

COVID-19 DETECTION FROM COUGH SOUNDS

CS-577 Project loannis Kaziales ~ csdp1305 03/02/2023

PROJECT MOTIVATION

COVID-19

- 753.65M cases & 6.81M deaths (WHO)
- 67.7% of patients exhibit "dry cough" (<u>WHO</u>)
- impact on public healthcare and economy
- early detection is critical to controlling the spread
- traditional diagnostic methods can be expensive, time-consuming, and invasive.
- traditional diagnostic methods may not be readily available (resource-limited settings)
- a machine learning model can provide a cost-effective and non-invasive preliminary test that can be easily scaled for widespread use, even in the absence of laboratory testing.

HOW COUGHSULTANT WOULD WORK

Enter the platform and fill some data

Record a cough sample

The model will estimate your health status: healthy, symptomatic, or COVID-19

DISCLAIMER

COUGHSULTANT

 Is not meant to replace traditional, robust testing methods and diagnostic tools, such as RT-PCR and Rapid tests.

 Is meant to be used just as a fast, inexpensive, scalable and easy-to-use preliminary test accessible to the public.

OUR DATASET

The "Data Preprocessing" Stage

BASE DATASET (1/3)

COUGHVID

- By the Embedded Systems Laboratory (ESL) at EPFL
- Publication in Nature Scientific Data (June 2021)
- Largest known public COVID-19-related cough sound dataset
- 34,4K entries, crowdsourced from all around the world
- Provides useful automatic preprocessing tools
 - cough detection model (XGB classifier with 0.96 AUC)
 - cough segmentation algorithm
- 4 experienced physicians labeled more than 3K recordings to diagnose medical abnormalities present in the coughs

Orlandic, L., Teijeiro, T. and Atienza, D. (2021). The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms. Scientific Data, [online] 8(1), p.156. doi:https://doi.org/10.1038/s41597-021-00937-4.

BASE DATASET (2/3)

Data was collected through a Web application:

BASE DATASET (3/3)

Name	Mandatory	Range of possible values	Description	
datetime	Yes	UTC date and time in ISO 8601 format	Timestamp of the received recording.	
cough_detected	Yes	Floating point in the interval [0, 1]	Probability that the recording contains cough sounds, according to the automatic detection algorithm described in the Methods section.	
latitude	No	Floating point value	Self-reported latitude geolocation coordinate with reduced precision.	
longitude	No	Floating point value	Self-reported longitude geolocation coordinate with reduced precision.	
age	No	Integer value	Self-reported age value.	
gender	No	{female, male, other}	Self-reported gender.	
respiratory_condition	No	{True, False}	The patient has other respiratory conditions (self-reported).	
fever_muscle_pain	No	{True, False}	The patient has fever or muscle pain (self-reported).	
status	No	{COVID, symptomatic, healthy}	The patient self-reports that has been diagnosed with COVID-19 (COVID), that has symptoms but no diagnosis (symptomatic), or that is healthy (healthy).	
expert_labels_{1,2,3}	No	JSON dictionary with the manual labels from expert 1, 2 or 3	The expert annotation variables are described in Table 4.	

10 columns per expert

CLEANING THE DATASET (1/6)

Original COUGHVID dataset: 34.43K entries, 51 variables

Problem:

Many unlabeled data and missing values

Solution:

Remove those entries entirely

Status (original dataset)

Fever/Muscle pain (original dataset)

CLEANING THE DATASET (2/6)

After removing unlabeled data:

Status (removed unlabeled)

Fever/Muscle pain (labeled)

CLEANING THE DATASET (3/6)

After removing unlabeled data: 19.39K entries, 51 variables

Problem:

Many entries contain recordings that:

- contain no cough sounds
- have poor quality

Solution:

Remove those entries entirely. In our case, we used threshold=0.5

CLEANING THE DATASET (4/6)

After removing samples with low P(cough): 15.29K entries, 51 variables

CLEANING THE DATASET (5/6)

After removing samples with low P(cough): 15.29K entries, 51 variables (unbalanced dataset)

Status (final dataset)

Respiratory Condition (final dataset)

Fever/Muscle pain (final dataset)

CLEANING THE DATASET (6/6)

Fleiss' Kappa scores: consistency of categorical labels of multiple reviewers.

K_{Fleiss} = -1: no agreement among any reviewersK_{Fleiss} = 1: perfect agreement of all reviewers

Problem:

Expert doctors disagree with each other. Many columns still have missing data and are not useful (e.g. location, datetime, doctors' annotations)

After removing those variables:

15.29K entries, 5 variables

- age
- gender {female, male, other}
- respiratory_condition {True, False}
- fever_muscle_pain {*True*, *False*}
- status {healthy, symptomatic, COVID-19}

Item	K _{Fleiss}	Agreement ²⁹ Poor	
quality	-0.06		
cough_type	0.26	Fair	
dyspnea	-0.02	Poor	
wheezing	0.06	Slight	
stridor	-0.01	Poor	
choking	-0.01	Poor	
congestion	0.41	Moderate	
nothing	0.13	Slight	
diagnosis	0.07	Slight	
severity	0.15	Slight	

Inter-Expert Label Consistency

From each recording, extract acoustic features, using:

- openSMILE feature extraction toolkit (popular in speech/music processing community)
- eGeMAPSv02 feature set (88 features)

eGeMAPSv02

- high-level descriptors
- useful features for characterizing sounds associated with respiratory diseases (coughs, wheezes, crackles)
- some features: pitch, loudness, jitter, shimmer, HNR, MFCCs, spectral centroids
- designed for tasks such as sentiment analysis and speaker characterization

After adding those variables:

15.29K entries, 93 variables

Florian Eyben, Martin Wöllmer, Björn Schuller: "openSMILE - The Munich Versatile and Fast Open-Source Audio Feature Extractor", Proc. ACM Multimedia (MM), ACM, Florence, Italy, ISBN 978-1-60558-933-6, pp. 1459-1462, 25.-29.10.2010.

Process followed to extract the features from each recording:

- 1. Load the audio recording
- 2. Identify and segment the separate cougl sounds present in the recording
- 3. Calculate P(segment i contains cough)
- 4. Extract features from the segment:j = argmax, P(segment i contains cough)

P(cough) = 89.68 %

P(cough) = 74.48 %

P(cough) = 46.59 %

Process followed to extract the features from each recording:

- Load the audio recording
- Identify and segment the separate cough sounds present in the recording
- Calculate P(segment i contains cough)
- Extract features from the segment:

20000

10000

Segmentation of 00039425-7f3a-42aa-ac13-834aaa2b6b92.way

Encoding the categorical variables

gender

{female, male, other}
nominal feature (not ordered)
→ one hot encoding
gender female, gender male, gender other

	gender	gen	der_female	gender_male	gender_other
0	male	0	0	1	0
1	male	1	0	1	0
2	male	2	0	1	0
3	male	3	0	1	0
4	female	4	1	0	0
287	male	15287	0	1	0
288	male	15288	0	1	0
289	female	15289	1	0	0
290	male	15290	0	1	0
291	female	15291	1	0	0

status

{COVID-19, healthy, symptomatic} target variable

→ label encoding

{0.1.2}

Encoding the categorical variables

gender

{female, male, other}
nominal feature (not ordered)
→ one hot encoding
gender_female, gender_male, gender_other

status

{COVID-19, healthy, symptomatic} target variable → label encoding {0, 1, 2}

02 MODEL FITTING

The "Model Training" Stage

OVERALL PIPELINE

Task: multiclass Classification

Followed pipeline:

- 1. Load the dataset (15.2K rows)
- 2. Split it with stratification into:
 - a. train set (85% 13K rows)
 - b. hold-out set (15% 2.3K rows)
- 3. Perform feature selection on the train set
- 4. Use stratified cross validation to identify the best model & hyperparameters
- 5. Train the model on the train set and estimate its performance on the hold-out set
- 6. Train the final model on all the available data

FEATURE SELECTION

To select the most important features, Sequential (forward) Feature Selection from the MLxtend library was used on the train set, with parameters:

- model: K-Neighbors Classifier with 5 neighbors
- number of stratified folds: 5
- scoring function: weighted One-vs-Rest ROC-AUC

RESULTS:

- 12 / 94 original features were selected [metric: weighted ovr ROC-AUC]
- 16 / 94 original features were selected [metric: weighted F1 score]

function forwardSelection(model, n):
 start with an empty feature set
 until #selected_features < n:
 add one feature based on the
 model's performance</pre>

function forwardSelect-CV(model, folds):
 run and cross-validate forwardSelection
 and find the best scoring n and feature
 subset

Raschka, (2018). MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack. Journal of Open Source Software, 3(24), 638, https://doi.org/10.21105/joss.00638

AUC OF SUBSETS DURING FEATURE SELECTION

weighted ovr ROC-AUC selected 12 features

weighted F1 score selected 16 features

HYPER-PARAMETER TUNING

To find the best model and tune the hyperparameters, I used Grid Search with Cross Validation (exhaustive search over specified models and parameter values) on the train set on the selected features.

Parameters used:

- number of stratified folds: 3
- scoring function: weighted One-vs-Rest ROC-AUC
- estimators & hyper-parameters
 - Random Forest Classifier:

```
trees: {10, 50, 100, 250}, max_depth: {5, 10, 20}, class_weight: {equal_weight, balanced}
```

- Support Vector Classifier:

```
C: {0.01, 0.1, 1, 10, 100}, kernel: {linear, poly, rbf}, class_weight: {equal_weight, balanced}
```

K-Neighbors Classifier:

```
n_neighbors: {3, 5, 7, 10, 20}, weights: {uniform, distance}
```

- Gradient Boosting Classifier:

```
boosting stages: {10, 50, 100, 250}, max tree depth: {5, 10, 20}
```

Best Performing Configurations:

metric=weighted ovr ROC-AUC: Random Forest Classifier (trees=100, max_depth=5) metric=weighted F1: Random Forest Classifier (trees=250, max_depth=10, class_weight=balanced)

PERFORMANCE ESTIMATION (OVR ROC-AUC)

Estimated performance (by training the best configuration on train set and testing on hold-out):

- → Mean weighted One-vs-Rest ROC-AUC: 0.703 (conservative estimate)
- → it predicts 'healthy' too often (due to imbalance)

PERFORMANCE ESTIMATION (F1 SCORE)

Estimated performance (by training the best configuration (with F1 score) on train set and testing on hold-out):

- → Mean weighted One-vs-Rest ROC-AUC: 0.681 (conservative estimate)
- → has better predictions

CONCLUSION

COUGHSULTANT has achieved adequate AUC performance on the test set, but the confusion matrix produces bad results, so perhaps the model shouldn't be applied for clinical use.

Future Work

- perform a more thorough analysis of the final dataset
- perform data augmentation to improve the class imbalance
- Increase robustness and performance of the model
- use neural networks instead of machine learning approaches
- Deploy the model on a platform

THANK YOU

Do you have any questions?

csdp1305@csd.uoc.gr iohnnykaz.github.io

CREDITS: This presentation included
People Illustrations by Storyset

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.