

Comparison of Logistic Regression and Random Forest in Application to Imbalance class and Multicollinearity using Stratified Cross-Validation to Predict Telecom Customer Churn

Table of Content

Data Overview 2 6 Model Comparison

Exploratory Data Analysis 3 7 Predict the data

Business Use Case

Telekomunikasi sebagai industri yang dinamis

Telekomunikasi merupakan industri yang terus berkembang seiring dengan perkembangan zaman

Persaingan yang Ketat di Industri Telekomunikasi

Persaingan ini memaksa perusahaan untuk terus berinovasi dan menyesuaikan diri dengan kebutuhan pelanggan

Pentingnya Prediksi Perilaku Pelanggan

Perusahaan perlu memiliki pemahaman yang baik tentang perilaku pelanggan dan membuat Model prediksi perilaku pelanggan untuk memetakan strategi bisnis yang efektif guna mempertahankan dan menarik pelanggan baru

Setelah mengimport data dan membuat data frame terdapat total 20 kolom yang terdiri dari:

State : Kode Negara Customer

• Account_length : Lamanya berlangganan

• Area_code : Kode Area tempat tinggal

• International plan : Rencana Panggilan Internasional

Voice mail plan : Rencana kotak suara

Number vmail messages : Frekuensi penggunaan kotak suara

Total_day_minutes : Jumlah total menit panggilan siang hari

Total_day_calls
 Jumlah total panggilan siang hari

Total_day_charge : Jumlah total biaya panggilan siang hari

Total eve minutes : Jumlah total menit panggilan sore hari

Total_eve_calls
 Jumlah total panggilan sore hari

Total_eve_charge : Jumlah total biaya panggilan sore hari

• Total night minutes : Jumlah total menit panggilan malam hari

• Total night calls : Jumlah total panggilan malam hari

Total_night_charge : Jumlah total biaya panggilan malam hari

Total intl minutes : Jumlah total menit panggilan international

• Total intl calls : Jumlah total panggilan international

Total_intl_charge : jumlah total biaya panggilan malam har

• Number_customer_service_calls : Jumlah panggilan ke pusat layanan

• Churn : Apakah customer berhenti berlangganan

Variable churn merupakan target prediksi (Y) yang terdiri dari kategori yes, no (binary classification)

Variabel state sampai variabel number_customer_service_calls merupakan fitur (X) yang digunakan untuk memprediksi target

Data Information

df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4250 entries, 0 to 4249
Data columns (total 20 columns):

Data	columns (total 20 columns):		
#	Column	Non-Null Count	Dtype
0	state	4250 non-null	object
1	account_length	4250 non-null	int64
2	area_code	4250 non-null	object
3	international_plan	4250 non-null	object
4	voice_mail_plan	4250 non-null	object
5	number_vmail_messages	4250 non-null	int64
6	total_day_minutes	4250 non-null	float64
7	total_day_calls	4250 non-null	int64
8	total_day_charge	4250 non-null	float64
9	total_eve_minutes	4250 non-null	float64
10	total_eve_calls	4250 non-null	int64
11	total_eve_charge	4250 non-null	float64
12	total_night_minutes	4250 non-null	float64
13	total_night_calls	4250 non-null	int64
14	total_night_charge	4250 non-null	float64
15	total_intl_minutes	4250 non-null	float64
16	total_intl_calls	4250 non-null	int64
17	total_intl_charge	4250 non-null	float64
18	number_customer_service_calls	4250 non-null	int64
19	churn	4250 non-null	object

Terdapat total 20 variabel dimana variabel churn merupakan target dan sisanya merupakan fitur.

Data tidak memiliki nilai missing value yang ditandar dengan jumlah count baris data setiap kolom sama dengan 4250 record.

Pada dataset ini 5 variabel diantaranya bertipe string, 8 variabel bertipe data float dan sisanya variabel dengan tipe data integer

Check Duplicate and Unique value

print('Nilai duplicated data train:', df_train.duplicated().sum())

Nilai duplicated data train: 0

print('Nilai unique pada data train :\n', df_train.nunique())

Nilai unique pada data train : state 51 account length 215 area code international_plan voice mail plan number vmail messages 46 total day minutes 1843 total day calls 120 total day charge 1843 total eve minutes 1773 total eve calls 123 total_eve_charge 1572 total night minutes 1757 total night calls 128 total_night_charge 992 total intl minutes 168 total intl calls 21 total intl charge 168 number_customer_service_calls 10 churn 2 dtype: int64

Tidak terdapat data yang duplikat

Data unique pada setiap variabel menunjukkan bahwa data sudah konsisten dan valid

Statistics Descriptive

0

df_train.describe().T

	count	mean	std	min	25%	50%	75%	max
account_length	4250.0	100.236235	39.698401	1.0	73.0000	100.00	127.0000	243.00
number_vmail_messages	4250.0	7.631765	13.439882	0.0	0.0000	0.00	16.0000	52.00
total_day_minutes	4250.0	180.259600	54.012373	0.0	143.3250	180.45	216.2000	351.50
total_day_calls	4250.0	99.907294	19.850817	0.0	87.0000	100.00	113.0000	165.00
total_day_charge	4250.0	30.644682	9.182096	0.0	24.3650	30.68	36.7500	59.76
total_eve_minutes	4250.0	200.173906	50.249518	0.0	165.9250	200.70	233.7750	359.30
total_eve_calls	4250.0	100.176471	19.908591	0.0	87.0000	100.00	114.0000	170.00
total_eve_charge	4250.0	17.015012	4.271212	0.0	14.1025	17.06	19.8675	30.54
total_night_minutes	4250.0	200.527882	50.353548	0.0	167.2250	200.45	234.7000	395.00
total_night_calls	4250.0	99.839529	20.093220	0.0	86.0000	100.00	113.0000	175.00
total_night_charge	4250.0	9.023892	2.265922	0.0	7.5225	9.02	10.5600	17.77
total_intl_minutes	4250.0	10.256071	2.760102	0.0	8.5000	10.30	12.0000	20.00
total_intl_calls	4250.0	4.426353	2.463069	0.0	3.0000	4.00	6.0000	20.00
total_intl_charge	4250.0	2.769654	0.745204	0.0	2.3000	2.78	3.2400	5.40
number_customer_service_calls	4250.0	1.559059	1.311434	0.0	1.0000	1.00	2.0000	9.00

Total panggilan terbanyak customer terjadi pada sore hari dengan rerata 100 panggilan/hari dibandingkan siang dan malam hari

Namun, Rata-rata total lama panggilan tertinggi customer terjadi pada malam hari sebanyak 201 menit/hari dibandingkan siang dan sore hari

Sedangkan total biaya panggilan yang dikenakan termahal terjadi pada siang hari dengan rerata sebesar 31 dollar/hari dibandingkan sore dan malam hari

Tingginya angka panggilan customer service

Boxplot

Terdapat outlier pada semua fitur numerik namun outlier ini masih tergolong valid dan bukan merupakan kesalahan input

Correlation Heatmap

Terdapat empat pasangan variabel bebas yang memiliki tingkat hubungan sempurna dan searah yang menunjukkan bahwa semakin lama durasi panggilan dikenakan biaya yang semakin besar

ringkat hubungan yang sempurna ini menandakan bahwa adanya multikolinearitas dalam data yang dapat menyebabkan kesalahan interpretasi dan mengurangi kualitas dari hasil prediksi. Oleh karena itu, dibutuhkan metode untuk menangani hal ini salah satunya dengan melakukan feature extraction menggunakan PCA

Chi-square Test

 Berikut merupakan tabel kontingensi

 area_code
 area_code_408
 area_code_415
 area_code_510

 churn
 no
 934
 1821
 897

 yes
 152
 287
 159

Nilai P-Value = 0.5442605842955197 Gagal Tolak H0

H0 : Tidak terdapat hubungan yang signifikan antara variabel area code dengan variabel churn

H1: Terdapat hubungan yang signifikan antara variabel area code dengan variabel churn

Karena Gagal Tolak H0 berarti bahwa kedua variabel tidak memiliki hubungan yang berarti atau signifikan

Jika p-value <= 0.05, **tolak H0**; Jika tidak maka **gagal tolak H0**

H0 : Tidak terdapat hubungan yang signifikan antara variabel international plan dengan variabel churn

H1 : Terdapat hubungan yang signifikan antara variabel international plan dengan variabel churn

Karena Tolak H0 berarti bahwa kedua variabel memiliki hubungan yang signifikan atau berarti

Berikut merupakan tabel kontingensi voice_mail_plan no yes churn no 2622 1030 ves 516 82

Nilai P-Value = 1.139803854851859e-13 Tolak H0

Berikut merupakan tabel kontingensi international_plan no yes churn no 3423 229 yes 431 167

Nilai P-Value = 1.9831895448817517e-63 Tolak H0 H0 : Tidak terdapat hubungan yang signifikan antara variabel voice_mail_plan dengan variabel churn

H1 : Terdapat hubungan yang signifikan antara variabel voice_mail_plan dengan variabel churn

Karena Tolak H0 berarti bahwa kedua variabel memiliki hubungan yang siginifikan atau berarti

Bar chart

Customer pada area code 415 lebih banyak memutuskan untuk churn dibandingkan area code lainnya sehingga customer pada area ini perlu diperhatikan

Customer yang churn maupun tidak menunjukkan kecilnya pengguna rencana panggilan internasional yang menandakan bahwa kebanyakan customer hanya menggunakan panggilan domestik saja

Tingkat churn lebih rendah pada customer yang memiliki rencana kotak suara sehingga perusahaan membutuhkan strategi untuk dapat menarik customer berencana menggunakan paket ini

Pie chart

Jumlah Data Masing-masing Kelas

Sebesar 14% customer menghentikan layanan namun angka ini masih lebih kecil dibandingkan customer yang masih berlangganan

11/

 \mathscr{N} ariabel target yaitu churn memilik \mathscr{N} ketimpangan jumlah kelas yang cukup besar atau yang dikenal dengan imbalance class. Hal ini dapat menyebabkan model machine learning cenderung akan memprediksi kelas mayoritas lebih baik dibandingkan kelas minoritas.

PRE-PROCESSING DATA

Convert categorical into numeric one

Melakukan konversi data kategorik pada fitur area_code, international_plan, voice_mail_plan dan target yaitu churn

Drop unnecessary columns and splitting data

Fitur state dikeluarkan karena dianggap tidak memberikan informasi yang relevan terhadap pembuatan model

Feature Extraction

Ekstraksi fitur menggunakan PCA untuk mengurangi dampak dari multikolinearitas terhadap modelling dengan pemilihan komponen utama 9 yang dapat menjelaskan kumulatif varians sebesar 91%

Rescaling data

Rescaling semua fitur menggunakan normalisasi dengan rentang data berkisar 0 sampai 1

MODELLING & EVALUATION

Data Processed

Logistic Regression

 Menggunakan parameter class_weight balanced karena kelas tidak seimbang

Random Forest

 Menggunakan parameter class_weight balanced karena kelas tidak seimbang

Without PCA

• Dllanjutkan fitting model tanpa tambahan perlakuan

With PCA

 Menggunakan pipeline untuk menyalurkan hasil pca ke untuk fitting model

Without PCA

 Dllanjutkan fitting model tanpa tambahan perlakuan

With PCA

Menggunakan pipeline untuk menyalurkan hasil pca ke dalam model **Evaluation**

Menggunakan metode Stratified Cross-Validation karena Imbalance class

MODEL COMPARISON

Model Evaluation	Logistic Regression without PCA	Logistic Regression with PCA	Random Forest without PCA	Random Forest with PCA
Precision	95.29%	95.45%	95.96%	93.91%
Recall	77.66%	77.66%	99.23%	98.74%
F1 Score	85.55%	85.62%	97.56%	96.26%
ROC AUC	82.98%	82.94%	91.76%	90.65%

Precision mengukur seberapa akurat model dalam memastikan bahwa pelanggan yang di prediksi churn adalah benar-benar churn

Recall mengukur seberapa akurat model dalam menemukan semua pelanggan yang churn

F1 score merupakan keseimbangan antara precision dan recall yang digunakan ketika imbalance class

ROC AUC mengukur seberapa baik model dalam membedakan pelanggan yang churn dan tidak churn dan merupakan alternatif dari metrik akurasi pada klasifikasi imbalance class

PREDICT THE DATA

Random Forest without PCA

prediksi_modelRF = RF.predict(X_test_norm)
print(prediksi_modelRF)

[] len(prediksi_modelRF)

750

[] df_test['churn'].value_counts()

0: 130 1: 620

Name: churn, dtype: int64

Hasil prediksi menggunakan model terbaik menunjukkan bahwa 750 total customer 130 diantaranya "churn" dimana customer akan berhenti menggunakan layanan telecom sedangkan 620 customer "tidak churn" yakni tetap berlangganan.

CONCLUSION & RECOMMENDATION

Conclusion

- Semakin lama durasi panggilan semakin besar pula biaya yang dikenakan
- Rencana customer dalam melakukan panggilan internasional dan menggunakan kotak suara memiliki hubungan yang signifikan terhadap keputusan churn
- PCA mereduksi dimensi yang menghasilkan 9 Komponen
 Utama dengan jumlah kumulatif varians sebesar 91%
 serta meningkatkan performa evaluasi precision dan f1
 score pada regresi logistik
 - Model terbaik dengan metrik evaluasi tertinggi yaitu Random Forest tanpa PCA dengan f1 score sebesar 97.56% dan ROC AUC sebesar 91.76%. Random Forest merupakan algoritma yang robust terhadap klasifikasi imbalance class sekaligus adanya multikolinearitas dalam dataset yang dapat dilihat dari performa model yang lebih baik jika dibandingkan dengan model yang menggunakan PCA

Recommendation

- Mengenakan charge yang sama pada panggilan di siang, sore maupun malam hari
- Cepat tanggap dalam memperbaiki kualitas pelayanan serta memberikan solusi terkait keluhan/masalah dari customer
- Meningkatkan strategi untuk menarik customer dalam berencana menggunakan kotak suara dan panggilan internasional

Thank You