Problema 1

Sejam $\bar{S} \in \mathbb{S}_{++}^n$ e $\alpha \in \mathbb{R}_{++}$. Prove que os conjuntos

$$\{X \in \mathbb{S}^n_{++} \mid \langle \bar{S}, X \rangle \leq \alpha\} \in \{X \in \mathbb{S}^n_{++} \mid \langle \bar{S}, X \rangle = \alpha\}$$

são não-vazios, convexos e compactos. Mostre ainda que o interior do primeiro conjunto não é vazio.

Resposta

Vamos chamar o primeiro conjunto de A e o segundo de B, isto é

$$A = \{X \in \mathbb{S}_{++}^n \mid \langle \bar{S}, X \rangle \leq \alpha \}$$
 e

$$B = \{ X \in \mathbb{S}_{++}^n \mid \langle \bar{S}, X \rangle = \alpha \}.$$

Agora, devemos provar algumas propriedades sobre A e B.

Proposição 1.1. A e B são não-vazios.

 $Demonstração. \text{ Já que } \bar{S} \in \mathbb{S}^n_{++}, \ \bar{S} \neq 0, \ \log_{\bar{S}} \langle \bar{S}, \bar{S} \rangle \neq 0. \text{ Escolhermos } \beta = \frac{\alpha}{\langle \bar{S}, \bar{S} \rangle}. \text{ Já que } \alpha > 0 \text{ e } \langle \bar{S}, \bar{S} \rangle > 0, \\ \beta > 0. \text{ Agora, escolhemos } \bar{X} = \beta \bar{S}. \text{ Temos que para todo } h \in \mathbb{R}^n,$

$$h^T \bar{X} h = h^T \beta \bar{S} h = \beta h^T \bar{S} h > 0,$$

portanto, $\bar{X} \in \mathbb{S}^n_{++} \subseteq \mathbb{S}^n_{+}$. Além disso, $\langle \bar{S}, X \rangle = \alpha$. Logo, $\bar{X} \in A$ e $\bar{X} \in B$. Portanto, $A \neq \emptyset$ e $B \neq \emptyset$. \square

Proposição 1.2. A e B são convexos.

Demonstração. Agora, queremos mostrar que A e B são convexos. Sejam $X, Y \in \mathbb{S}^n_+$ quaisquer escolhemos Z = (X + Y)/2. Temos que, para todo $h \in \mathbb{R}^n$,

$$h^T Z h = h^T (X + Y) h / 2 = (h^T X h + h^T Y h) / 2 > 0.$$

então $Z \in \mathbb{S}_{++}^n$, além disso,

$$\langle Z, \bar{S} \rangle = (\langle X, \bar{S} \rangle + \langle Y, \bar{S} \rangle)/2.$$

Assim, se existe $\beta \in \mathbb{R}$ tal que $\langle X, \bar{S} \rangle = \langle Y, \bar{S} \rangle = \beta$, então $\langle Z, \bar{S} = \beta$, ou seja, B é convexo. Além disso, se existe $\beta \in \mathbb{R}$ tal que $\langle X, \bar{S} \rangle \leq \beta$ e $\langle Y, \bar{S} \rangle \leq \beta$, então, $\langle Z, \bar{S} \rangle \leq \beta$, ou seja, A é convexo. \square

Proposição 1.3. A e B são limitados.

Demonstração. Sejam $T \in \mathbb{S}^n \setminus \{0\}$ e $X \in A$. Sabemos que A é limitado se e somente se existe $\theta \in \mathbb{R}_+$ tal que $X + \theta T \notin A$.

Se $\langle T, \bar{S} \rangle = 0 \rangle$, basta escolher $\theta = \frac{\alpha - \langle X, \bar{S} \rangle}{\langle T, \bar{S} \rangle} + 1$. Já que $\alpha \geq \langle X, \bar{S} \rangle$, $\theta \geq 1 > 0$, logo, $\theta \in \mathbb{R}_+$ e $\langle X + \theta T, \bar{S} \rangle = \alpha + \langle T, \bar{S} \rangle > \alpha$, logo, $X + \theta T \notin A$.

Caso contrário, pelo **Ex. 21**, já que $X \in \mathbb{S}_{++}^n$, $T \notin \mathbb{S}_{+}^n \setminus 0$. Logo, existe $h \in \mathbb{R}^n$ tal que

$$h^T T h < 0$$
, portanto,

se
$$\theta = -\frac{h^T X h}{h^T T h} + 1$$
, $\theta \ge 1 > 0$. Logo, $\theta \in \mathbb{R}_+$ e já que

$$h^{T}(X + \theta T)h = h^{T}Xh + \theta h^{T}Th = 0 + h^{T}Th < 0.$$

 $X+\theta T\notin \mathbb{S}^n_{++}$, logo, $X+\theta T\notin A$. Assim, mostramos que A é limitado. Já que $B\subseteq A, B$ também é limitado. \Box

Proposição 1.4. A e B são fechados.

Demonstração. Sabemos que \mathbb{S}^n_{++} é fechado. $C = \{X \in \mathbb{S} \mid \langle X, \bar{S} \rangle \leq \alpha\}$ é um semiespaço, logo, é fechado. $D = \{X \in \mathbb{S} \mid \langle X, \bar{S} \rangle = \alpha\}$ é um hiperplano, logo, é fechado. $A = \mathbb{S}^n_{++} \cap C$ e $B = \mathbb{S}^n_{++} \cap D$, ou seja, tanto A quanto B são fechados.

Proposição 1.5. A tem interior não vazio.

Demonstração. Seja $X = \frac{\alpha \bar{S}}{2\langle \bar{S}, \bar{S} \rangle} \in A$. Já que \mathbb{S}^n_{++} é aberto, existe um $\bar{\theta} \in \mathbb{R}_+$ tal que $X + \theta T \in \mathbb{S}^n_{++}$ para todo $T \in \mathbb{B}$ e θ que respeite $\bar{\theta} \geq \theta \in \mathbb{R}_+$. Escolhemos agora $\theta = \min(\bar{\theta}, \frac{\alpha}{4\langle \bar{S}, \bar{S} \rangle})$. Temos que, para todo $T \in \mathbb{B}$,

$$\langle X + \theta T, \bar{S} \rangle = \langle X + \bar{S} \rangle + \theta \langle T, \bar{S} \rangle = \alpha/2 + \theta \langle T, \bar{S} \rangle,$$

por Cachy-Schwartz (**Teo. 37**) e pela definição de θ , respectivamente, temos

$$\alpha/2 + \theta \langle T, \bar{s} \rangle \le \alpha/2 + \theta \langle \bar{S}, \bar{S} \rangle \le \alpha/2 + \alpha/4 \le \alpha.$$

Portanto, para todo $T \in \mathbb{B}$, $X + \theta T \in A$, logo, X pertence ao interior de A e o interior de A é não-vazio. \square

Com isso, temos que A e B são não-vazios, convexos e compactos e A tem interior não-vazio, como pedido pelo execício.

Problema 2

Seja $\mathcal{A}: \mathbb{S}^n \to \mathbb{R}^m$ uma função linear e $b \in \mathbb{R}^m$. Seja $w \in \mathbb{R}^m$ tal que $w_1 \ge \cdots \ge w_n$. Formule o seguinte problema de otimização como um programa semidefinido:

Minimizar
$$w^T \lambda^{\downarrow}(X)$$

sujeito a $\mathcal{A}(X) = b$,
 $X \in \mathbb{S}^n$.

Resposta

Vamos definir $\gamma \in \mathbb{R}^{0 \oplus [n]}$ e $\hat{w} \in \mathbb{R}^n$ da seguinte maneira:

$$\gamma_k = \sum_{i=1}^k \lambda_i^{\downarrow}(X), \quad \forall k \in [n],$$

$$\gamma_0 = 0,$$

$$\hat{w}_k = w_k - w_{k+1}, \quad \forall k \in [n-1],$$

$$\hat{w} = w_n.$$

Temos

$$w^{T} \lambda^{\downarrow}(X) = \sum_{i=1}^{n} w_{i} \lambda_{i}^{\downarrow}(X) = \sum_{i=1}^{n} w_{i} (\gamma_{i}(X) - \gamma_{i-1}(X)) = \sum_{i=1}^{n} w_{i} \gamma_{i}(X) - \sum_{i=1}^{n-1} w_{i} \gamma_{i-1}(X) = \sum_{i=1}^{n-1} \gamma_{i}(X) (w_{i} - w_{i+1}) + \gamma_{n}(X) w_{n} = \sum_{i=1}^{n} \gamma_{i}(X) \hat{w}_{i} = \hat{w}^{T} \gamma[n].$$

Além disso, já que $\hat{w} \geq 0$, para qualquer $\mu \in \mathbb{R}$,

$$\hat{w}^T \gamma[n] \leq \mu \Leftrightarrow \text{existe } \hat{\gamma} \in \mathbb{R}^n \text{ tal que } \gamma[n] \leq \hat{\gamma} \in \hat{w}^T \hat{\gamma} \leq \mu.$$

Assim, podemos escrever (??) como

Minimizar
$$\mu$$

sujeito a $\mathcal{A}(X) = b$,
 $X \in \mathbb{S}^n$,
 $\mu \in \mathbb{R}$,
 $\hat{\gamma} \in \mathbb{R}^n$,
 $\gamma[n] \leq \hat{\gamma}$,
 $w^T \lambda^{\downarrow}(X) \leq \mu$.