1°. (1 **point**) Find a basis for
$$\mathbb{W} = \{p(x) \in \mathbb{R}[x,4] \mid p(1) = p'(1) = 0\}.$$

Let
$$V = \{p(x) \in R(x, 4) \mid p(e) = 0\}$$

Clearly, the basis is $< (x-1), (x-1)x, (x-1)x^2, (x-1)x^3 >$
Let $Z = \{p(x) \in R(x, 4) \mid p'(x) = 0\}$
The basis is $< (x-1)x, (x-1)x^2, (x-1)x^3 >$
Thus, the basis of $V \cap Z$ is the basis for W , which is $< (x-1)x, (x-1)x^2, (x-1)x^3 >$

2°. (1+3 points) Let
$$\mathbb{U}_1 = \left\langle \begin{bmatrix} 1\\2\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\-1\\2\\0 \end{bmatrix} \right\rangle$$
 and $\mathbb{U}_2 = \left\langle \begin{bmatrix} -3\\-5\\4\\-4 \end{bmatrix}, \begin{bmatrix} 2\\3\\-2\\3 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix} \right\rangle$. Then find a basis for

(a)
$$\mathbb{U}_1 + \mathbb{U}_2$$
 (b) $\mathbb{U}_1 \cap \mathbb{U}_2$

a) Let
$$v_{1}, v_{2}, v_{3}$$
 be vectors of U_{1} .

 v_{1} can be expressed as $v_{2}+(-1)v_{3}$:

$$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix} = v_{1} \Rightarrow U_{1} = \langle \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix} = basis of U_{1}$$

Let w_{1}, w_{2}, w_{3} be vectors of U_{2} .

 $w_{3} = -w_{1} - w_{2}$

$$\begin{bmatrix} 3 \\ 5 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 2 \end{bmatrix} = w_{3} \Rightarrow U_{2} = \langle \begin{bmatrix} -3 \\ 4 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ -2 \\ 2 \end{bmatrix} \Rightarrow -basis of U_{2}$$

$$\begin{bmatrix} 3 \\ 5 \\ -1 \\ 2 \end{bmatrix} = w_{3} \Rightarrow U_{2} = \langle \begin{bmatrix} -3 \\ 4 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ -2 \\ 2 \end{bmatrix} \Rightarrow -basis of U_{2}$$

3°. (1 point) Let \mathbb{V} be a vector space over a field \mathbb{F} and $\dim \mathbb{V} = 33$. Let $\mathbb{U}_1, \mathbb{U}_2$ be subspaces of \mathbb{V} with $\dim \mathbb{U}_1 = 25$, $\dim \mathbb{U}_2 = 14$. Find all possible values for $\dim(\mathbb{U}_1 + \mathbb{U}_2)$ and $\dim(\mathbb{U}_1 \cap \mathbb{U}_2)$.

$$dim(U_1 + U_2) = dim(U_1) + dim(U_2) - dim(U_1 \cap U_2)$$
Suppose $U_2 \subset U_1$:

Then, $\dim(U_1 \cap U_2) = \dim(U_2) = 14$ $\dim(U_1 + U_2) = 25 + 14 - 14 = 25 - \min$ value for the sum.

Suppose that $\dim(U_1 \cap U_2)$ is minimum.

that is: $u_1 = F$ The minimum intersection is $\dim(U_2) - \dim(F) - \dim(U_1) = 14 - 8 = 6$ Then, $\dim(U_1 + U_2) = 25 + 14 - 6 = 33 - \max$ value for the sum.

Answer: $25 < \dim(U_1 + U_2) \le 33$ $6 < \dim(U_1 \cap U_2) \le 14$

4. (1 point) Let \mathbb{V} be a vector space over \mathbb{F} . Let $\mathbb{U}_1,\mathbb{U}_2$ be subspaces of \mathbb{V} . Prove that $\mathbb{U}_1 \cup \mathbb{U}_2$ is not a vector subspace unless $\mathbb{U}_1 \subset \mathbb{U}_2$ or $\mathbb{U}_2 \subset \mathbb{U}_1$.

Assume $U_1 \cup U_2$ is a subspace of V.

Assume for a contradiction that $U_1 \times U_2$ and $U_2 \times U_4$. Then there exists $U_4 \in U_4 \setminus U_2$ and $U_2 \in U_4 \setminus U_2$.

Clearly, U_4 and $U_2 \in U_4 \cup U_2 \Rightarrow U_4 + U_2 \in U_4 \cup U_2$, since the latter is a subspace of V. Then we either have $U_4 + U_2 \in U_4$ or $U_2 \cdot T_1$ the first case $U_2 = (U_4 + U_2) - U_4 \in U_4$ which is I = 1 that $U_4 \in U_4 \setminus U_4$. The proof for U_4 is similar.

Thus, U, CU2 or U2CU4

5. (2 points) Let $\varphi_A: \mathbb{R}^5 \to \mathbb{R}, A = [1,1,1,1,1]$ and $\mathbb{W} = \ker \varphi_A$. Find two subspaces $\mathbb{U}_1, \mathbb{U}_2$ of \mathbb{W} such that $\dim \mathbb{U}_1 = \dim \mathbb{U}_2 = 2$ and $\mathbb{U}_1 \cap \mathbb{U}_2 = 0$.

Consider
$$U_{4} = \angle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \angle \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 1
\end{bmatrix} \cdot \begin{bmatrix}
1 \\
-1 & = 0
\end{bmatrix} = 0 \qquad \begin{bmatrix}
1 & 1 & 1 & 1 & 1
\end{bmatrix} \cdot \begin{bmatrix}
1 \\
0 & = 0
\end{bmatrix} = 0$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{bmatrix}$$

Clearly,
$$dim(U_1) = dim(U_2) = 2$$

no intersection vector.

6. (1 points) Is it true that

 $\dim(\mathbb{U}_1+\mathbb{U}_2+\mathbb{U}_3)=\dim(\mathbb{U}_1)+\dim(\mathbb{U}_2)+\dim(\mathbb{U}_3)-\dim(\mathbb{U}_1\cap\mathbb{U}_2)-\dim(\mathbb{U}_1\cap\mathbb{U}_3)-\dim(\mathbb{U}_1\cap\mathbb{U}_3)+\dim(\mathbb{U}_1\cap\mathbb{U}_2\cap\mathbb{U}_3)$

for all $\mathbb{U}_1, \mathbb{U}_2, \mathbb{U}_3 \subset \mathbb{V}$?

Hint: it is not true, you can find a counterexamle in $\mathbb{V} = \mathbb{R}^2$.

Consider distinct U1, U2, U2 in 1R? Then, dim (U,+U,+U,)=2, as any vector from U, can be expressed as a linear combination of vectors from U, and U, since they are distinct. While dim(U1)+dim(U2)+dim(U2)-dim(U1)-- dim(U, nU3) - dim(U2 nU3) + dim(U4 nU2 nU3) = =1+1+1-0-0-0+0=3 50, 2 = 3. => 1