UiO Department of Physics
University of Oslo

Neutron interactions and dosimetry

Eirik Malinen Einar Waldeland

Fuel rod cooling pond

The neutron

- Uncharged particle, mass close to that of proton
- Unstable as free particle; disintegrates into a proton, an electron and an antineutrino ($t_{1/2}$ =12 min)
- Do not interact with electrons
- Only nuclear interactions; complex cross sections
- Neutron attenuation similar to that for photons

Neutron reactions

$$X + n \rightarrow b + Y$$

- (n,n) Elastic scattering
- (n,n') Inelastic scattering
- (n,p) Absorption
- (n,α) Absorption
- (n,f) Fission
- Thermalization of neutrons: Collisions with nuclear targets until in thermal equilibrium

UiO Department of Physics
University of Oslo

Neutron interactions

• Principally two types of interaction with matter:

2. Absorption: creation of compound nucleus, deexcitation yields p, α , fission products

Interactions

Interactions

Cross section depends on: - Kinetic energy T_n
 - Nuclear structure

UiO Department of Physics

Neutron moderation 1

• Elastic scattering against nucleus – energy of neutron after scattering:

$$m_{n}, v \longrightarrow m_{n}A \longrightarrow m_{n}A, v_{2}$$

$$V_{1} \longrightarrow \theta$$

$$E_{max} = \frac{1}{2}(m_{n}A)v_{2,max}^{2} = 4\frac{Am_{n}^{2}}{(m_{n} + Am_{n})^{2}}T_{0}$$

$$= 4\frac{A}{(A+1)^{2}}T$$

• Hydrogen rich absorbers most effective

Neutron moderation 2

• It may be shown that, after *n* interactions, the *average* neutron energy is:

Verage neutron energy is.
$$T_n = T_o \left[\frac{A^2 + 1}{(A+1)^2} \right]^n \qquad \Rightarrow n = \frac{\ln \left(\frac{T_n}{T_0} \right)}{\ln \left[\frac{A^2 + 1}{(A+1)^2} \right]}$$

Table 12-1. Average number of collisions required to reduce a neutron's energy from 2 MeV to 0.025 eV by elastic scattering

Element	Atomic Weight	Number of Collisions	
Hydrogen	1	27	
Deuterium	2	31	
Helium	4	48	
Beryllium	9	92	
Carbon	12	119	
Uranium	238	2175	

UiO Department of Physics

Low energies, $T_n < 500 \text{ keV}$

- "Potential" (1) and "resonance" (2) elastic scattering:
 - 1: Scattering on the nuclear 'surface'
 - 2: Neutron absorbed, but reemitted
 - For (1): virtually constant cross section
- At thermal energies, the neutron is captured and the compound nucleus deexcites via e.g. γ emission cross section $\sim 1/v_n$

"1/v" cross section

Elastic scattering

- Potential elastic scattering
 - Discontinuities in neutron's potential energy curves due to the nuclear surface interaction (considered as reflections) $\sim 4\pi R_{\Delta}^2$
- Resonance scattering
 - Parts of the incident wave passing through the nuclear surface, resonance scattering occurs with large prob. only for specific wave-lengths

Potential elastic scattering

UiO Department of Physics University of Oslo

Cross section

Thermal neutrons

• For neutrons in thermal equilibrium with surroundings:

T_n=kT=0.025 eV at T=293 K (k: Boltzman constant)

• ²³⁵U has a high cross section for capture of thermal neutrons – gives fission

UiO Department of Physics

Fission

High energy neutrons, $T_n > 0.5 \text{ MeV}$

- Inelastic: $(n, n\gamma)$, threshold kinetic energy ~ 0.5 MeV
- Occurs at given energies: resonances
- Capture reacions: $(n, p), (n, \alpha)$
- Emission of more than one particle:
 (n, np), (n, nα) (threshold ~ 10 MeV)
- Complicated cross sections

University of Oslo

Absorption

$$X + n \rightarrow b + Y$$

- (n,γ) , (n,b), (n,α) , (n,f).....
- Conservation of mass and kinetic energy

$$T_X + m_X c^2 + T_n + m_n c^2 = T_b + m_b c_2 + T_Y + m_Y c^2$$

• The Q-value

$$Q = m_x c^2 + m_n c^2 - m_b c_2 - m_y c^2$$

signifies if a reaction releases (exoergic) or needs energy (endoergic)

Absorption

Neutron absorption (particle emission)
 X+n→C→b+Y

b= p, n', d,
$$\alpha$$
, 2n, 2p, np

• Radiative capture $X+n\rightarrow Y^*\rightarrow Y+\gamma$

UiO Department of Physics

Table 9.2 Exoergic Neutron-Particle Reactions

Reaction	Q (MeV)	Thermal Cross Section (b)	
³ He(<i>n</i> , <i>p</i>) ³ H	0.77	5330	
$^{6}\text{Li}(n,\alpha)^{3}\text{H}$	4.64	940	
$^{10}\mathrm{B}(n,\alpha)^7\mathrm{Li}$	2.78	3840	
$^{14}N(n,p)^{14}C$	0.63	1.8	
$^{33}S(n,p)^{33}P$	0.75	0.002	
$^{35}Cl(n,p)^{35}S$	0.62	0.5	

Table 9.3 Endoergic Neutron-Particle Reactions

Reaction	Q (MeV)	Threshold (MeV)	Cross Section 14 MeV (b)
¹² C(n, α) ⁹ Be	-5.7	6.2	
$^{16}{\rm O}(n,p)^{16}{\rm N}$	-9.6	10.2	
$^{16}O(n,d)^{15}N$	-9.9	10.5	0.04
$^{16}O(n,\alpha)^{13}C$	-2.2	2.3	
$^{32}S(n,p)^{32}P$			0.23
$^{54}\text{Fe}(n,p)^{54}\text{Mn}$			0.35
56 Fe $(n,p)^{56}$ Mn			0.11

Data from Reis. 0-7 and

Neutron attenuation

For a narrow neutron beam:

$$N = N_0 e^{-\mu x}$$

μ is the attenuation coefficient:

$$\mu = \rho \, \frac{N_{_A}}{A} \sigma$$

- Note: the cross section σ may show extreme variations over small energy range
 - If Q positive: $(\mu_{tr}/\rho) > (\mu/\rho)$
 - If Q negative: $(\mu_{tr}/\rho) < (\mu/\rho)$

UiO Department of Physics
University of Oslo

Figure 9.19 An illustration of the relationship between neutron attenuation coefficients for a typical medium mass nucleus is shown. Notice that the curve for the total coefficient is the sum of the other curves. Adapted from Ref. 11.

Monte Carlo simulations

University of Oslo

Theoretical dosimetry

KERMA factor F_n:

• $K_n = \Phi F_n = \Phi E_n (\mu_{tr}/\rho)_{tot}$

• At CPE: $D=K_n = \Phi F_n$

Figure 8.14 The fraction of the energy transfer from a neutron beam to an oxygen absorber is shown for various reactions as a function of neutron energy (25). Notice that the elastic scattering contribution dominates at lower energies. Adapted from Ref. 22.

UiO : Department of Physics University of Oslo

Important interactions in tissue

- 14 N(n,p) 14 C σ_{N} : 1.84 x 10 $^{-24}$ cm 2 /atom
- 1 H(n, γ) 2 H σ_{H} : 3.32 x 10 $^{-25}$ cm 2 /atom
- $N_H \sim 41 N_N$ in tissue...

FIGURE 16.1. Kerma per unit fluence contributed by various interactions in a small mass of tissue in free space, as a function of incident neutron energy. Note that curves g and h are displaced downward by the factor 10^{-3} . (Auxier et al., 1968. Reproduced with permission from J. A. Auxier and Academic Press.)

UiO : Department of Physics University of Oslo

γ+n mixed-field dosimetry

- (n,γ) always important
- (γ,n) important for energy ($\geq 10 \text{ MeV}$)
- Three categories of dosimeters
 - Neutron dosimeters (insensitive to γ-rays)
 - γ -ray dosimeters (insensitive to neutrons)
 - n+ γ dosimeters (comparable sensitive to n and γ)

Mixed field dosimetry

• $Q_{n, \gamma} = AD_{\gamma} + BD_{n}$

A & B: response per unit of absorbed dose in tissue for γ rays and neutrons, respectively

- *Paired* dosimeters may help estimating D_{γ} and D_{n} , e.g.:
 - Tissue Equivalent (TE) ion chamber (A~B) and TLD (B<A)

UiO Department of Physics

Neutron detectors

- High cross section for the desired reaction
- High abundance of target nuclide
- •Principle:
 - (n, α) or (n,p) reaction
 - Fission reaction

BF₃ counter

- Ion chamber with BF₃ gas
 - 10 B+n→ 7 Li+ α+2.792 MeV (6%)
 - ¹⁰B+n→ ^{7m}Li+ α+2.314 MeV (94 %)
 - \rightarrow ^{7m}Li+ γ +0.478 MeV

UiO Department of Physics
University of Oslo

Boron cross section

Neutron sources

- Nuclear fission reactors
 Neutron energies ~ 2 MeV
- Accelerators
 Protons on a thick Be target etc.
- Radioactive sources Be(α ,n) + ²³⁹Pu, ²⁴¹Am, ²²⁶Ra, ²¹⁰Po

University of Oslo

Radioactive sources

- $-(\alpha,n)$ reaction
- ²⁴¹AmBe: ⁹Be+⁴He→ ¹²C+n+5.7 MeV
 - $T_{1/2}(^{241}Am)=460 \text{ y}$
- ²²⁶RaBe
 - $T_{1/2}(^{226}Ra)=1600 y$
- ²³⁹PuBe
 - $T_{1/2}(^{239}Pu)=24000 y$

Neutron sources: AmBe

Figur 4: Neutronspektrum från en AmBe-källa

UiO : Department of Physics University of Oslo

Neutron generators: Accelerators

- Advantage
 - Can be turned off
 - One single energy
- Production in two stages
 - Acceleration
 - Neutron producing reaction
- Some common reaction:
 - T(d,n) 4 He , Q=17.6 MeV \rightarrow E $_n$ =14 MeV
 - D(d,n)³He , Q=3.3 MeV \rightarrow E_n= 2.5 MeV
 - 7 Li(d,n) 8 Be , Q=15 MeV
 - 9Be(d,n)10B, Q=4.4 MeV
 - $E_n > 100 \text{ MeV} \rightarrow \text{Spallation}$

Nuclear reactors

- Power reactors and research reactors
- Neutron flux is very high $(10^{15} \text{ n/cm}^2\text{s})$
- Energy spectrum 1-7 MeV
- Fission by thermal neutron → Fission → fast neutrons → Slowing down → fission by thermal neutrons
- Research reactors: Neutrons can be extracted for research

UiO : Department of Physics University of Oslo

Boron neutron capture therapy

- Thermal neutrons are effeciently captured by ¹⁰B
- Result is an unstable nucleus which desintegrates
 ⁷Li og ⁴He (+ kinetic energy and a photon)
- May be used for therapy:

Neutron radiography vs. X-ray

Neutron radiography

X-ray

UiO Department of Physics University of Oslo

Dose equivalent

FIGURE 16.6. Quality factors for neutrons, that is, the maximum dose equivalent divided by the absorbed dose at the same depth in the body. The curve represents the recommendation of the ICRP. (ICRP, 1971. References in the figure are given in that report. Reproduced with permission from Pergamon Press, Ltd.)

