Industry & Technology Overview

- Introduction to the semiconductor industry
- Functional Structure of a Fabless Company
- Manufacturing Process
- Design Rules

Design Rules

- VLSI designs and fab processes are very complex.
- Circuit designers want smaller designs
 - leads to higher performance and higher circuit density.
- Process engineers focus on reproducibility and yield.
- In this regard design rules are a compromise that attempts to satisfy both sides
 - Specify the minimum dimensions and spacing allowed
 - Layouts violating DR may not get manufactured properly and reduce the yield.

Design Rules

- Interface between the circuit designer and process engineer
- Guidelines for constructing process masks
- Unit dimension: Minimum line width
 - scalable design rules: lambda parameter
 - absolute dimensions (micron rules)
- Rules constructed to ensure that design works even when small fab errors (within some tolerance) occur
- A complete set includes
 - set of layers
 - intra-layer: relations between objects in the same layer
 - inter-layer: relations between objects on different layers

Why Have Design Rules?

To be able to tolerate some level of fabrication errors such as

- 1. Mask misalignment
- 2. Dust
- 3. Process parameters (e.g., lateral diffusion)
- 4. Rough surfaces

3D Perspective

Micron Design Rules

- DRs consist of minimum width and minimum spacing constraints and requirements between objects on the same or on different layers.
- The fundamental unit in the definition of a set of DRs is the minimum line width – minimum mask dimension that can be safely transferred to the semiconductor material.
- DRs are expressed in absolute physical units, for example:
 - poly width = $0.1 \mu m$.
- Minimum line-width:
 - smallest dimension permitted in the layout drawing (minimum feature size)

- Minimum spacing:
 - smallest distance permitted between the edges of two layout lines
- These rules originate from the resolution of the optical printing system, the etching process or the surface roughness.

Scalable Design Rules

- SDR define all rules as a function of a single parameter, most often called as λ (lambda).
- Scaling of the minimal dimension is accomplished by simply changing the value of λ.
 - This results in a linear scaling of all dimensions.
- For a given process, λ is set to a specific value and all other design rules (dimensions) are expressed in whole multiples of λ.
- Typically, the minimal line width of a process is set to 2 λ . For instance, for $0.25\mu m$ process (i.e. a process with a minimal line width of $0.25\mu m$) λ equals 125nm.
- Feature size λ is equal to half the drawn gate length (poly width).
- The rules are chosen so that a design is easily scaled over a cross section of industrial processes.

Scalable Design Rules

- Disadvantages.
 - Linear scaling is only possible over a limited range of dimensions (for instance, between 0.25μm and 0.15μm).
 - Scaling over large ranges cannot be adequately expressed by the linear scaling rules.
 - Scalable design rules are conservative.
- The reason why scalable design rules are normally avoided in industry.
 - Circuit density is a prime goal so designers tend to use micron rules where DRs are expressed in absolute dimensions to exploit the features of a given process to a maximum.

CMOS Process Layers

Layer	Color	Representation
Well (p,n)	Yellow	
Active Area (n+,p+)	Green	
Select (p+,n+)	Green	
Polysilicon	Red	
Metal1	Blue	
Metal2	Magenta	
Contact To Poly	Black	
Contact To Diffusion	Black	
Via	Black	

Transistor Layout

Intra-Layer Design Rules

- Minimum dimensions (e.g., widths) of objects on each layer to maintain that object after fab.
 - minimum line width is set by the resolution of the patterning process (photolithography)
- Minimum spaces between objects (that are not related) on the same layer to ensure they will not short after fab.

Intra-Layer Design Rules (cont.)

Inter-Layer Design Rules

1. Transistor rules – transistor formed by overlap of active and poly layers

Inter-Layer Design Rule (cont.)

2. Contact and via rules

Vias and Contacts

Select Layer

CMOS Inverter Layout

CMOS Inverter *max* Layout

Design Rule Checker

 The special programs Design Rule Checkers-DRC (e.g., Synopsys' Hercules or Mentor's Calibre) assist the layout designer to verify design rules.

Sticks Diagram

Stick diagram of inverter

Design for Manufacture (DFM)

- In very deep submicron technologies, attaining large process windows and uniform manufacturing is difficult.
- With advanced processes of 90nm and below, designs with verified DRC check can still result in poorly yielding or even non-functioning silicon.
- Design rules have become more complex with the introduction of conditional rules and recommended rules which makes the design and verification tasks harder.
- With advanced technologies the number of design rules has increased by 300% over previous (130nm, etc.) technologies and absolute design rules are no longer sufficient.

Design For Manufacture (DFM)

- A new adaptive/evolving method is needed between a designer and manufacturer for communicating yield issues.
- This new communication loop is an important step in adopting and implementing a design for manufacture (DFM) flow.
- DFM is a joint work of fabrication, design and mask manufacturers based on a thorough knowledge of process-to-design and design-to-process interactions.

Design For Manufacture (DFM)

- Designers need immediate access from the process engineer to show how various layout characteristics impact chip yield.
- Production-enhancing DFM rules improve information flow between design and manufacturing.
- They are easy-to-implement and proven steps, developed in collaboration with the EDA partners.
- DFM Goal Increase Yield and Accelerate Time To Entitled Yield

Design For Manufacture (DFM)

- Some of these design rules are related to complex lithography effects.
 - For instance, corners cannot be exactly manufactured as corners and always results in a curvature.
 - This could be a problem if the curvature happens in a sensitive design feature such as a transistor gate.
- Two options are then available:
 - Use conservative design rules to avoid corners close to transistor gate
 - Take into account the performance impact in the extraction flow of the transistor characteristics.
- DFM trades-off competing area, performance, flow complexity and manufacturability.

Communication Loop Between Process Engineer and Designer

 DFM requires a new level of communication, education and partnership between design companies and foundries.

- The design environment must be implemented for successful DFM methodology.
- Manufacturability starts at the chip design level.

Simulation Based Checks Required

 With advanced processes of 90nm and below, designs that are verified DRC clean still result in poor yielding or even nonfunctioning silicon.

