Movie Recommendation Using Collaborative filtering

```
In [120]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Data Preprocessing

In [228]:

```
\label{lem:cond} $$id_df=pd.read_csv("C:\\local{lem:cond}) $$id_df=pd.read_csv("C:\\local{lem:cond}), 'Melson\\local{lem:cond} $$id','Rating','Timestamp'], $$delimiter='\t')$
```

In [85]:

```
id_df.drop(['Timestamp'],axis=1,inplace=True)
id_df
```

Out[85]:

	User_id	movie_id	Rating
0	196	242	3
1	186	302	3
2	22	377	1
3	244	51	2
4	166	346	1
99995	880	476	3
99996	716	204	5
99997	276	1090	1
99998	13	225	2
99999	12	203	3

100000 rows × 3 columns

In [86]:

```
movie_rating=pd.read_csv("C:\\Users\\Nelson\\Desktop\\machine-learning-ex\\movierating.item",sep="
|",usecols=range(2),encoding="ISO-8859-1",names=['movie_id','Tittle'])
```

In [230]:

```
recdf=pd.merge(movie_rating,id_df)
recdf.head()
```

Out[230]:

	movie_id	Tittle	User_id	Rating	Timestamp
0	1	Toy Story (1995)	308	4	887736532
1	1	Toy Story (1995)	287	5	875334088
2	1	Toy Story (1995)	148	4	877019411
3	1	Toy Story (1995)	280	4	891700426
4	1	Toy Story (1995)	66	3	883601324

In [234]:

```
rating=recdf.pivot_table(index=['User_id'],columns=['Tittle'],values='Rating')
rating.head()
```

Out[234]:

Tittle	'Til There Was You (1997)	1-900 (1994)	101 Dalmatians (1996)	12 Angry Men (1957)	187 (1997)	2 Days in the Valley (1996)	20,000 Leagues Under the Sea (1954)	2001: A Space Odyssey (1968)	3 Ninjas: High Noon At Mega Mountain (1998)	39 Steps, The (1935)	 Yankee Zulu (1994)	Year of the Horse (1997)	You So Crazy (1994)	Young Frankens (1974)
User_id														
1	NaN	NaN	2.0	5.0	NaN	NaN	3.0	4.0	NaN	NaN	 NaN	NaN	NaN	
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.0	NaN	 NaN	NaN	NaN	1
3	NaN	NaN	NaN	NaN	2.0	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	1
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	1
5	NaN	NaN	2.0	NaN	NaN	NaN	NaN	4.0	NaN	NaN	 NaN	NaN	NaN	

5 rows × 1664 columns

<u>•</u>

The Pivot Table gives you a information about which user has rated which movie

In [132]:

```
StarWarsRating=rating['Star Wars (1977)']
```

Then we will be finding Correlation with respect to Star Wars(1997)

In [164]:

```
\label{limits} similar movies = pd. DataFrame \ (rating.corrwith \ (StarWarsRating) \ , columns = ["Correlation"]) \\ similar movies. dropna \ (inplace = True)
```

In [170]:

sort=similarmovies.sort_values(by='Correlation',ascending=False)
sort

Out[170]:

Correlation

Tittle	
Hollow Reed (1996)	1.0
Commandments (1997)	1.0
Cosi (1996)	1.0
No Escape (1994)	1.0
Stripes (1981)	1.0
	•••
Roseanna's Grave (For Roseanna) (1997)	-1.0
For Ever Mozart (1996)	-1.0
American Dream (1990)	-1.0
Frankie Starlight (1995)	-1.0
Fille seule, La (A Single Girl) (1995)	-1.0

We will be selecting the movies which got rated by hundred users

In [197]:

```
status=recdf.groupby('Tittle').agg({'Rating':[np.size,np.mean]})
status.head()
```

Out[197]:

Rating

size mean

Tittle

'Til There Was You (1997)	9	2.333333
1-900 (1994)	5	2.600000
101 Dalmatians (1996)	109	2.908257
12 Angry Men (1957)	125	4.344000
187 (1997)	41	3.024390

In [210]:

```
morethan100=status['Rating']['size']>=100
status[morethan100].sort_values([('Rating', 'mean')], ascending=False)[:15]
```

Out[210]:

Rating

size mean

Tittle

11110		
Close Shave, A (1995)	112	4.491071
Schindler's List (1993)	298	4.466443
Wrong Trousers, The (1993)	118	4.466102
Casablanca (1942)	243	4.456790
Shawshank Redemption, The (1994)	283	4.445230
Rear Window (1954)	209	4.387560
Usual Suspects, The (1995)	267	4.385768
Star Wars (1977)	583	4.358491
12 Angry Men (1957)	125	4.344000
Citizen Kane (1941)	198	4.292929
To Kill a Mockingbird (1962)	219	4.292237
One Flew Over the Cuckoo's Nest (1975)	264	4.291667
Silence of the Lambs, The (1991)	390	4.289744
North by Northwest (1959)	179	4.284916
Godfather, The (1972)	413	4.283293

In [225]:

```
df=status[morethan100].join(sort)
df.head()

C:\Users\Nelson\anaconda3\lib\site-packages\pandas\core\reshape\merge.py:618: UserWarning: merging
between different levels can give an unintended result (2 levels on the left, 1 on the right)
warnings.warn(msg, UserWarning)
```

Out[225]:

Tittle	(Rating, size) (Rating, size)	(Reain)g, mean)	Correlation Correlation
101 Dalmatians (1996)	109	2.908257	0.211132
12 Angry Men (1957)	125	4.344000	0.184289
2001: A Space Odyssey (1968)	259	3.969112	0.230884
Absolute Power (1997)	127	3.370079	0.085440
Abyss, The (1989)	151	3.589404	0.203709

In [236]:

```
df=df.sort_values(by=['Correlation'], ascending=False)
df.head()
```

Out[236]:

	(Rating, size)	(Rating, mean)	Correlation
Tittle			
Star Wars (1977)	583	4.358491	1.000000
Empire Strikes Back, The (1980)	367	4.204360	0.747981
Return of the Jedi (1983)	507	4.007890	0.672556
Raiders of the Lost Ark (1981)	420	4.252381	0.536117
Austin Powers: International Man of Mystery (1997)	130	3.246154	0.377433

So we had built a recommender system to recommend movies to the user based on the past data