Enhancing an attack to DSA schemes

M.Adamoudis, K.A. Draziotis and D. Poulakis

8th International Conference on Algebraic Informatics

June 30 – July 4, 2019

Niš, Serbia

presented by M.Adamoudis

Introduction

 Digital Signature Algorithm (DSA) is a public-key signature scheme developed by NSA (the U.S. National Security Agency). It was proposed by NIST (the U.S. National Institute of Standards and Technology) back in 1991 and has become a FIPS 186 (U.S.Federal Information Processing Standard) called DSS (Digital Signature Standard).

- Digital Signature Algorithm (DSA) is a public-key signature scheme developed by NSA (the U.S. National Security Agency). It was proposed by NIST (the U.S. National Institute of Standards and Technology) back in 1991 and has become a FIPS 186 (U.S.Federal Information Processing Standard) called DSS (Digital Signature Standard).
- In 1998, an elliptic curve analogue called Elliptic Curve Digital Signature Algorithm (ECDSA) was proposed and standarized.

• Discrete Logarithm Problem for a group G

Let $G = \langle g \rangle$ be a cyclic (multiplicative) group of order a prime p. Then the Discrete Logarithm Problem (DLP) is defined as follows: given (G, p, g, g^x) for a uniform random $x \leftarrow \mathbb{Z}_p$, find out x.

Introduction

• Discrete Logarithm Problem for a group G

Let $G = \langle g \rangle$ be a cyclic (multiplicative) group of order a prime p. Then the Discrete Logarithm Problem (DLP) is defined as follows: given (G, p, g, g^x) for a uniform random $x \leftarrow \mathbb{Z}_p$, find out x.

ullet For DSA we use $G=\mathbb{Z}_p^*$ and for the Elliptic Curve DSA we use the group $G = E(\mathbf{F})$ for some elliptic curve E defined over a finite group F.

- PARAMETERS OF DSA.
 - 1. (p,q) primes in $\{1024, 2048, 3072\} \times \{160, 224, 256\}$ with q|p-1.
 - 2. g: a generator of the unique prime order g subgroup G of the multiplicative group \mathbb{F}_{n}^{*} .
 - 3. $a \leftarrow \{1, \ldots, q-1\}.$
 - 4. $R = g^a \mod p$.
 - 5. Public key : (p, q, g, R).
 - 6. Private key: a.

Experimental Results

Signing

To sign a message $m \in \{0,1\}^*$, a user perform following these steps

- 1. Publishes a hash function $h:\{0,1\}^* \to \{0,\dots,q-1\}$
- 2. $k \xleftarrow{\$} \{1, \dots, q-1\}$ which is the ephemeral key
- 3. Computes $r = (g^k \mod p) \mod q$ and

$$s = k^{-1}(h(m) + ar) \mod q$$

4. The signature of m is the pair (r, s).

VERIFICATION
 The signature is valid if and only if we have:

$$r = ((g^{s^{-1}h(m)\bmod q}R^{s^{-1}r \bmod q}) \bmod p) \bmod q.$$

• Parameters of ECDSA

Backgound on Lattices

- 1. Let E be an elliptic curve over \mathbb{F}_p
- 2. $P \in E(\mathbb{F}_p)$ with order a prime q of size at least 160 bits and with a|p-1.
- 3. $a \stackrel{\$}{\leftarrow} \{1, \dots, q-1\}.$
- 4. Q = aP.
- 5. Public key : (E, p, q, P, Q).
- 6. Private key: a.

- SIGNING To sign a message $m \in \{0,1\}^*$, follow these steps:
- 1. Publish a hash function $h: \{0,1\}^* \to \{0,\ldots,q-1\}$.

Experimental Results

Experimental Results

Introduction

- SIGNING
 To sign a message $m \in \{0,1\}^*$, follow these steps:
- 1. Publish a hash function $h:\{0,1\}^* \to \{0,\dots,q-1\}$.
- 2. $k \xleftarrow{\$} \{1, \dots, q-1\}$ which is the ephemeral key.

- SIGNING
 To sign a message $m \in \{0,1\}^*$, follow these steps:
- 1. Publish a hash function $h:\{0,1\}^* \to \{0,\dots,q-1\}$.
- 2. $k \xleftarrow{\$} \{1, \dots, q-1\}$ which is the ephemeral key.
- 3. Compute kP = (x, y) (where x and y are regarded as integers between 0 and p 1).

- SIGNING To sign a message $m \in \{0, 1\}^*$, follow these steps:
- 1. Publish a hash function $h: \{0,1\}^* \to \{0,\dots,q-1\}$.
- 2. $k \stackrel{\$}{\leftarrow} \{1, \dots, q-1\}$ which is the ephemeral key.
- 3. Compute kP = (x, y) (where x and y are regarded as integers between 0 and p 1).
- 4. Compute $r = x \mod q$ and

$$s = k^{-1}(h(m) + ar) \bmod q$$

The signature of m is (r, s).

(EC)DSA background

 Verification For the verification procedure we calculate,

$$u_1 = s^{-1}h(m) \mod q$$
, $u_2 = s^{-1}r \mod q$, $u_1P + u_2Q = (x_0, y_0)$.

We accept the signature if and only if $r = x_0 \mod q$.

- (EC)DSA ATTACKS IN DISCRETE LOGARITHM
 - 1. For classic DSA we have subexponential algorithm (Index Calculus method).
 - 2. For ECDSA we have only exponential algorithms (e.g. Pollard Rho, Shank's Algorithm).

• (EC)DSA ATTACKS ON SIGNING EQUATION

$$s = k^{-1}(h(m) + ar) \mod q.$$

• (EC)DSA ATTACKS ON SIGNING EQUATION

$$s = k^{-1}(h(m) + ar) \bmod q.$$

These attacks work for both classic DSA and ECDSA.

• (EC)DSA ATTACKS ON SIGNING EQUATION

$$s = k^{-1}(h(m) + ar) \bmod q.$$

- These attacks work for both classic DSA and ECDSA.
- Attacks on signing equation are based on lattice theory and the goal is
 to solve a linear system of congruences where unknown variables are
 the private key a and the ephemeral keys (or some multiples of them).

• (EC)DSA ATTACKS ON SIGNING EQUATION

$$s = k^{-1}(h(m) + ar) \bmod q.$$

- These attacks work for both classic DSA and ECDSA.
- Attacks on signing equation are based on lattice theory and the goal is to solve a linear system of congruences where unknown variables are the private key a and the ephemeral keys (or some multiples of them).
- To apply these attacks we need some (polynomial) number of signatures (r_i, s_i) .

There are many papers that apply attacks to signing equation using lattice based methods.

- 1. 2001, Howgrave-Graham and Smart, Lattice Attacks on Digital Signature Schemes
- 2. 2002, Blake and Garefalakis, On the security of the digital signature algorithm.
- 3. 2003, Nguyen and Shparlinski, The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces.
- 4. 2013, Liu and Nguyen, Solving BDD by Enumeration: An Update.
- 5. 2013, Draziotis and Poulakis, Lattice attacks on DSA schemes based on Lagrange's algorithm.
- 6. 2014, Faugere, Goyet and Renault, Attacking (EC)DSA Given Only an Implicit Hint, Selected Area of Cryptography.
- 7. 2016. Poulakis. New lattice attacks on DSA schemes.

We shall generalize the results of the following paper, 7. 2016, Poulakis, New lattice attacks on DSA schemes.

Lattices

• Lattices Let $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ linearly independent vectors of \mathbb{R}^m . The set

$$\mathcal{L} = \left\{ \sum_{j=1}^{n} \alpha_{j} \mathbf{b}_{j} : \alpha_{j} \in \mathbb{Z}, 1 \leq j \leq n \right\}$$

is called a *lattice* and the set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a basis of \mathcal{L} .

Lattices

Introduction

Approximate Closest Vector Problem

We define the approximate Closest Vector Problem ($CVP_{\gamma_n}(L)$) as follows: Given a lattice $\mathcal{L} \subset \mathbb{Z}^m$ of rank n and a vector $\mathbf{t} \in \mathbb{R}^m$, find a vector $\mathbf{u} \in \mathcal{L}$ such that, for every $\mathbf{u}' \in \mathcal{L}$ we have:

$$\|\mathbf{u} - \mathbf{t}\| \le \gamma_n \|\mathbf{u}' - \mathbf{t}\|$$
 (for some real number $\gamma_n \ge 1$).

Lattices

Introduction

Approximate Closest Vector Problem

We define the approximate Closest Vector Problem ($CVP_{\gamma_n}(L)$) as follows: Given a lattice $\mathcal{L} \subset \mathbb{Z}^m$ of rank n and a vector $\mathbf{t} \in \mathbb{R}^m$, find a vector $\mathbf{u} \in \mathcal{L}$ such that, for every $\mathbf{u}' \in \mathcal{L}$ we have:

$$\|\mathbf{u} - \mathbf{t}\| \le \gamma_n \|\mathbf{u}' - \mathbf{t}\|$$
 (for some real number $\gamma_n \ge 1$).

 We say that we have a CVP oracle, if we have an efficient probabilistic algorithm that solves CVP_{γ_n} for $\gamma_n = 1$.

Babai's Algorithm

• Is a polynomial bit-operations algorithm that given a lattice and a target vector not in lattice, provides a lattice vector that is *close* to the target vector.

Babai's Algorithm

Introduction

- Is a polynomial bit-operations algorithm that given a lattice and a target vector not in lattice, provides a lattice vector that is *close* to the target vector.
- On input a lattice \mathcal{L} and a vector $\mathbf{t} \in \mathbb{R}^m$ the algorithms provides a lattice vector $\mathbf{x} \in \mathcal{L}$ such that

$$||\mathbf{x} - \mathbf{t}|| \le 2^{n/2} dist(L, \mathbf{t}).$$

• Say we have n messages m_i (i = 1, ..., n) signed with (EC)DSA system and (r_i, s_i) their signatures. So we have the *n* signing equations:

$$s_i = k_i^{-1}(h(m_i) + ar_i) \bmod q$$

where k_i are the ephemeral keys and a is the secret key.

Experimental Results

We choose integers

$$A_i \stackrel{\$}{\leftarrow} \Big(\frac{q^{\frac{i}{n+1}+f_q(n)}}{2}, \frac{q^{\frac{i}{n+1}+f_q(n)}}{1.5}\Big),$$

for a suitable sequence $f_q(n) < 1$ and we choose $C_i = -r_i s_i^{-1} \mod q$, and

$$B_i = -A_i C_i^{-1} s_i^{-1} h(m_i) \mod q.$$

We choose integers

$$A_i \stackrel{\$}{\leftarrow} \Big(\frac{q^{\frac{i}{n+1}+f_q(n)}}{2}, \frac{q^{\frac{i}{n+1}+f_q(n)}}{1.5}\Big),$$

for a suitable sequence $f_q(n) < 1$ and we choose $C_i = -r_i s_i^{-1} \mod q$, and

$$B_i = -A_i C_i^{-1} s_i^{-1} h(m_i) \mod q.$$

Further we set

$$\mathbf{s}=(a,k_1',\ldots,k_n'),$$

where $k_i' = A_1 C_1^{-1} k_i \mod q$ and we call them *derivative ephemeral* keys (these are multiples of the unknown ephemeral keys).

We choose integers

$$A_i \stackrel{\$}{\leftarrow} \Big(\frac{q^{\frac{i}{n+1}+f_q(n)}}{2}, \frac{q^{\frac{i}{n+1}+f_q(n)}}{1.5}\Big),$$

for a suitable sequence $f_q(n) < 1$ and we choose $C_i = -r_i s_i^{-1} \mod q$, and

$$B_i = -A_i C_i^{-1} s_i^{-1} h(m_i) \mod q.$$

Further we set

$$\mathbf{s}=(a,k_1',\ldots,k_n'),$$

where $k'_i = A_1 C_1^{-1} k_i \mod q$ and we call them derivative ephemeral keys (these are multiples of the unknown ephemeral keys).

• After simple manipulations we get that **s** satisfies the $n \times (n+1)$ linear system

$$y_i + A_i x + B_i \equiv 0 \pmod{q}$$
 $(i \equiv 1, \dots, n)$

Attack

Input: A public key (p, q, g, R) of a DSA scheme or a public key (E, p, q, P, Q) of a ECDSA scheme. Further, n signed messages are given.

Output: The secret key a or Fail.

Attack

Introduction

• 1. construct the system

$$y_i + A_i x + B_i \equiv 0 \pmod{q}$$
 $(i = 1, \dots, n)$.

and set
$$\mathbf{b} = (0, B_1, \dots, B_n)$$
.

• 1. construct the system

$$y_i + A_i x + B_i \equiv 0 \pmod{q}$$
 $(i = 1, \dots, n)$.

and set $\mathbf{b} = (0, B_1, \dots, B_n)$.

2. Construct the lattice generated by the rows of the DSA matrix

$$A = egin{bmatrix} -1 & A_1 & A_2 & \dots & A_n \ 0 & q & 0 & \dots & 0 \ 0 & 0 & q & \dots & 0 \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \dots & q \ \end{bmatrix}$$

• 3. Apply LLL on the rows of A, $B \leftarrow LLL(A)$.

- 3. Apply LLL on the rows of A, $B \leftarrow LLL(A)$.
- 4. $\mathbf{s} = (s_1, ..., s_{n+1}) \leftarrow Babai(B, \mathbf{b}).$

- 3. Apply LLL on the rows of A, $B \leftarrow LLL(A)$.
- 4. $\mathbf{s} = (s_1, ..., s_{n+1}) \leftarrow Babai(B, \mathbf{b}).$
- 5. If $g^{s_1} = R$ (respectively $Q = s_1 P$) return s_1 else return fail.

Attack

• The previous attack is based on the following Theorem.

Experimental Results

Attack

- The previous attack is based on the following Theorem.
- Theorem.

lf

$$\|\mathbf{s}\| < \frac{1}{4} q^{\frac{n}{n+1} + f_q(n)}.$$

then, $\mathbf{s} = \mathbf{w} - \mathbf{b}$, where $\mathbf{w} = CVP(B, \mathbf{b})$.

Attack

- The previous attack is based on the following Theorem.
- Theorem.

lf

$$\|\mathbf{s}\| < \frac{1}{4} q^{\frac{n}{n+1} + f_q(n)}.$$

then, $\mathbf{s} = \mathbf{w} - \mathbf{b}$, where $\mathbf{w} = CVP(B, \mathbf{b})$.

 In our attack we used Babai, which behaves as a CVP oracle for moderate dimension.

• We implemented the previous attack.

- We implemented the previous attack.
- Since Babai does not always provide the closest vector and also the integers A_i are chosen randomly, we get a probabilistic attack.

- We implemented the previous attack.
- Since Babai does not always provide the closest vector and also the integers A_i are chosen randomly, we get a probabilistic attack.
- Further, we tested our attack for solutions that does not satisfy the theorem (i.e. for larger keys).

• We consider n = 14 signed messages, secret key with 147— bits (i.e. small enough, comparing with its original length which is 160— bits) and derivative ephemeral keys with binary length 145 bits.

- We consider n = 14 signed messages, secret key with 147 bits (i.e. small enough, comparing with its original length which is 160 bits) and derivative ephemeral keys with binary length 145 bits.
- Then, we managed to find always the secret key.

- We consider n=14 signed messages, secret key with 147— bits (i.e. small enough, comparing with its original length which is 160— bits) and derivative ephemeral keys with binary length 145 bits.
- Then, we managed to find always the secret key.

•	bits:(Skey, Der.Ep.keys)	suc.rate	
	(147, 145)	100%	ĺ

Introduction

• We consider n = 206 signed messages. We generated 100 random DSA systems. For preprocessing (i.e. before we apply Babai) we used BKZ with blocksize 70.

• We consider n = 206 signed messages. We generated 100 random DSA systems. For preprocessing (i.e. before we apply Babai) we used BKZ with blocksize 70.

•	bits:(Skey, Der.Ep.keys)	suc.rate
	(158, 157)	17%
	(158, 155)	100%
	(157, 157)	23.3%
	(157, 156)	100%

Heuristic Improvement of the previous attack

 We can further improve the previous results. The idea is to use another target vector instead of $\mathbf{b} = (0, B_1, \dots, B_n)$. We consider the following vector

$$\mathbf{b}=(\varepsilon,\varepsilon+B_1,\ldots,\varepsilon+B_n),$$

where $\varepsilon = 2^{159} - 2^{157}$.

Experimental Results

• We consider n = 206 messages. We generated 100 random DSA systems, with secret key 160 bits and derivative ephemeral keys with 159 bits.

- We consider n = 206 messages. We generated 100 random DSA systems, with secret key 160 bits and derivative ephemeral keys with 159 bits.
- For preprocessing we used BKZ with blocksize 85. The time execution per example was about 2 minutes in an I3 Intel CPU.

- We consider n = 206 messages. We generated 100 random DSA systems, with secret key 160 bits and derivative ephemeral keys with 159 bits.
- For preprocessing we used BKZ with blocksize 85. The time execution per example was about 2 minutes in an I3 Intel CPU.

•	bits:(Skey, Der.Ep.keys)	suc.rate	
	(160, 159)	62%	ĺ

Heuristic Improvement

- We consider n = 206 messages. We generated 100 random DSA systems, with secret key 160 bits and derivative ephemeral keys with 159 bits.
- For preprocessing we used BKZ with blocksize 85. The time execution per example was about 2 minutes in an I3 Intel CPU.

•	bits:(Skey, Der.Ep.keys)	suc.rate
	(160, 159)	62%

 This result improves, in some sense, the result of Liu and Nguyen, where with 100 signatures and knowing 2 least significant bits of the ephemeral keys, they computed the secret key with success rate 23% and in 4185 seconds on average per instance

