C04 – Weakest Precondition Calculus · Separation Logic

Program Verification

 $\mathsf{FMI}\cdot\mathsf{Denisa}$ Diaconescu \cdot Spring 2025

Recall Hoare Logic - proof rules

The assignment axiom:

$$\{Q[x/\mathbb{E}]\} \ x := \mathbb{E} \ \{Q\}$$

Strengthening Precond. rule:

$$\frac{P_s \to P_w \quad \{P_w\} \ S \ \{Q\}}{\{P_s\} \ S \ \{Q\}}$$

Weakening Postcond. rule:

$$\frac{\{P\} \ S \ \{Q_s\} \qquad Q_s \rightarrow Q_w}{\{P\} \ S \ \{Q_w\}}$$

Sequencing rule:

$$\frac{\{P\}S_1\{Q\} \qquad \{Q\}S_2\{R\}}{\{P\}S_1; S_2\{R\}}$$

Conditional rule:

$$\boxed{ \begin{aligned} & \{P \wedge b\} \; \mathbf{S_1} \; \{Q\} & \{P \wedge \neg b\} \; \mathbf{S_2} \; \{Q\} \\ & \{P\} \; \text{if b then } \mathbf{S_1} \; \text{else } \mathbf{S_2} \; \{Q\} \end{aligned} }$$

While rule:

$$\frac{\{P \wedge b\} \ \mathtt{S} \ \{P\}}{\{P\} \ \mathtt{while} \ \mathtt{b} \ \mathtt{do} \ \mathtt{S} \ \{P \wedge \neg b\}}$$

Weakest Precondition Calculus

Weakest precondition calculus

- Edsger W. Dijkstra: introduced another technique for proving properties of imperative programs.
- Weakest Precondition calculus (WP)

Hoare logic presents logic problems:

• Given a precondition P, some code \mathbb{C} , and postcondition Q, is the Hoare triple $\{P\}$ \mathbb{C} $\{Q\}$ true?

WP is about evaluating a function:

• Given some code $\mathbb C$ and postcondition Q, find the unique P which is the weakest precondition such that Q holds after $\mathbb C$.

Weakest precondition calculus

If $\mathbb C$ is a code fragment and Q is an assertion about states, then the weakest precondition for $\mathbb C$ with respect to Q is an assertion that is true for precisely those initial states from which:

- C must terminate, and
- executing \mathbb{C} must produce a state satisfying Q.

The weakest precondition P is a function of \mathbb{C} and Q:

$$P = wp(\mathbb{C}, Q)$$

- The function wp is sometimes called predicate transformer.
- The calculus WP is sometimes called Predicate Transformer Semantics.

Relationship with Hoare Logic

Hoare Logic is relational:

- For each Q, there are many P such that $\{P\} \subset \{Q\}$.
- For each P, there are many Q such that $\{P\} \subset \{Q\}$.

WP is functional:

• For each Q, there is exactly one assertion $wp(\mathbb{C}, Q)$.

WP respects Hoare logic: $\{wp(\mathbb{C},Q)\}$ \mathbb{C} $\{Q\}$ is true.

Hoare logic is about partial correctness (we don't care about termination).

WP is about total correctness (we do care about termination).

Total correctness = Termination + Partial correctness

Intuition

Example

Consider the code x := x+1 and postcondition (x > 0).

• One valid precondition is (x > 0), so in Hoare logic the following is true

$$\{x > 0\} \ x := x+1 \ \{x > 0\}$$

• Another valid precondition is (x > -1), so

$$\{x > -1\} \ x := x+1 \ \{x > 0\}$$

- (x > -1) is weaker than (x > 0) (since $(x > 0) \rightarrow (x > -1)$)
- In fact (x > -1) is the weakest precondition

$$wp(x := x+1, x > 0) \equiv (x > -1)$$

5

Weakest precondition for Assignment (Rule 1/4)

The Assignment axiom of Hoare Logic is designed to give the "best" (i.e., the weakest) precondition:

$$\{Q[x/\mathbb{E}]\}$$
 x := \mathbb{E} $\{Q\}$

Therefore the rule for Assignment in the weakest precondition calculus corresponds closely:

$$wp(x := \mathbb{E}, Q) \equiv Q[x/\mathbb{E}]$$

(Q is an assertion involving a variable x and $Q[x/\mathbb{E}]$ indicates the same assertion with all occurrences of x replaced by the expression \mathbb{E})

Weakest precondition for Assignment

The rule for Assignment: $wp(x := \mathbb{E}, Q) \equiv Q[x/\mathbb{E}]$

 $\equiv n > 4$

Example

$$wp(x := y+3, x > 3) \equiv y+3 > 3 \qquad \text{(substitute } y+3 \text{ for } x\text{)}$$

$$\equiv y>0 \qquad \text{(simplify)}$$

$$wp(n := n+1, n > 5) \equiv n+1 > 5 \qquad \text{(substitute } n+1 \text{ for } n\text{)}$$

(simplify)

Weakest precondition for Sequences (Rule 2/4)

The rule for sequencing compose the effect of the consecutive statements:

$$wp(\mathbb{C}_1; \mathbb{C}_2, Q) \equiv wp(\mathbb{C}_1, wp(\mathbb{C}_2, Q))$$

$$wp(x := x+2; y := y-2, x + y = 0)$$

Weakest precondition for Sequences (Rule 2/4)

The rule for sequencing compose the effect of the consecutive statements:

$$wp(\mathbb{C}_1; \mathbb{C}_2, Q) \equiv wp(\mathbb{C}_1, wp(\mathbb{C}_2, Q))$$

```
wp(x := x+2; y := y-2, x + y = 0)
\equiv wp(x := x+2, wp(y := y-2, x + y = 0))
\equiv wp(x := x+2, x + (y - 2) = 0)
\equiv (x+2) + (y-2) = 0
\equiv x + y = 0
```

Weakest precondition for Conditionals (Rule 3a/4)

$$\textit{wp}(\text{if }\mathbb{B} \text{ then }\mathbb{C}_1 \text{ else }\mathbb{C}_2, \textit{Q}) \ \equiv \ (\mathbb{B} \to \textit{wp}(\mathbb{C}_1, \textit{Q})) \land (\neg \mathbb{B} \to \textit{wp}(\mathbb{C}_2, \textit{Q}))$$

$$wp(if x > 2 then y := 1 else y := -1, y > 0)$$

Weakest precondition for Conditionals (Rule 3a/4)

```
\textit{wp}(\text{if }\mathbb{B} \text{ then }\mathbb{C}_1 \text{ else }\mathbb{C}_2, \textit{Q}) \ \equiv \ (\mathbb{B} \to \textit{wp}(\mathbb{C}_1, \textit{Q})) \land (\neg \mathbb{B} \to \textit{wp}(\mathbb{C}_2, \textit{Q}))
```

Alternative rule for Conditionals (Rule 3b/4)

It is often easier to deal with disjunctions and conjunctions than implications, so the following equivalent rule for conditionals is usually more convenient.

$$\mathit{wp}(\mathsf{if}\ \mathbb{B}\ \mathsf{then}\ \mathbb{C}_1\ \mathsf{else}\ \mathbb{C}_2, \mathit{Q})\ \equiv\ (\mathbb{B}\wedge \mathit{wp}(\mathbb{C}_1, \mathit{Q})) \vee (\neg \mathbb{B}\wedge \mathit{wp}(\mathbb{C}_2, \mathit{Q}))$$

```
 wp(\text{if } x > 2 \text{ then } y := 1 \text{ else } y := -1, y > 0) 
 \equiv ((x > 2) \land wp(y := 1, y > 0)) \lor (\neg(x > 2) \land wp(y := -1, y > 0)) 
 \equiv ((x > 2) \land (1 > 0)) \lor (\neg(x > 2) \land (-1 > 0)) 
 \equiv ((x > 2) \land \top) \lor (\neg(x > 2) \land \bot) 
 \equiv (x > 2) \lor \bot 
 \equiv (x > 2)
```

Proof rule for Conditionals

Exercise:

How would you derive a rule for a conditional statement without else?

if $\mathbb B$ then $\mathbb C$

Loops

Suppose we have a while loop and some postcondition Q.

The precondition P that we seek is the weakest that:

- establishes Q
- guarantees termination

We can take hints for the corresponding rule for Hoare Logic. That is, think in terms of loop invariants.

But termination is a bigger problem!

An undecidable problem

Determining if a program terminates or not on a given input is an **undecidable problem!**

So there's no algorithm to compute $\mathit{wp}(\mathtt{while}\ \mathbb{B}\ \mathtt{do}\ \mathbb{C},\mathit{Q})$ in all cases.

But that doesn't mean there are no techniques to tackle this problem that at least work some of the time!

Guaranteeing termination

The precondition P we seek is the weakest that establishes Q and guarantees termination.

How a loop can terminate?

- If the loop is never entered, then the postcondition Q must already be true and the boolean control expression \mathbb{B} false.
 - We will call this precondition P_0 .
 - $\bullet \ \ P_0 \equiv \neg \mathbb{B} \wedge Q \qquad \qquad \text{i.e, } \{\neg \mathbb{B} \wedge Q\} \text{ do nothing } \{Q\}$
- Suppose the loop executes exactly once. In this case:
 - B must be true initially
 - after the first time through the loop, P₀ must become true (so that the loop terminates next time through).
 - $P_1 \equiv \mathbb{B} \land wp(\mathbb{C}, P_0)$ i.e., $\{\mathbb{B} \land wp(\mathbb{C}, P_0)\} \subset \{P_0\}$

Guaranteeing termination

```
P_0 \equiv \neg \mathbb{B} \land Q \qquad \text{i.e, } \{\neg \mathbb{B} \land Q\} \text{ do nothing } \{Q\}
P_1 \equiv \mathbb{B} \land wp(\mathbb{C}, P_0) \qquad \text{i.e., } \{\mathbb{B} \land wp(\mathbb{C}, P_0)\} \ \mathbb{C} \ \{P_0\}
P_2 \equiv \mathbb{B} \land wp(\mathbb{C}, P_1) \qquad \text{i.e., } \{\mathbb{B} \land wp(\mathbb{C}, P_1)\} \ \mathbb{C} \ \{P_1\}
P_3 \equiv \mathbb{B} \land wp(\mathbb{C}, P_2) \qquad \text{i.e., } \{\mathbb{B} \land wp(\mathbb{C}, P_2)\} \ \mathbb{C} \ \{P_2\}
...
```

 P_k – the weakest precondition under which the loop terminates with postcondition Q after exactly k iterations.

We can capture the definition of P_k with an inductive definition.

An inductive definition

$$P_0 \equiv \neg \mathbb{B} \wedge Q$$

$$P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$$

If any of the P_k is true in the initial state, then we are guaranteed that the loop will terminate and establish the postcondition Q,

i.e.
$$\{P_0 \vee P_1 \vee \ldots\}$$
 while $\mathbb B$ do $\mathbb C$ $\{Q\}$ is true.

The weakest precondition for while loops (rule 4/4)

$$\mathit{wp}(exttt{while } \mathbb{B} ext{ do } \mathbb{C}, \mathit{Q}) \equiv \exists k \; (k \geq 0 \wedge \mathit{P}_k)$$

where P_k is defined inductively:

$$P_0 \equiv \neg \mathbb{B} \wedge Q$$

$$P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$$

Interpretation:

- P_k is the weakest precondition that ensures that the body $\mathbb C$ executes exactly k times and terminates in a state in which postcondition Q holds.
- \bullet If our loop is to terminate with postcondition Q, some P_k must hold before we enter the loop
 - i.e. $\{P_0 \vee P_1 \vee \ldots\}$ while $\mathbb B$ do $\mathbb C$ $\{Q\}$ is true.

Applying the *wp* function to a while loop and postcondition will produce an assertion of the form

$$\exists k \ (k \geq 0 \land P_k)$$

 P_k may be different for each k, so wp may produce an infinitely long assertion! Such an assertion is unsuitable for further manipulations.

We can simplify matters by expressing P_k as a single, finite formula that is parameterised by k.

Example

If
$$P_0 \equiv (n = 0)$$
, $P_1 \equiv (n = 1)$, $P_2 \equiv (n = 2)$, ..., then $P_k \equiv (n = k)$.

We must prove correctness of P_k by induction!

$$wp(ext{while } \mathbb{B} ext{ do } \mathbb{C}, Q) \equiv \exists k \ (k \geq 0 \wedge P_k)$$

$$P_0 \equiv \neg \mathbb{B} \wedge Q$$

$$P_{k+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_k)$$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

We start by generating some of the P_k sequence:

- $P_0 \equiv \neg (n > 0) \land (n = 0) \equiv (n = 0)$ i.e., $\neg \mathbb{B} \land Q$
- $P_1 \equiv (n > 0) \land wp(n := n 1, n = 0) \equiv (n = 1)$ i.e., $\mathbb{B} \land wp(\mathbb{C}, P_0)$
- $P_2 \equiv (n > 0) \land wp(n := n 1, n = 1) \equiv (n = 2)$ i.e., $\mathbb{B} \land wp(\mathbb{C}, P_1)$
- ...

so it looks pretty likely that $P_k \equiv (n = k)$

Example

Suppose we want to find:

$$wp(while n > 0 do n := n-1, n = 0)$$

We prove by induction that $P_k \equiv (n = k)$:

We already checked the base case:

$$P_0 \equiv \neg(n>0) \land (n=0) \equiv (n=0)$$

Now for our induction step:

We assume
$$P_i \equiv (n = i)$$
 for some $i \geq 0$.

Recall that $P_{i+1} \equiv \mathbb{B} \wedge wp(\mathbb{C}, P_i)$.

$$P_{i+1} \equiv (n > 0) \land wp(n := n - 1, n = i)$$

$$\equiv (n > 0) \land (n - 1 = i)$$

$$\equiv (n > 0) \land (n = i + 1)$$

$$\equiv (n = i + 1)$$

Example

Therefore we have

$$wp(\text{while n} > 0 \text{ do n} := n-1, n = 0) \equiv \exists k \ (k \geq 0 \land n = k)$$

We can still simplify it further!

Useful trick:
$$\exists k \ ((k \ge 0) \land P_k) \equiv P_0 \lor P_1 \lor P_2 \lor \dots$$

In this example we have $(n = 0) \lor (n = 1) \lor (n = 2) \lor \dots$

We can compress this infinite disjunction into a finite final result:

$$wp(\text{while n} > 0 \text{ do n} := n-1, n = 0) \equiv (n \geq 0)$$

Total correctness

Example

We want to find

$$wp(while n \neq 0 do n := n-1, n = 0)$$

Step 1 - finding the P_k :

- $P_0 \equiv \neg (n \neq 0) \land (n = 0) \equiv (n = 0)$ i.e., $\neg \mathbb{B} \land Q$
- $P_1 \equiv (n \neq 0) \land wp(n := n 1, n = 0) \equiv (n = 1)$ i.e., $\mathbb{B} \land wp(\mathbb{C}, P_0)$
- ...
- $P_k \equiv (n = k)$ (induction omitted)

Total correctness

Example

Step 2 - finding the weakest precondition:

$$\exists k \ ((k \ge 0) \land P_k) \equiv \exists k \ (k \ge 0 \land n = k)$$
$$\equiv (n \ge 0)$$

Thus,

$$wp(\text{while n} \neq 0 \text{ do n} := n-1, n = 0) \equiv (n \geq 0)$$

This is not really any different than the previous example.

But what is the trap in this while-loop?

We have automatically found that the while-loop will not terminate for initial values of n less than 0.

WP rules

- Rule for Assignment: $wp(x := \mathbb{E}, Q(x)) \equiv Q(\mathbb{E})$
- Rule for Sequencing: $wp(\mathbb{C}_1; \mathbb{C}_2, Q) \equiv wp(\mathbb{C}_1, wp(\mathbb{C}_2, Q))$
- Rule for Conditionals:

```
\mathit{wp}(\mathsf{if}\ \mathbb{B}\ \mathsf{then}\ \mathbb{C}_1\ \mathsf{else}\ \mathbb{C}_2, \mathit{Q})\ \equiv\ (\mathbb{B} \to \mathit{wp}(\mathbb{C}_1, \mathit{Q})) \land (\lnot \mathbb{B} \to \mathit{wp}(\mathbb{C}_2, \mathit{Q}))
```

- There is no algorithm to compute $wp(\text{while } \mathbb{B} \text{ do } \mathbb{C}, Q)$ in all cases!
 - But that doesn't mean there are no techniques to tackle this problem that at least work some of the time!
 - Inductive definition.

Quiz time!

https://tinyurl.com/FMI-PV2023-Quiz4

Separation Logic

We extend our toy programming language with:

- Heap reads: $x := [\mathbb{E}]$ (dereferencing) • Heap writes: $[\mathbb{E}_1] := \mathbb{E}_2$ (update heap)
- Heap allocation: $x := cons(\mathbb{E}_1, ... \mathbb{E}_n)$
- ullet Heap deallocation: dispose ${\mathbb E}$

The state is now represented by a pair of type $Store \times Heap$, denoted (σ, h) , where

$$\sigma \in Store$$
, where $Store \triangleq Var \rightarrow Val$
 $h \in Heap$, where $Heap \triangleq Loc \rightarrow Val$

where $Loc \subseteq Val$.

Note that we consider dom(h) to always be finite. By this, we ensure that cons commands will never fail.

Heap reads: $x := [\mathbb{E}]$

- evaluate expression \mathbb{E} to get location I
- fault if location / is not in the current heap
- otherwise variable x is assigned the content of location /

Example (x := [y+1])

n	
0xAB	1
0xAC	2

$$x := [y+1]$$

	O
у	0xAB
X	2

U	"		
0xAB	0xA	AB 1	
2	0xA	AC 2	

```
Heap writes: [\mathbb{E}_1] := \mathbb{E}_2
```

- ullet evaluate expression \mathbb{E}_1 to get location I
- fault if location / is not in the current heap
- ullet otherwise make the content of location / the value of expression \mathbb{E}_2

Example (
$$[y+1] := 5$$
)

h	
0xAB	1
0×AC	2

	σ
У	0xAB

h	
0xAB	1
0×AC	5

```
Heap allocation: x := cons(\mathbb{E}_1, ... \mathbb{E}_n)
```

- extend the heap with *n* consecutive new locations l, l+1, ..., l+n-1
- put values of $\mathbb{E}_1,...,\mathbb{E}_n$ into locations l,l+1,...,l+n-1 respectively
- extend the stack by assigning x the value I
- never fault

Heap deallocation: dispose ${\mathbb E}$

- ullet evaluate expression $\mathbb E$ to get location I
- fault if location / is not in the current heap
- otherwise remove location / from the heap

Example (dispose p+1)

h	
0xAB	5
0×AC	6

dispose p+1

p 0xAB

 σ

h 0×AB

30

Example

x := cons(3,3)

 σ

h

Х	0xAB
---	------

0xAB	3
0xAC	3

```
x := cons(3,3); y := cons(4,4);
```

Х	0xAB
у	0xDD

 σ

0xAB	3
0×AC	3
0xDD	4
0×DE	4

```
x := cons(3,3); y := cons(4,4); [x+1] := y;
```

 σ

h

Х	0×AB
у	0xDD

0xAB	3
0×AC	0xDD
0xDD	4
0×DE	4

```
x := cons(3,3) ; y := cons(4,4); [x+1] := y; [y+1] := x; 
 \sigma h
```

Х	0xAB
у	0×DD

0xAB	3
0×AC	0xDD
0xDD	4
0×DE	0xAB

$$x := cons(3,3)$$
; $y := cons(4,4)$; $[x+1] := y$; $[y+1] := x$;

 σ

Х	0xAB
у	0xDD

0xAB	3
0×AC	0xDD
0xDD	4
0xDE	0xAB

Can you suggest a precondition such that this triple holds?

```
{???}
[y] := 4; [z] := 5;
{(\exists y, z)(y \mapsto y \land z \mapsto z \land y \neq z)}
```

Note that, for example, y is used to denote program variables, while y is used to denote logical variables.

Can you suggest a precondition such that this triple holds?

Note that, for example, y is used to denote program variables, while y is used to denote logical variables.

We need to assume that the locations pointed by y and z are different (aliasing).

And now?

```
[y] := 4; [z] := 5; 
\{(\exists y, z)(y \mapsto y \land z \mapsto z \land y \neq z \land x \mapsto 3)\}
```

We need to assume that the locations pointed by y and z are different (aliasing).

We also need to know when things stay the same.

And now?

```
\{y \neq z \land x \neq y \land x \neq z \land y \mapsto \_ \land z \mapsto \_ \land x \mapsto 3\}
[y] := 4; [z] := 5;
\{(\exists y, z)(y \mapsto y \land z \mapsto z \land y \neq z \land x \mapsto 3)\}
```

We need to assume that the locations pointed by y and z are different (aliasing).

We also need to know when things stay the same.

Framing

We want a general concept of things not being affected.

$$\frac{\{P\} \mathbb{C} \{Q\}}{\{x \mapsto 3 \land P\} \mathbb{C} \{Q \land x \mapsto 3\}}$$

What are the conditions on \mathbb{C} and $x \mapsto 3$?

These are very hard to define if reasoning about a heap and aliasing.

Framing

We want a general concept of things not being affected.

$$\frac{\{P\} \mathbb{C} \{Q\}}{\{x \mapsto 3 \land P\} \mathbb{C} \{Q \land x \mapsto 3\}}$$

What are the conditions on \mathbb{C} and $x \mapsto 3$?

These are very hard to define if reasoning about a heap and aliasing.

This is where separation logic comes in:

$$\frac{\{P\}\;\mathbb{C}\;\{Q\}}{\{R*P\}\;\mathbb{C}\;\{Q*R\}}$$

The new connective * ("sep" operator) is used to separate the heap.

From Hoare logic to separation logic

- Robert W. Floyd 1967: gave some rules to reason about programs.
- Sometimes, our Hoare Logic is called Floyd-Hoare Logic in recognition.
- Many attempts made to extend Floyd-Hoare Logic to handle pointers.

 Only really solved around 2000 by Reynolds, O'Hearn and Yang using a connective * called separating conjunction.

Extra connectives in separation logic

```
\begin{array}{ccc} & \text{emp} & \text{empty heap} \\ \mathbb{E}_1 \mapsto \mathbb{E}_2 & \text{points to} \\ P * Q & \text{separating conjunction} \end{array}
```

Evaluating expressions in the store of a state

Strictly speaking, the store gives values to variables only.

But we need a way to say "value of an expression in a store" so we will abuse notation and use $\sigma(\mathbb{E})$ for this as below:

- $\sigma(n) = n$ where n is a number is just its usual value
- $\sigma(x + n) = \sigma(x) + \sigma(n)$ where *n* is a number and *x* is a variable

```
\sigma \triangleq Var \rightarrow Val
h \triangleq Loc \rightarrow Val
(\sigma, h) \models emp \text{ if } dom(h) = \emptyset
```

- emp is an atomic formula for checking if the heap is empty
- a state (σ, h) makes the formula emp true if the heap is empty

```
\sigma \triangleq Var \rightarrow Val
h \triangleq Loc \rightarrow Val
(\sigma, h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = {\sigma(\mathbb{E}_1)} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)
```

- a state (σ, h) makes the formula $\mathbb{E}_1 \mapsto \mathbb{E}_2$ true if the heap is a singleton and maps the location $\sigma(\mathbb{E}_1)$ to the value $\sigma(\mathbb{E}_2)$
- ullet $\sigma(\mathbb{E})$ is the value of an expression in a store as explained before

$$\sigma \triangleq Var \rightarrow Val$$
 $h \triangleq Loc \rightarrow Val$
 $(\sigma, h) \models P * Q \text{ if } h \text{ can be partitioned into two disjoint heaps } h_1 \text{ and } h_2,$
and $(\sigma, h_1) \models P \text{ and } (\sigma, h_2) \models Q$

Note that two heaps are disjoint if the intersection of their domains is empty.

$$\sigma \triangleq Var \rightarrow Val$$
 $h \triangleq Loc \rightarrow Val$
 $(\sigma, h) \models P * Q$ if h can be partitioned into two disjoint heaps h_1 and h_2 , and $(\sigma, h_1) \models P$ and $(\sigma, h_2) \models Q$

Note that two heaps are disjoint if the intersection of their domains is empty.

$$(\sigma,h) \models P_1 * P_2 * ... * P_n$$
 if h can be partitioned into n disjoint heaps h_1,h_2,\ldots,h_n and $(\sigma,h_i) \models P_i$ for any $i \in \{1,\ldots,n\}$

Example

 σ

х	0×AB
У	0×DD

0xAB	3
0×AC	0×DD
0×DD	4
0×DE	0×AB

Example

 σ

h

х	0xAB
У	0×DD

0xAB	3
0×AC	0×DD
0×DD	4
0×DE	0xAB

Satisfies the statement:

$$(\mathtt{x} \mapsto \mathtt{3}) * (\mathtt{x} + \mathtt{1} \mapsto \mathtt{y}) * (\mathtt{y} \mapsto \mathtt{4}) * (\mathtt{y} + \mathtt{1} \mapsto \mathtt{x})$$

$$(\sigma, h) \models P_1 * P_2 * \dots * P_n$$
 if h can be partitioned into n distinct heaps h_1, h_2, \dots, h_n and $(\sigma, h_i) \models P_i$ for any $i \in \{1, \dots, n\}$

Example

 σ

h

x	0×AB
У	0×DD

0×AB	3
0×AC	0×DD
0xDD	4
0×DE	0xAB

We want to show that

$$(\sigma, h) \models (\mathtt{x} \mapsto \mathtt{3}) * (\mathtt{x} + \mathtt{1} \mapsto \mathtt{y}) * (\mathtt{y} \mapsto \mathtt{4}) * (\mathtt{y} + \mathtt{1} \mapsto \mathtt{x})$$

$$(\sigma, h) \models P_1 * P_2 * \dots * P_n$$
 if h can be partitioned into n distinct heaps h_1, h_2, \dots, h_n and $(\sigma, h_i) \models P_i$ for any $i \in \{1, \dots, n\}$

Example

 σ

h

0×AB	3
0×AC	0×DD
0×DD	4
0×DE	0xAB

We want to show that

$$(\sigma, h) \models (x \mapsto 3) * (x + 1 \mapsto y) * (y \mapsto 4) * (y + 1 \mapsto x)$$

We can partition h into 4 distinct heaps:

 σ

h₁

ho

hз

h₄

x 0xAB y 0xDD 0xAB 3

0xAC 0xDD

0xDD 4

0xDE 0xAB

$$(\sigma, h) \models P_1 * P_2 * \dots * P_n$$
 if h can be partitioned into n distinct heaps h_1, h_2, \dots, h_n and $(\sigma, h_i) \models P_i$ for any $i \in \{1, \dots, n\}$

Example

 σ

h

x	0×AB
у	0xDD

0×AB	3
0×AC	0×DD
0×DD	4

0xAB

We want to show that

$$(\sigma, h) \models (\mathtt{x} \mapsto \mathtt{3}) * (\mathtt{x} + \mathtt{1} \mapsto \mathtt{y}) * (\mathtt{y} \mapsto \mathtt{4}) * (\mathtt{y} + \mathtt{1} \mapsto \mathtt{x})$$

We can partition h into 4 distinct heaps:

0×DE

~

h₁

ho

hз

hд

и 0хAВ у 0хDD 0xAB 3

0xAC 0xDD

0xDD 4

0xDE 0xAB

We must show that

$$(\sigma, h_1) \models x \mapsto 3$$

 $(\sigma, h_2) \models x + 1 \mapsto y$

$$(\sigma, h_3) \models y \mapsto 4$$

 $(\sigma, h_4) \models y + 1 \mapsto x$

$$(\sigma,h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2$$
 if $dom(h) = {\sigma(\mathbb{E}_1)}$ and $h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$

Example

 σ

 h_1

 h_2

 h_3

 h_4

х 0хAВ у 0хDD 0xAB 3

0×AC 0×DD

0xDD 4

0xDE 0xAB

$$(\sigma, h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = {\sigma(\mathbb{E}_1)} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$$

Example

 σ

 h_1

 h_2

 h_3

 h_4

х 0×AВ у 0×DD 0xAB 3

0xAC 0xDD

0xDD 4

0×DE 0×AB

$$(\sigma, h_1) \models x \mapsto 3$$

- $dom(h_1) = 0 \times AB = \sigma(x)$
- $h_1(0 \times AB) = 3$

$$(\sigma, h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = {\sigma(\mathbb{E}_1)} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$$

Example

 σ

 h_1

 h_2

 h_3

 h_4

х 0×AВ у 0×DD 0xAB 3

0xAC 0xDD

0xDD 4

0×DE 0×AB

$$(\sigma, h_1) \models x \mapsto 3$$

- $dom(h_1) = 0 \times AB = \sigma(x)$
- $h_1(0 \times AB) = 3$

$$(\sigma, h_2) \models x + 1 \mapsto y$$

- $dom(h_2) = 0 \times AC = \sigma(x+1)$
- $h_2(0 \times AC) = 0 \times DD = \sigma(y)$

$$(\sigma, h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = {\sigma(\mathbb{E}_1)} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$$

Example

 σ

 h_1

 h_2

 h_3

 h_4

0xAB 3

0xAC 0xDD

0xDD 4

0xDE 0xAB

$$(\sigma, h_1) \models x \mapsto 3$$

•
$$dom(h_1) = 0 \times AB = \sigma(x)$$

•
$$h_1(0 \times AB) = 3$$

$$(\sigma, h_3) \models y \mapsto 4$$

•
$$dom(h_3) = 0 \times DD = \sigma(y)$$

•
$$h_3(0 \times DD) = 4$$

$$(\sigma, h_2) \models x + 1 \mapsto y$$

•
$$dom(h_2) = 0 \times AC = \sigma(x+1)$$

•
$$h_2(0 \times AC) = 0 \times DD = \sigma(y)$$

$$(\sigma,h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2 \text{ if } dom(h) = \{\sigma(\mathbb{E}_1)\} \text{ and } h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$$

Example

 σ

 h_1

 h_2

 h_3

 h_4

0xAB 3

0xAC 0xDD

0xDD 4

0xDE 0xAB

$$(\sigma, h_1) \models x \mapsto 3$$

- $dom(h_1) = 0 \times AB = \sigma(x)$
- $h_1(0 \times AB) = 3$

$$(\sigma, h_2) \models x + 1 \mapsto y$$

- $dom(h_2) = 0 \times AC = \sigma(x+1)$
- $h_2(0 \times AC) = 0 \times DD = \sigma(y)$

$$(\sigma, h_3) \models y \mapsto 4$$

- $dom(h_3) = 0 \times DD = \sigma(y)$
- $h_3(0 \times DD) = 4$

$$(\sigma, h_4) \models y + 1 \mapsto x$$

- $dom(h_4) = 0 \times DE = \sigma(y+1)$
- $h_4(0 \times DE) = 0 \times AB = \sigma(x)$

Example

 σ

h

х	0xAB
У	0xDD

0×AB	3
0×AC	0×DD
0×DD	4
0×DE	0xAB

Does not satisfy the statement $x \mapsto 3$

Example

 σ

h

х	0xAB
У	0xDD

0×AB	3
0×AC	0×DD
0×DD	4
0×DE	0xAB

Does not satisfy the statement $x \mapsto 3$

- $(\sigma, h) \models \mathbb{E}_1 \mapsto \mathbb{E}_2$ if $dom(h) = {\sigma(\mathbb{E}_1)}$ and $h(\sigma(\mathbb{E}_1)) = \sigma(\mathbb{E}_2)$
- $dom(h) = \{0 \times AB, 0 \times AC, 0 \times DD, 0 \times DE\}$
- $\sigma(x) = 0xAB$
- $h(\sigma(x)) = 3$

Store assignment axiom of Floyd

```
Hoare axiom: \{Q[x/\mathbb{E}]\}\ x := \mathbb{E}\ \{Q\} (backward driven)
Floyd axiom: \{x = v\}\ x := \mathbb{E}\ \{x = \mathbb{E}[x/v]\} (forward driven)
```

- equivalent to Hoare axiom
- ullet v is an auxiliary variable which does not occur in $\mathbb E$
- ullet $\mathbb{E}[x/v]$ means replace all occurrences of x in \mathbb{E} by v

Example

```
Hoare instance: \{x + 1 = 5\} x := x+1 \{x = 5\}
Floyd instance: \{x = v\} x := x+1 \{x = v + 1\}
```

• If we want the postcondition x=5 then instantiate v to be 4 $\{x=4\}$ x := x+1 $\{x=5\}$

Note: does not solve the problem with pointers!

Store assignment axiom for separation logic

Hoare axiom: $\{Q[x/\mathbb{E}]\}$ $x := \mathbb{E}$ $\{Q\}$

Floyd axiom: $\{x = v\} \ x := \mathbb{E} \{x = \mathbb{E}[x/v]\}$

where v is an auxiliary variable which does not occur in \mathbb{E} .

Store assignment axiom for Separation logic:

$$\{x = v \land emp\} \ x := \mathbb{E} \{x = \mathbb{E}[x/v] \land emp\}$$

where v is an auxiliary variable which does not occur in $\mathbb E$

New:

- atomic formula emp to say that the "heap is empty"
- we want to track the smallest amount of heap information

Store assignment axiom for separation logic

Store assignment axiom for Separation logic:

$$\{x = v \land emp\} \ x := \mathbb{E} \{x = \mathbb{E}[x/v] \land emp\}$$

where v is an auxiliary variable which does not occur in $\mathbb E$

Example

```
 \left\{ \textbf{x} = \textbf{v} \land \texttt{emp} \right\} \ \textbf{x} \ := \ \textbf{1} \ \left\{ \textbf{x} = \textbf{1} \land \texttt{emp} \right\}  If we want the precondition \textbf{1} = \textbf{1} (i.e. \top) then instantiate \textbf{v} to \textbf{x}  \left\{ \textbf{x} = \textbf{x} \land \texttt{emp} \right\} \ \textbf{x} \ := \ \textbf{1} \ \left\{ \textbf{x} = \textbf{1} \land \texttt{emp} \right\}
```

Heap reads axiom

Heap reads axiom:

$$\{\mathbf{x} = \mathbf{v}_1 \wedge \mathbb{E} \mapsto \mathbf{v}_2\} \ \mathbf{x} := [\mathbb{E}] \ \{\mathbf{x} = \mathbf{v}_2 \wedge \mathbb{E}[\mathbf{x}/\mathbf{v}_1] \mapsto \mathbf{v}_2\}$$

where v_1 and v_2 are auxiliary variables which do not occur in $\mathbb E$

Heap read axiom instance:

$$\{\mathtt{x} = \mathtt{2} \land \mathtt{y} \mapsto \mathtt{1}\} \ \mathtt{x} \ := \ [\mathtt{y}] \ \{\mathtt{x} = \mathtt{1} \land \mathtt{y} \mapsto \mathtt{1}\}$$

Heap reads axiom

Heap reads axiom:

$$\{x = v_1 \wedge \mathbb{E} \mapsto v_2\} \ x := [\mathbb{E}] \ \{x = v_2 \wedge \mathbb{E}[x/v_1] \mapsto v_2\}$$

where v_1 and v_2 are auxiliary variables which do not occur in $\mathbb E$

Heap read axiom instance:

$$\{\mathtt{x} = \mathsf{OxAB} \, \land \, \mathtt{x+1} \mapsto \mathtt{3} \} \,\, \mathtt{x} \,\, := \,\, [\mathtt{x+1}] \,\, \{\mathtt{x} = \mathtt{3} \, \land \,\, \mathsf{OxAC} \mapsto \mathtt{3} \}$$

Heap writes axiom

Heap writes axiom:

$$\{\mathbb{E}_1 \mapsto -\} \ [\mathbb{E}_1] := \mathbb{E}_2 \ \{\mathbb{E}_1 \mapsto \mathbb{E}_2\}$$

where $(\mathbb{E}_1\mapsto -)$ abbreviates $(\exists z.\mathbb{E}_1\mapsto z)$ and z does no occur in \mathbb{E}_1

Heap assignment semantics:

- evaluate expression \mathbb{E}_1 to get location I
- fault if location / is not in the current heap
- ullet otherwise make the contents of location / the value of expression \mathbb{E}_2

Example

Heap allocation axiom

Heap allocation axiom:

$$\{x = v \land emp\}\ x := cons(\mathbb{E}_1, ... \mathbb{E}_n)\ \{x \mapsto \mathbb{E}_1[x/v], ..., \mathbb{E}_n[x/v]\}$$

where v is a variable diff. from x and not appearing in $\mathbb{E}_1,...,\mathbb{E}_n$

Heap allocation assignment axiom means: if $\sigma(\mathbf{x}) = v$ and the heap is empty then executing $\mathbf{x} := \operatorname{cons}(\mathbb{E}_1, ... \mathbb{E}_n)$ gives a heap consisting of n new consecutive locations, where location $\sigma(\mathbf{x}) + i$ contains $\sigma(\mathbb{E}_{i+1}[\mathbf{x}/v])$

$$\begin{array}{c|cccc} \sigma & h & \mathtt{x} := \mathtt{cons}(5, \mathtt{y}+1) \\ \hline \hline \mathtt{x} & - \\ \hline \mathtt{y} & 7 \end{array}$$

σ	
х	0xAB
У	7

h	
0xAB	5
0×AC	8

$$\begin{split} & x \mapsto \mathbb{E}_1[x/\nu], \dots, \mathbb{E}_n[x/\nu] \text{ abbreviates} \\ & x \mapsto \mathbb{E}_1[x/\nu] \ * \ (x+1) \mapsto \mathbb{E}_2[x/\nu] \ * \dots * \ (x+n-1) \mapsto \mathbb{E}_n[x/\nu] \end{split}$$

Heap deallocation axiom

```
Heap deallocation axiom: \{\mathbb{E} \mapsto -\} dispose \mathbb{E} \{\text{emp}\} where (\mathbb{E} \mapsto -) abbreviates (\exists z. \mathbb{E} \mapsto z) and z does no occur in \mathbb{E}
```

Heap deallocation: dispose ${\mathbb E}$

- ullet evaluate ${\mathbb E}$ to get location I
- fault if location / is not in the current heap
- otherwise remove location / from the heap

Heap deallocation axiom means: if the heap is a singleton with domain $\sigma(\mathbb{E})$ then executing dispose \mathbb{E} results in the empty heap.

Separation logic axioms - recap

Store assignment axiom:

$$\{x = v \land emp\} \ x := \mathbb{E} \{x = \mathbb{E}[x/v] \land emp\}$$

where v is an auxiliary variable which does not occur in $\mathbb E$

Heap reads axiom:

$$\{\mathbf{x} = \mathbf{v}_1 \wedge \mathbb{E} \mapsto \mathbf{v}_2\} \ \mathbf{x} := [\mathbb{E}] \ \{\mathbf{x} = \mathbf{v}_2 \wedge \mathbb{E}[\mathbf{x}/\mathbf{v}_1] \mapsto \mathbf{v}_2\}$$

where v_1 and v_2 are auxiliary variables which do not occur in $\mathbb E$

Heap writes axiom:
$$\{\mathbb{E}_1 \mapsto -\}[\mathbb{E}_1] := \mathbb{E}_2\{\mathbb{E}_1 \mapsto \mathbb{E}_2\}$$

where $(\mathbb{E}_1\mapsto -)$ abbreviates $(\exists z.\mathbb{E}_1\mapsto z)$ and z does no occur in \mathbb{E}_1

Heap allocation axiom:

$$\{\mathbf{x} = \mathbf{v} \wedge \mathtt{emp}\} \ \mathbf{x} := \mathtt{cons}\big(\mathbb{E}_1, \ldots \mathbb{E}_n\big) \ \{\mathbf{x} \mapsto \mathbb{E}_1[\mathbf{x}/\mathbf{v}], \ldots, \mathbb{E}_n[\mathbf{x}/\mathbf{v}]\}$$

where v is a variable diff. from x and not appearing in $\mathbb{E}_1,...,\mathbb{E}_n$

Heap deallocation axiom: $\{\mathbb{E}\mapsto -\}$ dispose \mathbb{E} $\{\mathtt{emp}\}$

where $(\mathbb{E}\mapsto -)$ abbreviates $(\exists z.\mathbb{E}\mapsto z)$ and z does no occur in \mathbb{E}

The frame rule

Frame rule:

$$\frac{\{P\} \ \mathbb{C} \ \{Q\}}{\{P*R\} \ \mathbb{C} \ \{Q*R\}}$$

where no variables modified by \mathbb{C} appears free in R.

The Frame rule means that $\{P\}$ \mathbb{C} $\{Q\}$ is restricted to the variables and parts of the heap that are actually used by \mathbb{C} .

The frame rule

Frame rule:

$$\frac{\{P\} \mathbb{C} \{Q\}}{\{P*R\} \mathbb{C} \{Q*R\}}$$

where no variables modified by \mathbb{C} appears in R.

Example

Is the following instance a legal instance of the Frame rule? If so, why and if not, why not?

$$\frac{\{\texttt{emp}\} \ \texttt{x} := \texttt{cons}(\texttt{1}) \ \{\texttt{x} \mapsto \texttt{1}\}}{\{\texttt{emp} \ * \ \texttt{x} \mapsto \texttt{1}\} \ \texttt{x} := \texttt{cons}(\texttt{1}) \ \{\texttt{x} \mapsto \texttt{1} \ * \ \texttt{x} \mapsto \texttt{1}\}}$$

The frame rule

Frame rule:

$$\frac{\{P\} \mathbb{C} \{Q\}}{\{P*R\} \mathbb{C} \{Q*R\}}$$

where no variables modified by \mathbb{C} appears in R.

Example

Is the following instance a legal instance of the Frame rule? If so, why and if not, why not?

$$\frac{\{\texttt{emp}\} \ \texttt{x} := \texttt{cons}(\texttt{1}) \ \{\texttt{x} \mapsto \texttt{1}\}}{\{\texttt{emp} \ \texttt{x} \mapsto \texttt{1}\} \ \texttt{x} := \texttt{cons}(\texttt{1}) \ \{\texttt{x} \mapsto \texttt{1} \ * \ \texttt{x} \mapsto \texttt{1}\}}$$

No, the command modifies x and R contains an occurrence of x.

Quiz time!

https://tinyurl.com/FMI-PV2023-Quiz5

References

- Lecture Notes on "Formal Methods for Software Engineering", Australian National University, Rajeev Goré.
- Mike Gordon, "Specification and Verification I", chapters 1 and 2.
- Michael Huth, Mark Ryan, "Logic in Computer Science: Modeling and Reasoning about Systems", 2nd edition, Cambridge University Press, 2004.
- Krzysztof R. Apt, Frank S. de Boer, Ernst-Rüdiger Olderog, "Verification of Sequential and Concurrent Programs", 3rd edition, Springer.