1. Let function f be defined by the polynomial below:

$$f(x) = 9x^4 - 2x^3 - 8x^2 - 7x - 3$$

Draw lines that match each function reflection with its polynomial:

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x)	h(x)
1	6	4	2
2	4	2	6
3	9	8	7
4	3	3	9
5	7	5	3
6	5	9	8
7	1	6	4
8	2	7	5
9	8	1	1

3. Evaluate h(7).

$$h(7) = 4$$

4. Evaluate $g^{-1}(9)$.

$$g^{-1}(9) = 6$$

5. By filling more rows of the table, it is possible to make function h **odd**. If that were done, what would be the value of h(-8)?

If function h is odd, then

$$h(-8) = -5$$

6. By filling more rows of the table, it is possible to make function f even. If that were done, what would be the value of f(-5)?

If function f is even, then

$$f(-5) = 7$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 - x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^3 - (-x)$$

 $p(-x) = x^3 + x$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^3 + x)$$
$$-p(-x) = -x^3 - x$$

c. Is polynomial p even, odd, or neither?

odd

d. Explain how you know the answer to part c.

We see that p(x) = -p(-x) for all x because p(x) and -p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an odd function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x+5}{6}$$

a. Evaluate f(85).

step 1: add 5 step 2: divide by 6

$$f(85) = \frac{(85) + 5}{6}$$
$$f(85) = 15$$

b. Evaluate $f^{-1}(8)$.

step 1: multiply by 6 step 2: subtract 5

$$f^{-1}(x) = 6x - 5$$
$$f^{-1}(8) = 6(8) - 5$$
$$f^{-1}(8) = 43$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(6).

$$b(6) = 4$$

b. Evaluate $b^{-1}(5)$.

$$b^{-1}(5) = 8$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-8	8	-8	8
-1	-9	9	9	-9
0	0	0	0	0
1	9	-9	-9	9
2	-8	8	-8	8

b. Is function f even, odd, or neither?

neither

c. How do you know the answer to part b?

Function f is neither because neither column -f(-x) nor column f(-x) matches column f(x) exactly.