學號:B07901169 系級: 電機三 姓名:楊宗桓

請實做以下兩種不同 feature 的模型,回答第(1)~(2)題:

- 1. 抽全部 9 小時內的污染源 feature 當作一次項(加 bias)
- 2. 抽全部 9 小時內 pm2. 5 的一次項當作 feature(加 bias) 備註:
 - a. NR 請皆設為 0, 其他的非數值(特殊字元)可以自己判斷
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
 - c. 第1-2 題請都以題目給訂的兩種 model 來回答
 - d. 同學可以先把 model 訓練好, kaggle 死線之後便可以無限上傳。
 - e. 根據助教時間的公式表示,(1) 代表 p = 9x18+1 而(2) 代表 p = 9*1+1
- 1. (1%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

features	9*15+1	9*1+1
train RMSE	6.6508	6.7849
validation RMSE	23.1599	17.4572
private	6.5948	6.4871
public	6.4325	6.4157

兩種 model 的 preprocess 都只有 fillna 跟令"-"=0 而已, training set 是處理過的資料的前半, validation set 的資料則是後半。

由表格可發現,兩種 model 的 RMSE 其實差不多但都偏高,除了因為沒有作其他的 data preprocess 外,還有因為 features 數量取的不好。features 取的太多會造成 model 太過複雜而產生 overfit,features 取的太少反而會造成 model 太過簡單而使得 training 出來的 function 無法貼近 target function,所以在取features 時應該要取得剛好而不要過多或過少。

2. (1%)解釋什麼樣的 data preprocessing 可以 improve 你的 training/testing accuracy, ex. 你怎麼挑掉你覺得不適合的 data points。請提供數據(RMSE)以佐證你的想法。

我做了兩部分的 preprocess

(1) Training 中異常值的處理

這裡講的異常值包括 nan、非數值的資料還有一過高或過低不合理的數值首先是過高、過低的數值,我先用 excel 把各種 features 的平均值及標準差算出來,接著把超過平均三個標準差的數值列為異常值,如下表:

	標準差	平均	合理	範圍	5
SO2	1.443701766	2.22248	0	6.55358	(
NO	10.38180379	8.37741	0	39.5228	
NOx	16.36284301	28.309	0	77.3976	
NO2	9.069455914	19.9319	0	47.1402	(
CO	0.3534674	0.90124	0	1.96164	(
O3	19.0011114	23.9277	0	80.931	(
THC	0.324844392	2.43573	1.46119	3.41026	
CH4	0.151965181	2.10464	1.64874	2.56053	
NMHC	0.253195484	0.33969	0	1.09928	
PM10	22.51579179	46.7976	0	114.345	(
PM2.5	17.03644817	27.7583	0	78.8676	(
WS	0.388913083	0.67708	0	1.84382	r
WD	108.5908908	167.778	0	493.551	1
AT	5.430835586	24.7789	8.48637	41.0714	
RH	12.98160211	68.3878	29.443	107.333	
					1

接著將包含異常值的那一小時從 training data 中刪除(所以共會刪掉 9 筆 training 的資料),以 model_1 為例:

train RMSE	validation RMSE	private	public
4.9626	4.9069	5.3997	5.0118

四種 RMSE 都大幅下降,可以得知判斷是否為異常值是蠻重要的 data preprocess

(2) feature extracting

由問題1可以知道,features 不能取的過多或過少,為了決定要取那些 feature 我決定先從 test_datal 去分析各種 feature 與 pm2.5 的相關係數,如下圖:

	相關係數
SO2	0.534719198
NO	0.171364568
NOx	0.411852209
NO2	0.544119279
CO	0.103656432
O3	0.050847356
THC	0.365519291
CH4	0.26661908
NMHC	0.315972288
PM10	0.860609886
PM2.5	1
WS	-0.178697961
WD	0.16345381
AT	-0.256999182
RH	-0.052696236

最後我選擇只取 5 個相關係數最高的 features,分別是 SO2、NO2、NOX、PM10、PM2.5

train RMSE	validation RMSE	private	public	
4.8524	4.7762	5.0453	4.9306	

與(1)中做過異常值分析的 RMSE 相比更低,只不過下降趨勢並沒有如(1) 那麼大,所以 feature extracting 其實並沒有貢獻很大的 rmse

(3) testing data preprocess

觀察發現 testing data 中有不少0值,推測是觀測異常值,可能是沒有觀測數據所以才填0,我把這些數值為0的改成前後兩小時的平均值,結果:

1	train RMSE	validation RMSE	private	public
	4.8524	4.7762	4.5176	4.7457

可得知這作法可有效降低 testing 的 accuracy , 因為被 preprocess 的 testing datac 會更貼近真實的觀測值。

3. (3%) Refer to math problem

https://hackmd.io/RFiu1FsYR5uQTrrpdxUv1w?view

