Experiment 1:

Pytorch Introduction and Network Construction

Yanming Guo

College of Systems Engineering

Deep Learning Frameworks

theano

Deep Learning Frameworks

- Pytorch: Dynamic Computation Graph
- Tensorflow: Static Computation Graph
- Pytorch: easy to read, just like python
- Active Community: supported by Facebook

会议	PT 2018	PT 2019	PT增长
CVPR	82	280	240%
NAACL	12	66	450%
ACL	26	103	296%
ICLR	24	70	192%
ICML	23	69	200%

TF 2019	TF增长
125	7.7%
21	-38.2%
33	-2.9%
53	-1.9%
53	32.5%
	125 21 33 53

How to learn Pytorch?

- Understand the basis of Deep Leaning
- Learn the Pytorch tutorial
- Build a simple neural network
- Run the open source Pytorch projects
- · Read deep learning papers, and implement their models
- Implement your own model

Overview

Purpose

- ✓ Learn the basic operation of Pytorch
- ✓ Build a simple neural network

Content

- Basic operation of Pytorch
- Build a 2-layer neural network with numpy Pre Done
- From numpy to Tensor
- Tensor + autograd
- Tensor + autograd + nn
- Tensor + autograd + nn + optim
- Tensor + autograd + nn + optim + class

Focus

Content 1 - Basic Operation of Pytorch

• Tensor的构建

- ✓ 构建一个未初始化的5×3矩阵
- ✓ 构建一个随机初始化的矩阵
- ✓ 构建一个全部为0,类型为long的矩阵
- ✓ 从数据直接构建tensor
- ✓ 从一个已有的tensor构建另一个tensor
- ✓ 产生跟原来数据相同形状的tensor

• Tensor的操作

- ✓ 加法运算
- ✓ Index 操作
- ✓ Resize 操作 (.view()函数)
- ✓ Tensor取值操作 (.item()函数)

Content 2 - Build a 2-layer NN with numpy

- 用Numpy构建一个全连接神经网络
 - -- 包含一个隐含层,使用ReLU激活函数,没有bias,使用L2 Loss

•
$$h = W_1 X$$

•
$$a = max(0, h)$$

•
$$y_{hat} = W_2 a$$

Content 3 - From numpy to Tensor

- 用Tensor替换Numpy构建该神经网络
 - -- 包含一个隐含层,使用ReLU激活函数,没有bias,使用L2 Loss

Other Contents

- ✓ Tensor + autograd 利用autograd直接计算梯度
- ✓ Tensor + autograd + nn 利用nn库来定义神经网络
- ✓ Tensor + autograd + nn + optim 利用optim来自动更新参数
- ✓ Tensor + autograd + nn + optim + class 利用定义类的方式来重写该神经网络

Thank You!!