Chapitre 17. Espaces vectoriels

Dans ce chapitre, on fixe un corps *K*, appelé corps des scalaires.

<u>Pseudo-définition</u>: Étant donné n objets $x_1, ..., x_n$, une <u>combinaison linéaire</u> (CL) de $x_1, ..., x_n$ est (quand ça a un sens) une expression de la forme $\sum_{i=1}^{n} \lambda_i x_i$, où $\lambda_1, ..., \lambda_n \in K$.

1 Espaces vectoriels

1.1 Définition

Définition 1.1. Un espace vectoriel sur *K* (ou *K*-espace vectoriel) est un ensemble *E* muni de deux opérations :

$$+: \begin{cases} E \times E \to E \\ (x,y) \mapsto x + y \end{cases} \cdot \begin{cases} K \times E \to E \\ (\lambda,x) \mapsto \lambda x \end{cases}$$

telles que:

- * (E, +) est un groupe abélien.
- * On a $\forall x \in E$, 1x = x
- * On a $\forall \lambda, \mu \in K, \forall x \in E, \lambda(\mu x) = (\lambda \mu)x$
- * On a $\forall \lambda, \mu \in K, \forall x \in E, (\lambda + \mu)x = \lambda x + \mu x$
- * On a $\forall \lambda \in K$, $\forall x, y \in E$, $\lambda(x + y) = \lambda x + \lambda y$

1.2 Premiers exemples

- 1)L'espace vectoriel K^n pour $n \in \mathbb{N}$
- 2)L'ensemble $M_{nv}(K)$
- 3)L'ensemble K^{Ω} des fonctions $\Omega \to K$
- 4)Si E et F sont des K-ev, $E \times F$ est un K-ev
- 5)L'ensemble K[X] des polynômes et, pour tout $n \in \mathbb{N}$, l'ensemble $K_n[X]$
- 6)L'ensemble $\{0_E\}$ est un K-ev que l'on qualifie d'espace vectoriel nul (ou trivial)

1.3 Quelques règles de calcul

Proposition 1.2. *Soit E un ev. On a :*

- * $\forall \lambda \in K$, $\lambda 0_E = 0_E$
- * $\forall x \in E, 0x = 0_E$
- $* \forall x \in E, -x = (-1)x$

Proposition 1.3 ("règle de produit scalaire-vecteur nul"). *Soit E un ev et* $\lambda \in K$, $x \in E$ *tels que* $\lambda x = 0_E$. *Alors* $\lambda = 0$ *ou* $x = 0_E$

1.4 Algèbres

Définition 1.4. Une *K*-algèbre est un ensemble *A* muni de trois relations :

$$+: \begin{cases} A \times A \to A \\ (x,y) \mapsto x + y \end{cases} \bullet : \begin{cases} K \times A \to A \\ (\lambda,x) \mapsto \lambda x \end{cases} \times : \begin{cases} A \times A \mapsto A \\ (x,y) \to xy \end{cases}$$

telles que:

- * $(A, +, \cdot)$ soit un *K*-espace vectoriel.
- * $(A, +, \times)$ soit un anneau.
- * La multiplication \times soit bilinéaire, càd $\forall x, y \in A, \forall \lambda \in K, (x \times (\lambda y) = (\lambda x) \times y = \lambda \times (xy))$

Proposition 1.5. *Soit L/K une extension de corps (càd L est un corps dont K est un sous-corps).*

Alors L est un K-algèbre pour les lois usuelles, càd l'addition et la multiplication de L et la multiplication restreinte

$$\begin{cases} K \times L \to L \\ (\lambda, x) \mapsto \lambda x \end{cases}$$

Par exemple, \mathbb{C} est une \mathbb{R} -algèbre (et donc un \mathbb{R} -ev)

 \mathbb{R} est une \mathbb{Q} -algèbre (et donc un \mathbb{Q} -ev)

2 Familles de vecteurs

Dans toute cette section, on fixe un K-ev E et une famille $(x_i)_{i\in I}$ d'éléments de E (si I=[1,r], on le notera plus simplement (x_1,\ldots,x_r)).

2.1 Combinaisons linéaires

Définition 2.1. Une <u>combinaison linéaire</u> de vecteurs x_i , $i \in I$ est un élément de la forme $\sum_{i \in I} \lambda_i x_i$, où $(\lambda_i)_{i \in I}$ est une famille <u>presque nulle</u> d'éléments de K, càd que $S = \{i \in I \mid \lambda_i \neq 0\}$ est fini.

La somme $\sum_{i \in I} \lambda_i x_i$ signifie simplement $\sum_{i \in S} \lambda_i x_i$

On note $\text{Vect}(x_i)_{i \in I}$ et on appelle <u>sous-espace vectoriel engendré par les x_i , $i \in I$, l'ensemble de ces combinaisons linéaires.</u>

Si I = [1, r] la définition devient :

$$Vect(x_1, ..., x_r) = \left\{ \sum_{i=1}^r \lambda_i x_i \mid \lambda_1, ..., \lambda_r \in K \right\}$$

2.2 Familles libres

Définition 2.2.

- * Une <u>relation de liaison entre les x_i , $i \in I$ </u> est une égalité de la forme $\sum\limits_{i \in I} \lambda_i x_i = 0_E$
- * Cette relation de liaison est dite triviale si $\forall i \in I, \lambda_i = 0$ et non triviale sinon.

Définition 2.3.

- * La famille $(x_i)_{i \in I}$ est dite liée s'il existe une relation de liaison non triviale entre les x_i , $i \in I$.
- * Elle est dite libre dans le cas contraire. (On dit aussi que les x_i , $i \in I$ sont linéairement indépendants).

2

Définition 2.4 (Colinéarité). Soit $u, v \in E$. LASSÉ :

(i) Il existe
$$\omega \in E$$
 et $\lambda, \mu \in K$ tels que
$$\begin{cases} u = \lambda \omega \\ v = \mu \omega \end{cases}$$

(ii)
$$(\exists \alpha \in K : v = \alpha u)$$
 ou $(\exists \beta \in K : u = \beta v)$

Quand ces assertions sont vraies, on dit que u et v sont colinéaires.

Proposition 2.5 (Liberté de petites familles).

- 0. La famille () est libre.
- 1. Soit $v \in E$. La famille (v) est libre ssi $v \neq 0_E$
- 2. Soit $u, v \in E$. La famille (u, v) est libre ssi u et v ne sont pas colinéaires.

Proposition 2.6. La famille $(x_i)_{i \in I}$ est liée si et seulement si l'un des vecteurs est CL des autres.

2.3 Familles génératrices

Définition 2.7. On dit que $(x_i)_{i \in I}$ engendre E (ou est génératrice de E) si $\text{Vect}(x_i)_{i \in I} = E$, càd si tout vecteur de E est CL de vecteurs x_i , $i \in I$

2.4 Bases

Définition 2.8. On dit que $(x_i)_{i \in I}$ est une base de E si $(x_i)_{i \in I}$ est libre et qu'elle engendre E.

2.5 Décomposition selon une base

Proposition 2.9. *On a les équivalences suivantes :*

- * La famille $(x_i)_{i \in I}$ engendre E ssi tout vecteur $v \in E$ possède une écriture $v = \sum\limits_{i \in I} \lambda_i x_i$, pour une certaine $\lambda \in K^{(I)}$
- * La famille $(x_i)_{i \in I}$ est libre ssi tout vecteur $v \in E$ possède au plus une écriture.
- * La famille $(x_i)_{i \in I}$ est une base de E ssi tout vecteur $v \in E$ possède exactement une écriture.

Définition 2.10. On suppose que E a une base finie $\mathcal{B} = (e_1, ..., e_r)$. Soit $v \in E$.

L'unique
$$n$$
-uplet $\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in K^n$ tel que $v = \lambda_1 e_1 + ... + \lambda_n e_n$ est noté $\mathrm{Mat}_{\mathcal{B}}(v)$

On dit que $\lambda_1, ..., \lambda_n$ sont les coordonnées du vecteur v dans la base \mathcal{B} .

3 Sous-espaces vectoriels

3.1 Définitions

Philosophiquement, un sous-espace vectoriel (sev) de E est une partie de E <u>stable par combinaison linéaire</u>, càd que dès qu'elle contient une famille de vecteurs $(x_i)_{i\in I}$ elle contient toutes les CL des x_i , $i\in I$. En particulier, elle doit toujours contenir 0_E , qui est une CL de 0 vecteurs.

Dans toute cette section, *E* désigne un *K*-ev.

Définition 3.1. Un sous-espace vectoriel de E est une partie $I \subseteq E$ telle que :

- $* O_r \in F$
- * $\forall x \in F, \forall \lambda \in K, \lambda x \in F$
- * $\forall x, y \in F, x + y \in F$

Théorème 3.2 (Stabilité par CL). Soit F un sev de E.

Alors F est stable par CL: pour toute famille $(x_i)_{i\in I}$ d'éléments de F, on a $\operatorname{Vect}(x_i)_{i\in I}\subseteq F$

Proposition 3.3. *Soit* $F \subseteq E$ *une partie non vide telle que* $\forall \lambda \in K$, $\forall x, y \in F$, $x + \lambda y \in F$ *Alors* F *est un sev de* E.

Proposition 3.4. *Soit* $(x_i)_{i \in I}$ *une famille de vecteurs de E.*

Alors $Vect(x_i)_{i \in I}$ est un sous-espace vectoriel de E.

Proposition 3.5. Soit $(F_i)_{i \in I}$ une famille de sev E.

Alors $\bigcap_{i \in I} F_i$ est un sev de E.

3.2 Exemples

Proposition 3.6. *Soit* $A \in M_{np}(K)$

- * $\ker A = \{X \in K^p \mid AX = 0_{K^n}\}\ est\ un\ sev\ de\ K^p$
- * $\operatorname{im} A = \{AX \mid X \in K^p\}$ est un sev de K^n

Proposition 3.7. *Soit* $A \in M_{np}(K)$

Alors im $A = Vect(C_1(A), ..., C_p(A))$

3.3 Bases d'un sous-espace vectoriel

Si F est un sev de E, F hérite d'une structure de ev. On peut dont s'intéresser à une famille $(x_i)_{i\in I}$ d'éléments de F et se demander si elle est libre / génératrice de F / une base de F.

En pratique, il y a deux méthodes pour vérifier que $(x_i)_{i \in I}$ est une base de F

Méthode 1 : retour aux définitions.

- 0. On vérifie que $\forall i \in I$, $x_i \in F$ (ce qui montre $\text{Vect}(x_i)_{i \in I} \subseteq F$ par stabilité par CL).
- 1. On vérifie que $(x_i)_{i \in I}$ est libre.
- 2. On vérifie que tout $y \in F$ est CL des x_i , $i \in I$, ce qui montre $F \subseteq \text{Vect}(x_i)_{i \in I}$

Méthode 2 : par analyse-synthèse.

- 0. idem.
- 1. On vérifie que tout $y \in F$ s'écrit de manière unique comme CL des x_i , $i \in I$

4 Familles et bases échelonnées

Définition 4.1. Une famille $(P_i)_{i \in I}$ de polynômes non nuls est dite <u>échelonnée</u> si tous les degrés deg P_i , $i \in I$ sont différents.

Proposition 4.2. *Toute famille échelonnée de polynômes est libre.*

Théorème 4.3.

- * Soit $(P_i)_{i\in\mathbb{N}}$ une famille de polynômes tels que $\forall i\in\mathbb{N}$, $\deg P_i=i$. Alors $(P_i)_{i\in\mathbb{N}}$ est une base de K[X]
- * Soit $(P_i)_{i \in \llbracket 0,n \rrbracket}$ une famille de polynômes tels que $\forall i \in \llbracket 0,n \rrbracket$, $\deg P_i = i$. Alors $(P_i)_{i \in \llbracket 0,n \rrbracket}$ est une base de K[X]

5 Somme de sous-espaces vectoriels

Dans toute cette section, on fixe un espace vectoriel *E*.

5.1 Définition

Définition 5.1.

- * Soit F_1 , F_2 deux sev de E.
 - On définit leur somme $F_1 + F_2 = \{x_1 + x_2 \mid x_1 \in F_1, x_2 \in F_2\}$
- * Soit $(F_i)_{i \in I}$ une famille de sev de E.

On définit leur somme $\sum\limits_{i\in I}F_i$ comme l'ensemble des sommes $\sum\limits_{i\in I}x_i$ où $(x_i)_{i\in I}$ est une famille presque nulle d'éléments de E telle que $\forall i\in I,\,x_i\in F_i$

Proposition 5.2.

- * La somme d'une famille de sev de E est un sev de E.
- * C'est même le plus petit sev de E dans lequel sont inclus tous les éléments de la famille.

5.2 Somme directe

Définition 5.3.

- * Soit F_1 , F_2 deux sev de E.
 - On dit que F_1 et F_2 sont en somme directe si tout élément de $F_1 + F_2$ s'écrit de manière unique sous la forme $x_1 + x_2$, où $x_1 \in F_1$ et $x_2 \in F_2$.
 - Si c'est le cas, on note $F_1 \oplus F_2 = F_1 + F_2$
- * Soit $(F_i)_{i\in I}$ une famille de sev. On dit que les F_i , $i\in I$ sont en somme directe si tout élément de $\sum\limits_{i\in I}F_i$ s'écrit de manière unique sous la forme $\sum\limits_{i\in I}x_i$, où $(x_i)_{i\in I}$ est une famille presque nulles d'éléments de E telle que $\forall i\in I$, $x_i\in F_i$.
 - Si c'est le cas, on note $\bigoplus_{i \in I} F_i = \sum_{i \in I} F_i$

Proposition 5.4. *Soit* $(F_i)_{i \in I}$ *une famille de sev de E.*

Alors les F_i , $i \in I$ sont en somme directe si et seulement si la seule décomposition de 0_E sous la forme $\sum_{i \in I} x_i$ est la décomposition $0_E = \sum_{i \in I} 0_E$

Proposition 5.5. *Soit* F_1 , F_2 *deux sous-espaces vectoriels de* E.

Alors F_1 et F_2 sont en somme directe ssi $F_1 \cap F_2 = \{0_E\}$

5.3 Sous-espaces vectoriels supplémentaires

Définition 5.6. Soit F_1 et F_2 deux sev de E.

On dit qu'ils sont supplémentaires si $F_1 \oplus F_2 = E$

5.4 Bases adaptées à une décomposition en somme directe

Théorème 5.7.

- * Soit F_1 et F_2 deux sev de E en somme directe. Supposons que $(x_1, ..., x_n)$ soit une base de F_1 et $(y_1, ..., y_p)$ soit une base de F_2
 - Alors la concaténation $(x_1, ..., x_n, y_1, ..., y_p)$ est une base de $F_1 \oplus F_2$
- * Plus généralement, si $(F_i)_{i\in I}$ est une famille de sev de E en somme directe et que, pour tout $i\in I$, $(x_{i,j})_{j\in J_i}$ est une base de F_i , alors la "concaténation" $(x_{i,j})_{\substack{i\in I\\j\in J_i}}$ est une base de $\bigoplus_{i\in I} F_i$

Théorème 5.8.

- * Soit $(x_1, ..., x_r, x_{r+1}, ..., x_n)$ une base de E. Alors $\text{Vect}(x_1, ..., x_r) \oplus \text{Vect}(x_{r+1}, ..., x_n) = E$
- * Soit $(x_i)_{i \in I}$ une base de E et $(I_j)_{j \in J}$ une famille de parties de I formant un recouvrement disjoint de I (càd $I = \bigsqcup_{j \in J} I_j$). Alors $E = \bigoplus_{j \in J} \operatorname{Vect}(x_i)_{i \in I_j}$

6 Applications linéaires

Soit *E* et *F* deux espaces vectoriels.

6.1 Définition

Définition 6.1. Une application *K*-linéaire $f: E \to F$ est une application telle que :

- * $\forall x, y \in E, f(x+y) = f(x) + f(y)$
- * $\forall x \in E, \lambda \in K, f(\lambda x) = \lambda f(x)$

On note $\mathcal{L}(E,F)$ ou $\mathcal{L}_K(E,F)$ l'ensemble des applications linéaires $E \to F$

Proposition 6.2. *Soit* $f \in \mathcal{L}(E, F)$. *Alors* f "préserve les CL", càd :

- $* f(0_E) = 0_F$
- * $\forall x_1, \dots, x_n \in E, \forall \lambda_1, \dots, \lambda_n \in K, f(\sum_{i=1}^n \lambda_i x_i) = \sum_{i=1}^n \lambda_i f(x_i)$

Proposition 6.3. *Soit* $f: E \to F$ *une application telle que* $\forall x, y \in E, \forall \lambda \in K, f(x + \lambda y) = f(x) + \lambda f(y)$ *Alors* $f \in \mathcal{L}(E, F)$

Proposition 6.4. $\mathcal{L}(E,F)$ *est un sev de* F^E

(Autrement dit : une CL d'applications linéaires est linéaire).

Proposition 6.5 (Stabilité par composition). *Soit* E, F, G *trois espaces vectoriels,* $f \in \mathcal{L}(E,F)$ *et* $g \in \mathcal{L}(F,G)$ *Alors* $g \circ f \in \mathcal{L}(E,G)$

Proposition 6.6 (Bilinéarité de la composition). La composition des applications linéaires est bilinéaire.

Soit E, F, G trois espaces vectoriels. Soit $\lambda \in K$.

- * Soit $f \in \mathcal{L}(E, F)$ et $g_1, g_2 \in \mathcal{L}(F, G)$. On $a(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$ et $(\lambda g_1) \circ f = \lambda(g_1 \circ f)$
- * Soit $f_1, f_2 \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. On a $g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$ et $g \circ (\lambda f_1) = \lambda(g \circ f_1)$

Définition 6.7. Un endomorphisme de E est une application linéaire $E \rightarrow E$

On note $\mathcal{L}(E) = \mathcal{L}(E, E)$

Corollaire 6.8. $(\mathcal{L}(E), +, \circ)$ est un anneau, et même une K-algèbre.

6.2 Exemples

Cas particulier crucial : Si $A \in M_{np}(K)$, on a une AL

$$\varphi_A: \begin{cases} K^P \to K^n \\ X \mapsto AX \end{cases}$$

6

C'est l'application linéaire canoniquement associée à A.

6.3 Noyaux et images

Définition 6.9. Soit $f \in \mathcal{L}(E, F)$.

On définit :

- * Son noyau ker $f = \{x \in E \mid f(x) = 0_E\}$
- * son image im $f = \{f(x) \mid x \in E\}$

Proposition 6.10. *Soit* $f \in \mathcal{L}(E, F)$.

- * ker f est un sev de E.
- * im f est un sev de F.

Proposition 6.11. *Soit* $f \in \mathcal{L}(E, F)$

- * Si H est un sev de F, alors $f^{-1}[H]$ est un sev de E.
- * Si G est un sev de E, alors f[G] est un sev de F.

Théorème 6.12. *Soit* $f \in \mathcal{L}(E, F)$

- * Deux vecteurs $x_1, x_2 \in E$ ont la même image par f ssi $x_2 x_1 \in \ker f$
- * On a f injective \iff ker $f = \{0_E\}$
- * On a f surjective \iff im f = F

6.4 Sous-espaces affines d'un espace vectoriel

Définition 6.13. Un Sous-espace affine de E est un ensemble de la forme $a + G = \{a + x \mid x \in G\}$ où $a \in E$ et G est un sev de E.

On dit que l'espace vectoriel *G* est la direction du sous-espace affine.

Notation : La direction G d'un sous-espace affine $A \subseteq E$ est parfois noté \vec{A} .

Proposition 6.14. *Soit* $f \in \mathcal{L}(E, F)$ *et* $y \in F$.

Alors $f^{-1}[\{y\}] = \{x \in E \mid f(x) = y\}$ est soit vide, soit un sous-espace affine de direction $\ker f$.

Proposition 6.15. *Soit* $(A_i)_{i \in I}$ *une famille de sous-espaces affines de* E.

Alors $\bigcap_{i \in I} A_i$ est soit vide, soit un sous-espace affine, de direction $\bigcap_{i \in I} \vec{A}_i$

6.5 Isomorphismes

Définition 6.16. Soit $f \in \mathcal{L}(E, F)$.

On dit que f est un isomorphisme si f est bijective.

On dit que E et F sont isomorphes s'il existe un isomorphisme $E \to F$.

Proposition 6.17. *Soit* $f \in \mathcal{L}(E, F)$ *un isomorphisme.*

Alors $f^{-1}: F \to E$ est linéaire (et donc un isomorphisme).

Proposition 6.18. *Soit* E, F, G *trois sev et* $f: E \to F$ *et* $g: F \to G$ *deux isomorphismes.*

Alors $g \circ f$ est un isomorphisme et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

7 Endomorphismes

On fixe un K-ev. E

Rappel : $(\mathcal{L}(E), +, \circ)$ est un anneau (et même une *K*-algèbre).

Définition 7.1. Un <u>automorphisme</u> de *E* est un endomorphisme bijectif de *E*.

On note GL(E), et on appelle groupe linéaire de E, l'ensemble des automorphismes de E.

Définition 7.2. Deux endomorphismes $f,g \in \mathcal{L}(E)$ commutent si $g \circ f = f \circ g$.

Proposition 7.3. *Soit* $f,g \in \mathcal{L}(E)$ *commutant.*

Alors ker f et im f sont stables par g.

Définition 7.4. Soit $f \in \mathcal{L}(E)$.

On définit son commutant $C(f) = \{g \in \mathcal{L}(E) \mid g \circ f = f \circ g\}$

8 Applications linéaires et familles

Soit *E*, *F* deux ev et $f \in \mathcal{L}(E, F)$

8.1 Prolongement des identités

Théorème 8.1.

- * Soit $(x_i)_{i\in I}$ une famille de vecteurs de E et $f,g\in\mathcal{L}(E,F)$ telles que $\forall i\in I, f(x_i)=g(x_i)$ Alors f et g coïncident sur $\text{Vect}(x_i)_{i\in I}: \forall v\in \text{Vect}(x_i)_{i\in I}, f(v)=g(v)$
- * Si en outre $(x_i)_{i \in I}$ engendre E, alors f = g

8.2 Caractérisation de l'injectivité, la surjectivité

Notation non standard : Si $\mathcal{B} = (e_i)_{i \in I}$ est une base de E, on notera : $f_*(\mathcal{B}) = (f(e_i))_{i \in I}$ qui est une famille de vecteurs de F.

Proposition 8.2. *Soit* \mathcal{B} *une base de* \mathcal{E} .

Alors:

- * f est injective ssi $f_*(\mathcal{B})$ est libre.
- * f est surjective ssi $f_*(\mathcal{B})$ engendre F.
- * f est un isomorphisme ssi $f_*(\mathcal{B})$ est une base de F.

8.3 Propriété universelle des bases

Théorème 8.3. Soit $\mathcal{B} = (e_i)_{i \in I}$ une base de E et $F = (y_i)_{i \in I}$ une famille de vecteurs de F. Alors il existe une unique $AL \ f \in \mathcal{L}(E,F)$ telle que $f_*(\mathcal{B}) = F$. $(\forall i \in I, f(e_i) = y_i)$

9 Applications linéaires et décomposition en somme directe

9.1 Propriété universelle de la somme directe

Théorème 9.1. Soit E, F deux espaces vectoriels et $(S_i)_{i \in I}$ une famille de sev de E telle que $E = \bigoplus_{i \in I} S_i$. On se donne, pour tout $i \in I$, une AL $f_i \in \mathcal{L}(S_i, F)$ Alors il existe une unique AL $f \in \mathcal{L}(E, F)$ telle que $\forall i \in I$, $f_{|S_i} = f_i$

9.2 Projecteurs et symétries

On fixe un espace vectoriel E

Définition 9.2. Soit F, G deux sev de E tels que $E = F \oplus G$

- * <u>Le projecteur sur F parallèlement à G</u> est l'unique endomorphisme $f \in \mathcal{L}(E)$ tel que $\forall x \in F, f(x) = x$ et $\forall x \in G, f(x) = 0_E$
- * (On suppose que K n'est pas de caractéristique 2)

 <u>La symétrie d'axe F parallèlement à G</u> est l'unique endomorphisme $f \in \mathcal{L}(E)$ tel que $\forall x \in F$, f(x) = x et $\forall x \in G$, f(x) = -x

Définition 9.3. Soit $f \in \mathcal{L}(E)$ et $\lambda \in K$.

On définit <u>l'espace propre</u> de f associé à $\lambda: E_{\lambda}(f) = \ker(f - \lambda i d_E) = \{x \in E \mid f(x) = \lambda x\}$ On dit que λ est <u>valeur propre</u> de f si $E_{\lambda}(f) \neq \{0_E\}$ et on appelle <u>vecteur propre associé à la valeur propre λ </u> tout élément non nul de $E_{\lambda}(f)$ (Autrement dit, tout vecteur x non nul tel que $f(x) = \lambda x$) On appelle spectre de f l'ensemble $S_p(f) = S_{p_K}(f)$ de valeurs propres de F.

Proposition 9.4. *Soit F, G deux sev de E tels que E* = $F \oplus G$

- * On note p le projecteur sur F parallèlement à G. On a alors $F = \operatorname{im}(p) = E_1(p)$, $G = \ker(p) = E_0(p)$ et $\forall \lambda \in K \setminus \{0,1\}$, $E_{\lambda}(p) = \{0_E\}$ (Autrement dit, $S_v(p) \subseteq \{0,1\}$)
- * (On suppose $\operatorname{car}(K) \neq 2$)

 On note s la symétrie d'axe F parallèlement à G.

 On a alors $F = E_1(s)$ et $G = E_{-1}(s)$ et $\forall \lambda \in K \setminus \{-1,1\}$, $E_{\lambda}(s) = \{0_E\}$ (Autrement dit, $S_p(s) \subseteq \{-1,1\}$)

Théorème 9.5. *Soit* $f \in \mathcal{L}(E)$

- * f est un projecteur ssi $f^2 = f$
- * (On suppose $car(K) \neq 2$) f est une symétrie ssi $f^2 = id_E$