Projeto De Iniciação Científica:

A INFLUÊNCIA DE FE³⁺ NA RESISTÊNCIA DE MICRORGANISMOS DESSECADOS À RADIAÇÃO UV: IMPLICAÇÕES PARA A VIDA EM MARTE.

Caderno de Laboratório

(Versão Resumida)

Nome: Luca Marinho Nasser Email: lucaanasser@gmail.com

o1 de Setembro de 2024 à 31 de agosto de 2025

Sumário

1	Introdução	5
2	Obtenção das Culturas Iniciais para Experimentos	6
	Obtenção dos Organismos	6
	Forma como foi feito o estoque	6
	Inóculo	6
	Estoque no Glicerol	7
3	Receitas Utilizadas	8
	Meio TGY Líquido	8
	Meio LB Salino	8
	Meio TGY Agar	8
	Meio LB Salino Agar	9
	Solução Salina 0.9% NaCl	9
	Solução de FeCl ₃ · 6 H ₂ O 10 mM em Solução Salina 0.9%	9
	Solução de FeCl $_3 \cdot 6$ H $_2$ O 5 mM em Solução Salina 0.9%	10
4	Preparos para Experimentos	11
	05/12/2024	11
	Preparo dos tubos eppendorf para diluição seriada	11
	07/01/2025	11
	Preparo dos tubos eppendorf para diluição seriada	11
	10/07/2025	12
	Preparo dos tubos eppendorf para diluição seriada	12
	Preparo de placas TGY	12
	Preparo de meio TGY líquido	13
	Preparo da Solução Salina	13
	22/07/2025	13
	Preparo dos tubos eppendorf para diluição seriada	13
	Preparo de placas TGY	14
	23/07/2025	14
	Preparo da Solução Salina	14

5	Experimento: Resistência a Fe ³⁺	15
	10/09/2024	15
	Pré-Inóculo	15
	11/09/2024	15
	Inóculo	15
	12/09/2024	16
	Inóculo	16
	Lavagem e preparo das amostras	17
	Exposição ao Fe ³⁺	17
	Diluição seriada e plaqueamento dos controles imediatos	18
	13/09/2024	18
	Lavagem e preparo das amostras	18
	Exposição ao Fe ³⁺	19
	Diluição seriada e plaqueamento dos controles imediatos	19
	Contagem UFC	20
	16/09/2024	20
	Contagem UFC	20
	15/12/2024	20
	Pré-Inóculo	20
	16/12/2024	21
	Inóculo	21
	17/12/2024	21
	Inóculo	21
	Lavagem e preparo das amostras	22
	Exposição ao Fe ³⁺	22
	Diluição seriada e plaqueamento dos controles imediatos	23
	18/12/2024	23
	Lavagem e preparo das amostras	23
	Exposição ao Fe ³⁺	2 ₃
	Diluição seriada e plaqueamento dos controles imediatos	24 24
	Contagem UFC	25
	20/12/2024	
	Contagem UFC	
	05/01/2025	25 26
	Pré-Inóculo	26 26
	06/01/2025	26 26
	· · · · · · · · · · · · · · · · · · ·	26 26
	Inóculo	
	07/01/2025	27
	Inóculo	27
	Lavagem e preparo das amostras	27
	Exposição ao Fe ³⁺	28
	Diluição seriada e plaqueamento dos controles imediatos	28
	08/01/2025	29
	Lavagem e preparo das amostras	29

	Exposição ao Fe ³⁺	29
	Diluição seriada e plaqueamento dos controles imediatos	30
	Contagem UFC	30
	10/01/2025	30
	Contagem UFC	30
	Resultados Finais	31
6	Experimento: Resistência a Dessecação	33
	12/01/2025	33
	Pré-Inóculo	33
	14/01/2025	33
	Inóculo	33
	16/01/2025	34
	Lavagem	34
	Preparo dos tubos eppendorf para o experimento	35
	Diluição seriada e plaqueamento	35
	18/01/2025	36
	Contagem UFC	36
	Nota	36
	Substituição do experimento	36
7	Irradiação - UVC	37
	10/07/2025	37
	Pré-Inóculo	37
	12/07/2025	37
	Inóculo	37
	14/07/2025	38
	Lavagem e preparo das amostras	38
	Preparo do teflon	39
	Irradiação	39
	Diluição seriada e plaqueamento dos controles imediatos	40
	16/07/2025	40
	Contagem UFC	40
	Notas	41
	12/07/2025	41
	Pré-Inóculo	41
	14/07/2025	42
	Inóculo	42
	16/07/2025	42
	Lavagem e preparo das amostras	42
	Preparo do teflon	43
	Irradiação	43
	Diluição seriada e plaqueamento dos controles imediatos	44
	18/07/25	45
	Contagem UFC	45
		12

	13/08/2025	45
		45
		46
		46
	,	46
		46
	•	47
		47
	Diluição seriada e plaqueamento dos controles imediatos	48
		49
		49
	Resultados Finas	49
0	Francisco de Designado N. Deservação de Dese	
8		50
	•	50
	·	50
	•	50
	• • •	51
	· · · · · · · · · · · · · · · · · · ·	51
	• •	51
		51
	1	52
	_ , _ ,	52
		53
		53
		53
		53 -2
		53
		53
		53 - 2
		53
		54
		54 - 4
		54 - 4
		54
		55 56
	1	
		56 56
	· · · · · · · · · · · · · · · · · · ·	50 56
		50 56
	veimeaçau	yυ

Capítulo 1

Introdução

Este caderno de laboratório **constitui uma versão resumida**, contendo apenas os experimentos que foram utilizados no relatório final. Experimentos preliminares, tentativas que não geraram resultados relevantes ou que apresentaram falhas não estão incluídos neste documento.

O caderno documenta o trabalho experimental realizado em meu projeto de iniciação científica. O objetivo principal desta pesquisa é investigar o potencial fotoprotetor do Fe³⁺ na sobrevivência de microrganismos em condições análogas ao regolito marciano, avaliando se a presença de Fe³⁺ oferece proteção contra a radiação ultravioleta (UV) em organismos dessecados.

O projeto será dividido em duas fases principais: a primeira envolverá experimentos de resistência à presença de Fe³⁺ em solução e à dessecação de microrganismos na presença e ausência de Fe³⁺, visando selecionar o organismo mais resistente para os experimentos subsequentes. A segunda fase consistirá na exposição do organismo selecionado à radiação UV-C e UV ambiental, em diferentes concentrações de Fe³⁺, para avaliar a sua capacidade fotoprotetora. Os dados obtidos serão utilizados para aprimorar um modelo que simula a sobrevivência microbiana ao UV na presença de Fe³⁺ em solução.

Capítulo 2

Obtenção das Culturas Iniciais para Experimentos

Obtenção dos Organismos

Origem das Amostras:

- Deinococcus radiodurans CEPA: R1 Estoque plaqueado fornecido por Pistilo.
- Saccharomyces boulardii CEPA: 17 Isolada de comprimido de flora intestinal.
- Escherichia coli CEPA: K12; MG1655 Estoque congelado fornecido por Ana S.
- *Staphylococcus nepalensis* **CEPA:** *Tbe*5; *AM*1*E* Estoque plaqueado fornecido por Roberta.

Procedimento: Todos os organismos foram inicialmente plaqueados em meio TGY ágar e incubados por 48 horas. Em seguida, foram replaqueados em meio TGY ágar e incubados por mais 24 horas a 30°C. As colônias obtidas dessas placas foram utilizadas para fazer um estoque congelado e também um estoque refrigerado.

Forma como foi feito o estoque

Inóculo

Materiais:

- Meio TGY líquido estéril
- Culturas de Deira, Boulardii, E. coli em meio sólido TGY ágar feitas em (10/01/2025)
- Tubos Falcon de 15 mL estéreis (3 tubos)
- Ponteiras de pipeta P10

- 1. Identifiquei três tubos Falcon de 15 mL estéreis com os nomes dos respectivos organismos: Deira, Boulardii, E. coli, meu nome e data do dia.
- 2. Em cada tubo, adicionei 2000 μ L de meio TGY líquido estéril.
- 3. Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada de cada cultura em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 48 horas.

Estoque no Glicerol

Materiais:

- Culturas líquidas incubadas por 48 horas (Deira, Boulardii, E. coli)
- Glicerol estéril a 80
- Criotubos estéreis (mínimo 3 por organismo)
- Pipetas e ponteiras estéreis (P1000)
- Nitrogênio líquido
- Caixa de criopreservação
- Freezer -80°C

Procedimento:

- 1. Após 48 horas de incubação, retirei os tubos Falcon com as culturas do shaker.
- 2. Em uma capela de fluxo laminar, preparei a mistura de cada cultura com glicerol em proporção final de 20% de glicerol:
 - Para cada criotubo, adicionei 800 μL da cultura líquida.
 - Em seguida, adicionei 200 μ L de glicerol estéril a 80%, totalizando 1 mL por criotubo.
 - Homogeneizei cuidadosamente invertendo o tubo várias vezes (sem vortex).
- 3. Etiquetei os criotubos com o nome do organismo, meu nome, concentração de glicerol (20%) e data do preparo.
- 4. Os criotubos foram então mergulhados em nitrogênio líquido por aproximadamente 5 minutos para congelamento rápido (snap-freezing).
- 5. Após o congelamento, transferi imediatamente os criotubos para uma caixa de criopreservação previamente identificada e os armazenei em freezer a -80°C.

Observação: Esses estoques serão utilizados como fonte de reposição para experimentos futuros, garantindo a identidade genética dos microrganismos.

Capítulo 3

Receitas Utilizadas

Meio TGY Líquido

• Triptona: 5 g/L

• Extrato de levedura: 3 g/L

• Glicose: 1 g/L

• Água destilada: 1 L

Preparo: Dissolver os componentes em água destilada e esterilizar em autoclave.

Meio LB Salino

• Triptona: 5 g/L

• Extrato de levedura: 3 g/L

• Glicose: 1 g/L

• NaCl: 10 g/l

• Água destilada: 1 L

Preparo: Dissolver os componentes em água destilada e esterilizar em autoclave.

Meio TGY Agar

• Triptona: 5 g/L

• Extrato de levedura: 3 g/L

• Glicose: 1 g/L

• Agar: 15 g/L

• Água destilada: 1 L

Preparo: Dissolver os componentes em água destilada e esterilizar em autoclave.

Meio LB Salino Agar

• Triptona: 5 g/L

• Extrato de levedura: 3 g/L

• Glicose: 1 g/L

• Agar: 15 g/L

• NaCl: 10 g/l

• Água destilada: 1 L

Preparo: Dissolver os componentes em água destilada e esterilizar em autoclave.

Solução Salina 0.9% NaCl

• NaCl: 0.9 g

• Água destilada: 100 mL

Preparo: Dissolver o NaCl em água destilada e esterilizar em autoclave.

Solução de FeCl₃ · 6 H₂O 10 mM em Solução Salina 0.9%

Cálculo da massa de FeCl₃ · 6 H₂O:

- Massa Molar do FeCl₃ · 6 H₂O: 270.3 g/mol
- Concentração: 0.01 mol/L
- Volume: 0.01 L

A massa que devo pesar é:

Massa =
$$(0.01 \text{ mol/L}) \times (0.01 \text{ L}) \times (270.3 \text{ g/mol}) = 27.03 \text{ mg}$$

Ingredientes:

- $FeCl_3 \cdot 6 H_2O$: 27.03 mg
- Solução Salina 0.9%: 10 mL

- 1. Pesar 27.03 mg de $FeCl_3 \cdot 6H_2O$.
- 2. Dissolver o sal em 10 mL de solução salina 0.9% usando a pipeta p1000.
- 3. Esterilizar por filtração utilizando filtro 0.22 μ m.

Solução de FeCl₃ · 6 H₂O 5 mM em Solução Salina 0.9%

Ingredientes:

- Solução 10 mM estéril de $FeCl_3 \cdot 6H_2O: 5 ml$
- Solução Salina 0.9%: 5 mL

Procedimento:

1. Diluir 5 ml da solução de Ferro em 5 ml de solução salina, obtendo uma solução de 5 mM de FeCl $_3 \cdot 6\, H_2O$.

Capítulo 4

Preparos para Experimentos

05/12/2024

Preparo dos tubos eppendorf para diluição seriada

Materiais:

- Solução salina 0,9% estéril
- Micropipeta P1000 e ponteiras estéreis
- Tubos Eppendorf estéreis

Procedimento:

1. Identifiquei os tubos Eppendorf de acordo com o organismo (B - Boulardii; E - E. Coli; D - Deira; N - Nepal) e a condição (controle C+ ou com Fe³⁺) e a diluição do tubo (o, -1, -2, ...). Foram preparados tubos para atingirem a diluição final conforme a tabela abaixo:

Organismo	C+	Fe ³⁺
Boulardii	10^{-5}	10^{-5}
Deira	10^{-4}	10^{-5}
E. coli	10^{-4}	10^{-6}
Nepal	10^{-4}	10^{-4}

2. Em cada tubo Eppendorf identificado, adicionei 450 μ L de solução salina 0,9% estéril utilizando a micropipeta P1000.

07/01/2025

Preparo dos tubos eppendorf para diluição seriada

- Solução salina 0,9% estéril
- Micropipeta P1000 e ponteiras estéreis
- Tubos Eppendorf estéreis

Procedimento:

1. Identifiquei os tubos Eppendorf de acordo com o organismo (B - Boulardii; E - E. Coli; D - Deira; N - Nepal) e a condição (controle C+ ou com Fe³⁺) e a diluição do tubo (o, -1, -2, ...). Foram preparados tubos para atingirem a diluição final conforme a tabela abaixo:

Organismo	C+	Fe ³⁺
Boulardii	10^{-5}	10^{-5}
Deira	10^{-4}	10^{-5}
E. coli	10^{-4}	10^{-6}
Nepal	10^{-4}	10^{-4}

2. Em cada tubo Eppendorf identificado, adicionei 450 μ L de solução salina 0,9% estéril utilizando a micropipeta P1000.

10/07/2025

Preparo dos tubos eppendorf para diluição seriada

Materiais:

- Solução salina 0,9% estéril
- Micropipeta P1000 e ponteiras estéreis
- Tubos Eppendorf estéreis

Procedimento:

- 1. Em cada tubo Eppendorf identificado, adicionei 450 μ L de solução salina 0,9% estéril utilizando a micropipeta P1000.
- 2. Foram preparados 100 tubos dessa maneira e estocados para futuros experimentos.

Preparo de placas TGY

Materiais:

• 9.6 gramas da receita pronta para TGY ágar descrita na seção de receitas

- 400 ml de água destilada
- Placas petri estéreis

Procedimento:

- 1. O meio em pó foi misturado com a água destilada e autoclavado.
- 2. O meio foi vertido nas placas petri dentro de um fluxo laminar.
- 3. As placas foram riscadas com caneta e estocada em sacos plásticos para futuros experimentos.

Preparo de meio TGY líquido

Materiais:

- 2.7 gramas da receita pronta para TGY descrita na seção de receitas
- 300 ml de água destilada

Procedimento:

1. O meio em pó foi misturado com a água destilada e autoclavado. Foi guardado para futuros experimentos.

Preparo da Solução Salina

Materiais:

- 1.8 gramas de NaCl
- 200 ml de água destilada

Procedimento:

 O sal foi misturado com a água destilada e autoclavado. Foi guardado para futuros experimentos.

22/07/2025

Preparo dos tubos eppendorf para diluição seriada

Materiais:

- Solução salina 0,9% estéril
- Micropipeta P1000 e ponteiras estéreis
- Tubos Eppendorf estéreis

- 1. Em cada tubo Eppendorf identificado, adicionei 450 μ L de solução salina 0,9% estéril utilizando a micropipeta P1000.
- 2. Foram preparados 80 tubos dessa maneira e estocados para futuros experimentos.

Preparo de placas TGY

Materiais:

- 9.6 gramas da receita pronta para TGY ágar descrita na seção de receitas
- 400 ml de água destilada
- Placas petri estéreis

Procedimento:

- 1. O meio em pó foi misturado com a água destilada e autoclavado.
- 2. O meio foi vertido nas placas petri dentro de um fluxo laminar.
- 3. As placas foram riscadas com caneta e estocada em sacos plásticos para futuros experimentos.

23/07/2025

Preparo da Solução Salina

Materiais:

- 1.8 gramas de NaCl
- 200 ml de água destilada

Procedimento:

 O sal foi misturado com a água destilada e autoclavado. Foi guardado para futuros experimentos.

Capítulo 5

Experimento: Resistência a Fe³⁺

10/09/2024

Pré-Inóculo

Materiais:

- Meio TGY líquido estéril
- Culturas de Deira, Boulardii, E. coli e Nepal em meio sólido TGY ágar e LB salino.
- Tubos Falcon de 15 mL estéreis (4 tubos)
- Ponteiras de pipeta P10

Procedimento:

- 1. Identifiquei quatro tubos Falcon de 15 mL estéreis com os nomes dos respectivos organismos: Deira, Boulardii, E. coli e Nepal, meu nome e data do dia.
- 2. Em cada tubo, adicionei 2000 μ L de meio TGY líquido estéril.
- 3. Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada de cada cultura em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas (Nepal e E. coli) e 48 horas (Deira e Boulardii).

11/09/2024

Inóculo

Materiais:

• Meio TGY estéril

- Culturas de E. coli, Nepalensis em meio liquido TGY e LB salinos.
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo, data e meu nome.
- 2. Em cada tubo, adicionei 2970 μ L de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 24 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas.

12/09/2024

Inóculo

Materiais:

- Meio TGY estéril
- Culturas de Deira, Boulardii em meio liquido TGY ágar.
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

- 1. Identifiquei o tubo Falcon com o nome do organismo, data e meu nome.
- 2. Em cada tubo, adicionei 2970 μL de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 24 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas.

Lavagem e preparo das amostras

Materiais:

- Solução salina 0.9% NaCl
- Cultura de E. Coli e Nepal em meio TGY e LB salino (24 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf
- Soluções estéreis de FeCl₃ concentrações: 5 mM e 10 mM

Procedimento lavagem:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a Verificar rcf (8.000 rpm) por 10 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina.
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Exposição ao Fe3+

Materiais:

- Solução salina 0.9% NaCl
- Solução estéril de Fe³⁺ concentrações: 10 mM
- Cultura de E. Coli e Nepal em meio TGY e LB salino (24 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubos eppendorf

- 1. Coloquei 800 μL da cultura em tubos epppendorf, separando em C+ e Experimental, tanto para E. Coli quando para Boulardii.
- 2. Centrifuguei à 8000 rpm por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 800 μL de solução salina (grupo controle) e 800 μL de solução 10 mM de Fe³⁺ (grupo experimental).
- 4. Os tubos foram levados para shacker a 150 rpm à 30°C por 30 minutos.

Diluição seriada e plaqueamento dos controles imediatos

Materiais:

- Tubos Eppendorf com controles imediatos (preparados no procedimento anterior)
- Micropipeta P200 e ponteiras estéreis
- Tubos Eppendorf com 450μL de solução salina estéreis
- Placas de Petri com meio TGY Agar e LB salino Agar.

Procedimento:

1. Diluição Seriada:

- (a) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (b) Repeti o processo sucessivamente até obter as diluições descritas em XXXX.

2. Plaqueamento:

- (a) Plaqueei 3 gotas de cada uma das diluições seriadas em placas de Petri contendo meio TGY Agar e LB Salino Agar.
- (b) Levei a placa para estufa a 30°C.

13/09/2024

Lavagem e preparo das amostras

Materiais:

- Solução salina 0.9% NaCl
- Cultura de Boulardii e Deira em meio TGY e LB salino (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de Boulardii para centrifuga a 8000 rpm por 10 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina.
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Exposição ao Fe³⁺

Materiais:

- Solução salina 0.9% NaCl
- Solução estéril de Fe³⁺ concentrações: 10 mM
- Cultura de Deira e Boulardii em meio TGY e LB salino (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubos eppendorf

Procedimento:

- 1. Coloquei 800 μL da cultura em tubos epppendorf, separando em C+ e Experimental, tanto para E. Coli quando para Boulardii.
- 2. Centrifuguei à 8000 rpm por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 800 μL de solução salina (grupo controle) e 800 μL de solução 10 mM de Fe³⁺ (grupo experimental).
- 4. Os tubos foram levados para shacker a 150 rpm à 30°C por 30 minutos.

Diluição seriada e plaqueamento dos controles imediatos

Materiais:

- Tubos Eppendorf com controles imediatos (preparados no procedimento anterior)
- Micropipeta P200 e ponteiras estéreis
- Tubos Eppendorf com 450μL de solução salina estéreis
- Placas de Petri com meio TGY Agar.

Procedimento:

1. Diluição Seriada:

- (a) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (b) Repeti sucessivamente até obter as diluições descritas em XXXX.

2. Plaqueamento:

- (a) Plaqueei 3 gotas de cada uma das diluições seriadas em placas de Petri contendo meio TGY Agar.
- (b) Levei a placa para estufa a 30°C.

Contagem UFC

Resultados:

Replicata	Diluição C+	Controle	Fe ³⁺
1	10^{-5}	29, 29, 21	-

Tabela 5.1: Contagem UFC - E. coli (Replicata 1).

Replicata	plicata Diluição C+	
1	10^{-5}	67, 68, 58

Tabela 5.2: Contagem UFC - S. nepalensis (Replicata 1).

16/09/2024

Contagem UFC

Resultados:

Replicata	Diluição C+	Controle
1	10^{-4}	61, 54, 52

Tabela 5.3: Contagem UFC - D. radiodurans (Replicata 1).

Replicata	Diluição C+	Diluição Fe ³⁺	Controle	Fe ³⁺
1	10^{-5}	10^{-3}	30, 28, 36	103, 102, 89

Tabela 5.4: Contagem UFC - S. boulardii (Replicata 1).

15/12/2024

Pré-Inóculo

Materiais:

- Meio TGY líquido estéril
- Culturas de Deira, Boulardii, E. coli e Nepal em meio sólido TGY ágar e LB salino
- Tubos Falcon de 15 mL estéreis (4 tubos)
- Ponteiras de pipeta P10

- 1. Identifiquei quatro tubos Falcon de 15 mL estéreis com os nomes dos respectivos organismos: Deira, Boulardii, E. coli e Nepal, meu nome e data do dia.
- 2. Em cada tubo, adicionei 2000 μ L de meio TGY líquido estéril.
- 3. Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada de cada cultura em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas (Nepal e E. coli) e 48 horas (Deira e Boulardii).

16/12/2024

Inóculo

Materiais:

- Meio TGY estéril
- Culturas de E. coli, Nepalensis em meio liquido TGY e LB salinos
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo, data e meu nome.
- 2. Em cada tubo, adicionei 2970 μ L de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 24 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas.

17/12/2024

Inóculo

- Meio TGY estéril
- Micropipeta P200 e ponteiras estéreis

• Tubo Falcon de 15 mL estéril

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo, data e meu nome.
- 2. Em cada tubo, adicionei 2970 μ L de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 24 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas.

Lavagem e preparo das amostras

Materiais:

- Solução salina 0.9% NaCl
- Cultura de E. Coli e Nepal em meio TGY e LB salino (24 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf
- Soluções estéreis de FeCl₃ concentrações: 5 mM e 10 mM

Procedimento lavagem:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a Verificar rcf (8.000 rpm) por 10 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Exposição ao Fe³⁺

- Solução salina 0.9% NaCl
- Solução estéril de Fe³⁺ concentrações: 10 mM
- Cultura de E. Coli e Nepal em meio TGY e LB salino (24 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis

• Tubos eppendorf

Procedimento:

- 1. Coloquei 800 μL da cultura em tubos epppendorf, separando em C+ e Experimental, tanto para E. Coli quando para Boulardii.
- 2. Centrifuguei à 8000 rpm por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 800 μL de solução salina (grupo controle) e 800 μL de solução 10 mM de Fe³⁺ (grupo experimental).
- 4. Os tubos foram levados para shacker a 150 rpm à 30°C por 30 minutos.

Diluição seriada e plaqueamento dos controles imediatos

Materiais:

- Tubos Eppendorf com controles imediatos (preparados no procedimento anterior)
- Micropipeta P200 e ponteiras estéreis
- Tubos Eppendorf com 450μL de solução salina estéreis
- Placas de Petri com meio TGY Agar e LB salino Agar.

Procedimento:

1. Diluição Seriada:

- (a) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (b) Repeti o processo sucessivamente até obter as diluições descritas em XXXX.

2. Plaqueamento:

- (a) Plaqueei 3 gotas de cada uma das diluições seriadas em placas de Petri contendo meio TGY Agar e LB Salino Agar.
- (b) Levei a placa para estufa a 30°C.

18/12/2024

Lavagem e preparo das amostras

- Solução salina 0.9% NaCl
- Cultura de Boulardii e Deira em meio TGY e LB salino (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis

- Tubo Falcon de 15 mL estéril
- Tubos eppendorf

Procedimento:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de Boulardii para centrifuga a 8000 rpm por 10 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina.
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Exposição ao Fe³⁺

Materiais:

- Solução salina 0.9% NaCl
- Solução estéril de Fe³⁺ concentrações: 10 mM
- Cultura de Deira e Boulardii em meio TGY e LB salino (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubos eppendorf

Procedimento:

- 1. Coloquei 800 μL da cultura em tubos epppendorf, separando em C+ e Experimental, tanto para E. Coli quando para Boulardii.
- 2. Centrifuguei à 8000 rpm por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 800 μL de solução salina (grupo controle) e 800 μL de solução 10 mM de Fe³⁺ (grupo experimental).
- 4. Os tubos foram levados para shacker a 150 rpm à 30°C por 30 minutos.

Diluição seriada e plaqueamento dos controles imediatos

- Tubos Eppendorf com controles imediatos (preparados no procedimento anterior)
- Micropipeta P200 e ponteiras estéreis
- Tubos Eppendorf com 450 µL de solução salina estéreis
- Placas de Petri com meio TGY Agar.

Procedimento:

1. Diluição Seriada:

- (a) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (b) Repeti sucessivamente até obter as diluições descritas em XXXX.

2. Plaqueamento:

- (a) Plaqueei 3 gotas de cada uma das diluições seriadas em placas de Petri contendo meio TGY Agar.
- (b) Levei a placa para estufa a 30°C.

Contagem UFC

Resultados:

Replicata	Diluição C+	Controle	Fe ³⁺
2	10^{-5}	60, 59, 59	-

Tabela 5.5: Contagem UFC - E. coli (Replicata 2).

Replicata	Diluição C+	Controle
2	10^{-5}	39, 54, 47

Tabela 5.6: Contagem UFC - S. nepalensis (Replicata 2).

20/12/2024

Contagem UFC

Resultados:

Replicata	Diluição C+	Controle
2	10^{-4}	52, 50, 57

Tabela 5.7: Contagem UFC - D. radiodurans (Replicata 2).

Replicata	Diluição C+	Diluição Fe ³⁺	Controle	Fe ³⁺
2	10^{-5}	10^{-3}	20, 23, 21	70, 74, 71

Tabela 5.8: Contagem UFC - S. boulardii (Replicata 2).

05/01/2025

Pré-Inóculo

Materiais:

- Meio TGY líquido estéril
- Culturas de Deira, Boulardii, E. coli e Nepal em meio sólido TGY ágar e LB salino.
- Tubos Falcon de 15 mL estéreis (4 tubos)
- Ponteiras de pipeta P10

Procedimento:

- 1. Identifiquei quatro tubos Falcon de 15 mL estéreis com os nomes dos respectivos organismos: Deira, Boulardii, E. coli e Nepal, meu nome e data do dia.
- 2. Em cada tubo, adicionei 2000 μ L de meio TGY líquido estéril.
- 3. Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada de cada cultura em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas (Nepal e E. coli) e 48 horas (Deira e Boulardii).

06/01/2025

Inóculo

Materiais:

- Meio TGY estéril
- Culturas de E. coli, Nepalensis em meio liquido TGY e LB salinos.
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

- 1. Identifiquei o tubo Falcon com o nome do organismo, data e meu nome.
- 2. Em cada tubo, adicionei 2970 µL de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 24 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas.

07/01/2025

Inóculo

Materiais:

- Meio TGY estéril
- Culturas de Deira, Boulardii em meio liquido TGY ágar.
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo, data e meu nome.
- 2. Em cada tubo, adicionei 2970 µL de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 24 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas.

Lavagem e preparo das amostras

Materiais:

- Solução salina 0.9% NaCl
- Cultura de E. Coli e Nepal em meio TGY e LB salino (24 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf
- Soluções estéreis de FeCl₃ concentrações: 5 mM e 10 mM

Procedimento lavagem:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a Verificar rcf (8.000 rpm) por 10 minutos
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina.
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Exposição ao Fe³⁺

Materiais:

- Solução salina 0.9% NaCl
- Solução estéril de Fe³⁺ concentrações: 10 mM
- Cultura de E. Coli e Nepal em meio TGY e LB salino (24 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubos eppendorf

Procedimento:

- 1. Coloquei 800 μL da cultura em tubos epppendorf, separando em C+ e Experimental, tanto para E. Coli quando para Boulardii.
- 2. Centrifuguei à 8000 rpm por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 800 μL de solução salina (grupo controle) e 800 μL de solução 10 mM de Fe³⁺ (grupo experimental).
- 4. Os tubos foram levados para shacker a 150 rpm à 30°C por 30 minutos.

Diluição seriada e plaqueamento dos controles imediatos

Materiais:

- Tubos Eppendorf com controles imediatos (preparados no procedimento anterior)
- Micropipeta P200 e ponteiras estéreis
- Tubos Eppendorf com 450µL de solução salina estéreis
- Placas de Petri com meio TGY Agar e LB salino Agar.

Procedimento:

1. Diluição Seriada:

- (a) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (b) Repeti o processo sucessivamente até obter as diluições descritas em XXXX.

2. Plaqueamento:

- (a) Plaqueei 3 gotas de cada uma das diluições seriadas em placas de Petri contendo meio TGY Agar e LB Salino Agar.
- (b) Levei a placa para estufa a 30°C.

08/01/2025

Lavagem e preparo das amostras

Materiais:

- Solução salina 0.9% NaCl
- Cultura de Boulardii e Deira em meio TGY e LB salino (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf

Procedimento:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a 8000 rpm por 10 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina.
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Exposição ao Fe3+

Materiais:

- Solução salina 0.9% NaCl
- Solução estéril de Fe³⁺ concentrações: 10 mM
- Cultura de Deira e Boulardii em meio TGY e LB salino (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubos eppendorf

- 1. Coloquei 800 μL da cultura em tubos epppendorf, separando em C+ e Experimental, tanto para E. Coli quando para Boulardii.
- 2. Centrifuguei à 8000 rpm por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 800 μL de solução salina (grupo controle) e 800 μL de solução 10 mM de Fe³⁺ (grupo experimental).
- 4. Os tubos foram levados para shacker a 150 rpm à 30°C por 30 minutos.

Diluição seriada e plaqueamento dos controles imediatos

Materiais:

- Tubos Eppendorf com controles imediatos (preparados no procedimento anterior)
- Micropipeta P200 e ponteiras estéreis
- Tubos Eppendorf com 450 µL de solução salina estéreis
- Placas de Petri com meio TGY Agar.

Procedimento:

1. Diluição Seriada:

- (a) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (b) Repeti sucessivamente até obter as diluições descritas em XXXX.

2. Plaqueamento:

- (a) Plaqueei 3 gotas de cada uma das diluições seriadas em placas de Petri contendo meio TGY Agar.
- (b) Levei a placa para estufa a 30°C.

Contagem UFC

Resultados:

Replicata	Diluição C+	Controle	Fe ³⁺
3	10^{-5}	58, 60, 56	-

Tabela 5.9: Contagem UFC - E. coli (Replicata 3).

Replicata	Diluição C+	Controle
3	10^{-5}	91, 94, 101

Tabela 5.10: Contagem UFC - S. nepalensis (Replicata 3).

10/01/2025

Contagem UFC

Resultados:

Replicata	Diluição C+	Controle
3	10^{-4}	48, 50, 48

Tabela 5.11: Contagem UFC - D. radiodurans (Replicata 3).

Replicata	Diluição C+	Diluição Fe ³⁺	Controle	Fe ³⁺
3	10^{-5}	10^{-3}	22, 28, 27	74, 73, 75

Tabela 5.12: Contagem UFC - S. boulardii (Replicata 3).

Resultados Finais

Número da replicata	Diluição C+	Diluição Fe ³⁺	Controle	Fe ³⁺
1	10^{-5}	-	29, 29, 21	-
2	10^{-5}	-	60, 59, 59	-
3	10^{-5}	-	58, 60, 56	-

Tabela 5.13: Contagem UFC dos experimentos de resistência à $\mathrm{Fe^{3+}}$ do organismo: *E. coli*.

Número da replicata	Diluição Fe ³⁺	DO	Controle	Fe ³⁺
1	10^{-5}	-	67, 68, 58	-
2	10^{-5}	-	39, 54, 47	-
3	10^{-5}	-	91, 94, 101	-

Tabela 5.14: Contagem UFC dos experimentos de resistência à Fe^{3+} do organismo: S. nepalensis.

Número da replicata	Diluição C+	Diluição Fe ³⁺	Controle	Fe ³⁺
1	10^{-4}	-	61, 54, 52	-
2	10^{-4}	-	52, 50, 57	-
3	10^{-4}	-	48, 50, 48	-

Tabela 5.15: Contagem UFC dos experimentos de resistência à $\mathrm{Fe^{3+}}$ do organismo: D. radiodurans.

Número da replicata	Diluição C+	Diluição Fe ³⁺	Controle	Fe ³⁺
1	10^{-5}	10^{-3}	30, 28, 36	103, 102, 89
2	10^{-5}	10^{-3}	20, 23, 21	70, 74, 71
3	10^{-5}	10^{-3}	22, 28, 27	74, 73, 75

Tabela 5.16: Contagem UFC dos experimentos de resistência à $\mathrm{Fe^{3+}}$ do organismo: *S. boulardii*.

Capítulo 6

Experimento: Resistência a Dessecação

12/01/2025

Pré-Inóculo

Materiais:

- Meio TGY líquido estéril
- Cultura Boulardii em meio sólido TGY ágar feita em (10/01/2025)
- Tubo Falcon de 15 mL estéril
- Ponteiras de pipeta P10

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 2000 μ L de meio TGY líquido estéril.
- 3. Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada do organismo em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. O tubo inoculado foi levado para o shaker a 30°C a 150 rpm e ficará por 24 horas.

14/01/2025

Inóculo

Materiais:

• Meio TGY estéril

- Culturas de Boulardii em meio TGY (24 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 2997 μL de meio TGY.
- 3. Adicionei 3 μ L (1% do volume final) da cultura de 24 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 24 horas.

16/01/2025

Lavagem

Materiais:

- Solução salina 0.9% NaCl
- Cultura de Boulardii em meio TGY (24 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

- 1. Preenchi um tubo Falcon com 3 mL de agua destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a 12857 rcf (10.000 rpm) por 10 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3000 mL de solução salina.
- 4. A partir daqui esse procedimento foi repetido por 3 vezes consecutivas.

Preparo dos tubos eppendorf para o experimento

Materiais:

- Cultura de Boulardii lavada
- Micropipeta P200 e ponteiras estéreis
- Tubos Eppendorf estéreis
- Solução salina 0.9% NaCl
- Solução de FeCl₃ 10 mM + 0.9% NaCl

Procedimento:

- 1. Distribuí 300µL da cultura de *Boulardii* lavada em 10 tubos Eppendorf estéreis.
- 2. Identifiquei os tubos conforme a tabela abaixo:
- 3. Centrifuguei os 10 tubos Eppendorf na mini centrífuga a 10.000 rpm por 5 minutos e descartei o sobrenadante.
- 4. Ressuspendi os pellets dos tubos controle em 30 μ L de solução salina 0.9%.
- 5. Ressuspendi os pellets dos tubos experimentais em 30 μ L da solução de FeCl $_3$ 10 mM.
- 6. Os tubos destinados à secagem (liofilização, sílica, teflon) foram colocados abertos dentro de um béquer, o qual foi tampado com uma placa de Petri de vidro. Os tubos foram então levados para seus respectivos métodos de secagem.

Diluição seriada e plaqueamento

Materiais:

- Tubos Eppendorf
- Micropipeta P200 e ponteiras estéreis
- Tubos Eppendorf estéreis
- Solução salina 0.9% NaCl
- Placas de Petri com meio TGY Agar

Procedimento:

1. Diluição Seriada:

(a) Adicionei 270 μ L de solução salina aos 30 μ L existentes em cada um dos dois tubos controle imediato (controle e controle com ferro), resultando em um volume final de 300 μ L (diluição 10^0).

- (b) Preparei uma série de tubos Eppendorf com 450 μ L de solução salina em cada.
- (c) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (d) Repeti o processo de transferência de 50 μ L da diluição anterior para o próximo tubo, sucessivamente, até obter a diluição 10^{-5} .

2. Plaqueamento:

- (a) Plaquiei 3 gotas de cada uma das diluições seriadas de 10^{-1} a 10^{-5} em placas de Petri contendo meio TGY Agar.
- (b) Levei a placa para estufa a 30°C.

18/01/2025

Contagem UFC

Materiais:

- Placas do experimento do dia 16/01/2025 do organismo Boulardii
- Lupa
- Contador
- Caneta

Procedimento:

1. Utilizando a lupa o contador e a caneta, contei as UFC de cada experimento e controle e obtive o seguinte resultado:

Tabela 6.1: Contagem UFC dos experimentos de resistência a Dessecação Boulardii

Método	Diluição	UFC
Controle não dessecado	10^{-5}	25, 29, 26
Liofilização	10^{-4}	20, 23, 21
Sílica	10^{-4}	56, 52, 56
Dessecação no fluxo em lâmina de teflon	10^{-4}	51, 50, 44

Nota

Substituição do experimento

Esse experimento se mostrou não eficiente para meus objetivos. A resistência à dessecação ao ferro pode ser feita observando o controle do experimento de irradiação. Portanto, esse protocolo foi substituído pelo experimento de irradiação.

Capítulo 7

Irradiação - UVC

10/07/2025

Pré-Inóculo

Materiais:

- Meio TGY líquido estéril
- Cultura Boulardii em meio sólido TGY ágar feita em (10/07/2025)
- Tubo Falcon de 15 mL estéril
- Ponteiras de pipeta P10

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 3000 μL de meio TGY líquido estéril.
- Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada do organismo em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. O tubo inoculado foi levado para o shaker a 30°C a 150 rpm e ficará por 48 horas.

12/07/2025

Inóculo

- Meio TGY estéril
- Culturas de Boulardii em meio TGY (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis

- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 2970 μL de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 48 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 48 horas.

14/07/2025

Lavagem e preparo das amostras

Materiais:

- Solução salina 0.9% NaCl
- Cultura de Boulardii em meio TGY (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf
- Soluções estéreis de FeCl₃ concentrações: 5 mM e 10 mM

Procedimento lavagem:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a Verificar rcf (8.000 rpm) por 10 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Procedimento preparo das amostras:

- 1. A amostra lavada foi separada em 3 tubos eppendorf, com 800 μL em cada um.
- 2. Levei para centrifuga a Verificar rcf (8.000 rpm) por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com: 800 μL de solução saliana; 800 μL de 5 mM FeCl₃ + salina; 800 μL de 10 mM FeCl₃ + salina.

Preparo do teflon

Materiais:

- Placas de teflon estéreis
- Placa de Petri
- Pinça flambada

Procedimento:

- 1. Coloquei 15 plaquinhas de teflon estéreis em uma placa de petri (três de 5 plaquinhas: Controle; Solução de 5 mM; Solução de 10 mM).
- 2. Utilizando uma pinça estéril organizei as plaquinhas de forma a ficarem no centro da placa de petri formando 2 linhas paralelas. Tentei espaçar os 3 grupos.
- 3. Pinguei 5 vezes 10 μL para cada grupo:
 - Grupo 1: Solução salina + boulardii (controle)
 - Grupo 2: Solução salina + 5 mM de FeCl₃ + boulardii
 - Grupo 3: Solução salina + 10 mM de FeCl₃ + boulardii
- 4. A placa de Petri foi identificada para deixar claro a separação dos grupos e evitar que se misturassem.
- 5. A placa de Petri foi levada para o fundo do fluxo laminar até que todas as gotas se secassem.

Irradiação

Materiais:

- Lâmpada UVC
- Irradiômetro
- Placa petri com as culturas dessecadas
- Micropipeta P1000 e ponteiras estéreis
- Solução salina
- Tubos eppendorf
- Fluxo laminar

Procedimento:

 Posicionei a placa de petri no fundo do fluxo laminar e ao lado coloquei o sensor do irradiômetro. Desenhei no chão do fluxo usando uma caneta para marcar a posição e sempre volta-los para o mesmo ponto

- 2. Preparei os tubos eppendorf contendo $100\mu L$ de solução salina cada. Foram preparados 1 tubo para cada quadrado de teflon. Eles serão usados para ressuspender as células e como a diluição o da seriada.
- 3. Retirei o ponto o de cada amostra C+; 5Mm; 10mM. Note esse ponto não irradiado, além de controle do experimento de irradiação, é também o experimento de resistência a dessecação na presença de ferro.
- 4. Depois procedi a irradiar com UVC, retirando um teflon de cada tipo nas doses: 250; 650; 1500; 2500 I/m^2 .

Diluição seriada e plaqueamento dos controles imediatos

Materiais:

- Tubos Eppendorf com as plaquinhas de teflon.
- Micropipeta P200 e ponteiras estéreis.
- Tubos Eppendorf com 450μL de solução salina estéreis
- Placas de Petri com meio TGY Agar.

Procedimento:

1. Diluição Seriada:

- (a) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (b) Repeti o processo de transferência de 50 μ L da diluição anterior para o próximo tubo, sucessivamente até a diluição 10^{-4} .

2. Plaqueamento:

- (a) Plaqueei 3 gotas de cada uma das diluições seriadas em placas de Petri contendo meio TGY Agar.
- (b) Levei a placa para estufa a 30°C.

16/07/2025

Contagem UFC

- Placas do experimento do dia 14/07/2025 do organismo Boulardii
- Lupa
- Contador

• Caneta

Procedimento:

1. Utilizando a lupa o contador e a caneta, contei as UFC de cada experimento e controle e obtive o seguinte resultado:

Tabela 7.1: Contagem UFC dos experimentos I de resistência a Irradiação Boulardii

Doses	Diluição C+	Controle	5 <i>m</i> M Fe ³⁺	10 <i>mM</i> Fe ³⁺
o <i>J/m</i> ²	10^{-4}	48, 41, 51	-	-
250 J/m²	10^{-2}	60, 58, 56	-	-
650 J/m²	10^{-2}	22, 21, 19	-	-
1500 J/m²	10^{-1}	55, 60, 56	-	-
2500 J/m ²	10^{0}	34, 29, 31	-	-

Notas

Nesse experimento foi verificado que a Boulardii nao resistia a dessecação na presença de ferro, nem na menor concentração. Foi verificado colocando um quadrado de teflon dentro do meio de cultura e esperando se ocorria crescimento. Mesmo depois de uma semana, nenum crescimento foi verificado. Portanto, a partir desse ponto, apenas o controle de irradiação foi feito. E a dessecação com ferro foi repedida mas será abordada em um capítulo diferente.

12/07/2025

Pré-Inóculo

Materiais:

- Meio TGY líquido estéril
- Cultura Boulardii em meio sólido TGY ágar feita em (10/07/2025)
- Tubo Falcon de 15 mL estéril
- Ponteiras de pipeta P10

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 3000 μ L de meio TGY líquido estéril.
- Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada do organismo em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. O tubo inoculado foi levado para o shaker a 30°C a 150 rpm e ficará por 48 horas.

14/07/2025

Inóculo

Materiais:

- Meio TGY estéril
- Culturas de Boulardii em meio TGY (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 2970 µL de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 48 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30° C a 150 rpm e vão ficar por 48 horas.

16/07/2025

Lavagem e preparo das amostras

Materiais:

- Solução salina 0.9% NaCl
- Cultura de Boulardii em meio TGY (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf
- Soluções estéreis de FeCl₃ concentrações: 5 mM e 10 mM

Procedimento lavagem:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a Verificar rcf (8.000 rpm) por 10 minutos.

- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina.
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Procedimento preparo das amostras:

- 1. A amostra lavada foi separada em 3 tubos eppendorf, com 800 μL em cada um.
- 2. Levei para centrifuga a Verificar rcf (8.000 rpm) por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com: 800 μL de solução saliana; 800 μL de 5 mM FeCl₃ + salina; 800 μL de 10 mM FeCl₃ + salina.

Preparo do teflon

Materiais:

- Placas de teflon estéreis
- Placa de Petri
- Pinça flambada

Procedimento:

- 1. Coloquei 15 plaquinhas de teflon estéreis em uma placa de petri (três de 5 plaquinhas: Controle; Solução de 5 mM; Solução de 10 mM).
- 2. Utilizando uma pinça estéril organizei as plaquinhas de forma a ficarem no centro da placa de petri formando 2 linhas paralelas. Tentei espaçar os 3 grupos.
- 3. Pinguei 5 vezes 10 μL para cada grupo:
 - Grupo 1: Solução salina + boulardii (controle)
 - Grupo 2: Solução salina + 5 mM de FeCl₃ + boulardii
 - Grupo 3: Solução salina + 10 mM de FeCl₃ + boulardii
- 4. A placa de Petri foi identificada para deixar claro a separação dos grupos e evitar que se misturassem.
- 5. A placa de Petri foi levada para o fundo do fluxo laminar até que todas as gotas se secassem.

Irradiação

- Lâmpada UVC
- Irradiômetro

- Placa petri com as culturas dessecadas
- Micropipeta P1000 e ponteiras estéreis
- Solução salina
- Tubos eppendorf
- Fluxo laminar

- Posicionei a placa de petri no fundo do fluxo laminar e ao lado coloquei o sensor do irradiômetro. Desenhei no chão do fluxo usando uma caneta para marcar a posição e sempre volta-los para o mesmo ponto
- 2. Preparei os tubos eppendorf contendo $100\mu L$ de solução salina cada. Foram preparados 1 tubo para cada quadrado de teflon. Eles serão usados para ressuspender as células e como a diluição o da seriada.
- 3. Retirei o ponto o de cada amostra C+; 5Mm; 10mM. Note esse ponto não irradiado, além de controle do experimento de irradiação, é também o experimento de resistência a dessecação na presença de ferro.
- 4. Depois procedi a irradiar com UVC, retirando um teflon de cada tipo nas doses: 250; 650; 1500; 2500 J/m^2 .

Diluição seriada e plaqueamento dos controles imediatos

Materiais:

- Tubos Eppendorf com as plaquinhas de teflon.
- Micropipeta P200 e ponteiras estéreis.
- Tubos Eppendorf com 450μL de solução salina estéreis
- Placas de Petri com meio TGY Agar.

Procedimento:

1. Diluição Seriada:

- (a) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (b) Repeti o processo de transferência de 50 μ L da diluição anterior para o próximo tubo, sucessivamente até a diluição 10^{-4} .

2. Plaqueamento:

- (a) Plaqueei 3 gotas de cada uma das diluições seriadas em placas de Petri contendo meio TGY Agar.
- (b) Levei a placa para estufa a 30°C.

18/07/25

Contagem UFC

Materiais:

- Placas do experimento do dia 14/07/2025 do organismo Boulardii
- Lupa
- Contador
- Caneta

Procedimento:

1. Utilizando a lupa o contador e a caneta, contei as UFC de cada experimento e controle e obtive o seguinte resultado:

Tabela 7.2: Contagem UFC dos experimentos I de resistência a Irradiação Boulardii

Doses	Diluição	Controle
o J/m^2	10^{-4}	63, 67, 64
250 J/m²	10^{-2}	18, 15, 15
650 J/m²	10^{-2}	15, 19, 17
1500 J/m²	10^{-1}	54, 42, 58
2500 J/m²	10^{0}	30, 31, 33

13/08/2025

Pré-Inóculo

Materiais:

- Meio TGY líquido estéril
- Cultura Boulardii em meio sólido TGY ágar feita em (10/07/2025)
- Tubo Falcon de 15 mL estéril
- Ponteiras de pipeta P10

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 3000 μ L de meio TGY líquido estéril.
- 3. Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada do organismo em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. O tubo inoculado foi levado para o shaker a 30°C a 150 rpm e ficará por 48 horas.

15/08/2025

Inóculo

Materiais:

- Meio TGY estéril
- Culturas de Boulardii em meio TGY (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 2970 µL de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 48 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 48 horas.

17/08/2025

Lavagem e preparo das amostras

Materiais:

- Solução salina 0.9% NaCl
- Cultura de Boulardii em meio TGY (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf
- Soluções estéreis de FeCl₃ concentrações: 5 mM e 10 mM

Procedimento lavagem:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a Verificar rcf (8.000 rpm) por 10 minutos.

- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina.
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Procedimento preparo das amostras:

- 1. A amostra lavada foi separada em 3 tubos eppendorf, com 800 μL em cada um.
- 2. Levei para centrifuga a Verificar rcf (8.000 rpm) por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com: 800 μL de solução saliana; 800 μL de 5 mM FeCl₃ + salina; 800 μL de 10 mM FeCl₃ + salina.

Preparo do teflon

Materiais:

- Placas de teflon estéreis
- Placa de Petri
- Pinça flambada

Procedimento:

- 1. Coloquei 15 plaquinhas de teflon estéreis em uma placa de petri (três de 5 plaquinhas: Controle; Solução de 5 mM; Solução de 10 mM).
- 2. Utilizando uma pinça estéril organizei as plaquinhas de forma a ficarem no centro da placa de petri formando 2 linhas paralelas. Tentei espaçar os 3 grupos.
- 3. Pinguei 5 vezes 10 μL para cada grupo:
 - Grupo 1: Solução salina + boulardii (controle)
 - Grupo 2: Solução salina + 5 mM de FeCl₃ + boulardii
 - Grupo 3: Solução salina + 10 mM de FeCl₃ + boulardii
- 4. A placa de Petri foi identificada para deixar claro a separação dos grupos e evitar que se misturassem.
- 5. A placa de Petri foi levada para o fundo do fluxo laminar até que todas as gotas se secassem.

Irradiação

- Lâmpada UVC
- Irradiômetro

- Placa petri com as culturas dessecadas
- Micropipeta P1000 e ponteiras estéreis
- Solução salina
- Tubos eppendorf
- Fluxo laminar

- Posicionei a placa de petri no fundo do fluxo laminar e ao lado coloquei o sensor do irradiômetro. Desenhei no chão do fluxo usando uma caneta para marcar a posição e sempre volta-los para o mesmo ponto
- 2. Preparei os tubos eppendorf contendo $100\mu L$ de solução salina cada. Foram preparados 1 tubo para cada quadrado de teflon. Eles serão usados para ressuspender as células e como a diluição o da seriada.
- 3. Retirei o ponto o de cada amostra C+; 5Mm; 10mM. Note esse ponto não irradiado, além de controle do experimento de irradiação, é também o experimento de resistência a dessecação na presença de ferro.
- 4. Depois procedi a irradiar com UVC, retirando um teflon de cada tipo nas doses: 250; 650; 1500; 2500 I/m^2 .

Diluição seriada e plaqueamento dos controles imediatos

Materiais:

- Tubos Eppendorf com as plaquinhas de teflon.
- Micropipeta P200 e ponteiras estéreis.
- Tubos Eppendorf com 450μL de solução salina estéreis
- Placas de Petri com meio TGY Agar.

Procedimento:

1. Diluição Seriada:

- (a) Transferi 50 μ L da diluição 10^0 para o primeiro tubo da série, homogeneizei, obtendo a diluição 10^{-1} .
- (b) Repeti o processo de transferência de 50 μ L da diluição anterior para o próximo tubo, sucessivamente até a diluição 10^{-4} .

2. Plaqueamento:

- (a) Plaqueei 3 gotas de cada uma das diluições seriadas em placas de Petri contendo meio TGY Agar.
- (b) Levei a placa para estufa a 30°C.

18/07/25

Contagem UFC

Materiais:

- Placas do experimento do dia 14/07/2025 do organismo Boulardii
- Lupa
- Contador
- Caneta

Procedimento:

1. Utilizando a lupa o contador e a caneta, contei as UFC de cada experimento e controle e obtive o seguinte resultado:

Tabela 7.3: Contagem UFC dos experimentos I de resistência a Irradiação Boulardii

Doses	Diluição	Controle	
o <i>J/m</i> ²	10^{-4}	44, 43, 46	
250 J/m²	10^{-2}	60, 63, 55	
650 J/m²	10^{-2}	26, 22, 20	
1500 J/m²	10^{-1}	50, 49, 53	
2500 J/m ²	10^{0}	27, 30, 35	

Resultados Finas

Tabela 7.4: Contagem de UFC do controle de Boulardii submetido à irradiação UVC

Doses (J/m ²)	Diluição	Replicatas (UFC)	Média UFC
0	10^{-4}	48, 41, 51, 63, 67, 64, 44, 43, 46	52.0
250	10^{-2}	60, 58, 56, 18, 15, 15, 60, 63, 55	43.3
650	10^{-2}	22, 21, 19, 15, 19, 17, 26, 22, 20	20.1
1500	10^{-1}	55, 60, 56, 54, 42, 58, 50, 49, 53	53.0
2500	10^{0}	34, 29, 31, 30, 31, 33, 27, 30, 35	31.1

Capítulo 8

Experimento: Resistência à Dessecação na Presença de Ferro

Notas

Esses experimentos são qualitativos. Realizei eles apenas com interesse de saber se a Boulardii iria crescer ou não na dessecação com Ferro. Portanto, esses experimentos não têm contagem de colônia ou qualquer outro método quantitativo. Logo, irei analisar apenas se cresceu ou não cresceu visualmente.

12/07/2025

Pré-Inóculo

Materiais:

- Meio TGY líquido estéril
- Cultura Boulardii em meio sólido TGY ágar feita em (10/07/2025)
- Tubo Falcon de 15 mL estéril
- Ponteiras de pipeta P10

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 3000 μ L de meio TGY líquido estéril.
- Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada do organismo em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. O tubo inoculado foi levado para o shaker a 30°C a 150 rpm e ficará por 48 horas.

14/07/2025

Inóculo

Materiais:

- Meio TGY estéril
- Culturas de Boulardii em meio TGY (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 2970 µL de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 48 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 48 horas.

16/07/2025

Lavagem e preparo das amostras

Materiais:

- Solução salina 0.9% NaCl
- Cultura de Boulardii em meio TGY (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf
- Soluções estéreis de FeCl₃ concentrações: 5 mM e 10 mM

Procedimento lavagem:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a Verificar rcf (8.000 rpm) por 10 minutos.

- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina.
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Procedimento preparo das amostras:

- 1. A amostra lavada foi separada em 4 tubos eppendorf, com 800 μL em cada um.
- 2. Levei para centrifuga a Verificar rcf (8.000 rpm) por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com: 800 μ L de solução saliana; 800 μ L de 5 mM FeCl₃ + salina; 800 μ L de 10 mM FeCl₃ + salina; 800 μ L de 0,5 mM FeCl₃ + salina.

Preparo do teflon

Materiais:

- Placas de teflon estéreis
- Placa de Petri
- Pinça flambada

Procedimento:

- 1. Coloquei 4 plaquinhas de teflon estéreis em uma placa de petri.
- 2. Pinguei 1 veze 10 μL para cada grupo:
 - Grupo 1: Solução salina + boulardii (controle)
 - Grupo 2: Solução salina + 5 mM de FeCl₃ + boulardii
 - Grupo 3: Solução salina + 10 mM de FeCl₃ + boulardii
 - Grupo 4: Solução salina + 0,5 mM de FeCl₃ + boulardii
- 3. A placa de Petri foi identificada para deixar claro a separação dos grupos e evitar que se misturassem.
- 4. A placa de Petri foi levada para o fundo do fluxo laminar até que todas as gotas se secassem.

Ressuspensão

- Tubos falcon com 2 mL de meio TGY liquido.
- Plaquinhas com as células dessecadas.
- Pinça estéril.

- 1. Utilizando a pinça coloquei cada uma das plaquinhas de teflon em tubos falcon separados, e previamente identificados de acordo, com meio TGY liquido.
- 2. Deixei as células reidratando por 30 minutos.
- 3. Vortexei intensamente para garantir que a maioria das células se descolassem do teflon.
- 4. Levei os tubos falcon para shaker à 30° à 150 rpm.

18/07/2025

Verificação

Depois de dois dias verifiquei visualmente se algum dos tubos havia crescido. Assim, verifiquei que apenas o controle cresceu. Enquanto nenhuma das dessecações na presença de ferro cresceram. Portanto, deixei por mais dois dias no shaker à 30° à 150 rpm.

20/07/2025

Verificação

Depois de mais dois dias verifiquei novamente. Mas ainda nenhuma das dessecações na presença de ferro cresceram. Portanto, deixei por mais dois dias no shaker à 30° à 150 rpm.

22/07/2025

Verificação

Depois de 6 dias verifiquei pela última vez se havia crescido. Mas novamente nenhuma das dessecações na presença de ferro cresceram. Portanto, podemos assumir que nenhuma colônia viável foi formada e assim a dessecação na presença de ferro foi letal nas 3 doses analisadas.

19/07/2025

Pré-Inóculo

- Meio TGY líquido estéril
- Cultura Boulardii em meio sólido TGY ágar feita em (10/07/2025)

- Tubo Falcon de 15 mL estéril
- Ponteiras de pipeta P10

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 3000 μ L de meio TGY líquido estéril.
- Utilizando uma ponteira estéril para cada organismo, transferi uma colônia isolada do organismo em meio sólido TGY ágar para o respectivo tubo Falcon contendo meio TGY líquido.
- 4. O tubo inoculado foi levado para o shaker a 30°C a 150 rpm e ficará por 48 horas.

21/07/2025

Inóculo

Materiais:

- Meio TGY estéril
- Culturas de Boulardii em meio TGY (48 horas de crescimento)
- Micropipeta P1000 e ponteiras estéreis
- Micropipeta P200 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril

Procedimento:

- 1. Identifiquei o tubo Falcon com o nome do organismo data e meu nome.
- 2. Em cada tubo, adicionei 2970 μ L de meio TGY.
- 3. Adicionei 30 μ L (1% do volume final) da cultura de 48 horas.
- 4. Os tubos inoculados foram levados para o shaker a 30°C a 150 rpm e vão ficar por 48 horas.

23/07/2025

Lavagem e preparo das amostras

- Solução salina 0.9% NaCl
- Cultura de Boulardii em meio TGY (48 horas de crescimento)

- Micropipeta P1000 e ponteiras estéreis
- Tubo Falcon de 15 mL estéril
- Tubos eppendorf
- Soluções estéreis de FeCl₃ concentrações: 5 mM e 10 mM

Procedimento lavagem:

- 1. Preenchi um tubo Falcon com 3 mL de água destilada para servir como contrapeso.
- 2. Levei a cultura de *Boulardii* para centrifuga a Verificar rcf (8.000 rpm) por 10 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com 3 mL de solução salina
- 4. A partir daqui esse procedimento foi repetido por mais 2 vezes consecutivas.

Procedimento preparo das amostras:

- 1. A amostra lavada foi separada em 4 tubos eppendorf, com 800 μL em cada um.
- 2. Levei para centrifuga a Verificar rcf (8.000 rpm) por 5 minutos.
- 3. Descartei o sobrenadante e o pellet celular foi ressuspenso com: 800 μL de solução saliana; 800 μL de 5 mM FeCl $_3$ + salina; 800 μL de 10 mM FeCl $_3$ + salina; 800 μL de 0,5 mM FeCl $_3$ + salina.

Preparo do teflon

Materiais:

- Placas de teflon estéreis
- Placa de Petri
- Pinça flambada

Procedimento:

- 1. Coloquei 4 plaquinhas de teflon estéreis em uma placa de petri.
- 2. Pinguei 1 veze 10 µL para cada grupo:
 - Grupo 1: Solução salina + boulardii (controle)
 - Grupo 2: Solução salina + 5 mM de FeCl₃ + boulardii
 - Grupo 3: Solução salina + 10 mM de FeCl₃ + boulardii
 - Grupo 4: Solução salina + 0,5 mM de FeCl₃ + boulardii

- 3. A placa de Petri foi identificada para deixar claro a separação dos grupos e evitar que se misturassem.
- 4. A placa de Petri foi levada para o fundo do fluxo laminar até que todas as gotas se secassem.

Ressuspensão

Materiais:

- Tubos falcon com 2 mL de meio TGY liquido.
- Plaquinhas com as células dessecadas.
- Pinça estéril.

Procedimento:

- 1. Utilizando a pinça coloquei cada uma das plaquinhas de teflon em tubos falcon separados, e previamente identificados de acordo, com meio TGY liquido.
- 2. Deixei as células reidratando por 30 minutos.
- 3. Vortexei intensamente para garantir que a maioria das células se descolassem do teflon.
- 4. Levei os tubos falcon para shaker à 30° à 150 rpm.

25/07/2025

Verificação

Depois de dois dias verifiquei visualmente se algum dos tubos havia crescido. Assim, verifiquei que apenas o controle cresceu. Enquanto nenhuma das dessecações na presença de ferro cresceram. Portanto, deixei por mais dois dias no shaker à 30° à 150 rpm.

27/08/2025

Verificação

Depois de 4 dias verifiquei pela última vez se havia crescido. Mas novamente nenhuma das dessecações na presença de ferro cresceram. Portanto, podemos assumir que nenhuma colônia viável foi formada e assim a dessecação na presença de ferro foi letal nas 3 doses analisadas.