Review of Plant Pathology

Volume 72

Prepared by

CAB INTERNATIONAL DIVISION OF CROP PROTECTION AND GENETICS

in association with the International Mycological Institute

MU - (2011) 2 - 2011 MOW 2012 2013 1993

ISSN 0034-6438

© CAB INTERNATIONAL, 1994

All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owner.

published by

CAB INTERNATIONAL
Wallingford
Oxon OX10 8DE UK

The information contained herein, including any expression of opinion and any projection or forecast, has been obtained from or is based upon sources believed by us to be reliable but is not guaranteed as to accuracy or completeness. The information is supplied without obligation and on the understanding that any person who acts upon it or otherwise changes his/her position in reliance thereon does so entirely at his/her own risk.

printed by

Unwin Brothers Ltd, The Gresham Press, Old Woking, Surrey, UK A Member of the Martins Printing Group

CAB INTERNATIONAL INFORMATION SERVICES DIVISION OF CROP PROTECTION AND GENETICS

Wallingford, Oxon OX10 8DE, UK Telephone: Wallingford (0491) 832111

Review of Plant Pathology

A monthly journal compiled from the CAB ABSTRACTS database. Produced by the DIVISION OF CROP PROTECTION AND GENETICS in association with the International Mycological Institute

Editor

J.A. Brunt BSc, MSc

Editorial Advisory Board

A.J. Gibbs (Canberra, Australia)
D.L. Hawksworth (Kew, UK)
C. James (Mexico)

A. Kelman (Raleigh, N. Carolina, USA) I.M. Smith (Paris, France) J.M. Thresh (Chatham, UK)

Head of Division

P.R. Scott MA, PhD

Head of Department of Crop Protection G.A. Viney BSc, MSc Head of Department of Plant Breeding & Genetics S.L.A. Hobbs MA, DPhil

Scientific Information Officers

Plant Pathology
I.J. Brown BSc, MSc
J.A. Brunt BSc, MSc
L.M.F. Charles BSc
P.A. Farnell BSc
L.A. Martyniuk MA, MIL
Entomology
E.D.L. Brooks BAgr, PhD
S.C. Brown BA
D.S. Buckley BSc, PhD
B. Burger BSc

L.M. Ridout BA, PhD S.F. Siddiqi BSc L. Thorn BSc

Nematology
E.D.L. Brooks BAgr, PhD
S.F. Siddiqi BSc
Weed Science
I.L. Andrews BSc, PhD
J.L. Mayall

A.L. Sunley BSc A.M. Yates BSc Plant Breeding
K.A. Binks BSc, MSc
B.F. Cooper MA, PhD
H.J. Dawson BSc, MSc, PhD
K.H. Lipp-Nissinen BSc, MSc, PhD
J.E. Loder BSc, MSc
D.G. Massey BSc
D.E. Mitchell BSc, MSc
A.M. Praciak BSc

Biotechnology
I.J. Brown BSc, MSc
D.J. Hemming BSc, PhD
D.G. Massey BSc

Other contributions from: H.M. Minter MSc D.J. Stamps PhD P.M. Woolford MSc CAAS, Beijing, China

Clerical Officer T.C. Vincent Keyboarders
Y. Gillett (Supervisor)
S. Abbott
C. Hughes

The journal is available at a special rate to subscribers in countries which make a financial contribution to CAB INTERNATIONAL. Orders and enquiries concerning subscriptions and back numbers should be sent to the Distribution Manager, Marketing & Distribution Services, at the above address.

The Department of Crop Protection also prepares: Review of Agricultural Entomology, Nematological Abstracts, Weed Abstracts, Plant Growth Regulator Abstracts and Seed Pathology and Microbiology.

How to use Review of Plant Pathology

• Either BROWSE, using the CONTENTS

Within each issue, records are sequenced according to their principal subject matter - see CONTENTS page.

About three quarters of the records are arranged by CROP, so browsing is particularly useful to crop specialists. Within each crop, records are arranged in the order:

- general
- viruses, mycoplasma-like organisms, spiroplasmas, etc.
- fungl
- bacterla
- non-parasitic disorders.

Or SEARCH, using the INDEXES

Subject indexes and author indexes are compiled monthly and cumulated annually.

SUBJECT INDEX

This guides the user to all the records that make significant reference to specific topics, including the following:

HOST PLANT SPECIES AND GROUPS

English common names are used for major crops, scientific names for minor crops and other plants. Entries point to pathogen species and then to subject headings. Records that refer only to groups are indexed under group names, e.g. cereals, vegetables.

PATHOGEN SPECIES AND GROUPS

Pathogens are indexed under scientific names. Entries point also to host species and other subject headings. Records that refer only to groups are indexed under group names, e.g. bacteria, fungi.

COUNTRY OR REGION

For records where geographical occurrence is of particular relevance.

AGROCHEMICALS etc.

Including common or chemical names, with cross-references from proprietary names. Including chemical elements with well defined deficiency or toxicity syndromes.

VECTORS

OTHER HEADINGS

The main ones are listed here. Scan the ANNUAL INDEX for a more complete picture.

Acid rain Seed testing Economics of control Phytoalexins Air pollution Electron microscopy Seed treatment Plant extracts Air spora **Fertilizers** Postharvest decay Soll **Apparatus** Soil treatment Heat treatment Records, geography Bibliographies Host parasite relationships Records, hosts Spore dispersal Biological control Induced mutations Regulation Spore germination Books Mineral deficiencies Reports Storage decay Conferences Molecular genetics Reviews Storage disorders Crop losses Mycorrhizas Quarantine Techniques Cultural methods Mycotoxins Seedborne organisms *Viruses

* All relevant records are indexed under viruses, subdivided by virus group name where appropriate. Records are also indexed under hosts and under individual virus names.

AUTHOR INDEX

All authors of each paper are indexed alphabetically by surname. Variants of surnames are also indexed.

A TYPICAL RECORD

- 1) Abstract No.
- 2) Author
- 3) English translation of title
- 4) Title
- 5) Journal or other document
- 6) (Year) Volume (Part) pages
- 7) Language of text, any other language of summary
- 8) Address of first author
- 9) Abstract
- 10) Preferred name, if the author uses another name. (Names of fungal perfect states are preferred to those of imperfect states.)

2021 WELLACHER, M. [Fusarium species on cereals and malze from Austria.] Fusariumarten auf Getreide und 4.5 Mais aus Österreich, Pflanzenschutzberichte (1991) 52 (1) 6.7 48-50 [De, en, 14 ref.] Central Bureau voor 8.6 Schimmelcultures, P.O. Box 273, 3740 AG Baarn, Netherlands.

F. avenaceum [Gibberella aveacea], F. cerealis, F. culmorum, F. poae, F. sacchari var. subglutinans and Monographella nivalis were isolated from 25 samples of oats, wheat, barley, rye and maize seeds harvested in different areas of Austria in 1990. F. sacchari var. subglutinans was the predominant taxon on all cereals and the only one found on maize, whereas F. cerealis was found only on one sample of wheat.

The title should be read as an integral part of the abstract.

TO OBTAIN A COPY OF THE ORIGINAL ITEM

Use the CAB International Document Delivery Service. A form is printed in this issue.

LIST OF JOURNALS CITED

The annual indexes include an alphabetical list of all journals cited during the year.

ABBREVIATIONS

A number of easily understood abbreviations are used (e.g. sp., species). Initial letters may be used for a virus after its full name has appeared. The following are also used:

a.e.	acid equivalent	EM	electron microscope	SDS	sodium dodecyl sulfate
a.F.ldsb	active ingredient	FW	fresh weight	SEM	scanning electron
c.f.u.	colony-forming units	ID	infective dose		microscope
conc.	concentrated	LC	lethal concentration	str.	strain
concn	concentration(s)	LD	lethal dose	w.p.	wettable powder
DW	dry weight	PAGE	polyacrylamide gel		
ED	effective dose		electrophoresis		
ELISA	enzyme-linked	RH	relative humidity		
	immunosorbent assay	RPP	Review of Plant Pathology		

In abbreviations for languages an initial capital denotes the language of the paper, an initial small letter the language of the summary.

Af	Afrikaans	En	English	Ja	Japanese	Pt	Portuguese
Al	Albanian	Eo	Esperanto	Ko	Korean	Ro	Romanian
Ar	Arabic	Es	Spanish	La	Latin	Ru	Russian
Az	Azerbaljani	Fi	Finnish	Li	Lithuanian	Sh	Serbo-Croat
Be	Byelorussian	Fr	French	Lv	Latvian		(either script)
	(White Russian)	Gr	Greek	Ma	Macedonian	Sk	Slovak
Bq	Bulgarian	Не	Hebrew	My	Malay and Bahasa	Sn	Slovene
Ch	Chinese	Hu	Hungarian	(pool)	Malaysia	Sv	Swedish
Cs	Czech	la	Interlingua	NI	Dutch, Flemish	Ta	Tajik
Da	Danish	In	Indonesian	No	Norwegian	Tr	Turkish
De	German	Is	Icelandic	Pe	Persian	Uk	Ukrainian
Ee	Estonian	It	Italian	PI	Polish		

CAB International Division of Crop Protection and Genetics How the crop protection abstract journals are compiled

Review of Agricultural Entomology Review of Plant Pathology Nematological Abstracts Weed Abstracts

Their purpose

These four journals are designed to keep readers in touch with developments in the crop protection sciences, by abstracting the more important world scientific literature and by publishing review articles. A calendar of crop protection events is included. The abstracts are intended to be full enough for readers to decide whether they need to see the original documents.

The scale and diversity of the agricultural source literature

Over 10,000 journals and other serial publications on agriculture and allied disciplines are received regularly by CAB International; these comprise more than 50,000 documents annually. Over 3000 books and other non-serials are also received each year. Publications are received from some 150 countries, in more than 50 languages. Even though English is increasingly the international language of science, some 40% of the literature is in other languages.

Scanning and abstracting the source literature of crop protection

All these documents are scanned by CABI subject specialists and are available to the CABI Division of Crop Protection and Genetics. About 3000 journals, and numerous new books, are scanned regularly in the Division, whose staff includes specialists in entomology, plant pathology, nematology, weed science, plant genetics, and also linguists.

These specialists identify items within the scope of the four crop protection journals – broadly, scientific documents about agriculturally significant pests (invertebrates, plant pathogens and weeds), beneficial organisms, and relevant crop protection practices and products.

For each item, a record is created consisting of:

- bibliographic information
- an abstract, in English
- subject coding
- Index terms.

The CAB ABSTRACTS database

These records are added to the CAB ABSTRACTS bibliographic database. This machine-readable database contains all records published since 1973 in about 50 CABI abstract journals. The total of nearly 3 million records is growing by more than 150,000 new records per year, of which about 21,000 per year are on crop protection. The database is available to users for retrospective retrieval and for maintaining current awareness of literature on defined topics. See separate page, and inside back cover.

The crop protection abstract journals

At intervals, relevant records newly added to the database are selected and become the basis for a new issue of one of the crop protection journals. Records are sorted into a standard sequence within each journal issue, according to subject matter. An author index and a subject index are generated. Cumulative indexes are generated at the end of each year.

Scientific links

Each of the four crop protection journals has its own international Editorial Advisory Board of subject specialists. Their members advise on the content and development of the journals, and commission review articles of topical interest.

The CABI Division of Crop Protection and Genetics maintains close contact with the International Institute of Entomology (IIE), the International Mycological Institute (IMI), the International Institute of Parasitology (IIP) and the International Institute of Biological Control (IIBC). These links are especially important in providing the authority for the preferred names of pest organisms used in the journal Indexes. IIBC is responsible for compiling the related abstract journal *Biocontrol News and Information*.

The Division of Crop Protection and Genetics is also in close contact with subject specialists in four other Divisions of the CABI information Services who compile 45 abstract journals covering the rest of agriculture, forestry and allied disciplines. Comments from users are always welcome. Please write to Mr Geoffrey A. Viney, Division of Crop Protection and Genetics, CAB International, Wallingford, Oxon OX10 8DE, UK.

CAB International Electronic Publications

CAB ABSTRACTS Database

All of the abstracts and citations published in any of the CABI Abstract Journals are derived from a computerised database known as CAB ABSTRACTS. The database, containing over 2.7 million records, and its various subsets are available in several electronic formats, as follows.

Online

Publicly available worldwide through the following online hosts:

 m
 DIALOG
 m
 CAN/OLE

 m
 DIMDI
 m
 ESA-IRS

 m
 DataStar
 m
 STN

Electronic Journals

- All CABI Abstract Journals on floppy disk, in comma-delimited, Pro-Cite or ISO2709 format.
- Update frequency is the same as for the printed journal.
- Data available on either 3.5" or 5.25" high density diskettes.

CD-ROM (Compact Disc Read Only Memory) CABCD

Three volumes containing the entire CAB ABSTRACTS database since 1984.

CAB SPECTRUM

- An array of subject-specific CD-ROMs.
- VETCD 20 years of information on Veterinary Science and Animal Health.
- BEASTCD 20 years of information on Animal Production and Dairy Technology.
- TREECD 50 years of information on Forestry, Agroforestry & Forest Products.
- CABPESTCD 20 years of information on Crop Protection.
- SOILCD 20 years of information on Soils, Water and Land Management.
- HORTCD 20 years of information on Horticulture, Ornamental Horticulture and Plantation Crops.

CAB COLLECTION

- PolTox III:CAB Environmental pollution and toxicology information since 1983.
- Human Nutrition on CD-ROM 10 years of data from CAB ABSTRACTS, FSTA, Medline and the Life Sciences Collection.

Current Awareness

SDI Service

- Based on the most recent input to the CAB ABSTRACTS database.
- · Subscribers decide their own search profile.
- Monthly search results on computer printout or floppy disk.
- Full bibliographic details and informative abstracts for the records retrieved.

CAR Alerts

- Similar to the SDI service, but with titles and search strategies chosen by CABI staff.
- Monthly output is provided on computer printout.

Retrospective Searches

- An online retrospective search of the CAB ABSTRACTS database.
- Provides citations and abstracts to published papers in the subject area of choice.
- Search output is available on computer printout or floppy disk.

For more details of these, or any other CABI Electronic Publications, contact the Marketing Manager for Electronic Publications, CAB International, Wallingford, Oxon OX10 8DE, UK.

INTERNATIONAL MYCOLOGICAL INSTITUTE

An Institute of CAB INTERNATIONAL

Bakeham Lane, Egham, Surrey TW20 9TY, UK

Tel: (0784) 470 111 (International +44 784 470 111) Telecom Gold/Dialcom: 84: CAU009

Telex: 9312102252 MI G EMail: CABI-IMI@CGNET.COM Fax: (0784) 470 909 (International +44 784 470 909)

Director: Service Heads:

> Biosystematic & Identification Services: Genetic Resources & External Services:

Plant Protection Services:

Biochemical & Molecular Biology Services:

Computing & Library Services:
Administrative & Training Services:

Professor D. L. Hawksworth, PhD, DSc, FLS, CBiol, FIBiol

B. C. Sutton, PhD, DSc

D. Allsopp, PhD, CBiol, FIBiol, MlInfSc

J. M. Waller, MA, PhD, DipAgSci, CBiol, MIBiol

P. D. Bridge, PhD

P. M. Kirk, PhD

E. M. Aitchison, MA

The International Mycological Institute (IMI), with a staff of about 65 and an annual budget of £1.9m, is the largest centre concerned with systematic mycology in the world. Founded in 1920, the Institute has from the first provided world services to mycologists and workers in related disciplines, particularly plant pathology, medical and veterinary mycology, and now also in industrial mycology, biodeterioration, biodiversity and biotechnology.

Biosystematic & Identification Services

Correct diagnosis of the cause of a disease, spoilage, or industrial problem is the first step in finding an appropriate solution. IMI provides a reliable, up-to-date identification service for about 4500 cultures and specimens each year, received from a wide variety of sources. Staff are involved in wide-ranging research programmes on microfungal systematics. They produce about 70 scientific papers each year and also compile the Dictionary of the Fungi, Index of Fungi, Bibliography of Systematic Mycology, Systema Ascomycetum, Descriptions of Fungi and Bacteria, Distribution Maps of Plant Diseases, Mycological Papers and Phytopathological Papers.

Information on the submission of material and details of charges are available on request.

Genetic Resources Reference Collection

This Collection, which incorporates the UK National Collection of Fungus Cultures, maintains over 17,000 strains; it is one of the largest service collections for fungus cultures in the world. Plant bacteria and yeasts are also maintained.

Cultures are available for sale world-wide for industrial, scientific and educational use, and metabolic and physiological data on the strains held are actively added to the collection's databank.

The 10th edition of the Catalogue is available free of charge and lists over 11,000 strains available from the open collection. Additions to the collection are welcome, especially of fungi otherwise not represented in the collection or of biochemical, economic and industrial importance.

The Collection is recognized as an International Depositary Authority for patent strains of fungi and bacteria under the terms of the Budapest Treaty.

Training Services

IMI offers a wide variety of training activities, ranging from postgraduate research degrees to one-day specialist seminars. Each year about eight longer courses, including an annual six-week International Course on the Identification of Fungi of Agricultural Importance, are held.

Overseas workshops, individual training and tuition for mycologists, plant pathologists and industrial staff are also arranged. Visiting research scientists are welcome to spend time at the Institute as part of their research work.

Plant Protection Services

The Institute's Plant Protection Laboratory incorporates the UK Overseas Development Administration Plant Pathology Liaison Unit. Backed by the expertise and information available within IMI, it provides disease diagnosis, technical support, and consultancy services for agricultural scientists, advisers, growers and shippers worldwide. Research is also undertaken, primarily on specific problems relating to pathogen variability and characterization.

Consultancy & Contract Services

IMI is able to undertake consultancy assignments involving surveys of disease or other problems, and offers consultancy and contract research in any of its fields of activity. Staff can also assist in the preparation of mycological publications on a contract basis.

Industrial & Environmental Laboratory

The laboratory is accredited under the UK National Measurement Accreditation Service (NAMAS) and carries out a wide variety of industrial testing, contract research and consultancies involving non-food materials. Services involving organisms other than fungi can also be arranged, and a tropical testing facility is available.

Yeast Investigations Laboratory

A specialist laboratory, headed by Professor R. R. Davenport, has been established in IMI. It provides consultancy, investigatory contract research and training facilities related to specific needs of the food and beverage industries, both in the UK and overseas.

Food Investigation

IMI's long-standing involvement in the food industry is now focussed through its Food Group, covering filamentous fungi, yeasts and bacteria. We offer producers, processors, manufacturers and distributors a comprehensive, confidential, microbiological service, including on-site investigations and training. For information resources, IMI has access to the International Food Information Service (IFIS).

Biochemistry & Molecular Biology Services

The Biochemistry & Molecular Biology Laboratory acts as a service unit within the Institute for routine and project work. Techniques currently available include detection and screening of fungal enzymes and secondary metabolites (including mycotoxins) and a number of methods for characterizing strains and taxa at a molecular level.

Bacteriology Laboratory

The laboratory offers a specialist identification service for plant pathogenic, biocontrol and industrially significant bacteria. Techniques currently available include quantitative fatty acid analysis, physiological test methods and molecular techniques involving the polymerase chain reaction (PCR).

Information

The IMI library holds a unique collection of literature on plant pathology, fungal systematics, medical and veterinary mycology, biodeterioration and fungal biotechnology. Its stocks consist of approximately 750 current journals, 7,000 volumes and books and 140,000 reprints.

Literature searches and studies can be carried out to specific individual requirements, and a photocopy service is also available to provide copies of original source literature.

Further details

Please write, fax or telephone for our current Services and Publications booklet and any further information on specific services that you may require. All work is carried out by IMI on a confidential basis, and we will be pleased to discuss your individual requirements without obligation.

Review of Plant Pathology

Contents Volume 72

MISCELLANEOUS PUBLICATIONS		1	75	141	203	283	373	467	567	651	737	827	921
BACTERIA, GENERAL		1	75	141	203	283	373	467	567	652	738	827	921
FUNGICIDES		3	78	144	205	284	377	469	571	655	741	829	923
ANTIBIOTICS		10	80	-	210	287	384	474	573	659	745	836	932
REGULATION AND QUARANTINE		-SUE	80	147	372	288	384	474	573			836	- 59
MYCORRHIZAS		11	80	147	210	288	384	474	573	659	746	837	932
FUNGI, GENERAL		12	85	151	214	293	389	481	578	664	751	841	936
SOILS		14	87	154	217	295	392	486	582	668	755	846	938
SYSTEMATIC MYCOLOGY		15	87	154	217	295	393	487	583	668	756	847	939
TECHNIQUES		15	89	155	220	296	395	488	584	669	757	849	939
VIRUSES		18	90	155	220	296	396	489	584	670	759	850	941
MYCOPLASMA - LIKE ORGANISMS, SPIROPLASMAS, ETC		24	93	158	223	300	401	493	593	672	760	852	947
CROPS, GENERAL		25	93	159	224	301	401	493	593	672	760	852	947
CEREALS		26	94	160	226	303	404	497	595	675	763	854	950
Wheat (including Aegilops)		27	95	161	227	304	406	498	595	676	765	855	951
Barley		32	100	164	232	310	412	503	600	680	770	860	958
Oats		33	101	_301	_16	312	415	506	601	682	771	18-118	960
Rye		- 116	101	-00	-14	-26	415	506	601	683	771	861	960
Triticale		-1-0	101	- 5	-30	n -100	416	m (up =	601		772	EV	960
Maize (including Tripsacum)		33	101	165	234	313	416	506	601	683	772	862	961
Sorghum		35	103	167	237	314	417	509	603	686	774	864	962
Millets		36	104	168	237	315	419	509	603	686	774	864	962
Rice		36	104	169	237	316	420	510	603	686 691	774	865	963 966
Other cereals		100	5550	188	85	310				031			1014
FODDER PLANTS		39	104	170	239	318	423	513	606	691	777	869	966
Grasses		39	107	170	239	318	423	513	606	691	777	869	966
Lucerne		40	108	171	-93	319	424	514	607	692	778	870	969
Clovers		40	108	171	240	320	424	515	607	692	778	871	969
Other fodder plants		-008	108	171	240	321	424	516	607	ne n 17-00	778	872	970
GRAIN LEGUMES		40	108	172	240	321	425	516	607	692	779	872	970
Soyabeans		41	108	172	241	321	425	516	608	693	779	872	970
Faba beans		-068	109	173	242	322	425	517	609	694	- 115)Times	873	971
Phaseolus	05/4/20	42	109	173	243	322	426	518	609	694	780	874	971
Peas		43	110	174	244	324	427	519	611	695	782	875	973
Lentils		43 43	110	_	245	325	427 427	519 520	611	696	783 783	875 875	974
ChickpeasPigeon Peas		43	111	_	246	325	428	521	-	- 030	705	876	974
Vigna		44	112	-	246	325	428	521	612	697	784	876	975
Other grain legumes		-171	112	174	247	326	-	521	612	697	210	RO CAE	976
2001 109 010 \$8V \$28 243		250	50	56	50	7 70	600		in man	vicinia (p		SITE COL	070
ROOT CROPS		45	112	174	247	326	429	522 522	612	697 697	784	877 877	976 976
Potatoes		45	112	175	247	326	429	322	612	097	784	011	370

4

Carrots	47	114	177	249	330	432	525	614	701	787	879	979
Swedes and turnips	-	-	177	_	330	-	-	-		_	Toul to	-10/-
Cassava	48	114	177	249	330	-			701	787	879	979
Sweet potatoes	48	114	177	250	330	432	525	614	701	788	879	979
Yams	-	114		-	-	432	525		701	_	-	-
Colocasia	48	114	177	-	-	432		OLIAS	DBA.	788	879	- MIS
Other root crops	48	-	177	y 30	-	-	525	614	100	788	880	979
LEAFY VEGETABLES,												PHO
BULBOUS VEGETABLES,												FUN
STEM VEGETABLES	49	115	177	250	330	432	526	615	702	788	880	979
Allium	49	115	-	250	330	432	526	615	702	788	880	980
Brassica	49	115	177	250	331	433	526	615	703	788	880	980
Spinach	430		- 0	-	332	-	-	616	901-	CVIA-NO	TVA AUE	981
Celery		-	-	251	-	434	-	_	-	-	-	
Lettuces	49	116	178	251	332	434	528	-	703	790	881	981
Other leafy, bulbous and stem												
vegetables (including asparagus and							- 0	42/03	Sug K	790	881	982
rhubarb)	50	116	178	251	333	434	529	616	703			100
o sto pro to see the see			170			405	500	0.17	701	700	004	108
FRUIT VEGETABLES	50	117	178	251	333	435	529	617	704	790	881	984
Tomatoes	50	117	178	251	333	435	529	617	704	790	882	984
Aubergines	-	118	179	-	336	437	531	-	707	793	884	988
Capsicum	51	118	179	253	336	437	532	619	707	793	885	988
Cucurbitaceae	51	119	180	254	336	437	532	620	709	794	885	989
Other fruit vegetables	52	-30	181	255	-	-		623	710	796	887	991
TEMPERATE FRUITS	52	120	181	255	338	441	534	623	710	796	887	992
Pome fruits	53	120	181	255	339	441	534	623	710	797	888	992
Stone fruits	53	122	182	257	343	443	535	624	712	799	890	993
Small fruits	54	123	183	258	343	445	536	626	712	800	891	994
Grapes	55	123	183	259	344	445	537	627	713	801	893	994
Other temperate fruits	56	5 -35	184	260	346	446	538	627	716	802	894	995
A - 1 - 200 - 200 M.S. 200 - Max												Wbg
TROPICAL AND SUBTROPICAL		404	101	000	240	4.4-4	500	007	740	000	205	000
FRUITS	56	124	184	260	346	447	539	627	716	802	895	996
Bananas	56	124	184	260	347	447	539	628	716	803	-	996
Citrus	57	125	184	260	347	447	539	628	717	803	895	996
Mangoes	58	125	185	262	348	448	541	629	718	805	896	997
Pineapples	58	- "	-	- (349	-	541		-		area (TEII)	7108
Litchi	-	105	405	-	349	448	544	-	740	-		007
Other tropical and subtropical fruits	59	125	185	262	350	448	541	630	718	805	896	997
NUT CROPS	59	126	186	263	351	449	542	631	719	806	897	998
												FOR
FATTY OIL PLANTS	59	126	186	264	351	449	542	631	720	807	898	999
Rape	59	126	186	264	351	449	542	631	720	807	898	999
Sinapis	- 5	-1		-	- 1	-	-	-	-		= 10	4910 -
Linseed		- 1	-17	265	352	449	-	632	721		sabbot n	999
Sunflowers	60	127	187	265	352	450	543	632	721	807	898	999
Safflower	- 5	-	187	266	353	-	544	632	1.5	234tu	898	ARD-
Oil palms	-15	127	- 0	266	353	-	544	632	721	808	- ampeds	- 30/8
Coconuts	60	127	187	267	353	-	-	632		808	899	1000
Olives	-	4 -20	e -0	-	-91	450	544	-	721	808	899	E/19 -
Groundnuts	61	127	188	267	354	450	544	632	722	808	899	1000
Castor beans	61	-	-	268	-	-	545	633	- T	7.799	-21	Me I -
Sesame	-	128	8 -	268	-	-	-	633	723	809	901	1002
Other fatty oil plants		6 -1	-	-	-	-		-			901	8813-
SUGAR CROPS	61	129	199	260	255	AE1	EAE	622	700	910	001	1000
Sugarcane	61	128	188 188	268 268	355	451	545	633	723	810	901	1003
Sugarbeet	61	129	189	268	355 356	451 452	545 545	633	723 723	810 811	901	1003
Other sugar crops	-	120	103	200	330	452	545	034	123	011	902	1003
						_			1777		10	J. T.

STIMULANT PLANTS	62	130	189	269	357	453	546	634	724	811	903	1004
Tea	62	- 5	7.7	-	-	453	546	-	-	-	-	-
Coffee	63	-	189	269	-	453	546	634	724	811	903	-
Cocoa	63	130	189	269	357	453	546	-	-	811	904	1004
Tobacco	64	130	190	269	357	453	548	635	724	811	905	1004
Other stimulant plants	-	-	-	-	-	-	-	-	-	-	-	-
FIBRE PLANTS	65	131	192	271	359	455	552	637	725	813	907	1008
Cotton	65	131	192	271	359	455	552	637	725	813	907	1008
Flax	66	_	192		360	457	_	638	726	814	908	_
Jute	_	131	_	_	_	_	553	_	_	_	908	1008
	19 63 43	-		100_	_	_	-	-	-	_	_	-
Sisal	66	132					553	638	726	_	_	1008
Other fibre plants	00	132		e Constant			555	030	720			1000
DUDDED DI ANTO	66	132	7711 _	272	1 - 115	457	553	638	726	814	908	, 1009
RUBBER PLANTS	66	132	_	212		457	555	030	120	014	900	, 1009
FOREST TREES	66	132	193	273	360	458	553	639	726	814	908	1009
Broadleaves	67	133	194	274	361	458	554	640	727	815	908	1011
Conifers	68	134	195	275	363	460	557	642	728	818	911	1013
ORNAMENTAL PLANTS	69	136	197	277	366	461	560	642	730	820	913	1016
MEDICINAL PLANTS, PESTICIDAL PLANTS, SPICE PLANTS, CULINARY HERBS, ESSENTIAL OIL PLANTS, INDUSTRIAL CROPS	71	137	199	278	368	462	563	645	733	822	916	1017
EDIBLE FUNGI	72	137	200	-	-	463	-	647	-	823	-	1019
PTERIDOPHYTA, BRYOPHYTA, ALGAE, LICHENS	-	137	200	-	369	-	-	647	-	824	-	-
WILD PLANTS	72	-	200	279	369	464	564	647	733	824	917	1019
WEEDS	72	137	201	279	369	464	565	648	733	824	917	1020
REPORTS	73	-	-	280	370	465	565	-	-	-	-	1022
CONFERENCES	73	138	202	280	370	465	565	649	735	825	918	1022
BOOKS	74	138	202	280	371	466	566	650	736	825	920	1023
AUTHOR INDEX	1025											
Crarles bull activities												
SUBJECT INDEX	1073											

(Note: under each crop, abstracts are arranged in the order: general; viruses, mycoplasma-like organisms, spiroplasmas, etc.; fungi; bacteria, non-parasitic disorders.)

List of source journals

137 JULY 1000