GHARMULYA: Nepal Property Price Prediction

s by sabina karki

Project Summary

Problem

Lack of accessible, reliable house price estimates in Nepal.

Solution

ML-based web app
(GHARMULYA) predicts prices
based on features.

Impact

Helps users estimate fair market value before buying/selling.

Team Roles

Sabina: Frontend development & Data collection

Web scraping, UI design (React), user flows.

Sudha: ML development

Data preprocessing, model training & evaluation.

Ganga: Backend Development

API creation, Flask integration, connecting frontend.

Problem Statement & Solution					
Addressing Lack of Reliable House Price Estimation	be be2022se80	May 1	Planning		
Oevelop a House Price Prediction System for Nepal	be be2022se83	May 1	Planning		
	be be2022se83	May 1	Develop	Linear R	
Add task ▼ Team Contributions					
▼ Team Contributions	be be2022se83	May 8			
▼ Team Contributions	be be2022se83 be be2022se80	May 8 May 8			
▼ Team Contributions ⊘ Team Member: Ganga Adhikari					

Frontend Development with ReactJS	be be2022se80	May 17	Develop		
Backend Development with Node.js and Express.js	be be2022se83	May 17	Develop		
Machine Learning Implementation with Python, Pan	be be2022se83	May 17	Develop	Linear R	
ML Model Serving with Flask	be be2022se83	May 17	Deploy		
Development Environment Setup with VS Code and	be be2022se83	May 17	Planning		

ome ✓ Create and ivianage Product backlog	Assignee De Dezuzzseau	Due date May 23	Project Phase	Algorithm T	+
Add task					
Deliverables & Outcomes					
Home Page Interface	be be2022se80	Jun 15	Develop		
 Login Page Interface 	be) be2022se80	Jun 17	Develop		
	be be2022se83	Jun 15	Develop		
Predicted Price Interface	be be2022se83	Jun 19	Develop		
Final Project Evaluation	be be2022se83	Jun 4 – Jul 8	Testing		
 Project Completion and Submission 	be be2022se83	Jul 10	Deploy		

Planning Process

Tools Used

- Trello for backlog and sprint planning.
- GitHub for codebase and versioning.
- Google Meet for standups.

Backlog Creation

- Started with epics: Data, ML model, Frontend.
- Broke into user stories: "Scrape 50 listings," "Train model."
- Prioritized by user value.

Sprint Demonstrations

Sprint 1

Scraped and cleaned data; designed wireframes.

Sprint 2

Trained regression model (80% R²); created prediction API.

Sprint 3

Built responsive UI; integrated ML model with frontend.

Retrospective Learnings

What Went Well

- Agile helped adapt to changes.
- Clear communication in a small team.

Challenges & Changes

- Data cleaning took longer.
- UI/backend version conflicts.
- Simplified frontend, re-trained model.

Next Steps

Future Enhancements

Add authentication (Google/email login).

Deployment

Deploy fully online (GCP or Heroku).

Data & Visualization

Increase dataset size; add map-based price visualization.