Лекция 5: Моделирование поведения

Юрий Литвинов yurii.litvinov@gmail.com

14.03.2022

Диаграммы конечных автоматов

Диаграммы состояний

- Состояния объекта как часть жизненного цикла
- Моделирование реактивных объектов
 - Например, сетевое соединение
 - Или знакомый пример с торговым автоматом
- Имеют исполнимую семантику
- Д. Харел, 1987

Диаграммы конечных автоматов, синтаксис

- Состояние
 - entry activity
 - exit activity
 - do activity
 - внутренний переход
- Событие

© М. Фаулер, UML. Основы

Переход

[<trigger>[',' <trigger>]* ['[' <guard>']'] ['/' <behavior-expression>]]

Пример, мобильный телефон

Диаграммы конечных автоматов, прочие вещи

Активности:

Вложенные состояния:

© М. Фаулер, UML. Основы

Параллельные состояния, псевдосостояние истории:

Генерация кода

```
public void handleEvent(PanelEvent anEvent) {
 switch (currentState) {
    case PanelState.Open:
      switch (anEvent) {
        case PanelEvent SafeClosed
          currentState = PanelState.Wait;
    case PanelState.Wait:
      switch (anEvent) {
        case PanelEvent.CandleRemoved:
          if (isDoorOpen) {
             revealLock();
             currentState = PanelState.Lock:
    case PanelState Lock:
      switch (anEvent) {
        case PanelEvent.KeyTurned:
          if (isCandleIn) {
             openSafe():
             currentState = PanelState.Open;
           } else {
             releaseKillerRabbit();
             currentState = PanelState.Final;
```


Таблица состояний

Исходное состояние	Целевое состояние	Событие	Защита	Процедура
Wait	Lock	Candle removed (свеча удалена)	Door open (дверца открыта)	Reveal lock (показать замок)
Lock	Open .	Key turned (ключ повернут)	Candle in (свеча на месте)	Open safe (открыть сейф)
Lock	Final	Key turned (ключ повернут)	Candle out (свеча удалена)	Release killer rab- bit (освободить убийцу-кролика)
0pen	Wait	Safe closed (сейф закрыт)		

Паттерн "Состояние"

Диаграммы последовательностей

- Применяются для визуализации взаимодействия между объектами
 - Особо удобно для асинхронных вызовов
 - Телекоммуникационные протоколы
- Могут применяться на этапе анализа предметной области
- Могут применяться для составления плана тестирования
- И даже для визуализации логов работающей системы

© М. Фаулер, UML. Основы

Ещё немного о синтаксисе

Пример

Ещё пример

И ещё пример

Создание и удаление объектов

Фреймы

```
foreach (lineitem)
if (product.value > $10K)
careful.dispatch
else
regular.dispatch
end if
end for
if (needsConfirmation)
messenger.confirm
```


© М. Фаулер, UML. Основы

Коммуникационные диаграммы

- Применяются для визуализации взаимодействия между объектами
 - Более легковесный аналог диаграмм последовательностей
 - Тоже отображают один сценарий взаимодействия

Коммуникационные диаграммы, пример

Диаграммы составных структур

- По сути, продвинутые диаграммы компонентов
- Внутри компоненты не другие компоненты, а части (роли)

Диаграммы составных структур, пример

Диаграммы коопераций

Показывают
 взаимодействие между
 объектами (ролями) в
 рамках одного сценария
 использования

Диаграммы коопераций, последовательности

Временные диаграммы

 Для моделирования временных ограничений в системах реального времени

Временная диаграмма, пример

Диаграммы обзора взаимодействия

- Диаграммы активностей + диаграммы последовательностей
- Применяются при наличии взаимодействия со сложной логикой, когда фреймы неудобны

Диаграмма обзора взаимодействия, пример

Диаграммы потоков данных

- Показывают обмен данными в системе
- Внешние сущности, процессы внутри системы, потоки данных

Диаграммы IDEF0

Сети Петри

- ▶ Тройка (*P*, *T*, *φ*).
 - Множество мест
 - Множество переходов
 - lackbox Функция потока $\phi: (P \times T) \cup (T \times P) o N$
- Маркировка: µ : P → N
- Срабатывание (firing):

$$\mu \xrightarrow{t} \mu' : \mu'(p) = \mu(p) - \phi(p, t) + \phi(t, p), \forall p \in P$$

Зачем это

© Murata Tadao. Petri nets: Properties, analysis and applications

Свойства, которые можно проверить

- Поведенческие свойства:
 - Достижимость
 - Ограниченность (безопасность)
 - ▶ Живость (L0 L4)
 - "Реверсабельность" и "домашнее состояние"
- Структурные свойства
 - Структурная живость
 - Полная контролируемость
 - Структурная ограниченность
 - **.**..

Способы анализа

Алгебраический

- Структурный
- Редукцией
- Пространства состояний

Пример использования (1)

- Сеть Петри как форма представления знаний, генерится автоматически по демонстрации
- Поиск по дереву достижимости для определения пути решения задачи или подзадачи
 - "как программисту вскипятить чайник, если в нём уже есть вода?"

© Robot Task Learning from Demonstration

Using Petri Nets

Пример использования (2)

- Сеть Петри как план работы, состоящий из элементарных действий гетерогенных агентов
- Автоматическое распределение работ

Книжка

М. Фаулер, UML. Основы. Краткое руководство по стандартному языку объектного моделирования. СПб., Символ-Плюс, 2011. 192 С.