

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Campo Mourão

Departamento Acadêmico de Matemática - DAMAT

Geometria Analítica e Álgebra Linear

Notas de Aula

Prof $^{\underline{a}}$ Dra. Érika Patrícia Dantas de Oliveira Guazzi Campo Mourão - PR ${}^{\underline{0}}$ Período de 2021

Sumário

3	Vet	ores - Parte 1	65	
	3.1	Introdução	65	
	3.2	Operações com Vetores - Geometricamente	68	
		3.2.1 Adição de Vetores	68	
		3.2.2 Subtração de Vetores	71	
		3.2.3 Multiplicação por Escalar	72	
	3.3	Vetores em Sistemas de Coordenadas	72	
		3.3.1 Vetores Bidimensionais e Tridimensionais	73	
		3.3.2 Vetores n-dimensionais	76	
	3.4	Operações com Vetores - Algebricamente	77	
	3.5	Norma de um Vetor e Vetores Unitários	80	
	3.6	Exercícios sobre Vetores - Parte 1	83	
$\mathbf{R}_{\mathbf{c}}$	Referências Bibliográficas			

Capítulo 3

Vetores - Parte 1

Os vetores são usados na navegação, bem como no estudo de forças e do movimento. Vetores em dimensões maiores ocorrem em campos tão diversos como a Genética, a Economia e a Ecologia. E mais, os vetores também são utilizados na Teoria da Relatividade para ajudar a descrever a natureza da gravidade, do espaço e da matéria.

3.1 Introdução

Existem grandezas chamadas escalares, exemplos: *área*, *comprimento*, *massa*, *temperatura*, *etc...* que ficam completamente determinadas assim que for dada sua magnitude. Outras quantidades físicas no entanto requerem mais do que isso. Por exemplo, uma *força* ou uma *velocidade*, para que fiquem bem definidas, precisamos dar a direção, a intensidade e o sentido. Tais *grandezas* são chamadas *vetoriais*.

Observação 3.1.1. Mesma magnitude mas efeitos diferentes.

Vetores no plano ou no espaço podem ser representados geometricamente por setas: o comprimento da seta é proporcional à magnitude (parte numérica) do vetor.

O corpo da seta indica a direção e a ponta da seta o sentido.

Notação: indicaremos vetores por letras minúsculas (por exemplo, u, v, w, ...).

Observação 3.1.2. Se um vetor v tem ponto inicial A e ponto final B então denotamos o vetor por $v = \overrightarrow{AB}$.

Nas aplicações, existem dois tipos de vetores: os fixos e os livres. Um vetor fixo ou físico é um vetor cujo efeito físico depende da localização do ponto inicial, além da magnitude, direção e sentido, enquanto que um vetor livre ou geométrico é um vetor cujo efeito físico depende somente da magnitude, direção e sentido. Aqui, **trabalharemos com vetores livres**. Veja o conteúdo complementar.

Definição 1. Dois vetores u e w são iguais (ou equivalentes) se eles forem representados por setas paralelas de mesmo comprimento, direção e sentido.

Notação: u = w

Observação 3.1.3.

1. Dois vetores $\overrightarrow{a} = \overrightarrow{AB} e \overrightarrow{b} = \overrightarrow{CD}$ são colineares ou paralelos se tiverem a mesma direção, isto é, se seus representantes AB e CD pertencerem a uma mesma reta ou a retas paralelas.

2. Três ou mais vetores são **coplanares** se possuem representantes pertencentes a um mesmo plano.

3. Note que dois vetores quaisquer são sempre coplanares; no entanto, três vetores poderão ou não ser coplanares.

3.2 Operações com Vetores - Geometricamente

Existem várias operações algébricas importantes efetuadas com vetores, todas originadas das Leis da Física.

3.2.1 Adição de Vetores

Regra do Paralelogramo para a Adição Vetorial: Se v e w são vetores no plano ou no espaço que estão posicionados de tal modo que seus pontos iniciais coincidem, então os dois vetores formam lados adjacentes de um paralelogramo e a soma v+w é o vetor representado pela seta desde o ponto inicial comum de v e w até o vértice oposto do paralelogramo.

Veja o conteúdo complementar.

Outra maneira:

Regra do Triângulo para Adição Vetorial: Se v e w são vetores no plano ou no espaço que estão posicionados de tal modo que o ponto inicial de w é o ponto terminal de v, então a soma v+w é o vetor representado pela seta desde o ponto inicial de v até o ponto terminal de w.

Veja o conteúdo complementar.

Observação 3.2.1. 1. v + w = w + v. Veja a justificativa.

2. A regra do paralelogramo para a adição vetorial descreve corretamente o comportamente aditivo de forças, velocidades e deslocamentos na Engenharia.

Exemplo 3.2.1. 1. O efeito de se aplicar as duas forças F_1 e F_2 ao bloco na figura abaixo é o mesmo que aplicar a única força $F_1 + F_2$ ao bloco.

2. Se o motor do barco impõe uma velocidade v_1 e o vento impõe uma velocidade v_2 , então o efeito combinado de motor e vento impõe uma velocidade $v_1 + v_2$ ao barco.

3. Uma partícula sofre um deslocamento \overrightarrow{AB} de A até B e em seguida um deslocamento \overrightarrow{BC} de B a C, então os deslocamentos sucessivos são iguais ao único deslocamento $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ de A a C.

Um pouco de História: a idéia de usar velocidade, força e deslocamento como vetores foi utilizados por Aristóteles (384 a.C. - 322 a.C.), Galileu Galilei (1564 - 1642) explicitou tal idéia, e outros.

3.2.2 Subtração de Vetores

Definição 2. O negativo de um vetor v, denotado por -v, \acute{e} o vetor que tem o mesmo comprimento e direção do vetor v, mas tem sentido oposto.

Definição 3. Dados v e w dois vetores, define-se o vetor diferença de w-v como sendo a soma

$$w + (-v) = w - v.$$

Notação: w - v.

Veja o conteúdo complementar.

3.2.3 Multiplicação por Escalar

Quando existe a necessidade de mudar o comprimento e/ou sentido de um vetor, lançamos mão de um tipo de multiplicação na qual vetores são multiplicados por escalares.

Definição 4. Se v é um vetor não-nulo e k é um escalar não-nulo, então o múltiplo escalar de v por k, denotado por kv, é o vetor de mesma direção do que v, mas cujo comprimento é k vezes o comprimento de v e cujo sentido é o mesmo que o de v se k > 0 e oposto de v se k < 0.

Veja o conteúdo complementar.

Exercício 3.2.1. Dado o vetor v abaixo determine os seguintes vetores:

- (a) $\frac{1}{2}v$
- (b) 2v
- (c) (-1)v
- (d) (-3)v

Observação 3.2.2.

- $\bullet \ (-1)v = -v$
- Se k = 0 ou $v = \overrightarrow{0}$ então tomamos $kv = \overrightarrow{0}$.

3.3 Vetores em Sistemas de Coordenadas

Apesar de útil a idéia geométrica de vetores, é necessário descrever os vetores algebricamente, e faremos isto usando sistemas de coordenadas.

A introdução de um sistema de coordenadas retangulares muitas vezes simplifica problemas envolvendo vetores. O tratamento algébrico, na maioria das situações, é bem mais prático do que o tratamento geométrico (limitado ao \mathbb{R}^2 e \mathbb{R}^3).

3.3.1 Vetores Bidimensionais e Tridimensionais

Definição 5. Um sistema de coordenadas retangulares no plano consiste de dois eixos coordenadas perpendiculares que em geral são denominados eixo x e eixo y.

O ponto de intersecção dos eixos é denominado a origem do sistema de coordenadas.

Assim, existe um correspondência biunívoca entre os pontos do plano e os pares ordenados (x, y) de números reais:

cada ponto P do plano está associado a um único par ordenado (a,b) de números reais e cada par ordenado de números reais (a,b) está associado a um único ponto P.

Observação 3.3.1. Os números do par ordenado são ditos coordenadas de P.

Definição 6. Um sistema de coordenadas retangulares no espaço consiste de três eixos coordenados mutuamente perpendiculares que em geral são ditos eixo x, eixo y e eixo z. O ponto de intersecção dos eixos é dito origem do sistema de coordenadas.

Definição 7. Se um vetor v qualquer do plano ou do espaço tem seu ponto inicial na origem do sistema de coordenadas retangulares, então o vetor está completamente determinado pelas coordenadas de seu ponto final e dizemos que estas coordenadas são os componentes do vetor v em relação ao sistema de coordenadas.

Veja o conteúdo complementar.

Notação:

- (1) $v = (v_1, v_2)$ para o vetor v no plano com componentes (v_1, v_2) ;
- (2) $v = (v_1, v_2, v_3)$ para o vetor v no espaço com componentes (v_1, v_2, v_3) .

Definição 8. Os vetores $v=(v_1,v_2)$ e $w=(w_1,w_2)$ são equivalentes se, e somente se, $v_1=w_1$ e $v_2=w_2$.

- Observação 3.3.2. 1. Vale para o espaço, os vetores $v = (v_1, v_2, v_3)$ e $w = (w_1, w_2, w_3)$ são equivalentes se, e somente se, $v_1 = w_1$, $v_2 = w_2$ e $v_3 = w_3$.
 - 2. Algebricamente, os vetores no plano podem ser vistos como pares ordenados de números reais e os vetores no espaço como ternos ordenados de números reais. Assim, denotaremos o conjunto de todos os vetores do plano por R² e o conjunto de todos vetores do espaço por R³.

Surge uma questão: Como determinar os componentes de um vetor v em \mathbb{R}^2 ou \mathbb{R}^3 que não tem seu ponto inicial na origem?

$$v = \overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1} = P_2 - P_1$$

Veja o conteúdo complementar.

Definição 9. (a) O vetor no plano que tem ponto inicial $P_1(x_1, y_1)$ e ponto final $P_2(x_2, y_2)$ $\not\in \overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1).$

76

(b) O vetor no espaço que tem ponto inicial $P_1(x_1, y_1, z_1)$ e ponto final $P_2(x_2, y_2, z_2)$ é $\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$

Exemplo 3.3.1. Determine os componentes do vetor v que tem ponto inicial em $P_1(2,-1)$ e ponto final em $P_2(3,5)$. Represente geometricamente o vetor v. Solução: Link da solução.

Exemplo 3.3.2. Determine os componentes do vetor v que tem ponto inicial em $P_1(2, -1, 4)$ e ponto final em $P_2(3, 5, -3)$. Represente geometricamente o vetor v.

Solução: Link da solução.

3.3.2 Vetores n-dimensionais

Definição 10. Se n é um número inteiro positivo, então uma n-upla (ou ênupla) ordenada é uma sequência de n números reais $(v_1, v_2, v_3, ..., v_n)$.

O conjunto de todas as ênuplas ordenadas é denominado o espaço n-dimensional e é denotado por \mathbb{R}^n .

Notação: $v = (v_1, v_2, v_3, ..., v_n)$ notação vetorial.

Observação 3.3.3. Pensamos nos números de uma ênupla $(v_1, v_2, v_3, ..., v_n)$ ou como as coordenadas de um ponto generalizado ou como as componentes de um vetor generalizado.

Observação 3.3.4. Dentre as várias aplicações do \mathbb{R}^n podemos citar: dados experimentais, circuitos elétricos, economia, entre outros.

E mais, Albert Einstein (1879-1955) trabalhava com espaço de dimensão 4 na teoria do Campo Unificado (eletromagnetismo + gravidade).

Operações com Vetores - Algebricamente 3.4

Sejam $v = (v_1, v_2)$ e $w = (w_1, w_2)$ vetores do \mathbb{R}^2 e k um número real.

Definição 11. Sejam $v=(v_1,v_2)$ e $w=(w_1,w_2)$ vetores do \mathbb{R}^2 e k um número real. Definimos:

$$v + w = (v_1, v_2) + (w_1, w_2) = (v_1 + w_1, v_2 + w_2)$$

$$kv = k(v_1, v_2) = (kv_1, kv_2)$$

$$-v = (-1)(v_1, v_2) = (-v_1, -v_2)$$

$$v - w = v + (-w) = (v_1, v_2) + (-w_1, -w_2) = (v_1 - w_1, v_2 - w_2)$$

Observação 3.4.1. Obtêm-se analogamente a definição acima para vetores do $\mathbb{R}^3, \mathbb{R}^4, ..., \mathbb{R}^n$.

Exemplo 3.4.1. 1) Dados os vetores v = (1, 4) e w = (2, 5), calcule:

(a)
$$v + w$$

$$(c)$$
 $-u$

$$(c) - w (d) v - w$$

2) Dados os vetores v = (1, 3, 4) e w = (5, 9, -1), calcule:

(a)
$$v + w$$

$$(b)$$
 $3v$

$$(c)$$
 $-4w$

$$(c) -4w \qquad (d) w - v$$

Solução: Link da solução.

Propriedades: Sejam $u, v \in w$ vetores e k_1, k_2 escalares:

(a)
$$u + v = v + u$$

(b)
$$(u+v)+w=u+(v+w)$$

(c)
$$u + \overrightarrow{0} = \overrightarrow{0} + u = u$$

(d)
$$u + (-u) = \overrightarrow{0}$$

(e)
$$(k_1 + k_2)v = k_1v + k_2v$$

(f)
$$k_1(v+w) = k_1v + k_1w$$

(g)
$$k_1(k_2u) = (k_1k_2)u$$

(h)
$$1u = u$$

(i)
$$0v = \overrightarrow{0}$$

(j)
$$k\overrightarrow{0} = \overrightarrow{0}$$

(k)
$$(-1)v = -v$$

Definição 12. Dois vetores são paralelos (ou colineares) se pelo menos um dos dois vetores é um múltiplo escalar do outro, ou seja,

Exemplo 3.4.2. O vetor u = (-2, 1, 0) é paralelo ao vetor v = (4, 2, 0)? Solução: Link da solução.

Frequentemente utilizamos a adição, a subtração e a multiplicação por escalar em combinação para formar novos vetores.

Definição 13. Um vetor w é uma combinação linear dos vetores $v_1, v_2, ..., v_k$ se w pode ser expresso na forma:

$$w = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

onde $c_1, c_2, ..., c_k$ são escalares e são ditos coeficientes da combinação linear.

Exemplo 3.4.3. O vetor u = (2,3) é uma combinação linear dos vetores $\overrightarrow{i} = (1,0)$ e $\overrightarrow{j} = (0,1)$.

Solução: Link da solução.

Observação 3.4.2. Todo vetor v=(x,y) do plano bidimensional pode ser decomposto segundo as direções dos vetores $\overrightarrow{i}=(1,0)$ e $\overrightarrow{j}=(0,1)$. Isto é, existem números reais a e b tais que,

$$\overrightarrow{v} = a \cdot \overrightarrow{i} + b \cdot \overrightarrow{j}$$

Neste caso, dizemos que v é combinação linear de \overrightarrow{i} e \overrightarrow{j} .

Notações para vetores:

- $v = (v_1, v_2, ..., v_n)$ usual
- $v = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$ vetor-linha

•
$$v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 vetor-coluna

Agora estudaremos os conceitos de comprimento, ângulo, distância e perpendicularidade em \mathbb{R}^2 e os estenderemos ao \mathbb{R}^n , $n \geq 3$.

3.5 Norma de um Vetor e Vetores Unitários

Observe que temos um triângulo retângulo. Assim, utilizando o Teorema de Pitágoras obtemos que

$$\parallel v \parallel = \sqrt{v_1^2 + v_2^2}$$

De forma análoga, no \mathbb{R}^3 obtemos

$$\|v\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

Definição 14. Se $v = (v_1, v_2, ..., v_n)$ é um vetor em \mathbb{R}^n , então o comprimento de v, também denominado norma de v ou magnitude de v, é denotado por ||v|| e definido como

$$\|v\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

81

Exemplo 3.5.1. Dado o vetor u = (-1, 2) em \mathbb{R}^2 , calcule ||u|| e esboce geometricamente o vetor.

Solução: Link da solução.

Exercício 3.5.1. Dado o vetor u = (-3, 2, 1) em \mathbb{R}^3 , calcule ||u|| e esboce geometricamente o vetor.

Exemplo 3.5.2. Dado o vetor u = (1, 0, 0, 1, 1, 0, 1) em \mathbb{R}^7 , calcule ||u||.

Solução: Link da solução.

Propriedades: Seja v um vetor em \mathbb{R}^n e k um escalar qualquer. Então,

(a)
$$||v|| \ge 0$$
 e $||v|| = 0 \Leftrightarrow v = \overrightarrow{0}$

(b)
$$||kv|| = |k| \cdot ||v||$$

Definição 15. Um vetor de comprimento 1 é denominado um vetor unitário.

Os Vetores Unitários Canônicos

Quando consideramos um sistema de coordenadas retangulares em \mathbb{R}^2 ou \mathbb{R}^3 , dizemos que os vetores unitários nas direções positivas dos eixos coordenados são os vetores unitários canônicos.

• No \mathbb{R}^2 estes vetores são denotados por $\overrightarrow{i} = (1,0)$ e $\overrightarrow{j} = (0,1)$

• No \mathbb{R}^3 estes vetores são denotados por $\overrightarrow{i}=(1,0,0),\ \overrightarrow{j}=(0,1,0)$ e $\overrightarrow{k}=(0,0,1)$

Mais geralmente, definimos os vetores unitários canônicos de \mathbb{R}^n por $e_1=(1,0,0,...,0)$, $e_2=(0,1,0,...,0),..., e_n=(0,0,0,...,1)$.

Observação 3.5.1.

1. Cada vetor $v=(v_1,v_2)$ em \mathbb{R}^2 pode ser expresso em termos de vetores unitários canônicos como

$$v = (v_1, v_2) = v_1(1, 0) + v_2(0, 1) = v_1 \overrightarrow{i} + v_2 \overrightarrow{j}$$

e cada vetor $v = (v_1, v_2, v_3)$ em \mathbb{R}^3 pode ser expresso em termos de vetores unitários canônicos como

$$v = (v_1, v_2, v_3) = v_1(1, 0, 0) + v_2(0, 1, 0) + v_3(0, 0, 1) = v_1 \overrightarrow{i} + v_2 \overrightarrow{j} + v_3 \overrightarrow{k}$$

2. De forma análoga, cada vetor $v = (v_1, v_2, ..., v_n)$ em \mathbb{R}^n pode ser expresso em termos de vetores unitários canônicos como

$$v = (v_1, v_2, ..., v_n) = v_1 e_1 + v_2 e_2 + ... + v_n e_n$$

Exemplo 3.5.3. Expresse os vetores abaixo em termos dos vetores unitários canônicos.

- (a) v = (3,1)
- (b) v = (0,5)
- (c) v = (2, -3, 4)
- (d) v = (4, 2, -4, 2, -1)

Solução: Link da solução.

Teorema 3.5.1. Se $v \notin um \ vetor \ n\tilde{a}o$ -nulo em \mathbb{R}^n , ent $\tilde{a}o \ um \ vetor \ unit{\acute{a}rio} \ u \ que \ tem \ a$ mesma direção e sentido do que v é dado por

$$u = \frac{1}{||v||} \quad v = \frac{v}{||v||}$$

Exemplo 3.5.4. Encontre um vetor unitário u que tem a mesma direção e sentido de w = (2, 2, -1).

Solução: Link da solução.

Exercícios sobre Vetores - Parte 1 3.6

Exercício 3.6.1. Esboce os vetores com seus pontos iniciais na origem.

(a)
$$v = (3, 6)$$

(b)
$$v = (-4, -8)$$

(c)
$$v = (3, 3, 0)$$

(b)
$$v = (-4, -8)$$
 (c) $v = (3, 3, 0)$ (d) $v = (0, 0, -3)$

Exercício 3.6.2. Esboce os vetores com seus pontos iniciais na origem, sabendo que u = (1,1) e que v = (-1,1).

(b)
$$u+v$$

(a)
$$2u$$
 (b) $u + v$ (c) $-u + v$ (d) $2u-3v$ (e) $u + 2v$

$$(d) 2u-3i$$

(e)
$$u + 2i$$

84

Exercício 3.6.3. Encontre os componentes do vetor e esboce um vetor equivalente com ponto inicial na origem.

Exercício 3.6.4. Encontre os componentes do vetor $\overrightarrow{P_1P_2}$.

(a)
$$P_1(3,5)$$
, $P_2(2,8)$

(a)
$$P_1(3,5)$$
, $P_2(2,8)$ (b) $P_1(5,-2,1)$ e $P_2(2,4,2)$

Exercício 3.6.5. (a) Encontre o ponto final do vetor equivalente a u = (1,2) que tem ponto inicial em A(1,1).

(b) Encontre o ponto inicial do vetor equivalente a u = (1,1,3) que tem ponto final em B(-1,-1,2).

Exercício 3.6.6. Sejam u = (1, 2, -3, 5, 0), v = (0, 4, -1, 1, 2) e w = (7, 1, -4, -2, 3).Encontre os componentes de:

$$(a) v + w$$

(b)
$$3(2u-v)$$

(a)
$$v + w$$
 (b) $3(2u - v)$ (c) $(3u - v) - (2u + 4w)$

Exercício 3.6.7. Sejam u, v e w os três vetores do exercício acima. Encontre os componentes do vetor x que satisfaz a equação 3u + v - 2w = 3x + 2w.

Exercício 3.6.8. Qual dos seguintes vetores de \mathbb{R}^6 é paralelo a u=(-2,1,0,3,5,1)?

$$(a)$$
 $(4, 2, 0, 6, 10, 2)$

$$(a) (4,2,0,6,10,2) (b) (4,-2,0,-6,-10,-2) (c) (0,0,0,0,0,0)$$

$$(c)$$
 $(0,0,0,0,0,0)$

85

Exercício 3.6.9. Em cada parte, esboce o vetor u + v + w e expresse-o em forma de componentes.

Exercício 3.6.10. Sejam u = (2, 1, 0, 1, -1) e v = (-2, 3, 1, 0, 2). Encontre escalares a e b tais que au + bv = (-8, 8, 3, -1, 7)

Exercício 3.6.11. Esboce dois paralelogramos que têm vértices nos pontos A(0,0), B(-1,3) e C(1,2).

Exercício 3.6.12. Encontre a norma de v, um vetor unitário de mesma direção e sentido do que v e um vetor unitário de sentido oposto ao de v.

(a)
$$v = (-5, 12)$$
 (b) $v = (1, -1, 2)$ (c) $v = (-2, 3, 3, -1)$

Exercício 3.6.13. Dados u = (2, -2, 3), v = (1, -3, 4) e w = (3, 6, -4), calcule a expressão dada:

(a)
$$||u+v||$$
 (b) $||u|| + ||v||$ (c) $||3u-5v+w||$

Exercício 3.6.14. Seja v=(1,1,2,-3,1). Encontre todos os escalares reais k tais que ||kv||=4.

Referências Bibliográficas

- [1] ANTON, Howard; BUSBY, Robert C. Álgebra linear contemporânea. Porto Alegre: Bookman, 2006.
- [2] BOYER, Carl B.; MERZBACH, Uta C. *História da matemática*. Editora Blucher, 2012.
- [3] CAMARGO, Ivan de; BOULOS, Paulo. Geometria analítica: um tratamento vetorial. 3ª edição rev e ampl. São Paulo: Prentice Hall, 2005.
- [4] LEON, Steven J. Álgebra Linear com Aplicações . Rio de Janeiro: LTC, 2013.
- [5] LIMA, Elon Lages. Álgebra linear. Rio de Janeiro: IMPA, 2006.
- [6] LIMA, Elon Lages. Geometria Analítica e Álgebra linear. Rio de Janeiro: IMPA, 2015.
- [7] MARCONDES, C. A.; GENTIL, N.; GRECO, S. E. Matemática, Série Novo Ensino Médio. volume único. São Paulo: Editora Ática.
- [8] STEINBRUCH, Alfredo; WINTERLE, Paulo. Álgebra linear. São Paulo: McGraw-Hill, 1987.
- [9] STEINBRUCH, Alfredo; WINTERLE, Paulo. Geometria Analítica. São Paulo: McGraw-Hill, 1987.

Neste arquivo contém as referências para a disciplina de Geometria Analítica e Álgebra Linear. Ressalto ainda a disponibilidade online de diversas outras referências via Bibliotec-UTFPR pelo link http://www.utfpr.edu.br/biblioteca/bibliotec.