Estimation theory & parametric identification

Signal processing applied to industrial robots model estimation

N. Mechbal, M. Rébillat, M. Guskov [PIMM, ENSAM]
marc.rebillat@ensam.eu

Numerical differentiation 000000000

Robotic context

Numerical integration

Numerical differentiation

Model estimation of robotic systems [1, 2, 3]

Numerical models

Transfer function

$$H(p) = \frac{Y(p)}{U(p)}$$

State-space model

$$\dot{X} = f(X, U)$$

$$Y = g(X, U)$$

Objective: Estimate a reliable model and its parameters for a robotic system from measurements.

Course objectives

- With M. Guskov: Building models of flexible manipulator.
- With N. Mechbal: Model parameters estimation.

Within this part of the course

Understanding the signal processing steps of measurements coming from robotic sensors that are necessary to perform model parameters estimation:

- 1. How do I represent usefully a digital signal?
- 2. How am I sure to control the data acquisition chain?
- 3. How do I process reliably acquired signals?
- 4. Illustration in robotics applications.

<u>Useful references</u> are made available on the last slide for more details [4, 5, 6, 7, 8, 9, 10, 11].

Part #3: Signal processing for indutrial robots

How do I apply signal processing tools in practice on industrial robots?

- How to get displacement from acceleration (numerical integration)?
- How to get velocity from position (numerical derivation)?

+ exercises.

Robotic context

Numerical integration

Numerical differentiation

Numerical integration

Why numerical integration is useful in robotics and how to perform it?

- Numerical integration is needed to estimate velocity (m/s) or position (m) from acceleration (m/s²).
- Numerical integration is equivalent to filtering by a filter $H(f) = \frac{1}{i2\pi f}$.
- Numerical integration thus amplifies low frequencies.
- High pass filtering is needed to avoid noise amplification before numerical integration.

Issues with low frequencies are expected with numerical integration: high pass filtering highly recommended.

Case study #1: tool acceleration perturbation

Is this case study, we want to:

- study the effect of a perturbation induced by a tool at the end of a robotic arm.
- to **generate an acceleration signal** corresponding to this perturbation from the knowledge of its spectrum.
- to **estimate the displacement** caused by this perturbation at the end of the robotic arm.

Design a FIR filter fitting the target spectrum

- The idea is to find an appropriate FIR filter using the fir2 function
- FIR order greatly influence the obtained results.
- The larger the FIR order, the better the result
- In low frequencies, there exists still a mismatch

The target spectrum may only be approximated in practice.

Filtering noise to obtain the perturbation acceleration

- The idea is to filter a white Gaussian noise (flat spectrum) with the previous FIR filter using the filt function.
- The shape of the filtered noise followed in general the target spectrum.
- The filtered signal followed the designed FIR and not exactly the target spectrum.
- In low frequencies, there exists still a mismatch

The perturbation is overall quite satisfying.

From acceleration to displacement

A tentative noise preventing signal processing chain

- High pass filtering shall be performed before each integration step.
- IIR digital filters can be designed using the *butter* function and an order 6.
- The cutoff frequency can be selected around 100 Hz as there is no much energy lower than that frequency.
- Signals should be filtered using the filtfilt function in order to avoid phase effects.
- Signals can be integrated using the cumtrapz function.

Integrate twice the acceleration signal

Filtering can prevent the low frequency drifts in displacement.

Summary regarding numerical integration

- Numerical integration can be dangerous.
- Low frequency noise can be greatly amplified if no precautions are taken.
- It is recommended to high pass filter signals to be integrated before proceeding to integration.
- The cutoff frequency is application dependent and should be selected according to the frequency content of interest.

Be careful!

Robotic context

Numerical integration

Numerical differentiation

Numerical differentiation

Why numerical differentiation is useful in robotics and how to perform it?

- Numerical differentiation is needed to estimate velocity (m/s) or acceleration (m/s²) from position (m).
- Numerical differentiation is equivalent to filtering by a filter $H(f)=j2\pi f$.
- Numerical differentiation thus amplifies high frequencies.
- Low pass filtering is needed to avoid noise amplification before numerical differentiation.

Issues with high frequencies are expected with numerical differentiation: low pass filtering highly recommended.

Case study #2: floor induced displacement

Is this case study, we want to:

- study the effect of a perturbation induced by a neighbouring robot through the floor at the end of a robotic arm.
- to **generate a floor displacement signal** corresponding to this perturbation from the knowledge of its spectrum.
- to estimate the acceleration caused by this perturbation at the end of the robotic arm.

Design a FIR filter fitting the target spectrum

- The idea is to find an appropriate FIR filter using the fir2 function.
- FIR order greatly influence the obtained results.
- The larger the FIR order, the better the result.

The target spectrum may only be approximated in practice.

Filtering noise to obtain the perturbation acceleration

- The idea is to filter a white Gaussian noise (flat spectrum) with the previous FIR filter using the filt function.
- The shape of the filtered noise followed in general the target spectrum.
- The filtered signal followed the designed FIR and not exactly the target spectrum.

The perturbation is overall quite satisfying.

From displacement to acceleration

A tentative noise preventing signal processing chain

- Low pass filtering shall be performed before each differentiation step.
- IIR digital filters can be designed using the *butter* function and an order 6.
- The cutoff frequency can be selected around 500 Hz as there is no much energy lower than that frequency.
- Signals should be filtered using the *filtfilt* function in order to avoid phase effects.
- Signals can be differentiated using the diff function.

Differentiate twice the displacement signal

Filtering can prevent the high frequencies amplifications in acceleration.

le c**nam**

Summary regarding numerical integration

- Numerical differentiation can be dangerous.
- High frequency noise can be greatly amplified if not precautions are taken.
- It is recommended to low pass filter signals to be differentiated before proceeding to differentiation.
- The cutoff frequency is application dependent and should be selected according to the frequency content of interest.

Again, be careful!

Course objectives

- With M. Guskov: Building models of flexible manipulator.
- With N. Mechbal: Model parameters estimation.

Within this part of the course

Understanding the signal processing steps of measurements coming from robotic sensors that are necessary to perform model parameters estimation:

- 1. How do I represent usefully a digital signal?
- 2. How am I sure to control the data acquisition chain?
- 3. How do I process reliably acquired signals?
- 4. Illustration in robotics applications.

<u>Useful references</u> are made available on the last slide for more details [4, 5, 6, 7, 8, 9, 10, 11].

Bibliography

- W. Khalil and E. Dombre. Modeling, identification and control of robots. Butterworth-Heinemann, 2004.
- [2] J. Wu, J. and Wang and Z. You. An overview of dynamic parameter identification of robots. Robotics and computer-integrated manufacturing, 26(5):414-419, 2010.
- [3] K. R. Kozlowski. Modelling and identification in robotics. Springer Science & Business Media, 2012.
- [4] A. V. Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.
- [5] Y. Meyer and P. Flandrin. Time-frequency/time-scale analysis. Wavelet Analysis and its applications, 1999.
- [6] S. Mallat. A wavelet tour of signal processing. Elsevier, 1999.
- [7] W. M. Hartmann. Signals, sound, and sensation. Springer Science & Business Media, 2004.
- [8] S. K. Mitra and Y. Kuo. Digital signal processing: a computer-based approach, volume 2. McGraw-Hill New York, 2006.
- [9] K. Shin and J. Hammond. Fundamentals of signal processing for sound and vibration engineers. John Wiley & Sons, 2008.
- [10] D. Havelock, S. Kuwano, and M. Vorländer. Handbook of signal processing in acoustics. Springer Science & Business Media. 2008.
- [11] M. Weeks. Digital signal processing using MATLAB & wavelets. Jones & Bartlett Publishers, 2010.

