Class 18: Mutational Signatures in Human Cancer

Patrick Tran

Exploring a cancer sequencing data portal

```
Q1. How many cancer samples are included in the dataset?

448 cancer samples.
```

Q2. Which is the most mutated gene?

TTN

Q3. Which is the most common treatment undergone by patients?

Radiation 1

Generating mutational matrices and visualizing mutational profiles

Install the maftools R package.

```
# Install required packages
if (!require("BiocManager")){
    install.packages("BiocManager")
}
```

Loading required package: BiocManager

```
if (!require("maftools")){
    BiocManager::install("maftools")
}
```

```
Loading required package: maftools
```

```
if (!require("BSgenome.Hsapiens.UCSC.hg19")){
                                                    # reference genome needed to
  BiocManager::install("BSgenome.Hsapiens.UCSC.hg19")  # generate mutational matrices
  }
Loading required package: BSgenome. Hsapiens. UCSC. hg19
Loading required package: BSgenome
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
    table, tapply, union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors
Loading required package: stats4
Attaching package: 'S4Vectors'
The following objects are masked from 'package:base':
    expand.grid, I, unname
```

```
Loading required package: IRanges
Attaching package: 'IRanges'
The following object is masked from 'package:grDevices':
    windows
Loading required package: GenomeInfoDb
Loading required package: GenomicRanges
Loading required package: Biostrings
Loading required package: XVector
Attaching package: 'Biostrings'
The following object is masked from 'package:base':
    strsplit
Loading required package: rtracklayer
Read the input data and generate mutational matrices
  # Read maf file
  library(maftools)
  coad = read.maf('data_mutations.txt')
-Reading
-Validating
--Removed 27563 duplicated variants
-Silent variants: 209854
-Summarizing
--Possible FLAGS among top ten genes:
  TTN
```

```
MUC16
-Processing clinical data
--Missing clinical data
-Finished in 37.6s elapsed (15.6s cpu)
  # Generate mutational matrix (SBS96 context)
  mm_coad = trinucleotideMatrix(maf = coad, prefix = 'chr', add = TRUE,
                                 ref_genome = "BSgenome.Hsapiens.UCSC.hg19")
-Extracting 5' and 3' adjacent bases
-Extracting +/- 20bp around mutated bases for background C>T estimation
-Estimating APOBEC enrichment scores
--Performing one-way Fisher's test for APOBEC enrichment
---APOBEC related mutations are enriched in 1.818 % of samples (APOBEC enrichment score > 2
-Creating mutation matrix
--matrix of dimension 440x96
  mm_coad = t(mm_coad$nmf_matrix)
For the visualization of SBS96 mutational profiles, we will make use of the MutationalPatterns
R package
  # Install MutationalPatterns package
  if (!require("MutationalPatterns")){
  BiocManager::install("MutationalPatterns")
  }
Loading required package: MutationalPatterns
Loading required package: NMF
Loading required package: registry
Loading required package: rngtools
Loading required package: cluster
NMF - BioConductor layer [OK] | Shared memory capabilities [NO: windows] | Cores 11/12
```

Attaching package: 'NMF'

The following object is masked from 'package:S4Vectors':

nrun

```
# Generate mutational profiles (4 random samples)
library(MutationalPatterns)
set.seed(11111) # fixing the seed for random number generation

samples_to_plot = sample(1:ncol(mm_coad),4) # selecting 4 random samples
plot_96_profile(mm_coad[,samples_to_plot], condensed = T)
```



```
# Generate mutational profiles (top 4 mutated samples and top 4 less mutated)
mutations_in_samples = colSums(mm_coad)
mutations_in_samples = sort(mutations_in_samples, decreasing = T)
samples_to_plot = names(mutations_in_samples)[1:4]
plot_96_profile(mm_coad[,samples_to_plot], condensed = T)
```



```
mutations_in_samples = sort(mutations_in_samples, decreasing = F)
samples_to_plot = names(mutations_in_samples)[1:4]
plot_96_profile(mm_coad[,samples_to_plot], condensed = T)
```


Assigning reference mutational signatures

Visualizing mutational signature assignment results

```
# Visualization of signature assignment results (fit_to_signatures)
set.seed(11111)
samples_to_plot = sample(1:ncol(mm_coad),4)

plot_contribution(contributions[,samples_to_plot], mode = "absolute")
```


plot_contribution(contributions[,samples_to_plot], mode = "relative")

plot_contribution_heatmap(contributions, cluster_samples = F)


```
# Visualization of signature assignment results (strict)
plot_contribution(contributions_strict[,samples_to_plot], mode = "absolute")
```


plot_contribution(contributions_strict[,samples_to_plot], mode = "relative")

plot_contribution_heatmap(contributions_strict, cluster_samples = F)

Q4. Which is the etiology of the top absolute contributing signature for liver cancer?

Aristolochic acid exposure

Q5. Which is the most prominent mutational context for the top contributing signature in skin cancer?

C>T

Q6. The etiology of the top contributing signature for lung cancer corresponds to an endogenous cellular mechanism.

FALSE

Q7. SBS4 is one of the most common signatures found in lung cancer and is associated with tobacco smoking.

TRUE

Q8. SBS7d is one of the most common signatures in skin cancer and is associated with UV light exposure and high numbers of C>T mutations.

FALSE