Ideales, Variedades y Algoritmos: Ch 1, Section 1

Francisco Javier Cruz Ortiz

22 de diciembre de 2022

1. Geometría Algebra y Algoritmos

1.1. Polinomios y espacios afín

Ejercicio 1.1.1. Sea $\mathbb{F}_2 = \{0,1\}$ con adición y multiplicación definidas por 0+0=1+1=0, 0+1=1+0=1, $0\cdot 0=0\cdot 1=1\cdot 0=y$ $1\cdot 1=1$, explicar porqué \mathbb{F}_2 es un campo.

Solución: Note, por como se definen las operaciones en \mathbb{F}_2 , es claro que \mathbb{F}_2 es asociativo con la suma y con el producto, además no es necesario verificar que se cumplen las propiedades distributivas puesto que las operaciones están bien definidas y el resultado de distrubuir el producto sobre la suma con los elementos 0, 1 da como resultado ya sea 0 o 1, así basta con mostrar quienes son los inversos aditivos y multiplicativos además de las indentidades. En efecto, tenemos que la identidad aditiva en \mathbb{F}_2 es 0 puesto que cumple que para $0, 1 \in \mathbb{F}_2$ se cumple que 0+1=1=1+0 y 0+0=0. La identidad multiplicativa claramente es 1 puesto que para $0, 1 \in \mathbb{F}_2$ se tiene que $1 \cdot 0 = 0 = 0 \cdot 1$ y $1 \cdot 1 = 1$. Además los inversos aditivos de $0, 1 \in \mathbb{F}_2$ son ellos mismos puesto que 0+0=0 y 1+1=0 en \mathbb{F}_2 . Y por ultimo tenemos que el inverso multiplicativo de $1 \in \mathbb{Z}_2$ es el mismo puesto que $1 \cdot 1 = 1$, omitiendo claramente al 0 puesto que 0 no tiene inverso multipliticativo. Concluyendo así que \mathbb{F}_2 es campo.

Ejercicio 1.1.2. Sea \mathbb{F}_2 el campo del Ejercicio 1.1.1.

- 1. Conside el polinomio $g(x,y)=x^2y+y^2x\in \mathbb{F}_2[x,y]$. Demostrar que g(x,y)=0 para todo $(x,y)\in \mathbb{F}_2^2$, y explicar porque esto no contradice la Proposición 5.
- 2. Encontrar un polinomio no cero en $\mathbb{F}_2[x,y,z]$ que se anule en todo punto de \mathbb{F}_2^3 . Intentar encuentrar uno que involucre las tres variables.
- 3. Encontrar un polinomio en $\mathbb{F}_2[x_1,...,x_n]$ que se anule en todo punto de \mathbb{F}_2^n . ¿Es posible encontrar un polinomio en el que aparezcan todas las indeterminadas $x_1,...,x_n$?

Solución: Sea $\mathbb{F}_2 = \{0, 1\}.$

1. Sea,
$$\mathbb{F}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\}, y \ g(x,y) = x^2y + y^2x \in \mathbb{Z}_2[x,y], \text{ así}$$

$$g(0,0) = (0)^{2}(0) + (0)^{2}(0)$$

$$= 0,$$

$$g(0,1) = (0)^{2}(1) + (1)^{2}(0)$$

$$= 0$$

$$g(1,0) = (1)^{2}(0) + (0)^{2}(1)$$

$$= 0$$

$$g(1,1) = (1)^{2}(1) + (1)^{2}(1)$$

$$= 1 + 1$$

$$= 0$$

por lo que g se anula en todo punto de \mathbb{F}_2^2 y esto no contradice la proposición 5 puesto que \mathbb{F}_2 es un campo finito.

2. Sea $\mathbb{F}_2^3 = \{(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,1,0), (1,0,1), (1,1,1)\}$, entonces note que

$$0 = (0)(0)(0) + (0)(0)(0)^{2}$$

$$0 = (0)(0)(1) + (0)(0)(1)^{2}$$

$$0 = (0)(1)(0) + (0)(1)(0)^{2}$$

$$0 = (1)(0)(0) + (1)(0)(0)^{2}$$

$$0 = (0)(1)(1) + (0)(1)(1)^{2}$$

$$0 = (1)(1)(0) + (1)(1)(0)^{2}$$

$$0 = (1)(0)(1) + (1)(0)(1)$$

$$0 = (1)(1)(1) + (1)(1)(1)^{2}$$

lo cuál sucede puesto que $0^2=0$ y $1^2=1$. Además, con esto hay que observar que contruimos 7 "sumas" de dos 0 y una de dos ünos" . pues en el producto xyz si x,y o z es cero, entonces xyz=0 y $xyz^2=0$, por lo que $xyz+xyz^2=0$ en estos casos. Por otra parte, si x=y=z=1 entonces xyz=1 y $xyz^2=1$. Entonces $xyz+xyz^2=0$ (pues 1+1=0 en \mathbb{F}_2). Por lo que $g(x,y,z)=xyz+xyz^2$ es un polinomio en $\mathbb{F}_2[x,y,z]$ que se anula en todo \mathbb{F}_3^3 .

3. Usando un argumento similar al inciso anterior tenemos que

$$g(x_1, x_2, ..., x_n) = x_1 x_2 ... x_n + x_1 x_2 ... x_n^2$$

es un polinomio en $\mathbb{F}[x_1,...,x_n]$ que se anula en todo punto de \mathbb{F}_2^n .

Ejercicio 1.1.3. Sea p un número primo. El anillo de enteros módulo p es un campo con p elementos, que denotaremos como \mathbb{F}_p .

- 1. Explica porqué $\mathbb{F}_p \setminus \{0\}$ es un grupo bajo el producto.
- 2. Usa el Teorema de Lagrange para mostrar que $a^{p-1}=1$ para todo $a\in \mathbb{F}_p$.
- 3. Prueba que $a^p = a$ para todo $a \in \mathbb{F}_p$.
- 4. Encuentra un polinomio no cero en $\mathbb{F}_p[x]$ que se anule en todos los puntos de \mathbb{F}_p .

Demostración. Sea $\mathbb{Z}_p = \mathbb{F}_p$. Usaremos = en vez de \equiv en los incisos b,c y d.

1. Es claro que el producto en general para \mathbb{Z}_n está bien definido y en particular para \mathbb{Z}_p , además es claro que es asociativo pues si para $a,b,c\in\mathbb{Z}_n$ tales que $(ab)c\equiv d\pmod{n}$ p.a $d\in\mathbb{Z}_n$ entonces $d\equiv a(bc)\pmod{n}$ y por transitividad se tiene lo deseado y en particular sucede en \mathbb{Z}_p . Luego, se sabe que la identidad multiplicativa en \mathbb{Z}_n es la clase del 1 y en particular lo és para \mathbb{Z}_p . Pero en general no todo elemento de \mathbb{Z}_n tiene inverso multiplicativo puesto que hay elementos no nulos en \mathbb{Z}_n cuyo produto es cero. Tomemos por ejemplo el caso de \mathbb{Z}_6 y los elementos 3 y 4 cuyo producto resulta

$$3\cdot 4\equiv 0\mod 6$$

así que si se quiere para $a \in \mathbb{Z}_n$ no nulo exista un inverso multiplicativo $b \in \mathbb{Z}_n$ no nulo debe de cumplir que $ab \equiv 1 \pmod{n}$ lo que equivale a que $ab - 1 = nk \pmod{k} \in \mathbb{Z}$ si y sólo si ab - nk = 1 lo que significa en términos más generales que $\operatorname{mcd}(a,n) = \operatorname{mcd}(b,n) = 1$, es decir, $a \in \mathbb{Z}_n$ tendra inverso multiplicativo b en \mathbb{Z}_n si y sólo si $\operatorname{mcd}(a,n) = 1$ (de igual forma con b tomando a su inverso como a). Y en particular notemos que para $\mathbb{Z}_p \setminus \{0\} = \{1, 2, ..., p-1\}$ se cumple que $\operatorname{mcd}(a,p) = 1$ para todo $a \in \mathbb{Z}_p \setminus \{0\}$ ya que en caso contrario de que $\operatorname{mcd}(a,n) = d$ con d > 1 y $a \in \{1, 2, ..., p-1\}$ se tendría que

$$d|p \Leftrightarrow d = p$$

pues d>1 y p es primo. Además se tiene que d|a de dónde p|a y a sería un multiplo de p lo que no es posible puesto que a< p pues $a\in \mathbb{Z}_p\setminus\{0\}$. Por lo que se garantiza que en $\mathbb{Z}_p\setminus\{0\}$ todo elemento tiene un inverso multiplicativo y así $\mathbb{Z}_p\setminus\{0\}$ tiene estructura de grupo.

2. Sea $a \in \mathbb{F}_p \setminus \{0\}$ puesto que $\mathbb{F}_p \setminus \{0\}$ es un grupo finito de orden p-1, recordemos que el Teorema de Lagrange indica que el orden de todo subgrupo de un grupo G divide al orden de G. Consideremos así al subgrupo $H = \{a^n : a \in \mathbb{F}_p \setminus \{0\}, n \in \mathbb{Z}\}$. Sabemos que H es un subgrupo ciclico de $\mathbb{F}_p \setminus \{0\}$ generado por a dónde |H| = o(a) (pues $\mathbb{F}_p \setminus \{0\}$ es un grupo finito) y así afirmamos que $a^{|\mathbb{F}_p \setminus \{0\}|} = 1$. En efecto, puesto que H es un subgrupo de $\mathbb{F}_p \setminus \{0\}$ entonces por el teorema de Lagrange se tiene que $|H| \mid |\mathbb{F}_p \setminus \{0\}|$ y como |H| = o(a) se tiene que $o(a) \mid |\mathbb{F}_p \setminus \{0\}|$ y como $|\mathbb{F}_p \setminus \{0\}| = p-1$ entonces se tiene que p-1 = o(a)k para algún $k \in \mathbb{Z}$ y así

$$a^{|\mathbb{F}_p \setminus \{0\}|} = a^{p-1}$$

$$= a^{o(a)k}$$

$$= (a^{o(a)})^k$$

$$= (1)^k$$

$$= 1$$

es decir, $a^{p-1} = 1$ para todo $a \in \mathbb{F}_p \setminus \{0\}$.

3. Sea $a \in \mathbb{F}_p$, si a = 0 entonces es claro que $a^p = 0$ puesto que $0^p \equiv 0 \mod p$. Luego, si $a \neq 0$ entonces $a \in \mathbb{F}_p \setminus \{0\}$ y por el inciso anterior vimos que $a^{p-1} = 1$ para toda $a \in \mathbb{F}_p \setminus \{0\}$ y así

$$(a)a^{p-1} = (a)1$$
$$a^p = a$$

para todo $a \in \mathbb{F}_p \setminus \{0\}$, y como esto se cumple para todo $a \in \mathbb{F}_p$ podemos concluir que $a^p = a$ para todo $a \in \mathbb{F}_p$.

4. Mostramos anteriormente que para todo $a \in \mathbb{F}_p$ sucede que $a^p = a$ de aquí tenemos que $a^p - a = 0$ para toda $a \in \mathbb{F}_p$ por lo que podemos contruir un polinomio en $\mathbb{F}_p[x]$ dado por

$$x^p - x$$

П

el cual se anula en todo punto de \mathbb{F}_p .

Ejercicio 1.1.4. Sea \mathbb{F} un campo finito con q elementos. Adapta el argumento del Ejercicio 1.1.3 para demostrar que $x^q - x$ es un polinomio no nulo en $\mathbb{F}[x]$ que se anula en todo punto de \mathbb{F} .

Demostración. Sea $\mathbb F$ un campo con q elementos, digase $q=p^n$ dónde p es un número primo, tenemos que $\mathbb F\setminus\{0\}$ es grupo multiplicativo de orden q-1, por lo que dicho grupo es de orden finito, así, para cada $a\in\mathbb F\setminus\{0\}$ consideramos al subgrupo $H=\{a^n:a\in\mathbb F\setminus\{0\},n\in\mathbb Z\}$. Sabemos que H es un subgrupo ciclico de $\mathbb F\setminus\{0\}$ generado por a dónde |H|=o(a) (pues $\mathbb F\setminus\{0\}$ es un grupo finito) y así afirmamos que $a^{|\mathbb F\setminus\{0\}|}=1$. En efecto, puesto que H es un subgrupo de $\mathbb F_q\setminus\{0\}$ entonces por el teorema de Lagrange se tiene que $|H|\mid |\mathbb F\setminus\{0\}|$ y como |H|=o(a) se tiene que $o(a)\mid |\mathbb F\setminus\{0\}|$ y como $|\mathbb F\setminus\{0\}|=q-1$ entonces se tiene que q-1=o(a)k para algún $k\in\mathbb Z$ y así

3

$$a^{|\mathbb{F}\setminus\{0\}|} = a^{q-1}$$

$$= a^{o(a)k}$$

$$= (a^{o(a)})^k$$

$$= (1)^k$$

$$= 1$$

y así se cumple que $a^{q-1}=1$ de donde $a^q=a$ para todo $a\in\mathbb{F}\setminus\{0\}$. Además es claro que $0^q=0$ en \mathbb{F} de modo que el polinomio x^q-x se anula en todo \mathbb{F} . Más aún, la construcción de este polinomio sobre un campo finito indica que la proposición 1.1 en efecto pude fallar absolutamente sobre todos los campos finitos.

Ejercicio 1.1.5. En la demostración de la Proposición 5, tomamos $f \in k[x_1,...,x_n]$ y lo escribimos como un polinomio en x_n con coeficientes en $k[x_1,...,x_{n-1}]$. Para ver cómo se ve esto en un caso específico, considere el polinomio

$$f(x,y,z) = x^5y^2z - x^4y^3 + y^5 + x^2z - y^3z + xy + 2x - 5z + 3.$$

- a) Escribe a f como un polinomio en k[y, z].
- b) Escribe a f como un polinomio en k[x, z].
- c) Escribe a f como un polinomio en k[x, y].

Solución: Sea $f(x, y, z) = x^5y^2z - x^4y^3 + y^5 + x^2z - y^3z + xy + 2x - 5z + 3 \in \mathbb{K}[x, y, z].$

a) Reordenamos a f(x, y, z) por orden los exponentes de la variable x como se sigue:

$$f(x, y, z) = x^{5}y^{2}z - x^{4}y^{3} + x^{2}z + xy + 2x - 5z + y^{4} - y^{3}z + 3$$

y factorizando terminos iguales con diferente coeficiete y asociando constantes independientes obtenemos que $\,$

$$f(x,y,z) = x^5y^2z - x^4y^3 + x^2z + (y+2)x + (y^4 - y^3z + 5z + 3).$$

b) Reordenamos a f(x, y, z) por orden los exponentes de la variable y como se sigue:

$$f(x,y,z) = y^5 - y^3x^4 - y^3z + y^2x^5z + yx + x^2z + 2x - 5z + 3$$

y factorizando terminos iguales con diferente coeficiete y asociando constantes independientes obtenemos que

$$f(x,y,z) = y^5 - y^3(x^4 - z) + y^2(x^5z) + y(x) + (x^2z + 2x - 5z + 3)$$

c) Reordenamos a f(x, y, z) por orden los exponentes de la variable z como se sigue:

$$f(x,y,z) = zx^{5}y^{2} + zx^{2} - zy^{3} - 5z - x^{4}y^{3} + xy + y^{5} - 2x + 3$$

y factorizando terminos iguales con diferente coeficiete y asociando constantes independientes obtenemos que

$$f(x, y, z) = z(x^5y^2 + x^2 - y^3 - 5) - (x^4y^3 - xy - y^5 + 2x - 3).$$

Ejercicio 1.1.6. Dentro de \mathbb{C}^n tenemos el subconjunto \mathbb{Z}^n , que consta de todos los puntos con coordenadas enteras.

a) Demostrar que si $f \in \mathbb{C}[x_1,...,x_n]$ se anula en todo punto de \mathbb{Z}^n entonces, f es el polinomio cero.

b) Sean $f \in \mathbb{C}[x_1,...,x_n]$ y M el máximo de los exponentes de cualquier variable que aparezca en f. Sea \mathbb{Z}^n_{M+1} el conjunto de los puntos en \mathbb{Z}^n para lo que todas sus coordendas están entre 1 y M+1, inclusive. Demostrar que si f se anula en todos los puntos de \mathbb{Z}^n_{M+1} entonces, f es el polinomio cero.

Demostración. a) Sea $f \in \mathbb{C}[x_1,...,x_n]$ un polinomio no cero que se anula en todo punto de \mathbb{Z}^n , por inducción sobre el número de variables y coordenadas en \mathbb{Z} . Si n=1 y f es un polinomio en $\mathbb{C}[x_1]$ que se anula en todo punto de \mathbb{Z} , con $\deg(f)=m>0$ (pues un polinomio contante no cero no se anula en ningún punto), f puede tener a lo más m raíces (no necesariamente distintas), en particular si $f \in \mathbb{C}[x_1]$ es tal que f(a)=0 para todo $a \in \mathbb{Z}$, entonces f tendría infinitas raíces ya que \mathbb{Z} es un conjunto infinito lo que contradice que $\deg(f)=m>0$ por lo que tiene que suceder que f es el polinomio cero

Ahora supongamos que es cierto para n-1, es decir, si $f \in \mathbb{C}[x_1,...,x_{n-1}]$ es un polinomio que se anula en todo punto de \mathbb{Z}^{n-1} entonces f es el polinomio cero. Luego, sea $f \in \mathbb{C}[x_1,...,x_n]$ un polinomio tal que $f(a_1,...,a_n)=0$ para todo $(a_1,...,a_n) \in \mathbb{Z}^n$, dado que $f \in \mathbb{C}[x_1,...,x_n]$ entonces podemos ver a f como:

$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} x_1^{\alpha_1} \cdots x_{n-1}^{\alpha_{n-1}} x_n^{\alpha_n}$$

con $\alpha = (\alpha_1, ..., \alpha_n)$. Tomando a N como el exponente más grande en la varieble x_n , es decir, el máximo de los α_n tal que $x_n^{\alpha_n}$, podemos reescribir a f como

$$f = \sum_{i=0}^{N} g_j(x_1, ..., x_{n-1}) x_n^j$$

dónde $g_j(x_1,...,x_{n-1}) \in \mathbb{C}[x_1,...,x_{n-1}]$. Sea entonces $(b_1,...,b_{n-1}) \in \mathbb{Z}^{n-1}$ tal que

$$f(b_1, ..., b_{n-1}, x_n) = \sum_{j=0}^{N} g_j(b_1, ..., b_{n-1}) x_n^j$$

con $g_j(b_1,...,b_{n-1})x_n^j \in \mathbb{C}[x_n]$ y supongamos que $x_n = b_n$ para algún $b_n \in \mathbb{Z}$, así

$$0 = f(b_1, ..., b_{n-1}, b_n) = \sum_{i=0}^{N} g_i(b_1, ..., b_{n-1}) b_n^j$$

pues f se anula en todo \mathbb{Z}^n por hipotesís. Así f se anula en \mathbb{Z} y por la base inductiva f es el polinomio cero en $\mathbb{C}[x_n]$. Por lo que para toda j=0,1,...,N, $g_j\in\mathbb{C}[x_1,...,x_{n-1}]$ se anula en todo \mathbb{Z}^{n-1} y por la hipótesis de inducción $g_j(x_1,...,x_{n-1})$ es el polinomio cero en $\mathbb{C}[x_1,...,x_{n-1}]$ para todo j=0,1,...,N y concluyendo que f es el polinomio cero en $\mathbb{C}[x_1,...,x_n]$.

b) Sean $f \in \mathbb{C}[x_1,...,x_n]$ y M el máximo exponente de cualquier variable que aparece en f, si M=0 no hay nada que demostrar. Supongamos entonces que M>0 de dónde M+1>0, entonces aplicando inducción sobre el número de variables y número de coordenadas en \mathbb{Z} . Cuando n=1 entonces f es un polinomio en $\mathbb{C}[x_1]$ que se anula en todo punto de \mathbb{Z}_{M+1} pero M es el máximo exponente de x_1 en f, es decir, $\deg(f)=M$ por lo que f puede tener a lo más M raíces en \mathbb{Z}_{M+1} (no necesariamente distintas), lo que contradice el hecho de que $\deg(f)$ es M por lo que tiene que suceder que f es el polinomio cero. Ahora supongamos que es cierto para n-1, es decir, si $f\in\mathbb{C}[x_1,...,x_{n-1}]$ es un polinomio que se anula en todo punto de \mathbb{Z}_{M+1}^{n-1} donde M es el exponente que aparece en cualquier indeterminada de f, entonces f es el polinomio cero.

Luego, para el paso inductivo, si $f \in \mathbb{C}[x_1,...,x_n]$ es un polinomio que se anula en todo punto de \mathbb{Z}^n_{M+1} donde M es el máximo exponente que apaerece en cualquier indeterminada de f, entonces tenemos que $f(a_1,...,a_n)=0$ para todo $(a_1,...,a_n)\in\mathbb{Z}^n_{M+1}$, y dado que $f\in\mathbb{C}[x_1,...,x_n]$ podemos ver a f en la forma

$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} x_1^{\alpha_1} \cdots x_{n-1}^{\alpha_{n-1}} x_n^{\alpha_n}$$

con $\alpha = (\alpha_1, ..., \alpha_n)$. Por hipótesis tenemos que M es el exponente más grande en la varieble x_n , es decir, podemos reescribir a f como

$$f = \sum_{j=0}^{M} g_j(x_1, ..., x_{n-1}) x_n^j$$

dónde $g_j(x_1,...,x_{n-1})\in\mathbb{C}[x_1,...,x_{n-1}].$ Sea entonces $(b_1,...,b_{n-1})\in\mathbb{Z}_{M+1}^{n-1}$ tal que

$$f(b_1, ..., b_{n-1}, x_n) = \sum_{j=0}^{M} g_j(b_1, ..., b_{n-1}) x_n^j$$

con $g_j(b_1,...,b_{n-1})x_n^j\in\mathbb{C}[x_n]$ y supongamos que $x_n=b_n$ para algún $b_n\in\mathbb{Z}_{M+1},$ así

$$0 = f(b_1, ..., b_{n-1}, b_n) = \sum_{i=0}^{M} g_j(b_1, ..., b_{n-1}) b_n^j$$

pues f se anula en todo \mathbb{Z}_{M+1}^n por hipotesís. Así f se anula en todo \mathbb{Z}_{M+1} y por la base inductiva f es el polinomio cero en $\mathbb{C}[x_n]$. Por lo que para toda j=0,1,...,M, $g_j\in\mathbb{C}[x_1,...,x_{n-1}]$ se anula en todo punto de \mathbb{Z}_{M+1}^{n-1} y por la hipótesis de inducción $g_j(x_1,...,x_{n-1})$ es el polinomio cero en $\mathbb{C}[x_1,...,x_{n-1}]$ para todo j=0,1,...,M y concluyendo que f es el polinomio cero en $\mathbb{C}[x_1,...,x_n]$.