TESTS D'HYPOTHESE

1 Etude sur un seul caractère.

1.1 Test de conformité à une loi

On considère une v.a. X et on désire tester l'ajustement de sa loi notée \mathcal{L} à une loi connue \mathcal{L}_0 . On va alors tester : H_0 : $\mathcal{L} = \mathcal{L}_0$ contre H_1 : $\mathcal{L} \neq \mathcal{L}_0$.

- 1. **Test du Khi2 :** On a n observations de la variable X partagées en k classes. Soit O_i l'effectif observé de la classe i. On calcul l'effectif théorique par $C_i = n \cdot \mathbb{P}(X \in classe_i/X \leadsto \mathcal{L}_0)$.
 - On calcule la valeur de la variable aléatoire $K = \sum_{i=1}^k \frac{(O_i C_i)^2}{C_i} \rightsquigarrow \chi^2 \left(\nu = k 1 r\right)$, avec r le nombre de paramètres de la loi \mathcal{L}_0 qu'on a du estimer et on rejette H_0 si $\chi_c^2 > \chi_\alpha^2$.
- 2. **Test de Kolmogorov :** La statistique de Kolmogorov-Smirnov est $D_n = \sup_{x \in \mathbb{R}} |F_n(x) F(x)|$. Si $D_n > \frac{c}{\sqrt{n}}$, on rejette H_0 , c étant une valeur tabulée dépendant de n et de α .

1.2 Tests de conformité

1.2.1 Population gaussienne ou taille d'échantillon n > 30.

Test de conformité d'une	Hypothèses	Statistique	Intervalle d'acceptation
Moyenne avec	$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$	_	$I_{\alpha} = \left[-z_{1-\frac{\alpha}{2}}, +z_{1-\frac{\alpha}{2}} \right]$
variance σ^2	$H_0: \mu \le \mu_0 \text{ vs } H_1: \mu > \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} \rightsquigarrow \mathcal{N}(0, 1)$	$I_{\alpha} =]-\infty, z_{1-\alpha}]$
connue	$H_0: \mu \ge \mu_0 \text{ vs } H_1: \mu < \mu_0$		$I_{\alpha} = [-z_{1-\alpha}, +\infty[$
Moyenne avec	$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$	_	$I_{\alpha} = \left[-t_{1-\frac{\alpha}{2}}, +t_{1-\frac{\alpha}{2}} \right]$
variance σ^2	$H_0: \mu \le \mu_0 \text{ vs } H_1: \mu > \mu_0$	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n-1}} \rightsquigarrow \mathcal{T}_{n-1}$	$I_{\alpha} =]-\infty, t_{1-\alpha}]$
inconnue	$H_0: \mu \ge \mu_0 \text{ vs } H_1: \mu < \mu_0$		$I_{\alpha} = [-t_{1-\alpha}, +\infty[$
	$H_0: p = p_0 \text{ vs } H_1: p \neq p_0$, .	$I_{\alpha} = \left[-z_{1-\frac{\alpha}{2}}, +z_{1-\frac{\alpha}{2}} \right]$
Proportion	$H_0: p \le p_0 \text{ vs } H_1: p > p_0$	$Z = \frac{\sqrt{n}(\overline{X}-p)}{\sqrt{p(1-p)}} \rightsquigarrow \mathcal{N}(0,1)$	$I_{\alpha} = \left] -\infty, z_{1-\alpha} \right]$
	$H_0: p \ge p_0 \text{ vs } H_1: p < p_0$		$I_{\alpha} = [-z_{1-\alpha}, +\infty[$
Variance	$H_0: \sigma = \sigma_0 \text{ contre } H_1: \sigma \neq \sigma_0$	$K = \frac{nS^2}{\sigma_0^2} \leadsto \chi_{n-1}^2$	$I_{\alpha} = \left[k_{\frac{\alpha}{2}}, k_{1-\frac{\alpha}{2}}\right]$
	$H_0: \sigma \leq \sigma_0 \text{ contre } H_1: \sigma > \sigma_0$		$I_{\alpha} = [0, k_{1-\alpha}]$
	$H_0: \sigma \geq \sigma_0 \text{ contre } H_1: \sigma < \sigma_0$		$I_{\alpha} = [k_{1-\alpha}, +\infty[$

1.3 Tests de comparaison

1.3.1 Population gaussienne ou tailles d'échantillons $n_1 > 30$ et $n_2 > 30$.

Test de comparaison de 2	Hypothèses	Statistique	Intervalle d'acceptation
Moyennes avec	$H_0: \mu_1 = \mu_2 \text{ vs } H_1: \mu_1 \neq \mu_2$		$I_{\alpha} = \left[-z_{1-\frac{\alpha}{2}}, +z_{1-\frac{\alpha}{2}} \right]$
variance σ^2	$H_0: \mu_1 \le \mu_2 \text{ vs } H_1: \mu_1 > \mu_2$	$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}} \rightsquigarrow \mathcal{N}(0, 1)$	$I_{\alpha} =]-\infty, z_{1-\alpha}]$
connue	$H_0: \mu_1 \ge \mu_2 \text{ vs } H_1: \mu_1 < \mu_2$	·	$I_{\alpha} = [-z_{1-\alpha}, +\infty[$
Moyennes avec	$H_0: \mu_1 = \mu_2 \text{ vs } H_1: \mu_1 \neq \mu_2$		$I_{\alpha} = \left[-t_{1-\frac{\alpha}{2}}, +t_{1-\frac{\alpha}{2}} \right]$
variance σ^2	$H_0: \mu_1 \le \mu_2 \text{ vs } H_1: \mu_1 > \mu_2$	$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left(\frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}\right)}} \rightsquigarrow \mathcal{T}_{n_1 + n_2 - 2}$	$I_{\alpha} = \left] - \infty, t_{1-\alpha} \right]$
inconnue	$H_0: \mu_1 \ge \mu_2 \text{ vs } H_1: \mu_1 < \mu_2$	'	$I_{\alpha} = [-t_{1-\alpha}, +\infty[$
	$H_0: p_1 = p_2 \text{ vs } H_1: p_1 \neq p_2$		$I_{\alpha} = \left[-z_{1-\frac{\alpha}{2}}, +z_{1-\frac{\alpha}{2}} \right]$
Proportions	$H_0: p_1 \le p_2 \text{ vs } H_1: p_1 > p_2$	$Z = \frac{f_1 - f_2}{\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}} \rightsquigarrow \mathcal{N}(0,1)$	$I_{\alpha} =]-\infty, z_{1-\alpha}]$
	$H_0: p_1 \ge p_2 \text{ vs } H_1: p_1 < p_2$	avec $\widehat{p} = \frac{n_1 f_1 + n_2 f_2}{n_1 + n_2}$	$I_{\alpha} = [-z_{1-\alpha}, +\infty[$
	$H_0: \sigma_1 = \sigma_2 \text{ vs } H_1: \sigma_1 \neq \sigma_2$		$I_{\alpha} = \left[f_{\frac{\alpha}{2}}, f_{1-\frac{\alpha}{2}} \right]$
Variances	$H_0: \sigma_1 \leq \sigma_2 \text{ vs } H_1: \sigma_1 > \sigma_2$	$F = \frac{n_1 S_1^2}{n_2 S_2^2} \leadsto \mathcal{F}(n_1 - 1, n_2 - 1)$	$I_{\alpha} = [0, f_{1-\alpha}]$
	$H_0: \sigma_1 \geq \sigma_2 \text{ vs } H_1: \sigma_1 < \sigma_2$		$I_{\alpha} = [f_{1-\alpha}, +\infty[$

1.3.2 Population inconnue et tailles d'échantillons $n_1 > 30$ ou $n_2 > 30$.

1. Test de Mann et Whitney (deux échantillons indépendants de tailles différentes)

Soit U la variable aléatoire de valeur $u = \min \{u_1, u_2\}$.

- Pour n_1 et n_2 quelconques, on lit dans les tables du test de Mann et Whitney le nombre m_{α} tel que, sous H_0 , $\mathbb{P}(U \leq m_{\alpha}) = \alpha$ et $I_{\alpha} =]m_{\alpha}, +\infty[$
- Si n_1 et n_2 sont assez grands (20 en général), sous H_0 , U suit approximativement la loi $\mathcal{N}(\mu, \sigma)$ avec $\mu = \frac{n_1 n_2}{2}$ et $\sigma = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$.

On lit u_{α} dans la table de l'écart réduit de la loi normale tel que $\mathbb{P}(|U| \geq u_{\alpha}) = \alpha$, on calcule $z_{\alpha} = \frac{u_{\alpha} - \mu}{\sigma}$ et $I_{\alpha} \in]-z_{\alpha}, z_{\alpha}[$.

2. Test de Wilcoxon (deux échantillons appariés i.e. de même taille)

Soit W la variable aléatoire de valeur $w = \min \{w_+, w_-\}$.

- Si $N \leq 25$, on lit dans les tables du test de Wilcoxon le nombre w_{α} tel que, sous H_0 , $\mathbb{P}(U \geq w_{\alpha}) = \alpha$. On rejette H_0 au risque d'erreur α si $w \geq w_{\alpha}$.
- Si N > 25, sous H_0 , W suit approximativement la $\mathcal{N}(\mu, \sigma)$ avec $\mu = \frac{N(N+1)}{2}$ et $\sigma = \sqrt{\frac{N(N+1)(2N+1)}{24}}$, on calcule $z_{\alpha} = \frac{u_{\alpha} \mu}{\sigma}$ et $I_{\alpha} \in]-z_{\alpha}, z_{\alpha}[$.

1.3.3 On dispose de k échantillons indépendants.

On imerai comparer simultanément les moyennes

- Populations gaussiennes de même variance : **ANOVA** à un facteur et on vérifie l'ègalité des variances par le **test de Bartlett** pour cela on calcule

$$B = \frac{1}{\lambda} \left[(n-k) \ln S_R^2 - \sum_{i=1}^k (n_i - 1) \ln S_i^2 \right] \leadsto \chi^2 (k-1)$$

$$\text{avec } \lambda = 1 + \frac{1}{3(k-1)} \left[\left(\sum_{i=1}^k \frac{1}{n_i - 1} \right) - \frac{1}{n-k} \right].$$

On calcule la valeur b prise par la v.a. B. Si $b \ge \chi^2_{\alpha}(k-1)$ on rejette l'hypothèse H_0 .

Pour l'ANOVA on calcule la valeur de

$$F = \frac{\frac{S_F^2}{k-1}}{\frac{S_R^2}{n-k}} \leadsto \mathcal{F}(k-1, n-k)$$

au seuil α on rejette H_0 si $F_c = \frac{s_F^2}{k-1} \frac{n-k}{s_R^2} \ge F_{k-1,n-k}(\alpha)$, avec s_F^2 est la variance factorielle et S_R^2 est la variance résiduelle.

- Populations inconnues: Test de Kruskal et Wallis. On calcule le nombre

$$h = \frac{12}{n(n+1)} \left(\sum_{i=1}^{k} \frac{r_i^2}{n_i} \right) - 3(n+1).$$

Soit H la v.a. qui prend la valeur h.

- Si $\forall i, n_i > 5$, alors sous H_0 , $H \rightsquigarrow \chi^2(k-1)$. Dans la table de Khi2, on lit la valeur χ^2_{α} et on rejette H_0 si $h \geq \chi^2_{\alpha}$.
- Si les $n_i \leq 5$, on a des tables de Kruskal-Wallis qui donnent la valeur h_{α} telle que $\mathbb{P}(h \geq h_{\alpha})$. On rejette H_0 si $h \geq h_{\alpha}$.

2 Etude simultanée de deux caractères

2.1 Etude de l'indépendance

1. les deux caractères sont qualitatifs : On calcule la valeur de la variable

$$\sum_{i,j} \frac{\left(n_{ij} - C_{ij}\right)^2}{C_{ij}} = \chi_c^2 \leadsto \chi^2(\nu) \text{ où } \nu = (l-1) \times (k-1).$$

On cherche la valeur critique χ^2_{α} dans la table de la loi du Khi2 à ν degrés de liberté. Décision : si $\chi^2_c < \chi^2_{\alpha}$, on accepte l'hypothèse H_0 .

- 2. Les deux caractères sont quantitatifs
 - Populations gaussiennes: On calcule la valeur de la variable $T=\frac{R\sqrt{n-2}}{\sqrt{1-R^2}} \leadsto \mathcal{T}\left(\nu=n-2\right)$. Puis on déterminera t_{α} ou $t_{\frac{\alpha}{2}}$ de la table de la loi de students à $\nu=n-2$ degrés de liberté et on adoptera la règle de décision suivante :
- Si $H_1: \rho \neq 0$: rejet de H_0 au risque α si $t_c \notin \left] -t_{\frac{\alpha}{2}}; t_{\frac{\alpha}{2}} \right[$;
- Si $H_1: \rho > 0$: rejet de H_0 au risque α si $t_c > t_{\alpha}$;
- Si $H_1: \rho < 0$: rejet de H_0 au risque α si $t_c < -t_{\alpha}$.
- 1. Populations de lois inconnues: **Test de Spearman** on calcule $r_S = 1 \frac{6\sum (x_i' y_i')^2}{n(n^2 1)}$ à partir des couples des rangs.
- Si $n \le 13$. Pour un risque α on détermine la valeur de r_{α} telle $P(|R_S| > r_{\alpha}) = \alpha$ lue dans la table de Spearman. Si $|r_S| > r_{\alpha}$ on rejette H_0 avec un risque α de se tromper.
- Si n > 13. Dans ce cas si H_0 est vraie, la statistique $T = \frac{R_S \sqrt{n-2}}{\sqrt{1-R_s^2}}$ suit approximativement la loi de Student à n-2 ddl. La décision se fera à l'aide la table du coefficient de corrélation linéaire qui donne la valeur de r_{α} telle que $P(|R_S| > r_{\alpha}) = \alpha$.
- 3. Un caractère qualitatif et l'autre est quantitatif:
 - Populations gaussiennes: ANOVA à un facteur
 - Populations de lois inconnues: Test de Kruskal et Wallis.