Mid Examination 1 Applied Mathematics I(PHYS211000) 31 March 2014, 9.00 - 10.00 am

Answer all questions. Each question carries 20 marks. Simple calculator is allowed. No use of telephone. You may answer in English or Chinese.

1. (Determinant)

Using the Laplace expansion, evaluate the determinant of the matrx

$$A = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -2 & 1 \\ 3 & -3 & 4 & -2 \\ -2 & 1 & -2 & -1 \end{pmatrix}$$
 (1)

2. (Inverse)

Evaluate the determinant of the matrix

$$A = \begin{pmatrix} 2 & 4 & 3 \\ 0 & -1 & 2 \\ 3 & 2 & -3 \end{pmatrix} \tag{2}$$

and find its inverse A^{-1} .

3. (Rank)

What is the rank of the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 & -2 \\ 2 & 0 & 2 & 2 \\ 4 & 1 & 3 & 1 \end{pmatrix}? \tag{3}$$

4. (Eigenvalues and Eigenvectors) Find the eigenvalues and the normalized eigenvectors of the matrx

$$A = \begin{pmatrix} 6 & -2 \\ -2 & 9 \end{pmatrix}. \tag{4}$$

5. Let A be an $N \times N$ Hermitian matrix and consider the matrix

$$M = e^{iA}. (5)$$

- (a) Show the M is unitary.
- (b) Given that A has eigenvalues λ_i and eigenvectors $v_i, i = 1, ..., N$. Determine the eigenvalues and eigenvectors of M. Show that the eigenvectors belonging to different eigenvalues are orthogonal to each other.

lancer 1268