

What are Activation Functions?

- Mathematical functions that determine the output of a neural network
- Connected to each of the neurons and determine if it has to be activated or not based on its value

What are Activation Functions?

- Mathematical functions that determine the output of a neural network
- Connected to each of the neurons and determine if it has to be activated or not based on its value

What are Activation Functions?

What are Activation Functions?

The activation function checks
the value that it receives, and
determines the output of the
neuron accordingly

Why are activation functions useful?

→ the neural network can learn to powerfully solve complex problems (ex. image recognition)

Why are activation functions useful?

Add non-linearities to neural networks

→ the neural network can learn to powerfully solve complex problems (ex. image recognition)

Without an activation function, the output of a neural network would be a linear relationship between the inputs and their weights.

- No input management would take place.
- No non-linearities will be introduced to solve complex problems in analogy with the human brain.

Why are activation functions useful?

▶ Help normalize the ouput of every neuron to a range between 0 & 1 or -1 and 1

Common activation functions:

Binary Step Function

- Threshold-based
 - → If input ≥ threshold, neuron is activated, and the input value is passed as is

Otherwise, the neuron is deactivated, and its output is 0

Common activation functions:

Binary Step Function

Does not introduce non-linearity

Common activation functions:

Linear Activation Function

The output is proportional to the input

Does not introduce non-linearity

Common activation functions:

Sigmoid / Logistic Function

- Output values are between 0 and 1
- → they can be interpreted as probabilities
- Non-linear

$$S(x) = \frac{1}{1 + e^{-x}}$$

Common activation functions:

Sigmoid / Logistic Function

- Computationally expensive
- Vanishing gradients (to be seen later)

Common activation functions:

TanH / Hyperbolic Tangent Function

- Zero-centered
- Output values are between -1 and 1
- Non-linear

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Common activation functions:

TanH / Hyperbolic Tangent Function

- Computationally expensive
- Vanishing gradients (to be seen later)

Common activation functions:

Rectified Linear Unit - ReLU

- Returns 0 if input < 0
- Returns the same value as the input if input > 0
- Computationally efficient → allows the network to converge fast
- Non-linear

Common activation functions:

Rectified Linear Unit - ReLU

The dying ReLU problem:

When the input is ≤ 0 , the network cannot learn

Common activation functions:

Leaky ReLU

- Prevents the dying ReLU problem → has a small positive slope in the negative side so learning can be done
- Computationally efficient
- Non-linear

 $Leaky_ReLU(x) = max(0.1 * x, x)$

Common activation functions:

Leaky ReLU

Inconsistent predictions for negative input values

Common activation functions:

Parametric ReLU (PReLU)

- Its leakage coefficient is a learned parameter
 - → its slope is learnable
- Prevents the dying ReLU problem
- Computationally efficient
- Non-linear

$$PReLU(x) = \begin{cases} x & if \ x > 0 \\ ax & otherwise \end{cases}$$

$$leakage coefficient$$

Common activation functions:

Parametric ReLU (PReLU)

May perform differently in different problems

$$f(x) = \begin{cases} x & if \ x > 0 \\ ax & otherwise \end{cases}$$

Common activation functions:

Softmax

- Able to handle multiple classes (normalizes the output of each class between 0 & 1 → classification probabilities)
- The output probabilities sum to 1
- Non-linear
- Typically used for the output layer

$$Softmax(x) = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$$

Common activation functions:

Softmax

Probabilities $\begin{array}{c}
0.22 \\
0.66 \\
0.12
\end{array}$

Common activation functions:

Softmax

The exponential function makes high values even higher

→ It makes sure that the probability of the most probable class stands out

$$e^0 = 1$$

$$e^2 = 7.4$$

$$e^4 = 54.6$$

Common activation functions:

Softmax

Normalisation without Softmax

Normalisation with Softmax

Common activation functions:

Swish Activation Function

- Discovered by researchers at Google Brain
- Outperforms ReLU for deep networks
- Computationally efficient
- Non-linear

$$Swish(x) = \frac{x}{1 + e^{-x}}$$

What are Feedforward Neural Networks?

- ANNs where the input data flows in the forward direction through the network
- The data does not flow backwards during output generation
- ❖ No cycles or loops exist in this network
- Feedforward Neural Networks support forward propagation

What are Feedforward Neural Networks?

At each neuron, two steps take place:

1. <u>Preactivation</u>: The weighted inputs are summed up

2. <u>Activation</u>: The weighted sum of inputs is passed to

the activation function

What are Feedforward Neural Networks?

At each neuron, two steps take place:

<u>Preactivation</u>: The weighted inputs are summed up

Activation: The weighted sum of inputs is passed to

b Activation $\sum x_i.w_i+b$ **Function** x_3 Preactivation Activation

the activation function

What are Feedforward Neural Networks?

At each neuron, preactivation and activation take place:

What is the difference between classification and regression?

What is the difference between classification and regression?

What is the difference between classification and regression?

Regression

Predicts a quantity based on the learned data, such as :

- House price
- Weight
- Pandemic contamination rate

Cost Functions

What is a cost / loss function?

> The cost function measures the error between the true value and the

predicted value by the trained model

- > It evaluates how well the trained model performs
- ➤ If performance is bad, the cost function yield a high number

What is a cost/loss function?

- > The better the performance, the lower the cost function result
- During training, the cost function result must decrease. Otherwise, this means that our model is not learning!
- Our aim is therefore to MINIMIZE the Cost function

1

Regression Loss:

→ Mean Squared Error :

Performs direct comparisons between the true value and the model's output value

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_{true_i} - y_{predicted_i})^2$$
 n = Total number of data points

2

Classification Losses:

Binary Classification Loss:

Binary classification has 1 output node giving a probability (using the sigmoid activation function)

Probability = 0.5

Classification Losses:

Binary Classification Loss:

If probability $\geq 0.5 \rightarrow$ label 1 ('dog')

If probability $< 0.5 \rightarrow label 0 ('cat')$

Binary classification has 1 output node giving a probability (using the sigmoid activation function)

Probability = 0.5

2

Classification Losses:

Let's review the Natural Logarithm (also known as log to the base e or ln)

Binary Classification Loss:

- As x approaches 0, ln(x) approaches - ∞
- ln(1) = 0

Classification Losses:

Binary Classification Loss: The loss function used for binary classification is the Binary Cross Entropy (BCE)

Note: Binary Cross Entropy Loss is also known as Log Loss

Classification Losses:

Binary Classification Loss:

$$Loss = -log(y_{pred})$$

Used when we need to predict the class with label = 1 ($y_{true} = 1$)

Classification Losses:

Binary Classification Loss:

Ytrue	${\cal Y}_{pred}$
1	0.92
1	0.09

$$Loss = -log(y_{pred})$$

Used when we need to predict the class with label = 1 ($y_{true} = 1$)

For
$$y_{pred} = 0.92$$
 \rightarrow Loss = - log(0.92) = 0.083

For
$$y_{pred} = 0.09$$
 \rightarrow Loss = $-\log(0.09) = 2.41$

Classification Losses:

Binary Classification Loss:

$$Loss = -\log(1 - y_{pred})$$

Used when we need to predict the class with label = 0 ($y_{true} = 0$)

Classification Losses:

Binary Classification Loss:

Ytrue	Ypred
0	0.03
0	0.94

$$Loss = -\log(1 - y_{pred})$$

Used when we need to predict the class with label = 0 ($y_{true} = 0$)

For
$$y_{pred} = 0.03$$
 \rightarrow Loss = $-\log(1 - 0.03) = 0.03$

For
$$y_{pred} = 0.94$$
 \rightarrow Loss = $-\log(1 - 0.94) = 2.81$

2

Classification Losses:

Binary Classification Loss:

The loss function used for binary classification is the **Binary Cross Entropy (BCE)**

The complete mathematical representation of the BCE loss function:

$$Loss = y_{true}(-\log(y_{pred})) + (1 - y_{true})(-\log(1 - y_{pred}))$$

Classification Losses :

The loss function used for multiclass classification is the **Categorical Cross Entropy (CCE)**

Multiclass classification predicts 1 possible class out of several

Classification Losses :

Multiclass Classification Loss:

Multiclass classification predicts 1 possible class out of several

2

Classification Losses:

Multiclass Classification Loss:

Multiclass classification predicts 1 possible class out of several

Adding a sigmoid activation function to every output would give a probability to every class, but the sum of those probabilities would not add up to 1!

→ We use <u>softmax</u> activation function

2

Classification Losses:

Multiclass Classification Loss:

Multiclass classification predicts 1 possible class out of several

Classification Losses :

Multiclass Classification Loss:

Softmax(x) = $\frac{e^{z_i}}{\sum_{j=1}^{k} e^{z_j}}$ $\begin{array}{c} 8.17 \\ \hline 8.17 + 24.53 + 4.48 \\ \hline 24.53 \\ \hline 8.17 + 24.53 + 4.48 \\ \hline 4.48 \\ \hline 8.17 + 24.53 + 4.48 \\ \hline \end{array}$

The loss function used for multiclass classification is the Categorical Cross Entropy (CCE)

$$Loss = \sum_{i=1}^{n} y_{true_i} \left(-\log(y_{pred_i}) \right) + \left(1 - y_{true_i} \right) \left(-\log(1 - y_{pred_i}) \right)$$

2

Classification Losses:

Multilabel Classification Loss:

Multilabel classification can predict several classes at the same time

Example: recognize the fruits in a fruit basket

2

Classification Losses:

Multilabel Classification Loss:

Multilabel classification can predict several classes at the same time

Example: recognize the fruits in a fruit basket

2

Classification Losses:

Multilabel Classification Loss:

- We cannot use softmax because it forces to have one best class
- We add sigmoid to every ouput node to predict the unique probability of each class
- To calculate the loss, we do the same as with multiclass classification: calculate the log loss for every node then sum the losses up