GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (I deo)

$$y = a\sin(bx + c)$$

Da se najpre podsetimo osnovnog grafika funkcije y = sinx i njenih osobina.

Osobine:

- funkcija je definisana za svako x, to jest $x \in (-\infty, \infty)$
- skup vrednosti funkcije je interval [-1,1], to jest funkcija je ograničena $-1 \le \sin x \le 1$
- sinx je periodična funkcija sa osnovnom periodom 2π
- **nule funkcije** (mesta gde grafik seče x osu) su $x = 0, x = \pm \pi, x = \pm 2\pi$... ili ovo možemo zapisati , uzimajući u obzir periodičnost kao $x = k\pi$ $(k = 0, \pm 1, \pm 2, ...)$
- **maksimalne vrednosti** funkcije su u $-\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \dots$ to jest, možemo zapisati: $x = \frac{\pi}{2} + 2k\pi$ $k \in \mathbb{Z}$
- **minimalne vrednosti** funkcije su u $-\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \dots$ to jest , možemo zapisati: $x = -\frac{\pi}{2} + 2k\pi$ $k \in \mathbb{Z}$
- sinx raste u intervalima $\left[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi\right]$, $k \in \mathbb{Z}$
- sinx opada u intervalima $\left[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi\right], \quad k \in \mathbb{Z}$
- funkcija je **pozitivna**, sinx > 0 za $x \in (2k\pi, (2k+1)\pi)$ $k \in \mathbb{Z}$
- funkcija je **negativna**, sinx < 0 za $x \in ((2k-1)\pi, 2k\pi)$ $k \in \mathbb{Z}$
- grafik se zove **SINUSOIDA**

Trigonometrijsku funkciju $y = a \sin(bx + c)$ ćemo da naučimo da crtamo na dva načina.

Prvi način se sastoji u tome da krenemo od početnog grafika y=sinx i da u zavisnosti od brojeva a,b i c vršimo pomeranja grafika (naučićemo kako) a *drugi način* je direktno ispitivanje tačaka (nule funkcije, max, min...) ali za njega nam je potrebno da znamo rešavati trigonometrijske jednačine.

Najpre uočite i zapišete brojeve *a,b* i *c*. Svaki od njih priča neku priču...

$$y = a \sin x$$

Broj a koji je ispred sinusa se zove *amplituda* i predstavlja maksimalno rastojanje tačke grafika od x- ose.

Za funkciju y=sinx je taj broj a=1 a na grafiku vidimo da je ona baš ograničena sa -1 i 1.

Ako je broj ispred sinusa pozitivan, funkcija izgleda:

Dakle, nule funkcije ostaju na svojim mestima, dok se max i min "produže" do tačke a, odnosno -a.

Ako je broj ispred sinusa negativan ,funkcija izgleda:

Ovde dakle moramo voditi računa jer se grafik "okreće", a max i min zamene mesta i produže se do tačke a, odnosno -a.

primer 1. Nacrtati grafik funkcije $y = -\sin x$

Ovde nam je a = -1. To nam govori da početni grafik $y = \sin x$ (koji je nacrtan na slici isprekidanom linijom) samo "okrenemo".

primer 2. Nacrtati grafik funkcije $y = 2 \sin x$

Sada je a = 2. To znači da funkcija po y- osi ide od -2 do 2 i da se grafik ne okreće.

primer 3. Nacrtati grafik funkcije $y = -\frac{3}{2}\sin x$

Vidimo da je $a = -\frac{3}{2}$. Grafik je u odnosu na početni okrenut, zbog minusa i nalazi se, gledajući po y osi, između $-\frac{3}{2}$ i $\frac{3}{2}$.

$$y = \sin bx$$

Periodičnost funkcije $y = a \sin(bx + c)$ direktno sledi iz periodičnosti funkcije y = sinx.

Osnovni period za $y = a \sin(bx + c)$ se računa po formuli $T = \frac{2\pi}{b}$.

Broj b se zove frekvencija ili učestalost i pokazuje koliko se celih talasa nalazi na intervalu $[0,2\pi]$

Dakle, naš poso je da uočimo broj b, i ubacimo ga u formulu $T = \frac{2\pi}{b}$ da bi dobili osnovnu periodu.

<u>primer 4.</u> Nacrtati grafik funkcije $y = \sin \frac{1}{2}x$

Uočimo da je ovde
$$b = \frac{1}{2}$$
. Onda je $T = \frac{2\pi}{b} \to T = \frac{2\pi}{\frac{1}{2}} \to \boxed{T = 4\pi}$

Početna funkcija y = sinx je i ovde data isprekidano. Šta se desilo sa njom? Vidimo da se ona izdužila, jer je sada perioda $T = 4\pi$.

primer 5. Nacrtati grafik funkcije $y = \sin 2x$

Kako je b=2 onda će osnovna perioda biti $T=\frac{2\pi}{b} \to T=\frac{2\pi}{2} \to \boxed{T=\pi}$

Šta će sada biti sa početnim grafikom? Pa kako je perioda samo $T = \pi$, on će da se "skupi":

 $y = \sin(x+c)$

odnosno

$$y = \sin(bx + c)$$

(broj c se zove početna faza)

Opet naravno, najpre iz zadate funkcije pročitamo vrednosti za b i c. Onda odredimo vrednost za $\frac{c}{b}$.

Grafik funkcije $y = \sin(bx + c)$ se dobija pomeranjem grafika $y = \sin bx$ duž x ose i to (pazi na ovo):

- u pozitivnom smeru (udesno) ako je vrednost $\frac{c}{b}$ negativna i)
- u negativnom smeru (ulevo) ako je vrednost za $\frac{c}{h}$ pozitivna ii)

Nacrtati grafik funkcije $y = \sin(x + \frac{\pi}{2})$ primer 6.

Ovde je $a=1, b=1, c=\frac{\pi}{2}$. Vrednost izraza $\frac{c}{b}$ je $\frac{c}{b}=\frac{\pi}{2}=\frac{\pi}{2}$. Šta ovo znači?

Pošto je vrednost ovog izraza pozitivna , početni grafik y = sinx pomeramo za $\frac{\pi}{2}$ ulevo.

Nacrtati grafik funkcije $y = \sin(x - \frac{\pi}{4})$ primer 7.

$$a=1,b=1,c=-\frac{\pi}{4} \rightarrow \boxed{\frac{c}{b}=-\frac{\pi}{4}}$$
 Pomeramo grafik $y=\sin x$ za $\frac{\pi}{4}$ udesno.

primer 8. Nacrtati grafik funkcije $y = \sin(2x - \frac{\pi}{2})$

Ovde je
$$a=1$$
, $b=2$ i $c=-\frac{\pi}{2}$

Perioda je :
$$T = \frac{2\pi}{b} \to T = \frac{2\pi}{2} \to \boxed{T = \pi}$$
 a vrednost izraza : $\frac{c}{b} = \frac{-\frac{\pi}{2}}{2} = -\frac{\pi}{4}$

Moramo crtati **tri** grafika : y=sinx (**slika 1**.) pa onda y=sin2x (**slika 2**.) i na kraju $y=sin(2x-\frac{\pi}{2})$ (**slika 3**.)

Na slici 2. vidimo da se grafik sinusne funkcije "skupio" zbog periode $T=\pi$.

Na slici 3. je izvršeno pomeranje grafika y=sin2x za $\frac{\pi}{4}$ udesno, jer je vrednost $\frac{c}{b}$ negativna.

Verovatno će vaš profesor tražiti od vas da sva tri grafika nanosite na jednoj slici...Mi smo namerno crtali tri slike da bi bolje razumeli...

<u>primer 9.</u> Nacrtati grafik funkcije $y = \sin(\frac{1}{2}x + \frac{\pi}{4})$

$$a = 1, b = \frac{1}{2}, c = \frac{\pi}{4}$$

Tražimo periodu: $T = \frac{2\pi}{b} \rightarrow T = \frac{2\pi}{\frac{1}{2}} \rightarrow \boxed{T = 4\pi}$ i vrednost izraza: $\frac{c}{b} = \frac{\frac{\pi}{4}}{\frac{1}{2}} = \frac{2\pi}{4} = \frac{\pi}{2}$

Opet idu tri grafika:

Na slici 1. je početni grafik y = sinx

Na slici 2. je grafik $y = \sin \frac{1}{2}x$ koji dobijamo povećavajući periodu na 4π

Na slici 3. je konačan grafik $y = \sin(\frac{1}{2}x + \frac{\pi}{4})$ koji dobijamo kada grafik funkcije $y = \sin\frac{1}{2}x$ pomerimo za $\frac{\pi}{2}$ udesno, jer je vrednost izraza $\frac{c}{b}$ pozitivna.

Sada imamo znanje da nacrtamo ceo grafik $y = a \sin(bx + c)$ ali to pogledajte u sledećem fajlu:

GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (II deo)