

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

CATEGORIES

Сономогос

THE χ CONDITION

NONCOMMUTATIVE PROJECTIVE SCHEMES

Blake Farman 1

¹University of South Carolina, Columbia, SC USA

Temple Graduate Student Conference in Algebra, Geometry, and Topology

NONCOMMUTAT PROJECTIVE SCHEMES

SERRE FINITENESS

QUOTIENT

COHOMOLOG

THE χ CONDITIO

SERRE FINITENESS

NONCOMMUTAT **PROJECTIVE** SCHEMES

SERRE FINITENESS

2 QUOTIENT CATEGORIES

NONCOMMUTAT PROJECTIVE SCHEMES

SERRE FINITENESS

CHILOGRILO

COHOMOLOG

THE χ CONDITION SERRE FINITENESS

QUOTIENT CATEGORIES

3 COHOMOLOGY

NONCOMMUTAT PROJECTIVE SCHEMES

SERRE FINITENESS

True

SERRE FINITENESS

QUOTIENT CATEGORIES

3 COHOMOLOGY

4 The χ Condition

NONCOMMUTA PROJECTIVE SCHEMES

ZEDDE

SERRE FINITENESS

G-----

THE χ CONDITION

THEOREM 1 (SERRE)

Let X be a projective scheme over a noetherian ring A, and let $\mathcal{O}_X(1)$ be a very ample invertible sheaf on X over Spec A. Let \mathscr{F} be a coherent sheaf on X. Then:

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

CATEGORIES

THE χ CONDITION

THEOREM 1 (SERRE)

Let X be a projective scheme over a noetherian ring A, and let $\mathcal{O}_X(1)$ be a very ample invertible sheaf on X over Spec A. Let \mathscr{F} be a coherent sheaf on X. Then:

(I) for each $0 \le i$, $H^i(X, \mathcal{F})$ is a finitely generated A-module;

NONCOMMUTA PROJECTIVE SCHEMES

SERRE

SERRE Finiteness

Сономогосу

The χ Condition

THEOREM 1 (SERRE)

Let X be a projective scheme over a noetherian ring A, and let $\mathcal{O}_X(1)$ be a very ample invertible sheaf on X over Spec A. Let \mathscr{F} be a coherent sheaf on X. Then:

- (I) for each $0 \le i$, $H^i(X, \mathscr{F})$ is a finitely generated A-module;
- (II) there is an integer n_0 , depending on \mathscr{F} such that for each 0 < i and each $n_0 \le n$, $H^i(X, \mathscr{F}(n)) = 0$.

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

CATEGORIES

~

THEOREM 2 (ARTIN-ZHANG)

Let A be a right noetherian $\mathbb{Z}_{\geq 0}$ -graded algebra over a commutative noetherian ring k satisfying χ and let $\pi(M)$ be an object of qgr -A.

NONCOMMUTA
PROJECTIVE
SCHEMES

SERRE

Serre Finiteness

CATEGORIES

THE χ CONDITION

THEOREM 2 (ARTIN-ZHANG)

Let A be a right noetherian $\mathbb{Z}_{\geq 0}$ -graded algebra over a commutative noetherian ring k satisfying χ and let $\pi(M)$ be an object of qgr -A. Then

(I) (H4) for every $0 \le j$, $H^j(\pi(M))$ is a finite right A_0 -module, and

NONCOMMUTA PROJECTIVE SCHEMES

IAKMA

SERRE FINITENESS

CATEGORIES

THE χ CONDITION

THEOREM 2 (ARTIN-ZHANG)

Let A be a right noetherian $\mathbb{Z}_{\geq 0}$ -graded algebra over a commutative noetherian ring k satisfying χ and let $\pi(M)$ be an object of qgr -A. Then

(1) (H4) for every $0 \le j$, $H^j(\pi(M))$ is a finite right A_0 -module, and (H5) for every $1 \le j$, $\underline{H}^j(\pi(M))$ is right bounded; i.e., there is an integer d_0 such that for all $d_0 \le d$, $H^j(\pi(M)[d]) = 0$.

NONCOMMUTA PROJECTIVE SCHEMES

FARMA!

SERRE FINITENESS

Сономогосу

THE χ CONDITION

THEOREM 2 (ARTIN-ZHANG)

Let A be a right noetherian $\mathbb{Z}_{\geq 0}$ -graded algebra over a commutative noetherian ring k satisfying χ and let $\pi(M)$ be an object of qgr -A. Then

- (I) (H4) for every $0 \le j$, $H^j(\pi(M))$ is a finite right A_0 -module, and (H5) for every $1 \le j$, $\underline{H}^j(\pi(M))$ is right bounded; i.e., there is an integer d_0 such that for all $d_0 \le d$, $H^j(\pi(M)[d]) = 0$.
- (II) Conversely, if A satisfies χ_1 and if (H4) and (H5) hold for every $\pi(M) \in \operatorname{qgr} A$, then A satisfies χ .

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENES OUOTIENT

CATEGORIES

THE χ

Let k be a Noetherian commutative ring, A a $\mathbb{Z}_{\geq 0}$ -graded right Noetherian ring. Denote by Gr-A (resp. gr-A) the category of graded right A-modules (resp. finite) with morphisms

$$\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Gr}}
olimits -\mathcal{A}}(M,N) = \{ f \in \operatorname{\mathsf{Hom}}
olimits_{\mathcal{A}}(M,N) \mid f(M_d) \subseteq N_d \}.$$

NONCOMMUTAT PROJECTIVE SCHEMES

SERRE FINITENESS

QUOTIENT CATEGORIES

COHOMOLOGY

THE χ CONDITION

Gr-A is a Grothendieck category with injective envelopes.

NONCOMMUTA PROJECTIVE SCHEMES

FARMA

FINITENI

QUOTIENT CATEGORIES

COHOMOLOGY

THE χ CONDITION

Gr-A is a Grothendieck category with injective envelopes. That is,

 Gr-A is abelian (zero object, finite biproducts, all kernels and cokernels, monics and epics are normal—every monic is a kernel and every epic is a cokernel),

NONCOMMUTA
PROJECTIVE
SCHEMES

FARMA

SERRE Finitene:

QUOTIENT CATEGORIES

COHOMOLOGY

THE χ CONDITION Gr-*A* is a Grothendieck category with injective envelopes. That is,

- Gr-A is abelian (zero object, finite biproducts, all kernels and cokernels, monics and epics are normal—every monic is a kernel and every epic is a cokernel),
- every family of objects has a coproduct,

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENES: QUOTIENT

CATEGORIES

THE χ CONDITION

Gr-*A* is a Grothendieck category with injective envelopes. That is,

- Gr-A is abelian (zero object, finite biproducts, all kernels and cokernels, monics and epics are normal—every monic is a kernel and every epic is a cokernel),
- every family of objects has a coproduct,
- filtered colimits are exact,

ONCOMMUT PROJECTIVE SCHEMES

FARMA

SERRE FINITENES QUOTIENT

CATEGORIES

THE χ CONDITION Gr-A is a Grothendieck category with injective envelopes. That is,

- Gr-A is abelian (zero object, finite biproducts, all kernels and cokernels, monics and epics are normal—every monic is a kernel and every epic is a cokernel),
- every family of objects has a coproduct,
- filtered colimits are exact,
- Gr-A has a generator: the functor h^A : Gr-A $\to \mathfrak{Set}$ is faithful; for any morphism $M \to N$ the morphism

$$\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Gr}}
olimits -A}(M,N) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{\mathfrak{Set}}} \left(h^A(M), h^A(N) \right)$$

is a monomorphism of sets, and

Noncommut. Projective Schemes

FINITENES

OUOTIENT

COHOMOLOG

THE χ CONDITION

Gr-A is a Grothendieck category with injective envelopes. That is,

- Gr-A is abelian (zero object, finite biproducts, all kernels and cokernels, monics and epics are normal—every monic is a kernel and every epic is a cokernel),
- every family of objects has a coproduct,
- filtered colimits are exact,
- Gr-A has a generator: the functor h^A : Gr-A $\to \mathfrak{S}\mathfrak{e}\mathfrak{t}$ is faithful; for any morphism $M \to N$ the morphism

$$\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Gr}}
olimits -A}(M,N) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{\mathfrak{Set}}}(h^A(M),h^A(N))$$

is a monomorphism of sets, and

• every object has an injective enevelope.

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENES

QUOTIENT CATEGORIES

Сономого

THE χ CONDITION

DEFINITION 1

A full subcategory, \mathscr{A} , of an abelian category \mathscr{C} is called a Serre (or épaisse/thick/dense) subcategory if for any short exact sequence

$$0 \, \longrightarrow \, X' \, \longrightarrow \, X \, \longrightarrow \, X'' \, \longrightarrow \, 0$$

of \mathscr{C} , X is an object of \mathscr{A} if and only if both X' and X'' are.

NONCOMMUTA PROJECTIVE SCHEMES

FARMAN

FINITENES

QUOTIENT CATEGORIES

COHOMOLOC

THE χ CONDITION

DEFINITION 1

A full subcategory, \mathscr{A} , of an abelian category \mathscr{C} is called a Serre (or épaisse/thick/dense) subcategory if for any short exact sequence

$$0\,\longrightarrow\, X'\,\longrightarrow\, X\,\longrightarrow\, X''\,\longrightarrow\, 0$$

of \mathscr{C} , X is an object of \mathscr{A} if and only if both X' and X'' are.

The full subcategory Tors (resp. tors) of Gr - A (resp. gr - A) with objects M of Gr - A (resp. gr - A) satisfying

$$\tau(M) = \{ m \in M \mid mA_{\geq s} = 0 \text{ for some } s \} = M$$

is a Serre subcategory.

NONCOMMUTATE
PROJECTIVE
SCHEMES

SERRE FINITENES:

QUOTIENT CATEGORIES

COHOMOLOGY

THE χ CONDITION

Let M and N be objects of Gr-A. Define the category $\mathscr I$ with

PROJECTIVE SCHEMES

FINITENES:

QUOTIENT CATEGORIES

COHOMOLOGY

THE χ CONDITION

Let M and N be objects of Gr-A. Define the category \mathscr{I} with

 objects pairs of subobjects (M', N') such that M/M' and N' are torsion and

ONCOMMUTA
PROJECTIVE
SCHEMES

FARMA

SERRE Finiteness

QUOTIENT CATEGORIES

Сономогос

THE χ

Let M and N be objects of Gr-A. Define the category \mathscr{I} with

- objects pairs of subobjects (M', N') such that M/M' and N' are torsion and
- a unique morphism

$$(M',N') \rightarrow (M'',N'')$$

if and only if $M'' \subseteq M'$ and $N' \subseteq N''$.

IONCOMMUTA PROJECTIVE SCHEMES

FARMA

SERRE FINITENES

QUOTIENT CATEGORIES

Сономогоду

The χ Condition

Let M and N be objects of Gr-A. Define the category \mathscr{I} with

- objects pairs of subobjects (M', N') such that M/M' and N' are torsion and
- a unique morphism

$$(M', N') \rightarrow (M'', N'')$$

if and only if $M'' \subseteq M'$ and $N' \subseteq N''$.

The category \mathscr{I} is filtered.

NONCOMMUTATE
PROJECTIVE
SCHEMES

FINITENESS

CATEGORIES

~

THE χ

DEFINITION 2

Define the quotient category, QGr - A = Gr - A / Tors, to be the category with

NONCOMMUTAT PROJECTIVE SCHEMES

SERRE

FINITENES: QUOTIENT

CATEGORIES

THE χ CONDITION

DEFINITION 2

Define the quotient category, QGr - A = Gr - A / Tors, to be the category with

• objects the objects of Gr-A, and

NONCOMMUTA PROJECTIVE SCHEMES

PARMA

SERRE FINITENES

QUOTIENT CATEGORIES

COHOMOLOGY

THE χ CONDITION

DEFINITION 2

Define the quotient category, QGr - A = Gr - A / Tors, to be the category with

- objects the objects of Gr-A, and
- · morphisms defined by the filtered colimit

$$\mathsf{Hom}_{\mathsf{QGr}\text{-}A}\left(M,N\right) = \mathsf{colim}_{\mathscr{I}} \, \mathsf{Hom}_{\mathsf{Gr}\text{-}A}\left(M',N/N'\right).$$

NONCOMMUTA
PROJECTIVE
SCHEMES

FARMA

SERRE FINITENE

QUOTIENT CATEGORIES

COHOMOLOGY

THE χ CONDITION

DEFINITION 2

Define the quotient category, QGr-A=Gr-A/Tors, to be the category with

- objects the objects of Gr-A, and
- morphisms defined by the filtered colimit

$$\mathsf{Hom}_{\mathsf{QGr}\text{-}\!\mathcal{A}}\left(\mathit{M},\mathit{N}\right) = \mathsf{colim}_{\mathscr{I}}\,\mathsf{Hom}_{\mathsf{Gr}\text{-}\!\mathcal{A}}\left(\mathit{M}',\mathit{N}/\mathit{N}'\right).$$

QGr-A is abelian.

ONCOMMUTA PROJECTIVE SCHEMES

FARMA

SERRE FINITENES

QUOTIENT CATEGORIES

Сономогосу

THE χ CONDITION

DEFINITION 2

Define the quotient category, QGr-A=Gr-A/Tors, to be the category with

- objects the objects of Gr-A, and
- morphisms defined by the filtered colimit

$$\mathsf{Hom}_{\mathsf{QGr}\text{-}\mathcal{A}}\left(M,N\right) = \mathsf{colim}_{\mathscr{I}} \, \mathsf{Hom}_{\mathsf{Gr}\text{-}\mathcal{A}}\left(M',N/N'\right).$$

- QGr-A is abelian.
- There is a functor $\pi: \operatorname{Gr-A} \to \operatorname{QGr-A}$ that is the identity on objects and sends a morphism $f \in \operatorname{Hom}_{\operatorname{Gr-A}}(M,N)$ to its image, $\pi(f)$, in the colimit.

Noncommut Projective Schemes

PARMAN

FINITENES

OUOTIENT

CATEGORIES

Сономогоду

THE χ CONDITION

DEFINITION 2

Define the quotient category, QGr-A = Gr-A/Tors, to be the category with

- objects the objects of Gr-A, and
- morphisms defined by the filtered colimit

$$\mathsf{Hom}_{\mathsf{QGr}\text{-}\mathcal{A}}\left(M,N\right) = \mathsf{colim}_{\mathscr{I}}\,\mathsf{Hom}_{\mathsf{Gr}\text{-}\mathcal{A}}\left(M',N/N'\right).$$

- QGr-A is abelian.
- There is a functor $\pi: \operatorname{Gr} A \to \operatorname{QGr} A$ that is the identity on objects and sends a morphism $f \in \operatorname{Hom}_{\operatorname{Gr} A}(M, N)$ to its image, $\pi(f)$, in the colimit.
- qgr A is defined analogously.

MORPHISMS

NONCOMMUTATE
PROJECTIVE
SCHEMES

SERRE FINITENES:

QUOTIENT CATEGORIES

COHOMOLOGY

THE χ CONDITION

In Gr-A, we have a somewhat more explicit formulation of the Hom-sets:

MORPHISMS

NONCOMMUTA PROJECTIVE SCHEMES

FARMA

SERRE FINITEN

QUOTIENT CATEGORIES

Сономогос

THE χ

In Gr-A, we have a somewhat more explicit formulation of the Hom-sets:

• Given two objects M, N of Gr-A,

$$\mathsf{Hom}_{\mathsf{QGr}\text{-}\!\mathcal{A}}\left(\pi(\textit{M}),\pi(\textit{N})\right) = \mathsf{colim}_{\textit{M'}}\,\mathsf{Hom}_{\mathsf{Gr}\text{-}\!\mathcal{A}}\left(\textit{M'},\textit{N}/\tau(\textit{N})\right).$$

MORPHISMS

NONCOMMUTA
PROJECTIVE
SCHEMES

FINITENES:
OUOTIENT

CATEGORIES

Сономого

THE χ CONDITION

In Gr-A, we have a somewhat more explicit formulation of the Hom-sets:

Given two objects M, N of Gr-A,

$$\mathsf{Hom}_{\mathsf{QGr}\text{-}\!\mathcal{A}}\left(\pi(\mathit{M}),\pi(\mathit{N})\right) = \mathsf{colim}_{\mathit{M'}}\,\mathsf{Hom}_{\mathsf{Gr}\text{-}\!\mathcal{A}}\left(\mathit{M'},\mathit{N}/\tau(\mathit{N})\right).$$

If in addition M is an object of gr-A, then

$$\mathsf{Hom}_{\mathsf{QGr}\text{-}\mathcal{A}}\left(\pi(\mathit{M}),\pi(\mathit{N})\right) = \lim_{n \to \infty} \mathsf{Hom}_{\mathsf{Gr}\text{-}\mathcal{A}}\left(\mathit{M}_{\geq n},\mathit{N}\right)$$

where

$$M_{\geq n} = \bigoplus_{d \geq n} M_d$$
.

Properties of π

NONCOMMUTAT PROJECTIVE SCHEMES

SERRE FINITENES

QUOTIENT CATEGORIES

Сопомого

THE χ

• given an exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} M \xrightarrow{f} N \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

Properties of π

NONCOMMUTATE PROJECTIVE SCHEMES

FINITENES

OUOTIENT

CATEGORIES

COHOMOLOGY

THE χ CONDITION

• given an exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} M \xrightarrow{f} N \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

(I) $\pi(f) = 0$ if and only if $f(M) \cong M/K$ is torsion,

NONCOMMUTA PROJECTIVE SCHEMES

FINITENES
OUOTIENT

CATEGORIES

Сономогосу

THE χ CONDITION

$$0 \longrightarrow K \xrightarrow{\ker f} M \xrightarrow{f} N \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

- (I) $\pi(f) = 0$ if and only if $f(M) \cong M/K$ is torsion,
- (II) $\pi(f)$ is a monomorphism if and only if K is torsion,

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENES

QUOTIENT CATEGORIES

Corrorer

THE χ

$$0 \longrightarrow K \xrightarrow{\ker f} M \xrightarrow{f} N \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

- (I) $\pi(f) = 0$ if and only if $f(M) \cong M/K$ is torsion,
- (II) $\pi(f)$ is a monomorphism if and only if K is torsion,
- (III) $\pi(f)$ is an epimorphism if and only if C is torsion,

NONCOMMUTA
PROJECTIVE
SCHEMES

FINITENESS

OUOTIENT

COHOMOLOG

THE χ CONDITION

$$0 \, \longrightarrow \, K \, \stackrel{\ker f}{\longrightarrow} \, M \, \stackrel{f}{\longrightarrow} \, N \, \stackrel{\operatorname{coker} f}{\longrightarrow} \, C \, \longrightarrow \, 0.$$

- (I) $\pi(f) = 0$ if and only if $f(M) \cong M/K$ is torsion,
- (II) $\pi(f)$ is a monomorphism if and only if K is torsion,
- (III) $\pi(f)$ is an epimorphism if and only if C is torsion,
- π is exact and admits a fully faithful adjoint,
 ω : QGr-A → Gr-A,

SCHEMES

QUOTIENT

CATEGORIES

$$0 \longrightarrow K \xrightarrow{\ker f} M \xrightarrow{f} N \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

- (I) $\pi(f) = 0$ if and only if $f(M) \cong M/K$ is torsion,
- (II) $\pi(f)$ is a monomorphism if and only if K is torsion,
- (III) $\pi(f)$ is an epimorphism if and only if C is torsion,
- π is exact and admits a fully faithful adjoint, $\omega: \mathsf{QGr} - A \to \mathsf{Gr} - A$,
- π preserves injectives.

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENES

Сономогоду

The χ Condition

DEFINITION 3

We say an object M of Gr-A is Tors-closed if M is torsion-free and any short exact sequence

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} X \stackrel{\operatorname{coker} f}{\longrightarrow} X/M \longrightarrow 0$$

with X/M torsion splits.

NONCOMMUTA PROJECTIVE SCHEMES

IAKMAN

SERRE FINITENES

CATEGORIES

COHOMOLOGY

THE χ CONDITION

DEFINITION 4

We say an object *M* of Gr-*A* is Tors-closed if *M* is torsion-free and any short exact sequence

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} X \stackrel{\operatorname{coker} f}{\longrightarrow} X/M \longrightarrow 0$$

with X/M torsion splits.

REMARK 1

It's immediate that every torsion-free injective is Tors-closed.

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

CATEGORIES

Сономогоду

THE χ CONDITION

PROPOSITION 1 (GABRIEL)

For M an object of Gr -A, the following are equivalent:

Any exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} X \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0$$

with K and C torsion implies $h_M(f)$: $h_M(Y) \cong h_M(X)$,

NONCOMMUTA PROJECTIVE SCHEMES

FINITENES

CATEGORIES

Сономогоду

THE χ CONDITION

PROPOSITION 1 (GABRIEL)

For M an object of Gr -A, the following are equivalent:

Any exact sequence

$$0 \, \longrightarrow \, K \, \xrightarrow{\text{ker} \, f} \, X \, \xrightarrow{f} \, Y \, \xrightarrow{\text{coker} \, f} \, C \, \longrightarrow \, 0$$

with K and C torsion implies $h_M(f)$: $h_M(Y) \cong h_M(X)$,

M is Tors-closed,

NONCOMMUTA
PROJECTIVE
SCHEMES

FARMA

SERRE FINITENESS

CATEGORIES

Сономогоду

THE χ CONDITION

PROPOSITION 1 (GABRIEL)

For M an object of Gr -A, the following are equivalent:

Any exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} X \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0$$

with K and C torsion implies $h_M(f)$: $h_M(Y) \cong h_M(X)$,

- M is Tors-closed,
- For any object N of Gr -A

$$\pi$$
: $\operatorname{Hom}_{\operatorname{Gr}-A}(N,M) \cong \operatorname{Hom}_{\operatorname{OGr}-A}(\pi(N),\pi(M))$.

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

CATEGORIES

Сономогоду

THE χ CONDITION

REMARK 2

• If M is torsion-free and $i: M \to E(M)$ is an injective envelope, then E(M) is torsion free, hence Tors-closed.

PROJECTIVE SCHEMES

FINITENES

CATEGORIES

COHOMOLOGY

THE χ CONDITION

REMARK 2

• If M is torsion-free and $i: M \to E(M)$ is an injective envelope, then E(M) is torsion free, hence Tors-closed. In such a case, it can be shown that $\pi(i)$ is an injective envelope.

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENES:

CATEGORIES

Сономогоду

THE χ CONDITION

REMARK 2

• If M is torsion-free and $i \colon M \to E(M)$ is an injective envelope, then E(M) is torsion free, hence Tors-closed. In such a case, it can be shown that $\pi(i)$ is an injective envelope. Since $\pi(M) \cong \pi(M/\tau(M))$, it follows that QGr-A has injective envelopes.

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENES

Сономогосу

THE χ CONDITION

REMARK 2

- If M is torsion-free and $i \colon M \to E(M)$ is an injective envelope, then E(M) is torsion free, hence Tors-closed. In such a case, it can be shown that $\pi(i)$ is an injective envelope. Since $\pi(M) \cong \pi(M/\tau(M))$, it follows that QGr-A has injective envelopes.
- ② It can be shown (see Artin-Zhang, Prop 2.2) that if M is torsion, then so is E(M).

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

CATEGORIES

Сономогоду

THE χ CONDITION

REMARK 2

- If M is torsion-free and $i: M \to E(M)$ is an injective envelope, then E(M) is torsion free, hence Tors-closed. In such a case, it can be shown that $\pi(i)$ is an injective envelope. Since $\pi(M) \cong \pi(M/\tau(M))$, it follows that QGr-A has injective envelopes.
- ② It can be shown (see Artin-Zhang, Prop 2.2) that if M is torsion, then so is E(M). In the case that we have an injective object, Q, $\tau(Q)$ is injective and gives the decomposition $Q \cong \tau(Q) \oplus Q/\tau(Q) \cong \tau(Q) \oplus \omega\pi(Q)$. In fact, it follows that $Q/\tau(Q) \cong \omega\pi(Q)$ is injective.

Noncommuta Projective Schemes

FARMAN

SERRE FINITENES

CATEGORIES

Сономогоду

THE χ CONDITION

REMARK 2

- If M is torsion-free and $i: M \to E(M)$ is an injective envelope, then E(M) is torsion free, hence Tors-closed. In such a case, it can be shown that $\pi(i)$ is an injective envelope. Since $\pi(M) \cong \pi(M/\tau(M))$, it follows that QGr-A has injective envelopes.
- 2 It can be shown (see Artin-Zhang, Prop 2.2) that if M is torsion, then so is E(M). In the case that we have an injective object, Q, $\tau(Q)$ is injective and gives the decomposition $Q \cong \tau(Q) \oplus Q/\tau(Q) \cong \tau(Q) \oplus \omega\pi(Q)$. In fact, it follows that $Q/\tau(Q) \cong \omega\pi(Q)$ is injective.
- § Every injective object of QGr-A is isomorphic to $\pi(Q/\tau(Q))$ for some injective object Q of Gr-A.

NONCOMMUTAT PROJECTIVE SCHEMES

SERRE FINITENESS

Quotient Categorie

COHOMOLOGY

THE χ CONDITION

Since QGr-A has enough injectives, we can define Ext for QGr-A. Let's compute $\operatorname{Ext}^i_{\operatorname{QGr-}A}(\pi(M),\pi(N))$:

NONCOMMUTA PROJECTIVE SCHEMES

PARMA

FINITENESS

COHOMOLOGY

The χ

Since QGr-A has enough injectives, we can define Ext for QGr-A. Let's compute $\operatorname{Ext}_{\operatorname{QGr-A}}^i(\pi(M),\pi(N))$:

Take an injective resolution

$$Q: 0 \longrightarrow N = Q^0 \longrightarrow Q^1 \longrightarrow \cdots$$

NONCOMMUTA
PROJECTIVE
SCHEMES

......

SERRE FINITENES

CATEGORIES COHOMOLOGY

THE χ CONDITION

Since QGr-A has enough injectives, we can define Ext for QGr-A. Let's compute $\operatorname{Ext}_{\operatorname{OGr-A}}^{i}(\pi(M), \pi(N))$:

Take an injective resolution

$$Q^{\cdot}: 0 \longrightarrow N = Q^0 \longrightarrow Q^1 \longrightarrow \cdots$$

② $\pi(Q^{\cdot})$ is an injective resolution of $\pi(N)$ by the comments above, so

$$h^i(\mathsf{Hom}_{\mathsf{QGr}\text{-}\mathcal{A}}(\pi(\mathit{M}),\pi(\mathit{Q}^{\cdot})))\cong \mathsf{Ext}^i_{\mathsf{QGr}\text{-}\mathcal{A}}(\pi(\mathit{M}),\pi(\mathit{N}))$$

NONCOMMUTA PROJECTIVE SCHEMES

.....

SERRE FINITENESS

Сономогоду

THE χ CONDITION

Since QGr-A has enough injectives, we can define Ext for QGr-A. Let's compute $\operatorname{Ext}_{\operatorname{OGr-A}}^i(\pi(M), \pi(N))$:

Take an injective resolution

$$Q: 0 \longrightarrow N = Q^0 \longrightarrow Q^1 \longrightarrow \cdots$$

 \bullet $\pi(Q^{\cdot})$ is an injective resolution of $\pi(N)$ by the comments above, so

$$h^i(\mathsf{Hom}_{\mathsf{QGr}\text{-}\mathcal{A}}(\pi(\mathit{M}),\pi(\mathit{Q}^{\cdot})))\cong \mathsf{Ext}^i_{\mathsf{QGr}\text{-}\mathcal{A}}(\pi(\mathit{M}),\pi(\mathit{N}))$$

From the adjunction we get an isomorphism of complexes

$$\mathsf{Hom}_{\mathsf{QGr}\text{-}A}(\pi(\mathit{M}),\pi(\mathit{Q}^{\cdot}))) \cong \mathsf{Hom}_{\mathsf{Gr}\text{-}A}(\mathit{M},\omega\pi(\mathit{Q}^{\cdot}))$$

and we see that

$$\operatorname{Ext}_{\operatorname{OGr-A}}^{i}(\pi(M), \pi(N)) \cong R^{i} \operatorname{Hom}_{\operatorname{Gr-A}}(M, \omega \pi(N))$$

GRADED Hom

Noncommutat Projective Schemes

SERRE FINITENESS

Сономогосу

THE χ CONDITION

DEFINITION 5

Define the graded modules

$$\underline{\mathsf{Hom}}_{\mathsf{Gr}\text{-}\mathcal{A}}(M,N) = \bigoplus_{d \in \mathbb{Z}} \mathsf{Hom}_{\mathsf{Gr}\text{-}\mathcal{A}}(M,N[d])$$

and

$$\underline{\mathsf{Hom}}_{\mathsf{QGr}\text{-}\mathcal{A}}(\pi(\textit{M}),\pi(\textit{N})) = \bigoplus_{\textit{d} \in \mathbb{Z}} \mathsf{Hom}_{\mathsf{QGr}\text{-}\mathcal{A}}(\pi(\textit{M}),\pi(\textit{N})[\textit{d}]) \,.$$

GRADED Ext

NONCOMMUTATE PROJECTIVE SCHEMES

SERRE FINITENESS

Сономогоду

THE χ CONDITION

The right derived functors are

$$\underline{\mathsf{Ext}}_{\mathsf{Gr}\text{-}A}^{i}\left(\mathit{M},\mathit{N}\right) = \bigoplus_{\mathit{d} \in \mathbb{Z}} \mathsf{Ext}_{\mathsf{Gr}\text{-}A}^{i}\left(\mathit{M},\mathit{N}[\mathit{d}]\right)$$

and

$$\underline{\mathsf{Ext}}^i_{\mathsf{QGr}\text{-}\!\mathsf{A}}(\pi(\mathsf{M}),\pi(\mathsf{N})) = \bigoplus_{\mathsf{d} \in \mathbb{Z}} \mathsf{Ext}^i_{\mathsf{QGr}\text{-}\!\mathsf{A}}(\pi(\mathsf{M}),\pi(\mathsf{N})[\mathsf{d}]) \,.$$

GRADED Ext (CONT'D)

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

CATEGORIES

COHOMOLOGY

THE χ CONDITION

For Q an injective resolution of N,

$$\underline{\mathsf{Ext}}^{i}_{\mathsf{QGr-A}}(\pi(\mathit{M}),\pi(\mathit{N})) \;\;\cong\;\; h^{i}(\underline{\mathsf{Hom}}_{\mathsf{Gr-A}}(\mathit{M},\omega\pi(\mathit{Q}^{\cdot})))$$

$$\cong R^{i} \underline{\mathsf{Hom}}_{\mathsf{Gr-A}}(M, \omega \pi(N)).$$

COHOMOLOGY

NONCOMMUTATE
PROJECTIVE
SCHEMES

EDDE

FINITENESS

Сономогосу

The χ Condition

Define the cohomology functors

$$H^i(\pi(M)) = \mathsf{Ext}^i_{\mathsf{QGr-A}}(\pi(A),\pi(M)) \cong h^i(\omega\pi(Q^{\cdot}))_0$$

and

$$\underline{H}^{i}(\pi(M)) = \bigoplus_{d \in \mathbb{Z}} H^{i}(\pi(M)[d]) \cong h^{i}(\omega \pi(Q^{\cdot})).$$

BOUNDED MODULES

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

Сономогоду

The χ Condition

DEFINITION 6

Let *M* be an object of Gr -*A*.

(I) We say M is left bounded if there exists some ℓ such that $M_d = 0$ for all $d \le \ell$.

BOUNDED MODULES

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

Сономогоду

THE χ CONDITION

DEFINITION 6

Let *M* be an object of Gr - *A*.

- (I) We say M is left bounded if there exists some ℓ such that $M_d = 0$ for all $d \leq \ell$.
- (II) We say M is right bounded if there exists some r such that $M_d = 0$ for all $r \le d$.

BOUNDED MODULES

NONCOMMUTA
PROJECTIVE
SCHEMES

2.1111.111

SERRE FINITENE

QUOTIENT CATEGORIE

COHOMOLOGY

THE χ CONDITION

DEFINITION 6

Let *M* be an object of Gr-*A*.

- (I) We say M is left bounded if there exists some ℓ such that $M_d = 0$ for all $d \leq \ell$.
- (II) We say M is right bounded if there exists some r such that $M_d = 0$ for all $r \le d$.
- (III) We say M is bounded if it is left and right bounded.

NONCOMMUTAT PROJECTIVE SCHEMES

SERRE FINITENESS

....

THE χ CONDITION

DEFINITION 7

• We say $\chi_i^0(M)$ holds if $\underline{\operatorname{Ext}}_{\operatorname{Gr-A}}^j(A_0,M)$ is bounded for all $j \leq i$.

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

CATEGORIES

Сономогосу

THE χ CONDITION

- We say $\chi_i^0(M)$ holds if $\underline{\operatorname{Ext}}_{\operatorname{Gr-A}}^j(A_0,M)$ is bounded for all $j \leq i$.
- ② If $\chi_i^0(M)$ holds for every object M of gr-A, then we say that χ_i^0 holds for A.

NONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

Coversor

THE χ CONDITION

- We say $\chi_i^0(M)$ holds if $\underline{\operatorname{Ext}}_{\operatorname{Gr-A}}^j(A_0,M)$ is bounded for all $j \leq i$.
- If $\chi_i^0(M)$ holds for every object M of gr-A, then we say that χ_i^0 holds for A.
- If $\chi_i^0(M)$ holds for A for every i, then we say that χ^0 holds for A.

NONCOMMUTA
PROJECTIVE
SCHEMES

......

SERRE FINITENESS

Сопомогоск

THE χ CONDITION

- We say $\chi_i^0(M)$ holds if $\underline{\operatorname{Ext}}_{\operatorname{Gr-A}}^j(A_0,M)$ is bounded for all $j \leq i$.
- ② If $\chi_i^0(M)$ holds for every object M of gr-A, then we say that χ_i^0 holds for A.
- If $\chi_i^0(M)$ holds for A for every i, then we say that χ^0 holds for A.
- We say that $\chi_i(M)$ holds for an object of Gr-A if for all d and all $j \leq i$, there is an integer n_0 such that $\underline{\operatorname{Ext}}_{\operatorname{Gr-A}}^j(A/A_{\geq n},M)_{\geq d}$ is an object of $\operatorname{gr-A}$ when $n_0 \leq n$.

IONCOMMUTA PROJECTIVE SCHEMES

SERRE FINITENESS

Сономогосу

THE χ CONDITION

- We say $\chi_i^0(M)$ holds if $\underline{\underline{Ext}}_{Gr-A}^j(A_0, M)$ is bounded for all $j \leq i$.
- ② If $\chi_i^0(M)$ holds for every object M of gr-A, then we say that χ_i^0 holds for A.
- If $\chi_i^0(M)$ holds for A for every i, then we say that χ^0 holds for A.
- We say that $\chi_i(M)$ holds for an object of Gr-A if for all d and all $j \le i$, there is an integer n_0 such that $\underline{\operatorname{Ext}}_{\operatorname{Gr-A}}^j(A/A_{\ge n},M)_{>d}$ is an object of $\operatorname{gr-A}$ when $n_0 \le n$.
- **1** If χ_i holds for every object of gr-A, then we say that χ_i holds for A.

Noncommut Projective Schemes

FARMAN

SERRE FINITENESS

Сономогоду

THE χ CONDITION

- We say $\chi_i^0(M)$ holds if $\underline{\operatorname{Ext}}_{\operatorname{Gr-A}}^j(A_0,M)$ is bounded for all $j \leq i$.
- ② If $\chi_i^0(M)$ holds for every object M of gr-A, then we say that χ_i^0 holds for A.
- If $\chi_i^0(M)$ holds for A for every i, then we say that χ^0 holds for A.
- We say that $\chi_i(M)$ holds for an object of Gr-A if for all d and all $j \leq i$, there is an integer n_0 such that $\underline{\operatorname{Ext}}_{\operatorname{Gr-A}}^i(A/A_{\geq n},M)_{\geq d}$ is an object of $\operatorname{gr-A}$ when $n_0 \leq n$.
- **S** If χ_i holds for every object of gr-A, then we say that χ_i holds for A.
- If χ_i holds for every i, then we say that χ holds for A.

Noncommutat Projective Schemes

SERRE

OUOTIENT

COHOMOLOC

THE χ CONDITION

Thank you!