PROBABILITES

Révisions de première année

Solution 1

La probabilité recherchée est $\frac{4}{12} \times \frac{3}{11} \times \frac{8}{10} = \frac{4}{55}$.

Solution 2

On définit les événement suivants.

AR La boule tirée dans l'urne A est rouge.

AV La boule tirée dans l'urne A est verte.

X Les deux boules tirées dans l'urne B sont rouges.

La probabilité recherchée est P(AV|X). D'après la formule de Bayes

$$P(AV|X) = \frac{P(X|AV)P(AV)}{P(X|AV)P(AV) + P(X|AR)P(AR)}$$

Il est clair que $P(AV) = \frac{3}{5}$ et $P(AR) = \frac{2}{5}$. Par ailleurs, P(X|AV) est la probabilité de tirer successivement et sans remise deux boules rouges dans une urne contenant trois boules rouges et trois boules vertes. Autrement dit, $P(X|AV) = \frac{3}{6} \times \frac{2}{5} = \frac{1}{5}$.

ment et sans remise deux boules rouges dans une urne contenant quatre boules rouges De même, P(X|AR) est la probabilité de tirer successive et deux boules vertes. Autrement dit, $P(X|AR) = \frac{4}{6} \times \frac{3}{5} = \frac{2}{5}$.

Après calcul, on trouve $P(AV|X) = \frac{3}{7}$

Solution 3

On notera U_k l'événement «l'urne choisie est l'urne numéro k» et B l'événement la boule tirée est blanche.

1. On recherche donc P(B). Comme $\{U_k\}_{1 \le k \le n}$ est un système complet d'événements, on obtient avec après la formule des probabilités totales:

$$P(B) = \sum_{k=1}^{n} P(B \mid U_k) P(U_k) = \sum_{k=1}^{n} \frac{k}{n} \times \frac{1}{n} = \frac{1}{n^2} \sum_{k=1}^{n} k = \frac{n+1}{2n}$$

2. On recherche $P(U_k \mid B)$. Par définition

$$P(U_k \mid B) = \frac{P(B \cap U_k)}{P(B)} = \frac{P(B \mid U_k)P(U_k)}{P(B)} = \frac{\frac{k}{n} \times \frac{1}{n}}{\frac{n+1}{2n}} = \frac{2k}{n(n+1)}$$

Solution 4

On notera A_n l'événement «le buveur ne boit pas le $n^{\text{ème}}$ jour. L'énoncé signifie que $P(A_{n+1}|A_n)=0,4$ et $P(A_{n+1}|\overline{A_n})=0,8$ pour tout $n \in \mathbb{N}^*$. On suppose de plus que le buveur ne boit pas le premier jour, autrement dit $P(A_1) = 1$.

1. Pour simplifier, posons $p_n = P(A_n)$. D'après la formule des probabilités totales, pour tout $n \in \mathbb{N}^*$

$$p_{n+1} = P(A_{n+1}) = P(A_{n+1}|A_n)P(A_n) + P(A_{n+1}|\overline{A_n})P(\overline{A_n}) = 0, 4p_n + 0, 8(1 - p_n) = 0, 8 - 0, 8(1 - p_n) = 0, 8(1 - p_n) = 0, 8(1 - p_n) = 0,$$

2. La suite (p_n) est arithmético-géométrique. On introduit l'unique solution p de l'équation x = 0, 8 - 0, 4x autrement dit $p = \frac{4}{7}$. Pour tout $n \in \mathbb{N}^*$

$$p_{n+1} - p = (0, 8 - 0, 4p_n) - (0, 8 - 0, 4p) = -0, 4(p_n - p)$$

Une récurrence évidente montre que pour tout $n \in \mathbb{N}^*$

$$p_n - p = (-0, 4)^{n-1}(p_1 - p)$$

Autrement dit

$$p_n = \frac{2}{7} + \left(-\frac{2}{5}\right)^{n-1} \frac{5}{7}$$

3. Puisque $\left| -\frac{2}{5} \right| < 1$, $\lim_{n \to +\infty} p_n = \frac{2}{7}$.

Solution 5

- **1.** S suit évidemment la loi $\mathcal{B}\left(n, \frac{1}{6}\right)$.
- **2.** La loi de F conditionnée par l'événement S = s est la loi $\mathcal{B}\left(s, \frac{1}{2}\right)$.
- 3. F est clairement à valeurs dans [0, n]. Soit donc $k \in [0, n]$. D'après la formule des probabilités totales,

$$P(F = k) = \sum_{s=0}^{n} P(F = k|S = s)P(S = s)$$

Il est clair que P(F = k | S = s) = 0 pour s < k donc

$$P(F = k) = \sum_{s=k}^{n} P(F = k | S = s) P(S = s)$$

$$= \sum_{s=k}^{n} \left(\frac{1}{2}\right)^{s} {s \choose k} \left(\frac{1}{6}\right)^{s} \left(\frac{5}{6}\right)^{n-s} {n \choose s}$$

$$= \sum_{s=k}^{n} \frac{5^{n-s}}{2^{s}6^{n}} {s \choose k} {n \choose s}$$

$$= \sum_{s=k}^{n} \frac{5^{n-s}}{2^{s}6^{n}} {n \choose k} {n-k \choose s-k}$$

$$= {n \choose k} \sum_{s=0}^{n-k} \frac{5^{n-s-k}}{2^{s+k}6^{n}} {n-k \choose s}$$

$$= {n \choose k} \frac{5^{n}}{10^{k}6^{n}} \sum_{s=0}^{n-k} \frac{1}{10^{s}} {n-k \choose s}$$

En appliquant la formule du binôme

$$P(F = k) = \binom{n}{k} \frac{5^n}{10^k 6^n} \left(1 + \frac{1}{10}\right)^{n-k}$$

$$= \binom{n}{k} \frac{5^n 11^{n-k}}{10^n 6^n}$$

$$= \binom{n}{k} \frac{11^{n-k}}{12^n}$$

$$= \binom{n}{k} \left(\frac{1}{12}\right)^k \left(\frac{11}{12}\right)^{n-k}$$

On en déduit donc que F suit la loi binomiale $\mathcal{B}\left(n, \frac{1}{12}\right)$.

Solution 6

L'événement A est l'événement contraire de l'événement «la famille n'a que des enfants de même sexe», ce dernier événement étant l'union disjointe des événements «la famille a *n* garçons» et «la famille a *n* filles». On en déduit que

$$P(A) = 1 - 2 \times \frac{1}{2^n} = 1 - 2^{1-n}$$

L'événement B est la réunion disjointe des événements «la famille n'a aucune fille» et «la famille a exactement une fille». On en déduit que

$$P(B) = \frac{1}{2^n} + \binom{n}{1} \frac{1}{2^n} = (n+1)2^{-n}$$

L'événement A ∩ B est l'événement «la famille a une unique fille». Ainsi

$$P(A \cap B) = \binom{n}{1} \frac{1}{2^n} = n2^{-n}$$

Les événements A et B sont indépendants si et seulement si $P(A \cap B) = P(A)P(B)$ autrement dit si et seulement si

$$(1-2^{1-n})(n+1)2^{-n} = n2^{-n}$$

ou encore, après simplification,

$$2^n - 2n - 2 = 0$$

Soit $f: t \in \mathbb{R} \mapsto 2^t - 2t - 2$. f est dérivable sur \mathbb{R} de dérivée $f': t \mapsto 2^t \ln 2 - 2$. f' est strictement croissante sur \mathbb{R} et $f'(2) = 4 \ln 2 - 2 > 0$. Ainsi f' est strictement positive sur $[2, +\infty[$ et donc f est strictement croissante sur $[2, +\infty[$. Puisque f(3) = 0, f s'annule uniquement en g sur g sur g sur g contains g sur g sur

Solution 7

1. Première méthode:

Notons B_i (resp. R_i) l'événement «tirer une boule blanche (resp. rouge) au tirage $n^\circ i$ ». Soit $(k, l) \in [1, n]^2$. Si $k \ge l$, P(X = k, Z = l) = 0. Par contre, si k < l, en utilisant la formule des probabilités composées :

$$P(X = k, Z = l) = \mathbb{P}(R_1 \cap \cdots \cap R_{k-1} \cap B_k \cap R_{k+1} \cdots \cap R_{l-1} \cap B_l \cap R_{l+1} \cap \cdots \cap R_n)$$

$$= \underbrace{\frac{n-2}{n}}_{l^{\text{er} \text{ tirage}}} \times \underbrace{\frac{n-3}{n-1}}_{2^{\text{e} \text{ tirage}}} \times \cdots \times \underbrace{\frac{n-k}{n-k+2}}_{(k-1)^{\text{e} \text{ tirage}}} \times \underbrace{\frac{2}{n-k+1}}_{k^{\text{e} \text{ tirage}}} \times \underbrace{\frac{n-k-1}{n-k}}_{(k+1)^{\text{e} \text{ tirage}}} \cdots \times \underbrace{\frac{n-l+1}{n-l+2}}_{l^{\text{e} \text{ tirage}}} \times \underbrace{\frac{1}{n-l+1}}_{l^{\text{e} \text{ tirage}}}$$

$$= \underbrace{\frac{2}{n(n-1)}}$$

Seconde méthode :

L'univers Ω est l'ensemble des permutations des n boules de sorte que card $\Omega = n!$ et on munit cet univers de la probabilité uniforme. Soit $(k, l) \in [1, n]^2$. Si $k \ge l$, $[X = k] \cap [Y = l]$ est impossible donc P(X = k, Z = l) = 0. Supposons maintenant k < l. Se donner une issue de $[X = k] \cap [Y = l]$ revient à se donner une permutation des 2 boules rouges et une permutation des n - 2 boules rouges. Ainsicard($[X = k] \cap [Y = l]$) = 2!(n - 2)!. Finalement

$$P(X = k, Z = l) = \frac{2!(n-2)!}{n!} = \frac{2}{n(n-1)}$$

Troisième méthode:

On considère que l'univers est l'ensemble des tirages de la forme R ... RBR ... RBR ... R. Le cardinal de cet univers est alors le nombre de façons de placer deux boules blanches parmi les n tirages, c'est-à-dire $\binom{n}{2}$. On munit à nouveau cet univers de la probabilité uniforme. A nouveau, si $k \ge l$, P(X = k, Z = l) = 0 et, si k < l, $[X = k] \cap [Y = l]$ est un événement élémentaire de sorte que $\mathbb{P}(X = k, Z = l) = \frac{1}{\binom{n}{2}} = \frac{2}{n(n-1)}$.

2. Soit $k \in [1, n]$.

$$\mathbb{P}(X = k) = \sum_{l=k+1}^{n} \mathbb{P}(X = k, Z = l) = \frac{2(n-k)}{n(n-1)}$$

Soit $l \in [[1, n]]$.

$$P(Z = l) = \sum_{k=1}^{l-1} P(X = k, Z = l) = \frac{2(l-1)}{n(n-1)}$$

Solution 8

1. La relation est évidente si a = b. Supposons maintenant $a + 1 \le b$. On utilise la relation du triangle de Pascal.

$$\sum_{k=a}^{b} \binom{k}{a} = 1 + \sum_{k=a+1}^{n} \binom{k}{a}$$

$$= 1 + \sum_{k=a+1}^{b} \binom{k+1}{a+1} - \binom{k}{a+1}$$

$$= 1 + \binom{b+1}{a+1} - \binom{a+1}{a+1} = \binom{b+1}{a+1}$$

2. Si on note Ω l'univers de l'expérience aléatoire, alors card $(\Omega) = \binom{N}{n}$

X est à valeurs dans [n, N]. Soit donc $k \in [n, N]$. Choisir n boules dont le plus grand numéro est k revient à choisir n-1 boules parmi celles numérotées de 1 à k-1. Ainsi $\operatorname{card}(X=k) = \binom{k-1}{n-1}$ puis $\operatorname{P}(X=k) = \frac{\binom{k-1}{n-1}}{\binom{N}{n}}$.

Y est à valeurs dans [1, N - n + 1]. Soit donc $k \in [1, N - n + 1]$. Choisir n boules dont le plus petit numéro est k revient à choisir n - 1 boules parmi celles numérotées de k + 1 à N. Ainsi card $(Y = k) = \binom{N - k}{n - 1}$ puis $P(Y = k) = \frac{\binom{N - k}{n - 1}}{\binom{N}{n}}$.

3. (X, Y) est à valeurs dans $\{(i, j) \in [1, N]^2, i - j \ge n - 1\}$. Soit donc (i, j) dans cet ensemble. Choisir n boules dont le plus grand numéro est i et le plus petit j revient à choisir n - 2 boules parmi celles numérotées de j + 1 à

$$i-1$$
. Ainsi card($[X=i] \cap [y=j]$) = $\binom{i-j-1}{n-2}$ puis $P(X=i, Y=j) = \frac{\binom{i-j-1}{n-2}}{\binom{N}{n}}$.

Remarquons que X – Y est à valeurs dans [n-1, N-1]. Soit $k \in [n-1, N-1]$. Alors

$$P(X - Y = k) = \sum_{j=1}^{N-k} P(X - Y = k, Y = j) = \sum_{j=1}^{N-k} P(X = j + k, Y = j) = \frac{(N-k)\binom{k-1}{n-2}}{\binom{N}{n}}$$

4. Tout d'abord

$$E(X) = \sum_{k=n}^{N} kP(X = k)$$

$$= \frac{1}{\binom{N}{n}} \sum_{k=n}^{N} k \binom{k-1}{n-1}$$

$$= \frac{n}{\binom{N}{n}} \sum_{k=n}^{N} \binom{k}{n}$$

$$= \frac{n\binom{N+1}{n+1}}{\binom{N}{n}}$$

$$= \frac{n(N+1)}{n+1}$$

Pour le calcul de l'espérance de Y, on peut remarquer que P(Y = k) = P(X = N + 1 - k) pour tout $k \in [1, N - n + 1]$. Ainsi

$$E(Y) = \sum_{k=1}^{N-n+1} kP(Y = k)$$

$$= \sum_{k=1}^{N-n+1} kP(X = N+1-k)$$

$$= \sum_{k=1}^{N} (N+1-k)P(X = k)$$

$$= (N+1) \sum_{k=1}^{N} P(X = k) - E(X)$$

$$= N+1 - \frac{n(N+1)}{n+1} = \frac{N+1}{n+1}$$

5. Tout d'abord

$$E(X^{2}) = \sum_{k=n}^{N} k^{2}P(X = k)$$

$$E(X^{2}) = \sum_{k=n}^{N} [k(k+1) - k]P(X = k)$$

$$= \frac{1}{\binom{N}{n}} \sum_{k=n}^{N} k(k+1) \binom{k-1}{n-1} - E(X)$$

$$= \frac{n(n+1)}{\binom{N}{n}} \sum_{k=n}^{N} \binom{k+1}{n+1} - \frac{n(N+1)}{n+1}$$

$$= \frac{n(n+1)}{\binom{N}{n}} \sum_{k=n+1}^{N+1} \binom{k}{n+1} - \frac{n(N+1)}{n+1}$$

$$= \frac{n(n+1)}{\binom{N}{n}} \binom{N+2}{n+2} - \frac{n(N+1)}{n+1}$$

$$= \frac{n(N+1)(N+2)}{n+2} - \frac{n(N+1)}{n+1}$$

$$= \frac{(Nn+n+N)(N+1)n}{(n+1)(n+2)}$$

Enfin

$$V(X) = E(X^2) - E(X)^2 = \frac{(Nn + n + N)(N + 1)n}{(n+1)(n+2)} - \left(\frac{n(N+1)}{n+1}\right)^2 = \frac{n(N+1)(N-n)}{(n+2)(n+1)^2}$$

En remarquant que P(Y = k) = P(X = N + 1 - k) pour tout $k \in [[1, N - n + 1]]$ et que E(Y) = N + 1 - E(X)

$$V(Y) = E(Y - E(Y)^{2})$$

$$= \sum_{k=1}^{N-n+1} (k - E(Y))^{2} P(Y = k)$$

$$= \sum_{k=1}^{N-n+1} (k - (N+1) + E(X))^{2} P(X = N+1-k)$$

$$= \sum_{k=n}^{N} (E(X) - k)^{2} P(X = k)$$

$$= V(X) = \frac{(Nn + n + N)(N+1)n}{(n+1)(n+2)}$$

6. Tout d'abord

$$E((X - Y)^{2}) = \sum_{k=n-1}^{N-1} k^{2} P(X - Y = k)$$

$$= \sum_{k=n-1}^{N-1} \frac{k^{2} (N - k) \binom{k-1}{n-2}}{\binom{N}{n}}$$

$$= \frac{1}{\binom{N}{n}} \left(N \sum_{k=n-1}^{N-1} k^{2} \binom{k-1}{n-2} - \sum_{k=n-1}^{N-1} k^{3} \binom{k-1}{n-2} \right)$$

Posons $S_m = \sum_{k=n-1}^{N-1} k^m \binom{k-1}{n-2}$. On trouve successivement

$$S_{1} = \sum_{k=n-1}^{N-1} k \binom{k-1}{n-2}$$

$$= (n-1) \sum_{k=n-1}^{N-1} \binom{k}{n-1}$$

$$= (n-1) \binom{N}{n}$$

puis

$$S_{2} = \sum_{k=n-1}^{N-1} k^{2} \binom{k-1}{n-2}$$

$$= \sum_{k=n-1}^{N-1} k(k+1) \binom{k-1}{n-2} - \sum_{k=n-1}^{N-1} k \binom{k-1}{n-2}$$

$$= (n-1)n \sum_{k=n-1}^{N-1} \binom{k+1}{n} - S_{1}$$

$$= (n-1)n \sum_{k=n}^{N} \binom{k}{n} - (n-1) \binom{N}{n}$$

$$= (n-1)n \binom{N+1}{n+1} - (n-1) \binom{N}{n}$$

et enfin

$$\begin{split} S_3 &= \sum_{k=n-1}^{N-1} k^3 \binom{k-1}{n-2} \\ &= \sum_{k=n-1}^{N-1} k(k+1)(k+2) \binom{k-1}{n-2} - 3S_2 - 2S_1 \\ &= (n-1)n(n+1) \sum_{k=n-1}^{N-1} \binom{k+2}{n+1} - 3\left((n-1)n\binom{N+1}{n+1} - (n-1)\binom{N}{n}\right) - 2(n-1)\binom{N}{n} \\ &= (n-1)n(n+1) \sum_{k=n+1}^{N+1} \binom{k}{n+1} - 3(n-1)n\binom{N+1}{n+1} + (n-1)\binom{N}{n} \\ &= (n-1)n(n+1)\binom{N+2}{n+2} - 3(n-1)n\binom{N+1}{n+1} + (n-1)\binom{N}{n} \end{split}$$

Il vient enfin

$$\begin{split} \mathrm{E}((\mathrm{X}-\mathrm{Y})^2) &= \frac{1}{\binom{\mathrm{N}}{n}} (\mathrm{NS}_2 - \mathrm{S}_3) \\ &= \frac{1}{\binom{\mathrm{N}}{n}} \left(\mathrm{N}(n-1)n \binom{\mathrm{N}+1}{n+1} - \mathrm{N}(n-1) \binom{\mathrm{N}}{n} - (n-1)n(n+1) \binom{\mathrm{N}+2}{n+2} + 3(n-1)n \binom{\mathrm{N}+1}{n+1} - (n-1) \binom{\mathrm{N}}{n} \right) \\ &= \frac{1}{\binom{\mathrm{N}}{n}} \left((n-1)n(\mathrm{N}+3) \binom{\mathrm{N}+1}{n+1} - (n-1)(\mathrm{N}+1) \binom{\mathrm{N}}{n} - (n-1)n(n+1) \binom{\mathrm{N}+2}{n+2} \right) \\ &= \frac{(n-1)n(\mathrm{N}+3)(\mathrm{N}+1)}{n+1} - (n-1)(\mathrm{N}+1) - \frac{(n-1)n(\mathrm{N}+2)(\mathrm{N}+1)}{n+2} \\ &= \frac{(n-1)(\mathrm{N}+1)(n\mathrm{N}+n-2)}{(n+1)(n+2)} \end{split}$$

Finalement

$$\begin{split} V(X-Y) &= E((X-Y)^2) - E(X-Y)^2 \\ &= \frac{(n-1)(N+1)(nN+n-2)}{(n+1)(n+2)} - (E(X) - E(Y))^2 \\ &= \frac{(n-1)(N+1)(nN+n-2)}{(n+1)(n+2)} - \left(\frac{n(N+1)}{n+1} - \frac{N+1}{n+1}\right)^2 \\ &= \frac{2(n-1)(N+1)(N-n)}{(n+1)^2(n+2)} \end{split}$$

On en déduit que

$$\begin{aligned} \operatorname{Cov}(\mathbf{X},\mathbf{Y}) &= \frac{1}{2}(\mathbf{V}(\mathbf{X}) + \mathbf{V}(\mathbf{Y}) - \mathbf{V}(\mathbf{X} - \mathbf{Y})) \\ &= \frac{1}{2} \left(\frac{2(\mathbf{N}n + n + \mathbf{N})(\mathbf{N} + 1)n}{(n+1)(n+2)} - \frac{2(n-1)(\mathbf{N} + 1)(\mathbf{N} - n)}{(n+1)^2(n+2)} \right) \\ &= \frac{n(n+1)(\mathbf{N} + 1)(\mathbf{N}n + n + \mathbf{N}) - (n-1)(\mathbf{N} + 1)(\mathbf{N} - n)}{(n+1)^2(n+2)} \\ &= \frac{(\mathbf{N} + 1)(2n^2\mathbf{N} + n^3\mathbf{N} + 2n^2 + n^3 + \mathbf{N} - n)}{(n+1)^2(n+2)} \end{aligned}$$

Solution 9

On calcule dans un premier temps P(X = Y). L'événement X = Y est la réunion disjointes des événements $(X = k) \cap (Y = k)$ pour k décrivant [1, n]. On en déduit que

$$P(X = Y) = \sum_{k=1}^{n} P([X = k] \cap [Y = k])$$

Or les variables aléatoires X et Y sont indépendantes donc

$$P(X = Y) = \sum_{k=1}^{n} P(X = k)P(Y = k) = \sum_{k=1}^{n} \frac{1}{n^2} = \frac{1}{n}$$

On en déduit que

$$P(X \neq Y) = 1 - P(X = Y) = 1 - \frac{1}{n}$$

Solution 10

1.

$$\mathbb{E}(\mathbf{Y}) = \sum_{k=1}^{N} k \mathbb{P}(\mathbf{Y} = k)$$

$$= \sum_{k=1}^{N} k (\mathbb{P}(\mathbf{Y} > k - 1) - \mathbb{P}(\mathbf{Y} > k))$$

$$= \sum_{k=1}^{N} k \mathbb{P}(\mathbf{Y} > k - 1) - \sum_{k=1}^{n} k \mathbb{P}(\mathbf{Y} > k)$$

$$= \sum_{k=0}^{N-1} (k+1) \mathbb{P}(\mathbf{Y} > k) - \sum_{k=1}^{N} k \mathbb{P}(\mathbf{Y} > k) \quad \text{par changement d'indice}$$

$$= \sum_{k=0}^{N-1} (k+1) \mathbb{P}(\mathbf{Y} > k) - \sum_{k=0}^{N} k \mathbb{P}(\mathbf{Y} > k)$$

$$= \sum_{k=0}^{N-1} \mathbb{P}(\mathbf{Y} > k) - N \mathbb{P}(\mathbf{Y} > N)$$

$$= \sum_{k=0}^{N-1} \mathbb{P}(\mathbf{Y} > k) \quad \text{car } \mathbb{P}(\mathbf{Y} > n) = 0$$

2. a. Soit $k \in [1, N]$.

$$\mathbb{P}(\mathsf{T}_n \leq k) = \mathbb{P}(\mathsf{X}_1 \leq k, \mathsf{X}_2 \leq k, \dots, \mathsf{X}_n \leq k) = \mathbb{P}(\mathsf{X}_1 \leq k) \mathbb{P}(\mathsf{X}_2 \leq k) \dots \mathbb{P}(\mathsf{X}_n \leq k)$$

car les variables X_1, \dots, X_n sont mutuellement indépendantes. Mais comme chacune de ces variables suit la loi uniforme sur $[\![1,N]\!]$

$$\mathbb{P}(\mathrm{T}_n \le k) = \left(\frac{k}{\mathrm{N}}\right)^n$$

b. Pour tout $k \in [\![, N]\!]$

$$\mathbb{P}(\mathbf{T}_n = k) = \mathbb{P}(\mathbf{T}_n \le k) - \mathbb{P}(\mathbf{T}_n \le k - 1) = \left(\frac{k}{N}\right)^n - \left(\frac{k - 1}{N}\right)^n$$

c.

$$\mathbb{E}(\mathbf{T}_n) = \sum_{k=1}^{\mathbf{N}} k \left(\left(\frac{k}{\mathbf{N}} \right)^n - \left(\frac{k-1}{\mathbf{N}} \right)^n \right)$$

$$= \sum_{k=1}^{\mathbf{N}} k \left(\frac{k}{\mathbf{N}} \right)^n - \sum_{k=1}^{\mathbf{N}} k \left(\frac{k-1}{\mathbf{N}} \right)^n$$

$$= \sum_{k=1}^{\mathbf{N}} k \left(\frac{k}{\mathbf{N}} \right)^n - \sum_{k=0}^{\mathbf{N}-1} (k+1) \left(\frac{k}{\mathbf{N}} \right)^n$$

$$= \sum_{k=0}^{\mathbf{N}} k \left(\frac{k}{\mathbf{N}} \right)^n - \sum_{k=0}^{\mathbf{N}-1} (k+1) \left(\frac{k}{\mathbf{N}} \right)^n$$

$$= \mathbf{N} - a_n(\mathbf{N})$$

3. a. Soit $k \in [0, N-1]$.

$$\mathbb{P}(\mathbf{Z}_n > k) = \mathbb{P}(\mathbf{X}_1 > k, \mathbf{X}_2 > k, \dots, \mathbf{X}_n > k) = \mathbb{P}(\mathbf{X}_1 > k) \mathbb{P}(\mathbf{X}_2 > k) \dots \mathbb{P}(\mathbf{X}_n > k)$$

car les variables X_1, \dots, X_n sont mutuellement indépendantes. Mais comme chacune de ces variables suit la loi uniforme sur $[\![1,N]\!]$

$$\mathbb{P}(\mathbf{Z}_n > k) = \left(\frac{\mathbf{N} - k}{\mathbf{N}}\right)^n$$

b. En utilisant la première question

$$\mathbb{E}(\mathbf{Z}_n) = \sum_{k=0}^{N-1} \left(\frac{\mathbf{N} - k}{\mathbf{N}}\right)^n = \sum_{k=1}^{N} \left(\frac{k}{\mathbf{N}}\right)^n$$

via un changement d'indice. Autrement dit, $\mathbb{E}(Z_n) = 1 + a_n(N)$.

4. a. Pour $k \in [[1, N-1]], 0 \le \frac{k}{N} < 1$ donc $\lim_{n \to +\infty} \left(\frac{k}{N}\right)^n = 0$. Ainsi $\lim_{n \to +\infty} a_n(N) = 0$. Or $\mathbb{E}(T_n) = N - a_n(N)$ pour tout $n \in \mathbb{N}^*$ donc $\lim_{n \to +\infty} \mathbb{E}(T_n) = N$.

b. Par linéarité, $\mathbb{E}(S_n) = \mathbb{E}(T_n) + \mathbb{E}(Z_n) - 1 = N$ en utilisant les questions précédentes.

Solution 11

1. Remarquons d'abord que si $C \in \mathcal{M}_{n,1}(\mathbb{R})$, alors $A = CC^{\mathsf{T}}$ est de rang au plus 1. En effet, $\mathrm{Im}(A) \subset \mathrm{vect}(C)$. De plus, si A = 0, alors $\|C\|^2 = C^{\mathsf{T}}C = \mathrm{tr}(CC^{\mathsf{T}}) = \mathrm{tr}(A) = 0$ donc C = 0. La réciproque est évidente donc $A = 0 \iff C = 0$. Posons $X = (X_1, \dots, X_n)^{\mathsf{T}}$. Alors $M = XX^{\mathsf{T}}$. La matrice M est donc de rang au plus 1 (toutes ses colonnes sont colinéaires à X). Ainsi $\mathrm{rg}(M)$ suit une loi de Bernoulli. De plus, d'après note remarque initiale et par indépendance des X_i ,

$$\mathbb{P}(\operatorname{rg} M = 0) = \mathbb{P}(M = 0) = \mathbb{P}(X = 0) = \mathbb{P}\left(\bigcap_{i=1}^{n} X_{i} = 0\right) = \prod_{i=1}^{n} \mathbb{P}(X_{i} = 0) = (1 - p)^{n}$$

Ainsi rg M suit une loi de Bernoulli de paramètre $1 - (1 - p)^n$.

2. Remarquons que $tr(M) = \sum_{i=1}^{n} X_i^2$. Mais comme les X_i sont à valeurs dans $\{0,1\}$, $X_i^2 = X_i$. Finalement, $tr(M) = \sum_{i=1}^{n} X_i$ suit une loi binomiale de paramètres n et p car les X_i sont indépendantes.

Solution 12

- **1.** U suit la loi binomiale $\mathcal{B}\left(n, \frac{u}{b}\right)$. Son espérance est $\frac{nu}{b}$ et sa variance est $\frac{nu}{b}\left(1 \frac{u}{b}\right)$. De même, D et T suivent respectivement les lois binomiales $\mathcal{B}\left(n, \frac{d}{b}\right)$ et $\mathcal{B}\left(n, \frac{t}{b}\right)$.
- 2. On peut par exemple remarquer que $P(U = n) \neq 0$ et $P(D = n) \neq 0$ tandis que P(U = n, D = n) = 0. Ainsi $P(U = n, D = n) \neq P(U = n)$, ce qui prouve que U et D ne sont pas indépendantes.
- 3. Puisque U + D + T = n, pour tout $k \in [0, n]$,

$$P(U + D = k) = P(T = n - k)$$

On en déduit aisément que U + D suit la loi binomiale $\mathcal{B}\left(n, 1 - \frac{t}{b}\right)$. De plus,

$$E(U + D) = E(n - T) = n - E(T) = n - \frac{nt}{b} = \frac{n(b - t)}{b}$$

Enfin,

$$V(U + D) = V(n - T) = V(T) = \frac{nt}{b} \left(1 - \frac{t}{b} \right)$$

4. On sait que

$$Cov(U, D) = \frac{1}{2}(V(U + D) - V(U) - V(D))$$

Ainsi

$$Cov(U, D) = \frac{1}{2} \left(\frac{nt}{b} \left(1 - \frac{t}{b} \right) - \frac{nu}{b} \left(1 - \frac{u}{b} \right) - \frac{nd}{b} \left(1 - \frac{d}{b} \right) \right)$$

$$= \frac{n}{2b^2} (t(b-t) - u(b-u) - d(b-d))$$

$$= \frac{n}{2b^2} ((b-u-d)(u+d) - u(b-u) - d(b-d))$$

$$= -\frac{nud}{b^2}$$

Solution 13

1. D'après la formule de transfert

$$E(Z) = \sum_{(i,j) \in [0,n]^2} |i - j| P(X = i, Y = j)$$

Mais les variables X et Y étant indépendantes,

$$E(Z) = \sum_{(i,j) \in [0,n]^2} |i-j| P(X=i) P(Y=j) = \frac{1}{(n+1)^2} \sum_{(i,j) \in [0,n]^2} |i-j|$$

On peut alors découper la somme double

$$\begin{split} \mathrm{E}(\mathbf{Z}) &= \frac{1}{(n+1)^2} \left(\sum_{0 \leq i < j \leq n} |i-j| + \sum_{0 \leq j < i \leq n} |i-j| + \sum_{k=0}^n |k-k| \right) \\ &= \frac{2}{(n+1)^2} \sum_{0 \leq i < j \leq n} j - i \\ &= \frac{2}{(n+1)^2} \left(\sum_{0 \leq i < j \leq n} j - \sum_{0 \leq i < j \leq n} i \right) \\ &= \frac{2}{(n+1)^2} \left(\sum_{j=1}^n \sum_{i=0}^{j-1} j - \sum_{i=0}^{n-1} \sum_{j=i+1}^n i \right) \\ &= \frac{2}{(n+1)^2} \left(\sum_{j=1}^n j^2 - \sum_{i=0}^{n-1} (n-i)i \right) \\ &= \frac{2}{(n+1)^2} \left(\sum_{j=0}^n j^2 - \sum_{i=0}^n (n-i)i \right) \\ &= \frac{2}{(n+1)^2} \left(2 \sum_{k=0}^n k^2 - n \sum_{k=0}^n k \right) \\ &= \frac{2}{(n+1)^2} \left(\frac{n(n+1)(2n+1)}{3} - \frac{n^2(n+1)}{2} \right) \\ &= \frac{2n}{n+1} \left(\frac{2n+1}{3} - \frac{n}{2} \right) \\ &= \frac{n(n+2)}{3(n+1)} \end{split}$$

2. On remarque que

$$T = \frac{1}{2}(X + Y - Z)$$

donc par linéarité de l'espérance

$$E(T) = \frac{1}{2} (E(X) + E(Y) - E(Z)) = \frac{1}{2} \left(n - \frac{n(n+2)}{3(n+1)} \right) = \frac{n(2n+1)}{6(n+1)}$$

3. Puisque $Z^2 = X^2 + Y^2 - 2XY$, on obtient par linéarité de l'espérance

$$E(Z^2) = E(X^2) + E(Y^2) - 2E(XY)$$

Mais les variables aléatoires X et Y étant indépendantes, E(XY) = E(X)E(Y). Puisqu'elles sont de même loi

$$E(Z^2) = 2E(X^2) - 2E(X)^2 = 2V(X)$$

REMARQUE. On peut montrer que

$$V(X) = \frac{n(n+2)}{12}$$

Solution 14

D'après la formule de transfert,

$$E\left(\frac{1}{X(X+1)}\right) = \sum_{k=1}^{n} \frac{1}{k(k+1)} P(X=k)$$

$$= \frac{1}{n} \sum_{k=1}^{n} \frac{1}{k(k+1)}$$

$$= \frac{1}{n} \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1}$$

$$= \frac{1}{n} \left(1 - \frac{1}{n+1}\right)$$

Solution 15

Pour $k \in [\![1,n]\!]$, notons X_k la variable aléatoire valant 1 si la boule numéro k a été tirée lors des n tirages et 0 sinon. Chaque X_k suit une loi de Bernoulli de paramètre $1 - \left(\frac{n-1}{n}\right)^n$. Puisque $X = \sum_{k=1}^n X_k$, on obtient par linéarité de l'espérance

$$E(X) = \sum_{k=1}^{n} E(X_k) = n \left(1 - \left(\frac{n-1}{n} \right)^n \right)$$

On montre classiquement que $\lim_{n \to +\infty} \left(\frac{n-1}{n}\right)^n = \frac{1}{e}$. Ainsi $E(X) \underset{n \to +\infty}{\sim} n\left(1 - \frac{1}{e}\right)$.

Solution 16

Pour $k \in [1, n]$, on note X_k la variable aléatoire qui à une permutation associe 1 si k est un point fixe et 0 sinon. On a donc $X = \sum_{k=1}^{n} X_k$. On détermine ensuite la loi de X_k par dénombrement. Le nombre de permutations fixant k est (n-1)! et comme la probabilité sur S_n

On détermine ensuite la loi de X_k par dénombrement. Le nombre de permutations fixant k est (n-1)! et comme la probabilité sur S_n est uniforme, $\mathbb{P}(X_k=1)=\frac{(n-1)!}{n!}=\frac{1}{n}$. Ainsi X_k suit une loi de Bernoulli de paramètre $\frac{1}{n}$ de sorte que $\mathbb{E}(X_k)=\frac{1}{n}$. Par linéarité de l'espérance,

$$\mathbb{E}(X) = \sum_{k=1}^{n} \delta(X_k) = 1$$

Pour le calcul de la variance, il faut prendre garde au fait que les variables aléatoires X_k ne sont pas indépendantes. Néanmoins

$$\mathbb{V}(X) = \text{Cov}\left(\sum_{k=1}^{n} X_{k}, \sum_{l=1}^{n} X_{l}\right) = \sum_{1 \le k, l \le n} \text{Cov}(X_{k}, X_{l}) = \sum_{k=1}^{n} \mathbb{V}(X_{k}) + \sum_{1 \le k \ne l \le n} \text{Cov}(X_{k}, X_{l})$$

Puisque les X_k sont des variables aléatoires de Bernoulli, $\mathbb{V}(X_k) = \frac{1}{n} \left(1 - \frac{1}{n}\right)$ et pour $k \neq l$,

$$Cov(X_k, X_l) = \mathbb{E}(X_k X_l) - \mathbb{E}(X_k) \mathbb{E}(X_l) = \mathbb{P}(X_k = 1, X_l = 1) - \frac{1}{n}^2$$

A nouveau, on calcule $\mathbb{P}(X_k=1,X_l=1)$ par dénombrement. Le nombre de permutations pour lesquelles k et l sont fixes est (n-2)! donc $\mathbb{P}(X_k=1,X_l=1)=\frac{(n-2)!}{n!}=\frac{1}{n(n-1)}$. Ainsi $\mathrm{Cov}(X_k,X_l)=\frac{1}{n(n-1)}-\frac{1}{n^2}=\frac{1}{n^2(n-1)}$. Finalement,

$$\mathbb{V}(X) = \sum_{k=1}^{n} \frac{1}{n} \left(1 - \frac{1}{n} \right) + \sum_{1 \le k \ne l \le n} \frac{1}{n^2(n-1)} = 1 - \frac{1}{n} + n(n-1) \frac{1}{n^2(n-1)} = 1$$

car card $(\{(k,l) \in [[1,n]]^2, k \neq l\}) = n(n-1).$

Solution 17

Notons F la variable aléatoire qui désigne le nombre de «faces» obtenus avec n lancers. Alors F $\sim \mathcal{B}(n,p)$ avec p=1/2. Donc E(F) = np=1/2

n/2 et V(F) = np(1-p) = n/4.

Notons X = F/n la fréquence des «faces» parmi les n lancers.

$$E(X) = E\left(\frac{F}{n}\right) = \frac{E(F)}{n} = \frac{1}{2},$$

$$V(X) = V\left(\frac{F}{n}\right) = \frac{V(F)}{n^2} = \frac{1}{4n}.$$

D'après l'inégalité de Tchebychev, pour tout $\varepsilon > 0$,

$$P(|X - E(X)| > \epsilon) \le \frac{V(X)}{\epsilon^2}$$

Dans notre cas,

$$P(|X - 0, 5| > \epsilon) \le \frac{1}{4n\epsilon^2}$$

Par passage au contraire cela s'écrit

$$1 - P(|X - 0, 5| \leqslant \varepsilon) \le \frac{1}{4n\varepsilon^2}$$

ou encore

$$P(|X - 0, 5| \le \varepsilon) \ge 1 - \frac{1}{4n\varepsilon^2}$$

En prenant $\varepsilon = 0,05$, on a donc

$$P(0, 45 \le X \le 0, 55) \ge 1 - \frac{100}{n}$$

En prenant n = 1000, on a alors bien

$$P(0, 45 \le X \le 0, 55) \ge 0, 9$$

Dénombrabilité

Solution 18

On rappelle que Q est dénombrable.

Supposons qu'il existe une telle application f. Alors $f(\mathbb{Q})$ est au plus dénombrable comme réunion dénombrable d'ensembles finis. En effet, $f(\mathbb{Q}) = \bigcup_{x \in \mathbb{Q}} \{f(x)\}$. Par ailleurs, $f(\mathbb{R} \setminus \mathbb{Q}) \subset \mathbb{Q}$ donc $f(\mathbb{R} \setminus \mathbb{Q})$ est également au plus dénombrable. Enfin, $f(\mathbb{R}) = f(\mathbb{Q}) \cup f(\mathbb{R} \setminus \mathbb{Q})$ est au plus dénombrable comme réunion de deux tels ensembles.

On remarque maintenant que $f(\mathbb{R})$ est un intervalle de \mathbb{R} comme image de l'intervalle \mathbb{R} par une application continue. Mais les intervalles non réduits à un point ne sont pas finis ou dénombrables donc $f(\mathbb{R})$ est un point $\{a\}$. Mais alors $f(\mathbb{Q}) = f(\mathbb{R} \setminus \mathbb{Q}) = \{a\}$ et donc $\{a\} \subset \mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) = \emptyset$, ce qui est absurde.

Solution 19

Notons A l'ensembles des polynômes unitaires de $\mathbb{Z}[X]$ et A_d l'ensemble des polynômes unitaires de $\mathbb{Z}[X]$ de degré d. Remarquons que l'ensemble des entiers algébriques est

$$E = \bigcup_{P \in A} P^{-1}(\{0\}) = \bigcup_{d \in \mathbb{N}} \bigcup_{P \in A_d} P^{-1}(\{0\})$$

Pour tout $P \in A$, l'ensemble $P^{-1}(\{0\})$ est fini. De plus, l'ensemble A_d est dénombrable puisqu'il est en bijection avec \mathbb{Z}^d via l'application

$$\begin{cases}
\mathbb{Z}^d & \longrightarrow & \mathbf{A}_d \\
(a_0, \dots, a_{d-1}) & \longmapsto & \mathbf{X}^d + \sum_{k=0}^{d-1} a_k
\end{cases}$$

et que \mathbb{Z}^d est lui-même dénombrable comme produit cartésien fini d'ensembles dénombrables. Ainsi pour tout $d \in \mathbb{N}$, $\bigcup_{P \in A_d} P^{-1}(\{0\})$ est au plus

dénombrable comme union dénombrable d'ensembles finis. Finalement, E est également au plus dénombrable comme union dénombrable de tels ensembles. De plus, E n'est clairement pas fini puisque $\mathbb{Z} \subset \mathbb{E}$ (tout entier relatif n est racine du polynôme X-n) donc E est dénombrable.

Solution 20

Supposons (i) et montrons (ii). On sait qu'il existe une bijection de A sur \mathbb{N} . Cette bijection est a fortiori une injection de A dans l'ensemble dénombrable \mathbb{N} .

Supposons (ii) et montrons (i). Il existe une injection f de A sur un ensemble dénombrable B. Par définition, il existe une bijection g de B sur \mathbb{N} . Alors $g \circ f$ est une injection de A sur \mathbb{N} donc une bijection de A sur $g \circ f(A)$, qui est une partie de \mathbb{N} . Ainsi A est dénombrable.

Supposons (i) et montrons (iii). On sait qu'il existe une bijection de \mathbb{N} sur A. Cette bijection est a fortiori une surjection de l'ensemble dénombrable \mathbb{N} sur A.

Supposons (iii) et montrons (i). Il existe une surjection g d'un ensemble dénombrable B sur A. Par définition, il existe une bijection f de $\mathbb N$ sur B. Alors $f \circ g$ est une surjection de $\mathbb N$ sur A. Considérons une application qui à tout élément de A associe l'un de ses antécédents par $f \circ g$ (il en existe toujours au moins un par surjectivité de $f \circ g$). Par construction, cette application est une bijection de A sur une partie de $\mathbb N$ (l'ensemble des antécédents choisis) de sorte que A est dénombrable.

Solution 21

Remarquons que pour tout $\varepsilon \in \mathbb{R}_+^*$, l'ensemble $S_{\varepsilon} = \{j \in J, |a_j| \ge \varepsilon\}$ est fini car $(a_j)_{j \in J}$ est sommable. Il suffit alors de remarquer que $S = \bigcup_{n \in \mathbb{N}^*} S_{1/n}$ de sorte que S est au plus dénombrable en tant que réunion dénombrable d'ensembles finis.

Généralités

Solution 22

1. a. La suite (B_n) est décroissante pour l'inclusion. Ainsi, par continuité décroissante,

$$\mathbb{P}(\mathbf{A}) = \mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \mathbf{B}_n\right) = \lim_{n \to +\infty} \mathbf{B}_n$$

b. Par ailleurs,

$$\mathbb{P}(\mathbf{B}_n) = \mathbb{P}\left(\bigcup_{k \geq n} \mathbf{A}_k\right) \leq \sum_{k=n}^{+\infty} \mathbb{P}(\mathbf{A}_k)$$

Ainsi $\mathbb{P}(B_n)$ est majorée par le reste d'une série convergente donc $\mathbb{P}(A) = \lim_{n \to +\infty} \mathbb{P}(B_n) = 0$.

2. a. Soit $k \in [n, n + p]$. Par convexité de l'exponentielle,

$$\mathbb{P}(\overline{\mathbf{A}_k}) = 1 - \mathbb{P}(\mathbf{A}_k) \le \exp(-\mathbb{P}(\mathbf{A}_k))$$

Ainsi

$$\prod_{k=n}^{n+p} \mathbb{P}(\overline{\mathbf{A}_k}) \leq \prod_{k=n}^{n+p} \exp(-\mathbb{P}(\mathbf{A}_k))$$

Comme les $\overline{A_k}$ sont mutuellement indépendants,

$$\prod_{k=n}^{n+p} \mathbb{P}(\overline{\mathbf{A}_k}) = \mathbb{P}\left(\bigcap_{k=n}^{n+p} \overline{\mathbf{A}_k}\right)$$

On en déduit que

$$\mathbb{P}\left(\bigcap_{k=n}^{n+p} \overline{\mathbf{A}_k}\right) \le \exp\left(-\sum_{k=n}^{n+p} \mathbb{P}(\mathbf{A}_k)\right)$$

b. Posons $C_{n,p} = \bigcap_{k=n}^{n+p} \overline{A_k}$. Fixons $n \in \mathbb{N}$. La suite $(C_{n,p})_{p \in \mathbb{N}}$ est décroissante pour l'inclusion. Par continuité décroissante,

$$\mathbb{P}(\overline{\mathbf{B}_n}) = \mathbb{P}\left(\bigcap_{k \geq n} \overline{\mathbf{A}_k}\right) = \mathbb{P}\left(\bigcap_{p \in \mathbb{N}} \mathbf{C}_{n,p}\right) = \lim_{p \to +\infty} \mathbb{P}(\mathbf{C}_{n,p})$$

Comme la série $\sum_{n\in\mathbb{N}}\mathbb{P}(A_n)$ diverge vers $+\infty$, $\lim_{p\to+\infty}\sum_{k=n}^{n+p}\mathbb{P}(A_k)=+\infty$ et donc $\lim_{p\to+\infty}\exp\left(-\sum_{k=n}^{n+p}\mathbb{P}(A_k)\right)=0$. D'après la question précédente, $\lim_{p\to+\infty}\mathbb{P}(C_{n,p})=0$. On en déduit que $\mathbb{P}(B_n)=0$. Ainsi

$$\mathbb{P}(\overline{\mathbf{A}}) = \mathbb{P}\left(\bigcup_{n \in \mathbb{N}} \overline{\mathbf{B}_n}\right) \le \sum_{n=0}^{+\infty} \mathbb{P}(\overline{\mathbf{B}_n}) = 0$$

Finalement, $\mathbb{P}(\overline{A}) = 0$ et donc $\mathbb{P}(A) = 1$.

Solution 23

- 1. L'événement $A_{k,p}$: «le joueur J_k gagne au $p^{\text{ème}}$ tour» correspond à
 - les joueurs J_1, \dots, J_n perdent leurs p-1 premiers tours;
 - les joueurs $J_1, ..., J_{k-1}$ perdent lors du $p^{\text{ème}}$ tour;
 - le joueur J_k gagne.

Ainsi

$$\mathbb{P}(A_{k,p}) = (q_1 \dots q_n)^{p-1} (q_1 \dots q_{k-1}) p_k$$

Comme $G_k = \bigsqcup_{p \in \mathbb{N}^*} A_{k,p}$,

$$\mathbb{P}(G_k) = \sum_{p=1}^{+\infty} (q_1 \dots q_n)^{p-1} (q_1 \dots q_{k-1}) p_k = \frac{(q_1 \dots q_{k-1}) p_k}{1 - q_1 \dots q_n}$$

2. Posons pour simplifier, $u_k = \prod_{i=1}^k q_k$ (en convenant que $u_0 = 1$). Alors

$$\mathbb{P}(G_k) = \frac{u_{k-1} - u_k}{1 - u_n}$$

En notant $G = \bigsqcup_{k=1}^{n} G_k$ l'événement «l'un des joueurs gagne» i.e. «le jeu se finit», on a par téléscopage

$$\mathbb{P}(G) = \sum_{k=1}^{n} \frac{u_{k-1} - u_k}{1 - u_n} = \frac{u_0 - u_n}{1 - u_n} = 1$$

Le jeu se finit donc presque sûrement.

- 3. Le jeu est équitable si et seulement si $\mathbb{P}(G_{k+1}) = \mathbb{P}(G_k)$ pour tout $k \in [\![1,n-1]\!]$ i.e. $p_k = q_k p_{k+1}$ ou encore $\frac{1}{p_{k+1}} = \frac{1}{p_k} 1$. Ceci équivaut à $\frac{1}{p_k} = \frac{1}{p_1} (k-1)$ pour tout $k \in [\![1,n]\!]$. Pour que les p_k soient bien des probabilités, il faut que $\frac{1}{p_k} \ge 1$ pour tout $k \in [\![1,n]\!]$ i.e. $\frac{1}{p_1} \ge k$ pour tout $k \in [\![1,n]\!]$ ou encore $p_1 \ge \frac{1}{n}$.
- **4.** Notons T le nombre de coups joués. Comme T est une variable aléatoire positive, elle admet une espérance (éventuellement infinie). Remarquons que pour $(p,k) \in \mathbb{N}^* \times [\![1,n]\!]$, $\{T=n(p-1)+k\}=A_{k,p}$. Remarquons également que

$$\mathbb{N}^* = \bigsqcup_{k=1}^{n} \{ n(p-1) + k, \ p \in \mathbb{N}^* \}$$

Par sommation par paquets (licite car tous les termes sont positifs),

$$\mathbb{E}(\mathbf{T}) = \sum_{t=1}^{+\infty} t \mathbb{P}(\mathbf{T} = t)$$

$$= \sum_{k=1}^{n} \sum_{p=1}^{+\infty} (n(p-1) + k) \mathbb{P}(\mathbf{T} = n(p-1) + k)$$

$$= \sum_{k=1}^{n} \sum_{p=1}^{+\infty} u_n^{p-1} (u_{k-1} - u_k) (n(p-1) + k)$$

$$= \sum_{k=1}^{n} \sum_{p=0}^{+\infty} u_n^{p} (u_{k-1} - u_k) (np + k)$$

$$= \sum_{k=1}^{n} (u_{k-1} - u_k) \left[n \sum_{p=0}^{+\infty} p u_n^{p} + k \sum_{p=0}^{+\infty} u_p^{n} \right]$$

$$= \sum_{k=1}^{n} (u_{k-1} - u_k) \left[\frac{nu_n}{(1 - u_n)^2} + \frac{k}{1 - u_n} \right]$$

$$= \frac{nu_n}{(1 - u_n)^2} \sum_{k=1}^{n} u_{k-1} - u_k + \frac{1}{1 - u_n} \sum_{k=1}^{n} k(u_{k-1} - u_k)$$

$$= \frac{nu_n}{1 - u_n} + \frac{1}{1 - u_n} \left(\sum_{k=1}^{n} ((k - 1)u_{k-1} - ku_k) + \sum_{k=1}^{n} u_{k-1} \right)$$

$$= \frac{nu_n}{1 - u_n} + \frac{1}{1 - u_n} \left(-nu_n + \sum_{k=0}^{n-1} u_k \right)$$

$$= \frac{\sum_{k=0}^{n-1} u_k}{1 - u_n}$$

Solution 24

1. On note B_n l'événement «A₁ touche la cible au tour 2n + 1» et C_n l'événément «A₂ touche la cible au tour 2n. On note également D_n l'événement «A₁ l'emporte au tour 2n + 1. Alors

$$\mathbf{D}_n = \left(\bigcap_{i=1}^{n-1} \overline{\mathbf{B}_i}\right) \cap \left(\bigcap_{i=0}^{n-1} \overline{\mathbf{C}_i}\right) \cap \mathbf{B}_n$$

Par indépendance des tirs,

$$\mathbb{P}(\mathbf{D}_n) = \left(\prod_{i=0}^{n-1} \mathbb{P}(\overline{\mathbf{B}_i})\right) \left(\prod_{i=0}^{n-1} \mathbb{P}(\overline{\mathbf{C}_i})\right) \mathbb{P}(\mathbf{B}_n) = (1 - p_1)^n (1 - p_2)^n p_1$$

2. Notons E_n l'événement «A₂ l'emporte au tour 2n + 2». De la même manière

$$\mathbb{P}(\mathbf{E}_{2n+2}) = (1 - p_1)^{n+1} (1 - p_2)^n p_2$$

3. Notons D l'événement «A₁ l'emporte» et E l'événement «A₂ l'emporte». Alors D = $\bigsqcup_{n \in \mathbb{N}} D_n$ et E = $\bigsqcup_{n \in \mathbb{N}} E_n$. Ainsi

$$\mathbb{P}(D) = \sum_{n=0}^{+\infty} \mathbb{P}(D_n) = \frac{p_1}{1 - (1 - p_1)(1 - p_2)}$$

$$\mathbb{P}(E) = \sum_{n=0}^{+\infty} \mathbb{P}(E_n) = \frac{(1 - p_1)p_2}{1 - (1 - p_1)(1 - p_2)}$$

Notons F l'événement «le jeu dure indéfininiment». Alors $\overline{F} = D \sqcup E$ donc

$$\mathbb{P}(\overline{\mathbf{F}}) = \frac{p_1}{1 - (1 - p_1)(1 - p_2)} + \frac{(1 - p_1)p_2}{1 - (1 - p_1)(1 - p_2)}$$

En posant $q_i = 1 - p_i$, on a donc

$$\mathbb{P}(\overline{F}) = \frac{1 - q_1 + q_1(1 - q_2)}{1 - q_1q_2} = 1$$

puis $\mathbb{P}(F) = 0$.

4. Le jeu est équitable à condition que $\mathbb{P}(D) = \mathbb{P}(E)$ i.e. $p_1 = (1 - p_1)p_2$ i.e. $p_2 = \frac{p_1}{1 - p_1}$. Si $p_1 > 1/2$, alors $1 - p_1 < 1/2$ donc $\frac{p_1}{1 - p_1} > 1$ et il est impossible d'avoir $p_2 > 1$. Le jeu n'est donc pas équitable.

Solution 25

L'événement A peut aussi se formuler comme : «n'obtenir que des piles à partir d'un certain rang». Ainsi $A = \bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} P_k$ en notant P_k l'événement «obtenir un pile au lancer numéro k». Notons $A_n = \bigcap_{k > n} P_k$ de telle sorte que $A = \bigcup_{n \in \mathbb{N}} A_n$. Pour tout couple $(p, n) \in \mathbb{N}^2$ tel que

$$A_n \subset \bigcap_{k=n}^p F_k$$

donc

 $n \leq p$

$$0 \le \mathbb{P}(\mathbf{A}_n) \le \mathbb{P}\left(\bigcap_{k=n}^p \mathbf{F}_k\right) = \frac{1}{2^{p-n+1}}$$

donc $\mathbb{P}(A_n) = 0$ en faisant tendre n vers l'infini. Finalement, $\mathbb{P}(A) = 0$ car A est négligeable comme réunion dénombrable d'événemenst négligeables.

Probabilités conditionnelles

Solution 26

- **1.** On a clairement $p_0 = 0$ et $p_1 = 1 p$.
- 2. Comme $D_n \subset D_{n+1}$ pour tout $n \in \mathbb{N}$, la suite (p_n) est croissante. Comme elle est majorée par 1 (c'est une suite de probabilités), elle converge.
- **3.** Notons A l'événement «la fleur F₀ a des descendants».
 - Si la fleur F_0 n'a pas de descendants, alors sa lignée est éteinte à l'instant n+1 i.e. $\mathbb{P}(D_{n+1} \mid \overline{A}) = 1$.
 - Si la fleur F_0 a des descendants, sa lignée est éteinte à l'instant n+1 si chacun de ses deux descendants à sa lignée éteinte à l'instant n+1. Les deux lignées étant indépendantes, on a par translation $\mathbb{P}(D_{n+1} \mid A) = p_n^2$.

D'après la formule des probabilités totales

$$p_{n+1} = \mathbb{P}(\mathbf{D}_{n+1}) = \mathbb{P}(\mathbf{D}_{n+1} \mid \overline{\mathbf{A}}) \mathbb{P}(\overline{\mathbf{A}}) + \mathbb{P}(\mathbf{D}_{n+1} \mid \mathbf{A}) \mathbb{P}(\mathbf{A}) = (1-p) + p p_n^2$$

4. On sait que (p_n) converge vers $\ell \in [0,1]$. Elle converge alors nécessairement vers un point fixe de $f: x \mapsto px^2 + 1 - p$. Si p = 0, ce point fixe est évidemment 1, sinon c'est une racine du trinôme $pX^2 - X + 1 - p$, à savoir 1 ou $\frac{1-p}{p}$. Si $p < \frac{1}{2}, \frac{1-p}{p} > 1$ donc $\ell = 1$. Sinon $\frac{1-p}{p} \le 1$ et, comme f est croissante sur \mathbb{R}_+ , on prouve aisément que $\left[0, \frac{1-p}{p}\right]$ est stable par f. Comme $p_0 = 0 \in \left[0, \frac{1-p}{p}\right]$, (p_n) est à valeurs dans $\left[0, \frac{1-p}{p}\right]$ et donc $\ell = \frac{1-p}{p}$.

Pour récapituler, (p_n) converge vers 1 si $p < \frac{1}{2}$ et 0 sinon.

On peut vérifier à l'aide d'une simulation avec Python.

```
>>> import numpy.random as rd
>>>
>>> def proba_simulee(p):
        N = 100
. . .
        morts=0
        nb=10000
. . .
        for _ in range(nb):
            n=1
. . .
            cpt=0
            while n!=0 and n<N:
                 n=sum(2*rd.binomial(1,p,n))
                 cpt+=1
            if n==0:
                 morts+=1
        return morts/nb
. . .
. . .
>>> def proba theorique(p):
        return 1 if p<1/2 else (1-p)/p
. . .
>>> nb_tests=20
>>> [(i/nb_tests, proba_simulee(i/nb_tests), proba_theorique(i/nb_tests)) for i in

    range(nb tests+1)]

[(0.0, 1.0, 1), (0.05, 1.0, 1), (0.1, 1.0, 1), (0.15, 1.0, 1), (0.2, 1.0, 1), (0.25, 1.0, 1),
 \leftarrow (0.3, 1.0, 1), (0.35, 1.0, 1), (0.4, 1.0, 1), (0.45, 1.0, 1), (0.5, 0.9893, 1.0), (0.55,
 4 0.8185, 0.818181818181818), (0.6, 0.6606, 0.666666666666667), (0.65, 0.5432,
 4 0.5384615384615384), (0.7, 0.4315, 0.42857142857142866), (0.75, 0.3384, 0.333333333333333),
 (0.8, 0.2465, 0.24999999999999999999), (0.85, 0.1801, 0.17647058823529416), (0.9, 0.1165,
 - 0.1111111111111111108), (0.95, 0.0549, 0.052631578947368474), (1.0, 0.0, 0.0)]
```

Solution 27

Notons F (resp. P) l'événement «on a obtenu face (resp. pile) au premier lancer» ainsi que G_n l'événement «on a obtenu exactement n points au cours du jeu». D'après la formule des probabilités totales :

$$g_{n+2} = \mathbb{P}(G_{n+2}) = \mathbb{P}(G_{n+2} \mid P_1)\mathbb{P}(P_1) + \mathbb{P}(G_{n+2} \mid F_1)\mathbb{P}(F_1)$$

Or il est clair que $\mathbb{P}(G_{n+2} \mid P_1) = g_{n+1}$ et $\mathbb{P}(G_{n+2} \mid F_1) = g_n$. Ainsi

$$g_{n+2} = pg_{n+1} + qg_n$$

Le polynôme caractéristique est $X^2 - pX - q = X^2 - pX + p - 1$. Son discriminant est $p^2 - 4p + 4 = (p-2)^2$ donc ses racines sont p-1 et 1. On en déduit qu'il existe $(A, B) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}^*, \ g_n = A + B(p-1)^n$$

Or $g_0 = 1$ et $g_1 = \mathbb{P}(P_1) = p$. On en déduit que

$$\begin{cases} A + B = 1 \\ A + B(p-1) = p \end{cases}$$

On en déduit que A = $\frac{1}{2-p}$ et B = $\frac{1-p}{2-p}$. Finalement,

$$\forall n \in \mathbb{N}, \ g_n = \frac{1 - (p-1)^{n+1}}{2 - p}$$

Remarque. On peut être plus rigoureux pour déterminer la relation de récurrence. Soit $(X_k)_{k \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes telles que $\mathbb{P}(X_k = 1) = p$ et $\mathbb{P}(X_k = 2) = q$. Posons $S_p = \sum_{k=1}^p X_k$ pour $p \in \mathbb{N}$ (en particulier, $S_0 = 0$). Alors

$$G_n = \bigcup_{p \in \mathbb{N}} \{ S_p = n \}$$

puis

$$G_{n+2} = (G_{n+2} \cap \{X_1 = 1\}) \sqcup (\mathbb{P}(G_{n+2} \cap \{X_1 = 2\})$$

Or pour $j \in \{1, 2\}$

$$\begin{aligned} G_{n+2} \cap \{X_1 = j\} &= \bigcup_{p \in \mathbb{N}} \left(\{S_p = n+2\} \cap \{X_1 = j\} \right) & \text{par distributivit\'e de l'intersection sur l'union} \\ &= \bigcup_{p \in \mathbb{N}^*} \left(\{S_p = n+2\} \cap \{X_1 = j\} \right) & \text{car } S_0 = 0 \text{ et } n+2 > 0 \\ &= \bigcup_{p \in \mathbb{N}^*} \left(\left\{ \sum_{k=2}^p X_k = n+2 - j \right\} \cap \{X_1 = j\} \right) \\ &= \left(\bigcup_{p \in \mathbb{N}^*} \left\{ \sum_{k=2}^p X_k = n+2 - j \right\} \right) \cap \{X_1 = j\} & \text{par distributivit\'e de l'intersection sur l'union} \end{aligned}$$

D'après le lemme des coalitions, $\sum_{k=2}^{p} X_k$ et X_1 sont indépendantes donc

$$\mathbb{P}\left(\mathbf{G}_{n+2}\cap\{\mathbf{X}_1=j\}\right) = \mathbb{P}\left(\bigcup_{p\in\mathbb{N}^*}\left\{\sum_{k=2}^p\mathbf{X}_k=n+2-j\right\}\right)\mathbb{P}\left(\{\mathbf{X}_1=j\}\right)$$

Or $\sum_{k=2}^{p} X_k$ a la même loi que S_{p-1} . En effet, les X_k étant indépendantes et de même loi,

$$G_{\sum_{k=2}^{p} X_k} = \prod_{k=2}^{p} G_{X_k} = \prod_{k=1}^{p-1} G_{X_k} = G_{S_{p-1}}$$

Ainsi

$$\mathbb{P}\left(\bigcup_{p \in \mathbb{N}^*} \left\{ \sum_{k=2}^p X_k = n+2-j \right\} \right) = \mathbb{P}\left(\bigcup_{p \in \mathbb{N}^*} \{S_{p-1} = n+2-j\} \right) = \mathbb{P}\left(\bigcup_{p \in \mathbb{N}} \{S_p = n+2-j\} \right) = g_{n+2-j}$$

Finalement

$$g_{n+2} = \mathbb{P}\left(G_{n+2} \cap \{X_1 = 1\}\right) + \left(G_{n+2} \cap \{X_1 = 2\}\right) = g_{n+1}\mathbb{P}(X_1 = 1) + g_n\mathbb{P}(X_1 = 2) = pg_{n+1} + qg_n\mathbb{P}(X_1 = 2)$$

Solution 28

Notons A l'événement «obtenir deux piles consécutifs». Dans la suite, on notera F_n (resp. P_n) l'événement «on a obtenu "pile" (resp. "face") au $n^{\text{ème}}$ lancer.

On va plutôt s'intéresser à l'événement \overline{A} et on note $q = \mathbb{P}(\overline{A})$. Remarquons que $F_1, P_1 \cap F_2$ et $P_1 \cap P_2$ forment un système complet d'événements. On écrit la formule des probabilités totales :

$$\mathbb{P}(\overline{A}) = \mathbb{P}(\overline{A} \mid F_1) \mathbb{P}(F_1) + \mathbb{P}(\overline{A} \mid P_1 \cap F_1) \mathbb{P}(P_1 \cap F_1) + \mathbb{P}(\overline{A} \mid P_1 \cap P_2) \mathbb{P}(P_1 \cap P_2)$$

- Si on a obtenu un face au premier lancer, il suffit de ne pas obtenir deux piles consécutifs au cours des lancers suivants. Autrement dit, $\mathbb{P}(\overline{A} \mid F_1) = q$.
- Si on a obtenu un pile puis un face, il suffit encore de ne pas obtenir deux piles consécutifs au cours des lancers suivants. Autrement dit, P(A | P₁ ∩ F₁) = q.
- Enfin, il est clair que $\mathbb{P}(\overline{A} \mid P_1 \cap P_2) = 0$.

Ainsi q = (1 - p)q + p(1 - p)q ou encore $qp^2 = 0$. Comme p > 0, q = 0 puis $\mathbb{P}(A) = 1$.

Variables aléatoires

Solution 29

1. Posons $I_k = \int_0^1 x^k (1-x)^r dx$. Comme les I_k sont clairement positifs, il s'agit de montrer que la série $\sum_{k \in \mathbb{N}} rI_k$ converge et a pour somme 1.

Première méthode:

On prouve par une suite d'intégration par parties que

$$\forall k \in \mathbb{N}, \ \mathbf{I}_k = \frac{k!}{\prod_{i=1}^{k+1} (r+i)}$$

On fait apparaître un télescopage en remarquant que r=(r+k+1)-(k+1). Ainsi $r\mathrm{I}_k=u_k-u_{k+1}$ en posant $u_k=\frac{k!}{\prod_{i=1}^k(r+i)}$.

On montre maintenant que la suite (u_k) converge vers 0. En effet,

$$\ln(u_k) = -\sum_{i=1}^k \ln\left(1 + \frac{r}{i}\right)$$

Or $\ln\left(1+\frac{r}{i}\right) \sim \frac{r}{i}$, donc, par sommation de relations de comparaison pour des séries à termes positifs divergente,

$$\ln(u_k) \underset{k \to +\infty}{\sim} -\sum_{i=1}^k \frac{r}{i}$$

Comme la série harmonique diverge vers $+\infty$, la suite $(\ln(u_k))$ diverge vers $-\infty$ et la suite (u_k) converge donc vers 0. La série télescopique $\sum_{k\in\mathbb{N}}u_k-u_{k+1}$ i.e. la série $\sum_{k\in\mathbb{N}}r\mathrm{I}_k$ converge donc et a pour somme $u_0=1$.

Deuxième méthode:

On utilise le théorème de convergence dominée. En effet,

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, 1[, 0 \le \sum_{k=1}^n x^{k-1} (1-x)^r \le \sum_{k=1}^{+\infty} x^{k-1} (1-x)^r = (1-x)^{r-1}$$

Or la fonction $x \mapsto (1-x)^{r-1}$ est intégrable sur [0,1[par critère de Riemann (r-1>-1). On en déduit que

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \mathbb{P}(X = k) = r \int_{0}^{1} (1 - x)^{r-1} dx = 1$$

2. La variable aléatoire X admet une espérance si et seulement si la série $\sum_{k \in \mathbb{N}^*} k \mathbb{P}(X = k)$ converge, c'est-à-dire si et seulement si la série $\sum_{k \in \mathbb{N}^*} r(k+1) \mathbb{I}_k$ converge, l'espérance étant alors la somme de cette série. Les calculs précédents montrent que

$$\forall k \in \mathbb{N}, \ (k+1)I_k = \frac{(k+1)!}{\prod_{i=1}^{k+1} (r+i)}$$

Si $r \leq 1$,

$$(k+1)I_k \ge \frac{(k+1)!}{\prod_{i=1}^{k+1} (1+i)} = \frac{1}{k+2}$$

donc la série $\sum_{k\in\mathbb{N}} r(k+1) \mathrm{I}_k$ diverge par comparaison à la série harmonique.

On montre maintenant la convergence dans le cas r > 1.

Première méthode: On peut à nouveau faire apparaître un télescopage en remarquant que

$$r(k+1)I_{k+1} = \frac{r}{r-1}(v_k - v_{k+1})$$

avec $v_k = \frac{(k+1)!}{\prod_{i=1}^k (r+i)}$. En posant s = r-1 > 0, on a donc

$$v_k = (r+1) \frac{(k+1)!}{\prod_{i=1}^{k+1} (s+i)}$$

Quitte à changer r en s dans la question précédente, on a $v_k = (r+1)u_{k+1}$ de sorte que (v_k) converge encore vers 0. La série télescopique $\sum_{k \in \mathbb{N}} v_k - v_{k+1}$ converge donc et a pour somme $v_0 = 1$. La série $\sum_{k \in \mathbb{N}} r(k+1)I_k$ converge donc également et a pour somme $\frac{r}{r-1}$ qui est donc l'espérance de X.

Deuxième méthode : On peut encore utiliser le théorème de convergence dominée. En effet,

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, 1[, \sum_{k=1}^n kx^{k-1}(1-x)^r \le \sum_{k=1}^{+\infty} kx^{k-1}(1-x)^r = (1-x)^{r-2}$$

Or la fonction $x \mapsto (1-x)^{r-2}$ est intégrable sur [0,1[par critère de Riemann (r-2>-1). On en déduit que

$$\lim_{n \to +\infty} \sum_{k=1}^{n} k \mathbb{P}(X = k) = r \int_{0}^{1} (1 - x)^{r-1} dx = 1$$

Solution 30

Le fait qu'une suite réelle (u_n) converge vers 0 s'écrit :

$$\forall \varepsilon \in \mathbb{R}_+^*, \ \exists n \in \mathbb{N}, \ \forall p \geq n, \ -\varepsilon \leq u_p \leq \varepsilon$$

On montre aisément que ceci équivaut à

$$\forall k \in \mathbb{N}, \ \exists n \in \mathbb{N}, \ \forall p \ge n, \ -\frac{1}{2^k} \le u_p \le \frac{1}{2^k}$$

On en déduit que

$$A = \bigcap_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{n > n} \left\{ X_p \in \left[-\frac{1}{2^k}, \frac{1}{2^k} \right] \right\}$$

Comme les X_p sont des variables aléatoires, les $\left\{X_p \in \left[-\frac{1}{2^k}, \frac{1}{2^k}\right]\right\}$ sont des événements. Ainsi A est un événement comme réunions et intersections dénombrables d'événements.

Solution 31

- 1. Le premier tirag eétant effectué, on tire des jetons jusqu'à obtention d'un jeton différent du premier jeton tiré. A chaque tentative, la probabilité de réussite est de $\frac{2}{3}$. On en déduit que Y 1 ~ $\mathcal{G}(2/3)$.
- **2.** Par conséquent, Y est à valeurs dans $\mathbb{N} \setminus \{0, 1\}$ et

$$\forall n \ge 2, \ \mathbb{P}(Y = n) = \mathbb{P}(Y - 1 = n - 1) = \left(\frac{1}{3}\right)^{n - 2} \cdot \frac{2}{3} = \frac{2}{3^{n - 1}}$$

- 3. On sait alors que $\mathbb{E}(Y-1)=\frac{3}{2}$ et $\mathbb{V}(Y-1)=\frac{3}{4}$. Donc $\mathbb{E}(Y)=\frac{5}{2}$ et $\mathbb{V}(Y)=\frac{3}{4}$.
- **4.** Remarquons que (Y, Z) est à valeurs dans $\{(k, \ell) \in \mathbb{N}^2, 2 \le k < \ell\} \cup \{(+\infty, +\infty)\}$. De plus, pour $2 \le k < \ell$,

$$\mathbb{P}((Y,Z) = (k,\ell)) = \mathbb{P}(Y = k)\mathbb{P}(Z = \ell \mid Y = k) = \frac{2}{3^{k-1}} \cdot \left(\frac{2}{3}\right)^{\ell-k-1} \cdot \frac{1}{3} = \frac{2^{\ell-k}}{3^{\ell-1}}$$

5. \mathbb{Z} est à valeurs dans $[3, +\infty]$. Pour tout entier $\ell \geq 3$,

$$\mathbb{P}(Z=\ell) = \sum_{k=2}^{\ell-1} \mathbb{P}((Y,Z) = (k,\ell)) = \sum_{k=2}^{\ell-1} \frac{2^{\ell-k}}{3^{\ell-1}} = \frac{2^{\ell-1}}{3^{\ell-1}} \left(1 - \frac{1}{2^{\ell-2}}\right)$$

On peut vérifier avec Python.

```
from random import randint
def Z():
    X=randint(1,3)
    Y=randint(1,3)
    while X==Y:
        Y=randint(1,3)
    Z=randint(1,3)
    n + = 1
    while Y==Z or X==Z:
        Z=randint(1,3)
        n + = 1
    return n
def frequencies(l):
    proba_theorique = lambda i: 2**(i-1)/3**(i-1)*(1-1/2**(i-2))
    proba_empirique = lambda i: l.count(i)/len(l)
    return [(proba_theorique(i), proba_empirique(i)) for i in range(3, max(l)+1)]
```

Solution 32

On rappelle que pour |q| < 1,

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q} \qquad \text{et} \qquad \sum_{n=1}^{+\infty} nq^{n-1} = \frac{1}{(1-q)^2}$$

1. On doit avoir $\sum_{j=0}^{+\infty} \sum_{k=0}^{+\infty} \mathbb{P}(X=j, Y=k) = 1$. Or

$$\sum_{j=0}^{+\infty} \sum_{k=0}^{+\infty} \frac{j+k}{2^{j+k}} = 2\left(\sum_{j=0}^{+\infty} \frac{1}{2^j}\right) \left(\sum_{k=0}^{+\infty} \frac{k}{2^k}\right) = 2 \cdot \frac{1}{1-\frac{1}{2}} \cdot \frac{1}{2} \cdot \frac{1}{\left(1-\frac{1}{2}\right)^2} = 8$$

donc $a = \frac{1}{8}$.

2. Pour tout $j \in \mathbb{N}$,

$$\mathbb{P}(\mathbf{X}=j) = \sum_{k=0}^{+\infty} \mathbb{P}(\mathbf{X}=j,\mathbf{Y}=k) = \frac{1}{8} \sum_{k=0}^{+\infty} \frac{j+k}{2^{j+k}} = \frac{1}{8} \cdot \frac{1}{2^{j}} \left(\sum_{k=0}^{+\infty} \frac{k}{2^{k}} + j \sum_{k=0}^{+\infty} \frac{1}{2^{k}} \right) = \frac{1}{2^{j+3}} \left(2 + 2j \right) = \frac{j+1}{2^{j+2}} \left(2 + 2j \right) = \frac{j+1}{2^{j+2}} \left(2 + 2j \right) = \frac{1}{2^{j+2}} \left(2 + 2j \right) = \frac{1}{2^{j+2$$

Par symétrie, pour tout $k \in \mathbb{N}$,

$$\mathbb{P}(Y = k) = \frac{k+1}{2^{k+2}}$$

3. On remarque par exemple que

$$\mathbb{P}(X = 0, Y = 0) = 0 \neq \mathbb{P}(X = 0)\mathbb{P}(Y = 0)$$

Ainsi X et Y ne sont pas indépendantes.

4. Remarquons que

$$\{X = Y\} = \bigsqcup_{n \in \mathbb{N}} \{X = n\} \cap \{Y = n\}$$

Ainsi

$$\mathbb{P}(X = Y) = \sum_{n=0}^{+\infty} \mathbb{P}(X = n, Y = n) = \frac{1}{8} \sum_{n=0}^{+\infty} \frac{2n}{2^{2n}} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{\left(1 - \frac{1}{4}\right)^2} = \frac{1}{9}$$

Lois usuelles

Solution 33

Z est à valeurs dans \mathbb{N}^* puisque X et Y le sont. Soit $k \in \mathbb{N}^*$. Remarquons que $\{Z \ge k\} = \{X \ge k\} \cap \{Y \ge k\}$ donc par indépendance de X et Y:

$$\mathbb{P}(Z \ge k) = \mathbb{P}(\{X \ge k\} \cap \{Y \ge k\}) = \mathbb{P}(X \ge k)\mathbb{P}(Y \ge k)$$

Puisque $\{X \ge k\} = \bigsqcup_{n=k}^{+\infty} \{X = k\},$

$$\mathbb{P}(X \ge k) = \sum_{n=k}^{+\infty} \mathbb{P}(X = k) = \sum_{n=k}^{+\infty} (1 - p_1)^{n-1} p_1 = (1 - p_1)^{k-1}$$

Remarque. On aurait pu se passer du calcul de somme de série puisqu'une loi géométrique représente la loi du premier succès.

De la même manière

$$\mathbb{P}(Y \ge k) = (1 - p_2)^{k - 1}$$

Ainsi

$$\mathbb{P}(Z \ge k) = (1 - p_1)^{k-1} (1 - p_2)^{k-1}$$

On constate enfin que

$$\{Z > k\} = \{Z = k\} \sqcup \{Z > k + 1\}$$

donc

$$\mathbb{P}(Z=k) = \mathbb{P}(Z \ge k) - \mathbb{P}(Z \ge k+1) = (1-p_1)^{k-1}(1-p_2)^{k-1} - (1-p_1)^k(1-p_2)^k$$

Solution 34

1. Remarquons que

$$\{X=Y\} = \bigsqcup_{n \in \mathbb{N}^*} (\{X=n\} \cap \{Y=n\})$$

Ainsi par indépendance de X et Y,

$$\mathbb{P}(\mathbf{X} = \mathbf{Y}) = \sum_{n=1}^{+\infty} \mathbb{P}(\mathbf{X} = n) \mathbb{P}(\mathbf{Y} = n) = \sum_{n=1}^{+\infty} \left((1 - p)^{n-1} p \right)^2 = p^2 \sum_{n=0}^{+\infty} (1 - p)^{2n} = \frac{p^2}{1 - (1 - p)^2} = \frac{p}{2 - p}$$

2. X + Y est à valeurs dans $[2, +\infty]$. Soit $n \in [2, +\infty]$. Remarquons que

$$\{X + Y = n\} = \bigsqcup_{k=1}^{n-1} (\{X = k\} \cap \{Y = n - k\})$$

A nouveau par indépednace de X et Y,

$$\mathbb{P}(X + Y = n) = \sum_{k=1}^{n-1} \mathbb{P}(X = k) \mathbb{P}(Y = n - k) = \sum_{k=1}^{n-1} (1 - p)^{k-1} p (1 - p)^{n-k-1} p = (n-1)p^2 (1 - p)^{n-2}$$

REMARQUE. On aurait aussi pu utiliser les fonctions génératrices de X et Y.

3. Puisque $\{Z > n\} = \bigsqcup_{k \ge n+1} \{Z = k\},$

$$\mathbb{P}(Z > n) = \sum_{k=n+1}^{+\infty} \mathbb{P}(Z = k) = \sum_{k=n+1}^{+\infty} (1-p)^{k-1} p = p(1-p)^n \sum_{k=0}^{+\infty} (1-p)^k = (1-p)^n$$

REMARQUE. Ceci est cohérent avec l'interprétation de la loi géométrique comme loi du premier succès.

4. On remarque que

$$\{Z > X + Y\} = \bigsqcup_{n > 2} (\{Z > n\} \cap \{X + Y = n\})$$

Par indépendance de Z et X + Y,

$$\mathbb{P}(Z > X + Y) = \sum_{n=2}^{+\infty} \mathbb{P}(Z > n) \mathbb{P}(X + Y = n)$$

$$= \sum_{n=2}^{+\infty} (1 - p)^n (n - 1) p^2 (1 - p)^{n-2}$$

$$= p^2 \sum_{n=2}^{+\infty} (n - 1) (1 - p)^{2n-2}$$

$$= p^2 \sum_{n=1}^{+\infty} n (1 - p)^{2n}$$

$$= p^2 (1 - p)^2 \sum_{n=1}^{+\infty} n (1 - p)^{2(n-1)}$$

$$= \frac{p^2 (1 - p)^2}{(1 - (1 - p)^2)^2}$$

 $\operatorname{car} \sum_{n=1}^{+\infty} nt^{n-1} = \frac{1}{(1-t)^2} \text{ pour } t \in]-1,1[.\text{ En simplifiant}]$

$$\mathbb{P}(Z > X + Y) = \frac{(1-p)^2}{(2-p)^2}$$

On peut vérifier avec Python.

```
>>> import numpy.random as rd
>>>
>>> p=.2
>>> n=10000
>>> X=rd.geometric(p,n)
>>> Y=rd.geometric(p,n)
```

```
>>> Z=rd.geometric(p,n)
>>> sum(Z>X+Y)/n
0.2008
>>> (1-p)**2/(2-p)**2
0.19753086419753088
```

Solution 35

- 1. La loi de X est une loi géométrique de paramètre 1/2.
- 2. Notons B l'événement consitant à obtenir une boule blanche à la fin de l'expérience. Alors

$$\mathrm{B} = \bigsqcup_{n \in \mathbb{N}^*} (\mathrm{B} \cap \{\mathrm{X} = n\})$$

Or

$$\mathbb{P}(\mathrm{B} \cap \mathrm{X} = n) = \mathbb{P}_{\mathrm{X} = n}(\mathrm{B})\mathbb{P}(\mathrm{X} = n) = \frac{1}{n} \cdot \frac{1}{2^n}$$

Par conséquent

$$\mathbb{P}(\mathbf{B}) = \sum_{n=1}^{+\infty} \frac{1}{2^n n}$$

Comme

$$\forall x \in]-1, 1[, \ \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$

on obtient par intégration

$$\forall x \in]-1,1[, \ \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = \sum_{n=1}^{+\infty} \frac{x^n}{n}$$

Ainsi

$$\mathbb{P}(B) = -\ln\left(1 - \frac{1}{2}\right) = \ln(2)$$

On peut vérifier avec Python.

Solution 36

1. X et Y sont à valeurs dans \mathbb{N}^* et pour tout $n \in \mathbb{N}^*$,

$$\mathbb{P}(X = n) = \mathbb{P}(Y = n) = (1 - p)^{n-1}p$$

2. a. U et V sont respectivement à valeurs dans \mathbb{N}^* et \mathbb{Z} . Soit alors $(n, m) \in \mathbb{N}^* \times \mathbb{Z}$. Traitons d'abord le cas où m = 0. Alors

$$\{(U, V) = (n, 0)\} = \{X = n\} \cap \{Y = n\}$$

donc, par indépendance de X et Y

$$\mathbb{P}((U, V) = (n, 0)) = \mathbb{P}(X = n)\mathbb{P}(Y = n) = p^{2}(1 - p)^{2n-2}$$

Traitons maintenant le cas m > 0. Alors

$$\{(U, V) = (n, m)\} = (\{X = n + m\} \cap \{Y = n\})$$

A nouveau, par indépendance de X et Y,

$$\mathbb{P}((U, V) = (n, m)) = \mathbb{P}(X = n + m)\mathbb{P}(Y = n) = p^{2}(1 - p)^{2n + m - 2}$$

En intervertissant X et Y, on trouve que si m < 0,

$$\mathbb{P}((U,V) = (n,m)) = p^2(1-p)^{2n-m-2}$$

Dans tous les cas,

$$\mathbb{P}((U, V) = (n, m)) = p^{2}(1 - p)^{2n + |m| - 2}$$

On retrouve alors les lois marginales.

$$\mathbb{P}(\mathbf{U} = n) = \sum_{m = -\infty}^{+\infty} \mathbb{P}(\mathbf{U} = n, \mathbf{V} = m)$$

$$= p^{2}(1 - p)^{2n - 2} + 2\sum_{m = 1}^{+\infty} p^{2}(1 - p)^{2n + m - 2}$$

$$= p^{2}(1 - p)^{2n - 2} + 2p^{2}(1 - p)^{2n - 1}\sum_{m = 1}^{+\infty} (1 - p)^{m - 1}$$

Or

$$\sum_{m=1}^{+\infty} (1-p)^{m-1} = \frac{1}{1-(1-p)} = \frac{1}{p}$$

donc

$$\mathbb{P}(\mathbf{U} = n) = p(1-p)^{2n-2}(2-p) = \left((1-p)^2\right)^{n-1} \left(1 - (1-p)^2\right)$$

Notamment, U suit la loi géométrique de paramètre $1 - (1 - p)^2$.

De la même manière

$$\mathbb{P}(V = m) = \sum_{n=1}^{+\infty} \mathbb{P}(U = n, V = m)$$

$$= \sum_{n=1}^{+\infty} p^{2} (1 - p)^{2n + |m| - 2}$$

$$= p^{2} (1 - p)^{|m|} \sum_{n=1}^{+\infty} (1 - p)^{2(n-1)}$$

$$= p^{2} (1 - p)^{|m|} \cdot \frac{1}{1 - (1 - p)^{2}} = \frac{p(1 - p)^{|m|}}{2 - p}$$

b. Il s'agit d'une simple vérification :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{Z}, \ \mathbb{P}(\mathbf{U} = n) \mathbb{P}(\mathbf{V} = m) = p(1-p)^{2n-2}(2-p) \cdot \frac{p(1-p)^{|m|}}{2-p} = p^2(1-p)^{2n+|m|-2} = \mathbb{P}(\{\mathbf{U} = n\} \cap \{\mathbf{V} = m\})$$

3. L'énoncé suppose implicitement que U et V sont respectivement à valeurs dans \mathbb{N}^* et \mathbb{Z} . Puisque $X = U + \max(V, 0)$ et $Y = U - \min(V, 0)$, X et Y sont à valeurs dans \mathbb{N}^* .

Posons $p_n = \mathbb{P}(X = n) = \mathbb{P}(Y = n)$ pour $n \in \mathbb{N}^*$. Par indépendance de U et V d'une part et de X et Y d'autre part,

$$\mathbb{P}(U = n)\mathbb{P}(V = 0) = \mathbb{P}(U = n, V = 0) = \mathbb{P}(X = n, Y = n) = p_n^2$$

De même,

$$\mathbb{P}(U = n)\mathbb{P}(V = 1) = \mathbb{P}(U = n, V = 1) = \mathbb{P}(X = n + 1, Y = n) = p_n p_{n+1}$$

Par hypotèse ces deux quantités ne sont pas nulles, donc en divisant membre à membre

$$\frac{p_{n+1}}{p_n} = \frac{\mathbb{P}(V=1)}{\mathbb{P}(V=0)}$$

La suite de terme général $\frac{p_{n+1}}{p_n}$ est donc constante i.e. la suite (p_n) est géométrique. En notant 1-p sa raison, $p_n=(1-p)^{n-1}p_1$.

Mais comme $\sum_{n=1}^{+\infty} p_n = 1$, $p_1 = p$. Ainsi

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(X = n) = \mathbb{P}(Y = n) = (1 - p)^{n-1}p$$

donc X et Y suivent bien la loi géométrique de paramètre p.

On a vu plus haut que $1 - p = \frac{\mathbb{P}(V = 1)}{\mathbb{P}(V = 0)}$ i.e. $p = 1 - \frac{\mathbb{P}(V = 1)}{\mathbb{P}(V = 0)}$.

Solution 37

- 1. a. Les variables aléatoires Y_k sont mutuellement indépendantes. On a clairement $Y_1 = 1$.
 - **b.** Y_k suit la loi géométrique de paramètre $\frac{n-k+1}{n} = 1 \frac{k-1}{n}$. On en déduit que $\mathbb{E}(Y_k) = \frac{n}{n-k+1}$ et que $\mathbb{V}(Y_k) = \frac{\frac{k-1}{n}}{\left(\frac{n-k+1}{n}\right)^2} = \frac{n(k-1)}{\left(\frac{n-k+1}{n}\right)^2}$
- 2. On a clairement $X = \sum_{k=1}^{n} Y_k$. Par linéarité de l'espérance,

$$\mathbb{E}(Y) = \sum_{k=1}^{n} \mathbb{E}(Y_k) = n \sum_{k=1}^{n} \frac{1}{n-k+1} = n \sum_{k=1}^{n} \frac{1}{k} = nH_n$$

3. Par comparaison série/intégrale, on obtient classiquement $H_n \sim \ln(n)$. Par conséquent, $\mathbb{E}(X) \sim n \ln n$.

Solution 38

1. D'après une identité de polarisation :

$$2\operatorname{Cov}(X,Y) = \mathbb{V}(V+Y) - \mathbb{V}(X) - \mathbb{V}(Y)$$

Or une loi de Poisson a une variance égale à son espérance donc

$$2\operatorname{Cov}(X,Y) = \mathbb{E}(X+Y) - \mathbb{E}(X) - \mathbb{E}(Y) = 0$$

par linéarité de l'espérance.

2. Soient λ et μ deux réels strictement positifs. Posons $a_n = \frac{e^{-\lambda}\lambda^n}{n!}$ et $b_n = \frac{e^{-\mu}\mu^n}{n!}$ pour $n \in \mathbb{N}$. Posons également $p_{i,j} = a_i b_j$ pour $(i,j) \in \mathbb{N}^2$ de manière générale sauf

$$p_{0,1} = a_0 b_1 - \alpha$$
 $p_{1,0} = a_1 b_0 + \alpha$ $p_{0,2} = a_0 b_2 + \alpha$ $p_{2,0} = a_2 b_0 - \alpha$

où l'on choisit par exemple $\alpha = \min\{a_0b_1, a_2b_0\}$. La famille $(a_ib_j)_{(i,j)\in\mathbb{N}^2}$ est une famille sommable de somme 1 via Fubini. La famille $(p_{i,j})$ est donc également une famille sommable de réels positifs (on a choisit α pour cela) de somme 1. Il existe donc une variable aléatoire Z à valeurs dans \mathbb{N}^2 telle que $\mathbb{P}(Z=(i,j))=p_{i,j}$. Posons Z=(X,Y). Alors pour tout $n\in\mathbb{N}$,

$$\mathbb{P}(X = n) = \sum_{k=0}^{+\infty} p_{n,k} = a_n$$

$$\mathbb{P}(Y = n) = \sum_{k=0}^{+\infty} p_{k,n} = b_n$$

de telle sorte que X et Y suivent des lois de Poisson de paramètres respectifs λ et μ . Par ailleurs, pour tout $n \in \mathbb{N}$,

$$\mathbb{P}(X+Y=n) = \sum_{k=0}^{n} p_{k,n-k} = e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^n}{n!}$$

via la formule du binôme de Newton (l'égalité reste encore valable pour n=1 et n=2 car les α se simplifient). Ainsi X+Y suit la loi de Poisson de paramètre $\lambda + \mu$.

Enfin, X et Y ne sont pas indépendantes. Par exemple, $\mathbb{P}(X=0,Y=1)=p_{0,1}$ et $\mathbb{P}(X=0)\mathbb{P}(Y=1)=a_0b_1\neq p_{0,1}$ puisque $\alpha>0$.

Solution 39

1. Si n voitures sont passés en 1H, chacune de ces voitures a une probabilité $\frac{1}{m}$ de chosir le gucihet n°1. Ainsi la loi de X conditionnée par l'événement N = n est une loi binomiale de paramètres n et $\frac{1}{m}$. Autrement dit

$$\mathbb{P}(X = k \mid N = n) = \binom{n}{k} \left(\frac{1}{m}\right)^k \left(1 - \frac{1}{m}\right)^{n-k}$$

2. D'après la formule des probailités totales, pour tout $k \in \mathbb{N}$,

$$\mathbb{P}(X = k) = \sum_{n=0}^{+\infty} \mathbb{P}(X = k \mid N = n) \mathbb{P}(N = n)$$

Or $\mathbb{P}(X = k \mid N = n) = 0$ lorsque k > n donc

$$\mathbb{P}(X = k) = \sum_{n=k}^{+\infty} \mathbb{P}(X = k \mid N = n) \mathbb{P}(N = n)$$

$$= \sum_{n=0}^{+\infty} \mathbb{P}(X = k \mid N = n + k) \mathbb{P}(N = n + k)$$

$$= \sum_{n=0}^{+\infty} \binom{n+k}{k} \left(\frac{1}{m}\right)^k \left(1 - \frac{1}{m}\right)^n e^{-\lambda} \frac{\lambda^{n+k}}{(n+k)!}$$

$$= e^{-\lambda} \left(\frac{\lambda}{m}\right)^k \frac{1}{k!} \sum_{n=0}^{+\infty} \lambda^n \left(1 - \frac{1}{m}\right)^n \frac{1}{n!}$$

3. On reconnaît la somme d'une série exponentielle

$$\sum_{n=0}^{+\infty} \lambda^n \left(1 - \frac{1}{m} \right)^n \frac{1}{n!} = e^{\lambda \left(1 - \frac{1}{m} \right)}$$

Ainsi

$$\mathbb{P}(X = k) = e^{-\frac{\lambda}{m}} \left(\frac{\lambda}{m}\right)^k \frac{1}{k!}$$

Par conséquent, X suit une loi de Poisson de paramètre $\frac{\lambda}{m}$.

4. C'est du cours : $\mathbb{E}(X) = \mathbb{V}(X) = \frac{\lambda}{m}$.

Solution 40

- 1. L'application $t \mapsto t^n e^{-t^2}$ est continue sur \mathbb{R} et $t^n e^{-t^2} = \frac{1}{t^2}$ par croissances comparées. donc l'intégrale I_n converge par comparaison à une intégrale de Riemann.
- 2. Remarquons que
 - $t \mapsto t^{n+1}/(n+1)$ est de classe \mathcal{C}^1 sur \mathbb{R} ;
 - $t \mapsto e^{-t^2}$ est de classe \mathcal{C}^1 sur \mathbb{R} ;
 - $\lim_{t \to +\infty} \frac{t^{n+1}}{n+1} e^{-t^2} = 0.$

Donc, par intégration par parties

$$I_n = \left[\frac{t^{n+1}}{n+1} e^{-t^2} \right]_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} \frac{2t^{n+2}}{n+1} e^{-t^2} dt$$

ou encore

$$2I_{n+2} = (n+1)I_n$$

Comme $t\mapsto te^{-t^2}$ est impaire, $I_1=0$. Ainsi $I_{2n+1}=0$ pour tout $n\in\mathbb{N}$, On montre également que

$$\forall n \in \mathbb{N}, \ I_{2n} = \frac{(2n)!}{2^{2n} n!} I_0 = \frac{(2n)!}{2^{2n} n!} \sqrt{\pi}$$

3. On utilise la formule de transfert :

$$\mathbb{E}(\mathbf{Y}) = \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{X} = n) \mathbf{I}_n$$

$$= e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^n \mathbf{I}_n}{n!}$$

$$= e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^{2n} \mathbf{I}_{2n}}{(2n)!}$$

$$= e^{-\lambda} \sqrt{\pi} \sum_{n=0}^{+\infty} \frac{\lambda^{2n}}{2^{2n} n!}$$

$$= e^{-\lambda} \sqrt{\pi} e^{\frac{\lambda^2}{4}}$$

$$= \sqrt{\pi} e^{-\lambda + \frac{\lambda^2}{4}}$$

L'utilisation de la formule de transfert est justifiée a posteriori puisque le calcul précédent montre que la série à termes postifs $\sum_{n \in \mathbb{N}} \mathbb{P}(X = n)I_n$ converge.

Espérance et variance

Solution 41

On utilise la formule de transfert. En posant q = 1 - p,

$$\mathbb{E}(1/X) = \sum_{k=1}^{+\infty} \frac{1}{k} q^{k-1} p = \frac{p}{q} \sum_{k=0}^{+\infty} \frac{q^{k+1}}{k+1}$$

On sait que la série entière $\sum_{k \in \mathbb{N}} x^k$ a pour rayon de convergence 1 et pour somme $\frac{1}{1-x}$. Par intégration d'une série entière

$$\sum_{k=0}^{+\infty} \frac{q^{k+1}}{k+1} = -\ln(1-q) = -\ln(p)$$

On en déduit que

$$\mathbb{E}(1/X) = -\frac{p \ln p}{q} = -\frac{p \ln p}{1 - p}$$

Solution 42

Soit $N \in \mathbb{N}$. Alors

$$\begin{split} \sum_{n=0}^{N} \mathbb{P}(X > n) &= \sum_{n=0}^{N} (1 - \mathbb{P}(X \le n)) \\ &= N + 1 - \sum_{n=0}^{N} \sum_{k=0}^{n} \mathbb{P}(X = k) \\ &= N + 1 - \sum_{k=0}^{N} \sum_{n=k}^{N} \mathbb{P}(X = k) \\ &= N + 1 - \sum_{k=0}^{N} (N + 1 - k) \mathbb{P}(X = k) \\ &= (N + 1) \left(1 - \sum_{k=0}^{N} \mathbb{P}(X = k)\right) + \sum_{k=0}^{n} k \mathbb{P}(X = k) \\ &= (N + 1) \mathbb{P}(X > N) + \sum_{k=0}^{N} k \mathbb{P}(X = k) \end{split}$$

Supposons que X admette une espérance finie. Alors la série $\sum_{k \in \mathbb{N}} k \mathbb{P}(X = k)$ converge. Alors son reste est défini et tend vers 0. De plus,

$$\sum_{k=\mathrm{N}+1}^{+\infty} k \mathbb{P}(\mathrm{X}=k) \geq (\mathrm{N}+1) \sum_{k=\mathrm{N}+1}^{+\infty} \mathbb{P}(\mathrm{X}=k) = (\mathrm{N}+1) \mathbb{P}(\mathrm{X}>\mathrm{N}) \geq 0$$

donc, par encadrement,

$$\lim_{N \to +\infty} (N+1) \mathbb{P}(X > N) = 0$$

On en déduit que $\sum_{n\in\mathbb{N}} \mathbb{P}(X > N)$ converge et que $\mathbb{E}(X) = \sum_{n=0}^{+\infty} \mathbb{P}(X > n)$.

Supposons maintenant que $\sum_{n \in \mathbb{N}} \mathbb{P}(X > n)$ converge. On remarque alors tout simplement que

$$\sum_{k=0}^{\mathrm{N}} k \mathbb{P}(\mathrm{X}=k) = \sum_{n=0}^{\mathrm{N}} \mathbb{P}(\mathrm{X} > n) - (\mathrm{N}+1) \mathbb{P}(\mathrm{X} > \mathrm{N}) \leq \sum_{n=0}^{+\infty} \mathbb{P}(\mathrm{X} > n)$$

Ainsi la suite des sommes partielles de la série à termes $positifs \sum_{k \in \mathbb{N}} k \mathbb{P}(X=k)$ est majorée. Cette série converge donc, ce qui signifie que X admet une espérance finie.

Solution 43

1. Z est à valeurs dans l'ensemble dénombrable $\mathbb{N} \cup \{\infty\}$. De plus, pour tout $k \in \mathbb{N}$,

$${Z \ge k} = \bigcup_{I \in \mathcal{P}_k(\mathbb{N})} \bigcap_{i \in I} E_i$$

où $\mathcal{P}_k(\mathbb{N})$ désigne l'ensemble des parties de \mathbb{N} de cardinal k. L'ensemble $\mathcal{P}_k(\mathbb{N})$ est dénombrable puisque l'application qui une partie $\{x_1,\ldots,x_k\}$ de \mathbb{N} (avec $x_1<\cdots< x_k$) associe (x_1,\ldots,x_k) est une injection de $\mathcal{P}_k(\mathbb{N})$ dans l'ensemble dénombrable \mathbb{N}^k . Par conséquent, $\{Z\geq k\}$ est un événement en tant qu'union dénombrable d'événements. Ensuite

$$\{Z=k\}=\{Z\geq k\}\setminus\{Z\geq k+1\}$$

donc $\{Z = k\}$ est aussi un événement.

Enfin

$$\{Z = \infty\} = \bigcap_{k \in \mathbb{N}} \{Z \ge k\}$$

donc $\{Z = \infty\}$ est aussi un événement comme intersection dénombrable d'événement. Ceci prouve que Z est bien une variable aléatoire.

2. Remarquons que

$$\overline{\mathbf{F}} = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} \mathbf{E}_k$$

donc F est un événement. De plus,

$$\mathbb{P}\left(\bigcup_{k>n} \mathcal{E}_k\right) \leq \sum_{k=n}^{+\infty} \mathbb{P}(\mathcal{E}_k)$$

Comme la série $\sum \mathbb{P}(\mathbf{E}_n)$ converge, la suite de ses restes converge vers 0 i.e.

$$\lim_{n \to +\infty} \sum_{k=n}^{+\infty} \mathbb{P}(\mathbf{E}_k) = 0$$

D'après le théorème des gendarmes,

$$\lim_{n \to +\infty} \mathbb{P}\left(\bigcup_{k \ge n} \mathcal{E}_k\right) = 0$$

La suite $\left(\bigcup_{k\geq n} \mathbf{E}_k\right)_{n\in\mathbb{N}}$ est une suite décroissante pour l'inclusion donc, par continuité décroissante,

$$\mathbb{P}(\overline{\mathbf{F}}) = \mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k > n} \mathbf{E}_k\right) = \lim_{n \to +\infty} \mathbb{P}\left(\bigcup_{k > n} \mathbf{E}_k\right) = 0$$

puis $\mathbb{P}(F) = 1$.

3.

Solution 44

1. On pose q=1-p. Notons U le nombre de lancers nécessaires pour obtenir le premier «pile» et V le nombre de lancers nécessaires pour obtenir le deuxième «pile» après avoir obtenu le premier «pile». Alors U et V sont des variables aléatoires indépendantes suivant la même loi géométrique de paramètre p. On rappelle que $G_U(t) = G_V(t) = \sum_{n=1}^{+\infty} p^{n-1}qt^n$. Comme U et V sont indépendantes, $G_{U+V}(t) = G_U(t)G_V(t)$ donc, par produit de Cauchy,

$$G_{U+V}(t) = \sum_{n=2}^{+\infty} (n-1)q^{n-2}pt^n$$

Ainsi, pour tout entier $n \ge 2$, $\mathbb{P}(U + V = n) = (n - 1)q^{n-2}p^2$. Or il est clair que X = U + V - 2 donc pour tout $n \in \mathbb{N}$,

$$\mathbb{P}(X = n) = \mathbb{P}(U + V = n + 2) = (n + 1)q^{n}p^{2}$$

2. Par linéarité de l'espérance, X est d'espérance finie et

$$\mathbb{E}(X) = \mathbb{E}(U) + \mathbb{E}(V) - 2 = \frac{2}{p} - 2 = \frac{2q}{p}$$

3. La loi de Y conditionnée par l'événement X = n est la loi uniforme sur [0, n]. D'après la formule des probabilités totales,

$$\forall k \in \mathbb{N}, \ \mathbb{P}(Y = k) = \sum_{n=0}^{+\infty} \mathbb{P}(Y = k \mid X = n) \mathbb{P}(X = n) = \sum_{n=k}^{+\infty} \frac{1}{n+1} \cdot (n+1) q^n p^2 = p^2 \frac{q^k}{1-q} = pq^k$$

Autrement dit, Y + 1 suit une loi géométrique de paramètre p. Ainsi $\mathbb{E}(Y) = \frac{1}{p} - 1 = \frac{q}{p}$.

4. Tout d'abord, Z est à valeurs dans \mathbb{N} puisque $Y \leq X$. De plus, pour tout $k \in \mathbb{N}$,

$$[Z=k] = \bigsqcup_{n=k}^{+\infty} [X=n] \cap [Y=n-k]$$

Ainsi

$$\mathbb{P}(Z = k) = \sum_{n=k}^{+\infty} \mathbb{P}([X = n] \cap [Y = n - k])$$

$$= \sum_{n=k}^{+\infty} \mathbb{P}(Y = n - k \mid X = n) \mathbb{P}(X = n)$$

$$= \sum_{n=k}^{+\infty} \frac{1}{n+1} \cdot (n+1)q^n p^2$$

$$= \sum_{n=k}^{+\infty} q^n p^2 = p^2 \cdot \frac{q^k}{1-q} = pq^k$$

Pour tout $(k, n) \in \mathbb{N}^2$,

$$\mathbb{P}([Z=k] \cap [Y=n]) = \mathbb{P}([X=n+k] \cap [Y=n])$$

$$= \mathbb{P}(Y=n \mid X=n+k)\mathbb{P}(X=n+k)$$

$$= \frac{1}{n+1} \cdot (n+1)q^{n+k}p^2$$

$$= pq^k \cdot pq^n = \mathbb{P}(Z=k)\mathbb{P}(Y=n)$$

Ceci prouve que Z et Y sont indépendantes.

Solution 45

Remarquons que pour tout $n \in \mathbb{N}$, par indépendance de X et Y,

$$\mathbb{P}(Z > n) = \mathbb{P}([X > n] \cap [Y > n]) = \mathbb{P}(X > n)\mathbb{P}(Y > n)$$

De plus

$$\mathbb{P}(X > n) = \sum_{k=n+1}^{+\infty} \mathbb{P}(X = k) = \sum_{k=n+1}^{+\infty} (1-p)^{k-1} p = p(1-p)^n \sum_{k=0}^{+\infty} (1-p)^k = \frac{p(1-p)^n}{1 - (1-p)} = (1-p)^n$$

De même, $\mathbb{P}(Y > n) = (1 - q)^n$. D'après la formule d'antiréparatition,

$$\mathbb{E}(Z) = \sum_{n=0}^{+\infty} \mathbb{P}(Z > n) = \sum_{n=0}^{+\infty} (1 - p)^n (1 - q)^n = \frac{1}{1 - (1 - p)(1 - q)} = \frac{1}{p + q - pq}$$

Solution 46

Tout d'abord, $X \sim \mathcal{G}(1/2)$. Ensuite, la loi de Y conditionnée par l'événement $\{X = n\}$ est la loi uniforme sur [1, n]. On en déduit que Y est à valeurs dans \mathbb{N}^* et que, d'après la formule des probabilités totales

$$\begin{aligned} \forall k \in \mathbb{N}^*, \ \mathbb{P}(\mathbf{Y} = k) &= \sum_{n=1}^{+\infty} \mathbb{P}(\mathbf{Y} = k \mid \mathbf{X} = n) \mathbb{P}(\mathbf{X} = n) \\ &= \sum_{n=k}^{+\infty} \frac{1}{n} \frac{1}{2^n} \end{aligned}$$

D'après le théorème de Fubini positif,

$$\mathbb{E}(Y) = \sum_{k=1}^{+\infty} k \mathbb{P}(Y = k)$$

$$= \sum_{k=1}^{+\infty} k \sum_{n=k}^{+\infty} \frac{1}{n} \frac{1}{2^n}$$

$$= \sum_{n=1}^{+\infty} \sum_{k=1}^{n} k \frac{1}{n} \frac{1}{2^n}$$

$$= \sum_{n=1}^{+\infty} \frac{1}{n} \frac{1}{2^n} \sum_{k=1}^{n} k$$

$$= \sum_{n=1}^{+\infty} \frac{n+1}{2^{n+1}}$$

$$= \sum_{n=2}^{+\infty} \frac{n}{2^n}$$

$$= -\frac{1}{2} + \sum_{n=1}^{+\infty} \frac{n}{2^n}$$

$$= -\frac{1}{2} + \frac{1}{2} \sum_{n=1}^{+\infty} \frac{n}{2^{n-1}}$$

$$= -\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{\left(1 - \frac{1}{2}\right)^2}$$

$$= \frac{3}{2}$$

On peut vérifier avec Python.

```
from random import random, randint
def simul():
    n=1
    while random()<.5:
        n+=1
    return randint(1,n)

def esperance(N):
    return sum([simul() for _ in range(N)])/N</pre>
```

```
>>> esperance(10000)
1.4955
```

Fonctions génératrices

Solution 47

Comme les X_k sont indépendantes,

$$G_{S}(t) = \prod_{k=1}^{n} G_{X_{k}}(t) = \prod_{k=1}^{n} = \prod_{k=1}^{n} e^{\lambda_{k}(t-1)} = e^{\Lambda(t-1)}$$

en notant $\Lambda = \sum_{k=1}^{n} \lambda_k$. On en déduit que S suit la loi de Poisson de paramètre Λ .

Solution 48

On a alors $G_{X_i}(t) = (1 - p + pt)^{n_i}$. Comme les X_i sont indépendantes,

$$G_{S}(t) = \prod_{i=1}^{n} G_{X_{i}}(t) = (1 - p + pt)^{n}$$

en posant $n = \sum_{i=1}^{n} n_i$. Ainsi S ~ $\mathcal{B}(n, p)$.

Solution 49

1. Remarquons que S est à valeurs dans \mathbb{N} et que pour tout $n \in \mathbb{N}$,

$$\{S=n\} = \bigsqcup_{k \in \mathbb{N}} \left(\{N=n\} \cap \{S_k=n\} \right)$$

en posant $S_k = \sum_{i=0}^{K} X_i$. Les S_k sont des variables aléatoires comme sommes *finies* de variables aléatoires réelles donc les ensembles $\{S_k = n\}$ sont des événements. Ainsi $\{S = n\}$ est bien un événement comme réunion dénombrable d'événements. S'est donc bien une variable aléatoire.

2. Soit $m \in \mathbb{N}$. Puisque $(N = n)_{n \in \mathbb{N}}$ est un système complet d'événements

$$\mathbb{P}(S = m) = \sum_{n=0}^{+\infty} \mathbb{P}(S = m, N = n)$$

Or pour tout $n \in \mathbb{N}$, les variables aléatoires S et $\sum_{k=1}^{n} X_k$ coïncident sur l'événement N = n donc

$$\mathbb{P}(S = m) = \sum_{n=0}^{+\infty} \mathbb{P}\left(\sum_{k=1}^{n} X_k = m, N = n\right)$$

puis par indépendance des variables aléatoires X_1, \dots, X_n, N

$$\mathbb{P}(S = m) = \sum_{n=0}^{+\infty} \mathbb{P}\left(\sum_{k=1}^{n} X_k = m\right) \mathbb{P}(N = n)$$

Soit *t* ∈ [0, 1].

$$G_{\mathbf{S}}(t) = \sum_{m=0}^{+\infty} \mathbb{P}(\mathbf{S} = m)t^m = \sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} \mathbb{P}\left(\sum_{k=1}^{n} \mathbf{X}_k = m\right) \mathbb{P}(\mathbf{N} = n)t^m$$

Cette égalité et le fait que la famille $\left(\mathbb{P}\left(\sum_{k=1}^n X_k = m\right)\mathbb{P}(N=n)t^m\right)_{(m,n)\in\mathbb{N}^2}$ est une famille de réels positifs permettent d'appliquer le théorème de Fubini de sorte que

$$G_{S}(t) = \sum_{n=0}^{+\infty} \mathbb{P}(N=n) \sum_{m=0}^{+\infty} \mathbb{P}\left(\sum_{k=1}^{n} X_{k} = m\right) t^{m} = \sum_{n=0}^{+\infty} \mathbb{P}(N=n) G_{\sum_{k=1}^{n} X_{k}}(t)$$

Or $G_{\sum_{k=1}^{n} X_k} = G_X^n$ car X_1, \dots, X_n sont indépendantes et de même loi que X donc

$$G_{\mathbf{S}}(t) = \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{N} = n)G_{\mathbf{X}}(t)^n = G_{\mathbf{N}} \circ G_{\mathbf{X}}(t)$$

3. Puisque X et N admettent des espérances finies, G_X est dérivable en 1 et G_N est dérivable en G_N est dérivable en 1 et que

$$G'_{S}(1) = G'_{S}(1)G'_{N}(G_{N}(1)) = G'_{S}(1)G'_{N}(1)$$

Autrement dit, S admet une espérance finie et E(S) = E(X)E(N).

4. Puisque X et N admettent des moments d'ordre deux, G_X est deux fois dérivable en 1 et G_N est deux fois dérivable en G_N est deux fois dérivable en 1 et donc que S admet un moment d'ordre deux. De plus

$$G_S''(1) = G_X'(1)^2 G_N''(G_X(1)) + G_X''(1) G_N'(G(1)) = G_X'(1)^2 G_N''(1) + G_X''(1) G_N'(1)$$

puis

$$\begin{split} V(S) &= G_S''(1) + G_S'(1) - G_S'(1)^2 \\ &= G_X'(1)^2 G_N''(1) + G_X''(1) G_N'(1) + G_X'(1) G_N'(1) - G_X'(1)^2 G_N'(1)^2 \\ &= G_X'(1)^2 (G_N''(1) + G_N'(1) - G_N'(1)^2) + G_N'(1) (G_X''(1) + G_X'(1) - G_X'(1)^2) \\ &= E(X)^2 V(N) + E(N) V(X) \end{split}$$

Solution 50

1. Posons $a_n = \frac{n^2 + n + 1}{n!}$. Alors

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^2 + (n+1) + 1}{(n^2 + n + 1)(n+1)} \xrightarrow[n \to +\infty]{} 0$$

On en déduit que $R = +\infty$.

2. Pour tout $t \in \mathbb{R}$,

$$S(t) = \sum_{n=0}^{+\infty} \frac{n(n-1) + 2n + 1}{n!} t^n$$

$$= \sum_{n=2}^{+\infty} \frac{t^n}{(n-2)!} t^n + 2 \sum_{n=1}^{+\infty} \frac{t^n}{(n-1)!} + \sum_{n=0}^{+\infty} \frac{t^n}{n!}$$

$$= \sum_{n=0}^{+\infty} \frac{t^{n+2}}{n!} t^n + 2 \sum_{n=0}^{+\infty} \frac{t^{n+1}}{n!} + \sum_{n=0}^{+\infty} \frac{t^n}{n!}$$

$$= t^2 e^t + 2t e^t + e^t = (t^2 + 2t + 1) e^t$$

- 3. a. On doit avoir $G_X(1) = 1$ donc $\lambda = \frac{1}{4e}$.
 - **b.** On sait que $\mathbb{E}(X) = G'_X(1)$. Or $G'_X(t) = \lambda(t^2 + 4t + 3)e^t$ donc $\mathbb{E}(X) = 2$. Par ailleurs, $\mathbb{V}(X) = G''_X(1) + G'_X(1) - G'_X(1)^2$. Or $G''_X(t) = \lambda(t^2 + 6t + 7)e^t$ donc $\mathbb{V}(X) = \frac{7}{2} + 2 - 2^2 = \frac{3}{2}$.

Solution 51

1. D'après le cours, la fonction $t\mapsto \frac{1}{1-t}$ est développable en série entière sur]-1,1[et son développement en série entière est :

$$\forall t \in]-1,1[, \frac{1}{1-t} = \sum_{n=0}^{+\infty} t^n.$$

On en déduit que G_X est développable en série entière sur]-2,2[et que son développement en série entière est :

$$\forall t \in]-2, 2[, G_X(t) = \frac{1}{2-t} = \frac{1}{2} \frac{1}{1-t/2} = \frac{1}{2} \sum_{n=0}^{+\infty} \left(\frac{t}{2}\right)^n = \sum_{n=0}^{+\infty} \frac{t^n}{2^{n+1}}$$

2. D'après le cours, pour $\alpha \in \mathbb{R}$, la fonction $t \mapsto (1+t)^{\alpha}$ est développable en série entière sur]-1,1[et son développement en série entière est :

$$\forall t \in]-1, 1[, (1+t)^{\alpha} = \sum_{n=0}^{+\infty} {\alpha \choose n} t^n \text{ où } {\alpha \choose n} = \frac{1}{n!} \prod_{k=0}^{n-1} (\alpha - k)$$

Notamment, pour $\alpha = 1/2$, la fonction $t \mapsto (1+t)^{1/2}$ est développable en série entière sur]-1,1[et son développement en série entière est :

$$\forall t \in]-1,1[, (1+t)^{1/2} = \sum_{n=0}^{+\infty} {1/2 \choose n} t^n$$

De plus, $\binom{1/2}{0} = 1$ et, pour tout $n \in \mathbb{N}^*$,

$$\binom{1/2}{n} = \frac{1}{n!} \prod_{k=0}^{n-1} \left(\frac{1}{2} - k\right)$$

$$= \frac{(-1)^n}{n!} \prod_{k=0}^{n-1} \left(k - \frac{1}{2}\right)$$

$$= \frac{(-1)^n}{n!} \prod_{k=0}^{n-1} \frac{2k-1}{2}$$

$$= \frac{(-1)^n}{2^n n!} \prod_{k=0}^{n-1} (2k-1)$$

$$= \frac{(-1)^{n-1}}{2^n (2n-1)n!} \prod_{k=1}^n (2k-1)$$

$$= \frac{(-1)^{n-1}}{2^n (2n-1)n!} \cdot \frac{\prod_{k=1}^{2n} k}{\prod_{k=1}^n 2k}$$

$$= \frac{(-1)^{n-1}}{2^n (2n-1)n!} \cdot \frac{(2n)!}{2^n n!}$$

$$= \frac{(-1)^{n-1}}{4^n (2n-1)} \binom{2n}{n}$$

On remarque que cette expression est encore valide pour n = 0. On en déduit que

$$\forall t \in]-1,1[, (1+t)^{1/2} = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{4^n(2n-1)} {2n \choose n} t^n$$

3. D'après la question précédente, on a :

$$\begin{split} \forall t \in]-2,2[, \ \mathrm{G_Y}(t) &= 2 - \sqrt{2} \sqrt{1-t/2} \\ &= 2 - \sqrt{2} \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{4^n (2n-1)} \binom{2n}{n} (-t/2)^n \\ &= 2 + \sqrt{2} \sum_{n=0}^{+\infty} \frac{1}{8^n (2n-1)} \binom{2n}{n} t^n \\ &= 2 - \sqrt{2} + \sqrt{2} \sum_{n=1}^{+\infty} \frac{1}{8^n (2n-1)} \binom{2n}{n} t^n \end{split}$$

4. D'après les questions précédentes,

$$\forall n \in \mathbb{N}, \ \mathbb{P}(X = n) = \frac{1}{2^{n+1}}$$

et

$$\mathbb{P}(Y = 0) = 2 - \sqrt{2} \text{ et } \forall n \in \mathbb{N}^*, \ \mathbb{P}(Y = n) = \frac{\sqrt{2}}{8^n (2n - 1)} \binom{2n}{n}$$

5. Comme X et Y sont indépendantes,

$$\forall t \in]-1,1[, G_{S}(t) = G_{X+Y}(t) = G_{X}(t)G_{Y}(t) = \frac{1}{1-t/2} - \frac{1}{\sqrt{2}}(1-t/2)^{-1/2}$$

On sait d'une part que

$$\forall t \in]-2,2[, \frac{1}{1-t/2} = \sum_{n=0}^{+\infty} \frac{t^n}{2^n}$$

D'autre part, on a vu précédemment que

$$\forall t \in]-1,1[, (1+t)^{1/2} = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{4^n(2n-1)} {2n \choose n} t^n$$

donc, en dérivant terme à terme,

$$\begin{split} \forall t \in]-1,1[, \ \frac{1}{2}(1+t)^{-1/2} &= \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}n}{4^n(2n-1)} \binom{2n}{n} t^{n-1} \\ &= \sum_{n=0}^{+\infty} \frac{(-1)^n(n+1)}{4^{n+1}(2n+1)} \binom{2n+2}{n+1} t^n \\ &= \sum_{n=0}^{+\infty} \frac{(-1)^n(n+1)}{4^{n+1}(2n+1)} \cdot \frac{(2n+2)(2n+1)}{(n+1)^2} \binom{2n}{n} t^n \\ &= 2 \sum_{n=0}^{+\infty} \frac{(-1)^n}{4^{n+1}} \binom{2n}{n} t^n \end{split}$$

puis

$$\forall t \in]-1, 1[, (1+t)^{-1/2} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{4^n} {2n \choose n} t^n$$

puis enfin

$$\forall t \in]-2, 2[, (1-t/2)^{-1/2} = \sum_{n=0}^{+\infty} \frac{1}{8^n} {2n \choose n} t^n$$

Finalement,

$$\forall t \in]-1,1[, G_{S}(t) = \sum_{n=0}^{+\infty} \left(\frac{1}{2^{n}} - \frac{1}{8^{n}\sqrt{2}} {2n \choose n}\right) t^{n}$$

On en déduit que

$$\forall n \in \mathbb{N}, \ \mathbb{P}(S=n) = \frac{1}{2^n} - \frac{1}{8^n \sqrt{2}} \binom{2n}{n}$$

- **6. a.** X est à valeurs dans \mathbb{N} et $\mathbb{P}(X = n) = \frac{1}{2^{n+1}}$ pour tout $n \in \mathbb{N}$. Ainsi X + 1 est à valeurs dans \mathbb{N}^* et pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X + 1 = n) = \mathbb{P}(X = n 1) = \frac{1}{2^n}$. Ainsi $X \sim \mathcal{G}(1/2)$.
 - **b.** D'après la cours, $\mathbb{E}(X+1) = \frac{1}{1/2} = 2$ et $\mathbb{V}(X+1) = \frac{1-1/2}{(1/2)^2} = 2$. Par linéarité de l'espérance, $\mathbb{E}(X+1) = \mathbb{E}(X) + \mathbb{E}(1) = \mathbb{E}(X) + 1$ donc $\mathbb{E}(X) = 1$. De plus, $\mathbb{V}(X) = \mathbb{V}(X+1) = 2$.
 - **c.** La fonction G_Y est dérivable sur]-2,2[et

$$\forall t \in]-2,2[, G'_{\mathbf{Y}}(t) = \frac{1}{2\sqrt{2-t}}$$

Notamment, G_Y est dérivable en 1 et $G_Y'(1) = \frac{1}{2}$. D'après le cours, Y admet une espérance et $\mathbb{E}(Y) = \frac{1}{2}$. La fonction G_Y est en fait deux fois dérivable sur]-2,2[et

$$\forall t \in]-2,2[, G_{Y}''(t) = \frac{1}{4}(2-t)^{-3/2}$$

Or

$$\forall t \in]-2, 2[, G_{\mathbf{Y}}(t) = \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{Y} = n)t^n$$

donc, par dérivation d'une série entière :

$$\forall t \in]-2, 2[, G_{Y}''(t) = \sum_{n=0}^{+\infty} n(n-1)\mathbb{P}(Y=n)t^{n-2}$$

Notamment,

$$G''_{Y}(1) = \frac{1}{4} = \sum_{n=0}^{+\infty} n(n-1)\mathbb{P}(Y=n)$$

D'après la formule de transfert, Y(Y-1) admet une espérance et $\mathbb{E}(Y(Y-1)) = \frac{1}{4}$.

d. Comme $Y^2 = Y(Y - 1) + Y$, Y^2 admet également une espérance et

$$\mathbb{E}(Y^2) = \mathbb{E}(Y(Y-1)) + \mathbb{E}(Y) = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$$

On en déduit que

$$\mathbb{V}(Y) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2 = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$$

e. Par linéarité de l'espérance,

$$\mathbb{E}(S) = \mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y) = 1 + \frac{1}{2} = \frac{3}{2}$$

Par indépendance de X et Y,

$$\mathbb{V}(S) = \mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) = 2 + \frac{1}{2} = \frac{5}{2}$$

Temps d'arrêt

Solution 52

On note respectivement P_n et F_n le nombre de «piles» et de «faces» obtenus en n coups. En remarquant que $P_n + F_n = n$, l'événement $P_n = 2F_n$ est également l'événement $3F_n = n$. Remarquons que, F_n étant à valeurs entières, l'événement $3F_n = n$ est vide si n n'est pas multiple de 3. Si on note A l'événement dont on recherche la probabilité, alors $\overline{A} = \bigcup_{n \in \mathbb{N}^*} \{F_{3n} = n\}$. $F_{3n} = n$

Notons
$$T = \min\{n \in \mathbb{N}^*, \ F_{3n} = n\}$$
. On convient que $T = \infty$ si F_{3n} n'est jamais égal à n .
Posons $S_1 = \sum_{n=0}^{+\infty} \mathbb{P}(F_{3n} = n) = \sum_{n=0}^{+\infty} \frac{\binom{3n}{n}}{2^{3n}}$ et $S_2 = \sum_{n=1}^{+\infty} \mathbb{P}(T = n)$.
On vérifie que pour tout $n \in \mathbb{N}^*$

$$\mathbb{P}(\mathbf{A}_n) = \sum_{k=1}^n \mathbb{P}(\mathbf{A}_{n-k}) \mathbb{P}(\mathbf{T} = k)$$

$$S_{1} = 1 + S_{1}S_{2}$$

$$f(1) = \sum_{n=0}^{+\infty} \frac{\binom{3n}{n}}{2^{3n}} = 1 + \frac{3}{\sqrt{5}}$$
Finalement

$$\mathbb{P}(T = \infty) = 1 - \sum_{n=1}^{+\infty} \mathbb{P}(T = n) = 1 - S_2 = \frac{1}{S_1} = \frac{\sqrt{5}}{\sqrt{5} + 3}$$

Solution 53

On pose
$$S_n = \sum_{i=1}^n X_i$$
.

1. T_1 suit la loi géométrique de paramètre p.

2. Soit $n \in \mathbb{N}^*$.

$${T_r = n} = {S_{n-1} = r - 1} \cap {X_n = 1}$$

Or S_{n-1} et X_n sont indépendantes d'après le lemme des coalitions donc

$$\mathbb{P}(\mathsf{T}_r=n)=\mathbb{P}\left(\mathsf{S}_{n-1}=r-1\right)\mathbb{P}(\mathsf{X}_n=1)$$

De plus, S_{n-1} suit la loi de Bernoulli de paramètres n-1 et p en tant que somme de variables de Bernoulli indépendantes de même paramètre p donc

$$\mathbb{P}(\mathbf{T}_r = n) = \binom{n-1}{r-1} p^{r-1} (1-p)^{(n-1)-(r-1)} \cdot p = \binom{n-1}{r-1} p^r (1-p)^{n-r}$$

3. Première méthode. On remarque que

$$\overline{\{\mathbf{T}_r = +\infty\}} = \bigsqcup_{n \in \mathbb{N}^*} \{\mathbf{T}_r = n\}$$

donc

$$1 - \mathbb{P}(T_r = +\infty) = \sum_{n=1}^{+\infty} \mathbb{P}(T_r = n)$$

$$= \sum_{n=r}^{+\infty} {n-1 \choose r-1} p^r (1-p)^{n-r}$$

$$= p^r \sum_{n=r}^{+\infty} {n-1 \choose r-1} (1-p)^{n-r}$$

On sait que pour $x \in]-1,1[$,

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$

donc en dérivant r-1 fois

$$\frac{(r-1)!}{(1-x)^r} = \sum_{n=r-1}^{+\infty} \frac{n!}{(n-r+1)!} x^{n-r+1}$$

ou encore

$$\frac{1}{(1-x)^r} = \sum_{n=r-1}^{+\infty} \binom{n}{r-1} x^{n-r+1} = \sum_{n=r}^{+\infty} \binom{n-1}{r-1} x^{n-r}$$

Notamment,

$$\sum_{n=r}^{+\infty} {n-1 \choose r-1} (1-p)^{n-r} = \frac{1}{(1-(1-p))^r} = \frac{1}{p^r}$$

On en déduit que $1 - \mathbb{P}(T_r = +\infty) = 1$ i.e. $\mathbb{P}(T_r = +\infty) = 0$.

Deuxième méthode. On remarque que pour tout $n \in \mathbb{N}^*$

$$\{\mathsf{T}_r = +\infty\} \subset \{\mathsf{T}_r > n\} = \{\mathsf{S}_n \le r\}$$

donc

$$\mathbb{P}(T_r = +\infty) \le \mathbb{P}(S_n \le r)$$

Or

$$\mathbb{P}(S_n \le r) = \sum_{k=0}^{r} \mathbb{P}(S_n = k) = \sum_{k=0}^{r} \binom{n}{k} p^r (1-p)^{n-r}$$

Pour tout $k \in [0, r], \binom{n}{k} \underset{n \to +\infty}{\sim} \frac{n^k}{k!}$ donc, par croissances comparées,

$$\lim_{n \to +\infty} \binom{n}{k} p^r (1-p)^{n-r} = 0$$

Par somme finie,

$$\lim_{n \to +\infty} \mathbb{P}(S_n \le r) = 0$$

On en déduit à nouveau que $\mathbb{P}(T_r = +\infty) = 0$.

Solution 54

- 1. Dans la suite, on notera F_n (resp. P_n) l'événement «on a obtenu "pile" (resp. "face") au $n^{\text{ème}}$ lancer.
 - ${X = 2} = P_1 \cap P_2 \text{ donc } p_2 = \frac{4}{9}$.
 - $\{X = 3\} = F_1 \cap P_2 \cap P_3 \text{ donc } p_3 = \frac{4}{27}$.
- $\textbf{2.} \ \ Remarquons \ que \ F_1, \ P_1 \cap F_2 \ et \ P_1 \cap P_2 \ forment \ un \ syst\`eme \ complet \ d'événements. On écrit la formule des probabilités totales :$

$$\mathbb{P}(X = n + 2) = \mathbb{P}(X = n + 2 \mid F_1)\mathbb{P}(F_1) + \mathbb{P}(X = n + 2 \mid P_1 \cap F_1)\mathbb{P}(P_1 \cap F_1) + \mathbb{P}(X = n + 2 \mid P_1 \cap P_2)\mathbb{P}(P_1 \cap P_2)$$

- Lorsque l'on a obtenu face au premier lancer, on doit alors obtenir le premier double pile à la fin des n + 1 lancers restants. Ainsi $\mathbb{P}(X = n + 2 \mid F_1) = p_{n+1}$.
- Lorsque on a déjà obtenu deux piles consécutifs lors des deux premiers lancers, il est désormais impossible d'obtenir le premier double pile au (n + 2)^{ème} lancer. Ainsi dP(X = n + 2 | P₁ ∩ P₂) = 0.
- Lorsque l'on a ontenu un pile puis un face lors des deux premiers lancers, on doit alors obtenir le premier double pile à la fin des n lancers restants. Ainsi P(X = n + 2 | P₁ ∩ F₁) = p_n.

Finalement, $p_{n+2} = \frac{1}{3}p_{n+1} + \frac{2}{9}p_n$.

- **3.** Au vu des valeurs de p_2 et p_3 , on doit choisir $p_1 = 0$.
- **4.** Le polynôme caractéristique associé à la relation de récurrence précédente est $X^2 \frac{1}{3}X \frac{2}{9}$. Ses racines sont $\frac{2}{3}$ et $-\frac{1}{3}$.

$$\forall n \in \mathbb{N}^*, \ p_n = A\left(\frac{2}{3}\right)^n + B\left(-\frac{1}{3}\right)^n$$

En particulier,

$$\begin{cases} \frac{2}{3}A - \frac{1}{3}B = p_1 = 0\\ \frac{4}{9}A + \frac{1}{9}B = p_2 = \frac{4}{9} \end{cases}$$

ce qui donne $A = \frac{2}{3}$ et $B = \frac{4}{3}$. Ainsi

$$\forall n \in \mathbb{N}^*, \ p_n = \frac{2}{3} \cdot \left(\frac{2}{3}\right)^n + \frac{4}{3} \cdot \left(-\frac{1}{3}\right)^n$$

5. On sait que $\sum_{n=1}^{+\infty} nq^n = \frac{q}{(1-q)^2}$ pour $q \in]-1,1[$. On en déduit sans peine que

$$\mathbb{E}(X) = \sum_{n=1}^{+\infty} n p_n = \frac{15}{4}$$

Solution 55

- **1.** S_0 est constante égale à 0. Le support de S_1 est clairement $\{-1,1\}$, $\mathbb{P}(S_1=1)=p$ et $\mathbb{P}(S_1=-1)=1-p$. Le support de S_2 est clairement $\{-2,0,2\}$, $\mathbb{P}(S_2=2)=p^2$, $\mathbb{P}(S_2=2)=(1-p)^2$ et $\mathbb{P}(S_2=0)=2p(1-p)$.
- 2. Notons X_n le déplacement vers du point mobile à l'instant n de sorte que $\mathbb{P}(X_n=1)=p$ et $\mathbb{P}(X_n=-1)=1-p$. On suppose implictement les variables aléatoires X_1,\ldots,X_n mutuellement indépendantes. Alors $S_n=\sum_{k=1}^n X_k$ (somme nulle si n=0). Remarquons

que $\frac{1}{2}(X_n + 1)$ suit une loi de Bernoulli de paramètre p. Ainsi $R_n = \frac{1}{2}(S_n + n)$ suit une loi binomiale de paramètres n et p. En particulier, pour tout $k \in [0, n]$,

$$\mathbb{P}(\mathbf{R}_n = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

Par conséquent, pour tout $k \in [0, n]$,

$$\mathbb{P}(S_n = 2k - n) = \binom{n}{k} p^k (1 - p)^{n - k}$$

On remarque que si n est pair, S_n ne prend que des valeurs paires et que si n est impair, S_n ne prend que des valeurs impaires. Plus précisément,

$$\forall k \in [-n, n], \ \mathbb{P}(S_{2n} = 2k) = \binom{2n}{n+k} p^{n+k} (1-p)^{n-k}$$

et

$$\forall k \in \llbracket -n-1, n \rrbracket \, , \, \, \mathbb{P}(S_{2n+1} = 2k+1) = \binom{2n+1}{n+k+1} p^{n+k+1} (1-p)^{n-k}$$

3. D'après ce qui précède, pour tout $n \in \mathbb{N}$,

$$p_{2n+1} = 0$$

et

$$p_{2n} = \mathbb{P}(S_{2n} = 0) = \binom{2n}{n} p^n (1-p)^n$$

4. Pour tout $n \in \mathbb{N}$, $p_n \in [0,1]$. La suite (p_n) est donc bornée de sorte que le rayon de convergence de la série entière $\sum p_n t^n$ vaut au moins 1.

On montre classiquement que

$$\forall x \in]-1,1[, \frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} \frac{\binom{2n}{n}}{2^{2n}} x^n$$

donc

$$\forall t \in]-1,1[, P(t) = \sum_{n=0}^{+\infty} p_{2n}t^{2n} = \sum_{n=0}^{+\infty} \frac{\binom{2n}{n}}{2^{2n}} (4p(1-p)t^2)^n = \frac{1}{\sqrt{1-4p(1-p)t^2}}$$

$$\operatorname{car} 0 \le p(1-p) = \frac{1}{4} - \left(p - \frac{1}{2}\right)^2 \le \frac{1}{4}.$$

- 5. Comme les événements $\{T=n\}$ sont disjoints, la série à termes positifs $\sum q_n$ converge. On en déduit que la série entière $\sum q_n t^n$ converge normalement sur [-1,1]. Notamment sa somme Q est continue sur [-1,1].
- 6. En faisant intervenir un produit de Cauchy de deux séries entières, il suffit en fait de prouver que $p_0 = 1$ (ce qui est clair) et que

$$\forall n \in \mathbb{N}^*, \ p_n = \sum_{k=1}^n p_{n-k} q_k$$

Remarquons que pour $n \in \mathbb{N}^*$,

$$\{S_n = 0\} = \bigsqcup_{k=1}^n \{S_n = 0\} \cap \{T = k\}$$
$$= \bigsqcup_{k=1}^n \left\{ \sum_{j=k+1}^n X_j = 0 \right\} \cap \{T = k\}$$

Remarquons que l'événement $\{T = k\}$ peut se décrire uniquement à l'aide de X_1, \dots, X_k :

$$\{\mathbf{T}=k\}=\left\{\sum_{j=1}^k \mathbf{X}_j=0\right\}\cap\left[\bigcap_{\ell=1}^{k-1}\left\{\sum_{j=1}^\ell \mathbf{X}_j\neq0\right\}\right]$$

donc les événements $\left\{\sum_{j=k+1}^n X_j = 0\right\}$ et $\{T=k\}$ sont indépendants d'après le lemme des coalitions. Ainsi

$$p_n = \sum_{k=1}^n \mathbb{P}\left(\sum_{j=k+1}^n X_j = 0\right) q_k$$

Or $\sum_{j=k+1}^{n} X_j$ suit la même loi que S_{n-k} donc

$$p_n = \sum_{k=1}^n p_{n-k} q_k$$

7. Pour tout $t \in]-1,1[$,

$$Q(t) = 1 - \frac{1}{P(t)} = 1 - \sqrt{1 - 4p(1-p)t^2}$$

En primitivant $x \mapsto \frac{1}{\sqrt{1-x}}$, on obtient :

$$\forall x \in]-1,1[,\ 1-\sqrt{1-x}=\frac{1}{2}\sum_{n=0}^{+\infty}\frac{\binom{2n}{n}}{2^{2n}}\frac{x^{n+1}}{n+1}=\sum_{n=1}^{+\infty}\frac{\binom{2n-2}{n-1}}{2^{2n-1}}\frac{x^n}{n}=\sum_{n=1}^{+\infty}\frac{\binom{2n}{n}}{2^{2n}(2n-1)}x^n$$

On en déduit que

$$\forall t \in]-1,1[, Q(t) = \sum_{n=1}^{+\infty} \frac{\binom{2n}{n}}{(2n-1)} p^n (1-p)^n t^{2n}$$

puis que

$$\forall n \in \mathbb{N}^*, \ q_{2n} = \frac{\binom{2n}{n}}{(2n-1)} p^n (1-p)^n \text{ et } \mathbb{P}(T=2n-1) = 0$$

Enfin $q_0 = 0$.

8. L'événement de l'énoncé est $\bigsqcup_{n=0}^{+\infty} \{T=n\}$. Comme Q est continue en 1,

$$\mathbb{P}\left(\bigsqcup_{n=0}^{+\infty} \{T=n\}\right) = \sum_{n=0}^{+\infty} q_n = Q(1) = \lim_{t \to 1} 1 - \sqrt{1 - 4p(1-p)t^2} = 1 - \sqrt{1 - 4p(1-p)} = 1 - |2p-1|$$

On remarque notamment que cette probabilité vaut 1 lorsque $p = \frac{1}{2}$.

9. Si $p \neq \frac{1}{2}$, alors $\mathbb{P}(T = +\infty) = 1 - |2p - 1| > 0$ donc T n'est pas d'espérance finie. Si $p = \frac{1}{2}$, alors $\mathbb{P}(T = +\infty) = 0$. On peut alors considérer que $\mathbb{T}(\Omega) = \mathbb{N}$ et Q est alors la fonction génératrice de T. On remarque que Q n'est pas dérivable en 1. En effet,

$$\forall t \in]-1,1[, \ \frac{\mathrm{Q}(t)-\mathrm{Q}(1)}{t-1} = \frac{\sqrt{1-t^2}}{1-t} = \frac{\sqrt{1+t}}{\sqrt{1-t}} \xrightarrow[t \to 1]{} + \infty$$

Solution 56

1. a. Le nombre de tirages possibles est $\binom{2n}{n}$.

b. Notons A l'ensemble des tirages possibles et A_k le nombre de tirages dans lesquels figurent k boules blanches. Alors $A = \bigsqcup_{k=0}^{n} A_k$. De plus, se donner un tirage dans A_k équivaut à choisir k boules parmi les n boules blanches et n-k boules parmi les n noires. Ainsi

$$\binom{2n}{n} = \operatorname{card}(A) = \sum_{k=0}^{n} \operatorname{card}(A_k) \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k}^2$$

- **2. a.** Pour que la puce se retrouve en O, il faut qu'elle est sauté autant de fois à gauche qu'à droite et le nombre de sauts doit donc être pair. Ainsi $\mathbb{P}(C_{2n+1}) = 0$ pour tout $n \in \mathbb{N}$. De plus, si le nombre de sauts est 2n, il y faut placer n sauts à droite parmi les 2n sauts, le reste des sauts étant à gauche. Ainsi $\mathbb{P}(C_{2n}) = \binom{2n}{1} \cdot \frac{1}{2^n} \cdot \frac{1}{2^n} = \frac{\binom{2n}{n}}{2^{2n}}$.
 - b. D'après la formule de Stirling

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Ainsi

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \underset{n \to +\infty}{\sim} \frac{(2n)^{2n} e^{-2n} \sqrt{4\pi n}}{(n^n e^{-n} \sqrt{2\pi n})^2} = \frac{2^{2n}}{=} \frac{2^{2n}}{\sqrt{\pi n}}$$

puis

$$\mathbb{P}(\mathsf{C}_{2n}) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{\pi n}}$$

puis
$$\lim_{n\to+\infty} \mathbb{P}(C_{2n}) = 0$$
.

- **3. a.** Pour se retrouver à l'origine, il faut, pour les mêmes raisons que précédemment, un nombre pair de déplacements horizontaux et un nombre pair de déplacements verticaux. Ainsi pour se retrouver à l'origine en 2*n* coups :
 - on fixe un nombre 2k ($k \in [0, n]$) de déplacements horizontaux (les 2n 2k déplacements restants sont horizontaux);
 - on choisit k déplacements à doite parmi les 2k déplacements horizontaux (les k déplacements restants étant à gauche);
 - on choisit n k déplacements vers le haut parmi les 2n 2k déplacements verticaux (les n k déplacements restants étant vers le bas).

Finalement

$$\mathbb{P}(C_{2n}) = \frac{1}{4^n} \sum_{k=0}^n \binom{2n}{2k} \binom{2k}{k} \binom{2n-k}{n-k} = \frac{1}{4^n} \binom{2n}{n} \sum_{k=0}^n \binom{n}{k}^2 = \frac{1}{4^n} \binom{2n}{n}^2$$

b. On avait trouvé précédemment

$$\binom{2n}{n} \underset{n \to +\infty}{\sim} \frac{2^{2n}}{\sqrt{\pi n}}$$

donc

$$\binom{2n}{n}^2 \sim \frac{4^{2n}}{\pi n}$$

puis

$$\mathbb{P}(\mathsf{C}_{2n}) \underset{n \to +\infty}{\sim} \frac{1}{\pi n}$$

et enfin $\lim_{n \to +\infty} \mathbb{P}(C_{2n}) = 0$.

Inégalités

Solution 57

1. On fixe $t \in \mathbb{R}$. Soit $x \in [-1, 1]$. Alors $\frac{1}{2}(1-x) \ge 0$, $\frac{1}{2}(1+x) \ge 0$ et $\frac{1}{2}(1-x) + \frac{1}{2}(1+x) = 1$. Comme la fonction exp est convexe, par inégalité de Jensen,

$$\exp\left(\frac{1}{2}(1-x)(-t) + \frac{1}{2}(1+x)t\right) \le \frac{1}{2}(1-x)\exp(-t) + \frac{1}{2}(1+x)\exp(t)$$

ou encore

$$e^{tx} \le \frac{1}{2}(1-x)e^{-t} + \frac{1}{2}(1+x)e^{t}$$

2. Soit $t \in \mathbb{R}$. On sait que

$$ch(t) = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!}$$
 et $e^{\frac{t^2}{2}} = \sum_{n=0}^{+\infty} \frac{t^{2n}}{2^n n!}$

Or

$$(2n)! = 2^n n! \prod_{k=0}^{n-1} (2k+1)$$

donc $(2n)! \ge 2^n n!$ pour tout $n \in \mathbb{N}$. Ainsi $\operatorname{ch}(t) \le e^{\frac{t^2}{2}}$.

3. Fixons $t \in \mathbb{R}$. Puisque X est à valeurs dans [-1, 1].

$$e^{tX} \le \frac{1}{2}(1 - X)e^{-t} + \frac{1}{2}(1 + X)e^{t}$$

d'après la première question. Par croissance est linéarité de l'espérance,

$$\mathbb{E}(e^{tX}) \le \frac{1}{2}(1 - \mathbb{E}(X))e^{-t} + \frac{1}{2}(1 + \mathbb{E}(X))e^{t}$$

Or X est centrée donc $\mathbb{E}(X) = 0$. On en déduit que

$$\mathbb{E}(e^{tX}) \le \frac{e^{-t} + e^t}{2} = \operatorname{ch}(t) \le e^{\frac{t^2}{2}}$$

4. Soit $(t, \varepsilon) \in (\mathbb{R}_+^*)^2$. Puisque $x \mapsto e^{tx}$ est strictement croissante (t > 0), $[Y \ge \varepsilon] = [e^{tY} \ge e^{t\varepsilon}]$ puis $\mathbb{P}(Y \ge \varepsilon) = \mathbb{P}(e^{tY} \ge e^{t\varepsilon})$. Comme e^{tY} est positive, l'inégalité de Markov donne

$$\mathbb{P}(e^{tY} \ge e^{t\varepsilon}) \le \frac{\mathbb{E}(e^{tY})}{e^{t\varepsilon}}$$

On en déduit bien que

$$\mathbb{P}(Y \ge \varepsilon) \le e^{-t\varepsilon} \mathbb{E}(e^{tY})$$

5. Soit $(t, \varepsilon) \in \mathbb{R}_+^*$. D'après la question précédente,

$$\mathbb{P}(S \ge \varepsilon) \le e^{-t\varepsilon} \mathbb{E}(e^{tS})$$

Comme les variables aléatoires $\exp(tX_k)$ sont indépendantes,

$$\mathbb{E}(e^{t\mathbf{S}_n}) = \mathbb{E}\left(\prod_{k=1}^n e^{t\mathbf{X}_k}\right) = \prod_{k=1}^n \mathbb{E}(e^{t\mathbf{X}_k})$$

Remarquons maintenant que les X_k/c_k sont à valeurs dans [-1,1]. Ainsi

$$\mathbb{E}(e^{tX_k/c_k}) \le e^{\frac{t^2}{2}}$$

Quitte à remplacer t par tc_k , on en déduit que

$$\mathbb{E}(e^{tX_k}) \le e^{\frac{t^2c_k^2}{2}}$$

Finalement,

$$\mathbb{P}(S \ge \varepsilon) \le e^{-t\varepsilon} \prod_{k=1}^{n} e^{\frac{t^2 c_k^2}{2}} = e^{\frac{t^2 a}{2} - t\varepsilon}$$

en posant $a = \sum_{k=1}^{n} c_k^2$. La fonction $t \in \mathbb{R}_+^* \mapsto \frac{t^2 a}{2} - t\varepsilon$ admet un minimum en $\frac{\varepsilon}{a}$ et celui-ci vaut $-\frac{\varepsilon^2}{2a}$ donc

$$\mathbb{P}(S \ge \varepsilon) \le e^{-\frac{\varepsilon^2}{2a}}$$

Enfin, les variables $-X_k$ vérifient les mêmes hypothèses que les variables X_k donc on a également

$$\mathbb{P}(S \le -\varepsilon) = \mathbb{P}(-S \ge \varepsilon) \le e^{\frac{-\varepsilon^2}{2a}}$$

Comme $[|S| \ge \epsilon]$ est l'union disjointe de $[S \le -\epsilon]$ et $[S \ge \epsilon]$,

$$\mathbb{P}(|S| \geq \epsilon) = \mathbb{P}(S \geq \epsilon) + \mathbb{P}(S \leq -\epsilon) \leq 2e^{\frac{-\epsilon^2}{2\alpha}}$$

Solution 58

1. Soit $(x,t) \in [-1,1] \times \mathbb{R}$. La fonction exp est convexe sur \mathbb{R} et les réels $\frac{1-x}{2}$ et $\frac{1+x}{2}$ sont positifs et de somme 1. Par convexité

$$\exp\left(-t\frac{1-x}{2} + t\frac{1+x}{2}\right) \le \frac{1-x}{2}e^{-t} + \frac{1+x}{2}e^{t}$$

ou encore

$$e^{tx} \le \frac{1-x}{2}e^{-t} + \frac{1+x}{2}e^{t}$$

2. Comme X est bornée, e^{tX} également donc elle admet une espérance. Comme X est à valeurs dans [-1,1], on peu appliquer la question précédente pour affirmer que

$$e^{tX} \le \frac{1-X}{2}e^{-t} + \frac{1+X}{2}e^{t}$$

Par linéarité et croissance de l'espérance

$$\mathbb{E}(\mathbf{E}^{tx}) \le e^{-t} \frac{1 - \mathbb{E}(\mathbf{X})}{2} + e^{t} \frac{1 + \mathbb{E}(\mathbf{X})}{2}$$

Or X est centrée donc $\mathbb{E}(X) = 0$. On en déduit que

$$\mathbb{E}(e^{tX}) \le \operatorname{ch}(t)$$

Remarquons alors que

$$\operatorname{ch}(t) = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!} \le \sum_{n=0}^{+\infty} \frac{t^{2n}}{2^n n!} = e^{\frac{t^2}{2}}$$

En effet, $2^n n!$ est le produit des entiers naturels pairs inférieurs ou égaux à 2n donc $2^n n! \le (2n)!$.

Remarque. On peut également étudier la fonction φ : $t \mapsto \frac{t^2}{2} - \ln(\operatorname{ch} t)$ pour établir cette inégalité.

3. Soit $t \in \mathbb{R}$. Par indépendance de X_1, \dots, X_n ,

$$\mathbb{E}(e^{t\mathbf{S}_n}) = \mathbb{E}\left(\prod_{i=1}^n e^{t\mathbf{X}_i}\right) = \prod_{i=1}^n \mathbb{E}(e^{t\mathbf{X}_i})$$

Comme X_i/a_i est centrée et que $|X_i/ai| \le 1$,

$$\mathbb{E}(\mathbf{E}^{tX_i}) = \mathbb{E}(e^{ta_i \cdot \frac{X_i}{a_i}}) \le e^{\frac{(ta_i)^2}{2}} = e^{\frac{t^2 a_i^2}{2}}$$

Ainsi

$$\mathbb{E}(e^{tS_n}) \le \prod_{i=1}^n e^{\frac{t^2 a_i^2}{2}} = \exp\left(\frac{t^2}{2} \sum_{i=1}^n a_i^2\right)$$

4. Puisque $\{|S_n| \ge a\} = \{S_n \ge a\} \sqcup \{-S_n \ge a\},$

$$\mathbb{P}(|S_n| \ge a) = \mathbb{P}(S_n \ge a) + \mathbb{P}(-S_n \ge a)$$

Soit $t \in \mathbb{R}_+^*$. Par stricte croissance de $x \mapsto e^{tx}$,

$$\{S_n \ge a\} = \left\{e^{tS_n} \ge e^{ta}\right\} \qquad \text{et} \qquad \left\{-S_n \ge a\right\} = \left\{e^{-tS_n} \ge e^{ta}\right\}$$

Les variables aléatoires e^{tS_n} et e^{-tS_n} sont positives donc d'après l'inégalité de Markov

$$\mathbb{P}(e^{t\mathbf{S}_n} \geq e^{ta}) \leq \frac{\mathbb{E}(e^{t\mathbf{S}_n})}{e^{ta}} \qquad \text{et} \mathbb{P}(e^{-t\mathbf{S}_n} \geq e^{ta}) \leq \frac{\mathbb{E}(e^{-t\mathbf{S}_n})}{e^{ta}}$$

D'après la question précédente,

$$\mathbb{E}(e^{tS_n}) \le e^{\frac{st^2}{2}}$$

Mais comme les $-X_i$ vérifient les mêmes hypothèses que les X_i , on a également

$$\mathbb{E}(e^{-t\mathbf{S}_n}) \le e^{\frac{st^2}{2}}$$

Finalement

$$\forall t \in \mathbb{R}_+^*, \ \mathbb{P}(|S_n| \ge a) \le 2 \exp\left(\frac{st^2}{2} - ta\right)$$

L'application $t \in \mathbb{R}_+^* \mapsto \frac{st^2}{2} - ta$ admet un minimum en $\frac{a}{s}$ valant $-\frac{a^2}{2s}$. Donc, par croissance de l'exponentielle,

$$\mathbb{E}(e^{-tS_n}) \le 2e^{-\frac{a^2}{2s}}$$

Solution 59

1. a. Soit $u \in \mathbb{R}_+$. Alors $(X + u)^2 = X^2 + 2uX + u^2$ puis par linéarité de l'espérance,

$$\mathbb{E}((X+u)^2) = \mathbb{E}(X^2) + 2u\mathbb{E}(X) + u^2$$

Or
$$\mathbb{E}(X) = 0$$
 et $\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \mathbb{E}(X^2)$ donc

$$\mathbb{E}((X+u)^2) = \mathbb{V}(X) + u^2$$

b. Soit $u \in \mathbb{R}_+$. Remarquons que

$${X > \lambda} = {X + u > \lambda + u} \subset {(X + u)^2 > (\lambda + u)^2}$$

L'inclusion est justifiée par le fait que $\lambda + u \ge 0$. Ainsi

$$\mathbb{P}(X > \lambda) < \mathbb{P}((X + u)^2 > (\lambda + u)^2)$$

Comme $(X + u)^2$ est une variable aléatoire positive et comme $(\lambda + u)^2 > 0$, d'après l'inégalité de Markov,

$$\mathbb{P}((X+u)^2 \ge (\lambda+u)^2) \le \frac{\mathbb{E}((X+u)^2)}{(\lambda+u)^2}$$

D'après la question précédente,

$$\mathbb{P}(X \ge \lambda) \le \frac{\mathbb{V}(X) + u^2}{(\lambda + u)^2}$$

c. On choisit u de façon à minimiser $\frac{\mathbb{V}(X) + u^2}{\lambda + u^2}$. Une rapide étude de la fonction $u \mapsto \frac{\mathbb{V}(X) + u^2}{(\lambda + u)^2}$ montre qu'elle atteint son minimum en $u = \frac{\mathbb{V}(X)}{\lambda}$. On prend donc $u = \frac{\mathbb{V}(X)}{\lambda}$ dans l'inégalité précédente, ce qui donne

$$\mathbb{P}(X \ge \lambda) \le \frac{\mathbb{V}(X) + \mathbb{V}(X)^2/\lambda^2}{(\lambda + \mathbb{V}(X)/\lambda)^2} = \frac{\lambda^2 \mathbb{V}(X) + \mathbb{V}(X)^2}{(\lambda^2 + \mathbb{V}(X))^2} = \frac{\mathbb{V}(X)}{\lambda^2 + \mathbb{V}(X)}$$

2. Posons Y = X - E(X) de sorte que E(Y) = 0 et V(Y) = V(X). D'après la question précédente,

$$\mathbb{P}(X - \mathbb{E}(X) \ge \lambda) = \mathbb{P}(Y \ge \lambda) \le \frac{\mathbb{V}(Y)}{\lambda^2 + \mathbb{V}(Y)} = \frac{\mathbb{V}(X)}{\lambda^2 + \mathbb{V}(X)}$$