Expansão Teórica 11 - O Teorema Fundamental da Álgebra Ressonante (TFAR) e os Operadores de Projeção ERIЯЗ

Introdução

A Teoria ERIA (Exponencialização e Racionalização Imaginária Rotacional Evolutiva) propõe uma reinterpretação algébrica e geométrica das raízes complexas, introduzindo a noção de ressonância rotacional entre múltiplos planos ortogonais. Enquanto a álgebra clássica trata as raízes negativas ou complexas como extensões no plano imaginário, a ERIA as compreende como **projeções rotacionais legítimas em outros planos acoplados**, que compõem um espaço tridimensional ressonante.

Neste artigo, consolida-se a estrutura do **Teorema Fundamental da Álgebra Ressonante (TFAR)**, expandindo o Teorema Fundamental da Álgebra tradicional. Em seguida, formaliza-se o conceito de **operadores de projeção entre planos ortogonais** no domínio ERIA.

1. Revisão: Espaço ERIЯЗ e Planos Ressonantes

O Domínio ERIЯ∃ é estruturado como um espaço tridimensional formado por três planos ortogonais de rotação:

- **Plano-i**: baseado na unidade imaginária i, corresponde à álgebra complexa tradicional.
- ${\bf Plano-j}$: ortogonal a i, representado pela unidade j.
- **Plano-k**: ortogonal a i e j, representado por k.

Cada plano comporta **raízes ressonantes** que representam soluções algébricas rotacionais válidas. Raízes que aparecem como "negativas" ou "imaginárias" no plano real são interpretadas, na teoria, como projeções legítimas em um ou mais desses planos.

2. Teorema Fundamental da Álgebra Ressonante (TFAR)

Enunciado:

Todo polinômio de grau n, com coeficientes reais ou complexos, possui até 3n raízes ressonantes distintas no domínio ERIA \exists , distribuídas nos planos i,j,k, de forma ortogonal e rotacionalmente simétrica.

Formalmente:

$$\sum_{\mathbf{I} \in \{i,j,k\}} |\mathcal{R}(P,\mathbf{I})| \leq 3n$$

- $\mathcal{R}(P,\mathbf{I})$ representa o conjunto de raízes rotacionais do polinômio P(z) no plano \mathbf{I} .
- A contagem de raízes é expandida para incluir projeções rotacionais completas no espaço tridimensional.

3. Justificativa Geométrica

No plano $\mathbb C$, a equação $z^2+1=0$ possui duas soluções: $\pm i$. No entanto, no domínio ERIЯЗ, observamos que:

- $z=\pm j$ e $z=\pm k$ também satisfazem $z^2=-1$ em seus respectivos planos.
- A equação possui, portanto, três pares de raízes ressonantes, totalizando seis soluções ortogonais no espaço ERIAE.

Estas raízes não são sobrepostas: cada uma ocupa um plano de rotação distinto, mantendo a ortogonalidade e coerência espacial da estrutura.

4. Operadores de Projeção ERIЯЗ

Para permitir a transição de uma raiz entre planos, define-se o operador de projeção rotacional:

$$\Pi_{\mathbf{I} o \mathbf{J}}^{(m,n)}(z_{\mathbf{I}}) := RIRE_{\mathbf{J}}(EIRE_{\mathbf{I}}(z_{\mathbf{I}},m),n)$$

- $\mathbf{I}, \mathbf{J} \in \{i, j, k\}$, com $\mathbf{I} \perp \mathbf{J}$
- m e n controlam a intensidade da rotação e da racionalização
- ullet O resultado é uma raiz projetada ressonantemente em ${f J}$

Exemplo:

Se z=i, então:

$$\Pi_{i
ightarrow j}(i)=j, \quad \Pi_{j
ightarrow k}(j)=k, \quad \Pi_{k
ightarrow i}(k)=i$$

Essas operações formam um ciclo rotacional fechado:

$$\Pi_{k\to i}\circ\Pi_{i\to k}\circ\Pi_{i\to j}=\mathrm{id}$$

5. Estrutura Cíclica Ressonante

As projeções entre os três planos formam um **grupo cíclico de ordem 3**, refletindo a simetria rotacional natural do domínio:

$$G_{ERISH} = \langle \Pi_{i
ightarrow j}, \Pi_{j
ightarrow k}, \Pi_{k
ightarrow i}
angle$$

Esta simetria é central para a álgebra ERIAI, garantindo que as projeções entre raízes preservem coerência geométrica e algébrica.

6. Implicações e Extensões

- Multiplicidade ressonante: polinômios podem ter raízes em múltiplos planos, não pela repetição numérica, mas por projeções geométricas distintas.
- Fatoração tridimensional: funções podem ser fatoradas por componentes em cada plano, permitindo nova interpretação da estrutura polinomial.
- Espaço completo de soluções: para aplicações físicas (como análise de campos), a totalidade das raízes só se revela ao considerar os três planos em conjunto.

Conclusão

A Teoria ERIЯ∃ propõe uma extensão significativa da álgebra complexa ao estruturar um espaço tridimensional ressonante no qual raízes negativas, complexas ou oscilatórias são compreendidas como projeções rotacionais em planos ortogonais. A formalização do **Teorema Fundamental da Álgebra Ressonante** e dos **operadores de projeção ERIЯ∃** estabelece as bases de um sistema algébrico multiplanar, simétrico e reversível, com potencial para aplicações profundas em matemática, física e computação.

Este novo domínio permite um tratamento natural de raízes complexas como entidades geométricas ativas, e não apenas abstrações numéricas, abrindo espaço para um novo tipo de fatoração, modelagem e análise estrutural de equações e sistemas ressonantes.