物理实验数学中心

Physics Experiment Center

Forced vibration

Li Bin NJUPT

Experimental Goals

- ♦ The resonance phenomena.
- ♦ The effect of different damping moments on the forced vibration.
- \Leftrightarrow The amplitude-frequency $(\theta-\omega/\omega_0)$ and phase-frequency $(\phi-\omega/\omega_0)$ characteristics of the forced vibration.

Principles

This experiment adopts the balance wheel to study its forced vibration characteristics and electromagnetic torque elastic damping effect.

Forced vibration equation:

$$J\frac{d^{2}\theta}{dt^{2}} = -k\theta - b\frac{d\theta}{dt} + M_{0}\cos\omega t$$

$$\frac{d^2\theta}{dt^2} + 2\beta \frac{d\theta}{dt} + \omega_0^2\theta = m\cos\omega t$$

$$\theta = \theta_1 e^{-\beta t} \cos(\omega_f t + \alpha) + \theta_2 \cos(\omega t + \varphi)$$

$$\theta_2 = \frac{m}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}}$$
 Amplitude-frequency characteristic curve

Resonance condition:

$$\omega_r = \sqrt{\omega_0^2 - 2\beta^2} < \omega_0$$

$\varphi = \arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$

When resonance occurs:

$$tg\varphi_r \to \infty, \varphi_r \to \frac{\pi}{2}$$

Phase-frequency characteristic curve

Free vibration: $T_0 \sim \theta$

Damping vibration: β :

Forced vibration: $\theta \sim \omega$

 $\phi \sim \omega$

TABLES

TABLE I. Amplitude and period in free vibration

	1	2	3	4	5	6	7	8	9	10
Amplitud e θ (°)										
Perio										
dT_0										
(s)										

Draw T_0 - θ curve.

TABLE II. Amplitude and period in damping vibration

Damper position:_____

No.	Amplitude θ / (°)	No.	Amplitude θ / (°)	$\ln \frac{\theta_{i}}{\theta_{i+5}}$
θ_1		θ_6		
θ_2		θ_7		
θ_3		θ_8		
$ heta_4$		θ_9		
θ_5		θ_{10}		
	Average v			

10T = ____

$$\overline{T} = S$$

$$\overline{T} = \underline{\hspace{1cm}}_{s} 5\beta \overline{T} = \ln \frac{\theta_{i}}{\theta_{i+5}}, \quad \beta = \underline{\hspace{1cm}}$$

No.	1	 5	6	7	 10
Motor position					
Period T /s					
Phase j/ (⁰)					
Amplitude θ / (θ)					
T_0 / s from Table I					
$\frac{\omega}{\omega_0} = \frac{T_0}{T}$					

Draw θ - ω/ω_0 and ϕ - ω/ω_0 curves.

END