Xiaoshuai Hao^{1†}, Ruikai Li^{2†}, Hui Zhang¹, Dingzhe Li¹, Rong Yin³, Sangil Jung⁴, Seung-In Park⁴, ByungIn Yoo⁴, Haimei Zhao^{5§}, and Jing Zhang^{5§}

Problem/Objective

HD map construction

Contribution/Key Idea

- Camera-only(lightweight) based student model
- o Cross modality distillation을 위한 comprehensive 한 scheme
- SOTA in HD map construction task

¹ Samsung R&D Institute China–Beijing

² State Key Lab of Intelligent Transportation System, Beihang University

³ Institute of Information Engineering, Chinese Academy of Sciences

⁴ Computer Vision TU, SAIT, SEC, Korea

⁵ The University of Sydney {xshuai.hao, hui123.zhang, dingzhe.li, byungin.yoo}@samsung.com
ricky_developer@buaa.edu.cn {si14.park, sang-il.jung}@samsung.com
yinrong@iie.ac.cn hzha7798@uni.sydney.edu.au jingzhang.cv@gmail.com

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, Byungln Yoo, Haimei Zhao, and Jing Zhang

- HD map construction
 - Driving scene과 navigation에 중요
 - BEV perception의 발전에 더욱 주목

Qualitative result on nuScenes 2D vectorized HD map

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, ByungIn Yoo, Haimei Zhao, and Jing Zhang

Introduction

- Multi-view Camera
 - Lack of depth information
 - Cost-effective
 - → KD(Knowledge Distillation) 을 사용하여 해결
- 현존하는 BEV-based KD의 문제점
 - object detection task 기준으로 만들어진 모듈들
 - foreground object에 집중하기 위해 background의 adverse impact를 mitigate
 - \rightarrow 이런 task 간의 KD 방법 gap을 해결하기 위해
 - Relation distillation
 - Head Distillation

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, ByungIn Yoo, Haimei Zhao, and Jing Zhang

Method

Teacher: MapTR / Student: MapTR(Camera Branch)

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, Byungln Yoo, Haimei Zhao, and Jing Zhang

deploy. On the base from MapTR, to mimic the multimodal fusion pipeline of the teacher model, we propose a Dual BEV Transform module to convert the multi-view features into two distinct BEV subspaces, whose effect will be verified

$$\mathcal{L}_{relation} = D_{KL}(A_{c2l}^T || A_{c2l}^S) + D_{KL}(A_{l2c}^T || A_{l2c}^S)$$

Xiaoshuai Hao, Ruikai Li, Hui Zhanc

$$egin{aligned} \mathcal{L}_{low} &= \mathrm{MSE}(\mathbf{F}_{fused}^T, \mathbf{F}_{fused}^S) & \mathcal{L}_{head} &= \mathcal{L}_{cls} + \mathcal{L}_{point} \ &= \mathcal{L}_{high} &= \mathrm{MSE}(\mathbf{F}_{high}^T, \mathbf{F}_{high}^S) & = \mathcal{L}_{Focal}(\mathbf{F}_{cls}^T, \mathbf{F}_{cl}^S, \mathbf{F}_{cl}^S) \end{aligned}$$

$$=\mathcal{L}_{Focal}(\mathbf{F}_{cls}^T,\mathbf{F}_{cls}^S)+\mathcal{L}_{p2p}(\mathbf{F}_{point}^T,\mathbf{F}_{point}^S)$$
 \downarrow Manhattan distance

$$\mathcal{L} = \mathcal{L}_{map} + \lambda_1 \mathcal{L}_{relation} + \lambda_2 \mathcal{L}_{feature} + \lambda_3 \mathcal{L}_{head}$$

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, ByungIn Yoo, Haimei Zhao, and Jing Zhang

Experiments

Method	Student Modality	Teacher Modality	Backbone	Epochs	AP_{ped} .	AP_{div} .	AP_{bou} .	mAP	
HDMapNet [19]	C	_	Effi-B0	30	14.4	21.7	33.0	23.0	
VectorMapNet [25]	\mathbf{C}	_	R50	110	36.1	47.3	39.3	40.9	
MapVR [47]	\mathbf{C}	_	R50	24	47.7	54.4	51.4	51.2	
PivotNet [7]	\mathbf{C}	_	R50	30	58.5	53.8	59.6	57.4	
BeMapNet [34]	\mathbf{C}	_	R50	30	62.3	57.7	59.4	59.8	A O
MapTR [23]	\mathbf{C}	_	R50	24	45.3	51.5	53.1	50.3	† Camera-only
MapTR [23]	L	_	Sec	24	48.5	53.7	64.7	55.6	1
MapTR [23]	C & L	_	R50 & Sec	24	55.9	62.3	69.3	62.5	
MapTR [23]	C	_	R18	110	39.6	49.9	48.2	45.9	Baseline
BEV-LGKD† [18]	C	С	R18	110	42.2	47.6	49.7	$46.5_{+0.6}$	
BEVDistill [†] [5]	\mathbf{C}	${f L}$	R18	110	42.4	48.5	50.2	$47.1_{\pm 1.2}$	KD
UniDistill† [53]	\mathbf{C}	C&L	R18	110	43.9	48.6	52.1	$48.2_{+2.3}$	↓ KD
MapDistill	\mathbf{C}	\mathbf{C}	R18	110	43.3	48.8	51.9	$48.0_{+2.1}$, *
MapDistill	\mathbf{C}	L	R18	110	45.9	50.7	53.6	$50.1_{+4.2}$	
${f Map Distill}$	\mathbf{C}	$\mathbf{C} \ \& \ \mathbf{L}$	R18	110	49.2	54.5	57.1	$53.6_{+7.7}$	

Tab. 1 shows that: (1) KD methods originally designed for BEV-based 3D object detection fail to achieve satisfying results due to task discrepancies between 3D object detection and HD map construction.

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, ByungIn Yoo, Haimei Zhao, and Jing Zhang

Experiments

Table 2: Ablation study on the components in MapDistill.

Setting	$\mathcal{L}_{relation}$	$\mathcal{L}_{feature}$	\mathcal{L}_{head}	$AP_{ped.}$	AP_{div} .	AP_{bou} .	mAP
Baseline	×	×	×	39.6	49.9	48.2	45.9
$\overline{\mathbf{a}}$	✓	X	X	44.1	49.7	52.4	48.8
b	X	✓	X	44.3	49.4	51.5	48.4
\mathbf{c}	×	×	✓	44.2	50.1	52.7	49.0
d	✓	√	X	45.4	51.4	54.1	50.3
\mathbf{e}	X	✓	✓	46.3	51.8	54.3	50.8
f	✓	×	✓	46.5	52.3	54.5	51.1
g	✓	✓	✓	49.2	54.5	57.1	53.6

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, ByungIn Yoo, Haimei Zhao, and Jing Zhang

(a) Cross-modal relation distillation loss

Method	$AP_{ped.}$	AP_{div} .	AP_{bou} .	mAP
MapDistill (w/o $\mathcal{L}_{relation}$)	46.3	51.8	54.3	50.8
+Uni-modal Relation	48.0	52.9	55.1	52.0
+Hybrid Relation	48.3	53.4	55.5	52.4
+Cross-modal Relation	49.2	54.5	57.1	53.6

(b) Dual-level feature distillation loss

(c) Map head distillation loss

 $AP_{ped.}$

45.4

47.3

47.1

49.2

 AP_{div} .

51.4

52.8

53.0

54.5

 AP_{bou} .

54.1

55.3

55.6 **57.1** mAP

50.3

51.851.9

53.6

Method	$AP_{ped.}$	AP_{div} .	AP_{bou} .	mAP	\mathcal{L}_{cls}	\mathcal{L}_{point}	
MapDistill (w/o $\mathcal{L}_{feature}$)	46.5	52.3	54.5	51.1	X	×	Ī
+Low-level (only)	48.4	53.7	56.0	52.7	✓	X	
+High-level (only)	48.7	53.9	56.1	52.9	×	✓	
+Dual-level (ours)	49.2	54.5	57.1	53.6	✓	✓	

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, ByungIn Yoo, Haimei Zhao, and Jing Zhang

Table 4: Ablation study of Dual BEV Transform Module.

	subspace1	${\bf subspace 2}$	$ AP_{ped} $	AP_{div} .	AP_{bou} .	mAP
(a)	GKT	×	44.9	49.6	52.8	49.1
	LSS	LSS	45.9	51.2	54.4	50.5
(b)	GKT	GKT	46.7	51.6	54.5	50.9
	Deform.	Deform.	46.8	51.6	54.6	51.0
	GKT	Deform.	47.1	53.2	56.2	52.1
	Deform.	GKT	47.3	53.4	56.1	52.3
(c)	LSS	Deform.	48.9	53.9	56.2	53.0
	Deform.	LSS	48.7	53.8	55.9	52.8
	LSS	GKT	49.1	54.2	56.7	53.3
	GKT	LSS	49.2	54.5	57.1	53.6

Fig. 3: Sensitivity of hyper-parameters.

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, Byungln Yoo, Haimei Zhao, and Jing Zhang

Fig. 4: Qualitative results on nuScenes val set. (a) Six camera inputs. (b) Ground-truth vectorized HD map. (c) Result of the camera-LiDAR-based teacher model. (d) Result of the camera-based student model without MapDistill (Baseline). (e) Result of the camera-based student model with MapDistill. MapDistill helps correct substantial errors in the Baseline's predictions and improves its accuracy.