Differentialgeometrie I

gehalten von Dr. Anna Siffert im Sommersemester 2018

an der **Ruprecht-Karls-Universität Heidelberg**

In LATEX gesetzt von

Mathieu Kaltschmidt & Quirinus Schwarzenböck

aktueller Stand: 17. Mai 2018

Differentialgeometrie I

Dr. Anna Siffert

Vorwort

Bei diesen Vorlesungsnotizen handelt es sich um kein offizielles Skript, sondern lediglich um die Umsetzung des Vorlesungsmitschriebs in LATEX.

Für die Vollständigkeit & Richtigkeit des Inhalts wird deshalb **keine Gewährleistung** übernommen.

Bei Fragen, Korrekturen und Verbesserungsvorschlägen freuen wir uns über eine Nachricht. 1

Die Dozentin Frau Dr. Siffert empfiehlt die nachfolgende Literatur zur Vertiefung des in der Vorlesung behandelten Stoffs:

Eine Inhaltsübersicht der in der Vorlesung behandelten Themen befindet sich auf der nächsten Seite.

¹Mail an M.Kaltschmidt@stud.uni-heidelberg.de oder quirin.s@icloud.com

Inhaltsverzeichnis

V	rwor	t	ii
1	1.1	erenzierbare Mannigfaltigkeiten Definitionen Tangentialraum	1 1 5
2		torbündel	7
	2.1	Tangentialbündel	7
	2.2	Vektorbündel	8
		2.2.1 Direkte Summe (Whitney-Summe)	11
		2.2.2 Tensorbündel	12
		2.2.3 Homomorphismenbündel	12
		2.2.4 Duales Bündel	12
		2.2.5 Alternierendes Vektorbündel	13
	2.3	Zusammenhang und kovariante Ableitung	18
Αŀ	bildu	ıngsverzeichnis	I

1 Differenzierbare Mannigfaltigkeiten

Worum geht es in der Differentialgeometrie?

Die zentralen Objekte der Differentialgeometrie sind Mannigfaltigkeiten. Das Ziel ist es, Analysis und Geometrie auf solchen Mannigfaltigkeiten zu betreiben.

Wir beginnen zunächst einmal mit einer kurzen Gegenüberstellung der bereits bekannten Konzepte aus dem \mathbb{R}^n mit den korrespondierenden Begriffen der Differentialgeometrie, welche wir in den kommenden Vorlesungen noch genauer kennenlernen werden.

1.1 Definitionen

Um differenzierbare Mannigfaltigkeiten definieren zu können wiederholen wir zunächst die Definition eines topologischen Raumes.

Erinnerung: $M \subseteq \mathbb{R}^n$ offen, wenn $\forall p \in U \exists \varepsilon > 0$, sodass $B_{\varepsilon}(p) \subset U$. Dieser Begriff von Offenheit heißt *euklidische Topologie* und erfüllt:

- i) \emptyset , \mathbb{R}^n offen
- ii) $U, V \subset \mathbb{R}^n$ offen $\Rightarrow U \cap V$ offen in \mathbb{R}^n
- iii) $U_i, i \in \mathcal{I}$ offen in $\mathbb{R}^n \Rightarrow \bigcup_{i \in \mathcal{I}} U_i \subset \mathbb{R}^n$ offen

Definition 1.1 (Topologischer Raum)

Ein topologischer Raum ist eine Menge X zusammen mit einer Menge $\mathcal{O} \subset \mathcal{P}(X)$, sodass:

- i) $\emptyset, X \in \mathcal{O}$
- ii) $U, V \in \mathcal{O} \Rightarrow U \cap V \in \mathcal{O}$
- iii) $U_i \in \mathcal{O} \Rightarrow \bigcup_{i \in I} U_i \in \mathcal{O}$

Beispiel 1.2

- a) $(X, \mathcal{O} = \mathcal{P}(x))$
- b) $N \subset X$ Teilmenge. Dann ist auch (N, \mathcal{O}_1) ein topologischer Raum, wobei \mathcal{O}_1 wie folgt gegeben ist:

$$V \in \mathcal{O}_1 \Leftrightarrow \exists U \in \mathcal{O}, \text{ sodass } V = N \cap U$$

Teilmengen topologischer Räume sind topologische Räume.

Definition 1.3 (Topologische Mannigfaltigkeiten)

Eine topologische Mannigfaltigkeit ist ein topologischer Raum \mathcal{M} der Dimension n mit folgenden Eigenschaften:

- i) \mathcal{M} ist hausdorffsch. Das heißt $\forall p, q \in \mathcal{M}$ mit $p \neq q \exists$ zwei disjunkte, offene Umgebungen $U \in p$ und $V \in q$ wobei $U, V \in \mathcal{O}$
- ii) 2. Abzählbarkeitsaxiom

 \mathcal{M} hat eine abzählbare Basis der Topologie, das heißt es existieren abzählbar viele Mengen $\{U_1, \ldots, U_k, \ldots\}$ offener Teilmengen mit $U_i \in \mathcal{O}$, sodass $\forall p \in \mathcal{M}$ und alle Umgebungen U von p gibt es ein K sodass $p \in U_k \subseteq U$.

iii) \mathcal{M} ist homöomorph zu \mathbb{R}^n , das heißt $\forall p \in \mathcal{M}$ existiert eine Umgebung U von p und ein **Homöomorphismus** $X: U \to V \subseteq \mathbb{R}^n$ (offen).

Definition 1.4 (Karte, Atlas)

Das Paar (X, U) heißt **Karte** von \mathcal{M} um p. Eine Menge $\mathcal{A} = \{(x_{\alpha}, U_{\alpha})_{\alpha \in \mathcal{A}}\}$ von Karten hießt **Atlas** von \mathcal{M} , falls

$$\bigcup_{\alpha \in \mathcal{A}} = \mathcal{M} \tag{1.1}$$

Topologische Mannigfaltigkeiten sind die Grundbausteine. Nun wollen wir auf diesen Mannigfaltigkeiten Geometrie betreiben. Dafür benötigen wir mehr Struktur. Wir wollen die differenzierbare Struktur des \mathbb{R}^n auf unseren Mannigfaltigkeiten "holen".

Definition 1.5 (Kartenwechsel)

Seien x_{α} und x_{β} zwei Karten, dann ist der Kartenwechsel wie folgt definiert:

$$x_{\alpha} \circ x_{\beta}^{-1} : x_{\beta}(U_{\alpha} \cap U_{\beta}) \to x_{\alpha}(U_{\alpha} \cap U_{\beta}) \subseteq \mathbb{R}^{n}$$
(1.2)

Dies ist ein Homöomorphismus.

Nun wollen wir, dass $x_{\alpha} \circ x_{\beta}^{-1}$ Diffeomorphismen sind.

Definition 1.6

Sei M eine topologische Mannigfaltigkeit.

- a) Ein Atlas $\mathcal{A} = \{(x_{\alpha}, U_{\alpha})\}$ auf \mathcal{M} heißt C^{∞} -Atlas, falls alle Kartenwechsel $x_{\alpha} \circ x_{\beta}^{-1}$ mit $\alpha, \beta \in A$ C^{∞} -Diffeomorphismen sind.
- b) Sei A ein C^{∞} -Atlas von M. Eine Karte (x, U) ist verträglich mit A, falls $x \circ x^{-1}$ ein C^{∞} -Diffeomorphismus ist.

Gegeben ein C^{∞} -Atlas, so kann man diesen zu einem *maximalen* C^{∞} -Atlas vervollständigen. Maximal bedeutet hierbei, dass der Atlas nicht strikt in einem anderen enthalten ist.

Definition 1.7 (Differenzierbare Mannigfaltigkeit)

Eine differenzierbare Struktur auf einer topologischen Mannigfaltigkeit M ist ein maximaler C^{∞} -Atlas. Eine differenzierbare Mannigfaltigkeit ist eine topologische Mannigfaltigkeit mit einer differenzierbaren Struktur.

Bemerkung: Man kann auch eine topologische Mannigfaltigkeit definieren, ohne das 2. Abzählbarkeitsaxiom zu fordern.

Aber: Dann bekommt man Mannigfaltigen mit ganz anderen Eigenschaften als diejenigen, die wir betrachten wollen.

Wichtig: Hausdorffsch + 2. Abzählbarkeitsaxiom ⇒ parakompakt, d. h. jede offene Überdeckung hat eine lokale Verfeinerung.

 (V_j) heißt Verfeinerung von (U_j) , falls $\forall V_j \exists U_j$ mit $V_j \subseteq U_j$ Lokal endlich: $\forall p \in X \exists$ Umgebung U, die nur endlich viele U_i trifft Parakompakt $\Rightarrow \exists$ Partition der Eins f mit

$$f_i: V_i \subseteq X \rightarrow [0,1], \sum_{i \in I} f_i(x) = 1$$

Beispiel 1.9

Metrische Räume sind parakompakt.

Beispiel 1.10 (differenzierbare Mannigfaltigkeiten)

- 1. \mathbb{R}^n mit Atlas $\mathcal{A} = \{(id, \mathbb{R}^n)\}$
- 2. *V* Vektorraum, *B* Basis mit $B = \{v_1, \dots, v_n\}$, Atlas $\mathcal{A} = \{(\chi_B, V)\}$

$$\chi_B: V \to \mathbb{R}^n$$

$$v = \sum_{i=1}^n a_i v_i \mapsto \sum_{i=1}^n a_i e_i$$

wobei (e_1, \dots, e_n) die Standartbasis ist.

- 3. $M \subseteq \mathbb{R}^n$, (χ_U, U) mit $\chi_U = \operatorname{id}|_U$, $V \subseteq M^n$, M differenzierbare Mannigfaltigkeit, $\mathcal{A} = \{(\chi_X, U)\}$ Atlas von M $\mathcal{A}_V = \{(\chi_V, U_V)\}$ wobei $(\chi_V, U_V) = (\chi_{U \cap V}, U \cap V)$
- 4. $M_1 = S^1$, $M_2 = \mathbb{R}$, $M_1 \times M_2 =$ "unendlicher Zylinder" Seien $M_1^{n_1}, M_1^{n_2}$ differenzierbare Mannigfaltigkeiten, so ist $M_1 \times M_2$ ebenfalls eine differenzierbare Mannigfaltigkeit der Dimension $n_1 + n_2$. Atlas $\mathcal{A} = \{(x \times y, U \times V)\}$, wobei

$$(x, U) = \text{Karte von } M_1$$

 $(y, V) = \text{Karte von } M_2$

$$(x \times y)(p_1, p_2) = (x(p_1), y(p_2))$$

Bemerkung: N mit der Teilraumtopologie und dem Atlas $A_N = \{(\chi|_U, U \cap N)\}$ ist eine differenzierbare Mannigfaltigkeit.

Definition 1.12

Seien M,N differenzierbare Mannigfaltigkeiten. Eine Einbettung ist eine differenzierbare Abbildung

$$f: N \to M$$

sodass

- 1. $f(N) \subset M$ eine Untermannigfaltigkeit
- 2. $f: N \to f(N)$ Diffeomorphismus

1.2 Tangentialraum

Definition 1.13

1. Ein Tangentialvektor an M im Punkt $p \in M$ ist eine \mathbb{R} -lineare Abbildung

$$v: \mathcal{F}(M) \to \mathbb{R}$$

$$\mathit{mit}\ v(fg) = v(f)g(p) + f(p)v(g).$$

2. Die Menge aller Tangentialvektoren an M in p heißt Tangentialraum von M in p: T_pM ist ein Vektorraum.

1.14 Hilfslemma (Existenz einer Glockenfunktion)

Sei $U \subseteq M$ offen, $p \in U$. Dann $\exists \varphi \in \mathcal{F}(M)$, s. d.

- 1. $\operatorname{supp} \varphi \subseteq U$
- 2. φ auf einer Umgebung $U' \subset U$ von p ist

Beweis:

Sei (x, U) eine Karte um φ , $\varepsilon > 0$, s. d. $B_{2\varepsilon}(x(p)) \subset V \subset \mathbb{R}^n$ und wähle $\psi : \mathbb{R}^n \to \mathbb{R}$ mit

$$\sup_{\varphi = 1 \text{ auf } B_{\varepsilon}} \left\{ \begin{array}{l} \operatorname{Resultat \ aus \ Analysis} \\ \end{array} \right\} \text{ Resultat \ aus \ Analysis}$$

$$\mathit{Setze}\ \varphi(q) = \left\{ \begin{array}{l} \psi(x(q)) \ \mathit{f\"{u}r}\ q \in U \\ 0 \ \mathit{sonst} \end{array} \right. \ \Box$$

1.16 Satz (Eigenschaften des Tangentialraums)

Für $v \in T_pM$ gilt:

- 1. $v(konstante\ Funktion) = 0$
- 2. Falls f = g in einer Umgebung von p, so gilt v(f) = v(g)

"Lokalisierung von Tangentialvektoren"

Beweis: (zu 2)

Wähle φ wie im Hilfslemma, wobei Uso gewählt ist, dass $\varphi f = \varphi g$ auf U ist. Nun gilt:

$$\begin{aligned} v(\varphi f) &= v(\varphi) f(p) + \varphi(p) v(f) \\ &= v(\varphi) f(p) + v(f) \\ v(\varphi g) &= v(\varphi) g(p) + v(g) \end{aligned}$$

Dann folgt
$$v(\varphi f) = v(\varphi g) \Leftrightarrow v(f) = v(g)$$
.

Beweis: (zu 1)

$$v(\lambda f) = \lambda v(f), \ \lambda \in \mathbb{R}, \ f \in \mathcal{F}(\mathbb{R})$$

zz: $v(\lambda)=0$. Aufgrund von $v(\lambda)=\lambda v(1)$ genügt es zu zeigen, dess v(1)=0. Dies folgt aus der Produktregel

$$v(1) = v(1 * 1) = 1v(1) + v(1)1 = 2v(1) \Rightarrow v(1) = 0$$

2 Vektorbündel

2.1 Tangentialbündel

Wir wollen nun alle Tangentialräume einer Mannigfaltigkeit $\mathcal M$ gemeinsam betrachten.

$$T\mathcal{M} = \bigcup_{p \in \mathcal{M}} T_p \mathcal{M} = \{(p, V) | p \in \mathcal{M}, v \in T_p \mathcal{M}\}$$
(2.1)

Wir wollen nun die Struktur einer differenzierbaren Mannigfaltigkeit. Das heißt wir müssen eine Topologie und eine C^{∞} -Struktur auf $T\mathcal{M}$ definieren.

$$\pi: T\mathcal{M} \to \mathcal{M} \tag{2.2}$$

$$(p, V) \mapsto p \tag{2.3}$$

Sei (x,U) eine Karte von \mathcal{M}^m . Dann definieren wir eine Karte $(\overline{x},\overline{U})$ von $T\mathcal{M}$ wie folgt:

$$\overline{U} = \pi^{-1}(U) = \bigcup_{p \in \mathcal{M}} T_p \mathcal{M}$$

$$\overline{x} : \overline{U} \to x(U) \times \mathbb{R}^m \subset \mathbb{R}^{2m}$$
(2.4)

$$\overline{x}: \overline{U} \to x(U) \times \mathbb{R}^m \subset \mathbb{R}^{2m}$$
 (2.5)

$$(p, V) \mapsto (x(p), \xi) \tag{2.6}$$

Abbildung 2.1: Veranschaulichung eines Tangentialbündels

Wobei $\xi = (\xi^1, \dots, \xi^m) \in \mathbb{R}^m$ gegeben ist durch:

$$v = \sum_{i=1}^{m} \xi_i \frac{\partial}{\partial x_i} \Big|_{p}, \quad \forall p \in U.$$
 (2.7)

Wir haben noch keine Topologie auf $T\mathcal{M}$ definiert, das heißt \overline{x} ist nur eine bijektive Abbildung zwischen Mengen. Wir können allerdings nicht sagen ob es ein Homöomorphismus oder Diffeomorphismus ist. Allerdings können wir Kartenwechsel betrachten.

Seien $(\overline{x}, \overline{U})$ und $(\overline{y}, \overline{U}')$ zwei Karten. Betrachte die Abbildungen:

$$\overline{y} \circ \overline{x}^{-1} \circ \underbrace{x(\overline{U} \cap \overline{U}')}_{x(U \cap U') \times \mathbb{R}^m} \to \underbrace{\overline{y}(\overline{U} \cap \overline{U}')}_{y(U \cap U') \times \mathbb{R}^m}$$
(2.8)

$$(x,\xi) \mapsto (y \circ x^{-1}(U), \eta) \tag{2.9}$$

Wobei $\eta = d(y \circ x^{-1}) \mid_{U} \xi$.

Da $y \circ x^{-1}$ Diffeomorphismus ist, ist $\overline{y} \circ \overline{x}^{-1}$ ein Isomorphimus. Nun können wir die Topologie auf $T\mathcal{M}$ definieren. $O \subset T\mathcal{M}$ offen, falls $\overline{x}(O \cap \overline{U})$ offen in $V \times \mathbb{R}^m$ ist für alle Karten $(x, U) \in \mathcal{A}_{\mathcal{M}}$ (bzw $(\overline{x}, \overline{U}) \in \mathcal{A}_{T\mathcal{M}}$)

2.1 Satz

TM mit dieser Topologie ist eine topologische Mannigfaltigkeit und A_{TM} eine differenzierbare Struktur.

2.2 Vektorbündel

TM hat die Struktur einer glatten Mannigfaltigkeit. Allerdings hat es noch mehr, nämchlich die eines Vektorbündels, was wir nun definieren.

Definition 2.2 (Vektorbündel)

Sei \mathcal{M} eine differenzierbare Mannigfaltigkeit. Ein \mathbb{R} -Vektorbündel vom Rang k über \mathcal{M} ist eine differenzierbare Mannigfaltigkeit mit einer glatten surjektiven Abbildung:

$$\pi: E \to \mathcal{M},$$
 (2.10)

so dass:

- 1. $\forall p \in \mathcal{M} \text{ hat } E_p := \pi^{-1}(\{p\}) \text{ die Struktur eines } \mathbb{R}\text{-Vektorraums der Dimension } k. E_p \text{ heißt } Faser von E \text{ über } p.$
- 2. Für alle p in \mathcal{M} existiert eine Umgebung U von p in \mathcal{M} und ein Diffeomorphismus.

Für diesen gilt:

- $\pi \circ \phi = pr_1$
- Für alle $q \in U$ ist die Abbildung

$$\phi|_{q}: \{q\} \times \mathbb{R}^{k} \to E_{q} \tag{2.12}$$

$$\{q,\xi\} \mapsto \phi_q(\xi) := \phi(q,\xi) \tag{2.13}$$

 ϕ heißt lokale Trivialisierung von E.

Bemerkung: Ein Vektorbündel ist ein Tripel (π, E, \mathcal{M}) aber wir schreiben oft nur E. Hierbei wird E Totalraum und \mathcal{M} Basis genannt.

Beispiel 2.4

1. Triviale Bündel:

$$E = \mathcal{N} \times \mathbb{R}^k \to \mathcal{M} \tag{2.14}$$

$$(p,\xi) \mapsto p \tag{2.15}$$

2. Tangentialbündel

$$\pi: T\mathcal{M} \to \mathcal{M} \tag{2.16}$$

$$(p, V) \to V \tag{2.17}$$

3. Tautologisches Bündel

$$\mathcal{M} = \mathbb{RP}^n \tag{2.18}$$

$$E = \{(l, x) | l \in \mathbb{RP}^n, x \in l \subset \mathbb{R}^{n+1}\}$$
(2.19)

$$\pi: E \to \mathcal{M} = \mathbb{RP}^n \tag{2.20}$$

$$(l,x) \mapsto l \tag{2.21}$$

Behauptung: Dies ist ein Vektorbündel vom Rang 1. Vektorraumstruktur auf E_l :

$$(l,x) + (l,y) := (l,x+y)$$
(2.22)

$$k(l,x) := (l,kx) \tag{2.23}$$

Nun wollen wir uns damit beschäftigen wie wir Vektorbündel konstruieren können. Angenommen uns wäre das folgende gegeben:

- 1. $E_p, p \in \mathcal{M}$ eine Familie von Vektorräumen der Dimension k
- 2. $(U_{\alpha})_{\alpha \in \mathcal{A}}$ eine offene Überdeckung von \mathcal{M}
- 3. $\forall \alpha \in \mathcal{A}, p \in U_{\alpha}$ gibt es den folgenden Isomorphismus:

$$\phi_{\alpha,p}: \mathbb{R}^{\alpha} \to E_p \tag{2.24}$$

Setze

$$E = \cup_{p \in \mathcal{M}} E_p \tag{2.25}$$

$$\pi: E \to \mathcal{M} \tag{2.26}$$

$$(p, V) \mapsto p \tag{2.27}$$

$$\phi_{\alpha}: U_{\alpha} \times \mathbb{R}^k \to E\big|_{U_{\alpha}} \tag{2.28}$$

$$(p,\xi) \mapsto (p,\phi_{\alpha,p}(\xi)). \tag{2.29}$$

Nun stellt sich die Frage unter welchen Vorraussetzungen (π, E, \mathcal{M}) ein Vektorbündel ist.

2.5 Lemma

Sei \mathcal{M} eine glatte Mannigfaltigkeit, E eine Menge und die Abbildung $\pi: E \to \mathcal{M}$ surjektiv. Sei $\{U_{\alpha}\}$ eine offene Überdeckung von \mathcal{M} zusammen mit bijektiven Abbildungen

$$\phi_{\alpha}^{-1} = \varphi : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{\alpha}, \tag{2.30}$$

die $pr_1 \circ \varphi_\alpha = \pi$ *erfüllen, so dass wann immer* $U_\alpha \cap U_\beta \neq \emptyset$ *, dann ist*

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} \to (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{k},$$
 (2.31)

von der Form:

$$(\varphi_{\alpha} \circ \varphi_{\beta}^{-1})(p, v) = (p, \tau(p)v) \tag{2.32}$$

mit einer glatten Abbildung $\tau: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k, \mathbb{R})$. Dann existiert eine eindeutige Struktur als glattes k-dim Vektorbündel über \mathcal{M} für die φ_{α}^{-1} lokale Trivialisierungen sind.

Beweis: (Beweis Lemma 2.5)

Sei $p \in \mathcal{M}$. Setze $E_p := \pi^{-1}(\{p\})$. Falls $p \in U_{\alpha}$, dann ist

$$\varphi_{\alpha}|_{p}: E_{p} \to \{p\} \times \mathbb{R}^{k}.$$
 (2.33)

Definiere eine Vektorraumstruktur auf E_p durch die Forderung, dass die Abbildung $\varphi_{\alpha}|_p$ ein Isomorphismus ist. Durch verkleinern von U_{α} und hinzunahme von weiteren offenen Mengen kann man annehmen, dass jedes U_{α} diffeomorph zu $\overline{U}_{\alpha} \subseteq \mathbb{R}^m$ ist. Verknüpfung von φ_{α} mit einem solchen Diffeomorphismus liefert eine Bijektion:

$$\pi^{-1}(U_{\alpha}) \to \overline{U}_{\alpha} \times \mathbb{R}^k.$$
 (2.34)

Diese nutzen wir als Karte für E. Wegen Gleichung 2.32 bekommen wir eine glatte Struktur auf E.

Sei (x, U) Karte von $\mathcal{M}, p \in U, v \in T_p \mathcal{M}$.

$$v = \sum_{i=1}^{m} \xi_i \frac{\partial}{\partial x_i} \Big|_{p} \tag{2.35}$$

Definiere:

$$\varphi: \pi^{-1}(U) \to U \times \mathbb{R}^m \tag{2.36}$$

$$v \mapsto (p, V) \tag{2.37}$$

Dort wo (x) und (\overline{x}) überlappen.

$$\frac{\partial}{\partial x_i}\Big|_p = \left(\frac{\partial \overline{x}_j}{\partial x_i}\right) \frac{\partial}{\partial \overline{x}_j}\Big| \tag{2.38}$$

$$v = \sum_{i=1}^{m} \xi_j \frac{\partial}{\partial \overline{x}_j} \Big|_p = \sum_{i=1}^{m} \xi_i \frac{\partial}{\partial \overline{x}_i} \Big|_p$$
 (2.39)

$$=\sum_{i,j}^{m} \xi_{i} \frac{\partial \overline{x}_{j}}{\partial x_{i}} \frac{\partial}{\partial \overline{x}_{j}} \Big|_{p}$$
(2.40)

$$\Rightarrow \overline{\xi}_j = \sum_i v_i \frac{\partial \overline{x}_j}{\partial x_i} \tag{2.41}$$

$$\varphi \circ \varphi^{-1}(x,v) = (x,\overline{v}) = (x,\tau(x),v) \tag{2.42}$$

Wobei nun $\tau(x)$ gegeben ist durch $\frac{\partial \overline{x}_j}{\partial x_i}$ Im Folgenden werden nun einige Beispiele für Vektorbündel angeben.

2.2.1 Direkte Summe (Whitney-Summe)

Es seien zwei Vektorbündel gegeben:

$$\pi: E \to \mathcal{M} \tag{2.43}$$

$$\pi': E' \to \mathcal{M}' \tag{2.44}$$

mit Rang k bzw. k'. Dann existiert $(U_{\alpha})_{\alpha \in A}$ eine offene Überdeckung, sodass für alle $\alpha \in A$ und alle $p \in U_{\alpha}$ folgendes gilt:

$$\phi_{\alpha,p}: \mathbb{R}^k \to E_p, \quad g_{\alpha,\beta}: U_\alpha \cap U_\beta \to \mathrm{Gl}(k,\mathbb{R})$$
 (2.45)

$$\phi'_{\alpha,n}: \mathbb{R}^{k'} \to E'_{n}, \quad g'_{\alpha,\beta}: U_{\alpha} \cap U_{\beta} \to Gl(k',\mathbb{R})$$
 (2.46)

Wir definieren:

$$\mathcal{E}_p := E_p \oplus E_p \tag{2.47}$$

$$\mathcal{E} = \bigcup_{p \in \mathcal{M}} \mathcal{E}_p \tag{2.48}$$

$$\Phi_{\alpha,p}: \mathbb{R}^k \oplus \mathbb{R}^{k'} \to E_P \oplus E_p' \tag{2.49}$$

$$(v,w) \mapsto (\phi_{\alpha p}(v), \phi'_{\alpha p}(w)) \tag{2.50}$$

$$G_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to Gl(k+k',\mathbb{R})$$
 (2.51)

$$p \mapsto \begin{pmatrix} g_{\alpha\beta}(p) & 0\\ 0 & g'_{\alpha\beta}(p) \end{pmatrix} \tag{2.52}$$

 ${\mathcal E}$ ist nun ein Vektorbündel. Wir nennen ${\mathcal E}$ die Whitney-Summe von E und E' und schreiben:

$$\mathcal{E} = E \oplus E'. \tag{2.53}$$

2.2.2 Tensorbündel

Es seien E' und E'' Vektorbündel über \mathcal{M} und (U_{α}) sei wie oben definiert.

$$(E' \oplus E'')_p := E'_p \oplus E''_p \tag{2.54}$$

$$\phi_{\alpha p}: \mathbb{R}^{k'} \times \mathbb{R}^{k''} \to E_p' \oplus E_p''$$
(2.55)

$$(v,w) \mapsto \phi'_{\alpha p}(v) \oplus \phi''_{\alpha p}(w) \tag{2.56}$$

Wir erhalten zusammen die Folgende Übergangsmatrix:

$$g_{\alpha\beta} = g'_{\alpha\beta}(p) \oplus g''_{\alpha\beta}(p) \tag{2.57}$$

Diese Abbildung ist glatt und somit ergibt sich somit ein neues Vektorbündel.

2.2.3 Homomorphismenbündel

Es seien die Daten wie eben schon gegeben. Das Homomorphismenbündel

$$\operatorname{Hom}_p := \operatorname{Hom}(E_p', E_p'') \tag{2.58}$$

ist wie folgt gegeben:

$$\phi_{\alpha p}: \operatorname{Hom}(\mathbb{R}^{k'}, \mathbb{R}^{k''}) \to \operatorname{Hom}(E'_p, E''_p)$$
 (2.59)

$$f \mapsto \phi_{\alpha p} \circ f \circ (\phi'_{\alpha p})^{-1} \tag{2.60}$$

2.2.4 Duales Bündel

Sei ein Vektorbündel (π, E, \mathcal{M}) gegeben. Wir wollen nun das sogenannte duale Vektorbündel konstruieren. Hierbei führen wir folgende Notation ein $E^* = \operatorname{Hom}(E, \mathbb{R})$. Hierbei ist \mathbb{R} das triviale Vektorbündel vom Rang 1. Ein wichtiges Beispiel ist hierbei das Kotangentialbündel $T^*\mathcal{M} = \operatorname{Hom}(T\mathcal{M}, \mathbb{R})$. $T_p^*\mathcal{M}$ heißt der Kotangentialraum.

Sei $f: \mathcal{M} \to \mathbb{R}$ eine glatte Abbildung.

$$df|_{p}: T_{p}\mathcal{M} \to T_{f(p)}\mathbb{R} \cong \mathbb{R}$$
(2.61)

Es gilt $\mathrm{d} f\big|_p \in T_p^*\mathcal{M} \subset T^*\mathcal{M}.$ Sei $x:U \to x(U)$ eine Karte

$$\mathrm{d}x\big|_p:T_p\mathcal{M}\to\mathbb{R}^n$$
 (2.62)

Die so definierten Differentiale $\{\mathrm{d}x^1\big|_p,\ldots,\mathrm{d}x^n\big|_p\}$ bilden eine Basis für $T_p^*\mathcal{M}$.

- $\mathrm{d} x^i \big|_p$ heißen Kotangentialvektoren
- $\frac{\partial}{\partial x^i}\Big|_p$ heißen Tangentialvektoren

Seien (x, U) und (y, U') zwei Karten um p.

$$\frac{\partial}{\partial x^i}\Big|_p = \sum_j a_i^j \frac{\partial}{\partial y^j}\Big|_p, \quad a_i^j = \frac{\partial y^j}{\partial x^i}$$
 (2.63)

$$dx^{k} = \sum b_{l}^{k} dy^{l}|_{p} = \sum \frac{\partial x^{k}}{\partial u^{l}} dy^{l}|_{p}$$
(2.64)

2.2.5 Alternierendes Vektorbündel

Das Alternierende Vektorbündel

$$\wedge^{m}(E', E'')_{p} := \wedge^{m}(E'_{p}, E''_{p}) \tag{2.65}$$

$$= \{f: \underbrace{E'_p \times \dots \times E'_p}_{n-\text{mal}} \to E''_p \}$$
 (2.66)

Wobei f multilinear und alternierend ist.

$$\phi_{\alpha p}: \wedge^n(\mathbb{R}^{k'}, \mathbb{R}^{k''}) \to \wedge^n(E'_p, E''_p) \tag{2.67}$$

$$f \mapsto ((v_1, \dots, v_n) \mapsto \phi''_{\alpha p}(f(\phi_{\alpha p})^{-1}(v_1), \dots f(\phi_{\alpha p})^{-1}(v_n)))$$
 (2.68)

Es bleibt zu zeigen, dass $g_{\alpha\beta}$ glatt ist.

Es gilt

$$\wedge^{1}(E', E'') = \text{Hom}(E', E'') \tag{2.69}$$

$$\wedge^1(T\mathcal{M}, \mathbb{R}) = T^*\mathcal{M} \tag{2.70}$$

Definition 2.7 (Bündel-Abbildung)

Seien (π, E, \mathcal{M}) und (π, E', \mathcal{M}') Vektorbündel. Ein paar (f, L) von glatten Abbildungen $f: \mathcal{M} \to \mathcal{M}'$ und $L: E \to E'$ heißt Bündelabbildung falls:

- $\pi' \circ L = f \circ \pi$
- $L|_{E_p}$ ist \mathbb{R} -linear

Beispiel 2.8

Seien $\mathcal{M}, \mathcal{M}'$ glatte Mannigfaltigkeiten und $f: \mathcal{M} \to \mathcal{M}'$ glatt. Dann ist (f, df) eine Bündel-Abbildung von $T\mathcal{M}$ nach $T\mathcal{M}'$.

Definition 2.9 (Unterbündel)

Sei (π, E, \mathcal{M}) ein Vektorbündel mit Rang k. Eine Untermannigfaltigkeit $E' \subset E$ ist ein Unterbündel vom Rang k' falls

$$\pi\big|_{E'}: E' \to \mathcal{M},\tag{2.72}$$

Ein Vektorbündel ist.

Beispiel 2.10 (Unterbündel)

1. $S^n \subset \mathbb{R}^{n+1}$

$$TS^{m} \cong \{(p, x) \in S^{n} \times \mathbb{R}^{n+1} | x \perp p\} \subset \underbrace{S^{n} \times \mathbb{R}^{n+1}}_{\text{triviales Bündel}}$$
(2.73)

ist ein Unterbündel

2. \mathbb{RP}^n mit dem tautologischen Bündel

$$\{(l,x) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} | x \in l\} \subset \mathbb{RP}^n \times \mathbb{R}^{n+1}$$
(2.74)

ist ein Unterbündel.

Definition 2.11 (Schnitte von Vektorbündeln)

Sei (π, E, \mathcal{M}) ein Vektorbündel. Eine glatte Abbildung $S: \mathcal{M} \to E$ heißt Schnitt von E, falls $\pi \circ s = \operatorname{id} \big|_{\mathcal{M}}$. Wir bezeichnen die Schnitte von E mit $\Gamma(E)$. Sei $U \subset \mathcal{M}$. Ein Schnitt von E über U ist eine Abbildung $s: U \to E$ mit $\pi \circ s = \operatorname{id}_U$.

Beispiel 2.12 (Schnitte)

• Nullschnitt

$$S: \mathcal{M} \to E \tag{2.75}$$

$$p \mapsto 0 \in E_p \tag{2.76}$$

• Schnitte von $T\mathcal{M}$ heißen Vektorfelder. Wir bezeichnen die Vektorfelder $V: \mathcal{M} \to T\mathcal{M}$ mit $\mathfrak{X}(\mathcal{M})$.

Abbildung 2.2: Beispiel für ein Vektorfeld

2.13 Satz

Der Raum der Schnitte $\Gamma(E)$ *ist ein Modul über* $\mathcal{F}(\mathcal{M})$ *.*

Beweis: (Beweis Satz 2.13)

Seien $s_1, s_2 \in \Gamma(E)$, so ist $s_1 + s_2 \in \Gamma(E)$

$$(s_1 + s_2)(p) := s_1(p)ps_2(p)$$
(2.77)

Sei $\phi \in \mathcal{F}(\mathcal{M})$, $s \in \Gamma(E)$, so ist $\phi \circ s \in \Gamma(E)$

$$(\phi \circ s)(p) := \phi(p)s(p). \tag{2.78}$$

2.15 Lemma

Sei (π, E, \mathcal{M}) ein Vektorbündel und $p \in \mathcal{M}$. Dann gilt für alle $x \in E_p$ existiert ein Schnitt $s \in \Gamma(E)$, so dass s(p) = x

Beweis:

Wähle eine lokale Trivialisierung von E auf $W \ni p$

$$\phi: W \times \mathbb{R}^k \to \pi^{-1}(W) = E\big|_W \tag{2.79}$$

und eine glatte Funktion $\varphi \in \mathcal{F}(\mathcal{M})$ mit $\varphi(p) = 1$ und $\operatorname{supp}(\varphi) \subset W$. Sei $\xi \in \mathbb{R}^k$, so dass $\phi(p,\xi) = x$. Definiere:

$$s(q) = \begin{cases} \phi(q, \varphi(q)\xi) & q \in W \\ 0_q & q \notin W \end{cases}$$
 (2.80)

s ist glatt, da folgendes gilt:

- s ist glatt auf W
- s ist 0 auf einer Umgebung von $\mathcal{M} \setminus W$

$$s(p) = (\varphi(p), \varphi(p)\xi) = \varphi(p\xi) = x \tag{2.81}$$

Definition 2.17 (Lokaler Rahmen)

Sei (π, E, \mathcal{M}) ein Vektorbündel vom Rang k und $U \subset \mathcal{M}$. Ein Rahmen von E über U ist ein k-Tupel. (s_1, \ldots, s_k) von glatten Schnitten über U (das heißt $s_i \in \Gamma_i(E)$), so dass für alle $p \in U$ $s_1(p), \ldots, s_k(p)$ eine Basis von E_p bilden.

2.18 Satz

Sei (π, E, \mathcal{M}) ein Vektorbündel vom Rang k.

1. Aus einem lokalen Rahmen folgt eine lokale Trivialisierung. Sei (s_1, \ldots, s_k) ein lokaler Rahmen über $U \subset \mathcal{M}$. Dann ist

$$\phi: U \times \mathbb{R}^k \to E|_U \tag{2.82}$$

$$(p,\xi) \to \sum_{i=1}^{k} \xi_i s_i(p),$$
 (2.83)

eine lokale Trivialisierung

2. Aus einer lokalen Trivialisierung folgt ein lokaler Rahmen. Sei $\phi: U \times \mathbb{R}^k \to E|_U$ eine lokale Trivialisierung. Dann ist (s_1, \ldots, s_k) ein lokaler Rahmen mit

$$s_i(p) = \phi(p, e_i). \tag{2.84}$$

Wobei $\{e_i\}$ *die Standardbasis von* \mathbb{R}^k *ist.*

Beweis: (Beweis Teil 1 Satz 2.18)

Es gilt, dass

$$\phi|_{p}: \{p\} \times \mathbb{R}^{k} \to E|_{p} \tag{2.85}$$

ein Isomorphismus ist. Außerdem hat

$$\phi: U \times \mathbb{R}^k \to E|_{U},\tag{2.86}$$

maximalen Rang. Für alle p in U existiert eine Umgebung $V \subset U$ von p, so dass die folgende Abbildung eine lokale Trivialisierung ist:

$$\psi_V: V \times \mathbb{R}^k \to E\big|_V. \tag{2.87}$$

Dann gilt:

$$\psi_V^{-1} \circ \phi(q, \xi) = (q, \underbrace{\psi_q^{-1} \circ \phi_q(\xi)}_{\text{Isomorphismus}})$$
 (2.88)

 $\psi_V^{-1} \circ \phi : V \times \mathbb{R}^k \to V \times \mathbb{R}^k$ ist ein Diffeomorphismus. Daraus folgt, dass ϕ maximalen Rang auf V und U hat womit folgt, dass ϕ ein Diffeomorphismus ist.

Beweis: (Beweis Teil 2 Satz 2.18)

Diese Aussage ist sofort klar, da ϕ_p *ein Isomorphismus ist.*

Lokale Rahmen erlauben es uns mit Schnitten zu rechnen.

Definition 2.21 (Hauptteil)

Sei (s_1, \ldots, s_k) ein lokaler Rahmen und ϕ die dazugehörige lokale Trivialisierung. Ferner sei $s \in \Gamma_U(E)$ über $U \subset \mathcal{M}$. Dann existiert eine glatte Abbildung

$$\sigma: U \to \mathbb{R}^k, \tag{2.89}$$

so dass

$$s(p) = \sum_{i=1}^{k} \sigma_i(p)s_i(p)$$
(2.90)

$$\phi(p,\sigma(p)) = s(p). \tag{2.91}$$

 σ heißt der Hauptteil von s bezüglich ϕ .

Bemerkung: Die Aussagen σ ist glatt und s ist glatt sind äquivalent.

Sei $(t_1, ..., t_k)$ ein lokaler Rahmen über V und ψ die dazugehörige lokale Trivialisierung, so dass $U \cap V \neq \emptyset$. Über $U \cap V$ gilt:

$$s_i = \sum_j g_i^j t_j, \tag{2.92}$$

wobei $g_i^j:U\cap V\to\mathbb{R}.$ Setze $g(p)=(g_i^j(p))_{i,j=1}^k$

$$g(p)(t_1(p), \dots, t_k(p)) = (s_1(p), \dots, s_k(p))$$
 (2.93)

$$g: U \cap V \ni p \to g(p) \in GL(E|_p)$$
 (2.94)

sei $s \in \Gamma_{U \cap V}(E)$ und Hauptteile σ_{ϕ} , σ_{ψ} , dann ist

$$\sigma_{\phi}^{i} = \sum_{j=1}^{k} g_{i}^{j} \sigma_{\psi}^{j} \sigma_{\phi} = g \sigma_{\psi} g : U \cap V \to GL(k, \mathbb{R})$$
(2.95)

Definition 2.23 (Pullback)

Sei $E \xrightarrow{\pi} \mathcal{M}$ ein Vektorbündel und $f : \mathcal{N} \to \mathcal{M}$ eine glatte Abbildung. Der Pullback von E über f ist das Vektorbündel f^*E welches definiert ist durch:

1.
$$(f^*E)_{p \in \mathcal{N}} = \{(p, x) | x \in E_{f(p)}\}$$

2. sei $\phi: U \times \mathbb{R}^k \to E|_U$ lokale Trivialisierung von E

$$f^*\phi: f^{-1}(U) \times \mathbb{R}^k \to (f^*E)|_{f^{-1}(U)}$$
 (2.96)

$$(p,\xi) \mapsto (p,\phi(f(p),\xi)) \tag{2.97}$$

Definition 2.24

Ein Schnitt von E entlang von f ist eine glatte Abbildung $\delta : \mathcal{N} \to E$, so dass $\pi \circ s = f$.

2.3 Zusammenhang und kovariante Ableitung

Definition 2.25 (Lie-Klammern)

$$[\cdot,\cdot]:\mathfrak{X}(\mathcal{M})\times\mathfrak{X}(\mathcal{M})\to\mathfrak{X}(\mathcal{M})$$
 (2.98)

$$[x,y]f := x(y(f)) - y(x(f))$$
(2.99)

Hier bleibt als Übung zu zeigen, dass [x, y] tatsächlich ein neues Vektorfeld ist. Mit der Lie-Klammer ist $\mathfrak{X}(\mathcal{M})$ eine Lie-Algebra.

Definition 2.26 (Zusammenhang)

Sei (π, E, \mathcal{M}) ein Vektorbündel vom Rang k. Ein Zusammenhang auf E ist eine Abbildung

$$D: \mathfrak{X}(\mathcal{M}) \times \Gamma(E) \to \Gamma(E) \tag{2.100}$$

$$(x,s) \mapsto D(x,s) = D_x s \tag{2.101}$$

Wobei folgende Elgenschaften erfüllt sind:

1. D ist tensoriell in x. Das bedeuetet:

$$D_{x_1+x_2}s = D_{x_1}s + D_{x_2}s (2.102)$$

$$D_{\phi x} s = \phi D_x s \tag{2.103}$$

2. D ist eine Derivation in s:

$$D_x(s_1 + s_2) = D_x s_1 + D_x s_2 (2.104)$$

$$D_x(\phi s) = x(\phi)s + \phi D_x s \tag{2.105}$$

Wir führen hier die folgende Notation ein: $D_x s$ heißt die kovariante Ableitung von s in Richtung x. Es gibt bei der kovarianten Ableitung den folgenden Spezialfall:

$$E = T\mathcal{M} \tag{2.106}$$

$$D: \underbrace{\mathfrak{X}(\mathcal{M})}_{\text{tensoriell}} \times \underbrace{\mathfrak{X}(\mathcal{M})}_{\text{derivativ}} \to \mathfrak{X}(\mathcal{M})$$
(2.107)

Beispiel 2.27

Sei $\tilde{E} = \mathcal{M} \times \mathbb{R}^k$ das tirivale Bündel mit

$$s: \mathcal{M} \to E \tag{2.108}$$

$$p \mapsto (p, \sigma(p)) \tag{2.109}$$

wobei $\sigma = (\sigma_1, \dots, \sigma_k)$, $\sigma_i \in \mathcal{F}(\mathcal{M})$. Dann ist der kanonische Zusammenhang gegeben als:

$$(D_x s)(p) = (p, x_p(\sigma_1), \dots, x_p(\sigma_k))$$
(2.110)

Wir benutzen die folgende Notation: $D_x s = x(\sigma)$.

2.28 Lemma

 $x_1, x_2 \in \mathfrak{X}(\mathcal{M})$ und $x_1(p) = x_2(p)$, dann folgt daraus, dass

$$(D_{x_1}s)(p) = (D_{x_2}s)(p).$$
 (2.111)

2.29 Lemma

 $s_1, s_2 \in \Gamma(\mathcal{M})$ und $s_1 = s_2$ in einer Umgebung von p, dass folgt daraus, dass

$$(D_x s_1)(p) = (D_x s_2)(p).$$
 (2.112)

Beweis: (Beweis Lemma 2.29)

Wähle $\phi \in \mathcal{F}(\mathcal{M})$ *mit* supp $\phi \subseteq U$ *und* $\phi = 1$ *auf einer Umgebung* $V \subset U$ *von* p. *Dann gilt*

$$\phi s_1 = \phi s_2 \tag{2.113}$$

$$D_x(\phi s_1)(p) = D_x(\phi s_2)(p)$$
 (2.114)

Für die linke Seite ist

$$D_x(\phi s_1)(p) = \underbrace{x(p)}_{=0} s_1(p) + \underbrace{\phi(p)}_{=1} D_x s_1(p) = D_x s_1(p). \tag{2.115}$$

Das gleiche gilt für die rechte Seite und somit folgt die Aussage:

$$(D_x s_1)(p) = (D_x s_2)(p).$$
 (2.116)

Abbildungsverzeichnis

2.1	Veranschaulichung eines Tangentialbündels	7
2.2	Beispiel für ein Vektorfeld	15