Acad Year (15/16)

Project No. (C014)

Raymond Djajalaksana

SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

NANYANG TECHNOLOGICAL UNIVERSITY

Year(2015/2016)

NANYANG TECHNOLOGICAL UNIVERSITY

$${\rm C014}$$ CONTACT FORCE ESTIMATION USING MOTOR CURRENTS OR TORQUES

Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Mechanical Engineering of the Nanyang Technological University

by

RAYMOND DJAJALAKSANA

SCHOOL OF MECHANICAL ENGINEERING 2015/2016

Abstract

In robotic assembly task, the robotic arm must be able to cooperate with a lot of uncertainites in the dynamic environment. Thus, the ability to know about contact force is crucial in assembly robot.

This project seeks to develop a model to estimate the contact force of manipulator arm without force sensor, using only motor currents or torques.

The report starts from literature review from previous researches about contact force estimation, followed by mathematical models to calculate the contact force from motor torques.

The next section will be about the necessary equipments and setup to run the experiments. Thereafter, results and model identification are presented, where verification of the results are available in the following chapter.

The last chapter touches on the conclusion and future works needed from this project.

Acknowledgments

I would like to express my sincere gratitude and appreciation to the following people for their generous help and guidance, which made this final year project become feasible, enjoyable, and fruitful.

Assistant Professor Pham Quang Cuong, the project supervisor, for being generous with his advices and guidance.

Mr Fransisco Surez, the research fellow, for his continuous help and assistance during the whole completion of the project.

All members of CRI group, for their invaluable support regarding project matters.

Contents

A	bstra	ct	j
\mathbf{A}	cknov	wledgments	ii
\mathbf{C}_{0}	onter	nts	iv
Li	st of	Tables	v
Li	st of	Figures	vii
1	Intr	roduction	1
	1.1	General Introduction	1
	1.2	Objective	2
	1.3	Scope	3
2	$\operatorname{Lit}\epsilon$	erature Review	4
	2.1	Related Works	5
3	Mat	thematical Model	8
	3.1	Arm Dynamic Equation	8
	3.2	Friction Model	9
		3.2.1 Static Friction Model	10
		3.2.2 Dynamic Friction Model	11

4	Equ	ipments	13
	4.1	Denso VS060	13
	4.2	ATI Gamma F/T Sensor	14
	4.3	End-effector handle	15
	4.4	Ubuntu 12.04 LTS	15
	4.5	OpenRave	15
	4.6	Denso ROS	16
5	Met	thodology	17
	5.1	Motor Currents Reading	17
	5.2	One-stage Experiment	19
	5.3	Two-Stage Experiment	20
		5.3.1 High Torque Collection Data	20
		5.3.2 High Velocity Collection Data	21
6	Res	ults and Model Identification	22
	6.1	Identification for One-stage Experiment	22
	6.2	Preliminary Results for Two-stage Experiment	23
	6.3	Motor Torque Calibration	24
		6.3.1 Motor Torque Gain Identification	24
		6.3.2 Verification of Motor Torque Calibration	25
	6.4	Friction Identification	26
7	Mo	del Validations	27
	7.1	Results Verification from One-stage Experiment	27
8	Cor	nclusion and Future Works	30
	8.1	Conclusion	30
	8.2	Future Works	31
$\mathbf{R}_{\mathbf{c}}$	efere	nces	32

List of Tables

7.1	Root	m	ean	5	squa	are	V	ılu	е	of	est	im	at	ed	C	on	tac	et	fo	rce	9 1	18	in	g	st	at	ic	
	frictio	n																										29

List of Figures

1.1	Robotics in some applications	2
3.1	Static friction profile	11
3.2	Dahl model of dynamic friction	12
4.1	Denso VS060A3-AV6	14
4.2	ATI Gamma F/T Sensor	14
4.3	End-effector handle	15
4.4	OpenRave environment	16
5.1	Reading of motor currents and torques	18
5.2	Motor torques vs motor currents with sign	18
5.3	fig: One-stage experiment simulation	19
5.4	High torque collection data experiment for second joint	21
5.5	fig: High veloctiy collection data experiment for third joint	21
6.1	Fitting of Dahl Model	22
6.2	Sample data of the second joint high torque experiment	23
6.3	Sample data of the second joint high velocity experiment	24
6.4	τ'_{denso} vs $-J^T F_{ext}$ in high torque experiment for second joint	25
6.5	Joint Torque Verification for Second joint	26
7.1	Validation result of estimated force. (: estimated output, $-$:	
	real output)	28

7.2	External joint torques estimation of Fig. 7.1a (: estimated out-	
	$put, -: real \ output) . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	28

Introduction

1.1 General Introduction

Nowadays, robotics play a very crucial role in industrial area by greatly increasing the industrial productivity. It helps factory workers in many ways:

First, it helps the workers in performing monotonous and tedious task. As humans are bad with dealing the same task over and over again, it will put high stress in workers physical and mental condition. In contrast, a machine or robot can perform the same task in a loop when programmed to do so. And normally it will achieve the same result which is also one advantage compared to workers result.

Second, it can replace human in doing some dangerous tasks. For instance, welding operation is quite dangerous as the activity deals with high temperature. By having the robot to perform the welding, it greatly reduce the risk for the workers to get burned or accident in the process of welding.

Third, robots are very good to deal with precision and accuracy while humans are not. This makes some operation can only be done by the robots and not manually. One example is making the electronics components such as micro chip, small transistors, etc.

However, these achievements is done because of a highly structured environment such as heavy industry (for example car assembly) where every parameters are known and fixed. In contrast, robotics performance in light industry are still poor. For instances, assembly of small and fragile parts in electronics, food, and other industries. This is because robotics are still bad in dealing with dynamics and unstructured environment where uncertainties are common.

- (a) Robotics in heavy industries
- (b) Manipulators for assembly task

Figure 1.1: Robotics in some applications

In light of this, researches and developments in this topic are still intense until now. Many works have attempted to create a framework for fine assembly procedures. Recently, a paper by (?, ?) has introduced the complete framework for fine assembly task. However, there are still always some improvement that can be done.

1.2 Objective

This project aims to estimate the contact force of an assembly robot based on the arm motor currents/torques. Understanding of the mathematical model of the robots dynamic, friction, and control theory are considered as important knowledge to work with this project.

The project will be focusing on a certain Denso arm. Thus, the developed systems will be built specifically for this arm. Additionally, some problems that

are discussed in this project will be only addressed for this Denso arm and might not be available for other arms.

1.3 Scope

The scope of this project is divided into four parts. First, the project will start from understanding of the general models of robot dynamic and friction. Thus, literature reviews and readings are included in this step. The next step is to perform some experiments to get all necessary data to develop the model. This includes setup preparations, running the experiments, and collections of the data. The third step will be processing all the results and develop the system to estimate the contact force, which after that, validation of the built model to the real data will be the final step.

Literature Review

A typical six degrees of freedom robotic arm has many applications. By having a six degrees of freedom, it can moves freely in all translations and orientations. This robustness is one advantage that five or less degrees of freedom do not have. Thus, it is obvious to have many applications for such manipulator arm. Depending on the attached end-effector it has many purposes. For example, by attaching a gripper on the end-effector, it can perform assembly task or pick and place task. On the other hand, if a drill or a torch is attached, it can be used for drilling or welding in industries. While the arm can also be used for assembly operation, its performance has still to be improved.

Particularly for robotic assembly tasks, to perform a versatile assembly the robotic arm must be able to cooperate with a lot of uncertainties in the dynamic environment. One example, the manipulator has to be able to know when the contact with an object is happening and then maintaining the stable contact throughout the task. This ability requires knowledge of contact force for the robot. Thus, estimation of contact forces is very important since it will help the robot to determine and control the contact with objects in dynamics environment. While this can be done using accurate force/torque sensor, the sensor is normally expensive and requires mechanical integration with the robotic arm (Wahrburg,

Morara, Cesari, Matthias, & Ding, 2015). Hence in some arms it might not be possible to attach this sensor.

In regards to this, many researches have been done in order to estimate the contact force. The main idea to estimate the contact force is to directly apply dynamic equations of a robot, knowing the value of joint torques. However different approaches have also been explored in the past few decades. Early approaches use observers for force estimation like in (Ohishi, Miyazaki, Fujita, & Ogino, 1991). Another approach in (Stolt, Linderoth, Robertsson, & Johansson, 2012) involves detune the low-level joint position control loop to estimate contact force. Furthermore, recent approaches by using Bayesian approach and generalized momentum with Kalman filter are studied in (Wahrburg, Zeiss, Matthias, & Ding, 2014) and (Wahrburg et al., 2015) respectively. Additionally, studies of comparison between two different approaches are done in (Damme et al., 2011). The study compares the result from filtered dynamic equation of external force with generalized momentum method. More details of these works will be explained in the next subsection.

2.1 Related Works

The purpose of this project is very similiar to (Wahrburg et al., 2014) in which the paper aims to estimate the contact force by using motor torques. However, the focus of the authors is on the new extensive method to further improved the estimation value. First, they introduce the problem description which start from the basic dynamic of robotic system. And then the paper begins explaining the solution to estimate the contact force by using Bayesian approach. It depends on tuning the covariance matrices in their Bayesian method to estimate the error estimatation and hence compensate it to get the more accurate contact force. Apart from there, the paper also consider the friction discussion since it will

affect the result quite severe. Based on the previous paper, they concludes that by using a simple static friction model which is a coulomb and viscous friction model, they can get a reasonable calculation of the friction. To calculate the friction model, the robot was moved in a free motion without any load since in this case the friction will play a major role. The next part is where the authors introduce steps that needs to be done to use the new proposed method and the results of their experiments. They summarized that their method has been verified with the experimental data.

Another research which most of the authors are the same in (Wahrburg et al., 2014) propose a different approach in estimating the contact force of robotic manipulator (Wahrburg et al., 2015). This time, they use generalized momentum to simplified the basic robotic system equation. And from there, Kalman filter was used to have better estimation of the cartesian contact force. Unfortunately, the method presented in this paper could not be used now as the dynamic parameters such as mass, inertia moment, etc. are needed for generalized momentum. However, as for now the identification of those parameters have not been done for the manipulator arm that is going to be used. Hence, this method will not be applicable as for now, until dynamic parameters of the arm has been identified.

A study by (Stolt et al., 2012) shows that a force estimation can be performed by playing with the low-level joint control loop. The basic idea is that joint control error will act like a spring and hence, force can be estimated based on this control error. The idea was verified in a small part of assembly task.

One interesting paper by (Damme et al., 2011) compared about two different ways to estimate contact force at the end-effector of the robot. The methods they disccussed are: recursive least-square algorithm with filtered dynamic model approach and generalized momentum based disturbance observer. It is notable that in this paper, they also use the simple static friction model like what (Wahrburg et al., 2014) used. After running the simulation and experiments, it was found

that both of approaches give a similiar results despite a different origin. It was suggested that observer-based algorithm is better if fast response is needed, while least-squares based algorithm is better for system with noise and time lag tolerance.

To sum up, there are many approaches to estimate the contact force of endeffector manipulators that have been studied. While each have their own advantages and disadvantages, all of the methods are sourced from the basic dynamic system of the robot.

Mathematical Model

3.1 Arm Dynamic Equation

The basic dynamic equation of a six degrees of freedom (6-DOF) robotic arm is described by:

$$\Sigma \tau_{joint} = \tau_{mot} + \tau_{ext} = M(q) \ddot{q} + C(\dot{q}, q) \dot{q} + G(q) + \tau_{friction}$$
 (3.1)

Where τ_{mot} is the motor torque, τ_{ext} is the external wrench / torque applied to the respective joint where in this project is due to end-effector force / torque, and $\tau_{friction}$ is the torque because of joint friction. M(q) defines the inertia matrix, $C(\dot{q},q)$ defines the coriolis matrix, and G(q) is the joint torque resulting from gravity. In other words, for each of joint, the summation of external joint torques $(\tau_{mot} + \tau_{ext})$ are equal to the torques needed to overcome the friction and to perform the dynamic motion. Initially the motor torque will be calculated from motor currents by using the relation:

$$\tau_{mot} = K_m I_{mot} \tag{3.2}$$

However, there is a problem regarding motor currents where the solution is

to get the motor torque value directly from the arm (see chapter 5.1). And since the unit is in percentage (%) and not in SI unit, calibration is needed to change it to SI. Thus, it can be written as:

$$\tau_{mot} = K_{denso} \tau_{denso} \tag{3.3}$$

Where K_{denso} will be called denso gain for ease of reference.

On the other hand, transformation of the end-effector force/torque to the joint wrench, the jacobian matrix is needed, which the equation is:

$$\tau_{ext} = J^T F_{ext} \tag{3.4}$$

Where $J^T \in R^{6\times 6}$ is the transpose of jacobian matrix and $F_{ext} = [F \ \tau] \in R^{6\times 1}$ is the contact force. It is also important to consider friction since it can cause large error in manipulators (?, ?). However, the modeling of friction is not easy as there are a lot of phenomenas in the friction itself. Thus, it is good to choose the simplest model that can have a reasonable result. The next section below will explain the friction model in more detail.

3.2 Friction Model

In general, friction models can be divided into two categories: static and dynamic friction. A model that depends only on current velocity is called static friction, whereas the friction related to non-stationary velocities is called dynamic model.

In static friction, including coulomb and viscous friction, stiction phase and stribeck effect can be also captured. However, dynamic friction can capture more phenomenas such as: small displacements occurring during stiction phase, hysteretic effect, and variations in break-away force. In short, dynamic model

explains the friction in microscopic level and hence can capture more phenomenas.

During the early stage of the project, both type of model will be considered, whereby in the late stage only the static model will be used as dynamic model has some difficulties.

3.2.1 Static Friction Model

Viscous and Coulomb is the simplest form of static friction model. The basic mathematical form is as below:

$$F = F_c sign(\dot{x}) + \beta \dot{x} \tag{3.5}$$

Where F is the friction force, ν is relative velocity to contact surfaces, β is the viscous friction coefficient, and F_c is coulomb friction. The model however does not include the stiction effect. The stiction effect can be easily added into the model, that is: a movement can be created only when the applied external force is greater than friction force Fs (Bona & Indri, 2005). By adding this effect and adjusting the equation for robotic arm, the equation will be:

$$\tau_{friction} = K_c sign(\dot{q}) + K_v \dot{q} \tag{3.6}$$

Because of stiction and coulomb effect, the friction model will introduce discontinuous profile when the direction of velocity changes. The friction force diagram for this model can be seen in figure below where it shows a discontinuity at velocity equals to zero.

Figure 3.1: Static friction profile

3.2.2 Dynamic Friction Model

The well-known Dahl model is the simplest form to describe the dynamic friction behaviour. With Dahl model, hysteretic effects can be explained since it introduces the lag in the changes of friction force as velocity changes. However, Dahl model does not include some other effects, such as stiction and Stribeck effect. A refined form of Dahl model that includes these effects is called LuGre friction model (Bona & Indri, 2005).

Dahl friction plays with an internal state variable z, and then defines the friction force as:

$$\dot{z} = \dot{q} - \frac{|\dot{q}|}{F_c} \sigma z \tag{3.7}$$

$$\tau_{friction} = \sigma z \tag{3.8}$$

Where σ is the bristle stiffness parameter. Because of this internal state z, Dahl model can explain the hysteretic effect in friction. Be aware that for this equation, it requires a correct initial value of z. Figure below shows the diagram of Dahl model.

Figure 3.2: Dahl model of dynamic friction

Unlike Coulomb and viscous friction model, Dahl model does not have discontinuous profile in the equation. This becomes one advantage Dahl model has over the static friction. However, since the model is more complex, it imposes some difficulties such as: estimation of initial state is not easy, it is sensitive to the parameter (σ) , and the necessity of high precision data.

Equipments

In this project, necessary equipments, software, and robotic arm that are going to be used are: $1 \times \text{Denso VS}060\text{A3-AV}6$ arm, $1 \times \text{end-effector handle}$, $1 \times \text{ATI}$ Gamma F/T Sensor (SI-32-2.5 calibration), Ubuntu 12.04 LTS, OpenRave, and Denso ROS.

4.1 Denso VS060

Denso VS060A3-AV6 is a six DOF robotic arm from Denso company. It has absolute encoder for all of its joint position. An RC-8 controller is also provided for interfacing with this arm. The computer is connected to Denso arm via LAN cable. The architecture of the hardware interface for this arm can be seen in figure below.

(a) Denso VS060 arm

(b) Hardware interface of Denso arm

Figure 4.1: Denso VS060A3-AV6

4.2 ATI Gamma F/T Sensor

ATI Gamma F/T sensor SI-32-2.5 is used for the experiment. It has been calibrated with the following sensing range: f = [32, 32, 100]N and $\tau = [2.5, 2.5, 2.5]Nm$. This F/T Sensor is attached into the end-effector of Denso arm to measure the contact force and torque. After this sensor, another handle is attached on top of the F/T sensor. Hence, with the addition of contact force and torque, F/T sensor will also read the weight and inertial force from the handle.

Figure 4.2: ATI Gamma F/T Sensor

4.3 End-effector handle

This is the handle of the end-effector arm. It has a round sphere surface. The arm will make a contact with environments through this handle.

Figure 4.3: End-effector handle

4.4 Ubuntu 12.04 LTS

The OS of the working computer is Linux Ubuntu, with version of 12.04. It is not the lattest version and it should stay in 12.04 version for operating the arm. Some important packages are also installed, they are OpenRave and Denso ROS. Python and C++ are used to run the Denso arm.

4.5 OpenRave

OpenRAVE is a package that provides an environment for testing, developing, and deploying motion planning algorithms in robotics applications. It focuses on the simulation analysis of motion planning. It is to be used together with Denso ROS to control the Denso arm with its analysis guidance. The OpenRave is oftenly used in Python script.

Figure 4.4: OpenRave environment

4.6 Denso ROS

Denso ROS is a robot operating system that works on the Denso arm. With Denso ROS, the manipulator arm can be controlled from computer. The packages are written in C++ and Python while the script to run the robot is usually written in Python codes.

Methodology

5.1 Motor Currents Reading

Before continue with more experiment and identification, there is one problem that needs to be solved first. The problem is that the arm only gives absolute value of the motor currents (Fig. 5.1a). In the figures, q1 refers to the first joint, q2 is the second joint and so on. Thus there is a need to identify the sign of the motor currents of each joints. Three methods were tried but only one was successful.

The first attempt was to give the motor current sign based on the sign of τ_{dyn} during non-contact condition. However, this poses a problem when the τ_{dyn} goes near zero as it will not be clear enough to identify the sign. The second method was to match the derivative of motor currents with derivative τ_{dyn} during precontact motion (e.g.: if τ_{dyn} is increasing, the motor currents has to be increasing too, and vice versa). Unfortunately, this principle working only if motor currents are very smooth and steady which is a very difficult condition.

After the first two attempts, it was found out that we can actually extract motor torques value from Denso and this time it includes the sign of it. The data is then plotted against motor currents with the sign of motor torques to see the relation. From Fig. 5.2 we can see that there is a good linearity between these two variables, and so we can now actually use motor torques instead of motor currents. By doing this, not only we do not need to take care of the currents sign problem anymore, we also simplify our problem since what we are interested in is the motor torques, not motor currents. However, since the value is not in the SI unit calibration is needed to adjust the value into the SI unit.

Figure 5.1: Reading of motor currents and torques

Figure 5.2: Motor torques vs motor currents with sign

5.2 One-stage Experiment

In the early process of the project, one-stage experiment was executed. The experiment can be described like this: The robot is moved into pre-contact position with any fixed object. The arm then moves slowly until contact is detected using F/T sensor. From there, a sinusoidal motion of the end-effector is performed to push the fixed object. This will make some joints to forcely push the robot. Figures below illustrate the simulation of the setup.

- (a) Robot is in pre-contact position
- (b) robot push the ground in a sinusoidal motion.

Figure 5.3: fig: One-stage experiment simulation

The purpose of this experiment is to capture all of the phenomenas (friction and contact force) in one experiment and so, identification of all parameters can be done for each joint in one experiment. Furthermore, depending on the setup one experiment can test for more than one joint at the same time, thus cutting the time to do the experiment.

While it is feasible to do so, identification of the parameters turned out to be quite messy. The reasons are: 1) while all effects of the phenomena can be captured, it is difficult to distinguish one with each other, hence making it difficult in identifying each parameter and 2) performing the experiment for two or more joints at the same time was messy and not clean. Hence, the setup of experiment was then changed to be two-stage experiment.

5.3 Two-Stage Experiment

There are two stage of experiments which are required to identify the two important parameters: K_{denso} and $\tau_{friction}$ (see chapter 3.1). The purpose of setting different type of experiment is to eliminate the effect of other parameter, thus the resulted data is affected only because of one parameter. That way the identification of each parameter tends to be easier and more accurate. The first stage of experiment is the high torque collection data to calibrate the motor torque (K_{denso}) while the second stage of experiment is the high velocity collection data which is performed to identify the $\tau_{friciton}$ characteristics. The data is captured in broad range of value to capture as many phenomena as possible.

5.3.1 High Torque Collection Data

The experiment is meant to collect the torque measurement from wide range to calibrate the motor torque. Firstly, the robot is moved to a position where the interested joint will receive a high torque from contact force. While the robot is fixed, the force is introduced at the end-effector of the arm such that the interested joint will experience a high torque. Motor torques are recorded from Denso arm and contact force/torque are recorded through ATI F/T sensor. The experiment is repeated in a different position for each joints. See figure below for illustration.

Figure 5.4: High torque collection data experiment for second joint

5.3.2 High Velocity Collection Data

For this second experiment, the robot is moving in a free motion. Thus, a free rotation with different velocity is performed for each of respective joints. In this way, the effect of friction can be clearly capitured. Motor torques, and joint positions which are crucial parameters are recorded from Denso manipulator for further analysis. See figure below for illustration.

Figure 5.5: fig: High veloctive collection data experiment for third joint

Results and Model Identification

6.1 Identification for One-stage Experiment

In the early stage of the progress which is one-stage experiment, Dahl model was chosen as the friction model for the system. The optimization of the model was done to fit with the data. The result is shown in Fig. 6.1. The root-mean-square of the fitting model seem to gives a good result. However, lot of problems were found during the implementation of the model. This comes from the disadvantages of the model itself. Hence, at some stage it is decided to leave the model and change to static friction model which is easier to implement.

Figure 6.1: Fitting of Dahl Model

6.2 Preliminary Results for Two-stage Experiment

Two figures below are some samples of the collected data during the experiment. The whole data are available in the *APPENDIX*. The data has been filtered to eliminate the noise reading available from the sensor or motor. It uses low pass filter for smoothing the result. Low pass filter for F/T sensor have the order of 3 with cutoff frequency of 2 Hz. As for the motor torque, the low pass filter is set to have the order of 5 and cutoff frequency of 1 Hz.

Fig. 6.2 represents the result of high torque experiment for one of the joint and Fig. 6.3 represents the data collected during the free motion experiment. The results from Fig. 6.2 will be further processed for calibrating the motor torque while results in Fig. 6.3 are used for friction identification.

- (a) Filtered data of external wrench detected from F/T sensor
- (b) Filtered data of motor torques

Figure 6.2: Sample data of the second joint high torque experiment

- (a) Calculated joint torque using OpenRave
- (b) Filtered data of motor torques

Figure 6.3: Sample data of the second joint high velocity experiment

6.3 Motor Torque Calibration

6.3.1 Motor Torque Gain Identification

Based on the setup that has been mentioned in subsection 5.3.1, it is known that during the experiment the joints are stationary and hence $\dot{q} = 0$, $\ddot{q} = 0$. Also since it is not moving, there is no friction effect for the joint. And by using relation in (3.3) and (3.4), equation (3.1) can be simplified to:

$$K_{denso}\tau_{denso} + J^{T}F_{ext} = G(q)$$

$$(6.1)$$

Taking the reference value when there is no external wrench (at $F_{ext} = 0$), the above equation becomes:

$$K_{denso}\tau_{denso}' = -J^T F_{ext} \tag{6.2}$$

This makes the calibration of K_{denso} becomes more easier to identify as it is a simple linear problem. To get the value of K_{denso} , the model is optimized from the data (τ'_{denso}, F_{ext}) that has been gathered. The optimization is done using nelder-mead method.

The diagram in Fig. 6.4 shows the plot of τ'_{denso} against $-J^T F_{ext}$. The red dots represent the experimental data while the black line is the model with optimized parameter K_{denso} . As it can be seen, the data is not perfectly linear as what it is supposed to. The nonlinearity especially happens around zero value. The reason might be because of the deadzone in motor controller: where errors below some value will be counted as zero.

Figure 6.4: τ'_{denso} vs $-J^T F_{ext}$ in high torque experiment for second joint

6.3.2 Verification of Motor Torque Calibration

To verify the value of K_{denso} , a simple setup experiment can be done. The setup can be described like this: for one joint, the robot is positioned such that the motor will exert some torque due to the weight of the links only. Because it is not moving and no external force is introduced, the dynamic equation is reduced to be:

$$K_{denso}\tau_{denso} = G(q)$$
 (6.3)

The value of G(q) is computed using OpenRave. The value should be comparable to the left side of equation.

However, the figure in Fig. 6.5 a different result. The continuous line represents the torque computed from OpenRave, (e.g.:G(q)) and the strip line represents the motor torque after calibration (e.g.: $K_{denso}\tau_{denso}$). It is very clear that

value is not the similiar. The value given in OpenRave is much higher than motor torque. There are two possibilites that might be the reason of this differences, which are: 1) The gain value (K_{denso}) is incorrect due to some problems that might arise in F/T sensor (i.e.: F/T sensor not calibrated) or 2) The OpenRave gives incorrect computation. It is quite difficult to investigate the second reason as until now the real dynamic parameters of the Denso arm has not been identified, thus torque computation of dynamic motion could not be done for now.

Hence, from this verification it can be found that there are some pieces that are still missing. And so, validation could not be done for now.

Figure 6.5: Joint Torque Verification for Second joint

6.4 Friction Identification

Model Validations

So far, the validation has been done only for the results from one-stage experiment. Verification of the parameters identified in the two-stage experiment could not be performed since identification of the friction still have some problems that need to be solved.

7.1 Results Verification from One-stage Experiment

After identifying the paramaters for all the required equation, developed algorithm model now was built to estimate the contact force. Hence, there are two versions of algorithm, one that use Dahl and another one that use coulomb and viscous. The estimated force is then compared to real force from F/T sensor for validation. The results are shown in Fig. 7.1.

Figure 7.1: Validation result of estimated force. (- - : estimated output, - : real output)

Figure 7.2: External joint torques estimation of Fig. 7.1a (- - : estimated output, - : real output)

In Fig. 7.2b it is quite clear that Dahl algorithm gives a good estimation for second and third joint. However, it is bad when estimating the first joint. This is more likely due to two reasons. First, the initial state of z might be incorrect. For every arm position, it is supposed to have specific state of z, however as we lack of knowledge of this value, it was only calculated using some basic assumption. The second reason is due to stability of motor currents. Since change of internal state is a function of rate of motor currents, unstable motor currents will drift the value of z. However, seeing that the value of first joint seems drifted over time,

	RMSE	max-min	RMSE / (max-min)(%)
Force x	5.231976	107.774842	4.854543
Force y	0.942644	2.391211	39.421205
Force z	18.686503	32.631091	57.265945
Torque x	0.116993	0.048434	241.550320
Torque y	3.542738	0.879940	402.611434
Torque z	0.350672	0.192694	181.983440

Table 7.1: Root mean square value of estimated contact force using static friction

hence it is more likely that the second reason is the main problem. Due to this problems, it is then decided to leave the Dahl model for the rest of the progress.

On the other hand, the results using coulomb and viscous can be seen in Fig. 7.1a and Fig. 7.2a. The estimated force in x-axis is quite satisfactory and this is the main force that acting on the robot. However, the force estimation of other axis is not as good as the first one. This is because of the error estimation of external joint torques that leads to the force. The comparison of external joint torques estimation can be seen in Fig. 7.2. The root mean square error values of estimated contact force and torque using this model are presented in Table 7.1. On some aspects, especially for torques it has large errors. This is because there is no contact torques introduced, hence the value from force sensor is always near 0.

While it gives a reasonable results for both model, this is partially because the old data was being used for validation, hence it is quite obvious that it will give a good estimation. Validation with new data will be required to really verify the developed model.

Conclusion and Future Works

8.1 Conclusion

This project studies about contact force estimation using motor currents. This project specifically study about the Denso VS-060 arm. Previous works have been reviewed about many advance approaches that has been researched to estimate the contact forces without force sensor. Due to some limitations, not all of the methods can be applied for this project.

A basic dynamic system was used as a fundamental model to estimate the contact force. A friction model was needed in the model and two basic friction were choosen: viscous and Coulomb model (static friction) and Dahl model (dynamic friction). To be able to estimate contact force without force / torque sensor, identification of unknown parameters of the system is needed. In general, two parameters were to be identified, they are: friction and gain parameter from denso motor currents / torques to real value of joint torque from motor.

Before continue with experiments, problem regarding motor currents were present and hence it had to be solved first. The problem was that the motor currents would always give positive value, thus a way to determine the sign of the currents was needed. A solution to this was to use motor torques as it also had the sign value along with the number. Hence, there is no need to use motor currents anymore as motor torques are now available.

Thereafter, experiments were performed. The model identification then had been done and verified in the early stage. However, as the experiment was not structurized, it was then retried using more structured setup which is two-stage experiment. Unfortunately, there was a problem regarding the OpenRave that obstruct the process of identification. Hence, the identification could not be completed and validation had not been checked for the latest experiments.

8.2 Future Works

The future works for this project may include: troubleshoot of the current problem of the OpenRave, finish the development and validation of the model using two-stage experiments, test the developed model to estimate the contact force for manipulator arm in real time experiment, and start controlling the robot to do force control using the developed system.

References

- Bona, B., & Indri, M. (2005). Friction Compensation in Robotics: an Overview.

 In Proc. of 44th ieee conference on decision and control, and the european control conference 2005 (p. 4360-4367).
- Damme, M. V., Beyl, P., Vanderborght, B., Grosu, V., Ham, R. V., Vanderniepen, I., et al. (2011). Estimating Robot End-Effector Force from Noisy Actuator Torque Measurements. In *Proc. of ieee international conference on robotics and automation* (p. 1108-1113).
- Ohishi, K., Miyazaki, M., Fujita, M., & Ogino, Y. (1991). H observer based force control without force sensor. In *Proc. of industrial electronics, control and instrumentation* (p. 1049-1054).
- Stolt, A., Linderoth, M., Robertsson, A., & Johansson, R. (2012). Force Controlled Robotic Assembly without a Force Sensor. In *Proc. of ieee international conference on robotics and automation* (p. 1538-1543).
- Wahrburg, A., Morara, E., Cesari, G., Matthias, B., & Ding, H. (2015). Cartesian Contact Force Estimation for Robotic Manipulators using Kalman Filters and Generalized Momentum. In *Proc. of ieee international conference on automation science and engineering* (p. 1230-1235).
- Wahrburg, A., Zeiss, S., Matthias, B., & Ding, H. (2014). Contact Force Estimation for Robotic Assembly using Motor Torques. In *Proc. of ieee international conference on automation science and engineering* (p. 1252-1257).