Quantum simulation on a random tensor network

November 8, 2021

[JG: This is how you make a comment. Hi] [MD: Hi], [RG: Hi].

1 The Dirac-Frenkel's variational principle

We have a Hamiltonian for a quantum system with K terms.

$$H = \sum_{k=1}^{K} \prod_{i=1}^{n} o_i^k \tag{1}$$

where n is the system size and o_i^k is a local operator on site i. We can see each term is a product of local operators. Let $\psi(\theta)$ be the ansatz of wave functions, to obtain the dynamics of the parameters. We treat $x \equiv \frac{\partial \theta}{\partial t}$ as the variational parameters, and set the goal is to minimize [1]

$$\mathcal{L} = \left\| i \frac{\partial \psi}{\partial \theta} x - H \psi \right\|^2. \tag{2}$$

At the extrema, we have $\frac{\partial \mathcal{L}}{\partial x} = 0$. That is

$$0 = \left(-i\frac{\partial \psi^*}{\partial \theta}\right)\left(i\frac{\partial \psi}{\partial \theta}x - H\psi\right) + \left(-ia\frac{\partial \psi^*}{\partial \theta} - \psi^*H\right)\left(i\frac{\partial \psi}{\partial \theta}\right) \tag{3}$$

$$= \frac{\partial \psi^*}{\partial \theta} \frac{\partial \psi}{\partial \theta} x + i \frac{\partial \psi^*}{\partial \theta} H \psi + x \frac{\partial \psi^*}{\partial \theta} \frac{\partial \psi}{\partial \theta} - i \psi^* H \frac{\partial \psi}{\partial \theta}$$
(4)

Finally, we arrive at the Dirac-Frenkel's variational principle by taking the first two terms [JG: Because the wave function is analytic complex valued function, when the real parts of two functions are the same, their complex components are the same too.]

$$\frac{\partial \psi^*}{\partial \theta} \frac{\partial \psi}{\partial \theta} x = -i \frac{\partial \psi^*}{\partial \theta} H \psi \tag{5}$$

[JG: In tensor network representation, we can normalize tensor networks easily, so we do not need to go to the unnormalized prepresentation.]

1.1 The automatic differentiation approach

The first term can be computed as

$$\mathcal{L}_{1}(\theta, \theta') = \psi(\theta)^{*}\psi(\theta'),$$

$$\mathcal{G}_{1}(\theta) = \frac{\partial \mathcal{L}_{1}(\theta, \theta')}{\partial \theta'}x,$$

$$\frac{\partial \psi^{*}}{\partial \theta} \frac{\partial \psi}{\partial \theta} x = \frac{\partial \mathcal{G}_{1}(\theta)}{\partial \theta} \Big|_{\theta = \theta'}$$
(6)

where $\psi(\theta) = \text{normalize}(\text{tensornetwork}(\theta)).$ The second term can be computed as

$$\mathcal{L}_{2}(\theta) = -i\psi(\theta)^{*}H\psi$$
$$-i\frac{\partial\psi^{*}}{\partial\theta}H\psi = \frac{\partial\mathcal{L}_{2}(\theta)}{\partial\theta}$$
 (7)

1.2 Time and space complexity

Let us denote the time complexity of contracting the overlap $\psi^*\psi$ as 1. Eq. (6) can be evaluated by reverse differentiating first order gradient program G_1 . Obtaining the gradient of the program through back propagation only introduces a constant overhead, and let us denote this constant as c. Then the overhead of obtaining the Hessian is c^2 . The time to evaluate expectation values of all terms in the Hamiltonian in Eq. (7) is K. Hence the overall time overhead is $K + c^2$. The space overhead is proportional to the size of intermediate contraction results of tensor networks, which is dominated by the largest tensors.

References

[1] J Broeckhove, L Lathouwers, E Kesteloot, and P Van Leuven. On the equivalence of time-dependent variational principles. *Chemical physics letters*, 149(5-6):547–550, 1988.