VEKTORIELLE GEOMETRIE

by Pascal

1.1 Vektoren

Definition

Ein Vektor ist Element eines Vektorraums.

Vektorräume, wir erinnern uns zurück. Verknüpfungen, inverse Elemente und die dazugehörenden Gesetze, konsequente Definitionen und mathematische Korrektheit, die guten alten Zeiten...

Tatsächlich kann ein Vektor in den meisten Fällen als Verschiebung bezeichnet werden, nicht aber als Pfeil oder Strich!

1.1.1 Besondere Vektoren

Definition - Der Ortsvektor

Der Vektor von O auf den Punkt P, geschrieben als \overrightarrow{OP} oder \overrightarrow{p} .

Hat P die Koordinaten $(P_1|P_2|...|P_n)$, so besitzt \overrightarrow{p} die Darstellung $\begin{pmatrix} P_1 \\ P_2 \\ ... \\ P_n \end{pmatrix}$

Definition - Der Nullvektor

Der Vektor mit Wert $\begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$, er hat keine und alle Richtungen zugleich.

Bemerkung:

Er ist somit das neutrale Element der Vektoraddition.

Definition - Der Verbindingsvektor

Der Vektor \overrightarrow{AB} ist der Vektor, der den Punkt A auf den Punkt B abbildet. Er ist definiert als: $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, woraus folgt, dass:

$$\overrightarrow{AB} = \left(\begin{array}{c} b_1 - a_1 \\ b_2 - a_2 \\ \dots \\ b_n - a_n \end{array} \right).$$

Definition - Der Gegenvektor

Der Gegenvektor zu \overrightarrow{AB} ist \overrightarrow{BA} , definiert als $-\overrightarrow{AB}$.

Bemerkung:

Er ist somit das inverse Element der Vektoraddition.

Bemerkung:

Definition - Norm eines Vektors

Die Norm eines Vektors ist anschaulich als seine Länge zu interpretieren. Der Betrag, wie sie ebenfalls genannt wird, eines Vektors \overrightarrow{v} ist folgendermaßen definiert: $|\overrightarrow{v}| = \sqrt{\sum_{i=1}^n v_i^2}; \overrightarrow{v} \in \mathbb{R}^n$.

Anhand dieser Graphik lässt sich die Berechnung der Norm eines Vektors $\overrightarrow{v} \in \mathbb{R}^3$ verdeutlichen. Für diesen glit: $|\overrightarrow{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$.

Definition - Der Einheitsvektor

Ein Vektor, dessen Norm 1 beträgt wird als normiert oder Einheitsvektor bezeichnet. Für jeden Vektor $\overrightarrow{v} \in \mathbb{R}^3$ existiert ein Einheitsvektor $\overrightarrow{v^*}$, der folgendermaßen definiert wird: $\overrightarrow{v^*} = \frac{1}{|\overrightarrow{v}|} * \overrightarrow{v}$.

1.2 Basen und Erzeugendensystem

Definition

Eine endliche Anzahl von Vektoren $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n} \in V$ heißt Erzeugendensystem, wenn sich jeder Vektor $\overrightarrow{v} \in V$ als Linearkombination dieser Vektoren schreiben lässt. Um ein Erzeugendensystem zu bilden benötigt man mindestens die Anzahl Vektoren, die der Anzahl von Dimensionen von \overrightarrow{v} entspricht. Wenn man **genau** diese Anzahl besitzt, spricht man von einer Basis.

1.2.1 Besondere Basen

Definition - Orthogonalbasis

Sind die Vektoren der Basis paarweise orthogonal zueinander, so spricht man von einer **Orthogonal-basis**.

Definition - Orthonormalbasis

Sind die Vektoren zusätzlich zu dieser Bedingung normiert, wird sie als Orthonormalbasis bezeichnet.

Die einfachste und meist benutzte Basis des \mathbb{R}^3 besteht aus den drei Vektoren $\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overrightarrow{e_2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, $\overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Sie wird als **Standardbasis** des \mathbb{R}^3 bezeichnet. Vektoren wie $\overrightarrow{v} = \begin{pmatrix} 2 \\ 3 \\ 8 \end{pmatrix}$ lassen

sich als eine Linearkombination der drei Vektoren der Standardbasis darstellen: $\vec{v} = 2 \cdot \vec{e_1} + 3 \cdot \vec{e_2} + 8 \cdot \vec{e_3}$.

1.2.2 Basistransformation

Bilden die Vektoren $\vec{a_1}, \vec{a_2}, ..., \vec{a_n}$ eine Basis des *n*-dimensionalen Vektorraums *V* und sei der Vektor \vec{v} $; \overrightarrow{v} \in V. \text{ Dann gilt wie "ublich": } \overrightarrow{v} = v_1 \cdot \overrightarrow{a_1} + v_2 \cdot \overrightarrow{a_2} + ... + v_n \cdot \overrightarrow{a_n}. \text{ Sei eine weitere Basis } \overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}$

des selben Vektorraumes, so besitzt der Vektor \vec{v} andere Koordinaten: $\vec{v} = \begin{pmatrix} v_1' \\ v_2' \\ \dots \\ v_n' \end{pmatrix}$. Dabei muss gelten: $\overrightarrow{v} = v_1 \cdot \overrightarrow{a_1} + v_2 \cdot \overrightarrow{a_2} + \dots + v_n \cdot \overrightarrow{a_n} = v_1' \cdot \overrightarrow{b_1} + v_2' \cdot \overrightarrow{b_2} + \dots + v_n' \cdot \overrightarrow{b_n}$

Bemerkung:

Um die Koordinaten eines Vektors in einer anderen Basis als der Aktuellen zu bestimmen, löst man diese Gleichung, die sich ergibt.

Beispiel:

Basis 1: Standardbasis des
$$\mathbb{R}^3$$
, Basis 2: $\overrightarrow{b_1} = \begin{pmatrix} 4 \\ 9 \\ -1 \end{pmatrix}$, $\overrightarrow{b_2} = \begin{pmatrix} -2 \\ -2 \\ 8 \end{pmatrix}$, $\overrightarrow{b_3} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$, Vektor $\overrightarrow{v} = \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix}$ (in der Standardbasis des \mathbb{R}^3)
$$\overrightarrow{v} = -5 \cdot \overrightarrow{a_1} + 3 \cdot \overrightarrow{a_2} + 2 \cdot \overrightarrow{a_3} = r \cdot \overrightarrow{b_1} + s \cdot \overrightarrow{b_2} + t \cdot \overrightarrow{b_3} \Leftrightarrow \begin{vmatrix} 4r & -2s & t & = & -5 \\ 9r & -2s & 3t & = & 3 \\ -r & 8s & t & = & 2 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} -r & 8s & t & = & 2 \\ 0 & 30s & 5t & = & 3 \\ 0 & 70s & 12t & = & 21 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} -r & 8s & t & = & 2 \\ 0 & 30s & 5t & = & 3 \\ 0 & 0 & \frac{1}{3} \cdot t & = & 14 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} r & = & -15.2 \\ s & = & -6.9 \\ t & = & 42 \end{vmatrix}$$

$$|t| = 42$$

$$|t| = 6.042$$

Daraus lässt sich folgern:
$$\vec{v} = -15.2 \cdot \vec{b_1} - 6.9 \cdot \vec{b_2} + 42 \cdot \vec{b_2} = \begin{pmatrix} -15.2 \\ -6.9 \end{pmatrix}$$
 (in der

Daraus lässt sich folgern: $\vec{v} = -15.2 \cdot \vec{b_1} - 6.9 \cdot \vec{b_2} + 42 \cdot \vec{b_3} = \begin{pmatrix} -15.2 \\ -6.9 \\ 42 \end{pmatrix}$ (in der anderen Basis).

Winkel zwischen Vektoren 1.3

Definition

Unter einem Winkel zwischen zwei Vektoren versteht man den Winkel, der ensteht, wenn man beide Vektoren an einen gemeinsamen Startpunkt verschiebt ohne dabei ihre Ausrichtung zu verändern.

1.3.1 **Orientierte Winkel**

Wenn man in der Mathematik mit Winkeln arbeitet, werden sie immer im mathematisch positiven Sinn angegeben. Dies bedeutet, dass man von einem Vektor oder Schenkel, der an den Winkel grenzt, ausgeht und über Rotation um den Schnittpunkt "gegen den Uhrzeigersinn" zum anderen gelangt, bis beide übereinanderliegen (wenn man davon ausgeht, dass sich beide schneiden).

So ergibt sich $\alpha=\angle ABC=\angle ac=(\overrightarrow{BA},\overrightarrow{BC})=\frac{\pi}{3}$. Ein Winkel α wird zudem immer so angegeben, dass $\alpha\in I; I=[-\pi,\pi]$ gilt. Dies bedeutet, dass man nur Winkel zwischen 0 und 180 erhält, und das in beide "Richtungen", als im mathematisch positiven und negativen Sinn. Diese Einschränkung kennzeichnet man mit dem Ausdruck "**modulo** 2π ".

1.3.2 Rechnungen mit Winkeln

Bei Berechnungen von Winkeln zwischen Vektoren geht man genau wie in der elementaren Geometrie vor. So wird die Differenz zwischen zwei Winkeln θ_1 und θ_2 wie gehabt berechnet: $\Delta\theta=\theta_1-\theta_2$. Jedoch benötigt man weitere Rechenregeln, um mit Winkeln rechnen zu können.

Theorem - Relation de Chasles

$$(\vec{u}, \vec{w}) + (\vec{w}, \vec{v}) = (\vec{u}, \vec{v}); \quad modulo \quad 2\pi$$

Umformungen:

(1)
$$(\overrightarrow{u}, \overrightarrow{v}) = -(\overrightarrow{v}, \overrightarrow{u})$$

(2)
$$(-\overrightarrow{u}, -\overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v})$$

(3)
$$(\overrightarrow{u}, \overrightarrow{v}) = \pi + (-\overrightarrow{u}, \overrightarrow{v})$$

Aus der ersten und letzten dieser Relationen lässt sich analog dazu bestimmen:

(4)
$$(\vec{u}, \vec{v}) = -(\vec{v}, \vec{u}) = \pi - (-\vec{v}, \vec{u})$$

1.4 Linearkombination

Vektoren lassen sich allgemein mit der additiven Verknüpfung des Vektorraums verknüpfen. Diese Verknüpfung zwischen zwei beliebigen Vektoren \vec{v} und \vec{u} erfolgt, wie auch schon im Teil Verbindungsvektor gezeigt

wird, wie folgt:
$$\vec{v} + \vec{u} = \begin{pmatrix} v_1 + u_1 \\ v_2 + u_2 \\ \dots \\ v_n + u_n \end{pmatrix}$$
. Anschaulich wird \vec{u} an \vec{v} angehängt und der Schaft von \vec{v} mit der

Spitze von \vec{u} verbunden, um den neuen Vektor zu bilden.

Definition

Eine Familie von Vektoren $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n} \in V$ wird als linear abhängig bezeichnet, wenn die Gleichung: $r_1 \cdot \overrightarrow{a_1} + r_2 \cdot \overrightarrow{a_2} + ... + r_n \cdot \overrightarrow{a_n} = \overrightarrow{0}; r_i \in \mathbb{R}$ nicht nur die triviale Lösung $r_1 = r_2 = ... = r_n = 0$ besitzt. Existiert nur diese Lösung, ist die Familie linear unabhägig.

Anders gesagt, ist eine Familie von Vektoren linear abhängig, wenn sich einzelne Vektoren dieser Familie als Linearkombination von einer beliebigen Anzahl anderer Vektoren der Familie darstellen lassen.

Bemerkung:

Eine linear abhängige Familie **aus genau zwei** Vektoren wird als kollinear bezeichnet. Eine linear abhängige Familie **aus genau drei** Vektoren dagegen nennt man komplanar.

1.5 Skalarprodukt

Das Skalarprodukt ist eine ("multiplikative") Verknüpfung des Vektorraums. Seinen Namen trägt es, da es aus zwei Vektoren einen Skalar, alias eine Zahl macht. Es dient dazu ein Maß für den Winkel, den zwei Vektoren \vec{u} und \vec{v} einschließen, festzulegen. Zudem lässt sich von dieser Definition aus der Winkel selber

anhand der [4]r[1cm]0.45

Vektoren bestimmt werden. Es wird als die Multiplikation der Norm der Projektion des Vektors \vec{v} in die Richtung von \vec{u} , das heißt, der Anteil von \vec{v} der auf der Geraden liegt, entlang welcher \vec{u} liegt, mit der Norm von \vec{u} definiert. Im Klartext bedeutet das:

Definition

$$\vec{u} \odot \vec{v} = |\vec{u}| \cdot |\vec{v'}|$$

= $|\vec{u}| \cdot |\vec{v}| \cdot \cos(\alpha)$

Daraus lässt sich ableiten, dass:

- $0 <= \alpha < 90$ (spitzer Winkel) $\Leftrightarrow \cos \alpha > 0 \Leftrightarrow \vec{u} \odot \vec{v} > 0$
- $90 < \alpha <= 180$ (stumpfer Winkel) $\Leftrightarrow \cos \alpha < 0 \Leftrightarrow \vec{u} \odot \vec{v} < 0$
- $\alpha = 90$ (rechter Winkel) $\Leftrightarrow \cos \alpha = 0 \Leftrightarrow \vec{u} \odot \vec{v} = 0$

Da wir nun aber selten Zugriff auf den Winkel haben, und dieser in den meisten Fällen die gesuchte Variable ist, benötigen wir eine praktikablere Berechnung, welche dasselbe Ergebnis liefert. Als Ansatz kann man auf eine im Abschnitt "Orthonormalbasis" bereits besprochene Schreibweise von Vektoren zurückgreifen:

$$\vec{u} = u_1 \cdot \vec{e_1} + u_2 \cdot \vec{e_2} + u_3 \cdot \vec{e_3}$$
$$\vec{v} = v_1 \cdot \vec{e_1} + v_2 \cdot \vec{e_2} + v_3 \cdot \vec{e_3}$$

Somit erreicht man folgendes Ergebnis: $\vec{u}\odot\vec{v}=(u_1\cdot\vec{e_1}+u_2\cdot\vec{e_2}+u_3\cdot\vec{e_3})\odot\vec{v}=v_1\cdot\vec{e_1}+v_2\cdot\vec{e_2}+v_3\cdot\vec{e_3}$ Um hiermt allerdings weiterrechnen zu können, müssen einige Rechenregeln bezüglich des Skalarprodukts aufgestellt werden. Zunächst gilt, dass das Skalarprodukt symmetrisch ist: $\vec{u}\odot\vec{v}=\vec{v}\odot\vec{u}$, da

Bemerkung:

Aus dieser Gleichung folgt:
$$\cos(\alpha) = \frac{\overrightarrow{u} \odot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}.$$

1.6 Kreuzprodukt

Das Kreuzprodukt ist das zweite nützliche Werkzeug, welches in der Vektorgeometrie genutzt wird. Es dient hauptsächlich zur einfachen Berechnung eines zu zwei **nicht kollinearen** Vektoren \vec{u} und \vec{v} orthogonalen Vektors \vec{i} .

Definition

$$\vec{i} = \vec{u} \times \vec{v} = \begin{pmatrix} u_2 \cdot v_3 - u_3 \cdot v_2 \\ u_3 \cdot v_1 - u_1 \cdot v_3 \\ u_1 \cdot v_2 - u_2 \cdot v_1 \end{pmatrix}$$

Beweis

Seien \vec{u} und \vec{v} beliebige zueinander nicht kollineare Vektoren des \mathbb{R}^3 . Ein zu beiden Vektoren orthogonaler Vektor ergibt sich durch:

$$\begin{cases} \overrightarrow{u} \circ \overrightarrow{i} &= 0 & (1) \\ \overrightarrow{v} \circ \overrightarrow{i} &= 0 & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 i_1 + u_2 i_2 + u_3 i_3 &= 0 & (1) & | \cdot v_1 \\ v_1 i_1 + v_2 i_2 + v_3 i_3 &= 0 & (2) & | \cdot (-u_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ -u_1 v_1 i_1 - u_1 v_2 i_2 - u_1 v_3 i_3 &= 0 & (2) & | (1) + (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ u_2 v_1 i_2 + u_3 v_1 i_3 - u_1 v_2 i_2 - u_1 v_3 i_3 &= 0 & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ (u_2 v_1 - u_1 v_2) \cdot i_2 + (u_3 v_1 - u_1 v_3) \cdot i_3 &= 0 & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ (u_2 v_1 - u_1 v_2) \cdot i_2 &= -(u_3 v_1 - u_1 v_3) \cdot i_3 & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ i_2 &= (u_3 v_1 - u_1 v_3) \wedge i_3 &= -(u_2 v_1 - u_1 v_2) & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ i_2 &= u_3 v_1 - u_1 v_3 & (2) \\ i_3 &= u_1 v_2 - u_2 v_1 & (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ i_2 &= u_3 v_1 - u_1 v_3 & (2) \\ i_3 &= u_1 v_2 - u_2 v_1 & (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + (u_3 v_1 - u_1 v_3) \cdot u_2 v_1 + (u_1 v_2 - u_2 v_1) \cdot u_3 v_1 &= 0 & (1) \\ i_2 &= u_3 v_1 - u_1 v_3 & (2) \\ i_3 &= u_1 v_2 - u_2 v_1 & (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} i_1 &= \frac{-(u_3 v_1 - u_1 v_3) \cdot u_2 v_1 - (u_1 v_2 - u_2 v_1) \cdot u_3 v_1}{u_1} & (1) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_1 v_3 & (2) \\ \vdots &= u_3 v_1 - u_2 v_1 & (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} i_1 &= u_2v_3 - u_3v_2 & (1) \\ i_2 &= u_3v_1 - u_1v_3 & (2) \\ i_3 &= u_1v_2 - u_2v_1 & (3) \end{cases}$$

$$\Leftrightarrow \overrightarrow{i} = \left(\begin{array}{c} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{array}\right)$$

Bemerkung:

$$\vec{u} \times \vec{v} = 0 \Leftrightarrow \vec{u} \parallel \vec{v} (\vec{u} = r \cdot \vec{v}; r \in \mathbb{R})$$

Zudem gilt:

$$\begin{aligned} |\overrightarrow{i}| &= |\overrightarrow{u}| \cdot (\sin(\alpha) \cdot |\overrightarrow{v}|) \\ &= |\overrightarrow{u}| \cdot \left(\sin\left(\cos^{-1} \left(\frac{\overrightarrow{u} \odot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|} \right) \right) \cdot |\overrightarrow{v}| \right) \end{aligned}$$

Einfacher gesagt ist der Betrag des Vektors \vec{i} gleich der Fläche des Parallelogramms, welches die zwei Vektoren \vec{u} und \vec{v} aufspannen. Um diese doch recht verwirrende Erklärung etwas zu verdeutlichen folgt eine visuelle Darstellung:

Beweis

$$\begin{split} |\overrightarrow{u}| \cdot (sin(\alpha) \cdot |\overrightarrow{v}|) &= \sqrt{(|\overrightarrow{u}|)^2 \cdot (|\overrightarrow{v}|)^2} \cdot sin(\alpha) \\ &= \sqrt{(|\overrightarrow{u}|)^2 \cdot (|\overrightarrow{v}|)^2 \cdot (1 - \cos^2(\alpha))} \\ &= \sqrt{(|\overrightarrow{u}|)^2 \cdot (|\overrightarrow{v}|)^2 \cdot (1 - \cos^2(\alpha))} \\ &= \sqrt{(|\overrightarrow{u}|)^2 \cdot (|\overrightarrow{v}|)^2 \cdot (|\overrightarrow{v}|)^2 \cdot \cos^2(\alpha)} \\ &= \sqrt{|\overrightarrow{u}| \cdot |\overrightarrow{w}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot \cos(\alpha) \cdot |\overrightarrow{u}| \cdot |\overrightarrow{v}| \cdot \cos(\alpha)} \\ &= \sqrt{|\overrightarrow{u}| \cdot |\overrightarrow{w}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot \cos(\alpha) \cdot |\overrightarrow{u}| \cdot |\overrightarrow{v}| \cdot \cos(\alpha)} \\ &= \sqrt{|\overrightarrow{u}| \cdot |\overrightarrow{w}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot \cos(\alpha)} \\ &= \sqrt{|\overrightarrow{u}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot |\overrightarrow{v}|} \\ &= \sqrt{(u_1^2 + u_2^2 + u_3^2) \cdot (v_1^2 + v_2^2 + v_3^2) - (u_1v_1 + u_2v_2 + u_3v_3)^2} \\ &= \sqrt{(u_1^2 + u_2^2 + u_1^2)^2 + u_1^2v_3^2 + u_2^2v_1^2 + u_2^2v_2^2 + u_2^2v_3^2 + u_3^2v_1^2 + u_3^2v_2^2} \\ &+ y_3^2\sigma_3^2) - (y_1^2\sigma_1^2 + u_1v_1u_2v_2 + u_1v_1u_3v_3 + u_2v_2u_1v_1 + y_2^2\sigma_2^2} \\ &+ u_2v_2u_3v_3 + u_3v_3u_1v_1 + u_3v_3u_2v_2 + y_3^2\sigma_3^2} \\ &= \sqrt{u_1^2v_2^2 + u_1^2v_3^2 + u_2^2v_1^2 + u_2^2v_3^2 + u_3^2v_1^2 + u_3^2v_2^2} \\ &+ - (2u_1v_1u_2v_2 + 2u_1v_1u_3v_3 + 2u_2v_2u_3v_3)} \\ &= \sqrt{u_1^2v_2^2 - 2u_1v_1u_2v_2 + u_2^2v_1^2 + u_1^2v_3^2 - 2u_1v_1u_3v_3 + u_3^2v_1^2 + u_2^2v_3^2 - 2u_2v_2u_3v_3 + u_3^2v_2^2} \\ &= \sqrt{(u_1v_2 - u_2v_1)^2 + (u_1v_3 - u_3v_1)^2 + (u_2v_3 - u_3v_2)^2}} \\ &= \left| \begin{pmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{pmatrix} \right| \qquad \text{(unter anderem, aber auch)} \\ &= |\overrightarrow{i}| \end{aligned}$$

1.7 Geraden

1.7.1 Darstellungen

Eine Gerade ist ein sehr bekannter Bestandteil der elementaren Geometrie. Bezogen auf die Vektorgeometrie ist sie nichts anderes als ein unendlich langer Vektor, beziehungsweise eine Linearkombination aus unendlich vielen (identischen / kollinearen) Vektoren. Somit ergibt sich die eindeutige **Parameterform** einer Geraden $g: g: \vec{x} = \vec{q} + s \cdot \vec{u}; s \in \mathbb{R}$. Diese Schreibweise beschreibt die der Geraden zugehörigen Punktmenge. Der Vektor \vec{q} bestimmt die Position der Geraden im Raum und trägt folglich den Namen **Stützvektor**, wohingegen der Vektor \vec{u} die **Ausrichtung** der Geraden anzeigt und **Richtungsvektor** genannt wird.

Bemerkung:

Die Parameterform ist die einzige mögliche Darstellungsform einer Geraden im \mathbb{R}^3 , da ihr Normalvektor nicht eindeutig bestimmt werden kann. Im \mathbb{R}^2 jedoch ist dies möglich, ähnlich wie für Kreise. Zudem kann eine Gerade in Koordinatenform durch **die Schnittmenge zweier Ebenen** beschrieben werden (siehe auch, 5.7.3 Lagebeziehungen zwischen Ebenen").

1.7.2 Lagebeziehungen zwischen Geraden

Es gibt bezüglich Geraden vier verschiedene Beziehungen, vorausgesetzt diese befinden sich im \mathbb{R}^3 . Zwei Geraden g und h können...

3)...windschief zueinander sein...

4)...sich schneiden

Die Lagebeziehung zwischen zwei Geraden g und h lässt sich wie folgt ermitteln:

1.7.3 Abstand zu einem Punkt

Definition

Der Lotfußpunkt L einer Geraden $g: \overrightarrow{x} = \overrightarrow{q} + t \cdot \overrightarrow{u}; t \in \mathbb{R}$ zu einem Punkt $P \notin g$ ist definiert durch: $\overrightarrow{LP} \odot \overrightarrow{u} = 0$. Er ist somit der dem Punkt P am nähesten gelegenen Punkt der Gerade g und wird folglich hauptsächlich zur Abstandsberechnung genutzt.

Der Abstand von einer Geraden g zu einem Punkt P ist äquivalent zur **Norm des Verbindungsvektors** \overrightarrow{LP} , wobei L der Lotfußpunkt der Geraden g zu P ist. Für die Berechnung des Abstands gibt es drei verschiedene Lösungsansätze (OHG) von denen zwei gebräuchlicher sind als der dritte.

Orthogonalität:

Da die Norm des Verbindungsvektors gesucht wird, gilt es nun diesen eindeutig zu bestimmen. Folgender Ablauf führt zum Ziel:

1) Punkt L auf der Geraden g in Abhängigkeit des Faktors des Richtungsvektors bestimmen:

$$\vec{l} = \begin{pmatrix} q_1 + t \cdot u_1 \\ q_2 + t \cdot u_2 \\ q_3 + t \cdot u_3 \end{pmatrix}$$

2) Verbindungsvektor bestimmen:

$$\overrightarrow{LP} = \begin{pmatrix} p_1 - (q_1 + t \cdot u_1) \\ p_2 - (q_2 + t \cdot u_2) \\ p_3 - (q_3 + t \cdot u_3) \end{pmatrix}$$

3) $\overrightarrow{LP} \odot \overrightarrow{u} = 0$ und Gleichung lösen (nach t auflösen):

$$0 = \mathbf{u}_1 \cdot (p_1 - (q_1 + t \cdot \mathbf{u}_1)) + \mathbf{u}_2 \cdot (p_2 - (q_2 + t \cdot \mathbf{u}_2)) + \mathbf{u}_3 \cdot (p_3 - (q_3 + t \cdot \mathbf{u}_3))$$

$$\Leftrightarrow t = \frac{\mathbf{u}_1 \cdot (p_1 - q_1) + \mathbf{u}_2 \cdot (p_2 - q_2) + \mathbf{u}_3 \cdot (p_3 - q_3)}{\mathbf{u}_1^2 + \mathbf{u}_2^2 + \mathbf{u}_3^2}$$

4) Verbindungsvektor berechnen:

$$\overrightarrow{LP} = \left(\begin{array}{c} p_1 - (q_1 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_1) \\ p_2 - (q_2 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_2) \\ p_3 - (q_3 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_3) \end{array}\right)$$

5) Norm des Verbindungsvektors berechnen:

$$\begin{split} d(g,P) &= |\overrightarrow{LP}| \\ &= \left| \left(\begin{array}{c} p_1 - \left(q_1 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_1 \right) \right) \\ p_2 - \left(q_2 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_2 \right) \\ p_3 - \left(q_3 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_3 \right) \right) \right| \\ = \sqrt{\left(p_1 - \left(q_1 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_1 \right) \right)^2} \\ + \left(p_2 - \left(q_2 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_2 \right) \right)^2 \\ + \left(p_3 - \left(q_3 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_3 \right) \right)^2 \end{split}$$

Hilfsebene:

Diese Methode hat sich Platz zwei erkämpft:

1) Hilfsebene E bestimmen ($\vec{n} \equiv \vec{u}$ $P \in E$, da die Gerade g die Ebene im rechten Winkel durchstößt und der Verbindungsvektor somit orthogonal zur Geraden ist):

$$E: \vec{u} \odot [\vec{x} - \vec{p}] = 0$$

$$\Leftrightarrow u_1 x_1 + u_2 x_2 + u_3 x_3 = u_1 p_1 + u_2 p_2 + u_3 p_3$$

2) q = E und Gleichung lösen (nach t auflösen):

$$u_1(q_1 + t \cdot u_1) + u_2(q_2 + t \cdot u_2) + u_3(q_3 + t \cdot u_3) = u_1 p_1 + u_2 p_2 + u_3 p_3$$

$$\Leftrightarrow t = \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2}$$

- 3) Siehe Schritt 4 Orthogonalität
- 4) Siehe Schritt 5 Orthogonalität

Grenzwertberechnung:

Zu guter Letzt wollen wir die Analysis Fanatiker befriedigen:

- 1) Siehe Schritt 1 Orthogonalität
- 2) Siehe Schritt 2 Orthogonalität
- 3) Norm des Vektors in Abhängigkeit von t bestimmen:

$$|\overrightarrow{LP}| = \sqrt{(p_1 - (q_1 + t \cdot u_1))^2 + (p_2 - (q_2 + t \cdot u_2))^2 + (p_3 - (q_3 + t \cdot u_3))^2}$$

$$= \sqrt{(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}$$

$$+ ((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)$$

Somit ergibt sich eine Funktion f(t):

$$f(t) = \frac{\sqrt{(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}}{+((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)}$$

4) Tiefpunkt von f(t) berechnen:

$$f'(t) = \frac{2(u_1^2 + u_2^2 + u_3^2)t + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)}{2\sqrt{(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}} \dots \frac{1}{+((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)}$$

notwendige Bedingung TP:

$$f'(t) = 0$$

$$\Leftrightarrow 0 = 2(u_1^2 + u_2^2 + u_3^2)t + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3$$

$$\Leftrightarrow t = \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2}$$

Die hinreichende Bedingung ist nicht zu prüfen, sie gilt (der Minimalabstand existiert immer), und die Art des Extremwerts ist ebenfalls vorbestimmt, da der Verbindungsvektor unendlich lang wird wenn man den Lotfußpunkt in beide Richtungen entlang der Geraden verschiebt.

- 5) Siehe Schritt 4 Orthogonalität
- 6) Siehe Schritt 5 Orthogonalität

Bemerkung:

Wie sich unschwer erkennen lässt, sind die Formeln für die Berechnung von t bei allen drei Lösungsansätzen identisch. Die Methoden unterscheiden sich somit nur am Anfang voneiander.

Bemerkung:

Zur Abstandsberechnung gibt es eine allgemeine Formel, welche die oben aufgelisteten Vorgehensweisen überflüssig macht. Da sie für das Abitur allerdings nicht zugelassen ist, wird sie hier nicht bewiesen beziehungsweise graphisch ergänzt: $d(g,P) = \frac{|\overrightarrow{u} \times \overrightarrow{QP}|}{|\overrightarrow{u}|}$.

1.7.4 Abstand zweier Geraden

Zwei nicht sich schneidende oder identische Geraden haben einen **eindeutig definierten Minimalabstand**. Bei zwei parallelen Geraden ist dies einfach zu visualisieren, der Abstand zweier windschiefer Geraden jedoch weniger. Im Folgenden sollen beide Fälle untersucht werden.

Parallele Geraden:

Der Abstand zweier paralleler Geraden g und h entspricht genau dem Abstand eines Punktes $P \in g \lor P \in h$ zur jeweiligen gegenüberliegenden Geraden. Somit genügt es den Abstand zwischen zwischen dem Stützpunkt einer Geraden und der anderen zu berechnen.

Windschiefe Geraden:

Der minimale Abstand zweier windschiefer Geraden lässt sich mithilfe einer **Hilsebene** verbildlichen und bestimmen. Gegeben seien zwei Geraden $g: \vec{x} = \vec{p} + r \cdot \vec{u}; r \in \mathbb{R}$ und $h: \vec{x} = \vec{q} + s \cdot \vec{v}; s \in \mathbb{R}$. Daraus folgt, dass: $E: \vec{x} = \vec{p} + r \cdot \vec{u} + s \cdot \vec{v} \vee E: \vec{x} = \vec{q} + r \cdot \vec{u} + s \cdot \vec{v}; s, r \in \mathbb{R}$. Somit ergibt sich eine Ebene, welche entweder die Gerade g oder g o

Bemerkung:

Zur Berechnung des Abstands zweier windschiefer Geraden gibt es zudem eine Formel, welche zugleich das **Ergebnis des Skalarprodukts** veranschaulicht. Aus zwei Geraden

$$g: \overrightarrow{x} = \overrightarrow{p} + r \cdot \overrightarrow{u}; r \in \mathbb{R}$$
 und $h: \overrightarrow{x} = \overrightarrow{q} + s \cdot \overrightarrow{v}; s \in \mathbb{R}$

lässt sich mit dem Kreuzprodukt ein normierter Normalenvektor n_0 zu beiden Richtungsvektoren \vec{u} und \vec{v} errechnen, den man mit dem Verbindungsvektor der beiden Ortsvektoren $(\vec{q} - \vec{p})$ zur Minimalabstandsberechnung der beiden Geraden skaliert:

$$d(g,h) = |n_0 \odot (\overrightarrow{q} - \overrightarrow{p})| = |\frac{\overrightarrow{u} \times \overrightarrow{v}}{|\overrightarrow{u} \times \overrightarrow{v}|} \odot (\overrightarrow{q} - \overrightarrow{p})|$$

1.8 Ebenen

1.8.1 Darstellungen

Die Darstellung einer Ebene beinhaltet immer die gleichen Informationen: Ihre Position im Raum und ihre Ausrichtung:

 $\begin{array}{ll} \textit{Name} & \textit{Darstellung} \\ \textit{Parameterform} & E: \overrightarrow{x} = \overrightarrow{p} + s \cdot \overrightarrow{u} + t \cdot \overrightarrow{v}; \qquad s, t \in \mathbb{R} \\ \textit{Normalenform} & E: (\overrightarrow{x} - \overrightarrow{q}) \odot \overrightarrow{n} = 0 \\ \textit{Koordinatenform} & E: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d; \quad d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \\ \end{array}$

Die erste bei Geraden bereits eingeführte Form ist leicht zu verstehen. An den Stützvektor setzt man anschließend einen zweiten Richtungsvektor; die beiden Vektoren werden **Spannvektoren** genannt, da sie gemeinsam die Ebene aufspannen. Da man sich über diese beliebig in zwei Dimensionen bewegen kann, ist jeder Punkt in einer Ebene erreichbar. Bei der Bildung der Ebene muss man beachten, dass die Spannvektoren **nicht kollinear** sind. In diesem Fall erhält man wieder eine Gerade.

Die Normalenform und Koordinatenform sind weitaus weniger intuitiv und erfordern eine genauere Erklärung. Sie lässt sich zudem leichter anhand einer Graphik erklären:

Somit ist jeder Punkt $X \in E$, wenn der Verbindingsvektor $(\vec{x} - \vec{q})$ orthogonal zum Vektor \vec{n} ist. Dabei spielt die Position des sogenannten **Normalenvektors** keine Rolle, ebenso wenig wie seine Norm. Allein seine Ausrichtung bestimmt die der Ebene. Um die Position im Raum genau zu bestimmen, benötigt man zudem einen Punkt $Q \in E$. Diese zusätzliche Information schließt alle anderen parallelen Ebenen aus, die durch einen kollinearen Normalenvektor defniert sind.

Aus der Normalenform lässt sich die Koordinatenform ableiten. Man macht häufiger Gebrauch von letzterer, da sich leichter mit ihr rechnen lässt. Man bildet sie wie folgt:

$$\begin{split} E: (\overrightarrow{x} - \overrightarrow{q}) \odot \overrightarrow{n} &= 0 \\ \Leftrightarrow E: \overrightarrow{x} \odot \overrightarrow{n} &= \overrightarrow{q} \odot \overrightarrow{n} \\ \Leftrightarrow E: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 &= d; \quad d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \end{split}$$

Bemerkung:

Ebenen lassen sich auch mittels **Spurpunkten** und **Spurgeraden** lokalisieren. Spurpunkte sind die der Achsen des Koordinatensystems, welche in der Ebene enthalten sind. Aus diesen lassen sich anschließend die Spurgeraden bilden (durch Verbinden der Punkte). Folgende Möglichkeiten bieten sich an:

- 1) 3 Spurpunkte
- 2) 2 Spurpunkte $\Rightarrow E \parallel \overrightarrow{x_1} \lor E \parallel \overrightarrow{x_2} \lor E \parallel \overrightarrow{x_3}$
- 3) 1 Spurpunkt \Rightarrow $E \parallel E_{x_1x_2} \lor E \parallel E_{x_2x_3} \lor E \parallel E_{x_1x_3}$
- 4) Ausnahme des vorherigen Falls: $P \equiv O \Rightarrow$ Ausrichtung von E lässt sich nicht bestimmen

- 5) ∞ Punkte \Rightarrow Eine der Achsen des Koordinatensystems $\in E$, Ausrichtung von E lässt sich nicht bestimmen
- 6) ∞ , \cdot 2" Punkte $\Rightarrow E \equiv E_{x_1x_2} \lor E \equiv E_{x_2x_3} \lor E \equiv E_{x_1x_3}$

Drei beziehungsweise zwei (falls man Normalenform und Koordinatenform als eine ansieht) verschiedene Darstellungsweisen sind zwar interessant und eine nicht ganz unwichtige Überlegung, jedoch scheint das auf den ersten Blick unnütz. Im Laufe dieser section wird sich der jeweilige Nutzen noch offenbaren. Dann wird einem auch deutlich, dass es manchmal von Vorteil sein kann die Formen umzuformen. Die Herangehensweisen für jede Umformung unterscheiden sich nur wenig voneiander, Folgendes Diagramm stellt eine Möglichkeit vor:

- 1) Siehe oben
- 2) \overrightarrow{n} aus den einzelnen Faktoren herausarbeiten \land Per Punktprobe (Koordinaten einsetzen) einen Punkt Q von E ermitteln
- 3) \overrightarrow{n} mittels Kreuzprodukt ermitteln \wedge Stützpunkt P als Punkt Q einsetzen
- 4) Zwei Punkte $U,V\not\equiv Q$ von E ermitteln $\wedge Q$ als Stützpunkt $P \wedge (\overrightarrow{u}-\overrightarrow{q})$ und $(\overrightarrow{v}-\overrightarrow{q})$ als Spannvektoren einsetzen
- 5) Siehe 4 (gleiches Prinzip)
- 6) Siehe 3 (gleiches Prinzip) \(\text{ Skalarprodukt "ausmultiplizieren"} \)

1.8.2 Lagebeziehungen zwischen Ebenen und Geraden

Ebenen und Geraden können im Gegensatz zu zwei Geraden nur eine von den drei folgenden Beziehungen zueinander haben. Eine Ebene E und eine Gerade g können...

3) Zudem kann g in E liegen

Die Lagebeziehung zwischen einer Ebene E und einer Geraden g lässt sich wie folgt ermitteln:

1.8.3 Lagebeziehungen zwischen Ebenen

Ebenen teilen bezüglich ihrer Lage zueinander eine Eigenschaft mit einer Ebene und einer Geraden. Zwei Ebenen E_1 und E_2 können ebenfalls:

1)...parallel sein...

2)...identisch sein

3) ...sich schneiden

Die Lagebeziehung zwischen zwei Ebenen E_1 und E_2 lässt sich wie folgt ermitteln:

Für die Berechnung der Schnittgeraden gibt es unterschiedliche Ansätze abhängig von der Ausgangssituation, welche durch die zwei möglichen Darstellungsweisen von Ebenen bedingt sind. Drei mögliche Fälle können auftreten:

1)
$$E_1: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d;$$
 $d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \wedge E_2: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d;$ $d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3$

2)
$$E_1: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d;$$
 $d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \land E_2: \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v};$ $s, t \in \mathbb{R}$

3)
$$E_1: \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}; \quad s, t \in \mathbb{R} \land E_2: \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}; \quad s, t \in \mathbb{R}$$

1.8.4 Winkel zwischen Ebenen (und Geraden)

Die einzige bisher angesprochene Möglichkeit den Winkel zwischen zwei geometrischen Formen zu ermitteln macht sich der Definition des Skalarprodukts zunutze. Wie bereits erläutert gilt: $\cos(\alpha) = \frac{\overrightarrow{v} \odot \overrightarrow{u}}{|\overrightarrow{v}| \cdot |\overrightarrow{u}|}$. Hierbei soll erneut hervorgehoben werden, dass der Winkel der "kleinere"der beiden möglichen ist. Den anderen erhält man in Abhängigkeit des ersten. Daraus lässt sich ableiten wie zwei Geraden oder Ebenen oder auch eine Gerade und eine Ebene zueinander stehen:

1) Geraden:
$$\cos(\alpha) = \frac{\overrightarrow{u_1} \odot \overrightarrow{u_2}}{|\overrightarrow{u_1}| \cdot |\overrightarrow{u_2}|}$$

2) Ebenen:
$$\cos(\alpha) = \frac{\overrightarrow{n_1} \odot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$$

3) Gerade / Ebene:
$$\sin(\alpha) = \frac{\vec{u} \odot \vec{n}}{|\vec{u}| \cdot |\vec{n}|}$$

1.8.5 Abstand zu einem Punkt

Eine simple und intuitive Art den Abstand einer Ebene E zu einem Punkt P zu bestimmen, wäre eine Gerade zu erstellen, welche durch P geht und die als Richtungsvektor den Normalenvektor Es hat, da \overrightarrow{n} per Definition orthogonal zu E ist und somit ein anderer kollinearer Vektor den Bchnellst möglichsten Weg zum Punkt"darstellt. Anschließend müsste man den Schnittpunkt der Geraden und E und die Norm des somit erhaltenen Vektors berechnen. Es sticht einem schnell ins Auge, dass dies ein großer Aufwand ist. Tatsächlich gibt es einen für das Abitur zugelassenen schnelleren Lösungsweg: die **Hess'sche Normalenform**.

Definition - Hess'sche Normalenform

Die Hess'sche Normalenform ist eine besondere Normalenform einer Ebene, dadurch besonders, dass der Normalenvektor normiert ist. Sie lässt sich wie folgt ableiten: E_h : $\frac{\overrightarrow{n} \odot [\overrightarrow{x} - \overrightarrow{q}]}{|\overrightarrow{n}|} = 0$

Anhand dieser Graphik lässt sich die Formel zur Berechnung des Abstands eines Punktes zu einer Ebene ablesen: $d=\frac{|\vec{n}\odot(\vec{p}-\vec{q})|}{|\vec{n}|}$

Beweis

$$\overrightarrow{FP} = r \cdot \overrightarrow{n}; r \in \mathbb{R}^+$$
:

Nach Theoremen der Trigonometrie und der Definition des Skalarprodukts gilt:

$$cos(\alpha) = \frac{d}{|\overrightarrow{QP}|}$$
$$cos(\alpha) = \frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}| \cdot |\overrightarrow{QP}|}$$

Daraus folgt:

$$\begin{split} \frac{d}{|\overrightarrow{QP}|} &= \frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}| \cdot |\overrightarrow{QP}|} \\ d &= \frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}|} \\ d &= \frac{\overrightarrow{n} \odot (\overrightarrow{p} - \overrightarrow{q})}{|\overrightarrow{n}|} \end{split}$$

$$\overrightarrow{FP} = r \cdot \overrightarrow{n}; r \in \mathbb{R}^-$$
:

$$\frac{d}{|\overrightarrow{QP}|} = \frac{-\overrightarrow{n} \odot \overrightarrow{QP}}{|-\overrightarrow{n}| \cdot |\overrightarrow{QP}|}$$

$$d = -\frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}|}$$

$$d = -\frac{\overrightarrow{n} \odot (\overrightarrow{p} - \overrightarrow{q})}{|\overrightarrow{n}|}$$

Somit lautet die gesuchte Formel: $d = \frac{|\vec{n} \odot (\vec{p} - \vec{q})|}{|\vec{n}|}$

1.9 Kreise und Sphären

Letzte relevant Objektgruppe ist die der Kreise und Sphären, wobei Letztere lediglich auf den \mathbb{R}^3 angewandte Formen der Ersten sind.

1.9.1 Kreise

Kreise werden über einen **Mittelpunkt** und einen **Radius** definiert. Alle Punkte, welche einen Distanz gleich dem Radius zum Mittelpunkt aufweisen, sind teil der Kreismenge, die den Kreis algebraisch beschreibt. Wie bei allen anderen Sektoren der Geometrie ist es von Nöten, das Ganze zu visualisieren:

Hieraus ergibt sich eine einfache Formel, um einen Kreis zu definieren, aus welcher auch die allgemeine Kreisgleichung folgt:

$$\begin{split} |\overrightarrow{MP}| &= r; P \in M_K \text{ mit } M_k \text{ Kreismenge} \\ \Leftrightarrow |\overrightarrow{MP}|^2 &= r^2 \\ \Leftrightarrow |\overrightarrow{p} - \overrightarrow{m}|^2 &= r^2 \\ \Leftrightarrow \left| \left(\begin{array}{c} x - a \\ y - b \end{array} \right) \right|^2 &= r^2; (x,y) = (p_x, p_y) \wedge (a,b) = (m_x, m_y) \\ \Leftrightarrow \left(\sqrt{(x-a)^2 + (y-b)^2} \right)^2 &= r^2 \\ \Leftrightarrow (x-a)^2 + (y-b)^2 &= r^2 \end{split}$$

Wie die Graphik es bereits verdeutlicht, kann es von Nutzen sein mit einer Kreisscheibe zu arbeiten. Diese wird über die Menge der Punkte, die innerhalb des Kreises liegen, definiert. Somit erschließt sich, dass jeglicher Punkt, der eine Entfernung zum Mittelpunkt, welche kleiner als der oder gleich dem Radius ist, teil dieser Kreisscheibe ist:

$$|\overrightarrow{MP}| \le r; P \in M_K$$

Bemerkung:

Anhand dessen lässt sich bereits eine Eigenschaft eines Kreises im Vektorraum erkennen: **er ist lediglich im** \mathbb{R}^2 **definierbar**. Überträgt man diese Formel in einen Raum mit mehr Dimensionen erhält man eine Sphäre oder gar eine Hypersphäre.

Tangenten an einen Kreis

Definition

Eine Tangente an einen Punkt eines Kreises ist vergleichbar mit der an einen Punkt einer Kurve. Sie ist gerade zu der Geraden equivalent, die **den Kreis in diesem Punkt berührt**. Dies impliziert auch, dass es nur eine Menge identischer Geraden gibt, welche erfolgreich als Tangente kandidieren können.

Erneut liefert uns die Graphik eine generelle Formel:

$$\overrightarrow{MP}\odot\overrightarrow{PX}=0; P\in M_K, X\in M_T \text{ mit } M_K \text{ und } M_T \text{ Kreis- und Tangentenmenge} \\ \Leftrightarrow (\overrightarrow{p}-\overrightarrow{m})\odot(\overrightarrow{x}-\overrightarrow{p})=0 \quad |+(\overrightarrow{p}-\overrightarrow{m})^2\\ \Leftrightarrow (\overrightarrow{p}-\overrightarrow{m})\odot(\overrightarrow{x}-\overrightarrow{p})+(\overrightarrow{p}-\overrightarrow{m})^2=(\overrightarrow{p}-\overrightarrow{m})^2\\ \Leftrightarrow (\overrightarrow{p}-\overrightarrow{m})\odot((\overrightarrow{x}\cancel{\nearrow p})+(\overrightarrow{p}-\overrightarrow{m}))=(\overrightarrow{p}-\overrightarrow{m})^2\\ \Leftrightarrow (\overrightarrow{p}-\overrightarrow{m})\odot(\overrightarrow{x}-\overrightarrow{m})=r^2$$

Polare an einen Kreis

Definition

Sei $\mathscr C$ ein Kreis mit Mittelpunkt M und P ein Punkt mit $|\overrightarrow{MP}| \nleq r$. Des Weiteren seien die zwei Tangenten(mengen) an den Kreis, die durch den Punkt P gehen, gegeben. Dann bezeichnet man die Gerade, welche die Berührpunkte der Tangenten beinhaltet, als **Polare an den Kreis** $\mathscr C$ **zum Punkt P**.

Bemerkung:

Tatsächlich ist das nur die halbe Wahrheit, die Polare existiert für alle P ungleich M. Sie landet dann außerhalb des Kreises und schneidet diesen nicht (berührt ihn in einem, wenn gilt $|\overrightarrow{MP}| = r$).

Die Prozedur sollte allmählich bekannt vorkommen:

Wenn auch ein wenig um mehr Ecken gedacht als üblich:

$$\begin{vmatrix} \overrightarrow{MB} \odot \overrightarrow{PB} = 0 \\ \overrightarrow{MP} \odot \overrightarrow{BX} = 0 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} (\overrightarrow{b} - \overrightarrow{m}) \odot (\overrightarrow{b} - \overrightarrow{p}) = 0 \\ (\overrightarrow{p} - \overrightarrow{m}) \odot (\overrightarrow{x} - \overrightarrow{b}) = 0 \end{vmatrix}$$
 Nach der bereits aufgestellten Formel für Tangenten
$$\Leftrightarrow \begin{vmatrix} (\overrightarrow{b} - \overrightarrow{m}) \odot (\overrightarrow{p} - \overrightarrow{m}) = r^2 \\ (\overrightarrow{p} - \overrightarrow{m}) \odot (\overrightarrow{x} - \overrightarrow{b}) = 0 \end{vmatrix}$$

$$(1) + (2)$$

$$\Leftrightarrow (\overrightarrow{p} - \overrightarrow{m})((\overrightarrow{x} - \overrightarrow{b}) + (\overrightarrow{b} - \overrightarrow{m})) = r^2$$

$$\Leftrightarrow (\overrightarrow{p} - \overrightarrow{m})(\overrightarrow{x} - \overrightarrow{m}) = r^2$$

1.9.2 Sphären

Sphären werden wie Kreise über einen **Mittelpunkt** und einen **Radius** definiert. Alle Punkte, welche einen Distanz gleich dem Radius zum Mittelpunkt aufweisen, sind teil der Sphärenmenge, die die Sphäre algebraisch beschreibt:

Theorem - Sphärengleichung

Eine Sphäre im \mathbb{R}^n ; $n \geq 3$ mit Mittelpunkt M und Radius r ist eindeutig über die folgende Gleichung definiert:

$$|\overrightarrow{MP}| = r; P \in M_{\mathscr{C}}$$

Die allgebraische Formel lautet somit wie folgt:

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2; (x,y,z) = (p_x, p_y, p_z) \land (a,b,c) = (m_x, m_y, m_z)$$

Beweis

$$\begin{split} |\overrightarrow{MP}| &= r; P \in M_{\mathscr{C}} \text{ mit } M_{\mathscr{C}} \text{ Kreismenge} \\ \Leftrightarrow |\overrightarrow{MP}|^2 &= r^2 \\ \Leftrightarrow |\overrightarrow{p} - \overrightarrow{m}|^2 &= r^2 \\ \Leftrightarrow \left| \begin{pmatrix} x-a \\ y-b \\ z-c \end{pmatrix} \right|^2 &= r^2; (x,y,z) = (p_x,p_y,p_z) \wedge (a,b,c) = (m_x,m_y,m_z) \\ \Leftrightarrow \left(\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} \right)^2 &= r^2 \\ \Leftrightarrow (x-a)^2 + (y-b)^2 + (z-c)^2 &= r^2 \end{split}$$

Tangenten an eine Sphäre

Definition

Die Tangente in einem Punkt an eine Sphäre unterscheidet sich nur in einer Eigenschaft von der an einen Kreis: mehrere nicht identische Geraden berühren eine Sphäre in einem Punkt. Tatsächlich stellt diese Menge von Geraden eine Ebene dar: die **Tangentialebene**.

Theorem - Tangentialebene

Für die Tangentialebene an eine Sphäre \mathscr{C} , mit Mittelpunkt M und Radius r, in einem Punkt P gilt:

$$|\overrightarrow{MP}| = r$$

Polarebene?

Definition

Sei $\mathscr C$ eine Sphäre mit Mittelpunkt M und P ein Punkt mit $|\overrightarrow{MP}| \nleq r$. Des Weiteren seien die überabzählbar vielen Tangenten(mengen) an $\mathscr C$, die durch den Punkt P gehen, gegeben. Dann bezeichnet man die Ebene, welche die Berührpunkte der Tangenten beinhaltet, als **Polare an die Sphäre** $\mathscr C$ **zum Punkt P**.

1.10 Sätze

1.10.1 Sätze des Pythagoras

Theorem

In einem rechtwingkligen Dreieck ΔABC gilt:

$$a^2 + b^2 = c^2$$

Beweis

Man modelliere die 3 Seiten durch Vektoren, \vec{a} , \vec{b} und \vec{c} . Es gilt:

$$\vec{a} \cdot \vec{b} = 0$$

$$a_1b_1 + a_2b_2 = 0$$

Außerdem:

$$\begin{split} |\overrightarrow{a}+\overrightarrow{b}| &= \sqrt{(b_1-a_1)^2 + (b_2-a_2)^2} \\ &= \sqrt{b_1^2 - 2b_1a_2 + a_1^2 + b_2^2 - 2b_2a_2 + a_2^2} \\ &= \sqrt{b_1^2 + b_2^2 + a_1^2 + a_2^2 - 2(b_1a_2 + b_2a_2)} \\ &= \sqrt{b_1^2 + b_2^2 + a_1^2 + a_2^2} \\ &= |\overrightarrow{c}|, \, \text{denn } \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c} \\ \Leftrightarrow |\overrightarrow{c}|^2 &= b_1^2 + b_2^2 + a_1^2 + a_2^2 \\ \Leftrightarrow |\overrightarrow{c}|^2 &= |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 \\ \Leftrightarrow c^2 &= a^2 + b^2 \end{split}$$

Bemerkung:

Dieser Beweis ist weitaus intuitiver und einfacher, wenn er in der klassischen Geometrie vollführt wird, aber das Ziel ist der Beweis über Vektoren, und somit analytisch.

Theorem - Umkehrung

Falls für ein Dreieck ΔABC gilt:

$$a^2 + b^2 = c^2$$

Dann ist dieses Dreieck in C rechtwinklig.

Reweis

Sind Äquivalenzumformungen nicht schön?

1.10.2 Euklids Sätze

Theorem - Kathetensatz

In einem in C rechtwinkligen Dreieck ΔABC mit h der Höhe zu C gilt:

- $\bullet \ a^2 = p \cdot c$
- $\bullet \ b^2 = q \cdot c$

Beweis

•

$$\begin{split} a^2 &= c^2 - b^2 & | \mathsf{Pythagoras} \\ &= c^2 - (q^2 + h^2) \\ &= c^2 - ((c-p)^2 + (a^2 - p^2)) \\ &= c^2 - c^2 + 2cp - p^2 - a^2 + p^2 \\ \Leftrightarrow 2a^2 &= 2cp \\ \Leftrightarrow a^2 &= cp \end{split}$$

•

$$\begin{split} b^2 &= c^2 - a^2 & | \text{Pythagoras} \\ &= c^2 - (p^2 + h^2) \\ &= c^2 - ((c - q)^2 + (b^2 - q^2)) \\ &= c^2 - c^2 + 2cq - q^2 - b^2 + q^2 \\ \Leftrightarrow 2b^2 &= 2cq \\ \Leftrightarrow b^2 &= cq \end{split}$$

Theorem - Höhensatz

In einem in C rechtwinkligen Dreieck ΔABC mit h der Höhe zu C gilt:

$$h^2 = p \cdot q$$

Beweis

$$a^{2} + b^{2} = c^{2}$$

$$\Leftrightarrow \qquad p^{2} + h^{2} + q^{2} + h^{2} = (p+q)^{2}$$

$$\Leftrightarrow \qquad p^{2} + h^{2} + q^{2} + h^{2} = p^{2} + 2pq + q^{2}$$

$$\Leftrightarrow \qquad h^{2} + h^{2} = 2pq$$

$$\Leftrightarrow \qquad 2h^{2} = 2pq$$

$$\Leftrightarrow \qquad h^{2} = pq$$

1.10.3 Strahlensätze

Theorem

Sei ein Dreieck ΔABC mit M einem Punkt der Geraden (AB) und N einem Punkt der Geraden (AC). Wenn (BC)//(MN), dann gilt:

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

Beweis

$$\begin{split} (BC)//(MN) &\Leftrightarrow \overrightarrow{BC} = k \cdot \overrightarrow{MN}, k \in \mathbb{R} \\ &= k \cdot (\overrightarrow{MA} + \overrightarrow{AN}) \\ &= \overrightarrow{BA} + \overrightarrow{AC} \end{split}$$

|Die Vektoren sind kollinear.

$$|\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN}$$

Da \overrightarrow{MA} und \overrightarrow{BA} kollinear sind, und \overrightarrow{AN} und \overrightarrow{AC} auch, gilt:

$$\left(\begin{array}{ccc} |\overrightarrow{BA}| & = k \cdot |\overrightarrow{MA}| \\ |\overrightarrow{AC}| & = k \cdot |\overrightarrow{AN}| \\ |\overrightarrow{BC}| & = k \cdot |\overrightarrow{MN}| \end{array} \right) \Leftrightarrow \left\{ \begin{array}{ccc} \frac{|\overrightarrow{BA}|}{|\overrightarrow{MA}|} & = k \\ \frac{|\overrightarrow{AC}|}{|\overrightarrow{AN}|} & = k \\ \frac{|\overrightarrow{BC}|}{|\overrightarrow{MN}|} & = k \end{array} \right. \Leftrightarrow \frac{|\overrightarrow{BA}|}{|\overrightarrow{AN}|} = \frac{|\overrightarrow{AC}|}{|\overrightarrow{AN}|} = \frac{|\overrightarrow{BC}|}{|\overrightarrow{MN}|} \Leftrightarrow \frac{|\overrightarrow{MA}|}{|\overrightarrow{BA}|} = \frac{|\overrightarrow{AN}|}{|\overrightarrow{AC}|} = \frac{|\overrightarrow{MN}|}{|\overrightarrow{BC}|} \quad \Box$$

Theorem - Umkehrung

Sei ein Dreieck ΔABC mit M einem Punkt der Geraden (AB) und N einem Punkt der Geraden (AC). Wenn gilt:

$$\frac{AB}{AC} = \frac{AM}{AN}$$

Dann ist (BC)//(MN).

Beweis

Auch hier profitieren wir von Äquivalenzumformungen.

1.10.4 Der Satz des Apollonios

Theorem

Gegeben sind: Eine Strecke [AB] und eine positive Zahl $\lambda\in\mathbb{R}^+\backslash\{1\}.$ Dann ist die Punktmenge

$$M_A = \left\{ X \left| \frac{\overline{AX}}{\overline{BX}} = \lambda \right. \right\}$$

ein Kreis, den man Kreis des Apollonios nennt.

Anschaulich:

Beweis

Anfangen kann man den den Beweis damit, dass man zwei Punkte sucht, die die Bedingung erfüllen und auf der Geraden AB liegen. Logisch ist, dass einer dieser Punkte zwischen A und B sein wird, dieser wird innerer **Teilungspunkt** T_i genannt. Der andere Punkt liegt außerhalb der Strecke [AB] und wird **äußerer Teilungspunkt** T_a genannt.

Im letzten Schritt des Beweises wird man anhand des Skalarprodukts zeigen, dass für alle Punkte X, die ebenfalls die Verhältnisgleichung erfüllen, die Vektoren $\overline{T_iX}$ und $\overline{T_aX}$ orthogonal zueinander sind. Somit liegen diese Punkte auf dem Thaleskreis (frz.: Theoreme du triangle rectangle) über T_i und T_a , der dann **Apolliniuskreis** genannt wird.

1. Für möglichst einfache Koordinaten platziert man A auf den Origo, [AB] entlang der x-Achse, und kürzt \overline{AB} mit b ab. Gleichermaßen verfährt man mit den Längen $\overline{AT_i}=t_i$ und $\overline{AT_a}=t_a$, und man führt den Punkt X(x|y) ein.

Hier nochmal ein Überblick:

$$hd A(0|0) \qquad
hd B(b|0) \qquad
hd T_i(t_i|0) \qquad
hd T_a(t_a|0) \qquad
hd X(x|y)$$

2. Nun gilt:

$$\frac{\overline{AT_i}}{\overline{T_iB}} = \lambda$$

$$\Leftrightarrow \frac{t_i}{b-t_i} = \lambda$$

$$\Leftrightarrow t_i = \lambda \cdot b - \lambda \cdot t_i$$

$$\Leftrightarrow \lambda \cdot t_i + t_i = \lambda \cdot b$$

$$\Leftrightarrow (\lambda + 1) \cdot t_i = \lambda \cdot b$$

$$\Leftrightarrow t_i = \frac{\lambda}{\lambda + 1} \cdot b$$

$$\Rightarrow t_a = \lambda \cdot b$$

$$\Leftrightarrow (\lambda - 1 \cdot) t_a = \lambda \cdot b$$

$$\Leftrightarrow t_a = \frac{\lambda}{\lambda - 1} \cdot b$$

•
$$t_i + t_a = \frac{\lambda}{\lambda + 1} \cdot b + \frac{\lambda}{\lambda - 1} \cdot b = (\frac{\lambda}{\lambda + 1} + \frac{\lambda}{\lambda - 1}) \cdot b = \frac{\lambda^2}{\lambda^2 - 1} \cdot 2b$$
 (1)
• $t_i \cdot t_a = \frac{\lambda}{\lambda + 1} \cdot b \cdot \frac{\lambda}{\lambda + 1} \cdot b = \frac{\lambda^2}{\lambda^2 - 1} \cdot b^2$ (2)

Diese Zusammenänge werden gleich benötigt.

3. Jetzt wo wir T_i und T_a in Abhängigkeit von b und λ bestimmt haben, kann man die Vorraussetzung auch noch auf den Punkt X anwenden.

$$\frac{\overline{AX}}{\overline{XB}} = \lambda$$

$$\Leftrightarrow \frac{(AX)^2}{(\overline{XB})^2} = \lambda^2$$

$$\Leftrightarrow \frac{x^2 + y^2}{(x - b)^2 + y^2} = \lambda^2$$

$$\Leftrightarrow \mathbf{X}^2 + y^2 = \lambda^2[(x - b)^2 + y^2]$$

$$\Leftrightarrow \mathbf{0} = \lambda^2 \cdot (x - b)^2 + \lambda^2 y^2 - x^2 - y^2$$

$$= \mathbf{X}^2 \cdot \lambda^2 - 2bx \cdot \lambda^2 + b^2 \cdot \lambda^2 + y^2 \cdot \lambda^2 - x^2 - y^2$$
(3)

Tetzt prüft man auf Orthogonalität zwischen $\overrightarrow{T_iX} = \begin{pmatrix} x - t_i \\ y \end{pmatrix}$; $\overrightarrow{T_aX} = \begin{pmatrix} x - t_i \\ y \end{pmatrix}$

4. Jetzt prüft man auf Orthogonalität zwischen $\overrightarrow{T_iX} = \begin{pmatrix} x - t_i \\ y \end{pmatrix}$; $\overrightarrow{T_aX} = \begin{pmatrix} x - t_a \\ y \end{pmatrix}$.

$$\overrightarrow{T_i X} \cdot \overrightarrow{T_a X} = (x - t_i) \cdot (x - t_a) + y^2$$

$$= x^2 - (t_i + t_a)x + t_i \cdot t_a + y^2$$
Benutze (1) und (2)
$$= x^2 - \frac{\lambda^2}{\lambda^2 - 1} \cdot 2bx + \frac{\lambda^2}{\lambda^2 - 1} \cdot b^2 + y^2$$

$$= \frac{x^2 \cdot (\lambda^2 - 1) - 2bx \cdot \lambda^2 + b^2 \cdot \lambda^2 + y^2 \cdot (\lambda^2 - 1)}{\lambda^2 - 1}$$

$$= \frac{x^2 \cdot \lambda^2 - 2bx \cdot \lambda^2 b^2 \cdot \lambda^2 + y^2 \cdot \lambda^2 - x^2 - y^2}{\lambda^2 - 1}$$
Benutze (3)
$$= 0$$

 \Rightarrow Man hat bewiesen, dass für alle Punkte X die Vektoren T i X und T a X orthogonal zueinan- der sind, weshalb sie auf dem Thaleskreis über T i und T a liegen müssen.

Bemerkung:

Die Figur und die Zusammenhänge, die man durch den Satz des Apollonios erhalten hat, kann man benutzen, um ein wenig mit Winkeln zu spielen:

Über diese 10 Winkel lassen sich einige Beziehungen aufstellen:

Löst man dieses Gleichungssystem, erhält man $\gamma_1=\gamma_2$, was bedeutet, dass die Gerade T_iX Winkelhalbierende des Winkels $\gamma=\angle AXB$ ist: