

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice

Rozwiązywanie równań i układów równań nieliniowych Zadanie 5

Maciej Kmąk Informatyka WI AGH, II rok

Część I

Zadanie 1 – Rozwiązywanie równań nieliniowych

1 Treść Zadania

Stosując metodę Newtona oraz metodę siecznych wyznacz pierwiastki równania f(x)=0 w zadanym przedziale [a,b]. Dla metody Newtona wybierz punkty startowe rozpoczynając od wartości końców przedziału, zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych. Odpowiednio dla metody siecznej jeden z końców przedziału stanowić powinien wartość punktu startowego dla metody Newtona, a drugi – początek, a następnie koniec przedziału [a,b]. Porównaj liczbę iteracji dla obu tych metod (dla różnych dokładności ρ), stosując jako kryterium stopu:

- Kryterium przyrostowe: $|x^{(i+1)} x^{(i)}| < \rho$
- Kryterium residualne: $\left| f\left(x^{(i)}\right) \right| < \rho$

1.1 Zadana funkcja

Rozpatrywana funkcja została zdefiniowana wzorem:

$$f(x) = 30xe^{-10} - 30e^{-10x} + \frac{1}{30}$$
 dla $x \in [-0,2, 1,2]$

Jej wykres (wraz z zaznaczonym miejscem zerowym) przedstawiono na rysunku 1:

Rysunek 1: Wykres funkcji f(x) na przedziale [-0,2, 1,2]

Miejsce zerowe funkcji zostało wyznaczone z wysoką precyzją przy użyciu programu **Mathematica 14.2.0 for Microsoft Windows (64-bit)** z dnia *26 grudnia 2024*. Obliczona wartość pierwiastka wynosi:

Wartość ta będzie traktowana jako **rozwiązanie wzorcowe** (referencyjne) w dalszych analizach porównawczych.

2 Dane techniczne

Doświadczenie zostało przeprowadzone na komputerze osobistym o następującej specyfikacji:

- System operacyjny:
 - Windows 11 Pro
- Procesor:
 - 12th Gen Intel(R) Core(TM) i5-1235U, 1.3 GHz
- Środowisko programistyczne:
 - Python 3.12
 - Biblioteki użyte w implementacji:
 - * NumPy operacje numeryczne
 - * Pandas analiza danych i raportowanie wyników
 - * Matplotlib generowanie wykresów
 - * Seaborn estetyczne wizualizacje danych
 - * SymPy symboliczne obliczenia matematyczne (m.in. pochodna funkcji)
 - * matplotlib.colors specjalistyczne koloryzowanie wykresów
 - Konfiguracja środowiska graficznego:
 - * Wyłączono przesunięcia osi: plt.rcParams['axes.formatter.useoffset']

3 Przebieg Doświadczenia

3.1 Opis metod numerycznych

W ramach eksperymentu zastosowano dwie klasyczne metody iteracyjne służące do znajdowania pierwiastków równań nieliniowych: **metodę Newtona** oraz **metodę siecznych**. Dla każdej z nich rozważano dwa warianty kryteriów stopu:

- Kryterium przyrostowe: $|x^{(i+1)} x^{(i)}| < \rho$,
- Kryterium residualne: $|f(x^{(i)})| < \rho$,

gdzie ρ oznacza zadaną dokładność. Testowano wartości dokładności ρ należące do zbioru:

$$\rho \in \left\{10^{-2},\, 10^{-3},\, 10^{-4},\, 10^{-5},\, 10^{-7},\, 10^{-9},\, 10^{-10},\, 10^{-12},\, 10^{-15},\, 10^{-18}\right\}$$

co pozwoliło na obserwację wpływu tego parametru na liczbę iteracji oraz dokładność końcowego rozwiązania.

3.2 Przebieg doświadczenia

Funkcję

$$f(x) = 30xe^{-10} - 30e^{-10x} + \frac{1}{30}$$

rozpatrywano w przedziałe [-0.2, 1.2]. Jej miejsce zerowe zostało wcześniej wyznaczone z dużą precyzją przy użyciu programu Mathematica 14.2.0 for Microsoft Windows (data: 26.12.2024) i wynosi

$$x^* = 0.67750880418023365587...$$

Wartość ta została przyjęta jako rozwiązanie wzorcowe do porównań.

Dla metody Newtona:

- Punkty startowe x_0 generowano co 0.1 w zakresie od -0.2 do 1.2,
- W każdej iteracji wykorzystywano pochodną analityczną funkcji f'(x),
- Zarejestrowano liczbę iteracji oraz błąd bezwzględny względem x^* .

Dla metody siecznych:

- Jeden z punktów startowych był ustalony (na wartość a lub b),
- Drugi punkt zmieniano co 0.1 w zakresie przedziału [a, b],
- Analizowano zachowanie metody w zależności od pary punktów startowych i wartości ρ .

4 Wyniki doświadczenia

4.1 Opis Metody Newtona

4.1.1 Opis eksperymentu

Dla metody Newtona przyjęto punkty startowe x_0 należące do zbioru:

$$x_0 \in \{-0.2, -0.1, 0.0, 0.1, \dots, 1.2\}$$

z krokiem 0.1, w przedziale [-0.2, 1.2]. Dla każdego punktu startowego wyznaczano pierwiastek równania f(x) = 0, przy zastosowaniu dwóch kryteriów stopu:

- Przyrostowe: $|x^{(i+1)} x^{(i)}| < \rho$,
- Residualne: $|f(x^{(i)})| < \rho$,

Dla każdego kryterium testowano wartości:

$$\rho \in \left\{10^{-2},\, 10^{-3},\, 10^{-4},\, 10^{-5},\, 10^{-7},\, 10^{-9},\, 10^{-10},\, 10^{-12},\, 10^{-15},\, 10^{-18}\right\}$$

4.1.2 Liczba iteracji

Wyniki przedstawiono w postaci map cieplnych (heatmap), pokazujących liczbę iteracji potrzebnych do spełnienia warunku stopu. Najmniejszą liczbę iteracji zaobserwowano, gdy x_0 znajdowało się w pobliżu wzorcowego pierwiastka:

$$x^* = 0.67750880418023365587...$$

Liczba iteracji rosła wraz z:

- oddaleniem punktu startowego x_0 od x^* ,
- zmniejszaniem wartości ρ .

4.1.3 Dokładność rozwiązania

Błąd bezwzględny, liczony jako $|x-x^*|$, był najmniejszy dla małych wartości ρ , ale przy ekstremalnie niskich dokładnościach (np. 10^{-15} , 10^{-18}) obserwowano wpływ błędów zaokrągleń, co niekiedy zwiększało ostateczny błąd.

4.2 Wyniki dla Metody Newtona — Kryterium przyrostowe

W tabelach 1a i 1b przedstawiono wyniki działania metody Newtona przy zastosowaniu **kryterium przyrostowego**, tj. warunku:

$$|x^{(i+1)} - x^{(i)}| < \rho$$

Dla każdego punktu startowego $x_0 \in [-0.2, 1.2]$ i każdej wartości dokładności ρ podano:

- wartość przybliżoną pierwiastka x,
- liczbę iteracji (jako indeks dolny).

Tabela 1: Znalezione miejsca zerowe i liczba iteracji dla metody Newtona (kryterium przyrostowe)

(a) Część 1:
$$\rho = 10^{-2} \text{ do } 10^{-7}$$

$\overline{x_0}$	0.01	0.001	0.0001	1e-05	1e-07
-0.2	0.677306298811	0.6775086001_{12}	0.6775088042_{13}	0.6775088042_{13}	0.6775088042_{14}
-0.1	0.6773064439_{10}	0.6775086004_{11}	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{13}
0.0	0.6773068395_9	0.6775086012_{10}	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{12}
0.1	0.6773079173_8	0.6775086033_9	0.6775088042_{10}	0.6775088042_{10}	0.6775088042_{11}
0.2	0.6773108429_{7}	0.6775086091_8	0.6775088042_9	0.6775088042_9	0.6775088042_{10}
0.3	0.6773187076_{6}	0.6775086243_{7}	0.6775088042_8	0.6775088042_8	0.6775088042_9
0.4	0.6773392785_5	0.6775086611_{6}	0.6775088042_{7}	0.6775088042_7	0.6775088042_8
0.5	0.6773887950_4	0.6775087325_5	0.6775088042_6	0.6775088042_6	0.6775088042_{6}
0.6	0.6774765460_3	0.6775087990_4	0.6775087990_4	0.6775088042_5	0.6775088042_5
0.7	0.6774723794_2	0.6775087976_3	0.6775087976_3	0.6775088042_4	0.6775088042_4
0.8	0.6770577406_4	0.6775077924_5	0.6775088042_6	0.6775088042_6	0.6775088042_{7}
0.9	0.6772674263_9	0.6775085142_{10}	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{12}
1.0	0.6775069846_{23}	0.6775069846_{23}	0.6775088042_{24}	0.6775088042_{24}	0.6775088042_{25}
1.1	0.6774015646_{53}	0.6775087469_{54}	0.6775088042_{55}	0.6775088042_{55}	0.6775088042_{55}
1.2	0.6774955344 ₁₀₇	0.6775088033_{108}	0.6775088033_{108}	0.6775088042_{109}	0.6775088042_{109}

(b) Część 2:
$$\rho = 10^{-9} \text{ do } 10^{-18}$$

x_0	le-09	1e-10	1e-12	1e-15	1e-18
-0.2	0.6775088042_{14}	0.6775088042_{14}	0.6775088042_{14}	0.6775088042_{15}	0.6775088042_{16}
-0.1	0.6775088042_{13}	0.6775088042_{13}	0.6775088042_{13}	0.6775088042_{14}	0.6775088042_{14}
0.0	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{13}	0.6775088042_{13}
0.1	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{12}	0.6775088042_{12}
0.2	0.6775088042_{10}	0.6775088042_{10}	0.6775088042_{10}	0.6775088042_{11}	0.6775088042_{11}
0.3	0.6775088042_9	0.6775088042_9	0.6775088042_9	0.6775088042_{10}	0.6775088042_{10}
0.4	0.6775088042_8	0.6775088042_8	0.6775088042_8	0.6775088042_9	0.6775088042_9
0.5	0.67750880427	0.6775088042_{7}	0.6775088042_{7}	0.6775088042_8	0.6775088042_8
0.6	0.6775088042_{6}	0.6775088042_6	0.6775088042_6	0.6775088042_6	0.6775088042_{7}
0.7	0.6775088042_5	0.6775088042_5	0.6775088042_5	0.6775088042_5	0.6775088042_6
0.8	0.67750880427	0.6775088042_{7}	0.6775088042_8	0.6775088042_8	0.6775088042_8
0.9	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{13}	0.6775088042_{13}
1.0	0.6775088042_{25}	0.6775088042_{25}	0.6775088042_{26}	0.6775088042_{26}	0.6775088042_{26}
1.1	0.6775088042_{56}	0.6775088042_{56}	0.6775088042_{56}	0.6775088042_{57}	0.6775088042_{57}
1.2	0.6775088042_{109}	0.6775088042_{110}	0.6775088042_{110}	0.6775088042_{110}	$0.6775088042_{110} \\$

Na podstawie danych w tabeli można zauważyć, że:

- Najszybszą zbieżność uzyskuje się dla punktów startowych w przedziale $x_0 \in [0.5, 0.7],$
- Dla punktu $x_0 = 0.7$, niezależnie od wartości ρ , algorytm zbiega w mniej niż 6 iteracjach,
- Wraz z oddalaniem się x_0 od pierwiastka, liczba iteracji rośnie, osiągając nawet 110 dla $x_0 = 1.2$ i $\rho = 10^{-18}$,
- Dokładność rozwiązania dla większych ρ bywa zadowalająca, ale dopiero wartości $\rho \leq 10^{-7}$ pozwalają uzyskać zbieżność z dokładnością maszynową.

Rysunek 2: Liczba iteracji w metodzie Newtona — kryterium przyrostowe

Na rysunku 2 przedstawiono liczbę iteracji w formie mapy cieplnej uzyskanej dzięki modułowi Seaborn. Obszar minimalnej liczby iteracji (ciemnoniebieski) skupia się wokół wartości $x_0 \in [0.6, 0.7]$, czyli w bezpośrednim sąsiedztwie miejsca zerowego funkcji.

Wraz ze wzrostem odległości punktu startowego od pierwiastka — szczególnie dla $x_0 \in [1.0, 1.2]$ — obserwujemy znaczne pogorszenie szybkości zbieżności. Liczba iteracji wymaganych do spełnienia warunku stopu wzrasta tam gwałtownie i może osiągać nawet około 110 iteracji wszystkich badanych wartości ρ . Zjawisko to jest wynikiem spłaszczania się wykresu funkcji w końcowym fragmencie przedziału.

Ostateczne wnioski potwierdza wykres funkcji (rys. 1), na którym widać, że funkcja jest niemal płaska przy końcu przedziału, co wyjaśnia rosnącą liczbę iteracji i pogarszającą się zbieżność metody dla punktów startowych bliskich 1.2.

Błąd $|x - x^*|$ - Newton - punkt startowy (x₀: -0.2 → 1.2, przyrostowe)

Rysunek 3: Błąd bezwzględny $|x-x^*|$ w metodzie Newtona — kryterium przyrostowe

Na rysunku 3 pokazano błąd względem wzorcowego rozwiązania x^* . Warto zauważyć, że nawet dla większych wartości ρ (np. 10^{-3}), metoda potrafi znaleźć rozwiązanie z błędem rzędu 10^{-7} lub niższym (nawet 10^{-10}), natomiast dla $\rho \leq 10^{-7}$ niemal we wszystkich przypadkach osiągana jest dokładność $< 10^{-15}$.

4.3 Wyniki dla Metody Newtona — Kryterium residualne

W niniejszej części analizujemy skuteczność metody Newtona przy zastosowaniu **kryterium** residualnego, tj. warunku:

$$|f(x^{(i)})| < \rho$$

W tabelach 2a i 2b przedstawiono wyniki działania metody Newtona przy zastosowaniu **kryterium residualnego**, tj. warunku:

$$|f(x^{(i)})| < \rho$$

Dla każdego punktu startowego $x_0 \in [-0.2, 1.2]$ i każdej wartości dokładności ρ podano:

- wartość przybliżoną pierwiastka x,
- liczbę iteracji (jako indeks dolny).

Tabela 2: Znalezione miejsca zerowe i liczba iteracji dla metody Newtona (kryterium residualne)

(a) Część 1:
$$\rho=10^{-2}$$
 do 10^{-7}

x_0	0.01	0.001	0.0001	1e-05	1e-07
-0.2	0.6710644279_{10}	0.6773062988_{11}	0.6773062988_{11}	0.6775086001_{12}	0.6775086001_{12}
-0.1	0.6710667612_9	0.6773064439_{10}	0.6773064439_{10}	0.6775086004_{11}	0.6775086004_{11}
0.0	0.6710731292_8	0.6773068395_9	0.6773068395_9	0.6775086012_{10}	0.6775086012_{10}
0.1	0.6710905063_{7}	0.6773079173_8	0.6773079173_{8}	0.6775086033_9	0.6775086033_9
0.2	0.6711379058_{6}	0.6773108429_{7}	0.6773108429_{7}	0.6775086091_8	0.6775086091_8
0.3	0.6712670558_5	0.6773187076_{6}	0.6773187076_{6}	0.6775086243_{7}	0.6775086243_7
0.4	0.6716178132_4	0.6773392785_5	0.6773392785_5	0.6775086611_{6}	0.6775086611_6
0.5	0.6725598917_3	0.6773887950_4	0.6773887950_4	0.6775087325_5	0.6775087325_5
0.6	0.6539767782_1	0.6749530388_2	0.6774765460_3	0.6775087990_4	0.6775087990_4
0.7	0.7000000000_0	0.6747922784_1	0.6774723794_2	0.6775087976_3	0.6775087976_3
0.8	0.6678403202_3	0.6770577406_4	0.6775077924_5	0.6775077924_5	0.6775088042_6
0.9	0.6704661770_8	0.6772674263_9	0.6772674263_9	0.6775085142_{10}	0.6775085142_{10}
1.0	0.6662825509_{21}	0.6769037439_{22}	0.6775069846_{23}	0.6775069846_{23}	0.6775088042_{24}
1.1	0.6728326750_{52}	0.6774015646_{53}	0.6774015646_{53}	0.6775087469_{54}	0.6775087469_{54}
1.2	$0.6588219588_{105} \\$	$0.6758720718_{106} \\$	$0.6774955344_{107} \\$	$0.6774955344_{107} \\$	$0.6775088033_{108} \\$

(b) Część 2: $\rho = 10^{-9} \text{ do } 10^{-18}$

x_0	1e-09	1e-10	1e-12	1e-15	1e-18
-0.2	0.6775088042_{13}	0.6775088042_{13}	0.6775088042_{13}	0.6775088042_{14}	×>9999
-0.1	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{13}	×>9999
0.0	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{12}	×>9999
0.1	0.6775088042_{10}	0.6775088042_{10}	0.6775088042_{10}	0.6775088042_{11}	×>9999
0.2	0.6775088042_9	0.6775088042_9	0.6775088042_9	0.6775088042_{10}	×>9999
0.3	0.6775088042_8	0.6775088042_{8}	0.6775088042_8	0.6775088042_9	×>9999
0.4	0.6775088042_{7}	0.6775088042_{7}	0.6775088042_{7}	0.6775088042_{8}	×>9999
0.5	0.6775088042_6	0.6775088042_{6}	0.6775088042_6	0.6775088042_{7}	×>9999
0.6	0.6775088042_5	0.6775088042_5	0.6775088042_5	0.6775088042_5	×>9999
0.7	0.6775088042_4	0.6775088042_4	0.6775088042_4	0.6775088042_4	×>9999
0.8	0.6775088042_{6}	0.6775088042_{6}	0.6775088042_{7}	0.6775088042_{7}	×>9999
0.9	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{12}	×>9999
1.0	0.6775088042_{24}	0.6775088042_{24}	0.6775088042_{25}	0.6775088042_{25}	×>9999
1.1	0.6775088042_{55}	0.6775088042_{55}	0.6775088042_{55}	0.6775088042_{56}	×>9999
1.2	$0.6775088033_{108} \\$	$0.6775088042_{109} \\$	$0.6775088042_{109} \\$	$0.6775088042_{109} \\$	$\times_{>9999}$

Wyniki przedstawione zostały także w formie map cieplnych dla liczby iteracji oraz błędu bezwzględnego względem wzorcowego rozwiązania $x^* \approx 0.677509$.

- 100

- 60

(a) Liczba iteracji — kryterium residualne

(≥ 1000 pominiete) -0.2 -0.1 0.0 0.1 0.2 0.3 t startowy x_o 0.5 0.4 punkt s 0.6 0.7 0.8 6.0 1.0 21 22 23 23 24 24 24 25 25 1.1 52 53 53 54 54 55 55 55 56 1.2 108 108 0.01 1e-05 1e-10 1e-12 1e-15 le-18 0.001 0.0001 1e-07 1e-09

Liczba iteracji - Newton - punkt startowy (x_0 : -0.2 \rightarrow 1.2, residualne)

(b) Liczba iteracji (bez wartości ≥ 1000)

Rysunek 4: Liczba iteracji — metoda Newtona z kryterium residualnym

Błąd $|x - x^*|$ - Newton - punkt startowy (x₀: -0.2 → 1.2, residualne)

Rysunek 5: Błąd bezwzględny $|x - x^*|$ — metoda Newtona (kryterium residualne)

Na rysunku 4a pokazano liczbę iteracji potrzebnych do spełnienia warunku $|f(x^{(i)})| < \rho$. Dla większości punktów startowych obserwujemy płynne zmiany liczby iteracji — z wyjątkiem przypadków, gdy $\rho = 10^{-18}$. Dla tej najmniejszej wartości dokładności metoda nie była w stanie osiągnąć zbieżności w zadanym limicie 10^4 iteracji, czego efektem jest pojawienie się wartości granicznych 10000 na wykresie.

Na rysunku 4b przedstawiono mapę cieplną liczby iteracji z pominięciem wartości przekraczających 1000. Dzięki temu wyraźnie widoczna jest struktura zbieżności metody Newtona w całym przedziałe punktów startowych $x_0 \in [-0.2,\ 1.2]$, bez zakłóceń od ekstremalnych przypadków. Widzimy, że w przedziałe $[0.5,\ 0.7]$ uzyskiwane są minimalne liczby iteracji — podobnie jak dla kryterium przyrostowego. Obszar szybkiej zbieżności pokrywa się z tym zaobserwowanym na rysunku 2, co świadczy o spójności zachowania metody niezależnie od przyjętego kryterium zakończenia.

Na rysunku 5 pokazano błędy względem wzorcowego rozwiązania x^* . W porównaniu z kryterium przyrostowym, tutaj zauważalne są większe rozbieżności — szczególnie dla środkowych wartości ρ . Metoda częściej kończy działanie, zanim osiągnie pełną dokładność, ponieważ warunek residualny dopuszcza przypadki, w których f(x) jest bliskie zeru, ale x nadal może być oddalone od rzeczywistego pierwiastka. W konsekwencji obserwujemy znacznie większe wartości błędu $|x-x^*|$, sięgające nawet rzędu 10^{-3} lub wyżej dla niektórych punktów startowych i luźnych wartości ρ .

4.4 Opis Metody Siecznych

4.4.1 Opis eksperymentu

Dla metody siecznych analizowano zachowanie algorytmu w zależności od wyboru dwóch punktów startowych oraz rodzaju kryterium zakończenia. Założono, że:

- Jeden z punktów startowych był stały $x_1 = a$ lub $x_1 = b$,
- Drugi punkt x_0 był zmieniany od -0.2 do 1.2 z krokiem 0.1,
- Dla każdej pary (x_0, x_1) przeprowadzano obliczenia dla różnych wartości dokładności ρ ,
- Sprawdzano dwa typy warunków stopu:
 - **Przyrostowe:** $|x^{(i+1)} x^{(i)}| < \rho$,
 - Residualne: $|f(x^{(i)})| < \rho$,

Testowane wartości dokładności to:

$$\rho \in \left\{10^{-2},\, 10^{-3},\, 10^{-4},\, 10^{-5},\, 10^{-7},\, 10^{-9},\, 10^{-10},\, 10^{-12},\, 10^{-15},\, 10^{-18}\right\}$$

4.4.2 Liczba iteracji i dokładność rozwiązania

Dla każdego przypadku rejestrowano liczbę iteracji oraz uzyskane przybliżenie pierwiastka. Wyniki zaprezentowano w formie:

- tabel z dokładnością rozwiązania i liczbą iteracji (jako indeks dolny),
- map cieplnych z liczbą iteracji,
- wykresów błędów względem wzorcowego rozwiązania.

4.5 Wyniki dla Metody Siecznych — $x_1 = a$, kryterium przyrostowe

W tej części przedstawiono rezultaty działania metody siecznych, w której jeden z punktów startowych był ustalony jako $x_1 = a = -0.2$, natomiast drugi (x_0) zmieniano w zakresie [-0.2, 1.2] z krokiem 0.1. Zastosowano **kryterium przyrostowe**, tzn. warunek:

$$|x^{(i+1)} - x^{(i)}| < \rho$$

W tabelach 3a i 3b przedstawiono wartości przybliżone pierwiastka x oraz odpowiadającą im liczbę iteracji (jako indeks dolny), uzyskane dla różnych par punktów startowych oraz poziomów dokładności ρ .

Tabela 3: Znalezione miejsca zerowe i liczba iteracji dla metody siecznych ($x_1 = a$, kryterium przyrostowe)

(a) Część 1:
$$\rho = 10^{-2}$$
 do 10^{-7}

(x_0, x_1)	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-7}
(-0.2, -0.1)	0.6775074275_{15}	0.6775088033_{16}	0.6775088042_{17}	0.6775088042_{17}	0.677508804218
(-0.2, 0.0)	0.6775064619_{14}	0.6775088021_{15}	0.6775088042_{16}	0.6775088042_{16}	0.6775088042_{17}
(-0.2, 0.1)	0.6775075599_{13}	0.6775088034_{14}	0.6775088042_{15}	0.6775088042_{15}	0.6775088042_{16}
(-0.2, 0.2)	0.2074011537_0	0.6775088041_{13}	0.6775088041_{13}	0.6775088042_{14}	0.6775088042_{15}
(-0.2, 0.3)	0.3033151930_0	0.6775087858_{11}	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{13}
(-0.2, 0.4)	0.4013990158_0	0.6775088037_{10}	0.6775088037_{10}	0.6775088042_{11}	0.6775088042_{12}
(-0.2, 0.5)	0.5005313884_0	0.5005313884_0	0.6775088042_9	0.6775088042_{10}	0.6775088042_{10}
(-0.2, 0.6)	0.6001451708_0	0.6001451708_0	0.6775088042_{7}	0.6775088042_8	0.6775088042_9
(-0.2, 0.7)	0.6999718594_0	0.6999718594_0	0.6999718594_0	0.6775088042_{6}	0.6775088042_{7}
(-0.2, 0.8)	0.7998901077_0	0.7998901077_0	0.6775088042_{10}	0.6775088042_{10}	0.6775088042_{11}
(-0.2, 0.9)	0.8998468778_0	0.8998468778_0	0.6775088042_{29}	0.6775088042_{30}	0.6775088042_{31}
(-0.2, 1.0)	0.9998195532_0	0.9998195532_0	0.9996391357_3	0.9996391357_3	0.9996391357_3
(-0.2, 1.1)	1.0997986691_0	1.0997986691_0	1.0995973768_3	1.0995973768_3	1.0995973768_3
(-0.2, 1.2)	1.1997803220_0	1.1997803220_0	1.1995606830_3	1.1995606830_3	1.1995606830_3

(b) Część 2:
$$\rho = 10^{-9} \text{ do } 10^{-18}$$

(x_0, x_1)	10^{-9}	10^{-10}	10^{-12}	10^{-15}	10^{-18}
(-0.2, -0.1)	0.6775088042_{18}	0.6775088042_{19}	0.6775088042_{19}	0.6775088042_{19}	0.6775088042_{19}
(-0.2, 0.0)	0.6775088042_{18}	0.6775088042_{18}	0.6775088042_{18}	0.6775088042_{18}	0.6775088042_{18}
(-0.2, 0.1)	0.6775088042_{16}	0.6775088042_{17}	0.6775088042_{17}	0.6775088042_{17}	0.6775088042_{17}
(-0.2, 0.2)	0.6775088042_{15}	0.6775088042_{15}	0.6775088042_{16}	0.6775088042_{16}	0.6775088042_{16}
(-0.2, 0.3)	0.6775088042_{14}	0.6775088042_{14}	0.6775088042_{14}	0.6775088042_{15}	0.6775088042_{15}
(-0.2, 0.4)	0.6775088042_{12}	0.6775088042_{13}	0.6775088042_{13}	0.6775088042_{13}	0.6775088042_{13}
(-0.2, 0.5)	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{12}
(-0.2, 0.6)	0.6775088042_9	0.6775088042_9	0.6775088042_{10}	0.6775088042_{10}	0.6775088042_{10}
(-0.2, 0.7)	0.6775088042_{8}	0.6775088042_{8}	0.6775088042_{8}	0.6775088042_9	0.6775088042_9
(-0.2, 0.8)	0.6775088042_{11}	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{12}
(-0.2, 0.9)	0.6775088042_{31}	0.6775088042_{31}	0.6775088042_{32}	0.6775088042_{32}	0.6775088042_{32}
(-0.2, 1.0)	0.6775088042_{650393}	0.6775088042_{650393}	0.6775088042_{650394}	0.6775088042_{650394}	0.6775088042_{650394}
(-0.2, 1.1)	1.0995973768_3	1.0995973768_3	1.0995973768_3	1.0995973768_3	1.0995973768_3
(-0.2, 1.2)	1.1995606830_3	1.1995606830_3	1.1995606830_3	1.1995606830_3	1.1995606830_3

Wyniki zobrazowano także za pomocą map cieplnych, przedstawiających liczbę iteracji oraz błąd bezwzględny względem wzorcowego rozwiązania $x^* \approx 0.677509$.

Liczba iteracji - Sieczne - $x_1 = a$, x_0 : -0.2 \rightarrow 1.2, przyrostowe (\geq 600000 pominięte)

Rysunek 6: Liczba iteracji — metoda siecznych z $x_1 = a$, kryterium przyrostowe

Rysunek 7: Błąd bezwzględny $|x - x^*|$ — metoda siecznych ($x_1 = a$, kryterium przyrostowe)

Na rysunku 6a przedstawiono pełny zakres liczby iteracji. Wartości graniczne 650393–650394 — sytuacja taka występuje dla pary punktów (-0.2,~1.0), przy bardzo małych wartościach $\rho \leq 10^{-9}$.

Dla przejrzystości, na rysunku 6b pominięto wartości większe niż 600000. Umożliwia to dokładniejszą analizę obszaru zbieżności metody.

Warto też zwrócić uwagę na przypadki, w których algorytm kończy się po 0 iteracjach — nie oznacza to, że znaleziono dokładne rozwiązanie, lecz że już pierwszy przyrost $|x^{(1)} - x^{(0)}|$ spełniał warunek $< \rho$. Taka sytuacja ma miejsce m.in. dla pary (-0.2, 0.7) i wartości $\rho = 10^{-2}$, $\rho = 10^{-3}$, gdzie kierunek początkowej siecznej przechodzi wystarczająco blisko rzeczywistego pierwiastka x^* .

Na rysunku 7 pokazano błąd względem wzorcowego rozwiązania. Skalę odwzorowano logarytmicznie, a pola z dokładnym rozwiązaniem oznaczono kolorem szarym. Widzimy, że najlepsze przybliżenia uzyskiwane są nie dla najmniejszych ρ , ale raczej w zakresie 10^{-5} – 10^{-9} , co może być efektem kompromisu między szybkością zbieżności a stabilnością numeryczną.

Warto też zauważyć, że dalsze zmniejszanie ρ niekoniecznie poprawia dokładność — w niektórych przypadkach prowadzi do pogorszenia wyników lub problemów z konwergencją.

4.6 Wyniki dla Metody Siecznych — $x_1 = b$, kryterium przyrostowe

W tej części przedstawiono wyniki działania metody siecznych, gdzie punkt $x_1 = b = 1.2$ był stały, a x_0 zmieniano w zakresie [-0.2, 1.1] z krokiem 0.1. Użyto **kryterium przyrostowego**:

$$|x^{(i+1)} - x^{(i)}| < \rho$$

Wyniki zebrano w tabelach 4a i 4b, w których podano przybliżone miejsca zerowe oraz liczbę iteracji (indeks dolny) dla różnych poziomów dokładności.

Tabela 4: Znalezione miejsca zerowe i liczba iteracji — metoda siecznych ($x_1 = b$, kryterium przyrostowe)

(a)	Część	1:	$\rho =$	10^{-2}	do	10^{-7}
-----	-------	----	----------	-----------	----	-----------

(x_0, x_1)	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-7}
(-0.2, 1.2)	1.1997803220_2	1.1997803220_2	1.1997803220_2	1.1997803220_2	1.1997803220_2
(-0.1, 1.2)	1.1994455131_2	1.1994455131_2	1.1994455131_2	1.1994455131_2	1.1994455131_2
(0.0, 1.2)	1.1986087311_2	1.1986087311_2	1.1986087311_2	1.1986087311_2	1.1986087311_2
(0.1, 1.2)	1.1965335392_2	1.1965335392_2	1.1965335392_2	1.1965335392_2	1.1965335392_2
(0.2, 1.2)	1.1914352668_2	1.1914352668_2	1.1914352668_2	1.1914352668_2	1.1914352668_2
(0.3, 1.2)	1.1790553038_2	1.1790553038_2	1.1790553038_2	1.1790553038_2	1.1790553038_2
(0.4, 1.2)	1.1494403780_2	1.1494403780_2	1.1494403780_2	1.1494403780_2	1.1494403780_2
(0.5, 1.2)	1.0800025369_2	1.0800025369_2	1.0800025369_2	1.0800025369_2	1.0800025369_2
(0.6, 1.2)	0.9217158362_2	0.9217158362_2	0.9217158362_2	0.9217158362_2	0.9217158362_2
(0.7, 1.2)	0.8304758908_4	0.6775088041_{15}	0.6775088041_{15}	0.6775088042_{16}	0.6775088042_{17}
(0.8, 1.2)	1.1995976152_1	1.1995976152_1	1.1991953667_4	1.1991953667_4	1.1991953667_4
(0.9, 1.2)	1.20000000000_1	1.20000000000_1	1.20000000000_1	1.20000000000_1	1.20000000000_1
(1.0, 1.2)	1.20000000000_1	1.20000000000_1	1.20000000000_1	1.20000000000_1	1.20000000000_1
(1.1, 1.2)	1.20000000000_1	1.20000000000_1	1.20000000000_1	1.20000000000_1	1.20000000000_1

(b) Część 2:
$$\rho = 10^{-9} \text{ do } 10^{-18}$$

(x_0, x_1)	10^{-9}	10^{-10}	10^{-12}	10^{-15}	10^{-18}
(-0.2, 1.2)	1.1997803220_2	1.1997803220_2	1.1997803220_2	1.1997803220_2	1.1997803220_2
(-0.1, 1.2)	1.1994455131_2	1.1994455131_2	1.1994455131_2	1.1994455131_2	1.1994455131_2
(0.0, 1.2)	1.1986087311_2	1.1986087311_2	1.1986087311_2	1.1986087311_2	1.1986087311_2
(0.1, 1.2)	1.1965335392_2	1.1965335392_2	1.1965335392_2	1.1965335392_2	1.1965335392_2
(0.2, 1.2)	1.1914352668_2	1.1914352668_2	1.1914352668_2	1.1914352668_2	1.1914352668_2
(0.3, 1.2)	1.1790553038_2	1.1790553038_2	1.1790553038_2	1.1790553038_2	1.1790553038_2
(0.4, 1.2)	1.1494403780_2	1.1494403780_2	1.1494403780_2	1.1494403780_2	1.1494403780_2
(0.5, 1.2)	1.0800025369_2	1.0800025369_2	1.0800025369_2	1.0800025369_2	1.0800025369_2
(0.6, 1.2)	0.9217158362_2	0.9217158362_2	0.6775088042_{74}	0.6775088042_{74}	0.6775088042_{74}
(0.7, 1.2)	0.6775088042_{17}	0.6775088042_{17}	0.6775088042_{18}	0.6775088042_{18}	0.6775088042_{18}
(0.8, 1.2)	1.1991953667_4	1.1991953667_4	1.1991953667_4	1.1991953667_4	1.1991953667_4
(0.9, 1.2)	1.20000000000_4	1.20000000000_4	1.20000000000_4	1.20000000000_4	1.20000000000_4
(1.0, 1.2)	1.20000000000_1	1.20000000000_1	1.20000000000_1	1.20000000000_1	1.20000000000_1
(1.1, 1.2)	1.20000000000_1	1.20000000000_1	1.200000000001	1.200000000001	$1.20000000000_1\\$

Na rysunku 8 przedstawiono liczbę iteracji dla każdej pary (x_0, x_1) . Wartość maksymalna osiąga 74, co jest znacznie niższe niż w przypadku $x_1 = a$.

Rysunek 8: Liczba iteracji — metoda siecznych ($x_1 = b$, kryterium przyrostowe)

Choć liczba iteracji pozostaje niska w większości przypadków, nie świadczy to o sukcesie metody — wręcz przeciwnie, dla niemal wszystkich kombinacji x_0 i ρ metoda kończy działanie szybko, ale bez znalezienia rozwiązania nawet zbliżonego do wzorcowego x^* . Na rysunku 9 wyraźnie widać, że tylko nieliczne konfiguracje — głównie te, dla których liczba iteracji wynosiła 15–18 lub 74 (np. $x_0 \in \{0.6, 0.7\}$) — skutkowały przybliżeniem z błędem rzędu 10^{-15} . Pozostałe przypadki charakteryzują się błędami rzędu 10^{-1} , co wskazuje na zupełną nieadekwatność przyjętego kryterium stopu dla tych par punktów startowych.

Na rysunku 9 pokazano błąd względem wzorcowego rozwiązania $x^* \approx 0.677509$. Mimo małej liczby iteracji, dokładność rozwiązania jest zadowalająca tylko dla przedziału $x_0 \in [0.6, 0.7]$ i odpowiednio małych wartości ρ . W pozostałych przypadkach błędy są bardzo duże, sięgające nawet 0.5.

Rysunek 9: Błąd bezwzględny $|x-x^*|$ — metoda siecznych $(x_1=b, \text{ kryterium przyrostowe})$

Wnioski:

- Algorytm kończy się zazwyczaj po 1–2 iteracjach, co pozornie sugeruje szybką zbieżność, jednak uzyskane rozwiązania są w większości przypadków bardzo niedokładne,
- Dokładność jest akceptowalna jedynie przy $x_0 \in [0.6, 0.7]$, gdzie dla $\rho \le 10^{-9}$ osiągana jest zbieżność do wartości bliskiej wzorcowemu rozwiązaniu $x^* \approx 0.677509$,
- W pozostałych przypadkach, mimo formalnego spełnienia warunku przyrostowego, iteraty mogą być znacznie oddalone od rzeczywistego pierwiastka. Wskazuje to na nieadekwatność kryterium przyrostowego przy złym doborze punktów startowych,
- Zjawisko to wynika z charakteru funkcji jej lokalny kształt może powodować, że sieczna wyznaczona przez x_0 i x_1 prowadzi do punktu pozornie stabilnego względem kolejnych iteracji, ale oddalonego od pierwiastka. W takich przypadkach wartość $|x^{(i+1)}-x^{(i)}|$ może być mała, lecz $|f(x^{(i+1)})|$ pozostaje duże.

4.7 Wyniki dla Metody Siecznych — $x_1 = a$, kryterium residualne

W tej części przedstawiono działanie metody siecznych z ustalonym punktem $x_1 = a = -0.2$ oraz zmiennym x_0 w przedziale [-0.2, 1.2]. Zastosowano **kryterium residualne**, czyli warunek:

$$|f(x^{(i)})| < \rho$$

W tabelach 5a i 5b zestawiono otrzymane miejsca zerowe oraz odpowiadające im liczby iteracji (jako indeks dolny), dla różnych wartości dokładności ρ .

Tabela 5: Znalezione miejsca zerowe i liczba iteracji — metoda siecznych ($x_1 = a$, kryterium residualne)

(a) Część 1:
$$\rho = 10^{-2} \text{ do } 10^{-7}$$

(x_0, x_1)	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-7}
(-0.2, -0.1)	0.6651299011_{12}	0.6753617147_{13}	0.6773795765_{14}	0.6775074275_{15}	0.6775088033_{16}
(-0.2, 0.0)	0.6634343359_{11}	0.6748763683_{12}	0.6773293105_{13}	0.6775064619_{14}	0.6775088021_{15}
(-0.2, 0.1)	0.6654287392_{10}	0.6754432806_{11}	0.6773874106_{12}	0.6775075599_{13}	0.6775088034_{14}
(-0.2, 0.2)	0.6693248678_9	0.6763994331_{10}	0.6774642777_{11}	0.6775085586_{12}	0.6775085586_{12}
(-0.2, 0.3)	0.6579782056_{7}	0.6770966608_9	0.6774998280_{10}	0.6774998280_{10}	0.6775087858_{11}
(-0.2, 0.4)	0.6664204506_{6}	0.6756925459_7	0.6774106222_8	0.6775079189_9	0.6775088037_{10}
(-0.2, 0.5)	0.6573327820_4	0.6770407501_{6}	0.6774975872_{7}	0.6774975872_{7}	0.6775087781_{8}
(-0.2, 0.6)	0.6540939153_2	0.6766626655_4	0.6774770748_{5}	0.6775086707_{6}	0.6775086707_{6}
(-0.2, 0.7)	0.6999718594_0	0.6748028520_2	0.6775130020_4	0.6775130020_4	0.6775087977_5
(-0.2, 0.8)	0.7094395785_4	0.6794666738_{6}	0.6776234637_7	0.6775076824_{8}	0.6775088048_9
(-0.2, 0.9)	0.7012676559_{24}	0.6766863156_{26}	0.6775361457_{27}	0.6775361457_{27}	0.6775089160_{28}
(-0.2, 1.0)	0.6971674146_{650386}	0.6780119053_{650388}	0.6775212932_{650389}	0.6775212932_{650389}	0.6775087729_{650390}
(-0.2, 1.1)	1.0995973768_{5}	1.0995973768_{5}	1.0995973768_{5}	1.0995973768_{5}	1.0995973768_{5}
(-0.2, 1.2)	1.1995606830_5	1.1995606830_5	1.1995606830_5	1.1995606830_5	1.1995606830_5

(b) Część 2: $\rho = 10^{-9} \text{ do } 10^{-18}$

(x_0, x_1)	10^{-9}	10^{-10}	10^{-12}	10^{-15}	10^{-18}
(-0.2, -0.1)	0.6775088033_{16}	0.6775088042_{17}	0.6775088042_{17}	0.6775088042_{18}	0.6775088042_{19}
(-0.2, 0.0)	0.6775088021_{15}	0.6775088042_{16}	0.6775088042_{16}	0.6775088042_{17}	0.6775088042_{18}
(-0.2, 0.1)	0.6775088034_{14}	0.6775088042_{15}	0.6775088042_{15}	0.6775088042_{16}	0.6775088042_{17}
(-0.2, 0.2)	0.6775088041_{13}	0.6775088041_{13}	0.6775088042_{14}	0.6775088042_{14}	0.6775088042_{16}
(-0.2, 0.3)	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{12}	0.6775088042_{13}	0.6775088042_{15}
(-0.2, 0.4)	0.6775088037_{10}	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{11}	0.6775088042_{13}
(-0.2, 0.5)	0.6775088042_9	0.6775088042_9	0.67750880429	0.6775088042_{10}	0.6775088042_{12}
(-0.2, 0.6)	0.6775088042_{7}	0.6775088042_{7}	0.6775088042_8	0.6775088042_{8}	0.6775088042_{10}
(-0.2, 0.7)	0.6775088042_{6}	0.6775088042_{6}	0.6775088042_{6}	0.6775088042_{7}	0.6775088042_9
(-0.2, 0.8)	0.6775088048_9	0.6775088042_{10}	0.6775088042_{10}	0.6775088042_{11}	0.6775088042_{12}
(-0.2, 0.9)	0.6775088042_{29}	0.6775088042_{29}	0.6775088042_{30}	0.6775088042_{30}	0.6775088042_{32}
(-0.2, 1.0)	0.6775088042_{650391}	0.6775088042_{650391}	0.6775088042_{650391}	0.6775088042_{650392}	0.6775088042_{650394}
(-0.2, 1.1)	1.0995973768_{5}	1.0995973768_{5}	1.0995973768_{5}	1.0995973768_{5}	1.0995973768_{5}
(-0.2, 1.2)	1.1995606830_5	1.1995606830_5	1.1995606830_5	1.1995606830_5	1.1995606830_5

Na rysunku 10a zaprezentowano mapę cieplną liczby iteracji. W jednym przypadku (dla $x_0 = 1.0$) liczba iteracji przekroczyła 650000, co znacząco zaburza odczyt mapy.

Liczba iteracji - Sieczne - $x_1 = a$, x_0 : -0.2 \rightarrow 1.2, residualne (\geq 600000 pominięte)

Rysunek 10: Liczba iteracji — metoda siecznych z $x_1 = a$, kryterium residualne

Na rysunku 11 przedstawiono błąd bezwzględny $|x-x^*|$, odwzorowany w skali logarytmicznej. Większość wyników osiąga dokładność rzędu 10^{-15} , jednak istnieją obszary, gdzie błąd przekracza 10^{-1} .

Rysunek 11: Błąd bezwzględny $|x - x^*|$ — metoda siecznych ($x_1 = a$, kryterium residualne)

Z analizy wynika, że:

- Wartości iteracji rosną umiarkowanie, poza przypadkiem $x_0 = 1.0$, gdzie algorytm wykonuje ponad 650000 iteracji dla najmniejszych ρ ,
- Dla $(x_0, x_1) = (-0.2, 0.7)$, liczba iteracji jest wyjątkowo niska (nawet 0–2 iteracje), co wskazuje na bardzo dobrą inicjalizację,
- Najlepszą dokładność uzyskujemy przy $\rho \leq 10^{-15}$, szczególnie dla $x_0 \in [0.5, 0.9]$,
- Dwa przypadki (-0.2, 1.1) i (-0.2, 1.2) mają bardzo duży błąd nawet przy małych ρ , co wskazuje na to, że mimo spełnienia warunku residualnego, iteraty nie były bliskie rzeczywistemu pierwiastkowi x^* ,
- Dodatkowo, dwa pola w macierzy błędów przy $\rho=10^{-12},10^{-15}$ (dla (-0.2,0.2)) wykazują wartość błędu 0.0, co sugeruje "idealne" trafienie w rozwiązanie w warunkach numerycznych.

4.8 Wyniki dla Metody Siecznych — $x_1 = b$, kryterium residualne

W tej części przedstawiono rezultaty działania metody siecznych, w której jeden z punktów startowych był ustalony jako $x_1 = b = 1.2$, natomiast drugi (x_0) zmieniano w zakresie [-0.2, 1.2] z krokiem 0.1. Zastosowano **kryterium residualne**, tzn. warunek:

$$|f(x^{(i)})| < \rho$$

W tabelach 6a i 6b przedstawiono wartości przybliżone pierwiastka x oraz odpowiadającą im liczbę iteracji (jako indeks dolny), uzyskane dla różnych par punktów startowych oraz poziomów dokładności ρ .

Tabela 6: Znalezione miejsca zerowe i liczba iteracji dla metody siecznych ($x_1 = b$, kryterium residualne)

		(a) Częsc 1.	$\rho = 10$ do 10		
(x_0, x_1)	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-7}
(-0.2, 1.2)	1.1997803220_4	1.1997803220_4	1.1997803220_4	1.1997803220_4	1.1997803220_4
(-0.1, 1.2)	1.1994455131_4	1.1994455131_4	1.1994455131_4	1.1994455131_4	1.1994455131_4
(0.0, 1.2)	1.1986087311_4	1.1986087311_4	1.1986087311_4	1.1986087311_4	1.1986087311_4
(0.1, 1.2)	1.1965335392_4	1.1965335392_4	1.1965335392_4	1.1965335392_4	1.1965335392_4
(0.2, 1.2)	1.1914352668_4	1.1914352668_4	1.1914352668_4	1.1914352668_4	1.1914352668_4
(0.3, 1.2)	1.1790553038_4	1.1790553038_4	1.1790553038_4	1.1790553038_4	1.1790553038_4
(0.4, 1.2)	1.1494403780_4	1.1494403780_4	1.1494403780_4	1.1494403780_4	1.1494403780_4
(0.5, 1.2)	1.0800025369_4	1.0800025369_4	1.0800025369_4	1.0800025369_4	1.0800025369_4
(0.6, 1.2)	0.7118225192_{66}	0.6798017343_{68}	0.6776547322_{69}	0.6775071311_{70}	0.6775088054_{71}
(0.7, 1.2)	0.7033734570_{10}	0.6764671171_{12}	0.6775489330_{13}	0.6775090120_{14}	0.6775090120_{14}
(0.8, 1.2)	1.1991953667_6	1.1991953667_6	1.1991953667_6	1.1991953667_6	1.1991953667_6
(0.9, 1.2)	1.20000000000_6	1.20000000000_6	1.20000000000_6	1.20000000000_6	1.2000000000_6
(1.0, 1.2)	1.20000000000_3	1.20000000000_3	1.20000000000_3	1.20000000000_3	1.20000000000_3
(1.1, 1.2)	1.200000000003	1.20000000000_3	1.200000000003	1.20000000000_3	1.200000000003

(a) Część 1:
$$\rho = 10^{-2}$$
 do 10^{-7}

(b)	Część	2:	$\rho =$	10^{-9}	do	10^{-18}
-----	-------	----	----------	-----------	----	------------

(x_0, x_1)	10-9	10^{-10}	10^{-12}	10^{-15}	10^{-18}
(-0.2, 1.2)	1.1997803220_4	1.1997803220_4	1.1997803220_4	1.1997803220_4	1.1997803220_4
(-0.1, 1.2)	1.1994455131_4	1.1994455131_4	1.1994455131_4	1.1994455131_4	1.1994455131_4
(0.0, 1.2)	1.1986087311_4	1.1986087311_4	1.1986087311_4	1.1986087311_4	1.1986087311_4
(0.1, 1.2)	1.1965335392_4	1.1965335392_4	1.1965335392_4	1.1965335392_4	1.1965335392_4
(0.2, 1.2)	1.1914352668_4	1.1914352668_4	1.1914352668_4	1.1914352668_4	1.1914352668_4
(0.3, 1.2)	1.1790553038_4	1.1790553038_4	1.1790553038_4	1.1790553038_4	1.1790553038_4
(0.4, 1.2)	1.1494403780_4	1.1494403780_4	1.1494403780_4	1.1494403780_4	1.1494403780_4
(0.5, 1.2)	1.0800025369_4	1.0800025369_4	1.0800025369_4	1.0800025369_4	1.0800025369_4
(0.6, 1.2)	0.6775088054_{71}	0.6775088042_{72}	0.6775088042_{72}	0.6775088042_{73}	0.6775088042_{74}
(0.7, 1.2)	0.6775088041_{15}	0.6775088041_{15}	0.6775088042_{16}	0.6775088042_{16}	0.6775088042_{18}
(0.8, 1.2)	1.1991953667_6	1.1991953667_6	1.1991953667_6	1.1991953667_6	1.1991953667_6
(0.9, 1.2)	1.20000000000_6	1.2000000000_6	1.20000000000_6	1.2000000000_6	1.2000000000_6
(1.0, 1.2)	1.200000000003	1.200000000003	1.200000000003	1.200000000003	1.200000000003
(1.1, 1.2)	1.20000000000_3	1.20000000000_3	1.20000000000_3	1.200000000003	1.20000000000_3

Na rysunku 12 przedstawiono mapę cieplną liczby iteracji. Choć dla większości par (x_0, x_1) algorytm kończy się po zaledwie kilku krokach (najczęściej 3–4), wyniki te są w praktyce bezwartościowe: odpowiadają one przybliżeniom bardzo odległym od rzeczywistego pierwiastka $x^* \approx 0.677509$. Widzimy, że niemal cała dolna część macierzy zawiera rozwiązania z błędem przekraczającym 0.5 — co oznacza, że mimo spełnienia warunku $|f(x)| < \rho$, punkt ten nie znajduje się w pobliżu miejsca zerowego.

Rysunek 12: Liczba iteracji — metoda siecznych ($x_1 = b$, kryterium residualne)

Dopiero dla par punktów $(x_0, x_1) \in \{(0.6, 1.2), (0.7, 1.2)\}$ oraz bardzo małych wartości ρ (tj. $\leq 10^{-9}$), algorytm rzeczywiście zbliża się do oczekiwanego rozwiązania — czego dowodem są błędy rzędu 10^{-14} – 10^{-16} oraz liczba iteracji przekraczająca 70. Pokazuje to wyraźnie, że dopiero w bezpośrednim sąsiedztwie pierwiastka i przy bardzo precyzyjnych kryteriach można liczyć na poprawne i precyzyjne działanie metody.

Rysunek 13: Błąd bezwzględny $|x - x^*|$ — metoda siecznych ($x_1 = b$, kryterium residualne)

Przyczyną takich trudności jest specyficzny kształt funkcji f(x), przedstawiony na rysunku 1. Funkcja ta charakteryzuje się bardzo płaskim przebiegiem w okolicy zera oraz ekstremalnie stromym spadkiem dla mniejszych x. Oznacza to, że sieczne wyznaczane dla punktów oddalonych od pierwiastka przecinają oś x w miejscach kompletnie niezwiązanych z rzeczywistym rozwiązaniem. Metoda "nie widzi" pierwiastka, bo lokalna informacja z $f(x_0)$ i $f(x_1)$ jest nieadekwatna do geometrii funkcji.

Co więcej, przy bardzo małych wartościach ρ , warunek residualny wymusza dalsze iteracje aż do znalezienia punktu bardzo bliskiego rzeczywistego zera funkcji — ale tylko wtedy, gdy startowe punkty znajdowały się już w jego pobliżu. W przeciwnym razie, nawet setki iteracji nie pozwolą osiągnąć wysokiej dokładności — funkcja nie daje dostatecznej "informacji lokalnej", aby metoda mogła się skutecznie prowadzić ku x^* .

5 Podsumowanie Zagadnienia

5.1 Metoda Newtona — porównanie kryteriów zakończenia

Metoda Newtona okazała się bardzo skuteczna w znajdowaniu pierwiastka równania f(x) = 0. Zarówno przy kryterium przyrostowym, jak i residualnym, uzyskiwano szybkie zbieżności — pod warunkiem odpowiedniego doboru punktu startowego x_0 .

- Kryterium przyrostowe ($|x^{(i+1)} x^{(i)}| < \rho$) dawało bardzo dobre rezultaty już dla umiarkowanych wartości ρ często osiągając błąd $|x x^*|$ rzędu 10^{-10} lub lepszy, przy zaledwie kilku iteracjach. Szczególnie dobrze działało w przedziale $x_0 \in [0.5, 0.7]$.
- Kryterium residualne ($|f(x^{(i)})| < \rho$) było bardziej rygorystyczne: wymagało większej liczby iteracji, ale dawało równie dobre lub nieco lepsze rezultaty. W przypadkach odległych od pierwiastka (np. $x_0 > 1.0$) skuteczność pogarszała się często przekraczano 1000 iteracji.
- **Ogólnie:** obie wersje zbiegały szybko przy dobrym starcie, ale residualne kryterium dawało lepsze gwarancje poprawności, natomiast przyrostowe szybsze zakończenie.

5.2 Metoda siecznych — porównanie konfiguracji i kryteriów

5.2.1 Stały punkt $x_1 = a$

Gdy jeden z punktów był stały i równy $x_1 = a = -0.2$, metoda siecznych dawała mieszane rezultaty:

- Kryterium przyrostowe działało dobrze tylko dla ograniczonego podzbioru punktów x_0 , np. $x_0 \in [0.6, 0.9]$, gdzie osiągano zbieżność w rozsądnej liczbie kroków i z błędem mniejszym niż 10^{-12} . W innych przypadkach zwłaszcza gdy x_0 był blisko 1.0 liczba iteracji rosła gwałtownie do kilkuset tysięcy.
- Kryterium residualne dawało lepsze wyniki dla szerokiego przedziału x_0 , ale i tu pojawiały się wyjątki np. $x_0 = 1.0$, gdzie liczba iteracji przekraczała 650000. Mimo to, w wielu przypadkach błędy były mniejsze niż 10^{-15} .
- Ogólnie: dla $x_1 = a$ metoda siecznych potrafiła osiągnąć wysoką dokładność, ale była bardzo wrażliwa na wybór x_0 .

5.2.2 Stały punkt $x_1 = b$

Konfiguracja z $x_1 = b = 1.2$ okazała się znacznie mniej skuteczna:

- Kryterium przyrostowe kończyło działanie bardzo szybko (zwykle po 1–4 iteracjach), ale niemal zawsze prowadziło do rozwiązania odległego od x^* z błędami rzędu 0.5. Tylko dla $x_0 \in \{0.6, 0.7\}$ i bardzo małych ρ , uzyskano dobre rozwiązania.
- Kryterium residualne było jeszcze bardziej zdradliwe: pomimo spełnienia warunku $|f(x)| < \rho$, końcowy wynik często był zupełnie oderwany od rzeczywistego pierwiastka. Dla niemal wszystkich punktów startowych metoda kończyła się błyskawicznie (3–4 iteracje), ale z błędem $|x x^*| > 0.5$.
- Wyjątek: tylko dla $x_0 = 0.6$ lub 0.7 oraz $\rho \le 10^{-9}$ uzyskano precyzyjne rozwiązania kosztem ponad 70 iteracji.

Komentarz do funkcji

Powodem złego działania metody siecznych (szczególnie w konfiguracji z $x_1 = b$) jest kształt funkcji f(x), pokazany na rysunku 1. Funkcja jest niemal płaska w pobliżu zera i wykazuje stromy spadek dla ujemnych x. Sieczne wyznaczane na podstawie punktów z dalekich krańców przecinają oś x w nieadekwatnych miejscach — metoda "nie widzi" pierwiastka, ponieważ lokalna geometria funkcji nie dostarcza właściwej informacji kierunkowej. W efekcie:

- przyrost może być mały (spełniając warunek),
- residual również może być mały,
- ale sam punkt nadal znajduje się daleko od x^* .

5.3 Porównanie metod: Newtona vs. Siecznych

Porównując skuteczność obu metod:

- Metoda Newtona była zdecydowanie bardziej niezawodna: szybciej zbiegała, wymagała
 mniej iteracji i dawała dokładniejsze rozwiązania szczególnie przy dobrym punkcie
 startowym. Zarówno kryterium przyrostowe, jak i residualne sprawdzały się dobrze.
- Metoda siecznych działała dobrze jedynie lokalnie tj. jeśli punkty startowe znajdowały się w pobliżu pierwiastka. W przeciwnym razie:
 - kryterium przyrostowe mogło być mylące prowadząc do zbyt wczesnego zakończenia,
 - kryterium residualne często było nieskuteczne funkcja f(x) była bliska zeru, mimo że x nadal znajdowało się daleko od x^* ,
 - zbieżność była wolna lub wcale nie następowała.
- W przypadku metody siecznych kluczowe znaczenie miał wybór punktów początkowych. Metoda Newtona była pod tym względem bardziej odporna i efektywna.

Wniosek: jeśli tylko możliwe jest obliczenie pochodnej, metoda Newtona zdecydowanie dominuje. Metoda siecznych może być użyteczna jako alternatywa, ale wymaga ostrożności, szczególnie przy doborze punktów startowych oraz odpowiednich kryteriów zakończenia.

Część II

Zadanie 2 – Rozwiązywanie układu nieliniowego metodą Newtona

1 Treść Zadania

Celem zadania było rozwiązanie układu trzech nieliniowych równań z trzema niewiadomymi metodą Newtona. Spośród dostępnych układów wybrano przypadek (b):

$$\begin{cases} x_1^2 - 4x_2^2 + x_3^3 = 1\\ 2x_1^2 + 4x_2^2 - 3x_3 = 0\\ x_1^2 - 2x_2 + x_3^2 = 1 \end{cases}$$

1.1 Opis metody i zastosowanych kryteriów

Rozwiązanie układu uzyskano za pomocą iteracyjnej metody Newtona przystosowanej do przestrzeni trójwymiarowej. Dla danego przybliżenia $\vec{x}^{(i)}$, kolejne przybliżenie obliczano wg wzoru:

$$\vec{x}^{(i+1)} = \vec{x}^{(i)} - J^{-1}(\vec{x}^{(i)}) \cdot \vec{F}(\vec{x}^{(i)})$$

gdzie:

- $\vec{F}(\vec{x})$ funkcja wektorowa zawierająca lewą stronę układu równań,
- $J(\vec{x})$ macierz Jacobiego, tj. pochodne cząstkowe każdego równania względem każdej zmiennej.

Zastosowano dwa kryteria stopu:

• przyrostowe:

$$\|\vec{x}^{(i+1)} - \vec{x}^{(i)}\| < \varepsilon$$

· residualne:

$$\|\vec{F}(\vec{x}^{(i)})\| < \varepsilon$$

Oba kryteria testowano dla tej samej dokładności: $\varepsilon=10^{-6}$. Dodatkowo zastosowano limit iteracji: 2000.

1.2 Wektory rozwiązań

W wyniku eksperymentu uzyskano cztery różne rozwiązania, do których zbiegała metoda Newtona w zależności od punktu startowego. Dokładne wartości tych rozwiązań zostały potwierdzone symbolicznie przy użyciu narzędzi takich jak Wolfram Mathematica:

- $\vec{x}_1 \approx (-0.918, 0.084, 0.571)$
- $\vec{x}_2 \approx (0.918, 0.084, 0.571)$
- $\vec{x}_3 = (-1.0, 0.5, 1.0)$
- $\vec{x}_4 = (1.0, 0.5, 1.0)$

Rozkład zbieżności do tych czterech rozwiązań został szczegółowo przeanalizowany w kolejnych sekcjach sprawozdania.

2 Dane techniczne

Eksperyment został przeprowadzony na tym samym środowisku co w Zadaniu 1. W szczególności:

- System operacyjny: Windows 11 Pro
- Procesor: 12th Gen Intel(R) Core(TM) i5-1235U, 1.3 GHz
- Python 3.12
- Biblioteki: NumPy, SymPy, Pandas, Matplotlib

3 Przebieg Doświadczenia

Dla każdego punktu startowego $(x_1, x_2, x_3) \in [-2, 2]^3$, generowanego z krokiem 0.4, rozwiązano układ równań metodą Newtona przy zastosowaniu dwóch kryteriów stopu: przyrostowego i residualnego. Siatka punktów została wygenerowana przy użyciu funkcji:

```
generate initial points((-2, 2.1), (-2, 2.1), (-2, 2.1), 0.4)
```

co dało:

- 11 wartości w każdej osi (od -2.0 do 2.0 z krokiem 0.4),
- Łacznie: $11^3 = 1331$ punktów startowych,
- Dla każdego punktu zastosowano dwa kryteria zakończenia: przyrostowe i residualne,
- Łączna liczba prób: $1331 \times 2 = 2662$.

Punkty startowe zawierające wartość 0.0 w którejkolwiek ze współrzędnych nigdy nie prowadziły do zbieżności. Powodem jest osobliwość lub bliska osobliwości macierzy Jacobiego w tych punktach, co powoduje błędy numeryczne i zatrzymanie iteracji.

W przypadku zbieżności przyjęto za rozwiązanie punkt, dla którego spełniony został odpowiedni warunek stopu z dokładnością $\varepsilon=10^{-6}$.

Rozwiązanie	przyrostwe	residualne
(-0.918, 0.084, 0.571)	299	299
(-1.0, 0.5, 1.0)	105	105
(0.918, 0.084, 0.571)	298	298
(1.0, 0.5, 1.0)	106	106
brak zbieżności	523	523

Tabela 1: Liczba punktów startowych zbieżnych do danego rozwiązania

4 Wyniki doświadczenia

Zarejestrowano następujące rozwiązania (wspólne dla obu kryteriów stopu): Zbieżność można było osiągnąć tylko dla ograniczonych obszarów punktów startowych, oddalonych od osi układu współrzędnych. Na rysunku 1 przedstawiono przestrzenny rozkład punktów startowych, które doprowadziły do zbieżności do jednego z czterech rozwiązań.

Rysunek 1: Punkty startowe prowadzące do zbieżnych rozwiązań (wszystkie)

Dla każdego rozwiązania wygenerowano także osobny wykres punktów startowych, prowadzących do konkretnego rozwiązania (rysunki 2–5).

Rysunek 2: Zbieżność do (-0.918, 0.084, 0.571)

przyrost kryterium residual kryterium Rozwiązanie wzorcowe 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 2.0 0.5 0.0 -0.5 A start 1.0 -2.0 -1.5 -1.0

Zbieżność do rozwiązania: (-0.918, 0.084, 0.571)

Rysunek 3: Zbieżność do (0.918, 0.084, 0.571)

1.5

1.0

-1.5

2.0 -2.0

-0.5

0.0 X1 (start)

-2.0

-1.5 -1.0

-0.5

0.0 X1 (start)

przyrost kryterium residual kryterium Rozwiązanie wzorcowe 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 2.0

1.0 0.5

0.5 0.0 -0.5 ptgath

-1.5

2.0 -2.0

Zbieżność do rozwiązania: (-1.0, 0.5, 1.0)

Rysunek 4: Zbieżność do (-1.0, 0.5, 1.0)

1.5

1.0

Zbieżność do rozwiązania: (1.0, 0.5, 1.0) przyrost kryterium residual kryterium Rozwiązanie wzorcowe 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 2.0 1.0 0.5 0.0 -0.5 ptgath 0.5 -2.0 -1.5 -1.0 -0.5 0.0 X1 (start) -1.5 1.0 1.5 2.0 -2.0

Rysunek 5: Zbieżność do (1.0, 0.5, 1.0)

5 Opracowanie danych

5.1 Brak zbieżności dla wektorów zawierających 0.0

Podczas analizy danych empirycznych zauważono, że żaden z punktów startowych, który zawierał wartość 0.0 w którejkolwiek ze współrzędnych (x_1, x_2, x_3) , nie prowadził do zbieżności metody Newtona. Dotyczyło to zarówno kryterium przyrostowego, jak i residualnego.

Przyczyną tego zjawiska jest osobliwość lub bliska osobliwości macierz Jacobiego w takich punktach. W praktyce oznacza to, że:

- pochodne cząstkowe jednej lub więcej równań względem danej zmiennej stają się równe zeru,
- macierz Jacobiego staje się nieodwracalna (ma wyznacznik bliski zeru lub dokładnie równy zeru),
- co uniemożliwia wykonanie kolejnej iteracji metody Newtona (dzielenie przez macierz osobliwa).

Z tego względu wszystkie takie punkty zostały automatycznie odfiltrowane jako brak zbieżności, co potwierdza również wiersz brak zbieżności w tabeli 1.

5.2 Analiza wykresów zbieżności

Wyniki eksperymentu zostały zwizualizowane w postaci trójwymiarowych wykresów punktów startowych, które zbiegały do określonych rozwiązań. Główna mapa zbieżności pokazuje wszystkie punkty, które doprowadziły do zbieżnych rozwiązań — rozróżnione kolorem i oznaczeniem w zależności od zastosowanego kryterium stopu (rysunek 1).

Dla każdego z czterech uzyskanych rozwiązań przedstawiono także oddzielne wykresy punktów startowych prowadzących do konkretnego wektora:

- Rysunek 2 przedstawia zbieżność do rozwiązania (-0.918, 0.084, 0.571). Obszar zbieżności znajduje się głównie w lewej półprzestrzeni względem osi x_1 , z koncentracją wokół dodatnich x_3 .
- Rysunek 3 przedstawia zbieżność do rozwiązania (0.918, 0.084, 0.571), czyli symetrycznego względem osi x_1 . Punkty zbieżne rozkładają się lustrzanie względem tych z poprzedniego przypadku.
- Rysunek 4 pokazuje punkty zbieżne do (-1.0, 0.5, 1.0). Obszar konwergencji skupiony jest w wyższych wartościach x_2 i x_3 , z ograniczonym zakresem dla $x_1 < 0$.
- Rysunek 5 pokazuje punkty zbieżne do $(1.0,\ 0.5,\ 1.0)$ symetrycznego względem x_1 do poprzedniego. Podobnie jak wcześniej, konwergencja zachodzi dla dodatnich x_1 i większych x_3 .

Dzięki analizie tych wykresów można zauważyć, że:

- Zbieżność jest lokalna występuje tylko w pewnych rejonach przestrzeni,
- Każde z rozwiązań ma przypisaną charakterystyczną "strefę przyciągania" (ang. basin of attraction),
- Punkt $\vec{0} = (0, 0, 0)$ oraz jego sąsiedztwo są numerycznie niestabilne

6 Podsumowanie zagadnienia

Zadanie polegało na rozwiązaniu nieliniowego układu trzech równań z trzema niewiadomymi za pomocą metody Newtona w przestrzeni trójwymiarowej. Eksperyment został przeprowadzony w sposób systematyczny — przetestowano 1331 różnych punktów startowych z przestrzeni $[-2, 2]^3$ (z krokiem 0.4) oraz zastosowano dwa niezależne kryteria stopu: przyrostowe oraz residualne.

Liczba i charakter uzyskanych rozwiązań

Metoda Newtona wykazała skuteczność w odnalezieniu dokładnie czterech rozwiązań układu. Co istotne:

- Rozwiązania te występują parami symetrycznymi względem osi x_1 , co wynika ze struktury układu równań głównie z kwadratów i symetrii nieliniowej.
- Wektory rozwiązań są stabilne numerycznie i powtarzalne dla wielu różnych punktów początkowych w ich sąsiedztwie.
- Do każdego z rozwiązań prowadziła zbliżona liczba punktów startowych, co świadczy o porównywalnej "atrakcyjności" stref zbieżności (basin of attraction).

Wpływ punktów początkowych

Najważniejszym czynnikiem determinującym sukces metody był wybór punktu początkowego:

- Punkty startowe zawierające współrzędną 0.0 nie prowadziły do żadnego rozwiązania.
 Wynika to z faktu, że macierz Jacobiego w takich punktach przyjmuje postać osobliwą (lub bliską osobliwości), co uniemożliwia wykonanie poprawnej iteracji.
- Obszary zbieżności były ściśle ograniczone metoda Newtona nie gwarantuje zbieżności globalnej, lecz działa skutecznie tylko lokalnie, w odpowiednio dobranym sąsiedztwie rozwiązania.
- Największe skupiska punktów zbieżnych występowały wokół $x_1 \in \{-1.0, 1.0\}, x_2 \approx 0.5$ oraz $x_3 \approx 1.0$, co potwierdziły wszystkie wykresy przestrzenne.

Porównanie kryteriów stopu

Zarówno kryterium przyrostowe ($\|\vec{x}^{(i+1)} - \vec{x}^{(i)}\| < \varepsilon$) jak i residualne ($\|\vec{F}(\vec{x}^{(i)})\| < \varepsilon$) dawały bardzo zbliżone wyniki:

- Każde z kryteriów dobrze identyfikowało osiągnięcie punktu równowagi numerycznej nie było przypadków błędnej zbieżności,
- W przypadku bliskości osobliwości macierzy Jacobiego, oba kryteria były równie bezradne
 metoda nie podejmowała iteracji lub przerywała je z powodu błędu numerycznego.

W przeprowadzonym eksperymencie **nie stwierdzono żadnych różnic między kryteriami stopu** — oba prowadziły do identycznych rozwiązań.

Ocena metody Newtona

Metoda Newtona potwierdziła swoją wysoką efektywność w rozwiązywaniu układów nieliniowych, pod warunkiem:

- poprawnego doboru punktu startowego,
- zapewnienia odwracalności macierzy Jacobiego w każdej iteracji,
- zastosowania rozsądnego limitu iteracji i dokładności numerycznej.

W badanym przypadku udało się zidentyfikować cztery stabilne rozwiązania i przypisać im konkretne obszary przestrzeni startowej. Oznacza to, że dla danego układu można nie tylko znaleźć rozwiązania, ale także oszacować "atrakcyjność" danego punktu startowego względem konkretnego rozwiązania — co jest bardzo przydatne w dalszych analizach trajektorii zbieżności czy identyfikacji układów z wieloma minimami lokalnymi.

Wnioski końcowe

- W przestrzeni trójwymiarowej metoda Newtona ujawnia ciekawe struktury lokalnych obszarów zbieżności, które można analizować geometrycznie i topologicznie.
- Kluczowym ograniczeniem tej metody jest jej wrażliwość na osobliwość Jacobiego oraz silna zależność od punktu początkowego.
- Uzyskane wyniki mogą stanowić punkt wyjścia do dalszych badań nad modyfikacjami metody Newtona (np. z tłumieniem, regularizacją).