## 練習問題 4-5

温度変化のモデルを,

$$T(t) = T_0 + a\sin(\omega t + \theta) + \varepsilon(t) \tag{1}$$

$$\varepsilon(t) \sim N(0, \sigma^2) \tag{2}$$

として、パラメータ  $T_0$ 、a、 $\omega$ ,  $\theta$ 、 $\sigma^2$  を最尤推定する。ここで、誤差項  $\varepsilon(t)$  が正規分布に従うから、最尤法による解と最小二乗法による解は一致する。よって最小二乗法によってこれらのパラメータを求めることとする。最小二乗法には Python の scipy.optimize.leastsq を用いた。また、それぞれのパラメータの初期値は、元データを概算で読み取り、それぞれ以下のようにした。

$$T_0 = 13,$$
  $a = 3.0$   $\omega = 2\pi/6000,$   $\theta = 0.0$ 

最尤推定の結果は以下のようになった。

表 1: 【練習問題 4-5】 最小二乗法によるパラメータ推定の結果

 $T_0$  (°C) : 12.67 a (°C) : 2.916  $\omega$  (/s) : 0.001059  $\theta$  : -0.1846  $\sigma^2$  : 0.3171



図 1: 【練習問題 4-5】 最尤推定によって求めたモデルのプロット