Functions

1 Funcions i aplicacions

Definició 1.1 (Funció). Una funció és una relació R tal que per cada x, y, z

$$(xRy \land xRz \rightarrow y = z)$$

(És a dir, cada x té una única relació).

Definició 1.2 (Aplicació). Una aplicació de A a B és una funció amb domini A i recorregut un subconjunt de B.

Notació 1.0.1. f és una funció de A en B. $f:A\to B$. (També es diu que f és una funció de A en B).

Definició 1.3 (Valor de f per a). Si f és una funció i $a \in \mathbf{dom}(f)$, la segona component de l'únic parell ordenat de f que comença per a s'anomena el valor de f per a i s'escriu f(a).

Una manera habitual de determinar una funció $f: A \to B$ és donar una regla que especifica per cada a quin valor f(a) correspon. La regla ha de quadrar amb el domini i el recorregut.

Definició 1.4 (Funció injectiva). Una funció f és injectiva si

$$f(a) = f(b) \rightarrow a = b$$

(És a dir, dos elements diferents del domini tenen dos valors per f diferents).

Definició 1.5 (Imatge). Sigui $f: A \to B$. Per $X \subseteq A$, la imatge de X en f és el conjunt f(X) format per tots els valors en f dels elements de X.

$$f(X) = \{ f(a) \mid a \in X \}$$

Definició 1.6 (Antiimatge). Sigui $f: A \to B$. L'antiimatge de Y em f és el conjunt dels elements de A amb valor en Y.

$$f^{-1}(Y) = \{a \in A \mid f(a) \in Y\}$$

Exercici 1.0.1. Es compleix $f^{-1}(f(X)) = X$?

Demostració. (⊆). Comprovem que $X \subseteq f^{-1}(f(X))$. Sigui $a \in X$, per definició $f(a) \in (X)$. Per tant, per la definició d'antiimatge, $a \in f^{-1}(f(X))$. El cas (⊇) només es compleix si la funció és bijectiva.

Definició 1.7 (Funció exhaustiva). f és una funció exhaustiva (suprajectiva/sobre B) si $\mathbf{rec}(f) = B$.

Definició 1.8 (Funció bijectiva). Si $f:A\to B$ és injectiva i bijectiva alhora es diu que f és bijectiva. f és una bijecció entre A i B.

Observació 1.0.1. Si $f: A \to B$ no és exhaustiva, $f: A \to \mathbf{rec}(f)$ si que ho serà. Llavors, si f és injectiva, f és una bijecció entre $\mathbf{dom}(f)$ i $\mathbf{rec}(f)$.

Exemple 1.0.1. $f: \mathbb{N} \to \mathbb{Z}$ $n \mapsto -n$. La funció és injectiva ja que si -n = -k llavors n = k. La funció no és exhaustiva perquè tots els enters positius no tenen antiimatge.

Exemple 1.0.2. $f: \mathbb{Z} \to \mathbb{Z}$ $n \mapsto -n$. La funció és injectiva i en aquest cas també és exhaustiva. Per tant, és bijectiva.

Exemple 1.0.3. $f: A \to \mathcal{P}(A)$ $a \mapsto \{a\}$. És injectiva perquè si $\{a\} = \{b\}$ llavors a = b. No és exhaustiva perquè $\emptyset \in \mathcal{P}(A)$ però $\emptyset \notin \mathbf{rec}(f)$.

Exemple 1.0.4. $f: \mathcal{P}(A) \to \mathcal{P}(A) \ X \mapsto A \setminus X$. (Funció que envia cada subconjunt de A al seu complementari). És injectiva ja que $(X^c)^c = (Y^c)^c$ implica X = Y. És exhaustiva, per tant és bijectiva.

1.1 Introducció a les cardinalitats

Teorema 1.1. Existeix una bijecció entre A i B si i només si |A| = |B|.

Notació 1.1.1. Notació per a funcions injectives i bijectives.

 $A \prec B$ si i només si hi ha una funció injectiva entre A i B.

 $A \sim B$ si i només si hi ha una bijecció entre A i B.

Teorema 1.2. Si $A \prec B$ i $B \prec A$ llavors $A \sim B$.

Teorema 1.3 (Teorema de Cantor). $A \nsim \mathcal{P}(A)$.

Demostració. Només cal veure que no hi ha cap funció $f: A \to \mathcal{P}(A)$ que sigui exhaustiva. Suposem que si que existeix tal que per $a \in A$, $f(a) \subseteq A$. Llavors cal veure si $a \in f(a)$.

Sigui $X = \{a \in A \mid a \notin f(a)\}$. $X \subseteq A$ i per tant és un element de $\mathcal{P}(A)$. Com que f és exhaustiva existeix $a \in A$ tal que f(a) = X. Llavors $a \in f(a)$ si i només si $a \notin f(a)$. S'arriba a una contradicció i per tant no hi ha cap funció exhaustiva, i aleshores tampoc n'hi ha cap de bijectiva.

Per tant, es dona sempre que $|A| < |\mathcal{P}(A)|$.

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| < |\mathcal{P}(\mathbb{N})| < |\mathbb{R}| = |\mathbb{C}| < |\mathcal{P}(\mathcal{P}(\mathcal{A}))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{A})))| < \cdots$$

Definició 1.9 (Cardinalitat). La cardinalitat d'un conjunt A, |A| és el nombre d'elements del conjunt. El concepte es pot estendre a conjunts arbitràriament grans.

Definició 1.10 (Conjunt numerable). Un conjunt A és numerable si és finit o és bijectable amb \mathbb{N} .

Exemple 1.1.1. $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ són conjunts numerables.

Teorema 1.4. Tots els conjunts són comparables en cardinalitat, és a dir, per qualsevol conjunts A i B

• $A \leq B$ o $B \leq A$.

• $|A| \le |B|$ o $|B| \le |A|$.

Teorema 1.5. $|\mathbb{N}|$ és la menor cardinalitat possible d'un conjunt infinit.

- Si A és infinit aleshores $\mathbb{N} \leq A$.
- $|\mathbb{N}| = \aleph_0$ (Aleph null).

Proposició 1.1. $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})$ Per tant $|\mathbb{N}| = \aleph_0 < |\mathbb{R}|$.

Observació 1.1.1. Qualsevol interval obert dels nombres reals té una bijecció amb tots els reals.

Proposició 1.2. $(0,1) \sim \mathbb{N}$

Demostració. Suposem que existeix una bijecció r entre (0,1) i \mathbb{N} tal que $r_n = r(n)$. Es té una llista dels elements de (0,1).

$$r_{0} = 0.r_{00}r_{01}r_{02}r_{03} \dots$$

$$r_{1} = 0.r_{10}r_{11}r_{12}r_{13} \dots$$

$$r_{2} = 0.r_{20}r_{21}r_{22}r_{23} \dots$$

$$\vdots$$

$$r_{n} = 0.r_{n0}r_{n1} \dots r_{nn} \dots$$

Es construeix un nombre s mitjançant la modificació dels elements de la diagonal. Es prenen els elements r_{ii} i se'ls suma 1 (canvia a 0 si és suma a 9). Llavors

$$s = 0.r'_{00}r'_{11}r'_{22}r'_{33}\dots$$

Es compleix que $s \in (0,1)$ però $s \neq r_n \ \forall n \in N$ (Ja que difereix de qualsevol r_n en la xifra n+1). Llavors r no és exhaustiva, i per tant no és bijectiva.

Els cardinals tenen una aritmètica: suma, producte i exponenciació, que coincideix amb la dels naturals.

- |A| + |B| = |C| si i només si existeixen A' i B' suplementaris tals que |A'| = |A| i |B'| = |B|.
- $\bullet |A| \cdot |B| = |A \times B|.$
- $|A|^{|B|} = \{f|f: B \to A\}.$

Observació 1.1.2. $\{f|f:B\to 0,1\}\sim \mathcal{P}(A)$. Per tant $|\{0,1\}|^{|A|}=2^{|A|}$. Per tant $|\mathcal{P}(A)=2^{|A|}$. (S'estén la cardinalitat del conjunt de les parts a conjunts arbitràriament grans). Per tant $|\mathbb{R}|=2^{\aleph_0}$.

1.1.1 La hipòtesi del continu

No hi ha cap mida entre $|\mathbb{N}|$ i $|\mathbb{R}|$.

- No hi ha cardinals entre \aleph_0 i 2^{\aleph_0} .
- $|\mathbb{R}| = \aleph_1 = 2^{\aleph_0}$.

Aquesta hipòtesi no es pot ni demostrar ni refutar amb l'axiomàtica de conjunts actual.

2 Composició i inversió de funcions

2.1 Funció composta

Definició 2.1 (Funció composta). Sigui $f: A \to B$ i $g: C \to D$ tal que $C \cap B \neq \emptyset$. Es pren $A' = f^{-1}(C)$. Es defineix la funció f composta en g.

$$g\circ f:A'\to D$$

$$g\circ f\mapsto g(f(a))\qquad\text{per }a\in A'$$

El cas B=C és més senzill. Si $f:A\to B$ i $g:B\to D$. Es defineix la funció f composta en g

$$g \circ f : A \to D$$

 $g \circ f \mapsto g(f(a))$

2.2 Funció inversa

Definició 2.2 (Relació inversa). Sigui R una relació. \check{R} és la relació inversa

$$\check{R} = \{(a, b) \mid (b, a) \in R\}$$

Definició 2.3 (Funció inversa). Si f és una funció injectiva llavors $f^{-1} = \{(a, b) \mid (b, a) \in f\}$ és una funció i a més és injectiva.

f ha de ser injectiva ja que sinó la relació inversa no és funció.

Propietat 2.2.1. Sigui f una funció injectiva.

- 1. $f^{-1} : \mathbf{rec}(f) \to \mathbf{dom}(f)$.
- 2. $(f^{-1})^{-1} = f$.

Observació 2.2.1. Hi ha dos usos per l'expressió $f^{-1}(A)$.

• Per $f: X \to Y$ funció, $f^{-1}(A)$ és l'antiimatge de A per f:

$$f^{-1}(A) = \{ a \in X \mid f(a) \in A \}$$

• Per $f: X \to Y$ funció, $A \subseteq \mathbf{rec}(f) \subseteq Y$:

$$f^{-1}: \mathbf{rec}(f) \to X$$
 $f^{-1}(A) = \{f^{-1}(a) \mid a \in A\}$

En el cas 2, f^{-1} és la imatge directa de A en la funció f^{-1} però coincideix amb el cas 1, l'antiimatge de A en f.

Si f és injectiva i $A \subseteq \mathbf{rec}(f)$ llavors $\{f^{-1}(a) \mid a \in A\} = \{x \in X \mid f(x) \in A\}$

 $Demostraci\'o. \ \text{Es vol veure que } \{f^{-1}(a) \mid a \in A\} = \{x \in X \mid f(x) \in A\}.$

- (\subseteq) Sigui $a \in A$, $f^{-1} \in X$ perquè $f^{-1} : \mathbf{rec}(f) \to X$ i a més $f(f^{-1})(a) = a \in A$. Per tant $f^{-1}(a) \in \{x \in X \mid f(x) \in A\}$.
- (\supseteq) Sigui $x \in X$ tal que $f(x) \in A$. Llavors $f^{-1}(f(x)) = x$, per a = f(x), per tant $x = f^{-1}(a)$ per $a \in A$ i aleshores $x \in \{f^{-1}(a) \mid a \in A\}$.

Exemple 2.2.1. Sigui $f: \mathbb{N} \to \mathbb{N}$ tal que $n \mapsto n+1$. La funció és injectiva ja que si n+1=m+1 llavors n=m. $\mathbf{rec}\ f=\mathbb{N} \setminus \{0\}$. Com que és injectiva és invertible. $f^{-1}: \mathbb{N} \setminus \{0\} \to \mathbb{N}$ tal que $n \mapsto n-1$.

Sigui $A = \{3, 4, 7\}.$

$$f^{-1}(A) = \{n \in \mathbb{N} \mid f(n) \in \{3,4,7\}\} = \{2,3,6\} \text{ Primer ús}$$

$$f^{-1}(A) = \{f^{-1}(3), f^{-1}(4), f^{-1}(7)\} = \{2,3,6\}$$

Observació 2.2.2. La composició de funcions injectives és una funció injectiva.

Demostraci'o. Siguin f, g funcions injectives.

$$g \circ f(x) = g \circ f(y) \rightarrow g(f(x)) = g(f(y))$$

Com que g és injectiva, f(x) = f(y) i com que f és injectiva x = y. Per tant $g \circ f$ és injectiva. \square

Observació 2.2.3. Siguin f, g funcions injectives.

$$\mathbf{dom}(g \circ f)^{-1} = \mathbf{rec}(g \circ f)$$

Observació 2.2.4. Siguin f, g injectives. $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$