WHAT IS CLAIMED IS:

1	1. A method for determining the validity of a sensor signal including the		
2	steps of:		
3	providing a sensor signal from a sensor;		
4	providing an estimated sensor signal;		
5	determining the difference between the sensor signal and the estimated		
6	sensor signal;		
7	calculating a standard deviation of the difference;		
8	scaling the points of inflection of a fuzzy logic membership function		
9	proportional to the standard deviation; and		
10	processing the sensor signal using the fuzzy logic membership function		
11	to determine whether the sensor signal is valid or not.		
1	2. The method of Claim 1, wherein the step of processing occurs before		
2	the step of scaling.		
1			
1	3. The method of Claim 1, wherein the step of scaling occurs before the		
2	step of processing.		
1	4. The method of Claim 1, wherein the fuzzy logic membership function		
2	has at least two domains, including at least one domain that evaluates a sensor signal		
3	as acceptable, and at least one domain that evaluates a sensor signal as unacceptable.		
1	5. The method of Claim 4, wherein the step of scaling includes the step of		
2	multiplying a plurality of points of inflection of the fuzzy logic membership function		
3	by the standard deviation.		
1	6. A method for determining the quality of a sensor signal in a fuzzy		
2	logic controller including the steps of:		
3	providing a first cumulative scatter value indicative of a cumulative		
4	degree of difference between a plurality of sensor signal values and estimated sensor		
5	signal values corresponding to each of the sensor signal values;		
6	providing a fuzzy logic membership function in which the x-axis		
	SMP:jaw G:\data\client\1426\009\appln 1/15/01 - 2·11 PM		

7	values of the points of inflection of a plurality of fuzzy logic domains are derived		
8	from the first cumulative scatter value;		
9	retrieving a further sensor signal value;		
10	comparing the further sensor signal value with a further estimated		
11	sensor signal value;		
12	calculating a further scatter value indicative of the individual degree of		
13	difference between the further sensor signal value and the further estimated sensor		
14	signal value;		
15	combining the further scatter value with the first cumulative scatter		
16	value to provide a second cumulative scatter value indicative of the cumulative degree		
17	of difference and the individual degree of difference in combination; and		
18	amending the fuzzy logic membership function such that the x-axis		
19	values of the points of inflection of the plurality of fuzzy logic domains are derived		
20	from the second cumulative scatter value.		
1	7. The method of Claim 6, wherein the step of providing a first		
2	cumulative value includes the steps of:		
3	a. calculating a first difference between a first of the plurality of		
4	sensor signal values and a first of the estimated sensor signal values;		
5	b. calculating a second difference between a second of the		
6	plurality of sensor signal values and a second of the estimated sensor signal values;		
7	and		
8	c. calculating the first cumulative scatter value from at least the		
9	foregoing first and second differences.		
1	8. The method of Claim 7, wherein the first cumulative scatter value is a		
2	function of the standard deviation of the first and second differences.		
1	O A westerd of individually determining whether a plurality of sequential		
1	9. A method of individually determining whether a plurality of sequential		
2	sensor values are valid comprising the steps of:		
3	a. reading a sensor value;		
4	b. determining a degree of difference between the sensor value		
5	and an estimated sensor value;		

6		c. revising the x-axis values of a fuzzy logic membership function			
7	that responds to the degree of difference as an input and produces a signal indicative				
8	of the validity of the sensor value as an output;				
9		d. determining whether the sensor value is valid; and			
10		e. repeating steps a through d for each of the plurality of			
11	sequential ser	nsor values.			
1	10.	The method of Claim 9, further comprising the steps of:			
2		calculating a value indicative of the collective degree of scatter of the			
3	individual degree of differences calculated in step c.				
1	11.	The method of Claim 10, wherein the step of calculating is performed			
2	after each ste	p of determining a degree of difference, and wherein the value indicative			
3	of the collective degree of scatter incorporates all of the previous individual degrees				
4	of difference				
1	12.	The method of Claim 11, wherein the value indicative of the collective			
2	degree of scatter is a standard deviation of prior degrees of difference calculated in				
3	step b.				
1	13.	The method of Claim 12, wherein x-axis values of the membership			
2	function are themselves functions of the standard deviation.				
1	14.	The method of Claim 13, further comprising the step of calculating a			
2	plurality of the	he x-axis values every time the step of calculating a value indicative of			
3	the degree of scatter occurs.				
1	15.	The method of Claim 14, wherein each of the x-axis values of the			
2		ection are associated with a value that is a function of the collective			

degree of scatter.

3