02-greedy-regret-heuristics

October 20, 2024

Made by: Andrei Kulchyk (155489) and Fiodar Piatrovich (155174)

Github

1 Description of a problem

We are given three columns of integers with a row for each node. The first two columns contain x and y coordinates of the node positions in a plane. The third column contains node costs. The goal is to select exactly 50% of the nodes (if the number of nodes is odd we round the number of nodes to be selected up) and form a Hamiltonian cycle (closed path) through this set of nodes such that the sum of the total length of the path plus the total cost of the selected nodes is minimized.

The distances between nodes are calculated as Euclidean distances rounded mathematically to integer values. The distance matrix should be calculated just after reading an instance and then only the distance matrix (no nodes coordinates) should be accessed by optimization methods to allow instances defined only by distance matrices.

2 Previous Algorithms

2.1 Random Solution

Dataset A

```
Best solution: [139, 11, 131, 76, 23, 0, 113, 109, 53, 166, 146, 71, 1, 20, 132, 17, 153, 24, 137, 196, 52, 90, 91, 180, 102, 120, 25, 111, 5, 103, 192, 61, 51, 3, 70, 99, 49, 145, 27, 105, 43, 147, 4, 195, 143, 93, 22, 177, 40, 141, 88, 129, 152, 154, 18, 188, 33, 189, 197, 162, 148, 190, 151, 170, 104, 28, 156, 36, 19, 89, 142, 183, 130, 34, 184, 101, 140, 150, 56, 174, 127, 14, 95, 175, 57, 144, 198, 163, 79, 15, 169, 119, 123, 12, 117, 59, 60, 64, 32, 16]

Objective function statistics:
minimum = 240532
mean = 264216.105
maximum = 287515
```


Dataset B

Best solution: [82, 113, 127, 76, 150, 167, 155, 48, 136, 55, 34, 53, 188, 159, 163, 71, 114, 88, 185, 83, 106, 59, 141, 78, 174, 14, 32, 20, 149, 125, 169, 172, 151, 27, 77, 6, 197, 5, 109, 44, 142, 126, 29, 162, 86, 118, 84, 130, 194, 15, 52, 134, 41, 166, 33, 99, 154, 91, 45, 65, 190, 36, 13, 183, 173, 117, 137, 124, 66, 182, 139, 98, 0, 122, 21, 196, 152, 144, 87, 119, 73, 111, 184, 61, 195, 56, 161, 198, 11, 72, 121, 187, 171, 62, 160, 31, 175, 128, 51, 7] Objective function statistics:

minimum = 194718 mean = 214392.56 maximum = 233546

2.2 Nearest Neighbors Considering Adding the Node Only at the End of the Current Path

Dataset A

Best solution: [124, 94, 63, 53, 180, 154, 135, 123, 65, 116, 59, 115, 139, 193, 41, 42, 160, 34, 22, 18, 108, 69, 159, 181, 184, 177, 54, 30, 48, 43, 151, 176, 80, 79, 133, 162, 51, 137, 183, 143, 0, 117, 46, 68, 93, 140, 36, 163, 199, 146, 195, 103, 5, 96, 118, 149, 131, 112, 4, 84, 35, 10, 190, 127, 70, 101, 97, 1, 152, 120, 78, 145, 185, 40, 165, 90, 81, 113, 175, 171, 16, 31, 44, 92, 57, 106, 49, 144, 62, 14, 178, 52, 55, 129, 2, 75, 86, 26, 100, 121] Objective function statistics:

minimum = 83182 mean = 85108.51 maximum = 89433

Dataset B

Best solution: [16, 1, 117, 31, 54, 193, 190, 80, 175, 5, 177, 36, 61, 141, 77, 153, 163, 176, 113, 166, 86, 185, 179, 94, 47, 148, 20, 60, 28, 140, 183, 152, 18, 62, 124, 106, 143, 0, 29, 109, 35, 33, 138, 11, 168, 169, 188, 70, 3, 145, 155, 189, 34, 55, 95, 130, 99, 22, 66, 154, 57, 172, 194, 103, 127, 89, 137, 114, 165, 187, 146, 81, 111, 8, 104, 21, 82, 144, 160, 139, 182, 25, 121, 90, 122, 135, 63, 40, 107, 100, 133, 10, 147, 6, 134, 51, 98, 118, 74] Objective function statistics:

minimum = 52319

mean = 54390.43

2.3 Nearest Neighbors Considering Adding the Node at the Best Position on the Current Path

Dataset A

Best solution: [7, 21, 14, 144, 62, 9, 102, 49, 178, 106, 52, 55, 57, 92, 129, 2, 152, 94, 124, 148, 15, 137, 23, 186, 89, 183, 143, 117, 0, 51, 176, 80, 79, 63, 180, 133, 151, 162, 59, 118, 115, 46, 68, 139, 41, 193, 159, 108, 18, 22, 146, 181, 34, 160, 54, 177, 10, 190, 184, 42, 43, 116, 65, 149, 35, 84, 4, 112, 123, 127, 70, 135, 154, 53, 86, 100, 26, 97, 1, 101, 75, 120, 44, 25, 16, 171, 175, 113, 31, 78, 145, 179, 196, 81, 185, 40, 165, 90, 27, 164] Objective function statistics:

minimum = 71329mean = 72180.12

Dataset B

Best solution: [4, 140, 183, 152, 170, 34, 55, 18, 62, 124, 106, 143, 35, 109, 0, 29, 168, 195, 13, 132, 169, 6, 188, 70, 3, 155, 15, 145, 139, 11, 138, 33, 160, 144, 104, 8, 111, 81, 77, 82, 21, 177, 5, 25, 121, 131, 51, 147, 90, 122, 133, 107, 40, 63, 135, 38, 27, 1, 156, 198, 54, 31, 117, 193, 73, 136, 190, 80, 175, 78, 36, 61, 91, 141, 187, 153, 163, 89, 127, 137, 114, 103, 176, 113, 194, 166, 86, 95, 130, 99, 185, 179, 66, 94, 47, 148, 60, 20, 28, 149] Objective function statistics:

minimum = 46193 mean = 47066.485 maximum = 48330

2.4 Greedy Cycle

Dataset A

Best solution: [0, 117, 143, 183, 89, 186, 23, 137, 176, 80, 79, 94, 63, 152, 97, 1, 2, 129, 92, 57, 55, 52, 49, 102, 148, 9, 62, 144, 14, 178, 106, 185, 165, 21, 7, 164, 27, 90, 40, 81, 196, 179, 145, 78, 31, 113, 175, 171, 16, 25, 44, 120, 75, 101, 86, 26, 100, 53, 180, 154, 135, 70, 127, 123, 162, 133, 151, 51, 118, 59, 149, 131, 65, 116, 43, 184, 35, 84, 112, 4, 190, 10, 177, 54, 48, 160, 34, 181, 42, 115, 41, 193, 159, 146, 22, 18, 108, 139, 68, 46] Objective function statistics:

minimum = 71263mean = 72071.915

Dataset B

Best solution: [4, 149, 28, 20, 60, 148, 47, 94, 66, 179, 185, 99, 130, 95, 86, 166, 194, 113, 176, 103, 114, 137, 127, 89, 163, 187, 153, 81, 77, 141, 91, 61, 36, 175, 78, 45, 5, 177, 21, 82, 111, 8, 104, 138, 11, 139, 182, 25, 136, 80, 190, 73, 54, 31, 193, 117, 198, 156, 1, 121, 51, 90, 131, 135, 63, 40, 107, 122, 133, 10, 147, 6, 188, 169, 132, 70, 3, 155, 15, 145, 13, 195, 168, 33, 160, 29, 0, 109, 35, 143, 106, 124, 62, 18, 55, 34, 170, 152, 183, 140] Objective function statistics:

minimum = 45312 mean = 46903.73 maximum = 48623

3 Heuristics

3.1 Greedy 2-regret

```
Function Greedy 2 regret heuristics(dataset, distance matrix, start node):
  size ← determine subset size based on dataset length and a fixed ratio
  num nodes \leftarrow total number of nodes (rows in dataset)
  Copy the distance matrix to avoid modifying the original
  remaining nodes \leftarrow all nodes except the start node
  solution \leftarrow [start \ node]
  nearest node \leftarrow find the nearest node to start node based on distance matrix
  Add nearest node to solution and remove it from remaining nodes
  While the solution size is smaller than the subset size:
     best regret \leftarrow -\infty
     best node \leftarrow None
     best insertion \leftarrow None
     For each node in remaining_nodes:
       best cost \leftarrow \infty
       second best cost \leftarrow \infty
       best position \leftarrow None
       For each position in the current solution:
         Calculate the cost of inserting the node between two positions in solution
         If the current cost < best cost :
            second best cost \leftarrow best cost
            best cost \leftarrow current cost
            best position \leftarrow current insertion point
         Else If the current cost < second best cost :
            second\_best\_cost \leftarrow current\_cost
       Calculate the regret \leftarrow second best \cos t - \cos t
       If the regret > best regret :
         best regret \leftarrow regret
         best node \leftarrow current node
         best insertion \leftarrow current insertion point
     Insert best node into the solution after best insertion point
     Remove best node from remaining nodes
  Return the final solution based on dataset order
```

Dataset A

```
Best solution: [196, 157, 188, 113, 171, 16, 78, 25, 44, 120, 82, 129, 92, 57, 172, 2, 75, 86, 26, 121, 182, 53, 158, 154, 6, 135, 194, 127, 123, 24, 156, 4, 190, 177, 104, 54, 48, 34, 192, 181, 146, 22, 20, 134, 18, 69, 67, 140, 68, 110,
```

142, 41, 96, 42, 43, 77, 65, 197, 115, 198, 46, 60, 118, 109, 151, 133, 79, 80, 176, 66, 141, 0, 153, 183, 89, 23, 186, 114, 15, 148, 9, 61, 73, 132, 21, 14, 49, 178, 52, 185, 119, 165, 39, 95, 7, 164, 71, 27, 90, 81]

Objective function statistics:

minimum = 105692

mean = 115579.335

maximum = 126951

Dataset B

Best solution: [18, 34, 174, 183, 9, 99, 185, 179, 172, 57, 66, 47, 60, 20, 59, 28, 4, 53, 170, 184, 155, 84, 70, 132, 169, 188, 6, 192, 134, 2, 74, 118, 98, 51, 120, 71, 178, 10, 44, 17, 107, 100, 63, 102, 135, 131, 121, 112, 19, 173, 31, 117, 198, 24, 1, 27, 42, 196, 108, 80, 162, 142, 5, 123, 7, 36, 79, 91, 141, 97, 77, 58, 82, 68, 104, 33, 49, 29, 0, 41, 143, 119, 153, 186, 163, 103, 127, 137, 75, 93, 48, 166, 194, 180, 64, 86, 110, 128, 124, 62]

minimum = 67809

Objective function statistics:

mean = 72740.005

Greedy heuristics with a weighted sum criterion

```
Function Greedy_heuristics_with_weighted_sum(dataset, distance\_matrix, start\_node, w\_cost, w\_reductions)
  size \leftarrow determine subset size as half of the dataset length
  num nodes \leftarrow total number of nodes (rows in dataset)
  Copy the distance matrix to avoid modifying the original
  remaining nodes \leftarrow all nodes except the start node
  solution \leftarrow [start \ node]
  nearest node \leftarrow find the nearest node to start node based on distance matrix
  Add nearest node to solution and remove it from remaining nodes
  While the solution size is smaller than the subset size:
     best combined criterion \leftarrow \infty
     best \quad node \leftarrow None
     best insertion \leftarrow None
    For each node in remaining nodes:
       best cost \leftarrow \infty
       second best cost \leftarrow \infty
       best position \leftarrow None
       For each position in the current solution:
          Calculate the cost of inserting the node between two positions in solution
          If the current cost < best cost :
            second best cost \leftarrow best cost
            best cost \leftarrow current cost
            best position \leftarrow current insertion point
          Else If the current cost < second best cost :
            second best cost \leftarrow current cost
       Calculate the regret \leftarrow second best \cos t - \cos t
       combined criterion \leftarrow w \cos t \times \operatorname{best} \cos t + \operatorname{w} \operatorname{regret} \times \operatorname{regret}
     If combined_criterion < best_combined criterion :
       best combined criterion ← combined criterion
       best node \leftarrow current node
       best insertion \leftarrow current insertion point
     Insert best node into the solution after best insertion point
     Remove best node from remaining nodes
  Return the final solution based on dataset order
```

Dataset A

```
Best solution: [114, 15, 62, 9, 148, 124, 94, 152, 97, 1, 2, 129, 92, 57, 55,
52, 49, 102, 144, 14, 178, 106, 185, 165, 90, 119, 40, 81, 196, 179, 145, 78,
31, 113, 175, 171, 16, 25, 44, 120, 75, 101, 86, 26, 100, 53, 154, 135, 70, 127,
```

123, 149, 131, 65, 116, 43, 42, 184, 84, 112, 4, 190, 10, 177, 54, 48, 160, 34, 181, 146, 22, 18, 108, 69, 159, 41, 193, 139, 68, 46, 115, 59, 118, 51, 162, 151, 133, 180, 63, 79, 80, 176, 137, 0, 117, 143, 183, 89, 23, 186]

Objective function statistics:

minimum = 71040mean = 71923.37

maximum = 73212

Dataset B

Best solution: [189, 109, 35, 0, 29, 111, 81, 77, 141, 36, 61, 175, 78, 80, 190, 193, 198, 117, 54, 31, 73, 136, 45, 5, 177, 21, 82, 8, 104, 144, 160, 33, 138, 182, 11, 139, 195, 168, 51, 121, 131, 1, 27, 38, 135, 63, 40, 107, 10, 133, 122, 90, 147, 6, 188, 169, 132, 13, 145, 15, 3, 70, 155, 170, 152, 140, 28, 20, 60, 148, 47, 94, 66, 99, 183, 95, 130, 185, 179, 86, 166, 194, 113, 176, 103, 114, 137, 127, 89, 163, 165, 187, 153, 143, 106, 124, 62, 18, 55, 34] Objective function statistics:

minimum = 47175

mean = 48464.815

4 Conclusion

While Pure Greedy 2-regret heuristics application lead to worse cost score on both Datasets, its weighted version lead to a slight improvement on average on Dataset A: 72071.915 vs 71923.37 (greedy cycle vs greedy cycle with heuristics), and worse results on Dataset B: 46903.73 vs 48464.815 (greedy cycle vs greedy cycle with heuristics).