Lecture 3 Circuit Theorems

Outline

- Linearity property
- Superposition
- Thevenin's theorem
- Source transformation
- Norton's theorem
- Power transfer

Linear Circuit

A linear circuit consists of only <u>linear elements</u> (resistors, capacitors and inductors), <u>linear dependent sources</u>, and <u>independent sources</u>.

In a circuit,

Excitation: Sources

Response: Voltage or current in the branches

Linearity Property

- Linearity is a combination of
 - homogeneity (scaling) property

additivity property

Example of homogeneity (scaling) property

Superposition

 The <u>superposition principle</u> states that the voltage across (or current through) an element in <u>a linear circuit</u> is the algebraic sum of the voltages across (or currents through) that element <u>due to each independent source</u> acting alone.

Applying Superposition

- The steps are:
 - Turn off all other independent sources except for the source of interest. Find the output (voltage or current) due to that active source.
 - "Turn off" means to replace <u>independent</u> voltage source by short <u>circuit</u> (0 **V**), <u>independent</u> current source by open circuit (0 **A**).
 - 2. Repeat step 1 for each independent source.
 - 3. Find the total contribution by adding algebraically *all* the contributions due to the **independent** sources.

Note that

Using superposition means <u>applying one independent source at a time.</u>

Lecture 3

2) Dependent sources are left alone.

Open Circuit and Short Circuit

- Turn off an independent voltage source means
 - v=0
 - Replace by wire
 - Short circuit
- Turn off an independent <u>current</u> source means
 - *i*=0
 - Cut off the branch
 - Open circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display $8\ \Omega$ $4\ \Omega \ \buildrel v$ $3\ A$

Example: Superposition

Calculate I

Example: Superposition

Calculate I

Contribution from I_0 alone

Contribution from V_0 alone

$$R_1 = 5 \Omega$$

$$V_0 = 45 \text{ V}$$

$$I_1 = 2 A$$

$$I = I_1 + I_2 = 2 - 3 = -1 \text{ A}$$

$$I_2 = -3 \text{ A}$$

Why Superposition?

- It is useful to evaluate the sensitivity of a response to specific sources in the circuit.
- Because it entails solving a circuit multiple times, this source-superposition method may not be attractive.

$$I = aI_0 + bV_0$$

How about Power absorbed by R_2

- Power due to I_0 , $P_1 = ?$
- Power due to $V_0, P_2 = ?$
- Power due to both V_0 and I_0 , P = ?

Practice 1

• Find i_0 in the circuit shown below.

Lecture 3 15

Practice 2

• Express node voltage e_1 as a function of two voltage sources V_1 , V_2 and one current source I.

