Research on Improving Image Editing Performance with GLIGEN Models

Summary

1 Stable Diffusion

2 GLIGEN

3 DETR

GAN(Generative Adversarial Network)

GAN

Composed of constructors and discriminators

Diffusion

The movement of the molecules ranges from a Gaussian Distribution

Diffusion Model

- Diffusion Model
 - 1) Add a Noise value to Pixel values that follows a normal distribution
 - 2) Restoring a Noisy Image to the Original Image

Diffusion Model

Forward Diffusion Process

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}), \qquad q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Forward diffusion process (fixed)

Data

Noise

Reverse Denoising Process

$$p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t), \qquad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

Trainable network

Noise

Data

Reverse denoising process (generative)

Skip Connection을 이용

Loss Function

$$L_{\text{simple}}(\theta) := \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2 \right]$$

• Classifier guidance

Use classifiers to adjust the image generation process

Stable Diffusion

- Stable Diffusion: Models with VAE added to the Diffusion Model
 - ✓ Converting Text to Latent Vector with CLIP
 - ✓ Adding Random Noise with Gaussian Distribution
 - ✓ Remove Random Noise with the Diffusion Process
 - ✓ Restoring an Existing Image to Vector with VAE's Decoder

Loss Function

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \right]$$

Stable Diffusion

• Classifier free guidance

Adjust image generation with conditional and unconditional diffusion models

CLIP(Contrastive Language-Image Pre-training)

Model trained on similarities between text and images

AE(Auto Encoder)와 VAE(Variational Auto Encoder)의 차이

Auto Encoder: Iteratively update weights by back-propagating reconstruction losses

Not available for generative models that generate new data in the event of overfitting

Variational Auto Encoder: Convert Probability Distribution (Mean, Variance) to Latent Vector

GLIGEN(Grounded-Language-to-Image Generation)

Add a new Grounding conditional input

Bounding Box

(a) Caption: "A woman sitting in a restaurant with a pizza in front of her"
Grounded text: table, pizza, person, wall, car, paper, chair, window, bottle, cup

Key Point

GLIGEN(Grounded-Language-to-Image Generation)

• Freeze existing layers and only learn Gated Self-Attention

DETR(Detection Transformer)

1) CNN-based Detection

2) Transformer-based Detection

DETR(Detection Transformer)

- Solving the set prediction problem with bipartite matching
- Fix the number of outputs, N

DETR(Detection Transformer)

Matching Loss

$$\hat{\sigma} = rg \min_{\sigma \in \mathfrak{S}_N} \sum_i^N \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)})$$

Hungarian Loss

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

Bounding box Loss

$$\lambda_{\text{iou}} \mathcal{L}_{\text{iou}}(b_i, \hat{b}_{\sigma(i)}) + \lambda_{\text{L1}} ||b_i - \hat{b}_{\sigma(i)}||_1$$

Predicted	Ground truth		
1	1		
2	/ 2		
3	X Ø		
4 🗸	Ø		
5	Ø		

	1	2	Ø	Ø	Ø
1	12	11	1	1	1
2	4	2	8	5	9
3	1	3	5	7	8
4	2	5	6	7	4
5	2	1	9	10	6

Permutation = [3, 4, 1, 5, 2] Matching score = 1 + 5 + 1 + 4 + 1 = 12

Model Structure & Results

Model Structure

Results

Dataset	내 용	평가 방법
COCO2017	Used in computer vision for various computer vision tasks such as object recognition, segmentation, keypoint detection, etc.	Evaluate by randomly masking any object among the original image objects and then performing Inpainting on it

Model	FID Score
GLIGEN	28.94
A novel approach to modeling	26.13