Domande a risposta multipla

	1	2	3	4	5	6
a		X				
b					X	X
c			X			
d	X			X		

- 1. In un amplificatore invertente basato su operazionale ideale, il resistore che collega l'uscita con l'ingresso invertente è sostituito da un diodo, con anodo collegato all'ingresso invertente e catodo collegato all'uscita. Per $v_{\rm in}>0$ circuito che si ottiene
 - (a) si comporta come amplificatore esponenziale e presenta resistenza d'ingresso infinita
 - (b) si comporta come amplificatore esponenziale e presenta resistenza d'ingresso finita
 - (c) si comporta come amplificatore logaritmico e presenta resistenza d'ingresso infinita
 - (d) si comporta come amplificatore logaritmico e presenta resistenza d'ingresso finita
- 2. La transconduttanza di piccolo segnale g_m di un transistore MOS nel punto di lavoro Q è definita come:

(a)
$$g_{\rm m} = \left. \frac{\partial i_{\rm D}}{\partial v_{\rm GS}} \right|_Q$$
 (b) $g_{\rm m} = \left. \frac{\partial i_{\rm D}}{\partial v_{\rm DS}} \right|_Q$ (c) $g_{\rm m} = \left. \frac{\partial i_{\rm G}}{\partial v_{\rm GS}} \right|_Q$ (d) $g_{\rm m} = \left. \frac{\partial v_{\rm GS}}{\partial i_{\rm D}} \right|_Q$

- 3. Un amplificatore di tensione è descritto dai parametri $A_{\rm v}$, $R_{\rm in}$, $R_{\rm out}$. Collegando l'ingresso ad una data sorgente di segnale, la tensione d'uscita dell'amplificatore a vuoto è una sinusoide a frequenza 100Hz di ampiezza di picco pari a 2V. Con la stessa sorgente in ingresso, collegando una resistenza di carico $R_L = 1 {\rm k} \Omega$, la tensione d'uscita è una sinusoide a frequenza 100Hz con ampiezza di picco pari a 1V. Si può concludere che:
 - (a) $R_{\rm in} = 1 \mathrm{k}\Omega$
 - (b) La dinamica della tensione d'uscita dell'amplificatore è limitata a $\pm 1V$
 - (c) $R_{\rm out} = 1 \mathrm{k}\Omega$
 - (d) $R_{\rm in} \to \infty$ e non si ha effetto di carico in ingresso.
- 4. In uno stadio amplificatore drain comune, descritto dai parametri $A_{\rm v}$, $R_{\rm in}$ e $R_{\rm out}$:
 - (a) è sempre $A_v < 0$ (stadio invertente)
 - (b) R_{out} è indipendente dalla transconduttanza g_m del transistore MOS.
 - (c) l'ingresso è applicato al terminale di source e l'uscita è prevelata al terminale di drain del transistore
 - (d) è sempre $|A_v| < 1$
- 5. La banda di un amplificatore destinato ad amplificare un segnale a banda limitata:
 - (a) deve essere la più ampia possibile, per evitare perdita di informazione
 - (b) deve includere la banda del segnale con un certo margine, ma non è opportuno che non sia molto più ampia, per evitare di amplificare rumore fuori banda
 - (c) deve essere più ampia della banda del rumore in ingresso, per evitare che il rumore sia distorto.
 - (d) deve essere inclusa nella banda del segnale ed è opportuno che sia decisamente più stretta della banda del segnale, così da non amplificare nè il rumore fuori banda, nè il rumore in banda
- La tensione di offset in ingresso (input offset voltage) di un amplificatore operazionale (indicare quale delle seguenti affermazioni è errata)
 - (a) è un parametro particolarmente critico se l'operazionale è utilizzato in un amplificatore di precisione per grandezze continue o variabili lentamente
 - (b) è la tensione che si misura in uscita cortocircuitando gli ingressi non-invertente ed invertente
 - (c) coincide in modulo con la tensione che si misura all'uscita di un operazionale in configurazione voltage follower, per segnale d'ingresso nullo
 - (d) assume valori diversi da esemplare ad esemplare ed i dati di targa ne riportano il valore in modulo nel caso peggiore

Esercizio 1.

Con riferimento al circuito in figura, in cui sono date le tensioni continue ai nodi A, B e C:

- 1. verificare la regione di funzionamento di MN e determiname i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\text{out}}}{v_{\text{ln}}}$, la resistenza d'ingresso R_{in} e la resistenza d'uscita R_{out} in condizioni di piccolo segnale [sono richiesti: il circuito equivalente per il piccolo segnale, le espressioni simboliche (passaggi essenziali) ed i valori numerici].
- 3. supponendo che la porta d'ingresso dell'amplificatore analizzato sia accoppiata in AC ad un sensore, rappresentabile come un generatore di tensione v_s con resistenza interna $R_S=1\mathrm{k}\Omega$, e che la porta d'uscita sia accoppiata in AC ad un carico resistivo $R_L=10\Omega$, valutare in banda l'amplificazione di transconduttanza $G_m=\frac{i_L}{v_s}$ dove i_l è la corrente che scorre in R_L [sono richiesti: il circuito considerato, con indicazione della convenzione di segno adottata per i_l , l'espressione simbolica e il valore numerico di G_m].

1)
$$V_{GS} = V_A - V_B = 1.1V > 0.9V = U_{TM}$$
 $V_{DS} = V_C - V_B = 3V - 0.5V = 2.5V > V_{GS} - U_{HH} = 0.2V$
 $REG.$ DI SATURARICUE

$$g_{m} = \beta (V_{GS} - V_{TH}) = 25 mA/N^{2} \cdot G, 2V = 5 mS$$

 $g_{o} = \lambda I_{b} = 0$

gm Vgs ₹ R311RG < Rull 25 Non } EIRE Nu = Ngs + gm Ngs (R4R5) -Ngs = 1+9 m(la URs) - 9m (R31/20) - 5mis. 2KQ -= -2,5 Nout= 1+ 9m (Rull Rs) 1 + 5m5.600 (~ Jag Du = 2,11 Rz= 108,8 KD Dar = 2011 RG = 2KR (d(c.c.) AMPLIFI CATORE Non= No- Rot Run

Esercizio 2.

Con riferimento al circuito in figura si assumano: $v_0 = 10$ V, $R_0 = R_1 = \cdots = R_8 = R = 1$ k Ω , C = 1nF

- 1. Si supponga che gli amplificatori operazionali OP_1, OP_2, OP_3 siano ideali e che il condensatore C si comporti come un circuito aperto. Determinare le tensioni $v_{\text{out},1}, v_{\text{out},2}$ e $v_{\text{out},3}$ [sono richieste le espressioni simboliche (passaggi essenziali) ed i valori numerici].
- 2. Assumendo che gli operazionali OP_1, OP_2, OP_3 siano ideali, determinare l'espressione della funzione di trasferimento $H(s) = \frac{V_{out2}}{V_o}$.
- 3. (OPZIONALE) Considerando il condensatore C come un circuito aperto, si supponga ora che per l'amplificatore OP_2 la resistenza differenziale di ingresso sia finita e pari a $R_{\rm in,d} = 100 {\rm M}\Omega$ e il guadagno di tensione sia finito e pari a $A_{\rm d} = 10^4$. Determinare come si modificano le tensioni $v_{\rm out,1}, v_{\rm out,2}$ e $v_{\rm out,3}$ rispetto al punto 1.

Nout
$$1 = N_0 \cdot \left(-\frac{R_1}{R_8}\right) = -N_0 = -10V$$

Nout $2 = N_{\text{out}} \cdot \frac{R_5}{R_5 + R_6} \cdot \left(1 + \frac{R_3}{R_h}\right) = -N_0 = -10V$

2)
$$V_{2} = \frac{R_{1}}{R_{8}} \cdot \frac{Q_{5}}{R_{5} + R_{6}}$$

$$V_{2} = \frac{R_{1}}{R_{8}} \cdot \frac{Q_{5}}{R_{5} + R_{6}}$$

$$V_{2} = \frac{R_{2}}{R_{8}} \cdot \frac{R_{5}}{R_{5} + R_{6}}$$

$$V_{2} = \frac{R_{2}}{R_{2}} \cdot \frac{A}{SC}$$

$$V_{2} = \frac{R_{2}}{R_{2}} \cdot \frac{A}{SC}$$

$$V_{3} = \frac{R_{2}}{R_{2}} \cdot \frac{A}{SC}$$

$$V_{4} = \frac{R_{3}}{R_{4}} \cdot \frac{R_{4}}{R_{4}} \cdot \frac{R_{5}}{R_{4}} \cdot \frac{R_{5}}{R_{5}} \cdot \frac{R_{5}}{R_{5}} \cdot \frac{R_{5}}{R_{5}} \cdot \frac{R_{5}}{R_{5}} \cdot \frac{$$

$$H(s) = \frac{V_{\text{out}2}}{V_{\text{o}}} = \frac{R_7}{R_8} \cdot \frac{R_5}{R_5 + R_6} \left(\frac{1 + R_3}{R_{\text{u}}} \right) \cdot \frac{\text{sc}(R_2 + R_3 || R_4) + 1}{\text{sc}(R_2 + R_5) + 1}$$

$$= \frac{1 + \frac{3}{2}RCs}{1 + 2RCs} = \frac{1 - \frac{s}{s_{z}}}{1 - \frac{s}{s_{p}}}$$

$$S_2 = -\frac{1}{3RC} = -\frac{1}{2RC} = -\frac{1}{2RC} = -\frac{1}{2RC}$$