

•
$$(0,1)$$
 $\rightarrow \sqrt{(0-2)^2+(1-0)^2} = \sqrt{5}$

•
$$(5,5)$$
 _ $D\sqrt{(5-(2))^2+(5-4)^2} = \sqrt{50} = 5\sqrt{2}$
• $(5,5)$ _ $D\sqrt{(5-(2))^2+(5-4)^2} = \sqrt{20} = 2\sqrt{5}$

•
$$(5,5)$$
 $\longrightarrow \sqrt{(5-9)^2} + (5-5)^2 = \sqrt{9} = 3$
• $(5,5)$ $\longrightarrow \sqrt{(5-4)^2} + (5-5)^2 = \sqrt{1} = 1$

•
$$(5,5)$$
 $\longrightarrow \sqrt{(5-4)^2 + (5-5)^2} = \sqrt{1} = 1$

Manhattan

$$(1,1)$$
 -> $|0-1|+|0-1|=2$ label b
 $(2,-1)$ -> $|0-2|+|0--1|=3$

(K = 3)

Chessboard

K = 5

•
$$(1,3) \rightarrow max | 1-5|$$
, $|3-5|=4$
• $(2,5) \rightarrow max | 2-5|$, $|5-5|=3$ label a for $(4,5) \rightarrow max | 4-5|$, $|5-5|=1$ $|6-5|$

$$(0,1) \rightarrow \max\{0-5\}, |1-5| = 5$$

The separation becomes clearer as noise is reduced. This means that it will be smoother but may imply more blases as K increases.