# 4.1 Basic concepts and hydrocarbons

## 4.1.1 Basic concepts of organic chemistry

Definitions

| Term               | Definition                                                                                                                  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Functional group   | A group of atoms responsible for the characteristic reactions of a compound                                                 |  |  |
| Homologous series  | A series of organic compounds having the same functional group but with each successive member differing by CH <sub>2</sub> |  |  |
| Saturated          | All carbon to carbon bonds are single bonds                                                                                 |  |  |
| Unsaturated        | Contain carbon to carbon multiple bonds (C=C or C≡C)                                                                        |  |  |
| Hydrocarbons       | Substances containing carbon and hydrogen atoms only                                                                        |  |  |
| Isomerism          | Compounds with the same molecular formula but different arrangements of atoms in space                                      |  |  |
| Structural isomers | Compounds with the same molecular formula but different structural formulae                                                 |  |  |

- Alkyl group
  - General formula C<sub>n</sub>H<sub>2n+1</sub>
  - Found on side chains of organic molecules
- Types of hydrocarbons
  - Aliphatic
    - A compound containing carbon and hydrogen joined together in straight chains, branched chains or non-aromatic rings
  - Alicyclic
    - o An aliphatic compound arranged in non-aromatic rings with or without side chains
  - Aromatic
    - o A compound containing a benzene ring
- Stem prefix

|   | Number of carbon atoms | Prefix |
|---|------------------------|--------|
|   | 1                      | Meth-  |
|   | 2                      | Eth-   |
|   | 3                      | Prop-  |
|   | 4                      | But-   |
| • | 5                      | Pen-   |
|   | 6                      | Hex-   |
|   | 7                      | Hept-  |
|   | 8                      | Oct-   |
|   | 9                      | Non-   |
|   | 10                     | Dec-   |

- Types of formulae
  - · General formula
    - o The simplest algebraic formula of a member of a homologous series
    - o e.g. for an alkane: C<sub>n</sub>H<sub>2n+2</sub>
  - Structural formula
    - o The minimal detail that shows the arrangement of atoms in a molecule
    - e.g. for butane: CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> or CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub>

- Displayed formula
  - o The relative positioning of atoms and the bonds between them
  - o e.g. for ethanol



- Skeletal formula
  - The simplified organic formula, shown by removing hydrogen atoms from alkyl chains, leaving just a carbon skeleton and associated functional groups
  - o e.g. for butan-2-ol



o Cyclohexane



o Benzene





- Types of covalent bond fission
  - Homolytic fission
    - Each bonding atom receiving one electron from the bonded pair forming 2 radicals
  - Heterolytic fission
    - o One bonding atom receiving both electrons from the bonded pair
    - o The atom that takes both electrons becomes a negative ion
    - o The atom that does not take the electrons becomes a positive ion
    - $\circ$  e.g.  $H_3C-CI \rightarrow H_3C^+ + CI^-$
- Radical
  - A species with an unpaired electron
  - Represented with a dot (•)
  - e.g.  $H_3C-CH_3 \rightarrow H_3C + CH_3$
- Curly arrows
  - Showing the movement of an electron pair
  - Showing either heterolytic fission or formation of a covalent bond



heterolytic fission



Types of reaction

- Addition reaction
  - o Two reactants join together to form one product
- Substitution reaction
  - o An atom or group of atoms is replaced by a different atom or group of atoms
- Elimination reaction
  - o Involves the removal of a small molecule from a larger one
  - One reactant molecule forms two products

### 4.1.2 Alkanes

#### Definitions

|   | Term           | Definition                                                                                                                                                               |  |
|---|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| • | Free radical   | A species with an unpaired electron                                                                                                                                      |  |
|   | Chain reaction | A reaction in which the propagation steps release new radicals that continue the reaction                                                                                |  |
|   | Initiation     | The first stage in a radical reaction in which radicals form when a covalent bond is broken by homolytic fission                                                         |  |
|   | Propagation    | The steps that continue a free radical reaction, in which a radical reacts with a reactant molecule to form a new molecule and another radical, causing a chain reaction |  |
|   | Termination    | The step at the end of a radical substitution when two radicals combine to form a molecule                                                                               |  |

#### · Bonding in alkanes

- Saturated hydrocarbons
- Only carbon and hydrogen atoms joined together by single covalent bonds
- Bond type =  $\sigma$ -bond (sigma bond)
  - o σ-bond = **heads on** overlap of orbitals directly between the bonding atoms
  - One orbital from each bonding atom, each containing one electron
  - o Positioned on a line directly between bonding atoms



- Atoms can rotate freely around the  $\sigma$ -bond
- Shape of alkanes
  - Tetrahedral shape around each carbon atom, bond angle 109.5°
  - Each carbon atom surrounded by 4 electron pairs in four σ-bonds
  - The electron pairs repel each other as far away as possible



- Effect of chain length on boiling points
  - Longer chain length = higher boiling point
  - Increased chain length = greater surface area of contact + more electrons
  - Stronger London forces
  - More energy is required to overcome the London forces
- Effect of branching on boiling points

- More branching = lower boiling point
- More branches = fewer surface area of contact → weaker London forces
- The branches prevent the branched molecules getting as close together as straight-chain molecules → further decrease intermolecular forces
- Less energy is required to overcome the London forces
- Reactivity of alkanes
  - Low reactivity
  - C-C and C-H σ-bonds are strong
  - C-C bonds are non-polar
  - C-H bond can be considered non-polar as the electronegativities of C and H are very similar
- · Combustion of alkanes
  - Complete combustion (sufficient oxygen present)

• Equation: 
$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow x CO_2 + \frac{y}{2} H_2 O$$

- Incomplete combustion (insufficient oxygen present)
  - Hydrogen atom always oxidised to water
  - Combustion of carbon may be incomplete so carbon (soot) or carbon monoxide is formed instead of CO<sub>2</sub>
  - o Carbon monoxide is toxic + colorless and odorless so it is difficult to spot
  - CO combines irreversibly to haemoglobin and replace oxygen so oxygen cannot pass round the body and the person can suffocate
- Alkane is a good source of fuel
  - o Release large amounts of energy when burned
  - o Easy to transport
- Methane and chlorine reaction
  - Equation: R-CH<sub>3</sub> + X<sub>2</sub> → R-CH<sub>2</sub>X + HX
  - Type: free radical substitution
  - Step 1: initiation
    - o The halogen-halogen bond is broken by **homolytic fission** to form 2 free radicals
    - Energy for bond fission is provided by UV radiation
    - $\circ$  e.g.  $Cl_2 \xrightarrow{u.v.} 2Cl \bullet$
  - Step 2: propagation (halogen radical intermediate react with original reactants)
    - One free radical reacts to produce another different free radical
    - o Always in 2 steps
    - First propagation step
      - A halogen radical reacts with a C-H bond in the methane → forming an alkyl radical + a hydrogen halide molecule
      - $Cl \bullet + CH_4 \rightarrow \bullet CH_3 + HCl$
    - Second propagation step
      - Each alkyl radical reacts with another halogen molecule → forming haloalkane + new halogen radical
      - $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl$ •
    - o A halogen radical acts as an catalyst and is recreated
  - Step 3: termination
    - Two free radicals combine and their unpaired electrons pair up to form a covalent bond between the 2 species
    - $Cl \bullet + \bullet Cl \rightarrow Cl_2 / \bullet CH_3 + \bullet CH_3 \rightarrow C_2H_6 / \bullet CH_3 + \bullet Cl \rightarrow CH_3Cl$
    - Both radicals are removed from the reaction mixture so the reaction stops
  - (Same equation for bromine atoms)
- Limitations of radical substitution in synthesis
  - Further substitution
    - The propagation step can continue many times as it is a chain reaction
    - Conditions can be altered to favour the termination step and limit the number of substitutions
  - Substitution at different positions in a carbon chain
    - Longer chain = a mixture of monosubstituted isomers by substitution at different positions of the chain

- o Different chains can also undergo further substitution
- Produces different termination products (more than one possible termination step)

#### 4.1.3 Alkenes

Definitions

| • | Term                    | Definition                                                                                                                                                                                                        |  |
|---|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | Electrophile            | An atom or group of atoms which is attracted to an electron-rich centre of atom, where it accepts a pair of electrons to form a new covalent bond, usually a cation or an atom or molecule with $\delta$ + charge |  |
|   | Electrophilic addition  | An addition reaction in which the first step is attack by an electrophile on a region of high electron density                                                                                                    |  |
|   | Addition polymerisation | Formation of a very long molecular chain, by repeated addition reactions of many unsaturated alkene molecules (monomers)                                                                                          |  |

- Structure of C=C bond
  - Comprised of
    - O A σ-bond: **head on overlap** of orbitals directly between the bonding atoms
    - $\circ$  A  $\pi$ -bond: **sideways overlap** of **adjacent p-orbitals** above and below the bonding carbon atoms
    - $\circ$  The  $\pi$ -bond locks the two carbon atoms in position and prevents them from rotating around the double bond (restrict rotation)



- Trigonal planar shape around each carbon atom in the C=C bond (120° bond angle)
  - o 3 regions of electron density around each carbon atom
  - The 3 regions repel each other as far apart as possible
- $\sigma$  and  $\pi$ -bond difference

|                              | σ-bond                      | $\pi$ -bond                   |
|------------------------------|-----------------------------|-------------------------------|
| Position of electron density | Between bonding atoms       | Above and below bonding atoms |
| Overlap of orbitals          | Head on overlap of orbitals | Sideways overlap of orbitals  |
| Bond enthalpy / strength     | Higher                      | Lower                         |
| Size                         | Larger                      | Smaller                       |

- Stereoisomer
  - Compounds with the same structural formula but with a different arrangement in space
- E/Z isomerism / geometrical isomerism
  - An type of stereoisomerism
  - Different groups attached to each carbon atom of a C=C double bond may be arranged differently in space because of the restricted rotation about the C=C bond
  - Rotation about a double bond is restricted (due to the  $\pi$ -bond) so the groups attached to each carbon atom are fixed relative to each other
- Conditions for E/Z isomerism
  - A C=C double bond
  - Two different groups to be attached to each carbon atom of the double bond
- Cis-trans isomerism
  - A special case of E/Z isomerism
  - One of the attached groups on each carbon atom of the double bond must be the same
  - Same group on same side = cis, same group on different sides = trans

- Identify E/Z isomers by Cahn-Ingold-Prelog (CIP) priority rules
  - Assigning priority
    - Examine the atomic number of the atoms directly attached to the carbon atoms of the double bind
    - Higher atomic number = higher priority
    - o Two same atoms attached to the carbon atom
      - Find the first point of difference
      - Higher atomic number at first point of difference = higher priority
  - The groups of higher priority are on the same side = Z isomer
  - The groups of higher priority are diagonally placed across the double bond = E isomer
- Reactivity of alkenes
  - Much more reactive than alkanes
  - Relative low bond enthalpy of the  $\pi$ -bond so it is broken more readily
    - $\circ$  It is on the outside of the  $\sigma$ -bond so its electrons are more exposed
- Addition reactions of alkanes

|   | Reaction                                         | Condition                                                                                     | Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|--------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Hydrogenation                                    | <ul><li>Nickel catalyst</li><li>423 K (150°C)</li><li>High pressure</li></ul>                 | • Alkene + hydrogen → alkene / R-CH=CH $_2$ + H $_2$ → R-CH $_2$ - CH $_3$ • Type: hydrogenation / addition                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • | Halogenation                                     | • RTP                                                                                         | <ul> <li>Alkene + halogen → dihaloalkane e.g. R-CH=CH<sub>2</sub> + Br<sub>2</sub> → R-CHBr-CH<sub>2</sub>Br</li> <li>Type: electrophilic addition (see below for mechanism)</li> <li>Reaction of alkenes with bromine can be used to test if the organic compound is unsaturated         <ul> <li>Bromine water added dropwise to alkene</li> <li>Bromine adds across the double bond</li> <li>The orange colour of bromine water disappears</li> <li>Added to an saturated compound: no addition reaction so no colour change</li> </ul> </li> </ul> |
|   | Addition with<br>(gaseous)<br>halogen<br>halides | • Room<br>temperature                                                                         | <ul> <li>Alkene + halogen halide → haloalkane e.g. R-CH=CH<sub>2</sub> + HBr → R-CHBr-CH<sub>3</sub></li> <li>Type: electrophilic addition (see below for mechanism)</li> <li>Alkene is a gas: reaction takes place when the two gases are mixed</li> <li>Alkene is a liquid: hydrogen halide bubbled through it</li> <li>Can also react with concentrated hydrochloric or hydrobromic acid</li> <li>* Two possible products</li> </ul>                                                                                                                |
|   | Hydration                                        | <ul> <li>Steam</li> <li>Phosphoric acid<br/>(H<sub>3</sub>PO<sub>4</sub>) catalyst</li> </ul> | <ul> <li>Alkene + H<sub>2</sub>O<sub>(g)</sub> → alcohol</li> <li>Type: hydration</li> <li>R-CH=CH<sub>2</sub> + H<sub>2</sub>O → R-CH(OH)-CH<sub>3</sub></li> <li>* Two possible products</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |

- Electrophilic addition mechanisms
  - Electrophile =  $\delta$ + atom (accepts the  $\pi$ -electrons from the double bond)
  - Electron pair in the  $\pi$ -bond is attracted to the  $\delta$ + atom  $\rightarrow$  double bond breaks
  - A bond forms between the  $\delta$ + atom and a carbon atom from the double bond
  - The bond in the molecule breaks by heterolytic fission, electron pair goes to the  $\delta$  atom
  - An anion and a carbocation (positively charged carbon atom) are formed
  - They react to form the addition product

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{C} \\ \text$$

• Types of carbocations

|   | Туре      | Definition                                                    |
|---|-----------|---------------------------------------------------------------|
|   | Primary   | 1 alkyl group attached to the positively charged carbon atom  |
| • | Secondary | 2 alkyl groups attached to the positively charged carbon atom |
|   | Tertiary  | 3 alkyl groups attached to the positively charged carbon atom |

- Using Markownikoff's rule to predict formation of major organic product
  - For unsymmetrical alkanes
  - The hydrogen attaches itself to the carbon atom with the larger number of hydrogen atoms
  - Stability: tertiary carbocation > secondary carbocation > primary carbocation
  - Major product = halide / OH<sup>-</sup> ion attached to the most stable carbocation
- Addition polymerisation of alkenes
  - Short chain monomers join together to form long chain polymers under high pressure
  - Double bond of the alkene is replaced by single bonds to form a repeating unit + bond with other monomers to form the polymer
  - Addition polymers as the short chains join together to form a single product



- Problems of waste polymers
  - Benefits of cheap oil-derived plastics are counteracted by problems for the environment of landfill
  - They are unreactive so they are non-biodegradable and cannot be broken down by species in nature
  - Non-biodegradable waste polymers can become a threat to wildlife
- Reducing the effect of waste polymers
  - Choose plastic items that are made from polymers that can be recycled
  - Re-use plastic items at many time as possible
  - Try to recycle plastic items
- Ways of processing waste polymers
  - Recycle
    - High cost of collection and re-processing
    - o The different types of polymer have to be separated
  - Combustion to release heat energy for generating electricity
    - Toxic fumes produced from burning halogenated polymers
      - HCl is removed during the combustion of chlorine containing haloalkanes

- CO produced during incomplete combustion
- Can be removed by scrubbing
- o Greenhouse gases can be released which causes global warming
- Organic feedstock
  - o Use the waste for the production of useful organic compounds
  - New technology can convert waste into hydrocarbons
  - Hydrocarbons can then be turned back into polymers
- New types of polymers
  - Biodegradable polymers
    - $\circ\quad Broken \ down \ by \ microorganisms into \ water, CO_2 \ and \ organic \ compounds$
    - o Compostable polymer degrade and leave no visible or toxic residues
    - o e.g. can be used as bin liners for food waste
  - Photodegradable polymers
    - Contain weak bonds that break when they absorb light energy
  - Benefits
    - Conserve fossil fuel reserves
    - o Reduce pollution from disposing polymers