Funktionalanalysys

Patrick Jenny

15. Januar 2020

Inhaltsverzeichnis

1	Hilberträume	2
2	Fourierreihen 2.0.1 Rechenregeln und Beispiele	4 5
3	Integral Transformationen	8
	3.1 Testfunktionenräume und Distributionen	8
	3.1.1 ÜberblicK über Begriffe symmetrisch abgeschlossen und (wesentlich) selbst-	
	adjungiert	10

1 Hilberträume

Definition 1.1. Ein metrischer Raum besteht aus eine Menge X und einer Abb. $d: X, X \to \mathbb{R}$ die jedem geordneten Paar von Elementen aus X eine reele Zahl Zuordnet.

Diese Abb soll $(\forall x, y, z \in X)$ folgende Eigenschaften bessitzen:

- $d(x,y) \ge 0$ (Nichtnegativität)
- $d(x,y) = 0 \Leftrightarrow x = y$ (Eindeutigkeit)
- d(x,y) = d(y,x) (Symetrie)
- $d(x,y) + d(y,z) \ge d(x,z)$ (Dreiecksungleichung)

Definition 1.2. Ein normierter Raum ist ein Vektorraum V über den Köprer $\mathbb{C}(\mathbb{R})$ auf dem eine Abb. $\|\cdot\|:V\to\mathbb{R}$ erklärt ist, die jedem Element $x\in V$ eine reele Zahl $\|x\|$ zuordnet und folgende Eigenschaften besitzt

- $||x|| \ge 0$ (Nichtnegativität)
- $||x|| = 0 \Leftrightarrow x = 0$ (Eindeutigkeit)
- $\|\alpha \cdot x\| = |\alpha| \cdot \|x\|$ (Skalierung)
- $||x + y|| \le ||x|| + ||y||$ (Dreiecksungleichung)

Bemerkung. Jeder normierte Raum ist ein metrischer Raum mit Metrik d(x,y) = ||x - y|| durch die Norm induzierte Metrik.

Definition 1.3. Ein normierter Raum, in dem jede Cauchy-Folge konvergiert (bzgl. Metrik d(x, y) = ||x - y||) ist ein vollständig normierter Raum bzw. Banachraum.

Beispiele

- $\bullet \ \mathbb{R}^n : \|\vec{x}\| = \sqrt{\sum_{i=1}^n x_i^2}$
- $\bullet \ \mathbb{C}^n : \|\vec{z}\| = \sqrt{\sum_{i=1}^n z_i^2}$
- Hilbert'scher Folgenraum ℓ^2

Definition 1.4. Sei V ein Vektorraum über $\mathbb{C}(\mathbb{R})$. Ein Skalarprodukt auf V ist eine Abb. die jedem geordneten Paar von Elementen aus V eindeutig ein, mit $\langle x, y \rangle$ bezeichnetes Element aus $\mathbb{C}(\mathbb{R})$ zuordnet und folgende Eigenschaften erfüllt.

$$\langle \cdot, \cdot \rangle : V \cdot V \to \mathbb{C}$$

 $\forall x, y, z \in V \quad \forall \lambda \in \mathbb{C}(\mathbb{R})$

- $\langle x, y \rangle = \langle y, x \rangle^*$
- $\bullet \ \langle x, \lambda y \rangle = \lambda \langle x, y \rangle$
- $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- $\langle x, x \rangle > \text{für } x \in \mathbb{R}$

 $\bullet \ \langle x, x \rangle = 0 \Leftrightarrow x = 0$

Bemerkung. Skalarprodukt ist 'positiv hermitische Form'

- $\bullet \ \langle \lambda x, y \rangle = \langle y, \lambda x \rangle^* = \lambda^* \langle y, x \rangle^* = \lambda^* \langle x, y \rangle$
- $\langle x + y, z \rangle = \langle z, x + y \rangle^* + \langle x, z \rangle$

2 Fourierreihen

Temperaturverteilung auf Ring

$$a_0 + \sum_{n=0}^{\infty} (a_n \cos(n\omega\phi) + b_n \sin(n\omega\phi))$$

P.L. Dirichlet (1829) \rightarrow mathematischer Beweis

Zerlegung einer periodischen Funktion nach diskreten Teilfrequenzen

- Fourieranalyse
- Fouriersynthese

Periodische Funktion mit Periodenlänge ${\cal L}$

Abb. 1: Periodische Funktion mit Periodenlänge L

Definition 2.1. Eine Funktion $f: \mathbb{R} \to \mathbb{R}(\mathbb{C})$ wird periodischen mit Periode L, L > 0, genannt wenn:

$$f(x+L) = f(x) \quad \forall x \in \mathbb{R}$$

Bemerkung. Periodiesche Funktion mit Periode L ist eindeutig auf ganz \mathbb{R} fesgelegt, wenn man sie auf einem beliebiges Intervall der Länge L, [a, a + L) kennt. Standardvorgabe:

$$[0,L)$$
 oder $\left[-\frac{L}{2},\frac{L}{2}\right)$

Bemerkung. f(x) periodisch mit Periode L

$$\Rightarrow \int_{-\frac{L}{2}}^{\frac{L}{2}} dx f(x) = \int_{a-\frac{L}{2}}^{a+\frac{L}{2}} dx f(x)$$

Betrachte Funktion $f: \mathbb{R} \to \mathbb{R}(\mathbb{C})$ mit

- (i) periodisch mit Periode L, d.h. $f(x+L) = f(x) \quad \forall x \in \mathbb{R}$
- (ii) Lebesque-integrierbar auf dem Periodizitätsintervall, dh $f \in L^1(-\frac{L}{2}, \frac{L}{2})$ (schwächer als quadratintegrierbar)

Betrachte Funktionen der Einfachheit halber für $L=2\pi$ Die ∞ -trigometrische Reihe

$$FR(f)(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)) \quad \text{mit}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} dx f(x) \cos(nx) \quad n \ge 0 \quad n \in \mathbb{N}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} dx f(x) \sin(nx) \quad n > 0 \quad n \in \mathbb{N}$$

heißt Fourierreihe der Funktion f mit den Fourierkoeffizienten a_n und b_n .

Konvergenz der Partialsummen

$$FR(f)(x) = \frac{1}{2}a_0 + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx))$$

muss beachtet werden.

Bemerkung. Wenn $f \in L^1(-\pi, \pi)$, dann stellt Fourierreihe eine Entwicklung nach der OGB $\{1, \sin(nx), \cos(nx); n \in \mathbb{N}\}$ auf $\sqrt{2}$ normiert $\Rightarrow \frac{1}{2}$ bei a_0 bzgl. des Skalarprodukts

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} dx \overline{f(x)} g(x)$$

dar.

 $\Rightarrow FR(f)$ konvergiert in $L^2\text{-Norm}$ (Konvergenz im Mittel)

$$\lim_{n \to \infty} \|f - FR_N(t)\|_2 = 0$$

Satz 2.2. Parsewal I

$$||f||^2 = \frac{1}{2}|a_0|^2 + \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2)$$

2.0.1 Rechenregeln und Beispiele

(i) Allgemeines Periodizitätsintervall (a, b)

$$FR(f)(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nx}{b-a}\right) + b_n \sin\left(\frac{2\pi nx}{b-a}\right) \right)$$
$$a_n = \frac{2}{b-a} \int_a^b dx f(x) \cos\left(\frac{2\pi nx}{b-a}\right) \quad n \ge 0$$
$$b_n = \frac{2}{b-a} \int_a^b dx f(x) \sin\left(\frac{2\pi nx}{b-a}\right) \quad n > 0$$

- (ii) Integrale über ein symetrisches Integrationsintervall $\left(-\frac{L}{2},\frac{L}{2}\right)$ um Null verschwinden für ungerade Integranden:
 - f(x) ungerade $\Leftrightarrow f(x) = -f(-x)$

$$\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} dx \underbrace{\int_{ungerade}^{L} \underbrace{\cos\left(\frac{2\pi}{L}nx\right)}_{gerade}}_{ungerade} = 0 \quad \cos()\text{-Terme verschwinden}$$

• f(x) gerade $\Leftrightarrow f(x) = f(-x)$

$$\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} dx \underbrace{\int_{erade}^{L} \frac{\sin\left(\frac{2\pi}{L}nx\right)}{\sup_{ungerade}}}_{ungerade} = 0 \quad \sin()\text{-Terme verschwinden}$$

(iii) Integrale über ein Vielfaches der Periode von sin- oder cos-Funktion verschwinden

$$\int_{a}^{a+k\frac{L}{n}} \sin\left(\frac{2\pi}{L}nx\right) dx = \int_{a}^{a+k\frac{L}{n}} \cos\left(\frac{2\pi}{L}nx\right) dx = 0 \quad k \neq 0 \quad n \neq 0$$

(iv) Linearität der Fourierreihe

$$FR(f+g)(x) = FR(f)(x) + FR(g)(x)$$

 $FR(\alpha \cdot f)(x) = \alpha \cdot FR(f)(x)$

Beispiel 2.3. Sägezahnfunktion

$$f(x) = x$$
 $x \in (-\pi, \pi)$ Periode: 2π

$$a_{n\geq 0} = \frac{1}{\pi} \int_{-\pi}^{\pi} dx x \cos(nx) = 0$$

Satz 2.4. Ist eine periodische Funktion f, die auf dem Periodizitätsintervall $\left[-\frac{L}{2}, \frac{L}{2}\right]$ stückweise stetig diff-bar

Bemerkung. Konvergiert $\frac{d}{dx}FR(f)(x)$ gleichmäßig \Rightarrow Grenzfunktion ist stetige Funktion die auf $[-\frac{L}{2},\frac{L}{2}]$ mit f'(x) übereinstimmt

Satz 2.5. f(x) stückweise diff-bare Funktion auf $[-\frac{L}{2}, \frac{L}{2}]$ mit Fourierreihe FR(f)(x), wobei $a_0 = 0$ und Stammfunktion F(x). Dann gilt:

$$FR(f)(x) = \int dx FR(f)(x)$$

3 Integral Transformationen

 $f \in L^1[-\frac{L}{2}, \frac{L}{2}]$ lässt sich durch FR darstellen. Was passiert mit FR, wenn $L \to \infty$?

3.1 Testfunktionenräume und Distributionen

Definition 3.1. V VR über \mathbb{K} . Ein Funktional F ist eine Abbildung:

$$F:V\to\mathbb{K}$$

$$\phi \in V \mapsto F(\phi) = \alpha \in \mathbb{K}$$

Ein lineares Funktional F erfüllt die Linearitätsbedingung

$$F(\alpha \phi + \beta \psi) = \alpha F(\phi) + \beta F(\psi) \quad \phi, \psi \in V \quad \alpha, \beta \in \mathbb{K}$$

Die Menge aller linerarer Funktionale auf V

$$V^* = \{F | F : V \to \mathbb{K} \mid linear\}$$

bildet selbst bzgl. der ppunktweisen Äddition und Multiplikation mit einem Skalar einen VR, den algebraischen Dualraum von V.

$$(F+G)(\phi) = F(\phi) + G(\phi) \quad \forall \phi \in V$$

$$(\alpha F)(\phi) = \alpha(F)(\phi) \quad \forall \alpha \in \mathbb{K} \quad \forall \phi \in V$$

Definition 3.2. Der Raum der beliebig oft stetig diff-baren (komplex- oder reellwertigen) Funktionen mit kompakten Trägern ist definiert als

$$C_0^\infty(\mathbb{R}^n) := \{ f: \mathbb{R}^n \to \mathbb{C}(\mathbb{R}) | f \in C^\infty(\mathbb{R}^n) \text{ und } f(\vec{x}) = 0 \text{ für } \vec{x} \in \mathbb{R}^n \setminus \Omega \text{ mit } \Omega \text{ kompakt} \}$$

 $(\Omega \subset \mathbb{R}^n \text{ kompakt } \Rightarrow \Omega \text{ abgeschlossen und beschränkt})$

Bsp:
$$\phi = \begin{cases} e^{\frac{1}{x^2 - 1}} & |x| < 1 \\ 0 & |x| > 1 \end{cases} \in C_0^{\infty}$$

Definition 3.3. Konvergenz in $C_0^{\infty}(\mathbb{R}^n)$

Eine Funktionenfolge $(f_k)_{k\in\mathbb{N}}\subset C_0^\infty(\mathbb{R}^n)$ konvergiert gegen $f\in C_0^\infty(\mathbb{R}^n)$

$$\Leftrightarrow \lim_{k \to \infty} \|D^{\alpha} f_k - D^{\alpha} f\|_{\Omega, \infty} = 0 \quad \forall \alpha \in \mathbb{N}^n \quad \forall \Omega \in \mathbb{R}^n \text{ kompakt}$$

$$\rightarrow \max_{\vec{x} \in \Omega} |D^{\alpha} f_k - D^{\alpha} f|$$

Beispiel 3.4. (Ortsoperator in der Quantenmechanik)

 $\mathcal{H} = L^2(\mathbb{R})$ und $\hat{Q} = (D, Q)$ definiert durch

$$(Qf)(x) = xf(x)$$

$$D(\hat{Q}=C_0^\infty(\mathbb{R})=\{f|f \text{ ist } C^\infty \text{ mit kompaktem Träger}\}$$

 \hat{Q} ist symmetrisch (aber nicht selbstadj.)

Beispiel 3.5. $\mathcal{H} = L^2(\mathbb{R})$, $\hat{A} = (D, A)$

$$(Af)(x) = x^{-\alpha}f(x)$$
 $\alpha > 0$, fest

$$D = \{ f \in L^2(\mathbb{R}) | f = 0 \text{ in Umgebung von } x = 0 \}$$

$$\Rightarrow D^* = \{g \in L^2(\mathbb{R}) | x^{-\alpha} \cdot g \in L^2(\mathbb{R})\} \supset D$$

und
$$\hat{A} = (D^*, A^{\dagger}) = (D^*, A) \underbrace{\hspace{1cm}}_{Erweiterung} \hat{A} \Rightarrow \hat{A} \text{ ist symm.}$$

$$\langle g,Af\rangle = \int_{-\infty}^{\infty} dx \, g^*(x)(x^{-\alpha}f(x)) = \int_{-\infty}^{\infty} dx \, (x^{-\alpha}g)^*(x)f(x)) = \int_{-\infty}^{\infty} dx (A^{\dagger}g)(x)f(x)$$

Definition 3.6. Ein linearer Operator $\hat{A} = (D, A)$ in \mathcal{H} heißt

- (a) abgeschlossen, geschrieben als $\overline{\hat{A}} = \hat{A}$, genau dann, wenn für jede Folge $\{x_n\}_{n\in\mathbb{N}} \subset D$, für die $\lim_{n\to\infty} ||x_n - x||_{\mathcal{H}} = 0$ und $\lim_{n\to\infty} ||Ax_n - y||_{\mathcal{H}} = 0$ (mit $x, y \in \mathbb{N} \to \mathbb{N}$) gilt, dass $x \in D \text{ und } Ax = y$
- (b) abschließbar geanu dann, wenn \hat{A} eine abgeschlossene Erweiterung $\hat{B}=\overline{\hat{B}}\supset\hat{A}$ besitzt

Bemerkung. Wesentlich (nur bei Abgeschlossenheit gefordert)

$$A(\lim_{n\to\infty} x_n) = \lim_{n\to\infty} (Ax_n)$$

nur für jene Cauchyfolgen $\{x_n\}_{n\in\mathbb{N}}$ gilt, für die auch $\{Ax_n\}_{n\in\mathbb{N}}$ in \mathcal{H} konvergiert.

Beispiel 3.7. $L^2[0;1]$

$$\hat{A}_{i} = (D_{i}, A)$$
 $j = 1, 2$ $(Af)(x) = x^{-\alpha}f(x)$ $\alpha > 0$

$$D_1 = \{ f \in L^2[0;1] \mid f = 0 \text{ in Umgebung von } x = 0 \}$$

$$D_2 = \{ f \in L^2[0;1] \mid x^{-\alpha}f \in L^2[0;1] \}$$

$$D_1 \subset D_2$$
 und $\overline{D_1} = \overline{D_2} = L^2[0;1]$

 \hat{A}_1 ist nicht abgeschlossen: $f(x) = x^{\alpha} \notin D_1$

$$f_n(x) = \begin{cases} 1 & \frac{1}{n} < x \le 1\\ 0 & \text{sonst} \end{cases} \in D_1$$

$$(Af_n)(x) = \begin{cases} 1 & \frac{1}{n} < x \le 1 \\ 0 & \text{sonst} \end{cases} \in L^2[0; 1]$$

$$\lim_{n\to\infty} f_n = f \in \mathcal{H}$$

$$\lim_{n\to\infty} f_n = f \quad \in \mathcal{H}$$
$$f \quad \notin D_1 \Rightarrow \hat{A} \text{ nicht abgeschlossen}$$

$$\lim_{n\to\infty} Af_n = 1 \quad \in \mathcal{H}$$

\hat{A}_2 ist abgeschlossen:

$$\{g_n\}_{n\in\mathbb{N}}\subset D_2$$
 mit

$$\lim_{n \to \infty} g_n = g \in L^2[0; 1] \quad \text{und}$$
$$\lim_{n \to \infty} Ag_n = G \in L^2[0; 1]$$

Z.z.:
$$g \in D_2$$
 und $Ag = G$ Es gilt $D_2 = D_1^* = D(\hat{A}_1^{\dagger})$
 $\forall h \in D_1 : \langle Ah, g \rangle = \langle x^{-\alpha}h, g \rangle = \lim_{n \to \infty} \langle x^{-\alpha}h, g_n \rangle = \lim_{n \to \infty} \langle h, x^{-\alpha}g_n \rangle$
 $= \lim_{n \to \infty} \langle h, Ag_n \rangle = \langle h, G \rangle$
 $\Rightarrow y \in D_1^* = D_2$ und $G = Ag$

Satz 3.8. $\hat{A} = (D, A)$ dicht definiert in \mathcal{H} . Dann gilt:

- (a) $\hat{A} \subseteq \hat{B} \Rightarrow \hat{B}^{\dagger} \subseteq \hat{A}^{\dagger}$
- (b) der zu \hat{A} adjuingierte Operator \hat{A}^{\dagger} ist abgeschlossen: $\overline{\hat{A}^{\dagger}} = \hat{A}^{\dagger}$
- (c) \hat{A} ist genau dann abgeschlossen, wenn $D^* = D(\hat{A}^{\dagger})$ dicht in \mathcal{H} ist. In diesem Fall ist $\overline{\hat{A}} = (\hat{A}^{\dagger})^{\dagger}$

Bemerkung.

- (b) folgt aus Stetigkeit des Skalarprodukts
- Ein selbstadjungierter Operator ist immer abgeschlossen, da $\hat{A} = \hat{A}^{\dagger}$ und in (b) A^{\dagger} abgeschlossen.
- Ein dichtdefinierter Operator in \mathcal{H} heißt wesentlich selbstadjungiert, wenn \hat{A} symmetrisch und $\overline{\hat{A}}$ selbstadjungiert.

3.1.1 ÜberblicK über Begriffe symmetrisch abgeschlossen und (wesentlich) selbstadjungiert

- \hat{A} symm: $\hat{\underline{A}} \subset \overline{\hat{A}}$ $= (\hat{A}^{\dagger})^{\dagger} \subset \hat{A}^{\dagger}$
- \hat{A} symm. & abgeschl.:
- \hat{A} we sentl. selbstadj:
- \hat{A} selbstadj.:

Hauptproblem für selbstadjungierten Operator: $D=D(\hat{A})=D^*=D(\hat{A}^\dagger)$

Satz 3.9. Für einen symmetrischen Operar \hat{A} in \mathcal{H} sind folgende Aussagen äquivalent:

(a) \hat{A} selbstadjungiert: $\hat{A} = \hat{A}^{\dagger}$

— .	• • •		•	
Lab	elle	nvei	rzeic	hnis

			•
Δhhi	ldungsverz	ലവ	าทเร
ADDI	ldungsverz	CICI	11113