Setting

Choices of variance (without modification to prevent overflow)

$$v_k = \frac{v}{(1-v)^{\alpha}}, \quad \alpha = 0, \frac{1}{3}, \frac{1}{2}, 1.$$

Additional variances are

$$\beta_k \operatorname{diag}(v_k)$$

Rationale for investigation:

- » When $\alpha = 1$, β_k 's shrink to 0.
- » Choosing $\alpha \in (0,1)$ slows the increase of variance with missing data.
- » The variance, except when $\alpha = 0$, still achieves infinity as $v \to 1$.
- » $\alpha = 0$ recovers the original ν .

Observations:

» optimal β_k decreases as α increases, as they compensate each other.

Summary of emulation comparisons (variance = v_k

- » Functions: borehole, OTL circuit, Wing weight, and piston
- » Number of locations: 25
- » Number of training parameters: 50
- » x are sampled uniformly in $[0,1]^{d_x}$
- » θ are sampled from latin hypercube sampling in $[0,1]^{d_{\theta}}$
- » Test parameters are sampled uniformly in $[0,1]^{d_{ heta}}$
- » Failures are random

Notice the optimized β value in the legend.

Example: borehole function

Example: borehole function

Example: Wingweight function

Example: Wingweight function

RMSE and α

Random failures

RMSE and α

Structured failures

Conclusion

Select α between 1/8 and 1/2.