1. Wykazać, że dla dowolnych zbiorów A, B i C mamy $C - (A \cup B) = (C - A) \cap (C - B)$.

2. Wyznaczyć sumę $\bigcup_{n\in\mathbb{N}}A_n$ i iloczyn $\bigcap_{n\in\mathbb{N}}A_n$ rodziny $\{A_n\}_{n\in\mathbb{N}}$, gdzie $A_n=\{x\in\mathbb{R}:n\leqslant x\leqslant n+2\}$ dla $n\in\mathbb{N}$.

3. Indukcyjnie wykazać, że liczba $5 \cdot 7^{2n+2} + 2^{3n}$ jest podzielna przez 41 dla każdej liczby naturalnej n.

4. Metodą nie wprost udowodnić, że schemat $\frac{p \Rightarrow (r \Rightarrow s)}{(r \land \sim s) \Rightarrow \sim p}$ jest regułą wnioskowania.

5. Dane są funkcje $f:A\to B$ i $g:B\to C$. Wykazać, że jeśli funkcja $g\circ f$ jest injekcją i f jest surjekcją, to funkcja g jest injekcją.
6. Zakładamy, że dla liczb $a,b \in \mathbb{Z}$ mamy $a \sim b$ wtedy i tylko wtedy, gdy liczba $2a+3b$ jest podzielna przez 5. (a) Wykazać, że \sim jest relacją równoważności w zbiorze \mathbb{Z} . (b) Wyznaczyć klasy abstrakcji liczb 0, 1, 2, 3 i 4 względem relacji \sim . (c) Wyznaczyć zbiór ilorazowy \mathbb{Z}/\sim .
7. Wykazać, że zbiór liczb wymiernych jest przeliczalny.
8. Wykazać równoliczność zbiorów \mathbb{R} i $\mathbb{R}-\langle 0;1\rangle$. Wskazać przykład funkcji ustalającej równoliczność zbiorów \mathbb{R} i $\mathbb{R}-\langle 0;1\rangle$. Uzasadnić poprawność swojego przykładu.