Praca magisterska

Aplikacja do pomiarów parametrów łącza sieciowego dla urządzeń z systemem operacyjnym Android

Tomasz Łakomy

Streszczenie

Abstract

Łakomy T. - Praca magisterska

Spis treści

1	Wst	tęp	4			
2	Tra	Transmisja danych w sieciach komórkowych				
	2.1	Standardy GSM i EDGE	5			
	2.2	UMTS i HSDPA	8			
	2.3	LTE	g			
3	Tra	nsmisja danych w Internecie	10			
4	Opi	realizacji programowej				
	4.1	Opis aplikacji na smartfon z systemem Android	11			
	4.2	Opis aplikacji pełniącej funkcję serwerana komputer PC	11			
	4.3	Opis realizacji transmisji poprzez protokół TCP/IP	11			
	4.4	Sposób pomiaru rejestracji czasu przesyłania pakietu	11			
	4.5	Sposób pomiaru położenia terminala mobilnego	11			
5	Wy	niki pomiarów	12			
	5.1	Pomiar nieruchomego terminala mobilnego	12			
	5.2	Pomiar ruchomego terminala mobilnego w środowisku miejskim	12			

1 Wstęp

2 Transmisja danych w sieciach komórkowych

2.1 Standardy GSM i EDGE

2.1.1 GSM

GSM (ang. Global System for Mobile Communications) jest standardem telefonii komórkowej, który powstał dzięki europejskiej inicjatywie stworzenia jednego, otwartego standardu telefonii komórkowej. Jest to najstarsza wykorzystywana dziś technologia radiokomunikacji ruchomej, na obszarze europejskim rozpoczęto uruchamianie GSM w roku 1989, rok po opublikowaniu pierwszej wersji standardu. Polska na uruchomienie pierwszej sieci GSM czekała kolejne 7 lat, została ona uruchomiona w roku 1996.

GSM jest aktualnie najpowszchniej wykorzystywanem standardem telefonii komórkowej na świecie, jest on dostępny w 219 państwach. Pierwotnie był to standard pozwalający jedynie na transmisje mowy, jednakże po latach ewolucji pojawiły się bazujące na GSM technologie transmisji danych takie jak GPRS (ang. General Packet Radio Service) czy jego następca, EDGE (ang. Enchanced Data Rules for GSM evolution). W przypadku, gdy użytkownik terminala mobilnego wybrał korzystanie np. z sieci LTE (ang. Long Term Evolution) do transmisji danych i z jakiś powodów transmisja ta nie jest możliwa (przykładowo z powodu zbyt słabego zasięgu sieci LTE), transmisja może być przeprowadzona za pomocą technologii EDGE, która jest dostępna niemalże wszędzie tam, gdzie dostępna jest sieć GSM.

Istnieje pięć głównych standardów sieci GSM, różniących się od siebie wykorzystywanym pasmem radiowym oraz liczbą dostępnych pasm częstotliwości, co przedstawia tabela 1

Na terenie Unii Europejskiej używany jest standard GSM 900/1800, który polega na uruchomieniu obu sieci jednocześnie na danym obszarze. Na terenach, gdzie spodziewany ruch jest niezbyt duży (np. tereny wiejskie) uruchamiana jest tylko sieć GSM 900, jednakże w miastach, gdzie ruch ten jest zdecydowanie większy, dodatkowo wdrażany jest także standard GSM 1800, który dzięki większej liczbie jednocześnie oferowanych

Łakomy T. - Praca magisterska

Standard	Częstotliwości wy-	Częstotliwości wy-	Liczba dostęp-	
	korzystywane w łą-	korzystywane w łą-	nych pasm	
	czu w górę [MHz]	czu w dół [MHz]	częstotliwości	
GSM 400	450.4 - 457.6 lub 478.8	460.4 - 467.6 lub 488.8	35	
	- 486	- 496		
GSM 850	824 - 849	869 - 894	124	
GSM 900	880 - 915	925 - 960	174	
GSM 1800	1710 - 1785	1805 - 1880	374	
GSM 1900	1850 - 1910	1930 - 1990	299	

Tabela 1: Tabela porównująca standardy sieci GSM

częstotliwości jest w stanie obsłużyć większy ruch.

Aktualnie niemalże wszystkie telefony komórkowe pozwalają na pracę w obydwu zakresach częstotliwości, co sprawia, że użytkownik nie musi się obawiać o utratę zakresu np. sieci GSM 1800. GSM zakłada możliwość rozmowy w trakcie przemieszczania się pomiędzy stacjami bazowymi.

2.1.2 EDGE

Standard EDGE (ang. Enhanced Data Rates for GSM Evolution) powstał jako odpowiedź na zapotrzebowanie użytkowników na większe niż w przypadku GPRS prędkości transmsji danych pakietowych. Obecnie jest to najbardziej postawowa technika przesyłana danych w sieciach komórkowych, wykorzystywana, gdy sieci UMTS oraz LTE nie są dostępne.

Zarówno EDGE jak i GPRS działają na bazie istniejącej infrastruktury sieci komórkowej, więc wdrożenie ich nie stwarzało konieczności budowania nowej sieci radiowej. EDGE nie oferował nowych usług, ale za to oferował użytkownikom możliwości dostarczania takich usług jak Internet, korzystanie z transmisji strumieniowych audio/video czy też wideorozmowy.

W systemie GSM, transmisja jest zorganizowana na pasmach o szerokości 200 kHz, a czas podzielony jest na 8 kolejno następujących szczelin czasowych, z których każda trwa 577 mikrosekund. Szczeliny se tą ponumerowane od 1 do 8 i następują cyklicznie. W przypadku transmisji mowy, kontroler stacji bazowej przypisuje terminalowi mobilnemu jedną szczelinę czasową na częstotwliwości używanej to transmisji. Oznacza to, że na 1 częstotliwości można jednocześnie prowadzić do 8 rozmów telefonicznych.

Ze względu na to, że EDGE został zbudowany jako rozszerzenie standardu GSM, wykorzystuje on szczeliny czasowe na potrzeby transmisji danych. W przeciwieństwie do transmisji mowy, nie odbywa się rezerwacja szczelin czasowych na cały czas korzystania z sieci pakietowej (np. w trakcie przeglądania stron internetowych na telefonie komórkowym) - szczelina czasowa jest rezerwowana tylko na potrzeby przesłania danej paczki pakietów danych. Teoretycznie w sieci EDGE możliwe jest rezerwowanie wszystkich 8 szczelin czasowych na potrzeby transmisji pakietów, jednakże w praktyce rezerwuje się do 4 szczelin dla transmisji od terminala mobilnego i 5 szczelin dla transmisji w kierunku terminala. Wszystkie rezerwowane szczeliny dla danej transmisji muszą znajdować się na tej samej częstotliwości.

EDGE dla celów modulacji danych wykorzystuje modulacje GMSK (podobnie jak GSM dla transmisji mowy), jednakże możliwe jest także wykorzystanie nowszego rozwiązania, jakim jest modulacja 8-PSK (ang. 8 Phase Shift Keying), która oferuje większą przepływność, kosztem wrażliwości na warunki transmisji. EDGE zakłada 9 różnych schematów transmisji, z których każdy charakteryzuje się inną szybkością danych, co wynika z zastosowanej modulacji oraz ilości zastosowanych nadmiarowych danych (tzw. code rate). Tabela 2 przedstawia możliwe schematy transmisji. Schematy transmisji są podzielne na trzy rodziny A, B i C, których zastosowanie sprowadza się do tego, że gdy warunki dla przeprowadzenia danej transmisji są nieodpowiednie, wybierany jest inny schemat transmisji pochodzący z danej rodziny.

Z powyższej tabeli wynika, że maksymalną prędkośc transmisji można osiągnąć wybierając schemat MCS-9, który przy zastosowaniu 5 szczelin czasowych umożliwa transmisję do 296 kilobitów na sekundę. W praktyce prędkość ta jest zdecydowanie niższa, ze względu na warunki panujące w kanale radiowym.

Schemat	Code rate	Modulacja	Transfer	Rodzina
MCS-1	0.53	GMSK	8.8 kbit/s	С
MCS-2	0.66	GMSK	11.2 kbit/s	В
MCS-3	0.85	GMSK	14.8 kbit/s	A
MCS-4	1	GMSK	17.6 kbit/s	С
MCS-5	0.37	8-PSK	22.4 kbit/s	В
MCS-6	0.49	8-PSK	29.6 kbit/s	A
MCS-7	0.76	8-PSK	47.8 kbit/s	В
MCS-8	0.92	8-PSK	54.4 kbit/s	A
MCS-9	1	8-PSK	59.2 kbit/s	A

Tabela 2: Tabela przedstawiająca schematy transmisji w sieci EDGE

2.2 UMTS i HSDPA

2.2.1 UMTS

UMTS (ang. Universal Mobile Telecommunications System), jest to standard sieci komórkowej trzeciej generacji będący następcą systemu GSM. UMTS został zbudowany na bazie GSM, co oznacza, że nie zakłada on zmian w sieci szkieletowej, jednakże wprowadzono gruntowne zmiany w sieci radiowej. Dzięki tym zmianiom (takim jak zaimplementowanie technologii HSDPA - ang. High Speed Downlink Packet Access) udało się uzyskać prędkości transmisji danych pakietowych dochodzące do 21.6 Mbit/s w transmisji w łączu w górę, oraz do 5.76 Mbit/s w łączu w dół.

Prędkości transmisji danych w sieciach trzeciej generacji są zdecydowanie większe od prędkości mierzonych w sieciach poprzedniej generacji ze względu na rosnące zapotrzebowanie użytkowników na korzystanie z usług internetowych w terminalach mobilnych. W czasach, gdy strumieniowanie filmów w wysokiej rozdzielczości przez Internet jest pożądaną przez użytkowników telefonów komórkowych funkcjonalnością, EDGE nie jest wystarczający dla zaspokojenia ich potrzeb.

W dzisiejszych czasach UMTS jest najpopularniejszą siecią komórkową trze-

Rysunek 1: Zasięg sieci 3G operatora T-Mobile w wrześniu 2015 roku

ciej generacji, a polscy operatorzy komórkowi objeli jej zasięgiem niemalże cały kraj. [4][5][6][7]

2.3 LTE

3 Transmisja danych w Internecie

4 Opis realizacji programowej

- 4.1 Opis aplikacji na smartfon z systemem Android
- 4.2 Opis aplikacji pełniącej funkcję serwerana komputer PC
- 4.3 Opis realizacji transmisji poprzez protokół TCP/IP
- 4.4 Sposób pomiaru rejestracji czasu przesyłania pakietu
- 4.5 Sposób pomiaru położenia terminala mobilnego

5 Wyniki pomiarów

- 5.1 Pomiar nieruchomego terminala mobilnego
- 5.2 Pomiar ruchomego terminala mobilnego w środowisku miejskim

Literatura

- [1] Podstawy cyfrowych systemów telekomunikacyjnych Krzysztof Wesołowski, WKŁ, Warszawa 2006
- [2] Systemy radiokomunikacji ruchomej Krzysztof Wesołowski, WKŁ, Warszawa 2006
- [3] Źródło internetowe: "MIMO transmission schemes for LTE and HSPA networks" http://www.3gamericas.org/documents/
 Mimo_Transmission_Schemes_for_LTE_and_HSPA_Networks_June-2009.pdf
- [4] Źródło internetowe: Zasięg sieci trzeciej i czwartej generacji operatora Play http://internet.playmobile.pl/maps/
- [5] Źródło internetowe: Zasięg sieci trzeciej i czwartej generacji operatora Orange http://zasieg-orange.wp.pl/?ticaid=1c93f
- [6] Źródło internetowe: Zasięg sieci trzeciej i czwartej generacji operatora T-Mobile http://www.t-mobile.pl/pl/indywidualni/stali_klienci/uslugi_do_telefonu/mapa_zasiegu
- [7] Źródło internetowe: Zasięg sieci trzeciej i czwartej generacji operatora Pla" http://www.plus.pl/mapa_zasiegu_plusa