Projekt

Sterowniki robotów

Raport

Humanistycznie upośledzony robot akrobatyczny

HURA

Skład grupy: Albert Lis, 235534 Michał Moruń, 235986

Termin: sr TP15

 $\frac{Prowadzący:}{\text{mgr inż. Wojciech DOMSKI}}$

Spis treści

1	Konfiguracja mikrokontrolera			
		2		
2	Urządzenia zewnętrzne			
3	Projekt elektroniki 3.1 Schemat elektryczny	2 2 2		
4	Konstrukcja mechaniczna			
5		4 4 4 5 5		
6	Zadania niezrealizowane			
7	Podsumowanie			
Bi	ibilografia	7		

1 Konfiguracja mikrokontrolera

1.1 Konfiguracja pinów

PIN	Tryb pracy	Funkcja/etykieta
A0	Analog Input	LEFT_DOWN_PIN
A1	Analog Input	RIGHT_DOWN_PIN
A2	Analog Input	LEFT_UP_PIN
A3	Analog Input	RIGHT_UP_PIN
0	Rx	RX
1	Tx	TX
5	Digital Output	SERVO_PIN
6	Digital Output	DIRECTION
7	Digital Output	STP

Tabela 1: Konfiguracja pinów mikrokontrolera

2 Urządzenia zewnętrzne

3 Projekt elektroniki

3.1 Schemat elektryczny

Rysunek 1: Schemat elektryczny

3.2 Regulacja prędkości napędu

Za pomocą potencjometru regulujemy wypełnienie sygnału PWM. Sygnał ten jest wzmacniany za pomocą tranzystora NPN i przekazywany do silnika $\rm DC$.

Rysunek 2: Schemat poglądowy regulacji prędkości obrotowej silnika

4 Konstrukcja mechaniczna

Rysunek 3: Zdjęcie części mechanicznej nr $1\,$

Rysunek 4: Zdjęcie części mechanicznej nr 2

5 Opis działania programu

5.1 Schemat działania programu

Rysunek 5: Schemat działania programu

5.2 Funkcja czytająca natężenie światła

Jest odpowiedzialna za odczyt wartości i umieszczenie ich w tablicy.

```
void ReadLight()

{

values[0] = analogRead(LEFT_DOWN_PIN);

values[1] = analogRead(RIGHT_DOWN_PIN);

values[2] = analogRead(LEFT_UP_PIN);

values[3] = analogRead(RIGHT_UP_PIN);

}
```

5.3 Funkcja sterująca silnikiem krokowym

Odpowiada za ruch platformy lewo-prawo. Realizuje poruszanie się w kierunku najintensywniejszego odczytu natężenia światła.

```
void SetStepperPosition()
{
    //Jeśli różnica przekracza tolerancję
    if (HorizontalDiff()) {
        //Jeśli platforma jest obrócona wertykalnie w drugą stronę zmienia kierunek lewo/prawo
```

```
6
       if (sposition > 90) {
7
         //jeśli maksymalny odczyt z lewej strony
8
         if ((pos == 0) | (pos == 2))
9
         digitalWrite(DIRECTION, HIGH);
10
         ++StepCounter;
11
12
13
         digitalWrite (DIRECTION, LOW);
14
         ---StepCounter;
15
16
     }
17
18
     else {
       if ((pos == 1) || (pos == 3)) {
19
         digitalWrite(DIRECTION, HIGH);
20
         ++StepCounter;
2.1
22
23
       else {
         digitalWrite (DIRECTION, LOW);
24
25
         -StepCounter;
26
27
     //Wykonaj krok
28
     digitalWrite(STP, state);
29
     state = !state;
30
31
32 }
```

5.4 Funkcja sterująca serwomechanizmem platformy

```
1 void SetServoPosition()
2
  {
3
     //Jeśli przekracza tolerancję
4
    if (VerticalDiff()) {
    //Jeśli maksimalny odczyt na dole
5
     if ((pos == 0) || (pos == 1)) {
6
7
       if (sposition > 0)
         serwo.write(--sposition);
9
       }
10
      else {
11
         if (sposition < 180)
           serwo.write(++sposition);
12
13
    }
14
15 }
```

5.5 Funkcje odpowiadające za sprawdzenie czy różnica odczytów jest większa od tolerancji

```
1 inline bool VerticalDiff()
2 {
     upMax = (values[2] > values[3] ? values[2] : values[3]);
3
     downMax = (values[0] > values[1] ? values[0] : values[1]);
4
5
      return ( abs(upMax - downMax) > TOLERANCE ? true : false );
6 }
7
8 inline bool HorizontalDiff()
9 {
     \begin{array}{lll} leftMax = (&values\,[0\,] > values\,[2\,] &? &values\,[0\,] &: &values\,[2\,] &)\,; \\ rightMax = (&values\,[1\,] > values\,[3\,] &? &values\,[1\,] &: &values\,[3\,])\,; \end{array}
10
     return ( abs(leftMax - rightMax) > TOLERANCE ? true : false);
13 }
```

6 Zadania niezrealizowane

Nie zostało zrealizowane przekazanie napędu z silnika i serwomechanizmu na mechanizm napędowy oraz na ten służący do skręcania. W pierwszym przypadku jest to spowodowane brakiem czasu, wynikający ze zbyt długim poszukiwaniem rozwiązania na problem przeniesienia napędu z silnika do przekładni, natomiast w drugim tym, że wał serwomechanizmu ma stępione zębatki co uniemożliwia przekazanie jakiejkolwiek siły na dalszy podzespół.

7 Podsumowanie

Udało się zrealizować większość zadań. Nastąpiły drobne zmiany koncepcyjne jak użycie potencjometru do regulacji prędkości obrotowej napędu. To będzie wymagać mniejszej ingerencji gdy będziemy projektować regulator PID.

Literatura