Progress Presentation-I

e-Yantra Summer Internship-2018

Low Cost Sensor Node

Sachin Jadhav Nithin Thilakappan Nishit Patel

Mentors: Parin Chheda, Kalind Karia

IIT Bombay

June 7, 2018

Overview of Project

Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel

Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans
Thank You

Project Name: Low Cost Sensor Node

Objectives:

- A custom built power supply for optimized for low power sensor node applications
- 2 Ability to program via Arduino IDE/ Atmel Studio
- 3 Use nRF2401 for RF communication
- Completely open source design and sample codes to make it useful for WSNs
- **5** Can be used as general purpose microcontroller board for learning interfacing and C programming

■ Deliverables:

- A sensor node platform along with sample codes for rapid prototyping
- 2 A firmware for low power modes and nRF24L01 networking
- 3 Documenation on Hardware and Software

Overview of Task

Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nichit Patel

Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

Task No.	Tasks	Deadline
		(in Days)
1	Study about different sensor nodes platform available and	1
	their USP. Take desirable aspects of each	
2	Review low power modes in ATmega328p, nRF2401 litera-	1
	ture review	
3	Build prototype using Arduino Pro Mini and nRF2401, test	2
	range theoretically and experimentally in outdoor environ-	
	ment	
4	Research components available and select to fit price v/s	2
	performance metric	
5	Build PCB design, source components, evaluation in Proteus	5
	(if necessary)	
6	Prototype soldering and testing	2
7	Building a network of 3 nodes, relaying info, power consump-	5
	tion analysis	
8	Making reusable firmware for nRF2401, interfacing soil mois-	4-5
	ture, temperature/humidity sensors	
9	Loading TinyOS, initial experiments	2
10	Trying out the features available in tiny OS, feasibility check	3
11	Firmware documentation, hardware manual and reporting	3
	result	

Progress Presentation-I

Nithin
Thilakappan
Nishit Patel

Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced Future Plans

- Study of ATmega328p datasheet
- Wireless module for communication
 - 1 XBee (250 Kbps, 1.2 km, Rs. 1158)
 - 2 Bluetooth (1 Mbps, 10 m, Rs. 250)
 - 3 nRF24L01 (2 Mbps, 100 m, Rs. 100)
- Study of RF24 library with useful APIs
- Successfully uploaded bootloader on Arduino Pro Mini
- Selected components for circuit design
 - 1 LDO (MIC5219)
 - 2 Boost converter (FP6291)
 - MOSFET (PMV65XP)

Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel

Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans
Thank You

■ Prototype hardware for range testing

Figure 1: Prototype Hardware

Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel

Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task

Challenges Faced

Future Plans

Thank You

■ PCB schematic design of final circuit

Figure 2: Schematic design of board

Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel

Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

- Completed testing of star network by using two transmitter and one receiver
- Measure current of Arduino Pro Mini
 - Normal mode current = 11.5 mA
 - Sleep mode current = 0.6 mA
- Measure current of nRF24L01
 - Normal mode current = 1.2 mA
 - stand by mode current = 40 uA
 - Sleep mode current = 900 nA
- Test the range of nRF24L01 in outdoor environment with different data rate
 - MIN (-18 dBm) power = **0** to **6** m
 - LOW (-12 dBm) power = **0** to **8** m
 - HIGH (-6 dBm) power = **0** to **12** m
 - MAX (0 dBm) power = 0 to 16 m

Progress
Presentation-I
Sachin Jadhav
Nithin
Thilakappan
Nishit Patel
Mentors:

Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

Figure 3: Current of Arduino Pro Mini (Sleep mode, Idle mode)

Progress Presentation-I

Nithin

Nithin

Thilakappan

Nichit Patel

Parin Chheo Kalind Kar

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

Figure 4: Current of nRF24L01 (Active mode, Sleep mode)

Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel

Mentors: Parin Chheda Kalind Karia

Overview of Project Overview of Task

Task

Accomplished

Future Plans

Table 1: Range testing of nRF24L01 (At different data rates)

Transmission	MIN	LOW	HIGH	MAX
Power level	power	power	power	power
	(-18	(-12	(-6 dBm)	(0 dBm)
	dBm)	dBm)		
Distance (meter)	,	ĺ		
3.8	100%	100%	100%	100%
4.9	100%	100%	100%	100%
5.9	100%	100%	100%	100%
6.9	47%	100%	100%	100%
8	0%	100%	100%	100%
8.2	0%	100%	100%	100%
10	0%	74%	100%	100%
12.4	0%	0%	100%	100%
15.6	0%	0%	86%	100%

Challenges Faced

Progress Presentation-II

Sachin Jadha Nithin Thilakappan Nichit Patel

Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Future Plans

- Prototype testing of nRF24L01
- Range testing of nRF24L01 in outdoor environment
- Setting of fuse bits (Low, High, Extended) using AVRDude
- Importing RF24 library in Atmel Studio
- Differentiating data of two transmitter at one receiver

Future Plans

Progress Presentation-I

Sachin Jadha Nithin Thilakappan Nishit Patel

Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced Future Plans

- PCB printing, soldering and testing
- Solve the problem of RF24 library in Atmel Studio, so that we can make example codes for prototype
- Duty cycling of ATmega328p
- Study about RF24mesh library
- Setup of 5 nodes WSN star network
- Use RPi as a gateway connected to master
- Operating life prediction of WSN
- Add soil moisture, light intensity sensor, humidity sensor on board and make provision to connect other sensors if needed

Thank You

Progress Presentation-I

Sachin Jadhav Nithin Thilakappan

Mentors: Parin Chheda, Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

Thank You

THANK YOU !!!