(b) Sea S la esfera unidad, S_1 la semiesfera superior, S_2 la semiesfera inferior y C la circunferencia unidad. Si $\mathbf{F} = \nabla \times \mathbf{G}$, entonces

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_{1}} \mathbf{F} \cdot d\mathbf{S} + \iint_{S_{2}} \mathbf{F} \cdot d\mathbf{S}$$
$$= \int_{C} \mathbf{G} \cdot d\mathbf{s} - \int_{C} \mathbf{G} \cdot d\mathbf{s} = 0.$$

Pero

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = -GmM \iint_{S} (\mathbf{r}/||\mathbf{r}||^{3}) \cdot \mathbf{n} \, dS$$
$$= -4\pi GmM$$

dado que $\|\mathbf{r}\| = 1$ y $\mathbf{r} = \mathbf{n}$ en S. Por tanto, $\mathbf{F} = \nabla \times \mathbf{G}$ es imposible. Esto no contradice el Teorema 8 porque \mathbf{F} no es suave en el origen.

Sección 8.4

- **1.** 3.
- **3.** 4π , ya que r = 1.
- 5. 4π .
- **7.** 3.
- **9.** (a) 0. (c) -4/15. (b) 4/15.
- **11.** 6.
- **13.** $\frac{7}{10}$.
- **15.** 1.
- **17.** Aplicar el teorema de la divergencia a f \mathbf{F} utilizando $\nabla \cdot (f\mathbf{F}) = \nabla f \cdot \mathbf{F} + f \nabla \cdot \mathbf{F}$.
- **19.** Si $\mathbf{F} = \mathbf{r}/r^2$, entonces $\nabla \cdot \mathbf{F} = 1/r^2$. Si $(0,0,0) \not\in \Omega$, el resultado se sigue del teorema de Gauss. Si $(0,0,0) \in \Omega$, calculamos la integral eliminando una pequeña bola $B_{\varepsilon} = \{(x,y,z) | (x^2 + y^2 + z^2)^{1/2} < \varepsilon\}$ alrededor del origen y haciendo $\varepsilon \to 0$:

$$\iiint_{\Omega} \frac{1}{r^2} dV = \lim_{\varepsilon \to 0} \iiint_{\Omega \setminus B_{\varepsilon}} \frac{1}{r^2} dV$$
$$= \lim_{\varepsilon \to 0} \iint_{\partial(\Omega \setminus B_{\varepsilon})} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS$$

$$= \lim_{\varepsilon \to 0} \left(\iint_{\partial \Omega} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS - \iint_{\partial B_{\varepsilon}} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS \right)$$
$$= \lim_{\varepsilon \to 0} \left(\iint_{\partial \Omega} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS - 4\pi\varepsilon \right)$$
$$= \iint_{\partial \Omega} \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS.$$

La integral sobre ∂B_{ε} se obtiene del Teorema 10 (ley de Gauss), ya que $r = \varepsilon$ en B_{ε} .

- **21.** Usar la identidad vectorial para div $(f\mathbf{F})$ y el teorema de la divergencia para el apartado (a). Utilizar la identidad vectorial $\nabla \cdot (f\nabla g g\nabla f) = f\nabla^2 g g\nabla^2 f$ para el apartado (b).
- **23.** (a) Si $\phi(\mathbf{p}) = \iiint_W \rho(\mathbf{q})/(4\pi \|\mathbf{p} \mathbf{q}\|) dV(\mathbf{q})$, entonces

$$\nabla \phi(\mathbf{p}) = \iiint_{W} [\rho(\mathbf{q})/4\pi] \nabla_{\mathbf{p}} (1/\|\mathbf{p} - \mathbf{q}\|) dV(\mathbf{q})$$
$$= -\iiint_{W} [\rho(\mathbf{q})/4\pi] [(\mathbf{p} - \mathbf{q})/\|\mathbf{p} - \mathbf{q}\|^{3}] dV(\mathbf{q}),$$

donde $\nabla_{\mathbf{p}}$ indica el gradiente con respecto a las coordenadas de \mathbf{p} y la integral es el vector cuyas componentes son las tres integrales componentes. Si \mathbf{p} varía en $V \cup \partial V$ y \mathbf{n} es la normal unitaria exterior a ∂V , podemos calcular el producto escalar usando estas componentes y uniendo los trozos para obtener

$$\nabla \phi(\mathbf{p}) \cdot \mathbf{n} = -\iiint_W \frac{\rho(\mathbf{q})}{4\pi} \frac{1}{\|\mathbf{p} - \mathbf{q}\|^3} (\mathbf{p} - \mathbf{q}) \cdot \mathbf{n} \, dV(\mathbf{q}).$$

Por tanto,

$$\iint_{\partial V} \nabla \phi(\mathbf{p}) \cdot \mathbf{n} \, dV(\mathbf{p}) = -\iint_{\partial V} \left(\iiint_{W} \frac{\rho(\mathbf{q})}{4\pi} \frac{1}{\|\mathbf{p} - \mathbf{q}\|^{\beta}} (\mathbf{p} - \mathbf{q}) \cdot \mathbf{n} \, d\mathbf{q} \right) dV(\mathbf{p}).$$

Hay esencialmente cinco variables en esta integración, tres porque \mathbf{q} está en W y dos porque \mathbf{p} está en ∂V . Utilizamos el teorema de Fubini para obtener

$$\iint_{\partial V} \nabla \phi \cdot \mathbf{n} \cdot d\mathbf{S}$$

$$= -\iiint_{W} \frac{\rho(\mathbf{q})}{4\pi} \left[\iint_{\partial V} \frac{(\mathbf{p} - \mathbf{q}) \cdot \mathbf{n}}{\|\mathbf{p} - \mathbf{q}\|^{3}} dS(\mathbf{p}) \right] dV(\mathbf{q}).$$