MOSFET Differential Amplifiers

Common-Mode and Differential-Mode Signals & Gain

Differential and Common-Mode Signals/Gain

Consider a <u>linear</u> circuit with TWO inputs

$$v_o = A_1 \cdot v_1 + A_2 \cdot v_2$$

Define:

$$v_d = v_2 - v_1$$

$$v_c = \frac{v_1 + v_2}{2}$$

Difference (or differential) Mode

Common Mode

$$v_1 = v_c - \frac{v_d}{2}$$

$$v_2 = v_c + \frac{v_d}{2}$$

Substituting for $v_1 = v_c - \frac{v_d}{2}$ and $v_2 = v_c + \frac{v_d}{2}$ in the expression for v_o :

$$v_o = A_1 \cdot \left(v_c - \frac{v_d}{2}\right) + A_2 \cdot \left(v_c + \frac{v_d}{2}\right) = \left(A_1 + A_2\right) \cdot v_c + \left(\frac{A_2 - A_1}{2}\right) \cdot v_d$$

$$v_o = A_c \cdot v_c + A_d \cdot v_d$$

Differential and common-mode signal/gain is an alternative way of finding the system response

Differential Gain: A_a

Common Mode Gain: A_c

Common Mode Rejection Ratio (CMRR)*: $A_d / A_c /$

* CMRR is usually given in dB: CMRR(dB) = 20 log $(|A_d|/|A_c|)$

To find $oldsymbol{v}_o$, we can calculate/measure either A_1 A_2 pair or A_cA_d pair

Superposition (finding A_1 and A_2):

- 1. Set $v_2 = 0$, compute A_1 from $v_0 = A_1 v_1$
- 2. Set $v_1 = 0$, compute A_2 from $v_0 = A_2 v_2$
- 3. For any v_1 and v_2 : $v_0 = A_1 \ v_1 + A_2 \ v_2$

Difference Method (finding A_d and A_c):

- 1. Set $v_c = 0$ (or set $v_1 = -0.5 \ v_d \ \& \ v_2 = +0.5 \ v_d$) compute A_d from $v_o = A_d \ v_d$
- 2. Set $v_d = 0$ (or set $v_1 = + v_c \& v_2 = + v_c$) compute A_c from $v_0 = A_c v_c$
- 3. For any v_1 and v_2 : $v_0 = A_d v_d + A_c v_c$ $v_d = v_2 v_1 \quad v_c = 0.5(v_1 + v_2)$
- \succ Both methods give the same answer for $oldsymbol{v_o}$ (or $oldsymbol{A_v}$).
- > The choice of the method is driven by application:
 - Easier solution
 - More relevant parameters

MOSFET Differential Amplifiers:

Differential Amplifier

- Identical transistors.
- Circuit elements are symmetric about the mid-plane.
- \triangleright Identical bias voltages at Q1 & Q2 gates ($V_{\rm G1}$ = $V_{\rm G2}$).
- \triangleright Signal voltages & currents are different because $v_1 \neq v_2$.

Q1 & Q2 are in CS-like configuration (input at the gate, output at the drain) but with sources connected to each other.

 \circ For now, we keep track of "two" output, v_{o1} and v_{o2} , because there are several ways to configure "one" output from this circuit.

Differential Amplifier – DC Bias

Since
$$V_{G1} = V_{G2} = V_{G}$$

and $V_{S1} = V_{S2} = V_{S}$

$$V_{GS1} = V_{GS \ 2} = V_{GS}$$
 $V_{D1} = V_{D2} = V_{D}$
 $I_{D1} = I_{D2} = I_{D}$
 $V_{DS1} = V_{DS2} = V_{DS}$

Also:
$$g_{m1} = g_{m2} = g_m$$

 $r_{o1} = r_{o2} = r_o$

Differential Amplifier – Gain

- Signal voltages & currents are different because $v_1 \neq v_2$
- We cannot use fundamental amplifier configuration <u>for</u> <u>arbitrary values of v_1 and v_2 .</u>
- We have to replace each NMOS with its small-signal model.

Differential Amplifier – Gain

$$v_{gs1} = v_1 - v_3$$
$$v_{gs2} = v_2 - v_3$$

Node Voltage Method:

Node
$$v_{o1}$$
: $\frac{v_{o1}}{R_D} + \frac{v_{o1} - v_3}{r_o} + g_m(v_1 - v_3) = 0$

Node
$$v_{o2}$$
: $\frac{v_{o2}}{R_D} + \frac{v_{o2} - v_3}{r_o} + g_m (v_2 - v_3) = 0$

Node
$$v_3$$
: $\frac{v_3}{R_{SS}} + \frac{v_3 - v_{o2}}{r_o} + \frac{v_3 - v_{o1}}{r_o} - g_m(v_1 - v_3) - g_m(v_2 - v_3) = 0$

Above three equations should be solved to find v_{o1} , v_{o2} and v_3 (lengthy calculations)

➤ Because the circuit is symmetric, differential/common-mode method is the preferred method to solve this circuit (and we can use fundamental configuration formulas).

Differential Amplifier - Common Mode (1)

Common Mode: Set $v_d = 0$ (or set $v_1 = +v_c$ and $v_2 = +v_c$)

$$v_1 = v_c - \frac{v_d}{2}$$

$$v_2 = v_c + \frac{v_d}{2}$$

Because of summery of the circuit and input signals*:

$$v_{o1} = v_{o2}$$
 and $i_{d1} = i_{d2} = i_d$

We can solve for v_{o1} by node voltage method but there is a simpler and more elegant way.

* If you do not see this, set $v_1 = v_2 = v_c$ in node equations of the previous slide, subtract the first two equations to get $v_{o1} = v_{o2}$. Ohm's law on R_D then gives $i_{d1} = i_{d2} = i_d$

Differential Amplifier – Common Mode (2)

Because of the symmetry, the common-mode circuit breaks into two identical "half-circuits".

Differential Amplifier - Common Mode (3)

> The common-mode circuit breaks into two identical half-circuits.

$$\frac{v_{o1}}{v_c} = \frac{v_{o2}}{v_c} = -\frac{g_m R_D}{1 + 2g_m R_{SS} + R_D/r_o}$$

Differential Amplifier – Differential Mode (1)

Differential Mode: Set $v_c = 0$ (or set $v_1 = -v_d/2$ and $v_2 = +v_d/2$)

$$v_{gs1} = -0.5v_d - v_3$$

$$v_{gs2} = +0.5v_d - v_3$$

Node
$$v_{o1}$$
: $\frac{v_{o1}}{R_D} + \frac{v_{o1} - v_3}{r_o} + g_m(-0.5v_d - v_3) = 0$

Node
$$v_{o2}$$
: $\frac{v_{o2}}{R_D} + \frac{v_{o2} - v_3}{r_o} + g_m (+0.5v_d - v_3) = 0$

Node
$$v_3$$
: $\frac{v_3}{R_{SS}} + \frac{v_3 - v_{o2}}{r_o} + \frac{v_3 - v_{o1}}{r_o} - g_m(-0.5v_d - v_3) - g_m(+0.5v_d - v_3) = 0$

Node
$$v_{o1}$$
 + Node v_{o2} : $\left(\frac{1}{R_D} + \frac{1}{r_o}\right)(v_{o1} + v_{o2}) - \left(\frac{2}{r_o} + 2g_m\right)v_3 = 0$ Only possible solution:
$$-\frac{1}{r_o}(v_{o1} + v_{o2}) + \left(\frac{1}{R_{SS}} + \frac{2}{r_o} - 2g_m\right)v_3 = 0$$
 Only possible solution:
$$v_{o1} + v_{o2} = 0 \implies v_{o1} = -v_{o2}$$

$$v_{o2} = 0 \implies v_{o1} = -v_{o2}$$

Only possible solution:

Differential Amplifier – Differential Mode (2)

$$v_3 = 0$$
 and $v_{o1} = -v_{o2} \implies i_{d1} = -i_{d2}$

CS Amplifier

$$\frac{v_{o1}}{-0.5v_d} = -g_m (r_o||R_D), \quad \frac{v_{o2}}{+0.5v_d} = -g_m (r_o||R_D)$$

> Because of the symmetry, the differential-mode circuit also breaks into two identical half-circuits.

Concept of "Half Circuit"

For a symmetric circuit, differential- and common-mode analysis can be performed using "half-circuits."

Common-Mode "Half Circuit"

Common Mode circuit

Common Mode Half-circuit

- 1. Currents about symmetry line are equal.
- 2. Voltages about the symmetry line are equal (e.g., $v_{o1} = v_{o2}$)
- 3. No current crosses the symmetry line.

Differential-Mode "Half Circuit"

Differential Mode circuit

Differential Mode Half-circuit

- 1. Currents about the symmetry line are equal in value and opposite in sign.
- 2. Voltages about the symmetry line are equal in value and opposite in sign.
- 3. Voltage at the summery line is zero

Constructing "Half Circuits"

Step 1:

Divide **ALL elements** that $\underline{\text{cross}}$ the symmetry line (e.g., R_L) and/or are located on the symmetry line (current source) such that we have a symmetric circuit (only wires should cross the symmetry line, nothing should be located on the symmetry line!)

Constructing "Half Circuit" – Common Mode

Step 2: Common Mode Half-circuit

- 1. Currents about symmetry line are equal (e.g., $i_{d1} = i_{d2}$).
- 2. Voltages about the symmetry line are equal (e.g., $v_{o1} = v_{o2}$).
- 3. No current crosses the symmetry line.

Constructing "Half Circuit" – Differential Mode

Step 3: Differential Mode Half-Circuit

- 1. Currents about symmetry line are equal but opposite sign (e.g., $i_{d1} = -i_{d2}$)
- 2. Voltages about the symmetry line are equal but opposite sign (e.g., $v_{o1} = -v_{o2}$)
- 3. Voltage on the symmetry line is zero.

