ポートフォリオ

Namachan

created with LATEX

はじめに 2
1 自己紹介
1.1 経歴 (p.2) 1.2 過去の活動・実績 (p.2) 1.3 対応領域 (p.2) 1.4 使用可能ツール (p.2) 1.5 仕事のスタイル (p.2) 1.6 リンク (p.2)
II 作品紹介
2 数学 3
2.1 サイクロイド (p.3) 2.2 写像 (p.4) 2.3 上方和と下方和 (p.5) 2.4 三角不等式の証明 (p.7) 2.5 はさみうちの原理 (p.8) 2.6 内心 (p.9) 2.7 球座標 (p.10) 2.8 四面体 (p.11) 2.9 樹形図 (p.12) 2.10 増減表とグラフ (p.13) 2.11 楕円 (ケプラーの法則) (p.14) 2.12 回転体 (p.15) 2.13 円錐に内接する球 (p.17) 2.14 三角関数の加法定理 (p.18) 2.15 「一意性」の意義 (p.19)
3 物理
3.1 ばねとブロック(力学)(p.21) 3.2 滑車とロープ(力学)(p.23) 3.3 フックの法則(力学)(p.25) 3.4 気体分子運動論(熱力学)(p.26) 3.5 ピストン付き容器(熱力学)(p.28) 3.6 LC 回路(電磁気学)(p.29) 3.7 傾斜レール上の導体棒(電磁気学)(p.30) 3.8 ヤングの実験(光学)(p.32) 3.9 凸レンズによる実像の形成(光学)(p.33)
4 化学
4.1 サリチル酸と炭酸水素ナトリウムの化学反応式 (p.35) 4.2 サリチル酸の構造式 (p.35) 4.3 ハロゲン(フッ素)の電子配置 (p.35) 4.4 モル濃度の計算 (p.36) 4.5 β-グルコースの構造式 (p.36) 4.6 酢酸の電離 (p.37) 4.7 塩化銅 (II) 水溶液の電気分解 (p.38)
5 書類 40
5.1 問題用紙(数学)(p.40) 5.2 スクリプト(Python)(p.41)
参考文献
索引

Part I はじめに

本書は、出版社や教育機関などの採用担当者向けに作成した LATEX 入力および作図業務の作品集である。 冒頭では簡単な自己紹介を記載し、その後に各種サンプル(「LATEX コード」や「仕上がりイメージ」)を掲載している。 依頼や相談は、X(旧 Twitter): @math_namachan まで連絡されたい。

1 自己紹介

1.1 経歴

茨城県立水戸第一高等学校を卒業後、学習院大学理学部数学科に入学し、翌年に中途退学、その後、故郷の茨城にてLATEX 入力の技術を磨きつつ、放送大学にて自然科学を学んでいる。

2018 年に、『線型代数入門(基礎数学 1)』(齋藤正彦著、東京大学出版会)、『解析入門 I(基礎数学 2)』(杉浦光夫著、東京大学出版会)の解答集を作るプロジェクト「数学書解答集作成班」を立ち上げ、現在 GitHub にて解答をオープンソースで公開中、2025 年現在、公開されている解答は 2 冊ともに 100 ページを超える。

また、Discord を用いた数学・物理のコミュニティ『数物-学習の場-』を立ち上げ、自主ゼミ結成の支援・数学・物理関連の質問の場を開設し、2025年現在もリーダーとして運営に尽力している。

2024年より、出版社や塾・予備校との業務提携を開始する。2025年現在、出版社2社、塾・予備校2社と業務委託契約を結ぶ傍ら、別に出版社1社と編集アシスタントとして雇用契約を締結している。

1.2 過去の活動・実績

2018 年「数学書解答集作成班」を結成. 現在のメンバーは 11 名. 主に Discord を用いたオンライン作業で解答を制作する.

2024 年 出版社 1 社と LATFX 入力の業務委託契約を締結.

2025 年 出版社・予備校合わせて 3 社と LATEX 入力の業務委託契約を締結. 出版社 1 社と, 編集アシスタントとして雇用契約を締結.

1.3 対応領域

- 数学(IAT_EX 入力, 作図)
- 物理(IATFX 入力, 作図)
- 化学(LATEX 入力,複雑な式は要相談)

その他の分野の書類については個別に相談されたい。

1.4 使用可能ツール

- LATEX
 - 2018年から6年間使用.
 - TikZ を用いた作図も対応可能.
 - 主に LualATFX, uplATFX を使用.
- Adobe Illustrator
 - 2025年から下絵を作図するために使用
- Git
 - 2018 年から GitHub と併用して使用.

その他、Slack、Discord 等のチャットツールを用いて業務 に従事することが可能である。

1.5 仕事のスタイル

- Slack や Discord を用いたオンラインでのコミュニケーションを重視する.
- Adobe Illustrator を用いて作成した下絵をもとに、 生成 AI を用いて TikZ のコードを整える。
- 継続中の案件との兼ね合いにより、時期によって は納期や作業量に制約が生じる場合がある。

1.6 リンク

GitHub

https://github.com/NamaSwimming

- GitHub にて、解答集とそのソースコードを公開している。
- 解答集を公開するあたっては、出版社に確認をとった上で「問題文は掲載せず、解答のみ掲載」という形をとり、著作権に配慮した。
- GitHub の Pull Request 機能を用いることで、誰も がこの解答集に対して「修正の提案」を送ることが できる。
- 上記のことに関連して、仕事をするにあたって「複数人での教材の共同編集」に対応可能である。

Part II 作品紹介

これまでに作成してきたコンテンツを、LATFXのソースコードとともに掲載する.

なお、行数制約のため、複数行で記述すべきコードを1行にまとめている箇所がある。本来は可読性のために改行するべきであることに気をつけたい。

2 数学

2.1 サイクロイド

ソースコード (図)

```
\begin{tikzpicture}[scale=1.15]
                                         \draw[->] (-0.1,0) -- (6.5,0) node[below] {$x$};
     3
                                         \draw[->] (0,-0.1) -- (0,2.5) node[left] {$y$};
                                         \draw (0,0) node[below left] {\$\mathrm{0}\$\} coordinate (0);
     4
                                         \displaystyle \frac{(pi,0) \cdot (pi,0) \cdot (pi,0) \cdot (pi,2) - (0,2) \cdot (0,2
     6
                                         \draw(2*pi ,0)node[below]{$2\pi a$};
     7
                                        \draw [thin] (pi/2,1) circle (1);
     8
                                        \draw [dashed](pi/2,0)--(pi/2,1)--(0,1);
                                         \draw [color=red] plot[domain=0:{2*pi}, variable=\theta,smooth]
10
                                         ({\theta r}), {1-\cos(\theta r)};
                                         \fill [color=red] ({pi/2-1}, 1) circle (1.5pt);
11
                            \end{tikzpicture}
```

説明と図

媒介変数 θ と定数 a を用いて

$$\begin{cases} x = a(\theta - \sin \theta), \\ y = a(1 - \cos \theta), \end{cases} \quad (0 \le \theta < 2\pi)$$

と表される赤線部の図形をサイクロイドとよぶ†1.

円が1回転したときの定点の軌跡の長さをlとすると、

$$l = \int_0^{2\pi} \sqrt{(dx/d\theta)^2 + (dy/d\theta)^2} d\theta$$

$$= a \int_0^{2\pi} \sqrt{2 - 2\cos\theta} d\theta$$

$$= 2a \int_0^{2\pi} \sin(\theta/2) d\theta$$

$$= 2a \left[-2\cos(\theta/2) \right]_0^{2\pi}$$

$$= 8a.$$

Point

■ 媒介変数を定義して、サイクロイドを plot した.

^{†1} 図形的に説明すると、「直線に沿って円が滑らずに回転するときの円周上の定点の軌跡」である。

ソースコード (図)

```
1
     \begin{tikzpicture}[scale=1.2]
 2
      \draw[fill=lightgray!40, draw=black] (-2,0) ellipse (1.5cm and 2cm);
 3
       \node at (-2,2.2) {$A$};
 4
 5
      \draw[fill=lightgray!40, draw=black] (3,0) ellipse (1.5cm and 2cm);
 6
      \node at (3,2.2) {$B$};
 8
      \fill (-2,1) circle (2pt); \node[left] at (-2,1) {$1$};
 9
      \fill (-2,0) circle (2pt); \node[left] at (-2,0) {\$2\$};
10
      \fill (-2,-1) circle (2pt); \node[left] at (-2,-1) {$3$};
11
      \fill (3,1) circle (2pt); \node[right] at (3,1) {\$a\$};
12
13
       \fill (3,0) circle (2pt); \node[right] at (3,0) {$b$};
14
       \fill (3,-1) circle (2pt); \node[right] at (3,-1) {$c$};
15
      \draw[->, thin] (-2,1) to[bend left=20] (3,1);
16
17
       \draw[->, thin] (-2,0) to[bend left=0] (3,0);
18
      \draw[->, thin] (-2,-1) to[bend left=20] (3,1);
     \end{tikzpicture}
19
```

説明と図

集合 A から集合 B への写像 f とは、任意の $a \in A$ に対して、 $b \in B$ をただひとつ対応させる規則のことである。このとき、A を f の始集合,B を f の終集合とよぶ。

これを次のように表す:

$$f: A \to B$$
.

この写像 f によって, $a \in A$ が $b \in B$ に対応するとき,

$$b = f(a)$$

または

$$f \colon a \mapsto b$$

とかく^{†1}.

たとえば、 $A=\{1,2,3\}$ 、 $B=\{a,b,c\}$ とする。 f(1)=a、 f(2)=b、 f(3)=a とすると、この写像 f は図のように表現できる。

Point

■ 円・楕円・矢印を組み合わせて描写した.

2.3 上方和と下方和

ソースコード (図)

```
1 \begin{tikzpicture}[scale=1.2, >=stealth]
   2
                 \pgfmathsetmacro{\xZero}{pi/6}
   3
                 \pgfmathsetmacro{\x0ne}{pi/3}
                 \pgfmathsetmacro{\xTwo}{2*pi/3}
    4
    5
                 \pgfmathsetmacro{\xThree}{pi}
   6
                 \pgfmathsetmacro{\xFour}{11*pi/6}
   7
                 \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
   8
   9
                 \coordinate (x0) at (\xZero,0);
10
                 \coordinate (x1) at (\x0ne,0);
                 \coordinate (x2) at (\xTwo,0);
11
 12
                 \coordinate (x3) at (\xThree,0);
13
                 \coordinate (x4) at (\xFour,0);
                 \coordinate (x5) at (\xFive,0);
14
15
 16
                 \protect\operatorname{\mathtt{None}} \protect\operatorname{\mathtt
17
                 \pgfmathsetmacro{\maxB}{sin(0.5*pi r)+4}
18
19
                  \pgfmathsetmacro{\minB}{sin(\x0ne r)+4}
20
                  \pgfmathsetmacro{\maxC}{sin(\xTwo r)+4}
21
                  \pgfmathsetmacro{\minC}{sin(\xThree r)+4}
22
                 \protect\operatorname{\mathtt{NaxD}}\{\sin(\mathsf{xThree}\ r)+4\}
23
                 \pgfmathsetmacro{\minD}{sin(1.5*pi r)+4}
24
                 \protect\operatorname{\mathtt{NaxE}}\{\sin(\mathsf{xFive}\ r)+4\}
25
                 \protect\operatorname{\protect}{sin(\xFour r)+4}
26
27
                 \draw[->,thick] (-0.2,0) -- (7.5,0) node[right]{\$x\$};
28
                 \draw[->,thick] (0,-0.2) -- (0,5.8) node[above]{$y$};
29
30
                 foreach \s/\e/\h in {x0/x1/\minA, x1/x2/\minB, x2/x3/\minC, x3/x4/\minD, x4/x5/\minE}{
31
                        \fill[fill=lowerfill, fill opacity=0.9] (\s) rectangle ((\cdot)+(0,\h));
32
                }
33
                 34
                 x3/x4/\min D/\max D, x4/x5/\min E/\max E}
                        [fill=upperfill, fill opacity=0.7] ($(\s)+(0,\hmin)$) rectangle ($(\e)+(0,\hmax)$);
35
36
                 }
37
                 foreach \s/\e/\h in {x0/x1/\minA, x1/x2/\minB, x2/x3/\minC, x3/x4/\minD, x4/x5/\minE,}
38
                                                                                                  x0/x1/\max A, x1/x2/\max B, x2/x3/\max C, x3/x4/\max D, x4/x5/\max E}
39
                         \draw[draw=black!50] (\s) rectangle ($(\e)+(0,\h)$);
                }
40
 41
 42
                 \displaystyle \frac{1}{2} \operatorname{den}(\operatorname{den}(x, \sin(x + 1))}{\operatorname{den}(x, \sin(x + 1))};
43
                 \node[color=black!85, inner sep=2pt] at (7.4, 4.2) {$y=f(x)$};
44
 45
                 \del{draw} (x0) node[below] {$a=x_0$};
46
                 \draw (x1) node[below right]{$x_1$};
47
                 \draw(x2) node[below]{$x_2$};
 48
                 \draw (x3) node[below]{$x_3$};
 49
                  \draw (x4) node[below]{$x_4$};
50
                 \draw (x5) node[below right]{\$x_5=b\$};
51
52
                 \begin{scope}[shift={(6.2,5.2)}, nodes={right, inner sep=3pt, font=\small}]
53
                        \fill[upperfill, opacity=0.7] (0,0) rectangle (0.4,0.2);
54
                        \node at (0.5,0.1) {上方和};
                        \fill[lowerfill, opacity=0.9] (0,-0.4) rectangle (0.4,-0.2);
55
                         \node at (0.5,-0.3) {下方和};
56
57
                 \end{scope}
58 \end{tikzpicture}
```


 \mathbb{R} の部分集合 [a,b] で定義された関数 $f\colon [a,b]\to \mathbb{R}$ は有界であるとする。区間 [a,b] を n 個の小区間 $[x_{i-1},x_i]$ に分割し、小区間 $[x_{i-1},x_i]$ における f の最小値を m_i 、最大値を M_i とする。

図において,f の下方和は $[x_{i-1},x_i]$ を底辺,最小値 m_i を高さとする長方形の面積の和である。f の上方和は $[x_{i-1},x_i]$ を底辺,最大値 M_i を高さとする長方形の面積の和である.

U(f) を f の上方和, L(f) を f の下方和とすると, 次の不等式が成り立つ:

$$m(b-a) \le L(f) \le U(f) \le M(b-a).$$

このことから、ただちに L(f) と U(f) が有界であることが従う。ゆえに、

$$\sup L(f) \in \mathbb{R}, \quad \inf U(f) \in \mathbb{R}$$

が存在する^{†1}.

L(f) と U(f) はそれぞれ上方和と下方和であるため,

$$\sup L(f) \leq \inf U(f)$$

が成り立つ. そして.

$$\sup L(f) = \inf U(f)$$

となることは、f が [a,b] で積分可能であるための必要十分条件であり、このとき、f は [a,b] で可積分であるという。この共通の値を

$$\int_{a}^{b} f(x) \, dx$$

とかき、これを f の区間 [a,b] における定積分とよぶ。

Point

■ 具体的な関数を plot してグラフを作成した.

 $^{^{\}dagger 1}$ ここで「連続の公理」を用いた。連続の公理としてよく知られているのは「空でなく上に有界な集合 $A\subset\mathbb{R}$ は上限 $\sup A$ を持ち、 $\sup A\in\mathbb{R}$ である」という命題である。この命題と同値な命題はほかにもいくつかあり、たとえば「ボルツァーノ・ワイヤストラスの定理」、「ハイネ・ボレルの被覆定理」などが該当する。詳しくは [1] 赤 攝也 『実数論講義 (微分積分学 3)』を参照のこと。

2.4 三角不等式の証明

ソースコード

```
1
                             \begin{proof}
      2
                                         -\abs{x} \leq x \leq x  \leqq x \leqq \abs{x}$\cdots -\abs{y} \leqq y \leqq \abs{y}$\cdots -\abs{y}$\cdots -\abs
      3
      4
                                                      5
      6
                                         7
                                         絶対値の定義\footnote\{x \in \mathbb{R}\0絶対値x \in \mathbb{R}\0絶対値$\absx \in \mathbb{R}\0 も \footnote \footno
      8
      9
                                                      \abs{x}+\abs{y} \ \geqq \ \x+y,-(x+y)\ = \abs{x+y}.
 10
                                         \]
 11
                                          $\abs{x}$について,
                                          \begin{align*}
 12
 13
                                                           & \abs\{x\} = \abs\{x-y + y\} \ \abs\{x-y\} + \abs\{y\}, \ \
 14
                                                           & \therefore \sim \{x}-\{y\} \leq \{x-y\}
 15
                                         \end{align*}
                                         となるから、$x \geqq y$、$x \leqq y$のときがあることを加味すると、
 16
 17
 18
                                                      \abs{\abs{x}-\abs{y}} \ \eqq \ \abs{x \pm y}
 19
                                         \1
20
                                          であるから、以上のことををまとめると、
 21
22
                                                      \label{lem:abs} $$ \abs\{x\}-\abs\{y\}\}  \ \lceil abs\{x \ pm \ y\}  \ \lceil abs\{x\}+\abs\{y\}. $$
23
24
                                         これが証明すべきことであった.
25
                            \end{proof}
```

証明

Point

■ 絶対値記号を\abs を用いて記述した.

2.5 はさみうちの原理

ソースコード(定理環境の定義)

```
1
    \usepackage{tcolorbox}
 2
    \tcbuselibrary{theorems,breakable,skins}
 3
    \definecolor{applePaper}{HTML}{F5F5F7}
    \definecolor{appleInk}{HTML}{1D1D1F}
     \definecolor{appleLine}{HTML}{D1D1D6}
     \definecolor{appleCard}{HTML}{FFFFFF}
 7
     \tcbset{ appleMonoBase/.style={enhanced, breakable,
           \verb"colback-appleCard", colframe=appleLine", coltitle=appleInk",
 8
 9
           fonttitle=\sffamily\bfseries,
10
          boxrule=0.5pt, arc=3pt,
11
          left=8pt,right=8pt,top=6pt,bottom=6pt,
           attach boxed title to top left={xshift=8pt,yshift=-3pt},
12
13
          boxed title style={size=small,interior engine=empty},
14
          drop shadow={black!6!applePaper} }
15
    }
```

文章

Theorem 2.5.1: はさみうちの原理

実数列 $(a_n)_{n\in\mathbb{N}}$ †1および $(b_n)_{n\in\mathbb{N}}$ がともに収束し,

$$\lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} b_n = a$$

であり、なおかつ、任意の $n \in \mathbb{N}$ に対して $a_n \leq b_n$ であるとする.

この条件のもとで、実数列 $(c_n)_{n\in\mathbb{N}}$ が任意の $n\in\mathbb{N}$ に対して

$$a_n \leq c_n \leq b_n$$

であるならば、 $(c_n)_{n\in\mathbb{N}}$ は収束し、以下の式が成り立つ:

$$\lim_{n \to \infty} c_n = a.$$

証明. 仮定により、任意の $\varepsilon>0$ に対して、 $N_1\in\mathbb{N},\ N_2\in\mathbb{N}$ が存在し、任意の $n\in\mathbb{N}$ に対して、

$$n \ge N_1 \Longrightarrow |a - a_n| < \varepsilon,$$

 $n \ge N_2 \Longrightarrow |a - b_n| < \varepsilon$

となる. ここで $N = \max\{N_1, N_2\}$ と定めると, $n \ge N$ のとき,

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$$

が成り立ち、 $|a-c_n|<\varepsilon$ であるので、

$$\lim_{n \to \infty} c_n = a.$$

これが証明すべきことであった. □

Point

■ tcolorbox.sty を用いて定理環境を記述した.

 $^{^{\}dagger 1}$ この数列を $\{a_n\}$ と表記することもあるが,この表記は集合 $\{a_n\mid n\in\mathbb{N}\}$ と紛らわしいので,ここでは用いないこととする.

2.6 内心

ソースコード (図)

```
1
          \begin{tikzpicture}[scale =1.8]
 2
              \draw[->] (-0.2,0) -- (4.3,0) node[below] {\$x\$};
              \draw[->] (0,-0.2) -- (0,3.3) node[left] {$y$};
 3
 4
              \coordinate (0) at (0,0) node [below left ] at (0) {\rm mathrm}\{0\};
 5
              \coordinate (A) at (4,0) node [below] at (A) {$\mathrm{A}$};
 6
              \coordinate (B) at (0,3) node [above right] at (B) {$\mathrm{B}$$};
 7
              \draw (0)--(A)--(B)--cycle;
 8
              \protect{pgfmathsetmacro{xL}{(3*4 + 4*0)/(4+3)}}
 9
              \protect{pgfmathsetmacro{yL}{(3*0 + 4*3)/(4+3)}}
10
              \protect{macro{xM}{(4*0 + 5*0)/(5+4)}}
              \protect{yM}{(4*3 + 5*0)/(5+4)}
11
12
              \pgfmathsetmacro{xN}{(5*0 + 3*4)/(3+5)}
13
              \protect{pgfmathsetmacro{yN}{(5*0 + 3*0)/(3+5)}}
14
              \coordinate (L) at (\xL,\yL) node [above right] at (L) {$\mathrm{L}$};
              \coordinate (M) at (\xM,\yM) node [above left] at (M) {\rm M}_{M};
15
16
              \coordinate (N) at (\xN,\yN) node [above right] at (N) \{\xspace N,\yspace N,\yspac
17
              \draw[name path= line 0,red] (0)--(L);
18
19
              \draw[name path= line A,blue](A)--(M);
20
              \draw[name path= line B,orange](B)--(N);
21
              \path[name intersections={of=line 0 and line B, by=P}];
22
              \fill (P) circle (1pt) node[above,xshift=1pt,yshift=3pt] {\$\mathrm{P}\$};
23
              \text{draw let } p1=(\$(0)!(P)!(A)-(P)\$), \\ n1=\{\text{veclen}(\x1,\y1)\} \text{ in circle } [at=(P), radius=\n1];
24
25
              \draw pic[draw=blue, angle radius=1.0cm,font=\footnotesize,"$\alpha$"] {angle=M--A--0};
26
              \draw pic[draw=blue, angle radius=1.0cm,font=\footnotesize,"$\alpha$"] {angle=B--A--M};
27
              \draw pic[draw=red, angle radius=1.0cm,font=\footnotesize,"$\tfrac{\pi}{4}$"] {angle=L--0--B};
28
              \draw pic[draw=red, angle radius=1.0cm,font=\footnotesize,"$\tfrac{\pi}{4}$"] {angle=A--0--L};
              \draw pic[draw=orange, angle radius=1.0cm,font=\footnotesize,"$\beta$"] {angle=0--B--N};
29
30
              \draw pic[draw=orange, angle radius=1.0cm,font=\footnotesize,"$\beta$"] {angle=N--B--A};
          \end{tikzpicture}
31
```

内心の定義および図

Definition 2.6.1: 内心

三角形の各頂点の内角を二等分する線は一点で交わり、この点を三角形の内心という。

Point

■ angles ライブラリを読み込んで TikZ で角度を描画した.

ソースコード (図)

```
1
    \tdplotsetmaincoords{60}{120}
2
    \begin{tikzpicture}[tdplot_main_coords,scale=1.5]
3
       \protect\operatorname{\protect} \{5 * \sin(45) * \cos(45)\}\
4
       \protect\operatorname{\protect}{pgfmathsetmacro}{y}{5 * sin(45) * sin(45)}
5
       6
7
      \draw[thick,->] (0,0,0) -- (4,0,0) node[anchor=north east]{x};
8
       \draw[thick,->] (0,0,0) -- (0,4,0) node[anchor=north west]{$y$};
9
      \displaystyle \frac{(0,0,0) -- (0,0,4) \text{ node[anchor=south]}}{x};
10
      11
12
13
       \label{lem:dashed} $$ \operatorname{dashed,gray} (0,0,0)--(\x,0,0)--(\x,\y,0)--(0,\y,0)--(0,0,0); $$
14
       \label{lem:draw} $$ \operatorname{dashed,gray} (0,0,0)--(\x,0,0)--(\x,0,\x)--(0,0,\x)--(0,0,0); $$
15
       \label{lem:draw} $$ \draw[dashed,gray] $$ (0,0,0)--(0,\y,0)--(0,\y,\z)--(0,0,\z)--(0,0,0); $$
16
       \draw[dashed,gray] (\x,0,\z)--(\x,\y,\z)--(\x,\y,0);
17
       \draw[dashed,gray] (\x,\y,0)--(\x,\y,\z)--(0,\y,\z);
18
       \draw[gray] (0,0,0)--(\x,\y,\z);
19
20
       \draw[gray] (0,0,0)--(\x,\y,0);
21
22
      (1,0,0) coordinate (A) -- (0,0,0) coordinate (B) -- (0,1,0) coordinate (C);
23
      \label{lem:continuous} $$ \down{1.5} {0,0,0}}{0.5}{0}{45}{anchor=north}{$\varphi$} $$
24
      \verb|\tdplotsetthetaplanecoords{|}45|
      25
26
       \node at (0.5, 0.5, 1) {$\theta$};
27
    \end{tikzpicture}
```

説明と図

球座標 (r,θ,φ) から直交座標 (x,y,z) への変換は次のようになる:

$$\begin{cases} x = r \sin \theta \cos \varphi, \\ y = r \sin \theta \sin \varphi, \\ z = r \cos \theta. \end{cases}$$

直交座標 (x,y,z) から球座標 (r,θ,φ) への変換は次のようになる:

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2}, \\ \theta = \arccos\left(z/\sqrt{x^2 + y^2 + z^2}\right), \\ \varphi = \operatorname{sgn}(y) \arccos\left(x/\sqrt{x^2 + y^2}\right). \end{cases}$$

Point

■ tikz-3dplot を用いて、3次元での極座標を描写した.

ソースコード (図)

```
1 \tdplotsetmaincoords{70}{0}
  2 \begin{tikzpicture}[tdplot_main_coords, scale=0.75]
            \coordinate (A) at (-3.6,-2.9,-9);
            \coordinate (B) at (-5.1,5.8,-9);
  5
            \coordinate (C) at (4.1,-1.9,-9);
  6
            \coordinate (0) at (0,0,0);
            \coordinate (H) at (0.25,0.15,-9);
  7
  8
  9
            \draw (A) -- (C) -- (O) -- cycle;
10
            \draw(B) -- (0);
            \draw (B) -- (A) -- (O);
11
12
            \draw[dashed](B) -- (C);
13
            \draw (H) -- (A);
14
            \fill [opacity=0.35,gray!80] (0) -- (A) -- (H) -- cycle;
15
16
            draw (0) -- (H);
            \pic [draw, angle radius=8pt] {right angle = 0--H--A};
17
18
            \node[below left] at (A) {$\mathrm{A}$};
19
20
            \node[above left] at (B) {$\mathrm{B}$};
21
            \node[below right] at (C) {$\mathrm{C}$};
22
            \node[above]
                                                            at (0) {$\mathrm{0}$};
23
            \node[below right] at (H) {$\mathrm{H}$};
24
25
            \frac{(60)!.2!(A)!30pt!320:(B)}{(A)!30pt!320:(B)} and \frac{(60)!.8!(A)!30pt!320:(B)}{(A)!30pt!320:(B)} ... (A)
26
                 node [midway, above, fill=white, inner sep=2.5pt] {$a$};
27
            \frac{(6)!.2!(B)!30pt!190:(A)}{0} and \frac{(0)!.8!(B)!30pt!190:(A)}{0} and \frac{(0)!.8!(B)!30pt!190:(A)}{0} .. (B)
28
                 node [midway, above, fill=white, inner sep=2.5pt] {$b$};
            \label{lem:decomposition} $$ (0) ... controls ($(0)!.2!(C)!30pt!140:(A)$) and ($(0)!.8!(C)!30pt!140:(A)$) ... (C) $$ (C
29
                 node [midway, above, fill=white, inner sep=2.5pt] {$c$};
30
31 \end{tikzpicture}
```

説明と図

$$\vec{a} = \overrightarrow{OA}, \quad \vec{b} = \overrightarrow{OB}, \quad \vec{c} = \overrightarrow{OC}.$$

とし、 \vec{n} を $\triangle OAB$ の法線ベクトルとする. このとき、

$$\overrightarrow{OH} = s\overrightarrow{a} + t\overrightarrow{b} + u\overrightarrow{c} \quad (s + t + u = 1, \ s, t, u \in \mathbb{R})$$

とおくと, $\vec{n} \cdot \overrightarrow{AH} = 0$ であるから,

$$\vec{n}\cdot(\overrightarrow{\mathrm{OH}}-\overrightarrow{\mathrm{OA}})=0.$$
 i.e.,
$$\vec{n}\cdot\{(s\vec{a}+t\vec{b}+u\vec{c})-\vec{a}\}=0.$$

この式から \overrightarrow{OH} の長さを求めたのち、 $\triangle OAH$ に三平方の定理を適用すると、 \overrightarrow{AH} の長さを求めることができる.

Point

■ angles ライブラリを読み込んで TikZ で直角を描画した.

ソースコード (樹形図・1 回目が表の場合)

```
\begin{tikzpicture}
1
2
      [ scale=1.0, grow=right, level distance=30mm,
         sibling distance=45mm, edge from parent/.style={draw, -stealth}
3
4
5
      \node {\textcolor{red}{1回目:表}}
6
      child[grow=0,edge from parent/.style={draw=red, -stealth}] { node {\textcolor{red}{2回目:表}}
           child[grow=0, edge from parent/.style={draw=black, -stealth}] { node {3回目:表} }
           \label{lem:child} $$ $$ child[grow=-40, edge from parent/.style={draw=red, -stealth}] { node {\textcolor{red}{3回}=: §}} } $$ }
8
9
      child[grow=-60] { node {2回目:裏}
10
          child[grow=0] { node {3回目:表} }
11
          child[grow=-40] { node {3回目:裏} } };
    \end{tikzpicture}
12
```

説明と図

コインを3回投げるとき、各回で表または裏が同じ確率で出ると仮定する。ここで、「1回目:表、2回目:表、3回目: 裏」となる確率を求めたい。この場合の出方は右のように樹形図で表すことができる。

コインを 1 回投げたときに表または裏が出る確率はそれぞれ $\frac{1}{2}$ であり、独立な試行を 3 回行うので、出方は

$$2^3 = 8$$

通りある。その中で、「表・表・裏」に対応するのは1通りだけであるため、求める確率は

 $\frac{1}{8}$

である.

また、k を n 以下の自然数として、コインを n 回投げたときに表が k 回出る確率は

$$\binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} = \binom{n}{k} \left(\frac{1}{2}\right)^{n} \dagger^{1}$$

である。

1回目:表 → 2回目:表 → 3回目:表 3回目:裏 2回目:裏 → 3回目:表

3回目:裏

Point

■ 樹形図を描くために、trees ライブラリを用いた.

 $^{^{\}dagger 1} \binom{n}{k}$ は $_n \mathrm{C}_k$ ともかき,n 個の中から k 個を選ぶ組み合わせの数を表す.

2.10 増減表とグラフ

ソースコード (増減表)

```
1
   \begin{tabular}{|c||cccccc|} \hline
2
              & $\cdots$ & $0$ & $\cdots$ & $1/3$ & $\cdots$ & $1$ & $\cdots$ \\ \hline
3
     $f'(x)$ & $-$
                         & $0$ & $+$
                                           & $+$ & $+$
                                                              & $0$ & $+$
                                                                               \\ \hline
                                           & $0$ & $-$
     $f''(x)$ & $+$
                         & $+$ & $+$
                                                              & $0$ & $+$
                                                                               \\ \hline
4
5
     $f(x)$ & \ser
                                & \ner
                                                   & \nel
                                                                    & \ner
                                                                               \\ \hline
6
   \end{tabular}
```

ソースコード (グラフ)

```
1
     \begin{tikzpicture}[scale = 4.0]
2
       \draw[->,>=stealth,semithick](-0.02,0)--(1.02,0)node[above right]{$x$};
3
       \draw[->,>=stealth,semithick](0,-0.02)--(0,1.02)node[right]{$y$};
4
       \draw(0,0)node[below right]{0};
5
       \draw[domain=-0.02:1.02,samples=100]
6
       plot(\x, {(\x)^4 - (8/3)*(\x)^3 + 2*(\x)^2})
7
       node[below right]{$y=f(x)$};
8
       \def\xa{0}
9
       \left( \frac{1}{3} \right)
10
       \def\xc{1}
11
       \label{eq:local_pgfmathsetmacro} $$ \operatorname{fxa}(\xa)^4 - (8/3)*(\xa)^3 + 2*(\xa)^2 $$
12
       \label{eq:local_pgfmathsetmacro} $$ \left( xb \right)^4 - (8/3)*(xb)^3 + 2*(xb)^2 \right. $$
13
       \pgfmathsetmacro\fxc\{(\xc)^4 - (8/3)*(\xc)^3 + 2*(\xc)^2\}
14
       \draw[dashed] (\xa,0)--(\xa,1);
15
16
       \displaystyle \operatorname{deshed} (0, {\hat x_a}) -- (1, {\hat x_a});
17
       \fill (\xa,{\fxa}) circle[radius=0.3pt];
18
       \draw[dashed] (\xb,0)--(\xb,1);
19
       \displaystyle \frac{0,{\fxb}}{-(1,{\fxb})};
20
       \fill (\xb,{\fxb}) circle[radius=0.3pt];
21
       \node[left] at (0,\fxb) {$f(1/3)$};
22
       \node[below right] at (\xb,0) \{$1/3$\};
23
       \draw[dashed] (\xc,0)--(\xc,1);
24
       \draw[dashed] (0,{\fxc})--(1,{\fxc});
25
       \fill (\xc,{\fxc}) circle[radius=0.3pt];
26
       \node[left] at (0,\fxc) {f(1)$};
27
       \node[below right] at (\xc,0) {$1$};
28
     \end{tikzpicture}
```

説明、表とグラフ

x が実数全体を動くとき、 $f(x)=x^4-8x^3/3+2x^2$ とおくと、 $f'(x)=4x(x-1)^2$ 、f''(x)=4(3x-1)(x-1) であるから、増減表およびグラフは以下のようになる。

x		0		1/3		1	
f'(x)	_	0	+	+	+	0	+
f''(x)	+	+	+	0	_	0	+
f(x)	\ <u></u>		1		^		Ì

Point

■ \ner, \nel, \sel, \ser は TikZ を用いて定義したマクロである.

2.11 楕円 (ケプラーの法則)

ソースコード

```
1
                                                         \begin{tikzpicture}[scale=0.635]
           2
                                                                                 \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
           3
                                                                                 \protect\operatorname{\protect}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protec
           4
                                                                                  \protect\operatorname{\protect}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protect}}{\operatorname{\protec
           5
           6
                                                                                 \draw[->,>=stealth,semithick](-8,0)--(4,0)node[above]\{$x$\};
           7
                                                                                 \draw[->,>=stealth,semithick](0,-4.5)--(0,4.5)node[right]{$y$};
           8
                                                                                 \draw(0,0)node[below left]{0};
           9
 10
                                                                                 \node at (-8,0) [below left] \{\$-a(1+e\$)\};
 11
                                                                                 \node at (2,0) [below right] {\$a(1-e)\$};
 12
 13
                                                                                 \draw [black] (-3,0) circle [x radius=5cm, y radius=3cm];
   14
 15
                                                                                 \fill (-6,0) circle (2pt) node at (-6,0) [below right] {\$-2ae\};
                                                                                 \fill (-3,0) circle (2pt) node at (-3,0) [below right] {\$-ae\$};
 16
 17
 18
                                                                                 \coordinate (A) at (1, \t) node at (A) [above right] \{\$(x,y)\$\};
                                                                                 \fill (A) circle (2pt) ;
 19
 20
                                                                                  \draw (0,0)--(A)--(-6,0)--cycle;
 21
 22
                                                                                 \draw[dashed] (-6,0) to [out=30+\s,in=150+\s] (1,\t);
 23
                                                                                 \node at (-5/2, {(3+\t)/2}) {$r'$};
 24
 25
                                                                                 \draw[dashed] (0,0) to [out=-30+\u,in=-150+\u] (1,\t);
26
                                                                                 \node at (1,\{(-2/3+\t)/2\}) {$r$};
 27
                                                         \end{tikzpicture}
```

説明と図

極方程式が

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

で表される楕円を描写した. 焦点は O と (-2ae,0) である.

ここで e は離心率を表し,

$$e = \frac{\sqrt{a^2 - b^2}}{a}$$

である。ただし、a は楕円の長軸の半分の長さ、b は短軸の半分の長さを表す。

この楕円を x-y 座標系で表すと、その方程式は次のようになる:

$$\frac{(x+ae)^2}{a^2} + \frac{y^2}{b^2} = 1.$$

この楕円は「ケプラーの法則」の説明に用いられる。その場合、原点 O は太陽を表し、惑星は楕円の周を動くと設定する。

つまり、惑星は太陽を焦点とした楕円軌道を公転する.

Point

■ 楕円上の点の座標を\pgfmathsetmacroを用いて設定した.

2.12 回転体

ソースコード

```
1
              \begin{tikzpicture}[x=1.75cm,y=1.75cm,>={Latex[length=2mm]},
  2
                    axis/.style ={-Latex,very thick,draw=appleGrayDark},scale=1.2
  3
   4
  5
                     \left\{-30\right\}
  6
                    \pgfmathsetmacro{\k}{abs(sin(\angle))}
   7
  8
                    \def\xa\{1.3\} \def\ra\{1.3\}
  9
                     \def\xx{3.0} \def\xx{1.0}
10
                    \def\xb{5.5} \def\rb{1.7}
11
12
                     \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
13
                     \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
                     \pgfmathsetmacro{\hrb}{\k*\rb}
14
15
16
                    \coordinate (A) at (\xa,\ra);
17
                     \coordinate (X) at (\xx,\rx);
                     \coordinate (B) at (\xb,\rb);
18
19
20
                    \shade[top color=appleGrayLight!85,
21
                          bottom color=appleGrayDark!35,
22
                           shading angle=-90]
23
                     (\xa, 0) --
24
                    plot[smooth,tension=.8] coordinates {(A)(X)(B)} --
25
                     (\xb,0) --
26
                    plot[smooth, tension=.8] coordinates \{(\xb, -\rb)(\xx, -\rx)(\xa, -\ra)\} --
27
                    cvcle;
28
29
                     30
                                \shade[top color=appleGrayLight!85,
31
                                       bottom color=appleGrayDark!35,
32
                                       shading angle=-90]
33
                                 (\X,0) ellipse (\{\HR\}\ and\ \{\R\});
34
35
                     \draw[black,thick] plot[smooth,tension=.8] coordinates {(A)(X)(B)};
36
37
                    \displaystyle \frac{(xx,-rx)(xx,-rx)}{(xx,-rx)(xx,-rx)}
38
39
                    \draw[black,thick] (\xa,0) ellipse ({\hra} and {\ra});
                     \draw[black,thick] (\xb,0) ellipse ({\hrb} and {\rb});
40
41
                     \draw[black,dotted,thick] (\xx,0) ellipse ({\hrx} and {\rx});
42
43
                     \draw[appleBlue,thick,-Latex]
44
                     ([shift={(0,-0.3)}]\xb+1.05,0) arc(-90:210:0.12 and 0.3);
45
46
                    \draw[axis] (-0.7,0) -- (\xb+1.5,0) node[below,font=\large] {$x$};
                     \draw[axis] (0,-2.3) -- (0, 2.3) node[left,font=\large] {$y$};
47
48
                     \draw[axis] (120:1.3) -- (0,0) -- ++(-60:2.2) node[below right,font=\large] {$z$};
49
50
                     \foreach \X/\R in {\xa/\ra,\xx/\rx,\xb/\rb}{
51
                                 \draw[dotted] (\X,0) -- (\X,\R);
52
                          }
53
                     \node[below left=2pt,font=\large] at (0,0) {$\mathrm{0}$};
54
55
                     \node[below,font=\large] at (\xa,0) {$a$};
56
                     \node[below,font=\large] at (\xx,0) {$x$};
57
                     \node[below,font=\large] at (\xb,0) {$b$};
58
                     \node[above=4pt,font=\large] at (\xx,\rx) {$y = f(x)$};
59
              \end{tikzpicture}
```


区間 [a,b] において連続な関数 $f(x) \ge 0$ を考える.

このとき、曲線 y=f(x) を x 軸の周りに 1 回転させてできる回転体 A は、次のように表される:

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 \le f(x)^2\}$$

この立体の体積 V は,x 軸に垂直な断面(半径 f(x) の円)の面積 $\pi f(x)^2$ を区間 [a,b] で積分することで求められる.

$$V = \pi \int_a^b f(x)^2 dx.$$

この式が示唆する重要な点は、V は A が回転体である場合に限定されないということである。つまり、x 軸に垂直な平面による断面積が常に $\pi f(x)^2$ となる任意の立体の体積は、その形状にかかわらず V に等しい。

この命題は、下記の「カヴァリエリの原理」によって保証される.

Theorem 2.12.1: カヴァリエリの原理

空間 \mathbb{R}^3 内の 2 つの立体 A,B を考える。 平面 x=c によって切り取られる断面をそれぞれ

$$A_c = \{(y, z) \in \mathbb{R}^2 \mid (c, y, z) \in A\}, \quad B_c = \{(y, z) \in \mathbb{R}^2 \mid (c, y, z) \in B\}$$

と定義する。この条件のもとで、すべての c に対して断面積が等しい、すなわち

$$area(A_c) = area(B_c)$$

が成り立つならば、2つの立体の体積もまた等しい:

$$vol(A) = vol(B)$$
.

Point

■ \shade を用いて、色のグラデーションを表現した。

ソースコード

```
1
    \tdplotsetmaincoords{80}{65}
2
    \begin{tikzpicture}[tdplot_main_coords, scale=0.74]
3
      \left\{ 4\right\}
4
      \left\{ def \right\}
5
      \pgfmathsetmacro{\angleOutlineLeft}{\tdplotmainphi + 180}
6
      \pgfmathsetmacro{\angleOutlineRight}{\tdplotmainphi}
      \label{local_pgfmathset} $$ \operatorname{H}\left(L^*L - R^*R\right)$$
7
8
      \pgfmathsetmacro{\rSphereOne}{(\H * \R) / (\L + \R)}
9
      \pgfmathsetmacro{\zSphereOne}{\rSphereOne}
10
      \coordinate (C_sphere_one) at (0,0,\zSphereOne);
11
      \pgfmathsetmacro{\rSphereTwo}{12*sqrt(21)/49}
      \pgfmathsetmacro{\zSphereTwo}{\zSphereOne + (\rSphereOne + \rSphereTwo)}
12
13
      \coordinate (C_sphere_two) at (0,0,\zSphereTwo);
14
      \coordinate (Apex) at (0,0,\H);
15
      \coordinate (0) at (0,0,0);
      \coordinate (P_left) at ({\R*cos(\angleOutlineLeft)}, {\R*sin(\angleOutlineLeft)}, 0);
16
17
      \coordinate (P_right) at ({\R*cos(\angleOutlineRight)}, {\R*sin(\angleOutlineRight)}, 0);
18
19
      \shade[inner color=darkgray2!20, outer color=darkgray2, opacity=0.6]
20
      (P_right) -- (Apex) -- (P_left) arc (\angleOutlineLeft:{\angleOutlineRight+360}:\R) -- cycle;
21
      \shade[ball color=darkgray2, opacity=0.9] (C_sphere_two) circle (\rSphereTwo cm);
22
      \shade[ball color=darkgray2, opacity=0.9] (C_sphere_one) circle (\rSphereOne cm);
23
      \draw[dashed, thin, gray] (C_sphere_one) -- (0);
24
      \draw[dashed, thin, gray] (C_sphere_two) -- (C_sphere_one);
25
      \draw[thick, black] (P_left) arc (\angleOutlineLeft:{\angleOutlineRight+360}:\R);
26
      \draw[thick, black] (P_right) -- (Apex) -- (P_left);
27
      \draw[thick, black, densely dashed] (P_right) arc (\angleOutlineRight:\angleOutlineLeft:\R);
28
      \fill [black] (C_sphere_one) circle (1.5pt);
29
      \fill [black] (C_sphere_two) circle (1.5pt);
30
      \fill [black] (0) circle (1.5pt);
      \frac{-5,0,0}{--5,0,0} node [below left, font=\frac{5,0,0}{--5,0,0}
31
32
      draw [-stealth, semithick] (0,-5,0) -- (0,5,0) node [below right, font=\large] {$y$};
      33
34
    \end{tikzpicture}
```

説明と図

底面の半径がr,母線の長さがlの円錐に内接する2つの球を考える.

円錐の高さを h とすると、三平方の定理により

$$h = \sqrt{l^2 - r^2}.$$

図下部の球の半径を r_b とすると

$$r_b = \frac{rh}{l+r}.$$

よって、 r_b は以下のように表せる:

$$r_b = \frac{r\sqrt{l^2 - r^2}}{l + r}.$$

図上部の球の半径も同様の考察により求められる。

Point

■ tikz-3dplot を用いて、3次元の円錐と内接する球を描画した。

ソースコード

```
1
          \begin{tikzpicture}[scale=1.42,>={Round Cap[]},angle radius=6mm,
 2
               font=\footnotesize,thick, help lines/.style={draw=gray!50, thin, dashed}]
 3
              \def\alphaDeg{25}
 4
              \def\betaDeg{35}
  5
               \coordinate (0) at (0,0);
 6
              \coordinate (M) at ({6*cos(\alphaDeg)*cos(\betaDeg)}, {6*sin(\alphaDeg)*cos(\betaDeg)});
 7
              \coordinate (N) at ({6*cos(\alphaDeg+\betaDeg)}, {6*sin(\alphaDeg+\betaDeg)});
 8
              \coordinate (A) at (0, {6*sin(\alphaDeg+\betaDeg)});
 9
              \coordinate (B) at (M \mid- A); \coordinate (C) at (M \mid- O);
10
              \draw[help lines] (0) rectangle (B);
              \draw[help lines] (0) -- (M) -- (N) -- cycle;
11
12
13
               \draw[color=darkbrown] (0) -- (A) node[midway, left=2pt, text=darkbrown] {$\sin(\alpha+\beta)$};
14
               \draw[color=appleOrange] (M) -- (C) node[midway, right=2pt, text=appleOrange] {$\sin\alpha\cos\beta$};
15
               \draw[color=mypurple] (B) -- (M) node[midway, right=2pt, text=mypurple] {$\cos\alpha\sin\beta$};
16
               \draw[color=appleBlue] (A) -- (N) node[midway, above=2pt, text=appleBlue] {$\cos(\alpha+\beta)$};
              \draw[color=appleOrange] (0) -- (C) node[midway, below=2pt, text=appleOrange] {\$\cos\alpha\cos\beta\$\};
17
18
               \draw[color=mypurple] (N) -- (B) node[midway, above=2pt, text=mypurple] {$\sin\alpha\sin\beta$};
19
               \draw (0) -- (N) node[midway, above, sloped] {\$1\$};
20
               \draw[color=myemailcolor] (0) -- (M) node[midway, above, sloped, text=myemailcolor] {$\cos\beta$};
21
              \draw[color=myemailcolor] (M) -- (N) node[midway, below right, sloped, text=myemailcolor] {$\sin\beta$};
22
23
              \pic[draw=myblue, text=myblue, angle eccentricity=1.6, "$\alpha$"] {angle=C--O--M};
24
              \pic[draw=myemailcolor, text=myemailcolor, angle eccentricity=1.6, "$\beta$"] {angle=M--O--N};
25
              \pic[draw=myblue, text=myblue, angle eccentricity=1.6, "$\alpha$"] {angle=B--M--N};
26
               \pic[draw, angle radius=3mm, angle eccentricity=1.6] {right angle = O--M--N};
27
               \pic[draw=myblue, text=myblue, fill=myblue!10, angle eccentricity=1.6,
28
                   "$\tfrac{\pi}{2} - \alpha$"] {angle=0--M--C};
29
30
              \node[below left] at (0) {$\mathrm{0}$}; \node[above right] at (M) {$\mathrm{M}$};
31
              \node[above] at (N) {$\mathrm{N}$}; \node[below right] at (C){$\mathrm{C}$};;
32
               \node[above left] at (A) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node[above right] at (B) {\scriptstyle {\rm A}} ; \\ \node
33
          \end{tikzpicture}
```

説明と図

右図より、正弦・余弦の加法定理は次のように表される:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta,$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta.$$

ここで、 α と β は任意の角度である.

このことから、正接の加法定理は次のように表される:

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}.$$

Point

■ \def を用いて、角度 α 、 β を任意に設定できるようにした。

2.15 「一意性」の意義

ソースコード

```
1
     \begin{tikzpicture}[scale=1.2]
 2
       \begin{axis}[
 3
           axis lines=middle,
           xmin=-1.5, xmax=1.5,
 4
 5
           ymin=-1.5, ymax=1.5,
 6
           xlabel={$x$},
 7
           ylabel={$y$},
           xtick=\{-1, -0.577, 0.577, 1\},\
 8
 9
           ytick={-1, 1},
10
           xticklabels={$a$, $\xi_1$, $\xi_2$, $b$},
           yticklabels={$f(a)$, $f(b)$},
11
12
           xlabel style={anchor=north east, font=\footnotesize},
13
           ylabel style={anchor=north east, font=\footnotesize},
           tick label style={anchor=north east,font=\footnotesize},
14
           every y tick label/.style={anchor=east, font=\footnotesize},
15
16
           samples=200,
17
           domain=-1.3:1.3,
           width=12cm,
18
19
           height=10cm,
20
           legend pos=outer north east,
21
           legend cell align={left}
22
23
         \addplot [blue, thick] \{x^3\} node[right, pos=0.8, font=\footnotesize] \{\$y=f(x)\$\};
24
25
         \coordinate (A) at (axis cs:-1,-1);
26
27
         \coordinate (B) at (axis cs:1,1);
28
         \addplot [orange, thick, domain=-1:1] {x};
29
30
31
         \pgfmathsetmacro{\xone}{-1/sqrt(3)}
32
         \pgfmathsetmacro{\yone}{\xone^3}
33
         \coordinate (C1) at (axis cs:\xone, \yone);
34
         \addplot [red, dashed, domain=-1.2:0.2] \{1*(x - xone) + yone\};
35
36
37
         \pgfmathsetmacro{\xtwo}{1/sqrt(3)}
38
         \pgfmathsetmacro{\ytwo}{\xtwo^3}
39
         \coordinate (C2) at (axis cs:\xtwo, \ytwo);
         \addplot [red, dashed, domain=-0.2:1.2] \{1*(x - xtwo) + ytwo\};
40
41
         \node[circle, fill=blue, inner sep=1.5pt] at (A) {};
42
         \node[circle, fill=blue, inner sep=1.5pt] at (B) {};
43
         \node[circle, fill=red, inner sep=1.5pt] at (C1) {};
44
45
         \node[circle, fill=red, inner sep=1.5pt] at (C2) {};
46
         \label{lower} $$ \node[below\ right, font=\footnotesize] at (A) {$\mathbb{A}(a,f(a))$}; $$
47
48
         \node[above left,font=\footnotesize] at (B) {$\mathbb{B}(b,f(b))$};
         \node[orange, rotate=45, above] at (axis cs:-0.5, -0.5) {\footnotesize 1};
50
51
52
         \node [below right, font=\footnotesize] at (axis cs:0,0) {$\mathrm{0}$};
53
54
         \draw[dashed, gray] (axis cs:\xone, 0) -- (C1);
55
         \draw[dashed, gray] (axis cs:\xtwo, 0) -- (C2);
56
       \end{axis}
57
     \end{tikzpicture}
```


数学において、「一意性」を考えることは多い。ここでは「平均値の定理」を用いて一意性の意義を述べる。 まず、平均値の定理がどのようなものか確認しよう。

Theorem 2.15.1: 平均値の定理

実数値関数 $^{\dagger 1}$ f が閉区間 [a,b] で連続であり、開区間 (a,b) で微分可能であるならば、

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

を満たす実数 c が、開区間 (a,b) の中に存在する.

 $^{\dagger 1}$ f をベクトル値関数とすると,一般に平均値の定理は成立しないことに注意する.

この定理の主張を少し変更してみよう:

実数値関数 f が閉区間 [a,b] で連続であり、開区間 (a,b) で微分可能であるならば、

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

を満たす実数 c が、 開区間 (a,b) の中にただひとつ存在する.

ここで「 $c\in(a,b)$ が存在する」という主張を「 $c\in(a,b)$ がただひとつ存在する」というより強い主張に変更した。この主張は偽である。たとえば、 $f(x)=x^3$ という関数を考えたとき、f は閉区間 [-1,1] で連続、開区間 (-1,1) で微分可能であるが、図のように、条件を満たす $c\in(-1,1)$ は 2 つ存在する。

このことから、一意性が数学において重要な意義を持つことがわかる.

Point

■ \addplot を用いて、関数のグラフと割線を描画した.

3.1 ばねとブロック(力学)

ソースコード (図)

```
\begin{tikzpicture}[scale=1.1,line join=round]
1
 2
       \tikzset{
         rail/.style = {line width=5pt, draw=darkgray!80, line cap=butt, line join=round},
 3
 4
         thickRail/.style
                             = {draw=darkgray!80, line width=8pt, line cap=butt, line join=round},
 5
         dash line/.style
                             = {line width=1.5pt, draw=darkgray!60, densely dashed, line cap=butt},
 6
         dim line/.style
                             = {line width=1pt, arrows={-Stealth}, draw=gray},
 7
         springStraight/.style = {line width=1.6pt, draw=darkgray, line cap=round},
 8
         springCoil/.style = {draw=darkgray, decorate, decoration={coil, amplitude=6pt},
 9
             line width=1.6pt, line cap=round},
10
                             = {draw=black!80, top color=darkgray!90, bottom color=darkgray!60,
11
             blur shadow={shadow xshift=2pt,shadow yshift=-2pt,shadow blur steps=6}},
12
      }
13
14
       \coordinate (RailJoint)
                                 at (0.0, -1.6);
       \coordinate (RailCurve)
                                 at (5.2, 2.5);
15
       \coordinate (RailEnd)
16
                                 at (5.7, 3.4);
17
       \coordinate (AuxLeft)
                                 at (-5.7, 0.0);
18
       \coordinate (Hbase)
                                 at (6.0,-1.6);
                                 at (6.0, 2.5);
19
       \coordinate (Htop)
       \coordinate (SpringLeft) at (-5.65,-1.3);
20
21
       \coordinate (SpringRight) at (-4.0,-1.3);
22
                                 at (-4.0,-1.53);
23
       \coordinate (BlockLL)
24
       \coordinate (BlockUR)
                                 at (-3.2, -1.10);
25
       \coordinate (BL)
                                 at ($(BlockLL)+(0.465,0)$);
26
       \coordinate (BU)
                                 at (\$(BlockUR)+(0.465,0)\$);
27
       \coordinate (BC)
                                 at ($(BL)!0.5!(BU)$);
28
29
       \coordinate (Xbase)
                                 at (0,-1.10);
30
       \coordinate (Xtop)
                                 at (0, 0.30);
31
32
       \coordinate (ZeroBase)
                                 at (-1.8, 0.45);
33
       \draw[dash line] (RailJoint) -- (7.4,-1.6);
34
35
       \draw[dash line] (RailCurve) -- (7.4, 2.5);
36
37
       \draw[dim line] (Hbase) -- (Htop) node[midway,right] {$h$};
38
39
       \draw[rail] (RailLeft) -- (RailJoint)
40
       to[out=0,in=-120] (RailCurve) -- (RailEnd);
       \draw[thickRail] ($(RailLeft)+(0,-0.08)$) -- (AuxLeft);
41
42
       \draw[springStraight] ($(SpringLeft)+(0.065,0)$) -- ++(0.2,0);
43
44
       \draw[springCoil]
                             ($(SpringLeft)+(0.265,0)$) -- ($(SpringRight)+(0.265,0)$);
45
       \draw[springStraight] ($(SpringRight)+(0.265,0)$) -- ++(0.2,0);
46
       \draw[block] (BL) rectangle (BU) node[above right,font=\small\bfseries] {$\mathrm{T}$};
47
       \draw[dash line] (\$(BC|-Xbase)\$) -- (\$(BC|-Xtop)\$);
48
49
       \node[above] at ($(BC|-ZeroBase)$) {$x$};
50
51
       \draw[dash line] ($(-1.8,-1.6)+(0,0.1)$) -- (-1.8,0.30);
52
       \node[above,align=center] at (ZeroBase) {(自然長)\\$0$};
53
54
       \node[above right] at ($(RailCurve)+(0.25,0.1)$) {$\mathrm{S}$};
55
     \end{tikzpicture}
```


図のように、ばねを自然長から x だけ縮め、ブロックを静かに離す操作を考える。このとき、ブロックは点 S で速さが 0 になった。ブロックの質量 $^{\dagger 1}$ は m とし、全ての面で摩擦は無視できるものとする。

自然長からxだけ縮めたときのばねの弾性エネルギーは、ばね定数をkとすると、

$$U_e = \frac{1}{2}kx^2$$

と表せる.

高さがh の点でのブロックの速さを v_h とすると、その点でのブロックの運動エネルギーは

$$K_h = \frac{1}{2}mv_h^2$$

と表せる.

いま、ブロックに右向きの初速 v_0 を与えると、力学的エネルギー保存則により、

$$\frac{1}{2}m{v_0}^2 = \frac{1}{2}kx^2$$
 : $v_0 = \sqrt{\frac{k}{m}}x$.

また、 $\triangle S$ でのブロックの重力による位置エネルギーは、重力加速度の大きさをgとすると、

$$U_a = mgh$$

と表せるので、力学的エネルギー保存則により、

$$\frac{1}{2}m{v_0}^2 = mgh \quad \therefore \ h = \frac{{v_0}^2}{2g}.$$

最後に、曲線上で水平面からの高さが h/2 の点 $S_{
m mid}$ におけるブロックの速さを $v_{
m mid}$ とし、これを求めよう: 力学的エネルギー保存則により、

$$\frac{1}{2} m {v_0}^2 = \frac{1}{2} m {v_{\rm mid}}^2 + m g \cdot \frac{h}{2} \quad \therefore \ v_{\rm mid} = \sqrt{{v_0}^2 - g h}.$$

Point

■ \tikzset を用いて、スタイルを定義した。

 $^{^{\}dagger 1}$ 物理において「質量」と「重量(重さ)」は異なる概念である。質量は物体固有の量を示すもので,大きさのみを持つスカラー量である。一方,重量は物体に働く重力のことであり,大きさと向きを持つベクトル量である。両者の大きさの関係は,重量の大きさを W,質量を m,重力加速度の大きさを g とすると,W=mg と表される。このため,質量 m の物体は地球上でも月面でも等しく質量 m を持つが,その重量の大き さ W は場所の重力加速度の大きさ g に依存して変化する。たとえば,月面における重力加速度の大きさは地球上の約 1/6 であるため,同じ質量の物体が月面で受ける重量の大きさは地球上で受ける重量の大きさの約 1/6 となる。

ソースコード (図)

```
\begin{tikzpicture}[scale=1.3,line cap=round, line join=round]
 2
       \tikzset{ thickline/.style ={line width=0.15cm, color=darkgray!70},
 3
                           ={line width=0.1cm, color=darkgray,line cap=butt},
         ropeline/.style
 4
         outercircle/.style ={line width=0.05cm, color=black}, }
 5
 6
       \coordinate (TopLeft) at (-5.1, 4.3);
 7
       \coordinate (TopRight) at ( 3.1, 4.3);
 8
       \coordinate (ClipLowerLeft) at (-5.1, 4.3);
 9
       \coordinate (ClipUpperRight) at ( 3.1, 4.8);
       \draw [thickline] (TopLeft) -- (TopRight);
10
11
12
       \begin{scope}
13
         \clip (ClipLowerLeft) rectangle (ClipUpperRight);
14
         \foreach \i in {0,...,33} { \draw [darkgray!70, semithick]
15
             (\{-5.2 + 0.25*\idot\idot\idot\], 4.3) -- (\{-4.7 + 0.25*\idot\idot\], 4.8); }
16
       \end{scope}
17
18
       draw [very thick] (-2.6, 0.5) rectangle (-2.1, -2.7);
19
       \fill [left color=darkgray!80, right color=darkgray!70] (-2.6, 0.5) rectangle (-2.1, -2.7);
20
       \draw[very thick, shorten <=0.075cm, shorten >=0.075cm, line cap=butt]
21
       (0.15,2.4) rectangle (0.55,4.23);
22
       \fill [left color=darkgray!80, right color=darkgray!70] (0.15,2.4) rectangle (0.55,4.23);
23
24
       \begin{scope}
25
         \protect\operatorname{\protect}{R}{1.35}
26
         \draw [outercircle] (-2.35, -1.1) circle (\R);
27
         \fill [left color=darkgray!80, right color=darkgray!60, middle color=lightgray]
28
         (-2.35, -1.1) circle (\R);
29
         \draw [very thick, white] (-2.35, -1.1) circle (.3 * \R);
30
         \draw [ultra thick, white] (-2.35, -1.1) circle (.7 * \R);
31
         \shade [ball color=white] (-2.35, -1.1) circle (.2);
         \draw [darkgray, line width=0.1cm] (-2.35, -1.1) ++(0:\R) arc (0:-180:\R);
32
33
         \draw [ropeline] (-3.7, -1.1) -- (-3.7,4.25);
34
         \draw [outercircle] (0.35, 2.4) circle (\R);
       \end{scope}
35
36
37
38
       \begin{scope}
39
         \pgfmathsetmacro{R}{1.35}
40
         \draw [outercircle] (0.35, 2.4) circle (\R);
41
         \fill [left color=darkgray!80, right color=darkgray!60, middle color=lightgray]
42
         (0.35, 2.4) circle (\R);
                             white] (0.35, 2.4) circle (.3 * \R);
43
         \draw [thick,
44
         \draw [ultra thick, white] (0.35, 2.4) circle (.7 * \R);
45
         \shade [ball color=white] (0.35, 2.4) circle (.2);
46
         \frac{1}{2} \draw [darkgray, line width=0.1cm] (0.35, 2.4) ++(180:\R) arc (180:0:\R);
47
         \draw [ropeline] (-1.0, -1.1) -- (-1.0, 2.4);
48
       \end{scope}
49
50
       \draw [ultra thick] (-2.35, -2.7) -- (-2.35, -3.7);
51
       \draw (-2.9, -3.7) rectangle (-1.8, -5.3);
52
       \fill [left color=darkgray!80, right color=darkgray!70] (-2.9, -3.7) rectangle (-1.8, -5.3);
53
       \node [left] at (-2.9, -4.5) {mathrm{B}};
54
55
       \draw [ropeline] (1.7,2.4) -- (1.7,-3.7);
56
       draw (1.2, -3.7) rectangle (2.3, -5.3);
57
       \fill [left color=darkgray!80, right color=darkgray!70] (1.2, -3.7) rectangle (2.3, -5.3);
58
       \node [left] at (1.2, -4.5) {\$\mathrm{A}\$\};
     \end{tikzpicture}
```


物体 A と物体 B があり、それぞれの質量を m_A 、 m_B とする。ただし、 m_B は m_A に比べて十分大きいとする。また、物体 A と物体 B はそれぞれ上昇および下降運動を行うものとし、糸の質量と伸縮、滑車の質量と摩擦は無視する。

天井の位置を原点とし、鉛直下向きを正の方向とする。重力加速度を g、物体 A の位置を x_A 、物体 B の位置を x_B と すると、各物体の運動方程式は次式のように表される:

$$\begin{split} m_{\rm A} \frac{d^2 x_{\rm A}}{dt^2} &= m_{\rm A} g + (-T), \\ m_{\rm B} \frac{d^2 x_{\rm B}}{dt^2} &= m_{\rm B} g + (-T) + (-T). \end{split}$$

糸の長さが一定なことから、束縛条件は

$$x_{\rm A} + 2x_{\rm B} = {\rm const}$$
 \therefore $\frac{d^2x_{\rm A}}{dt^2} + 2\frac{d^2x_{\rm B}}{dt^2} = 0.$

この運動方程式と束縛条件を用いて、物体 A および物体 B の加速度、ならびに両物体を結ぶ糸の張力 T を求めると、

$$\frac{d^2x_{\rm A}}{dt^2} = -\frac{2(m_{\rm B}-2m_{\rm A})}{m_{\rm B}+4m_{\rm A}}g, \quad \frac{d^2x_{\rm B}}{dt^2} = \frac{m_{\rm B}-2m_{\rm A}}{m_{\rm B}+4m_{\rm A}}g, \quad T = \frac{3m_{\rm A}m_{\rm B}}{m_{\rm B}+4m_{\rm A}}g.$$

Point

■ \foreach を用いて、ループ処理を行った.

ソースコード (図)

```
1 \begin{tikzpicture}[scale=0.8, xscale=1, yscale=1, every node/.style={font=\small},
2 line cap=round, line join=round]
3 \shade[top color=darkgray!20, bottom color=darkgray!40]
4 (3.03,-1.24) -- (3.48,-1.24) -- (3.48,-8.63) -- (15.13,-8.63) -- (15.13,-9.08) -- (3.03,-9.08) -- cycle;
 5 \draw[draw=black!60, line width=0.6pt] (3.03,-1.24) -- (3.48,-1.24) -- (3.48,-8.63) -- (15.13,-8.63)
6 -- (15.13,-9.08) -- (3.03,-9.08) -- cycle;
7 \cdot (0.29, -6.05) -- (10.29, -6.05)  node [above right] \{xx\};
9 \draw (7.72,-5.90) -- (7.72,-6.21);
10 \draw [dashed, black!60] (9.38,-5.15) -- (9.38,-6.96) node at (9.38,-4.69) \{xx\};
11 \node[anchor=center] at (7.72,-4.69) {$0$};
12 \node[anchor=center] at (7.72,-4.69) [yshift=\baselineskip] {(自然長)};
14 \draw[line width=2.5pt, draw=black!80] (3.48, -7.22) -- (3.48, -8.52);
15 \draw[line width=1.6pt, draw=black!80] (3.48, -7.87) -- (4.54, -7.87)
16 [decorate, decoration={coil, amplitude=5.5pt, segment length=9pt}, draw=black!65] -- (7.42, -7.87)
17 [draw=black!80] -- (8.47, -7.87);
18 \shade[ball color=darkgray!65] (9.38,-7.72) circle [radius=0.91];
19 \draw[draw=black!70, line width=0.9pt] (9.38,-7.72) circle [radius=0.91];
20 \end{tikzpicture}
```

説明と図

摩擦なしの水平面に質量 m の球とばね定数 k のばねを置く。 フックの法則により、運動方程式は次のようになる:

$$m\frac{d^2x}{dt^2} = -kx.$$

これは 2 階線型微分方程式であり、初期条件を与えれば解が求められる $^{\dagger 1}$ 、初期条件を

$$x(0) = 0, \quad \dot{x}(0) = v_0$$

とする^{†2}. このとき解は下記のようになる:

$$x(t) = \frac{v_0}{\sqrt{k/m}} \sin\left(\sqrt{\frac{k}{m}}t\right).$$

また、物体とばねからなる系の運動エネルギーと弾性エネルギーの和は保存し、エネルギー保存則は次のようになる:

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \text{const.}$$

運動エネルギー

弾性エネルギー

Point

■ \shade を用いることで、グラデーションを施した。

 $^{^{\}dagger 1}$ いわゆる「単振動」を表す微分方程式である。

 $^{^{\}dagger 2}$ $\dot{x}=dx/dt$ である. \dot{x} はニュートンの微分記法, dx/dt はライプニッツの微分記法である.

3.4 気体分子運動論(熱力学)

ソースコード (図)

```
1
               \begin{tikzpicture}[
   2
                            scale=0.80,
   3
                            line cap=round,
                            line join=round,
   4
   5
                            every node/.style={font=\large, color=appleBlack},
   6
                            x=\{(1.1cm, 0cm)\}, y=\{(0.7cm, 0.6cm)\}, z=\{(0cm, 1.0cm)\}
   7
   8
   9
                     \left\{ def \right\}
10
11
                     \label{length=3mm} $$ \left(0,0,0\right) -- (L+2,0,0) \ node[pos=1, right] $$ x$$; $$
12
                      \label{lem:condition} $$\operatorname{draw}[-{Stealth[length=3mm]}] (0,0,0) -- (0,\L+2,0) \ node[pos=1, above right] {$y$}; $$
13
                      \label{length=3mm} $$ \draw[-{Stealth[length=3mm]}] (0,0,0) -- (0,0,\L+2) \ node[pos=1, right] $$ $$ z$$;
14
                     \node[below right=1pt and -3pt] at (0,0,0) {<math>\mbox{mathrm}\{0\}};
15
16
17
                     \colorlet{edgecolor}{appleBlack}
18
19
                     \draw[dashed, edgecolor] (0,0,0) -- (0,\L,0);
                      \draw[dashed, edgecolor] (0,\L,0) -- (\L,\L,0);
20
21
                      \draw[dashed, edgecolor] (0,0,0) -- (0,0,\L);
22
                     \draw[dashed, edgecolor] (0,\L,\L) -- (0,\L,0);
23
24
                     \del{draw}[edgecolor] (\L,0,0) -- (0,0,0) -- (0,0,\L) -- (0,\L,\L) ;
25
                     \draw[edgecolor] (\L,\L) -- (\L,0,\L) -- (\L,0,0);
                     \draw[edgecolor] (\L,\L,\L) -- (0,\L,\L);
26
                      \draw[edgecolor] (\L,\L,0) -- (\L,\L,\L);
27
28
                      \del{draw}[edgecolor] (0,0,\L) -- (\L,0,\L) ;
                      \draw[edgecolor] (\L,\L,0) -- (\L,0,0);
29
30
31
                      \node[below] at (L/2, 0, 0) {$L$};
32
                      \node[above left] at (0, L/2, 0) \{$L$\};
33
                     \node[above left] at (0, 0, L/2) {$L$};
34
35
                     \pgfmathsetseed{16}
36
37
                     \foreach \i in \{1, \ldots, 25\}{
38
                                  \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
39
                                  \pgfmathsetmacro{\randy}{rnd * \L}
                                  \verb| pgfmathsetmacro{\randz}{rnd * \L}|
40
 41
                                   \shade[ball color=gray, opacity=0.8] (\randx,\randy,\randz) circle (0.15cm);
 42
43
44
                     \coordinate (p) at (2, 0.5, 2.5);
45
46
                     \def\vlen{2.0}
47
                     \label{length-2.5mm} $$ \operatorname{length-2.5mm}, appleBlue, semithick] (p) --++ (\vlen,0,0) node[right-3pt] {$\operatorname{vec}_x$}; $$
48
49
                     \label{lem:condition} $$ \operatorname{Stealth[length=2.5mm]}, apple0range semithick] (p) --++ (0,\vlen,0) node[above=3pt] {$\vec{v}_y$}; $$ (v)_y = (v)
50
51
52
                     \draw[-{Stealth[length=2.5mm]}, appleRed, semithick]
53
                      (p) --++ (0,0,\vlen) node[above left=2pt and -2pt] \{\vec\{v\}_z\};
54
55
                     \shade[ball color=appleGray, opacity=1.0] (p) circle (0.17cm);
56
               \end{tikzpicture}
```


x 軸方向について,質量 m の分子 1 個が壁 A に衝突する状況を考える.x 方向の速度が v_x から $-v_x$ に変わるため, 1 回の衝突で分子が受ける運動量の変化は $(-mv_x)-(mv_x)=-2mv_x$ となる.作用・反作用の法則より,壁が受ける力積は $2mv_x$ である.

また,一辺 L の容器内で,この分子は単位時間に $\frac{v_x}{2L}$ 回,壁に衝突する $^{\dagger 1}$.1 個の分子が壁に及ぼす平均の力は,単位時間あたりの力積の合計に等しいので,

$$2mv_x \cdot \frac{v_x}{2L} = \frac{m{v_x}^2}{L}.$$

容器内に N 個の分子が存在する場合,壁が受ける合力 F_x は,x 方向の速度の 2 乗平均 $\langle {v_x}^2 \rangle$ を用いて次のように表される:

$$F_x = \frac{N\langle mv_x^2 \rangle}{L}.$$

壁の面積を L^2 とすると,圧力 p_x は

$$p_x = \frac{F_x}{L^2} = \frac{Nm\langle v_x^2 \rangle}{L^3} = \frac{Nm\langle v_x^2 \rangle}{V}$$

である. ただし, $V = L^3$ は容器の体積である.

分子の運動は等方的であるため、 $\langle {v_x}^2 \rangle = \langle {v_y}^2 \rangle = \langle {v_z}^2 \rangle$ が成り立つ。そして、 $\langle {v}^2 \rangle = \langle {v_x}^2 \rangle + \langle {v_y}^2 \rangle + \langle {v_z}^2 \rangle = 3 \langle {v_x}^2 \rangle$ より、

$$\langle v_x^2 \rangle = \frac{1}{3} \langle v^2 \rangle.$$

これより、気体の圧力pが次のように求められる:

$$p = \frac{Nm\langle v^2 \rangle}{3V}.$$

Point

■ 球の配置には乱数を使用し \pgfmathsetseed を用いてシードを固定した.

 $^{^{\}dagger 1}$ 一辺が L の容器内を運動する分子は,一方の壁に衝突後,対向する壁との衝突を経て再び元の壁に戻る.このため,同じ壁に連続して衝突する間の x 軸方向の移動距離は 2L となる.

ソースコード(図)

```
1 \begin{tikzpicture}[scale=0.8, every node/.style={font=\small}]
    3
    \filldraw[draw=black, fill=gray!50, line width=0.8pt]
      (11.11, -0.95) -- (11.27, -0.95) -- (11.27, -7.30) -- (0.32, -7.30) -- (0.32, -0.95) -- (6.99, -0.95)
       -- (6.99,-1.11) -- (0.48,-1.11) -- (0.48,-7.14) -- (11.11,-7.14) -- (11.11,-0.95) -- cycle;
5
6
    \shade[draw=black!80, shading=axis, left color=gray!70, right color=gray!30, line width=0.5pt]
7
      (5.56,-1.11) rectangle (6.03,-7.14);
    \draw[line width=1.5pt, black!80] (6.03,-4.76) -- (6.99,-4.76);
8
9
    \draw[color=black!80, decorate, decoration={coil, amplitude=6pt, segment length=10pt}, line width=1.5pt]
10
      (6.99, -4.76) -- (10.16, -4.76);
    \draw[line width=1.5pt, black!80] (10.16,-4.76) -- (11.11,-4.76);
11
    \filldraw[draw=red!70!black, fill=red!10, thick] (1.27,-2.86) rectangle (1.91,-5.08);
12
13
    \draw[thick, black!60] (0.00,-1.59) -- (1.59,-1.59) -- (1.59,-2.86);
    \draw[thick, black!60] (1.59,-5.08) -- (1.59,-6.35) -- (0.00,-6.35);
14
    \fill[black!80] (0, -1.59) circle (2pt);
15
16
    \fill[black!80] (0, -6.35) circle (2pt);
17
    \node[anchor=west] at (6.99,-0.64) {シリンダ};
18
    \node[anchor=west] at (7.62,-3.81) {\node[anchor=west]
19
    \node[anchor=west] at (2.54,-3.65) {気体};
20
21
    \node[anchor=west] at (-1.59, -2.54) {L-9-};
    \node[anchor=west] at (6.35,-2.86) {\node[anchor=west];
22
23 \end{tikzpicture}
```

説明と図

P を気体の圧力、V を気体の体積、n を気体 のモル数,R を気体定数 $^{\dagger 1}$,T を気体の温度 $^{\dagger 2}$ と する.

また、U を気体の内部エネルギー、W を気体 が外界に対して行う仕事、Qを気体が外界から受 け取る熱量とする。

「理想気体 $^{\dagger 3}$ を考える」などの条件を課すと $^{\dagger 4}$, この状況は下記の二式から考察される:

理想気体の状態方程式 PV = nRT.

熱力学第一法則 $\Delta U = -W + Q.$

圧力 P は力学的にピストンのつり合いから求めるもので、状態方程式から求められるものではない、そして、W は P-V グラフの面積から求まるものである.

Point

■ mathcha を用いて作図し、その後にコードを整えた、

 $^{^{\}dagger 1}$ $R = 8.31 \, \mathrm{J/K \cdot mol}$ であり、これはボルツマン定数 k とアボガドロ定数 N_A の積である。

 $^{^{\}dagger 2}$ この場合の温度は絶対温度であり,セルシウス温度とは異なる.原子や分子の熱運動がほとんどなくなる温度を基準とした温度尺度を絶対温 度(ケルビン温度)といい、その単位はケルビン(K)で表される。一方、標準大気圧($1\,\mathrm{atm}$)における氷の融点を $0\,^{\circ}\mathrm{C}$ 、水の沸点を $100\,^{\circ}\mathrm{C}$ とした温度尺度をセルシウス温度といい,その単位はセルシウス度($^{\circ}$ C)で表される.両者の間には T (K) = t ($^{\circ}$ C) + 273.15 の関係がある.

 $^{^{\}dagger 3}$ ここでいう理想気体とは,体積が $\,0\,$ で分子間力がはたらかないと仮定した架空の気体のことである.

^{†4} シリンダやピストンに断熱性を課したり,ピストンの摩擦を無視することが多い.ここではそれらの条件の明記は省略する.

3.6 LC 回路(電磁気学)

ソースコード (図)

```
\begin{circuitikz}[scale=1.4,american currents]
1
2
      \draw (0,0)
      to [L=$L$] (0,5)
3
     to [short] (3,5);
      \draw (3,5)
      to [C=$C$] (3,0)
8
     to [short] (0,0);
9
10
      \node at (2.5,3) {$Q$};
11
      \node at (2.5,2) {\$-Q\$};
   \end{circuitikz}
12
```

説明と図

電気振動の基本的なモデルである。 充電した電荷 Q_0 のコンデンサーを、時刻 t=0 でコイルにつなぐ。 時刻 t における回路の電流を I とし、時計回りを電流の正の向きとする。

キルヒホッフ則により、回路方程式は次のようになる:

$$\frac{Q}{C} + L \frac{dI}{dt} = 0$$
 \therefore $\frac{dI}{dt} = -\frac{Q}{LC}$.

また、連続方程式は次のようになる:

$$\frac{dQ}{dt} = I.$$

これを回路方程式に代入すると,

$$\frac{d^2Q}{dt^2} = -\frac{Q}{LC}.$$

これは2階線型微分方程式である。初期条件 $^{\dagger 1}$ を考慮するとその解は次のようになる:

$$Q = Q_0 \cos \omega t, \quad \omega = \frac{1}{\sqrt{LC}}.$$

また, 回路方程式と連続方程式から次の結果を得る:

$$LI\frac{dI}{dt} + \frac{Q}{C}\frac{dQ}{dt} = 0 \quad \therefore \frac{d}{dt}\left(\frac{LI^2}{2} + \frac{Q^2}{2C}\right) = 0.$$

このことから、次のエネルギー保存則を得る:

$$\frac{LI^2}{2}$$
 + $\frac{Q^2}{2C}$ = const.

コイルのエネルギー 静電エネルギー

Point

■ circuitikz.sty を用いて作図した.

 $^{^{\}dagger 1}$ 時刻 t=0 でコンデンサーの電荷が Q_0 であること.

3.7

ソースコード (図)

```
1 \begin{tikzpicture}[font=\large,line cap=round,line join=round,scale=1.4,
    transform shape, shift=\{(-4.725, -0.32)\}
     \colorlet{railcolor}{black!75} \colorlet{rodBody}{black!60}
 3
     \colorlet{rodHighlight}{white} \colorlet{arrowcolor}{black!80}
 5
     \tikzset{
 6
      RailLine/.style
                           = {draw=railcolor, line width=4.0},
 7
      DashLine/.style
                           = {draw=black!50, dashed, line width=1.5},
 8
      ResistorLine/.style = {draw=railcolor, line width=1.0},
 9
                           = {draw=black, line width=1.2},
      BaseLine/.stvle
10
      Vector/.style
                          = {-{Stealth[length=10pt]}, very thick, draw=arrowcolor},
11
      DistanceArrow/.style={ <->, >={Stealth[length=10pt]}, dashed, line width=2.0, draw=black!50 }
12
13
     \coordinate (A) at (-1.12,0.32);
14
    \coordinate (B) at (4.725,4.27);
    \coordinate (D) at (-4.7 ,2.02);
15
16
     \coordinate (E) at (1.10,5.95);
     \draw[RailLine] (A) -- (B); \draw[RailLine] (D) -- (E);
17
     \coordinate (C) at ($(E)!0.9!(B)$);
18
19
     \draw[ResistorLine] (E) to[european resistor,l=$R$,bipoles/length=0.9cm] (C) -- (B);
20
     \left( def \right) = \left( 0.27 \right)
21
     \coordinate (S1) at ($(A)!\s!(B)$);
22
     \coordinate (S2) at (\$(D)!\s!(E)\$);
23
     \draw[DistanceArrow] (S1) -- (S2) node[midway,below] {$\$};
     \coordinate (F) at ( 2.8 ,1.6 );
24
25
     \coordinate (G) at (-2.7, 2.65);
26
     \draw pic[draw, line width=1.2, angle eccentricity=1.45, angle radius=1.05cm,
27
    pic text={$\theta$}] {angle=F--A--B};
     \draw pic[draw, line width=1.2, angle eccentricity=1.45, angle radius=1.05cm,
28
29
    pic text={$\theta$}] {angle=G--D--E};
30
     \draw[Vector] (-2,2.0) -- ++(0,-0.75) node[left] {$g$};
31
     \draw[Vector] (-0.4,2.5) -- ++(0, 0.75) node[below right] {$B$};
32
     \begin{scope}
33
       \left(0.58\right)
34
      \def\rodW{5pt}
35
      \def\rodExt{0.30cm}
36
       \coordinate (R1) at (\$(A)!\t!(B)\$);
37
       \coordinate (R2) at (\$(D)!\t!(E)\$);
       \draw[line width=\the\dimexpr\rodW+1.2pt\relax, color=black, line cap=round,
38
       shorten >=-\rodExt, shorten <=-\rodExt] (R1) -- (R2);</pre>
39
40
       \draw[line width=\the\dimexpr\rodW+1pt\relax, color=black!20, opacity=0.5, line cap=round,
41
       shorten >=-\rodExt, shorten <=-\rodExt] (R1) -- (R2);</pre>
42
       \draw[line width=\rodW, color=rodBody, line cap=round, shorten >=-\rodExt,
43
      shorten <=-\rodExt] (R1) -- (R2);</pre>
44
       \path let \p1 = (R1), \p2 = (R2), \n1= \{\y2-\y1\}, \n2= \{\x1-\x2\}, \n3 = \{\veclen(\n1,\n2)\} in
45
         coordinate (rodShift) at (\n1/\n3*0.9pt,\n2/\n3*0.9pt);
46
       \begin{scope}[shift={(rodShift)}]
47
         \draw[line width=2pt, color=rodHighlight, opacity=0.75, line cap=round, shorten >=-\rodExt,
48
         shorten <=-\rodExt] (R1) -- (R2);</pre>
49
       \end{scope}
50
     \end{scope}
51
     \path[overlay,name path=BaseFront] (A) -- ($(A)!6!(F)$);
52
     \path[overlay,name path=BaseBack ] (D) -- ($(D)!6!(G)$);
     \path[overlay,name path=VertB ] (B) -- ++(0,-10);
53
     \path[overlay,name path=VertE ] (E) -- ++(0,-10);
54
     \path[name intersections={of=BaseFront and VertB, by=Bb}];
55
56
     \path[name intersections={of=BaseBack and VertE, by=Eb}];
     \draw[BaseLine,rounded corners=1pt] (A) -- (Bb) -- (Eb) -- (D) -- cycle;
57
58
     \draw[BaseLine] (B) -- (Bb); \draw[BaseLine] (E) -- (Eb);
59 \end{tikzpicture}
```


レール間隔を l、傾角を θ 、棒の質量を m、磁束密度を B、抵抗を R とし、レールに沿う下向きを正とする。誘導起電力を V とすると、V は以下のように表される:

$$V = vBl\cos\theta$$
.

時計回りを正として、流れる電流をiとする。キルヒホッフ則により、

$$V = Ri \quad \therefore \ i = \frac{V}{R} = \frac{vBl\cos\theta}{R}.$$

導体棒の運動方程式は、レールにはたらく力の斜面と平行な成分を考えて^{†1}、

$$m\frac{dv}{dt} = mg\sin\theta - iBl\cos\theta$$
$$= mg\sin\theta - \frac{B^2l^2\cos^2\theta}{R}v.$$

十分時間が経てば dv/dt=0 となり,

$$v_{\infty} = \frac{mgR\sin\theta}{B^2l^2\cos^2\theta}.$$

このとき, $i = (vBl\cos\theta)/R$ より,

$$i_{\infty} = \frac{mg\sin\theta}{Bl\cos\theta}.$$

よって、抵抗で消費される電力をPとすると、 $P=i^2R$ より、

$$P_{\infty} = \left(\frac{mg\sin\theta}{Bl\cos\theta}\right)^2 R.$$

Point

■ 導体棒のハイライトは、\scope 環境を用いて描画した。

^{†1} 導体棒にはたらく重力とローレンツ力を考えればよい.

ソースコード (図)

```
1 \begin{tikzpicture}[scale=1.025,font=\small, >={Stealth[length=2.5mm, width=1.5mm]},
      barrier/.style={draw=appleInk, line width=1.2pt},
3
      wave/.style={draw=appleLineDark, dashed, thick},
4
5
    \clip (-3.45, -2.275) rectangle (6.15, 2.65);
6
7
    \foreach \r in {0.5, 1.5, 2.5} {
8
      \draw[wave] (-3,0) + (0,\r) arc(90:-90:\r);
9
    }
10
    \foreach \r in \{0.5, 1.5, ..., 5.5\} {
11
      \draw[wave] (0,1) + (0,\r) arc(90:-90:\r);
12
      \draw[wave] (0,-1) + (0,\r) arc(90:-90:\r);
13
14
15
    \draw[barrier] (-3, 2.2) -- (-3, 0.4) (-3, -0.4) -- (-3, -2.2);
16
    17
    \draw[barrier] (0, 2.2) -- (0, 1.2) (0, 0.8) -- (0, -0.8) (0, -1.2) -- (0, -2.2);
    \node[color=appleInk] at (-0.3, 2.5) {<math>\mbox{mathrm{S}_2$};}
18
    \draw[appleInk, line width=1.2pt] (6, 2.2) -- (6, -2.2);
19
20
    \node[color=appleInk] at (6.0, 2.5) {$\mathrm{F}$};
21
    \foreach \y in \{-2.0, -1.5, ..., 2.0\} {
22
      \draw[appleInk!80, semithick] (6, \y) -- (6.15, \y);
23
    }
24
    \draw[draw=appleBlue, very thick, ->] (-3, 0) -- (0, 1);
25
26
    \draw[draw=appleBlue, very thick, ->] (-3, 0) -- (0, -1);
27
    \draw[draw=appleBlue, very thick, ->] (0, 1) -- (6, 1);
28
    \draw[draw=appleBlue, very thick, ->] (0, -1) -- (6, 1);
29
    \node[color=appleInk] at (-3.3, 0.55) {\mathrm{A}};
    \node[color=appleInk] at (-0.3, 1.35) {$\mathrm{B}$};
30
31
    \node[color=appleInk] at (-0.3, -1.3) {$\mathrm{C}$};
    \node[color=appleInk] at (5.75, 1.35) {$\mathrm{D}$};
32
33 \end{tikzpicture}
```

説明と図

光が波の性質である「干渉性」を持つことを示すのが「ヤングの実験」である。2つのスリットを通過した光は強めあって打ち消しあい、Fには干渉縞が現れる。

光については「光電効果」という現象があり、光は粒子の性質を持つとされる。そのため、光の性質については以下のような説明がよくなされる:

「光」を波だと考えていたら、粒子であった. 「電子」を粒子だと考えていたら、波であった. よって「光」も「電子」も波であり粒子である.

だが「光」と「電子」はマクロな人間にとって「直感的概念」であるから、我々は以下の2点で光を説明する:

- 波でも粒子でもない
- 量子力学で記述される対象

Point

■ ChatGPT で大雑把なソースコードをを作り、その後は自分の手で調整を施した。

3.9 凸レンズによる実像の形成(光学)

ソースコード (図)

```
1
     \begin{tikzpicture}[
 2
         x=1.6cm, y=1.6cm,
         axis/.style ={-Stealth, line width=1.0pt, draw=appleGrayDark},
 3
         lensEdge/.style={draw=appleGrayDark, line width=1.0pt},
 4
 5
         lensGlass/.style={top color=appleGrayLight!60,
 6
             bottom color=appleGrayDark!40, shading angle=0},
 7
         object/.style ={-Stealth, very thick, draw=appleGrayDark},
 8
         image/.style
                        ={-Stealth, very thick, draw=appleGrayDark},
                        ={very thick, draw=appleBlue, rounded corners},
 9
         rav/.stvle
         label/.style ={font=\normalsize, inner sep=1pt},
10
11
         dimLine/.style={<->, shorten >=1pt, shorten <=1pt, draw=applePurple, line width=0.75pt},
12
         dimLabel/.style={font=\small, inner sep=1pt, midway, below}
13
14
15
       \pgfmathsetmacro{\focal}{2.0}
16
       \pgfmathsetmacro{\distancea}{3.5}
17
       \pgfmathsetmacro{\distanceb}{\focal*\distancea/(\distancea-\focal)}
18
       \pgfmathsetmacro{\objh}{1.0}
19
       \pgfmathsetmacro{\imgh}{-\objh*\distanceb/\distancea}
20
       \pgfmathsetmacro{\axisRight}{\distanceb+1.0}
21
22
       \begin{scope}
23
         \clip (-0.4, -2) rectangle (0.4, 2);
24
         \filldraw [lensGlass, lensEdge]
25
         (0,-2) .. controls (0.4,-1) and (0.4,1) .. (0,2)
26
         -- (0,2) .. controls (-0.4,1) and (-0.4,-1) .. (0,-2) -- cycle;
27
       \end{scope}
28
       \node at (0.65,1.8) [label] {凸レンズ};
29
       \draw [axis] (-4.5,0) -- (\axisRight,0) node [label,above right] {光軸};
30
31
       \node [label,below=3pt] at (0,0) {$\mathrm{0}$};
32
33
       \fill (-\focal,0) circle (1pt) node [label,below=3pt] {\$\mathrm{F}\$};
34
       \fill (\focal,0) circle (1pt) node [label,below=3pt] {$\mathrm{F}'$};
35
36
       \coordinate (OBase) at (-\distancea,0);
37
       \coordinate (OTip) at (-\distancea,\objh);
38
       \draw [object] (OBase) -- (OTip) node [label, align=center, above=4pt] {$\mathrm{A'}$\\\normalsize(光源)};
       \node [label, below=2pt] at (OBase) {$\mathrm{A}$};
39
40
41
       \coordinate (IBase) at (\distanceb,0);
42
       \coordinate (ITip) at (\distanceb,\imgh);
       \draw [image] (IBase) -- (ITip) node [label, align=center, below=4pt] {$\mathrm{B'}$\\\normalsize(実像)};
43
44
       \node [label, below right= 1.73pt] at (IBase) {$\mathrm{B}$$;
45
46
       \coordinate (L1) at (0,\objh);
47
       \draw [ray] (OTip) -- (L1) node[label, above=2pt] {$\mathrm{P}$} -- (ITip);
48
49
       \draw [ray] (OTip) -- (0,0) -- (ITip);
50
51
       \def\distMarkY{-2.3}
52
       \def\focalMarkY{-2.6}
53
       \draw [dimLine] (-\distancea, \distMarkY) -- (0, \distMarkY) node [dimLabel] {\$a$};
54
55
       \draw [dimLine] (0, \distMarkY) -- (\distanceb, \distMarkY) node [dimLabel] {$b$};
56
       \draw [dimLine] (0, \focalMarkY) -- (\focal, \focalMarkY) node [dimLabel] {$f$};
57
     \end{tikzpicture}
```


凸レンズの中心から物体までの距離を a, レンズの中心から像までの距離を b とする。 凸レンズの焦点は物体側にあるものとし、焦点距離は f とする。 また、ここでは a>0, b>0, f>0 とする $^{\dagger 1}$.

この条件のもとで、凸レンズによって実像が形成される場合の「レンズの公式」は以下のようになる:

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b}.$$

この公式を導出してみよう:

証明. 図より、 $\triangle AA'O$ と $\triangle BB'O$ は相似であるから、

$$AA' : BB' = OA : OB = a : b.$$

図より、 $\triangle POF'$ と $\triangle BB'F'$ も相似であるから、

$$PO : BB' = OF' : BF' = f : b - f.$$

AA'と PO の長さが等しいため、

$$OA : OB = OF' : BF'$$

 $\therefore a : b = f : (b - f).$

このことからただちに次の結果を得る:

$$bf = a(b-f)$$
 : $\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$.

これが証明すべきことであった. □

Point

■ svg2tikz を用いて、SVG 形式の画像を TikZ コードに変換し、ソースコードを整えて図を生成した。

^{†1} この条件を設けないことで、虚像の場合を議論することもあるが、ここでは実像ができる場合のみを考えることとする.

4.1 サリチル酸と炭酸水素ナトリウムの化学反応式

ソースコード

化学反応式

4.2 サリチル酸の構造式

ソースコード

1 \chemfig{[:-60]*6(-=-(-(=[:270]0)(-[:30]0H))=(-[:30]0H)-=)}

サリチル酸の構造式

4.3 ハロゲン(フッ素)の電子配置

ソースコード

1 \chlewis[lewis-distance=1.25ex]{0.90,180,270}{F}

ハロゲン(フッ素)の電子配置

F

ハロゲンとは、周期表の第 17 族に属する元素の総称であり、一般的には F, CI, Br と I の 4 つの元素を指す。ハロゲンは、価電子を 7 個持っており、1 価の陰イオンになりやすい。

Point

• chemformula.sty, chemfig.sty と mhchem.sty を用いて作成した.

4.4 モル濃度の計算

ソースコード (計算式)

- 1 c= \frac{\dfrac{\SI{5.85}{g}}{\SI{58.44}{g/mol}}}{\dfrac{\SI{500}{mL}}}{\SI{1000}{mL/L}}}
- $2 = \frac{\{\SI\{0.1000\}\{mol\}\}\{\SI\{0.5000\}\{L\}\}\}}{\{\SI\{0.5000\}\{L\}\}}$
- $3 = SI\{0.2000\}\{mol/L\}.$

モル濃度の計算

質量 $m=5.85\,\mathrm{g}$ の NaCl を $500\,\mathrm{mL}$ の溶液に溶かしたときのモル濃度を c とすると,

$$c = \frac{\frac{5.85\,\mathrm{g}}{58.44\,\mathrm{g/mol}}}{\frac{500\,\mathrm{mL}}{1000\,\mathrm{mL/L}}} = \frac{0.1000\,\mathrm{mol}}{0.5000\,\mathrm{L}} = 0.2000\,\mathrm{mol/L}.$$

4.5 β-グルコースの構造式

1 \chemfig{% 2 C?(-[2]OH)(-[6]H) 3 <[:-130,1.8] C(-[2]H)(-[6]OH) -[:180,1.5,,,line width=3pt,cap=round] 5 C(-[2]OH)(-[6]H) 6 7 >[:130,1.8] 8 C(-[2]H)(-[6,,,2]HO) 9 -[:50,1.8] 10 C(-[6]H)(-[,1.5]0?) 11 -[2] CH_20H 12 13 }

β -グルコースの構造式

Point

■ siunitx.sty や chemfig.sty を用いた.

4.6 酢酸の電離

ソースコード (表)

```
1
   \begin{tabular}{cc@{}c@{}c@{}c@{}c}\hline
         & \ce{CH3C00H} & \ce{<=>} & \ce{CH3C00-} & \ce{+} & \ce{H+}
2
                                                                   \\\hline
                                  3
     反応前 & $c$
                        &
                                                                    \\
                       &
4
     変化量 & $-c\alpha$
                                   & $+c\alpha$ &
                                                         & $+c\alpha$ \\
     平衡状態 & $c(1-\alpha)$ & & $c\alpha$
5
                                                         & $c \alpha$ \\\hline
     \mbox{multicolumn}{6}{r}{\mbox{$\ddagger$c(1+\alpha)\si{mol}$}}
  \end{tabular}
```

酢酸の電離

酢酸の電離定数を K_a , 酢酸の電離度を α とすると,

$$K_a = \frac{[\text{CH}_3\text{COO}^-][\text{H}^+]}{[\text{CH}_3\text{COOH}]}$$
$$= \frac{c\alpha \times c\alpha}{c(1-\alpha)}$$
$$= \frac{c\alpha^2}{1-\alpha}$$

	CH-COOH	\rightleftharpoons CH ₃ COO $^-$	т н+
	C113C0011 —	— CH3COO	T 11
反応前	c	0	0
変化量	$-c\alpha$	$+c\alpha$	$+c\alpha$
平衡状態	$c(1-\alpha)$	$c\alpha$	$c\alpha$
		計 $c(1 +$	α)mol

ここで、 $\alpha \ll 1$ であることにより、 $1-\alpha = 1$ とみなせるので、この近似を用いると、 $K_a = c\alpha^2$ となるから、

$$\alpha = \sqrt{\frac{K_a}{c}}$$

と表せる $^{\dagger 1}$. よってこのとき、水素イオン濃度 $[H^+]$ は、

$$[\mathbf{H}^+] = c\alpha$$
$$= c\sqrt{\frac{K_a}{c}} = \sqrt{cK_a}$$

と近似できる。ただし、 $[H^+]$ の単位は mol/L である。pH は次式で与えられる:

$$pH = -\log_{10}[H^+] = -\log_{10}\sqrt{cK_a}.$$

具体的な数値で議論するために, $K_a=1.8 imes 10^{-5}~\mathrm{mol/L}$, $c=0.10~\mathrm{mol/L}$ とすると,

$$[H^{+}] := \sqrt{0.10 \,\text{mol/L} \times (1.8 \times 10^{-5} \,\text{mol/L})}$$

$$= \sqrt{1.8 \times 10^{-6}} \,\text{mol/L}$$

$$= 1.34 \times 10^{-3} \,\text{mol/L},$$

$$pH := -\log_{10} \left(\sqrt{1.8} \times 10^{-3}\right)$$

$$= 3 - \log_{10} \sqrt{1.8}$$

$$= 3 - 0.1277 = 2.873.$$

したがって、この条件下での酢酸水溶液の pH は、有効数字が 2 桁であることを考慮して約 2.87 である.

Point

• chemformula.sty, chemfig.sty と mhchem.sty を用いて作成した.

 $^{^{\}dagger 1}$ $1-\alpha=1$ の近似が適用できない場合は、二次方程式 $c\alpha^2+K_a\alpha-K_a=0$ を解く必要がある。

ソースコード (図)

```
1
     \begin{tikzpicture}[scale=2.1,
 2
       every node/.style={font=\small},
 3
       eFlow/.style ={blue!70!black,thick,-{Stealth}},
 4
       ionFlowCu/.style={orange!80!black,thin,dashed,-{Stealth}},
 5
       ionFlowCl/.style={green!70!black,thin,dashed,-{Stealth}},
 6
       moleculeCl/.style={ellipse,draw=green!50,fill=green!20,minimum height=3pt,minimum width=6pt}
 7
 8
 9
       \colorlet{CopperyColor}{orange!80!brown} \colorlet{DarkCopperyColor}{CopperyColor!70!black}
10
       \coordinate (FTL) at (-0.5,0.2); \coordinate (FTR) at (6.5,0.2); \coordinate (FBL) at (-0.5,-2.8);
11
       \coordinate (FBR) at (6.5,-2.8); \coordinate (BTL) at (0.1,0.5); \coordinate (BTR) at (5.9,0.5);
12
       \coordinate (BBL) at (0.1,-2.5); \coordinate (BBR) at (5.9,-2.5); \coordinate (WFL) at (-0.5,-0.2);
13
       \coordinate (WFR) at (6.5, -0.2); \coordinate (WBL) at (0.1, 0.1); \coordinate (WBR) at (5.9, 0.1);
       \draw [gray] (BBL) -- (BTL) -- (BTR) -- (BBR) -- cycle;
14
       \path[fill=blue!35!white,opacity=0.2] (FBL) -- (FBR) -- (BBR) -- (BBL) -- cycle;
15
16
       \path[fill=blue!45!white,opacity=0.2] (BBL) -- (BBR) -- (WBR) -- (WBL) -- cycle;
       \path[fill=blue!40!white,opacity=0.2] (FBL) -- (BBL) -- (WBL) -- (WFL) -- cycle;
17
       \path[fill=blue!40!white,opacity=0.2] (FBR) -- (BBR) -- (WBR) -- (WFR) -- cycle;
18
19
       \draw[blue!50!cyan,opacity=0.4] (WBL) -- (WBR);
20
       \coordinate (Epersp) at (0.12, 0.06);
21
22
       \coordinate\ (L_FTL)\ at\ (0.875,2);\ \coordinate\ (L_FTR)\ at\ (1.875,2);\ \coordinate\ (L_FBR)\ at\ (1.875,-1.75);
23
       \draw[fill=gray!60] (L_FTR) -- ++(Epersp) -- ++(0, -3.81) -- (L_FBR) -- cycle;
       \draw[fill=gray!50] (L_FTL) -- (L_FTR) -- ++(Epersp) -- ++(-1, 0) -- cycle;
24
25
       \draw[fill=gray!30] (0.875, 2) rectangle (1.875, -1.75);
       \node [above left=0.1cm] at (1.375, 2) {\Large{Pt}};
26
27
       \coordinate (R_FTL) at (4.125,2); \coordinate (R_FTR) at (5.125,2); \coordinate (R_FBL) at (4.125,-1.75);
28
       \coordinate (Epersp_inv) at (-0.12,0.06);
       \draw[fill=gray!60] (R_FTL) -- ++(Epersp_inv) -- ++(0,-3.81) -- (R_FBL) -- cycle;
29
30
       \draw[fill=gray!50] (R_FTL) -- (R_FTR) -- ++(Epersp_inv) -- ++(-1,0) -- cycle;
       \draw[fill=gray!30] (4.125,2) rectangle (5.125, -1.75);
31
32
       \node [above right=0.1cm] at (4.625,2) {\Large{Pt}}};
33
34
       \draw [join = round, thick] (1.375,2) -- (1.375,2.5)
35
       --(2.5,2.5) to [battery1,invert, l={}] (3.5,2.5) -- (4.625,2.5) -- (4.625,2);
36
                       (2.50,2.5)--(1.45,2.5) node [midway,above=1pt] {\mbox{mathrm}{e^-}};
       \draw [eFlow]
37
       \draw [eFlow] (4.55,2.5) -- (3.55,2.5) node [midway,above=1pt] {$\mathrm{e^-}$};
38
       \del{condition} \del{condition} $$ \operatorname{eFlow} (1.375,1.8) -- (1.375,-1.2) \ \operatorname{mode} [\operatorname{midway,right=2pt}] {{\mathrm{mathr}}(e^-})};
39
       draw [eFlow] (4.625,-1.2) -- (4.625, 1.8) node [midway,left=2pt] {<math>methan e^-};
40
41
       \label{local_continuous} $$ \operatorname{InnFlowCu} (3.5,-0.8) -- (2.1,-0.8) \ \operatorname{Inidway,above=0.1cm} {\ch{Cu^2+}}; 
42
       \draw[decoration={random steps, segment length=3pt, amplitude=1.2pt},
43
         decorate,fill=CopperyColor,draw=DarkCopperyColor]
44
       (1.875, -0.7) --(1.975, -0.9) -- (2.025, -1.3) --(1.925, -1.5) -- (1.875, -1.6) -- cycle;
45
       \node[text=DarkCopperyColor,anchor=west] at (2.05, -1.1) {\ch{Cu}};
46
47
       \displaystyle \frac{1}{2.5,-0.5} -- (4.1,-0.5) \text{ node [midway,above=0.1cm] {} \ch{Cl-}};
48
       \node[moleculeCl] at (4.125, -0.8) {};
49
       \draw[green!70!black, -{Stealth}] (4.125, -0.7) -- (4.125, -0.4);
50
       \node[moleculeCl] at (4.125, -0.3) {};
51
       \draw[green!70!black, -{Stealth}] (4.125, -0.2) -- (4.125, 0.1);
52
53
       \node at (3.0,-2.3) {\Large{\ch{CuCl2_{(aq)}}}};
       \path[fill=blue!50!white, opacity=0.3] (FBL) -- (FBR) -- (WFR) -- (WFL) -- cycle;
54
       \path[fill=blue!30!white, opacity=0.4] (WFL) -- (WFR) -- (WBR) -- (WBL) -- cycle;
55
56
       \draw[blue!50!cyan, opacity=0.6] (WFL) -- (WFR);
57
       \draw (FBL) -- (FTL) -- (FTR) -- (FBR);
58
       \draw (FTL) -- (BTL); \draw (FTR) -- (BTR); \draw (FBL) -- (BBL);
59
       \draw (FBR) -- (BBR); \draw (FBL) -- (FBR);
     \end{tikzpicture}
```


白金 (Pt) を電極として、塩化銅 (II) (CuCl₂) 水溶液の電気分解を行うと、次のような反応が起きる.

陽極(酸化反応) 塩化物イオンが酸化され、塩素ガスが発生する.

$$2 \operatorname{Cl}^- \longrightarrow \operatorname{Cl}_2 + 2 \operatorname{e}^-$$

陰極(還元反応) 銅(Ⅱ)イオンが還元され、銅が析出する.

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$

電気分解全体としての化学反応式は次のようになる:

$$CuCl_2 \longrightarrow Cu + Cl_2$$

濃度 $0.5\,\mathrm{mol/L}$ の塩化銅 (II) 水溶液 $500\,\mathrm{mL}$ に対し, $0.5\,\mathrm{A}$ の電流を $16\,\mathrm{分}5$ 秒 間流した後のモル濃度 c_f を計算する.

電流を流した時間 $t = 16 \min 5 s = 965 s$ ファラデー定数 $F = 9.65 \times 10^4 \, \mathrm{C/mol}$

このとき、電気分解後の塩化銅(Ⅱ)水溶液の濃度は次のように計算できる:

$$c_f = \frac{0.50\,\mathrm{mol/L} \times 0.500\,\mathrm{L} - \frac{0.5\,\mathrm{A} \times 965\,\mathrm{s}}{9.65 \times 10^4\,\mathrm{C/mol}} \times \frac{1}{2}}{0.500\,\mathrm{L}} = \frac{0.2475\,\mathrm{mol}}{0.500\,\mathrm{L}} = 0.495\,\mathrm{mol/L}.$$

Point

■ chemformula.sty と chemfig.sty を用いて化学反応式を表記した.

5.1 問題用紙(数学)

	中間試験
Math	July 29, 2024

数学

学籍番号·	名前·
十相田 7.	72 89 6

指示: 各問題に答えなさい. 選択問題では正しい選択肢を選びなさい.

問題 1. (10 点)

解の公式を用いて、次の方程式の解を求めなさい.

$$x^2 - 5x + 6 = 0$$

問題 1. _____

問題 2. (5 点)

自然数全体の集合を表す記号は次のうちどれか.

- (a) R
- (b) Q
- (c) Z
- (d) N

問題 2. _____

問題 3. (5 点)

である.

問題 3. イ _____

問題 3. ロ _____

問題 3. ハ _____

問題番号	問題 1	問題 2	問題 3	計
配点	10	5	5	20
得点				

Point

■ exam.cls を用いて作成し、一部の箇所にて、exam.cls で定義された表記を書き換えている。

5.2 スクリプト (Python)

ソースコード (LATEX)

```
1
    \begin{minted}{python}
    import numpy as np
 3
    import matplotlib.pyplot as plt
 5
    def plot_cycloid(r=1, t_max=4 * np.pi, n_points=500):
 6
 7
    t = np.linspace(0, t_max, n_points)
 8
 9
    x = r * (t - np.sin(t))
10
    y = r * (1 - np.cos(t))
11
12
    plt.figure(figsize=(8, 4))
13
    plt.plot(x, y, linewidth=2)
    plt.xlabel('x')
14
    plt.ylabel('y')
15
16
    plt.title(f'Cycloid (r = {r})')
17
    plt.axis('equal')
18
    plt.grid(True)
19
    plt.tight_layout()
20
    plt.show()
21
22
    if __name__ == '__main__':
23
    plot_cycloid()
24
    \end{minted}
```

スクリプト(Python)

```
import numpy as np
   import matplotlib.pyplot as plt
   def plot_cycloid(r=1, t_max=4 * np.pi, n_points=500):
       t = np.linspace(0, t_max, n_points)
       x = r * (t - np.sin(t))
       y = r * (1 - np.cos(t))
10
       plt.figure(figsize=(8, 4))
11
       plt.plot(x, y, linewidth=2)
       plt.xlabel('x')
13
       plt.ylabel('y')
14
       plt.title(f'Cycloid (r = {r})')
15
       plt.axis('equal')
16
       plt.grid(True)
17
18
       plt.tight_layout()
       plt.show()
20
   if __name__ == '__main__':
21
       plot_cycloid()
```

Point

■ minted 環境を用いて Python のスクリプトを記述した.

数学の分野では [1], [2], [3] と [4], 物理の分野では [5] と [6] を参考にした.

5 参考文献

- [1] 赤 攝也. 実数論講義 (微分積分学 3). 日本評論社, 2014, p. 321.
- [2] 杉浦 光夫. 解析入門 (1). 東京大学出版会, 1980, p. 430.
- [3] 松坂 和夫. 解析入門 (上). 岩波書店, 2018, p. 424.
- [4] 中島 匠一. 集合・写像・論理: 数学の基本を学ぶ. 共立出版, 2012, p. 240.
- [5] 篠本 滋, 坂口 英継 and 益川 敏英. 基幹講座 物理学 力学. Ed. by 植松 恒夫 and 青山 秀明. 東京図書, 2013, p. 356.
- [6] 田崎 晴明. 熱力学: 現代的な視点から (新物理学シリーズ 32). 培風館, 2000, p. 302.

索引

X	
<i>x−y</i> 座標	. 14
あ	
運動方程式	
<u> </u>	
位置エネルギー	
運動エネルギー22,	2:
気体の内部エネルギー	. 28
コイルのエネルギー	
静電エネルギー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
弾性エネルギー22,	
エネルギー保存則	
円錐	
重さ	
温度	. 28
絶対温度	
セルシウス温度	. 28
<u>ħ</u>	
回転体	
回路方程式	
カヴァリエリの原理	
化学反応式	
可積分	
下方和	
還元反応	
干渉性	
軌跡	
気体定数	
球座標	. 10
極方程式	. 14
キルヒホッフ則 29,	3
区間	6
グラフ	. 13
ケプラーの法則	. 14
構造式35,	36
<u> </u>	
サイクロイド	
酢酸	
作用・反作用の法則	
サリチル酸	
三角関数の加法定理	
酸化反応	
試行	
始集合	
磁束密度	_
実像	
質量	. 22
四面体	
写像	4
終集合	4
収束	8
重量	
重力	
重力加速度	
樹形図	
焦点	
無点 焦点距離	
上方和	
上/J作····································	(

初期条件
相似 3· 束縛条件 2·
<i>†</i> c
炭酸水素ナトリウム
短軸
張力
直交座標 10
定積分
電気分解
電極 38
陰極
陽極
電離定数
電離度3
導体棒
<u> 凸レンズ</u>
な
内心
波
ニュートンの微分記法
14
t to the first of
はさみうちの原理
ばね定数ハロゲン
ばね定数2ハロゲン3光3
ばね定数2ハロゲン3光3微分方程式25, 26
ばね定数2ハロゲン3光3微分方程式25, 2ファラデー定数3
ばね定数2ハロゲン3光3微分方程式25, 26ファラデー定数3フックの法則2フッ素3
ばね定数2ハロゲン3光3微分方程式25, 2ファラデー定数3フックの法則2フッ素3ボルツマン定数2
ばね定数
ばね定数2ハロゲン3光3微分方程式25, 2ファラデー定数3フックの法則2フッ素3ボルツマン定数2
ばね定数
ばね定数 22 ハロゲン 33 光 33 微分方程式 25, 20 ファラデー定数 33 フックの法則 22 ブッ素 33 ボルツマン定数 25 ま モル濃度 36, 38
ばね定数 22 ハロゲン 33 光 33 微分方程式 25, 26 ファラデー定数 36 フックの法則 22 フッ素 33 ボルツマン定数 25 ま モル濃度 36, 36 や ヤングの実験 33 有界 33
ばね定数 22 ハロゲン 33 光 33 微分方程式 25, 26 ファラデー定数 36 フックの法則 22 フッ素 33 ボルツマン定数 25 ま モル濃度 36, 36
ばね定数 22 ハロゲン 33 光 33 微分方程式 25, 26 ファラデー定数 36 フックの法則 22 フッ素 33 ボルツマン定数 25 ま モル濃度 36, 36 や ヤングの実験 33 有界 33
ばね定数 22 ハロゲン 33 光 33 微分方程式 25, 22 ファラデー定数 31 フックの法則 22 フックの法則 22 オルツマン定数 36, 36 **E ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
ばね定数 22 ハロゲン 33 光 33 微分方程式 25, 22 ファラデー定数 31 フックの法則 22 フックの法則 22 オルツマン定数 36, 36 **E ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
ばね定数
ばね定数
ばね定数 22 ハロゲン 33 光 33 微分方程式 25 , 20 ファラデー定数 36 フックの法則 22 フッ素 35 ボルツマン定数 26 ま 26 を 27 ファラデー定数 36 , 36 を 27 フッ素 36 , 36 を 27 ファグの実験 36 , 36 を 27 ファツの微分記法 26 カ学的エネルギー保存則 27 カ積 27 離心率 17 理想気体 26 理想気体の状態方程式 27 対策方程式 27 対策方法 27 対
ばね定数2ハロゲン3光3微分方程式25, 2cファラデー定数3フッ素3ボルツマン定数2ま***モル濃度36, 3cや***ヤングの実験3有界6ライプニッツの微分記法2カ学的エネルギー保存則2カ積2離心率1理想気体2粒子2粒子3
ばね定数 22 ハロゲン 33 光 33 微分方程式 25 , 20 ファラデー定数 36 フックの法則 22 フッ素 35 ボルツマン定数 26 ま 26 を 27 ファラデー定数 36 , 36 を 27 フッ素 36 , 36 を 27 ファグの実験 36 , 36 を 27 ファツの微分記法 26 カ学的エネルギー保存則 27 カ積 27 離心率 17 理想気体 26 理想気体の状態方程式 27 対策方程式 27 対策方法 27 対

Portfolio

2025 Edition