Лабораторная работа №2.2.3 Измерение удельной теплоёмкости воздуха при атмосферном давлении

Рожков А. В. Преподаватель Яворский В. А.

31 марта 2024 г.

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью; термостат ($\sigma_t = 0.1^oC$); вольтметр ($\sigma_U = 1$ мВ) и амперметр ($\sigma_I = 0.1$ мА); источник постоянного напряжения; магазин сопротивлений.

1 Теоретическая справка

Tennonposoдность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии $\overline{q} = -k\nabla T$, где $k \left\lceil \frac{\mathrm{Br}}{\mathrm{M} \cdot \mathrm{K}} \right\rceil$ - $\kappa o \circ \phi \phi uuehm mennonposodhocmu$.

Молекулярно-кинетическая теория дает следующую оценку для коэффициента теплопроводности газов:

$$k \sim \lambda \overline{\nu} \cdot nc_V$$
 (1)

С помощью некоторых преобразований мы получаем, что

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_1}} k \cdot \Delta T \tag{2}$$

Экспериментальная установка

Схема установки приведена на рис. 1. На оси полой цилиндрической трубки с внутренним диаметром $2r_0 \sim 1$ см размещена металлическая нить диаметром $2r_1 \sim 0,05$ мм и длиной $L \sim 40$ см (материал нити и точные геометрические размеры указаны в техническом описании установки). Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура t_0 поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально.

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля–Ленца: Q=UI, и сопротивление нити по закону Ома: $R=\frac{U}{I}$.

к термостату L r_0 от термостата

Рис. 1: Схема установки

Сопротивление нити является однозначной функцией

её температуры R(t). Эта зависимость может быть измерена с помощью термостата по экстраполяции мощности нагрева к нулю $Q \to 0$, когда температура нити и стенок совпадают $t_1 \approx t_0$. Альтернативно, если материал нити известен, зависимость его удельного сопротивления от температуры может найдена по справочным данным.

На рис. 2 представлена схема электрической установки:

Рис. 2: Электрическая схема измерения сопротивления нити и мощности нагрева

Схема рис. 2 предусматривает использование одного вольтметра и эталонного сопротивления $R_{\rm 9}\sim 10$ Ом (точное значение $R_{\rm 9}$ и его класс точности указаны в техническом описании установки), включённого последовательно с нитью. В положении переключателя 2 вольтметр измеряет напряжение на нити, а в положении 1 — напряжение на $R_{\rm 9}$, пропорциональное току через нить. Для исключения влияния контактов и подводящих проводов эталонное сопротивление $R_{\rm 9}$ также необходимо подключать в цепь по четырёхпроводной схеме. Ток в цепи в обеих схемах регулируется с помощью реостата или магазина сопротивлений $R_{\rm M}$, включённого последовательно с источником напряжения.

2 Методика измерений

Принципиально неустранимая систематическая ошибка измерения температуры с помощью термометра сопротивления возникает из-за необходимости пропускать через резистор (нить) измерительный ток. Чем этот ток выше, тем с большей точностью будет измерен как он сам, так и напряжение. Однако при этом квадратично возрастает выделяющаяся на резисторе мощность $Q = UI = I^2R$. Следовательно, температура резистора становится выше, чем у объекта, температуру которого надо измерить. Измерения же при малых токах не дают достаточной точности (в частности, из-за существенного вклада термоэлектрических явлений в проводниках и контактах). Эта проблема решается построением нагрузочной кривой - зависимости измеряемого сопротивления R от выделяющейся в нём мощности R(Q), с последующей экстраполяцией к нулевой мощности $Q \to 0$ для определения сопротивления $R_0 = R(0)$, при котором его температура равна температуре измеряемого объекта. Кроме того, в данной работе измерение нагрузочных кривых позволяет в ходе эксперимента получить температурную зависимость сопротивления нити, так как при $Q \to 0$ температура нити равна температуре термостата ($T \approx T_0$). В исследуемом интервале температур (20-70 0 C) зависимость сопротивления от температуры можно с хорошей точностью аппроксимировать линейной функцией:

$$R(t) = R_{273} \cdot (1 + \alpha t) \tag{3}$$

где $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$ - температурный коэффициент сопротивления материала.

3 Ход работы

3.1 Предварительные расчёты

Параметры установки:

$$ln\frac{r_0}{r_1} = 5$$
 $L = (400 \pm 2) \text{ MM}$ $R_{\text{\tiny H}} \sim 20 \text{ Om}$ $k_{\text{\tiny B}} \sim 25 * 10^{-3} \frac{\text{Bt}}{\text{M} * \text{c}}$

Принимаем максимально допустимый перегрев нити относительно термостата равным $\Delta t_{max} = 30^{\circ}C$. По формуле (2) оцениваем максимальную мощность нагрева $Q_{max} \approx 370$ мВт. Так же оцениваем максимальные ток и напряжение $I_{max} \approx 2.91$ В; $U_{max} \approx 128$ мА. В ходе работы не будем их превышать.

3.2 Подготовка экспериментальной установки

- 1. Проверяем, что измерительная цепь соответсвует схеме.
- 2. На магазине сопротивлений устанавливаем максимальное сопротивление, чтобы ток в цепи при её замыкании был минимален.
 - 3. По техническому описанию к установке включаем вольтметр и амперметр.
- 4. Включаем источник питания. Убеждаемся, что напряжение на нём не превышает максимальное (3 В).
 - 5. Включаем термостат. Убеждаемся, что он находится при комнатной температуре (23.0 ^{o}C).

3.3 Измерение зависимости сопротивления нити от подаваемой на неё мощности

Измерения проводим для 10 значений тока через нить. Подберём значения тока так, чтобы мощность возрастала равномерно. В соответствии с формулой $Q = \frac{I^2}{R_{\rm H}}$ мощность пропорциональная квадрату напряжения (изменением сопротивления для данной оценки пренебрежём).

Напряжение наращиваем постепенно, уменьшая сопротивление моста. Перед каждой фиксацией показаний ждём установления теплового равновесия (~ 30 с). Удавалось добиться стабильности показаний вольтметра вплоть до 1 мВ и амперметра до 0.1 мА. При измерениях сразу вычисляем $R_{\rm H}$ и Q.

Результаты в приложении в таблицах 3, 4, 5 и 6.

В процессе измерения контролируем постоянство температуры термостата. Его показания оставались стабильными.

3.4 Меры предосторожности

По окончании измерения нагрузочной кривой устанавливаем минимальный ток через нить, переведя значение магазина сопротивления на максимум. Будем так поступать после завершения каждого измерения нагрузочной кривой.

3.5 Измерения для других температур термостата

Проводим измерения для ещё 3 температур до 80 ^{o}C . Ждём установления температуры не менее 15 минут.

3.6 Завершение измерений

Выключаем блок питания и мультиметры. На магазине сопротивлений устанавливаем максимальное сопротивление. Устанавливаем термостат на охлаждение до комнатной температуры.

3.7 Графики зависимости сопротивления нити от мощности

Строим графики зависимости $R_{\rm H}(Q)$. При помощи МНК находим точки пересечения прямых с осями ординат. Так мы находим R_0 . Значения в таблице (1). График 3. Полная погрешность R_0 по формуле:

$$\sigma_{R_0} = \sqrt{\sigma_{R_H}^2 + Q \frac{dR}{dQ} \left(\left(\frac{\sigma_Q}{Q} \right)^2 + \left(\frac{\sigma_{\frac{dR}{dQ}}^{\text{cnyq}}}{\frac{dR}{dQ}} \right)^2 \right) + \sigma_{R_0}^{\text{cnyq}^2}} =$$

$$= \sqrt{R_H^2 \left(\left(\frac{\sigma_U}{U} \right)^2 + \left(\frac{\sigma_I}{I} \right)^2 \right) + \left(Q \frac{dR}{dQ} \right)^2 \left(\left(\frac{\sigma_U}{U} \right)^2 + \left(\frac{\sigma_I}{I} \right)^2 + \left(\frac{\sigma_{\frac{dR}{dQ}}}{\frac{dR}{dQ}} \right)^2 \right) + \sigma_{R_0}^{\text{cnyq}^2}}$$

$t,^{o}C$	dR/dQ	R_0
23	(5.15 ± 0.04)	(20.82 ± 0.03)
42.1	(4.87 ± 0.02)	(22.16 ± 0.03)
61	(4.66 ± 0.05)	(23.51 ± 0.03)
80	(4.68 ± 0.04)	(24.79 ± 0.03)

Таблица 1: Результаты: dR/dQ со случайной погрешностью, R_0 с полной

Рис. 3: График завимимости $R_{\rm H}(Q)$

Как видим, коэффициенты наклона уменьшаются с ростом температуры. Это можно объяснить конвекцией воздуха внутри трубы. С ростом температуры влияение этого явления увеличивается.

3.8 График зависимости сопротивления нити от температуры

Построим график 4 $R_0(T)$. Из формулы (3) температурный коэффициент сопротивления $\alpha=\frac{1}{R_{273}}\frac{dR_0}{dt}$. Найдём по МНК $\frac{dR_0}{dt}$. Экстраполируя, найдём R_{273}

$$\frac{dR_0}{dt} = 69.8 * 10^{-3} \text{ K}^{-1}$$
$$\sigma_{\frac{dR_0}{dt}}^{\text{cnyq}} = 0.6 * 10^{-3} \text{ K}^{-1}$$

$$\sigma_{R_{273}} = \sqrt{273^2 \left(\left(\frac{dR_0}{dT} \right)^2 \left(\left(\frac{\sigma_{R_0}}{R_0} \right)^2 + \left(\frac{\sigma_T}{T} \right)^2 \right) + \sigma_{\frac{dR_0}{dT}}^{\text{c,nyq}^2}} \right) + \sigma_b^{\text{c,nyq}^2}}$$

$$\sigma_{\alpha} = \sqrt{\alpha^2 \left(\left(\frac{\sigma_{R_0}}{R_0} \right)^2 + \left(\frac{\sigma_T}{T} \right)^2 + \left(\frac{\sigma_{R_{273}}}{R_{273}} \right)^2 \right) + \sigma_{\frac{dR_0}{dt}}^{\text{c,nyq}^2}}$$

$$R_{273} = (19.2 \pm 0.2) \text{ Om}$$

 $\alpha = (3.6 \pm 0.5) * 10^{-3} \frac{1}{^{o}C}$

Полученное значение температурного коэффициента сопротивления наиболее близко к алюминию $(4*10^{-3}\ \frac{1}{^oC})$ и вольфраму $(5*10^{-3}\ \frac{1}{^oC})$.

Рис. 4: График завимимости $R_0(T)$

3.9 Зависимость выделяющейся на нити мощности от её перегрева

Используя данные из предыдущих пунктов найдём зависимость выделяющейся на нити мощности Q от её перегрева ΔT относительно стенок. Используя формулу (2) найдём коэффициенты теплопроводности воздуха.

$$\begin{split} \frac{dQ}{d(\Delta T)} &= \frac{dR_0}{dT} / \frac{dR}{dQ} \\ k &= \frac{dQ}{d(\Delta T)} / \frac{2\pi L}{ln\frac{r_0}{r_1}} = \frac{dR_0}{dT} \frac{ln\frac{r_0}{r_1}}{2\pi L} / \frac{dR}{dQ} \\ \sigma_k &= \sqrt{k^2 \left(\left(\frac{\sigma_L}{L} \right)^2 + \left(\frac{\sigma_{R_0}}{R_0} \right)^2 + \left(\frac{\sigma_T}{T} \right)^2 + \left(\frac{\sigma_R}{R} \right)^2 + \left(\frac{\sigma_Q}{Q} \right)^2 \right) + \sigma_{\frac{dR_0}{dT}}^{\text{c.tyq-2}} + \sigma_{\frac{dR_0}{dQ}}^{\text{c.tyq-2}}} \end{split}$$

$t,^{o}C$	$k, 10^{-3} \frac{B_T}{M*c}$
23	(27.0 ± 0.1)
42.1	(28.5 ± 0.2)
61	(29.8 ± 0.2)
80	(29.7 ± 0.2)

Таблица 2: Коэффициенты теплопроводности воздуха для каждой температуры термостата

3.10 Зависимость теплопроводности воздуха от температуры

Построим график зависимости теплопроводности воздуха от температуры и сравним с табличными.

Рис. 5: График завимимости k(t)

Теперь построим график lnk(lnT) и из него определим показатель степени β для формулы $k \sim T^{\beta}$

$$\beta = (0.6 \pm 0.2)$$

В теории $\beta=0.5$, так как коэффициент теплопроводности газа пропорционален корню из температуры.

Рис. 6: График завимимости lnk(lnT)

4 Вывод

Измерили коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры. Характер зависимости совпал с теоретическим.

5 Приложение

U , м \mathbf{B}	I, м A	$R_{\scriptscriptstyle \mathrm{H}}, \mathrm{Om}$	Q, м B т
2910	128.0	22.7	372.5
2765	122.5	22.6	338.7
2598	116.1	22.4	301.6
2432	109.6	22.2	266.5
2250	102.2	22.0	229.9
2052	94.1	21.8	193.1
1839	85.0	21.6	156.3
1589	74.2	21.4	117.9
1300	61.3	21.2	79.7
920	43.7	21.1	40.2

U, MB	I, мА	$R_{\rm h}, { m Om}$	Q , \mathbf{mBt}
3000	125.1	24.0	375.3
2835	119.1	23.8	337.6
2678	113.3	23.6	303.4
2504	106.7	23.5	267.2
2322	99.7	23.3	231.5
2119	91.7	23.1	194.3
1895	82.7	22.9	156.7
1642	72.2	22.7	118.6
1341	59.5	22.5	79.8
939	42.0	22.4	39.4

Таблица 3: Измерения при температуре Таблица 4: Измерения при температуре термостата $23^{o}C$ термостата $42.1^{o}C$

U, м B	I, мА	$R_{\rm h}, { m Om}$	Q , MBT
2909	116.0	25.1	337.4
2762	110.8	24.9	306.0
2603	105.0	24.8	273.3
2432	98.7	24.6	240.0
2251	92.0	24.5	207.1
2049	84.3	24.3	172.7
1837	76.0	24.2	139.6
1592	66.3	24.0	105.5
1300	54.6	23.8	71.0
919	38.8	23.7	35.7

U, MB	I, мА	$R_{\scriptscriptstyle \mathrm{H}}, \mathrm{Om}$	Q , MBT
2935	111.5	26.3	327.3
2766	105.7	26.2	292.4
2622	100.7	26.0	264.0
2450	94.7	25.9	232.0
2269	88.2	25.7	200.1
2073	81.1	25.6	168.1
1855	73.0	25.4	135.4
1602	63.4	25.3	101.6
1314	52.3	25.1	68.7
926	37.1	25.0	34.4

Таблица 5: Измерения при температуре Таблица 6: Измерения при температуре термостата $61^{o}C$ термостата $80^{o}C$