```
In [1]: import warnings
In [2]: warnings.filterwarnings('ignore')
In [3]: import pandas as pd
In [4]: data = pd.read_csv('car data.xls')
```

1. Display Top 5 Rows of The Dataset

In [5]:	data.head()										
Out[5]:		Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmis		
	0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Ма		
	1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Ма		
	2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Ма		
	3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Ма		
	4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Ма		

2. Check Last 5 Rows of The Dataset

da	data.tail()								
		Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transm
2	296	city	2016	9.50	11.6	33988	Diesel	Dealer	1
2	297	brio	2015	4.00	5.9	60000	Petrol	Dealer	ı
2	298	city	2009	3.35	11.0	87934	Petrol	Dealer	I
2	299	city	2017	11.50	12.5	9000	Diesel	Dealer	1
3	300	brio	2016	5.30	5.9	5464	Petrol	Dealer	1
4									•

3. Find Shape of Our Dataset (Number of Rows And Number of Columns)

```
In [7]: data.shape
Out[7]: (301, 9)
```

```
In [8]: print("Number of Rows",data.shape[0])
print("Number of Columns",data.shape[1])

Number of Rows 301
Number of Columns 9
```

4. Get Information About Our Dataset Like the Total Number of Rows, Total Number of Columns, Datatypes of Each Column And Memory Requirement

```
In [9]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 301 entries, 0 to 300
        Data columns (total 9 columns):
         #
             Column
                            Non-Null Count Dtype
         0
             Car Name
                             301 non-null
                                             object
                             301 non-null
                                             int64
         1
             Year
         2
             Selling_Price 301 non-null
                                             float64
         3
             Present_Price 301 non-null
                                             float64
         4
             Kms Driven
                             301 non-null
                                             int64
         5
             Fuel Type
                             301 non-null
                                             object
         6
             Seller_Type
                             301 non-null
                                             object
         7
             Transmission
                             301 non-null
                                             object
                                             int64
             Owner
                             301 non-null
        dtypes: float64(2), int64(3), object(4)
        memory usage: 21.3+ KB
```

5. Check Null Values In The Dataset

```
In [10]: data.isnull().sum()
Out[10]: Car_Name
                           0
          Year
                           0
          Selling Price
                           0
          Present_Price
                           0
          Kms_Driven
                           0
          Fuel_Type
                           0
          Seller_Type
                           0
          Transmission
                           0
         Owner
          dtype: int64
```

6. Get Overall Statistics About The Dataset

In [11]: data.describe()

\cap	44-1	Г 1	17
U	a c	1 4	цΙ,

	Year	Selling_Price	Present_Price	Kms_Driven	Owner
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
std	2.891554	5.082812	8.644115	38886.883882	0.247915
min	2003.000000	0.100000	0.320000	500.000000	0.000000
25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
max	2018.000000	35.000000	92.600000	500000.000000	3.000000

7. Data Preprocessing

In [12]:	data.	head(1)							
Out[12]:	C	ar_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmis
	0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Ma
	4								•
In [13]:	<pre>import datetime</pre>								
In [14]:	<pre>date_time = datetime.datetime.now()</pre>								
In [15]:	data['Age']=date_time.year - data['Year']								
In [16]:									
F3.	data.	head()							
Out[16]:			Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmis
		ar_Name	Year 2014	Selling_Price 3.35	Present_Price 5.59	Kms_Driven 27000	Fuel_Type Petrol	Seller_Type Dealer	Transmis:
	C	ar_Name							
	C:	ar_Name ritz sx4	2014	3.35	5.59	27000	Petrol	Dealer	Ma
	0 1	ar_Name ritz sx4	2014 2013 2017	3.35 4.75	5.59 9.54	27000 43000	Petrol Diesel	Dealer Dealer	Ma Ma
	0 1 2	ar_Name ritz sx4 ciaz wagon r	2014 2013 2017	3.35 4.75 7.25	5.59 9.54 9.85	27000 43000 6900	Petrol Diesel Petrol	Dealer Dealer Dealer	Ma Ma Ma
	C: 0 1 2 3	ar_Name ritz sx4 ciaz wagon r	2014 2013 2017 2011	3.35 4.75 7.25 2.85	5.59 9.54 9.85 4.15	27000 43000 6900 5200	Petrol Petrol Petrol	Dealer Dealer Dealer Dealer	Ma Ma Ma Ma

In [18]: data.head()

Out[18]:

	Car_Name	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	(
0	ritz	3.35	5.59	27000	Petrol	Dealer	Manual	-
1	sx4	4.75	9.54	43000	Diesel	Dealer	Manual	
2	ciaz	7.25	9.85	6900	Petrol	Dealer	Manual	
3	wagon r	2.85	4.15	5200	Petrol	Dealer	Manual	
4	swift	4.60	6.87	42450	Diesel	Dealer	Manual	
4								

Outlier Removal

In [19]: import seaborn as sns

In [20]: sns.boxplot(data['Selling_Price'])

Out[20]: <Axes: >


```
In [21]: |sorted(data['Selling_Price'],reverse=True)
Out[21]: [35.0,
           33.0,
           23.5,
           23.0,
           23.0,
           23.0,
           20.75,
           19.99,
           19.75,
           18.75,
           18.0,
           17.0,
           16.0,
           14.9,
           14.73,
           14.5,
           14.25,
           12.9,
           12.5,
In [22]: data = data[~(data['Selling Price']>=33.0) & (data['Selling Price']<=35.0)]</pre>
In [23]:
          data.shape
Out[23]: (299, 9)
```

Encoding the Categorical Columns

```
In [24]:
         data.head(1)
Out[24]:
             Car_Name Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission (
          0
                              3.35
                                           5.59
                                                     27000
                                                               Petrol
                                                                         Dealer
                                                                                     Manual
                   ritz
In [25]: | data['Fuel_Type'].unique()
Out[25]: array(['Petrol', 'Diesel', 'CNG'], dtype=object)
In [26]: | data['Fuel_Type'] = data['Fuel_Type'].map({'Petrol':0,'Diesel':1,'CNG':2})
In [27]: data['Fuel_Type'].unique()
Out[27]: array([0, 1, 2], dtype=int64)
In [28]: |data['Seller_Type'].unique()
Out[28]: array(['Dealer', 'Individual'], dtype=object)
```

```
In [29]: data['Seller_Type'] = data['Seller_Type'].map({'Dealer':0,'Individual':1})
In [30]: data['Seller_Type'].unique()
Out[30]: array([0, 1], dtype=int64)
In [31]: data['Transmission'].unique()
Out[31]: array(['Manual', 'Automatic'], dtype=object)
In [32]: data['Transmission'] =data['Transmission'].map({'Manual':0,'Automatic':1})
In [33]: | data['Transmission'].unique()
Out[33]: array([0, 1], dtype=int64)
In [34]: data.head()
Out[34]:
                       Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission (
             Car_Name
          0
                                                      27000
                                                                   0
                                                                               0
                                                                                           0
                   ritz
                               3.35
                                            5.59
                                                      43000
           1
                   sx4
                               4.75
                                            9.54
                                                                               0
                                                                                           0
           2
                               7.25
                                            9.85
                                                       6900
                                                                    0
                                                                               0
                                                                                           0
                   ciaz
                                                                                           0
           3
                wagon r
                               2.85
                                            4.15
                                                       5200
                                                                    0
                                                                               0
                  swift
                               4.60
                                            6.87
                                                      42450
```

8. Store Feature Matrix In X and Response(Target) In Vector y

```
In [35]: X = data.drop(['Car_Name', 'Selling_Price'], axis=1)
          y = data['Selling_Price']
In [36]: |y
Out[36]: 0
                  3.35
                  4.75
          1
          2
                  7.25
          3
                  2.85
          4
                  4.60
                  . . .
          296
                  9.50
          297
                  4.00
          298
                  3.35
          299
                 11.50
                  5.30
          300
          Name: Selling_Price, Length: 299, dtype: float64
```

9. Splitting The Dataset Into The Training Set And Test Set

```
In [37]: from sklearn.model_selection import train_test_split
```

```
In [38]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.20,random_state
```

10. Import The models

```
In [39]: ! pip install xgboost
```

Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: xgboost in c:\users\r\appdata\roaming\python\p ython310\site-packages (1.7.6)

Requirement already satisfied: scipy in c:\programdata\anaconda3\lib\site-pac kages (from xgboost) (1.10.0)

Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site-pac kages (from xgboost) (1.23.5)

```
In [40]: from sklearn.linear_model import LinearRegression
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.ensemble import GradientBoostingRegressor
    from xgboost import XGBRegressor
```

11. Model Training

```
In [41]: lr = LinearRegression()
lr.fit(X_train,y_train)

rf = RandomForestRegressor()
rf.fit(X_train,y_train)

xgb = GradientBoostingRegressor()
xgb.fit(X_train,y_train)

xg = XGBRegressor()
xg.fit(X_train,y_train)
```

Out[41]: XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

12. Prediction on Test Data

```
In [42]: y_pred1 = lr.predict(X_test)
y_pred2 = rf.predict(X_test)
y_pred3 = xgb.predict(X_test)
y_pred4 = xg.predict(X_test)
```

13. Evaluating the Algorithm

0.6790884983129396 0.7508612295607724 0.8943559626238841 0.8864839405756888

```
In [47]: final_data
```

Out[47]:		Models	R2_SCORE
	0	LR	0.679088
	1	RF	0.750861
	2	GBR	0.894356
	3	XG	0.886484

```
In [48]: sns.barplot(x=final_data['Models'],y=final_data['R2_SCORE'])
```

Out[48]: <Axes: xlabel='Models', ylabel='R2_SCORE'>

14. Save The Model

```
In [49]: xg = XGBRegressor()
xg_final = xg.fit(X,y)
```

```
In [50]: import joblib
```

```
In [51]: joblib.dump(xg_final,'car_price_predictor')
Out[51]: ['car_price_predictor']
In [52]: model = joblib.load('car_price_predictor')
```

15. Prediction on New Data

```
In [54]: model.predict(data_new)
```

Out[54]: array([3.7360353], dtype=float32)

```
from tkinter import *
In [55]:
         import joblib
         def show entry fields():
             p1=float(e1.get())
             p2=float(e2.get())
             p3=float(e3.get())
             p4=float(e4.get())
             p5=float(e5.get())
             p6=float(e6.get())
             p7=float(e7.get())
             model = joblib.load('car price predictor')
             data new = pd.DataFrame({
             'Present Price':p1,
              'Kms Driven':p2,
              'Fuel Type':p3,
              'Seller Type':p4,
              'Transmission':p5,
              'Owner':p6,
              'Age':p7
         },index=[0])
             result=model.predict(data new)
             Label(master, text="Car Purchase amount").grid(row=8)
             Label(master, text=result).grid(row=10)
             print("Car Purchase amount", result[0])
         master = Tk()
         master.title("Car Price Prediction Using Machine Learning")
         label = Label(master, text = "Car Price Prediction Using Machine Learning"
                                    , bg = "black", fg = "white"). \
                                         grid(row=0,columnspan=2)
         Label(master, text="Present Price").grid(row=1)
         Label(master, text="Kms Driven").grid(row=2)
         Label(master, text="Fuel_Type").grid(row=3)
         Label(master, text="Seller_Type").grid(row=4)
         Label(master, text="Transmission").grid(row=5)
         Label(master, text="Owner").grid(row=6)
         Label(master, text="Age").grid(row=7)
         e1 = Entry(master)
         e2 = Entry(master)
         e3 = Entry(master)
         e4 = Entry(master)
         e5 = Entry(master)
         e6 = Entry(master)
         e7 = Entry(master)
         e1.grid(row=1, column=1)
         e2.grid(row=2, column=1)
         e3.grid(row=3, column=1)
         e4.grid(row=4, column=1)
         e5.grid(row=5, column=1)
         e6.grid(row=6, column=1)
```

```
e7.grid(row=7, column=1)

Button(master, text='Predict', command=show_entry_fields).grid()

mainloop()
```

In []: