Lab 6: Peripheral Components: VGA, Mouse, and Dual FPGA

Group 21: 陳克盈 (112062205)、蔡明斯 (112062224)

Table of Contents

1	Chip to Chip		2	
2	Slot Machine			
	2.1	Motification	5	
3	Car		7	
	3.1	Sonic	7	
	3.2	Tracking Strategy	8	
	3.3	Overall	10	
	3.4	What We Have Learned	11	
	3.5	Δт	11	

1 Chip to Chip

這題需要補齊 slave 接收與傳送訊號的部分,完成 master 和 slave 之間的溝通協議。

master 會傳送 request, slave 收到 request 後會回傳 ack 給 master, master 端接收到 ack 後再將 data 傳送給 slave, slave 收到 data 後 decoder 會處理並輸出給 seven_segment 呈現在板子上。

Fig. 1 Q1 Slave FPGA block diagram

對 slave_control 的 FSM 設計如下:

- state_wait_rqst: 等待 master 傳送 request
 - state:收到 master 傳來的 request 後,切換至 state_wait_to_send_ack
 - 收到 request 後,切換成 1 開始溝通,此時 counter 會開始運作,直到 count == 27'd100000000 時, 將 done 設定為 1
 - notice:收到 request後,使 LED[0] 亮起
 - ack:在這個 state 不做動作保持為 0
 - data:在這個 state 不做動作保持原本的 data
- state_wait_to_send_ack: 等待 done == 1 並且傳送 ack
 - state: 當 done == 1 時,切換至 state_wait_data
 - start:當 done == 1 時, start 切換回 0 使 counter 停止運作
 - notice: LED[0] 持續亮起直到 done == 1
 - ack: 當 done == 1 時,將 ack 設成 1 傳送給 master
 - data:在這個 state 不做動作保持原本的 data

• state_wait_data: 等待 master 傳送 data

- state:收到 master 傳來的 valid 後,切換回 state_wait_rqst

- start:在這個 state 不做動作保持為 0

- notice:在這個 state 不做動作保持為 0

- ack:直到收到 master 傳來的 valid 保持為 1

- data:收到 valid 後,切換成從 master 傳送來的 data_in

Fig. 2 Q1 Slave Control State diagram

Fig. 3 Q1 Slave Control Circuit

2 Slot Machine

這題要在 FPGA 上實作使螢幕呈現往上的 777 動畫,板子上的 Top Button 為 Reset 訊號, Left Button 按下時要顯示往上的動畫, Right Button 按下時要顯示往下的動畫。

首先在原本的 sample code 上加入 Left Button 的 input (start_up), 當 start_up 為 1 時表示要顯示一個往上的動畫,當 start 為 1 時表示要顯示一個往下的動畫。

state_control 處理完每幀畫面位置的 X_v _count 後,交給 mem_addr_gen 產生圖片與螢幕對應的正確記憶體位置, $blk_mem_gen_0$ 再根據輸出的 $pixel_addr$ 產生圖片 7 對應的 RGB, $vga_controller$ 則用於給予 mem_addr_gen 必要的輸入項,整體流程圖如下:

Fig. 4 Q2 Slot Machine FPGA block diagram

2.1 Motification

在 state_control 中,原先的 A_to, B_to, C_to 在 counter 等於 0 時,透過 start 決定是否開始動畫,加入 start_up 後,將 A_to, B_to, C_to 修改成當 start_up 為 1 時也會開始動畫。

(為了避免簡報過於冗長,後面以 X 替代 A, B, C)

Fig. 5 Q2 Slot Machine X_to Circuit

對於 next_counter, 因為加入了 start_up,將原本 (start==1'b0 && counter==10'd0) 修改為 (start==1'b0 && start_up==1'b0 && counter==10'd0),使 start 和 start_up 未按下並且 counter 為 0 時,讓 counter 歸 0 不再持續運作。

為了使 start_up 按下後不需要經過 reset,直接按下 start 也可以繼續運作,將 counter >= 10'd1000 的情况發生時,使 counter 歸 0。

Fig. 6 Q2 Slot Machine next_counter Circuit

我們加入一個 direction,當 counter 等於零且 start 被按下時,direction 設定為 0,且當 counter 等於零且 start_up 被按下時,direction 設定為 1,其他情況 direction 維持原樣。

Fig. 7 Q2 Slot Machine direction Circuit

接著新增了 $up_X_v_count$ 用來計算往上的 count,利用先前的 direction 變數用來判斷當下的 $next_X_v_count$ 會是往上還是往下的 count。

Fig. 8 Q2 Slot Machine up_X_v_count Circuit

3 Car

這部分我們需要使用 FPGA、超音波感應器、線路追蹤器以及馬達來組成一個自走車,使其能夠在寬 度為 12 公分的白色賽道上自動行駛。

3.1 Sonic

超音波感應器的部分由四個 module 組成: sonic_top, PosCounter, TrigSignal, div:

div

將板子 100 MHz 的 clock 轉換為 1 MHz

TrigSignal

產生 10 us 的 Trig 信號,週期為 10ms

PosCounter

這個 module 會負責計算超音波回波的時間並轉換成距離。運作過程中分成了三個狀態:

- SO: 等待回波開始,當偵測到 Echo 的 posedge 時,就會進到 S1
- S1: 計算回波時間,每個 clk cycle 會將 counter 加一,直到偵測到 Echo 的 negedge,就會進到 S2
- S2: 計算距離,單位為 0.01 公分

sonic_top

接收其他 module 計算出來的距離,判定如果距離小於 40 公分,就輸出停止訊號。不過由於資電館疑似有不乾淨的東西,導致超音波感應器在某些地方會偵測到不存在的物體,因此額外加了一個 enable_stop 訊號,使其能夠透過板子上的開關來決定是否要開啟超音波感應器的功能。

Block Diagram

Fig. 9 Sonic

3.2 Tracking Strategy

我們利用三個 bit 的 state 來表示感應器的狀態, state[2] 代表 left, state[1] 代表 middle, state[0] 代表 right, 針對不同的策略調整馬達的運轉方向,而無論如何,馬達的速度都設定為 1023 (最大值):

111

這代表三個感應器都偵測到黑線,此時車子會直行。

001

這代表車子已經向左偏移了不少,此時左輪會往前,右輪會往後,使車子更快的向右轉。

011

如果車子是從 111 的狀態轉變過來的,則右輪會停止,左輪會往前,使車子緩慢的向右轉。反之如果車子是從 001 的狀態轉變過來的,那代表還沒有完全轉回來,則會繼續保持左輪往前、右輪往後的狀態。

100, 110

這兩個狀態與 001,011 相似,只是方向相反。

其它

保持不變。

Fig. 10 Tracking Strategy

3.3 Overall

Fig. 11 Overall

3.4 What We Have Learned

- 學習到了如何實際應用 Handshaking protocol 在兩塊 FPGA 板上做數據傳輸,以及將圖片動畫透過 VGA 傳輸到電腦螢幕上顯示
- 超音波感應器的原理以及距離計算
- 如何使用線路追蹤器來控制馬達的運轉方向
- 如何設計一個簡單的 state machine 來控制車子的運行

3.5 分工

• 陳克盈: Car

• 蔡明圻: Chip-to-Chip, Slot Machine