Fundamentos de Inferencia Estadística

Francisco Javier Mercader Martínez

${\bf \acute{I}ndice}$

L	Mue	estreo y distribuciones muestrales	T
	1.1	Introducción	1
	1.2	Ejemplos	1
	1.3	Surge una pregunta	1
	1.4	Esbozo de respuesta: tasa de participación	2
	1.5	Realización del experimento: conclusiones	3
	1.6	En la práctica	3
	1.7	Uso de la distribución muestral	3
	1.8	Antes de extraer una muestra:	4
	1.9	Otro ejemplo: valores muestrales de una distribución normal	4
	1.10	Un resultado importante	5
	1.11	Algunos términos	5
	1.12	Ejemplos de estadísticos	5
	1.13	La media muestral	6
		1.13.1 Esperanza y varianza de la media muestral	6
	1.14	Consecuencia práctica	7
		1.14.1 Analogía con una diana	7
	1.15	Varianza muestral	7
		1.15.1 Dos apuntes	7
	1.16	Esperanza de la varianza muestral	8
	1.17	Distribuciones muestrales de \overline{X} y S^2	8
	1.18	Distribución de \overline{X} y S^2 para una m.a.s. de una distribución normal	8
	1.19	Recordatorio: distribución χ^2 con p grados de libertad	8
	1.20	Distribución t-Student	9
	1.21	Distribución F de Snedecor para el cociente de varianzas	10
	1.22	Si la distribución de X no es Normal	11

Tema 1: Muestreo y distribuciones muestrales

1.1) Introducción

El contexto

- Tenemos una pregunta acerca de un fenómenos aleatorio.
- ullet Formulamos un modelo para la varaible de interés X.
- Traducimos la pregunta de interés en términos de uno o varios parámetros del modelo.
- Repetimos el experimento varias veces, apuntamos los valores de X.
- ¿Cómo usar estos valores para extraer información sobre el parámetro?

1.2) Ejemplos

¿Está la moneda trucada?

 \bullet Experimento: tirar la modena. X= resultado obtenido.

$$P(X = +) = p, P(X = c) = 1 - p$$

Sondeo sobre intención de participación en unas elecciones

- Queremos estima la tasa de participación antes de unas elecciones generales.
- Formulamos un modelo:
 - $\rightarrow\,$ Experimento: "escoger una persona al azar en el censo".
 - $\rightarrow X$: participación, variable dicotómica ("Sí" o "No"). p = P(X = Si).
- ¿Cuánto vale p?
- Censo: aproximadamente 37 000 000. Escogemos aproximadamente 3000 personas.

Determinación de la concentración de un producto

- Quiero determinar la concentración de un producto.
- Formulo el modelo:
 - → Experimento: "llevar a cabo una medición".
 - $\rightarrow X$: "valor proporcionado por el aparato".
 - $\rightarrow X \sim \mathcal{N}(\mu, \sigma^2).$
- ¿Qué vale μ?

1.3) Surge una pregunta

En todas estas situaciones donde nos basamos en la repetición de un experimento simple...

- ¿Cómo sabemos que nuestra estimación es fiable?
- ¿Qué confianza tenemos al extrapolar los resultados de una muestra de 3000 personas a una población de 37 millones de personas?

1.4) Esbozo de respuesta: tasa de participación

Para convenceros, un experimento de simulación

- Voy a simular el proceso de extracción de una muestra de 3000 personas en una población de 37 millones de personas.
- Construyo a mi antojo los distintos componentes:
 - → La población: defino en mi ordenador un conjunto de 37 000 000 de ceros y unos. (⇔ el censo electoral)
 - "1" \Leftrightarrow "la persona piensa ir a votar".
 - "0" \Leftrightarrow "la persona **no** peinsa ir a votar"
 - \rightarrow La tasa de participación "real": Decido que en mi población el 70% piensa ir a votar \rightarrow 25 900 000 "1"s.
 - → La extracción de una muestra: construyo un pequeño programa que extrae al azar una muestra de 3000 números dentro del conjunto grande.

```
poblacion <- c(rep(1, 25900000), rep(0, 11100000))
set.seed(314159)
p_muestra <- mean(sample(poblacion, 3000, replace = FALSE))
p_muestra</pre>
```

[1] 0.705667

Queremos descartar que haya sido suerte. Vamos a repetir muchas veces (10000 veces por ejemplo), la extracción de una muestra de 3000 personas en la población.

[1] 0.6970000 0.7030000 0.7036667 0.7023333 0.7013333 0.7226667

Recogemos los valores obtenidos en un histograma.

Distribución de p̂, 10000 muestras 50 40 20 0.68 0.70 p

1.5) Realización del experimento: conclusiones

- La enorme mayoría de las muestras de 3000 individuos proporcionan una tasa de partición muy próxima a la de la población.
 - \rightarrow El riesgo de cometer un error superior a ± 2 puntos, al coger una muestra de 3000 individuos es muy pequeño (y asumible...)
- Si nos limitamos a muestras de 300 individuos, ¿qué esperáis?

1.6) En la práctica

Usamos las distribuciones muestrales

- Las empresas de sondeos no se basan en simulaciones sino en cálculos teóricos.
- Experimento aleatorio: escoger al azar una muestra de 3000 personas dentro de una población de 37 000 000, con una tasa de participación p.
- \bullet Llamamos a \hat{p} la variables aleatoria: proporción de "1"s en la muestra escogida.
- ¿Cuál es la distribución de valores de $\hat{p}?$

$$\hat{p} \sim \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

Es lo qe llamamos la distribución muestral de \hat{p} .

1.7) Uso de la distribución muestral

La distribución muestral de \hat{p} :

Es la distribución esperada de los valores de \hat{p} respecto a todas las muestras de ese tamaño que podría extraer.

1.8) Antes de extraer una muestra:

- ¿Es suficiente el tamaño de la muestra para el riesgo asumible y la precisión requerida?
- Una vez extraida la muestra:
 - $\rightarrow~\mbox{\ifmmode\ensuremath{\overleftarrow{}}\ensuremath{\ifmmode\ensuremath}\anisminity}}}}}}}}}}}}}}$

1.9) Otro ejemplo: valores muestrales de una distribución normal

1.10) Un resultado importante

Ley (débil) de los grandes números

Sea X una variable aletoria y g(X) una variable aleatoria transformada de X, con esperanza y momento de orden 2 finitos. Supongamos $X_1, X_2, \ldots, X_n, \ldots$ una sucesión de variables aleatorias (vv.aa) independientes con la misma distribución que X, entonces

$$\lim_{n\to +\infty} P\left[\left|\frac{\sum_{i=1}^n g(X_i)}{n} - E[g(X)]\right| < \varepsilon\right] = 1, \text{ para todo } \varepsilon > 0.$$

1.11) Algunos términos

Definición

- Sea una variable aleatoria X. Consideramos n variables aleatorias independientes e idénticamente distribuidas X_1, X_2, \ldots, X_n , que se distribuyen como X. La variable aleatoria multidimensional (X_1, X_2, \ldots, X_n) es una muestra aleatoria simple (m.a.s) de X.
- Cualquier cantidad calculada a partir de las observaciones de un muestra: estadístico.
- Experimento aleatorio: extraer una muestra. Consideramos un estadístico como una variable aleatoria. Nos interesa conocer la distribución del estadístico: distribución muestral.

1.12) Ejemplos de estadísticos

- Proporción muestral: \hat{p}
- Media muestral: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- Desviación típica muestral: $S_X = \sqrt{\frac{1}{n+1} \sum_{i=1}^n (X_i \overline{X})^2}$

1.13) La media muestral

Contexto

Estudiamos una variable X cuantitativa.

- Estamos interesados en μ , el centro de la distribución de X.
- Extraemos una muestra de tamaño n:

$$x_1, x_2, \ldots, x_n$$

- Calculamos su media \overline{x} para aproximar μ .
- ¿Cuál es la distribución muestral de \overline{X} ?

Ejemplo

- Quiero medir una cantidad. Hay variabilidad en las mediciones.
- $\bullet\,$ Introduzco una variable aleatoria X="valor proporcionado por el aparato".
- μ representa el centro de los valores.
- $\bullet\,$ Extraigo una muestra de tamaño 5 del valor de X

Esperanza y varianza de la media muestral

Llamamos $\mu = E[X]$ y $\sigma^2 = Var(X)$.

• Tenemos

$$E[\overline{X}] = \mu.$$

- \rightarrow Es decir que el centro de la distribución muestral de \overline{X} coincide con el centro de la distribución X.
- Tenemos $\mathrm{Var}(\overline{X}) = \frac{\sigma^2}{n}$, es decir, la dispersión de la distribución muestral de \overline{X} es \sqrt{n} veces más pequeña que la dispersión inicial de X.

Ilustración: X inicial, \overline{X} con $n=3, \overline{X}$ con n=10.

1.14) Consecuencia práctica

Aparato de medición

- Experimento: llevar a cabo una medición con un aparato.
- Variable aleatoria X: "valor propocionado por el aparato".
- E[X]: centro de la distribución de los valores proporcionados por el aparato.
 - \rightarrow Lo deseable: E[X]=valor exacto de la cantidad que buscamos medir.
 - \rightarrow En este caso, decimos: el aparato es exacto.
- \bullet σ_X : dispersión de la distribución de los valores proporcionados por el aparato.
 - \rightarrow Lo deseable: σ_X pequeño.
 - $\rightarrow\,$ En este caso, decimos: el aparato es preciso.

1.14.1) Analogía con una diana

1.15) Varianza muestral

Si (X_1, X_2, \dots, X_n) es una muestra aleatoria simple de X, definimos la varianza muestral S_n^2 como

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Fórmula alternativa para S_n^2 :

$$S_n^2 = \frac{n}{n-1} \left(\overline{X^2}_n - (\overline{X}_n)^2 \right),$$

donde
$$\overline{X^2}_n = \frac{1}{n} \sum_{i=1}^n X_i^2$$
.

1.15.1) Dos apuntes

En algunos textos en castellano:

Se suele llama S_n^2 cuasi-varianza muestra, reservando el término varianza muestral para la cantidad $\frac{1}{n}\sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2$.

7

En estas fórmulas:

Omitimos, si no hay confusión posible, el subíndice n, escribiendo S^2 , $\overline{X} = \sum_{i=1}^n X_i$ y $\overline{X^2} = \frac{1}{n} \sum_{i=1}^n X_i^2$.

Esperanza de la varianza muestral 1.16)

Proposición

Si (X_1, X_2, \ldots, X_n) es una muestra aleatoria simple de X con varianza σ_X^2 ,

$$E[S_n^2] = \sigma_X^2$$
.

Distribuciones muestrales de \overline{X} y S^2 1.17)

Tened en cuenta

- Los resultados anteriores sobre $E[\overline{X}]$ y $\sigma_{\overline{X}}$ son válidos sea cual sea el modelo escogido para la distribución de
- Si queremos decir algo más preciso sobre la distribución de \overline{X} (densidad, etc...) necesitamos especificar la distribución de X.
- \bullet En el caso en que la variable X siga una distribución normal, el **teorema de Fisher** analiza cómo se comportan los estadísticos anteriores y nos permiten establecer una serie de consecuencias que serán utilizadas posteriormente en los temas de intervalos de confianza y de constrastes de hipótesis.

Distribución de \overline{X} y S^2 para una m.a.s. de una distribución normal 1.18)

Teorema de Fisher

Consideramos una muestra aleatoria simple de una variable aleatoria X con distribución normal $\mathcal{N}(\mu, \sigma^2)$, entonces se verifica:

- 1) \overline{X}_n y S_n^2 son dos variables aleatorias independientes.
- 2) $\frac{\overline{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$ 3) $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2.$

Recordatorio: distribución χ^2 con p grados de libertad 1.19)

La distribución χ^2 .

Para $p \in \mathbb{N}^+$, la función de densidad de la distribución χ^2 es igual a

$$\frac{1}{\Gamma(\frac{p}{2}) 2^{\frac{p}{2}}} \cdot x^{\frac{p}{2} - 1} e^{\frac{x}{2}}, \quad \text{si } x > 0,$$

donde Γ denota la función Gamma (Nota: para cualquier real $\alpha > 0$, $\Gamma(\alpha) = \int_{0}^{+\infty} t^{\alpha-1} e^{-t} dt$).

Caracterización de la χ^2

Si Z_1, \ldots, Z_p son p variables aleatorias independientes, con $Z_i \sim \mathcal{N}(0,1)$, entonces la variable aleatoria X definida como

$$X = Z_1^2 + \dots + Z_p^2 = \sum_{i=1}^p Z_i^2$$

8

tiene una distribución χ^2 con p grados de libertad.

• ¿Cómo es su función de densidad?

Depende de los grados de libertad

1.20) Distribución t-Student

Hemos visto, si X es Normal:

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

Si queremos centrarnos en μ es natural sustituir en ella σ por S_n .

Proposición

Sea (X_1, \ldots, X_n) una muestra aleatoria simple de una población $\mathcal{N}(\mu, \sigma^2)$,

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

tiene por densidad

$$f_{n-1}(t) \propto \frac{1}{\left(\frac{1+t^2}{n-1}\right)^{\frac{n}{2}}}, \quad -\infty < t < \infty,$$
 (1)

La distribución que admite esta densidad se llama distribución t-Student con n-1 grados de libertad. Escribimos $T \sim t_{n-1}$.

Su densidad

La función de densidad de un t-Student con k grados de libertad:

$$f_k(t) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} \cdot \frac{1}{\sqrt{k\pi}} \cdot \frac{1}{\left(\frac{1\tau^2}{k}\right)^{\frac{k+1}{2}}}, \quad -\infty < t < \infty,$$

donde Γ denota la función Gamma.

Caracterización de la t-Student como cociente

Si Z e Y son dos variables aleatorias independientes, con $Z \sim \mathcal{N}(0,1)$ e $Y \sim \chi_p^2$, el cociente

$$T = \frac{Z}{\sqrt{\frac{Y}{p}}} \sim t_p,$$

donde t_p denota la t-Student con p grados de libertad.

• ¿Cuál es la forma de la densidad de una t-Student?

Tiene colas más pesadas que una normal

1.21) Distribución F de Snedecor para el cociente de varianzas

Proposición

Consideremos U_1 y U_2 dos variables aleatorias independientes con distribución χ^2 con p_1 y p_2 grados de libertad, respectivamente.

El cociente $F = \frac{\frac{U_1}{p_1}}{\frac{U_2}{p_2}}$ admite la densidad

$$f_F(x) = \frac{\Gamma\left(\frac{p_1 + p_2}{2}\right)}{\Gamma(p_1)\Gamma(p_2)} \left(\frac{p_1}{p_2}\right)^{p_1} \frac{x^{\frac{p_1}{2} - 1}}{\left(1 + \frac{p_1}{p_2}x\right)^{\frac{p_1 + p_2}{2}}}.$$

Esta distribución se llama F de Snedecor p_1 y p_2 grados de libertad y escribimos $F \sim F_{p_1,p_2}$.

Consecuencia

Consideremos X e Y variables aleatorias normales independientes con varianzas σ_X^2 y σ_Y^2 , así como X_1, \ldots, X_{n_x} e Y_1, \ldots, Y_{n_Y} dos muestras aleatorias simples de X e Y, respectivamente. Deducimos que

$$\frac{\frac{S_X^2}{\sigma_X^2}}{\frac{S_Y^2}{\sigma_Y^2}} \sim F_{n_X-1,n_Y-1}.$$

• ¿Cuál es la forma de la densidad de una F de Snedecor?

Depende mucho de los grados de libertad

1.22) Si la distribución de X no es Normal

No podemos decir nada en general, excepto si n es grande...

Teorema Central del Límite

Si n es "suficientemente" grande, se puede aproximar la distribución de \overline{X} por una Normal con media μ y varianza $\frac{\sigma^2}{n}$:

 $\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \text{ aproximadamente.}$

Formulación matemática

El resultado anterior se taduce por una convergencia de la sucesión de las variables aleatorias $(\overline{X}_n)_n$ en distribución cuando $n \to \infty$.

• ¿Cuándo considerar que n es grande?

Depende de la forma de la distribución de X:

- \bullet Si X casi Normal: n pequeño es suficiente.
- ullet Si X es muy asimétrico: n mucho más grande necesario.

En general, se suele considerar $n \geq 30$ suficiente...

Ilustración, X inicial ~ $\text{Exp}(\lambda = 0.5)$, \overline{X} con n = 3, 10 y n = 30

