

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Adder, Subtractor, Overflow - 4

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Adder, Subtractor, Overflow - 4

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - Adder, Subtractor, Overflow 4
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Overflow Logic
 - Unsigned Addition
 - Twos's Complement Addition

ADDER, SUBTRACTOR, OVERFLOW - 4 Why Overflow

- Logic circuits have fixed bit widths
 - Ex. 64-bit processor
 - Addition / Subtraction done on fixed bitwidth numbers

Overflow

When result of an operation does not fit in the fixed bitwidth, **overflow** is said to occur

ADDER, SUBTRACTOR, OVERFLOW - 4 Overflow (Unsigned Addition / Subtraction)

Addition Carry out for msb is 1 indicates overflow

For 4-bit adder above, whenever c_3 is 1, it indicates overflow

Two's complement addition

PES UNIVERSITY ONLINE

- No overflow when numbers have opposite signs (or one/both are zero)
- Overflow can occur when
 - When both positive
 - \star msb is 1 (c_{msb-1} is 1)
 - \star c_{msb-1} is 1 and c_{msb} is 0
 - When both negative
 - \star msb is 0 (c_{msb-1} is 0)
 - \star c_{msb-1} is 0 and c_{msb} is 1
 - overflow = $c_{msb} \oplus c_{msb-1}$

Two's complement addition

PES UNIVERSITY ONLINE

- No overflow when numbers have opposite signs (or one/both are zero)
- Overflow can occur when
 - When both positive
 - \star msb is 1 (c_{msb-1} is 1)
 - \star c_{msb-1} is 1 and c_{msb} is 0
 - When both negative
 - ★ msb is 0 (c_{msb-1} is 0)
 - \star c_{msb-1} is 0 and c_{msb} is 1
 - overflow = $c_{msb} \oplus c_{msb-1}$

Think About It

- Consider the 4-bit numbers 1100 and 0100.
 - If the numbers are unsigned binary, then does the addition of the two numbers produce an overflow
 - ▶ If the numbers are two's complement binary, then does the subtraction of the latter number from the former result in an overflow?