of EEE307

Electronics for Communications

Department of Electrical & Electronic Engineering Xi'an Jiaotong-Liverpool University (XJTLU)

Friday, 22nd November 2019

- □ Phase Locked Loop
 - phase detector & type I PLLs
 - loop dynamics (phase domain)
 - > PFD & type II PLLs
 - charge pump PLLs
- ☐ Frequency Synthesizers

Radio Transmitters & Receivers

(local oscillator signal required)

□ In radio transmitters and receivers, a local oscillator (LO) signal is required as a mixer input for the upconversion and downconversion to and from the carrier frequencies of the radio waves.

U While a voltage-controlled oscillator (VCO) can generate such a required signal, it is not used alone to feed the LO port of the mixers.

While a voltage-controlled oscillator (VCO) can generate such a required signal, it is not used alone to feed the LO port of the mixers.

Signal-Generation with VCO

(open-loop problems)

☐ A VCO is seldom used in the open-loop condition for signal generation in wireless transmitters and receivers: From: Behzad Razavi. RF Microelectronics. © 2012 Pearson . USA.

 \triangleright open-loop: fix the input voltage V_{cont} and get a sinusoidal

07 Electronics for Communications

Semester 1, 2019/2020 by **S.Lam**@**XJTLU**

signal of the desired frequency

> It is like the uncommon openloop use of operational amplifiers. (What would be the problems?)

Frequency Synthesizer as LO

(VCO in phase locked loop)

□ A VCO is usually used in the so-called phase-locked loop (PLL) for generating LO signals in a transceiver.

> It is called a **frequency synthesizer**.

VCO in Phase Locked Loop

(stable synthesized frequencies)

- □ By using a VCO in a PLL for frequency synthesis

 (i.e. generating sinusoidal electrical signals of desirable frequencies), a highly stable yet tunable
 LO signal can be created for radio transceivers.
 - > The VCO is treated as a linear time-invariant system and configured in a feedback system to form the PLL.
 - ➤ The *synthesized* frequencies of the PLL output are a multiple of a reference frequency (e.g. by a crystal oscillator), with the same frequency stability and precision as that of the reference input.
 - > Do you remember **crystal oscillators**? Signal generation with stable $\omega_{\rm osc}$.

Usefulness of Phase Locked Loops

(in FM communication & digital systems)

- □ Apart from **frequency synthesis** or **multiplication** from highly stable low-frequency signals, **PLLs** can also be used for **frequency modulation** (FM) and frequency demodulation which are important in FM communication.
- □ **PLLs** are also used in digital systems, especially in data communications, for signal **synchronisation**.
 - > in microprocessors for **skew reduction** or **compensation** to overcome the delay between the buffered clock signal and the data stream; a delay locked loop is an alternative
 - also in harddisk drive electronics in reading and transferring data

PLLs in Clock & Data Recovery

(digital data streams)

- □ An important application of PLLs is **clock recovery**, namely, **recovering clock timing** information from an **incoming data stream** corrupted by noise.
 - > The incoming data is sometimes also cleaned up and the whole process is known as **clock** and **data recovery** (CDR).

CDR is necessary in high-speed asynchronous serial data links.

Optical Communication Systems

(frequency synthesis & clock recovery)

synthesis and clock recovery are essential in fibre-optic communication systems.

⇒ importance of **PLLs** in modern communication systems.

Phase Locked Loop

(three basic constituents)

- A phase-locked loop (PLL) is a <u>negative</u> <u>feedback</u> <u>system</u> with the output signal tracking the input signal by comparing the phase (and frequency) of the output with that of the input.
- □ A PLL consists of three basic parts cascaded together and forming a closed loop:
 - ➤ a phase detector (a phase/frequency detector in better designs of PLLs)
 - > a low-pass loop filter
 - ➤ a voltage-controlled oscillator (VCO)
 - > a feedback divider in some cases

Phase Detector

(detecting phase difference)

□ A **phase detector** is a circuit that senses two periodic inputs and produces an output which has an average value proportional to the <u>difference</u> between the <u>**phases**</u> of the inputs.

ightharpoonup The input/output characteristic of the PD is ideally a straight line, with its slope called the "gain" and denoted by K_{PD} .

Phase Detector

(implementation using XOR gate)

 \Box An **exclusive-OR** (**XOR**) gate can serve this purpose of <u>phase difference detection</u>. It generates pulses which have the pulse width equal to $\Delta \phi$.

An XOR gate outputs a logic "1" only when the two inputs are different.
 Xi'an Jiaotong-Liverpool University 西交利が消入学

Implementation of XOR Gate

(5 logic gates & 12 MOSFETs)

- Based on the truth table and Boolean algebra, the **XOR** gate can be implemented using the fundamental logic gates: $F = A \oplus B = A'B + AB'$
- ☐ The XOR gate can be implemented by 12 CMOS transistors (4 for two inverters).

Implementation of XOR Gate

(transmission gate approach using 10 MOSFETs)

There can be improvement in the CMOS implementation of the XOR gate to make it more compact (i.e. smaller size):

> modified interconnections of MOSFETs for slightly more

area-efficient physical layout.

design with two transmission

gates

From: Neil H.E. Weste & David M. Harris, CMOS VLSI Design: A Circuits & Systems Perspective, 4e © 2011 Pearson, USA.

save contacts at two S/D regions

Simple Phase Locked Loop

(dynamic negative feedback control)

As the output of the **phase detector** (PD) is proportional to the the **phase difference** $\Delta \phi$, it is fed to the input of the VCO to vary the frequency so that the VCO output will have zero $\Delta \phi$ through dynamic **feedback control**.

From: Behzad Razavi, RF Microelectronics, © 2012 Pearson, USA.

- > When $\Delta \phi$ is large, the VCO will be driven accordingly to vary the frequency in such a way to minimise $\Delta \phi$.
- > When $\Delta \phi \approx 0$, the input voltage of the VCO is fixed and the frequency of the VCO output remains constant.
- > It is a **negative feedback system**.

Xi'an Jiaotong-Liverpool University

Simple Phase Locked Loop

(phase locking)

- □ The **phase locking** in the simple PLL through **dynamic negative feedback control** can be illustrated by trying to align the output phase of the VCO output with that of a reference clock.
 - \succ At t_0 , the VCO output frequency increases with a larger $V_{\rm cont}$ and gradually decreases the phase error.
 - > At t_1 , the phase alignment is achieved and the VCO frequency stops increasing with $V_{\rm cont}$ xi'an Jiaotong-Liverpool Univerteeturned to its original value.

Problem of Simple PLL

(sidebands at the output)

☐ In the simple PLL, the PD produces *repetitive*pulses at its output. Such a signal consists of a DC component and a high frequency component.

From: Behzad Razavi, *RF Microelectronics*, © 2012 Pearson , USA.

From: "Spectrum Analysis Amplitude and Frequency Modulation," Keysight Technologies Application Note (July 31, ➤ The latter is undesirable because it *modulates* the VCO frequency and hence generate large **sidebands**.

➤ This is a situation of **frequency modulation** (FM).

Basic PLL Topology

(with low-pass filter)

- ☐ To resolve the problem of the **sidebands** at the VCO output, the high frequency component of the PD output can be *filtered*.
- □ A **low-pass filter** is placed between the PD and the VCO to suppress the **repetitive** pulses.

- ☐ This forms the basic PLL topology (called type I PLL).
 - 3 essential constituent blocks:PD, LPF and VCO in a feedback loop.

Phase Locked Loop

(simple implementation)

☐ A simple PLL can be implemented with an XOR gate, a *first-order* RC low-pass filter and a **cross-coupled LC oscillator**.

Note the differential output (at nodes X and Y) with the cross-coupled LC oscillator.
 Xi'an Jiaotong-Liverpool University 西交利が消土學

Phase Locking in PLL

(voltage follower analogy)

- We say a PLL is an electronic circuit that *locks* the phase of the output to that of the input.
 - > To illustrate the **phase locking** concept, the voltage follower analogy can be used.
 - In the voltage follower configuration, if the op amp has a large enough voltage gain, the output voltage "tracks" the input voltage closely. From: Behzad Razavi, RF Microelectronics, © 2012 Pearson, USA.

> Similarly, a PLL ensures that $\phi_{\rm out}(t)$ tracks $\phi_{\rm in}(t)$, in other words, the output *locked* to the input in the **phase** domain.

Phase Locking in PLL

(exactly equal frequencies)

- We say the loop is "locked" if $\phi_{\text{out}}(t) \phi_{\text{in}}(t)$ is constant with time \Rightarrow the output is **synchronised** with the input.
- When phase locking is achieved, there is an important and unique consequence the input and output frequencies of the PLL are <u>precisely</u> equal.

$$\phi_{out}(t) - \phi_{in}(t) = \text{constant}$$
 This attribute is critical
$$\frac{d\phi_{out}}{dt} - \frac{d\phi_{in}}{dt} = 0 \Rightarrow \frac{d\phi_{out}}{dt} = \frac{d\phi_{in}}{dt} \Rightarrow \omega_{out} = \omega_{in}$$
 frequency synthesis.

ightarrow In a stand-alone VCO, $\omega_{out}=\omega_{in}+K_{VCO}V_{cont}$ 数 流文划场消太学

Phase Locked Loop

(transient response in V_{cont})

Phase Locked Loop

(transient response)

- ☐ The *transient* response of PLLs is generally a nonlinear phenomenon. (Do you know why?)
- ☐ It can be viewed with the voltage follower analogy.

slow input sinusoid fast input sinusoid

Moderate Property of the control of the control

From: Behzad Razavi, *RF Microelectronics*, © 2012 Pearson , USA.

How about a PLL's response to varying phase change?

Loop Dynamics

(phase domain)

□ A "phase-domain model" can be constructed for studying PLLs' transient response using a linear approximation.

➤ The *closed-loop* **transfer function**:

$$H(s) = \frac{\Phi_{out}(s)}{\Phi_{in}(s)} = \frac{K_{PD}K_{VCO}}{R_1C_1s^2 + s + K_{PD}K_{VCO}}$$

Loop Dynamics

(transient responses in time domain)

☐ Based on the *closed-loop* transfer function, it can be seen that the PLL is a second-order feedback

From: Behzad Razavi, Design of Integrated Circuits for Optical Communications, 2e © 2012 Wiley, USA.
$$H(s) = \frac{\Phi_{out}(s)}{\Phi_{in}(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

☐ A system with a second-order transfer function can have the following transient responses:

$$\omega_n = \sqrt{K_{PD}K_{VCO}\omega_{LPF}}$$

- > overdamped
- > critically damped
- νςωηί > under-damped

depending on the damping factor

$$\zeta = \frac{1}{2} \sqrt{\frac{\omega_{LPF}}{K_{PD} K_{VCO}}}$$

 $\zeta = 0.2$

PLL for Frequency Multiplication

(divided output fed back to input)

- □ A PLL can be configured to generate an output frequency which is a **multiple** of the input frequency.
 - > This is done by *dividing* the output frequency of the PLL and then feeding back to the input.
 - > The analogy is the non-inverting amplifier.

- The $\div M$ circuit is a **counter** that generates one output pulse for every M input pulses.
 - > The divide ratio, M, is called the "modulus".

Limitations of Type I PLL

(unequal input frequencies)

- ☐ The type I PLL is rarely used for making modern frequency synthesizers for modern communication systems.
 - ➤ It suffers from a limited "acquisition range". If the VCO frequency and the input frequency are very different at the startup, the type I PLLs may never achieve "phase locking"
 - > The limitation is because **phase detectors** produce little information if sensing inputs of *unequal* frequencies.

Phase/Frequency Detection

(sensing both phase & frequency difference)

- \square A phase/frequency detector has two outputs Q_A and Q_B , sensing both the phase and frequency of the two inputs A and B.
 - > Sequential logic (vs. XOR as combinational logic) is used.

- $ightharpoonup Q_A$ outputs pulses whose width is proportional ϕ_A ϕ_B while Q_B = 0.
- If A has a lower frequency than B,
 Q_B outputs pulses.

Phase/Frequency Detector

(D-flipflop implementation)

- □ The phase/frequency detector (PFD) can be realised using two D-flipflops and one AND logic gate.
 - > Signals A & B are inputted as the clocks of the D-flipflops.

➤ The D-flipflop can be implemented using four cross-coupled NOR gates.

Improved Type I PLL

(with phase/frequency detector)

- ☐ Using a phase/frequency detector (PFD), the design of the type I PLL can be improved to resolve issue of the limited **acquisition range**.
 - > The PFD has two outputs, Q_A and Q_B . A differential amplifier can be used to extract the DC component of $(Q_A Q_B)$ with two low-pass filters.

From: Behzad Razavi, RF Microelectronics, © 2012 Pearson, USA.

Note the polarity of Q_A and Q_B fed to the differential inputs of the amplifier.

Charge Pump

(switched current sources)

 \Box The more common approach to process the two outputs Q_A and Q_B using a **charge pump** interposed between the PFD and VCO in the PLL.

> A charge pump consists of two *switched* current sources that *pump* charge into or out of the loop filter according to the inputs.

Charge-Pump PLL

(added resistor for better stability)

 \square Skipping analysis of the loop dynamics, a better design of PLLs using a **charge pump** is obtained with an added resistor R_1 in series with the capacitor C_1 . This is called the **charge-pump PLL**.

This is a type II PLL used to build frequency synthesizers.

Charge Pump CMOS Circuit

(implementation of switched current sources)

☐ The **charge pump** can be realised using MOS transistors as switches and to configure current

mirrors.

The design can be improved by suppressing the channel-length modulation.

From: Behzad Razavi, *RF Microelectronics*, © 2012 Pearson , USA.

Frequency Synthesizer

(integer-N)

■ With the phase/frequency detector and the charge pump designs, a PLL can be configured to become a frequency synthesizer.

- ➤ An integer-N frequency synthesizer produces an output frequency that is an integer multiple of the reference frequency.
- This is frequency multiplication.

Frequency Synthesizer

(fractional-N)

☐ The <u>integer-N</u> **frequency synthesizer** can be revamped to a <u>fractional-N</u> **frequency synthesizer**.

