Module 3 - Systems of Linear Equations

ME3001 - Mechanical Engineering Analysis

Mechanical Engineering
Tennessee Technological University

Topic 4 - Gaussian Elimination

Topic 4 - Gaussian Elimination

- Various Row-Reduction Methods
- Gaussian Elimination Technique
- A Generalized Algorithm
- —

Various Row-Reduction Methods

The Gaussian Elimination method has many variations. You may have used a different version in linear algebra, but that is fine. This method in generalized so that is can be automated easily with a computer program.

The Gaussian Elimination consists of two main steps. Some variations of the method combine the two steps into a single procedure.

- Forward Elimination of Unknowns
- ② Backwards Substitution

Step 1: Forward Elimination of Unknowns

- Eliminate x_1 from equations 2 to n
 - Eliminate x_1 from equation 2
 - define the eliminating factor f_{21} as a_{21}/a_{11}
 - redefine a_{21} as $a_{21} a_{11} * f_{21}$
 - redefine a_{22} as $a_{22} a_{12} * f_{21}$
 - . . .
 - redifine a_{2n} as $a_{2n} a_{1n} * factor$
 - Eliminate x_1 from equation 3
 - define the eliminating factor f_{31} as a_{31}/a_{11}
 - redefine a_{31} as $a_{31} a_{11} * f_{31}$
 - redefine a₃₂ as a₃₂ a₁₂ * f₃₁
 - . . .
 - redefine a_{3n} as $a_{3n} a_{1n} * f_{31}$

- Eliminate x_2 from equations 3 to n
 - Eliminate x_2 from equation 3
 - define the eliminating factor f_{32} as a_{32}/a_{22}
 - redefine a_{32} as $a_{32} a_{22} * f_{32}$
 - redefine a_{33} as $a_{33} a_{23} * f_{32}$
 - redefine a_{3n} as $a_{3n} a_{2n} * f_{32}$
 - . . .
- Eliminate x_{n-1} from equation n
 - define the eliminating factor $f_{n,n-1}$ as $a_{n,n-1}/a_{n-1,n-1}$
 - redefine $a_{n,n-1}$ as $a_{n,n-1} a_{n-1,n-1} * f_{n,n-1}$

Step 2: Backwards Substitution

- Solve Equations n through 1
 - Solve for x_n as $\frac{b_n}{a_{n,n}}$
 - Solve for x_{n-1} as $\frac{b_{n-1}-(a_{n-1,n}x_n)}{a_{n-1,n-1}}$
 - Solve for x_{n-2} as $\frac{b_{n-2}-(a_{n-2,n-1}x_{n-1})-(a_{n-2,n}x_n)}{a_{n-2,n-2}}$
 - .
 - Solve for x_1 as $\frac{b_1-(a_{12}x_2)-...-(a_{1,n-1}x_{n-1})-(a_{1,n}x_n)}{a_{1,1}}$

A Generalized Algorithm

Step 1: Forward Elimination

for k from 1 to n-1

for i from k+1 to n

fact=
$$a_{i,k}/a_{k,k}$$

for j from k to n

 $a_{i,j} = a_{i,j} - fact \times a_{k,j}$

end

 $b_i = b_i - fact \times b_k$

end

end

Step 2: Backwards Substitution

$$x_n = b_n/a_{n,n}$$

for i from n-1 to 1
$$x_i = \left(b_i - \sum_{j=i+1}^n \left(a_{i,j}x_j\right)\right)/a_{i,i}$$

end