3.Add Maths I	RESTRICTED P	内部文件	Marking Scheme
3. Add shaths I	Solution	Marks	Remarks
$AB = AC = 1 - \kappa$			
$\therefore AD = \sqrt{(1 - 1)}$			
$= \sqrt{1-2}$	<u>.</u>	ìA	
Walume formed =	$2 \times \frac{1}{3} \pi AD^2 \times 3D$	lM	
	$\frac{2}{3}\pi(1-2x)x$	1A	
	$\frac{2}{3}\pi(x-2x^2)$		
<u>dV</u> =	$\frac{2}{3} \pi (1 - 4x)$	1A	
<u>dv</u> <u>=</u>	0	114	
⇒ x =	, where the		
d ² ∜	$\frac{2}{3} \Rightarrow (-4) < 0$		•
dx ² = dx ²		1A	
- V 13 manum	<u></u>	5	
4. $(1+ax)^{\frac{1}{2}}(1-4x)^{\frac{3}{2}} =$	$(1 + 4ax + 5a^2x^2 +)$ * $(1 - 12x + 48x^2 +)$	1+1+1£	l for "+ "
	$1 + (4a-12)x + (6a^2-48a+48)x^2$	+ 2A	-1 for 1 wrong ter
As the coefficien	at of x is zero, $4a - 12 = a = $	0 3 1A	
, coefficient	of x^2 is $54 - 144 + 48 =$	-42 iA	
		7	
5. $ x(x-2) < 1 $ $ \Leftrightarrow -1 \le x(x-1) $			
		1A	
	$x^2 - 2x - 1 < 0$;	
	and $\{x - (1 - \sqrt{2})\}\{x - (1 - \sqrt{2})\}$		00 3 3 20 00 00 00
(≠) x ± 1 = 3	ind 1-JTCxCl-JT	1+1+1A	CR "- Bexel or Ica

RESTRICTED 內部立件

- 2 Marks for curve.
- 2 Marks for necessary line(s) or points.
- 4 Marks for answers.
- $x \neq 1$ and -0.4 < x < 2.41 1 2 (deduct one mark if there is equality sign).

83 Add Maths T

3 Add Maths I Solution	Marks	Remarks
30140101		
5. $ z - (3 + 1) = z - (5 + 51) $		
$\Rightarrow (x-3) + (y-1)i = (x-5) + (y-5)i$	lA	
$\Rightarrow (x-3)^2 + (y-1)^2 = (x-5)^2 + (y-5)^2$	ĽМ	
4x + 3y - 40 = 0	lA	
1.e. $x = 2y - 10 = 0$		
As the locus of z is a line of slope $-\frac{1}{2}$, the		
required z with the smallest modulus corresponds to the foot of the perpendicular from the origin to this line.	2M	-1 if omitted but continued as below
Equation of perpendicular is y = 2x	1A	
Solving this with the locus of z ,		
x + 4x - 10 = 0 $x = 2$ $y = 4$	lA la	
	: 	-
· · · · · · · · · · · · · · · · · · ·		
Alternatively		
$ z = \sqrt{x^2 + y^2}$	lA	
$= (10 - 2y)^2 + y^2$	114	
$= \sqrt{5y^2 - 40y + 100}$		
$\frac{d z }{dy} = \frac{10y - 40}{2 \sqrt{5y^2 - 40y + 100}}$	lM	
$\frac{d z }{dy} = 0$ when $y = 4$ and $\frac{d z }{dy}$ changes sign at $y = 4$.	114	
z is minimum at $x = 2$, $y = 4$.	lA	

$$\tan 4\theta = \frac{2 \tan 2\theta}{1 - \tan^2 2\theta}$$

$$= \frac{\frac{4 \tan \theta}{1 - \tan^2 \theta}}{\frac{4 \tan^2 \theta}{1 - 2 \tan^2 \theta} + \sin^2 \theta}$$

$$= \frac{4 \tan^2 \theta - 4 \tan^2 \theta}{1 - 6 \tan^2 \theta + \tan^2 \theta}$$

1.4

. ...

Marking	Scheme

33 Add 'Ma	ichs I	RESTRIC	TED 內部	文件	Marking Scheme
		Solution		Marks	Remarks
d. (a)		ax ² + bx - 72 - lax + b - double root of f'	(ii) = ')	lA	
	$\frac{2a}{3} = -3$ $\frac{5}{3} = 16$			1 M M	Or $4a^2 - 12b = 0$. Sa + b = -48 .
	C` a = -12 5 = 48			1A 1A 5	
(b)	$\iff \begin{cases} 3p = -12 \\ 3p^2 = 48 \\ p^2 + q = 4 \end{cases}$	consistant (or rej := -8		1 <u>M</u>	$\frac{0R}{x^{3}-12x^{\frac{3}{4}}+3x-72}$ $= x^{3}-3x+7x^{2}+3x+4x-4^{3}$ $= (x^{3}-72) \qquad 1M+1A$ $= (x^{4}-4)^{3}-8 \qquad 1A$
	$x^3 - 12x^2 + 48$ $\Rightarrow (x - 4)^3$ $\Rightarrow (x - 4)^3$	$x + 72 = 0$ $-8 = 0$ $2)[(x - 4)^{2} + 2(x - 3)^{2} + 3(x - 4)^{2}]$	-4) +4] = 0	IM IA	p=-4 1A g=-8 1A1 for each wrong ans.
1 <u>3</u>)	*	+ 4,7 , = 2 = 3 = 4 4			
to a company of the c		3	 		
	3	5 5 /2=3-	4,5	2,A	All 3 points correct.

The three roots of $z^3=3$ form an equilateral triangle with 0 as the centre and $2 \text{cis} 120^\circ$, $2 \text{cis} 240^\circ$ (or $2 \text{cis} -120^\circ$), $2 \text{cis} 0^\circ$ as vertics.

Fixthy z=x=4, the three roots x_1 , x_2 , x_3 of f(x)=0 form an equilateral \widehat{A} triangle with 4 + 0i as the centre. $\lim_{x \to \infty} \frac{\left(\frac{x_2 - 4}{x_1 - 4}\right) = 120^{\circ} \quad (\text{or } -240^{\circ})$

ं, 83 एवज स	aths I	Solution Solution	Marks	Remarks
9. (a)	For	n = 1 , L.S. = 1.2		
		$3.3. = \frac{1}{3} 1(2)(3)$,	
		= 1.8.	LA	
	Assume	e that for some $k \ge 1$, $1 \cdot 2 + 2 \cdot 3 + \dots + k(k+1)^{-1} = \frac{1}{3} k(k+1)(k+2)$	114	
	For	$n = k+1, L.3. = 1 \cdot 2 + 2 \cdot 3 + + k(k+1) + (k+1)(k+2)$	LA.	
		$= \frac{1}{3} k(k+1)(k+2) + (k+1)(k+2)$	1M	
		$= \frac{1}{3} (k+1) (k+2) \times [k+3]$	1A	
		$= \frac{1}{3}(k+1)[(k+1) + 1][(k+1) + 2]$		
		= 3.3.		
	_`.	by induction, 1.2 + 2.3 + + n(n+1)		
		$= \frac{1}{3} n(n+1)(n+2) \text{for all} n > 1.$	174	
		,	5	•
(5)	(4)	The number of balls in the r-th layer		
		1 + 2 + 1,1, + # 	2A	!
			· • •	
	,	The total number of talls in a heap of a layer		·
		$=\sum_{r=1}^{\infty}\frac{z}{2}\left(1+r\right)$	1M+1M	IM for I
		$= \frac{1}{2} \sum_{r=1}^{a} r(1+r)$		
		$= \frac{1}{2} \left[\frac{1}{3} n(n+1)(n+2) \right]$		
		$= \frac{1}{6} \pi(n+1) (\pi+2)$	2A	
	(iii)	The time required to deliver and fire all ball	ls in i	ne r-th layer

$$= \frac{1}{2} r(r+1) \times \frac{2}{r} \text{ minutes}$$

$$= (r+1) \text{ minutes}$$

$$= (r+1) \text{ minutes}$$

$$= \frac{10}{r} (r+1)$$

$$= \frac{10}{r+1}$$

$$= \frac{10}{r} r + 10$$

$$= \frac{1}{2} 10 r + 10$$

$$= \frac{1}{2} 10 r + 10$$

$$= 63 \text{ minutes}$$

$$= 14$$

4	RESTRICTED ME	Narkin	g Scheme
83-Add Macns I	Solution	Marks Remarks	
10. (a) Since W	1 // RR , △ PQR ~△ PLM	lm .	
Let the he	eights of Δ 2000 and Δ LMN be it and 5	,	
• • •	$\frac{x}{x} = \frac{h}{2x}$	1A	
	$y = \frac{h}{2x} \times \frac{h}{$	1A	
Area of 4	$LMN = A = \frac{1}{2} \times y$ $= \frac{1}{2} (b + \frac{b}{2\pi} \times) \times$	2.11	
<u>d£</u>	$= \frac{1}{2} \left(y - \frac{p}{2} x \right)$	1A	
	= 0 45 x = z	1M+1A	
$\frac{d^2A}{d\kappa^2}$	$= -\frac{h}{2\pi} < 0$	'A	
(N. A. 3	is maximum at	3	
ig – Min Di rma (2)	i soma = 7 = 1 − <u>#</u> 1 . y		
	$= \frac{1}{3} \sqrt{\frac{n^2}{4}} \cdot (n - \frac{n}{2\pi}) \times \lambda$	13M	
	$= \frac{12}{12} \left(hx^2 - \frac{h}{2z} x^3 \right)$		
	$\frac{dV}{dx} = \frac{\pi h}{12} (2x - \frac{3}{2z} x^2)$	LA	
_	$\frac{dV}{dx} = 0 \text{if} x = 0 \text{or} \frac{4}{3}x$	· IA	
	$\frac{d^2t!}{dx^2} = \frac{7h}{12} (2 - \frac{3}{2} x)$	1M	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1A	
	is maximum at $x = \frac{4}{3}x$	ó	
•			
· · · · · · · · · · · · · · · · · · ·			

10. (c) Volume of cone generated by revolving Δ LIM in (a) about $2N = \frac{1}{3} - \frac{1}{3} y$. where $y = h - \frac{h}{2\pi} r$ $= \frac{h}{3}$ where $y = h - \frac{h}{2\pi} (\frac{4}{3} r)$ $= \frac{h}{3}$ 1A 1A 1A 2 7 1A 2 7 1A	
where $y = h - \frac{h}{2z}z$ $= \frac{h}{2}$ Volume of cone in (b) $= \frac{1}{3}\pi(\frac{2}{3}z)^2$ y, i.e., where $y = h - \frac{h}{2z}(\frac{4}{3}z)$	
where $y = h - \frac{h}{2\pi} z$ $= \frac{h}{2}$ Volume of cone in $(b) = \frac{1}{3} (\frac{2}{3} z)^2 y$, where $y = h - \frac{h}{2\pi} (\frac{4}{3} z)$ h	\
Volume of cone in (b) = $\frac{1}{3}\pi(\frac{2}{3}z)^2$ y And the value of cone in (c) = $\frac{1}{3}\pi(\frac{2}{3}z)^2$ y And the value of cone in (d) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (d) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (e) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$ in (f) And the value of cone in (e) = $\frac{1}{3}\pi(\frac{4}{3}z)$	7.11
where $y = h - \frac{h}{2\pi} \left(\frac{4}{3} \tau \right)$	
a A	
$=\frac{\dot{a}}{3}$ $\pm \pi \ddot{x} \dot{a}$	
- Paragraphia	
Fratio of 2 volumes = $\frac{1}{3} \cdot \left(\frac{2}{3} \cdot r\right)^2 \cdot \frac{h}{3}$	
$=\frac{27}{32}$	

83	A वेद	Maths	-
-	•		

83 A46 Ma	the T RESTRICTED MAN	文件	Marking Scheme
	Solution	Marks	Remarks
11. (a)	(1) $x^2 + y^2 - 2xy \cos i20^\circ = 7$	2A	
·	ef ryf rwy r 7 ollon	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		1~	1. 2
	$x = 2, y^2 - 2y - 5 = 0$ $(y - 1)(y + 3) = 0$ $y = 1 (-\text{ve value rejected})$	1A+1A	ljór de herts Ljór geld-3 kgæde
	(ii) Diff. (*) w.r.t. x ,		
	$2x + 2y \frac{dy}{dx} - x \frac{dy}{dx} + y = 0$	1M+14	
	$\frac{dy}{dx} = -\frac{2x + y}{x - 2y}$	14	
	$\frac{dy}{dz} = \frac{dy}{dx} \frac{dx}{dz}$	174	
	$= -\frac{1}{4} \frac{2\pi + y}{x + 2y} \left(\frac{dx}{dz} \right)$		
:		: C	
(b)	$^{3}Ac x = 2, \frac{dx}{dc} = -\frac{1}{2}$	IM	accept 1
	$\frac{dy}{dz} = \frac{2\pi + y^2}{z^2} \frac{dx}{dz}$		
	$=\frac{\frac{2}{2}-\frac{1}{2}}{\frac{2}{2}-\frac{1}{2}}$	4M	
	= \frac{3}{3}	1A	
	The speed of 3 is $\frac{5}{8}$ m/s.	1A	
(c)	Area of \triangle ABO = $\frac{1}{2}$ my sin120°		
	$=\frac{\sqrt{3}}{4}xy$! A	
	Area of \triangle A30 is also equal to $\frac{1}{2}$ p/ $\frac{2}{3}$	14	
	$C = \frac{\sqrt{3}}{4} \times \lambda = \frac{\sqrt{3}}{4} \cdot 5 \cdot \sqrt{\frac{4}{3}}$	149	
	$p = \frac{xy}{2} \sqrt{\frac{3}{7}}$		
	$\frac{dp}{dt} = \frac{1}{2} \sqrt{\frac{3}{7}} \left[y \frac{dx}{dt} + x \frac{dy}{dt} \right]$	i a	
	When $x = 2$, $y = 1$, $\frac{dx}{dz} = -\frac{1}{2}$, $\frac{dy}{dz} = \frac{5}{3}$		
	$\frac{49}{4\pi} = \frac{1}{2} \sqrt{\frac{3}{7}} \left(-\frac{1}{2} + 2 \left(\frac{5}{2} \right) \right)$	IM	
	$= \frac{3}{4} \cdot \frac{3}{7}$	د ا	
	8] 7 	6	
, 1		,	