Problem Set 5

Daniel Halmrast

December 1, 2017

Problem 1

Let M be the open submanifold of \mathbb{R}^2 with both coordinates positive, and define $F: M \to M$ as $F(x,y) = (xy, \frac{y}{x})$. Show that F is a diffeomorphism, and compute dFX and dFY for

$$X = x\partial_x + y\partial_y$$
$$Y = y\partial_x$$

Proof. To begin with, we observe that so long as $x \neq 0$, F is in fact smooth. Furthermore, it has an inverse

$$F^{-1}(x,y) = (\sqrt{\frac{x}{y}}, \sqrt{xy})$$

which is also smooth on M, and defined for all of M.

Furthermore, we can calculate its Jacobian:

$$J(F) = dF = \begin{bmatrix} y & x \\ \frac{-y}{x^2} & \frac{1}{x} \end{bmatrix}$$

which expresses dF in the coordinates ∂_x, ∂_y at every point.

Now, we calculate dF(X):

$$dF(X) = dF(x\partial_x + y\partial_y)$$

$$= xdF(\partial_x) + ydF(\partial_y)$$

$$= x(y\partial_x - \frac{y}{x^2}\partial_y) + y(x\partial_x + \frac{1}{x}\partial_y)$$

$$= xy\partial_x - \frac{y}{x}\partial_y + yx\partial_x + \frac{y}{x}\partial_y$$

$$= 2xy\partial_x$$

and dF(Y):

$$dF(Y) = dF(x\partial_y)$$

$$= xdF(\partial_y)$$

$$= x(x\partial_x + \frac{1}{x}\partial_y)$$

$$= x^2\partial_x + \partial_y$$

PROBLEM 2

Let M be a smooth manifold, $S \subseteq M$ an embedded submanifold. Given $X \in \mathcal{X}(S)$, show that there is a smooth vector field Y on a neighborhood of S in M such that $X = Y|_{S}$. Show that every such vector field extends to all of M if and only if S is properly embedded.

Proof.

PROBLEM 3