Superfici

Curva di Jordan

Definizione

Una curva di Jordan è una curva piana semplice e chiusa

Teorema

 $\gamma:[a,b] o \mathbb{R}^2$ curva di Jordan \implies

- $\Gamma=\gamma([a,b])$ divide il piano in due insiemi aperti di cui uno è limitato $D_{\rm int}$ chiamato interno e uno illimitato $D_{\rm ext}$ chiamato esterno, entrambi aperti
- $ullet \ \partial D_{
 m int} = \partial D_{
 m ext} = \Gamma$

Definizione

Si chiama chiusura di D l'insieme $\bar{D} = D \cup \partial D$

Superficie

Definizione

Un sottoinsieme $S\subset\mathbb{R}^3$ si dice superficie se $\exists\sigma:\bar{D}\subset\mathbb{R}^2\to\mathbb{R}^3$ mappa detta parametrizzazione di S, $\sigma(u,v)=(\sigma_1(u,v),\sigma_2(u,v),\sigma_3(u,v))=(x(u,v),y(u,v),z(u,v))$ verificante:

- D è un aperto di \mathbb{R}^2 , interno di una curva di Jordan
- σ è continua e iniettiva
- $\sigma(\bar{D}) = S$

S si dice superficie cartesiana se $\exists \sigma: \bar{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$ parametrizzazione di uno dei seguenti tipi, con $f: \bar{D} \to \mathbb{R}$, $f \in \mathrm{C}^1(\bar{D})$:

- $\bullet \ \ \sigma(u,v)=(u,v,f(u,v))$
- $\sigma(u,v) = (u,f(u,v),v)$
- $\sigma(u,v) = (f(u,v),u,v)$

Punti interni e bordo intrinseci

■ Definizione

 $S\subset \mathbb{R}^3$ superficie elementare: $\partial S=S$ e $\mathring{S}=\emptyset$

Un punto $\underline{p_0}\in S$ si dice interno a S se esistono $\mathrm{B}(\underline{p_0},r_0)$ e $\sigma_*:\bar{D}_*\subset\mathbb{R}^2 o\mathbb{R}^3$ parametrizzazione di

 $\overline{\mathrm{B}(p_0,r_0)\cap S}$ tale che $p_0\in\sigma_*(D_*)$

L'insieme dei punti interni di S si denota con S'

Si chiama bordo di S l'insieme dei punti che non sono interni $\mathrm{bor}(\mathrm{S}) = S \setminus S'$

Regolarità della parametrizzazione e piano tangente

Definizione

 $S\subset\mathbb{R}^3$ superficie parametrizzata da $\sigma:ar D o\mathbb{R}^3$ di classe C^1 , $p_0=\sigma(u_0,v_0)\ \ (u_0,v_0)\in D$

Se $\gamma:[a,b]\to D$ di classe C^1 , $\gamma'(t_0)\neq\underline{0}$, $\tilde{\gamma}=\sigma\circ\gamma$ è la corrispondente curva sulla superficie ed è di classe C^1

Se $\tilde{\gamma}'(t_0) \neq \underline{0}$ e la retta tangente a $\tilde{\gamma}$ passante per $\tilde{\gamma}(t_0)$ appartiene a π allora $\exists \pi$ piano tangente a S in $\underline{p_0}$

Si vuole imporre $ilde{\gamma}'(t_0)=u'(t_0)\cdot\sigma_u(u_0,v_0)+v'(t_0)\cdot\sigma_v(u_0,v_0)
eq 0$

 $\pi:\{p_0+\lambda\sigma_u(u_0,v_0)+\mu\sigma_v(u_0,v_0):\lambda,\mu\in\mathbb{R}\}$ è il piano di equazione cartesiana

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0 \; \mathsf{con} \; (a,b,c) := \sigma_u(u_0,v_0) \times \sigma_v(u_0,v_0) \neq \underline{0} \; \mathsf{e} \; \underline{p_0} = (x_0,y_0,z_0)$$

 $p_0\in S'$ si dice regolare se esistono $\mathrm{B}(p_0,r_0)$ e $\sigma:\bar{D}\to\mathbb{R}^3$ parametrizzazione di $\overline{\mathrm{B}(p_0,r_0)\cap S}$ tale che

- σ è di classe C^1
- $ullet \sigma_u(u_0,v_0) imes \sigma_v(u_0,v_0)
 eq \underline{0}$

 π si chiama piano tangente a S in p_0

I due versori normali a π sono

$$\pm rac{\sigma_u(u_0,v_0) imes\sigma_v(u_0,v_0)}{||\sigma_u(u_0,v_0) imes\sigma_v(u_0,v_0)||}$$

S si dice regolare se tutti i punti interni sono regolari

Area di una superficie

₽ Definizione

 $S\subset\mathbb{R}^3$ superficie regolare, $\sigma:ar D\subset\mathbb{R}^2 o\mathbb{R}^3$ sua parametrizzazione di classe C^1

 $Q = [u_0, u_0 + du] imes [vo, v_0 + dv]$ è l'elemento infinitesimo di area

$$\mathsf{Se}\;(u,v) \to (u_0,v_0),\, \sigma(u,v) = \sigma(u_0,v_0) + \langle J_\sigma(u_0,v_0), (u-u_0,v-v_0)^T \rangle + o(||(u-u_0,v-v_0)||)$$

$$ilde{Q}:=\{\sigma(u_0,v_0)+\lambda\sigma_u(u_0,v_0)+\mu\sigma_v(u_0,v_0):0\leq\lambda\leq du\wedge 0\leq\mu\leq dv\}=\sigma(Q)$$

$$\operatorname{area}(ilde{Q}) = ||\sigma_u(u_0,v_0) imes \sigma_v(u_0,v_0)|| \, du \, dv = dS$$

Si chiama area di S se $||\sigma_u(u,v) imes \sigma_v(,v)||$ è limitata $orall (u,v) \in D$ e quindi è ben definita

$$\mathrm{area}(S) := \iint_S dS = \iint_D ||\sigma_u(u,v) imes \sigma_v(u,v)|| \, du \, dv$$

Q Osservazione >

 $D\subset\mathbb{R}^2$ interno di una curva di Jordan, $f\in\mathrm{C}^0(\bar{D})\cap\mathrm{C}^1(D)$, $\sigma:D\to\mathbb{R}^3$ superficie cartesiana parametrizzazione di $S\subset\mathbb{R}^3$

$$\operatorname{area}(S) = \iint_D \sqrt{1 + ||
abla f(u,v)||^2} \, du \, dv$$

Integrale di superficie

Definizione

 $S\subset\mathbb{R}^3$ superficie regolare parametrizzata da $\sigma:\bar{D}\subset\mathbb{R}^2 o\mathbb{R}^3$ tale che D è misurabile e $||\sigma_u(u,v) imes\sigma_v(u,v)||$ è limitata $orall (u,v)\in D,\,f:S' o\mathbb{R}$ continua e limitata

$$\iint_S f\,dS := \iint_D f\cdot ||\sigma_u(u,v) imes \sigma_v(u,v)||\,du\,dv|$$

si chiama integrale di superficie di f su S