Un Titre

December 27, 2020

1 Boosting

Le boosting est une méthode permettant d'augmenter les performances d'algorithme apprenant faible (voir def. 1). Cette méthode permet aussi de résoudre deux problèmes rencontrés lors de l'apprentissage:

- 1. Tradeoff biais-complexité
- 2. La complexité des calcules

Le principe générale du boosting consiste à commencer avec une hypothèse de base, qui est ajustée à chaque itérations de l'algorithme pour produire une hypothèse plus précise.

DÉFINITION 1: Hypothèse γ apprenant faible

Un algorithme A est un γ apprenant faible (weak learner) pour une classe \mathcal{H} s'il existe une fonction $m_{\mathcal{H}}:(0,1)\to\mathbb{N}$ tel que pour tout $\delta\in(0,1)$, pour toute distribution \mathcal{D} sur \mathcal{X} et pour chaque fonction de labelisation $f:\mathcal{X}\to\{\pm 1\}$, si l'hypothèse est valable pour $\mathcal{H},\mathcal{D},\mathcal{F}$, alors lors de l'execution de l'algorithme d'apprentissage sur $m>m_{\mathcal{H}}(\delta)$ i.i.d exemples générés par \mathcal{D} et labelisés par f, l'algorithme retourne, avec une probabilité $1-\delta$, une hypotèse h tel que $L_{(\mathcal{D},f)}(H)\leq \frac{1}{2}-\gamma$

2 Adaboost

The AdaBoost algorithm outputs a hypothesis that is a linear combination of simple hypotheses AdaBoost enables us to control the tradeo between the approximation and estimation errors by varying a single parameter.