Bachelor Thesis

Benchmark of RISC-V in BTOR2

Jan Krister Möller

Examiner: Dr. Mathias Fleury

University of Freiburg
Faculty of Engineering
Department of Computer Science
Chair of Computer Architecture

August 14, 2025

Writing Period

 $24.\,06.\,2025 - 24.\,09.\,2025$

Examiner

Dr. Mathias Fleury

Declaration

I hereby declare that I am the sole author and o	composer of my thesis and that no
other sources or learning aids, other than those li	sted, have been used. Furthermore,
I declare that I have acknowledged the work of oth	ners by providing detailed references
of said work.	
I hereby also declare that my Thesis has not been	n prepared for another examination
or assignment, either wholly or excerpts thereof.	
Place, Date Sig	nature

Abstract

foo bar [1] [2] [3]

Contents

1	Mot	ivation	l	1
2	Risc	:V		3
	2.1	Overv	riew	3
	2.2	The R	RISC-V ISA	3
	2.3	Simula	ation of RISC-V	3
		2.3.1	Saving the State of a RISC-V Processor	3
3	вт	OR2		5
	3.1	Model	l Checking	5
	3.2	The B	BTOR2 Language	5
	3.3	The B	BTOR2 Witness	5
4	Trai	nsformi	ing RiscV to BTOR2	7
	4.1	The C	Concept	8
	4.2	Encod	ling	8
		4.2.1	Constants	8
		4.2.2	State Representation	8
		4.2.3	Initialization	8
		4.2.4	Computing values	8
		4.2.5	Command Detection	8
		4.2.6	Next-State-Logic	8
		4.2.7	Constraints	8

	4.3	Testing correctnes	8
		4.3.1 State Fuzzer	8
		4.3.2 Automated Logging	8
	4.4	Functional vs Relational Next-State-Logic	8
5	Ben	chmarks	9
	5.1	MultiAdd in Functional and Relational Nexyt-State-Logic $\ .\ .\ .\ .$.	9
	5.2	Memory Operations	9
	5.3	Results	9
Bi	bliog	raphy	11

List of Figures

List of Tables

List of Algorithms

1 Motivation

This is a template for an undergraduate or master's thesis. The first sections are concerned with the template itself. If this is your first thesis, consider reading.

- 2 RiscV
- 2.1 Overview
- 2.2 The RISC-V ISA
- 2.3 Simulation of RISC-V
- 2.3.1 Saving the State of a RISC-V Processor

3 BTOR2

- 3.1 Model Checking
- 3.2 The BTOR2 Language
- 3.3 The BTOR2 Witness

${\bf 4\ Transforming\ RiscV\ to\ BTOR2}$

4.1 The Concept
4.2 Encoding
4.2.1 Constants
4.2.2 State Representation
4.2.3 Initialization
4.2.4 Computing values
Opcode
funct3 & funct7
Registers
Immediate
4.2.5 Command Detection
4.2.6 Next-State-Logic
4.2.7 Constraints
4.3 Testing correctnes
4.3.1 State Fuzzer
4.3.2 Automated Logging
4.4 Functional vs Relational Next-State-Logic

5 Benchmarks

- 5.1 MultiAdd in Functional and Relational Nexyt-State-Logic
- 5.2 Memory Operations
- 5.3 Results

Bibliography

- [1] The RISC-V Instruction Set Manual Volume I: Unprivileged ISA, 2025, version 20250508. [Online]. Available: https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
- [2] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, "Btor2, BtorMC and Boolector 3.0," in *Computer Aided Verification*, H. Chockler and G. Weissenbacher, Eds. Cham: Springer International Publishing, 2018, pp. 587–595.
- [3] F. Schrögendorfer, "Bounded Model Checking of Lockless Programs," Master's thesis, Johannes Kepler University Linz, August 2021.