LITERATURE SURVEY

<u>Statistical Machine Learning Approaches to Liver</u> <u>Disease Prediction</u>

S. NO	NAME OF PAPER	JOURNAL PUBLISHED	FEATURES	TECHNIQUES USED	OBSERVATION
		. 652.625		3312	
1	Liver Disease Prediction System using Machine Learning Techniques, Rakshith D B ,Mrigank Srivastava,Ash wani Kumar,Gururaj S P	IJERT	age, gender, total Bilirubin, direct Bilirubin, total proteins, albumin, A/G ratio, SGPT, SGOT and Alkphos	SVM,ANN ,KNN,Naive Bayes	Details including age, gender, total Bilirubin, direct Bilirubin, total proteins, albumin, A/G ratio, SGPT, SGOT and Alkphos are taken. Values of last eight parameters mentioned here, can be known by blood test report of the user. After taking these inputs from the user, the system compares the data input with the training dataset of most accurate model and then predicts the result accordingly as risk or no risk.SVM gives the best accuracy of all(100%)
2	A Prediction Model of	INTERNATIO NAL	It consists 10 variables of	Logistic Regression	Logistic Regression comes under the
	Detecting	CONFERENC	which 1 is a	Algorithm	supervised machine
	Liver Diseases	E ON	dependent		learning algorithms.
	in Patients	INNOVATIVE	variable, and		This is used in binary
	using Logistic	COMPUTING	the remaining		classification. Logistic
	Regression of	AND	9 are		Regression algorithm
	Machine	COMMUNIC	independent		takes a data set line and
	Learning PSM	ATION	variables used		then calculates the
	Keerthana,	(ICICC-2020)	for predicting		probability for

	Nimish		whether the		classifying the sample
					classifying the sample
	Phalinkar, Riya		person is		among the two classes
	Mehere,		affected by		with respect to the
	Koppula		liver disease		threshold value. The
	Bhanu Prakash		or not.		final accuracy score
	Reddy, Nidhi				obtained in this model
	Lal				is 0.859649.
3	Prediction of	Annals of		Adam	From the comparison of
	Liver Disease	R.S.C.B		optimizer,	various algorithms, we
	Using Machine			Adagrad,	can clearly see that
	Learning			RMSProp,SGD,	Random Forest
	Algorithm and			Backpropagati	performs the best
	Genetic			on,	followed by Voting
	Algorithm			Genetic	Classifier and Adaboost
	B.Poonguzhars			algorithm	among the machine
	elvi ,				learning models with
	Mohammad				accuracies of 84%, 84
	Mahaboob Ali				%,79% respectively.
	Ashraf ,				Neural Nets gave a
	Vadlamani V S				validation accuracy of
	S Subhash ,				74 percent. The Genetic
	S.Karunakaran				Algorithm improved
					performance of
					Adaboost by 3 percent,
					decision trees by 4
					percent and SVCby 19
					percent.
4	Machine	IJIRT	Considering	Logistic	This solution gives a
	Learning		Indian Liver	Regression,	comprehensive analysis
	Techniques in		Dataset, we	Decision Tree,	of "Indian Liver Patient
	Analysis and		can see a very	KNN,	Records' 'dataset with
	Prediction		high linear	Random Forest	Liver patient and Not
	of Liver		relationship	Classifier,	Liver patient as
	Disease		between	SVM	classification is
	Dr. Dattatreya		Total and		performed and this
	P Mankame		Direct		relies upon various
	, Harshitha R		Bilirubin and		machine learning
	, Navya N C		by		algorithms which
	, Navya N e , Nitin		considering		provides high accuracy
	Ravichander		551.514511116		and consumes very less
	Naviciiailuei				and consumes very less

	Γ	Г	T		
			this linear		time for entire
			relationship,		processing. The process
			Direct		includes data analysis,
			Bilirubin can		data pre-processing
			be opted to		which includes filling of
			be dropped,		missing values with
			But by as		mean, label encoding,
			per medical		identifying duplicate
			analysis		value, outlier detection
			Direct		and resampling to
			Bilirubin		improve the
			constitutes to		performance. Accuracy
			almost 10% of		is effectively utilized to
			the Total		analyze the
			Bilirubin and		performance of various
			this 10% may		classification
			prove crucial		algorithms. Thus, we
			in obtaining		can conclude that SVM
			higher		classifier proved its
			accuracy for		worthiness in prediction
			the		of liver patients by
			model, thus		achieving high accuracy
			none of the		amongst the other
			features are		classifiers.
			removed.		
5	A Comparative	IJSTR	Age, Gender ,	Logistic	In this experiment, we
	Study On Liver		Total	Regression,	considered different
	Disease		Bilirubin,	Decision Tree,	analyses to
	Prediction		Direct	KNN,	examine the six-
	Using		Bilirubin	Random Forest	machine learning
	Supervised		,Alkphos,Alkal	Classifier,	classifier for the
	Machine		ine	SVM	classification of liver
	Learning		Phosphotase,		disease dataset. In
	Algorithms		Alamine		terms of accuracy, LR
	A.K.M		Aminotransfe		achieved the highest
	Sazzadur		rase ,		accuracy of 75% and NB
	Rahman, F. M.		Asparatate		achieved the
	Javed Mehedi		Aminotransfe		worst performance
	Shamrat,		rase ,Total		53%. With respect to
	Zarrin Tasnim,		Proteins		precision, LR
		-	•		

Joy Roy, Syed	,Albumin	achieved the highest
Akhter	,Albumin and	score 91% and NB
Hossain	Globulin Ratio	performs worst 36%.
	,Selector field	When considering the
		sensitivity, SVM
		achieved the highest
		value 88% and KNN
		obtained the worst
		76%. Logistics
		Regression was also the
		best performer in terms
		of f1
		measure 83% and NB
		obtained the worst
		performance 53%.
		When considering
		specificity DT achieved
		the highest value
		48% and LR the lowest
		47%. According to
		compare these
		measurement criteria
		LR classification
		technique is more
		effective than the other
		classifiers for predicting
		chronic liver
		disease.