BEST AVAILABLE COPY

KOREAN PATENT ABSTRACTS

(11)Publication number:

1020020076561 A (43)Date of publication of application: 11.10.2002

(21)Application number: (22) Date of filing:

1020010016514 29.03.2001

(71)Applicant:

HAN MI PHARM. IND. CO.,

(72) Inventor:

KIM, NAM DU LEE, GWAN SUN LEE, GYEONG IK

(51)Int. CI

C07D 211 /84

(54) NOVEL AMLODIPINE CAMSYLATE SALT AND PREPARATION THEREOF

(57) Abstract:

PURPOSE: Provided is a preparation method of novel amlodipine camsylate salt, represented by the formula(1), which is less toxic and pharmaceutically more stable than the existing amlodipine acid salts. The compound is used in a drug composition for the treatment of cardiovascular diseases. The product synthesized by the method has excellent physico-chemical properties in solubility, and stability while it is non-absorbent and has good tablet adherence. CONSTITUTION: The synthetic method comprises the steps of: dissolving amlodipine alkali salt in methanol and cooling to 10degC.; dissolving either (1S)-(+)-camphorsulfonic acid, (1R)-(-)-10 camphorsulfonic acid or (±:)-10-camphorsulfonic acid into methanol and adding to

CO,CH,CH, • 캠프 성운신

the above solution slowly; stirring the mixture for 2 hours at room temperature and filtering the produced solids; washing with methanol and drying to obtain white solids as the product.

copyright KIPO 2003

Legal Status

Date of request for an examination (20010329) Notification date of refusal decision (00000000) Final disposal of an application (registration) Date of final disposal of an application (20040713) Patent registration number (1004524910000) Date of registration (20041001) Number of opposition against the grant of a patent () Date of opposition against the grant of a patent (00000000) Number of trial against decision to refuse ()

Date of requesting trial against decision to refuse ()

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) . Int. C1. 7 C07D 211/84

(11) 공개번호 특2002 - 0076561

(43) 공개일자 2002년10월11일

(21) 출원번호 (22) 출원일자 10 - 2001 - 0016514

2001년03월29일

(71) 출원인

한미약품공업 주식회사

경기 화성군 팔탄면 하저리 893 - 5

(72) 발명자

문영호

경기도수원시판담구영통통화골마옥주곳아파트146-1203

김남두

경기도오산시수청동531 - 1번지202

이경익

인천광역시남동구간석1동543 - 136/2 이관순

서울특별시송파구가락동극동아파트2 - 806

우종수

경기도수원시장안구정자동백설마음현대아파트598 - 1302

(74) 대리인

이혀실 장성구

실사성구 : 영류

(54) 신규한 암로디핀 캠실레이트 염 및 그의 제조방법

Bot

본 발명은 신규한 암로디핀 캠실레이트 (amlodipine camsylate) 염 및 그의 제조방법에 관한 것으로, 구체적으로 암 로디핀을 (1S) - (+) - 10 - 캠포 설폰산 (champorsulphonic acid), (1R) - (-) - 10 - 캠포 설폰산 또는 (±) - 10 - 캠 포 설폰산과 반응시켜 제조한 용해도, 안정성, 비흡습성 및 정제 부착성 등의 물리화학적 성질이 우수한 결정성 산부가 염인 화학식 1의 신규한 암로디핀 캠실레이트 염 및 그의 제조방법에 관한 것이다. 본 발명의 제조방법에 의한 암로디 핀 캠실레이트 염은 기존의 암로디핀 산부가염에 비하여 독성이 낮으면서 약학적으로 안정하여 심장 혈관계 질환 치료 용 약학적 조성물로 유용하게 사용될 수 있다.

화력적 1

4130 55

도 1

방세시

노면의 작단한 설명

도 1은 본 발명의 암로디핀 캠실레이트 염의 X-선 회절분석 결과를 나타낸 것이고.

도 2는 기존의 암로디핀 베실레이트 염의 X - 선 회절분석 결과를 나타낸 것이고.

도 3은 본 발명의 안로디핀 캑실레이트 염의 비교 부착성을 기존의 안로디핀 베실레이트 염과 비교한 결과이다.

…○…; 암로디핀 베실레이트 염

- - ● - - : 암로디핀 캠실레이트 염

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 신규한 압보디편 캠실레이트 (ambotipine camsylate) 염 및 그의 제조방법에 관한 것으로, 구체적으로 화하식 2의 압로디핀을 화하식 3의 (IS) - (+) - 10 - 캠포 설문산 (champorsulphonic acid), 화하식 4(IR) - (-) - 10 - 캠포 설문산 또는 화하식 5의 (±) - 10 - 캠포 설문산과 반응시켜 제조한 홍혜도, 안정성, 비품습성 및 정제 부착성 등의 용리화학적 성질이 우수한 결정성 산부가염인 화학식 1의 신규한 압로디핀 캠실레이트 염 및 그의 제조방법에 판하 것이다.

화학식 1

화학식 2

화학식 3

회에서 1

화탁식 5

상기 화학식 2로 표시되는 암로디면은 3 - 에틸 -5 - 메틸 -2 - (2 - 아미노예독시 - 메틸) - 4 - (2 - 종로로페닐) -6 - 메틸 - 1,4 - 다하이드로 - 3,5 - 피리딘 다카르복실레이트의 일반명으로, 인체 내에서 장기간 곽용하는 같습 채널 자단제 (ca lctum - channel blocker)로서 협심증, 고협압 및 울혈성 심장마비와 같은 심장 혈관계 질환의 치료에 유용한 물질이다.

유럽 특허원 공개공보 제89167호는 암로디핀의 약체학적으로 허용가능한 염의 상이한 형태를 다양하게 기술하고 있다. 득히, 약계학적으로 허용가능한 산부가역은 약체학적으로 허용가능한 음이은을 함유하는 비독석 산부가역을 형성하는 산으로부터 형성된 것으로서, 예를 들어 염산염, 브롱화수소산염, 확산염, 인산염 또는 산인산염, 아세테이트, 말레이트, 주마레이트, 락테이트, 타르트레이트, 시트레이트 및 글루코네이트 염이 기술되어 있으며 이들 염중에서 말레이트가 가 장 바람식한 것으로 기채되어 있다.

약학적인 용도로 사용되는 경우 암로디핀은 유리 염기형태 (free form)인 것이 유용하나 무정형으로써 화합물의 안정성이 떨어지는 단점이 있기 때문에 약제학적으로 허용가능한 산과의 염형태로 가장 적합하게 투여된다.

대한민국 특허궁고 제95 - 6710호에는 이러한 목적에 부합되기 위해서는 약제학적으로 허용가능한 염이 (1) 우수한 용 해도; (2) 우수한 안전성; (3) 비흡습성; (4) 경제 제형으로서의 가공성과 같은 네 가지 물리화학적 기준을 충족시켜 약 한다고 기술하고 있다.

따라서 상기 전출한 산부가임들 다수는 무정형 행태를 보이기 때문에 순수하게 제조하기 어려워 약제학적 제품용으로 부적당하거나 약제학적 제조에서 이를 대규모로 제조하기가 용이하지 않을 뿐 아니라 상기한 기준의 일부분은 만족시 키더라도 4가지 기준을 모두 만족시키는 산부가임은 아직까지 개발되지 않고 있는 실정이다. 일 예로, 가장 바탁적한 약제학적 형태로 제시되고 있는 알레이트 조차도 용해도는 매우 높으나 수주일 후에 용액 내에서 분해되는 문제점이 있 는 것으로 밝혀졌다. 그만큼 암로디핀은 상기한 모든 물리화학적 기준을 충족시키면서 약제학적으로 허용가능한 산과의 업 형태로 제조하기가 용이하지 않은 단취이 있다.

이러한 문제점을 극복하기 위하여, 대한민국 특허공고 제95 - 7228호에는 높은 용해도를 가지면서도 우수한 안정성을 나타내는 산부가염으로 벤젠 설포네이트 염 (이하 '베실레이트 염 (besylate)'이라 약정함)이 제시되어 있다. 상기 압 로디핀 베실레이트 염은 공기된 암로디핀의 엄여 비해 다수의 장점을 지니는 것으로 말려져 있다. 앙로디핀의 약체하의 제형의 제조를 특히 적절하게 만드는 우수한 제형 특성의 독특한 조합을 갖는 것으로 알려져 왔다. 그러나, 상기 암로디 핀 베실레이트 염은 알로디핀의 제조과장에서 약체학적으로 허용가능한 음이은을 함유하는 비득성 산부가염을 형성하는 는 산이 아닌 동성이 있는 화당을인 벤젠 설포산을 사용하기 때문에 그 양정성에 문제가 제기되어 있다.

이에 본 발명자들은 상기 문제점들을 해결하기 위하여 노력한 결과, 멘젠 설폰산 (benzene sulfonic acid)에 비하여 비교적 목성이 낮은 캠포 설폰산 (champhor sulfonic acid)을 이용하여 목성이 낮으면서 약제학적으로 하용가능한 염 의 물리화학적 조건을 모두 충족시키는 신규한 암로디핀의 결정성 산부가염인 암로디핀 캠실레이트 염을 제조함으로써 본 방명용 와서하였다.

발명이 이루고리 하는 작용이 과제

본 발명의 목적은 독성이 낮으면서 약제학적으로 허용가능한 염의 물리화학적 조건을 충족시키는 암로디핀의 신규한 결정성 산부가염을 제공하는 것이다.

발명이 구성 및 작용

상기 목적을 달성하기 위하여, 본 발명은 벤젠 설폰산에 비하여 비교적 독성이 낮은 캠포 설폰산을 이용하는 암로디핀 의 신규한 결정성 산부가역의 제조방법을 제공한다.

또한, 본 발명은 상기 제조방법에 의해 제조되는 독성이 낮으면서 약제학적으로 허용가능한 염의 물리화학적 조건을 모 두 충족시키는 암로디핀 캠실레이트 염을 제공한다.

아울러, 본 발명은 상기 암로디핀 캠실레이트 염을 유효성분으로 하는 심장 혈관계 질환 치료용 약학적 조성물을 제공 한다.

이하, 본 발명을 상세히 설명한다.

본 발명은 삔궨 설폰산에 비하여 비교적 독성이 낮은 캠포 설폰산을 이용하는 암로디핀의 신규한 결정성 산부가염의 제 조방법을 제공한다.

본 발명의 제조방법은

- 1) 알로디핀을 유기용때에 용해시키고 반응액을 냉각시키는 단계:
- 2) 캠포 설폰산을 유기용매에 용해시킨 후 상기 반응액에 첨가하여 혼합물을 제조하는 단계; 및
- 3) 상기 혼합물을 교반하여 얻은 고체를 여과, 세척 및 건조시켜 결정성 산부가염을 형성하는 단계로 구성된다.

본 발명의 제조방법에 따른 암로디핀의 결정성 산부가염은 화학식 2의 암로디핀 용액 내에 산을 참가하여 제조하거나 화학식 2의 암로디핀을 제조하는 반응용액 내에 산을 부가하여 제조된다.

상기 제조방법을 단계별로 자세히 설명하면, 단계 1의 반응액 내 암로디핀의 농도는 결정화를 효율적으로 촉진하기 위하여 3 내지 60 중량% 사용하는 것이 바람직하고, 10 내지 30 중량% 사용하는 것이 더욱 바람직하다.

단계 2의 캠포 설폰산은 화학식 3의 (1S) - (+) - 10 - 캠포 설폰산, 화학식 4의 (1R) - (-) - 10 - 캠포 설폰산 또는 화학식 5의 (土) - 10 - 캠포 설폰산을 사용하는 것이 바람리하다. 싱기 캠포 설폰산은 바람직하게는 압로디핀에 대해 0.1 내지 5.0 당학, 더욱 바람직하게는 1.0 대기 1.3 당당 사용될 수 있다.

단계 1 및 2의 유기용매는 메탄을, 에탄을, 이소프로판을 또는 아세토니트릴이 사용될 수 있다.

단계 3의 결정성 산부가염의 형성은 바람직하게는 -10 내지 50℃ 온도범위에서, 더욱 바람직하게는 0 내지 25℃ 온도 범위에서 이루어지는 것을 돌짓으로 한다.

화학식 2

화학식 3

화학식 4

화학식 5

본 발명의 제조방법은 앙로디핀의 신규한 결정성업을 제조함에 있어서 기존에 약제학적 제형의 제조에 가장 접합하다고 알려진 앙로디핀 베실레이트 열이 약제학적으로 허용가능한 솜이온을 합유하는 비독성 산부가임을 형성하는 산이 아닌 벤젠 설론산을 사용하여 독성을 나타내게 되는 문제점을 극복하기 위하여 벤젠 설론산에 비하여 독성이 낮은 산으로 캠포 설론산을 선택하여 사용하였다. 이를 위하여, 본 발명자들은 Registry of Toxic Effets of Chemical Substances (RTECS) Data 자료에 나타난 벤젠 설론산과 캠포 설론산에 대한 독성 테이타를 비교하여 그 결과를 하기 표 1에 나타내었다.

[36, 1]

물질	투여경로	대상동물	투여량	출처
벤젠 설폰산	경구	랫트	LD ₅₀ 890 µ∜kg	AIHAAP 23,95, 1962
	피부	고양이	LD _{LO} 10 g/kg	JPETAB84,358,1945
	경구	야생 조류	LD ₅₀ 75 mg/kg	TXAPA921,315,1972
(1S) - (+) - 10 - 캠포 설폰산	피하	마우스	LD ₅₀ 2502 mg/kg	PHARAT1,150,1946
(±) - 10 - 캠포 설폰산	경구	메추라기	LD ₅₀ > 316 mg/kg	EESADV6,149,1982
#. LD ₅₀ : 50% 치사량,LD _{Lo} : 최소	치사량을 나타냄.			

표 1에 나타난 바와 같이, 비콕 LD₅₀ 값에 대해 동일한 종에 대한 실험 데이타가 없어 직접적인 비교는 어려우나 기존 에 사용된 벤젠 설폰산은 캠포 설폰산에 비해 약재학적으로 허용되는 음이온을 함유하는 비독성 산부가염을 형성하는 산이 아닌 그 자체로도 독성이 있는 화합물인 반면, 본 발명에서 사용한 캠포 설폰산은 매우 낮은 독성을 나타냄을 확인 하였다.

또한, 본 발명은 상기 제조방법에 의해 제조된 독성이 낮으면서 약제학적으로 허용가능한 염의 물리화학적 조건을 충족 시키는 악로디핀 캣실레이트 염을 제공한다

본 발명의 암로디핀의 신규한 결정성 산부가임의 제조방법에 의해 형성된 화하식 1의 결정성 산부가임은 X-선 회절분 석을 통하여 비결정 화합을과 또는 기존의 암로디핀 베실레이트 염과는 상이한 결정형태를 갖는 것이 입증되었고 (도 1 및 도 2 참조), NMR 스펙트럼 분석을 통하여 그 구조를 정서적으로 확인하였다.

아울러, 본 발명은 상기 암로디핀 캠실레이트 염을 유효성분으로 하는 심장 혈관계 질환 치료용 약학적 조성물을 제공 한다.

화하식 1의 암로디핀 캠실레이트 염은 임상투여시에 경구 또는 비경구로 투여가 가능하며 일반적인 의약품 제제의 형 태로 사용될 수 있다.

즉, 본 발명의 화학식 1의 화합물은 실제 임상 투여시에 경구 및 비경구의 여러 가지 제형으로 투여될 수 있는데, 제제 화합 경우에는 보통 사용하는 충진제, 중당제, 결합제, 습윤제, 창해제, 계면합성제 등의 회식제 또는 부형제를 사용하 여 조제된다. 경구투여를 위한 고형 제제에는 정제, 환제, 산제, 파립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 하 나 이상의 화학식 1의 화학문에 적어도 하나 이상의 부형제 예를 들면, 전분, 수크로스 또는 탁토오스, 웹라틴 등을 석 어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스타레이트, 탑크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제 로는 현탁재, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순화성체인 물, 리케드 파라핀 이외에 여러 가 지 부형제, 예를 들면 습문제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 재제에는 법균된 수용 역, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에딜렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기 제로는 위템을 (witepask), 마코로폴, 트워 (Tween) 취1, 카카오지 리우워지, 급리세로제라된 등이 사용될 수 있다.

화학식 1의 암로디핀 캠실레이트 염의 유효용량은 1.0 ~ 10.0 mg/kg이고, 바람직하기로는 5.0 ~ 8.0 mg/kg이며, 하루 1회 투여될 수 있다.

이하, 본 발명을 실시예에 의해 상세히 설명한다.

단, 하기 실시에는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시에에 한정되는 것은 아니다.

< 실시예 1> 암로디핀 캠실레이트 염의 제조

암로디핀 염기 12.25 g (0.03 mol)을 메탄을 50 m(에 용해시키고 반응액을 10℃로 냉각시켰다. (1S) - (+) - 10 - 캠 포 설문산 7.8 g (0.336 mol)을 메탄을 19.5 m(에 용해시킨 후 상기 암로디핀 반응액에 서서히 참가하였다. 이 혼합물 을 실은에서 2시간 동안 교반한 후 생성된 고체를 여과하고, 메탄을 25 m(로 세척하고 건조시켜 흰색 결정의 표제화합 물 16.7 g (수울: 86.8%)을 얻었다.

m.p: 198°C ~ 202°C

¹H - NMR(300MHz, DMSO - d₆)6 (ppm): 8.42(s, 1H), 7.82(br, 3H), 7.35~7.13(m, 4H, ArH). 5.30(s, 1H), 4.73~4.55(d.d., 2H), 3.96(q, 2H), 3.65(m, 2H), 3.50(s, 3H), 3.34(s, 2H), 3.08(m, 2H), 2.90~2.35(d.d., 2H), 2.70(m, 1H), 2.31(s, 3H), 2.28~2.21(m, 1H), 1.95~1.77(m, 3H), 1.27(m, 2H), 1.26(t, 3H), 1.05(s, 3H)

< 실시예 2> 암로디핀 캠실레이트 염의 제조

앙로디핀 염기 12.25 g (0.03 mol)을 메탄을 50 mt에 용해시키고 반응액을 10℃로 냉각시켰다. (1R) - (-) - 10 - 캠 포 설폰산 7.8 g (0.336 mol)을 메탄을 19.5 mt에 용해시킨 후 상기 반응액에 서서히 참가하였다. 상기 실시에 1과 동 일한 공정을 수행하여 흰색 결정의 표계화합물 15.4 g (수율: 80%)을 얻었다.

m.p: 198°C ~ 204°C

¹H - NMR(300MHz, DMSO - d₆)6 (ppm): 8.42(s, 1H), 7.82(br, 3H), 7.35~7.13(m, 4H, ArH), 5.30(s, 1H), 4.73~4.55(d.d., 2H), 3.96(q, 2H), 3.65(m, 2H), 3.50(s, 3H), 3.34(s, 2H), 3.08(m, 2H), 2.90~2.35(d.d., 2H), 2.70(m, 1H), 2.31(s, 3H), 2.28~2.21(m, 1H), 1.95~1.77(m, 3H), 1.27(m, 2H), 1.26(t, 3H), 1.05(s, 3H)

< 실시예 3> 암로디핀 캠실레이트 염의 제조

앙로디핀 영기 12.25 g (0.03 mol)을 메탄을 50mt에 용해시키고 반응액을 10℃로 냉각시켰다. (±) - 10 - 캠포 설존 산 7.8 g (0.336 mol)을 메탄을 19.5 mt에 용해시킨 후 상기 반응액에 서서히 참가하였다. 상기 실시예 1과 동일한 공 정을 수행하여 현색 결정의 표제화함물 16 g (수술: 83.2%)을 얻었다.

m.p: 198°C ~ 204°C

 1 H - NMR(300MHz, DMSO - d $_{6}$)8 (ppm): 8.42(s, 1H), 7.82(br, 3H), 7.35 ~ 7.13(m, 4H, ArH), 5.30(s, 1H), 4.73 ~ 4.55(d.d., 2H), 3.96(q, 2H), 3.65(m, 2H), 3.50(s, 3H), 3.34(s, 2H), 3.08(m, 2H), 2.90 ~ 2.35(d.d., 2H), 2.70(m, 1H), 2.31(s, 3H), 2.28 ~ 2.21(m, 1H), 1.95 ~ 1.77(m, 3H), 1.27(m, 2H), 1.26(t, 3H), 1.05(s, 3H), 0.74(s, 3H)

< 실험에 1> 용해도 시험

일반적으로 pH 1 내지 7.5에서 1 mg/m2 이상의 용해도가 권장되고, 현액의 pH (7.4)에 근접하는 pH를 갖는 용액을 제 공하는 엄이 바람직하다. 이에 따라 상시 실시에 1 내지 3에서 제조된 본 발명의 암로디핀 컨실레이트 엄의 용해도와 포화시 pH를 측정하여 기존의 암로디핀 베실레이트 엄 (대한민국 특허공고 제95-722m호)과 비교하였다.

구체적으로, 실험은 대한약전에 소개된 방법에 따라 각각의 화합물을 증류수에 포화되도록 용해시킨 후 상기 용액을 액 체 크로마토그라괴로 분석하여 압로디핀 엄기 (free base)를 기준으로 용해된 양을 측정하여 수행하였으며, 그 결과를 하기 표 7에 나타내었다.

[3), 2]

염	용해도 (mg/ml)	포화시 pH
	1.398	6.2
실시예 1의 암로디핀 캠실레이트 (S)	1.225	6.0
실시예2의 암로디핀 캠실레이트 (R)	1.250	6.2

그 절과, 표 2에 나타난 바와 같이 본 발명의 암로디핀 캠실레이트 염은 기존의 암로디핀 베실레이트 염과 비교할 때 포 화시의 pH는 거의 비슷한 값을 가지나 용해도에서는 조금 떨어진 양상을 보여주었는데, 이러한 결과는 암로디핀 캠실 레이트 염 (M.W = 641.18)과 암로디핀 베실레이트 염 (M.W = 559.06) 사이의 분자량 차이에 기인하여 용해도가 떨어진 것으로 판단되다.

< 실험예 2> 안정성 시험

화학적 안정성을 고려할 때, 고체상태의 우수한 안정성은 정체 및 합센체에 매우 중요한 한편, 용액 내에서의 우수한 안 정성은 수성 주사체에 필요하다. 이에 따라 상기 실시에 1 및 2에서 제조된 암로디핀 캡실레이트 염의 시간 경과에 따 른 안정성을 측정하여 기존의 앙로디핀 베실레이트 열과 비교하였다.

구체적으로, 실험은 각각의 화합물을 55℃, 습도 대기 (약 50%)에서 보관한 지 1주, 2주, 3주 및 4주 후에 활성물질의 초기 값에 대한 잔사율을 액체 크로마토그라피로 측정하여 수행하였으며, 그 결과를 하기 표 3에 나타내었다.

[2, 3]

염	3.7	1주	2주	3주	4주
암로디핀 베실레이트	1	0.992	0.996	0.993	0.993
실시예 1의 암로디핀 캠실레이트 (S)	1	1	0.998	1	1
실시예 2의 암로디핀 캠실레이트 (R)	1	1	1	1.002	1

그 결과, 표 3에 나타난 바와 같이 본 발명의 암로디핀 캠실레이트 염은 4주 후에도 전혀 분해되지 않고 안정하게 존재 한 반면 양로디핀 베실레이트 염은 1주 경과 후부터 조금씩 분해되는 결과를 보여주어 본 발명의 암로디핀 캠실레이트 염이 약체하적 채형의 제조에 있어 기존의 암로디핀 베실레이트 염 보다 안정한 것을 확인하였다.

< 실험예 3> 비흡습성 시험

약체 한량이 높은 교세상태에서 수본이 흡수된 웹품은 가수분해 및 화학적 분해에 대한 인자로서 작용할 수 있으므로 안정한 제형을 위해서는 비흡습성 염을 만드는 것이 바림직하다. 이에 따라 본 발명의 암로디핀 캡실레이트 염의 비흡 습성을 측정하여 기존의 안로디핀 베실레이트 염과 비교하였다.

구체적으로, 실험은 각각의 염을 75% 상대습도 하의 37℃에서 24시간 노출시킨 경우와 95% 상대습도 하의 30℃에서 3일간 노출시킨 경우에 각각의 수분을 측정하여 수행하였으며 그 결과를 하기 표 4에 나타내었다

136 41

염	초기수분 (%)	습도 75%, 37 ℃i 일 후 수분 (%)	습도 95%, 30 ℃3일 후 수분 (%)
암로디핀 베실레이트	0.05	0.05	0.15
실시예 1의 암로디핀 캠실레이트 (S)	0.05	0.05	0.15
실시예 2의 암로디핀 캠실레이트 (R)	0.05	0.05	0.15

그 결과, 표 4에 나타난 바와 같이 본 발명의 암로디핀 캠실레이트 염과 기존의 암로디핀 베실레이트 염 모두 어떠한 수 분도 흡수하지 않는 비흡습성 염임용 확인하였다.

< 실험에 4 > 정제의 비교 부착성 시험

본 발명의 암로디핀 캠실레이트 염의 부착성을 측정하여 기존의 암로디핀 베실레이트 염과 비교하였다.

구체적으로, 실험은 대한민국 특허장고 제95 - 7228호에 예시된 것과 동일하게 정제를 만들어 정체원치에 점착된 물질 을 메틴을을 사용하여 주출한 후 그 앙을 분광계로 측정하여 수행하였다. 이로부터 얻은 값들을 플롯팅 (plotting)한 후 후 착성된 신의 기울기로부터 평균값을 계산하였고, 그 절과를 표 5에 나타내었다.

13), 51

	정제 부착량 (μg)						
	암로디핀 베실레이트		암로디핀 캠실레이트		캠실레이트/베실레이트		
타정량	AVG.	S.D	AVG.	S.D	AVG.	S.D	
50	32.9	5.6	33.0	8.2	1.00	0.08	
100	60.6	2.5	60.6	9.1	0.99	0.11	
150	102.7	15.7	101.1	14.6	0.99	0.01	
220	183.8	1.1	177.1	2.1	0.96	0.01	
250	235.1	5.3	234.8	13.3	1.00	0.03	
300	242.7	2.6	235.4	1.4	0.97	0.02	

그 결과, 표 5에 나타난 바와 같이 본 발명의 암로디핀 베실레이트 염은 기존의 암로디핀 캠실레이트 염과 동일한 정제 부착량을 나타냈으로써 탁월한 정착방지 특성을 가짐을 확인하였다(도 3).

발명의 효과

상기에서 살펴본 바와 같이, 본 발명의 제조방법에 의한 암로디핀 캠실레이트 염은 약제학적 제형의 제조에 적합한 결 정성 산부가염으로서 벤젠 설론산을 사용하여 제조되는 암로디핀 베실레이트 염에 비하여 비교적 목성이 낮은 캠포 설 폰산을 사용하면서도 암로디핀 베실레이트 염과 동일한 물리화학적 기준을 충족시키므로 심장 혈관계 질환 치료용 약 학적 조성물로서 유용하게 사용될 수 있다.

(57) 항구의 범위

청구항 1.

하기 화학식 1의 구조를 갖는 암로디핀 캠실레이트 염.

화학식 1

청구항 2.

유기용매 중에서 하기 화학식 2의 암로디핀을 캠포 설폰산과 반응시키는 것을 특징으로 하는 제 1 항에 따른 암로디핀 캠실레이트 염의 제조방법.

화학식 2

청구항 3.

제 2항에 있어서, 캠포 설폰산이 하기 화학식 3의 (1S) - (+) - 10 - 캠포 설폰산, 하기 화학식 4의 (1R) - (-) - 10 - 캠포 설폰산 및 하기 화학식 5의 (±) - 10 - 캠포 설폰산으로 구성된 군으로부터 선택되는 것을 특징으로 하는 제조방법,

화학식 3

화학식 4

화학식 5

청구항 4.

제 2항에 있어서, 반응액 내 암로디핀의 농도가 3 내지 60 중량%인 것을 특징으로 하는 제조방법.

청구항 5.

제 2항에 있어서, 캠포 설폰산이 암로디핀에 대해 0.1 내지 5.0 당량 사용되는 것을 특징으로 하는 제조방법,

청구항 6.

제 2항에 있어서, 반응이 - 10 내지 50℃ 온도범위에서 수행되는 것을 특징으로 하는 제조방법.

청구항 7.

제 2항에 있어서, 유기용매가 메탄올, 예탄을, 이소프로판을 및 아세토니트릴로 구성된 군으로부터 선택되는 것을 특징으로 하는 제조방법.

청구항 8.

제 1항의 암로디핀 캠실레이트 염을 유효성분으로 하는 심장 혈관계 질환 치료용 약학적 조성물.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

•
☐ BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
\square color or black and white photographs
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер-

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.