Решени задачи от въведение в теория на числата

Валентин Стоянов

март 2018

Задача 1.

Да се докаже, че за всяко естествено число n, числото n^3+11n се дели на 6.

Доказателство по индукция:

1. База n = 1

6 | 12 да.

2. Индукционна хипотеза

Допускаме, че $6 \mid n^3 + 11n$

3. Индукционна стъпка

Проверяваме дали твърдението е вярно за $n+1 \Rightarrow$ \Rightarrow $6 \mid (n+1)^3+11(n+1)$ \Leftrightarrow $6 \mid n^3+3n^2+3n+1+11n+11$ \Leftrightarrow $6 \mid 3n^2+3n$ \Leftrightarrow $6 \mid 3n(n+1)$ \Leftrightarrow $2 \mid n(n+1)$ Но n(n+1) са две поредни числа \Rightarrow винаги поне едно е четно \Rightarrow $2 \mid n(n+1)$

Задача 2.

Да се докаже, че за всяко естествено число n, числото $3^{2^n}-1$ се дели на 2^{n+2} .

Доказателство по индукция:

1. База n = 1

8 | 8 да.

2. Индукционна хипотеза

Допускаме, че $2^{n+2} \mid 3^{2^n} - 1$

3. Индукционна стъпка

Проверяваме дали твърдението е изпълнено за $n+1 \Rightarrow 2^{(n+1)+2} \mid 3^{2^{n+1}}-1$ $\Leftrightarrow 2^{(n+2)+1} \mid 3^{2^{n+1}}-1$ $\Leftrightarrow 2^{n+2}2^1 \mid 3^{2^{n}2^1}-1$ $\Leftrightarrow 2^{n+2}2 \mid 3^{2^{n}2^1}-1$ $\Leftrightarrow 2^{n+2}2 \mid (3^{2^n})^2-1$ $\Leftrightarrow 2^{n+2}2 \mid (3^{2^n}-1)(3^{2^n}+1)$ $\Leftrightarrow 2 \mid (3^{2^n}+1)$ 3^{2^n} е нечетно число $\Rightarrow 3^{2^n}+1$ е четно $\Rightarrow 2 \mid (3^{2^n}+1)$

Задача 3.

Да се докаже, че за всяко естествено число n $55^2 \mid 81^{n+1} + (55n-81)136^n$ Доказателство по индукция:

1. База n = 0

 $55^2 \mid 0$ да.

2. Индукционна хипотеза

Допускаме, че $55^2 \mid 81^{n+1} + (55n - 81)136^n$

3. Индукционна стъпка

```
Проверяваме дали твърдението е изпълнено за n+1\Rightarrow 55^2 \mid 81^{n+2} + (55(n+1)-81)136^{n+1} \Leftrightarrow 55^2 \mid 81^{n+1}81 + (55n+55-81)136^n136 \Leftrightarrow 55^2 \mid 81^{n+1}81 + (55n+55-81)(81+55)136^n \Leftrightarrow 55^2 \mid 81^{n+1}81 + (55n\times81+55^2n+55\times81+55^2-81^2-81\times55)136^n \Leftrightarrow 55^2 \mid 81^{n+1}81 + (55n\times81+55^2n+55^2-81^2)136^n \Leftrightarrow 55^2 \mid 81^{n+1}81 + ((55n-81)81+55^2n+55^2)136^n \Leftrightarrow 55^2 \mid 81^{n+1}81 + ((55n-81)81+55^2(n+1))136^n \Leftrightarrow 55^2 \mid 81^{n+1}81 + (55n-81)136^n81+55^2(n+1)136^n От индукционната хипотеза и свойствата за делимост \Rightarrow 55^2 \mid 81^{n+2} + (55(n+1)-81)136^{n+1}
```

Задача 4.

Да се намери d = HOД(a, b) и цели числа u, v, за които, <math>au + bv = d, ако:

a)
$$a = 315$$
, $b = 72$;

Решение:

```
Намираме НОД чрез алгоритъма на Евклид \Rightarrow d = HOД(a, b) = HOД(315, 72) 315: 72 = 4(остатък 27) 72: 27 = 2(остатък 18) 27: 18 = 1(остатък 9) 18: 9 = 2(остатък 0) НОД е последният ненулев остатък \Rightarrow d = (315, 72) = 9 От Безу знаем, че ако HOД(a, b) = d, то съществуват цели числа и и v, такива, че аи + bv = d.
```

6) a = 975, b = 308;

Решение:

Намираме НОД чрез алгоритъма на Евклид \Rightarrow

 \Rightarrow d = НОД(a, b) = НОД(975, 308)

975:308=3(остатък 51)

308:51=6(остатък 2)

51:2=25(остатък 1)

25:1=25(остатък 0)

НОД е последният ненулев остатък $\Rightarrow d = (975, 308) = 1$

От Безу знаем, че ако $HOД(a,\,b)=d,$ то съществуват цели числа и и v, такива, че аu+bv=d.