- 作业讲解
 - -TC第24.1节练习2、3、4
 - -TC第24.2节练习2
 - -TC第24.3节练习2、4、7
 - -TC第24.5节练习2、5
 - -TC第24章问题2、3

TC第24.1节练习4

```
for each edge (u,v)∈G.E
if v.d>u.d+w(u,v)
v.d=-∞
这样可以吗?
```

for i=1 to |G.V|-1for each edge $(u,v) \subseteq G.E$ if v.d>u.d+w(u,v) $v.d=-\infty$

TC第24.3节练习2

- 这是反例吗?
- Dijkstra算法的结果是什么?

• 怎么将它改造成反例?

TC第24.3节练习4

• v. π是前驱,不是后继! (什么是前驱?)

TC第24.3节练习7

- ... and assume that no two vertices have the same shortestpath weights from source vertex s
 - 看清题意,说的不是"no two edges have the same weights"

TC第24.5节练习2

24.5-2

Give an example of a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$ and source vertex s such that G satisfies the following property: For every edge $(u, v) \in E$, there is a shortest-paths tree rooted at s that contains (u, v) and another shortest-paths tree rooted at s that does not contain (u, v).

TC第24.5节练习5

24.5-5

Let G = (V, E) be a weighted, directed graph with no negative-weight edges. Let $s \in V$ be the source vertex, and suppose that we allow $v.\pi$ to be the predecessor of v on any shortest path to v from source s if $v \in V - \{s\}$ is reachable from s, and NIL otherwise. Give an example of such a graph G and an assignment of π values that produces a cycle in G_{π} . (By Lemma 24.16, such an assignment cannot be produced by a sequence of relaxation steps.)

TC第24章问题2

24-2 Nesting boxes

A *d*-dimensional box with dimensions $(x_1, x_2, ..., x_d)$ nests within another box with dimensions $(y_1, y_2, ..., y_d)$ if there exists a permutation π on $\{1, 2, ..., d\}$ such that $x_{\pi(1)} < y_1, x_{\pi(2)} < y_2, ..., x_{\pi(d)} < y_d$.

a. Argue that the nesting relation is transitive.

- 问什么,就证什么
 - 对于任意的 π_{xy} 和 π_{yz} ,构造 π_{xz}

TC第24章问题2 (续)

- c. Suppose that you are given a set of n d-dimensional boxes $\{B_1, B_2, \ldots, B_n\}$. Give an efficient algorithm to find the longest sequence $\langle B_{i_1}, B_{i_2}, \ldots, B_{i_k} \rangle$ of boxes such that B_{i_j} nests within $B_{i_{j+1}}$ for $j=1,2,\ldots,k-1$. Express the running time of your algorithm in terms of n and d.
- 构建表示nest关系的有向图(边权设为-1)
- 求最短路(从哪个点开始的最短路?)
 - 需要新增一个点

TC第24章问题3

24-3 Arbitrage

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 U.S. dollar buys 49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese yen buys 0.0107 U.S. dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and buy $49 \times 2 \times 0.0107 = 1.0486$ U.S. dollars, thus turning a profit of 4.86 percent.

Suppose that we are given n currencies c_1, c_2, \ldots, c_n and an $n \times n$ table R of exchange rates, such that one unit of currency c_i buys R[i, j] units of currency c_i .

a. Give an efficient algorithm to determine whether or not there exists a sequence of currencies $\langle c_{i_1}, c_{i_2}, \dots, c_{i_k} \rangle$ such that

$$R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] > 1$$
.

Analyze the running time of your algorithm.

- 兑换是乘法,路长是加法,如何转换?
 - 取对数
- 要以每个点都作为s试一次

- 教材讨论
 - -GC第5章第1、2、3节
 - -GC第6章第1、2节

问题1: 割点和割边

这是割点的几种等价定义, 你能证明它们的等价性吗?

- 1. v是G的割点。
- 2. G-v不连通。
- 存在V(G)\{v}的一个划分: V(G)\{v}=UUW, U∩W=Ø, 使 得对∀u∈U和∀w∈W, v在每条u-w路上。
- 4. 存在u, w∈V(G),使得u, w异于v,且v在每条u-w路上。

实际上,非连通图上也存在"割点",你能给出一种优雅的定义吗?

问题1: 割点和割边

这是割点的几种等价定义, 你能证明它们的等价性吗?

- 1. v是G的割点。
- 2. G-v不连通。
- 3. 存在V(G)\{v}的一个划分: V(G)\{v}=UUW, U∩W=Ø,使得对∀u∈U和∀w∈W,v在每条u-w路上。
 - 4. 存在u, w∈V(G),使得u, w异于v,且v在每条u-w路上。

实际上,非连通图上也存在"割点",你能给出一种优雅的定义吗?

问题1:割点和割边(续)

这是割边的一种等价定义, 你能证明它们的等价性吗?

- 1. e是G的割边。 2. e不在G的任何圈中。

问题2:块

这是不可分图(块)的几种等价定义

- 1. G是不可分图(块)。
- 2. G的任二顶点共圈。
- 3. G的任一顶点与任一边共圈。
- 4. G的任二边共圈。
- 5. 对∀u, v∈V(G)及∀e∈E(G),存在u-v路含有边e。
- 6. 对∀u, v, w∈V(G), 存在u-v路含有顶点w。
- 7. 对∀u, v, w∈V(G), 存在u-v路不含有顶点w。

我们将在《图论》课上讨论这些定义的等价性

问题2: 块(续)

- 为什么两个块最多只有一个公共顶点?
- 为什么这个公共顶点一定是割点?
- 于是,我们可以将一个图转化为一种"块-割点图"
 - "块-割点图"有什么特点?

问题3: 连通度

- 一个图的(点)连通度(k)是如何定义的?
- 你能分别给出一个连通度为0、1、2、3的非完全图吗?
- κ=*k*和*k*-connected的区别是什么?
- 一个图的边连通度(κ'或λ)是如何定义的?
- 你能分别给出一个边连通度为0、1、2、3的非完全图吗?
- λ=k和k-edge-connected的区别是什么?

问题3:连通度(续)

- κ≤λ≤δ, 你能分别举出一个例子吗?
 - κ= λ = δ
 - − κ<λ<δ</p>
 - κ<λ=δ
 - κ= λ < δ

问题3:连通度(续)

- κ≤λ≤δ, 你能分别举出一个例子吗?
 - $\kappa = \lambda = \delta$
 - $\kappa < \lambda < \delta$
 - $\kappa < \lambda = \delta$
 - κ= λ < δ

问题3:连通度(续)

• 3-正则图满足κ=λ, 你能结合这两个示意图给出证明吗?

问题4: 欧拉图

- 什么是欧拉图?
- 对于中国邮递员问题,你有什么解决思路?
 - 如果是欧拉图,怎么办?
 - 如果不是欧拉图,怎么办?

问题4: 欧拉图

- 什么是欧拉图?
- 对于中国邮递员问题,你有什么解决思路?
 - 如果是欧拉图,怎么办?
 - 如果不是欧拉图,怎么办?

问题5:哈密尔顿图

- 什么是哈密尔顿图?
- 你听说过旅行商问题吗?你能想到这个问题的其它应用场景吗?

问题5:哈密尔顿图(续)

• 对于旅行商问题,你有什么解决思路? (不一定要给出最优解)

最小生成树法

- 1. 找K_n的一棵最小生成树T。
- 2. 为T中的每条边添加重边成为T*。
- 3. 找T*的一条欧拉闭迹C。
- 4. 沿C前行,跳过已访问过的顶点,直至访问完所有顶点。

最小生成树法(续)

- 近似比w(H)/w(H*)<2。你能解释这个证明过程吗? 证明:
- 1. 三角不等式 ⇒ w(H)≤w(C)=w(T*)=2w(T)
- 2. 且w(H*)>w(T)
- 3. 因此,w(H)/w(H*)<2

- T: 最小生成树
- T*: T添加重边后
- C: 欧拉闭迹
- H: 算法给出的解
- H*: 最优解

