

TNE10006/TNE60006: Networks and Switching

Ethernet

Cisco Networking Academy® Mind Wide Open®

Outline

- Ethernet History
- Ethernet in the OSI Stack
- Ethernet MAC CSMA/CD and CSMA/CA
- Ethernet Addressing
- Ethernet Encapsulation
- Ethernet Unicast and Broadcast

Ethernet – History

- Original concept via ALOHA net
 Radio-based network connecting various campuses in Hawaii
 Original wireless network
- Radio waves are the obvious shared medium
- Need to control access to minimise collisions

Ethernet Operation

LLC and MAC Sublayers (cont.)

LLC

 Handles communication between upper and lower layers

MAC

- Constitutes the lower sublayer of the data link layer
- Implemented by hardware, typically in the computer NIC
- Two primary responsibilities:
 - Data encapsulation
 - Media access control

Ethernet MAC Layer

Media Access Control

Ethernet MAC Layer CSMA/CD

- Carrier Sense Multiple Access with Collision Detection
- Multiple Access

Bus topology

Shared Medium

Carrier Sense

Listen to medium

Don't send until medium is free

Collision Detection

Detect when collisions occur

Ethernet MAC Layer CSMA/CD

- Listen on the wire
 - Shared medium
 - Can hear any signals currently being transmitted
- When there are no transmissions taking place
 - And we wish to send a frame
 - Then we begin to send
- Collisions can still occur
 - Two (or more) stations transmit at same time
 - Speed of electricity is not infinite

Ethernet MAC Layer CSMA/CD

When a collision is detected

Stop sending

Send jamming signal – why?

Wait to retransmit

Retransmission delays

Fixed time?

Random time?

Change delays?

Wireless Ethernet MAC Layer CSMA/CA

- Carrier Sense Multiple Access with Collision Avoidance
- Collision Avoidance

After media is free – send notification of stations intent to use medium Wait for response from controller

Transmit

Ethernet Operation

MAC Address: Ethernet Identity

- Layer 2 Ethernet MAC address is a 48-bit binary value expressed as 12 hexadecimal digits
- IEEE requires a vendor to follow these rules:
 - First 3 bytes are the vendor's assigned OUI
 - Last 3 bytes are unique NIC identifier

Ethernet Frame

Ethernet Encapsulation

- Early versions of Ethernet were slow at 10 Mb/s.
- Now operate at 10
 Gb/s per second and faster.
- Ethernet II is the Ethernet frame format used in TCP/IP networks.

Ethernet Frame

Ethernet Encapsulation

Preamble

Synchronisation signal (0101010...)

Allows receivers to synchronise clocks for rest of frame

Addresses

Who is sending/receiving this frame

Type

Tells Ethernet layer what Network Layer Protocol is carried in Data

Frame check

Check for errors

Ethernet Frame

Ethernet Encapsulation

- Data46-1500 bytes
- Why have a minimum?

Why have a maximum?

 These restrictions are no longer valid but backwards compatibility require that they remain

Ethernet MAC

Unicast MAC Address

Ethernet MAC

Broadcast MAC Address

Summary

In this lecture, we covered:

- Ethernet History
- Ethernet in the OSI Stack
- Ethernet MAC CSMA/CD and CSMA/CA
- Ethernet Addressing
- Ethernet Encapsulation
- Ethernet Unicast and Broadcast

