der Drehzahl der Stifträder über den vorbestimmten Wert die Reibungskraft überwunden und ein Schlupf der Reibungskupplung
 ermöglicht wird, um eine gleichförmige Oberflächengeschwindigkeit des über den Druckzylinder laufenden Druckbandes
 unabhängig vom Druckzylinder zu ermöglichen.

- deren Druckwerk aus einem über mehrere Führungswalzen, darunter einem Druckzylinder, in einer Richtung umlaufenden, endlosen Druckband mit daran befestigten, flexiblen Druckplesteht dadurch g e k e n n z e i s h n e t, daß das Druckband breiter ist als der Druckzylinder, an den beiden über den Druckzylinder hinausragenden Rändern mit Perforationen in Form von Lochreihen versehen ist, und daß Antriebsmittel in Form von angetriebenen Stifträdern vorgesehen sind, die in die Perforationen eingreifen und das Druckband unabhängig vom frei laufenden Druckzylinder antreiben.
- 11. Vorrichtung nach Anspruch lo, dadurch gekennzeichnet, daß das endlose Band aus einem biaxial
 orientierten, ausgeglichenen, wärmefixierten Polyäthylenterephthalatband besteht.
- 12. Hochgeschwindigkeits-Rotationsdruckmaschine mit einem von einem Druckzylinder und einer parallel dazu gelagerten Umlenkwalze getragenen, in einer Richtung umlaufenden endlosen Druckband, gekennseich in einer Richtung umlaufenden endlosen Druckband, gekennseich in het durch eine automatische Spannvorrichtung für das Druckband, bestehend aus zwei verschiebbaren Trägern, an denen die Enden der Umlenkwalze gelagert sind, und die an dem Maschinengerüst in Richtung auf den Druckzylinder bzw. von diesem weg

verschiebbar geführt sind, aus zwei antreibbaren Leitspindeln, die am Maschinengerüst drehbar und in Richtung
auf den Druckzylinder bezw. von diesem weg axial verschiebbar gelagert sind, wobei die Leitspindeln mit je einem der
verschiebbaren Träger in Ringriff stehen, um die Umlenkwalze von dem Druckzylinder bis zu einem durch das Druckband gegebenen Maximalabstand entfernen zu können, und
aus einer Spannungssteuervorrichtung, die auf jede der
Leitspindeln einwirkt, um die beiden Enden der Umlenkwalze
unabhängig voneinander an das Druckband anpressen zu können,
um diesem eine gleichmäßige Längsspannung zu geben.

13. Vorrichtung nach Anspruch 12, weiter gekenn zeich net durch swei an dem Gehäuse verschiebbar geführte Lager für die Leitspindeln, an denen je eine Leitspindel drehbar, aber axial unverschiebbar gelagert ist, wobei die Spannungssteuervorrichtung aus auf jeden der Lager einwirkenden Antriebsmitteln besteht, die auf die Lager gleiche Gegenkräfte ausüben, welche der Bewegung der Lager in Richtung auf den Druckzylinder, die bei der Berührung der Umlenkwalze mit dem Druckzylinder und dem dadurch bedingten Anhalten der verschiebbaren Träger auftritt, entgegemmirken.

- 14. Vorrichtung nach Anspruch 15, dadurch gekennseit einem kennseit eine hat das die Antriebsmittel aus einem Paar von pneumatisch oder hydraulisch betätigten Zylindern bestehen, die an eine gemeinsame Druckmittelquelle angeschlossen sind und mit je einem hin- und herbeweglichen Antriebsteil mit einem der beiden Lagergehäuse der Leitspindeln verbunden sind.
- 15. Vorrichtung nach Anspruch 14, g e k e n n z e i c h n e t durch einen Motorantrieb für den gleichzeitigen Antrieb der Leitspindeln und durch Grenzschalter,
 die mit dem Motor verbunden sind und diesen dann abschalten,
 wenn die Antriebsteile beider Druckmittelsylinder sich um
 eine Strecke bewegt haben, die einer Verschiebung der entsprechenden Lagergehäuse der Leitspindeln bei Erreichen
 einer bestimmten gleichmißigen Spannung des Druckbundes
 entspricht.
- 16. Vorrichtung nach Anspruch 14, g e k e n n
 z e i c h n e t durch Verriegelungseinrichtungen sum Feststellen jedes der verschiebberen Trüger an dem Maschinengertist bei Erreichen einer gleichförmigen Längsspennung
 in dem endlosen Druckband, um die Druckmittelsylinder abschalten und einen vor Betriebestörungen sicheren Betrieb
 der Maschine zu erreichen.

17. Hochgeschwindigkeits-Rotationsdruckmaschine mit einem Gerüst, einem daran gelagerten Gegendruckzylinder, Vorschubmittel für den Vorschub einer zu bedruckenden Behn über den Gegendrucksylinder, einem Druckwerk, bestehend aus einem um eine Anzahl von drehbaren Führungswalzen in einer Richtung unlaufenden endlosen Druckband mit darauf befestigten Druckplatten, wobei eine der Führungswalzen aus einem mit dem Gegendrucksylinder zusammenwirkenden Druckzylinder besteht, sowie mit einem Farbwerk zum Übertragen von Druckfarbe auf die Druckplatten vor deren Berührung mit der zu bedruckenden Bahn, dadurch gekennz e i c h n e t, das das Druckband mit den flexiblen Druckplatten durch an ihm formschlüssig angreifende Antriebsmittel unabhängig von dem frei umlaufenden Drucksylinder angetrieben ist derart, das sich eine gleichförmige Längsspannung an der mit dem Drucksylinder in Berührung stehenden Innenfläche des Druckbandes ergibt, so das die Stirnflächen der Druckplatten über den Drucksylinder mit einer gleichförmigen Momentangeschwindigkeit an der Berührunge linie mit der über den Gegendruckzylinder laufenden Papierbahn laufen, wobei ferner eine einstellbare Spannvorrichtung vorgesehen ist mit einem Paar vom am Gerüst verschiebbar gelagerten Trägern, in denen eine der Führungswalzen derart gelagert sind, das ihr Abstand zum Drucksylinder entsprechend unterschiedlichen Längen des Druckbandes einstellbar ist.

- 18. Vorrichtung nach Anspruch 17, g e k e n n
 s e i c h n e t durch antriebsübertragende Mittal zwischen
 dem frei laufenden Druckzylinder und den formschlüssigen
 Antriebsmitteln, wobei die antriebsübertragenden Mittel
 aus einer wahlweise betätigbaren Rupplung bestehen, mit
 der ein Schlupf des endlosen Druckbanden relativ zum frei
 laufenden Druckzylinder wihrend der Beschleunigung und
 Versögerung der Antriebsmittel verhindert werden kann.
- 10. Vorrichtung nach Anspruch 17, g e k e n n z e i c h n e t durch eine kraftbetriebene Spannungsregelvorrichtung mit zwei am Gerüst gelagerten Leitspindeln,
 von denen jede mit einem der verschiebberen Träger in Eingriff steht, um die Unlenkwalze relativ zum frei laufenden
 Druckzylinder zu verschieben und dagurch eine gleichförnige
 Längsspannung des endlosen Druckbendes zu erseugen.
- 20. Vorrichtung nach Anspruch 17, dadurch gekennseichnet, das das endlose Druckband aus einem biaxial orientierten, ausgeglichenen, wärmefizierten Polykthylenterephthalatband besteht.
- 21. Bochgeschwindigkeits-Rotationsdruckmaschine mit einem auf mehreren Führungswalzen in einer Richtung un-

laufenden endlosen Druckband, einem am Gerlist gelagerten Gegendruckzylinder, Vorschubmitteln für den Vorschub einer zu bedruckenden Bahn über den Gegendruckzylinder in Berührung mit dem Druckband, und einem Farbwerk zum Übertragen von Farbe auf das Druckband vor dem Erreichen der Berührungsstelle mit der zu bedruckenden Bahn, dadurch gekenn zeich mit der zu bedruckenden Bahn, dadurch gekenn zeich an der Innenseite angeordneten Grundband besteht aus einem an der Innenseite angeordneten Grundband aus flexiblem, zähem, stoßbeständigen Kunststoffband mit hoher Zugfestigkeit und guter Dimensionsstabilität bei Hochgeschwindigkeitsbetrieb, und aus einer Eußeren Schicht von flexiblen Druckplatten, die an dem Grundband befestigt sind und mit diesem das zusammengesetzt endlose Druckband bilden.

Leerseite

٠.

15d 24-03 AT: 12.06.1968 OT: 09.09.1971

109837/0062

