QEST2021 - Supplemental Material

Riley Roberts $^{1[0000-0002-8676-3767]}$, Thakur Neupane $^{2[0000-0002-1870-4079]}$, Lukas Buecherl $^{3[0000-0002-4844-6605]}$, Chris J. Myers $^{3[0000-0002-8762-8444]}$, and Zhen Zhang $^{1[0000-0002-8269-9489]}$

¹ Utah State University, Logan, UT, USA

riley.roberts@aggiemail.usu.edu, zhen.zhang@usu.edu

- ² The MathWorks, Inc., Natick, MA, USA, tneupane@mathworks.com
- University of Colorado Boulder, lukas.buecherl@colorado.edu, chris.myers@colorado.edu

1 Algorithm

This presents a detailed algorithm for STAMINA 2.0. Refer to the QEST 2021 submission for information on the symbols used. explored is a set used to indicate the states that have been explored using one particular value for κ .

Algorithm 1: Improved state re-exploration aglorithm in STAMINA 2.0.

```
Input: A PRISM CTMC model file, a CSL property, and w.
   Output: P_{min} and P_{max}.
   P_{min} := 0.0; P_{max} := 1.0; \pi(s_0) := 1.0; \mathbf{S} := \{s\}; \mathbf{T} := \{s\};
 1 while P_{max} - P_{min} > w do
         \Pi := 1.0;
         while \Pi>\frac{w}{m} do
 3
              enqueue(queue, s_0); explored := \emptyset;
              while queue \neq \emptyset do
 5
                   s := dequeue(queue);
                   if s \notin \mathbf{T} \lor \pi(s) \ge \kappa then
                         if \pi(s) == 0 then
 8
                                                            \triangleright post(s) is computed from the PRISM file
                              forall s' \in post(s) do
10
                                   enqueue(queue, s');
11
                         else
12
                              if s \in \mathbf{T} then
13
                                  \mathbf{T}.remove(s);
14
                              forall s' \in post(s) do
15
                                    \pi(s') := \pi(s') + \pi(s) \cdot p(s, s');
                                    if (s' \in \mathbf{S} \land s' \notin explored) \lor (s' \notin \mathbf{S}) then
17
                                         explored := explored \cup \{s'\};
 18
                                         enequeue(queue, s');
 19
                                         if s' \notin \mathbf{S} then
20
                                             \mathbf{T} := \mathbf{T} \cup \{s'\}; \mathbf{S} := \mathbf{S} \cup \{s'\};
21
                             \pi(s) := 0;
22
              \Pi := \sum_{s_i \in \mathbf{T}} \pi(s_i);
23
              \kappa := \frac{\kappa}{r_{\kappa}};
24
         Instruct PRISM to build the proper statespace based on the states in S and T, and
25
          the original inputted PRISM model;
         Compute P_{min} and P_{max} of the inputted CSL propery, using PRISM;
26
        if P_{\text{max}} - P_{\text{min}} > w then
27
              Increase m proportionally to the difference between P_{max} - P_{min} and w;
28
```

2 Tables

This section presents tables with the full, detailed results of the comparison between STAMINA $1.0\ \text{and}\ \text{STAMINA}\ 2.0$

Table 1: Performance of STAMINA 2.0 relative to STAMINA 1.0 on the hazard circuit. A \star by the improvement indicates STAMINA 1.0 could not achieve the desired w within 10 iterations; \dagger indicates STAMINA 1.0 did not complete due to memory constraints.

Glitch	Transition	STAMINA 2.0				STAMINA 1.0				Improvement	
Gilteir	Transition	$ \mathcal{G} $ (K)	T (C/A)	P_{min}	P_{max}	$ \mathcal{G} $ (K)	T (C/A)	P_{min}	P_{max}	<i>G</i> (%)	T (%)
	$(0,1,0) \to (1,1,1)$	3,527	1006/ 2872	0.0166	0.0168	8,382	5708/ 41,592	0.0060	0.9218	∗57.9	⋆91.8
	$(0,1,0) \to (1,0,0)$	85	13/ 35	0.3950	0.3951	933	224/ 706	0.3951	0.3960	90.9	94.8
Glitch	$(1,1,1) \to (1,0,0)$	406	86/ 184	0.7357	0.7358	3,464	$\begin{vmatrix} 1,936/\\ 4,595 \end{vmatrix}$	0.7351	0.7361	88.3	95.9
Zero	$(1,1,1) \to (0,1,0)$	468	97/ 219	0.6947	0.6948	6,929	829/ 1,464	0.6947	0.6947	93.2	86.2
	$(1,0,0) \to (0,1,0)$	165	30/ 76	0.4550	0.4551	3,408	$\begin{vmatrix} 2,133/\\ 9,892 \end{vmatrix}$	0.4550	0.4555	95.2	99.1
	$(1,0,0) \to (1,1,1)$	3, 569	1021/ 2850	0.0166	0.0168	9,280	$\begin{vmatrix} 6,029/\\ 42,336 \end{vmatrix}$	0.0125	0.5405	∗61.5	⋆92.0
	$(0,1,1) \to (1,0,1)$	2,813	818/ 1988	0.9895	0.9897	11,462	8, 102/ 65, 546	0.8608	0.9990	∗75.5	⋆96.2
	$(0,0,0) \to (0,1,1)$	2,544	590/ 2034	0.8260	0.8262	'	54, 156		0.9669	l	·
Glitch	$(0,0,0) \to (1,0,1)$	2,830	810/2,165	0.9902	0.9905	9,406	4,976/ 46,219	0.9477	0.9998	*69.9	∗94.2
One	$(1,0,1) \to (0,1,1)$	3,006	821/2,170	0.9895	0.9898	17,994	6,124/ $41,362$	0.8498	0.9981	†83.3	†93.7
	$(0,1,1) \to (0,0,0)$	381	70/ 174	0.8574	0.8575	7,077	3,868/23,541	0.8574	0.8580	94.6	99.1
	$(1,0,1) \to (0,0,0)$	328	59/ 151	0.8644	0.8645	8,165	$\begin{vmatrix} 3,611/\\ 24,023 \end{vmatrix}$	0.8642	0.8652	96.0	99.2

Table 2: Performance STAMINA 2.0 relative to STAMINA 1.0 on the benchmarks.

	Params		STAM	IINA 2.0			STAM	Improvement			
Model		$ \mathcal{G} $	T			$ \mathcal{G} $	T		_	$ \mathcal{G} $	T
		(K)	(C/A)	P_{min}	P_{max}	(K)	(C/A)	P_{min}	P_{max}	(%)	(%)
	32/ 64	474	51/ 165	0.9755	0.9756	696	38/ 321	0.9756	0.9756	31.9	39.8
Robot	32/ 1024	474	51/ 167	0.9755	0.9756	696	37/ 329	0.9756	0.9756	31.9	40.4
(n/K)	64/ 64	1,562	554	2.94e-5	1.78e-4	2,273	123/ 870	1.46e-4	1.68 <i>e</i> -4	31.3	50.4
	64/ 1024	1,562	138/ 375	2.94e-5	1.78e-4	2,273	121/ 829	1.46e-4	1.68e-4	31.3	46.0
Jackson	4/ 5	187	15/ 19	0.8654	0.8655	167	18/ 41	0.8653	0.8657	-10.7	42.4
(N/λ)	5/ 5	1,480	176/ 273	0.8194	0.8202	6, 141	$1,852/\ 2,606$	0.8197	0.8197	75.9	89.9
Polling	12	0.001	0.016/ 0.018	1.0	1.0	19	3/ 24	1.0	1.0	99.9	99.9
(N)	16	0.001	0.017/ 0.012	1.0	1.0	57	17/ 79	1.0	1.0	99.9	99.9
	20	0.001	0.018/ 0.019	1.0	1.0	113	25/ 149	1.0	1.0	99.9	99.9
Tandem	2047	21	1/ 13	0.4990	0.4990	25	0.3/ 26	0.4990	0.4990	16	46.8
(c)	4095	42	2/ 51	0.4993	0.4993	50	1/ 117	0.499	0.499	16	55.1
Toggle	0	4.2	0.3/ 0.9	0.0131	0.0131	4.2	0.3/ 3.2	0.0131	0.0136	0	65.7
(c)	100	6.7	0.5/ 1.9	0.9918	0.9918	7.6	0.4/ 5.4	0.9917	0.9918	11.8	58.6