Imię i Nazwisko	Nr indeksu	Kierunek	Wydział	Data	Wersja		
Dawid Królak	145383	Informatyka	Inf	10.12.2020	1		
Nr ćwiczenia	Tytuł ćwiczenia						
101	Wyznaczanie prędkości dźwięku w powietrzu metodą przesunięcia fazowego.						

1 Wykorzystane wzory

1.1 Prędkość fali

$$v = f \cdot \lambda \tag{1}$$
$$\left[\frac{1}{s} \cdot m\right] = \left[\frac{m}{s}\right]$$

f - częstotliwość, λ - długość fali

1.2 Prędkość dźwięku w zależności od rodzaju gazu i temperatury

$$v = \sqrt{\frac{\gamma RT}{M}}$$

$$\left[\sqrt{\frac{\frac{J}{mol \cdot K}K}{\frac{kg}{mol}}} \right] = \left[\sqrt{\frac{J}{kg}} \right] = \left[\sqrt{\frac{N \cdot m}{kg}} \right] = \left[\sqrt{\frac{m^2}{s^2} \cdot m} \right] = \left[\frac{m}{s} \right]$$

$$(2)$$

 γ - indeks adiabatyczny (ok. 1,4 dla powietrza) R- stała gazowa
(ok. 8,31446 $\frac{J}{mol\cdot K})$ T- temperatura
 M- masa molowa (ok. 0,028966 $\frac{kg}{mol}$ dla powietrza)

2 Wyniki pomiarów

Tab 1. Wyniki pomiarowe

f[Hz]	$x_1[\mathrm{cm}]$	$x_2[\mathrm{cm}]$	$x_3[\mathrm{cm}]$	$x_4[\mathrm{cm}]$	$x_5[\mathrm{cm}]$	$x_6[\mathrm{cm}]$	$x_7[\mathrm{cm}]$	$x_8[\mathrm{cm}]$
4005	4,8	13,4	21,8	30,4	38,9	47,6	56,1	64,6
5010	5,7	12,5	19,4	26,2	33,2	40,0	46,8	53,8
6004	7,2	12,9	18,8	24,5	30,3	36,1	42,1	48,0
7012	9,1	14,0	18,8	23,8	28,5	33,4	38,2	43,0
7503	10,1	14,7	19,2	23,8	28,3	32,9	37,5	42,0

3 Opracowanie wyników

3.1 Różnica położeń mikrofonów, długość fali, prędkość dźwięku

Tab 2. Wyznaczenie prędkości fal metodą przesunięcia fazowego

2. Wy znaczenie przemości kar metodą przesamzeta kazewego										
f[Hz]	$x_2 - x_1[cm]$	$x_3 - x_2$ [cm]	$x_4 - x_3 [{ m cm}]$	$x_5 - x_4 [{ m cm}]$	$x_6 - x_5 [{ m cm}]$	$x_7 - x_6 [cm]$	$x_8 - x_7 [{\rm cm}]$	λ [c m]	$\lambda[\mathrm{m}]$	v[m/s]
4005	8,6	8,4	8,6	8,5	8,7	8,5	8,5	8,542857142857143	0,08542857142857143	342,1414285714286
5010	6,8	6,9	6,8	7	6,8	6,8	7	6,871428571428571	0,06871428571428571	344,2585714285714
6004	5,7	5,9	5,7	5,8	5,8	6	5,9	5,828571428571429	0,05828571428571429	349,9474285714286
7012	4,9	4,8	5	4,7	4,9	4,8	4,8	4,842857142857143	0,04842857142857143	339,5811428571429
7503	4,6	4,5	4,6	4,5	4,6	4,6	4,5	4,557142857142857	0,04557142857142857	341,9224285714286
Średnia							343,5702			
Odchylenie standardowe							1,75801045			

3.2 Prędkość dźwięku w powietrzu dla 20,2°C

v = 343.344329 m/s

4 Ostateczne wyniki

Tab 3. Wyniki końcowe

f[Hz]	$\lambda[\mathrm{m}]$	v[m/s]
4005	$(8,5\pm0,1)\cdot10^{-2}$	342,14
5010	$(6,9\pm0,1)\cdot10^{-2}$	344,26
6004	$(5,8\pm0,1)\cdot10^{-2}$	349,95
7012	$(4,8\pm0,1)\cdot10^{-2}$	339,58
7503	$(4,5\pm0,1)\cdot10^{-2}$	341,92
	Średnia	$343,57 \pm 1,8$
Prędk	ość dźwięku w powietrzu	343, 34

5 Wnioski

Wyznaczona eksperymentalnie prędkość fali dźwiękowej jest bardzo bliska wartości rzeczywistej, wyznaczonej dla temperatury 20,2 °C. Od właściwej wartości najbardziej odbiega pomiar wykonany dla fali o częstotliwości 6004 Hz, co pozwala przypuszczać, że doszło do błędnego zapisania parametrów wybranej figury Lissajous, nieprawidłowego zmierzenia częstotliwości lub zajścia innych okoliczności które zaburzyły przeprowadzenie doświadczenia. W pozostałych przypadkch jednak wyniki nie odbiegają znacząco od właściwej wartości, co wskazuje na fakt że wyznaczanie prędkości dźwięku metodą przesunięcia fazowego daje dokładne wyniki nawet gdy ograniczona jest dokładność pomiarów.