Осталось сделать

Перейти к заданию

ЗАВЕРШИТЬ

ЗАКРЫТЬ

Задание №1

Если
$$(x_0; y_0; z_0)$$
 — решение системы
$$\begin{cases} 2x + 3y - z = 5 \\ 3x + y - 3z = 4, \text{ то зна-} \\ x - y - 4z = 0 \end{cases}$$
 чение выражения $x_0 - 2z_0$ равно:

Задание №2

Если
$$A = \begin{pmatrix} 2 & -3 \\ 5 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 4 \\ 1 & 3 \end{pmatrix}$, то $3A + 2B$ равно

$$\begin{pmatrix} 6 & -1 \\ 17 & 12 \end{pmatrix} \qquad \begin{pmatrix} 2 & 7 \\ 5 & -4 \end{pmatrix} \qquad \begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix} \qquad \begin{pmatrix} 2 & 9 \\ 5 & 8 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 7 \\ 5 & -4 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 9 \\ 5 & 8 \end{pmatrix}$$

Осталось сделать

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №3

Найти элемент матрицы, обратной к $A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \\ -2 & -1 & 1 \end{pmatrix}$, расположенный на пересечении третьего столбца и третьей строки.

1

 $0,1 \frac{4}{9}$

0,5

Задание №4

Если $\vec{a}=\{1;3\}, \vec{b}=\{-2;3\}, \vec{c}=\{5;-3\},$ то разложение вектора \vec{c} по базису \vec{a}, \vec{b} ($\vec{c}=\alpha\vec{a}+\beta\vec{b}$) имеет вид:

$$\vec{c} = 2\vec{a} + \vec{b} \qquad \vec{c} = 2\vec{a} - \vec{b} \qquad \vec{c} = \vec{b} - 3\vec{a} \qquad \vec{c} = \vec{a} - 2\vec{b}$$

$$\vec{c} = 2\vec{a} - \vec{b}$$

$$\vec{c} = \vec{b} - 3\vec{a}$$

$$\vec{c} = \vec{a} - 2\vec{b}$$

Осталось

Осталось сделать

Задание №5

Пусть $\vec{a}=\{1;0;2\},\ \vec{b}=\{3;2;-3\},\ \vec{c}=\{4;-1;-2\}.$ Тогда длина вектора $\vec{d}=2\vec{a}-2\vec{b}+\vec{c}$ равна:

- 8,9
- **√**76
- **√**89
- $\sqrt{174}$

10

мин.

Перейти к заданию

Задание №6

Работа силы $\vec{F} = \vec{i} + 2\vec{j} - 3\vec{k}$ на пути от точки A(1;2;3) до точки B(2;1;-3) составляет:

- 16
- 17
- 18
- 19
- 20

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Осталось сделать

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №7

Пусть $|\vec{a}|=1$, $|\vec{b}|=5$, угол между векторами \vec{a} и \vec{b} равен $\frac{\pi}{6}$. Тогда площадь треугольника, построенного на векторах $2\vec{b}-\vec{a}$ и $\vec{a}+2\vec{b}$, равна:

5√3

12

4,5

5

 $12\sqrt{3}$

Задание №8

Являются ли векторы $\vec{a}=\{1;-3;2\},\,\vec{b}=\{-1;2;-3\},\,\vec{c}=\{4;-1;2\}$ компланарными?

да

нет

возможно

Вариант № 19

Осталось сделать

Перейти к заданию

ЗАВЕРШИТЬ

ЗАКРЫТЬ

Осталось

мин.

Задание №9

Сумма собственных значений матрицы $\begin{pmatrix} 7 & 0 \\ -4 & 3 \end{pmatrix}$ равна:

10

15

6

Результаты

Набранные баллы (тах=100)

Неверно выполнены задания

Не выполнены задания