# 5. FLUID DYNAMICS

### BERNOULLI'S EQUATION:

|            | $\sum r_s = m u_s$            |                        |  |
|------------|-------------------------------|------------------------|--|
| Forces ac  | ting on the fluid element sho | own in the figure,     |  |
| $F_g = Gr$ | avitational Force             | $F_P$ = Pressure Force |  |
| r - w      | F                             | E - Turkulant Force    |  |

$$F_g$$
 = Gravitational Force  $F_P$  = Pressure Force  $F_V$  = Viscous Force  $F_T$  = Turbulent Force  $F_S$  = Surface Tension Force  $F_C$  = Compressible Force  $\left(F_g + F_P + F_V + F_T + F_S + F_C\right)_S = m \ a_S$ 

$$(F_g + F_P + F_V + F_T + F_S + F_C)_s = m \, a_s$$

$$\therefore (F_g + F_P + F_V + F_T)_s = m \, a_s \, (Reynold's \, Equation)$$

$$\therefore (F_g + F_P + F_V)_s = m \, a_s \, (Navier - Stoke's \, Equation)$$

$$\therefore (F_g + F_P) = m \, a_s \, (Euler's \, Equation)$$



Bernoulli's Eq. For Steady and incompressible Flow, Pressure Head + Kinetic Head + Potential or Datum Head = Total Head = Const.  $\frac{P}{\rho a} + \frac{V^2}{2a} + z = H$ Bernoulli's Eq. For Steady and incompressible Flow,

 $dW = \rho g dV$ 

Net mechanical energy of fluid in an ideal flow remains constant.

### VARIOUS FORMS OF RERNOULLI'S FOUATION.

| VARIOUS FORMS OF BERNOULLI'S EQUATION.           |                                                                               |                                        |                                             |                                           |
|--------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|-------------------------------------------|
| Energy Per unit mass,                            |                                                                               |                                        | Energy Per unit Volume,                     |                                           |
| $P V^2$                                          |                                                                               |                                        | $V^2$                                       |                                           |
| $\frac{P}{\rho} + \frac{V^2}{2} + gz = Constant$ |                                                                               | ıt                                     | $P + \rho \frac{v}{2} + \rho gz = Constant$ |                                           |
| P = Static Pressure                              |                                                                               | $\rho(V^2/2)$ = Dynamic Pressure (Rise |                                             | $\rho gz =$ Hydrostatic Pressure (Rise in |
|                                                  |                                                                               | in pressure due to drop in K.E.)       |                                             | pressure due to drop in P.E.)             |
| Energy Per unit weight,                          | At stagnation point, Stagnation Pressure = Static Pressure + Dynamic Pressure |                                        |                                             |                                           |
| $P V^2$                                          | Piezometric Pressure = Static Pressure + Hydrostatic Pressure                 |                                        |                                             |                                           |
| $\frac{1}{\gamma} + \frac{1}{2g} + z = Constant$ |                                                                               |                                        |                                             |                                           |

#### LIMITATIONS/ ASSUMPTIONS IN BERNOULLI'S EQUATION

- 1. Flow is Steady.
- 2. Incompressible Flow.
- 3. Heat Transfer effects are neglected.
- 4. In Irrotational Flow, B. Eq. is valid across any two stream line but for Rotational flow, B. Eq. is valid only along stream line not across the stream line.
- 5. Involvement of shaft work (Pump & Turbine): Heads need to balance when energy per unit mass is added or removed. E.g. Pump is adding head & turbine is Using head to gain shaft work.
- Valid only for ideal flow. But by introducing head loss, we can use the B. Eq. for real flow.

**HEAD LOSS:** Energy given by the fluid to overcome resistance against the flow per unit weight is called head loss. **NOTE:** In the absence of a pump, Real flow takes place from higher total head to lower total head.

#### KINETIC ENERGY CORRECTION FACTOR ( $\alpha$ ):

When the velocity profile is non uniform, Total velocity head and avg. velocity head are not equal. cal Velocity – 11 & Avg. Velocity – V

| Local velocity = $u \propto Avg$ . velocity = $v$                                      |                                            |                                        |  |
|----------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|--|
| $d(\dot{KE}) = \frac{1}{2}d\dot{m} u^2 \Rightarrow \dot{KE} = \frac{1}{2}\iint u^3 dA$ | $\dot{KE} = \alpha \frac{1}{2} \rho A V^3$ | $\alpha = \frac{1}{AV^3} \iint u^3 dA$ |  |
| Always $\alpha \geq 1$                                                                 | For Laminar Flow                           | For turbulent flow through             |  |
| For uniform Flow $\alpha = 1$                                                          | through pipe $\alpha = 2$                  | pipes, $1.1 \le \alpha \le 1.3$        |  |



#### DIFFERENCE IN PIEZOMETRIC HEAD:

$$\mathbf{P}_{A} = \mathbf{P}_{B} \Rightarrow P_{1} + \gamma_{w} z_{1} = P_{2} + \gamma_{w} (z_{2} - h_{m}) + \gamma_{m} h_{m}$$
$$\therefore \Delta P^{*} = h_{m} (\gamma_{m} - \gamma_{w})$$

$$P_{A} = P_{B} \Rightarrow P_{1} + \gamma_{w} z_{1} = P_{2} + \gamma_{w} (z_{2} - h_{m}) + \gamma_{m} h_{m}$$

$$\therefore \Delta P^{*} = h_{m} (\gamma_{m} - \gamma_{w})$$

$$\therefore \Delta h^{*} = h_{m} \left(\frac{\gamma_{m}}{\gamma_{w}} - 1\right) = h_{m} \left(\frac{S_{m}}{S_{w}} - 1\right)$$

$$S_{m} \gg S_{w} \Rightarrow \Delta h^{*} = h_{m} \left(\frac{S_{m}}{S_{w}}\right)$$



**EQUATION OF POWER:**  $P(in I) = h \rho g Q \& P(in W) = h \rho g \dot{Q}$ 

#### FREE LIQUID JET:

| $u = V \cos \theta$     | v     | $= V \sin \theta$ | H = Max. I      | Height     | T = Time of Flight                     |
|-------------------------|-------|-------------------|-----------------|------------|----------------------------------------|
| $s = ut + \frac{1}{2}a$ | $t^2$ | x = V             | $\cos \theta t$ | <i>y</i> = | $V\sin\theta \ t + \frac{1}{2}(-g)t^2$ |

From above both equations,

$$y = x(\tan \theta) - \left(\frac{g \sec^2 \theta}{2 V^2}\right) x^2 (Parabolic Eq.)$$

$$y = x(\tan \theta) - \left(\frac{g \sec^2 \theta}{2 V^2}\right) x^2 (Parabolic Eq.)$$

$$H = \frac{V^2 \sin^2 \theta}{2g} = \frac{v^2}{2g} (\because V^2 - U^2 = 2aS) \quad T = \frac{2v}{g} (\because V = U + at \& T = t_a + t_d)$$



### **VELOCITY MEASUREMENT**

$$\frac{V^2}{2g} = H - h^*$$

## 1. PITOT TUBE + PIEZOMETER:

$$h_{stag} = \frac{P}{\gamma} + \frac{V^2}{2g}$$
  $h_{stat} = \frac{P}{\gamma}$   $h^* = h_{stat} + z$   $H = h_{stag} + z$ 

$$h_{stat} = \frac{P}{\gamma}$$

$$h^* = h_{stat} + z$$
  
 $H = h_{stag} + z$ 

From above equations, we can find velocity head or velocity in the pipe.

$$V_{th} = \sqrt{2g(H - h^*)} = \sqrt{2gh}$$
 (From the Fig.)

Coefficient Of Velocity or Prob Factor  $C_V = \frac{Actual Velocity}{Theoretical Velocity}$ Actual Velocity

$$V_{act} = C_V \sqrt{2g(H - h^*)} = C_V \sqrt{2gh}$$

It can't use for gaseous fluid.



**NOTE:** If  $C_V$  is not give,  $C_V = 1$ .

#### 2. PITOT-STATIC TUBE:

$$V_{th} = \sqrt{2g\Delta h^*}$$

From the previous derivations,

$$V_{act} = C_V \sqrt{2g h_m \left(\frac{S_m}{S_w} - 1\right)}$$



#### **DISCHARGE/ FLOW MEASUREMENT:**

**OBSTRUCTION FLOWMETER:** E.g. Orifice Meter, Venturi Meter, Nozzle Meter. **Head-loss in Obstruction Flowmeter:** 

$$\left(\frac{P}{\gamma} + \frac{V^2}{2g} + z\right)_1 = \left(\frac{P}{\gamma} + \frac{V^2}{2g} + z\right)_2 + h_l \Rightarrow h_l = \Delta h^* - \left(\frac{V_2^2 - V_1^2}{2g}\right)$$

$$h_{l} = \Delta h^{*} - \frac{V_{2}^{2}A_{2}^{2}}{2g \Delta h^{*}} \left(1 - \frac{A_{2}^{2}}{A_{1}^{2}}\right) \frac{\Delta h^{*}}{A_{2}^{2}} = \Delta h^{*} - \frac{Q_{act}^{2}}{Q_{th}^{2}} \Delta h^{*}$$

$$\therefore h_{l} = \Delta h^{*} (1 - C_{d}^{2})$$

$$Q_{act}^{2} = V_{2}^{2}A_{2}^{2} \qquad Q_{th}^{2} = 2g \Delta h^{*} [A_{1}^{2}A_{2}^{2}/(A_{1}^{2} - A_{2}^{2})]$$
**VENTURI METER:**

$$\frac{n_l - \Delta n (1 - C_d)}{O_{-1}^2 - 2a \Lambda h^* [4^2 4^2 / (4^2 - 4^2)]}$$



$$h_l = \Delta h^* (1 - C_d^2)$$

VENTURI METER: 
$$h_l = \Delta h^* (1 - C_d^2)$$
 
$$Q_{act}^2 = V_2^2 A_2^2 \qquad Q_{th}^2 = 2g \Delta h^* [A_1^2 A_2^2 / (A_1^2 - A_2^2)]$$
 By Considering  $h_l = 0$ ,

$$\Delta h^* = \frac{V_2^2}{2g} \left( 1 - \frac{A_2^2}{A_1^2} \right) \Rightarrow V_2 = \frac{A_1}{\sqrt{A_1^2 - A_2^2}} \sqrt{2g \, \Delta h^*}$$

$$Q_{th} = \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2g \, \Delta h^*} \Rightarrow Q_{th} = Q_{act}$$



 $Q_{th}$  equation is same for all measuring device.

$$PART - I: \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} = \frac{\pi}{4} \frac{D_1^2 D_2^2}{\sqrt{D_1^4 - D_2^4}}$$

$$Q_{th} \text{ equation is same for all measuring device.}$$

$$Coefficient of Discharge, C_d = \frac{Q_{act}}{Q_{th}} \qquad Coefficient of Contraction, C_c = \frac{A_c}{A_2} = \frac{V_2}{V_c}$$
In Venturi Meter, To Reduce Minor Losses in Diffuser, Converging Angle (20°) > Divergence Angle (7° to 15°)
$$PART - I: \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} = \frac{\pi}{4} \frac{D_1^2 D_2^2}{\sqrt{D_1^4 - D_2^4}} \qquad PART - II: \sqrt{2g \Delta h^*} \Rightarrow \Delta h^* = h_m \left(\frac{S_m}{S_w} - 1\right) = \frac{\Delta P^*}{\gamma}$$

|            | Venturi Meter    | Nozzle Meter  | Orifice Meter |
|------------|------------------|---------------|---------------|
| $C_d$      | 0.95-0.98 (High) | 0.85 (Medium) | 0.65 (Low)    |
| $h_{loss}$ | Low              | Medium        | High          |
| Accuracy   | High             | Medium        | Low           |
| Cost       | High             | Medium        | Low           |

**VORTEX MOTION:** It's motion of fluid along a curved path is known as vortex motion.

E.g. Whirlpool, Tornado, Water Sink, etc...

1. 
$$V_r = 0$$
,  $V_\theta$  exists.

#### 2. Stream Lines are curved.

| To the chiefe.                                                                              | 21 Stream Emes are car vea.                                                                 |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| TYPE OF VORTEX FLOW                                                                         |                                                                                             |  |  |
| FREE VORTEX FLOW                                                                            | FORCED VORTEX FLOW                                                                          |  |  |
| It's naturally (By the virtue of motion itself) exists.                                     | Appling external torque for generating Vortex flow.                                         |  |  |
| External Torque is equal to zero.                                                           | Constant External Torque is applied.                                                        |  |  |
| $T = 0 \Rightarrow \frac{d(mv  r)}{dt} = 0 \Rightarrow mv  r = Constant$                    | Angular Velocity of every partial is same.                                                  |  |  |
| $T = 0 \Rightarrow \frac{dt}{dt} = 0 \Rightarrow mv \ r = Constant$                         | $T = Const. \Rightarrow \omega = Const. \Rightarrow v \propto r$                            |  |  |
| Singularity Point: $r = 0 \Rightarrow v = not \ defined$                                    | $r = 0 \Rightarrow v = 0$                                                                   |  |  |
| Flow is irrotational. E.g. Bernoulli's equation can be                                      | Flow is rotational. E.g. Bernoulli's equation can be                                        |  |  |
| applied between any point.                                                                  | applied between any point lying on same stream lines.                                       |  |  |
| Valid for any 2 random points,                                                              | Valid for any 2 random points,                                                              |  |  |
| $\frac{P_A}{\gamma} + \frac{V_A^2}{2g} + z_A = \frac{P_B}{\gamma} + \frac{V_B^2}{2g} + z_B$ | $\frac{P_A}{\gamma} - \frac{V_A^2}{2g} + z_A = \frac{P_B}{\gamma} - \frac{V_B^2}{2g} + z_B$ |  |  |



#### **EQUATION OF PRESSURE:**



Note: Forced Vortex Flow is Part of Rigid Body Motion.

| FREE VORTEX FLOW                                                                                           | FORCED VORTEX FLOW                                                                                         |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| $v r = r^2 \omega = C$                                                                                     | $v = C r \Leftrightarrow \omega = Const.$                                                                  |
| $\frac{P_A}{\gamma} + \frac{V_A^2}{2g} + z_A = \frac{P_B}{\gamma} + \frac{V_B^2}{2g} + z_B(From  dP  Eq.)$ | $\frac{P_A}{\gamma} - \frac{V_A^2}{2g} + z_A = \frac{P_B}{\gamma} - \frac{V_B^2}{2g} + z_B(From  dP  Eq.)$ |
| Hence, the flow is irrotational.                                                                           | Hence, the flow is rotational.                                                                             |

**EQUATIONS OF ISOBAR:** Constant pressure imaginary curve in vortex (Forced) flow. 
$$\frac{P_A}{\gamma} + \frac{V_A^2}{2g} + z_A = \frac{P_B}{\gamma} + \frac{V_B^2}{2g} + z_B \Rightarrow h = \frac{V_B^2 - V_A^2}{2g} = \frac{r^2 \omega^2}{2g} \propto r^2 \begin{bmatrix} \because z_A - z_B, V_A = 0, V_B = r\omega \\ It's \ Parabolic \ Curve \end{bmatrix}$$

#### **VOLUME OF PARABOLOID:** Volume of revolution of parabola. E.g. Circumscribing cylinder with parabola.

| <b>Circumscribed</b> refers to a shape surrounding another shape. $\forall_{par.} = \frac{\pi \omega^2 R^4}{\sigma} = \frac{1}{2} \forall_{cyl.} (\because r_{max} = R)$ |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| g + L                                                                                                                                                                    |  |