=> Canonical Coordinates

Reflection	Rotation
(2,4)	(4,2)
(-x,y)	(-y,x)
(x,-y)	(y,-x)
(-2,-4)	(-y,-x)

Mormalization

* Sorting

* Transpose.

After Normalizing We get

>[00,01,10]

[[00,01,10],[00,01,10],[00,1-1,10],[00,1-1,10][00,01,11],[00,01,11],[00,10,11],[00,10,11]

 \Rightarrow [2H, 34, 33] [[00, 1-1, 10], [00, 1-1, 10], [00, 01, 10], [00, 01, 10] [[00, 10, 11], [00, 10, 11] [00, 01, 11] [00, 01, 11]

Now It we sort the Normalized Value, we get: => [00,01,10] [[00,01,10],[00,01,10],[00,01,11],[00,01,11], [00, 1-1, 10], [00, 1-1, 10], [00, 10, 11] [00, 10, 11]] [[00,01,10],[00,01,10],[00,01,11],[00,01,11],[00,1-1,10] =) [24,34,33] [00,1-1,10],[00,10,11],[00,10,11]] * We can store the entire value in set or we could just use the minimax value & sove it in set * Using min/max value - we optimize the solution because

min or max value makes the program effecient.