Берапсат	Tópicos de Matemática Discreta		2020/ 2023
	— 2.º teste — 13 de janeiro de 2021 — duração: 105 minutos —		
Nome:	Número	o	
	Grupo I		
(V) ou f valores o	po é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indica alsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída se ou <i>0 valores</i> , consoante a resposta esteja certa, errada, ou não seja assinalada resposta, ão total neste grupo é no mínimo <i>0 valores</i> .	rá <i>1 v</i> a	alor, -0,25
		V	F
1.	Sendo A e B conjuntos, (A,\emptyset) é um elemento de $\mathcal{P}(A)\times\mathcal{P}(B)$ e de $\mathcal{P}(A\times B)$.		
2.	Existem exatamente 3 relações binárias de $\{4,5,6\}$ para $\{1,2,3,4\}$ cuja imagem é $\{1\}.$		
3.	Se uma relação binária R num conjunto não vazio A é simétrica e antissimétrica, então $R \setminus \mathrm{id}_A = \emptyset$.		
4.	$\{[x-1,x+2[:x\in\mathbb{Z}\}$ é o conjunto quociente de \mathbb{R} por alguma relação de equivalência em $\mathbb{R}.$		
5.	Se (A,\leq) é um cpo e $X\subseteq A$ tem um elemento maximal, então X tem elemento máximo.		
6.	$\{(a,1),(b,3),(c,2)\} \text{ \'e uma aplicaç\~ao sobrejetiva de } \{a,b,c,d\} \text{ em } \{1,2,3\}.$		
	Grupo II		
Este gru	po é constituído por 4 questões. Responda, <u>sem justificar</u> , no espaço disponibilizado a s	seguir à	à questão
1. Dé	è um exemplo de conjuntos A , B e C que não verificam a igualdade $(A \times B) \cap C = (A \times B) \cap C$	$(\cap C)$	$\langle (B \cap C) \rangle$
R€	esposta:		
pa	onsidere os conjuntos $A=\{2,3,4,5\}$ e $B=\{4,8,9,15,25,49\}$ e a relação binária R ra quaisquer $x,y\in A$, por $(x,y)\in R$ quando $x^y\in B$. Dê exemplo de uma relação ra A tal que $R\circ S\neq\emptyset$ e $S^{-1}\circ R=\emptyset$.	$R \in A$ binári	definida $\ S$ de $\ B$
Re	esposta:		
on	onsidere a função $f:\mathbb{R}\to\mathbb{R}$ tal que, para todo $x\in\mathbb{R},\ f(x)=\max\{m\in\mathbb{Z}:m\leq x\}$ de $\rho=\{(x,y)\in\mathbb{R}^2:f(x)=f(y)\}$ é o núcleo da função f .	. Indiq	ue $[-\pi]_ ho$
Re	esposta:		

4. Sejam $A=\{1,2,3,4,5\}$ e $T=\{(1,2),(1,3),(3,5)\}$. Indique uma relação binária R em A tal que $R\cup T$ é uma ordem parcial em A.

Resposta:

5. Indique $f^{\leftarrow}(\{-1,0,1,2\})$ para a função $f:\mathbb{R}\to\mathbb{R}$ definida por

$$f(x) = \left\{ \begin{array}{ll} x+1 & \text{se } x<1 \\ 0 & \text{se } x=1 \\ x^2 & \text{se } x>1 \end{array} \right.$$

Resposta:

Grupo III

Este grupo é constituído por 4 questões. Responda na folha de exame, justificando todas as suas respostas.

1. Seja ρ a relação de equivalência em $\mathcal{P}(\mathbb{N})$ definida por: $X\rho Y$ sse $X\cap\{3\}=Y\cap\{3\}.$ Determine:

- (a) a classe de equivalência $[\{2020, 2021\}]_{\rho}$;
- (b) o conjunto quociente $\mathcal{P}(\mathbb{N})/\rho$.

2. Considere o cpo (A, R) com o seguinte diagrama de Hasse associado:

- (a) Determine $X = \{x \in A : dRx\}.$
- (b) Dê exemplo de, ou justifique que não existe,
 - i. um elemento x de A tal que $\{b,x\}$ não admite supremo.
 - ii. um subconjunto Y de A com exatamente 3 elementos minimais.
- (c) Determine o maior subconjunto Z de A tal que $a \notin Z$ e $Maj(Z) = \{f, h\}$.

- 3. Seja $f:A\to A$ uma aplicação, seja ${\rm Im}(f)$ a imagem de f e seja ${\rm Fix}(f)=\{a\in A:f(a)=a\}$ o conjunto dos pontos fixos de f. Mostre que:
 - (a) $f = f \circ f$ se e só se Im(f) = Fix(f).
 - (b) Se $f = f \circ f$ e f é sobrejetiva, então f é a aplicação identidade.