ipaddresses 100 One of our interns inventoried some hosts ip addresses. I think they confused what ip addresses belong in what subnet. How many ip addresses are listed in the correct subnet?

Converting the txt file to a csv and opening in excel we can use a macro to solve this.

https://github.com/andreafortuna-org/VBAIPFunctions/blob/master/IPFunctions.vba

Create a Macro on the excel document and run the macro.


```
Sub ip()
End Sub
'| This program is free software: you can redistribute it and/or modify
'| it under the terms of the GNU General Public License as published by
'| the Free Software Foundation, either version 3 of the License, or
'| (at your option) any later version.
'| This program is distributed in the hope that it will be useful,
'| but WITHOUT ANY WARRANTY; without even the implied warranty of
'| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
'| GNU General Public License for more details.
'| You should have received a copy of the GNU General Public License
'| along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/>.</a>
'| IP Functions v2.0.3 (20160810)
'| https://github.com/andreafortuna/VBAIPFunctions
'| Andrea Fortuna
'| https://andreafortuna.org
'| andrea@andreafortuna.org
 IpIsValid
' Returns true if an ip address is formated exactly
Function IpIsValid(ByVal ip As String) As Boolean
   IpIsValid = (IpBinToStr(IpStrToBin(ip)) = ip)
End Function
' IpStrToBin
' Text IP address to binary
```

Use the ipisinsubnet function to get true/false results

Convert true to 1 and false to 0

D	2 ▼ :	× ✓ f _x	=IF(C2,1,0)	
	Α	В	С	D
1	IP	Subnet		
2	1.1.1.1	1.1.1.0/24	TRUE	1
3	192.168.0.75	10.10.10.0/24	FALSE	0
4	192.31.199.233	126.175.187.164/31	FALSE	0

Auto sum column D

100.0.1.149	192.31.200.128/28	FALSE	0
170.110.93.51	192.30.128.0/17	FALSE	0
7			48

Flag: 48

ipaddresses 2 100 Use the same file from ipaddresses. How many IPs have exactly 14 bits turned on? 0/5 attempts

For this we need to pull the ip addresses in the list apart by octet and then convert each one to binary then count the number of bits in each octet and add together and count the times that 14 appears from the results.

Lots of steps for this one!

1st we have a list of ipaddresses that we will open in excel and create a table.

Α		В			
IP	Ŧ	Subnet	¥		
1.1.1.1		1.1.1.0/24			
192.168.0.75		10.10.10.0/24			
192.31.199.233	3	126.175.187.164/3	31		
192.88.97.247		115.108.0.0/14			
198.51.56.59		192.175.61.144/29)		
192.31.218.80		164.175.96.0/19			
203.0.120.150		198.10.96.128/27			

Next we need to separate out the octets:

```
 1^{\text{st}} \text{ octet formula} = = \text{LEFT}(A2, \text{FIND}(".",A2)-1) 
 2^{\text{nd}} \text{ octet formula} = = \text{MID}(A2, \text{FIND}(".",A2)+1, \text{FIND}(".",A2, \text{FIND}(".",A2)+1)-\text{FIND}(".",A2)-1) 
 3^{\text{rd}} \text{ octet formula} = = \text{MID}(A2, \text{FIND}(".",A2, \text{FIND}(".",A2)+1)+1, \text{FIND}(".",A2, \text{FIND}(".",A2, \text{FIND}(".",A2)+1)+1)- (\text{FIND}(".",A2, \text{FIND}(".",A2)+1)+1)) 
 4^{\text{th}} \text{ octet formula} = = \text{MID}(A2, \text{FIND}(".",A2, \text{FIND}(".",A2, \text{FIND}(".",A2)+1)+1)+1, \text{LEN}(A2)- \text{FIND}(".",A2, \text{FIND}(".",A2, \text{FIND}(".",A2, \text{FIND}(".",A2)+1)+1))
```


Next we need to convert each octet to binary

Formula = =DEC2BIN([@1st],8)

Finally we need to count the occurrences of a flipped bits

Formula = =LEN([@[Binary 1]])-LEN(SUBSTITUTE([@[Binary 1]],"1",""))

Finally sum the bit counts and look for any that equal the count of 14

K	L	М	N	0	Р
bits 1	bits 2	bits 3	bits 4	Total 💌	is 14? 💌
1	1	1	1	4	0
. 2	3	0	4	9	0
2	5	5	5	17	0
. 2	3	3	7	15	0
4	4	3	5	16	0
2	5	5	2	14	1
5	0	4	4	13	0
2	5	4	4	15	0
2	3	3	3	11	0
. 2	4	6	5	17	0
2	3	5	3	13	0
6	3	4	6	19	0
4	4	7	1	16	0
4	7	4	5	20	0
3	3	5	5	16	0
2	3	2	4	11	0
4	1	6	4	15	0

Final image.

IP -	Subnet	1st	▼ 2nd	▼ 3rd	▼ 4th	Binary : Binary :	Binary :	Binary bits 1	bits 2	▼ bits 3	bits 4	▼ Total	▼ is 14?	~
1.1.1.1	1.1.1.0/24	1	1	1	1	00000001 0000000	1 00000001	00000001	1	1	1	1	4	0
192.168.0.75	10.10.10.0/24	192	168	0	75	11000000 1010100	00000000	01001011	2	3	0	4	9	0
192.31.199.233	126.175.187.164/31	192	31	199	233	11000000 0001111	1 11000111	11101001	2	5	5	5	17	0
192.88.97.247	115.108.0.0/14	192	88	97	247	11000000 0101100	01100001	11110111	2	3	3	7	15	0
198.51.56.59	192.175.61.144/29	198	51	56	59	11000110 0011001	1 00111000	00111011	4	4	3	5	16	0
192.31.218.80	164.175.96.0/19	192	31	218	80	11000000 0001111	1 11011010	01010000	2	5	5	2	14	1
203.0.120.150	198.10.96.128/27	203	0	120	150	11001011 0000000	0 01111000	10010110	5	0	4	4	13	0
192.31.198.150	53.180.120.138/31	192	31	198	150	11000000 0001111	1 11000110	10010110	2	5	4	4	15	0
192.88.98.176	192.91.167.0/24	192	88	98	176	11000000 0101100	0 01100010	10110000	2	3	3	3	11	0
192.30.187.117	203.11.128.0/20	192	30	187	117	11000000 0001111	0 10111011	01110101	2	4	6	5	17	0
192.52.229.76	203.0.82.96/28	192	52	229	76	11000000 0011010	0 11100101	01001100	2	3	5	3	13	0
125.137.116.238	198.49.119.128/25	125	137	116	238	01111101 1000100	1 01110100	11101110	6	3	4	6	19	0
169.225.191.2	203.54.104.16/28	169	225	191	2	10101001 1110000	1 10111111	00000010	4	4	7	1	16	0
169.251.105.158	198.51.103.128/27	169	251	105	158	10101001 111110	1 01101001	10011110	4	7	4	5	20	0
14.152.205.87	198.51.48.8/29	14	152	205	87	00001110 1001100	0 11001101	01010111	3	3	5	5	16	0
192.52.192.78	194.6.57.120/31	192	52	192	78	11000000 0011010	0 11000000	01001110	2	3	2	4	11	0
198.16.123.177	198.23.27.160/27	198	16	123	177	11000110 0001000	0 01111011	10110001	4	1	6	4	15	0
192.44.39.15	175.181.128.0/17	192	44	39	15	11000000 0010110	0 00100111	00001111	2	3	4	4	13	0
192.52.192.57	169.115.0.0/16	192	52	192	57	11000000 0011010	0 11000000	00111001	2	3	2	4	11	0
203.103.12.8	192.0.7.194/31	203	103	12	8	11001011 0110011	1 00001100	00001000	5	5	2	1	13	0
192.31.197.130	198.51.37.128/25	192	31	197	130	11000000 0001111	1 11000101	1 10000010	2	5	4	2	13	0

				Σ
			256	
5	4	18	0	
1	4	8	0	
5	3	10	0	
4	2	11	0	
9		12	•	

Flag: 256