МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Президентский физико-математический лицей № 239

Отчёт по годовому проекту

Ученик: Берхман Евгений Юрьевич Преподаватель: Клюнин Алексей Олегович

Класс: 10-3

Содержание

1	Постановка задачи			
2	Алгоритм решения задачи			
	2.1	Базовые структуры данных	3	
		Построение алгоритма	3	

1 Постановка задачи

На плоскости заданно множество точек. Выбрать из них такие три точки, не лежащие на одной прямой, которые составляют треугольник наименьшей площади.

Рис. 1: Множество из шести точек, где точки А, В и С-искомые, образуют треугольник наименьшей площади.

2 Алгоритм решения задачи

2.1 Базовые структуры данных

Класс \mathbf{Point} описывает точку, состоит из двух полей $\mathbf{x_n}$ и $\mathbf{y_n}$ типа double, задающих координаты точки на плоскости.

Класс Set описывает множество точек, состоит из двух полей: ${\bf k}$ типа $int({\bf B}$ данной задаче ${\bf k}$ всегда равна 3, так как три точки образуют треугольник) и массив состоящий из ${\bf k}$ экземпляров класса Point.

2.2 Построение алгоритма

Будем решать задачу в системе координат. С клавиатуры на вход подаётся число ${\bf n}$ типа int, количество данных точек(${\bf n}\geqslant {\bf 3}$). Также введем переменную ${\bf min}$, которой будет присваиваться наименьшее значение площади. Для каждого из ${\bf n}$ экземпляров класса ${\bf Point}$ с клавиатуры считываются (или случайным образом. пользователь может выбрать вариант: вводить координаты самому с клавиотуры или предоставить компьютеру выбрать их случайным образом, для этого будет создана переменная типа boolean) значения переменных ${\bf x_n}$ и ${\bf y_n}$, координаты точек на плоскости. Создадим ${\bf C_n^3}$ (${\bf C_n^3} = \frac{{\bf n}!}{{\bf 3}!*({\bf n}-{\bf 3})!}$) экземпляров класса

Set, состоящих из 3-х точек(Point). С помощью метода square получим значение площади для каждого из цэ треугольников, т.е. для каждого из Set'ов. Опишем метод: будем считать 3 расстояния для каждого экземпляра: от точки P_a до точки P_b , от точки P_b до точки P_c и от точки P_c до точки P_a . Получив данные значения длины трех сторон по формуле $L_a = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}$ -расстояние от P_a до P_b (далее аналогично), посчитаем значение площади треугольника по формуле Герона: $S = \sqrt{p(p-L_a)(p-L_b)(p-L)}$, где $p = (L_a + L_b + L_c)/2$. Будем каждый раз сравнивать значение площади Set.square со значением переменной min (с самого начала присвоим min значение площади первого Set'a), и если новое значение меньше, то будем присваивать его переменной min. Проверив все C_n^3 вариантов получим конечное значение min. 3 точки, образующие треугольник, соответствующий данному значению переменной min, и будут искомыми. Ответом на данную задачу являются координаты искомых точек(если есть два или более треугольников равной площади, корая являеся минимальной, тогда ответом являются несколько троек пар чисел)

Примечания: Для каждом \mathbf{Set} 'а площадь не должна быть нулевой, иначе данный \mathbf{Set} противоречит условию(3 токчи лежат на одной пряой). То есть при создании \mathbf{Set} 'а, если его площадь равно 0, то значение переменной \mathbf{min} не меняется, а именно не становится нулевым.