Number Theory

Aamod Varma

MATH - 4150, Fall 2025

Contents

1	\mathbf{Div}	isibility and Factorization	2
	1.1	Divisibility	2
	1.2	Prime Numbers	4
	1.3	Greatest Common Divisors	
	1.4	The fundamental Theorem of Arithmetic	8
2	Con	ngruences	12
	2.1	Congruences	12
	2.2		13
	2.3	Linear Congruences in one variable	14
	2.4	Chinese Remainder Theorem	16
	2.5		17
	2.6	Fermat's Little Theorem	17
		2.6.1 Consequences of FLT	18
	2.7	Euler's Theorem	19
3	Ari	thmetic functions and multiplicativity	21
		Euler ϕ function	22

Chapter 1

Divisibility and Factorization

1.1 Divisibility

Definition (Divisibility). Let $a, b \in \mathbb{Z}$, then a divides b and we write, $a \mid b$, if there exists $c \in \mathbb{Z}$ such that, b = ac. We also say a is a divisor of b or a factor. We write $a \not\mid b$ to say a does not divide b

Example. 1. 3|6 as $c=2\in\mathbb{Z}$ such that $3\cdot 2=6$

- 2. 3|-6 as $c=-2 \in \mathbb{Z}$ such that $3 \cdot 2 = 6$
- 3. If $a \in \mathbb{Z}$ then a|0 as for all a c=0 will give us $a \cdot 0 = 0$
- 4. $0 \mid 0$ as for any $c \in \mathbb{Z}$ it holds true.

 \Diamond

Proposition 1.1. Let $a, b, c \in \mathbb{Z}$. If a|b and b|c, then a|c

Proof. If a|b then we have c_1 such that $ac_1 = b$ by definition. If b|c then we have $bc_2 = c$ by definition. So we have,

$$bc_2 = c$$

 $ac_1c_2 = c$
 $ac_3 = c$ taking $c_3 = c_1c_2$

which by definition implies that a|c

Proposition 1.2. Let $a, b, c, m, n \in \mathbb{Z}$. If c|a and c|b then c|am + bn.

Proof. If c|a then exists c_1 such $cc_1 = a$ similarly exists c_2 such that $cc_2 = b$. Now we have,

$$cc_1 = a$$
$$cc_1 m = am$$

and

$$cc_2 = b$$
$$cc_2 n = bn$$

which gives us $am + bn = c(c_1m + c_2n) = cc_3$ which by definition implies that c|am + bn

Definition (Greatest integer function). Let $x \in \mathbb{R}$, the greatest integer function of x, denoted [x] or [x] is the greatest integer less than or equal to x.

Example. 1. If $a \in \mathbb{Z}$ then [a] = a (The converse that if [a] = a then $a \in \mathbb{Z}$ is also true.)

2.
$$[\pi] = 3, [e] = 2, [-1.5] = -2, [-\pi] = -4$$

 \Diamond

Lemma 1.3. Let $x \in R$ then $x - 1 < [x] \le x$

Proof. Suppose to the contrary that $[x] \le x - 1$ then $[x] < [x] + 1 \le x$. However $[x] + 1 \in \mathbb{Z}$ which mmakes [x] + 1 the greatest integer lesser than x. But this contradicts the definition hence we have x - 1 < [x].

Theorem 1.4 (The Division Algorithm). Let $a, b \in \mathbb{Z}$ with b > 0. Then there exists unique q, r such that,

$$a = bq + r \qquad 0 \le r < b$$

Proof. 1. Existence

Let $q = \left[\frac{a}{b}\right]$ and $r = a - b\left[\frac{a}{b}\right]$. Now by construction we have, a = bq + r. Now we show that $0 \le r < b$. By Lemma we have,

$$\begin{aligned} \frac{a}{b} - 1 &< \left[\frac{a}{b}\right] \leq \frac{a}{b} \\ b - 1 &> -b \left[\frac{a}{b}\right] \geq -a \\ b - a &> -b \left[\frac{a}{b}\right] \geq -a \\ b &> a - b \left[\frac{a}{b}\right] = r \geq 0 \end{aligned}$$

2. Uniqueness

Assume there are q_1, q_2, r_1, r_2 such that,

$$a = bq_1 + r_1$$
 $a = bq_2 + r_2$

We have,

$$0 = a - a$$

= $(bq_1 + r_1) - (bq_2 + r_2)$
= $b(q_1 - q_2) + (r_1 - r_2)$

Now,

$$r_2 - r_1 = b(q_1 - q_2)$$

so now we have $b|r_2-r_1$, but we know that $-(b-1) \le r_2-r_1 \le b-1$ which means that $r_2-r_1=0$ which implies that $r_1=r_2$. Similarly we have $b(q_1-q_2)=r_2-r_1=0$ which means that $q_1-q_2=0$ or $q_1=q_2$

Note. r = 0 if and only if b|a

Example. Suppose a = -5, b = 3 then we have,

$$q = \left[\frac{a}{b}\right] = \left[-\frac{5}{3}\right] = -2$$

And

$$r = a - b\left[\frac{a}{b}\right] = -5 = 3(-2) = 1$$

So $-5 = 3 \cdot -2 + 1$

Note. We can also write $-5 = -3 \cdot 1 - 2$. However this doesn't contradicts the uniqueness as r = -2 is not in the bounds defined in our definition.

Definition. Let $n \in \mathbb{Z}$, then n is even if 2|n and odd otherwise.

1.2 Prime Numbers

Definition (Prime Numbers). Let $p \in \mathbb{Z}$ with p > 1. Then p is prime if and only if the only positive divisors of p are 1 and itself. If $n \in \mathbb{Z}$ and n > 1, if n is not prime then n is composite.

Note. 1 is neither prime nor composite.

Example. 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 47

Lemma 1.5. Every integer greater than 1 has a prime divisor

Proof. Assume this is not true and by the well ordering principle there exists a least number n that does not have a prime divisor. Note n|n so n can't be prime so assume n is composite then that means n=ab for some 1 < a, b < n. However, n is the least integer that doesn't have a prime divisor. Which means that both a, b have prime divisors which also means that n has a prime divisor. This contradicts our assumption and therefore every integer n > 1 has a prime divisor.

Note. Well ordering principle sates that every non-empty subset of the positive integers has a least element.

Theorem 1.6. There are infinitely many primes.

Proof. Assume not true and let p_1, \ldots, p_n be the finite primes. Now consider $N = p_1 p_1 \ldots p_n + 1$, this must be composite by assumption. Now using Lemma 1.5 this means that N has some prime divisor p_i . This means that $p_i|N$. We also know $p_i|p_1p_2\ldots,p_n$. This means $p_i|N-p_1,\ldots,p_n$ or $p_i|1$ which is false. Hence, by contradiction our assumption is wrong and there are infinitely many primes.

Note. Try to modify the proof and construct infinitely many problematic N.

Proposition 1.7. If n is composite, the n has prime divisor that is less than or equal to \sqrt{n}

Proof. Consider n=ab where 1 < a,b < n. now, without loss of generality choose b such that $b \ge a$. now we show that $a \le \sqrt{n}$. Suppose to the contrary $a > \sqrt{n}$. Then we have $n=ab \ge a^2 > n$. Which is not true. Hence we have $a \le \sqrt{n}$. By lemma 1.5, a has a prime divisor p. But p|a and a|n> Since p|a we have $p \le a \le \sqrt{n}$.

 \Diamond

Note. This means if all prime divisors n are greater than \sqrt{n} then n is prime.

Example. To find primes less than n then we can delete multiples of primes less than \sqrt{n} .

Proposition 1.8. For any positive integer n, there are at least n consecutive composite numbers.

Proof. Consider the following set of numbers,

$$\{(n+1)!+2,\ldots,(n+1)!+(n+1)\}$$

Note that for any $2 \le m \le n+1$, clearly m|m and m|(n+1)! so we have by Proposition 1.2,

$$m|(n+1)! + m$$

5

Hence every integer in the set is composite.

Note. Primes can also be very close,

Conjecture. There are infinitely many pairs of primes that differ by exactly 2.

Note. Zhang (2013) showed that infintely many pairs whose diff is $\leq 70,000,000$. This has been lowered to 246

Note. Assuming UBER strong conjectures, we can get down to 6.

Average Gaps

Gauss conjectured that as $x \to \infty$ the number of primes $\leq x$ denoted by $\pi(x)$ goes to $\frac{x}{\log(x)}$.

Or, the "probability" that $n \le x$ is prime is $\frac{\pi(x)}{x} \sim \frac{1}{\log(x)}$

Note. This was proven independently in 1896

Definition. Let $x \in \mathbb{R}$, $\pi(x) = |\{p : p \text{ is prime}, p \leq x\}|$

Theorem 1.9.

$$\lim_{x \to \infty} \frac{\pi(x) \log(x)}{x} = 1$$

Conjecture (Goldbach's Conjecture). Every even integer ≥ 4 is the sum of two primes.

Note. Ternary Goldbach shows that odd number ≥ 7 is a sum of 3 primes and is proved.

Mersenne and Fermats Primes

If $p = 2^n - 1$ is prime then its called a Mersenne prime.

If $p = 2^{2^n} + 1$ is prime then its called a Fermat prime.

Conjectures are there are infinitely many Mersenne primes and but finitely many Fermat primes.

1.3 Greatest Common Divisors

Given $a, b \in \mathbb{Z}$, not both zero, consider the following set,

$$S = \{c \in \mathbb{Z} : c | a \text{ and } c | b\}$$

So S contains ± 1 so is nonempty and also finite since at least one of a and b is non-zero. Thus the maximal element of S exists

Definition (GCD). Let $a, b \in \mathbb{Z}$ with a, b not both 0. Then the **greatest common divisor** of a and b denoted by (a, b) is the largest integer d such that d|a and d|b. If (a, b) = 1 then a and b are **relatively prime** (or co-prime).

Remark. are,

1. (0,0) is undefined

2.
$$(a,b) = (-a,b) = (a,-b) = (-a,-b) = d$$

3.
$$(a,0) = |a|$$

Example. Compute (24, 60). We have,

Divisors of 24 are $\pm (1, 2, 3, 4, 6, 8, 12, 24)$

Divisors of 60 are $\pm (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60)$

So
$$(24, 60) = 12$$

Proposition 1.10. Let (a,b)=d then $(\frac{a}{d},\frac{b}{d})=1$

Proof. Let $d'=(\frac{a}{d},\frac{b}{d})$. Then $d'|\frac{a}{d}$ and $d'|\frac{b}{d}$, so, there is e,f such that,

$$d'e = \frac{a}{d}$$
 and $d'f = \frac{b}{d}$

 \Diamond

6

$$dd'e = a$$
 and $dd'f = b$

Thus dd'|a and dd'|b so dd' is a common divisor of a,b. Thus d'=1 otherwise dd'>d contradicting that (a,b)=d.

Proposition 1.11. Let $a, b \in \mathbb{Z}$ both not zero. Let

$$T = \{ma + nb : m, n \in \mathbb{Z}, ma + nb > 0\}$$

Then $\min T$ exists and is equal to (a, b)

Proof. Without loss of generality let $a \neq 0$. Note that $a = a \times 1 + b \times 0$ and $-a = a \times (-1) + b \times 0$ so we have $a \in T$ and hence T is non-empty. Now by the well ordering principle as T is a non-empty set of non-negative numbers it contains a minimal element call it d.

Then d = m'a + n'b for some $m', n' \in \mathbb{Z}$. Now we show that d|a and d|b. By the division algorithm we have,

$$a = dq + r$$
, $\theta < r < d$

So we have

$$r = a - dq = a - (m'a + n'b)q$$
$$= a(1 - m'q) - n'qb$$

So r is an integral linear combination of a and b. But d is the least positive integral linear

combination of a, b and $0 \le r < d$ so r must be 0. Thus d|a. The argument for d|b is similar. Thus d is a common divisor of a, b.

Suppose c|a and c|b then,

c|ma + nb and in particular c|d

Which means c is a divisor of d and hence $c \leq d$. Thus d = (a, b)

Note. If (a,b)=d then d=ma+nb for some $m,n\in\mathbb{Z}$. If d=1 the converse is true. If,

$$1 = ma + nb$$
 and $d|a, d|b$,

then, d|1 so d=1

Remark. Along the way, we showed that any common divisor of a, b divides (a, b).

Definition. Let $a, \ldots, a_n \in \mathbb{Z}$ with at least one nonzero. The greatest common divisor of a_1, \ldots, a_n denoted (a_1, \ldots, a_n) , is the largest integer d such that $d|a_1, \ldots, d|a_n$. If $(a_1, \ldots, a_n) = 1$ the integers a_1, \ldots, a_n are relatively prime and if $(a_i, a_j) = 1$ for $i \neq j$ then they are pairwise relatively prime.

Note. Pairwise implies relatively prime but the converse is not true.

Euclidean Algorithm

Lemma 1.12. If $a, b \in \mathbb{Z}$, $a \ge b > 0$ and a = bq + r with $q, r \in \mathbb{Z}$. Then (a, b) = (b, r).

Proof. It suffices to show that the two sets of common divisors of a, b and b, r are the same. Denote by S_1 and S_2 the two sets, respectively. Let $c \in S_1$ which means that c|a and c|b. But we have r = a - bq which means that c|r and hence $c \in S_2$ which means that $S_1 \subseteq S_2$. Now let $c \in S_2$ so c|r and c|b. As a = bq + r we have c|a so $c \in S_1$ and hence $S_1 \subseteq S_2$ and $S_1 = S_2$. Thus $\max S_1 = \max S_2 \Rightarrow (a, b) = (r, b)$.

Example. Calculate (803, 154).

We have, 803 = 154 * 5 + 33 so,

$$(803, 154) = (33, 154)$$
$$(154, 33) = (33, 22)$$
$$(33, 22) = (22, 11)$$
$$(22, 11) = (11, 0)$$

 \Diamond

Theorem 1.13. Let $a, b \in \mathbb{Z}, a \geq b > 0$. By the division algorithm, there exists $q_1, r_1 \in \mathbb{Z}$ such that,

$$a = q_1 b + r_1, \quad 0 \le r_1 < b$$

Then again by the division algorithm there is $q_2, r_2 \in \mathbb{Z}$ such that,

$$b = q_2 r_1 + r_2, \quad 0 \le r_2 \le r_1$$

And again,

$$r_1 = q_3 r_2 + r_3, 0 \le r_3 < r_2$$

and so on.

Then $r_n = 0$ for some $n \ge 1$ and (a, b) = b if n = 1 and r_{n-1} if n > 1

Proof. Note $r_1, > r_2 > \dots$ if $r_n \neq 0$ for all $n \geq 1$, then this is a strictly decreasing infinite sequence of positive integers which is not possible. Thus $r_n = 0$ for some n. If n > 1, repeatedly apply Lemma 1.12 to get,

$$(a,b) = (r_1,b) = (r_1,r_2) = \cdots = (r_{n-1},0) = r_{n-1}$$

Example. By reversing this process we can write (a, b) as an integral linear combination of a, b. We had, (803, 154) = 11. By reversing we have,

$$11 = 33 - 1 \times 22 = 33 - \times (154 - 33 \times 4)$$

= $33 \times 5 - 154 = 5 \times (803 - 154 \times 5) - 154$
= $5 \times 803 - 154 \times 26$

Note. This is **not** unique

1.4 The fundamental Theorem of Arithmetic

Lemma 1.14 (Euclid). Let $a, b \in \mathbb{Z}$ and let p be a prime number. If p|ab then show that p|aor p|b.

Proof. If p|a then we're done, so assume that $p \not|a$. So that means that (p,a) = 1 which means there is some $m, n \in \mathbb{Z}$ such that,

$$am + pn = 1$$

Now p|ab so exists $c \in \mathbb{Z}$ such that pc = ab, so we have,

$$am + pn = 1$$

$$amb + pnb = b$$

$$pmc + pnb = b$$

$$p(mc + nb) = b$$

$$p(k) = b$$

Where k = mc + nb. So we showed that pk = b which implies that p|b. So we got either p|aor p|b.

Remark. This fail if p is composite. Take p = 6, a = 2, b = 3. We have p|ab but not p|a or p|b.

Corollary 1.15. Let a_1, \ldots, a_n be integers and p a prime. If $p|a_1 \ldots a_n$ then $p|a_i$ for some $1 \le i \le n$.

Proof. Induction on n. For n=1 it's trivial. For n=2, is just Lemma 1.14. Now assume that it is true for some $n \geq 2$. To show that it holds for n + 1.

Assume $p|a_1 \dots a_n \Rightarrow p|a_i$ for some $i \leq i \leq n$. Suppose $p|a_1 \dots a_{n+1}$. Then $p|(a_1 \dots a_n)a_{n+1}$. So we have either $p|(a_1 \dots a_{n+1})$ or $p|a_{n+1}$ by Lemma 1.14. If $p|(a_1 \dots a_n)$ then we know p|ifor some $1 \le i \le n$ else we have $p|a_{n+1}$. So we have $p|a_i$ for some $1 \le 1 \le n+1$.

Theorem 1.16 (Fundamental theorem of arithmetic). Every integer greater than 1 may be expressed in the form $m=p_1^{a_1}\dots p_n^{a_n}$ where p_1,\dots,p_n are distinct primes and $a_1,\dots,a_n\in\mathbb{Z}^+$. This form is called the **prime factorization of m**. This factorization is unique up to permutations of the factors $p_i^{a_i}$.

Proof. (i) Existence

Assume m > 1 does not have a prime factorization. Without loss of generality assume m is the smallest such integer by the well ordering integer. In particular, m is not prime, which means that m = ab for some 1 < a, b < m. As $a, b \le m$ this means that a, b have prime factorization. The product of which will give us the prime factorization for m. Contradiction, hence every integer > 1 has a prime factorization.

(ii) Uniqueness

Assume $m = p_1^{a_1} \dots p_n^{a_n} = q_1^{b_1} \dots q_r^{b_r}$. Without loss of generality assume that $p_1 < p_2 \dots < p_n$ and $q_1 < q_2 \dots < q_r$. To show these are the same we need to show that,

$$\begin{cases} \mathbf{n} = \mathbf{r} \\ \mathbf{p}_i = q_i \text{ for each } i \\ \mathbf{a}_i = b_i \text{ for each } i \end{cases}$$

Let $p_i|m$ then $p_i|q_i^{a_i}\dots q_r^{a_r}$, then $p_i|q_j$ for some $1 \leq j \leq r$ then $p_i = q_i$. Similarly, given q_i we have $q_i = p_j$ for some. Thus the primes in both the factorization are the same. Thus n = r and by our ordering $p_i = q_i$ for each $1 \leq i \leq n$ so we have,

$$m = p_1^{a_1} \dots p_n^{a_n} = p_1^{b_1} \dots p_n^{b_n}$$

Suppose to the contrary that $a_i \neq b_i$ for some i. Without loss of generality let $a_i < b_i$. Then $p_i^{b_i}|m$. So,

$$p_i^{b_i}|p_i^{a_1}\dots p_{i-1}^{a_{i-1}}p_i^{a_i}p_{i+1}^{a_{i+1}}\dots p_n^{a_n}$$

Thus,

$$p_i^{b_i-a_i}|p_i^{a_1}\dots p_{i-1}^{a_{i-1}}p_{i+1}^{a_{i+1}}\dots p_n^{a_n}$$

Since $a_i < b_i$, $b_i - a_i$. So $p_i | p_i^{a_1} \dots p_{i-1}^{a_{i-1}} p_{i+1}^{a_{i+1}} \dots p_n^{a_n}$. Thus $p_i | p_j$ for some $i \neq j$ and then $p_i = p_j$ as they are all distinct prime numbers. This is a contradiction and hence $a_i = b_i$ for each i.

9

Remark. This is one of many reasons why 1 is not prime. If 1 was a prime then we can write $m = (\text{product})1^b$ where b is not unique.

Definition (LCM). Let $a, b \in \mathbb{Z}^+$. The *least common multiple of a and b* denoted [a, b] is the least positive integer m such that a|m and b|m.

Remark. By the well ordering principle [a, b] always exists as it forms a non-empty set (ab is in the set).

Example. We have,

$$6 \rightarrow 6, 12, 18, 24, 30, 36, 42, 48, \dots$$

 $7 \rightarrow 7, 14, 21, 28, 35, 42, 49, \dots$

So
$$[6,7] = 42$$

Remark. The FTA can be used to compute both the GCD and LCMs.

CHAPTER 1. DIVISIBILITY AND FACTORIZATION

Proposition 1.17. Let $a, b \in \mathbb{Z}^+$. Write $a = p_1^{a_1} \dots p_n^{a_n}$ and $b = p_1^{b_1} \dots p_n^{b_n}$ where p_i are distinct and $a_i, b_i \geq 0$. Then

$$(a,b) = p_1^{\min a_1,b_1} \dots p_n^{\min a_n,b_n}$$

.

$$[a,b] = p_1^{\max a_1,b_1} \dots p_n^{\max a_n,b_n}$$

Proof. Use $(a,b)=p_1^{c_1}\dots p_n^{c_n}$ and $[a,b]=p_1^{a_1}\dots p_n^{d_n}$ and use properties of GCD and LCM. \square

Example. Compute (75, 2205) and [75, 2205]. So we have,

$$756 = 2^2 3^3 5^0 7^1$$

$$2205 = 2^0 3^2 5^1 7^2$$

So GCD is $2^0 3^2 5^0 7^1 = 63$ and LCM is $2^2 3^3 5^1 7^2 = 26460$

 \Diamond

Lemma 1.18. Given $x, y \in \mathbb{R}$, we have $\min(x, y) + \max(x, y) = x + y$

Proof. If x = y it is obvious.

If x < y then we have $\min(x, y) = x$ and $\max(x, y) = y$ so they sum up to x + y, similar for x > y.

Theorem 1.19. Let $a, b \in Z$ with a, b > 1. Then (a, b)[a, b] = ab.

Proof. Write $a = p_1^{a_1} \dots p_n^{a_n}, b = p_1^{b_1} \dots p_n^{b_n}$ with $a_i, b_i \ge 0$ with p_i distinct. Then,

$$\begin{split} (a,b)[a,b] &= p_1^{\min(a_1,b_1)} \dots p_n^{\min(a_n,b_n)} p_1^{\max(a_1,b_1)} \dots p_n^{\max(a_n,b_n)} \\ &= p_1^{\min(a_1,b_1) + \max(a_1,b_1)} \dots p_n^{\min(a_n,b_n) + \max(a_n,b_n)} \\ &= p_1^{a_1+b_1} \dots p_n^{a_n+b_n} \\ &= ab \end{split}$$

Theorem 1.21. Let $a, b \in \mathbb{Z}$ with a, b > 0 and (a, b) = 1, then the *arithmetic progression*,

$$a, a+b, a+2b, a+3b, \dots$$

contains infinitely many prime numbers

Remark. Setting a = b = 1 recovers the fact the there are infinitely many primes.

Remark. We can use the fundamental theorem of arithmetic to prove special cases. i.e. when a=3, b=4 so p=4n+3

Proposition 1.22. There are infinitely many primes of the form 4n + 3, n > 0.

Lemma 1.23. Let $a, b \in \mathbb{Z}$, if a, b are expressive in the form 4n + 1, so is ab.

Proof. We have a = 4n + 1 and b = 4m + 1 so we have ab = (4n + 1)(4m + 1) = 16nm + 4n + 4m + 1 = 4(4nm + n + m) + 1 = 4k + 1 where k = 4nm + n + m. So we have ab = 4k + 1 which concludes our proof.

Proof. (Proposition 1.22)

Assume to the contrary that there are only finite primes of the form 4n + 3 labeled as,

$$p_0 = 3, p_1 = 7, p_2, p_3, \dots, p_r$$

Consider the integer $N=4p_1\dots p_r+3$. The prime factorization of N must contain a prime of the desired form, otherwise N would be a product of prime of p=4n+1 and would then itself have the same form. Thus 3|N or $p_i|N$ for some $i\leq i\leq r$

Case 1. 3|N. Then 3|N-3 so $3|p_1 \dots p_r$, contradiction.

Case 2. $p_i|N$ for some $1 \le i \le r$ then $p_i|N-4p_1\dots p_r$ so $p_i|3$, contradiction.

Therefore there are ∞ many primes such that p=4n+3

Chapter 2

Congruences

2.1 Congruences

Definition. Let $a, bm \in \mathbb{Z}$ with m > 0. Then a is said to be congruent to b mod m written $a \equiv b \pmod{m}$, if $m \mid a - b$.

Note. The integer m is called the modulus.

Example. $25 \equiv 1 \pmod{4}$, $25 \equiv 4 \pmod{7}$

Proposition 2.1. Congruence modulo m is an equivalence relation on \mathbb{Z} .

Proof. Reflexive. Since m|0 so m|a-a so $a \equiv a \pmod{m}$.

Symmetric. Consider $a \equiv b \pmod{m}$ so m|a-b or for some $k \in \mathbb{Z}$ km = a-b which means (-k)m = b-a which means m|b-a or $b \equiv a \pmod{m}$

Transitive. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. We have from both,

$$a - b = k_1 m$$
 for some k_1

$$b-c=k_2m$$
 for some k_2

Adding both we have $a-c=(k_1+k_2)m$ or m|a-c which means $a\equiv c\pmod m$

Consequence 2.2. \mathbb{Z} is partitioned into equivalence classes modulo m.

Remark. Given $a \in \mathbb{Z}$, let [a] denote the equivlance class of a modulo m

Example. The equivalence classes under congruence mod 4 are,

$$[0] = \{n : n \equiv 0 \pmod{4}, n \in \mathbb{Z}\} = \{\dots, -4, 0, 4, \dots\}$$

$$[1] = \{n : n \equiv 1 \pmod{4}, n \in \mathbb{Z}\} = \{\dots, -3, 1, 5, \dots\}$$

$$[2] = \{n : n \equiv 2 \pmod{4}, n \in \mathbb{Z}\} = \{\dots, -2, 2, 6, \dots\}$$

$$[3] = \{n : n \equiv 3 \pmod{4}, n \in \mathbb{Z}\} = \{\dots, -1, 3, 7, \dots\}$$

Definition (Residue). A set of m integers such that every integer is congruent modulo m to exactly one integer of the set is called a *complete residue system*.

Example. $\{0,1,2,3\}$ is a complete residue system modulo 4. So is $\{4,5,-6,-1\}$

 \Diamond

 \Diamond

 \Diamond

Proposition 2.3. The set $\{0, 1, \dots, m-1\}$ is a complete residue system mod m.

Proof. Existence. Let $a \in \mathbb{Z}$, then by the division algorithm there is some $q, r \in \mathbb{Z}$ such that $0 \le r < m$ such that a = qm + r or a - r = qm implies that $a \equiv r \pmod{m}$

Uniqueness. Assume $a \equiv r_1 \pmod{m}$ and $a \equiv r_2 \pmod{m}$ where $r_1, r_2 \in \{0, 1, \dots, m-1\}$. Then we have $r_1 \equiv r_2 \pmod{m}$ by transitivity or that $r_1 - r_2 = km$ but $-(m-1) \le r_1 - r_2 \le m-1$ so $r_1 - r_2 = 0$ or $r_1 = r_2$.

Definition. The set $\{0,1,\ldots,m-1\}$ is called the set of *least non-negative residues modulo* m.

Proposition 2.4. Let $a,b,c,d,m\in\mathbb{Z}$ with m>0 such that $a\equiv b\pmod m$ and $c\equiv d\pmod m$. Then,

- 1. $a + c \equiv b + d \pmod{m}$
- 2. $ac \equiv bd \pmod{m}$

Proof. (a) Since $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ so we have,

$$a-b=k_1m$$
 $k_1 \in \mathbb{Z}$
 $c-d=k_2m$ $k_2 \in \mathbb{Z}$

Adding two together we have,

$$(a+c) - (b+d) \equiv (k_1 + k_2)m$$

or that,

$$a + c \equiv b + d \pmod{m}$$

(b) If $m \mid a-b$ then $m \mid c(a-b)$ similarly $m \mid d-c$ means $m \mid a(d-c)$. This $m \mid c(a-b)+a(c-d)$ or $m \mid ac-bd$ or that $ac \equiv bd \pmod m$

Consider $\{0^2, 1^2, 2^2, 3^2\} = \{0, 1, 0, 1, \} = \{0, 1\}$

Note. Exceptional Characters, Seigel zeros

2.2 Calculations

Example. Compute a complete residue system mod 5,

- Using only even numbers
- Using only prime numbers
- Using only numbers congruent to 1 (mod 4)

Default is $\{0, 1, 2, 3, 4\}$ so even numbers are $\{0, 6, 2, 8, 4\}$. For prime numbers we have,

$$0,5$$

$$1,6,11$$

$$2,7$$

$$3,8,13$$

$$4,9,14,19$$

CHAPTER 2. CONGRUENCES

Note. We know that addition and multiplication are closed under congruence . We can think of this in terms of equivalence classes,

$$[a] + [b] = [a + c]$$
$$[b] \cdot [d] = [bd]$$

This turns the set of equivalence classes into a ring. We can construct addition and multiplication tables,

Proposition 2.5. Let $a,b,c,m\in\mathbb{Z},m>0$ then $ca\equiv cb\pmod m$ if and only if $a\equiv b\pmod \frac{m}{(m,c)}$

Proof. \Rightarrow . Assume $ca \equiv cb \pmod m$ so we have, $m \mid ca - cb$ or $m \mid c(a - b)$. Let d = (m, c). By transitivity we have $\frac{m}{d} \mid \frac{c}{d}(a - b)$ but $(\frac{m}{d}, \frac{c}{d}) = 1$ which implies that $\frac{m}{d} \mid (a - b)$ or $a \equiv b \pmod {\frac{m}{d}}$ by definition.

 \Leftarrow . Assume $a \equiv b \pmod{\frac{m}{(m,c)}}$ and d = (m,c). We have $\frac{m}{d} \mid a-b$ so $m \mid d(a-b)$ and so $m \mid d(a-b)\frac{c}{d}$ or $m \mid c(a-b)$ or $ca \equiv cb \pmod{m}$

2.3 Linear Congruences in one variable

Definition. Let $a, b \in \mathbb{Z}$. A congruence of the form $ax \equiv b \pmod{m}$ is called a *linear congruence* in the variable x.

Example. If $2x \equiv 3 \pmod{4}$ has no solutions. But $2x \equiv 4 \pmod{6}$ has x = 2 as the only solution. And $3x \equiv 9 \pmod{6}$ has 1, 3, 5.

Theorem 2.6. Let $ax \equiv b \pmod{m}$ and d = (a, m). If $d \nmid b$ then there are no solutions in \mathbb{Z} . Else, the congruence has exactly d incongruent solutions modulo m in \mathbb{Z} .

Note. This means that for any solution there are d equivalence classes.

Proof. Note that $ax \equiv b \pmod{m}$ iff $m \mid ax - b$ iff ax - b = my for some $y \in \mathbb{Z}$ iff ax - my = b. Thus $ax \equiv b \pmod{m}$ is solvable in x if ax - my = b is solvable in x, y. Let x, y be a solution of ax - my = b. Since, $d \mid a$ and $d \mid m$ so $d \mid b$. Taking contrapositives, if $d \nmid b$ then there is no solution.

Assume now that $d \mid b$. We prove the second part in four steps.

- 1. We'll show that $ax \equiv b \pmod{m}$ has a solution x_0 .
- 2. We'll show that there are infinitely many solutions of a particular form.
- 3. We'll show that any solution has a particular form involving x_0 (combining with 2 will give us all possible solutions).
- 4. We'll show there are exactly d equivalence classes.

First, since d=(a,m), there exists $r,s\in\mathbb{Z}$ such that ar+ms=d. Now as $d\mid b$ we have $b=\frac{b}{d}d=\frac{b}{d}(ra+sm)=(\frac{b}{d}r)a+(\frac{b}{d}s)m$ thus $b-a(\frac{b}{d})r=(\frac{b}{d}s)m$ and we have $m\mid b-a(\frac{b}{d}r)$.

Thus $a(\frac{b}{d}r) \equiv b \pmod{m}$ and we have $x_0 = \frac{b}{d}r$ is a solution.

Now, let x_0 be any solution. Consider the number $x_0 + (\frac{m}{d})n$ where $n \in \mathbb{Z}$. So,

$$a(x_0 + \frac{m}{d}n) \equiv ax_0 + \frac{m}{d}n \pmod{m}$$
$$\equiv b + \frac{a}{d}mn \pmod{m}$$
$$\equiv b \pmod{m}$$

Let x_0 be an arbitrary solution of $ax \equiv b \pmod{m}$. So we have $ax_0 - my_0 = b$ for some $y_0 \in \mathbb{Z}$. Let x be any other solution. Then ax - my = b for some $y \in \mathbb{Z}$. Subtracting both we have.

$$(ax_0 - my_0) - (ax - my) = 0$$

$$a(x_0 - x) - m(y_0 - y) = 0$$

$$a(x_0 - x) = m(y_0 - y)$$

$$\frac{a}{d}(x_0 - x) = \frac{m}{d}(y_0 - y)$$

If $y_0-y=0$ then $x_0-x=0$. Now as solution are different we can assume $y_0\neq y$. Now, we see that $(\frac{m}{d},\frac{a}{d})=1$, so $\frac{m}{d}\mid \frac{a}{d}(x_0-x)$ we have $\frac{m}{d}\mid x_0-x$ by Prop 1.10. And we have $x\equiv x_0\pmod{\frac{m}{d}}$. Thus, all solutions to $ax\equiv b\pmod{m}$ are given by $x=x_0+\frac{m}{d}n, n\in\mathbb{Z}$ and x_0 is any particular solution.

Let $x_0 + \frac{m}{d}n, x_0 + \frac{m}{d}n_2$ be solutions. Then,

$$x_0 + \frac{m}{d}n_1 \equiv x_0 + \frac{m}{d}n_2 \pmod{m}$$
$$\frac{m}{d}n_1 \equiv \frac{m}{d}n_2 \pmod{m}$$

This means that $m \mid \frac{m}{d}(n_1 - n_2)$ or $\frac{m}{d}(n_1 - n_2) = km$ and we have $n_1 - n_2 = kd$ and $n_1 \equiv n_2 \pmod{d}$. Since there are d choices for the equivalence class of n. All solutions must fall into one of these cases.

Corollary 2.7. Consider the linear congruence $ax \equiv b \pmod{m}$, and let d = gcd(a, m). If $d \mid b$, then there are exactly d incongruent solutions modulo m given by,

$$x = x_0 + \left(\frac{m}{d}n\right), \quad n = 0, 1, 2, \dots, d - 1$$

and x_0 is any particular solution.

Example. Find all incongruent solutions to $16x \equiv 8 \pmod{2}8$. Here we have d = gcd(a, m) = gcd(16, 28) = 4. We see that $4 \mid 8$. Now we find a particular solution. Working backwards we have $4 = 2 \cdot 16 + (-1) \cdot 28$ so $8 \cdot 16 + (-2) \cdot 28$. Then $x_0 = 4$ is a solution, and we have all solutions given by,

$$x = 4 + \left(\frac{28}{4}\right)n, \quad n = 0, 1, 2, 3$$

Which gives us x = 4, 11, 18, 25

 \Diamond

Definition. Any solution of $ax \equiv 1 \pmod{m}$ is call the *multiplicative inverse* of a modulo m.

Corollary 2.8. The congruence $ax \equiv 1 \pmod{m}$ has a solution if and only if (a, m) = 1

2.4 Chinese Remainder Theorem

Example. Find a positive integer having a remainder of 2 when divided by 3, a remainder of 1 when divided by 4, and a remainder of 3 when divided by 5. So this means,

$$x \equiv 2 \pmod{3}$$

 $x \equiv 1 \pmod{4}$
 $x \equiv 3 \pmod{5}$

 \Diamond

Theorem 2.9. Let m_1, m_2, \ldots, m_n be pairwise relatively prime and let $b_1, \ldots, b_n \in \mathbb{Z}$. Then this system,

$$x \equiv b1 \pmod{m_1}$$

$$\vdots$$

$$x \equiv bn \pmod{m_n}$$

has a unique solution.

Proof. Let $M=m_1,\ldots,m_n$ and $M_i=M/m_i$. Then $M_i,m_i=1$. There are solutions to each system $M_ix_i\equiv 1\pmod m$ denoted $x_i=\overline{M}_i$. Now consider $x=b_1M_1\overline{M}_1+b_2M_2\overline{M}_2+\cdots+b_nM_n\overline{M}_n$.

Note that,

$$x \equiv 0 + \dots + b_i M_i \overline{M}_i + \dots + 0 \pmod{m}_i$$

$$\equiv b_i \pmod{m}_i$$

This gives existence. For uniqueness, let x' be another solution. Then $x' \equiv b_i \pmod{m}_i$ for each $1 \leq i \leq n$. Then $x \equiv x' \pmod{m}_i$. Then $m_i \mid x - x'$. So $M \mid x - x'$ since m_i are pairwise relative prime and $x \equiv x' \pmod{M}$

Example (Continued). We have,

$$x \equiv 2 \pmod{3}$$

 $x \equiv 1 \pmod{4}$
 $x \equiv 3 \pmod{5}$

We have $M=3\cdot 4\cdot 5=60$ and $M_1=20, M_2=15, M_3=12$. So we need to solve,

$$20y_1 \equiv 1 \pmod{3}$$
$$15y_2 \equiv 1 \pmod{4}$$
$$12y_3 \equiv 1 \pmod{5}$$

For each we have $7 \cdot 3 - 20 = 1$, $4 \cdot 4 - 15 = 1$ and $5 \cdot 5 - 2 \cdot 12 = 1$. So $y_1 = -1 = 32$, $y_2 = -1 = 3$, $y_3 = -2 = 3$. So,

$$x = 2 \cdot 20 \cdot 2 + 1 \cdot 15 \cdot 3 + 3 \cdot 12 \cdot 3 = 233.$$

And we have $233 \equiv 53 \pmod{60}$ which means 53 is the least positive solution.

Lemma 2.10. Let p be a prime and let $a \in \mathbb{Z}$. Then a is it's own inverse modulo $p \Leftrightarrow a \equiv \pm 1 \pmod{p}$

Proof. Suppose a is it's own inverse so $a = \overline{a}$. Then $a^2 \equiv 1 \pmod{p}$ then $p \mid a^2 - 1$ so $p \mid (a+1)(a-1)$ so we have either $p \mid (a+1)$ or $p \mid (a-1)$. In both cases we have either $a \equiv \pm 1 \pmod{p}$

Now suppose $a \equiv \pm 1 \pmod{p}$. Squaring both sides we get $a^2 \equiv 1 \pmod{p}$ so $a = \overline{a}$.

2.5 Wilson's Theorem

Theorem 2.11 (Wilson's Theorem). Let p be a prime. Then $(p-1)! \equiv -1 \pmod{p}$

Proof. Easily check for p=2,3. Suppose p>3 is a prime. Then each $1 \le a \le p-1$ has a unique inverse modulo p and this inverse is distinct from a if $2 \le a \le p-2$. Pair each such integer with its inverse modulo p say a,a'. The product of all these primes is (p-2)! and $(p-2)! \equiv 1 \pmod{p}$ and we get $(p-1)! \equiv (p-1)(p-2)! \equiv (p-1) \equiv -1 \pmod{p}$.

The converse is also true. \Box

Proposition 2.12. Let $n \in \mathbb{Z}$ with n > 1. If $(n-1)! \equiv -1 \pmod{n}$ then n is prime.

Proof. Suppose n = ab with $1 \le a < n$. It suffices to show that a = 1. Since a < n so $a \mid (n-1)!$. Also $n \mid (n-1)! + 1$. Now since $a \mid n$ we have $n \mid (n-1)! + 1$. But we know $a \mid (n-1)!$ so we need $a \mid 1$ which means a = 1.

Example. Take p = 11 then, $11 - 1 \equiv 10! \pmod{11}$. By previous Lemma, 10 and 1 are their own inverses. For the other numbers between 2 and 9, we can pair them with their inverses like $2 \Leftrightarrow 6, 3 \Leftrightarrow 4, 5 \Leftrightarrow 9, 7 \Leftrightarrow 8$ which means,

$$(11-1)! \equiv 10 \cdot 1 \equiv -1 \pmod{11}.$$

 \Diamond

Definition. A prime p is a Wilson Prime if $(p-1)! \equiv -1 \pmod{p^2}$. The first few are, 5, 13, 563.

2.6 Fermat's Little Theorem

Theorem 2.13 (Fermat's Little Theorem). Let p be a prime and let $a \in \mathbb{Z}$ then if $p \nmid a$ then

$$a^{p-1} \equiv 1 \pmod{p}$$

Proof. Consider the p-1 integers as follows,

$$a, 2a, 3a, \ldots, a(p-1)$$

We know that $p \nmid a$ and $p \nmid 1, \ldots, p-1$ so we have $p \nmid ai$ for $1 \leq i \leq p-1$. Note also that for no two of the above numbers are congruent mod p. (Suppose they are congruent i.e. $ai \equiv aj \pmod{p}$, then as p is a prime then we can use the inverse to get $i \equiv j \pmod{p}$. But that means that i = j which is not true by construction).

Thus we have $a, 2a, \ldots, (p-1)a$ is a complete non-zero residue system of p. Thus,

$$a(2a)(3a)\dots(p-1)a \equiv 1\cdot 2\cdot 3\cdot \dots \cdot (p-1) \pmod{p}$$

$$a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

as (p-1)! has an inverse mod p.

Remark. The underlying motivation is that for a prime number, given a set of residues if we scale it by any other residue it gives us a permutation of the residues.

18

2.6.1 Consequences of FLT

Corollary 2.14. Let p be a prime and $a \in \mathbb{Z}, p \nmid a$. Then a^{p-2} is the inverse of a modulo p.

Proof. We have,

$$a \cdot a^{p-2} = a^{p-1} \equiv 1 \pmod{p}$$

So $a^{p-2} = \overline{a}$

Corollary 2.15. Let p be prime and $a \in \mathbb{Z}$. Then $a^p \equiv a \pmod{p}$.

Proof. If $p \mid a$ then both sides are congruent to 0 mod p and hence it's true. If $p \nmid a$ then we have,

$$a^{p-1} \equiv 1 \pmod{p}$$

$$a \cdot a^{p-1} \equiv a \pmod{p}$$

$$a^p \equiv a \pmod{p}$$

Corollary 2.16. Let p be a prime. Then $2^p \equiv 2 \pmod{p}$.

Definition (Pseudoprimes). If $n \in \mathbb{Z}$ and n is composite with n > 1 and $2^n \equiv 2 \pmod{n}$ then n is called a *pseudoprime*.

Example. For n = 341 observe that $n = 11 \cdot 31$. To prove that $2^{341} \equiv 2 \pmod{341}$, it suffices to

that n = 11 of. To prove that 2 = 2 (mod 941), it suffices to

CHAPTER 2. CONGRUENCES

show that $2^{341} \equiv 2 \pmod{11}$ and $2^{341} \equiv 2 \pmod{3}1$. Note that,

$$2^{341} \equiv (2^{10})^{34} \cdot 2 \pmod{11}$$
$$\equiv 1^{34} \cdot 2 \pmod{11}$$
$$\equiv 2 \pmod{11}$$

Similarly,

$$2^{341} \equiv (2^{30})^{11} \cdot 2^{11} \pmod{31}$$
$$\equiv 1^{11} \cdot (2^5)^2 \cdot 2 \pmod{31}$$
$$\equiv 2 \pmod{31}$$

 \Diamond

2.7 Euler's Theorem

Definition. Let $n \in \mathbb{Z}$, n > 0. Eulers phi-function denoted by $\phi(n)$ is the number of positive integers that are less than or equal to n that are relatively prime.

$$\phi(n) = |\{m \in \mathbb{Z} : 1 \le m \le n, (m, n) = 1\}|$$

Example.
$$\phi(4) = 2, \phi(14) = 6, \phi(p) = p - 1$$

 \Diamond

Theorem 2.17 (Euler's Theorem). Let $a, m \in \mathbb{Z}$ with m > 0. If (a, m) = 1. Then we have,

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

Proof. Let $r_1, r_2, \ldots, r_{\phi(m)}$ be distinct positive integers not exceeding m such that $(r_i, m) = 1$. Consider the integers,

$$ar_1, ar_2, \ldots, a_{\phi(m)}$$

Note that $(ar_i, m) = 1$ and for $i \neq j$ we have $ar_i \not\equiv ar_j \pmod{m}$ cause if it weren't true, we can multiply a inverse on both sides to get $r_i \equiv r_j \pmod{m}$. But $r_i \neq r_j$ so we cannot have this to be true.

So we have,

$$ar_1 ar_2 \dots a_{r_{\phi}(m)} \equiv r_1 r_2 \dots r_{\phi(m)} \pmod{m}$$
$$a^{\phi(m)}(r_1 \dots r_{\phi(m)}) \equiv r_1 r_2 \dots r_{\phi(m)} \pmod{m}$$

And $r_1 \dots r_{\phi(m)}$ is coprime to m as each individual elements are coprime to it so we have an inverse to get,

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

Definition. Let m be a positive integer. A set of $\phi(m)$ integers such that each integer is relatively prime to m and no two elements are congruent mod m is called a *reduced residue system modulo* m.

Example. $\{1, 5, 7, 11\}$ is a reduced residue system modulo 12. So is $5 \cdot \{1, 5, 7, 11 = \{5, 25, 35, 55\}$ $\{1, \ldots, p-1\}$ is a reduced residue set modulo p for any prime p.

Corollary 2.19. Let $a, m \in \mathbb{Z}, m > 0, (a, m) = 1$. Then,

$$\overline{a} = a^{\phi(m)-1}$$

Chapter 3

Arithmetic functions and multiplicativity

Definition. An arithmetic function is a function whose domains is the set of positive integers.

Example. of arithmetic functions are,

- 1. Euler's ϕ function (multiplicative)
- 2. v(n), the number of positive divisors (multiplicative)
- 3. $\sigma(n)$, the sum of divisor (multiplicative)
- 4. $\omega(n)$, the number of distinct prime factors
- 5. p(n), the number of partitions of n
- 6. $\Omega(n)$, number of total prime factors.

Definition. An arithmetic function f is multiplicative if f(mn) = f(m)f(n) whenever (m,n) =1. f is completely multiplicative if f(mn) = f(m)f(n) for all integers m, n.

Note. Note that if $n > 1, n = p_1^{a_1} \dots p_r^{a_r}$. Then if f is multiplicative we have,

$$f(n) = f(p_1^{a_1} \dots p_r^{a_r}) = f(p_1^{a_1}) \dots f(p_r^{a_r})$$

so multiplicative functions are determined by their behavior on primes powers. If f is completely multiplicative we have,

$$f(n) = f(p_1)^{a_1} \dots f(p_r)^{a_r}$$

so completely multiplicative functions are determined by their behavior on primes.

Example. For instance f(n) = 1 or f(n) = 0 are completely multiplicative functions.

Remark. If f is multiplicative and not identically 0 then f(1) = 1. Choose n such that $f(n) \neq 0$ then $f(n) = f(n \cdot 1) = f(n) \cdot f(1)$ so f(1) = 1.

Definition. $\sum_{d|n} f(d)$ denotes a sum over the positive divisors of n.

Example.
$$\sum_{d|12} f(d) = f(1) + f(2) + f(3) + f(4) + f(6) + f(12)$$

Theorem 3.1. Let f be an arithmetic function over the integer, and for $n \in \mathbb{Z}, n > 0$, let,

$$F(n) = \sum_{d|n} f(d)$$

If f is multiplicative so is F.

Proof. Let (m,n)=1. We need to show that F(mn)=F(m)F(n). We have,

$$F(mn) = \sum_{d|n} f(d)$$

We know that every divisor d of mn can be written uniquely as $d = d_1d_2$ where $d_1 \mid m$ and $d_2 \mid n$. And any product d_1d_2 is a divisor of mn.

To see this, write $m=p_1^{a_1}\dots p_r^{a_r}, n=q_1^{b_1}\dots q_s^{b_s}$ where all $p_1,\dots,p_r,q_1,\dots,q_r$ are distinct. Then if $d\mid mn$ then,

$$d = p_1^{e_1} \dots p_r^{e_r} q_1^{f_1} \dots q_s^{f_s} \quad 0 \le e_i \le a_i, 0 \le f_i \le b_i$$

So choose $d_1=p_1^{e_1}\dots p_r^{e_r}$ and $d_2=q_1^{f_1}\dots q_s^{f_s}$. (This is unique as we can't have p for d_2 as that would make it NOT a divisor of n).

Now we have,

$$F(mn) = \sum_{d|mn} f(d) = \sum_{d_1|m} \sum_{d_2|n} f(d_1d_2)$$

$$= \sum_{d_1|m} \sum_{d_2|n} f(d_1)f(d_2)$$

$$= \sum_{d_1|m} f(d_1) \sum_{d_2|n} f(d_2)$$

$$= F(m)F(n)$$

Example. Let m = 4, n = 3. So,

$$\begin{split} F(3\cdot 4) &= \sum_{d|12} f(d) \\ &= f(1) + f(2) + f(3) + f(4) + f(6) + f(12) \\ &= f(1\cdot 1) + f(1\cdot 2) + f(1\cdot 3) + f(1\cdot 4) + f(2\cdot 3) + f(3\cdot 4) \\ &= f(1)f(1) + f(1)f(2) + f(1)f(3) + f(1)f(4) + f(2)f(3) + f(3)f(4) \\ &= (f(1) + f(3))(f(1) + f(2) + f(4)) \\ &= F(3)F(4) \end{split}$$

3.1 Euler ϕ function

 $\phi(n)$ is the number of integers smaller than n that is coprime to n.

Theorem 3.2. ϕ is multiplicative

>

Proof. Let $m, n \in \mathbb{Z}, m, n > 0$ and (m, n) = 1. We need to show that,

$$\phi(mn) = \phi(m)\phi(n)$$

Consider the array of integers $\leq mn$ write,

$$\begin{pmatrix} 1 & m+1 & 2m+1 & \dots & (n-m)m+1 \\ 2 & m+2 & 2m+2 & \dots & (n-1)m+2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ i & m+i & 2m+i & \dots & (n-1)m+i \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ m & 2m+i & 3m+i & \dots & nm \end{pmatrix}$$

Consider the *ith* row. If (i, m) > 1, then no element on the i'th row is relatively prime to m. Then we may restrict our attention to those i that satisfy (i, m) = 1. There are by definition $\phi(m)$ such values.

The entries in the i'th row are $i, m + i, 2m + i, \dots (n-1)m + 1$

Now this is a complete residue system modulo n. We see this as follows. Suppose it is not true so $km + i \equiv jm + i \pmod{n}$ for some $0 \le k, j \le n - 1$. So we have $km \equiv jm \pmod{n}$ and we get $k \equiv j \pmod{n}$ as inverse of $m \pmod{n}$ exists as they are coprime. So that must mean that k = j. So for any non equal k, j it doesn't hold. Hence we have a full residue system.

Thus there are $\phi(n)$ elements in the i'th row that are coprime to n. And as we have (i,m)=1. So we have $\phi(mn)=\phi(m)\phi(n)$

Theorem 3.3. Let p be prime and $a \in \mathbb{Z}, a > 0$. Then,

$$\phi(p^a) = p^a - p^{a-1}$$

Proof. The total number of integers not exceeding p^a is p^a . The only integers not relatively prime to p^a are multiples of p smaller than p^a . So,

$$p, 2p, 3p, \dots, p^{a-1}p$$
 as $kp \le p^{a-1}$

So there are p^{a-1} integers not exceeding p^a that are not relative prime to p^a . Thus

$$\phi(p^a) = p^a - p^{a-1}$$

23

Theorem 3.4. Let $n \in \mathbb{Z}, n > 0$. Then,

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

CHAPTER 3. ARITHMETIC FUNCTIONS AND MULTIPLICATIVITY

Proof. Write $n = p_1^{a_1} \dots p_r^{a_r}$. Then,

$$\begin{split} \phi(n) &= \phi(p_1^{a_1} \dots p_r^{a_r}) \\ &= \phi(p_1^{a_1}) \dots \phi(p_r^{a_r})) \\ &= (p_1^{a_1} - p_1^{a_1 - 1}) \dots (p_r^{a_r} - p_r^{a_r - 1}) \\ &= (p_1^{a_1} p_r^{a_r}) \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p^r}\right) \\ &= n \prod_{p|n} \left(1 - \frac{1}{p}\right) \end{split}$$

Remark. This says that $\phi(n)$ is n times the probability (in a loose way) that an integer is not disable by any of the primes dividing n.

Example. Calculate $\phi(504)$. We have,

$$504 = 2^3 \cdot 3^2 \cdot 7$$

So,

$$\phi(504) = 504 \cdot (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{7})$$
= 144

 \Diamond

Theorem 3.5. Let $n \in \mathbb{Z}, n > 0$ then,

$$\sum_{d|n} \phi(d) = n$$

Proof. Let dbe a divisor of n. Let,

$$s_d = \{1 \le m \le n : (m, n) = d\}$$

Note that (m, n) = d if and only if (m/d, n/d) = 1. Thus $|s_d| = \phi(n/d)$ as if (m, n) = d then (m/d, n/d) = 1 and m/d satisfying this is $\phi(n/d)$.

Note also that every integer less than equal to n belongs to exactly one set s_d . Thus,

$$n = \sum_{d|n} |s_d| = \sum_{d|n} \phi(n/d) = \sum_{d|n} \phi(d)$$

As $\{d: d \mid n\} = \{n/d: d \mid n\}$