Algoritmos e Lógica de Programação

Douglas Baptista de Godoy

Ementa

- Projeto e representação de algoritmos.
- Estruturas de controle de fluxo de execução: sequência, seleção e repetição.
- Tipos de dados básicos e estruturados (vetores e registros).
- Rotinas. Arquivos.
- Implementação de algoritmos usando uma linguagem de programação.

Objetivo

 Analisar problemas computacionais e projetar soluções por meio da construção de algoritmos.

- Definição de Matriz
- Uma Matriz pode ser definida como um conjunto de variáveis de mesmo tipo e identificadas pelo mesmo nome. Essas variáveis são diferenciadas por meio da especificação de suas posições dentro dessa estrutura.
- A linguagem C/C++ permite a declaração de matrizes unidimensionais, bidimensionais e multidimensionais. O padrão ANSI prevê ate 12 dimensões. Entretanto, o limite de dimensões fica por conta da quantidade de recursos computacionais disponíveis. Apesar disso, as matrizes mais utilizadas possuem duas dimensões. Para cada dimensão deve ser utilizado um índice.

Definição de Matriz

 Os índices usados na linguagem C/C++, para identificar as posições de uma matriz, começam sempre em 0 (zero) e vão até o tamanho da dimensão menos uma unidade. Os índices de uma matriz em C/C++ devem sempre ser representados por um dos tipos inteiros disponíveis na linguagem.

- Declaração de Matriz
- tipo_dos_dados nome_variável [dimensão1][dimensão2][....][dimensãoN];
- Onde:
- tipo_dos_dados: é o tipo dos dados que serão armazenados na matriz;
- nome_variável: é o nome dado à variável do tipo matriz;
- [dimensão1]: representa o tamanho da 1ª dimensão da matriz;
- [dimensão2]: representa o tamanho da 2ª dimensão da matriz;
- [dimensãoN]: representa o tamanho da n-ésima dimensão da matriz;

- Declaração de Matriz
- Em C/C++, a indicação do tamanho das dimensões de uma matriz deve ser feita por um valor inteiro fixo (representado por um literal ou uma constante). Se houver necessidade de definir o tamanho da matriz em tempo de execução, devese faze-lo por meio de ponteiros.

Exemplo de Matriz

Atribuindo valores a Matriz

Declaração de Matriz

Exemplo 1: float X[2][6];

Exemplo 2: char MAT[4][3];

Exemplo 3: float Y[2][4][3];

```
Exemplo 1:

X[1][4] = 5;

Exemplo 2:

MAT[3] [2]= 'D';

Exemplo 3:

Y[0][3][1] = 12;

Exemplo 4:

for (i = 0; i < 2; i++)

{
  for (j = 0; j < 6; j++)
      scanf("%f%*c", &X[i][j]);
```

Mostrando elementos da Matriz

```
Exemplo 1:

printf("%f", X[1][4]);

Exemplo 2:

printf("%c", MAT[3][2]);

Exemplo 3:

for (i = 0; i < 3; i++)

{

for (j = 0; j < 6; j++)

printf("%f", X[i][j]);
```


Exemplo de Matriz

Da mesma maneira como ocorre com os vetores, os índices das dimensões das matrizes começam sempre em 0 (zero).

A seguir, são apresentadas algumas formas de criação de matrizes.

Exemplo 1:

float x[2][6];

Na declaração do exemplo 1, criou-se uma variável chamada x contendo duas linhas (de 0 a 1) com seis colunas cada (de 0 a 5), capaz de armazenar números reais, como pode ser observado a seguir

Exemplo 2:

char mat [4][3];

Na declaração do exemplo 2, criou-se uma variável chamada *mat* contendo quatro linhas (de 0 a 3) com três colunas cada (de 0 a 2), capaz de armazenar caracteres, como pode ser observado a seguir:

mat	0		
	1		
	2		
	3		

SLIDE: PROF. ROGERIO APARECIDO PEREIRA BOLIN

Atribuindo valores a uma matriz

Atribuir valores a uma matriz significa armazenar informação em seus elementos, identificados de forma única por meio de seus índices.

$$x[1][4] = 5$$

Faculdade de Tecnologia

Atribui o valor 5 à posição identificada pelos índices 1 (2ª linha) e 4 (5ª coluna).

SLIDE: PROF. ROGERIO APARECIDO PEREIRA BOLIN

Atribuindo valores a uma matriz

char mat
$$[3][2] = 'D'$$

Faculdade de Tecnologia

Atribui a letra D à posição identificada pelos índices 3 (4ª linha) e 2 (3ª coluna).

SLIDE: PROF. ROGERIO APARECIDO PEREIRA BOLIN

Nas operações de atribuição, leitura e escrita devemos utilizar o número de repetições relativo ao tamanho das dimensões. Isto é, uma matriz de duas dimensões deve ser controlada por dois laços de repetição, de três dimensões três laços e assim por diante (MANZANO; OLIVEIRA, 1997).

O exemplo que segue no próximo slide exemplifica a leitura e impressão de elementos de uma matriz:

SLIDE: PROF. ROGERIO APARECIDO PEREIRA BOLIN


```
#include <stdio.h>
     main()
 3 🖵 {
         int matrizA [2][10];
 4
 5
         int i, j;
 6
 7
         for (i=0; i<2; i++)
 8 🗀
             for (j=0; j<10; j++)
10 =
                  printf ("\n Digite o %d %d elemento da matriz: ", i, j);
11
12
                  scanf ("%d", &matrizA[i] [j]);
13
14
15
16
         for (i=0; i<2; i++)
17 <u>=</u>
18
19
              for (j=0; j<10; j++)
20 🗀
                  printf("\nO elemento da posicao %d %d eh: %d ", i, j, matrizA[i][j]);
21
22
23
54
         return(0);
25 L
```


Referencias Bibliográficas

• ASCENCIO, Ana Fernanda Gomes; CAMPOS, Edilene Aparecida Veneruchi de, **Fundamentos da Programação de Computadores**, Pearson Editora, 3ª edição.

