

## DISPOSITIVOS SEMICONDUCTORES Evaluación Final 7 de febrero de 2023



1) Tres materiales semiconductores tienen masas efectivas similares, pero distinta energía de gap. En la tabla, se resumen algunos de sus parámetros físicos a temperatura ambiente. Cada uno de los materiale es dopado con impurezas aceptoras con densidad volumétrica  $N=3\times 10^{10}\,\mathrm{cm^{-3}}$ . Calcular la conductividad del material semiconductor con mayor energía de gap.

|                                                                                                 | SC 1                            | SC 2                              | SC 3                              |
|-------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|-----------------------------------|
| $n_i (1/\text{cm}^3)$<br>$\mu_n (\text{cm}^2/(\text{Vs}))$<br>$\mu_p (\text{cm}^2/(\text{Vs}))$ | $2.1 \times 10^{8}$ $850$ $320$ | $1.2 \times 10^{10}$ $1300$ $390$ | $3.1 \times 10^{12}$ $2700$ $600$ |

 Calcular la tensión pico de la señal de salida del amplificador (v<sub>out</sub>).

amplificator ( $v_{out}$ ): **Datos**:  $V_{DD} = 3.3 \,\mathrm{V}$ ;  $R_1 = 30 \,\mathrm{k}\Omega$ ;  $R_2 = 60 \,\mathrm{k}\Omega$ ;  $R_3 = 4 \,\mathrm{k}\Omega$ ;  $v_s = 150 \,\mathrm{mV}$ ;  $R_s = 10 \,\mathrm{k}\Omega$ ;  $V_T = -0.7 \,\mathrm{V}$ ;  $\mu C'_{ox} = 120 \,\mathrm{\mu A/V^2}$ ; W/L = 50;  $\lambda = 0$ .



3) Un transistor TBJ PNP está polarizado en MAD a temperatura ambiente.

Se conocen las pendientes de las concentraciones de minoritarios en el emisor, base y colector, siendo su valor absoluto  $8,775 \times 10^{13} \, \mathrm{cm}^{-4}, 3,515 \times 10^{16} \, \mathrm{cm}^{-4}$  y  $5,05 \times 10^{8} \, \mathrm{cm}^{-4}$ , respectivamente.

|          | $\mu_n \; (\text{cm}^2/(\text{Vs}))$ | $\mu_p \; (\text{cm}^2/(\text{Vs}))$ |
|----------|--------------------------------------|--------------------------------------|
| Emisor   | 900                                  | 300                                  |
| Base     | 1400                                 | 450                                  |
| Colector | 1450                                 | 480                                  |

También se conocen las movilidades en cada una de las regiones (ver tabla).

Determinar el valor de la ganancia de corriente  $(\beta)$ .

- 4) Se diseña un amplificador emisor común sin realimentación y sin carga, implementado con un transistor NPN y polarizado con una única R<sub>B</sub> y una única R<sub>C</sub>. A la entrada, la fuente de señal presenta una tensión v<sub>s</sub> pico y una resistencia serie R<sub>s</sub> no nula. Al implementar el amplificador, el transistor utilizado tiene un β considerablemente mayor que lo estimado en la etapa de diseño. ¿Qué consecuencias tendrá esto sobre el desempeño del amplificador? (Considerar despreciable el efecto Early).
  - A) La A<sub>vo</sub> disminuirá considerablemente.
  - B) La  $R_{OUT}$  disminuirá considerablemente.
  - C) La  ${\cal R}_{IN}$  disminuirá considerablemente.
  - D) El amplificador podría distorsionar por alinealidad.
  - (E) El amplificador podría distorsionar por saturación.
  - El amplificador podría distorsionar por corte.
- 5) En un proceso CMOS estándar cuya tensión de alimentación nominal es  $V_{DD}=1.8\,\mathrm{V}$ , las tensiones umbrales para cada tipo de transistor son  $V_{Tn}=0.55\,\mathrm{V}$  y  $V_{Tp}=-0.6\,\mathrm{V}$  y las movilidades de los portadores son tales que  $\mu_n=2\times\mu_p$ . En este proceso se fabricó un inversor CMOS de forma tal que  $V_M=1.1\,\mathrm{V}$ . En qué régimen están polarizados los transistores que forman el inversor cuando  $V_{in}=V_M$ ? (NMOS; PMOS)
  - A) (Saturación; Corte).
  - B) (Triodo; Saturación).
  - C) (Saturación; Triodo).
  - D) (Triodo; Corte).
  - (E) (Saturación; Saturación).
  - F) (Triodo; Triodo).