Calcul de longueurs

Exercice 1

1. Dans le triangle ABC rectangle en A, AC=10 mm et $\widehat{ABC}=55^{\circ}$. Calculer BC à 0,1 mm près.

2. Dans le triangle JKL rectangle en J, KL=15 mm et $\widehat{JKL}=55^{\circ}$. Calculer JK à 0,1 mm près.

3. Dans le triangle RST rectangle en R, ST=14 mm et $\widehat{RST}=49^{\circ}$. Calculer RT à 0,1 mm près.

Calcul de longueurs

4. Dans le triangle TUV rectangle en T, $TU=7 \ \ \text{mm} \ \ \text{et} \ \ \widetilde{TUV}=43^{\circ}.$ Calculer UV à 0,1 mm près.

5. Dans le triangle IJK rectangle en I, IJ=9 cm et $\widehat{IJK}=50^{\circ}$. Calculer IK à 0,1 cm près.

6. Dans le triangle \widehat{EFG} rectangle en E, EF=9 mm et $\widehat{EFG}=49^{\circ}$. Calculer EG à 0,1 mm près.

7. Dans le triangle LMN rectangle en L, MN=13 mm et $\widehat{LMN}=37^{\circ}$. Calculer LM à 0,1 mm près.

8. Dans le triangle TUV rectangle en T, TU=8 mm et $\widehat{TUV}=43^{\circ}$. Calculer UV à 0,1 mm près.

9. Dans le triangle WXY rectangle en W, WY=8 mm et $\widehat{WXY}=50^{\circ}$. Calculer WX à 0,1 mm près.

Exercice 1

10 mm 1.

Dans le triangle ABC rectangle en A, le sinus de l'angle \overrightarrow{ABC} est défini par :

$$\sin\left(\widehat{ABC}\right) = \frac{A\widetilde{C}}{BC}$$

Avec les données numériques :

$$\frac{\sin{(55^\circ)}}{1} = \frac{10}{BC}$$

Les produits en croix sont égaux, donc :

BC =
$$\frac{10 \times 1}{\sin{(55^\circ)}}$$

soit BC ≈ 12.2

soit $BC \approx 12,2$ mm.

Dans le triangle JKL rectangle en J, le cosinus de l'angle $\tilde{J}K\tilde{L}$ est défini par :

$$\cos\left(\widehat{JKL}\right) = \frac{JK}{KL}.$$

Avec les données numériques :

$$\frac{\cos(55^\circ)}{1} = \frac{JK}{15}$$

Les produits en croix sont égaux, donc :

$$JK = 15 \times \cos(55^{\circ})$$
 soit $JK \approx 8.6$ mm.

3.

Dans le triangle RST rectangle en R, le sinus de l'angle \widehat{RST} est défini par :

$$\sin\left(\widehat{RST}\right) = \frac{R\widetilde{T}}{ST}$$

Avec les données numériques :

$$\frac{\sin\left(49^{\circ}\right)}{1} = \frac{RT}{14}$$

Les produits en croix sont égaux, donc :

$$RT = \frac{14 \times \sin{(49^\circ)}}{1}$$

soit $RT \approx 10,6$ mm.

Dans le triangle TUV rectangle en T, le cosinus de l'angle \widehat{TUV} est défini par : $\cos\left(\widehat{TUV}\right) = \frac{TU}{UV}$.

Avec les données numériques : $\frac{\cos\left(43^\circ\right)}{1} = \frac{7}{UV}$ Les produits en croix sont égaux, donc : $UV = \frac{7 \times 1}{\cos\left(43^\circ\right)}$

soit $UV \approx 9.6$ mm.

5.

6.

Dans le triangle IJK rectangle en I, la tangente de l'angle \widehat{IJK} est défini par : $\tan\left(\widehat{IJK}\right) = \frac{IK}{IJ}$ Avec les données numériques : $\frac{\tan\left(50^\circ\right)}{1} = \frac{IK}{9}$ Les produits en croix sont égaux, donc : $IK = \frac{9 \times \tan\left(50^\circ\right)}{1}$ soit $IK \approx 10.7$ cm.

Dans le triangle EFG rectangle en E, la tangente de l'angle \widehat{EFG} est défini par : $\tan\left(\widehat{EFG}\right) = \frac{EG}{EF}$ Avec les données numériques : $\frac{\tan\left(49^\circ\right)}{1} = \frac{EG}{9}$ Les produits en croix sont égaux, donc : $EG = \frac{9 \times \tan\left(49^\circ\right)}{1}$ soit $EG \approx 10,4\,$ mm.

7.

8.

9.

Dans le triangle LMN rectangle en L, le cosinus de l'angle \widehat{LMN} est défini par : $\cos\left(\widehat{LMN}\right) = \frac{LM}{MN}$.

Avec les données numériques : $\frac{\cos\left(37^\circ\right)}{1} = \frac{LM}{13}$ Les produits en croix sont égaux, donc : $LM = 13 \times \cos\left(37^\circ\right)$ soit $LM \approx 10.4$ mm.

Dans le triangle TUV rectangle en T, le cosinus de l'angle \widehat{TUV} est défini par : $\cos\left(\widehat{TUV}\right) = \frac{TU}{UV}.$ Avec les données numériques : $\frac{\cos\left(43^\circ\right)}{1} = \frac{8}{UV}$ Les produits en croix sont égaux, donc : $UV = \frac{8\times 1}{\cos\left(43^\circ\right)}$ soit $UV \approx 10.9\,$ mm.

Dans le triangle WXY rectangle en W, la tangente de l'angle \widehat{WXY} est défini par : $\tan\left(\widehat{WXY}\right) = \frac{WY}{WX}$ Avec les données numériques : $\frac{\tan\left(50^\circ\right)}{1} = \frac{8}{WX}$ Les produits en croix sont égaux, donc : $WX = \frac{8\times 1}{\tan\left(50^\circ\right)}$ soit $WX \approx 6.7$ mm.