4140.
$$z = x^2 + y^2$$
, $z = \frac{1}{2} (x^2 + y^2)$, $x + y = \pm 1$, $x - y = \pm 1$.
4141. $\frac{x^n}{a^n} + \frac{y^n}{b^n} + \frac{z^n}{c^n} = 1$, $x = 0$, $y = 0$, $z = 0$ $(n > 0$, $x \ge 0$, $y \ge 0$, $z \ge 0$).

4142. Определить координаты центра тяжести тела, имеющего форму куба: $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$, если плотность тела в точке (x, y, z) равна $\rho = x^{\frac{2\alpha-1}{1-\alpha}} \frac{z^{\frac{2\beta-1}{1-\beta}}}{y^{\frac{1-\beta}{1-\beta}}} z^{\frac{2\gamma-1}{1-\gamma}},$ где $0 < \alpha < 1$, $0 < \beta < 1$, $0 < \gamma < 1$.

Определить моменты инерции относительно координатных плоскостей однородных тел, ограниченных сле-

дующими поверхностями (параметры положительны):

4143.
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
, $x = 0$, $y = 0$, $z = 0$.
4144. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. 4145. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$, $z = c$.
4146. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, $\frac{x^2}{a^2} + \frac{y^3}{b^3} = \frac{x}{a}$.
4147. $\frac{x^2}{a^2} + \frac{y^3}{b^2} = 2\frac{z}{c}$, $\frac{x}{a} + \frac{y}{b} = \frac{z}{c}$.
4147.1. $\left(\frac{x^3}{a^2} + \frac{y^3}{b^2} + \frac{z^2}{c^2}\right)^2 = \frac{x^3}{a^3} + \frac{y^2}{b^2} - \frac{z^2}{c^3}$.
4147.2. $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n + \left(\frac{z}{c}\right)^n = 1$, $x = 0$, $y = 0$, $z = 0$ $(n > 0)$; $x \ge 0$, $y \ge 0$, $z \ge 0$).

Определить моменты инерции относительно оси *Oz* однородных тел, ограниченных поверхностями:

4148.
$$z = x^2 + y^2$$
, $x + y = \pm 1$, $x - y = \pm 1$, $z = 0$.
4149. $x^2 + y^2 + z^2 = 2$, $x^2 + y^2 = z^2$ ($z > 0$).
4149.1. $(x^2 + y^2 + z^2)^3 = a^5z$.

4150. Найти момент инерции неоднородного шара $x^2 + y^2 + z^2 \le R^2$ массы M относительно его диаметра, если плотность шара в текущей точке P(x, y, z) пропорциональна расстоянию этой точки от центра шара.

4151. Доказать равенство $I_l = I_{l_0} + Md^2$, где $I_l - Md^2$ момент инерции тела относительно некоторой оси l_0 , параллель28-23-23