AE1MCS: Mathematics for Computer Scientists

Huan Jin and HeShan Du University of Nottingham Ningbo China

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 9, Section 9.1 Relations and Their Properties
- Chapter 9, Section 9.2 Database and Relations
- Chapter 9, Section 9.5 Equivalence Relations

Relations

- Relationships between elements of sets occur in many contexts.
- Relationships between elements of sets are represented using the structure called a relation, which is just a subset of the Cartesian product of the sets.

Binary Relations

The most direct way to express a relationship between elements of two sets is to use ordered pairs made up of two related elements. Hence, sets of ordered pairs are called binary relations.

Definition

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

We use a R b or R(a, b) to denote that $(a, b) \in R$.

Exercise

$$\begin{cases}
(a,b) & | a \in A, b \in A \\
(1,1), (1,2), (1,3), (4,4) \\
(2,1), (2,2), (2,3), (2,4) \\
(3,1), (3,2), (3,3), (3,4)
\end{cases}$$

Let A be the set {1,2,3,4}. Which ordered pairs are in the relation

$$R = \{(a,b) \mid a \text{ divides } b\}?$$

Exercise

Let *A* be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

Answer:

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

Relations on a Set

$$|A| = n$$
 $|A \times A| = \frac{n^2}{2^{n^2}}$ relation:

Relations from a set A to itself are of special interest.

Definition

A relation on a set A is a relation from A to A.

How many relations are there on a set with *n* elements?

n²·

Huan Jin

AE1MCS

Reflexive Relations

There are several properties that are used to classify relations on a set.

Definition

A relation R on a set A is called *reflexive*, if $(a, a) \in R$ for every element $a \in A$.

How to use quantifiers to express it?

Huan Jin

AE1MCS

Symmetric Relations

$$R = \{(1,1), (1,2), (2,1)\}$$
 $A = \{1,2\}$

Definition

A relation R on a set A is called *symmetric*, if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

How to use quantifiers to express it?

R on set A is symmetric H.

Va $\forall b$, $((a,b) \in R \rightarrow (b,a) \in R$)

Huan Jin

AE1MCS

Antisymmetric Relations

Definition

A relation R on a set A such that for all $\underline{a}, \underline{b} \in A$, if $(\underline{a}, \underline{b}) \in R$ and $(\underline{b}, \underline{a}) \in R$, then $\underline{a} = \underline{b}$ is called *antisymmetric*.

- The terms symmetric and antisymmetric are not opposites.
- A relation can have both of these properties or may lack both of

them. Examples?

$$R = \{(2, 2), (3, 3), (4, 4)\}$$

 $A = \{(2, 3), 4\}$
Sym Q anti-Sym

R=
$$\{(0,1),(1,2),(2,1)\}$$

Neither: A= $\{0,1,2\}$
 $(a,b)\in R,(b,a)\notin R$
 $(c,d)\in R,(d,c)\in R,C\neq d$

Transitive Relations

transitive

Definition

A relation R on a set A is called *transitive*, if whenever $(a, b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$.

How to use quantifiers to express it?

bw to use quantifiers to express it?
$$(b,c) \in R \rightarrow (a,c) \in R$$

Examples

(a,b)
$$\in R_1$$
, $a \le b$, (1,2)
(a,b) $\in R_1$ b , a 1 $\in R_2$ $a = b$

Consider these relations on the set of integers:

$$R_1 = \{(a,b) \mid a \le b\},\$$

$$R_2 = \{(a,b) \mid a > b\},\$$

$$R_2 = \{(a,b) \mid a = b \text{ or } a = -b\},\$$

$$R_3 = \{(a,b) \mid a = b\},\$$

$$R_5 = \{(a,b) \mid a = b + 1\},\$$

$$R_6 = \{(a,b) \mid a + b \le 3\}.$$

teger

Anu-Sym

Transitive

Y

Y

N

(2,1)

(1,2)

(2,2)

(6,0) ERO = 6+1 (6,0) ER, b=0+1

Combining Relations

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

$$R_{1} \bigcup R_{2} = \{(\alpha, y) \mid \alpha < y \text{ or } x > y\}$$

$$R_{1} \cap R_{2} = \emptyset$$

$$R_{1} - R_{2} = R_{1}$$

$$R_{2} - R_{1} = R_{2}$$

Huan Jin

Exercise

Let R_1 be the 'less than' relation on the set of real numbers and let R_2 be the 'greater than' relation on the set of real numbers, that is, $R_1 = \{(x,y) \mid x < y\}$ and $R_2 = \{(x,y) \mid x > y\}$. What are $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$? $R_1 \cup R_2 = R_1 \cap R_2 = R_1 \cap$

There is another way that relations are combined that is analogous to the composition of functions.

Definition

Let R be a relation from a set A to a set B and S a relation from B to a set C. The *composite* of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

$$SoR = \{(a,c) \mid (a,b) \in R, (b,c) \in S\}$$

What is the composite of the relations R and S, where R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with $R = \{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with $S = \{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?

$$S \circ R = \{(1,0), (1,1), (2,1), (3,0), (3,1)\}$$

16 / 23

Huan Jin AE1MCS

Composing a Relation with Itself

Definition

Let R be a relation on the set A. The powers R^n , n = 1, 2, 3, ..., are defined recursively by $R^1 = R$ and $R^{n+1} = R^n \circ R$.

$$R^{3} = R \cdot R$$

$$R^{3} = R^{2} \circ R$$

$$R^{n} = R^{n-1} \circ R$$

Huan Jin AE1MCS 17 / 23

Exercise

Let
$$R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$$
. Find the powers R^n , $n = 2, 3, 4, ...$

$$R^2 = \{(1, 1), (2, 1), (3, 1), (4, 2)\}$$

$$R^3 = \{(1, 1), (2, 1), (3, 1), (4, 1)\}$$

$$R^4 = \{(3, 1), (2, 1), (3, 1), (4, 1)\}$$

$$R^n = R^3, \quad \text{for } N = 4, 5, 6...$$

A Theorem

Theorem

The relation R on a set A is transitive if and only if $\mathbb{R}^n \subseteq \mathbb{R}$ for n = 1, 2, 3, ...

See Rosen's textbook, p.581

More Examples

a=b (mod m). a is congruent to b modulo m
if m divides (a-b)

Ry if $x \equiv y \pmod{5}$ $A = \mathbb{Z}^+, \quad xRy \quad \text{if } x|y$ $A = \mathbb{N}, \quad xRy \quad \text{if } x \leq y$ $2 \cdot 7 \quad w \cdot t.$

Reflexive. Sym Anci-syn Transvir Y Y N Y Y N Y Y

Equivalence Relations

Equivalence relation: a reflexive, symmetric, and transitive relation.

Two elements a and b that are related by an equivalence relation are called **equivalent**. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.

21 / 23

Equivalence Classes

[a]_R equivalence class of a with respect to R): the set of all elements of A that are equivalent to a EA

$$[a]_R=\{s|(a,s)\in R\}.$$

Example $R = \{(a,b) \mid a \ge b \pmod{4}^{\frac{1}{2}}$ What are the equivalence classes of 0 and 1 for congruence modulo 4?

$$[O]_{R} = \{ \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 0, 4, 8, 12, \frac{1}{2}, \frac{1}{3}, \frac{1$$

 $[a]_{m} = \{\dots a-3m, a-2m, a-m, a, a+m, a+2m, \dots\}$

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 9, Section 9.1 Relations and Their Properties
- Chapter 9, Section 9.2 Database and Relations
- Chapter 9, Section 9.5 Equivalence Relations