Heuristics for Advertising Revenue Optimization in Online Social Networks

Inzamam Rahaman and Patrick Hosein

August 21, 2016

Agenda

- 1. Context
- 2. Hosein and Lawrence's formulation
- 3. Why heuristics are needed
- 4. Overview of heuristics
- 5. Performance of the heuristics
- 6. Heuristic for Impression Vector Allocation
- 7. Performance of Impression Vector Allocation Heuristic
- 6. Future work and Conclusion

Context

Advertisers are turning more to the Internet to disseminate advertisements.

OSNs are one of the most popular uses of the Internet.

Hosein and Lawrence [1]

Assume that knowing that your friend clicked raises. your probability of clicking, and that knowing that your friend didn't click lowers your probability of clicking.

$$p \leftarrow min \{1, max \{0, p_{init} + \alpha \frac{f}{n} - \beta \frac{g}{n}\}\}$$

Assumed that friendships are reciprocal.

Assumed a fixed number of stages, k.

Assume a fixed number of impressions, M

 $x_k[i] = 1$ if i was previously given an impression else it is 0 $c_k[i] = 1$ if i clicked a given past impression else it is 0 $u_k[i] = 1$ if i is given an impression in this stage else it is 0 $p_k[i] = \begin{cases} \operatorname{prob}(c_{k-1}[i] = 1 | u_k[i] = 1, \vec{x}_k, \vec{c}_k) & \text{if } x_k[i] = 0 \\ 0 & \text{otherwise} \end{cases}$

$$J_{k}^{*} = \max_{\vec{u} \in \{0,1\}^{N}} \sum_{\vec{v} \in \mathcal{V} \mid \vec{u}} Pr(\vec{v}) J_{k-1}^{*}(\vec{x}^{k} + \vec{u}, \vec{c}_{k} + \vec{v}, \vec{p}_{k-1})$$
 (1)

subject to:
$$\sum_{i=1}^{N} u[i] = m_k$$
 and $\vec{u} + \vec{x}_k \le 1$.

In the final stage we have:

$$J_0^* = |\vec{c}_0| + \max_{\vec{u} \in \{0,1\}^N} \sum_{i=1}^N p_0[i] u[i]$$
 (2)

subject to:
$$\sum_{i=1}^{N} u[i] = m_0$$
 and $\vec{u} + \vec{x}_0 \le 1$.

Hosein and Lawrence [1]

$$\binom{n}{m_k} 2^{m_k}$$

This grows large very quickly!

Hosein and Lawrence's Heuristic

- 1. Consider each user and allocate an impression to them, considering the expected number of clicks generated in that stage.
- 2. Find the best such user, termed u_1 .
- 3. Find users $u_2, u_3, \dots u_{m_k}$ in the same manner
- 4. Repeat for remaining stages.

$$\sum_{k=1}^{m_k} (n-j+1) 2^{m_k} = 2^{m_k+1} (2+n+m_k) - 2n - 4$$

Maximum Influence Heuristic

At stage k multiply probability of clicking and degree, selecting the best m_k users. Expected value requires 2^{m_k} sub-problems per stage.

 2^{m_k} subproblems per stage

LSMC

Using Monte Carlo Simulation as our objective function, J, we approximated the expected number of clicks generated by a particular allocation of impressions to users. We randomly generated a seed allocation, S, and drew a random adjacent point in the search space, S' by swapping allocations. If J(S') > J(S), we retained S', and continued until convergence.

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \qquad \qquad \qquad \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Evaluation of Allocation Heuristics

Table: Dataset Parameters

Data	Users	Impressions	Stages	Avg No Friends	p_{K-1}
1	6	5	2	2.7	0.25
2	7	5	3	2.0	0.25
3	15	7	3	4.4	0.25
4	50	10	3	3.5	0.25
5	100	20	3	5.5	0.25
6	1000	20	2	100	0.20

Table: Performance and Runtime Comparisons

Data	Method	Optimal \vec{m}	Value	Time (ms)
	Optimal	[2, 3]	1.40	64
	Hosein and Lawrence	[2, 3]	1.40	32
1	Maximum Influence	[3, 2]	1.38	8
	Optimal	[2, 2, 1]	1.56	56841
	Hosein and Lawrence	[1, 2, 2]	1.54	4678
2	Maximum Influence	[1, 2, 2]	1.52	48
	Optimal	[2, 2, 3]	2.03	170967777
	Hosein and Lawrence	[2, 2, 3]	2.03	211516
3	Maximum Influence	[2, 2, 3]	1.99	378
	LSMC	[2, 2, 6]	3.22	7229250
4	Maximum Influence	[2, 1, 7]	3.09	10444
5	LSMC	[2, 2, 16]	6.54	23426641
5	Maximum Influence	[2, 3, 15]	6.39	40097214
6	LSMC	[10, 10]	4.32	302874000
0	Maximum Influence	[8, 12]	4.04	49838538

Heuristic For Impression Vector

Since m_k impressions are allocated in the 1st stage, the expected number of users to click is $p_k m_k$. $p_k m_k d$ users will be effected

$$p_K m_K d = m_{K-1}$$

Heuristic For Impression Vector

$$m_2 = \frac{m_1}{\rho_2 d}$$
 and $m_1 = \frac{m_0}{\rho_1 (d-1)}$ (3)

Since the total number of impressions is *M* we have

$$M = m_0 + m_1 + m_2 = m_0 \left[1 + \frac{1}{\rho_1(d-1)} + \frac{1}{\rho_2 \rho_1 d(d-1)} \right]$$

Therefore

$$m_0 = \frac{M}{1 + \frac{1}{p_1(d-1)} + \frac{1}{p_2p_1d(d-1)}}$$
 where $p_1 = p_2 + \frac{\alpha}{d}$ (4)

Performance of Heuristic

Table: Performance of Impression Vector Heuristic

Dataset	Optimal Vector (value)	Heuristic Vector (value)		
1	[2, 3] (1.40)	[2, 3] (1.40)		
2	[2, 2, 1] (1.56)	[3, 1, 1] (1.51)		
3	[2, 2, 3] (2.03)	[2, 2, 3] (2.03)		
4	[2, 2, 6] (3.22)	[3, 3, 4] (3.14)		
5	[2, 2, 16] (6.54)	[4, 6, 10] (6.41)		
6	[10, 10] (4.32)	[1, 19] (4.22)		

Performance

Performance

Conclusion

We presented two heuristics that can approximate solutions to the problem posed in [1] in less time by minimizing the number of possibilities checked.

Louvain Modularity to get communities

Sort by average degree

Extract Minimal Necessary Whole Communities

Expected Number of Clicks

