PREPARED BY:	DATE	SHARP	SPEC No. LD-16Z11 FILE No.
APPROVED BY:	DATE		ISSUE: December, 21, 2004
			PAGE: 21 pages
		MIE-KAMEYAMA PRODUCTION GROUP	APPLICABLE GROUP
		SHARP CORPORATION	MIE-KAMEYAMA PRODUCTION
	=	SPECIFICATION	GROUP
		TFT - LCD mod MODEL No. LQ255T3L	

CUSTOMER'S APPROVAL

BY

PRESENTED

BY K. Janoka

K. TANAKA

Department General manager Development Engineering Dept. 2 KAMEYAMA DEVELOPMENT CENTER MIE-KAMEYA PRODUCTION GROUP SHARP CORPORATION

RECORDS OF REVISION

MODEL No: LQ255T3LZ1K

SPEC No: LD-16Z11

	NO.		PAGE	SUMMARY	NOTE
2004,12,21			-	-	1st Issue
		·			

1. Application

This specification applies to the color TFT-LCD module LQ255T3LZ1K.

- * These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
- * The device listed in these specification sheets was designed and manufactured for use in AV equipment.
- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT ($\underline{\text{Thin }}\underline{\text{Film }}\underline{\text{T}}\text{ransistor}$). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a 1366 × RGB × 768 dots panel with 16,777,216 colors by using LVDS ($\underline{\text{Low }}\underline{\text{V}}\text{oltage }\underline{\text{D}}\text{ifferential }\underline{\text{Signaling}}$) to interface, +5V of DC supply voltages and +24V of DC supply voltage for back light.

This module also includes the DC/AC inverter to drive the CCFT.

And in order to improve the response time of LCD, this module applies the O/S (over shoot) driving technology for the control circuit .In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

By using the captioned process, the image signals of this LCD module are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized.

3. Mechanical Specifications

Parameter	Specifications	Unit
Display size	64.8 (Diagonal)	cm
	25.5 (Diagonal)	inch
Active area	564.8 (H) x 317.6 (V)	mm
Pixel Format	1366 (H) x 768 (V)	pixel
	(1 pixel = $R + G + B$ dot)	pixei
Pixel pitch	0.4135(H) x 0.4135 (V)	mm
Pixel configuration	R, G, B vertical stripe	
Display mode	Normally black	
Unit Outline Dimensions *1	646.0(W) x 373.0(H) x 51.0(D)	mm
Mass	6.7 +/- 0.3	kg
Surface treatment	Anti glare, low reflection coating	
	Hard coating: 2H	
	Haze: 23 +/- 5%	

(*1)Outline dimensions are shown in Fig.1

4. Input Terminals

4-1. TFT panel driving

CN1 (Interface signals and +5V DC power supply) (Shown in Fig.1)

Using connector : FI-X30SSL-HF (Japan Aviation Electronics Ind., Ltd.)

Mating connector : FI-X30H,FI-X30C or FI-X30M (Japan Aviation Electronics Ind. , Ltd.)

Mating LVDS transmitter: THC63LVDM83A or equivalent device

Pin No.	Symbol	Function	Remark
1	VCC	+5V Power Supply	
2	VCC	+5V Power Supply	
3	VCC	+5V Power Supply	
4	VCC	+5V Power Supply	
5	GND		
6	GND		
7	GND		
8	GND		
9	SELLVDS	Select LVDS data order [Note1]	Pull up Default H:3.3V
10	NC		
11	GND		
12	RIN0-	Negative (-) LVDS differential data input	LVDS
13	RIN0+	Positive (+) LVDS differential data input	LVDS
14	GND		
15	RIN1-	Negative (-) LVDS differential data input	LVDS
16	RIN1+	Positive (+) LVDS differential data input	LVDS
17	GND		
18	RIN2-	Negative (-) LVDS differential data input	LVDS
19	RIN2+	Positive (+) LVDS differential data input	LVDS
20	GND		
21	CLKIN-	Clock Signal(-)	LVDS
22	CLKIN+	Clock Signal(+)	LVDS
23	GND		
24	RIN3-	Negative (-) LVDS differential data input	LVDS
25	RIN3+	Positive (+) LVDS differential data input	LVDS
26	GND		
27	R/L	Horizontal shift direction [Note 2]	
28	U/D	Vertical shift direction [Note 2]	
29	TEST1	Fix to GND level usually.	
30	TEST2	Fix to GND level usually.	

[Note]

- 1. Shield case on the back surface of module contacts to GND of internal circuit.
- 2. It is recommend to connect all the GND terminals because of stable operation.

[Note1] SELLVDS

Transmitter		SEL	LVDS
Pin No	Data	=L(GND)	=H(3.3V) or Open
51	TA0	R0(LSB)	R2
52	TA1	R1	R3
54	TA2	R2	R4
55	TA3	R3	R5
56	TA4	R4	R6
3	TA5	R5	R7(MSB)
4	TA6	G0(LSB)	G2
6	TB0	G1	G3
7	TB1	G2	G4
11	TB2	G3	G5
12	TB3	G4	G6
14	TB4	G5	G7(MSB)
15	TB5	B0(LSB)	B2
19	TB6	B1	В3
20	TC0	B2	B4
22	TC1	В3	B5
23	TC2	B4	В6
24	TC3	B5	B7(MSB)
27	TC4	NA	NA
28	TC5	NA	NA
30	TC6	DE	DE
50	TD0	R6	R0(LSB)
2	TD1	R7(MSB)	R1
8	TD2	G6	G0(LSB)
10	TD3	G7(MSB)	G1
16	TD4	В6	B0(LSB)
18	TD5	B7(MSB)	B1
25	TD6	NA	NA

Input block diagram

SELLVDS= Low(GND)

SELLVDS= High(3.3V) or Open

DE: Display Enable

NA: Not Available (Fixed Low)

[Note 2]

Normal (Default)

R/L:L(GND)U/D:L(GND)

Horizontal reverse image

R/L:H(3.3V)U/D:L(GND)

Vertical reverse image

R/L:L(GND)U/D:H(3.3V)

Horizontal and vertical reverse image

R/L:H(3.3V)U/D:H(3.3V)

CN2(O/S control) -(Shown in Fig 1)

OS Driving Pin No. and function

Using connector : SM07B-SRSS-TB-A (JST)

Mating connector : SHR-07V-S or SHR-07V-S-B (JST)

0: (Low),1 (High)

Pin No.	Symbol	Function	Default
1	Frame	Frame frequency setting 1:60Hz, 0:50Hz	Pull down(10k ohm)
2	O/Sset	O/S operation setting 1:OS_ON, 0:OS_OFF	Pull down(10k ohm) [Note 1]
3	TEST3	Fix to GND level usually.	Pull down(30k ohm) [Note 1]
4	Temp3	Data3 of panel surface temperature	Pull down(10k ohm)
5	Temp2	Data2 of panel surface temperature	Pull down(10k ohm)
6	Temp1	Data1 of panel surface temperature	Pull down(10k ohm)
7	GND		

[Note 1] In case of O/S set setting "Low"(O/S_OFF), it should be set the Temp1~3 to "Low".

According as the surface temperature of the panel, enter the optimum 3 bit signal into pin No.4,5,6. Measuring the correlation between detected temperature by the sensor on PWB in users side and actual surface temperature of panel at center, convert the temperature detected by the sensor to the surface temperature of panel to enter the 3 bit temperature data.

			Su	ırface temp	erature of p	anel		
Pin no.	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35 and
								above
4	0	0	0	0	1	1	1	1
5	0	0	1	1	0	0	1	1
6	0	1	0	1	0	1	0	1

^{*0 :} Low level voltage(0V)

4-2. Backlight driving

CN3 (Inverter control) Using connector: B8B-PH-SM3-TB(JST) Mating connector: PHR-8 (JST)

Pin No.	Symbol	Function	Remark
1	Von/off	Inverter control	[Note 1]
2	Vsel	Fix to 5V level usually.	
3	TEST	OPEN	
4	TEST	OPEN	
5	V_{BRT}	Brightness Control	[Note 2]
6	TEST	OPEN	
7	TEST	OPEN	
8	GND		

^{*}Shield case on the back surface of module doesn't contact to GND of internal circuit .

[Note 1] $V_{ON/OFF}$ (Inverter control)

Input voltage	Function
5V	Inverter: ON
0V	Inverter: OFF

[Note 2] V_{BRT} (Brightness Control)

PWM Brightness Control is regulated by analog input voltage (0V to 5V).

Input voltage	Function
5V	Brightness Control : Min luminance (Dark)
0V	Brightness Control : Max luminance (Bright)

^{1:} High level voltage(3.3V)

^{*}For overlapping temperatures (such as 5 ,10 ,15 ,20 ,25 , 30 ,35) select the optimum parameter, judging from the actual picture image.

CN4,CN5 (Inverter Power input Pin layout)

Using connector: B10B-PH-SM3-TB (JST)

Mating connector: PHR-10 (JST)

Pin No.	Symbol	Function
1	V _{INV}	+24V
2	V_{INV}	+24V
3	V_{INV}	+24V
4	V _{INV}	+24V
5	V_{INV}	+24V
6	GND	GND
7	GND	GND
8	GND	GND
9	GND	GND
10	GND	GND

^{*} Shield case on the back surface of module doesn't contact to GND of internal circuit .

4-3. Lamp characteristics

The back light system is direct type with 14 CCFTs (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table. The value mentioned below is at the case of one CCFT.

CCFT type : MBTK4B235AX600MMJAU/D (HARISON TOSHIBA LIGHTING,Corp.)

K-CB601-R-223 (WEST ELECTRIC CO.,LTD)

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Life time	$T_{\rm L}$	60000	-	-	Hour	[Note 1]

[Note 1] Lamp life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of Ta=25 and brightness control($V_{BRT}=0V$).

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage	VI	Ta=25	-0.3 ~ 3.6	V	[Note 1]
(for Control)					
5V supply voltage	VCC	Ta=25	0 ~ + 6	V	
(for Control)					
Input voltage	VBRT	Ta=25	0 ~ + 6	V	
(for Inverter)	Von/off				
	VSEL				
24V supply voltage	V _{INV}	Ta=25	0 ~ +31	V	
(for Inverter)					
Storage temperature	Tstg	-	-25 ~ +60		
Operation temperature	Topa	-	0 ~ +50		[Note 2]
(Ambient)					

[Note 1] SELLVDS, R/L, U/D,TEST1, TEST2, TEST3, Frame, O/S set, Temp1, Temp2, Temp3

[Note 2] Humidity 95%RH Max.(Ta 40)

Maximum wet-bulb temperature at 39 or less.(Ta>40) No condensation.

6. Electrical Characteristics

6-1. Control circuit driving

T	_	$^{\circ}$	Z
- 1	ีว-	٠,	7

Para	Parameter			Min.	Тур.	Max.	Unit	Remark
+5V supply	Supply voltage		Vcc	+4.5	+5.0	+5.5	V	[Note 1]
voltage	C	Current	Icc	-	1700	2400	mA	[Note 2]
voltage	dis	sipation						
Permissibl	e inpu	t ripple	V_{RP}	-	-	100	mV_{P-P}	Vcc = +5.0V
VO	ltage							
Differential i	nput	High	V_{TH}	-	-	100	mV	$V_{CM} = +1.2V$
threshold vol	tage	Low	V_{TL}	-100	-	-	mV	[Note 6]
Input Lo	ow vo	ltage	VIL	-	-	1.0	V	Note 3
Input Hi	igh vo	ltage	VIH	2.3		3.3	V	Thole 31
			I _{IL1}			100	۸	$V_I = 0V$
Input leak	curran	t (Low)	IILI	-	1	100	μA	[Note 4]
input leak	Curren	ı (Low)	I _{IL2}			400	۸	$V_I = 0V$
			IIL2	-	ı	400	μA	[Note 5]
			Inh1			100	۸	$V_{I} = 3.3V$
Input look	Input leak current (High)			-	ı	100	μA	[Note 4]
input leak t						400	۸	V _I =3.3V
			I _{IH2}		-	400	μA	[Note 5]
Termin	al resi	stor	Rт	-	100	-		Differential input

[Note] Vcm: Common mode voltage of LVDS driver.

[Note 1]

1) Input voltage sequences

0 < t1 10ms, 0 < t2-1 20ms

t2-2 10ms, 0 < t3 1s

t4 1s, 200ms t5

Data1 : CLKIN ± 、RIN0 ± 、RIN1 ± 、RIN2 ± 、RIN3 ± Data2 : R/L、U/D、SELLVDS、Frame、O/Sset、Temp1,2,3

2) Dip conditions for supply voltage

a) 2.7V Vcc < 4.5V

td 10ms

b) Vcc < 2.7V

Dip conditions for supply voltage is based on input voltage sequence.

[Note 2] Typical current situation: 256 gray-bar pattern (Vcc = +5.0V) The explanation of RGB gray scale is seen in section 8.

Vcc = 5.0V CK = 82.0MHz $Th = 20.67 \mu s$

[Note 3] R/L, U/D, SELLVDS, TEST1, TEST2, TEST3, Frame, O/Sset, Temp1, Temp2, Temp3

[Note 4] R/L, U/D

[Note 5] SELLVDS, TEST1, TEST2, TEST3, Frame, O/Sset, Temp1, Temp2, Temp3

[Note 6] $CKIN \pm RIN0 \pm RIN1 \pm RIN2 \pm RIN3 \pm RIN3$

6-2. Inverter driving for back light

The back light system is direct type with 14 CCFTs (Cold Cathode Fluorescent Tube).

Ta=25

Parameter		Symbol	Min.	Typ.	Max.	Unit	Remark
+ 24V	Current dissipation	Inv	-	3.2	5.8	A	$V_{INV} = 24V$ $V_{BRT} = 0V, V_{ON} = 5V$
	Supply voltage	V _{INV}	22.8	24.0	25.2	V	【Note 1】
Pe	rmissible input ripple voltage	Vrf	-	1	200	mV _{p-p}	$V_{\rm INV} = +24V$
I	nput voltage (Low)	Vonl	0	-	0.5	V	【Note2】
		VSELL					
T.	nnut voltaga (High)	Vonh	3.0	-	5.0	V	
1	nput voltage (High)	VSELH	3.0	-	5.0	V	
Brig	htness control voltage		0		5	V	[Note3]
Brig	thtness control voltage Vs	$V_{ m BRT}$	95		15	%	
	Burst Duty Ratio						

[Note 1] 1)V_{INV}-turn-on condition

12 05, 15 05, 14 05

^{*} For the reduction of rush current, T1 should be more than 100 $\mu\,\text{s}.$

2) Vinv-turn-off condition

[Note 2] VON, VSEL

[Note 3] VBRT

[Note] The performance of the backlight, for example life time or brightness, is much influenced by the characteristics of the power supply for the inverter. When you design or order the power supply for the inverter, please make sure that a poor lighting caused by the mismatch of the backlight and the inverter (miss-lighting, flicker, etc.) never occur. When you confirm it, the module should be operated in the same condition as it is installed in your instrument. Also, the power supply for the inverter use the one which has safe protection circuits such as the circuit of the detection of the overvoltage / the overcurrent.

7. Timing characteristics of input signals

7-1. Timing characteristics

Timing diagrams of input signal are shown in Fig.2

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	1/Tc	65	82	85	MHz	
	Horizontal period	TH	1560	1696	1940	clock	
Data analila	Horizontai period		17.00	20.68	-	μs	
Data enable signal	Horizontal period (High)	THd	1366	1366	1366	clock	
Signai	Vertical period	TV	778	806	972	line	【Note1】
	Vertical period (High)	TVd	768	768	768	line	

[Note1] When vertical period is very long, flicker and etc. may occur.

[Note2] Cut off the power supply after you make it black screen indications.

7-2. Input data signal and display position on the screen

Display Position of Data (V,H)

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

	- P	Data signal																								
	Colors &	Gray	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1		G3		G5	G6	G 7	В0	B1	B2	В3	B4	В5	В6	В7
	Gray scale	Scale																								
	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
r	Green	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Colc	Cyan	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Basic Color	Red	-	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Magenta	-	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rec	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le of	仓	\downarrow				`	V								L							`	\downarrow			
Gray Scale of Red	Ŷ	\downarrow				`	V								l							`	V			
Gray	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
en	仓	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gre	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le of	Û	V				`	V								L							`	V			
Gray Scale of Green	Û	V					ν								<u>ا</u>							`	ν			
ìray	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Û	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ıe	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
ale o	①	V				`	V				↓									`	V					
/ Sc	Û	V				`	ν <u> </u>								l .							`	ν			
Gray	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	Û	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

^{0:} Low level voltage,

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16,777,216 colors display can be achieved on the screen.

^{1 :} High level voltage.

9. Optical characteristics

Ta=25 , Vcc=+5.0V, $V_{INV}=+24.0V$, Timing characteristics of input signals: Typical value

Parar	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
Viewing angle	Horizontal	21 22	CR 10	70	85	-	Deg.	[Note1,4]	
range	Vertical	11 12		70	85	-	Deg.	$V_{BRT} = 0V$	
Contra	st ratio	CRn		600	800	-		[Note2,4] V _{BRT} =0V	
Respon	sa tima	r		-	15	45	ms	[Note3,4,5]	
Respon	se unie	d		-	15	45	ms	$V_{BRT}=0V$	
	white	Wx		0.242	0.272	0.302	-		
	Willte	Wy		0.247	0.277	0.307	-		
	red	Rx		0.610	0.640	0.670	-		
Chromaticity		Ry	=0 deg.	0.300	0.330	0.360	-	[Note 4]	
Cironiaticity		Gx		0.250	0.280	0.310	-	$V_{BRT}=0V$	
	green	Gy		0.570	0.600	0.630	-		
	blue	Bx		0.120	0.150	0.180	-		
	orue	By		0.030	0.060	0.090	-		
Luminance of white		Y_L		400	500	-	cd/m ²		
Luminance uniformity		w		-	-	1.25	-	Note 6 $V_{BRT} = 0V$	

Measurement condition : Set the value of V_{BRT} to maximum luminance of white.

[Note] The optical characteristics are measured using the following equipment.

Response time: BM-5A

Viewing angle range : EZ-CONTRAST Luminance, Chromaticity, Contrast : SR-3

Fig.3 Measurement method of optical characteristic

^{*}The measurement shall be executed more than 60 minutes after lighting at rating.

[Note 1] Definitions of viewing angle range:

[Note 2] Definition of contrast ratio:

The contrast ratio is defined as the following.

[Note 3] Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray (bright)" and "any level of gray (dark)".

[Note 4] This shall be measured at center of the screen.

[Note 5] "15ms" is the value when O/S driving is used at typical input time value.

[Note 6] Definition of white uniformity;

White uniformity is defined as the following with five measurements. (A \sim E)

10. Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) This product is using the parts(inverter, CCFT etc) which generate the high voltage. Therefore, during operating, please don't touch these parts.
- c) Brightness control voltage is switched for "ON" and "OFF", as shown in the following figure. Voltage difference generated by this switching, VINV, may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit.

Since inverter board's GND is not connected to the frame of the LCD module, please connect it with the Customer's GND of inverter power supply.

- d) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- e) Since the front polarizer is easily damaged, pay attention not to scratch it.
- f) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- g) When the panel surface is soiled, wipe it with conventional Display cloth such as absorbent cotton or other soft cloth.
- h) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- i) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- j) Be sure to design the grounding of a module installation point for the influence of EMI and the foreign noise to become the smallest.
- k) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- 1) Observe all other precautionary requirements in handling components.
- m) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc.. So, please avoid such design.

n) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.

11. Packing form

a) Piling number of cartons: 2 maximumb) Packing quantity in one carton: 5 pcs

c) Carton size: 840 mm(W) x 630 mm(D) x 665mm(H)

d) Total mass of one carton filled with full modules: 60kg(Max) Packing form figures are shown in Fig.4

12. Reliability test item

No.	Test item	Condition							
1	High temperature storage test	Ta=60 240h							
2	Low temperature storage test	Ta=-25 240h							
3	High temperature and high humidity	Ta=40 ; 95%RH 240h							
	operation test	(No condensation)							
4	High temperature operation test	Ta=50 240h							
5	Low temperature operation test	Ta=0 240h							
		Frequency: 10~57Hz/Vibration width(one side): 0.075mm							
6	Vibration test	: 58~500Hz/Acceleration : 9.8 m/s ²							
0	(non-operation)	Sweep time: 11 minutes							
		Test period : 3 hours(1h for each direction of X,Y,Z)							
	Shock test	Maximum acceleration: 490m/s ²							
7	(non-operation)	Pulse width: 11ms, sinusoidal half wave							
	(non-operation)	Direction : +/-X,+/-Y,+/-Z,once for each direction.							
		* At the following conditions, it is a thing without incorrect							
		operation and destruction.							
		(1)Non-operation: Contact electric discharge ± 10kV							
8	ESD	Non-contact electric discharge ± 20kV							
		(2)Operation Contact electric discharge ± 8kV							
		Non-contact electric discharge ± 15kV							
		Conditions: 150pF、330ohm							

[Result evaluation criteria]

Under the display quality test condition with normal operation state, there shall be no change which may affect practical display function.

13. Others

1)Lot No. Label;

It sticks the label which displayed SHARP, product model (LQ255T3LZ1K), a product number and MADE IN JAPAN in the module surface.

2) Packing Label

- 3) Adjusting volume have been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- 4) Disassembling the module can cause permanent damage and should be strictly avoided.
- 5) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 6) The chemical compound which causes the destruction of ozone layer is not being used.
- 7) Label of using material information

 It is displaying the material of the optical parts with the label in the module back.

MATERIAL INFORMATION

OPTICAL FILM :> <u>PC</u>, PEST, AKUR-X, <u>PC</u> <

LENS FILM :> <u>PET</u>, AK-X <

DIFFUSER SHEET :> PET <

DIFFUSER BOARD:> MMA/S <

REFLECTOR :> PET <

8) Cold cathode fluorescent lamp in LCD PANEL contains a small amount of mercury. Please follow local ordinances or regulations for disposal. It is displaying the label in the module back.

9) When any question or issue occurs, it shall be solved by mutual discussion.

Fig. 4 Packing Form

DIMENSIONS MODULE OUTLINE T C D Fig1.LQ255T3LZ1K