Orientation

Idea:

Closed Curve in 2D

Counterclockwise as positive direction, clockwise as negative direction.

If C is given by the vector function $\vec{r}(t), a \leq t \leq b$ then the region D is always on the left as the point $\vec{r}(t)$ traverses C.

Normal of Curve in 2D

If $\vec{r}(t) = (x(t), y(t))$, then

Unit normal vector is $\vec{n}(t)=(rac{y'(t)}{|\vec{r}'(t)|},-rac{x'(t)}{|\vec{r}'(t)|})$. (90° clockwise rotation)

The reason being, if C is described by \vec{r} and C is a closed curve, and \vec{r}_t is counterclockwise (see: Orientation > Closed Curve in 2D, then the normal vector will be pointing outward.

Surface

If S is a 2D region (surface) and \vec{n} is the unit normal vector of dS, then

$$\vec{n} \mathrm{d}S = \mathrm{d}\vec{S}$$

If the surface is a Mapping > From 2D to 3D, then

$$ec{n} \mathrm{d} S = (ec{r}_u imes ec{r}_v) \mathrm{d} u \mathrm{d} v$$

(see: Flux > Surface Living in 3D for example)

Curve Enclosing Open Surface?