РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Отчёт по лабораторной работе №3 Шифрование гаммированием

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Агеева Анастасия Сергеевна, 1032212304

Группа: НФИмд-02-21

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Содержание

1	Цель работы	
2	Задание	5
3	Теоретическое введение 3.1 Гаммирование	6
4	Выполнение лабораторной работы	8
5	Выводы	10
Сп	исок литературы	11

List of Figures

4.1	Подключение библиотеки	8
4.2	Начальные значения для шифрования гаммированием	8
4.3	Функция шифрования gamming()	9
4.4	Результат выполнения программы	9

1 Цель работы

Цель данной лабораторной работы изучение реализация алгоритма шифрования гаммированием.

2 Задание

1. Реализовать программно шифрование гаммированием.

3 Теоретическое введение

3.1 Гаммирование

Гамми́рование, или **Шифр XOR**, — метод симметричного шифрования, заключающийся в «наложении» последовательности, состоящей из случайных чисел, на открытый текст. Последовательность случайных чисел называется гамма-последовательностью и используется для зашифровывания и расшифровывания данных [1].

В этом способе шифрование выполняется путем сложения символов исходного текста и ключа по модулю, равному числу букв в алфавите. Если в исходном алфавите, например, 33 символа, то сложение производится по модулю 33. Такой процесс сложения исходного текста и ключа называется в криптографии наложением гаммы [2].

3.2 Пример

Пусть символам исходного алфавита соответствуют числа от 0 (A) до 32 (Я). Если обозначить число, соответствующее исходному символу, x, а символу ключа – k, то можно записать правило гаммирования следующим образом:

$$z = x + k \pmod{N}$$
,

где z — закодированный символ, N - количество символов в алфавите, а сложение по модулю N - операция, аналогичная обычному сложению, с тем отличием, что если обычное суммирование дает результат, больший или равный N, то зна-

чением суммы считается остаток от деления его на N. Например, пусть сложим по модулю 33 символы Γ (3) и Ю (31):

$$3 + 31 \pmod{33} = 1$$
,

то есть в результате получаем символ Б, соответствующий числу 1.

4 Выполнение лабораторной работы

1. Подключение библиотек.

Figure 4.1: Подключение библиотеки

2. Реализация шифрования гаммированием

1. В качестве начальных значений берется гамма "гамма". Алфавитом может быть любая строка неповторяющихся символов. Я использую кириллицу. Также задаю строку сообщение, которое будет шифроваться.

Figure 4.2: Начальные значения для шифрования гаммированием

2. Задам функцию gamming(), в качестве параметров передаются заданные начальные данные. Внутри функции ключ-гамма, алфавит и сообщение преобразую в массив. Затем увеличу длину ключа-гаммы, чтобы число символов совпадало с сообщением, делаю это дописывая ключ пока длина не будет равной или больше сообщению, лишние символы отсекаю. Затем нахожу индексы символов сообщения и ключа в алфавите и сохраняю их в массиве. В новый массив сохраняю символы, рассчитав индексы по формуле $z = x + k \pmod{N}$. Полученный массив преобразую в строку и возвращаю.

Figure 4.3: Функция шифрования gamming()

3. Выведу результат работы программы для заданных начальных значений.

Figure 4.4: Результат выполнения программы

5 Выводы

В ходе данной лабораторной работы я реализовала алгоритм шифрования гаммированием.

Список литературы

- 1. Гаммирование [Электронный ресурс]. Википедия, 2019. URL: https://ru.w ikipedia.org/wiki/Гаммирование.
- 2. Основы криптографии [Электронный ресурс]. НОУ ИНТУИТ, 2015. URL: ht tps://intuit.ru/studies/courses/691/547/lecture/12373?page=4.