Assignment: Probability

T.Sai Raghavendra - FWC22087

13.4.3 ¹Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed 6 times. What are possible values of X?

Solution:

Variable	Value	Description
n	6	Number of trails
p_1	$\frac{1}{2}$	Probability of getting a head
q_1	$1 - p_1$	Probability of not getting a head
p_2	$\frac{1}{2}$	Probability of getting a tail
q_2	$1 - p_2$	Probability of not getting a tail
X	$\{0, 1, 2, 3, 4, 5, 6\}$	No. of heads in 6 tosses of a coin

Table 13.4.3.2: Variable description.

(a) Number of heads in 6 tosses of a coin. By using Binomial distribution

$$Pr(X) = {}^{n}C_{X}p_{1}^{X}q_{1}^{n-X}$$
(13.4.1.1)

X	0	1	2	3	4	5	6
$\Pr\left(X\right)$	$\frac{1}{64}$	$\frac{6}{64}$	$\frac{15}{64}$	$\frac{20}{64}$	$\frac{15}{64}$	$\frac{6}{64}$	$\frac{1}{64}$

Table 13.4.1.4: Probability distribution of X.

(b) Number of tails in 6 tosses of a coin. By using Binomial distribution

$$Pr(X) = {}^{n}C_{X}p_{2}^{X}q_{2}^{n-X}$$
 (13.4.2.2)

X	0	1	2	3	4	5	6
$\Pr\left(X\right)$	$\frac{1}{64}$	$\frac{6}{64}$	$\frac{15}{64}$	$\frac{20}{64}$	$\frac{15}{64}$	$\frac{6}{64}$	$\frac{1}{64}$

Table 13.4.2.6: Probability distribution of X.

 \implies A coin is tossed 6 times and X represents the difference between the number of heads and the number of tails.Y = $\{0,1\}$ represents the head and tail.

Random Variable	Outcome		
Y = 0	Head		
Y = 1	Tail		

Table 13.4.2.8: Outcomes of Random Variable.

X(60,01) = 6 - 0 = 6	(13.4.2.3)
X(50,11) = 5-1 = 4	(13.4.2.4)
X(40,21) = 4-2 = 2	(13.4.2.5)
X(30,31) = 3-3 = 0	(13.4.2.6)
X(20,41) = 2 - 4 = 2	(13.4.2.7)
X(10,51) = 1 - 5 = 4	(13.4.2.8)
X(00,61) = 0-6 = 6	(13.4.2.9)

Thus, the possible values of X are 0.2.4 and 6.

 $[\]overline{\ \ \ }^{1}{\rm Read}$ question numbers as (CHAPTER NUMBER). (EXERCISE NUMBER). (QUESTION NUMBER)