

Algorithms in a digital camera

Processing digital camera images
WS 10/11
Johannes Cremer

Overview

- Basic algorithms
 - Autofocus
 - Auto exposure
 - Histogram
 - Color balancing
- Advanced algorithms

Camera pipeline

Autofocus

Autofocus

- In a small area of the sensor
- Goal: get the highest contrast

Autofocus algorithm

Step 1: Measure the contrast in the focus area

Step 2: A small change is made to the focusing distance

Step 3: Measure the contrast again and calculate if and by how much the contrast improved

Step 4: Use this information to set a new focusing distance

Repeat until a satisfactory focus has been achieved

Auto exposure

Exposure time

Duration, the aperture of a camera is open (shutter speed)

Underexposed

Overexposed

Correct exposure: the entire image is in a good region of the sensor

Auto exposure algorithm

Algorithm:

Step 1: Take a picture with a pre-determined EV_{pre}

$$EV = \log_2(\frac{F^2}{T}) = 2\log_2(F) - \log(T)$$

Exposure Value (*EV*) specifies the relationship between aperture size, *F*, and exposure duration, *T*.

Auto exposure algorithm

Step 2: Convert the RGB values to Brightness B

Step 3: Derive a single number B_{pre} from the brightness picture

Auto exposure algorithm

Step 4: Calculate the optimum exposure EV_{opt} , which should give us a brightness value close to B_{opt}

$$EV_{opt} = EV_{pre} + \log 2(B_{pre}) - \log 2(B_{opt})$$

 B_{opt} : Brightness value from a calibration against a 18% grey card

Shows the distribution of the pixel values

Learn to "read" a histogram

Correctly exposed image

underexposed image

overexposed image

Color balancing

Color balancing (e.g. White balancing)

- Humans adept to varying illumination conditions
- Image sensors cant, we have to compute it

Color balancing

Two ways of balancing:

- Pre-computed sets
- Guess with a algorithm

Increasing Color Temperature	**	Tungsten
	***	Fluorescent
	*	Daylight
	4	Flash
	4	Cloudy
		Shade

Color balancing

Grey world algorithm

Assumes, that the average color of the RGB values are equal (=grey)

$$R_{avg} = G_{avg} = B_{avg}$$

If not, compute coefficients to make them equal

$$\tilde{\alpha} = \frac{G_{avg}}{R_{avg}}$$

$$\tilde{\beta} = \frac{G_{avg}}{B_{avg}}$$

Good results, if picture has many colors

Advanced Algorithms

On camera implemented advanced algorithms:

- HDR
- Panorama stitching
- Face detection
- Focus bracketing
- ...

Thank you for listening

Autofocus

Schematic auto focus system