Notes on Advanced Optimization

 $40.302~\mathrm{Advanced}$ Topics in Optimization, Term 7 2019

Yustynn Panicker

February 2, 2019

Contents

1	Met	ta en la companya di managanta d	2
	1.1	Professor	2
	1.2	Unofficial Project	2
	1.3	Grading	2
2	TOE	OO Questions	2
	2.1	TODO Difference between Q_m and R_m ?	2
		2.1.1 Reference from W1 Slides	3
	2.2	TODO Is regular a term for increasing functions in general?	3
	2.3	TODO Why must active schedules be nonpreemptive?	
3	W1:	: Introduction to Scheduling	9
	3.1	Sugested Language	
	3.2	Why Scheduling?	
	3.3	Definition of Scheduling	3
		3.3.1 Assumptions	3
	3.4	Terms and Notation	4
		3.4.1 General	4
		3.4.2 Jobs	4
		3.4.3 Machine Environment (α)	4
		3.4.3.1 Hierarchical Representation	4
		3.4.4 Processing Details and Constraints (β)	F
		3.4.5 Objective Criteria (γ)	F
		3.4.5.1 Hierarchical Representation	F
		3.4.6 Terms	6
		3.4.6.1 Forced Idleness	6
		3.4.6.2 Irregular functions	6
		3.4.6.3 Active Schedule	6
	3.5	Theorems	7
		3.5.1 Theorem 1	7
		3.5.1.1 Proof Sketch	7
		3.5.1.1.1 Counter	7
		3.5.1.1.2 Procedure Definition	7
		3.5.1.1.3 Proof of Optimality	7
		3.5.1.1.4 Iteration and Limit of Iteration	7
		3.5.1.1.5 Conclusion	7
		3.5.2 Theorem 2	7
	3.6	Anomalies in non-preemptive non-delay schedules	7
		3.6.1 Example	8

	3.6.1.1 Initial
	3.6.1.2 Assuming Job 7 is shorter
	3.6.1.3 (Invalid) Better Solution
4	Proving Techniques
	4.1 Induction
	4.2 Enumeration/Construction/Direct (brute force)
	4.3 Contradiction (very useful!)
	4.4 Contra-positive
5	TODO To Revise from Optimization
	5.1 TODO Simplex
	5.2 TODO Dijkstra
	5.3 TODO Branch and Bound
6	AMPL

1 Meta

1.1 Professor

- Selin Damla Ahipasaoglu
- Room 1.702.03

1.2 Unofficial Project

Nothing official this term due to large class size. Can still do, and approach Selin for ideas

1.3 Grading

%	Component Name	Date
60%	Final Exam	W6
20%	Weekly Homeworks	Assigned Mon; Due next Thurs;
20%	Class and Lab Participation	-

2 TODO Questions

2.1 TODO Difference between Q_m and R_m ?

Both seem to have machines that perform identical processing tasks, just at different speeds.

Phrased differently: difference between the following technical adjective for machines: unrelated and uniform

2.1.1 Reference from W1 Slides

- ▶ Q_m : **m** <u>uniform</u> machines in parallel with different speeds Speed of machine i is v_i . Assuming that job j is completely processed on machine i, $p_{ij} = \frac{p_j}{v_i}$.
- ▶ $\mathbf{R_m}$: \mathbf{m} unrelated machines in parallel Machine i processed the job j at speed v_{ij} . Then $p_{ij} = \frac{p_j}{v_{ij}}$. In this case, there is no particular relationship between processing times on different machines.

2.2 TODO Is regular a term for increasing functions in general?

2.3 TODO Why must active schedules be nonpreemptive?

Hypothesis: makes activity == non-delay, which trivializes the term active

3 W1: Introduction to Scheduling

3.1 Sugested Language

AMPL (A Mathematical Programming Language)

3.2 Why Scheduling?

• Very hard problem -> Good practice for opti/modelling

3.3 Definition of Scheduling

Deals with distributing a set of jobs (tasks) to machines (processing units) over *time subject to constraints with an objective to optimize ≥ 1 criteria

3.3.1 Assumptions

- Each machine has capacity of 1 job
- At each time unit, each job can be processed only on one machine

3.4 Terms and Notation

3.4.1 General

E.g. $J_m \mid\mid C_{max}$

Symbol	Meaning
$M = \{1, 2, \dots, m\}$	Set of machines
$N = \{1, 2, \dots, n\}$	Set of jobs

3.4.2 Jobs

Symbol	Meaning	
$\overline{p_{ij}}$	Processing time of job j on machine i	
p_{j}	Identical processing time of job j on all machines	
r_{j}	Release date of job j	
d_{j}	Due date of job j; Penalty after d_j	
$rac{d_j}{ar{d}_j}$	Deadline of job j; Completion after \bar{d}_j not allowed	
w_{j}	Weight of job j	

3.4.3 Machine Environment (α)

Symbol	Term	Description/notes
1	Single machine	
P_m	m identical machines in parallel	Job j requires single operation, may be processed on
		any of the m machines
Q_m	m uniform machines in parallel with dif-	Speed of machine <i>i</i> is v_i ; $p_{ij} = \frac{p_j}{v_i}$
	ferent speeds	•
R_m	m unrelated machines in parallel	Speed of machine <i>i</i> is v_i ; $p_{ij} = \frac{p_j}{v_i}$
F_m	Flow shop with m machines in series	Each job must be processed on every machine; prede-
		termined route
FF_c	Flexible flow shop with c stages in se-	Several identical machines per stage; Each job can only
	ries	be processed on 1 machine per stage
J_m	Job shop with m machines	Jobs have predetermined routes
FJ_c	Flexible job shop with c stages	Multiple identical machines per stage
O_m	Open shop with m machines	Each job must be processed on every machine; No pre-
		determined routes

3.4.3.1 Hierarchical Representation

3.4.4 Processing Details and Constraints (β)

Notation	Definition/Explanation	Notes
r_j	Release dates given	
prmp	Preemption allowed (fractional pro-	Linear programming, ∴ way easier (opposed to IP w/o
	cessing)	prmp
s_{jk}	Sequence dependent setup times	Setup times between processing jobs j and k ; s_{ijk} has
		i refer to machine
prec	Precedence constraints	Usually represented with a directed acyclical graph
		(DAG)

Note: Due dates are reflected in objective function

3.4.5 Objective Criteria (γ)

Notation/Definition	Explanation	Notes
C_j	Completion time of job j	
$L_j := C_j - d_j$	Lateness of job j	+, - or 0
$T_j := max(C_j, 0)$	Tardiness of job j	+ or 0 only
$U_j = \begin{cases} 1, & \text{if } C_j > d_j \\ 0, & \text{o.w.} \end{cases}$	Unit penalty of job b being late	

3.4.5.1 Hierarchical Representation

E.g. L_{max} solver can be used for C_{max} by setting all $d_j = 0$

3.4.6 Terms

Term	Definition
recirculation	A machine is visited multiple times by the same job
makespan	Time of completion of last job
unforced idleness	Machine not processing anything; Jobs are available to be processed by
	it
forced idleness	Machine not processing anything; No jobs available to be processed by
	it
non-delay	No unforced idleness
regular objective function	Nondecreasing function when new input of $C' \geq C$ (as in, $C'_1 > C$
	$C_1, \dots, C'_n > C_n$
sequence	Of a specific machine. Refers to job order
schedule	Particular allocation of jobs to machines at times
scheduling policy	In stochastic settings, a prescription of appropriate action for a given
	state

3.4.6.1 Forced Idleness Forced idleness can occur due to:

- precedence relationships
- release dates

3.4.6.2 Irregular functions

- Penalizing earliness as well as lateness
- Negative weights

3.4.6.3 Active Schedule Prereqs:

- Feasible
- Nonpreemptive

Meaning: Not possible to construct another schedule where ≥ 1 operation finishes earlier and no operation finishes later

Basically, no fillable holes in schedule

3.5 Theorems

3.5.1 Theorem 1

For: $\alpha | prmp, \beta | \gamma$

Additional Constraints: γ is regular

Claim: There exists a non-delay schedule which is optimal

3.5.1.1 Proof Sketch

3.5.1.1.1 Counter Assume that *all* optimal schedules are *not* non-delay.

3.5.1.1.2 Procedure Definition Let S¹ be such an optimal schedule

Since there is unforced idleness, I can obtain another schedule S^2 by removing a complete segment of the unforced idleness due to preemption from S^1 , by filling that idleness with ≥ 1 job

I can thus obtain another schedule S² such that $C_j^{S_1} \ge C_j^{S_2}, \forall j$, and where some $C_j^{S_1} > C_j^{S_2}$

3.5.1.1.3 Proof of Optimality Due to regularity, this means that $\gamma(C_J^{S_1}) \ge \gamma(C_J^{S_2})$. This implies S² is also optimal

3.5.1.1.4 Iteration and Limit of Iteration From this schedule, I can create another schedule S^3 , and from that S^4 and so on until I hit a non-delay schedule (the limit of the iterative performance of this operation).

3.5.1.1.5 Conclusion This non-delay schedule is therefore optimal.

3.5.2 Theorem 2

For: $J_m||\gamma|$

Additional Constraints: γ is regular

Claim: There exists an active schedule which is also optimal

3.6 Anomalies in non-preemptive non-delay schedules

E.g. decreasing processing time may make objective function worse (since you can't delay)

3.6.1 Example

3.6.1.1 Initial

3.6.1.2 Assuming Job 7 is shorter

3.6.1.3 (Invalid) Better Solution

Invalid due to delay

4 Proving Techniques

4.1 Induction

- 1. Prove base case (e.g. show P(0) holds)
- 2. Prove inductive step for general case (e.g. show if P(n) holds then P(n+1) holds)

4.2 Enumeration/Construction/Direct (brute force)

Using definition, show it's always true

4.3 Contradiction (very useful!)

- 1. Assume counter claim (e.g. theorem says $P \implies Q$, then assume $P \implies \neg Q$)
- 2. Show contradiction in assumption

4.4 Contra-positive

Show $A \implies B$ due to $\neg B \implies \neg A$

5 TODO To Revise from Optimization

- 5.1 TODO Simplex
- 5.2 TODO Dijkstra

5.3 TODO Branch and Bound

6 AMPL

- A Mathematical Programming Language (AMPL)
- Allows for decoupling of the following elements:
 - mathematical programming model
 - data
 - solver