

A. Course Handout

Institute Name	Chitkara University Institute of Engineering & Technology				
Department Name	Department of Computer Science & Engineering				
Programme Name	Bachelor of Engineering -Computer Science & Engineering (Artificial Intelligence)				
Course Name	Database Management System	2024-2025			
Course Code	22CS007	Semester/Batch	4 th /2023		
Lecture/Tutorial (Per	2-0-4	4			
Week)					
Course Coordinator Name	Dr.Shruti Arora				

1. Objective of the Course:

The main objectives of the course are:

- To provide a comprehensive foundation for designing and implementing database systems by using RDBMS and analyse its need for real life applications.
- To enable the students to participate in the development process by implementing SQL commands and be able to describe relational algebra & tuple relation expression from queries.
- To recognize and identify the use of normalization and functional dependency used in database design.
- To apply and relate the concept of transaction, concurrency control, security and recovery in database.
- To provide knowledge about the concepts of procedures, functions, cursors and triggers
- To put into practice PL/SQL programming.
- To use concepts of distributed databases and query optimization techniques.

2. <u>Course Learning Outcome:</u>

On completion of the course, students will be able to:

	Course Outcome	POs	CL	KC	Sessions
CLO01	Design and implement database system by implementing SQL commands for RDBMS and analyze database requirements to determine the entities involved in the system and their relationship to one another.	PO1, PO4	K3	Procedural	10
CLO02	Implement the concept of normalization and functional dependency while designing the databases.	PO10, PO11	К3	Factual, Procedural	20
CLO03	Apply the concept of transaction, concurrency control, security and recovery in database.	PO5, PO10	K4	Conceptual	10
CLO04	Implement procedures, functions, cursors and triggers and become proficient in PL/SQL programming.	PO1,PO 2	К3	Conceptual, Procedural	10
CLO05	Explain and evaluate the fundamental theories and requirements that influence the design of distributed database systems.	PO7, PO10	K5	Conceptual, Procedural	16
Total Con	tact Hours	ı			66

 $CLO\text{-PO-PSO Mapping grid } | Program \ outcomes \ (POs) \ and \ Program \ Specific \ Outcomes \ (PSOs) \ are available \ as \ a \ part \ of \ Academic \ Program \ Guide$

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Learning															
Outcomes															
CLO1	Н	L	L	M	L		Н		Н		Н	L		L	
CLO2	M	Н	M		L		Н	Н			L	Н			M
CLO3	L	Н	M	Н	M					Н	L	M		Н	
CLO4	L	M	Н	M	L			Н			L	L	Н		L
CLO5	Н		M	M	L				Н			M	Н		L

H=High, M=Medium, L=Low

3. ERISE Grid Mapping

Feature Enablement	Level (1-5, 5 being highest)
Entrepreneurship	3
Research	4
Innovation	4
Skills	5
Employability	4

4. Recommended Books (Reference Books/Textbooks):

B01:	'Database System Concepts', Abraham Silberscatz, Henry F.Korth, Sudharsan, Fifth Edition,
	McGraw-Hill.
B02:	'An Introduction to Database Systems', C.J.Date ,Eighth Edition, O'Reilly Media.
B03:	'An Introduction to Database Systems', Bipin.C.Desai, Eleventh Edition, West Group Division,
	1990.
B04:	'Database Systems', Ramez.Z.Elmasri, ShamkantB.Navathe, Seventh Edition, Pearson
	Education.
B05:	Fundamentals of Database Design by Ramez Elmasri, Shamkant B. Navathe, Addison Wesley
	Publications, Seventh Edition.
B06:	Introduction to SQL by Oracle Press.
B07:	Database System Concepts by Henry F. Korth, Sixth Edition.
B08:	Principles of Distributed Database Systems by M. Tamer Özsu, Third Edition

5. Other readings & relevant websites:

S.No.	Link of Journals, Magazines, websites and Research Papers
1.	https://www.tutorialspoint.com/dbms/index.htm
2.	http://freevideolectures.com/Course/2668/Database-Management-System
3.	http://www.help2engg.com/dbms/dbms-introduction
4.	http://dbms-tutorials.blogspot.in/
5.	www.oracle.com
6.	https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_databases.html
7.	http://www.exploredatabase.com/2014/09/query-processing-in-database.html
8.	https://onlinecourses.nptel.ac.in/noc15 cs14/preview
9.	https://www.tutorialspoint.com/dbms/pdf/database_normalization
10.	https://www.tutorialspoint.com/dbms/dbms transaction.htm
11.	https://www.tutorialspoint.com/dbms/dbms_concurrency_control.htm
12.	https://www.tutorialspoint.com/dbms/er_diagram_representation.htm
13.	http://docs.oracle.com/cd/B10501 01/appdev.920/a96624/a samps.htm

14.	http://www.acs.utah.edu/acs/qa_standards/psstd07g.htm
15.	http://infolab.stanford.edu/~ullman/fcdb/oracle/or-plsql.html
16.	http://sql-plsql- manual.blogspot.in/
17.	http://freevideolectures.com/Course/3179/MySQL-Database#
18.	http://www.w3schools.com/sql/default.asp

6. Recommended Tools and Platforms

Oracle, MYSQL

7. Course Plan:

Lecture	Topics	Recommended Books
Number		
1	Introduction to database and characteristics of database approach.	B01, B02, B03
2	Advantages and disadvantages of DBMS approach. File system V/s Database system. DBMS three schema Architecture.	B01, B04
3-4	Introduction to Data Models: Hierarchical Model, Network Model, ER Model, Relational Model.	B01, B02, B03, B04
5-6	Schemas, Instances, Schema architecture and Data Independence.	B01, B03, B04
7	Client Server Architecture for DBMS, ACID Properties in DBMS.	B01, B03, B04
8-9	ER Model: Database design process, Entity Types, Entity sets, Attributes, keys and their types, Weak entity types	B01, B03, B04
10-11	ER diagrams, naming convention and design issues, E.F Codd Rules.	B01, B03, B04
12-13	Overview of the MySQL Query Language: Basic Structure of SQL Queries, Data types, and variables.	B06
14	MySQL database – create, select, show, drop.	B06
15-16	MySQL table – create, alter, show, rename, truncate, describe, drop.	B06
17-18	MySQL queries - insert records, update records, delete and select records.	B06
19	Set Operations.	B06
20-21	SQL clauses - WHERE, ORDER BY, GROUP BY, HAVING.	B06
22-23	MySQL conditions – AND, OR, NOT, Like, etc.,	B06
	Formative Assessment-1 (1-23 Lectures)	
24-25	Aggregate Functions	B06
26	Relational Data Model: Rational model concept, Characteristics of relations.	B01, 004
27	Relational Algebra	B02, B06
28-29	Types of Relational operation – select, project, union, set intersection, set difference, Cartesian product, rename operation.	B02, B05
30-33	Join Operations – natural, outer, and equi join.	B06
34	Integrity Constraint, Relational Calculus – Tuple relational calculus and Domain relational calculus.	B06
	Sessional Test-1 (24-34 Lectures)	
35	Introduction to DBMS Normalization, Functional Dependencies (Fully, Transitive, Multi-valued, Join Dependencies).	B05
36	1st Normal Form, 2nd Normal Form.	B05, B06
37-40	3rd Normal Form, Boyce Codd Normal Form (BCNF).	B05, B06
41-42	4th Normal Form, 5th Normal Form & 6th Normal Form.	B05, B06

43-44	Introduction to Transaction and its desirable properties,	B05, B06
	Transaction State.	
45-46	Testing of Serializability, Recoverability of Schedule.	B05, B06
47-48	DBMS Backup and Recovery, Log-Based Recovery,	B05, B06
	DBMS Checkpoint, and Deadlock in DBMS.	
	Formative Assessment-2 (36-48 Lectures)	
49	Introduction to Database Security.	B07
50	Discretionary access control based on granting and	B07
	revoking privileges.	
51-53	Introduction to Concurrency Control Techniques, Lock-	B06, B07
	Based Protocol.	
54	Timestamp Ordering Protocol, Validation-Based Protocol.	B07
	Sessional Test-2 (49-54 Lectures)	
55	Introduction to distributed databases, Advantages, and	B08
	Functions of distributed databases.	
56-57	Types of distributed databases Systems (Homogeneous and	B08
	Heterogeneous), Parallel DBMS VS Distributed DBMS.	
58-59	NoSQL Databases: The CAP Theorem, NoSQL Data	B08
	Models, MongoDB Overview.	
60-61	MongoDB Datatypes, Data Modelling in MongoDB.	B08
62-63	MongoDB - Create Database, Drop Database, Create	B08
	Collection, Drop Collection, Insert Document, Query	
	Document, Update Document, Delete Document.	
64-66	MongoDB — Projection, Limit Records, Sort Records,	B08
	Indexing and Aggregation.	
	END-TERM EXAM (FULL SYLLABUS)	

8. <u>Delivery/Instructional Resources</u>

Lecture	Topics	PPT	Industry	Web References	Audio-
No.		(Link of	Expert		Video
		ppts on the	Session (If		
		central	yes: link of		
		server)	ppts on the		
			central		
			server)		
1–3	Introduction to database and characteristics of database approach			https://www.geeksf orgeeks.org/introdu ction-to-database- systems/	https://yo utu.be/H hxRQKj OJkY
4–6	Advantages and disadvantages of DBMS approach, File system vs Database system			https://www.javatp oint.com/dbms-vs- file-system	https://yo utu.be/pg cWV6bb Dw8
7–9	DBMS Three Schema Architecture			https://www.geeksf orgeeks.org/dbms- three-schema- architecture/	https://yo utu.be/G xFZqJxG uQ0
10–12	Introduction to Data Models: Hierarchical, Network, ER, and Relational Models			https://www.javatp oint.com/dbms- data-models	https://yo utu.be/_n HgXYtd gpA
13–15	Schemas, Instances, Schema Architecture, and Data Independence			https://www.tutoria lspoint.com/dbms/d bms_schemas.htm	https://yo utu.be/Io

				E1S6tEY kA
16–18	Client-Server Architecture for DBMS, ACID Properties in DBMS		https://www.geeksf orgeeks.org/acid- properties-in-dbms/	https://yo utu.be/1j 9X9JPC 7BQ
19–23	ER Model: Database design process, Entity Types, Keys, ER diagrams, E.F. Codd Rules		https://www.javatp oint.com/er-model- in-dbms	https://yo utu.be/ix 45OaM3 K08
24–26	Overview of MySQL Query Language: SQL Basics, Data types, Variables		https://www.mysqlt utorial.org/mysql- basics/	https://yo utu.be/o ALmfjR zdlA
27–28	MySQL Database and Table Operations: Create, Alter, Drop		https://www.w3sch ools.com/sql/sql in tro.asp	https://yo utu.be/M H52Xfw 9OGk
29–30	MySQL Queries: Insert, Update, Delete, Select		https://www.sqlsha ck.com/sql-queries/	https://yo utu.be/k Blt1A6F fIQ
31–33	SQL Clauses and Conditions: WHERE, ORDER BY, GROUP BY, HAVING, AND, OR, NOT		https://www.w3sch ools.com/sql/sql_w here.asp	https://yo utu.be/K Lxnrc7k Azk
34–36	Aggregate Functions, Relational Data Model, and Characteristics		https://www.geeksf orgeeks.org/sql- aggregate- functions/	https://yo utu.be/W gi4Tx9 WPHo
37–39	Relational Algebra and Types of Operations: Select, Project, Join, Union		https://www.javatp oint.com/dbms- relational-algebra	https://yo utu.be/2 NpOYn4 krCM
40–42	Relational Calculus and Integrity Constraints		https://www.tutoria lspoint.com/dbms/r elational_calculus.h tm	https://yo utu.be/b QF7HW hs5RY
43–47	DBMS Normalization: Functional Dependencies, 1NF, 2NF, 3NF, BCNF		https://www.geeksf orgeeks.org/normal ization-in-dbms/	https://yo utu.be/F GMdRT 8-GCk
48–49	Higher Normal Forms: 4NF, 5NF, and 6NF		https://www.javatp oint.com/normaliza tion-in-dbms	https://yo utu.be/M LiXVbF 7VOY
50-52	Transactions, Properties, Serializability, and Recoverability		https://www.tutoria lspoint.com/dbms/d bms_transaction.ht m	https://yo utu.be/D ROBIkIL byE

Course Plan

53-54	Backup, Recovery, and		https://www.geeksf	https://yo
	Deadlock in DBMS		orgeeks.org/recover y-in-dbms/	utu.be/q OJZTfd3 4PA
55–56	Database Security and Discretionary Access Control		https://www.tutoria lspoint.com/dbms/d bms data security. htm	https://yo utu.be/M AZ9v6C EGQw
57	Concurrency Control Techniques: Lock-Based, Timestamp, Validation- Based Protocols		https://www.geeksf orgeeks.org/dbms- concurrency- control/	https://yo utu.be/U 29vpGI2 XDY
58	Introduction to Distributed Databases and Their Advantages		https://www.javatp oint.com/distribute d-database	https://yo utu.be/5s k4DCkv pHk
59-60	Types of Distributed Databases: Homogeneous, Heterogeneous, Parallel DBMS		https://www.geeksf orgeeks.org/distribu ted-database- system/	https://yo utu.be/1c HIUvDU Eko
61-62	NoSQL Databases: CAP Theorem, Data Models, MongoDB Overview		https://www.mongo db.com/nosql- explained	https://yo utu.be/W cu29zE1 LCs
63-64	MongoDB Database and Collection Operations		https://www.mongo db.com/docs/manua l/introduction/	https://yo utu.be/h4 f5mNZJ bM0
65-66	MongoDB Queries: Insert, Update, Delete, Projection, Aggregation		https://www.w3sch ools.com/mongodb/	https://yo utu.be/n mrj64wx jcA

9. Action plan for different types of learners

Slow Learners	Average Learners	Fast Learners
 Multiple Remedial Extra Classes Encouragement for improvement using Peer Tutoring 	 Doubt-sessions Pre-coded algorithms to illustrate concepts and notions E-notes and E-exercises to read in addition to pedagogic material 	 More Practice assignments on real life problems Engaging students to hold hands of slow learners by creating a Peer Tutoring Group Participation in Hackathons, competitions.

10. Evaluation Scheme & Components:

Evaluation	Type of Component	No. of	Weightage of	Mode of
Component		Assessments	Component	Assessment
Component 1	Formative Assessments (FAs)	02*	20%	Online
Component 2	Subjective Test/Sessional Tests	02**	30%	ST1: Online
	(STs)			ST2: Online
Component 3	onent 3 End Term Examinations		50%	Offline
Total			100%	

^{*}Out of 02 FAs, the ERP system automatically picks best of the 02 FAs Marks for evaluation of the FAs as final marks.

11. Details of Evaluation Components:

Evaluation Component	Description	Syllabus Covered (%)	Timeline of Examination	Weightage (%)
Component 01	FA1	Up to 28%	Week 4	20%
	FA2	29%-40%	Week 9	
Component 02	ST 01	Upto 40%	Week 6	30%
	ST 02	40% - 80%	Week 13	-
Component 03	End Term Examination*	100%	To be notified by Dean Examination	50%
Total				

^{*}As per Academic Guidelines minimum 75% attendance is required to become eligible for appearing in the End Semester Examination

12. Evaluation Components

Type of Assessment	Timeline	Total	Question Paper Format			
	of Conduct	Marks	1 Mark MCQ	2 Mark MCQ/2 Mark Question	5 Mark Coding Question	10 Mark Coding Question
Formative Assessment 1	Week 4	20	10	5	0	0
Formative Assessment 2	Week 9	20	10	5	0	0
Sessional Test 1	Week 6	30	10	5	2	0
Sessional Test 2	Week 13	30	10	5	2	0
End Term Examination	•	50	10	5	4	1

13. Syllabus of the Course:

Subject: Database Management System		Sı	ubject Co	de: 22CS007
S.N.	Topic (s)		No. of Lectures	Weightage %

^{**}ST1 and ST2 have average weightage of 30%.

1	Introduction: Introduction to database and Characteristics of Database approach, Advantages and Disadvantages of DBMS approach, File system V/s Database system. DBMS three schema Architecture. Introduction to Data Models: Hierarchical Model, Network Model, ER Model, Relational Model. Schemas, Instances, Schema architecture and Data Independence, Client Server Architecture for DBMS, ACID Properties in DBMS. ER Model: Database design process, Entity Types, Entity sets, Attributes, keys, and their types Weak entity types. ER diagrams, naming convention, and design issues, E.F Codd Rules.	15	15%
2	Overview of the MySQL Query Language: Basic Structure of SQL Queries, Data types, and variables, MySQL database – create, select, show, drop, MySQL table – create, alter, show, rename, truncate, describe, drop, MySQL queries - insert records, update records, delete and select records, Set Operations, SQL clauses - WHERE, ORDER BY, GROUP BY, HAVING, MySQL conditions – AND, OR, NOT, Like, etc., Aggregate Functions.	15	20%
3	Relational Data Model: Rational model concept, Characteristics of relations, Relational Algebra, Types of Relational operation – select, project, union, set intersection, set difference, Cartesian product, rename operation. Join Operations – natural, outer, and equi-join. Integrity Constraint, Relational Calculus – Tuple relational calculus and Domain relational calculus. Normalization: Introduction to DBMS Normalization, Functional Dependencies (Fully, Transitive, Multi-valued, Join Dependencies)1st Normal Form, 2nd Normal Form, 3rd Normal Form, Boyce Codd Normal Form (BCNF), 4th Normal Form, 5th Normal Form & 6th Normal Form.	20	25%
4	Transaction Processing: Introduction to Transaction and its desirable properties, Transaction States, Testing of Serializability, Recoverability of Schedule, DBMS Backup and Recovery, Log-Based Recovery, DBMS Checkpoint, and Deadlock in DBMS. Introduction to Database Security, Discretionary access control based on granting and revoking privileges. Concurrency Control: Introduction to Concurrency Control Techniques, Lock-Based Protocol, Timestamp Ordering Protocol, Validation-Based Protocol. Distributed Databases: Introduction to distributed databases, Advantages, and Functions of distributed databases, Types of distributed databases Systems (Homogeneous and Heterogeneous), Parallel DBMS VS Distributed DBMS.	7	20%
5	NoSQL Databases: The CAP Theorem, NoSQL Data Models, MongoDB Overview, MongoDB Datatypes, Data Modelling in MongoDB, MongoDB - Create Database, Drop Database, Create Collection, Drop Collection, Insert Document, Query Document, Update Document, Delete Document, MongoDB — Projection, Limit Records, Sort Records, Indexing and Aggregation.	5	20%

This Document is approved by:

Course Plan

Designation	Name	Signature
Course Coordinator	Dr. Shruti Arora	
Program Head	Dr. Kamal Deep Garg	
Dean (CSE-AI)	Dr. Sushil Kumar Narang	
Date		