Mathematik 1 für Informatik

Kleingruppenübung

Blatt 04

Kampmann/Meyer HS Osnabrück, Fakultät I.u.I.

Erinnern Sie sich an folgende Begriffe, Sachverhalte und Sätze: Ungleichugen, Betrag, algebraische Strukturen, Rechnen mit Restklassen.

- 1. Aufgabe: Bestimmen Sie alle $r, s, t \in \mathbb{R}$, für die die folgenden Betrags(un)gleichungen erfüllt sind. Geben Sie jeweils den Definitionsbereich an.
 - a) |3r 6| = r + 2
 - b) 2 > |s 3|
 - c) $\frac{1}{|t+1|} \ge 6$
- 2. Aufgabe: Körper der reellen Zahlen
 - a) Die Körperaxiome sagen direkt nichts über $a\cdot 0$ für $a\in\mathbb{R}$ aus. Folgern Sie aus den Körperaxiomen, dass $a\cdot 0=0$ gilt.
 - b) Die Körperaxiome definieren -a als inverses Element bezüglich der Addition zu a. Direkt sagen die Axiome aber nichts über $(-1) \cdot a$ für $a \in \mathbb{R}$ aus. Folgern Sie aus den Körperaxiomen, dass $(-1) \cdot a = -a$ gilt.
 - c) Die Körperaxiome für \mathbb{R} garantieren die Existenz eines neutralen Elements der Addition (genannt 0) mit $a+0=a \ \forall a \in \mathbb{R}$ und eines neutralen Elements der Multiplikation (genannt 1) mit $a\cdot 1=a \ \forall a \in \mathbb{R}$. Warum muss gelten $0 \neq 1$, d.h. warum müssen die beiden neutralen Elemente verschieden voneinander sein? Geben Sie eine Begründung an.
- 3. Aufgabe: Gegeben ist die Menge $M = \{a, b, c, d\}$ mit zwei Verknüpfungen \star und \circ . Die Verknüpfungen sind durch die nachfolgenden Tabellen definiert.

*	a b c d
a	d c a b
b	сььь
c	a b c d
d	bbdc

0	a b c d
a	b d a c
b	c b d a
c	dacb
d	a c b d

- (1) Welche dieser Verknüpfungen ist kommutativ? (Antwort mit Begründung!)
- (2) (M, \star) ist eine Gruppe. Bestimmen Sie das neutrale Element und geben Sie zu jedem Element das zugehörige inverse Element an. (Antwort mit Begründung!) Rechnen Sie nach, dass $a \star (b \star c) = (a \star b) \star c$ ist.
- (3) Begründen Sie, warum (M, \circ) keine Gruppe ist.
- <u>4. Aufgabe:</u> Betrachten Sie (\mathbb{N}_0, \circ) mit der Verknüpfung $\circ: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ definiert durch $a \circ b = |a b|$ für $a, b \in \mathbb{N}_0$.
 - (1) Zeigen Sie, dass $0 \in \mathbb{N}_0$ das neutrale Element der Verknüpfung \circ ist und das jedes Element $a \in \mathbb{N}_0$ bezüglich der Verknüpfung \circ zu sich selbst invers ist.
 - (2) Ist die Verknüpfung kommutativ? (Antwort mit Begründung!)
 - (3) Berechnen Sie $2 \circ (3 \circ 4)$ und $(2 \circ 3) \circ 4$.
 - (4) Ist (\mathbb{N}_0, \circ) eine Gruppe? (Antwort mit Begründung!)
- <u>5. Aufgabe:</u> Gegeben ist die Menge $\mathbb{Z}_5 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$ bisher "unbekannter" Zahlen, für die folgende Addition + und Multiplikation definiert ist.

	$\bar{0}$						- 1				$\bar{3}$	
$\overline{0}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$						$\bar{0}$	
$\bar{1}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{0}$	$\bar{1}$		$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\bar{2}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{0}$	$\bar{1}$	$ar{2}$		$\bar{0}$	$\bar{2}$	$\bar{4}$	$\bar{1}$	$\bar{3}$
$\bar{3}$	3	$\bar{4}$	$\bar{0}$	1	$\bar{2}$	$\bar{3}$		$\bar{0}$	$\bar{3}$	$\bar{1}$	$\bar{4}$	$\bar{2}$
$\bar{4}$	$\bar{4}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$		$\bar{0}$	$\bar{4}$	$\bar{3}$	$\bar{2}$	$\bar{1}$

a) Geben Sie zu folgenden Körperaxiomen ein konkretes Beispiel mit Zahlen aus \mathbb{Z}_5 an:

Assoziativgesetz der Addition, Kommutativgesetz der Multiplikation, Distributivgesetz.

- b) Lösen Sie die Gleichung $\bar{3} \bullet (\bar{2} \bullet x + \bar{1}) + \bar{2} = \bar{1} \bar{2} \bullet x$ in \mathbb{Z}_5 . Geben Sie bei jedem Rechenschritt an, welches Körperaxiom Sie zur Umformung benutzen.
- c) Potenzen sind in Z wie in \mathbb{R} definiert. Insbesondere ist z.B. $\bar{2}^0 = \bar{1}$. Berechnen Sie die Potenzen $\bar{2}^n$ für n = 1, 2, ..., 7. Was fällt Ihnen auf?
- <u>6. Aufgabe:</u> $(\mathbb{Z}_{17}, +, \cdot)$ ist ein Körper. Damit ist auch die erste binomische Formel in $(\mathbb{Z}_{17}, +, \cdot)$ gültig, also $(\overline{a} + \overline{b})^2 = \overline{a}^2 + \overline{2} \cdot \overline{a} \cdot \overline{b} + \overline{b}^2$. Prüfen Sie die Gültigkeit für die folgenden beiden Beispiele:
 - (a) $(\overline{12} + \overline{9})^2$
 - (b) $(\overline{11} + \overline{5})^2$