Generative Adversarial Networks (GAN)

Generative Model

- Generative Adversarial Networks (GANs)
- Variational Autoencoders (VAEs)
 - Previous lectures
- Autoregressive models: PixelRNN and PixelCNN
 - https://arxiv.org/abs/1601.06759
 - https://arxiv.org/abs/1606.05328
 - https://openreview.net/pdf?id=BJrFC6ceg
- Good reference
 - http://cs231n.stanford.edu/slides/2019/ cs231n_2019_lecture13.pdf

GAN

I. Goodfellow et al., "Generative Adversarial Nets" NIPS2014

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio,

Département d'informatique et de recherche opérationnelle Université de Montréal Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to $\frac{1}{2}$ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Minimax Game

Adversarial Nets Framework

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Jensen Shannon (JS)-Divergence

Wasserstein GAN

Martin Arjovsky¹, Soumith Chintala², and Léon Bottou^{1,2}

¹Courant Institute of Mathematical Sciences ²Facebook AI Research

The Earth-Mover (EM) distance or Wasserstein-1

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|], \qquad (1)$$

where $\Pi(\mathbb{P}_r, \mathbb{P}_g)$ denotes the set of all joint distributions $\gamma(x, y)$ whose marginals are respectively \mathbb{P}_r and \mathbb{P}_g . Intuitively, $\gamma(x, y)$ indicates how much "mass" must be transported from x to y in order to transform the distributions \mathbb{P}_r into the distribution \mathbb{P}_g . The EM distance then is the "cost" of the optimal transport plan.

A Primer on Optimal Transport

Marco Cuturi

Justin Solomon

Origins: Monge Problem

Origins: Monge's Problem

Origins: Monge's Problem

T must **push-forward** the red measure towards the blue

What T s.t. $T_{\sharp} \mu = \nu$ minimizes $\int D(x, T(x)) \mu(dx)$?

JS-Divergence vs. W-distance

Example 1 (Learning parallel lines). Let $Z \sim U[0,1]$ the uniform distribution on the unit interval. Let \mathbb{P}_0 be the distribution of $(0,Z) \in \mathbb{R}^2$ (a 0 on the x-axis and the random variable Z on the y-axis), uniform on a straight vertical line passing through the origin. Now let $g_{\theta}(z) = (\theta, z)$ with θ a single real parameter. It is easy to see that in this case,

Figure 1: These plots show $\rho(\mathbb{P}_{\theta}, \mathbb{P}_{0})$ as a function of θ when ρ is the EM distance (left plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

Kantorovich-Rubinstein Duality

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r} [f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}} [f(x)]$$

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\text{critic}} = 5$.

Require: α , the learning rate. c, the clipping parameter. m, the batch size. n_{critic} , the number of iterations of the critic per generator iteration.

Require: : w_0 , initial critic parameters. θ_0 , initial generator's parameters.

```
1: while \theta has not converged do
            for t = 0, ..., n_{\text{critic}} do
 2:
                  Sample \{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r a batch from the real data.
 3:
                  Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
 4:
                 g_w \leftarrow \nabla_w \left[ \frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]
 5:
                 w \leftarrow w + \alpha \cdot \text{RMSProp}(w, q_w)
 6:
                 w \leftarrow \text{clip}(w, -c, c)
 7:
            end for
 8:
           Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
           g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))
10:
           \theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, q_{\theta})
11:
```

12: end while