PRÁCTICA 1

1.2. INTRODUCCIÓN DE DATOS

Ejemplo: Introducir los siguientes datos, con el nombre Datos_personas, usando el editor de datos.

Nombre	Color_de_pelo	Altura
Luis	Moreno	1.75
María	Rubio	1.64
Pedro	Rubio	1.72
Alberto	Castaño	1.78
Isabel	Castaño	1.67
Manuel	Moreno	1.71
María	Castaño	1.73

Datos → Nuevo Conjunto de Datos

Podemos editar los datos si nos vamos al botón: <u>Editar conjunto de datos.</u> Y si queremos visualizarlo, <u>Visualizar conjunto</u> de datos.

Si queremos guardar el archivo con los datos introducidos, Datos \rightarrow Conjunto de datos activo \rightarrow Guardar el conjunto de datos activo. En el menú, seleccionaremos Archivos de datos de R.

1.3. FUSIONAR CONJUNTOS DE DATOS

Primero, creamos dos nuevos conjuntos de datos para realizar el ejercicio:

X Cancelar

Datos → Fusionar conjunto de datos

1.4. CONSTRUCCIÓN DE NUEVAS VARIABLES

Datos → Modificar variables del conjunto de datos activo → Calcular una nueva variable

OPERACIONES PARA EL CAMPO EXPRESIÓN A CALCULAR:

Funciones			
Raíz cuadrada: $sqrt(\cdot)$	Exponencial: $\exp(\cdot)$		
Logaritmo neperiano: $\log(\cdot)$	Seno: $\sin(\cdot)$		
Coseno: $\cos(\cdot)$	Tangente: $tan(\cdot)$		

Operadores			
Aritméticos	De comparación	Logicos	
Suma: +	Igualdad: ==	'Y' lógico: &	
Diferencia: -	Distinto: !=	'No' lógico: !	
Producto: *	Menor que: <	'O' lógico:	
División: /	Mayor que: >		
Potencia: ^	Menor o igual que: <=		
	Mayor o igual que: >=		

1.5. FILTRADO DE DATOS

Datos → Conjunto de datos activo → Filtrar el conjunto de datos activo

EJEMPLO: Queremos saber el consumo de los coches Europeos

Para ver los datos Estadísticos → Resúmenes → Conjunto de datos activo

Min. : 5.000 lst Qu.: 8.000 Median : 9.000

consumo

Mean : 8.886 Siendo, valor mínimo (Min.), valor máximo (Max.), y valor medio (Mean).

3rd Qu.:10.000 Max. :15.000

NA's :3

Ejemplos:

- Determinar el consumo medio de los coches japoneses que hay en la muestra. Seleccionamos RCars como conjunto de datos activo. A continuación realizamos un filtrado del conjunto de datos como sigue: desmarcamos la casilla Incluir todas las variables y seleccionamos la variable consumo. Dado que sólo queremos seleccionar los casos en los que el origen del coche es japonés, como expresión de selección ponemos origen=='Japón' (cuidado con las mayusculas y las tildes). Finalmente, pondremos como nombre al nuevo conjunto de datos Consumos_Japón. Pulsamos Aceptar y ya tenemos listo el nuevo conjunto de datos. Finalmente elegimos la opción Estadísticos→Resúmenes→Conjunto de datos activo; en la salida podemos ver que el consumo medio de los coches japoneses es de 8.051 l/100Km.
- Calcular la potencia máxima de los coches que no tienen 8 cilindros.
 Seleccionamos RCars como conjunto de datos activo y procedemos de manera similar al ejemplo anterior pero, en este caso, la variable a seleccionar es cv y la expresión de selección será cilindr != 8. Nótese que, al ser 8 un valor numérico no tenemos que usar comillas. Al nuevo conjunto de datos le pondremos como nombre cv_no_8. Finalmente, repitiendo el paso final del ejemplo anterior, encontramos que la potencia máxima de los coches que no tienen 8 cilindros es de 165cv.

EJEMPLO 1:

Datos → Conjunto de datos activo → Filtrar el conjunto de datos activo

EJEMPLO 2:

Datos → Conjunto de datos activo → Filtrar el conjunto de datos activo

GRADO EN INGENIERÍA INFORMÁTICA - MATEMÁTICAS III

Ejercicios:

- Determinar el valor máximo de la variable acel para los coches europeos que tienen cuatro cilindros (sol: 24.80 s.).
- Determinar la potencia media de los coches que tienen consumo no superior a 8 l/100Km (sol: 72.79cv).

EJERCICIO 1:

Datos → Conjunto de datos activo → Filtrar el conjunto de datos activo

GRADO EN INGENIERÍA INFORMÁTICA – MATEMÁTICAS III

EJERCICIO 2:

Datos → Conjunto de datos activo → Filtrar el conjunto de datos activo

