北京 XX 大学 2006——2007 学年第一学期

《数字逻辑与数字系统》期末考试试题(A)

	一、学	生参加考	音试须带等	生证或等	学院证明,	未带者	不准进入	人考场。	学生必		
考试	须按照	反按照监考教师指定座位就坐。									
注意	二、书	、书本、参考资料、书包等与考试无关的东西一律放到考场指定位置。									
事项	三、学	三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有									
	考场违	考场违纪或作弊行为者,按相应规定严肃处理。									
考试	粉字等	逻辑与数	空医练	老过	时间	20	007年1	日 26	П		
课程	致于人	之科一女	于水汎	75 111	7HJ [H]	20	707	万 20	Н		
题号	-	$\stackrel{-}{\sim}$	三	四	五.	六	七	八	总分		
满分	10	20	10	10	10	12	14	14			
得分				A11							
阅卷	adillio.	- 400	Dio.	$A = \lambda$							
教师		10	-0 /		7		2	107			

选择题(每小题1分,共10分。)

- 1. 卡诺图如图 1 所示, 电路描述的逻辑表达式 F=(
 - A. $\Sigma m(1, 2, 4, 5, 9, 10, 13, 15)$
 - B. $\Sigma m(0, 1, 3, 4, 5, 9, 13, 15)$
 - C. $\Sigma m(1, 2, 3, 4, 5, 8, 9, 14)$
 - D. $\Sigma m(1, 4, 5, 8, 9, 10, 13, 15)$

CD	00	01	11	10
00		1		
01	1	1	1	1
11			1	
10	1		- 10	1

- 2. 在下列逻辑部件中,不属于组合逻辑部件的是(
- A. 译码器
- B. 锁存器
- C. 编码器
- D. 比较器
- 3. 八路数据选择器, 其地址输入端(选择控制端)有(
- A. 8
- B. 2

- C. 3
-) 个。 D. 4

).

- 4. 将 D 触发器转换为 T 触发器,图 2 所示电路的虚框 内应是 ().
- A. 或非门
- B. 与非门
- C. 异或门
- D. 同或门
- 5. 用 n 个触发器构成计数器,可得到的最大计数模是(

B. 2n

C. n

- 6. GAL 是指 ()。

- A. 随机读写存储器 B. 通用阵列逻辑 C. 可编程逻辑阵列 D. 现场可编程门阵列
- 7. EPROM 的与阵列 (), 或阵列 ()。

- A. 固定、固定 B. 可编程、固定 C. 固定、可编程 D. 可编程、可编程
- 8. 在 ispLSI 器件中, GRP 是指 ()。
- A. 通用逻辑块 B. 输出布线区 C. 输入输出单元 D. 全局布线区

- 9. 双向数据总线可以采用()构成。
 - A. 三态门
- B. 译码器
- C. 多路选择器 D. 与非门

- 10. ASM 流程图是设计()的一种重要工具。

 - A. 运算器
- B. 控制器
 - C. 计数器
- D. 存储器

- 二、填空题(每小题2分,共20分)
- 1. 图 3 所示加法器构成代码变换电路,若输入信号 B₃B₂B₁B₆ 为 8421BCD 码,则输出端

代码。 S₃S₂S₁S₀为

2. 2:4 译码器芯片如图 4 所示。欲将其改为四路分配器使用,应将使能端 G 改为

- 3. 门电路的输入、输出高电平赋值为逻辑 , 低电平赋值为逻辑 , 这种关 系为负逻辑关系。
- 4. 组合逻辑电路的输出只与当时的 状态有关,而与电路 的输入状态无关。
- 5. 译码器实现 译码,编码器实现 译码。

6. 在同步计数器中,所有触发器的时	付钟都与	时钟脉冲源连右
一起,每一个触发器的	变化都与时钟脉冲同步	
7. 时序逻辑电路中输出变量是输入变	量和状态变量的函数,该电	旦路为
8. 在 CP 脉冲作用下,具有图 5(a)所示功能的触发器是。	示功能的触发器是	,具有图 5(b)所
X=0 $X=1$ $X=1$	$XY=0$ ϕ	1 XY=φ 0
X=0		= φ 1
(a)	图 5	
9. ispLSI 器件具有	条编程接口线	•
10. 小型控制器的结构有	型、	型和计数器型。

- 三、简答题(各5分,共10分)
- 1. 写出 ispLSI1032 中通用逻辑块 GLB 的五种组态模式;指出哪种工作速度最快?哪种工作速度最慢? (5分)

OMK

2. 画出小型控制器的组成框图。(5分)

四、综合逻辑电路分析题(10分)

- 1. 写出图 6 中三态门的输出信号(2分) (直接写在图上)
- 2. 写出 F 的逻辑表达式 (4分)
- 3. 说明图 6 电路的逻辑功能 (4分)

五、组合电路设计(10分)

给定如下两种门器件,延迟时间分别为: 2 输入与非门 20ns、异或门 40ns。设计一个 32 位串行进位加法器。

- 1. 列出一位全加器真值表,并写出求和、进位逻辑表达式。(4分)
- 2. 画出加法器逻辑电路图 (只画最低 2 位), 规定输入、输出均为原变量。(3 分)
- 3. 计算加法器求和运算的最长时间。(3分)

六、时序逻辑分析(12分)

由 D 触发器组成的同步时序电路如图 7 所示。

- 1、写出各触发器状态方程(3分)
- 2、列出状态转移表(3分)
- 3、画出状态转移图(3分)
- 4、说明此电路的逻辑功能(3分)

七、可编程逻辑设计(14分)

三比特格雷码加/减计数器状态图如图 8 所示。 X 为输入控制变量, X=1 时计数器加, X=0 时 计数器减,请用 ABEL-HDL 语言的状态图法 X= 设计该计数器(测试向量部可选)。

doc信息 www.docin.com

八、小型控制器设计(14分)

图 9 所示为数字累加系统的数据通路图,设计计数器型控制器。寄存器 A 从数据总线上接收一系列输入数据,寄存器 B 保存它们的累加结果,加法器完成求和运算,控制器指挥执行部件自动完成上述运算。其中 LDA, LDB 为打入寄存器的控制信号,ADD 为三态门使能信号。假设累加系统启动之前寄存器 A、 B 已清零。控制器的状态变化发生在 T_1 节拍脉冲时间,打入寄存器操作发生在 T_2 节拍脉冲时间,控制器状态周期为 $T=T_1+T_2$ 。

- 1. 画出控制器的 ASM 图
- 2. 列出状态转移真值表
- 3. 写出激励方程和控制信号表达式
- 4. 画出电路图

北京 XX 大学 2006--2007 学年第一学期

《数字逻辑与数字系统》期末考试试题(A)标准答案

- 一、选择题(每小题1分,共10分)
 - 1. A
 - 2. B
 - 3. C
 - 4. D
 - 5. A
 - 6. B
 - 7. C
 - 8. D
 - 9. A
 - 10. B
- 二、填空题 (每小题 2 分, 共 20 分)
- 1. 余3码

返回

- 2. 数据输入 D、地址控制输入 A₁、A₀
- 3. 0, 1
- 4. 输入、原来
- 5. 多对一、一对多
- 6. 同一个、状态
- 7. 米里型
- 8. D触发器、JK 触发器
- 9. 5
- 10. 多路选择器型 (MUX)、定序型
- 三、简答题(各5分,共10分)
 - 1. (5分) ispLSI1032 中通用逻辑块 GLB 的五种组态模式是标准组态,高速直通组态,异或逻辑组态,单乘积项组态,多模式组态。其中单乘积项组态最快,多模式和异或逻辑组态最慢。
 - 2. (5分) 小型控制器的组成框图。

四、时序电路分析题(10分)

1、(2分) 右图从左到右为 A₀ A₁ A₂ A₃......A₁₅

O

2.
$$(4\%)$$
 $F = \overline{\overline{A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7}} + \overline{\overline{A_8 A_9 A_{10} A_{11} A_{12} A_{13} A_{14} A_{15}}}$

$$F = \overline{A_0} \overline{A_1} \overline{A_2} \overline{A_3} \overline{A_4} \overline{A_5} \overline{A_6} \overline{A_7} \overline{A_8} \overline{A_9} \overline{A_{10}} \overline{A_{11}} \overline{A_{12}} \overline{A_{13}} \overline{A_{14}} \overline{A_{15}}$$

3、(4分) 当变量 A₀ A₁ A₂ A₃......A₁₅ 全位 0 时,输出 F=1,由打入信号打入标志触发器保 存。F=1 标志着三态门输出信号为全 0。这是判别总线上代码全为 0 的电路。

五、组合电路设计(10分)

1、真值表 (2分)

A_{i}	B_i	C_{i-1}	S_{i}	Ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

表达式: 2分

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i}$$

$$C_{i} = A_{i}B_{i} + A_{i}C_{i-1} + B_{i}C_{i-1}$$

$$= A_{i}B_{i} + (A_{i} \oplus B_{i})C_{i-1}$$

3、(3分)32位加法器最长时间为:最低位异或门+31级进位+最高位异或门:

六、时序电路分析 (12分)

1、写出状态方程(3分)

$$Q_{\theta}^{n+1} = D_{\theta} = \overline{Q_{1}^{n}Q_{2}^{n}}$$

$$Q_1^{n+1} = D_1 = Q_\theta^n$$

$$\boldsymbol{Q}_{2}^{n+1}=\boldsymbol{D}_{2}=\boldsymbol{Q}_{1}^{n}$$

2、出状态转移表(3分)

Q_2^n	Q_1^{n}	Q ₀ ⁿ	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	1	1	_ 1
1	,,1	1	1 ,	1	0
1	1	0	/\1/	0	0
1	0	0	0	0	1
0	1	0	1	0	1
1	0	1	0	1	1

3. 状态转移图 (3分)

- 4、此电路是五进制计数器,可自启动(3分)
- 七、硬件描述语言设计(14分)

```
MODULE counter
               TITLE '3-bit Gray code counter';
                     Clock, pin;
                     X pin;
                     Q2, Q1, Q0 node istype 'reg';
                     QSTATE=[Q3, Q2, Q0];
                     A=[0, 0, 0];
                     A=[0, 0, 1];
                     A=[0, 1, 1];
      (3分)
                     A=[0, 1, 0];
                     A=[1, 1, 0];
                     A=[1, 1, 1];
                     A=[1, 0, 1];
                     A=[1, 0, 0];
               EQUATIONS
                    QSTATE. CLK=Clock;
          State_diagram QSTATE
            State A;
                CASE X==1:B;
                     X == 0 : H;
                END CASE
                                     ocin.c
              State B;
                CASE X==1:C;
(6分)
                     X == 0 : A;
                END CASE
              State H:
                CASE X==1:A;
                     X == 0:G;
                END CASE
         -END
           State_diagram QSTATE
          State A: if X==1 then B else H;
          State B: if X==1 then C else A;
```


State C: if X==1 then D else B;

State D: if X==1 then E else C;

State E: if X==1 then F else D;

State F: if X==1 then G else E;

State G: if X==1 then H else F;

State H: if X==1 then A else G;

END

八、小型控制器设计(14分)

1、ASM 流程图 (3分)

2、状态转移真值表(3分)

	PS		NS				
	Q_1^n	Q_0^{n}		Q_1^{n+1}	Q_0^{n+1}		
а	0	0	b	0	1		
b	0	1	С	1	1		
С	1	1	d	1	0		
d	1	0	С	1	1		

3、写出激励方程和控制信号表达式(2分+2分)

$$\boldsymbol{D}_I = \boldsymbol{Q}_I^n + \boldsymbol{Q}_\theta^n$$

$$\boldsymbol{D}_{\boldsymbol{\theta}} = \overline{\boldsymbol{Q}_{\boldsymbol{\theta}}^{\,n}} + \overline{\boldsymbol{Q}_{\boldsymbol{I}}^{\,n}}$$

$$LDA = (\overline{Q}_{1}^{n} \overline{Q}_{0}^{n} + Q_{1}^{n} Q_{0}^{n})T,$$

$$LDB = (\overline{Q}_{1}^{n}Q_{0}^{n} + Q_{1}^{n}\overline{Q}_{0}^{n})T_{2}$$

$$ADD = Q_1^n \overline{Q}_0^n$$

docin.c

北京 XX 大学 2005——2006 学年第一学期

《数字逻辑与数字系统》期末考试试题 (B)

考试 注意 事项	须按照 二、书 三、学	监考教师 本、参考 生不得另	币指定座位 6资料、井 号行携带、	立就坐。 克包等与表 使用稿织	学院证明,	的东西一行 "《北京曲	聿放到考	场指定	位置。
考试 课程				考试	时间	年	月		日
题号	_	::	三	四	五.	六	七	八	总分
满分									
得分									

一、选择题(每小题1分,共10分。)

1. 逻辑函数 F = AB + BDEG + AB + B 的最简式为 ()。

A. $\mathbf{F} = \mathbf{B}$ B. F=B C. F=0 D. F=1

逻辑函数 F (ABC) =A OC 的最小项标准式为 ()。 2.

A. $F = \sum (0, 3)$ B. $\mathbf{F} = \overline{\mathbf{A}} \mathbf{C} + \mathbf{A} \overline{\mathbf{C}}$ C. $F = m_0 + m_2 + m_5 + m_7$ D. $F = \sum (0, 1, 6, 7)$

3. 八进制数(573.4)_s的十六进制数是()。

A. (17C. 4)₁₆ B. (16B. 4)₁₆ C. (17B. 8)₁₆

D. (17B. 5)₁₆

4. 在下列电路中,不是组合逻辑电路的是()。

A. 编码器

B. 锁存器 C. 全加器

D. 比较器

5. 八路数据分配器, 其数据输入端有() 个。

A. 1 B. 2 C. 3

D. 8

6. n个触发器构成的扭环计数器中, 无效状态有() 个

A. n B. 2n C. 2ⁿ⁻¹

7. 构成数字系统必不可少的逻辑执行部件为()。

A. 控制器 B. 计数器 C. 基本子系统 D. 逻辑门

8. 电路如图 1 所示,其中完成 $Q^{n+1} = \overline{Q^n} + A$ 电路是 ()。

9. 使用 256×4 位 EPROM 芯片构成 2K×32 位存储器, 共需 EPROM 芯片 (

A. 64

B. 32

C. 48

D. 16

10. 在 i spLSI1032 中, 巨块是 ()。

A. 逻辑宏单元 B. 输出布线 C. 时钟设置网络 D. GLB 及其对应的 ORP, IOC 等的总称

二、填空题(每小题2分,共20分)

1. 用卡诺图判断函数 F = AB + BC + AC 和 $G = \overline{AB} + \overline{BC} + \overline{AC}$ 之间的逻辑关系是

一组 之和表达式。

3. 在 ABEL_HDL 语言中, 等式 A = D \$ (B= =C)的两个结果分别是

4. 奇偶校验可以检测出

__(几)位错。若有一个七位二进制数为 1000110,

其监督码元(奇偶校验位)是 时为偶校验。

5. 一个由 3:8 译码器构成的逻辑电路如图 2 所示,函数 F 的最小项表达式为

6. 某移位寄存器的时钟脉冲频率为 100KHz, 欲将存放在该寄存器中的数左移 16 位,完成

该操作需要 µ S.

7. 用计数器产生 110010 序列, 至少需要 个触发器。

 $\overline{Y_0}$ $\overline{Y_1}$ $\overline{Y_2}$ $\overline{Y_3}$ $\overline{Y_4}$ $\overline{Y_5}$ $\overline{Y_6}$ $\overline{Y_7}$ A₂ A₁ A₀ 3:8 译码器 图 2 A B

8. 控制器的控制过程可以用

图表示出来,它能和实现它的

很好地对应起来。

;或阵列

- 三、简答题(每小题5分,共10分)
 - 1. 描述米里型和摩尔型时序电路的定义。

2. 比较定序型控制器和计数型控制器的特点。

四、简单分析题 (每小题 5 分,共 10 分)

1. 分析图 3 所示逻辑电路的功能。

返回

力析由 74LS90 异步计数器构成的电路图 4,写出电路采用什么编码?为模儿计数器:功能表如下:

R ₀₁	R ₀₂	R ₉₁	R ₉₂	CP ₁	CP ₂	Q_{D}	Qc	$Q_{\rm B}$	Q_A	说明
1	1	0	X	X	X	0	0	0	0	异步置 0
1	1	х	0	x	x	0	0	0	0	异步置 0
0	х	1	1	х	x	1	0	0	1	异步置 9
х	0	1	1	х	х	1	0	0	1	异步置 9
X	0	x	0	↓	0		二进制	引计数		由 Q _A 输出
X	0	0	х	0	ţ		五进制	引计数		由 Q _D Q _C Q _B 输出
0	x	x	0	Į.	Q_A	842	1 码十	进制记	十数	Q _D Q _C Q _B Q _A 输出
0	X	0	x	Q_D	ţ	542	1 码十	进制记	十数	Q _A Q _D Q _C Q _B 输出

五、组合电路设计(10分)

设 A、B、C 为保密锁的 3 个按键,当 A 键单独按下时,锁既不打开也不报警;只有当 A、B、C 或者 A、B 或者 A、C 分别同时按下时,锁才能被打开,当不符合上述组合状态时,将发出报警信息,请设计此保密锁的逻辑电路。

- ① 列真值表。
- ② 求最简逻辑表达式。(卡诺图)
- ③ 画出用与非门实现的电路图。

doctin et

六、时序电路设计(12分)

某计数器的输出波形如图 5 所示。

- ① 试确定该计数器的计数循环中有几个状态?
- ② 列出状态转移真值表、画出状态转移图。
- ③ 若使用 D 触发器,写出激励方程表达式。
- ④ 画出计数器电路图。

北京 XX 大学 2005 — 2006 学年第一学期

《数字逻辑与数字系统》期末考试试题标准答案

- 二、 选择题 (每小题 1 分, 共 10 分)
 - 1. D
 - 2. C
 - 3. C
 - 4. B
 - 5. A
 - 6. D
 - 7. C
 - 8. A
 - 9. A
 - 10. D
- 二、填空题(每小题2分,共20分)
- 1.. $F = \overline{G}$
- docin.com
- 3. $\mathbf{A} = \overline{\mathbf{D}}$, A=D
- 4. 1位(奇数位), 1
- 5.

$$F = \sum (1,2,3,7)$$

- 6.160
- 7.3
- 8. ASM 图, 硬件
- 9. 20, 4
- 10. 可编程,固定
- 三、简答题

1、(5分,每个概念各占2.5分)

同步时序逻辑电路按其输入与输出的关系不同,可分为米里型和摩尔型两类。在输出表达式中包含输入变量和状态变量时,称之为米里型时序逻辑电路。 在输出表达式中只包含状态变量时,称之为摩尔型时序逻辑电路。

2、(5分,每个概念各占2分,特点1分)

将所要求的控制状态按一定原则进行编码分配,从而设计的状态计数型的控制器称之为计数器型控制器。这种方法的优点是对于控制状态数较多时,为了节省触发器数目,采用编码方式组成状态。对 n 个触发器进行编码最多可代表 2°个状态,也就是可以构成 2°个状态编码。缺点是算法流程图中的微小变化,都要重新逐一计算生成次态激励函数。

定序型控制器需要较多数量的触发器,其基本思想是一对一法,即触发器的数目代表了状态数,并依赖最新的代码实现状态转换。这种方法的优点是设计简单,不需要状态译码。

四、简单分析题 (每小题 5 分, 共 10 分)

1. ①真值表 (2分)

A	В	С	Y2	Y1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	-1	0	0	1
1	1 /	1	1	1

$$Y_1 = AB + (A \oplus B)C$$

$$Y_2 = A \oplus B \oplus C$$

- ③该电路为全加器(1分)
- 2. ①5421 码 (2 分), ②当 $Q_{A}Q_{D}Q_{C}Q_{B}=1010(7)$ 时置 9。从 9 到 0 需要一个时钟脉冲,即

$$(0) \rightarrow (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6) \rightarrow (7) (9) \rightarrow (0)$$

因此为模 8 计数器 $(3 分)$

五、组合电路设计(10分)①真值表(3分)

A	В	С	F	G
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	0
1	0	1	1	0
1	1	0	1	0
1	1_	1	1	0

②表达式 (3分)

$$F = AB + AC$$

$$G = \overline{A}B + \overline{A}C$$

AB	00	01	11	10
0	0	0	1	0
1/	0	0	1	1/

AB	00	01	11	10
0	0	1	0	0
1	1	1	0	0

③画电路图(4分)

$$F = \overline{\overline{AB} \cdot \overline{AC}}$$

$$G = \overline{\overline{\overline{A}B} \cdot \overline{\overline{A}C}}$$

docin.co

六、时序电路设计(12分)

- ① 该计数器的计数循环中7个状态。(2分)
- ② 列出状态转移真值表、画出状态转移图。(4分)

\mathbb{Q}_2^{n}	Q_1^n	Q_0^{n}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	1	0	1	1
0	1	1	1	1	1
1	1	1	1	1	0
1	1	0	1	0	0
1	0	0	0	1	0
0	1	0	1	0	1
1	0	1	0	0	1
0	0	0			

③ 若使用 D 触发器,写出激励方程表达式。(3分) Q_2^{n+1}

locin.co

 $D_2 = Q_1$

 Q_1^{n+1}

$$\boldsymbol{D}_{I} = \overline{\boldsymbol{Q}}_{2} \boldsymbol{Q}_{\theta} + \boldsymbol{Q}_{I} \boldsymbol{Q}_{\theta} + \overline{\boldsymbol{Q}}_{I} \overline{\boldsymbol{Q}}_{\theta}$$

 Q_0^{n+1} Q_2Q_1 Q_3 Q_4 Q_5 Q_5 Q

0	Х	1	0	0
1	1	1	0	1

$$D_{\theta} = \overline{Q}_2 + \overline{Q}_1 Q_{\theta}$$

④ 画出计数器电路图。(3分)

七、硬件描述语言设计(14分) ①程序结构(3分)

2

MODULE 8421BCD LED

TITLE 'output 8421bcd code and 7 LED code'

Declarations

(2分)

cin.cc

Q0,Q1,Q2,Q3 node istype 'reg';

clk pin;

a,b,c,d,e,f,g pin;

Q=[Q0..Q3];

Equations

(4分)

Q:=(Q+1)&!(Q==9);

Q:=0&(Q==9);

Q.clk=clk;

TRUTH_TABLE

(5分)

```
([Q3, Q2, Q1, Q0]->[a, b, c, d, e, f, g])
      [0,0,0,0] \rightarrow [1,1,1,1,1,1,0];
       [0,0,0,1] \rightarrow [0,1,1,0,0,0,0];
      [0,0,1,0] \rightarrow [1,1,0,1,1,0,1];
      [0,0,1,1] \rightarrow [1,1,1,1,0,0,1];
      [0,1,0,0] \rightarrow [0,1,1,0,0,1,1];
      [0,1,0,1] \rightarrow [1,0,1,1,0,1,1];
      [0,1,1,0] \rightarrow [1,0,1,1,1,1,1];
      [0,1,1,1] \rightarrow [1,1,1,1,0,0,0];
      [1,0,0,0] \rightarrow [1,1,1,1,1,1,1];
      [1,0,0,1] \rightarrow [1,1,1,0,0,1,1];
END
```

八、小型控制器设计(14分)

ASM 流程图 (3分)

	现态		次态			
	编码		Q_2^{n+1}	Q_1^{n+1}	转移条件	
a	0	b	0	1		
b	1	c	_1_	0		
С	2.	d	_1_	1	10	
d	3	c	1	0	X	
		h	0	1	X	

③ 设计多路选择器型控制器电路。(7分)

docan Et

七、硬件描述语言设计(14分)

一位十进制计数器七段数字显示系统如图 6 所示。计数器是 8421BCD 码同步计数器,其输出 $Q_a^{\alpha}Q_a$ 作为七段译码器的输入,译码器的输出送到七段发光二极管显示器,它能显示 0,1,2,…… 9 十个字符。采用 ABEL-HDL 语言设计一位十进制计数器和七段译码器,写出完整的设计源程序。

8421BCD 七段显示译码真值表											
Q_3	Q_2	Q_1	Q_0	a	b	c	d	e	f	g	显示
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3

八、小型控制器设计(14分)

有一个数字比较系统,它能连续对两个八位二进制数据进行比较,操作过程如下:先将两个数存入寄存器 A 和寄存器 B,然后进行比较,最后将大数移入寄存器 B 中。其方框图如图 7 所示。其中 Y 为输入数据,LDA 和 LDB 为打入控制信号,COMP 是三态门使能控制信号,X 是比较器输出信号。假设状态发生变化在 T_1 节拍时间,打入寄存器操作发生在 T_2 节拍时间,状态周期 T_2 T_1+T_2 。

- ① 画出 ASM 流程图。
- ② 列出状态转移真值表
- ③ 设计多路选择器型控制器电路。

