enem2019

Questão 175

Uma construtora pretende conectar um reservatório central (R_c) em formato de um cilindro, com raio interno igual a 2 m e altura interna igual a 3,30 m, a quatro reservatórios cilíndricos auxiliares (R_1 , R_2 , R_3 e R_4), os quais possuem raios internos e alturas internas medindo 1,5 m.

As ligações entre o reservatório central e os auxiliares são feitas por canos cilíndricos com 0,10 m de diâmetro interno e 20 m de comprimento, conectados próximos às bases de cada reservatório. Na conexão de cada um desses canos com o reservatório central há registros que liberam ou interrompem o fluxo de água.

No momento em que o reservatório central está cheio e os auxiliares estão vazios, abrem-se os quatro registros e, após algum tempo, as alturas das colunas de água nos reservatórios se igualam, assim que cessa o fluxo de água entre eles, pelo princípio dos vasos comunicantes.

A medida, em metro, das alturas das colunas de água nos reservatórios auxiliares, após cessar o fluxo de água entre eles, é

- **A** 1,44.
- **B** 1,16.
- **©** 1,10.
- **1**,00.
- **3** 0,95.

Questão 176

Para construir uma piscina, cuja área total da superfície interna é igual a 40 m², uma construtora apresentou o seguinte orçamento:

- R\$ 10 000,00 pela elaboração do projeto;
- R\$ 40 000,00 pelos custos fixos;
- R\$ 2 500,00 por metro quadrado para construção da área interna da piscina.

Após a apresentação do orçamento, essa empresa decidiu reduzir o valor de elaboração do projeto em 50%, mas recalculou o valor do metro quadrado para a construção da área interna da piscina, concluindo haver a necessidade de aumentá-lo em 25%. Além disso, a construtora pretende dar um desconto nos custos fixos, de maneira que o novo valor do orçamento seja reduzido em 10% em relação ao total inicial.

O percentual de desconto que a construtora deverá conceder nos custos fixos é de

- **A** 23,3%
- **B** 25,0%
- **©** 50.0%
- **0** 87.5%
- **1**00,0%

Questão 177

Um grupo de engenheiros está projetando um motor cujo esquema de deslocamento vertical do pistão dentro da câmara de combustão está representado na figura.

A função $h(t) = 4 + 4 \operatorname{sen}\left(\frac{\beta t}{2} - \frac{\pi}{2}\right)$ definida para $t \ge 0$

descreve como varia a altura h, medida em centímetro, da parte superior do pistão dentro da câmara de combustão, em função do tempo t, medido em segundo. Nas figuras estão indicadas as alturas do pistão em dois instantes distintos.

O valor do parâmetro β , que é dado por um número inteiro positivo, está relacionado com a velocidade de deslocamento do pistão. Para que o motor tenha uma boa potência, é necessário e suficiente que, em menos de 4 segundos após o início do funcionamento (instante t=0), a altura da base do pistão alcance por três vezes o valor de 6 cm. Para os cálculos, utilize 3 como aproximação para π .

O menor valor inteiro a ser atribuído ao parâmetro β , de forma que o motor a ser construído tenha boa potência, é

- **A** 1.
- **B** 2.
- **Q** 4.
- **①** 5.
- **3** 8.