# **Supplementary Material for**

Occurrence, Source Apportionment, and Ecological Risk of Typical Pharmaceuticals in Surface Waters of Beijing, China

Yonghao Huangfu $^1$ , Qingshan Li $^1$ , Weiwei Yang $^1$ , Qingwei Bu $^{1,*}$ , Lei Yang $^2$ , Jianfeng Tang $^3$ , Jie Gan $^{4,*}$ 

- <sup>1</sup> School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, P.R. China
- <sup>2</sup> State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P.R. China
- <sup>3</sup> Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- <sup>4</sup> Hunan Ecological and Environmental Monitoring Center, Changsha 410014, P.R. China

# \* Corresponding author

Address correspondence to Qingwei Bu, E-mail: qingwei.bu@cumtb.edu.cn Address correspondence to Jie Gan, E-mail: ganjie1982@163.com

#### **Contents**

**Study sites** 

Sample pretreatment

**Instrumental analysis** 

**Table S1.** Related information for target pharmaceuticals.

**Table S2.** Gradient elution procedure.

Table S3. Standard curve and MDL.

**Table S4.** Selection method of assessment factor.

**Table S5.** Comparison of pharmaceutical concentrations between the North Canal Basin and other study areas.

**Table S6.** PNEC values of Pharmaceuticals and calculated method.

**Figure S1.** Interpolation map of inverse distance weights of each pharmaceutical concentration category in the North Canal Basin.

**Figure S2.** The contributions of all the identified sources to the pharmaceuticals in the North Canal Basin.

**Figure S3.** Interpolation map of inverse distance weights of each pharmaceutical concentration factor in the North Canal Basin.

## Study areas and sites

The North Canal is the only water system that originates in Beijing and is the most important river flowing through downtown Beijing. The population within its basin accounts for over 70% of the city population, contributing to more than 80% of Beijing's gross domestic product (GDP). It is the most populous basin in Beijing, characterized by the highest industrial concentration and urbanization level. Situated in the northwest of the North China Plain, the North Canal Basin serves as the transitional region between the plain, plateau, and mountainous terrains, featuring a typical temperate continental climate. The North Canal Basin encompasses the main stem of the North Canal and Wen Yu River, along with five major tributaries: Sha River, Qing River, Ba River, Tonghui River, and Liangshui River. In addition, numerous smaller tributaries cover the urban and agricultural areas of Beijing, Tianjin, and Hebei. The total basin area is 4.423 km².

The rules for selecting sampling sites are as follows: First, the target rivers were selected before setting up the sampling points. The main stream of Beijing's North Canal basin and five major tributaries, as well as other rivers that play an important role in people's production and life in Beijing, were selected, and sampling points were set up at locations where there might be significant changes in pharmaceutical concentrations, such as wastewater treatment plant effluents and river confluence.

In this study, the receiving rivers of the North Canal Basin are categorized into tributaries (Beisha River, Nansha River, Lingou River, Jiangli River, Qing River, Ba River, Tonghui River, Beixiao River, Liangma River, South Moat River, Xiaozhong River, Liangshui River, and Xinfeng River) and main streams (Wenyv river and North Canal). In addition, the non-receiving rivers include the Jing-Mi Diversion Channel, Yongding Diversion Channel, and Zhuan River.

#### Sample pretreatment

To reduce the biological activity in the collected water, the samples were

transferred to the laboratory at 4° C and immediately filtered through the 0.45 μm glass fiber filter membrane. Pre-experimentation showed that different pharmaceuticals had different recoveries under different acid–base conditions. Two 5L filtered water samples were measured, and the pH was adjusted at 3 and 9 using HCL and NaOH, respectively. A total of 10 μL of the internal standard solution (concentration: 10 μg/mL) was added to each sample. The samples were extracted via solid phase extraction (SPE), which was activated by methanol and ultrapure water. Samples were enriched at a flow rate of 4 to 8 mL/min through the SPE column under vacuum pumping, followed by the column being rinsed with 5 mL of ultrapure water and then blow dry. The sample was eluted with 8 mL of methanol into a KD concentrator. The eluate was blown to 0.5 mL in a gentle stream of nitrogen. The sample solution was reconstituted with methanol and ultrapure water (V: V=1:9), vortexed until well mixed, and analyzed immediately.

### **Instrumental analysis**

Determination of the target analytes was carried out using a high-performance liquid chromatograph–triple quadrupole mass spectrometer system (LCMS-8040, Shimadzu, Japan). Separation was performed on a Shim-pack XR-ODS reversed-phase column (2 mm×75 mm, 2.2  $\mu$ m), the temperature was maintained at 30 °C. 0.2% formic acid-2 mmol/L ammonium acetate aqueous solution, and acetonitrile were used as mobile phase A and mobile phase B for gradient elution, respectively. The gradient elution conditions are described in Table S2. The sample injection volume was 10  $\mu$ L. Multiple reaction monitoring (MRM) was used for the detection and quantification of precursor and product ions.

Table S1. Related information for target pharmaceuticals.

| G                  | Abbr. of   |                             |                          | <u>C 1</u>   | Precursor ion | Product ions    | Collision Energy | <b>Retention Time</b> |
|--------------------|------------|-----------------------------|--------------------------|--------------|---------------|-----------------|------------------|-----------------------|
| Categories         | Categories | Pharmaceuticals             | Abbr. of Pharmaceuticals | CAS Number   | (m/z)         | (m/z)           | (V)              | (min)                 |
|                    |            | Sulfapyridine               | SPD                      | 144-83-2     | 250.1         | 156.00*, 92.10  | -16, -28         | 3.815                 |
|                    |            | Trimethoprim                | TMP                      | 738-70-5     | 291.2         | 230.10*, 261.05 | -24, -35         | 4.271                 |
|                    |            | Sulfamonomethoxine          | SMM                      | 1220-83-3    | 281.1         | 155.90*, 92.10  | -18, -30         | 8.834                 |
| Sulfonamides       | SAs        | Sulfamerazine               | SMZ                      | 127-79-7     | 265.1         | 156.10*, 92.10  | -17, -18         | 4.290                 |
|                    |            | Sulfadiazine                | SDA                      | 68-35-9      | 251.1         | 156.00*, 92.10  | -16, -28         | 2.878                 |
|                    |            | Sulfamethoxazole            | SMX                      | 723-46-6     | 253.9         | 156.00*, 92.10  | -15, -28         | 9.957                 |
|                    |            | Sulfadimidine               | SMZ-2                    | 57-68-1      | 278.9         | 186.05*, 92.15  | -17, -25         | 5.912                 |
|                    |            | Oxytetracycline             | OTC                      | 79-57-2      | 461.2         | 426.15*, 442.90 | -19, -13         | 5.613                 |
| Tetracyclines      | TCs        | Doxycycline hyclate         | DOXY                     | 24390-14-5   | 445.2         | 428.15*, 413.30 | -19, -34         | 10.455                |
| •                  |            | Tetracycline                | TC                       | 60-54-8      | 445.2         | 410.10*, 427.10 | -20, -14         | 6.562                 |
|                    |            | Ofloxacin                   | OFX                      | 82419-36-1   | 362.1         | 318.25*, 261.10 | -20, -30         | 6.215                 |
|                    |            | Enrofloxacin                | EFX                      | 93106-60-6   | 360.2         | 316.10*, 342.20 | -20, -22         | 8.117                 |
| Fluoroquinolones   | FQs        | Ciprofloxacin               | CIP                      | 85721-33-1   | 332.2         | 314.15*, 231.00 | -22, -18         | 6.870                 |
| •                  |            | Norfloxacin                 | NFX                      | 70458-96-7   | 320.2         | 302.10*, 230.95 | -21, -17         | 6.310                 |
|                    |            | Pefloxacin                  | PEF                      | 70458-92-3   | 334.2         | 316.15*, 302.15 | -19, -19         | 6.587                 |
|                    |            | Azithromycin                | AZM                      | 83905-01-5   | 749.6         | 158.05*, 591.40 | -31, -43         | 12.708                |
| M 11.1             | M          | Clarithromycin              | CLR                      | 81103-11-9   | 748.4         | 158.15*, 590.40 | -34, -21         | 12.699                |
| Macrolides         | MLs        | Roxithromycin               | ROX                      | 80214-83-1   | 837.4         | 158.10*, 679.30 | -39, -24         | 12.810                |
|                    |            | Erythromycin                | ERY                      | 114-07-8     | 734.3         | 158.15*, 576.30 | -35, -21         | 11.645                |
|                    |            | Lincomycin<br>hydrochloride | LIN                      | 859-18-7     | 407.4         | 126.10*, 359.10 | -29, -19         | 2.793                 |
|                    |            | Chloramphenicol             | CP                       | 56-75-7      | 321.0         | 152.15*, 257.15 | 17, 11           | 11.130                |
|                    |            | Ampicillin                  | AMP                      | 69-53-4      | 350.1         | 106.15*, 160.00 | -21, -17         | 4.353                 |
|                    |            | Bezafibrate                 | BF                       | 41859-67-0   | 360.2         | 274.15*, 154.10 | 18, 30           | 14.582                |
| Others             | OTs        | Florfenicol                 | FFC                      | 73231-34-2   | 356.1         | 336.05*, 185.10 | 9, 20            | 10.105                |
|                    |            | Clofibric acid              | CA                       | 882-09-7     | 213.0         | 127.05*         | 14               | 14.402                |
|                    |            | Gemfibrozil                 | GEM                      | 25812-30-0   | 249.2         | 121.20*, 113.10 | 16               | 16.463                |
|                    |            | Carbamazepine               | CBZ                      | 298-46-4     | 237.0         | 194.05*, 192.10 | -19, -21         | 12.887                |
|                    |            | Diclofenac                  | DF                       | 15307-86-5   | 294.0         | 250.10*, 214.00 | 12, 21           | 15.768                |
|                    |            | Ritonavir                   | RTV                      | 155213-67-5  | 721.3         | 296.10*, 268.05 | -19, -30         | 15.960                |
|                    |            | Roxithromycin-d7            | ROX-D7                   | 80214-83-1   | 844.7         | 158.15*, 686.50 | -35, -25         | 12.773                |
|                    |            | Chloramphenicol-d5          | CP-D5                    | 202480-68-0  | 326.0         | 157.20*, 262.30 | 17, 12           | 11.101                |
| I                  |            | Sulfamethazine-d4           | SMT-D4                   | 1020719-82-7 | 283.2         | 186.10*, 124.25 | -17, -25         | 5.806                 |
| Internal standards | -          | Carbamazepine-d10           | CBZ-D5                   | 132183-78-9  | 247.2         | 204.15*, 201.00 | -21, -26         | 12.807                |
|                    |            | Norfloxacin-d5              | NFX-D5                   | 1015856-57-1 | 325.3         | 307.20*, 231.15 | -20, -42         | 6.213                 |
|                    |            | Demeclocycline              | DMC                      | 127-33-3     | 465.2         | 448.05*, 430.00 | -19, -21         | 8.445                 |

Table S2. Gradient elution procedure.

|                | Time (min)                                                  | Initial | 5.00 | 7.00 | 11.00 | 14.00 | 16.00 | 18.00 | 18.01 | 22.00 |
|----------------|-------------------------------------------------------------|---------|------|------|-------|-------|-------|-------|-------|-------|
| Mobile phase A | 0.2% formic acid-2 mmol/L ammonium acetate aqueous solution | 100     | 100  | 20   | 20    | 2     | 2     | 100   | 100   | Stop  |
| Mobile phase B | Acetonitrile (%)                                            | 10      | 15   | 20   | 40    | 60    | 95    | 95    | 10    | Stop  |

Table S3. Standard curve and MDL.

|                 | Standard Curve    | Linearity Range |                | MDL    |
|-----------------|-------------------|-----------------|----------------|--------|
| Pharmaceuticals | Equation          | (ng/mL)         | $\mathbb{R}^2$ | (ng/L) |
| SPD             | y=0.9731x-0.0509  | 0.1~200         | 0.9994         | 1.34   |
| TMP             | y=2.5510x+0.1148  | 0.05~200        | 0.9972         | 0.02   |
| SMM             | y=0.4180x+0.0158  | $0.2 \sim 200$  | 0.9986         | 0.10   |
| SMZ             | y=0.5302x-0.0120  | $0.05 \sim 200$ | 0.9986         | 3.83   |
| SDA             | y=0.2967x-0.0067  | $0.05 \sim 200$ | 0.9976         | 0.42   |
| SMX             | y=0.5125x-0.2358  | $0.05 \sim 200$ | 0.9962         | 0.12   |
| SMZ2            | y=24.4990x-1.5872 | $0.05 \sim 150$ | 0.9947         | 0.16   |
| OTC             | y=0.9986x-0.1269  | $0.05 \sim 200$ | 0.9987         | 1.78   |
| DOXY            | y=1.9541x+0.2491  | 0.1~200         | 0.9967         | 4.76   |
| TC              | y=2.0257x-0.2082  | 1~150           | 0.9965         | 1.16   |
| OFX             | y=6.3641x+0.0271  | 0.1~150         | 0.9990         | 0.16   |
| EFX             | y=6.4875x+0.2136  | $0.05 \sim 200$ | 0.9963         | 0.73   |
| CIP             | y=1.0943x+0.0012  | 5~150           | 0.9985         | 0.99   |
| NFX             | y=0.8113x-0.0245  | $0.05 \sim 200$ | 0.9975         | 2.32   |
| PEF             | y=2.0606x-0.0965  | 0.1~200         | 0.9976         | 0.67   |
| AZM             | y=0.1972x+0.0055  | $0.05 \sim 200$ | 0.9985         | 2.47   |
| CLR             | y=1.6096x+0.0561  | $0.05 \sim 200$ | 0.9984         | 0.06   |
| ROX             | y=1.1006x+0.0329  | $0.05 \sim 200$ | 0.9977         | 0.06   |
| ERY             | y=0.0231x-0.0005  | $0.05 \sim 200$ | 0.9974         | 0.11   |
| LIN             | y=0.0567x-0.0013  | $0.05 \sim 200$ | 0.9976         | 2.33   |
| CP              | y=0.7677x+0.0223  | 1~200           | 0.9989         | 0.20   |
| AMP             | y=3.2100x-1.0503  | $0.05 \sim 200$ | 0.9952         | 1.79   |
| BF              | y=0.0277x-0.0001  | $0.05 \sim 200$ | 0.9988         | 0.01   |
| FFC             | y=1.1537x+0.0749  | 1~200           | 0.9955         | 0.51   |
| CA              | y=0.0231x-0.0005  | 0.5~200         | 0.9974         | 7.60   |
| GEM             | y=0.0006x-0.0002  | 0.05~200        | 0.9985         | 5.23   |
| CBZ             | y=1.0033x+0.0152  | $0.05 \sim 200$ | 0.9993         | 0.04   |
| DF              | y=0.5602x+0.0237  | $0.05 \sim 200$ | 0.9987         | 1.09   |
| RTV             | y=121.426x-1.5162 | 0.05~200        | 0.9971         | 0.62   |

Table S4. Selection method of assessment factor.

| Available data                                                                                                    | Assessment factor                        |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| At least one short-term $L(E)C_{50}$ from each of three trophic levels of the base set (fish, Daphnia, and algae) | 1000                                     |
| One long-term NOEC (either fish or Daphnia)                                                                       | 100                                      |
| Two long-term NOECs from species representing two trophic levels (fish and/or Daphnia and/or algae)               | 50                                       |
| Long-term NOECs from at least three species (normally fish, Daphnia, and algae) representing three trophic levels | 10                                       |
| Species sensitivity distribution (SSD) method                                                                     | 5-1 (to be fully justified case by case) |
| Field data or model ecosystems                                                                                    | Reviewed on a case-by-case basis         |

Table S5. Comparison of pharmaceutical concentrations between the North Canal basin and other study areas.

| Pharmaceuticals     | Abb     | Max<br>(ng/L) | Min<br>(ng/L) | Mean<br>(ng/L) | DF<br>(%) | Region                                            | Reference     |
|---------------------|---------|---------------|---------------|----------------|-----------|---------------------------------------------------|---------------|
| Sulfonamides        | SAs     |               |               |                |           |                                                   |               |
| Sulfapyridine       | SPD     | 75.6          | < MDL         | 12.0           | 90.2      | North Canal                                       | Present study |
|                     |         | 1.31          | N.D.          | 0.08           | 6.90      | Liao River                                        | [1]           |
|                     |         | 19.3          | N.D.          | 1.1            | 15.4      | Nanming River                                     | [2]           |
|                     |         | 2.30          | N.D.          | 0.1            | 5.00      | Yangtze River                                     | [3]           |
| Trimethoprim        | TMP     | 153           | N.D.          | 15.6           | 93.9      | North Canal                                       | Present study |
|                     |         | 62.9          | N.D.          | 12.9           | 79.4      | Nanming River                                     | [2]           |
|                     |         | 63.6          | < MDL         | 25.6           | 100       | Xiaoqing River                                    | [4]           |
|                     |         | 57.2          | N.D.          | 6.55           | 27.0      | Chao Lake                                         | [5]           |
|                     |         | 2.2           | -             | 0.46           | 51.0      | Lake Vanern, Lake<br>Vattern, and Lake<br>Malaren | [6]           |
| Sulfamonomethoxine  | SMM     | 6.82          | N.D.          | 0.55           | 53.7      | North Canal                                       | Present study |
| Sunumenomemonine    | Sivilvi | N.D.          | N.D.          | N.D.           | 0         | Liao River                                        | [1]           |
|                     |         | 4.30          | N.D.          | 0.50           | 35.0      | Yangtze River                                     | [3]           |
|                     |         | N.D.          | N.D.          | N.D.           | 0.00      | Sangong River                                     | [7]           |
| Sulfamerazine       | SMZ     | 28.8          | N.D.          | 0.86           | 7.32      | North Canal                                       | Present study |
|                     |         | 4.63          | N.D.          | 0.41           | 24.1      | Liao River                                        | [1]           |
|                     |         | < MDL         | N.D.          | N.D.           | 33.0      | Xiaoqing River                                    | [4]           |
| Sulfadiazine        | SDA     | 12.4          | N.D.          | 1.87           | 76.8      | North Canal                                       | Present study |
|                     |         | 2.15          | N.D.          | 0.53           | 37.9      | Liao River                                        | [1]           |
|                     |         | 1.60          | N.D.          | 0.10           | 2.90      | Nanming River                                     | [2]           |
|                     |         | 9.51          | N.D.          | 2.46           | 87.0      | Xiaoqing River                                    | [4]           |
| Sulfamethoxazole    | SMX     | 45.0          | N.D.          | 7.76           | 73.2      | North Canal                                       | Present study |
|                     |         | 14.8          | N.D.          | 3.61           | 65.5      | Liao River                                        | [1]           |
|                     |         | 290           | N.D.          | 11.9           | 58.8      | Nanming River                                     | [2]           |
|                     |         | 190           | N.D.          | 74.4           | 93.0      | Xiaoqing River<br>Lake Vanern, Lake               | [4]           |
|                     |         | 12.0          | -             | 2.70           | 61.0      | Vattern, and Lake<br>Malaren                      | [6]           |
| Sulfadimidine       | SMZ-2   | 75.0          | N.D.          | 1.79           | 57.3      | North Canal                                       | Present study |
|                     |         | 2.30          | N.D.          | 0.40           | 24.1      | Liao River                                        | [1]           |
|                     |         | 29.9          | N.D.          | -              | 76.9      | River in Hong Kong                                | [8]           |
|                     |         | 7.7           | N.D.          | -              | 87.5      | Poyang Lake                                       | [9]           |
| Tetracyclines       | TCs     |               |               |                |           |                                                   |               |
| Oxytetracycline     | OTC     | 17.7          | N.D.          | 0.54           | 11.0      | North Canal                                       | Present study |
|                     |         | N.D.          | N.D.          | N.D.           | 0         | Xiaoqing River                                    | [4]           |
|                     |         | 76.7          | N.D.          | 4.80           | 11.1      | Nanming River                                     | [2]           |
|                     |         | 18.0          | N.D.          | 0.62           | 3.45      | Liao River                                        | [1]           |
| Doxycycline hyclate | DOXY    | 106           | N.D.          | 3.92           | 20.7      | North Canal                                       | Present study |
|                     |         | 57.9          | N.D.          | 6.01           | 34.5      | Liao River                                        | [1]           |
|                     |         | 1.90          | 0.30          | 0.60           | 50.0      | Yangtze River                                     | [3]           |
|                     |         | 0.87          | N.D.          | 0.39           | 88.9      | Sangong River                                     | [7]           |
| Tetracycline        | TC      | 66.2          | N.D.          | 9.34           | 79.3      | North Canal                                       | Present study |
|                     |         | N.D.          | N.D.          | N.D.           | 0         | Xiaoqing River                                    | [4]           |
|                     |         | 157           | N.D.          | 21.4           | 25.0      | Chao Lake                                         | [5]           |
|                     |         | 25.5          | N.D.          | 1.9            | 7.70      | Nanming River                                     | [2]           |
| Fluoroquinolones    | FQs     |               |               |                |           |                                                   |               |
| Ofloxacin           | OFX     | 114           | < 0.16        | 18.7           | 100       | North Canal                                       | Present study |
|                     |         | 339           | 7.31          | 79.0           | 100       | Xiaoqing River                                    | [4]           |
|                     |         | 55.1          | N.D.          | 4.55           | 11.0      | Chao Lake                                         | [5]           |
| E 0 .               | DEX.    | 645           | N.D.          | 137            | 91.2      | Nanming River                                     | [2]           |
| Enrofloxacin        | EFX     | 18.7          | N.D.          | 0.97           | 31.7      | North Canal                                       | Present study |
|                     |         | 1.18          | N.D.          | < MDL          | 53.0      | Xiaoqing River                                    | [4]           |
|                     |         | 5.47          | N.D.          | 0.35           | 13.8      | Liao River                                        | [1]           |
| c: a :              | O.D.    | 5.43          | 3.00          | 4.31           | 100       | Yangtze River                                     | [10]          |
| Ciprofloxacin       | CIP     | 13.0          | N.D.          | 2.14           | 31.7      | North Canal                                       | Present study |
|                     |         | N.D.          | N.D.          | N.D.           | 0         | Xiaoqing River                                    | [4]           |
|                     |         | 187           | N.D.          | 13.5           | 23.0      | Chao Lake                                         | [5]           |
|                     |         | 5.02          | N.D.          | 0.17           | 3.45      | Liao River                                        | [1]           |

| Pharmaceuticals | Abb | Max<br>(ng/L) | Min<br>(ng/L)        | Mean<br>(ng/L)       | DF<br>(%)          | Region                       | Reference               |
|-----------------|-----|---------------|----------------------|----------------------|--------------------|------------------------------|-------------------------|
| Norfloxacin     | NFX | 193           | N.D.                 | 40.0                 | 90.2               | North Canal                  | Present study           |
|                 |     | 285           | N.D.                 | 36.6                 | 61.8               | Nanming River                | [2]                     |
|                 |     | 13.6          | N.D.                 | 0.65                 | 6.90               | Liao River                   | [1]                     |
|                 |     | N.D.          | N.D.                 | N.D.                 | 0                  | Yangtze River                | [10]                    |
| Pefloxacin      | PEF | 7.63          | N.D.                 | 0.20                 | 4.88               | North Canal                  | Present study           |
|                 |     | 5.00          | N.D.                 | 0.36                 | 7.14               | Yangtze River                | [10]                    |
|                 |     | 993           | 1.35                 | 12.8                 | 90.0               | Yangtze River                | [3]                     |
|                 |     | 19.2          | N.D.                 | 5.89                 | 94.4               | Sangong River                | [7]                     |
| Macrolides      | MLs |               |                      |                      |                    | 2 2                          |                         |
| Azithromycin    | AZM | 49.5          | N.D.                 | 11.8                 | 67.1               | North Canal                  | Present study           |
| J               |     | 41.6          | 3.12                 | 20.2                 | 100                | Xiaoqing River               | [4]                     |
|                 |     | 6.64          | N.D.                 | 2.02                 | 57.1               | Yangtze River                | [10]                    |
|                 |     | 56.7          | N.D.                 | 2.07                 | 94.0               | Yellow River                 | [11]                    |
|                 |     |               |                      |                      |                    | Lake Vanern, Lake            |                         |
|                 |     | 3.60          | _                    | 2.20                 | 8.00               | Vattern, and Lake            | [6]                     |
|                 |     |               |                      |                      |                    | Malaren                      | F-3                     |
| Clarithromycin  | CLR | 83.2          | N.D.                 | 20.9                 | 98.8               | North Canal                  | Present study           |
|                 |     | 47.6          | 1.25                 | 22.0                 | 100                | Xiaoqing River               | [4]                     |
|                 |     | 2.93          | N.D.                 | 0.46                 | 28.6               | Yangtze River                | [10]                    |
|                 |     | N.D.          | N.D.                 | N.D.                 | 0.00               | Sangong River                | [7]                     |
|                 |     | IV.D.         | IV.D.                | N.D.                 | 0.00               | Lake Vanern, Lake            | [/]                     |
|                 |     | 0.73          | _                    | 0.53                 | 8.00               | Vattern, and Lake            | [6]                     |
|                 |     | 0.75          |                      | 0.55                 | 0.00               | Malaren                      | [o]                     |
| Roxithromycin   | ROX | 47.8          | N.D.                 | 12.7                 | 97.6               | North Canal                  | Present study           |
| Koziunomycin    | KOA | 176           | 7.37                 | 79.4                 | 100                | Xiaoqing River               | [4]                     |
|                 |     | 4.77          | N.D.                 | 0.83                 | 35.7               | Yangtze River                | [10]                    |
|                 |     | 4.77<br>111   | N.D.<br>1.22         | 15.8                 | 100                | Dongting Lake                |                         |
|                 |     | 111           | 1.22                 | 13.0                 | 100                | Lake Vanern, Lake            | [12]                    |
|                 |     | < MDL         | < MDL                | < MDL                | 0.00               |                              | [6]                     |
|                 |     | < MDL         | < MDL                | < MIDL               | 0.00               | Vattern, and Lake<br>Malaren | [6]                     |
| Emythmomercain  | EDV | 29.6          | ND                   | 4.42                 | 86.6               | North Canal                  | Descent study           |
| Erythromycin    | ERY |               | N.D.                 |                      |                    |                              | Present study           |
|                 |     | 46.6          | 1.42                 | 17.1                 | 100                | Xiaoqing River               | [4]                     |
|                 |     | 200           | N.D.                 | 7.01                 | 12.0               | Chao Lake                    | [5]                     |
|                 |     | 40.2          | 0.83                 | 10.0                 | 100                | Liao River                   | [1]                     |
|                 |     | 10.0          |                      | 2.50                 | 22.0               | Lake Vanern, Lake            | 563                     |
|                 |     | 12.0          | -                    | 3.50                 | 22.0               | Vattern, and Lake            | [6]                     |
| OT              |     |               |                      |                      |                    | Malaren                      |                         |
| OTs             | -   |               |                      |                      |                    |                              |                         |
| Lincomycin      | LIN | 45.8          | N.D.                 | 5.74                 | 62.2               | North Canal                  | Present study           |
| hydrochloride   |     | 0.15          | 2.02                 | 5.20                 | 100                | 77 / D'                      | •                       |
|                 |     | 8.15          | 2.92                 | 5.29                 | 100                | Yangtze River                | [10]                    |
|                 |     | 216           | 0.22                 | 29.5                 | 85.0               | Yangtze River                | [3]                     |
|                 |     | 11.5          | N.D.                 | 4.48                 | 94.4               | Sangong River                | [7]                     |
| Chloramphenicol | CP  | 32.3          | N.D.                 | 1.18                 | 47.6               | North Canal                  | Present study           |
|                 |     | 4.40          | N.D.                 | 0.90                 | 60.0               | Yangtze River                | [3]                     |
|                 |     | 15.4          | 4.1                  | 4.6                  | 100                | Karst River                  | [13]                    |
|                 |     | 218           | 14.9                 | 80.9                 | 68.6               | Arkavathi Basin              | [14]                    |
| Ampicillin      | AMP | N.D.          | N.D.                 | N.D.                 | 0.00               | North Canal                  | Present study           |
|                 |     | 892           | N.D.                 | 22.8                 | 4.00               | Chao Lake                    | [5]                     |
|                 |     | 14.9          | N.D.                 | 4.86                 | 81.3               | Huai River                   | [15]                    |
|                 |     | 10.2          | N.D.                 | 3.51                 | 76                 | Yellow River                 | [15]                    |
| Florfenicol     | FFC | 139           | N.D.                 | 3.55                 | 76.8               | North Canal                  | Present study           |
|                 |     | 34.2          | N.D.                 | 3.30                 | 95.0               | Yangtze River                | [3]                     |
|                 |     | 3.60          | N.D.                 | 1.54                 | 94.4               | Sangong River                | [7]                     |
| Gemfibrozil     | GEM | 14.8          | N.D.                 | 0.48                 | 4.88               | North Canal                  | Present study           |
|                 |     | 1.06          | N.D.                 | 0.16                 | 76.0               | Yellow River                 | [11]                    |
|                 |     | 229           | 2.70                 | -                    | 65.0               | Paraopeba River              | [16]                    |
|                 |     | /             | , 0                  |                      | 55.0               | Lake Vanern, Lake            | []                      |
|                 |     | < MDL         | < MDL                | < MDL                | 0.00               | Vattern, and Lake            | [6]                     |
|                 |     |               |                      |                      |                    | ,                            | r1                      |
|                 |     | · MBE         |                      |                      |                    | Malaren                      |                         |
| Carbamazenine   | CBZ |               | N.D.                 | 6.02                 | 91.5               | Malaren<br>North Canal       | Present study           |
| Carbamazepine   | CBZ | 18.7          | N.D.<br>0.74         | 6.02<br>3.37         | 91.5<br>100        | North Canal                  | Present study           |
| Carbamazepine   | CBZ |               | N.D.<br>0.74<br>2.19 | 6.02<br>3.37<br>3.25 | 91.5<br>100<br>100 |                              | Present study [11] [15] |

| Pharmaceuticals | Abb | Max<br>(ng/L) | Min<br>(ng/L) | Mean<br>(ng/L) | DF<br>(%) | Region                                            | Reference     |
|-----------------|-----|---------------|---------------|----------------|-----------|---------------------------------------------------|---------------|
|                 |     | 37.0          | -             | 6.60           | 100       | Lake Vanern, Lake<br>Vattern, and Lake<br>Malaren | [6]           |
| Diclofenac      | DF  | 54.8          | N.D.          | 15.3           | 92.7      | North Canal                                       | Present study |
|                 |     | 1130          | 202           | 545            | 28.6      | Arkavathi Basin                                   | [14]          |
|                 |     | 561           | 6.30          | -              | 30        | Paraopeba River                                   | [16]          |
|                 |     | 552           | N.D.          | 204            | -         | Zhangxi River                                     | [17]          |
|                 |     | 359           | N.D.          | 131            | -         | Lu River                                          | [17]          |
|                 |     |               |               |                |           | Lake Vanern, Lake                                 |               |
|                 |     | 23.0          | -             | 6.10           | 27.0      | Vattern, and Lake<br>Malaren                      | [6]           |
| Ritonavir       | RTV | 18.0          | N.D.          | 1.64           | 59.8      | North Canal                                       | Present study |
|                 |     | 91.7          | N.D.          | 4.37           | 0.05      | Llobregat River                                   | [18]          |
|                 |     | 10.0          | N.D.          | 1.53           | 41.0      | Rivers in Wuhan                                   | [19]          |

Table S6. PNEC values of pharmaceuticals and calculated method.

| Pharmaceuticals | PNEC    | Method |
|-----------------|---------|--------|
|                 | (ng/L)  | Method |
| SPD             | 10000   | AF     |
| TMP             | 29      | AF     |
| SMM             | 1.20    | AF     |
| SMZ             | 11900   | AF     |
| SDA             | 2700    | AF     |
| SMX             | 8660    | SSD    |
| SMZ-2           | 30000   | AF     |
| OTC             | 7580    | SSD    |
| DOXY            | 2000    | AF     |
| TC              | 7550    | SSD    |
| OFX             | 40      | AF     |
| EFX             | 32000   | AF     |
| CIP             | 40      | AF     |
| NFX             | 160     | AF     |
| PEF             | 9220000 | AF     |
| AZM             | 480     | AF     |
| CLR             | 2       | AF     |
| ROX             | 66      | AF     |
| ERY             | 200     | AF     |
| LIN             | 3000    | AF     |
| CP              | 130     | AF     |
| AMP             | 0.31    | AF     |
| BF              | 0.68    | AF     |
| FFC             | 2300    | AF     |
| CA              | 2740    | SSD    |
| GEM             | 3060    | SSD    |
| CBZ             | 2070    | AF     |
| DF              | 749     | SSD    |
| RTV             | 2.90    | ECOSAR |

Table S7. List of abbreviations used in the manuscript except pharmaceuticals.

| Abbr.    | Full title                                  |
|----------|---------------------------------------------|
| WWTP     | Wastewater treatment plants                 |
| MDL      | Method detection limits                     |
| PMF      | Positive matrix factorization               |
| EPA      | U.S. Environmental Protection Agency        |
| RQ       | Risk quotient                               |
| MEC      | Measured environmental concentration        |
| PNEC     | predicted no-effect concentration           |
| SSD      | Species sensitivity distribution            |
| AF       | Assessment factor                           |
| ECOSAR   | Ecological structure activity relationships |
| EC50     | The median effective concentration          |
| NOEC     | No observed effect concentration            |
| COVID-19 | Coronavirus disease 2019                    |



Figure S1. Interpolation map of inverse distance weights of each pharmaceutical concentration category in the North Canal Basin.



Figure S2. The contributions of all the identified sources to the pharmaceuticals in the North Canal Basin.





Figure S3. Interpolation map of inverse distance weights of each pharmaceutical concentration factor in the North Canal Basin.

# Reference

- 1. Gao, H.; Zhao, F.; Li, R.; Jin, S.; Zhang, H.; Zhang, K.; Li, S.; Shu, Q.; Na, G. Occurrence and Distribution of Antibiotics and Antibiotic Resistance Genes in Water of Liaohe River Basin, China. *J. Environ. Chem. Eng.* **2022**, *10*, 108297, doi:10.1016/j.jece.2022.108297.
- Linghu, K.; Wu, Q.; Zhang, J.; Wang, Z.; Zeng, J.; Gao, S. Occurrence, Distribution and Ecological Risk Assessment of Antibiotics in Nanming River: Contribution from Wastewater Treatment Plant and Implications of Urban River Syndrome. *Process Saf. Environ. Prot.* 2023, 169, 428–436, doi:10.1016/j.psep.2022.11.025.
- 3. Guo, F.; Wang, Y.; Peng, J.; Huang, H.; Tu, X.; Zhao, H.; Zhan, N.; Rao, Z.; Zhao, G.; Yang, H. Occurrence, Distribution, and Risk Assessment of Antibiotics in the Aquatic Environment of the Karst Plateau Wetland of Yangtze River Basin, Southwestern China. *Int. J. Environ. Res. Public. Health* **2022**, *19*, 7211, doi:10.3390/ijerph19127211.
- 4. Ci, M.; Zhang, G.; Yan, X.; Dong, W.; Xu, W.; Wang, W.; Fan, Y. Occurrence of Antibiotics in the Xiaoqing River Basin and Antibiotic Source Contribution-a Case Study of Jinan City, China. *Environ. Sci. Pollut. Res.* **2021**, *28*, 25241–25254, doi:10.1007/s11356-020-12202-z.
- 5. Zhou, Q.; Liu, G.; Arif, M.; Shi, X.; Wang, S. Occurrence and Risk Assessment of Antibiotics in the Surface Water of Chaohu Lake and Its Tributaries in China. *Sci. Total Environ.* **2022**, *807*, 151040, doi:10.1016/j.scitotenv.2021.151040.
- 6. Malnes, D.; Ahrens, L.; Köhler, S.; Forsberg, M.; Golovko, O. Occurrence and Mass Flows of Contaminants of Emerging Concern (CECs) in Sweden's Three Largest Lakes and Associated Rivers. *Chemosphere* **2022**, *294*, 133825, doi:10.1016/j.chemosphere.2022.133825.
- 7. Wu, S.; Hua, P.; Gui, D.; Zhang, J.; Ying, G.; Krebs, P. Occurrences, Transport Drivers, and Risk Assessments of Antibiotics in Typical Oasis Surface and Groundwater. *Water Res.* **2022**, *225*, 119138, doi:10.1016/j.watres.2022.119138.
- 8. Deng, W.-J.; Li, N.; Ying, G.-G. Antibiotic Distribution, Risk Assessment, and Microbial Diversity in River Water and Sediment in Hong Kong. *Environ. Geochem. Health* **2018**, *40*, 2191–2203, doi:10.1007/s10653-018-0092-1.
- 9. Ding, H.; Wu, Y.; Zhang, W.; Zhong, J.; Lou, Q.; Yang, P.; Fang, Y. Occurrence, Distribution, and Risk Assessment of Antibiotics in the Surface Water of Poyang Lake, the Largest Freshwater Lake in China. *Chemosphere* **2017**, *184*, 137–147, doi:10.1016/j.chemosphere.2017.05.148.
- Liu, Y.; Chen, Y.; Feng, M.; Chen, J.; Shen, W.; Zhang, S. Occurrence of Antibiotics and Antibiotic Resistance Genes and Their Correlations in River-Type Drinking Water Source, China. *Environ. Sci. Pollut. Res.* 2021, 28, 42339–42352, doi:10.1007/s11356-021-13637-8.
- 11. Yu, X.; Yu, F.; Li, Z.; Zhan, J. Occurrence, Distribution, and Ecological Risk

- Assessment of Pharmaceuticals and Personal Care Products in the Surface Water of the Middle and Lower Reaches of the Yellow River (Henan Section). *J. Hazard. Mater.* **2023**, *443*, 130369, doi:10.1016/j.jhazmat.2022.130369.
- 12. Guo, X.; Song, R.; Lu, S.; Liu, X.; Chen, J.; Wan, Z.; Bi, B. Multi-Media Occurrence of Antibiotics and Antibiotic Resistance Genes in East Dongting Lake. *Front. Environ. Sci.* **2022**, *10*, 866332, doi:10.3389/fenvs.2022.866332.
- 13. Zou, S.; Huang, F.; Chen, L.; Liu, F. The Occurrence and Distribution of Antibiotics in the Karst River System in Kaiyang, Southwest China. *Water Supply* **2018**, *18*, 2044–2052, doi:10.2166/ws.2018.026.
- 14. Gopal, C.M.; Bhat, K.; Ramaswamy, B.R.; Kumar, V.; Singhal, R.K.; Basu, H.; Udayashankar, H.N.; Vasantharaju, S.G.; Praveenkumarreddy, Y.; Shailesh; et al. Seasonal Occurrence and Risk Assessment of Pharmaceutical and Personal Care Products in Bengaluru Rivers and Lakes, India. *J. Environ. Chem. Eng.* **2021**, *9*, 105610, doi:10.1016/j.jece.2021.105610.
- 15. Feng, J.; Liu, Q.; Ru, X.; Xi, N.; Sun, J. Occurrence and Distribution of Priority Pharmaceuticals in the Yellow River and the Huai River in Henan, China. *Environ. Sci. Pollut. Res.* **2020**, *27*, 16816–16826, doi:10.1007/s11356-020-08131-6.
- 16. Corrêa, J.M.M.; Sanson, A.L.; Machado, C.F.; Aquino, S.F.; Afonso, R.J.C.F. Occurrence of Contaminants of Emerging Concern in Surface Waters from Paraopeba River Basin in Brazil: Seasonal Changes and Risk Assessment. *Environ. Sci. Pollut. Res.* **2021**, *28*, 30242–30254, doi:10.1007/s11356-021-12787-z.
- 17. Tang, J.; Sun, J.; Wang, W.; Yang, L.; Xu, Y. Pharmaceuticals in Two Watersheds in Eastern China and Their Ecological Risks. *Environ. Pollut.* **2021**, *277*, 116773, doi:10.1016/j.envpol.2021.116773.
- 18. Domínguez-García, P.; Rodríguez, R.R.; Barata, C.; Gómez-Canela, C. Presence and Toxicity of Drugs Used to Treat SARS-CoV-2 in Llobregat River, Catalonia, Spain. *Environ. Sci. Pollut. Res.* **2023**, *30*, 49487–49497, doi:10.1007/s11356-023-25512-9.
- 19. Zhang, Z. Impacts of COVID-19 Pandemic on the Aquatic Environment Associated with Disinfection Byproducts and Pharmaceuticals. *Sci. Total Environ.* **2022**.