

11. collocation integrator

- Initial value problem
 - Get to $x(t_0+\Delta t)$ from $x(t_0)$ $\dot{x}(t)=f(t,x)$
 - Assume x(t) is approximated by polynomial $\Pi(t)$
 - Evaluate polynomial at $t_0 + \Delta t$

- Initial value problem
 - Get to $x(t_0+\Delta t)$ from $x(t_0)$ $\dot{x}(t)=f(t,x)$
 - Assume x(t) is approximated by polynomial $\Pi(t; coefficients)$
 - Find the coefficients
 - Evaluate polynomial at $t_0 + \Delta t$

Initial value problem

- Get to
$$x(t_0+\Delta t)$$
 from X_0 $\dot{x}(t)=f(t,x)$
$$\Pi(t;X_0,X_1^c,X_2^c,...)$$

$$X_1^c \qquad X_2^c \qquad X_3^c \qquad X_4^c \qquad$$

 $t_0 + \Delta t$

Find the coefficients

Initial value problem

- Get to
$$x(t_0 + \Delta t)$$
 from X_0

$$\dot{x}(t) = f(t,x)$$

- Initial value problem
 - Get to $x(t_0 + \Delta t)$ from X_0

$$\dot{x}(t) = f(t,x)$$

Initial value problem

- Get to
$$x(t_0 + \Delta t)$$
 from X_0

$$\dot{x}(t) = f(t,x)$$

$$\dot{\Pi}(t_j; X_0, X^c) = f(t_j, X_j^c)$$
 $j=1,2,...d$
Rootfinding $\to X^c$

Hands-on CasADi

Initial value problem

- Get to
$$x(t_0 + \Delta t)$$
 from X_0

$$\dot{x}(t) = f(t,x)$$

τ∈IR

11. collocation integrator