Speech Generation

Нейросетевые методы

Цифровое представление звука

Sampling rate – количество сэмплов в секунду в цифровом представлении.

Bit depth – количество бит, кодирующих амплитуду сигнала в цифровом представлении.

Задача

Преобразование текста в речь, Text To Speech (TTS):

- Обработка текста.
- Синтез речи.

Основные методы синтеза

- Конкатенативный
- Статистический параметрический
- Нейросетевой

Нейросетевые модели

- WaveNet
- Tacotron
- DeepVoice
- Parallel WaveNet
- Tacotron 2

WaveNet

Генеративная нейронная сеть, сэмплирует из распределения звуковых сигналов. Решает задачу синтеза речи.

Вход: предыдущие предсказания (авторегрессия) + дополнительные параметры (лингвистические признаки, ід говорящего, спектрограмма).

Выход: аудио сигнал.

Обзор архитектуры WaveNet.

Обзор архитектуры WaveNet.

Preprocessing

.wav

Квантизация

Типичный bit depth сигнала от 16 до 32 битов. В конце сети softmax,
 следовательно придётся предсказывать от 2^16 категорий.

Обзор архитектуры WaveNet.

Causal convolution

Идея из PixelCNN. Гарантирует, что каждая единица сигнала зависит только от предыдущих.

Dilated convolution

Receptive field сети должен быть очень большой, поскольку 1 секунда звука ≈ 24000 предсказаний. Настраивается параметром dilation.

Функция активации

Gated activation

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} \right)$$

- X ВХОД СЛОЯ.
- * операция (dilated) causal свёртки.
- ⊙ поэлементное умножение.
- W_к обучаемые фильтры свёртки на k-ом слое.

Skip и residual связи

Обзор архитектуры WaveNet.

Квантизация

softmax-256 $F^{-1}(y) = \text{sgn}(y)(1/\mu)((1+\mu)^{|y|} - 1) - 1 \le y \le 1$

.wav

Функция потерь

Кросс-энтропия между оригинальным сигналом и сгенерированным.

Global conditioning

Функция активации заменяется на:

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h} \right).$$

 V_{k} – обучаемые веса на k-ом слое.

h – вектор условия.

Local conditioning

Функция активации заменяется на:

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k} * \mathbf{y} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k} * \mathbf{y} \right)$$

V_к – обучаемые свёртки 1х1 на k-ом слое.

y – локальное условие (совпадает с x по размеру)

Результаты WaveNet

- Превзошла по натуральности параметрические и конкатенативные методы синтеза речи, используя лингвистические признаки.

Speech samples	Subjective 5-scale MOS in naturalness	
	North American English	Mandarin Chinese
LSTM-RNN parametric	3.67 ± 0.098	3.79 ± 0.084
HMM-driven concatenative	3.86 ± 0.137	3.47 ± 0.108
WaveNet (L+F)	4.21 ± 0.081	4.08 ± 0.085
Natural (8-bit μ-law)	4.46 ± 0.067	4.25 ± 0.082
Natural (16-bit linear PCM)	4.55 ± 0.075	4.21 ± 0.071

Результаты WaveNet

- Далека от работы в реальном времени.

Tacotron

End-to-end решение для Text To Speech задачи.

Вход: последовательность символов.

Выход: спектрограмма.

signal level for a given input. Morec

^{*}These authors really like tacos.

[†]These authors would prefer sushi.

Encoder

Pre-net и embedding

Encoder pre-net	$FC-256-ReLU \rightarrow Dropout(0.5) \rightarrow$
	$FC-128-ReLU \rightarrow Dropout(0.5)$

CBHG модуль

Encoder CBHG

Conv1D bank: K=16, conv-k-128-ReLU

Max pooling: stride=1, width=2

Conv1D projections: conv-3-128-ReLU

 \rightarrow conv-3-128-Linear

Highway net: 4 layers of FC-128-ReLU

Bidirectional GRU: 128 cells

CBHG модуль

Highway layer

$$y=H(x,W_H)T(x,W_T)+x(\overline{1}-T(x,W_T))$$

$$H(x,W_H)- ext{oбычный слой}$$

$$T(x,W_T)=\sigma(W_t^Tx+b_T)$$

CBHG модуль

Highway layer

$$y=H(x,W_H)T(x,W_T)+xig(\overline{1}-T(x,W_T)ig)$$

$$H(x,W_H)- ext{обычный слой}$$

$$T(x,W_T)=\sigma(W_t^Tx+b_T)$$

Bidirectional GRU

Decoder

Decoder

Bahdanau Attention

Attention RNN 1-layer GRU (256 cells)

Decoder

Bahdanau Attention

Decoder RNN

Attention RNN 1-layer GRU (256 cells)

Decoder RNN

2-layer residual GRU (256 cells)

Post-processing

Выход decoder'а – мелспектрограмма с небольшим числом диапазонов

Mel Spectrogram

Post-processing

Функция потерь

$$0.5 \cdot \frac{|mel_{predicted} - mel_{ground\ truth}|}{N} + 0.5 \cdot \frac{|linear_{predicted} - linear_{ground\ truth}|}{N}$$

Результаты Tacotron

1 секунда аудио ≈ 0.22 секунды генерации

Table 2: 5-scale mean opinion score evaluation.

	mean opinion score
Tacotron	3.82 ± 0.085
Parametric	3.69 ± 0.109
Concatenative	4.09 ± 0.119

WaveNet + Tacotron = Tacotron 2

System	MOS
Parametric	3.492 ± 0.096
Tacotron (Griffin-Lim)	4.001 ± 0.087
Concatenative	4.166 ± 0.091
WaveNet (Linguistic)	4.341 ± 0.051
Ground truth	4.582 ± 0.053
Tacotron 2 (this paper)	4.526 ± 0.066

Источники

- https://heartbeat.fritz.ai/a-2019-guide-to-speech-synthesis-with-deep-learning-630afcafb9dd#98f9
- https://medium.com/@kion.kim/wavenet-a-network-good-to-know-7caaae735
 435
- https://github.com/ibab/tensorflow-wavenet
- https://github.com/keithito/tacotron
- https://sergeiturukin.com/2017/03/02/wavenet.html
- https://arxiv.org/pdf/1611.09482.pdf
- https://arxiv.org/pdf/1712.05884.pdf
- https://arxiv.org/pdf/1703.10135.pdf