

CPSC 481 Artificial Intelligence

Dr. Mira Kim Mira.kim@fullerton.edu

What we will cover this week

Recommender systems

Introduction

- Recommender System
 - To infer customer interests by utilizing the various sources of data
 - User Feedback such as Rating
 - Act of a user buying or browsing an item
 - To analyze the previous <u>interaction between users and</u> <u>items</u>
- Key Principles of Recommendation Algorithms
 - Significant dependencies/correlations exist between userand item-centric activity.

Example) Movie Ratings

Users rate movies using 0-5 stars

Movie	Jenny (1)	Bob (2)	Grace (3)	Joseph (4)	
Serendipity	5	5	0	0	
The notebook	5	?	?	0	
Love actually	?	4	0	?	
Gladiator	0	0	5	4	
300	0	0	5	?	

Example) Movie Ratings

Users rate movies using 0-5 stars

Movie	Jenny (1)	Bob (2)	Grace (3)	Joseph (4)	
Serendipity	5	5	0	0	
The notebook	5	?	?	0	
Love actually	?	4	0	?	
Gladiator	0	0	5	4	
300	0	0	5	?	

Example) Movie Ratings

Users rate movies using 0-5 stars

Movie	Jenny (1)	Bob (2)	Grace (3)	Joseph (4)	
Serendipity	5	5	0	0	
The notebook	5	? 4?	? 0?	0	
Love actually	?	4	0	? 0?	
Gladiator	0	0	5	4	
300	0	0	5	? 4?	

Primary Model of Recommender

- Prediction Version of Problem
 - Matrix Completion Problem
 - To predict the rating value for a user-item combination
 - For m users and n items (m X n) Matrix
 - Specified (or observed) values are used for training.
 - Missing (or unobserved) values predicted using this training model.
- Ranking Version of Problem
 - Top-k Recommendation Problem
 - To recommend top-k items for a particular user, or determine top-k users to target for a particular item
 - Determination of top-k items more common

Goal of Recommender Systems

- Relevance
 - To recommend items that are relevant to the user
- Novelty
 - To recommend items that the user has not seen in the past
- Serendipity
 - To recommend items that are somewhat unexpected and are surprising to the user
- Increasing Recommendation Diversity

Types of Recommender Systems

- Simple Recommenders
 - To offer generalized recommendations to every user, based on popularity and/or genre
 - No personalization
- Content-based Recommenders
 - To suggest similar items based on a particular item
 - To use item metadata
 - Ex) genre, director, description, actors, etc. for movies
 - If a person liked a particular item, he or she will also like an item that is similar to it.

Types of Recommender Systems

- Collaborative Filtering Recommenders
 - To predict the rating or preference that a user would give an item-based on past ratings and preferences of other users

- Hybrid Recommender Systems
 - Combinations of various inputs and/or composition of different types of recommender systems

Simple Recommender

- Basic systems that recommends the top items based on a certain metric or score
 - Ex) based on popularity
- Steps
 - 1. Decide <u>what metric</u> or score to use for rating items.
 - 2. <u>Calculate</u> the score for every item.
 - 3. <u>Sort</u> the items based on the score and output the top results.

Content-based Recommenders

- To use only information about the <u>description and attributes of the</u> <u>items users has previously consumed</u> to model user's preferences
 - Based on a description of the item and a profile of the user's preferences
- Various candidate items are compared with items previously rated by the user and the best-matching items are recommended.
- Pros
 - Not depend on other users
 - Possible to recommend new items that may not be well-known
 - Easy to explain recommendations
- Cons
 - Not possible to recommend to new users
 - Over-specialization
 - Limited content analysis

Content-based Recommenders

Steps

- 1a. Analyze contents to give a classification of items
- 1b. Learn a user profile that represents each user's preference
- 2. Generate a list of recommendations for each user by taking item classification & user preference

Applicable ML Techniques

- Classifications like nearest neighbor
 - Find the nearest neighbors of a not-yet-seen item in a set of lalready rated by the user
- Linear Classification
 - User's past ratings as labels and item features as input

Content-based Recommenders

- Content Representation & Item Similarities
 - Structured Representation

Title	Genre	Author	Туре	Price	Keywords
The Night of the Gun	Memoir	David Carr	Paperback	29.90	Press and journalism, drug addiction, personal memoirs, New York
The Lace Reader	Fiction, Mystery	Brunonia Barry	Hardcover	49.90	American contemporary fiction, detective, historical
Into the Fire	Romance, Suspense	Suzanne Brockmann	Hardcover	45.90	American fiction, murder, neo- Nazism

- Unstructured Representation (like keyword)
 - By using 'Bag or Words' counting the frequency of each word
 - 'Term Frequency/Inverse Document Frequency (TF/IDF)
 - how important is the word in the document (local importance), with how important is the word in the corpus (global importance)
- Measure Similarity
 - Euclidian distance
 - Others

- To make automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating)
 - If a person A has the same opinion as a person B on a set of items, A is more likely to have B's opinion for a given item than that of a randomly chosen person.

Pros

- Works with any kind of item
 - Not depend on attributes of items

Cons

- Cannot recommend items that are not already rated (i.e. new-item problem)
- Usually recommend more popular items
- Need a minimum number of users to match similar users (cold start problem for new users)

- Input
 - A matrix of given user-item ratings
- Output types
 - A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
 - A top-N list of recommended items

- 2 Types of Collaborative Filtering
 - User-based filtering
 - Finds similar users based on their behavior and preferences
 - "You may like it because your friends liked it"
 - Item-based filtering
 - Identifies similarities between items based on how users interact with them
 - Many users who like item X also like item Y, system recommends item Y to users who liked item X

- User-based Collaborative Filtering
 - With ratings of users, determine whether Alice will like or dislike Item 5.

	ltem1	ltem2	Item3	ltem4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Pros:

- Can provide highly personalized recommendations since it relies on the preference of similar users
- Recommendations can include a diverse set of items across different categories

Cons:

- Can suffer from the cold start problem for new users
- Scalability as the computation grows with the number of users
- Sparsity of the user-item matrix -> less reliable similarity measure

- Item-based Collaborative Filtering
 - Use the similarity between items (and not users) to make predictions
 - Look for items that are similar to Item5
 - Take Alice's ratings for these items to predict the rating for Item5

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Pros:

- More stable over time as items don't change their own characteristics like users
- Scalable to large user bases
- Can handle the new user problem better since it relies on item similarities.

Cons:

- May not capture the user's current interests
- Can struggle with new items that have few ratings (cold start problem for items).

Example) Amazon

Frequently Bought Together

Price for both: \$158.15

Add both to Cart

Add both to Wish List

One of these items ships sooner than the other. Show details

- This item: Introduction to Data Mining by Pang-Ning Tan Hardcover \$120.16
- Data Science for Business: What you need to know about data mining and data-analytic thinking by Foster Provost Paperback \$37.99

Customers Who Bought This Item Also Bought

Data Science for Business: What you need...

> Foster Provost

★★★★☆ 102

LOOK INSIDE!

#1 Best Seller (in Data

Mining Paperback

\$37.99 **Prime**

Data Mining: Practical Machine Learning Tools...

> Ian H. Witten

全全全全 52 Paperback

\$40.65 Prime

Data Mining: Concepts and Techniques, Third...

Jiawei Han

全全全企 28

Hardcover

\$60.22 **Prime**

Regression Analysis by Example

> Samprit Chatterjee

金金金金金 9 Hardcover

\$92.39 **Prime**

SAS Statistics by Example Ron Cody

全全全全公 10

Perfect Paperback

\$44.37 Prime

Applied Logistic Regression

David W. Hosmer Jr.

金金金金金 9

Hardcover

\$62.33 **Prime**

An Introduction to Statistical Learning:...

> Gareth James

★★★★★ 56 #1 Best Seller (in

Mathematical & Statistical...

Hardcover

\$72.79 **Prime**

Page 1 of 15

Example) Amazon

Introduction to Data Mining

\$120.16 FREE Shipping. Temporarily out of stock. Order now and we'll deliver when available. We'll e-mail you w

What Other Items Do Customers Buy After Viewing This Item?

Data Science for Business: What you need to know about data mining and data-analytic thinking Paperback

> Foster Provost

102

\$37.99 Prime

Introduction to Data Mining Paperback

Pang-ning Tan

Data Mining: Concepts and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Sy

Jiawei Han

全 1 28

\$60.22 Prime

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series i

> Ian H. Witten

52

\$40.65 Prime

Example) Pandora Music Recommender

Goal

- To recommend music
- Recommendation based on data from Music Genome Project
- Assigns 400 attributes (melody, rhythm, etc) for each song, done by musicians

Example) Netflix Movie Recommender

Goal

- To recommend movies by comparing the watching and the searching habits of similar users as well as by offering movies that share characteristics with films that a user has rated highly
- Ensemble Method of 107 different Algorithmic Approaches

Collaborative, content-based, knowledge-based, and demographic

technique as the Basis

References

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems 3rd Edition