数据科学家直通车 Phase 2 - Week 3 实战课

By: John

Outline

- PCA and Matrix Factorization
 - o PCA
 - o NMF
- Recommender System
 - Item-item collaborative filtering
 - Matrix Factorization
 - NMF
 - UVD

1. PCA

Location: 1-PCA_and_Matrix_Factorization/PCA.ipynb

- Implement PCA
 - Use sklearn.decomposition.PCA
 - Solve eigen value problem using numpy.linalg
- Determine number of PCs to keep
 - O Percentage of variance explained, e.g. 90%
 - Visualize
- PCA Regression
 - O How to determine best number of PCs for model?
 - Cross-validation error
 - Problems with PCA Regression:
 - Loss of interpretation

Location: 1-PCA_and_Matrix_Factorization/NMF-Demo.ipynb

- Implement NMF
 - Use sklearn.decomposition.NMF
- Implement SVD
 - Use numpy.linalg.svd
- Compare NMF with SVD for dimension reduction
- Interpretation of NMF using concept (fuzzy clustering)
 - The concepts are clusters
 - Q1: What do the concepts (clusters) mean?
 - Q2: To which concept(s) does each user/document belong?

3. Item-Item Collaborative Filter Recommender

Location: 2-Recommender/Item-Item_CF_Recommender.ipynb

Item-Item Collaborative Filter Recommender

- Convert raw data to utility matrix
 - Use Pandas pivot table
 - Use scipy.sparse.lil_matrix
- Perform item-item based recommendation

4. Matrix Factorization Based Recommender

Location: 2-Recommender/NMF_UVD_for_recommender.ipynb

Matrix Factorization Based Recommender

- Convert raw data to utility matrix
 - Use scipy.sparse.lil_matrix
- Perform Matrix Factorization Based Recommender
 - Use NMF: sklearn.decomposition.NMF
 - Use UVD: sklearn.decomposition.TruncatedSVD

Summary

- PCA and Matrix Factorization
 - o PCA
 - o NMF
- Recommender System
 - Item-item collaborative filtering
 - O Matrix Factorization
 - NMF
 - UVD