

M2103 – Technologies Internet

Licence professionnelle Métiers de l'Electronique : Communication, Systèmes Embarqués (CSE)

*En base aux slides « M2103 – Technologies Internet », Dana MARINCA, 2017

Introduction

Le modèle d'Interconnexion des Systèmes Ouverts (OSI)

Modèle conceptuel qui caractérise et normalise la façon dont différents composants logiciels et matériels impliqués dans une communication réseau

Modèle OSI vs. TCP/IP Protocoles

Le modèle TCP/IP et le modèle OSI sont tous deux des modèles conceptuels utilisés pour la description de toutes les communications réseau

Comment les données sont-elles traitées pendant la transmission ?

Les données circulent des couches supérieures aux couches inférieures, chaque couche ajoute un en-tête / pied de page au PDU

Adressage IPv4

M2103 - Chapitre 1

Content

Adressage dans l'Internet (IPv4)

Format de l'adresse IPv4

Les classes d'adressage

Adresses IP particulières

Adresses privées et NAT

Les sous-réseaux

Adressage géographique (CIDR)

Internet : des réseaux interconnectés

L'INTERNET est constitué de plusieurs réseaux interconnectés

- Postes de travail
- Liens (supports physiques)
- Equipements de routage (routeurs) et commutation (commutateurs)

Vue utilisateur

Vue réelle du réseau

Protocole IP

- L'hétérogénéité d'Internet est assurée par le protocole IP qui définit une structure de réseau logique cohérente et indépendante des technologies d'accès réseau (ex. Ethernet, WiFi)
- Le protocole IP fait transiter des informations d'un réseau à un autre par des nœuds spécialisés : routeurs (appelés aussi passerelles ou gateway)

Protocole IP

Une machine doit pouvoir être identifiée par:

- <u>un nom</u>: hostname mnémotechnique pour les utilisateurs
- une adresse: identificateur universel de la machine,
- <u>une route</u> : précisant comment la machine peut être atteinte

Protocole IP

- Fournit un service de communication universel permettant à toute machine de communiquer avec toute autre machine de l'interconnexion
- Existe en 2 versions
 - IPv4 : définit des adresses logiques sur 4 octets
 - IPv6 : définit des adresses logiques sur 16 octets

Les adresses IPv4

Les adresses réseaux IP

- sont distribuées par **ICANN** (Internet Corporation for Assigned Names and Numbers), un organisme international à but non lucratif
- ICANN est représenté au niveau de chaque continent par 5 RIR (Regional Internet Registries)
- Le RIR européen est RIPE NCC (Réseaux IP Européens Network Coordination Centre)
- Les membres du RIPE NCC sont appelés les LIR (Local Internet Registries)
- Les LIR sont les <u>opérateurs de réseau</u> ou des <u>fournisseurs d'accès</u> <u>Internet</u> (FAI)

Format de l'adresse IPv4

 L'adresse IPv4 est représentée sur 4 octets (32 bits) représentée par 4 valeurs décimales [0-255] séparées par un point

Exemple: 193.51.36.15

Une adresse IPv4 est composée de deux champs:

NET_ID : identifiant du réseau IP (utilisé pour le routage)

HOST_ID : identifiant de la machine dans le réseau

<u>Exemple</u>: Adresse IP: 128.10. 2. 30 → NET_ID = 128.10 | HOST_ID = 2.30

Masque réseau

Le masque de réseau (netmask)

Identifie la partie NET_ID et HOST_ID dans une adresse IP

Exemple: Adresse IP: 128.10. 2. 30 Masque: 255.255.0.0

Adresse IP binaire 10000000 00001010 00000010 00011110 Masque réseaux 11111111 11111111 00000000 00000000 AND binaire Adresse réseau 10000000 00001010 00000000 00000000 HOST_ID **NET ID** Adresse réseau 128.10.0.0 Réseau **NET ID = 128.10.** HOST ID = 2.30logique IP

Préfix réseau

Le masque de réseaux peut être exprimé sous la forme « /x » (où x est un entier) ce qui correspond à x bits positionnés à 1 (de gauche à droite)

Exemples

- Préfix réseau /18
 11111111. 11111111.11000000.00000000 =>255.255.192.0

Adresse de réseau

L'adresse qui fait référence au réseau

- Tous les PCs de ce réseau ont la même partie NET_ID = 10.0.0.
- La partie HOST_ID a tous les bits positionnés à 0 : HOST_ID =0

Adresse de diffusion

Une adresse spécifique, utilisée pour envoyer des données à tous les hôtes du réseau

- Les bits NET_ID = 10.0.0.
- Les bits de la partie HOST_ID sont positionnés à 1 : HOST_ID = 255

Adresse hôte

Les adresses attribuées aux périphériques finaux sur le réseau

- <u>La plus petite adresse hôte</u> aura tous les bits de la partie HOST_ID à 0 sauf le dernier bit qui sera à 1 :
 - Ex: HOST_ID (0000 0001)₂=(1)₁₀; adresse IP complète: 10.0.0.1
- <u>La plus grande adresse hôte</u> aura tous les bits HOST_ID à 1 sauf le dernier bit qui sera $0 : (1111 \ 1110)_2 = (254)_{10}$
 - Ex: HOST_ID (1111 1110)₂= $(254)_{10}$; adresse IP complète: 10.0.0.254

Calcul des différentes adresses pour un réseau donné

Le masque de réseaux est « /24 » ce qui correspond à 24 bits des 32 bits (de gauche vers la droite) positionnés à 1

11111111. 11111111111111.00000000 => 255.255.255.0

		· ·	Adresse de diffusion Bits de tous les hôtes (Rouge) = 1
172.16.4.0 /24	172.16.4.0	172.16.4.1 - 172.16.4.254	172.16.4.255
Représentation binaire 24 bits réseau			10101100.00010000. 00000100.11111111
		10101100.00010000.00000100.11111110	

Calcul des différentes adresses pour un réseau donné

Étape 1

Étape 2

Étape 3

Étape 4

Les classes d'adressage IPv4

© Pearson Education France

Classe	Adresses de réseau	Nombre de réseaux	Nombre de machines
Α	1.0.0.0 à 126.0.0.0	126	16 777 214
В	128.0.0.0 à 191.255.0.0	16382	65 534
С	192.0.0.0 à 223.255.255.0	2 097 150	254

Classe	Adresses de réseau	Nombre d'adresses de groupes
D	224.0.0.0 à 239.255.255.0	268 435 455
E	240.0.0.0 à 247.255.255255	

Les classes d'adressage IPv4

	31		24 2	3 16	15	8	7	0
Classe A	0 Id	. rése	au (7 bits)	Ide	entificateur	hôte (24 bit	s)	
Classe B	1 0	I	dentificateur	réseau (14 bits)	Ide	entificateur l	hôte (16 bits)	
Classe C	1 1	0 Identificateur réseau (21 bits) Id. hôte (8 t		Id. <u>hôte</u> (8 bits))			
Classe D	1 1	1 0	Adresse multicast (28 bits)					
Classe E	1 1	1 1	Format indéfini (28 bits)					

	Classe A	Classe B	Classe C
Premier réseau	1.x.x.x	128.1. <u>x.x</u>	192.0.1.x
Demier réseau	126.x.x.x	191.254.x.x	223.255.254.x
Nombre de réseaux	126	16 382	2 097 150
Réseaux réservés à un usage privé	10. <u>x.x.x</u>	172.16.x.x à 172.31.x.x	192.168.0.x à 192.168.255.x
Adresse du réseau	x.0.0.0	x.x.0.0	<u>x.x.x</u> .0
Adresse de diffusion du réseau	x.255.255.255	x.x.255.255	x.x.x.255
Première machine	x.0.0.1	x.x.0.1	x.x.x.1
Demière machine	x.255.255.254	x.x.255.254	x.x.x.254
Nombre de machines	16 777 214	65534	254
Masque de sous-réseau par défaut	255.0.0.0	255.255.0.0	255.255.255.0

Adresses IP particulières

- □ Adresses de diffusion
 - ✓ Adresse de <u>diffusion locale</u> :
 - > 255.255.255.255 : adresse de broadcast sur le réseau IP local (ne dépasse pas le routeur).
 - ✓ Adresse de <u>diffusion</u> dans un réseau donné <u>NET_ID</u> :
 - [NET_ID][111...111]: adresse de broadcast dirigée vers le réseau de numéro NET_ID.
 - Exemple: 132.227.255.255 = diffusion dans le réseau 132.227.0.0.
- ☐ Rebouclage local (loopback): 127.x.y.z
 - ✓ Généralement 127.0.0.1 (localhost)
 - ✓ Permet de tester la pile TCP/IP locale sans passer par une interface matérielle
- L'adresse 0.0.0.0
 - ✓ Utilisée par le protocole RARP en tant qu'@IP de démarrage
 - ✓ Adresse de la route par défaut dans les routeurs

Configuration réseau

Pour une machine d'extrémité, il suffit d'indiquer

Problème des adresses IPv4

Problèmes liés aux classes d'adressage :

Gaspillage

Saturation dans les routeurs

Pénurie des adresses encore libres

Solutions?

Définition des sous-réseaux (subnetting)

Adresses privées et publiques

Adressage CIDR (Classless Inter-Domain Routing)

IPv6 (augmenter la taille du champ adresse : 128 bits)

Adressage sous-réseaux

Un site ne contient pas un réseau mais un ensemble de réseaux: le réseau est scindé en sous-réseaux

ex : Le réseau de l'IUT de Velizy est composé de plusieurs sous-réseaux

Le préfixe de réseau : « /24 »

 Une représentation différente pour exprimer le masque de réseau identifie la partie NET_ID et HOST_ID dans une adresse IP la longueur de préfix correspond au nombre de bits de la partie NET_ID

Par exemple:

- 172.16.4.30/24 préfix /24 netmask 255.255.255.0
- 172.16.4.30/25 préfix /25 netmask 255.255.255.128
- 172.16.4.30/26 préfix /26 netmask 255.255.255.192

L'impact du préfixe sur une adresse réseau : 172.16.4.0 /24

Utilisation de différents préfixes pour le réseau 172.16.4.0

Réseau	Adresse réseau Bits de tous les hôtes (Rouge) = 0	Plage d'hôtes Représente toutes les combinaisons de bits d'hôtes à l'exception de celles composées uniquement de 0 ou de 1	Adresse de diffusion Bits de tous les hôtes (Rouge) = 1	
172.16.4.0 /24	172.16.4.0	172.16.4.1 - 172.16.4.254 172.16.4.255		
Représentation binaire 24 bits réseau	10101100.00010000. 00000100.00000000	10101100.00010000.00000100.00000001 10101100.00010000.00000100.00000010 10101100.00010000.00000100.00000011	10101100.00010000. 00000100.11111111	
		10101100.00010000.00000100.11111110		
172.16.4.0 /25	172.16.4.0	172.16.4.1 - 172.16.4.126	172.16.4.127	
172.16.4.0 /26	172.16.4.0	172.16.4.1 - 172.16.4.62 172.16.4.63		
172.16.4.0 /27	172.16.4.0	172.16.4.1 - 172.16.4.30	172.16.4.31	

TOUS LES PRÉFIXES DE LA MÊME ADRESSE RÉSEAU

CHAQUE PRÉFIXE DE DIFFÉRENTES ADRESSES DE DIFFUSION

CHAQUE PRÉFIXE D'UN NOMBRE D'HÔTES DIFFÉRENT 254 hôtes

L'impact du préfixe sur une adresse réseau : 172.16.4.0 /25

	Utilisation de diffe	érents préfixes pour le réseau 172.16.4.0		
Réseau	Adresse réseau Bits de tous les hôtes (Rouge) = 0	Plage d'hôtes Représente toutes les combinaisons de bits d'hôtes à l'exception de celles composées uniquement de 0 ou de 1	Adresse de diffusion Bits de tous les hôtes (Rouge) = 1	
172.16.4.0 /24	172.16.4.0	172.16.4.1 - 172.16.4.254	172.16.4.255	
172.16.4.0 /25	172.16.4.0	172.16.4.1 - 172.16.4.126	172.16.4.127	
Représentation binaire 25 bits réseau	10101100.00010000. 00000100.00000000	10101100.00010000.00000100.0000001 10101100.00010000.00000100.00000010 10101100.00010000.00000100.00000011	10101100.00010000. 00000100.01111111	
		10101100.00010000.00000100.01111110		
172.16.4.0 /26	172.16.4.0	172.16.4.1 - 172.16.4.62	172.16.4.63	
172.16.4.0 /27	172.16.4.0	172.16.4.1 - 172.16.4.30	172.16.4.31	
TOUS LES PRÉFIXES D MÊME ADRESSE RÉS		DIFFÉR	DUE PRÉFIXE DE ENTES ADRESSES E DIFFUSION	
	CHAQUE PRÉFIX	E D'UN NOMBRE D'HÔTES DIFFÉRENT 126 hôtes		

L'impact du préfixe sur une adresse réseau : 172.16.4.0 /26

Utilisation de différents préfixes pour le réseau 172.16.4.0

Réseau	Adresse réseau Bits de tous les hôtes (Rouge) = 0	Plage d'hôtes Représente toutes les combinaisons de bits d'hôtes à l'exception de celles composées uniquement de 0 ou de 1	Adresse de diffusion Bits de tous les hôtes (Rouge) = 1
172.16.4.0 /24	172.16.4.0	172.16.4.1 - 172.16.4.254	172.16.4.255
172.16.4.0 /25	172.16.4.0	172.16.4.1 - 172.16.4.126 172.16.4.12	
172.16.4.0 /26	172.16.4.0	172.16.4.1 - 172.16.4.62	172.16.4.63
Représentation binaire 26 bits réseau	10101100.00010000. 00000100.00 <mark>000000</mark>	10101100.00010000.00000100.00000011 10101100.00010000.00000100.00000010 10101100.00010000.00000100.00000011	
		10101100.00010000.00000100.00111110	
172.16.4.0 /27	172.16.4.0	172.16.4.1 - 172.16.4.30	172.16.4.31

TOUS LES PRÉFIXES DE LA MÊME ADRESSE RÉSEAU CHAQUE PRÉFIXE DE DIFFÉRENTES ADRESSES DE DIFFUSION

CHAQUE PRÉFIXE D'UN NOMBRE D'HÔTES DIFFÉRENT 62 hôtes

L'impact du préfixe sur une adresse réseau : 172.16.4.0 /27

Utilisation de différents préfixes pour le réseau 172.16.4.0

Réseau	Adresse réseau Bits de tous les hôtes (Rouge) = 0	Plage d'hôtes Représente toutes les combinaisons de bits d'hôtes à l'exception de celles composées uniquement de 0 ou de 1	Adresse de diffusion Bits de tous les hôtes (Rouge) = 1
172.16.4.0 /24	172.16.4.0	172.16.4.1 - 172.16.4.254	172.16.4.255
172.16.4.0 /25	172.16.4.0	172.16.4.1 - 172.16.4.126	172.16.4.127
172.16.4.0 /26	172.16.4.0	172.16.4.1 - 172.16.4.62 172.16.4.63	
172.16.4.0 /27	172.16.4.0	172.16.4.1 - 172.16.4.30	172.16.4.31
Représentation binaire 27 bits réseau	10101100.00010000. 00000100.000 <mark>00000</mark>	10101100.00010000.00000100.00000001 10101100.00010000.00000100.00000010 10101100.00010000.00000100.00000011	10101100.00010000. 00000100.00011111
		10101100.00010000.00000100.00011110	

TOUS LES PRÉFIXES DE LA MÊME ADRESSE RÉSEAU CHAQUE PRÉFIXE DE DIFFÉRENTES ADRESSES DE DIFFUSION

CHAQUE PRÉFIXE D'UN NOMBRE D'HÔTES DIFFÉRENT 30 hôtes

Les sous-réseaux (1)

Création des sous-réseaux sous la partie « HOST_ID »

- La partie « HOST_ID » devient « SUBNET_ID + HOST_ID »
- Autrement dit: le numéro de machine devient le « numéro de sousréseau - numéro de la machine dans ce sous-réseau »
- Nombre de bits alloués au numéro de sous-réseau est configurable par le masque réseau (ou masque de sous-réseau) :

✓ On prend quelques bits de la partie réservée au HOST_ID pour distinguer les sous-réseaux

√ transparent vis-à-vis de l'expéditeur

Exemple de sous-réseaux

- Adresse IP hôte: 192,45,35,9
- Masque: 255.255.240.0 (préfixe /20)
- SUBNET_ID (adresse sous-réseau): 192.45.32.0
- HOST_ID: 3.9

IP	192 11000000	45 00101101	35 00100011	9
мѕк	255 1111111111	255 1111111111	240 1111 <mark>0000</mark>	0000000
SsR	192 11000000	45 00101101	32 00100000	0
Hôte	0	0	3 0000 <mark>0011</mark>	9 00001001

Exemple de sous-réseaux

L'adresse IP 134.214.0.0 est attribuée à une entreprise, cette adresse est de classe B car en binaire elle représente:

1000 0110.1101 0110.0000 0000.0000 0000 dono

16 bits (2 octets) sont réservés à la partie **NET_ID**

16 bits (2 octets) sont réservés à la partie HOST_ID

Ce réseau est divisée en 62 sous-réseaux :

- 64 = 2^6 => on prend 6 bits de la partie HOST_ID pour créer la partie SUBNET_ID
- La partie **HOST_ID** aura 16 bits 6 bits = 10 bits

Netmask = 255.255.252.0 ou /22 (22=16+6)

On crée les sous-réseaux : 134.214.4.0, 134.214.8.0, 134.214.12.0, ..., 134.214.248.0

Exemple de sous-réseaux

En utilisant l'adresse réseau et le masque de sous-réseau définissez la place des adresses hôtes, l'adresse de diffusion et l'adresse de sous-réseau suivante

Adresse réseau en décimale	10	29	96	0
Masque de sous-réseau en décimale	255	255	224	o
Adresse réseau en binaire	00001010	00011101	01100000	00000000
Masque de sous-réseau en binaire	11111111	11111111	11100000	00000000
Première adresse IP d'hôte utilisable en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet
Dernière adresse IP d'hôte utilisable en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet
Adresse de diffusion en décimale		Deuxième octet	Troisième octet	Quatrième octet
Prochaine adresse réseau en décimale		Deuxième octet	Troisième octet	Quatrième octet

Les sous-réseaux

Sur le PC source il faut déterminer quel traitement appliquer à un paquet : envoi dans le réseaux local ou à la passerelle

Détermination du sous-réseau : ET logique avec le netmask

Le **netmask** permet de savoir si la machine source et destination sont sur le même sous-réseau

L'adressage permet de savoir si elles sont sur un réseau privé ou publique

Adresses publiques

UNIVERSITE PARIS-SACLAY

Adresses publiques et privées

Les adresses privées

UNIVERSITE PARIS-SACLAY

Les adresses privées

Adresses privées (RFC 1918)

- Des adresses qui ne sont pas routables sur l'Internet
- Elles sont attribuées dans les réseaux locaux

```
Classe A : 10.0.0.0/8 -> de 10.0.0.0 à 10.255.255.255 (1 réseau)

Classe B : 172.16.0.0/12 -> de 172.16.0.0 à 172.31.255.255 (16 réseaux)

Classe C : 192.168.0.0/16 -> de 192.168.0.0 à 192.168.255.255 (256 réseaux)
```

- Si une entreprise qui utilise des adresses privées souhaite tout de même disposer d'une connexion à l'Internet, il faut:
 - ✓ Demander une adresse publique au FAI
 - ✓ Les adresses privées attribuées aux ordinateurs de l'entreprise doivent être associées à une adresse publique par le mécanisme de NAT (Network Address Translation)

Adresses privées

Classe A: de 10.0.0.0 à 10.255.255.255 (/8; 1 réseau)

Classe B: de 172.16.0.0 à 172.31.255.255 (/12; 16 réseaux)

Classe C: de 192.168.0.0 à 192.168.255.255 (/16 ; 256 réseaux)

CIDR Adressage géographique

Classless Inter-Domain Routing – Routage inter-domaine sans classe (RFC 1519, 1466)

- Pour répondre (partiellement) aux problèmes de pénurie d'adresses de classe B et d'explosion des tables de routage
- Idée: allouer les adresses IP restantes sous la forme de blocs de taille variable (sans considération de classe) en tenant compte de la localisation géographique
 - ✓ Évite le gaspillage : si un site a besoin de 2000 adresses, 2048 lui sont attribués
 - ✓ Agrégation de routes (plusieurs réseaux peuvent être regroupés sous le même identifiant)
 - ✓ Les tables de routage doivent contenir un masque de sous-réseau pour l'acheminement (il n'y a pas de masque implicite indiqué par la classe)

Exemple d'agrégation de 2 adresses de classe C

- Une entreprise a besoin de 512 adresses IP → deux adresses de classe C
 - ✓ 193.127.32.0 netmask 255.255.255.0
 - ✓ 193.127.33.0 netmask 255.255.255.0
- Les réseaux 193.127.32.0 et 193.127.33.0 sont agrégés en 193.127.32.0 netmask 255.255.254.0
- Ce qui se note 193.127.32.0/23 (préfixe = nb bits du masque à 1)
- Dans une table de routage, cela représente les deux réseaux 193.127.32.0 et 193.127.33.0

193.127.32.0	11000001.01111111.00100000.00000000
193.127.33.0	11000001.01111111.00100001.00000000
193.127.32.0 / 23	11000001.011111111.0010000 0.00000000

Allocation géographique des adresses de classe C restantes

- Europe (194-195)
- Amérique du nord (198-199)
- Amérique du sud (200-201)
- Pacifique (202-203)

Remarque: 194 et 195 ont les 7 premiers bits identiques donc il suffit d'indiquer aux routeurs (hors Europe) : 194.0.0.0/7

194 => 1100 0010 195 => 1100 0011

Conclusions

- Il n'y a plus de notion de classes et de sous-réseaux
- Une plage d'adresses est désignée par:
 - Un « prefixe réseau » : des bits désignant le réseau
 - Un « host-ID » : des bits désignant la machine
 - →un réseau est désigné par une adresse IP et une longueur de préfixe réseau
 - 132.227.0.0 n'a pas de sens
 - 132.227.0.0/16 ou 132.227.0.0/23 ont un sens
- Au cas ou plusieurs routes sont dans une table, la route de plus long préfixe est la plus précise

Exemple: Un routeur reçoit le datagramme vers la destination 136.1.6.5 Dans la table de routage il y a 3 routes vers les destinations suivantes :

136.1.6.5: 10001000 00000001 00000110 00000101

- **-** 136.1.0.0/16 : 10001000 00000001
- 136.1.4.0/22 : 10001000 00000001 000001
- 136.1.6.0/23 : 10001000 00000001 0000011
- → Les trois routes conduisent au but
- → Le routeur choisit la route 136.1.6.0/23.

Numérotation des sous-réseaux

Peut-on mettre dans un SUBNET_ID tous les bits à 1 ou tous les bits à 0 ?

Exemple: 10.0.0.0 avec netmask 255.192.0.0 (2 bits pour numéroter les sous-réseaux)

- →10.0.0.0, 10.64.0.0, 10.128.0.0, <u>10.192.0.0</u>
- La RFC 950 (1985 définition des SR) dit que cela n'est pas conseillé car : 10.0.0.0 désigne t-il le réseau 10.0.0.0 ou le sous-réseau ? 10.255.255.255 désigne t-il le broadcast sur le réseau 10.0.0.0 ou sur le sous réseau 10.192.0.0 ?
- Il n'y a plus d'ambiguïté avec CIDR (RFC 1992 1995) 10.0.0.0/8 et 10.0.0.0/10 ne désignent pas la même chose
- En pratique, on peut utiliser 10.0.0.0 et 10.192.0.0 mais il n'est pas conseillé.