13. Zadania

Zadanie 13.1.

Obliczyć długość ścieżki rezystora półprzewodnikowego o rezystancji R = 2 k Ω wykonanego w technice scalonej, jeżeli ścieżka ma szerokość a = 10 μ m, a rezystywność powierzchniowa warstwy oporowej jest równa R_0 = 100 Ω .

Odp. 200 µm

Zadanie 13.2.

Obliczyć rezystywność materiału półprzewodnikowego ρ i rezystywność powierzchniową warstwy oporowej R_0 , jeżeli ścieżka o rezystancji $R=4~k\Omega$ ma wymiary: długość $I=160~\mu m$, szerokość $a=10~\mu m$ i wysokość $h=10~\mu m$.

Odp. $\rho = 40 \cdot 10^{-3} \,\Omega \text{m}, \, R_0 = 250 \,\Omega$

Zadanie 13.3.

Dla termistora NTC typu UUA32J3, dla którego wyznaczono charakterystykę $R_t = f(t)$ oszacować stałe materiałowe A i B.

t	°C	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100
Rt	Ω	75780	39860	21460	12460	7353	4481	2813	1814	1200	811,4	560,3	394,6	283,3	206,7	153,1

Odp. $A \approx 6.6 \cdot 10^{-3} \Omega$, $B \approx 3900 \text{ K}$

Zadanie 13.4.

W układzie pomiarowym (rys.13.1b) zastosowano dwa magnetorezystory o charakterystyce P przedstawionej na rys.13.1a. Narysować charakterystykę $U_0=f(B)$ w zakresie zmian indukcji od 0 do 1 T. Rezystancja $R_0=1$ k Ω , E=5 V, $R_1=2$ k Ω .

Odp.
$$U_0 = E \frac{R_1 - R_B(B)}{R_1 + R_B(B)}$$

Zadanie 13.5.

Obliczyć dynamiczną rezystancję r_{DS} tranzystora MOSFET pracującego w zakresie liniowym, jeżeli I_D = 0,4 mA, U_{DS} = 2,5 V.

Odp. $r_{DS} = 6,25 \text{ k}\Omega$

Zadanie 13.6.

Wykazać, że w zakresie pracy nieliniowej tranzystora MOSFET nachylenie charakterystyki bramkowej opisane jest wzorem $S=\frac{2}{|U_{\rm p}|}\sqrt{I_{\rm DSS}I_{\rm D}}.$

Zadanie 13.7.

Obliczyć szerokość złącza półprzewodnikowego spolaryzowanego napięciem wstecznym U = 5 V, pracującego w temperaturze 300 K, jeżeli koncentracja atomów domieszki donorowej jest równa $N_d = 10^{20}~\text{m}^{-3}$, a domieszki akceptorowej $N_a = 1,5\cdot10^{20}~\text{m}^{-3}$. Koncentracja nośników samoistnych $n_i = 10^{19}~\text{m}^{-3}$, stała Boltzmanna $k = 1,38\cdot10^{-23}~\text{J/K}$ i ładunek elementarny $e = 1,602\cdot10^{-19}~\text{C}$.

Odp. 11,5 µm

Zadanie 13.8.

Obliczyć statyczne współczynniki wzmocnienia prądowego α_0 i β_0 tranzystora bipolarnego, jeżeli $I_E=2$ mA, $I_B=10$ μA i prąd zerowy $I_{CB0}=0,1$ mA.

Odp. $\alpha_0 = 0.94$, $\beta_0 = 17$

Zadanie 13.9.

Jakie będą miały wartość: rezystancja dynamiczna r_{BE} i współczynnik wzmocnienia prądowego tranzystora bipolarnego β przy $I_C=2$ mA, $U_{CE}=6$ V, jeżeli przy $I_C=5$ mA, $U_{CE}=5$ V $r_{BE}=800$ Ω , $\beta=150$.

Odp. $r_{BE} = 1950 \Omega$, $\beta = 150$

Zadanie 13.10.

Obliczyć rezystancję termiczną przejścia struktura półprzewodnikowa – radiator, jeżeli znane są napięcia i prądy tranzystora $I_C = 20$ A, $U_{CE} = 3$ V, $I_B = 2.5$ A, $U_{BE} = 0.7$ V. Temperatura otoczenia $t_a = 25$ $^{\circ}$ C, a dopuszczalna temperatura pracy złącza $t_i = 100$ $^{\circ}$ C.

Odp. $R_{th a-i} = 1.2 \text{ K/W}$