Contact Information

- Stephan Heinemann
- SMS: +1 (250) 891-5446
- Email: stephan.heinemann@hotmail.com
- Bookings, Questions

Part II – Climbing and Descending

- Review Basic Climbing and Descending
- Departure and Approach Climbs and Descents
- V-Speeds (POH)
- Flaps
- Balked Landings Power, Attitude, Trim
- Summary and Questions
- Pre-Flight Briefing

Review Basic Climbing and Descending

- Mentally perform a basic climb and level off and state all required actions. (APT)
- Mentally perform a basic power-off descent and level off and state all required actions. (PAT)
- How do we maintain our airspeed during a climb with set power?
- How do we estimate our glide path during a descent?

Departure and Cruise Climbs

- Best angle / gradient (Vx) ensures best obstacle clearance
- Best rate (Vy)— minimizes climbing time
- Normal improves forward visibility and engine cooling
- En-Route addresses ground speed, economics, convenience and comfort (Vcc = Vy + (Vy - Vx))

Climb Attitudes

- Prolonged climbs may require attitude changes for lookout
- En-Route climbs improve visibility, engine cooling and economics
- Mixture can be leaned during climbs passing an altitude of 3000 ft
- Control airspeed with pitch attitude at full power
- More nose-up attitude requires more rudder input and vice versa

Reference Climb Airspeeds

AIRSPEEDS FOR NORMAL OPERATION

Unless otherwise noted, the following speeds are based on a maximum weight of 2550 pounds and may be used for any lesser weight.

Takeoff:	
Normal Climb Out	75-85 KIAS
Short Field Takeoff, Flaps 10°, Speed at 50 Feet	. 56 KIAS
Enroute Climb, Flaps Up:	
Normal, Sea Level	75-85 KIAS
Normal, 10,000 Feet	70-80 KIAS
Best Rate-of-Climb, Sea Level	74 KIAS
Best Rate-of-Climb, 10,000 Feet	72 KIAS
Best Angle-of-Climb, Sea Level	62 KIAS
Best Angle-of-Climb, 10,000 Feet	CT VIAC

Reference climb airspeeds can be found in the POH under Section 4 Normal Procedures

Establishing a Power-on Descent

- In cruise attitude lookout ahead and below
- Reduce power for estimated descent airspeed
- Keep straight and control yaw with rudder
- Decelerate to descent airspeed maintaining cruise attitude
- Establish required pitch attitude and trim

Maintaining a Power-On Descent

- Adjust power and attitude to attain desired descent airspeed and rate of descent
- Re-trim after power and attitude adjustments
- Continue lookout and monitor external references, heading, descent airspeed and rate of descent

Reference Descent Airspeeds

Landing Approach:										
Normal Approach, Flaps Up									65-75 KI	A\$
Normal Approach, Flaps 30°			-				-		60-70 KI	AS
Short Field Approach, Flaps 3	0°)							. 61 KI	AS
Balked Landing:										
Maximum Power, Flaps 20°									 . 60 KI	AS

 Reference descent airspeeds can be found in the POH under Section 4 Normal Procedures

Best Glide Airspeed

AIRSPEEDS FOR EMERGENCY OPERATION										
Engine Failure After Takeoff:	K									
Wing Flaps Up	70 KIAS									
Wing Flaps Down	65 KIAS									
• 1	Maneuvering Speed:									
2550 Lbs	105 KIAS									
2200 Lbs	98 KIAS									
1900 Lbs	90 KIAS									
Maximum Glide	68 KIAS									
Precautionary Landing With Engine Power 65 KIAS										
Landing Without Engine Power:										
Wing Flaps Up	70 KIAS									
Wing Flaps Down	65 KIAS									

 Best glide airspeed for power-off descents can be found in the POH under Section 3 Emergency Procedures

Operating Flaps

- Operate flaps conservatively while airspeed in white arc
- Flaps permit lower airspeeds and steeper descent angles
- Flaps support obstacle clearance approaches
- Retract flaps in stages within white arc (above 48 KIAS)

Balked Landings

- Apply full power and keep straight controlling yaw
- Establish and maintain slight nose-up attitude
- Control airspeed with attitude and retract flaps in stages
- Trim and continue to monitor climb airspeed
- Consider ground effect during go around

Summary / Quiz

- Why do we use different airspeeds for climbs and descents?
- Where can we find the Vx and Vy airspeeds?
- Where can we find the best glide airspeed?
- Mentally perform a power-on descent and level-off describing all required actions. (PAT)
- Mentally perform a balked approach describing all required actions – remember the flaps. (PAT)

Pre-Flight Briefing

- Exercise
- Training Area
- Departure and Arrival Procedures
- Weather Briefing / NOTAMs
- Aircraft and Documents
- Time and Fuel Requirements
- Safety Considerations and Responsibilities

Additional Materials

- Additional materials for Climbing and Descending
- Flight Instructor Guide Exercises 7 and 8
- Flight Instructor Guide Lesson Plans 2, 3 and 4

Angle or Gradient of Climb

Maximum excess thrust available gives maximum angle or gradient of climb

- Weight increases weight apparent drag and excess thrust required
- Weight increases lift required and lift induced drag

Maximum Excess Thrust

Angle/Gradient of Climb - Propeller Excess Thrust Graph and Vx Maximum excess thrust occurs at VMP. Vx for a propeller aeroplane occurs at VMP.

Weight and Excess Thrust

Factors Affecting Angle/Gradient - Increasing Weight

Effects 2 and 3. Increasing weight requires more lift. This increases induced drag and therefore total drag. The result is a decrease in excess thrust and a decrease in the climb angle. Vx increases.

Configuration and Excess Thrust

Factors Affecting Angle/Gradient - Configuration

Flaps and undercarriage deployed increase parasite drag and therefore total drag. The result is a decrease in excess thrust and a decrease in the climb angle. Vx decreases.

Air Density and Excess Thrust

	Jet	E 23	Propeller			
	THRUST AVAILABLE	V _x (IAS)	V _x (TAS)	DRAG / THRUST REQUIRED		
FORCE	DECREASING DENSITY	CONSTANT	INCREASE			
	INCREASING DENSITY	CONSTANT	DECREASE	THRUST AVAILABLE SPEED		
	Gradient of O	SPHERES DECREASE A	EROPLANE PERFORMANCE			
A de angl Vx (I			s the excess thrust available, w	hich decreases the		

- Vx remains essentially constant (IAS) for thrust-rated engines (jet)
- Vx may **increase** (IAS) for power-rated engines (piston propeller)

Rate of Climb

```
Rate of Climb = Power Available - Power Required

W

Maximum Excess Power Available gives Maximum Rate of Climb
```

- Rate of climb depends on both angle of climb and airspeed
- Forces multiplied with speeds give powers
- F*v=F*s/t=W/t=P

Maximum Excess Power

Weight and Excess Power

Factors Affecting Rate of Climb - Increasing Weight

Increasing weight increases the amount of weight apparent drag. This reduces the climb angle and therefore the rate of climb. Increasing weight requires more lift, which increases drag and therefore power required. This decreases the excess power and therefore decreases the rate of climb.

Vy increases.

Configuration and Excess Power

Flaps and undercarriage deployed will increase parasite drag and therefore total drag. The result is a decrease in excess power and a decrease in the rate of climb.

Vy decreases.

Air Density and Excess Power

Vy – True versus Indicated Airspeed

Absolute and Service Ceiling

Factors Effecting Rate of Climb - Ceiling Altitude

Absolute Ceiling - The altitude where the rate of climb is zero and where VY = VXService Ceiling - The altitude where the best rate of climb airspeed will produce a specific rate of climb.