ถุงมือสำหรับตรวจจับท่าทางมือ SMART GLOVE FOR GESTURE RECOGNITION

พัทธวีร์ ชุมภูวร พิทวัส คุณกะมุต

รายงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตร์บัณฑิต สาขาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ปีการศึกษา 2561

บทคัดย่อ

ABSTRACT

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	I
บทคัดย่อภาษาอังกฤษ	II
กิตติกรรมประกาศ	III
สารบัญ	IV
สารบัญตาราง	V
สารบัญภาพ	VI
บทที่ 1 บทนำ	1
1.1 ความเป็นมาของปัญหา	1
1.2 วัตถุประสงค์ของโครงงาน	2
1.3 ประโยชน์ที่คาคว่าจะได้รับ	2
1.4 ขอบเขตของโครงงาน	3
1.5 ข้อจำกัดของโครงงาน	4
1.6 แผนการดำเนินงาน	5

สารบัญตาราง

	หน้า
1.1 แผนการดำเนินงาน	5

สารบัญภาพ

ห	น้า
1.1 ถุงมือตรวจจับท่าทางมือที่ใช้งานร่วมกับเทคโนโลยี Virtual Reality	. 1
1.2 ถุงมือตรวจจับท่าทางมือเพื่อใช้แปลภาษามือ	. 1
1.3 โครงสร้างถุงมือ	. 3
1.4 โครงสร้างระบบ	4
1.5 ขั้นตอนการทำงาน – การตรวจจับท่าทาง	4

บทที่ 1

บทนำ

1.1 ความเป็นมาของปัญหา

ในปัจจุบันมีการพัฒนาอุปกรณ์ต่าง ๆ โดยมีเป้าหมายเพื่อให้ผู้ใช้สามารถใช้งานอุปกรณ์ทาง อิเล็กทรอนิกส์โดยใช้ร่างกายของตนเองเป็น Input ได้ และได้รับความรู้สึกสมจริง หรือสะดวกสบาย มากขึ้นหากเทียบกับการใช้งาน Input ปกติอย่างเช่นคีย์บอร์ด, เมาส์ หรือจอสัมผัส

หากกล่าวถึงอุปกรณ์ที่พยายามตรวจจับท่าทางของมือ ในปัจจุบันก็มีการพัฒนาขึ้นมาหลากหลาย ประเภทเพื่อวัตถุประสงค์ใดอย่างหนึ่งอย่างชัดเจน ตัวอย่างเช่น ถุงมือตรวจจับท่าทางมือที่ใช้งาน ร่วมกับเทกโนโลยี Virtual Reality เพื่อใช้ในการเล่นเกมส์เพื่อกวามบันเทิง หรือฝึกฝนทักษะปฏิบัติ เสมือนจริง และถุงมือตรวจจับท่าทางมือเพื่อใช้แปลภาษามือเป็นคำหรือตัวอักษรภาษาอังกฤษ เป็นต้น

รูป 1.1 ถุงมือตรวจจับท่าทางมือที่ใช้งานร่วมกับเทคโนโลยี Virtual Reality

รูป 1.2 ถุงมือตรวจจับท่าทางมือเพื่อใช้แปลภาษามือ

แต่เนื่องจากถุงมือตามตัวอย่างที่กล่าวมาข้างต้นเป็นถุงมือที่ถูกพัฒนาขึ้นมาเพื่อวัตถุประสงค์ใด ๆ อย่างชัดเจน ท่าทางต่าง ๆ ที่ใช้เป็น Input รวมถึง Output จึงจำกัดอยู่ในขอบเขตที่ผู้พัฒนาได้กำหนดไว้ เพียงเท่านั้น ผู้ใช้จริงไม่สามารถกำหนดท่าทางต่าง ๆ โดยเฉพาะได้ หรือต้องมีการพัฒนาต่อโดยใช้ชุด พัฒนาซอฟต์แวร์ที่รองรับจากผู้พัฒนา ร่วมกับความรู้เฉพาะด้านเพียงเท่านั้น

ทางผู้พัฒนาจึงสนใจที่จะสร้างถุงมือเพื่อตรวจจับท่าทางมือ โดยใช้เทคโนโลยี Machine Learning ที่ ได้รับการพัฒนาประสิทธิภาพขึ้นและมีความนิยมในปัจจุบัน เพื่อลดข้อจำกัดในด้านที่กล่าวมาข้างต้น ลง โดยการแยกโครงสร้างการเคลื่อนใหวของท่าทางออกเป็นท่านิ่งหลาย ๆ ท่าที่เชื่อมต่อกัน และมี แอพพลิเคชั่นให้ผู้ใช้สามารถตั้งค่าชุดของท่าทางที่จะใช้เป็น Input และตั้งค่า Output ได้ ดังนั้นถุงมือจะ สามารถตรวจจับท่าทางที่เป็นการเคลื่อนใหวได้หลากหลายแบบ หลากหลายท่าติดต่อกันตามที่ต้องการ

1.2 วัตถุประสงค์ของโครงงาน

- 1.) พัฒนาถุงมือเพื่อการตรวจจับท่าทางมือรวมถึงระบบที่เกี่ยวข้อง
- 2.) ศึกษาการใช้งานไมโครคอนโทรลเลอร์และระบบปฏิบัติการ Linux ภายใน
- 3.) ศึกษาและพัฒนาเว็บแอพพลิเคชั่นและ Server เพื่อติดต่อกับ Hardware
- 4.) ศึกษาการประมวลผลข้อมูลของเซนเซอร์ผ่านกระบวนการทาง Machine Learning

1.3 ประโยชน์ที่คาดว่าจะได้รับ

- 1.) ถุงมือสามารถอำนวยความสะควกให้กับผู้ใช้งานได้
- 2.) ถุงมือสามารถให้ความบันเทิงกับผู้ใช้งานได้
- 3.) ถุงมือสามารถช่วยเป็นสื่อกลางในการสื่อสารโดยภาษามือได้บางส่วน
- 4.) ผู้ใช้สามารถเข้าถึงและตั้งค่าการใช้งานถุงมือได้ง่าย

1.4 ขอบเขตของโครงงาน

เซนเซอร์ที่ใช้จะมีทั้งหมด 6 ตัว ประกอบไปด้วยเซนเซอร์ตรวจจับการงอของนิ้ว 5 ตัว และ เซนเซอร์ตรวจสอบการเคลื่อนใหวและการวางมือ 1 ตัว

การจับท่าทางของถุงมือที่เป็นท่านิ่ง หนึ่งท่าจะประกอบไปด้วยการงอนิ้ว กับการวางมือ โดยการงอ นิ้ว จะสามารถทำได้อย่างน้อย 30 แบบ และการวางมือ สามารถทำได้อย่างน้อย 10 แบบ

สำหรับท่าที่เป็นเคลื่อนใหว สามารถเลือกได้สองแบบ คือแบบที่เกิดจากท่านิ่งหลายท่าต่อกัน และ แบบท่าหนึ่งเปลี่ยนไปอีกท่าหนึ่งโดยมีการตรวจจับการเปลี่ยนผ่านของท่า ซึ่งแบบนี้จะสามารถทำได้ อย่างน้อย 10 ท่า

และ โดยรวมแล้ว จะสามารถตรวจจับท่าทางภาษามือที่เป็นตัวอักษรภาษาไทยได้อย่างน้อย 30 ตัว

รูป 1.3 โครงสร้างถุงมือ

1.5 ข้อจำกัดของโครงงาน

รูปแบบท่าทางของของมือผู้ใช้ที่ไม่เหมือนกันอาจจะส่งผลให้ความแม่นยำแตกต่างกัน เกิดจากค่าที่ ได้จากเซนเซอร์ ซึ่งอาจจะมีค่าผิดพลาดหรือแตกต่างมากพอที่จะทำให้ตรวจจับได้ท่าที่ผิดพลาดได้ โดยเฉพาะเซนเซอร์ที่ใช้วัดความงอของนิ้วมือ ซึ่งวัดการงอได้เพียงแค่ทิศทางที่กำมือเท่านั้น สำหรับ ผู้ใช้ที่สามารถกางและงอนิ้วมือไปในทิศตรงข้ามได้มาก อาจจะทำให้เกิดการตรวจจับที่ผิดพลาดได้ จากที่กล่าวมาข้างต้น เซนเซอร์วัดความงอนิ้วมือนั้นสามารถวัดได้เพียงทิศทางเดียว ดังนั้นการงอนิ้ว ในทิศทางด้านข้าง เช่นการไขว้นิ้ว จะไม่สามารถตรวจจับได้ ซึ่งท่าดังกล่าวเป็นท่าที่ไม่ได้อยู่ใน ขอบเขตการพัฒนา เนื่องจากท่าในปัจจุบัน มีเพียงพอสำหรับการใช้งานเบื้องต้นแล้ว

1.6 แผนการดำเนินงาน

ตารางที่ 1.1 แผนการดำเนินงาน

หัวข้อกิจกรรม	เดือน									
	ส.ค.	ก.ย.	ต.ค.	พ.ย.	ช.ค.	ม.ค.	ก.พ.	มี.ค.	เม.ย.	พ.ค.
1. ค้นหาหัวข้อที่สนใจ และ										
ปรึกษาหัวข้อดังกล่าวกับ										
อาจารย์										
2. ศึกษาเทคโนโลยีที่ใช้พัฒนา										
2.1 ศึกษาวิธีการใช้งาน										
ระบบปฏิบัติการ										
2.2 ทคสอบการติคตั้ง										
ส่วนประกอบต่าง ๆ ที่ใช้ใน										
การพัฒนา										
3. ออกแบบ										
3.1 ออกแบบ โครงสร้างถุง										
มือ										
3.2 ออกแบบ โครงสร้าง										
ระบบ										
3.3 ออกแบบโครงสร้างและ										
วิธีประมวลผล Dataset										
3.4 ออกแบบเว็บ										
แอพพลิเคชั่น										
4. พัฒนา										
4.1 ประกอบถุงมือเพื่อให้										
สามารถใช้งานได้เบื้องต้น										

หัวข้อกิจกรรม	เดือน									
	ส.ค.	ก.ย.	ต.ค.	พ.ย.	ช.ค.	ม.ค.	ก.พ.	มี.ค.	เม.ย.	พ.ค.
4.2 พัฒนาเว็บแอพพลิเคชั่น										
เพื่อใช้แสคงผลและสร้าง										
Dataset										
4.5 พัฒนาเว็บแอพพลิเคชั่น										
เพื่อใช้ตั้งค่า Input/output										
5. ทคสอบ ปรับปรุง และแก้ใข										
5.1 ทคสอบและแก้ใขการ										
ทำงาน โดยรวมของระบบ										
5.2 พัฒนาส่วนจ่ายไฟให้ถุง										
มือ										
5.3 ปรับปรุงรูปลักษณ์ถุงมือ										
5.4 ปรับปรุงเว็บ										
แอพพลิเคชั่น										
5.5 ปรับปรุงโมเคล										
Machine Learning										

บรรณานุกรม

- S.S. Fels, G.E. Hinton. "Glove-Talk: a neural network interface between a data-glove and a speech synthesizer". [Online] Available: https://ieeexplore.ieee.org/abstract/document/182690/
- Rung-Huei Liang, Ming Ouhyoung. "A real-time continuous gesture recognition system for sign \
 Language". [Online] Available: https://ieeexplore.ieee.org/abstract/document/671007/
- Ji-Hwan Kim, Nguyen Duc Thang, Tae-Seong Kim. "3-D hand motion tracking and gesture recognition using a data glove". [Online] Available: https://ieeexplore.ieee.org/abstract/document/5221998/
- J. Weissmann, R. Salomon. "Gesture recognition for virtual reality applications using data gloves and neural networks". https://ieeexplore.ieee.org/abstract/document/832699
- Lidia Santos, Nicola Carbonaro, Alessandro Tognetti, José Luis González, Eusebio de la Fuente, Juan Carlos Fraile, Javier Pérez-Turiel. "Dynamic Gesture Recognition Using a Smart Glove in Hand-Assisted Laparoscopic Surgery". [Online] Available: http://www.mdpi.com/2227-7080/6/1/8
- Yunhao Ge, Bin Li, Weixin Yan, Yanzheng Zhao. "A real-time gesture prediction system using neural networks and multimodal fusion based on data glove". [Online] Available: https://ieeexplore.ieee.org/abstract/document/8377532/
- Felipe A. Quirino, Marcelo Romanssini, Rafael R. Dorneles, Enzo H. Weber, and Alessandro Girardi.

 "A Gesture Detection Glove for Human-Computer Interaction". [Online] Available:

 $http://ieee-cas.org/sites/ieee-cas.org/files/2017-2018-final-report_r9_a-gesture-detection-glove.pdf$