Homework for Math 351-003

Individual Homework: Due Wednesday, January 31

- 1. Prove that if (t_n) is a bounded sequence and (s_n) converges to 0, then $(s_n t_n)$ converges to 0. (Note that you should not assume that (t_n) converges!)
- 2. Prove that if (x_n) converges to $x \neq 0$ and x_n is non-zero for all n, then $(\frac{1}{x_n})$ converges to $\frac{1}{x}$. (Hint: $\left|\frac{1}{x_n} \frac{1}{x}\right| = \frac{|x_n x|}{|x_n \cdot x|}$.)
- 3. Prove that if (x_n) converges to 0 and $x_n > 0$ for all n, then $\frac{1}{x_n}$ diverges to infinity.
- 4. Prove that if (a_n) is bounded and $\lim_{n\to\infty} b_n = +\infty$, then $\lim_{n\to\infty} (a_n + b_n) = +\infty$.