

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 May 2001 (10.05.2001)

PCT

(10) International Publication Number
WO 01/32882 A2

(51) International Patent Classification⁷: C12N 15/31,
C12Q 1/68, C12N 1/21, C07K 14/315, 16/12, A61K
39/09, 48/00, G01N 33/53, 33/68

of Pathology, Tennis Court Road, Cambridge CB2 1QP
(GB). **WELLS, Jeremy, Mark** [GB/GB]; Institute of
Food Research, Norwich Laboratory, Norwich Research
Park, Colney, Norwich NR4 7UA (GB). **HANNIFFY,**
Sean, Bosco [IE/GB]; University of Cambridge, Dept. of
Pathology, Tennis Court Road, Cambridge CB2 1QP (GB).

(21) International Application Number: PCT/GB00/03437

(74) Agents: **CHAPMAN, Paul, William et al.**; Kilburn &
Strode, 20 Red Lion Street, London WC1R 4PJ (GB).

(22) International Filing Date:

7 September 2000 (07.09.2000)

(81) Designated States (*national*): CA, CN, JP, US.

(25) Filing Language: English

(84) Designated States (*regional*): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

(26) Publication Language: English

Published:

— Without international search report and to be republished
upon receipt of that report.

(30) Priority Data:

9921125.2 7 September 1999 (07.09.1999) GB

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant (*for all designated States except US*): **MICROBIAL TECHNIKS LIMITED** [GB/GB]; 20 Trumpington Street, Cambridge CB2 1QA (GB).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **LE PAGE, Richard, William, Falla** [GB/GB]; University of Cambridge, Dept.

WO 01/32882 A2

(54) Title: NUCLEIC ACIDS AND PROTEINS FROM GROUP B STREPTOCOCCUS

(57) Abstract: Novel protein antigens from Group B Streptococcus are described, together with the nucleic acid sequences encoding them. The use of vaccines and screening methods is also described.

Proteins

The present invention relates to proteins derived from *Streptococcus agalactiae*, nucleic acid molecules encoding such proteins, and the use of the proteins as antigens and/or immunogens and in detection/diagnosis. It also relates to a method for the rapid screening of bacterial genomes to isolate and characterise bacterial cell envelope associated or secreted proteins.

The Group B Streptococcus (GBS) (*Streptococcus agalactiae*) is an encapsulated bacterium which emerged in the 1970s as a major pathogen of humans causing sepsis and meningitis in neonates as well as adults. The incidence of early onset neonatal infection during the first 5 days of life varies from 0.7 to 3.7 per 1000 live births and causes mortality in about 20% of cases. Between 25-50% of neonates surviving early onset infections frequently suffer neurological sequelae. Late onset neonatal infections occur from 6 days to three months of age at a rate of about 0.5 - 1.0 per 1000 live births.

There is an established association between the colonisation of the maternal genital tract by GBS at the time of birth and the risk of neonatal sepsis. In humans it has been established that the rectum may act as a reservoir for GBS. Susceptibility in the neonate is correlated with the low concentration or absence of IgG antibodies to the capsular polysaccharides found on GBS causing human disease. In the USA strains isolated from clinical cases usually belong to capsular serotypes Ia, Ib, II, III although serotype V may be of increasing significance. Type VIII GBS is the major cause of neonatal sepsis in Japan.

A possible means of prevention involves intra or postpartum administration of antibiotics to the mother but there are concerns that this might lead to the emergence

of resistant organisms and in some cases allergic reactions. Vaccination of the adolescent females to induce long lasting maternally derived immunity is one of the most promising approaches to prevent GBS infections in neonates. The capsular polysaccharide antigens of these organisms have attracted most attention as with regard to vaccine development. Studies in healthy adult volunteers have shown that serotype Ia, II and III polysaccharides are non-toxic and immunogenic in approximately 65%, 95% and 70% of non-immune adults respectively. One of the problems with using capsule antigens as vaccines is that the response rates vary according to pre-immunisation status and the polysaccharide antigen and not all 5 vaccinees produce adequate levels of IgG antibody as indicated in vaccination studies with GBS polysaccharides in human volunteers.

Some people do not respond despite repeated stimuli. These properties are due to the T-independent nature of polysaccharide antigens. One strategy to enhance the 15 immunogenicity of these vaccines is to enhance the T cell dependent properties of polysaccharides by conjugating them to a protein. The use of polysaccharide conjugates looks promising but there are still unresolved questions concerning the nature of the carrier protein. A conjugate vaccine against GBS would require at least 4 different conjugates to be prepared adding to the cost of a vaccine.

20

Approaches to vaccination against GBS infections which rely on the use of capsular polysaccharides have the disadvantage that response rates are likely to vary considerably according to pre-immunisation status and the particular type of polysaccharide antigen used. Results of trials with conjugate vaccines in human 25 volunteers have indicated that response rates may only be around 65% for some of the key capsule antigens (Larsson *et al.*, *Infection and Immunity* **64**:3518-3523 (1996)). It is also not clear whether all individuals responding to the vaccine would have adequate levels of polysaccharide specific IgG which can cross the placenta and

afford immunity to neonates. By conjugating a protein carrier to the polysaccharide antigen it may be possible to convert them to T-cell dependent antigens and enhance their immunogenicity.

5 Preliminary studies with GBS type III polysaccharide-tetanus toxoid conjugate have been encouraging (Baker *et al.*, *Reviews of Infectious Diseases* 7:458-467 (1985), Baker *et al.*, *The New England Journal of Medicine* 319:1180-1185 (1988), Paoletti *et al.*, *Infection and Immunity* 64:677-679 (1996), Paoletti *et al.*, *Infection and Immunity* 62:3236-3243 (1994)) but in developed countries the use of tetanus may be
10 disadvantageous since most adults will have been immunised against tetanus within the past five years. Additional boosters with tetanus toxoid may cause adverse reactions (Boyer., *Current Opinions in Pediatrics* 7:13-18 (1995)). The polysaccharide conjugate vaccines have the disadvantage of being costly to produce and manufacture in comparison with many other kinds of vaccines. There is also the
15 possible risk of problems caused by the cross reactivity between GBS polysaccharides and sialic acid-containing human glycoproteins.

Recent evidence suggests that bacterial surface proteins also may be useful to confer immunity. A protein called Rib which is found on most serotype III strains but rarely
20 on serotypes Ia, Ib or II confers immunity to challenge with Rib expressing GBS in animal models (Stalhammar-Carlemalm *et al.*, *Journal of Experimental Medicine* 177:1593-1603 (1993)). Another surface protein of interest as a component of a vaccine is the alpha antigen of the C proteins which protected vaccinated mice against lethal infection with strains expressing alpha protein. The amount of this
25 antigen expressed by GBS strains varies markedly, however an alternative to polysaccharides as antigens is the use of protein antigens derived from GBS. Recent evidence suggest that the GBS surface associated proteins Rib and alpha C protein may be used to confer immunity to GBS infections in experimental model systems

(Stalhammar-Carlemalm *et al.*, (1993) [*supra*], Larsson *et al.*, (1996) [*supra*]). However these two proteins are not conserved in all serotypes of GBS which cause disease in humans. Assuming that these antigens would be immunogenic and elicit protective level responses in humans they would not confer protection against all infections caused by GBS as 10% of infectious Group B streptococci do not express Rib or C protein alpha.

This invention seeks to overcome the problem of vaccination against GBS by using a novel screening method specifically designed to identify those Group B Streptococcus genes encoding bacterial cell surface associated or secreted proteins. The proteins expressed by these genes may be immunogenic, and therefore may be useful in the prevention and treatment of Group B Streptococcus infection. For the purposes of this application, the term immunogenic means that these proteins will elicit a protective immune response within a subject. Using this novel screening method a number of genes encoding novel Group B Streptococcus proteins have been identified.

Thus in a first aspect, the present invention provides a Group B Streptococcus protein, polypeptide or peptide having a sequence selected from those shown in figure 1, or fragments or derivatives thereof.

It will be apparent to the skilled person that proteins and polypeptides included within this group may be cell surface receptors, adhesion molecules, transport proteins, membrane structural proteins, and/or signalling molecules.

25

Alterations in the amino acid sequence of a protein can occur which do not affect the function of a protein. These include amino acid deletions, insertions and substitutions and can result from alternative splicing and/or the presence of multiple translation

start sites and stop sites. Polymorphisms may arise as a result of the infidelity of the translation process. Thus changes in amino acid sequence may be tolerated which do not affect the protein's function.

5 Thus, the present invention includes derivatives or variants of the proteins, polypeptides, and peptides of the present invention which show at least 50% identity to the proteins, polypeptides and peptides described herein. Preferably the degree of sequence identity is at least 60% and preferably it is above 75%. More preferably still it is above 80%, 90% or even 95%.

10 The term identity can be used to describe the similarity between two polypeptide sequences. A software package well known in the art for carrying out this procedure is the CLUSTAL program. It compares the amino acid sequences of two polypeptides and finds the optimal alignment by inserting spaces in either sequence as appropriate. The amino acid identity or similarity (identity plus conservation of amino acid type) for an optimal alignment can also be calculated using a software package such as BLASTx. This program aligns the largest stretch of similar sequence and assigns a value to the fit. For any one pattern comparison several regions of similarity may be found, each having a different score. One skilled in the art will appreciate that two polypeptides of different lengths may be compared over the entire length of the longer fragment. Alternatively small regions may be compared. Normally sequences of the same length are compared for a useful comparison to be made.

25 Manipulation of the DNA encoding the protein is a particularly powerful technique for both modifying proteins and for generating large quantities of protein for purification purposes. This may involve the use of PCR techniques to amplify a desired nucleic acid sequence. Thus the sequence data provided herein can be used to

design primers for use in PCR so that a desired sequence can be targeted and then amplified to a high degree.

Typically primers will be at least five nucleotides long and will generally be at least ten
5 nucleotides long (e.g. fifteen to twenty-five nucleotides long). In some cases primers of at least thirty or at least thirty-five nucleotides in length may be used.

As a further alternative chemical synthesis may be used. This may be automated.
Relatively short sequences may be chemically synthesised and ligated together to
10 provide a longer sequence.

Thus in a further aspect, the present invention provides, a nucleic acid molecule comprising or consisting of a sequence which is:

- (i) any of the DNA sequences set out in figure 1 herein or their RNA
15 equivalents;
- (ii) a sequence which is complementary to any of the sequences of (i);
- (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);
- (iv) a sequence which shows substantial identity with any of those of (i),
20 (ii) and (iii); or
- (v) a sequence which codes for a derivative or fragment of a nucleic acid molecule shown in figure 1.

The term identity can also be used to describe the similarity between two individual DNA sequences. The 'bestfit' program (Smith and Waterman, *Advances in applied Mathematics*, 482-489 (1981)) is one example of a type of computer software used to find the best segment of similarity between two nucleic acid sequences, whilst the GAP program enables sequences to be aligned along their whole length and finds the optimal alignment by inserting spaces in either sequence as appropriate.

The present invention includes nucleic acid sequences which show at least 50% identity to the nucleic acid sequences described herein. Preferably the degree of sequence identity is at least 60% and preferably it is above 75%. More preferably still it is above 80%, 90% or even 95%.

5

The term 'RNA equivalent' when used above indicates that a given RNA molecule has a sequence which is complementary to that of a given DNA molecule, allowing for the fact that in RNA 'U' replaces 'T' in the genetic code. The nucleic acid molecule may be in isolated, recombinant or chemically synthetic form.

10

DNA constructs can readily be generated using methods well known in the art. These techniques are disclosed, for example in J. Sambrook *et al, Molecular Cloning 2nd Edition*, Cold Spring Harbour Laboratory Press (1989). Modifications of DNA constructs and the proteins expressed such as the addition of promoters, enhancers, signal sequences, leader sequences, translation start and stop signals and DNA stability controlling regions, or the addition of fusion partners may then be facilitated.

15

Normally the DNA construct will be inserted into a vector which may be any suitable vector, including plasmid, virus, bacteriophage, transposon, minichromosome, liposome or mechanical carrier. The expression vectors of the invention are DNA constructs suitable for expressing DNA which encodes the desired protein product which may include: (a) a regulatory element (e.g. a promoter, operator, activator, repressor and/or enhancer), (b) a structural or coding sequence which is transcribed into mRNA and (c) appropriate transcription, translation, initiation and termination sequences. The vector may further comprise a selectable marker, for example antibiotic resistance, which facilitates the selection and/or identification of cells containing the vector.

20

25

Expression of the protein is achieved by the transformation or transfection of the vector into a host cell which may be of eukaryotic or prokaryotic origin. For the production of recombinant protein, expression may be inducible expression or 5 expression only in certain types of cells or both inducible and cell-specific. Particularly preferred among inducible vectors are vectors that can be induced for expression by environmental factors that are easy to manipulate, such as temperature and nutrient additives. A variety of suitable vectors, including constitutive and inducible expression vectors for use in prokaryotic and eukaryotic 10 hosts, are well known and employed routinely by those skilled in the art.

A great variety of expression vectors can be used to express the Group B Streptococcus protein(s) of the invention. Such vectors include, among others, chromosomal, episomal and virus-derived vectors, for example, vectors derived 15 from bacterial plasmids, from bacteriophage, from transposons, from yeast elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids, all may be used in accordance with the invention. Generally, any 20 vector suitable to maintain, propagate or express nucleic acid to express a polypeptide in a host may be used for expression in this regard. Such vectors thus form yet a further aspect of the invention.

The appropriate DNA sequence may be inserted into the vector by any of a variety 25 of well-known and routine techniques.

The nucleic acid sequence in the expression vector is operatively linked to appropriate expression control sequence(s) including, for instance, a promoter to

direct mRNA transcription. Representatives of such promoters include, but are not limited to, the phage lambda PL promoter, the T3 and T7 promoters, the *E.coli* lac, trp, tac, and λ PL promoters, the microbial eukaryote GAL, glucoamylase and cellobiohydrolase promoters and the mammalian metallothionein (mouse) and heat-shock (human) promoters.

In general, expression vectors will contain sites for transcription initiation and termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of mature transcripts expressed by the constructs will generally include a translation initiating AUG at the beginning and a termination codon appropriately positioned at the end of the polypeptide to be translated.

Representative examples of appropriate hosts for recombinant expression of the Group B *Streptococcus* protein(s) of the invention include bacterial cells, such as *streptococci*, *staphylococci*, *E.coli*, *streptomyces* and *Bacillus subtilis* cells; fungal cells, such as yeast cells and *Aspergillus* cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS, HeLa and Bowes melanoma cells; and plant cells. Such host cells form yet a further aspect of the present invention.

20

Microbial cells employed in the expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agent, such methods which are known to those skilled in the art.

25

The polypeptide can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulphate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose,

chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.

5

The Group B Streptococcus proteins described herein can additionally be used as target antigens to raise antibodies, or to generate affibodies. These can be used to detect Group B Streptococcus.

10 Thus in a further aspect the present invention provides, an antibody, affibody, or a derivative thereof which binds to any one or more of the proteins, polypeptides, peptides, fragments or derivatives thereof, as described herein.

Antibodies within the scope of the present invention may be monoclonal or polyclonal.

15 Polyclonal antibodies can be raised by stimulating their production in a suitable animal host (e.g. a mouse, rat, guinea pig, rabbit, sheep, goat or monkey) when a protein as described herein, or a homologue, derivative or fragment thereof, is injected into the animal. If desired, an adjuvant may be administered together with the protein. Well-known adjuvants include Freund's adjuvant (complete and incomplete) and aluminium
20 hydroxide. The antibodies can then be purified by virtue of their binding to a protein as described herein and by many other means well-known to those skilled in the art.

Monoclonal antibodies can be produced from hybridomas. These can be formed by fusing myeloma cells and spleen cells which produce the desired antibody in order to
25 form an immortal cell line. Thus the well-known Kohler & Milstein technique (*Nature* 256 (1975)) or subsequent variations upon this technique can be used.

Techniques for producing monoclonal and polyclonal antibodies that bind to a particular polypeptide/protein are now well developed in the art. They are discussed in standard immunology textbooks, for example in Roitt *et al*, *Immunology* second edition (1989), Churchill Livingstone, London.

5

In addition to whole antibodies, the present invention includes derivatives thereof which are capable of binding to proteins etc as described herein. Thus the present invention includes antibody fragments and synthetic constructs. Examples of antibody fragments and synthetic constructs are given by Dougall *et al*., *Tibtech* **12** 372-379 (September 10 1994).

Antibody fragments include, for example, Fab, F(ab')₂ and Fv fragments. Fv fragments can be modified to produce a synthetic construct known as a single chain Fv (scFv) molecule. This includes a peptide linker covalently joining V_h and V_l regions, which contributes to the stability of the molecule. Other synthetic constructs that can be used include CDR peptides. These are synthetic peptides comprising antigen-binding determinants. Peptide mimetics may also be used. These molecules are usually conformationally restricted organic rings that mimic the structure of a CDR loop and that include antigen-interactive side chains.

15
20

Synthetic constructs include chimaeric molecules. Thus, for example, humanised (or primatised) antibodies or derivatives thereof are within the scope of the present invention. An example of a humanised antibody is an antibody having human framework regions, but rodent hypervariable regions. Ways of producing chimaeric antibodies are discussed for example by Morrison *et al* in *PNAS*, **81**, 6851-6855 (1984) and by Takeda *et al* in *Nature*. **314**, 452-454 (1985).

Synthetic constructs also include molecules comprising an additional moiety that provides the molecule with some desirable property in addition to antigen binding. For example the moiety may be a label (e.g. a fluorescent or radioactive label). Alternatively, it may be a pharmaceutically active agent.

5

Affibodies are proteins which are found to bind to target proteins with a low dissociation constant. They are selected from phage display libraries expressing a segment of the target protein of interest (Nord K, Gunnarsson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA, Department of Biochemistry and Biotechnology, Royal Institute 10 of Technology (KTH), Stockholm, Sweden).

In a further aspect the invention provides an immunogenic composition comprising one or more proteins, polypeptides, peptides, fragments or derivatives thereof, or nucleotide sequences described herein. The immunogenic composition may include 15 nucleic acid sequences ID-65 and/or ID-66 as described herein. Alternatively, the immunogenic composition may comprise proteins/polypeptides including ID-65, ID-83, ID-89, ID-93 and/or ID-96 as described herein, or fragments or derivatives thereof. A composition of this sort may be useful in the treatment or prevention of Group B Streptococcus infection in subject. In a preferred aspect of the invention the 20 immunogenic composition is a vaccine.

In other aspects the invention provides:

- i) Use of an immunogenic composition as described herein in the preparation of 25 a medicament for the treatment or prophylaxis of Group B Streptococcus infection. Preferably the medicament is a vaccine.

- ii) A method of detection of Group B Streptococcus which comprises the step of bringing into contact a sample to be tested with at least one antibody, affibody, or a derivative thereof, as described herein.
- 5 iii) A method of detection of Group B Streptococcus which comprises the step of bringing into contact a sample to be tested with at least one protein, polypeptide, peptide, fragments or derivatives as described herein.
- 10 iv) A method of detection of Group B Streptococcus which comprises the step of bringing into contact a sample to be tested with at least one nucleic acid molecule as described herein.
- 15 v) A kit for the detection of Group B Streptococcus comprising at least one antibody, affibody, or derivatives thereof, described herein.
- 20 vi) A kit for the detection of Group B Streptococcus comprising at least one Group B Streptococcus protein, polypeptide, peptide, fragment or derivative thereof, as described herein.
- 25 vii) A kit for the detection of Group B Streptococcus comprising at least one nucleic acid of the invention.

As described previously, the novel proteins described herein are identified and isolated using a screening method which specifically identifies those Group B Streptococcus genes encoding bacterial cell envelope associated or secreted proteins.

Given that the inventors have identified a group of important proteins, such proteins are potential targets for anti-microbial therapy. It is necessary, however, to

determine whether each individual protein is essential for the organism's viability. Thus, the present invention also provides a method of determining whether a protein or polypeptide as described herein represents a potential anti-microbial target which comprises inactivating said protein and determining whether Group B Streptococcus
5 is still viable.

A suitable method for inactivating the protein is to effect selected gene knockouts, ie prevent expression of the protein and determine whether this results in a lethal change. Suitable methods for carrying out such gene knockouts are described in Li
10 *et al*, *P.N.A.S.*, **94**:13251-13256 (1997) and Kolkman *et al.*, *Journal of Biological Chemistry* **272**: 19502-19508 (1997); Kolkman *et al.*, *Journal of Bacteriology* **178**: 3736-3741 (1996).

In a final aspect the present invention provides the use of an agent capable of antagonising, inhibiting or otherwise interfering with the function or expression of a
15 protein or polypeptide of the invention in the manufacture of a medicament for use in the treatment or prophylaxis of Group B Streptococcus infection.

The invention will now be described by means of the following examples which should not in any way be construed as limiting. The examples refer to the figures in
20 which:

Fig 1: (A) Shows a number of full length nucleotide sequences encoding antigenic Group B Streptococcus proteins and the corresponding amino acid sequences.

25

Fig 2: Shows the results of vaccine trials using the proteins ID-65 and ID-66;

- Fig 3: Shows a number of oligonucleotide primers used in the screening process
- nucS1** primer designed to amplify a mature form of the nuc A gene
- nucS2-** primer designed to amplify a mature form of the nuc A gene.
- 5 **nucS3** primer designed to amplify a mature form of the nuc A gene
- nucR** primer designed to amplify a mature form of the nuc A gene
- nucseq** primer designed to sequence DNA cloned into the pTREP-Nuc vector
- pTREPF** nucleic acid sequence containing recognition site for ECORV. Used for cloning fragments into pTREX7.
- 10 **pTREPR** nucleic acid sequence containing recognition site for BAMH1. Used for cloning fragments into pTREX7.
- PUCF** forward sequencing primer, enables direct sequencing of cloned DNA fragments.
- 15 **VR** example of gene specific primer used to obtain further antigen DNA sequence by the method of DNA walking.
- V1** example of gene specific primer used to obtain further antigen DNA sequence by the method of DNA walking.
- V2** example of gene specific primer used to obtain further antigen DNA sequence by the method of DNA walking.
- 20 Fig 4: (i) Schematic presentation of the nucleotide sequence of the unique gene cloning site immediately upstream of the mature *nuc* gene in pTREP1-*nuc1*, pTREP1-*nuc2* and pTREP1-*nuc3*. Each of the pTREP-*nuc* vectors contain an EcoRV (a SmaI site in pTREP1-*nuc2*) cleavage site which allows cloning of genomic DNA fragments in 3 different frames with respect to the mature *nuc* gene.
- 25 (ii) A physical and genetic summary map of the pTREP1-*nuc* vectors. The expression cassette incorporating *nuc*, the macrolides, lincosamides and

streptogramin B (MLS) resistance determinant, and the replicon (rep) *Ori-pAMβ1* are depicted (not drawn to scale).

(iii) Schematic presentation of the expression cassette showing the various sequence elements involved in gene expression and location of unique restriction endonuclease sites (not drawn to scale).

5

10

Fig 5: SDS-PAGE analysis of a purified preparation of the His-tagged ID-65 and ID-83 protein antigens (predicted molecular weights of 57,144 and 25,000 daltons respectively) on a 12% polyacrylamide gel. Lanes: MW, molecular weight standards; 1, His-tagged ID-65 protein; 2, His-tagged ID-83 protein

15

Fig 6: SDS PAGE analysis of a purified preparation of the His-tagged ID-93 protein antigen (predicted molecular weight = 28,000 daltons) on a 12% polyacrylamide gel.

Lanes: MW, molecular weight standards; 1, His-tagged ID-93 protein.

20

Fig 7: SDS PAGE analysis of a purified preparation of the His-tagged ID-89 and ID-96 protein antigens (predicted molecular weights of 35,000 and 31,000 daltons respectively) on a 12% polyacrylamide gel.

Lanes: MW, molecular weight standards; 1, His-tagged ID-89 protein; 2, His-tagged ID-96 protein.

25

Fig 8: IgG Titres against the ID-65 and ID-83 proteins

1 = ID-65 + Alum Group – Bleed at 5 weeks

2 = PBS + Alum Control Group – Bleed at 5 weeks

(For groups 1 and 2, ELISAs were performed on purified ID-65 protein)

3 = ID-83 + Alum Group – Bleed at 5 weeks

17.

4 = PBS + Alum Control Group – Bleed at 5 weeks

(For groups 3 and 4, ELISAs were performed on purified ID-83 protein)

Fig 9: Shows the results of vaccine trials using the protein ID-93.

5

Fig 10: IgG titres against the ID-93 protein.

1 = ID-93 + Alum Group – Bleed at 3 weeks

2 = ID-93 + Alum Group – Bleed at 6 weeks

3 = PBS + Alum Control Group – Bleed at 3 weeks

10 4 = PBS + Alum Control Group – Bleed at 6 weeks

Fig 11: IgG titres against the ID-89 and ID-96 proteins

1 = ID-89 + TitreMax Gold Group – Bleed at 3 weeks

2 = ID-89 + TitreMax Gold – Bleed at 6 weeks

15 3 = PBS + TitreMax Gold Control Group – Bleed at 3 weeks

4 = PBS + TitreMax Gold Control Group – Bleed at 6 weeks

5 = ID-96 + TitreMax Gold Group – Bleed at 3 weeks

6 = ID-96 + TitreMax Gold Group – Bleed at 6 weeks

7 = PBS + TitreMax Gold Control Group – Bleed at 3 weeks

20 8 = PBS + TitreMax Gold Control Group – Bleed at 6 weeks

For Groups 1-4, ELISAs were performed on purified ID-89 protein.

For Groups 5-6, ELISAs were performed on purified ID-96 protein.

25 Fig 12: Southern blot analysis of genomic DNA. Genomic DNA from each of the strains listed in Table 7 was digested completely with *Hin* DIII (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the

digoxigenin-labelled *rib* gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

Fig 13: Southern blot analysis of genomic DNA. Genomic DNA from each of the strains listed in Table 6 was digested completely with *Hin* DIII (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the digoxigenin-labelled ID-65 gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

Fig 14: Southern blot analysis of genomic DNA. Genomic DNA from each of the strains listed in Table 6 was digested completely with *Hin* DIII (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the digoxigenin-labelled ID-89 gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

Fig 15: Southern blot analysis of genomic DNA. Genomic DNA from each of the strains listed in Table 6 was digested completely with *Hin* DIII (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the digoxigenin-labelled ID-93 gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

Fig 16: Southern blot analysis of genomic DNA. Genomic DNA from each of the strains listed in Table 6 was digested completely with *Eco* RI (NEB) and electrophoresed at 40 Volts for 6 hours in 0.8% agarose, transferred onto Hybond N⁺ (Amersham) membrane by Southern blot and hybridised with the

digoxigenin-labelled ID-96 gene probe. Specifically bound DNA probe was identified using the DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

5

Example 1

Gene/partial gene sequences putatively encoding exported proteins in *S. agalactiae* have been identified, unless stated otherwise, using the nuclease screening system 10 described herein *vis,* the LEEP (Lactococcus Expression of Exported Proteins) system. These have been further analysed to remove artefacts. The nucleotide sequences of genes identified using the screening system have been characterised using a number of parameters described below.

15 1. All putative surface proteins are analysed for leader/signal peptide sequences. Bacterial signal peptide sequences share a common design. They are characterised by a short positively charged N-terminus (N region) immediately preceding a stretch of hydrophobic residues (central portion-h region) followed by a more polar C-terminal portion which contains the cleavage site (c-region). Computer 20 software is used to perform hydropathy profiling of putative proteins (Marcks, *Nuc. Acid. Res.*, 16:1829-1836 (1988)) which is used to identify the distinctive hydrophobic portion (h-region) typical of leader peptide sequences. In addition, the presence/absence of a potential ribosomal binding site (Shine-Dalgarno sequence required for translation) is also noted.

25 2. All putative surface protein sequences are used to search the OWL sequence database which includes a translation of the GENBANK and SWISSPROT database.. This allows identification of similar sequences which may have been previously characterised not only at the sequence level but at a functional level. It

may also provide information indicating that these proteins are indeed surface related and not artefacts.

3. Putative *S. agalactiae* surface proteins are also assessed for their novelty. Some of the identified proteins may or may not possess a typical leader peptide sequence and may not show homology with any DNA/protein sequences in the database. Indeed these proteins may indicate the primary advantage of our screening method, i.e. isolating atypical surface-related proteins, which would have been missed in all previously described screening protocols.

10 The construction of three reporter vectors and their use in *L. lactis* to identify and isolate genomic DNA fragments from pathogenic bacteria encoding secreted or surface associated proteins is now described.

Construction of the pTREP1-nuc series of reporter vectors

15 **(a) Construction of expression plasmid pTREP1**

The pTREP1 plasmid is a high-copy number (40-80 per cell) theta-replicating gram positive plasmid, which is a derivative of the pTREX plasmid which is itself a derivative of the previously published pIL253 plasmid. pIL253 incorporates the broad Gram-positive host range replicon of pAM β 1 (Simon and Chopin, *Biochemie* 70: 559-566 (1988))*L. lactis* sex-factor. pIL253 also lacks the *tra* function which is necessary for transfer or efficient mobilisation by conjugative parent plasmids exemplified by pIL501. The Enterococcal pAM β 1 replicon has previously been transferred to various species including *Streptococcus*, *Lactobacillus* and *Bacillus* species as well as *Clostridium acetobutylicum*, (LeBlanc *et al.*, *Proceedings of the National Academy of Science USA* 75:3484-3487 (1978)) indicating the potential broad host range utility. The pTREP1 plasmid represents a constitutive transcription vector.

The pTREX vector was constructed as follows. An artificial DNA fragment containing a putative RNA stabilising sequence, a translation initiation region (TIR), a multiple cloning site for insertion of the target genes and a transcription terminator was created by annealing 2 complementary oligonucleotides and extending with Tfl DNA polymerase. The sense and anti-sense oligonucleotides contained the recognition sites for NheI and BamHI at their 5' ends respectively to facilitate cloning. This fragment was cloned between the XbaI and BamHI sites in pUC19NT7, a derivative of pUC19 which contains the T7 expression cassette from pLET1 (Wells *et al.*, *J. Appl. Bacteriol.* **74**:629-636 (1993)) cloned between the EcoRI and HindIII sites. The resulting construct was designated pUCLEX. The complete expression cassette of pUCLEX was then removed by cutting with HindIII and blunting followed by cutting with EcoRI before cloning into EcoRI and SacI (blunted) sites of pIL253 to generate the vector pTREX (Wells and Schofield, *In Current advances in metabolism, genetics and applications-NATO ASI Series. H* **98**:37-62. (1996)). The putative RNA stabilising sequence and TIR are derived from the *Escherichia coli* T7 bacteriophage sequence and modified at one nucleotide position to enhance the complementarity of the Shine Dalgarno (SD) motif to the ribosomal 16s RNA of *Lactococcus lactis* (Schofield *et al.* pers. coms. University of Cambridge Dept. Pathology.).

A *Lactococcus lactis* MG1363 chromosomal DNA fragment exhibiting promoter activity which was subsequently designated P7 was cloned between the EcoRI and BglII sites present in the expression cassette, creating pTREX7. This active promoter region had been previously isolated using the promoter probe vector pSB292 (Waterfield *et al.*, *Gene* **165**:9-15 (1995)). The promoter fragment was amplified by PCR using the Vent DNA polymerase according to the manufacturer.

The pTREP1 vector was then constructed as follows. An artificial DNA fragment which included a transcription terminator, the forward pUC sequencing primer, a promoter multiple cloning site region and a universal translation stop sequence was created by annealing two overlapping partially complementary synthetic oligonucleotides together and extending with sequenase according to manufacturers instructions. The sense and anti-sense (pTREPF and pTREPR) oligonucleotides contained the recognition sites for EcoRV and BamHI at their 5' ends respectively to facilitate cloning into pTREX7. The transcription terminator was that of the *Bacillus penicillinase* gene, which has been shown to be effective in *Lactococcus* (Jos *et al.*, 5 *Applied and Environmental Microbiology* **50**:540-542 (1985)). This was considered necessary as expression of target genes in the pTREX vectors was observed to be leaky and is thought to be the result of cryptic promoter activity in the origin region (Schofield *et al.* pers. coms. University of Cambridge Dept. Pathology.). The forward pUC primer sequencing was included to enable direct sequencing of cloned 10 DNA fragments. The translation stop sequence which encodes a stop codon in 3 different frames was included to prevent translational fusions between vector genes and cloned DNA fragments. The pTREX7 vector was first digested with EcoRI and blunted using the 5' - 3' polymerase activity of T4 DNA polymerase (NEB) according to manufacturer's instructions. The EcoRI digested and blunt ended 15 pTREX7 vector was then digested with Bgl II thus removing the P7 promoter. The artificial DNA fragment derived from the annealed synthetic oligonucleotides was then digested with EcoRV and Bam HI and cloned into the EcoRI(blunted)-Bgl II digested pTREX7 vector to generate pTREP. A *Lactococcus lactis* MG1363 chromosomal promoter designated P1 was then cloned between the EcoRI and BglII 20 sites present in the pTREP expression cassette forming pTREP1. This promoter was also isolated using the promoter probe vector pSB292 and characterised by Waterfield *et al.*, (1995) [*supra*]. The P1 promoter fragment was originally 25 amplified by PCR using vent DNA polymerase according to manufacturers

instructions and cloned into the pTREX as an EcoRI-BglII DNA fragment. The EcoRI-BglII P1 promoter containing fragment was removed from pTREX1 by restriction enzyme digestion and used for cloning into pTREP (Schofield *et al.* pers. coms. University of Cambridge, Dept. Pathology.).

5

(b) PCR amplification of the *S. aureus nuc* gene.

The nucleotide sequence of the *S. aureus nuc* gene (EMBL database accession number V01281) was used to design synthetic oligonucleotide primers for PCR amplification. The primers were designed to amplify the mature form of the *nuc* gene designated *nucA* which is generated by proteolytic cleavage of the N-terminal 19 to 21 amino acids of the secreted propeptide designated Snase B (Shortle, 1983 [*supra*]). Three sense primers (*nucS1*, *nucS2* and *nucS3*, shown in figure 3) were designed, each one having a blunt-ended restriction endonuclease cleavage site for EcoRV or SmaI in a different reading frame with respect to the *nuc* gene. Additionally BglII and BamHI were incorporated at the 5' ends of the sense and anti-sense primers respectively to facilitate cloning into BamHI and BglII cut pTREP1. The sequences of all the primers are given in figure 3. Three *nuc* gene DNA fragments encoding the mature form of the nuclease gene (*NucA*) were amplified by PCR using each of the sense primers combined with the anti-sense primer. The *nuc* gene fragments were amplified by PCR using *S. aureus* genomic DNA template, Vent DNA Polymerase (NEB) and the conditions recommended by the manufacturer. An initial denaturation step at 93°C for 2 min was followed by 30 cycles of denaturation at 93°C for 45 sec, annealing at 50°C for 45 seconds, and extension at 73°C for 1 minute and then a final 5 min extension step at 73°C. The PCR amplified products were purified using a Wizard clean up column (Promega) to remove unincorporated nucleotides and primers.

(c) Construction of the pTREP1-nuc vectors

The purified *nuc* gene fragments described in section b were digested with Bgl II and BamHI using standard conditions and ligated to BamHI and BglII cut and dephosphorylated pTREP1 to generate the pTREP1-*nuc1*, pTREP1-*nuc2* and pTREP1-*nuc3* series of reporter vectors. These vectors are described in figure 4. General molecular biology techniques were carried out using the reagents and buffers supplied by the manufacturer or using standard techniques (Sambrook and Maniatis, Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbour (1989)). In each of the pTREP1-*nuc* vectors the expression cassette comprises a transcription terminator, lactococcal promoter P1, unique cloning sites (Bgl II, EcoRV or SmaI) followed by the mature form of the *nuc* gene and a second transcription terminator. Note that the sequences required for translation and secretion of the *nuc* gene were deliberately excluded in this construction. Such elements can only be provided by appropriately digested foreign DNA fragments (representing the target bacterium) which can be cloned into the unique restriction sites present immediately upstream of the *nuc* gene.

(d) Screening for secreted proteins in Group B Streptococcus.

Genomic DNA isolated from Group B Streptococcus (*S. agalactiae*) was digested with the restriction enzyme Tru9I. This enzyme which recognises the sequence 5'-TTAA -3' was used because it cuts A/T rich genomes efficiently and can generate random genomic DNA fragments within the preferred size range (usually averaging 0.5 - 1.0 kb). This size range was preferred because there is an increased probability that the P1 promoter can be utilised to transcribe a novel gene sequence. However, the P1 promoter may not be necessary in all cases as it is possible that many Streptococcal promoters are recognised in *L. lactis*. DNA fragments of different size ranges were purified from partial Tru9I digests of *S. agalactiae* genomic DNA. As

the Tru 9I restriction enzyme generates staggered ends the DNA fragments had to be made blunt ended before ligation to the EcoRV or SmaI cut pTREP1-*nuc* vectors. This was achieved by the partial fill-in enzyme reaction using the 5'-3' polymerase activity of Klenow enzyme. Briefly Tru9I digested DNA was dissolved in a solution (usually between 10-20 μ l in total) supplemented with T4 DNA ligase buffer (New England Biolabs; NEB) (1X) and 33 μ M of each of the required dNTPs, in this case dATP and dTTP. Klenow enzyme was added (1 unit Klenow enzyme (NEB) per μ g of DNA) and the reaction incubated at 25°C for 15 minutes. The reaction was stopped by incubating the mix at 75°C for 20 minutes. EcoRV or SmaI digested pTREP-*nuc* plasmid DNA was then added (usually between 200-400 ng). The mix was then supplemented with 400 units of T4 DNA ligase (NEB) and T4 DNA ligase buffer (1X) and incubated overnight at 16°C. The ligation mix was precipitated directly in 100% Ethanol and 1/10 volume of 3M sodium acetate (pH 5.2) and used to transform *L. lactis* MG1363 (Gasson, *J. Bacteriol.* **154**:1-9 (1983)). Alternatively, the gene cloning site of the pTREP-*nuc* vectors also contains a BglII site which can be used to clone for example Sau3AI digested genomic DNA fragments.

L. lactis transformant colonies were grown on brain heart infusion agar and nuclease secreting (*Nuc*⁺) clones were detected by a toluidine blue-DNA-agar overlay (0.05 M Tris pH 9.0, 10 g of agar per litre, 10 g of NaCl per liter, 0.1 mM CaCl₂, 0.03 % wt/vol. salmon sperm DNA and 90 mg of Toluidine blue O dye) essentially as described by Shortle, 1983 [*supra*], and Le Loir *et al.*, 1994 [*supra*]). The plates were then incubated at 37°C for up to 2 hours. Nuclease secreting clones develop an easily identifiable pink halo. Plasmid DNA was isolated from *Nuc*⁺ recombinant *L. lactis* clones and DNA inserts were sequenced on one strand using the *NucSeq* sequencing primer described in figure 3, which sequences directly through the DNA insert.

Example 2**Preparation of a *S. agalactiae* standard inoculum**5 **Strain validation**

S. agalactiae serotype III (strain 97/0099) is a recent clinical isolate derived from the cerebral spinal fluid of a new born baby suffering from meningitis. This haemolytic strain of Group B Streptococcus was epidemiologically tested and validated at the Respiratory and Systemic Infection Laboratory, PHLS Central Public Health

10 Laboratory, 61 Colindale Avenue, London NW9 5HT. The strain was subcultured only twice prior to its arrival in the laboratory. Upon its arrival on an agar slope, a sweep of 4-5 colonies was immediately used to inoculate a Todd Hewitt/5% horse blood broth which was incubated overnight statically at 37°C. 0.5 ml aliquots of this overnight culture were then used to make 20% glycerol stocks of the bacterium for
15 long-term storage at -70°C. Glycerol stocks were streaked on Todd Hewitt/5% horse blood agar plates to confirm viability.

***In vivo* passaging of Group B Streptococcus**

A frozen culture (described under strain validation) of *S. agalactiae* serotype III (strain 97/0099) was streaked to single colonies on Todd-Hewitt/5% blood agar plates, which were incubated overnight at 37°C. A sweep of 4-5 colonies was used to inoculate a Todd Hewitt/5% horse blood broth, which was again incubated overnight. A 0.5 ml aliquot from this overnight culture was used to inoculate a 50 ml Todd Hewitt broth (1:100 dilution) which was incubated at 37°C. 10-fold serial dilutions of the overnight culture were made (since virulence of this strain was unknown) and each was passaged intra-peritoneally (IP) in CBA/ca mice in duplicate. Viable counts were performed on the various inocula used in the passage. Groups of mice were challenged with various concentrations of the pathogen ranging from 10⁸ to 10⁴ colony forming units (cfu). Mice that developed symptoms were terminally anaesthetized and cardiac punctures were performed (Only mice that had

been challenged with the highest doses, i.e. 1×10^8 cfu, developed symptoms). The retrieved unclotted blood was used to inoculate directly a 50ml serum broth (Todd Hewitt/20% inactivated foetal calf serum). The culture was constantly monitored and allowed to grow to late logarithmic phase. The presence of blood in the medium
5 interfered with OD600nm readings as it was being increasingly lysed with increasing growth of the bacterium, hence the requirement to constantly monitor the culture. Upon reaching late logarithmic phase/early stationary phase, the culture was transferred to a fresh 50 ml tube in order to exclude dead bacterial cells and remaining blood cells which would have sedimented at the bottom of the tube. 0.5
10 ml aliquots were then transferred to sterile cryovials, frozen in liquid nitrogen and stored at -70°C. A viable count was carried out on a single standard inoculum aliquot in order to determine bacterial numbers. This was determined to be approximately 5 $\times 10^8$ cfu per ml.

15 **Intra-peritoneal Challenge and virulence testing of Group B Streptococcus standard inoculum**

To determine if the standard inoculum was suitably virulent for use in a vaccine trial, challenges were carried out using a dose range. Frozen standard inoculum strain aliquots were allowed to thaw at room temperature. From viable count data the
20 number of cfu per ml was already known for the standard inoculum. Initially, serial dilutions of the standard inoculum were made in Todd Hewitt broth and mice were challenged intra-peritoneally with doses ranging from 1×10^8 to 1×10^4 cfu in a 500 μ l volume of Todd Hewitt broth. The survival times of mouse groups injected with different doses of the bacterium were compared. The standard inoculum was
25 determined to be suitably virulent and a dose of 1×10^6 cfu was considered close to optimal for further use in vaccine trials. Further optimisation was carried out by comparing mice challenged with doses ranging between 5×10^5 and 5×10^6 cfu. The optimal dose was estimated to be approximately 2.5×10^6 cfu. This represented

a 100% lethal dose and was repeatedly consistent with end-points as determined by survival times being clustered within a narrow time-range. Throughout all these experiments, challenged mice were constantly monitored to clarify symptoms, stages of symptom development as well as calculating survival times.

5

Screening Group B Streptococcal LEEP derived genes in DNA vaccination experiments.

pcDNA3.1+ as a DNA vaccine vector

10 The commercially available pcDNA3.1+ plasmid (Invitrogen), referred to as pcDNA3.1 henceforth, was used as a vector in all DNA immunisation experiments involving gene targets derived using the LEEP system unless stated otherwise. pcDNA 3.1 is designed for high-level stable and transient expression in mammalian cells and has been used widely and successfully as a host vector to test candidate 15 genes from a variety of pathogens in DNA vaccination experiments (Zhang *et al.*, *Infection and Immunity* **176**: 1035-40 (1997); Kurar and Splitter, *Vaccine* **15**: 1851-57 (1997); Anderson *et al.*, *Infection and Immunity* **64**: 3168-3173 (1996)).

20 The vector possesses a multiple cloning site which facilitates the cloning of multiple gene targets downstream of the human cytomegalovirus (CMV) immediate-early promoter/enhancer which permits efficient, high-level expression of the target gene in a wide variety of mammalian cells and cell types including both muscle and immune cells. This is important for optimal immune response as it remains unknown as to which cells types are most important in generating a protective response *in* 25 *vivo*. The plasmid also contains the ColE1 origin of replication which allows convenient high-copy number replication and growth in *E. coli* and the ampicillin resistance gene (B-lactamase) for selection in *E. coli*. In addition pcDNA 3.1

possesses a T7 promoter/priming site upstream of the MCS which allows for *in vitro* transcription of a cloned gene in the sense orientation.

Preparation of DNA vaccines

5 Oligonucleotide primers were designed for each individual gene of interest derived using the LEEP system unless stated otherwise. Each gene was examined thoroughly, and where possible, primers were designed such that they targeted that portion of the gene believed to encode only the mature portion of the protein (APPENDIX I); the intention being to express those sequences that encode only the
10 mature portion of a target gene protein to would facilitate its correct folding when expressed in mammalian cells. For example, in the majority of cases primers were designed such that putative N-terminal signal peptide sequences would not be included in the final amplification product to be cloned into the pcDNA3.1 expression vector. The signal peptide directs the polypeptide precursor to the cell
15 membrane via the protein export pathway where it is normally cleaved off by signal peptidase I (or signal peptidase II if a lipoprotein). Hence the signal peptide does not make up any part of the mature protein whether it be displayed on the bacterium's surface or secreted. Where an N-terminal leader peptide sequence was not immediately obvious, primers were designed to target the whole of the gene
20 sequence for cloning and ultimately, expression in pcDNA3.1.

All forward and reverse oligonucleotide primers incorporated appropriate restriction enzyme sites to facilitate cloning into the pcDNA3.1 MCS region. All forward primers were also designed to include the conserved Kozak nucleotide sequence 5'-
25 gccacc-3' immediately upstream of an 'atg' translation initiation codon in frame with the target gene insert. The Kozak sequence facilitates the recognition of initiator sequences by eukaryotic ribosomes. Typically, a forward primer incorporating a BamH1 restriction enzyme site the primer would begin with the sequence 5'-

cgggatccgccaccatg-3', followed by a sequence homologous to the 5' end of that part of a gene being amplified. All reverse primers incorporated a Not I restriction enzyme site sequence 5' -ttgcggccgc-3'. All gene-specific forward and reverse primers were designed with compatible melting temperatures to facilitate their amplification.

All gene targets were amplified by PCR from *S. agalactiae* genomic DNA template using Vent DNA polymerase (NEB) or rTth DNA polymerase (PE Applied Biosystems) using conditions recommended by the manufacturer. A typical amplification reaction involved an initial denaturation step at 95°C for 2 minutes followed by 35 cycles of denaturation at 95°C for 30 seconds, annealing at the appropriate melting temperature for 30 seconds, and extension at 72°C for 1 minute (1 minute per kilobase of DNA being amplified). This was followed by a final extension period at 72°C for 10 minutes. All PCR amplified products were extracted once with phenol chloroform (2:1:1) and once with chloroform (1:1) and ethanol precipitated. Specific DNA fragments were isolated from agarose gels using the QIAquick Gel Extraction Kit (Qiagen). The purified amplification gene DNA fragments were digested with the appropriate restriction enzymes and cloned into the pcDNA3.1 plasmid vector using *E. coli* as a host. Successful cloning and maintenance of genes was confirmed by restriction mapping and by DNA sequencing. Recombinant plasmid DNA was isolated on a large scale (>1.5 mg) using Plasmid Mega Kits (Qiagen).

DNA vaccination trials

DNA vaccine trials in mice were accomplished by the administration of DNA to 6 week old CBA/ca mice (Harlan, UK). Mice to be vaccinated were divided into groups of six and each group was immunised with recombinant pcDNA3.1 plasmid DNA containing a specific target-gene sequence derived using the LEEP system unless stated otherwise. A total of 100 µg of DNA in Dulbecco's PBS (Sigma) was

injected intramuscularly into the tibialis anterior muscle of both hind legs. Four weeks later this procedure was repeated using the same amount of DNA. For comparison, control mice groups were included in all vaccine trials. These control groups were either not DNA-vaccinated or were immunised with non-recombinant pcDNA3.1 plasmid DNA only, using the same time course described above. Four weeks after the second immunisation, all mice groups were challenged intra-peritoneally with a lethal dose of *S. agalactiae* serotype III (strain 97/0099). The actual number of bacteria administered was determined by plating serial dilutions of the inoculum on Todd-Hewitt/5% blood agar plates. All mice were killed 3 or 4 days after infection. During the infection process, challenged mice were monitored for the development of symptoms associated with the onset of *S. agalactiae* induced-disease. Typical symptoms in an appropriate order included piloerection, an increasingly hunched posture, discharge from eyes, increased lethargy and reluctance to move which was often the result of apparent paralysis in the lower body/hind leg region.

The latter symptoms usually coincided with the development of a moribund state at which stage the mice were culled to prevent further suffering. These mice were deemed to be very close to death, and the time of culling was used to determine a survival time for statistical analysis. Where mice were found dead, a survival time was calculated by averaging the time when a particular mouse was last observed alive and the time when found dead, in order to determine a more accurate time of death. The results of this trial are shown in Table 1 and presented graphically in Figure 2.

Interpretation of Results

A positive result was taken as any DNA sequence that was cloned and used in challenge experiments as described above and gave protection against that challenge. DNA sequences were determined to be protective;

-if that DNA sequence gave statistically significant protection to mice as compared to control mice (to a 95% confidence level ($p > 0.05$) as determined using the Mann-Whitney U test .

5 -if that DNA sequence was marginal or non-significant using Mann-Whitney but showed some protective features. For example, one or more outlying mice may survive for significantly longer time periods when compared with control mice. Alternatively, the time to first death may also be prolonged when compared to counterpart mice in control groups. It is acceptable to allow marginal or non-significant results to be considered as potential positives when it is possible that the

10 clarity of some results may be affected by problems associated with the administration of the DNA vaccine. Indeed, much varied survival times may reflect different levels of immune response between different members of a given group.

15 **Table 1**
LEEP DNA immunisation and GBS challenge Experiment

Statistical analysis of survival times

	Mean Survival Times (hours)		
	UnVacc	3-60(ID-65)	3-5(ID-66)
1	27.583	54.416	42.916
2	27.583	31.000	42.916
3	24.583	43.000	32.874
4	22.250	34.916	42.916
5	35.916	38.958	27.333
6	22.250	34.916	30.916
Mean	27.583	40.458	37.791
sd	5.1691	8.9959	7.2860
p value		0.0098	0.0215

20 **p value** refers to statistical significance when compared to unvaccinated controls.

Comment**ID-65 (3-60)**

5

Mice immunised with the '3-60 (ID-65)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group.

ID-66 (3-5)

10 Mice immunised with the '3-5 (ID-66)' DNA vaccine exhibited significantly longer survival times when compared with the unvaccinated control group.

Example 3

15 **Expression and Screening Group B Streptococcal LEEP derived Proteins in Protein vaccination experiments.**

Expression of proteins

Prioritised genes ie, those selected on the basis of predicted expression features as deduced from sequence characteristics (as described in Figure 1), were cloned and expressed as recombinant proteins using the pET system (Novagen, Inc., Madison, WI) utilising *Escherichia coli* as a host. Target genes were cloned into the pET28b(+) plasmid expression vector. The pET28b(+) vector is designed for high level expression and purification of target proteins. This vector carries a T7 promoter for transcription of a target gene, followed by an N-terminal His•Tag[®]/thrombin/T7•Tag[®] configuration, a multi-cloning site containing unique restriction enzyme sites for cloning purposes, and an optional C-terminal His•Tag sequence. The vector also carries a kanamycin resistance gene for selection purposes and for maintaining target gene expression (pET System Manual, 8th edition, Novagen).

Preparation of protein vaccines

Oligonucleotide primers were designed for each individual target gene derived using the LEEP system unless stated otherwise. Each gene was examined thoroughly. Where possible primers were designed so that they would target that part of the gene predicted to encode only the mature portion of the protein (APPENDIX II). It is hoped that expressing those corresponding to the predicted mature protein only, might facilitate its correct folding when finally expressed *in vitro*. Oligonucleotide primers were designed so that sequences, encoding the putative N-terminal signal peptide of the target protein, would not be included in the final amplification product to be cloned pET28b(+). The signal peptide directs the polypeptide precursor to the cell membrane via the protein export pathway where it is normally cleaved off by signal peptidase I (or signal peptidase II if a lipoprotein). Hence the signal peptide would not be expected to form any part of the mature target protein, whether it be displayed on the bacterium's surface or secreted. For this purpose, classical signal peptides and their cleavage sites were predicted using the DNA Strider™ Program (CEA, France) and the SignalP V1.1 program, which predicts the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms (Nielsen *et al.*, *Protein Engineering* 10: 1-6 (1997)). Where a N-terminal leader peptide sequence was not obvious, primers were designed to include the whole of the gene sequence for cloning and expression.

All oligonucleotide primers were designed to incorporate appropriate restriction enzyme sites to facilitate cloning into the pcDNA3.1 MCS region (APPENDIX II). Forward primers included an *Nco* I (5'-ccatgg-3') or *Nhe* I (5'-gctagc-3') restriction enzyme site and an 'ATG' start codon in-frame with the target gene open reading frame (orf). All reverse primers included a *Not* I restriction enzyme site 5' - gcggccgc-3' and were designed so that the target gene could be expressed in frame with the C-terminal His•Tag (i.e. the stop codon of the target gene was not

included). Using the *Nco* I and *Not* I, allowed the removal of the N-terminal His•Tag®, thrombin and T7•Tag® DNA sequences. At the same time target genes were cloned immediately downstream of a highly efficient ribosome binding site (from the phage T7 major capsid protein), to facilitate high level expression/translation of the target gene by T7 RNA polymerase, and subsequent purification by means of the C-terminal His•Tag. All target gene-specific forward and reverse primers were designed with compatible melting temperatures to facilitate their amplification.

All gene targets were amplified by PCR from *S. agalactiae* genomic DNA template using Vent DNA polymerase (NEB) using conditions recommended by the manufacturer. A typical amplification reaction involved an initial denaturation step at 95°C for 2 minutes followed by 35 cycles of denaturation at 95°C for 30 seconds, annealing at the appropriate melting temperature for 30 seconds, and extension at 72°C for 1 minute (1 minute per kilobase of DNA being amplified). This was followed by a final extension period at 72°C for 10 minutes. All PCR amplified products were extracted once with phenol:chloroform (2:1:1) and once with chloroform (1:1) and ethanol precipitated. Specific DNA fragments were isolated from agarose gels using the QIAquick Gel Extraction Kit (Qiagen). Purified target gene DNA amplicons were then digested *Nco* I (or *Nhe* I) and *Not* I restriction enzymes, and cloned into *Nco* I and *Not* I digested pET28b(+) plasmid vector using *E. coli* DH5α or *E. coli* BL21 (DE3) as a host. Successful cloning and maintenance of genes was confirmed by restriction mapping.

Determination of target protein expression and solubility

Glycerol stocks of *E. coli* BL21 DE3 pET28b(+) strains expressing recombinant proteins were used to inoculate 10 ml Luria broth containing Kanamycin (30 µg/ml) which were grown overnight at 37°C with vigorous shaking (300 rpm).

A 20-40 ml Luria broth containing Kanamycin (30 µg/ml) was inoculated with 1:100 dilution of the overnight culture from step 1 and grown at 37°C with vigorous shaking (300 rpm). When the culture reached an OD₆₀₀ of between 0.6 and 1.0, IPTG was added to a final concentration of 1mM. Typically cultures were induced 5 for 3 hours. Cells were then harvested by centrifugation at 7000 g for 10 min. The cell pellet was then resuspended in 1/10 volume of lysis buffer (50mM NaH₂PO₄, pH.8.0; 300mM NaCl;10mM imidazole; 10% glycerol). Lysozyme was then added to a final concentration of 1mg/ml, and the suspension was incubated on ice for 30 min. The suspension was then sonicated on ice (six 10-sec bursts at 200-300 W with 10 a 10-sec cooling period. The lysate was then centrifuged at 10,000g for 20 min. The supernatant (containing soluble protein) was transferred to a sterile 2 ml eppendorf. The pellet was resuspended in 2 ml of solubilisation buffer (8 M Urea; 50mM NaH₂PO₄, pH.8.0; 300mM NaCl; 10% glycerol). This suspension contained the insoluble protein fraction. Aliquots from both the soluble and insoluble fractions 15 were transferred to new eppendorfs. The protein samples were denatured by adding an equal volume of 2x SDS-PAGE buffer and heating at 95°C for 5 min. Denatured extract samples were then analysed by SDS-PAGE to determine target gene expression and solubility.

Large scale expression of recombinant target proteins

Glycerol stocks of *E. coli* BL21 DE3 pet28b(+) strains expressing recombinant 5 proteins were used to inoculate 10 ml Luria broth containing Kanamycin (30 µg/ml) which were grown overnight at 37°C with vigorous shaking (300 rpm). 5 ml of an overnight culture of a recombinant strain was used to inoculate a 250 ml Luria broth containing kanamycin (30 µg/ml) which was grown at 37°C with vigorous shaking (300 rpm). When the culture reached an OD₆₀₀ of between 0.6 and 1.0, IPTG was 10 added to a final concentration of 1mM. Typically, cultures were induced for 3 hours. Cultures were then centrifuged to a pellet and stored frozen at -20°C.

Purification of target antigens.

15 Ni-NTA agarose (Qiagen LTD, West Sussex, UK; Cat. No. 30210) was used to purify the His-Tagged recombinant proteins. The 6xHis affinity tag which was expressed in frame with the target proteins in pET28b(+), facilitates binding to Ni-NTA. Ni-NTA offers high binding capacity (with minimal non-specific binding) and can bind 5-10 mg of 6xHis-tagged protein per ml of resin. The 6xHis-tag is poorly 20 immunogenic, and at pH 8.0, the tag is small, uncharged and therefore does not generally interfere with the structure and function of the protein (The QIAexpressionist, Qiagen Handbook, March 1999).

25 NOTE: All the proteins (LEEP-derived, unless stated otherwise) described here were purified under denaturing conditions except ID-65. ID-65 was prepared and purified under native conditions.

Purification under native conditions

30 The frozen pellet was allowed to thaw on ice for 15 minutes and then resuspended in 10 ml of lysis buffer (50mM NaH₂PO₄, pH.8.0; 300mM NaCl;10mM imidazole;

10% glycerol). Lysozyme was then added to a final concentration of 1mg/ml, and the suspension was incubated on ice for 30 min. The suspension was then sonicated on ice (six 10-sec bursts at 200-300 W with a 10-sec cooling period). DNase I (5 µg/ml) was then added to the lysate, which was then incubated on ice for 10-15 min.

5 The lysate was then centrifuged at 10,000 rpm for 20 min at 4°C to pellet cell debris. The clear lysate supernatant was then loaded into a polypropylene column (Qiagen; Cat. No. 34964), bottom cap attached. 1.5 ml of 50% Ni-NTA was then added, the column sealed and the suspension was allowed to mix gently using a rotating wheel for 1-2 hours at 4°C. The column containing the lysate/Ni-NTA mix was then

10 placed upright using a retort stand, and the Ni-NTA was allowed to settle. The bottom cap was removed and the lysate was allowed to flow through. The column was then washed with three to six 4 ml volumes of wash buffer (50mM NaH₂PO₄, pH.8.0; 300mM NaCl; 20mM imidazole; 10% glycerol). The protein was then eluted in 0.5 ml aliquots of elution buffer (50mM NaH₂PO₄, pH.8.0; 300mM

15 NaCl; 500mM imidazole; 10% glycerol). Eluate fractions were then analysed by SDS-PAGE and those containing the protein were pooled and dialysed against a PBS (pH 7.0)-glycerol (10%) solution.

Purification and refolding under denaturing conditions

20 The frozen pellet was allowed to thaw on ice for 15 minutes and then resuspended in 10 ml of buffer containing 8 M Urea, 300 mM NaCl, 10% glycerol, 0.1 M NaH₂PO₄, pH.8.0, and 10 mM imidazole. The cells were then lysed by gentle vortexing for 1 hour at room temperature. The lysate was then centrifuged at

25 10,000g for 20 minutes to pellet cellular debris. The clear lysate supernatant was then loaded into a polypropylene column (Qiagen; Cat. No. 34964), bottom cap attached. 1.5 ml of 50% Ni-NTA slurry was then added, the column sealed and the suspension was allowed to mix gently using a rotating wheel for 1-2 hours at room

temperature. The column containing the lysate/Ni-NTA mix was then placed upright using a retort stand, and the Ni-NTA was allowed to settle. The bottom cap was removed and the lysate was allowed to flow through. The column was then washed with 4-8 ml of buffer containing 8 M Urea, 300 mM NaCl, 10% glycerol, 0.1 M NaH₂PO₄, pH 8.0, and 10 mM imidazole. The resin was then washed with a gradient of 6 to 0 M in a buffer containing 0.1 M NaH₂PO₄, pH 8.0, 300 mM NaCl and 10% glycerol to facilitate the slow removal of urea and gradual refolding of target protein. The resin was then washed with a buffer containing 0.1 M NaH₂PO₄, pH 7.0, 500 mM NaCl and 10% glycerol. The recombinant protein was then eluted in 0.5 ml aliquots with 500 mM Imidazole in 0.1 mM NaH₂PO₄, pH 7.0, 500 mM NaCl and 10% glycerol. The fractions were analysed on SDS-PAGE and those containing the protein were pooled and dialysed against a PBS (pH 7.0)-glycerol (10%) solution.

All purified proteins were analysed by SDS-PAGE, as shown in Figures 5, 6 and 7, prior to their use as antigens in immunisation and vaccination experiments.

Protein Vaccinations

Vaccines were composed of the target protein in phosphate buffered saline/10% glycerol and mixed with aluminium hydroxide (alum) (Imject® Alum, Pierce, Rockford, Ill.). Each dose (unless otherwise stated) of vaccine contained 25 µg of purified protein in 50 µl of PBS/10% glycerol, mixed with 50 µl of alum. Groups of 6-8 CBA/ca mice (Harlan, UK) were immunised subcutaneously with the vaccines and again 4 weeks later. A control group received 100 µl dose of PBS/10% glycerol with alum. All vaccinated groups consisted of 6 mice. Mice were challenged at 7 weeks (unless otherwise stated). Mice were injected intraperitoneally (i.p.) with between 2.5-5 X 10⁶ bacteria diluted in 0.5 ml Todd-Hewitt broth. Deaths were recorded daily for 7 days. The challenged mice were observed daily for signs of illness. Typical symptoms in an appropriate order included piloerection, an

increasingly hunched posture, discharge from eyes, increased lethargy and reluctance to move which was often the result of apparent paralysis in the lower body/hind leg region. The latter symptoms usually coincided with the development of a moribund state at which stage the mice were culled to prevent further suffering. These mice
5 were deemed to be very close to death, and the time of culling was used to determine a survival time for statistical analysis. Where mice were found dead, a survival time was calculated by averaging the time when a particular mouse was last observed alive and the time when found dead, in order to determine a more accurate time of death.

10

Analysis of antibody responses

Mice (6 per group) were immunised with two doses of vaccine with a four week interval. Mice were tail bled at 3 weeks and 6 weeks post primary vaccination to
15 obtain sera. Total Immunoglobulin G (IgG) titres to the vaccine protein component in sera were determined by enzyme-linked immunosorbent assay (ELISA), using the original purified protein as the coating antigen.

Standard ELISA protocol

20 **Solutions**

Carbonate/bicarbonate buffer, pH 9.8

0.80g Na₂CO₃

1.46g NaHCO₃

pH to 9.6 using HCl

25 Add distilled water (dH₂O) to a final volume of 500ml.

n-NITROPHENYL PHOSPHATE SUBSTRATE

Diethanolamine Buffer, pH 9.8

48.5 ml diethanolamine

pH to 9.8 using 1M HCl

Add dH₂O to a final volume of 500ml

5

NOTE: ELISAs were optimised for each protein submitted for immunisation.

PROTOCOL

1. ELISA plates (Greiner labortechnik 96 well plates: Cat. No. 655061) with an appropriate concentration of recombinant protein diluted in carbonate/bicarbonate buffer (50 µl/well). Cover plates with plastic or foil and leave overnight at 4°C.
- 10 2. Quickly wash plates twice in a tub/container containing PBS/0.05% Tween-20 and then pat dry.
3. Block plates with 3% BSA in PBS/Tween (100µl /well) for 1 hour at room temperature.
- 15 4. Wash the plates 3 times PBS/Tween as before and pat dry as before.
5. Apply (primary antibody) protein-specific antiserum (50µl/well) diluted from 1/50 in a doubling dilution series in PBS/Tween and incubate at room temperature for 90 minutes.
- 20 6. Wash plates as before (3 times quickly), followed up by 2 X 3 minute soaks (in PBS/Tween)
7. Apply diluted secondary antibody alkaline phosphatase conjugate. For anti-mouse Total IgG alkaline phosphatase conjugate (Goat Anti-Mouse IgG-AP, Southern Biotechnology Associates, Birmingham, AL. Cat. No. 1030-04) dilute 1/3000 in PBS/Tween and apply 50 µl per well and incubate at room temperature for 90 minutes.
- 25 8. Wash plates as in step 6.

9. Apply substrate. Dissolve one 5mg tablet of nitrophenyl phosphate (Sigma:kept in freezer) in 5ml of diethanolamine buffer. Apply 100 μ l per well. Cover with foil (a light-sensitive reaction) and leave at room temperature for 30 minutes. Read Optical densities (OD) at a wavelength of 405nm.
- 5 10. Plot curves of OD Vs dilution (log scale). Calculate end-point titres as the dilution giving the same OD as the mean of the OD obtained from the wells containing the 1/50 dilution of pre-immune serum.

10

15

ELISA Plate format

2°	1/50	1/10	1/20	1/40	1/80	1/160	1/32	1/640	1/1280	1/256	1/5120
1°	Duplicate										
Pre											
Pre											
Pre											

Table Summary

5 **Pre** Replicate wells of pooled pre-inoculation serum ($50\mu\text{l}$ per well) diluted to 1/50 are included on every plate in order for end point titres to be calculated.

2° Is a blank control well to which no secondary antibody conjugate is applied. PBS/Tween by itself is applied instead

10 1° Is a blank control well to which no primary antibody is applied. PBS/Tween by itself is applied instead

Duplicate Each serum is analysed in duplicate

The dilution series used is indicated (see first row of table). Beginning with a 1/50 dilution, sera are diluted two-fold in PBS/Tween in doubling dilution series as indicated.

15

Protein Immunisation data**ID-65 and ID-83**

The ID-65 and ID-83 vaccines were composed of the target proteins in phosphate buffered saline/10% glycerol mixed with aluminium hydroxide (alum)

(Inject[®] Alum, Pierce, Rockford, Ill.). Each dose of vaccine contained 20 µg of purified protein in 100 µl of PBS/10% glycerol, mixed with 50 µl of alum. A group of 6-8 week old CBA/ca mice (Harlan, UK) were immunised subcutaneously with the ID-65 and ID-83 vaccine and again 4 weeks later. A control group received a 5 150 µl dose of PBS/10% glycerol (2:1) with alum. All groups consisted of 6 mice. Mice were tail bled at 5 weeks post primary vaccination to obtain sera. The presence of total Immunoglobulin G (IgG) antibodies to the ID-65 and ID-83 protein in sera was determined by enzyme-linked immunosorbent assay (ELISA), using the purified protein as the coating antigen. ELISA was also performed using sera obtained at 6 10 weeks post-primary vaccination from the PBS/10% glycerol immunised control group.

NOTE: ELISA plates were coated with the ID-65 or ID-83 proteins at a concentration of 1 µg/ml.

15

Protein Vaccination -ELISA results for ID-65 and ID-83

20

Mice (6 per group) were immunised with two doses of the ID-65 and ID-83 vaccines with a four week interval. Mice were tail bled at 5 weeks post primary vaccination to obtain sera. The Immunoglobulin G (IgG) titres to the vaccine protein component in sera were determined by enzyme-linked immunosorbent assay (ELISA), using the purified ID-65 and ID-83 proteins as the coating antigen. Subsequent to optimisation, ELISA plates were coated at a concentration 1µg/ml for both the purified ID-65 and ID-93 proteins. Total IgG titres were measured against 25 pre-immune serum (1/50 dilution). The results are shown in Table 2 and graphically in Figure 8.

30

Table 2

Serum (Group)	<u>ID-65 + Alum</u> (n=6)	<u>PBS + Alum</u> (n=6)	<u>ID-83 + Alum</u> (n=6)	<u>PBS + Alum</u> (n=6)
Coating antigen	<u>ID-65</u>		<u>ID-83</u>	
Bleed	<u>5 weeks</u>	<u>5 weeks</u>	<u>5 weeks</u>	<u>5 weeks</u>
<u>Total IgG Titres (mouse 1- 6)</u>	7535763	965	82081	61
	1557649	90	50027	50
	3319737	108	154670	80
	1832259	176	57901	96
	8794360	371	66497	125
	1445728	0	49928	0
<u>Average</u>	4080916	285	76851	69
<u>Standard Deviation</u>	3258818	355	39985	43

5

Protein Immunisation and Challenge data (ID-93)**ID-93**

The ID-93 vaccine was composed of the target ID-93 protein in phosphate buffered saline/10% glycerol mixed with aluminium hydroxide (alum) (Imject® Alum, Pierce, Rockford, Ill.). Each dose of vaccine contained 25 µg of purified protein in 100 µl of PBS/10% glycerol, mixed with 100 µl of alum. A group of 6-8 week old CBA/ca mice (Harlan, UK) were immunised subcutaneously with the ID-93 vaccine and again 4 weeks later. A control group received PBS/10% glycerol with alum. Both groups consisted of 6 mice. Mice were challenged at 7 weeks (unless otherwise stated). Mice were injected intraperitoneally (i.p.) with 5×10^6 bacteria diluted in

0.5 ml Todd-Hewitt broth. The challenged mice were observed daily for signs of illness. Deaths were recorded daily for 7 days. Survival data are shown in Table 3 and graphically in Figure 9.

- 5 Mice were tail bled at 3 weeks and 6 weeks post primary vaccination to obtain sera. The presence of total Immunoglobulin G (IgG) antibodies to the ID-93 protein in sera was determined by enzyme-linked immunosorbent assay (ELISA), using the pure ID-93 protein as the coating antigen. ELISA was also performed using sera obtained at 6 weeks post-primary vaccination from the PBS/10% glycerol immunised
10 control group.

Note: ELISA plates were coated with the ID-93 protein at a concentration of 1 µg/ml.

- 15 Table 3
ID-93 protein immunisation and GBS challenge experiment

Statistical analysis of Survival Times

Group	PBS + Alum	ID-93 + Alum
<u>Survival Times (hours)</u>	22.37	29.37
	22.37	35.12
	15.37	32.62
	28.03	32.62
	29.53	37.12
	26.53	27.87
Mean	24.03	32.45
sd	5.16	3.45
p value		0.01

- 20 **p value** refers to statistical significance when compared to unvaccinated controls.

Comment**5 ID-93 (RS-70)**

Mice immunised with the ID-93-Alum vaccine exhibited significantly longer survival times when compared with the PBS-Alum control group.

10 (Statistical Significance was determined by the Mann-Whitney U test using a 95% confidence level ($p > 0.05$).

Protein Vaccination -ELISA results for ID-93

15 Mice (6 per group) were immunised with two doses of the ID-93 vaccine with a four week interval. Mice were tail bled at 3 weeks and 6 weeks post primary vaccination to obtain sera. The Immunoglobulin G (IgG) titres to the vaccine protein component in sera were determined by enzyme-linked immunosorbent assay (ELISA), using the purified ID-93 protein as the coating antigen. Subsequent to optimisation, ELISA plates were coated with the purified ID-93 protein at a concentration of 1 μ g/ml.

20 Total IgG titres were measured against pre-immune serum (1/50 dilution). The results are shown in Table 4 and graphically in Figure 10.

Table 4

Serum Group	<u>ID-93 + Alum(n=6)</u>		<u>PBS/10% glycerol (n=6)</u> (control)	
Coating antigen	<u>ID-93</u>	<u>ID-93</u>	<u>ID-93</u>	<u>ID-93</u>
Bleed	<u>3 weeks</u>	<u>6 weeks</u>	<u>3 weeks</u>	<u>6 weeks</u>
<u>Total IgG Titres (mouse 1-6)</u>	87196	3000000	39	100
	99544	8000000	31	16
	19620	2000000	31	79
	34724	10000000	59	48
	59990	10000000	24	328
	30041	4000000	13	40
<u>Average</u>	55186	6166667	33	102
<u>Standard error</u>	32654	3600926	15	115

5

Protein Immunisation data**ID-89 and ID-96**

The ID-89 and ID-96 vaccines were composed of the target proteins in phosphate buffered saline/10% glycerol mixed with TitreMax Gold adjuvant (Sigma, Missouri, USA) according to the manufacturers instructions. The ID-89 vaccine contained 25 µg of purified protein 50 µl of PBS/10% glycerol, mixed with 50 µl of TitreMax Gold. The ID-96 vaccine contained 12.5 µg of purified protein 50 µl of PBS/10% glycerol, mixed with 50 µl of TitreMax Gold. Groups of 6-8 week old CBA/ca mice (Harlan, UK) were immunised subcutaneously with the ID-89 and ID-96 vaccines and again 4 weeks later. A control group received a 100 µl dose PBS/10% glycerol with TitreMax Gold (1:1). Both groups consisted of 6 mice. Mice were tail bled at 3

weeks and 6 weeks post primary vaccination to obtain sera. The presence of total Immunoglobulin G (IgG) antibodies to the ID-65 and ID-83 protein in sera was determined by enzyme-linked immunosorbent assay (ELISA), using the purified protein as the coating antigen. ELISA was also performed using sera obtained at 3 weeks and 6 weeks post-primary vaccination from the PBS/10% glycerol immunised control group.

Note: ELISA plates were coated with the ID-89 or ID-96 proteins at a concentration of 1 μ g/ml and 3 μ g/ml respectively.

10

Protein Vaccination -ELISA results for ID-89 and ID-96

15

Mice (6 per group) were immunised with two doses of the ID-89 and ID-96 vaccines with a four week interval. Mice were tail bled at 3 weeks and 6 weeks post primary vaccination to obtain sera. The Immunoglobulin G (IgG) titres to the vaccine protein component in sera were determined by enzyme-linked immunosorbent assay (ELISA), using the purified ID-65 and ID-83 proteins as the coating antigen. Subsequent to optimisation, ELISA plates were coated with purified ID-89 and ID-96 protein at a concentration 1 μ g/ml and 3 μ g/ml respectively. Total IgG titres were measured against pre-immune serum (1/50 dilution). ELISA was also performed on both proteins using sera obtained at 3 weeks and 6 weeks post-primary vaccination from the PBS/10% glycerol immunised control group. Results are shown in tables 5a and 5b and graphically in Figure 11.

20

Table 5a

Serum	ID-89 + TitreMax Gold (n=6)		ID-96 + TitreMax Gold(n=6)	
Coating antigen	ID-89		ID-96	
Bleed	<u>3 weeks</u>	<u>6 weeks</u>	<u>3 weeks</u>	<u>6 weeks</u>
<u>Total IgG Titres (mouse 1- 6)</u>	146940	1000000	190371	10000000
	89672	1000000	212505	10000000
	173532	2000000	167613	5000000
	85161	751210	110378	5000000
	88956	551281	142614	1000000
	27880	2000000	191085	1000000
Average	102024	1217082	169094	5333333
Standard Deviation	51451	629364	37341	4033196

Table 5b

Serum	<u>PBS/10% glycerol (n=6)</u>		<u>PBS/10% glycerol (n=6)</u>	
Coating protein	<u>ID-89</u>		<u>ID-96</u>	
Bleed	<u>3 weeks</u>	<u>6 weeks</u>	<u>3 weeks</u>	<u>6 weeks</u>
<u>Total IgG Titres (mouse 1-6)</u>	3	7	33	31
	8	11	77	62
	29	31	77	1
	34	4	52	29
	0	2	125	31
	5	4	113	0
Average	13	11	80	26
Standard deviation	15	12	35	23

Example 4**5 Conservation and variability of candidate vaccine antigen genes among different isolates of Group B Streptococci**

An initial Southern blot analysis was carried out to determine cross-serotype conservation of novel Group B Streptococcal genes isolated using the LEEP system unless stated otherwise. Analysing the serotype distribution of a target gene will also 10 determine their potential use as antigen components in a GBS vaccine. The Group B Streptococcal strains whose DNA was analysed as part of this study are listed in APPENDIX III

15 Amplification and labelling of specific target genes as DNA probes for Southern blot analysis.

Oligonucleotide primers were designed for each individual gene of interest derived using the LEEP system unless stated otherwise. The same primers already described in APPENDIX II were used to amplify corresponding gene-specific DNA probes. Specific gene targets were amplified by PCR using Vent DNA polymerase (NEB) 20 according to the manufacturers instructions. Typical reactions were carried out in a 100 μ l volume containing 50 ng of GBS template DNA, a one tenth volume of enzyme reaction buffer, 1 μ M of each primer, 250 μ M of each dNTP and 2 units of Vent DNA polymerase. A typical reaction contained an initial 2 minute denaturation at 95°C, followed by 35 cycles of denaturation at 95°C for 30 seconds, annealing at 25 the appropriate melting temperature for 30 seconds, and extension at 72°C for 1 minute (1 minute per kilobase of DNA being amplified). The annealing temperature was determined by the lower melting temperature of the two oligonucleotide primers. The reaction was concluded with a final extension period of 10 minutes at 72°C.

All PCR amplified products were extracted once with phenol chloroform (2:1:1) and once with chloroform (1:1) and ethanol precipitated. Specific DNA fragments were isolated from agarose gels using the QIAquick Gel Extraction Kit (Qiagen). For use as DNA probes, purified amplified gene DNA fragments were labelled with digoxigenin using the DIG Nucleic Acid Labelling Kit (Boehringer Mannheim) according to the manufacturer's instructions.

Southern blot hybridisation analysis of Group B Streptococcal genomic DNA

Genomic DNA had previously been isolated from all strains of Group B Streptococci which were investigated for conservation of LEEP-derived (unless stated otherwise) gene targets. Appropriate DNA concentrations were digested using either *Hin* DIII or *Eco* RI restriction enzymes (NEB) according to manufacturer instructions and analysed by agarose gel electrophoresis. Following agarose gel electrophoresis of DNA samples, the gel was denatured in 0.25M HCl for 20 minutes and DNA was transferred onto HybondTM N⁺ membrane (Amersham) by overnight capillary blotting. The method is essentially as described in Sambrook *et al.* (1989) using Whatman 3MM wicks on a platform over a reservoir of 0.4M NaOH. After transfer, the filter was washed briefly in 2x SSC and stored at 4°C in Saran wrap (Dow chemical company).

Filters were prehybridised, hybridised with the digoxigenin labelled DNA probes and washed using conditions recommended by Boehringer Mannheim when using their DIG Nucleic Acid Detection Kit. Filters were prehybridised at 68°C for one hour in hybridisation buffer (1% w/v supplied blocking reagent, 5x SSC, 0.1% v/v N-lauryl sarcosine, 0.02% v/v sodium dodecyl sulphate[SDS]). The digoxigenin labelled DNA probe was denatured at 99.9°C for 10 minutes before being added to the hybridisation buffer. Hybridisation was allowed to proceed overnight in a rotating Hybaid tube in a Hybaid Mini-hybridisation oven. Unbound probe was removed by washing the filter twice with 2x SSC- 0.1% SDS for 5 minutes at room

temperature. For increased stringency filters were then washed twice with 0.1x SSC-0.1% SDS for 15 minutes at 68°C. The DIG Nucleic Acid Detection Kit (Boehringer Mannheim) was used to immunologically detect specifically bound digoxigenin labelled DNA probes.

5

Results of Southern blot analysis

Unless otherwise stated, all genomic digests and their corresponding Southern blots followed an identical lane order as described in Table 6 below.

10

Table 6

Lane	1	2	3	4	5	6	7
Strain	1 kb molecular	515	A909	SB35	H36B	18RS21	1954/92
Serotype	Weight Marker	Ia	Ia	Ib	Ib	II	II

Lane	8	9	10	11	12	13	14
Strain	118/158	97/0057	BS30	M781	97/0099	3139	1169-NT
Serotype	II	II	III	III	III	IV	V

Lane	15	16	17	18	19	20
Strain	GBS 6	7271	JM9	Group A <i>Streptococcus</i> <i>pneumoniae</i>	<i>Streptococcus</i> <i>pneumoniae</i>	1 kb molecular
Serotype	VI	VII	VIII	-	14	Weight Marker

15

For comparative purposes, it was decided to analyse the serotype distribution of the GBS *rib* gene, which encodes the known protective immunogen Rib. Rib has previously been shown to be present in serotype III and some strains of serotype II but not in serotypes Ia or Ib (Stalhammar-Carlemalm *et al.*, *J. Exp. Med.* 177: 1593-1603 (1993)).

Confirmation of this pattern would not only give increased confidence in interpreting subsequent results, it would also determine if a *rib* gene homologue was present in the remaining GBS serotypes being investigated here. Primers designed for the amplification of *rib* for use as a gene probe in Southern blot analysis are described in APPENDIX II.

Table 7 – Lane order for Figure 12 (*rib* gene Southern blot analysis)

Lane	1	2	3	4	5	6	7
Strain	1 kb molecula r Weight Marker	515	A909	SB35	H36B	18RS21	1954/92
Serotype	Ia	Ia	Ib	Ib	II	II	

15

Lane	8	9	10	11	12	13	14
Strain	118/158	97/0057	BM110	BS30	M781	97/0099	3139
Serotype	II	II	III	III	III	III	IV

Lane	15	16	17	18	19	20
strain	1169-NT	GBS 6	7271	JM9	Group A Streptococcus	<i>pneumoniae</i>
serotype	V	VI	VII	VIII	-	14

Rib (Figure 12) Comment

5 The Southern blot analysis shown in Figure 12 indicates that the *rib* gene is not conserved across all GBS serotypes. *rib* appears to be absent from all serotype Ia and Ib strains (lanes 2 to 5) and from strains 118/158 and 97/0057 of serotype II (lanes 8 and 9). However, *rib* would appear to present in strains 18RS21 and 1954/92 of serotype II (lanes 6 and 7) and in all strains of serotype III (lanes 10 to 13). This is in agreement with previously published data (Stalhammar-Carlemalm *et al.*, 1993 [*supra*]). *rib* would also appear to be present in strains representing serotypes VII and VIII (lanes 17 and 18) but was absent from strains representing serotypes IV, V and VI (lanes 14 to 16) as well as the control strains (lanes 19 and 20). The *rib* gene probe did hybridise with lower intensity to genomic DNA fragments from strains representing serotypes Ia, Ib, IV, VI, VII and serotype II strains 118/158 and 97/0057. This may indicate the presence of a gene in these strains with a lower level of homology to *rib*. These hybridising DNA fragments may contain a homologue of the GBS *bca* gene encoding the Ca protein antigen which has been shown to be closely homologous to the Rib protein (Wastfelt *et al.*, 15 *J. Biol. Chem.* 271:18892-18897 (1996)). If this is the case, it would be in agreement with previous work which showed all strains of serotypes Ia, Ib, II and III to be positive for one the two proteins (Stalhammar-Carlemalm *et al.*, 1993 [*supra*]). However, the apparent variable distribution of the *rib* gene amongst different GBS

serotypes, makes it a less than ideal candidate for use in a GBS vaccine that is cross-protective against all serotypes.

5

ID-65 (Figure 13) Comment

The Southern blot analysis described in Figure 13 indicates that gene ID-65 is conserved across all GBS serotypes. The gene probe hybridised specifically to a *Hin* DIII-digested genomic DNA fragment of approximately 3.0 kb in DNA digests from all GBS representatives, and was absent from both the control strains (lanes 18 and 19). This would suggest that the ID-65 gene is conserved across all GBS serotypes (and strains) at both the gene and locus level. The ID-65 DNA probe also hybridised weakly to the 1.636 bp molecular weight marker (the 1 kb DNA ladder from NEB was used to estimate DNA fragment sizes in all Southern blot analyses).

15

ID-89 (Figure 14) Comment

The Southern blot analysis described in Figure 14 indicates that gene ID-89 may not be conserved across all GBS serotypes. A 4.0 kb *Hin*DIII-digested genomic DNA fragment from 12 out of 16 GBS strains hybridised specifically to the ID-89 gene probe. In addition, a 3.25 kb *Hin*DIII-digested genomic DNA fragment from the GBS strain Ib (SB35) [lane 4] also hybridised specifically with the ID-89 gene probe. However, the ID-89 gene probe did not hybridise to digested genomic DNA fragments from strains Ia (515) [lane 2], IV (3139) [lane 13] and V (1169-NT) [lane 14], suggesting that these strains do not possess a ID-89 gene homologue.

25

ID-93 (Figure 15) Comment

The Southern blot analysis described in Figure 15 indicates that gene ID-93 is conserved across all GBS serotypes. The gene probe hybridised specifically to a *Hin*

DIII-digested genomic DNA fragment of approximately 3.25 kb in DNA digests from all GBS representatives, and was absent from both the control strains (lanes 18 and 19). This would suggest that the ID-93 gene is conserved across all GBS serotypes (and strains) at both the gene and locus level.

5

ID-96 (Figure 16) Comment

The Southern blot analysis described in Figure 16 indicates that gene ID-96 is conserved across all GBS serotypes. The gene probe hybridised specifically to a *Eco* RI-digested genomic DNA fragment of approximately 12.0 kb in DNA digests from all GBS representatives, and was absent from both the control strains (lanes 18 and 19). This would suggest that the ID-96 gene is conserved across all GBS serotypes (and strains) at both the gene and locus level.

10

APPENDIX I**ID-65****Forward Primer**5' - cggatccgccaccatgGC GGATCAA ACTAC ATCGGTTC - 3'**Reverse Primer**5' - ttcgccgcGTTGGGATAACTAGTCGGTTAGTCG

Length (including restriction sites) = 1541bp

10 Incorporating 1515bp of gene-specific sequence encoding 505 amino acids of the putative mature protein.

Annealing temperature for PCR amplification = 60°C

Sequence predicted to encode a signal peptide was omitted from amplified product

ID-66**Forward Primer**5' - cggatccgccaccatgAATCTTATTCCATAGTACTCCCTTGC - 3'**Reverse Primer**5' - ttcgccgcAAAATGATCAGTTGAGGGTAAAAGAG - 3'

20 Length (including restriction sites) = 767bp

Incorporating 747bp of gene-specific sequence encoding 247 amino acids of the putative mature protein.

Annealing temperature for PCR amplification = 60°C

25 Sequence predicted to encode a signal peptide was omitted from amplified product

APPENDIX II

ID-65

Forward Primer

5' - catgccatgGC GGATCAA ACTAC ATCGGTT C - 3'

5 Reverse Primer

5' - ttgcggccgcGTTGGGATAACTAGTCGGTTAGTCG

Length (including restriction sites) = 1534bp

Incorporating 1515bp of gene-specific sequence encoding 505 amino acids of the

10 putative mature protein.

Annealing temperature for PCR amplification = 60°C

ID-83

15 Forward Primer

5' - catgccatggcaAAAATAGTAGTACCA GAGTAATGCCTC - 3'

Reverse Primer

5' - ttgcggccgcCTCTGAAATAGTAATTGTCCG - 3'

20 Length (including restriction sites) = 626bp

Incorporating 624bp of gene-specific sequence encoding 208 amino acids of the

putative mature protein.

Annealing temperature for PCR amplification = 52°C

25

ID-89

Forward Primer

5' - catgccatgggaAAGAAAGCAAATAATGTCAGTCC - 3'

Reverse Primer

5' – ttgcggccgcATTGGGTGTAAGCATTTC – 3'

Length (including restriction sites) = 990bp

Incorporating 969bp of gene-specific sequence encoding 323 amino acids of the
5 putative mature protein.

Annealing temperature for PCR amplification = 54°C

ID-93**Forward Primer**

10 5' – catgccatgggaACTGAGAACTGGTTACATACTAAAG – 3'

ReversePrimer

5' – ttgcggccgcATTAGCTTTCAACAATTCTC – 3'

Length (including restriction sites) = 759bp

Incorporating 744bp of gene-specific sequence encoding 248 amino acids of the
15 putative mature protein.

Annealing temperature for PCR amplification = 51°C

ID-96**Forward Primer**

20 5' – ctagctagccgATGTTGCGTGGGAAAG – 3'

ReversePrimer

5' – ttgcggccgcATAAGATTAACAATACCAAGTAATATAGC – 3'

Length (including restriction sites) = 944bp

25 Incorporating 921bp of gene-specific sequence encoding 307 amino acids of the
putative mature protein.

Annealing temperature for PCR amplification = 53°C

rib (control)

Forward primer

5' - ggggtaccggccaccATGGCTGAAGTAATTCAAGGAAGT -3'

5 Reverse primer

5' - cggaattccgTTAACCTCTTTTTCTAGAACAGAT

Length (including restriction sites) = 3559bp

Incorporating 3531bp of gene-specific sequence encoding 1177 amino acids of the

10 mature protein.

Annealing temperature for PCR amplification = 55°C

APPENDIX III

15 Listed below are the details (serotype and strain designation) of Group B Streptococcus strains whose DNA was analysed for gene conservation

	SEROTYPE	STRAIN
20	Ia	515
	Ia	A909
	Ib	SB35
	Ib	H36B
	II	18RS21
25	II	1954/92
	II	118/158
	II	97/0057
	III	BM110
	III	BS30
30	III	M781
	III	97/0099
	IV	3139

V	1169/NT
VI	GBS VI
VII	7271
VIII	JM9

5

A group A Streptococcal strain (serotype M1, strain NCTC8198) and *Streptococcus pneumoniae* (serotype 14) were also included in the analysis for control purposes.

CLAIMS

1. A Group B Streptococcus polypeptide or protein having a sequence selected from those described in fig 1, or fragments or derivatives thereof.
2. Derivatives or variants of the proteins, polypeptides, and peptides as claimed in claim 1 which show at least 50% identity to those proteins, polypeptides and peptides claimed in claim 1.
3. A Group B Streptococcus polypeptide or protein, or derivative or variant thereof, as claimed in claim 1 or claim 2 , which is isolated or recombinant.
4. A nucleic molecule comprising or consisting of a sequence which is:
 - (i) any of the DNA sequences set out in figure 1 herein or their RNA equivalents;
 - (ii) a sequence which is complementary to any of the sequences of (i);
 - (iii) a sequence which codes for the same protein or polypeptide, as those sequences of (i) or (ii);
 - (iv) a sequence which shows substantial identity with any of those of (i), (ii) and (iii); or
 - (v) a sequence which codes for a derivative, or fragment of a nucleic acid molecule shown in figure 1.
5. A vector comprising one or nucleic acid molecules as defined in claim 4.

6. A vector as claimed in claim 4 further comprising nucleic acid encoding any one or more of the following: promoters, enhancers, signal sequences, leader sequences, translation start and stop signals, DNA stability controlling regions, or a fusion partner.

5

7. The use of a vector as claimed in claim 5 or claim 6 in the transformation or transfection of a prokaryotic or eukaryotic host.

8. A host cell transformed with a vector as defined in claim 5 or claim 6..

10

9. A process for producing a Group B Streptococcus polypeptide or protein, or derivative or variant thereof, as claimed in claim 1 or claim 2, the process comprising expressing the polypeptide or protein in a host cell as claimed in claim 8.

15

10. An antibody, an affibody, or a derivative thereof which binds to one or more of the proteins, polypeptides, peptides, fragments or derivatives thereof, as defined in any one of claims 1 to 3.

20

11. An immunogenic composition comprising one or more of the proteins, polypeptides, peptides, fragments or derivatives thereof as defined in any one of claims 1 to 3.

25

12. An immunogenic composition as claimed in claim 11 wherein the proteins, polypeptides, peptides, or fragments or derivatives thereof include ID-65 or ID-83, ID-89, ID-93 or ID-96.

13. An immunogenic composition as claimed in claim 11 or claim 12 which is a vaccine.

14. An immunogenic composition comprising one or more of the nucleic acid sequences as defined in claim 4.
- 5 15. An immunogenic composition as claimed in claim 14 wherein the nucleic acid sequences include ID-65 or ID-66.
16. An immunogenic composition as claimed in claim 14 or claim 15 which is a vaccine.
- 10 17. Use of an immunogenic composition as defined in any one of claims 11 to 16 in the preparation of a medicament for the treatment or prophylaxis of Group B Streptococcus infection.
- 15 18. A method of detection of Group B Streptococcus which comprises the step of bringing into contact a sample to be tested with at least one antibody, affibody, or a derivative thereof, as defined in claim 10.
- 20 19. A method of detection of Group B Streptococcus which comprises the step of bringing into contact a sample to be tested with at least one protein, polypeptide, peptide, fragments or derivatives as defined in any one of claims 1 to 3.
- 25 20. A method of detection of Group B Streptococcus which comprises the step of bringing into contact a sample to be tested with at least one nucleic acid molecule as defined in claim 4.
21. A kit for the detection of Group B Streptococcus comprising at least one antibody, affibody, or derivatives thereof as defined in claim 10.

22. A kit for the detection of Group B Streptococcus comprising at least one Group B Streptococcus protein, polypeptide, peptide, fragment or derivative thereof as defined in any one of claims 1 to 3.

5

23. A kit for the detection of Group B Streptococcus comprising at least one nucleic acid molecule as defined in claim 4.

10 24. A method of determining whether a protein, polypeptide, peptide, fragment or derivative thereof as defined in any one of claims 1 to 3 represents a potential anti-microbial target which comprises inactivating said protein and determining whether Group B Streptococcus is still viable.

FIG. 1

ID-65

Clone 3-60

GTGTTATGATGAAAAAGGACAAGTAAATGATACTAAGCAA
TCTTAACCTCTACGTAATATAAATTGGTTAGCATCAGTAA
TTTAGGGTCATTCAATGGTCACAAGTCTGTTTGCGGA
TCAAACATCGGTTCAAGTTAATAATCAGACAGGCACTAG
TGTGGATGCTAATAATTCTCCAATGAGACAAGTGCCTCAAGT
GTGATTACTCCAATAATGATAGTGTCAAGCGTCTGATAAAG
TTGAAATAGTCAAAATACGGCAACAAAGGACATTACTACTC
CTTAGTAGAGACAAAGCCAATGGTGGAAAAAACATTACCTG
AACAAAGGAATTATGTTATAGCAAAGAAACCGAGGTGAAAA
ATACACCTCAAAATCAGCCCCAGTAGCTTCTATGCAAAGAA
AGGTGATAAAGTTCTATGACCAAGTATTAATAAGATAAT
GTGAAATGGATTTCATATAAGTCTTGGTGGCGTACGTCGAT
ACGCAGCTATTGAGTCACTAGATCCATCAGGAGGTTAGAGA
CTAAAGCACCTACTCCTGTAACAAATTAGGAAGCAATAATC
AAGAGAAAATAGCAACGCAAGGAAATTATACATTTCACATA
AAGTAGAAGTAAAAAAATGAAGCTAAGGTAGCGAGTCCAACTC
AATTACATTGGACAAAGGAGACAGAATTTCACGACCAAA
TACTAACTATTGAAGGAAATCAGTGGTTATCTTATAATCATT
CAATGGTGTGCGTCTTGTGCTAGGTAAAGCATCTCA
GTAGAAAAAACTGAAGATAAAGAAAAAGTGTCTCCTCAACCA
CAAGCCGTATTACTAAAAGTGGTAGACTGACTATTCTAACG
AAACAACACAGGTTTGATATTAAATTACGAATATTAAAGA
TGATAACGGTATCGCTGCTGTTAAGGTACCGGTTGGACTGAA
CAAGGAGGGCAAGATGATATTAAATGGTATACAGCTGTAAC
ACTGGGGATGGCAACTACAAAGTAGCTGTATCATTGCTGAC
CATAAGAATGAGAAGGGCTTTATAATATTCAATTACTACC
AAGAAGCTAGTGGACACTTGTAGGTGTAACAGGAACCTAAAG
TGACAGTAGCTGGAACTAATTCTCTCAAGAACCTATTGAAAAA
TGGTTTACCAAAGACTGGTGTATAATATTATCGGAAGTACT
GAAGTAAAAAAATGAAGCTAAAATATCAAGTCAGACCCAATT
ACTTTAGAAAAAGGTGACAAAATAATTATGATCAAGTATTG
ACAGCAGATGGTACCAAGTGGATTCTACAAATCTTATAGTG
GTGTCGCTGCTATATTCTGTGAAAAAGCTAACTACAAGTAG
TGAAAAAGCGAAAGATGAGGCGACTAAACCGACTAGTTATCC
CAACTTACCTAAAACAGGTACCTATACATTACTAAAAGTGA
GATGTGAAAAGTCAACCTAAAGTATCAAGTCCAGTGGAAATT
AATTTCAAAAGGGTGAAAAAAATACATTATGATCAAGTGTG
GTAGTAGATGGTCATCAGTGGATTCTACACAAGAGTTATTCCG
GTATCGTCGCTATATTGAAATTAA

MFMMKKGQVNDTKQSYSLRKYKFLASVILGSFIMVTSPVFADQTSVQVNN
 QTGTSDANNSSNETSASSVITSNNDSVQASDKVVNSQNTATKDITPLVETK
 PMVEKTLPEQGNVYVSKETEVKNTPSKSAPVAFYAKKGDKVFYDQVFNKDN
 VKWISYKSFGGVRRYAAIESLDPSGGSETKAPTPVTNSGSNNQEKIATQGNYT
 FSHKVEVKNEAKVASPTQFTLDKGDRIFYDQILTIEGNQWLSYKSFNGVRRFV
 LLGKASSVEKTEDKEKVSPQPQARITKTGRLTISNETTGFDILITNIKDDNGIA
 AVKVPVWTEQGGQDDIKWYTAVTTGDGNYKVAVSFADHKNEKGLYNIHLY
 YQEASGTLVGVGTGKVTVAGTNSSQEPIENGLPKTGVYNIIGSTEVKNEAKISS
 QTQFTLEKGDKINYDQVLTADGYQWISYKSYSGVRRYIPVKKLTSSEKAKDE
 ATKPTSYPNLPKTGTYTFTKTVKSQPKVSSPVEFNQKGEKIHYDQVLVVD
 GHQWISYKSYSGIRRYIEI*

Sequence description

- A) Length: 1642 bp - 547 aa (full length gene)
- B) Sequence Characteristics:
 - Potential leader peptide sequence
 - Orf is preceded by a potential Shine-Dalgarno sequence.

ID-66

Clone 3-5

ATGATATTGAGACGTCGAACTATTGTTTATGGCAACTGGGTATGCCATT
 TCTCTCATTCTTAGTATTCTAGCCTTAAATCTTATTCCATAGTACTCCCTT
 GCAAACCAATGCAGCTTACGGAACCTGCTCCTCATTAAACCATCTTTT
 GGGACAGATGGTTAGGTAGGGATATGTTGTCAGAACGATTAAAGGACT
 TTATTCTCTACAAGTCGGCTTATTAGGTGCCCTATGGGGTCATTCTG
 GCGACAGTTTGGAGTGCTGCAGGTTAGGAAATAGCATTATTGATAAAA
 ATAATAGCATGGTTAGTTGATTGTTATTGGTATGCCTCATTGATTTTA
 TGATTCTCATTCTTGTGGAAAGGTGCTCAAGGGTCATCATTGC
 AACGGCTGTACACATTGGCCTCTTAGCAAGGCTTATCCGCAATGAAGT
 CTATCATCTAAAGAATAAAGAATTGTCCAACCTTCTAAAAGTATGGAAAA
 AACGCCTTATTATATTGTGAGGCATCATCCTGCCTTGATTGCTCTCAA
 ATTTCTTGTGGTTATCCTTATTCCACATGTCATCCTACATGAAGCAT
 CAATGACTTTCTTAGGATTGGCTCTGCCGAACAACCTCGGTTGTA
 TCATTCTGTCAAGAGGCAGCTAACATCTCTTGGAAATTGGTGGTTGG
 TTATCTTCCAGGACTTATCTTATTGGTTGTCAATGCATTGATACTAT
 CGGAGAATCTTAAAGAAACTCTTACCCCTAAACTGATCATTTAG

FIG. 1 CONT'D

MILRRRTIVLWQLGIAISLILSILALNLYFHSTPLQTNAALRNLAPSLNHLFGTD
 GLGRDMFVRTIKGLYFSLQVGLLGALMGVLATVFGVLAGLGNIIDKIIAWL
 VDLFIGMPHLIFMILISFVVVGKAQGVIIATAVTHWPSLARLIRNEVYHLKNKE
 FVQLSKSMGKTPYYIVRHILPLIASQIFIGFILLFPHVILHEASMTFLGFGLSAE
 QPSVGIILSEAAKHISLGNWWLVIFPGYLILVVNAFDTIGESLKLFYPQTDHF
 *

Sequence description

- A) Length: 822 bp - 274 aa (full length gene)
- B) Sequence Characteristics:
 - Potential leader peptide sequence
 - Orf is preceded by a potential Shine-Dalgarno sequence.

ID-78

Clone 3-5b

ATGACAGAAACATTATTAAGCATTAAAGACCTCTCCATCACCTCACTCAA
 TACGGAAAGATTTAAAACCATTCAATCAACACCGATACAAGCGCTGA
 ATTAGAAAATTAAAAAGGTGAGTTATTAGCTATTATAGGTGCTAGTGGTT
 CGGGGAAGAGTTATTAGCACATGCTATTATGGATATTCTCTCTAAAAATG
 CATCTGTAACAGGAGATATGATTATCGTGGTCAATCACTAAATTCTAAC
 GCATTAAACAGTTGCGAGGAAAAGATATTACGTTGATTCCACAATCAGTTA
 ATTATTTAGATCCATCTATGAAAGTCAAACATCAGGTGCGCTTAGGTATCT
 CAGAAAATTCAAAGGCTACTCAAGAAGGATTGTTCAACAGTTGGTTAA
 AAGAAAGTGATGGTACTGGATCCTTCCAACCTTCTGGCGGAATGCTCC
 GACGTGTTTGTACACGTGTATTAGTGATAAGGTTCTTGATTATTGC
 GGATGAGCCCACCCCTGGATTACATCCAGATGCTCTGCAAATGGTTAGA
 CCAACTACGCTCTTGCAGATAAAGGAATAAGCGTTATATTACTCACTCA
 TGATATTGTAGCAGCTAGTCAAATTGCTGATCGTATTACTATTAAAGA
 GGGAAAAGCTATTGAAACAGCTCCAGCTAGTTCTTAGCGGAAATGGAG
 AGCAGTACAAACAGAATTGCTAGAAGTTATGGCGCTCTCCCCACAGC
 AAGAATTGGAAAGGAGTTACTCATGACCTTAGAGGCTAA

MTETLLSIKDSLITFTQYGRFLKPQSTPIQALNLEIKKGELLAII GASGSGKSLL
 AHAIMDILPKNASVTGDMIYRGQSLNSKRIKQLRGKDITLIPQSVNYLDPSMK
 VKHQVRLGISENSATQEGLFQQFGLKESDGDLDPFQLSGGMLRVLFTTCIS
 DVSLIIADEPTPGLHPDALQMVLQDQLRSFADKGISVIFITHDIVAASQIADRITI
 FKEGKAIETAPASFFSGNGEQLQTEFARSLWRSLPQQEFLKGVTHDLRG*

FIG. 1 CONT'D

Sequence description

A) Length: 804 bp - 268 aa (full length gene)
B) Sequence Characteristics:
No obvious leader peptide sequence
Orf is preceded by a potential Shine-Dalgarno sequence.
This gene was not isolated using the LEEP system. However in determining a full length gene sequence for ID-76, this gene was identified downstream and fully sequenced.

ID-79

Clone 3-5c

GTCCATCTGGGGTGGTCCGATTGGTATTCTTCTCCGATAGGTACTTGAGTCAAGATATTACGTTAGCTGATCGTATTAAGCACCTTATTTACCTGTTTCA CGGTAAAGTATTCTAGGCATTGCCAATGTAACCTTCATACTAGAACTAA AATGATGTCGGTACTTTCTAGTGAATATGTCTTATTGCCAGAGCGCGTGG GGAAACGGAATGGCAAATTAAAATCATTGCTTAGAAATGCTATCGT ACCAGCTATTACACTGCATTTCTATTGGAGAATTGTTGGAGGATCC GTTCTGCTGAGCAAGTTCTCATATCCAGGACTAGGGTCTACCCTA ACTGAAGCAGGACTTAAAGTGATACACCGCTACTTCTAGCTATTGTGATGATA GGGACATTATTGTTTGCAGGCAATCTTATTGCGGATATTAAATAGC ATAATCAATCCACAGTTAAGGAGAAAAGTATGA

VHLGWFPIGISSPIGTLSQDITLADRIKHLILPVFTVSILGIANVTLHTRTKMMSV LSSEYVLFARARGETEWQIFKNHCLRNAIVPAITLHF SYFGELFGGSVLAEQVF SYPGLGSLTEAGLKSDTPLLLAIVMIGTLFVAGNLIADILNSIINPQLRRKV*

Sequence description

A) Length: 495 bp - 165 aa (partial gene sequence)
B) Sequence Characteristics:
N-terminus has yet to be determined.
This gene was not isolated using the LEEP system. However in determining a full length gene sequence for ID-76, this gene was identified upstream.

FIG. 1 CONT'D

ID-80

Clone 2-17

TTGCGGACAATTACGTTCAAACACAATGAAACACGATCGTCAAAAAGCGA
 AGGTAGGGCGGTAAATGCTAAAAGATTATTACTGAAGATGGGAATTGA
 CAAAGATTAGTCGTCGTTCGTTGGATGTTAGTGGTTATCTATTGTCTTAT
 TATTGTCAAGGATGTGTTGGGCCTCAAATTATGATTGAGGGGGTATCAC
 TCCGAATGTTCAGCGCTCGGAAGAATTGTAGCTTTAGTACCATTTAA
 TTCTTTCTGTAGTTAGATCAGCTAACAGCTTAAAGAGATTGGGTT
 ATTGGTCAAAATGTAGTGAATATTTACTGCTGTTCCCTCTCATTATAAGGGT
 TACTATCCCTAAAGCCAAGTTACGGAAATATAAAAGCGTTATTAACCTG
 CTTCCTTGATGTCCTTTCATAGAGTGTACTCAAGTTGTTAGATATTT
 AATAGATGCTAATCGGGTTTGAAATCGACGATCTATGGACAAATACCTT
 AGGCGGCCCTTCGCCCTATGGAGTTATCGAAACATAAAAGGTTGGCTTCT
 AACTATTAGAAAATGA

MRTITFKHNETRSSKSEGRAVMLKRLFTEDGELTKISRRFVWMLVVIYCLIIVR
 MCFGPQIMIEGVSTPNQRFGRIVALLVPFNSFRSLDQLTSFKEIFWVIGQNVV
 NILLLFPLIIGLLSLKPSLRKYKSVILLAFLMSLFIECTQVVLDILIDANRVFEIDD
 LWTNTLGGPFALWSYRNIKGWLTLRK*

Sequence description

- A) Length: 579 bp - 193 aa (full length gene)
- B) Sequence Characteristics:
 - Possesses a potential leader peptide sequence
 - No obvious Shine-Dalgarno, but the 'TTG' codon may not be the actual translation start point.
 - A methionine (ATG) that occurs ~22 codons downstream of the 'TTG' is preceded by a potential Shine-Dalgarno sequence and may represent the actual start codon.

ID 81

Clone 3-1

FIG. 1 CONT'D

TTGAAAAATTAAATCGTTATGTAGTTGGAGTCGTTTACATT
TAATGCTAGGATCAACTATGCTGGAGTGTGTTCGTAACCCAATTATCT
CAGAGACTGGTTGGGATATTCATCAGTTCATCGCTTTAGTTGGCTAT
TTTTGTCTAGGAATGTCTGCAGCTTATGGGACACTTAGTAGAGCGTTT
GGCCTAGGATAATGGGAATGATTCTGCTATTATATGGAGCAGGGAAAT
GTGTTAACAGGCTAGCCATTGAAACTCAGCAGTTAGGTTACTGTATGTT
GCATACGGTATTTAGGAGGAATCGGACTTGGCTCAGGTTATATTACTCCA
GTATCGACTATTATAAATGGTTCTGATAGGAGGGACTAGAACACAGG
ATTGCTATTATGGGATTGGCTTGCTCTTAGTAACAAGTCGCTTGCA
CAATCCTACTGATTAGGATTGGTGTGGGTAACAGTTATTTGGGA
TTAGTATTTGTATGATGATTGCCTCACAAATTAAACAAACACC
CTCAGGAAAAAAATAACTATTGACTCACGATGGTAAAAGAACATGCTATG
AATTCAAAATTACTGGATTAAAGCAAACGTCGCTATAAAATCAA
AACCTTTACATCATTGGTGACCTGTTATTAAATATTGCGTGGCTTA
GGTTAATATCAGCAGCTCACCAATGGCACAAGATTAGCAGGCTATTCC
GCAGAATCTGCAGCCTTATTAGTAGGGGACTAGGGATATTAAACGGTTT
GGACGTCTGTATGGCAAGTCTCTGACTACATTGGACGCCGTTGACC
TTTATAATATTATTATTGTGAACCTTATTGACTCTAGTTATTGTC
ATTCAATGCTATTGTATTGCAATAGCGATGTCTATTAAATGACTTGTAT
GGTCAGGTTTCCTTACCTGCTTCTAAAGTGAATTGGAAACAA
AGGAATTAGCTACTTACATGGTTAGTTAACAGCATGGCAATAGCAG
GTCTGTTGGGCCCTATTGTTACAAAGACATATTGCGATTATTGTTA
ATCAATTGACATTAATGGTTTGGTTTATTCTTATTGCGATTATTGTTA
TCTCTATATTAAAGAAAATTAAACAACTAAAGTTGTAG

LKNLNRYVVAVSGVVLHMLGSTYAWSVFRNPIISETGWDISSVSFAFSLAIFC
LGMSAAFMGHLVERFGPRIMGMISAILYGAGNVLTGLAIETQQLWLLYVAYG
ILGGIGLGSGYITPVSTIIKWFPDRRGLATGFAIMGFGFASLVTPLAQSLIRIG
VGKTFYILGLVYFFVMMIASQFIKQPPQEKITILTHDGKKNAMNSQIITGLKAN
VAIKSKTFYIIWTLFINISCGLGLISAASPMAQDLAGYSAESAALLVGVLGIFN
GFGRLLWASLDYIGRPLTFIILFIVNFIMTSSLFLSFNAIVFAIAMSILMTCYGA
GFSLLPAYLSDIFGTKELATLHGYSLTAWAIAGLGPLLSKTYSWGNSYQLTL
MVFGFLFLFGLLSLYLRKLTTKVV*

Sequence description:

- A] Length 1221 bp - 407 a.a (full length gene).
- B] TTG start codon with Shine-Dalgarno sequence upstream. Obvious signal peptide, with hydropathy plot exhibiting many possible membrane spanning regions, indicating protein to be transmembrane.

FIG. 1 CONT'D

ID-82

Clone 48

ATGGCAGATAAAAACAGAACATTAAACTGTAGGTGCAGGATCTTCTAG
 CACACAAGAAAAAATTGAAAAGCCTGCTCTTCGTTATGCAAGATGCGTG
 GCGTCGCTGAAAAAAAACAAATTAGCAGTAGTTCACTCTATTATTAGC
 TCTTTACTTACTTTCGTTAGCCTCAAATTATTGTAACTCAGAAGGAT
 GCTAATGGGTTGATTGAAAAAGTAACGACATATCGCAACTTACCAACCT
 AAATTGAGTTCAAACCTCCCTTTGGAATGGTAGCATTAATCCATCA

MADKNRTFKLVGAGSSSTQEKIEKPALSFMQDAWRRLKKNKLAVVSLYLLA
 LLTFSLASNLFVTQKDANGFDSKKVTTYRNLPKLSNLFWNGSINPS

Sequence description:

A] Current length is 303 bp - 101 aa
 B] No obvious signal peptide but Shine
 Dalgarno sequence upstream of the ATG start
 codon. Not identified directly using the LEEP system but was found
 directly downstream of ID-34 described in WO 00/06736.

ID-83

Clone 98

ATGAAAATAGTAGTACCACTAGTAATGCCTCGCAGTCTGAAGAGGGCTCAAGA
 AATAGATTATCAAATTGATAGTGTGATATTATTGAATGGCGAGCTGA
 TGCCTTACCAAGGATGACATTATTAAATGTAGCTCCAGCTATTGAGAA
 ATTGCGAGGTATGAAATTATTTACTTTCTGACACCGCTGAAGGGGG
 TAATATTGTCTTATCTGATGCTGAGTATGTTGAGTTAACCCAGAAAATTAA
 TTCTATCTACAATCCAGATTATATTGATTGAGTATTTCACATAAAGAA
 GTTTTCAAGAAATGCTAGAATTCAAATTAGTCCTGTCTTATCACAATT
 TTCAAGAGACACCGGAGAATTATGGAGATTTAGAATTAACAGCC
 CTAGCACCACGAGTTGTGAAATCGCAGTAATGCCAAAGAATGAACAAAGA

FIG. 1 CONT'D

TGTCTTAGACGTTATGAATTACACTCGCGGTTCAAGACTATTAATCCTGA
 TCAAGTTATGCGACGGTATCTATGAGTAAAATTGGACGTATTCTCGTTT
 GCTGGTGATGTAACTGGATCTAGTTGGACATTGCATATTAGATTCATCT
 ATCGCACCCGGACAAATTACTATTCAGAGATGAAGCGTGTCAAAGCATT
 GCTTGACGCTGACTGA

MKIVVPVMPRSLEEAQEIDL SKFDSDIEWRADALPKDDIINVAPAIFEKFAG
 HEIIFTFR TTREGGNIVLSDAEYVELIQKIN SIYNPDYIDFEYFSHKEVFQEMLEF
 PNLVLSYHNFQETPENIMEIFSELTALAPRVVKIAVMPKNEQDVLDVMNYTRG
 FKTINPDQVYATVSMSKIGRISRFAGDVTGSSWTFA YLDSSIAPGQITISEMKRV
 KALLDAD*

Sequence description:

- A] Length 678 bp, 225 aa (full length gene)
- B] No obvious signal peptide, but there is a Shine Dalgarno immediately upstream of ORF.

ID-84

Clone RS-52

ATGAAAGACTTATTGCAACAACAGAACATCATCAAGGAAACAGGAACA
 AGATAGAATTGTCAATTACATAAAACACATGTTGAGTTAACAAATGGTA
 ATCAAATAAAAAAAATTGAGTTATCGACTTCAAAAAAATGAGATGACA
 GGTACATGGGAATTCTACTAAAATTAAATGAACAAATTTCGATTAGTTT
 TCTGAAGATAGAATTGGTGGTAAACTTAGAGCATTAGGATATCAACCGAA
 TGAAATAGGTTTCAAAGGACATCAATAGTAATAATCAAAATGTTAATGA
 TATTGAAGTGAATTATGAAGAAAGAATAG

MKDLFATTEASSRKQEQRIVNYIKQHVELTNGNQIKKIEFIDFQKNEMTGTW
 GISTKINEQFSISFSEDRI GGKLRLALGYQPNEIGFSKDINSNNQNVDIEVIYMK
 KE*

Sequence description:

- A] length: 333 bp - 111 aa (partial sequence)
- B] No obvious Shine Dalgarno sequence upstream of the ATG start codon, and no obvious signal peptide within the protein.

FIG. 1 CONT'D

ID-85

Clone RS-53

ATGAAAAAAACGTATATGGTATTGATAATAATAATCACAGTAATTTAGGA
 GGACTAGCCATGAAAAACTATTGCAACACAACAGAAGCATCATCAAGGAA
 ACAGGAACAAGATAGAATTGTCAATTACATAAAAACAACATGTTGAGTTAA
 CAAATGGTAATCAAATAAAAAAAATTGAGTTATCGACTTTCAAAAAAAAT
 GAGATGACAGGTACATGGGGATTTCCTACTAAAATTAAATGAACAATTTCG
 ATTAGTTTCTGAAGATAGAATTGGTGGTAAACTAGAGCATTAGGATAT
 CAACCGAATGAAATAGGTTTCAAAGGACATCAATAGTAATAATCA

MKKRIWYLIITVILGLAMKNLFATTEASSRKQEQRIVNYIKQHVELTNGN
 QIKKIEFIDFQKNEMTGWTGISTKINEQFSISFSEDRIGGKLRALGYQPNEIGFSK
 DINNSNNQ

Sequence description:

- A] Length: 351 bp - 117 aa (Partial sequence)
- B] Obvious signal peptide and Shine Dalgarno sequence upstream of the ATG start codon.

ID-86

Clone ID-74

ATGTCAAATCAATATGATTATATCGTTATTGGTGGAGGTAGT
 GCAGGCAGTGGTACCGCTAATAGGGCAGCCATGTATGGAGC
 AAAAGTCCTGTTAATTGAAGGTGGACAAGTAGGTGGAACCTG
 TGTAACTTAGGTGTGTACCTAAGAAAATCATGTGGTATGG
 TGCACAAAGTTCTGAGACACTCCATAAGTATAGTTCAGGTTA
 TGGTTTGAAGCCAATAATCTTAGTTGATTACTACTCTA
 AAAGCTAACATCGCGATGCTTACGTGCAGCGGTCTAGACAGTCG
 TATGCCGCTAATTTGAGCGTAATGGGGTCGAAAAGATTGAT
 GGATTGCTCGTTATTGATAACCATACTATTGAAGTGAATG
 GTCAGCAATATAAGCTCCTCACATTACTATTGCAACAGGTG

FIG. 1 CONT'D

GACACCCTTTACCTGATATTATTGGAAGTGAACCTGGTG
AGACTTCTGATGATTTTTGGATGGAGACCTTACCAAATTCTA
TATATTGATTGTTGGGGCGGGCTATATCGCGGCAGAACCTGC
TGGAGTGGTTAATGAATTAGGCCTGAAACCCATCTTCATTGC
TAGAAAAGACCATATTCTACGCCATTGATGACATGGTAAC
AAGTGAGGTTATGGCTGAAATGGAGAAATCAGGTATCTCTT
ACATGCTAACCATGTACCTAAATCTCTAAACCGCGATGAAGG
TGGCAAGTTGATTTGAAGCTGAAAATGGAAAACGCTTGT
CGTTGATCGTGTAAATATGGGCTATCGGCCGTGGACCAAATGT
AGACATGGGACTTGAAAATACCGATATTGTTAAATGATAA
AGATTATATCAAAACAGATGAATTGAGAATACTCTGTAGA
TGGCGTGTATGCTATTGGAGATGTTAATGGAAAATTGCCTT
GACACCGGTAGCAATTGCAGCAGGTCTCGCTTATCAGAAAG
ACTTTTAATCATAAAGATAACGAAAAATTAGATTACCAAA
TGTACCTTCAGTTATTCTACCCCTGTAAATTGGGACGGTA
GGACTTCAGAACAGCAGCTATCGAGCAATTGGAAAAGAT
AATATCAAAGTCTATACATCAACTTTACCTCTATGTATACGG
CTGTTACCAAGTAATGCCAAGCAGTTAAGATGAAGCTCATAA
CCCTAGGAAAAGAGGAAAAGTTATTGGGCTTCATGGTGTG
GTTATGGTATTGATGAAATGATTCAAGGTTTCAGTTGCTAT
CAAAATGGGGCTACTAAAGCAGACTTGATGATACTGTTGC
TATTCAACCAACTGGATCTGAGGAATTGTTACAATGCGCTA
A

MSNQYDYIVIGGGSAGSGTANRAAMYGAKVLLIEGGQVGGTC
VNLGCVPKKIMWYGAQVSETLHKYSSGYGFEANNLSFDFTTLK
ANRDAYVQRSRQSYAANFERNGVEKIDGFARFIDNHTIEVNGQ
QYKAPHITIATGGHPLYPDIIGSELGETSDDFFGWETLPNSILIVG
AGYIAAELAGVVNELGVETHLAFRKDHILRGFDDMVTSEVMAE
MEKSGISLHANHVPKSLKRDEGGKLIFEAENGKTLVVDRVIWAI
GRGPNVDMGLENTDIVLNDKDYIKTDEFENTSDGVYAIGDVM
GKIALTPVIAAGRRLSERLFNHKDNEKLDYHNVPSVIFTHPVIG
TVGLSEAAAIEQFGKDNIKVYTSTFTSMYTAVTSNRQAVKMKLI
TLGKEEKVIGLHGVGYGYGIDEMIQGFSVAIKMGATKADFDDTVAI
HPTGSEEFVTMR*

ID-87

FIG. 1 CONT'D

SUBSTITUTE SHEET (RULE 26)

Clone RS-55

ATGACAAAAAAACATCTAAAACGCTTGCCTGGCACTTACTACAGTATCA
GTAGTGACATACAGCCAGGAGGTATATGGATTAGAAAGAGAGGAATCGGT
CAAACAAGAACAAACCCAGTCAGCTCAGAAGATGATTGGTTCGAAGAAG
ATAATGAGAGGAAAACAAATGTTCTAAAGAGAATTCTACTGTTGATGAA
ACAGTTAGTGATTTATTTCTGATGGAAATAGTAATAACTCTAGTTCTAAA
ACCGAGTCAGTGGTAAGTGACCCCTAAACAAGTCCCCAAAGCAAAACCAGA
GGTTACACAAGAACAGCAAGCAATTCTAGTAATGATGCTAGCAAAGTAGAAG
TACCAAAACAGGATACAGCTCAAAAAGGAAACTCTAGAAACATCAACT
TGGGAGGCCAAAGATTCGTAACTAGAGGGGACTTTAGTAGGTTTTCA
AAATCTGGAATTAAATAAGTTATCTCAAACATCACACTGGTTTACCAAGT
CATGCAGCAGATGGAACTCAATTGACACAACTAGTAGCTAGCTTGCTTTACT
CCAGATAAAAAGACGCCATTGCAGAATATAAACTAGTAGGCTAGGAGAAA
ATGGGAAACCGAGTCGTTAGATATTGATCAGAAGGAAATTATTGATGAG
GGAGAAATATTAATGCTTACCAAGTTGACTAAGCTACTATTCCAATGGT
TATAAGTCTATTGGTCAAGATGCTTTGTGGACAATAAGAATATTGCTGAG
GTTAACCTCCTGAGAGTCTCGAGACTATTGACTATGCTTTGCTCACA
TGTCTTAAAACAAGTAAAGTTACCAAGATAACCTAAAGGTATTGGAGAA
TTAGCTTTTGATAATCAGATTGGTGGTAAGCTTACTTGCCACGTCACT
TGATAAAAATTAGCAGAACCGCCTTCAAATCTAATCGTATTCAAACAGTTG
AATTTTGGGAAGTAAGCTTAAGGTTATAGGAGAAGCAAGTTCAAGAT
AATAATCTGAGGAATGTTATGCTCCGGATGGACTTGAAAAAAATAGAATC
AGAAGCTTACAGGAAATCCAGGAGATGAACATTACAACAATCAGGTG
TATTGCGCACAGGACAGGCCAAATCCACATCAACTTGCAGACTGAGAAT
ACTTACGTCAATCCGGACAAATCATTGCGTGCACACACCTGATATGGAT
TATACCAAATGGTAGAGGAAGATTACCTATCAAAAAAAATAGTGTACA
GGTTTTCAAATAAAGGCTACAAAAGGTAAAGACGTAATAAAACTAGA
AATTCCAAAACAACACAATGGTATTACTATTACTGAAATTGGTATAACGC
TTTCGCAATGTTGATTTCAAAGTAAAACCTACGTAATATGATTGGA
AGAAATAAAAGCTCCCCTCAACTATTGGAAAATAGGTGCTTTGCTTTCA
ATCTAATAACTTGAATCCTTGAAGCAAGTGAAGAGATTAGAAGAGATTA
AAGAGGGAGCCTTATGAATAATCGTATTGGAACTCTAGACTTGAAAGAC
AAACTTATCAAATAGGTATGCTCACAAAGAAATAGGACGTTAGCTTGCACAA
ATTGGTGCCTCACCTTATCGGAAATAAGGTAAAACAATTGGT
GAAATGGCTTTTATCCAATAAAACTGGAAAGTGTAAATCTCTGAGCAA
AAACAATTAAAGACAATTGAGGTCCAAGCTTTCGGATAATGCCCTAGT
GAAGTAGTCTTACCGCCAAATTACAGACTATTGCGTGAAGAGGCTTCAAA
AGGAATCATTGAAAGAAGTGAAGGGTCATCTACATTATCTCAGATTACT
TTAATGCTTTGATCAAATGATGGGGACAAACGCTTGGTAAGAAAGTG
GTTGTTAGGACACATAATAATTCTCATATGTTAGCAGATGGTGAGCGTTT
ATCATTGATCCAGATAAGCTATCTTACAATGGTAGACCTGAAAAGGTT

FIG. 1 CONT'D

TTAAAAATAATCGAAGGTTAGATTACTCTACATTACGTCAAGACTACTCAA
 ACTCAGTTAGAGAAATGACTACTGCAGGTAAAGCGTTATCAAAATCT
 AACCTCCGACAAGGAGAAAAACAAAAATTCTCAAGAACAGACAATT
 CCTTGGTCGCGTTGATTGGATAAAGCCATAGCTAAAGCTGAGAAGGCTT
 AGTGACCAAGAAGGCAACAAAGAACATGGTCATTGCTTGAGAGGGAGTATT
 ACAAAAGCGGTATTAGCTTATAATAATAGTCTATTAAAAAGCTAATGTTA
 AGCGCTTGGAAAAAGAGTTAGACTTGCTGACAGATTAGTCGAGGGAAAA
 GGACCATTAGCGCAAGCTACAATGGTACAAGGGAGTTATTAAAGAC
 GCCTTACCATGCCAGAATATTATATCGGATTGAACGTTATTGACAA
 GTCTGGAAAATTGATTATGCACCTGATATGAGTGATACTATTGGCGAGGG
 ACAAAAAGATGCATATGGTAATCCTATATTAAATGTTGACGAGGATAATG
 AAGGTTATCATAACCTTGGCAGTTGCCACTTAGCTGATTATGAAGGTCTT
 ATATTAAAGATATTAAATAGTCCCTGATAAGATTAAAGCAATACGCC
 AGATTCCCTTGGCAAAATATCATAGATTAGGAATTCCAAGCTATCCGAA
 ATGCAGCGGCAGAAGCAGACCGATTGCTCCTAAGACACCTAAGGGGTAC
 CTAAATGAAGTCCAAATTATCGTAAAAAACAAATGGAGAAAAATTAAA
 ACCAGTTGATTATAAAACGCCATTAAATAAGGCTTACCTAATGAAAA
 GGTAGACGGTAGAGCGGCTAAAGGTATAATATAATGCGGAGACTA
 ATAATTCTGTAGCTGTAACACCAATAAGGCTCGAGCAGCAATTACATAAGT
 CACAGTCTGATGTAATTACCTCAAACAAGTTCTAAAAATAATTATAT
 ACGAGATTCTAGGATACGTTAGTTATGTTGCTTCTAGTAACTGCTGG
 GAAAAAAAGAAAACGAGCAAGAAAATAA

MTKKHLKTLALALTTSVVTVSQEVYGLEREESVKQEQTQSASEDDWFEEDN
 ERKTNVSKENSTVDETVSDLFSDGNSNNSSKTESVVSDPKQVPKAKPEVTQE
 ASNSSNDASKVEVPKQDTASKKETLETSTWEAKDFVTRGDTLVGFSKGINKL
 SQTSHLVLPSHAADGTQLTQVASFAFTPDKKTAIAEYTSRLGENGPSPRSLIDQ
 KEIIDEGEIFNAYQLTKLTIPNGYKSIGQDAFDVDNKNIAEVNLPESETISDYAF
 AHMSLKQVKLPDNKVIGELAFFDNQIGGKLYLPRHLIKLAERAFKSNRIQTV
 EFLGSKLKVIGEASFQDNNLRNVMLPDGLEKIESEAFTGNPGDEHYNQVVL
 TRTGQNPHQLATENTYVNPDKSLWRATPDMDYTKWLEEDFTYQKNSVTGFS
 NKGLQKVRRNKNLEIPKQHNGITITEIGDNAFRNVDFQSCTLRKYDLEEIKLPS
 TIRKIGAFQSNNLKSFEASEDLEEIKEGAFMNNRIGTLDLKDPLKIGDAAFH
 INHIYAIVLPEVQEIIGRSAFRQNGALHLMFIGNKVKTIGEMAFLSNKLESVNL
 SEQKQLKTIEVQAFSDNALSEVVLPPNLQTIREEAFKRNLKEVKGSSLTSQITF
 NAFDQNDGDKRGKKVVVRTHNNSHMLADGERFIIDPDKLSSTMVDLEKVL
 KIIEGLDYSTLRQTTQTQFREMTTAGKALLSKSRLQGEKQKFLQEAQFFLGR
 VDLDAIAKAEKALVTKKATKNGHLLERSINKAVLAYNNSAIKKANVKRLEK
 ELDLLTDLVEKGKPLAQATMVQGVYLLKPLPLPEYYIGLNVYFDKSGKLIYA
 LDMSDTIGEGQKDAYGNPILNVDDEDNEYHTLAVATLADYEGLYIKDILNSSL
 DKIKAIRQIPLAKYHRLGIFQAIRAAAEDRLLPKTPKGYLNEVPNYRKQM
 EKNLKPVDYKTPIFNKALPNEKVDGDRAAKGHNINAETNNSAVTPIRSEQQL
 HKSQSDVNLQPSSKNNFIYEILGYVSLCLLFLVTAGKKGKRARK*

FIG. 1_{CONT'D}

Sequence description:

- A] Length 3168 bp - 1056 aa (Partial sequence)
- B] Obvious signal peptide with Shine Dalgarno sequence upstream of the ATG start codon.

ID-88**Clone RS-56**

GCAGGATACATCATGCACAAGCACGAGGCTATCGTGTATGCTGGGTCA
ACCCAGGAAGACATGTCGGCACAAGCTGAAGATTCTTACAGTCTGTACA
CAATAAAGAGACGGGTAAGAGCGCTTTAATGACAAAGAACGACTAGCAA
TT

AGYIMHKHEAIVSCWGQPRKTCRHLKISLQSVHNKETGKSAFNDKERLAI

Sequence description:

- A] Length:153 bp - 51 aa (partial sequence)
- B] No signal peptide visible, insufficient sequence data to determine the presence of a Shine Dalgarno sequence.

ID-89**Clone RS-58**

GTGTCATTATGCAAAGAAAATCCTATTAAAATCCATGAGTGTCTTACT
TTAACAGCTTGTCTTATATCAGGATATGTGGTAAAGATATTGCTATGTTA
CATGCAGTATCTGCCAGTGAGAAGAAAGCAAATAATGTCAGTCCGAGAGA
AAATCTCTACAGGGCTGTCAATGATAATTGGCTAGCCAATACAAAACCTCA
AACAAAGGGCAGACTAGTGTAAATAGTTTCAGAAATTGAGGATAAATTAA
AAGCAACTGTTAGTGTCTGATATGGCTAAAATGGCCTCAGGAAAGATTGA

FIG. 1 CONT'D

AACAACCAATGATGAACAGAAAAAAATGGTTGCATACTATAAACAAAGGTA
 TGGACTTAAAACAAGAGATAAAAATGGTCTCAAACCTCTAAAACCAGTT
 TTACAAAAACTGAAGCAGTCTCTCAATGAAAGACTTTCAAAGTTGGCC
 CATGATTGTGATGAGTGGTTTACCATTTGGTTGACTGTGGAAA
 CCAATGCTCGAGATAATGCCAAAAGCAATTGGTGCTCGTCAAGCACCC
 GCATTACTGAATCACCTGACCAATATAAGAAGGGCAATAAGAAGGTGA
 GGCTAAATTATCAGCTTACCGTACTTCAGCAATGGTTGCTAAACAAAGC
 TGGAAAAAGTAACATTGAAGATAGAAAACTAGTTAAACAAGCTATAGCAT
 TTGATAGACTCTTATCAGAAAAAACGCAAGTTGATCAAAGTAAAATCACA
 GCTGAAAGTGAGACAGCTGCGGGCGATATAACCCTGAAAGTATGGAAAC
 GGTTACAATTACGCCAAGGAATTGACTTTAAAGAATTGATTGAAAAACT
 AGTTGGGCCAACGAATAAGGCAGTCAATGTAGAAGATAAAACTTATTITA
 AACAGGTTAATGATGTTATAATAGTAAACAATTAGCCAATATGAAAGCA
 TGGATGATGATTCTATGCTAGTTGATCAATCAGATTCTAGGAGAACAA
 AATCGTCAAGCAGCGAGTGCTTTAAGAATGTTGCGTCTGGTTGACTCAG
 ATTGAATCGAAAGAAAAATGCTTACACCCAATTAG

MSFMQRKSYLKSMsvltLTACLISGYVVKDIAMLHAVSASEKKANNVSPREN
 LYRAVNDNWLANLKLKQGQTSVNSFSEIEDKLKQLLVSDMAKMASGKIETTN
 DEQKKMVAYYKQGMDFKTRDKNGLKPLKPVLQKLEAVSSMKDFQSLAHDF
 VMSGFVLPFGLTVETNARDNSQKQLVLRQAPALLESQDQYKKGNKEGEAKLS
 AYRTSAMALLKQAGKSNIEDRKLVKQIAFDRLLSEKTQVDQSKITAESETAA
 GRYNPESMETVHNYAKEFDFKELIEKLVGPTNKAVNVEDKTYFKQVNDVINS
 KQLANMKAWMMISMLVDQSDLGEQNRQAASAFKNVASGLTQIESKEKMLT
 PN*

Sequence description:

- A] Length: 1095 bp - 365 aa (full length gene)
- B] an GTG (possible ATG start codon located 7 bp further downstream) start codon with an obvious signal peptide. Shine Dalgarno sequence present upstream of the ORF.

ID-90

Clone RS-59

FIG. 1_{CONT'D}

ATGGAAATGCCTAAAAGAAATGAATTACTCAATAAAGAAATTAAAATGAG
TATTGATAAAACTTAGATATAAAGAACAGAGAGTGAACATGACAAGCGAC
CTACTTTTATTGGTAGTACTTATACTGTTACTGTAGCAGTTATATTGTC
GTTATTAAATATTTTATAG

MEMPKRNELLNKEIKMSIDKLRYKEPESEHDKRPTFYLVVLILVTVAVILSLFK
YFL*

Sequence description:

- A] Length: 174 bp - 58 aa(full length gene)
- B] No obvious signal peptide, but Shine Dalgarno sequence is present upstream of ATG start codon.

ID-91

Clone RS-62 (partial sequence)

ATGCAGGTATTTAAATATTGTCATAATAATTCTTGATCCAGTTATTATA
TGGGTTCGGGAGTTGTGATGCTAATTGTCATGACAGGTTAGCCATGATAT
TTGGAGTGAAGTTCTAAAGCACTGAAGGTGGTAT

MQVFLNIVNKFFDPVIHMGSVVMLIVMTGLAMIFGVKFSKALEGG

Sequence description:

- A] Length:141 bp - 41 aa (partial sequence)
- B] Shine Dalgarno sequence present upstream of ATG start codon with a possible signal peptide present

ID-92

FIG. 1 CONT'D

Clone RS-69 (partial sequence)

ATGAAAAAGAAAACATTCAAGTGCTTATAACTTTAACGGCTCTTATCCTT
 TGTCTTTGACAGTGCTTTATCTTCCATTATTGGATTATGACAGGAG
 CTTTAA

MKKKTFSAYNFLTALILCLLTVLFIFPFYWIMTGAF

Sequence description:

- A] Length: 110 bp -36 aa (Partial sequence)
- B] Possible signal peptide with Shine Dalgarno sequence directly upstream of the ATG start codon.

ID-93

Clone RS-70

ATGACTGAGAACTGGTTACATACTAAAGATGGTCAGATATTATTATCGT
 GTCGTTGGTCAAGGTCAACCGATTGTTTTACATGGCAATAGCTTAAGT
 AGTCGCTATTTGATAAGCAAATAGCATATTTCTAAGTATTACCAAGTT
 ATTGTTATGGATAGTAGAGGGCATGGCAAAAGTCATGCAAAGCTAAATAC
 CATTAGTTCAAGGCAAATAGCAGTTGACTAAAGGATATCTAGTTCAATT
 AGAGATTGATAAAGTTATATTGGTAGGCCATAGCGATGGTCTAATTAGC
 TTTAGTTTCAAACGATGTTCCAGATATGGTAGAGGGCTTGTCAATT
 TCAGGGAACCTGACTATTCAATGGTCAGCGATGGTGGGATATTCTTTAGTA
 AGGATTGCCTATAAATTCCCTCACTATTAGGGAAACTCTTCCGTATATG
 AGGCAAAAAGCTCAAGTTATTCGCTTATGTTGGAGGATTGAAGATTAGT
 CCAGCTGATTACAGCATGTGTCAACTCCTGTATGGTTGGTGGAAAT
 AAGGACATAATTAAGTTAAATCATTCTAAGAAACTGCTTCTTATTCCA
 AGGGGGGAGTTTATTCTTAGTGGCTTGGCATCACATTATTAAGCAA
 GATTCCCATGTTTAATATTATTGCAAAAAAGTTATCAACGATACTG
 AAAGGAGAAATTGTTGAAAAAGCTAATTGA

MTENWLHTKDGSIDIYR VVGQGPIVFLHGNSLSSRYFDKQIA YFSKYYQVIV
 MDSRGHGKSHAKLNTISFRQIAVDLKDILVHLEIDKVILVGHSDGANLALVFQ

FIG. 1 CONT'D

TMFPDMVRGLLNSGNLTIHGQRWWDILLVRIAYKFLHYLGKLFPYMRQKA
QVISLMLEDLKISPADLQHVSTPMVLVGNKDIKLNHSKKLASYFPRGEFYSL
VGFHHIIKQDSHVFNIIAKKFINDTLKGEIVEKAN*

Sequence description:

- A] Length: 744 bp - 248 aa (full length gene)
- B] No obvious signal peptide, but Shine Dalgarno sequence upstream of the ATG start codon.

ID-94

Clone RS-71

ATGGTAGCAAAAGAGTTAGGTAAAAATAGCTTACTATCCAACTATTGT
TCTAATTGCTCCGCAGGTACTGCCATTGCAGTTGTATATAATGATGACCAT
TCTTCCTTAAGATACGGCTATCCCGAGTCTCCACTTCATATTTTATCAATA
CACGGATCATTGCACAGGCACCAAGCAAATATTTGGGCTGGTATTGGGG
ACGGTATTCAAAAGCCCCCTGAAGTAGAACGTGCTACCTTAGAGGGCTAAG
ACCAATAAACTACCACATACTGCAGTGTAGGACAAGCAGTCGCTCTGTCT
TCAAAGGAAGCTTTTATCAATTGGTAAACAAGGTCTAAAGACGTTGAA
GCTAATTAGCTCGCGTGCAGTTGAAGAAATTGCGCTTGATATCTTA

MVAKELGKNSFTIPTICSNCSAGTAIAVVYNDDHSFLRYGYPESPLHIFINTRIIA
QAPSKYFWAGIGDGISKAPEVERATLEAKTNKLPHAVLGQAVALSSKEAFY
QFGEQGLKDVEANLASRAVEEIALDIL

Sequence description:

- A] Length: 405 bp - 135 aa (Partial sequence)
- B] No obvious Shine Dalgarno sequence upstream of the ATG start codon, probable signal peptide present at the N-terminus.

ID-95

FIG. 1_{CONT'D}

Clone RS-73

TTGAGGGAAACTTACTGGAAAATTCAAGCGATTGCGATAAAATAATCTT
 GCAGAGTTTCTAGAGAAAGGAGGTAGATTATTGGAGTGGCAAGATCT
 AGCGCAGTTACCTGTATCTATTAAAGACTATGTTACAGATGCTCAAGA
 CGCGGAAAAACCTTTATATGGACAGAAGTATTAAAGGGAGATTAATCG
 CTCAAATCAAGAAATTATTTCATATTGGCCGATGACTAACAGACAGTCAT
 TCTGGGGATGTTAGATCGAGAATTACCACTTAGAATTAGCTAAAAAAG
 AAATCATCAGTCGTTATGAACCAGTTGTCGGAATTGGAGGTCTCG
 CAGTTGTAGCTGATGAAGGAATTAAATTTCATTGGTTATTCCAGATGT
 TTTGAGAGAAAATTGTCTATCTCAGATGGGTATCTTATAATGGTCGATTT
 ATTAGAAGTATATTTCGGATTATTCAACCTATTGAGCACTTGAAGTA
 GAGACCTCCTATTGTCCTGGTAAGTTGATCTTAGTATAATGGCAAAAAA
 TTTGCTGGCTTGGCTCAGGCCGTATAAAGAATGGTATTGCGGTATCAATT
 TACCTTAGCGTTGTGGCGATCAAAAGGGCGGAGTCAAATGATTCAGAT
 TTTATAAGATTGGTCTAGGTGATACGGGTAGTCCAATTGCTTATCCAAAT
 GTAGATCCTGAAATTATGGCTAACCTATGATCTATTAGATTGCTTATG
 ACAGTAGAAGATGTTATTGATCGTATGTTGATTAGCCTAAACAAGTAGGT
 TTTAATGATCGTTACTGATGATTAGACCCGATTAGTTGCAGAGTTGAT
 AGATTCAGGCTAAGTCTATGGCTAATAAGGGATGGTGAGCAGAGATGA
 ATAA

MRETYWKISSDCDKINLAEFSRERRSDLLEWQDLAQLPVSIFKDYVTDAQDAE
 KPFIWTEVFLREINRSNQEIIHLIWPMKTVILGMLDRELPHLEAKKEIISRGYE
 PVVRNFGGLAVVADEGILNFSLVIPDVFERKLSISDGYIMVDFIRSFYQPI
 EHFEVETSYCPGKFDLSINGKKFAGLAQRRIKNGIAVSIYLSVCGDQKGRSQMI
 SDFYKIGLGEDGSPAYPNVDPEIMANLSDLLCPMTVEDVIDRMLISLKQVGF
 NDRLLMIRPDLVAEFDRFQAKSMANKGMVSRDE*

Sequence description:

- A] Length: 921 bp -307 aa (Full-length gene sequence)
- B] No obvious Shine Dalgarno sequence upstream of the TTG start codon or signal peptide visible. Actual start point may be a further 85 bp downstream (TTG). This start point is preceded by a typical Shine-Dalgarno sequence.

FIG. 1_{CONT'D}

ID-96

Clone RS-74

TTGGAAGGTTACTTATTGCATTGATTCCATGTTGCGTGGGAAAGTATT
 GGATTGTTAGTAATAAAATTGGAGGGCGTCAAATCAACAAACATTGG
 AATGACTTCTAGGAGCATTGCTATTGCGATTATCGTATGGTTATTAAACA
 GCCAGAGATGACTGCCTCATTGTGGATTTGGTATCTTAGGTGGTATCCT
 ATGGTCAGTCGGCCAAAATGGTCAATTCAAGCAATGAAATATATGGGAG
 TCTCTGTTGCTAATCCACTGTCAAGTGGTGACAATTAGTAGGTGGAAGCC
 TAGTTGGTGCCTTAGCTTCATGAATGGACTAACGCCAATCCAATTATTT
 AGGATTGACAGCGTTGACATTATTAGTTATCGGCTCTATTCTCAAGTAA
 ACGTGATGTTCAAGAACACAAGCTTGGCAACACATCAAGAGTTCAAAAG
 GATTGCTACAATTGCTTATTCAACTGTAGGTTACATCTCGTACGCAGTTT
 ATTTAACAAACATTATGAAGTTCGACGCTATGGCGTCATTTACCCATGGC
 TGTTGGAATGTGTCTAGGTGCAATTGTTCATGAAGTTCGTGTAACTTT
 GAGGCTGTTGTTAAAAATATGATTACAGGTCTCATGTGGGGCGTTGGT
 AATGTCTTCATGTTATTGGCAGCAGCTAAAGCAGGGCTAGCAATTGCTTT
 AGTTTTCTCAACTGGAGTAATTATCTCTATTATTGGTGGTATTATT
 AGGTGAGACAAAAACGAAGAAAGAGCAGAAATGGGTTGTATGGGTATC
 CTTGTTTGTATGGGTGCTATTACTGGTATTGTTAAATCTTATTAA

MEGLLIALIPMFAWESIGFVSNKIGGRPNQQTFGMTLGALLFAIIVWLFKQPEM
 TASLWIFGILGGILWSVGQNGQFQAMKYMGVSVANPLSSGAQLVGGSLVGAL
 VFHEWTKPIQFILGLTALTLLVIGFYFSKRDVSEQALATHQEFSKGATIAYST
 VGYISYAVLFNNIMKFDAMAVILPMAVMCLGAICFMKFRVNFEAVVVKNMI
 TGLMWGVGNVFMLAAAKAGLAIAFSFSQLGVIIISIIGGILFLGETTKKEQK
 WVVVMGILCFVMGAILLGIVKSY*

Sequence description:

- A] Length: 867 bp - 289 aa (full-length gene)
- B] Possible Shine Dalgarno sequence upstream of GTG start codon, no obvious signal peptide present.

ID-97

FIG. 1 CONT'D

Clone RS-75

ATGACAACTTACTACGAAGCTATAAACTGGAACGAAATTGAAGATGTTAT
 TGATAAAATCAACTTGGAAAAACTAACCGAACAACTTGGCTCGATACAC
 GTATCCCTTATCAAATGACTTAGACGATTGGCGCAAACCTTCGCTCAAG
 AAAAAGATCTTGGCAAGGTTTGAGGCTAACCCCTACTGATACCA
 TGCAATCAGAAACTGGTGTGAAGCTATTGCGATGTTGCACGCC
 ACGAAGAAGCTGTCTAAACAATTCAATTGGAATCTGTTACGCTA
 AATCTTATTCTCAATTTCCTCAACTTAAATACTAAATCAGAAATTGAAG
 AAATTCGAGTGGACTAATAATAATGAGTTCCTCAAGAAAAGCACGT
 ATTATCAATGACATTATGCTAATGGAATGCCCTCAAAAAAGGTGGCT
 TCCACCTACCTCGAAACTTCCCTTTATTCTGGCTTTACACCTTTA
 CTATTGGGAAATAATAAGTTAGCAAATGTTGCTGAAATCATTAAATT
 TATTGCGATGAATCTGTACATGGTACTTATATCGGTTACAAATTCCAGCT
 GGTTTAACGAATTACAGAAGATGAGCAAGAGAATTCGTGATTGGAT
 GTATGACCTCCTTATCAGCTGTATGAAAAGAAGAAAATACACCAAGA
 CACTTATGATGGCGTAGGATGGACTGAAGAAGTTATGACCTTTACGCT
 ACAATGCTAATAAGCTTTATGAATTAGGACAAGATCCTTATTCCCAG
 ATACAGCAAATGATGTCACCCAATTGTTATGAATGGTATTCAACAGGAA
 CATCAAACCATGACTTCTCTCAAGTAGGTAATGGTACCTACTGGTA
 GCGTTGAAGCTATGCATGATGACTATAACTATGGATTATAA

MTTYYEAINWNEIEDVIDKSTWEKLTEQFWLDTRIPLSNDLDDWRKLSAQEK
 DLVGKVFGGLLDTMQSETGVEAIRADVRTPHEEAVLNNIQFMESVHAKSY
 SSIFSTLNTKSEIEEIFEWTNNEFLQEKARIINDIYANGNALQKKVASTYLETF
 LFYSGFFTPLYYLGNKNLANVAEIILIRDESVHGTIYGKFQLGFNELPEDEQ
 ENFRDWMYDLYQLYENEKYTKTLYDGVGWTEEVMTFLRYNANKALMNL
 GQDPLFPDTANDVNPIVMNGISTGTSNHDFSQVGNGYLLGSVEAMHDDDYN
 YGL*

Sequence description:

- A) Length: 960 bp - 320 aa (full length gene)
- B) Shine Dalgarno sequence present upstream of ATG start codon, but no signal peptide present.

ID-98

FIG. 1 CONT'D

SUBSTITUTE SHEET (RULE 26)

Clone RS-77 (partial sequence)

ATGAATTGGTCACGTACTGGGAACTCGTAAAAATTAAATATCCTTATTCA
 AACCCCTCAGACTCTATCGGCACTAAGAAAAAGCAAGAAAAGCATCCTAA
 AAAAGAATTTCACTTATAAATCCATGTTAGAAATCAGTTAGTATTCAAGAT
 TTTGCTCTTCAATAATTATGTATTCTCTTGATCTACTGATTTAAAG
 AATATCCGGGCTATTCACGTTCTACATTGGTATCTTACACTAGTATCCAT
 TATCTACTCTTATTGCGATGTACAGTGTTCTATGAGAGTGACGATGTT
 AA

MNWSRIWELVKINILYSNPQTLSALRKKQEKPKEFSAYKSMFRNQLFQILL
 FSIIYVFLVSLDFKEYPGYFTFYIGIFTLVSIIYSFIAMYSVYESDDV

Sequence description:

- A] Length: 311 bp - 103 aa (Partial sequence)
- B] Shine Dalgarno sequence present upstream of ATG start codon, no obvious signal peptide at N-terminus.

ID-99

Clone RS-78 (partial sequence)

TAATCTTTAGTCAACGGAGCAACAGGAAAATTGCAGGCTATGCGACAGA
 TATTCCACCACATAATTAGCAGAACGCTATTGATGCTGTCGTACATGAT
 TGATCACCTAAAGCTAAATTAGATAAAATTAAATGGAATTCTACCTGGTCC
 AGATTTCACACTGGCGCTATCATTCAAGGAAAAGATGAAATTGTAAGG
 CATATGAGACTGGTAAGGGGAGAGTAGCGGTTCGCTCGCGAACTGCTATT
 GAAACCTAAAAGGTGGTAAGAAACAAATTATTGTTACTGAAATTCTTAT
 GAAGTTAAT

SFSQRSNRKIAGYATDIPPHNLAEVIDAVVYMDHPKAKLDKLMEFLPGPDFPT
 GAIIQGKDEIRKAYETGKGRVAVRSRTAIETLKGKKQIIVTEIPYEVN

Sequence description:

- A] Length: 312 bp - 104 aa (Partial sequence)
- B] No obvious Shine Dalgarno sequence or a

FIG. 1 CONT'D

signal peptide. Both N- and C- termini of ORF yet to be elucidated.

ID-100

Clone RS-79

ATGGGACGTAAGTGGGCCAATATTGTTGCCAAAAGACTGCTAAAGATGG
TGCTAACTCAAAAGTATACGCTAAATTGGTGTGAAATATGTTGCTGC
AAAGCAAGGTGAACCAGACCCGAGTCAAACTCAGCTCTAAATTGTT
TGGACCGTGCTAAGCAAGCACAAGTCCAAGCATGTTATTGATAAAGCG
ATTGATAAAAGCAAAGGAAACACAGATGAAACTTCGTAGAGGGACGCTA
TGAAGGTTTGGTCCAATGGTTCAATGATTATTGTTGATACTTGACATC
AAATGTTAACCGTACGGCAGCAAATGTACGTACTGCTTACGGTAAGAACG
GTGGCAATATGGGAGCTTCAGGATCGGTATCCTACTTATTGATAAAAAAG
GTGTCATCGTTTGCTGGTGTGATGACTGCTTACGACAATTACT
TGAAGCGGATGTAGACGTAGATGATGTTGAAGCAGAAGAGGGAAACAATA
ACAGTTATACCGCCCCAACAGATCTTCAAAAGGTATCCAAGCACTTCGC
GATAATGGTGTAGAAGAATTCCAAGTTACTGAACGTGAAATGATTCTCAA
TCAGAAGTAGTATTGGAAGGTGATGACCTGAAACTTTGAAAAGCTT

MGRKWANIVAKKTAKDGANSKVYAKFGVEIYVAAKQGEPDPESNALKFVL
DRAKQAQVPKVIDKAIDKAKGNTDETFVEGRYEGFGPNMSMIIVDTLTSNV
NRTAANVRTAYGKNGGNMGASGSVSYLFDKKGVIVFAGDDADTVFEQLLEA
DVDVDDVEEAEGLTIVYTAPTDLHKGIQALRDNGVEEFQVTELEMIPQSEVVL
EGDDLETFEKL

Sequence description:

- A] Length: 654 bp - 218 aa (Partial sequence)
- B] Possible Shine Dalgarno sequence upstream of ATG start, no obvious signal peptide

ID-101

Clone RS-80

FIG. 1_{CONT'D}

TTGGAGAAATATTGAAGAACCCGATTACATGGATTGGATTAGTTCTTGTG
GTACGTGGTTTAACAAAAGTAGTGAATTGGATTTGGTGTGTG
TCTTGTGTTAGTATTGCTAGTCAAAGTGAT

MEKYLKNPITWIGLVLVVTWFLTKSSEFLIFGVCVLLLVFASQSD

Sequence description:

- A] Length: 135 bp - 45 aa (partial sequence)
- B] Shine Dalgarno sequence upstream of TTG
start codon with possible signal peptide
evident at N-terminus.

ID-102

Clone RS-81

ATGACACAATCAGATGCATATCTCTCGTGAACCGAAGACACGCTTAGA
GATCGCACAGGTAAATTATCATTTACTTCGGATAAAAGAGGGCTGTTGAACAA
TATATGATAGAACATGTTGAACCTAACATACGATGGTGTTCACATCACTAATT
GAAAAGCTAGATTATTGGTTCTAACAACTACTATGAATCGGACCTTCTA
AAACAATATAACCTTGAGTTATTGCCAAATTGGAGCATGCATACGCT
AAGAAATTGCTTTCTAAATTATGGGGCTTAAAATTATAATGCTT
ATGCTCTTAAT

MTQSDAYLSLNNAKTRFRDRTGNYHFTSDKEAVEQYMIEHVEPNTMVFTSLIE
KLDYLVSNYYESDLLKQYNLEFICQIFEHAYAKKFAFLNFMGALKFYNA
LN

Sequence description:

- A] Length: 318 bp - 106 aa (Partial sequence)
- B] Shine Dalgarno sequence present upstream of
ATG start codon, no obvious signal peptide

FIG. 1 CONT'D

ID-103

Clone 2-11A

ATGGTATTATGGCAAATAAGAAAAAAACAAAAGGAAAGAAAAACCAGAA
GACCTACTAAGGCAGAAATAGAGCGTCAAAGAGCTATTCAAAGGATGATT
ACTGCTCTGTTAACATTATTCTCTTGGTATTATCAGATTAGGTA
TTTTGGTATTACAGTCTATAACGTATCCGTTATGGTAGGTAGCTTGGC
TTACTTATTATTGCCGAACTTAACCTTAAATCTACCTTATTCTTAAATGGTG
CGAAAGAAAGATAGCTTAGTAGCAGGTTTGATAGCTTCTTAGGATTA
TTGATTGAGTGGCATGCTTACCTTCTCAATGCCTATTGAAAGATAAA
GAAATTGCGTCACTGCTGATTAAATTGTGTCGATTAAATGCAATTAA
AAATCACTGTTTGCCGGTGGAGGTATGTTGGTGCTTGATTACAAGC
CAATTGCTTCTCTTCTAAATATTGGTGCCTATATGATTGGTGTCTCTC
ATCATTGGTCTCTTTAAATGAGTTCTCTGGAAAGTTATGACATCGTCG
AATTATTAGAGCTTTAAAAATAAAGTGGCAGAGAACGACGAGCAAAT
AAAAAGGAGCGTTTGCTAACCGAGAGATGAAAAAGCAATCGCTGAACA
AGAGCGCATAGAGCGTAAAAAGCTGAAGAACAGCTTATTAGCTTCGG
TTAATGTAGACCTGAAACGGGTGAGATTCTAGAGGATCAAGCTGAGGAC
AATTGGATGATGCGTACCCACCTGAGGTAAAGTGAACATCAACTCCGG
ATTGAGCCAGAGATCCTGCTTATGAGACATCGCCTAAAATGATCCTT
ACCACTAGAGCCGACAATTATTAGAAGACTATGATTGCCGATTCTAA
TATGAGAGAAAATGATGAGGAATGGTTATGATTAGATGATGATGATG
ATGATAGTGTATAGAAAATGTCGACTTACACCTAAAACGACACTGGTT
ATAAATTACCAACGATAGATTATTGCAACCAGATAAGCTAAAAATCAAT
CCAAAGAAAAGGATTAGTCGAAAGAATATCAGAGTTAGAAGAAACA
TTAGAAGTTGGTATCGATGAAAAGTAGAACGTGCTGAAATTGGACCA
TCAGTTACTAAATGAAATTAAACAGCAGTTGGAGTTCTGTGAAATCGT
ATTTCAAATCTATGACGACCTAGCTCTGCTTGCAGCAAAGATGTG
CGTATAGAACCAATTCTGGAAAATCTTAATAGGTATTGAAGTTCCT
AACTCAGAAATTGCAACGGTTCTTCCCGCAACTTGGAACATCTGAT
GCCAATCCTGAAAACCTTTAGAAGTACCACTAGGAAAAGCTGTTAACGG
CAATGCTCGCAGTTAACCTAGTAGAACGCGATCTTGGTAGCTGG
TTCAACTGGTTAGGTAAATCTGTGGCAGTTAATGGAATTATTCAAGTAT
TTGATGAAGGCACGTCAGATCAAGTTATGATGATTGATCCAA
AATGGTTGAATTATCTGTTATAATGATATTCCACATTATAATCCCTGTT
GTAACCAATCCCGTAAAGCAAGTAAGGCACCTCCAAAAAGTTGATG
AATGGAAAATCGATACGAGTTAGCAAAATTGGTGTGCGTAATATAG
CAGGTTATAATACAAAGGTTGAAGAGTTAACGCTTCTGAGCAAAC
AAATGCCCTTGCCTTAATCGTTGTCATTGATGAAATTGGCTGACTTGAT
GATGGTTGCTAGTAAAGAAGTTGAAGATGCTATTATCGTTGGGGCAAA
AGCACGTGCTGCAGGTATCCATATGATTCTGCAACTCAACGTCCATCCGT

FIG. 1 CONT'D

AGATGTTATTCTGGTTGATTAAAGCAAATGTTCCGTCGCGTATTGCATT
 GCTGTTCAAGTGGTACTGATAGCCGTACGATCCTTGATGAAAATGGTGCT
 GAAAAGCTCTGGGACGGGGTGACATGCTCTTAAGCCTATTGATGAGAAT
 CATCCAGTACGACTACAAGGTCCTTATTCAGATGATGATGTTGAAAGG
 ATCGTTGGTTTATCAAAGACCAAGCCGAGGCTGACTATGATGATGCCCTT
 GATCCTGGAGAAGTATCTGAAACAGATAACGGCTCTGGTGGCGCGCG
 AGTACCTGAAAGTGATCCTCTTGAAGAACCCAAGGGACTCGTTTAGA
 GACGCAAAAAGCAAGTGCCTCAATGATTCAACGCCATTGTCGTTGGTT
 CAATAGAGCAACAAGACTAATGGAAGAATTAGAAGCAGCAGGGGGTATTG
 GTCCAGCAGAAGGAACCAAGCCACGAAAAGTTTAATGACTCCAACCTCG
 AGTGAATAA

MVFMANKKKTKGKKRRPTKAEIERQRAIQRMITALVLTIIFFGIIRLGIFGIT
 VYNVIRFMVGSLAYLFIAATLIYLYFFKWLRKDSLAVAGFLIASLGLLIEWHA
 YLF SMPILKDKEILRSTARLIVSDLMQFKITVFAAGGMLGALIYKPIAFLFSNIG
 AYMIGVLFIIILGLFLMSSLEVYDIVEFIRAFKNKVAEKHEQNKKERFAKREMK
 KAIAEGERIERQKAEEEAYLASVNVDPETGEILEDQAEDNLDDALPPEVSETST
 PVFEPEILA YETSPQNDPLPVEPTIYLEDYDSPIPNMRENDEEMVYDLDDD
 SDIENVDFTPKTTLVYKLPTIDLFPAPDKPKNQSKEKDLVRKNIRVLEETFRSFGI
 DVKVERAEIGPSVTKYEIKPAVGVRVNRISNLSDLALALAAKDVRIEAPIPGK
 SLIGIEVPNSEIATVSRELWEQSDANPENLLEVPLGKAVNGNARSFNLARMPH
 LLVAGSTGSGKSVAVNGISSLMKARPDVVKFMMIDPKMVELSVYNDIPHLLI
 PVVTNPRKASKALQKVDEMENRYELFSKIGVRNIAGYNTKVEEFNASSEQK
 QMPLPLIVVIVDELADLMMVASKEVEDAIIRLGQKARAAGIHMLATQRPSVD
 VISGLIKANVPSRIAFAVSSGTDTSRILTENGAEKLLGRGDMLFKPIDENHPVRL
 QGSFISDDDVERIVGFIKDQAEADYDDAFDPGEVSETDNGSGGGGVPESDPL
 FEEAKGLVLETQKASASMIQRRLSVGFNRATRLMEELEAAGVIGPAEGTKPRK
 VLMTPTPSE*

Sequence description:

- A] Length: 2451 bp - 817 aa (Full-length gene)
- B] Shine Dalgarno sequence present upstream of ATG start codon, possesses a potential signal peptide

ID-104

Clone 2-18/22b

FIG. 1 CONT'D

ATGTCACAAGAGCAAGGAAAAATTATATTGTAGAAGATGATATGACGAT
TGTGTCACTTTAAAAGATCATTATCAGCTAGCTATCATGCTCTAGTGTGTC
AGCAATTTCGTGATGTGAAACAAGAAATTATCGCATTCAACCCGATTG
ATACTAATGGATATTACGTTACCCATTAAATGGTTTACTGGACTGCAG
AATTGCGTAAGTTTAACAATTCCATTATTCATTTCATCTAGTAATGA
TGAAATGGATATGGTTATGGCATTAAATATGGGGGTGATGACTTATTG
AAAACCATTCTCTAGCTGTATTAGATGCTAACGTAAGCTAACGCTATTAAAG
GAGAAGTCAACAATTATCCAACAGGAATTAACTTTGGGGATTACGTT
GACAAGAGAAGGGTTATTGTCTAGCCAAGATAAAAGAGGTTATTTCATCGC
CAACAGAAAATAAAATCCTATCTATCTTGCTCATGCATCCTAAACAAGTAG
TCTCAAAAGAGTCTATTAGAGAAACTTGGAAAATGATAGTTATTG
ATCAAAATACACTTAATGTTAATATGACACGCTACGTAAAAAAATTGTCC
CAATAGGTTTGATTACATTACAGTGAGAGGAGTTGGGTATTACTAC
AATGA

MSQEQQKIVYIVEDDMTIVSLLKDHL SASYHVSSVNFRDV KQEIIAFQPDLI LM
DITLPYFNGFYWTAELRKFLTIPIIFISSNDEM DMV M ALNMGGDD FISKPFSLA
VLDAKLTAILRRSQQFIQQELTFGGFTLTREGLLSSQDKEVILSP TENKILSILLM
HPKQVVS KESLLEKL WENDSFIDQNTLN VNMTRLRKKIVPIGF DYIHTVRGV G
YLLQ*

Sequence description:

- A] Length: 669 bp - 223 aa (full-length gene sequence)
- B] Shine Dalgarno sequence present upstream of a GTG start codon. Was not identified directly by LEEP. This gene was found upstream of gene ID-10 described in WO 00/06736.

ID-105

Clone 2-20

ATGTATCAAAC T CAGACAAATAAGGAAAAATTGTTTATTTTGAAATTA
TTTATCCCAGTATTGATTCAATTGCTAATTTCAGCTACTTTATTGA
TTCGGTTATGACTGGACAGTATAGTCAGCTACATTGGCAGGTGTCAAC
TGCTAGTAATTATGGACTCCGTTTCGCTTATTAGTAGGTATGATTCA
GCATTAGTACCA GAGTAGTTGGTCAACATTGGTAGAGGAAATAAGAAC
AATT CGCACAGAATT CATCAATTCTATATTAGGTTGATACTGTCCTTA
ATATTATTAAATCATGCAATTATTGCTCAACCTGTCTGGGAGTTGG

FIG. 1 CONT'D

GTTTAGAAGATGAAGTTCTAGCAGTTGGCGTGGTTATTAAATTATATGT
 TGATTGGAATCATGCCGCTGGTGTTCAGCATTGCCGTTCAATTCTTGAT
 TGCATTGGGTTAACAAAGGTTATCTATGTATCTGATGCTTTAATTCTACCC
 TTTAATTCACTTTAACATTATGCTTATCTACGGTAAATTGGTATGCCTA
 GACTAGGAGGTGCGGGGGCAGGTCTTGAACCTCTTAACATTATTGGGCTA
 TTTTATTGGTATTATTATTGTGATGTCACTCATCCTCAAATTAAAACATA
 TCATATATGGACTCTGGAAAGAATAAAAAGCTCCTTGATTATTGAAGATAT
 TCGATTGGATTACCGATTGGTTACAAATTTCAGAAGTTGCAATTTCAGCA
 GCAGTAGTAGGCTTATTCACTGGCAAAATTCTTCAATCATTATTGCAGCA
 CATCAGGCTGCTATGAATTTCATCATTAAATGTATGCATTCCCTTAAGTA
 TTTCCACTGCTCTAGCTATTACAATATCGTTGAAGTAGGGCAGAGCGCT
 TTCAGGACGCAACCACCTATAGTAGGATAGGACGCTAACAGCGGTAGGG
 ATTACATCAGGAACCTTACTATTTCATTTCAGTGTGAGAATGTAGCAG
 CAATGTATAATAGTCCCCCTCACTTGTGCTATTACAGCTAACCTAAC
 TTATAGTCTCTTTCCAGTTGCAGATGCTTATGCAGCTCCTGTACAGGGG
 ATTTACGAGGCTATAAGGATACAACAAAACCATTATGATCGTGCAGGG
 CTCTTATTGGTTATGTGCTTGCCTATTGGATTGGTTAACACAGGTATTTGTT
 CCAGTTAGGTCCGTTGCCTATTGGATTGGTTAACACAGGTATTTGTT
 TGTGGTCTATTCTAACCAACGTCTGCAAAAGATTAAGAAGTTGTATTAT
 TAA

MYQTQTNKEKFVLFLKLFIPVLIYQFANFSATFIDSVMQYSQLHLAGVSTAS
 NLWTPFFALLVGMISALVPVVGQHLGRGNKEQIRTEFHQFLYLGTLILSLIFL
 MQFIAQPVLGSLGLEDEVLAVERGRYLNLYMLIGIMPLVLFSCRSFFDALGLTRL
 SMYLMLLILPFNSFFNYMLIYGKFGMPRLGGAGAGLGTSLTYWAIFIGIIIVMS
 LHPQIKTYHIWTLERIKAPLIIEDIRLGLPIGLQIFAEVAIFAVVGLMAKFSSIIIA
 AHQAAMNFSSLMYAFPLSISTALAITISFEVGAERFQDATTYSRIGRLTAVGITS
 GTLLFLFLFRENVAAMYNSAPHVAITAQFLTYSLFFQFADAYAAPVQGILRG
 YKDTTKPFMIGAGSYWLICALPLAVILEKNSQLGPFAYWIGLITGIFVCGLFLNQ
 RLQKIKKKLYY*

Sequence description:

- A] Length: 1341 bp - 447 aa (full length gene)
- B] Shine-Dalgarno sequence present upstream of ATG start codon, There is a potential signal peptide sequence

ID-106

FIG. 1 CONT'D

Clone 2-4A

TTGCTAGTTCTCTAGTTCTGTCATTTTCTTCATTAGTCATTCTCGTGT
 GTCTTCATCAACACGAAATAAGTCTATAAACTTATCAAATAATTCAAGA
 CTTATTATATCAATTTCATAAAAATGCTATAATAAAACCATGTCATTTC
 TAATTTAGAAATCCATACGGTGAACATACCGTTAAGAACACTCCTGA
 AGATTATTTGATTCCACGTAAGATTAGACATTTCGCGTGTAAAAAA
 CATGTACTTATAAACATGAATTCAATTGGCAAACACTGTCGTCCAAGAA
 AACGATACTATTACCTTAATCTTGATGATGAGGATTACCTACTAAAAAA
 ATTCCCTCTGGGCAGAGCAGAGCTATTGATTGTCATTGAGGATGAACAT
 CTTATTATCGTTAATAAACCTGAAGGTATGAAAACACTCACGGTAACCAACCA
 AATGAAATAGCACTGTTAAATCATGTATCTGCCTATTCTGGACAAACATGC
 TATGTTGTCATCGCCTAGATATGGAGACCAGTGGAGCTGTTTATTGCT
 AAAAATCCATTATACTCCCCTTATCAATCAACGCTTAGAACGAAAAGAA
 ATTTGGCGTGAATATTGGGCTTAGTTGAAGGAAAATTTCACCTAACGCAT
 CAAGTTTGAGAGACAAAATTGGACGGAACCGTCATGACAGACGTAAACG
 AATCATTGATTCTAAAAACGGTCAACATGCTATGACAATCATTGACGTTT
 GAAGTATATCCAAAATAGTAGTCTCATAAAATGCCACTGGAAACCGGAA
 GAACCCATCAAATTGCATTCACTTATCTCATCACGGACATCCTTAATAG
 GAGATCCCCTTACAACCCCTCTAATAATGAAAGGTTAATGCTACACG
 CTCACCGATTGACTCTATCCCATTAACTTGCAGAAACTATTAGCGTAG
 AGGCCCTTCATCTACTTCGAGAAGGTTAAACAATTATAAAAAGGAG
 TTGGATAA

MLVSSLVSCSFFLVISSLSSTRNKSINLSNNFIDLLYQFSIKCYNKTMFSLKIR
 NPYGEHTVKELLEDYFLIPRKIRHFLRVKKHVLINNEFINWQTVVQENDTITLIF
 DDEDYPTKKIPLGRAELIDCLYEDEHLIIVNKPEGMKTHGNQPNEIALLNHVSA
 YSGQTCYVVVRLLDMETSGAVLFAKNPFLPLINQRLERKEIWREYVALVEGKF
 SPKHQVLRDKIGRNRHDRRKRIDIIDSNGQHAMTIIDVLKYIQNSSLIKCRLETG
 RTHQIRIHLSHHGPLIGDPLYNPSSNNERLMLHAHRLTLSHPLTCETISVEAPS
 STFEKVLNNYKKGVG*

Sequence description:

- A] Length: 1029 bp - 343 aa (Full length gene sequence)
- B] No obvious Shine-Dalgarno sequence upstream
of the putative TTG start codon. Possesses a potential leader peptide sequence.

FIG. 1 CONT'D

ID-107

Clone 2-54

GAACTAATGCAACTAACCTAATAATAGAACTACCTATATTATACCCGAA
AGCAGTCATTCCATTGCAGAACACAACAGAGATTCTGATAGAATCAAAGGG
TTCTCGGTTGCATTACTTAATAGCGATGAATTAGAAAGACAGCGGGAGA
GGATAGAGGTTTGAAAGGGATAAGTTGAGGTCTTGGATATCATTCTAA
GGGAGAGTTATCGACAAGTAATGTCATAGGTAATACGGACATTGCTAGTC
AGATATCGTTGGGCTTAAAAAGAATGCGATGCAGGAACACCATCTTACT
AAAACATTCTCTAAAAGGATGGAAAGTTATCGTCTGTATAGAGGGAT
GCTTGCTATTGGCAAAGAGAAAGTAGAGAAAATAAAATAGTGGTA
ATTATGGCAAAATTAAAAGCTAAGGCACACTGCCCTGTTGCTGTGTTG
ATAATTGAATTGAAAGATATAAAATCTTATTTCATATTATTGTCACT
AAACCATCAGCTCAAATTACCTAAAGGTGCTATACTTTCTGCTAAAACAGA
AGTATATAGGGGAGGAGATTGGGAGAAAAATAAGATAATGTGTTG
GTTACCGTATCCCCTCATTATTGAAAACCCAAAAAGGAACCTTACTGCGG
GAGCTGATGAAAGAATTGAGCAAGCTTGTGATTGGGAAACATAGGAATG
GTTATTGCCGTAGTGAGGATGATGGTGTCACTGGGAAAGAGAAC
TATTGTCAATCTCGTAATAACCTAGAGTTCCGCTAGTTACTAGTGGTGA
CTATAGGGCTCACCTATTAATATGGATATGGCATTAGTTCAAGATACTAG
CTCCAAGACGAAACGTATTTCAATATATGATATGTTCCAGAAGGAAG
AGGCCTTATTAGTATTGCTAACACACCTGAAAAAGAATATACCCAAATCG
GAGGACAGTCTTATCTTAATTATAATAATGGAAAGAAATCGAAGGTTT
TTACTATCCGTGACAAAGGTATTGTATATAATTAAAGGGAAAAAGACTG
ATTATCATGTTATAACAGAAACTACTAAAAGTGACCATTCAAATCTAGGGG
ATATTATAAGGGAAAACAGCTACTTGGAAATATATATTACAAAACATA
AAACGTCACCATTGTTAGCAAAATCAAGCTATGTGTTGATGTCAATA
GCGATGATGATGGTAGGACATGGTCATCACCTAGAGATAACAGCAAGT
CTCGTCAGAAAGGCATGAAATTGGGAAATAGGACCTGGAAAAGGTAT
AGTTTAAAATGGGGCACACGCTGGCGTATTATTATTCTGCCTATTCT
ACGAATTGGAAATCTCATCTAAGAGGTTACAATCTCACGCCATTAT
TCAGACGACCATTGAAAAACGTGGCATACTGGAAAAGCAGTTAATGATAA
CCGTATACTTCTAATGGTAAAAAATCACTCCTAACATGGATAATAA
AAAAGAACAAAATACAGAATCCGTACCGTTCAATTGAAAATGGGACA
TTAAGTTATTGAGGAATCTAAGTGGAAACCTAGAAGTAGGCCACAAGTA
AAGACGGCGGGAGACTTGGAAAACATGTTAACAGTATAAGGAAATT
CATGATGCTTACGTCCAATCAGCTATTGCTTGGAGCATGACAAAAAA
GAGTATTTATTAGTGAATGCTAATGGGCCAGGGAAAGAAGTGCCTAAC
TGGATATGCACGTCTAGCGCAAGTTAACATGGTAGTTAAGTGGTT
ATATCACCACATTCAAGATGGTTGCTTACAACCTCTGTTCAACA
ACTTAATAATGATCAATTGGTGTCTTATGAACATAGAGAAAACATCA

FIG. 1 CONT'D

AAATAGTTTACTTAAATTACAAAGTTTAATTGGAGTTCTTAGCAA
 AATACAGAGAAGCAAGGCACTTATGGGAGAAAATGGCAGCAAATTGGCA
 TGTTTGTAAATTATTTATGA

ELNATQPNNRTTYIIPESSHSIAEQQRFLIESKGSSVALLNSDEFRKTAGEDRGF
 ERDKLRSLDIIPKGDLSTNVIGNTDIASQISLGFKKNAMQEHLTKTFSQKDG
 KLSSVIEGMLAIGKEKVEKEIKYSGNLWQKLKAKAHCLVCCVDNLNFEDIKS
 YFQYYCHLNHQLKLPKGAILSAKTEVYRGDFGRKNKDNGFGYRIPSLLKTQ
 KGTLLAGADERIEQACDWGNIGMVIIRSEDDGVTWGKRETIVNLRNNPRVPL
 VTSGDYSGSPINMDMALVQDTSSKTKRIFSIYDMFPEGRGVISANTPEKEYTQI
 GGQSYLNLYNNNGKKSKVFTIRDKGIVYNFKGKTDYHVITETTKSDHSNLGDI
 YKGKQLLNIYFTKHKTSPFRLAKSSYVWMSYSDDDGRTWSSPRDITASLRQ
 KGMKFLGIGPGKGIVLKWGPHAGRIIPAYSTNWKSHLRGSQSSRLIYSDDHG
 KTWHGTGKAVNDNRILSNGEKIHSLTMDNKEQNTESVPVQLKNGDIKLFMRN
 LTGNLEVATSKDGGETWQNHVKRYKEIHDAYVQLSAIRFEHDKEYILLVNA
 NGPGKKCQDGYARLAQVNRRNGSFKWLYHHIQDGSFAYNSVQQLNNDQFG
 VLYEHREKHQNSFTLNYKVFNWSFLSQNTEKQGTLWEKMAANWHVLFKFYL
 *

Sequence description:

- A] Length: 2052 bp - 684 aa (partial gene sequence)
- B] N-terminus has yet to be determined

ID-108

Clone 2-61

ATGCCTAAATTATCGTATCTTCCTCTGCATTTATTATCCCTGACTTGTG
 TAAACTCTGTGCAAGCTGAAGAACATAAAGATATTATGCAAATTACCGA
 GAAGCCGGATATGATGTTAAAGATATTAATAAACCTAAAGCGTCTATCGTT
 ATTGACAATAAAGGTATTTGTGGGAAGATAACGCCGATTAGAACGT
 GATCCCCTAGCATGTCTAAAATGTTACTTTATTTACTATTGAAGACT
 TAGCTAAAGGAAAAACAAACCTCAACACACCAGTGACTGCAACAGAAACA
 GACCAAGCCATAAGTAAGATTATGAAATTAGTAATAACAATATTGCT
 GGGGTTGCTTATCCTATTCGTGAAGTGATTACTATGACGGCTGTCCCGTCA
 TCTAATGTAGCAACTATTATGATTGCTAACCACTTACACAAAACAATCCT
 GACGCCTTATTAAACGAATCAATGAAACCGCCAAGAAACTCGGTATGAC
 AAAAACACTTTATAACCCAGTGGGGCGGTAGCGAGTGCTTTAATGG
 ACTTTACTCCCCAAAAGAATACGATAACAATGCTACTAACGTTACGACTGC

FIG. 1 CONT'D

ACGTGATCTATCAATTAAACCTATCATTCCTAAAAAATACCCGTATATA
 CTGAACTATACAAAATATCCTGAAGTCAAGGCCATGGTCGGAACTCCTTAT
 GAAGAACATTACAACCTATAACTACTCTACCCCCGGCGCTAAATTGGA
 TTAGAAGGAGTAGATGGCTAAAAACTGGTTCTAGCCCTAGCGCTGCTTTT
 AATGCCTTAGTTACAGCTAACGCCAGAAACTCGCTTGATAACTGTGGTT
 TAGGAGTTGGCGATTGGTCAGACCAAGACGGAGAGTACTATCGTCATCC
 GTTGTCACGCTCTGTAGAAAAAGGTTAAAGACGCTAAAAATATTTC
 TTCTAAAACCTCTGTATTAAAAGCCGTTAACCTAAAAAGAAGTTACTAA
 AACCAAAACTAAATCTATTCAAGAACAGCCTCAAACAAAAGAACAGTGGT
 GGACAAAAACAGATCAATTATCCAATCACATTGTATCTATTAAATTG
 TTCTGGGCACCATCGCTAGCCTTGTCTTAGCTGGATAGTATTACTTAT
 AAAGCGCTCTAGATAA

MPKLIVSFLCILLSLCVNSVQAEEHKDIMQITREAGYDVKDINKPKASIVIDN
 KGHLWEDNADLERDPASMSKMFPLYLLFEDLAKGKTNLNTVTATETDQAI
 SKIYEISNNNIHAGVAYPIRELITMTAVPSSNVATIMIANHLSQNNDPAFIKRINE
 TAKKLGMTKTHFYNPSCAVASAFNGLYSPKEYDNNATNVTTARDLSILTYHF
 LKKYPDILNYTKYPEVKAMVGTPYEETFTYNYSTPGAKFGLEGVDGLKTGS
 SPSAAFNALVTAKRQNTRLITVVLGVGDWSDQDGEYYRHPFVNALVEKGFK
 DAKNISSKTPVLKAVKPKEVTKTKTKSIQUEQPQTKEQWWTKTDQFIQSHFVS
 ILIVLGTIASLCLLAGIVLLIKRSR*

Sequence description:

- A] Length: 1188 bp - 396 aa (full length gene)
- B] Shine Dalgarno sequence present upstream of ATG start codon, possesses a potential signal peptide

ID-109

Clone 45

ATGACTGAAAAATTATAATTGGCAACGCTTGGAACCGGCGTTATTGCC
 AACGAATTAGCCCAAGCACTTGGAAAGCACGTGGACAAAAATTATATTCTGT
 AGCTAATAGAACCTACGACAAAGGACTTGAATTGCTAACAAATATGGTA
 TCCAAAAAGTTATGATCACATAGATCAAGTATTGAAGAACCTGAAGTGG
 ATATCATTATATCTACTCCCCACAATACTCACATCTCATTTACGAAA

FIG. 1 CONT'D

GGCTTAGCAAATGGTAAGCACGTTCTTGCAAAAACTATTACTTAAA
 TAGTACTGAGCTAAAGAACCATAGATTAGCCAAACTAACCATGTTGT
 CTTAGCTGAAGCCATGACTATTTCATATGCCAATTACCGCCAATTAAA
 AACATTAGTTGATAGTGGAAAATTAGGACCGTTAAAAATGATTCAAATGA
 ATTCGGAAGTTATAAAGAATATGATATGACTAACCGTTTTCAGTCGTG
 ACCTAGCAGGCGGTGCTTGCTGGACATTGGTGTATGCACTTCTGTAT
 TCGCTGGTTATGTCAGAACGACCTCACAAACATTACCTCTCAAGTTACATT
 TGCACCAACAGGGGTTGATGAACAAGTTGGTATCCTACTAACCAACCCAG
 CAAATGAGATGGCGACTGTCAGCCTAGTTACATGCAAAACAAACCTAAA
 CGAGCAACTATCGCTTACGATAAAGGCTACATTGAACCTTTGAATATCCG
 CGAGGACAAAAGGCAGTTACTTACTGAGGATGGCATCAAGATAT
 TATCGAAGCTGGAAAATGAAATGCTCTCCAATATGAGGTAGCTGATA
 TGGAAAGAGCCATTTCAGGAAAAACTAACACAGCTACGTCAAGAATGGGGATTAC
 AAAGATGTTATGGATATCATGACACAGCTACGTCAAGAATGGGGATTAC
 CTACCCAGAAGAAGAAAAATGA

MTEKYYNWATLGTGVIANELAQALEARGQKLYSVANRTYDKGLEFANKYGI
 QKVYDHIDQVFEDPEVDIYISTPHNTHISFLRKALANGKHVLCEKSITLNSTEL
 KEAIDLAEVNHHVLAEAMTIFHMPYRQLKTLVDSGKLGPLKMIQMNFGSYK
 EYDMTNRFFSRDLAGGALLDIGVYALSCIRWFMSEAPHNITSQVTFAPTGVDE
 QVGILLTPANEMATVSLSLHAKQPKRATIAYDKGYIELFEYPRGQKAVITYT
 EDGHQDIIEAGKTENALQYEVADMEEAISGKTNHMYLNYTKDVMMDIMTQLR
 QEWGFTYPEEEK*

Sequence description:

- A] Length: 984 bp - 328 aa (full length gene)
- B] Shine Dalgarno sequence present upstream of ATG start codon, possesses a potential signal peptide

ID-110

Clone 2-2

GTGTATTCTCCTGTTAAATCTTCTAAAGGAAAAGTGATATTGTTAAAAAGT
 GATTTCTAAAGAGCTTCATAGAAAGGAGAGGAAATATTGTTTT

MYSPVKSSKGKVILLKSDFLKSFIERGNICF

FIG. 1 CONT'D

Sequence description:

- A] Length: 96 bp - 32 aa (partial sequence)
- B] GTG start codon - no obvious Shine-Dalgarno sequence
- Possesses a potential signal peptide

ID-111

Clone 2-3

AAATACTGTATCATTGCAACCTCAAATGCAGGTTTGGAAACGAAGCATTT
ACAGGTGACAGCGATAAAGACTGAAAATTATGGAACGAATTCTCCATA
TTTCCGTCCAGAATTCTAAATCGTTCAATGGTGTATTGAATTCTCTCAC
CTAAGCAAAGATGACTTAAGCGAAATTGTAGATTGATGCTTGATGAAGTT
AACCAAACAATTGGCAAAAAAGGAATTGACCTTGTGGTAGATGAAAATGT
TAAATCACACTTAATTGAACTGGGTTATGACGAAGCAATGGGAGTACGTC
CATTGCGCCGTGTCATCGAGCAAGAAATTGAGATCGCATCACAGACTACT
ATCTCGATCATACAGACGTTAACACCTAAAGCTAATTGCAAGATGGCC
AAATCGTCATTCTGAAAGATAA

KYCIIATSNAGFGNEAFTGDSDKDLKIMERISPYFRPEFLNRFNGVIEFSHLSKD
DLSEIVDMLDEVNQTIGKKGIDLVVDENVKSHLIELGYDEAMGVRPLRRVIE
QEIRDRITDYYLDHTDVKHLKANLQDGQIVISER*

Sequence description:

- A] Length: 429 bp - 143 aa (partial sequence)
- B] N-terminus yet to be elucidated. This gene was not in frame with nuc

ID-112

Clone 2-5

FIG. 1 CONT'D

ATGTCAATGAATTTCATTTACCACAAATTGGCCTATTAAATTATG
 GTGTGATGGTAACCATTATGATTCAACATGTGTTGTTTGGAACTAT
 TATAGCGTGTAAATTGCTTAGTAAAGCGTACTAATTACATTCTCAC
 ATATTAGCTAATTCTATGTATGGGTATTCGTGGACACCGATGGTAGTT
 CAAATTATGATTGCTTCGCATGGATGCATTAAACAATTACCAACAATT
 AGCTTGGTGTAGATTAGATTACACGACTTTACCTGGTATCATTA
 TCATTCCCTAAATAGTGGCCTATATTGGAAATTGTACGTGCAGGG
 TTGAGGCTGTACCATCTGGACAAATAGAACAGCTTACTCGTGGGATT
 GACCTAAAAATACACTTCGCTATGTTATCTTACCCAGCTTAAAAATA
 TTTACCTGCTCTAGGAATGAATTATTACAATTATTAAAGATAGTGCCT
 CCTCAAACATTGGTGTATGGAATTATGGAACGGAGCACAAATCAGTGT
 AACGGCTACTTACTCACCAGTTGCACCGTTATTATTGCAGCATTTACTAT
 TTAATGTTGACAACGATTCTCTCAGCTTGTAAAACAAATGGAGAAATAT
 CTTGGAAAGGGTAAAAATAGATGGTTGA

MSMNFSFLPQYWSYFNYGVMVTIMISTCVVFFGTIIGVLIALVKRTNLHFLTIL
 ANFYVWVFRGTPMVVQIMIAFWMHFNLPPTISFGVLDLDFTRLLPGIIISLNS
 GAYISEIVRAGIEAVPSGQIEAAYSLGIRPKNTLRYVILPQAFKNILPALGNEFITI
 IKDSALLQTIGVMELWNGAQSVVTATYSPVAPLLFAAFYYLMLTILSALLKQ
 MEKYLGKGVKIDG*

Sequence description:

- A] Length: 699 bp - 233 aa (full length gene)
- B] Shine-Dalgarno sequence preceded the 'ATG' start codon. Possesses a potential leader peptide sequence.

ID-113

Clone 2-7

ATGAAAGACCTATTACGAAATAGCTAGAGCAAAGTGGAAATTAAAGTTT
 TCAAGATATGATTTCACATATTCTTGTAGCAGCTTATTGAGTGTAGTTATT
 TATGTTCTATGCTTACGCATAGGAACTGCCTATAGTAAAAAGTTT
 AATGTTCTTAATGACATTGACGGTCTGACTGCAACAGTAATGACCGTT
 ATTGGTAATAATGTAGCCTGTCATTGGGTATGGTCGGTGCCTGTCAGTT
 GTTCGTTTAGGACAGCCATAAAAGATTCAAGAGATAACAGTTATATT
 TGGACCATAGTTGGTATCTGTTGGTGCAGTATGTGGTAGCT

FIG. 1 CONT'D

GCATTAGGAAGTAGCGTTATCTTATCTTATTATGGGTTATGGGACGTGTT
 AAAAACGAGAATCGTATGTTATTGATTGTGAAGTGCAGATAAACACTAGA
 AGTGATTAGAAGGAATTTCCTCCAATATTTGACGGAAAAGCTGTTCA
 GCGTGTAAAAATTCAACAACAACTAATACTATTGAAATGATTTGAAATCTC
 TAGAAAAGATTACGATAAGCAACTCCATGTAGATAATCAGTTAACTGAAA
 AAGTGTACCAATTGGAAATATTGATTATTCAACATTGTTAGCCAAAGCG
 ACGAAATCAATGGGTAG

MKDLLRNSLEQSGNLSFQDMILHILVAALLSVVIYVSYAYTHSGTAYSKKFNV
 SLMLTVLTATVMTVIGNNVALSLGMVGALSVVRFTAICDSRDTVYIFWTIV
 VGICCGVGDYVVAALGSSVIFILLWVMGRVKNENRMLLIVKCDRTLEVDLEGI
 FFQYFDGKAVQRVKNSTNTIEMIFEISRKYDKQLHVNDNLTEKVYQLGNID
 YFNIVSQSDEING*

Sequence description:

- A] Length: 678 bp - 226 aa (full-length gene)
- B] ATG start codon is preceded by a Shine-Dalgarno sequence-Possesses a potential leader peptide sequence

ID-114

Clone 2-8

AAAAATTCACTTCTAGATTCACTTACGACTATATACTCAGAAGTACCAAAC
 CTAATCCAAGGTTGAAAAAGAAAGAAGGAAGTCAGTATGACAAACTAT
 AAAAACAACTTAAAGATGAGGGCTACGTGTTGAAGAGACAAACAAAAGA
 ATCATTTACGATGTTGATATTGCCCTGTTTCAGCTGGTGGATCTATTCA
 GCAAAGTTCGCTCCTATGCAGTAAAGTCTGGAGCAGTTGAGATAAAC
 ACGTCATATTCGTCAGAATCCTGATGTTCCACTAGTTGTTCTGAAGTAA
 ATGCTCATGCCATGATTGGTCATAATGGTATCATAGCTTGTCCAATTGTT
 TACTATTCAAATGATGATTGCTTCTAGAGCCCATTGTCAAAATGGGGGAT
 AGAGCGTGTATAGTTCCACCTATCAAGCTGTTGGGTTCAGGTGCACG
 TGCTGTTGAAGAAACTAAGGAACAGTTGAGACAAGTTT

KFILDSFYDYILRSTKPNNPRFEKRKEVSMTNYKNNFKDEAIRVEETTKESFYD
 VDIALFSAGGSISAKFAPYAVKSGAVVVDNTSYFRQNPDVPLVVPEVNAHAMI
 GHNGIIACPNCSTIQMMIALEPIRKWGIERVIVSTYQAVSGSGARAVEETKEQ
 LRQV

FIG. 1 CONT'D

Sequence description:

- A] Length: 499 bp - 165 aa (partial sequence)
- B] N-terminus has yet to be determined

ID-115**Clone 2-9**

ATGACAAATGAATTGATAATGCAAGCTTTGAGTGGTATTACCTAGTGAT
GGGAATCACTGGAAGAAATTAGAGGAGTCTATATCAGACCTTAAAAACT
TCCAATTAGTAAAATCTGGTTACCACCAGCATTAAAGGAACTAGCAGTG
ATGATGTAGGATATGGTGTATGATCTCTTGATTAGGAGAATTGACC
AGAATGGAACAATTAGAACAAAATATGGTAGGAAAGAAGAGTATCTAAA
GCTTATTAAGTCGTTAAAGGCAAATGGCATTAACCGTTGCAGATATCGT
TCTTAACCATAAAGCCAATGGTGTATCATAAGAAAAATTCAAGTCATCA
AAGTCAATCCTGAAAATCGTCAAGAACGCATTAAGTGAACCCTATGAGATT
GAAGGATGGACGGGATTGATTCCAGGTAGACAGGGTGAGTACAATGA
TTT

MTNELIMQAFEWYLPSDLGNHWKKLEESISDLKKGISKIWLPPAFKGTSDDV
GYGVYDLFDLGEFDQNGTIRTKYGRKEEYLKLICKSLKANGIKPFADIVLNHKA
NGDHKEKFQVIKVNPENRQEALSEPYIEGWTGFDFPGRQGEYNDF

Sequence description:

- A] Length: 456 bp - 152 aa (partial sequence)
- B] ATG start codon is preceded by a Shine-Dalgarno sequence, no leader peptide sequence.

ID-116**Clone 2-10****FIG. 1_{CONT'D}**

ATGGAGGTTCTTATGAAGAAAGTGTAGTAAGTAGTCAGTCTTGGTTTAGGG
ATTACGATAACGTTACAACCAAGTAGTTGAGGCTAAGGGGCCAAAAGTAGC
TTATACACAAGAGGGAATGACTGCTCTTCGGACACAAATAAGATAAAG
TCACTACTATTCTATTGACGAGATTCAAAAAAGCTTAGAAGGTAAGAACGC
CGATTACTGTTAGTTGATATTGATGATACACTGCTTCAGTAGTCATA
TTTCAATATGGTAAAGAATATGTAACCTCTGGATCGTTGATTTCAT
AAACAAAAATTCTGGGATCTGTTGCAAAACGAGGAGATCAAGATTCCAT
TCCCAAAGAATATGCTAAAAAATTGCTATGCATCAAAACGAGGAG
ATAAAATTGTTTATAACAGGTAGGACAAGAGGGTCAATGTATAAGGAG
GGCGAGGTTGATAAAACAGCTAAAGCCTAGCTAAAGATTTAAATTGTA
CCATCTGAT

MEVLMKKVLVSSLLVLGITITLQPVVEAKGPKVAYTQEGMTALSDTNKDKVT
TISIDEIQKSLEGKKPITVSFDIDDTLLFSSQYFQYGKEYVTPGSFDFLHKQKFW
DLVAKRGDQDSIPKEYAKKLIAMHQKRGDKIVFITGRTRGSMYKEGEVDKTA
KALAKDFKFVPSD

Sequence description:

- A] Length: 516 bp - 172 aa (partial sequence)
- B] ATG start codon is preceded by a Shine-Dalgarno sequence, Possesses a leader peptide sequence.

ID-117

Clone 2-17

ATGCTTAAAAGATTATTAATGAAAGATGGGAATTGACAAAGATTAGTCGT
CGTTTCGTTGGATGTTAGGGTTATCTATTGTCTTATTATTGTCAAGGATGT
GTTTGGGCCTCAAATTATGATTGAGGGGGTATCAACTCCGAATGTCAGC
GCTTCGGAAGAATTGTAGCTCTTGTACCATTTAATTCTTCTGTAGTT
AGATCAGCTAACTAGCTTAAAGAGATTCTTGGGTTATTGGTCAAAATGT
AGTGAATATTACTGCTGTTCCCTCTCATTATAGGGTTACTATCCCTAAAG
CCAAGTTACGGAAATATAAAAGCGTTATATTACTGCTTCTTGATGTCTC
TTTCAAGAGTGTACTCAAGTTAGATATTAAATAGATGCTAATCG
GGTTTTGAAATCGACGATCTATGGACAAATACCTAGGCAGTCCTTCGC
CCTATGGAGTTATCGAAACATAAAAGGTTGGCTCTAACTATTAGAAAATG
A

FIG. 1 CONT'D

MLKRLFEDGELTKISRRFVWMLVVIYCLIVRMCFGQIMIEGVSTPNVQRFG
 RIVALLVPFNSFRSLDQLTSFKEILWVIGQNVVNILLFPLIIGLLSLKPSLRKYK
 SVILLAFLMSLFIECTQVVLDILIDANRVFEIDLWTNTLGGPFALWSYRNIKG
 WLLTIRK*

Sequence description:

- A] Length: 516 bp - 172 aa (full-length gene)
- B] ATG start codon is preceded by an Shine-Dalgarno sequence. Possesses a potential leader peptide sequence. C-terminus need further confirmation.

ID-118

Clone 3-3

ATGAAAAAGCTTACTTTATTGGGATTAGATGGGACATTAATAGATTG
 TATGTACCAATTATGGAAGCTCTTGAAGAACCTATCGTCATTTGGCTTA
 ATATTTGATAAAGAATTATCCATGAATATATTTACAGGAATCAGTGGGG
 CAATTATTGGTAAACCTTCAGAGGAAGAGCAAATACCTCATGAAAAACT
 GAAAGCATATTTACAAAAGAACAAAGAAAGTCGAGATTCTAAAATACATT
 TAATGCCATATGCAAAAGAGATTAGAATGGACCAAGAACAGATATT
 CCCAATTATGTATAACACATAAAGGAGCAAGTACGCATTCACTGGTTGGAA
 ACCTTGAGATCTCTCATTATTTGATGAAATTAACTGGTGTTCGGGAT
 TCGAGCGAAAACCACATCCACAAGGGATTAATTATTTAGTTAACGATATT
 CTTAGATAAAATCAATGACTTATTACATAGGAGATCGTCCACTAGATTGG
 AGGTTGCTAAAATGCTGGTATAAAATCCATAAACTTAAGGTTAGAGAATT
 CCAAAGAAAATATAATATTCAAGTCTCAAAGATATAATCACTTGATT
 TCACTCGTTGGATTAA

MKKLTIFIWDLGTLIDSYVPIMEALEETYRHGLIFDKELIHEYILQESVGQLL
 VNLSEEEQIPHEKLKAYFTKEQESRDSKIHLMPYAKEILEWTKEQDIPNFMYTH
 KGASTHSVLETLQISHYFDEILTGVSGFERKPHPQGINLVKRYSLDKSMTYYI
 GDRPLDLEVAQNAGIKSINRLENSKENYNISSLKDIISLDFTRLD*

Sequence description:

- A] Length: 627 bp - 209 aa (Possible Full-length gene)

FIG. 1 CONT'D

B] ATG start codon is preceded by an possible Shine-Dalgarno sequence. No obvious leader peptide sequence.

ID-119

Clone 3-7

ATGGAAAAAGAAAAAAATTAGGTCTTTACCAACTAACAAATGCTGTCATT
 GGCTCTCTTATCGGTGGCGGAATCTTGATTAATGCAAATATGAGTTCC
 AGAGCCGGTTGGTACCAATGCTTATTGCTGGTAATTACTGCTATCGGG
 ATGGGAACCTTCGTTAAGTTCAAAATTATCTGAAAAAGGCCGGAC
 CTAACAGCTGGAATCTTAGTTACGCTAAAGAGGGGTTGGAAACTTATG
 GGATTAACCTCTGCATGGGGTTATTGGTTATCAGCTGGCTGGAAATGTT
 GCCTACGCTGCACTCTTATTCACTCGGTTATTCTTAAATTCTTG
 GTAATGGAAATAATATCATCTCAATTATTGGAGCAAGTATAGTTATTGGG
 TTGTCCTTCTTAATTAAAGAGGTGTTAACAGCTGCATTATTAATAC
 CGTAGTTACCTTGCAAAATTAGTACCTGTTATTATTTCTTAATTCAAGCG
 TTATTAGCTTCAAATTAAACATTAGCTCTGATATCTGGGGAAATGGAT
 TACATCAATCAATTTCACCAAGTCAATTCAACTATGAAAACCGCTGTT
 GGGTATTATTGGTATTGAGGGCGCCGTTCTCAGGTCGTGCTAAAA
 AACACTCTGATATTGGTAAAGCAAGTATCCTAGCATTATTCACTATGATT
 CACTTATGTATTGATTCTGTTTATCACCTGGTATCATGTCACGTCCAGA
 ACTTGCAAACCTAAAAACACCAGCTATGGCTTACGTTAGAAAAAGCTGT
 TGGTCACTGGGGTCTATCTTAGTTAACCTGGTATTATTCAGTATT
 GGCCTATTCTGCTTGGACTTATTGCAGCAGAATTACCATATCAAGCT
 GCTAAAGAAGGTGCTTCTAAATTGGCAAAAGAAAATAAAAACAA
 AGCTCCAATCAACTCACTCTAGTCACTAATCTTGTGTACAAGCATTCTA
 ATCACGTTCTTATTCACACAAAGTCTTACGTTTGGTTTCGATTAGCAT
 CATCTGCTATCTTAATTCTTATGCTTACAGCACTATATCAATTACAATT
 CACACTCCGTGAGGATAAGTCAACTCCAGGACATCAAAAGAATTAAATT
 TCGGTATCCTCGCTACAATCTATGCTGTTACCTTATCTACGCTGGTGT
 TGATTACTTACTTTGACAATGATTGCTTAACTCTAGGTATGATTCTAT
 ATTAAAATGAGAAAAGATGACAAGCTGGCGTAATCATGGTCAGCTGT
 TTCCAGTGTGAAATTGTTATCC

MEKEKKLGLLPLTMLVIGSLIGGGIFDLMQNMSSRAGLVPMILAWVITAIGMG
 TFVLSFQNLSEKRPDLTAGIFSYAKEGFGNFMGFNSAWGYWLSAWLGNVAY
 AALLFSSLGYFFKFFGNGNIIISIIGASIVIWVVHFLILRGVNNTAAFINTVVTFAK
 LVPVIIFLISALLAFKNIFSLDIWGNGLHQSFNQVNSTMKTAVVFIGIEGAV

FIG. 1 CONT'D

VFSGRAKKHSDIGKASILALFTMISLYVLISVLSLGIMSRPELANLKTPAMAYV
 LEKAVGHGAILVNLGVIISVFGAILAWTLFAAELPYQAAKEGAFPKFFAKEN
 KNKAPINSLLVTNLCVQAFLITFLFTQSAYRFGFALASSAILIPYAFTALYQLQF
 TLREDKSTPGHQKNLIIGLATIYAVYLIYAGGF DYLLLTMIA YTLGMILYIKMR
 KDDKLGVIMVIAVSSVKLLS

Sequence description:

- A] Length: 1356 bp - 452 aa (partial sequence)
- B] ATG start codon is preceded by an possible Shine-Dalgarno sequence. Possesses a potential leader peptide sequence.

ID-120

Clone 3-8

ATGAAATTGAAAAACGGCAGGTCTATTATGTTGTATAACATTTGCTATT
 TGCTATGCTATACAGGCTTATTGGGGAGCTGTTCTAATATTAACTACGC
 TTCATAAGGCAATATTCCCTTTGATGGGAGCTGGAATTGCCTATATTAT
 TAATATTGTAATGTCAGTCTATGAGCGATTATATATAAAGCTTTAAAGG
 ATCTAGACTATTAATGGCAATCAAGCGTAGTGTTCTATGATTATCCTAT
 GCAACTTTATTGGTTAACATTGCTGGCTATTCAATTGTCATTCCAGATT
 TGATTCTAGTTGAGTTCTTATTGGTTATTGATACCGGAGCACTTGCTAA
 ATTGGTTAACATCTAACAGAAAATAACAAATTCTGAGGCTTAAATTAA
 TATGGGAACAGATAAAGACTTAGTTCTACTAACAGTGGTTATAGCCAGCA
 GATTGAGCAAGTTTATCTGTTAACAAATTACTAACCTCAGTTCC
 TCTATTGCGGCAACACTCTGAATGTTTGTTAGTTTATTTCATTCAATTAA
 CGTTTGGCAAACAAGGAGCAGTGGGACGTCAATTAAATTGTTAACATTGA
 TACCTATTAGGTTAACAGGCAAAACATTCCATTACGTTCGTCATATCCTT
 CATCAACGTTCCATGGTTTTGTAAGCCAACATTAGAAGCTATGATT
 TAGGAAGTTGACGGTTATTGGTATGTTGATCTTCCAATTCTTATGCTTT
 AACAGTTGGGGTTTAGTTGCTTTACAGCTCTAATACCGGTTGTGGAGC
 CTACATTGGTGTACAATCGGTTCATCTTAATTGCTACTGAATCGCTTACT
 GAAGCATTCTGTTGTTCTTCTTGATCCTTTACAACAATTGAGGGAA
 ATGTCATTATCCGAAAGTTGTCGGTGGATCGATTGGACTGCCTTATGTT
 GGGTTTAATGGCTATTACTATCGGAGGTGCTTATGGGGATCTTAGGCA

FIG. 1 CONT'D

TGTTACTTGCTGTCCTGTTGCAGCTACTATCTATCAGATTGTAAAAGATCA
TATTATCAAGCGACAAACGCTTAGAAATCGTCACGAACCTATCGTTAA

MKFEKRQVYYVVITFAICYAIQAYWGAVSNILTLHKAIFPFLMGAGIAYIINI
VMSVYERLYIKLFKGSRLLMAIKRSVSMILSYATFIGLIVWLFSIVIPDLISSLSS
LLVIDTGALAKLVNNLNENKQISEALNYMGTDKDVLVSTLSGYSQQILKQVLSV
LTNLLTSVSSIAATLLNVFVSFISIYVLANKEQLGRQFNLLIDTYLGSTGKTFH
YVRHILHQRFHGFVSQTLTEAMILGSLTIVGMLIFQFPYALTVGVLVAFATALIP
VVGAYIGVTIGFILIATESLTEAFLFVLFLILLQQFEGNVIYPKVVGGSIGLPSM
WVLMAITIGGALWGILGMLLAVPVAATIYQIVKDHIKRQTLRNARTYR*

Sequence description:

- A] Length: 1134 bp - 378 aa (full-length gene)
- B] ATG start codon is preceded by an typical Shine-Dalgarno sequence. Possesses a potential leader peptide sequence.

ID-121

Identical to ID-68, as described in WO 00/06736

ID-122

Clone 3-16

GTGATTACAATTAAAAAGGAATCTGTTATCAAACATTGAAGTATGCTTT
GGCATTATAATGGGATTATTATCTTAGCTATTGTAATAGGTGGGCTCCTA
TTTGCATACTACGTTAGTCGTTCCGAAATTAAACCGATCAAGCTTAAAA
TCCGTTAACTCTAGTTGGTTATGATGGAATAATAAAACTTATTGCCGATT
TAGGCTCAGAAAAGCGTGAAGTGTAGTCGGATAGCATTCCACTAAAT
TTGGTTAACGCTACTCACTCTATAGAAGATAAACGTTCTTAAACATAGA
GGTGTGATATTATCGTATTTAGGTGCAGCTGGCATAACCTTGTAGTA
GTAATACGCAAGGTGGTCAACCCTGATCAACAGTTGATTAAACTGGCTT
ACTTTCTACCAATAATCTGACCAAACGTTAAAACGTAATCACAGGAA
GTTGGCTTGCCTCAAATGGAGCGTAAATACACCAAAGAAGAAATTCTT
ACTTTCTATATTAATAAAAGTTATATGGGAAATGGGAAATTGGTATGAGA

FIG. 1 CONT'D

ACAAACAGCTAAATCATCTTGGTAAAGACCTAAAGGAATTATCTATTGCA
 CAACTTGCTTGCTCGCTGGTATTCCCTCAAGCACCTACACAATATGACCCTT
 ATAAAAAACCCAGAACATCTGCTCAAACAAGACGTAATACCGTTCTCAGCAG
 ATGTATCAAGATAAAAACATTCTAAAAGGAATACGACCAAGCTGTTGC
 AACTCCAGTAACTGATGGCTAAAAGAATTAAAGCAAAAATCTACTTATCC
 AAAATATATGGATAACTACTTAAAACAAGTTATTAGTGAAGTTAAACAAA
 AAACCTGGTAAAGATATCTTACTGCTGGCTAAAAGTGTATACTAATATCA
 AACTGATGCACAAAAACACTATATGACATCTACAAACAGTGTACTTAC
 ATCGCTTATCCAAACAATGAATTACAAATAGCATCTACCATCATGGATGCG
 ACTAATGGTAAAGTCATTGCACAATTAGGCAGGGCGTCATCAGAAATGAAAAA
 TATTTCATTGGGACAAATCAATCTGTCTAACAGACCGCGATTGGGGTTC
 TACAATGAAACCTATCTCAGCTTATGCACCTGCTATTGATAGTGGTGTCTA
 TAATTCAACAGGTCAATCATTAAACGACTCAGTTACTACTGGCCTGGTAC
 TTCTACTCAACTATATGACTGGATCGTCAATATATGGGTTGGATGAGTAT
 GCAGACCGCTATTCAACAATCACGTAACGTCCCTGCTGTCAGAGCACTTGA
 AGCCGCTGGATTAGACGAAGCAAAATCTTCCTGAAAAATTAGGCATAT
 ACTATCCAGAAATG

MITIKKESVIKLLKYAFGIIMGFIILAIIVIGGLFAYYVSRSPLTDQALKSVNSS
 LVYDGNNKLIADLGSEKRESVSADSIPLNLVNAITSIEDKRFFKHRGVDIYRILG
 AAWHNLVSSNTQGGSTLDQQLIKLAYFSTNKSDQTLKRKSQEVLWALQMER
 KYTKEEILTFYINKVYMGNGNYGMRTTAKSYFGKDLKELSIAQLALLAGIPQA
 PTQYDPYKNPESAQTRRNTVLQQMYQDKNISKKEYDQAATPVTDGLKELK
 QKSTYPKYMNDNLKQVISEVKQKTGKDIFTAGLKVTNINTDAQKQLYDIYN
 SDTYIAYPNNELQIASTIMDATNGKVIQLGGRHQHENISFGTNQSVLDRDW
 GSTMKPISAYAPAIIDSGVYNSTGQLNSVYYWPGTSTQLYDWDRQYMGWM
 SMQTAIQQRNVPNAVRALEAAGLDEAKSFLEKLGIYYPREM

Sequence description:

- A] Length: 1386 bp - 462 aa (partial sequence)
- B] GTG start codon is preceded by an
typical Shine-Dalgarno sequence. Possesses a
potential leader peptide sequence.

ID-123

Clone 3-17

FIG. 1 CONT'D

ATGGCTAATGTATATGATTAGCAAATGAATTAGAACGTGCTGTCGTGCT
 TTACCAAGAATACCAAGCAGTTAACTGCAGACTTGGCTACCCATCAAAAGT
 TGCGGATGCACAAGTGCTTGGCAAGACTTTGGCTACCCATCAAAAGT
 TCAAGAAATGATGCAATCTGGCAAATGCCAAGTCAAGAAGAACAAAGATG
 AAATGTCTAAACTGGGGAAAAAATTGAATCCAATGACCTTTAAAAGTTT
 ATTTGACCAACAAACAACGGTTGTCTGTCTATATGTCTGATATCGAAAAAA
 TTGTCTTGACCCATGCAGGACTTGATGTAA

MANVYDLANELERAVRALPEYQAVLTAKAAIENDADAQVLWQDFLATQSK
 VQEMMQSGQMPSQEEQDEMSKLGEKIESNDLLKVYFDQQQRSLVYMSDIEKI
 VFAPMQDLM*

Sequence description:

- A] Length: 336 bp - 112 aa (full length sequence)
- B] ATG start codon is preceded by an
typical Shine-Dalgarno sequence. No obvious
potential leader peptide sequence.

ID-124

Clone 3-26

ATGGCAGAAATCACAGCTAAACTGTAAAAGAATTGCGTGAAAAATCAGG
 TGCAGGCATTATGGACGCTAAAAAAGCATTAGTAGAAACTGATGGTGACC
 TTGATAAAGCGATTGAATTACTTCGCAAAAGGTATGGCTAAAGCAGCT
 AAAAAAGCAGACCGTGTGCTGAAGGTTAACAGGTGTTATGTTGAT
 GGTAACGTTGCAGCAGTTATTGAAGTTAA

MAEITAKLVKELREKSGAGVMDAKKALVETGDLDKAIELLREKGMAAK
 KADRVAAEGLTVYVDGNVAAVIEV

Sequence description:

- A] Length: 230 bp - 76 aa (partial sequence)
- B] ATG start codon is preceded by an
typical Shine-Dalgarno sequence. No obvious
potential leader peptide sequence.

FIG. 1 CONT'D

ID-125

Clone 3-33

ATGATAAAAAACCTGTTATTAAACAGGTTTTATCATTAAATGACGGAAAA
CTGGACACAAATTATTTCTTGTATAATTAAATATTATTCTTATCAGG
AGGTTATGATGACATTAGAGAACGATTAA

MIKNLLTGFLSFNDGKLDTNYFSCHIKYIISYQEVMMTLEKRF

Sequence description:

- A] Length: 134 bp - 44 aa (partial sequence)
- B] ATG start codon is preceded by an typical Shine-Dalgarno sequence. Possible potential leader peptide sequence.

ID-126

Clone 3-41

ATGAAAATAATAAAATAATGGTTTCTGAAAAATTCCTTATTCACATA
TTATTGATTATTGCGTTATTACAACCTTCAACTATTAA

MKNNKNNGFLKNSFIYILLIAVITTFQYYL

Sequence description:

- A] Length: 94 bp - 31 aa (partial sequence)
- B] ATG start codon is preceded by a possible Shine-Dalgarno sequence. Potential leader peptide sequence.

FIG. 1 _{CONT'D}

ID-127

Clone 3-42

ATGTTAGATATTATCTTATCCGAATTCGCAAGGATTACTTGGTCAATT
TGGCAATTGGCGTGTATCACTTTCGTATCTTAGACATAGCCGATCTCTC
TGCAGAAGGGCTTCCTATGGGGCTGCAGTTGCGCCTATGTATCGT
TAA

MLDIILSGISQGLLWSIMAIGVFITFRILDIADLSAEGAFPMGAAVCALCIV

Sequence description:

- A] Length: 158 bp - 52 aa (partial sequence)
- B] ATG start codon is preceded by a possible Shine-Dalgarno sequence. Potential leader peptide sequence.

ID-128

Clone 3-43

ATGGAAATGCCTAAAGAAATGAATTACTCAATAAAGAAATTAAAATGAG
TATTGATAAACTTAGATATAAGAACCAAGAGAGTGAACATGACAAGCGAC
CTACTTTTATTGGTAGTACTTATACTGTTACTGTAGCAGTTATTGTC
GTTATTTAA

MEMPKRNELLNKEIKMSIDKRYKEPESEHDKRPTFYLVVLILVTAVILSLF

Sequence description:

- A] Length: 161 bp - 53 aa (full-length gene)
- B] ATG start codon is preceded by a possible Shine-Dalgarno sequence. Potential

FIG. 1 CONT'D

SUBSTITUTE SHEET (RULE 26)

leader peptide sequence.

ID-129

Clone 3-44

GTGGTAAGTAAATTGAGTTAACAAACGATTTGCATTGCTATTCATCA
ATGCTAATTACGCAACACCTCTATCTTACAAGTATTGGGGAACCTTC
TCTGAACGTGGTGGTATCGTCAACGTTGGTTAGAAGGAATTATGGTAATT
GGAGCTTCTCAGGCCGTTGTATTTAA

MVSKLSLTIFALLFSSMLIYATPLIFTSIGGTFSERGGIVNVLEGIMVIGAFSG
VVF

Sequence description:

- A] Length: 179 bp - 59 aa (partial sequence)
- B] GTG start codon is preceded by a possible Shine-Dalgarno sequence. Potential leader peptide sequence.

ID-130

Clone 3-46/47

ATGAGAATTATTGCAATAACTGAAAAGGTTATAAAAGAACTGTTCGTGAT
AAAAGAACACTTGCTATGATGTTTAGCACCTATTAAATTATGTTTGA
TGAATGTTATGTTCTCGAATAGTAATACAAAAGTTAAGATTGGAACCA
TTAACGTTAACACGAAGGTCGTTCAAATTAGATAATATTAAAGCATATT
AAGTGAGATCATTAAATTAACTCATCTGCTAAAAAGCACTCAAATCAA
ATAAAATTGATGCTCTTATTCGGAGGACAATAAATCTTACTGTCTCT
ATGCGAACATACAGATTCTCAAAGACGACTTTAACAGACAAGCTTTAAA
ACCGCTGTTAACATACAATGAACAGTAAGGAACTGATTGCAAGTTAAAATT
TTAGCTAACAGAACATCCGAAACTAGCACAATCCTAACAAACTCGCTCCAAA
TATATCAAAGAAAAATATAATTACGGAAATAAAATACAGGCTTTGCT
AAAAATGATACCAATACTAATGGGATTATGGTCTTCTGGTTTTGC

FIG. 1 CONT'D

MRIIIAITEKVIKELFRDKRTLAMMFLAPILIMFLMNVMFSANSNTVKIGTINV
NTKVVSNLNDNIKHIQVRSFKFNSSAKKALKSNKIDALISEDNKSYTIFYANTDS
SKTTLTRQAFKTAVNTMNSKELISQVKILANKNPKLAQSLQTRSKEYIKEKYN
GNKNTGFFAKMIPILMGFMVFFLVF

Sequence description:

- A] Length: 558 bp - 186 aa (partial sequence)
- B] ATG start codon is preceded by a possible Shine-Dalgarno sequence. Potential leader peptide sequence. C-terminus has yet to be determined.

ID-131

Clone 3-48

GTGATTATCGTTATGAGTAAACATCAAGAAATTTGGAGTACCTAGAAAAT
TTAGCTGTTGGTAAGAGGGTTAGTGTACGCAGTATTCAAATCATTAA
MIIVMSKHQEILEYLENLAGVKRVSVRISNH

Sequence description:

- A] Length: 100 bp - 33 aa (partial sequence)
- B] GTG start codon is not preceded by a obvious Shine-Dalgarno sequence. No obvious leader peptide sequence.

ID-132

Clone 2-c53

FIG. 1 CONT'D

ATGTATAGAGAAATTACCGCTGTCGAACACGATCGCTTGTGAGCGAATCC
 AACCAAACAAACCTACTCAATCTCTTAATTGGCCCAAAGTAAAAGACAA
 CTGGGGTAGTCAATTACTGGCTTTTGACGGTAAACCCAAATTGCCAG
 CGCTAGTATTCTCATCAAATCACTCCTCTGGCTCTCCATGCTGTATATT
 CCGCGTGGACCAATCATGGATTACTCCAATCTAGATATTGTAACTAAGGTC
 CTTAAGGACCTAAAGCTTGGCAAAAAACAAAGAGCTCTTTATCAAG
 TGTGATCCTCTCATCTATT

MYREITAVEHDRFVSESNQTNLQLQSLNWPKVKDNWGSQLLGFFDGETQIASA
 SILIKSLPLGFMSMLYIPRGPIMDYSNL DIVTKVLKDLKAFGKKQRALFIKCDPLI
 Y

Sequence description:

- A] Length: 326 bp - 108 aa (partial sequence)
- B] ATG start codon is preceded by an obvious Shine-Dalgarno sequence. No obvious leader peptide sequence.

ID-133

Clone 2-c59

ATGGACAAGAAAAAAATCTTAGTAACGGGTATTGTGCCTAAAGAAGGTCT
 AAGAAAGCTTATGGACCGATTGATGTTACTTATTCAAAGATGCCATT
 TTCACGTGACTATGTGTTAGAGCATTATCTGAATATGACGGATGGTTACT
 CATGGGACAAAAAGGTGATAAAGAGATGATTGATGCAGGTGAAAAC TTAC
 AAATTATTCTTT

MDKKKILVTGIVPKEGLRKLMDRFDVTYSEDRPFSRDYVLEHLSEYDGWLLM
 GQKGDKEMIDAGENLQIIS

Sequence description:

- A] Length: 215 bp - 71 aa (partial sequence)

FIG. 1 CONT'D

B] ATG start codon is preceded by an obvious Shine-Dalgarno sequence. No obvious leader peptide sequence.

ID-134

Clone 2-c62

ATTCGAAAGATGACTACCAAAATATTAGTTGGACAGGATCCAGAAGTT
 GTTGATTATGCTGGTCTGTTGAAAAACGCCGCCAGTTAGAAAAAGCA
 GTTAAAAAATTCTTGCAGAAGAGAGAGCTACGAGAATGCTATCTGATTTC
 TTGCAAGAAGAAAAATGGGTAACTGATTGCTGAATTATGGCGATCAA
 AGAACATTGGTAATAAAGGCCTCAAGAATGGGATGACAAGGCTATT
 TACGCCCGAAGAAGAAGCCTAGCAGGATATCGTCAAAAGCTTAGTGA
 GTGATAAAATATCATGAAGTAACGCAATATTCTTTACAAACAATGGTT
 GAGTTAAAAGAATATGCTAATGATAAAGGGATTCAAATTATCGGTGATAT
 GCCAATCTACGTTCTGCCGATAGTGTAGAAGTTGGACAATGCCCTGA
 ACT GTT

ISKDDYQNIISFGQDPEVVVDYAGLFEKRRPVLEKAVKNFLQEERATRMLSDLQ
 EEKWVTDFAEFMAIKEHFGNKALQEWDKAIIRREEALAGYRQLSEVIKY
 HEVTQYFFYKQWFELKEYANDKGIIIGDMPIYVSADSVEVWTMPELF

A] Length: 459 bp - 153 aa (partial sequence)
 B] More sequencing is required to determine the N- and C-termini
 enzyme). - *Streptococcus pneumoniae* (63%)

ID-135

Identical to ID-108 described in WO 00/06736

Clone 2-c63

ID-136

Clone 2-c66

FIG. 1 CONT'D

ATGGCAAAACAGAAAAATAACTGGCGCCGTGGAGTTGGTGTCTTAC
 ACTTGCTTCAGTTGCGACTCTGCTGCATGTGAAGTAAATCAGCTCCCA
 GGATTCTAATGGAGCGATTAATTGGGCTATTCCAACAGAAATCAATACACT
 AGATTATCTAAAGTTACAGACACTTACTCAAATCTAGCTATTGGTAACCT
 TAGTAGTAATTCCCTCGCTTAGATAAAAGATGGAAAGACAAGACCAGACTT
 GGCTACTAAAGTTGATGTTCAAAAGATGGCTTAACCTATAACAGCTACATT
 ACGTAAAGGCTTGAAGTGGTCAGATGGCAGTAAACTACTGCAAAGGATT
 TTGTTATTGCAACGTTAGTGATCCTAAAACAGCTTCACAATATG
 CTTACCTTGCTGTTGAAGGGCATGTGCTTAATGCCATAAAATCACGAAG
 GACAAGAGAAAGACTTGAATAAGCTAGGTGTTAAGGCAGAAGGCATGA
 CAAAGTTGTTATTACTTATCTAGTCCGCTCCGCAATTCATCTACTACCTT
 GCATTCACTAACTTCATGCCACAAAAACAAGAAGTTGTTAAAAATATGG
 AAAAGATTACGCAACTACTTCAAAAATACAGTTACTCAGGACCATA
 CTGTTGAAGGTTGGAATGGTCAATGGTACTTCACTGCTGAAGAAAAAC
 AAAAATTATTGGGACGCTAAAATGAAAAACAAAAGAAGTTCGCATCCA
 GACTGTTAAAAAACCAGATACCGCCGTTCAAATGTATAAACGTGGTGAGT
 TAGATGCACTAATATCTCAAATACCTCTGCTATTATCAAGCTAATAAA
 ATAATAAGATGTCACAGATGTTCTAGAAGCGACCACTGCTATATGGAA
 TATAATACTACTGGTCTGTGAAAGGGCTTGATAATGTTAAGATTGTCGC
 GCCTAAACTAGCAACTAACCGTAAAGGAGTTGTTCAAGCAGCCGTTGAT
 ACAGGCTAAAACCGGCAATTGCTTGCACCTACTGGTTAGCCAAAACA
 CCAGATGGAACTGATTGGAAAATATGTTGCCAGGTTATGAATATAAT
 AAAACTGAAGCAGAAAACCTTTAGACTA

MAKQKNNWRRVGVGVTLASVATLAACGSKSASQDSNGAINWAIPTEINTLD
 LSKVTDTYSNLAIGNSSSNFLRDKDGDKTRPDLATKVDVSKDGLTYATLRKG
 LKWSDGSKLTAKDFVYSWQRLVDPKTASQYAYLAVEGHVLNADKINEQKEK
 DLNLKLGVKAEGDDKVITLSSPSPQFIIYLAFTNFMPQKQEVEKYGKDYAT
 TSKNTVYSGPYTVEGWNGSNGTFTLKKKNKYWDAKNVKTKEVRIQTVKKPD
 TAVQMYKRGELDAANISNTSAIQANKNNKDVTDVLEATTAYMEYNTTGSV
 KGLDNVKIRRALNLATNRKGVVQAAVDTGSKPAIAFAPTGLAKTPDGTDLAK
 YVAPGYEYNKTEAAKLFR

Sequence description:

- A] Length: 1143 bp - 381 aa (partial sequence)
- B] Shine-Dalgarno sequence precedes ATG codon.
- Possesses a potential leader peptide sequence.

FIG. 1 CONT'D

ID-137

Clone 2-c67

TTGAGAGTTATGAAAATAAAGAAGAGTTGAAAAAGAAATAAGTAAAAC
ATTGAGAAATACATTATGGAATTAAATAA
TATTCCAGAGAACCTAAAGATAAAAGAATTGATGAAGTTGATAGAACTC
CAGCAGAAAACCTTCTTATCAGGTTGGCT
GGACCAACTGGTTCTTAAATGGGAAGAAGATGAAAGAAAGGGACTCAA
GTAAAAACACCATCGGATAAATT

MRVYENKEELKKEISKTFEKYIMEFNNIPENLKDKRIDEVDRTPAENLSYQVG
WTNLVLKWEEDERKGLQVKTPSDKF

Sequence description

- A] Length: 234 bp - 78 aa (partial sequence)
- B] TTG start codon is preceded by a potential Shine-Dalgarno sequence. No obvious leader peptide sequence.

ID-138

Clone 2-c70

ATGTCAAAGTTGATAGTCAGAAAATAATTACTCCGATTATGAAGTTGTC
AATATGCGAGGGATTATTGCACTCAAAGATGGCATGCTAGCAATTTACCA
CTAACAGTTGGAGTCTTTTAATATTAGGGCAGCTCCATT

MSKFDSQKIITPIMKFVNMRGIALKDGMLAILPLTVVGSLFLILGQLPF

Sequence description

- A] Length: 150 bp - 50 aa (partial sequence)
- B] ATG start codon is preceded by a potential Shine-Dalgarno sequence. Possesses a potential

FIG. 1 CONT'D

leader peptide sequence.

ID-139

Clone 2-c71

GAGACCACCTCATCAGTAAACCAGCAGGAATTGACCGTATCAATCATACC
 TCAACACCCCCGAAGAAAACTACCCCAACATTGCAACGACGCATAGCTT
 CAAAGATCGTTGTGATACTTAGAAAGAATTACAATGAAGACATTGATGT
 TTGTTCTGGATTCAATTGTGGTATGGGAGAGAGCGATGAGGGGCTCATCAC
 ATTAGCTTCAGACTAAAAGAACACTGAACCCCTATTCTATCCCTGTCAATT
 TTACTTGCTGTTGAAGGAACACCTCTGGAAAAATAAACTATTGACTCCC
 ATTAATGCTAAAAATTATGGCCATGTTGCGTTTGTGTTTCCTTCAAGG
 AATTAAGATTAAGTGCTGGACGGAGGTCCATTGAGAATTGAAATCAT
 TAGTCACCTTACTTGTTGACTCAACTTTGGGAAATTACCTAACAGAGG
 GGGGTCGCAATCAACATACCGATATTGAATTCTGGAAAAATTACAAC
 AATCATACTAAAAAGGAATTAATT

ETTSSVKPAGIDRINHTSTPPKKTPNIATTHSFKDRCDTLERIHNEDIDVCSGFI
 CGMGESDEGLITLAFRLKELNPYSIPVNFLAVEGTPLGKYNYLTPIKCLKIMA
 MLRFVFPFKELRLSAGREVHFENFESLVTLLVDSTFLGNYLTEGGRNQHTDIEF
 LEKLQLNHTKKELI

Sequence description:

- A] Length: 535 bp - 178 aa (partial sequence)
- B] N- and C-termini require verification

ID-140

Clone 2-c73

ATGCCGGTTGGACTGCACAGTCTATTCAAAGGCATTTAGAAAAGCAT
 AATACTAAGGAAGGCACCTGGGCAAAACTAACCAATTCTAAGTGGTTCTTA
 GTATTTACCAAGTTATCTCCTGATGGAGAGGAAATCTCGCGCATATTTT

FIG. 1 CONT'D

GATGCTAGTAGTGATATTCCCTTGTGATCCACAAGTCTGGCATAAAGTT
TCGCCGAATAGTCCAGACTTAAGTTGCTATCTAACTTTACTGCCAAAAAA
GAAGATTACTTCCATAAAAAATATGGTCTCACGCGCACACATTCTGAGGTT
ATCGCCAGTGCACCTCTTATCTGAGAAAGAGTAATATATTAGACCTTGGG
TGTGGTCAAGGGCGAAACTCACTTATTATCGCTGCTGGGACATCAAGTG
ACTTCTGTCGATTCAAACGGACAGAGCCTGTAGCTTAGAAAATATGGCA
TTAGAAGAAGAGCTCCTACAATATAAAAAGGTATGATATTAATACTACT
GCTATTGAAGGGCACTATGATTATTTATCAACTGTGGTATTATGTTT
T

MPVWTAQSIPKAFLEKHNTKEGTWAKLILSGSLVFYQLSPDGEIISRHIFDAS
SDIPFVDPQVWHKVSPNSPDLSCLFYCQKEDYFHKKYGLTRHSEVIASAP
LLSEKSNIIDLGCGQGRNSLYSLLGHQVTSVDSNGQSLVALENMALEEELPY
NIKRYDINTTAIEGHYDFILSTVVFMF

Sequence description:

- A] Length: 563 bp - 187 aa (partial sequence)
- B] N- and C-termini require verification

ID-141

Clone 2c76

ATGACAAAGCAAATAATTGCCATTGGGCTGAAGATGAAGACCATTGAT
TGGAGTTAATGGCGGTTACCATGGAGGCTTCTAAAGAGTTACATCACTT
CAAAGAAACGACCATGGGCAGGCTTGTCTATGGGACGAAAGACCTTTG
ATGGAATGAACCGTCGTGTTACCTGGTAGAGAGACAATCATCTAACAA
AAGATGAACAATTCCAAGCAGATGGAGTGACAGTCCTAAATAGTGTGAA
CAAGTTATAAAATGGTTCAAGAACATAATAAGACCTTATTATTGTAGGT
GGTCAAGTATTATAAAGCATTCTGCCTTATTGTGAAGCAATCATAAAA
ACTAAAGTTCATGGAAAATTCAAAGGTGATACCTATTTCTGATGTTAAT
CTATCTGAGTT

MTKQIIAIWAEDEDHLIGVNGGLPWRLPKELHHFKETTMGQALLMGRKTFDG
MNRRVLPGRETIILTKDEQFQADGVTVLNSVEQVIKWFQEHNKTLFIVGGASI
YKAFLPYCEAIKTKVHGKFKGDTYFPDVNLSEF

FIG. 1 CONT'D

Sequence description:

- A] Length: 417 bp - 139 aa (partial sequence)
- B] ATG start codon is preceded by a Shine-Dalgarno sequence. No leader peptide sequence

ID-142**Clone 2-c78**

TTGTGGCCAAACTGTGCCCGCTTATTAATAGCACTTGTTCAACCATTGAA
GATATCTAACATCAGGTGCTCATAGCAACCCATTAAATGGGGGTATA
CTTGGCGGGACAATTGTAGTAGTGGCGACAGCACCCTTCTATGGCA
TTGACAGCTATGCTAGGATTAACCGGAATGCCTATGGCTATAGGAGCCTTG
TCTGTCTTGGTTCGTCAATTATGAATGGGTACTTTCCATAAATTAAAAC
TTGGAAGTCGTAAAGATAATAGCTTTGCTGTTGAGCCTCTAACTCAAG
CTGACGTGACTTCAGCTAACCCATTCCAATCTATGTCACTAATTGTTGG
TGGTGCAGCTTGTGGTATTTAATTGCCTTGATGAAATTAGTTAATGATACT
CCTGGAACAGCGACACCAATTGCAGGATTGCTGTCATGTTGCCTATAAC
CCAATGATAAAAGTACTAATAACCGCTCTAGGTTGTATTATCCTATCTTA
CTAGCAGGCTATTTGGAGGCATTGTTTT

MWPNCAPLINSTLFTIEDILTSAGHSNPILMGVILGGTIVVVATAPLSSMALTA
MLGLTGMPMAIGALSVFGSSFMNGVLFHKLKLGSRKDNIAFAVEPLTQADVT
SANPIPIYVTNFVGGAACGILIALMKLVNDTPGTATPIAGFAVMFAYNPMIKVL
ITALGCIILSLLAGYFGGIVF

Sequence description:

- A] Length: 540 bp - 180 aa (partial sequence)
- B] N- and C-termini have yet to be elucidated

ID-143**FIG. 1** CONT'D

Clone 2-c80

ATGTTTTAAGTATAATGGCAGGTGTCATAGCATTGTCCTGACAGTTATT
 GCCATTCCACGCTTCATTAAGTTACCAATTGAAGAAAATTGGCGGGCAA
 CAAATGCATGAAGATGTCAAACAACATCTAGCCAAAGCAGGTACGCCGAC
 AATGGGAGGAACGGTATT
 MFLSIMAGVIAFVLTVIAIPRFIKFYQLKKIGGQQMHEDVKQHLAKAGTPTMG
 GTVF

Sequence description:

- A] Length: 172 bp - 57 aa (partial sequence)
- B] Shine Dalgarno sequence precedes 'ATG' start codon. Possesses a potential leader peptide sequence.

ID-144

Clone 3-83

ATGAAACCATAATTCTTTATTGGTAGAACGTTATTATACTTCGGTATT
 TATTGTTACTAATTACTTTGCATACCTGGTCGGACAAGGCAGTT
 TATTTATAAA
 MKPYLSFIGRTLLYFGILLLIYFFAYLGRGQGSFIY

Sequence description:

- A] Length: 113 bp - 37 aa (partial sequence)
- B] Putative ATG start codon is preceded by a typical Shine-Dalgarno sequence. Possesses a potential leader peptide sequence.
This orf is not in frame with nuc

FIG. 1 CONT'D

ID-145

Clone 3-86

ATGTCATATTTAGAAATTACTGGTATCGTTGGAGCAATTATTATT
 TTTAGCAGTAATATTGCTTGTAGACCTGACTGGTCAATGCTTCATA
 TCTATTGTATTTACTTATGGCACTCTAGCGCATCAATTGAAGAATAT
 CAGTTCCCGGTGGGCATCACCTATCATTAACTATGTTGTTATGATGAA
 GAAGAGCTGATGGATTGTTCCAGGCAATACTCAGTCTATTGTTGGTT
 AATACTATTGCTTGGTTGCTTACATTGCTAGTATTGCTTCTCAAGCTT
 ATTGGCTTGGATTAGGAGTCATGTTCTTAGTCTAACGCAGCTTGGGTC
 ATGGTTTCAGATGAATATTAAACTAAAATTGGTATAATCCTGGTCTAG
 CAACGACAGTATTCTCCTAGTACCAATAGCTTGCACATCTATCAAG
 CTAGTGCAGAAGGAATGCTCACTGGGAGATTGGCTAGGTGGTTTATCA
 TGTTGATTGTCGTGACTAACTAGCATTATTGCACCTGTACAGCTATTGAA
 GGATAAGGAGACCAATTATATTAGTCCTGGCAAATGGACCGTTTCA
 TAAGGTCGTTAATTGTAAAGGATAAAAAAATAA

MSYFRNYWYRGAILFIILAVILLVFRPDWSMLHYLLYFYFMALLAHQFEYQ
 FPGGASPIINYVVYDEEELMDCFPGNTQSIMLVNTIAWLLYIASIAFPQAYWLG
 LGVMFFSLTQLLGHGFQMNIKLKTWYNPGLATTVFLVPIACAYIYQASAEG
 MLTWGDWLGGFIMLIVCVLTSIIAPVQLLKDKETNYIISPWQMDFHKVVNFV
 RIKK*

Sequence description:

A] Length: 651 bp - 219 aa (full length gene)
 B] Putative ATG start codon is preceded by a typical Shine-Dalgarno sequence. Possesses a potential leader peptide sequence.

ID-146

Clone 3-c88

FIG. 1 CONT'D

ATGCCACTTACAGCACTTGAAATTAAAGATAAAACATTTCATCAAAATTT
CGCGGTTATAGCGAAGAAGAAGTT

MPLTALEIKDKTFSSKFRGYSEEEV

Sequence description:

- A] Length: 75 bp - 25 aa (partial sequence)
- B] Putative ATG start codon is preceded by a typical Shine-Dalgarno sequence. No leader peptide

ID-147

Clone 3-90

ATGTCACTTTCAAGAAAAATTGCTTACAATTGCCTAAAAAGGAAGCG
CTTATAAAAGAGAGTTAGGACGCTACGCCCTGAGATCAATGCTAGCAGG
GGCTTATTGACAATGAGTACTGCTGCCGGTATCGTCGCAGCTGATACTAT
TGGTAAAATTCTCCTGCTCTACAGGTTTGATTGCTTCATCTTAGTT
TTGGACTTATTATGTTTAATATTAATGGTGAATTGGCGACATCTAATAT
GCTTATCTCACTGCAGGAGCCTATAATAAAATATCTCTGGAAAAAGC
CATAACAAATTAAATTATTGTACTTTCAACCTCGTTGGCTGTATA
TTAGCTTGGTTGTTAA

MSLFQEKIANCAKKEALYKESLGRYALRSMLAGAYLTMSTAAGIVAADTIG
KISPALSGFVFAFIFSFGLIYVLIFNGELATSNMLYLTAGAYNKNISWKKAITILI
YCTFFNLVGACILAWLF

Sequence description

- A] Length: 406 bp - 125 aa (partial sequence)
- B] Putative ATG start codon is preceded by a typical Shine-Dalgarno sequence. Possible leader peptide

FIG. 1 CONT'D

ID-148

Clone 3-92

AAGTTACAAGCGACTGAAGTTAAGAGCGTCCGGTAGCACAACCAGCTTC
 AACAAACAAATGCAGTAGCTGCACATCCTGAAAATGCAGGGCTCCAACCTC
 ATGTTGCAGCTTATAAAGAAAAAGTAGCGTCAACTTATGGAGTTAATGAA
 TTCAGTACATACCGTGCGGGAGATCCAGGTGATCATGGTAAAGGTTAGC
 AGTTGACTTTATTGTAGTAAAAACCAAGCAGCACTGGTAATGAAGTTGCACA
 GTACTCTACACAAAATATGGCAGCAAATAACATTCATATGTTATCTGGCA
 ACAAAAGTTTATTCAAATACAAATAGTATTATGGACCTGCTAATACTTG
 GAATGCAATGCCAGATCGTGGTGGCGTTACTGCCAACCACTATGACCACGT
 TCACGTATCATTAA

KLQATEVKSVPAQPASTTNAVAAHPENAGLQPHVAAYKEKVASTYGVNEF
 STYRAGDPGDHGKGLAVDFIVGKNQALGNEVAQYSTQNMAANNISYVIWQQ
 KFYSNTNSIYGPANTWNAMPDRGGVTANHYDHVHVSF

Sequence description

- A] Length: 419 bp - 139 aa (partial sequence)
- B] N- and C-termini have yet to be determined

ID-149

Clone 3-94

ATGATTCCAGTAGTTATTGAACAAACAAGTCGTGGTAGAACGTTCTTATGAT
 ATTTACTCACGTCTTTAAAAGATCGTATTATTATGTTGACAGGCCAAGTT
 GAGGATAATATGGCCAATAGTATCATTGCACAGTTATTGTTCTCGATGCA
 CAAGATAATACAAAGGATATTACCTTATGTCAATACACCAGGTGGTCA
 GTATCGGCTGGACTTGCTATTGTGGACACCATGAACTTCATTAAATCGGAC
 GTACAGACGATTGTTATGGGATGGCTGCTCGATGGGAACCATTATTGCT
 TCAAGTGGTGCTAAAGGAAAACGTTTATGTTACCGAATGCAGAATATATG

FIG. 1 CONT'D

ATCCACCAACCAATGGCGGAACAGGCGGAGGTACACAGCAATCTGATAT
 GGCTATCGCTGCTGAGCATCTTTAAAAACGCGTCATACTTAGAAAAAAT
 CTTAGCTGATAATTCTGGTCAATCTATTGAAAAAGTCCATGATGATGCAGA
 GCGTGATCGTGGATGAGTGCTAAGAACACTTGATTATGGCTTATTGAT
 GCTATTATGGAAAATAATAATTACAATAATAGATTAAAAGAGTTGAGTT
 TACCAACTCTTTTTATTGTTGAATTATGTTATAATCTTAGTAATTACA
 GATATGACGCAGAAAGGAAAAATTATTGA

MIPVVIQEQTSGERSYDIYSRLLKDRIMLTGQVEDNMANSIIAQLLFLDAQDN
 TKDIYLYVNTPGGSVSAGLAIVDTMFNFIKSDVQTIVMGMAASMGTIASSGAK
 GKRFMLPNAEYMIHQPMGGTGGGTQQSDMAIAAEHLLKTRHTLEKILADNSG
 QSIEKVHDDAERDRWMSAQEHЛИMALLMLWKIIIYNRFRKRVEFTNSFFICW
 NYVIILVITDMTQKGKNY*

Sequence description

- A] Length: 693 bp - 231 aa (full length gene)
- B] Putative ATG start codon is preceded by a typical Shine-Dalgarno sequence. No leader peptide. Significantly, it would appear to have a very hydrophobic C-terminus.

ID-150

Clone 2-c86

ATGAAACCAAAATATTGGTGTACTTGGCTAGGAATATTGGACAAACA
 CTCGCACAAGAACTAAGTAACCTTGAACAAGATGTTATTGCTATTGACAGC
 AATCCTGAAAATGTACAAGCTGTCGCCGAAGT
 TGTTACAAAAGCAGCTATCGGAGACATTACTGATTAGCTTCTAAACAC
 CATCGGGATCAGTGAUTGTACTGTTATTGCTACAGGAAACAGTT
 AGAGAGCTCAGTATTGGCCGTAATGCACGTAAAAAGTTAGGCGTCCCAC
 AAGTTATTGCTAAAGCTCGAAACCTTGTATACGAAGAAGTACTTATGAAA
 TTGGTGTGATTGGTTATCTCTCCGGAGCGAGAATCTGGCAAAATGTTG
 CTGCAAACCTCATGAGAAATAAAATTACAGATGTCTCCAGATTGAATCTG
 ATATTCTGTCATTGAATT

MKPKIIGVLGLGIFGQTLAQELSNFEQDVIAIDSNPENVQAVAEVVTKAIGDI
 TDLAFLKHIGISDCDTVIIATGNSLE

FIG. 1 CONT'D

60 / 110

SSVLAVMHCKKLGVQVIKARNLVYEEVLYEIGADLVISPERESGQNVAAN
LMRNKITDVFQIESDISVIEF

Sequence description:

- A] Length: 459 bp - 153 aa (partial sequence)
- B] Putative ATG start codon is preceded by a typical Shine-Dalgarno sequence. Possesses a potential leader peptide sequence.
- This orf is not in frame with nuc

ID-151

Clone 2-c88

GTGCGTTATAGTAAAGAGATTATTCAGTTAGCTATACCAAGCTATGATTGAA
AATATCTTACAAATGCTCATGGGAGTAGTTGATAATTATCTAGTGGCTCAG
TTAGGTGTTGTAGCAGTATCAGGTGTTCAGTTGCTAATAATATAATTACT
ATTTATCAAGCTATTTTATAGCTTAGGGCGAGTATAGCAAGTCTATTG
GCCAAGTCGTTAGCAGGTAGTGAGAAGGGATGATGCAATTCACTATGTTCT
CAAGCCATTTTCTAACATCACTGATAGGGCAGTATTAGGAATTATCTCG
ATTGTTTTGGACAAACTTCTTT

MRYSKEIQLAIPAMIENILQMLMGVVVDNYLVAQLGVVAVSGVSVANNIITY
QAIFIALGASIASLLAKSLAGSEKDDAISVCSQAIFLTSLIGAVLGISIVFGQTFF

Sequence description

- A] Length: 330 bp - 110 aa (partial sequence)
- B] Putative GTG start codon is preceded by a typical Shine-Dalgarno sequence. May have a leader peptide

ID-152

FIG. 1_{CONT'D}

Clone 2-c92

TTGATTAACAAGTATTGTGCTTTGAAGAGGATTCTCCATAATAACT
CCTTAATAGTTATCGTGAGAAGTATTAAAGAAAAACGCCAAGGTAG
AGCGACATTCTGCCTTAACCAATAAAAACCAAGAGAATTAGCACAAAC
ATTATCTCTAAAATTACAAAGTTCTCAAGGGTTTAGGAATAGCTAGTG
AATTGGTAACCTATGATCAACGCTGTCAAACATTTT

MINKYSCFLKRILHNNTPLIVLIVRSILKKNRQGRATFLPLTTIKPRELAQHYLSK
LQSSQGFLGIASELVTDQRLSNIF

Sequence description

A] Length: 240 bp - 80 aa (partial sequence)

B] No obvious Shine Dalgarno sequence precedes the Putative TTG start codon

ID-153

Clone 2-c94

TTGTTGACTCACAAAATATTATTAACCATTATTTGGATTATTTATGA
TTATATTATCAGCATGTGGTATGTCTAATAAGGAAATGGCTGGTATTGATA
ATTGGGAACATTATCAAAGGAAAAGAAAATTACTATTGGATTGATAAT
ACTTTGTTCTATGGGATTGAAAGTCGTTCTGGTACTATACCGGCTTG
ATATTGATTAGCTAATGCTGTTAAAGAATACGGTATTCACTGAAAT
GGCAGCCTATTAACTGGGATATGAAAGAAACTGAACCTAATAATGGTAAT
ATAGACCTTATTGGAATGGTTATTCAAAAACGGCAGAACGTGCTAAAAA
AGTCGCTTTACAAACCCATATGAATAATCATCAAGTAATTGTTACTAA
AACTTCATCACATATTAAATAGTATTAAAGGATATGAAGGGGAAAAACTAG
GAGCCCAGTCGGGTTCATCTGGTTTGATGCTTTAACGCTAACCTGATA
TTTAAAAAAAGTTGTAAAAGGAAAAGAAGCAGTTCAATACGATACTTTC
ACTCAGGCTTGATTGATTAAAAATAACCGTATTGATGGTCTTGATT
GATGAAGTTATGCTAACTATTAAAGCAAGAAGGAA

FIG. 1 CONT'D

MLTHKNILLTIIFGLFMIILSACGMSNKEMAGIDNWEHYQKEKKITIGFDNTFV
PMGFESRSGDYTGFDIDLNAVFKKEYGISVKWQPINWDMKETELNNGNIDL
WNGYSKTAERAKKVAFTNPYMNHHQVIVTKTSSHINSIKDMKGKLGQSG
SSGFDAFNAPDILKKFVKKGKEAVQYDTFTQALIDLKNNRIDGLLIDEVYANY
YLKQEG

Sequence description

- A] Length: 649 bp - 216 aa (partial sequence)
- B] TTG start codon is preceded by a possible typical Shine-Dalgarno sequence. Has a leader peptide

ID-154

Clone 2-c100

ATGAAAATTTGGAAAAAAATAACCTTAATGTTTCTGCAATTATTTAAC
ACAGTAATTGCATTGGGAGTCTATGTTGCCTCAGCTTATAATTTCGACTA
ATGAATTGTCTAAGACTTT

MKIWKKITLMFSAIILTVIALGVYVASAYNFSTNELSKTF

Sequence description

- A] Length: 123 bp - 41 aa (partial sequence)
- B] ATG start codon is preceded by a potential typical Shine-Dalgarno sequence. Has a typical leader peptide

ID-155

Clone 2-c1

FIG. 1 CONT'D

ATGAAAAAAACAAAGACTATTACTGCTTTGGAGGCTTATTAATAATGATA
 ATGATGACAGCATGTAAGGATTCAAAAATCCCAGAAAACCGCACGAAAAAA
 GGAATACCAGGCAGAACAGAATTAAAGTCATACTTTAAATATATATCAG
 ATAAAAAATAACTATTAGATAATATAAAAGTTATTACTTTCTATAAGTA
 TTTCTAAAGATGTACAAGATAAAGTCAGTGAAACAACAACCTGTTCATATA
 GACTAGAAAAGCAAAGAACATCAAGAGTTCAATTGGTAATTGAAACATGAA
 GTTAGTGAATCTAGTCAATATTCAACCGAAGTAAAAATCAAATACAGTAT
 CCAATCCAGTATAAAGATAATTCAATTGTTACTGAAAAAACACCGTCA
 GAACGTTATGATGAGTTGTTAGTCATTGATTCTCATTATTAAAAAA
 AATATAAAATATGATTACTTACTAAAACATCCGAAACTGAATTAAAAA
 GGTGTTCCCTATAAGATTCTATAAATTCTGAAATTGTAGCCCTTTATAA
 ATCAATTAAATATAAAAATCCTAAAAAATCATCTATTGCGTTACAAAAAA
 CGGAAAGTAAAGAACATTATACAAATCAGTATTGATACTGATTCTGAGA
 TATATTCTATATTGAAGGTATTCA

MKKQRLLLLFGGLLIMIMMTACKDSKIPENRTKEYQAEQNFKSYFKYISDKN
 NYLDNIKVYYFSISISKDVQDKVSETTCSRLEKQKNQEFIGNFEHEVSESSQ
 YSTEVKNQIQYPIQYKDNSIRFTEKTPSERYDEFVFSSFDSSLKKYKIYDYL
 HPETELKGVSYKIPINSEIVAPFINQLNIKNPKSSISVTKTESKEYYYTISIDTS
 EIYSIFEGIH

Sequence description

- A] Length: 687 bp - 229 aa (partial sequence)
- B] ATG start codon is preceded by a potential typical Shine-Dalgarno sequence. Has a typical leader peptide. C-terminus has yet to be verified

ID-156

Clone 2-c5

ATGACATTGACACCATTGATCAATTAGCGGTTAACAGTCGCACGCTT
 TCTATTGATGCTATCCAAGCAGCAAATTCTGGGCACCCAGGTCTCCTATG
 GGAGCTGCGCCTATGGCTTATGTGCTTGGAAATAATTCTAAATGTAAAC
 CCAAAAACAAGTCGAATTGGACAAACCGTGACCGTTGTACTTCAGCT

FIG. 1 CONT'D

64 / 110

GGGCATGGTTCAGCTCTTCTTATAGCCTACTTCATTAGCTGGCTATGATT
TATCAATTGATGATT

MTFDTIDQLAVNTVRTLSIDAIQAANSGHPGPLPMGAAPMAYVLWNKFLNVNP
KTSRNWTNRDRFVLSAGHGSALLYSLLHLAGYDLSIDD

Sequence description

- A] Length: 272 bp - 90 aa (partial sequence)
- B] ATG start codon is preceded by a potential typical Shine-Dalgarno sequence. No obvious leader peptide

ID-157

Clone 2-c8

ATGAGAACACTATTAGAATGATATTGCTATTCAAAGTTATCTTAGA
TTGATTGGAATATCATTGGGAATTCAAGACAGTTCTGTATTGCG
ATTATTTATTGGCTTGATTACTATGCGAATCACAGTCAATCAGAATTG
CTAATCAACTAGTGACATTATTAGACAGGAAAAACATT

MRTLFRMIFAIPKFIFRLIWNIIWGFKTVLVIAILFGLYYYANHSQSEFANQLS
DIIQTGKTF

Sequence description

- A] Length: 197 bp - 65 aa (partial sequence)
- B] ATG start codon is preceded by a potential typical Shine-Dalgarno sequence. Possesses a leader peptide

ID-158

FIG. 1 CONT'D

Clone 2-c9

ATGTCAAAAAAAATAATATTAGGAATTTATCTCTTATCTGTCGTTACTT
TGGTGGCGTGTGGTTCATCAGACAAACAGCTACAAGATAAAGTTGAGAAA
AAAGGGAAGTTAGTTAGCGGTGAGTCCAGATTATGCTCCCTTGAGTTT
MSKKIILGILSLLSVVTLVACGSSDKQLQDKVEKKGKLVLAVSPDYAPFEF

Sequence description

A] Length: 153 bp - 51 aa (partial sequence)
B] ATG start codon is preceded by a potential typical Shine-Dalgarno sequence. Possesses a leader peptide (not in frame with nuc)

ID-159

Clone 2-c10

ATGAAAAATCAAAGACTATTACTGCTTTGGAGGCTTATTAATAATGATA
ATGATGACAGCATGTAAGGATTCAAAATCCCAGAAAACCGCACGAAAAAA
GGAATACCAGGCAGAACAGAATTTAAGTCATACTTT
MKNQRLLLLFGGLLIMMMTACKDSKIPENRTKKEYQAEQNFKSYF

Sequence description

A] Length: 139 bp - 46 aa (partial sequence)
B] ATG start codon is preceded by a potential typical Shine-Dalgarno sequence. Possesses a leader peptide

FIG. 1 CONT'D

ID-160

Clone 2-c11

ATGATTGGAAAATTATATTAGCTATAGAAAGTCACGCCAGCTATTAAAGAAGT
 ATTTTATGGCTTATTAAATTGTTGGGTATATATGTTAGGACAACGTGTTT
 TATTATCCACTGTTCCCTTATCACATCAAGAGATAAAACTAGCAGTAGATC
 AACATTTACTCAATAACTTTCAGCAGTAAGTGGTGGGAGTTTAATAAAAT
 TAAATGTTTCACACTGGGGTTGAGTCCATGGATGTCAAGTATGATTATT
 GGAGATTGTTCCCTTATTTCGTGGGCAAAAAATGCAACGAAGCGAAAA
 GCAGAAGTAGCTCAATATACTTAATGCTACTATCTCAGTTACAGCA
 TATGGTGTTCAGGAAATCAATTATAAAAGCTCTTATTAGGTTCTTATA
 GTGATATTGTTTT

MIGKLYYSYRKSRLRSILWLILIVGVYMLGQRVLLSTVPLSHQEIKLAVDQHL
 LNNFSAVSGGSFNKLNVFTLGLSPWMSSMIIWRFVSLFWAKNATKRKAEVA
 QYTLMLTISVIQAYGVSGNQFIKSSLGYS DIVF

Sequence description

- A] Length: 423 bp - 141 aa (partial sequence)
- B] ATG start codon is preceded by a potential typical Shine-Dalgarno sequence. Possesses a leader peptide

ID-161

Clone 2-c13

ATGAAAGGTCTATTGGATTTAGTTAATATTGCCAGAACGCCAGCTATT
 TTAGTCGCCTTGATAGCCATTATCGGTTAGTACTGCAGAAAAAGGTGTT
 CCTGATATTGTAAGGTGGAATAAAACATTGTTGGCTTCTAGTGGTT
 TCTGAAGGTGCAGGGATAGTCCAAAATTCCCTGAATCCATTGGAAAAATG
 TTTGAACATGCTTTCATTGGTGGGGTAGTTCTTAATAATGAAGCCATT
 GTAGCAGTAGCTTACGAAGTATGGCTCAGCAACTGCTTGTATTATGTTA
 GCGGGAATGATTAAATATTAAATTGCTCGTTACAAAA

FIG. 1 CONT'D

MKGLLDFLVNIARTPAILVALIAIIGLVLQKKGVFDIVKGGIKTFVGFLVVSEG
AGIVQNSLNPFKGKMFHAFHLGVVVPNEAIVAVALTKYGSATALIMLAGMI
FNILIARFTK

Sequence description

- A] Length: 348 bp - 116 aa (partial sequence)
- B] ATG start codon is preceded by a potential Shine-Dalgarno sequence. Possible leader peptide

ID-162

Clone 2-c21

TTGGTTGGTAAGCCCCAATTACTATTTAGATGAACCTACTTCCGGAATG
GATACTTCCACACGTCAACGATTGGAAAGCTGGTTGCGACACTAAAAAA
AGAAGGTGACACAATTGCTATTCTAGTCATTATCGAAGAGGTAGAAC
ATACAGCTGATAGGATTTAGTACTTCATAAAGGAAAGTTATTACGCGATA
CAACCCCCTTGCCATGAAGCAAGAAAAACCGAAAAGTTATTCACCGTT
CCGCTTAGTTATCAAAAATTATTACCTACCTATTGATTACAGAGTGTGAA
GCCAAGAGTGATAGTATAACGTTGTTACTGGGGAGGCTGAAACTGTATG
GAAAATACTGGCAGATAATGGTTGCCTATTGAAGCTATTGAGATGACCA
ATAGAACTTGTAAATCGTATTTGAGACTACTAAGGAGGTAAAACATG
AGAATCTTA

MVGKPQLLDEPTSGMDTSTRQRFWKLVATLKKEGDTIVYSSHYIEVEHTA
DRILVLHKGKLLRDTTPFAMKQEKTKEKLFTVPLSYQKLLPTYLITECEAKSDSI
TFVTGEAETVWKILADNGCPIEAIEMTNRTLLNRIFETTKEVKHENL

Sequence description

- A] Length: 462 bp - 155 aa (partial sequence)
- B] Putative TTG start codon is not preceded by an obvious Shine-Dalgarno sequence. No obvious leader peptide. N- and C- termini require further

FIG. 1 CONT'D

examination.

ID-163

Clone 2-c25

TTGAAAAAAATCCAAGAGAAGCCGTAAGGCAGTGACAACAAGTGGTGAGA
 AGACTTACTTGAGGATTGGCAAAAATGAATTCTTAGACGAAGTCATTA
 ATGTTATGGTTTATATACCTTGAATAAGACAAAATCTGCTAACTTAAATA
 AGGCCTATATCATGAAAGTTGCTAATGATTTCGCCTTCAGAATGTTATGA
 CGGCCGAAGATGCTGTGCTTAAATTCGTGATTTTCAGATCAAAAAGTAA
 GGACTAAAACAGAACGAAAGAAGAAACAATCGAATGTTCCCTGAATGGAGT
 AATCCTGATTATAAAGATGAGGTTAGCCCAGAAAAAGAAATTGAATTAGA
 ACAGTTT

MKKSRSRKAVTSGEKTLEDLAKMNFLDEVINVMVLYTLNKTSAVLNK
 AYIMKVANDFAFQNVMTAEDAVLKIRDFSDQKVRTKTETKKQSNVPEWSN
 PDYKDEVSPEKEIELEQF

Sequence description

- A] Length:360 bp - 120 aa (partial sequence)
- B] N- and C- termini require verification.

ID-164

Clone 2-c28

ATGACGAATCATATTACTAACTGATAGAAAATAGCGGAAAAAAATTGAC
 AGAAAATTAGCGAAGCTACAGATATAGCCTATCCTACACTTCTGGATACAA
 TCAAGGAATCCGCAAACCTAAAAAGATAATGCTGAAAAATTGGCAAAAT
 ACTTTAATGTTCCGTCGCTTACATTATGGGACTTGATAGCAACCCACATG
 CTCCATCAAATCTT

MTNHITKLIENSGKKLTEISEATDIA YPTLSGYNQGIRKPKDNAEKLAKYFNV
 SVAYIMGLDSNPAPHAPSLN

FIG. 1_{CONT'D}

Sequence description

A] Length:218 bp - 72 aa (partial sequence)
B] ATG start codon is preceded by an
obvious Shine Dalgarno sequence. No obvious
leader peptide.

ID-165

Clone 2-c29

TTGATGAAAAGGAATAAACATTACCGTTAACAGAAACTACCTATTATATT
TTATTAGCTTGTGAGGAAGCGCATGGCTATGCTATTATGAAAAAAGTT
GAAGAAAATGAGTGGCGGTGATGTTAGAATAGCCGCAGGGACAATGTACGG
TGCCATTGAAAATTACTTAAACAAAAATGGATAAAGTCTATCTCAAGTGA
CGATAGAAGAAGAAAAGTTATATTACTGAGACAGGAAAAGAAATAG
TAGAACTTGAAACGAATCGATTAAGAAAGTTACTTAATACTGCTAATCAGT
TGGGTTTGGAGGAGATGGTTATGATAAAAGTT
MMKRNKHLPLTEYYILLALFEEAHGYAIMKKVEEMSGGDVRIAAGTMYG
AIENLLKQKWIKSISSDDRRRKVYIITETGKEIVELETNRLRKLNTANQLGFG
GDGYDKV

Sequence description

A] Length:337 bp - 112 aa (partial sequence)
B] TTG start codon is preceded by an
obvious Shine Dalgarno sequence. Actual start
codon may ATG that comes immediately after the
TTG. Potential leader peptide.

ID-166

FIG. 1 CONT'D

Clone 2-c35

CCCATTAAGTGGTGGAGTTAATAGCTGAGAAATTAGGAGTACCAAGAGCAGC
 ACTAAGGTCTGATTGCAGGGTTTAAGTATGCTAGGTATCATAGATGCAAA
 ACCTAACGGTGGTTATTTTATTAGGACAGTATCATGCTCAATAGGGAC
 AAGTCATTGAAAAGATGACAGTTCAGAAATTATGGGGATCCTCTGAC
 AGTCATCAAAAAGATTCAAGTTATGATGTTATTGTACATATTTATGGA
 AGATGCTGGTTGTGCTTTATCTGGATGATGATGATTCTCTGTGGAGTC
 GTGTCACGTAAGATTACTAAAAACCAAGTATTGGCGGAGGAGATCTTCT
 AAAATGCCAATAGGAATGGTGATGACACGTATGCCACACGTGACAACGT
 TTAGAAAATGAAAGTCTTTGCGGCAGCTGATAAAATTAGTGAGCAGAA
 AAGTGGATAGTCTCCCTGTCGTCATGATAAGCAATATCCCGAAAAATT
 TTA

PITGELIAEKLGVPRAALRSDLRVLSMLGIIDAKPKVGYFYLQYHASIGTS
 HF EKMTVSEIMGILLTVHQKDSVYDVIVHIFMEDAGCAFILDDDFLCGV
 VSRKD LLKTSIGGGDLSKMPIGMVMTRMPHVTTVLENESLFAAADKL
 VSRKVDSLVR VRHDKQYPEKF

Sequence description

- A] Length:511 bp - 170 aa (partial sequence)
- B] N- and C-termini to be determined

ID-167

Clone 2-44

TTGGAAGTCATCATGCAATTATTTAGTATTATTGGTATTATTGGTAT
 TAGGAATTGTGTATGCAATTCTTCAATCGTAAGAGTGTCTCTAAGTT
 ATTGGAAAAGCTCTTATCGTCAATTCAATTATTGCGCTAATCTTAGTACGT
 ATCCCACTAGGCCAACAAAGTTGTTAGTGTGTTCAACTGGAGTTACTAAA
 GTAATCAACTGTGGTCAAGCTGGTT

MEVIMQFIYSIIGILLVLGIVVAISFNRKSVSLSLIGKALIVQFII
 ALILVRIPLGQQ VVSVVSTGVTKVINCQAG

FIG. 1_{CONT'D}

Sequence description

- A] Length:233 bp - 77 aa (partial sequence)
- B] TTG start codon is preceded by a possible Shine Dalgarno sequence. Actual start codon may occur further downstream. Potential leader peptide.

ID-168

Clone 2-46

CAACCTAATAAGCTTAGAAAGTGTGAGATTGATATTAAATGCTTCAG
CATTATAATTACTAACCAATTGGAATAAGCAAATAAGACCAATCTGTT
TCCGTTGCTGAGACATACTTACTTCCTTAGATTATACTCTGGTACTAAGA
ACGGTAAAGGTAAATACCAAACAGTTCTGAAATTCAAATAAAGCAACT
ATTACTATCCCAAACGATGCAGTTAACGAAAGTCGCTCTCTACTTGTAA
CAATCAGCAGGCTTGCTAAAATTGAAAGTATCAGGTGATACATTAGCAAC
AATGTCAGATGTTGTTCCAATCCTAAATCTTAGATT

QPNKALESDEIDINAFQHNYLTWNKANKTNLVSAETYFTSFRLYSGTKN
GKGKYQTVSEIPNKATITIPNDAVNESRSLYLLQSAGLLKLKVSGDTLATMSD
VVSNPKSLD

Sequence description

- A] Length:344 bp - 114 aa (partial sequence)
- B] N- and C- termini require verification

ID-169

Clone 2-47

ATGAAATGTATAATAATAATATAAATAAAATAAAAATGATAATTGAGAT
TTATCATAGAAGGAAAATTTGAAATTAAATAAAATCATATTATCTAC

FIG. 1 CONT'D

TGCAGCTCTTACTGCTCTTTAGGATATAATAGCGTTACTGCGGATACA
 TATAATAACTATCAGCCACATAGATCAAATAATATGGATTAACTGAGGA
 ATATAACTATAATAACCAGATAGAACCTCAGGAGCGTATAAAAAACCTAA
 ATATACCTTT

MKCIINNINKIKMIIIEIYHRRKTILKLNKIILSTAALTALFLGYNSVTADTYNNY
 QPHRSNNMDLTEEYNYNNQIELQERIKNLNIPF

Sequence description

- A] Length:264 bp - 88 aa (partial sequence)
- B] There is a Shine-Dalgarno sequence upstream
of this sequence. Potential leader peptide
sequence

ID-169

Clone 2-47

ATGAAATGTATAATAATAATATAAATAAATAAAATAAAAATGATAATTGAGAT
 TTATCATAGAAGGAAAACATTGAAATTAAATAAAATCATATTATCTAC
 TGCAGCTCTTACTGCTCTTTAGGATATAATAGCGTTACTGCGGATACA
 TATAATAACTATCAGCCACATAGATCAAATAATATGGATTAACTGAGGA
 ATATAACTATAATAACCAGATAGAACCTCAGGAGCGTATAAAAAACCTAA
 ATATACCTTT

MKCIINNINKIKMIIIEIYHRRKTILKLNKIILSTAALTALFLGYNSVTADTYNNY
 QPHRSNNMDLTEEYNYNNQIELQERIKNLNIPF

Sequence description

- A] Length:264 bp - 88 aa (partial sequence)
- B] There is a Shine-Dalgarno sequence upstream
of this sequence. Potential leader peptide
sequence

FIG. 1 CONT'D

ID-170

Clone RS-58b

TTGGGTGATTATTATGGTAAGAAATATTTGGTGAGGCAGCTAAAAAAGA
 CGTCGAACATATGGCTAACGAAAATCATTAATGTCATAAAACACGGTTAA
 AAAACAAACACTTGGTTATC
 AGAAAATACAAAAGCAATGCCATTAAAGAAAATTGATAAACATGAGATTAA
 TGATTGGCTATCCAGAAGATTATCCTGATCTTATCGTCAGTACCAATTG
 ATAGTAAAGCAAGCTTCTTGAAAACAATGATAACTACAGAAAATTATCG
 AACAAAGAAAACATTGAAGAATTAAACCAGTCTAATCAACGTGAACATTG
 GCAAATGAGTGCATGCTAAATGCTTATAATGATCCTAATACCAATTG
 CATAGTCTTCCAGCAGCGATTTCATCACCACGTACGATAAAACTAA
 AACAGTTAGTCAAAATTATGGAGCTATCGGAGCAATTATTGGTCATGAAAT
 TTCACACTCATTTGATATTAATGGTATGAAATATGACGAGAAAGGGAAATCT
 TCACGATTGGTGGACTAAAGAAGATTAAATCATTATAAGAAATCAACAC
 AAGCTATGATTGACCAATGGATGGCCTAAAGCAGATGGCGTAAAGTT
 GATGGTAAATTAACTTTAGCAGAAAATATTGCAGATAATGGTGGTGTATG
 GCATCTCTAGAAGCTCTAACGACTGAAAAATCCAAACTATAAAGAATTIT
 TTGAATCATGGGCAAGTATTGGCGTAAAAAGCAACCAAAGAACAAAGT
 AAGTCCTCAATTCACTAGTCAGATGTTATGCACCATATGAATTGA >
 GAGCTAACATCCCAGTACGTAAATTCCAAGAATTATGATGCCTTGGT
 TTAAAAAAGGCGATTCAATGTATCTAAAACCAGAAAAACGTTGACACTTT
 GGTAA

MGDYYGKKYFGEAAKKDVEHMAKKIINVYKTRLKNNTWLSENTKAMAIKK
 LDNMRLMIGYPDYPDLYRQYQFDKASFENNDNYRKLSNKKTFEFNQSNQ
 REHWQMSANAVNAYNDPNTNSIVFPAAIFQSPLYDKTKTVSQNYAIGAIIGH
 EISHSFDINGMKYDEKGNLHDWWTKEQLNHYKKSTQAMIDQWDGLKADGG
 KVDGKLTLAENIADNGGVMASLEALKTEKIQTICKNFLNHGQVFGVKQPKNK
 VSPQFSQMFMHMN*

Sequence description:

A] Length: 819 bp - 272 aa (full length gene)
 (107 bp of additional DNA sequence (> onwards) is
 also included. While not in-frame with the
 described orf, it also shares strong homology
 with the neutral peptidases.

FIG. 1 CONT'D

B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-89 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-89 gene sequence. ID-89 and ID-170 together show homology over their combined entire length with the neutral endopeptidases from *Lactococcus* and *Lactobacillus*. Possesses TTG (possible ATG start codon located 13 bp further downstream) start codon with no obvious signal peptide. Shine Dalgarno sequence not immediately obvious. Possibly located further downstream

ID-171

Clone 2-18/22b (Mod2)

```

ATGACCATGATTACGCCAAGCTCATTAAAGGTATCTCTAGATGAAACAAAT
CGTATGATGCGTATGATATCAGATTATTAAGTTATCGCGCATTGATAAT
GAAGTAACGCATTTAGATGTTGAAATGACGAATTTCAGCCTTACAGCTTCATGACC
TCAATTGAAATCGATTGATCAGATTAGAAATCAAAAAACAGTCACAGG
AAAAGTTATGAAATTGTCAGAGATTATCCTCTTAAGTCAATTGGGTGGA
AATTGATAACAGATAAGATGACTCAAGTGATTGATAACATTAAATAATGC
AGTCAAGTATTACCCAGATGGTGGTAAGATTACAGTTAACATTCTACGCACAAC
TAAAACGCAGATGATTTATCAATATCAGACCAAGGCTTAGGTATTCCCAA
AAAAGATTACCTCTCATTTGATCGTTTATCGTGTGATAAGGCGAGA
AGTCGTCAACAGGGGGACTGGACTTGGTTGTCAATTGAAAAGAAAT
TGTAAAGCAGCATAAGGGATTATTGGGCTAAGAGTGAGTATGGTAAAG
GGTCTACTTTACAATCGTCTGCCTATGATAAAAGATGCTGTAACTTATGA
AGAATGGGAGGACGTTGAAGATTAA

```

```

MTMITPSFIKVSLDETNRMMRMISDLLSLSRIDNEVTHLDVEMTNFTAFMTSIL
NRFDQIRNQKTVTGVYEVIRDYPLKSIWVEIDTDKMTQVIDNILNNAVKYSP
DGGKITVNLRTTKTQMILSISDQGLGIPKKDLPLIFDRFYRVDKARSQQGGTG
LGLSIAKEIVKQHKGFIWAKSEYGKGSTFTIVLPYDKDAVTYEEWEDVED*

```

Sequence description:

- A] Length: 613 bp - 212 aa (full-length gene possibly)
- B] Possible Shine Dalgarno sequence present upstream of a ATG start codon. May not have yet determined the N- portion of this gene. No obvious signal peptide.

FIG. 1 CONT'D
SUBSTITUTE SHEET (RULE 26)

ID-172

Clone 2-54balternate (107b)

TTGAAAAAAATTATTACTTCTATTCTATTACTTAGTTGCATTTTTATGC
 CAACCATCTCTGCTGAATCTTTAATGCTTCGCTAAACATGCCTTAGCAGT
 TGATTAGATTCAAGGAAAAATCTGTATGAAAAAGATGCTAACAAACCG
 CTGCTATTGCTTCCTTGACTAAAATAATGACCGTTATATGGTCTATAAAG
 AAATTGATAACGGTAACCTCAAGTGGAAATACCAAAGTAAATATCTGAC
 TACCCTTATCAACTAACACCGAATCTGATGCTAGTAATGTTCTTAGAA
 AAAAGGCGCTATACTGTTAAACAACCTGTTAGCTGAACATATTCAGGAACGTGAAAGT
 GCTAACAGTGCAGGCCATTGCTTAGCTGAACATATTCAGGAACGTGAAAGT
 AAATTGTTGATAAAATGACTGCTCAATTGGAAAAGTGGGGAAATTGATGAT
 AGCCACCTAGTCAATGCTCTGGCTTAAATAATAGTATGTTAGGCAATCAC
 ATTTATCCAAAATCGTCACAAAACGACGAAAATAAAATGAGTGCACGTGA
 TATTGCTATTGCTGCCTACCATTGGTCAACGAATATCCTCCATTCTTAAG
 ATTACTAGTAAGTCCGTTGCTAAATTGATAAAAGATATTATGCTATTCTTAT
 AACTACATGCTACCAAGATATGCCTGTCTTAGACCAGGTATTACAGGTTG
 AAAACTGGACAACGGAATTAGCTGGCCAATCTTATTGCTACATCTACT
 GAAAGTGGAAATGAGACTACTCACTGTTATTATGCATGCTGATAAGGCCGAT
 AAAGACAAATATGCTGCTTACAGCAACTAATCTCTCTGAACATATC
 ACAAAACACCTACGAACCTAACCTGTATTAGCTAAAGGAGCTGCATATAA
 AGGTAAAGAAGCAAGTGTGAGAGACGGAAAAGAACATCGTCATCGCT
 GTTGCTAAAAACGATTGAAAGTAGTACAGAAGAAAAATACACTAAACA
 AAATCAGTAAAAATTAACTTAAAAAGAGCTTACTGCTCCTATTACAAA
 AAAAGAGAACCTAGGGAAAGCTTATTACGTTGACCTAATAAGGTTGGAA
 AAGGCTATCTCATAAAAGGAACCTAGCGTTCTTAGTGGCAAAAGATAGT
 ATTGAGCGCAGTTCTCCTCAAAGTGTGGGAATCATTTGTGCGCTAC
 GTTAACGAAAAACTTAA

MKKIITSILLSCIFFMPTISAESFNASAKHALAVDLDGKILYEKDANKPAAIA
 SLTKIMTVYMVYKEIDNGNLKWNTKVNISDYPYQLTRESDASNVPLEKRRYT
 VKQLVDAAMISSANSAAIALAEHISGTESKFVDKMTAQLEKWGIHDSHLVNA
 SGLNNMSLGNHIYPKSSQNDENKMSARDIAIAAYHLVNEYPSILKITSKSVAKF
 DKDIMHSYNYMLPDMPVFRPGITGLKTGTTELAGQSFIATSTESGMRLLTIVM
 HADKADKDYARFTATNSLLNYITNTYEPNLVLAKGAAYGKEASVRDGKE
 QSVIAVAKNDLKVVQKKNITKQNQLKINFKELTAPITKKENLGKAYYVDLN
 KVGKGYLIKEPSVHLVAKDSIERSFFLKWWNHFVRYVNEKL*

FIG. 1 CONT'D

Sequence description:

- A] Length: 1236 bp - 412 aa (full-length gene sequence possibly)
- B] A possible Shine-Dalgarno sequence precedes the putative 'TTG' start codon. (needs further cloning and sequencing to verify N-terminus)

ID-173

Clone 3-60b

ATGACGCTTCGAGAATTAACAATAGAAGAATTAAAGAACATTAGGAAA
 TTATGATTACAATCATTAAACACCTGAGATGGCTAAACTTCTAGA
 AAAACGCGGCTATGATGTTAGGTATTGGGATATCAAGTAGAAAAATAAAC
 TAGAGATAATCAGTTATCTTATTATGCCAGTCAGTGGTGGTTCAAAT
 GAAAATTGATTCAAGGACCAGTCATTCAAATTCTAAGTATCTAAAACAATT
 TTATAAAGCATTGCAAGGCTATGCCAAATCCAACGGTGGTTCTAGAATTAAAT
 AGTTGAGCCTTTGATGATTACCAATTATTCACTAGTTGGGAGTTCTAGT
 AACAGGGAAATGATAATCTGATTGAAGATTACAGTTCAAGTTATCAC
 CATGATGGTTAACAACTGGTTACTGGTAAATATTATCTTGGCACTATG
 TTAAAAATTAGAAGGTGTCACTTCTGAAACGTTACTATCTTCATTCTCTAA
 GACAGGACGAGCTTGGTTAAGAAAGCAATGTCTTGGAAATCAAGGTTC
 GCGTTCTAACGTGATGAGCTACATTATTTAAAGAGATAACAACCTCTA
 CGTCAAATAGACGTGATTATATGGATAAGTCCTAGATTATTATCAAGATT
 TTTACGATAGCTTGAAGGCAAGGCTGAATTGTGATTGCCACTTAAATT
 TTAGAGAATACGACCATAACTGCAAATAAGCTGAAGCATTGGAAAAT
 AAGCTT

MTLRELTIIEFKEHSGNYDSQFLQTPEMAKLLEKRGYDVRYLGYQVENKLEI
 ISLSYIMPVTGGFQMKIDSGPVHSNSKYLQFYKALQGYAKSNGVLELIVEPF
 DDYQLFTSSGVPSNQGNDNLIEDFTSSGYHHDGLTTGFTGKYLSWHYVKNLE
 GVTSETLLSSFSKTGRALVKKAMSGIKVRVLKRDELHLFKEITTSTSNNRDY
 MDKSLDYYQDFYDSFEGKAEFVIATLNFREYDHNLQIKAEALENKL

Sequence description

- A) Length: 771 bp - 257 aa (partial gene sequence)
- B) This gene sequence was not identified using the LEEP system. It was identified immediately downstream of the ID-65 gene which was identified by

FIG. 1 CONT'D

LEEP, during cloning and sequence analysis of the full-length ID-65 gene sequence. Sequence Characteristics:
 No obvious leader peptide sequence
 Orf is preceded by a potential Shine-Dalgarno sequence.

ID-174

Clone 2-17b (ID-80b)

TTGTCATTAAGTTGGTGCAGTGTAAATCTTATCCCTCCTAAAATCATGG
 GATCAGTTATTGATGCTATTACAACGGAAAATTAACAAGACCACAATTAC
 TATGGAATTATTAGGTTGGTTGTCAGCTTAGCTATGTATGGGCTGCG
 TTATATTGGCGTATGTATATTAGGGACTTCTAACAAATTAGGCCAAGTT
 GTCAGATAACCGTTATTGAACATTACAAAAATGTCTCCTTCTTTATC
 AGAAATATCGTACAGGTGATTAAATGGCGCACCGCACCAACGACATCAAT
 TCTCTAACACCGTCTGCAGGAGGAGGAGTTATGTCAGCAGTGGATGCCTCT
 ATCACAGCATTAGTAACGCTTATCACCATGTTCTTACTATTCGTGGCAA
 ATGACATTAATTGCGGTTATCCCTTGCCCTTAATGGCCTAGCACTAGTA
 AATTGGGGCGAAAAACCCATGAAACCTCAAAGAATCTCAGGCAGCCCTT
 TTCAGAATTAAATAATAAGTG

MSLSLVAVLNLIPPKIMGSVIDAITTGKLTRPQLLWNLLGLVLSALAMYGLRYI
 WRMYILGTSYKLGQVVRYRLFEHFTKMSPSFYQKYRTGDLMAHATNDINSLT
 RLAGGGVMSAVDASITALVTLITMFFTISWQM TLIAVIPLPLMALALVNWGEK
 PMKPSKNLRQPFS ELNNKV

Sequence description

- A) Length: 534 bp - 178 aa (partial gene sequence)
 - B) This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-80 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-80 gene sequence.
- Sequence Characteristics:
- No obvious leader peptide sequence
 - Orf is preceded by a potential Shine-Dalgarno sequence.

FIG. 1 CONT'D

ID-175

Clone 2-11Ab (ID-103b)

ATGCATATTGAGACTGTTATTGATTCAAAGAATTAGGAAAAAGATATCGT
 TTTAAAATCCTACAAAAGAATTAATAGCTGATACTTACAACAAAGTCTTA
 GAAGTGATAAAAGAAGTTGATTATTATCAATCTAAAATTATTATGTTGTT
 GGTTATTATCTTATGAAGCATCTGCTGCTTGTTCACATTAAAGTCTT
 CTCAACAGAACAGTTGGCTGGAGAACATCTAGCTTACAGTACATAAAG
 ATTGTGAGAACGAAAGCTTCTTAAGTTATGAAAATGTTAGATTAGCAG
 ATAATTGGACTGCTAATGTTCTGAGCAAGAACATCAAGAGGCAATTGCTA
 ATATTAAAGGACAAATTAGACAAGGAAATACTTATCAAGTAAATTATACA
 CTAGAGCTTAGCCAACAATTATGCTCGGATCC

MHIETVIDFKELGKRYRFKNPTKELIADTLEQVLEVIKEVDYYQSQNYYVVGY
 LSYEASAAFDHSFKVSQQKLAGEHLAYFTVHKDCENEAFPLSYENVRLADNW
 TANVSEQEYQEAIANIKGQIRQGNTYQVNVTLELSQQLCSD

Sequence description:

- A] Length: 440 bp - 146 aa (partial gene sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-103 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-103 gene sequence.
 Shine Dalgarno sequence present upstream of
 ATG start codon, No apparent leader peptide sequence

ID-176

Clone 2-18/22b(b) (ID-104b)

GTGAATAATATGTTTATCTAAAATAGCCTGGCATAATTAAAACATTCT
 ATAGACCAGTACATACCATTCCTCTAGCCAGTTATTACTTATTCAATTGA
 CTTGTTCTACGCTACTAATCTTAATGAGTGCTGTTGGAAAGAGATATGGGGA
 CAGCGGCAACGGTCTTTCTGGAGTGATTGTTGTCAATCTTGCCTG
 AGTCATGGAACATTATAGCTACAATATCTTGATGAAACAGCGTAGTAGTG

FIG. 1_{CONT'D}

AATTGGACTGTATAACATTTGGGATGAATAAACGTCAAGTTGCCGTG
TAGCTAGTCTAGAGCTGTTATTATTTATTTCTTATTCTATAGGAAG
TCTGTTAGTGCTTTTGCTAAATTATTTAATTGTCAACATTA
TTAACTATCATGCACTAAATCTAGTTAAGTTATGCCATTATTATTG
TATCGTTATATTACAGGTATTTCTGACTTAGAAGTCAGTTATCGA
CATGTTCATTTATCCTCCCCATTAAGTCTTTAGAAAGAACACAGGGA
GAAAAAGAACCAAAAGGTAACTTATACCGAATTAGCGTTAGTAGCT
ATCGCCATCGCTTATACAATGGCTTACTTCAGGTAAAGCACCTGCATTA
GCTGTTATCTATCGTTCTTGCAGTACTTTAGTAATTGCTGGTACTT
ATCTTTTATATTAGTTATGACATGGTACTAAAAAGGTTGCGTCAAAA
CAAGCATTATTATAAAATCTGAGCATTTGTATCAACTTCGCAAATGAT
TTTCGAATGAAGCAAAATGCAGTAGGGTAGCAAGTATCACTTATTAGC
TGTTATGGCTCTAGTTACTATTGCTACAACAGTCTCACTCTATTCAAATACA
CAAAATGTTTACCGGACTATTCCAAATCAGTAAGTTATCAATAGAT
AATTCAAAAGGTGACCGAAAAATATATTGAAGAAAAGATTGAAAGAA
ACTAGGTAAGTCATCTAAGGAAGCTACTTATAATCAGACAATGATTTC
GATGCCAGTTAGTCAATCAAGTGACTTAATATCACATCTA

MNNMFYLKIAWHNLKHSIDQYIPFLLASLLLYSLTCSTLLILMSAVGRDMGTA
ATVLFLGVIVLSIFAVVMEHYSYNILMKQRSSEFGLYNILGMNKRQVARVASL
ELFIYIYFLISIGSLFSAFFAKFIYLIFVNINHYHALNLSLSLWPFIICIVIFTGIFLTLE
VPVIRHVHLSSPLSLFRKKQQGEKEPKGNLILAILALVAIAIAYTMALSGKAP
ALAVIYRFFFAVLLVIAGTYLFYISFMTWYLRQNKHYYYKSEHFVSTSQM
IFRMKQNAVGLASITLLAVMALVTIATTVSLSNTQNVVTGLFPKSVSLSIDNS
KGDAKNIFEKILKLGKSSKEITYNQTMISMPVSQSSDLISHI

Sequence description:

- A] Length: 1119 bp - 373 aa (partial gene sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-104 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-104 gene sequence.
- Possible Shine Dalgarno sequence present upstream of a GTG start codon. Possesses a potential leader peptide sequence

ID-177

FIG. 1 CONT'D

Clone 2-5b (ID-112b)

ATGGTTGAGCCAATTATTCAATACAAGGACTTCATAAAAGTTTGGGAAA
 AATGAGGTTTAAAAGGCATTGACTGGATATTCAAGGAGAAGTGGT
 GGTTATTATTGGCCCTCTGGCTCTGGTAAGTCACACATTAAAGAACAAAT
 GAATCTCTGGAAAGTACCAACAAAGGGAACAGTGACTTTGAAGGGATTG
 ATATAACAGACAAAAAGAACATGATATTAAATGCGCGAAAAAATGGGC
 ATGGTTTTCAACAGTTCAATCTATTCCAATATGACTGTACTAGAAAAT
 ATTACTTTATCACCTATTAAGACAAAGGGACTTCTAAGCTTGTGCTCAG
 ACAAAAGCATACGAGCTACTTGAAAAAGTTGGACTCAAAGAGAAGGCTAA
 TGCTTATCCAGCAAGCTTATCTGGAGGACAACAACACGGATTGCTATTGC
 AAGAGGTCTGCAATGAATCCTGATGTCCTCTTTGATGAACCTACTTCA
 GCTCTGATCCTGAAATGGTAGGTGAAGTCTGACTGTTATGCAAGATTAA
 GCTAAATCTGGTATGACGATGGTTATTGTCACTCATGAAATGGGTTTGCA
 CGTGAAGTAGCGGATCGTGTCAATTATGGATGCAGGGATTATTGTTGAG
 CAAGGGACCCCTAAGAAAGTATTGAGCAGACAAAAGAAATCCGCACAAG
 AGACTTCTTAAGTAAAGTATTATAA

MVEPIISIQGLHKSGKNEVLKGIDLDIHQGEVVVIIGPSGSGKSTFLRTMNLL
 VPTKGTVTFEGIDITDKNDIFKMREKMGMVQQFNLPNMTVLENITLSPIKT
 KGLSKLDAQTKAYELLEKVGLKEKANAYPASLSGGQQQRIAIARGLAMNPDV
 LLFDEPTSALDPEMVGEVLTVMQDLAKSGMTMIVTHEMGFAREVADRVIF
 MDAGIIVEQGTPKKVFEQTKEIRTRDFLSKVL*

Sequence description:

- A] Length: 735 bp - 244 aa (full length gene)
- B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-112 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-112 gene sequence. Shine-Dalgarno sequence precedes the 'ATG' start codon. No obvious leader peptide

ID-178

Clone 2-5c (ID-112c)

FIG. 1_{CONT'D}

ATGTCTCAsTATCAAGAGTGGTAGAAAACGACTCACTCGTAAAGATATT
 AAGTCAGATTTAGAAGCTATTAAAGGAGATGAATCTGAAATTAGGATCG
 TTTTACAAAACATTAGAATTGGAACGGCGGGATTGAGAGGTAACATTG
 GAGCAGGAACCAATCGTATGAATACTTATATGGTGGGAAAGCAGCACAA
 GCATTAGCTAATCGATTATTGATCATGGCCCTGAAGCTATTGCACGTGGAA
 TTGCAGTTAGTTATGATGTCCCCTATCAATCTAAGGAATTGCAGAATTA
 ACTTGGTCCATTATGGCAGCAAATGGTATTAAAGCCTATATTAA

MSHMNYKEIYQEWELENDLGDIKSDLEAIKGDESEIQDRFYKTLEFGTAGLR
 GKLGAGTNRMNTYMGKAAQALANRLLIMALKLLHVELQLVMMSRYQSKE
 FAELTWSIMAANGIKALYL

Sequence description:

- A] Length: 366 bp - 122 aa (partial gene sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-112 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-112 gene sequence. Shine-Dalgarno sequence preceded the 'ATG' start codon. No obvious potential leader peptide sequence.

ID-179

Clone 2-5d (ID-112d)

ATGCAACCTGTAAAAGTCGATGAACCTTCTGTTGAAGAAACCATTACTATT
 TTGAAAGGTATCCAAAAAAAATACGAAGATTATCATCACGTAAAATATAA
 TAATGATGCCATAGAACAGCTGCAGTACTATCTAATCGTTATATCCAAGA
 CCGCTTTTACCTGATAAAGCAATAGACTTATTAGATGAAGCTGGTTCTAA
 AATGAACCTAACACTAAATTGTTGATCCAAAAGAAATTGATCAACGTCT
 CATTGAAGCAGAAAATTAAAAGCGCAAGCGACTCGTGAAGAAGATTACG
 AACGTGCAGCTTACTTCCGTGACCAGATTGCAAAATATAAAGAAATGCAG
 CAACAAAAGGTGACGATCAAGATAACACCTATTATTACCGAAAAACAAT
 TGAGCACATCATTGAAGAAAAACGAATATCCCTGTTGGTATTAAAAG
 AAAAAGAACAACTCAATTAAATTAAATCTCGCAGATGACTTGAAACAGCAT
 GTGATCGGCCAGGATGACGCTGTCATTAAGATTGCAAAAGCTATTGTCGT
 AATCGAGTTGGTCTGGTAGCCCCAACCGTCCTATTGGTTCTTTATTG
 TAGGACCAACCGGTGTTGTTAAAACGAACTTTCTAAACAACAGCAATTG
 AGCTCTTGGTTCAGCTGATAGTATGATTGCTTTGATATGTCAGAGTACAT
 GGAAAAGCATGCTGTTGCTAAATTAGTCGGAGCGCCTCCAGGATACGTGG
 GATACGAGGAAGCTGGACAACTAACTGAAAAGGTTGTCGAAATCCTTAC
 TCGCTCATCCTCTAGATGAAATTGAAAAGCTCATCCGATGTCATGCAT

FIG. 1 CONT'D

ATGTTCTGCAGGTCTTGATGACGGTCGATTAACAGATGGACAAGGAAG
 AACTGTTAGTTAAAGATACCATATTATCATGACCTCAAATGCTGGTTC
 TGGTAAAAGTGAAGCAAGTGTGGCTTGGTGCCTACGAGAAGGTAGGA
 CGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGGCAT
 GCAAGC

MQPVKVDEPSVEETITILKGIQKKYEDYHHVKYNNDIAEAAA VLSNRYIQDRF
 LPDKAIDLLEAGSKMNLNTNFVDPKEIDQRLIEAENLKAQATREEDYERAAY
 FRDQIAKYKEMQQQKVDDQDTPIITEKTIEHIIIEKTNIPVGDLKEKEQLSQLINL
 ADDLKQHVIGQDDAVIKIAKAIRRNVRGLSPNRPISFLFVGPTGVGKTELSK
 QLAIELFGSADSMIRFDNSEYMEKHAVA KLVAPPGYVGYEEAGQLTEKVRR
 NPYSLILLDEIEKAHPDVMHMFLQVLDDGRLTDGQGRTVSFKDIIIMTSNAGS
 GKTEASVGFASREGRTNSSVPGDPLESTCRHAS

Sequence description:

- A] Length: 1070 bp ÿ 356 aa (Partial gene sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-112 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-112 gene sequence. Shine-Dalgarno sequence preceded the 'ATG' start codon. No obvious potential leader peptide sequence.

ID-180

Clone 2-7b (ID-113b)

ATGAGAGGGAAGGTTATTCAGGCACAACCC TTATAGGTCTTTCTATTCTTTCTATTCTTTCTATTCTTTGGATTCTAACAGCATCACATCGAGAGAATA CATCATC ATCGTATAAACAGCAGGTAGATGCGAAGAGT GATTTAACAGGATTAAAACC CATTGCCCATATTACAGCATTGATACAAAGCAACAAGTTATT CCTCTTGT ACACAAAGAAGGCGGAAAATATGTCAAAGCTAGGGATAATATTAATGTTGA TATCGAATTACGGGATTCTCCAAGTAGATCACATCATTTATCAGAAAAGCC GAGAATTAGGACAAAAGGGTTAATATCATATAGAGGAAATT CCTCTCGTT ACTTTGATAAGAAGTCATTGAAAGTTAAGTTGTTACTAATAAGTTAAAGG AAAAGAAGCATCGATTAGCAGGAATGCCTAAAGAATCGGAGTGGGTATTG CATGGTCCCTTCTAGACAGAACATTATTAAGAAATTATCTGAGTTATAAT

FIG. 1 CONT'D

ATTGCTGGT GAGATTATGCCTATGCCCAAACGTTCGCTACTGTGAGTTAT
TTGTCAATGGTGAGTATCAGGGAG

MRGKVIYGTTLIGLFLFFYFWIPKHHIERIHHRIKQVDAKSDLTGFKTHLPPI
SIDTKQQVIVPLVTKEGGKYVKARDNINVDIELRDSPSRSHLSEKPRIRTKGLIS
YRGNSSRYFDKKSLKVFKVTNKLKEKKHRLAGMPKESEWVLHGPFLDRTLLR
NYLSYNIAGEIMPMPQTATVSYLSMVSIRE

Sequence description:

- A] Length: 582 bp - 194 aa (Partial gene sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-113 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-113 gene sequence.
- ATG start codon is preceded by a Shine-Dalgarno sequence-Possesses a potential leader peptide sequence. C-terminus to be determined.

ID-181

Clone 2-17b (ID-117b)

CTTCACATTTATTGATCACTATCTGACAAATGTTAACAAACAGCAGTTCT
TATTAGTGGATATTATTCAATGTATGTCTGCAGACCTTAATTCAATAT
TTTGGGAATCTCTTTGCGCGTCTTATAGTATTGTTAGAGATATT
GTAGAGATGCTTTGCTAATATGAAAGGCTAGGCATGTCTTATTTGATA
GGACACCGGCAGGATCTATTGTCACGTACTAAATGATACTGAAGCAA
TATCTGATATGTTTGGGTATTTATCAAGTTATCTCGGCGATATT
TTTACAGTTACTCTGTACACTATGTTGATGCTAGACATTAAACTAACAGG
ACTCGTCGCTTTGTTACCTGTTATCTTATATTAGTGAATGTCTATCGG
AAAAAAATCAGTCACTGTCATTGCTAAAACGAGAAGTTACTTAGTGATATC
AACAGTAAATTATCAGAAAGTATTGAAGGAATT

SHFIDHYLTNVNQTAVLILVGYYSMYVLQLIQYFGNLFFARVSYSIVRDIRD
AFANMERLGMSYFDRTPAGSIVSRITNDTEAISDMFSGILSSFISAIFIFTVTLYT
MLMLDIKLTGLVALLPVIFILVNVYRKKSVTVIAKTRSLLSDINSKLSESIEGI

FIG. 1 CONT'D

Sequence description:

- A] Length: 498 bp - 165 aa (Partial gene sequence)
 B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-117 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-117 gene sequence. N- and C-termini have yet to be determined

ID-182

Clone 3-8b (ID-120b)

```

ATGTACCATATTGAATTAAAAAAGGAAGCTTACTACCAAGAGAACGCCT
AGTGATTAGCGCAGATAGATTGAGTAATCAGGAGTTATTAGCCATTCT
CTTACGTACAGGTATTAAAGAAAAACCTGTTCTGAAATTCAACGCAAAT
TTTAGAAAACATAAGCAGTTAGCAGATTGGTCAATTATCCTTACAGGA
GTTGCAATCCATTAAAGGAATCGGTAGGTTAAATCCGTCGAAATAAAAG
CTATGCTAGAACTAGCAAAACGGATTACAAAGCTGAATATGATCGTAAA
GAGCAAATTAAAGTAGTGAACAATTAGCGAGGAAAATGATGCTCGAATT
AGGGGATAAAAAAACAGAACATTAGTAGCTATTATGGATACACAAA
ATCGTATTATCGAACAGAGAACTATTTTATTGGTACTGTACGTCGTTCA
TAGCAGAGCCAAGAGAAAATTCTACATTATGCTGTAAAAACATGGCAACT
TCTTGATTATTATACATAATCATCCCTCAGGTTCTCCAAATCCCAGTGAAA
GTGATTAAAGTTCACTAAAAAAATAAAACGATCATGTGATCATCTGGAA
TTGTCTGCCTAGATCACATCGTTGGAAAAATAAAATTATAGTTTC
GAGAAGAAGCAGATATTATAA

```

```

MYHIELKKEALLPRERLVDLGADRLSNQELLAILLRTGIKEKPVLEISTQILENI
SSLADFGQLSLQELQSIKGIGQVKSVIEIKAMLELAKRIHKAELYDRKEQILSEQ
LARKMMLELGDKQEHLVAIYMDTQNRIIEQRTIFIGTVRRSVAEPREILHYAC
KNMATSIIHNHPSGSPNPSESDLSSFTKKIKRSCDHGIVCLDHIIVGKNKYYSF
REEADIL*

```

Sequence description:

- A] Length: 681 bp - 227 aa (full-length gene)
 B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-120 gene which was identified by LEEP,

FIG. 1_{CONT'D}

during cloning and sequence analysis of the full-length ID-120 gene sequence.
 ATG start codon is preceded by an typical
 Shine-Dalgarno sequence. No obvious leader
 peptide sequence

ID-183

Clone 3-11b (ID-121b)

```
TGGTTAAAAGTAGTGATAGCTTGTATTCCATCTATTAAATTGCTTACCAT
TTGATAATTGGTTGAAGCTCATTAAATTGATTCATGATTCCGATTGCAATAGC
CCTAATCTTTATGGTTTGTCTCATATGGGTTGAAAAACGTAATGCACAC
CTCAAACACCAGTAACCGAATTGGCAAGTATGTCTTACAAGACAGCTTTC
TTGATTGGATGTTCCAGGTTCTCAGTATTGTTCCGGAACCGAGTCGTTCTG
GAGCTACTATTTAGGAGCAATTATTATTGGAACTAGTCGTTCGGTCGCTG
CTGACTTTACTTCTCCTGCCATCCAACTATGTTGGTTATAGTGGACT
TAAGGCGGTTAAATATTTAGATGGTAACGTCTGAGTTAGACCAATC
TTAAATACTTTAGTAGCAAGTCTGACAGCTTCGTAGTTAGTTATATGTT
ATTGCTTCTGACAGACTATGTCAAACGACACGATTCAACCATTGGT
AAGTATCGTATAGTCTTAGGAAGTTACTCATCCTCTACTGGTTAGTTGTT
ATTTATTCTAA
```

```
WLKVVIACIPSILIALPFDNWFEAHFNFMPIAIALIFYGFVFIWVEKRNAHLKP
QVTELASMSYKTAFLIGCFQVLSIVPGTSRSGATILGAIIGTSRSVAADFTFFLA
IPTMFGYSGLKAVKYFLDGNVLSLDQSLILLVASLTAFVVSLYVIRFLTDYVKR
HDFTIFGKYRIVLGSLLILYWLVVHLF*
```

Sequence description:

- A] Length: 579 bp - 193 aa (partial sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-68 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-68 gene sequence described in WO 00/06736. N-terminus has yet to be determined.

ID-184

Clone 3-11c (ID-121c)

FIG. 1_{CONT'D}

ATGGAAATGAAACAAATCAGTCAAACACTGAAAATTACAATTAGTAT
 GGAAGATTTAGAAGATCGTGGTATGGAGCTGAAAGATTCTAATCCCTCA
 GGAGAAGACTGAGGAATTCTATTCTGTATGGATGAATTAGACTGCC
 AGAAAACCTTAAAAATAGTGGTATGTTAAGTTCGAGTAACACCTAAAA
 AAGATCGCATTGATGTTTGTACAAAGTCTGAATTAAAGTAAAGATTAA
 ATTAGAAGAATTAGCAGATTGGTGACATTCAAAAATGCTCCAGAAG
 ACTTTTAAACCTTGGAACAAATCGATGTTGGAAAAAGGGGATACGGAT
 GCCCATGCCAATTAGCAGAAATTGAAAATGATGGATAAAGCAACTCA
 AGAAGTAGTTGAGGAAAATGTTCTGAAGAACAAACCTGAAAAGGAAGTAG
 AAACGATTGGATATGTTCACTATGTCTTGATTGATAATATTGAAGCTGT
 AGTCGATTTCACAAACGATTGATTCCAATAGAAGCTT

MEMKQISETTLKITISMEDLEDRGMEALKDFLIPQEKTTEFFYSVMDELDLPENF
 KNSGMLSFRVTPKKDRIDVFVTKSELSKDLNLEELADLGDISKMSPEDFFKTLE
 QSMLEKGDTDAHAKLAEIENMMDKATQEVEENVSEEQPEKEVETIGYVHY
 VFDFDNIEAVVRFSQTIDFPIEA

Sequence description:

- A] Length: 547 bp - 182 aa (Partial sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-68 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-68 gene sequence.
- ATG start codon is preceded by an typical Shine-Dalgarno sequence. No obvious potential leader peptide sequence

ID-185

Clone 3-16b (ID-122b)

GGAAACCAACGGCCAGTACAATCGTCAAGGGTAGATTATCCTAAACGTAG
 TCGTGCAGATTGTAGAAGTTATTTAGACAAGCTCTACTACTGATTA
 TTCTGGTGTACAAAGGTTACTATATTGACTTGAAGCCAAAGAAACCCG
 GCAGAAAATGCTATGCCTATGAAAAATTTCATGCTCACCAAATAGAGC
 ACATGGCAAATGTATTACAGAAAAAGGGATTGCTTGTCTGCTTCATT

FIG. 1 CONT'D

TTTCCACACTAAGGAAACCTATCTACTCCCTGCTAATGAGTTAATTTCATT
 TTATCAGATTGATAAAGGCAATAAATCAATGCCTATTGATTATATCAGAAA
 AAATGGATTTCTGAAAGGAGAGTGCCTTCAAGTCCCTTACTTAGA
 TATTATTGAAGAAAAATTATTAGGCAGGTGATTACAATTAA

GNQRPVQSSRVDYPKRSRAKIVEVYFRQASTTDYSGVYKGYYIDFEAKETRQ
 KTAMPMKNFHAHQIEHMANVLQQKGICFVLLHFSTLKETYLLPANELISFYQI
 DKGNKSMPIDYIRKNGFFVKEAFPQVPYLDIIEEKLLGGDYN*

Sequence description:

- A] Length: 447 bp - 149 aa (partial sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-122 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-122 gene sequence. N-terminus has yet to be determined

ID-186

Clone 3-17b (ID-123b)

GGATCCTAAAAACGCTAAGGTTATCAAAAAAATGCTGATCAATTAGTG
 ACAAGGCAATGGTATTGCAGAGAAGTATAAGCCAAATTAAAGCTGCA
 AAGTCTAAATACTTGTGACTTCACATACAGCATTCTCATACTTAGCTAAG
 CGATACGGATTGACTCAGTTAGGTATTGCAGGTGTCTCAACCGAGCAAGA
 ACCTAGTGCTAAAAAATTAGCCGAAATTAGGAGTTGTGAAAACATATA
 AGGTTAAGACTATTTTGTGAAGAAGGAGTCTCACCTAAATTAGCTCAAG
 CAGTAGCTTCAGCTACTCGAGTTAAATTGCAAGTTAAGTCCTTAGAAG
 CAGTTCCCAAAAACAATAAAGATTACTTAGAAAATTGGAAACTAATCTTA
 AGGTACTTGTCAAATCGTTAAATCAATAG

DPKNAKVYQKNADQFSDKAMAIKEKYKPKFKAAKS KYFVTSHAFSYLAKR
 YGLTQLGIAGVSTEQEPEPSAKKLAEIQEfvKTYKVKTIFVEEGVSPKLAQAVAS
 ATRVKIASLSPLEAVPKNNKDYLENLETNLKVLVKSLNQ*

Sequence description:

FIG. 1 CONT'D

SUBSTITUTE SHEET (RULE 26)

A] Length: 433 bp - 144 aa (partial sequence)
 B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-123 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-123 gene sequence. N-terminus has yet to be determined

ID-187

Clone 3-46/47 (ID-130b)

ATGAAAAAAAGTCATCGATTAAAAAAACTACAAAAAGCATACGCCTCAGA
 AACTGTTTAAATAATATTAAATTGGAGGTGTTAAAGGGAGAAATAATTGG
 ATTAATAGGACCCTCTGGAGCAGGGAAATCTACCTTGATTAAAACATATGCT
 TGGCATGGAAAAAGCAGATAAGGGAACAGCTCTGTTCTGATACTCAAA
 TGCCAGATCGTAATATTTAAATCAAATTGGCTATATGGCTCAATCTGATG
 CCTTACACGAGTCTTAACCTGGCTTAGAAAATTATTATTCTTGGAAAAAA
 TGAAAGGTATTCAAAAAACTGAATTAAAACAGCAGATAACTCATATTCT
 AAAGTAGTAGATCTAGAAAACCAACTTGATAAAATTGTCAGGTTACTCA
 GAAGGTATGAAAAGACGGCTTCTAGCCATGCCCTACTTGGAAACCCC
 ACAGTTTAATCCTAGATGAACCTACCGTTGGAATTGATCCATCCTGAGG
 AGAAAAATCTGGCAAGAGCTAATTAAATTAAAGGATGAAGGACGTTCTAT
 CTTTATTACAACCCACGTTATGGATGAAGCAGAATTACAAGTAAGGTTGC
 ACTACTATTACGTGGAAACATTATTGCCTTGATACTCCATTACATTAAA
 AAAACAATTAAATGTGAGTACTATTGAGGAAGTTTCTAAAAGCTGAAGG
 AGAATAA

MKKVIDLKKLQKAYASETVNNINLEVFKGEIIGLIGPSGAGKSTLIKTMLGME
 KADKGTAVLVLDTQMPDRNILNQIGYMAQSDALHESLTGLENLLFFGKMKGIQ
 KTELKQQITHISKVVVDENQLDKFVSGYSEGMKRLSLAIALLGNPTVLILDEP
 TVGIDPSLRRKIWQELINKDEGRSIFITTHVMDEAELTSKVALLRGNIIFDTP
 LHLKKQFNVSTIEEVFLKAEGE*

Sequence description:

A] Length: 717 bp - 239 aa (Possible full-length sequence)
 B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-130 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-130 gene sequence. ATG start codon is preceded by a possible

FIG. 1 CONT'D

Shine-Dalgarno. No obvious potential leader peptide sequence

ID-188

Clone 3-83b (ID-144b)

ATGGTACAAATGATA CATGATATGATTAAAACAATTGAGCATTGCTGAG
 ACACAAGCTGATTTCAGTGTATGATATTAGGGGAAGTCCATACTTAT
 GGACAACCTAAAGTAGACTCTGACTCTAGCTGCTCATATTGATAGCCTA
 GGCCTTGTGAAAAATCACCTGTCTTAGTATTGGTGGTCAAGAATATGAA
 ATGTTGGCGACATTGTTGCTTAACAAAGTCAGGGCATGCTTATATACCG
 GTTGACCAACACTCTGCTTGGATAGAATACAGGCTATTATGACAGTTGCT
 CAACCCAAGCCTATCATTCAATTGGTGAATTCCCTCTGAAGTTGATAAT
 GTCCCAATCCTAGACGTTCTCAAGTTCAAGCTATTGAGAAAAGACT
 CCTTATGAGGTAACACATTCTGTTAAAGGTGATGATAATTACTATATTATT
 TTCACTTCAGGGACTACTGGTTACCAAAAGGTGTGCAAATTTCACATGAC
 AATTATTGAGCTTACAAATTGGATGATTCTGATGATGAGTTTCAGTTC
 CTGAAAGACCGCAAATGTTGGCTCAACCC

MVQMIHDIMIKTIEHFAETQADFPVYDILGEVHTYQLKVDSDSLAAHIDSGL
 VEKSPVLVFGGQEYEMLATFVALTKSGHA YIPVDQHSALDRIQAIMTVAQPSL
 IISIGEFPLEVDNVPILDVSQVSAIFEKTPYEVTHSVKGDDNYYIIFTSGTTGLP
 KGVQISHDNLLSFTNWMISDDEFSVPERPQMLAQ

Sequence description:

A] Length: 592 bp - 197 aa (partial sequence)

B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-144 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-144 gene sequence.

Putative ATG start codon is preceded by a typical Shine-Dalgarno sequence. No obvious leader peptide sequence

This orf is not in frame with nuc

ID-189

FIG. 1 CONT'D

Clone 3-86b (ID-145b)

ATGGAAAATCATCGTTATGAAGATGAAGGTAAATTCCAGCGTAAGATGAC
 CAGTCGTCATCTCTTATGTTATCGCTAGGTGGTATCGGGACTGGCCT
 TTCTTGAGTTCAAGGTTATACCATTGCACAGGCTGGTCCGCTGGAGCTGTG
 CTGTCTTATTGATTGGTGCCGTTGTGGTTATITGGTCATGCTATCACTTG
 GGGATTGGCGGTTGCCATGCCGGTGACGGGGTATTCCACACTATGCCA
 CTAAGTTATCAGTCCTGGAACAGGTTTACTGTTGCTGGCTATATTGGAT
 TTGTTGGACGGTCGCCTGGGACTGAATTAGGTGCTGCCATGCTGAT
 GCAGCGCTGGTCCCAAATGTGCCGGCTTGGCATTGCTTCCTTTGCC
 CTTGTGATTGGTTAAATGCTCTAGCGTACGCTTGTGCAGAACAG
 AGTCTTCTCAAGTATTAGGTTATTGCTATCATTATCTTATTATCTG
 GGCTTAGGTGCTATGTTGGTCTAGTTCCCTGAAGGTACGCACAAGGCT
 ATTCTCTCACTCATCTGACTGCCAATGGTGCCTTCCAATGGTATCGTTG
 CAGTTGTCTCAGTCATGTTGGCTGTTAACTATGCCCTCTGGTACTGAGTT
 AATTGGTATTGCGGCTGGTGAAACGGATAATCCCAAAGAACGCTGTACCAA
 GGGCTATTAAAACGACAATCGGTCGCTTGGTTTTCTTGACTGACAA
 TTGTTGTCCTAGCTCGTATTGCCAATGAAAGAGGCAGCGTATCCACAG
 CACCATCGTTGATGTCTTGACAAGATGGGAATCCCTTACGGCGGATA
 TCATGAACCTCGTTATCTGACAGCCATCCTGTCTGCTGGTAACTCAGGTCT
 CTACGCATCAAGCCGTATGCTCTGGTCCCTGCCAATGAAGGTATGTTGTC
 AAAATCTGTTGAAAATCAATAAACACGGTGTCCAATGCGTGCTCTTCT
 CTTGTCAATGGCAGGAGCAGTGCTGTCGCTTTCAAGTATTACGCTGC
 AGACACAGTTATCTAGCCTGGTTCAATCGCGGGCTTGCTGTTGTC
 GTATGGCTAGCCATTCCAGTCGCACAAATCAATTCCGCAAGGAATT

 MENHRYEDEGFQRKMTSRHLFMLSLLGGVIGTGLFLSSGYTIAQAGPLGAVL
 SYLIGAVVVYLVMLSLGELAVAMPVTGSFHTYATKFISP GTGFTVAWLYWIC
 WTV ALGTEFLGAAMLMQRWF PNVP AWAFASFFALVIFGLNALS VRFFAEAES
 FFSSIKVIAIIIFIILGLGAMFGLVSFEGQHKAILFTHLTANGAFPNGIVAVVSVM
 LAVNYAFSGTELIGIAAGETDNPKEAVPRAIKTTIGRLVVFFVLTIVVLA SLLPM
 KEAGVSTAPFDVKMGIPFTADIMNFVILTAI SAGNSGLYASSRMLWSLA
 NEGMLSKSVVKINKHGVPMR ALLSMAGAVLSLFSSIYAADTVYLA VSIAGF
 AVVVVWLAI PVAQINFRKEF

Sequence description:

A] Length: 1126 bp - 393 aa (partial gene)

FIG. 1 CONT'D

sequence)

B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-145 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-145 gene sequence. Putative ATG start codon is preceded by a typical Shine-Dalgarno sequence. Possesses a possible leader peptide sequence.

ID-190

Clone 3-94b

TCAGAAAATGCAGAGGCAGCAACGGTTGCCACAAACTGGTTACCAAAGG
 AGCTAATGTCATTATCGGACCAGCAACATCGGGTGCAGCTGCATCTCAAC
 TCCAAAAGTAAATGCAGCAGCAGTCCAATGATTGCACCTGCTGCGACAC
 AAGACAATTAGTCTATGGTTCTGATGGAAAAACCTTAAATCAGTATTCT
 TCCGAGCTACTTTGTCGATAATTATCAAGGAAAGCTATTGTCTCAGTATG
 CTACAGACAAACCTTAAAGCTAAAAAAGTTGTTCTATTATGATAATTAT
 CAGATTACTCAAAGGGGGTAGCAAAATCATTTAAGGAAAGTTAGTGGAA
 AAAATTGTTGATAGTATGACATTCTCGCTGGTGATACTGATTCCAAGCG
 TCATTGACTAAGTTGAAAGGGAAAGAATATGATGCTATTGTGATGCCAGG
 TTACTATACCGAGACAGGATTAATAGTTAAGCAAGCGCGTGATTAGGTAT
 CTCTAAACCGGTTCTGGGCTGATGGTTGATAGTCCGAAATTGTGCA
 ATCGGCAACACCTGTAGGAGCTCAAACGTTATTATGACAGGTTTCAC
 TACACAAGGATCAACCAAAGCTAAAGCT

SENAEAATVATNLVTKGANVIIGPATSGAAASSTPKVNAAA VPMIAPAATQD
 NLVYGS DGKTLNQYFFRATFVDNYQGKLLSQYATDNLKAKKVVLFYDNSSD
 YSKGVAKSFKESYSKIVDSMTFSAGDTDFQASLTKLGKEYDAIVMPGYYT
 ETGLIVKQARDLGISKPVLPDGFDSPKFVQSATPGASNVYYLTGFTTQGST
 KAKA

Sequence description

A] Length: 637 bp - 231 aa (partial sequence)

FIG. 1 CONT'D

SUBSTITUTE SHEET (RULE 26)

B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-149 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-149 gene sequence. N- and C-termini have yet to be determined

ID-191

Clone 2-c94b (ID-153b)

TTGGGACTAAAGACCATGCTTAGTCTATCCATTTCATTATCTGGGGGG
 CAAAAGCAACGTGTCGCACTAGCTCGTGCATGATGATTGATCCACAGATT
 ATTGGTTATGATGAGCCAAGTAGCGCTCTGATCCAGAGTTGCGTCAAGAA
 GTAGAAAAACTAATTACAAAATAGAGAAACAGGTATGACACAAATTGT
 AGTAACACATGATCTCAATTGCTGAAAGTATCTGATAACGATTCTCAA
 AATTAATCCTAACAGTAG

MGLKDHALVYPFSLSGGQKQRVALARAMMIDPQIIGYDEPTSALDPELRQEVEK
 KLILQNRETGMTQIVVTHDLQFAESISDTILKINPK*

Sequence description

A] Length: 270 bp - 90 aa (partial sequence)

B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-153 gene which was identified by LEEP, during cloning and sequence analysis of the ID-153 gene sequence.
 N-terminus has yet to be determined

ID-192

Clone 2-c1b (ID-155b)

ATGACTAATATCTCAGATGTTCCAAAAGCTATTAGAACACAGGCACAGTAT
 GTTCTCTGGGAATGAGAGTTATGGATCAGTCGGTATTACGAAAACATAT
 AATTCAAAAGAACCTTATTGAAACCAGATATGATTATATTGATGATAGA

FIG. 1 CONT'D

AGACAAGAGACAATGCTAAAATCACTCAAGAAATAGAAATGGAGCATTG
A

MTNISDVPKAIRTQAQYVLLGMRVMDQSVLPKTYNSKEPYLKPDIMIYIHDRR
QETMLKITQEIMEH*

Sequence description

- A] Length: 204 bp - 68 aa (partial sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-155 gene which was identified by LEEP, during cloning and sequence analysis of the ID-155 gene sequence.
- ATG start codon is preceded by a potential typical Shine-Dalgarno sequence.
- Has a typical leader peptide. N-terminus has yet to be verified

ID-193

Clone 2-54altb (ID-172b)

AAGCTTGCATGCCCTGCAGGTCGACTCTAGAGGATCTTGGGAATATAAATT
TGGATTTCATGACGATGTAAAGCCAATTATTCTACGGGAAAAGGTCTAAA
TGAGGCTGTTATCGTGAGTTATCTGCAGCTAAGGGTGAACCTGAGTGGAT
GTTGGACTTCGTCTAAAATCCTGGAAACGTTAATAAAATGCCATGCA
GACCTGGGGAGCAGATTATCAGATATTGATTTGATGATATTATTATTA
TCAAAAAGCATCTGATAAACCTGCGCTGATTGGGATGATGTTCCAGAAA
AAATCAAAGAAACTTTGAAAGAATTGGGATTCAGAAGCTGAAAGAGCC
TATCTGCAGGAGCATCAGCACAAATATGAATCAGAAGTAGTTATCACAAT
ATGAAAGAAGAATATGATAAGCTGGGTATTGTTTACGGATACTGACTCT
GCACTTAAAGAGTACCCAGAGCTATTCAAAAAATTTGCTAAACTGTC
CCTCCAACAGATAATAAATTAGCTGCTCTGAACCTCTGCTGTATGGTCAGGT
GGAACATTATTATGTTCTAAAGGTGTTAAGGTGGATATTCCACTTCAA
ACTTACTTCCGTATAATAATGAAAATACTGGACAATTGAACGTACTCTC
ATTATTGTTGATGAGGGAGCAAGTGTCACTATGTTGAAGGTTGTACCGCC
CCAACCTATTCTCAAATAGTTACATGCAGCTATAGTTGAAATTGGCAC
TTGATGGAGCTTATATGCGCTATACGACTATTCAAAATTGGTCCGATAATG
TCTATAATTAGTGACAAAACGTGCTACCGCTAAAAAGATGCAACAGTT
GAGTGGATAGATGGAAATCTAGGAGCTAAAACAACATGAAATACCCATC

FIG. 1 CONT'D

GGTTTACCTTGATGGTGAAGGAGCACGTGGCACGATGTTGTCTATTGCTT
 TGCAAACAAAGGACAACACCAAGATACTGGGTGCAAAGATGATTCTAATG
 CCCCCCATACTAGTTCATCCATTGTCTAAATCAATTGCTAAGGGTGGGG
 GAAAAGTTGATTATCGAGGTCAAGTGACATTAAATAAAGATTCCAAAAAA
 TCAGTGTACATATAGAACATGACACCATTGATGGATGATATTCAAAA
 TCAGATACCATACCGTTAATGAGATTCTAATTACAGGTTGCTTAGAG
 CATGAAGCAAAGGTGTCTAAGATTCTGAAGAGCAACTGTACTACTGATG
 AGTCGAGGTTTATCTGAAGCTGAAGAACAGAAATGATTGTTATGGGGTTT
 GTTGAGCCCTTACGAAAGAATTACCAATGGAATATGCGGTAGAGTTAA
 TCGTTAATTCTATGAAATGGAAGGTCAGTTGGTTAA

MHACRSTLEDLGEYKFGFHDDVKPIYSTGKGLNEAVIRELSAAKGEPEWMLD
 FRLKSLETFNKPMPQTWGADLSIDFDDIYYQKASDKPARDWDDVPEKIKE
 TFERIGIPEAERAYLAGASAQYESEVVYHNMKEEYDKLGIVFTDTDSALKEYP
 ELFKKYFAKLVPPTDNKLAALNSAVWSGGTFIYVPKGVKVDIPLQTYFRINNE
 NTGQFERTLIIIVDEGASVHYVEGCTAPTYSSNSLHAAIVEIFALDGAYMRYTTI
 QNWSDNVYNLVTKRATAKKDATVEWIDGNLGAKTMMKYPVSYLDGEGARG
 TMISIAFANKGQHQDTGAKMIHNAPHTSSIVSKSIAKGGGKVDYRGQVTFN
 KDSKKSVSHIECDTILMDDISKSDTIPFNEIHNSQVALEHEAKVSKISEEQLYYL
 MSRGLSEAEATEMIVMGFVEPFTKELPMEYAVELNRLISYEMEGSVG*

Sequence description:

- A] Length: 1411 bp - 469 aa (Possible full-length gene)
- B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-72 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-72 gene sequence. No obvious Shine Dalgarno sequence upstream of TTG start codon insufficient sequence data). N terminus needs verification.

ID-194

Clone 3-1b (ID-81b)

ATGATAGAATTCTTTCTAATATCAGAACAGAGATTCCGCAGATGCCTTA
 CTTATCCATAGTTGATTCTACCTTCTGATGTGGCTGACTTT
 GGTTAATAGAGATAAGCCTTGTATAAAACTATTGGAGTATCCTTTAGG
 ACTTCAGTTAATTACGATTATACTGGTTTCTGGGAAAATTGCCTTA

FIG. 1 CONT'D

TCTGAAAGTCTTCCCCTTACCATGGTCGAATAGGCATGTTGTCGGTCTCTA

MIEFFSNIRTEIPQMPLLHSILSVPFLMWLTIVNRDKPLYKTIWSILLGLQLITIYTWF

Sequence description

- A) Length: 261 bp - 87 aa (partial gene sequence)
- B) This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-81 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-81 gene sequence. Sequence Characteristics: Possesses a potential leader peptide sequence Orf is preceded by a potential Shine-Dalgarno sequence.

ID-195

Clone RS-55b

AAGCTTGTGCAAAGTATTAAAGAGATAGGATTAGCTAATGCGCATTATTAGCTGTTGCTCCGACAGGGTCAATCAGTTATCTTCTTGTACTCCGAGCC TTCAACCGGTTGTATCACCTGTCGAAGTACGCAAGGAAGGAGCACTGGGG AGGGTTATGTAGCTGTTATAAGATTGATGCAGATAATTATGTCTACTAC AAAAAAAGGAGCTTATGAAGTGGGATCTGAGGCGATTATCAATATTGCAGC TGCCGCTAAAAACACATTGATCAAGCTATTCGTTAACGCTTTCATGAC AGATCAAGCAACTACGCGAGATTAAATAAGCCTATATTCAAGCATTAA AACAAAAAATGTGCCTCTATTATTATGTACGAGTGAGACAGGACATCCTAG AAGGTAGCGAGAGTTATGATGATGCTGGATGATTCACTTCATCGGACT TAGAAGACTGTCAATCCTGCATGATTAA

>KLVQSIKEIGLANAHLLAVAPTGSISYLSCTPSLQPVVSPVEVRKEGALGRV YVAAYKIDADNYVYYKKGA YEVGSEAIINIAAAAQKHIDQAISLTLFMTDQAT TRDLNKAYIQAFKQKCASIYYVRVRQDILEGSESYDDMLDDFTSSDLEDCQSC MI*

Sequence description:

FIG. 1 CONT'D

A] Length 486 bp - 162 aa (Partial sequence)

B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-87 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-87 gene sequence. N-terminus to be determined.

ID-196

Clone RS-59(ID-90b)

GTGAGGACATATATTACAAACTTGAATGGACATTCAATCACTAGTACAGC
 ACAAATAGCTAAAACATGGTAACAGATATAGCAGTAAGCTTAGGTTTC
 GTGAGCTGGAAATACATTCTATCCGATTGATACTGATTCTCCTGAGGAAA
 TGAGTAAGCGTTAGATGGAATCTGTTCCGGACTAGAAAAAAATGATATTG
 TCATATTCAGACACACTACATGGAACACTACAACCTTTGATGAAAAAATTAT
 TTCACAAATTAAAAATATTGGTGTAAAGATTGTTATTTTATACATGATGTT
 TGTACCGCTAATGTTGATGGAAATTTTATTGATGGATAGAACTATAGC
 TTATTATAATGAAGCAGATGTTAATAGCCCAGTCAAGCAATGGTCGAT
 AAGCTT

MRTYITNLNGHSITSTAQIAQNMVTIAVSLGFRELGIHSYPIDTDSPEEMSKRL
 DGICSLRKNDIVIFQTPTWNTTFDEKLHKLKIFGVKIVIFIHDVVPLMFDGN
 FYLMDRTIAYYNEADVLIAPSQAMVDKL

Sequence description:

A] Length: 414 bp - 138 aa(partial gene)

B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-90 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-90 gene sequence. No obvious signal peptide, but a possible Shine Dalgarno sequence is present upstream of ATG start codon. C-terminus has yet to be determined.

ID-197

Clone RS-59c (ID-90c)

FIG. 1 CONT'D

CATGGAAATGAAGTTGATGATGTTATTAGAAGGGCATTGAATATAATCAC
 CTTATCTTGCTTTGATAATACCTGTCAACAGAGAGTTAGTATTAGATA
 GCAATATCATTTCTCACACAACCTGTGAACAATTGATAAATTAAATGAAAAA
 ATTATCAGGCTCCATTATGTATTGCTAGAGCAACAAAGAGAACAAACA
 AGTAATGAAACAAAAGAGCGTTATAAAGAAATATTAGGAGGGTATGGAA
 ATGCCTAA

HGNEVDDVIRRAFEYNHLIFAFDNTCHNRELVLDNSIISHTCEQLINLMKNLS
 GSIMYLLEQQREQTSNETKERYKEILGGYGNA*

Sequence description:

- A] Length: 261 bp - 87 aa(partial gene sequence)
- B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-90 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-90 gene sequence. N-terminus has yet to be determined

ID-198

Clone RS-70b (ID-93b)

ACATTTTATATTATGTATTGAAGACGTAGCCACCCAGTCAAATATGACT
 GGGAGATTTAGTATGTCTAAAGAAGAGTTGTCATATTACCCGTTATT
 AAACCTTTAAGAATCAAGGTGTATAACAACGGCTGATTGGTCTATTCTC
 CTTATGGGTTATATATTACAGAATCAAGAAATTGTAGCTATTTTAA
 TCAATGTGTTGCTAGTTGCTGTTATGGTCTTGACAGTTGATAAAAAAA
 TCTTATTAAAACAGGGTGGTTACCTATATTAGCTTTAACATTCTTATT
 TTAA

TFLYYVFEDVATQSNMTGKIFSMSKEELSYLPVIKLFKNQGVYNGLIGLFLY
 GLYISQNQEIVAIFLINVLLVAVYGALTVDKKILLKQGGLPILALLTFLF*

Sequence description:

- A] Length: 312 bp - 104 aa (partial gene sequence)

FIG. 1 CONT'D

B] This gene sequence was not identified using the LEEP system. It was identified upstream of the ID-93 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-93 gene sequence.

N-terminus has yet to be determined

ID-199

Clone RS-70c (ID-93c)

ATGAAATTAAAGTGTCTTGATTATGGGCTTATTGATTATGGAAAAACTGCA
AGTGATGCAATACAAGAACGATTCTTTATCACAAGAGGGCGGAGCAACT
AGGCTATCATCAATTGGGGCTGAACATCACGGTGTAAAGGCATTCAAG
TATTAGCAATCCAGAATTAAATGATAATGCATTGGCTAACCAAGACTAAATC
TATCAAAATTGGCTCTGGAGGTATAATGCCTCTGCACTATAGTAGTTAA
ACTCGCGGAGACTCTCAAGACATTAGAGACATGTCATCCGAATCGAGTAA
GTATTGGTTAGGAAATTCACTAGGGACAGTTAAAGTTCAAATGCACTTC
GTAGCTTACATAAAGCACATGATTACGAAGAGGTACTGGAGGAATTGAAG
TCATGGCTTATTGATGAATCATCCAGTAAGGAACCATTAGTTCAAACCGACT
CTTTCTAGCTTCCCAGACTTATATGTGTTGGGGAGTGGTCAAAAATCAGCT
TATTAGCGGCTAAACTGGCTTAGGCTTACCTCGGTGTTTCTTTA
TGGACAAAGACCCATTGACAGAAGCTAA

MKLSVLDYGLIDYGKTASDAIQETILLSQEAEQLGYHQFWVAEHGVKA
FISNP
PELMIMHLANQTKSIKIGSGGIMPLHYSSFKLAETLKLETCHPNRVSIGLGN
SLGTVKVSNALRSLHKAHDYEEVLEELKSWLIDESSSKEPLVQPTLSSFPDLYV
LGSGQKSAYLAALKLGLGFTFGVFPMDKDPLTEAK

Sequence description:

A] Length: 588 bp - 196 aa (partial)

B] This gene sequence was not identified using the LEEP system. It was identified downstream of the ID-93 gene which was identified by LEEP, during cloning and sequence analysis of the full-length ID-93 gene sequence. No obvious signal peptide, but Shine Dalgarno sequence upstream of the ATG start codon.

FIG. 1_{CONT'D}

99 / 110

FIG. 2

100 / 110

nucS1

Bgl II Eco RV
 5'-cgagatctgatatccacaaacagataacggcgtaaatag -3'

nucS2

Bgl II Sma I
 5'-gaagatctccccqqqatcacaacagataacggcgtaaatag -3'

nucS3

Bgl II Eco RV
 5'-cgagatctgatatcacaaacagataacggcgtaaatag -3'

nucR

Bam HI
 5'-cggatccttatggacctaatcagcggttgc -3'

NucSeq

5'-ggatgcttttttcagggtgtatc -3'

pTREP_F

5'-catgatatcggtacctaagctcatatcatgtccggcaatggtgtggctttttgttttagcgataa
 caattcacac -3'

pTREP_R

5'-gcggatccccgggcttaattaatgtttaaacactagtcgaagatctcgcaattctcctgtgtgaaatt
 gttatccgcta -3'

pUC_F

5'-cgccagggtttcccagtcacgac -3'

V_R

5'-tcagggggggcgaggactatg -3'

FIG. 3**V₁**

5'-tcgtatgttgtgtggatttg -3'

V₂

5'-tccggctcgatgtgtggattg -3'

101 / 110

pTREP-Nuc vectors allow cloning of genomic DNA into each frame with respect to the nuclease gene

(i)

pTREP1-nuc1 (EcoRV) AAGTATCAGATCT-- <u>GATATC</u> --TCACAAACAGATAACGGCGTAAAT Frame=+1 ::::::::::::::: ::::::::::::::: ::::::::::::::: pTREP1-nuc2 (Sma 1) AAGTATCAGATCT <u>TC</u> CCCGGGA-TCACAAACAGATAACGGCGTAAAT Frame=+2 ::::::::::::::: ::::::::::::::: pTREP1-nuc3 (EcoRV) AAGTATCAGATCT-- <u>GATATCC</u> CATCACAAACAGATAACGGCGTAAAT Frame=+3 ::::::::::::::: ::::::::::::::: Nuclease Gene TCACAAACAGATAACGGCGTAAAT

Cloning site is indicated by an arrow

FIG. 4

102 / 110

FIG. 5

SDS-PAGE analysis of the purified ID-65 and ID-83 protein antigens

103 / 110

FIG. 6
SDS-PAGE analysis of the purified ID-93 antigen

104 / 110

FIG. 7

SDS-PAGE analysis of the purified ID-89 and ID-96 protein antigens

105 / 110

FIG. 8

IgG Titres against the ID-65 and ID-83 proteins

ID-65 and ID-83 Vaccinations - IgG Titres

FIG. 9

Survival data

ID-93 Vaccination- GBS Challenge and Survival

106 / 110

FIG. 10

IgG Titres against the ID-93 protein

FIG. 11

IgG Titres against the ID-89 and ID-96 proteins

ID-89 and ID-96 Protein Vaccines - IgG Titres

SUBSTITUTE SHEET (RULE 26)

107 / 110

FIG. 12Southern blot analysis - *rib*

108 / 110

FIG. 13

Southern blot analysis - ID-65

FIG. 14

Southern blot analysis - ID-89

SUBSTITUTE SHEET (RULE 26)

109 / 110

FIG. 15

Southern blot analysis - ID-93

110 / 110

FIG. 16

Southern blot analysis - ID-96

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 May 2001 (10.05.2001)

PCT

(10) International Publication Number
WO 01/32882 A3

(51) International Patent Classification⁷: C12N 15/31,
C12Q 1/68, C12N 1/21, C07K 14/315, 16/12, A61K
39/09, 48/00, G01N 33/53, 33/68

(GB). WELLS, Jeremy, Mark [GB/GB]; Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA (GB). HANNIFFY, Sean, Bosco [IE/GB]; University of Cambridge, Dept. of Pathology, Tennis Court Road, Cambridge CB2 1QP (GB).

(21) International Application Number: PCT/GB00/03437

(74) Agents: CHAPMAN, Paul, William et al.; Kilburn [entity:amp] Strode, 20 Red Lion Street, London WC1R 4PJ (GB).

(22) International Filing Date:
7 September 2000 (07.09.2000)

(81) Designated States (*national*): CA, CN, JP, US.

(25) Filing Language: English

(84) Designated States (*regional*): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(26) Publication Language: English

Published:

— with international search report

(30) Priority Data:
9921125.2 7 September 1999 (07.09.1999) GB

(88) Date of publication of the international search report:
15 November 2001

(71) Applicant (for all designated States except US): MICRO-

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

BIAL TECHNICS LIMITED [GB/GB]; 20 Trumpington Street, Cambridge CB2 1QA (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LE PAGE, Richard, William, Falla [GB/GB]; University of Cambridge, Dept. of Pathology, Tennis Court Road, Cambridge CB2 1QP

WO 01/32882 A3

(54) Title: NUCLEIC ACIDS AND PROTEINS FROM GROUP B STREPTOCOCCUS

(57) Abstract: Novel protein antigens from Group B Streptococcus are described, together with the nucleic acid sequences encoding them. The use of vaccines and screening methods is also described.

INTERNATIONAL SEARCH REPORT

Inte onal Application No

PCT/GB 00/03437

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C12N15/31	C12Q1/68	C12N1/21	C07K14/315	C07K16/12
	A61K39/09	A61K48/00	G01N33/53	G01N33/68	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07K C12N C12Q A61K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, EPO-Internal, EMBL

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 97 08553 A (UNIV CALIFORNIA) 6 March 1997 (1997-03-06) Seq Id No: 4 page 5, line 25 - line 30 claim 2 --- ---/---	1-16, 21-23

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

28 May 2001

Date of mailing of the international search report

12.06.2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

van Klompenburg, W

INTERNATIONAL SEARCH REPORT

Inte	ional Application No
PCT/GB 00/03437	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SANCHEZ-BEATO: "Molecular characterization of PcpA: a novel choline-binding protein of <i>Streptococcus pneumoniae</i> " FEMS MICROBIOL LETT, vol. 164, no. 1, 1 July 1998 (1998-07-01), pages 207-214, XP000992682 page 213, left-hand column; figures 1,2 -& DATABASE EMBL 'Online' ebi; ACC. NO.: z82001, 30 March 1997 (1997-03-30) SANCHEZ-BEATO ET AL.: " <i>S. pneumoniae</i> pcpA gene and open reading frame" XP002168347 abstract ---	1-16, 21-23
A	MICHEL J L ET AL: "Cloned alpha and beta C-protein antigens of group B Streptococci elicit protective immunity" INFECTION AND IMMUNITY, US, AMERICAN SOCIETY FOR MICROBIOLOGY. WASHINGTON, vol. 59, no. 6, June 1991 (1991-06), pages 2023-2028, XP002107260 ISSN: 0019-9567 figures 1,2,5 ---	1-24
A	WO 99 16882 A (MEDIMMUNE INC) 8 April 1999 (1999-04-08) claims 1-12,17; figures 1-8 ---	1-24
A	LARSSON C ET AL: "Experimental vaccination against group B <i>Streptococcus</i> , an encapsulated bacterium, with highly purified preparations of cell surface proteins Rib and alfa" INFECTION AND IMMUNITY, US, AMERICAN SOCIETY FOR MICROBIOLOGY. WASHINGTON, vol. 63, no. 9, September 1996 (1996-09), pages 3518-3523, XP002109333 ISSN: 0019-9567 figures 1-3; tables 1,2 ---	1-24
A	US 5 928 900 A (MASURE H ROBERT ET AL) 27 July 1999 (1999-07-27) figures 1B,2-17,19,22; examples 1-4 -----	1-24

INTERNATIONAL SEARCH REPORT

International application No.
PCT/GB 00/03437

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

1-24 all partially

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: Invention 1, claims 1-24 all partially

A Streptococcus agalactiae protein or polypeptide having a sequence as depicted in SeqIdNo.2; a homologue or derivative of said protein or polypeptide; an antigenic and/or immunogenic fragment of said protein or polypeptide; a nucleic acid molecule comprising or consisting of SeqIdNo.1, a nucleic acid molecule complementary to said sequence, a nucleic acid molecule encoding for the same or a homologue, derivative or fragment of said protein or polypeptide; use of said protein or polypeptide as an immunogen and/or an antigen; an immunogenic composition and/or antigenic composition comprising said protein or polypeptide; an antibody to said protein or polypeptide; a method of detection/diagnosis of S.pneumoniae comprising using said protein or polypeptide, said antibody, or said nucleic acid molecule; a kit for the detection of S. galactiae comprising said protein, polypeptide, antibody or nucleic acid; a method of determining whether said protein or polypeptide represents a potential antimicrobial target which comprises inactivating said protein or polypeptide and determining whether S. agalactiae is still viable.

2. Claims: Inventions 2-122, claims 1-24 all partially

Idem as subject 1 but limited to each of the polynucleotide and polypeptide sequences as in SeqIdNo:3-244, wherein invention 2 is limited to SeqIdNo:3 and SeqIdNo:4, invention 3 is limited to SeqIdNo:5 and SeqIdNo:6, ..., invention 122 is limited to SeqIdNo:243 and 244,

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 00/03437

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9708553	A	06-03-1997	AU	6913396 A	19-03-1997
WO 9916882	A	08-04-1999	AU	9507698 A	23-04-1999
			EP	1037997 A	27-09-2000
US 5928900	A	27-07-1999	AU	709405 B	26-08-1999
			AU	7680994 A	22-03-1995
			CA	2170726 A	09-03-1995
			EP	0721506 A	17-07-1996
			FI	960977 A	30-04-1996
			JP	9504686 T	13-05-1997
			NO	960839 A	19-04-1996
			NZ	273497 A	25-03-1998
			WO	9506732 A	09-03-1995
			US	5981229 A	09-11-1999