OPERAÇÕES UNITÁRIAS III

PROF° KASSIA G SANTOS
DEPARTMENTO DE ENGENHARIA QUÍMICA
UFTM

AULA 22

LEITO FLUIDIZADO

LEITO FLUIDIZADO

- ☐ Caracterizada pela percolação ascendente de um fluido (líquido ou gás) através de um leito de partículas suportadas ou apoiadas em uma placa distribuidora.
- ☐ Desenvolvida em 1922 durante a 1ª guerra para a gaseificação do carvão visando a produção de gás de síntese.
- ☐ O gaseificador Winkler foi o primeiro destes sistemas de gaseificação de carvão.

Na fluidização o conjunto fluido/sólido se comporta como líquido em ebulição.

VANTAGENS

A mistura rápida das partículas (leito isotérmico), evitando-se assim os "pontos quentes" (importante para reator químico → maior rendimento);

Elevados coeficientes de transferência de calor e massa entre partículas e fluido;

Baixo custo de operação e instalação e não possui partes móveis;

Permite operação em grandes escalas.

DESVANTAGENS

Desgaste do equipamento (abrasão);

Alguns materiais não conduzem a uma fluidização adequada: como os que pulverizam e os que aglomeram.

APLICAÇÕES

Reator Químico Pirólise, eletroquímico, catálise heterogênea, etc

Secagem

 Pastas, de grãos, químicos, farmacêuticos

Recobrimento

 Pellets, fertilizantes, comprimidos de liberação controlada, etc

Granulação

Pastas de frutas, microemcapsulamento de óleos, fertilizantes

REGIMES DE FLUIDIZAÇÃO

A Classificação de Geldart

Grupo →	Grupo C	Grupo A	Grupo B	Grupo D
Caracteristica mais relevante	Coseivo; de fluidização difícil	Ideal para fluidização Exibe uma faixa de fluidização não- borbulhante	Inicia o borbulhamento a Umf	Sólidos grossos
Sólidos típicos	Farinha de trigo cimento	Cracking catalítico	Areia de construção	Cascalho grãos de café
POPRIEDADE ▼				
Expansão do leito	Baixa devido a canalização	Alta	Moderada	Baixa
Taxa de de-aeração	Inicialmente rápida, em seguida expoencial	Lenta, linear	Rápida	Rápida
Propriedades das Bolhas	Sem bolhas - só canalização	As bolhas quebram e coalescem; Tamanho de bolha máximo	Sem limites de tamanho	Sem limites de tamanho
Mistura de sólidos	Muito baixo	Alto	Moderado	Baixo
Gas Backmixing	Muito baixo	Alto	Moderado	Baixo
Jorro	Não	Não	Somente na superfície	Sim, mesmo em leitos profundos

DIMENSIONAMENTO

Variáveis importantes: Dc, H0, H, ε, ρ, ρs, φ, Qmf, -ΔP, Hmf, εmf

Curva Característica (CC) Experimental Obter -∆Pmax para dimensionar o soprador ou a bomba

Determinar condição de mínima fluidização

Visual e pela CC

Os parâmetros das experiências são sempre tomados no sentido das vazões decrescentes
→ Porque a volta é sempre igual, porém, a ida depende da compactação do leito.

Velocidade superficial

CORRELAÇÕES: Queda de pressão -∆Pmf

A fluidização tem início quando:

$$\underbrace{\begin{pmatrix} \text{Peso aparente} \\ \text{do s\'olido} \end{pmatrix}}_{\text{Peso - Empuxo}} = \underbrace{\begin{pmatrix} \text{Força de} \\ \text{Arraste} \end{pmatrix}}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) A L_{mf} g = \underline{m} A L_{mf}}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S - \rho) (1 - \varepsilon_{mf}) g}_{\text{Perceba que } m \text{ (força resistiva)}} \Rightarrow \underbrace{(\rho_S -$$

Do escoamento em meios porosos vimos que (Equação do movimento):

volume.

$$\underline{m} = -\frac{\Delta \, \wp_{mf}}{L_{mf}}$$

Onde: - 6 mf = Queda de Pressão Piezométrica de mínima fluidização

Portanto teremos:

$$-\Delta \wp_{mf} = (\rho_S - \rho)(1 - \varepsilon_{mf})L_{mf} g \times \frac{A}{A}$$

$$\therefore -\Delta \wp_{mf} = \frac{(\rho_S - \rho)(1 - \varepsilon_{mf})AL_{mf}g}{A} = \frac{\text{Peso Aparente do Sólido}}{\text{Área}}$$

Como:
$$\rho_s >> \rho$$

$$-\Delta \wp_{mf} = -\frac{M g}{A}$$

$$-\Delta \wp_{mf} = -\frac{M g}{A}$$
 $M = (1 - \varepsilon_{mf}) \rho_s (AL_{mf})$ Mé a massa de sólidos

CORRELAÇÕES: velocidade do gas (qmf)

Caso geral: Equação de Darcy (partículas pequenas)

$$\underline{m} = \left(\frac{\mu}{k_{mf}} + \frac{c_{mf}}{\sqrt{k_{mf}}} \rho q_{mf}\right) q_{mf}$$

Para partículas muito pequenas considere desprezível

Permeabilidade K_{mf} definida por por Kozeny-Carmann: $k_{mf} = \frac{\left(\overline{dp}\phi\right)^2 \varepsilon_{mf}^3}{36\beta \left(1 - \varepsilon_{mf}\right)^2}$

$$k_{mf} = \frac{\left(\overline{dp}\phi\right)^2 \varepsilon_{mf}^3}{36\beta \left(1 - \varepsilon_{mf}\right)^2}$$

$$\therefore \quad \underline{m} = \left(\frac{\mu}{k_{mf}}\right) q_{mf}$$

$$\therefore \underline{m} = (\rho_S - \rho)(1 - \varepsilon_{mf})g$$

$$\therefore \underline{m} = \left(\frac{\mu}{k_{mf}}\right) q_{mf} \qquad \therefore \underline{m} = (\rho_S - \rho) (1 - \varepsilon_{mf}) g$$

Porosidade na mínima fluidização:

$$M = (1 - \varepsilon_{mf}) \rho_s (AL_{mf})$$

$$\to \varepsilon_{mf} = 1 - \frac{M}{\rho_s \left(A L_{mf} \right)}$$

CORRELAÇÕES: velocidade do gas (qmf)

Extrapolação de Ergun (1952):

$$\frac{-\Delta \wp_{mf}}{L_{mf}} = 150 \frac{\left(1 - \varepsilon_{mf}\right)^2}{\varepsilon_{mf}^3} \frac{\mu}{\left(\phi d_P\right)^2} U + 1,75 \frac{\left(1 - \varepsilon_{mf}\right)}{\varepsilon_{mf}^3} \frac{\rho}{\left(\phi d_P\right)} U^2$$

Rearranjando:

$$\frac{1,75}{\phi\varepsilon_{mf}^{3}}\left(\frac{d_{P}U_{mf}\rho}{\mu}\right)^{2} + \frac{150\left(1-\varepsilon_{mf}\right)}{\phi^{2}\varepsilon_{mf}^{3}}\left(\frac{d_{P}U_{mf}\rho}{\mu}\right) = \frac{d_{p}^{3}\rho\left(\rho_{s}-\rho\right)g}{\mu^{2}} \qquad \frac{1,75}{\phi\varepsilon_{mf}^{3}}\left(\operatorname{Re}_{p,mf}\right)^{2} + \frac{150\left(1-\varepsilon_{mf}\right)}{\phi^{2}\varepsilon_{mf}^{3}}\left(\operatorname{Re}_{p,mf}\right) = Ar$$

$$\frac{1,75}{\phi \varepsilon_{mf}^{3}} \left(\operatorname{Re}_{p,mf} \right)^{2} + \frac{150 \left(1 - \varepsilon_{mf} \right)}{\phi^{2} \varepsilon_{mf}^{3}} \left(\operatorname{Re}_{p,mf} \right) = Ar$$

$$Re_{p,mf} = \left[\left(K_1 \right)^2 + K_2 Ar \right]^{0.5} - K_1$$

Investigador	K_1	K_2
Wen e Yu (1966)	33,7	0,0408
Richardson (1971)	25,7	0,0365
Saxena and Vogel (1977)	25,3	0,0571
Babu et al (1978)	25,3	0,0651
Grace (1982)	27,2	0,0408
Tannous et al. (1998)	25,83	0,043

Autores	Correlação		
Wan a Va (1066)	Partículas grosseiras:		
Wen e Yu (1966)	$Ar = 1650Re_{mf} + 24.5 Re_{mf}^{2}$		
	Partículas grosseiras:		
Chitester et al. (1984)	$U_{mf} = \frac{\mu}{\rho d_{P}} \left[\left[(28,7)^{2} + 0,0494Ar \right]^{0,5} - 28,7 \right]$		
King e Harrison (1982)	$U_{mf} = \frac{\mu}{\rho d_{P}} \left[(1135, 7 + 0,0408Ar)^{0,5} - 33,7 \right]$		
Pavlov	$U_{mf} = \frac{\mu}{\rho d_{P}} \left[\frac{Ar}{1400 + 5,22\sqrt{Ar}} \right]$	10	

Assista a Aula 23: Exercícios de Dimensionamento do Leito Fluidizado

AULA 23 EXERCÍCIOS DE DIMENSIONAMENTO DO LEITO **FLUIDIZADO**

EX17- A partir da CC, identificar a condição de mínima Fluidização gas-sólido. Partículas esféricas de vidro (dp= 52µm); ps=2,6 g/cm3; Dc=3,2cm; Massa de sólidos M=267g; Altura do leito na mínima fluidização Lmf=26,0cm.

Dados experimentais:

Queda de Pressão Vazão (cm H₂O) (cm³/min) 2860 36 2370 35,5 35 1900 1440 35 1010 34,5 34 600 32,5 370 315 32 260 29,5 206 25.5 154 19,2 104 13,5

1°) Fazer o gráfico. Identificar a MF

3°) Calcular qmf experimental:
$$q_{mf} = \frac{Q_{mf}}{A} = \frac{280/60}{8,04} = 0.58 \text{ cm/s}$$

2°) Calcular a porosidade na MF

$$ightarrow arepsilon_{mf} = 1 - rac{M}{
ho_s \left(AL_{mf}
ight)} = 1$$

$$\varepsilon_{mf} = 1 - \frac{267}{2,6 \times 8,04 \times 26} = 0,509$$

3°) Calcular -∆Pmf

$$\rho_s >> \rho \Rightarrow -\Delta P_{mf} = \frac{Mg}{A}$$

$$-\Delta P_{mf} = \frac{267 \cdot 981}{8,04} = 32580 \frac{dyn}{cm^2}$$
$$-\Delta P_{mf} = 33,2cmH_2O$$

EX18- A partir da CC, identificar a condição de mínima Fluidização gas-sólido. Partículas esféricas de vidro (dp= 52μm); ρs=2,6 g/cm3; Dc=3,2cm; Massa de sólidos M=267g; Altura do leito na mínima fluidização Lmf=26,0cm.

Dados experimentais:

Vazão (cm³/min)	Queda de Pressão (cm H ₂ O)
2860	36
2370	35,5
1900	35
1440	35
1010	34,5
600	34
370	32,5
315	32
260	29,5
206	25,5
154	19,2
104	13,5

3°) Calcular qm:

$$q_{mf} = U_{mf} = \frac{\phi^2 \varepsilon_{mf}^3}{36\beta (1 - \varepsilon_{mf})} \frac{(\overline{dp})^2 (\rho_s - \rho) g}{\mu}$$

$$q_{mf} = \frac{0,509^3}{150(1-0,509)} \frac{0,0052^2(2,6)980}{0,00018} = 0,684 \frac{cm}{s}$$

$$Q_{mf} = 330, 3 \frac{cm^3}{\min}$$

EX17- Projeto de um sistema de Fluidização destinado à secagem de produto químico: Diâmetro do secador: Dc = 30 cm, Carga de sólidos: M = 39 kg, ρ s = 2,1 g/cm³, dp = 90 μ m, φ = 0,8, Altura do leito na mínima fluidização Lmf = 50cm. Fluido: ar a 150°C e 1 atm. Para uma velocidade de ar de duas vezes a de mínima Fluidização, determine: a) A queda de pressão na mínima fluidização; b) A altura do distribuidor (esferas de aço de 200 µm, tal que a dP através deste seja de 10% da queda no leito (εd=0,38); c) potência do Soprador.

a) Queda de pressão na MF:

$$-\Delta P_{mf} = \frac{Mg}{A} = \frac{39000 \times 981}{706,86} = 54125 \frac{dyn}{cm^2}$$

$$A = \frac{\pi D^2}{4} = \frac{\pi 30^2}{4} = 706,86cm^2$$

b) Calcular a Ld:

$$-\frac{\Delta P}{L} = \left(\frac{\mu}{k}q\right) = \left(\frac{\mu}{k}2q_{mf}\right) \qquad q = 2q_{mf} = 1,053\frac{cm}{s}$$

$$q = 2q_{mf} = 1,053 \frac{cm}{s}$$

$$L_d = \frac{\Delta P_d}{(\mu q)} k_d \rightarrow L_d = \frac{5412,5 \times 3,81.10^{-7}}{0,023.10^{-2} \times 1,053} = 8,5cm$$

Calculando a permeabilidade no distribuidor:

$$k_{distribuidor} = \frac{\left(\overline{dp}\phi\right)^{2} \varepsilon_{d}^{3}}{36\beta \left(1 - \varepsilon_{d}\right)^{2}} = \frac{\left(200.10^{-4} \times 1\right)^{2} \left(0.38\right)^{3}}{150 \left(1 - 0.38\right)^{2}} = 3.81.10^{-7} cm^{2}$$

$$\varepsilon_{mf} = 1 - \frac{m_s}{\rho_s \left(AL_{mf}\right)} = 1 - \frac{39000}{2,1 \times 706,86 \times 50} = 0,475$$

Calculando a a velocidade qmf:

$$q_{mf} = \frac{\phi^2 \varepsilon_{mf}^3}{36\beta (1 - \varepsilon_{mf})} \frac{(\overline{dp})^2 (\rho_s - \rho) g}{\mu}$$

$$q_{mf} = \frac{(90.10^{-4} \times 0.8)^2 (0.475)^3 (2.1 - 8.31.10^{-4})981}{180 (1 - 0.475) 0.023.10^{-2}} = 0.526 \frac{cm}{s}$$

EX17- Projeto de um sistema de Fluidização destinado à secagem de produto químico: Diâmetro do secador: Dc = 30 cm, Carga de sólidos: M = 39 kg, ρ s = 2,1 g/cm³, dp = 90 μ m, φ = 0,8, Altura do leito na mínima fluidização Lmf = 50cm. Fluido: ar a 150°C e 1 atm. Para uma velocidade de ar de duas vezes a de mínima Fluidização, determine: a) A queda de pressão na mínima fluidização; b) A altura do distribuidor (esferas de aço de 200 µm, tal que a dP através deste seja de 10% da queda no leito (εd=0,38); c) potência do Soprador.

c) A Potência do soprador

$$Pot = \frac{C(mmH_2O)Q(\frac{m^3}{s})}{75 \times 0.6}$$

$$C = \Delta P_{leito} + \Delta P_{distribuidor} = 54.125 + 5412, 5 = 59.537, 5 \frac{dyn}{cm^2} \frac{mmH_2O}{1,013.10^6 dyn}$$

$$C = 607,7 mmH_2O$$

$$Q = 1,053 \frac{cm}{s} \times 706,86 cm^2 = 744,3 \frac{cm^3}{s} \frac{1m^3}{10^6 cm^3} = 744,3.10^{-6} \frac{m^3}{s}$$

$$Pot = \frac{607, 7 \times 744, 3.10^{-6}}{75 \times 0, 6} = 0,01 hp \rightarrow \text{dependendo do fabricante } \frac{1}{4} hp \text{ ou } \frac{1}{2} hp$$

Referências:

- Kunii & Levenspiel, "Fluidization Engineering", Wiley, 1991
- ☐ Davidson & Harrison, "Fluidization", Academic Press, 1971
- Angelino, "Fluidization", PDP 7/76, COPPE/UFRJ, 1976
- □ Perry & Chilton capítulo 20
- ☐ Cremasco, M. A., Operações Unitárias em Sistemas particulados e Fluidomecânicos, Blucher, 2009.

Atividades:

- Refazer exercícios e fazer exercícios de livros.
- ☐ Fazer projeto orientado de leito fluidizado