MATH-300 Andrew Jones

Worksheet 4

Let R be a relation from A to B, let S be a relation from B to C, and let T be a relation from C to D.

Prove the following statements.

1. $I_A \circ R = R$

Proof. Let $a \in A$ and $b \in B$ and observe:

$$a(I_a \circ R)b \iff \exists a` \in A : a = a` \land a`Rb \iff aRb$$

2. $R \circ I_A = R$

Proof. Let $a \in A$ and $b \in B$ and observe:

$$\begin{array}{ccc} a(R \circ I_a)b & \Longleftrightarrow \exists b^{'} \in B : b = b^{'} \wedge aRb^{'} \\ & \Longleftrightarrow aRb \end{array}$$

3. $(R^{-1})^{-1} = R$

Proof. Assume the relation R has an inverse and let $a \in A$ and $b \in B$:

$$\begin{array}{c} a(R^{-1})^{-1}b \iff bR^{-1}a \\ \iff b(R^{-1})^{-1}a \end{array}$$

4. $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

Proof. Let $a \in A$, $b \in B$, and $c \in C$

$$\begin{array}{c} c(S\circ R)^{-1}a \iff \exists c^{'} \in C: c=c^{'} \wedge c^{'}S^{-1}b \\ \iff \exists b^{'} \in B: b=b^{'} \wedge b^{'}R^{-1}a \\ \iff c(R^{-1}\circ S^{-1})a \end{array}$$

5. $(T \circ S) \circ R = T \circ (S \circ R)$

	Proof.	
6.	$DomR = RngR^{-1}$	
	Proof.	
7.	$RngR = DomR^{-1}$	
	Proof.	
For C	Question 8–10, suppose that $A = B = C$.	
8.	If R and S are equivalence relations, then $S \circ R$ is an equivalence relation	on.
	Proof.	
9.	If R is a partial order, then $R \circ R$ is a partial order.	
	Proof.	
10.	If R and S are partial orders, then it is not generally true that $S \circ R$ partial order.	is a
	Proof.	
Boni that	us Questions Give an example of two relations R and S on a set A s	uch
11.	$R \circ S \neq S \circ R$.	
	Proof.	
12.	$S \circ R$ is an equivalence relation, but neither R nor S is an equivale relation.	nce
	Proof.	