

Computeranimation

Lesson 5 – Mass-Spring-Networks

Motivation

Topics

- Rigid Transformation
- Animation
- Collision
- Dynamic
- Mass-Spring Simulation
- Rigging and Skeletal Animation

Introduction

Mass-Spring-Systems
Mass-Spring-Networks
Application

Introduction

Basic Setup

- Mass Spring Systems (MSS) can be used to represent e.g. soft deformable objects
- Most *Cloth Simulation* Systems are originated from MSS
- Similar applications can be found in *parameterization*

Introduction

A Brief History of Cloth Simulation

Introduction
Mass-Spring-Systems
Mass-Spring-Networks
Application

Mass-Spring-Systems

Basic Setup

- To simulate cloth we define a System consisting of
 - Particles with a mass m
 - A spring connecting the particles with stiffness coefficient k and rest length l_0
- When a Spring is elongated it induces a Force $\overrightarrow{F_s}$

Mass-Spring-Systems

Hooke's Law

- The Force induced by a streched spring...
 - acts in the direction to force the spring in the rest state
 - depends *linearly* on the amount of stretch and the spring stiffness coefficient

$$\overrightarrow{F_S} = \frac{(\overrightarrow{p_1} - \overrightarrow{p_0})}{\|\overrightarrow{p_1} - \overrightarrow{p_0}\|} k \cdot \Delta l$$

Introduction
Mass-Spring-Systems
Mass-Spring-Networks
Application

Mass-Spring-Networks

Basic Setup

To simulate a deformable surface, a network of mass particles and springs is created

Mass-Spring-Networks

Over-Elongated Springs

Mass-Spring-Networks

Simulation

- For each Particle the sum of spring Forces are added to $\overrightarrow{F_{ext}}$
- Subsequential the integration is done as known:

Mass Spring System

A note on stability

- The integration scheme depends on the time-step Δt
- This causes an error in the system which highly suffer, if the system is able to oscillate
- Cloth simulations are highly unstable against high time steps

Introduction
Mass-Spring-Systems
Mass-Spring-Networks
Application

