

问题A.阵列

输入文件。 标准输入

输出文件。 标准输出

秒 内存限制: 256兆字节

冉冉有一个由n个整数组成的序列a, a, a, a-2-, a

1 2

所以他为你想出了一个问题。

你需要找出一个m f 整数的序列f 。用f 构造一个无限序列f ,f 等于f f f 。f 必须满足这样的条件:在f f 的每一个连续的f 。f 本一个等于f 的数字。

请注意,a是1的指数,b,c是0的指数。m的值由你决定。你能解决这个问题吗?

输入

输出

第一行输出一个整数m。

第二行输出m个整数 c_0 , c_1 , --, c_{m-1} 。

你应该保证 $1 \le m \le 10^6$, $1 \le c_i \le n$ 。

标准输入	标准 产量
1	2
2	1 1

问题B: Eezie和Pie

输入文件。 标准输入 输出文件。 标准输出

时间限制:3

秒 内存限制: 256兆字节

馅饼狂人Eezie想在炎热的夏天和她的朋友们一起吃一些馅饼。然而,天气太热了,她不能到户外去,只能打电话给快递公司。

Eezie居住的城市可以用N个节点表示,由N-1条边连接,城市中心是节点1。换句话说,这个城市是一棵有根的树,它的根是节点1。在这个城市里有N个派的房子

由于某种原因, 节点*i*上的派屋只能将其派送到从节点*i*到节点1的简单路径上的节点。

Eezie有点担心馅饼在运送过程中会失去味道。经过仔细计算,她决定,如果第i个饼屋的饼在运送过程中不超过它的风味损失距离 d_i 。树上两个节点之间的距离是它们之间简单路径上的**边的**数量。

现在,Eezie想为她所有住在树的不同节点上的朋友订购一些馅饼。因此,她想让你为每个节点计算一下,有多少家馅饼店能把他们的馅饼送到该节点而不损失味道。

输入

第一行包含一个整数N($1 \le N \le 2 \times 10^6$),代表**Eezie**居住的城市的节点数。

第二行包含N个整数 d_1 , d_2 , --, d_N ($1 \le d_i \le N$),代表馅饼从馅饼屋的最大旅行距离。

接下来的N-1行中的每一行都包含两个整数u, v($1 \le u$, $v \le N$),代表一条边。可以保证这些边形成一棵树。

输出

在一行中输出*N个*整数, *第i个*整数代表结点*i*的答案。

标准输入	标准输出
10	6 6 2 3 1 1 1 2 1 1
12	
2 3	
2 4	
35	
4 6	
4 7	
18	
8 9	
8 10	
001 2253102	

问题 C. 森林

输入文件。 标准输入 输出文件。 标准输出

时间限制:5

秒 内存限制: 512兆字节

西部郊区的茂密森林有助于你突破自我。

给出一个有*n个*顶点和*m*条正加权边的加权无定向简单图。将其每个生成子图的最小生成森林的权重相加,并将该值以998244353为模数打印出来作为答案。

输入

第一行由一个整数n ($n \le 16$) 组成,表示图中顶点的数量。接下来的n行用一个邻接矩阵描述该图,更具体地说。

- *n*条线中的每一条都由*n 个*非负数组成。
- \hat{m} 条线 $A_{i,j}$ ($0 \le A_{i,j} \le 10^\circ$) 的 \hat{m} 个数字是0,如果顶点i和10之间没有边j;否则就是它们之间唯一一条边的权重。

保证 $A_{i,i} = 0$, $A_{i,j} = A_{j,i}$, 对于每个 $1 \le i$, $j \le n$, 这保证了该图是一个无向简单图,所有边都是正加权的。它还保证了边的数量m不

超过100。

输出

在第一行打印一个整数,即998244353的模数值。

例子

标准输入	标准输出
4	158
0 1 1 1	
1 0 1 1	
1 1 0 1	
1 1 1 0	

注意事项

具有顶点集V和边集E的加权定向图G的最小生成森林定义如下。

- 它是E的一个子集(不一定非空或与E不同),表示为S。
- 任何一对在G中可以相互到达的顶点(u, v)仍然只能使用S中的边来到达对方。
- S是满足上述两个条件的所有子集中权重最小的子集。S的权重是其中所有边的权重之和。

	中国	、8月6日	, 202	2年	
G的 生成子图是一	中国 $-$ 个具有顶点集 V 和边缘集 E 的	一个子集	(不-	一定非空或与E不同)	的图。

问题D. 傅里叶和宇宙的理论

输入文件。 标准输入

输出文件。 标准输出

时间限制:2

秒 内存限制: 128兆字节

注意:描述真的很长。为了更好地理解,重要的概念用粗体字表示。

傅立叶与他的朋友们开始了一个项目, 目的是研究整个宇宙的终极理论。

乔治-康托尔,集合理论的开拓者,用"奇妙的康托尔集合(MCS)"来描述宇宙。用通俗的话说,MCS 包含了从1到*n的***所有整数**。

发明了许多重要运算符的Ren´e Descartes用 "Profound Descartes Operator(PCO) "来描述MCS中的元素如何相互作用。通俗地说,当PCO对MCS中的两个元素施加时,这**两个元素的乘积**将被返回。此外,MCS只定义在乘积不超过*n的*两个数字之间。

数论大师Leonhard Euler发现了MCS中的基本元素。他将其命名为 "美妙的欧拉数(FEN)"。在他的研究中,他发现**两个不同素数的所有PCO**都是FEN。

乔治-布尔, 布尔逻辑学的先驱, 已经完善了FEN的定义。他用 "优秀布尔定律(EBL) "来描述它, 它包含两个描述。

- 两个FEN的PCO是FEN, 只要它们之间的PCO被定义。
- 除了两个不同素数的所有PCO和两个FEN的PCO之外,没有其他数字是FEN。

经过成百上千的伟大科学家的研究,MCS的代数终于得到了实现。然而,在MCS中还没有找到普通自然数与元素的转换规律,在很长一段时间内,MCS代数没有被广泛使用。

最后,天才的变换研究者傅里叶针对这个问题提出了"最终傅里叶变换(FFT)"。该定理是一个划时代的发现,尽管有一个小缺陷:FFT需要**计算MCS中的FEN数量**,但傅立叶不知道如何去做!

帮助Fourier解决这个问题!如果你能成功解决它,可能会有一个以你名字命名的常数!

输入

一行有一个数字, $n(1 \le n \le 10^{11})$ 。

输出

一行有一个数字, 是MCS中FEN的数量。

标准输入	标准输出
10	2

2022年NIO杯Nowcoder多大学培训比赛6日上线 中国,8月6日,2022年

在这种情况下,只有6和10是FEN。

问题E来自AtCoder

输入文件。 标准输入

输出文件。 标准输出

时间限制:1

秒 内存限制: 256兆字节

你有一个 $n \times n$ 的网格。每个单元格包含一个整数。 第i行和 第j列的数字的初始值是 $a_{i,j}$ 。 在一次操作中,你可以选择一个单元格(i, j)和一个整数x,使 $|x| \le 10^{\circ}$,并做如下操作。

• 在 \hat{g} 7行的每个数字上加x。然后,从 \hat{g} 7列的每个数字中减去x。

判断你是否能在1000次运算内使所有的数字都变成非负数。如果可以,请构建一个解决方案。

输入

第一行包含一个整数n ($1 \le n \le 501$)。

接下来的n行各包含n个整数。第i行的第j个整数是一 $f_{i,i}$ (0 $\leq |a_{i,i}| \leq 10^6$)。

输出

如果你的目标不能实现,在一行中打印一个整数-1。

否则在第一行打印整数 $k(0 \le k \le 1000)$,表示操作的数量。然后打印k行。每行包含三个整数i, j, x, 用一个空格隔开,表示一个操作。你必须确保 $1 \le i$, $j \le n$, $0 \le |x| \le 10^{\circ}$ 。

实例

标准输入	标准输出
3	5
65-4	113
-7 2 0	2 1 -12
3 26 47	2 2 10
	3 2 -10
	3 3 -2
3	-1
-1 -2 -3	
-4 -5 -6	
-7 -8 -9	
3	0
012	
3 4 5	
678	

中国,8月6日,2022年

问题 F. 哈希

输入文件。 标准输入

输出文件。 标准输出

时间限制:7

秒 内存限制: 256兆字节

In P^n $X^i Y^j$ M = 998244353

 $Zlca^{(i,j)}$

NIO有一棵树T,根在1。

他将T的哈希函数定义为F(T)=

i=1 j=i+1

lca(i,j)是i和j的最低共同祖先。

不幸的是,他在一次事故中失去了这棵树。他唯一记得的是F(T)。现在给定F(T) 和X、Y、Z,你需要用不超过50个顶点重建T。

输入

第一行包含一个整数T($1 \le T \le 20$),表示测试案例的数量。 对于每个测试案例,唯一的一行包含四个整数F(T),X,Y,Z($0 \le F$ (T) < P, $2 \le X$, Y, $Z \le P$ - 2)。显然,X、Y、Z是从范围[2, P - 2]中随机选择的。

输出

对于每个测试案例,输出n行,其中n是树的顶点数量。第一行输出n,你应该确保 $1 \le n \le 50$ 。

接下来的n-1行输出两个整数u, v,表示你的树中的一条边。这n-1条边应该形成一棵树。

标准输入	标准 产量
1	2
36 2 3 2	1 2

问题 G. 图标设计

输入文件。 标准输入

输出文件。 标准输出

时间限制:1

秒 内存限制: 256兆字节

作为一个程序员,为学校设计一个图标是什么感觉?现在你有机会做了! 南京外国语学校(简称NFLS)的图标并不复杂,它可以用ASCII艺术来表示。

由于该图标可能在不同的地方使用,你需要打印不同大小的图标。给定尺寸n,打印尺寸为n的图标。

详细的格式如下所示,你也可以看一下样本输出来确认。

2022年NIO杯Nowcoder多大学培训比赛6日上线 中国、8月6日、2022年

		. · <u>-</u>	\square , O \square U \square ,	2022+		
如图所示,	'*'被用于边界,	'@'被用于字母。				

中国,8月6日,2022年

(n+1)'.'是用来分隔字母和水平方向的边界,而n ρ '.'是用来垂直方向的。每个字母的宽度为(2n+3)个字符,高度为(2n+3)个字符。

图标的大小是(4n+5)×(13n+19)。

输入

第一行包含一个正整数n($1 \le n \le 5$),代表图标的大小。

输出

打印尺寸为n的图标。

例子

标准输入	标准输出
1	*********
	*
	@@@@@@@@@@@@@@
	@@@@
	@.@.@@@@@@@@@@@@@
	@@@@@
	@@@@@@@@@@@@
	*

注意事项

ÄÄÄ 输出 当 n=3 是 那么大 以至于它 是 显示 在 中显示。 链接 下面的链接:https://paste.ubuntu.com/p/2vFVnhfpYQ/。

问题H:跳跃性的台阶

输入文件。 标准输入

输出文件。 标准输出

时间限制:4

秒 内存限制: 512兆字节

刘侃山喜欢跳台阶!

现在在刘的面前有n个台阶。他站在第o个台阶上,想跳到第n个台阶上。他只能往上跳(从第x个台阶 跳到第x+k个台阶,对于任何正整数k)。跳一次,他得到的分数是 k^2 。

然而,这些步骤中的m个步骤被打破了,刘不能跳到它们上面。这些断裂的步骤是 $p_1,p_2,--,p_m$ 。

另外,如果刘某跳过了超过S ——跃而起的碎步(这意味着

 $[x < p_i < y] > S$,其中

x和y是这一跳的起始位置和结束位置),他不会得到这一跳的分数。

因为过度劳累。注意,他之前得到的分数不会被清除。

现在,刘想知道他在所有不同的跳法中能得到的总分之和是多少。两种跳法是不同的,当且仅当存在一 个台阶,它在一种方式下被跳上,而在另一种方式下没有被跳上。由于答案可能非常大,你需要找到它 的模数10°+7。

输入

第一行包含三个整数n,m和S($1 \le n \le 10^{\circ}$, $0 \le S \le m \le 2 \times 10^{\circ}$)。第二行包含m个整 数 p_1 , p_2 , --, p_m $(0 < p_1 < p_2$ -- $< p_m < n)$ 。

输出

唯一一行包含一个整数:答案是10的模数9+7。

实例

标准输入	标准输出
311	14
2	
621	60
2 4	
822	854
25	

注意事项

对例子2的解释。

假设q是Liu跳跃的步骤序列。有8种跳的方式。

1.
$$q = \{0, 1, 3, 5, 6\}$$
,总分是 $1^2 + 2^2 + 2^2 + 1^2 = 10$ 。

- 中国, **8**月**6**日, **2022**年 **2.** *q*={**0**, 1, 3, 6}, 总分是1² + 2² + 3² = 14。
- **3.** $q=\{0, 1, 5, 6\}$,总分是 $1^2+0+1^2=2$ 。
- 4. $q=\{0, 1, 6\}$,总分是 $1^2+0=1$ 。
- 5. $q=\{0, 3, 5, 6\}$,总分是 $3^2+2^2+1^2=14$ 。
- 6. $q=\{0, 3, 6\}$,总分是 $3^2+3^2=18$ 。

中国,8月6日,2022年

- 7. *q*={0, 5, 6}, 总分是0+1²=1。
- 8. q={0, 6}, 总分是0。

它们的总和是10+14+2+1+14+18+1+0=60。

中国,8月6日,2022年

问题一:线

输入文件。 标准输入

输出文件。 标准输出

时间限制:1

秒 内存限制: 256兆字节

兰兰有一个由n γ 向量组成的集合 s_v ,还有一个整数d。他在星期天很无聊,所以决定为你发明一个新问题。

你p需要给出一个点的集合 s_p , 其大小为m。你将在 s_p 中拾取每一个点(a_i , b_i),在 s_v 中拾取每一个 矢量(x_j , y_j)。当且仅当这条线正好访问 s_p 中的d个点时, \dot{z} 对(a_i , b_i , x_j , y_j)被称为好。你需要找出一个好的点集。

兰兰在几个不眠之夜想到了阳阳,解决了这个问题。现在他把这个问题交给你。你能解决这个问题吗?

输入

第一个包含两个整数n和d (1 $\leq n$, $d\leq 6$)。

接下来的n行中的每一行都包含两个整数 x_i , y_i $(0 \le x_i$, $y_i \le 6$, $x_i + y_i > 0)。$ 注意,并不能保证所有的向量都是成对的不同。

输出

在第一行输出一个整数m。

接下来的每一行,输出两个整数 a_i , b_i 。

你应该保证 $1 \le m \le 10^5$, a_i , b_i 是32位有符号的整数,并且点是成对不同的。

例子

标准输入	标准 产量
1 1	1
1 0	0 0

注意事项

只用一个点就可以满足这些条件。

2022年NIO杯Nowcoder多大学培训比赛6日上线 中国,8月6日,2022年

问题J. 数字游戏

输入文件。 标准输入

输出文件。 标准输出

时间限制:1

秒 内存限制: 256兆字节

黑板上写有三个整数A、B和C。

你可以不限次数地执行以下两个操作。

- 将B改为A-B。
- 将C改为B-C。

请注意,每次你不需要执行所有两种操作。你可以选择一种类型的操作来执行。

给你一个整数x,回答你是否可以用这些操作将C变成x。你需要独立回答T个问题。

输入

第一行包含一个正整数 $T(1 \le T \le 10^5)$ 。

接下来的T行中的每一行都包含四个整数 $A, B, C, x(-10^8 \le A, B, C, x \le 10^8)$ 。

输出

对于每个测试案例,如果C可以变成x,则输出'是',否则输出'否'(不含引号)。

例子

标准输入	标准输出
3	是
2 4 3 1	没有
2 4 3 2	是
4 2 2 0	

注意事项

请注意, A、B、C、x可能是负数。

问题K:SolarPea和反转

输入文件。 标准输入

输出文件。 标准输出

时间限制:4

秒 内存限制: 512兆字节

SolarPea认为反转很美。

对于一个长度*为n*和常数为c的01序列Z,SolarPea定义Z的等级为 $T(Z,c)=\sum_{i=1}^{i=1}\sum_{j=i+1}^{j=i+1}$

PolarSea有两个长度为k的整数序列X和Y($\forall 1 \leq i \leq k$, $1 \leq X_i \leq n$, $0 \leq Y_i \leq 1$)。PolarSea喜欢一个长度 为n的01序列Z,当且仅当 $\forall 1 \leq i \leq k$, $Z_{X_i} = Y_i$ 。

SolarPea在纸上写下所有长度为n且包含m 个1'的o1序列。PolarSea看到后划掉了所有他不喜欢的序列 。现在你得到了c,请计算纸上剩余序列的评分之和。

由于答案可能非常大,你应该输出1065977431(一个素数)的模数。

可以保证c是随机生成的。

输入

第一行包含四个非负整数n、m、k、c

 $(1 \le n \le 10^{18}, 0 \le m \le \min(n, 10^7), 0 \le k \le \min(n, 30), 2 \le c < 1065977431)$

接下来的k行,每行包含两个非负的整数 X_i 和 Y_i ($1 \le X_i \le n$, $0 \le Y_i \le 1$)。 可以保证所有的 X_i 是成对的不同。

输出

输出答案的模数为1065977431。

实例

标准输入	标准输出
3 2 1 10 2 1	101
4 2 1 10 2 1	10110
1004535809 115194 2 21658 822 1 1064 0	606261277

注意事项

1号样本的解释。

有 有 两个 剩余的 序列 $\{1, 1, 0\}$ \notin $\{0, 1, 1\}$. $T(\{1, 1, 0\}, c) = c^2 = 100$, $T(\{0, 1, 1\}, c) = c^0 = 1$,所以答案是100+1=101。

问题L。击球串问题

输入文件。 标准输入

输出文件。 标准输出

时间限制:8秒

内存限制: 1024兆字节

给予NIO两个由小写字母组成的字符串S和T,一个整数k和2k的整数 l_i , r_i ($1 \le i \le k$) 。

定义 $U = S[l_1, r_1] + S[l_2, r_2] + - - - + S[l_k, r_k]$ 。他有q个查询,每个查询由两个整数x和y描述。对于一个查询,他想知道T在U[x, y]中出现的次数。请帮助他!

- S[l, r] 是 $S_{l} S_{l+1}$ - S_{r} 。
- S+T是S₁ S₂ - S|S|T₁ T₂ - T|T_|

输入

第一行包含一个单一的字符串 $S(1 \le |S| \le 10^6)$ 。

第二行包含一个字符串 $T(1 \le |T| \le 5 \times 10^5)$ 。第三行包含两个整

数k和q (1 $\leq k, q \leq 5 \times 10^5$)。

接下来的k行中的每一行都包含两个整数 l_i 和 r_i ($1 \le l_i \le r_i \le |S|$)。接下来的q行包含两个整数 x_i 和 y_i ($1 \le x_i \le y_i \le |U|$)。

输出

打印q行。其中第i行包含一个整数--第i个查询的答案。

标准输入	标准输出
abaaba	5
abaa	1
8 10	3
16	4
4 6	0
3 6	1
2 4	2
56	1
2 2	0
5 5	2
1 4	
1 24	
21 24	
1 15	
1 23	
66	
4 7	
18	
8 16	

16 22	中国,18月6日,2022年	Į.
16 23		
7 20		

2022年NIO杯Nowcoder多大学培训比赛6日上线 中国,8月6日,2022年

注	音	車	顶
ᄮ	150	_	ー ンベ

U = abaabaabaaababaabaaa

中国,8月6日,2022年

问题M:网格上的Z型游戏

输入文件。 标准输入

输出文件。 标准输出

时间限制:1

秒 内存限制: 256兆字节

爱丽丝和鲍勃在一个*n×m的*网格上玩游戏,每个单元格上都写着'A'、'B'或'.'。他们轮流在网格上移动 一个棋子,爱丽丝先走。

最初,棋子位于(1, 1)单元格。在每个玩家的回合中,他或她可以将棋子向右移动一格或向下移动一格。也就是说,如果棋子在回合前位于(x, y)单元格,玩家可以将其移动到(x+1, y)或(x, y+1),只要它不超出网格。

在任何时候,如果棋子在带有 "A"的单元格上,Alice就赢了,游戏结束。如果棋子在带有 "B"的单元格上,则鲍勃获胜,游戏结束。如果棋子到达(n,m)单元格而游戏没有结束,那么就是平局。

由于爱丽丝不能决定鲍勃会采取什么行为,她想知道她是否能控制局面。考虑到他们正在玩的网格,你能告诉她,无论鲍勃采取什么行为,她是否总能找到赢、平或输的方法?

输入

在第一行,一个整数T ($1 \le T \le 50$) ,代表测试案例的数量。

对于每个测试案例,第一行包含两个整数N, M ($1 \le N$, $M \le 500$),代表网格的大小。 在接下来的N行案例中,每一行都包含M个字符(要么是'A', 'B'或'.'),描述了网格的情况。

输出

对于每个测试案例,在一行中输出三个词'是'或'不是',分别代表爱丽丝是否能找到赢、平或输的方法(不含引号)。

标准输入	标准输出
2	没有没有是
3 3	没有 是的 没有
B	
B	
BB_{\circ}	
13	