Théorie des probabilités — TDs

Ivan Lejeune

14 octobre 2024

Table des matières

TD1 — Espaces probabilisés

1

TD1 — Espaces probabilisés

Exercice 1.1.

1. Soit Ω un ensemble muni d'une tribu \mathscr{F} et $x \in \Omega$. Montrer que

$$\delta_x(A) = \mathbb{1}_A(x)$$

définit une probabilité sur (Ω, \mathcal{F}) .

2. Soit $(\mathbb{P}_n)_{n\geq 1}$ une suite de mesures de probabilité sur un espace mesurable (Ω, \mathscr{F}) et $(a_n)_{n\geq 1}$ une suite de réels dans [0,1]. Montrer que

$$\sum_{n=1}^{\infty} a_n \mathbb{P}_n$$

est une probabilité sur (Ω, \mathcal{F}) .

3. Soit I un intervalle de \mathbb{R} de mesure de Lebesgue $\lambda(I)$ finie et strictement positive. Montrer que

$$\mathbb{P}(A) = \frac{\lambda(A)}{\lambda(I)}$$

définit une probabilité sur $(I, \mathcal{B}(I))$.

4. Soit $(\Omega, \mathcal{F}, \mu)$ un espace mesuré (pas forcément de probabilité) et $f:\Omega \to [0, \infty[$ une fonction mesurable telle que

$$\int_{\Omega} f(\omega) \, d\mu(\omega) = 1.$$

Montrer que l'application

$$\mathbb{P}: \mathscr{F} \to \mathbb{R}$$
$$A \mapsto \int_{\Omega} f(\omega) \mathbb{1}_{A}(\omega) \, d\mu(\omega)$$

est une probabilité sur (Ω, \mathcal{F}) .

Solution.

Exercice 1.2. On considère la mesure $\mathbb P$ sur $(\mathbb R, \mathscr B(\mathbb R))$ définie par

$$\mathbb{P}(A) = \frac{1}{3}\delta_0 + \frac{1}{3}\mathbb{1}_{000,2}(x)\lambda,$$

où λ est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

On peut imaginer que cette mesure représente le temps d'attente à un carrefour composé de trois feux piétons (rouge, vert), chaque feu restant au vert pendant une minute.

- 1. Montrer que \mathbb{P} est une probabilité sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$.
- 2. Calculer $\mathbb{P}([a,b])$ pour tout intervalle $0 \le a < b \le 2$.
- 3. Déterminer

$$\int_{\mathbb{R}} x \, d\mathbb{P}(x),$$
 puis $\int_{\mathbb{R}} x^2 \, d\mathbb{P}(x).$

Solution.

Exercice 1.3. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

- 1. Soient A et B deux événements.
 - (a) Montrer que

$$\mathbb{P}(A) + \mathbb{P}(B) - 1 \le \mathbb{P}(A \cap B) \le \min{\{\mathbb{P}(A), \mathbb{P}(B)\}}.$$

- (b) On considère le lancer d'un dé équilibré. Proposer un exemple d'événements A et B (d'intersection non vide) pour lequel l'inégalité de gauche est une égalité. Même question pour l'inégalité de droite.
- 2. Montrer que si A_1, \ldots, A_n sont des n événements, alors

$$\mathbb{P}(A_1) + \dots + \mathbb{P}(A_n) - (n-1) \le \mathbb{P}(A_1 \cap \dots \cap A_n) \le \min_{1 \le i \le n} \mathbb{P}(A_i).$$