

#4

SEQUENCE LISTING

<110> Ashizawa, Tetsuo
Matsuura, Tohru

<120> DNA Test for SCA-10

<130> P02039US1/10023139

<140> US 09/942,336

<141> 2001-08-29

<150> US 60/229,406

<151> 2000-08-31

<160> 13

<170> PatentIn version 3.1

<210> 1

<211> 475

<212> PRT

<213> HUMAN

<400> 1

Met Ala Ala Pro Arg Pro Pro Pro Ala Arg Leu Ser Gly Val Met Val
1 5 10 15

Pro Ala Pro Ile Gln Asp Leu Glu Ala Leu Arg Ala Leu Thr Ala Leu
20 25 30

Phe Lys Glu Gln Arg Asn Arg Glu Thr Ala Pro Arg Thr Ile Phe Gln
35 40 45

Arg Val Leu Asp Ile Leu Lys Lys Ser Ser His Ala Val Glu Leu Ala
50 55 60

Cys Arg Asp Pro Ser Gln Val Glu Asn Leu Ala Ser Ser Leu Gln Leu
65 70 75 80

Ile Thr Glu Cys Phe Arg Cys Leu Arg Asn Ala Cys Ile Glu Cys Ser
85 90 95

Val Asn Gln Asn Ser Ile Arg Asn Leu Asp Thr Ile Gly Val Ala Val
100 105 110

Asp Leu Ile Leu Leu Phe Arg Glu Leu Arg Val Glu Gln Glu Ser Leu
115 120 125

Leu Thr Ala Phe Arg Cys Gly Leu Gln Phe Leu Gly Asn Ile Ala Ser
130 135 140

Arg Asn Glu Asp Ser Gln Ser Ile Val Trp Val His Ala Phe Pro Glu
145 150 155 160

Leu Phe Leu Ser Cys Leu Asn His Pro Asp Lys Lys Ile Val Ala Tyr
165 170 175

Ser Ser Met Ile Leu Phe Thr Ser Leu Asn His Glu Arg Met Lys Glu
180 185 190

Leu Glu Glu Asn Leu Asn Ile Ala Ile Asp Val Ile Asp Ala Tyr Gln
195 200 205

Lys His Pro Glu Ser Glu Trp Pro Phe Leu Ile Ile Thr Asp Leu Phe
210 215 220

Leu Lys Ser Pro Glu Leu Val Gln Ala Met Phe Pro Lys Leu Asn Asn
225 230 235 240

Gln Glu Arg Val Thr Leu Leu Asp Leu Met Ile Ala Lys Ile Thr Ser
245 250 255

Asp Glu Pro Leu Thr Lys Asp Asp Ile Pro Val Phe Leu Arg His Ala
260 265 270

Glu Leu Ile Ala Ser Thr Phe Val Asp Gln Cys Lys Thr Val Leu Lys
275 280 285

Leu Ala Ser Glu Glu Pro Pro Asp Asp Glu Glu Ala Leu Ala Thr Ile
290 295 300

Arg Leu Leu Asp Val Leu Cys Glu Met Thr Val Asn Thr Glu Leu Leu
305 310 315 320

Gly Tyr Leu Gln Val Phe Pro Gly Leu Leu Glu Arg Val Ile Asp Leu
325 330 335

Leu Arg Val Ile His Val Ala Gly Lys Glu Thr Thr Asn Ile Phe Ser
340 345 350

Asn Cys Gly Cys Val Arg Ala Glu Gly Asp Ile Ser Asn Val Ala Asn
355 360 365

Gly Phe Lys Ser His Leu Ile Arg Leu Ile Gly Asn Leu Cys Tyr Lys
370 375 380

Asn Lys Asp Asn Gln Asp Lys Val Asn Glu Leu Asp Gly Ile Pro Leu
385 390 395 400

Ile Leu Asp Asn Cys Asn Ile Ser Asp Ser Asn Pro Phe Leu Thr Gln
405 410 415

Trp Val Ile Tyr Ala Ile Arg Asn Leu Thr Glu Asp Asn Ser Gln Asn
420 425 430

Gln Asp Leu Ile Ala Lys Met Glu Glu Gln Gly Leu Ala Asp Ala Ser
435 440 445

Leu Leu Lys Lys Val Gly Phe Glu Val Glu Lys Lys Gly Glu Lys Leu
450 455 460

Ile Leu Lys Ser Thr Arg Asp Thr Pro Lys Pro
465 470 475

<210> 2
<211> 1971
<212> DNA
<213> HUMAN

<400> 2
ggctcagcct agagctctcc ggcggcgccg cagttcagg gcagcgcggg ctgcagcggc 60
ggcggcggtt agggctgtgt agggcgaggc ctcccccttc ctccctgccca tcctactcct 120
ccctccctcgat catcctcccc cttcgcttc ctcgccttcc tcctcctcgat caggctcgac 180
ccagctgtga gcccgaagat ggcggcgccc aggccgccc cttgcaggct gtcggcgctc 240
atggtgccgg cgcccatcca agacctggag gccctgcgcg cgctcacggc gctttcaaa 300
gagcagcggaccgagaaac agcacccagg actatcttcc aaagagttct ggatatccta 360
aagaaatctt ctcatgtgt tgagcttgcc tgccagagat ccattccaaag tggaaaacct 420
gcttccagtc tgcagttaat aacagaatgc ttcaagggtgc ttgcataatgc ttgcataagag 480
tgttctgtga accagaattc aatcaggaac ttggatacga ttgggtttgc tgttgatttg 540
attcttctgtt ttcgtgaact gcgagtgaa caggaatctc tgttgacagc ttttcgctgt 600
ggcctgcagt ttttaggcaa cattgcctca cggaatgaag attccagtc tattgtttgg 660
gtgcattgtt tcccagaact gttttgtct tgcttaatgc atccggacaa aaaaattgtt 720
gcctactctt caatgatttt gtttacatcc cttaatcatg aaagaatgaa agaactggag 780
gagaacctca atattgcaat tgatgtcata gatgcttacc aaaaacatcc tgaatcagaa 840
tggccgttct tgattattac agacctctt ctgaaaagcc cggaaattggt acaagccatg 900
tttcccaaacc tgaacaatca agaaagagtt acactgttag accttatgtat agccaagata 960

acgagtatcg	agccactcac	caaggatgac	atccctgtgt	ttttgcggca	tgctgagttg	1020
attgcaagca	ccttgcgtga	tcagtgcaga	actgtgctca	agctggcctc	tgaggagcct	1080
cctgatgatg	aggaggcact	ggctacaatt	aggcttctcg	acgtccctgtg	cgtaaatgact	1140
gtgaatactg	agctgctcgg	ctatctgcag	gtttccctg	gcttgctgga	aagagtgatt	1200
gatctttgc	gggtgattca	tgttagctgga	aaagaaaacca	caaacatctt	cagtaattgt	1260
ggttgcgtga	gagcagaagg	tgacatctcc	aatgtggcca	atgggttaa	gtctcatctc	1320
attcgtctga	ttggaaatct	gtgttacaag	aataaagata	accaagacaa	ggtaaatgag	1380
ctggatggta	tcccgttgc	cctggacaaac	tgcaacatca	gtgacagtaa	cccccttctg	1440
acccagtggg	tgatatatgc	catccgaaac	cttaccgaag	acaacagcca	aaaccaagat	1500
ttgattgcaa	agatggagga	acaggggctg	gcagatgcat	ccctacttaa	aaaagtgggt	1560
tttgaagttg	aaaagaaaagg	cgaaaagctg	atcctgaaat	ctactagaga	cacccctaag	1620
ccatgaatga	actacatcca	aatacctgaa	tttttggaaat	ctgtttcatg	gatttttcat	1680
cttctaccgt	atgtgaaatt	gcaagtgtt	gaagatttat	aagtacaaat	ttgggaacat	1740
acaaatcttt	taggttagtag	agtttaacgt	gtataagcta	aaagtgaaag	taactgagtg	1800
ttctcttgc	tctttgcatt	aatgttaactg	tgtggttgc	ctttgtcccc	ctggatagaa	1860
cgtgcattta	aagaatatat	tgtacttact	gtgacagcag	ataataaacc	agtctcttgg	1920
agggcaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	a	1971

<210> 3
 <211> 21
 <212> DNA
 <213> PRIMERS

<400> 3
 agaaaacaga tggcagaatg a 21

<210> 4
 <211> 20
 <212> DNA
 <213> PRIMERS

<400> 4
 gcctggcaaa catagagaga 20

<210> 5
 <211> 197
 <212> DNA
 <213> HUMAN

<400> 5
 agaaaacaga tggcagaatg ataaactcaa tcatgttgc 1971 aatataat aatgtaaatg 60

gcttaaatat ccaactaaaa gactactaga atggattcta ttctattcta ttctattcra	120
ttcrattcta ttctattcta ttctattcta ttctattcta ttcttttga gatgaagtct	180
ctctatgttgc cccagggc	197
<210> 6	
<211> 20	
<212> DNA	
<213> PRIMERS	
<400> 6	
tccttcctca gtcttctgg	20
<210> 7	
<211> 20	
<212> DNA	
<213> PRIMERS	
<400> 7	
tgcgcatttgtt tttctatttg	20
<210> 8	
<211> 45	
<212> DNA	
<213> PROBES	
<400> 8	
ctgttgtt cagttagatt tcgcacagca tacaccaccc actgc	45
<210> 9	
<211> 45	
<212> DNA	
<213> PROBES	
<400> 9	
cactgcagag atgagaggc cgtgagatgg aatctgaatg tgttc	45
<210> 10	
<211> 27	
<212> DNA	
<213> PRIMERS	
<400> 10	
gaagacaaat agaaaacaga tggcaga	27
<210> 11	
<211> 52	
<212> DNA	
<213> PRIMERS	
<400> 11	
tacgcattccc agtttgagac ggaatagaat agaatagaat ag	52

<210> 12
<211> 45
<212> DNA
<213> MOUSE

<400> 12
ctgttgtctt cagtgagatt tcgcacagca tacaccaccc actgc

45

<210> 13
<211> 45
<212> DNA
<213> MOUSE

<400> 13
cactgcagag atgagaggc cgtgagatgg aatctgaatg tgttc

45