5.2 - The Definite Integral (and review of Riemann sums)

Consider the function on the interval [1, 5]

Ex)
$$f(x) = \frac{1}{x}$$

a) Sketch the graph on the interval.

b) Estimate the area under the graph of the function using the **right endpoints** with two rectangles of equal width. We'll call this R_2 . Is this an overestimation or an underestimation?

rectangle with:
$$\frac{b-a}{n} = \frac{5-1}{2} = 2 = \Delta x$$

rectangle height: function value on the right side of rectangle

$$= 2 \cdot \frac{1}{3} + 2 \cdot \frac{1}{5} = \frac{16}{15}$$

c) Estimate the area under the graph of the function using the **left endpoints** with four rectangles of equal width. We'll call this L_4 . Is this an overestimation or an underestimation?

Width =
$$5-1 = 1 = Ax$$

Height = functions value on left side of the function

$$A = 1 \cdot \begin{bmatrix} 1 + 1 + 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 + 1 \\ 1 \end{bmatrix}$$

$$A = 25 \cdot 5$$

d) Estimate the area under the graph of the function using the **midpoints** with four rectangles of equal width. We'll call this M_4 .

$$A = 1. \left(\frac{f(3/L)}{h} + \frac{f(5/L)}{h} + \frac{f(3/L)}{h} + \frac{f(3/L)}{h} \right)$$

$$= \frac{2}{3} + \frac{2}{5} + \frac{2}{7} + \frac{2}{7}$$

* Instead of using right or left endpoints for the height of our rectangles, we could use the height of the i-th rectangle to be the value of f and any number x_i^* in the i-th subinterval $[x_{i-1}, x_i]$. We call the x_i^* 's **sample points**. A more general expression (using the sample points) for the area is:

$$\left(\overbrace{\lim_{n o \infty} \sum_{i=1}^n f(x_i^*) \; \Delta x}^* \right) = \lim_{n o \infty} [f(x_1^*) \; \Delta x + f(x_2^*) \; \Delta x + \cdots + f(x_n^*) \; \Delta x]$$

Definition of a Definite Integral

If f is a function defined for $a\leqslant x\leqslant b$, we divide the interval [a,b] into n subintervals of equal width $\Delta x=(b-a)/n$. We let $x_0(=a),x_1,x_2,\cdots,x_n(=b)$ be the endpoints of these subintervals and we let x_1^*,x_2^*,\ldots,x_n^* be any **sample points** in these subintervals, so x_i^* lies in the i th subinterval $[x_{i-1},x_i]$. Then the **definite integral of** f from a to b is

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \ \Delta x$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is **integrable** on [a,b].

Ex) For x in $[0, \frac{\pi}{4}]$, write $\lim_{n \to \infty} \sum_{i=1}^n \left(e^{(x_i^*)^2 + 2x_i^*} \tan x_i^*\right) \Delta x$ as a definite integral.

If $f(x) \ge 0$, the Riemann sum $\Sigma f(x_i^*) \Delta x$ is the sum of areas of rectangles.

If $f(x) \ge 0$, the integral $\int_a^b f(x) dx$ is the area under the curve y = f(x) from a to b.

Note: If f takes on both positive and negative values, then the Riemann sum is the sum of the areas of the rectangles that lie above the x-axis and the negatives of the areas of the rectangles that lie below the x-axis.

* A definite integral can be interpreted as a **net area** (a difference of areas):

$$\int_{a}^{b} f(x) \, dx = A_1 - A_2$$

where A_1 is the area of the region above the x-axis and below the graph of f, and A_2 is the area of the region below the x-axis and above the graph of f.

 $\Sigma f(x_i^*) \Delta x$ is an approximation to the net area.

 $\int_{a}^{b} f(x) dx$ is the net area.