19 BUNDESREPUBLIK

[®] Pat ntschrift

[®] DE 2024051 C3

(5) Int. Cl. 4: A61 K 7/00

DEUTSCHES **PATENTAMT**

Henkel KGaA, 4000 Düsseldorf, DE

(73) Patentinhaber:

Akt nzeichen: P 20 24 051.1-41 Anmeldetag: 16. 5.70 Offenlegungstag: 9. 12. 71 Bekanntmachungstag: 4. 10. 79

Veröffentlichungstag

der Patenterteilung: 7. 5.86

Patentschrift weicht von Auslegeschrift ab

@ Erfinder:

Kroke, Hermann, Dr., 4006 Erkrath, DE, Jung, Eva-Maria, 4000 Düsseldorf, DE

6 Entgegenhaltungen:

DE-PS 6 05 973 DE-AS 14 67 816 **DE-OS** 14 67 816 BE 7 03 052 US 31.24 602 US 26 17 754 US 26 17 754

Parfümerie und Kosmetik, 50. Jg., Nr. 2, 1969, S. 53;

Nonionic Surfactants, 1967, S. 270 ff.;

Chemical Abstracts, Bd. 54, P7.177c, 1960;

Chemical Abstracts, Bd. 60, P4.013e, 1964;

Chemical Abstracts, Bd. 62, P9.311f, 1965; Chemical Abstracts, Bd. 66, P67.066g, 1967;

(S) Verwendung der Veresterungsprodukte von Glycerin-Äthylenoxid-Addukten mit Fettsäuren als Ruckfettungsmittel in kosmetischen Zubereitungen

Patentanspruch:

Verwendung der Veresterungsprodukte von Äthylenoxidanlagerungsverbindungen aus Glycerin 5 und 4-20 Mol Äthylenoxid je M l Glycerin mit Fettsäuren einer Kettenlänge von 8-18 K hlenstoffatomen in einem Verhältnis v n 1-2 M l Fettsäure auf 1 Mol Glycerin-Äthylenoxid-Addukt als Rückfettungsmittel in kosmetischen Zubereitungen, insbesondere k smetischen Reinigungsmitteln.

Gegenstand der Erfindung ist die Verwendung von Glycerin-Äthylenoxid-Addukten mit langkettigen Fettsäuren als Rückfettungsmittel in kosmetischen Zubereitungen, insbesondere kosmetischen Reinigungsmitteln.

Kosmetische Reinigungsmittel wie Shampoos, Schaumbäder, Toiletteseifen und ähnliche Produkte bringen bei wiederholtem Gebrauch eine mehr oder 25 minder starke Entfettung der Haut mit sich. Besonders stark ausgeprägt ist diese Erscheinung, wenn es sich um Reinigungsmittel auf Basis synthetischer, oberflächenaktiver Substanzen wie Alkylbenzolsulfonate, Fettaikohoisulfate, Olefinsulfonate, Fettalkoholäthersulfate 10 und anderer Tenside handelt. Es hat daher nicht an Versuchen gefehlt, diese Entfettung der Haut durch eine Rücksettung mittels geeigneter Zusätze zu den Reinigungsmitteln wieder rückgängig zu machen. Dabei mußten aber andere Nachteile in Kauf genommen 35 werden, denn die allgemein als Hautfettungsmittel in Frage kommenden Produkte wirken sich ungünstig auf die Schaumeigenschaften der Reinigungsmittel aus und zeigen in kosmetischen Zubereitungen auf Basis von Alkohol-Wasser-Gemischen nur eine ungenügende 40 Löslichkeit

Es wurde nun gefunden, daß sich die geschilderten

als Rückfettungsmittel in k smetischen Zubereitungen, Veresterungsprodukte von Äthylenoxidanlagerungsvrbindung n aus Glycerin und 4—20 Mol Äthylenoxid je M ! Glycerin mit F ttsäuren iner Kettenlänge von 8—18 Kohlenstoffatomen in einem Verhältnis von 1—2 Mol Fettsäure auf 1 M ! Glycerin-Äthylen xid-Addukt verwendet.

Am besten haben sich als Rücks ttungsmittel V resterungsprodukte von Äthylenoxidanlagerungsverbindungen aus Glycerin und 7-15 M l Äthylen xid je M l Glycerin mit Fettsäuren einer Kettenlänge von 8 bis 18 Kohlenstoffatomen in einem Verhältnis von 1 Mol Fettsäure auf 1 Mol Glycerin-Äthylenoxid-15 Addukt bewährt.

Die Herstellung der als Zwischenprodukte dienenden Äthylenoxidanlagerungsverbindungen erfolgte in allgemein bekannter Weise durch Umsetzung von Glycerin mit Äthylenoxid in den jeweils gewünschten Verhältnissen unter alkalischer Katalyse mittels Natriumathylat Zur Weiterverarbeitung wurden die erhaltenen Äthylenoxidanlagerungsverbindungen in **Oblicher** Weise im Molverhältnis 1:1 bzw. 1:2 mit Fettsäuren der Kettenlänge von 8 bis 18 Kohlenstoffatomen unter Verwendung von Isopropyltitanat als Veresterungskatalysator umgesetzt. Die erhaltenen Veresterungsprodukte stellen hellfarbige bis gelbliche niedrigviskose Flüssigkeiten mit Olcharakter bis schmalzartige Produkte schwacher Eigenfärbung dar.

Die in den kosmetischen Zubereitungen eingesetzten Mengen an erfindungsgemäßen Rückfettungsmitteln können je nach Produkt und seiner entfettenden
Wirkung in sehr weiten Grenzen schwanken und
werden sich im allgemeinen zwischen 2 bis 50 Gew.-%,
zweckmäßig 5 bis 25 Gew.-% bewegen. Noch höhere
Zusätze sind möglich, wenn die erfindungsgemäßen
Veresterungsprodukte gleichzeitig in ihrer Eigenschaft
als Tenside zum Einsatz gelangen, jedoch wird diese
Verwendung in der Mehrzahl der Fälle wenig zweckmäßig sein.

Als erfindungsgemäß zu verwendende Rückfettungsmittel sind z. B. zu nennen Veresterungsprodukte aus

```
dem Addukt von 1 Mol Glycerin + 4 Mol Äthylenoxid mit 1 Mol Kokosfettsäure C<sub>6-18</sub>.

dem Addukt von 1 Mol Glycerin + 6 Mol Äthylenoxid mit 2 Mol Kokosfettsäure C<sub>6-18</sub>.

dem Addukt von 1 Mol Glycerin + 7 Mol Äthylenoxid mit 1 Mol Kokosfettsäure C<sub>6-18</sub>.

dem Addukt von 1 Mol Glycerin + 8 Mol Äthylenoxid mit 1 Mol Ölsäure,

dem Addukt von 1 Mol Glycerin + 9 Mol Äthylenoxid mit 1 Mol Palmkernfettsäure,

dem Addukt von 1 Mol Glycerin + 10 Mol Äthylenoxid mit 1 Mol Talgfettsäure,

dem Addukt von 1 Mol Glycerin + 10 Mol Äthylenoxid mit 2 Mol Erdnußölfettsäure,

dem Addukt von 1 Mol Glycerin + 12 Mol Äthylenoxid mit 1 Mol Kokosfettsäure,

dem Addukt von 1 Mol Glycerin + 15 Mol Äthylenoxid mit 1 Mol Palmkernfettsäure,

dem Addukt von 1 Mol Glycerin + 15 Mol Äthylenoxid mit 1 Mol Palmkernfettsäure,

dem Addukt von 1 Mol Glycerin + 15 Mol Äthylenoxid mit 2 Mol Talgfettsäure,
```

Aus der amerikanischen Patentschrift 26 17 754 sind bereits kosmetische Cremes bekannt, die als nichtionogene Emulgatoren Fettsäuremonoester eines Propylenglykols enthalten, der mit Polyäthylenglykol 60 einer Kettenlänge von 30-40 C-Atomen veräthert ist. Hierbei handelt es sich um ein Produkt mit typischer Tensidstruktur, dessen ausgeprägtes Merkmal die Oberflächenaktivität darstellt, die bei den erfindungsgemäß verwendeten Verbindungen, wo es um das 65 Problem der Fettung bei ausreichender Wasserlöslichkeit geht, nicht erwünscht ist.

Es sind ferner aus der deutschen Offenlegungsschrift

14 67 816 Haut- und Haarbehandlungsmittel mit einem Gehalt an Kondensationsprodukten von Mischungen von Partialglyceriden gesättigter pflanzlicher Fettsäuren einer Kettenlänge von 8—14 Kohlenstoffatomen mit 2—8 Mol Äthylenoxid pro Hydroxylgruppe des Partialglycerides bekannt. Die Veresterung der Fettsäuren ist bei diesen Produkten direkt an der Hydroxylgruppe des Glycerins erf lgt. Die Einführung der Äthylen xidgruppen erfolgte nachträglich durch Verätherung mit den noch freien Hydroxylgruppen der Partialglyceride. Die erfindungsgemäß zu v rwendenden Produkte sind hi rvon strukturmäßig grundsätzlich

verschieden, da bei ihnen die Fettsäure nicht direkt an der Hydroxylgruppe des Glycerins verestert ist, sondern an einer Äthylenoxidgruppe, die ihrers its am Glycerin über eine Ätherbrücke gebunden ist. Die sich aus dieser strukturellen Verschiedenheit ergebenden Vorteile der strukturellen Verschiedenheit ergebenden vorteile der erfindungsgemäß zu v rwendenden Produkte sollen mit senden Vergleichsversuchen aufgezeigt werden.

Das gemäß vorliegender Anmeldung für die Vergleichsversuche eingesetzte Produkt war ein Teilester der durch Anlagerung von 7,4 Mol 10 Äthylenoxid an 1 Mol Glycerin und nachträgliche Veresterung von 1 Mol dieses Adduktes mit 1 Mol Kokosfettsäure C₈₋₁₈ erhalten worden war.

Das eingesetzte Vergleichsprodukt ist das Anlagerungsprodukt von Äthylenoxid an einen Partialester aus 15 Glycerin und Fettsäuren der Kettenlängen C₆₋₁₈.

Bei der Vergleichsversuchen wurde an einzelnen kosmetischen Formulierungen das Schaumverhalten nach der Schlagschaummethode nach der Deutschen Industrie Norm 53 902 bei 45°C und 10° hartem Wasser 20 und die Viskosität der Formulierungen jeweils mit dem eigenen Produkt und Vergleichsprodukt geprüft. Bei der Schlagschaummethode wird der Schaum durch Schlagen der Lösungen in einem Standzylinder mit einer an einem Stiel befestigten gelochten Platte erzeugt. Das 25 Standgefäß besteht aus einem Meßzylinder von 1 Liter Inhalt, der Schaumstempel aus einer Lochscheibe von 55 mm Durchmesser mit 40 Löchern von 4,5 mm Durchmesser. Die Lochscheibe ist in ihrem Mittelpunkt an einem Stab von 50 cm Länge und 5 mm Durchmesser 10 befestigt. Zur Erzeugung des Schaums wird der Stempel innerhalb von 30 Sekunden 30mal auf und ab bewegt. 30 Sekunden nach Beendigung des Schlagens werden die Schaumvolumen an der Teilung der Meßzylinder abgelesen, wobei die Mengen der in Schaum is überfuhrten Flüssigkeit unberücksichtigt bleiben. Für die Messung wurden die Meßzylinder mit 200 ml der zu vergleichenden Lösungen beschickt, die die verscheidenen Mengen der zu prüfenden Substanz in 10° hartem Wasser gelöst enthielten. Bei den Versuchen 40 wurden die in den nachstehenden Tabellen aufgeführten Werte für die Schaumentwicklung und den Schaumzerfall pro Minute gemessen, wobei als Vergleichssubstanzen nicht die Produkte selbst, sondern diese enthaltende kosmetische Zubereitungen verwendet 45 wurden, da dies zu einem praxisgerechteren Bild führt. Ferner wurden die Viskositäten der Zubereitungen unter Einsatz der beiden zu vergleichenden Prodükte gemessen.

Duschbadgrundrezeptur, rückfettend 1	•	Ь
Natriumlauryl- äthersulfat 27 – 28% Waschaktivsubstanz	30,0 GewT.	30,0 GewT.
Produkt nach vor- liegender Anmeldung	5,0 GewT.	_
Vergleichsprodukt	_	5,0 Gew T.
Natriumchlorid	4,5 GewT.	4,5 GewT.
Parfüm	2.0 GewT.	2,0 GewT.
Wasser	58,5 GewT.	58,5 GewT.

Die Viskosität der Zubereitungen betrug bei Raumtemperatur:

la = 563 cP lb = 12 cP

Schaumverhalten

	Schaumvolumen in cm³ bei folgenden Zusatz- mengen an Zubereitung			Schaumzerfall in cm³ pro Minute bei folgenden Zusatzmengen an Zubereitung		
	0.5 g/l	1 g/l	2 g/l	0.5 g	/l 1 g/l	2 g/j
Zubereitung la	170	220	390	2.5	1.5	4.0
Zubereitung Ib	160	340	360	2,0	5,5	4,5
Duschbadrezeptur, rückfettend II	8			b		
Natriumlauryl- äthersulfat 27 – 289	5 %	0,0 G	ewT.	50),0 Ge	wT.
Kokosfettsäure- diäthanolamid		3,0 G	ewT.	3	,0 Gev	vT.
Produkt nach vor- liegender Anmeldu	ng 10	0,0 G	wT.	-		
Vergleichsprodukt	_	•		10	.0 Gev	vT.
Parfüm Wasser		1,0 Ge 5.0 Ge			.0 Gev .0 Gev	

Die Viskosität der Zubereitungen betrug bei Raumtemperatur:

IIa = 634 cP IIb = 34 cP

Schaumverhalten

•	Schaumvolumen in cm ³			Schaumzerfall in cm³/Min.		
	0,5 g	/11 g/l	2 g/l	0,5 g	/11 g/l	2 g/
Zubereitung IIa Zubereitung IIb	190 260	310 450	590 570	1,5 2,0	2,0 4,0	7,5 8,0
Ölschaumbadgrund- rezeptur, rückfettend		8		b		
Natriumlauryl- äthersulfat 27 – 289 Dehydag	6	55,0 G	ewT.	5:	5,0 Gev	wT.
Produkt nach vor- liegender Anmeldur	ng	25,0 G	ewT.	-	-	
Vergleichsprodukt				2	5,0 Gev	v.·T.
Parfūm Wassas		3,0 G		3	3,0 Gev	vT.
Wasser		17,0 Ge	wT.	17	,0 Gev	vT.

Die Viskosität der Zubereitungen betrug bei Raumtemperatur:

> IIIa - 1739 cP IIIb - 118 cP

Schaumverhalten

	Scha in en	nusoln	men	Schaumzerfall in cm³/Min.		
65	0,5 g/	11 g/1	2 g/1	0,5 g	/118/1	2 g/1
Zubereitung IIIa Zubereitung IIIb	220 280	320 500	560 570	6,0 6.0	11,5	22 20

						3/1- 240 5						
Natriumlauryl-	30,0 G	ewT.	30,0 G	ewT.		Via = 718 cP Vib = 17 cP					•	
athersulfat 27 – 289	-	_			5							
Produkt nach v r-	10,0 G	ewT.	_			Schaumverhalten						
liegender Anmeldu	ng											
Vergleichsprodukt	_		10,0 Ge	ewT.				umvolu	ımen	Schi	umzeri	
Natriumchlorid	1,0 G	ewT.	1.0 Ge	ewT.			in cn	U3		in a	m³/Min	
Parfüm	2,0 G	ewT.	2,0 Ge	w.T.	10		0,5 g/	1 1 g/l	2 g/l	0.5 =	/1 1 g/ 1	2 =/
Wasser	57,0 G	ewT	57,0 Ge									
	,.	• • • • • • • • • • • • • • • • • • • •	J.,5 J.			Zubereitung Via	140	210	330	2	3,5	6,5
5						— • • • • • • • • • • • • • • • • • • •	150	260	390	ī	2	
Die Viskosität d	er Zubereiu	ungen b	etrug bei	Raum-				200	330	•	2	3,5
temperatur:	-		•		15	Kinder-Ölhaarwäsche						
					-	Grundrezeptur VII	•	4		Ь	1	
IVa - 16 cP												
IVb = 4 cP						Gemisch sulfatierter		50,0 G	-			
						Ester und Äther	r	3U,U C	EW 1.	. 5	0,0 Ge	wT.
Schaumverhalten					•	von Fettalkoholen						
					20	28-30%						
	Schaumvolui	men S	Schaumzerf	fall								
	in cm³		n cm³/Min			Produkt nach vor-		10,0 G	ewT.	-	-	
	0,5 g/l i g/l	2 g/1 0	1,5 g/l 1 g/l	2 ~ 4		liegender Anmeldun	g					
						Vergleichsprodukt		-		19	0,0 Ge	wT.
Zubereitung IVa	150 230	370 1	.5 5,5	10,5	25	Wasser	4	40,0 G	ewT.	4	0,0 Ge	w.T
Zubereitung IVb	190 320	460 3				•					-,	
	.50 320	+00 3	6	13		Die Viskosität de	r Zul	bereit	Ingen	betni	g bei 1	Zaum
						temperatur:					6 00	*******
Babyschaumbadgrund			Ь			VIIa = 183 cP						
rezeptur, rucklettend	V		•		(X)	A118 = 182 Ch						
						VIIb - 12 cF	•					
Gemisch spezieller	50,0 Ge	ewT.	50,0 Ge	w.T		Schaumverhalten						
Fettalkoholather-	•			w								
sulface 28 - 30%							C-4					 -
Produkt nach vor-	10,0 G	-w -T						waopri	nen		ımzerfı	Ш
liegender Anmeldu	10,0 (3)	CM'-1'	_		35		n cm			in cm	VMin.	
Vergleichsprodukt	8			_			1,5 g/ 1	1 g/i	2 g/1	0,5 g/	112/1	2 g/l
Natriumchlorid	30.0		10,0 Ge							<u> </u>	<u> </u>	<u> </u>
Parlum		ewT.	2,0 Ge			Zubereitung VIIa 1	180	280	480	1,5	4,5	8
Wasser		ewT.	1,0 Ge			Zubereitung VIIb	200	360	530	2	6.5	11
** 23301	37,0 G	EW [.	37,0 Ge	wT.	40	<u>.</u>				_		
Dis Viskosität de	r Zubereitur	ngen be	trug bei F	Raum-		Ölhaarwäsche-Grund-		ı	-	Ь	-	
temperatur:						Rezeptur VIII				•		
						Nastiumlaund		-				
Va = 1084 cP	-					Natriumlauryi-	3	60,0 G	ewT.	50),0 Ge	wT.
Vb = 23 cP				•		äthersulfat mit						
₹0 = 23 CP						speziellen Zusätzen						
						35—37%						
Schaumverhalten						Produkt nach vor-	1	0,0 G	ewT.	_	•	
		gest.		and the same of the		liegender Anmeldun	g			-		*
	Caba =		:haumzerfa cm³/Min.	M 4		Vergleichsprodukt	-	_		10),0 Ge1	vT.
•	Schaumvolum		- TO 3/ BAT 100			Wasser	4	0,0 G	w.T.).0 Gen	
	u cm,						. •			~~	.,	
				2 g/1								
. (n cm³ 0.5 g/l 1 g/l	2 g/1 0,5		2 5/1		Die Viskosität der	լ շ սհ	-		betmi	, hei I	(81177)
Zubereitung Va	in cm ³ 0.5 g/l 1 g/l 170 240	2 g/l 0,5		6		Die Viskosität der temperatur:	r Zub	-		betru	g bei I	taum-
Lubereitung Va	in cm ³ 0.5 g/l 1 g/l 170 240	2 g/1 0,5	5 g/l 1 g/l	6		Die Viskosität der temperatur:	r Zub	-		betru	g bei I	taum-
Zubereitung Va	in cm ³ 0.5 g/l 1 g/l 170 240	2 g/l 0,5	3			temperatur:		-		betru	g bei I	(aum·
Zubereitung Va Zubereitung Vb	n cm ³ 0.5 g/l 1 g/l 170 240 180 320	2 g/l 0,5	3 4	6		temperatur: Villa = 2081 cl	P	-		betru	g bei I	caum-
Zubereitung Va Zubereitung Vb	in cm ³ 0.5 g/l 1 g/l 170 240	2 g/l 0,5	3	6		temperatur:	P	-		betru	g bei I	(aum-
Zubereitung Va Zubereitung Vb	n cm ³ 0.5 g/l 1 g/l 170 240 180 320	2 g/l 0,5	3 4	6	55	VIIIa - 2081 cl VIIIb - 218 cl	P	-		betru	g bei J	(aum
Zubereitung Va Zubereitung Vb Dihaarwasche-Grund- ezeptur VI	n cm ³ 0.5 g/l 1 g/l 170 240 180 320	2 g/l 0.5 370 2 410 2	3 4 b	6 4,5	55	temperatur: Villa = 2081 cl	P	-		betru	g bei I	(aum
Zubereitung Va Zubereitung Vb Dihaarwäsche-Grundezeptur VI Natriumlauryi-	n cm ³ 0.5 g/l 1 g/l 170 240 180 320	2 g/l 0.5 370 2 410 2	3 4	6 4,5	55	VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten	P P	pereitu	ingen	betru	g bei !	caum
Zubereitung Va Zubereitung Vb Dihaarwasche-Grund- ezeptur VI Natriumlauryl- lithersulfat mit	n cm ³ 0.5 g/l 1 g/l 170 240 180 320	2 g/l 0.5 370 2 410 2	3 4 b	6 4,5	55	temperatur: VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten	P P	pereitu mvolun	ingen	Schau	mzeria	
Zubereitung Va Zubereitung Vb Dihaarwäsche-Grund- ezeptur VI Natriumlauryl- lithersulfat mit speziellen Zusätzen	n cm ³ 0.5 g/l 1 g/l 170 240 180 320	2 g/l 0.5 370 2 410 2	3 4 b	6 4,5	55	temperatur: VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten	P P	pereitu mvolun	ingen	Schau		
Zubereitung Va Zubereitung Vb Dihaarwäsche-Grund- ezeptur VI Natriumlauryl- äthersulfat mit speziellen Zusätzen 35 – 37%	n cm ³ 0.5 g/l 1 g/l 170 240 180 320 a 30,0 Ge	2 g/l 0.5 370 2 410 2	3 4 b	6 4,5	55	villa = 2081 cl Villb = 218 cl Schaumverhalten	P P ichaui n cm ³	pereitu myolun	ngen	Schau in cm	mzerfa ³/Min.	<u>.</u>
Zubereitung Va Zubereitung Vb Dihaarwäsche-Grund- ezeptur VI Natriumlauryl- äthersulfat mit speziellen Zusätzen 35 – 37% Produkt nach vor-	an cm ³ 0.5 g/l 1 g/l 170 240 180 320 a 30,0 Ge	2 g/l 0.5 370 2 410 2	3 4 b	6 4,5	55	villa = 2081 cl Villb = 218 cl Schaumverhalten	P P ichaui n cm ³	pereitu mvolun	ngen	Schau	mzerfa ³/Min.	
Zubereitung Va Zubereitung Vb Dihaarwäsche-Grund- ezeptur VI Natriumlauryl- lithersulfat mit speziellen Zusätzen 15-37% Produkt nach vor- iegender Anmeldun	an cm ³ 0.5 g/l 1 g/l 170 240 180 320 a 30,0 Ge	2 g/l 0.5 370 2 410 2	3 4 b	6 4,5 wT.	555	temperatur: VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten S ii 0	P P ichaus ichaus ichaus ichaus ichaus	myolun	nen 2 g/l	Schau in cm 0,5 g/l	mzerfa ³/Min. 1 g/l	11 2 g/1
Zubereitung Va Zubereitung Vb Dihaarwäsche-Grund- ezeptur VI Natriumlauryl- athersulfat mit speziellen Zusätzen 35-37% Produkt nach vor- iegender Anmeldun Vergleichsprodukt	an cm ³ 0.5 g/l 1 g/l 170 240 180 320 a 30,0 Ge	2 g/l 0.5 370 2 410 2	3 4 b 30,0 Gen	6 4,5 wT.	555	VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten Sign Zubereitung 1	P P ichaus ichaus ichaus ichaus ichaus	myolun	nen 2 g/l	Schau in cm	mzerfa ³/Min.	<u> </u>
Zubereitung Va Zubereitung Vb Dihaarwasche-Grund- ezeptur VI Natriumlauryi-	an cm ³ 0.5 g/l 1 g/l 170 240 180 320 a 30,0 Ge	2 g/l 0.5 370 2 410 2 ewT.	3 4 b 30,0 Gen	wT.	555	temperatur: VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten Si ii 0 Zubereitung 1	P P Sichaus n cm ³ US g/I	myolun 1 g/l 160	men 2 g/l 220	Schau in cm 0,5 g/l	mzerfa ³/Min. 1 g/l	1 2 g/1 7,5
Zubereitung Va Zubereitung Vb Dihaarwasche-Grund- ezeptur VI Natriumlauryl- athersulfat mit	n cm ³ 0.5 g/l 1 g/l 170 240 180 320	2 g/l 0.5 370 2 410 2	3 4 b	6 4,5	55	VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten	P P	pereitu	ingen			
Zubereitung Va Zubereitung Vb Zubereitung Vb Zubereitung Vb Zubereitung Vb Zubereitung Vi Zubereitung Vb Zubereitung Vallen Vollegender Anmeldung Vi Zubereitung Va	an cm ³ 0.5 g/l 1 g/l 170 240 180 320 a 30,0 Ge	2 g/l 0.5 370 2 410 2	3 4 b 30,0 Gen	6 4,5 wT.	555	VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten Sign Zubereitung 1	P P ichaus ichaus ichaus ichaus ichaus	myolun	nen 2 g/l	Schau in cm 0,5 g/l	mzerfa ³/Min. 1 g/l	11 2 g/ 1
Zubereitung Va Zubereitung Vb Zubere	an cm ³ 0.5 g/l 1 g/l 170 240 180 320 a 30,0 Ge	2 g/l 0.5 370 2 410 2 ewT.	3 4 b 30,0 Gen	wT.	555	temperatur: VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten Si ii 0 Zubereitung 1	P P Sichaus n cm ³ US g/I	myolun 1 g/l 160	men 2 g/l 220	Schau in cm 0,5 g/l	mzerfa ³/Min. 1 g/l	11 2 g/1
Zubereitung Va Zubereitung Vb Zubereitung Vb Zubereitung Vb Zubereitung Vb Zubereitung Vi Natriumlauryl- Ithersulfat mit Ipeziellen Zusätzen IS-37% Produkt nach vor- Iegender Anmeldun Zergleichsprodukt	an cm ³ 0.5 g/l 1 g/l 170 240 180 320 a 30,0 Ge	2 g/l 0.5 370 2 410 2 .wT.	3 4 b 30,0 Gen	wT.	555	temperatur: VIIIa = 2081 cl VIIIb = 218 cl Schaumverhalten Si ii 0 Zubereitung 1	P P Sichaus n cm ³ US g/I	myolun	men 2 g/l 220	Schau in cm 0,5 g/l	mzerfa ³/Min. 1 g/l	11 2 g/1

Den Vergleichsversuchen ist zu entnehmen, daß sich in der Beeinflussung des Schaumverhaltens der kosmetischen Produkte keine nennenswerten Unterschiede zwischen beiden Produkten zeigen. Das etwas bessere Schaumvermögen des V rgleichsprodukts wird durch die bessere Schaumstabilität der meisten Zubereitungen mit dem Produkt gemäß vorliegender Anmeldung ausgeglichen. Was die negative Beeinflussung des Schaums anbelangt, sind beide Produkte als gut zu

Der große Vorteil des Produktes gemäß vorliegender Anmeldung ist in seiner sehr ausgeprägten. Viskositätserhöhung bei den einzelnen Zubereitungen zu sehen. Diese Viskositätserhöhung ist aber gerade für die Zubereitungen, die einer Rückfettung bedürfen, wie 15 Badezusätze, Haarwaschmittel von großer Bedeutung, da von einer guten Viskosität, die ohne einen weiteren Zusatz von Verdickungsmitteln erzielt werden kann, die Verkaufsfähigkeit der Produkte abhängt. Zusätzliche Verdickungsmittel sind wegen einiger Nebenwirkungen 20 wie Klebrigkeit und des zusätzlichen Arbeitsaufwandes unerwünscht.

Zur Vollständigkeit wurden aber auch vergleichende Messungen an den Produkten selbst vorgenommen, die zu folgenden Ergebnissen führten:

Schaumvermögen: Schaumschlagmethode DIN 53 902

40°C, Wasser 8° dH

Schaum- volumen	Produ Anme	kt vorL Idung	Softig	oftigen 767		
	0,5	1	0,5	1 g/l Aktivsubstanz		
V ₁ min	10	5	40	40		
V₂ min	0	0	30	30		
V _i min		•	30	30		
V ₅ min			30	30		
V ₁₀ min			30	20		
V ₁₅ min			20	20		
V₂o min			20	20		

Aus dieser Gegenüberstellung geht eindeutig hervor, daß das Vergleichsprodukt aufgrund seiner Struktur 45 her Tensideigenschaften aufweist, während das Produkt gemäß vorliegender Anmeldung praktisch aum schäumt, ein Beweis, daß seine Tensideigenschaften nur sehr schwach ausgeprägt sind.

Oberflächenspannung: 18°C. vollentsalztes Wasser dyn/cm

Produkt gemäß vorl. Anm.			Vergle	ikt	
0,1	0,01	0,001	0,1	0,01	0,001%
33,4	36,0	40,0	32,0	32,0	37,0

Auch aus dieser Gegenüberstellung ist ersichtlich, daß das Vergleichsprodukt deutlich oberflächenaktiver ist, als das Produkt gemäß vorliegender Anmeldung, was bei einer Verwendung als Rückfettungsmittel in kosmetischen Zubereitung n wegen der damit verbundenen Möglichkeit einer höheren Haut- bzw. Schleimhautreizung unerwünscht ist. Die nachfolgenden Beispi le sollen den Gegenstand

der Erfindung näher riäutern, ohne ihn jedoch hierauf zu beschränken.

Beispiele

Für die nachstehend beschriebenen Versuche und kosmetischen Zubereitungen wurden folgende Veresterungsprodukte verwendet.

- A) (1 Mol Glycerin + 7,4 Mol Äthylenoxid) mit 1 Mol Kokosfettsäure C₄₋₁₈ Säurezahl 1,0, Verseifungszahl 92, Hydroxylzahl
- B) (1 Mol Glycerin + 7,4 Mol Äthylenoxid) mit 1-Mol Talgfettsäure Säurezahl 1,1, Verseifungszahl 83, Hydroxylzahl
- C) (1 Mol Glycerin + 10 Mol Äthylenoxid) mit 1 Mol Talgfettsäure Säurezahl 1,4, Verseifungszahl 71, Hydroxylzahl

Da für kosmetische Reinigungsmittel die Kombinationsfähigkeit mit bestimmten Tensiden von wesentlicher Bedeutung ist, wurden in nachstehender Tabelle 35 aufgeführte Mischungen geprüft.

Tabelle I

25

30

40	Mischungs- bestandteil	Mischung 1	Mischung 2	Mischung 3
	A)	10	_	
	B)	_	10	_
45	C)	_	_	10
	Natriumlauryläthersulfat (2 ÄO)	50	50	50
	(27-28% WAS)			
	Wasser	40	40	40
5()	Ergebnis	klare einheitl Lösung	klare einheitL Lösung	klare einheitl Lösung

In einem weiteren Versuch wurde die Schaumfähigkeit einer Schaumbadrahmenrezeptur mit Zusätzen der einzelnen Rückfettungsmittel untersucht.

Tabelle II

	Mischung 1	Mischung 2	Mischung 3	Mischung 4	Mischung 5
Bestandteile Natriumlauryläthersulfat (2 ÄO) (27-28% WAS)	60	60	60	60	60
Natriumlaurylsulfat (über 90% WAS)	5	5 🚐	5	5	5

<u> </u>	Mischung 1	Mischung 2	Mischung 3	Mischung 4	Mischung 5
Bestandteile					
Isopropylmyristat	_	5	_	_	
A)	_	_	5	_	-
B)	_	_	_	5	-
C)	_	_	_	_	-,
Wasser	35	30	30	 30	5 30
Aussehen	klar	trūb, abgesetzt		klar	klar
Schaumvermögen		•			Mei
Anfangsvolumen in ml 1 Min nach dem Schlagen	ute				
0.5 g/Liter	260	170	300	340	240
1.0 g/Liter	510	250	490	490	400
2,0 g/Liter	660	330	610	. 640	540
Zerfall des Schaumvolumens ml/Minute	in				
0,5 g/Liter	2,0	2,5	4,0	4,5	1.6
1,0 g/Liter	5,5	3,5	7,0	8,0	1,5 . 4,0
2,0 g/Liter	8,0	6,5	9,5	3,0	6,5

Die Schaumkraft der einzelnen Mischungen wurde in der Schlagschaummaschine nach DIN 53 902 gemessen, wobei als Maß das Schaumvolumen diente. Die 30 Schaumzahlen wurden bei 45°C in Wasser von 10°C deutscher Härte mit 30 Schlägen festgestellt. Gemessen wurde 1 Minute nach Beendigung des Schlagens und 21 Minuten nach Beendigung des Schlagens. Aus der Schaumvolumenabnahme in der Zeit von 20 Minuten wurde der Zerfall des Schaumvolumens in ml/Minute errechnet. Die angegebenen Mengen g/l beziehen sich auf das jeweilige Gemisch.

Wie vorstehender Tabelle zu entnehmen ist, sind die Schaumzahlen der Mischungen mit einem Gehalt an den 40 erfindungsgemäßen Rückfettungsmitteln wesentlich günstiger als bei Verwendung von Isopropylmyristat als Rückfettungsmittel und stehen den Zahlen einer Mischung an reinen Waschaktivsubstanzen kaum nach.

Nachfolgend werden einige Rahmenrezepturen für 45 kosmetische Zubereitungen mit einem Gehalt an erfindungsgemäßen Rückfettungsmitteln angegeben.

Schaumbad

Natriumlauryläthersulfat (2 ÅO) (27—28% WAS)	30 GewTle.
Natriumlauryisulfat (90% WAS)	15 GewTle.
Kokosfettsäurediäthanolamid	5 GewTle.
Fichtennadelöl	5 GewTle.
Rückfettungsmittel C)	10 GewTle.
Wasser	35 GewTle.

Haarwasser

Isopropanol	60 GewTle.
Menthol	0.2 GewTle.
Pantothensaures Calcium	0,05 GewTle
Vitamin H	0,30 GewTle.
Inosit	0,10 GewTle.
Parfum	0,50 GewTle.
Rückfettungsmittel C)	5,0 GewTle.
Wasser	33,85 GewTle.

Shampoo klar

Natriumlaurylsulfat (2 ĀO) (27—28% WAS)	40 GewTle.
Kokosfettsäurediäthanolamid Rückfettungsmittel A) Wasser	6 GewTle. 10 GewTle. 44 GewTle.
Shampoo für trockenen U.s.	

Shampoo für trockenes Haar

mpoo ini trockenes Maar	
Natriumlauryläthersulfat (2 ÄO) (27 – 28% WAS)	20 GewTie.
Natriumlaurylsulfat (90% WAS)	5 GewTle.
Kokosfettsäurediäthanolamid Kokosfettsäuremonoäthanol- amidpaste 30%ig	3 GewTle. 5 GewTle.
Vitamin F wasserlöslich Rückfettungsmittel B) Wasser	0,5 GewTle. 25,0 GewTle. 41,5 GewTle.

so Rasierwasser nach dem Rasieren

Äthylalkohol 96%ig	65,0 GewTle.
Menthol	0,2 GewTle
Kampfer	0,2 GewTle
Perubalsam	0,1 GewTle
Parfum.	0,5 GewTle
Glycerin	5,0 GewTle
Hamamelisextrakt	10,0 GewTle
Borsaure	0,5 GewTle
Rückfettungsmittel A)	10,0 GewTle.
Wasser	8,5 GewTle
	Kampfer Perubalsam Parfum Glycerin Hamamelisextrakt Borsäure Rückfettungsmittel A)

Sonnenschutzereme

Kolloiddisperses Gemisch aus 90 Teilen Cetylstearyl-	10 GewTle.
alkohol und 10 Teilen	
Natriumlaurylsulfat	
2-Octyl-dodecanol	10 Com Tle

Erdnußöl	5 GewTle
Lichtschutzmittel	2 GewTle
Rückfettungsmittel B)	20 GewTle
Wasser	53 GewTle

GewTle.
GewTle.
15 GewTle.

Äthylacetat Aceton 35 Gew.-Tle. 35 Gew.-Tle.

Die erfindungsgemäß n Rückfettungsmittel sind bes nders vorteilhaft in kosmetischen Reinigungsmitteln einsetzbar, weil sie keinen nennenswerten, ungünstigen Einfluß auf das Schaumvermögen der tensidhaltigen Produkte ausüben, bzw. weil sie bereits eine gute Löslichkeit in Alkohol-Wasser-Gemischen besitzen.

Doc. 1-1 on ss 12 from WPIL using MAX

©Derwent Information

Cosmetic compsns contg superfatting agents

Patent Number: BE-767213

International patents classification: A61K-007/00

i

BE-767213 A Cosmetic compsns. esp. cosmetic detergents, contag. as superfatting agents, esterification products (I) formed by reacting glycerolethylene oxide adducts (IIe conting. 4-10 moles of ethylene oxide per mole of glycerol with 8-18C fatty acids (III) at the rate of 1-2 moles of (III) per

(I) have only slight effect on the foaming qualities of surfactants and have good solubility in mixtures of alcohol and water.

(I) prevent degreasing of the skin by detergent compsns. and may be used in shampoos, foam-bath, toilet soaps etc.

DW1971-46 *

• Patentee & Inventor(s):

Patent assignee: (HENK) HENKEL & CIE GMBH

• <u>Publication data</u>:

<u>Patent Family</u>: BE-767213 A 0 DW1971-49

DE2024051 A 0 DW1971-49 DW1972-01 JP46006750 A 0 DW1972-14 FR2090087 A 0

GB1333475 A 0 CH-554673 A 19741015 DW1974-46 DE2024051 B 19791004 DW1979-41 JP82032041 B 19820708 DW1982-31 Priority nº: 1970DE-2024051 19700516

Covered countries: 7 Publications count: 9

 Accession codes : Accession Nº: 1971-73611S [46] · Derwent codes :

Manual code : CPI: D08-B D10-B02 Derwent Classes : D21 D23

• Update codes : Basic update code: 1971-46
Equiv. update code: 1971-48; 1971-50;
1972-01; 1972-14; 1973-41; 1974-46; 1979-

41; 1982-31

•