NUMERICAL MEASURES

MEASURES OF LOCATION

ARITHMETIC MEAN

Mean/Arithmetic mean

Average value for a variable.

The mean is denoted by \bar{x} .

n =sample size

 x_1 = value of variable x for the first observation

 x_2 = value of variable x for the second observation

 x_n = value of variable x for the nth observation

Sample mean,
$$\bar{x} = \frac{\sum x_i}{n} = \frac{x_1 + x_2 + \cdots + x_n}{n}$$

Table 2.9 - Data on Home Sales in Cincinnati, Ohio, Suburb

• <u>Illustration</u>: Computation of the mean home selling price for the sample of 12 home sales:

Home Sale	Selling Price (\$)
1	138,000
2	254,000
3	186,000
4	257,500
5	108,000
6	254,000
7	138,000
8	298,000
9	199,500
10	208,000
11	142,000
12	456,250

MEDIAN

- Median: Value in the middle when the data are arranged in ascending order.
 - Middle value, for an odd number of observations
 - Average of two middle values, for an even number of observations

MODE

Mode: Value that occurs most frequently in a data set. Consider the class size data:

32 42 46 46 54

Observe - 46 is the only value that occurs more than once.

Mode is 46.

Multimodal data - Data contain at least two modes.

Bimodal data - Data contain exactly two modes.

Calculating the Mean, Median, and Modes for the Home Sales Data using Excel

4	A	В	С	D		Е					
1	Home Sale	Selling Price (\$)									
2	1	138,000		Mean:	=A	VERAGE(B	2:B13)				
3	2	254,000		Median:	=N	AEDIAN(B2:	B13)				
ı	3	186,000		Mode 1:	=N	AODE.MULT	T(B2:B13)				
;	4	257,500		Mode 2:	=N	AODE.MULT	T(B2:B13)				
,	5	108,000									
	6	254,000									
	7	138,000									
	8	298,000									
)	9	199,500			4	A	В	ĺ	C	D	Е
1	10	208,000				II C-1-	C-II! D	: (f)			
2	11	142,000			1	Home Sale	Selling Pr				
3	12	456,250			2	1	138,00			Mean:	
					3	2	254,00			Median:	\$ 203,750.00
					4	3	186,00			Mode 1:	\$ 138,000.00
					5	4	257,50			Mode 2:	\$ 254,000.00
					6	5	108,00				
					7	6	254,00				
					8	7	138,00				
					9	8	298,0				
					10		199,50				
					11	10	208,00				
					12	11	142,00				
					13	12	456,25	50			

Measures of VARIABILITY

RANGE

Range: Found by subtracting the smallest value from the largest value in a data set.

Illustration: Consider the data on home sales in Cincinnati, Ohio, Suburb:

Home Sale	Selling Price (\$)
1	138,000
2	254,000
3	186,000
4	257,500
5	108,000
6	254,000
7	138,000
8	298,000
9	199,500
10	208,000
11	142,000
12	456,250

VARIANCE

Variance: Measure of variability that utilizes all the data.

It is based on the deviation about the mean, which is the difference between the value of each observation (x_i) and the mean.

The deviations about the mean are squared while computing the variance.

Sample variance,
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

Population variance ,
$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

Computation of Deviations and Squared Deviations about the Mean for the Class Size Data

Number of Students in Class (x_i)	Mean Class Size (\overline{x})	Deviation About the Mean $(x_i - \overline{x})$	Squared Deviation About the Mean $(x_i - \overline{x})^2$
46	44	2	4
54 42	44 44	10 -2	100 4
46	44	2	4
32	44	<u>-12</u>	144
		$ \begin{array}{c} 0 \\ \Sigma(x - \overline{x}) \end{array} $	$\sum (x_i - \bar{x})^2$
		$\sum (x_i - \bar{x})$	$\sum (x_i - x)$

Computation of Sample Variance:

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1} = \frac{256}{4} = 64$$

STANDARD DEVIATION; COEFFICIENT OF VARIATION

Standard deviation: Positive square root of the variance Measured in the same units as the original data.

For sample ,
$$s = \sqrt{s^2}$$

For population, $\sigma = \sqrt{\sigma^2}$

Coefficient of variation:

$$\left(\frac{\text{Standard deviation}}{\text{Mean}} \times 100\right)\%$$

Measures the standard deviation relative to the mean.

Expressed as a percentage.

Computation of Coefficient of Variation

Illustration:

Consider the class size data:

46 54 42 46 32

Mean, $\bar{x} = 44$

Standard deviation, s = 8

Coefficient of variation =
$$\left(\frac{8}{44} \times 100\right)\% = 18.2\%$$

Calculating Variability Measures for the Home Sales Data in Excel

4	A	В	C		D			Е		
1	Home Sale	Selling Price (\$)		П						
2	1	138000				Mean:	=AVE	RAGE(B2:B	13)	
3	2	254000		Г		Median:	=MED	IAN(B2:B13	6)	
4	3	186000		Г		Mode 1:	=MOD	E.MULT(B2	2:B13)	
5	4	257500		Г		Mode 2:	=MOD	E.MULT(B2	2:B13)	
6	5	108000								
7	6	254000		Г		Range:	=MAX	(B2:B13)-M	IN(B2:B13)	
8	7	138000			,	Variance:	=VAR	.S(B2:B13)		
9	8	298000			Standard I	Deviation:	=STDI	EV.S(B2:B13	6)	
0	9	199500		Г						
1	10	208000		Co	efficient of V	/ariation:	=E9/E	2		
2	11	142000								
13	12	456250		Г	85th P	ercentile:	=PERG	ENTILE.EX	C(B2:B13,0.8	5)
				1	A	В		C	D	E
				1	Home Sale	Selling Pr	rice (\$)			
				2	1	138,0	000		Mean:	\$ 219,937.5
				3	2	254,0	000		Median:	\$ 203,750.0
				4	3	186,0	000		Mode 1:	\$ 138,000.0
				5	4	257,5	000		Mode 2:	\$ 254,000.0
				6	5	108,0	000			
				7	6	254,0	000		Range:	\$ 348,250.0
				8	7	138,0	000		Variance:	9037501420
				9	8	298,0	000	Standa	rd Deviation:	\$ 95,065.7
				10	9	199,5	000			
				11	10	208,0	000	Coefficient	of Variation:	43.22%
				12	11	142,0	000			
				13	12	456,2	50	85	th Percentile:	\$ 305,912.50

ANALYZING DISTRIBUTIONS

- Percentile: Value of a variable at which a specified (approximate) percentage of observations are below that value.
 - The pth percentile tells us the point in the data where:
 - Approximately p percent of the observations have values less than the pth percentile;
 - Approximately (100 p) percent of the observations have values greater than the pth percentile.

- Steps to calculate the pth percentile:
 - Arrange the data in ascending order (smallest to largest value).
 - Compute $k = (n + 1) \times p$.
 - Divide *k* into its integer component, *i*, and its decimal component, *d*.
 - a. If d = 0, find the kth largest value in the data set. This is the pth percentile.

(contd.)

- b. If d > 0, the percentile is between the values in positions i and i + 1 in the sorted data. To find this percentile, we must interpolate between these two values.
 - i. Calculate the difference between the values in positions i and i+1 in the sorted data set. We define this difference between the two values as m.
 - ii. Multiply this difference by d: $t = m \times d$.
 - iii. To find the *p*th percentile, add *t* to the value in position *i* of the sorted data.

- <u>Illustration</u>: To determine the 85th percentile for the home sales data in Table 2.9.
- 1. Arrange the data in ascending order.
- 108,000 138,000 138,000 142,000 186,000 199,500 208,000 254,000 254,000 257,500 298,000 456,250
- 2. Compute $k = (n + 1) \times p = (12 + 1) \times 0.85 = 11.05$.
- 3. Dividing 11.05 into the integer and decimal components gives us i = 11 and d = 0.05.
 - d > 0, interpolate between the values in the 11th and 12th positions in the sorted data.

- <u>Illustration</u> (contd.): To determine the 85th percentile for the home sales data in Table 2.9.
 - The value in the 11th position is 298,000, and
 - The value in the 12th position is 456,250.
- i. m = 456,250 298,000 = 158,250
- ii. $t = m \times d = 158,250 \times 0.05 = 7912.5$
- iii. pth percentile = 298,000 + 7912.5 = 305,912.5
- \$305,912.50 represents the 85th percentile of the home sales data.

•

QUARTILES

Quartiles:

- When the data is divided into four equal parts:
 - Each part contains approximately 25% of the observations.
 - Division points are referred to as quartiles.
 - Q_1 = first quartile, or 25th percentile
 - Q_2 = second quartile, or 50th percentile (also the median)
 - Q_3 = third quartile, or 75th percentile

Z-SCORE

• z-score:

- Measures the relative location of a value in the data set.
- Helps to determine how far a particular value is from the mean relative to the data set's standard deviation.
- Standardized value
- If x_1, x_2, \ldots, x_n is a sample of n observations
 - $z_i = \frac{x_i \bar{x}}{s}$
 - $z_i = z$ -score for x_i
 - \bar{x} = sample mean
 - s =sample standard deviation

z-Scores for the Class Size Data

Number of Students in Class (x_i)	Deviation About the Mean $(x_i - \bar{x})$	$ \frac{z\text{-Score}}{\left(\frac{x_i - \overline{x}}{s}\right)} $
46	2	2/8 = .25
54	10	10/8 = 1.25
42	-2	-2/8 =25
46	2	2/8 = .25
32	-12	-12/8 = -1.50

- For class size data, $\bar{x} = 44$ and s = 8.
 - For observations with a value > mean, z-score > 0.
 - For observations with a value < mean, z-score < 0.

Calculating z-Scores for the Home Sales Data in Excel

4	A	В			С		
1	Home Sale	Selling Price (\$)	z-	-Scoi	re		
2	1	138000	=STANDARI	DIZE	(B2,\$B\$15,\$B\$16)		
3	2	254000	=STANDARI	DIZE	(B3,\$B\$15,\$B\$16)		
4	3	186000	=STANDARI	DIZE	(B4,\$B\$15,\$B\$16)		
5	4	257500	=STANDARI	DIZE	(B5,\$B\$15,\$B\$16)		
6	5	108000	=STANDARI	DIZE	(B6,\$B\$15,\$B\$16)		
7	6	254000	=STANDARI	DIZE	(B7,\$B\$15,\$B\$16)		
8	7	138000	=STANDARI	DIZE	(B8,\$B\$15,\$B\$16)		
9	8	298000	=STANDARI	DIZE	(B9,\$B\$15,\$B\$16)		
10	9	199500	=STANDARI	DIZE	(B10,\$B\$15,\$B\$16)		
11	10	208000	=STANDARI	DIZE	(B11,\$B\$15,\$B\$16)		
12	11	142000			(B12,\$B\$15,\$B\$16)		
13	12	456250	=STANDARI	DIZE	(B13,\$B\$15,\$B\$16)		
14							
15		=AVERAGE(B2:B1	-/	4	A	В	C
16	Standard Deviation:	=STDEV.S(B2:B13)		1	Home Sale	Selling Price (\$)	z-Score
				-			
				2	1	138,000	-0.862
				3	1 2	138,000 254,000	-0.862 0.358
			-	3 4	1 2 3	138,000 254,000 186,000	-0.862 0.358 -0.357
				3 4 5	1 2 3 4	138,000 254,000 186,000 257,500	-0.862 0.358 -0.357 0.395
				3 4 5 6	1 2 3 4 5	138,000 254,000 186,000 257,500 108,000	-0.862 0.358 -0.357 0.395 -1.177
				3 4 5 6 7	1 2 3 4 5 6	138,000 254,000 186,000 257,500 108,000 254,000	-0.862 0.358 -0.357 0.395 -1.177 0.358
				3 4 5 6 7 8	1 2 3 4 5 6 7	138,000 254,000 186,000 257,500 108,000 254,000 138,000	-0.862 0.358 -0.357 0.395 -1.177 0.358 -0.862
				3 4 5 6 7 8 9	1 2 3 4 5 6 7 8	138,000 254,000 186,000 257,500 108,000 254,000 138,000 298,000	-0.862 0.358 -0.357 0.395 -1.177 0.358 -0.862 0.821
				3 4 5 6 7 8 9	1 2 3 4 5 6 7 8	138,000 254,000 186,000 257,500 108,000 254,000 138,000 298,000 199,500	-0.862 0.358 -0.357 0.395 -1.177 0.358 -0.862 0.821 -0.215
				3 4 5 6 7 8 9 10	1 2 3 4 5 6 7 8 9	138,000 254,000 186,000 257,500 108,000 254,000 138,000 298,000 199,500 208,000	-0.862 0.358 -0.357 0.395 -1.177 0.358 -0.862 0.821 -0.215 -0.126
				3 4 5 6 7 8 9 10 11	1 2 3 4 5 6 7 8 9 10	138,000 254,000 186,000 257,500 108,000 254,000 138,000 298,000 199,500 208,000 142,000	-0.862 0.358 -0.357 0.395 -1.177 0.358 -0.862 0.821 -0.215 -0.126 -0.820
				3 4 5 6 7 8 9 10 11 12 13	1 2 3 4 5 6 7 8 9	138,000 254,000 186,000 257,500 108,000 254,000 138,000 298,000 199,500 208,000	-0.862 0.358 -0.357 0.395 -1.177 0.358 -0.862 0.821 -0.215 -0.126
				3 4 5 6 7 8 9 10 11 12 13	1 2 3 4 5 6 7 8 9 10 11	138,000 254,000 186,000 257,500 108,000 254,000 138,000 298,000 199,500 208,000 142,000 456,250	-0.862 0.358 -0.357 0.395 -1.177 0.358 -0.862 0.821 -0.215 -0.126 -0.820
				3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 3 4 5 6 7 8 9 10	138,000 254,000 186,000 257,500 108,000 254,000 138,000 298,000 199,500 208,000 142,000 456,250 \$\$219,937.50\$	-0.862 0.358 -0.357 0.395 -1.177 0.358 -0.862 0.821 -0.215 -0.126 -0.820

EMPIRICAL RULE

Empirical rule:

- For data having a bell-shaped distribution:
 - Within 1 standard deviation approximately 68% of the data values.
 - Within 2 standard deviations approximately 95% of the data values.
 - Within 3 standard deviations almost all the data values.
- Identifying outliers:
 - Outliers: Extreme values in a data set.
 - It can be identified using standardized values (z-scores).
 - Any data value with a z-score less than -3 or greater than +3 is an outlier.

Bell Curve Chart

