Задание 10-3. Не хуже Карно ..?

Двигатели внутреннего сгорания (ДВС), работающие по различным термодинамическим циклам, успешно работают в современном мире. Миллионы машин используют как бензиновые,

> так и дизельные ДВС, а доля электромобилей на мировом рынке в настоящий момент крайне невелика – около 2 %.

> ДВС в середине XIX века перед инженерами и При создании конструкторами встал важный прикладной (и научный!) вопрос: а какой тепловой двигатель имеет максимальный термодинамический КПД, т.е. является идеальной тепловой машиной?

> Заметим, что цикл Отто (бензиновый двигатель) и цикл Дизеля (дизельный двигатель) не являются идеальными тепловыми циклами, хотя автомобили, работающие по этим циклам, и составляют львиную долю современного производства.

Идеальная тепловая машина была описана в 1824 г. французским физиком и инженером Сади Карно

Рис. 1 (Рис. 1) в работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Идеальный цикл Карно (Рис. 2), состоящий из двух изотерм и двух адиабат, сегодня известен каждому школьнику.

В данном задании мы немного «пофантазируем» и предложим свой цикл, который также использует элементы знаменитого цикла Карно.

Справочные данные и параметры рассматриваемой системы: если $a^n b^m = const$, то при малых Δa и Δb ($\Delta a \ll a$, $\Delta b \ll b$) справедливо равенство: $n\frac{\Delta a}{a} + m\frac{\Delta b}{b} = 0$ (справедливо также и обратное утверждение); молярная газовая постоянная $R = 8.31 \, \text{Дж/(моль · K)}$.

Часть 1. Адиабатный процесс

Термодинамический процесс, проводимый без теплообмена (Q = 0) с окружающей средой (т.е. в теплоизолированной системе), называется адиабатным процессом. Адиабатными являются многие быстропротекающие процессы (взрыв, быстрое расширение (сжатие) газа, распространение звуковой волны), процесс подъема теплого воздуха с поверхности земли с последующим охлаждением, конденсацией пара и образованием облаков и т.д.

- Теплоёмкость c^{M} идеального газа, взятого в количестве $\nu = 1$ моль (m = M), называется 1.1 молярной теплоёмкостью. Найдите молярную теплоёмкость c_V^M идеального одноатомного газа при изохорном процессе, т.е. при постоянном объёме (V = const). Запишите формулу для внутренней энергии U идеального одноатомного газа через c_V^M и в дальнейшем используйте её для любого идеального газа.
- **1.2** Выразите молярную теплоемкость идеального газа c_p^M при постоянном давлении (p=const), т.е. при изобарном процессе, через c_V^M .
- 1.3 Получите уравнение адиабатного процесса для произвольного идеального газа в переменных (T,V) с показателем адиабаты $\gamma = \frac{c_p^M}{c_v^M}$.
- 1.4 В полученном уравнении сделайте замену переменных и запишите уравнение адиабатного процесса (уравнение Пуассона) для произвольного идеального газа в «традиционном» виде, т.е. в переменных (p, V).

1.5 Схематически изобразите на одной (p, V) — диаграмме ход адиабаты и изотермы идеального газа. Кратко охарактеризуйте особенности построенных графиков.

Часть 2. Цикл с адиабатой

С идеальным одноатомным газом провели циклический процесс $A \to B \to C \to A$ (Рис. 3), состоящий из изобары $A \to B$, изохоры $B \to C$ и адиабаты $C \to A$.

2.2 Используя ранее полученные результаты, найдите давление $p_{\mathcal{C}}$ газа в состоянии \mathcal{C} .

2.5 Чему равен максимально возможный термодинамический КПД η_{max} описанного цикла?

Вычислите термодинамический КПД η_1 цикла, изображенного на Рис. 4.

Рис. 3

 V/V_0