

Circuiti Elettrici

Capitolo 10

Circuiti con accoppiamento magnetico

Prof. Cesare Svelto

Circuiti con accoppiamento magnetico – Cap. 10

- 10.0 Introduzione
- 10.1 Trasformatore ideale
- 10.2 Analisi di circuiti con trasformatori ideali
- 10.3 Autotrasformatore ideale
- 10.4 Induttori accoppiati (mutuo induttore)
- 10.5 Analisi di circuiti con induttori accoppiati
- 10.6 Circuito equivalente del trasformatore reale
- 10.7 Applicazioni line eletttriche di trasmissione, trasformatore di misura, trasformatore di isolamento, adattamento di impedenza
- 10.X Sommario

10.0 Introduzione

- Componente trasformatore di vasto impiego nella distribuzione e uso energia elettrica per "regolare" tensione e corrente, disaccoppiare circuiti, etc.
- Accoppiamento magnetico tra due circuiti non in contatto elettrico diretto (e- non va da un circuito all'altro) Un flusso magnetico condiviso, grazie alla legge di Faraday, provoca variazioni di tensione indotta in un circuito in seguito a variazioni della corrente nell'altro circuito
- Due nuovi elementi ideali: trasformatore ideale (resistivo) e induttori accoppiati (dinamico). Analisi dei circuiti e applicazioni. Trasformatore reale

10.1 Trasformatore ideale

Trasformatore è un elemento circuitale a 4 terminali con 2 avvolgimenti di filo conduttore attorno a un **nucleo** comune (alta $\mu=B/H$ induzione/campo magn.)

Avvolgimento **primario** con N_1 spire e v_1 e i_1 Avvolgimento **secondario** con N_2 spire e v_2 e i_2 Le tensioni dipendono dalle **variazioni** delle correnti

10.1 Valori di permeabilità μ_0 e $\mu_{ m r}$

Permeabilità magnetica del **vuoto** $\mu_0 \cong 4\pi \times 10^{-7}$ H/m

Permeabilità magnetica di un **materiale** $\mu = \mu_r \mu_0$

Valori tipici di permeabilità relativa $\mu_r = \mu/\mu_0$:

materiali	(1)	materiali	(1)
magnetici	$\mu_{ m r}$	amagnetici	$\mu_{ m r}$
ferro	$10^4 \div 10^5$	vuoto	1
ferrite (MnZn)	$10^3 \div 10^5$	aria	1
acciaio	200÷5000	acqua	0.999992
nichel	400÷1100	vetro	0.999987
permalloy	10000	teflon	1
mu-metal	50000	calcestruzzo	1
metglas	1000000	legno	7

10.1 Trasformatore (foto)

Trasformatori di potenza in olio

Alim. USB con Trasf. STUDENTE Notargiacomo (CME 2019-20)

10.1 Trasformatore ideale (flussi)

Correnti i_1 e i_2 creano campi di **induzione magnetica** che "variando" inducono **tensioni variabili** v_1 e v_2

Distinguiamo 3 flussi: ϕ_{11} da i_1 sulle spire di AVV₁

 ϕ_{22} da i_2 sulle spire di AVV $_2$

 $\phi = \phi_{TOT} \text{ da } i_1, i_2 \text{ su spire AVV}_1, \text{AVV}_2$

 ϕ_{11} e ϕ_{22} "flussi dispersi" non contribuiscono all'accoppiamento e per ipotesi ϕ_{11} , ϕ_{22} << ϕ "flusso principale" (caso $\mu_{\rm nucleo\ magnetico}$ >> $\mu_{\rm aria}$)

Legge di Faraday:

$$v_1 = N_1 \frac{\mathrm{d}\phi}{\mathrm{d}t}$$
 $v_2 = N_2 \frac{\mathrm{d}\phi}{\mathrm{d}t}$

10.1 Trasformatore ideale (tensioni)

Legge di **Faraday**:
$$v_1 = N_1 \frac{d\phi}{dt}$$
 $v_2 = N_2 \frac{d\phi}{dt}$

$$\frac{v_2}{v_1} = \frac{N_2}{N_1} = n \text{ rapporto spire } \Rightarrow v_2 = n v_1$$

<u>Il rapporto tra la tensione del secondario e la tensione</u> <u>del primario è il rapporto spire</u>

Se *n*>1 trasformatore **elevatore**

 $v_2 > v_1$ (tensione più alta al secondario)

Se *n*<1 trasformatore **riduttore**

 $v_1 > v_2$ (tensione più alta al primario)

10.1 Trasformatore ideale (correnti)

Ulteriore **ipotesi** $\mu_{\rm nucleo} \rightarrow \infty$ \Rightarrow essendo $B=\mu H$ finito, deve essere H=0 nel nucleo

Applicando la legge di Ampere:

$$\oint \mathbf{H} \cdot d\mathbf{l} = i_{\text{conc.}} = N_1 i_1 + N_2 i_2 = 0$$

$$\frac{i_2}{i_1} = -\frac{N_1}{N_2} = -\frac{1}{n} \implies i_2 = -\frac{1}{n}i_1$$

<u>Il rapporto tra la corrente del secodario e la corrente del primario è il reciproco del rapporto spire (con segno "-")</u>

Il trasformatore che eleva la tensione riduce la corrente Sembra logico dato che non aumenta la potenza p=vi!

10.1 Trasformatore ideale (fasori)

Le relazioni correnti-tensioni sono istantanee (indip. t) e lineari (TRASF è elemento **resistivo** e **lineare**)

In regime sinusoidale, è semplice riportare le relazioni caratteristiche nel dominio dei **fasori**:

$$\boldsymbol{V}_2 = n\,\boldsymbol{V}_1 \qquad \qquad \boldsymbol{I}_2 = -\frac{1}{n}\,\boldsymbol{I}_1$$

<u>Il trasformatore ideale modifica il rapporto</u> <u>tra ampiezze di tensioni e correnti sinusoidali</u> <u>dal primario al secondario</u>

10.1 Trasformatore ideale (versi)

Inversione del verso di avvolgimento del secondario:

$$v_1 = N_1 \frac{\mathrm{d}\phi}{\mathrm{d}t}$$
 $v_2 = N_2 \frac{\mathrm{d}\phi}{\mathrm{d}t}$

$$\frac{v_2}{v_1} = \frac{N_2}{N_1} = n \implies v_2 = n v_1$$

$$\frac{i_2}{i_1} = -\frac{N_1}{N_2} = -\frac{1}{n} \implies i_2 = -\frac{1}{n}i_1 \qquad \qquad \frac{i_2}{i_1} = \frac{N_1}{N_2} = \frac{1}{n} \implies i_2 = \frac{1}{n}i_1$$

$$v_1 = N_1 \frac{\mathrm{d}\phi}{\mathrm{d}t}$$
 $v_2 = -N_2 \frac{\mathrm{d}\phi}{\mathrm{d}t}$

$$\frac{v_2}{v_1} = -\frac{N_2}{N_1} = -n \quad \Rightarrow \quad v_2 = -n \quad v_1$$

$$\frac{i_2}{i_1} = \frac{N_1}{N_2} = \frac{1}{n} \implies i_2 = \frac{1}{n}i_1$$

Cambia il segno delle relazioni caratteristiche (dipende da come sono avvolti primario e secondario) ⇒ convenzione dei puntini I puntini individuano i terminali in base a come sono gli avvolgimenti

10.1 Trasformatore ideale (puntini)

Simbolo trasformatore e convenzione dei puntini:

Tensioni entrambe positive (o entrambe negative) nei terminali con il puntino è v_2 = nv_1

Se tensioni di **polarità opposta** (una pos. e una neg.) nei terminali con il puntino è $v_2 = -n v_1$

Correnti entrambe entranti (o entrambe uscenti) dai terminali con il puntino è $i_2 = -(1/n)i_1$

Se correnti di **verso opposto** (una entra e una esce) dai terminali con il puntino è $i_2 = (1/n)i_1$

10.1 Trasformatore ideale (potenza)

Potenza p somma di p_1 al primario e p_2 al secondario

$$p(t) = p_1(t) + p_2(t) = v_1(t)i_1(t) + v_2(t)i_2(t)$$

Sostituendo $v_2 = nv_1$ e $i_2 = -(1/n)i_1$ si ottiene:

$$p(t) = p_1(t) + p_2(t) = v_1(t)i_1(t) + nv_1(t)\left(-\frac{1}{n}\right)i_1(t) = 0$$

<u>La potenza istantanea assorbita dal trasformatore</u> <u>è identicamente nulla</u> (**elemento neutro**)

Ad es. la potenza erogata dal generatore (al primario) coincide in ogni t con la potenza assorbita dal carico (al secondario)

10.1 Trasformatore ideale (trasf. Z)

Secondario chiuso su un carico $R_{\rm L}$ (o $Z_{\rm L}$ in regime sin.) e valutiamo $R_{\rm eq}$ = $R_{\rm in}$ (o $Z_{\rm eq}$ = $Z_{\rm in}$) vista al primario

Al secondario v_2 =- $R_L i_2$ e per il trasformatore v_1 = v_2/n e i_1 =- ni_2 (analogamente con i fasori), dunque:

$$R_{\rm in} = \frac{v_1}{i_1} = \frac{v_2/n}{-ni_2} = -\frac{1}{n^2} \frac{v_2}{i_2} = -\frac{1}{n^2} (-R_{\rm L}) = \frac{R_{\rm L}}{n^2} \qquad \mathbf{Z}_{\rm in} = \frac{\mathbf{Z}_{\rm L}}{n^2}$$

10.1 Trasformatore ideale (trasf. Z)

Con il secondario chiuso su impedenza $Z_{\underline{L}}$ in ingresso al primario si vede $Z_{\underline{in}} = Z_{\underline{L}} / n^2$

 Z_{in} è la Z_{L} al secondario riportata al primario o riflessa sul primario (dividendola per n^2)

 $Z_{\rm L}$ induttore (induttanza L) \Rightarrow $Z_{\rm in}$ = $j\omega L/n^2$ che equivale a un induttore di induttanza L/n^2

 $Z_{\rm L}$ condensatore (capacità C) $\Rightarrow Z_{\rm in} = 1/(j\omega Cn^2)$ che equivale a un condensatore di capacità Cn^2

come per Effetto Miller ma senza OP-AMP e con g>1 o <1

$$|Z_{in}| = |Z_L|/n^2$$
 (>=< $|Z_L|$) e $\angle Z_{in} \equiv \angle Z_L$

10.2 Analisi circuiti con trasf. ideale

Per l'analisi di un circuito con trasformatori si usano le tecniche usuali: KVL e KCL e 2 relazioni caratteristiche

Non è possibile esprimere i_1 e i_2 in funzione di v_1 e v_2 (come per i bipoli già visti) cmq. rimangono due incognite

Il trasformatore introduce due bipoli e 4 incognite ma legate da 2 relazioni (rel. car. trasformatore)

Infatti sussistono le due relazioni:

$$v_2 = n v_1$$
 e $i_2 = (-1/n)i_1$

10.2 Esempio di calcolo (12.1)

Ricavare i valori di v_1 , v_2 , i_1 e i_2 nel circuito in Figura 12.12.

Soluzione

È facile verificare che il resistore R non è percorso da corrente. Basta applicare la LKC alla linea

chiusa mostrata in Figura 12.13. La corrente i_3 è l'unica che attraversa la linea chiusa, dunque deve essere nulla.

Figura 12.13 La corrente i_3 è nulla, pertanto il resistore R può essere rimosso.

10.2 Esempio di calcolo (12.1)

Il resistore di resistenza R può essere eliminato, ottenendo il circuito in Figura 12.14.

Figura 12.14

Applicando la LKT alle due maglie si ottiene:

$$v_s = R_1 i_1 + v_1 \tag{12.15a}$$

$$v_2 = -R_2 i_2 \tag{12.15b}$$

Abbiamo due equazioni con quattro incognite.

A queste equazioni dobbiamo aggiungere le due

relazioni del trasformatore:

$$v_2 = nv_1 \qquad i_2 = -\frac{1}{n}i_1$$

Sostituendo le relazioni precedenti nelle (12.15) e risolvendo il sistema si ottiene:

$$i_1 = \frac{n^2 v_s}{R_2 + n^2 R_1} \qquad v_1 = \frac{R_2 v_s}{R_2 + n^2 R_1}$$

Infine, utilizzando le relazioni del trasformatore, ricaviamo i_2 e v_2 :

$$i_2 = -\frac{1}{n}i_1 = -\frac{nv_s}{R_2 + n^2R_1}$$
$$v_2 = nv_1 = \frac{R_2nv_s}{R_2 + n^2R_1}$$

Tutte le grandezze sono proporzionali a v_s poiché il circuito è lineare.

10.2 Esempio di calcolo (12.2)

Ricavare i valori di v_1 , v_2 , i_1 e i_2 nel circuito in Figura 12.15.

Figura 12.15 Gli avvolgimenti del trasformatore sono connessi attraverso il terminale inferiore.

Soluzione

Il circuito è simile a quello dell'Esempio 12.1, solo che ora gli avvolgimenti del trasformatore hanno i terminali in basso collegati da un corto circuito. La corrente nel resistore da 3 Ω non è nulla, quindi il resistore non può essere eliminato, come abbiamo fatto nell'esempio precedente.

In questo caso utlizziamo l'analisi nodale, scrivendo la LKC per i nodi ① e ② indicati in Figura 12.16; il riferimento è il terminale comune del trasformatore.

Al nodo (1) abbiamo

$$\frac{v_1 - v_s}{3} + \frac{v_1 - v_2}{3} + i_1 = 0 \qquad (12.16)$$

al nodo 2

$$\frac{v_2}{8} + \frac{v_2 - v_1}{3} + i_2 = 0 ag{12.17}$$

Le relazioni del trasformatore sono:

$$v_2 = 4v_1$$
 $i_2 = -0.25i_1$ (12.18)

Sostituendo le (12.18) nelle (12.16) e (12.17), si ottiene il seguente sistema di due equazioni nelle due incognite v_1 e i_1 :

$$-2v_1 + 3i_1 = v_s$$
$$1.5v_1 - 0.25i_1 = 0$$

La soluzione è

$$v_1 = 0.0625 \, v_s$$
 $i_1 = 0.375 \, v_s$

Le altre grandezze, v_2 e i_2 , si ottengono con le (12.18):

$$v_2 = 0.25 \, v_s$$
 $i_2 = -0.09375 \, v_s$

Figura 12.16

10.2 Riduzione al primario/secondario

<u>Si semplifica il circuito eliminando il trasformatore</u> <u>grazie al teorema di Thevenin</u> (si riduce il circuito al secondario/primario al suo bipolo Thevenin equivalente e poi lo si riporta, impedenza e tensione, al primario/secondario)

- 2. ricaviamo Thevenin a dx dei morsetti a-b con I_1 =0, e I_2 =0, si ha V_1 =(1/n) V_2 =(1/n) V_{T2} come tensione e Z_{T1} = Z_{T2} / n^2 come impedenza
- 3. sostituiamo il circuito equivalente riportato al primario (gen. di Thevenin con tensione $V_{\rm T2}/n$ e impedenza $Z_{\rm T2}/n^2$)

12.2 Riduzione non effettuabile

La riduzione del circuito riportando gli equivalenti Thevenin da un lato all'altro del trasformatore è utile ma non è sempre attuabile se vi sono altre connessioni tra i due lati del trasformatore

In tali casi occorre risolvere con l'analisi nodale (come già visto nell'Es. 12.2)

10.2 Esempio di calcolo (12.3)

Per il circuito in Figura 12.22 disegnare i circuiti equivalenti riportati al primario e al secondario. Tutte le impedenze sono espresse in ohm.

Figura 12.22

Soluzione

Con riferimento alla Figura 12.18, abbiamo: $\mathbf{V}_{T2} = 0 \text{ V}, \mathbf{Z}_{T2} = 8 - j3 \Omega$. Il circuito equivalente riportato al primario è mostrato in Figura 12.23a.

Per il bipolo di chiusura al primario abbiamo: $\mathbf{V}_{T1} = 10 \angle 0^{\circ} \text{ V}, \ \mathbf{Z}_{T1} = 10 + j2 \ \Omega$. Il circuito equivalente riportato al secondario è mostrato in Figura 12.23b.

Figura 12.23

10.2 Esempio di calcolo (12.4)

Ricavare il rapporto di trasferimento in tensione v_2/v_s in Figura 12.24.

Figura 12.24

Soluzione

Conviene riportare la resistenza da 24 Ω al primario, sostituendo il trasformatore con una resistenza equivalente pari a $24/4=6~\Omega$. Questa è in parallelo al resistore da 6 Ω , quindi si ha lo schema in Figura 12.25.

Figura 12.25

La tensione v_1 vale perciò

$$v_1 = \frac{v_s}{2}$$

Tornando al circuito originale, si ottiene:

$$v_2 = 2v_1 = v_s$$

Il rapporto di trasferimento è unitario.

10.3 Autorasformatore ideale

Se non occorre un isolamento elettrico tra primario e secondario, si può usare un unico avvolgimento con una presa intermedia: si ha un autotrasformatore

$$v_3 = N_1 \frac{\mathrm{d}\phi}{\mathrm{d}t} \qquad v_1 = N_2 \frac{\mathrm{d}\phi}{\mathrm{d}t} \qquad v_1 + v_3 = v_2$$

$$v_2 = \frac{N_1 + N_2}{N_2} v_1 = n v_1$$

$$N_1 i_2 - N_2 i_3 = 0 \qquad i_2 + i_3 + i_1 = 0$$

$$i_2 = -\frac{N_2}{N_1 + N_2} i_1 = -\frac{1}{n} i_1$$

$$n = \frac{N_1 + N_2}{N_2} > \frac{N_1}{N_2}$$

rapporto di trasformazione

10.3 Autorasformatore ideale

tra v_1 e v_2 si ha un innalzamento di tensione più "forte" di N_1/N_2

$$v_2 = \frac{N_1 + N_2}{N_2} v_1$$
 $i_2 = -\frac{N_2}{N_1 + N_2} i_1$

tra v_1 e v_2 si ha un abbassamento di tensione più "forte" di N_2/N_1

$$v_2 = \frac{N_2}{N_1 + N_2} v_1$$
 $i_2 = -\frac{N_1 + N_2}{N_2} i_1$

10.3 Autorasformatore ideale

Per un rapporto di trasformazione $n=(N_1+N_2)/N_2$ un trasformatore richiede (N_1+N_2) spire al secondario e N_2 spire al primario $(N_{\text{TOT}}=N_1+2N_2)$

L'autotrasformatore richiede **meno spire**: solo (N_1+N_2)

VANTAGGI: meno ingombro e meno costo

SVANTAGGI:

manca isolamento; dimensionamento unico per il filo dell'avvolgimento per v_{max} =MAX (v_1, v_2)

e per i_{max} =MAX (i_1, i_2)

10.3 Esempio di calcolo (12.7)

Confrontiamo lo schema con trasformatore in Figura 12.35a con quello in Figura 12.35b che utilizza un autotrasformatore, supponendo $v_1(t) = 5\cos(\omega t)$ e $v_2(t) = 20\cos(\omega t)$.

Soluzione

Il rapporto di trasformazione n deve essere pari a 4; nello schema col trasformatore possiamo utilizzare N spire per il primario e 4 N spire per il secondario, per un totale di 5 N spire. Nel caso dell'autotrasformatore possiamo porre $N_2 = N$ e $N_1 = 3$ N, per un totale di 4 N spire, con una riduzione del 20%. Per quanto riguarda le correnti, in entrambi i casi abbiamo $i_1 = 10\cos(\omega t)$, $i_2 = -2.5\cos(\omega t)$. Nel caso dell'autotrasformatore, inoltre, si ha

$$i_3 = -i_1 - i_2 = -7.5\cos(\omega t)$$

10.4 Induttori accoppiati (L_M)

10.4 Induttori accoppiati (L_M)

La mutua induttanza $L_{\rm M}$ è dovuta a quella parte di flusso magnetico che risulta accoppiato con entrambi gli induttori. Risulta sempre $L_{\rm M} < (L_1 L_2)^{1/2}$

Usando le eq. caratteristiche del mutuo induttore,

10.5 Analisi di circuiti con induttori accoppiati (potenza)

Dalle relazioni tensioni-correnti degli induttori accoppiati

$$V_1 = j\omega L_1 I_1 + j\omega L_M I_2$$
$$V_2 = j\omega L_M I_1 + j\omega L_2 I_2$$

ricaviamo la potenza complessa S assobita dagli induttori:

$$S = \frac{1}{2} \left(V_1 I_1^* + V_2 I_2^* \right) = \dots =$$

$$= \frac{1}{2} j \omega L_1 I_1^2 + \frac{1}{2} j \omega L_2 I_2^2 + j \omega L_M I_1 I_2 \cos(\theta_{i1} - \theta_{i2})$$

La potenza è immaginaria (P=0) e pertanto l'elemento induttori accoppiati è passivo e reattivo (e come visto dinamico)

10.5 Circuiti con induttori accoppiati (quadrupolo equivalente)

Le relazioni tensioni-correnti degli induttori accoppiati corrispondono al circuito equivalente con due induttori non accoppiati, ciascuno in serie con un generatore di tensione comandato in corrente

$$V_1 = j\omega L_1 I_1 + j\omega L_M I_2$$

$$V_2 = j\omega L_M I_1 + j\omega L_2 I_2$$

In forma matriciale si può scrivere:

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \mathbf{L} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = j\omega \begin{bmatrix} L_1 & L_M \\ L_M & L_2 \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \frac{1}{j\omega\Delta} \begin{bmatrix} L_2 & -L_M \\ -L_M & L_1 \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

 $M = L_{\rm M}$

dove Δ è il discriminante della matrice L (matrice delle induttanze), con $\Delta = L_1 L_2 - L_{\rm M}^2$

 $I_i = f(V_i)$ è utile per l'analisi nodale dei circuiti con induttori accoppiati

10.5 Esempio di calcolo (app)

10.5 Esempio di calcolo (app)

10.4 Esempio di calcolo (12.10)

La Figura 12.43 mostra due induttori accoppiati collegati **in serie**. Far vedere che essi equivalgono ad un solo induttore e ricavare l'induttanza equivalente.

Figura 12.43 Induttori accoppiati in serie.

Soluzione

Tenendo conto che $\mathbf{I}_2 = -\mathbf{I}_1$, le relazioni degli induttori accoppiati sono:

$$\mathbf{V}_1 = j\omega L_1 \mathbf{I}_1 - j\omega M \mathbf{I}_1$$
$$\mathbf{V}_2 = j\omega M \mathbf{I}_1 - j\omega L_2 \mathbf{I}_1$$

Inoltre $\mathbf{V} = \mathbf{V}_1 - \mathbf{V}_2$ quindi,

$$\mathbf{V} = j\omega L_1 \mathbf{I}_1 - j\omega M \mathbf{I}_1 - j\omega M \mathbf{I}_1 + j\omega L_2 \mathbf{I}_1 =$$

$$= j\omega L_{eq} \mathbf{I}_1$$

dove

$$L_{eq} = L_1 + L_2 - 2M (12.36)$$

10.4 Esempio di calcolo (12.11)

La Figura 12.44 mostra due induttori accoppiati collegati **in parallelo**. Far vedere che essi equivalgono ad un singolo induttore e ricavare l'induttanza equivalente.

Figura 12.44 Induttori accoppiati in parallelo.

Soluzione

In questo caso si ha $V_1 = V_2 = V$. Quindi possiamo utilizzare la (12.35) scrivendo

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \frac{1}{j\omega\Delta} \begin{bmatrix} L_2 & -M \\ -M & L_1 \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ \mathbf{V} \end{bmatrix}$$

Inoltre $\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2$, quindi

$$\mathbf{I} = \frac{1}{j\omega\Delta}(L_2 - M - M + L_1)\mathbf{V} = \frac{\mathbf{V}}{j\omega L_{eq}}$$

dove

$$L_{eq} = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M}$$
 (12.37)

10.7 A: linee elettriche di trasmissione

L'energia elettrica deve essere trasportata dal luogo e circuito di generazione al luogo e circuito di utilizzo

La **linea elettrica di trasmissione** ha delle **perdite** dovute alle inevitabili resistenze serie R_1 :

$$P_l = R_l I_l^2$$
 conviene ridurre I_l

Anche se la trasmissione avviene su linee trifase (meno peso in rame), vedendo una sola fase possiamo rappresentare:

A pari potenza P erogata, con n>>1 si eleva notevolmente la tensione riducendo la corrente (basse perdite TRASF)

10.7 A: trasformatore 220 V \rightarrow 12/5 V_{DC}

Raddirizzatore tensione a ponte di diodi (Graetz) (a doppia semionda)

Circuito per l'alimentazione in continua (5 V) di un Light Emitting Diode

10.7 A: trasformatore di misura

Per **misurare** una **tensione** alternata **elevata** conviene prima abbassarla con un trasformatore il cui secondario opera "a vuoto" (Z_{in} alta per un voltmetro "V") e di fatto I_1 è bassa e non si perturba il circuito (infatti $I_2\cong 0$ per un voltmetro "V")

Per **misurare** una **corrente** alternata **elevata** conviene prima abbassarla con un trasformatore il cui secondario opera "in corto circuito" (amperometro "A"): $I_2=I_1/n$ (no o.c. second.!)

10.7 A: trasformatore di isolamento

Quando non occorre modificare i valori di correnti e tensioni MA si vuole ottenere un isolamento elettrico tra due circuiti, si impiega un TRASF con rapporto spire unitario

Il secondo circuito/dispositivo è "isolato" dal generatore e dalle tensioni del primo circuito che sono riferite a terra Un contatto dell'operatore con il secondo circuito non comporta passaggio di corrente attraverso il corpo dato che non esiste un percorso chiuso attraverso operatore e terra

10.7 A: adattamento di impedenza

Per massimizzare il trasferimento di potenza sul carico occorre ottenere $R_L = R_s$ (o $Z_L = Z_s^*$)

Se il carico ha $R_L \neq R_s$ si può usare un **TRASF adattatore** (di impedenza) tra il generatore e il carico

10.7 A: adattamento di impedenza

Un esempio è l'adattamento d'impedenza tra le casse di un altoparlante $R_{\rm L}$ =8 Ω e l'uscita dell'amplificatore audio $R_{\rm s}$ =1 k Ω

Sommario

Il trasformatore ha due terminali di ingresso (primario: v_1 e i_1 con N_1 spire) e due terminali di uscita (secondario: v_2 e i_2 con N_2 spire) legati dal rapporto spire $n=N_2/N_1$.

Primario e secondario sono magneticamente accoppiati.

[isolamento elettrico] tra ingresso e uscita: trasformatore di isolamento]

- Le relazioni caratteristiche sono due e legano tensione a tensione e corrente a corrente, tra uscita e ingresso: $v_2 = nv_1$ e : $i_2 = (-1/n)i_1$.
- Il trasformatore ideale innalza/abbassa tensioni e correnti senza modificare la potenza elettrica tra primario e secondario.
 [utile per trasmissione energia in HV o per misure HV o HI]
 La potenza complessa assorbita è istantaneamente zero (elemento neutro).
- L'impedenza al secondario può essere riportata, o riflessa, al primario (e viceversa) moltiplicandola per $1/n^2$ ($\times n^2$). [utile per trasformazione e adattamento di impedenza]

Sommario

- L'analisi dei circuiti con trasformatore impiega KVL e KCL e le sue due equazioni caratteristiche.
 - Riduzione al primario/secondario del circuito Thevenin equivalente.
- \triangleright L'autotrasformatore ideale ha rapporto spire $n=(N_1+N_2)/N_1$. Minore ingombro/peso/costo ma perdita isolamento elettrico.
- Due **induttori accoppiati** oltre alle induttanze proprie (L_1 e L_2) hanno una mutua induttanza ($L_{\rm M}$) che, grazie al flusso magnetico mutuamente accoppiato, induce nell'uno una tensione comandata dalla corrente nell'altro.

$$V_1 = j\omega L_1 I_1 + j\omega L_M I_2$$
$$V_2 = j\omega L_M I_1 + j\omega L_2 I_2$$

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \mathbf{L} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = j\omega \begin{bmatrix} L_1 & L_M \\ L_M & L_2 \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \frac{1}{j\omega\Delta} \begin{bmatrix} L_2 & -L_M \\ -L_M & L_1 \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$