Synthesizing Signaling Pathways from Temporal Phosphoproteomic Data

Ali Sinan Köksal¹, Anthony Gitter², Kirsten Beck³, Aaron McKenna³, Saurabh Srivastava⁴, Nir Piterman⁵, Rastislav Bodík¹, Alejandro Wolf-Yadlin³, Ernest Fraenkel⁶, Jasmin Fisher⁷

¹University of California, Berkeley, ²University of Wisconsin-Madison, ³University of Washington, ⁴20n, ⁵University of Leicester, ⁶Massachusetts Institute of Technology, ⁷Microsoft Research Cambridge

Beyond Pathway Maps

Stimulate receptor Extracellula: DG PIP2 Nucleus

98% of activity is not covered

BioCarta EGF Signaling Pathway

31% of pathway is activated

Data for Inferring Specific Pathways

Temporal phosphorylation

- Global response to receptor stimulus
- Not all activity is phosphorylation
- Irrelevant/spurious phosphorylation

Undirected network topology

- Sparse, high-confidence connections
- Obtained by methods such as PCSF
- No temporal precedence knowledge

Prior knowledge

Directed kinase-substrate interactions

Inferring Network Models

input

| Image: Comparison of the comparison of

output

- Condition-specific pathway maps
- Signed directed graphs
- Signaling event timing annotations

From Data to Constraints

Explore all signed directed graphs that satisfy:

Topological constraints

All interactions must originate from the source

Temporal constraints

Sequences of interactions must agree with temporal precedence

Prior knowledge constraints

Inferred networks may not violate known directions

All network models

Topological Constraints

All interactions must originate from the source.

Valid model

All interactions are on a path from the source.

Invalid model

E activates C but is not reachable from the source.

Temporal Constraints

Interaction paths consistent with temporal data:

Temporal Constraints

Interaction path inconsistent with temporal data:

Summarizing All Valid Models

B is unobserved, we can't determine edge sign

Summarize all valid solutions as a union of networks

EGFR Case Study: Materials

Stimulate EGFR Flp-In HEK-293 cells with EGF ligand. Mass spectrometry at 0, 2, 4, 8, 16, 32, 64, 128 mins. Observe 203 significantly phosphorylated proteins.

Inferred EGFR Pathway Map

We inferred a summary network of **413** edges

202 edges have the same direction in all models

38 edges have the same sign and direction in all models

83% of phosphorylated proteins are included

Inferred MAPK Subnetwork

MAP2K1 unobserved but recovered by topology

Activation of MKL1 inferred via temporal data and prior knowledge

Experimental Validation

Preliminary results validating the prediction Abl2 → Crk

a-pCrk blot, inhibition of Abl2 with 1 nM dasatinib

Conclusion

Pathway models that agree with actual dynamic signaling events

Joint inference with multiple types of constraints (topological, temporal, prior knowledge, ...)

Detect non-ambiguous predictions across all valid models for experimental validation

Acknowledgements

Anthony Gitter

Ernest Fraenkel

Rastislav Bodík Saurabh Srivastava

Jasmin Fisher

Nir Piterman

Alejandro Wolf-Yadlin Kirsten Beck Aaron McKenna