

Optimization and Heuristic Methods Project

Colony of Genetic Artifical Bees (CoGAB) for optimzing bank loan lending decisions

19IM10039 – Debraj Chatterjee Department of Industrial and Systems Engineering

Heuristics

Genetic Algorithm Artificial Bee Colony

Colony of Genetic Artificial Bees

D	60			Doto	eat fo	r 10 C	uetor	nore		===
K	0.15	Dataset for 10 Customers								
Loan Size	10	25	4	11	18	3	17	15	9	10
Interest	0.021	0.022	0.021	0.027	0.025	0.026	0.023	0.023	0.028	0.022
Rating	AAA	ВВ	А	AA	BBB	AAA	ВВ	AAA	А	Α
Loss (λ)	0.0002	0.0058	0.0001	0.0003	0.0024	0.0002	0.0058	0.0002	0.001	0.001

Problem Formulation

Loan Size	25
Interest	0.022
Rating	BB
Loss (λ)	0.0058

Not Selected Selected

Pure Genetic Algorithm with Credit Crunch Constraint (GAMCC)

Results and Inferences

But GAMCC is not enough!

Problem

Inconsistent Output / Lack of Robustness

	Best	Final		
Run	Fitness	Average		
	11111633	Fitness		
1	3.189	2.929		
2	2.7908	2.4716		
3	3.189	2.9589		
4	3.189	2.2141		
5	3.189	2.5263		
6	2.7908	2.5428		
7	3.189	2.6541		
8	2.744	2.5835		
9	3.189	2.5889		
10	3.1672	2.4510		

Average of Average Population Fitness 2.5920

- Whole Algorithm is run for 10 runs
- Optimal Solution reached only 6/10 times
- The algorithm is getting **stuck in** local optimum
- Depending on luck not acceptable in such an important decision
- Average fitness of population not good population not converging

Reason

Excessive dependence on good population initialization

- GAMCC being a heuristic algorithm, it is not always expected that the optimal solution will be reached
- However, GA has a notorious reputation of requiring a good initial solution set (initial population)
- Currently, the initial population is being generated randomly (i.e. LUCK!)
- Feeding a good initial population may provide consistently better results

Solution

Use Artificial Bee Colony (ABC) to improve the initial population

Why ABC?

- Employed + Onlooker Bees share past information (absent in GA provides synergy)
- Fast selection unlike computationally expensive roulette wheel (problematic in GA)
- Great mix of **exploitation** (Modified + Onlooker bees) and **Exploration** (Scout Bees)
- Worst solutions eliminated by Scout bees population gets refined in a good way

Results – Colony of Genetic Artificial Bees (CoGAB)

Comparison – GAMCC vs CoGAB

	GAN	ЛСС	CoGAB		
Run	Best Fitness	Final Average Fitness	Best Fitness	Final Average Fitness	
1	3.189	2.929	3.189	3.055	
2	2.7908	2.4716	3.189	2.6293	
3	3.189	2.9589	3.189	3.0246	
4	3.189	2.2141	3.189	2.6848	
5	3.189	2.5263	3.189	2.6522	
6	2.7908	2.5428	3.189	3.0132	
7	3.189	2.6541	3.189	2.5925	
8	2.744	2.5835	3.189	2.9036	
9	3.189	2.5889	3.189	3.0824	
10	3.1672	2.4510	3.189	2.845	

Average of Average	2.5920	2 8483
Population Fitness	2.5920	2.0403

- CoGAB is more reliable (reached global optimum in 10/10 runs compared to 6/10 for GAMCC)
- Average population fitness is also greater for CoGAB, that too in
 40 generations compared to 60 used in GAMCC

Thank You

References -

1. Noura Metawa, M. Kabir Hassan, Mohamed Elhoseny, Genetic algorithm based model for optimizing bank lending decisions, Expert Systems with Applications, Volume 80, 1 September 2017, Pages 75-82, ISSN 0957-4174. (doi: 10.1016/j.eswa.2017.03.021)

2. Bansal, J.C., Sharma, H. and Jadon, S.S. (2013) 'Artificial bee colony algorithm: a survey', Int. J. Advanced Intelligence Paradigms, Vol. 5, Nos. 1/2, pp.123–159