12. Kernel Methods STA3142 Statistical Machine Learning

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
Apr 9, 2024

Assignment 2

- Due Friday 4/12, 11:59pm
- Topics
 - (Math/Programming) Logistic Regression
 - (Math/Programming) Softmax Regression
 - (Math) Gaussian Discriminant Analysis
 - (Programming) Naïve Bayes for Spam Classification
- Please read the instruction carefully!
 - Submit one <u>pdf</u> and one <u>zip</u> file separately
 - Write your code only in the designated spaces
 - Do not import additional libraries
 - ...
- If you feel difficult, consider to take option 2.

Midterm

- Tuesday 4/23, 1:10pm 2:50pm KST
 - Please come here by 1:00pm!
 - In-person exam
- Closed book with an A4-size cheat sheet
 - You can print/write anything on both side.
- Coverage: Lec 6—13
 - True / False, multiple choice, math
- Short practice midterm will be out.
 - To be familiar with the type of midterm questions
 - # questions is about a half of the actual exam
 - No solution will be provided

Midterm Coverage

- 4,5: Linear Algebra & Probability Review
 - Not main topics, but you should be familiar with them.
 - Some contents (that we feel difficult) can be given FYI.
- 6,7. Linear Regression (and Other Topics)
- 8. Logistic/Softmax Regression
- 9. Generative Classifiers
- 10. Other Classifiers
- 11. Regularization and Validation
- 12. Kernel Methods
- 13. Support Vector Machines

Announcement

24 Fall graduate school application

• Submission: 4/19 ~ 4/26, 5 PM

• 1st notification: 5/24, 5 PM

• Exam: 6/1

Final notification: 6/14, 5 PM

Registration: July ~ Aug

- More Information/Submission:
 - Kor: https://graduate.yonsei.ac.kr/graduate/index.do
 - Eng: https://graduate.yonsei.ac.kr/graduate_en/index.do

Recap: Regularization

- Regularization controls the tradeoff between "fitting error" and "complexity."
 - Small regularization results in complex models (with risk of overfitting)
 - Large regularization results in simple models (with risk of underfitting)

Recap: The Bias-Variance Tradeoff

- An over-regularized model (large λ) will have a high bias and low variance.
- An under-regularized model (small λ) will have a high variance and low bias.
- It is important to find a good balance between the

Recap: Validation

- If model selection and true error estimates are to be computed simultaneously, data needs to be divided into three disjoint sets.
- Training set to fit the parameters
 - Given a fixed hyperparameters
- Validation set to tune/choose the model and hyperparameters
- Test set to evaluate the final model performance
 - You must NOT tune the model on test set.
 - Test set is NOT for model selection.

_			
	train	validation	test

Recap: K-Fold Cross-Validation

- Split dataset into K-folds
 - Take one fold (yellow) as validation and the rest of K-1 folds (green) for training.

Trial 1	fold 1	fold 2	fold 3	fold 4
Trial 2	fold 1	fold 2	fold 3	fold 4
Trial 3	fold 1	fold 2	fold 3	fold 4
Trial 4	fold 1	fold 2	fold 3	fold 4

• The final validation error is estimated as the average error rate.

Outline

- Feature Mappings
- Kernel Trick
- Dual Representations
 - Example: Kernel Ridge Regression
- Constructing Kernels
- (Nadaraya-Watson) Kernel Regression

Linear Regression

• Linear function $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$ can only produce straight lines through origin.

• Affine function $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + b$ can only

produce straight lines.

• e.g., 1D linear regression

Not very flexible/powerful

Can we make it more flexible?

Feature Mappings

 Solution: Add features and hope some of them are useful; e.g., polynomial basis functions

•
$$\phi(x) = (1, x)$$

Linear Regression with Features

Linear regression model

$$h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \phi(\mathbf{x}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x})$$

Least squares with L2 regularization

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}_{n}) - y_{n})^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

- Gradient: $\nabla_{\mathbf{w}} J(\mathbf{w}) = \Phi^T (\Phi \mathbf{w} \mathbf{y}) + \lambda \mathbf{w}$
- Closed form solution: $\mathbf{w} = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y}$

Linear Classifiers

- Linear function $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$ can only produce linear decision boundaries through origin.
- Affine function $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + b$ can only produce linear decision boundaries.
 - e.g., 2D linear classification
 - Not very flexible/powerful

X

Can we make it more flexible?

Linear Classifiers with Features

•
$$\phi(x_1, x_2) = (x_1^2, x_2^2)$$

Not linearly separable

Linearly separable

• (Nonlinear) features can make the problem solvable with linear methods.

Feature Selection

- We have been mapping data x through a fixed (nonlinear) mapping to get a feature vector $\phi(x)$.
 - The feature vector extracts important properties from x.
 - e.g., Polynomial combinations up to some order
 - It makes many regression/classification problems easier.

In general, what features should we use?

Feature Selection

- How about to use all features we can think of?
- Model complexity might not be an issue, as proper regularization can handle it.
- However, it is **not scalable**; assuming large $N \approx M$,
 - N: Number of training data
 - *M*: Number of features
- Closed-form solution requires $O(N^3)$
- Gradient descent requires $O(N^2)$

Feature Selection

• We have been mapping data x through a fixed (nonlinear) mapping to get a feature vector $\phi(x)$.

• In other words, with feature mappings, all data have been mapped to a higher dimensional space.

Alternatively, we can think of it like:
 Data still lives in the original space, but the
 definition of distance or inner product has been
 changed.

• As we have done, we will embed data \mathbf{x} in a high dimensional space $\phi(\mathbf{x})$, and use simple (linear) models in this space.

• Use algorithms that do not need the coordinates of embeddings $\phi(\mathbf{x})$, but pairwise inner products: $\phi(\mathbf{x})^T \phi(\mathbf{x}')$

Replace these inner products with a kernel:

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$$

• A kernel function $k(\mathbf{x}, \mathbf{x}')$ represents the similarity between \mathbf{x} and \mathbf{x}' .

 A popular way to express the similarity between feature vectors is the inner product of them:

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$$

• A kernel function $k(\mathbf{x}, \mathbf{x}')$ is defined to be an inner product of feature vectors, but we do not actually compute them.

Example: Kernels for 2D Data

• Inner product between (x_1, x_2) and (z_1, z_2) : $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z} = x_1 z_1 + x_2 z_2$

• Its square is also a kernel:

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2 = (x_1 z_1 + x_2 z_2)^2$$

= $x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$

- This is the same as inner product between $(x_1^2, \sqrt{2}x_1x_2, x_2^2)$ and $(z_1^2, \sqrt{2}z_1z_2, z_2^2)$
 - Or, between $(x_1^2, x_1x_2, x_1x_2, x_2^2)$ and $(z_1^2, z_1z_2, z_1z_2, z_2^2)$
 - Note: Solution is not unique.

Example: Kernels for 2D Data

• Consider higher-order polynomial of degree p:

• Consider higher-order polynomial of degree
$$p$$
:
$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^p = \left(\sum_{i=1}^M x_i z_i\right)^p$$

$$= \sum_{(j_1, \dots, j_M): \sum_j j_k = p} \binom{p}{j_1 \ j_2 \ \dots j_M} (x_1 z_1)^{j_1} \dots (x_M z_M)^{j_M}$$

Feature mapping:

$$\phi(\mathbf{x}) = \left[\dots, \left(\frac{p}{j_1 j_2 \dots j_M} \right)^{\frac{1}{2}} (x_1)^{j_1} \dots (x_M)^{j_M}, \dots \right]$$

All monomials of degree p

Example: Kernels for 2D Data

• Inhomogeneous polynomial up to degree
$$p$$
:
$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + c)^p = \left(c + \sum_{i=1}^M x_i z_i\right), c > 0$$

Feature mapping:

 $\phi(\mathbf{x}) = \text{all monomials of degree} \leq p$.

Example: Handwritten Digits

• An image consists of $28 \times 28 = 784$ pixels $\mathbf{x} \in [0,1]^{784}$

• Take the pixel values and compute $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + 1)^p$

• For p=4, computing the inner product in the space of all monomials without kernel trick requires 16G dimensional space.

- With kernels, inner products in a high dimensional space can be computed with the computational complexity of a low dimensional space.
- Many algorithms can be expressed completely in terms of kernels $k(\mathbf{x}, \mathbf{x}')$ without $\phi(\mathbf{x})$.
- We can replace a kernel with another to get a new algorithm that works over a different domain.

Kibok Lee

- To use the kernel trick, we must formulate (training and test) algorithms purely in terms of inner products between data points.
 - All operations w.r.t. x should look like $k(\mathbf{x}, \mathbf{x}')$
- We cannot access the coordinates in the highdimensional feature space, i.e., no explicit $\phi(\mathbf{x})$.
- This seems a huge limitation, but many operations/algorithms work under this condition.

Kibok Lee

Example: Distance

 Distance between two samples can be expressed in inner products:

$$\|\phi(\mathbf{x}) - \phi(\mathbf{z})\|^2$$

$$= \phi(\mathbf{x})^T \phi(\mathbf{x}) - 2\phi(\mathbf{x})^T \phi(\mathbf{z}) + \phi(\mathbf{z})^T \phi(\mathbf{z})$$

$$= k(\mathbf{x}, \mathbf{x}) - 2k(\mathbf{x}, \mathbf{z}) + k(\mathbf{z}, \mathbf{z})$$

 e.g., K-nearest neighbors can be done in an arbitrary high dimensional space with the kernel trick.

Example: Mean

Mean of data points:

$$\bar{\phi} = \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}^{(i)})$$

 We cannot determine the mean of data in the mapped feature space through kernel operations.

Example: Distance to Mean

Mean of data points:

$$\bar{\phi} = \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}^{(i)})$$

Distance to mean:

$$\begin{aligned} & \left\| \phi(\mathbf{x}) - \overline{\phi} \right\|^2 \\ &= \phi(\mathbf{x})^T \phi(\mathbf{x}) + \overline{\phi}^T \overline{\phi} - 2\phi(\mathbf{x})^T \overline{\phi} \\ &= k(\mathbf{x}, \mathbf{x}) + \frac{1}{N^2} \sum_{i, i=1}^N k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) - \frac{2}{N} \sum_{i=1}^N k(\mathbf{x}, \mathbf{x}^{(i)}) \end{aligned}$$

Dual Representations

Dual Representations and Kernel Trick

- The dual representation and its solution are entirely written in terms of kernels.
 - The elements of the Gram matrix $K = \Phi \Phi^T$

$$K_{ij} = \phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(j)}) = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

- These represent the pairwise similarities among all the observed feature vectors.
 - We can compute kernels more efficiently than the feature vectors.

Example: Kernel Ridge Regression

Recall regression problems with error function

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

• $J(\mathbf{w})$ is minimized at $\mathbf{w} = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{v}$

• Recall the $N \times M$ data matrix that is central to this solution.

Recap: The Data Matrix

- The data matrix is an $N \times M$ matrix, applying
 - the M basis functions (columns)
 - to *N* data points (rows)

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

$$\Phi \mathbf{w} \approx \mathbf{y}$$

The Gram Matrix

• For closed-form solution, we use the $M \times M$ (scaled covariance) matrix: $\Phi^T \Phi$

- For dual representation, we use the $N \times N$ Gram matrix: $K = \Phi \Phi^T$
 - where $K_{ij} = \phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(j)}) = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$, each element corresponds to the pairwise similarities of two training data.

• Note that kernel methods use only K, not Φ .

Example: Kernel Ridge Regression

• Objective function:

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

- Take derivative: $\nabla_{\mathbf{w}} J(\mathbf{w}) = \Phi^T (\Phi \mathbf{w} \mathbf{y}) + \lambda \mathbf{w} = 0$
- Then,

$$\mathbf{w} = -\frac{1}{\lambda} \Phi^T (\Phi \mathbf{w} - \mathbf{y}) = \Phi^T \mathbf{a} = \sum_{n=1}^N a_n \phi(\mathbf{x}^{(n)})$$

- where $\mathbf{a}=[a_1,\ldots,a_N]^T$; $a_n=-\frac{1}{\lambda}{\mathbf{w}^T\phi(\mathbf{x}^{(n)})-y^{(n)}}$ be the new parameters.
- i.e., transform $J(\mathbf{w})$ to $J(\mathbf{a})$ with $\mathbf{w} = \Phi^T \mathbf{a}$

Example: Kernel Ridge Regression

Objective function:

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

• Substitute $\mathbf{w} = \Phi^T \mathbf{a}$:

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^T \Phi \Phi^T \Phi \Phi^T \mathbf{a} - \mathbf{a}^T \Phi \Phi^T \mathbf{y} + \frac{1}{2} \mathbf{y}^T \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^T \Phi \Phi^T \mathbf{a}$$
$$= \frac{1}{2} \mathbf{a}^T K K \mathbf{a} - \mathbf{a}^T K \mathbf{y} + \frac{1}{2} \mathbf{y}^T \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^T K \mathbf{a}$$

- Solution: $\mathbf{a} = (K + \lambda I_N)^{-1} \mathbf{y}$
- At test time:

$$h(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = a^T \Phi \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (K + \lambda I_N)^{-1} \mathbf{y}$$

• where $\mathbf{k}(\mathbf{x}) = \left[k(\mathbf{x}^{(1)}, \mathbf{x}), \dots, k(\mathbf{x}^{(N)}, \mathbf{x})\right]^T$

Primal vs. Dual Representations

- Primal: $\mathbf{w} = (\Phi^T \Phi + \lambda I_M)^{-1} \Phi^T \mathbf{y}$
 - Need to invert an $M \times M$ matrix, where M is the feature dimension
 - Efficient when N > M
 - Need to compute features explicitly
- Dual: ${\bf a} = (K + \lambda I_N)^{-1} {\bf y}$
 - Need to invert an $N \times N$ matrix, where N is the number of training data
 - Efficient when *N* < *M*
 - Kernel trick is applicable; kernels can be defined over vectors, images, sequences, graphs, text, etc.

Constructing Kernels

 We can do kernel engineering to create kernels for particular purposes, expressing different kinds of similarity.

- Define a feature mapping $\phi(\mathbf{x})$ and then define the inner product of features as kernel (or vice versa)
 - Formally, $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a valid kernel if and only if there exists $\phi: \mathcal{X} \to \mathcal{H}$ such that $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}'), \forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$
 - where \mathcal{H} is a Hilbert space (= Euclidean space with potentially infinite-dimensional)

• Define a kernel function directly, such as $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z} = x_1 z_1 + x_2 z_2$

• In 2D, we can explicitly identify the feature map

$$\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

• such that $k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^T \phi(\mathbf{z})$

- Explicit feature mappings can be very complex.
 - Kernels help us avoid that complexity.

- A simpler way to test if a given function is kernel without constructing $\phi(\mathbf{x})$
- 1. Show that the Gram matrix *K* is positive semidefinite (PSD) for all possible choices of the dataset.

$$\mathbf{a}^T K \mathbf{a} \equiv \sum_{ij} a_i K_{ij} a_j \ge 0, \forall \mathbf{a} \in R^N$$

- 2. Use **Mercer's theorem** to prove that the kernel function $k(\mathbf{x}, \mathbf{x}')$ is a valid kernel
 - Mercer's theorem is the necessary and sufficient condition: K is PSD iff $k(\mathbf{x}, \mathbf{x}')$ is a valid kernel

 There are a number of axioms that help us construct new, more complex kernels, from simpler known kernels.

• For example, with a known kernel k_1 ,

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2)$$

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$
(6.13)

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
(6.14)

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.15)

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.16)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$
(6.17)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$
(6.18)

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$
(6.19)

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}'$$
(6.20)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.21)

where c > 0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

 $k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$

(6.22)

How to Prove If a Kernel Is Valid?

- 1. Prove that there exists a ϕ such that $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}'), \forall \mathbf{x}, \mathbf{x}'$
- 2. Prove that the Gram matrix K is PSD and use Mercer's Theorem
 - Note: PSD + PSD = PSD and $c \times PSD = PSD$ for $c \ge 0$
 - Also useful to prove if a kernel is invalid; provide a counterexample showing that the Gram matrix K is not PSD
- 3. Use the axioms provided in previous slides
 - But **not for assignments & exams**; you need to prove them before using them.

Commonly Used Kernels

Simple polynomial kernel (degree of 2)

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2$$

Generalized polynomial kernel (degree of M)

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + c)^p, c > 0$$

Gaussian kernel

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$

 Cf. Radial basis function (RBF) kernel is essentially the same, but has different parametrization.

$$k(\mathbf{x}, \mathbf{z}) = \exp(-\gamma ||\mathbf{x} - \mathbf{z}||^2)$$

Gaussian Kernel

Not actually Gaussian pdf

• Translation invariant; depends only on distance between points, such that it can be expressed as $k(\mathbf{x}, \mathbf{z}) = k(\mathbf{x} - \mathbf{z})$

 Corresponds to a mapping to an infinitedimensional space!

(Nadaraya-Watson) Kernel Regression

Kernel Regression

- Intuition: If a test data is close to a training data, then they would have a similar target.
 - Take a kernel as the similarity measure
 - Take the weighted average of targets of training data,
 where the weight is the kernel value
 - No training is required, similar to K-nearest neighbors
- Kernel regression output

$$h(\mathbf{x}) = \frac{\sum_{n} k(\mathbf{x}, \mathbf{x}^{(n)}) y^{(n)}}{\sum_{n} k(\mathbf{x}, \mathbf{x}^{(n)})}$$

 Note that this is different from kernel ridge regression.

Kernel Regression vs. Classification

 Similar to K-nearest neighbors, we can reformulate it into classification.

Kernel regression

$$h(\mathbf{x}) = \frac{\sum_{n} k(\mathbf{x}, \mathbf{x}^{(n)}) y^{(n)}}{\sum_{n} k(\mathbf{x}, \mathbf{x}^{(n)})}$$

• Kernel classification (for
$$y \in \{-1, +1\}$$
)
$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{n} k(\mathbf{x}, \mathbf{x}^{(n)})y^{(n)}\right)$$

vs. Locally-Weighted Linear Regression

- Kernel regression
 - No training
 - Output: $h(\mathbf{x}) = \frac{\sum_{n} k(\mathbf{x}, \mathbf{x}^{(n)}) y^{(n)}}{\sum_{n} k(\mathbf{x}, \mathbf{x}^{(n)})}$
- Locally-weighted linear regression
 - Find w to minimize $J(\mathbf{w}) = \sum_{n} r^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} y^{(n)})^2$
 - Output: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}^{(n)}$
- Common choice for both $k(\mathbf{x}, \mathbf{x}^{(n)})$ and $r^{(n)}$ is Gaussian kernel:

$$\exp\left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{(n)}\right\|^2}{2\sigma^2}\right)$$

vs. Locally-Weighted Linear Regression

Similar: Instance-based learning

- Only observations (training data) close to the query point are considered (highly weighted) for regression.
- Kernel determines how much weights to training data by computing similarity to the query (test data).
- Free to choose any kernel
- Both can suffer when the input dimension is high.

• Dissimilar:

Kibok Lee

- Kernel regression does not perform training.
- In general, kernel regression is faster but less accurate.

Next: Support Vector Machines