Problem Set 3 Topology and Differentiation

Paulo Fagandini

August 2018

Topology and Continuity

- 1. Show that the open ball around $x_0 \in \mathbb{R}$, $B(x_0, r)$ with r > 0 is an open set.
- 2. Let $A \subseteq \mathbb{R}^n$. Consider the collection of sets $A_i \subseteq \mathbb{R}^n$, $i \in I$. Show that
 - (a) $int(A) \subseteq A$
 - (b) A is open, if and only if int(A) = A.
 - (c) If A_i is open, for any i, then $\bigcup_{i \in I} A_i$ is open.
 - (d) If A_i is open, for any i and I is finite, then $\bigcap_{i \in I} A_i$ is open.
 - (e) ϕ and \mathbb{R}^n are open sets and closed at the same time.
 - (f) If A_i is closed for any i, then $\bigcap_{i \in I} A_i$ is closed.
 - (g) If A_i is closed for every i, and I is finite, then $\bigcup_{i=I} A_i$ is closed.
- 3. Let $A_i = \left(\frac{-1}{i}, \frac{1}{i}\right)$. show that $\bigcup_{i \in \mathbb{N}} A_i = \{0\}$, and show that $\{0\}$ is not open.
- 4. Show that the sequence $x_t = K$, with $K \in \mathbb{R}$ constant, then x_t converges, and its limit is K.
- 5. Show that if the sequence x_t converges, then $X = \{x_t | t \in \mathbb{N}\}$ is bounded.
- 6. Show that if $x_t \to x_0$ and $y_t \to x_0$, both sequences in \mathbb{R} , then $(x_t + y_t) \to (x_0 + y_0)$.
- 7. Show that if the sequence $x_t \to x^*$ is such that, for any $t \ x_t > 0$, then $x^* \ge 0$.
- 8. Show that if K is compact, and A is closed, then $K \cap A$ is compact.
- 9. Show that if $a_n \to a$, then $A = \{a_n, n \in \mathbb{N}\}$ is bounded. Discuss if A is closed or not.
- 10. Let x_t a sequence such that $\left|\frac{x_{t+1}}{x_t}\right| \to L$. Show that if 0 < L < 1 then the sequence x_t converges.
- 11. Let x_t be a sequence such that $\sqrt[t]{|x_t|} \to L$. Show that if 0 < L < 1 then x_t converges.
- 12. Show that if $f: \mathbb{R} \to \mathbb{R}$ is continuous, and $f(x_0) > 0$, then there is r > 0, such that for $x \in B(x_0, r)$ open, then f(x) > 0.
- 13. Let $f: \mathbb{R} \to \mathbb{R}$ continuous, let $B \subseteq \mathbb{R}$ open, show that $f^{-1}(B)$ is also open.

Differentiation

- 14. Show that $f(x) = x^2$ is differentiable. Find its derivative.
- 15. Show that f(x) = |x| is not differentiable.
- 16. Find regions where the function $f(x) = x^2 3x^2 + x$ is increasing.
- 17. Find the Taylor series, of order k and around $x_0 = 0$, of the following functions.
 - (a) $f(x) = e^x$
 - (b) $f(x) = \sin(x)$
 - (c) $f(x) = \cos(x)$
- 18. The Taylor series for a function $f: \mathbb{R} \to \mathbb{R}$ of order 2, and around x_0 corresponds to:

$$T_2(x_0, f)(x) = f(x_0) + \nabla^t f(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^t H(f, x_0)(x - x_0)$$

Find $T_2(x_0, f)$ when $x_0 = (1, 1)$ and $f(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$.

- 19. Using L'Hôpital's rule compute the following limits:
 - (a) $\lim_{x\to 2} \frac{e^{x^2}-e^4}{x-2}$
 - (b) $\lim_{x\to\infty} \frac{\sqrt[3]{x}}{\log(x)}$
 - (c) $\lim_{x\to a} \frac{x-a}{\ln(x)-\ln(a)}$
 - (d) $\lim_{x\to 0} \frac{e^x-1}{x}$
- 20. Show that $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = \frac{1}{2}x$ has a unique fixed point.
- 21. Does the function $f:[a,b] \to [a,b]$, with a and b finite, such that $f(x) = \frac{h(g(x)+1)}{\phi(x)}$, with h,g, and ϕ continuous, has a fixed point? If so, is this unique?