PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-308976

(43)Date of publication of application: 30.10.1992

(51)Int.CI.

G06F 15/64 G01B 11/24 H04N 7/18 // G01N 21/88

(21)Application number: 03-073045

(71)Applicant: OMRON CORP

(22)Date of filing:

05.04.1991

(72)Inventor: IJIRI TAKASHI

(54) IMAGE PROCESSOR

(57) Abstract:

PURPOSE: To improve accuracy for an image processing and to accelerate the image processing by setting plural display areas in the same screen respectively setting a binarizing level for each area and variably controlling this level.

CONSTITUTION: A window memory 22 to output signals for specifying the respective display areas, an A/D converter 27 to input video signals obtained by image pickup and to covert those video signals into image data as needed, a look-up table 20 to store the binarizing level for each display area of the video signal in advance and to output binary data corresponding to the respective binarizing levels while responding to the image data, a measuring part 23 to detect the displacement of picture density based on the binary data and to variably control the respective binarizing levels based on the detected displacement so as to correct the fluctuation of illuminating light, and a CPU 28 are provided.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-308976

(43)公開日 平成4年(1992)10月30日

(51) Int.Cl. ⁵ G 0 6 F 15/64 G 0 1 B 11/24 H 0 4 N 7/18 # G 0 1 N 21/88	識別記号 400 J K W J	庁内整理番号 8840-5L 9108-2F 7033-5C 2107-2J	ΓÏ	技術表示箇所
(a) 41 M4 & P	仕間 切り 720AE		(71)出顧人	審査請求 未請求 請求項の数1(全 9 頁)
(22) 出顧番号	特顧平3-73045 平成3年(1991)4月5日		(72)発明者	オムロン株式会社 京都府京都市右京区花園土堂町10番地 井尻 隆史
			(74)代理人	京都府京都市右京区花園土堂町10番地 オ ムロン株式会社内 弁理士 深見 久郎 (外2名)

(54) 【発明の名称】 画像処理装置

(57) 【要約】

【目的】 この発明の目的は、同一画面内に複数の表示 領域を設定し、かつ前記領域ごとに個別に2値化レベル を設定し、これを可変調整して、画像処理の精度向上お よび高速化を図ることができる画像処理装置を提供する ことである。

【構成】 前記装置は、前記各表示領域を特定する信号 を出力するウィンドウメモリ22と撮像して得られた映 像信号を入力し応じて画像データに変換するA/Dコン バータ27と、前記映像信号の表示領域ごとの2値化レ ベルを予め記憶し、前記画像データが入力されたことに 応答して前記各2値化レベル対応で2値データを出力す るルックアップテーブル20と、前記2値データに基づ いて画像濃度の変位を検出し、その検出変位に基づいて 各2億化レベルを前記照明光変動を補正するように可変 調整する計測部23およびCPU28を含んで構成され る。

【特許請求の範囲】

【請求項1】 一様光の照明の下に撮像して得られた映 像信号に基づく画像を、同一画面内の複数の異なる表示 領域にそれぞれ表示する画像処理装置であって、前記各 表示領域を特定する信号を個別に出力する表示領域特定 手段と、前記映像信号を入力し、応じて画像データに変 模する信号変換手段と、前記映像信号の前記各表示領域 における2億化レベルを予め配億し、前配信号変換手段 によって変換された前記画像データが入力されたことに 応じて、前記画像データを前記記憶された各2値化レベ 10 ルに基づいて、各2値化レベル対応で個別に2億データ に変換する2値データ変換手段と、前記2値データ変換 手段により変換された前記2値データと、前記表示領域 特定手段により出力される前記特定信号とを入力し、応 じて前記各表示領域内に表示される2値データのみを個 別に導出する表示領域データ導出手段と、前記表示領域 データ導出手段により導出された予め定められた表示領 城に該当する2値データに基づいて、その画像濃度の変 位を検出し、その検出された変位に基づいて、前記照明 検知手段による前記照明光の変動の検知に応答して、前 記照明光変動を補正するように前記2値データ変換手段 に記憶された各2億化レベルを前記画像濃度変位に基づ いて可変設定する2値化レベル設定手段とを備えた、画 像処理装置。

1

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は画像処理装置に関し、 特に、画像の2値化処理機能を備え、照明条件などの変 動に追従させて、前記2値化処理における2値化しきい 30 値を可変調整する画像処理装置に関する。

[0002]

【従来の技術】画像処理の方式の1つに、デジタル方式 がある。前記デジタル方式は、撮像装置などにより撮像 して得られた画像を、一旦デジタル化し、電子計算機を 用いてデータ処理する。前記デジタル化に際しては、所 定のしきい値レベルに基づいて2値化処理が行なわれ る。2値化して得られた2値画像は、黒(1)になる画 秦と白(0)になる囲素から構成される白黒2値画像で ある。前記2値画像が得られると、前記2値画像に対し 40 という方法が一般的である。 て白圃素または黒圃素の面積計測処理などが行なわれ て、計測結果に基づいて撮像された被写体が識別される ように処理される。

【0003】上述したような画像処理においては、照明 などの撮像条件が変動した場合には、計測精度を維持す るために前記2値化しきい値レベルを調整し直す必要が ある。このような場合における、2値化しきい値の自動 調整方法を以下に説明する。

【0004】第7図は、従来および本発明の実施例に適 圧される画像処理装置の概略構成図である。

【0005】図において画像処理装置は、画像処理され るべき物体(以下、ワークと呼ぶ) 4を撮像するカメラ 部1、前記カメラ部1において撮像して得られた画像信 号を入力し、応じて所定のプログラムに従ってデータ処 理するコントローラ部2、前記コントローラ部2におけ るデータ処理結果をモニタ画面10 (図示せず) に画面 表示するビデオモニタ部3を含む。

【0006】第8図は、従来の画像処理装置における画 像処理によるモニタ画面の表示例を示す図である。

【0007】図示されるようにピデオモニタ部3のモニ 夕画面10は、同一画面表示領域内に計測対象物体K1 が映出される計測領域(以下、計測ウィンドウと呼ぶ) KWと、大きさ、形が常に一定である参照用物体RFが 映出される参照領域(以下、参照ウィンドウと呼ぶ)R Wとを含む。

【0008】ユーザは、前記モニタ画面10を監視しな がら以下のような設定操作を行なう。

【0009】① モニタ画面10に表示される画像に対 して、2値化しきい値を設定する。(前記ウィンドウK 光の変動を検知する照明変動検知手段と、前記照明変動 20 WとRWで、常に共通であるように2個化しき21個を設 定する。) ② 次に、モニタ画面10の表示領域内に計 測対象物体K1の他に、参照用物体RF(大きさおよび 形状が一定であるもの)を映だす。

> 【0010】③ 次に、モニタ画面10の表示領域にお ける計測対象物体K1に対してCAD (Compute r Aided Design: CAD) 操作により計 測ウィンドウKWを設定する。

> 【0011】④ さらに、表示領域における参照用物体 RFに対して、同様にして参照ウィンドウRWを設定す

> 【0012】画像処理装置のコントローラ部2は計測時 において、参照ウィンドウRWにおける参照用物体RF による面積計測値を監視して、これを一定に維持するよ うに2値化しきい値を調整するように動作する。

> 【0013】以上のように一画面内の1つの参照ウィン ドウRW内に、定常的に前記面積値が一定であるような 参照用物体RFを映出し、前記物体の面積計測値が常に 一定値を維持するように、モニタ画面10の各ウィンド ウに共通して適用される2値化しきい値を可変設定する

[0014]

【発明が解決しようとする課題】上述したように、1つ の計測対象物体のみを計測する場合は、1つの2値化し きい値のみを設定すればよいので、上述した従来の方法 を用いれば機像時における照明条件の変動などに追従さ せて前記2億化しきい値のレベル調整ができる。しかし ながら、同一モニタ画面内に複数の計測ウィンドウを設 定し、かつ前記各計測ウィンドウごとに異なる2値化し きい値を設定するような場合は、参照ウィンドウが1つ 50 であり2値化しきい値は1つしか可変調整できないとい

う従来の方法では、撮像時の照明条件の変動になどに対 して各計測ウィンドウにおける2値化しきい値のレベル 調整が追従できず、その計測精度は著しく低下するとい う問題があった。

【0015】また、逆に計測精度を維持しようとすれ ば、前述したように同一モニタ画面内に計測ウィンドウ は1つしか設けることができないので、複数の計測対象 物体がある場合は、その計測処理の高速化を図れないと いう問題もあった。

【0016】それゆえに本発明の目的は、同一画面内の 10 複数の異なる表示領域に対して、個別に2値化レベルを 設定し、前記各2値化レベルを攝像時の照明光変動に追 従させて可変調整し、前記各表示領域における画像処理 の精度向上および高速化を図ることができる画像処理装 置を提供することである。

[0017]

【課題を解決するための手段】この発明に係る画像処理 装置は、一様光の照明の下に撮像して得られた映像信号 に基づく画像を同一画面内の複数の異なる表示領域にそ れぞれ表示する画像処理装置である。詳細には、前記各 30 表示領域を特定する信号を個別に出力する表示領域特定 手段と、前記映像信号を入力し、応じて画像データに変 換する信号変換手段と、前記映像信号の前記各表示領域 における2値化レベルを予め記憶し、前記信号変換手段 によって変換された前記画像データが入力されたことに 応じて、前記画像データを前記記憶された2値化レベル に基づいて、各2値化レベル対応で個別に2値データに 変換する2値データ変換手段と、表示領域データ導出手 段と、照明変動検知手段と、さらに2値化レベル設定手 段とを備えて構成される。

【0018】前記表示領域データ導出手段は、前記2値 データ変換手段により変換された前記2値データと前記 表示領域特定手段により出力される前記特定信号とを入 力し、応じて前記各表示領域内に表示される2値データ のみを個別に導出するよう構成される。

【0019】前記照明変動検知手段は、前記表示領域デ 一夕導出手段により導出された予め定められた表示領域 に該当する2値データに基づいて、その画像濃度の変位 を検出し、その検出された変位に基づいて前記照明光の 変動を検知するよう構成される。

【0020】さらに、前記2値化レベル設定手段は、前 記照明変動検知手段によって検知された前記照明光の変 動検知に応答して、前配照明光変動を補正するように前 記2値データ変換手段に記憶された各2値化レベルを膊 記画像濃度変位に基づいて可変設定するように構成され

[0021]

【作用】この発明に係る画像処理装置は上述のように構 成されるので、同一画面内の複数の異なる表示領域にそ れぞれ2値化レベルを設定して、各領域ごとに独自に画 50 照ウィンドウ $\,\mathrm{RW}\,1$ $\geq\,\mathrm{RW}\,2$ には濃度を異にする参照用

像処理を行なうような場合でも、振像時における照明光 の変動に追従させて、前記2値化レベルを自動的に調整 できる。つまり、照明変動検知手段は、表示領域データ 導出手段により導出された、予め定められた表示領域に 該当する2値データに基づいて、その画像濃度の変位を 検出する。さらに、この画像濃度変位に基づいて前記照 明光の変動が検知され、応じて2値化レベル設定手段 は、2億データ変換手段に記憶された各2億化レベル を、前記照明光変動を補正するように前記画像濃度変位 に基づいて可変設定するので、各表示領域における画像 処理の精度を撮像(照明光)条件の変動にかかわらず、 常に一定に維持できる。

[0022]

【実施例】以下、この発明の2つの実施例について図面 を参照して詳細に説明する。

【0023】まず、第1の実施例について説明する。

【0024】第1の実施例における画像処理装置は、複 数の異なる参照用物体の2値画像の面積値の変動を検出 することにより照明条件の変動を検出し、応じて複数の 計測ウィンドウKWi (i=1、2、3、…、m)に対 する各2値化レベルを可変調整するよう動作する。

【0025】図1は、本発明の第1の実施例による画像 処理装置のコントローラ部の概略構成図である。

【0026】図2は、本発明の第1の実施例による画像 処理装置の計測時のモニタ画面の表示例を示す図であ

【0027】図2に示されるように、ピデオモニタ部3 のモニタ画面10には、計測対象物体K1ないしK3が 映出され、これらに対して計測ウィンドKW1、KW2 およびKW3がCAD操作によりそれぞれ設定される。 30

【0028】また、同時にモニタ画面10には参照用物 体RF1およびRF2が映出され、これらに対して参照 ウィンドウRW1およびRW2がCAD操作によりそれ ぞれ設定される。

【0029】したがって、前記ウィンドウKW1ないし KW3は、計測対象物体K1ないしK3の計測に用いら れる。前記ウィンドウRW1およびRW2は参照用物体 (大きさおよび形状などが不変であるもの) RF1およ びRF2をそれぞれ映出すためのウィンドウであり、こ 40 れらは撮像時における照明光変動を検知するために用い られる。

【0030】さらにモニタ画面10に設定された複数の ウィンドウには、各ウィンドウごとにそれぞれ異なる2 値化しきい値が設定される。この2値化しきい値設定の 詳細については後述する。

【0031】なお、同一モニタ画面中に設定される参照 用のウィンドウは1個でもよい。しかし、複数の参照用 ウィンドウを設けることにより、各計測ウィンドウにお ける2値化レベル調整の精度が向上する。この場合、参

5

物体RF1とRF2とを映出し、それぞれ異なる2値化 ンベルを用いて2値化する。

【0032】なお、該画像処理装置が起動された時点で初期設定されるべき2値化レベルを、前記ウィンドウKW1ないしKW3に対しては、それぞれ2値化レベルレK1ないししK3とし、前記ウィンドウRW1およびRW2に対しては、それぞれ2値化レベルLR1およびLR2とする。

【0033】図1において、コントローラ部2はモニタ 画面10に異なるウィンドウを最大8個まで表示できる 10 ように構成される。そして、前段に接続されたカメラ部 1から与えられる映像信号を入力し、応じて照明条件の変動を補正しながら2値化処理された画像を、次段のビデオモニタ部3のモニタ画面10にたとえば図2に示されるように画面表示し、さらに各ウィンドウにおける面 積値を検出するように構成される。

【0034】前記コントローラ部2はルックアップテーブル (LUT) 20、フレームメモリ21、ウィンドウメモリ22、計測部23、A/Dコンバータ(アナログ/デジタル変換器) 27、CPU(中央処理装置) 28 20 および入出力インターフェイス29を含む。

【0035】前配A/Dコンバータ27は所定のサンプリング周期に基づいて前段に接続されたカメラ部1から与えられる映像信号をサンプリングし、8ビット構成のデジタル信号に変換して次段に接続されたルックアップテーブル20に与える。したがって、A/D変換器27の出力するデジタル信号は、前記映像信号の濃淡階調を段階的に示す0~255までの値を有する。

【0036】なお、カメラ部1は計測対象物体K1ない しK3ならびに参照用物体RF1およびRF2を含むワ 30 ーク4を一様光照明の下に撮像する。照明条件における 前記一様光とは、モニタ画面10内の有効表示領域が同 一の照明用光源により照明される照明条件を指す。

【0037】前記入出力インターフェイス29は、前段に接続されたCPU28と、キーボード30およびビデオモニタ部3とを電気的に接続する。したがって、キーボード30を介してキー人力されたデータは入出力インターフェイス29によりデータ変換されてCPU28に与えられる。また、CPU28から出力されたデータは、入出力インターフェイス29を介してビデオモニタ 40部3のモニタ画面10に表示され、逆にモニタ画面10を介して入力されたデータは入出力インターフェイス29を介してCPU28に与えられる。

【0038】前記ルックアップテーブル20は、一種の メモリである。このテーブル20には同一モニタ画面1 0内に設定された各ウィンドウに対して予め個別に2値 化レベルが設定される。この設定された2値化ンベルは 各ウィンドウ対応でそれぞれテーブルとして前記ルック アップテーブル20にストアされる。したがって、前記 各ウィンドウに対して設けられる2値化レベルテーブル 50 に相当し、この補正を2値化ンベルLK1ないしLK3

のそれぞれは、前段に接続されたA/Dコンパータ27から与えられる前記8ビット構成の濃淡画像信号をアドレス信号として入力し、応じてアドレス指定されて、そのアドレス指定されたメモリ領域から読出された2億データ(0または1)がそれぞれ導出される。

6

【0039】また、前記ルックアップテーブル20にストアされる前記2値データは、CPU28によってCPUアドレスパス25ならびにCPUデータパス26を経由して与えられるアドレス信号によってアドレス指定されて、同時に与えられるデータ信号が書込まれることにより予めストアされる。

【0040】ここで、前配ルックアップテーブル20における各ウィンドウごとの2値化レベルのデータ設定方法について説明する。

【0041】図3は、前掲図1に示されたルックアップ テープル20に設定される2値化レベルを説明するため の図である。

【0042】図3において横軸の入力(X)は前記A/Dコンパータ27出力による濃淡画像データを表わす。したがって、前記入力(X)の値は0~255の256階調レベルを示し、縦軸の出力(Y)は、前記入力(X)の256階調のそれぞれに対して設定される2値データ(0または1)が示される。図示されるように、2値化レベルLV=128が設定されていると想定する。前記入力(X)がルックアップテーブル20に読出アドレス信号として与えられることにより前記テーブル20はアドレス指定されて、応じて前記2値化レベルLVを境にして0または1の2値データが前記指定アドレスから読出されて導出される。

80 【0043】ここで、ルックアップテーブル20に設定された各ウィンドウ対応の2値化レベルしK1ないしL K3ならびにLR1およびLR2の設定値の変更方法について説明する。

【0044】 摄像条件における照明条件の変動時には、 これに追従させて各ウィンドウに対する2値化レベルが 調節される。前記照明状態の変動により画面全体の濃度 が変動するので、コントロール部2はモニタ画面10の 参照ウィンドウRW1およびRW2における面積計測値 が一定値を維持するように、2値化レベルLR1および LR2の調節を行なう。つまり、CPU28はCPUア ドレスパス 2 5 および C P U データパス 2 6 を介してル ックアップテーブル20にストアされている2値化レベ ルLR1およびLR2の値調整を行なう。CPU21は 調整後の前記レベルLR1さよびLR2を、それぞれL R11およびLR22として一時その内部メモリにスト アする。その後、前記ウィンドウRW1およびRW2の 2 値化レベルの変位に基づいて、他の計測ウィンドウK W1ないしKW3のそれぞれの2値化レベルを補正す る。すなわち、前記補正量は、撮像時の照明光の変動量

の各々に加えることにより、照明光条件が変動しても、 常に精度の高い画像処理を行なうことが可能となる。

【0045】前記ウィンドウRW1およびRW2の2値 化レベルの変位に基づいて、他の計測ウィンドウKW1 *

> $LK11 = a \cdot LK1$ $LK22 = a \cdot LK2$ $LK33 = a \cdot LK3$

(ただし、aは (LR11/LR1) と (LR22/L R 2) の平均値である) と算出される。

【0046】ここで、2値化レベルLK1ないししK2 10 を同じ比率で書換えて、設定変更する。 の、上式①~③を用いた補正方法の根拠について説明す

【0047】図4は、一般のピデオカメラにおけるァ補 正動作による入出力関係をグラフで示す図である。

【0048】一般にピデオカメラにおいては、図4に示 されるように撮像時の照明光に含まれる輝度信号のレベ ル(図4の入力(X1)に相当)は、いわゆるヶ補正に よる変換作用を受けた後に出力される。これは図4の出 カ (Y1) に相当する。

の関係は、 $Y1=b \cdot X1$ 。 (b, γ :定数、一般に $\gamma = 1$. 0あるいは1/2. 2)と表わされる。

【0050】該画像処理装置においては、一様光照明の 下に撮像して得られたモニタ画面10内の各表示領域の 入力輝度は、前記照明の変動に伴なって同一比率で変動 すると仮定でき、入力画像の輝度がA倍に変動したとす ると、画面内の各計測領域における画像濃度は、一律に A ~ 倍となる。

【0051】したがって、モニタ画面10の参照ウィン ドウRW1またはRW2における2値化レベルLR1ま 30 たはLR2がc倍に変動したことが検出されると、他の 計測ウィンドウKW1ないしKW3の各2値化レベルL K1ないしこK3のそれぞれも、一律にc倍となってい ることが予想される。それゆえに、前記式①~③に基づ けば、照明変動に追従させながら2値化レベルLK1な いしLK3のそれぞれを容易に補正することができる。

【0052】以上は、CPU28により2値化ンペルの 自動調整を行なうようにしているが、ユーザが各ウィン ドウに対応した2値化レベルを手動によりルックアップ テーブル20に設定することもできる。これは、以下の 40 ように行なわれる。

【0053】ユーザは、モニタ画面10上に表示される 現在設定されている2値化レベルを通した2値画像を見 ながら、キーボード3の「上矢印」、「下矢印」などの カーソルキーを操作してルックアップテーブル20に設 定されている2値化しきい値を変更する。このとき、前 記カーソルキー操作によるキー入力データは、入出力イ ンターフェイス29を介してCPU28に与えられるの で、応じてCPU28はアドレスパス25およびデータ バス26を介してルックアップテーブル20をアクセス 50 る濃淡画像データに変換し、次段のルックアップテープ

≠ないしKW3の補正後の2値化レベルLK1ないしLK 3をそれぞれLK11, LK22およびLK33とすれ

8

...① ...**②** ···(3)

し、そこにストアされている各ウィンドウ対志の2億化 レベルLK1ないしLK3ならびにLR1およびLR2

【0054】以上のように、ルックアップテーブル20 には各ウィンドウごとに異なるように前記しK1ないし LK3ならびにLR1およびLR2が初期設定されると ともに、これらは、照明変動に追従して更新される。

【0055】図1においてフレームメモリ21は、ルッ クアップテーブル20から出力される1フレーム分のデ 一夕を記憶するデジタルメモリである。ウィンドウメモ り22は各計測対象物体K1ないしK3ならびに各参照 用物体RF1およびRF2の表示領域を、モニタ画面1 【0049】図4において入力(X1)と出力(Y1) 200の有効表示領域内において設定するために、各ウィン ドウ対応でウィンドウ信号WSを記憶する。前記ウィン ドウ信号WSはCPU28によりアドレスデータパス2 5ならびに26を介してドットイメージにして前記メモ リ22に書込まれ、また読出されたウィンドウ信号WS は計測部23に与えられる。

> 【0056】前記計測部23は、8個の計測モジュール よりなる計測回路241ないし248を備えるものであ る。前記各計測回路は、ビデオモニタ部3のモニタ画面 10に設けられるウィンドウごとに準備され、前段に接 続されたルックアップテーブル20から導出された8種 類の2値画像信号を個別に入力して同時にデータ処理す ることが可能である。

【0057】図5は、本発明の一実施例による画像処理 装置における画像処理時の初期設定動作と稼働状態時の 動作を示す処理フロー図である。

【0058】この処理フローは、プログラムとして予め CPU28の内部メモリにストアされ、CPU28自身 によって実行制御される。

【0059】次に、本発明の一実施例による画像処理装 置における2値化レベル初期設定の動作について、図1 ないし図4を参照しながら図5の処理フローに従って説 明する。

【0060】図1のカメラ部1により一様光照明の下に 計測対象物体K1ないしK3および参照用物体RF1お よびRF2を含むワーク4が撮像されたと想定すると、 応じてアナログの映像信号が次段のA/Dコンパータ2 7に与えられる。前記A/Dコンパータ27は、与えら れる前記映像信号を所定のサンプリング周期に基づいて サンプリングし、8ビット構成のデジタル信号で示され ル20に与える。ルックアップテーブル20は、前記濃 淡画像データが与えられたことに応答して、前記濃淡画 像データによりアドレス指定されて、指定アドンスから は、前掲図3で述べたようにして図2に示される各ウィ ンドウごとに0または1の2値化信号が読出されて導出 される。

【0061】前記ルックアップテーブル20から該出された2値画像信号は、この場合計測部23の計測回路241ないし245のそれぞれを通過して計測処理され、 入出力インターフェイス29を介してビデオモニタ部3 10のモニタ画面10に画像として表示される。

【0062】ユーザは、上述のようにして表示されたモニタ画面10の画像を見て、図2に示されるようにCAD操作などにより、計測対象物体K1ないしK3のそれぞれに対して計測ウィンドウKW1ないしKW3をそれぞれ設定し、同様にして参照用物体RF1およびRF2のそれぞれについて、参照ウィンドウRW1およびRW2をそれぞれ設定する。これに応答して、図5に示される処理フローが実行開始される。この処理フローは、ステップST1(図中ST1と略す)ないしステップST204を含む初期設定の処理と、ステップST5ないしステップST8を含む稼働状態時の処理とを含む。

【0063】CPU28は、図5のステップST1およびステップST2の処理において、ビデオモニタ部3のモニタ画面10に描かれた前記各ウィンドウを入出力インターフェイス29を介して読取り、読取られたデータをCPUアドレスパス25ならびにCPUデータパス26を介してウィンドウメモリ22にビットパターンにして個別にストアする。

【0064】その後、次のステップST3の処理におい 30 て、CPU28はルックアップテーブル20をアクセスして、前記設定されたウィンドウごとに2値化レベルを設定する。前記2値化レベルは、前述したようにユーザがキーボード30を介してキー入力することにより設定されるか、またはCPU28がその内部メモリに予めストアしていた初期値をルックアップテーブル20にロードするようにして設定してもよい。

【0065】その後、ステップST1の処理において、CPU28は参照ウィンドウRW1およびRW2における画像の面積値を計測する。そして、前記面積値をそれ 40 ぞれCPU28の内部メモリに予めストアする。これが、参照ウィンドウRW1およびRW2の面積値の初期値であり、後述する照明変動条件成立の有無を確認するための基準値となる。

【0066】以上のようにして、ウィンドウメモリ22 およびルックアップテーブル20に所定のデータが初期 設定され、さらに参照ウィンドウRW1およびRW2の 面積値が計測されて初期設定処理が終了すると、次に、ステップST5以降に示される稼働状態時の処理に移行する。

【0067】稼働状態の処理において、CPU28はまずステップST5の処理を実行する。ステップST5の処理を実行する。ステップST5の処理において、参照ウィンドウRW1およびRW2の各面積値を計測する。そして、この各計測面積値と前記内部メモリに予めストアされた各面積値の初期値とを比較してその変位を算出する。この算出変位値により照明光源の劣化などに伴なう照明条件変動が検出される。CPU28は、前配面積値の変位を、一時その内部メモリにストアする。その後、次のステップST6の処理におい

10

て、前記面積値の変位に基づいて照明条件変動の有無を 判別する。たとえば、前記判別は前記面積値の変位量が 前記面積値の初期値に対して所定の比率(たこえば、2 0%)以上に達したとき、照明条件が変動したと判断す る。

【0068】CPU28は、前記ステップST6の処理における判別成立に応答して、後述するステップST7以降の処理に移行する。しかし、前記ステップST6における判別不成立の場合は、再度ステップST5に戻り、ステップST5およびステップST6によるループの理を繰返して、参照ウィンドウRW1およびRW2の面積値の変位を計測しながら、照明条件の変動の有無を検出するよう動作する。

【0069】前記ステップST6における照明条件変動 有りの判別に応答して実行されるステップST7ないし ステップST9の処理は、照明条件の変動の程度に応答 して、各ウィンドウの2値化レベルを補正するような処理である。

【0070】まず、ステップST7の処理において、CPU28は参照ウィンドウRW1およびRW2の面積値のが、予めストアされた面積値の初期値に最も近くなるように、面積計測しながら、前述したようにルックアップテーブル20の該当する2値化レベルLR1およびLR2の可変調整を行なう。この2値化レベル調整幅は、前記ステップST5で求められた変位量に基づいて可変設定すれば、連やかに計測面積値が前記初期値付近に達しこれを維持することができる。

【0071】その後、ステップST8の処理において、計測ウィンドウKW1ないしKW3のそれぞれに対する2値化レベルLK1ないしLK3のそれぞれを、前記式00~③に従って補正する。補正して得られた2値化レベルLK11ないしLK33のそれぞれは、ルックアップテーブル20に2値化レベルLK1ないししK3のそれぞれとして再設定される。その後、再度ステップST5の処理に戻り以下同様にして処理が繰返し実行される。

【0072】以上により、2 値化レベルLR1、LR2 およびLK1ないしLK3が照明の変動に追従するように補正されながらルックアップテーブル20にストアされる。その後、ステップST15に戻り以降同様に処理を繰返す。

50 【0073】上述した第1の実施例による照明条件変動

の検知方法は、参照ウィンドウRW1およびRW2における画像の面積値の変動に基づいて行なうものであった。これを、次の第2の実施例に示されるように、参照ウィンドウRW1およびRW2内の画素の画像濃度の平均値の変動に基づいて行なうこともできる。

【0074】次に、第2の実施例について説明する。

【0075】図6は、本発明の第2の実施例による画像 処理装置の計例時のモニタ画面の表示例を示す図である。

【0076】なお、第2の実施例による画像処理装置の 10 機能構成およびその動作は前述した第1の実施例と同様 であるために、詳細な説明は省略する。

【0077】第2の実施例における画像処理装置は、参 照ウィンドウRW1およびRW2に物体を映出さずに、 前記ウィンドウRW1およびRW2に色の変化しない部 分(たとえば、画面の背景部分)を映出すように設定する。

【0078】コントロール部2は、予め前記ウィンドウ RW1およびRW2内の画素の画像濃度の平均値を算出*

 $L K 1 1 = d \cdot L K 1$

 $LK22 = d \cdot LK2$

 $LK33=d \cdot LK3$

として、計測ウィンドウKW1ないしKW3のそれぞれの2値化レベルLK1ないしLK3をルックアップテーブル20において更新すればよい。

【0080】以上のように、実施例1においては参照ウィンドウRW1およびRW2の画像面積値を用いて、さらに実施例2においては画像濃度値を用いて2値化レベルを照明変動に追従させて可変設定する。

【0081】また、上述のように複数の参照ウィンドウ 30 を設けて、前記画像面積値ならびに画像濃度値の平均値をとることにより、ノイズ成分が除去されて補正精度を高めることができるので、参照ウィンドウは本実施例に示されるように2つ以上設定することが望ましい。

【0082】
【発明の効果】この発明に係る画像処理装置によれば、
照明変動検知手段は、表示領域データ導出手段により導
出された予め定められた表示領域に該当する2値データ
に基づいて、その画像濃度の変位を検出し、この画像濃度変位に基づいて、前記照明光の変動が検知され、応じ
で2値化レベル設定手段は、前記照明光の変動を補正す
るように前記画像濃度変位に基づいて前記各2値化レベルを可変調整するように動作するので、同一画面内に複数の異なる表示領域を設定し、そのそれぞれに対して独自に2値化レベルを設定することが可能となり、さらに援像時の照明条件などの変動に追従させて、前記各2値化レベルをリアルタイムにかつ個別に可変調整することが可能となるという効果がある。

【0083】また、前配効果は画像処理の精度向上と高速化を促すという効果ももたらす。

*し、これを初期値GD1およびGD2としてそれぞれ内部メモリに個別にストアする。前記画像濃度の平均値は、入力画像を一旦フレームメモリ21に取込み、参照ウィンドウRW1およびRW2の各国素の画像濃度の総和を算出し、これを前記ウィンドウRW1およびRW2

12

の総画素数で割ることにより求められる。

【0079】CPU28は稼働状態に入ると、各参照ウィンドウRW1およびRW2の画像濃度の平均値を上述したように算出し、得られた計測濃度平均値をそれぞれGD11およびGD22とする。このとき、前配初期値DG1およびGD2と前配平均値GD11およびGD22とにより画像濃度の変位が算出されて、この変位量に基づいて照明条件変動の有無が判別される。このとき、照明条件の変動有りと判別されると、計測された濃度平均値が前記初期値となるように参照ウィンドウRW1およびRW2の2値化レベルが可変調整される。その後、(dは(GD11/GD1)と(GD22/GD2)との平均値)

---40

---⑤

...6

【図面の簡単な説明】

【図1】本発明の第1の実施例による画像処理装置のコントローラ部の概略構成図である。

【図2】本発明の第1の実施例による画像処理装置の計 制時のモニタ画面の表示例を示す図である。

【図3】図1に示されたルックアップテーブルに設定される2値化レベルを説明するための図である。

「図4】一般のビデオカメラにおけるγ補正動作による 入出力関係をグラフで示す図である。

【図 5】本発明の一実施例による画像処理装置における 画像処理時の初期設定動作と稼働状態時の動作を示す処 理フロー図である。

【図6】本発明の第2の実施例による画像処理装置の計 測時のモニタ画面の表示例を示す図である。

【図7】従来および本発明の実施例に適用される画像処理装置の概略構成図である。

【図8】従来の画像処理装置における画像処理によるモ ② 二夕画面の表示例を示す図である。

【符号の説明】

- 1 カメラ部
- 2 コントローラ部
- 3 ビデオモニタ部
- 4 ワーク
- 20 ルックアップテーブル
- 22 ウィンドメモリ
- 23 計測部
- 27 A/D (アナログ/デジタル) コンバータ
- 50 K1、K2およびK3 計測対象物体

13

RF1およびRF2 参照用物体 KW1、KW2およびKW3 計測ウィンドウ RW1およびRW2 参照ウィンドウ LV 2値化レベル

なお、各図中、同一符号は同一または相当部分を示す。

14

【図1】

入力(X1)

【図5】

[図8]

(例7)