Precalculus

Express sin(kx), cos(kx) via sin x, cos x using Euler's formula

Todor Miley

2019

- Recall Euler's formula: $e^{i\alpha} = \cos \alpha + i \sin \alpha$.
- Recall the formula: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Example

Express sin(3x) and cos(3x) via cos x and sin x.

$$\cos(3x) + i\sin(3x)$$
 | Euler's f-la
= e^{3ix}
= $(e^{ix})^3 = (\cos x + i\sin x)^3$ | Euler's f-la
= $\cos^3 x + 3\cos^2 x (i\sin x) + 3\cos x (i\sin x)^2 + (i\sin x)^3$ | Euler's f-la
= $\cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$ | Use $i^2 = -1$
= $(\cos^3 x - 3\cos x \sin^2 x) + i(3\cos^2 x \sin x - \sin^3 x)$

The real parts of the starting and final expression must be equal; likewise the imaginary parts must be equal; therefore:

$$cos(3x) = cos3 x - 3 cos x sin2 x$$

$$sin(3x) = 3 cos2 x sin x - sin3 x$$