

2D Hall Arrays for High Resolution Tokamak Magnetic Field Imaging

Sam Shelton^{1,2}, Patrick Burr^{1,2,3} and Will Midgley^{1,2}

¹School of Mechanical and Manufacturing Engineering, UNSW Sydney; ²AtomCraft; ³UNSW Nuclear Innovation Centre

At A Glance

A magnetic camera designed to monitor Tokamak toroidal B fields, designed to address the specific requirements of the upcoming SOUTH Tokamak:

- 20 kHz Bandwidth achieved through an FPGA and multiple ADCs
- Entirely off-the-shelf construction
- Measures in excess of ± 150 mT, with an effective sensitivity of ≈ 0.32 mT
 - Robust operation in harsh conditions
 - Pedagogical potential

Motivations: The SOUTH Tokamak

The SOUTH Tokamak is an upcoming undergraduate designed and built Tokamak constructed at the University of New South Wales in Sydney, Australia. The project has many unique requirements, stemming from a very tight budget. This sensor is engineering focused (not a diagnostic), and is design to:

- Verify that the correct B field is being produced
- Validate our multiphysics simulations
- Catch manufacturing defects or deficiencies
- Avoid the requirement for more comprehensive and expensive field mapping solutions

Device Description

Configuration

256 discrete sensors are multiplexed into eight total ADCs which record data simultaneously, capturing the full 20 kHz of bandwidth when operated with an FPGA. A robust filtering and shielding solution prevents the ingress of high frequency noise. Hardware oversampling can decrease noise when the device is sampling slower with a micro-controller.

Scan the QR code for a complete overview (and Schematics)!

Specifications

Sensor Layout
Overall Dimensions
B Field Range
Analogue Bandwidth
Sampling Rate
Mechanical Structure 6 La
Number of Components
ADC Bits
Effective Sensitivity
Data Production Rate

Power Consumption

16×16, 9 mm Pitch 175×142 mm >±150 mT 20 kHz >40 kSPS / Sensor 6 Layer FR4 with ENIG >600 12, ~10.4 ENOB ~0.32 mT

> >122.88 mbps ~7.5 W

Preliminary Results

Completed Device

A posulos hexaly -tien sezzi pretur-th - mang - pretzo - viswesp on the control of the control o

a) Assembled device connected to Teensy 4.1 Micro-controller via a SYZYGY connector + breakout.

Noise & Calibration

b) Sensor AC RMS Noise Statistics; **c)** Sensor Peak-to-Peak Noise Statistics; **d)** Sensor 1-Point calibration; **e)** Sensor AC RMS Noise Distribution

Vacuum Vessel

f) Theory toroidal field with sensor geometry; g) Simulated reconstruction; h) Magnetic field of Apple MagSafe Charger; i) Magnetic field of Bar Magnet — Scan QR code for Videos!

This device will be used to aid in SOUTH's R&D, manufacturing and commissioning over the next 18-24 months, with toroidal measurements coming soon.

Acknowledgments

Presenter attendance has been generously funded by the The Sir William Tyree Foundation through the UNSW Nuclear Innovation Centre (UNIC) Travel Award.

Device Render

Outer shielding

omitted for clarity.