The prices bill
The poisson distribution is belongs to exponential family. The probability may function (i.e., the density respect to configuring counting measure) of a Poisson random variable is given as follows:
probability may function
to configuring counting many) of the density respect
variable is given as out a Poisson random
grist us Tollows;
by and so have
$p(x \lambda) = \frac{\lambda^x e^{\lambda}}{x!}$
Rewriting this expression in 12:
P/x/2) - / con C / A
Rewriting this expression we obtain: $P(x \lambda) = \frac{1}{x!} exp \{x \log \lambda - \lambda \}$
Thus the Poisson distribution is an expansited of
Thus the Poisson distribution is an exponential family distribution, with:
T(x) = x
$A(\eta) = \lambda = e^{\eta}$
$h(x) = \frac{1}{x}$
Moteover, we can obviously invest the teletimobic both and
Moreover, we can obviously invest the relationship between 1 and λ : $\lambda = e^{\eta}$

NAME AND DESCRIPTION