

ch1: Intro

- Artificial Intelligence & Machine Learning & Deep Learning(P10)
- Traditional Programming vs Machine Learning(P14-P15)
- what is machine learning(P37)
 - A subset of artificial intelligence which uses statistical methods (model) to enable machine to improve (optimization) towards an objective (loss function) using (data) without requiring explicit programming by human(人工智能的一个子集,它使用统计方法(模型)使机器能够使用(数据)改进(优化)到一个目标(损失函数),而不需要人类的显式编程。)
- Key Elements of Machine Learning(P36)
 - Data (Experience)
 - Model (Hypothesis)
 - Loss Function (Objective)
 - o Optimization Algorithm
- 如何处理一个机器学习的问题

- (1) consider the nature of available data **D**
 - how much amount of data can you obtain? how would it cost (in time, computation, human efforts)?
- 2 select a representation for the input **X**
 - data preprocessing, feature extraction, etc.
- 3 choose a set of possible models **H** (hypothesis space)
 - set of functions h: $X \rightarrow Y$
- 4 choose the performance measure **P** (loss function)
- 5 choose or design a learning algorithm
 - for using examples (**E**) to converge on a member of **H** that optimizes **P** 用于使用例子(E) 收敛于田中的一个优化P的成员

Categories of Machine Learning Algorithms (P52)

- Supervised Learning
- The learner is provided with a set of inputs together with the corresponding desired outputs.

• has a "teacher"

Example

- teaching kids to recognize different animals.
- graded examinations with correct answers provided.

- 应用:
 - Classification
 - Regression
- Unsupervised Learning

Training examples as input patterns, with no associated output.

- no teacher
- similarity measure exists to detect groupings / clusterings
- 应用:
 - Clustering
 - Probability Estimation
 - Data Generation
 - o Topic Modeling learning latent (潜在的) topics from documents
 - o **Outlier Detection(离群值观测)** find the least likely observations from a dataset
 - Dimension Reduction and Feature Selection
- Supervised vs. Unsupervised Learning (P65)

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn function to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, etc.

Unsupervised Learning

Data: x

x is data, no label

Goal: Learn the hidden or underlying structure of the data.

Examples: Clustering, feature or dimensionality reduction, etc.

- Reinforcement Learning(强化学习)
 - Learning from **interacting** with an **environment**.

Learning a mapping from states to actions to maximize long-term reward.

Goal: maximize the expected long-term payoff

Example: graded examinations with only overall scores but no correct answers

- 应用:
 - Monte-Carlo Reinforcement Learning

Important ML concepts

• Generalization (泛化) (P72)

The issue of generalization: whether ML models are encouraged to learn generic patterns or simply remember details?

- Bias and Variance (P73)
 - Bias how close does the assumed model fit for the observed data?
 - Variance how complex (e.g., freedom) the assumed model is?
- Overfitting & unfitting(P76)

Underfitting – the model isn't complex enough to capture the real knowledge, the assumption may not be true.

Overfitting – the model is too complex and thus describes the details of data (e.g., random noise) instead of underlying knowledge

Prevent Overfitting(P78)

Widely used approaches (to prevent overfitting)

- Increase training data
- Regularization (penalizing model complexity) (惩罚模型复杂性)
- Hold-out & cross validation (unseen data to ensure generalization)
- Early stopping 保留和交叉验证 (未见数据以确保泛化)
- Prior knowledge (e.g., Bayesian prior)
- ...
- 这些方法的详细叙述在P79-82

▼ No free lunch theorem

There is no universally best model. Different types of models have to be developed to suit the nature of the data in real applications.