Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau und Bauingenieurwesen

Prof. Dr. Thomas Carraro M.Sc Janna Puderbach

Mathematik II/B (WI/ET)

Blatt 4

WT 2024

L'Hospital, Differenzieren, Kurvendiskussion

Einführende Bemerkungen

• Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.

Aufgabe 4.1: Differenzieren

a) Bestimmen Sie jeweils die erste Ableitung. (Eventuell notwendige Beschränkungen des Definitionsgebietes sind nicht angegeben.)

$$f_{9}(t) = \sinh(t) - \cosh(2t), \qquad f_{10}(t) = (t - 3)^{4} \sinh(t),$$

$$f_{11}(t) = t^{2} e^{-2t} \sin(3t), \qquad f_{12}(t) = \sqrt{t} e^{2t},$$

$$f_{13}(t) = \sin^{3} \left(e^{2t^{2}} + t^{5}\right), \qquad f_{14}(t) = \sqrt{2t^{2} + 1},$$

$$f_{15}(t) = \ln(t) - \ln(5t), \qquad f_{16}(t) = \ln(t^{2}) - \ln(t^{5}).$$

Hinweis: Es gilt
$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$$
.

b) Bestimmen Sie die vierte Ableitung folgender Funktionen, wobei Sie das geeignete Zusammenfassen von Termen nicht vergessen sollten.

$$f_{17}(t) = (t-3)^4 - (2t+1)^5,$$
 $f_{18}(t) = (t+1)\sin(2t)$
 $f_{19}(t) = (t^3-1)e^{2t},$ $f_{20}(t) = \sin(3t)e^{-t}$

Hinweis: Nutzen Sie gegebenen Falls die Leibniz-Regel zur Berechnung höherer

Ableitungen. Diese hat dieselbe Gestalt wie der binomische Lehrsatz:

$$(f(t)\cdot g(t))^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)}(t) \cdot g^{(n-k)}(t)$$
 Z. B. für $n=2$: $(f(t)\cdot g(t))'' = f(t)g''(t) + 2f'(t)g'(t) + f''(t)g(t)$

c) Bestimmen Sie die *n*-te Ableitung folgender Funktionen.

$$f_{21}(t) = \sin(3t),$$
 $f_{22}(t) = t e^{2t}$
 $f_{23}(t) = t \cdot \cos(t),$ $f_{24}(t) = t \ln(2t)$

Aufgabe 4.2: Funktionenlimes

Man bestimme den Limes der folgenden Funktionen

$$\mathbf{a}) \quad \lim_{x \to 0} \frac{\sin(x)}{x}$$

$$\mathbf{b}) \quad \lim_{x \to \infty} \frac{\sin(x)}{x}$$

$$\mathbf{c}$$
) $\lim_{x \to \infty} x \ln(x)$

Aufgabe 4.3: Bogenlänge

Die Bogenlänge des Graphen einer stetig differenzierbaren Funktion $f:[a,b]\to\mathbb{R}$ auf dem Interval [a,b] wird definiert als

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, \mathrm{d}x.$$

Berechnen Sie die Bogenlänge der folgenden Funktionen:

a)
$$f_1(x) = \sqrt{4 - x^2}$$
 auf $[-2, 2]$

b)
$$f_2(x) = x^2 \text{ auf } [0, b]$$

Aufgabe 4.4: Vektor- und Matrixwertige Funktionen

Gegeben seien

$$\begin{aligned} \boldsymbol{A}(t) &= \begin{pmatrix} t & t^2 \\ \sqrt{t} & t^5 \end{pmatrix}, & \boldsymbol{B}(t) &= \begin{pmatrix} \sin t & \cos t \\ \mathrm{e}^t & \cosh t \end{pmatrix}, \\ \boldsymbol{c}(t) &= \begin{pmatrix} t^3, \sqrt{t^5}, \frac{1}{t} \end{pmatrix}^\top, & \boldsymbol{d}(t) &= \begin{pmatrix} \mathrm{e}^{-t^2}, \sin(\sqrt{t}), \tanh(t/2) \end{pmatrix}^\top. \end{aligned}$$

Berechnen Sie

- \mathbf{a}) $\frac{d}{dt} \Big(\mathbf{A}(t) \mathbf{B}(t) \Big)$ und
- \mathbf{b}) $\frac{d}{dt} \Big(\boldsymbol{c}(t) \times \boldsymbol{d}(t) \Big)$

auf die folgenden beiden Arten:

- ullet Indem sie vor der Differentiation die Produkte AB bzw. c imes d bilden und die Ergebnisfunktionen ableiten.
- Indem Sie zunächst die Ableitungen der einzelnen Funktionen bilden und diese dann gemäß einer Produktregel verrechnen.

Aufgabe 4.5: Minimaler Abstand

Gegeben seien die folgenden Funktionen

i) $f_1(x) = x^2 + 1$,

- **ii**) $f_2(x) = \ln(x)$.
- Skizzieren Sie die Funktionen f_1 und f_2 .
- Bestimmen Sie den minimalen vertikalen Abstand beider Funktionsgraphen

$$d = \min \{|f_1(x) - f_2(x)|; x \in \mathbb{R}\}.$$

Aufgabe 4.6: Optimierungsproblem

Ein Poster muss mit einer Gesamtfläche von $\bar{A}=64000~\mathrm{mm^2}$ gedruckt werden. Es muss 10 mm Seitenränder und 25 mm obere und untere Ränder haben. Welche Höhe und Breite ergeben die maximale Druckfläche?

Aufgabe 4.7: Tangenten

Bestimmen Sie die Geradengleichungen (in der Form ax + by = c) der Tangenten an den Nullstellen der Funktionen

$$\varphi_1(x) = x^3 - 2x^2 - 5x + 6, \qquad \varphi_2(x) = x^2 \text{ und } \varphi_3(x) = \begin{cases} \sqrt{x} & \text{für } x \ge 0 \\ -\sqrt{-x} & \text{für } x < 0 \end{cases}.$$

- Geben Sie alle Punkte (x-Werte) an, in denen die Tangenten von $f(x) = x^2$ und $q(x) = x^3$ parallel sind.
- Stellen Sie den Verlauf der beiden vektorwertigen Funktionen

$$oldsymbol{v}(t) = egin{pmatrix} t \\ arphi_3(t) \end{pmatrix}$$
 mit $arphi_3(t)$ aus Aufgabenteil $oldsymbol{a}$)

und

$$\boldsymbol{w}(s) = \begin{pmatrix} s \cdot |s| \\ s \end{pmatrix}.$$

im selben Graphen dar.

Berechnen Sie – wo möglich – die Ableitungen beider Funktionen v(t) und w(s).

Hinweis: Die Funktion w(s) lässt sich analog zu $\varphi_3(t)$ mit Hilfe einer Fallunterscheidung auch ohne die Betragsfunktion darstellen.

Aufgabe 4.8: Regel von L'Hospital

Berechnen Sie mit Hilfe der Regel von L'Hospital die Grenzwerte

a)
$$\lim_{x\to 0} \frac{x^2 \sin x}{\tan x - x}$$
, b) $\lim_{x\to 0} \frac{\ln(e^x - x)}{\ln(\cos x)}$,

b)
$$\lim_{x \to 0} \frac{\ln(e^x - x)}{\ln(\cos x)}$$

c)
$$\lim_{x \to \infty} x(2 \arctan x - \pi)$$
, d) $\lim_{x \to 1} \frac{x^2 - 1}{x^x - 1}$.

d)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^x - 1}$$

Aufgabe 4.9: Regel von L'Hospital

Berechnen Sie mit Hilfe der Regel von L'Hospital die Grenzwerte

$$A = \lim_{x \to 0} \left(\frac{\tan x}{x} \right), \qquad B = \lim_{x \to 0} \left(\frac{1 - \cosh x}{x^3} \right), \qquad C = \lim_{x \to 1} \left(\frac{\ln x}{\sin(\pi x)} \right)$$

Aufgabe 4.10: Asymptoten

Man bestimme die (waagerechten bzw. senkrekten bzw.ß schrägen) Asymptoten der folgenden Funktionen:

$$\mathbf{a}) \quad f(x) = \frac{x}{4+x^2}$$

b)
$$q(x) = e^{-x^2}$$

c)
$$h(x) = \frac{x^2 - 3x}{2x - 2}$$

d)
$$l(x) = x^2 e^{-x}$$

2

Aufgabe 4.11: Kurvendiskussion

Bestimmen Sie den maximalen Definitionsbereich, die Symmetrie, alle Nullstellen, sowie Art und Lage der kritischen Punkte und Wendepunkte der rellen Funktion

$$f(x) = x\sqrt{16 - x^2}.$$

Aufgabe 4.12: Kurvendiskussion

Führen Sie eine Kurvendiskussion für die Funktion

$$f(x) = \ln(3x^2 + 2x + 1)$$

durch. Bestimmen Sie dazu:

- den maximalen Definitionsbereich von f,
- die Symmetrieachsen von f, d. h. Werte $\alpha \in \mathbb{R}$, so dass $f(\alpha + x) = f(\alpha x)$,
- das Verhalten von f im Unendlichen,
- die Nullstellen von f,
- die Extrema und das Monotonieverhalten von f,
- sowie die Wendepunkte und das Krümmungsverhalten von f.
- Skizzieren Sie den Graphen von f.

Ergebnisse zu Aufgabe 4.1:

a)
$$f_9'(2) \approx -50.818$$
, $f_{10}'(2) \approx -10.745$, $f_{11}'(2) \approx 0.2315$, $f_{12}'(2) \approx 173.73$, $f_{13}'(2) \approx -2039.7$,

$$f'_{14}(2) = 4/3, f'_{15}(2) = 0, f'_{16}(2) = -3/2$$

b)
$$f_{17}^{(4)} = -24(160t + 79)$$
, $f_{18}^{(4)} = -32\cos(2t) + 16(t+1)\sin(2t)$, $f_{19}^{(4)} = (16t^3 + 96t^2 + 144t + 32)e^{2t}$,

$$f_{20}^{(4)} = (28\sin(3t) + 96\cos(3t))e^{-t}$$

Ergebnisse zu Aufgabe 4.2:

Ergebnisse zu Aufgabe 4.4:

a)
$$\begin{pmatrix} t\cos t + t^2 e^t + \sin t + 2t e^t & -t\sin t + t^2\sinh t + \cos t + 2t\cosh t \\ \sqrt{t}\cos t + t^5 e^t + \frac{\sin t}{2\sqrt{t}} + 5t^4 e^t & -\sqrt{t}\sin t + t^5\sinh t + \frac{\cos t}{2\sqrt{t}} + 5t^4\cosh t \end{pmatrix}$$
b)
$$\begin{pmatrix} \frac{5}{2}t^{3/2}\tanh\frac{t}{2} + \frac{t^{5/2}}{2\cosh^2\frac{t}{2}} - \frac{\cos\sqrt{t}}{2t^{3/2}} + \frac{\sin\sqrt{t}}{t^2} \\ -2e^{-t^2} - \frac{e^{-t^2}}{t^2} - 3t^2\tanh\frac{t}{2} - \frac{t^3}{2\cosh^2\frac{t}{2}} \\ 3t^2\sin\sqrt{t} + \frac{t^{5/2}\cos\sqrt{t}}{2} - \frac{5}{2}t^{3/2}e^{-t^2} + 2t^{7/2}e^{-t^2} \end{pmatrix}$$

b)
$$\begin{pmatrix} \frac{5}{2}t^{3/2}\tanh\frac{t}{2} + \frac{t^{5/2}}{2\cosh^2\frac{t}{2}} - \frac{\cos\sqrt{t}}{2t^{3/2}} + \frac{\sin\sqrt{t}}{t^2} \\ -2e^{-t^2} - \frac{e^{-t^2}}{t^2} - 3t^2\tanh\frac{t}{2} - \frac{t^3}{2\cosh^2\frac{t}{2}} \\ 3t^2\sin\sqrt{t} + \frac{t^{5/2}\cos\sqrt{t}}{2} - \frac{5}{2}t^{3/2}e^{-t^2} + 2t^{7/2}e^{-t^2} \end{pmatrix}$$

Ergebnisse zu Aufgabe 4.6:

Die maximale Druckfläche beträgt: $A_{\text{max}} = 32000 \text{ mm}^2$.

Ergebnisse zu Aufgabe 4.7:

a) Nullstellen: $\varphi_1(1) = \varphi_1(-2) = \varphi(3) = 0$, $\varphi_2(0) = 0$, $\varphi_3(0) = 0$

Ergebnisse zu Aufgabe 4.8:

a) 3, **b)**
$$-1$$
, **c)** -2 , **d)** 2

Ergebnisse zu Aufgabe 4.9:

$$A = 1, B = \pm \infty, C = -1/\pi$$

Ergebnisse zu Aufgabe 4.10:

Ergebnisse zu Aufgabe 4.11:

D(f) = [-4, 4], f ist ungerade, Nullstellen: $x = 0, \pm 4$, Extrema bei $x = \pm 2\sqrt{2}$, Wendepunkt bei x=0

Ergebnisse zu Aufgabe 4.12:

b) $\alpha = -1/3$, **d)** 0, -2/3, **e)** Minimum bei -1/3, **f)** Wendepunkte bei $-1/3 \pm \sqrt{2}/3$