

Workshop 3

COMP90051 Natural Language Processing Semester 1, 2020

Recording

Questions

Materials

- Download files
 - Workshop-03.pdf
 - 03-classification.ipynb
 - 04-ngram.ipynb
- From Canvas Modules Workshops Worksheets/ Notebooks

Learning Outcomes

- Text classification
 - Definition, Applications, Challenge ...
 - Algorithms
- N-gram language model
 - Different N
 - Smooth vs Non-Smooth
 - Back-off and Interpolation

Text Classification

1. What is **text classification**? Give some examples.

- 1. What is **text classification**? Give some examples.
- Text classification is the task of classifying text documents into different labels.
 - Input

Output

Text classification

- 1. What is **text classification**? Give some examples.
- Text classification is the task of classifying text documents into different labels.
 - Input
 - a document d
 - a fixed set of labels C
 - Output
 - A predicted class $c \in C$

Sentiment Analysis

Document d: I like this movie.

Labels: Positive, Negative

- 1. What is **text classification**? Give some examples.
- Examples

- 1. What is **text classification**? Give some examples.
- Examples
 - Topic classification
 - Sentiment analysis
 - Authorship attribution
 - Native-language identification
 - Automatic fact-checking

Text classification

(a) Why is text classification generally a difficult problem? What are some hurdles that need to be overcome?

Text classification

- (a) Why is text classification generally a difficult problem? What are some hurdles that need to be overcome?
- Problem
 - Document representation
 - BOW

Bag-Of-Words

- Document A: I like natural language processing
- Document B: I am playing a game
- Document C: The aims for this subject is to develop an understanding of natural language processing

	I	Like	Natura I	Langua ge	Processin q	Am	Playing	А	Game	The	aims	For	 Of
Doc A	1	1	1	1	1	0	0	0	0	0	0	0	 0
Doc B	1	0	0	0	0	1	1	1	1	0	0	0	 0
Doc C	1	0	1	1	1	0	0	0	0	1	1	1	 1

What is the length of vectors?

- (a) Why is text classification generally a difficult problem? What are some hurdles that need to be overcome?
- Document representation
 - BOW
- Feature selection
- Sparse data problem

Classifier

• (b) Consider some (supervised) text classification problem, and discuss whether the following (supervised) machine learning models would be suitable:

Classifier

- (b) Consider some (supervised) text classification problem, and discuss whether the following (supervised) machine learning models would be suitable:
 - i. k-Nearest Neighbour using Euclidean distance
 - ii. k-Nearest Neighbour using Cosine similarity
 - iii. Decision Trees using Information Gain
 - iv. Naive Bayes
 - v. Logistic Regression
 - vi. Support Vector Machines

Classifier

- It depends on
 - Number of Features
 - Number of classes
 - Number of instances
 - Underlying assumption
 - Complexity
 - Speed
 - ...

KNN

 Classify based on majority class of k-nearest training examples in feature space

High-dimensionality problems

Euclidean distance vs Cosine similarity

- Doc A: 11111000000000000000
- Doc B: 1000011110000000000
- Doc C: 101110000111111111111
- Euclidean distance:

•
$$d(q,p) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

- Cosine similarity
 - $c(a,b) = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}},$

Decision Tree

Construct a tree where nodes correspond to tests on individual

features

- Feature selection
- Information Gain
 - It tends to prefer rare features

Naive Baye

Finds the class with the highest likelihood under Bayes law

Assumption of NB

Naive Baye

Finds the class with the highest likelihood under Bayes law

- Assumption of NB
 - The conditional independence of features and classes
- Sensitive to a large feature set

Logistic Regression

A linear classifier

- Relaxes the conditional independence
- Handle large numbers of mostly useless features

Support Vector Machines

Finds hyperplane which separates the training data

with maximum margin

Multiple classes

Language model

Language model

- What is language model
 - Models that assign probabilities to sequences of words
- 2. For the following "corpus" of two documents:
 - 1. how much wood would a wood chuck chuck if a wood chuck would chuck wood
 - 2. a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood
 - (a) Which of the following sentences: a wood could chuck; wood would a chuck; is more probable, according to:
 - i. An unsmoothed uni-gram language model?
 - ii. A uni-gram language model, with Laplacian ("add-one") smoothing?
 - iii. An unsmoothed bi-gram language model?
 - iv. A bi-gram language model, with Laplacian smoothing?
 - v. An unsmoothed tri-gram language model?
 - vi. A tri-gram language model, with Laplacian smoothing?