MUSICOLOGIE COMPUTATIONNELLE

MORPHOLOGIE MATHÉMATIQUE APPLIQUÉE À L'ANALYSE

HARMONIQUE

Gonzalo Romero-García

ANALYSE HARMONIQUE AUTOMATIQUE

- Une tâche MIR
- Plusieurs entrées possibles :
 - Partition
 - Fichier MIDI
 - (Son, souvent au moyen d'un chromagramme)
 - Piano roll
- Plusieurs représentations :
 - Notation en accords (A, Gsus4, Dmaj7, ...)
 - Notation en basse chiffrée (6, 7, 46, ...)
 - Analyse avec des nombres romains (I, IV, V⁷, ...)

ANALYSE HARMONIQUE LE PROBLÈME MUSICOLOGIQUE À RÉSOUDRE

HARMONIE

Le squelette de la musique classique, pop et jazz

• Du point de vue perceptif :

Le fait que deux morceaux se ressemblent

- Du point de vue de la composition :
 - Une liste de règles à suivre pour que ça sonne « bien » / « correct » / « agréable » / …
 - Une palette de sons qui vont faire sonner la musique dans un style

MODÉLISATION MATHÉMATIQUE DE L'HARMONIE

• Une note est un élément de \mathbb{Z} (son nombre MIDI)

Exemple :
$$A_4 \rightarrow 69$$
, $C_4 \rightarrow 60$, $C_3 \rightarrow 48$

ullet Un chroma est un élément de \mathbb{Z}_{12} résultat de la projection canonique

$$\pi: \mathbb{Z} \to \mathbb{Z}_{12}$$
 , $\pi(n) = \bar{n} = n \pmod{12}$

Exemple : A
$$\rightarrow$$
 $\overline{9}$, C \rightarrow $\overline{0}$, C# \rightarrow $\overline{1}$

ullet Un accord * est un sous-ensemble de \mathbb{Z}_{12} , i.e. un élément de $\mathcal{P}(\mathbb{Z}_{12})$

Exemple :
$$C = \{\overline{0}, \overline{4}, \overline{7}\}$$
, $Am = \{\overline{9}, \overline{0}, \overline{4}\}$, ...

Remarque : il y a 4096 accords différents (2¹²)

ACCORDS

 Un accord est composé d'une note fondamentale (root) et d'un type d'accord (quality)

Exemple: Am est composé de la note fondamentale A et du type d'accord mineur

<u>Remarque</u>: il y a des accords pour lesquels différentes notes fondamentales sont possibles (par exemple $B^{\circ 7} = \{B, D, F, Ab\} = D^{\circ 7} = F^{\circ 7} = Ab^{\circ 7}$)

Remarque: il existe 352 types d'accords différents

• Nous modélisons cela à l'aide du groupe (\mathbb{Z}_{12} , +) :

Am = A +
$$\{\overline{0}, \overline{3}, \overline{7}\}\$$

 $\overline{9} + \{\overline{0}, \overline{3}, \overline{7}\} = \{\overline{9}, \overline{0}, \overline{4}\}$

GAMMES

Les gammes sont des accords

On distingue les gammes des accords par sa cardinalité :

TONALITÉ

Gravitation autour d'un ton

Chaque note de la gamme* a un rôle

Exemple :

C majeur	С	D	E	F	G	A	В
Degré	Tonique	Sus-tonique	Médiante	Sous-dominante	Dominante	Sus-dominante	Sensible
Décalage	0	2	4	5	7	9	11
D majeur	D	E	F#	G	Α	В	C#
D majeur Degré	D Tonique	E Sus-tonique	F# Médiante	G Sous-dominante	A Dominante	B Sus-dominante	C# Sensible

TONALITÉ

Le privilège de la tierce

On construit les accords de base en superposant des tierces de la gamme aux degrés.

Exemple: en C majeur

#A = 3	С	D	E	F	G	Α	В
Accord	CM	Dm	Em	FM	GM	Am	В°
Chiffrage	1	ii	iii	IV	٧	vi	vii°
#A = 4	С	D	Е	F	G	A	В
#A = 4 Accord	C Cmaj ⁷	D Dm ⁷	E Em ⁷	F Fmaj ⁷	G G ⁷	A Am ⁷	B B ^{ø7}

TONALITÉ COMME SYSTÈME DE RÉFÉRENCE

- Les chiffrages sont des sous-ensembles de \mathbb{Z}_{12} où le $\overline{0}$ est la tonique Exemple : $I = \{\overline{0}, \overline{4}, \overline{7}\}$, ii $= \{\overline{2}, \overline{5}, \overline{9}\}$, $V^7 = \{\overline{7}, \overline{11}, \overline{2}, \overline{5}\}$, ...
- Chaque accord peut être nommé avec un ton et un chiffre

Exemple : C:
$$I = \{C, E, G\}, C: ii = \{D, F, A\}, C: V^7 = \{G, B, D, F\}, ...$$

<u>Problème</u> : un même accord peut correspondre a différents chiffrages en fonction de qui est le ton

Exemple: CM = C: I = F: V = G: IV

MODALITÉ

- Jusqu'à présent on n'a parlé que de la gamme majeure, mais il existe <u>les</u> gammes mineures, à savoir :
 - Gamme mineure naturelle : $\{\overline{0}, \overline{2}, \overline{3}, \overline{5}, \overline{7}, \overline{8}, \overline{10}\}$ Exemple : A mN = $\{A, B, C, D, E, F, G\}$
 - Gamme mineure harmonique : $\{\overline{0}, \overline{2}, \overline{3}, \overline{5}, \overline{7}, \overline{8}, \overline{11}\}$ Exemple : A mH = $\{A, B, C, D, E, F, G\#\}$
 - Gamme mineure mélodique : $\{\overline{0}, \overline{2}, \overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{11}\}$ Exemple : A mM = $\{A, B, C, D, E, F\#, G\#\}$
- Ça fait un total de 4 modes différents

MODALITÉ

Les modes (majeur et mineur) n'existent pas

Exemple 1:

 $Cm - Fm - G^7 - CM$

 $C : i - iv - V^7 - I$

Exemple 2:

 $CM - D^{g7} - G^7 - CM$

 $C: I - ii^{g7} - V^7 - I$

Exemple 3:

 $CM - FM - B^{\circ 7} - CM$

 $C: I - IV - vii^{\circ 7} - I$

MORPHOLOGIE MATHÉMATIQUE L'OUTIL MATHÉMATIQUE ET INFORMATIQUE

GENÈSE DE LA MORPHOLOGIE MATHÉMATIQUE

- Utilisée pour traiter des images
- Elle change le paradigme de l'analyse de Fourier pour le traitement des images
- Elle fournit des notions topologiques applicables à diverses structures
- Elle se base dans le cadre des treillis complets

ÉROSION

On définit l'érosion dans le cas du treillis ($\mathcal{P}(E)$, \subseteq)

On considère $B \subseteq E$ qu'on appelera **élément structurant**.

$$\varepsilon_B : \mathcal{P}(E) \to \mathcal{P}(E)$$

$$A \mapsto \{ p \in E : T_p B \subseteq A \}$$

ÉROSION

APPLICATION DE LA MORPHOLOGIE MATHÉMATIQUE À L'ANALYSE HARMONIQUE

Une application de la morphologie mathématique en musicologie computationnelle

LE CHROMA ROLL

La version cylindrique du piano roll

EXEMPLE

Prélude de Bach n°1 en Do majeur

TEXTURE

La manière de disposer les notes de l'accord dans le temps

0	0	0	0	2	0	0	2
0	0	0	2	0	0	2	1
0	0	2	0	0	2	0	0
0	2	1	1	1	1	1	1
2	1	1	1	1	1	1	1

 \otimes

TEXTURE COMME PRODUIT MATRICIEL

0	0	1
0	0	0
0	0	0
0	1	0
0	0	0
0	0	0
0	0	0
1	0	0

0	2	0	2	
0	0	0	0	
0	0	0	0	
0	0	2	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
2	0	0	0	

EROSION D'UN MORCEAU PAR UNE TEXTURE

0	0	0	0	2	0	0	2
0	0	0	2	0	0	2	1
0	0	2	0	0	2	0	0
0	2	1	1	1	1	1	1
2	1	1	1	1	1	1	1

(x2)

Détecter les possibles chiffrages d'un morceau

Détecter les possibles chiffrages d'un morceau

Les possibilités par type d'accord

Les possibilités par type d'accord de septième

GRAPHE TONAL

On crée un graphe avec les possibles chiffrages

CONCLUSIONS

- On peut utiliser l'érosion morphologique pour réduire un morceau à ses accords si on utilise une texture comme élément structurant*.
- Une fois le morceau sous forme d'accords, on peut utiliser l'érosion pour détecter les possibles chiffrages de chaque accord.
- On peut créer un graphe des possibilités et le chiffrage s'obtient comme le chemin qui module le moins.

