Online tools for planetary sciences

rocks

B. Carry¹ & M. Mahlke²

¹Lagrange, Observatoire de la Côte d'Azur, Nice

¹Institut d'Astrophysique Spatiale, Orsay

— Databases and Data Aggregators

We all need data, we all generate data.

Databases

- Websites, CDS, on request
- Mostly static, single bibliographic reference
- Mixture of formats

— Databases and Data Aggregators

We all need data, we all generate data.

Databases

- Websites, CDS, on request
- Mostly static, single bibliographic reference
- Mixture of formats

Data Aggregators

- Collection of data with processing
- Dynamic, large number of bibliography references
- Uniform output

Data Access Spectra Access Why shared resources? Online resources

— Databases and Data Aggregators

We all need data, we all generate data.

Databases

- Websites, CDS, on request
- Mostly static, single bibliographic reference
- Mixture of formats

Data Aggregators

- Collection of data with processing
- Dynamic, large number of bibliography references
- Uniform output

Data aggregation takes effort but saves time and energy.

— Data Aggregators

Name	Objects	Parameters	URL
ECOCEL	Asteroids	Physical, Orbital	http://www.ecocel-database.com/
JPL SBDB	Asteroids, Comets	Physical, Orbital	https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html
Lowell	Asteroids	Physical, Orbital	https://asteroid.lowell.edu/astinfo/
MP3C	Asteroids	Physical, Orbital	https://mp3c.oca.eu/
NEOExchange	Near-Earth Objects	Orbital	https://neoexchange.lco.global/
SiMDA	Asteroids, Comets	Size, Mass, Density	https://astro.kretlow.de/simda/
SsODNet	Asteroids	Physical, Orbital	https://ssp.imcce.fr/forms/ssocard

— Data Aggregators

Name	Objects	Parameters	URL
FCOCEL	A stansida	Dhariaal Oakital	
ECOCEL	Asteroids	Physical, Orbital	http://www.ecocel-database.com/
JPL SBDB	Asteroids, Comets	Physical, Orbital	https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html
Lowell	Asteroids	Physical, Orbital	https://asteroid.lowell.edu/astinfo/
MP3C	Asteroids	Physical, Orbital	https://mp3c.oca.eu/
${\sf NEOE}{\footnotesize\times}{\sf change}$	Near-Earth Objects	Orbital	https://neoexchange.lco.global/
SiMDA	Asteroids, Comets	Size, Mass, Density	https://astro.kretlow.de/simda/
SsODNet	Asteroids	Physical, Orbital	https://ssp.imcce.fr/forms/ssocard

The next slides show an outline of the demoed material.

Data Access Spectra Access Why shared resources? Online resource

Demo

https://asteroid.lowell.edu/

Demo

https://mp3c.oca.eu/

— Demo

https://mp3c.oca.eu/xyc-plot/

Demo

https://ssp.imcce.fr/forms/ssocard

https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html

— The N-Body Problem

Graphical User Interfaces do not scale

- Many bodies → Many clicks
- Repeated queries to update data
- Bibliography management
- ightarrow Data aggregators need programmatic APIs

Different degrees of simplification

- Static URLs pointing to text files
- Common service such as the Table Access Protocol
- Secondary client such as python packages

— Tutorial =

[20min] Tutorial notebook on data access

- Basic: Programmatic data access with astroquery and rocks
- Advanced: Analysis of catalogue data with rocks
- o Expert: Building our own meteorite-classification lookup tool

a Access Spectra Access Why shared resources? Online resources

Spectra Access

• Spectra are complex data products

- o Wavelength, Reflectance, Irradiance, ...
- Instrument Metadata
- Sample Metadata
- Spectra Databases for Ast./Comets/Met.
 - o PDS, CDS, RELAB
 - SMASS, MITHNEOS
- Spectra Aggregators for Asteroids and Meteorites
 - SSHADE, M4AST, classy
 - Processing required
 - Few updates

The next slides show an outline of the demoed material.

— M4AST

https://spectre.imcce.fr/m4ast/index.php/index/home

classy

https://classy.streamlit.app/

ata Access Spectra Access Why shared resources? Online resource

=== RFLAB

https://sites.brown.edu/relab/relab-spectral-database/

SSHADE

https://www.sshade.eu

SSHADE

 $\mathsf{TOPCAT} \to \mathsf{TAP} \ \mathsf{Query} \to \mathsf{"SSHADE"}$

Tutorial =

[20min] Tutorial notebook on spectra access with SSHADE and TAP

- Basic: Access of SSHADE database using TAP
- $\circ\,$ Advanced: Creating an astroquery module for SSHADE

Re: A typical research project

Repetitive (and tedious) tasks!

- Planning and conduction of observations
 - Observations already exist?
 - Target/sample available? visible?
- Gathering ancillary data for the analysis
 - Complementary information diameter, fall/find, ...
 - \circ Context for research another population
- Repetitive low-level analysis
 - Spectral classification
 - Cross-matches & merges

Online resources in a nutshell

- A suite of pages, libraries, and services
 - Providers: data archives, catalogs, online codes
 - o Clients: GUI, CLI, analysis tools
 - Check IVOA: http://ivoa.net/astronomers/applications.html

ta Access Spectra Access Why shared resources? **Online resources**

Online resources in a nutshell

- A suite of pages, libraries, and services
 - Providers: data archives, catalogs, online codes
 - Clients: GUI, CLI, analysis tools
 - Check IVOA: http://ivoa.net/astronomers/applications.html
- Mostly following a couple of standards
 - o Common interface I/O: VOTable, json, Protocols: TAP, cone-search
 - \circ Registries \to phone book
 - Homogeneisation of interface in APIs and in python modules

ta Access Spectra Access Why shared resources? Online resources

Online resources in a nutshell

- A suite of pages, libraries, and services
 - **Providers:** data archives, catalogs, online codes
 - Clients: GUI, CLI, analysis tools
 - Check IVOA: http://ivoa.net/astronomers/applications.html
- Mostly following a couple of standards
 - o Common interface I/O: VOTable, json, Protocols: TAP, cone-search
 - \circ Registries \rightarrow phone book
 - Homogeneisation of interface in APIs and in python modules
- It is **not** a master software

a Access Spectra Access Why shared resources? Online resources

— Online resources in a nutshell

- A suite of pages, libraries, and services
 - **Providers:** data archives, catalogs, online codes
 - Clients: GUI, CLI, analysis tools
 - Check IVOA: http://ivoa.net/astronomers/applications.html
- Mostly following a couple of standards
 - o Common interface I/O: VOTable, json, Protocols: TAP, cone-search
 - \circ Registries \to phone book
 - Homogeneisation of interface in APIs and in python modules
- It is **not** a master software
- Resources are made by us, and for us
 - Powerful libraries and tools
 - Good practice to release data/codes Consider CDS at the very least
 - Contribute to open-source projects: astroquery, sbpy, rocks, ...