Exercise of Supervised Learning: Feature Selection

Yawei Li

yawei.li@stat.uni-muenchen.de

January 19, 2024

Exercise 1: Filter Problems

Let $f(x_1, x_2 | \mu)$ be the density function of the bivariate Normal distribution with mean μ and covariance $\Sigma = I_2$. You are given the following data generation process (DGP):

- ▶ the target $Y \sim \text{Bernoulli}(0.5)$,
- ▶ the conditional density $p(x_1, x_2|Y = 1) = 0.5(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T)),$
- the conditional density $p(x_1, x_2 | Y = 0) = 0.5(f(x_1, x_2 | (1, 1)^T) + f(x_1, x_2 | (-1, -1)^T)).$

(Write the formulas on white board)

(a) Sketch the DGP.

Solution: Show the standard solution.

(b) Compute
$$\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$$
 and $\mathbb{P}(Y = 1 | x_2 = \tilde{x}_2)$.

Hint: x_1, x_2 are generated based on Y.

$$\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{p(x_1 = \tilde{x}_1 | Y = 1) \mathbb{P}(Y = 1)}{p(x_1 = \tilde{x}_1 | Y = 1) \mathbb{P}(Y = 1) + p(x_1 = \tilde{x}_1 | Y = 0) \mathbb{P}(Y = 0)} \\
= \frac{p(x_1 = \tilde{x}_1 | Y = 1)}{p(x_1 = \tilde{x}_1 | Y = 1) + p(x_1 = \tilde{x}_1 | Y = 0)} \qquad (\mathbb{P}(Y = 1) = \mathbb{P}(Y = 0))$$

Question: How to get $p(x_1 = \tilde{x}_1 | Y = 1)$ and other terms?

- ▶ Marginal over $x_2 \leadsto p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- But it is easy to compute the marginal distribution for a single Gaussian.
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$
- Let $g_{\mu}:\mathbb{R} \to [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- ► Similarly: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$
- So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))}{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + 0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

- ▶ Marginal over $x_2 \leadsto p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- ► Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- ▶ But it is easy to compute the marginal distribution for a single Gaussian
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$
- Let $g_{\mu}: \mathbb{R} \to [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- Similarly: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$
- So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))}{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + 0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

- ▶ Marginal over $x_2 \leadsto p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- ► Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- But it is easy to compute the marginal distribution for a single Gaussian.
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$
- Let $g_{\mu}:\mathbb{R} \to [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- ▶ Similarily: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$
- So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))}{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + 0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

- ▶ Marginal over $x_2 \leadsto p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- ► Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- ▶ But it is easy to compute the marginal distribution for a **single Gaussian**.
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$
- Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$
- Let $g_{\mu}:\mathbb{R} \to [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- Similarly: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$
- So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))}{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + 0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

- ▶ Marginal over $x_2 \leadsto p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- ► Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- But it is easy to compute the marginal distribution for a single Gaussian.
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$.
- Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$
- Let $g_{\mu}:\mathbb{R} \to [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- ▶ Similarily: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$
- So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))}{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + 0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

- ▶ Marginal over $x_2 \leadsto p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- ► Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- ▶ But it is easy to compute the marginal distribution for a **single Gaussian**.
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$.
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$.
- Let $g_{\mu}:\mathbb{R} \to [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- ▶ Similarily: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$
- So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))}{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + 0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

- ▶ Marginal over $x_2 \leadsto p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- ► Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- ▶ But it is easy to compute the marginal distribution for a **single Gaussian**.
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- ► Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$.
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$.
- lacksquare Let $g_{\mu}:\mathbb{R} o [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- ▶ Similarily: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$
- So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))}{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + 0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

- ▶ Marginal over $x_2 \rightsquigarrow p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- ► Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- But it is easy to compute the marginal distribution for a single Gaussian.
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- ► Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$.
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$.
- lacksquare Let $g_{\mu}:\mathbb{R} o [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- ▶ Similarily: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$
- So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))}{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + 0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

- ▶ Marginal over $x_2 \rightsquigarrow p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- ▶ But it is easy to compute the marginal distribution for a **single Gaussian**.
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$.
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$.
- lacksquare Let $g_{\mu}:\mathbb{R} o [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- Similarily: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)).$
- So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{0.5(g_1(x_1) + g_{-1}(x_1))}{0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + 0.5(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

- ▶ Marginal over $x_2 \rightsquigarrow p(x_1 = \tilde{x}_1 | Y = 1) = \int p(x_1 = \tilde{x}_1, x_2 = z | Y = 1) dz$
- Hard to **directly** marginalize because $(x_1, x_2)|Y$ is a mixture of Gaussian components: $p(x_1, x_2|Y = 1) = \mathbf{0.5}(f(x_1, x_2|(1, -1)^T) + f(x_1, x_2|(-1, 1)^T))$
- ▶ But it is easy to compute the marginal distribution for a **single Gaussian**.
- Can we first marginalize individual Gaussian components and then mix up them? Yes.
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((1, -1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(1, 1)$.
- ▶ Marginalize $x_1, x_2 \sim \mathcal{N}((-1, 1)^T, I_2)$ over $x_2 \rightsquigarrow x_1 \sim \mathcal{N}(-1, 1)$.
- ▶ Let $g_{\mu}: \mathbb{R} \to [0,1]$ be the prob. density function of $\mathcal{N}(\mu,1)$.
- $p(x_1 = \tilde{x}_1 | Y = 1) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))$ (Don't forget the weights of each Gaussian component).
- Similarly: $p(x_1 = \tilde{x}_1 | Y = 0) = \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)).$
- ▶ So $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \frac{\mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))}{\mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1)) + \mathbf{0.5}(g_1(\tilde{x}_1) + g_{-1}(\tilde{x}_1))} = 0.5$ (Same for $\mathbb{P}(Y = 1 | x_1 = \tilde{x}_1)$.

(c) Compute
$$\mathbb{P}(Y = 1 | x_1 = 1, x_2 = 1)$$
.

$$\mathbb{P}(Y=1|X_1=1,X_2=1) = \frac{p((1,1)|Y=1)\mathbb{P}(Y=1)}{p((1,1)|Y=1)\mathbb{P}(Y=1) + p((1,1)|Y=0)\mathbb{P}(Y=0)} \\
= \frac{1}{1 + \frac{p((1,1)|Y=1)}{p((1,1)|Y=1)}} \\
= \frac{1}{1 + \frac{\exp(0) + \exp(-0.5(-2,-2)^{T}(-2,-2))}{2 \exp(-0.5(0,-2)^{T}(0,-2))}} \quad \text{(Use the given density functions)} \\
\approx 0.21$$

(d) Explain what happends if we apply mutual information as filter in this scenario.

- From (b): $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_2) = 0.5$
- So x_1 is independent from Y, and the same hold for x_2 .
- Mutual information between x_i and Y will be 0 for i = 1, 2.
- Any feature will be more preferred over them.
- But Y is clearly jointly dependent on x_1 and x_2 , as shown in (c), $\mathbb{P}(Y = 1 | x_1 = 1, x_2 = 1) \neq \mathbb{P}(Y = 1)$.

(d) Explain what happends if we apply mutual information as filter in this scenario.

- From (b): $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_2) = 0.5$.
- So x_1 is independent from Y, and the same hold for x_2
- Mutual information between x_i and Y will be 0 for i = 1, 2.
- Any feature will be more preferred over them.
- But Y is clearly jointly dependent on x_1 and x_2 , as shown in (c) $\mathbb{P}(Y = 1 | x_1 = 1, x_2 = 1) \neq \mathbb{P}(Y = 1)$.

- (d) Explain what happends if we apply mutual information as filter in this scenario.
 - From (b): $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_2) = 0.5$.
 - So x_1 is independent from Y, and the same hold for x_2 .
 - Mutual information between x_i and Y will be 0 for i = 1, 2
 - Any feature will be more preferred over them.
 - ▶ But *Y* is clearly jointly dependent on x_1 and x_2 , as shown in (c) $\mathbb{P}(Y = 1 | x_1 = 1, x_2 = 1) \neq \mathbb{P}(Y = 1)$.

(d) Explain what happends if we apply mutual information as filter in this scenario.

- From (b): $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_2) = 0.5$.
- ▶ So x_1 is independent from Y, and the same hold for x_2 .
- Mutual information between x_i and Y will be 0 for i = 1, 2.
- Any feature will be more preferred over them.
- ▶ But *Y* is clearly jointly dependent on x_1 and x_2 , as shown in (c) $\mathbb{P}(Y = 1 | x_1 = 1, x_2 = 1) \neq \mathbb{P}(Y = 1)$.

- (d) Explain what happends if we apply mutual information as filter in this scenario.
 - From (b): $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_2) = 0.5$.
 - So x_1 is independent from Y, and the same hold for x_2 .
 - Mutual information between x_i and Y will be 0 for i = 1, 2.
 - ► Any feature will be more preferred over them.
 - ▶ But *Y* is clearly jointly dependent on x_1 and x_2 , as shown in (c) $\mathbb{P}(Y = 1 | x_1 = 1, x_2 = 1) \neq \mathbb{P}(Y = 1)$.

(d) Explain what happends if we apply mutual information as filter in this scenario.

- From (b): $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_1) = \mathbb{P}(Y = 1 | x_1 = \tilde{x}_2) = 0.5$.
- So x_1 is independent from Y, and the same hold for x_2 .
- Mutual information between x_i and Y will be 0 for i = 1, 2.
- ► Any feature will be more preferred over them.
- ▶ But Y is clearly jointly dependent on x_1 and x_2 , as shown in (c), $\mathbb{P}(Y = 1 | x_1 = 1, x_2 = 1) \neq \mathbb{P}(Y = 1)$.

Exercise 2: Filter simulation study

Show the standard solution.

Exercise 3: Wrappers

You are given the following features and their respective BICs. BIC_i with $i \in \{\{A\}, \{B\}, \{C\}, \{D\}, \{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\}, \{A, B, C\}, \{A, B, D\}, \{B, C, D\}, \{A, B, C, D\}\}.$

Features	BIC_i	Features	BIC_i
{ <i>A</i> }	0.9	{ <i>B</i> , <i>C</i> }	0.7
$\{B\}$	8.0	$\{B,D\}$	0.6
{ <i>C</i> }	1.0	$\{\mathit{C},\mathit{D}\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$	0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	8.0
$\{A,C\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,D\}$	0.6

- (a) Do forward search and note down each iteration.
- (b) Do backward search and note down each iteration.

Features	BIC_i	Features	BIC_i
{ <i>A</i> }	0.9	{ <i>B</i> , <i>C</i> }	0.7
$\{B\}$	8.0	$\{{\it B},{\it D}\}$	0.6
{ <i>C</i> }	1.0	$\{\mathit{C},\mathit{D}\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$	0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	8.0
$\{\pmb{A},\pmb{C}\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,D\}$	0.6

(a) Do forward search and note down each iteration.

- 1. $\{B\}$ since $BIC_{\{B\}} < BIC_{\{X\}} \qquad \forall X \in \{\{A\}, \{C\}, \{D\}\}.$
- 2. $\{B, D\}$ since $BIC_{\{B, D\}} < BIC_{\{X\}}$ $\forall X \in \{\{A, B\}, \{B, C\}\}$
- 3. $\{B, C, D\}$ since $BIC_{\{B,C,D\}} < BIC_{\{A,B,D\}}$.
- 4. $\{B, C, D\}$ and terminate since $BIC_{\{B,C,D\}} < BIC_{\{A,C,B,D\}}$.

Features	BIC_i	Features	BIC_i
{ <i>A</i> }	0.9	<i>{B, C}</i>	0.7
$\{B\}$	8.0	$\{B,D\}$	0.6
{ <i>C</i> }	1.0	$\{\mathit{C},\mathit{D}\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$	0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	8.0
$\{A,C\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,D\}$	0.6

- (a) Do forward search and note down each iteration.
 - 1. $\{B\}$ since $BIC_{\{B\}} < BIC_{\{X\}} \qquad \forall X \in \{\{A\}, \{C\}, \{D\}\}.$
 - 2. $\{B, D\}$ since $BIC_{\{B, D\}} < BIC_{\{X\}}$ $\forall X \in \{\{A, B\}, \{B, C\}\}$
 - 3. $\{B, C, D\}$ since $BIC_{\{B,C,D\}} < BIC_{\{A,B,D\}}$
 - 4. $\{B, C, D\}$ and terminate since $BIC_{\{B,C,D\}} < BIC_{\{A,C,B,D\}}$.

Features	BIC_i	Features	BIC_i
{ <i>A</i> }	0.9	<i>{B, C}</i>	0.7
$\{B\}$	8.0	$\{B,D\}$	0.6
{C}	1.0	$\{\mathit{C},\mathit{D}\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$	0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	8.0
$\{A,C\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,D\}$	0.6

- (a) Do forward search and note down each iteration.
 - 1. $\{B\}$ since $\mathrm{BIC}_{\{B\}} < \mathrm{BIC}_{\{X\}} \qquad \forall X \in \{\{A\}, \{C\}, \{D\}\}.$
 - 2. $\{B,D\}$ since $\mathrm{BIC}_{\{B,D\}} < \mathrm{BIC}_{\{X\}} \qquad \forall X \in \{\{A,B\},\{B,C\}\}$
 - 3. $\{B, C, D\}$ since $BIC_{\{B,C,D\}} < BIC_{\{A,B,D\}}$.
 - 4. $\{B, C, D\}$ and terminate since $BIC_{\{B,C,D\}} < BIC_{\{A,C,B,D\}}$.

Features	BIC_i	Features	BIC_i
A	0.9	{ <i>B</i> , <i>C</i> }	0.7
$\{B\}$	8.0	$\{B,D\}$	0.6
{C}	1.0	$\{C,D\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$	0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	8.0
$\{A,C\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,D\}$	0.6

- (a) Do forward search and note down each iteration.
 - 1. $\{B\}$ since $\mathrm{BIC}_{\{B\}} < \mathrm{BIC}_{\{X\}} \qquad \forall X \in \{\{A\}, \{C\}, \{D\}\}.$
 - 2. $\{B,D\}$ since $\mathrm{BIC}_{\{B,D\}} < \mathrm{BIC}_{\{X\}} \qquad \forall X \in \{\{A,B\},\{B,C\}\}$
 - 3. $\{B, C, D\}$ since $BIC_{\{B,C,D\}} < BIC_{\{A,B,D\}}$.
 - 4. $\{B, C, D\}$ and terminate since $BIC_{\{B,C,D\}} < BIC_{\{A,C,B,D\}}$.

Features	BIC_i	Features	BIC_i
{ <i>A</i> }	0.9	<i>{B, C}</i>	0.7
$\{B\}$	8.0	$\{B,D\}$	0.6
{ <i>C</i> }	1.0	$\{\mathit{C},\mathit{D}\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$	0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	8.0
$\{A,C\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,D\}$	0.6

- (a) Do forward search and note down each iteration.
 - 1. $\{B\}$ since $\mathrm{BIC}_{\{B\}} < \mathrm{BIC}_{\{X\}} \qquad \forall X \in \{\{A\}, \{C\}, \{D\}\}.$
 - 2. $\{B,D\}$ since $\mathrm{BIC}_{\{B,D\}} < \mathrm{BIC}_{\{X\}} \qquad \forall X \in \{\{A,B\},\{B,C\}\}$
 - 3. $\{B, C, D\}$ since $\mathrm{BIC}_{\{B,C,D\}} < \mathrm{BIC}_{\{A,B,D\}}$.
 - 4. $\{B, C, D\}$ and terminate since $BIC_{\{B,C,D\}} < BIC_{\{A,C,B,D\}}$.

Features	BIC_i	Features	BIC_i
{ <i>A</i> }	0.9	{ <i>B</i> , <i>C</i> }	0.7
$\{B\}$	8.0	$\{B,D\}$	0.6
{ <i>C</i> }	1.0	$\{\mathit{C},\mathit{D}\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$	0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	8.0
$\{A,C\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,D\}$	0.6

(b) Do backward search and note down each iteration.

- 1. Start with all features $\{A, B, C, D\}$.
- 2. $\{B, C, D\}$ and since $BIC_{\{B,C,D\}} < BIC_{\{X\}}$ $\forall X \in \{\{A, B, C\}, \{A, C, D\}\}.$
- 3. $\{B, C, D\}$ and terminate since $\mathrm{BIC}_{\{B,C,D\}} < \mathrm{BIC}_{\{X\}} \quad \forall X \in \{\{B,C\},\{B,D\},\{C,D\}\}$

Features	BIC_i	Feature	s BIC _i
{ <i>A</i> }	0.9	$\overline{\{B,C\}}$	0.7
$\{B\}$	8.0	$\{B,D\}$	0.6
{ <i>C</i> }	1.0	$\{\mathit{C},\mathit{D}\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$?} 0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	0.8
$\{m{A},m{C}\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,$	<i>D</i> } 0.6

- (b) Do backward search and note down each iteration.
 - 1. Start with all features $\{A, B, C, D\}$.
 - 2. $\{B, C, D\}$ and since $\mathrm{BIC}_{\{B,C,D\}} < \mathrm{BIC}_{\{X\}}$ $\forall X \in \{\{A,B,C\},\{A,C,D\}\}.$
 - 3. $\{B, C, D\}$ and terminate since $\mathrm{BIC}_{\{B,C,D\}} < \mathrm{BIC}_{\{X\}} \quad \forall X \in \{\{B,C\},\{B,D\},\{C,D\}\}$

Features	BIC_i	Features	BIC_i
{ <i>A</i> }	0.9	<i>{B, C}</i>	0.7
$\{B\}$	8.0	$\{B,D\}$	0.6
{ <i>C</i> }	1.0	$\{\mathit{C},\mathit{D}\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$	0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	8.0
$\{ extbf{A}, extbf{C}\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,D\}$	0.6

- (b) Do backward search and note down each iteration.
 - 1. Start with all features $\{A, B, C, D\}$.
 - 2. $\{B,C,D\}$ and since $\mathrm{BIC}_{\{B,C,D\}}<\mathrm{BIC}_{\{X\}}$ $\forall X\in\{\{A,B,C\},\{A,C,D\}\}.$
 - 3. $\{B, C, D\}$ and terminate since $BIC_{\{B,C,D\}} < BIC_{\{X\}} \quad \forall X \in \{\{B,C\}, \{B,D\}, \{C,D\}\}$

Features	BIC_i	Features	BIC_i
{ <i>A</i> }	0.9	{ <i>B</i> , <i>C</i> }	0.7
$\{B\}$	8.0	$\{B,D\}$	0.6
{ <i>C</i> }	1.0	$\{C,D\}$	0.9
$\{D\}$	1.0	$\{A,B,C\}$	0.6
$\{A,B\}$	8.0	$\{A,B,D\}$	8.0
$\{A,C\}$	0.7	$\{B,C,D\}$	0.5
$\{A,D\}$	8.0	$\{A,B,C,D\}$	0.6

- (b) Do backward search and note down each iteration.
 - 1. Start with all features $\{A, B, C, D\}$.
 - 2. $\{B,C,D\}$ and since $\mathrm{BIC}_{\{B,C,D\}}<\mathrm{BIC}_{\{X\}}$ $\forall X\in\{\{A,B,C\},\{A,C,D\}\}.$
 - 3. $\{B, C, D\}$ and terminate since $\mathrm{BIC}_{\{B,C,D\}} < \mathrm{BIC}_{\{X\}} \qquad \forall X \in \{\{B,C\},\{B,D\},\{C,D\}\}.$