Departamento de Matemática e Aplicações

Análise

FOLHA 3 2018'19 -

Funções definidas em \mathbb{R}^n : Derivadas (Parciais, Direcionais, Globais & de ordem superior

1. Sendo $f: \mathbb{R}^2 \to \mathbb{R}$, representada graficamente pela figura anexa, indique o sinal de cada uma das derivadas parciais de f, para cada um dos três pontos assinalados da superfície.

- **2.** Atente no diagrama de nível, de $f: \mathbb{R}^2 \to \mathbb{R}$, anexo. Indique o sinal de $f_x(1,1)$, $f_y(1,1)$, $f_x(-1,1)$, $f_y(-1,1)$, $f_x(-1,-1)$, $f_y(-1,-1)$, $f_x(1,-1)$ e $f_{u}(1,-1)$.
- 3. Sendo $f:\mathbb{R}^2 \to \mathbb{R}$ a função definida por $f(x,y)=xy^2+x$, calcule, usando a definição:
 - (a) $\frac{\partial f}{\partial x}(0,0)$
 - (b) $\frac{\partial f}{\partial x}(x_0, y_0)$ (c) $\frac{\partial f}{\partial y}(2, -1)$ (d) $\frac{\partial f}{\partial y}(x_0, y_0)$

- 4. Calcule as derivadas parciais de 1.ª ordem das funções seguintes, nos pontos possíveis:
 - (a) $f(x,y) = y^2 e^{3x}$
- (d) $f(x, y, z) = \frac{x^2 y^3}{z}$
- (g) $f(x,y) = \operatorname{arctg}(x^2y^3)$

- (b) $g(x,y) = (3xy + 2x)^5$
- (e) $h(x,y) = \frac{x^2 + y^2}{x^2 y^2}$
- (h) $g(x, y, z) = \ln(e^x + z^y)$

- (c) $f(x,y) = e^{x+3y} \sin(xy)$
- (f) $\rho(\phi, \theta) = \phi \cos \phi \sin \theta$
- (i) $f(x,y,z) = \frac{xy^3 + e^z}{x^3y e^z}$

5. Para cada uma das funções seguintes, calcule, se existirem, $f_x(0,0)$ e $f_y(0,0)$.

(a)
$$f(x,y) = \begin{cases} \frac{x+y}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ \pi & \text{se } (x,y) = (0,0) \end{cases}$$
 (b) $f(x,y) = \begin{cases} \frac{x^3y-xy^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

6. Mostre que

(a)
$$u(x,y) = Ax^4 + 2Bx^2y^2 + Cy^4$$
 (com A , B e $C \in \mathbb{R}$) satisfaz a equação $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 4u$

(b) se
$$P(T,V)=krac{T}{V}$$
 (com $k\in\mathbb{R}$), então $Vrac{\partial P}{\partial V}=-P$ e $Trac{\partial P}{\partial T}=P$

(c) se
$$h(x,y,z) = x + \frac{x-y}{y-z}$$
, então $h_x + h_y + h_z = 1$

7. Encontre o vetor gradiente das seguintes funções (e no ponto assinalado, se for esse o caso):

(a)
$$f(x,y) = \frac{2x}{x-y}$$
, em (3,1)

(d)
$$f(x, y, z) = e^{-x} \operatorname{sen}(z + 2y)$$
, em $\left(0, \frac{\pi}{4}, \frac{\pi}{4}\right)$

(b)
$$f(r, \theta) = r \operatorname{sen} \theta$$

(e)
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2 + 1}$$

(c)
$$f(x,y) = y \ln x + xy^2$$
, em (1,2)

(f)
$$f(x, y, z) = (x - y)\cos(\pi z)$$

8. Determine a derivada direcional de cada uma das funções, no ponto P e segundo o vetor \vec{v} indicados.

(a)
$$f(x,y) = 4 - x^2 - \frac{1}{4}y^2$$
, $P = (1,2)$ e $\vec{v} = \cos\frac{\pi}{3}\vec{e_1} + \sin\frac{\pi}{3}\vec{e_2}$

(b)
$$f(x,y) = x^2 \operatorname{sen}(2y)$$
, $P = \left(1, \frac{\pi}{2}\right)$ e $\vec{v} = (3, -4)$

(c)
$$f(x, y, z) = x^2 + y^2 + z^2$$
, $P = (1, 2, 3) \in \vec{v} = (1, 1, 1)$

9. Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 tal que $f(x,y) = \left\{ \begin{array}{ll} \dfrac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{array} \right.$

- (a) Verifique que f possui derivadas parciais em todos os pontos de \mathbb{R}^2 .
- (b) Verifique que f não é contínua na origem e conclua que f não é diferenciável na origem.
- (c) Mostre que existe $Df((0,0);(\alpha,\beta))$ com $\alpha\beta=0$, mas não existe $Df((0,0);(\alpha,\beta))$ com $\alpha\beta\neq0$.

10. Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 tal que $f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

- (a) Mostre que existe $Df(m{a};m{u}), orall m{a}, m{u} \in \mathbb{R}^2$
- (b) Verifique se f é diferenciável em (0,0).

11. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}.$$

- (a) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- (b) Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ e verifique que não são contínuas em (0,0).
- (c) Verifique que f é diferenciável em (0,0).

12. Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 tal que $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

Mostre que:

- (a) f é contínua;
- (b) $Df((0,0);(a,b)) = f(a,b), \forall (a,b) \in \mathbb{R}^2$.

13. Determine a matriz jacobiana das seguintes funções:

- (a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que f(x,y) = (x,y);
- (b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $f(x,y) = (xe^y + \cos y, x, x + e^y)$;
- (c) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $f(x,y) = (xye^{xy}, x \operatorname{sen} y, 5xy^2)$;
- (d) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que f(x, y, z) = (x y, y + z);
- (e) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que $f(x, y, z) = (x + y + e^z, x^2y)$.

14. Considere as funções f e g tais que

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \qquad g: \mathbb{R}^3 \longrightarrow \mathbb{R}^4,$$
$$(x,y,z) \longmapsto f(x,y,z) = (x-y+z,x^2yz,xyz) \quad (x,y,z) \longmapsto g(x,y,z) = (xy,yz,2x,xyz)$$

- (a) Calcule $Df((-1,0,-1);(2,3,-1)) \in Dg((-1,0,-1);(2,3,-1))$.
- (b) Calcule $Df(-1, 0, 1) \in Dg(-1, 0, 1)$.

15. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $f(x,y) = (2x^2, 3y, 2xy)$

- (a) Calcule a matriz jacobiana de $m{f}$.
- (b) Justifique que a função f é derivável e calcule a derivada da função f no ponto (1,1).
- (c) Determine Df(1,1)(2,3).

16. Calcule as derivadas parciais de 2ª ordem das seguintes funções e averigue em que casos as derivadas mistas são iguais.

(a)
$$f(x,y) = \frac{2xy}{(x^2 + y^2)^2}$$

(c)
$$f(x,y) = e^{-xy^2} + y^3x^4$$
;

(b)
$$f(x,y) = \cos(xy^2)$$
;

(d)
$$f(x,y) = \frac{1}{\cos^2 x + e^{-y}}$$
.

- 17. Mostre que a função $g(x,t)=2+e^{-t}\sin x$, satisfaz a equação do calor $\frac{\partial g}{\partial t}=\frac{\partial^2 g}{\partial x^2}$.
- 18. Usando o teorema de Schwarz, mostre que não pode existir uma função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ cujas derivadas parciais de primeira ordem sejam:

(a)
$$f_x(x,y) = 2x^3$$
, $f_y(x,y) = yx^2 + x$;

(b)
$$f_x(x, y) = x \, \text{sen} \, y$$
, $f_y(x, y) = y \, \text{sen} \, x$.

19. Considere as funções

$$u: \mathbb{R}^2 \longrightarrow \mathbb{R}, \qquad v: \mathbb{R}^2 \longrightarrow \mathbb{R}, \qquad w: \mathbb{R}^2 \longrightarrow \mathbb{R},$$

 $(x,y) \longmapsto xy \qquad (x,y) \longmapsto \operatorname{sen}(xy) \qquad (x,y) \longmapsto e^x$

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}$$
 e $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$.
 $(x,y,z) \longmapsto x^2y + y^2z$ e $(x,y) \longmapsto f(u(x,y),v(x,y),w(x,y))$

Determine $\nabla h(x,y)$

- **20.** Considere a função $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por $f(x, y, z) = x^2y xz$ e $a \in \mathbb{R}$.
 - (a) Calcule Df(1,0,0)(1,2,2).
 - (b) Determine a de modo que a função $g:\mathbb{R}\longrightarrow\mathbb{R}$ tal que $g(t)=f(at^2,at,t^3)$ tenha derivada nula.
- 21. Calcule:

(a)
$$\frac{du}{dt}$$
, onde $u=\ln\left(\sin\frac{x}{y}\right)$ e $x=3t^2$, $y=\sqrt{1+t^2}$;

(b)
$$\frac{\partial w}{\partial p}$$
 e $\frac{\partial w}{\partial q}$, onde $w=r^2+s^2$ e $r=pq^2$, $s=p^2\sin q$;

(c)
$$\frac{\partial z}{\partial s} e^{\frac{\partial z}{\partial t}}$$
, onde $z = x^2 \sin y$ e $x = s^2 + t^2$, $y = 2st$.