Homework 7

Ricky Hempel

April 12, 2018

Chapter 4: Exercises: 4.1-6, 4.9

- 4.1 (a.) Yes the DFA M accepts 0100.
 - (b.)No M does not accept 011.
 - (c.) No this input has only a single component and therefore is not in the correct form.
 - (d.) No the first component is not a regular expression and so the input is not of the correct form.
 - (e.) No M's language is not empty
 - (f.)Yes M accepts the same language as itself.
- 4.2 *Proof.* The language can be express as the set $L=\{\langle R,S\rangle\mid R$ is a DFA and is S is a regex where $L(R)=L(S)\}$. Let the Turning Machine T be the TM that decides L.
 - T="On input $L = \langle R, S \rangle$:
 - 1. Convert S to a NFA N.
 - 2.Convert N to a DFA D.
 - 3. By using Theorem 4.5. Feed R and D into a TM M that decides whether or they are equal or not.
 - (a.) If M says R and D are equal by accepting then accept.
 - (b.) If M says R and D are not equal by rejecting then reject. "
- 4.3 Proof. Let the Turning Machine T be the TM that decides ALL_{DFA} .
 - T="On input $\langle A \rangle$, where A is a DFA.
 - 1. Convert A to A^c , the DFA that accepts the complement of the language being accepted by A.
 - 2. Using Theorem 4.4 as a subroutine, check and see if $L(A^c) = \emptyset$ or not.
 - 3.If $L(A^c) = \emptyset$ accept otherwise reject."
- 4.4 Proof. Let the Turning Machine T be the TM that decides $A_{\varepsilon CFG}$.
 - T="On input $\langle G \rangle$ where G is a context free grammar.
 - 1. Convert the grammar G to a CFG G' in CNF.
 - 2. If G' contains the production $S \to \varepsilon$ accept, otherwise reject. "
- 4.5 Proof. Let $s_1, s_2, ...$ be a list of all strings in Σ^* . The following TM T recognizes $\overline{E_{TM}}$.
 - T="On input $\langle M \rangle$, where M is a TM:
 - 1. Repeat the following for i=1,2,3...
 - 2.Run M for i steps on each input, $s_1, s_2, ..., s_i$.
 - 3.If M has accepted any of these, accept. Otherwise reject."
- 4.6 (a.) No f is not one-to-one because of f(1)=f(3).
 - (b.) No f is not onto because their is not a $x \in X$ such that f(x)=10.
 - (c.) No f is not a correspondence because f is not one-to-one and onto.
 - (d.)Yes g is one-to-one.
 - (e.) Yes g is onto.
 - (f.) Yes g is a correspondence because g is one-to-one and onto.

4.9 Proof. A relation is known as a equivalence relation if it is reflexive, transitive, and symmetric. A same size relation is a equivalence relation if and only if it is reflexive, transitive, and symmetric. First, it is reflexive because the identity function $f(x) = x, \forall x \in A$ is a correspondence $f: A \to A$. Second it is symmetric because any correspondence has an inverse, which itself is a correspondence. Lastly, it is transitive because the function $f: A \to B$ is a bijective function from A to B and the function $g: B \to C$ is a bijective function from B to C. Therefore the composition of two bijective functions f and g is also a bijective function from A to C. Hence the same size relation is reflexive, symmetric, and transitive so the same size relation is a equivalence relation.