Byzantine-resilient distributed learning under constraints

Dongsheng Ding

a joint work with Xiaohan Wei, Hao Yu, Mihailo Jovanović

2021 American Control Conference

Motivating application

FEDERATED LEARNING

A. Worker machine B. Master machine C. Shared model

Google AI, Blog '17

Byzantine fault

• FAULT SOURCES

- * Machine failures
- * Communication errors
- * Malicious users

Byzantine failure model

STOCHASTIC LEARNING PROBLEM WITH CONSTRAINTS

$$\begin{array}{ll}
\text{minimize} & F(w) := \mathbb{E}_{z \sim \mathcal{D}} \left(f(w; z) \right) \\
\text{subject to} & g_j(w) \leq 0, \ j = 1, \dots, k.
\end{array}$$

Byzantine failure model

STOCHASTIC LEARNING PROBLEM WITH CONSTRAINTS

$$\begin{array}{ll}
\text{minimize} & F(w) := \mathbb{E}_{z \sim \mathcal{D}} \left(f(w; z) \right) \\
\text{subject to} & g_j(w) \leq 0, \ j = 1, \dots, k.
\end{array}$$

1 master and m workers

- $\star g_i$ deterministic constraints
- $\star z_t^i \sim \mathcal{D}, i \in \{1, \dots, m\}$

Byzantine failure model

STOCHASTIC LEARNING PROBLEM WITH CONSTRAINTS

$$\begin{array}{ll}
\text{minimize} & F(w) := \mathbb{E}_{z \sim \mathcal{D}} \left(f(w; z) \right) \\
\text{subject to} & g_j(w) \leq 0, \ j = 1, \dots, k.
\end{array}$$

1 master and m workers

- $\star g_i$ deterministic constraints
- $\star z_t^i \sim \mathcal{D}, i \in \{1, \ldots, m\}$

m gradients at time t

$$abla_t^i := \left\{ egin{array}{ll}
abla f(w_t; z_t^i) & ext{normal machine} \ & ext{arbitrary} & ext{Byzantine machine} \end{array}
ight.$$

Example

CONSTRAINED LINEAR REGRESSION

$$f(w;z) = \frac{1}{2} (x^T w - y)^2$$

$$g_j(w) = A_j w - b_j, j = 1, ..., k.$$

$$\star z := (x,y)$$
 – data from distribution \mathcal{D}

 $\star g_j(w) \leq 0$ — constraints, e.g., smooth spline fitting

Adding Byzantine resilience to primal-dual methods

Identification of "good" workers

- MEDIAN AGGREGATION
 - * robust to outliers

sequence			mean	median
1, 2,	3, 6 ,	7, 8, 10	5.3	6
$10^{-3}, 2, 3$	3, 6 ,	$7, 8, 10^3$	145.6	6

⋆ breakdown point 50%

Bregman divergence

$$D(x,y) := \phi(x) - \phi(y) - \nabla \phi(y)^{T}(x - y)$$

 $\star \phi$ - differentiable, 1-strongly convex w.r.t. $\|\cdot\|$

EXAMPLES

$$\star \phi(x) = \frac{1}{2} \|x\|_2^2$$

$$D(x,y) = \frac{1}{2} ||x - y||_2^2$$

$$\star \phi(x) = \sum_{i} x(i) \log x(i)$$

strongly convex w.r.t. $\|\cdot\|_1$

strongly convex w.r.t. $\|\cdot\|_2$

$$D(x,y) = \sum_{i} x(i) \log \frac{x(i)}{y(i)}$$
 KL divergence

Bubeck, Found. Trends Mach. Learn. '15

Byzantine primal-dual method

BYZANTINE PRIMAL MIRROR DESCENT

$$w_{t+1} := \underset{w \in \mathcal{W}}{\operatorname{argmin}} \left\langle \xi_t + \sum_{j=1}^k (q_{j,t+1} + g_j(w_t)) \nabla g_j(w_t), w - w_t \right\rangle + \eta_t D(w, w_t)$$

Byzantine primal-dual method

BYZANTINE PRIMAL MIRROR DESCENT

$$w_{t+1} := \underset{w \in \mathcal{W}}{\operatorname{argmin}} \left\langle \xi_t + \sum_{j=1}^k (q_{j,t+1} + g_j(w_t)) \nabla g_j(w_t), w - w_t \right\rangle + \eta_t D(w, w_t)$$

 \star ξ_t - stochastic estimate of the gradient $\nabla F(w_t)$

$${m \xi_t} = rac{1}{m} \sum_{i=0}^{\infty} {
abla_t^i}, \quad {\Omega_t} - {
m set} \ {
m of "good" workers}$$

Byzantine primal-dual method

BYZANTINE PRIMAL MIRROR DESCENT

$$w_{t+1} := \underset{w \in \mathcal{W}}{\operatorname{argmin}} \left\langle \xi_{t} + \sum_{j=1}^{k} (q_{j,t+1} + g_{j}(w_{t})) \nabla g_{j}(w_{t}), w - w_{t} \right\rangle + \eta_{t} D(w, w_{t})$$

 \star ξ_t — stochastic estimate of the gradient $\nabla F(w_t)$

$$\xi_t = \frac{1}{m} \sum_{i \in \Omega_t} \nabla_t^i, \quad \Omega_t - \text{set of "good" workers}$$

DUAL UPDATE

$$q_{i,t+2} = \max(-g_i(w_{t+1}), q_{i,t+1} + g_i(w_{t+1}))$$

IMPORTANT QUANTITIES

*
$$\nabla_t^1, \dots, \nabla_t^m$$
 - gradients (normal or Byzantine)

 $\star A_t^1, \dots, A_t^m$ – gradient related values

$$A_t^i := \sum_{\tau=1}^t \left\langle \nabla_{\tau}^i, w_{\tau} - w_1 \right\rangle$$

 $\star B_t^1, \ldots, B_t^m$ – accumulated gradients

$$B_t^i := \sum_{\tau=1}^t \nabla_{\tau}^i$$

used to update the set of "good" workers

Ding, Wei, Jovanović. CDC '19 Alistarh, Allen-Zhu, Li, NeurIPS '18

• Update the set of 'Good' workers

$$\Omega_t \leftarrow i \in \Omega_{t-1}$$
 satisfies

$$\begin{cases} |A_t^i - A_{\mathsf{med}}| \leq I_A \\ \|B_t^i - B_{\mathsf{med}}\|_* \leq I_B \\ \|\nabla_t^i - \nabla_{\mathsf{med}}\|_* \leq 4C \end{cases} \qquad \qquad \Omega_0 = \{1, \dots, m\} \\ \|\nabla_t^i - \nabla_t\|_* \leq C \\ I_A = 4WC\Delta\sqrt{2T} \\ I_B = 4C\Delta\sqrt{2T} \end{cases}$$

Ding, Wei, Jovanović. CDC '19

 $\Delta = \Theta\left(\sqrt{\log \frac{mT}{\delta}}\right)$

Convergence result

OPTIMALITY GAP

$$F(\bar{w}) - F(w^*) \leq \tilde{O}\left(\frac{1}{T} + \frac{1}{\sqrt{mT}} + \frac{\alpha}{\sqrt{T}}\right)$$
 w.h.p.

CONSTRAINT VIOLATION

$$g_j(\bar{w}) \leq \tilde{O}\left(\frac{1}{T} + \frac{1}{\sqrt{mT}} + \frac{\alpha}{\sqrt{T}}\right)$$
 w.h.p.

$$\begin{array}{ccc} \alpha \in [\,0,\,0.5\,)\\ \bar{w} &= \frac{1}{T}\sum_{t=0}^{T-1}w_t\\ F,\,g\,-\,\text{convex and smooth} \end{array}$$

Convergence result

OPTIMALITY GAP

$$F(\bar{w}) - F(w^*) \leq \tilde{O}\left(\frac{1}{T} + \frac{1}{\sqrt{mT}} + \frac{\alpha}{\sqrt{T}}\right)$$
 w.h.p.

CONSTRAINT VIOLATION

$$g_j(\bar{w}) \leq \tilde{O}\left(\frac{1}{T} + \frac{1}{\sqrt{mT}} + \frac{\alpha}{\sqrt{T}}\right)$$
 w.h.p.

$$\alpha \in [0, 0.5)$$

$$\bar{w} = \frac{1}{T} \sum_{t=0}^{T-1} w_t$$
 F, q — convex and smooth

matches the rate of $\left\{ egin{array}{ll} \mbox{Byzantine MD \& SGD}, & \alpha \neq 0 \\ \mbox{batch SGD}, & \alpha = 0 \end{array} \right.$

Summary

- RESULTS
 - * Byzantine primal-dual method
 - * Optimal rate
- ONGOING EFFORT
 - * Nonsmooth optimization problems
 - * Byzantine constraints

Thank you!