Overview of the Course. Basic Counting

Discrete Mathematics and Optimization Bioinformatics

Overview of the course

- Part 1 Basic Counting. Recurrence equations.
- Part 2 Graph Theory and Algorithms
- Part 3 Optimization: Linear Programing
- Part 4 Calculus with Several Variables and Nonlinear Optimization

Samples of k individuals from a population of n individuals:

	Ordered	Unordered
With replacement	n ^k	$\binom{n+k-1}{k}$
No replacement	$(n)_k = n(n-1)\cdots(n-k+1)$	$\binom{n}{k}$

- Words: ordered samples from an alphabet with repetition.
- Permutations: ordered samples with no repetition.
- Subsets: unordered samples from a set with no repetition.
- Multisets: unordered samples from a set with repetition.
- ...

Samples of k individuals from a population of n individuals:

	Ordered	Unordered
With replacement	n^k	$\binom{n+k-1}{k}$
No replacement	$(n)_k = n(n-1)\cdots(n-k+1)$	$\binom{n}{k}$

- Words: ordered samples from an alphabet with repetition.
 - ▶ Binary words of length $n: \{0,1\}^n \rightarrow 2^n$
 - ▶ ARN sequences of length $n: \{A, C, G, T\}^n \rightarrow 4^n$
 - ▶ Hexadecimal sequences of length $n: \{0,..,F\}^n \to (2^4)^n$
 - ► Car plates (Spain): $XXXXYY \rightarrow 10^4 \cdot 24^2$ (roughly)
- Permutations: ordered samples with no repetition.
 - ▶ Words with no repeated letters of length *k* on an alphabet of *n* letters

$$n(n-1)(n-2)...(n-k+1) = (n)_k = n!/(n-k)!$$

▶ Permutations of *n* letters: n! (convention: 0! = 1)

←ロト→団ト→豆ト→豆 りへで

Samples of k individuals from a population of n individuals:

	Ordered	Unordered
With replacement	n ^k	$\binom{n+k-1}{k}$
No replacement	$(n)_k = n(n-1)\cdots(n-k+1)$	$\binom{n}{k}$

Subsets: unordered samples from a set with no repetition.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 Binomial coefficient

- ► Committee of 3 people from a group of 6: $\binom{6}{3} = 20$.
- ▶ Binary sequences of length 6 with 3 ones: $\binom{6}{3} = 20$.
- Number of codes with 5 digits, two of them letters and three numbers: $\binom{5}{2}24^210^3 = 576 \cdot 10^4$.

Samples of k individuals from a population of n individuals:

	Ordered	Unordered
With replacement	n^k	$\binom{n+k-1}{k}$
No replacement	$(n)_k = n(n-1)\cdots(n-k+1)$	$\binom{n}{k}$

Multisets: unordered samples from a set with repetition: samples of length k
out of a set of size n.

$$\binom{n+k-1}{k}$$

- Number of distinct values with three coins of value 1, 10, 100: $\binom{5}{3} = 10$.
- Number of multisets on $\{1,2,3\}$ of size 2: $\binom{4}{2} = 6$.

Properties of binomial coefficients

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{(n)_k}{k!}.$$

- (Boundary values) $\binom{n}{0} = \binom{n}{n} = 1$.
- (Symmetry) $\binom{n}{k} = \binom{n}{n-k}$.
- (Recursion) $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$
- (Newton binomial formula) $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$.
- (Number of subsets) $\sum_{k=0}^{n} {n \choose k} = 2^{n}$.
- (Alternate sums) $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.
- (Bounds) $\left(\frac{n}{k}\right)^k \le {n \choose k} \le \left(\frac{ne}{k}\right)^k$.

Multinomial coefficients

$$\binom{n}{k_1,\ldots,k_r}=\frac{n!}{k_1!\cdots k_r!}, n=k_1+\cdots+k_r.$$

Number of permutations of r symbols a_1, \ldots, a_r where a_i is repeated k_i times.

Multinomial formula

$$(x_1 + x_2 + \cdots + x_r)^n = \sum_{k_1, \dots, k_r : k_1 + \dots + k_r = n} {n \choose k_1, \dots, k_r} x_1^{k_1} \cdots x_r^{k_r}.$$

Proof by induction

Sometimes we need to prove things with respect to a certain size.

Strategy:

- 0) Guess the result.
- 1) Check it for n = 1 (or the first case).
- 2) Assume the result is true for n, check it for n + 1.

Example: Show that $1 + 2 + \cdots + 2^{N} = 2^{N+1} - 1$.

Recurrence equations

A sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies a recurrence equation if for some k (order of the recurrence) there is a function f such that

$$a_{n+k} = f(a_{n+k-1}, a_{n-k-2}, \dots, a_n), n \ge 0$$

Examples:

- Fibonacci numbers $F_{n+2} = F_{n+1} + F_n$, $n \ge 0$, $F_0 = 0$, $F_1 = 1$
- Triangular numbers $T_{n+1} = T_n + n$, $n \ge 0$, $T_0 = 0$
- Factorial numbers $(n+1)! = (n+1)n!, n \ge 0, 0! = 1$
- ...

Goal: find an explicit formula for a_n as a function of n, or get some good estimates.

(ESCI)

Recurrence equations

A sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies a recurrence equation if for some k (order of the recurrence) there is a function f such that

$$a_{n+k} = f(a_{n+k-1}, a_{n-k-2}, \dots, a_n), n \ge 0$$

A simple attempt: guessing the solution and checking the answer by induction Examples:

- $t_{n+1} = 2t_n + 1$, $t_0 = 0 \rightarrow 0, 1, 3, 7, 15, 31, 63, ... \rightarrow t_n = 2^n 1$.
- $T_{n+1} = T_n + n$, $T_0 = 0 \rightarrow 0, 1, 3, 6, 10, 15, 21, ... \rightarrow T_n = \binom{n+1}{2}$

Goal: find an explicit formula for a_n as a function of n, or get some good estimates.

Linear Recurrence equations

A sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies a linear recurrence equation of order k with constant coefficients if

$$a_{n+k} = c_1 a_{n+k-1} + c_2 a_{n+k-2} + \cdots + c_k a_n, \ n \ge 0$$

The polynomial

$$x^{k} - c_1 x^{k-1} - c_2 x^{k-2} - \dots - c_k$$

is the characteristic polynomial of the recurrence equation.

Theorem

Let $\alpha_1, \dots \alpha_t$ be the distinct roots of the characteristic polynomial of the linear recurrence relation. Then the general solution is

$$a_n = p_1(n)\alpha_1^n + \cdots p_t(n)\alpha_t^n, n \geq k,$$

where $p_i(n)$ is a polynomial with degree less than the multiplicity of α_i .

We use then the initial conditions to determine the $p_i(n)$.

←□▶←圖▶←臺▶←臺▶ · 臺 · ∽٩

Linear Recurrence equations: The Fibonacci numbers

$$F_{n+2} = F_{n+1} + F_n \ n \ge 0$$

- Characteristic polynomial $x^2 x 1$
- Roots $\phi = \frac{1+\sqrt{5}}{2}, \bar{\phi} = \frac{1-\sqrt{5}}{2}$
- General solution $F_n = A\bar{\phi}^n + B\bar{\phi}^n$.
- Initial values $F_0 = 0$ and $F_1 = 1$ lead to

$$0 = A + B$$
$$1 = A\phi + B\bar{\phi}$$

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

(ESCI) Counting 10/13

Linear Recurrence equations: The Fibonacci numbers

$$F_{n+2} = F_{n+1} + F_n \ n \ge 0$$

Some consequences:

- $F_n/F_{n-1} o \phi \approx 1.618 \ (n o \infty)$ (Golden Ratio)
- $F_n \sim \frac{1}{\sqrt{5}} \phi^n$ (asymptotic value)
- Solution of problems: number of binary words with no two consecutive ones.

$$F_n = rac{1}{\sqrt{5}} \left(\left(rac{1+\sqrt{5}}{2}
ight)^n - \left(rac{1-\sqrt{5}}{2}
ight)^n
ight)$$

Nonhomogeneus Linear Recurrence equations

A sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies a nonhomogeneous linear recurrence equation of order k with constant coefficients if

$$a_{n+k} = c_1 a_{n+k-1} + c_2 a_{n+k-2} + \cdots + c_k a_n + g(n), \ n \ge 0$$

The solution has the form

$$a_n = b_n + c_n$$

where

 \bullet b_n is the general solution of the homogeneous equation

$$a_{n+k} = c_1 a_{n-k-1} + c_2 a_{n-k-2} + \cdots + c_k a_n, \ n \ge 0$$

- \bullet c_n is a particular solution of the nonhomogeneous solution
 - ▶ If g(n) is a polynomial, guess a polynomial solution of degree $\geq k$
 - If $g(n) = \alpha^n$, guess a solution $c \cdot \alpha^n$
 - ▶ If $g(n) = g_1(n) + g_2(n)$, add guesses from $g_1(n)$ and $g_2(n)$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 990

Nonhomogeneous Linear Recurrence equations

Example:
$$a_{n+1} = 2a_n + n, n \ge 1, a_1 = 1$$

- General solution of the homogeneous solution: $b_n = b \cdot 2^n$,
- Guess a particular solution $c_n = cn + d$: substitute into the equation

$$c(n+1)+d = 2(cn+d)+n \to cn+c+d = 2cn+2d+n \to 0 = (c+1)n+d-c.$$

gives
$$c = -1, d = -1$$
.

- General solution: $a_n = b \cdot 2^n n 1$.
- Insert initial condition $a_1 = 1 = b \cdot 2^1 2 \rightarrow b = \frac{3}{2}$.

$$a_n = \frac{3}{2}2^n - n - 1$$

Check!