Problems on Vector Bundles - MA556

Sankalp Gambhir

October 21, 2021

Problem 3.6

Problem. Suppose E is a vector bundle over M, and U is an open set containing $p \in M$. Let s be a smooth section of E_U . Show that there exists a smooth section t of E whose restriction to U agrees with s in a neighbourhood of p.

Smooth Sections

A smooth section of a vector bundle $\pi: E \to M$ is a smooth map $s: M \to E$ such that $\pi \circ s = \mathrm{id}$.

The space of sections over a vector bundle E, $\Gamma(E)$ carries the structure of a vector space.

Given a smooth section s of E_U , construct a smooth function f over M such that it is uniformly 1 in a neighbourhood of p and 0 everywhere outside U.

Given a smooth section s of E_U , construct a smooth function f over M such that it is uniformly 1 in a neighbourhood of p and 0 everywhere outside U.

Note that $f \cdot s$ is a smooth section of E_U as well. As it vanishes along the boundary, we can trivially extend it to a global smooth section

Given a smooth section s of E_U , construct a smooth function f over M such that it is uniformly 1 in a neighbourhood of p and 0 everywhere outside U.

Note that $f \cdot s$ is a smooth section of E_U as well. As it vanishes along the boundary, we can trivially extend it to a global smooth section

$$t(x) = \begin{cases} f(x) \cdot s(x) & \text{if } x \in U \\ 0 & \text{otherwise.} \end{cases}$$
 (1

Constructing the smooth function

Consider the following construction, beginning with the standard mollifier,

$$g(x) = e^{\frac{1}{1-x^2}},$$

$$f(x) = \begin{cases} 1 & \text{if } x \le 0 \\ e^{1-\frac{1}{1-x^2}} & \text{if } 0 < x < 1 \\ 0 & \text{if } x \ge 1 \end{cases}$$

Constructing the smooth function

Consider the following construction, beginning with the standard mollifier,

$$g(x) = e^{\frac{1}{1-x^2}},$$

$$f(x) = \begin{cases} 1 & \text{if } x \le 0 \\ e^{1-\frac{1}{1-x^2}} & \text{if } 0 < x < 1 \\ 0 & \text{if } x \ge 1 \end{cases}.$$

Note that f is indeed smooth. By transforming and taking products of functions of this kind, we can construct a required smooth function in \mathbb{R}^n with n being the dimension of our manifold.

Example choice in \mathbb{R} :

For an interval

By construction, it agrees with s in a neighbourhood of p when restricted. t is the required section.

By construction, it agrees with s in a neighbourhood of p when restricted. t is the required section.

This only matches on a neighbourhood, can we do better? Can we define a section on a slice of the space and extend it globally?

Global Sections (lack thereof)

Consider a trivial bundle on \mathbb{R} given by $\mathbb{R} \times \mathbb{R}$. Construct a section on $\mathbb{R} \setminus \{0\}$ given by $s(p) = (p, \frac{1}{p})$.

Can we extend this to a section on the whole space?

Global Sections (lack thereof)

Consider a trivial bundle on \mathbb{R} given by $\mathbb{R} \times \mathbb{R}$. Construct a section on $\mathbb{R} \setminus \{0\}$ given by $s(p) = (p, \frac{1}{p})$.

Can we extend this to a section on the whole space?

Note that we can still construct a global section that agrees with this section in a neighbourhood of any interior point of $\mathbb{R} \setminus \{0\}$.

Problem 3.11

Let M be a smooth manifold. Show that the tensor product over C(M) of two projective C(M)-modules is again a projective C(M)-module.

Reframing

Let M be a smooth manifold. Show that the tensor product over C(M) of two spaces of smooth sections over vector bundles is again a space of sections over a vector bundle.

Reframing

Let M be a smooth manifold. Show that the tensor product over C(M) of two spaces of smooth sections over vector bundles is again a space of sections over a vector bundle.

For each pair of vector bundles $E_1, E_2, \exists E \in Bundle_M$ such that

$$\Gamma(E_1) \otimes_{C(M)} \Gamma(E_2) \cong \Gamma(E)$$
.

Suppose we have a map between the two spaces, $\chi.$ We show that it is bijective.

Suppose we have a map between the two spaces, χ . We show that it is bijective.

Elements in the space $\Gamma(E_1) \otimes \Gamma(E_2)$ are tensor products of sections $s_1 \otimes s_2$, defined as mapping any point $p \in M$ to $s_1(p) \otimes s_2(p) \in E_{1p} \otimes E_{2p}$.

Suppose we have a map between the two spaces, χ . We show that it is bijective. Elements in the space $\Gamma(E_1)\otimes\Gamma(E_2)$ are tensor products of sections $s_1\otimes s_2$, defined as mapping any point $p\in M$ to $s_1(p)\otimes s_2(p)\in E_{1p}\otimes E_{2p}$.

 χ maps this to itself in the RHS. χ is injective as an inclusion map.

Surjectivity

If E_1 , E_2 are trivial bundles of rank k_1 , k_2 respectively, we can construct a linearly independent basis of sections for each $\Gamma(E_i)$. Let a choice of such bases be given by $\{a_i\}$ and $\{b_i\}$. These are frame fields for the individual bundles.

Surjectivity

If E_1 , E_2 are trivial bundles of rank k_1 , k_2 respectively, we can construct a linearly independent basis of sections for each $\Gamma(E_i)$. Let a choice of such bases be given by $\{a_i\}$ and $\{b_i\}$. These are frame fields for the individual bundles.

The tensor product $\{a_i\} \otimes \{b_i\}$ then produces a frame field for $\Gamma(E)$. Since this field is trivial, its frame field has exactly the same dimension as its rank.

Trivialising Bundles

Theorem (Whitney Summands of Trivial Vector Bundles)

If X is a paracompact Hausdorff space, and $E \to X$ is a topological vector bundle, then for every vector subbundle $E_1 \hookrightarrow E$, there exists a direct summand $E_2 \hookrightarrow E$ such that

$$\textit{E}_1 \oplus \textit{E}_2 \cong \textit{E} \ .$$

Consider trivialisations of the chosen bundles $E_1 \oplus E_1^{\perp}$ and $E_2 \oplus E_2^{\perp}$. We can then construct the diagram

$$\Gamma(E_1) \otimes \Gamma(E_2) \xleftarrow{\text{projection}} \Gamma(E_1 \oplus E_1^{\perp}) \otimes \Gamma(E_2 \oplus E_2^{\perp})$$

$$\chi \downarrow \qquad \qquad \downarrow \chi^{\perp}$$

$$\Gamma(E_1 \otimes E_2) \xleftarrow{\text{projection}} \Gamma((E_1 \oplus E_1^{\perp}) \otimes (E_2 \oplus E_2^{\perp}))$$

The diagram commutes. All the other arrows are known to be surjective, the surjectivity of χ follows.

The diagram for an object in each space

$$s_1 \otimes s_2 \longleftarrow \begin{array}{c} \text{projection} \\ \chi, \text{ inclusion} \downarrow \\ s_1 \otimes s_2 \longleftarrow \\ \end{array} \begin{array}{c} (s_1 \oplus s_1^{\perp}) \otimes (s_2 \oplus s_2^{\perp}) \\ \downarrow \chi^{\perp}, \text{ inclusion} \\ (s_1 \oplus s_1^{\perp}) \otimes (s_2 \oplus s_2^{\perp}) \end{array}$$

Finally, since χ is injective and surjective, it gives an isomorphism between $\Gamma(E_1) \otimes \Gamma(E_2)$ and $\Gamma(E_1 \otimes E_2)$ as required.