Univerza v Ljubljani Fakulteta za matematiko in fiziko

Eva Deželak in Ines Šilc

KOCKARJEV PROPAD

Seminar

Mentor: doc. dr. Matija Vidmar

Kazalo

1	Besedilo naloge	1
2	Rešitev	2
	2.1 Računanje verjetnosti, da bankrotira igralec M	
	2.1.1 Poseben primer	. 5
	2.2 Računanje $E[T]$. 5
3	Viri	9

1 Besedilo naloge

Igralec M ima m enot denarja, igralec N pa n enot premoženja, $\{m,n\} \subset \mathbb{N}$. Zapored igrata igro na srečo v kateri ni neodločenih izidov; v vsaki igri dobi zmagovalec eno denarno enoto od poraženca; igralec M zmaga vsakič z verjetnostjo $p \in (0,1)$, neodvisno od preteklosti. Igranje se konča, ko eden od igralcev bankrotira. Naj bo T število iger, ki je potrebnih, da eden od igralcev bankrotira.

- \bullet Predpostavi, da je $T<\infty$ s.g. (*ali znaš to utemeljiti?). Določi verjetnost, da bankrotira igralec M.
- Predpostavi, da je $E[T] < \infty$. Določi E[T].

2 Rešitev

2.1 Računanje verjetnosti, da bankrotira igralec M

Število iger je manjše od ∞ , saj če dovolj dolgo igramo igro, obstaja verjetnost, da zmagamo, ne glede na to koliko osnovnega premoženja imamo, prav tako obstaja verjetnost da zgubimo, da nam ves denar pobere nasprotnik. Igra se bo z verjetnostjo 1 oziroma skoraj gotovo torej končala.

Če je verjetnost, da zmaga igralec M enaka p, potem je verjetnost, da zmaga igralec N enaka 1-p. Naj bo A_a dogodek, da bankrotira igralec M, če ima trenutno a denarja. Za vsako naravno ptevilo a definiramo $p_a = P(A_a)$. Poiskati želimo p_m , torej verjetnost, da propade igralec M, če ima m denarja.

Naši hipotezi sta:

H - prvi igralec v naslednjem krogu zmaga (torej dobi 1 od drugega igralca) H^C - prvi igralec v naslednjem krogu izgubi (torej da 1 drugemu igralcu)

Verjetnost, da igralec M propade, če ima a denarja je enaka:

$$P(A_a) = P(A_a/H) \cdot P(H) + P(A_a/H^C) \cdot P(H^C)$$

iz česar sledi

$$p_{a} = P_{a+1} \cdot p + p_{a-1} \cdot (1-p)$$

$$(p+1-p) \cdot p_{a} = P_{a+1} \cdot p + p_{a-1} \cdot (1-p)$$

$$p \cdot p_{a} + (1-p) \cdot p_{a} = p_{a+1} \cdot p + p_{a-1} \cdot (1-p)$$

$$p \cdot p_{a} - P_{a+1} \cdot p = p_{a-1} - (1-p) \cdot p_{a}$$

$$p \cdot (p_{a} - p_{a+1}) = (1-p) \cdot (p_{a-1} - p_{a})$$

Sedaj uvedemo novo oznako: $u_a = p_a - p_{a+1}$. Torej velja tudi $u_{a-1} = p_{a-1} - p_a$, zato sledi

$$p \cdot u_a = (1 - p) \cdot u_{a-1}$$

Torej

$$u_a = \frac{1-p}{p} \cdot u_{a-1}$$

Če sedaj uvedemo še oznako $r = \frac{1-p}{p}$, dobimo

$$u_a = r \cdot u_{a-1}$$

Od tod lahko izrazimo vse člene z začetnim (torej z $u_0)\colon$

$$u_1 = r \cdot u_0$$

$$u_2 = r \cdot u_1 = r \cdot r \cdot u_0 = r^2 \cdot u_0$$

$$\dots$$

$$u_a = r^a \cdot u_0$$

Vemo, da če ima eden od igralcev ves denar, potem gotovo zmaga, če pa ga nima nič, potem gotovo izgubi, zato je:

$$p_c = 0$$
, kjer je $c = m + n$ in $p_0 = 1$

Sedaj lahko najprej u_0 izrazimo z začetnimi podatki:

$$1 = p_0 - p_c = (p_0 - p_1) + (p_1 - p_2) + \dots + (p_{c-1} - p_c) =$$

$$= u_0 + u_1 + u_2 + \dots + u_{c-1} =$$

$$= u_0 + r \cdot u_0 + r^2 \cdot u_0 + \dots + r^{c-1} \cdot u_0 =$$

$$= u_0 \cdot (1 + r + r^2 + \dots + r^{c-1}) =$$

$$= u_o \cdot \frac{r^c - 1}{r - 1}$$

Iz tega sledi

$$u_0 = \frac{r-1}{r^c - 1}$$

Sedaj lahko izračunamo verjetnost za propad prvega igralca (vemo, da je $u_m = p_m - p_{m+1}$):

$$\begin{split} p_m &= u_m + p_{m+1} = \\ &= u_m + u_{m+1} + p_{m+2} = \\ &= u_m + u_{m+1} + u_{m+2} + p_{m+3} = \\ &= u_m + u_{m+1} + u_{m+2} + u_{m+3} + \dots + u_{m+n-1} + p_{m+n} = \\ &= u_m + u_m \cdot r + u_m \cdot r^2 + \dots + u_m \cdot r^{n-1} + 0 = \\ &= u_m + u_m \cdot \frac{1-p}{p} + u_m \cdot (\frac{1-p}{p})^2 + u_m \cdot (\frac{1-p}{p})^3 + \dots + u_m \cdot (\frac{1-p}{p})^{n-1} = \\ &= u_m \cdot (1 + \frac{1-p}{p} + (\frac{1-p}{p})^2 + \dots + (\frac{1-p}{p})^{n-1}) = u_m \cdot \frac{(\frac{1-p}{p})^n - 1}{\frac{1-p}{p} - 1} = \\ &= r^m \cdot u_0 \cdot \frac{(\frac{1-p}{p})^n - 1}{\frac{1-p}{p} - 1} = (\frac{1-p}{p})^m \cdot \frac{\frac{1-p}{p} - 1}{(\frac{1-p}{p})^{m+n} - 1} \cdot \frac{(\frac{1-p}{p})^n - 1}{\frac{1-p}{p} - 1} = \\ &= \frac{(\frac{1-p}{p})^n - 1}{(\frac{1-p}{p})^{m+n} - 1} \cdot (\frac{1-p}{p})^m = \frac{(\frac{1-p}{p})^{m+n} - (\frac{1-p}{p})^m}{(\frac{1-p}{p})^{m+n} - 1} = \\ &= \frac{(\frac{1-p}{p})^{n+m} - (1-p)^m}{\frac{(1-p)^{n+m}}{p^n} - (1-p)^m} = \frac{(1-p)^{n+m} - (1-p)^m \cdot p^n}{(1-p)^{m+n} - p^{m+n}} \end{split}$$

Torej dobili smo verjetnost za propad igralca M.

2.1.1 Poseben primer

Vprašanje se pojavi, kaj se zgodi, če imata oba igralca enako verjetnost za zmago, torej $p=1-p=\frac{1}{2}$. Takrat namreč zgornji izračun ni mogoč, saj bi prišlo do deljenja z 0. Iz tega dobimo, da je

$$r = \frac{1 - \frac{1}{2}}{\frac{1}{2}} = 1$$

V tem primeru so u_0, u_1, \ldots, u_n med seboj enaki, torej:

$$u_k = r^k \cdot u_0 = u_0$$

V tem primeru še lažje izrazimo u_0 na način: $1 = c \cdot u_0$, torej $u_0 = \frac{1}{c}$ V tem primeru je naša iskana verjetnost za igralca M enaka

$$p_m = u_0 \cdot (c - m) = \frac{c - m}{c} =$$
$$= \frac{m + n - m}{m + n} = \frac{n}{m + n}$$

2.2 Računanje E[T]

Rešujemo enačbo oblike $E[T|M=x] = p \cdot E[T|M=x+1] + (1-p) \cdot E[T|M=x-1] + 1$, kar zaradi lažjega zapisa prevedemo na obliko $f(x) = p \cdot f(x+1) + (1-p) \cdot f(x-1) + 1$ oziroma

$$p \cdot f(x+2) - f(x+1) + (1-p) \cdot f(x) = -1$$

kjer je f(x) = E[T|M=x]. Rešujemo torej nehomogeno rekurzivno enačbo, katero rešitev je vsota homogene in partikularne rešitve. Rešimo najprej homogeni del. Rešujemo enačbo:

$$p \cdot f(x+2) - f(x+1) + (1-p) \cdot f(x) = 0$$

s pomočjo karakterističnega polinoma dobimo enačbo:

$$p \cdot \lambda^2 - \lambda + (1 - p) = 0$$
$$\lambda_{1,2} = \frac{1 \pm \sqrt{1 - 4p(1 - p)}}{2p} = \frac{1 \pm (2p - 1)}{2p}.$$

Dobimo $\lambda_1 = 1$ in $\lambda_2 = \frac{1-p}{p}$. Rešitev homogene enačbe je torej oblike $A \cdot 1^x + B(\frac{1-p}{p})^x$, oziroma:

$$A + B \left(\frac{1-p}{p}\right)^x$$

Ker imamo homogeno rešitev sestavljeno iz dveh delov, bomo partikularni del prav tako poiskali v dveh delih. Prvi del iščemo z nastavkom $f(x) = Cx1^x$ oziroma f(x) = Cx. Vstavimo v prvotno enačbo in dobimo:

$$pC(x+2) - C(x+1) + (1-p)Cx = -1$$

$$Cpx + 2Cp - Cx - C + Cx - Cpx = -1$$

$$C(2p-1) = -1$$

$$C = \frac{-1}{2p-1} = \frac{1}{1-2p}$$

Prvi del partikularne enačbe je:

$$f(x) = \frac{x}{1 - 2p}$$

Drugi del iščemo z nastavkom $f(x) = Dx(\frac{1-p}{p})^x$. Vstavimo v prvotno enačbo in dobimo:

$$pD(x+2)\left(\frac{1-p}{p}\right)^{(x+2)} - D(x+1)\left(\frac{1-p}{p}\right)^{(x+1)} + (1-p)Dx\left(\frac{1-p}{p}\right)^{x} = -1$$

$$D \cdot \left(\frac{1-p}{p}\right)^{x} \cdot \left(px\left(\frac{1-p}{p}\right)^{2} + 2p\left(\frac{1-p}{p}\right)^{2} - x\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right) + x - px\right) = -1$$

$$D = \frac{-1}{\left(\frac{1-p}{p}\right)^{x} \cdot \left(px\left(\frac{1-p}{p}\right)^{2} + 2p\left(\frac{1-p}{p}\right)^{2} - x\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right) + x - px\right)}$$

Drugi del partikularne enačbe je:

$$f(x) = \frac{-x(\frac{1-p}{p})^x}{\left(\frac{1-p}{p}\right)^x \cdot \left(px(\frac{1-p}{p})^2 + 2p(\frac{1-p}{p})^2 - x(\frac{1-p}{p}) - (\frac{1-p}{p}) + x - px\right)}$$
$$= \frac{x}{(x+1)(\frac{1-p}{p}) - (\frac{1-p}{p})^2(px+2p) + px - 1},$$

celotna partikularna rešitev pa je vsota homogene in partikularne:

$$f(x) = \frac{x}{1 - 2p} + \frac{x}{(x+1)\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^2(px+2p) + px - 1}.$$

Splošna rešitev prvotne enačbe je:

$$A + B\left(\frac{1-p}{p}\right)^{x} + \frac{x}{1-2p} + \frac{x}{(x+1)\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^{2}(px+2p) + px - 1}$$

Upoštevamo lahko še robna pogoja:

1. Pričakovano število iger, če smo brez denarja je 0, saj se takrat igra konča. Pogoj zapišemo v obliki E[T|M=0]=f(0)=0. Vstavimo v splošno rešitev in dobimo:

$$A + B\left(\frac{1-p}{p}\right)^0 = 0, \quad A = -B$$

2. Pričakovano število iger, če imamo m+n denarja je 0, saj se takrat igra konča. Pogoj zapišemo v obliki E[T|M=m+n]=f(m+n)=0. Vstavimo v splošno rešitev in dobimo:

$$-B + B \left(\frac{1-p}{p}\right)^{m+n} + \frac{m+n}{1-2p} + \frac{m+n}{(m+n+1)\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^2 (p(m+n)+2p) + p(m+n) - 1}} = 0$$

$$B = \frac{\frac{m+n}{1-2p} + \frac{m+n}{(m+n+1)\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^2 (p(m+n)+2p) + p(m+n) - 1}}{1 - \left(\frac{1-p}{p}\right)^{m+n}}$$

$$A = \frac{\frac{m+n}{1-2p} + \frac{m+n}{(m+n+1)\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^2 (p(m+n)+2p) + p(m+n) - 1}}{\left(\frac{1-p}{p}\right)^{m+n} - 1}$$

Pričakovano število iger, če imamo x enot denarja je:

$$E[T|M=x] = \frac{\frac{\frac{m+n}{1-2p} + \frac{m+n}{(m+n+1)\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^2 (p(m+n)+2p) + p(m+n) - 1}}{\left(\frac{1-p}{p}\right)^{m+n} - 1} + \frac{\frac{m+n}{1-2p} + \frac{m+n}{(m+n+1)\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^2 (p(m+n)+2p) + p(m+n) - 1}}{1 - \left(\frac{1-p}{p}\right)^{m+n}} \left(\frac{1-p}{p}\right)^x + \frac{x}{1-2p} + \frac{x}{(x+1)\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^2 (px+2p) + px - 1}$$

Zanima nas E[T|M=m], vstavimo x=m v zgornjo enačbo in dobimo, da je pričakovano število iger, če začnemo z m enotami denarja enako:

$$E[T|M=m] = \frac{n\left(\left(\frac{1}{p}-1\right)^{m}-1\right) - m\left(\frac{1}{p}-1\right)^{m}\left(\left(\frac{1}{p}-1\right)^{n}-1\right)}{(2p-1)\left(\left(\frac{1}{p}-1\right)^{m+n}-1\right)}$$

Formula ne drži če je $p=\frac{1}{2}$, saj pride do deljenja z 0, zato moramo to izračunati posebej. Prav tako rešujemo nehomogeno rekurzivno enačbo, ki jo zapišemo kot:

$$\frac{1}{2}f(x+2) - f(x+1) + \frac{1}{2}f(x) = -1$$

Rešimo najprej homogeni del. Rešujemo enačbo:

$$\frac{1}{2}f(x+2) - f(x+1) + \frac{1}{2}f(x) = 0$$

s pomočjo karakterističnega polinoma dobimo enačbo:

$$\frac{1}{2}\lambda^2 - \lambda + \frac{1}{2} = 0$$

Rešitev je dvojna ničla $\lambda_{1,2}=1.$ Homogena rešitev je oblike:

$$(Ax + B) \cdot 1^x = (Ax + B)$$

Partikularno rešitev iščemo z nastavkom $f(x) = C \cdot x^2 \cdot 1^x = Cx^2$. Vstavimo v prvotno enačbo in dobimo:

$$C(x+2)^{2} - 2C(x+1)^{2} + Cx^{2} = -2$$

$$C(x^{2} + 4x + 4) - 2C(x^{2} + 2x + 1) + Cx^{2} = -2$$

$$2C = -2, \quad C = -1$$

Partikularna rešitev je $f(x) = -x^2$, splošna rešitev pa je:

$$f(x) = Ax + B - x^2$$

Vstavimo robne pogoje:

1.
$$f(0) = 0 \Rightarrow B = 0$$

2.
$$f(m+n) = 0 \Rightarrow A = m+n$$

Pričakovano število iger, če imamo x enot denarja in je verjetnost za zmago $p=\frac{1}{2}$ je:

$$E[T|M=x] = (m+n)x - x^2$$

Zanima nas pričakovano število iger, če začnemo zm enotami denarja. Odgovor je:

$$E[T|M = m] = (m+n)m - m^2 = n \cdot m$$

3 Viri

- L. Tehovnik, *Markovske verige*, naloga pri predmetu Seminar 1, Fakulteta za matematiko in fiziko, Univerza v Ljubljani, 2013.
- T. Primožič, *Problem kockarjevega propada*, diplomsko delo, Fakulteta za matematiko in fiziko, Univerza v Ljubljani, 2019
- The Gambler's Ruin, v: MathPages, [ogled 10. 3. 2019], dostopno na https://www.mathpages.com/home/kmath084/kmath084.htm
- Recurrence relation, v: Wikipedia, The Free Encyclopedia, [ogled 10. 3. 2019], dostopno na https://en.m.wikipedia.org/wiki/Recurrence_relation.
- P. Potočnik, Zapiski predavanj iz Diskretne matematike 1, 1. izdaja, 2011, [ogled 15. 3. 2019], dostopno na https://www.fmf.uni-lj.si/~potocnik/Ucbeniki/DM-Zapiski2010.pdf.
- Back to the basics gambler's ruin, v: Random Determinism, [ogled 18. 3. 2019], dostopno na https://randomdeterminism.wordpress.com/2010/07/07/gamblers-ruin/.