

Universidade Federal de Santa Catarina

Centro Tecnológico, de Ciências Exatas e Educação Departamento de Matemática

PIBIC Relatório Final

Um estudo algébrico, geométrico e computacional de aplicações de Álgebras de Clifford e Geometria de Distâncias

Uma introdução à Otimização com aplicações em Aprendizado de Máquina

Guilherme Philippi (guilherme.philippi@hotmail.com),

ORIENTADOR: Felipe Delfini Caetano Fidalgo (felipe.fidalgo@ufsc.br).

Agradecimentos

Agradecimentos...

Agradecimentos especiais também ao CNPq pelo incentivo financeiro da bolsa PIBIC e à UFSC, por dar as condições de infraestrutura para que este projeto pudesse acontecer.

Sumário

1	Introdução	1
2	Materiais e Métodos 2.1 Otimização	
	2.2 Aprendizado de Máquina	
3	Resultados e Discussão3.1 Ambiente desenvolvido3.2 Simulações Computacionais	
4	Considerações Finais	14
R	eferências Bibliográficas	14

Abstract

Th	is report presents a study on,	covering	every	ything fro	m	to	We	devel	oped
	validating the applicability of the	ne theory	and o	consolidat	ting th	he stu	dy. '	This v	work
air	ns to contribute to								

Keywords: ..., ...,

Resumo

Este relatório apresenta um estudo sobre ..., abordando desde ... até ... Desenvolvemos ... validando a aplicabilidade da teoria e consolidando o estudo. Este trabalho visa contribuir para

Palavras-chave: ..., ...,

1

Introdução

Parágrafos:

- Introduzir Otimização matemática;
- Introduzir Aprendizado de Máquina;
- Ligar os dois temas;
- $\bullet\,$ Apresentar a estrutura do trabalho.

Materiais e Métodos

2.1 Otimização

A modelagem é a área de estudo que objetiva descrever fenômenos do mundo real por meio de ferramentas matemáticas, servindo de conexão entre a matemática e as outras áreas do conhecimento [1]. Partindo de problemas encontrados na física, engenharia, química, biologia e outras ciências, busca-se caracterizar e compreender seus comportamentos através de variáveis, funções e outras ferramentas matemáticas, abstraindo a situação real com o cuidado de que não se percam os comportamentos de interesse. Quanto mais variáveis e restrições são incorporadas para descrever os comportamentos do sistema real, mais fidedigna, porém complexa, torna-se sua representação. Grande parte da pesquisa realizada nessa área pode ser dividida em três categorias: modelos probabilísticos, modelos dinâmicos e modelos de otimização. Nos concentraremos no terceiro.

A otimização é uma área da pesquisa operacional que da suporte na tomada de decisões, com o objetivo de encontrar soluções *ótimas* para um problema. Uma solução ótima (ou ponto ótimo) é aquela que minimiza ou maximiza uma função f, chamada de função objetivo do problema (Figura 2.1). Simbolicamente, dizemos que $x^* \in \mathcal{X}$ é um ótimo global do problema de minimizar f, restrito a \mathcal{X} , se satisfaz

$$f(x^*) \le f(x)$$
 para todo $x \in \mathcal{X}$. (2.1)

O conjunto \mathcal{X} é chamado de *espaço de busca* por uma solução, e encontrar essa solução ótima nem sempre é fácil ou mesmo possível. Isso gera a necessidade do estudo de *aproximações* para as soluções ótimas de um problema [2].

Perceba que o problema de maximizar f é equivalente ao de minimizar -f (veja Figura 2.2), o que nos permite abster de comentários sobre um dos dois nas definições e proposições que seguem. Por lealdade à abordagem dos colegas da Unicamp, focaremos exclusivamente na apresentação orientada pela minimização, deixando os equivalentes de maximização como exercício para o leitor.

Assim, um problema geral de otimização é representado como

onde x é o vetor de variáveis contidas no espaço de busca $\mathcal{X} \subset \mathbb{R}^n$, candidatas a solução. Dependendo da natureza do problema, podemos representar o conjunto \mathcal{X} através de restrições de igualdade e de desigualdade, ou seja,

$$\mathcal{X} = \{ x \in \mathbb{R}^n \mid c_{\mathcal{E}}(x) = 0, \ c_{\mathcal{I}}(x) \le 0 \},$$

Figura 2.1: Ilustração do problema de minimização para a função objetivo $f: \mathbb{R}^2 \to \mathbb{R}$, definida pelo mapeamento $(x,y) \mapsto xe^{-x^2-y^2} + \frac{x^2+y^2}{20}$.

Figura 2.2: Maximizar f(x) é equivalente a minimizar -f(x).

onde $c_{\mathcal{E}}: \mathbb{R}^n \to \mathbb{R}^m$ e $c_{\mathcal{I}}: \mathbb{R}^n \to \mathbb{R}^p$ são as funções de restrição do espaço de busca \mathcal{X} e 0 representa os vetores nulos de dimensão apropriada¹. Para destacar as restrições do problema, iremos escrevê-lo como

minimizar
$$x \in \mathbb{R}^n$$
 $f(x)$
sujeito a $c_{\mathcal{E}}(x) = 0$, $c_{\mathcal{I}}(x) \leq 0$. (2.3)

O subconjunto de \mathbb{R}^n que satisfaz todas as funções de restrição também é chamado de conjunto factível (ou viável) do problema. No entanto, caso $\mathcal{X} = \mathbb{R}^n$, dizemos que esse é um problema de otimização irrestrito. A otimização irrestrita é de suma importância para a área, visto que uma das técnicas existentes para solucionar problemas com restrição é reescreve-los como problemas irrestritos associados [2]. Além disso, também podemos intercambiar restrições de igualdade e desigualdade livremente, já que restrições de igualdade podem ser reescritas como duas de desigualdade

$$h(x) = 0 \iff h(x) \le 0$$

 $-h(x) \le 0$,

e restrições de desigualdade podem ser reescritas como uma igualdade, mediante a introdução de variáveis artificiais "de folga"

$$g(x) \leqslant 0 \iff g(x) + z^2 = 0, \ z \in \mathbb{R}.$$

¹A menos de ambiguidades, omitiremos as dimensões de vetores nulos e de identidades.

Infelizmente, substituições como essas costumam ser indesejadas tanto do ponto de vista teórico como do ponto de vista computacional [3].

Vejamos um clássico exemplo de otimização, cuja aplicação econômica denuncia a importância e alcance da área.

Exemplo 2.1.1 (Lucro de produção). Considere que uma fábrica produza p_1, p_2 produtos distintos, cujos respectivos lucros por unidade sejam de $l_1 = 10, l_2 = 15$, e que cada produto p_1 requer 2 horas de trabalho manual e 1 hora nas máquinas para ser produzido, enquanto cada p_2 requer 3 horas de trabalho e 2 horas na máquina. Sejam $t_1 = 100, t_2 = 60$ as respectivas horas disponíveis de trabalho manual e de máquina. Formule um problema de otimização que decida as quantidades p_1, p_2 a fim de maximizar o lucro da fábrica.

Solução. A função objetivo l que queremos maximizar é o lucro total. Ou seja, é a função

$$l: \mathbb{R}^2 \to \mathbb{R}$$

 $(p_1, p_2) \mapsto l_1 p_1 + l_2 p_2 = 10 p_1 + 15 p_2.$

Como p_1, p_2 são quantidades de produtos produzidos, devem ser não negativos:

$$p_1 \ge 0$$
 e $p_2 \ge 0$.

Além disso, temos duas restrições relativas às horas disponíveis t_1, t_2 , descritas por

$$2p_1 + 3p_2 \le t_1 = 100 \quad 1p_1 + 2p_2 \le t_2 = 60.$$

Dessa forma, nosso problema de otimização pode ser descrito como

maximize
$$(p_1, p_2) \in \mathbb{R}^2$$
 $10p_1 + 15p_2$ sujeito a $2p_1 + 3p_2 \le 100$, $1p_1 + 2p_2 \le 60$, $p_1 \ge 0$, $p_2 \ge 0$. (2.4)

 \triangle

As restrições $p_1, p_2 \ge 0$ do exemplo acima são comuns a vários problemas, e chamamos elas de restrições de não negatividade das variáveis. Também, nesse exemplo, o conjunto factível resultante é um subconjunto de \mathbb{R}^2 , cuja continuidade induz uma busca contínua por valores ótimos nesse conjunto. Problemas desse tipo são chamados de problemas de otimização contínua. Em contraste, quando nosso espaço de busca é um subconjunto dos inteiros \mathbb{Z} , ou, mais geralmente, quando o conjunto de restrições é tal que nosso espaço factível é um conjunto enumerável de pontos, diremos que esse é um problema de otimização discreta.

Exemplo 2.1.2 (Problema da Mochila (*Knapsack problem*)). Sejam x_1, \ldots, x_n items com pesos w_1, \ldots, w_n e valores v_1, \ldots, v_n . Se uma mochila suporta um peso máximo w_{max} , modele o problema de escolher quais items devem ser colocados na mochila de forma a maximizar o valor total dos itens, respeitando a restrição de peso.

Solução. Para representar as n escolhas de itens que estarão na mochila, usaremos uma sequência $x_1, \ldots, x_n \in \{0, 1\}$. Assim, nossa solução será um elemento do espaço $\{0, 1\}^n$, e a restrição de peso máximo torna-se a desigualdade

$$w_1 x_1 + \dots + w_n x_n = \sum_{i=1}^n w_i x_i \leqslant w_{\text{max}}.$$

Por fim, como desejamos maximizar o valor total dos itens na bolsa, queremos maximizar a função objetivo

$$v: \{0, 1\}^n \to \mathbb{R}$$

 $(x_1, \dots, x_n) \mapsto v_1 x_1 + \dots + v_n x_n = \sum_{i=1}^n v_i x_i,$

resultando no problema

maximize
$$(x_1, \dots, x_n) \in \{0, 1\}^n \qquad \sum_{i=1}^n v_i x_i$$
sujeito a
$$\sum_{i=1}^n w_i x_i \leqslant w_{\text{max}}$$
(2.5)

Δ

No Problema da Mochila, o espaço de busca consiste em um subconjunto do espaço discreto $\{0,1\}^n$, isto é, possui no máximo 2^n elementos, tornando-o um problema de otimização discreta (ou, um problema de programação inteira). Além dos problemas de otimização contínua e discreta, existe uma categoria intermediária conhecida como programação mista. Esses problemas incorporam tanto variáveis contínuas quanto discretas em suas formulações, criando um desafio único. Naturalmente, problemas de programação mista requerem a combinação de técnicas de otimização contínua e programação inteira para encontrar soluções que satisfaçam todas as restrições e objetivos do problema [4].

2.1.1 Preliminares

Na busca de que o texto se torne autocontido, esta seção oferecerá de uma revisão de conceitos fundamentais, para o assunto aqui abordado, de análise e álgebra linear aplicada. Essa compreensão é crucial para uma apreciação completa da teoria e aplicação das técnicas de otimização que serão apresentadas adiante. Embora tenhamos procurado abordar as principais definições e resultados relevantes, é evidente que não cabe aqui um estudo extensivo do tema. Portanto, recomendamos a consulta de referências como [5, 6, 7, 8, 9, 10], fontes de toda essa seção, para aqueles que desejam se aprofundar.

Em particular, espera-se que o leitor já tenha alguma experiência com os capítulos iniciais de bons livros de análise na reta e de álgebra linear.

Sequências

Definição 2.1.1 (Sequência). Uma sequência de números reais é uma função $x : \mathbb{N} \to \mathbb{R}$, que associa a cada número natural n um número real x_n , chamado n-ésimo

termo da sequência. Escreve-se $(x_1, x_2, \ldots, x_n, \ldots)$ ou $(x_n)_{n \in \mathbb{N}}$ ou, simplesmente (x_n) , para indicar a sequência cudo n-ésimo termo é x_n .

Exemplo 2.1.3. Considere a sequência $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$. Esta é uma sequência de números reais em que cada termo é o inverso do número natural correspondente. Explicitamente,

$$x_1 = 1, \ x_2 = \frac{1}{2}, \ x_3 = \frac{1}{3}, \ x_4 = \frac{1}{4}, \ \dots, \ x_n = \frac{1}{n}, \ \dots$$

Definição 2.1.2 (Sequências limitadas). Uma sequência (x_n) diz-se limitada superiormente (respectivamente inferiormente) quando existe $c \in \mathbb{R}$ tal que $x_n \leq c$ (respectivamente $x_n \geq c$) para todo $n \in \mathbb{N}$. Além disso, uma sequência (x_n) é dita limitada se é limitada superior e inferiormente.

Exemplo 2.1.4. Considere a sequência definida por $x_n = (-1)^n$ para todo $n \in \mathbb{N}$. Perceba que essa sequência alterna entre os valores -1 e 1, dependendo se n é par ou ímpar. Assim, é evidente que a sequência é limitada superiormente por 1 e inferiormente por -1, pois $-1 \le x_n \le 1$ para todo $n \in \mathbb{N}$.

Proposição 2.1.1. Uma sequência (x_n) é limitada se, e somente se, existe um real k > 0 tal que

$$|x_n| \leq k$$
, para todo $n \in \mathbb{N}$.

Definição 2.1.3 (Subsequência). Dada uma sequência $x = (x_n)_{n \in \mathbb{N}}$, uma subsequência de x é a restrição da função x a um subconjunto infinito enumerável $\mathbb{N}' = \{n_1 < n_2 < \cdots < n_k < \cdots\}$ de \mathbb{N} . Escreve-se $x' = (x_n)_{n \in \mathbb{N}'}$ ou $(x_{n_k})_{k \in \mathbb{N}}$ para indicar a subsequência $x' = x | \mathbb{N}'$.

Exemplo 2.1.5. Considere a sequência $x = (n^2)_{n \in \mathbb{N}}$. Uma subsequência desta sequência é a dos termos cujos índices são números ímpares, isso é, a subsequência $x' = ((2k-1)^2)_{k \in \mathbb{N}}$.

A noção de subsequência é fundamental para identificar padrões dentro da sequência principal. Ao restringir os termos da sequência a um subconjunto infinito enumerável dos índices, podemos analisar comportamentos particulares ou extrair informações úteis sobre a *convergência* da sequência.

Definição 2.1.4 (Limite de sequência). Diz-se que o número real a é limite da sequência (x_n) se, e somente se,

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \text{tal que } n > n_0 \implies |x_n - a| < \varepsilon.$$

Nesse caso, escreve-se $a = \lim x_n$, $a = \lim_{n \in \mathbb{N}} x_n$, $a = \lim_{n \to \infty} x_n$ ou $x_n \to a$. Essa última lê-se " x_n tende para a" ou "converge para a". Uma sequência que possui limite diz-se *convergente*. Do contrário, diz-se *divergente*.

Caracterizações importantes da definição de limite de sequências consistem em lembrar que

$$|x_n - a| < \varepsilon \iff a - \varepsilon < x_n < a + \varepsilon \iff x_n \in (a - \varepsilon, a + \varepsilon).$$

Da última equivalência resulta que qualquer intervalo aberto de centro a contém todos os temos x_n da sequência, salvo para um número finito de índices $n \leq n_0$.

Proposição 2.1.2 (Unicidade do limite). Seja $x = (x_n)$ uma sequência. Se a = $\lim x_n \ e \ b = \lim x_n, \ ent \tilde{a}o \ a = b.$ Demonstração. [5], pag 25. П **Proposição 2.1.3.** Se $\lim x_n = a$ então toda subsequência de (x_n) também converge para o limite a. П Demonstração. [5], pag 25. Proposição 2.1.4. Toda sequência convergente é limitada. Demonstração. [5], pag 25. **Definição 2.1.5** (Sequência monótona). Uma sequência (x_n) é dita monótona nãodecrescente quando se tem $x_n \leq x_{n+1}$ para todo $n \in \mathbb{N}$ ou monótona não-crescente quando $x_{n+1} \leq x_n$ para todo n. Caso as desigualdades sejam estritas $x_n < x_{n+1}$ ou $x_{n+1} < x_n$, diremos, respectivamente, que a sequência é crescente ou decrescente. **Proposição 2.1.5.** Toda sequência (x_n) monótona não-decrescente é limitada inferiormente por x_1 ; e monótona não-crescente é limitada superiormente por x_1 . **Teorema 2.1.1.** Toda sequência monótona limitada é convergente. Demonstração. [5], pag 26. Corolário 2.1.1 (Teorema de Bolzano-Weierstrass). Toda sequência limitada de números reais possui uma subsequência convergente. Demonstração. [5], pag 26. \Box [x] sequencias, -[-] convergencia de sequencias (taxas)-

Conjuntos abertos

Definição 2.1.6 (Ponto interior). Diz-se que $a \in \mathbb{R}$ é ponto interior ao conjunto $X \subset \mathbb{R}$ quando existe $\varepsilon > 0$ tal que o intervalo aberto $(a - \varepsilon, a + \varepsilon)$ está contido em X. Escreve-se int X para representar o conjunto de pontos interiores de X, chamado de interior de X. Quando $a \in \operatorname{int} X$ dizemos que X é uma vizinhança de a.

Exemplo 2.1.6. Todo ponto c do intervalo aberto (a, b) é um ponto interior de (a, b). Porém, os pontos extremos a, b de um intervalo fechado [a, b] não são interiores a [a, b]. Na verdade, int [a, b] = (a, b). Perceba que o interior dos números racionais \mathbb{Q} é vazio, já que qualquer intervalo não-vazio não pode estar contido em \mathbb{Q} .

Definição 2.1.7 (Conjunto aberto). Um conjunto $A \subset \mathbb{R}$ é chamado *aberto* se, e somente se,

$$A = \operatorname{int} A$$
.

Exemplo 2.1.7. O conjunto vazio é aberto. Também, todo intervalo aberto, limitado ou não, é um conjunto aberto. \mathbb{R} é aberto.

Há uma caracterização muito útil para o limite de uma sequência em termos de conjunto aberto, como segue.

Proposição 2.1.6. Seja (x_n) uma sequência, então $a = \lim x_n$ se, e somente se, para todo aberto A contendo a existe $n_0 \in \mathbb{N}$ tal que $n > n_0 \Longrightarrow x_n \in A$.

Proposição 2.1.7. A interseção de dois abertos é um conjunto aberto. Também, a reunião de uma família qualquer de abertos também é um conjunto aberto.

Demonstração. [5] pag 50.

Conjuntos fechados

Definição 2.1.8 (Ponto aderente). Um ponto a é dito aderente ao conjunto $X \subset \mathbb{R}$ se, e somente se, a é limite de alguma sequência de pontos $x_n \in X$.

Proposição 2.1.8. Todo ponto $a \in X$ é aderente a X.

Demonstração. Tome a sequência constante $x_n = a$ para todo $n \in \mathbb{N}$.

A seguir apresenta-se uma das mais importantes caracterizações de pontos aderentes, em termos de conjuntos abertos.

Proposição 2.1.9. Um ponto a é aderente ao conjunto X se, e somente se, toda vizinhança de a contém algum ponto de X.

Definição 2.1.9 (Conjuntos fechados). Chama-se *fecho* de um conjunto X ao conjunto \overline{X} formado por todos os pontos aderentes a X. Além disso, um conjunto diz-se *fechado* quando $X = \overline{X}$.

Proposição 2.1.10. O conjunto X é fechado se, e somente se, $\overline{X} \subset X$.

Demonstração. Como todo ponto de X é aderente a X, então $X \subset \overline{X}$. Assim, para que $X = \overline{X}$, é necessário e suficiente que $\overline{X} \subset X$.

Proposição 2.1.11. Se $X \subset Y$, então $\overline{X} \subset \overline{Y}$.

Proposição 2.1.12. O fecho de qualquer conjunto é um conjunto fechado.

Proposição 2.1.13. Um conjunto $F \subset \mathbb{R}$ é fechado se, e somente se, seu complementar $A = \mathbb{R} - F$ é aberto.

Demonstração. [5] pag 51.

Corolário 2.1.2. A reunião de dois fechados é um conjunto fechado. Além disso, a interseção de uma família qualquer de fechados é um conjunto fechado.

Demonstração. Basta perceber que seus complementares, dados pela proposição 2.1.7, são abertos e aplicar a proposição anterior.

Proposição 2.1.14. Os únicos subconjuntos de \mathbb{R} que são simultaneamente abertos e fechados são \emptyset e \mathbb{R} .

Omite-se a demonstração do resultado anterior, pois depende da definição e resultados envolvendo cisões em \mathbb{R} , o qual só nos servirá para essa demonstração específica.

Definição 2.1.10 (Conjunto denso). Seja $X \subset Y$. Dizemos que X é denso em Y se, e somente se, $Y \subset \overline{X}$.

Exemplo 2.1.8. \mathbb{Q} é denso em \mathbb{R} . Com efeito, todo ponto de \mathbb{R} é limite de alguma sequência de pontos de \mathbb{Q} .

Pontos de acumulação

Definição 2.1.11 (Ponto de acumulação). Dizemos que $a \in \mathbb{R}$ é um ponto de acumulação do conjunto $X \subset \mathbb{R}$ se, e somente se, toda vizinhança V de a contém algum ponto de X diferente do próprio a. Escrevemos X' para representar o conjunto dos pontos de acumulação de X.

Há duas caracterizações muito importantes da definição de pontos de acumulação, como seguem.

Proposição 2.1.15. Seja $X \subset \mathbb{R}$ e $a \in \mathbb{R}$. $a \in X'$ se, e somente se, a é limite de uma sequência de pontos de $x_n \in X - \{a\}$.

Demonstração. [5] pag 53.

Proposição 2.1.16. Seja $X \subset \mathbb{R}$ e $a \in \mathbb{R}$. $a \in X'$ se, e somente se, todo intervalo aberto de centro a contém uma infinidade de pontos de X.

Demonstração. [5] pag 53.

Exemplo 2.1.9. O conjunto de pontos de acumulação de \mathbb{Q} é a reta real \mathbb{R} . Também, se X = (a, b) é um intervalo aberto, então X' é o intervalo fechado [a, b].

Definição 2.1.12 (Pontos isolados). Se $a \in \mathbb{R}$ não é ponto de acumulação de X, dizemos que a é um ponto isolado de X. Quando todos os pontos de X são isolados, chamamos X de conjunto discreto.

Exemplo 2.1.10. Todo conjunto finito X é discreto, já que $X' = \emptyset$ para todo X finito. No entanto, nem todo conjunto discreto é finito: \mathbb{Z} só tem pontos isolados. Perceba que nem todo conjunto discreto X tem $X' = \emptyset$. Por exemplo, o conjunto $X = \{1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\}$ é discreto, já que todos os seus pontos são isolados, mas $X' = \{0\}$.

Podemos reescrever a proposição 2.1.1 (teorema de Bolzano-Weierstrass) em termos de pontos de acumulação. Esse é um resultado muito importante, pois nos permite uma interpretação topológica muito útil de conjuntos não-vazios, abertos e limitados.

Teorema 2.1.2. Todo conjunto infinito limitado de números reais admite pelo menos um ponto de acumulação.

Demonstração. [5] pag 54.

Conjuntos compactos

Definição 2.1.13 (Conjunto compacto). Um conjunto $X \subset \mathbb{R}$ é dito *compacto* se, e somente se, é fechado e limitado.

Exemplo 2.1.11. Os intervalos do tipo [a, b] são os casos mais comuns de compactos. No entanto, a definição de conjunto compacto é mais geral, pois permite "buracos" nesses intervalos fechados. Por exemplo, todo conjunto finito (discreto e limitado) é compacto.

Proposição 2.1.17. Um conjunto $X \subset \mathbb{R}$ é compacto se, e somente se, toda sequência de pontos em X possui uma subsequência que converge para um ponto de X.

Demonstração. [5] pag 54.

Como a otimização se resume a problemas de escolha, o seguinte resultado é de fundamental importância para nós, pois nos permite caracterizar condições de existência de soluções. É conhecido como uma generalização do princípio dos intervalos encaixados [5].

Teorema 2.1.3. Dada uma sequência decrescente $X_1 \supset X_2 \supset \cdots \supset X_n \supset \cdots$ de conjuntos compactos não-vazios, existe (pelo menos) um número real que pertence a todos os X_n .

Demonstração. [5] pag 55.

Definição 2.1.14 (Cobertura). Uma cobertura de um conjunto X é uma família \mathcal{C} de conjuntos C_{λ} cuja reunião contém X. Isso é, $X \subset \bigcup_{\lambda \in L} C_{\lambda}$. Quando todos os conjuntos C_{λ} são abertos, chamamos \mathcal{C} de cobertura aberta. Quando $L = \{\lambda_1, \ldots, \lambda_n\}$ é um conjunto finito, chamamos \mathcal{C} de cobertura finita. Por fim, se $L' \subset L$ é tal que a família $\mathcal{C}' = (C_{\lambda'})_{\lambda' \in L'}$ ainda seja cobertura de X, então \mathcal{C}' é subcobertura de \mathcal{C} .

Teorema 2.1.4 (Borel-Lebesgue). Toda cobertura aberta de um conjunto compacto possui uma subcobertura finita.

Limites de Funções e Continuidade

Definição 2.1.15 (Limite). Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ e $a \in X'$. Diz-se que $L \in \mathbb{R}$ é *limite* de f(x), e se escreve $\lim_{x\to a} f(x) = L$, se, e somente se,

$$\forall \, \varepsilon > 0 \,\, \exists \, \delta > 0 \,\, \text{tal que } x \in X, 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.$$

Teorema 2.1.5 (Sanduíche). Sejam $f, g, h: X \to \mathbb{R}$, $a \in X'$ $e \lim_{x\to a} f(x) = \lim_{x\to a} g(x) = L$. Se $f(x) \leq h(x) \leq g(x)$ para todo $x \in X - \{a\}$, então $\lim_{x\to a} h(x) = L$.

Demonstração. [5] pag 64.

Definição 2.1.16 (Função contínua). Uma função $f: X \to \mathbb{R}$ é contínua no ponto a se, e somente se, $\lim_{x\to a} f(x) = f(a)$. Além disso, dizemos que a função f é continua se f é contínua em todos os pontos $a \in X$.

Proposição 2.1.18. Sejam $f, g: X \to \mathbb{R}$ contínuas no ponto $a \in X$, com f(a) < g(a). Então existe $\delta > 0$ tal que f(x) < g(x) para todo $x \in X \cap (a - \delta, a + \delta)$.

Demonstração. [5] pag 76.

Corolário 2.1.3. Seja $f: X \to \mathbb{R}$ contínua no ponto $a \in X$. Se $f(a) \neq 0$, existe $\delta > 0$ tal que, para todo $x \in X \cap (a - \delta, a + \delta)$, f(x) tem o mesmo sinal de f(a).

Demonstração. Basta aplicar a proposição anterior para g(x) = 0.

O seguinte teorema também é muito importante para a otimização, visto que também está relacionado a existência de soluções num intervalo.

Teorema 2.1.6 (Teorema do valor intermediário). Seja $f : [a, b] \to \mathbb{R}$ contínua. Se f(a) < d < f(b) então existe $c \in (a, b)$ tal que f(c) = d.

$$Demonstração.$$
 [5] pag 78.

O que nos leva, finalmente, a enunciar o resultado mais importante dessa seção, conhecido como Teorema de Weierstrass, que garante a existência de $m\'{a}ximos$ e $m\'{n}imos$ de funções contínuas sobre conjuntos compactos.

Teorema 2.1.7 (Weierstrass). Seja $f: X \to \mathbb{R}$ contínua no conjunto compacto $X \subset \mathbb{R}$. Então, existem $x_0, x_1 \in X$ tais que $f(x_0) \leq f(x) \leq f(x_1)$ para todo $x \in X$.

$$Demonstração.$$
 [5] pag 82.

Exemplo 2.1.12. Considere a função $f:[0,2] \to \mathbb{R}$ dada por $f(x)=x^2$. Já que f é contínua e [0,2] é um intervalo fechado e limitado, isso é, compacto, existem x_1, x_2 tais que $f(x_0) \le f(x) \le f(x_1)$ para todo $x \in X$. De fato, $x_1 = 0$ e $x_2 = 2$.

[X] abertos, fechados, [X] pontos de acumulação, [X] conjuntos compactos, [X] limites de funções, [X] continuidade,

gradiente

```
[ ] derivadas, [ ] taylor, [ ] gradiente, [ ] funções convexas
```

Algebra Linear Aplicada

[] Espaco Linear, [] subespaco, [] norma (espaco metrico), [] autovalores e autovetores, [] SVD, [] fatoração matricial (Cholesky, LU, QR)

2.2 Aprendizado de Máquina

3

Resultados e Discussão

Este capítulo apresenta uma pequena apresentação de simulações computacionais desenvolvidas pelo autor desse trabalho sobre os temas de estudo desse relatório, além dos softwares desenvolvidos para auxiliar nesse processo.

3.1 Ambiente desenvolvido

3.2 Simulações Computacionais

Com isso pode-se enunciar, a seguir, os resultados computacionais obtidos em um processador Intel Core(R), CPU i5-8600K com seis núcleos de 4.2Ghz e um SSD com 512GB rodando Manjaro-XFCE 64 bits, sobre o kernel 5.10.49-1-MANJARO.

4

Considerações Finais

Neste momento, é interessante recuperar o objetivo principal do projeto de pesquisa para avaliar se tudo foi concluído conforme planejado. O objetivo principal deste projeto era .

Vamos agora revisitar os objetivos específicos e destacar as contribuições alcançadas:

• blabla: blablabla.

• blabla: blablabla.

• blabla: blablabla.

• blabla: blablabla.

Dessa forma, acreditamos que os resultados deste projeto de pesquisa foram satisfatórios, abordando todos os tópicos planejados. Como projetos futuros, planejamos

.

Além disso, é importante destacar o impacto significativo deste projeto na formação acadêmica do aluno envolvido. Além de aproximá-lo da pós-graduação, proporcionou o contato com grupos de pesquisa que têm potencial para publicações na área. Esse envolvimento com pesquisadores estimula o aluno a considerar uma carreira acadêmica e a buscar oportunidades para lecionar no ensino superior.

Referências Bibliográficas

- [1] Mark Meerschaert. Mathematical modeling. Academic press, 2013.
- [2] Ademir Alves Ribeiro and Elizabeth Wegner Karas. Otimização continua: aspectos teóricos e computacionais. Cengage Learning, Sao Paulo, 2013.
- [3] Alexey Izmailov and Mikhail Solodov. Otimização, volume 1: condições de otimalidade, elementos de análise convexa e de dualidade. Impa, 2005.
- [4] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.
- [5] Elon Lages Lima. Curso de Análise vol. 1–14ª edição. 2013.
- [6] Elon Lages Lima. Curso de Análise, vol. 2. 2000.
- [7] Elon Lages Lima. *Algebra Linear*. SBM, Rio de Janeiro: IMPA, 1a edition, 2014.
- [8] Carl D Meyer. Matrix analysis and applied linear algebra, volume 188. Siam, 2023.
- [9] David S Watkins. Fundamentals of matrix computations. John Wiley & Sons, 2004.
- [10] Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.