# NANOPHYSIQUE INTRODUCTION PHYSIQUE AUX NANOSCIENCES

# 3. AMAS OU AGREGATS ATOMIQUES

James Lutsko

2020-2021

# AMAS OU AGREGATS ATOMIQUES

# L'auto-assemblage: Nucleation

- Modele de l'amas: "capillary model".
- Thermodynamics
- Becker-Doring model
- Zeldovich equation
- Taux de nucléation

# • Nanoparticules cristalline

- Structure cristalline
- Indices de Miller
- Tension de surface
- Forme des Cristaux
- Transistions de phase
- Proprietes electronique des agregats

# **Nanoparticules cristallines**



Co nanoparticle

M. Jamet et al., Phys. Rev. Lett. **86** (2001) 4676



CoPt<sub>3</sub> nanoparticle

Shevchenko, O'Brien, Murray (Columbia, IBM)

Structure: Réseau Bravais avec une ou plusieurs molécules positionné par rapport au point du ré

Les point du réseau sont donnés comme:

$$\mathbf{R}_{1} = \mathbf{n}_{1} \mathbf{a}_{1} + \mathbf{n}_{2} \mathbf{a}_{2} + \mathbf{n}_{3} \mathbf{a}_{3}$$

ou  $\{a_i\}$  sont les vecteur de bases du réseau est  $\{n_i\}$  sont des nombres entiers.

# Simple Cubic (N<sub>nn</sub>=6)

Cellule unitaire



Body-Centered Cubic (N<sub>nn</sub>=8)

paramètre du réseau



Face-Centered Cubic  $(N_{nn}=12)$ 

http://en.wikipedia.org/wiki/Face-centered\_cubic

Dans 3D, il y a 14 types de Bravais Lattice: 7 systèmes + plusiers "centering types" (fcc,bcc, ...)

Cubic (SC,FCC,BCC)



Hexagonal



Rhombic

**Tetragonal** 



**Orthorhombic** 



Monoclinic

Hex.



**Triclinic** 



Plus complexe: lattice plus basis (e.g. binary compounds like NaCl).





Réseau réciproque : tous les vecteurs d'onde qui sont périodique sur le réseau :

$$\exp(i \mathbf{K}_{j} \cdot (\mathbf{r} + \mathbf{R}_{l})) = \exp(i \mathbf{K}_{j} \cdot \mathbf{r}) \rightarrow \mathbf{K}_{j} \cdot \mathbf{R}_{l} = 2\pi n \delta_{jl}, \qquad n \in \mathbb{Z}$$

donc 
$$\mathbf{K} = \sum_{j=1}^{d} m_j \mathbf{b}_j, \quad m \in \mathbb{Z}$$

avec 
$$\boldsymbol{a}_i \cdot \boldsymbol{b}_j = 2 \pi \delta_{ij} \rightarrow \boldsymbol{b}_1 = 2 \pi \frac{\boldsymbol{a}_2 \times \boldsymbol{a}_3}{\boldsymbol{a}_1 \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3)}$$
, etc.

# Structure des cristaux: plans cristallins



Facets, surfaces

#### Surfaces: Indices de Miller

**Théorème**: pour chaque famille de plans du réseau séparés par une distance "d", il ya des vecteurs du réseau réciproque perpindicular les plans et la plus courte a une longueur de  $2\pi/d$ .

(Apres Mermin and Ashcroft, "Solid State Physics", Holt, Reinhard and Winston, 1976, PA.)

#### **Preuve:**

Si la normale aux plans est  $\hat{n} \Rightarrow$  la vecteur  $K = 2\pi \hat{n}/d$  est dans la réseau réciproque:

Parce-que si  $\mathbf{R}_i \in \text{plane } m_i \text{ et } \mathbf{R}_j \in \text{plane } m_j$ 

$$\begin{aligned} \boldsymbol{K} \cdot \boldsymbol{R}_{i} &= \boldsymbol{K} \cdot \boldsymbol{R}_{j} + \boldsymbol{K} \cdot \left( \boldsymbol{R}_{i} - \boldsymbol{R}_{j} \right) \\ &= \boldsymbol{K} \cdot \boldsymbol{R}_{j} + \boldsymbol{K} \cdot \left\{ \left( m_{i} - m_{j} \right) d \, \hat{\boldsymbol{n}} + \left( \boldsymbol{R}_{i} - \boldsymbol{R}_{j} \right)_{\text{in plane}} \right\} \\ &= \boldsymbol{K} \cdot \boldsymbol{R}_{j} + 2 \, \pi \left( m_{i} - m_{j} \right) \\ &= 2 \, \pi \left( m_{i} - m_{0} \right) \, \text{parceque} \, \, \boldsymbol{R}_{0} = \boldsymbol{0} \end{aligned}$$

$$\rightarrow \exp(i \mathbf{K} \cdot \mathbf{R}_i) = \exp(i 2\pi (m_i - m_0)) = 1$$

#### Surfaces: Indices de Miller

Les indices de Miller d'un plan du réseau sont les coordonnées du plus petit vecteur du réseau réciproque qui soit normal à ce plan, par rapport à un ensemble spécifié de vecteurs de bases. Un plan d'indices de Miller (h,k,l) est donc normal au vecteur du réseau réciproque:

$$K = h b_1 + k b_2 + l b_3, (h, k, l)$$

des entiers sans facteur commun

Eq. pour plane:

$$r$$
 ∈ plane with normal  $\hat{n}$   
 $\Leftrightarrow \hat{n} \cdot r = B$ (B is some constant)  
 $\Rightarrow K \cdot r = (2\pi/d)B \equiv A$ 

$$r = x_1 a_1 \rightarrow A = K \cdot r = x_1 K \cdot a_1 = 2 \pi x_1 h$$

donc, 
$$h=A/x_1$$
, ... $k=A/x_2$  ...  $l=A/x_3$ 

$$\Rightarrow h: k: l = \frac{1}{x_1}: \frac{1}{x_2}: \frac{1}{x_3}$$



 $(1\bar{1}1)$ 

 $(\bar{1}11)$ 

(111)

#### Surfaces : Indices de Miller

Les intersections avec les axes sont:

$$h:k:l=\frac{1}{x_1}:\frac{1}{x_2}:\frac{1}{x_3} \rightarrow \frac{h}{k}=\frac{x_2}{x_1}, \frac{h}{l}=\frac{x_3}{x_2}$$

Example

$$x_1 = 3, x_2 = 2, x_3 = 2$$

$$x_1 = 3, x_2 = 2 \rightarrow \frac{h}{k} = \frac{2}{3} \rightarrow 3h = 2k$$

$$x_1 = 3, x_3 = 2 \rightarrow \frac{h}{l} = \frac{2}{3} \rightarrow 3h = 2l$$

$$\rightarrow$$
 (hkl)=(2,3,3)



# Surfaces: Indices de Miller

cristal cubique faces centrées



#### Surfaces: Indices de Miller

cristal cubique faces centrées



# Surfaces: Propriétés

Souvent, la propriété la plus importante de surfaces différentes sont leurs densités: cel-lui qui est **la plus dense est la plus speciale**.

Volume du cellule unitaire:  $V = |\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)|$ 

Densité des pointes sur un plan de réseau:  $\sigma = d/V$ 

Les plus denses plans: FCC: (111)

BCC: (110)

SC : (100)

#### **Estimates**

Atome 
$$i: E_i = \frac{\epsilon}{2} N_i \Rightarrow \frac{E_{bulk}}{N_{bulk}} = N_{nn} \frac{\epsilon}{2}$$

$$\gamma = \frac{(E_{bulk} - E_{surface})}{A_{surface}} = \frac{N_{surface}}{A_{surface}} \times \frac{(E_{bulk} - E_{surface})}{N_{surface}} = \frac{N_{surface}}{A_{surface}} \times \frac{(N_{nn} - N_{surface})}{N_{surface}} \frac{\epsilon}{2}$$



|         | SC | FCC |
|---------|----|-----|
| NN      | 6  | 12  |
| NN(100) | 5  | 8   |
| NN(110) | 4  | 7   |
| NN(111) | 3  | 9   |





# Effet de taille sur l'energie de liason

énergie de l'agrégat:

(1) modèle de la goutte:

$$E_{\rm agr\acute{e}gat} = E_{\rm solide} - S \gamma$$

$$E_{\text{agrégat}} = E_{\text{cohésion}} N - 4 \pi r_a^2 \gamma N^{2/3}$$

$$E_{\text{norm}} = \frac{E_{\text{agrégat}}}{E_{\text{solide}}} = 1 - \frac{\text{cste}}{N^{1/3}}$$



(2) structure cristalline (construction de Wulff)

A. Perez, P. Mélinon, J. Lermé et J.-F. Brevet, *Agrégats et colloïdes*, dans: M. Lahmani, C. Dupas et P. Houdy, éditeurs, *Les nanosciences: Nanotechnologie et nanophysique* (Belin, Paris, 2004) pp. 170-254.

#### Tension de surface: anisotropie



H. P. Bonzel, 3D equilibrium crystal shapes in the new light of STM and AFM, Phys. Rep. 385 (2003) 1-67

# Tension de surface: anisotropie



Energie d'un atome de terrace: a

Energie d'un atome de marche: b

Energie par unité de surface:

$$\gamma = \frac{an+b}{\sqrt{n^2+1}}$$

Angle entre le plan de surface et les terraces:  $\theta$ 

$$\frac{1}{\sqrt{n^2+1}} = \sin \theta$$

Tension superficielle:  $\gamma(\theta) = a \cos \theta + b |\sin \theta|$ 

#### Surface anisotropie et la forme des cristaux

La forme d'un cristal est celle qui minimise l'énergie de surface

(Curie, 1885; Wulff, 1901).

Energie libre: 
$$dF = -P_{\rm F}dV_{\rm F} - P_{\rm C}dV_{\rm C} + \oiint \gamma dA$$

F = phase fluide

C = cristal

$$dV_{\rm F} = -dV_{\rm C}$$

$$dF = -(P_{\rm C} - P_{\rm F})dV_{\rm C} + \oiint \gamma dA = 0$$

Energie de surface minimum:

contrainte de volume constant:

$$\min \oiint \gamma(\mathbf{n}) dA$$

$$\iiint dV = Cst$$

#### Forme des cristaux (suite)

#### La forme d'un cristal est celle qui minimise l'énergie de surface

(Curie, 1885; Wulff, 1901).

Décomposition du cristal en domaines pyramidaux:







Parce-que la pyramid est autosimilaire ("self-similar") comme fonction de la distance au-dessous la point, la surface d'une section varie comme  $A(h) = A(h_0) \times (\frac{h}{h_0})^2$  indépendamment de la forme.

Donc, la volume est  $\int_{0}^{h_{n}} A(z) dz = \frac{1}{3} A_{n} h_{n}$ 

#### Forme des cristaux (suite)

#### La forme d'un cristal est celle qui minimise l'énergie de surface

(Curie, 1885; Wulff, 1901).

Il s'ensuite que

$$A_n(h) = A_n(h_0) h_n^2 \rightarrow \delta A_n = 2(A_n/h_n) \delta h_n$$
$$V_n = \frac{1}{3} A_n h_n \rightarrow \delta V_n = A_n \delta h_n$$

Minimisez l'énergie de la surface à volume constante:

$$\delta(F - \lambda(V - V_0)) = \delta \Delta P V + \delta \sum_{n} A_n \gamma_n - \lambda \delta V - \delta \lambda(V - V_0)$$

$$0 = \sum_{n} \left( \frac{2}{h_n} A_n \gamma_n - \lambda A_n + \Delta P A_n \right) \delta h_n + \delta \lambda(V - V_0)$$

$$0 = \sum_{n} \left( \gamma_n - \frac{(\lambda - \Delta P)}{2} h_n \right) 2 A_n \frac{\delta h_n}{h_n} + \delta \lambda(V - V_0)$$

$$\Rightarrow h_n = constant \times \gamma_n$$

#### **Construction de Wulff (1901)**



U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48 (2003) 53-229

# Structures d'equilibre 3D

T = 0: polyhèdre avec faces planes et arêtes anguleuses

 $0 < T < T_R$ : faces planes avec arêtes arrondies

 $T_{\rm R} < T$ : surface arrondie

 $T_{\rm R}$ : température de la transition rugueuse





- (a) cristal de Pb vu dans la direction [110], T = 300 K
- (b) Pb/Ru(001), T = 323 K, rayon des faces ~ 140 nm
- (c) cristal de Pb, T = 363 K, rayon de la face (111) ~ 230 nm





H. P. Bonzel, 3D equilibrium crystal shapes in the new light of STM and AFM, Phys. Rep. 385 (2003) 1-67

#### Structures d'equilibre 3D



Image SEM d'un cristal de Au sur un substrat de SiC, incubation pendant 72h à T = 1123 K



Х

(b)

Cristal d'un alliage de Ni avec 5% Pb et 0.08% Bi, à T = 548 K



H. P. Bonzel, 3D equilibrium crystal shapes in the new light of STM and AFM, Phys. Rep. 385 (2003) 1-67

#### Structures d'equilibre 2D

tension de ligne (tension de surface à 1D)

T = 0: polygone

T > 0: îlot arrondi

La température de la transition rugueuse est nulle à 2D, car il n'y a pas de transition de phase à 1D.

Ilots sur une surface de Pb(111):

- (a) T = 150 K, 250 nm x 250 nm
- (b) T = 167 K, rayon de la face du dessus ~ 36 nm
- (c) T = 172 K, rayon ~ 32 nm
- (d) T = 277 K, rayon ~ 42 nm
- (e) T = 308 K, rayon ~ 280 nm
- (f) T = 323 K, rayon ~ 110 nm



H. P. Bonzel, 3D equilibrium crystal shapes in the new light of STM and AFM, Phys. Rep. 385 (2003) 1-67

#### Il n'y a pas de transition de phase à 1D

**Théorème**: Il n'ya pas de transition de phase dans un système 1D infinie si les interactions sont à courte portée. (Landau, 1950)

Preuve (l'idée):

$$L'energie\ U \qquad L'entropie\ S=k_BlnW \qquad F=U-TS$$
 
$$I: \ \uparrow \ \uparrow \ \uparrow \ \uparrow \ \uparrow \ \dots \qquad -N\epsilon \qquad \qquad 0 \qquad \qquad -N\epsilon$$
 
$$II: \ \uparrow \ \uparrow \ \downarrow \ \uparrow \ \uparrow \ \downarrow \ \dots \qquad -(N-2)\epsilon \ +2\epsilon \qquad \qquad k_BlnN \qquad -(N-4)\epsilon -k_BTlnN$$

$$\Delta F = F_I - F_{II} = -4\epsilon + k_B T \ln N > 0$$
 si *N* est assez grande.

# Il n'y a pas de transition de phase à 1D.

**Théorème**: Il n'ya pas de transition de phase dans un système 1D infinie si les interactions sont à courte portée.

Preuve (Landau, 1950)

L. D. Landau, E. M. Lifshitz, Statistical Physics I (Pergamon Press, New York, (1980).



$$\Omega = L \omega + n \gamma + k_B T \left( \frac{n}{L} \ln \left( \frac{n}{L} \Lambda \right) - \frac{n}{L} \right) L$$

$$= L \omega + n \gamma + k_B T \left( n \ln(n) - n \left( 1 - \ln \left( \frac{\Lambda}{L} \right) \right) \right)$$

Ce qui est nouveau, le dernier terme, est l'entropie d'une solution diluée des frontières (simplement, l'energie d'un gaz parfait). Mais,

$$\frac{\partial \Omega}{\partial n} = \gamma + k_B T \ln(n) + k_B T \ln\left(\frac{\Lambda}{L}\right) < 0, \quad \text{si } \frac{\Lambda}{L} \Rightarrow 0$$

La bord de "courte porteé" est l'inverse du carré. D. Ruelle, Comm. Math. Phys. 9:267 (1968), F. J. Dyson, Comm. Math. Phys. 12:91 (1969).

#### Effet de taille sur la temperature de fusion



$$0 = \Omega_s - \Omega_l$$
 Donc, on voit que 
$$0 = (V(R_s)\omega_s - V(R_l)\omega_l) + S(R_s)\gamma_s - S(R_l)\gamma_l + (V(R_l) - V(R_s))$$

#### Effet de taille sur la temperature de fusion

$$0 = (V(R_s)\omega_s - V(R_l)\omega_l) + S(R_s)\gamma_s - S(R_l)\gamma_l + (V(R_l) - V(R_s))\omega_v$$

Developpe a la "triple point",  $T_0$ ,  $\mu_0$ :

$$\begin{split} 0 &= (V(R_s) - V(R_l))\omega_0 + (\frac{\partial \omega_s}{\partial T_0}V(R_s) - \frac{\partial \omega_l}{\partial T_0}V(R_l))(T - T_0) \\ &+ (\frac{\partial \omega_s}{\partial \mu_0}V(R_s) - \frac{\partial \omega_l}{\partial \mu_0}V(R_l))(\mu - \mu_0) + S(R_s)\gamma_s - S(R_l)\gamma_l + (V(R_l) - V(R_s))\omega_0 \\ &+ (\frac{\partial \omega_v}{\partial \mu_0}(\mu - \mu_0) + \frac{\partial \omega_v}{\partial T_0}(T - T_0))(V(R_l) - V(R_s)) \end{split}$$

Utilisant 
$$d \Omega = -SdT - PdV - N d \mu$$
  
 $T_0 \Delta S = LmN$ 

$$0 = LmN \frac{T - T_0}{T_0} + 3N \left(\frac{\gamma_s}{R_s \rho_s} - \frac{\gamma_l}{R_l \rho_l}\right) + \left(-(\mu - \mu_0)\rho_g + \frac{\omega_{g0}}{T_0}(T - T_0)\right) \left(V(R_s) - V(R_l)\right)$$

faible

$$T = T_0 (1 - a/R_s),$$
  $a = \frac{3}{Lm\rho_s} \left( \gamma_s - \gamma_l \left( \frac{\rho_s}{\rho_l} \right)^{2/3} \right)$ 

#### Effet de taille sur la temperature de fusion

Température de fusion d'agrégats d'or de diamètre  $D = 2R_s$ 

$$T_{\rm f} = T_0 \bigg( 1 - \frac{a}{R_{\rm s}} \bigg)$$

P. Buffat and J.-P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 13 (1976) 2287.

## Source d'agregats



W. A. de Heer, *The physics of simple metal clusters: experimental aspects and simple models*, Rev. Mod. Phys. **65** (1993) 611.

# Transition de phase dans un agregat



internal energy distribution:

$$P_{T}(E) = \int \delta(E - H) Z^{-1} \exp(-\beta H) d \mathbf{p}^{N} d \mathbf{q}^{N}$$
  
=  $Z^{-1} \exp(-E/k_{B}T) \int \delta(E - H) d \mathbf{p}^{N} d \mathbf{q}^{N}$ 

Number of states  $\Omega(E) = \int \delta(E - H) d\mathbf{p}^N d\mathbf{q}^N$ 

$$P_T(E) \propto \Omega(E) \exp(-E/k_B T) = \exp(S/k_B - E/k_B T)$$

M. Schmidt et al., Phys. Rev. Lett. **86** (2001) 1191

Max of P(E): 
$$\partial P(E)/\partial E = 0 \Rightarrow T = \left(\frac{\partial S}{\partial E}\right)_{E_{\text{max}}}^{-1} \equiv T_{\text{microcanoncial}}(E_{\text{max}})$$

#### Transition de phase dans un agregat





M. Schmidt et al., Phys. Rev. Lett. **86** (2001) 1191

$$P_T(E) \propto \Omega(E) \exp(-E/k_B T) = \exp(S/k_B - E/k_B T)$$

$$\partial P(E)/\partial E = 0 \Rightarrow T = \left(\frac{\partial S}{\partial E}\right)_{E_{\text{max}}}^{-1} \equiv T_{\text{microcanoncial}}(E_{\text{max}})$$

#### Transition de phase d'agregats de Na



H. Haberland et al., Phys. Rev. Lett. **94** (2005) 035701

q = latent heat of fusion/atom  $\Delta s$  = entropy change upon melting/atom

M. Schmidt et al., Phys. Rev. Lett. **90** (2003) 103401





# Transition de phase d'agregats de Na



H. Haberland et al., Phys. Rev. Lett. **94** (2005) 035701

$$5\epsilon - 20\frac{\epsilon}{2} = -5\epsilon$$

Les couches geometrique

# AMAS OU AGREGATS ATOMIQUES

- L'auto-assemblage: Nucleation
  - Modele de l'amas: "capillary model".
  - Thermodynamics
  - Becker-Doring model
  - Zeldovich equation
  - Taux de nucléation

# Nanoparticules cristalline

- Structure cristalline
- Indices de Miller
- Tension de surface
- Forme des Cristaux
- Transistions de phase
- Proprietes electronique des agregats

## Propietes electroniques dans les agregats metalliques

Effets de taille sur le potentiel d'ionisation Effets de tailles sur les propriétés catalytiques

Effets de couches et de supercouches

# Effet de taille sur le potentiel d'ionisation

Énergie potentielle électrostatique d'une charge q à une distance r du centre d'une sphère conductrice de rayon R:

$$U(r;R) = -\frac{q^2}{4\pi\epsilon_0 r} + \frac{q^2 R^3}{8\epsilon_0 \pi r^2 (r^2 - R^2)}$$

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Différence d'énergie: 
$$U(R+\delta;R) - \lim_{R\to\infty} U(R+\delta;R) = \frac{5q^2}{32\pi\epsilon_0 R} + O(\delta/R)$$

Potentiel d'ionisation: 
$$PI(R) = \Phi + \frac{5q}{32 \pi \epsilon_0 R} + O(\delta/R) = \Phi + \frac{5.4}{R(A)} eV + ...$$

travail de sortie du métal: Φ

D. M. Wood, Classical size dependence of the work function of small metallic spheres, Phys. Rev. Lett. **46** (1981) 749.

## Effet de taille sur le potentiel d'ionisation

W. A. de Heer, *The physics of simple metal clusters: experimental aspects and simple models*, Rev. Mod. Phys. **65** (1993) 611.





A. Perez, P. Mélinon, J. Lermé et J.-F. Brevet, *Agrégats et colloïdes*, dans: M. Lahmani, C. Dupas et P. Houdy, éditeurs, *Les nanosciences: Nanotechnologie et nanophysique* (Belin, Paris, 2004) pp. 170-254.

# Effet de taille sur le potentiel d'ionisation

Energie de désorption du CO de particules de Pd sur un support de MgO(100).

Taux d'oxydation du CO sur des particules de Pd sur différents supports.





C. R. Henry, Surface studies of supported model catalysis, Surface Science Reports 31 (1998) 231-325.

## Couches et supercouches fermioniques

Elles sont omniprésentes dans les systèmes fermioniques finis:

- atomes: tableau périodique
- noyaux: modèle en couches
- agrégats: couches et supercouches

Existence de nombres magiques correspondant au remplissage complet des niveaux quantiques des fermions indépendants par ceux-ci jusqu'à l'énergie de Fermi.

### Couches dans les atomes

Nombres magiques:

N = 2, 10, 18, 36, 54, 86







| *Lanthanide | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|-------------|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Series      | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| + Actinide  | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Series      | Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |

### **Couches dans les atomes**



## Couches dans les noyaux

Nombres magiques: 
$$N=2,\,8,\,20,\,28,\,50,\,82,\,126$$

 $j = l \pm 1/2$ 



## Couches dans les noyaux

Nombres magiques:

$$N = 2, 8, 20, 28, 50, 82, 126$$



Energie de liaison par nucléon des isobares les plus beta-stables

### Couches dans les agrgats

Nombres magiques:

N = 2, 8, 18, 20, 34, 40, 58,...





Modèle du jellium avec potentiel effectif auto-consistant

## **Agregats alcalins**

#### Nombres magiques:

$$N = 2, 8, 20, 40, \dots$$



W. D. Knight et al., *Electronic shell structure and abundances of sodium clusters*, Phys. Rev. Lett. **52** (1984) 2141.



W. A. de Heer, *The physics of simple metal clusters: experimental aspects and simple models*, Rev. Mod. Phys. **65** (1993) 611.

# **Autre agregats**



W. A. de Heer, *The physics of simple metal clusters: experimental aspects and simple models*, Rev. Mod. Phys. **65** (1993) 611.

### Effet des couches sur le potentiel d'ionisation



W. A. de Heer, *The physics of simple metal clusters: experimental aspects and simple models*, Rev. Mod. Phys. **65** (1993) 611.

# Supercouches dans les agregats de sodium



J. Pedersen et al., Nature **353** (1991) 733.

# Couches atomiques/electroniques



A. Perez, P. Mélinon, J. Lermé et J.-F. Brevet, *Agrégats et colloïdes*, dans: M. Lahmani, C. Dupas et P. Houdy, éditeurs, *Les nanosciences: Nanotechnologie et nanophysique* (Belin, Paris, 2004) pp. 170-254.



M. Brack, *The physics of simple metal clusters:* self-consistent jellium model and semiclassical approaches, Rev. Mod. Phys. **65** (1993) 677.

# Plots quantiques semiconducteurs

Particules semiconductrices de quelques nanomètres en solution, illuminées par de la lumière UV et émettant par fluorescence de la lumière visible à une longueur d'onde caractéristique de la taille de la nanoparticule.







## Plots quantiques semiconducteurs

Image de nanocristaux avec un cœur de CdSe, une couche de ZnS ou CdS et une autre de silice dans une solution aqueuse, tous illuminés par une lampe UV.

Spectres d'émission par fluorescence de nanocristaux semiconducteurs recouverts de surfactants.

Filaments d'actine en rouge dans des fibroblastes de souris (largeur 84 µm).







M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss & A. P. Alivisatos, Science **281** (1998) 2013 W. C. W. Chan & S. Nie, Science **281** (1998) 2016

### Effet de taille sur la fluorescence

L. E. Brus, J. Chem. Phys. **79** (1983) 5566; **80** (1984) 4403.



B. O. Dabbousi, et al. (1997)

### Effet de taille sur la fluorescence

L. E. Brus, J. Chem. Phys. **79** (1983) 5566; **80** (1984) 4403.

bande conductrice (électrons e<sup>-</sup>)



bande de valence (trous h+)

hamiltonien pour l'électron et le trou:

$$H = -\frac{\hbar^2}{2 m_{\rm e}} \nabla_{\rm e}^2 - \frac{\hbar^2}{2 m_{\rm h}} \nabla_{\rm h}^2 - \frac{e^2}{|\boldsymbol{r}_{\rm e} - \boldsymbol{r}_{\rm h}|}$$

fonction d'onde approchée:

$$\psi(\mathbf{r}_{\mathrm{e}},\mathbf{r}_{\mathrm{h}}) \approx \psi_{\mathrm{0}}(\mathbf{r}_{\mathrm{e}}) \, \psi_{\mathrm{0}}(\mathbf{r}_{\mathrm{h}})$$

$$\psi_0(\mathbf{r}) = N \frac{1}{r} \sin\left(\frac{\pi r}{R}\right)$$

$$E_0^{\text{e,h}} = \frac{\hbar^2 \pi^2}{2m_{\text{e,h}} R^2} = \frac{\hbar^2 \pi^2}{8m_{\text{e,h}} R^2}$$

$$E \approx E_{\rm g} + \frac{h^2 \pi^2}{8 m_{\rm e} R^2} + \frac{h^2 \pi^2}{8 m_{\rm h} R^2} - \frac{1.8 e^2}{\epsilon R}$$

### Effet de taille sur la fluorescence

L. E. Brus, J. Chem. Phys. **79** (1983) 5566; **80** (1984) 4403.

$$E \approx E_{\rm g} + \frac{h^2}{8m_{\rm e}R^2} + \frac{h^2}{8m_{\rm h}R^2} - \frac{1,8e^2}{\epsilon R}$$

$$CdS$$

$$E_{\rm g} = 2,58 \text{ eV}$$

$$m_{\rm e} = 0,19 m_{\rm e0}$$

$$m_{\rm h} = 0,8 m_{\rm e0}$$

$$\epsilon = 5,7$$

$$5.0$$

$$4.5$$

$$3.5$$

$$3.5$$

$$3.6$$

Diamètre (nm) 10 5 4
Cinétique 0,10 0,38 0,59
Coulomb -0,10 -0,19 -0,23
Polarisation 0,02 0,05 0,07
Total (eV) 0,02 0,24 0,43

Interprétation en termes du principe d'incertitude d'Heisenberg

