Tsiatis (2006) Chapters 10–11

Asymptotic Statistics 2025 Summer Reading Group

Naoki Eguchi

August 18, 2025

Faculty of Medicine, Kyoto University

Today's agenda

- Recap: Coarsened data, IF geometry, AIPWCC in one slide
- Chapter 10: Two-level missingness ⇒ efficient AIPWCC & DR
- Skip (brief mention only): monotone coarsening details, censoring
- Generalization idea (operators L, M, M^{-1}) for later use
- Chapter 11: Locally efficient estimators (two representations; how to compute)
- Practical recipe: what to implement in 2h

Recap

Coarsened data and Semiparametric statistics

- Full data Z; observed data $\{C, G_C(Z)\}$ under CAR (coarsening at random). $\Rightarrow \forall r, P(C = r \mid Z) = \pi\{r, G_r(Z)\}$ (coarsening depends only on observed data.)
- When $C = \infty$, the data are completely observed (equal to full data).
- In semiparametric statistics, we study the influence function, an element of Λ^{\perp} .
 - Full-data tangent space: \mathcal{H}^F ; full-data nuisance tangent space: $\Lambda_F \subset \mathcal{H}^F$.
 - (Observed) tangent space: \mathcal{H} ; nuisance tangent space: $\Lambda = \Lambda_{\psi} \oplus \Lambda_{\eta} \ (\Lambda_{\psi} \perp \Lambda_{\eta})$.
- Theorem 8.3: all observed-data influence functions can be written as

$$\varphi\{C, G_C(Z)\} = \left[\frac{\mathbf{1}(C=\infty)}{\pi(\infty, Z, \psi_0)} \varphi^F(Z) + L_2\{C, G_C(Z)\}\right] - \Pi([\cdot] \mid \Lambda_{\psi})$$

where $\varphi^F(Z)$: full-data IF, $L_2\{C, G_C(Z)\} \in \Lambda_2$ (augmentation space)

10. Improving Efficiency & Double

Robustness with Coarsened Data

The optimal (variance-minimizing) observed-data IF

Theorem 10.1

• For fixed full-data IF $\varphi_F(Z) \in (\mathrm{IF})_F$, the optimal choice is

$$L_2\{C, G_C(Z)\} = -\prod \left[\frac{\mathbf{1}(C=\infty)\,\varphi_F(Z)}{\pi(\infty, Z, \psi_0)} \,\middle|\, \Lambda_2 \right].$$

• Hence the optimal observed-data influence function is given by

$$\frac{\mathbf{1}(C=\infty)\,\varphi_F(Z)}{\pi(\infty,Z,\psi_0)} - \Pi\left[\frac{\mathbf{1}(C=\infty)\,\varphi_F(Z)}{\pi(\infty,Z,\psi_0)}\,\middle|\,\Lambda_2\right].$$

• Remark 1: If we know ψ_0 , we can choose optimal IF. Also, we do not have to estimate ψ because $\Lambda_{\psi} \subset \Lambda_2$ (already subtracted!)

Generalized by linear operator

Definition 1

• Define the linear operator $\mathcal{J}:\mathcal{H}^F\to\mathcal{H}$

$$h_F \mapsto \mathcal{J}(h_F) = \frac{\mathbf{1}(C = \infty)}{\pi(\infty, Z, \psi_0)} h_F(Z) - \Pi \left[\frac{\mathbf{1}(C = \infty)}{\pi(\infty, Z, \psi_0)} h_F(Z) \middle| \Lambda_2 \right].$$

• This operator turns full-data IF into efficient observed-data IF, so we can create efficient observed-data IF space.

Definition 2

• The class of *double-robust* observed-data influence functions is defined by

$$(IF)_{DR} = \{ \mathcal{J}(\varphi_F) : \varphi_F(Z) \in (IF)_F \}.$$

DR linear space

- $(IF)^F = \varphi^F(Z) + \mathcal{T}^{F\perp}$ is a linear variety in \mathcal{H}^F .
- Since \mathcal{J} is linear operator, $(IF)_{DR} = \mathcal{J}\{(IF)^F\} = \mathcal{J}(\varphi^F) + \mathcal{J}(\mathcal{T}^{F\perp})$ in \mathcal{H} .

Definition 3

• The linear subspace

$$\mathcal{J}(\Lambda^{F\perp}) \subset \Lambda^{\perp} \subset \mathcal{H},$$

is called the **DR linear space**.

• Explicitly,

$$\mathcal{J}(\Lambda^{F\perp}) = \Big\{\, \mathcal{J}(\varphi^F) : \varphi^F(Z) \in \Lambda^{F\perp} \,\Big\},\,$$

6

10.2 Improving Efficiency with Two

Levels of Missingness

Set-up: Two-level missingness

- Partition $Z = (Z_1^\top, Z_2^\top)^\top$ with Z_1 always observed and Z_2 sometimes missing.
- Complete-case indicator $R\in\{0,1\}$ with MAR: $P(R=1\mid Z)=P(R=1\mid Z_1)=\pi(Z_1,\psi) \text{ (e.g., logit model)}.$
- Observed data: $O = (R, Z_1, RZ_2)$.
- In this case, $\frac{I(C=\infty)\,\varphi^{*F}(Z)}{\varpi(\infty,Z)} = \frac{R\varphi^{*F}(Z)}{\pi(Z_1)}$ for $\varphi^{*F}(Z) = m(Z,\beta_0) \in \Lambda^{F\perp}$, hence, we want to find its projection onto Λ_2 .
- Also, $\Lambda_2 = \{ \frac{R \pi(Z_1)}{\pi(Z_1)} h_2(Z_1, \beta) : \forall h_2 : Z_1 \to \mathbb{R}^q \}$

Finding the Projection onto the Augmentation space

Theorem 10.2

• The projection of

$$\frac{R\,\varphi^{*F}(Z)}{\pi(Z_1)}$$

onto the augmentation space Λ_2 is the unique element

$$\left(\frac{R-\pi(Z_1)}{\pi(Z_1)}\right)h_2^0(Z_1) \in \Lambda_2,$$

where

$$h_2^0(Z_1) = \mathbb{E}[\varphi^{*F}(Z) \mid Z_1].$$

• For implementation, we just compute $\mathbb{E}[\varphi^{*F}(Z) \mid Z_1]$.

Adaptive estimation and its algorithm

- Consider the case where we can choose an estimating function $m(Z, \beta)$.
- Optimal augmentation: $h_2^{\star}(Z_1,\beta) = \mathbb{E}[m(Z,\beta) \mid Z_1].$
- In practice, posit a (possibly misspecified) model $p_{Z_2|Z_1}^*(\cdot \mid z_1; \xi)$ and compute

$$h_2^*(Z_1, \beta, \xi) = \int m(z_1, u, \beta) \, p_{Z_2|Z_1}^*(u \mid z_1; \xi) \, du.$$

• Estimation: fit $\hat{\psi}$ by MLE for $\pi(\cdot, \psi)$; fit $\hat{\xi}^*$ by likelihood for the posited model; solve

$$\sum_{i=1}^{n} \left[\frac{R_i}{\pi(Z_{1i}, \hat{\psi}_n)} m(Z_i, \beta) - \frac{R_i - \pi(Z_{1i}, \hat{\psi}_n)}{\pi(Z_{1i}, \hat{\psi}_n)} h_2^*(Z_{1i}, \beta, \hat{\xi}_n^*) \right] = 0.$$

• This estimation strategy is relatively easy to implement.

AIPWCC estimation which is igronrant of ξ

- While, using posit model, we can think of the limiting value $h_2^*(Z_{1i}, \beta, \xi^*)$.
- Even if $h_2^*(Z_{1i}, \beta, \xi^*) \neq h_2^0(Z_{1i}, \beta)$, it is a function of Z_{1i} , which satisfies the condition that can construct the IF.

$$-\left\{\frac{R_i - \pi(Z_{1i}, \psi_0)}{\pi(Z_{1i}, \psi_0)}\right\} h_2^*(Z_{1i}, \beta_0, \xi^*) \in \Lambda_2$$

• Therefore, the estimating equation for IF is

$$\sum_{i=1}^{n} \left[\frac{R_i m(Z_i, \beta)}{\pi(Z_{1i}, \hat{\psi}_n)} - \left\{ \frac{R_i - \pi(Z_{1i}, \hat{\psi}_n)}{\pi(Z_{1i}, \hat{\psi}_n)} \right\} h_2^*(Z_{1i}, \beta_0, \xi^*) \right] = 0$$

• The only difference is to estimate ξ_n^* or not (AIPWCC requires integration).

Asymptotic equivalence between adaptive estimation and AIPWCC

Theorem 10.3

Let $\widehat{\beta}_n$ be the estimator obtained by the adaptive estimation, and let $\widehat{\beta}_n^*$ be the AIPWCC estimator. Under suitable regularity conditions,

$$n^{1/2} \Big(\widehat{\beta}_n - \widehat{\beta}_n^* \Big) \xrightarrow{P} 0.$$

Hence, the adaptive estimator is asymptotically equivalent to the AIPWCC estimator.

• Thus, we think misspecification of ξ and its estimation (=adaptive estimation) as a kind of negligible problem. (BUT no efficiency !)

Double robustness (DR)

• Under regularity, the adaptive AIPWCC estimator is consistent if

either
$$\pi(Z_1, \psi)$$
 is correctly specified **or** $p_{Z_2|Z_1}^*(\cdot \mid Z_1; \xi)$ is correct.

 Proof sketch for monotone coarsening: algebraic identity + CAR ⇒ decompositions where either model kills the bias term.

Takeaway

Adaptive augmentation buys efficiency; the DR structure buys protection against one misspecification.

Worked example (logistic regression; design-based missingness)

- Full-data $m(Z, \beta)$ chosen for logistic model of Y on $X = (X_1, X_2)$.
- Under two-level missingness, the AIPWCC form becomes (schematically)

$$\sum_{i} \left[\frac{R_{i}}{\pi(Y_{i}, X_{1i}; \hat{\psi})} X_{i}^{*} \{ Y_{i} - \mu_{\beta}(X_{i}) \} - \frac{R_{i} - \pi(Y_{i}, X_{1i}; \hat{\psi})}{\pi(Y_{i}, X_{1i}; \hat{\psi})} L(Y_{i}, X_{1i}) \right] = 0,$$

with
$$L^{\star}(Y, X_1) = \mathbb{E}[X^*\{Y - \mu_{\beta}(X)\} \mid Y, X_1].$$

What we skip in Ch. 10 (for time)

- Detailed development for *monotone coarsening* and for *censoring* (survival)—we'll pick up the tools where needed in Ch. 11.
- Nonmonotone coarsening exists but is computationally heavy (iterative projections, integral operators).

Pointer

Keep the operators L and M in mind; they will be our bridge to Chapter 11.

10.5 Improving Efficiency when

Coarsening is Nonmonotone

Generalization idea: operators L and M (you'll need this)

Definition 4 and 5

• Define two linear operators $\mathcal{L}:\mathcal{H}^F\to\mathcal{H}$ and $\mathcal{M}:\mathcal{H}^F\to\mathcal{H}^F$

$$\mathcal{L}{h^F} = \mathbb{E}[h^F(Z) \mid C, G_C(Z)], \qquad \mathcal{M}{h^F} = \mathbb{E}[\mathcal{L}{h^F} \mid Z].$$

where h^F is an arbitrary element in \mathcal{H}^F .

$$L\{h_F(\cdot)\} = \sum_{r=1}^{\infty} I(C=r) \mathbb{E}\{h_F(Z) \mid G_r(Z)\},$$

and

$$M\{h_F(\cdot)\} = \sum_{r=1}^{\infty} \#\{r, G_r(Z)\} \mathbb{E}\{h_F(Z) \mid G_r(Z)\}.$$

$$\left[\left. rac{\mathbf{1}(C = \infty) h_F(Z)}{\pi(\infty, Z)} \right| \Lambda_2
ight]$$

Theorem 10.6

- Inverse operator \mathcal{M}^{-1} exists and is uniquely defined.
- Moreover, the projection is given by

$$\Pi\left[\frac{\mathbf{1}(C=\infty)h_F(Z)}{\pi(\infty,Z)}\,\middle|\,\Lambda_2\right] = \frac{\infty(C=\infty)h_F(Z)}{\pi(\infty,Z)} - \mathcal{L}[\mathcal{M}^{-1}\{h_F(\cdot)\}],$$

- By Definition 1, $\mathcal{L}[\mathcal{M}^{-1}\{\varphi^F(Z)\}] = \mathcal{J}\{\varphi^F(Z)\}.$
- Therefore, DR linear space is written by $\mathcal{J}(\Lambda^{F\perp}) = \mathcal{L}[\mathcal{M}^{-1}\{\Lambda^{F\perp}\}].$

Proof sketch for the uniqueness of \mathcal{M}^{-1}

• $I - \mathcal{M}$ is a contraction mapping

$$\Leftrightarrow \forall h^F \in \mathcal{H}^F, 0 \le \exists L < 1, ||(I - \mathcal{M})h^F|| \le L||h^F||$$

• Existence of \mathcal{M}^{-1} : $\sum_{k=0}^{\infty} (I - \mathcal{M})^k$ (Completeness of linear operator space)

$$\therefore \sum_{k=0}^{n} (I - \mathcal{M})^k \circ \mathcal{M} = I - (I - \mathcal{M})^{n+1} \to I$$
 (as $n \to \infty$)

• Uniqueness of \mathcal{M}^{-1} : $\mathcal{M}^{-1} = \mathcal{M}^{-1}(\mathcal{M} \circ \mathcal{M}'^{-1}) = (\mathcal{M}^{-1} \circ \mathcal{M})\mathcal{M}'^{-1} = \mathcal{M}'^{-1}$

Constructing Strategy

• we only focus on the operators $\mathcal{L}, \mathcal{M}^{-1}$ to estimate β .

$$\sum_{i=1}^{n} \mathcal{L}_i \big[\mathcal{M}_i^{-1} \{ m(Z_i, \beta) \} \big] = 0.$$

- \mathcal{L} : posit model ξ for conditional probability of Z given $G_r(Z) \to \mathcal{L}(\cdot, \xi)$
- \mathcal{M}^{-1} : ψ for coarsening probability, posit model ξ (same above) $\to \mathcal{M}^{-1}(\cdot, \psi, \xi)$
- To construct β , after estimating ψ for $\hat{\psi_n}$, and ξ for $\hat{\xi_n^*}$, solve the equation

$$\sum_{i=1}^{n} \mathcal{L}_{i} \left[\mathcal{M}_{i}^{-1} \{ m(Z_{i}, \beta), \, \hat{\psi}_{n}, \, \hat{\xi}_{n}^{*} \}, \, \hat{\xi}_{n}^{*} \right] = 0$$

Equivalence of $\mathcal{L} \circ \mathcal{M}^{-1}$ and AIPWCC

Theorem 10.7 - (i)

• Let $d^F(Z, \beta, \psi, \xi) = \mathcal{M}^{-1}\{m(Z, \beta), \psi, \xi\}$, then, the residual can separate

$$\mathcal{L}[\mathcal{M}^{-1}\{m(Z,\beta),\psi,\xi\},\xi] = \mathcal{L}\{d_F(Z,\beta,\psi,\xi),\xi\}$$

$$= \underbrace{\frac{I(C=\infty)\,m(Z,\beta)}{\pi(\infty,Z,\psi)}}_{\text{IPWCC space}} + \underbrace{L_2^*\{C,G_C(Z),\beta,\psi,\xi\}}_{\text{Augmentation space}}.$$

• This means the solution to this estimating equation is an AIPWCC estimator

$$\sum_{i=1}^{n} \frac{I(C_i = \infty) m(Z_i, \beta)}{\varpi(\infty, Z_i, \hat{\psi}_n)} + L_2^* \{ C_i, G_{C_i}(Z_i), \beta, \hat{\psi}_n, \hat{\xi}_n^* \} = 0.$$

The part of augmentation space

Theorem 10.7 - (ii)

• The element of the augmentation space is written by

$$L_{2}^{*}\{C, G_{C}(Z), \beta, \psi, \xi\} =$$

$$-\frac{I(C = \infty)}{\pi(\infty, Z, \psi)} \left(\sum_{r \neq \infty} \pi(r, G_{r}(Z), \psi) \mathbb{E}[d_{F}(Z, \beta, \psi, \xi) \mid G_{r}(Z), \xi] \right)$$

$$+ \sum_{r \neq \infty} I(C = r) \mathbb{E}[d_{F}(Z, \beta, \psi, \xi) \mid G_{r}(Z), \xi]$$

• Let $L_{2r}\{G_r(Z)\} = -\mathbb{E}[d_F(Z,\beta,\psi,\xi) \mid G_r(Z),\xi]$, we can obtain the same representation as a typical element of Λ_2 . (see (7.37))

Construct \mathcal{M}^{-1} and \mathcal{L}

• \mathcal{M}^{-1} is represented by infinite series, so be constructed by successive approximation.

$$d_{(j)}^F(Z,\beta,\psi,\xi) = \hat{\mathcal{M}}^{-1}\{m(Z,\beta),\psi,\xi\}$$

- By construction, $L_2^*\{C, G_C(Z), \beta, \psi, \xi\} \in \Lambda_2$ in any cases.
- This means that when ψ_0 (coarsening probability model) is correctly specified,

$$\frac{I(C = \infty) m(Z, \beta_0)}{\varpi(\infty, Z, \psi_0)} + L_{2(j)}^* \{ C, G_C(Z), \beta_0, \psi_0, \xi^* \} \in \Lambda^{\perp}$$

• Hence, we can obtain an AIPWCC estimator by solving

$$\sum_{i=1}^{n} \frac{I(C_i = \infty) m(Z_i, \beta)}{\varpi(\infty, Z_i, \hat{\psi}_n)} + L_{2(j)}^* \{ C_i, G_{C_i}(Z_i), \beta, \hat{\psi}_n, \hat{\xi}_n^* \} = 0.$$

• The estimator is RAL (i.e. consistent and asymptotically normal)

Double Robustness

- In addition to correct specification of ψ , the posit model $p_Z^*(z,\xi)$ is correctly specified, its influence function is efficient. (double-robustness)
- Also, this AIPWCC estimator is consistent and asymptotically normal even if ψ is misspecified. (Actually, we do not have to consider this pattern thanks to CAR)
- Recall this two probabilistic model
 - posit model $p_Z^*(z,\xi)$; estimate $\hat{\xi}_n^* \to \xi^*(\neq \xi_0)$ (if misspecified)
 - coarsening model $\pi\{r, G_r(Z), \psi\}$; estimate $\hat{\psi}_n^* \to \psi^*(\neq \psi_0)$ (if misspecified)

Theorem 10.8

- This theorem establishes the **double robustness** property.
- Specifically:

$$\mathbb{E}_{\xi_0,\psi_0} \left[L(M^{-1}\{m(Z,\beta_0),\psi_0,\xi^*\},\xi^*) \right] = 0,$$

and

$$\mathbb{E}_{\xi_0,\psi_0} \left[L(M^{-1}\{m(Z,\beta_0),\psi^*,\xi_0\},\,\xi_0) \right] = 0.$$

• Hence, the estimating equation remains unbiased if either the coarsening model (ψ) or the marginal model of $Z(\xi)$ is correctly specified.

11. Locally Efficient Estimators for

Coarsened-Data Semiparametric

Models

Roadmap for Chapter 11

• For a full-data estimating function $m(Z,\beta) \in \Lambda^{F\perp}$, applying \mathcal{J} , we obtain an observed-data estimating function.

$$\sum_{i=1}^{n} \left[\frac{I(C_i = \infty) m(Z_i, \beta)}{\varpi(\infty, Z_i, \hat{\psi}_n)} - \Pi\left(\frac{I(C_i = \infty) m(Z_i, \beta)}{\varpi(\infty, Z_i)} \middle| \Lambda_2\right) \right] = 0$$

- For computation, we need to estimate ψ in the former, ξ (posit model) in the latter.
- We propose a locally efficient estimator, which achieves the semiparametric efficiency bound if the posited model $p_Z^*(z,\xi)$ is correct but still be consistent and asymptotically normal and RAL even if misspecified.
- Recall the essential framework : Efficient score → Efficient IF (proportional relationship)

11.1 The Observed-Data Efficient Score

Efficient score: Representation 1 (likelihood-based): theoritical

• Basiccaly, the efficient score is given by

$$\begin{split} S_{\text{eff}}\{C,G_C(Z)\} &= S_{\beta}\{C,G_C(Z)\} - \Pi\big[S_{\beta}\{C,G_C(Z)\} \mid \Lambda\big], \\ \text{where } S_{\beta} &= \mathbb{E}\big[S_{\beta}^F(Z) \mid C,G_C(Z)\big], \text{ and } \Lambda = \Lambda_{\psi} \oplus \Lambda_{\eta} \ \, (\Lambda_{\psi} \perp \Lambda_{\eta}). \\ \Pi\big[S_{\beta}\{C,G_C(Z)\} \mid \Lambda\big] &= \Pi\big[S_{\beta}\{C,G_C(Z)\} \mid \Lambda_{\psi}\big] + \Pi\big[S_{\beta}\{C,G_C(Z)\} \mid \Lambda_{\eta}\big] \\ &= \Pi\big[S_{\beta}\{C,G_C(Z)\} \mid \Lambda_{\eta}\big] \qquad (\because S_{\beta}\{C,G_C(Z)\} \perp \Lambda_2) \end{split}$$

• Recall
$$\Lambda_{\eta} = \{ \mathbb{E}[\alpha^F(Z) \mid C, G_C(Z)] : \alpha^F(Z) \in \Lambda^F \}$$
, there exists $\alpha_{\text{eff}}^F(Z) \in \Lambda^F$,

$$\Pi[S_{\beta}\{C, G_C(Z)\} \mid \Lambda_{\eta}] = \mathbb{E}[\alpha_{\text{eff}}^F(Z) \mid C, G_C(Z)]$$

$$\therefore S_{\text{eff}}\{C, G_C(Z)\} = S_{\beta}\{C, G_C(Z)\} - \Pi[S_{\beta}\{C, G_C(Z)\} \mid \Lambda_{\eta}]$$
$$= E\left[\left\{S_{\beta}^F(Z) - \alpha_{\text{eff}}^F(Z)\right\} \mid C, G_C(Z)\right]$$

Efficient score: Representation 2 (AIPWCC-based): practical

• Since the full-data efficient score $B^F(Z) \in \Lambda^{F\perp}$, we can apply \mathcal{J} .

$$S_{\text{eff}}\{C, G_C(Z)\} = \mathcal{J}\left\{B_F^{\text{eff}}(Z)\right\} = I(C = \infty) \frac{B_F^{\text{eff}}(Z)}{\pi(\infty, Z)} - \Pi\left[I(C = \infty) \frac{B_F^{\text{eff}}(Z)}{\pi(\infty, Z)} \middle| \Lambda_2\right].$$

- Clearly, this element lives in DR linear space $\mathcal{J}(\Lambda^{F\perp})$
- Now, we obtain two equivalent representations about the efficient score

$$\mathbb{E}\left[S_{\beta}^{F}(Z) - \alpha_{\text{eff}}^{F}(Z) \mid C, G_{C}(Z)\right] = \frac{I(C = \infty) B_{\text{eff}}^{F}(Z)}{\varpi(\infty, Z)} - \Pi\left[\frac{I(C = \infty) B_{\text{eff}}^{F}(Z)}{\varpi(\infty, Z)} \mid \Lambda_{2}\right]$$

• For computation, this AIPWCC estimator is far more practical but still be difficult to construct. \rightarrow Efficiency problem boils down to find $B^F_{\mathrm{eff}}(Z)$.

How to derive $B_{\mathrm{eff}}^F(Z)$

Theorem 11.1

• $B^F_{\mathrm{eff}}(Z) \in \Lambda^{F\perp}$ is the unique solution to

$$\Pi \Big[\mathcal{M}^{-1} \{ B^F(Z) \} \ \Big| \ \Lambda^{F\perp} \Big] = S^F_{\text{eff}}(Z),$$

• Thereofore, solving this equation, we obtain $B_{\rm eff}^F(Z)$, then we can construct teh efficient score (Note: This is revisit)

$$S_{\text{eff}}\{C, G_C(Z)\} = \frac{I(C = \infty) B_{\text{eff}}^F(Z)}{\varpi(\infty, Z)} - \Pi \left[\frac{I(C = \infty) B_{\text{eff}}^F(Z)}{\varpi(\infty, Z)} \mid \Lambda_2 \right],$$

Proof sketch of Lemma 11.1: successive approximation

- To construct $B_{\text{eff}}^F(Z)$, define $D_{\text{eff}}^F(Z) = \mathcal{M}^{-1}\{B_{\text{eff}}^F(Z)\}$.
- Then $D_{\text{eff}}^F(Z)$ is the solution to

$$S_{\text{eff}}(Z) = \Pi[h^F(Z) \mid \Lambda^{F\perp}] + \Pi[\mathcal{M}\{h^F(Z)\} \mid \Lambda^F] = (I - \mathcal{Q})\{h^F(Z)\}$$

where
$$\mathcal{Q}\{D_{\text{eff}}^F(Z)\} = \Pi \Big[(I - \mathcal{M})\{D_{\text{eff}}^F(Z)\} \, \Big| \, \Lambda^F \Big]$$

- $\mathcal Q$ is a contraction mapping, so $(I-\mathcal Q)^{-1}$ uniquely exists.
- Finally, we can successively approximate $D^F_{\mathrm{eff}}(Z)=(\sum_{i=0}^\infty \mathcal{Q}^i)S^F_{\mathrm{eff}}(Z)$

Computational focus : \mathcal{M}^{-1}

Theorem 11.2

- Suppose the coarsening mechanism is **monotone**.
- For any $h^F(Z) \in \mathcal{H}^F$, the inverse operator M^{-1} has the closed form

$$M^{-1}\{h^{F}(Z)\} = \frac{h^{F}(Z)}{\varpi(\infty, Z)} - \sum_{r \neq \infty} \frac{\lambda_{r}\{G_{r}(Z)\}}{K_{r}\{G_{r}(Z)\}} \mathbb{E}[h^{F}(Z) \mid G_{r}(Z)],$$

where

$$K_r(Z) = \Pr(C \ge r + 1 \mid Z), \quad \lambda_r\{G_r(Z)\} = \Pr(C = r \mid C \ge r, Z).$$

• Hence, M^{-1} can be computed explicitly in terms of the hazard and survival functions of the coarsening distribution.

Lemma 11.2

• Let $\{D^{(k)}\}$ be defined recursively by

$$D^{(k+1)}(Z) = \Pi((I-M)D^{(k)}(Z) \mid \mathcal{H}^F) + S_{\text{eff}}^F(Z),$$

with $D^{(0)}$ arbitrary.

• Then

$$D^{(k)} \longrightarrow D^F_{\text{eff}} \quad \text{in } \mathcal{H}^F \text{ norm,}$$

and

$$B^{(k)}(Z) = \Pi(MD^{(k)}(Z) \mid \Lambda^{F\perp}) \longrightarrow B_{\text{eff}}^F(Z).$$

• Thus, the successive approximation scheme converges to the efficient element $B_{\text{eff}}^F(Z)$.

11.2 Strategy for Obtaining Improved

Estimators

Estimation scheme

- Consider finding a full-data estimating function $m(Z, \beta)$.
- Firstly, by MLE (or likelihood methods), we estimate $\hat{\psi}_n, \hat{\xi}_n^*$
- Secondly, we calculate full-data efficient score $S_F^{\mathrm{eff}}(Z)$.
- By successive approximation, $\hat{B}_{\text{eff}}^F(Z) = m(Z, beta, \hat{\psi}_n, \hat{\xi}_n^*).$
- Finally, we can estimate observed-data efficient score using

$$S_{\text{eff}}\{C, G_C(Z)\} = \frac{I(C = \infty) B_{\text{eff}}^F(Z)}{\varpi(\infty, Z)} - \Pi \left[\frac{I(C = \infty) B_{\text{eff}}^F(Z)}{\varpi(\infty, Z)} \middle| \Lambda_2 \right]$$

- Now, we focus on the projection $\Pi \left| \frac{I(C=\infty)\,m(Z,\beta)}{\varpi(\infty,Z)} \right| \Lambda_2 \right|$.
 - → In some special coarsening mechanism, this projection is simplify written down.
- In actual implementation, we solve this adaptive estimating equation.

$$\sum_{i=1}^{n} \left(\frac{I(C_i = \infty) m(Z_i, \beta, \hat{\psi}_n, \hat{\xi}_n^*)}{\varpi(\infty, Z_i, \hat{\psi}_n)} - \frac{I(C_i = \infty)}{\varpi(\infty, Z_i, \hat{\psi}_n)} \left[\sum_{r \neq \infty} \varpi\{r, G_r(Z_i), \hat{\psi}_n\} \mathbb{E} \left\{ D^{(j)}(Z, \beta, \hat{\psi}_n, \hat{\xi}_n^*) \middle| G_r(Z_i), \hat{\xi}_n^* \right\} \right] + \sum_{r \neq \infty} I(C_i = r) \mathbb{E} \left\{ D^{(j)}(Z, \beta, \hat{\psi}_n, \hat{\xi}_n^*) \middle| G_r(Z_i), \hat{\xi}_n^* \right\} \right) = 0$$

locally efficient estimator for restricted moment model with monotone coarsening

- Full data: Z=(Y,X), Model: $Y=\mu(X,\beta)+\varepsilon$ with $\mathbb{E}(\varepsilon\mid X)=0$.
- Full-data efficient score: $S^F_{\text{eff}}(Z) = D^\top(X)V^{-1}(X)\varepsilon$, $D = \partial \mu/\partial \beta^\top, V(X) = \text{Var}(Y|X)$.
- Seek $B_F^{\mathrm{eff}}(Z) = A(X)\varepsilon \in \mathcal{F}^{\perp}$ solving

$$\Pi[M^{-1}\{A(X)\varepsilon\} \mid \mathcal{F}^{\perp}] = S_{\text{eff}}^F(Z).$$

• Leads to an integral equation for A(X); exact solution rare; use numerical/approximate $A_{\rm imp}$.

Approximate locally efficient estimator (practice)

- Compute a numerically feasible $A_{imp}(X, \hat{\beta}, \hat{\psi}, \hat{\xi}^*)$.
- Plug into the AIPWCC efficient-score form:

$$\sum_{i=1}^{n} \left[I(C_i = \infty) \frac{A_{\text{imp}}(X_i, \beta, \hat{\psi}, \hat{\xi}^*) \{ Y_i - \mu(X_i, \beta) \}}{\pi(\infty, Y_i, X_i; \hat{\psi})} + L_2\{ C_i, G_{C_i}(Y_i, X_i), \beta, \hat{\psi}, \hat{\xi}^* \} \right] = 0.$$

• Here L_2 is the projection term (closed form under monotone coarsening).

Robustness note

The $A_{\rm imp}$ route targets local efficiency but may be numerically heavy; when it's too hard, fall back to the DR AIPWCC from Ch. 10.

11.3 Concluding Thoughts

Summary

- Adaptive estimation : Specified coarsening model \to using posit model $\xi \to \mathrm{fit}\ \xi_n^*$
- Inverse weighted method balances between simplicity of implementation and relative efficiency.
- AIPWCC estimator is more improved one in double robustness and gaining considerable efficiency at the cost of numerical implementation. (successive approximation)
- Locally efficient estimator aims to find optimal full-data estimating function $B_{\mathrm{eff}}^F(Z)$ as well as optimal augmentation. (difficult to implement)

References

References

- Tsiatis, A. (2006). Semiparametric Theory and Missing Data. Springer (Chs. 10–11).
- A.W. van der Vaart (1998). Asymptotic Statistics. Cambridge University Press.