Chapitre 1 : Étude de fonctions polynomiales du second degré

Premières Spécialité Mathématiques

1 Rappel: Fonctions affines

Définition 1. Une fonction affine est une fonction f définie sur \mathbb{R} telle que pour tout $x \in \mathbb{R}$:

$$f(x) = ax + b$$

avec $a \neq 0$ et b deux réels.

Le réel a est appelé coefficient directeur de f.

Le réel b est appelé ordonnée à l'origine de f.

Remarque. Quand b = 0, c'est-à-dire quand f(x) = ax, on dit que la fonction est **linéaire**.

Proposition 1. Soit $f: x \mapsto ax + b$ une fonction affine avec $a \neq 0$ et b deux nombres réels; et (O; I; J) un repère orthonormée. Alors, la courbe représentative de f dans ce repère est une droite.

Proposition 2. Soit (O; I; J) un repère orthonormée, et f une fonction définie sur \mathbb{R} dont la courbe représentative est une droite. Alors, f est une fonction affine telle que f(x) = ax + b pour tout $x \in \mathbb{R}$ où :

- son coefficient directeur a est donnée par la pente de la droite;
- son ordonnée à l'origine b est l'ordonnée du point de la droite d'abscisse 0.

2

Exercice 1. Sur le repère (0; I; J) ci-contre, on a tracé la courbe représentative de deux fonctions affines f et g.

En déduire l'expression algébrique de f et g.

Proposition 3. Soit $f: x \mapsto ax + b$ une fonction affine, et $x_1 < x_2$ deux réels distincts. Alors,

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 et $b = f(x_1) - ax_1$

Proposition 4. Soit $f: x \mapsto ax + b$ une fonction affine.

- Si a < 0, alors f est décroissante sur \mathbb{R} .
- Si a > 0, alors f est croissante sur \mathbb{R} .

Méthode 1. Pour dresser le tableau de signes d'une fonction affine $f: x \mapsto ax + b$, il faut :

- 1. Déterminer l'antécédant de 0 de f, autrement dit, trouver x tel que ax+b=0;
- 2. Le tableau de signes s'obtient en suivant la variation de la fonction, autrement dit, cela dépend du signe de a

Exercice 2. Dresser le tableau de signes des fonctions trouvées dans l'exercice

2 Fonction polynomiale du second degré

Définition 2. Une fonction polynomiale du second degré est une fonction f définie sur les réels qui à tout nombre x associe un réel f(x) de la forme :

$$ax^2 + bx + c$$

où a, b et c sont des réels avec $a \neq 0$.

Remarque. L'hypothèse $a \neq 0$ est essentielle, sinon la fonction est polynomiale de degré au plus 1.

On trace la courbe représentative de deux fonctions polynomiales du second degré : une avec a>0 et une avec a<0.

Définition 3. Soit f une fonction polynomiale de degré 2. Sa courbe représentative est appelée une **parabole**.

Proposition 5. Soit f une fonction polynomiale de degré 2. telle que $f(x) = ax^2 + bx + c$. Alors :

- Si a > 0, il existe une valeur de x, notée x_m telle que f est décroissante sur $]-\infty; x_m]$ et croissante sur $[x_m; +\infty[$
- Si a < 0, il existe une valeur de x, notée x_M telle que f est croissante sur $]-\infty; x_M]$ et décroissante sur $[x_M; +\infty[$

Remarque.

- Dans le cas a>0, les « branches de la paraboles sont tournées vers le haut ». Dans le cas contraire (a<0), elles sont « tournées vers le bas ».
- Dans le cas a > 0, f admet un unique minimum, et ce minimum est atteint en x_m . Dans le cas contraire (a < 0), f admet un maximum, et ce maximum est atteint en x_M .

4

3 Recherche de l'extremum

3.1 Forme canonique

Proposition 6. Soit f une fonction polynomiale du second degré telle que $f(x) = ax^2 + bx + c$. Alors il existe α et β tel que

$$f(x) = a(x - \alpha)^2 + \beta$$

Remarque. Dans ce cas, $\alpha = \frac{-b}{2a}$ et $\beta = f(\alpha)$.

Exemple. Soit l'expression polynomiale du second degré $-x^2+2x-5$. Déterminer sa forme canonique.

Méthode 2 (Par identification).

Méthode 3 (En utilisant une identité remarquable « limitée »).

5

3.2 Extremum

Proposition 7. Soit une fonction polynomiale du second degré $f: x \mapsto ax^2 + bx + c$. On suppose que $f(x) = a(x - \alpha)^2 + \beta$ pour tout x réel. Alors, f admet un extremum qu'il atteint en α et ayant pour valeur β .

Remarque. Comme dit précédemment, si a > 0, alors f admet un minimum qu'il attent en $\alpha = \frac{-b}{2a}$. Sinon, si a < 0, alors f admet un maximum qu'il atteint en $\alpha = \frac{-b}{2a}$. Dans les deux cas, cet extremum vaut $\beta = f(\alpha)$.

Exemple. Soit la fonction polynomiale $g: x \mapsto 4x^2 + 32x - 5$.

- a) Cette fonction admet-elle un minimum ou un maximum?
- b) En quelle valeur cet extremum est-il atteint?
- c) Que vaut cet extremum?

Proposition 8. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. On suppose que $f(x) = a(x - \alpha)^2 + \beta$. Alors la courbe représentative C_f est une parabole admettant comme axe de symétrie la droite $x = \alpha$.

Exemple. Soit $f: x \mapsto x^2 - 2x + 1$. Alors f admet un minimum (car a > 0) atteint en $\alpha = -\frac{b}{2a} = -\frac{-2}{2} = 1$. Alors C_f admet la droite x = 1 comme axe de symétrie.

