- 1 27 Ymke heeft het verband onderzocht tussen de weerstand R van een koperdraad en de diameter d van die draad. De resultaten staan in het diagram van figuur 1.26.
 - a Laat zien dat de weerstand R omgekeerd kwadratisch evenredig is met de diameter d.
 - b Bereken de weerstand $R_{\rm B}$ bij een diameter van 8,0 mm.
 - c Bereken de weerstand R_c bij een diameter van 1,0 mm.

Figuur 1.26

Je kunt de grootte van de weerstanden $R_{\rm B}$ en $R_{\rm C}$ ook grafisch bepalen door de grafieklijn te extrapoleren. Je bepaalt de uiterste waarden door te kijken op welke manieren je de lijn kunt doortrekken. Voor weerstand $R_{\rm B}$ kom je dan uit op een waarde tussen 1 m Ω en 3 m Ω . Weerstand $R_{\rm B}$ is dan het gemiddelde van deze twee waarden.

De meetonzekerheid bij weerstand $R_{_{\rm B}}$ is het verschil tussen het gemiddelde en een uiterste waarde. De meetonzekerheid voor weerstand $R_{_{\rm B}}$ is dus 1 m Ω .

Hieronder staan vier mogelijke meetonzekerheden voor weerstand R_c .

- I 0,2 m Ω
- II $1 \, m\Omega$
- III $2 m\Omega$
- IV 0.01Ω
- d Bepaal met behulp van figuur 1.26 welke van de vier meetonzekerheden hoort bij weerstand R_c .

Opgave 27

- a Bij een omgekeerd kwadratisch evenredig verband geldt dat de weerstand n² keer zo klein wordt als de diameter n keer zo groot wordt.
- Bij d = 2.0 mm hoort R = 30 m Ω .
- Bij d = 4.0 mm hoort dan R = 7.5 m $\Omega =$ afgerond 8 m Ω . Aflezen: (4, 8).
- Dus d is twee keer zo groot en R is (ongeveer) vier keer zo klein.
- Dus de weerstand R is omgekeerd kwadratisch evenredig met de diameter d van de draad.
- b Bij d = 8,0 mm is de diameter twee keer zo groot ten opzichte van d = 4,0 mm.
- Dus R_B is vier keer zo klein ten opzichte van 8 mΩ.
- Bij d = 8.0 mm hoort dan $R_B = 2$ m Ω .
- c Bij d = 1,0 mm is de diameter twee keer zo klein ten opzichte van d = 2,0 mm.
 - Dus Rc is vier keer zo groot ten opzichte van 30 m Ω .
 - Bij d = 1,0 mm hoort dan Rc = 120 m Ω .
- d Zie figuur 1.2. De lijn extrapoleren naar d = 1 mm kan niet nauwkeurig: de spreiding is erg groot. Een kleine afwijking in het doortrekken levert minstens 5 mΩ verschil.
- Het goede antwoord is dus IV: 0,01 Ω .

Figuur 1.2