

Department of Electronics & Communication Engineering

Embedded Logic Design(ECE270)

Dr. Sumit J Darak

Lab_7: FFT IP Implementation and test bench.

Mohammad Shariq

2020220 10-11-2021

OBJECTIVE:

- AXI Stream Protocol Use
- Floating Point IP usage
- FFT IP Implementation and test bench.

Theory:

The Floating-point IP will be using the AXI Protocols (AXI Stream in particular). Two concepts that will be useful in this Lab are Master-Slave and Valid Ready Signals. In AXI, the transactions take place between Master and Slave, as shown below:

The AXI Master initiates the transactions, and the slave responds to it. Many signals are associated with a transaction out of which the valid and ready signals are useful for this Lab. More information on these signals is covered in the Lab tutorial video.

Observations:

FFT IP Wizard:

CHAN_0_XN_IM_15(63:32) float_single

CHAN_0_XN_RE_15(31:0) float_single

15

<

S_AXIS_CONFIG - TDATA

float_single float_single

float_single

float_single

float_single

CHAN_0_XN_RE_1(31:0)

CHAN_0_XN_IM_2(63:32) CHAN_0_XN_RE_2(31:0)

CHAN_0_XN_IM_3(63:32)

CHAN_0_XN_RE_3(31:0)

CHAN_0_XN_IM_15(63:32) float_single CHAN_0_XN_RE_15(31:0) float_single

2

3

15

<

[1 - 1000]

programme for the functionality of FFT (FastFourier Transform)

Testbench for FFT:

Results for automated testbench of FFT:

Conclusion:

Successfully designed and implemented FFT IP and its Testbench.