

write a recursive algo to sum A[1.-n] Sum (A[i-j])

if i=j
return A[i]

else return A[i] + Sum (A[i+1--j]) $A[i--i] = \begin{cases} A[i] & \text{if } i=j \\ A[i] & \text{sum}(A[i+1--i]) \end{cases}$ T(n) = T(n-1) + dThis is a const of $= \left[T (n-2) + d \right] + d$ = T (n-2) + 2d= T(n-3) + 3 d (n-(n-1)) + (n-1) &

 $= \begin{array}{c} k + (n-1) d \end{array}$

 $\mathcal{T}(\mathcal{N})$

K+ (n-1) &

 $\frac{k}{n}$

 $=\frac{k}{n}+\frac{\pi d}{x}-$

 $\frac{k}{n} - \frac{d}{n} + d$

a context c=ktd

C = ktd $\sum_{n=1}^{k} \frac{d}{n} + \frac{d}{n} = \frac{1}{2} \frac{d}{n} = \frac{1}{2}$

Tower

a problem

n-idisk. judution

- 1+ M

- \sim

Reenverion

works

\\ \(\)

all

Smal

Correct way to

Obs 1

J -

have

VSivo

Saw

olg Z

J J

dister

VSL

addi

Now

y jutentin

1/

Algorithm

Step!

More the

SHPL

Move the

Ster 5

More

4

T(n)

9/13/24, 2:10 PM

OneNote

50/10

Recurrence

We can

16

Solve

Mis

Caze 1

then

Example

The term

15

poly n

There fore

Core 2.

#

then

Example

T (

The

term

(

15

poly no

There fore

OneNote

Caze 3

#

Example

T ()

The term

ay mpto

There fore

Example

0

C

7

 \mathbb{A}

fallows :

4

 $f(\gamma) = \gamma$

We

50/5/2

Recurrer

The

CEZA

4

Wel

LOOK

 \mathcal{M}

The

CEZA

 $T(\gamma)$

OneNote KJJ

H K = 2

1

Jy

Chri

The

An

Carl

Sel

Carl

Leven

Hence

Studin