Wielokryterialne inteligentne metody optymalizacji

Andrzej Jaszkiewicz

Problem optymalizacji wielokryterialnej

Maksymalizuj/minimalizuj $z_1 = f_1(\mathbf{x})$

•••

Maksymalizuj/minimalizuj $z_j = f_j(\mathbf{x})$ p.o. $\mathbf{x} \in D$

Relacja dominacji (maksymalizacja)

Rozwiązania Rozwiązania niezdominowane dominujące Rozwiązania Rozwiązania zdominowane niezdominowane

Rozwiązania Pareto-optymalne – obraz w przestrzeni kryteriów

Dlaczego rozwiązania Pareto-optymalne?

- Ostateczny cel wybór jednego rozwiązania
- Przy ogólnie akceptowanym założeniu:
 - Decydent zawsze preferuje poprawę jednego kryterium bez pogorszenia pozostałych zgodność preferencji z relacją dominacji
 - ⇒ najlepsze rozwiązanie należy do zbioru rozwiązań Pareto-optymalnych

Klasyfikacja metod rozwiązywania problemów optymalizacji wielokryterialnej

- Specyfikacja preferencji a priori
 - Np. budowa funkcji użyteczności a potem jej optymalizacja
- Dialogowa specyfikacja preferencji
 - Np. kolejne funkcje skalaryzujące w kolejnych iteracjach
- Specyfikacja preferencji a posteriori
 - Najpierw generowanie rozwiązań (w przybliżeniu) Pareto-optymalnych, potem wybór

Jednokryterialne IMO w optymalizacji wielokryterialnej

- Specyfikacja preferencji a priori
 - Np. zastosowanie do optymalizacji funkcji użyteczności
- Dialogowa specyfikacja preferencji
 - Np. zastosowanie do optymalizacji funkcji skalaryzujących
- Specyfikacja preferencji a posteriori
 - Np. seria problemów optymalizacji dla różnych funkcji skalaryzujących rozwiązywanych przy pomocy metaheurystyki

Cel metaheurystyk wielokryterialnych

- Wygenerować w jednym przebiegu zbiór rozwiązań będących przybliżeniem całości lub części zbioru rozwiązań Paretooptymalnych (podejście a posteriori lub dialogowe)
- Przybliżenie:
 - Nie wszystkie rozwiązania Pareto-optymalne muszą się znaleźć w przybliżeniu
 - Rozwiązania z przybliżenia mogą być zdominowane, ale bliskie Pareto-optymalnym

Presja selekcyjna w przypadku wielokryterialnym

Zainicjuj pamięć M

Wygeneruj i oceń początkową populację X

Uaktualnij M na podstawie X

Powtarzaj

Jak oceniać rozwiązania w przypadku wielu kryteriów

Na podstawie populacji X, jej ocen oraz pamięci M wygeneruj i ocen populację X'

Uaktualnij M na podstawie X'

Z X · X' wybierz nową populację X

Do momentu spełnienia warunków stopu

Klasyfikacja metod

- Metody oparte na relacji dominacji
 - Algorytmy ewolucyjne z rankingiem Pareto NSGA-II
 - Pareto local search przeszukiwanie lokalne Pareto
- Algorytmy oparte na dekompozycji/skalaryzacji
 - MOEA/D, MOGLS
- Algorytmy bazujące na wskaźnikach jakości indicator-based
 - HypE, SMS-EMOA, FV-MOEA

Ranking Pareto

Cechy presji selekcyjnej opartej na relacji dominacji

- + Niezależność od skalowania kryteriów
- + Brak lub niewielka liczba parametrów
- Wszystkie (lokalnie) Pareto-optymalne rozwiązania mają ten sam ranking – brak presji selekcyjne do rozpraszania/równomiernego rozmieszczenia rozwiązań
- Wiele lokalnych ruchów może nie zmieniać rankingu
- Ranking stają się "płaskie" przy wzroście liczby kryteriów
- Ocena może być stosunkowo kosztowna czasowo

Przeszukiwanie lokalne Pareto

Przeszukiwanie lokalne Pareto

W każdej iteracji

Dla każdego potencjalnie Paretooptymalnego (*PPO*) rozwiązania **x** Znajdź wszystkie lokalnie niezdominowane rozwiązania w *N*(**x**) i zaktualizuj zbiór *PPO*

Inny punkt widzenia – lokalne przeszukiwanie na zbiorze

Wygeneruj początkowy zbiór *PPO* **powtarzaj**

Przejrzyj sąsiedztwo *PPO* i zaktualizuj *PPO*

dopóki PPO nie został poprawiony

Przeszukiwanie lokalne Pareto - cechy

- Bardzo nieefektywne przy startowaniu ze słabych rozwiązań
- Bardzo efektywne (najlepsze wyniki dla wielu dwukryterialnych problemów) przy startowaniu z próby rozwiązań bliskich Paretooptymalnym
- Szybki spadek efektywności dla trzech i więcej kryteriów
 - Lokalne przeszukiwane Pareto dla więcej niż dwóch kryteriów wybór obiecujących rozwiązań do eksploracji sąsiedztwa, zastosowanie ND-Tree
 - Many-objective Pareto local search, A Jaszkiewicz, European Journal of Operational Research 271 (3), 1001-1013, 2018

Liniowa funkcja skalaryzująca

•
$$s_1(\mathbf{z}, \Lambda) = \sum_{j=1}^J \lambda_j z_j$$

 Każda liniowa funkcja skalaryzująca ma co najmniej jedno optimum w zbiorze rozwiązań Pareto-optymalnych

Polska Cyfrowa

POISKa

Funkcja skalaryzująca Czebyszewa

•
$$s_{\infty}(\mathbf{z}, \mathbf{z}^0, \Lambda) = \max_{j} \{\lambda_j(z_j^0 - z_j)\}$$

- Dla każdego rozwiązania Pareto-optymalnego istnieje funkcja skalaryzująca Czebyszewa, dla której rozwiązanie to jest optimum
- Każda funkcja skalaryzująca
 Czebyszewa ma co najmniej jedno
 optimum w zbiorze rozwiązań
 Pareto-optymalnych

f1

Rola wag w funkcjach skalaryzujących

Optymalizacja pojedynczej funkcji skalaryzującej

Rożne kierunki (wektory wag) pozwalają pokryć cały zbiór Pareto

Algorytmy oparte na dekompozycji/skalaryzacji

- Predefiniowane kierunki
 - MOSA, MOEA/D
- Losowy wybór kierunku dla danej iteracji
 - MOGLS
- Wspólna populacja dla wszystkich kierunków efekt powinien być lepszy od niezależnej optymalizacji pewnej liczby funkcji skalaryzujących
 - MOEA/D, MOGLS

Algorytmy bazujące na wskaźnikach jakości – indicator-based

- Wskaźnik jakości miara jakości przybliżenia zbioru Pareto przez zbiór rozwiązań (np. przez bieżącą populację)
- Nowe rozwiązania oceniane pod względem wpływu a ten wskaźnik
- Najpopularniejszy wskaźnik hypervolume obszaru zdominowanego przez co najmniej jedno rozwiązanie
 - Zaleta zgodność z relacją dominacji dodanie nowego dominującego lub niezdominowanego rozwiązania zawsze poprawie ten wskaźnik
 - Problemy duża złożoność obliczeniowa wzrost wykładniczy wraz ze wzrostem liczby kryteriów
- Powszechnie stosowany także do oceny wyników innych algorytmów wielokryterialnych

Hypervolume

Improved quick hypervolume algorithm

- Jeden z najszybszych algorytmów dokładnych dla obliczania hypervolume typu dziel i rządź (divide and conquer)
- Hypervolume zbioru punktów to hypervolume obszaru zdominowanego przez jeden punkt + hypervolume dla pewnej liczby mniejszych podproblemów

Quick hypervolume vs improved quick hypervolume algorithm

Główne prace własne w tym zakresie

- Pareto simulated annealing jedna z pierwszych metod oparta na symulowanym wyżarzaniu, pierwsza populacyjna
 - Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. P Czyżak, A Jaszkiewicz, Journal of Multi-Criteria Decision Analysis 7 (1), 34-47, 1998.
- Jedna z pierwszych prac nt. oceny zbiorów rozwiązań będących przybliżeniami zbiorów Pareto
 - Evaluating the quality of approximations to the non-dominated set, MP Hansen, A Jaszkiewicz, IMM, Department of Mathematical Modelling, Technical University of Denmark
- Jeden z pierwszych hybrydowych algorytmów ewolucyjnych opartych na skalaryzacji/dekompozycji (pierwszy efektywny)
 - Genetic local search for multi-objective combinatorial optimization, A Jaszkiewicz, European journal of operational research 137 (1), 50-71, 2002.
 - On the performance of multiple-objective genetic local search on the 0/1 knapsack problema comparative experiment, A Jaszkiewicz, IEEE Transactions on Evolutionary Computation 6 (4), 402-412, 2002

Główne prace własne w tym zakresie

- Lokalne przeszukiwane Pareto najlepsze (w swoim czasie) wyniki dla dwukryterialnego TSP
 - Speed-up techniques for solving large-scale biobjective TSP, T Lust, A Jaszkiewicz, Computers & Operations Research 37 (3), 521-533, 2010
 - Proper balance between search towards and along Pareto front: biobjective TSP case study, A Jaszkiewicz, T Lust, Annals of Operations Research 254 (1), 111-130, 2017
- Efektywne filtrowanie rozwiązań potencjalnie Pareto-optymalnych
 - ND-tree-based update: a fast algorithm for the dynamic nondominance problem, A Jaszkiewicz, T Lust, IEEE Transactions on Evolutionary Computation 22 (5), 778-791, 2018
- Lokalne przeszukiwane Pareto dla więcej niż dwóch kryteriów wybór obiecujących rozwiązań do eksploracji sąsiedztwa, zastosowanie ND-Tree
 - Many-objective Pareto local search, A Jaszkiewicz, European Journal of Operational Research 271 (3), 1001-1013, 2018

Główne prace własne w tym zakresie

- Algorytmy obliczania hypervolume
 - Improved quick hypervolume algorithm, A Jaszkiewicz, Computers & Operations Research 90, 72-83, 2018
 - Approximate Hypervolume Calculation with Guaranteed or Confidence Bounds, A
 Jaszkiewicz, R Susmaga, P Zielniewicz, International Conference on Parallel Problem Solving
 from Nature, 215-228, 2020
 - Quick Extreme Hypervolume Contribution Algorithm, A Jaszkiewicz, P Zielniewicz, GECCO 2021.
 - Andrzej Jaszkiewicz and Piotr Zielniewicz. 2022. Greedy Decremental Quick Hypervolume Subset Selection Algorithms. PPSN XVII, 164–178.
 - A. Jaszkiewicz and P. Zielniewicz, "Improving the Efficiency of the Distance-Based Hypervolume Estimation Using ND-Tree," in IEEE Transactions on Evolutionary Computation, 2024
- Dokładny algorytm obliczania wskaźnika R2
 - A. Jaszkiewicz and P. Zielniewicz, "Exact calculation and properties of the R2 multiobjective quality indicator," in IEEE Transactions on Evolutionary Computation, (accepted)

