

Esempio

- Istruzione per la moltiplicazione:
 - □ Decidere se è disponibile, è una decisione architetturale
 - □ Come implementarla (circuito per la moltiplicazione o somme ripetute) è una decisione di organizzazione (costo, velocità, ...)
- Modelli diversi della stessa marca: stessa architettura, organizzazione diversa
- Esempio: architettura dell'IBM 370 (dal 1970)
 - ☐ Fino ad oggi per calcolatori mainframe
 - □ Varie organizzazioni con costo e prestazioni diverse

Struttura e funzione

- Calcolatore:
 - ☐ Insieme di componenti connesse tra loro
- Visione gerarchica
 - □ Insieme di sottosistemi correlati
 - Ogni sistema ad un livello si basa sulla descrizione astratta del livello successivo
- Ad ogni livello
 - ☐ Struttura: come sono correlati i componenti
 - ☐ Funzione: cosa fa ciascun componente
- Descrizione top-down:
 - da componenti principali a sottocomponenti, fino a una descrizione completa dei dettagli

Funzioni basilari di un calcolatore (livello più alto della gerarchia)

- Elaborazione dati
- Memorizzazione dati
- Trasmissione dati
 - ☐ Input/output o verso un dispositivo remoto
- Controllo
 - □ Delle tre funzioni sopra

Struttura (livello più alto della gerarchia)

- Quattro componenti principali:
 - □ Unità centrale di elaborazione (CPU)
 - Esegue le funzioni di elaborazione dati
 - □ Memoria centrale
 - Per immagazzinare i dati
 - □ I/O (input/output)
 - Per trasferire i dati tra calcolatore ed esterno
 - □ Interconnessioni
 - Per far comunicare CPU, memoria centrale, e I/O

v

Central Processing Unit (Unità Centrale di Elaborazione)

- Unità di controllo
 - □ Controlla la sequenza di operazioni
- Unità aritmetico-logica (ALU)
 - □ Elaborazione dati
- Registri
 - □ Memoria interna della CPU
- Interconnessioni
 - □ Comunicazione tra unità di controllo, ALU e registri

Perché studiare l'architettura dei calcolatori?

- Capire i compromessi costo-prestazioni
 - □ Esempio: scegliere il calcolatore migliore a parità di costo
 - spesa maggiore ma memoria più grande o frequenza di clock più alta e quindi maggiore velocità
- Supporto ai linguaggi di programmazione
 - □ Diverso a seconda delle architetture