Average Variance

J. Poland

Low-Risk Anomaly

Data

Variance Decomposition

Conclusions

Don't Throw out the Return with the Risk: Average Variance Portfolio Management

Jeramia Poland

Indian School of Business

March 26, 2018

Low-Risk Anomaly

Data

Variance De composition

Conclusion

Equity Premium

A Puzzle

- Equity Premium more risk, more reward
- Markowitz (1952) formal portfolio variance, return optimization
- Haugen 1972 low risk portfolios out perform
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying
- Pollet and Wilson (2010) decompose quarterly variance of market portfolio - avg cor and avg var

J. Poland

Low-Risk Anomaly

Data

Variance De composition

Conclusion

Average Variance

	Strategy RET		Sharpe Sortino		Карра	UpsidePotential	Rachev
1	ВН	6.047	0.327	0.458	0.084	0.579	0.841
2	SV	8.947	0.483	0.758	0.138	0.651	1.156***
3	AV	9.966	0.538***	0.807***	0.155***	0.704***	0.972

Data

Variance Decomposition

Conclusion:

Data

CRSP daily returns

- NYSE daily return (1926-2017)
- NYSE-AMEX daily returns (1962-2017)
- NASDAQ daily returns (1974-2017)

Market Variance

$$SV_{t} = \sum_{n=1}^{N} \sum_{m=1}^{N} w_{t}^{n} w_{t}^{m} \sigma_{n,t}^{2} \sigma_{m,t}^{2} \rho_{t}^{n,m}$$
 (1)

$$SV_{t} = \sum_{n=1}^{N} w_{t}^{n} \sigma_{n,t}^{2} \times \sum_{n=1}^{N} \sum_{m \neq n}^{N} w_{t}^{n} w_{t}^{m} \rho_{t}^{n,m}$$
 (2)

$$AV_t = \sum_{n=1}^N w_t^n \sigma_{n,t}^2 \tag{3}$$

$$AC_{t} = \sum_{n=1}^{N} \sum_{m \neq n}^{N} w_{t}^{n} w_{t}^{m} \rho_{t}^{n,m}$$
(4)

(5)

Data

Variance Decomposition

Conclusions

Summary Stats

Pollet and Wilson Sample 1963Q1:2006Q4

Statistic	N	Mean	St. Dev.	Min	Max	Autocorrelation
RET	176	1.163	8.369	-30.072	19.956	0.000
AC	176	0.230	0.090	0.034	0.648	0.572
AV	176	2.218	1.828	0.634	12.044	0.696
SV	176	0.483	0.616	0.029	6.397	0.311

Monthly 1926M8:2017M12

N	Mean	St. Dev.	Min	Max	Autocorrelation
1,096	0.504	5.346	-34.553	33.258	0.106
1,097	0.275	0.134	0.019	0.762	0.609
1,097	0.875	1.276	0.154	19.540	0.718
1,097	0.246	0.500	0.006	5.808	0.613
	1,096 1,097 1,097	1,096 0.504 1,097 0.275 1,097 0.875	1,096 0.504 5.346 1,097 0.275 0.134 1,097 0.875 1.276	1,096 0.504 5.346 -34.553 1,097 0.275 0.134 0.019 1,097 0.875 1.276 0.154	1,096 0.504 5.346 -34.553 33.258 1,097 0.275 0.134 0.019 0.762 1,097 0.875 1.276 0.154 19.540

J. Poland

Low-Risk Anomaly

Data

Variance Decomposition

Conclusions

Time Series

Monthly Measures of Daily Return Statistics

Low-Risk Anomaly

Data

Variance De composition

Conclusions

Conclusions

 There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient. Data

Variance Decomposition

Conclusions

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.
- For any sample of observed individual returns there is an infinite number of ex-post mean-variance efficient portfolios.

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.
- For any sample of observed individual returns there is an infinite number of ex-post mean-variance efficient portfolios.
- The theory is not testable without correct specification of the true market portfolio of all assets.

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.
- For any sample of observed individual returns there is an infinite number of ex-post mean-variance efficient portfolios.
- The theory is not testable without correct specification of the true market portfolio of all assets.
- Testing market proxies gives no insight into the falsity of the theory.

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.
- For any sample of observed individual returns there is an infinite number of ex-post mean-variance efficient portfolios.
- The theory is not testable without correct specification of the true market portfolio of all assets.
- Testing market proxies gives no insight into the falsity of the theory.
- The results of BJS, FM, BF and others are consistent with the S-L theory.