LINEAR MIXED MODELS FOR LONGITUDINAL DATA Estimating Individual Trajectories

Outline:

Linear mixed effects models for continuous outcomes

- ullet Random Effect Estimation for U_i
- ullet Variance estimation of \hat{U}_i
- Prediction and Shrinkage

- In mixed models, the random U_i for subject i can allow each subject to have his / her own intercept, slope (w.r.t. time) and even quadratic trend \rightarrow The U_i 's define individual trajectories
- Therefore, it may be of interest to **estimate** individual trajectories (i.e., the U_i 's) for each subject, or for a subset of subjects
- Excellent motivation for using subject-specific mixed models over marginal models
 - you cannot get this with marginal models
- The mixed model is

$$Y_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + \boldsymbol{d}'_{ij}\boldsymbol{U}_i + Z_{ij}$$

and in many applications we may consider Z_{ij} to be measurement error

• Therefore, it is of interest to estimate

$$oldsymbol{x}_{ij}^{\prime}oldsymbol{eta}+oldsymbol{d}_{ij}^{\prime}oldsymbol{U}_{i},$$

attempting to eliminate the measurement error Z_{ij}

• For example, in the Riesby Depression data, we had that

$$b_{i0} = (\beta_0 + \beta_1 \operatorname{endog}_i + U_{i1})$$

is the ith subject's intercept with respect to week, and

$$b_{i1} = (\beta_2 + \beta_3 \operatorname{endog}_i + U_{i2})$$

is the ith subject's **slope** with respect to week

- The line $(b_{i0} + b_{i1} \text{week})$ for the average depression score for the ith subject over time is a function of β and $U_i = (U_{i1}, U_{i2})'$
- ullet Therefore, estimation of $oldsymbol{U}_i$ is of interest

Estimation of the Random Effects U_i : Frequentist Approach

- ullet Estimation of $oldsymbol{U}_i$ is not the same as estimation of $oldsymbol{eta}$ or of other parameters:
 - we have a lot of information on $oldsymbol{eta}$; only a little on each $oldsymbol{U}_i$
 - \boldsymbol{U}_i is modelled as a random variable (eg, $\boldsymbol{U}_i \sim N(0,G)$): Because there are many \boldsymbol{U}_i 's, it makes sense to consider them as random variables with a distribution
- Recall,

$$\boldsymbol{Y}_i = \boldsymbol{X}_i \boldsymbol{\beta} + D_i \boldsymbol{U}_i + \boldsymbol{Z}_i$$

where

$$\boldsymbol{U}_i \sim N(0,G)$$
 and $\boldsymbol{Z}_i \sim N(0,R_i)$

so
$$oldsymbol{Y}_i | oldsymbol{X}_i \sim N(oldsymbol{X}_i oldsymbol{eta}, D_i G D_i' + R_i)$$
,

likelihood is

$$\prod_{i=1}^{m} f(\boldsymbol{Y}_i|\boldsymbol{\beta},G,R_i)$$

and the log-likelihood does not have U_i

$$L(\boldsymbol{\beta}, G, R) = \sum_{i=1}^{m} \left\{ -\frac{1}{2} n_i \log(2\pi) - \frac{1}{2} \log|V_i| - \frac{1}{2} (\boldsymbol{Y}_i - X_i \boldsymbol{\beta})' V_i^{-1} (\boldsymbol{y} - X_i \boldsymbol{\beta}) \right\}$$

where $V_i = D_i G D_i' + R_i$.

• However, we can include U_i in log-likelihood (in form of conditional model) and obtain MLE for U_i :

$$\boldsymbol{Y}_i|(\boldsymbol{X}_i, U_i) \sim N(\boldsymbol{X}_i\boldsymbol{\beta} + D_i\boldsymbol{U}_i, R_i)$$

$$\boldsymbol{U}_i \sim N(0, G)$$

Then likelihood is

$$\prod_{i=1}^{m} f(\boldsymbol{Y}_i|\boldsymbol{\beta}, U_i, R_i) f(U_i|G)$$

and the log-likelihood is

$$\begin{split} &L(\boldsymbol{\beta},G,R) \\ &= \sum_{i=1}^m \{-\frac{1}{2}\log|R_i| - \frac{1}{2}(\boldsymbol{Y}_i - \boldsymbol{X}_i\boldsymbol{\beta} - D_i\boldsymbol{U}_i)'R_i^{-1}(\boldsymbol{Y} - \boldsymbol{X}_i\boldsymbol{\beta} - D_i\boldsymbol{U}_i) \\ &-\frac{1}{2}\log|G| - \frac{1}{2}U_i'G^{-1}U_i\} + \text{Constant} \end{split}$$

• Solve the score equation for U_i :

$$\frac{\partial L(\boldsymbol{\beta}, G, R)}{\partial U_i} = D_i' R_i^{-1} (\boldsymbol{Y} - \boldsymbol{X}_i \boldsymbol{\beta} - D_i \boldsymbol{U}_i) - G^{-1} U_i = 0$$

we have ML estimator for U_i :

$$\widehat{U}_i = (G^{-1} + D_i' R_i^{-1} D_i)^{-1} D_i' R_i^{-1} (\mathbf{Y}_i - X_i \boldsymbol{\beta})$$

- In practice: β , G, R_i are unknown
 - \rightarrow estimate β , G, R_i via ML, ReML, etc.
 - ightarrow estimate $oldsymbol{U}_i$ as

$$\widehat{U}_i = \widehat{\mathcal{E}}(\boldsymbol{U}_i | \boldsymbol{Y}_i) = (\widehat{G}^{-1} + D_i' \widehat{R}_i^{-1} D_i)^{-1} D_i' \widehat{R}_i^{-1} (\boldsymbol{Y}_i - X_i \widehat{\boldsymbol{\beta}})$$

• This estimator is Best Linear Unbiased Predictor (BLUP) for U_i (Searle. et al. 1992) if G and R_i are known.

Estimation of the Random Effects \boldsymbol{U}_i : Bayesian Approach

- ullet Bayes' Estimation: estimate $oldsymbol{U}_i$ by $\mathrm{E}(oldsymbol{U}_i|oldsymbol{Y}_i)$
 - $oldsymbol{Y}_i$ is observed
 - so, why not estimate $m{U}_i$ as the **expected value** of $m{U}_i$ given what we observe, that is, given $m{Y}_i$
 - (**Prior**) the probability density of $oldsymbol{U}_i$ is

$$f_u(\boldsymbol{U}_i)$$

– the probability density of $oldsymbol{Y}_i$ given $oldsymbol{U}_i$ is

$$f_{y|u}(\boldsymbol{Y}_i|\boldsymbol{U}_i)$$

called the **likelihood function** for $oldsymbol{U}_i$ given data $oldsymbol{Y}_i$

– the **marginal** distribution of $oldsymbol{Y}_i$ averages out the $oldsymbol{U}_i$

$$f_y(\boldsymbol{Y}_i) = \int f_y(\boldsymbol{Y}_i|\boldsymbol{U}_i) f_u(\boldsymbol{U}_i) d\boldsymbol{U}_i$$

- **Posterior** distribution of U_i given Y_i via Bayes' theorem:

$$f_{u|y}(\boldsymbol{U}_i|\boldsymbol{Y}_i) = rac{f_{y|u}(\boldsymbol{Y}_i|\boldsymbol{U}_i)f_u(\boldsymbol{U}_i)}{f_y(\boldsymbol{Y}_i)}$$

– when we have the posterior, we can estimate $oldsymbol{U}_i$ as

$$\mathrm{E}(oldsymbol{U}_i|oldsymbol{Y}_i)$$

and this is called a Bayes' estimate

Key idea: "Best guess" at $oldsymbol{U}_i$ given subject i's data, $oldsymbol{Y}_i$

- So, lets do it for random effects
- Recall that

$$\boldsymbol{Y}_i = \boldsymbol{X}_i \boldsymbol{\beta} + D_i \boldsymbol{U}_i + \boldsymbol{Z}_i$$

where

$$\boldsymbol{U}_i \sim N(0,G)$$
 and $\boldsymbol{Z}_i \sim N(0,R_i)$

• we have

$$E(\boldsymbol{Y}_i) = X_i \boldsymbol{\beta}$$

and that

$$var(\boldsymbol{Y}_i) = V_i = D_i G D_i' + R_i \quad \text{(often } R_i = \tau^2 I_{n_i} \text{)}$$

Also note that

$$cov(\boldsymbol{Y}_i, \boldsymbol{U}_i) = cov(D_i \boldsymbol{U}_i, \boldsymbol{U}_i) = D_i var(\boldsymbol{U}_i) = D_i G$$

• Therefore,

$$\begin{pmatrix} \mathbf{Y}_i \\ \mathbf{U}_i \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} X_i \boldsymbol{\beta} \\ 0 \end{pmatrix}, \begin{pmatrix} V_i & D_i G \\ GD'_i & G \end{pmatrix} \end{bmatrix}$$

• We can obtain posterior of U_i given Y_i :

$$\boldsymbol{U}_i | \boldsymbol{Y}_i \sim N[GD_i'V_i^{-1}(\boldsymbol{Y}_i - X_i\boldsymbol{\beta}), G - GD_i'V_i^{-1}D_iG]$$

 Above derivation used following result (as part of your basic "statistician's toolbox"):

lf

$$\left(egin{array}{c} oldsymbol{x}_1 \ oldsymbol{x}_2 \end{array}
ight) \sim N \left[\left(egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight), \left(egin{array}{c} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{array}
ight)
ight]$$

then

$$|x_1|x_2 \sim N[\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}]$$

ullet Thus, we can obtain **Bayes' estimate of** $oldsymbol{U}_i$:

$$E(\boldsymbol{U}_i|\boldsymbol{Y}_i) = GD_i'V_i^{-1}(\boldsymbol{Y}_i - X_i\boldsymbol{\beta})$$
$$= GD_i'(D_iGD_i' + R_i)^{-1}(\boldsymbol{Y}_i - X_i\boldsymbol{\beta})$$

With some math work we can show

$$E(\boldsymbol{U}_i|\boldsymbol{Y}_i) = (G^{-1} + D_i'R_i^{-1}D_i)^{-1}D_i'R_i^{-1}(\boldsymbol{Y}_i - X_i\boldsymbol{\beta})$$

- Same form as derived previously using frequentist approach
- To see this, multiply $(G^{-1} + D_i'R_i^{-1}D_i)$ and $(D_iGD_i' + R_i)$ to following equation, so you can see it hold:

$$GD'_i(D_iGD'_i+R_i)^{-1} = (G^{-1}+D'_iR_i^{-1}D_i)^{-1}D'_iR_i^{-1}$$

ullet In practice, estimate $oldsymbol{U}_i$ as

$$\widehat{U}_i = \widehat{E}(\boldsymbol{U}_i | \boldsymbol{Y}_i) = (\widehat{G}^{-1} + D_i' \widehat{R}_i^{-1} D_i)^{-1} D_i' \widehat{R}_i^{-1} (\boldsymbol{Y}_i - X_i \widehat{\boldsymbol{\beta}})$$

- $\widehat{\boldsymbol{U}}_i$ is called an **empirical Bayes' estimate** because $\boldsymbol{\beta}$, G, R_i are based on data rather than known
- it is the **estimated** expected value of U_i given Y_i (Our "best guess" at U_i given estimates $\hat{\beta}$, \hat{G} , \hat{R} and subject i's data, Y_i)

Note:

- Above results involve unknown parameters β , G, R_i
- Empirical Bayes estimation: substitute point estimates for these parameters in posterior distributions.
- ullet A full Bayesian inference: should assume prior distributions for them, and integrate these parameters out to obtain distribution of $m{U}_i | m{Y}_i$

Variance Estimation of $\widehat{m{U}}_i$

• Based on posterior distribution, we have

$$\operatorname{var}(\boldsymbol{U}_i|\boldsymbol{Y}_i) = G - GD_i'(D_iGD_i' + R_i)^{-1}D_iG$$

• With some math work you can prove

$$\operatorname{var}(\boldsymbol{U}_i|\boldsymbol{Y}_i) = (G^{-1} + D_i'R_i^{-1}D_i)^{-1}$$

due to the fact that

$$(A - BDB')^{-1} = A^{-1} - A^{-1}B(B'A^{-1}B - D^{-1})^{-1}B'A^{-1}$$

(plug in G^{-1} for A, $-R_i^{-1}$ for D, and D_i' for B),

• (Naive) Variance of $\widehat{U_i}$ can be estimated by:

$$\widehat{\text{var}}_{\beta,G,R_i}(\boldsymbol{U}_i|\boldsymbol{Y}_i) = (\hat{G}^{-1} + D_i'\hat{R}_i^{-1}D_i)^{-1}$$

 $\widehat{\mathrm{var}}_{\beta,G,R_i}$ means that it is conditional on fixed values of β,G,R_i

- However, this variance does not account for the variability in the estimation of β , G and R_i in the calculation of $E(U_i|Y_i)$
- A full Bayesian approach: take into account the estimation of β , G and R_i
 - Assign priors to the parameters $\boldsymbol{\beta}$, G and R_i (ie, τ^2 if $R_i = \tau^2 I_{n_i}$)
 - calculate $var(\boldsymbol{U}_i|\boldsymbol{Y}_i)$ integrating out $\boldsymbol{\beta}$, G and R_i
- We use an 'intermediate' Bayesian calculation:
 - fix G and R_i at their estimated value
 - assign β a flat prior (recall: this uninformative prior will lead to same inference of β with the one obtained by OLS/WLS)

• (Integrating out β) we have

$$\operatorname{var}_{G,R_{i}}(\boldsymbol{U}_{i}|\boldsymbol{Y}_{i})
= \operatorname{E}_{G,R_{i}}\left[\operatorname{var}_{\beta,G,R_{i}}(\boldsymbol{U}_{i}|\boldsymbol{Y}_{i})\right] + \operatorname{var}_{G,R_{i}}\left[\operatorname{E}_{\beta,G,R_{i}}(\boldsymbol{U}_{i}|\boldsymbol{Y}_{i})\right]
= \operatorname{E}_{G,R_{i}}\left[\left(G^{-1} + D_{i}'R_{i}^{-1}D_{i}\right)^{-1}\right] + \operatorname{var}_{G,R_{i}}\left[GD_{i}'V_{i}^{-1}(\boldsymbol{Y}_{i} - X_{i}\boldsymbol{\beta})\right]
= \left(G^{-1} + D_{i}'R_{i}^{-1}D_{i}\right)^{-1}
+ GD_{i}'V_{i}^{-1}X_{i}\left(\sum_{i=1}^{m}X_{i}'V_{i}^{-1}X_{i}\right)^{-1}X_{i}'V_{i}^{-1}D_{i}G$$

where we used the result of

$$\operatorname{var}(\boldsymbol{\beta}) = \left(\sum_{i=1}^{m} X_i' V_i^{-1} X_i\right)^{-1}$$

obtained by WLS (Note 5)

ullet This formula is preferred to estimate variance of \widehat{U}_i

Special Case: Empirical Bayes' Estimation of a Random Intercept

• For a simple case of just a random intercept U_i :

$$G = \nu^2 = \operatorname{var}(\boldsymbol{U}_i)$$
 (a scalar)

and, for only a random intercept

$$D_i = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
 and $R_i = \tau^2 I_{n_i} = \begin{pmatrix} \tau^2 & 0 & \cdots & 0 \\ 0 & \tau^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \tau^2 \end{pmatrix} = \operatorname{var}(\boldsymbol{Z}_i)$

• For the ith subject: If n_i = the number of observations, \bar{Y}_i is the mean response (average within ith subject), and \bar{x}_i is the mean predictor vector, then

$$D_i' R_i^{-1} (\boldsymbol{Y}_i - X_i \boldsymbol{\beta}) = \frac{n_i}{\tau^2} (\bar{Y}_i - \bar{\boldsymbol{x}}_i \boldsymbol{\beta})$$

and

$$G^{-1} = \frac{1}{\nu^2}$$

and

$$D_i' R_i^{-1} D_i = \frac{n_i}{\tau^2}$$

from which we obtain

$$E(U_i|\boldsymbol{Y}_i) = \frac{1}{\left(\frac{1}{\nu^2} + \frac{n_i}{\tau^2}\right)} \left(\frac{n_i}{\tau^2}\right) (\bar{Y}_i - \bar{\boldsymbol{x}}_i \boldsymbol{\beta}) = \widehat{\boldsymbol{U}}_i,$$

which becomes an **empirical Bayes'** estimate when we replace β , ν^2 , τ^2 with estimates

Define the weight:

$$w_i = \frac{\left(\frac{n_i}{\tau^2}\right)}{\left(\frac{1}{\nu^2} + \frac{n_i}{\tau^2}\right)}, \quad 0 < w_i < 1$$

• Now, suppose we wanted to estimate the intercept for the *i*th subject:

$$b_{0i} = \beta_0 + U_i$$

• We would estimate $\hat{\beta}$, $\hat{\nu}^2$, $\hat{\tau}^2$, and then compute the empirical Bayes estimate of b_{0i}

$$\hat{b}_{0i} = \hat{w}_i(\bar{Y}_i - \bar{\boldsymbol{x}}_i\hat{\boldsymbol{\beta}}) + \hat{\beta}_0 = \hat{w}_i(\bar{Y}_i - \bar{\boldsymbol{x}}_i\hat{\boldsymbol{\beta}} + \hat{\beta}_0) + (1 - \hat{w}_i)\hat{\beta}_0$$

- Now, think about w_i :
 - the smaller w_i is, the closer \hat{b}_{0i} is to $\widehat{\beta}_0$

- w_i "shrinks" the estimate of the individual intercept b_{0i} towards the population average intercept β_0
- If n_i is big (many observations on subject i) or if τ^2 is small (low within-subject variance) then w_i is large, indicating that \boldsymbol{Y}_i is **very informative** for $b_{0i} = \beta_0 + U_i$
- If ν^2 is small, then there is very little between-subject variance of intercepts, indicating that the population mean intercept β_0 is a pretty good estimate of the subject-specific intercept $b_{0i} = \beta_0 + U_i$
- In this sense, the total information about $\beta_0 + U_i$ is

$$\left(\frac{1}{\nu^2} + \frac{n_i}{\tau^2}\right)$$

and w_i creates the **optimal weighting** among the two source of information

- Empirical Bayes' estimator **shrinks** the estimate of b_{0i} toward the population average β_0 via the weights \widehat{w}_i Sometimes they are called **shrinkage estimators**
- Empirical Bayes' estimators are optimally weighted to achieve the lowest mean-square error of \hat{b}_{0i} across all of the subjects
- They do this by **borrowing strength** (information) from other subjects via $\widehat{\beta}_0$ in estimating b_{0i}
- ullet if we did not borrow this information, we would estimate b_{0i} using only the data from subject i

$$(\bar{y}_i - \bar{\boldsymbol{x}}_i \boldsymbol{\beta})$$

Shrinkage in general mixed-effects model

ith subject's predicted response is

$$\widehat{\boldsymbol{Y}}_{i} = X_{i}\widehat{\boldsymbol{\beta}} + D_{i}\widehat{U}_{i}$$

$$= X_{i}\widehat{\boldsymbol{\beta}} + D_{i}\widehat{G}D'_{i}\widehat{V}_{i}^{-1}(\boldsymbol{Y}_{i} - X_{i}\widehat{\boldsymbol{\beta}})$$

$$= (I_{n_{i}} - D_{i}\widehat{G}D'_{i}\widehat{V}_{i}^{-1})X_{i}\widehat{\boldsymbol{\beta}} + D_{i}\widehat{G}D'_{i}\widehat{V}_{i}^{-1}\boldsymbol{Y}_{i}$$

$$= (\widehat{R}_{i}\widehat{V}_{i}^{-1})X_{i}\widehat{\boldsymbol{\beta}} + (I_{n_{i}} - \widehat{R}_{i}\widehat{V}_{i}^{-1})\boldsymbol{Y}_{i}$$

This is due to fact that

$$I_{n_i} = \hat{V}_i \hat{V}_i^{-1} = (D_i \hat{G} D_i' + \hat{R}_i) \hat{V}_i^{-1} = D_i \hat{G} D_i' \hat{V}_i^{-1} + \hat{R}_i \hat{V}_i^{-1}$$

• Empirical Bayes estimator for the *i*th subject's predicted response is a weighted average of the individual response Y_i and the population-averaged mean response $X_i\widehat{\beta}$.

- It "shrinks" the subject's response profile toward the population mean profile.
- Amount of "shrinkage" depends on the relative magnitude of R_i (ie, within subject variability) and $V_i = D_i G D_i' + R_i$ (total variation)
- If within subject variability (R_i) is large relative to between-subject variability (D_iGD_i') , more weight is assigned to the overall average profile
- ullet more weight is given to the observed data Y_i if the opposite is true.

Riesby Depression Example: Empirical Bayes Estimation of Individual Trajectories

- ullet Empirical Bayes estimation of individual random effects $oldsymbol{U}_i$ are available in many software packages
- Predicted trajectories is

$$\widehat{Y}_{ij} = oldsymbol{x}_{ij}' \widehat{oldsymbol{eta}} + oldsymbol{d}_{ij}' \widehat{oldsymbol{U}}_{ij}$$

• SAS code to obtain predicted trajectories:

```
data riesby;
set riesby;
endwk=endog*week;
wkcen = week-2.5;
endwkcen = endog*wkcen;
wksqr = wkcen*wkcen;
run;
```

```
ods output solutionR=riesby.randeff;
proc mixed data=riesby covtest;
class id;
model hamd=endog week endwk/ s outp=riesby.predict outpm=riesby.popmean;
random intercept week / subject=id type=un g solution;
run;

proc print data=riesby.predict (obs=10);
title1 'predicted individual data';
run;
```

- ullet "solution" option in RANDOM statement: estimate the random effects U_i
- ullet "outp=" option: specifies a SAS data set which contains predicted mean value $m{x}'_{ij}\widehat{m{eta}}+m{d}'_{ij}\widehat{m{U}}_{ij}$
- ullet "outpm=" option: specifies a SAS data set that contains population mean estimates $m{x}_{ij}' \widehat{m{eta}}$

ullet "ods output solutionR=" option: specifies a SAS data set that contains the random effect estimates $\widehat{m U}_i$ predicted individual data

Obs		id	ham	d	week	endog	g endwk
1		101	01 26		0	(0
2		101	2	2	1	(0
3		101	1	8	2	(0
4		101		7	3	(0
5		101		4	4	(0
7		103	3	3	0	(0
8		103	2	4	1	(0
9		103	1	5	2	(0
10		103	2	4	3	(0
		StdErr					
0bs	Pred	Pred	DF	Alpha	Lower	Upper	Resid
1	24.3368	2.02843	243	0.05	20.3413	28.3324	1.66319

0.05

0.05

16.8139

12.8587

22.9959

18.0873

2.09510

2.52700

243

243

1.56921

1.32719

2

3

19.9049

15.4730

4	11.0411	1.41831	243	0.05	8.2473	13.8348	-4.04109
5	6.6092	1.79245	243	0.05	3.0785	10.1399	-2.60919
6	2.1773	2.31631	243	0.05	-2.3853	6.7399	0.82272
7	26.8659	2.02843	243	0.05	22.8704	30.8615	6.13409
8	24.0879	1.56921	243	0.05	20.9969	27.1789	-0.08788
10	18.5318	1.41831	243	0.05	15.7381	21.3256	5.46819

proc print data=riesby.popmean (obs=10);
title1 'population mean';
run;

population mean

Obs	id	hamd	week	endog	endwk
1	101	26	0	0	0
2	101	22	1	0	0
3	101	18	2	0	0
4	101	7	3	0	0
5	101	4	4	0	0
6	101	3	5	0	0
7	103	33	0	0	0
8	103	24	1	0	0

9		103	1	5	2		0	0
10	103		2	4	3		0	0
		${ t StdErr}$						
Obs	Pred	Pred	DF	Alpha	Lower	Upper		Resid
1	22.4760	0.80742	243	0.05	20.8856	24.0664		3.5240
2	20.1103	0.72196	243	0.05	18.6882	21.5324		1.8897
3	17.7446	0.76909	243	0.05	16.2297	19.2595		0.2554
4	15.3789	0.92885	243	0.05	13.5493	17.2085		-8.3789
5	13.0132	1.15542	243	0.05	10.7373	15.2891		-9.0132
6	10.6475	1.41712	243	0.05	7.8561	13.4389		-7.6475
7	22.4760	0.80742	243	0.05	20.8856	24.0664		10.5240
8	20.1103	0.72196	243	0.05	18.6882	21.5324		3.8897
9	17.7446	0.76909	243	0.05	16.2297	19.2595		-2.7446
10	15.3789	0.92885	243	0.05	13.5493	17.2085		8.6211

proc print data=riesby.randeff (obs=10);
title1 'random coefficients';
run;

random coefficients

				StdErr				
0bs	Effect	id	Estimate	Pred	DF	tValue	Probt	

1	Intercept	101	1.8608	2.0781	243	0.90	0.3714
2	week	101	-2.0662	0.7259	243	-2.85	0.0048
3	Intercept	103	4.3899	2.0781	243	2.11	0.0357
4	week	103	-0.4123	0.7259	243	-0.57	0.5706
5	Intercept	104	2.0398	2.0647	243	0.99	0.3242
6	week	104	-1.5457	0.7179	243	-2.15	0.0323
7	Intercept	105	-2.2202	2.0781	243	-1.07	0.2864
8	week	105	0.2774	0.7259	243	0.38	0.7027
9	Intercept	106	-0.3326	2.1092	243	-0.16	0.8748
10	week	106	0.9878	0.8646	243	1.14	0.2544

- Note: In Stata, predicted trajectories are generated after the model fit with the predict command:
 - . xtmixed hamd endog week endwk $\mid \mid$ id: week , cov(uns) , var
 - . predict pred , fitted

• To see how the predicted trajectories fit the data, we plot the trajectories in R:

```
#Input SAS data sets
library(foreign)
sashome <- "E:/Program Files/SASHome/SASFoundation/9.4"

datapath="C:/Users/Shuai Chen/OneDrive - University of California, Davis/teach/logdata1<-read.ssd(datapath, "randeff", sascmd=file.path(sashome, "sas.exe"))
data2<-read.ssd(datapath, "popmean", sascmd=file.path(sashome, "sas.exe"))
data3<-read.ssd(datapath, "predict", sascmd=file.path(sashome, "sas.exe"))

#Plots for individual, eg, ID=103
id<-103
plot(data2$WEEK[data2$ID==id],data2$HAMD[data2$ID==id], xlim=c(-1,6),ylim=c(0,35)
legend("topright",c("OLS fit", "population", "predicted"),lty=1:3)
legend("bottomleft", paste("Individual",id))
abline(lsfit(data2$WEEK[data2$ID==id],data2$HAMD[data2$ID==id]))
lines(data2$WEEK[data2$ID==id],data2$PRED[data2$ID==id],lty=2)
lines(data3$WEEK[data3$ID==id],data3$PRED[data3$ID==id],lty=3)</pre>
```

• Fitted trajectories: random intercept and random slope:

ullet OLS: use only ith subject's observations

• Then, for comparison, we did the same thing for the model with a quadratic random effect, specifically

```
ods output solutionR=riesby.randeff2;
proc mixed data=riesby covtest;
class id;
model hamd=endog wkcen endwkcen wksqr/ s outp=riesby.predict2
    outpm=riesby.popmean2;
random intercept wkcen wksqr/ subject=id type=un g solution;
run;
```

• Fitted trajectories: random intercept, slope and quadratic term:

Notes:

- the trajectories for subjects who are overall high or overall low are "shrunk" toward the middle
- individual points are also shrunk towards the middle
- the fitted trajectories include all points, even when data are missing
- when the quadratic term is added, it captures the non-linear trends better for those subjects who have them
- to get an overall idea of how much non-linearity the data exhibit across subjects, plot the trajectories for all subjects (with quadratic random effects):

```
ggplot(data = data3, aes(x = WEEK, y = PRED, group = ID))+ geom_line()
```


- a few subjects have much more pronounced non-linearities in their trajectories
- significance of the quadratic random effect may be only due to these few subjects, a possibility worth investigating