La mappa logistica discreta: origine e comportamento

Simone Zuccher

Piano Lauree Scientifiche per la Matematica 16 Novembre 2016

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- 3 Dall'ordine al caos

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- 3 Dall'ordine al caos

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- 3 Dall'ordine al caos

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- 3 Dall'ordine al caos

(1/2)

Indichiamo con p_n il numero di individui di una popolazione al tempo t_n (n-esimo passo temporale), $p_n \ge 0$.

Introduciamo:

- il *tasso di natalità* τ^{nati} , definito come il numero di individui nati durante il passo n diviso per il numero di individui p_n
- il $tasso di mortalità \tau^{morti}$, definito come il numero di individui morti durante il passo n diviso per il numero di individui p_n

Tassi costanti nel tempo? **Risorse limitate**: al crescere della popolazione il tasso di natalità diminuisce e/o quello di mortalità cresce.

$$au_n^{ ext{nati}} = au_0^{ ext{nati}} - a p_n \qquad ext{e} \qquad au_n^{ ext{morti}} = au_0^{ ext{morti}} + b p_n,$$

(1/2)

Indichiamo con p_n il numero di individui di una popolazione al tempo t_n (n-esimo passo temporale), $p_n \ge 0$. Introduciamo:

- il *tasso di natalità* τ^{nati} , definito come il numero di individui nati durante il passo n diviso per il numero di individui p_n
- il tasso di mortalità $\tau^{\rm morti}$, definito come il numero di individui morti durante il passo n diviso per il numero di individui p_n

Tassi costanti nel tempo? **Risorse limitate**: al crescere della popolazione il tasso di natalità diminuisce e/o quello di mortalità cresce.

$$au_n^{ ext{nati}} = au_0^{ ext{nati}} - ap_n \qquad ext{e} \qquad au_n^{ ext{morti}} = au_0^{ ext{morti}} + bp_n,$$

(1/2)

Indichiamo con p_n il numero di individui di una popolazione al tempo t_n (n-esimo passo temporale), $p_n \ge 0$. Introduciamo:

- il *tasso di natalità* τ^{nati} , definito come il numero di individui nati durante il passo n diviso per il numero di individui p_n
- il tasso di mortalità $\tau^{\rm morti}$, definito come il numero di individui morti durante il passo n diviso per il numero di individui p_n

Tassi costanti nel tempo? **Risorse limitate**: al crescere della popolazione il tasso di natalità diminuisce e/o quello di mortalità cresce.

$$au_n^{ ext{nati}} = au_0^{ ext{nati}} - ap_n \qquad ext{e} \qquad au_n^{ ext{morti}} = au_0^{ ext{morti}} + bp_n,$$

(1/2)

Indichiamo con p_n il numero di individui di una popolazione al tempo t_n (n-esimo passo temporale), $p_n \ge 0$. Introduciamo:

- il tasso di natalità τ^{nati} , definito come il numero di individui nati durante il passo n diviso per il numero di individui p_n
- il $tasso\ di\ mortalità\ \tau^{morti}$, definito come il numero di individui morti durante il passo n diviso per il numero di individui p_n

Tassi costanti nel tempo? **Risorse limitate**: al crescere della popolazione il tasso di natalità diminuisce e/o quello di mortalità cresce.

$$au_n^{ ext{nati}} = au_0^{ ext{nati}} - ap_n \qquad ext{e} \qquad au_n^{ ext{morti}} = au_0^{ ext{morti}} + bp_n,$$

(2/2)

In assenza di flusso migratorio:

$$p_{n+1} = p_n + \tau_n^{\text{nati}} p_n - \tau_n^{\text{morti}} p_n$$

$$= (1 + \tau_n^{\text{nati}} - \tau_n^{\text{morti}}) p_n$$

$$= (1 + \tau_0^{\text{nati}} - ap_n - \tau_0^{\text{morti}} - bp_n) p_n$$

$$= [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a + b)p_n] p_n,$$
(1)

Questo è solo un modello di evoluzione di una popolazione, detto modello *logistico* o *di Verhulst*.

Domande

- ① Esiste un valore asintotico p_{∞} della popolazione?
- 2 Esiste un valore *massimo* p_{max} della popolazione?

(2/2)

In assenza di flusso migratorio:

$$p_{n+1} = p_n + \tau_n^{\text{nati}} p_n - \tau_n^{\text{morti}} p_n$$

$$= (1 + \tau_n^{\text{nati}} - \tau_n^{\text{morti}}) p_n$$

$$= (1 + \tau_0^{\text{nati}} - a p_n - \tau_0^{\text{morti}} - b p_n) p_n$$

$$= [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a + b) p_n] p_n,$$
(1)

Questo è solo un modello di evoluzione di una popolazione, detto modello *logistico* o *di Verhulst*.

Domande:

- **1** Esiste un valore *asintotico* p_{∞} della popolazione?
- 2 Esiste un valore $massimo p_{max}$ della popolazione?

$$p_{\infty} = [(1+\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = \frac{\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni

- se $au_0^{
 m nati} \le au_0^{
 m morti}$ allora $au_\infty = 0$: la popolazione si **estingue**
- se $au_0^{\rm nati} > au_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p$$

esplosione ($au_0^{\mathrm{nati}} > au_0^{\mathrm{morti}}$) o estinzione ($au_0^{\mathrm{nati}} < au_0^{\mathrm{morti}}$).

$$p_{\infty} = [(1+ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = rac{ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni:

- se $au_0^{
 m nati} \leq au_0^{
 m morti}$ allora $extit{p}_\infty = 0$: la popolazione si **estingue**
- se $\tau_0^{\rm nati} > \tau_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p$$

esplosione ($au_0^{\mathrm{nati}} > au_0^{\mathrm{morti}}$) o estinzione ($au_0^{\mathrm{nati}} < au_0^{\mathrm{morti}}$).

$$p_{\infty} = [(1+\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = \frac{\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni:

- se $au_0^{
 m nati} \leq au_0^{
 m morti}$ allora $extit{p}_\infty = 0$: la popolazione si **estingue**
- se $\tau_0^{\rm nati} > \tau_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p_n$$

esplosione ($au_0^{
m nati} > au_0^{
m morti}$) o estinzione ($au_0^{
m nati} < au_0^{
m morti}$).

$$p_{\infty} = [(1+\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = \frac{\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni:

- se $au_0^{
 m nati} \leq au_0^{
 m morti}$ allora $au_\infty = 0$: la popolazione si **estingue**
- se $\tau_0^{\rm nati} > \tau_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p$$

esplosione ($\tau_0^{\mathrm{nati}} > \tau_0^{\mathrm{morti}}$) o estinzione ($\tau_0^{\mathrm{nati}} < \tau_0^{\mathrm{morti}}$).

$$p_{\infty} = [(1+\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = \frac{\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni:

- se $au_0^{
 m nati} \leq au_0^{
 m morti}$ allora $au_\infty = 0$: la popolazione si **estingue**
- se $\tau_0^{\rm nati} > \tau_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p_1$$

esplosione ($au_0^{\mathrm{nati}} > au_0^{\mathrm{morti}}$) o estinzione ($au_0^{\mathrm{nati}} < au_0^{\mathrm{morti}}$).

Sotto l'ipotesi $p_n \ge 0$, si ha

$$p_{n+1} \ge 0 \iff [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n]p_n \ge 0$$

da cui

$$0 \leq p_n \leq \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b},$$

pertanto

$$p_{\max} = \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b} > p_{\infty}.$$

 $p_{\mathsf{max}} > p_{\infty}$?

Sotto l'ipotesi $p_n \ge 0$, si ha

$$p_{n+1} \ge 0 \iff [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n]p_n \ge 0$$

da cui

$$0 \leq p_n \leq \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b},$$

pertanto

$$p_{\max} = \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b} > p_{\infty}.$$

 $p_{\mathsf{max}} > p_{\infty}$?

Sotto l'ipotesi $p_n \ge 0$, si ha

$$p_{n+1} \ge 0 \iff [(1+\tau_0^{\text{nati}}-\tau_0^{\text{morti}})-(a+b)p_n]p_n \ge 0$$

da cui

$$0 \leq p_n \leq \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b},$$

pertanto

$$p_{\mathsf{max}} = rac{1 + au_{\mathsf{0}}^{\mathsf{nati}} - au_{\mathsf{0}}^{\mathsf{morti}}}{a + b} > p_{\infty}.$$

 $p_{\mathsf{max}} > p_{\infty}$?

Sotto l'ipotesi $p_n \ge 0$, si ha

$$p_{n+1} \geq 0 \iff [(1+\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}})-(a+b)p_n]p_n \geq 0$$

da cui

$$0 \leq p_n \leq \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b},$$

pertanto

$$p_{\mathsf{max}} = \frac{1 + au_0^{\mathsf{nati}} - au_0^{\mathsf{morti}}}{a + b} > p_{\infty}.$$

 $p_{\mathsf{max}} > p_{\infty}$?

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- 3 Dall'ordine al caos

(1/2)

Siccome esiste p_{max} , anziché utilizzare il numero "assoluto" di individui p_n , introduciamo una **popolazione** "**riscalata**" $x_n = p_n/p_{\text{max}}$ tale che $0 \le x_n \le 1$. Da

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n]p_n,$$

dividendo entrambi i membri per p_{max} e rielaborando si ottiene

$$\frac{p_{n+1}}{p_{\text{max}}} = \left[(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n \right] \frac{p_n}{p_{\text{max}}}$$

$$= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n \right] \frac{p_n}{p_{\text{max}}}$$

$$= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{p_n}{p_{\text{max}}} \right] \frac{p_n}{p_{\text{max}}}$$

(1/2)

Siccome esiste p_{max} , anziché utilizzare il numero "assoluto" di individui p_n , introduciamo una **popolazione** "**riscalata**" $x_n = p_n/p_{\text{max}}$ tale che $0 \le x_n \le 1$. Da

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n]p_n,$$

dividendo entrambi i membri per p_{max} e rielaborando si ottiene

$$\begin{aligned} \frac{p_{n+1}}{p_{\text{max}}} &= \left[(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n \right] \frac{p_n}{p_{\text{max}}} \\ &= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n \right] \frac{p_n}{p_{\text{max}}} \\ &= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{p_n}{p_{\text{max}}} \right] \frac{p_n}{p_{\text{max}}} \end{aligned}$$

(1/2)

Siccome esiste p_{\max} , anziché utilizzare il numero "assoluto" di individui p_n , introduciamo una **popolazione "riscalata"** $x_n = p_n/p_{\max}$ tale che $0 \le x_n \le 1$. Da

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n]p_n,$$

dividendo entrambi i membri per p_{max} e rielaborando si ottiene

$$\begin{aligned} \frac{p_{n+1}}{p_{\text{max}}} &= [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n] \frac{p_n}{p_{\text{max}}} \\ &= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n \right] \frac{p_n}{p_{\text{max}}} \\ &= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{p_n}{p_{\text{max}}} \right] \frac{p_n}{p_{\text{max}}} \end{aligned}$$

(2/2)

Introducendo

$$A = 1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}} > 0$$
 e $x_n = \frac{p_n}{p_{\text{max}}} = \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n$

si ottiene semplicemente

$$x_{n+1} = Ax_n(1-x_n),$$
 (2)

nota come equazione logistica discreta.

Domande:

- ① Quanto vale x_{∞} (valore asintotico normalizzato)?
- Quali valori può assumere A in modo che la popolazione normalizzata x_n sia sempre $0 \le x_n \le 1$?
- Si può pensare ad un metodo grafico per determinare il destino della popolazione normalizzata x₀?

(2/2)

Introducendo

$$A=1+ au_0^{ ext{nati}}- au_0^{ ext{morti}}>0 \qquad e \qquad x_n=rac{p_n}{p_{ ext{max}}}=rac{a+b}{1+ au_0^{ ext{nati}}- au_0^{ ext{morti}}}p_n,$$

si ottiene semplicemente

$$x_{n+1} = Ax_n(1-x_n),$$
 (2)

nota come *equazione logistica discreta*.

- Domande:
 - **1** Quanto vale x_{∞} (valore asintotico normalizzato)?
- Quali valori può assumere A in modo che la popolazione normalizzata x_n sia sempre $0 \le x_n \le 1$?
- Si può pensare ad un metodo grafico per determinare il destino della popolazione normalizzata x₀?

(2/2)

Introducendo

$$A = 1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}} > 0$$
 e $x_n = \frac{p_n}{p_{\text{max}}} = \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n$

si ottiene semplicemente

$$x_{n+1} = Ax_n(1-x_n),$$
 (2)

nota come *equazione logistica discreta*.

Domande:

- **1** Quanto vale x_{∞} (valore asintotico normalizzato)?
- Quali valori può assumere A in modo che la popolazione normalizzata x_n sia sempre $0 \le x_n \le 1$?
- Si può pensare ad un metodo grafico per determinare il destino della popolazione normalizzata x_n?

(2/2)

Introducendo

$$A = 1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}} > 0$$
 e $x_n = \frac{p_n}{p_{\text{max}}} = \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n$

si ottiene semplicemente

$$x_{n+1} = Ax_n(1-x_n),$$
 (2)

nota come equazione logistica discreta.

Domande:

- **1** Quanto vale x_{∞} (valore asintotico normalizzato)?
- Quali valori può assumere A in modo che la popolazione normalizzata x_n sia sempre $0 \le x_n \le 1$?
- Si può pensare ad un metodo grafico per determinare il destino della popolazione normalizzata x_n?

Domande 1 e 2

(1/2)

• calcolo di x_{∞} :

$$x_{\infty} = Ax_{\infty}(1-x_{\infty})$$

da cui

$$x_{\infty}=0$$
 e $x_{\infty}=1-1/A$.

Affinché la specie non si estingua ($x_{\infty} > 0$), deve essere 1 - 1/A > 0 che implica A > 1.

2 valori ammissibili di A: il vertice della parabola y = Ax(1-x) è V(1/2, A/4), per avere $0 < x_n \le 1$ deve essere $0 < A/4 \le 1$ che implica $0 < A \le 4$.

Domande 1 e 2

(1/2)

 \bigcirc calcolo di x_{∞} :

$$x_{\infty} = Ax_{\infty}(1-x_{\infty})$$

da cui

$$x_{\infty} = 0$$
 e $x_{\infty} = 1 - 1/A$.

Affinché la specie non si estingua ($x_{\infty} > 0$), deve essere 1 - 1/A > 0 che implica A > 1.

valori ammissibili di A: il vertice della parabola y = Ax(1-x) è V(1/2, A/4), per avere $0 < x_n \le 1$ deve essere $0 < A/4 \le 1$ che implica $0 < A \le 4$.

Domande 1 e 2

(2/2)

- per $0 \le A \le 1$ si ha $x_{\infty} = 0$
- per $1 < A \le 4$ si hanno $x_{\infty} = 0$ oppure $x_{\infty} = 1 1/A$.

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- 3 calcolare $x_3 = f(x_2)$
- 4 ...
- \bigcirc calcolare $x_{n+1} = f(x_n)$
- **6** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- o calcolare $x_3 = f(x_2)$
- 4 ...
- calcolare $x_{n+1} = f(x_n)$
- **o** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 3 calcolare $x_3 = f(x_2)$
- 4 ...
- calcolare $x_{n+1} = f(x_n)$
- $| \mathbf{se} | x_{n+1} x_n | < \epsilon$, esci dal ciclo
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y=x e ripetere dal punto 5

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 2 riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- o calcolare $x_3 = f(x_2)$
- 4 ...
- \bigcirc calcolare $x_{n+1} = f(x_n)$
- **6** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 2 riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- o calcolare $x_3 = f(x_2)$
- 4 ...
- \bigcirc calcolare $x_{n+1} = f(x_n)$
- **6** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Domanda 3: metodo grafico per calcolare x_{n+1} ?

Si: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 2 riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- o calcolare $x_3 = f(x_2)$
- 4 ...
- **o** calcolare $x_{n+1} = f(x_n)$
- **o** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Domanda 3: metodo grafico per calcolare x_{n+1} ?

Si: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 2 riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- o calcolare $x_3 = f(x_2)$
- 4 ...
- **o** calcolare $x_{n+1} = f(x_n)$
- **1** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Domanda 3: metodo grafico per calcolare x_{n+1} ?

Sì: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 2 riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- o calcolare $x_3 = f(x_2)$
- 4 ...
- **o** calcolare $x_{n+1} = f(x_n)$
- **5** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Vediamo cosa succede per $A \leq 3...$

Giochiamo un po' con Octave o Excel: per 0 < A < 3 si osservano varie *transizioni*, in ogni caso c'è *almeno* una soluzione di equilibrio stabile:

- Se $0 < A \le 1$, ovvero se $\tau_0^{\text{nati}} \le \tau_0^{\text{morti}}$, allora $x_{\infty} = 1 1/A = 0$ e la specie si estingue.
- Se $1 < A \le 2$ la popolazione si stabilizza velocemente al valore 1 1/A, indipendentemente dal valore iniziale della popolazione.
- Se 2 < A ≤ 3 la popolazione si stabilizza comunque al valore 1 - 1/A ma oscillando attorno ad esso per un po' di tempo. La convergenza risulta molto lenta per A = 3.

Cosa succede per $3 < A \le 4$?

Agenda

- 1 Un modello per la dinamica delle popolazion
- 2 La mappa logistica
- 3 Dall'ordine al caos

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per 1 + $\sqrt{6}$ < A < 3.54409: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: *period-doubling cascade*.
- per $A \approx 3.56995$: si raggiunge una condizione in cui x_n assume tutti valori diversi con l'impossibilità di riconoscere delle oscillazioni periodiche: **caos matematico!** ma...
- da $A=1+\sqrt{8}\approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per $1 + \sqrt{6} < A < 3.54409$: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: *period-doubling cascade*.
- per $A \approx 3.56995$: si raggiunge una condizione in cui x_n assume tutti valori diversi con l'impossibilità di riconoscere delle oscillazioni periodiche: **caos matematico!** ma...
- da $A=1+\sqrt{8}\approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per 1 + $\sqrt{6}$ < A < 3.54409: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: *period-doubling cascade*.
- per $A \approx 3.56995$: si raggiunge una condizione in cui x_n assume tutti valori diversi con l'impossibilità di riconoscere delle oscillazioni periodiche: **caos matematico!** ma...
- da $A=1+\sqrt{8}\approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per 1 + $\sqrt{6}$ < A < 3.54409: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: *period-doubling cascade*.
- per A ≈ 3.56995: si raggiunge una condizione in cui x_n
 assume tutti valori diversi con l'impossibilità di riconoscere
 delle oscillazioni periodiche: caos matematico! ma...
- da $A=1+\sqrt{8}\approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per 1 + $\sqrt{6}$ < A < 3.54409: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: *period-doubling cascade*.
- per A ≈ 3.56995: si raggiunge una condizione in cui x_n
 assume tutti valori diversi con l'impossibilità di riconoscere
 delle oscillazioni periodiche: caos matematico! ma...
- da $A=1+\sqrt{8}\approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per 1 + $\sqrt{6}$ < A < 3.54409: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: *period-doubling cascade*.
- per A ≈ 3.56995: si raggiunge una condizione in cui x_n
 assume tutti valori diversi con l'impossibilità di riconoscere
 delle oscillazioni periodiche: caos matematico! ma...
- da $A=1+\sqrt{8}\approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

(2/3)

(3/3)

Sensibilità alle condizioni iniziali

A = 4.0, confronto tra $x_1 = 0.1000$ (linea continua, pallini pieni) e $x_1 = 0.1001$ (linea tratteggiata, pallini vuoti). Si noti che le due soluzioni sono praticamente sovrapposte fino a k = 6, ma poi si allontanano l'una dall'altra.

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se $1 < A \le 2$, oscillando se 2 < A < 3).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 + $\sqrt{6}$ < A < 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se $3.848 < A \le 4$ ritorna il comportamento captico $\frac{1}{2}$

- ullet se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se $1 < A \le 2$, oscillando se $2 < A \le 3$).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 + $\sqrt{6}$ < A < 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se $3.848 < A \le 4$ ritorna il comportamento captico

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se $1 < A \le 2$, oscillando se $2 < A \le 3$).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 + $\sqrt{6}$ < A < 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A=1+\sqrt{8}\approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se $3.848 < A \le 4$ ritorna il comportamento captico $\frac{1}{2}$

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se $1 < A \le 2$, oscillando se $2 < A \le 3$).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 $+\sqrt{6} < A <$ 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se 3.848 < A ≤ 4 ritorna il comportamento captico

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se $1 < A \le 2$, oscillando se $2 < A \le 3$).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 + $\sqrt{6}$ < A < 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se 3.848 < A ≤ 4 ritorna il comportamento captico

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se $1 < A \le 2$, oscillando se $2 < A \le 3$).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 $+\sqrt{6} < A <$ 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A=1+\sqrt{8}\approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se 3.848 < A ≤ 4 ritorna il comportamento captico

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se 1 < $A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se 1 < $A \le 2$, oscillando se 2 < $A \le 3$).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 + $\sqrt{6}$ < A < 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A=1+\sqrt{8}\approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se $3.848 < A \le 4$ ritorna il comportamento captico, $\frac{1}{2}$

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se $1 < A \le 2$, oscillando se $2 < A \le 3$).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 + $\sqrt{6}$ < A < 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A=1+\sqrt{8}\approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se 3.848 < A \le 4 ritorna il comportamento caotico

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica)

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica)

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica)

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica)

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica)

Domande?

