Fonctions usuelles

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Fon	nctions trigonométriques réciproques	2
	1.1	Théorème fondamental (admis)	2
	1.2	La fonction Arcsinus	2
		1.2.1 Définition	2
		1.2.2 Propriétés	2
	1.3	La fonction Arccosinus	4
		1.3.1 Définition	4
		1.3.2 Propriétés	4
	1.4	La fonction Arctangente	5
		1.4.1 Définition	5
		1.4.2 Propriétés	5
2	Fon	nctions hyperboliques	6
	2.1	Théorème : fonctions impaires et paires	6
	2.2	Définition des fonctions hyperboliques	
	2.3	Formulaire de trigonométrie hyperbolique	7
	2.4	Étude des fonctions hyperboliques	8
		2.4.1 Sinus hyperbolique	8
		2.4.2 Cosinus hyperbolique	9
		2.4.3 Tangente hyperbolique	9
	0.5		10
	2.5	Fonctions hyperboliques inverses	LU
	2.5	Fonctions hyperboliques inverses	

1 Fonctions trigonométriques réciproques

1.1 Théorème fondamental (admis)

Soit I un intervalle de $\mathbb R$ non nul et $f:I\longrightarrow \mathbb R$ une application continue et strictement monotone. On a alors les résultats suivants :

- (1) J = f(I) est un intervalle de \mathbb{R} dont on sait préciser la forme en fonction de I. En effet, en supposant f strictement croissante (avec des résultats analogues dans le cas où f est strictement décroissante):
 - Si I = [a, b] avec $a, b \in \mathbb{R}$, alors J = [f(a), f(b)].
 - Si I =]a, b] avec $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$, alors $J = \lim_{a \to a} f, f(b)$.
 - Si $I = [a, b[\text{ avec } a \in \mathbb{R} \text{ et } b \in \mathbb{R} \cup \{+\infty\}, \text{ alors } J = \left[f(a), \lim_{b} f \right]$
 - Si I =]a, b[avec $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$, alors $J = \begin{bmatrix} \lim_{a} f, \lim_{b} f \end{bmatrix}$
- (2) $\widetilde{f}: I \longrightarrow J = f(I)$ est bijective et d'application réciproque f^{-1} . De plus f^{-1} est continue et de la même $x \longmapsto f(x)$ stricte monotonie que f. On dit que f induit une bijection de I sur J.
- (3) On suppose que f est dérivable sur I. Soit $x_0 \in I$ et $y_0 = f(x_0) \in J$. Si $f'(x_0) \neq 0$, alors $g = f^{-1}$ est dérivable en y_0 et

$$g'(y_0) = \frac{1}{f'(x_0)}$$

1.2 La fonction Arcsinus

1.2.1 Définition

Soit $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow \mathbb{R}$ continue et strictement croissante. On a donc $f([-\frac{\pi}{2}, \frac{\pi}{2}]) = [-1, 1]$, ainsi on définit $t \longmapsto \sin t$

l'application $\varphi: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1, 1]$ bijective. Par définition, $t \longrightarrow \sin t$

$$\arcsin = \varphi^{-1}$$

1.2.2 Propriétés

Imparité Soit $x \in [-1, 1]$, alors

$$\sin(-\arcsin(x)) = -\sin(\arcsin(x))$$
 car sin est impaire
= $-x$

De plus $-\arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $-x \in [-1, 1]$, donc

$$\sin(-\arcsin(x)) = -x \Leftrightarrow -\arcsin(x) = \arcsin(-x)$$

Composition avec sinus

- Pour $x \in [-1, 1]$, $\sin(\arcsin(x)) = x$.
- Pour $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\arcsin(\sin(x)) = x^a$.
- a. Pour $x \in \mathbb{R}$, $\arcsin(\sin(x))$ n'est pas toujours égal à x! En effet,

$$\arcsin(\sin \pi) = \arcsin 0$$

= 0

Dérivée φ est dérivable sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \varphi'(x) = \cos x$. De plus $\forall x \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[, \varphi'(x) \neq 0$ donc arcsin est dérivable sur $\varphi\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\right) = \left]-1, 1\right[$. Pour tout $x \in \left]-1, 1\right[$, et $y = \sin x$,

$$\arcsin'(y) = \frac{1}{\varphi'(x)}$$

$$= \frac{1}{\cos(\arcsin(x))}$$

Or, pour tout $y \in [-1, 1]$,

$$\sin^2\left(\arcsin\left(y\right)\right) + \cos^2\left(\arcsin\left(y\right)\right) = 1 \quad \Leftrightarrow \quad \cos^2\left(\arcsin\left(y\right)\right) = 1 - y^2 \\ \Leftrightarrow \quad \cos\left(\arcsin\left(y\right)\right) = \sqrt{1 - y^2} \quad \operatorname{car}\arcsin\left(y\right) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Ainsi, pour tout
$$y \in]-1,1[$$
,
$$\arcsin'(y) = \frac{1}{\sqrt{1-y^2}}$$

Tableau de valeurs

x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\arcsin x$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$

Graphe Voir figure 1.

Figure 1 – Graphe des fonctions arcsin et sin

1.3 La fonction Arccosinus

1.3.1 Définition

Soit $f:[0,\pi] \longrightarrow \mathbb{R}$ continue et strictement décroissante. On a donc $f([0,\pi]) = [-1,1]$, ainsi on définit $t \longmapsto \cos t$

l'application $\varphi: [0,\pi] \longrightarrow [-1,1]$ bijective. Par définition,

$$\arccos = \varphi^{-1}$$

1.3.2 Propriétés

Dérivée φ est dérivable sur $[0, \pi]$ donc $\forall x \in [0, \pi], \varphi'(x) = -\sin x$. De plus $\forall x \in]0, \pi[, \varphi'(x) \neq 0$ donc arccos est dérivable sur $\varphi(]0, \pi[) =]-1, 1[$. Pour tout $x \in]-1, 1[$, et $y = \cos x$,

$$\operatorname{arccos}'(y) = \frac{1}{\varphi'(x)}$$

$$= -\frac{1}{\sin(\arccos(y))}$$

Or, pour tout $y \in [-1, 1]$,

$$\sin^2\left(\arccos\left(y\right)\right) + \cos^2\left(\arccos\left(y\right)\right) = 1 \quad \Leftrightarrow \quad \sin^2\left(\arccos\left(y\right)\right) = 1 - y^2 \\ \quad \Leftrightarrow \quad \sin\left(\arccos\left(y\right)\right) = \sqrt{1 - y^2} \quad \operatorname{car}\arccos\left(y\right) \in \left[0, \pi\right]$$

Ainsi, pour tout $y \in]-1,1[$,

$$\arccos'(y) = -\frac{1}{\sqrt{1 - y^2}}$$

Constance de la somme de arcsin et arccos Soit l'application $g: [-1,1] \longrightarrow \mathbb{R}$ continue sur $t \longmapsto \arccos t + \arcsin t$

[-1,1] et dérivable sur]-1,1[. Or

$$g'(t) = \frac{1}{\sqrt{1 - y^2}} - \frac{1}{\sqrt{1 - y^2}} = 0$$

donc g est constante sur]-1,1[donc sur [-1,1] par continuité. De plus

$$g(0) = \arcsin(0) + \arccos(0)$$
$$= \frac{\pi}{2}$$

Ainsi, $\forall t \in [-1, 1]$,

$$\arccos(t) + \arcsin(t) = \frac{\pi}{2}$$

Relation particulière Pour $x \in [-1,1]$, soit $\theta = \arcsin(x) \in [0,\pi]$. Donc $\pi - \theta \in [0,\pi]$ et $\cos(\pi - \theta) = -\cos\theta = -x$. Ainsi,

$$\arccos(-x) = \pi - \arccos(x)$$

Tableau de valeurs

X	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\arccos x$	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

Figure 2 – Graphe des fonction cos et arccos

Graphe Voir figure 2

1.4 La fonction Arctangente

1.4.1 Définition

Soit
$$f: \]-\frac{\pi}{2}, \frac{\pi}{2} [\longrightarrow \mathbb{R}$$
 continue et strictement croissante. Or $\lim_{x \to -\frac{\pi}{2}^+} \tan x = -\infty$ et $\lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty$ donc $t \longmapsto \tan t$
$$f\left(]-\frac{\pi}{2}, \frac{\pi}{2} [\right) = \mathbb{R}, \text{ ainsi on définit l'application } \varphi: \ [-\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow \mathbb{R} \quad \text{bijective. Par définition,}$$

$$t \longrightarrow \tan t$$

$$\arctan = \varphi^{-1}$$

1.4.2 Propriétés

Limites arctan est continue et strictement croissante donc arctan $(]-\infty, +\infty[) =]-\frac{\pi}{2}; \frac{\pi}{2}[$. Or $]-\infty, +\infty[=]\lim_{-\infty} \arctan, \lim_{+\infty} \arctan \Big[$ donc : $-\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$ $-\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}$

Imparité Pour tout $x \in \mathbb{R}$, on a :

$$\tan(-\arctan(x)) = -\tan(\arctan(x))$$
 car tan est impaire

De plus $-\arctan(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $-x \in \mathbb{R}$, donc

$$tan(-\arctan(x)) = -x \Leftrightarrow -\arctan(x) = \arctan(-x)$$

Dérivée f est dérivable sur $]-\frac{\pi}{2}, \frac{\pi}{2}[$ donc $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, $f'(x) = 1 + \tan^2 x$ donc arctan est dérivable sur \mathbb{R} et pour tout $y \in \mathbb{R}$ tel que $y = \tan x$,

$$\arctan'(y) = \frac{1}{f'(\arctan(y))}$$

= $\frac{1}{1 + \tan^2(x)}$

Ainsi,
$$\forall y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[:$$

$$\arctan'(y) = \frac{1}{1+y^2}$$

Somme d'arctangentes $\forall x > 0$,

$$\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$$

En effet ,soit $\varphi(x) = \arctan x + \arctan \frac{1}{x}$ dérivable sur \mathbb{R}_+^* donc

$$\varphi'(x) = \frac{1}{x^2 + 1} - \frac{1}{x^2} \cdot \frac{1}{\frac{1}{x^2} + 1}$$
$$= \frac{1}{x^2 + 1} - \frac{1}{x^2 + 1}$$
$$= 0$$

Donc $\forall x \in \mathbb{R}_{+}^{*}, \varphi'(x) = 0 \text{ donc } \varphi \text{ est une fonction constante. Or}$

$$\varphi(1) = 2 \arctan 1$$
$$= \frac{\pi}{2}$$

Donc $\forall x \in \mathbb{R}_{+}^{*}, \ \varphi(x) = \frac{\pi}{2}.$

Graphe Voir figure 3 page ci-contre.

2 Fonctions hyperboliques

2.1 Théorème : fonctions impaires et paires

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$, alors f s'écrit de manière unique f = g + h avec g, h des applications de \mathbb{R} dans \mathbb{R} telles que g est paire et h est impaire. On a aussi :

- -g est la partie paire de f;
- -h est la partie impaire de f.

Démonstration

Unicité Supposons que f = g + h avec g paire et h impaire, donc $\forall x \in \mathbb{R}, f(x) = g(x) + h(x)$. Alors f(-x) = g(x) - h(x), d'où

$$g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$

Donc g et h sont uniques.

Figure 3 – Graphe des fonctions tan et arctan

Existence Prouvons que g et h existent. Posons donc $\forall x \in \mathbb{R}$,

$$g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$

Alors, $\forall x \in \mathbb{R}$, g(-x) = g(x) et h(-x) = -h(x) donc g est paire et h est impaire. Or g(x) + h(x) = f(x) donc g et h existent bien avec les propriétés susmentionnées.

2.2 Définition des fonctions hyperboliques

- cosh est la partie paire de exp.
- sinh est la partie impaire de exp.

Ainsi, $\forall t \in \mathbb{R}$ on a:

$$\cosh(t) = \frac{e^t + e^{-t}}{2} \quad \text{et} \quad \sinh(x) = \frac{e^t - e^{-t}}{2}$$

De plus,

$$-\exp(t) = \cosh(t) + \sinh(t)$$

$$-\exp(-t) = \cosh(t) - \sinh(t)$$

Pour $x \in \mathbb{R}$, on pose

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

2.3 Formulaire de trigonométrie hyperbolique

On a $\forall t \in \mathbb{R}$,

$$1 = e^{t}e^{-t} \Leftrightarrow \cosh^{2}(t) - \sinh^{2}(t) = 1$$
$$\Leftrightarrow \cosh^{2}(t) = 1 + \sinh^{2}(t) \geqslant 1$$

- Pour $a, b \in \mathbb{R}$,

$$\cosh(a+b) = \frac{1}{2} \left(e^{a+b} + e^{-a-b} \right) \\
= \frac{1}{2} \left(e^a e^b + e^{-a} e^{-b} \right) \\
= \frac{1}{2} \left[\left(\cosh a + \sinh a \right) \left(\cosh b + \sinh b \right) + \left(\cosh a - \sinh a \right) \left(\cosh b - \sinh b \right) \right] \\
= \cosh a \cosh a + \sinh b \sinh b$$

 $\cosh(a - b) = \cosh a \cosh b - \sinh a \sinh b$

 $\sinh(a+b) = \frac{1}{2} \left(e^{a+b} - e^{-a-b} \right)$ $= \frac{1}{2} \left(e^a e^b - e^{-a} e^{-b} \right)$ $= \frac{1}{2} \left[\left(\cosh a + \sinh a \right) \left(\cosh b + \sinh b \right) - \left(\cosh a - \sinh a \right) \left(\cosh b - \sinh b \right) \right]$ $= \cosh a \sinh b + \cosh b \sinh a$

 $\sinh(a - b) = \cosh a \sinh b - \cosh b \sinh a$

 $\cosh (2a) = \cosh^2 a + \sinh^2 a$ $= 1 + 2\sinh^2 a$ $= 2\cosh^2 a - 1$

 $\sinh(2a) = 2\cosh a \sinh a$

2.4 Étude des fonctions hyperboliques

2.4.1 Sinus hyperbolique

Dérivée

sinh est de classe \mathcal{C}^{∞} et de plus

$$\sinh' = \cosh$$

Donc $\forall t \in \mathbb{R}$, $\sinh'(t) \ge 1$.

Limites On a par retour à la définition de la fonction,

$$\lim_{n \to \infty} \sinh = +\infty$$
 et $\lim_{n \to \infty} \sinh = -\infty$

Page 8 Fonctions usuelles Lycée Saint-Louis

a. Vous pourrez faire le reste si ça vous chante.

Tableau de variation

t	$-\infty$	0	$+\infty$
$\sinh'(t)$	+		+
$\sinh(t)$	$-\infty$	0	+∞

On remarque que:

$$- \forall t < 0, \sinh(t) < 0$$

$$-\forall t>0, \sinh(t)>0$$

2.4.2 Cosinus hyperbolique

Dérivée

 \cosh est de classe \mathcal{C}^{∞} et de plus

$$\cosh' = \sinh$$

Limites On a par retour à la définition de la fonction,

$$\lim_{+\infty}\cosh=\lim_{-\infty}\cosh=+\infty$$

Tableau de variations

t	$-\infty$	0		$+\infty$
$\cosh'(t)$	l	0	+	
$\cosh(t)$	+∞	1	/	+∞

On remarque que $\cosh(x) = 1 \Leftrightarrow x = 0$.

2.4.3Tangente hyperbolique

Dérivée

tanh est infiniment dérivable sur \mathbb{R} , et

$$\tanh' = \frac{\cosh^2 - \sinh^2}{\cosh^2} = \frac{1}{\cosh^2}$$

Limites Pour $x \in \mathbb{R}$,

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
$$= \frac{1 - e^{-2x}}{1 + e^{-2x}} \quad (1)$$
$$= \frac{e^{2x} - 1}{e^{2x} + 1} \quad (2)$$

$$- (1) \Rightarrow \lim \tanh = 1$$

$$- (1) \Rightarrow \lim_{+\infty} \tanh = 1$$
$$- (2) \Rightarrow \lim_{-\infty} \tanh = -1$$

Tableau de variations

x	$-\infty$		0		$+\infty$
$\tanh'(x)$		+		+	
$\tanh(x)$	-1	/	0	/	1

Figure 4 – Graphe des fonctions \sinh , \cosh et \tanh

2.5 Fonctions hyperboliques inverses

2.5.1 Sinus hyperbolique inverse

On a vu que sinh est bijective de $\mathbb R$ dans $\mathbb R$. Ainsi, on note

$$\operatorname{argsinh} = \sinh^{-1}$$

De plus on montre en résolvant l'équation $x = \sinh(y)$ que

$$\operatorname{argsinh}(x) = \ln\left(x + \sqrt{1 + x^2}\right)$$

Dérivée sinh est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, sinh' $(x) \neq 0$ donc, après le théorème fondamental, argsinh est dérivable sur \mathbb{R} et pour $y \in \mathbb{R}$,

$$\operatorname{argsinh}'(y) = \frac{1}{\sinh'(\operatorname{argsinh}(y))}$$
$$= \frac{1}{\cosh(\operatorname{argsinh}(y))}$$

Or $\forall y \in \mathbb{R}$,

$$\cosh^2(\operatorname{argsinh}(y)) = 1 + \sinh^2(\operatorname{argsinh}(y))$$

$$= 1 + y^2$$

De plus $\forall t \in \mathbb{R}$, $\cosh(t) > 0$ donc

$$\operatorname{argsinh}'(y) = \frac{1}{\sqrt{1+y^2}}$$

2.5.2 Cosinus hyperbolique inverse

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_-$, alors f est dérivable et $f'(t) = \sinh t \ge 0$. De même $\forall t > 0, \ f'(t) > 0$ donc f est $t \longrightarrow \cosh t$

strictement croissante sur \mathbb{R}_{+}^{*} donc elle établit une bijection \tilde{f} de \mathbb{R}_{+} dans $f(\mathbb{R}_{+}) = \left[f(0), \lim_{t \to \infty} f\right] = [1, +\infty[$. Par définition,

$$\operatorname{argcosh} = \tilde{f}^{-1}$$

Dérivée Ainsi, argcosh : $[1, +\infty[\longrightarrow \mathbb{R}_+ \text{ est aussi continue et strictement croissante. } \tilde{f} \text{ est dérivable sur } \mathbb{R}_+ \text{ et } \forall t \in \mathbb{R}_+^*, \ \tilde{f}(t) > 0 \text{ donc argcosh est dérivable sur } \tilde{f}(\mathbb{R}_+^*) =]1, +\infty[\text{ et } \forall y > 1,$

$$\operatorname{argcosh}'(y) = \frac{1}{\tilde{f}'(\operatorname{argcosh}(y))}$$
$$= \frac{1}{\sinh(\operatorname{argcosh}(y))}$$

Or pour $y \ge 1$,

$$\sinh^2(\operatorname{argcosh}(y)) = \cosh^2(\operatorname{argcosh}(y)) - 1$$

= $y^2 - 1 \ge 0$

Pour $y \geqslant 1$, $\operatorname{argcosh}(y) \geqslant 0$ donc $\sinh(\operatorname{argcosh}(y)) \geqslant 0$ donc $\sinh(\operatorname{argcosh}(y)) = \sqrt{y^2 - 1}$ donc $\forall y > 1$,

$$\operatorname{argcosh}'(y) = \frac{1}{\sqrt{y^2 - 1}}$$

Expression de la fonction Soit $y \ge 1$, pour $x \ge 0$,

$$\begin{split} \cosh x &= y &\Leftrightarrow \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2} = y \\ &\Leftrightarrow \mathrm{e}^{2x} - 2y\mathrm{e}^x + 1 = 0 \\ &\Leftrightarrow \mathrm{e}^x \text{ est racine du polynôme } P\left(X\right) = X^2 - 2yX + 1 \end{split}$$

Or
$$\Delta(P) = 4(y^2 - 1) \ge 0$$
:

- Pour y = 1, $\Delta(P) = 0$ donc l'unique racine de P est 1 donc

$$\cosh x = y \Leftrightarrow e^x = 1$$

$$\Leftrightarrow x = 0$$

- Pour y > 1, $\Delta(P) > 0$ donc P admet pour racine

$$y + \sqrt{y^2 - 1}$$
 et $y - \sqrt{y^2 - 1}$

Or pour tout $x \in \mathbb{R}_+$, $e^x \ge 1$ et on a

$$y - \sqrt{y^2 - 1} < 1 \Leftrightarrow y - 1 < \sqrt{y^2 - 1}$$

 $\Leftrightarrow (y - 1)^2 < y^2 - 1$
 $\Leftrightarrow y > 1$ ce qui est vrai

Donc

$$e^x$$
 est racine de $P \Leftrightarrow e^x = y + \sqrt{y^2 - 1}$
 $\Leftrightarrow x = \ln\left(y + \sqrt{y^2 - 1}\right)$

Pour $y \ge 1$, l'équation f(x) = y admet donc comme unique solution $x = \ln \left(y + \sqrt{y^2 - 1} \right)$.

Or cette unique solution est par définition $\tilde{f}^{-1}(y)$ donc pour y > 1,

$$\operatorname{argcosh}(y) = \ln\left(y + \sqrt{y^2 - 1}\right)$$

Cette expression est a posteriori valable pour y = 1.