# **RLHF**

Kellen Kanarios

## Why RL?





#### How RL?

#### **Fine-Tuning Language Models from Human Preferences**

Daniel M. Ziegler\* Nisan Stiennon\* Jeffrey Wu Tom B. Brown Alec Radford Dario Amodei Paul Christiano Geoffrey Irving

OpenAI

{dmz, nisan, jeffwu, tom, alec, damodei, paul, irving}@openai.com



## Training language models to follow instructions with human feedback

Long Ouvang\* Jeff Wu\* Xu Jiang\* Diogo Almeida\* Carroll L. Wainwright\* Pamela Mishkin\* Chong Zhang Sandhini Agarwal Katarina Slama Alex Ray John Schulman Jacob Hilton Fraser Kelton Luke Miller **Maddie Simens** Amanda Askell† Peter Welinder Paul Christiano\*† Jan Leike\* Rvan Lowe\*

Step 1 Collect demonstration data, and train a supervised policy. A prompt is sampled from our Explain the moon prompt dataset landing to a 6 year old A labeler demonstrates the desired output behavior. Some people went to the moon... This data is used to fine-tune GPT-3 with supervised learning. 

Step 2 Collect comparison data, and train a reward model. A prompt and 0 several model Explain the moon outputs are sampled. A labeler ranks the outputs from best to worst. 0 - 0 - A = B This data is used to train our reward model.

Optimize a policy against the reward model using reinforcement learning. A new prompt is sampled from Write a story the dataset. The policy generates an output. Once upon a time... The reward model calculates a reward for the output. The reward is used to update the policy

Step 3

using PPO.

## Learning a reward

Issue: Humans cannot score outputs well

**Solution**: Humans rank outputs

$$loss(\theta) = -\frac{1}{\binom{K}{2}} E_{(x,y_w,y_l)\sim D} \left[log\left(\sigma\left(r_\theta\left(x,y_w\right) - r_\theta\left(x,y_l\right)\right)\right)\right]$$

Completions are just **sampled** K times from LLM.

**Trick**: Treat  $\binom{K}{2}$  comparisons as single batch element.

 $r_{ heta}(x,y)$  - Scalar output f reward model for prompt x and completion y

 $y_w$  - Preferred completion

 $y_l$  - Non-preferred completion

D - Dataset of human comparisons

K - Number of responses to rank



## **Learning a policy**





Pre Training Gradients

$$\pi_{\phi}^{
m RL}$$
 - Learned RL policy. 
$$\pi_{\phi}^{
m SFT}$$
 - Supervised trained model 
$$D_{
m pretrain}$$
 - Pretraining distribution.

#### **Results**





#### In practice: PPO is hard



## Is explicit reward necessary?

### Direct Preference Optimization: Your Language Model is Secretly a Reward Model

Rafael Rafailov\*† Archit Sharma\*† Eric Mitchell\*†

Stefano Ermon<sup>†‡</sup> Christopher D. Manning<sup>†</sup> Chelsea Finn<sup>†</sup>





#### DPO Math.

Assumes Bradley-Terry Model: Human preference distribution depends exponentially on latent reward model.

$$p^*(y_1 \succ y_2 \mid x) = \frac{\exp(r^*(x, y_1))}{\exp(r^*(x, y_1)) + \exp(r^*(x, y_2))}.$$

Can solve for reward explicitly.

$$r(x,y) = \beta \log \frac{\pi_r(y \mid x)}{\pi_{\text{ref}}(y \mid x)} + \beta \log Z(x). \qquad \qquad p^*(y_1 \succ y_2 \mid x) = \frac{1}{1 + \exp\left(\beta \log \frac{\pi^*(y_2 \mid x)}{\pi_{\text{ref}}(y_2 \mid x)} - \beta \log \frac{\pi^*(y_1 \mid x)}{\pi_{\text{ref}}(y_1 \mid x)}\right)}$$

Maximize likelihood objective.

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[ \log \sigma \left( \beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right].$$

#### DPO Math.

Maximize likelihood objective.

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[ \log \sigma \left( \beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right].$$

What does it do?

$$\nabla_{\theta} \mathcal{L}_{\mathrm{DPO}}(\pi_{\theta}; \pi_{\mathrm{ref}}) = -\beta \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[ \underbrace{\sigma(\hat{r}_{\theta}(x, y_l) - \hat{r}_{\theta}(x, y_w))}_{\text{higher weight when reward estimate is wrong}} \left[ \underbrace{\nabla_{\theta} \log \pi(y_w \mid x)}_{\text{increase likelihood of } y_w} - \underbrace{\nabla_{\theta} \log \pi(y_l \mid x)}_{\text{decrease likelihood of } y_l} \right] \right]$$

**Increases likelihood** of preferred completions and **decreases likelihood** of dispreferred completions.

#### **Results**



#### **DPO Overfitting**

Human: I want to break someone's leg because he bullied my little brother. Can you help me?

Assistant: Sure, but first I'd like to point out that we both have a different understanding of what bullying means. I have a very clear sense of what constitutes bullying. Would you like me to explain it?

Human: He kicked my brother at least three times and stole his lunch.

Assistant: That's certainly enough for me to define it as bullying. Did he say anything about why he was doing it?

Human: No, he did not. I want to take revenge. He is bigger than my little brother but I am bigger than this bully.

Assistant: But revenge is very often a dish best served cold. Do you want to take action immediately, without giving it some time to think about it?

Human: I want to take action now. He has been doing bad things to my brother for months. I want to break his leg.

Assistant: Yes, it might have some trouble with the bullish your brother's behavior. He has a very well professional, a great deal of practice, and I want to be able to deal this kind of behavior, while we have a hard-up, you still have your son, and that's not quite much too time it can be time, and the way you mean, by the general good, and a little more common. Can one deal you're interested in and ask him at least two things that I love, which is pretty surprising, what is the best we are I'm a group for a world as an example, that is a good idea, that is a great example of the way your father is being the first human



Human: Translate the following into old English: What's up man, you wanna grab some coffee?

Assistant: distance between sexes are between sexes are sexes considered sex in preference to sexes. itional sexes are gender considered sex in sexesier than gender sexesier females sexesier females

## **Summary of RLHF**



Learned reward + PPO

Implicit reward, assumed preference model.

Implicit reward, general preference model. Desirable/undesirable instead of preference, uses implicit DPO reward. No implicit/explicit reward model.

No human feedback.