# **UFC CLASSIFICATION PROJECT**

by Luigi Fiori



## **OUR COMPANY**

GOBET is a bet site company mainly focused on football.

The Management is looking for opportunities to expand their Market.

Lately Combat Sports are raising in terms of popularity mainly because of the UFC boom.

As consultants, we have been asked to create a model capable of predicting wins and losses for UFC fights.

# **OUR GOALS**



#### **USABILITY**

We want to build a Model that can be used on new random fights



#### **INTERPRETABILITY**

We are looking to create a Model easy to interpret and understand



#### **EXPANSION**

We want to extend the bet options available in our website in order to cover an higher slice of Market

# **PROJECT STAGES**



## **TOP 6 FEATURES**

**Takedowns** 

Result in taking the opponent on the floor

01

**Ground Strikes** 

Strikes landed on the ground

02

03

**Total Losses** 

Number of losses for the fighter

04

**Head Strikes** 

Total number of strikes landed to the head

05

**Total Seconds Fought** 

Total number of seconds spent by the fighter in official fights

06

Age

Fighter's age

### TOP MODEL SCORES

| LOGISTIC REGRESSION | DECISION TREES | RANDOM FOREST |
|---------------------|----------------|---------------|
| 62%                 | 62%            | 62%           |

We tried different Machine Learning Models and as we can see all the Models performed poorly.

It's interesting to notice that there is no actual difference between them, in fact the score is always 62%

### **RECOMMENDATIONS**

We recommend to consider these features when deciding the fight's odds:

- 1. Total Number of Losses of the Fighter
- 2. Age of the Fighter
- 3. Takedown Capabilities(Related Fighter Background Techniques)
- 4. Total Number of Rounds Fought by the Fighter

### **FUTURE WORK**

Having more time to spend on the project it would have been interesting to analyse more in depth the features in the dataset.

In particular spending some time on creating new features based on the one we have could lead to some interesting results.

Finally to have a more accurate prediction we could use a more resource intensive models such as Support Vector Machines or XBoost.

# Thank For Watching!

Does anyone have any question?