

## Distributed Machine Learning and Graph Processing with Sparse Matrices

Shivaram Venkataraman\*, Erik Bodzsar# Indrajit Roy+, Alvin AuYoung+, Rob Schreiber+

\*UC Berkeley, #U Chicago, +HP Labs



## Big Data, Complex Algorithms



PageRank (Dominant eigenvector)



**Documentations** 

**Machine learning + Graph algorithms** 





Anomaly detection (Top-K eigenvalues)

User Importance (Vertex Centrality)

### **Large-Scale Processing Frameworks**

#### Data-parallel frameworks - MapReduce/Dryad (2004)

- Process each *record* in parallel
- Use case: Computing sufficient statistics, analytics queries

#### Graph-centric frameworks - Pregel/GraphLab (2010)

- Process each *vertex* in parallel
- Use case: Graphical models

#### Array-based frameworks — MadLINQ (2012)

- Process blocks of array in parallel
- Use case: Linear Algebra Operations

## PageRank using Matrices

Simplified algorithm repeat { p = M\*p }



Power Method Dominant eigenvector M = web graph matrix p = PageRank vector

#### **Presto**

Large-scale machine learning and graph processing on sparse matrices

Extend R - make it scalable, distributed

## **Challenge 1 – Sparse Matrices**



## **Challenge 1 – Sparse Matrices**



## **Challenge 2 – Data Sharing**

Sparse matrices → Communication overhead

Sharing data through pipes/network

Time-inefficient (sending copies)
Space-inefficient (extra copies)



### **Outline**

- Motivation
- Programming model
- Design
- Applications and Results

# darray



## foreach



## **PageRank Using Presto**



## PageRank Using Presto



**Execute function in a cluster** 

Pass array partitions

#### **Presto Architecture**



## **Repartitioning Matrices**



Partition if 
$$\frac{\max(t)}{median(t)} > \delta$$

## **Maintaining Size Invariants**

invariant(mat, vec, type=ROW)



## **Sharing Distributed Arrays**

**Goal: Zero-copy sharing across cores** 

Immutable partitions  $\rightarrow$  Safe sharing

Versioned distributed arrays

## **Data Sharing Challenges**

#### 1. Garbage collection

#### 2. Header conflicts



## **Overriding R's allocator**

Allocate process-local headers. Map data in shared memory



#### **Outline**

- Motivation
- Programming model
- Design
- Applications and Results

demo
demo

5 node cluster 8 cores per node PageRank on 1.5B edge Twitter data



## **Applications Implemented in Presto**

| Application       | Algorithm               | Presto LOC |
|-------------------|-------------------------|------------|
| PageRank          | Eigenvector calculation | 41         |
| Triangle counting | Top-K eigenvalues       | 121        |

#### Fewer than 140 lines of code

| Centrality measure  | Graph algorithm | 132 |
|---------------------|-----------------|-----|
| k-path connectivity | Graph algorithm | 30  |
| k-means             | Clustering      | 71  |
| Sequence alignment  | Smith-Waterman  | 64  |

#### **Evaluation Overview**

#### **Evaluation Setup**

- 25 machine cluster
- Machine: 24 cores, 96GB RAM, 10Gbps network

Data-sharing benefits – 1.5B edge Twitter graph Repartitioning analysis – 6B edge Web-graph

Faster than Spark and Hadoop using in-memory data Collaborative Filtering using Netflix dataset

## Data sharing benefits



#### **Sharing**



## **Repartitioning Progress**



## Repartitioning benefits



#### Repartition



#### **Related Work**

Large scale data processing frameworks

- MapReduce, Dryad, Spark, GraphLab

**Matrix Computations – Ricardo, MadLINQ** 

HPC systems – ARPACK, Combinatorial BLAS

Multi-core R packages – doMC, snow, Rmpi



#### **Presto**

Caching partitions





#### Conclusion

Presto: Large scale array-based framework extends R

Challenges with Sparse matrices
Repartitioning, sharing versioned arrays



## **Backup Slides**

## **Netflix Collaborative Filtering**



## Repartitioning benefits

