Funzioni implicite

Lucrezia Bioni

Teorema di ∃! globale

Siano $a < b, c < d \in \mathbb{R}$ e sia $f: [a, b] \times [c, d] \to \mathbb{R}$ continua. Supponiamo che:

- $\bullet \ \forall x \in [a,b], \ \lim_{y \to c^+} f(x,y)$ e $\lim_{y \to d^-} f(x,y)$ hanno segni discordi
- $\forall (x,y) \in (a,b) \times (c,d), \, \partial_y f(x,y)$ esiste e ha segno strettamente definito

Allora esiste un'unica funzione $g:(a,b)\to(c,d)$ tale che f(x,g(x))=0 per ogni $x\in(a,b)$

Teorema di Dini, ∃! e regolarità locale

Sia U un aperto di \mathbb{R}^2 e sia $f: U \to \mathbb{R}$ di classe $\mathcal{C}^1(U)$. Sia $(x_0, y_0) \in U$ e supponiamo che:

- $\bullet \ f(x_0, y_0) = 0$
- $\partial_y f(x_0, y_0) \neq 0$ Allora esistono un intorno aperto V di x_0 , un intorno aperto W di y_0 con $VxW \subset U$, ed esiste un'unica funzione $g: V \to W$ tale che:
- $g(x_0) = y_0$,
- f(x, g(x)) = 0 per ogni $x \in V$

Inoltre $g\in\mathcal{C}^1(V)$ e la sua derivata soddisfa in V l'identità $g'(x)=-\frac{\partial_x f}{\partial_y f}|_{x,g(x)}$

Teorema di ∃! e regolarità locale multi dimensionale

Sia U aperto di \mathbb{R}^{m+n} e sia $f: U \to \mathbb{R}^n$ di classe $\mathcal{C}^1(U)$. Sia $(x_0, y_0) \in U$ e supponiamo che:

- $f(x_0, y_0) = 0$
- det $J_y f(x_0, y_0) \neq 0$

Allora esistono un intorno aperto $V \subset \mathbb{R}^m$ di x_0 , un intorno aperto $W \subset \mathbb{R}^n$ di y_0 con $VxW \subset U$, ed esiste un'unica funzione $g: V \to W$ tale che:

- $\bullet \ g(x_0) = y_0,$
- f(x, g(x)) = 0 per ogni $x \in V$

Inoltre $g \in \mathcal{C}^1(V)$ e la sua matrice jacobiana soddisfa in V l'identità

 $(Jg)|_x = -(J_y f)^{-1} (J_x f)|_{x,g(x)}$