CURRENT LIMITING SINGLE CHANNEL DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +500V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 12 to 18V
- Undervoltage lockout
- Current detection and limiting loop to limit driven power transistor current
- Error lead indicates fault conditions and programs shutdown time
- · Output in phase with input
- 2.5V, 5V and 15V input logic compatible

Description

The IR2125(S) is a high voltage, high speed power MOSFET and IGBT driver with over-current limiting protection circuitry. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs, down to 2.5V logic. The output driver features a high pulse current buffer stage designed for minimum driver cross-

Product Summary

Voffset	500V max.
I _O +/-	1A / 2A
Vout	12 - 18V
V _{CSth}	230 mV
t _{on/off} (typ.)	150 & 150 ns

Packages

conduction. The protection circuitry detects over-current in the driven power transistor and limits the gate drive voltage. Cycle by cycle shutdown is programmed by an external capacitor which directly controls the time interval between detection of the over-current limiting conditions and latched shutdown. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high or low side configuration which operates up to 500 volts.

Typical Connection

IR2125(S) International FOR Rectifier

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V _B	High Side Floating Supply Voltage	-0.3	525	
Vs	High Side Floating Offset Voltage	V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage	V _S - 0.3	V _B + 0.3	
Vcc	Logic Supply Voltage	-0.3	25	V
V _{IN}	Logic Input Voltage	-0.3	V _{CC} +0.3	
VERR	Error Signal Voltage	-0.3	V _{CC} +0.3	
V _{CS}	Current Sense Voltage	V _S - 0.3	V _B + 0.3	
dV _S /dt	Allowable Offset Supply Voltage Transient	_	50	V/ns
PD	Package Power Dissipation @ T _A ≤ +25°C (8 lead PDIP)	_	1.0	w
	(16 lead SOIC)	_	1.25	VV
Rth _{JA}	Thermal Resistance, Junction to Ambient (8 lead PDIP)	_	125	°C/W
	(16lLead SOIC)	_	100	C/VV
TJ	Junction Temperature	_	150	
TS	Storage Temperature	-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)	_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High Side Floating Supply Voltage	V _S + 12	V _S + 18	
Vs	High Side Floating Offset Voltage	Note 1	500	
VHO	High Side Floating Output Voltage	VS	V _B	
Vcc	Logic Supply Voltage	0	18	V
V _{IN}	Logic Input Voltage	0	Vcc	
V _{ERR}	Error Signal Voltage	0	Vcc	
Vcs	Current Sense Signal Voltage	VS	V _B	
T _A	Ambient Temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +500V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 3300 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figures 3 through 6.

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	7	_	150	200		V _{IN} = 0 & 5V
						ns	$V_{S} = 0 \text{ to } 600V$
t _{off}	Turn-Off Propagation Delay	8	_	200	250	110	
t _{sd}	ERR Shutdown Propagation Delay	9	_	1.7	2.2	μs	
t _r	Turn-On Rise Time	10	_	43	60	ns	
t _f	Turn-Off Fall Time	11	_	26	35	113	
t _{cs}	CS Shutdown Propagation Delay	12	_	0.7	1.2	μs	
t _{err}	CS to ERR Pull-Up Propagation Delay	13	_	9.0	12	45	C _{ERR} = 270 pF

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to V_S .

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" Input Voltage	14	2.2		_	V	
V _{IL}	Logic "0" Input Voltage	15	_	_	0.8	V	
V _{CSTH+}	CS Input Positive Going Threshold	16	150	230	320		
V _{CSTH} -	CS Input Negative Going Threshold	17	130	210	300	mV	
V _{OH}	High Level Output Voltage, V _{BIAS} - V _O	18	_	_	100	I v	I _O = 0A
V_{OL}	Low Level Output Voltage, VO	19	_	_	100		$I_O = 0A$
I_{LK}	Offset Supply Leakage Current	20	_	_	50		$V_B = V_S = 500V$
I _{QBS}	Quiescent V _{BS} Supply Current	21	_	400	1000		$V_{IN} = V_{CS} = 0V \text{ or } 5V$
I _{QCC}	Quiescent V _{CC} Supply Current	22	_	700	1200		$V_{IN} = V_{CS} = 0V \text{ or } 5V$
I _{IN+}	Logic "1" Input Bias Current	23	_	4.5	10	μA	V _{IN} = 5V
I _{IN-}	Logic "0" Input Bias Current	24	_	_	1.0		$V_{IN} = 0V$
I _{CS+}	"High" CS Bias Current	25	_	4.5	10		$V_{CS} = 3V$
I _{CS-}	"Low" CS Bias Current	26	_	_	1.0		$V_{CS} = 0V$
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	27	8.5	9.2	10.0		
V _{BSUV} -	V _{BS} Supply Undervoltage Negative Going Threshold	28	7.7	8.3	9.0	,,	
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going Threshold	29	8.3	8.9	9.6	V	
V _{CCUV} -	V _{CC} Supply Undervoltage Negative Going Threshold	30	7.3	8.0	8.7		
I _{ERR}	ERR Timing Charge Current	31	65	100	130	μΑ	V _{IN} = 5V, V _{CS} = 3V ERR < V _{ERR+}
I _{ERR+}	ERR Pull-Up Current	32	8.0	15	_	mA	$V_{IN} = 5V, V_{CS} = 3V$ ERR > V_{ERR+}
I _{ERR} -	ERR Pull-Down Current	33	16	30	_		V _{IN} = 0V
I _{O+}	Output High Short Circuit Pulsed Current	34	1.0	1.6		А	$V_O = 0V, V_{IN} = 5V$ PW $\leq 10 \mu s$
I _{O-}	Output Low Short Circuit Pulsed Current	35	2.0	3.3	_] ^`	$V_{O} = 15V, V_{IN} = 0V$ PW \le 10 \mus

International **TOR** Rectifier

Functional Block Diagram

Lead Definitions

Description				
Logic and gate drive supply				
Logic input for gate driver output (HO), in phase with HO				
Serves multiple functions; status reporting, linear mode timing and cycle by cycle logic shutdown				
Logic ground				
High side floating supply				
High side gate drive output				
High side floating supply return				
Current sense input to current sense comparator				

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Waveform Definitions

Figure 4. ERR Shutdown Waveform Definitions

Figure 5. CS Shutdown Waveform Definitions

Figure 6. CS to ERR Waveform Definitions

Figure 7A. Turn-On Time vs. Temperature

Figure 7B. Turn-On Time vs. Voltage

Figure 8A. Turn-Off Time vs. Temperature

Figure 8B. Turn-Off Time vs. Voltage

Figure 9A. ERR to Output Shutdown vs. Temperature

Figure 9B. ERR to Output Shutdown vs. Voltage

Figure 10A. Turn-On Rise Time vs. Temperature

Figure 10B. Turn-On Rise Time vs. Voltage

Figure 11A. Turn-Off Fall Time vs. Temperature

Figure 11B. Turn-Off Fall Time vs. Voltage

Figure 12A. CS to Output Shutdown vs. Temperature

Figure 12B. CS to Output Shutdown vs. Voltage

Figure 13A. CS to ERR Pull-Up vs. Temperature

Figure 13B. CS to ERR Pull-Up vs. Voltage

Figure 14A. Logic "1" Input Threshold vs. Temperature

Figure 14B. Logic "1" Input Threshold vs. Voltage

Figure 15A. Logic "0" Input Threshold vs. **Temperature**

Figure 15B. Logic "0" Input Threshold vs. Voltage

Figure 16A. CS Input Threshold (+) vs. Temperature

Figure 17A. CS Input Threshold (-) vs. Temperature

Figure 18A. High Level Output vs. Temperature

Figure 16B. CS Input Threshold (+) vs. Voltage

Figure 17B. CS Input Threshold (-) vs. Voltage

Figure 18B. High Level Output vs. Voltage

International **TOR** Rectifier

Figure 19A. Low Level Output vs. Temperature

Figure 19B. Low Level Output vs. Voltage

Figure 20A. Offset Supply Current vs. Temperature

Figure 20B. Offset Supply Current vs. Voltage

Figure 21A. V_{BS} Supply Current vs. Temperature

Figure 21B. V_{BS} Supply Current vs. Voltage

International

TOR Rectifier

IR2125(S)

Figure 22A. $V_{\mbox{\scriptsize CC}}$ Supply Current vs. Temperature

Figure 22B. V_{CC} Supply Current vs. Voltage

Figure 23A. Logic "1" Input Current vs. Temperature

Figure 23B. Logic "1" Input Current vs. Voltage

Figure 24A. Logic "0" Input Current vs. Temperature

Figure 24B. Logic "0" Input Current vs. Voltage

IR2125(S) International TOR Rectifier

Figure 25A. "High" CS Bias Current vs. Temperature

Figure 26A. "Low" CS Bias Current vs. Temperature

Figure 27. V_{BS} Undervoltage (+) vs. Temperature

Figure 25B. "High" CS Bias Current vs. Voltage

Figure 26B. "Low" CS Bias Current vs. Voltage

Figure 28. $V_{\mbox{\footnotesize{BS}}}$ Undervoltage (-) vs. Temperature

Figure 29. V_{CC} Undervoltage (+) vs. Temperature

Figure 30. V_{CC} Undervoltage (-) vs. Temperature

Figure 31A. ERR Timing Charge Current vs.
Temperature

Figure 31B. ERR Timing Charge Current vs. Voltage

Figure 32A. ERR Pull-Up Current vs. Temperature

Figure 32B. ERR Pull-Up Current vs. Voltage

International **IOR** Rectifier

Figure 33A. ERR Pull-Down Current vs.Temperature

Figure 33B. ERR Pull-Down Current vs. Voltage

Figure 34A. Output Source Current vs. Temperature

Figure 34B. Output Source Current vs. Voltage

Figure 35A. Output Sink Current vs.Temperature

Figure 35B. Output Sink Current vs. Voltage

International

TOR Rectifier

IR2125(S)

Figure 36A. Turn-On Time vs. Input Voltage

Figure 36B. Turn-Off Time vs. Input Voltage

Figure 37. Maximum V_S Negative Offset vs. Supply Voltage

IR2125(S) International TOR Rectifier

Case outlines

WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 10/7/2003