Lab Assignment-2

MTH 308 AND & MTH 308B: NUMERICAL ANALYSIS AND SCIENTIFIC COMPUTING-I

January-April 2024, IIT Kanpur

1. This example illustrates the effects of truncation error and rounding error. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. The derivative of f at $x \in \mathbb{R}$ is given by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
, if the limit exists.

For given $h \in \mathbb{R}$, $h \neq 0$, an approximation of f'(x) is given by

$$f_h'(x) = \frac{f(x+h) - f(x)}{h}.$$

with a given h. The absolute error for this approximation is

$$AE_{x,f}(h) = |f'(x) - f'_h(x)|.$$

For the function $f(x) = \sin x$, $x \in \mathbb{R}$, the derivative of f at x = 1 is $f'(1) = \cos(1)$. For $h \in \mathbb{R}$, $h \neq 0$, we can calculate the approximation $f'_h(1)$ and the absolute error as $|f'(1) - f'_h(1)|$. Write a program that prints the output in a tabular format as shown below where $h = 10^{-k}$ (k = 1, 2, ..., 18). Output of your program should appear in places marked (- - -). Print the real variables in exponetial format using 6 decimal places. For evaluation of $\cos(1)$, $\sin(1 + h) - \sin(1)$ use inbuilt trigonometric math fuctions in C/Matlab.

k	h	f'_h	f'(1)	Abs. Error
1				
18				

If possible plot the graph of the absolute error h-vs- $AE_{1,\sin}(h)$ (in suitable scale).

End.