Algorithms for high-dimensional polytopes defined by oracles

Vissarion Fisikopoulos

Joint work with I.Z. Emiris (UoA), B. Gärtner (ETHZ)

Dept. of Informatics & Telecommunications, University of Athens

Advanced Geometric Computing and Critical Applications Kickoff Meeting, Athens, 22.Feb.2013

► Algorithm: [EFKP SoCG'12] vertex oracle + incremental construction = output-sensitive

- ► Algorithm: [EFKP SoCG'12] vertex oracle + incremental construction = output-sensitive
- ▶ Software: computation in < 7 dimensions

- ► Algorithm: [EFKP SoCG'12] vertex oracle + incremental construction = output-sensitive
- ► Software: computation in < 7 dimensions
- ightharpoonup Q: Can we compute information when dim. > 7? eg. volume

- ► Algorithm: [EFKP SoCG'12] vertex oracle + incremental construction = output-sensitive
- ► Software: computation in < 7 dimensions
- \triangleright Q: Can we compute information when dim. > 7? eg. volume
- Q: More polytopes given by optimization oracles ?

Applications

Geometric Modeling (Implicitization) [EKKL'12]

 Combinatorics of 4-d resultant polytopes (with Emiris & Dickenstein)

(figure courtesy of M.Joswig)

Facet and vertex graph of the largest 4-dimensional resultant polytope

```
How 4-d resultant polytopes look like?
  (6, 15, 18, 9)
                                         (18, 54, 54, 18)
  (8, 20, 21, 9)
                                         (19, 54, 52, 17)
  (9, 22, 21, 8)
                                         (19, 55, 51, 15)
                                         (19, 55, 52, 16)
                                         (19, 55, 54, 18)
                                         (19, 56, 54, 17)
  (17, 48, 45, 14)
                                         (19, 56, 56, 19)
  (17, 48, 46, 15)
                                         (19, 57, 57, 19)
  (17, 48, 47, 16)
                                         (20, 58, 54, 16)
  (17, 49, 47, 15)
                                         (20, 59, 57, 18)
  (17, 49, 48, 16)
                                         (20, 60, 60, 20)
  (17, 49, 49, 17)
                                         (21, 62, 60, 19)
  (17, 50, 50, 17)
                                         (21, 63, 63, 21)
  (18, 51, 48, 15)
                                         (22, 66, 66, 22)
  (18, 51, 49, 16)
                                         Open problem
  (18, 52, 50, 16)
                                         Almost symmetric f-vector?
```

(18, 52, 51, 17) (18, 53, 51, 16)

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Polytope representation

Convex polytope $P \in \mathbb{R}^n$.

Explicit: Vertex-, Halfspace - representation (V_P, H_P) , Edge-sketelon (ES_P) , Triangulation (T_P) , Face lattice

Implicit: Oracles (OPT_P, SEP_P, MEM_P)

Motivation-Applications

- Resultant, Discriminant, Secondary polytopes
- (Generalized) Minkowski sums

Oracles and duality [Grötschel et al.'93]

(Polar) Duality (D):

 $\mathbf{0} \in \mathrm{int}(P), \quad P^* := \{c \in \mathbb{R}^n : c^\mathsf{T} x \le 1, \text{ for all } x \in P\} \subseteq (\mathbb{R}^n)^*$

Oracles and duality [Grötschel et al.'93]

(Polar) Duality (D):

 $\mathbf{0} \in \mathrm{int}(\mathsf{P}), \quad \mathsf{P}^* := \{c \in \mathbb{R}^n : c^\mathsf{T} x \le 1, \text{ for all } x \in \mathsf{P}\} \subseteq (\mathbb{R}^n)^*$

Given OPTIMIZATION compute SEPARATION.

Polytope change of representation

Problem	Algorithm	Complexity	
$V_P o H_P$	Convex hull	EXP	
Feasibility	Ellipsoid [Kha'79],	P _{bit} , ZPP	
i easibility	Las Vegas [BV'04]		
OPT _P +	Incremental [EFG'12]	P _{bit} (in,out)	
$\{edge\;dir.\} \to ES_P$	incremental [Li G 12]		
$MEM_P \rightarrow$	Monte-Carlo	BPP	
ϵ -approx $vol(P)$	[Dyer et.al'91,LV'04]		

Polytope change of representation

Problem	Algorithm	Complexity	
$V_P o H_P$	Convex hull	EXP	
Feasibility	Ellipsoid [Kha'79],	P _{bit} , ZPP	
i easibility	Las Vegas [BV'04]		
OPT _P +	Incremental [EFG'12]	P _{bit} (in,out)	
$\{edge\;dir.\} \to ES_P$	incremental [Li G 12]		
$MEM_P o$	Monte-Carlo	BPP	
$\varepsilon\text{-approx } \operatorname{vol}(P)$	[Dyer et.al'91,LV'04]		

Our contribution: Theory & Implementation

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Edge skeleton computation

Input:

- ▶ OPT_P
- Edge directions of P: D

Output:

Edge-skeleton of P

Sketch of **Algorithm**:

- ▶ Compute a vertex of P $(x = OPT_P(c) \text{ for arbitrary } c^T \in \mathbb{R}^n)$
- ▶ Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ▶ Remove from S all segments (x, y) s.t. $y \notin P (OPT_P \to SEP_P)$
- ▶ Remove from S the segments that are not extreme

Edge skeleton computation

Input:

- OPT_P
- Edge directions of P: D

Output:

Edge-skeleton of P

Sketch of Algorithm:

- ▶ Compute a vertex of P $(x = OPT_P(c) \text{ for arbitrary } c^T \in \mathbb{R}^n)$
- ▶ Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ▶ Remove from S all segments (x, y) s.t. $y \notin P (OPT_P \to SEP_P)$
- ▶ Remove from S the segments that are not extreme

Open problem: Do not use $OPT_P \rightarrow SEP_P$.

Edge skeleton computation

Proposition

[RothblumOnn07] Let $P \subseteq \mathbb{R}^n$ given by OPT_P , and $E \supseteq D(P)$. All vertices of P can be computed in

 $O(|E|^{n-1})$ calls to $OPT_P + O(|E|^{n-1})$ arithmetic operations.

Theorem

The edge skeleton of P can be computed in

 $O^*(\mathfrak{m}^3\mathfrak{n})$ calls to $OPT_P + O^*(\mathfrak{m}^3\mathfrak{n}^{3.38} + \mathfrak{m}^4\mathfrak{n})$ arithmetic operations,

m: the number of vertices of P.

Corollary

For resultant polytopes $R \subset \mathbb{Z}^n$ this becomes (d is a constant)

$$O^*(m^3n^{\lfloor (d/2)+1\rfloor}+m^4n).$$

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Random points in polytopes with SEP_P

Hit-and-Run walk

- ▶ line ℓ through x, uniform on $B_x(1)$
- ▶ move x to a uniform disrtibuted point on $P \cap \ell$

x will become "random" after $O(n^3)$ hit-and-run steps [Lovász98]

Random points in polytopes with SEP_P

Hit-and-Run walk

- ▶ line ℓ through x, uniform on $B_x(1)$
- ▶ move x to a uniform disrtibuted point on $P \cap \ell$

x will become "random" after $O(n^3)$ hit-and-run steps [Lovász98]

Random points in polytopes with SEP_P

Hit-and-Run walk

- ▶ line ℓ through x, uniform on $B_x(1)$
- move x to a uniform disrtibuted point on P ∩ ℓ

x will become "random" after $O(n^3)$ hit-and-run steps [Lovász98]

Random points in polytopes with OPT_P

- 1. Hit-and-Run walk with OPT \rightarrow SEP in every step
- 2. Vertex walk
 - for uniform c compute $OPT_P(c)$
 - ▶ segment ℓ , connect x, OPT_P(c)
 - ▶ move x to a uniform disrtibuted point on ℓ

Open problem: Analyse Vertex walk (or a similar walk).

Random points in polytopes with OPT_P

- 1. Hit-and-Run walk with OPT \rightarrow SEP in every step
- 2. Vertex walk
 - for uniform c compute $OPT_P(c)$
 - ▶ segment ℓ , connect x, OPT_P(c)
 - ▶ move x to a uniform disrtibuted point on ℓ

Open problem: Analyse Vertex walk (or a similar walk).

Random points in polytopes with OPT_P

- 1. Hit-and-Run walk with OPT \rightarrow SEP in every step
- 2. Vertex walk
 - for uniform c compute $OPT_P(c)$
 - ▶ segment ℓ , connect x, OPT_P(c)
 - ▶ move x to a uniform disrtibuted point on ℓ

Open problem: Analyse Vertex walk (or a similar walk).

Optimization using random walks [BV'04]

Optimization reduces to Feasibility:

Input: SEP_P, B, L =
$$\lg \frac{\mathsf{radius}(B)}{\mathsf{radius}(b)}$$

Output: $z \in P \subseteq \mathbb{R}^n$ or P is empty

- 1. Compute N random points $y_1, ..., y_N$ uniform in B;
- 2. Let $z \leftarrow \frac{1}{N} \sum_{i=1}^{N} y_i$; $H \leftarrow SEP_P(z)$;
- 3. If $z \in P$ return z, else $B \leftarrow B \cap H$;
- 4. Repeat steps 1-3, 2nL times; Report P is empty;

Complexity: $O^*(n)$ oracle calls $+ O^*(n^7)$ arithm. oper.

Volume computation using random walks [Dyer et.al'91]

Input: MEM_P, ρ:

 $B(1) \subseteq P \subseteq B(\rho) \subseteq \mathbb{R}^n$

Output: ϵ -approximation vol(P)

- 1. $P_i := P \cap B(2^{i/n}), i = 0 : \lceil n \lg \rho \rceil;$ $P_0 = B(1), P_{n \lg \rho} = P$
- 2. Generate rand. point in P_0
- 3. Generate rand. points in P_i and count how many fall in P_{i-1}

$$vol(P) = vol(P_0) \prod_{i=1}^{m} \frac{vol(P_i)}{vol(P_{i-1})}$$

Complexity [Lovász et al.'04]: $O^*(n^4)$ oracle calls

Volume of polytopes given by OPT_P

Input: OPT_P, ρ : B(1) \subseteq P \subseteq B(ρ)

Output: ϵ -approximation vol(P)

- Call volume algorithm
- ► Each MEM_P oracle calls feasibility/optimization algorithm

Corollary

An approximation of the volume of resultant and Minkowski sum polytopes given by OPT oracles can be computed in $O^*(n^{\lfloor (d/2)+5\rfloor})$ and $O^*(n^{7.38})$ respectively, where d is a constant.

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Experiments Optimization

- ▶ n-cubes (table), n-crosspolytopes, skinny crosspolytopes
- ► M: multipoint walk, H: Hit-and-Run walk

		Alg.	01	Alg.	O2	Alg. O3	
# rand.	# walk						
points	steps	M(sec)	H(sec)	M(sec)	H(sec)	M(sec)	H(sec)
4	0	0.02	0.05	0.01	0.01	0.01	0.006
38	0	0.59	1.53	0.10	0.08	0.10	0.119
96	1	5.54	13.23	0.47	0.84	0.99	0.727
172	4	61.40	73.94	4.33	5.34	9.82	4.527
265	10	306.20	357.88	26.64	17.22	74.86	16.44
316	14	559.97	853.04	54.71	36.95	112.57	55.60
	points 4 38 96 172 265	points steps 4 0 38 0 96 1 172 4 265 10	# rand. # walk points steps M(sec) 4 0 0.02 38 0 0.59 96 1 5.54 172 4 61.40 265 10 306.20	points steps M(sec) H(sec) 4 0 0.02 0.05 38 0 0.59 1.53 96 1 5.54 13.23 172 4 61.40 73.94 265 10 306.20 357.88	# rand. # walk points # walk steps M(sec) H(sec) M(sec) 4 0 0.02 0.05 0.01 38 0 0.59 1.53 0.10 96 1 5.54 13.23 0.47 172 4 61.40 73.94 4.33 265 10 306.20 357.88 26.64	# rand. # walk points # walk steps M(sec) H(sec) M(sec) H(sec) 4 0 0.02 0.05 0.01 0.01 38 0 0.59 1.53 0.10 0.08 96 1 5.54 13.23 0.47 0.84 172 4 61.40 73.94 4.33 5.34 265 10 306.20 357.88 26.64 17.22	# rand. # walk points # walk steps M(sec) H(sec) M(sec) H(sec) M(sec) M(sec) M(sec) 4 0 0.02 0.05 0.01 0.01 0.01 38 0 0.59 1.53 0.10 0.08 0.10 96 1 5.54 13.23 0.47 0.84 0.99 172 4 61.40 73.94 4.33 5.34 9.82 265 10 306.20 357.88 26.64 17.22 74.86

► Efficient computation (< 1min) up to dimension 11 using Hit-and-Run

Experiments Volume given Membership oracle

▶ n-cubes (table), n-crosspolytopes, σ =average absolute deviation, μ =average over 20 experiments

	exact	exact	# rand.	# walk	vol	vol	vol	vol	approx
n	vol	sec	points	steps	min	max	μ	σ	sec
2	4	0.06	2218	8	3.84	4.12	3.97	0.05	0.23
4	16	0.06	2738	7	14.99	16.25	15.59	0.32	1.77
6	64	0.09	5308	38	60.85	67.17	64.31	1.12	39.66
8	256	2.62	8215	16	242.08	262.95	252.71	5.09	46.83
10	1024	388.25	11370	40	964.58	1068.22	1019.02	30.72	228.58
12	4096	-	14725	82	3820.94	4247.96	4034.39	80.08	863.72

- (the only known) implementation of [Lovász et al.'12] tested only for cubes up to n=8
- lacktriangle volume up to dimension 12 within mins with < 2% error
- ▶ no hope for exact methods in much higher than 10 dim
- the minimum and maximum values bounds the exact volume

Experiments Volume of Minkowski sum

Mink. sum of n-cube and n-crosspolytope, σ =average absolute deviation, μ =average over 10 experiments

n	exact vol	exact sec	# rand. points	# walk steps	vol min	vol max	vol μ	vol σ	approx sec
2	14.00	0.01	216	11	12.60	19.16	15.16	1.34	119.00
3	45.33	0.01	200	7	42.92	57.87	49.13	3.92	462.65
4	139.33	0.03	100	7	100.78	203.64	130.79	21.57	721.42
5	412.26	0.23	100	7	194.17	488.14	304.80	59.66	1707.97

- slower that volume with MEM
- improvements in optimization and volume implementation improve also this

Future work - Open problems

- 1. describe an *efficient* random walk procedure for P given by OPT instead of MEM
- 2. P of special case (e.g. Minkowski sum, resultant, secondary polytope)
- 3. volume computation in the polar dual and Mahler volume
- 4. describe all edge directions of a resultant polytope

Last slide!

The code

▶ http://sourceforge.net/projects/randgeom

