```
1. (a) \forall a \in A, (M(x) \land (\exists p \in P, Won(x, p, "free-skating"))) \rightarrow (C(a) \lor U(a))
```

- (b) $\sim \exists a \in A, F(a) \land R(a) \land (\exists p \in P, Won(a, p, "bobsleigh") \lor Won(a, p, "ski-jumping"))$
- (c) $\forall x \in A, C(x) \to (\exists y \in A, U(y) \land (\exists p \in P, \exists w \in W, Won(y, p, w)) \land Coach(y, x))$
- (d) $\exists x \in A, R(x) \land F(x) \land (\sim \exists y \in A, \operatorname{Coach}(x, y) \land (\forall w \in W, \operatorname{Comp}(x, w) \rightarrow \operatorname{Comp}(y, w)))$
- (e) $\exists a \in A, \exists b \in A, a \neq b \land \operatorname{Coach}(\operatorname{"Mary"}, a) \land \operatorname{Coach}(\operatorname{"Mary"}, b) \land$ $(\forall w \in W, \text{Comp}(\text{"Mary"}, w) \to (\sim \text{Comp}(a, w) \land \sim \text{Comp}(b, w)))$
- (f) $\forall a \in A, (U(a) \land \operatorname{Comp}(a, \text{``luge''})) \rightarrow (\exists x \in A, C(x) \land \operatorname{Comp}(x, \text{``luge''}) \land \operatorname{Coach}(x, a) \land$ $(\sim \exists y \in A, x \neq y \land C(y) \land \text{Comp}(y, \text{``luge''}) \land \text{Coach}(y, a)))$
- 2. (a) Canadian athletes neither coach athletes nor are coached by athletes.
 - (b) Self-coached athletes neither coach other athletes nor are coached by other athletes.
 - (c) American skeleton athletes are coached by at most one athlete.
 - (d) Medal-winning Canadian athletes are not coached by any athlete
 - (e) Every athlete is coached by one of two athlete coaches.
- 3. (a) *Proof.*
 - (1) $\forall x \in A, (U(x) \vee R(x)) \rightarrow \sim \exists y \in A, \operatorname{Coach}(y, x)$ Premise(2) Coach("Mary", "Paul") Premise
 - (3) $\forall x \in A, (U(x) \vee R(x)) \rightarrow \forall y \in A, \sim \operatorname{Coach}(y, x)$
 - 1, Generalized De Morgan's
 - (4) $(U(\text{``Paul''}) \vee R(\text{``Paul''})) \rightarrow \sim \text{Coach}(\text{``Mary''}, \text{``Paul''})$ 3, Universal instantiation
 - 4, 2, [M. TOL]

(6) $\sim U(\text{``Paul''}) \land \sim R(\text{``Paul''})$

(5) $\sim (U(\text{``Paul''}) \vee R(\text{``Paul''}))$

5, [DM]

 $\therefore \sim U(\text{"Paul"})$

6, [SPEC] ■

- (b) Proof.
 - $\forall a \in A, C(a) \rightarrow \exists x \in P, \exists y \in W, Won(a, x, y)$ (1)

Premise

- $\forall a \in A, \exists x \in P, \exists y \in W, \text{Won}(a, x, y) \rightarrow \forall b \in A, \sim \text{Coach}(b, a)$ (2)
- Premise
- $\forall a \in A, \text{Comp}(a, \text{``skeleton''}) \rightarrow \exists b \in A, \text{Coach}(b, a)$ (3)
- Premise

(4) $\forall a \in A, C(a) \to Won(a, i, j)$

1, Existential instantiation

 $C(p) \to \operatorname{Won}(p, i, j)$

- 4, Universal instantiation
- (6) $\forall a \in A, \text{Won}(a, i, j) \rightarrow \forall b \in A, \sim \text{Coach}(b, a)$ 2, Existential instantiation

(7) $\operatorname{Won}(p, i, j) \to \sim \operatorname{Coach}(q, p)$

6, Universal instantiation

(8) $C(p) \rightarrow \sim \operatorname{Coach}(q, p)$

- 5, 7, [TRANS]
- (9) $\forall a \in A, \text{Comp}(a, \text{``skeleton''}) \to \text{Coach}(w, a)$
- 3, Existential instantiation
- (10) $\operatorname{Comp}(p, \text{``skeleton''}) \to \operatorname{Coach}(w, p)$
- 9, Universal instantiation

(11) Coach $(w, p) \rightarrow \sim C(p)$

- 8, [IMP]
- (12) Comp(p, "skeleton") $\rightarrow \sim C(p)$
- 10, 11, [TRANS]
- (13) $\forall x \in A, \text{Comp}(x, \text{``skeleton''}) \rightarrow \sim C(x)$
- 12, Universal generalization
- $(14) \sim \exists x \in A, \sim (\text{Comp}(x, \text{``skeleton''}) \rightarrow \sim C(x))$ 13. Generalized De Morgan's

 - $\therefore \sim \exists x \in A, C(x) \land \text{Comp}(x, \text{``skeleton''})$
- 14, Negation of implication
- 4. (a) $\forall x \in \mathbb{Z}^+, (Odd(x) \land \sim Divisible(x,3)) \rightarrow Divisible(x^2-1,3)$

(b) *Proof.* Let there be two general cases for x: x = 3k + 1 and 3k + 2, where $k \in \mathbb{N}$. In the first case, we find that $(3k + 1)^2 - 1 = (9k^2 + 6k + 1) - 1 = 9k^2 + 6k = 3k(k + 2)$. For the second case, we can see that $(3k + 2)^2 - 1 = (9k^2 + 12k + 4) - 1 = 9k^2 + 12k + 3 = 3(3k^2 + 4k + 1)$.

In both cases, $x^2 - 1$ produces a formula which is divisible by 3, and thus for all values of x that are not divisible by 3, $x^2 - 1$ must be divisible by 3. Given that the odd values of x that are not divisible by 3 is a subset of all values of x that are not divisible by 3, it is thus proven that if x is a positive odd integer that is not divisible by 3, then $x^2 - 1$ is divisible by 3.

- 5. (a) $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \to (3n^2 + 60n + 100) \leq cn^2$
 - (b) Proof. Let c = 4 and $n_0 = 62$. Then, let n by any arbitrary natural number. If we assume that the antecedent, $n \ge n_0$, is true, then let us prove that $(3n^2 + 60n + 100) \le 4n^2$:

$$(3n^2 + 60n + 100) \le 4n^2$$
$$-n^2 + 60n + 100 \le 0$$
$$n^2 - 60n - 100 \ge 0$$

Solving the quadratic equation, we find that $n \le -1.62$ and $n \ge 61.62$. As the domain of n only includes natural numbers, we find that when $n \ge 62$ (thus also satisfying the initial assumption of $n \ge n_0$), the statement $(3n^2 + 60n + 100) \le 4n^2$ holds true. Therefore, an algorithm that executes in $3n^2 + 60n + 100$ is in $O(n^2)$.