Numer indeksu:	
rumer maeksu.	

Logika dla informatyków

Egzamin końcowy (pierwsza część)

Egzamm koncowy (pierwsza część)
6 lutego 2014
Zadanie 1 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, równoważne formule $\neg((p \lor q) \Rightarrow r))$.
Zadanie 2 (2 punkty). Mówimy, że formuła φ jest uproszczeniem formuły ψ , jeśli obie formuły są równoważne oraz φ zawiera mniej wystąpień spójników logicznych niż ψ . Jeśli istnieje uproszczenie formuły $(p \land q \land \neg r) \lor (p \land \neg q \land \neg r)$ to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 3 (2 punkty). Jeśli istnieje formuła prawdziwa dla dokładnie trzech wartościowań zbioru zmiennych zdaniowych $\{p,q,r\}$ to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 4 (2 punkty). Jeśli formuła $(p \Rightarrow (q \land r)) \Rightarrow ((p \Rightarrow q) \land (p \Rightarrow r))$ jest tautologią rachunku zdań to w prostokąt poniżej wpisz dowód tej formuły w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz wartościowanie, dla którego ta formuła jest fałszywa.

jeśli jest postaci G $i=1,\ldots,n$, a f normalnej równow	inkty). Mówimy, że formuła φ logiki I rzędu jest w <i>preneksowej postaci normalnej</i> $Q_1x_1\dots Q_nx_n\psi$, gdzie x_i są zmiennymi, Q_i są kwantyfikatorami (czyli $Q_i \in \{\forall, \exists\}$ dla ormuła ψ nie zawiera kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci ważna formule $\neg \forall n ((\forall x \ x < n \Rightarrow x \in X) \Rightarrow n \in X)$, to w prostokąt poniżej wpisznułę. W przeciwnym przypadku wpisz słowo "NIE".
, –	inkty). Rozważmy relacje $R \subseteq A \times B$ i $S \subseteq B \times A$. W prostokąt poniżej wpisz formulą
(ale może zawierac	
(ale może zawierac	
(ale może zawierac	
-	viącą, że relacja SR nie $jest$ zwrotna. Formuła ta nie może zawierać symbolu negacjić symbol $\not\in$) i nie może zawierać symboli złożenia relacji SR (ale może zawierać symbole
(ale może zawierac R i S). Zadanie 8 (2 pu W' jeśli oba wyra i nawiasy, oraz W istnieje uproszczen	
(ale może zawierac R i S). Zadanie 8 (2 pu W' jeśli oba wyra i nawiasy, oraz W istnieje uproszczen	é symbol $\not\in$) i nie może zawierać symboli złożenia relacji SR (ale może zawierać symbole inkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia iżenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup , \cap , \vee zawiera mniej symboli niż W' . Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeślinie wyrażenia $(A \cap B) \cup C \setminus (A \cap (B \cup C))$ to w prostokąt poniżej wpisz dowolne takie
(ale może zawierac R i S). Zadanie 8 (2 pu W' jeśli oba wyra i nawiasy, oraz W istnieje uproszczen	é symbol $\not\in$) i nie może zawierać symboli złożenia relacji SR (ale może zawierać symbole inkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia iżenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup, \cap, V zawiera mniej symboli niż W' . Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeśl nie wyrażenia $(A \cap B) \cup C \setminus (A \cap (B \cup C))$ to w prostokąt poniżej wpisz dowolne takie
(ale może zawierac R i S). Zadanie 8 (2 pu W' jeśli oba wyra i nawiasy, oraz W istnieje uproszczen	é symbol $\not\in$) i nie może zawierać symboli złożenia relacji SR (ale może zawierać symbole inkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia iżenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup , \cap , \vee zawiera mniej symboli niż W' . Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeślinie wyrażenia $(A \cap B) \cup C \setminus (A \cap (B \cup C))$ to w prostokąt poniżej wpisz dowolne takie
(ale może zawierace R i S). Zadanie 8 (2 pu W' jeśli oba wyra i nawiasy, oraz W istnieje uproszczenie. W powodzenie w powodzenie W powodzenie 9 (2 pu Zadanie 9 (2 pu	é symbol $\not\in$) i nie może zawierać symboli złożenia relacji SR (ale może zawierać symbole inkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia iżenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup , \cap , \vee zawiera mniej symboli niż W' . Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeślinie wyrażenia $(A \cap B) \cup C \setminus (A \cap (B \cup C))$ to w prostokąt poniżej wpisz dowolne takie

Numer indeksu:	
Zadanie 10 (2 punkty). Rozważmy zbiory osób O , barów B i sokó $Lubi \subseteq O \times S$ i $Podają \subseteq B \times S$ informujące odpowiednio o tym jak jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prosto że $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczający jednego soku podawanego w barze $Jagódka$.	ie osoby bywają w jakich barach, bkąt poniżej wpisz taką formułę φ ,
Zadanie 11 (2 punkty). Rozważmy funkcję $f: \mathbb{R} \times \{0,1,2\} \to \mathbb{R}$ $3x + k$. Jeśli istnieje funkcja odwrotna do f to w prostokąt poniżej przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje	wpisz tę funkcję. W przeciwnym
Zadanie 12 (2 punkty). Jeśli istnieje relacja równoważności na zb. dokładnie 5 klas abstrakcji, to w prostokąt poniżej wpisz dowolną tak ciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnie	ką relację równoważności. W prze-
Zadanie 13 (2 punkty). Jeśli istnieje funkcja różnowartościowa $f: \mathcal{T}$ to w prostokąt poniżej wpisz dowolną taką funkcję. W przeciwnym raz	
Zadanie 14 (2 punkty). Jeśli istnieją takie trzy nieskończone zbiornoliczne, to w prostokąt poniżej wpisz dowolny przykład takich trze wpisz słowo "NIE".	
Zadanie 15 (2 punkty). Jeśli istnieją takie zbiory A, B , surjekcja f że $f(X \cap Y) \neq f(X) \cap f(Y)$ to w prostokąt poniżej wpisz dowolny zbiorów. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka	przykład takiej surjekcji i takich

Zadanie 16 (2 punkty). W prostokąt poniżej wpisz liczbę różnych relacji liniowego porządku na zbiorze {6, 2, 2014}.
Zadanie 17 (2 punkty). Jeśli istnieją takie dwie relacje porządku częściowego R i S na zbiorze liczb naturalnych \mathbb{N} , że SR jest relacją równoważności, to w prostokąt poniżej wpisz dowolne takie relacje. W przeciwnym przypadku wpisz uzasadnienie, dlaczego takie relacje nie istnieją.
Zadanie 18 (2 punkty). Rozważmy porządek \leq na funkcjach zadany wzorem $f \leq g \iff \forall x \ f(x) \leq g(x)$ Jeśli porządki $\langle \mathbb{N}^{\mathbb{N}}, \leq \rangle$ i $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$ są izomorficzne, to w prostokąt poniżej wpisz dowolny izomorfizm tych porządków. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki izomorfizm nie istnieje.
Zadanie 19 (2 punkty). W prostokąt poniżej wpisz przykład trzech różnych dobrych porządków.
Zadanie 20 (2 punkty). W tym zadaniu f i g są symbolami funkcyjnymi, a jest symbolem stałej, natomiast x, y i z są zmiennymi. W prostokąty obok tych spośród podanych par termów, które są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są unifikowalne, wpisz słowo "NIE".
(a) $f(g(y), x, z) \stackrel{?}{=} f(x, y, z)$
(b) $f(g(y), a, z) \stackrel{?}{=} f(x, y, z)$

	Numer indeksu:	
Oddane zadania:		

Logika dla informatyków

Egzamin końcowy (część zasadnicza)

6 lutego 2014

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów¹.

Zadanie 21. Dla liczb naturalnych n niech \underline{n} oznacza zbiór $\{k \in \mathbb{N} \mid k < n\}$. W zbiorze \underline{n} wprowadzamy relację równoważności $k \simeq l \iff 2|k-l$.

- (a) [4 punkty] Ile klas abstrakcji ma relacja \simeq ?
- (b) [4 punkty] Ile elementów mają klasy abstrakcji $[0]_{\sim}$ i $[1]_{\sim}$?
- (c) [16 punktów] Na klasach abstrakcji definiujemy działanie $[k]_{\simeq} + [l]_{\simeq} = [k+l \mod n]_{\simeq}$. Dla jakich n to działanie jest poprawne?

Wszystkie odpowiedzi należy uzasadnić.

Zadanie 22. Rozważmy następujące równanie rekurencyjne dla funkcji $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$:

$$f(\emptyset) = \emptyset$$

$$f(X \cup \{n\}) = f(X) \cup \{n\}$$

gdzie $X \in \mathcal{P}(\mathbb{N})$ oraz $n \in \mathbb{N}$.

- (a) [8 punktów] Wskaż inną niż identyczność funkcję spełniającą to równanie.
- (b) [16 punktów] Udowodnij, że jest co najmniej continuum różnych funkcji spełniających to równanie.

Zadanie 23. Niech $\langle P, \leq \rangle$ będzie zbiorem częściowo uporządkowanym. Porządek $\langle P, \leq^{-1} \rangle$ nazywamy porządkiem dualnym do $\langle P, \leq \rangle$.

- (a) [12 punktów] Udowodnij, że porządek dualny do dobrego porządku jest dobrym porządkiem wtedy i tylko wtedy, gdy jest skończony.
- (b) [12 punktów] Czy to samo można powiedzieć o porządkach regularnych? Tzn., czy porządek dualny do regularnego jest regularny wtedy i tylko wtedy, gdy jest skończony? Uzasadnij odpowiedź.

¹ Algorytm oceniania jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów a następnie od wyniku zostają odjęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.