

Noninvasive Weight Determination of Stockpiled Ore Through Microgravity Measurements

by Keith J. Sjostrom, Dwain K. Butler

19961018 138

Approved For Public Release; Distribution Is Unlimited

DTIC QUALITY INSPECTED 3

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Noninvasive Weight Determination of Stockpiled Ore Through Microgravity Measurements

by Keith J. Sjostrom, Dwain K. Butler
U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Waterways Experiment Station Cataloging-in-Publication Data

Sjostrom, Keith J.

Noninvasive weight determination of stockpiled ore through microgravity measurements / by Keith J. Sjostrom, Dwain K. Butler; prepared for Defense National Stockpile Center.

162 p. : ill.; 28 cm. -- (Miscellaneous paper; GL-96-24)

Includes bibliographic references.

1. Gravity -- Measurement. 2. Ores -- Density -- Measurement. 3. Ores -- United States -- Inventory. 4. Reduced gravity environments -- Measurement. I. Butler, Dwain K. II. United States. Army. Corps of Engineers. III. U.S. Army Engineer Waterways Experiment Station. IV. Geotechnical Laboratory (U.S. Army Engineer Waterways Experiment Station) V. Defense National Stockpile Center (U.S.) VI. United States. Defense Logistics Agency. VII. Title. VIII. Series: Miscellaneous paper (U.S. Army Engineer Waterways Experiment Station); GL-96-24.

TA7 W34m no.GL-96-24

Contents

Preface
Conversion Factors, Non-SI to SI Units of Measurement vii
1—Introduction
Background
Location of Test Sites
2—Principles of Microgravity Surveying
The Microgravity Method
3—Data Analysis and Results
Determination of Ore Pile Volume Determination of Material Density Calculation of Ore Pile Weight Accuracy and Percent Difference Results Sierra Army Depot, California National Refractory and Mineral Corporation, California Hammond Depot, Indiana Ravenna Army Ammunition Plant, Ohio Somerville Depot, New Jersey Summary of Results 11 12 13 14 15 15 16 17 18 18 18 18 18 18 18 18 19 19 19 19
4—Conclusions
References
Appendix A: Determination of Ore Pile Volumes, EMC, Inc

List of Figures

Figure 1.	Location of test sites	25
Figure 2.	LaCoste and Romberg Model D gravity meter on	
	base plate	26
Figure 3.	Microgravity measurement station	27
Figure 4.	Microgravity stations located off ore pile	28
Figure 5.	Microgravity stations positioned on or pile	29
Figure 6.	Microgravity measurements at base station	30
Figure 7.	Microgravity measurements near ore stockpile	31
Figure 8.	Microgravity measurements on side slope of ore pile	32
Figure 9.	Elevation contour map of Pile No. 1, Sierra Army Depot, CA	33
Figure 10.	Elevation contour map of Pile No. 3, Sierra Army Depot, CA	34
Figure 11.	Pile No. 5, Sierra Army Depot, CA	35
Figure 12.	Elevation contour map of Pile No. 5, Sierra Army Depot, CA	36
Figure 13.	Pile No. 6, Sierra Army Depot, CA	37
	Elevation contour map of Pile No. 6, Sierra Army Depot, CA	38
Figure 15.	Pile No. 10, Sierra Army Depot, CA	39
	Elevation contour map of Pile No. 10, Sierra Army Depot, CA	40
Figure 17.	Elevation contour map of Pile No. 14, Sierra Army Depot, CA	41
Figure 18.	Pile No. 15, Sierra Army Depot, CA	43
	Elevation contour map of Pile No. 15, Sierra Army Depot, CA	44
Figure 20.	Elevation contour map of Pile No. 18A, Sierra Army Depot, CA	45
Figure 21.	Elevation contour map of Pile No. 1, National Refractory and Mineral Corporation, CA	47
Figure 22	Pile No. 12, Hammond Depot, IN	47
		マフ

Figure 23.	Elevation contour map of Pile No. 12, Hammond Depot, IN	51
Figure 24.	Pile No. 8, Ravenna Army Ammunition Plant, OH	53
Figure 25.	Elevation contour map of Pile No. 8, Ravenna Army Ammunition Plant, OH	55
Figure 26.	Pile No. 20, Ravenna Army Ammunition Plant, OH	57
Figure 27.	Elevation contour map of Pile No. 20, Ravenna Army Ammunition Plant, OH	59
Figure 28.	Pile No. 22, Ravenna Army Ammunition Plant, OH	61
Figure 29.	Elevation contour map of Pile No. 22, Ravenna Army Ammunition Plant, OH	62
Figure 30.	Elevation contour map of Pile No. 1, Somerville Depot, NJ	63
	Берог, 143	03

Preface

A geophysical research program to determine the material density and overall weight of selected stockpiles of high-grade ores has been conducted by personnel of the Engineering Geophysics Branch, Geotechnical Laboratory (GL), U.S. Army Engineer Waterways Experiment Station (WES). Analysis of microgravity measurements provide representative bulk density values of the high-grade ore, and the weight of each ore pile is determined by multiplying the computed bulk density value and measured ore pile volume. Microgravity measurements were collected at the Sierra Army Depot, California, during the period 6-14 November 1995 and at the National Refractory and Minerals Corporation, California, Hammond Depot, Indiana, Ravenna Army Ammunition Plant, Ohio, and Somerville Depot, New Jersey, during the period 27 November - 5 December 1995. The research was performed under sponsorship of the Defense National Stockpile Center (DNSC) of the Defense Logistics Agency. The DNSC Project Coordinator was Mr. G. A. Vanegas.

The overall test program was conducted under the general supervision of Dr. W. F. Marcuson III, Director, GL, and A. G. Franklin, Chief, Earthquake Engineering and Geosciences Division (EEGD). Dr. Dwain K. Butler and Mr. Keith J. Sjostrom were the principal investigators. This report was prepared by Mr. Sjostrom under the supervision of Mr. J. R. Curro, Jr., Chief, Engineering Geophysics Branch, and Dr. Butler under the supervision of Dr. Franklin, Chief, EEGD, GL. Data acquisition and analysis support was provided by Dr. Janet E. Simms and Mr. Rodney L. Leist, EEGD, GL. Assistance in report preparation was provided by Ms. Lori M. Davis, EEGD, GL. Graphical presentation of the ore piles was provided Mr. Grady A. Holley, Applied Research Associates, Vicksburg, MS.

Acknowledgement is made to Messrs. Mark Mattox, Willie J. Brown, Albert Ventura, Jr., and Michael Steinkuehler, and other employees of EMC, Inc. of Greenwood, MS, for surveying and determining the volume of each ore pile, providing the elevations of each gravity station, and assisting in the layout of the geophysical survey lines. The topographic surveys were performed during the periods 5-17 November and 26 November - 5 December 1995.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Conversion Factors, Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units as follows:

Multiply	Ву	To Obtain	
feet	0.3048	meters	
tons	2000.0	pounds	
pounds	0.45359	kilograms	
tons	907.1847	kilograms	
cubic yards	0.7646	cubic meters	
pounds per cubic foot	0.01602	grams per cubic centimeter	
pounds per cubic foot	16.0184	kilograms per cubic meter	
miles (U.S. statute)	1.6093	kilometers	
Gal (measure of gravity)	1.0	centimeter per second squared	
Gal (measure of gravity)	0.01	meter per second squared	
microGal	1.0 x 10 ⁻⁸	meter per second squared	

1 Introduction

Background

The Defense National Stockpile Center (DNSC) of the Defense Logistics Agency (DLA) maintains stockpiles of high-grade ores at various defense depots throughout the country. While the initial or as-delivered weights of many of the piles of materials are known or have been estimated in previous years, the measures or estimates, many of which are 30 to 40 years old, may not be reliable. DNSC has a requirement from the Inspector General's Office, DLA, to produce current weight estimates for statistically selected piles as part of an Audit of National Defense Stockpile Transaction Fund for the Fiscal Year 1995 Financial Statements. The reliability of the weight estimates are important for assessing the current ore inventory within the federal government and for setting fair market values of the material when the ore stockpiles are sold to industry.

DNSC requested assistance from the U.S. Army Engineer Waterways Experiment Station (WES) in determining densities for 14 piles of heavy metal ores in the Defense National Stockpile at five locations: Sierra Army Depot and National Refractory and Mineral Corporation, California; Hammond Depot, Indiana; Ravenna Army Ammunition Plant, Ohio; and Somerville Depot, New Jersey (see Figure 1). The pile materials are all heavy metal ores consisting of either chromite, manganese, tungsten, ferrochrome, or ferromanganese. The ore pile materials range in size from fine grained particles to boulders.

Standard geotechnical methods for bulk density determination are not readily applied to the in-place pile materials because of high ore density values and large range in size of the ore material. Measuring the near-surface density of the pile materials by a technique such as the ring density test will not likely give density values representative of the material near the bottoms of the piles. Any density determination method which requires displacing materials, which are placed in known volume containers and weighed, are not reliable or representative of the in-place materials.

A method for computing the weight of the in-place ore stockpiles and determining a truly representative bulk density for each pile is to measure the gravitational attraction of the piles. The gravitational attraction of the piles is the result of the integrated effect of the in-place bulk material density distributed over the volume of the pile. Analysis of the gravitational anomaly recorded over piles of ore results in estimates of the representative bulk density of the ore material. By combining the density values with the surveyed pile volume determinations, pile mass and weight can be computed for each pile. Gravitational determination of near-surface densities for use in gravity survey data reductions are done routinely in geophysics. However, determination of densities by gravity surveys is a non-standard technique for the present application and cannot promise the same level of accuracy as laboratory density determination or a precisely controlled geotechnical field density determination.

Purpose and Scope

The objectives of this research program are to determine the material density and weight of 14 ore piles representative of the ore stockpiled under DNSC jurisdiction. The results will be used to check the current ore inventory as part of an audit of the National Defense Stockpile Transaction Fund, Fiscal Year 1995 Financial Statements. Pile volumes are determined using standard topographic surveying procedures. Material density values are derived through analysis of microgravity measurements performed over each ore pile. Pile weight is the product of the pile volume and material density.

Location of Test Sites

Fourteen ore piles were statistically chosen by the Inspector General's Office to be audited. These piles represent a cross-section of the entire ore inventory under the jurisdiction of the DNSC. The selected ore stockpiles are located as follows. Eight ore piles are located at the Sierra Army Depot in Herlong, CA; located approximately 60 miles north-northwest of Reno, NV. The pile designations, material types, dimensions, and originally reported gross weights, as provided by DNSC, are listed in Table 1. The material breakdown by pile is as follows: one pile of tungsten ore (Pile No. 15), two piles of manganese ore (Piles No. 10 and No. 14), and five piles of chromite ore (Piles No. 1, 3, 5, 6 and 18A). The ninth pile of the project is located at the National Refractory and Minerals Corporation in Moss Landing, CA; north of Monterey, CA. This pile, Pile No. 1, is composed of Type B chromite ore as listed in Table 1.

Located at the Hammond Depot in Hammond, IN, the tenth ore pile of the survey, labelled as Pile No. 12 in Table 1, is composed of high-carbon ferromanganese. Three of the fourteen piles selected for this study are located at the Ravenna Army Ammunition Plant west of Warren, OH. The piles, as

listed in Table 1, are composed of metallurgical grade manganese (Pile No. 20), metallurgical grade chromite (Pile No. 8), and low-carbon ferrochrome (Pile No. 22). The final pile of the study is located at the Somerville Depot south of Somerville, NJ. The ore pile is denoted as Pile No. 1 and material classified as chemical grade chromite ore (see Table 1).

Chapter 1 Introduction

2 Principles of Microgravity Surveying

The Microgravity Method

Gravimetry comes closest of any geophysical method to allowing a positive statement regarding the nature (positive or negative) and magnitude of subsurface density anomalies. Near-surface density anomalies produce localized variations in the gravitational force field on the surface of the earth. Systematic measurements of the gravitational field with a gravimeter allows the field to be mapped on the surface of the earth. The gravity anomaly field is determined relative to the survey area of interest by correcting the measured gravity field for the normal gravitation field of the earth and any large scale gravity effects. Analysis of the gravity anomaly field results in estimates of the density contrast between the densities of the anomalous feature and surrounding material and the depth and geometry of the localized feature.

In many cases, analysis of the surface gravity anomaly allows the mass excess or deficiency associated with the density contrast to be determined (Butler 1980; Telford et al. 1990). When the two density values associated with the density contrast and the volume of the feature are known or can be measured, then the actual mass associated with the localized feature can be determined. For cases where a profile of gravity measurements crosses a topographic surface feature such as a hill, ridge, or pile and the surface feature is entirely above some reference datum, it is possible to determine the actual bulk density of the material comprising the structure directly from the gravity measurements (Nettleton 1940; Parasnis 1979; Telford et al. 1990). It is this last capability that is used in the ore pile investigations.

Microgravimetry refers to high-resolution, high-accuracy surveys of the gravitational field (acceleration) with gravimeters that have measurement sensitivity and accuracy of approximately 1 microgal (1 μ Gal), where 1 μ Gal = 10^{-6} Gal = 10^{-6} cm/s². Since the normal earth's gravitational field on the surface is approximately 1,000 Gal, microgravimetry involves measurements of gravity with precision and accuracy 10^{-9} times that of the normal earth's gravitational field. The measurement characteristics of gravimeters used for

microgravity surveys are discussed in detail in Butler (1980) and Torge (1989). The microgravity measurements recorded for this study were completed using a LaCoste and Romberg Model D Gravimeter. A photograph of the instrument is presented in Figure 2. The design of the meter allows it to be very sensitive to small changes in gravity. As a simplified description, the inner workings of the meter consist of a small, calibrated mass connected to one end of a horizontal beam. At the other end of the beam, a pair of fine wires and springs are positioned so as to act as a frictionless hinge. The beam is also supported just behind the mass by an adjustable, calibrated spring. Once the gravity meter is leveled at a measurement station, the meter is read by nulling the mass, i.e. adding or subtracting a small amount of force via the calibrated spring to the mass to restore it to the same 'reading' position as at the previous station. This process is done using a lever system and dial calibrated over a 200 milligal range. A conversion table unique to each gravity meter translates the dial readings into gravity values.

Microgravimetric surveys are of two types: (a) profile surveys, where gravity measurements are made along a profile line that is generally perpendicular to the presumed strike of a linear-type structure, such as a fault, anticline/syncline, buried river channel, or in the case of the present investigation an elongated pile of material on the surface; and (b) areal surveys, where gravity measurements are made at stations on a grid over an area. Microgravity surveys are often conducted with measurement points separated by 5 to 30 ft to enhance the detectability and resolution of small and closely spaced subsurface features. Station locations and relative elevations must be accurately determined by a site leveling survey in which the station locations and elevations are measured to the nearest 0.1 and 0.01 ft, respectively. The field procedures used for the surveys are dictated by considerations of survey objectives and subsequent corrections which must be made to the measured data. The measurements in a microgravity survey are normally made relative to a local reference station, and there is usually no attempt to tie the values to an absolute gravity determination.

Gravity Data Corrections

Corrections to gravity survey data are required in order to compensate for normal gravity variations over the survey area and over the time span required for the survey. Measured values are reduced in such a manner as to imply that all the gravity data were collected along the same reference datum by implementing gravity corrections for the effects due to latitude, elevation, topography, earth tides, and instrument drift. In this manner, variations in the corrected gravity values are then assumed to be due solely to the geologic structures of interest. The normal gravity variations and compensating corrections applied to microgravity data are discussed below:

Corrections for time variations (drift). Gravity values over the survey area change with time because of earth tides and instrument drift. Earth tides, like ocean tides, are caused by the orientation of the sun and moon and are of sufficient amplitude to be detected by sensitive gravity meters. Instrument drift is caused by creep of the metal components in the meter (springs, rods, etc.) due to thermal expansion or excessive movement. Over short time periods (less than 60 min), drift due to tidal and instrument fluctuation can be assumed to be linear over time. The usual procedure for correcting for drift is, therefore, to reoccupy a base station frequently and assume that the gravity values at all stations in the survey area vary in the same manner between readings at the base station. Differences in readings at the base station are plotted with respect to time to produce a drift curve. The drift correction, denoted as Δg_{zD} , for each station is determined directly from the graph. Positive drift requires a negative correction and vice-versa.

Latitude correction. Both the rotation of the earth and its non-spherical shape produce an increase in gravity values with latitude. For microgravity surveys, it is usually sufficient to assign a reference latitude to the base station and use the following equation to compute latitude corrections, denoted as Δg_{zL} , for all other stations:

$$\Delta g_{zL} = \pm \left(0.2471 * \sin(2 \phi) \frac{\mu Gal}{ft}\right) * \Delta s \tag{1}$$

where Δs is the north-south distance (in feet) between the measurement and base station and ϕ is the reference latitude of the base station. The correction term is added to the measured gravity value if the station is positioned south of the base station and subtracted if located north of the base station.

Free air correction. The free air correction, denoted as Δg_{zFA} , compensates for the fact that the gravitational attraction varies because of changing distance from the center of the earth. The normal free air vertical gravity gradient (0.09404 mGal/ft) is essentially constant and can be used for all stations in a microgravity survey. Since the results of a microgravity survey are entirely relative, any reference elevation (the elevation of the base station, the geoid, or mean sea level) can be used and only station elevations relative to this reference elevation are needed. The free air correction formula is

$$\Delta g_{zFA} = \pm 94.041 \frac{\mu Gal}{ft} * \Delta h \tag{2}$$

where Δh is the difference in elevation (in feet) between the measurement station and reference elevation. The correction is added to the measured gravity value if the station is higher in elevation than the reference elevation, and vice versa.

Bouguer correction. The Bouguer correction compensates for the fact that gravity values in a survey area are affected by differing masses of material beneath the stations due solely to elevation variations. For the Bouguer correction, a reference elevation is chosen (preferably the same as used for the free air correction), and the material between the ground surface at each station and the reference elevation is approximated by an infinite horizontal slab with density equal to that of the material beneath the station. The correction, denoted as Δg_{zB} , is calculated using the Bouguer slab formula:

$$\Delta g_{zB} = \pm \left(12.774 * \rho \frac{\mu Gal}{fi}\right) * \Delta h \tag{3}$$

where ρ is the material density of the slab (in g/cm³) and Δh is the elevation difference (in feet) between the measurement station and reference elevation. The quantity Δg_{zB} is subtracted from the measured gravity if the station is above the reference elevation, and vice versa. The appropriate density for the Bouguer correction in a microgravity survey can frequently be determined by direct density measurement or by procedures discussed in the next chapter under 'Determination of Material Density'.

Other data corrections and data analysis procedures, such as terrain corrections and regional-residual separation normally required for microgravity surveys, are not required for the ore pile microgravity study. Gravity values, corrected only for time and latitude variations, recorded over a topographic feature, such as an ore pile, are observed to be inversely correlated to the topography of the feature being surveyed. If the gravity profile data are also free air corrected, the free air anomaly profile is observed to be directly correlated with topography. Provided the correct density for the material comprising the topographic feature is subsequently used in the Bouguer correction, the correlation between the gravity anomaly and topographic profile is essentially eliminated or minimized. It is this observation that is used in the next section to determine the bulk density of the ore piles.

When all of the preceeding corrections have been applied to the observed gravity data, the result is the Bouguer gravity value, denoted as g_B . The Bouguer gravity value at a measurement station is given by

$$g_B = g_{obs} \pm \Delta g_{zL} \pm \Delta g_{zFA} \pm \Delta g_{zB} \pm \Delta g_{zD}$$
 (4)

where g_{abs} is the observed gravity reading and the remaining terms are the gravity corrections discussed above. Subtracting the gravity readings recorded at the base station, denoted as g_{base} , from the Bouguer gravity values at each station using the equation

$$\Delta g_B = g_B - g_{base} \tag{5}$$

results in the Bouguer gravity anomaly. The Bouguer gravity anomaly is used in determining the density of the ore pile material whether through direct calculation or gravity modeling algorithms.

Field Procedures

Gravity measurements are collected along traverses established across the base, side slopes, and tops of each ore pile. The gravity survey lines must be established and measured using microgravimetric procedures such as those outlined in Butler (1980). For piles that are elongated in one direction, the profile lines are oriented approximately perpendicular to the elongation direction. Each survey line consists of approximately 17 to 21 measurement stations much like the one shown in Figure 3. The measurement stations are located so that at least four stations are positioned on either side of and off the pile on non-ore, natural earth material (see Figure 4) to provide background gravity readings necessary for analysis of the data. The remaining 9 to 11 stations are located on the side slopes and tops of the ore piles as shown in Figure 5. These are the measurement stations from which the gravity anomaly is determined and material densities derived. Horizontal spacing between stations varies according to the number of gravity stations and overall dimensions of the piles, typically varying from 5 to 20 ft (1.5 to 6 m). Horizontal locations (x,y coordinates) and elevations (z coordinate) are established by electronic surveying instruments using standard topographic surveying procedures. Horizontal positions are measured to an accuracy of 0.1 ft and elevations are determined to an accuracy of 0.01 ft using, at most locations, a reference elevation of 100 ft. In addition to the position surveying performed for establishing the gravity survey lines, position measurements are also acquired for use in determining pile volumes. Further details regarding the position surveying procedures are presented in the next Chapter.

For the gravity measurements and data corrections, each gravity profile line has a base station located off the pile at the "start" of the survey line (see Figure 6). All elevations and gravity measurements along the line are referenced to the base station elevation and base station gravity measurement. The gravity measurements along each profile line are determined in two measurement programs. Following the initial gravity readings at the base station, the first measurement program consists of approximately 10 measurements as the survey proceeds towards (see Figure 7) and up the slope (see Figure 8) of the ore pile, stopping at a measurement station that is located approximately

halfway along the profile line and often at the highest elevation of the line. Once the reading at the top of the pile is collected, the gravity survey loops back to the base station for additional readings to conclude the first program. The second measurement program for the profile line starts at the opposite end of the line from the base station and proceeds up the 'back' side of the ore pile. Gravity readings are collected until the midway point along the survey line, located on top of the pile, is reached. This station is the same stopping point as used for the first program. After recording the gravity meter reading, the survey again loops back to the base station for the third and final set of readings. This two program procedure results in three measurements at the base station and two readings at the central measurement point of the line. The multiple base stations measurements are used for earth tide and instrument drift corrections and data quality control. Since measurements at the base station are used for reference and for correcting all other measurements on the line, special care is exercised in acquiring base station measurements (Butler 1980). The two measurements at the central measurement point are also used for survey quality control. A time and equipment performance constraint is applied to each survey line. If any type of equipment problem occurs during a program, the entire program is repeated. If the total time required to survey a profile line exceeds 60 minutes, the survey line is subdivided into three programs. However, survey lines are typically completed in less than 60 minutes. Also, if the data quality and multiple readings are not within set limits, the survey program may have to be rerun.

Two procedures can be used to determine a representative in-place bulk density from microgravity surveys for a given pile:

- a. Model the geometry of the pile and compute the gravitational attraction and compare to the measured profile; then vary the density systematically until the calculated profile matches the measured profile; the density which yields the best match is the proper representative in-place density;
- b. Correct the measured gravity data for instrument drift, latitude corrections, and elevation variations relative to the base elevation at the beginning of the survey line; then systematically vary the density used in a Bouguer elevation correction to the data; finally, compare the shape of the resulting gravity profile to the elevation profile and the density value for which the gravity profile shows the least correlation to elevation is the proper in-place density.

Both of the above procedures are well established and recognized geophysical methods (Telford et al. 1990; Dobrin, 1976; Parasnis, 1979; Butler, 1980; Butler et al. 1982). While the density values from the two procedures should agree within their respective measurement and numerical accuracies, there may be significant differences in their ease and efficiency of application; dependent primarily on individual pile geometry. Where possible, both procedures are used for the density determinations.

Depending on the pile geometry, two to five profiles are established crossing each pile which results in the determination of two to five spatially distributed, volume-averaged bulk density values for each pile. The density values are averaged, thereby resulting in a single in-place density value for the ore pile material with computed standard deviations to reflect the confidence interval of the result.

3 Data Analysis and Results

Determination of Ore Pile Volume

Topographic surveys to compute the volumes of the ore stockpiles were completed using standard land surveying methods. Topographic field data were collected using a Topcon GTS-3C Total Station with a Hewlett Packard 200 LX Data Collector. Horizontal data were referenced to an arbitrary coordinate system using the point 100,000 North/100,000 East (in U.S. survey feet) as the origin and a reference elevation of 100 ft. Azimuthal orientation is zero degrees North. The limits of the topographic survey program were from toe to toe of each ore stockpile while taking into account all ridges, depressions, and other significant characteristics in the surfaces of the stockpiles. The base of each stockpile is determined by a planar surface passing through the elevation points along the toe of the pile. It should be noted that any ore material below the planar surface, caused by pile settlement or an irregular, original placement surface, is not included in the pile volume determination and, hence, the ore stockpile weight.

Contour mapping of the relative elevation data were done for each pile using a one foot contour interval. Volumes were computed, using Intergraph InRoads software, from the three-dimensional pile representations incorporating the triangle, grid, and end-area methods. The grid method is based on a mesh of 0.5 ft and the end-area method is based on cross-sections spaced five feet apart. The computed volumes for each pile using each method are reported in units of cubic yards (yd³) and can be found in Appendix A. The average volume of each pile is noted on the contour plots, listed in Table 2, and used in the weight calculation of ore material.

Determination of Material Density

In standard gravity surveying to determine geologic structure, the Bouguer corrections in the reduction of gravity data require a knowledge of the average densities of the near-surface rock and sediments. In the application of gravity measurements to estimate the surface and subsurface densities of earth materials, such as in this project, three methods were used to estimate the density

of the ore pile materials. The first method, developed by Nettleton (1940), is an indirect, graphical technique to determine density. Plotting gravity data that are collected over an ore pile and have undergone the drift, latitude, and free air corrections, the gravity curve at this point is strongly correlated to the shape of the measured topography curve over the pile. Applying the Bouguer correction numerous times over a range of material density values, the resultant gravity anomaly curve that has the least correlation, ideally a correlation factor of zero, is considered to be the most nearly correct bulk density value for the ore pile material. This method has the advantage of averaging the effect of density variations more accurately than can be done from surface or core samples (Dobrin, 1976). This method works best when the near-surface material is relatively homogeneous in nature.

The second method is an analytical approach developed by Parasnis (1979) and similar to Nettleton's graphical method. Parasnis assumes that if the correct material density is used for the Bouguer correction, then the Bouguer gravity anomaly defined in Equation 5 will be a random error with a mean value equal to zero (Telford et al, 1990) as shown below:

$$0 = \Delta g_B = g_B - g_{base} \tag{6}$$

Expanding the above equation to include the observed gravity readings and all of the gravity correction terms, we obtain the equation

$$0 = g_{obs} - g_{base} + \left[\pm g_{zD} \pm g_{zL} \pm g_{zFA} \right] \pm g_{zB}$$
 (7)

Further expansion of the Bouguer correction term, Δg_{zB} , in Equation 7 and subsequent algebra solving for the material density parameter ρ , we get

$$\rho = \frac{g_{obs} - g_{base} + (\pm \Delta g_{zD} \pm \Delta g_{zL} \pm \Delta g_{zFA})}{12.774 * \Delta h}$$
 (8)

where ρ is defined in terms of g/cm³. Plotting the terms in the numerator versus the terms in the denominator, the best fit straight line through the data points is the bulk density of the ore pile material.

Depending on the dimensions of each ore pile, two to five gravity surveys are performed to determine the average bulk density of the ore material. During the analysis portion of this study, Nettleton's and Parasnis' method were used to compute the density value over an individual survey line. Each method provided the same result as expected. The two to five survey lines conducted over an ore pile results in the determination of the same number of spatially distributed, volume-averaged bulk density values for each pile. The bulk density values are averaged to determine a single in-place density value for the ore pile material. Standard deviation values were also computed to reflect the confidence interval of the result.

The third method used to assist in the determination of the bulk density of an ore pile is a two-and-a-half dimensional gravity modeling routine developed by Cady (1980). The computer algorithm uses as input the Bouguer gravity anomaly values calculated using Equation 5 for data collected perpendicular to the strike of a two dimensional (2-D) feature of finite length. An ore pile is an excellent example of such a feature. The topographic survey data along the gravity survey line are used to construct a detailed 2-D cross-section of the ore pile. Theoretical gravity values are calculated by inputting various estimates of the material density into the gravity modeling algorithm. The best density estimate is that value which provides the lowest least squares error between the observed and calculated gravity data. This method is much more cumbersome and time consuming than the first two methods, however, the advantage of this method is that it allows investigation of possible settlement of the ore pile material. This program was used primarily at the Sierra Army Depot where settlement of the ore piles was a concern.

Calculation of Ore Pile Weight

Following the determination of the representative material density from the microgravimetric measurements, the total weight of the ore pile material is calculated by incorporating the volume estimates of each respective ore pile. The gravimetrically derived weight of the above-ground ore pile material is computed using the equation

Weight =
$$(\rho) * \left(62.428 \frac{lb}{ft^3}\right) * \left(27 \frac{ft^3}{yd^3}\right) * (V)$$
 (9)

where ρ is the computed density of the ore pile material (in g/cm³) and V is the volume of the ore pile (in yd^3) above the ground surface. The total weight is given in units of pounds (lbs).

Accuracy and Percent Difference

Based on experience and published examples (Parasnis, 1979; Telford et al. 1990), the pile density determination accuracy is estimated to be approximately \pm 0.2 g/cm³ (12.5 lb/ft³). For example, if the bulk inplace density determination is estimated to be 2.5 g/cm³, this accuracy estimate translates to approximately \pm 8 percent of the true value. For more dense ore pile material, the computed densities become more accurate.

Discussions with the registered land surveyor leading the ore pile volume determination portion of this effort established a volume determination accuracy of \pm 5 percent. The volume accuracy clearly depends on the following factors: (1) number of data points used to characterize the pile, (2) definition

of irregularities in the ore pile geometry, and (3) accurate determination of the base and outside edge of the pile. It also should be remembered that any portion of the ore material below grade (i.e. below the surrounding ground surface level) caused by material settlement or an irregular placement surface cannot be accounted for in the land survey volume determination.

Based on the above considerations for ore material density estimation and pile volume determination, the computation of the weight of the ore pile should be accurate to within \pm 10 to 14 percent depending on the actual density of the ore pile material. Outside factors such as settlement of the ore material, irregular pile geometries, and poor gravity data quality will increase the error range.

The difference between the original reported ore pile weight value when the material was placed at a site and the calculated weight is given in terms of percent using the equation

$$Difference = \left(\frac{|Reported - Calculated|}{Reported}\right) * 100\%$$
 (10)

where "Reported" and "Calculated" are the respective pile weights in units of pounds (lbs). In the discussion of the results, negative percent differences represent calculated pile masses that are less than the reported gross weights. Comparing the calculated results to the reported gross weights, it was found that for every pile of material, except one, the computed weight was smaller than the reported weight. This, however, seems reasonable since there has been considerable scatter of material over time, the ground beneath some of the piles may have settled since placement, and some unaccounted for material may have been removed or consolidated with other piles. Also, there is no way to account for the weight of any ore material which is below the ground surface or the horizontal plane determined by the survey crew representing the base of the pile.

Results

The computed density values of the stockpiled ore for each pile at the five sites is multiplied with the respective ore pile volume to determine the total weight of ore material. The computed results for each pile are listed in Table 2 and the differences between the computed weight and originally reported ore pile weights are presented in Table 3. Negative percent differences indicate that the computed ore pile weight values are less than those values reported by DNSC.

Sierra Army Depot, California

Eight piles of stockpiled ore were surveyed at the Sierra Army Depot. The pile descriptions, dimensions, and reported weights as provided by the DNSC are listed in Table 1. The results following the gravity surveys for each pile, listed in numerical order, are described below.

Pile No. 1: Chromite Ore. Pile No. 1 at the Sierra Army Depot consists of 11,797,640 lbs of domestic, metallurgical chromite as documented by DNSC. Three gravity survey lines were performed over the pile as indicated in the elevation contour plot of the ore pile in Figure 9. Each survey line had 10 gravity stations located on the ore material. Computed densities derived using the gravity data analysis procedures and algorithms range from 1.99 to 2.12 g/cm^3 . The average material density is 2.063 g/cm^3 with a standard deviation of $\pm 0.054 \text{ g/cm}^3$. The average volume of the ore pile material is estimated at 2015.9 yd³. Using the computed averages for the material density and pile volume (see Table 2), the estimated total weight of Pile No. 1 is approximately 7,009,893.2 lbs. The difference between this computed weight in relation to the weight on record (see Table 3) is approximately -40.5 percent. Incorporating the standard deviation of the computed material density, the estimated weight range for Pile No. 1 is $\pm 183,487.3$ lbs.

Within a few weeks after the gravity measurements were collected over Pile No. 1, the ore material was removed from Sierra Army Depot. The material was weighed as it left the base and the cumulative weight was approximately 9,000,000 lbs, or approximately 2,800,000 lbs less than the reported gross weight. The difference between this measured value and the weight calculated from the gravity measurements is -22.1 percent. The pile was also found to have settled 1 to 2 ft near the center of the pile; thus, the material below the surveyed planar base of the pile was not included in the calculated weight.

Pile No. 3: Chromite Ore. Pile No. 3, surrounded on three sides by wooden barricade, is described as domestic, metallurgical chromite ore having a reported weight of 34,529,495 lbs (see Table 1). An elevation contour plot of the ore pile is illustrated in Figure 10. Three gravity surveys were performed over the pile (see Figure 10) with nine of the nineteen gravity stations comprising each survey line positioned on the ore material. Computed densities range from 2.33 to 2.44 g/cm³ with an average value of 2.393 g/cm³. Incorporating a measured volume of 7,215.7 yd³, the estimated weight of Pile No. 3 is 29,104,782.2 lbs as indicated in Table 2. The standard deviation of the computed material density values is ± 0.046 g/cm³ which reflects an error bound on the weight estimate of $\pm 559,473.5$ lbs. The computed weight of the chromite ore varies from the reported gross weight by -15.7 percent.

In January 1996, this pile of ore was also being removed from the Sierra Army Depot. At the time this report was written, the measured weight of Pile No. 3 had not yet been determined.

Pile No. 5: Chromite Ore. Pile No. 5 is an irregular shaped pile of metallurgical grade chromite ore. The ore is comprised mostly of cobble to boulder size material as shown in Figure 11. An elevation contour map of the ore pile is presented in Figure 12. Pile No. 5 has an estimated volume of 5,353.6 yd³. Four gravity surveys were performed over the width of the pile (see Figure 12) with 9 to 10 gravity stations positioned on the ore material. Analysis of the corrected gravity data yielded material density values varying from 2.31 to 2.52 g/cm³. The average gravimetrically derived density of the chromite ore is 2.425 g/cm³ with a standard deviation of ± 0.084 g/cm³. Substituting the appropriate values into Equation 9, the estimated weight of Pile No. 5 is 21,882,697.1 lbs with a possible deviation of ± 757 ,998.6 lbs. The reported gross weight as provided by DNSC is 31,022,600 lbs and is approximately 29.4 percent greater than the average calculated weight determined from the gravity data.

Pile No. 6: Chromite Ore. Pile No. 6, as shown in Figure 13, is comprised of chromite ore and has a reported gross weight of 54,917,860 lbs as indicated in Table 1. Prior to the gravity or topographic surveys, Pile No. 6 was shown on a map as a separate pile of ore adjacent to another pile, Pile No. 18, of chromite material. However, upon arrival at the site, the two piles had been pushed together and there was no clear boundary between the two piles. By approximating the boundary location, a contour plot of the measured elevations is shown in Figure 14 and the estimated volume of Pile No. 6 is 13,181.9 yd³. Three gravity survey lines were performed over the pile (see Figure 14) with 10 to 12 stations situated on the ore material depending on the width of the pile. The gravity data were analyzed yielding computed material density values ranging from 2.35 to 2.58 g/cm³. The average computed density of the chromite ore is 2.503 g/cm³ with a standard deviation of ±0.108 g/cm³. Calculation of an average weight for the ore material yields a value of 55,613,733.1 lbs which is approximately 1.2 percent greater than the reported gross weight (see Table 3).

Pile No. 10: Manganese Ore. Pile No. 10 is a small pile of manganese ore (see Figure 15) having a reported gross weight of 1,846,185 lbs as listed in Table 1. An elevation contour plot of the pile is illustrated in Figure 16 and, as shown in the figure, the maximum elevations of the pile are much less than the reported height of 10 ft. The computed volume of the ore material is 450.5 yd^3 . Two gravity survey lines traversed the ore pile with 9 of the 17 measurement stations positioned on the ore material as shown in Figure 16. Analysis of the corrected gravity values provided density estimates of the manganese ore ranging from 1.91 to 2.10 g/cm³. The average material density is 2.005 g/cm^3 and has a standard deviation of $\pm 0.095 \text{ g/cm}^3$. The average calculated weight of the ore is 1,522,482.7 lbs (see Table 2). Comparing the computed weight to the reported weight provided by DNSC, a difference of -17.5 percent exists as shown in Table 3.

Pile No. 14: Manganese Ore. Pile No. 14 is an elongated pile of manganese ore with a reported gross weight of 34,869,960 lbs. The width of the

pile along most of its length is approximately 50 ft except at the southern end of the pile. The contour plot illustrated in Figure 17 displays the measured elevations with respect to a base elevation of 100 ft and also presents the general shape of the pile. The computed volume of the ore pile is given as 8,078.7 yd³. A total of four gravity surveys were performed across the width of the ore pile. Each survey line is comprised of 17 to 19 measurement stations of which 9 to 11 locations are positioned on the manganese ore. Equipment malfunction along two of the gravity profiles resulted in suspect data sets. The remaining data sets provided density estimates of the manganese ore of 1.920 and 1.930 g/cm³. The weight of Pile No. 14, computed by multiplying the density values and measured pile volume, is 26,212,920.0 lbs. The computed weight is approximately 24.8 percent less than the reported weight provided by DNSC as shown in Table 3.

Pile No. 15: Tungsten Ore. The pile of tungsten ore is the smallest pile surveyed at the Sierra Army Depot and is in the shape of a cone as shown in Figure 18. The ore material is also spread unevenly about its base making the base of the pile difficult to determine. The measured elevations, with respect to 100 ft, are contoured and displayed in Figure 19. The estimated volume is 306.8 yd³. Also unique to this pile is the layout of the gravity survey lines. At each ore pile, the gravity survey lines are laid out parallel to one another except for this pile where the surveys cross and form an 'X' as shown in Figure 19. Referring to the figure, gravity station 9 is at the apex of the pile for both surveys. The average computed density of the tungsten ore determined from the corrected gravity data is 1.99 g/cm³ which in turn provides an estimated pile weight of 1,029,085.9 lbs (see Table 2). Comparing this weight to the reported gross weight provided by DNSC, the percent difference is approximately -39.5 percent as shown in Table 3.

Pile No. 18A: Chromite Ore. Unlike the other chromite ore piles at the Sierra Army Depot, Pile No. 18A is comprised of refined, fine-grained chromite having the consistency of sand. The reported gross weight of the ore pile as provided by DNSC is 52,131,980 lbs (see Table 1). The results of the topographic survey are presented in the elevation contour map in Figure 20. The estimated volume of the pile, computed from the elevation data, is 13,151.9 vd³. It should be noted that the boundary of the pile was difficult to differentiate because of the intermixing of the chromite ore and natural sandy soil at the site. Also, along the northern end of the pile, Piles No. 18A and No. 20 have merged which created further difficulties in delineating the actual pile boundary. Three gravity surveys were performed over the pile with 8 to 9 stations positioned on the ore matrical (see Figure 20). Analysis of the corrected gravity data provided a range of computed material densities varying from 2.14 to 2.23 g/cm³. The average material density is 2.180 g/cm³ with a standard deviation of 0.039 g/cm³. The average calculated weight of the chromite ore (see Table 2), computed by multiplying the average bulk density and estimated pile volume, is 48,326,815.5 lbs which is approximately 7.3 percent less than the reported gross weight (see Table 3). The average computed weight has a range of variance of $\pm 820,225.8$ lbs.

National Refractory and Mineral Corporation, California

Pile No. 1: Chromite Ore. Pile No. 1, the only pile surveyed at the National Refractory and Mineral Corporation, consists of 61,618,036 lbs of Type B chromite ore as documented by DNSC (see Table 1). The estimated volume of the ore material, as determined from the topographic information, is 12,403.6 yd³. Three gravity survey lines were performed over the pile as indicated in the elevation contour plot of the ore pile in Figure 21. Each survey line had 10 gravity stations positioned on the ore material. Computed bulk density values range from 2.33 to 3.23 g/cm³. The average material density over this wide range of values is 2.696 g/cm³ with a relatively large standard deviation of ± 0.386 g/cm³. Multiplication of the average material density and pile volume (see Table 2) provided an estimated total weight of the chromite ore of approximately 56,365,170.7 lbs. The difference between the average calculated weight in relation to the weight on record (see Table 3) is approximately -8.5 percent.

Hammond Depot, Indiana

Pile No. 12: Ferromanganese. Pile No. 12, as shown in Figure 22, is comprised of cobble to boulder size material classified as high carbon ferromanganese. A close-up view of the ore material was previously shown in Figure 3. A contour map of the ore pile constructed from the measured elevations is presented in Figure 23 and has an estimated volume of 5,353.6 yd3. The pile is situated on a concrete pad so no material settlement is expected. Three gravity surveys were performed over the pile (see Figure 23). Each survey line has 21 to 22 measurement stations of which 14 are positioned on the ore pile material. Analysis of the corrected gravity data yielded material density values varying from 3.80 to 4.06 g/cm³. The average computed density of the ferromanganese is 3.903 g/cm³ with a standard deviation of ± 0.112 g/cm³. The estimated weight of Pile No. 12, as listed in Table 3, is 127,743,051.9 lbs with a possible deviation of $\pm 3,665,698.7$ lbs. The reported gross weight of 148,812,940 lbs, as provided by DNSC, is approximately 14.1 percent greater than the average calculated weight determined from the gravity data.

Ravenna Army Ammunition Plant, Ohio

Pile No. 8: Chromite Ore. Pile No. 8 is an irregularly shaped pile in that it has two apexes along its length as illustrated in Figure 24. The pile is described by DNSC as Type II chromite ore having a reported weight of 35,557 tons (71,114,000 lbs). An elevation contour plot from the topographic surveys is illustrated in Figure 25 and the estimated volume from that information is 14,289.2 yd³. Five gravity surveys were performed over the pile as shown in Figure 25 with 11 of the 19 gravity measurements collected directly over the ore material. Computed density values range from 1.98 to

2.49 g/cm³ with an average value of 2.284 g/cm³. The average calculated weight of Pile No. 8 is 55,010,703.7 lbs as indicated in Table 2. The standard deviation of the computed material density values is ± 0.182 g/cm³ which reflects an error bound on the weight estimate of $\pm 4,383,515.0$ lbs. The computed weight of the chromite ore varies from the reported gross weight by approximately -22.6 percent. It should be noted that upon inspection of the ore pile, evidence suggests material had been removed from the western end of the pile (see Figure 25).

Pile No. 20: Manganese Ore. Pile No. 20 is an elongated pile of Type II manganese ore with a reported gross weight of 13,807 tons (27,614,000 lbs). The western two-thirds of the pile are shown in Figure 26. Inspection of the ore pile prior to the gravity survey suggested that ore had been removed from the eastern one-third of the pile. The contour plot illustrated in Figure 27 displays the measured elevations with respect to a base elevation of 100 ft and also indicates the location of the gravity survey lines. The computed volume of the ore pile, determined from the topographic information, is given as 8,078.7 yd3. Referring to Figure 27, five gravity survey lines were performed across the width of the ore pile. Each survey line is comprised of 20 measurement stations of which 11 locations are positioned on the manganese ore. Equipment malfunction during data acquisition along two of the gravity profiles resulted in suspect data sets. The remaining data sets provided an average material density estimate of 1.800 g/cm³. The computed weight of Pile No. 20 is 25,818,122.3 lbs and is approximately 6.5 percent less than the reported weight provided by DNSC as shown in Table 3.

Pile No. 22: Ferrochrome. Ferrochrome is a refined, metallic product from the processing of chromite ore. Pile No. 22, as shown in Figure 28 (see also Figure 8), is comprised of broken chunks of this material and has a reported gross weight of 26,098 tons (52,196,000 lbs) as listed in Table 1. The material in Pile No. 22 is surrounded by a three foot high wooden barrier and has been placed on a concrete pad. An elevation contour plot of the pile is illustrated in Figure 29 and the estimated volume is 7,458.9 yd³. Three gravity survey lines traversed the ore pile with 9 to 10 measurement stations positioned on the ferrochrome material as shown in Figure 29. Analysis of the corrected gravity values provided density estimates ranging from 3.63 to 4.04 g/cm^3 . The average material density is 3.843 g/cm^3 with a standard deviation of $\pm 0.168 \text{ g/cm}^3$. The average calculated weight of the pile is 48,315,708.8 lbs with a possible deviation of $\pm 2,112,162.1$ lbs. Comparing the average computed weight to the reported weight provided by DNSC, a difference of -7.4 percent exists as shown in Table 3.

Somerville Depot, New Jersey

Pile No. 1: Chromite Ore. Pile No. 1 at the Somerville Depot is an L-shaped pile classified as chemical grade chromite ore with a reported gross weight, as provided by DNSC, of 35,197 tons (70,394,000 lbs) as listed in

Table 1. The composition of the chromite ore is similar to that of Pile No. 18A at the Sierra Army Depot in which the ore is refined, fine-grained material having the consistency of sand. There is a wooden barrier along two sides of the ore pile. The results of the topographic survey are presented in an elevation contour map of the pile in Figure 30 using a reference elevation of 100 ft. The estimated volume of the pile, computed from the elevation data, is 13,010.3 yd3. Three gravity surveys were performed over the pile as shown in Figure 30. At the widest section of the pile, 13 gravity stations were placed on the ore material whereas over the narrower section, 11 stations were situated on the pile. Four gravity stations along each line were located off the ore material on either side of the pile. Analysis of the corrected gravity data provided a range of computed material densities varying from 2.90 to 3.12 g/cm³. The average density value is 2.993 g/cm³ with a standard deviation of 0.093 g/cm³. Multiplying the average density and estimated pile volume, the average calculated weight of the chromite ore (see Table 2) is 65,635,260.6 lbs which is approximately 6.7 percent less than the reported gross weight as listed in Table 3. The average computed weight has a range of variance of $\pm 2.039.451.8$ lbs.

Summary of Results

Comparing the computed weights for each ore stockpile to the reported weights provided by DNSC, it is observed that all of the calculated results, with one exception, are less than those on record. The one exception was Pile No. 6 at the Sierra Army Depot, CA where material from another pile had been placed next to this pile and thereby masking the original pile outline. The less than reported values seem reasonable considering the scatter of ore material near the base of many piles, settlement of the ore material not detected by the topographic or gravity surveys, difficulties in differentiating the true base of each pile, inhomogeneities within the ore creating highly variable density estimates, and possible removal of material at some piles. Poor differentiation of the intricate geometries of some piles and suspect gravity data sets in some instances have also be a contributing factor. A comparison of the percent differences between the reported and computed weights for the 14 ore piles are summarized as follows:

Number of Piles	Difference Range
6	0 - 10 %
1	10 - 15 %
2	15 - 20 %
2	20 - 25 %
3	> 25 %

The percent differences computed for seven of the piles were within the expected error range of 10 to 14 percent outlined prior to the survey. The piles having the greatest percent differences, greater than 20 percent, may

attribute these discrepencies based on any of the following reasons: pile boundaries could not be defined accurately, ore material scattered about the base could not be easily incorporated into the study, equipment problems such as jarring of the instrument or low battery output produced suspect data sets. or the possibility that ore material had been removed since placement. The highest percent difference, -40.5 percent, was computed for Pile No. 1 at the Sierra Army Depot, CA in which the estimated weight of the ore material is 7,009,893.2 lbs. As mentioned in the discussion of results, this pile has since been removed and the actual weight of the material is approximately 9,000,000 lbs; a percent difference of 22.1 from the calculated weight. Therefore, it is possible that the reported weights for many of the piles may also be inaccurate. Removal of the pile also indicated that the ground beneath the ore pile had settled approximately 1 to 2 ft since placement. Since the volume of the ore stockpile, computed from the topographic survey data, is unable to account for the volume of material below the ground surface, the computed weight represents the "above ground surface" weight.

The highest percent differences overall were computed at the Sierra Army Depot, CA where the piles are located on unprepared, sandy soil. Settlement of the sandy soil beneath the ore material or an irregular original placement surface is likely to have contributed to the higher than expected computed differences. Some concern had arisen prior to the gravity survey that some of the ore piles may have settled 3 to 5 ft below the original surface plane. Using the computer algorithm denoted as method three earlier, no significant indications of material settlement were detected at any of the pile locations. For instance, the material comprising Pile No 18A, the largest pile at the site, was found to have possibly settled 1 to 2 ft. However, the confidence in the results is limited considering the finite number of gravity data points over the ore pile. However, when Pile No. 1 was removed from the site, it was found to have settled 1 to 2 ft near the center of the pile. On a related note, the piles at the Sierra Army Depot are located in a desert environment and it is possible that a decrease in the moisture content of the material since placement could have an effect on the current weight estimates.

It is also of interest to note similarities between piles of similar ore material, pile locales, and placement characteristics. The average densities of the eight chomite ore piles surveyed ranged from 2.063 to 2.993 g/cm³. The three manganese ore piles had computed material densities ranging from 1.795 to 2.005 g/cm³. Two piles of processed ore, one each at the Hammond Depot, IN and Ravenna Army Ammunition Plant, OH, were situated on concrete pads to prevent settlement of the ground beneath the ore material; the computed differences for these piles were -14.1 and -7.4 percent, respectively. Four ore piles were placed on prepared, natural earth surfaces; three of these had computed differences ranging from -6.5 to -8.5 percent. The remaining pile of the four, located at the Ravenna Army Ammunition Plant, OH, has a computed difference of -22.6 percent but it is suspected that material has been removed from the pile since placement.

4 Conclusions

The Defense National Stockpile Center (DNSC) of the Defense Logistics Agency maintains stockpiles of high-grade ores at various defense depots throughout the country. DNSC has a requirement to produce current mass estimates for fourteen statistically selected piles as part of a national audit. The fourteen piles selected are located at the: Sierra Army Depot and National Refractory and Mineral Corporation, California; Hammond Depot, Indiana; Ravenna Army Ammunition Plant, Ohio; and Somerville Depot, New Jersey. The pile materials are all heavy metal ores consisting of either chromite, manganese, tungsten, ferrochrome, or ferromanganese. While the initial, as-delivered weights of the stockpiles are known or have been previously estimated, many of the estimates are 30 to 40 years old and may not be reliable.

Microgravity measurements were performed over each ore pile to provide high-resolution surveys of the gravitational field with which to determine the average bulk density of the ore material. Each microgravity survey line consists of approximately 17 to 21 measurement stations oriented perpendicular to the strike or long axis of the ore pile. Nine to 11 of the measurement stations are located on the ore material and it is these stations from which the gravity anomaly is determined and material densities derived. Depending on the dimensions of each ore pile, two to five gravity survey lines are performed and each line has a base station to which all elevations and gravity measurements are referenced. Implementing the necessary gravity corrections for the effects due to latitude, elevation, topography, and instrument drift, the measured values are corrected to the base station reference datum. In this manner, variations in the corrected gravity values are assumed to be due solely to the ore pile material.

Analysis of the gravity anomaly data was completed through the use of both Nettleton's and Parasnis' method. Each of these methods computes, for the two to five survey lines conducted over an ore pile, the same number of spatially distributed, volume-averaged bulk density values for ore pile material. The bulk density values are averaged to determine a single, in-place density value for the ore with computed standard deviations to reflect the confidence interval of the result. These methods have the advantage of averaging the effect of density variations more accurately than can be done from surface

or core samples. A third method used to determine the material density is a two-and-a-half dimensional gravity modeling routine which allows investigation of possible settlement of the ore pile. The pile density determination accuracy is estimated to be approximately \pm 0.2 g/cm³ (12.5 lb/ft³).

Topographic surveys to compute the volumes of the ore stockpiles were completed using standard land surveying methods. The topographic survey program took into account all ridges, depressions, and other significant characteristics on the surface of the stockpiles. The base of each pile is determined by a planar surface passing through the elevation points along the toe of the pile. Volumes were computed from three-dimensional pile representations and estimated to be within five percent of the actual value. It should be noted that any ore material below the planar surface, due to pile settlement or an irregular, original placement surface, is not included in the pile volume determination and, hence, the ore stockpile weight.

Comparing the gravimetrically derived weights for each ore stockpile to the reported weights provided by DNSC, it is observed that all of the calculated results, with one exception, are less than those on record. The less than reported values seem reasonable considering the scatter of ore material near the base of many piles, settlement of the ore material not detected by the topographic or gravity surveys, difficulties in differentiating the true base of each pile, inhomogeneities within the ore creating highly variable density estimates, and possible removal of material from some piles. The percent differences computed for seven of the piles were within the expected error range of 10 to 14 percent.

The highest percent differences overall were computed at the Sierra Army Depot, CA where the piles are located on unprepared, sandy soil. Upon removal of Pile No. 1, the measured weight of the ore was found to be approximately 2,800,000 lbs less than the originally reported weight and the pile had settled 1 to 2 ft below the current ground surface near the center of the pile. Both of these factors, erroneous reported weights and material settlement, are contributors to the higher than expected percent differences. Ore stockpiles situated on prepared surfaces or concrete pads typically have computed differences less than 10 percent. Comparing the results of similar ore material, the average densities of the eight chomite ore piles surveyed ranged from 2.063 to 2.993 g/cm³ whereas the three manganese ore piles had computed material densities ranging from 1.795 to 2.005 g/cm³.

Chapter 4 Conclusions 23

References

- Butler, D. K. (1980). "Microgravimetric techniques for geotechnical applications." Miscellaneous Paper GL-80-13. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Butler, D. K., Gangi, A. F., Wahl, R. E., Yule, D. E., and Barnes, D. E. (1982). "Analytical and data processing techniques for interpretation geophysical survey data with special application to cavity detection." Miscellaneous Paper GL-82-16. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Cady, J. W. (1980). "Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms." Geophysics 45(10) 1507-1512
- Dobrin, M. B. (1976). Introduction to geophysical prospecting. 3rd Edition, McGraw-Hill, New York.
- Nettleton, L. L. (1940). Geophysical prospecting for oil. McGraw-Hill, New York.
- Parasnis, D. S. (1979). Principles of applied geophysics. 3rd Edition, Halsted Press, New York.
- Telford, W. M., Geldart, L. P., Sheriff, R. E. (1990). Applied geophysics. 2nd Edition, Cambridge University Press, New York.
- Torge, W. (1989). Gravimetry. Walter de Gruyter, New York.

Figure 1. Location of test sites

Figure 2. LaCoste & Romberg Model D gravity meter on base plate

Figure 3. Microgravity measurement station

Figure 4. Microgravity stations located off ore pile

Figure 5. Microgravity stations positioned on ore pile

Figure 6. Microgravity measurements at base station

Figure 7. Microgravity measurements near ore stockpile

Figure 8. Microgravity measurements on side slope of ore pile

Figure 9. Elevation contour map of Pile #1, Sierra Army Depot, CA

Figure 10. Elevation contour map of Pile #3, Sierra Army Depot, CA

Figure 11. Pile #5, Sierra Army Depot, CA

Figure 12. Elevation contour map of Pile #5, Sierra Army Depot, CA

Figure 13. Pile #6, Sierra Army Depot, CA

Figure 14. Elevation contour map of Pile #6, Sierra Army Depot, CA

Figure 15. Pile #10, Sierra Army Depot, CA

Figure 16. Elevation contour map of Pile #10, Sierra Army Depot, CA

Figure 17. Elevation contour map of Pile #14, Sierra Army Depot, CA

Figure 18. Pile #15, Sierra Army Depot, CA

Figure 19. Elevation contour map of Pile #15, Sierra Army Depot, CA

Figure 20. Elevation contour map of Pile #18A, Sierra Army Depot, CA

Figure 21. Elevation contour map of Pile #1, National Refractory and Mineral Corporation, CA

Figure 22. Pile #12, Hammond Depot, IN

Figure 23. Elevation contour map of Pile #12, Hammond Depot, IN

Figure 24. Pile #8, Ravenna Army Ammunition Plant, OH

Figure 25. Elevation contour map of Pile #8, Ravenna Army Ammunition Plant, OH

on	Contour	Inte	rval	: 1	FT
nce	Elevatio	n·	100	FT	

uted Ore Pile Volume : 14,289.2 YDS³ ted Gross Weight : 71,114,000 LBS

LEGEND

122.0 Station Elevation Station Location Station Label Major Contour Minor Contour R-8-26

RAVENNA ARMY AMMUNITION PLANT, OH PILE #8 CHROMITE ORE ORE PILE ELEVATION MAP

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

SOLE ("-0" | DATE & PERSONN 1994 | SHEET

Figure 26. Pile #20, Ravenna Army Ammunition Plant, OH

Figure 27. Elevation contour map of Pile #20, Ravenna Army Ammunition Plant, OH

ration Contour Interval : 1 FT	122.0	
erence Elevation : 100 FT	•	
nputed Ore Pile Volume: 8533.3 YDS ³	R-20-26	
orted Gross Weight: 27.614.000 LBS		

	LEGEND
122.0	Station Elevation
•	Station Location
R-20-26	Station Label
	Major Contour
	Minor Contour

RAVENNA ARMY
AMMUNITION PLANT, OH
PILE #20 MANGANESE ORE
ORE PILE ELEVATION MAP
WATERWAYS EXPERIMENT STATION
CORPS OF ENGINEERS
VICKSBURG, MS 39180

SOLE F-77 OUT: 8 FERBLANT 1994 (\$PACT 12 0.14)

Figure 28. Pile #22, Ravenna Army Ammuntion Plant, OH

Figure 29. Elevation contour map of Pile #22, Ravenna Army Ammunition Plant, OH

Figure 30. Elevation contour map of Pile #1, Somerville Depot, NJ

Table 1 Reported Descriptions of Ore Stockpiles ¹					
Pile Number	Length, fi	Width, ft	Height, ft	Reported Gross Weight, lbs	Material Description
			Sierra Arı	ny Depot, CA	
No. 1	100	55	30	11,797,640	Chromite Ore, Metallurgical Grade
No. 3	250	100	30	34,529,495	Chromite Ore, Metallurgical Grade
No. 5	100	85	25	31,022,600	Chromite Ore, Metallurgical Grade
No. 6	230	115	25	54,917,860	Chromite Ore, Metallurgical Grade
No. 10	70	60	10	1,846,185	Manganese Ore, Metallurgical Grade
No. 14	400	50	25	34,869,960	Manganese Ore, Metallurgical Grade
No. 15	30	10	10	1,703,220	Tungsten Ore, Low Grade
No. 18A	250	100	30	52,131,980	Chromite Ore, Metallurgical Grade
National Refractory and Minerals Corporation, CA					
No. 1	278	154	10	61,618,036	Chromite Ore, Type B
			Hammon	d Depot, IN	
No. 12	300	250	18	148,812,940	Ferromanganese, High Carbon
Ravenna Army Ammunition Plant, OH					
No. 8	710	60	25	71,114,000	Chromite Ore, Metallurgical Grade, Type II
No. 20	920	70	20	27,614,000	Manganese Ore, Metallurgical Grade, Type II
No. 22	250	80	17	52,196,000	Ferrochrome, Low Carbon
Somerville Depot, NJ					
No. 1	250	160	15	70,394,000	Chromite Ore, Chemical Grade
As provided by DNSC.					

Table 2 Computed	Table 2 Computed Volume, Material Density, and Weight of Ore Stockpiles				
Pile Number	Average Volume, yd ³	Average Density, g/cm³	Average Density, lb/ft ³	Average Calculated Weight, Ibs	
		Sierra Army	Depot, CA		
No. 1	2,015.9	2.063	128.79	7,009,893.2	
No. 3	7,215.7	2.393	149.39	29,104,782.2	
No. 5	5,353.6	2.425	151.38	21,882,697.1	
No. 6	13,181.9	2.503	156.26	55,613,733.1	
No. 10	450.5	2.005	125.16	1,522,482.7	
No. 14	8,078.7	1.925	120.17	26,212,920.0	
No. 15	306.8	1.990	124.23	1,029,085.9	
No. 18A	13,151.9	2.180	136.09	48,326,815.5	
National Refractory and Minerals Corporation, CA					
No. 1	12,403.6	2.696	168.31	56,365,170.7	
Hammond Depot, IN					
No. 12	19,417.6	3.903	243.66	127,743,051.9	
Ravenna Army Ammunition Plant, OH					
No. 8	14,289.2	2.284	142.58	55,010,703.7	
No. 20	8,533.3	1.795	112.06	25,818,122.3	
No. 22	7,458.9	3.843	239.91	48,315,708.8	
Somerville Depot, NJ					
No. 1	13,010.3	2.993	186.84	65,635,260.6	

Appendix A Determination of Ore Pile Volumes, EMC, Inc.

SURVEYING ENGINEERING REPORT

DEFENSE NATIONAL STOCKPILE AUDIT

NOVEMBER 1995

Prepared for:

U. S. ARMY CORPS OF ENGINEERS VICKSBURG DISTRICT VICKSBURG, MISSISSIPPI

Prepared by:

EMC, Inc. 101 West Market Street P. O. Box 8143 Greenwood, MS 38930

SURVEYING ENGINEERING REPORT DEFENSE NATIONAL STOCKPILE AUDIT EMC, Inc.

INDEX

<u>Page No.</u>	<u>Paragraph</u>
1	General
1	Methodology
1	Data Submission
1	Contractor Information
	APPENDICES
Α	Summary of Volume Compilations
В	Sierra Army Depot Site 1 - Volumes
C	Sierra Army Depot Site 3 - Volumes
D	Sierra Army Depot Site 5 - Volumes
E	Sierra Army Depot Site 6 - Volumes
F .	Sierra Army Depot Site 10 - Volumes
G	Sierra Army Depot Site 14 - Volumes
H	Sierra Army Depot Site 15 - Volumes
I	Sierra Army Depot Site 18A - Volume
J	National Refractors & Mineral Corp 1 - Vol.
K	Ravenna Army Ammunition Plant - Pile 8
L	Ravenna Army Ammunition Plant - Pile 20
M	Ravenna Army Ammunition Plant - Pile 22
N	Somerville Depot - Pile 1

SURVEYING ENGINEERING REPORT DEFENSE NATIONAL STOCKPILE AUDIT EMC, Inc.

A. <u>GENERAL</u>. This delivery order consists of performing surveys and installing gravity points on Defense National Stockpiles throughout installations in the U.S. A report containing volumes of the stockpiles is enclosed as appendices A thru N.

B. METHODOLOGY.

- 1. The topographic surveys were performed by a 3-man survey crew between the dates of November 6, 1995 and December 4, 1995. Topographic field data was collected utilizing a Topcon GTS-3C Total Station with a Hewlett Packard 200 LX Data Collector. This data was then processed in the office to develop the IGDS formatted files. The IGDS design files were transferred to ACAD Version 12 DWG files for submission.
- 2. The survey limits for the surveys were from toe to toe of each stockpile, including all breaks and significant characteristics in the surface of the stockpiles.
- 3. Horizontal data was computed using arbitrary coordinates of 100000 North, 100000 East in U. S. Survey Feet. Azimuth orientation is from zero North. Elevations are referenced to an arbitrary elevation 100.
- C. <u>DATA SUBMISSION</u>. Mapping of the survey was processed from field data and developed in an IGDS formatted file with a 1-foot contour interval. Volumes were computed using Intergraph InRoads software. A Triangle Volume Report, Grid Volume Report and an End-Area Volume Report was prepared for each stockpile. The Grid Volume Report is based on a grid of 0.5 foot. The End-Area Volume Report is based on 5 foot cross-sections which are shown in the IGDS formatted file. Volumes are in cubic yards. Mapping was provided on a 3-1/2" HD DOS formatted diskette in ACAD Version 12 format.
- **D.** <u>CONTRACTOR INFORMATION</u>. This work was performed by EMC, Inc. of Greenwood, Mississippi (Contract No. DACW66-95-D-0091) under the direction of Mr. Mark Mattox, RLS, President. Inquiries pertaining to this project can be made to Mr. Mattox at (601) 453-0325, Fax Number (606) 453-0338.

SITE	TRIANGLE	GRID	END-AREA
SIERRA 1	2016.04	2015.60	2016
SIERRA 3	7216.17	7215.52	7215.33
SIERRA 5	5354.04	5353.36	5353.27
SIERRA 6	13185.81	13177.99	13181.68
SIERRA 10	450.60	450.41	450.29
SIERRA 14	8078.58	8077.72	8079.54
SIERRA 15	306.77	306.59	306.82
SIERRA 18A	13153.74	13150.41	13151.55
NATIONAL REFRACTORIES & MINERAL CORP. 1	12404.74	12404.48	12401.42
HAMMOND DEPOT 12	19418.99	19418.02	19415.61
RAVENNA ARMY AMMUNITION PLANT 8	14288.86	14288.18	14290.34
RAVENNA ARMY AMMUNITION PLANT 20	8533.38	8532.46	8533.94
RAVENNA ARMY AMMUNITION PLANT 22	7459.54	7455.93	7460.99
SOMERVILLE DEPOT 1	13011.18	13008.94	13010.75

Original Surface: TOE1
Design Surface: SIERRA1

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
0.00	2016.04	-2016.04

Grid Volume Report

Original Surface: TOE1
Design Surface: SIERRA1

	Cut	Fill	Net
	(cu yd)	(cu yd)	(cu yd)
-			
	0.03	2015.63	-2015.60

	ORDINATE	0 7	-0.7	¥ 50 F	-171	-295	443	-763	-924	-1081	-1232	-1375	-1509	-1629	-1732	-1818	-1888	-1942	-1978	-1999	-2010	-2015	-2016	-2016
	S FILL VOL	00) C	, o	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TTTIES MASS FILL VOL	0 0	· c	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ ******** ADDED QUANTITIES STAT ADJ ADJUSTED MASS FILL CUT CUT FILL FILL VOL FACT VOL VOL FACT VOL	1.00	00.1	00.1	1.00	00.	8 8	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1
	DED CADIL CUT VOL	0 0	0	0	0	0	>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CUT VOL	0 0	0	0	0	0 (>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ CUT FACT	0.0	1.00	1.00	1.00	00.1	3 8	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ADJ ** STAT FILL VOL 1	0 4	23	54	96	123	159	161	160	157	151	144	134	120	103	86	20	54	36	21	11	2	_	0
	STAT FILL VOL	0 4	23	54	06	123	159	191	160	157	151	144	134	120	103	98	20	24	36	21	11	2		0
	STAT FILL AREA	0.00	195.29	390.58	583.02	749.83	864.19	870.50	861.12	835.78	796.44	753.63	691.62	603.99	510.95	414.19	340.22	244.66	148.33	77.42	39.61	11.88	0.22	0.00
	STAT FILL FACT	0.0	1.00	1.00	00:	8 8	3 0.	1.00	1.00	9.	1.00	1.00	1.00	00.	90	00.	00.1	90.	00.1	00.1	00.1	00.1	8	00.
	ADJ STAT CUT VOL	00	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT CUT VOL	0 0	0	0	0 (o c	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11 (RA1	STAT CUT AREA	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
TT: 1 TOE: SIEF	STAT CUT FACT	8 8	00.	00	8 8	8 8	1.00	00:	00.	8	8													00.
ALIGNMENT: 1 SURFACE 1: TOE1 SURFACE 2: SIERRA1	BASELINE STATION NUMBER						0+35				0+55		0+65						_	-	_			1+20 1.

Original Surface: toe Design Surface: sierra3

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
	***********	****
0.00	7216.17	-7216.17

Grid Volume Report

Original Surface: toe Design Surface: sierra3

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
	***********	*********
0.05	7215.57	-7215 52

ADJ STAT STAT STAT S SUT CUT CUT FILL 1 AREA VOL VOL FACT A 0.00 0 0 1.00 0.00 0 0 1.00 1.0	ADJ ******* ADDED QUANTITIES STAT STAT ADJ FILL FILL CUT CUT FILL FILL AREA VOL VOL FACT VOL VOL FACT VOL	c	0 100	3 3 1.00 0 0	11 11 1.00 0 0	27 27 1.00 0 0	55 55 1.00 0 0	88 88 1.00 0 0	22.48 119 119 1.00 0 0 1.00 0	175 175 100 0 0	10 10 100 0 0	201 201 1.00 0 0	206 206 1.00 0 0	209 209 1.00 0 0	213 213 1.00 0 0	219 219 1.00 0 0	221 221 1.00 0 0	214 214 1.00 0 0	208 208 1.00 0 0
STAT STAT AREA VOL 0.00 0	STAT FILL FACT	0 1.00	0 1.00			1.00	1.00	00.	8.6	9.1	9.1	1.00	1.00	1.00	1.00	1.00	1.00	00.7	1.00
	ra3 T STAT STAT CUT CUT T AREA VOL		_								000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

ITIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-4752	-4949	-5142	-5329	-5505	-5672	-5830	-5979	-6120	-6251	-6375	-6490	-6598	8699-	-6786	-6863	-6929	-6984	-7032	-7077	.7118
TTIES ADJUJ FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
UANT FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
ADJ ******** ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL ACT VOL VOL FACT VOL VOL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
* ADJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
CUT	0	0	0	0	0	·.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADJ * CUT FACT	00.1	00.1	00:	00.1	00.1	00.	00.1	00.1	00.1	00.1	00.	00.1	00.1	00.	00.1	00.1	00.1	90.	00.	00.1	9
STAT FILL VOL 1	200	197	193	186	177	167	158	150	141	131	123	116	108	100	86	77	65	55	48	45	11
STAT FILL VOL	200	197	193	186	177	167	158	150	141	131	123	116	108	100	86	11	65	55	48	45	71
STAT S FILL F	1072.91	1056.57	1032.33	981.53	926.33	873.57	829.07	788.19	733.16	682.06	648.42	601.94	563.45	512.73	443.82	386.25	321.05	277.27	240.26	241.46	201 24
ADJ STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
STAT CUT AREA	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
STAT CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
BASELINE S STATION ONUMBER	140	145	150	155	160	165	170	175	180	185	190	195	200	205	210	215	220	225	230	235	240

	TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-7177 -7196 -7209 -7215		
	TTES ADJUS FILL VOL	00000		
	JANTI FILL VOL	00000		
	DED QU FILL FACT	1.00		
	ADJ ******* ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	00000		
	CUT	00000	. •	
	ADJ ** CUT FACT	0.1.00		
	STA1 FILL VOL	25 19 13 6		
	STAT FILL VOL	25 19 13 6		
	STAT FILL AREA	85.85 55.69 9.41 0.00		
	ADJ STAT S FILL FACT A	1.00 1.00 1.00 1.00 1.00 1.00		
	STAT CUT VOL	00000		
	STAT CUT VOL	00000		
	STAT CUT AREA	0.00 0.00 0.00 0.00		
l: 3 toe sierra3	STAT S CUT C	1.00 1.00 1.00 1.00		
ALIGNMENT: 3 SURFACE 1: toe SURFACE 2: sierra3	BASELINE S STATION C NUMBER F	250 255 260 265 269		

Original Surface: TOE5 Design Surface: SIERRA5

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
************	***********	
0.00	5354.04	-5354.04

Grid Volume Report

Original Surface: TOE5 Design Surface: SIERRA5

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)

0.02	5353.38	-5353.36

	ORDINATE	c	- -	90	-25	-63	-133	-241	-382	-546	-723	-916	-1118	-1324	-1531	-1736	-1941	-2143	-2343	-2543	-2745
	FILL	c	-	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TTIES MASS FILL VOL	<	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ ******* ADDED QUANTITIES STAT ADJ ADJUSTED MASS FILL CUT CUT CUT FILL FILL VOL FACT VOL VOL FACT VOL	5	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	DED C ADJU CUT VOL	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	** ADJ	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ CUT FACT	5	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ADJ ** STAT FILL VOL F	c	·	7	17	38	20	107	142	164	171	192	202	206	207	205	204	202	200	200	202
	STAT FILL VOL	C	-	7	17	38	20	107	142	164	177	192	202	206	207	205	204	202	200	200	202
	STAT SFILL I	000	15.12	55.32	129.97	279.50	479.47	679.28	851.56	916.38	29.666	1078.11	1104.34	1120.71	1115.30	1103.83	1102.82	1082.34	1075.81	1087.46	1091.76
	STAT FILL FACT	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.8	00.	1.00	00.	00.	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ADJ STAT CUT VOL	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT CUT VOL	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A5	STAT CUT AREA	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SIERR	STAT S CUT C FACT A	1.00	1.00	1.00	1.00	00.	00.	1.00	00.	00.	00.5	00.	1.00	1.00	1.00	1.00	1 .00	1.00	1.00	1.00	1.00
SURFACE 1: 10E5 SURFACE 2: SIERRAS	BASELINE STATION NUMBER	0	82	10	15	20	25	30	35	40	45	50	55	09	65	70	75	80	85	06	95

	ORDINATE	6	-2947	-3344	-3536	-3716	-3882	4182	4325	4465	4606	4747	-4883	-5008	-5122	-5218	-5284	-5320	-5339	-5349	6363
	TITIES FILL VOL	c	0	0	0	0 0	>	0	0	0	0	0	0	0	0	0	0	0	0	0	c
	UAN MASS FILL VOL	0	0	0	0	0 0	> <	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	ADJ ******** ADDED QUANTITIES ADJ ADJUSTED MASS CUT CUT CUT FILL FILL FILL ACT VOL VOL FACT VOL VOL	8	1.00	1.00	00.1	9 6	9 6	1.00	1.00	1.00	1.00	1.00	00.	00.	1.00	00.	00.	00.	1.00	90.	20
	ADJU ADJU CUT VOL	0	0	0	0	> <	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	CUT	c	0	0	0 0	> <	0	0	0	0	0	0	0 (.	o (0 (o (0	0	0	C
		100	1.00	1.00	8 9	3 8	00.1	1.00	00.1	00.1	00.	3 3	8 8	3 8	90.	8 8	90.	90.	00.	8 5	8
	STAT FILL VOL 1	202	201	197	191					_										= -	4
	STAT FILL VOL	202	201	197	2 2	165	153	147	143	140	141	141	135	571	114	9 %	00 2	99	<u>.</u>	= '	4
	STAT FILL AREA	1088.59	1078.44	1048.18	036.60	849.22	807.46	781.50	762.77	750.10	769.34	704.73	646.03	504 14	461.60	260.29	100.02	24.13	74.13	41.31	7.47
	ADJ STAT FILL FACT	1.00	1.00	3 5	3 2	1.00	1.00	9.5	00.	90.6	8 8	3 5	8 6	8 8	2 5	8.6	8 5	3 5	3 5	3.5	3.
	STAT CUT VOL	0	0	> <	0	0	0	0	٥ (o 0	> <	· •	o c	· c	· c	0	· <	> <	> <	> <	>
	STAT CUT VOL	0	0	> <	0	0	0	0 0	o 6	>	> C	, c	, c	· c		· c	· c		· c		>
A5	STAT CUT AREA	0.00	0.00	8 6	0.00	0.00	0.00	0.00	90.0	9.6		00.0	800	000	000	000	000	00.0	00.0		>>.
TOES	STAT S CUT (FACT /	1.00	8 6	3 6	1.00	1.00	1.00	00.1	9.6	9.5	8.1	00.							00		
SURFACE 1: TOE5 SURFACE 2: SIERRA5	BASELINE S STATION O NUMBER I	100	105	115	120	125	130	135	146	150	155	160	165	170	175	180	185	190	195	199	///

Original Surface: toe6 Design Surface: sierra6

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
0.00	13185.81	-13185.81

Grid Volume Report

Original Surface: toe6 Design Surface: sierra6

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
0.00	13177.99	-13177.99

	ORDINATE	0	0	48	-151	-270	-402	-546	-704	-878	-1067	-1269	-1478	-1693	-1914	-2145	-2386	-2634	-2886	-3142	-3401
	FILL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ITIES MASS FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ED QUANTITIES ADJUSTED MASS CUT FILL FILL VOL FACT VOL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	9.1	1.00	1.00	1.00
	ADJ ******** ADDED QUANTITIES STAT ADJ ADJUSTED MASS FILL CUT CUT FILL FILL VOL FACT VOL VOL FACT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	** ADJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	9	00.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00
	ADJ ** STAT FILL VOL 1	0	0	48	103	119	132	144	158	174	189	201	209	215	221	231	241	248	252	255	260
	STAT FILL VOL	0	0	48	103	119	132	144	158	174	189	201	209	215	221	231	241	248	252	255	260
	STAT S FILL B AREA	0.00	0.00	514.83	599.13	685.70	739.68	815.06	896.15	984.10	1058.38	1116.41	1143.22	1174.34	1215.57	1275.56	1329.04	1354.31	1368.26	1389.59	1417.19
	STAT FILL FACT	0.1	1.00	1.00	1.00	1.00	00.7	00.1	8	1.00	00.	00.1	1.00	8	1.00	1.00	1.00	00.	00.1	1.00	1.00
	ADJ STAT CUT VOL	0	0	0	0	0	0 0	0 0	0 0	0 (0	0	0	0	0	0	0	0	0	0	0
	STAT CUT VOL	0	0	0	0	0	0 0	o 6	0 (o (o	0	0	0	0	0	0	0	0	0	0
_	STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sierrac	STAT CUT FACT	1.00	1.00	1.00	1.00	00.	8.5	8.6	00.	00.1	00.1	00.1	00.	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00
SURFACE 2: sierra6	BASELINE S STATION O NUMBER 1	0		10	15	20	5.5	30	35	40	45	50	55	09	65	20	75	08	85	8	95

巴田																			
ORDINATE	3886	-3933	4202	-4472	-4744	-5021	-5304	-5589	-5872	-6158	-6446	-6735	-7025	-7315	-7603	-7889	-8173	-8455	8734
FILL VOL	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
UAN' MASS FILL VOL	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
ADJ ******** ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL ACT VOL VOL FACT VOL VOL	9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1 00
ADJI CUT VOL	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CUT	c	0	0	0	0	0	0	· O	0	0	0	0	0	0	0	0	0	0	0
, , , <u></u>	100	1.00	1.00	1.00	00.	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
STAT FILL VOL 1	264	267	269	270	272	277	283	285	284	285	288	289	290	290	288	286	284	282	279
STAT FILL VOL	264	267	269	270	272	277	283	285	284	285	288	289	290	290	288	286	284	282	279
STAT FILL AREA	1436.78	1450.79	1455.59	1457.63	1479.96	1510.24	1546.03	1530.78	1534.17	1549.14	1559.42	1565.89	1567.28	1561.73	1551.02	1539.67	1526.66	1514.16	1498.57
ADJ STAT FILL FACT	1.00	1.00	1.00	1.00	00.	00.1	1.00	1.00	00.	1.00	00.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT VOL	0	0	0	0	0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00
STAT CUT FACT	1.00	1.00	1.00	1.00	00.1													1.00	
BASELINE STATION ONUMBER	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190

SURFACE 2: sierra6	2: sierra	6													
BASELINE STATION NUMBER	STAT CUT FACT	STAT CUT AREA	STAT CUT VOL	STAT CUT VOL	ADJ STAT FILL FACT	STAT FILL AREA	STAT FILL VOL	STAT FILL VOL	1 1	CUT	** AD ADJU CUT VOL	ADJ ******** ADDED QUANTITIES ADJ ADJUSTED MASS CUT CUT CUT FILL FILL FILL ACT VOL VOL FACT VOL VOL	UANT MASS FILL VOL	TTIES FILL VOL	ORDINATE
200	1.00	0.00	0	0	00	1457 14	272	77	8	c	c	9	•	c	6
205	1.00	0.00	0	0	1.00	1423.54	267	267	00.1	0	0	80.7	0	0	-9261
210	1.00	0.00	0	0	1.00	1388.29		260	1.00	0	0	00.1	0	0	-9808
215	00.1	0.00	0	0	1.00	1358.59		254	1.00	0	0	1.00	0	0	-10062
220	1.00	0.00	0	0	1.00	1334.07		249	1.00	Ò	0	1.00	0	0	-10312
225	1.00	0.00	0	0	1.00	1319.82	246	246	1.00	0	0	1.00	0	0	-10557
230	1.00	0.00	0	0	1.00	1309.15	243	243	1.00	0	0	1,00	0	0	-10801
235	00.	0.00	0	0	1.00	1281.23	240	240	1.00	0	0	1.00	0	0	-11041
240	1.00	0.00	0	0	1.00	1239.46	233	233	1.00	0	0	1.00	0	0	-11274
245	00.	0.00	0	0	1.00	1196.04	226	226	1.00	0	0	1.00	0	0	-11500
250	1.00	0.00	0	0	1.00	1135.24	216	216	1.00	0	0	1.00	0	0	-11715
255	1.00	0.00	0	0	1.00	1062.53	203	203	1.00	0	0	1.00	0	0	-11919
260	1.00	0.00	0	0	1.00	942.44	186	186	1.00	0	0	1.00	0	0	-12105
265	1.00	0.00	0	0	1.00	828.35	164	164	1.00	0	0	1.00	0	0	-12269
270	1.00	0.00	0	0	1.00	736.82	145	145	1.00	0	0	1.00	0	0	-12413
275	1.00	0.00	0	0	1.00	670.34	130	130	1.00	0	0	1.00	0	0	-12544
280	1.00	0.00	0	0	1.00	619.35	119	119	1.00	0	0	1.00	0	0	-12663
285	1.00	0.00	0	0	1.00	586.57	112	112	1.00	0	0	1.00	0	0	-12775
290	1.00	0.00	0	0	1.00	555.45	106	106	1.00	0	0	1.00	0	0	-12881
295	00	000	<	<	00	00 00	•								1

	ORDINATE	-13052 -13108 -13146 -13178 -13182
		00000
	QUANT MASS FILL YOL	00000
	STED Q	0.1.000
	** ADDED QUANT ADJUSTED MASS CUT FILL FILL VOL FACT VOL	00000
	ADJ ******** ADDED QUANTITIES ADJ ADJUSTED MASS CUT CUT CUT FILL FILL FILL 7ACT VOL VOL FACT VOL VOL	
	ADJ ADJ CUT	0.0000000000000000000000000000000000000
	STAT FILL VOL 1	76 76 77 78 78 78 78 78 78
	STAT FILL VOL	76 56 57 78 78 78 78 78 78 78 78
	STAT FILL AREA	358.14 247.70 159.41 74.40 42.24 10.11
	ADJ STAT FILL FACT	1.00
	STAT	00000
	STAT STUT	00000
	STAT STAT STAT CUT CUT CUT AREA VOL	0.00
toe6 sierra6	STAT STUT C	1.00
SURFACE 1: toe6 SURFACE 2: sierra6	BASELINE S STATION C NUMBER F	300 305 310 315 320 324

SIERRA ARMY DEPOT SITE 10 VOLUME REPORTS	

Original Surface: toe10 Design Surface: sierra10

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)

0.00	450.60	-450.60

Grid Volume Report

Original Surface: toe10 Design Surface: sierra10

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
0.00	450.41	-450.41

ADJUSTED MASS FILL ORDINATE VOL VOLUME	0	-5	-13	-36	-68	-102	-137	-173	-208	-240	-273	-310	-348	-386	418	439	-448
ADJU!	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TITIES FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UANTI FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
DED Q CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
** AD) CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADJ ********* ADDED QUANTITIES STAT ADJ FILL CUT CUT FILL FILL VOL FACT VOL VOL FACT VOL	00.1	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1
ADJ ** STAT FILL VOL	0	7	11	23	32	34	35	36	35	32	33	37	39	38	32	21	10
STAT FILL VOL	0	7	11	23	32	34	35	36	35	32	33	37	39	38	32	21	10
STAT FILL AREA	0.11	25.80	90.44	157.89	184.30	184.55	192.31	195.48	182.51	167.82	187.19	207.31	211.95	194.07	147.06	80.78	22.23
STAT S FILL FACT A	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ADJ STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
rat Ut Rea	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STAT SCUT C	1.00																
SURFACE 2: sierral0 BASELINE STAT S' STATION CUT C' NUMBER FACT A	0	\$	10	15	20	25	30	35	40	45	50	55	09	65	70	75	80

Original Surface: toe14 Design Surface: sierra14

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
0.00	8078.58	-8078.58

Grid Volume Report

Original Surface: toe14 Design Surface: sierra14

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)

0.00	8077.73	-8077.72

ADJUSTED MASS FILL ORDINATE VOL VOLUME	c	·	7 6	-27	49	-74	-110	-157	-214	-273	-334	-395	-456	-515	-574	-633	-692	-753	-815	-877	
	c	· C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TTTES FILL VOL	0	· c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ADJ ********* ADDED QUANTITIES STAT ADJ FILL CUT CUT CUT FILL FILL VOL FACT VOL VOL FACT VOL	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
ODED Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CUT	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	
CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
7 43 111 5	0	_	∞	28	22	56	35	48	99	09	61	61	61	9	59	29	59	09	62	62	
STAT FILL VOL	0		00	18	22	56	35	48	26	9	61	19	61	09	59	29	59	9	62	62	
STAT FILL AREA	0.00	13.97	74.58	115.19	118.57	156.85	226.30	287.44	320.72	325.19	329.56	329.66	324.22	319.98	317.37	318.68	319.96	332.02	338.64	334.32	
STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
ADJ STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
STAT CUT AREA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
STAT S CUT C FACT A	1.00	1.00	1.00	1.00	00.	1.00	1.00	00.	1.00	1.00	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
BASELINE STATION NUMBER	0	٧٧	10	15	20	25	30	35	40	45	20	55	09	65	20	75	80	85	06	95	

******* ADDED QUANTI	ADJUSTED MASS CUT CUT FILL FILL FILL ORDINATE VOL VOL FACT VOL VOL VOLUME	0	0 0 1,00 0 0 -1001	0 1.00 0 0	0 0	0 1.00 0 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	1.00 0 0	0 1.00 0	0 1.00 0	1.00 0 0	1.00 0 0	1.00 0 0	1.00 0 0	1.00 0 0	0 0
ADJ*	SIAI ADJ FILL CUT VOL FACT	62 1.00			64 1.00	_	64 1.00	_	-	_	_		_		_		-		_	47 1.00
	FILL I	62	62	63	64	64	64	63	63	62	61	29	28	27	26	55	52	20	48	47
CTAT	FILL AREA	337.47	332.75	342.65	348.57	346.03	340.73	338.15	337.87	331.20	323.94	318.61	312.23	300.18	299.77	292.82	272.95	261.87	253.80	257.69
ADJ	FILL	1.00	1.00	1.00	1.00	00.1	1.00	9:	0.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CTAT	CUT AREA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CUT	1.00	1.00	8	1.00	1.00	00.1	00.1	1.00	1.00	1.00	1.00	1.00	00.	00.1	1.00	1.00	1.00	1.00	1.00
RASEI INE	STATION NUMBER	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190

ADJUSTED MASS ORDINATE VOLUME FILL ADJ ******* ADDED QUANTITIES 0000000000000000 FILL 000000000000000 FACT FILL CUT 000000000000000000 CUI VOL 00000000000000000 CUL VOL FACT STAT ADJ STAT FILL VOL 305.58 294.29 274.74 288.96 302.08 307.72 306.65 282.75 286.45 291.63 296.49 302.28 310.78 311.93 304.18 AREA STAT STAT FACT STAT CUT STAT STAT CUT AREA VOL 000000000000000000 CUT 000000000000000000 SURFACE 2: sierra14 STAT S SURFACE 1: toe14 FACT CUT ALIGNMENT: 14 BASELINE STATION NUMBER

	TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-3180	-3242	-3307	-3374	-3440	-3505	-3567	-3628	-3690	-3754	-3821	-3887	-3951	-4015	-4082	4160	-4252	-4359	-4478	
	TIES ADJU FILL VOL	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	JANTI FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	DED QU FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
	CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	COLT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	ADJ ** ADJ CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	STAT FILL VOL 1	59	62	65	29	29	65	62	61	62	64	29	99	64	63	29	78	92	107	119	700
	STAT FILL VOL	59	62	65	29	29	65	62	61	62	64	<i>L</i> 9	99	64	63	29	78	92	107	119	,,,,
	STAT FILL AREA	327.01	342.05	357.41	363.23	355.95	340.67	331.54	330.19	338.50	357.26	361.97	352.23	339.42	344.81	383.53	454.35	540.37	620.04	660.03	000
	ADJ STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	90.1	1.00	•
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
	STAT STAT CUT CUT AREA VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
4	STAT CUT AREA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
2: sierra1	STAT S CUT C	1.00	1.00	1.00	0.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	•
SURFACE 2: sierra14	BASELINE STATION NUMBER	300	305	310	315	320	325	330	335	340	345	350	355	360	365	370	375	380	385	390	306

	TIES ADJUSTED MASS	ORDINATE	4736	4868	-5002	-5138	-5273	-5403	-5526	-5641	-5745	-5840	-5928	-6018	-6122	-6241	-6377	-6527	-6687	-6852	-7019	
	ADJU	FILL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	ANTI	YOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	1.3	FILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	* ADI	VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
		VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
		FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	•
	STAT	FILL	132	132	134	136	134	130	124	115	104	95	88	90	103	120	136	150	160	165	167	
	STAT	FILL	132	132	134	136	134	130	124	115	104	95	88	90	103	120	136	150	160	165	167	
		FILL	721.94	708.78	735.76	738.14	714.33	685.52	648.97	590.56	532.98	492.95	459.46	513.56	603.75	687.65	778.60	838.76	887.65	898.75	900.99	
	ADJ	FILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	STAT	VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	STAT	COT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,
4	STAT	CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,
TT: 14 : toe14 2: sierra1		CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
ALIGNMENT: 14 SURFACE 1: toe14 SURFACE 2: sierra14	BASELINE	STATION	400	405	410	415	420	425	430	435	440	445	450	455	460	465	470	475	480	485	490	

	STED MASS	ORDINATE VOLUME	-7340	-7488	-7624	-7742	-7842	-7920	-7979	-8019	-8048	-8069	-8078	-8079	-8079
	TIES	FILL	C	0	0	0	0	0	0	0	0	0	0	0	0
	JANTI	FILL	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ ******** ADDED QUANTITIES ADJ	FILL	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	* ADD	COT	0	0	0	0	0	0	0	0	0	0	0	0	0
	***	COT	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ #	CUT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	STAT	FILL VOL 1	158	148	135	119	66	79	58	40	29	20	6	7	0
	STAT	FILL	158	148	135	119	66	79	28	40	29	20	6	2	0
		FILL	829.45	770.53	687.77	593.90	480.29	370.39	260.34	176.56	139.07	78.99	18.21	0.54	0.00
	ADJ STAT	FILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	STAT	COT	0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT	CCT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0
		AREA	0	0	0	0	0	0	0	0	0	0	0	0	0
VT: 14 I: toe14 2: sierra1	STAT	CUT	1.00	1.00	1.00	1.00	1.00	00.1	00.1	1.00	00.1	1.00	1.00	1.00	1.00
ALIGNMENT: 14 SURFACE 1: toe14 SURFACE 2: sierra	BASELINE	STATION	200	202	510	515	520	525	530	535	540	545	550	555	557

Original Surface: toe15 Design Surface: sierra15

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)

0.00	306.77	-306.77

Grid Volume Report

Original Surface: toe15 Design Surface: sierra15

Cut	Fill	Net				
(cu yd)	(cu yd)	(cu yd)				
0.00	306.59	-306.59				

ADJ ************************************
--

Original Surface: toe18 Design Surface: sierra18

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
*************		****
0.00	13153.74	-13153.74

Grid Volume Report

Original Surface: toe18 Design Surface: sierra18

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
0.00	13150.41	-13150.41

	ADJUSTED MASS FILL ORDINATE VOL VOLUME	c	> 10	<u>- 1-</u>	-37	.70	-148	-246	-369	-508	-655	-810	-973	-1145	-1331	-1533	-1754	-1991	-2239	-2493	-2753
		C	· c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TTTIES FILL F VOL	•	· -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	DUANT FILL FACT	00	2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	DED Q CUT VOL	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	** AD CUT VOL	0		0	0		0	_	_			0	0	0	0	_	_	_	_	_	_
	ADJ CUT FACT	00	00	1.00	8	- 0:	00	8	00	8	8	_				0 00	00.		0 00	0 00.1	0
	ADJ ******* ADDED QUANTITIES STAT ADJ FILL CUT CUT CUT FILL FILL VOL FACT VOL	0 1	3 1				70 1								_	_	_	236 1.	_	255 1.	260 1.
	STAT FILL VOL	0	n	=	23	45	2	86	124	139	147	155	163	172	186	203	221	236	248	255	260
	STAT FILL AREA	2.18	27.01	60.76	154.47	299.37	452.25	606.24	729.46	772.38	815.75	855.37	900.07	98.656	1045.32	1146.13	1237.77	1316.11	1360.53	1391.87	1417.32
	STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	00.	00.	1.00	00.	9	1.00	1.00	1.00	00.1	00.1	1.00	1.00	1.00	1.00	1.00
	ADJ STAT CUT VOL	0	0	0	_	-	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT CUT VOL	0	0	0	_	_	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0
8	STAT CUT AREA	0.00	0.25	0.05	7.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00
toe18	STAT CUT FACT	1.00	1.00	90.	90.5	90.	00.1	90.	00.	00.1	00.1	00.1	00.	00.1	00.5	9	00.	1.00	9:	8:	90.
SURFACE 1: toe18 SURFACE 2: sierra18	BASELINE STATION NUMBER	0	\$	01	5 3	20	25	200	ري د د	40	0.4 0.6	20	55	09	92	9 ;	75	08	S	06	£

ITIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	0 -3018	0 -3288	0 -3561	0 -3839	0 -4122	0 -4410	0 -4702		0 -5299	0 -5608	0 -5923				0 -7200					0 -8825
UANT FILL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DED QUELLEFILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ADJ ******* ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CUT	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0
ADJ ADJ CUT	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
STAT FILL	265	269	273	278	283	288	292	295	301	309	315	317	318	319	323	327	329	328	324	317
STAT FILL VOL	265	269	273	278	283	288	292	295	301	309	315	317	318	319	323	327	329	328	324	317
STAT FILL AREA	1444.40	1463,31	1486.78	1513.71	1543.92	1569.14	1587.99	1601.31	1650.80	1690.59	1709.00	1717.39	1713.73	1731.84	1757.30	1775.97	1782.27	1762.32	1732.16	1691.80
ADJ STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
rat UT Rea	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SURFACE 1: toe18 SURFACE 2: sierra18 BASELINE STAT S' STATION CUT C NUMBER FACT A	. 100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190	195

TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-9137	-9445	-9752	-10056	-10357	-10654	-10946	-11231	-11510	-11781	-12037	-12273	-12478	-12647	-12781	-12884	-12960	-13018	-13063	12007
ADJI FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
UANT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
DED QUED L	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
ADJ ******* ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
CUT	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	<
ADJ ** ADJ CUT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.	1 00
STAT FILL VOL	311	309	306	304	302	297	291	286	279	270	257	235	205	169	134	103	26	28	45	2.4
STAT FILL VOL	311	309	306	304	302	297	291	286	279	270	257	235	205	169	134	103	9/	28	45	2.4
STAT S FILL I	1670.79	1661.28	1646.87	1637.74	1619.66	1588.36	1559.20	1525.09	1487.06	1432.53	1340.18	1201.35	1014.94	811.70	636.48	474.55	350.60	275.24	209.46	166 16
ADJ STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
STAT CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100
BASELINE STATION NUMBER	200	205	210	215	220	225	230	235	240	245	250	255	260	265	270	275	280	285	290	204

	TIES .00ADJUSTED MASS FILL ORDINATE VOL VOLUME	-13122 -13139 -13148 -13150
	ADJ ******** ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	00000
	DED QUA	1.00 0 1.00 0 1.00 0 1.00 0
	UT CUT	00000
	ADJ ****** STAT ADJ FILL CUT CUT VOL FACT VOL	1.00 0 1.00 0 1.00 0 1.00 0
	STAT STA FILL FILI VOL VOI	25 25 17 17 9 9 2 2 0 0
	STAT S FILL F AREA V	113.51 74.94 19.99 0.17
	ADJ STAT FILL FACT	1.00 1.00 1.00 1.00
	STAT CUT VOL	00000
	STAT CUT VOL	00000
∞	STAT STAT CUT CUT FACT AREA	0.00
NT: 18 1: toe18 2: sierra		1.00
ALIGNMENT: 18 SURFACE 1: toe18 SURFACE 2: sierra18	BASELINE STATION NUMBER	300 305 310 315 319

·
NATIONAL REFRACTORIES & MINERALS CORP.
PILE 1
PILE I
VOLUME REPORTS

Original Surface: nattoe1 Design Surface: natref1

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)

0.27	12404.96	-12404.69

Grid Volume Report

Original Surface: nattoel Design Surface: natrefl

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)

0.27	12404.79	-12404.52

	ADJUSTED MASS FILL ORDINATE VOL VOLUME	c	> ç	, M	-15	-56	-159	-320	-511	-711	-915	-1120	-1328	-1539	-1752	-1968	-2187	-2408	-2629	-2851	-3072
	1	c	· c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	FILL FILL	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ ******** ADDED QUANTITIES STAT ADJ TILL CUT CUT CUT FILL FILL VOL FACT VOL VOL FACT VOL	9	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	DDEI	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CUT COT	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ CUT FACT	00	1.00	1.00	1.00	00.1	00.1	00.	00.1	00:1	00.1	00.	00.	90.	9.	90.	90:	00	00	00	00.
	ADJ ** STAT FILL VOL F	C	0	4	10						204								4	_	_
	STAT FILL VOL	0	0	4	10	41	103	191	191	200	204	206	208	211	213	216	219	221	221	222	222
	STAT FILL AREA	0.00	4.13	43.54	63.59	377.09	738.58	998.65	1069.28	1094.41	1104.19	1116.26	1130.27	1143.83	1159.19	1174.11	1188.55	1193.16	1197.68	1197.77	1195.49
	STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ADJ STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	STAT S CUT O	0.00	0.00	0.00	0.00	0.00	0.00	0.08	1.07	0.38	90.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
JT: natre : nattoe : natref	STAT CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	00.	00.	1.00	00.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ALIGNMENT: natrefl SURFACE 1: natroe1 SURFACE 2: natref1	BASELINE STATION NUMBER	00+0	0+05	0+10	0+15	0+20	0+25	0+30	0+35	0+40	0+45	0+20	0+55	09+0	0+65	0+40	0+75	0+80	0+85	06+0	0+62

TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-3294	-3515	-3735	-3955	-4175	-4396	-4616	4835	-5052	-5266	-5476	-5680	-5882	-6089	-6298	-6502	-6704	9069-	-7109
ADJU FILL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UANT FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADJ ******* ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOA	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
ADJ *ADJ CUT	1.00	00.1	1.00	00.1	00.1	1.00	00.1	00.1	00.1	00.1	00.1	00.	00.	00.I	00.1	00.1	00.	00:	00.1
STAT FILL VOL	221	221	221	220	220	221	220	219	217	214	506	205	202	207	500	204	203	202	203
STAT FILL VOL	221	221	221	220	220	221	220	219	217	214	209	205	202	202	209	204	203	202	203
STAT FILL AREA	1194.18	1192.45	1189.87	1185.65	1192.49	1190.94	1184.79	1178.34	1169.43	1145.19	1113.98	1096.27	1087.05	1144.02	1109.68	1096.24	1091.07	1089.48	1098.50
ALU STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.	1.00	1.00	1.00	1.00	1.00	1.00
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STAT CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
BASELINE STATION NUMBER	1+00	1+05	1+10	1+15	1+20	1+25	1+30	1+35	1+40	1+45	1+50	1+55	1+60	1+65	1+70	1+75	1+80	1+85	1+90

	TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-7530	-7759	-8001	-8251	-8510	-8778	-9065	-9379	-9708	-10037	-10363	-10688	-11011	-11331	-11647	-11937	-12169	-12322	-12390	-12401
	ADJU FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	UANT FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ ******** ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00
	*** ADJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	COT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ * ADJ CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.	00.1	00.	00.1	00.1	00.	00
	STAT FILL VOL	215	229	241	251	259	268	287	314	329	329	327	325	323	321	316	290	232	154	89	=
	STAT FILL VOL	215	229	241	251	259	268	287	314	329	329	327	325	323	321	316	290	232	154	89	=
	STAT FILL AREA	1198.47	1275.55	1331.22	1376.06	1416.69	1477.70	1620.35	1767.62	1784.45	1770.02	1756.19	1749.49	1737.67	1725.64	1684.76	1445.77	1055.87	603.37	130.14	000
	ADJ STAT FILL FACT	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	90
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
-	STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
II: natre : natroe :: natref	STAT CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	90
ALIGNMEN I: natrefl SURFACE I: nattoel SURFACE 2: natrefl	BASELINE STATION NUMBER	2+00	2+05	2+10	2+15	2+20	2+25	2+30	2+35	2+40	2+45	2+50	2+55	2+60	2+65	2+70	2+75	2+80	2+85	2+90	2+65

Original Surface: toe12 Design Surface: hamnd12

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
*********		****
0.00	19418.79	-19418.79

Grid Volume Report

Original Surface: toe12 Design Surface: hamnd12

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
0.03	19418.02	-19417 99

	ADJUSTED MASS FILL ORDINATE VOL VOLUME	0	-26	-128	-326	-597	-926	-1327	-1807	-2339	-2891	-3461	-4053	-4667	-5303	-5960	-6638	-7335	-8049	-8773
	7 — 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TTIES FILL VOL	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ ******** ADDED QUANTITIES STAT ADJ FILL CUT CUT CUT FILL FILL VOL FACT VOL VOL FACT VOL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	DED Q CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ADJ ** STAT FILL VOL I	0	56	102	198	271	329	401	480	532	552	570	592	614	635	657	8/9	269	714	724
	STAT FILL VOL	0	26	102	198	271	329	401	480	532	552	570	592	614	635	657	829	697	714	724
	STAT FILL AREA	5.27	278.42	821.03	1317.50	1610.15	1945.16	2382.85	2801.64	2938.95	3027.13	3130.72	3258.86	3373.93	3489.46	3608.58	3716.53	3813.74	3897.29	3922.31
	STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	ADJ STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
toe12 hamnd	STAT S CUT (FACT /	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SURFACE 2: hamnd12	BASELINE STATION NUMBER	00+0	0+05	0+10	0+15	0+20	0+25	0+30	0+35	0+40	0+45	0+20	0+55	09+0	0+65	0+40	0+75	0+80	0+85	0+0

	ADJ ******* ADDED QUANTITIES ADJ ADJ CUT CUT CUT FILL FILL FILL ORDINATE FACT VOL VOL FACT VOL VOL VOLUME	0	0 1.00 0 0 -10969	0 0	0 0	0 1.00 0 0 -13191	0 0	0 0	0 1.00 0 0 -15424	0 0	0 1.00 0 0 .16911	0 0	0 0	0	0 0	0 0	1.00 0 0	0 0	
		1.00	1.00 0	1.00 0	1.00	1.00 0	1.00 0	1.00 0	1.00 0	1.00 0	1.00	1.00 0	1.00 0	1.00 0	1.00 0	1.00 0	1.00 0	1.00 0	0
	T STAT FILL VOL	732	735	739	741	742	743	744	746	749	738	629	585	479	362	239	125	36	<
	STAT FILL VOL		735									_		•			125	36	•
	r Stat Fill T AREA	3961.60	3980.59	3998.27	4006.34	4011.27	4014.42	4018.99	4034.09	4060.24	3907.85	3426.23	2891.42	2285.37	1621.81	963.49	381.81	2.61	000
	ADJ T STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	9
	r stat cut vol	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
	STAT CUT A VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
2 nd12	STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
VT: 12 1: toe12 2: hamr	STAT CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00	100
ALIGNMENT: 12 SURFACE 1: toe12 SURFACE 2: hamnd	BASELINE STATION NUMBER	1+00	1+05	1+10	1+15	1+20	1+25	1+30	1+35	1+40	1+45	1+50	1+55	1+60	1+65	1+70	1+75	1+80	1+81

Original Surface: toe8
Design Surface: raven8

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
0.00	14288.86	-14288.86

Grid Volume Report

Original Surface: toe8
Design Surface: raven8

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)

0.00	14288.18	-14288.18

ADJUSTED MASS FILL ORDINATE VOL VOLUME	0	Ţ	4	-14	-30	-53	-82	-116	-153	-190	-229	-269	-312	-360	417	489	-578	699-	-756	070
ADJU FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TTES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ADJ ******** ADDED QUANTITIES STAT ADJ FILL CUT CUT FILL FILL VOL FACT VOL VOL FACT VOL	1.00	1.00	1.00	1.00	1.00	1.00	00.1	1.00	00.1	00.1	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0
DED Q CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
CUT	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	<
ADJ CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00
7 57 H	0	_	4	6	16	23	29	34	36	38	39	40	43	48	26	72	86	92	98	70
STAT FILL VOL	0	-	4	6	16	23	59	34	36	38	39	40	43	48	26	72	68	92	98	70
STAT FILL AREA	0.00	8.12	31.29	90'.29	107.87	144.13	172.96	191.33	201.70	204.54	212.51	223.04	242.54	276.37	333.14	448.96	508.24	480.79	451.44	15051
STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00
ADJ STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
STAT CUT A VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
STAT CUT AREA	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
STAT CUT FACT					00.															
BASELINE S STATION ONUMBER	00+0	0+05	0+10	0+15	0+70	0+25	0+30	0+35	0+40	0+45	0+20	0+55	09+0	9+65	0+40	0+75	08+0	0+85	06+0	30.0

TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-078	1023	-1123	-1225	-1328	-1430	-1530	-1629	-1726	-1822	-1918	-2016	-2119	-2225	-2331	-2437	-2537	-2632	-2725
TTIES ADJU! FILL VOL	c		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JANTI	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DED QU FILL FACT	9	00	00.	1.00	1.00	1.00	1.00	00.1	00.1	00.1	00.1	00.1	00.1	00.1	00.1	00.1	00:1	00.1	00.1
* ADD CUT	0	0	0			0					0	0	0	0	0	0	0	0	0
CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADJ ******* ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	00.1	1.00	00.1	00.1	00.1	00.1	00.1	00.1	00.1	00.1	00.
STAT FILL VOL F	90	95	66	102	103	102	00	86	26	96	96	86	03	90	02	05	00	95	93
STAT : FILL VOL	90			102															
STAT FILL AREA	495.43	532.56	539.83	563.82	553.96	544.84	536.64	525.07	524.05	516.63	518.14	544.79	563.88	577.24	276.97	558.96	523.05	505.31	501.63
ADJ STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT AREA	00.	00.	0.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	8	00	00.	00.	8.	00:	00.
STAT S CUT 0 FACT /	00.1			1.00															
BASELINE S STATION O	1+00	1+05	1+10																1+90

	TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	2916	3015	-3118	3226	3336	3447	3559	3667	3775	3882	3994	4112	4235	4361	4488	4611	4731	4848	4062
	8			•	•	•		•		•			ì	•	ì	ŧ	ì	1	1	1
	ADM ADM FILL L VOL	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	QUANT FILL F VOL	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	DED Q FILL FACT	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
	** ADJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	ADJ ******* ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
	STAT FILL VOL 1	97	66	103	108	=	111	111	109	107	108	112	118	123	126	127	124	120	117	115
	STAT FILL VOL	64	66	103	108	=======================================	111	=======================================	109	107	108	112	118	123	126	127	124	120	117	115
	STAT FILL AREA	528.95	540.68	92.999	598.65	595.24	507.20	593.02	582.12	575.60	586.15	518.53	553.48	575.60	589.50	578.37	557.12	534.42	527.07	513.04
	ADJ STAT FILL FACT	1.00	1.00								1.00									
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT CUT AREA	0.00	00.0	0.00	0.00	0.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.	00.0
toe8	STAT CUT FACT			1.00																
SURFACE 1: toe8 SURFACE 2: raven8	BASELINE STATION NUMBER	2+00	2+05	2+10	2+15	2+20	2+25	2+30	2+35	2+40	2+45	2+50	2+55	2+60	2+65	2+70	2+75	2+80	2+85	2+90

	ADJ ******* ADDED QUANTITIES ADJ	,	_				.)	, K	-55	-59	9	-62	-637	-645	-658	-670	-683	969-	-708	-720	-7330	7452
	ED QUANT	그글		-	· c) c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	000	FILL	C	· c	· c	· c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	Ä	FILL FACT	1 00	1.00	00	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	00.1	1.00	1.00	1.00	1 00
	** AD	COT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	* * * * *	CUT	0	0	0	0	0	0	0	0	0	0	0	0	0 •	٥,	0	0	0	0	0	C
		CUT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.	00.1	00.1	00.	00.1	1.00	1.00	1.00	1.00
		FILL	Ξ	Ш	111	111	110	110	Ξ	114	118	120	123	128	62 5	671	127	125	123	123	123	123
	STAT	FILL	111	111	Ш	111	110	110	111	114	1.8	120	123	128	671	671	127	125	123	123	123	123
	STAT		597.78	598.26	599.47	594.45	592.20	591.32	602.50	625.18	645.66	649.90	682.94	696.26	605.04	69.040	/0//0	067.14	664.90	660.93	670.58	659.14
	ADJ STAT		1.00	1.00	1.00	1.00	1.00	00.	90.5	00.	00.	00.1	99.	8 6	3 5	200	3.5	9.7	90.	00.	1.00	90.
	STAT	COL	0	0	0	0	0	0	0 (.	0 0	0 0	> 0	> c	> <	> <	> <	.	0 (0	0	0
	STAT	VOL	0	0	0	0	0	0	0 0))	.	-	> c	> <	· c	> <	> 0	> (0	0	0
~	STAT	CUT AREA	00.0	0.00	00.0	0.00	0.00	0.00	9.00	90.0	9 6	9 6	8 6	9.6	8 6	8	3 6	9 6	3 6	90.	00.	3
ALIGNMENT: 8 SURFACE 1: toe8 SURFACE 2: raven8	-	FACT	1.00																			
ALIGNMENT: 8 SURFACE 1: toe SURFACE 2: rav		~																				
ALIGNMENT: 8 SURFACE 1: toe8 SURFACE 2: ravei	BASELINE	NUMBER	3+00	3+05	3+10	3+15	3+20	3+72	3+30	2+40	2+40	3+50	3+54	3+60	3+65	3+70	3+75	2400	2010	2+32	05+5	3+30

	TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-7575	-7699	-7822	-7942	-8059	-8176	-8296	-8421	-8551	-8681	-8810	-8938	-9065	-9193	-9319	-9446	-9571	-9694	-9817	
	TTIES ADJUS FILL VOL	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,
	UANT FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,
	ADJ ******* ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	** ADJ CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	STAT FILL VOL	122	123	123	120	117	117	120	125	129	131	129	127	127	128	127	126	125	123	123	
	STAT FILL VOL	122	123	123	120	117	117	120	125	129	131	129	127	127	128	127	126	125	123	123	
	STAT FILL AREA	660.48	672.55	657.33	640.35	628.64	630.61	661.05	693.52	704.71	704.81	09.069	684.84	90.169	686.27	680.80	683.94	670.92	662.21	663.16	
	ADJ STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
•	STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
I: 8 : toe8 : raven8	STAT CUT FACT			1.00																	
ALIGNMEN I: 8 SURFACE 1: toe8 SURFACE 2: raven8	BASELINE STATION NUMBER	4+00	4+05	4+10	4+15	4+20	4+25	4+30	4+35	4+40	4+45	4+50	4+55	4+60	4+65	4+70	4+75	4+80	4+85	4+90	

SURFACE 2: raven8	CUT		1.00	9.7	8.1	8.1	1.00	1.00	1.00	1.00	00.5	1.00	1.00	00.1	00.1	1.00	1.00	1.00	1.00
	STAT STAT	0 00	0 0	9 9	2 6	000	000			0 00		0 9		0 9		0			
	CUT	0	0 (0 0	>	> C	0	0	0	0	0	0	0	0	0	0	0	0	0
	FILL FACT A					00. 00.										•		-	•
	STAT FILL AREA	54.54	68.31	56.26	50.86	555.18	45.57	38.62	51.49	80.79	80.68	19.19	29.09	47.39	19.56	83.62	19.41	418.73	01.54
	STAT FILL VOL	102	104	50	103	102	5 5	2 2	101	104	901	106	104	103	66	93	98	80	9/
	STAT FILL VOL P	102	104	104	103	102	103	001	101	104	106	106	104	103	66	93	98	80	92
ADJ #	ADJ CUT FACT	1.00	1.00	00.	00.1	9 6	8 8	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1
*	CUT	0	0	0	0	0 0	>	, <u>c</u>	0	0	0	0	0	0	0	0	0	0	0
ADDI	CUT F	0	0	0	0	- ·	 - c	· -	0		0	_		_	0	0	0	0	0
U QU	FILL F	00:	00:	0 .	8.	8.0	3 8	3 8	8	00.	00.	00	00	00	00	00	00	00	00
ADJ ******* ADDED QUANTITIES	ADJI FILL FILL VOL VOL	0	0 0	0 0	0 0	0	.		0	0 0	0 0		0 0						
ΣO.	ADJUSTED MASS FILL ORDINATE VOL VOLUME	-12033	-12137	-12241	-12343	-12446	-12548	-12030	-12852	-12955	-13062	-13167	-13271	-13374	-13473	-13566	-13652	-13732	-13808

	TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-13952	-14020	-14081	-14184	-14226	-14259	-14279	-14288	-14290	-14290			
	ADJU ADJU FILL	0	0	> C	0	0	0	0	0	0	0			
	E VOL	0	0	> <	0	0	0	0	0	0	0			
	ADJ ******* ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	1.00	00.7	9.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
	CUT	0	0	0	0	0	0	0	0	0	0			
	CUT	0	0	>			0	0	0	0	0			
		1.00	8 8	3 8	00.	1.00	1.00	1.00	1.00	1.00	1.00			
	STAT FILL VOL 1	71	80 0	55	48	42	33	20	6	7	0			
	STAT FILL VOL	7	% (55	48	42	33	20	Ø	7	0			
	STAT FILL AREA	376.48	353.43	278.99	240.00	209.46	143.26	74.60	24.61	0.00	0.00			
	ADJ STAT FILL FACT		8 8					1.00	1.00	1.00	1.00			
	STAT CUT VOL	0	>	0	0	0	0	0	0	0	0			
	STAT CUT VOL	0	0 0	0	0	0	0	0	0	0	0			
ec	STAT CUT AREA	0.00	9.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
1: toe8 1: raven	STAT CUT FACT	1.00	3 5	1.00	1.00	00.1				00.	1.00			
ALIUNMEN I : 8 SURFACE 1; toe8 SURFACE 2: raven8	BASELINE STATION NUMBER	7+00	7+10	7+15	7+20	7+25	7+30	7+35	7+40	7+45	7+48			

Original Surface: toe20 Design Surface: raven20

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
	***************************************	****
0.00	8533.38	-8533.38

Grid Volume Report

Original Surface: toe20 Design Surface: raven20

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
	***********	**********
0.97	8532.46	-8531.49

	TED MASS ORDINATE VOLUME	0	0	9	7	ئ.	-13	-24	40	-58	-26	-97	-124	-156	-190	-225	-260	-294	-329	-364
	ADJUSTED MASS FILL ORDINATE VOL VOLUME	_										_	_	_						
	7	0	0	0	0	0	0	0 0	0 0	0	0	0 0	0 0	0 0	0	0 0	0	0	0	0
	ADJ ******** ADDED QUANTITIES STAT ADJ FILL CUT CUT CUT FILL FILL VOL FACT VOL VOL FACT VOL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1
	OED QU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	** ADI CUT VOL	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
	ADJ CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	7 7 7	0	0	0	_	4	∞	11	15	18	19	21	26	32	34	35	35	34	34	35
	STAT FILL VOL	0	0	0		4	∞	11	15	<u>8</u>	19	21	56	32	34	35	35	34	34	35
	STAT FILL AREA	0.00	0.00	1.78	11.56	31.33	51.38	72.23	92.60	99.91	102.93	125.30	160.53	183.49	60.881	88.28	89.36	82.30	87.81	91.59
	STAT SFILL FACT	8.	00:	00.	00:	00:	00:				_	_							_	
	ADJ STAT CUT VOL	0 1	0	-	0	_	_	_		_	_	_	-	_		-		_	_	_
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0:	STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1: 20 : toe20 : raven2	STAT CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ALIUNMEN I: 20 SURFACE I: toe20 SURFACE 2: raven20	BASELINE STATION NUMBER	00+0	9+0	0+10	0+15	0+20	0+25	0+30	0+35	0+40	0+45	0+20	0+55	09+0	9+65	0+40	0+75	0+80	0+85	06+0

	ITIES ADJUSTED MASS	ORDINATE	437	476	-515	-556	-598	-643	-691	-738	-785	-833	-884	-936	-991	-1050	-1110	-1171	-1233	-1297	-1362	
	ADJU	FILL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	UAN	FILL	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	\sim	r FILL L FACT	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	•
	V ****	VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	# !	VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	, , ,	FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	•
		VOL	37	39	40	41	42	45	47	47	47	48	20	52	55	29	09	61	62	64	65	"
	STA	VOL	37	39	40	41	42	45	47	47	47	48	20	52	55	29	9	61	62	49	65	,
		rill R AREA	204.18	211.68	219.48	218.66	236.23	253.62	257.14	252.78	256.00	266.73	274.41	288.39	308.84	325.24	326.91	331.79	339.56	349.11	354.03	CO 33C
	ADJ T STAT		1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.	1.00	90.	00.	00.	0.1	9.	1.00	1.00	1.00	1.00	1.00	50
	STAT		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
	STAT	NOL	0	0	0	0	0	0	0	0	0	0 (0 (0	0 (0	0	0	0	0	0	_
20	STAT	AREA	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
vi: 20 1: toe20 2: raven	STAT		1.00	1.00	00.	1.00	00.	1.00	1.00	00.	00.1	90.	8.6	90.5	1.00	00.1	00.	00.	1.00	1.00	1.00	20
ALIGNMEN I: 20 SURFACE 1: toe20 SURFACE 2: raven20	BASELINE	NUMBER	1+00	1+05	01+1	1+15	1+20	1+25	1+30	1+35	1+40	1+45	1+20	1+55	1+60	C0+1	1+70	1+75	1+80	1+85	1+90	+0+

MASS	ORDINATE	493	557	-1620	683	745	908	898	933	666	990	130	194	258	322	387	453	520	586	552
ITIES ADJUSTED MASS)	-	7	Ť	7	-	T	Ŧ	7	T	-7	-2	-2	-2	-2	-2	-2	-2	-5	-2
TITIE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UAN	FILL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEDC	FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ADJ ******* ADDED QUANTITIES ADJ	CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
****	CUT	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
ADJ *	CUT	1.00	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
STAT	FILL VOL F	55	54	63	53	25	51	25	55	99	99	55	54	54	4	55	99	99	99	57
STAT	FILL			63									_			_	_		99	_
	FILL	49.15	41.06	341.45	36.26	30.55	30.04	42.10	57.78	60.27	353.86	45.96	42.38	43.88	50.91	56.13	56.61	357.82	358.73	359.52
	FILL FACT /			1.00																
	CUT F	_	_	_	_	_	=	<u>-</u>	-	-	<u> </u>	<u> </u>	=	<u> </u>	Ξ	<u> </u>		7.	<u> </u>	<u> </u>
	CUT CI	0	0		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
T ST	SA VC	0		0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
STA	CUT ARE	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STAT	CUT CUT FACT AREA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	STATION NUMBER	2+00	2+05	2+10	2+15	2+20	2+25	2+30	2+35	2+40	2+45	2+50	2+55	2+60	2+65	2+70	2+75	2+80	2+85	2+60

	ADJ ******* ADDED QUANTITIES		T VOL VOL VOLUME	0 0	0 0	0 0 -29	0 0 -30	0 0 -3083	0 0 -31	0 0 -32	0 0 -33			·		·	·	•	•	•	0 0 40	•	•
	ADDEC	UT FILI	OL FAC	1 00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
	**	CUT	NOL V	0	0 0	0 0	0 0	0 0	0 0	0 .0	0 0	0 0	0 0	0 0			0 0			0 0	0 0	0 0	0 0
	ADJ *	35	FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	100
		FILL		70	70	72	74	11	11	9/	74	72	72	73	74	74	74	73	72	74	92	11	26
	CTAT	FILL	VOL	2	20	72	74	11	77	26	74	22	72	73	74	74	74	73	72	74	9/	11	76
		FILL		380.31	379.89	393.80	409.48	417.01	415.04	402.73	392.69	389.41	390.61	393.15	400.69	402.65	395.68	387.60	390.17	403.97	415.66	417.85	403.60
	ADJ			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		CUT		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT	CUT	NOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20		CUT	AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
VT: 20 1: toe20 2: raven			FACT	1.00	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ALIGNMENT: 20 SURFACE 1: toe20 SURFACE 2: raven20	BASELINE	STATION	NUMBER	3+00	3+05	3+10	3+15	3+20	3+25	3+30	3+35	3+40	3+45	3+50	3+55	3+60	3+65	3+70	3+75	3+80	3+85	3+90	3+95

	TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	9	4269	4415	4490	4566	-4641	4716	4791	4867	4945	-5023	-5100	-5179	-5258	-5336	-5414	-5490	5564	-5638	0000-
		•	> c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		· c	> <
	QUAN FILL	c	> <	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	· C		•
	DDED Q	5	9 6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	00	2
	cur	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	CUT	c	0	0	0	0	0	0	Ö.	0	0	0	0	0	0	0	0	0	0	0	
		9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	5
	STAT FILL VOL]	74	73	73	75	92	75	75	75	77	78	11	78	78	79	79	78	9/	75	74	5
	STAT FILL VOL	74	73	73	75	9/	75	75	75	77	78	77	78	78	79	79	78	9/	75	74	73
	STAT FILL AREA	391.60	393.35	399.64	410.15	408.23	403.62	402.15	408.15	420.21	419.96	416.99	120.97	126.20	127.28	123.69	113.54	104.72	400.56	394.28	120 13
	ADJ STAT FILL FACT			1.00														-	•		
	STAT CUT VOL	0	0	0		0												0			_
	STAT CUT VOL	0	0	0	0	0	0 (0 0	۰ د	0	٥ (D (0	0	0	0	0	0	0	0	_
0	STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
T: 20 : toe20 : raven2	STAT CUT FACT	1.00	1.00	1.00	00.1	00.1	90.5	30.1	90.1	00.1	90.1	90.1	90.	90.	00.1	1.00	00.1	1.00	1.00	1.00	100
ALIGNMENT: 20 SURFACE 1: toe20 SURFACE 2: raven20	BASELINE STATION NUMBER	4+00	4+05	4+10	4+15	4+20	4+25	4+30	4+30	4+40	4+43	00+4	4+55	4+60	4+60	4+70	4+75	4+80	4+85	4+90	4+95

	STAT STAT STAT STAT STAT ST. CUT CUT FILL FILL FILL FILL VOL VOL FACT AREA VOL VO	11	385.53 71	394.39 72	402.65 74	0 1.00 409.27 75 75	416.35 76	441.26 79	451.87 83	451.49 84	1.00 446.89 83	1.00 443.32 82	439.58 82	1.00 433.51 81	426.22 80	1.00 419.11 78	389.68 75	1.00 346.27 68	1.00 298.70 60	25	1.00 293.24 54
	STAT / FILL OVOL F	71	71	. 22	74	75	92	79	83	%	83	82	82	81	80	28	75	89	09	55	54
DJ ******	ADJ CUT CUT FACT VOL	0 00:	0 00:	0 00	0 00	0 00.1	0· 00:	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
4DJ ******** ADDED QUANTITIES	ADJUSTED MASS CUT FILL FILL VOL FACT VOL	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0	0 1.00 0
ITIES	FILL ORDINATE VOL VOLUME	0 -5782	0 -5853	0 -5925	0 -5999	0 -6074	06150	0 -6230	0 -6313	9669- 0	0 -6479	0 -6562	0 -6644	0 -6724	0 -6804	0 -6882	0 -6957	0 -7025	0 -7085	0 -7140	0 -7194

	ORDINATE	-7247	-7298	-7345	-7389	-7428	-7464	-7495	-7524	-7550	-7575	-7597	-7619	-7640	-7661	-7680	-7698	-7714	-7730	-7744
	ADJ ******** ADDED QUANTITIES ADJ ADJUSTED MASS CUT CUT CUT FILL FILL FILL ACT VOL VOL FACT VOL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	DUAN MASS FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	* ADDED QUANT ADJUSTED MASS JUT FILL FILL VOL FACT VOL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ADJU CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CCLT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7 7 W L	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	STAT FILL VOL 1	53	51	47	43	40	35	31	29	26	24	23	22	21	20	19	18	17	16	14
	STAT FILL VOL	53	51	47	43	40	35	31	59	56	24	23	22	21	20	19	18	17	16	14
	STAT FILL AREA	282.96	265.11	244.70	224.56	205.27	177.69	161.57	146.56	136.41	127.53	119.98	117.13	110.14	108.07	100.26	92.08	88.28	81.47	71.77
	ADJ STAT FILL FACT	1.00	1.00	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	STAT CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00	STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
toe20 raven2	STAT CUT FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SURFACE 1: toe20 SURFACE 2: raven20	BASELINE STATION NUMBER	00+9	9+05	6+10	6+15	6+20	6+25	6+30	6+35	6+40	6+45	05+9	6+55	09+9	9+65	0+49	6+75	08+9	6+85	06+9

ADJ STAT STAT CUT FILL VOL FACT 0 1.00 0 1.00	ADJ STAT FILL FACT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ADJ STAT FILL FACT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ADJ STAT STAT STAT STAT FILL FILL FILL FILL FACT AREA VOL VOL 1.00 58.22 11 11 1.00 55.62 11 11 1.00 55.62 11 11 1.00 51.67 10 10 1.00 52.28 10 10 1.00 52.28 10 10 1.00 52.28 10 10 1.00 53.67 11 11 1.00 63.76 11 11 1.00 63.76 11 11 1.00 63.76 11 11 1.00 63.76 11 11 1.00 136.65 23 23 1.00 176.88 33 1.00 176.88 33 1.00 166.60 28 28 1.00 176.88 33 1.00 176.88 33 1.00 176.88 33	BASELINE STAT STAT STAT S STATION CUT CUT CUT O	1.00 0.00 0			1.00 0.00 0			0.00		0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	00'0
Anna forma		STAT FILL AREA 58.96 58.22 55.62 55.62 55.62 55.62 55.62 55.67 59.18 59.18 58.70 99.20 116.80 116.80 176.18	STAT STAT STAT FILL FILL FILL AREA VOL VOL 58.22 11 11 55.62 11 11 55.62 11 11 55.63 10 10 61.54 11 11 55.64 11 11 55.67 10 10 61.54 11 11 55.70 10 10 58.32 10 10 63.76 11 11 116.80 20 20 136.65 23 23 160.60 28 28 177.80 31 31 176.18 32 32		0 1.00	0 1.00	0 1.00	0 1.00	0 1.00	0 1.00								•	. ,			
STAT / VOL FILL O VOL FILL O 111 111 111 111 111 111 111 111 111	STAT / VOL FILL OVOL FILL			CUT	0	0	0	0	, o o	0	0	0	0	0	0	0	0	0	0	0	0	C
STAT / FILL OVOL F FILL O 111 111 111 111 111 111 111 111 111	STAT / VOL FILL OVOL FILL OF 111 111 111 111 111 111 111 111 111			ADJUS CUT F	0	0	0	0 0		0 1	0 1	0 1				-						
STAT / FILL OVOL F FILL O 111 111 111 111 111 111 111 111 111	STAT / VOL FILL OVOL FILL OF 111 111 111 111 111 111 111 111 111		ADJUS	ED QU TED M ILL F	8	8	00	88	38	8	00	00	90	00	00	00	00	00	8	8	00	00
STAT / VOL F LILL O LILL O LILL LILL	STAT / VOL F LILL O LILL O LILL		ADJUSTED QU ADJUSTED M ADJUSTED M CUT CUT FILL F VOL VOL FACT V 0 0 1.00 0	ANTITIE ASS ILL FILL 'OL VOL	0	0	0	0 0	00	0	0	0	0	0	0	0	0	0	0	0	0	
ADJ ************************************	STAT / VOL FILL OVOL FILL OF 111 111 111 111 111 111 111 111 111		ADJUSTED MASS CUT CUT FILL FILL FILL VOL VOL VOL FACT VOL VOL OU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S ORDINATE VOLUME	-7767	-7778	-7788	-7798	-7808	-7830	-7840	-7851	-7861	-7872	-7886	-7903	-7923	-7946	-7974	-8005	-8037	0700

S		-8125	-8149	-8169	-8187	-820\$	-8225	-8244	-8263	-8278	-8290	-8299	-8307	-8315	-8320	-8325	-8330	-8335	-8339	-8343	-8348
ATTTIES SS	TO NOIL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
QUANTI MASS	E.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADJ ******** ADDED QUANTITIES ADJ ADJUSTED MASS	VOL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
‡ ₹ 5		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
# 5	T VOL	0	0	0						0	0	_	0	0	0	0	0	0	0	0	0
	FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
STAT		27	23	20	18	<u>∞</u>	19	20	19	16	12	6	00	7	9	S	\$	\$	4	4	2
STAT	VOL	27	23	20	18	<u>8</u>	19	20	19	16	12	6	∞	7	9	S	S	\$	4	4	2
STAT	-	136.27	116.07	101.67	94.02	102.69	107.57	103.73	96.64	72.62	52.55	48.09	41.02	34.87	28.47	25.11	25.84	23.80	23.40	23.57	31.78
	FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
STAT	NOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT	NOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
rat UT	AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1: toe20 2: raven STAT CUT	FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SURFACE 1: toe20 SURFACE 2: raven20 SURFACE 2: raven20 SURFACE 2: raven20 SURFACE 2: raven20 SURFACE 1: toe20 SURFACE 2: raven20 SURFACE 3: ra	NUMBER	8+00	8+05	8+10	8+15	8+20	8+25	8+30	8+35	8+40	8+45	8+50	8+55	8+60	8+65	8+70	8+75	8+80	8+85	06+8	8+95

STAT CUT VOL	STAT CUT VOL	ADJ STAT STAT STAT CUT FILL FILL VOL FACT AREA 0 1.00 29.30 0 1.00 68.04 0 1.00 69.76 0 1.00 69.76 0 1.00 69.76 0 1.00 62.05 0 1.00 62.05 0 1.00 83.89 0 1.00 83.89	ADJ STAT STAT STAT STAT STAT CUT FILL FILL FILL FILL VOL FACT AREA VOL VOL 0 1.00 29.30 6 6 0 1.00 29.30 6 6 0 1.00 41.37 7 7 0 1.00 69.41 10 10 0 1.00 69.41 13 13 0 1.00 69.41 13 13 0 1.00 62.05 11 11 0 1.00 83.89 15 15 0 1.00 83.89 15 15 0 1.00 87.92 13 13 0 1.00 82.95 14 14 0 1.00 75.00 14 14 0 1.00 75.00 14 14 0 1.00 54.93 3 3 0 1.00 54.93 3 3	ADJ STAT STAT STAT STAT STAT CUT FILL FILL FILL FILL FILL VOL FACT AREA VOL VOL FILL 0 1.00 29.30 6 6 0 1.00 29.30 6 6 0 1.00 41.37 7 7 0 1.00 69.76 13 13 0 1.00 69.76 13 13 0 1.00 69.41 13 13 0 1.00 62.05 11 11 0 1.00 83.89 15 15 0 1.00 83.89 15 15 0 1.00 87.9 15 15 0 1.00 77.22 13 13 0 1.00 87.9 15 15 0 1.00 87.9 15 15 0 1.00 75.00 14 14 0 1.00 54.9 3 3 0 1.00 54.9 3 3	ADJ STAT STAT STAT STAT STAT CUT FILL FILL FILL FILL VOL FACT AREA VOL VOL F 0 1.00 29.30 6 6 0 1.00 29.30 6 6 0 1.00 69.04 10 10 0 1.00 69.07 13 13 0 1.00 69.01 13 13 0 1.00 69.01 13 13 0 1.00 69.01 13 13 0 1.00 80.09 15 15 0 1.00 81.89 15 15 0 1.00 80.09 15 15 0 1.00 77.22 13 13 0 1.00 82.95 14 14 0 1.00 75.00 14 14 0 1.00 54.9 3 3	ADJ STAT STAT STAT STAT STAT CUT CUT FILL FILL FILL FILL FILL VOL FACT AREA VOL VOL FILL 0 1.00 29.30 6 6 0 1.00 29.30 6 6 0 1.00 41.37 7 7 0 1.00 69.76 13 13 0 1.00 69.41 13 13 0 1.00 69.41 13 13 0 1.00 62.05 11 11 0 1.00 83.89 15 15 0 1.00 83.89 15 15 0 1.00 87.9 15 15 0 1.00 77.22 13 13 0 1.00 87.9 15 15 0 1.00 77.22 13 13 0 1.00 88.79 15 15 0 1.00 87.9 15 15 0 1.00 75.00 14 14 0 1.00 54.9 3 3 0 1.00 54.9 3 3	ADJ STAT STAT STAT STAT STAT STAT CUT FILL FILL FILL FILL FILL FILL FILL FIL	BASELINE STAT STAT STAT STATION CUT CUT CUT NUMBER FACT AREA VOL		1.00 0.00	9+10 1.00 0.00 0	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00
Name and American Company of the Com		STAT FILL AREA 35.52 29.30 41.37 68.04 69.76 77.22 83.89 80.79 77.22 83.89 80.79 77.82 61.59 61.59 61.59	STAT STAT STAT FILL AREA VOL VOL VOL 29.30 6 6 6 41.37 7 7 7 68.04 10 10 69.76 13 13 13 69.41 13 13 62.05 11 11 62.05 11 11 77.22 13 13 83.89 15 15 80.79 15 15 15 16.59 15 15 16.59 15 15 16.59 15 15 16.59 15 15 16.59 15 15 16.59 15 15 16.59 15 15 15 16.59 15 15 15 15 16.59 15 15 15 16.59 15 15 15 16.59 15 15 15 16.59 15 15 15 16.59 15 15 15 16.59 15 15 15 15 15 15 15 15 15 15 15 15 15	STAT STAT STAT FILL AREA VOL VOL FILL AREA VOL VOL FILL FILL FILL A1.37 7 7 7 68.04 10 10 69.76 13 13 13 69.41 13 13 69.41 13 13 62.05 11 11 77.22 13 13 83.89 15 15 80.79 15 15 15 75.00 14 14 71.82 14 14 71.82 14 14 61.59 12 12 28.95 8 8 5.49 3 3	STAT STAT STAT FILL AREA VOL VOL FELL AREA VOL VOL FELL AREA VOL VOL FELL A1.37 7 7 7 68.04 10 10 69.76 13 13 13 69.41 13 13 62.05 11 11 77.22 13 13 83.89 15 15 80.79 15 15 75.00 14 14 71.82 14 14 71.82 14 14 61.59 12 12 28.95 8 8 5.49 3 3	STAT STAT STAT FILL AREA VOL VOL FILL AREA VOL VOL FILL FILL FILL A1.37 7 7 7 68.04 10 10 69.76 13 13 13 69.41 13 13 69.41 13 13 62.05 11 11 77.22 13 13 83.89 15 15 80.79 15 15 15 75.00 14 14 71.82 14 14 14 61.59 12 12 28.95 8 8 5.49 3 3 3	STAT STAT STAT FILL AREA VOL VOL FILL AREA VOL VOL FILL FILL FILL A1.37 7 7 7 68.04 10 10 69.76 13 13 13 69.41 13 13 69.41 13 13 62.05 11 11 77.22 13 13 83.89 15 15 80.79 15 15 15 75.00 14 14 71.82 14 14 71.82 14 14 61.59 12 12 28.95 8 8 5.49 3 3	STAT CUT VOL	0 1.00	_	_	_	_	_	_		_	_		_		_		_	_	_
ADJ ************************************	STAT FILL VOL F 6 6 6 6 7 7 7 7 11 13 13 13 13 13 13 13 13 13 13 13 13	ADJ ************************************	ADJUSTED MASS ADJUSTED MASS CUT CUT FILL FILL FILL VOL VOL FACT VOL VOL 0 0 1.00 0 0	**ADDED QUANTITIES ADJUSTED MASS CUT FILL FILL FILL VOL FACT VOL VOL 0 1.00 0 0	QUANTITIES OMASS FILL FILL I VOL VOL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FILL VOL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ORDINATE	-8355	-8361	-8367	-8377	-8390	-8403	-8417	-8428	-8438	-8451	-8466	-8481	-8496	-8510	-8522	-8530	-8533	-8534

Triangle Volume Report

Original Surface: toe22 Design Surface: raven22

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)

0.05	7459.59	-7459.54

Grid Volume Report

Original Surface: toe22 Design Surface: raven22

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)

0.02	7455.95	-7455.93

ADJUSTED MASS FILL ORDINATE	VOLUME	٠ <u>:</u>	. s.	-137	-242	-363	496	-637	-786	-941	-1100	-1259	-1417	-1576	-1736	-1896	-2060	-2227	-2393	-2558
C C	TOA	> <	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Not	> <	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADJ ******** ADDED QUANTITIES STAT ADJ FILL CUT CUT CUT FILL FILL	FACT	3 6	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
DED Q	AOL	•	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
** ADJ	NOL VOL	> <	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0
ADJ	FACT	200	8. 1.	1.00	1.00	1.00	1.00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
*	NOL VOL		45	79	105	121	133	142	149	155	159	159	159	159	160	161	163	167	167	165
STAT	TO _A	. 7	45	79	105	121	133	142	149	155	159	159	159	159	1.60	161	163	167	167	165
STAT	AREA 0.00	143 17	337.66	515.74	619.28	688.53	743.83	786.46	819.56	854.54	860.34	856.46	856.43	859.50	863.88	869.80	895.51	906.95	892.66	884.38
	FACT 1.00																			
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT	0 0	· C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STAT STAT	AREA 0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
: raven.	FACT	100	1.00	1.00	1.00	1.00	1.00	1.00	00.1	00.	1.00	1.00	00.	1.00	1.00	1.00	1.00	1.00	1.00	1.00
п с н	NUMBER 0+00	0+0\$	0+10	0+15	0+20	0+25	0+30	0+35	0+40	0+45	0+20	0+55	09+0	0+65	0+40	0+75	08+0	0+85	06+0	0+62

	TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-2727	-2881	-3039	-3196	-3353	-3515	-3683	-3851	-4017	-4183	-4350	-4518	-4687	-4858	-5029	-5200	-5372	-5544	-5718	-5892
	TIES ADJU! FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	JANTT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ ******* ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL FILL FACT VOL VOL FACT VOL VOL	1.00	9.	99.1	1.00	1.00	00.1	00.1	00.1	00.1	00.1	00.1	90.	1.00	00.1	1.00	00.1	00.1	00.1	00.1	00.1
	* ADD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CUT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ ** ADJ CUT FACT	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.8 8.1	1.00	1.00	1.00	1.00	1.00	00.1	00.1
	STAT FILL VOIL B	163	160	158	157	157	162	168	891	991	991	167	891	691	170	171	171	172	173	174	174
	STAT FILL VOL	163		158																	
	STAT FILL AREA	372.92	858.93	149.93	844.95	52.45	366,15	10.32	02.48	94.92	97.52	904.41	11.08	16.90	21.92	923.54	25.44	30.19	936.89	940.28	40.55
	ADJ STAT S FILL FACT /		1.00																		_
	STAT CUT VOL 1	0		0			0					0			0		0	0	0	0	0
	STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	STAT CUT O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	00.0	0.00	00.0	00.0	0.00
f: 22 toe22 raven2	STAT S CUT 6 FACT /		1.00																		
ALIGNMENT: 22 SURFACE 1: toe22 SURFACE 2: raven22	BASELINE S STATION C NUMBER F	1+00	1+05	1+10	1+15	1+20	1+25	1+30	1+35	1+40	1+45	1+50	1+55	1+60	1+65	1+70	1+75	1+80	1+85	1+90	1+95

TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-6067	-6241	-6415	-6589	-6762	-6931	-7096	-7244	-7358	-7431	-7458	-7461
ITTES ADJUS FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0
UANT FILL VOL	0	0	0	0	0	0	0	0	0	0	0	0
DED Q FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ADJ ******** ADDED QUANTITIES ADJ CUT CUT CUT FILL FILL ACT VOL VOL FACT VOL VOL	0	0	0	0	0	0	0	0	0	0	0	0
CUT	0	0	0	0	0	0	0	0	0	0	0	0
L. L.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
STAT FILL VOL	174	174	174	174	173	169	165	148	115	72	28	т
STAT FILL VOL	174	174	174	174	173	169	165	148	115	72	28	m
STAT FILL AREA	96.656	9:9.55	942.36	939.43	923.74	906.20	873.09	722.51	\$17.99	264.65	32.55	0.00
ADJ STAT FILL FACT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT VOL	0	0	0	0	0	0	0	0	0	0	0	0
STAT CUT AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00
TAT TAT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
BASELINE STAT S' STATION CUT C NUMBER FACT A	2+00	2+05	2+10	2+15	2+20	2+25	2+30	2+35	2+40	2+45	2-50	2+54

Triangle Volume Report

Original Surface: somtoe Design Surface: somer1

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
0.04	13011.18	-13011.15

Grid Volume Report

Original Surface: somtoe Design Surface: somer1

Cut	Fill	Net
(cu yd)	(cu yd)	(cu yd)
	-	
0.01	13008.95	-13008.94

	ADJUSTED MASS	VOLUME	c	0 1	-44	108	198	-309	-438	-583	-742	-914	-1097	-1291	-1493	-1700	-1914	-2130	-2349	2572	-2795	-3018
	7 -	NOL	-	o c	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ITTES FILL	TOA.	_) C	0	· c	, c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ ******* ADDED QUANTITIES STAT ADJ FILL CUT CUT CUT FILL FILL	L FACT	1 00	00.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	ODED	NOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	** AI	NOL	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ADJ	FACT	00	8	00.	8	00.	00.	8.	8.	90.	90.	00.	00.	00	00	8	00	8	00	00.1	00
	ADJ * STAT	VOL	0		34 1																223 1.	
	STAT	NOL	0	10	34																223	
	STAT FILL		3.28	102.92	265.31	422.12	551.43	648.94	742.10	823.21	896.69	928.16	1023.45	1073.15	104.74	1136.25	1165.79	1170.63	1199.92	201.83	1204.51	207.20
	STAT FILL	FACT																		-	00.	_
	ADJ STAT CUT	NOL	0	0	0	0	0	0											-		0	_
	STAT CUT	VOL	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0
er1	STAT		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00
T: somte: some:	STAT	FACT																		-	8	_
ALIGNMENT: someri SURFACE 1: somtoe SURFACE 2: somer1	ш	NUMBER 1																			06+0	

STAT CUT AREA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ADJ* STAT STAT ADJ FILL FILL CUT	VOL FACT AREA VOL VOL	1211.35 224 224	1219.82 225 225	_	0 1.00 1226.23 228 228	0 1.00 1267.68 231 231 1.00 0	0 1.00 1343.35 242 242 1.00 0	0 1.00 1431.65 257 257 1.00	0 1.00 1543.14 275 275	1.00 1670.80 298 298 1.00	0 1.00 1796.17 321 321 1.00 0	0 1.00 1974.05 349 349 1.00 0	0 1.00 2160.75 383 383	0 1.00 2264.55 410 410 1.00 0	0 1.00 2306.21 423 423 1.00 0	0 1.00 2311.43 428 428 1.00 0	0 1.00 2306.42 428 428 1.00	0 1.00 2295.30 426 426 1.00 0	0 1.00 2289.78 425 425 1.00 0	2288.48 424 424 1.00 0	0 1.00 2287.18 424 424 1.00 0
STAT STAT STACT AND STAT STACT AND STAT STACT AND STACT	BASELINE STAT STAT STATION CUT CUT	AREA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	TIES ADJUSTED MASS FILL ORDINATE VOL VOLUME	-10087 -10513 -10941 -11371 -12191 -12517 -12910 -12910 -13010
	jumes.	000000000
	UANT FILL	0000000000
	DED QU	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
	cut vol	0000000000
	CUT	000000000
	ADJ ADJ CUT	1.00 1.00 1.00 1.00 1.00 1.00 1.00
	STAT FILL VOL 1	424 428 428 430 426 334 326 240 153 78 0
	STAT FILL VOL	424 428 428 430 426 334 326 240 153 0
	STAT FILL AREA	2292.57 2301.63 2320.35 2321.37 2277.56 1982.93 1538.48 1052.62 602.68 238.02 4.86 0.00
	ADJ STAT FILL FACT	1.00
	STAT CUT VOL	0000000000
	STAT CUT VOL	0000000000
er1	STAT CUT AREA	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
T: some	STAT CUT FACT	1.00
ALIGNMENT: somerl SURFACE 1: somtoe SURFACE 2: somerl	BASELINE STATION O	2+00 2+05 2+10 2+15 2+20 2+20 2+30 2+40 2+45 2+50 2+53

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and many control of the searching existing data sources.

1.AGENCY USE ONLY (Leave blank)	2.REPORT DATE August 1996	3.REPORT TYPE A	AND DATES COVERED
4.TITLE AND SUBTITLE Noninvasive Weight Determination Measurements 6.AUTHOR(S) Keith J. Sjostrom, Dwain K. Butle	5.FUNDING NUMBERS MIPR SC08006-10		
7.PERFORMING ORGANIZATION NAME U.S. Army Engineer Waterways E 3909 Halls Ferry Road Vicksburg, MS 39180-6199 D.SPONSORING/MONITORING AGENCY Defense National Stockpile Center Fort Belvoir, VA 22060	8.PERFORMING ORGANIZATION REPORT NUMBER Miscellaneous Paper GL-96-24 10.SPONSORING/MONITORING AGENCY REPORT NUMBER		
1.SUPPLEMENTARY NOTES Available from the National Technical Techn	EMENT	5285 Port Royal Road,	Springfield, VA 22161. 12b.DISTRIBUTION CODE

13.ABSTRACT (Maximum 200 words)

The Defense National Stockpile Center (DNSC) maintains stockpiles of high-grade ores at various locations throughout the country and has a requirement to produce current mass estimates for selected piles as part of a national audit. Microgravity measurements were performed over each ore pile to provide high-resolution surveys of the gravitational field with which to determine the average bulk density of the ore material. Nettleton's and Parasnis' methods were used to analyze the gravity anomaly data. These methods have the advantage of averaging the effect of density variations more accurately than can be done from surface or core samples. Volumes of the ore stockpiles were determined using standard land surveying method. The computed weight for each ore stockpile is compared to the reported weight provided by DNSC. The greatest differences were computed over piles located on unprepared, sandy soil. Ore stockpiles situated on prepared surfaces or concrete pads typically have computed differences less than 10 percent.

14.SUBJECT TERMS Geophysical methods			15.NUMBER OF PAGES
Microgravity Ore stockpiles			162 16.PRICE CODE
17.SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18.SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19.SECURITY CLASSIFICATION OF ABSTRACT	20.LIMITATION OF ABSTRACT