Prepoznavanje saobraćajnih znakova pomoću CNN

Jana Jovičić, Jovana Pejkić

Prezentacija seminarskog rada u okviru kursa Računarska inteligencija Matematički fakultet

jana.jovicic755@gmail.com, jov4ana@gmail.com

- Cili rada
- Informacije o korišćenom skupu podataka
- 3 Modeli
 - Model 1
 - Model 1 nastavak
 - Model 2
 - Model 2 nastavak
 - Unutrašnja struktura CNN
 - Filtriranje i proširivanje
 - Aktivaciona funkcija

 - Agregacija metodom Maxpool
 - Model 3: AlexNet
 - Model 3: AlexNet nastavak
 - Model 3: AlexNet statistike
 - Model 3: AlexNet statistike nastavak
 - AlexNet i LeNet-5

Cilj rada

- Za bazu podataka kineskih saobracajnih znakova izvršiti što precizniju klasifikaciju
- Implementirati CNN u programskom jeziku Python uz korišćenje Keras biblioteke
- Isprobati nekoliko različitih arhitektura mreže
- Uporediti dobijene rezultate i izvesti zakljlučke

— informacije o konscenom skupu podataka

Informacije o korišćenom skupu podataka

- Baza sadrži 6164 slika saobraćajnih znakova
 - podeljenih u 58 klasa
 - pri čemu trening skup sadrži 4170 slika
 - a test skup 1994 slika
- Zbog nejednakog broja slika (negde 5, negde 400) po klasama, korišćen je deo baze
- Izdvojeno je 10 klasa koje su imale priblizno jednak broj slika
- Dobijen je trening skup od 1693 slika i test skup od 764 slika

Unutrašnja struktura CNN

- Konvolutivni sloj
 - Operacija konvolucije:

$$(f * g)_{ij} = \sum_{k=0}^{p-1} \sum_{l=0}^{q-1} f_{i-k,i-l} * g_{k,l}$$

- Sloj agregacije
 - Maxpooling / Averagepooling
- Potpuno povezani sloj
 - Softmax funkcija
 - Categorical crossentropy

Filtriranje i proširivanje

Filtriranje, proširivanje i korak

- Vrše se na konvolutivnom sloju
- Filtriranje je "ekstraktovanje"karakteristika ulaza (slike)
 - tako što se izvršava operacija konvolucije
- Dimenzija mape nakon filtriranja je manja od dimenzije ulaza
- Vrši se **proširivanje** ulazne matrice
 - nulama / vrednostima koje su već na obodu
- Korak za koliko piksela se filter pomera duž slike

└─ Informacije o korišćenom skupu podataka

∟ Aktivaciona funkcija

- Funkcija kojom se ograničavaju vrednosti izlaza neurona opseg izlaza neurona obično je u intervalu [0,1] ili [-1,1]
- Više vrsta aktivacionih funkcija:
 - **ReLU** (Rectified Linear Unit): f(z) = max(0, z)

tanh:
$$tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

sigmoid: $\sigma(x) = \frac{1}{1 + e^{-x}}$

sigmoid:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Slika: Grafici funkcija: ReLU, tanhai sigmoid 🚛 👢 👢 🔊 🤙 💍

LAgregacija metodom Maxpool

Agregacija metodom Maxpool

- Jedan od metoda koji se koristi na sloju za agregaciju, najzastupljeniji
- Vraća maksimum dela slike prekrivene filterom
- Ideja je da se informacije o slici što više "ukrupne"

ulazna matrica

	١	ď	•	
	,	ч	۱	

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

"max pool" uz pomoć filtera 2x2 i korakom 2

6	8	
3	4	

- Model 1

Model 1

- Jedan od prvih modela koji je imao uspeha nad test podacima
- Sastoji se iz:
 - 4 konvolutivna sloja
 - 2 agregirajuca sloja
 - 2 potpuno povezana sloja
- U svim konvolutivnim slojevima:
 - velicina jezgra je 3x3
 - broj Itera na izlazu iz konvolucije je 32
- U svakom sloju se koristi ReLU aktivaciona funkcija
- Agregacija se vrsi biranjem maksimalne vrednosti dela mape karakteristika koji je prekriven Iterom

Model 1 nastavak

- Funkcijom Dropoup() je iskljucivan odreden broj nasumicno odabranih neurona (da bi se sprecilo preprilagodjavanje)
- Nakon agregacija je iskljuceno 20% neurona, pre FC sloja 50%
- Poslednji potpuno povezani (FC) sloj
 - ima onoliko neurona koliko ima klasa
 - koristi softmax aktivacionu funkciju
- Ucenje modela je sprovedeno u 30 epoha
- Batch size je postavljen na 32
 - sto znaci da u svakoj iteraciji uzima 32 primerka iz trening skupa koja ce biti propagirana kroz mrezu
- Optimizacija modela je izvrsena pomocu gradijentnog spusta

Model 2

Modeli

└ Model 2 nastavak

Model 2 nastavak

└ Modeli

Model 3: AlexNet

Model 3: AlexNet

- AlexNet arhitektura je jedna od prvih dubokih mreža
- Sastoji se iz:
 - 5 konvolutivna sloja
 - 3 potpuno povezana sloja
- Kao aktivaciona funkcija koristi se ReLu

Slika: AlexNet arhitektura

└ Model 3: AlexNet - nastavak

Model 3: AlexNet - nastaval

- Mreža koju smo implementirale svaki izlaz iz konvolutivnog sloja normalizuje pre nego što ga prosledi narednom sloju
- Pre normalizacije (nakon 1., 2. i 5. konv. sloja) agregacija
 sa parametrom padding = 'valid' (nema proširenja)
- Poravnavajući sloj ("ispravlja"mapu karakteristika u vektor)
- 3 Dense sloja + Dropout()
 - Dropout() sprečava preprilagodavanje modela
- Na kraju je izlazni sloj koji preslikava ulaz u zadati broj klasa
 - kao funkciju aktivacije koristi Softmax.

└ Modeli

└─ Model 3: AlexNet - statistike

Model 3: AlexNet - statistike

- Kod AlexNet modela, vreme izvršavanja je oko 10 puta veće za 100 nego za 10 epoha
- Najmanja preciznost za AlexNet model se postiže za funkciju sigmoid, 10 epoha i Batch size 256, a iznosi 0.696
 - to je jedini slučaj da je preciznost ispod 0.71
 - uglavnom su preciznosti u intervalu [0.801, 0.934]
 - ne osciluje mnogo izvan pomenutog intervala
- Prosečna preciznost za 10 epoha je 82%, a za 100 epoha 90%
- Iz ovoga se može zaključiti da je za AlexNet model i dati skup podataka bolje trenirati model u što više epoha
- Ovo potvrduje i činjenica da je u 1000 epoha ovaj model dostigao najveću preciznost od 95% (veću od sva tri modela)

└Modeli

Model 3: AlexNet - statistike - nastavak

Model 3: AlexNet - statistike - nastavak

AlexNet						
Br.	Funkcija	Optimi-	Batch	Preciznost	Vreme iz-	
epoha	aktivacije	zator	size	na test	vrsavanja	
				skupu	(sekunde)	
10	relu	adam	32	0.838	44.356	
10	relu	adam	64	0.848	37.813	
10	relu	adam	256	0.715	33.786	
10	sigmoid	adam	32	0.919	43.755	
10	sigmoid	adam	64	0.845	38.291	
10	sigmoid	adam	256	0.696	36.811	
10	tanh	adam	32	0.801	43.664	
10	tanh	adam	64	0.906	39.264	
10	tanh	adam	256	0.851	34.403	
100	relu	adam	32	0.934	372.984	
100	relu	adam	64	0.934	334.667	
100	relu	adam	256	0.906	295.523	
100	sigmoid	adam	32	0.914	372.971	
100	sigmoid	adam	64	0.914	334.225	
100	sigmoid	adam	256	0.856	292.743	
100	tanh	adam	32	0.879	373.153	
100	tanh	adam	64	0.921	339.918	
100	tanh	adam	256	0.906	296.921	

Slika: Rezultati za AlexNet model za različite vrednosti broja epoha (10 i 100), funkcije aktivacije (relu, tanh i sigmoid) i Batch size (32, 64 i 256)

└Modeli

AlexNet i LeNet-5

AlexNet i LeNet-5

- Primetiti da se vrednosti na y-osi ova dva grafika razlikuju
- To je zato što LeNet-5 daje malu preciznost za f-ju sigmoid
- Maksimalna preciznost AlexNet mreže je 0.94, a LeNet-5 0.9

Slika: Grački prikaz preciznosti za mreže AlexNet i LeNet-5 za 100 epoha, za funkcije sigmoid, tanh i ReLu

Zaključak

Literatura

Ime Prezime pisca (godina)
Ime knjige Mesto, tekst, godina.

Ime Prezime pisca (od-do)

Naziv dela, on-line at: http://adresa.org/.