Universidade de São Paulo Escola Politécnica - Engenharia de Computação e Sistemas Digitais

Self-Supervised and Semi-Supervised Learning

Prof. Artur Jordão

Introduction

- Deep learning has driven unprecedented progress in various cognitive applications
 - However, most of them operate in a supervised learning scenario
- The supervised learning paradigm requires manual data labeling, which is both limited in quantity and labor-intensive
- Self-Supervised and Semi-Supervised learning (SSL) extend supervised learning to massive amounts of unlabeled data
- The SSL learning paradigm is key for training foundation models

Preliminaries

- Let $\mathcal{D}_L = \left\{ (x_i^l, y_i^l) \right\}_{i=1}^{N_L}$ be a labeled dataset
- Let $\mathcal{D}_U = \{x_i^u\}_i^{N_U}$ be an unlabeled dataset
- Since unlabeled data are abundant, in practice, $N_L \ll N_U$

Preliminaries

- A core idea of SSL is to use large- and web-scale unlabeled data, \mathcal{D}_U , to train a model to learn **meaningful representations** that can be effectively **transferred** to downstream tasks (i.e., \mathcal{D}_L)
 - Learn meaningful and task-agnostic latent representations

SSL Benchmark

- Self-Supervised and Semi-Supervised Learning Benchmark (Wang. et al., 2022)
 - SSL

Problem Definition

- Self-supervised learning introduces **pseudo-label** generation, $\mathcal{P}(\cdot)$, to label data
- Given $\mathcal{D}_U = \{x_i^u\}_i^{N_U}$, the problem becomes one of automatically generating labels y_i^u
 - We can obtain y_i^u using \mathcal{P} : $y_i^u = \mathcal{P}(x_i^u)$
- Therefore, we can generate a (self-)supervised dataset (\mathcal{D}_S) in terms of
 - $\mathcal{D}_S = \{(x_i^u, \mathcal{P}(x_i^u))\}_i^{N_U}$
- Finally, we can train a model ${\mathcal F}$ using the **supervised paradigm on {\mathcal D}_S**

Self-Supervised in Computer Vision

Self-Supervised Learning

Supervised Scenario

y = dog

y = mushroom

y = elephant

Self-supervised Scenario

 $y = 90^{\circ}$

 $y = 270^{\circ}$

Gidaris et al. Unsupervised Representation Learning by Predicting Image Rotations. International Conference on Learning Representations (ICLR), 2018

Hendrycks et al. Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty. Neural Information Processing Systems (NeurIPS), 2019

Self-Supervised in Computer Vision

Self-Supervised Learning

Supervised Scenario

Self-supervised Scenario

Self-Supervised for Large Language Models

- Language Modeling
 - Predict the next token
- Masked Language Modeling
 - Mask out some tokens from the input sentences and then train the model to predict the masked tokens using the surrounding context
- Denoising Autoencoder
 - Take a partially corrupted input and aim to recover the original, undistorted input
- Next Sentence Prediction
 - Train the model to distinguish whether two input sentences are continuous segments from the training corpus

Loss Function and Pre-Training

- When using SSL learning, we can combine supervised and unsupervised losses
- Suppose $\mathcal{L}(\cdot,\cdot)$ be a loss function (i.e., categorical cross-entropy or ℓ_2)
- Assume \mathcal{B}_S and \mathcal{B}_U be batches of labeled and unlabeled data
- Supervised loss $\mathcal{L}_S = \frac{1}{\mathcal{B}_S} \sum \mathcal{L}(\mathcal{F}(x_i^l, \theta), y_i^l)$
- Unsupervised loss $\mathcal{L}_U = \frac{1}{\mathcal{B}_U} \sum \mathcal{L}(\mathcal{F}(x_i^u, \theta), \mathcal{P}(x_i^u))$
- Total loss $\mathcal{L}_s + \mathcal{L}_U$

Loss Function and Pre-Training

- Instead of learning with $\mathcal{L}_{s}+\mathcal{L}_{U}$, we can pre-train a model on unlabeled data using self-supervised learning only
 - Pre-train then Tune paradigm
- Then, we fine-tune the model on labeled data
- Pre-train using self-supervised learning can improve several aspects of model robustness (Hendricks et al., 2019)

Problem Definition

- Semi-supervised learning employs **pre-trained models**, i.e., $\mathcal{F}_A(\cdot)$, to generate labels
- Suppose we have a well-trained model \mathcal{F}_A using the supervised paradigm on \mathcal{D}_L
- Given $\mathcal{D}_U = \{x_i^u\}_i^{N_U}$, the problem becomes generating labels y_i^u
 - We can obtain y_i^u using \mathcal{F}_A : $y_i^u = \mathcal{F}_A(x_i^u)$
- Therefore, we can generate a semi-supervised dataset (\mathcal{D}_S) in terms of
 - $\mathcal{D}_S = \{(x_i^u, \mathcal{F}_A(x_i^u))\}_i^{N_U}$
- Finally, we can train a novel model \mathcal{F}_B using the supervised paradigm on \mathcal{D}_S

Limitations and Confirmation Bias

- Semi-supervised learning requires additional computational cost to label \mathcal{D}_U
 - We need to forward \mathcal{D}_U through the pre-trained model
 - If \mathcal{D}_U is a web-scale dataset, the forward pass could become computationally prohibitive
- The main problem of SSL is how to generate accurate pseudo labels
- Overfitting to incorrect pseudo-labels predicted by the network is known as confirmation bias (Li et al., 2024)

Self-Supervised Dataset Distillation

- Lee et al. (2024) proposed the self-supervised dataset distillation problem
- The central idea is to **accelerate** the pre-training of a model by utilizing the **distilled** dataset in place of the full unlabeled dataset \mathcal{D}_U for pre-training m_{samples}

Bibliography

Bibliography

- Hendrycks et al., Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty. Neural Information Processing Systems (NeurIPS), 2019
- Chen et al. Big Self-Supervised Models are Strong Semi-Supervised Learners.
 Neural Information Processing Systems (NeurIPS), 2020

Bibliography

- Lee et al. Self-supervised Dataset Distillation for Transfer Learning. International Conference on Learning Representations (ICLR), 2024
- Li et al. SemiReward: A General Reward Model For Semi-supervised Learning. International Conference on Learning Representations (ICLR), 2024

