Changing basis

TOTAL POINTS 5

1.Question 1

In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

Given vectors v=[5-1], $b1=[1\ 1]$ b2=[1-1] all written in the standard basis, what is \mathbf{v}v in the basis defined by \mathbf{b_1}b1 and \mathbf{b_2}b2? You are given that \mathbf{b_1}b1 and \mathbf{b_2}b2 are orthogonal to each other.

- **vb**=[-3 2]
- **vb**=[2 3]
- [○] **vb**=[3 -2]
- ° **vb**=[3 2]

1 / 1 point

2.Question 2

Given vectors v=[10 -5], b1=[3 4] and b2=[4 -3] all written in the standard basis, what is v in the basis defined by b1 and b2? You are given that b1 and b2 are orthogonal to each other.

- $^{\circ}$ **vb** = [-2/5 11/5]
- ° **vb** = [2 11]
- ° **vb** = [11/5 2/5]
- **vb**=[2/5 11/5]

1 / 1 point

3.Question 3

Given vectors $v=[2\ 2]$, $b1=[-3\ 1]$ and $b2=[1\ 3]$ all written in the standard basis, what is v in the basis defined by b1 and b2? You are given that b1 and b2 are orthogonal to each other.

- **vb**=[-2/5 4/5]
- ° **vb**=[5/4 −5/2]

$$^{\circ}$$
 vb=[-2/5 5/4]

1 / 1 point

4.Question 4

Given vectors $v = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $b_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $b_2 = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ and $b_3 = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix}$ all written in the standard basis, what is v in the basis defined by b_1 , b_2 and b_3 ? You are given that b_1 , b_2 and b_3 are all pairwise orthogonal to each other.

$$v_{b} = \left[\left[-3/5 - 1/3 - 2/15 \right] \right]$$

$$v_{b} = [[3-1-2]]$$

$$v_{b} = \left[\left[-3/5 - 1/3 \ 2/15 \right] \right]$$

1 / 1 point

5. Question 5

- o vb=[|||[0111]||]
- vb=[[[[1011]]]]]
- o vb=[[[[[1101]]]]]
- o vb=[[[[1110]]]]