Unidad 4: Los Espacios Vectoriales \mathbb{R}^n y \mathbb{C}^n Álgebra y Geometría Analítica II (R-121) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

1. Los Espacios \mathbb{F}^n

Sea $n \in \mathbb{N}$, consideramos el conjunto de n-uplas ordenadas de escalares en el cuerpo \mathbb{F} :

$$\mathbb{F}^n = \{ \bar{x} = (x_1, ..., x_n) : x_1, ..., x_n \in \mathbb{F} \}$$

- Producto por escalar: $\mathbb{F} \times \mathbb{F}^n \to \mathbb{F}^n$, tal que si $\alpha \in \mathbb{F}$ y $\bar{x} = (x_1, ..., x_n) \in \mathbb{F}^n$, entonces $\alpha \cdot \bar{x} = (\alpha x_1, ..., \alpha x_n) \in \mathbb{F}^n$.
- Suma: $\mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n$, tal que si $\bar{x} = (x_1, ..., x_n) \in \mathbb{F}^n$ e $\bar{y} = (y_1, ..., y_n) \in \mathbb{F}^n$, entonces $\bar{x} + \bar{y} = (x_1 + y_1, ..., x_n + y_n) \in \mathbb{F}^n$.

Cuando $\mathbb{F} = \mathbb{R}$ es el espacio vectorial euclídeo n-dimensional y cuando $\mathbb{F} = \mathbb{C}$ es el espacio vectorial complejo n-dimensional. Los elementos $\bar{x} \in \mathbb{F}$ son llamados vectores. Las dos operaciones recien definidas se conocen como usuales.

Dos vectores $\bar{x} = (x_1, ..., x_n)$ y $\bar{y} = (y_1, ..., y_n)$ se dicen **iguales** si $x_1 = y_1, ..., x_n = y_n$.

2. Los Espacios $\mathbb{F}_n[x]$

 $n \in \mathbb{N}$, consideramos el conjunto de polinomios en una variable x con coeficientes en \mathbb{F} de grado n:

$$\mathbb{F}_n[x] = \{ p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n : a_0, \dots, a_n \in \mathbb{F} \}$$

- Producto por escalar: $\mathbb{F} \times \mathbb{F}_n[x] \to \mathbb{F}_n[x]$, tal que si $\alpha \in \mathbb{F}$ y $p(x) = a_0 + \ldots + a_n x^n \in \mathbb{F}_n[x]$, entonces $\alpha \cdot p(x) = \alpha a_0 + \ldots + \alpha a_n x^n$.
- Suma: $\mathbb{F}_n[x] \times \mathbb{F}_n[x] \to \mathbb{F}_n[x]$, tal que $p(x) = a_0 + \ldots + a_n x^n \in \mathbb{F}_n[x]$ y $q(x) = b_0 + \ldots + b_n x^n \in \mathbb{F}_n[x]$, entonces $p(x) + q(x) = (a_0 + b_0) + \ldots + (a_n + b_n) x^n \in \mathbb{F}_n[x]$.

3. Los Espacios $\mathbb{F}^{m \times n}$

Sean $m, n \in \mathbb{N}$, consideramos el conjunto de matrices de tamaño $m \times n$ en \mathbb{F} :

- Producto por escalar: $\mathbb{F} \times \mathbb{F}^{m \times n} \to \mathbb{F}^{m \times n} / \alpha \in \mathbb{F}, A \in \mathbb{F}^{m \times n}, C = \alpha \cdot A$ está dada por $c_{ij} = \alpha \cdot a_{ij}$
- Suma: $\mathbb{F}^{m \times n} \times \mathbb{F}^{m \times n} \to \mathbb{F}^{m \times n}/A$, $B \in \mathbb{F}^{m \times n}$, C = A + B está dada por $c_{ij} = a_{ij} + b_{ij}$.

4. Espacios Vectoriales

Sea \mathbb{F} un cuerpo de escalares, un conjunto V dotado de dos operaciones, suma (denotada por +, que a un par de elementos v y w de V les asigna un elemento que denotamos v + w) y producto por escalar (denotada por ·, que a un escalar $\alpha \in \mathbb{F}$ y a un elemento $v \in V$ le asigna un elemento que denotamos $v \cdot v$), diremos que la terna $v \cdot v$ 0, diremos que la terna $v \cdot v$ 1, es un $v \cdot v$ 2.

- 1. Clausura de la Suma de Vectores: si $v, w \in V$ entonces $v + w \in V$.
- 2. Asociatividad de la Suma de Vectores: (v+w) + u = v + (w+u).
- 3. Existencia de **Elemento Neutro** para la Suma: $\exists e \in V$ tal que v + e = e + v = v.
- 4. Existencia de **Elemento Opuesto** para la Suma: dado $v \in V, \exists w \in V$ tal que v + w = w + v = e.
- 5. Conmutatividad de la suma de vectores: Si $v, w \in V$, entonces v + w = w + v.
- 6. Clausura del Producto por Escalar: si $\alpha \in \mathbb{F}$ y $v \in V$ entonces $\alpha \cdot v \in V$.
- 7. **Asociatividad** del Producto por Escalar: si $\alpha, \beta \in \mathbb{F}$ y $v \in V$, entonces $(\alpha\beta) \cdot v = \alpha \cdot (\beta \cdot v)$.
- 8. **Distributiva** del Producto respecto a la Suma de Escalares: $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$.
- 9. **Distributiva** del Producto respecto a la Suma de Vectores: $\alpha \cdot (v + w) = \alpha \cdot v + \alpha \cdot w$.
- 10. **Unitariedad** del Producto por Escalar: si $v \in V$, entonces $1 \cdot v = v$.

Un conjunto dotado de una operación asociativa se dice que es un semigrupo.

Todo semigrupo que tiene elemento neutro y opuestos se denomina grupo.

Si es conmutativo, se dice semigrupo conmutativo o grupo abeliano.

Independientemente de la naturaleza de los elementos de un espacio vectorial V, éstos se llaman vectores, así sean polinomios $(V = \mathbb{F}_n[x])$, matrices $(V = \mathbb{F}^{m \times n})$ o vectores $(V = \mathbb{F}^n)$.

5. Bases y Dimensiones en \mathbb{F}^n

Dados los vectores $\overline{x_1}, \overline{x_2}, \dots, \overline{x_s}$ de \mathbb{F}^n y los escalares $\alpha_1, \alpha_2, \dots, \alpha_s$ de \mathbb{F} , decimos que el vector $\alpha_1 \cdot \overline{x_1} + \alpha_2 \cdot \overline{x_2} + \dots + \alpha_s \cdot \overline{x_s}$ es una **combinación lineal** de $\overline{x_1}, \overline{x_2}, \dots, \overline{x_s}$.

Considerando los vectores $\overline{e_1} = (1, 0, ..., 0), \overline{e_2} = (0, 1, ..., 0), ..., \overline{e_n} = (0, 0, ..., 1) \in \mathbb{F}^n$, luego un vector $\overline{x} = (x_1, x_2, ..., x_n)$ se escribe de forma única como la combinación lineal $\overline{x} = x_1 \overline{e_1} + x_2 \overline{e_2} + ... + x_n \overline{e_n}$. Y el conjunto $\{\overline{e_1}, \overline{e_2}, ..., \overline{e_n}\}$ se denomina base canónica de \mathbb{F}^n .

5.1. Independencia Lineal en \mathbb{F}^n

Sean los vectores $\overline{x_1}, ..., \overline{x_r} \in \mathbb{F}^n$, decimos que esos vectores son **linealmente independientes (LI)** si la ecuación vectorial $\alpha_1 \cdot \overline{x_1} + ... + \alpha_r \cdot \overline{x_r} = \overline{0}$ tiene solo la solución trivial ($\alpha_1 = \alpha_2 = ... = \alpha_r = 0$). En caso contrario, decimos que es **linealmente dependiente (LD)**. Alternativamente, un conjunto de vectores de un espacio vectorial V es linealmente dependiente si y solo si al menos uno de los vectores puede expresarse como combinación lineal de los demás.

- Dos vectores en $\mathbb{R}^2/\mathbb{R}^3$ no nulos ni paralelos son linealmente independientes LI.
- \blacksquare Tres vectores en \mathbb{R}^3 no nulos ni paralelos ni coplanares son linealmente independientes LI.
- La independencia lineal se refiere a que no existe una ligadura del tipo lineal entre ambos vectores.
- n+1 vectores en \mathbb{F}^n son linealmente dependientes LD.
- Un vector no nulo en \mathbb{R}^3 es linealmente independiente LI.
- El vector nulo en \mathbb{R}^n es linealmente dependiente LD.
- \blacksquare Todo conjunto de vectores de \mathbb{F}^n que contenga al vector nulo es linealmente dependiente LD.

5.2. Generación

Un conjunto de vectores $S = \{\overline{x_1}, ..., \overline{x_s}\}$ de \mathbb{F}^n es un **conjunto generador** de \mathbb{F}^n si todo vector $\overline{x} \in \mathbb{F}^n$ se puede escribir como combinación lineal de los vectores de S. Es decir, si existen escalares $\alpha_1, ..., \alpha_s$ tales que $\overline{x} = \alpha_1 \overline{x_1} + ... + \alpha_s \overline{x_s}$.

5.3. Bases y Dimensión

Un conjunto de vectores de \mathbb{F}^n se dice que es una **base** del mismo si es linealmente independiente y es un conjunto generador.

Sea un conjunto $\beta = \{\overline{x_1}, ..., \overline{x_s}\}$ de vectores de \mathbb{F}^n que es una base. Como los vectores deben ser linealmente independientes, y el maximo de vectores LI que hay en \mathbb{F}^n es n, entonces $s \leq n$. Como además los vectores deben generar \mathbb{F}^n , el minimo de vectores necesarios es n, entonces $s \geq n$. Finalmente, s = n, y toda base de \mathbb{F}^n debe tener exactamente n vectores.

La dimensión del espacio vectorial \mathbb{F}^n es el cardinal de sus bases, es decir, n.

Sistema homogéneo compatible
$$\left\{ \begin{array}{ll} {\rm Determinado} & \longrightarrow {\rm LI} & \longrightarrow \det \neq 0 \\ {\rm Indeterminado} & \longrightarrow {\rm LD} & \longrightarrow \det = 0 \end{array} \right.$$

Sea $B = \{\overline{x_1}, \overline{x_2}, ..., \overline{x_s}\}$ un subconjunto de vectores de \mathbb{F}^n ,

• Si $s > n \Rightarrow B$ es LD.

Dem/ Sea s = n + 1. Sean $\alpha_1, ..., \alpha_{n+1} \in \mathbb{F}/\alpha_1\overline{x_1} + ... + \alpha_{n+1}\overline{x_{n+1}} = \overline{0}$ tiene solución no trivial? Sea $\{e_1, ..., e_n\}$ base canónica de \mathbb{F}^n , sabemos que $\overline{x_i} = \sum_{j=1}^n x_j^i \cdot e_j$, $\forall i \in [1, n+1]$

$$\overline{0} = \sum_{i=1}^{n+1} \alpha_i \overline{x_i} = \sum_{i=1}^{n+1} \alpha_i \left[\sum_{j=1}^n x_j^i \cdot e_j \right] = \sum_{j=1}^n \left[\sum_{i=1}^{n+1} \alpha_i x_j^i \right] \cdot e_j$$

Y como $\{e_1, ..., e_n\}$ es LI, $\sum_{i=1}^{n+1} \alpha_i x_j^i = 0, \ \forall j \in [1, n]$.

$$\begin{cases} \sum_{i=1}^{n+1} \alpha_i x_1^i = 0 \\ \vdots \\ \sum_{i=1}^{n+1} \alpha_i x_n^i = 0 \end{cases} \Rightarrow \begin{cases} \alpha_1 x_1^1 + \dots + \alpha_{n+1} x_1^{n+1} = 0 \\ \vdots \\ \alpha_1 x_n^1 + \dots + \alpha_{n+1} x_n^{n+1} = 0 \end{cases}$$

Sistema compatible con n+1 incognitas y n ecuaciones \Rightarrow infinitas soluciones $\therefore B$ es LD.

• Si $s < n \Rightarrow B$ no puede generar \mathbb{F}^n .

Dem/ Es decir, hay menos incógnitas que ecuaciones. Luego, dado 0x = a, entonces estamos con un sistema incompatible, puesto que si a es distinto de cero, no existe solución en los reales. Ergo, no puede generar todo \mathbb{F}^n .

• Si $s = n \wedge B$ es LI $\Rightarrow B$ genera \mathbb{F}^n y es base de \mathbb{F}^n .

Dem/ Supongamos que B no genera \mathbb{F}^n , luego $\exists \overline{v} \in \mathbb{F}^n / \overline{v}$ no es una combinacion lineal de $\overline{x_1}, ..., \overline{x_s} \Rightarrow B \cup \{v\}$ es LI. (1)

Pero
$$|B \cup \{v\}| = s + 1 = n + 1 \land \dim \mathbb{F}^n = n \Rightarrow B \cup \{v\} \text{ es LD}$$
 (2)

Llegando asi a una contradicción, entonces B genera \mathbb{F}^n .

• Si $s = n \wedge B$ genera $\mathbb{F}^n \Rightarrow B$ es LI.

Todo vector se puede escribir como CL de los vectores. Y como $\overline{x_1} \neq 0, ..., \overline{x_n} \neq 0$, para representar el $\overline{0}$, la unica solución es la trivial.

■ B es LI y \overline{v} no es CL de los vectores de $B \Rightarrow B \cup \{v\}$ es LI.

Dem/ Sean $\alpha_1, ..., \alpha_n, \alpha \in \mathbb{F}/\alpha_1 \overline{x_1} + ... + \alpha_n \overline{x_n} + \alpha \overline{v} = \overline{0}$

Caso 1) $\alpha = 0 \Rightarrow \alpha_1 = 0 = \alpha_2 = \dots = \alpha_n : \alpha_i = 0 \ \forall i \in \llbracket 1, n \rrbracket \land \alpha = 0 : B \cup \{v\} \text{ es LI.}$

Caso 2) $\alpha \neq 0 \Rightarrow \alpha \overline{v} = -\alpha_1 \overline{x_1} - ... - \alpha_n \overline{x_n} \Rightarrow \overline{v} = \frac{-\alpha_1}{\alpha} \overline{x_1} - ... - \frac{-\alpha_n}{\alpha} \overline{x_n}$ y es una CL de $x_1, ..., x_n$. Contradicción. Es decir, el caso 2 no sucede nunca. Luego, $B \cup \{v\}$ es LI.

• Sea $B \text{ LI} \Rightarrow \text{todo subconjunto no vacio de } B \text{ es LI.}$

Dem/ Suponemos $\emptyset \neq B_1 \subset B$ LD, luego B debería ser LD. Contradicción, y B es LI.

• Cualquier conjunto que contenga un conjunto LD es LD.

Dem/ Sea $B_1 = B \cup \{x_{s+1}, ..., x_{s+k}\}$. Luego, $(\alpha_1, ..., \alpha_s, 0, ..., 0)$ es una combinación lineal que da como resultado $\overline{0}$. Y como no todos los α son 0, entonces es LD.

■ Sea $B = \{b_1, ..., b_n\}$ una base de un espacio vectorial V, todo vector $v \in V$ se puede expresar de forma única como combinación lineal de escalares $c_1, ..., c_n$, es decir, $\overline{v} = c_1b_1 + ... + c_n + b_n$.

Dem/ Supongamos que no son únicos, luego existen $d_1, ..., d_n$ tales que $\overline{v} = d_1b_1 + ... + d_nb_n$. Restando ambas expresiones: $0 = (c_1 - d_1)b_1 + ... + (c_n - d_n)b_n$. Pero al ser una base, es un conjunto linealmente independiente, y la única combinacion lineal nula es la que tiene coeficientes nulos, es decir, $c_i = d_i$, $\forall i \in [1, n]$.