Data Mining (Minería de Datos)

Ensemble Methods: Bagging and Random Forests

Sixto Herrera

Grupo de Meteorología Univ. de Cantabria – CSIC MACC / IFCA

Types of Machine Learning

NOTA: Las líneas de código de R en esta presentación se muestran sobre un fondo gris.

Nov	2	Presentación, introducción y perspectiva histórica
	4	Paradigmas, problemas canonicos y data challenges
	9	Reglas de asociación
	11	Practica: Reglas de asociación
	16	Evaluación, sobrejuste y crossvalidacion
	18	Practica: Crossvalidacion
	23	Árboles de clasificacion y decision
	25	Practica: Árboles de clasificación
		T01. Datos discretos
	30	Técnicas de vecinos cercano (k-NN)
Dic	2	Práctica: Vecinos cercanos
	9	Comparación de Técnicas de Clasificación.
14	16	Reducción de dimensión no lineal
		T02. Clasificación
	17	Árboles de clasificación y regresion (CART)
	20	Práctica: Árboles de clasificación y regresion (CART)
	21	Practica: El paquete CARET
		T03. Prediccion
Ene	11	Ensembles: Bagging and Boosting
	13	Random Forests y Gradient boosting
	14	Técnicas de agrupamiento
	20	Técnicas de agrupamiento
	24	Predicción Condicionada
	26	Sesión de refuerzo/repaso.
Ene	27	Examen

Machine

Nov	2	Presentación, introducción y perspectiva histórica
	4	Paradigmas, problemas canonicos y data challenges
	9	Reglas de asociación
	11	Practica: Reglas de asociación
	16	Evaluación sobrejuste y crossyalidacion

Biomedical Signal Processing and Control 52 (2019) 456-462

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation

Torgyn Shaikhina^a, Dave Lowe^b, Sunil Daga^{d,e}, David Briggs^c, Robert Higgins^e, Natasha Khovanova^{a,*}

gris.

	24	Predicción Condicionada
	26	Sesión de refuerzo/repaso.
Ene	27	Examen

• Pros:

- Trees are very easy to explain (even easier than linear regression)
- Trees can be plotted graphically, and are easily interpreted
- Trees can easily handle qualitative predictors
- They work fine on both classification and regression problems

Cons:

- Poor prediction accuracy (compare with other approaches).
- Instability when changing the data (cross-validation is key).

Pros:

- Trees are very easy to explain (even easier than linear regression)
- Trees can be plotted graphically, and are easily interpreted
- Trees can easily handle qualitative predictors
- They work fine on both classification and regression problems

Cons:

- Poor prediction accuracy (compare with other approaches).
- Instability when changing the data (cross-validation is key).

By aggregating many decision trees, the predictive performance of trees can be substantially improved (ensemble methods).

Ensemble learning is a supervised approach in which the basic idea is to generate multiple weak models on a training dataset and combining them to generate a strong model which improves the **stability** and the **performance** of the individual models.

The wisdom of the crowd

Fable of blind men and elephant

https://en.wikipedia.org/wiki/Blind men and an elephant

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression) Trees can be plotted graphically, and are easily interpreted Trees can easily handle qualitative predictors They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches) Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the instability of the trees can be reduced and their predictive performance substantially improved.

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression) Trees can be plotted graphically, and are easily interpreted Trees can easily handle qualitative predictors They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches) Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the **instability** of the trees can be reduced and their **performance**

improved. Original Training data bootstrapping Mean (prediction) Majority voting (classification)

boosting

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression)

Trees can be plotted graphically, and are easily interpreted

Trees can easily handle qualitative predictors

They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches)
Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the **instability** of the trees can be reduced and their **performance**

improved.

Weak learners

Low bias and high variance

High degree of freedom models e.g. fully developed trees

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression)

Trees can be plotted graphically, and are easily interpreted

Trees can easily handle qualitative predictors

They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches)
Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the **instability** of the trees can be reduced and their **performance**

improved.

Weak learners

High bias and low variance

Low degree if freedom models e.g. low depth trees

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression)

Trees can be plotted graphically, and are easily interpreted

Trees can easily handle qualitative predictors

They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches)
Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the **instability** of the trees can be reduced and their **performance** improved.

Heterogenous Weak Learners

Stacking considers heterogeneous weak learners, learns them in parallel and combines them by training a meta-model to output a prediction based on the different weak models predictions.

initial dataset

L weak learners (that can be non-homogeneous)

meta-model
(trained to output predictions based on weak learners predictions)

https://stats.stackexchange.com/questions/290701/now-to-stack-machine-learning-models-in

https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a20

Ensembles: Bagging and boosting

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression)

Trees can be plotted graphically, and are easily interpreted

Trees can easily handle qualitative predictors

They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches)
Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the **instability** of the trees can be reduced and their **performance**

improved.

Homogenous Weak Learners

Most used approaches: Bagging and boosting

Bagging

Simple and powerful ensemble method.

- 1) Suppose there are N observations for training. M (only parameter to be chosen) subsamples are selected randomly with replacement (bootstrapping).
- 2) Using these bootstrapped subsamples, M individual trees are created **in pararell.**
- 3) A prediction for new input data is given based on the predictions resulting from the M individual trees (e.g. as the mean value, for majority voting...).

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression)

Trees can be plotted graphically, and are easily interpreted

Trees can easily handle qualitative predictors

They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches)
Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the **instability** of the trees can be reduced and their **performance** improved.

Weak learners

Low bias and high variance

High bias and low variance

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression)

Trees can be plotted graphically, and are easily interpreted

Trees can easily handle qualitative predictors

They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches)
Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the **instability** of the trees can be reduced and their **performance** improved.

Weak learners

Low bias and high variance

High bias and low variance

Bagging

Simple and powerful ensemble method.

- 1) Suppose there are N observations for training. M (only parameter to be chosen) subsamples are selected randomly with replacement (bootstrapping).
- 2) Using these bootstrapped subsamples, M individual trees are created in pararell. Each of these trees is fully grown and not pruned (we do not care about overfitting in bagging). These trees will have very low bias, but there will be a high variability among them.
- 3) A prediction for new input data is given based on the predictions resulting from the M individual trees (e.g. as the mean value, for majority voting...).

Bagging: Random forest

Random forest (RF) is an improvement over bagged trees.

In CART, when selecting a split point, the learning algorithm is allowed to look through all predictor variables (p) in order to make the most division. Therefore, even with bagging, the individual trees can have a lot of structural similarities and in turn provide highly correlated predictions. However, ensemble methods work better if the predictions from the submodels are uncorrelated or at best weakly correlated.

To solve this issue, in RF the learning algorithm is limited to a number of randomly selected predictors (m) at each splitting. Although m must be properly tuned, typical values for this parameter are:

m = sqrt(p), for classification problems

m = p/3, for prediction problems

Often, RF improve substantially the performance of individual trees.

Bagging: Random forest

Estimated performance (test error)

For each bootstrap sample taken from the training data, there will be samples left behind that were not included. These samples are called Out-Of-Bag samples or OOB.

When averaged over all trees, the performance on these OBB provides a good estimate of the test error that may be expected.

Variable Importance

While the bagged trees are constructed, we can calculate how much the error drops for a variable at each split point.

These error drops can be averaged across all trees, providing thus an estimate of the importance of each input variable.

Random forest in R <u>Classification problem (iris)</u>

```
rm(list = ls())
Install.packages("randomForest")
library(randomForest)
```

```
n = nrow(iris)
# train/test partition
indtrain = sample(1:n, round(0.75*n)) # indices for train
indtest = setdiff(1:n, indtrain) # indices for test
```

```
# RF
rf = randomForest(Species ~., iris , subset = indtrain)
# RF configuration: no. of trees? no. of predictors
considered at each node?
rf
```

```
# OOB error
plot(rf$err.rate[, 1], type = "b", xlab = "no trees",
ylab = "OBB error")
grid()
```



```
# prediction for test
pred = predict(rf, iris[indtest, ])
# accuracy
sum(diag(table(pred, iris$Species[indtest]))) / length(indtest)
```

```
# comparison with a single tree
library(tree)
t = tree(Species ~., iris, subset = indtrain)
# prediction for test
pred.t = predict(t, iris[indtest, ], type = "class")
# accuracy
sum(diag(table(pred.t, iris$Species[indtest]))) /
length(indtest)
```

Master Universitario Oficial **Data Science**

Ensembles: Bagging and boosting

Random forest in R

Classification problem (rain/no rain)

```
load(".../meteo.RData")
# keeping only 1000 days for this example
n = 1000 y = y[1:n]
x = x[1:n, ]
```

train/test partition indtrain = sample(1:n, round(0.75*n)) # indices for train indtest = setdiff(1:n, indtrain) # indices for test

```
# binary occurrence (1/0)
occ = v
occ[which(y < 1)] = 0
occ[which(y >= 1)] = 1
```

dataframe for occurrence df.occ = data.frame(y.occ = as.factor(occ), predictors = x)

```
# RF
rf = randomForest(y.occ \sim ..., df.occ, subset = indtrain)
# RF configuration: no. of trees? no. of predictors considered
at each node?
```

```
# OOB error?
plot(rf$err.rate[, 1], type = "l", xlab = "no. trees", ylab = "OOB
error")
grid()
```



```
# test error?
pred = predict(rf, df.occ[indtest, ])
1 - sum(diag(table(pred, df.occ$y.occ[indtest])))
length(indtest) # error (1-accuracy)
```


Random forest in R <u>Classification problem (rain/no rain)</u>

```
## fitting the optimum number of predictors considered
at each node (mtry)
ntree = which(rf$err.rate[,1] == min(rf$err.rate[,1]))
```

```
# OOB error?
err.oob = c()
for (mtry in 1:17) {
    rf.mtry = randomForest(y.occ ~., df.occ, subset = indtrain,
    ntree = ntree, mtry = mtry)
    err.oob[mtry] = rf.mtry$err.rate[ntree, 1]
}
plot(err.oob, type = "b", xlab = "no. predictors", ylab = "OBB
error")
grid()
```



```
## results for optimum RF
mtry = 3 # optimum value
rf.opt = randomForest(y.occ ~., df.occ, subset = indtrain,
ntree = ntree, mtry = mtry)

# OOB error for optimum RF?
rf.opt
```

```
# test error for optimum RF?
pred = predict(rf.opt, df.occ[indtest, ])
1 - sum(diag(table(pred, df.occ$y.occ[indtest]))) /
length(indtest)
```


Random forest in R Prediction problem (Boston)

```
library(MASS)
n = nrow(Boston)
# train/test partition
indtrain = sample(1:n, round(0.75*n)) # indices for train
indtest = setdiff(1:n, indtrain) # indices for test
```

```
#RF
rf = randomForest(medv ~., Boston , subset = indtrain)
# RF configuration?
```

```
# OOB error?
plot(rf$mse, type = "l", xlab = "no. trees"
vlab = "OOB error"); grid()
```



```
## fitting mtry
ntree = which(rf$mse == min(rf$mse))
# OOB error?
err.oob = c()
for (mtry in 1:13) {
 rf.mtry = randomForest(medv ~., Boston, subset = indtrain,
ntree = ntree, mtry = mtry)
 err.oob[mtry] = rf.mtry$mse[ntree]
# test error?
err.test = c()
for (mtry in 1:13) {
 rf.mtry = randomForest(medv ~., Boston, subset = indtrain,
ntree = ntree, mtry = mtry)
 pred.mtry = predict(rf.mtry, Boston[indtest, ])
 err.test[mtry] = mean((pred.mtry - Boston$medv[indtest])^2)
```


Ensembles: Bagging and boosting

Random forest in R <u>Prediction problem (Boston)</u>


```
## fitting mtry with caret
library(caret)
rf.caret = train(medv ~., Boston, subset =
indtrain,
method = "rf", ntree = ntree,
tuneGrid = expand.grid(mtry = 1:13))
plot(rf.caret)
```


Master Universitario Oficial Data Science

con el apoyo del

Ensembles: Bagging and boosting

Bagging: Random forest

Boosting

We saw that bagging operates in **parallel**. Differently, boosting procedures are **sequential**; i.e., each model run determines which elements the next model will focus on.

The algorithm allocates weights to each resulting model, depending on their individual performance. As in bagging, predictions for a new input data are based on the predictions resulting from the individual models, but taking into account these weights.

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression)

Trees can be plotted graphically, and are easily interpreted

Trees can easily handle qualitative predictors

They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches)
Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the **instability** of the trees can be reduced and their **performance** improved.

Weak learners

Low bias and high variance

High bias and low variance

Ensemble approaches are typically used with CART.

Pros

Trees are very easy to explain (even easier than linear regression)

Trees can be plotted graphically, and are easily interpreted

Trees can easily handle qualitative predictors

They work fine on both classification and regression problems

Cons

Poor prediction accuracy (compared with other approaches)
Instability when changing the train/test partition (cross-validation is key)

By aggregating many trees, the **instability** of the trees can be reduced and their **performance** improved.

Weak learners

Low bias and high variance

High bias and low variance

Boosting

Some boosting techniques include an extra-condition to keep or discard an individual model. For example, in *AdaBoost* (the most popular), an error less than 50% is required to maintain the model; otherwise, the iteration is repeated until achieving a model better than a random guess.

Several alternatives for boosting exist with different ways to determine the weights to use in the next training step and as well as in the final combination stage: *LPBoost, XGBoost, GradientBoost, BrownBoost...*

Ensemble: Boosting Methods

Adaptative Boosting (AdaBoost)

train a weak model and aggregate it to the ensemble model

current ensemble model predicts "blue" class

Step 1: All the observations have the **same weights**

Ensemble: Boosting Methods

Adaptative Boosting (AdaBoost)

train a weak model and aggregate it to the ensemble model

current ensemble model predicts "orange" class

current ensemble model predicts "blue" class

Step 1: All the observations have the **same weights**

- b) Evaluate the weak learner to obtain its coefficient.
- c) Update the strong learner adding the weak learner.
- d) Update the obervations weights

Ensemble: Boosting Methods

Adaptative Boosting (AdaBoost)

update the weights of observations misclassified by

current ensemble model predicts "orange" class

current ensemble model predicts "blue" class

Step 1: All the observations have the **same weights**

Repeat (1:L):

- a) Fit the weak model considering the observations weights.
- b) Evaluate the weak learner to obtain its coefficient.
- c) Update the strong learner adding the weak learner.
- d) Update the obervations weights

Result: A strong learner is obtained as a simple linear combination of weak learners weighted by coefficients expressing the performance of each learner. Variants of this algorithm could be obtained by modifying the loss function (e.g. logit for classification or L2 for regression).

$$s_L(.) = \sum_{l=1}^{L} c_l \times w_l(.) \qquad \text{where } c_l \text{'s are coefficients and } w_l \text{'s are weak learners}$$

$$(c_l, w_l(.)) = \underset{c, w(.)}{\operatorname{arg \, min}} E(s_{l-1}(.) + c \times w(.)) = \underset{c, w(.)}{\operatorname{arg \, min}} \sum_{n=1}^{N} e(y_n, s_{l-1}(x_n) + c \times w(x_n))$$

Boosting (AdaBoost) in R <u>Classification problem (rain/no rain)</u>

install.packages("adabag")
library(adabag)

AdaBoost with 20 trees (mfinal) ab = boosting(y.occ ~., df.occ[indtrain,], mfinal = 20)

train errors as a function of number of trees
plot(errorevol(ab, df.occ[indtrain,]))
grid()

Ensemble error vs number of trees

we can pick and draw individual trees
plot(ab\$trees[[1]])
text(ab\$trees[[1]], pretty = F)

Bagging and boosting

Similarities Differences Both are ensemble methods to get N ... but, while they are built learners from 1 learner... independently for Bagging, Boosting tries to add new models that do well where previous models fail. Both generate several training data ... but only Boosting determines sets by random sampling... weights for the data to tip the scales in favor of the most difficult cases. Both make the final decision by ... but it is an equally weighted averaging the N learners (or taking average for Bagging and a weighted the majority of them)... average for Boosting, more weight to those with better performance on training data. Both are good at reducing variance ... but only Boosting tries to reduce bias. On the other hand, Bagging and provide higher stability... may solve the over-fitting problem, while Boosting can increase it.

simple average

single estimate

weighted average