

минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

Институт информационных систем и технологий

Кафедра информационных систем

КУРСОВОЙ ПРОЕКТ

по дисциплине «Проектирование информационных систем» на тему: «Разработка информационной системы для хостела»

Студент группа ИДБ–15–13		Соловьева Л.В.
	подпись	_
Руководитель старший преподаватель		Овчинников П.Е.
	подпись	

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)	5
ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)	10
ГЛАВА 3. ДИАГРАММЫ КЛАССОВ (ERD)	13
ГЛАВА 4. ОЦЕНКА СЛОЖНОСТИ И ТРУДОЗАТРАТ ПО	РАЗРАБОТКЕ
ИС	15
ЗАКЛЮЧЕНИЕ	17
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	18

ВВЕДЕНИЕ

Объектом исследования данной работы является хостел. Хостел — европейская система размещения, предоставляющая своим постояльцам на короткий или длительный срок жильё, представляющее собой, как правило, спальное место без дополнительных удобств в комнате.

Автоматизация учета оказанных услуг очень важна для хостелов. До сих пор не все администраторы таких объектов имеют четко отлаженный учет гостей и оказанных им услуг. Обобщение данных повышает эффективность, упрощает работу и обеспечивает удобный и быстрый доступ к информации, повышая скорость работы администраторов.

Поэтому, проектирование автоматизированной информационной системы хостела для учёта операций, просмотра отчётов и работы с клиентской базой стало целью курсового проекта.

Предметом деятельности работы хостела является: сбор сведений о клиентах и товарах, их учёт, проведение с ними операций, ведение бухгалтерии (подсчёт итоговой стоимости проживания с учетом купленных товаров и услуг, расчёт с поставщиками и проч.).

Данная система актуальная и необходима для облегчения рабочего процесса сотрудников хостела. Любая система не только упрощает работу, а также увеличивает скорость выполнения задач, что приводит к более быстрому и качественному обслуживанию, но и к высокой производительности организации.

Работа системы хостела происходит следующим образом: клиенту предоставляется выбор комнаты, в которой тот хочет проживать, кассир проверяет наличие свободных мест по базе и совершает операцию продажи. Операция документируется в чеке и печатается для выдачи покупателю. В случае дальнейшей покупки клиентом представленных товаров и услуг, в базе автоматически происходит перерасчёт и обновляется их количество. Заказы и операции с поставщиками также фиксируются в системе.

Исследования выполняются путем построения следующих моделей:

- 1. Функциональная модель (IDEF0).
- 2. Модель потоков данных (DFD).
- 3. Модель диаграммы классов (ERD).

Функциональная модель разрабатывается с точки зрения администратора.

Целью моделирования является выделение процессов, требующих улучшения путем автоматизации.

ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)

Все используемые в функциональной модели данные согласно терминологии модели IDEF0 могут быть разделены на четыре вида: входящие потоки данных, выходящие потоки данных, управляющие потоки и потоки инструментов воздействия (механизмы) [1].

В данной курсовой работе входящими информационными потоками процесса, то есть данными, над которыми производится действие в ходе процесса, являются:

- 1. Информация о хостеле и обеспечение работы.
- 2. Заявка гостя на заселение в хостел.

Выходным информационным потоком данной курсовой работы, то есть результатом работы, являются:

- 1. Дополнительные услуги.
- 2. Счет гостю.
- 3. Отчетность.

Основные механизмы процесса в данной курсовой работе представлены следующими ролями и программным обеспечением:

- 1. Услуги поставщиков.
- 2. Инфраструктура хостела.

Управляющими потоками процесса представлена следующая документация:

1. Законы РФ и инструкция для администратора.

Полный набор диаграмм функциональной модели с обозначением всех перечисленных потоков, представлен далее (рис. 1.1 – 1.7).

Рис. 1.1. Контекстная диаграмма «Деятельность администратора хостела»

Рис. 1.2. Диаграмма A0: декомпозиция контекстной диаграммы на три блока A1-A3.

Рис. 1.3. Диаграмма А1 – заселение гостя в комнату.

Рис. 1.4. Диаграмма А2 – обслуживание комнаты.

Рис. 1.5. Диаграмма A3 — обеспечение поступления броней с каналов бронирования.

Рис. 1.6. Диаграмма А11 – резервирование комнат.

Рис. 1.7. Диаграмма А12 – оформление заселения.

ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)

Для дальнейшего проектирования информационной системы необходимо определить конфигурации технических и программных средств, а также допустимых видов хранилищ и их размещения.

Модель потоков данных (DFD) — методология графического структурного анализа, описывающая внешние по отношению к системе источники и адресаты данных, логические функции, потоки данных и хранилища данных, к которым осуществляется доступ [2].

Определение конфигурации технических средств: ПК для разработки интерфейса системы и проверки работоспособности.

Определение конфигурации программных средств – Microsoft Visual Studio.

Типы блоков DFD – экранные формы.

Разработанные диаграммы DFD представлены на рис.2.1-2.4.

Рис. 2.1. Диаграмма А0.

Рис. 2.2. Диаграмма А0 – деятельность администратора хостела.

Рис. 2.3. Диаграмма А2 – работа с гостями.

Рис. 2.4. Диаграмма А3 – работа с каналами бронирования.

ГЛАВА 3. ДИАГРАММЫ КЛАССОВ (ERD)

В данном курсовом проекте для определения потоков, ролей и модулей было построено три ERD диаграммы (диаграммы классов без атрибутов). Ниже представлены ERD диаграммы для всех ролей (рис. 3.1), потоков (рис. 3.2) и модулей (рис. 3.3).

Рис. 3.1. Диаграмма ER для всех ролей.

Рис. 3.2. Диаграмма ER для всех потоков.

Рис. 3.3. Диаграмма ER для всех модулей.

ГЛАВА 4. ОЦЕНКА СЛОЖНОСТИ И ТРУДОЗАТРАТ ПО РАЗРАБОТКЕ ИС

Для оценки сложности и трудозатрат по разработке информационной системы для хостела можно использовать формальные методики, основанные на обобщенном отраслевом опыте. Среди них наибольшее распространение получили два подхода:

- FPA IFPUG метод функциональных точек (рис.4.1.).
- Метод СОСОМО II Constructive Cost Model (рис.4.2.).

Метод FPA разработан на основе опыта реализации множества проектов создания ПО и поддерживается международной организацией IFPUG.

	FPA IFPUG		
(арактер	ристики		
1	Обмен данными	2	0-5
2	Распределенная обработка	2	0-5
	Производительность (время		
3	отклика)	2	0-5
4	Ограничения аппаратные	2	0-5
5	Транзакционная нагрузка	2	0-5
6	Взаимодействие с пользователем	2	0-5
7	Эргономика	2	0-5
8	Интенсивность изменения данных	2	0-5
9	Сложность обработки	2	0-5
10	Повторное использование	2	0-5
11	Удобство инсталляции	2	0-5
12	Удобство администрирования	2	0-5
13	Портируемость	2	0-5
14	Гибкость	2	0-5
		28	
	VAF:	0,93	
	UFP:	187	
	DFP:	174	
	SLOC:	8696	
	KLOC:	9	

Рис. 4.1. Расчет сложности разработки методом FPA/IFPUG.

Методика СОСОМО позволяет оценить трудоемкость и время разработки программного продукта.

	COCOMOI	l	
Масшт			
аб			0.00 4.00 0.70 0.40
4		0.70	6.20 4.96 3.72 2.48
1	опыт аналогичных разработок	3,72	1.24 5.07 4.05 3.04 2.03
2	гибкость процесса	3,04	
2	тиокость процесса	3,04	7.07 5.65 4.24 2.83
3	разрешение рисков	4,24	
	pacpooo poo_	.,	5.48 4.38 3.29 2.19
4	сработанность команды	3,29	1.10
	•		7.80 6.24 4.68 3.12
5	зрелость процессов	4,68	1.56
	SF:	18,97	
	E:	1,10	
Трудоем	кость		
1	квалификация персонала	1,00	2.12 - 0.5
2	надежность продукта	1,00	0.49 - 2.72
3	повторное использование	1,00	0.95 - 1.24
4	сложность платформы разработки	1,00	0.87 - 2.61
5	опыт персонала	1,00	1.59 - 0.62
6	оборудование коммуникаций	1,00	1.43 - 0.62
7	сжатие расписания	1,00	1.43 - 1.00
	EM:	1,00	
	PM:	32	ч/мес
	TDEV:	10	мес

Рис.4.2. Расчет трудоемкости и времени разработки программного продукта методом СОСОМО II.

ЗАКЛЮЧЕНИЕ

В ходе выполнения данного курсового проекта была достигнута основная цель – определены автоматизируемые процессы и построена модель автоматизированной системы для хостела.

При расчетах сложности разработки методом FPA/IFPUG для данного курсового проекта были получены следующие значения: сложность требуемых программных средств была оценена в 187 невыровненных функциональных точек (UFP) 174 выровненных функциональных точек (DFP), а объем программного кода на языках программирования высокого уровня (JavaScript) – в 8696 строк кода.

Расчеты, выполненные методом СОСОМО II, позволяют оценить общие трудозатраты проекта разработки программных средств в 32 человеко-месяца, а ожидаемую продолжительность проекта – в 10 месяцев (рис.4.2).

Разрабатываемая система для хостела может применяться как продукт для любой организации.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Сайт «wikipedia» [Электронный ресурс] Режим доступа: https://ru.wikipedia.org/wiki/IDEF0, свободный. Дата обращения: 25.12.2018 г.
- 2. Сайт «wikipedia» [Электронный ресурс] Режим доступа: https://ru.wikipedia.org/wiki/DFD, свободный. Дата обращения: 25.12.2018 г.
- 3. Сайт «wikipedia» [Электронный ресурс] Режим доступа: https://ru.wikipedia.org/wiki/Рамус, свободный. Дата обращения: 25.12.2018 г.