Predicting IMDb Ratings via Regression and Deep Learning

Patricio Contreras 30 April, 2021

Outline

- Business Problem
- Data and Methods
- Results
- Limitations and Conclusions
- Future Work

Business Problem

- Predict a film's IMDb rating given a select number of features
- Minimise the risk of producing a "razzie"
- Determine the features that have the biggest impact on the film's IMDb rating

Data and Methods

- Dataset obtained from Kaggle's The Movies Dataset
- Contains information on over 40,000 movies such as genre, release date, IMDb rating, etc.
- Methods used: exploratory data analysis, regression modelling, neural networks

	title	genre	belongs_to_franchise	production_company	runtime	popularity	release_season	release_month	averageRating
0	Toy Story	Other	1	Walt Disney Studios	81.0	21.946943	Fall	Oct	8.3
1	Jumanji	Adventure	1	Sony Pictures	104.0	17.015539	Fall	Dec	7.0
2	Grumpier Old Men	Romance	1	Other	101.0	11.712900	Fall	Dec	6.7
3	Waiting to Exhale	Comedy	0	Walt Disney Studios	127.0	3.859495	Fall	Dec	6.0
4	Father of the Bride Part II	Comedy	1	Other	106.0	8.387519	Winter	Feb	6.1

Results

Results

Dep. Variable:	: ave	rageRatir	ng_squared	i	R-so	uared:	0.37
Model:			OLS	S A	dj. R-so	uared:	0.36
Method:	:	Lea	ast Square:	S	F-st	atistic:	139.
Date:		Thu, 2	9 Apr 202	1 Pro	b (F-sta	atistic):	0.0
Time:			16:44:28	3 Lo	g-Like	lihood:	-18509
lo. Observations:	:		5009	9		AIC:	3.706e+0
Df Residuals:	:		498	7		BIC:	3.721e+0
Df Model:			2	1			
Covariance Type:	:		nonrobus	t			
		coef	std err		t P>	lti ro.c	025 0.975
Interd	cept	10.4847	1.372	7.64	0 0.00	0 7.7	794 13.17
elongs_to_franci	hise	-3.0963	0.359	-8.62	6 0.00	00 -3.8	800 -2.39
runt	ime	0.2537	0.010	25.87	5 0.00	00 0.2	234 0.27
budget_for	urth	-0.2956	0.010	-31.03	7 0.00	00 -0.0	314 -0.27
revenue_t	fifth	0.3444	0.020	17.55	0.00	00 0.3	306 0.38
sqrt_popula	arity	3.7822	0.184	20.59	6 0.00	00 3.4	422 4.14
Anima	tion	14.1255	1.085	13.02	3 0.00	00 11.9	999 16.25
Advent	ture	8.0535	0.793	10.15	4 0.00	00 6.4	499 9.60
Com	edy	5.4510	0.647	8.42	2 0.00	0 4.	182 6.72
Ac	tion	4.8501	0.663	7.31	3 0.00	00 3.5	550 6.15
Dra	ama	9.0318	0.657	13.75	6 0.00	0 7.7	745 10.31
Cr	rime	9.0464	0.844	10.71	9 0.00	00 7.3	392 10.70
Fant	tasy	7.6522	1.033	7.40	7 0.00	00 5.6	627 9.67
O	ther	8.5871	0.768	11.17	8 0.00	00 7.0	081 10.09
Roma	nce	7.5661	1.095	6.91	2 0.00	00 5.4	420 9.71
Thr	iller	3.7258	0.902	4.13	0.00	00 1.9	957 5.49
	PG	-4.3846	0.863	-5.08	1 0.00	00 -6.0	076 -2.69
	R	-2.5119	0.858	-2.92	9 0.00	3 -4.	193 -0.83
PGThirt	een	-5.4071	0.873	-6.19	2 0.00	00 -7.	119 -3.69
	Fall	1.0212	0.374	2.72	9 0.00	06 0.2	288 1.75
Spi	ring	0.2363	0.384	0.61	5 0.53	39 -0.5	517 0.98
Win	nter	-0.7173	0.396	-1.81	2 0.07	0 -1.4	493 0.05
Omnibus:	117.2	18 D u	ırbin-Wats	on:	1.81	5	
Prob(Omnibus):	0.0	00 Jarq	ue-Bera (JB):	152.38	3	
Skew:	-0.2	90	Prob(JB):	8.14e-3	4	
Kurtosis:	3.6	28	Cond.	No. 2	2.01e+0	3	

Limitations and Conclusions

- Dataset contained several missing values for features like <u>budget</u> and <u>revenue</u>
- Both models were heavily dependent on categorical data
- IMDb rating was not really affected by our categorical features
- Retrieving additional data was difficult and time-expensive

Future Work

- Natural Language Processing (NLP) could be used to identify key words and predict the IMDb rating
- Compare results between the same analysis done on TV shows
- Consider more continuous features! (opening weekend box office, marketing expenses)

Thank You!

Email: pcontreras1797@qmail.com

Github: <u>@p-contreras</u>

LinkedIn: linkedIn: linkedIn: linkedIn.com/in/pcontreras97/