ITP20002-01 Discrete Mathematics

Logic and Proofs

31 August 2018

4 September 2018

Chapter 1. Logic and Proofs

- Propositional logic (1.1, 1.2)
- Logical equivalence and satisfiability (1.3)
- Predicate logic (1.4, 1.5)
- Inference (1.6, 1.7)
- Proof basics (1.8, 1.9)

Logic

 Logic is a way to state arguments and to reason with arguments, clearly and correctly

- A logic system has the syntactic and the semantic aspects
 - syntax: symbolic structure of arguments
 - semantics: a relation between symbolic structures and meaning

Proposition

- A proposition is a declarative sentence that is either true or false
 - -1+1=2
 - Vancouver is the capital of Canada
 - $-\frac{1+2+3}{}$
 - x + 1 = 2
- The negation of p for a proposition p, denoted as $\neg p$, is the proposition that is true only when p is false.
- A compound proposition is formed from existing propositions using logical operators
 - logical operators: negation, disjunction, conjunction, exclusiveor, implication, etc.
 - propositional variable: a variable that represents a proposition

Conditional Statement

- A conditional statement (or implication) $p \to q$ for propositions p and q is the proposition that is false when p is true and q is false, and $p \to q$ is true otherwise
 - if you do not take midterm, then you get F
 - if you are in the Handong campus, you are in Pohang
 - if Juan has a smartphone, then 2 + 3 = 5
 - $-(2+3=4) \rightarrow (1+2=4)$
- The converse of $p \rightarrow q$ is $q \rightarrow p$.
- The inverse of $p \to q$ is $\neg p \to \neg q$.
- The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

Propositional Satisfiability

- A compound proposition p is **satisfiable** if there is an assignment of truth values to the propositional variables that makes p true
 - Such assignment is called as a solution
- A compound proposition p is **unsatisfiable** if p is not satisfiable
 - A unsatisfiable proposition is called as contradiction
- A compound proposition p is **valid** if p is true for all assignments
 - A valid proposition is called as tautology
 - E.g., if x = y, then x = y
 - E.g., I just want to live while I am alive Bon Jovi

Propositional Equivalence

• Two compound propositions p and q are logically equivalent when $p \to q \land q \to p$ is valid

- How to show two propositions are logically equivalent?
 - construct truth table
 - use knowledge of equivalent propositions

Example

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

 $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

 $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$

• De Morgan's law: $\neg(p \land q) \equiv \neg p \lor \neg q$, $\neg(p \lor q) \equiv \neg p \land \neg q$

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

Equivalence	Name	Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws	$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws	$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$\neg(\neg p) \equiv p$	Double negation law	$p \vee \neg p \equiv \mathbf{T}$	Negation laws
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	$p \land \neg p \equiv \mathbf{F}$	

Associative laws

Distributive laws

$$\neg(p \to q) \equiv \neg(\neg p \lor q) \qquad \text{by Example 3}$$

$$\equiv \neg(\neg p) \land \neg q \qquad \text{by the second De Morgan law}$$

$$\equiv p \land \neg q \qquad \text{by the double negation law}$$

Logic Puzzles

Raymond Smullyan (Born 1919)

- An island has two kinds of inhabitants, knights, who always tell the truth, and kna ves, who always lie.
- You go to the island and meet A and B.
 - A says "B is a knight."
 - B says "The two of us are of opposite types."

Example: What are the types of A and B?

Solution: Let p and q be the statements that A is a knight and B is a knight, respectively. So, then $\neg p$ represents the proposition that A is a knave and $\neg q$ that B is a knave.

- If A is a knight, then p is true. Since knights tell the truth, q must also be true. Then ($p \land \neg q$) $\lor (\neg p \land q)$ would have to be true, but it is not. So, A is not a knight and ther efore $\neg p$ must be true.
- If A is a knave, then B must not be a knight since knaves always lie. So, then both $\neg p$ and $\neg q$ hold since both are knaves.

Sudoku Puzzle as Satisfiability Problem

- A Sudoku puzzle is represented as a 9x9 grid with nine 3x3 subgrids called subgrids
 - each cell has a number in 1 to 9
- The puzzle is solved by assigning a number to each cell so that every row, every column, and every of a block contains each of the 9 numbers.
- Modeling
 - p(i,j,n) holds when row i and column j has n

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
5								
7			3					5
	1			9				
							6	

$$\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9} p(i, j, n)$$

$$\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3r+i, 3s+j, n)$$

$$\bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i, j, n)$$

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigwedge_{m=1}^{9} (p(i,j,n) \land n \neq m) \to \neg p(i,j,m)$$

Application

- Logic-based languages (formal languages) are powerful tools for specifying and analyzing software requirements rigorously
- E.g., Lufthansa A320 Airbus accident at Warsaw in 1993 (adopted)
 - Specification
 - Turn on reverse thrust when the airplane is running on runway for landing
 - System Design
 - Define REVERSE_THRUST as ON iff MODE = LANDING and ALTITUDE = 0
 - Define MODE as LANDING iff VELOCITY > 0 and LANDING_GEAR_ANG > 0

Predicate Logic

- A predicate is a propositional function over variables
 - once values are assigned to the predicate variables, a predicate becomes a proposition and has a truth value
 - E.g., let Q(x, y) denote x = y + 3. Q(4, 1) is true and Q(2, 3) is false.
- A quantification expresses the extent to which a predicate is true over a range of elements such as "all", "some", "many", "none" represented as a variable.
 - Domain (universe) is the set of all values on which a property is asserted
 - A variable is bound if a quantifier is used on the variable, or free otherwise.
 - Structure

< Quantifier > < Variable w/ domain condition > (< Predicate >)

Quantification

- The universal quantification of P(x), denoted as $\forall x. P(x)$, is the statement that P(x) holds for all values of x in the domain.
 - ∀ is called the universal quantifier
 - E.g., $\forall x \in \mathbb{R}$. $x^2 \ge 0$
- The existential quantification of P(x), denoted as $\exists x. P(x)$, is the statement that P(x) holds for a value of x in the domain.
 - ∃ is called the existential quantifier
 - E.g., $\exists x \in \mathbb{R}$. $x^2 = 1$
- The uniqueness quantifier ∃! is to state there is only one value in the domain such that a predicate holds.
 - E.g., $\exists ! x (x-1=0)$