Derivatives

Objectives

1 Find the derivative of a function

Difference Quotient

$$\frac{f(x+h)-f(x)}{h}$$

Derivative Definition

The derivative is the limit of the difference quotient as h approaches 0.

Derivative Definition

The derivative is the limit of the difference quotient as h approaches 0.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivative Definition

The derivative is the limit of the difference quotient as h approaches 0.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Other Notations:
$$\frac{dy}{dx}$$
 y' \dot{x}

(a)
$$f(x) = 2x^2 - x + 3$$

(a)
$$f(x) = 2x^2 - x + 3$$

 $f(x+h) = 2(x+h)^2 - (x+h) + 3$

(a)
$$f(x) = 2x^2 - x + 3$$

 $f(x+h) = 2(x+h)^2 - (x+h) + 3$
 $= 2(x^2 + 2hx + h^2) - x - h + 3$

(a)
$$f(x) = 2x^2 - x + 3$$

 $f(x+h) = 2(x+h)^2 - (x+h) + 3$
 $= 2(x^2 + 2hx + h^2) - x - h + 3$
 $= 2x^2 + 4hx + 2h^2 - x - h + 3$

(a)
$$f(x) = 2x^{2} - x + 3$$
$$f(x+h) = 2(x+h)^{2} - (x+h) + 3$$
$$= 2(x^{2} + 2hx + h^{2}) - x - h + 3$$
$$= 2x^{2} + 4hx + 2h^{2} - x - h + 3$$
$$f(x+h) - f(x) = 2x^{2} + 4hx + 2h^{2} - x - h + 3 - (2x^{2} - x + 3)$$

(a)
$$f(x) = 2x^{2} - x + 3$$
$$f(x+h) = 2(x+h)^{2} - (x+h) + 3$$
$$= 2(x^{2} + 2hx + h^{2}) - x - h + 3$$
$$= 2x^{2} + 4hx + 2h^{2} - x - h + 3$$
$$f(x+h) - f(x) = 2x^{2} + 4hx + 2h^{2} - x - h + 3 - (2x^{2} - x + 3)$$
$$= 2x^{2} + 4hx + 2h^{2} - x - h + 3 - 2x^{2} + x - 3$$

(a)
$$f(x) = 2x^{2} - x + 3$$

$$f(x+h) = 2(x+h)^{2} - (x+h) + 3$$

$$= 2(x^{2} + 2hx + h^{2}) - x - h + 3$$

$$= 2x^{2} + 4hx + 2h^{2} - x - h + 3$$

$$f(x+h) - f(x) = 2x^{2} + 4hx + 2h^{2} - x - h + 3 - (2x^{2} - x + 3)$$

$$= 2x^{2} + 4hx + 2h^{2} - x - h + 3 - 2x^{2} + x - 3$$

$$= 4hx - h + 2h^{2}$$

$$\frac{f(x+h)-f(x)}{h}=\frac{4hx-h+2h^2}{h}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{4hx - h + 2h^2}{h}$$
$$= 4x - 1 + 2h$$

$$\frac{f(x+h) - f(x)}{h} = \frac{4hx - h + 2h^2}{h}$$
$$= 4x - 1 + 2h$$
$$\lim_{h \to 0} (4x - 1 + 2h)$$

$$\frac{f(x+h) - f(x)}{h} = \frac{4hx - h + 2h^2}{h}$$

$$= 4x - 1 + 2h$$

$$\lim_{h \to 0} (4x - 1 + 2h)$$

$$= 4x - 1 + 2(0)$$

$$\frac{f(x+h) - f(x)}{h} = \frac{4hx - h + 2h^2}{h}$$

$$= 4x - 1 + 2h$$

$$\lim_{h \to 0} (4x - 1 + 2h)$$

$$= 4x - 1 + 2(0)$$

$$= 4x - 1$$

$$\frac{f(x+h) - f(x)}{h} = \frac{4hx - h + 2h^2}{h}$$

$$= 4x - 1 + 2h$$

$$\lim_{h \to 0} (4x - 1 + 2h)$$

$$= 4x - 1 + 2(0)$$

$$= 4x - 1$$

f'(x) = 4x - 1

$$(b) f(x) = -3x^2$$

(b)
$$f(x) = -3x^2$$

$$f(x+h) = -3(x+h)^2$$

(b)
$$f(x) = -3x^2$$

 $f(x+h) = -3(x+h)^2$
 $= -3(x^2 + 2hx + h^2)$

(b)
$$f(x) = -3x^2$$

 $f(x+h) = -3(x+h)^2$
 $= -3(x^2 + 2hx + h^2)$
 $= -3x^2 - 6hx - 3h^2$

(b)
$$f(x) = -3x^2$$

 $f(x+h) = -3(x+h)^2$
 $= -3(x^2 + 2hx + h^2)$
 $= -3x^2 - 6hx - 3h^2$
 $f(x+h) - f(x) = -3x^2 - 6hx - 3h^2 - (-3x^2)$

(b)
$$f(x) = -3x^2$$

$$f(x+h) = -3(x+h)^2$$

$$= -3(x^2 + 2hx + h^2)$$

$$= -3x^2 - 6hx - 3h^2$$

$$f(x+h) - f(x) = -3x^2 - 6hx - 3h^2 - (-3x^2)$$

$$= -3x^2 - 6hx - 3h^2 + 3x^2$$

(b)
$$f(x) = -3x^2$$

$$f(x+h) = -3(x+h)^2$$

$$= -3(x^2 + 2hx + h^2)$$

$$= -3x^2 - 6hx - 3h^2$$

$$f(x+h) - f(x) = -3x^2 - 6hx - 3h^2 - (-3x^2)$$

$$= -3x^2 - 6hx - 3h^2 + 3x^2$$

$$= -6hx - 3h^2$$

$$\frac{f(x+h)-f(x)}{h}=\frac{-6hx-3h^2}{h}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{-6hx - 3h^2}{h}$$
$$= -6x - 3h$$

$$\frac{f(x+h) - f(x)}{h} = \frac{-6hx - 3h^2}{h}$$
$$= -6x - 3h$$
$$\lim_{h \to 0} (-6x - 3h)$$

$$\frac{f(x+h) - f(x)}{h} = \frac{-6hx - 3h^2}{h}$$
$$= -6x - 3h$$
$$\lim_{h \to 0} (-6x - 3h)$$
$$= -6x - 3(0)$$

$$\frac{f(x+h) - f(x)}{h} = \frac{-6hx - 3h^2}{h}$$
$$= -6x - 3h$$
$$\lim_{h \to 0} (-6x - 3h)$$
$$= -6x - 3(0)$$
$$= -6x$$

$$\frac{f(x+h) - f(x)}{h} = \frac{-6hx - 3h^2}{h}$$

$$= -6x - 3h$$

$$\lim_{h \to 0} (-6x - 3h)$$

$$= -6x - 3(0)$$

$$= -6x$$

f'(x) = -6x

(c)
$$f(x) = 7x + 9$$

(c)
$$f(x) = 7x + 9$$

 $f(x+h) = 7(x+h) + 9$

(c)
$$f(x) = 7x + 9$$

 $f(x+h) = 7(x+h) + 9$
 $= 7x + 7h + 9$

(c)
$$f(x) = 7x + 9$$

 $f(x+h) = 7(x+h) + 9$
 $= 7x + 7h + 9$
 $f(x+h) - f(x) = 7x + 7h + 9 - (7x + 9)$

(c)
$$f(x) = 7x + 9$$

 $f(x+h) = 7(x+h) + 9$
 $= 7x + 7h + 9$
 $f(x+h) - f(x) = 7x + 7h + 9 - (7x + 9)$
 $= 7x + 7h + 9 - 7x - 9$

(c)
$$f(x) = 7x + 9$$

 $f(x+h) = 7(x+h) + 9$
 $= 7x + 7h + 9$
 $f(x+h) - f(x) = 7x + 7h + 9 - (7x + 9)$
 $= 7x + 7h + 9 - 7x - 9$
 $= 7h$

$$\frac{f(x+h)-f(x)}{h}=\frac{7h}{h}$$

$$\frac{f(x+h)-f(x)}{h} = \frac{7h}{h}$$
= 7

$$\frac{f(x+h) - f(x)}{h} = \frac{7h}{h}$$

$$= 7$$

$$\lim_{h \to 0} (7)$$

$$\frac{f(x+h) - f(x)}{h} = \frac{7h}{h}$$

$$= 7$$

$$\lim_{h \to 0} (7)$$

$$= 7$$

$$\frac{f(x+h) - f(x)}{h} = \frac{7h}{h}$$

$$= 7$$

$$\lim_{h \to 0} (7)$$

$$= 7$$

$$f'(x) = 7$$

(d)
$$f(x) = x^2 + 3$$

(d)
$$f(x) = x^2 + 3$$

 $f(x+h) = (x+h)^2 + 3$

(d)
$$f(x) = x^2 + 3$$

 $f(x+h) = (x+h)^2 + 3$
 $= x^2 + 2hx + h^2 + 3$

(d)
$$f(x) = x^2 + 3$$

 $f(x+h) = (x+h)^2 + 3$
 $= x^2 + 2hx + h^2 + 3$
 $f(x+h) - f(x) = x^2 + 2hx + h^2 + 3 - (x^2 + 3)$

(d)
$$f(x) = x^2 + 3$$

 $f(x+h) = (x+h)^2 + 3$
 $= x^2 + 2hx + h^2 + 3$
 $f(x+h) - f(x) = x^2 + 2hx + h^2 + 3 - (x^2 + 3)$
 $= x^2 + 2hx + h^2 + 3 - x^2 - 3$

(d)
$$f(x) = x^2 + 3$$

 $f(x+h) = (x+h)^2 + 3$
 $= x^2 + 2hx + h^2 + 3$
 $f(x+h) - f(x) = x^2 + 2hx + h^2 + 3 - (x^2 + 3)$
 $= x^2 + 2hx + h^2 + 3 - x^2 - 3$
 $= 2hx + h^2$

$$\frac{f(x+h)-f(x)}{h}=\frac{2hx+h^2}{h}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{2hx + h^2}{h}$$
$$= 2x + h$$

$$\frac{f(x+h) - f(x)}{h} = \frac{2hx + h^2}{h}$$
$$= 2x + h$$
$$\lim_{h \to 0} (2x + h)$$

$$\frac{f(x+h) - f(x)}{h} = \frac{2hx + h^2}{h}$$
$$= 2x + h$$
$$\lim_{h \to 0} (2x + h)$$
$$= 2x + 0$$

$$\frac{f(x+h) - f(x)}{h} = \frac{2hx + h^2}{h}$$

$$= 2x + h$$

$$\lim_{h \to 0} (2x + h)$$

$$= 2x + 0$$

$$= 2x$$

$$\frac{f(x+h) - f(x)}{h} = \frac{2hx + h^2}{h}$$

$$= 2x + h$$

$$\lim_{h \to 0} (2x + h)$$

$$= 2x + 0$$

$$= 2x$$

f'(x) = 2x

Derivatives have may aliases:

Derivatives have may aliases:

• Instant rate of change.

Derivatives have may aliases:

- Instant rate of change.
- Tangent slope to a curve.

Derivatives have may aliases:

- Instant rate of change.
- Tangent slope to a curve.
- Limit as secant line becomes tangent line.

Fear Not

In calculus, you will learn shortcuts so you won't always have to do what we did in these notes to find the derivative.