

Page No. / 38 Date. / 19/01/21

Calculation of Lattice Cell Parameters - X-ray Diffraction

AIM : To calculate the lattice cell farameters from the powder X-ray diffraction data.

APPARATUS : Powder X-ray diffraction diagram.

FORMULA :

For cubic crystal: $\frac{1}{d^2} = (h^2 + k^2 + \ell^2)/a^2$

For tetragonal crystal: $1/d^2 = \{(h^2 + k^2)/a^2 + l^2/c^2\}$

For orthorhombic crystal: 1/d2 = {(h2/a2) + (k2/62) + (1/c2)}

The lattice parameter and interplanar distance for a cubic cryotal are:

 $a = (\frac{1}{2}\sin\theta)(\sqrt{h^2 + k^2 + l^2}) A$

 $d = \left(\frac{a\sqrt{h^2 + k^2 + \ell^2}}{A}\right) \mathring{A}$

where: a = dattice parameter

d = Interplanar distance.

 $\lambda = \text{Wavelength of CuKa radiation} (1.5405 Å)$ h, k, l = Miller integers.

ExpLNo.

Page No. / 39 Date. / 19/01/21

PRINCIPLE: Braggs law is the theoretical basis for X-ray diffraction.

 $(sin^2\theta)_{hkl} = (\lambda^2/4a^2)(h^2 + k^2 + l^2)$

Each of the Miller indices can take values 0,1,2,3,... Thus, the factor $(h^2 + k^2 + l^2)$ takes the values given in Table aside.

PROCEDURE: From the 20 values on a bowder photograph,
the O values are obtained. The sin 20 values
are talgulated. From that values of [1 × (sin 20/sin 20min)],
[2 × (sin 20/sin 20min)] and [3 × (sin 20/sin 20min)] are determined and
talgulated. The values of [3 × (sin 20/sin 20min)] are rounded to the
nearest integer. This gives the value of h 2 + k 2 + l 2. From
these the values of h, k, l are determined.

OBSERVATION:

Nature of h2+ k2+ l2 for different planes

I	h, k, ℓ	h2+ k2+ l2	h, k, l	$h^2 + k^2 + \ell^2$
1.	100	1	300	9
2.	110	2	310	10
3.	111	3	311	11
4.	200	4	322	12
5.	210	5	320	13
6.	211	6	321	14
7.	220	8	400	16
8.	221	9	410	17

	20	0	sin ² O	$1 \times \frac{\sin^2 0}{\sin^2 0_{min}}$	2.x sin20 nin20min	3x sin20 min	h+k+l+	hkl	a Å	d Å
1.	27.137	13.569	0.0550	1	2	3	3	111	5.6863	3.2830
2.	45.017	22.539	0.1469	2.6414	5.3428	8.0142 ≈ 8	8	220	5.6836	2.0095
3.	53.415	26.708	0.2020	3.6727	7.3454	17.0184 ≈ 11	11	311	5-6839	1.7138
4.	65.677	32.839	0.2941	5.3473	10.6946	16.0419 ≈ 16	16	400	5.6816	1.4204
5.	83.189	41.595	0.4407	8.0127	16.0254	24.0381 ≈ 24	24	422	5.6841	1.1603
6.	106.54	53.27	0.6423	11.6782	23.3563	35.0346 ≈ 35	35	531	5.6857	0.9611
								Mean 8	5.6842	1.7580

CAL	CL	ILA	TI	0	N	0
	March Company			-		

	20= 27.137	2× sin20.	$= 2 \times 0.055 = 2$	a= (N2540) h+6+12
	① 20 = 27.137 : 0 = 27.137/2=13.569	sin20min	0.055	=(1.5405/2×0.2346) V3
	sin 0 = sin 13.569 = 0.2346		3x0.055_3	= 5.6863 Å
	Din20 = (0.2346) = 0.0550	sint Omi	0.055	
	sin2 9min = 0.0550	h+k+12=	3	d=(a/sh+k+l+)
0		hkl =	111	= 5.6863/\square
,	$1 \times \sin^2 \theta = 1 \times \frac{0.055}{0.055} = 1$			= 3.2830 Å
	100 2 0 mis 0.055	2 (giva) = 1.	5405 Å	

Teacher's Signature

a= (/2500) (/h'+k'+1') 2x 10,10 = 2x 0.1469 = 5.3428 @ 20 = 45.077 Distonii 0.095) = (1-5+05/2 pin 22-5385) 18 .. Q = 45.017/2 = 22.53 = 5.6836 Å Din 0 = Din 22.5385 = 0.3833 3 x Din 0 = 3 x 0.1469 = 8.0142 sin Omin 0.0550 sin20 = (0.3833) = 0.1469 d= (a/sn'+k'+b") h+k+1= 8 sin20min = 0.0550 hkl = 220 = (5.6836/vg) 1× nin 10 = 1× 0.1469 = 2.8714 = 2.0095 Å x(que) = 1.5405 Å $2 \times \frac{5a^2\theta}{5a^2\theta min} = 2 \times \frac{0.2020}{0.055} = 7.345$ $a = (\frac{2}{2}si\theta) \sqrt{h^2 + 4^2 + 6^2}$ 3 20 = 53.415 ·· 0 = 53.415/2 = 26.708 = (1.5405/2×0.4494) VII nin 0 = nin 26.708=0.4494 3 x Di 20 = 3 x 0.2020=11.0181 Dis 0 = (0.4494) = 0.2020 = 5.6839 A sin 20 min = 0.0550 h2+K+1= 11 d= (a/ 1/2/2/2) $1 \times \frac{0.2020}{0.055} = 3.6727$ hel = 311 = (5.6839/111) 2 (qua) = 1.5405 A = 1.7138 Å @ 20 = 65.677 2x sin 20 = 2x 0.2941 = 10.69 a= (/2840) Shiple : Q = 65.677/2=32.89 = (1.5405/2×0.5423) V16 nin 0 = nin 32.839 = 0.5423 sin20 = (0.5423) = 0.2941 3x 1620 = 3x 0.2941 = 16.04 = 5.6816 nin 20 min = 0. 0550 d= (a/shiekiel) htk+ 1= 16 1x sin'0 = 1x 0.2941 = 5.3473 hkl = 400 = 5.6816/116 sin'Omis = 1.4204 Å A(guine) = 1.5405 A

5) $20 = 83.189$ $\therefore 0 = 83.189/2 = 41.595$ $\sin \theta = \sin 41.595 = 0.6639$ $\sin^2 0 = (0.6639)^2 = 0.4407$ $\sin^2 0_{min} = 0.055$ $1 \times \frac{\sin^2 0}{\sin^2 0_{min}} = 1 \times \frac{0.4407}{0.055} = 8.012$	$2 \times \frac{9 \text{ in}^{3} \text{ O}}{9 \text{ in}^{2} \text{ Omin}} = 2 \times \frac{0.4407}{0.055} = 16.025$ $3 \times \frac{9 \text{ in}^{2} \text{ Omin}}{9 \text{ in}^{2} \text{ Omin}} = 3 \times \frac{0.4407}{0.055} = 24.036$ $8 + k^{2} + l^{2} = 24$ $4 \times k = 422$ $\lambda (\text{given}) = 1.5404 \text{ A}$	
6 $20 = 106.54$ 0 = 106.54/2 = 53.27 0 = 106.54/2 = 53.27 0 = 106.54/2 = 0.8015 0.6423 0.055 0.055	$2 \times \frac{5i^{2}0}{5i^{2}0min} = 2 \times \frac{0.6423}{0.055} = 23.36$ $3 \times \frac{5i^{2}0}{5i^{2}0min} = 3 \times \frac{0.6423}{0.055} = 35.65$ $4 \times k^{2} + k^{2} + k^{2} = 35$ $4 \times k = 531$	$= 5.6857 \text{ Å}$ $d = \alpha / \sqrt{h^{2} + k^{2} + l^{2}}$
$1 \times \frac{\sin^2 0}{\sin^2 0_{\text{min}}} = 1 \times \frac{0.6423}{0.055}$ $= 11.6782$	1 (given) = 1.5404 Å	$= 5.6857/\sqrt{35}$ $= .0.9611 \text{ Å}$

Average & Lattice parameter (a) =
$$(5.6863 + 5.6836 + 5.6839 + 5.6816 + 5.6841 + 5.6857)/6$$

= $5.6816 + 5.6841 + 5.6857)/6$

Average of Interplanar didunce (d)= (3.2830 + 2.0095 + 1.7138 + 1.4204 + 1.1603 + 0.9611)/6

= 1.7580 Å

Page No. / 40 Date. / 19/01/21

LATTICE DETERMINATION :

Lattice Type	Rule for reflector to be observed.
Primitive P	None
Body Centred I	hkl: h+k+l = 2n
Face centred F	hkl: h, k, l either all odd or all even.

Depending on the nature of the h, k, l values, the lattice type can be determined.

RESULT :

The lattice cell parameters are calculated theoretically from the powder x-ray diffraction pattern and the values are tubulated as;

Average lattice parameter (a) = 5.6842 Å

Average of Interplanar diplance (d) = 1.7580 Å

OKTORD