Academia Sabatina de Jóvenes Talento

Ecuaciones funcionales I

Encuentro: 08 Curso: Álgebra

Semestre: I

Nivel: Preolímpico IMO Fecha: 07 de junio de 2025

Instructor: Kenny Jordan Tinoco

Instructor Aux: Jonathan Gutiérrez

1. **Fundamentos**

Loading ...

2. **Problemas**

Ejercicio 1. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que 2f(x) - 5f(y) = 8, con $x, y \in \mathbb{R}$.

Ejercicio 2. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(x) + xf(1-x) = x, con $x \in \mathbb{R}$.

Ejercicio 3. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(x-y) = f(x) + f(y) - 2xy, con $x, y \in \mathbb{R}$.

Ejercicio 4. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(x+y) + f(x)f(y) = x^2y^2 + 2xy$, con $x, y \in \mathbb{R}$.

Ejercicio 5. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(x-y) = f(x)f(y), con $x, y \in \mathbb{R}$.

Ejercicio 6. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(f(x+y)) = x + f(y), con $x, y \in \mathbb{R}$.

Ejercicio 7. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(f(x) + y) = 2x + f(f(y) - x), con $x, y \in \mathbb{R}$.

Ejercicio 8. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que (y+1)f(x)f(xf(y)+f(x+y))=y, con $x,y \in \mathbb{R}$.

Ejercicio 9. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(f(x)^2 + f(y)) = xf(x) + y$, con $x, y \in \mathbb{R}$.

Ejercicio 10. Hallar $f: \mathbb{R}^+ \to \mathbb{R}$ tales que $2f(x) + f\left(\frac{1}{x}\right) = 3x - \frac{3}{x}$ para todo x > 0.

Ejercicio 11. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(x^2 + yf(x)) = xf(x+y)$, con $x, y \in \mathbb{R}$.

Ejercicio 12. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(x) + f(f(x) - y^3) = f(x^2 + y)$, con $x, y \in \mathbb{R}$.

Ejercicio 13. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(f(x)) + 2f(y) = 2f(x) + 4y, con $x, y \in \mathbb{R}$.

Ejercicio 14. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(x^2 + f(xy)) = xf(x+y)$, con $x, y \in \mathbb{R}$.

Ejercicio 15. Hallar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ con f(0) = 1 que satisfacen

$$f(f(n)) = f(f(n+2) + 2) = n,$$

para todo entero n.

Ejercicio 16. Encontrar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ tales que

$$f(x+f(y)) = f(x) + y$$
, para todo $x, y \in \mathbb{Z}$

Ejercicio 17. Sea $f:(0,\infty)\to\mathbb{R}$ una función tal que

- i) f es estrictamente decreciente,
- ii) $f(x) > -\frac{1}{x}$ para todo x > 0 y
- iii) $f(x)f\left(f(x) + \frac{1}{x}\right) = 1$ para todo x > 0.

Hallar f(1).

Ejercicio 18. Hallar todas las funciones $f, g : \mathbb{R} \to \mathbb{R}$ tales que g es inyectiva y

$$f(g(x) + y) = g(x + f(y))$$
, para todo $x, y \in \mathbb{R}$.

Problema 1. Encontrar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ que satisfacen

$$f(x+y) + xy = f(x)f(y)$$
, para todo $x, y \in \mathbb{R}$.

Problema 2. Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que, para cualesquiera x, y, u, v reales, se cumple

$$[f(x) + f(y)][f(u) + f(v)] = f(xu - yv).$$

Problema 3. Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ que satisfacen

$$f(x^2 - y^2) = (x - y) (f(x) + f(y))$$
, para todo $x, y \in \mathbb{R}$.

Problema 4. Sea $f: \mathbb{N} \to \mathbb{N}$ una función que cumple

$$f(f(m) + f(n)) = m + n$$
, para todos m, n .

Hallar los posibles valores de f(1988).

Problema 5. Encontrar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(f(x) + y) = 2x + f(f(y) - x)$$
, para todos $x, y \in \mathbb{R}$.

Problema 6. Encontrar todas las funciones estrictamente crecientes $f:\mathbb{N}\to\mathbb{N}$ que satisfacen

$$f(nf(m)) = m^2 f(mn)$$
, para todos $m, n \in \mathbb{R}$.

Problema 7. Encontrar todas las funciones estrictamente monótonas $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f(x+f(y)) = f(x) + y$$
, para $x, y \in \mathbb{R}$.

Problema 8. Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(xf(x) + f(y)) = f(x)^2 + y.$$