Efficient Fine tuning

April 13, 2025

0.1 Load Libraries

```
[]: import seaborn as sns
     import numpy as np
     import kagglehub
     from kagglehub import KaggleDatasetAdapter
     import pandas as pd
     import matplotlib.pyplot as plt
     import cv2
     import urllib.request
[]: !pip install kagglehub
     !pip install kagglehub[pandas-datasets]
     !pip install wget
    Requirement already satisfied: kagglehub in /usr/local/lib/python3.11/dist-
    packages (0.3.11)
    Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-
    packages (from kagglehub) (24.2)
    Requirement already satisfied: pyyaml in /usr/local/lib/python3.11/dist-packages
    (from kagglehub) (6.0.2)
    Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-
    packages (from kagglehub) (2.32.3)
    Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages
    (from kagglehub) (4.67.1)
    Requirement already satisfied: charset-normalizer<4,>=2 in
    /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (3.4.1)
    Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-
    packages (from requests->kagglehub) (3.10)
    Requirement already satisfied: urllib3<3,>=1.21.1 in
    /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (2.3.0)
    Requirement already satisfied: certifi>=2017.4.17 in
    /usr/local/lib/python3.11/dist-packages (from requests->kagglehub) (2025.1.31)
    Requirement already satisfied: kagglehub[pandas-datasets] in
    /usr/local/lib/python3.11/dist-packages (0.3.11)
    Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-
    packages (from kagglehub[pandas-datasets]) (24.2)
    Requirement already satisfied: pyyaml in /usr/local/lib/python3.11/dist-packages
    (from kagglehub[pandas-datasets]) (6.0.2)
```

```
Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-
    packages (from kagglehub[pandas-datasets]) (2.32.3)
    Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages
    (from kagglehub[pandas-datasets]) (4.67.1)
    Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages
    (from kagglehub[pandas-datasets]) (2.2.2)
    Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/dist-
    packages (from pandas->kagglehub[pandas-datasets]) (2.0.2)
    Requirement already satisfied: python-dateutil>=2.8.2 in
    /usr/local/lib/python3.11/dist-packages (from pandas->kagglehub[pandas-
    datasets]) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-
    packages (from pandas->kagglehub[pandas-datasets]) (2025.2)
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-
    packages (from pandas->kagglehub[pandas-datasets]) (2025.2)
    Requirement already satisfied: charset-normalizer<4,>=2 in
    /usr/local/lib/python3.11/dist-packages (from requests->kagglehub[pandas-
    datasets]) (3.4.1)
    Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-
    packages (from requests->kagglehub[pandas-datasets]) (3.10)
    Requirement already satisfied: urllib3<3,>=1.21.1 in
    /usr/local/lib/python3.11/dist-packages (from requests->kagglehub[pandas-
    datasets]) (2.3.0)
    Requirement already satisfied: certifi>=2017.4.17 in
    /usr/local/lib/python3.11/dist-packages (from requests->kagglehub[pandas-
    datasets]) (2025.1.31)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-
    packages (from python-dateutil>=2.8.2->pandas->kagglehub[pandas-datasets])
    (1.17.0)
    Collecting wget
      Downloading wget-3.2.zip (10 kB)
      Preparing metadata (setup.py) ... done
    Building wheels for collected packages: wget
      Building wheel for wget (setup.py) ... done
      Created wheel for wget: filename=wget-3.2-py3-none-any.whl size=9655
    sha256=262633bef2fd9a95c507e330309d8730e4d4a5f89e933f879edc7832383f3c8d
      Stored in directory: /root/.cache/pip/wheels/40/b3/0f/a40dbd1c6861731779f62cc4
    babcb234387e11d697df70ee97
    Successfully built wget
    Installing collected packages: wget
    Successfully installed wget-3.2
[]: # Check GPU
     !nvidia-smi
```

2

Mon Apr 7 23:23:06 2025

----+

```
| NVIDIA-SMI 550.54.15 | Driver Version: 550.54.15 | CUDA Version:
12.4 |
|-----
----+
             Persistence-M | Bus-Id Disp.A | Volatile
| GPU Name
Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util
Compute M. |
                     MIG M. |
|-----
=======|
                  Off | 00000000:00:04.0 Off |
O NVIDIA A100-SXM4-40GB
0 |
| N/A 32C
      PO 44W / 400W | OMiB / 40960MiB | 0%
Default |
Disabled |
+----+
----+
----+
| Processes:
| GPU GI CI PID Type Process name
GPU Memory |
ID
      ID
|-----
=======|
| No running processes found
+-----
```

[]: Pip install -q tensorflow tensorflow-addons

611.8/611.8 kB

29.1 MB/s eta 0:00:00

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.

inflect 7.5.0 requires typeguard>=4.0.1, but you have typeguard 2.13.3 which is incompatible.

```
[]: from google.colab import drive
     drive.mount('/content/drive')
    Mounted at /content/drive
[]: | zip_path = '/content/drive/MyDrive/images_resized.zip'
     extract_path = '/content/chest_xray_images'
[]: unzip -q "$zip_path" -d "$extract_path"
    replace /content/chest_xray_images/images_resized/00014178_001.png? [y]es, [n]o,
    [A]11, [N]one, [r]ename: A
[]: # import zipfile
     # import time
     # start = time.time()
     # with zipfile.ZipFile(zip_path, 'r') as zip_ref:
     # zip_ref.extractall(extract_path)
     # end = time.time()
     # print(f"Extraction completed in {(end - start) / 60:.2f} minutes")
[]: import os
     # Preview a few image filenames
     os.listdir(extract_path)[:10]
[]: ['images_resized']
[]: | # prompt: Count the number of files in 'images_resized' under extract_path
     import os
     # Assuming extract_path is defined as in your previous code
     extract_path = '/content/chest_xray_images'
     image_dir = os.path.join(extract_path, 'images_resized')
     # Check if the directory exists
     if os.path.exists(image_dir):
        num_files = len([name for name in os.listdir(image_dir) if os.path.
      →isfile(os.path.join(image_dir, name))])
        print(f"Number of files in 'images_resized': {num_files}")
     else:
        print(f"Directory 'images_resized' not found in '{extract_path}'")
```

Number of files in 'images_resized': 38008

0.2 Load Dataset

```
[]: # Set the dataset path
      dataset_name = "nih-chest-xrays/data"
      version = 3
      # Set the path to the file you'd like to load
      file_path = "Data_Entry_2017.csv"
      file_path_bbox = "BBox_List_2017.csv"
      gcloud_url_base = 'https://storage.googleapis.com/
       →gcs-public-data--healthcare-nih-chest-xray/png/'
 []: # Load the latest version
      df = kagglehub.load dataset(
        KaggleDatasetAdapter.PANDAS,
        dataset_name,
        file_path,
        # Provide any additional arguments like
        # sql_query or pandas_kwargs. See the
        # documenation for more information:
        # https://qithub.com/Kaqqle/kaqqlehub/blob/main/README.
       \hookrightarrow md#kaggledatasetadapterpandas
      df_box_list = kagglehub.load_dataset(
        KaggleDatasetAdapter.PANDAS,
        dataset_name,
        file_path_bbox
     <ipython-input-25-1e51267dc0e1>:2: DeprecationWarning: load_dataset is
     deprecated and will be removed in future version.
       df = kagglehub.load_dataset(
     <ipython-input-25-1e51267dc0e1>:12: DeprecationWarning: load_dataset is
     deprecated and will be removed in future version.
       df_box_list = kagglehub.load_dataset(
[74]: display(df.info())
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 38008 entries, 0 to 38007
     Data columns (total 12 columns):
      #
          Column
                           Non-Null Count Dtype
      0
          Image Index
                           38008 non-null object
         Finding Labels
                           38008 non-null object
      2 Follow-up #
                           38008 non-null int64
                           38008 non-null int64
      3 Patient ID
         Patient Age
                           38008 non-null int64
```

```
Patient Gender
                     38008 non-null object
 5
    View Position
                     38008 non-null object
 6
 7
    width
                     38008 non-null int64
 8
    height
                     38008 non-null int64
    pixel_spacing x 38008 non-null float64
 10 pixel_spacing y 38008 non-null float64
 11 encoded labels
                     38008 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 3.5+ MB
```

None

Remove all where "View Position" column value is "AP" 1

AP means "anteroposterior dimension" which is an X-ray from front-to-back This wil affect the training with both back-to-front and front-to-back images of MRIs

```
[]: # Entries before removal
     print(f"Before 'AP' removal: {df['View Position'].value_counts()}")
     # Entries after removal
     df = df[df['View Position'] != 'AP']
     # Remaining data is 66.57% of total initial data
     print(f"After 'AP' removal: {df['View Position'].value_counts()}")
    Before 'AP' removal: View Position
    PA
          67310
    AP
          44810
    Name: count, dtype: int64
    After 'AP' removal: View Position
          67310
    PA
    Name: count, dtype: int64
[]: |links = [
         "https://nihcc.box.com/shared/static/vfk49d74nhbxq3nqjg0900w5nvkorp5c.gz",
         "https://nihcc.box.com/shared/static/i28rlmbvmfjbl8p2n3ril0pptcmcu9d1.gz",
         "https://nihcc.box.com/shared/static/f1t00wrtdk94satdfb9olcolqx20z2jp.gz",
         "https://nihcc.box.com/shared/static/0aowwzs5lhjrceb3qp67ahp0rd1l1etg.gz",
         "https://nihcc.box.com/shared/static/v5e3goj22zr6h8tzualxfsqlqaygfbsn.gz",
         "https://nihcc.box.com/shared/static/asi7ikud9jwnkrnkj99jnpfkjdes7161.gz",
         "https://nihcc.box.com/shared/static/jn1b4mw4n6lnh74ovmcjb8y48h8xj07n.gz",
         "https://nihcc.box.com/shared/static/tvpxmn7qyrg10w8wfh9kqfjskv6nmm1j.gz",
         "https://nihcc.box.com/shared/static/upyy3m17qdumlgk2rfcvlb9k6gvqq2pj.gz",
         "https://nihcc.box.com/shared/static/16nilvfa9cg3s28tqv1qc1olm3gnz54p.gz",
         "https://nihcc.box.com/shared/static/hhq8fkdgvcari67vfhs7ppg2w6ni4jze.gz",
         "https://nihcc.box.com/shared/static/ioqwiy20ihqwyr8pf4c24eazhh281pbu.gz",
     ]
```

```
[]: # Create a dictionary for folder locations
     folder_ranges = {
         "images_001": (0, 4998), # Adjusted to O-based index
         "images_002": (4999, 14998),
         "images_003": (14999, 24998),
         "images_004": (24999, 34998),
         "images_005": (34999, 44998),
         "images_006": (44999, 54998),
         "images_007": (54999, 64998),
         "images_008": (64999, 74998),
         "images 009": (74999, 84998),
         "images_010": (84999, 94998),
         "images_011": (94999, 104998),
         "images_012": (104999, 112120)
     }
     def get_image_folder(df, image_name):
         if image_name in df["Image Index"].values:
             image_index = df[df["Image Index"] == image_name].index[0] # Get row_
      \hookrightarrow index
             # print(f"Image {image_name} is at index {image_index}") # Debugging_
      \hookrightarrow output
             for folder, (start, end) in folder_ranges.items():
                 if start <= image_index <= end:</pre>
                     return folder
         return None # If not found
[]: display(df.head())
     display(df.tail())
     display(df.columns)
                                  Finding Labels Follow-up # Patient ID
             Image Index
    0 00000001_000.png
                                    Cardiomegaly
                                                                          1
    1 00000001_001.png Cardiomegaly|Emphysema
                                                                          1
                                                             1
    2 00000001_002.png
                           Cardiomegaly | Effusion
                                                              2
                                                                          1
                                                                          2
    3 00000002 000.png
                                                              0
                                      No Finding
    4 00000003_000.png
                                           Hernia
                                                              0
                                                                          3
       Patient Age Patient Gender View Position OriginalImage[Width Height]
    0
                                                                            2749
                58
                                 Μ
                                               PA
                                                                   2682
    1
                58
                                 М
                                               PA
                                                                   2894
                                                                            2729
    2
                58
                                 М
                                               PA
                                                                   2500
                                                                            2048
    3
                 81
                                 Μ
                                               PA
                                                                   2500
                                                                            2048
    4
                                 F
                 81
                                               PA
                                                                   2582
                                                                            2991
```

y] Unnamed: 11

OriginalImagePixelSpacing[x

```
0
                         0.143 0.143
                                                NaN
                         0.143 0.143
1
                                                NaN
2
                         0.168 0.168
                                                NaN
3
                         0.171 0.171
                                                NaN
4
                         0.143 0.143
                                                NaN
             Image Index Finding Labels
                                          Follow-up #
                                                         Patient ID \
        00030801_001.png
                          Mass|Pneumonia
112115
                                                      1
                                                              30801
112116
        00030802_000.png
                               No Finding
                                                      0
                                                              30802
112117
        00030803 000.png
                               No Finding
                                                      0
                                                              30803
        00030804_000.png
                                                      0
112118
                               No Finding
                                                              30804
112119
        00030805_000.png
                               No Finding
                                                              30805
        Patient Age Patient Gender View Position
                                                   OriginalImage[Width \
112115
                                  М
                                                                   2048
112116
                 29
                                  М
                                               PA
                                                                   2048
                 42
                                  F
                                               PA
112117
                                                                   2048
                                  F
112118
                 30
                                               PA
                                                                   2048
112119
                 27
                                               PA
                                                                   2048
                 OriginalImagePixelSpacing[x
        Height]
                                                   v]
                                                      Unnamed: 11
112115
           2500
                                        0.168 0.168
                                                               NaN
112116
           2500
                                        0.168 0.168
                                                               NaN
                                        0.168 0.168
                                                               NaN
112117
           2500
112118
           2500
                                        0.168 0.168
                                                               NaN
           2500
                                        0.171 0.171
112119
                                                               NaN
Index(['Image Index', 'Finding Labels', 'Follow-up #', 'Patient ID',
       'Patient Age', 'Patient Gender', 'View Position', 'OriginalImage[Width',
       'Height]', 'OriginalImagePixelSpacing[x', 'y]', 'Unnamed: 11'],
      dtype='object')
```

2 We want to have 7 generalized classes from the original 15

Take values from "Finding Labels" and convert them into more generalized labels

```
[]: # Create a list to store all unique labels
all_labels = []

# Iterate over the 'Finding Labels' column
for index, row in df.iterrows():
    labels = row['Finding Labels'].split('|')
    for label in labels:
        all_labels.append(label)

# Get unique labels and print them
all_labels = list(set(all_labels))
print(f"All possible options in 'Finding Labels': {all_labels}")
```

```
'Pneumothorax', 'No Finding', 'Infiltration', 'Fibrosis', 'Pneumonia',
    'Consolidation', 'Nodule', 'Emphysema', 'Pleural_Thickening', 'Effusion',
    'Mass', 'Atelectasis']
[]: def generalize_labels(label):
         if label in ['Pneumonia', 'Consolidation', 'Infiltration']:
             return 'Infection/Infiltration'
         elif label in ['Edema', 'Effusion', 'Pleural_Thickening']:
             return 'Fluid Related Issues'
         elif label in ['Atelectasis', 'Pneumothorax', 'Fibrosis', 'Emphysema']:
             return 'Lung Structure Issues'
         elif label in ['Nodule', 'Mass']:
            return 'Nodule/Mass'
         elif label == 'Cardiomegaly':
            return 'Cardiac Issues'
         elif label == 'Hernia':
            return 'Hernia'
         else:
            return label # If we don't detect an issue 'No Finding'
     df['Finding Labels'] = df['Finding Labels'].apply(lambda x: '|'.
      →join([generalize_labels(label) for label in x.split('|')]))
     # Example:
     display(df.head()) # View the updated DataFrame
                                               Finding Labels Follow-up #
            Image Index
                                               Cardiac Issues
    0 00000001_000.png
                                                                          0
    1 00000001 001.png Cardiac Issues|Lung Structure Issues
                                                                          1
    2 00000001_002.png
                         Cardiac Issues Fluid Related Issues
                                                                          2
    3 00000002_000.png
                                                                          0
                                                   No Finding
    4 00000003_000.png
                                                       Hernia
       Patient ID Patient Age Patient Gender View Position OriginalImage[Width \
    0
                            58
                                                                            2682
                                            М
                                                         PA
                1
                                                         PA
                                                                            2894
    1
                1
                            58
                                            М
    2
                                                                            2500
                1
                            58
                                            М
                                                         PA
    3
                2
                                                         PA
                                                                            2500
                            81
                                            М
    4
                3
                            81
                                            F
                                                         PA
                                                                            2582
       Height] OriginalImagePixelSpacing[x
                                                y] Unnamed: 11
    0
          2749
                                      0.143 0.143
                                                            NaN
          2729
    1
                                      0.143 0.143
                                                            NaN
    2
          2048
                                                            NaN
                                      0.168 0.168
    3
          2048
                                      0.171 0.171
                                                            NaN
          2991
                                      0.143 0.143
                                                            NaN
```

All possible options in 'Finding Labels': ['Edema', 'Hernia', 'Cardiomegaly',

[]: display(df.describe()) display(df.info())

```
Follow-up #
                        Patient ID
                                      Patient Age
                                                    OriginalImage[Width \
       67310.000000
                      67310.000000
                                     67310.000000
                                                           67310.000000
count
mean
           4.786317
                      14396.542802
                                        47.352979
                                                            2632.590016
std
           9.403191
                       8559.885944
                                        16.289550
                                                              374.573816
min
           0.000000
                          1.000000
                                         1.000000
                                                            1143.000000
           0.000000
25%
                       7157.250000
                                        36.000000
                                                            2500.000000
50%
                                                            2678.000000
           1.000000
                      14112.000000
                                        49.000000
75%
           5.000000
                      21117.750000
                                        59.000000
                                                            2992.000000
                                       412.000000
         156.000000
                      30805.000000
                                                            3056.000000
max
             Height]
                      OriginalImagePixelSpacing[x
                                                                    Unnamed: 11
                                                                y]
       67310.000000
                                      67310.000000
                                                     67310.000000
                                                                            0.0
count
mean
        2652.208468
                                          0.153868
                                                         0.153868
                                                                            NaN
         396.607849
                                          0.017179
                                                         0.017179
                                                                            NaN
std
        1001.000000
                                                                            NaN
min
                                          0.115000
                                                         0.115000
25%
                                                                            NaN
        2411.000000
                                          0.143000
                                                         0.143000
50%
                                                                            NaN
        2885.000000
                                          0.143000
                                                         0.143000
75%
        2991.000000
                                          0.168000
                                                         0.168000
                                                                            NaN
        3056.000000
                                          0.194336
                                                         0.194336
                                                                            NaN
max
```

<class 'pandas.core.frame.DataFrame'>
Index: 67310 entries, 0 to 112119
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Image Index	67310 non-null	object
1	Finding Labels	67310 non-null	object
2	Follow-up #	67310 non-null	int64
3	Patient ID	67310 non-null	int64
4	Patient Age	67310 non-null	int64
5	Patient Gender	67310 non-null	object
6	View Position	67310 non-null	object
7	OriginalImage[Width	67310 non-null	int64
8	Height]	67310 non-null	int64
9	OriginalImagePixelSpacing[x	67310 non-null	float64
10	y]	67310 non-null	float64
11	Unnamed: 11	0 non-null	float64

dtypes: float64(3), int64(5), object(4)

memory usage: 6.7+ MB

None

```
[]:  # # Fix column names
  # df_box_list = df_box_list.rename(columns={'Bbox [x': 'x', 'h]': 'h'})
  # df_box_list.head()
```

```
[]: df['Finding Labels'].info()
     df['Finding Labels'].head()
    <class 'pandas.core.series.Series'>
    Index: 67310 entries, 0 to 112119
    Series name: Finding Labels
    Non-Null Count Dtype
    _____
    67310 non-null object
    dtypes: object(1)
    memory usage: 1.0+ MB
[]: 0
                                Cardiac Issues
          Cardiac Issues | Lung Structure Issues
     1
     2
           Cardiac Issues|Fluid Related Issues
     3
                                    No Finding
                                        Hernia
     Name: Finding Labels, dtype: object
[]: df.head()
[]:
             Image Index
                                                Finding Labels Follow-up #
     0 00000001_000.png
                                                Cardiac Issues
     1 00000001 001.png
                          Cardiac Issues | Lung Structure Issues
                                                                           1
     2 00000001_002.png
                           Cardiac Issues|Fluid Related Issues
                                                                           2
     3 00000002 000.png
                                                    No Finding
                                                                           0
     4 00000003_000.png
                                                        Hernia
                                                                           0
       Patient ID Patient Age Patient Gender View Position OriginalImage[Width \
     0
                                                                              2682
                 1
                             58
                                             Μ
                                                          PA
     1
                 1
                             58
                                             М
                                                          PA
                                                                              2894
     2
                 1
                             58
                                             Μ
                                                          PA
                                                                              2500
                 2
     3
                             81
                                             Μ
                                                          PA
                                                                              2500
     4
                 3
                                             F
                                                          PA
                                                                              2582
                             81
       Height]
                 OriginalImagePixelSpacing[x
                                                 y] Unnamed: 11
     0
           2749
                                       0.143 0.143
                                                             NaN
     1
           2729
                                       0.143 0.143
                                                             NaN
     2
           2048
                                       0.168 0.168
                                                             NaN
     3
           2048
                                       0.171 0.171
                                                             NaN
     4
           2991
                                       0.143 0.143
                                                             NaN
```

3 Pre-processing - Image Scaling

```
[]: # Reduce rows with 'No Finding' label to a maximum of 10,000
    no_finding_df = df[df['Finding Labels'] == 'No Finding']
    if len(no finding df) > 10000:
        no_finding_df = no_finding_df.sample(n=10000, random_state=42) # Randomly_
     ⇔sample 10,000 rows
     # Concatenate the reduced 'No Finding' rows with other rows
    other_findings_df = df[df['Finding Labels'] != 'No Finding']
    df = pd.concat([no finding df, other findings df], ignore index=True)
[]: len(df)
[]: 38008
[]: import os
    image files = set(os.listdir('/content/chest xray images/images resized'))
    missing_files = df[~df['Image Index'].isin(image_files)]
    print("Number of missing images:", len(missing_files))
    Number of missing images: 0
[]: # Rename columns
    df = df.rename(columns={
        "OriginalImage[Width": "width",
         "Height]": "height",
         "OriginalImagePixelSpacing[x": "pixel_spacing x",
         "y]": "pixel spacing y"
    })
    display(df.head())
            Image Index Finding Labels Follow-up # Patient ID Patient Age \
    0 00019856_000.png
                            No Finding
                                                          19856
                                                                          57
                                                  0
    1 00001020_000.png
                            No Finding
                                                  0
                                                           1020
                                                                          52
                                                                          59
    2 00008187_001.png
                            No Finding
                                                  1
                                                           8187
    3 00003360_003.png
                            No Finding
                                                  3
                                                           3360
                                                                           8
    4 00014364_000.png
                            No Finding
                                                  0
                                                          14364
                                                                          26
      Patient Gender View Position width height pixel_spacing x \
    0
                                PA
                                     2992
                                             2991
                                                             0.143
                   М
                                PA
                                     2500
                                             2048
                                                             0.171
    1
    2
                   М
                                PΑ
                                     2500
                                             2048
                                                             0.168
    3
                   М
                                PΑ
                                     2048
                                             2500
                                                             0.168
    4
                   F
                                PΑ
                                     2454
                                             2991
                                                             0.143
```

```
pixel_spacing y Unnamed: 11
                                              encoded_labels
    0
                                       [0, 0, 0, 0, 0, 1, 0]
                  0.143
                                 {\tt NaN}
                  0.171
                                 {\tt NaN}
                                       [0, 0, 0, 0, 0, 1, 0]
    1
    2
                  0.168
                                 {\tt NaN}
                                       [0, 0, 0, 0, 0, 1, 0]
    3
                  0.168
                                 NaN
                                       [0, 0, 0, 0, 0, 1, 0]
    4
                  0.143
                                       [0, 0, 0, 0, 0, 1, 0]
                                 {\tt NaN}
[]: # drop 'Unnamed: 11' column
     df = df.drop(columns=['Unnamed: 11'], errors='ignore')
     display(df.head())
             Image Index Finding Labels Follow-up #
                                                       Patient ID Patient Age
      00019856_000.png
                             No Finding
                                                            19856
                                                    0
                                                                             57
                                                                             52
    1 00001020_000.png
                             No Finding
                                                    0
                                                              1020
    2 00008187_001.png
                             No Finding
                                                    1
                                                             8187
                                                                             59
                                                    3
                                                                              8
    3 00003360_003.png
                             No Finding
                                                             3360
    4 00014364_000.png
                             No Finding
                                                    0
                                                            14364
                                                                             26
      Patient Gender View Position width height pixel_spacing x \
                                               2991
    0
                    М
                                 PA
                                      2992
                                                               0.143
                                                               0.171
    1
                    М
                                 PA
                                      2500
                                               2048
    2
                    Μ
                                 PA
                                      2500
                                               2048
                                                               0.168
    3
                                      2048
                                               2500
                                                               0.168
                    М
                                 PA
                    F
    4
                                 PA
                                      2454
                                               2991
                                                               0.143
                                encoded_labels
       pixel_spacing y
    0
                  0.143 [0, 0, 0, 0, 0, 1, 0]
    1
                  0.171 [0, 0, 0, 0, 0, 1, 0]
    2
                  0.168 [0, 0, 0, 0, 0, 1, 0]
    3
                  0.168
                         [0, 0, 0, 0, 0, 1, 0]
                  0.143 [0, 0, 0, 0, 0, 1, 0]
[]: # Extract all unique labels
     all_labels = sorted(set(label for sublist in df['Finding Labels'].str.

¬split('|') for label in sublist))
     display(all labels)
     # Encode multi-labels
     def encode multilabel(labels):
         label_set = labels.split('|')
         return [1 if label in label_set else 0 for label in all_labels]
     df['encoded_labels'] = df['Finding Labels'].apply(encode_multilabel)
     display(df.head())
     y = np.array(df['encoded_labels'].tolist())
    ['Cardiac Issues',
```

'Fluid Related Issues',

```
'Hernia',
 'Infection/Infiltration',
 'Lung Structure Issues',
 'No Finding',
 'Nodule/Mass'l
        Image Index Finding Labels Follow-up # Patient ID Patient Age
0 00019856 000.png
                        No Finding
                                              0
                                                       19856
                                                                       57
1 00001020_000.png
                        No Finding
                                              0
                                                       1020
                                                                       52
2 00008187 001.png
                        No Finding
                                              1
                                                       8187
                                                                       59
3 00003360_003.png
                                              3
                                                       3360
                                                                        8
                        No Finding
4 00014364_000.png
                        No Finding
                                              0
                                                       14364
                                                                       26
 Patient Gender View Position width height pixel_spacing x \
0
               М
                            PA
                                 2992
                                         2991
                                                          0.143
                            PA
                                 2500
                                         2048
                                                          0.171
1
               М
2
                            PA
                                 2500
                                         2048
                                                          0.168
               Μ
3
               Μ
                            PA
                                 2048
                                         2500
                                                          0.168
4
               F
                            PA
                                 2454
                                         2991
                                                          0.143
  pixel_spacing y
                           encoded_labels
0
             0.143 [0, 0, 0, 0, 0, 1, 0]
1
             0.171 [0, 0, 0, 0, 0, 1, 0]
2
             0.168 [0, 0, 0, 0, 0, 1, 0]
3
             0.168 [0, 0, 0, 0, 0, 1, 0]
4
             0.143 [0, 0, 0, 0, 0, 1, 0]
```

4 TensorFlow Data Generator

```
[]: import tensorflow as tf
     import os
     import numpy as np
     # Define constants
     IMG_SIZE = 512 # You can change this if needed (e.g., 1024)
     BATCH_SIZE = 8
     IMAGE PATH = '/content/chest xray images/images resized'
     # Function to load and preprocess an image
     def load_image(image_id):
         # Construct full path
         image_path = os.path.join(IMAGE_PATH, image_id.numpy().decode('utf-8'))
         image = tf.io.read_file(image_path)
         image = tf.image.decode_jpeg(image, channels=3) # For JPEG; adjust if your_
      ⇔images are PNG
         image = tf.image.resize(image, [IMG_SIZE, IMG_SIZE])
         image = image / 255.0 # Normalize pixels
```

```
return image

# Parsing function for tf.data.Dataset
def parse_function(filename, label):
    image = tf.py_function(func=load_image, inp=[filename], Tout=tf.float32)
    image.set_shape([IMG_SIZE, IMG_SIZE, 3])
    return image, label

# Extract filenames and labels from your DataFrame
image_filenames = df['Image Index'].values
labels = np.array(df['encoded_labels'].tolist(), dtype=np.float32)

# Build the dataset
dataset = tf.data.Dataset.from_tensor_slices((image_filenames, labels))
dataset = dataset.map(parse_function, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.shuffle(1000).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
```

5 Train/Test Split

```
[]: trainval_df, test_df = train_test_split(df, test_size=0.1, random_state=42)
    train_df, val_df = train_test_split(trainval_df, test_size=0.2, random_state=42)

[]: from sklearn.model_selection import train_test_split

# train_df, val_df = train_test_split(df, test_size=0.2, random_state=42)

# Build datasets for training and validation

def build_dataset_from_df(dataframe):
    filenames = dataframe['Image Index'].values
    labels = np.array(dataframe['encoded_labels'].tolist(), dtype=np.float32)
    ds = tf.data.Dataset.from_tensor_slices((filenames, labels))
    ds = ds.map(parse_function, num_parallel_calls=tf.data.AUTOTUNE)
    ds = ds.shuffle(1000).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
    return ds

train_dataset = build_dataset_from_df(train_df)
```

6 Fine-Tuning EfficientNet

val_dataset = build_dataset_from_df(val_df)
test_dataset = build_dataset_from_df(test_df)

```
[]: from tensorflow.keras.applications import EfficientNetBO from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Input, Dropout from tensorflow.keras.models import Model
```

```
from tensorflow.keras.metrics import BinaryAccuracy
NUM_CLASSES = 7 # Number of classes
# Load base model without the top layer
base_model = EfficientNetB0(weights='imagenet', include_top=False,_
→input_shape=(IMG_SIZE, IMG_SIZE, 3))
base_model.trainable = False # Initially freeze the base_model
inputs = Input(shape=(IMG_SIZE, IMG_SIZE, 3))
x = base_model(inputs, training=False)
x = GlobalAveragePooling2D()(x)
x = Dropout(0.4)(x)
outputs = Dense(NUM_CLASSES, activation='sigmoid')(x)
model = Model(inputs, outputs)
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', u
→metrics=[BinaryAccuracy()])
model.summary()
```

Model: "functional_2"

```
Layer (type)
                                        Output Shape
→Param #
input_layer_5 (InputLayer)
                                       (None, 512, 512, 3)
                                                                                  Ш
→ 0
efficientnetb0 (Functional)
                                       (None, 16, 16, 1280)
                                                                           1.1
4,049,571
                                       (None, 1280)
global_average_pooling2d_2
                                                                                  ш
(GlobalAveragePooling2D)
                                                                                  Ш
dropout_2 (Dropout)
                                        (None, 1280)
                                                                                  ш
dense_2 (Dense)
                                        (None, 7)
                                                                                1.1
98,967
```

Total params: 4,058,538 (15.48 MB)

Trainable params: 8,967 (35.03 KB)

Non-trainable params: 4,049,571 (15.45 MB)

7 Training (10 Epochs)

```
[]: history = model.fit(train_dataset, validation_data=val_dataset, epochs=10)
    Epoch 1/10
    3421/3421
                          206s 53ms/step
    - binary_accuracy: 0.8139 - loss: 0.4385 - val_binary_accuracy: 0.8156 -
    val_loss: 0.4283
    Epoch 2/10
    3421/3421
                          157s 45ms/step
    - binary_accuracy: 0.8147 - loss: 0.4353 - val_binary_accuracy: 0.8156 -
    val_loss: 0.4283
    Epoch 3/10
    3421/3421
                          157s 45ms/step
    - binary_accuracy: 0.8146 - loss: 0.4350 - val_binary_accuracy: 0.8156 -
    val_loss: 0.4290
    Epoch 4/10
    3421/3421
                          156s 44ms/step
    - binary_accuracy: 0.8149 - loss: 0.4353 - val_binary_accuracy: 0.8156 -
    val_loss: 0.4285
    Epoch 5/10
    3421/3421
                          156s 44ms/step
    - binary_accuracy: 0.8149 - loss: 0.4343 - val_binary_accuracy: 0.8156 -
    val_loss: 0.4273
    Epoch 6/10
    3421/3421
                          157s 45ms/step
    - binary_accuracy: 0.8147 - loss: 0.4346 - val_binary_accuracy: 0.8156 -
    val loss: 0.4322
    Epoch 7/10
    3421/3421
                          161s 46ms/step
    - binary_accuracy: 0.8150 - loss: 0.4361 - val_binary_accuracy: 0.8156 -
    val_loss: 0.4289
    Epoch 8/10
    3421/3421
                          164s 47ms/step
    - binary_accuracy: 0.8146 - loss: 0.4354 - val_binary_accuracy: 0.8156 -
    val_loss: 0.4281
    Epoch 9/10
                          162s 46ms/step
    3421/3421
    - binary_accuracy: 0.8149 - loss: 0.4353 - val_binary_accuracy: 0.8156 -
    val_loss: 0.4312
```

```
Epoch 10/10
    3421/3421
                          162s 46ms/step
    - binary_accuracy: 0.8143 - loss: 0.4347 - val_binary_accuracy: 0.8156 -
    val_loss: 0.4290
[]: print(history.history.keys())
    dict_keys(['binary_accuracy', 'loss', 'val_binary_accuracy', 'val_loss'])
```

Manually Test Predictions on Test Data

```
[78]: # Grab a batch from the test dataset
      for images, labels in test_dataset.take(1):
          predictions = model.predict(images)
          # Print the first 5 predictions vs actual labels
          for i in range(8):
                                  {labels[i].numpy().round(2)}")
              print(f"Actual:
              print(f"Predicted: {predictions[i].round(2)}\n")
```

1/1 Os 67ms/step Actual: [0. 0. 0. 0. 0. 1. 0.] [0.06 0.19 0. 0.3 0.33 0.23 0.22] Predicted: Actual: [0. 0. 0. 0. 0. 0. 1.]

Predicted: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

Actual: [0. 0. 0. 1. 1. 0. 0.]

Predicted: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

Actual: [0. 0. 0. 0. 0. 1. 0.]

Predicted: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

Actual: [0. 0. 0. 1. 0. 0. 0.]

Predicted: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

Actual: [0. 0. 0. 0. 1. 0. 0.]

Predicted: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

Actual: [0. 0. 0. 0. 0. 1. 0.]

Predicted: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

Actual: [0. 1. 0. 0. 1. 0. 0.]

Predicted: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

9 Plot Training Curves (Accuracy/Loss)

```
[]: import matplotlib.pyplot as plt
     # Plot binary accuracy
    plt.plot(history.history['binary_accuracy'], label='Train Binary Accuracy')
     plt.plot(history.history['val_binary_accuracy'], label='Val Binary Accuracy')
     plt.title('Binary Accuracy Over Epochs')
     plt.xlabel('Epoch')
     plt.ylabel('Accuracy')
     plt.legend()
     plt.grid()
    plt.show()
     # Plot loss
     plt.plot(history.history['loss'], label='Train Loss')
     plt.plot(history.history['val_loss'], label='Val Loss')
     plt.title('Loss Over Epochs')
     plt.xlabel('Epoch')
    plt.ylabel('Loss')
     plt.legend()
     plt.grid()
    plt.show()
```


10 Evaluate on Test Set

```
[]: test_loss, test_binary_accuracy = model.evaluate(test_dataset)
print(f"\nTest Binary Accuracy: {test_binary_accuracy:.4f}")
print(f"Test Loss: {test_loss:.4f}")
```

476/476 24s 42ms/step - binary_accuracy: 0.8127 - loss: 0.4345

Test Binary Accuracy: 0.8148

Test Loss: 0.4314

11 Per-Class Performance (Precision/Recall)

```
[]: from sklearn.metrics import classification_report

# Collect predictions and true labels

y_true = []

y_pred = []
```

```
for images, labels in test_dataset:
    preds = model.predict(images)
    y_true.extend(labels.numpy())
    y_pred.extend((preds > 0.5).astype(int)) # Threshold at 0.5
# Convert to numpy arrays
y_true = np.array(y_true)
y_pred = np.array(y_pred)
# Classification report
print(classification_report(y_true, y_pred, target_names=all_labels))
1/1
                Os 57ms/step
1/1
                0s 59ms/step
1/1
                Os 58ms/step
1/1
                0s 57ms/step
1/1
                Os 55ms/step
1/1
                Os 57ms/step
1/1
                Os 55ms/step
1/1
                Os 57ms/step
1/1
                Os 56ms/step
1/1
                Os 59ms/step
1/1
                Os 55ms/step
                Os 57ms/step
1/1
1/1
                Os 57ms/step
                Os 57ms/step
1/1
1/1
                Os 56ms/step
1/1
                Os 58ms/step
1/1
                Os 63ms/step
1/1
                Os 69ms/step
1/1
                Os 57ms/step
1/1
                Os 56ms/step
1/1
                Os 67ms/step
1/1
                0s 58ms/step
1/1
                Os 58ms/step
1/1
                Os 56ms/step
1/1
                Os 56ms/step
1/1
                Os 57ms/step
                Os 57ms/step
1/1
1/1
                0s 56ms/step
1/1
                Os 56ms/step
1/1
                Os 59ms/step
1/1
                Os 58ms/step
1/1
                Os 78ms/step
1/1
                Os 61ms/step
1/1
                Os 59ms/step
1/1
                Os 57ms/step
```

1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	55ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	56ms/step
1/1	0s	60ms/step
1/1	0s	56ms/step
1/1	0s	55ms/step
1/1	0s	55ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step

1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	61ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	65ms/step
1/1	0s	65ms/step
1/1	0s	60ms/step
1/1	0s	72ms/step
1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	60ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	55ms/step
1/1	0s	55ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	67ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	60ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	55ms/step

1/1	0s	56ms/step
1/1	0s	56ms/step
1/1		56ms/step
1/1		56ms/step
1/1	0s	-
1/1		58ms/step
1/1		59ms/step
1/1		63ms/step
1/1	0s	_
1/1		56ms/step
1/1		55ms/step
1/1		56ms/step
1/1		58ms/step
1/1		56ms/step
		-
1/1		55ms/step
1/1		56ms/step
1/1		54ms/step
1/1		55ms/step
1/1		56ms/step
1/1		55ms/step
1/1	0s	-
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	55ms/step
1/1	0s	56ms/step
1/1	0s	54ms/step
1/1	0s	56ms/step
1/1	0s	55ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	_
1/1	0s	57ms/step
1/1	0s	_
1/1	0s	
1/1	0s	
1/1		58ms/step
1/1	0s	_
1/ 1	OB	coms/step

1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	55ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	60ms/step
1/1	0s	60ms/step
1/1	0s	59ms/step
1/1	0s	68ms/step
1/1	0s	63ms/step
1/1	0s	68ms/step
1/1	0s	57ms/step
1/1	0s	68ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	60ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step

1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	55ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	55ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	59ms/step
		_

1/1	0s	56ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	60ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	66ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	60ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	60ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	60ms/step
1/1	0s	60ms/step
1/1	0s	61ms/step
1/1	0s	65ms/step
1/1	0s	60ms/step
1/1	0s	59ms/step
1/1	0s	66ms/step
1/1	0s	58ms/step
1/1	0s	60ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	60ms/step
1/1	0s	59ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step

1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	60ms/step
1/1	0s	59ms/step
1/1	0s	59ms/step
1/1	0s	62ms/step
1/1	0s	60ms/step
1/1	0s	59ms/step
1/1	0s	60ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	55ms/step

1/1	0s	56ms/step
1/1	0s	55ms/step
1/1	0s	55ms/step
1/1	0s	55ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	55ms/step
1/1	0s	55ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	54ms/step
1/1	0s	55ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	55ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	58ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	_
1/1	0s	60ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	56ms/step
		_

1/1	0s	57ms/step
1/1		57ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	60ms/step
1/1	0s	59ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	59ms/step
1/1	0s	60ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	60ms/step
1/1	0s	60ms/step
1/1	0s	59ms/step
1/1	0s	59ms/step
1/1	0s	60ms/step
1/1	0s	58ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	59ms/step
1/1	0s	60ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	58ms/step
1/1	0s	57ms/step
1/1	0s	55ms/step
1/1	0s	56ms/step
1/1	0s	55ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step
1/1	0s	56ms/step
1/1	0s	56ms/step
1/1	0s	59ms/step
1/1	0s	57ms/step
1/1	0s	57ms/step

1/1	0s	55ms	/step			
1/1	0s	55ms	/step			
1/1	0s	56ms	/step			
1/1	0s	58ms	/step			
1/1	0s	56ms	/step			
1/1	0s	59ms	/step			
1/1	0s	57ms	/step			
1/1	0s	59ms	/step			
1/1	6s	6s/s	tep			
			precision	recall	f1-score	support
Cardiac	Is	sues	0.00	0.00	0.00	155
Fluid Related	Is	sues	0.00	0.00	0.00	881
	Не	rnia	0.00	0.00	0.00	21
Infection/Infil	tra	tion	0.00	0.00	0.00	1062
Lung Structure	Is	sues	0.00	0.00	0.00	1066
No	Fin	ding	0.00	0.00	0.00	1015
Nodu	le/	Mass	0.00	0.00	0.00	727
mi	cro	avg	0.00	0.00	0.00	4927
ma	cro	avg	0.00	0.00	0.00	4927
weigh	ted	avg	0.00	0.00	0.00	4927
samp	les	avg	0.00	0.00	0.00	4927

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in samples with no predicted labels. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

```
[79]: import matplotlib.pyplot as plt

# Show actual image content + prediction
for img_batch, label_batch in test_dataset.take(1):
    for i in range(10):
        img = img_batch[i].numpy()
        label = label_batch[i].numpy()
        pred = model.predict(tf.expand_dims(img, axis=0))[0]
```

```
plt.imshow(img)
plt.title(f"Actual: {label}\nPred: {np.round(pred, 2)}")
plt.axis('off')
plt.show()
```

1/1 0s 51ms/step

Actual: [0. 0. 0. 0. 1. 0. 0.] Pred: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

1/1 0s 51ms/step

Actual: [0. 0. 0. 0. 0. 1. 0.] Pred: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

1/1 0s 51ms/step

Actual: [0. 1. 0. 0. 0. 0. 0.] Pred: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

1/1 0s 50ms/step

Actual: [0. 0. 0. 0. 0. 1. 0.] Pred: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

1/1 0s 50ms/step

Actual: [0. 0. 0. 1. 0. 0. 1.] Pred: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

1/1 0s 51ms/step

Actual: [0. 1. 0. 0. 0. 0. 0.] Pred: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

1/1 0s 50ms/step

Actual: [0. 0. 0. 0. 0. 1. 0.] Pred: [0.06 0.19 0. 0.3 0.33 0.23 0.22]

1/1 0s 49ms/step

Actual: [0. 0. 0. 1. 0. 0. 0.] Pred: [0.06 0.19 0. 0.3 0.33 0.23 0.22]


```
InvalidArgumentError
                                          Traceback (most recent call last)
<ipython-input-79-35c1d4aa5e48> in <cell line: 0>()
      4 for img_batch, label_batch in test_dataset.take(1):
            for i in range(10):
                img = img_batch[i].numpy()
                label = label_batch[i].numpy()
                pred = model.predict(tf.expand_dims(img, axis=0))[0]
/usr/local/lib/python3.11/dist-packages/tensorflow/python/util/traceback_utils.
 →py in error_handler(*args, **kwargs)
    151
            except Exception as e:
              filtered_tb = _process_traceback_frames(e.__traceback__)
    152
--> 153
              raise e.with_traceback(filtered_tb) from None
    154
            finally:
    155
              del filtered_tb
/usr/local/lib/python3.11/dist-packages/tensorflow/python/framework/ops.py in_u
 →raise_from_not_ok_status(e, name)
   6000 def raise_from_not_ok_status(e, name) -> NoReturn:
         e.message += (" name: " + str(name if name is not None else ""))
```

```
raise core._status_to_exception(e) from None # pylint:_
     -> 6002

→disable=protected-access

          6003
          6004
       InvalidArgumentError: {{function_node __wrapped__StridedSlice_device_/job:
        -localhost/replica:0/task:0/device:GPU:0}} slice index 8 of dimension 0 out of
        ⇔bounds. [Op:StridedSlice] name: strided_slice/
[80]: for layer in model.layers:
          if isinstance(layer, tf.keras.layers.Dense):
              print(layer.get_weights())
     [array([[-0.15821423, -0.19162193, -0.02268133, ..., -0.00020346,
              0.08569334, -0.18609829,
            [ 0.03601435, 0.03829023, 0.04720568, ..., 0.09879349,
             -0.12969258, 0.0722261],
            [-0.04618679, 0.0482053, 0.16460878, ..., 0.05681115,
             -0.03685991, -0.05202927],
            [-0.09491635, -0.0427932, -0.07238369, ..., -0.03297503,
              0.01786666, 0.0029539],
            [-0.02404725, -0.05737611, 0.11355923, ..., 0.00541141,
              0.10088314, -0.08804408],
            [\ 0.02356225,\ 0.04647821,\ 0.20133413,\ ...,\ 0.02582014,
              0.03821019, 0.00664525]], dtype=float32), array([-0.19187073,
     -0.14054905, -0.16375318, -0.09539691, -0.1152894,
            -0.12676008, -0.16194436], dtype=float32)]
[81]: from sklearn.metrics import classification_report
      y_pred_probs = model.predict(test_dataset)
      y_pred = (y_pred_probs > 0.5).astype(int)
      y_true = np.vstack([y for _, y in test_dataset])
      print(classification_report(y_true, y_pred, target_names=all_labels))
     476/476
                         31s 43ms/step
                             precision
                                           recall f1-score
                                                              support
             Cardiac Issues
                                   0.00
                                             0.00
                                                       0.00
                                                                  155
       Fluid Related Issues
                                   0.00
                                             0.00
                                                       0.00
                                                                  881
                                   0.00
                                             0.00
                                                       0.00
                     Hernia
                                                                   21
     Infection/Infiltration
                                  0.00
                                             0.00
                                                       0.00
                                                                  1062
                                  0.00
                                             0.00
                                                       0.00
      Lung Structure Issues
                                                                  1066
                 No Finding
                                  0.00
                                             0.00
                                                       0.00
                                                                  1015
                Nodule/Mass
                                  0.00
                                             0.00
                                                       0.00
                                                                  727
                  micro avg
                                   0.00
                                             0.00
                                                       0.00
                                                                  4927
                                   0.00
                                             0.00
                                                       0.00
                                                                  4927
                  macro avg
```

weighted avg	0.00	0.00	0.00	4927
samples avg	0.00	0.00	0.00	4927

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in samples with no predicted labels. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

[]: