Correct

Quiz, 10 questions

~	Congra	itulations! You passed!	Next Item
	~	1 / 1 points	
		notation would you use to denote the 3rd layer's actives the 7th example from the 8th minibatch?	rations when the
		$a^{[8]\{7\}(3)}$	
		$a^{[3]\{7\}(8)}$	
	0	$a^{[3]\{8\}(7)}$	
	Corre	ect	
		$a^{[8]\{3\}(7)}$	
	~	1 / 1 points	
	2. Which with?	of these statements about mini-batch gradient descer	nt do you agree
	0	One iteration of mini-batch gradient descent (compusingle mini-batch) is faster than one iteration of batc descent.	_

You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the

ts (100%)

Optimizations Quiz, 10 questions	on alg	Calgorithm Sprocesses all mini-batches at the same time (vectorization).	10/10 point
		Training one epoch (one pass through the training set) using minibatch gradient descent is faster than training one epoch using batch gradient descent.	
	~	1 / 1 points	
	-	the best mini-batch size usually not 1 and not m, but instead hing in-between?	
		If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.	
	Un-s	selected is correct	
		If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.	
	Corr	ect	
		If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
	Corr	ect	
	□∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴∴<	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.	
	un-s	selected is correct	

Quiz, 10 questions

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.			
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.			
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.			
O	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.			
Correct				

Quiz, 10 questions

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with eta=0.5 to track the temperature: $v_0=0$, $v_t=eta v_{t-1}+(1-eta) heta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=10\,$

Correct

$$igcup v_2=10$$
, $v_2^{corrected}=10$

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

points

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

$$\alpha = 0.95^t lpha_0$$

$$lpha = 0.95^t lpha_0$$
 $lpha = rac{1}{1+2*t} lpha_0$

Optimization algorithms

Quiz, 10 questions

1/1 points

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t.$ The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98) that is slightly shifted to the

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing eta will create more oscillations within the red line.

Un-selected is correct

1 / 1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

Optimizations Quiz, 10 questions	(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent on algorithms (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β) (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)	l0/10 points (100%)
	1/1 points 9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	g
	Try tuning the learning rate α Correct	
	Try better random initialization for the weights Correct	
	Try mini-batch gradient descent Correct	
	Try using Adam Correct	
	Try initializing all the weights to zero	

Un-selected is correct

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

~	1/1 points
10.	
Which	of the following statements about Adam is False?
	Adam combines the advantages of RMSProp and momentum
	The learning rate hyperparameter $\boldsymbol{\alpha}$ in Adam usually needs to be tuned.
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)
0	Adam should be used with batch gradient computations, not with mini-batches.
Corre	ect

