Density-based spatial clustering of applications with noise (DBSCAN)

- 17119 - Hare Sankaran RV

In [1]: import pandas as pd import matplotlib.pyplot as plt import numpy as np from itertools import cycle, islice from sklearn import cluster

```
In [34]:
         figsize = (10,10)
         point_size=150
         point_border=0.8
         def plot_dataset(dataset, xlim=(-15, 15), ylim=(-15, 15)):
           plt.figure(figsize=figsize)
           plt.scatter(dataset[:,0], dataset[:,1], s=point_size, color="#00B3E9", edgecolor='black', lw=point_bo
         rder)
           plt.show()
         def plot_clustered_dataset(dataset, y_pred, xlim=(-15, 15), ylim=(-15, 15), neighborhood=False, epsil
         on=0.5):
           fig, ax = plt.subplots(figsize=figsize)
           colors = np.array(list(islice(cycle(['#df8efd', '#78c465', '#ff8e34',
                                '#f65e97', '#a65628', '#984ea3',
                                '#999999', '#e41a1c', '#dede00']),
                           int(max(y_pred) + 1))))
           colors = np.append(colors, '#BECBD6')
           if neighborhood:
              for point in dataset:
                circle1 = plt.Circle(point, epsilon, color='#666666', fill=False, zorder=0, alpha=0.3)
                ax.add_artist(circle1)
           ax.scatter(dataset[:, 0], dataset[:, 1], s=point_size, color=colors[y_pred], zorder=10, edgecolor='bla
         ck', lw=point_border)
           plt.show()
         def plot_dbscan_grid(dataset, eps_values, min_samples_values):
           fig = plt.figure(figsize=(16, 20))
           plt.subplots_adjust(left=.02, right=.98, bottom=0.001, top=.96, wspace=.05,
                       hspace=0.25)
           plot num = 1
           for i, min_samples in enumerate(min_samples_values):
              for j, eps in enumerate(eps_values):
                ax = fig.add_subplot( len(min_samples_values) , len(eps_values), plot_num)
                dbscan = cluster.DBSCAN(eps=eps, min_samples=min_samples)
                y_pred_2 = dbscan.fit_predict(dataset)
                colors = np.array(list(islice(cycle(['#df8efd', '#78c465', '#ff8e34',
                                       '#f65e97', '#a65628', '#984ea3',
                                       '#999999', '#e41a1c', '#dede00']),
                                  int(max(y_pred_2) + 1))))
                colors = np.append(colors, '#BECBD6')
                for point in dataset:
                   circle1 = plt.Circle(point, eps, color='#666666', fill=False, zorder=0, alpha=0.3)
                   ax.add_artist(circle1)
                ax.text(0, -0.03, 'Epsilon: {} \nMin_samples: {}'.format(eps, min_samples), transform=ax.transA
         xes, fontsize=16, va='top')
                ax.scatter(dataset[:, 0], dataset[:, 1], s=50, color=colors[y_pred_2], zorder=10, edgecolor='blac
         k', lw = 0.5)
                plt.xticks(())
```

```
plt.yticks(())
                  plot_num = plot_num + 1
             plt.show()
 In [117]: from sklearn.metrics import silhouette_score
           from sklearn.preprocessing import StandardScaler
  In [36]: df = pd.read_csv("ATM.csv",header=None)
           dataset_1 = df.values
 In [118]: df.shape
Out[118]: (50, 2)
 In [119]: df.head()
Out[119]:
                     0
                              1
            0 10.94231 76.93460
            1 10.94627 76.93156
            2 10.94891 76.93509
            3 10.94413 76.93978
            4 10.94053 76.93599
```

Plotting the dataset as it is

Normalizing the data

In [37]: scaler = StandardScaler()
scaler.fit(df)
X_scale = scaler.transform(df)
df_scale = pd.DataFrame(X_scale, columns=df.columns)
df_scale.head()

Out[37]:

	0	1
0	-0.787419	0.444804
1	-0.029328	-0.270270
2	0.476066	0.560063
3	-0.439003	1.663252
1	-1 120177	0 771762


```
In [45]: fig = plt.figure(figsize=(5,5))
    ax = Axes3D(fig)
    ax.scatter(dataset_1[:, 0], dataset_1[:, 1], s=20, cmap="viridis")
    plt.title("DBSCAN clustering")
    plt.xlabel("V1")
    plt.ylabel("V2")
    plt.show()
```


DBSCAN Clustering with default params

```
In [50]: from sklearn import cluster,metrics

dbscan = cluster.DBSCAN()
clustering_labels_1 = dbscan.fit_predict(dataset_1)

n_clusters_ = len(set(clustering_labels_1)) - (1 if -1 in clustering_labels_1 else 0)
n_noise_ = list(clustering_labels_1).count(-1)
printt("Estimated number of clusters: %d' % n_clusters_)
print("Estimated number of noise points: %d' % n_noise_)
print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(df_scale, clustering_labels_1))

Estimated number of clusters: 5
Estimated number of noise points: 13
Silhouette Coefficient: 0.350

In [24]: clustering_labels_1

Out[24]: array([ 0, 1, 2, -1, 0, 1, -1, 0, 0, 3, -1, -1, -1, -1, -1, 0, 0, 0, 0, 1, 2, 2, -1, 4, 3, 4, -1, 1, 0, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 1, -1, 4, 3, 4, 2, 4, 3, 2, 4, 3, 1, 2])
```


Neighbourhood

Grid of DBSCAN Clusters

In [116]: eps_values = [0.3, 0.5, 0.6, 1.3, 1.5] min_samples_values = [2, 4, 5, 8, 10] plot_dbscan_grid(dataset_1, eps_values, min_samples_values)


```
In [91]: from itertools import product
        eps_values = np.arange(0.5,1.7,0.1)
        min_samples = np.arange(2,10)
        dbscan_params = list(product(eps_values, min_samples))
        no_of_clusters = []
        sil_score = []
        epsvalues = []
        min_samp = []
        for p in dbscan_params:
           dbscan_cluster = cluster.DBSCAN(eps=p[0], min_samples=p[1]).fit(df_scale)
           epsvalues.append(p[0])
           min_samp.append(p[1])
           no_of_clusters.append(len(np.unique(dbscan_cluster.labels_))-1)
           sil_score.append(silhouette_score(df, dbscan_cluster.labels_))
           eps_min = list(zip(no_of_clusters, sil_score, epsvalues,min_samp))
        eps_min_df = pd.DataFrame(eps_min, columns=['no_of_clusters', 'silhouette_score', 'epsilon_values', '
        minimum_points'])
         eps_min_df
```

Out[91]:

	no_of_clusters	silhouette_score	epsilon_values	minimum_points
0	7	0.415271	0.5	2
1	5	0.345351	0.5	3
2	5	0.345351	0.5	4
3	5	0.345351	0.5	5
4	3	0.151078	0.5	6
91	1	0.489871	1.6	5
92	1	0.489871	1.6	6
93	1	0.489871	1.6	7
94	1	0.489871	1.6	8
95	1	0.489871	1.6	9

96 rows × 4 columns

In [98]:	eps_ı	min_df.sort_va	alues(by=[' <mark>no_of</mark> _	clusters'],ascen	ding= False)	
Out[98]:						
		no_of_clusters	silhouette_score	epsilon_values	minimum_points	s —
	0	7	0.415271	0.5	2	2
	1	5	0.345351	0.5	3	3
	2	5	0.345351	0.5	4	1
	3	5	0.345351	0.5	5	5
	11	4	0.246006	0.6	5	5
	46	1	0.385537	1.0	8	3
	45	1	0.407942	1.0	7	7
	44	1	0.428787	1.0	6	6
	43	1	0.428787	1.0	5	5
	95	1	0.489871	1.6	9	9
	96 ro	ws × 4 column	S			
In [86]:	eps_ı	min_df.sort_va	ulues(by=['silhoue	tte_score'],asce	nding=False)	
l			alues(by=['silhoue			3
l						_
l		no_of_clusters	silhouette_score	epsilon_values	minimum_points	_
l	95	no_of_clusters	silhouette_score 0.489871	epsilon_values	minimum_points	- 5
In [86]: Out[86]:	95 83	no_of_clusters	silhouette_score 0.489871 0.489871	epsilon_values 1.6 1.5	minimum_points 9 5	- 9 5
l	95 83 72	no_of_clusters 1 1	0.489871 0.489871 0.489871	1.6 1.5 1.4	minimum_points 9 5	
l	95 83 72 74	no_of_clusters 1 1 1	silhouette_score 0.489871 0.489871 0.489871 0.489871	epsilon_values 1.6 1.5 1.4	minimum_points 9 5 2 4	— 5 2 4
l	95 83 72 74 75	no_of_clusters 1 1 1 1	0.489871 0.489871 0.489871 0.489871 0.489871	epsilon_values 1.6 1.5 1.4 1.4	minimum_points 9 5 2 4 5	
l	95 83 72 74 75	no_of_clusters 1 1 1 1	silhouette_score 0.489871 0.489871 0.489871 0.489871 0.489871	epsilon_values 1.6 1.5 1.4 1.4 1.4	minimum_points 9 5 2 4 5	
l	95 83 72 74 75 	no_of_clusters 1 1 1 1 1	silhouette_score 0.489871 0.489871 0.489871 0.489871 0.489871 0.135394	epsilon_values 1.6 1.5 1.4 1.4 1.4 0.6	minimum_points 9 5 2 4 5 9	9 5 5 4 4 5
l	95 83 72 74 75 15	no_of_clusters 1 1 1 1 1	silhouette_score 0.489871 0.489871 0.489871 0.489871 0.135394 0.113308	epsilon_values 1.6 1.5 1.4 1.4 0.6 0.5	minimum_points 9 5 2 4 5 9	2 2 4 5

Purely clustering based on high Silhoutte Index will give only 1 cluster. So you have to be clever enough to identify trade off between Silhoutte & No_of_clusters for better clustering

96 rows × 4 columns

```
In [114]:
          dbscan = cluster.DBSCAN(eps=1.6, min_samples=9)
           clustering_labels_1 = dbscan.fit_predict(dataset_1)
          n_clusters_ = len(set(clustering_labels_1)) - (1 if -1 in clustering_labels_1 else 0)
          n_noise_ = list(clustering_labels_1).count(-1)
          print('Estimated number of clusters: %d' % n_clusters_)
          print('Estimated number of noise points: %d' % n_noise_)
          print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(df_scale, clustering_labels_1))
          plot_clustered_dataset(dataset_1, clustering_labels_1,neighborhood=True)
          fig = plt.figure(figsize=(10,10))
           ax = Axes3D(fig)
          ax.scatter(dataset_1[:, 0], dataset_1[:, 1], c=clustering_labels_1,s=100, cmap="viridis")
          plt.title("DBSCAN clustering")
          plt.xlabel("V1")
          plt.ylabel("V2")
          plt.show()
```

Estimated number of clusters: 1 Estimated number of noise points: 2 Silhouette Coefficient: 0.466


```
In [113]:
          dbscan = cluster.DBSCAN(eps=0.5, min_samples=2)
           clustering_labels_1 = dbscan.fit_predict(dataset_1)
          n_clusters_ = len(set(clustering_labels_1)) - (1 if -1 in clustering_labels_1 else 0)
          n_noise_ = list(clustering_labels_1).count(-1)
          print('Estimated number of clusters: %d' % n_clusters_)
          print('Estimated number of noise points: %d' % n_noise_)
          print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(df_scale, clustering_labels_1))
          plot_clustered_dataset(dataset_1, clustering_labels_1,neighborhood=True)
          fig = plt.figure(figsize=(10,10))
           ax = Axes3D(fig)
          ax.scatter(dataset_1[:, 0], dataset_1[:, 1], c=clustering_labels_1,s=100, cmap="viridis")
          plt.title("DBSCAN clustering")
          plt.xlabel("V1")
          plt.ylabel("V2")
          plt.show()
```

Estimated number of clusters: 7 Estimated number of noise points: 9 Silhouette Coefficient: 0.420


```
In [112]:
          dbscan = cluster.DBSCAN(eps=0.5, min_samples=3)
           clustering_labels_1 = dbscan.fit_predict(dataset_1)
          n_clusters_ = len(set(clustering_labels_1)) - (1 if -1 in clustering_labels_1 else 0)
          n_noise_ = list(clustering_labels_1).count(-1)
          print('Estimated number of clusters: %d' % n_clusters_)
          print('Estimated number of noise points: %d' % n_noise_)
          print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(df_scale, clustering_labels_1))
          plot_clustered_dataset(dataset_1, clustering_labels_1,neighborhood=True)
          fig = plt.figure(figsize=(10,10))
           ax = Axes3D(fig)
          ax.scatter(dataset_1[:, 0], dataset_1[:, 1], c=clustering_labels_1,s=100, cmap="viridis")
          plt.title("DBSCAN clustering")
          plt.xlabel("V1")
          plt.ylabel("V2")
          plt.show()
```

Estimated number of clusters: 5 Estimated number of noise points: 13 Silhouette Coefficient: 0.350


```
In [111]:
          dbscan = cluster.DBSCAN(eps=0.6, min_samples=5)
           clustering_labels_1 = dbscan.fit_predict(dataset_1)
          n_clusters_ = len(set(clustering_labels_1)) - (1 if -1 in clustering_labels_1 else 0)
          n_noise_ = list(clustering_labels_1).count(-1)
          print('Estimated number of clusters: %d' % n_clusters_)
          print('Estimated number of noise points: %d' % n_noise_)
          print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(df_scale, clustering_labels_1))
          plot_clustered_dataset(dataset_1, clustering_labels_1,neighborhood=True)
          fig = plt.figure(figsize=(10,10))
           ax = Axes3D(fig)
          ax.scatter(dataset_1[:, 0], dataset_1[:, 1], c=clustering_labels_1,s=100, cmap="viridis")
          plt.title("DBSCAN clustering")
          plt.xlabel("V1")
          plt.ylabel("V2")
          plt.show()
```

Estimated number of clusters: 4 Estimated number of noise points: 10 Silhouette Coefficient: 0.266

