226. Invert Binary Tree

Easy 🖒 13K 🗘 182 🏠 🗷

Given the root of a binary tree, invert the tree, and return its root.

Example 1:

Input: root = [4,2,7,1,3,6,9]

Output: [4,7,2,9,6,3,1]

Example 2:

Input: root = [2,1,3]

Output: [2,3,1]

Example 3:

Input: root = []

Output: []

Constraints:

The number of nodes in the tree is in the range [0, 100].

-100 <= Node.val <= 100

Approach 1:

if we see carefully at every mode it is swapping left and right address.

invested

500

invert (node)

if (node is mul)

return

4

Swap (node-) left, node-night)

invert (node - sleft)
invert (node - right)

(m): D(m)

note: we can also solve by swapping values but that would make the code really complicated and big to handle edge cases like one is mull and other is non mull node

Approach Q:

Iterative implementation.

we simulate recursion using explicit stack and here the order of visiting nodes is not a thing to worry about as long as all nodes are visited.

Stack < Treenode* > S note: queue also can s. push (not) be used.

while (S is not empty)

s.pop()

if (node ?s nul)

don 4 do anything
else

Suap (node >left node > night)
S. push (node > night)
S. push (node > night)

Y

S(n):O(n)