SOLUTION Section 4.5 – Partial Orderings

Exercise

Which of these relations on $\{0, 1, 2, 3\}$ are partial orderings? Determine the properties of a partial ordering that the others lack.

- *a)* {(0, 0), (1, 1), (2, 2), (3, 3)}
- b) $\{(0,0),(1,1),(2,0),(2,2),(2,3),(3,2),(3,3)\}$
- c) $\{(0,0),(1,1),(1,2),(2,2),(3,3)\}$
- *d*) $\{(0,0),(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
- e) $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,2),(3,3)\}$
- f) {(0, 0), (2, 2), (3, 3)}
- g) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 3)}
- h) $\{(0,0),(1,1),(1,2),(2,2),(3,1),(3,3)\}$
- i) {(0, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (2, 3), (3, 0), (3, 3)}
- (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (3, 3)

Solution

a) This relation is reflexive because each of 0, 1, 2, 3 is related to itself.

This relation is antisymmetric because a to be related to b is for a to be equal to b. Since a is related to b and b related to c and a = b = c, then a is related to c. So the relation is transitive.

The equality relation on any set satisfies all three conditions, therefore is a partial ordering.

- b) It is reflexive but it is not antisymmetric since we have 2R3 and 3R2 but $2 \neq 3$. Therefore, this is not a partial ordering.
- c) This relation is reflexive because each of 0, 1, 2, 3 is related to itself. This relation is antisymmetric because a to be related to b is for a to be equal to b. It is transitive for the same reason and 1R1 and $1R2 \implies 1R2$. Therefore, is a partial ordering.
- d) This relation is reflexive because each of 0, 1, 2, 3 is related to itself. This relation is antisymmetric because a to be related to b is for a to be equal to b. It is transitive for the same reason and 1R1 and $1R2 \Rightarrow 1R2$, 1R3 and $3R3 \Rightarrow 1R3$, and 2R3 and $3R3 \Rightarrow 2R3$

Therefore, is a partial ordering.

- e) It is reflexive but it is not antisymmetric since we have 0R1 and 1R0 but $0 \ne 1$. Therefore, this is not a partial ordering.
- f) Since 1 is not related to itself, so this relation is not reflexive. Therefore, R is not a partial ordering.
- g) This relation is reflexive because each of 0, 1, 2, 3 is related to itself. This relation is antisymmetric because a to be related to b is for a to be equal to b

 It is transitive for the same reason and 2R0 and $0R0 \Rightarrow 2R0$, and 2R3 and $3R3 \Rightarrow 2R3$

Therefore, is a partial ordering.

- **h)** Since 3R1 and $1R2 \Rightarrow 3R2$, so this relation is not transitive. Therefore, R is not a partial ordering.
- i) Since 1R2 and $2R0 \Rightarrow 1R0$, so this relation is not transitive. Therefore, R is not a partial ordering.
- j) Since 0R1 and 1R0 but $0 \ne 1$, so this relation is not antisymmetric and it is not transitive because 2R0 and $0R1 \implies 2R1$.

Therefore, *R* is not a partial ordering.

Exercise

Is (S, R) a poset If S is the set of all people in the world and $(a, b) \in R$, where a and b are people, if

- a) a is a taller than b?
- b) a is not taller than b?
- c) a = b or a is an ancestor of b?
- d) a and b have a common friend?
- e) a is a shorter than b?
- f) a weighs more than b?
- g) a = b or a is a descendant of b?
- h) a and b do not have a common friend?

Solution

- a) Since nobody is taller than himself, this relation is not reflexive, so (S, R) is not a poset.
- b) To be not a taller means exactly the same height or shorter. 2 different people x and y could have the same height, in which case xRy and yRx but $x \ne y$, so R is not antisymmetric. Therefore, this relation is not a poset.
- c) The equality clause in the given of R guarantees that R is reflexive.
 If a is ancestor to b, then b can't be ancestor to a, so the relation is vacuously antisymmetric.
 If a is ancestor to b and b is ancestor to c, then a is ancestor to c, thus R is transitive.
 Therefore, this relation is a poset.
- d) Let x and y be any 2 distinct friends, xRy and yRx but $x \neq y$, so R is not antisymmetric. Therefore, this relation is not a poset.
- *e)* Let 2 people can be the same height since are not the same person, so *R* is not antisymmetric. Therefore, this relation is not a poset.
- f) Since nobody is weight more than himself, this relation is not reflexive, so this relation is not a poset.
- g) Since a = a, then the R is reflexive.

Given that a = b but if a is a descendant of b, then b cannot be a descendant of a. So, the relation is vacuously antisymmetric.

if a is a descendant of b and b is a descendant of c, then a is a descendant of c. So, the R is transitive.

Therefore, this relation is a poset.

h) Since anyone and himself have a common friend, then this relation is not reflexive, so this relation is not a poset.

Exercise

Which of these are posets?

a)
$$(Z, =)$$
 b) (Z, \neq) c) (Z, \geq) d) (Z, \nmid)
e) $(R, =)$ f) $(R, <)$ g) (R, \leq) h) (R, \neq)

Solution

- a) The equality relation of any set satisfies all three conditions. Therefore, a partial order.
- b) This is not a poset since the relation is not reflexive $(a \neq a)$
- c) The relation is reflexive since the relation involved the equality sign.
- d) This is not a poset since the relation is not reflexive (2/2)
- e) The equality relation of any set satisfies all three conditions. Therefore, a partial order.
- f) This is not a poset since the relation is not reflexive $(2 \cancel{<} 2)$
- g) The relation is reflexive since the relation involved the equality sign.
- h) This is not a poset since the relation is not reflexive (2=2)It is not antisymmetric since 1R2 and 2R1 but $1 \neq 2$ It is not transitive 1R2 and 2R1 but $1=1 \Rightarrow 1 \not R1$

Exercise

Determine whether the relations represented by these zero-one matrices are partial orders

Solution

- a) The relation is $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 3)\}$ This is not antisymmetric because 1R2 and 2R1 but $1 \neq 2$. Therefore, this matrix is not a partial order.
- b) The relation is {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}
 It is clearly reflexive.
 The pairs (1, 2) and (1, 3) are in the relation that neither can be part of a counterexample to antisymmetry or transitivity.
- c) The relation is {(1, 1), (1, 3), (2, 1), (2, 2), (3, 3)}
 It is clearly reflexive. The pairs (1, 3) and (2, 1) are in the relation that neither can be part of a counterexample to antisymmetry.
 It is not transitive since, (2, 1) and (1, 3) that will lead to (2, 3) which is not in the relation.
 Therefore, this matrix is not a partial order.
- d) The relation is {(1, 1), (2, 2), (3, 1), (3, 3)}
 It is clearly reflexive.
 The pair (3, 1) is in the relation that can't be part of a counterexample to antisymmetry or transitivity.
- e) The relation is {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (3, 4), (4, 1), (4, 2), (4, 4)} It is not transitive since, (4, 1) and (1, 3) are in the relation but not (4, 3). Therefore, this matrix is not a partial order.
- f) The relation is {(1, 1), (1, 3), (2, 2), (2, 3), (3, 3), (3, 4), (4, 1), (4, 2), (4, 4)} It is not transitive since, (4, 1) and (1, 3) are in the relation but not (4, 3). Therefore, this matrix is not a partial order.

Exercise

Determine whether the relation with the directed graph shown is a partial order.

Solution

a) This is relation is not transitive since there no relation (arrow) between a and d.

aRb and $bRd \Rightarrow aRd$

- b) This is relation is not transitive since there no relation (arrow) from c and b.
- c) This relation is reflexive since all points have an arrow to itself.

 This relation is antisymmetric since no pair of arrows going in opposite directions between 2 different points.

Therefore, this relation is a partial order.

Exercise

Let (S, R) be a poset. Show that (S, R^{-1}) is also a poset, where R^{-1} is the inverse of R. The poset (S, R^{-1}) is called the dual of (S, R).

Solution

Since R is reflexive, then R^{-1} is clearly reflexive.

Suppose that $(a,b) \in R^{-1}$ and $a \neq b$. Then $(b,a) \in R$, so $(a,b) \notin R$, so $(b,a) \notin R^{-1}$

If $(a,b) \in R^{-1}$ and $(b,c) \in R^{-1}$, then $(b,a) \in R$ and $(c,b) \in R$, since R is transitive, so $(c,a) \in R$,

therefore $(a,c) \in R^{-1}$, thus R^{-1} is transitive.

Therefore (S, R^{-1}) is a poset

Exercise

Draw the Hasse diagram for the "greater than or equal to" relation on {0, 1, 2, 3, 4, 5}

Solution

