Rekurzivne relacije

1. Kako definiramo Fibonaccijev slijed (F_n)? Izvedi zatvorenu formulu (Moivreovu) za (F_n).

Definicija: Fibonaccijev niz (F_n) definira se početnim vrijednostima $F_0 = 0$ i $F_1 = 1$ i rekurzivnom relacijom:

$$F_n = F_{n-1} + F_{n-2}$$
, $n = 2, 3, ...$

Propozicija (A. de Moivre): Za Fibonaccijev niz $(F_n)_{n \in \mathbb{N}_0}$ vrijedi "zatvorena formula":

$$F_{n} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n} - \left(\frac{1-\sqrt{5}}{2} \right)^{n} \right] , \quad n = 0, 1, 2, ...$$

Dokaz: Rješenje rekurzivne relacije

$$F_n = F_{n-1} + F_{n-2}$$
, $n \ge 2$

tražimo u obliku $F_n = x^n$, pa je

$$x^{n} = x^{n-1} + x^{n-2}$$

$$\Rightarrow x^{n-2}(x^2 - x - 1) = 0$$

$$\Rightarrow$$
 $x^{n-2}(x^2 - x - 1) = 0$ \Rightarrow $x_1 = \frac{1 + \sqrt{5}}{2}$, $x_2 = \frac{1 - \sqrt{5}}{2}$

Dakle, rješenja rekurzivne relacije su:

$$F_n^{(1)} = \left(\frac{1+\sqrt{5}}{2}\right)^n \qquad i \qquad F_n^{(2)} = \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Linearna kombinacija ovih rješenja je također rješenje rekurzivne relacije:

$$F_n = \lambda F_n^{(1)} + \mu F_n^{(2)}$$
 , $\lambda, \mu \in R$

Iz početnih uvjeta $F_0 = 0$ i $F_1 = 1$ slijedi: $\lambda + \mu = 0$, $\lambda \left(\frac{1+\sqrt{5}}{2}\right) + \mu \left(\frac{1-\sqrt{5}}{2}\right) = 1$

$$\Rightarrow \lambda = \frac{1}{\sqrt{5}}$$
, $\mu = -\frac{1}{\sqrt{5}}$ \Rightarrow "zatvorena formula".

2. Zlatni prerez i veza s Fibonaccijevim slijedom.

Iz zatvorene formule slijedi da je: $\lim_{n\to\infty} \ \frac{F_{n+1}}{F_n} = \frac{1+\sqrt{5}}{2} \approx 1,618...$

Ovaj broj se zove zlatni prerez (božanski omjer).

3. Što su linearne rekurzivne relacije (homogene i nehomogene)? Što je Eulerova supstitucija i kako glasi karakteristična jednadžba pridružena linearnoj rekurzivnoj relaciji?

Opći oblik linearne rekurzivne relacije reda r je:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_r a_{n-r} + f(n)$$
, $n \ge r$,

gdje su c_1 , c_2 , ..., c_r zadani realni ili kompleksni brojevi, $c_r \neq 0$, a f (n) je zadana funkcija koja prirodnim brojevima n \geq r pridružuje realne ili kompleksne brojeve.

Ako \exists n f(n) \neq 0, onda kažemo da je linearna rekurzivna relacija **nehomogena.**

U specijalnom slučaju, kad je $f(n) \equiv 0$ za sve n, kažemo da je linearna rekurzivna relacija **homogena**.

Rješenje linearne homogene rekurzivne relacije tražimo pomoću **Eulerove** supstitucije:

$$a_n = x^n$$
.

Nakon uvrštenja Eulerove supstitucije u linearnu homogenu rekurzivnu relaciju i dijeljenja sa x^{n-r} dobije se tzv. **karakteristična jednadžba** rekurzivne relacije:

$$x^{r} - c_1 x^{r-1} - c_2 x^{r-2} - \dots - c_r = 0$$
.

4. Opće rješenje homogene linearne rekurzivne relacije (citirati i dokazati teorem).

Opće rješenje homogene linearne rekurzivne relacije ovisi o korijenima pripadne karakteristične jednadžbe.

Razlikujemo dva slučaja:

a) Slučaj r različitih korijena karakteristične jednadžbe

Teorem: Neka su svi korijeni x_1 , x_2 , ..., x_r karakteristične jednadžbe međusobno različiti. Tada je **opće rješenje linearne homogene rekurzivne relacije** s konstantnim koeficijentima jednako linearnoj kombinaciji:

$$a_n = \lambda_1 x_1^n + \lambda_2 x_2^n + \ldots + \lambda_r x_r^n$$

gdje su $\lambda_1, \lambda_2, ..., \lambda_r$ kompleksni koeficijenti.

Dokaz: Preskočen

b) Slučaj kada postoje višestruki korijeni karakteristične jednadžbe

Teorem: Neka su $x_1, x_2, ..., x_m$ svi različiti korijeni karakteristične jednadžbe kratnosti $k_1, k_2, ..., k_m$. Rješenje $a_n^{(i)}$ linearne homogene rekurzivne relacije koje odgovara korijenu x_i kratnosti k_i je linearna kombinacija:

$$a_n^{(i)} = \lambda_1^{(i)} x_i^n + \lambda_2^{(i)} n \; x_i^n + \ldots + \lambda_{k_i}^{(i)} \; n^{k_i - 1} \; x_i^n \quad , \qquad n \geq 0,$$

gdje su $\lambda_1^{(i)}, \lambda_2^{(i)}, ..., \lambda_{k_i}^{(i)}$ kompleksni koeficijenti. Opće rješenje je dano sa:

$$a_n = a_n^{(1)} + a_n^{(2)} + ... + a_n^{(m)}$$

Opće rješenje ima ukupno $r = k_1 + k_2 + ... + k_m$ slobodnih koeficijenata.

Dokaz: Preskočen

5. Što je to partikularno rješenje nehomogene linearne rekurzivne relacije i kako tražimo opće rješenje?

Opće rješenje nehomogene linearne rekurzivne relacije je:

$$a_n = a_n^{(0)} + a_n^{(p)}$$

gdje je: $a_n^{(o)}$ - opće rješenje pripadne homogene rekurzivne relacije,

 $a_n^{(p)}$ - partikularno rješenje nehomogene jednadžbe.

Partikularno rješenje nehomogene jednadžbe a_n^(p) je rješenje koje zadovoljava nehomogenu linearnu rekurzivnu relaciju.

Napomena: Općenito nalaženje partikularnog rješenja je komplicirano, ali u nekim slučajevima postoje recepti.

Ako x = 1 (u zadnjem slučaju x = b) nije korijen karakteristične jednadžbe, onda partikularno rješenje nalazimo ovako:

f(n)	a _n ^(p)
C (konstanta)	A
C n	A n + B
$P_k(n)$	Q _k (n)
C b ⁿ	A b ⁿ

Ako x = 1 (u zadnjem slučaju x = b) jeste korijen karakteristične jednadžbe kratnosti m, onda partikularno rješenje nalazimo ovako:

f(n)	a _n ^(p)
C (konstanta)	A n ^m
C n	$n^{m}(A n + B)$
$P_k(n)$	$n^m Q_k(n)$
C b ⁿ	A n ^m b ⁿ

6. Hanojske kule i slični primjeri.

Primjer 1: Hanojske kule

- Imamo n kolutova s rupom u sredini, svi različitih polumjera i na ravnoj podlozi zabodena tri štapića.
- Svi kolutovi su nanizani na jedan štapić tako da je kolut s većim polumjerom uvijek ispod onog s manjim polumjerom
- Cilj: Prenijeti sve kolutove (jedan po jedan) na treći štapić tako da ni u jednom trenutku ne bude onaj s većim polumjerom iznad onog s manjim. Pri tome svaki od štapića možemo koristiti za privremeno smještanje kolutova.
- Pitanje: Koliki je najmanji broj prijenosa a_n potreban da se svih n kolutova prenese s prvog na treći štapić?

Induktivni opis:

- Za n = 1 (jedan kolut) imamo samo jedan prijenos $a_1 = 1$
- Pretpostavimo da znamo prenijeti n kolutova (imamo a_n prijenosa)
- Za prijenos n + 1 koluta imamo sljedeće:
 - prenesemo n kolutova na drugi štapić (ukupno a_n prijenosa)
 - prenosimo najveći kolut s prvog na treći štapić (ukupno 1 prijenos)
 - prenesemo n kolutova s drugog na treći štapic (ukupno a_n prijenosa).

Dakle, vrijedi: $a_{n+1} = 2 a_n + 1$, $a_1 = 1$ (nehomogena jednadžba)

Karakteristična jednadžba je x - 2 = 0. Korijen ove jednadžbe x = 2.

Rješenje pripadne homogene jednadžbe $a_{n+1} = 2 \ a_n$ je: $a_n^{(o)} = \lambda \ 2^n$.

Budući da x = 1 nije rješenje karakteristične jednadžbe, partikularno rješenje je $a_n^{(p)} = A$. Dalje je A = 2 A +1, pa je A = -1.

Opće rješenje nehomogene jednadžbe je: $a_n = \lambda 2^n - 1$.

Za a_1 =1, iz općeg rješenja slijedi da je 1 = 2 λ -1, pa je λ =1.

Konačno je: $a_n = 2^n - 1$.

Primjer 2: $a_n = a_{n-1} + n - 1$, $n \ge 1$ uz početni uvjet $a_0 = 0$.

Karakteristična jednažba je $x = 1 \implies a_n^{(o)} = \lambda 1^n = \lambda$.

Budući da je x = 1 korijen karakteristične jednadžbe, $m = 1 \implies a_n^{(p)} = n (A n + B)$.

$$\Rightarrow A = \frac{1}{2}, B = -\frac{1}{2} \Rightarrow a_n = \lambda + \frac{1}{2}n(n-1) \Rightarrow \lambda = 0 \Rightarrow a_n = \frac{1}{2}n(n-1)$$

Primjer 3: $a_n = 6 \ a_{n-1} - 9 \ a_{n-2} + 2 \ n$, $n \ge 2$ uz početne uvjete $a_0 = 1$, $a_1 = 2$.