Comments on the report

- Structure of a report
 - Introduction of the problem
 - Numerical model and methods
 - Results
 - Conclusion

Some other things

- Results (50%)+Description (20%)+Explanation (30%)
 - Only results without any other things will get 0 point for that problem
- Give labels and description for figures and tables
- Do not miss necessary information of figures or tables
 - Missing 1 item, -1 points

Fig. 4. Time averaged liquid phase axial velocity at H=0.225 m and superficial gas velocity=0.0073 m/s. (\bullet) Experimental data (Bai, 2010) (-) Ishii and Zuber (1979), (\bullet) Schiller and Nauman (1935), (\mathbf{x}) Grace et al. (1976), (\bullet) drag coefficient.

Fig. 22. Contours of instantaneous effective viscosity of liquid at H=0.25 m, (a) RNG (b) RNG BIT (c) EARSM.

Table 2a
The physical properties of fluid used in the series experiments [22] and the simulations in the present study

Series	Experiment				Simulation	
	Viscosity (μ _l) (Pa S)	Density (ρ_1) (kg/m ⁻³)	Surface tension (σ) (N/m)	Mo	$\mu^* (\mu_b/\mu_l)$	$\rho^* (\rho_b/\rho_l)$
S1	0.687	1250	0.063	7.0	2.68×10^{-05}	9.42×10^{-4}
S3	0.242	1230	0.063	0.11	7.61×10^{-05}	9.57×10^{-4}
S5	0.0733	1205	0.064	9.0×10^{-4}	2.51×10^{-4}	9.89×10^{-4}
S 6	0.0422	1190	0.064	1.0×10^{-4}	4.37×10^{-4}	9.77×10^{-4}

Do not forget units

References:

- Basic fluid mechanics: Fluid Mechanics An Introduction to the Theory of Fluid Flows, F. Durst, Springer, 2008
- CFD: Computational Methods for Fluid Dynamics,
 J. Ferziger, M. Peric, Springer, 2002
- Focus on one book, that's enough

Before we start, there is sth. else

Warning about CFD

- CFD is not about:
 - Generating a grid for some structure (CAD)
 - Selecting some unknown model provided by the GUI
 - Running a simulation
 - Producing a colorful three-dimensional plot
 - Believing (and making others believe) the result
- CFD = "Colors for Directors"

understand models & equations assess reliability of a simulation

Now I give you an example

How air-water interact with each other?

- In principle, looks good
- But, just few questions
 - Bubble size?
 - When rupture?
 - How split/merge?
 - **—** ...
- → How to show this result is correct?

Start the simulation on a simpler case

- After simulation, we can calculate
 - Rising velocity
 - Bubble shape

	Simulations
Rising velocity [cm/s]	21.2
Aspective ratio	0.86

- Looks boring?
 - But now we have some numbers

Is this result correct?

- → Everybody believes the experimental results except the one who did it
- → Nobody believes the numerical results except the one who did it

---- (I do not know...)

	Experiments	Simulations
Rising velocity [cm/s]	20.8	21.2
Aspective ratio	0.84	0.86

Remarks

- Before understanding the model, do not start the real simulations directly
- Start from sth. simple and similar
- Show <u>quantitative comparison</u> to the experiments/other valid results
 - Numerical validation (from real physics to correct model)
- Change the parameters for your simulation tasks
 - For computer, it is just a number
 - For experiments, it is another material / facility, etc.
 - Saving time and energy for prediction
- Explain your results from physical points of view
- Needs more experience