Electric Vehicle Presence Discovery

Krystin Sinclair

Which homes have Electric Vehicles?

US has 1 million Electric Vehicles in 2018 and there is an expansion in electric vehicle production

Electric Vehicles require energy to charge

Utilities companies need to know how much energy homes will be consuming

Knowing who has this type of car can inform utilities

^{*}Joselow, Maxine. "The U.S. Has 1 Million Electric Vehicles, but Does It Matter?" Scientific American 12.10.2018

Data

Data Port's Pecan Street

- Target: EV
- Electricity
 - All Dataid that joined program prior to 1/1/2016 and stayed through 12/31/2018
 - Grouped electricity egauge by Dataid
- Dataid information
 - House construction year
 - o PV
 - Square Footage
 - Building Type
 - Location

Source: Pecan Street Inc

Exploratory Data Analysis: Categorical

Exploratory Data Analysis: Continuous

What makes EV homes different?

	EV	nonEV
Mean average annual energy use	14,454	11,037
Total Square Footage	2475	2191
Mean House Age	25(1994)	31(1989)

Odds Ratios

The odds of having an electric vehicle among those with single family home are .57 times the odds of having an electric vehicle among those with other housing types.

The odds of having an electric vehicle among those with PV are 5.93 times the odds of having an electric vehicle among those without PV.

The odds of having an electric vehicle among those that live in Austin are 2.3 times the odds of having an electric vehicle among those that live elsewhere.

Feature Engineering

DF1 = Original

*DF2 = removed outliers, converted construction year to age of home, total energy use for 3 years

DF3 = dropped use and sqft and created use/sqft

T-test on mean of EV and nonEV house energy use

Random Forest to see feature importance

*DF2 Best Features - tried different ratios from oversampling using random forest accuracy to identify best

T- test on total energy use

T value = 3.2134282629049014, p Value = 0.0020466070952163836

Feature Importance

Models

Pipeline

- Standardize
- feature selection using feature importance from random forest threshold,
- Classifiers
 - o Random Forest, Logistic Regression, SVM, Neural Network, KNN
- 5-fold cross validation
- hyperparameter tuning
 - Scored
 - Accuracy
 - Recall
 - Precision
 - Specificity
 - f:

Models - Oversampling in preprocessing

Classifier	Accuracy	Specificity	Sensitivity	Recall	precision
Random Forest	81%, 97%	96%, 100%	94%, 96%	94%, 96%	96%, 100%
Logistic Regression	71%, 76%	68%, 71%	74%, 81%	74%, 81%	70%, 74%
KNN	79%, 95%	100%, 100%	89%, 92%	89%, 91%	100%, 100%
SVM	83%, 96%	95%, 93%	99%, 100%	99%, 100%	95%, 94%
Neural Network	75%, 81%	69%, 73%	85%,88%	85%, 88%	73%, 77%

Oversampling only on train dataset

Classifier	Accuracy	Specificity	f1	Recall	precision
Random Forest	81%, 74%	95%, 85%	93%, 33%	92%, 30%	95%, 36%
Logistic Regression	72%, 67%	62%, 67%	77%, 47%	86%, 69%	69%, 36%
KNN	75%, 70%	100%, 84%	92%, 25%	85%, 23%	100%, 27%
SVM	80%, 70%	95%, 83%	97%, 17%	100%,15%	95%, 20%
Neural Network	78%, 69%	70%, 71%	83%, 45%	92%, 61%	75%, 36%

DF4 - daily energy use (Jan 2017) number of appliances and outlets undersampling

Train overfits with 100% accuracy and the test does not predict that anyone has EV

Do you charge your electric vehicle at home?

Survey Results

- Most EV owners do not charge their electric vehicles at home
- Only 13 program participants said that they always charge their EV at home

Future Works

Business Purpose

Compare homes before and after EV purchase

Introduce to utilities companies

Focus Groups to ask EV owners why they chose to go electric

Provide insight into consumers

Gain more data from EV owners who charge at home

 Incorporate into method of predicting overall energy usage

Data Limitations & Lessons Learned

Class Imbalance

Oversampling Techniques - used SMOTE package - caused bias

Time Component

Converted dataframe from messy pecan street to typical classification problem

Data Science Lifecycle

Iterations of models and features

Electric Vehicle Presence Discovery

Appendix

Income

Education Level

PV Satisfaction

Individuals Responsible for energy

reduction

Undersampling only on train dataset

Classifier	Accuracy	Specificity	f1	Recall	precision
Random Forest	48%, 52%	48%, 47%	76%, 76%	93%, 69%	64%, 26%
Logistic Regression	52%, 56%	52%, 53%	68%, 68%	76%, 69%	61%, 28%
KNN	62%, 52%	82%, 51%	75%, 75%	83%, 54%	69%, 23%
SVM	48%, 53%	48%, 47%	63%, 63%	69%, 77%	57%, 28%
Neural Network	62%, 65%	62%, 63%	75%, 75%	83%, 69%	69%, 33%

Models prior to train test split

Classifier	Accuracy	Specificity	f1	Recall	precision
Random Forest	82%	96%	95%	94%	96%
Logistic Regression	71%	68%	72%	75%	70%
KNN	78%	100%	95%	90%	100%
SVM	83%	95%	97%	99%	95%
Neural Network	75%	69%	80%	85%	74%

Exploratory Data Analysis Continuous

T-test on average hourly data

T Value = 2.7922847933801256, p Value = 0.007123712930791133

Feature Engineering

Using SMOTE (randomstate=12, ratio =1.0)

Optimization terminated successfully.

Current function value: 0.535040

Iterations 6

Results: Logit

Model:	Logit	Pseudo R-squared:	0.228
Dependent Variable:	У	AIC:	264.5388
Date:	2019-03-29 08:24	BIC:	285.3218
No. Observations:	236	Log-Likelihood:	-126.27
Df Model:	5	LL-Null:	-163.58
Df Residuals:	230	LLR p-value:	1.1131e-14
Converged:	1.0000	Scale:	1.0000
No Itonations	6 0000		

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
x1	0.4958	0.2597	1.9091	0.0563	-0.0132	1.0049
x2	-0.5296	0.1859	-2.8494	0.0044	-0.8940	-0.1653
x 3	0.2755	0.2031	1.3563	0.1750	-0.1226	0.6736
x4	1.4437	0.2678	5.3904	0.0000	0.9188	1.9687
x5	-0.5460	0.2504	-2.1803	0.0292	-1.0368	-0.0552
x6	0.0939	0.2549	0.3686	0.7124	-0.4056	0.5935

Random Forest: Accuracy on train: 0.945
Accuracy on test: 0.662

T-test on energy use/ square foot

T value = 2.05

P value = 0.04

Using DF3 SMOTE (random_state =12, Ratio=1

Random Forest: Accuracy on train: 0.923

Accuracy on test: 0.672

Optimization terminated successfully.

Current function value: 0.582444

Iterations 6

Results: Logit

Model: Logit Pseudo R-squared: 0.160 Dependent Variable: y ATC: 268,6052 Date: 2019-04-05 15:05 BIC: 285,6186 No. Observations: Log-Likelihood: -129.30 Df Model: LL-Null: -153.88 Df Residuals: 217 LLR p-value: 5.4272e-10 Converged: 1.0000 Scale: 1.0000 No. Iterations: 6.0000

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
x1	-0.6910	0.1988	-3.4765	0.0005	-1.0806	-0.3014
x2	0.2710	0.1887	1.4356	0.1511	-0.0990	0.6409
x 3	1.2656	0.2588	4.8911	0.0000	0.7585	1.7728
x4	0.6703	0.2358	2.8429	0.0045	0.2082	1.1323
x5	0.0246	0.1706	0.1440	0.8855	-0.3098	0.3590

DF2 = Best Model

Optimization terminated successfully.

Current function value: 0.537111

Iterations 6

Results: Logit

Model: Pseudo R-squared: 0.225 Logit Dependent Variable: y AIC: 256,9224 Date: 2019-03-29 08:36 BIC: 277,4985 Log-Likelihood: No. Observations: 228 -122.46 Df Model: 5 LL-Null: -158.04 Df Residuals: 222 LLR p-value: 5.8975e-14 Converged: Scale: 1.0000 1.0000

No. Iterations: 6.0000

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
x1	0.5638	0.2250	2.5052	0.0122	0.1227	1.0048
x2	-0.5998	0.1947	-3.0800	0.0021	-0.9815	-0.2181
x 3	0.1521	0.1884	0.8073	0.4195	-0.2172	0.5214
x4	1.1648	0.2326	5.0075	0.0000	0.7089	1.6207
x5	0.1686	0.2356	0.7156	0.4742	-0.2931	0.6303
x6	0.1808	0.2206	0.8199	0.4123	-0.2515	0.6132

Using DF2 80,20

Random Forest: Accuracy on train: 0.860
Accuracy on test: 0.774

Optimization terminated successfully.

Current function value: 0.649026

Iterations 5

Results: Logit

Model:	Logit	Pseudo R-squared:	-0.287
Dependent Variable:	car1_y	AIC:	197.6213
Date:	2019-04-05 15:07	BIC:	215.3984
No. Observations:	143	Log-Likelihood:	-92.811
Df Model:	5	LL-Null:	-72.109
Df Residuals:	137	LLR p-value:	1.0000
Converged:	1.0000	Scale:	1.0000
No. Iterations:	5.0000		

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
x1	0.2904	0.2279	1.2742	0.2026	-0.1563	0.7372
x2	-0.2513	0.1940	-1.2955	0.1951	-0.6316	0.1289
x3	0.0113	0.1898	0.0597	0.9524	-0.3607	0.3833
x4	0.5185	0.2196	2.3610	0.0182	0.0881	0.9489
x5	0.0395	0.2386	0.1657	0.8684	-0.4281	0.5071
x6	0.1258	0.2220	0.5669	0.5708	-0.3092	0.5609

Using DF2 70,30

Random Forest: Accuracy on train: 0.909
Accuracy on test: 0.790

Optimization terminated successfully.

Current function value: 0.539426

Iterations 6

Results: Logit

=============			
Model:	Logit	Pseudo R-squared:	0.128
Dependent Variable:	у	AIC:	190.0107
Date:	2019-04-05 15:15	BIC:	208.6464
No. Observations:	165	Log-Likelihood:	-89.005
Df Model:	5	LL-Null:	-102.03
Df Residuals:	159	LLR p-value:	8.7194e-05
Converged:	1.0000	Scale:	1.0000
No. Iterations:	6.0000		

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
x1	0.0000	0.0000	2.0416	0.0412	0.0000	0.0001
x2	-1.9402	0.6873	-2.8229	0.0048	-3.2874	-0.5931
x3	-0.9273	0.5792	-1.6009	0.1094	-2.0625	0.2080
x4	1.8820	0.5894	3.1929	0.0014	0.7268	3.0373
x5	-0.0003	0.0003	-1.1238	0.2611	-0.0009	0.0002
х6	-0.0062	0.0099	-0.6246	0.5322	-0.0257	0.0133

Using DF2 60,40

Random Forest: Accuracy on train: 0.904
Accuracy on test: 0.790

Optimization terminated successfully.

Current function value: 0.559152

Iterations 6

Results: Logit

===========		==========	=======
Model:	Logit	Pseudo R-squared:	0.166
Dependent Variable:	y	AIC:	222.2412
Date:	2019-04-05 15:18	BIC:	241.6598
No. Observations:	188	Log-Likelihood:	-105.12
Df Model:	5	LL-Null:	-126.02
Df Residuals:	182	LLR p-value:	6.4472e-08
Converged:	1.0000	Scale:	1.0000
No. Iterations:	6.0000		

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
x1	0.0000	0.0000	2.1199	0.0340	0.0000	0.0001
x2	-2.1856	0.6940	-3.1491	0.0016	-3.5459	-0.8253
х3	-0.9205	0.5711	-1.6118	0.1070	-2.0399	0.1988
x4	2.2322	0.5854	3.8134	0.0001	1.0850	3.3795
x5	-0.0002	0.0003	-0.7090	0.4783	-0.0007	0.0003
х6	-0.0071	0.0098	-0.7215	0.4706	-0.0263	0.0122

