DEVOIR SURVEILLÉ 4

Exercice 1 -

1. Notons \mathcal{P}_n la proposition " $A^n = \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix}$ ".

Initialisation : Pour n = 0,

$$A^{0} = I_{3}$$
 et $\begin{pmatrix} 2^{0} & 0 & 3^{0} - 2^{0} \\ 0 & 3^{0} & 0 \times 3^{0-1} \\ 0 & 0 & 3^{0} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_{3}.$

Donc \mathcal{P}_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$. Supposons \mathcal{P}_n vraie et montrons que \mathcal{P}_{n+1} est vraie. On a

$$A^{n+1} = A \times A^{n} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} 2^{n} & 0 & 3^{n} - 2^{n} \\ 0 & 3^{n} & n3^{n-1} \\ 0 & 0 & 3^{n} \end{pmatrix} = \begin{pmatrix} 2 \times 2^{n} & 0 & 2(3^{n} - 2^{n}) + 3^{n} \\ 0 & 3 \times 3^{n} & 3 \times n3^{n-1} + 3^{n} \\ 0 & 0 & 3 \times 3^{n} \end{pmatrix}$$
$$= \begin{pmatrix} 2^{n+1} & 0 & 2 \times 3^{n} - 2^{n+1} + 3^{n} \\ 0 & 0 & 3^{n+1} - 2^{n+1} \\ 0 & 0 & 3^{n+1} - 2^{n+1} \\ 0 & 0 & 3^{n+1} \end{pmatrix} = \begin{pmatrix} 2^{n+1} & 0 & 3^{n+1} - 2^{n+1} \\ 0 & 3^{n+1} & (n+1) \times 3^{n} \\ 0 & 0 & 3^{n+1} \end{pmatrix}.$$

donc \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Par principe de récurrence, la proposition \mathcal{P}_n est vraie pour tout n dans \mathbf{N} *i.e.*,

$$\forall n \in \mathbf{N}, \quad A^n = \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix}.$$

- 2. (a) L'instruction manquante est $a=2*a+3\land(i-1)$. Pour calculer le terme a_i , il faut sommer le double du terme précédent $2a^{i-1}$ avec la puissance de 3 correspondant à cet indice : 3^{i-1} . D'où $a=2*a+3\land(i-1)$.
 - (b) On a

$$AX_n = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \\ 3^n \end{pmatrix} = \begin{pmatrix} 2a_n + 3^n \\ 3b_n + 3^n \\ 3^{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ b_{n+1} \\ 3^{n+1} \end{pmatrix} = X_{n+1}.$$

(c)

(d) Notons \mathcal{P}_n la proposition " $X_n = A^n X_0$ ".

Initialisation : Pour n = 0,

$$A^0 X_0 = I_3 X_0 = X_0$$

donc \mathcal{P}_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$. Supposons \mathcal{P}_n vraie et montrons que \mathcal{P}_{n+1} est vraie. On a

$$X_{n+1} = AX_n = A \times A^n X_0 = A^{n+1} X_0$$

donc \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Par principe de récurrence, la proposition \mathcal{P}_n est vraie pour tout n dans \mathbf{N} *i.e.*,

$$X_n = A^n X_0$$
.

(e) On a

$$\begin{pmatrix} a_n \\ b_n \\ 3^n \end{pmatrix} = X_n = A^n X_0 = \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2^{n+1} + 3^n - 2^n \\ n3^{n-1} \\ 3^n \end{pmatrix} = \begin{pmatrix} 2^n + 3^n \\ n3^{n-1} \\ 3^n \end{pmatrix}.$$

Donc on a bien

$$a_n = 2^n + 3^n$$
 et $b_n = n3^{n-1}$.

3. (a) On a

$$PQ = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Comme $PQ = I_3$, on en déduit que la matrice P est inversible et que $P^{-1} = Q = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$.

(b) On a

$$PMP^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 & -2 \\ -1 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 & -1 \\ -1 & 3 & 1 \\ -3 & 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} = A.$$

Donc $PMP^{-1} = A$.

(c) Avant de raisonner par récurrence, il faut montrer que $M = P^{-1}AP$. Il s'agit d'une conséquence directe de la question précédente.

Comme $PMP^{-1} = A$, alors $P^{-1} \times PMP^{-1} \times P = P^{-1}AP$ i.e., $M = P^{-1}AP$ puisque, par définition de l'inverse d'une matrice, $P^{-1}P = PP^{-1} = I_3$.

Notons désormais \mathcal{P}_n la proposition " $M^n = P^{-1}A^nP$ ".

Initialisation: Pour n = 0,

$$M^0 = I_3$$
 et $P^{-1}A^0P = P^{-1}I_3P = P^{-1}P = I_3$

donc \mathcal{P}_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$. Supposons \mathcal{P}_n vraie et montrons que \mathcal{P}_{n+1} est vraie.

On a

$$M^{n+1} = M^n \times M = P^{-1}A^nP \times P^{-1}AP = P^{-1}A^n \times AP = P^{-1}A^{n+1}P.$$

Donc \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Par principe de récurrence, la proposition \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$ *i.e.*.

$$\forall n \in \mathbb{N}, \quad M^n = P^{-1}A^nP.$$

(d) On a

$$\begin{split} M^n &= P^{-1}A^n P = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -2^n & 0 & 2^n - 3^n - 3^n \\ 0 & 3^n & n3^{n-1} \\ -2^n & 0 & 2^n - 3^n \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2^n & 0 & 2^n - 2 \times 3^n \\ 0 & 3^n & n3^{n-1} \\ -2^n & 0 & 2^n - 3^n \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 2 \times 3^n - 2^n & 0 & 2^n + 2^n - 2 \times 3^n \\ -n3^{n-1} & 3^n & n3^{n-1} \\ 3^n - 2^n & 0 & 2^{n+1} - 3^n \end{pmatrix} = \begin{pmatrix} 2 \times 3^n - 2^n & 0 & 2(2^n - 3^n) \\ -n3^{n-1} & 3^n & n3^{n-1} \\ 3^n - 2^n & 0 & 2^{n+1} - 3^n \end{pmatrix}. \end{split}$$

4. (a) D'après la question 2e, on sait que $b_k = k \times 3^{k-1}$ et que $b_{k+1} = (k+1) \times 3^k = k \times 3^k + 3^k$. Ainsi

$$b_{k+1} - b_k - 3^k = k \times 3^k + 3^k - k \times 3^{k-1} - 3^k = k \times (3^k - 3^{k-1}) = k \times (3 \times 3^{k-1} - 3^{k-1})$$
$$= k \times 3^{k-1} \times (3-1) = b_k \times 2 = 2b_k.$$

D'où $2b_k = b_{k+1} - b_k - 3^k$.

(b) On reconnait la somme des n + 1 premiers termes de la suite géométrique de raison 3 et de premier terme 1. Alors

$$\sum_{k=0}^{n} 3^{k} = 1 \times \frac{1 - 3^{n+1}}{1 - 3} = \frac{1}{2} (3^{n+1} - 1).$$

(c) On reconnait une somme téléscopique. Ici, seuls les deux termes extrêmes vont rester. Ainsi

$$\sum_{k=0}^{n} (b_{k+1} - b_k) = \sum_{k=0}^{n} b_{k+1} - \sum_{k=0}^{n} b_k = \sum_{k=1}^{n+1} b_k - \sum_{k=0}^{n} b_k = b_{n+1} - b_0 = b_{n+1}.$$

En effet, tous les termes sont présents dans les deux sommes sauf b_{n+1} qui n'est que dans la première et b_0 que dans la seconde. Et comme $b_0 = 0$, on obtient bien le résultat souhaité.

(d) En assemblant les résultats des questions précédentes, on obtient l'égalité suivante :

$$\sum_{k=0}^{n} k 3^{k-1} = \sum_{k=0}^{n} b_k = \sum_{k=0}^{n} \frac{1}{2} \left(b_{k+1} - b_k - 3^k \right) = \frac{1}{2} \left(\sum_{k=0}^{n} (b_{k+1} - b_k) - \sum_{k=0}^{n} 3^k \right)$$
$$= \frac{1}{2} \left(b_{n+1} - \frac{1}{2} \left(3^{n+1} - 1 \right) \right) = \frac{b_{n+1}}{2} + \frac{1 - 3^{n+1}}{4} = \frac{(n+1)3^n}{2} + \frac{1}{4} - \frac{3^{n+1}}{4}.$$

Exercice 2 -

1. On a $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} 1 + e^x = 1$, donc par quotient, $\lim_{x \to -\infty} f(x) = 0$. On en déduit que la représentation graphique \mathcal{C} de f admet la droite d'équation y = 0 comme asymptote horizontale au voisinage de $-\infty$.

2. (a) On part de $\frac{1}{1+e^{-x}}$ et on multiplie numérateur et dénominateur par e^x :

$$\frac{1}{1+e^{-x}} = \frac{1 \times e^x}{(1+e^{-x}) \times e^x} = \frac{e^x}{e^x + e^0} = \frac{e^x}{1+e^x} = f(x).$$

On a bien montré que $f(x) = \frac{1}{1 + e^{-x}}$.

(b) On a $\lim_{x \to +\infty} -x = -\infty$ et $\lim_{X \to -\infty} e^X = 0$, donc par composition, $\lim_{x \to +\infty} e^{-x} = 0$.

On en déduit que $\lim_{x \to +\infty} \frac{1}{1 + e^{-x}} = \frac{1}{1 - 0} = 1$.

Alors, comme $\lim_{x \to +\infty} f(x) = 1$, on en déduit que la représentation graphique $\mathcal C$ de f ad-

met la droite d'équation y = 1 comme asymptote horizontale au voisinage de $+\infty$.

(a) f est un quotient de la forme $\frac{u}{v}$, avec $u(x) = e^x$ et $v(x) = 1 + e^x$. On a alors $u'(x) = e^x$ et $v'(x) = e^x$, donc

$$f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v(x)^2} = \frac{e^x (1 + e^x) - e^x \times e^x}{(1 + e^x)^2} = \frac{e^x}{(1 + e^x)^2}.$$

(b) Les variations de f sont données par le signe de sa dérivée f'(x). Or ici, pour tout $x \in \mathbf{R}$, $e^x > 0$ et $(1+e^x)^2 > 0$, donc la dérivée est strictement positive sur **R** et on en déduit que la fonction f est strictement croissante sur **R**. D'où le tableau suivan, où $f(0) = \frac{e^0}{1 + \rho^0} = \frac{1}{2}$.

x	$-\infty$	0	+∞
f	0 —	$\frac{1}{2}$	1

(c) On sait que l'équation de la tangente à la courbe $\mathcal C$ en le point d'abscisse 0 a pour équation $y = f'(0) \times (x - 0) + f(0)$. Or $f(0) = \frac{e^0}{1 + e^0} = \frac{1}{2}$ et $f'(0) = \frac{e^0}{(1 + e^0)^2} = \frac{1}{4}$. On en déduit que l'équation de $\mathcal T$ est

$$y = \frac{1}{4}x + \frac{1}{2}.$$

4. On sait que la convexité de f est donnée par le signe de la dérivée seconde f''(x). Comme $f''(x) = \frac{e^x(1 - e^x)}{(1 + e^x)^3}$ et que $\forall x \in \mathbf{R}, e^x > 0$ et $(1 + e^x) > 0$, on en déduit que le signe de f''(x) est donné par le signe de $(1 - e^x)$. Or

$$1 - e^x \geqslant 0 \iff 1 \geqslant e^x \iff 0 \geqslant x$$

donc on en déduit que la fonction f est convexe sur l'intervalle $]-\infty,0[$ puis concave sur l'intervalle $]0, +\infty[$.

Le point de coordonnées $\left(0,\frac{1}{2}\right)$ est point d'inflexion : la tangente en ce point, calculée précédemment, traverse la courbe en ce point.

5.

6. (a) h est de la forme $\ln(u)$, avec $u(x) = 1 + e^x$. On a $u'(x) = e^x$ et donc

$$h'(x) = \frac{u'(x)}{u(x)} = \frac{e^x}{1 + e^x} = f(x).$$

(b) Soit m < 0. D'après la question précédente, h est une primitive de la fonction f. Ainsi

$$\int_{m}^{0} f(x) dx = \left[h(x) \right]_{m}^{0} = h(0) - h(m) = \ln(1 + e^{0}) - \ln(1 + e^{m}) = \ln(2) - \ln(1 + e^{m}).$$

Alors, comme $\lim_{m \to -\infty} e^m = 0$, par composition, $\lim_{m \to -\infty} \ln(1 + e^m) = \ln(1) = 0$.

On en déduit que l'intégrale généralisée $\int_{-\infty}^{0} f(x) dx$ converge et que

$$\int_{-\infty}^{0} f(x) \, \mathrm{d}x = \ln(2).$$

Exercice 3 -

1. Si on a obtenu face, alors le premier tirage s'effectue dans l'urne \mathcal{U}_2 et donc on obtient une boule rouge avec une probabilité $\frac{1}{2}$. Ainsi $P_F(R_1) = \frac{1}{2}$. Au contraire, si on obtient pile, alors le premier tirage s'effectue dans l'urne \mathcal{U}_1 et donc on obtient une boule rouge avec une probabilité 1. Autrement dit, $P_{\overline{F}}(R_1) = 1$. Alors, d'après la formule des probabilités totales, comme $\{F, \overline{F}\}$ est un système complet d'évènements, on a

$$\begin{split} P(R_1) &= P(F \cap R_1) + P(\overline{F} \cap R_1) = P(F) \times P_F(R_1) + P(\overline{F}) \times P_{\overline{F}}(R_1) \\ &= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times 1 = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}. \end{split}$$

2. (a) D'après la formule des probabilités composées, on a

$$P_F(R_1 \cap R_2) = P_F(R_1) \times P_{F \cap R_1}(R_2) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}.$$

De même,

$$P_{\overline{F}}(R_1 \cap R_2) = P_{\overline{F}}(R_1) \times P_{\overline{F} \cap R_1}(R_2) = 1 \times 1 = 1.$$

Alors, en appliquant la formule des probabilités totales, on obtient que la probabilité d'obtenir deux boules est

$$\begin{split} P(R_1 \cap R_2) &= P(F) \times P_F(R_1 \cap R_2) + P(\overline{F}) \times P_{\overline{F}}(R_1 \cap R_2) \\ &= \frac{1}{2} \times \frac{1}{6} + \frac{1}{2} \times 1 = \frac{1}{12} + \frac{1}{2} = \frac{7}{12}. \end{split}$$

(b) On cherche $P_{R_1\cap R_2}(\overline{F})$. D'après la formule des probabilités conditionnelles, on a

$$P_{R_1 \cap R_2}(\overline{F}) = \frac{P(\overline{F} \cap R_1 \cap R_2)}{P(R_1 \cap R_2)} = \frac{\frac{1}{2} \times 1}{\frac{7}{12}} = \frac{1}{2} \times \frac{12}{7} = \frac{6}{7}.$$

3. (a) Si l'on obtient une boule blanche au premier tirage, alors on sait déjà que l'on se trouve dans l'urne \mathcal{U}_2 , donc Y=1. Si au contraire on obtient une boule rouge, on peut tout aussi bien être dans l'urne \mathcal{U}_1 ou \mathcal{U}_2 et il faut donc faire au moins un autre tirage. Si ce deuxième tirage donne une boule blanche, alors encore une fois, on sait que l'on se trouve dans l'urne \mathcal{U}_2 , donc Y=2. Si au contraire, on obtient une boule rouge, alors on

peut encore une fois être dans l'urne \mathcal{U}_1 ou \mathcal{U}_2 . Il faut donc refaire un troisième tirage pour déterminer dans quelle urne l'on se trouve. Au troisième tirage, si on obtient une boule blanche, alors on se trouve dans l'urne \mathcal{U}_2 . Cependant, si on obtient une boule rouge alors on est sûr d'être dans l'urne \mathcal{U}_1 puisque seule l'urne \mathcal{U}_1 contient plus de 2 boules rouges.

Ainsi on a bien $Y(\Omega) = [1;3]$.

(b) Comme expliqué à la question précédente, on a [Y = 1] si et seulement si on a pioché une boule blanche au premier tirage. Ceci n'est possible que si l'on a pioché notre boule dans l'urne \mathcal{U}_2 et donc que l'on a obtenu face avec la pièce. Ainsi on a bien $[Y = 1] = F \cap B_1$.

On a donc, d'après la formule des probabilités conditionnelles,

$$P(Y = 1) = P(F \cap B_1) = P(F) \times P_F(B_1) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}.$$

(c) Par un raisonnement similaire à la question précédente, on a $[Y = 2] = F \cap R_1 \cap B_2$. Alors, d'après la formule des probabilités conditionnelles, on a

$$P(Y=2) = P(F \cap R_1 \cap B_2) = P(F) \times P_F(R_1) \times P_{F \cap R_1}(B_2) = \frac{1}{2} \times \frac{1}{2} \times \frac{2}{3} = \frac{1}{6}.$$

(d) On a

$$P(Y = 3) = 1 - P(Y = 1) - P(Y = 2) = 1 - \frac{1}{4} - \frac{1}{6} = \frac{7}{12}.$$

(e) On a

$$E(Y) = 1 \times P(Y = 1) + 2 \times P(Y = 2) + 3 \times P(Y = 3) = 1 \times \frac{1}{4} + 2 \times \frac{1}{6} + 3 \times \frac{7}{12} = \frac{28}{12} = \frac{7}{3}$$