Une Operation ϕ sur un ensemble E, est une application ϕ : $E^n - > E$. ϕ est d'arite n, le rang de ϕ est n, ϕ est une operation n-aire. $a(\phi) = n$

Operation binaires. Une operation binaire est une loi de composition interne *. Sur un ensemble E est une application *: ExE => E l'image d'un couple (x,y) par * est note n*y.

Props: * est associative ssi $\forall a, b, c \in E$ a*(b*c) = (a*b)*c * est commutatuve ssi $\forall a, b \in E$ a*b = b*a * admet un element neutre 1 ssi $\forall e \in E$ e*1=1*e=e

Def: Un ensemble muni d'une operation * associative est un semi-group. De plus si E posede un element neutre e pour *, alors (E,*,e) est un monoide. Si * est commutative, le semi-groupe (resp. le monoide) est commutatif.

Exemple: $(P(E), \cap)$ est un monoid commutatif $(P(E), \cup)$ est un monoid commutatif

Soit A un ensemble fini appele alphabet et dont les elements sont appelees lettres, le monoide libre sur A note A^* est l'ensemble des mots ecrits sur A. Un mot u: suite fini de lettres. —u—:longeur du mot. — ε — le mot vide.

La loi de composition: la concatenation de deux mots: $u=u_1u_2...u_n$ et $v=v_1v_2...v_n$ $u.v=u_1u_2...u_nv_1v_2...v_n$

Remarque: \neq entre les suites et les mots d'une langage. les elements d'un mot appartiennent a un ensemble fini, alors que les elements d'une suite appartienne a un ensemble infini (peuvent.) Les mots on toujours une longeur finie pas les suites. ε mot qui ne contient aucun element.

Difinition recursive d'une mot: Soit \sum un alphabet, $\omega\in \sum^*$ si: $\omega=\varepsilon$ $\omega=x.u,x\in \sum etu\in \sum^*$

$$E_1 = u \in \overline{a}, b^* ||u| = 5$$

Un ensemble E muni d'une operation * est un group si c'est un monoide et que tout elements admet un inverse: $\forall e \in E, \exists e' \in E | e * e' = e' * e = 1$

Si * est commutative, le group est commutatif

Ex: muni de l'addition est un group commutatif.

Relations.

Def: Une relation sur un ensemble E est la donne d'une partie de R de ExE. Une paire (e,e') de ExE est dans R. eRe', $(e,e') \in R$, R(e,e')

Ex: (n,m)|nm (n,m)|nm2n

Operation ensemblists sur les relations.

le complementaire R d'une relation R dans E^2

$$(e, e') \in R \le (e, e') \in R_1 ou(e, e') \in R_2$$

l'Union: $(e, e') \in R_1 \cup R_2 <=> (e, e') \in R_1 ou(e, e') \in R_2$

l'Union: $(e, e') \in R_1 \cap R_2 \le (e, e') \in R_1 et(e, e') \in R_2$

la relation vide: $\forall e, e' \in E, (e, e') \notin \emptyset_E$

la relation pleine: $\forall e, e' \in E, (e, e') \in \pi_E$

la relation vide: $\forall e, e' \in E, (e, e') \in Id_E <=> e = e'$

Relation binaire sur E, relation inverse: $eR^{-}1e' <=> e'Re$

Produit de deux relation binaires R_1R_2 $e(R_1.R_2)e' <=> \exists e'' | (eR_1e'')et(e''R_2e')$ produit assiciatif et a Id_E comme element neutre.

$$R^* = Id_E \cup R \cup (R.R) \cup (R.R.R) \cup ...$$

 $\cup_{i \ge 0} avec R^0 = Id_E \ R^{1+1} = R.R^i$
 $R^+ = \cup_{i > 0} R'$

```
donc R^* = ID_E \cup R^+ \ \forall i,j \geq 0 \\ R^{i+j} = R^i.R^j \\ //////YASMINA
```

Relation d'equivalence

Une relation d'equivalance est une relation reflective symetrique, transitive. L'egalite sur un ensemble E est une relation d'equivalance. L'intersection $R \cap R'$ de 2 relations d'equivalance est une relation d'equivalence. Mais pas necessairement $R \cup R'$ ni R.R'

Def: R relation d'quivalence sur E. e element de E

 $e' \in E | eRe' = [e]_R estlaclassed' equivalance cdee.$

Prop. $\forall e \in E, e \in [e]_R \ \forall e \in E, eRe' => [e]_R = [e']_R \ [e]_R \cap [e']_R \neq \emptyset => [e]_R = [e']_R$

 $[e]_R|e\in E$ ensemble de partie de E est appele ensemble quotient de R par R, E/R est une partition de E. Reciproquement.

Congruence.

Def Une relation d'equivalance R definie sur un ensemble E muni d'une loi de composition interne * est une congruence. Si elle est compatible avec la loi * c.a.d si: $\forall e, e', d, d' \in E(eRe')et(dRd') \rightarrow ((e*d)R(e'*d'))$

Si R est une congruence sur E muni de *, la loi passe au quotient c'est a dire que E/R est muni d'une loi [*] en posant e[*]e'=[e*e'] et [*] est bien definie (ne depens pas de representants choisis).

Prop: Soit R une congruence sur un monoide (resp group)(E,*)

E/R muni de la loi [*] est un monoide (resp group).