Lógica e Inteligencia artificial

Práctica 3

Agustín Vanzato

Ejercicios

1. Sean A, B y C tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L de los siguientes teoremas. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

$i-\vdash_L ((\neg A \rightarrow A) \rightarrow A)$

1)	$(\neg A \rightarrow A)$	Hipótesis
2)	$(\neg A \rightarrow (\neg \neg (\neg A \rightarrow A) \rightarrow \neg A))$	L1
3)	$(\neg\neg(\neg A \rightarrow A) \rightarrow \neg A) \rightarrow A \rightarrow (\neg(\neg A \rightarrow A))$	L3
4)	$(\neg A \rightarrow (A \rightarrow \neg (\neg A \rightarrow A)))$	SH 2,3
5)	$(\neg A {\rightarrow} (A {\rightarrow} \neg (\neg A {\rightarrow} A))) {\rightarrow} ((\neg A {\rightarrow} A) {\rightarrow} (\neg A {\rightarrow} \neg (\neg A {\rightarrow} A)))$	L2
6)	$((\neg A \rightarrow A) \rightarrow (\neg A \rightarrow \neg (\neg A \rightarrow A)))$	MP 4, 5
7)	$(\neg A \rightarrow \neg (\neg A \rightarrow A)))$	MP 1, 6
8)	$(\neg A \rightarrow \neg (\neg A \rightarrow A)) \rightarrow ((\neg A \rightarrow A) \rightarrow A)$	L3
9)	$((\neg A \rightarrow A) \rightarrow A)$	MP 7,8
10) A		MP 1, 10

$ii-L_L(\neg \neg B \rightarrow B)$

1)	~~B		Hipótesis
2)	$\sim \sim B \longrightarrow (B \longrightarrow \sim \sim B)$	L1	
3)	$(B \rightarrow \sim \sim B)$		MP 1, 2
4)	$B \to (\sim \sim B \to B)$		L1
5)	$(B \rightarrow (\sim \sim B \rightarrow B)) \rightarrow ((B \rightarrow \sim \sim B) \rightarrow (B \rightarrow B))$	L3	
6)	$(B \to \sim \sim B) \to (B \to B)$		MP 4, 5
7)	$(B \rightarrow B)$		MP 4, 7
8)	В		S.H.

$iii-L_L((A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A))$

1)	(A→B)	Hipótesis
2)	$((A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A))$	L3
3)	(¬B→¬A))	MP 1, 2

2. Sean A, B y C tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L de las siguientes deducciones. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

$$i-\{((A\rightarrow B)\rightarrow C),B\}\vdash_{\iota} (A\rightarrow C)$$

B->(A->B)	L1
В	hipótesis
(A->B)	MP 1, 2
$((A \rightarrow B) \rightarrow C)$	hipótesis
С	MP 3, 4
C->(A->C)	L1
(A->C)	mp 5,6
	B->(A->B) B (A->B) ((A→B)→C) C C->(A->C) (A->C)

3. Sea $\Gamma = \{A_1,...,A_n\}$ n>0, un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \vdash_L A$. ¿Es cierto que si Γ es satisfacible entonces $\vdash_L A$?. Fundar.

```
\vdash_L A , pues si \Gamma = \{p\} y A = p , \Gamma \vdash_L A es teorema, mientras que \vdash_L A no lo es.
```

4. Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que Γ_L A. ¿Es cierto que para todo Γ_i tal que Γ_i \subset Γ, Γ_i \vdash_L A?. Fundar.

```
Se sabe que \Gamma \vdash_L A. (\forall \Gamma_i) / \Gamma_i \subseteq \Gamma, \Gamma_i \nvdash_I A pues si \Gamma = \{p\}, A = p y \Gamma_i = \emptyset, se da que \Gamma \vdash_I A, \Gamma_i \subseteq \Gamma y \Gamma_i \nvdash_I A.
```

5. Sean Γ y Γ_0 conjuntos de fbfs del C. de Enunciados. ¿Es cierto que para todo Γ existe algún $\Gamma_0 \subseteq \Gamma$ tal que si Γ_{\vdash_L} A entonces $\Gamma_0 \vdash_{\vdash_L} A$?. Fundar. Nota: relacionar con ejercicio 10.

$$\zeta \ (\forall \ \Gamma), \ (\exists \ \Gamma_0 \subseteq \Gamma) \ / \ \Gamma \vdash_L A \to \Gamma_0 \vdash_L A \ ?$$

Si, porque en el hipotético caso que $\Gamma_0 = \Gamma$ se cumple siempre. en cualquier otro caso diferente no

6. Sea Γ un conjunto de fbfs del C. de Enunciados. Sean A y B fbfs del C. de Enunciados. ¿Es cierto que si $\Gamma \cup \{A\} \vdash_L B$ y $\Gamma \cup \{A\} \vdash_L \neg B$, entonces $\Gamma \vdash_L A$?. Fundar

No, pues si $\Gamma = \{p\}$, B = q, y $A = \sim p$, se cumple $(\Gamma \cup \{A\}) \vdash_L B \land (\Gamma \cup \{A\}) \vdash_L \sim B$ pero no se cumple $\Gamma \vdash_I A$.

- 7. Sean A, B y C fbfs del C. de Enunciados. Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \cup \{A,B\}_{\vdash_L} C$ y también se sabe que $\Gamma \vdash_{\vdash_L} A$.
- i- ¿Es cierto que $\Gamma \vdash_{L} (C \rightarrow B)$?. Fundar.

No, pues sea $\Gamma=\{p\}$, B=q, A=p, y C=p. Se da que $\Gamma\vdash_L A$ y $(\Gamma\cup\{A,\,B\})\vdash_L C$, pero no se cumple $\Gamma\vdash_L (C\longrightarrow B)$

ii- ¿Es cierto que ⊢_L (A)?. Fundar.

No, usando el mismo ejemplo que en i) no se da $\vdash_L A$. solo se podría dar si A es tautología, pero no tenemos esa información.

8. Sea Γ un conjunto de fbfs del C. de Enunciados. Se define el conjunto de consecuencias lógicas de Γ cómo:

$$Con(\Gamma)=\{A/\Gamma\vdash_L A\}$$

Dadas las fbfs $p \rightarrow q$ y q, ¿cuál es la relación entre los conjuntos $Con_L(p \rightarrow q)$ y $Con_L(q)$?. ¿Son iguales, el primero incluye al segundo, el segundo incluye al primero?.

Representar gráficamente. Fundar

 $Con_L\left(p \to q\right) \subseteq Con_L\left(q\right)$, porque de q se puede deducir $p \to q$ mientras que de $p \to q$ no se puede deducir q .

- (1) q Hipótesis
- (2) $q \rightarrow (p \rightarrow q)$ L_1
- (3) $(p \rightarrow q)$ M.P. (1) y (2)

9. Sean Γ_1 y Γ_2 conj. de fbfs del C. de Enunciados. i- Γ_1 ={r,¬s} Calcular Con $_L$ (Γ_1).

Por definición de con \lfloor , con \lfloor (Γ 1) = {A/{r,¬s}} \lfloor A}

ii- Γ_2 ={r,¬s, s V¬r}. Calcular Con_L(Γ_2).

Dado que Γ 2 es un conjunto insatisfacible, es decir es una contradicción, puede deducir cual cosa. por lo tanto dicha conL (Γ 1) es el conjunto de todas las fórmulas de L

10. Sea Γ un conj. de fbfs del C. de Enunciados. Se dice que Γ es independiente si para toda fbf $A \subseteq \Gamma$ no ocurre $\{\Gamma - A\}_{-L} A$ i- Sea $\Gamma = \{p, q, \neg p\}$. ¿Es independiente?. Fundar

Γ no es independiente, dado que al poseer p y ¬p, el conjunto se vuelve insatisfacible, es decir una contradicción, por lo tanto puede deducir todo

ii- Sea Γ ={p, q}. ¿Es independiente?. Fundar

 Γ es independiente dado que a partir de un elemento no puedo deducir otro.

iii- Demostrar que para todo Γ finito, $Con_{\perp}(\Gamma)=Con_{\perp}(\Gamma)$ donde Γ es un conjunto independiente.

Si se tiene un Γ finito, el cual no es independiente, se puede obtener otro Γ' el cual sea independiente quitando todos los $A \subseteq \Gamma$ tal que $\{\Gamma - A\} \vdash_{L} A$ sin perder elementos de $Con_{L}(\Gamma)$

11. Se sabe que para todo Γ finito existe algún Γ , independiente tal que Con_L(Γ)=Con_L(Γ ,). Construir un ejemplo donde las afirmaciones previas se verifica y Γ , $\not\subset$ Γ (ni trivialmente Γ ,= Γ).

```
\Gamma = \{p \longleftrightarrow q; r \to s; r, s, p, q\}
\Gamma' = \{p \to q; q \to s; \neg r \ \forall s, r, s, p, q\}
```

12. Sean Γ_1 y Γ_2 conjuntos de fbfs del C. de Enunciados. Sean A y B fbfs del C.de Enunciados. Si $\Gamma_1 \subset \Gamma_2$ y $\Gamma_1 \vdash_L A$, entonces: i- ¿Es cierto que $\Gamma_1 \vdash_L B$?. Fundar.

no, sea Γ 1= {p}, r2= r1+{q} a={p} y b={s}, se puede observar que tanto Γ1 como Γ2 no lo deduce

ii- ¿Es cierto que $\Gamma_2 \vdash_L B$?. Fundar.

no, se demuestra en el ejemplo anterior

iii- ¿Es cierto que Γ₂⊦, A?. Fundar.

si, porque como en el ejemplo de i), al estar contenido Γ1 en Γ2 lo deduce

iv- ¿Es cierto que $\Gamma_1 \vdash_L (A \rightarrow B)$?. Fundar.

no podemos afirmarlo dado que no tenemos la información suficiente de B si se diera que por ejemplo $\Gamma1=\{r,s\}$ A= $\{r\}$, B= $\{q\}$, $\Gamma1\vdash_{L}A$ pero no se da que $\Gamma1\vdash_{L}(A\to B)$

Si $\Gamma_2 \vdash_L A$ y ocurre que para cada B en Γ_2 , $\Gamma_1 \vdash_L B$, entonces: i- ¿Es cierto que $\Gamma_2 = \Gamma_1$?. Fundar.

No, porque porque por ejemplo si fueran: $\Gamma1=\{p,\,q\},\,\Gamma2=\{p,\,p\to q\},\,A=\{p\},\,B=\{p\to q\}$ tanto $\Gamma1$, como $\Gamma2$ deducen A y B pero no son iguales

ii- ¿Es cierto que $\Gamma_2 \vdash_L \neg B$?. Fundar.

Depende, si Γ 2 es consistente no debería poder deducir ¬B o B pero no ambos, ahora si es inconsistente si puede deducir ambos, asumiendo que es consistente en este caso y sabemos que deduce B, no deduce ¬B

iii- ¿Es cierto que $\Gamma_1 \vdash_L A$?. Fundar.

Si, se asume por el enunciado