

EE6405

Natural Language Processing

Dr. Simon Liu
NTU Electrical and Electronic Engineering

Sequential Data

- Sequential data is organised in a specific order, often with a time-based or chronological sequence.
- The order in which the data points occur is essential for understanding the data's meaning.
- In sequential data, each data point is likely correlated to both the earlier and later data points in the sequence.

Textual Data:

- The meaning of a text often depends on the order of words and the grammatical rules that govern their arrangement.
- Understanding the text often requires knowledge of what came before and what follows.
- The meaning of a word or phrase can change based on the context provided by the surrounding text.

Sequential Data

Traditional models, such as simple linear regression or basic feedforward neural networks, often struggle with handling sequential data for several reasons:

Lack of Memory

Traditional models do not possess the inherent ability to remember or capture long-term dependencies within the sequence.

Order Insensitivity

Traditional models treat data as unordered, meaning they do not inherently understand the significance of the order of data points in a sequence.

Variable-Length Limitation

Traditional models are designed to work with fixed-length input. However, sequential data often comes in variable lengths.

Sequential Data

- To process sequential data effectively, we need models that can account for the interconnectedness of sequential data.
- Models can handle sequential data through various techniques and architectures designed to capture the temporal dependencies and patterns within the data.
- Some of these models include:

Recurrent Neural Networks (RNNs)

Gated Recurrent Units (GRUs)

Long Short-Term Memory (LSTM) Networks

Bi-directional Networks

Transformers

(To be covered next week)

RNNs

- Recurrent Neural Networks (RNNs) are a type of neural network designed for tasks involving sequences or time series data.
- Unlike traditional feedforward neural networks, RNNs have connections that loop back on themselves, allowing them to maintain memory of previous inputs.
- RNNs can model dependencies over time, making them great for tasks like language translation, speech recognition, and predicting future values in a time series.

Recurrent Neural Networks

Each RNN unit computes a new hidden state using the previous state and a new input.

$$h_t = g(x_t, h_{t-1})$$

Each RNN unit (optionally) makes an output using the current hidden state.

$$y_t = f(h_t)$$

- Hidden states $h_t \in R^D$ are continuous vectors
 - Can represent very rich information
 - Possibly the entire history from the beginning
- Parameters are shared (tied) across all RNN units (unlike feedforward NNs).

Recurrent Neural Networks

Generic RNNs

- $h_t = g(x_t, h_{t-1})$
- $y_t = f(h_t)$

Vanilla RNNs

- $h_t = tanh(Ux_t + Wh_{t-1} + b)$
- $y_t = softmax(Vh_t)$

Vanilla RNN is the simplest form of a recurrent neural network.

Recurrent Neural Networks (Activation Functions)

Sigmoid

- Often used for gates, and output layer for classification
- Pros: Non-linear, smooth gradient
- Cons: Not zero-centered, vanishing gradients

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Recurrent Neural Networks (Activation Functions)

Tanh

- Used for hidden states & cells in RNNs, LSTMs.
- Pros: Zero-centred, often converges faster than sigmoid.
- Cons: Also suffer from vanishing gradients.

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$tanh'(x) = 1 - \tanh^2(x)$$

$$\tanh(x) = 2\sigma(2x) - 1$$

Recurrent Neural Networks – Classifier

- Follows a sequence-to-one architecture.
- Input: A sequence.
- Output: One Label (A classification).
- Use Case: Sentiment Analysis.

$$h_t = g(x_t, h_{t-1})$$
$$y = f(h_n)$$

Recurrent Neural Networks - One to Seq

- Follows a one-to-sequence architecture
- Input: One item
- Output: A sequence
- Use Case: Image Captions

$$h_t = g(x_t, h_{t-1})$$
$$y_t = f(h_t)$$

Recurrent Neural Networks - Seq to Seq

- Follows a sequence-to-sequence architecture
- Input: A sequence
- Output: A sequence
- Use Case: POS tagging, Named Entity Recognition

$$h_t = g(x_t, h_{t-1})$$
$$y_t = f(h_t)$$

Recurrent Neural Networks – Limitations

- Vanishing Gradients: RNNs can struggle with long sequences because gradients can become too small, making it hard to learn from distant past information.
- **Exploding Gradients:** Conversely, gradients can become too large, causing unstable training.
- Memory Limitations: RNNs have limited short-term memory and may not remember relevant information from very early in a sequence due to Vanishing Gradients.

Long Short-Term Networks

- LSTM, short for Long Short-Term Memory, is a type of RNN architecture.
- Designed to address the vanishing gradient problem in RNNs.
- LSTMs incorporate unique gating mechanisms, including forget, input, and output gates, which allow them to regulate the flow of information and avoid the vanishing gradient problem common in standard RNNs.
- RNNs can struggle with long sequences, where information from early time steps may become difficult to capture. LSTMs overcome this limitation.

Long Short-Term Networks

LSTM - Cell States

- Cell States represent long term memory.
- The cell state is modulated by three gates (forget, input, and output), which selectively add, retain, or remove information, thereby preventing the gradients from vanishing during long sequences.
- Cell states enable LSTMs to capture and retain long-term dependencies.

LSTM – Forget Gates

- Decides what long term information should be kept in the cell state.
- Information from previous hidden state and current input passed through sigmoid function.
- Output closer to 0 means forget, close to 1 means keep.
- Equation given by:

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

LSTM – Input Gates

- Decides what new information to add to the cell state.
- First, a sigmoid layer decides which value to update and a how much to update.
- Next, a tanh layer scales the input between 1 and -1.
- Combine them to create an update to the state of the long term memory.
- The input gate formula is given by:

$$i_t = \sigma(U^{(i)}x_t + W^{(i)}h_{t-1} + b^{(i)})$$

The equation for temporary new cell content is given by:

$$\tilde{c}_t = \tanh(U^{(c)}x_t + W^{(c)}h_{t-1} + b^{(c)})$$

LSTM – Cell State Update

- The cell state is updated by a combination of the results from the forget gate and the input gate.
- The updated cell content is given by the equation:

$$c_t = f_t c_{t-1} + i_t \tilde{c}_t$$

LSTM – Output Gates

- The output gate determines which parts of the cell state are used to generate the output at the current time step.
- The sigmoid layer decides how the current input and hidden state contribute to the output.
- The cell state passes through tanh function for normalisation.
- The two outputs are multiplied to produce the final output.
- The output gate equation is given by:

$$o_t = \sigma(U^{(o)}x_t + W^{(o)}h_{t-1} + b^{(o)})$$

The hidden state is given by:

$$h_t = o_t \tanh(c_t)$$

h

GRUs

- Gated Recurrent Units (GRUs) were introduced in 2014 as a simplified variant of LSTM.
- They aim to achieve similar results with a reduced number of gates and parameters.
- GRUs do not have a separate cell state like LSTMs, and they merge the roles of the cell state and hidden state.
- As a result, they are computationally less expensive.
- A GRU has two fundamental components:

Update Gate:

Controls the extent to which the previous hidden state is updated.

Reset Gate:

Controls the extent to which the previous hidden state is reset, allowing it to forget some information.

GRUs – Reset Gates

- The reset gate, denoted as r_t determines how much of the previous hidden state h_{t-1} should be forgotten.
- The information from the previous hidden state and the current input passes through a sigmod:

$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r)$$

- The result scales the previous hidden state.
- The modified previous hidden state is then combined with current input and passes through a tanh to produce a candidate hidden state \tilde{h}_t .

GRUs – Update Gates

- The update gate, denoted as z_t determines how much of the previous hidden state h_{t-1} should be retained and how much of the new candidate hidden state \tilde{h}_t should be added to the current state.
- The formula for the update gate is given by:

$$z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z)$$

The final new hidden state is scaled combination of the previous hidden state and the new candidate hidden state.

Bi-Directional RNNs

- Bi-Directional RNNs consist of two separate RNNs: one moving forward through the input sequence and the other moving backward.
- Bi-Directional RNNs are especially useful in applications where understanding the context from both past and future data points in a sequence is crucial.
- LSTM and GRU are commonly used in Bi-RNNs.

Summary

- Sequential data: Data that is chronologically ordered. Textual data falls under this category.
 - How traditional models fail to capture this sequential nature due to a lack of memory.
- Models that handle sequential data:
 - RNNS:

A neural network for processing sequential data, capturing temporal information through its internal state.

- LSTMS:

An advanced RNN variant designed to learn long-term dependencies using special structures called gates.

- GRUs:

A streamlined version of LSTM with a simpler architecture, combining several gates for efficient learning of dependencies in sequences.

- Bi-RNNs:

An RNN that processes data in both forward and backward directions to capture context from the entire sequence.

