Discrete Structure

Predicate Logic

Predicate Logic

Predicate logic is an extension of propositional logic that permits concisely reasoning about whole classes of entities.

E.g., "
$$x>1$$
", " $x+y=10$ "

Such statements are neither true or false when the values of the variables are not specified.

Applications of Predicate Logic

- It is the formal notation for writing perfectly clear, concise, and unambiguous mathematical definitions, axioms, and theorems for any branch of mathematics.
- Supported by some of the more sophisticated database query engines.
- Basis for automatic theorem provers and many other Artificial Intelligence systems.

Subjects and Predicates

The proposition
"The dog is sleeping"
has two parts:

- "the dog" denotes the subject the object or entity that the sentence is about.
- "is sleeping" denotes the *predicate* a property that the subject can have.

Propositional Functions

- \bullet A predicate is modeled as a function $P(\cdot)$ from objects to propositions.
 - P(x) = "x is sleeping" (where x is any object).
- The result of applying a predicate P to an object x=a is the proposition P(a).
 - e.g. if P(x) = "x > 1", then P(3) is the proposition "3 is greater than 1."
- Note: The predicate Pitself (e.g. P="is sleeping") is not a proposition (not a complete sentence).

Propositional Functions

Predicate logic includes propositional functions of any number of arguments.

e.g. let
$$P(x,y,z) = "x \text{ gave } y \text{ the grade } z'',$$

$$x = "\text{Mike}", y = "\text{Mary}", z = "A",$$

$$P(x,y,z) = "\text{Mike gave Mary the grade } A."$$

Universe of Discourse

The collection of values that a variable x can take is called x's universe of discourse.

e.g., let P(x) = x+1>x'. we could define the course of universe as the <u>set of integers</u>.

Quantifier Expressions

- Quantifiers allow us to quantify (count) how many objects in the universe of discourse satisfy a given predicate:
 - " \forall " is the FOR \forall LL or *universal* quantifier. $\forall x P(x)$ means *for all* x in the u.d., Pholds.
 - " \exists " is the \exists XISTS or existential quantifier. $\exists x P(x)$ means there exists an x in the u.d. (that is, one or more) such that P(x) is true.

Universal Quantifier ∀: Example

- \bullet Let P(x) be the predicate "x is full."
- Let the u.d. of x be parking spaces at the city.
- The universal quantification of P(x), $\forall x P(x)$, is the proposition:
 - "All parking spaces at the city are full." or
 - "Every parking space at the city is full." or
 - "For each parking space at the city, that space is full."

The Universal Quantifier ∀

To prove that a statement of the form $\forall x P(x)$ is false, it suffices to find a counterexample (i.e., one value of x in the universe of discourse such that P(x) is false)

• e.g., P(x) is the predicate "x>0"

Existential Quantifier 3 Example

- Let P(x) be the predicate "x is full."
- Let the u.d. of x be parking spaces at the city.
- \bullet The universal quantification of P(x),
 - $\exists x P(x)$, is the proposition:
 - "Some parking space at the city is full." or
 - "There is a parking space at the city that is full." or
 - "At least one parking space at the city is full."

Quantifier Equivalence Laws

- **Definitions of quantifiers: If u.d.=a,b,c,...** $\forall x P(x) \Leftrightarrow P(a) \land P(b) \land P(c) \land ...$ $\exists x P(x) \Leftrightarrow P(a) \lor P(b) \lor P(c) \lor ...$
- We can prove the following laws: $\forall x P(x) \Leftrightarrow \neg \exists x \neg P(x)$ $\exists x P(x) \Leftrightarrow \neg \forall x \neg P(x)$
- Which propositional equivalence laws can be used to prove this?

More Equivalence Laws

- $\forall x \forall y P(x,y) \Leftrightarrow \forall y \forall x P(x,y)$ $\exists x \exists y P(x,y) \Leftrightarrow \exists y \exists x P(x,y)$
- $\forall x (P(x) \land Q(x)) \Leftrightarrow (\forall x P(x)) \land (\forall x Q(x)) \\ \exists x (P(x) \lor Q(x)) \Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$
- $\forall x (P(x) \lor Q(x)) \Leftrightarrow (\forall x P(x)) \lor (\forall x Q(x))???$ $\exists x (P(x) \land Q(x)) \Leftrightarrow (\exists x P(x)) \land (\exists x Q(x))???$

Scope of Quantifiers

The part of a logical expression to which a quantifier is applied is called the scope of this quantifier.

e.g.,
$$(\forall x P(x)) \land (\exists y Q(y))$$

e.g., $(\forall x P(x)) \land (\exists x Q(x))$

Free and Bound Variables

- \bullet An expression like P(x) is said to have a *free* variable x (meaning x is undefined).
- A quantifier (either ∀ or ∃) operates on an expression having one or more free variables, and binds one or more of those variables, to produce an expression having one or more bound variables.

Examples of Binding

- P(x,y) has 2 free variables, x and y.
- $\forall x P(x,y)$ has 1 free variable, and one bound variable. [which is which?]
- "P(x), where x=3" is another way to bind x.
- An expression with <u>zero</u> free variables is an actual proposition.
- An expression with one or more free variables is still only a predicate: $\forall x P(x,y)$

More to Know About Binding

- $\forall x \exists x P(x) x \text{ is not a free variable in } \exists x P(x), \text{ therefore the } \forall x \text{ binding isn't used.}$
- $(\forall x P(x)) \land Q(x)$ The variable x is outside of the scope of the $\forall x$ quantifier, and is therefore free. Not a proposition.
- * $(\forall x P(x)) \land (\exists x Q(x))$ Legal because there are 2 different x's!
- Quantifiers bind as loosely as needed: parenthesize $\forall x (P(x) \land Q(x))$

Nested Quantifiers

Exist within the scope of other quantifiers

- \bigcirc Let the u.d. of x & y be people.
- Let P(x,y)="x likes y'' (a predicate with 2 f.v.)
- Then $\exists y P(x,y) =$ "There is someone whom x likes." (a predicate with 1 free variable, x)
- Then $\forall x (\exists y P(x,y)) =$ "Everyone has someone whom they like."

Order of Quantifiers Is Important!!

If P(x,y)="x relies upon y," express the following in unambiguous English:

$$\forall x(\exists y P(x,y))=$$

Everyone has *someone* to rely on.

$$\exists y(\forall x P(x,y))=$$

There's a poor overworked soul whom *everyone* relies upon (including himself)!

$$\exists x(\forall y P(x,y))=$$

There's some needy person who relies upon *everybody* (including himself).

$$\forall y(\exists x P(x,y))=$$

Everyone has *someone* who relies upon them.

$$\forall x (\forall y P(x,y))=$$

Everyone relies upon everybody, (including themselves)!

Natural language is ambiguous!

- * "Everybody likes somebody."
 - For everybody, there is somebody they like,
 - $\forall x \exists y \ Likes(x,y)$
 - or, there is somebody (a popular person) whom everyone likes?
 - $\exists y \forall x \ Likes(x,y)$ [Probably more likely.]

Notational Conventions

- * Consecutive quantifiers of the same type can be combined: $\forall x \forall y \forall z P(x,y,z) \Leftrightarrow \forall x,y,z P(x,y,z)$ or even $\forall xyz P(x,y,z)$
- Sometimes the universe of discourse is restricted within the quantification, e.g.,
 - $\forall x \not \sim P(x)$ is shorthand for "For all x that are greater than zero, P(x)."
 - $\exists x \times 0 P(x)$ is shorthand for "There is an x greater than zero such that P(x)."

Defining New Quantifiers

As per their name, quantifiers can be used to express that a predicate is true of any given quantity (number) of objects.

Define $\exists !x P(x)$ to mean "P(x) is true of exactly one x in the universe of discourse."

 $\exists ! x P(x) \Leftrightarrow \exists x (P(x) \land \neg \exists y (P(y) \land y \neq x))$ "There is an x such that P(x), where there is no y such that P(y) and y is other than x."

Some Number Theory Examples

- ◆ Let u.d. = the natural numbers 0, 1, 2, ...
- * "A number x is even, E(x), if and only if it is equal to 2 times some other number." $\forall x (E(x) \leftrightarrow (\exists y \ x=2y))$
- * "A number is *prime*, P(x), iff it isn't the product of two non-unity numbers." $\forall x (P(x) \leftrightarrow (\neg \exists y, z \ x=yz \land y\neq 1 \land z\neq 1))$

Calculus Example

Precisely defining the concept of a limit using quantifiers:

$$\left(\lim_{x \to a} f(x) = L\right) \Leftrightarrow \\
\left(\forall \varepsilon > 0 : \exists \delta > 0 : \forall x : \\
\left(|x - a| < \delta\right) \to \left(|f(x) - L| < \varepsilon\right)\right)$$

References

- Sections 1.3 and 1.4 of the text book "Discrete Mathematics and its Applications" by Rosen, 6th edition.
- The <u>original slides</u> were prepared by Bebis