# Scikit-Learn Merkblatt-1/2

# Scikit-Learn Beispiel

Mit Scikit-Learn können komplexe Aufgaben im Bereich maschinelles Lernen mit wenigen Zeilen Code ausgeführt werden.

#### **Iris Datensatz clustern**

In diesem Beispiel wird der in Scikit-Learn integrierte Iris-Datensatz mit dem **k-nearest-neighbour**-Verfahren in fünf Cluster unterteilt und anschliessend die Effizienz des Verfahrens bewertet.

from sklearn import neighbors, datasets, \
 preprocessing
from sklearn.cross\_validation import \
 train\_test\_split
from sklearn.metrics import \
 accuracy\_score

iris = datasets.load\_iris()
X, y = iris.data[:, :2], iris.target
X\_train, X\_test, y\_train, y\_test = \
 train\_test\_split(X, y, random\_state=33)

scaler = preprocessing.StandardScaler()
scaler.fit(X\_train)
X\_train = scaler.transform(X\_train)
X test = scaler.transform(X test)

knn = neighbors.KNeighborsClassifier(
 n\_neighbors=5)
knn.fit(X\_train, y\_train)
y\_pred = knn.predict(X\_test)
accuracy\_score(y\_test, y\_pred)





# Scikit-Learn Merkblatt-2/2

## Scikit-Learn Grundlagen

Scikit-Learn ist ein Open-Source-Modul in Python, welches eine Reihe von Algorithmen der künstlichen Intelligenz sowie Methoden zur Datenvorbereitung, Validierung und Visualisierung zur Verfügung stellt.

#### **Daten einlesen**

Die Daten müssen in numerischer Form als NumPy-Arrays oder SciPy-Matrizen (Sparse Matrices) vorliegen. Pandas-Tabellen (DataFrames) können ebenfalls eingelesen werden.

import numpy as np
X = np.random.random((9,7))
y = np.array(['X','X','Y','X','Y','Y','Y','Y','Y','X','Y','X'])
X[X < 0.5] = 0</pre>

### **Aufteilen in Training- und Testdaten**

from sklearn.model\_selection import \
 train\_test\_split
X\_train, X\_test, y\_train, y\_test = \
 train\_test\_split(X, y, test\_size=0.2, random\_state=9)

#### Überwachte Lernverfahren

Lineare Regression:

from sklearn.linear\_model import \
 LinearRegression
Ir = LinearRegression(normalize=True)

Support Vector Machines:

from sklearn.svm import SVC svc = SVC(kernel='linear')

Naive Bayes:

from sklearn.naive\_bayes import GaussianNB gnb = GaussianNB())

KNN:

from sklearn import neighbors knn = neighbors.KNeighborsClassifier( n\_neighbors=4)

## **Unüberwachte Lernverfahren**

Hauptkomponentenanalyse:

from sklearn.decomposition import PCA pca = PCA(n\_components=0.92)

K-Means:

from sklearn.cluster import
KMeans
k\_means = KMeans(
 n\_clusters=4, random\_state=0)

# Training und Evaluation

#### **Modell trainieren**

Überwachte Lernverfahren:

Ir.fit(X, y)
knn.fit(X\_train, y\_train)
svc.fit(X\_train, y\_train)

Unüberwachte Lernverfahren:

k\_means.fit(X\_train)
pca\_model = pca.fit\_transform(X\_train)

#### Vorhersage

Überwachte Lernverfahren:

# svc und lr: Labels
y\_pred = svc.predict(
 np.random.random((6,3)))
y\_pred = lr.predict(X\_test)

# knn: Wahrscheinlichkeit von Labels
y\_pred = knn.predict\_proba( X\_test )

Unüberwachte Lernverfahren:

# Clustert nach Labels y\_pred = k\_means.predict(X\_test)

#### Klassifikationskennzahlen

Genauigkeit:

# Scoring des Lernverfahrens
knn.score(X\_test, y\_test)
# Unabhängige Scoringkennzahl
from sklearn.metrics import \
 accuracy\_score
accuracy\_score(y\_test, y\_pred)

Klassifikationsreport:

# Präzision, recall, f1-Score und Support from sklearn.metrics import \ classification\_report classification\_report(y\_test, y\_pred)

Konfusionsmatrix:

from sklearn.metrics import \
 confusion\_matrix
confusion\_matrix(y\_test, y\_pred))

#### Kreuzvalidierung

from sklearn.cross\_validation import \
 cross\_val\_score
print(cross\_val\_score(
 knn, X\_train, y\_train, cv=3))
print(cross\_val\_score(lr, X, y, cv=4))

## Evaluation

### Regressionskennzahlen

Absolute Abweichung vom Mittelwert:

from sklearn.metrics import \
 mean\_absolute\_error
y\_true = [-1.1, 3, 2.2]
mean\_absolute\_error(y\_true, y\_pred)

Quadratische Abweichung vom Mittelwert:
from sklearn.metrics import \

mean\_squared\_error mean\_squared\_error(y\_test, y\_pred)

R<sup>2</sup>-Score: from sklearn.metrics import r2\_score r2\_score(y\_true, y\_pred)

#### Clusterkennzahlen

Adjustierter Rand-Index:

from sklearn.metrics import \
 adjusted\_rand\_score
 adjusted\_rand\_score(y\_true, y\_pred)

Homogenität:

from sklearn.metrics import \

homogeneity\_score(y\_true, y\_pred)

V-Measure: from sklearn.metrics import \

v\_measure\_score metrics.v\_measure\_score(y\_true, y\_pred)

#### **Modell verfeinern**

Grid Search: from sklearn.grid search import \ GridSearchCV params = {"n\_neighbors": np.arange(2,4), "metric": ["euclidean", "cityblock"]} grid = GridSearchCV(estimator=knn, param\_grid=params) grid.fit(X\_train, y\_train) print(grid.best\_score\_) print(grid.best\_estimator\_.n\_neighbors) Optimierung mit randomisierten Parametern: from sklearn.grid search import \ RandomizedSearchCV params = {"n\_neighbors": range(1,3), "weights": ["uniform", "distance"]} rsearch = RandomizedSearchCV( estimator=knn, param\_distributions=params, cv=4, n\_iter=7, random\_state=4) rsearch.fit(X\_train, y\_train) print(rsearch.best\_score\_)

## Preprocessing

#### **Daten vorbereiten**

Standardisierung:

from sklearn.preprocessing import \
 StandardScaler
scaler = StandardScaler().fit(X\_train)
std\_X = scaler.transform(X\_train)
std\_X\_test = scaler.transform(X\_test)

#### Normalisierung:

from sklearn.preprocessing import \
 Normalizer
scaler = Normalizer().fit(X\_train)
nrm\_X = scaler.transform(X\_train)
nrm\_X test = scaler.transform(X test)

#### Binärisierung:

from sklearn.preprocessing import \
 Binarizer
binarizer = Binarizer(threshold=0.0).fit(X)
bin X = binarizer.transform(X)

Kategoriemerkmale encodieren:

from sklearn.preprocessing import \
 LabelEncoder
enc = LabelEncoder()
enc\_y = enc.fit\_transform(y)

Fehlende Werte einrechnen:
from sklearn.preprocessing import \
Imputer
imp = Imputer(missing\_values=0,

strategy='mean', axis=0)
imp.fit\_transform(X\_train)

Polynomiale Features generieren:
from sklearn.preprocessing import \

poly = PolynomialFeatures(4)
poly.fit\_transform(X)

**PolynomialFeatures** 

