A2019

Für $n \in \mathbb{N}$ und $x \in \mathbb{R}$ sei $p_n(x) = 1 - x^{2^n}$.

a) Beweisen Sie durch vollständige Induktion, dass

 $p_n(x) = (1-x)(1+x)(1+x^2)(1+x^4)...(1+x^{2^{n-1}})$ für alle $n \in \mathbb{N}$ mit $n \ge 2$ gilt.

b) Folgern Sie aus a), dass p_n außer $x = \pm 1$ keine weiteren Nullstellen besitzt $(n \in \mathbb{N})$.

a) I.A.
$$\rho_{2}(x) = 1 - x^{2^{n}} = 1 - x^{n}$$

$$x^{2^{n}} = x^{2}$$

$$(1 - x)(1 + x)(1 + x^{2}) = 1 - x^{n}$$

$$(1 - x)^{n}$$

$$= (1 - x^{2^{n}})^{2} = (1 - x^{2^{n}})^{2}$$

$$= (1 - x^{2^{n}})^{2} = (1 - x^{2^{n}})^{2} = (1 - x^{2^{n}})^{2}$$

$$= (1 - x^{2^{n}})^{2} = (1 - x^{2^{n}})^{2} = (1 - x^{2^{n}})^{2} = (1 - x^{2^{n}})^{2}$$

$$= (1 - x^{2^{n}})^{2} = (1 -$$

Ab dem 3. Term sind die Klammern immer >= 1, können also nicht zu einer Nullstelle führen. Die ersten beiden Terme führen zu den Nullstellen +1 und -1.