III. Bipolar Junction Transistor (BJT)

<u>Symbol</u>	<u>Description</u>	<u>Unit</u>
N_{DE}	Donor concentration in the emitter of an npn BJT	cm ⁻³
N_{AB}	Acceptor concentration in the base of an npn BJT	cm ⁻³
N_{DC}	Donor concentration in the collector of an npn BJT	cm ⁻³
N_{AE}	Acceptor concentration in the emitter of a pnp BJT	cm ⁻³
N_{DB}	Donor concentration in the base of a pnp BJT	cm ⁻³
N_{AC}	Acceptor concentration in the collector of a pnp BJT	cm ⁻³
v_{BE}	Voltage applied across the base and emitter of a BJT	V
v_{BC}	Voltage applied across the base and collector of a BJT	V
i_E	Emitter current of a BJT	A
i_B	Base current of a BJT	A
i_C	Collector current of a BJT	A
i_{En}	Current component due to the injection of electrons from the emitter	A
	into the base of an npn BJT	
i_{BI}	Current component due to the injection of holes from the base into the	A
	emitter of an npn BJT	
i_{B2}	Current component due to the recombination of electrons and holes in	A
	the base of an npn BJT.	
w_B	Width of the neutral region of the base of a BJT	μm
w_E	Width of the neutral region of the emitter of a BJT	μm
L_n	Electron diffusion length	μm
L_p	Hole diffusion length	μm
D_p	Hole diffusion coefficient or diffusivity	cm^2/s
D_n	Electron diffusion coefficient or diffusivity	cm^2/s
I_S	Collector saturation current of a BJT*	A
β	Common emitter current gain of a BJT	no unit
α	Common base current gain of a BJT	no unit
V_A	Early voltage of a BJT*	V
g_m	Transconductance in the small signal model of a BJT	A/V
r_{π}	Input resistance in the small signal model of a BJT	Ω
r_o	Output resistance in the small signal model of a BJT	Ω

Notations for total (instantaneous) current (or voltages), d.c. currents (or voltages) and small signal (a.c.) currents (or voltages):

e.g.
$$i_C = I_C + i_c$$
 total current d.c. component of i_C small signal (a.c.) component of i_C

^{*} V_A is also used to denote the Early voltage of a MOSFET. * I_S is also used to denote the saturation current in a p-n junction