

Implémentation d'un modèle de scoring

octobre 2023

SOMMAIRE

- Problématiques & objectifs
- Présentation du jeu de données
- Modélisation
 - préparation des données
 - démarche de modélisation
 - métriques d'évaluation & résultats
 - optimisation du seuil
- Suivi des modèles et de l'évolution des données
 - → le tracking des modèles avec MLFlow
 - l'analyse du data drift
- Le déploiement
 - le pipeline de déploiement
 - le dashboard

PROBLÉMATIQUES & OBJECTIFS

- Déterminer la solvabilité de clients ayant peu ou pas d'historique de prêt
 - Développer un algorithme de scoring crédit

- Répondre au besoin de transparence des clients quant aux décisions d'octroi de crédit
 - Développer un dashboard interactif qui explique ces décisions

Le jeu de données

- → on se concentre sur la table principale pour s'adapter à des clients ayant pas ou peu d'historique de prêt
- → train set : 307511 prêts, 120 features sans doublons dans les ID
 24 % de valeurs manquantes

Organisation du jeu de données

Préparation des données pré-pipeline

- → reprise d'éléments d'un kernel Kaggle kernel 'LightGBM with Simple Features'
- → nettoyage
 - → suppression d'outliers extrêmes
 - → suppression de catégories trop peu représentées
- → feature engineering

LTV (LoanToValue) = AMT_CREDIT / AMT_GOODS_PRICE
DTI = AMT_ANNUITY / AMT_INCOME_TOTAL
CREDIT_ANNUITY_RATIO = AMT_CREDIT / AMT_ANNUITY
DAYS_EMPLOYED_RATIO = DAYS_EMPLOYED / DAYS_BIRTH
INCOME_CREDIT_RATIO = AMT_INCOME_TOTAL / AMT_CREDIT
INCOME PER PERSON = AMT INCOME TOTAL / CNT FAM MEMBERS

→ suppression des variables avec trop de valeurs manquantes

les variables retenues et leurs pourcentages de valeurs non-manquantes

Le déséquilibre des classes

The target's imbalanced distribution

- → seulement 8,1 % de positifs
- → déséquilibre qui peut nuire aux performances
- → piste privilégiée : le sous-échantillonnage le jeu de données est assez grand pour éviter le suréchantillonnage

Démarche de modélisation

une grid search pour chaque étape du pipeline :

structure du pipeline retenu

- rééquilibrage des données : test avec / sans sous-échantillonnage (RandomUnderSampler)
- → imputer test de SimpleImputer (médiane et moyenne), IterativeImputer, KNNImputer
- → Scaler

 test de StandardScaler, RobustScaler, Normalizer,

 PowerTransformer, QuantileTransformer, MinMaxScaler
- → encoder test de OneHotEncoder, WOEEncoder, GLMMEncoder, JamesSteinEncoder
- → Classifier

 LogisticRegression, RandomForestClassifier, LGBMClassifier,

 GradientBoostingClassifier (+ DummyClassifier as reference)
- → hyperparamètres n_estimators: [100, 200, 300, 400, 500], learning_rate: [0.15, 0.1, 0.05], max_depth: [2, 3, 4, 5]

Les métriques d'évaluation

- → hypothèse : les faux négatifs sont 10x plus coûteux que les faux positifs
- → création de 3 métriques :
 - → une fonction de perte qui compte 1 pour un faux positif, et 10 pour un faux négatif
 - F10 score : moyenne harmonique pondérée de la précision (precision) et du rappel (recall) avec 10x plus d'importance pour le rappel que pour la précision
 - → P&L : différence des profits (hypothèse : les intérêts s'élèvent à 5 % du montant du prêt) et des pertes (hypothèse : les prêts non-remboursés génèrent une perte égale à 50 % du montant du prêt)
- → + recall, precision, accuracy, AUC, negative log loss, fit time, score time

Les résultats

	LGBM	DummyClassifier
mean_test_roc_auc	0.73	0.5
mean_test_accuracy	0.67	0.92
mean_test_recall	0.67	0
mean_test_precision	0.15	0
mean_test_f10	0.65	0
mean_test_P&L	6.85565e+08	3.18957e+08
mean_test_custom_loss	34845.2	49648
mean_fit_time	5.4	0.35
std_fit_time	0.71	0.02
mean_score_time	1.3	0.51
std_score_time	0.32	0.01

Les performances du modèle retenu comparées à celles du classifieur idiot (cross-validation 5 splits)

Confusion matrix with the average results over all CV test sets

Confusion matrix with the average results over all CV test sets

Optimisation du seuil de classification

Loss by threshold value

P&L by threshold value

- → mesures effectuées en cross-validation
- → même optimum trouvé avec les deux métriques (leurs hypothèses sont très proches)
- → avec ce seuil, 70 % des demandes sont accordées

Pistes pour l'amélioration du modèle

- s'inspirer d'autres kernels Kaggle
- → revenir sur la sélection des features
- pour l'optimisation du seuil : améliorer les fonctions coût en affinant leurs hypothèses (coûts relatifs d'un faux positif et d'un faux négatif, etc.)
- → faire plus de tests d'hyperparamètres
- réviser l'algorithme pour qu'il puisse prendre en compte l'historique de prêt du client quand il y en a un

Tracking des résultats avec MLFlow

- → suivi de l'évolution des modèles et de leurs résultats
- → les prérequis au déploiement de chaque modèle sont enregistrés

Les meilleurs modèles et leurs résultats enregistrés sur MLFlow

Analyse du data drift

- → data drift détecté sur 5 des 20 variables
 - chute du taux de crédits renouvelables (revolving loans) par rapport aux prêts personnels (cash loans)
 - → ratio montant du prêt/mensualités en hausse
 - ightarrow augmentation des montant des prêts
 - → augmentation des mensualités
- réentraîner le modèle au fur et à mesure de la mise à jour des données, puis reconstruire le modèle si le data drift augmente trop

Analyse du data drift avec la librairie evidently

Le pipeline de déploiement — Git & Github

- → 2 repositories Github

 pour le backend (utilisation de FastAPI)

 https://github.com/antoineminier/Credit_scoring_backend

 pour le frontend (dashboard Streamlit)

 https://github.com/antoineminier/Credit_scoring_frontend
- → Render & Streamlit exécutent les fichiers déposés sur Github
- → Streamlit envoie ses requêtes à Render pour récupérer les résultats du backend

suivi des différents push vers le repository Github de la partie backend

Les tests automatiques pré-push

```
Credit_scoring_backend / .github / workflows / workflow.yml - ...
 unation antoineminier Create workflow.yml
  Code Blame 39 lines (33 loc) · 1.17 KB   Code 55% faster with GitHub Copilot
           # This workflow will install Python dependencies, run tests and lint with a single version of Python
           name: Python application
               branches: [ "main" ]
               branches: [ "main" ]
           permissions:
               runs-on: ubuntu-latest
               - uses: actions/checkout@v3
               - name: Set up Python 3.9
                uses: actions/setup-python@v3
                  python-version: "3.9"
               - name: Install dependencies
                  python -m pip install ---upgrade pip
                  pip install flake8 pytest
                   if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
               - name: Lint with flake8
                  # stop the build if there are Python syntax errors or undefined names
                  flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
                   # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
                   flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
               - name: Test with pytest
                   pytest test_backend.py
```

Un des fichiers qui détermine les tests à effectuer avant chaque push & merge

- → test de la syntaxe et vérification qu'il n'y a pas de variables non-définies
- → vérifications sur les fichiers :
 - des data
 - du préprocesseur des données
 - du classifieur
 - de l'explainer SHAP

lien vers le dashboard : https://creditscoringfrontend-kapprmphrvmeskhibw7txor.streamlit.app/

Enter client ID	
100001	
loan re	luseu
	probability: 63.5 %
default	

La première étape dans l'utilisation du dashboard

- → 1ère étape : rentrer l'identifiant du client
- → la décision d'octroi de crédit s'affiche, avec :
 - la probabilité de défaut
 - l'indication du seuil critique
- → message d'erreur si l'id n'est pas correct :

La deuxième étape dans l'utilisation du dashboard

- → 2^{ème} étape : l'explication du résultat cocher la case "Show feature impacts"
- → graphique "waterfall"
 - indique de combien chaque variable a augmenté ou diminué la probabilité de défaut de paiement
 - → part de la valeur de base et remonte à travers les contributions jusqu'à la probabilité de défaut f(x)
 - → les données du client s'affichent à droite des noms de variables sur l'axe des ordonnées
- → possibilité d'afficher +/- de variables sur le graph
- → deux cases à cocher pour obtenir plus d'infos
 - → une explication du sens du graphique
 - une définition des variables

Dashboard

- → 3^{ème} étape : la comparaison du client avec les autres clients déterminer avec la glissière sur jusqu'à quelle énième variable qui a eu le plus d'impact l'on veut afficher des informations
- pour les variables catégorielles : est indiqué pour chaque catégorie le nombre de clients dont le prêt a été accordé / refusé

diagramme pour une variable catégorielle

la glissière pour régler le nombre de graphiques à afficher

- → pour les variables numériques on compare :
 - → la valeur du client
 - → la moyenne pour les clients dont le prêt a été refusé
 - → la moyenne pour les clients dont le prêt a été accordé
 - → la moyenne générale

diagramme pour une variable numérique

Conclusion

- le modèle de scoring est déployé, avec suivi de son évolution, suivi de l'évolution des données, et tests automatiques pour sécuriser ses futures modifications
- le chargé de relation client peut expliquer la décision prise par l'algorithme et peut comparer le client aux autres clients
- des axes d'amélioration du modèle sont identifiés