AVL Trees (Just for fun)

Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is d = [log₂N] for a binary tree with N nodes
 - What is the best case tree?
 - > What is the worst case tree?
- So, best case running time of BST operations is O(log N)

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - > Problem: Lack of "balance":
 - compare depths of left and right subtree
 - > Unbalanced degenerate tree

Balanced and unbalanced BST

Approaches to balancing trees

- Don't balance
 - May end up with some nodes very deep
- Strict balance
 - > The tree must always be balanced perfectly
- Pretty good balance
 - Only allow a little out of balance
- Adjust on access
 - > Self-adjusting

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
 - > tree is full except possibly in the lower right
- This is expensive
 - > For example, insert 2 in the tree on the left and then rebuild as a complete tree

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 - > height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - > Store current heights in each node

Node Heights

height of node = hbalance factor = h_{left} - h_{right} empty height = -1

Node Heights after Insert 7

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}h_{right}) is 2 or –2, adjust tree by *rotation* around the node

Single Rotation in an AVL Tree

- The principle of operation is remarkably simple; let's look at this "prototypical" trick to maintain balance:
 - Let's add 3, 2, 1 (in that order) to a binary search tree:

- The principle of operation is remarkably simple; let's look at this "prototypical" trick to maintain balance:
 - Let's add 3, 2, 1 (in that order) to a binary search tree:

 Inserting 1 causes the tree to become imbalanced at node 3 (left sub-tree has height 1, and right sub-tree has height ... ?? you tell me?)

Inserting 1 causes the tree to become imbalanced at node 3 (left sub-tree has height 1, and right sub-tree has height ... ?? you tell me?) — we recall from the first class on trees, that by convention, an empty tree has height -1

• So, we rotate it towards the right:

• So, we rotate it towards the right:

• If we had inserted the sequence 3, 2, 1, the situation would have been essentially the same; the right sub-tree would be the deeper one in that case, so we rotate towards the left in that case.

 Inserting the sequence 3, 1, 2, however, does make a significant difference — we end up with the following tree:

 Inserting the sequence 3, 1, 2, however, does make a significant difference — we end up with the following tree:

- Inserting the sequence 3, 1, 2, however, does make a significant difference — we end up with the following tree:
 - Clearly, we can't rotate to balance (right? why?)

- However, we can do a double rotation:
 - First, rotate towards the left the sub-tree 1-2, and then we're in the exact same previous case (so we rotate towards the right)

- However, we can do a double rotation:
 - First, rotate towards the left the sub-tree 1-2, and then we're in the exact same previous case (so we rotate towards the right)
 - The "net" effect is the following:

- In other words, this tells us that whenever an imbalance is created, we only need to address it at the deepest level where there is imbalance.
 - Things were originally balanced everywhere.
 - Fixing something at a node with depth d fixes fixes any imbalance in any node above it.
 - Since nothing else changed in the tree, it must be the case that fixing the imbalance at the deepest node where imbalance is present must be sufficient.

• For example, the just added 54 causes imbalance at the root, at 55, and at 48:

 However, it's pretty clear that a rotation around 48 fixes the imbalance at all points!

 An example: insertion of 46 causes imbalance at nodes 42, 55, and 36 — we address the imbalance at 42 (the deepest node):

• First, rotate towards the right around 43 (detaching 46 and reattaching it as 48's left sub-tree):

Then rotate towards the left around 42:

- We observe a piece of good news: these rotations take $\Theta(1)$, and the insertion takes $\Theta(h) = \Theta(\log n)$, so we're in good shape: insertion (including maintaining balance) takes $\Theta(\log n)$
- We'll also see that removals, though a bit more complicated (and more inefficient), also take Θ(log n).