	Roll No [Total No. of Pages : 4						
	3E1201						
20	B.Tech. III-Sem. (Main & Back) Examination, January/February - 2024						
31	Artifical Intelligence & Data Science						
31	3AID2-01 Advanced Engineering Mathematics						
	AID, CAI, CS, IT, CCS, CDS, CIT, CSD, CSR						

Time: 3 Hours Maximum Marks: 70

Instructions to Candidates:

Attempt all Ten questions from Part-A, Five questions out of seven questions from Part-B and Three questions out of Five questions from Part-C.

Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly. Units of quantities used/Calculated must be stated clearly.

Use of following supporting material is permitted during examination. (Mentioned in form No.205)

PART - A (Answer should be given up to 25 words only)

All questions are compulsory.

 $(10 \times 2 = 20)$

- 1. What is the difference between linear and non linear programming problem.
- **2.** What is optimization Technique? Give example.
- **3.** What is mean, variance and standard Deviation of Uniform Distribution and Exponential Distribution.
- **4.** Fit a straight line of following set of observation

X	1	2	3	4	5
y	2	4	6	8	10

- **5.** What is spearman rank correlation?
- **6.** Write the dual of

Max
$$z = x_1 + 3x_2$$

S.t $3x_1 + 2x_2 \le 6$
 $3x_1 + x_2 = 4$
 $x_1, x_2 \ge 0$.

- 7. Find the maxima and minima of $x_1^3 + x_2^3 + 9x_1^2 + 18x_2^2 + 144$
- **8.** Find all the basic solution of the system.

$$2x + y - z = 2$$
$$3x + 2y + z = 3$$

- **9.** What is difference between skewness and kurtosis.
- 10. Find the optimal assignment for the problem with minimum cost.

	I	II	III	IV
A	5	3	1	8
В	7	9	2	6
C	6	4	5	7
D	5	7	7	6

PART - B

(Analytical/Problem solving questions)

Attempt any Five questions.

 $(5 \times 4 = 20)$

- 1. Define Poisson Distribution. Derive it a limiting case of Binomial distribution Find the mean and Variance also.
- 2. The joint probability mass function of (X, Y) is given by

$$\mathbf{P}_{XY}(x_{i}, y_{j}) = \begin{cases} \lambda x_{i}^{2} y_{j} & i = 1, 2; j = 1, 2, 3 \\ 0 & otherwise \end{cases}$$

- i) Find λ
- ii) Find the marginal probability mass function of x and y.
- 3. Old hens can be bought at Rs 2.00 with young. Ones at Rs 5.00 each. An old hen lays 3 eggs a young one 5 eggs a week. Each egg is sold for 30P. if the expenses incurred on their feeding be Rs 1.00 per hen per week, find how many hens of each kind a person having Rs.80 for investment can purchase to earn maximum profit, if he has accommodation only for 20 hens in his house.
- 4. Optimize $Z = x^2+y^2+z^2$ Subject to $4x+y^2+2z=14$

5. Use simplex method to solve the LP problem

Maximize
$$Z = 4x_1 + 3x_2$$
 Subject to
$$2x_1 + x_2 \le 10$$

$$3x_1 + 2x_2 \le 16$$

$$x_1 x_2 \ge 0.$$

6. Obtain the optimal transportation plan from the following table.

Market					
Plan	$\mathbf{M}_{_{1}}$	\mathbf{M}_2	M_3	M_4	Supply
P_1	4	6	8	13	50
P_2	13	11	10	8	70
P_3	14	4	10	13	30
P ₄	9	11	13	8	50
Demand	25	35	105	20	

7. Calculate the coefficient of correlation and obtain lines of regression for the following data.

X	1	2	3	4	5	6	7	8	9
у	9	8	10	12	11	13	14	16	15

PART - C

(Descriptive/Analytical/Problem Solving/Design questions)

Attempt any Three questions.

 $(3\times10=30)$

- 1. If θ be the acute angle between the two line of regression of variables x and y, show that $\tan \theta = \frac{1-r^2}{r} \frac{\sigma x \sigma y}{\sigma x^2 + \sigma y^2}$ where r, σx , σy have their usual meaning. Explain the significance where r = 0 and $r = \pm 1$
- **2.** A random variable *x* has the following probability distribution:

x	0	1	2	3	4	5	6	7
P(x)	0	k	2k	2k	3k	\mathbf{k}^2	$2k^2$	$7k^2+k$

- i) Find K.
- ii) Evaluate P(x < 6), $P(x \ge 6)$ and P(0 < x < 5)

iii) Find distribution function of x.

iv) Find
$$P\left(\frac{1.5 < x < 4.5}{x > 2}\right)$$

3. Solve the following problem.

Minimize
$$f(x) = x_1^2 + x_2^2 + x_3^2$$

Subject to $g_1(x) = 2x_4 + x_2 - 5 \le 0$
 $g_2(x) = x_2 + x_3 - 2 \le 0$
 $g_3(x) = 1 - x_1 \le 0$
 $g_4(x) = 2 - x_2 \le 0$
 $g_5(x) = -x_3 \le 0$

- **4.** What are the engineering Application of optimization also give various classification of optimization problems.
- 5. Use Two phase simplex method to solve the following LPP

Max
$$z = 5x_1 + 8x_2$$

S.t
$$3x_1 + 2x_2 \ge 3$$

$$x_1 + 4x_2 \ge 4$$

$$x_1 + x_2 \le 5$$

$$x_1, x_2 \geq 0$$

3E1201