

Unsupervised Learning Worked Example

K-Means Clustering Algorithm Use the K-means algorithm and Euclidean distance to cluster the 5 data points given in Figure 1 into k = 2 clusters.

Figure 1: Dataset

Step 1: Assume A(2, 2) and C(1, 1) are centers of the two clusters.

Step 2: Calculate the distance from each point to each cluster

center.

Note: Check what are the formula to calculate the distance.

Figure 2: Euclidean distance

	Distance from Center 1 (2,2)	Distance from Center 2 (1,1)
Α	0	1.41
В	1	2.24
С	1.41	0
D	1.41	2
E	1.58	0.71

P(A, C1)
=
$$sqrt[(x2-x1)^2 + (y2-y1)^2]$$

= $sqrt[(x2-x1)^2 + (y2-y1)^2]$
= $sqrt[(x2-x1)^2 + (x2-y1)^2]$
= $sqrt[(x2-x1)^2 + (x2-y1)^2]$

Step 3: Label all data points to closest cluster center.

	Distance from Center 1 (2,2)	Distance from Center 2 (1,1)	Point belongs to Cluster
A	0	1.41	C1
В	1	2.24	C1
С	1.41	0	C2
D	1.41	2	C1
E	1.58	0.71	C2

Step 4: Recompute the center of newly formed clusters.

Note: The center of a cluster is computed by taking mean of all data

points contained in that cluster.

	New Cluster Center
Center 1	2.67, 1.67
Center 2	1.25, 0.75

First Cluster: A, B, D Second Cluster: C, E

For Cluster-01:

For Cluster-02:

This is completion of Iteration-01!!

$$=((2+3+3)/3, (2+2+1)/3)$$

$$= (2.67, 1.67)$$

Center of Cluster-02

$$=((1+1.5)/2, (1+0.5)/2)$$

$$= (1.25, 0.75)$$

Step 5: Repeat Step 2 to 4 until stopping criteria is met.

- i. Center of newly formed clusters do not change.
- ii. Points remain present in the same cluster.
- iii. Maximum number of iterations are reached.

Unsupervised Learning Worked Example

Hierarchical
Agglomerative
Clustering
Algorithm

Question: Say there is **one dimensional** data set **{7,10,20,28,35}**, perform hierarchical clustering and plot the dendogram to visualize it.

- ► A = 7
- ► B = 10
- ► C = 20
- ► D = 28
- ► E = 35

Figure 1: Visualize the data

IF Single Linkage is applied:

① 7 10 20 28 35

Final Answer:

Cluster 1: (7,10) or (A, B)

Cluster 2: (20,28,35) or (C, D, E)

IF Complete Linkage is applied:

Complete Linkage

Final Answer:

Cluster 1: (7,10,20) or (A, B, C)

Cluster 2: (28,35) or (D, E)