SITUATION

On cherche les points d'intersection de deux courbes représentatives C_f et C_g , c'est-à-dire l'ensemble des points du plan de coordonnées $(x,f\left(x\right))$ dont l'abscisse x vérifie $f\left(x\right)=g\left(x\right)$.

ÉNONCÉ

Soient f et g les deux fonctions définies sur $\mathbb R$ par :

$$f(x) = x^3 + x^2 + x + 1$$

$$g\left(x\right) =x^{3}-x$$

Déterminer les points d'intersection des courbes représentatives $\,C_f\,$ et $\,C_g\,$.

Etape 1

Énoncer la démarche

Avant de commencer la résolution, on énonce la démarche :

"Les abscisses des points d'intersection de $\,C_{f}\,$ et $\,C_{g}\,$ sont les solutions de l'équation $\,f\left(x
ight)=g\left(x
ight)$."

APPLICATION

Les abscisses des points d'intersection de C_f et C_g sont les solutions de l'équation $f\left(x\right)=g\left(x\right)$. On résout donc cette équation.

Etape 2

Résoudre l'équation f(x) = g(x)

On résout tout d'abord l'équation $f\left(x
ight)=g\left(x
ight)$. Les solutions éventuelles de cette équation sont les abscisses des points d'intersection des courbes C_f et C_g .

APPLICATION

On résout :

Pour tout réel x, f(x) = g(x)

$$\Leftrightarrow x^3 + x^2 + x + 1 = x^3 - x$$

$$\Leftrightarrow x^2 + 2x + 1 = 0$$

Or, on sait que pour tous réels a et b :

$$a^2 + 2ab + b^2 = (a+b)^2$$

On a donc, pour tout réel x:

$$x^{2} + 2x + 1 = 0 \Leftrightarrow (x+1)^{2} = 0$$

 a^2 étant nul si et seulement si a=0 , on a alors :

$$(x+1)^2 = 0 \Leftrightarrow x+1 = 0 \Leftrightarrow x = -1$$

Chapitre 10 : Les fonctions trigonométriques

L'équation $f\left(x\right)=g\left(x\right)$ admet donc x=-1 pour seule solution.

Etape 3

Calculer l'image de chaque solution

Pour chaque solution x de l'équation précédente, on détermine la valeur de $f\left(x\right)$ (ou celle de $g\left(x\right)$ car $g\left(x\right)=f\left(x\right)$). Cela donne l'ordonnée du point d'intersection de C_f et C_g d'abscisse x.

APPLICATION

–1 est la seule solution de l'équation $f\left(x
ight)=g\left(x
ight)$. On a :

$$f(-1) = (-1)^3 + (-1)^2 + (-1) + 1 = -1 + 1 - 1 + 1$$

Finalement:

$$f\left(-1\right) = 0$$

Etape 4

En déduire les coordonnées des points d'intersection

Les coordonnées trouvées grâce aux deux étapes précédentes sont donc les coordonnées des points d'intersection des courbes $\,C_f\,$ et $\,C_g\,$.

APPLICATION

On peut conclure que le seul point d'intersection des courbes $\,C_f\,$ et $\,C_g\,$ est le point de coordonnées $(-1,0)\,.$