设计 MonteCarlo 法计算圆周率的 Tcl 程序并观察收敛性质

——景字 1216073606 18362972083

一、需求分析

1. 仿真目标说明

圆周率是圆的周长与直径之比,是数学中的一个重要常数,也是迄今为止计算时间最长,计算得到位数最多的一个常数。人们之所以对 π 的计算进行研究,不仅是为了找到更加精准的圆周率,更重要的是为了找到一些新的计算方法、改进计算的手段,并且 π 值是用来来检验计算机可靠性、精准性、运算速度及计算容量的有力办法、手段和衡量计算进展。本文设计 MonteCarlo 法计算圆周率的 Tc1 程序并观察收敛性质。

2. 结果预期

设计用计算机进行模拟随机试验,以此事件发生的频率估计概率,进而得到 π 的近似值。并使用大量的计算次数来观察计算结果,看其是否接近 π 的真实值,收敛性质如何。

二、仿真设计

1. Monte Carlo 方法介绍

蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。

Monte Carlo 方法的基本思想很早以前就被人们所发现和利用。早在 17 世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。 19 世纪人们用投针试验的方法来决定圆周率 π 。本世纪 40 年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。

2. π 计算模型

通过蒙特卡罗算法计算圆周率的主导思想是:统计学(概率)。

- 一个正方形有一个内切圆,向这个正方形内随机的画点,则点落在圆内的概率 P 为圆面积与正方形面积的商。
- (1) 在一个平面直角坐标系下,在点(0,0)处画一个半径为 R=1 的圆,以这个圆画一个外接正方形,其边长为 2R=2 (R=1 时,圆面积即 π)。
- (2) 随机取一点 (X, Y) 使得 $-R \le X \le R$ 并且 $-R \le Y \le R$,即随机点在正方形内。

- (3) 判断点是否在圆内,通过公式 $d^2 = X^2 + Y^2 \le R^2$ 计算。
- (4) 设所有点的个数为 N, 落在圆内的点的个数为 M, 则

$$P = M/N = 4 * R * R/Pi * R * R = Pi/4$$

$$Pi = 4 * M/N$$

当实验次数越多(N越大),所计算出的Pi也越准确。

```
3. Tc1 仿真程序
```

```
proc pi-eval t {
    set c 0
    for {set i 0} {$i < $t} {incr i} {
        set x [expr rand()]
        set y [expr rand()]
        set d2 [expr $x * $x + $y * $y]
        if {$d2 < 1.0} {
            incr c
        }
    }
    return [expr 4 * double($c) / $t]
}
set round 10
puts "$round\t[pi-eval $round]"</pre>
```

三、结果与分析

1. 仿真结果

100 3. 20000000 1000 3. 13200000

 10000
 3. 15240000

 100000
 3. 14252000

 1000000
 3. 14086800

 10000000
 3. 14170120

 100000000
 3. 14178032

2. 仿真结果截图

3. 结果分析

根据实验数据可以隐约看出,当实验次数越多(N 越大),所计算出的 Pi 也越准确,逐渐逼近 π 的值。但是尽管 N 的数值已经很大,计算值也还是有一点差距。

这是因为计算机上的随机数毕竟是伪随机数,当取值超过一定值,也会出现不随机现象,因为伪随机数是周期函数。随机数产生器在 NS2 中是非常重要的,举凡网络节点在 NAM 中的位置或者是应用程序在何时开始传送或结束数据传输,都会用到随机数产生器。随机数产生器所产生的数值是由种子和分布所控制的,不同的种子或者是分布就会产生出不同的随机数。

这样就会影响 Pi 的计算结果的准确度, 想要达到我们预期的效果, 我们还需要编写真正的随机数产生器, 还要学习很多。