Correction du TD

Transformations de tous les jours

- 1) Transformation adiabatique d'une phase condensée, isobare et isochore.
- 2) Transformation monotherme, isobare et isochore.

Travail reçu le long d'un chemin donné

1) Le gaz étant parfait,

$$P_1V_1 = nRT_1$$
 et $P_2V_2 = nRT_2$
 $\Leftrightarrow n = \frac{P_1V_1}{RT_1}$ et $T_2 = \frac{P_2V_2}{P_1V_1}T_1$
 $\Rightarrow T_2 = 300 \text{ K}$

2) $W_{AB} = W_{AC} + W_{CB}$.

 \diamondsuit $W_{\rm CB} = 0$ car isochore;

 \Diamond Si $A \to C$ quasi-statique,

Comme $A \to C$ isobare, $P = P_1$ et

$$W_{\rm AC} = -\int_A^C P \, \mathrm{d}V$$

 $W_{\rm AC} = -P_1(V_2 - V_1)$

Ainsi,

$$W_{\mathrm{AB}} = W_{\mathrm{AC}} \Rightarrow W_{\mathrm{AB}} = -4.0\,\mathrm{kJ}$$

3) De même que précédemment, la transformation isochore a un travail nul, donc seule la transformation de D vers B travaille, et $W_{AB} = W_{DB}$. Seulement, la pression de l'isobare n'est plus la même, et on trouve

$$W_{AB} = W_{DB} = -P_2(V_2 - V_1) \Rightarrow W_{AB} = -1.0 \text{ kJ}$$

4)

L'aire sous la courbe est en effet plus grande pour la transformation ACB. On voit que le signe est négatif puisqu'on parcours le trajet dans le sens horaire.

III Diagramme de CLAPEYRON

1)

2)
$$\mathcal{A} = \int_{v_i}^{v_f} P \, \mathrm{d}v = -\frac{1}{m} \left(-\int_{V_i}^{V_f} P \, \mathrm{d}V \right)$$
 Or $P = P_{\mathrm{ext}}$ pour quasi-statique
$$\boxed{\mathcal{A} = -\frac{W_p}{m}}$$

3) $dV > 0 \Leftrightarrow W_p < 0$ et inversement. Or, si le cycle est parcouru dans le **sens direct**, alors la transformation de dV > 0 passe en-dessous de la transformation de dV < 0; ainsi l'aire entourée correspond à un travail **positif**.

* [IV] Calculs de travaux et transferts thermiques

2) \diamondsuit A et B sont reliés par une isotherme, donc $\boxed{T_A = T_B = 300\,\mathrm{K}}$

 \Diamond On a donc PV=cte, soit

$$P_B = P_A \frac{V_A}{V_B} = \frac{V_A}{3}$$

3) On condidère les transformations comme quasi-statique, soit $P = P_{\text{ext}}$. Ainsi :

A1B:
$$W_1 = -\int_A^B -P \, dV = -nRT_A \ln \frac{V_B}{V_A} \Leftrightarrow \boxed{W_1 = P_A V_A \ln 3}$$

$$A2B: W_2 = W_{\text{rect}} + W_{\text{trgl}} = P_A (V_B - V_A) + \frac{1}{2} (P_B - P_A) (V_B - V_A) \Leftrightarrow \boxed{W_2 = \frac{4}{3} P_A V_1}$$

$$A3B: W_3 = -P_A (V_B - V_A) \Leftrightarrow \boxed{W_3 = \frac{2}{3} P_A V_A}$$

Le travail des forces de pression dépend ainsi du chemin suivi.

4) Comme $T_A = T_B$, on a $\Delta U = 0$. Avec le premier principe :

$$Q = -W$$

Étude d'un compresseur

- a On étudie le gaz qui entre dans le corps de la pompe pendant la première phase. L'évolution étudiée comporte les trois étapes suivantes :
 - (1)Admission du gaz de A à B à la pression P_0 ;
 - (2) Compression de B à C;
 - (3)Refoulement de C à D à la pression P_1 .

b – La pression extérieure est constante, donc le travail des forces de pression du gaz à droite du piston est :

$$W_{\rm droite} = W_{\rm droite,AB} + W_{\rm droite,BC} + W_{\rm droite,CD} = P_0(\cancel{V_B} - \cancel{V_A} + \cancel{V_C} - \cancel{V_B} + \cancel{V_R} - \cancel{V_C}) = 0$$

En effet, puisque le piston effectue un aller-retour, le volume balayé est le même à l'aller (travaill résistant) qu'au retour (travail moteur).

c – La force exercée par le moteur pour déplacer le piston est $F = (P - P_0)S$ avec S la section du piston. Ainsi, le travail fourni par le moteur est :

$$W_{\text{moteur}} = -\int_{ABCD} (P - P_0) \, dV = -\int_{ABCD} P \, dV - W_{\text{droite}} \Leftrightarrow W_{\text{moteur}} = -\int_{ABCD} P \, dV$$

En effet, le travail **fourni par le moteur** est le travail **reçu par le gaz**, en supposant la pression P définie à chaque instant. C'est ce qu'on appelle habituellement le travail de l'opérataire.

2) On étudie le gaz enre B et C. On a trois équations d'états :

$$P_B V_m = nRT_B \quad \text{et} \quad P_C V_C = nRT_C \quad \text{et} \quad P_B V_B^k = P_C V_C^k$$

$$\Rightarrow \left(\frac{P_C}{P_C}\right) = \left(\frac{V_B}{V_C}\right)^k \Leftrightarrow \left(\frac{P_C}{P_C}\right)^{1-k} = \left(\frac{T_B}{T_C}\right)^{-k}$$

$$k = \frac{\ln \frac{P_B}{P_C}}{\ln \frac{P_B}{P_C} - \ln \frac{T_B}{T_C}} \Leftrightarrow k = \frac{\ln \frac{P_0}{P_1}}{\ln \frac{P_0}{P_1} - \ln \frac{T_0}{T_1}} \Rightarrow k = 1,2$$

3) On calcule le travail sur les trois transformations élémentaires :

 $(1)P = P_0 = \text{cte, donc}$

$$\begin{split} W_{\mathrm{AB}} &= -P_0 \int_{V_0}^{V_m} \mathrm{d}V = -P_0 V_m \Leftrightarrow \boxed{W_{\mathrm{AB}} = -nRT_0} \\ W_{\mathrm{BC}} &= -\int_{V_m}^{V_1} P_0 V_m^k \cdot \frac{\mathrm{d}V}{V^k} \\ &\Leftrightarrow W_{\mathrm{BC}} = \frac{P_0 V_m^k}{k-1} \left[V^{1-k} \right]_{V_m}^{V_1} \\ &\Leftrightarrow W_{\mathrm{BC}} = \frac{P_0 V_m}{k-1} \left(\left(\frac{V_1}{V_m} \right)^{1-k} - 1 \right) \\ &\Leftrightarrow W_{\mathrm{BC}} = \frac{P_0 V_m}{k-1} \left(\frac{P_1 V_1}{P_0 V_m} - 1 \right) \\ &\Leftrightarrow W_{\mathrm{BC}} = \frac{P_0 V_m}{k-1} \left(\frac{T_1}{P_0 V_m} - 1 \right) \\ &\Leftrightarrow W_{\mathrm{BC}} = \frac{P_0 V_m}{k-1} \left(\frac{T_1}{T_0} - 1 \right) \\ \end{split}$$

$$\bigcirc 3$$
 $P = P_1$ donc

D'où par somme

$$W_{\text{CD}} = -\int_{V_1}^{0} P_1 \, dV = P_1 V_1 \Leftrightarrow \boxed{W_{\text{CD}} = nRT_1}$$
$$W_{\text{moteur}} = \frac{k}{k-1} nR(T_1 - T_0)$$

4) Par définition, $W_{\text{moteur}} = \mathcal{P}_{\text{moteur}} \Delta t$. Aussi, en $\Delta t = 1 \,\text{s}$ on a $n = \frac{D_m \Delta t}{M}$ quantité d'air passant dans le compresseur. Ainsi,

$$\mathcal{P}_{\text{moteur}} = \frac{k}{k-1} \frac{D_m}{M} R(T_1 - T_0)$$
 $\Rightarrow \underline{\mathcal{P}_{\text{moteur}}} = 2,26 \text{ kW}$

Apport d'énergie électrique

- 1) \diamondsuit Équilibre mécanique et paroi mobile verticale donc $P_2 = P_1 = 2P_0$;
 - \diamondsuit Évolution lente donc transfert thermiques terminés, soit $T_2 = T_0 = 300 \,\mathrm{K}$;
 - \diamondsuit Ainsi $V_2 = \frac{nRT_2}{P_2} \Leftrightarrow \boxed{V_2 = \frac{V_0}{2}} = \underline{1,0 L}.$

2) \diamondsuit Conservation du volume : $V_1 + V_2 = 2V_0 \Leftrightarrow \boxed{V_1 = 3V_0/2} = \underline{3.0 \,\mathrm{L}}$;

$$T_1 = \frac{P_1 V_1}{nR} - \frac{P_1 V_1}{P_0 V_0} T_0 \Leftrightarrow \boxed{T_1 = 3T_0} = \underline{900 \,\mathrm{K}}$$

- 3) Gaz de gauche $\Delta U_1 = C_V \Delta T = \frac{5}{2} nR(T_1 T_0) \Leftrightarrow \boxed{\Delta U_1 = \frac{5}{2} \frac{P_0 V_0}{T_0} (T_1 T_0)} \Rightarrow \underline{\Delta U_1 = 1,0 \,\mathrm{kJ}}$ Gaz de droite $\Delta T_{\mathrm{droite}} = 0 \Leftrightarrow \boxed{\Delta U_2 = 0}$
- 4) Transformation lente donc quasi-statique, donc P compartiment 1 défini à chaque instant :

$$W_2 = -\int_{V_i}^{V_f} P \, \mathrm{d}V = -nRT_0 \int_{V_i}^{V_f} \frac{\mathrm{d}V}{V} \Leftrightarrow \boxed{W_2 = P_0 V_0 \ln \frac{V_0}{V_2}} \Rightarrow \underline{W_2 = 70 \, \mathrm{J}}$$
 Travail reçu = -travail fourni donc
$$\Leftrightarrow \boxed{W_1 = -W_2}$$

5) L'énergie thermique est la puissance par effet JOULE que multiplie le temps de chauffe, soit

$$Q_1 = RI^2 \times \tau \Leftrightarrow \boxed{\tau = \frac{\Delta U_1 - W_1}{RI^2}} \Rightarrow \underline{\tau = 43 \,\mathrm{s}}$$