```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean_squared_error
        from sklearn.preprocessing import LabelEncoder,OneHotEncoder,StandardScaler
        import warnings
        warnings.filterwarnings('ignore')
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.feature_selection import RFE
        from sklearn.preprocessing import MinMaxScaler,StandardScaler
        import joblib
        import datetime
        from sklearn.feature_selection import SelectFromModel
        from sklearn.model_selection import cross_val_score,GridSearchCV
        from sklearn.linear model import Ridge,Lasso
In [2]: df= pd.read_csv('advertising.csv')
```

```
In [3]: |df
Out[3]:
                 Daily
                 Time
                                         Daily
                                 Area
                                       Internet
                                                Ad Topic Line
                                                                      City Male
                                                                                      Country Timestamp
                Spent
                       Age
                              Income
                                        Usage
                   on
                  Site
                                                      Cloned
                                                                                               2016-03-27
             0 68.95
                         35 61833.90
                                        256.09
                                                               Wrightburgh
                                                                               0
                                                                                       Tunisia
                                                 5thgeneration
```

In [3]: df

Out[3]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Cli c
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	I taly	2016-01-10 02:31:19	
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00	
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01	
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57	
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54	
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21	
1000	rows ×	10 cc	olumns							
4										•

In [4]: df.head()

Out[4]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicked on Ad
0	68.95	35	61833.90	256.09	Cloned 5thgeneration	Wriahtburah	0	Tunisia	2016-03-27	0

In [4]: df.head()

Out[4]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicked on Ad
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	0
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	0
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	0
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	0
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	0

In [5]: df.tail()

Out[5]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clic on
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00	
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01	
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57	
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54	
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21	
4										•

In [6]: df.describe()

Out[6]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Clicked on Ad
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	65.000200	36.009000	55000.000080	180.000100	0.481000	0.50000
std	15.853615	8.785562	13414.634022	43.902339	0.499889	0.50025

```
In [6]: df.describe()
```

Out[6]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Clicked on Ad
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	65.000200	36.009000	55000.000080	180.000100	0.481000	0.50000
std	15.853615	8.785562	13414.634022	43.902339	0.499889	0.50025
min	32.600000	19.000000	13996.500000	104.780000	0.000000	0.00000
25%	51.360000	29.000000	47031.802500	138.830000	0.000000	0.00000
50%	68.215000	35.000000	57012.300000	183.130000	0.000000	0.50000
75%	78.547500	42.000000	65470.635000	218.792500	1.000000	1.00000
max	91.430000	61.000000	79484.800000	269.960000	1.000000	1.00000

```
In [7]: df.isnull().sum()
```

```
Out[7]: Daily Time Spent on Site
                                     0
                                     0
        Age
        Area Income
                                     0
        Daily Internet Usage
                                     0
        Ad Topic Line
                                     0
        City
                                     0
        Male
                                     0
        Country
                                     0
        Timestamp
                                     0
        Clicked on Ad
                                     0
        dtype: int64
```

In [8]: df.dtypes

Out[8]: Daily Time Spent on Site float64 int64 Age float64 Area Income Daily Internet Usage float64 Ad Topic Line object City object Male int64 object Country Timestamp object Clicked on Ad int64 dtype: object

```
In [9]: sns.heatmap(df.isnull(),yticklabels=False,cmap="Paired")
```

Out[9]: <Axes: >


```
In [9]: sns.heatmap(df.isnull(),yticklabels=False,cmap="Paired")
```

Out[9]: <Axes: >


```
In [10]: sns.jointplot(x='Age',y='Area Income',data=df)
```

Out[10]: <seaborn.axisgrid.JointGrid at 0x2504f763590>


```
In [10]: sns.jointplot(x='Age',y='Area Income',data=df)
```

Out[10]: <seaborn.axisgrid.JointGrid at 0x2504f763590>

In [11]: sns.jointplot(x='Age',y='Daily Time Spent on Site',data=df,color='red',kind='kde


```
In [15]: df
Out[15]:
                  Daily
                  Time
                                          Daily
                                 Area
                 Spent
                        Age
                                       Internet
                                                Ad Topic Line
                                                                       City Male
                                                                                      Country Timestamp
                               Income
                                         Usage
                    on
                   Site
                                                       Cloned
                                                                                               2016-03-27
              0 68.95
                         35 61833.90
                                                                               n
                                                                                       Tunisia
                                        256.09
                                                 5thgeneration
                                                                Wriahthurah
```

City Male

Country Timestamp

```
In [15]: df
```

Age

Daily

Internet

Ad Topic Line

Area

Income

Daily Time

Spent

Out[15]:

In [16]

In [17]

In [18]

Out[18]
In [20] $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

	on Site		Income	Usage		,		,		
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00	
996 5130 45 67/8217 13442 conesive New Dariene 1									2016-04-22 02:07:01	
997	Expanded South 2 51.63 51 42415.72 120.37 intangible Jessica 1 Mongolia solution					2016-02-01 17:24:57				
998	yk 55 55 19 41970 79 187 95 West Steven U Guatemaia								2016-03-24 02:35:54	
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21	
1000	rows ×	10 cc	olumns						_	
enco	der = l	_abe]	lEncoder()						
ქf['(ქf['(City'] Country	= er /']=	ncoder.fi = encoder	t_trans .fit_tr	fit_transfor form(df[' <mark>Cit</mark> ansform(df[' transform(df	y']) Country'])		ine'])		
	hape									
lf.sl										
(100	0, 10) der_co]	Ls								
(1000 encod categ	der_co] gorica] der <u>Ād</u> (de r_ose]	L_co] OneHo	AtEncoder opd ∙ D rat jarE	(drop <mark>ad</mark> rame 6 €0	ine','City', firs <mark>td</mark> ,spanat contonefitoph Line_5 Line_6	e= Fal<u>ន</u>្ត() ans foស្រ ២(dfi[Ad Spateg	Ad A		
(1000 encod categ	der_co] gorica] der <u>Ād</u> (de r_ose]	L_col OneHo Ls To l Line	AtEncoder opd ∙ D rat jarE	(dropad ramepen Line_4	firstd, spans contenefitopn	e=Falន្តa) ansfoស្លាយ(dff a Line_7 Lin	Ad Spateg	Ad A popiiGal_qob ine_9 Line_1	ib),coltumes	

```
Logistic regresssion(Advertising) - Jupyter Notebook
Out[18]: (1000, 10)
            encoder_cols
In [20]:
            categorical_col = ['Ad Topic Line','City','Country','Timestamp']
δητ[<del>1</del>8]:
            encoder AdOneHotEncoden(dropad firstd,spane=Falag)
                                                                                                     Ad
            encoderopiels toppel.DatgiEramopencotopiefitopicansform(diffopetegropical_qopib),coltimesteri
                   Line_1 Line_2 Line_3 Line_4 Line_5 Line_6 Line_7 Line_8 Line_9 Line_10
               0
                      0.0
                               0.0
                                       0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                   0.0
                                                                                           0.0
                                                                                                     0.0 ...
               1
                               0.0
                      0.0
                                       0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                   0.0
                                                                                           0.0
                                                                                                     0.0 ...
               2
                      0.0
                               0.0
                                       0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                   0.0
                                                                                           0.0
                                                                                                     0.0 ...
               3
                      0.0
                               0.0
                                       0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                   0.0
                                                                                           0.0
                                                                                                     0.0 ...
               4
                      0.0
                               0.0
                                       0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                   0.0
                                                                                           0.0
                                                                                                     0.0 ...
                                                                                            ...
               ...
                       ...
                                ...
                                        ...
                                                 ...
                                                          ...
                                                                  ...
                                                                           ...
                                                                                    ...
                                                                                                      ... ...
             995
                      0.0
                               0.0
                                        0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                           0.0
                                                                                  0.0
                                                                                                     0.0
                                                                                                         ...
             996
                      0.0
                               0.0
                                       0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                   0.0
                                                                                           0.0
                                                                                                     0.0 ...
                               0.0
             997
                      0.0
                                       0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                   0.0
                                                                                           0.0
                                                                                                     0.0 ...
             998
                      0.0
                               0.0
                                        0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                           0.0
                                                                                                     0.0 ...
             999
                      0.0
                               0.0
                                       0.0
                                                0.0
                                                         0.0
                                                                 0.0
                                                                          0.0
                                                                                   0.0
                                                                                           0.0
                                                                                                     0.0 ...
            1000 rows × 3202 columns
            df
In [21]:
Out[21]:
                   Daily Time
                                                       Daily
                                                                   Ad
                                                                                                             Clicked
                                          Area
                     Spent on
                                                     Internet
                                                                 Topic
                                                                        City
                                                                             Male Country Timestamp
                                Age
                                        Income
                                                                                                               on Ad
                          Site
                                                      Usage
                                                                  Line
               0
                         68.95
                                 35
                                       61833.90
                                                      256.09
                                                                    91
                                                                        961
                                                                                 0
                                                                                         215
                                                                                                      439
                                                                                                                   0
               1
                                                                        903
                                                                                                      474
                         80.23
                                 31
                                       68441.85
                                                      193.77
                                                                  464
                                                                                  1
                                                                                         147
                                                                                                                   0
               2
                                 26
                                       59785.94
                                                      236.50
                                                                                 0
                                                                                                      367
                         69.47
                                                                   566
                                                                         111
                                                                                         184
                                                                                                                   0
               3
                         74.15
                                 29
                                       54806.18
                                                      245.89
                                                                   903
                                                                        939
                                                                                  1
                                                                                         103
                                                                                                       56
                                                                                                                   0
               4
                         68.37
                                 35
                                       73889.99
                                                      225.58
                                                                        805
                                                                                  0
                                                                                          96
                                                                                                      767
                                                                                                                   0
                                                                   766
                                                                                                        ...
             995
                         72.97
                                 30
                                       71384.57
                                                      208.58
                                                                                                                   1
                                                                   345
                                                                         126
                                                                                 1
                                                                                         116
                                                                                                      202
             996
                         51.30
                                 45
                                       67782.17
                                                      134.42
                                                                   359
                                                                         488
                                                                                  1
                                                                                          26
                                                                                                      567
                                                                                                                   1
```

1000 rows × 10 columns

51.63

55.55

45.01

51

19

26

42415.72

41920.79

29875.80

In [22]: numerical_col = ['Daily Time Spent on Site','Area Income','Daily Internet Usage' Scaled = StandardScaler() Scaled= pd.DataFrame(Scaled.fit_transform(df[numerical_col]),columns=numerical_col

120.37

187.95

178.35

263

641

971

798

935

744

1

0

0

140

85

28

150

422

772

1

0

1

In [23]: Scaled

997

998

999

Out[23]:

	Daily Time Spent on Site	Area Income	Daily Internet Usage
0	0.249267	0.509691	1.734030
1	0.961132	1.002530	0.313805
2	0.282083	0.356949	1.287589

```
In [23]: Scaled
```

Out[23]:

	Daily Time Spent on Site	Area Income	Daily Internet Usage
0	0.249267	0.509691	1.734030
1	0.961132	1.002530	0.313805
2	0.282083	0.356949	1.287589
3	0.577432	-0.014456	1.501580
4	0.212664	1.408868	1,038731
995	0.502963	1.222006	0.651314
996	-0.864601	0.953329	-1.038735
997	-0.843775	-0.938570	-1.358924
998	-0.596389	-0.975484	0.181172
999	-1.261555	-1.873832	-0.037605

1000 rows × 3 columns

```
In [24]: x = pd.concat([encoder_cols,Scaled],axis=1)
y = df['Clicked on Ad']
```

In [25]: x

Out[25]:

	Ad Topic Line_1	Ad Topic Line_2	Ad Topic Line_3	Ad Topic Line_4	Ad Topic Line_5	Ad Topic Line_6	Ad Topic Line_7	Ad Topic Line_8	Ad Topic Line_9	Ad Topic Line_10	 Timestarr
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 _
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
995	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
996	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
997	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
998	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
999	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

1000 rows × 3205 columns

```
In [26]: y
```

```
Out[26]: 0
                 0
         1
                 0
         2
          3
```

995

```
In [26]: y
Out[26]: 0
                0
                0
         2
                0
         3
                0
         4
                 a
         995
         996
                1
         997
                1
         998
                0
         999
                1
         Name: Clicked on Ad, Length: 1000, dtype: int64
In [27]: from sklearn.linear_model import LogisticRegression
In [28]: X_train,X_test,Y_train,Y_test= train_test_split(x,y,test_size=0.2,random_state=0)
In [29]: log = LogisticRegression()
In [30]: y.isnull().sum()
Out[30]: 0
In [31]: |log.fit(X_train,Y_train)
Out[31]:
         ▼ LogisticRegression
          LogisticRegression()
In [32]: | print ('Train Score:',log.score(X_train,Y_train))
         Train Score: 0.9875
In [33]: print('Test Score:',log.score(X_test,Y_test))
         Test Score: 0.935
In [34]: | pred_train = log.predict(X_train)
         pred_test = log.predict(X_test)
In [35]: from sklearn import metrics
In [36]: print(metrics.classification_report(Y_train,pred_train))
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.98
                                       0.99
                                                  0.99
                                                             392
                                                 0.99
                             1.00
                                       0.98
                                                             408
In [37]: df.daypesacy
                                                 0.99
                                                             800
                                                 0.99
                                                             800
            macro avg
                             0.99
                                       0.99
Out[37]: Deightedmev@pent on0$99e
                                                 0.99
                                      f@o9964
                                                             800
         Age
                                        int64
         Area Income
                                      float64
         Daily Internet Usage
                                      float64
         Ad Topic Line
                                        int32
                                        int32
         City
                                        int64
         Male
```

```
In [37]: df.daypesacy
                                                  0.99
                                                             800
                                                             800
            macro avg
                             0.99
                                       0.99
                                                  0.99
Out[37]: Daightedmavgpent on0S99e
                                      f@o9964
                                                  0.99
                                                             800
                                        int64
                                      float64
         Area Income
         Daily Internet Usage
                                      float64
         Ad Topic Line
                                        int32
         City
                                         int32
         Male
                                         int64
         Country
                                         int32
         Timestamp
                                         int32
         Clicked on Ad
                                         int64
         dtype: object
In [38]: roc = log.predict_proba(X_train)[:,1]
         fpr, tpr, threshold = metrics.roc_curve(Y_train, roc)
         plt.plot([0,1], [0,1], 'k--')
         plt.plot(fpr, tpr, label='logistic')
         plt.ylabel('TPR')
         plt.xlabel('FPR')
         plt.show()
             1.0
```



```
In [39]: metrics.roc_curve(Y_train, roc)
                                                                          , 0.00255102, 0.00255102,
Out[39]: (array([0.
                                                         , 0.
                          0.00510204, \ 0.00510204, \ 0.0127551 \ , \ 0.0127551 \ , \ 0.01530612, 
                         0.01530612, 0.01785714, 0.01785714, 0.02295918, 0.02295918,
                         0.03316327, 0.03316327, 0.04846939, 0.04846939, 1.
                                       , 0.00245098, 0.96568627, 0.96568627, 0.96813725,
               array([0.
                         0.96813725, 0.98039216, 0.98039216, 0.9877451 , 0.9877451 ,
In [40]: roc = log: predict preba(X-tegs)[0.99264706, 0.99264706, 0.99509804]
             fpr, tpr, threshold 2. metric: roo. 91754902 test, roc.), 1. ]

fpr, tpr, threshold 9. metric: roo. 91754902 test, roc.), 1. ]

pitripyoff 199993446, 19, 99993446, 0.67251057, 0.67120995, 0.67092942,

pitriptoff 67175682, 1965695562; tc. 37995648, 0.32607576, 0.31485123,

pitriptoff 67175682, 1965695562; tc. 37995648, 0.32607576, 0.31485123,
                                                                                                             ]),
             plt.ylabel 10375695, 0.30105807, 0.29080246, 0.27585224, 0.27336954,
             plt.xlabel(49989)8, 0.24268456, 0.22167799, 0.21972291, 0.00246652]))
             plt.show()
```

```
In [40]: roc = log: predice8 probag(11868); [0.99264706, 0.99264706, 0.99509804, fpr, tpr, three hold of the control of the co
```



```
In [41]: from sklearn.metrics import matthews_corrcoef

mcc = matthews_corrcoef(Y_test, pred_test)
print('MCC: ',mcc)
```

MCC: 0.8691013006857282

```
In [42]: param_grid = {
          'penalty' :['l1','l2'],
          'C' : [0.1,0.5,1,5,10]
}
```

```
In [43]: from sklearn.model_selection import GridSearchCV
```

```
In [44]: grid = GridSearchCV(estimator=log, param_grid=param_grid, cv = 5)
```

```
In [45]: grid.fit(X_train,Y_train)
```

```
Out[45]:

GridSearchCV

In [46]:

best_param = grid.best_params_
best_modelogistickegests_sistimator

In [47]:

y_pred = best_model.predict(X_test)
```

In [48]: from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

```
In [46]: best_param = grid_best_params_
         best_modelogi grickegesets gistni mator_
In [47]: y_pred = best_model.predict(X_test)
In [48]: from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_sco
In [49]: | acc = accuracy_score(Y_test, y_pred)
         pre = precision_score(Y_test, y_pred)
         rec = recall_score(Y_test, y_pred)
          f1 = f1_score(Y_test, y_pred)
         roc_auc = roc_auc_score(Y_test, y_pred)
In [50]: print('Best Param: ', best_param)
         print('Accuracy: ', acc)
         print('Recall: ', rec)
         print('Precision: ', pre)
print('F1 Score: ', f1)
print('AUC-ROC: ', roc_auc)
         Best Param: {'C': 0.1, 'penalty': '12'}
         Accuracy: 0.95
         Recall: 0.9239130434782609
         Precision: 0.9659090909090909
         AUC-ROC: 0.9480676328502414
 In [ ]:
```