Designing Low-Power Spiking Neural Network

S1290033

Rui Shiota

Content

- LIF neuron
- Clock gaitng
- Master's research

LIF neuron (1)

LIF neuron (2)

Upper system.v n_xbit.v memory.v Lower

Clock gating (1)

Clock gating: technique for reducing dynamic power

Conventional system

Clock-gated system

Clock gating (2)

The result of power consumption of n_xbit

	Dynamic Power	Static Power	Total Power
Conventional n_xbit	4.71e-05 W	1.01e-05 W	6.48e-05 W
Clock-gated n_xbit	3.98e-05 W	1.01e-05 W	5.00e-05 W

• Dynamic Power: 15% 🕹

• Static power: Unchanged

Total power: 30 %

Clock gating (3)

The result of power consumption of System

	Dynamic Power	Static Power	Total Power
Conventional System	2.07e-04 W	4.14e-05 W	2.49e-04 W
Clock-gated System	1.42e-04 W	4.01e-05 W	1.84e-04 W

Dynamic Power: 30%

• Static Power: 3% 🕹

Total Power:26%

Master's research

- Focus on rate coding to apply clock gating
- Rate coding: method to represent information by the frequency of spikes

Thank you for your attention!