

Advanced
Network
Technologies
Laboratory

ADHOC – MAC : a new, flexible and reliable MAC architecture for ad-hoc networks

F. Borgonovo, A. Capone, M. Cesana, L. Fratta

Dipartimento Elettronica e Informazione Politecnico di Milano

Ad-Hoc Networks

- No fixed infrastructure
- □ Limited propagation range
- Need for terminal relaying/routing

Inter-vehicles ad-hoc Networks

- ☐ Application scenarios:
 - Traffic control
 - Entertainment
 - Internet access
 - Extension to backbone services
- □ Self sustaining networks
- No need of central control
- □ High Flexibility
- ☐ Effective MAC
- □ Robust Physical Level

MAC problem: Hidden terminal

not completely solved by IEEE 802.11(CSMA/CA)

Impact on:

- radio access
- local broadcast

MAC problems: exposed terminal

unsolved by IEEE 802.11 (RQS/CLS)

Impact on efficiency since parallel transmissions can be prevented

MAC problems: broadcast service

how to chose bridges

Tree-based protocols not applicable due to dynamic topology

Flooding highly inefficient with high degree of connectivity (n transmissions instead of 1)

ADHOC MAC

□ Features:

- □ Layer two connectivity information
- Access to a reliable single-hop broadcast
- QoS support for different applications
- □ Efficient point-to-point communication (parallel transmissions)
- ☐ Efficient multi-hop broadcast

ADHOC MAC

- □ Time slotted channel
- By external sources (GPS)
 - By first active terminal
- Basic Channel (BCH)
 - All active terminals periodically transmit channel status information
 - Slots are grouped into virtual frames (VF) of length N
 - No frame alignment is needed terminal i

terminal k

☐ Transmissions are received by all terminals in one hop

cluster

BCH is established by the

Reliable Reservation ALOHA protocol

Reservation ALOHA

a distributed way to establish TDMA channels

a slot successfully captured is periodically reserved (every N slots) till released

Reservation ALOHA

needs a centralized radio environment (full broadcast) so that all terminals "see" the same slot status: busy, free, collided

Reliable Reservation ALOHA

operates in a distributed radio environment with limited broadcast capability (hidden terminals, interference, no ACK)

each terminal propagates slot status information

(Frame Information) using BCH

Reliable Reservation ALOHA

- all active terminals transmit the Frame Information every N slots (frame)
- FI specifies the status of the previous N slots (Sliding Virtual Frame) as observed by the terminal
 - BUSY correct transmission
 - FREE no transmission or collision

RR-ALOHA: Frame Information

RR-ALOHA: slot status

RESERVED if at least one FI says "BUSY"

RR-ALOHA: access

- AVAILABLE slots can be used:
 - □by a new active terminal (as in R-ALOHA)
 - □by an already active terminal to increase its transmission bandwidth
- No Hidden-Terminal problem

RR-ALOHA: access

The ID of the slot "owner" must be included in the FI

The transmission is successful if

the slot is coded as BUSY with the same station ID in all the received FI

RR-ALOHA: access

One terminal attempting access:

- All terminals in the same cluster recognize the transmission.
- All FI will code the slot as BUSY.
- All other terminals will receive FI with the slot as BUSY.
- The slot is declared RESERVED.

More terminals attempting access:

- The terminal recognizing collision codes the slot as FREE.
- The slot remains AVAILABLE.

RR ALOHA: common frame

a unique frame is established among non disjoint radio broadcast domains based on FIs transmitted by nodes in common

RR ALOHA: slot reuse

23 transmissions in 13 slots

Reserving additional bandwidth

- Each active station sets up and manages a BCH
- Payload can be transmitted in the BCH slots
- □ Additional available slots can be reserved for increasing transmission bandwidth (additional channels)

Reserving additional bandwidth

- Using RR- ALOHA procedure on the AVAILABLE Slots
- Using estabilished BCH.
 - New channel requests are signaled
 - Possibility of priority management
 - □ FI guarantees reservation collision detection

ADHOC MAC: Point-to-point channels

- To exploit slot reuse in the same or adjacent clusters (parallel transmissions)
- PTP flag is needed in the FI for each slot
- PTP flag is set by a terminal if:
 - The packet received is broadcast or
 - The packet is destined to the terminal itself
- A reserved slot can be accessed if:
 - The PTP flag is off in all received FI and
 - The FI received from the intended destination marks the slot FREE
- Due to concurrent access attempts: the transmission is successful if the slot is coded as BUSY in the FI of the destination terminal.

ADHOC MAC : Point-to-point channels

ADHOC MAC: Multi-hop Broadcast service

 C_i the set of neighbors of i $S_i \subseteq C_i$ the subset of neighbors that have not received the broadcast packet in slot k

from FIs

Terminal i relays the broadcast packet received in slot k if

$$|S_i| > 0$$

and the following condition is **not** satisfied for all j

$$S_i \subseteq C_j$$
 AND
$$\left\{ \left| C_j \right| > \left| C_i \right| \text{ OR } \left\{ \left| C_j \right| = \left| C_i \right| \text{ AND } ID_j > ID_i \right\} \right\}$$

Multi-hop Broadcast mechanism

Simulation Analysis

- □ Fixed Radius (r parametric)
- ☐ Uniform Power
- □ 1Km² Square Area
- Poisson distributed users (G parametric)

Access Delay

- Very prompt access
- With slot reuse the access delay is even lowered

A N T L A B

Single Hop Broadcast Performance

THROUGHPUT LIMITING FACTORS

- Collisions due to access and clusters' fusion
- Spatial reuse

Throughput Limiting

Factors

ACCESS

COLLISIONS

CLUSTERS' FUSION

SPATIAL REUSE

Collisions

ACCESS COLLISIONS

FUSION COLLISIONS

Spatial Reuse

Not all the slots within a OH cluster can be used for internal transmissions

The hidden terminal problem is solved but spatial reuse is lowered

Broadcast Multi Hop

- Flooding
- ADHOC MAC
- Centralized Greedy

For high connected topologies ADHOC spares 80% of relaying transmissions with respect to flooding

PROs

- Suitable for highly variable ad-hoc net environment
- Fast access to a reliable single-hop broadcast
- Provision of different QoS according to applications needs
- Parallel transmissions for point-to-point communications
- Efficient multi-hop broadcast

CONS

- High overhead (25%)
- Power saving is jeopardized by the need for the BCH