05 Moments and Couples

Engineering Statics

Updated on: September 18, 2025

Bodies

- So far, we have concerned ourselves with forces acting at a single point (or particle)
- We have learned how to analyze the (concurrent) forces acting at this point.
- We now start to look at non-concurrent forces, where several forces act upon a body but at different locations.

- ▶ We assume that *ABC* is a **rigid** beam and that it doesn't deflect under the load a *C*. We also assume that the weight of the beam is negligible compared to loads imposed upon it.
- External, non-concurrent forces act upon ABC:

- ▶ We assume that *ABC* is a **rigid** beam and that it doesn't deflect under the load a *C*. We also assume that the weight of the beam is negligible compared to loads imposed upon it.
- External, non-concurrent forces act upon *ABC*:
 - ► A force W due to the weight of the object at C,

- We assume that ABC is a rigid beam and that it doesn't deflect under the load a C. We also assume that the weight of the beam is negligible compared to loads imposed upon it.
- External, non-concurrent forces act upon ABC:
 - ► A force W due to the weight of the object at C,
 - A reaction, R_B, from the roller at B, perpendicular to the surface the roller is resting on,

- We assume that ABC is a rigid beam and that it doesn't deflect under the load a C. We also assume that the weight of the beam is negligible compared to loads imposed upon it.
- External, non-concurrent forces act upon ABC:
 - ► A force W due to the weight of the object at C,
 - ▶ A reaction, **R**_B, from the roller at B, perpendicular to the surface the roller is resting on,
 - ▶ Horizontal and vertical components, \mathbf{R}_{A_x} and \mathbf{R}_{A_y} , of the reaction from the pinned connection at A.

