PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 5: C12N 15/52, C07K 15/04 C12P 19/42, C12N 9/00, 1/21 C12P 19/42 // C12R 1/38 C12R 1/41C12R 1/01

(11) Numéro de publication internationale:

WO 91/11518

(43) Date de publication internationale:

8 août 1991 (08.08.91)

(21) Numéro de la demande internationale:

PCT/FR91/00054

(22) Date de dépôt international:

30 janvier 1991 (30.01.91)

(30) Données relatives à la priorité:

90/01137

31 janvier 1990 (31.01.90) FR (74) Mandataire: BECKER, Philippe; Rhône-Poulenc Rorer S.A. - Direction Brevets, 20, avenue Raymond-Aron, F-92165 Antony Cédex (FR).

(81) Etats désignés: AT (brevet européen), BE (brevet européen), CA, CH (brevet européen), DE (brevet européen), DK (brevet européen), ES (brevet européen), FR (brevet européen), GB (brevet européen), GR (brevet européen), HU, IT (brevet européen), JP, LU (brevet européen), NL (brevet européen), SE (brevet européen), SU, US.

(71) Déposant (pour tous les Etats désignés sauf US): RHONE-POULENC BIOCHIMIE [FR/FR]; 20, avenue Raymond-Aron, F-92160 Antony (FR).

Publiée

(75) Inventeurs/Déposants (US seulement): BLANCHE, Francis [FR/FR]; 41, rue des Solitaires, F-75019 Paris (FR). CA-MERON, Béatrice [FR/FR]; 28, rue Henri-Barbusse, F-75005 Paris (FR). CROUZET, Joël [FR/FR]; 48-52, rue des Meuniers, F-75012 Paris (FR). DEBUSSCHE, Laurent [FR/FR]; 43, bd de l'Hôpital, F-75013 Paris (FR). LEVY-SCHIL, Sophie [FR/FR]; 2, rue Monttessuy, F-75007 Paris (FR). THIBAUT, Denis [FR/FR]; 28, rue Jean-Colly, F-75013 Paris (FR).

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.

(54) Title: POLYPEPTIDES INVOLVED IN THE BIOSYNTHESIS OF COBALAMINES AND/OR COBAMIDES, DNA SEQUENCES CODING FOR THESE POLYPEPTIDES, AND THEIR PREPARATION AND USE

(54) Titre: POLYPEPTIDES IMPLIQUES DANS LA BIOSYNTHESE DES COBALAMINES ET/OU DES COBAMIDES, SEQUENCES D'ADN CODANT POUR CES POLYPEPTIDES, PROCEDE DE PREPARATION, ET LEUR

UTILISATION

(57) Abstract

Novel polypeptides involved in the biosynthesis of cobalamines and/or cobamides, in particular coenzyme B₁₂, genetic material reponsible for expressing these polypetides, and a method for preparing them, are described. A method for amplifying the production of cobalamines, and particularly coenzyme B₁₂, using recombinant DNA techniques, are also described.

(57) Abrégé

La présente invention concerne de nouveaux polypeptides impliqués dans la biosynthèse des cobalamines et/ou des cobamides, et en particulier du coenzyme B₁₂. Elle concerne également le matériel génétique responsable de l'expression de ces polypeptides, ainsi qu'un procédé permettant leur préparation. Elle concerne enfin un procédé d'amplification de la production de cobalamines, et plus particulièrement du coenzyme B₁₂, par les techniques d'ADN recombinant.

BEST AVAILABLE C

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT.	Autriche	ES	Espagne	MG	Madagascar
AU	Australie	FI	Finlande	ML	Mali Mali
BB	Barbade	FR	France	· MN	Mongolie
BE	Belgique	GA	Gabon-	MR	Mauritanie
BF	Burkina Faso	GB	Royaume-Uni	MW	Malawi .
BG	Bulgarie	GN	Guinée	NL	Paur Doc
BJ	Bénin	GR	Grèce	NO	Norvège
BR	Brésil	HU	Hongrie	PL	Pologne
CA	Canada	IT	Italic	RO	Roumanie
CF	République Centraficaine	JP	Japon	SD	Soudan
CG	Congo	KP	République populaire démocratique	SE	Suède
CH	Suisse		de Corée	SN	Sénégal
Ci	Côte d'Ivoire	KR	République de Corée	รบ	Union soviétique
CM	Cameroun	LI	Liechtenstein	TD	Tchad
CS	Tchécoslovaquie	LK	Sri Lanka	TG	Togo
DE	Allemagne	LU	Luxembourg	US	Etats-Unis d'Amérique
DK	Danemark	MC	Monaco	- - .	

WO 91/11518 PCT/FR91/00054

POLYPEPTIDES IMPLIQUES DANS LA BIOSYNTHESE DES COBALAMINES ET/OU DES COBAMIDES, SEQUENCES D'ADN CODANT POUR CES POLYPEPTIDES, PROCEDE DE PREPARATION, ET LEUR UTILISATION

La présente invention concerne de nouveaux polypeptides impliqués dans la biosynthèse des cobalamines et/ou des cobamides, et en particulier du coenzyme $\mathtt{B}_{12}.$ Elle concerne également le matériel génétique responsable de l'expression de ces polypeptides, ainsi qu'un procédé permettant leur préparation. Elle concerne enfin un procédé d'amplification đе la production de cobalamines, plus particulièrement đu coenzyme B₁₂, par les techniques d'ADN recombinant.

La vitamine B_{12} fait partie des vitamines du groupe B. Il s'agit d'une vitamine hydrosoluble qui a été identifiée comme étant le facteur permettant de traiter des malades souffrant d'anémie pernicieuse. Elle est généralement prescrite pour stimuler l'hématopoïèse chez les sujets fatigués, mais elle est aussi utilisée dans de nombreux autres cas qui comprennent les troubles hépatiques, des déficiences nerveuses ou comme stimulant de l'appétit, principe 15 tonifiant, ainsi qu'en dermatologie (Beck, 1982, Fraser et al., 1983). Dans les élevages industriels d'animaux non ruminants, l'alimentation étant essentiellement à base de protéines d'origines végétales, il est nécessaire d'incorporer aux rations alimentaires de la vitamine $B_{1\,2}$ à 20 des quantités de 10 à 15 mg par tonne d'aliments (Barrère et <u>al</u>., 1981).

La vitamine B₁₂ fait partie d'une classe de molécules appelées cobalamines, dont la structure est présentée à la figure 1. Les cobamides diffèrent des cobalamines par la base du nucléotide inférieur qui n'est plus le 5,6-diméthylbenzimidazole, mais une autre base, par exemple, le 5-hydroxybenzimidazole, pour la vitamine B₁₂-facteur III synthétisée entre autre par <u>Clostridium thermoaceticum</u> et <u>Methanosarcina barkeri</u> (Iron et <u>al</u>., 1984). Ces similitudes structurales expliquent que les voies métaboliques de biosynthèse des cobalamines et des cobamides soient communes pour la majeure partie.

Les cobalamines sont synthétisées presque exclusivement par des bactéries, selon un processus complexe et encore très mal connu, qui peut se diviser en quatre étapes (figure 2) :

i) synthèse de l'uroporphyrinogène III (ou uro'gen III),

35 puis

WO 91/11518 PCT/FR91/00054

2

ii) transformation de l'uro'gen III en acide cobyrinique suivie de

- iii) transformation de celui-ci en cobinamide et
- iv) construction de la boucle nucléotidique inférieure avec incorporation de la base particulière (5,6-diméthylbenzimidazole dans le cas des cobalamines).

Pour le coenzyme B_{12} , il est probable que l'addition du groupement 5'-déoxy-5'-adénosyl se produit peu après que le noyau corrine soit synthétisé (Huennekens et <u>al</u>., 1892).

Dans le cas des cobamides, seule l'étape de synthèse et d'incorporation de la base inférieure est différente.

La première partie de la biosynthèse des cobalamines est très bien connue puisqu'elle est commune à celle des hèmes ainsi qu'à celle des chlorophylles (Battersby et al., 1980). Elle fait intervenir successivement la δ-aminolevulinate synthase (EC 2.3.137), la δ-aminolévulinate déhydrase (EC 4.2.1.24), la porphobilinogène déaminase (EC 4.3.1.8) et l'uro'gen III cosynthase (EC 4.2.1.75) qui transforment le succinyl CoA et la glycine en uro'gen III. Toutefois la première étape se fait chez certains organismes [par exemple E.coli (Avissar et al., 1989) et chez les bactéries méthanogènes (Kannangara et al., 1989), par exemple] par la conversion grâce à un complexe multienzymatique de l'acide glutamique en acide δ-aminolévulinique.

dérivés d'intermédiaires ont été purifiés à ce jour ; il s'agit des

25 Facteurs FI, FII et FIII qui sont des produits d'oxydation
respectivement des trois intermédiaires précorrine-1, précorrine-2 et
précorrine-3 qui correspondent aux dérivés mono-, di- et triméthylés
de l'uro'gen III (figure 3) ; ces intermédiaires sont obtenus par des
transferts successifs de groupements méthyl à partir du SAM

30 (S-adénosyl-L-méthionine) sur l'uro'gen III aux positions C2, C7 et
C20 respectivement. Les autres réactions qui ont lieu pour donner
l'acide cobyrinique sont, outre cinq autres transferts de groupements
méthyl à partir du SAM en C17, C12, C1, C15 et C5, l'élimination du
carbone en C20, la décarboxylation en C12 et l'insertion d'un atome de

cobalt (figure 4). Ces étapes de biosynthèse ont été déduites à partir d'expériences effectuées <u>in vitro</u> sur des extraits acellulaires de <u>Propionibacterium shermanii</u> ou de <u>Clostridium tetanomorphum</u>. Dans ces extraits, l'acide cobyrinique est obtenu par transformation de l'uro'gen III, après incubation dans des conditions appropriées en anaérobiose (Batterby et <u>al.</u>, 1982). Aucun intermédiaire entre le précorrine-3 et l'acide cobyrinique, pouvant être transformé en corrinoïdes par incubations ultérieures avec des extraits de bactéries productrices de cobalamines, n'a été isolé à ce jour chez ces microorganismes. La difficulté d'isoler et d'identifier ces intermédiaires est liée à

- i) leur grande instabilité
- ii) leur sensibilizé à l'oxygène et
- iii) leur faible niveau d'accumulation in vivo.
- Dans cette partie de la voie, seule une enzyme de <u>Pseudomonas</u> denitrificans a été purifiée et étudiée ; il s'agit de la SAM:uro'gen III méthyltransférase (Blanche et <u>al</u>., 1989) appelée SUMT.

Entre l'acide cobyrinique et le cobinamide, les réactions suivantes sont effectuées :

- i) addition du groupement 5'-désoxyadénosyl (s'il s'agit du coenzyme B_{12} qui doit être synthétisé),
 - ii) amidation de six des sept fonctions carboxyliques par addition de groupements amines,
- iii) amidation de la dernière fonction carboxylique 25 (chaîne d'acide propionique du noyau pyrrole D) par addition du R-1-amino-2-propanol (figure 2).
 - Il n'a pas été élucidé s'il existait réellement un ordre dans les amidations (Herbert et <u>al</u>., 1970). Enfin, aucun dosage d'activité dans cette partie de la voie n'a été décrit sauf en ce qui concerne l'addition du groupement 5'-désoxyadénosyl (Huennekens et <u>al</u>., 1982).

La dernière étape de la biosynthèse d'une cobalamine, par exemple le coenzyme B_{12} comprend quatre phases successives décrites sur la figure 5 (Huennekens et <u>al</u>., 1982), à savoir :

i) la phosphorylation du groupement hydroxyl du résidu

WO 91/11518 PCT/FR91/00054

4

aminopropanol du cobinamide pour donner le cobinamide phosphate, puis

ii) l'addition d'une guanosine diphosphate par réaction

avec la guanosine 5'-triphosphate ; le composé obtenu est le

GDP-cobinamide (Friedmann, 1975) qui

5 iii) réagit avec le α-ribazole 5'-phosphate, lui-même synthétisé à partir de la riboflavine, pour donner l'adénosylcobalamine 5'-phosphate (Friedmann et al, 1968) qui

iv) par déphosphorylation conduit au coenzyme B_{12} (Schneider et Friedmann, 1972).

10 Parmi les bactéries capables de produire des cobalamines, on peut citer notamment :

Agrobacterium tumefaciens,

Agrobacterium radiobacter

Bacillus megaterium

15 <u>Clostridium sticklandii</u>

Clostridium tetanomorphum

Clostridium thermoaceticum

Corynebacterium XG

Eubacterium limosum

20 <u>Methanobacterium arbophilicum</u>

Methanobacterium ivanovii

Methanobacterium ruminantium

Methanobacterium thermoautotrophicum

Methanosarcina barkeri

25 <u>Propionobacterium shermanii</u>

30

Protaminobacter ruber

Pseudomonas denitrificans

<u>Pseudomonas putida</u> <u>Rhizobium melitoti</u>

Rhodopseudomonas sphaeroides

Salmonella typhimurium

Spirulina platensis

Streptomyces antibioticus

Streptomyces aureofaciens

~20

5

Streptomyces griseus Streptomyces olivaceus

Au niveau industriel, en raison de la grande complexité des mécanismes de biosynthèse, la production des cobalamines, et en particulier de la vitamine B_{12} , est exclusivement microbiologique. Elle est réalisée par des cultures en grands volumes des bactéries Pseudomonas denitrificans, Propionobacterium shermanii et Propionibacterium freudenreichii (Florent, 1986). Les souches utilisées pour la production industrielle sont issues de souches sauvages; elles peuvent avoir subi de nombreux cycles de mutation au hasard puis de sélection de clones améliorés pour la production de cobalamines (Florent, 1986). Les mutations sont obtenues par mutagénèse avec des agents mutagènes ou par traitements physiques tels que des traitements aux rayons ultra-violets (Barrère et <u>al</u>., 1981). Par cette méthode empirique, des mutations au hasard sont obtenues et améliorent la production de cobalamines. Par exemple, il est décrit qu'à partir de la souche originale de <u>Pseudomonas denitrificans</u> initialement isolée par Miller et Rosenblum (1960, brevet US 2 938 822) la production de ce microorganisme a été graduellement augmentée en dix ans, par les techniques citées ci-dessus de 0,6 mg/l à 60 mg/l (Florent, 1986). Pour les bactéries du genre <u>Propionibacterium</u>, [Propionobacterium shermanii (ATCC 13673) et <u>freudenreichii</u> (ATCC 6207)] les mêmes valeurs de production semblent être décrites dans la littérature ; par exemple une production de 65 mg/l a été décrite (brevet Européen 87920). Toutefois, aucun crible n'a encore été décrit permettant de sélectionner ou de repérer facilement soit des mutants surproducteurs de cobalamines soit des mutants nettement améliorés dans leur production de cobalamines.

Au niveau génétique, peu de travaux ont été effectués à ce jour. Le clonage de gènes <u>cob</u> (codant pour des enzymes impliquées dans le procédé de biosynthèse) a été décrit chez <u>Bacillus megaterium</u> (Brey et <u>al</u>., 1986). Onze groupes de complémentation ont été identifiés par complémentation de mutants <u>cob</u> de <u>Bacillus megaterium</u> avec des plasmides portant différents fragments d'ADN de <u>Bacillus megaterium</u>.

15

20

35

Ces gènes sont groupés sur le même <u>locus</u>, porté par un fragment de 12 kb.

Des études ont également été menées sur les gènes <u>cob</u> de <u>Salmonella typhimurium</u>. Sans que le clonage de ceux-ci ait été décrit, il a été montré que presque tous les gènes de biosynthèse des cobalamines sont regroupés entre les minutes 40 et 42 du chromosome (Jeter et Roth, 1987). Seul le <u>locus cysG</u>, qui doit permettre la transformation de l'uro'gen III en précorrine-2 ne fait pas partie de ce groupe de gènes. Toutefois, l'activité codée par ce <u>locus</u>, ainsi que ses propriétés biochimiques n'ont pas été décrites.

En outre, des phénotypes ont été associés aux mutations cob. Chez Salmonella typhimurium et chez Bacillus megaterium, les mutants cob ne montrent plus de croissance sur milieu minimum avec de l'éthanolamine comme source de carbone ou comme source d'azote (Roof et Roth, 1988). Ceci est dû au fait qu'une enzyme du catabolisme de l'éthanolamine, l'éthanolamine ammonia-lyase (EC 4.3.1.7), a pour cofacteur le coenzyme B_{12} ; les mutants <u>cob</u> ne synthétisant plus de coenzyme B₁₂, ils ne peuvent plus croître avec l'éthanolamine comme source de carbone et/ou comme source d'azote. Des mutants metE de Salmonella typhimurium n'ont plus qu'une homocystéine-méthyltransférase (EC 2.1.1.13) méthylcobalamine dépendante. Les mutants cob de Salmonella typhimurium metE sont auxotrophes pour la méthionine (Jeter et al., 1984).

Chez <u>Pseudomonas denitrificans</u> et <u>Agrobacterium</u>

25 <u>tumefaciens</u> des phénotypes associés à une déficience totale en synthèse de cobalamines n'ont pas été décrits à ce jour.

Enfin, des travaux sur <u>Pseudomonas denitrificans</u> (Cameron et al., 1989) ont abouti au clonage de fragments d'ADN portant des gènes cob de cette bactérie. Ceux-ci sont répartis en quatre groupes de complémentation portés par au moins 30 kb d'ADN. Au moins quatorze groupes de complémentation ont été identifiés par complémentation hétérologue mutants cob d'Agrobacterium tumefaciens de Pseudomonas putida avec des fragments d'ADN de Pseudomonas denitrificans portant des gènes cob.

Cependant, jusqu'à maintenant, aucun de ces gènes n'a été

30

purifié, et aucune séquence nucléotidique n'a été décrite. De même, aucune identification de protéine, ni aucune fonction catalytique attribuée au produit de ces gènes n'ont été décrites. De plus, aucune amélioration de production de cobalamines par les techniques d'ADN recombinant n'a pu être obtenue. L'amplification de gènes cob de Bacillus megaterium ne procure pas, chez la souche à partir de laquelle ils ont été clonés, une amélioration de production de cobalamines (Brey et al., 1986). Chez Salmonella typhimurium, des études physiologiques ont été menées afin de déterminer des conditions dans lesquelles une forte transcription des gènes cob étudiés était observée (Escalante et Roth, 1987). Dans ces conditions, il n'y a pas d'amélioration de la production de cobalamines, bien que des gènes de la voie de biosynthèse soient plus exprimés que dans les conditions standard de culture.

La présente invention résulte de l'identification précise de séquences d'ADN codant pour des polypeptides impliqués dans la biosynthèse des cobalamines et/ou des cobamides. Un objet de l'invention concerne donc les séquences d'ADN codant pour les polypeptides impliqués dans la blosynthèse des cobalamines et/ou des cobamides. Plus particulièrement, l'invention a pour objet les gènes cobA, cobB, cobC, cobD, cobE, cobF, cobG, cobH, cobI, cobJ, cobK, cobL, cobM, cobN, cobO, cobP, cobQ, cobS, cobT, cobU, cobV, cobM, cobX et corA, toute séquence d'ADN homologue de ces gènes résultant de la dégénérescence du code génétique, ainsi que les séquences d'ADN, de toute origine (naturelle, synthétique, recombinante) qui hybrident et/ou qui présentent des homologies significatives avec ces séquences ou avec des fragments de celles-ci et qui codent pour des polypeptides impliqués dans la biosynthèse des cobalamines et/ou des cobamides. L'invention a aussi pour objet les gènes contenant ces sequences d'ADN.

Les séquences d'ADN selon la présente invention ont été isolées à partir de différentes souches : une souche industrielle, <u>Pseudomonas denitrificans</u> SC510, dérivée de la souche MB580 (brevet US 3 018 225), par complémentation de mutants <u>cob</u> de <u>A.tumefaciens</u> et <u>P.putida</u>; et de <u>Methanobacterium ivanovii</u>. Les clones obtenus ont pu

30

être analysés précisément, notamment par cartographie à l'aide d'insertions d'un dérivé du transposon Tn5. Ces études génétiques ont permis de localiser les gènes cob ou cor sur la carte de restriction et de réaliser leur séquençage. Une analyse des phases ouvertes a ensuite permis de mettre en évidence les régions codantes de ces fragments d'ADN.

La présente invention a aussi pour objet l'utilisation de ces séquences nucléotidiques pour cloner les gènes cob d'autres bactéries. En effet il est connu que pour des protéines catalysant les mêmes activités, les séquences sont conservées avec, comme divergence, la divergence évolutive (Wein-Hsiung et al., 1985). Il est montré dans la présente invention qu'il y a une homologie significative entre les sequences nucléotidiques de gènes de differents microorganismes codant pour des polypeptides impliqués dans la biosynthèse des cobalamines et/ou des cobamides. Les differences qui apparaissent résultent de la dégénérescence évolutive, et de la dégénérescence du code génétique qui est liée au pourcentage en GC du génome du microorganisme étudié (Wein-Hsiung et al., 1985).

Selon la présente invention, une sonde peut être faite avec une ou plusieurs des séquences d'ADN de <u>Pseudomonas</u> <u>denitrificans</u> 20 notamment, ou avec des fragments de celles-ci, ou avec des séquences analogues présentant un degré de dégénérescence spécifique, au niveau de l'usage des codons et du pourcentage en GC de l'ADN de la bactérie que l'on veut étudier. Dans ces conditions, il est possible de détecter un signal d'hybridation spécifique entre la sonde et des fragments d'ADN génomique de la bactérie étudiée ; ce signal d'hybridation spécifique correspond à l'hybridation de la sonde avec les gènes cob isofonctionnels de la bactérie. Les gènes cob ainsi que leurs produits peuvent ensuite être isolés, purifiés et caractérisés. l'invention fournit ainsi un moyen permettant, par hybridation, d'accéder aux sequences nucléotidiques et aux polypeptides impliqués dans la biosynthèse des cobalamines et/ou des cobamides de tout microorganisme.

La présente invention a également pour objet un ADN recombinant contenant au moins une séquence d'ADN codant pour un

polypeptide impliqué dans la biosynthèse des cobalamines et/ou des cobamides, et notamment, un ADN recombinant dans lequel la ou lesdites séquences sont placées sous le contrôle de signaux d'expression.

A cet égard, on peut en particulier positionner en 5' de la séquence d'ADN des régions promotrices. De telles régions peuvent être homologues ou hétérologues de la séquence d'ADN. En particulier, des promoteurs bactériens forts, tels que le promoteur de l'opéron tryptophane Ptrp ou de l'opéron lactose Plac de E.coli, le promoteur gauche ou droit du bactériophage lambda, les promoteurs forts de phages de bactéries, telles que les corynebactéries, les promoteurs fonctionnels chez les bactéries gram-négatives, tel que le promoteur Ptac de E.coli, le promoteur PxylS des gènes du catabolisme du xylène du plasmide TOL, le promoteur de l'amylase de Bacillus subtilis Pamy, pourront être utilisés. On peut citer également les promoteurs dérivés 15 de gènes glycolytiques de levures, tels que les promoteurs des gènes codant pour le phosphoglycérate kinase, la glycéraldéhyde-3-phosphate déshydrogénase, la lactase ou l'énolase, qui pourront être utilisés lorsque l'ADN recombinant sera introduit dans un hôte eucaryote. Un site de fixation des ribosomes sera également positionné en 5' de la 20 séquence d'ADN et il pourra être homologue ou hétérologue, tel le site de fixation des ribosomes du gène cII du bactériophage lambda.

Des signaux nécessaires à la terminaison de la transcription pourront être placés en 3' de la séquence d'ADN.

L'ADN recombinant selon la présente invention peut ensuite 25 être introduit directement dans une cellule hôte compatible avec les signaux d'expression choisis ou être cloné sur un vecteur plasmidique pour permettre d'introduire de manière stable la séquence d'ADN en question dans la cellule hôte.

Un autre objet de l'invention concerne les plasmides ainsi obtenus contenant une séquence d'ADN codant pour un polypeptide impliqué dans la biosynthèse des cobalamines et/ou des cobamides. Plus précisément, ces plasmides contiennent aussi un système de réplication fonctionnel et un marqueur de sélection.

L'invention a aussi pour objet les cellules hôtes dans 35 lesquelles une ou plusieurs sequences d'ADN telles que définies

20.00

précedemment, ou un plasmide tel que défini ci-avant, à été introduit.

Un autre objet de l'invention concerne un procédé de production de polypeptides impliqués dans la biosynthèse des cobalamines et/ou des cobamides. Selon ce procédé, ntrointroduit dans une cellule hôte une séquence d'ADN telle que décrite précédemment, on cultive cette cellule recombinante dans des conditions d'expression de ladite séquence, puis on récupère les polypeptides produits.

Les cellules hôtes qui pourront être utilisées dans ce but sont aussi bien des procaryotes que des eucaryotes, des cellules animales ou des cellules végétales. Préférentiellement, elles seront choisies parmi les bactéries et, en particulier, les bactéries du genre <u>E.coli</u>, <u>P.denitrificans</u>, <u>A.tumefaciens</u> ou <u>R.melitoti</u>.

Une autre utilisation des séquences d'ADN selon présente invention réside dans un procédé d'amplification de la production de cobalamines et/ou de cobamides ou de leurs précurseurs de biosynthèse, par les techniques d'ADN recombinant. En effet, si la limitation du flux métabolique de la biosynthèse des cobalamines et/ou des cobamides ou de leurs précurseurs est due à une limitation dans l'activité d'une enzyme dans la voie de biosynthèse, l'augmentation de cette activité par augmentation de l'expression de cette même enzyme à l'aide des techniques d'ADN recombinant (amplification génique, substitution des signaux de transcription-traduction par des signaux plus efficaces ...) conduira à une augmentation de la biosynthèse des cobalamines et/ou des cobamides. Il est possible également que la limitation de la production de cobalamines et/ou de cobamides résulte d'une régulation biochimique. Dans ce cas, le ou les gènes <u>cob</u> correspondant à l'enzyme régulée pourront être mutagénisés in vitro spécifiquement afin d'obtenir des gènes mutés dont les produits auront perdu les régulations allant à l'encontre d'une amélioration de la production.

Le procédé selon la présente invention consiste à introduire dans un microorganisme producteur de cobalamines et/ou de cobamides, ou seulement potentiellement producteur de ces composés (c'est-à-dire déficient dans une ou plusieurs des étapes de la biosynthèse), une séquence d'ADN telle que définie plus haut, puis à

30

cultiver ce microorganisme dans des conditions d'expression de ladite séquence et de synthèse des cobalamines et/ou des cobamides, et enfin à récupérer les cobalamines et/ou les cobamides produits. Un tel procédé est applicable en particulier à tous les microorganismes producteurs cités pager 4, et plus spécifiquement aux microorganismes du genre P. denitrificans, Rhizobium melitoti, ou Agrobactérium tumefaciens. Dans un mode de réalisation préféré, le microorganisme est P. denitrificans, et en particulier, la souche SC510. Concernant les microorganismes potentiellement producteurs, les séquences d'ADN utilisées seront celles correspondant aux étapes de la biosynthèse que le microorganisme ne peut réaliser.

A l'aide de la présente invention et par les diverses stratégies exposées ci-dessus, une amélioration de la production de cobalamines et/ou de cobamides ou de leurs précurseurs pour tout microorganisme producteur, ou potentiellement producteur, de cobalamines et/ou de cobamides, pourra être obtenue. Il suffira de cultiver ce microorganisme recombiné dans des conditions appropriées pour la production de cobalamines et pour l'expression des séquences d'ADN introduites. Cette culture pourra se faire en batch ou bien en continu, et la purification des cobalamines pourra se faire par les méthodes déjà utilisées au niveau industriel (Florent, 1986). Ces méthodes comprennent entre autre :

- i) la solubilisation des cobalamines et leur conversion en leur forme cyano (par exemple en traitant le moût de fermentation à la chaleur, avec du cyanure de potassium en présence de nitrite de sodium), puis
- ii) la purification des cyanocobalamines en différentes étapes qui peuvent être par exemple
- a) l'adsorption sur différents substrats tels que l'amberlite IRC50, 30 le Dowex 1X2 ou l'amberlite XAD 2 suivie d'une élution avec un mélange eau-alcool ou eau phénol, puis:
 - b) l'extraction dans un solvant organique et enfin
- c) la précipitation ou cristallisation à partir de la phase organique soit par addition de réactifs ou dilution dans un solvant approprié,
 soit par évaporation.

La présente invention montre de plus qu'il est possible, par les techniques d'ADN recombinant, d'améliorer la production de cobalamines d'une bactérie productrice de cobalamines en cumulant des améliorations. Ceci revient à obtenir une première amélioration comme cela est décrit ci-dessus puis à améliorer cette amélioration toujours à l'aide des techniques d'ADN recombinant, c'est-à-dire par exemple en amplifiant des gènes de biosynthèse des cobalamines.

Un autre objet de la présente invention concerne les polypeptides impliqués dans la biosynthèse des cobalamines et/ou des 10 cobamides. En particulier, la présente invention a pour objet tous les polypeptides, ou des dérivés ou des fragments de ces polypeptides, qui sont codés par les séquences d'ADN décrites précédemment, et qui sont impliqués dans la voie de biosynthèse des cobalamines et/ou des cobamides. La séquence en acides aminés de ces polypeptides est 15 décrite, ainsi que certaines de leurs caractéristiques physicochimiques. Une activité enzymatique ou des propriétés spécifiques ont également été associées à chacun d'entre-eux.

A cet égard, l'invention a pour objet les polypeptides intervenant dans la transformation du précorrine-3 en acide cobyrinique a,c-diamide, et plus particulièrement dans le transfert d'un groupement méthyl du SAM aux positions C1, C5, C11, C15, et C17.

L'invention a aussi pour objet les polypeptide:

- . intervenant dans la transformation de l'acide cobyrique en cobinamide, ou
- 25 . possèdant une activité S-adénosyl-L-méthionine:précorrine-2 méthyl transférase (SP2MT), ou . possèdant une activité acide cobyrinique et/ou hydrogénobyrinique a,c-diamide synthase, ou
 - . possèdant une activité précorrin-8x mutase, ou
- 30 . possèdant une activité nicotinate-nucléotide: dimethylbenzimidazole phosphoribosyltransferase, ou
 - . possèdant une activité cobalamine-(5'-phosphate) synthase, ou
 - . possèdant une activité cobyric acid synthase, ou
- 35 . possédant une activité cob(I)alamin adénosyltransférase,

ou

. possédant une activité precorrin-6x réductase, ou . intervenant dans la transformation de l'acide hydrogénobyrinique a,c-diamide en acide cobyrinique a,c-diamide.

Avantageusement, l'invention a pour objet un polypeptide choisi parmi les protéines COBA, COBB, COBC, COBD, COBE, COBF, COBG, COBH, COBI, COBJ, COBK, COBL, COBM, COBN, COBO, COBP, COBQ, COBS, COBT, COBU, COBV, COBW, COBX et CORA présentées aux figures 15, 16, 40, 41 et 47.

De plus, l'utilisation des sondes d'hybridation décrites précédemment permet, à partir de gènes isolés dans d'autres microorganismes, de caractériser et d'isoler les polypeptides isofonctionnels d'autres microorganismes. De cette manière, la présente invention montre que la séquence d'une protéine COB de Pseudomonas denitrificans est significativement homologue aux séquences de protéines d'autres microorganismes présentant le même type d'activité. Entre ces protéines COB catalysant la même réaction chez des microorganismes différents, seules les distances évolutives ont introduit des variations (Wein-Hsiung et al., 1985). La présente invention à egalement pour objet ces polypeptides isofonctionnels.

L'attribution d'une activité enzymatique particulière est le résultat d'une analyse qui peut être effectuée selon diverses stratégies. En particulier, des études d'affinité <u>in vitro</u>, vis-à-vis du SAM (S-adénosyl-L-méthionine), permettent d'attribuer à une protéine capable de fixer le SAM, une activité méthyltransférase, et donc son implication dans une des étapes de transfert des groupements méthyl qui se produisent entre l'uro'gen III et l'acide cobyrinique. Un autre moyen d'apprécier l'activité de ces polypeptides consiste à doser les intermédiaires de la voie de biosynthèse des cobalamines qui sont accumulés chez des mutants incapables d'exprimer ces polypeptides (identifiés par des expériences de complémentation). Ces analyses permettent de déduire que le polypeptide en question a pour substrat l'intermédiaire accumulé, ce qui permet de situer et de définir son

activité dans la voie de biosynthèse. La présente invention décrit également un procédé de dosage des activités enzymatiques de la voie de biosynthèse, applicable à toute souche productrice de cobalamines et/ou de cobamides. Ces dosages permettent de purifier à partir de toute souche productrice de ces composés, l'activité enzymatique dosée. A partir de cette activité purifiée, la séquence NH2-terminale de la protéine COB en question, ou bien celle des sous-unités de cette protéine, peut être effectuée, ce qui permet d'identifier le ou les gènes de structure qui codent pour l'activité en question. Pour Pseudomonas denitrificans, les gènes de structure qui codent pour des activités de la voie de biosynthèse sont identifiés en trouvant pour chaque séquence NH2-terminale, la protéine COB ayant la même séquence NH2-terminale.

La présente invention décrit aussi un procédé permettant l'identification et le dosage, chez des souches productrices de cobalamines ou des mutants non producteurs, d'intermédiaires de la voie de biosynthèse des cobalamines ou d'autres corrinoïdes. Ces intermédiaires peuvent être dosés aussi bien dans des moûts de culture que dans les cellules elles-mêmes. Les intermédiaires qui peuvent être dosés sont tous les corrinoïdes qui se trouvent dans la voie de biosynthèse après l'acide cobyrinique à savoir outre l'acide cobyrinique, l'acide cobyrinique monoamide, l'acide cobyrinique diamide, l'acide cobyrinique triamide, l'acide cobyrinique tétraamide, l'acide cobyrinique pentaamide, l'acide cobyrinique, le cobinamide, le cobinamide phosphate, le GDP-cobinamide, le coenzyme B₁₂-phosphate et le coenzyme B₁₂. Les formes cyano et coenzyme de ces produits peuvent être dosées par cette technique.

D'autres objets et avantages de la présente invention apparaîtront à la lecture des exemples et des dessins suivants, qui doivent être considérés comme illustratifs et non limitatifs.

DEFINITION DES TERMES EMPLOYES ET ABREVIATIONS

ACDAS: acide cobyrinique a,c-diamide synthase.

ADN recombinant: ensemble de techniques qui permettent soit d'associer

au sein du même microorganisme des séquences d'ADN qui ne le sont pas naturellement, soit de mutagéniser spécifiquement un fragment d'ADN.

ATP: adénosine 5'-triphosphate

BSA: sérum albumine bovine

5 CLHP: Chromatographie liquide à haute performance.

cluster: groupe de gènes.

Cob: correspond au phénotype de niveau réduit (au moins 10 fois moins que le contrôle) de production de cobalamines.

Codon stop: codon de terminaison de traduction

10 Corrinoïdes : dérivés de l'acide cobyrinique possédant le noyau corrine.

dGTP: 2'-désoxyguanosine 5'-triphosphate

DMBI: diméthylbenzimidazole

dNTP: 2'-désoxyribonucléosides 5'-triphosphates

15 DTT: dithiothréitol

gène cob: gène impliqué dans la biosynthèse du cobinamide à partir de

gène cor: gène impliqué dans la biosynthèse des corrinoïdes à partir de l'uro'gen III.

20 kb: kilobases

NN:DMBI PRT :

ORF: phase ouverte

pb: paires de bases

Protéine COB: protéine intervenant soit comme catalyseur dans la voie 25 de biosynthèse des cobalamines, soit comme protéine régulatrice dans le réseau de régulation des gènes cob, soit les deux.

Protéine COR: protéine intervenant soit comme catalyseur dans la voie de biosynthèse des corrinoïdes, soit comme protéine régulatrice dans le réseau de régulation des gênes cor, soit les deux.

30 SAM: S-adénosyl-L-méthionine

SDS: sodium dodécyl sulfate

SP2MT: SAM-L-méthionine:précorrine-2 méthyltransférase

SUMT: SAM:uro'gen III méthyltransférase

Uro'gen III: uroporphyrinogène III. 🐣

WO 91/11518 PCT/FR91/00054

16

Légendes des figures:

Figure 1:

Structure du coenzyme B12; le groupement 5'-déoxyadénosyl est remplacé par un groupement CH3 pour la méthylcobalamine, par un groupement 5 cyano pour la cyanocobalamine, par un groupement hydroxyl pour

l'hydroxocobalamine.

Figure 2:

Biosynthèse des cobalamines et différentes étapes de cette biosynthèse suivant la littérature. X: ligands axiaux du cobalt; le ligand en a l0 peut être différent du ligand en b. R: ligand en a du cobalt qui définit le type de cobalamine (voir figure 1).

Figure 3:

Structures de l'uro'gen III, du précorrine-1, du précorrine-2 et du précorrine-3.

15 Figure 4:

Formules développées de l'uro'gen III et de l'acide cobyrinique. D'après la littérature, entre l'uro'gen III et l'acide cobyrinique il se produit 8 transferts de méthyles SAM-dépendants successivement en C2, C7, C20, C17, C12, C1, C15 et C5, une décarboxylation en C12,

20 l'élimination du carbone en C20 et l'insertion de l'atome de cobalt.
X: ligands axiaux du cobalt; le ligand en a peut être différent du ligand en b.

Figure 5:

- Dernières étapes de la biosynthèse des cobalamines. Afin de clarifier

 le schéma des détails du noyau corrine ont été omis. Les cinq étapes enzymatiques sont représentées: 1, cobinamide kinase; 2, cobinamide phosphate guanylyltransférase; 3, cobalamine 5'-phosphate synthase; 4, cobalamine 5'-phosphate phosphohydrolase; 5, nicotinate nucléotide: DMBI phosphoribosyltransférase.
- 30 Figure 6: Cartes de restriction des fragments ClaI-HindIII-HindIII-HindIII 5.4 de kb; EcoRI de 8.7 kb; <u>SalI-SalI-SalI-SalI-Bgl</u>I de 4748 pb et <u>SstI-SstI-BamHI</u> de 3855 pb . Ne figurent que les 20 enzymes de restriction qui coupent le moins fréquemment l'ADN. Les sites de coupure de chaque

enzyme sont indiqués par un trait vertical.

Figure 7:

Séquence nucléotidique des deux brins du fragment ClaI-HindIII-HindIII de 5378 pb de Pseudomonas denitrificans.

Le brin situé en haut est à lire 5' vers 3' dans le sens gauche droite qui correspond à l'orientation gauche droite du fragment de la carte de restriction présentée à la figure 6. Le site ClaI se trouve à la position 23 (début du site de coupure) car sur cette séquence se trouvent des sites de restriction PstI, SalI et XbaI qui sont apparus lors des clonages dans des multisites en vue du séquençage. La séquence du fragment ClaI-HindIII-HindIII commence donc à la position 23.

Figure 8:

Séquence nucléotidique des deux brins du fragment EcoRI de 8753 pb de Pseudomonas denitrificans. Le brin situé en haut est à lire 5' vers 3' dans le sens gauche droite qui correspond à l'orientation gauche-droite du fragment de la carte de restriction présentée à la figure 6.

Figure 9:

- Analyse des probabilités des phases codantes d'après usage des codons en utilisant le programme de Staden et MacLachlan (1982) sur les 6 phases de lecture de la séquence du fragment ClaI-HindIII-HindIII de 5378 pb. Pour les phases qui appartiennent au même brin codant, la phase la plus probable correspond à celle où une ligne pointillée, non interrompue par des codons stop, est plaçée sous la ligne de probabilité de cette phase.
- 1. Séquence allant du nucléotide 1 au nucléotide 1200. Grâce à cette analyse, la phase ouverte 1 est identifiée. Elle commence à l'ATG en position 549 et se termine au TGA en position 30 1011.
 - 2. Séquence allant du nucléotide 1000 au nucléotide 2200. Grâce à cette analyse, la phase ouverte 2 est identifiée. Elle commence à l'ATG en position 1141 et se termine au TGA en position 1981.
- 35
 3. Séquence allant du nucléotide 1800 au nucléotide 3400.

WO 91/11518 PCT/FR91/00054

Grâce à cette analyse, la phase ouverte 3 est identifiée. Elle commence à l'ATG en position 1980 et se termine au TGA en position 3282.

- 4. Séquence allant du nucléotide 3000 au nucléotide 4500.

 5 Grâce à cette analyse, la phase ouverte ouverte 4 est identifiée. Elle commence à l'ATG en position 3281 et se termine au TGA en position 4280.
- 5. Séquence allant du nucléotide 3800 au nucléotide 5378. Grâce à cette analyse, la phase ouverte 5 est identifiée. Elle commence au GTG en position 4284 et se termine au TGA en position 5253.

Figure 10:

30

Analyse des probabilités des phases codantes d'après usage des codons en utilisant le programme de Staden et MacLachlan (1982) sur les 6 phases de lecture du fragment EcoRI de 8753 pb. Pour les phases qui appartiennent au même brin codant, la phase la plus probable correspond à celle où une ligne pointillée, non interrompue par des codons stop, est plaçée sous la ligne de probabilité de cette phase.

- 1. Séquence allant du nucléotide 650 au nucléotide 1650.

 Grâce à cette analyse, la phase ouverte 6 est identifiée. Elle commence à l'ATG en position 736 et se termine au TAG en position 1519.
- 2. Séquence allant du nucléotide 1400 au nucléotide 3100.
 Grâce à cette analyse, la phase ouverte 7 est identifiée. Elle
 commence à l'ATG en position 1620 et se termine au TAG en position 2997.
 - 3. Séquence allant du nucléotide 2700 au nucléotide 3700. Grâce à cette analyse, la phase ouverte 8 est identifiée. Elle commence à l'ATG en position 3002 et se termine au TGA en position 3632.
 - 4. Séquence allant du nucléotide 3500 au nucléotide 4100. Grâce à cette analyse, la phase ouverte 9 est identifiée. Elle commence au GTG en position 3631 et se termine au TGA en position 4366.
- 35 5. Séquence allant du nucléotide 4150 au nucléotide 5150.

Grâce à cette analyse, la phase ouverte 10 est identifiée. Elle commence à l'ATG en position 4365 et se termine au TGA en position 5127.

- 6. Séquence allant du nucléotide 5000 au nucléotide 6000.
- 5 Grâce à cette analyse, la phase ouverte 11 est identifiée. Elle commence à l'ATG en position 5893 et se termine au TAG en position 5110.
- 7. Séquence allant du nucléotide 5700 au nucléotide 7200.

 Grâce à cette analyse, la phase 12 est identifiée. Elle commence à

 10 l'ATG en position 5862 et se termine au TAA en position 7101.
 - 8. Séquence allant du nucléotide 7000 au nucléotide 8000. Grâce à cette analyse, la phase ouverte 13 est identifiée. Elle commence à l'ATG en position 7172 et se termine au TTG en position 7931.

15 Figure 11:

Construction des plasmides pXL556, pXL545 et pXL723. Un fragment ClaI-ECORV de 2.4 kb contenant les gènes cobA et cobE est excisé du fragment de 5,4 kb puis purifié. Un "linker" ECORI est ajouté au site ECORV, puis le fragment est inséré dans le pXL59 entre les sites ClaI-ECORI. Le plasmide aînsi construit est nommé pXL556. La construction est comparable pour le pXL545 : un fragment ClaI-HindIII-HindIII de 1.9 kb est excisé du fragment de 5,4 kb puis purifié. Ce fragment contient uniquement le gène CobE. Un "linker" ECORI est ajouté au site HindIII, puis le fragment est inséré dans le pXL59 entre les sites ClaI-ECORI.

Le pXL723 est construit comme suit: un fragment EcoRI-HindIII de 2.3 kb est excisé du fragment de 5,4 kb, purifié, puis les extrémités sont remplies par le grand fragment de l'ADN polymérase I de E. coli. Ce fragment est cloné dans le pRK290 (Ditta et al., 1981) digéré par EcoRI puis traité avec le large fragment de l'ADN polymérase I de E. coli afin de remplir les extrémités. Les sites de restrictions qui sont figurés entre parenthèse correspondent à des sites qui ont disparu après traitement avec le large fragment de l'ADN polymérase I de E. coli.

35 1 , fragment PstI-SstI de RSF1010 (De Graff et al., 1978); 2,

fragment PstI-BamHI de pACYC177 (Bagdasarian et al., 1981); 3, fragment BamHI-SstI contenant l'opéron lactose de E. coli sans son promoteur, l'opérateur, le site d'initiation de la traduction et les 8 premiers codons non essentiels de lacZ (Casadaban et al.,1983); 4, fragment Sau3AI de Pseudomonas putida KT2440 (Bagdasarian et al., 1981); ori, origine de réplication; nic, site de relaxation; mob , locus essentiel pour la mobilisation; Kmr gén-e de résistance à la kanamycine (Bagdasarian et al., 1981); B, BamHI; C, ClaI; E, EcoRI; H, HindIII; P, PstI; S, SstI; Sa, SalI; X, XhoI; Xb, XbaI.

10 Figure 12:

20

25

30

35

Etudes des insertions des transposons Tn5Spr et Tn5 sur le fragment de 5378 bp. Les insertions du transposon Tn5 sur le plasmide pXL723 sont figurées comme à la figure 14; celles du transposon Tn5Spr, dans le chromosome de la souche SBL27 Rifr, sont encadrées; les insertions dans le chromosome de SC510 Rifr de cassettes portant le gène de résistance à la kanamycine (1630 et 1631) sont représentées avec une flèche, selon l'orientation de la transcription du gène de résistance à la kanamycine, sous le numéro de l'insertion. Les phases ouvertes déduites de la séquence sont portées sur cette figure (de cobA à cobE); des signes + ou - sont représentés sous chaque insertion de transposon ou de cassette de résistance pour indiquer que l'insertion est inactivationnelle (-) ou non (+) soit pour la complémentation de différents mutants (cas des insertions de transposons Tn5) ou que l'insertion abolit la production de cobalamines de la souche dans laquelle elle a lieu. Il y a une absence de complémentation lorsque le mutant recombiné synthétise moins de trois fois moins de cobalamines que le niveau de synthèse de la souche dont le mutant dérive. Les inserts des plasmides pXL545Ω, pXL1500, pXL1397 et pXL302 sont représentés avec les sites de restriction se trouvant à leurs extrémités. Ces inserts sont clonés dans les plasmides à large spectre d'hôte pXL435 et pXL59 (Cameron et al., 1989).

Le plasmide pXL545 Ω correspond au plasmide pXL545 décrit à la figure 11 avec en plus le fragment BamHI de 2 kb du pHP45 Ω (Prentki et Krisch) contenant un gène de résistance à la spectinomycine cloné au site BamHI du pXL545.

Le plasmide pXL1500 correspond au fragment BglII-SstI de 4.2 kb présenté sur cette figure cloné aux sites BamHI et SstI du pKT230 (Bagdasarian et al., 1981) présenté à la figure 30; le pXL1397 correspond au fragment HindIII-SstI de 2.4 kb désigné sur la figure inséré entre les sites HindIII et SstI du multisite du pXL435 (Cameron et al., 1989) décrit sur la figure 30; le plasmide pXL302 correspond au fragment EcoRI-HindIII de 2.3 kb tel qu'il est décrit sur la figure inséré entre les site EcoRI et HindIII du pXL59 (Cameron et al., 1989), décrit sur la figure 30, le site HindIII utilisé étant le site se trouvant dans le multisite de clonage du pXL59; le pXL723 est décrit à la figure 11 tout comme le pXL545.

Des signes + ou - sont représentés au dessus de chacun de ces inserts pour indiquer s'il y a complémentation par le plasmide en question des insertions chromosomiques représentées au-dessus. C, ClaI; E, ECORI; H, HindIII; RV, ECORV; Sau, Sau3AI; S, SstI.

Figure 13:

Construction des plasmides pXL253 et pXL367. Le fragment EcoRI de 8.7 kb est excisé puis purifié à partir du plasmide pXL151. Il est cloné au site EcoRI du pKT230 pour donner le pXL253. Ce même fragment est inséré au site EcoRI du pKK250 (Ditta et al., 1981) pour donner le pXL367. 1, fragment PstI-SstI de RSF1010 (De Graff et al., 1978); 2, fragment PstI-BamHI de pACYC177 (Bagdasarian et al., 1981); ori, origine de réplication; nic, site de relaxation; mob , locus essentiel -pour la mobilisation (Bagdasarian et al., 1981); B, BamHI; C, ClaI; E, EcoRI; H, HindIII; P, PstI; S, SstI; Sa, SalI; X, XhoI; Xb, XbaI; tetr gène de résistance à la tétracycline; Kmr , gène de résistance à la kanamycine.

Figure 14:

Etudes des insertions des transposons Tn3lacZ et Tn5 sur le fragment

EcoRI de 8.7 kb cloné dans pRK290 (Ditta et al, 1980). Les insertions
des transposons Tn3lacZ sont soulignées au contraire de celles des
transposons Tn5. Les phases ouvertes déduites de la séquence (cobF à
cobM) sont portées sur cette figure et les huit groupes d'insertions
inactivationnelles (numérotés de 1 à 8 sont présentés; des signes + ou

55 - sont représentés sous chaque insertion de transposon pour indiquer

WO 91/11518 PCT/FR91/00054

22

que l'insertion est inactivationnelle (-) ou non (+) pour la complémentation de différents mutants). Il y a une absence de complémentation lorsque le mutant recombiné synthétise moins de trois fois moins de vitamine B12 que le niveau de synthèse de la souche dont le mutant dérive. Ces groupes d'insertions inactivationnelles correspondent aux mutants suivants: 1, G615; 2, G614 et G616; 3, G613 et G164; 4, G620; 5, G638; 6, G610 et G609; 7, G612; 8, G611. Ces mutants sont des mutants Cob d'Agrobacterium tumefaciens déjà décrits (Cameron et al, 1989). Une carte de restriction du fragment de 8.7 kb est portée au bas de la figure.

Figure 15:

Les séquences codantes de chacun des gènes du fragment de 5,4 kb, respectivement cobA à cobE, sont indiquées. La séquence des protéines COBA à COBE codées par ces séquences figurent sous leur séquence codante respective, cobA à cobE.la composition en acides aminés de chaque protéine, en nombre et en pourcentage, respectivement de COBA à COBE, sont présentées ainsi que le poids moléculaire, l'index de polarité, le point isoélectrique, la densité optique à 260 nm et à 280 nm d'une solution à 1 mg/ml de protéine purifiée. Le profil 20 d'hydrophilicité de chaque protéine, respectivement de COBA à COBE, est représenté; il a été calculé d'après le programme de Hopp et Woods (1981). Les valeurs positives correspondent à des régions de la protéine qui sont hydrophiles. En abscisse la position des acides aminés est indiquée tandis qu'en ordonnée la valeur de l'index d'hydrophilicité est figurée; lorsque cette valeur est positive, cela indique que la région de la protéine est hydrophile.

Figure 16:

Les séquences codantes de chacun des gènes du fragment de 8,7 kb, respectivement cobF à cobM, sont indiquées. Les séquences des protéines COBF à COBM codées par ces séquences, figurent sous leur séquence. La légende est identique à celle de la figure 15. NB. Nous avons fait commencer la protéine COBF à l'ATG situé à la position 736; il est possible que l'ATG situé à la position 751 soit le véritable codon d'initiation de cette protéine.

35 Figure 17:

Réaction catalysée par l'acide cobyrinique a,c-diamide synthase.

L'ACDAS catalyse l'amidation des fonctions acides carboxyliques des chaines acétate périphériques a et c de l'acide cobyrinique (hydrogénobyrinique) pour donner l'acide cobyrinique diamide (hydrogénobyrinique diamide); le donneur du groupement amine utilisé dans le test enzymatique est la L-glutamine; il donne par désamination l'acide L-glutamique. X correspond aux ligands axiaux du cobalt qui peuvent être différents l'un de l'autre.

Figure 18: Réaction catalysée par la SP2MT. La SP2MT catalyse le 10 transfert d'un méthyle du SAM au dihydrosirohydrochlorine ou précorrine-2 pour donner le précorrine-3. Le groupement méthyle est transféré à la position C20 du noyau porphyrine.

Figure 19: Structure de l'acide hydrogénobyrinique et de l'acide hydrogénobyrinique a,c-diamide.

15 Figure 20:

Affinités des protéines COBA et COBF pour le SAM. Les courbes donnent en unités arbitraires la radioactivité à la sortie de la colonne de TSK-125 pour chaque protéine appliquée sur cette colonne. Les temps de rétention sont indiqués en minutes et le pic de radioactivité corrrespondant au SAM libre est observé au temps de 10 min 30 sec.

Figure 21:

Comparaison des séquences de COBA et de COBI. Seules les régions 1, 2 et 3, de forte homologie, sont présentées. Les signes = sont plaçés entre les résidus identiques et - entre les résidus homologues (H K R,

25 LIVM, AGST, YFW, DEQNBZ, P, C).

Figure 22:

Comparaison des séquences primaires des protéines COBA de Pseudomonas denitrificans et CYSG de E. coli. L'alignement a été fait suivant le programme de Kanehisa, 1984. Les signes = sont placés entre les résidus identiques et - entre les résidus homologues (H K R, L I V M, A G S T, Y F W, D E Q N B Z, P, C). Les régions 1, 2, 3 correspondent aux zones de forte homologie entre les protéines.

Figure 23

Comparaison des séquences de CYSG de E. coli avec des protéines COB de Pseudomonas denitrificans (COBA, COBF, COBI, COBJ, COBL et COBM). Les

comparaisons portent sur les régions 1, 2 et 3, de fortes homologies, qui existent entre CYSG, COBA et COBI. Les positions sur les séquences protéiques des régions présentant des homologies sont présentées sur la figure. Nous avons considéré les groupes de résidus homologues suivants: H K R, L I V M, A G S T, Y F W, D E Q N B Z, P, C. Si, à une même position, il se trouve au moins 3 résidus homologues, nous avons encadré ces acides aminés.

Figure 24:

Construction des plasmides pXL1148 et pXL1149. Le pXL1148 est 10 construit comme suit: le fragment BamHI-BamHI-SstI-SstI de 1.9 kb du fragment de 8,7 kb contenant les gènes cobH et cobI est purifié, et des "linkers" XbaI et EcoRI sont plaçés respectivement aux extrémités BamHI et SstI. Ce fragment est ensuite inséré entre les sites XbaI et EcoRI du plasmide à large spectre d'hôte pXL59 (Cameron et al., 1989) 15 pour donner le plasmide pXL1148. Le pXL1149 est construit comme le pXL1148 si ce n'est que le fragment initialement purifié est le fragment BamHI-BamHI-SstI de 1.5 kb au lieu du fragment contenant en plus le petit fragment SstI de 400 pb utilisé pour le pXL1148. Le fragment subit ensuite les mêmes traitements enzymatiques et le même 20 clonage dans le pXL59. 1, fragment PstI-SstI de RSF1010 (De Graff et al., 1978); 2, fragment PstI-BamHI de pACYC177 (Bagdasarian et al., 1981); 3, fragment BamHI-SstI contenant l'opéron lactose de E. coli sans promoteur, opérateur, site d'initiation de la traduction et les 8 premiers codons non essentiels de lacZ (Casadaban et al., 1983); 4, fragment Sau3AI de Pseudomonas putida KT2440 (Bagdasarian et al., 1981); ori, origine de réplication; nic, site de relaxation; Kmr gène de résistance à la kanamycine; mob , locus essentiel pour la mobilisation (Bagdasarian et al., 1981); B, BamHI; C, ClaI; E, EcoRI; H, HindIII; P, PstI; S, SstI; Sa, SalI; X, XhoI; Xb, XbaI.

30 Figure 25:

Protéines totales des souches SC510 Rifr, SC510 Rifr pKT230, SC510 Rifr pXL1148, SC510 Rifr pXL1149 analysées en PAGE-SDS à 10% comme cela est décrit. Les bactéries ont été cultivées pendant 4 jours en milieu PS4, puis des lysats des protéines totales ont été effectués.

35 Piste 1, SC510 Rifr; piste 2, SC510 Rifr pXL1149; piste 3, SC510 Rifr

pXL1148; piste 4, SC510 Rifr pKT230. Les masses moléculaires des marqueurs de masse moléculaire sont indiquées. Les positions où les protéines COBI et COBH migrent sont indiquées.

Figure 26:

Construction des plasmides pXL1496 et pXL1546. Le plasmide pX1496 permet de surexprimer la protéine COBF chez E. coli et le plasmide pXL1546 permet de surexprimer COBF chez Pseudomonas denitrificans. Le fragment EcoRI-XhoI de 2.2 kb est excise et purifié à partir du fragment de 8.7 kb. Il est cloné au site EcoRI du phage M13mp19 pour donner le plasmide pXL1405. Ensuite un site NdeI est introduit par mutagénèse dirigée, comme cela est décrit précédemment, à la position 733 de ce fragment; de cette manière une site NdeI se trouve juste sur le codon d'initiation présumé du gené cobF. Le nouveau plasmide ainsi obtenu est nommé pXL1406. Un fragment NdeI-SphI-SphI de 1.5 kb, contenant le gène cobF à partir de son codon d'initiation présumé, est purifié après digestion partielle par les enzyme appropriées et ligaturé avec les fragments appropriés du plasmide pXL694 (fragment EcoRI-NdeI de 120 pb contenant des signaux d'expression de E. coli -voir texte- et fragment EcoRI-SphI de 3.1 kb contenant le gène de 20 résistance à l'ampicilline, les fonctions de réplication du plasmide ainsi que les terminateurs de l'opéron rrnB de E. coli comme cela est décrit dans le texte). Le plasmide ainsi construit est nommé pXL1496. Le pXL1546 est construit comme suit: le fragment EcoRI-BamHI-BamHI de 2 kb du pXL1496 est purifié par digestion partielle avec les enzymes appropriées; ce fragment contient les signaux d'expression de E. coli, 25 suivis du gène cobF , puis la partie 5' du gène cobG, elle-même suivie des terminateurs de l'opêron rrnB de E. coli comme cela est décrit dans le texte; ce fragment est cloné dans le plasmide multihôte pKT230 (Bagdasarian et al., 198-1) décrit sur la figure 30. B, BamHI; C, ClaI; E, EcoRI; H, HindIII; P, PstI; S, SstI; Sa, SalI; X, XhoI; Xb, 30 XbaI; Kmr, gène de résistance à la kanamycine; Amp, gène de résistance à l'ampicilline.

Figure 27:

Protéines totales des souches SC510 Rifr, SC510 Rifr pKT230, SC510
5 Rifr pXL1546 analysées en PAGE-SDS à 10% comme cela est décrit. Les

bactéries ont été cultivées pendant 4 jours en milieu PS4, puis des lysats des protéines totales ont été effectués. Piste 1, SC510 Rifr; piste 2, SC510 Rifr pKT230; piste 3, SC510 Rifr pXL1546. Les masses moléculaires des marqueurs de masse moléculaire sont indiquées. La position où la protéine COBF migre est indiquée.

Figure 28:

Protéines totales des souches E. coli B et E. coli B pXL1496 analysées en PAGE-SDS à 10 % comme cela est décrit. Piste 1, E. coli pXL1496 cultivée en absence de tryptophane; piste 2, E. coli pXL1496 cultivée dans les mêmes conditions en présence de tryptophane; piste 3, E. coli cultivée en absence de tryptophane; piste 4, E. coli cultivée dans les mêmes conditions en présence de tryptophane. Les masses moléculaires des marqueurs sont indiquées. La position de migration de la protéine COBF est indiquée.

15 Figure 29:

10

20

Construction des plasmides pXL525 etpXL368. Le pXL368 est construit comme suit: le fragment EcoRV-ClaI de 2.4 kb (contenant les gènes cobA et cobE) est purifié à partir du plasmide pXL556 (B. Cameron et al., 1989) ce qui permet d'obtenir ce fragment avec un site BamHI et un site XbaI aux extrémités; ce fragment est cloné dans le pXL203 aux sites BamHI et XbaI. Pour la construction du pXL525 un "linker" XbaI est ajouté au site EcoRI situé à l'extrémité droite du fragment EcoRI de 8.7 kb; ce fragment EcoRI-XbaI de 8.7 kb est ensuite cocloné avec le fragment EcoRI-XbaI de 2.4 kb provenant du pXL556 et contenant cobA et cobE. Les sites de restrictions qui sont figurés entre parenthèse correspondent à des sites qui ont disparu après traitement avec le large fragment de l'ADN polymérase I de E. coli. 1 , fragment PstI-SstI de RSF1010 (De Graff et al., 1978); 2, fragment PstI-BamHI de pACYC177 (Bagdasarian et al., 1981); ori, origine de réplication; 30 nic, site de relaxation; mob , locus essentiel pour la mobilisation; Kmr, gène de résistance à la kanamycine (Bagdasarian et al., 1981); B, BamHI; C, ClaI; E, EcoRI; H, HindIII; P, PstI; S, SstI; Sa, SalI; X, XhoI; Xb, XbaI; tet, gène de résistance à la tétracycline; Ampr et Amp, gène de résistance à l'ampicilline.

35 Figure 30:

Plasmides, du groupe d'incompatibilité Q, à large spectre d'hôte chez les bactéries gram-négatives. Ces plasmides sont décrits dans une précédente publication (Cameron et al., 1989) et sont utilisés dans la présente invention. 1, fragment PstI-SstI de RSF1010 (De Graff et al., 1978); 2, fragment PstI-BamHI de pACYC177 (Bagdasarian et al., 1981); 3, fragment BamHI-SstI contenant l'opéron lactose de E. coli sans promoteur, opérateur, site d'initiation de la traduction et les 8 premiers codons non essentiels de lacZ (Casadaban et al., 1983); 4, fragment Sau3AI de Pseudomonas putida KT2440 (Bagdasarian et al., 10 1981); ori, origine de réplication; nic, site de relaxation; Kmr gène de résistance à la kanamycine; Smr, gene de résistance à la streptomycine ; mob , locus essentiel pour la mobilisation (Bagdasarian et al., 1981); B, BamHI; C, ClaI; E, EcoRI; H, HindIII; P, PstI; S, SstI; Sa, SalI; X, XhoI; Xb, XbaI.

15 Figure 31:

Temps de rétention de différents étalons corrinoïdes (1 mg/étalon) sur le système de séparation de décrit à l'exemple 9. La colonne utilisée est une colonne de Nucléosil C-18 (Macherey-Nagel). Au niveau de chaque pic d'absorbance un numéro est représenté correspondant au 20 corrinoïde décrit ci-dessous. Le temps de rétention est porté en abscisse et l'absorbance à 371 nm se trouve en ordonnée. 1, acide cobyrinique; 2, acide cobyrinique a-amide; 3, acide cobyrinique g-amide; 4, acide cobyrinique -a,g-diamide; 5, acide cobyrinique c-amide; 6, acide cobyrinique c,g-diamide; 7, acide cobyrinique a,c-diamide; 8, acide cobyrinique triamide; 9, acide cobyrinique tetraamide; 10, acide cobyrinique pentaamide; 11, acide cobyrique; 12, GDP-cobinamide; 13, cobinamide phosphate; 14, cobinamide; 15, cyanocobalamine 5'-phosphate; 16, cyanocobalamine.

Figure 32:

- 30 Séquence nucléotidique des deux brins du fragment SalI-SalI-SalI-SalI-SalI-BqlI de 4748 pb de Pseudomonas denitrificans. Le brin situé en haut est à lire de 5' vers 3' dans le sens gauche droite qui correspond à l'orientation gauche droite du fragment de la carte de restriction présentée sur la figure 6.
- Figure 33: Séquence nucléotidique des deux brins du fragment SstI-

3

SstI-BamHI de 3855 pb de Pseudomonas denitrificans. Le brin situé en haut est à lire de 5' vers 3' dans le sens gauche droite qui correspond à l'orientation gauche droite du fragment de la carte de restriction présentée sur la figure 6.

5 Figure 34:

Analyse des probabilités des phases codantes d'après l'usage des codons en utilisant le programme de Staden et MacLachlan (1982) sur les six phases de lecture du fragment SalI-SalI-SalI-SalI-SalI-BglI de 4748 pb. Pour les phases qui appartiennent au même brin codant, la phase la plus probable correspond à celle où une ligne pointillée, non interrompue par des codons stop, est placée sous la ligne de probabilité de cette phase. 4a. Analyse de la séquence correspondant aux nucléotides 200 à 800. Cette analyse permet d'identifier la phase ouverte 14. Elle commence à l'ATG en position 660 et se termine au TGA en position 379. 4b. Analyse de la séquence correspondant aux nucléotides 800 à 1500. Cette analyse permet d'identifier la phase ouverte 15. Elle commence au GTG en position 925 et se termine au TAA en position 1440. 4c. Analyse de la séquence correspondant aux nucléotides 1450 à 2600. Cette analyse permet d'identifier la phase ouverte 16. Elle commence à l'ATG en position 1512 et se termine au TGA en position 2510. 4d. Analyse de la séquence correspondant aux nucléotides 2500 à 4650. Cette analyse permet d'identifier la phase ouverte 17. Elle commence au GTG en position 2616 et se termine au TGA en position 4511.

25 Figure 35:

15

Analyse des probabilités des phases codantes d'après l'usage des codons en utilisant le programme de Staden et MacLachlan (1982) sur les six phases de lecture du fragment SstI-SstI-BamHI de 3855 pb. Pour les phases qui appartiennent au même brin codant, la phase la plus probable correspond à celle où une ligne pointillée, non interrompue par des codons stop, est placée sous la ligne de probabilité de cette phase. 5a. Analyse de la séquence correspondant aux nucléotides 1 à 905. Cette analyse permet d'identifier la phase ouverte 18. Elle commence à l'ATG en position 809 et se termine au TGA en position 108. 5b. Analyse de la séquence correspondant aux

nucléotides 955 à 2105. Cette analyse permet d'identifier la phase ouverte 19. Elle commence à l'ATG en position 1971 et se termine au TGA en position 1063. 5c. Analyse de la séquence correspondant aux nucléotides 2000 à 3300. Cette analyse permet d'identifier la phase ouverte 20. Elle commence à l'ATG en position 2099 et se termine au TAG en position 3115. 5d. Analyse de la séquence correspondant aux nucléotides 3250 à 3855. Cette analyse permet d'identifier la phase ouverte 21. Elle commence à l'ATG en position 3344 et se termine au TGA en position 3757.

10 Figure 36:

Construction des plasmides pXL233, pXL843 et pXL1558 à partir du pXL154. Les plasmides sont construits de la manière suivante. Le fragment EcoRI de 3,5 kb, contenant le gène cobS tronqué et la séquence en amont, est excisé du pXL154, puis purifié et cloné dans le site EcoRI du pKT230. Le plasmide ainsi construit est nommé pXL233. Le fragment EcoRI-XhoI-XhoI de 3,5 kb, contenant le gène cobT et la séquence en aval, est excisé et purifié à partir du pXL154 par digestions partielles. Le fragment EcoRI-EcoRI-EcoRI de 4,3 kb contenant le gène cobS et la séquence en amont est excisé et purifié 20 à partir du pXL154, puis ligaturé au fragment de 3,5 kb précédent. Le fragment EcoRI-XhoI de 8 kb environ ainsi obtenu est cloné dans les sites EcoRI et SalI du pXL59 pour générer le plasmide pXL843. Le plasmide pXL1558 est construit de la façon suivante: le fragment HindIII-HindIII de 12 kb est excisé du pXL154 et purifié puis les 25 extrémités sont remplies par le grand fragment de l'ADN polymérase I de E. coli. Cet insert est cloné dans le pRK290 (Ditta et al. 1981) digéré par EcoRI puis traîté avec le large fragment de l'ADN polymérase I de E. coli pour rendre les extrémités franches. Les sites de restriction qui sont figurés entre parenthèse correspondent à 30 des sites qui ont disparus au cours du clonage. 1, fragment PstI-SstI de RSF1010 (Degraff et al., 1978); 2, fragment PstI-BamHI de pACYC177 (Bagdasarian et al., 1981); B, BamHI; C, ClaI; E, ECORI; H, HindIII; P, PstI; S, SstI; Sa, SalI; X, XhoI; Xb, XbaI; Tet gène de résistance à la tétracycline; Kmr gène de résistance à la kanamycine; Smr, gène 35 de résistance à la streptomycine.

ŧ

Figure 37:

Etude des insertions du transposon Tn5Sp sur l'insert HindIII-HindIII de 12 kb du pXL154. Les insertions du transposon sont cartographiées sur l'insert HindIII-HindIII de 12 kb, cloné sur le pXL1558. Les insertions chromosomiques dans la souche SC510 Rifr sont encadrées, celle qui ne l'est pas, est introduite dans la souche SBL27 Rifr. Un signe plus ou moins est représenté sous chaque insertion pour indiquer le phénotype Cob de la souche ayant cette insertion. L'absence de complémentation (ou la complémentation) de la souche G2035 par des plasmides pXL1558::Tn5Sp est indiquée par des signes moins (ou plus) au dessous de chaque insertion. Les inserts des plasmides, décrits dans la figure 36, sont représentés. Les signes plus (ou moins), sur ces plasmides et alignés avec les insertions au transposon, schématisent la complémentation (ou (l'absence) de la souche mutée au 15 transposon par le plasmide. Les phases ouvertes déduites de la séquence sont aussi portées sur cette figure (ORF14 à 17 ainsi que les gènes cob correspondants (cobS et cobT). E : EcoRI; H : HindIII; X : XhoI.

Figure 38:

Construction des plasmides pXL1286, pXL1303, pXL1324, pXL1490B et pXL1557 à partir du pXL519. La position du fragment séquencé est présentée dans la partie supérieure de la figure au dessus de la carte de restiction du cluster; il s'agit d'un SstI-SstI-BamHI de 3.9 kb. Les plasmides sont construits de la manière suiante. Le fragment BglII-EcoRI de 2 kb, contenant le gène cobU et la la séquence en aval, 25 est excisé du pXL519 puis purifié et cloné aux sites BamHI et EcoRI du pKT230 pour générer le plasmide pXL1286. Le fragment SstI-EcoRI de 2,7 kb, contenant le gène cobV tronqué, le gène cobU et la séquence en aval, est excisé du pXL519 puis purifié et cloné aux sites SstI et EcoRI du pKT230 pour générer le plasmide pXL1324. Le fragment 30 SstI-SstI de 1,6 kb, contenant le gène cobV tronqué et la séquence en amont, est excisé du pXL519 puis purifié et cloné au site SstI pKT230 pour générer le plasmide pXL1303. Le fragment SstI-SstI-BamHI de 3.85 kb est purifié après digestion totale du pXL519 par BamHI et digestion partielle par SstI. Ce fragment est ensuite cloné aux sites

BamHI et SstI du pKT230 pour générer le pXL1490B. Le plasmide pXL1557 est construit de la façon suivante: le fragment HindIII-BamHI de 9 kb est excisé du pXL519 et purifié puis les extrémités sont remplies par le grand fragment de l'ADN polymérase I de E. coli. Cet insert est cloné dans le pRK290 (Ditta et al. 1981) digéré par EcoRI puis traité avec le large fragment de l'ADN polymérase I de E. coli pour rendre les extrémités franches. Les sites de restriction qui sont figurés entre parenthèse correspondent à des sites qui ont disparus au cours du clonage. 1, fragment PstL-SstI de RSF1010 (Degraff et al., 1978); 2, fragment PstI-BamHI de pACYC177 (Bagdasarian et al., 1981); B, BamHI;Bg, BglII; C, ClaI; E, EcoRI; H, HindIII; P, PstI; S, SstI; Sa, SalI; X, XhoI; Xb, XbaI; Tetr gène de résistance à la tétracycline; Kmr gène de résistance à la kanamycine; Smr, gène de résistance à la streptomycine.

- Figure 39: Etude des insertions du transposon Tn5Sp sur l'insert HindIII-BamHI de 9 kb du pXL519. Les insertions du transposon sont cartographiées sur l'insert HindIII-BamHI de 9 kb, cloné sur le pXL1557. Les insertions chromosomiques dans la souche SC510 Rifr sont encadrées, celles qui ne le sont pas, sont introduites dans la souche 20 SBL27 Rifr. Un signe plus ou moins est représenté sous chaque insertion pour indiquer le phénotype Cob de la souche ayant cette insertion. L'absence de complémentation (ou la complémentation) de la souche G2040 par des plasmides pXL1557::Tn5Sp est indiquée par des signes moins (ou plus) au dessous de chaque insertion. Les inserts des plasmides, décrits dans la figure 6, sont représentés. Les signes plus (ou moins), sur ces plasmides et alignés avec les insertions au transposon, schématisent la complémentation (ou l'absence) de la souche mutée au transposon par le plasmide. Les phases ouvertes déduites de la séquence sont aussi portées sur cette figure (ORF18 à
- 30 21) ainsi que les gènes cob correspondant (cobU et cobV).
 Figure 40:

Séquences codantes de chacun des gènes du fragment de 4,8 kb, respectivement cobX, cobS et cobT, sont indiquées. La séquence des protéines COBX, COBS et COBT codées par ces séquences figure sous les séquences codantes respectives cobX, cobS et cobT. La légende est

₹

identique à celle de la figure 15.

Figure 41:

Séquences codantes de chacun des gènes du fragment de 3,9 kb, respectivement cobU et cobV, sont indiquées. La séquence des protéines COBU et COBV codées par ces séquences figure sous les séquences codantes respectives cobU et cobV. La légende est identique à celle de la figure 15.

Figure 42:

A.Protéines totales des souches E. coli BL21 pLysS pET3b, E. coli BL21 pLysS pXL1937 analysées sur PAGE-SDS 10%. Piste 1, BL21 pLyspET3b; piste 2, E. coli BL21 pLysS pXL1937.

B. Protéines totales des souches : E.coli BL21, E.coli BL21 pXL1874 et E.coli BL21 pXL1875 analysées sur PAGE-SDS 10%. Piste 1, E.coli BL21; piste 2, E.coli BL21 pXL1874; piste E.coli BL21 pXL1875.

15 Les masses moléculaires des marqueurs sont indiquées. La bande correspondant à la protéine surexprimée est indiquée par une flêche.

Figure 43: Séquence nucléotidique des deux brins du fragment SstI-SstI-SstI-SstI-SstI-BqlII-BqlII de 13144 pb de Pseudomonas denitrificans. Le brin situé en haut est à lire de 5' vers 3' dans le sens gauche droite qui correspond à l'orientation gauche droite du fragment de la carte de restriction présentée sur la figure 46.

44: Carte de restriction đu fragment <u>SstI-SstI-SstI-SstI-BqlII-SstI-BqlII</u> đе 13144 рb đе **Pseudomonas** denitrificans. La ou les positions de sites de restriction courant sont 25 indiquées par ordre croissant du nombre de coupure sur le fragment séquencé; les positions correspondent à la séquence présentée sur la figure 43.

Figure 45: Analyse des probabilités des phases codantes d'après l'usage des codons en utilisant le programme de Staden et MacLachlan (1982) sur 30 les six phases de lecture du fragment SstI-BglII-SstI-BglII-SstI-BglII de 13144 pb de Pour les phases qui appartiennent au même brin codant,

la phase la plus probable correspond à celle où une ligne pointillée, non interrompue par des codons stop, est placée sous la ligne de probabilité de cette phase.

- 1. Séquence correspondant aux nucléotides 1 à 2266. Cette analyse permet d'identifier la phase ouverte 22. Elle commence à l'ATG en position 429 et se termine au TAG en position 1884.
 - 2. Séquence correspondant aux nucléotides 2266 à 4000. Cette analyse permet d'identifier la phase ouverte 23. Elle
- 10 commence à l'ATG en position 3364 et se termine au TGA en position 3886.
 - 3. Séquence correspondant aux nucléotides 3800 à 5000. Cette analyse permet d'identifier la phase ouverte 24. Elle commence à l'ATG en position 3892 et se termine au TAG en position 4954.
- 4. Séquence correspondant aux nucléotides 5000 à 9000. Cette analyse permet d'identifier la phase ouverte 25. Elle commence à l'ATG en position 5060 et se termine au TAG en position 8885.
 - 5. Séquence correspondant aux nucléotides 9000 à 9700. Cette analyse permet d'identifier la phase ouverte 26. Elle commence à l'ATG en position 9034 et se termine au TGA en position 9676.
- 6. Séquence correspondant aux nucléotides 9600 à 13144. Cette analyse permet d'identifier les phase ouvertes 27, 28, 29 et 30. Elles commencent respectivement aux ATG en position 9678, 10895, 11656 et 13059 et se terminent aux codons stop en position 10101, 10304, 12181 et 12366. Les phases ouvertes 28 et 30 se trouvent sur le brin complémentaire de celui codant correspondant à toutes les autres phases ouvertes.
 - Figure 46: Fragment <u>EcoRI-BqlII-EcoRI-BqlII</u> de 13.4 kb, positions des insertions des transposons <u>Tn5Sp</u> sur le fragment <u>EcoRI</u> de 9,1 kb, positions des insertions des transposons <u>Tn5</u> sur l'insert du plasmide pXL189 ainsi que les inserts des divers plasmides utilisés lors des expériences de complémentation des souches SC510 Rif^T :: <u>Tn5Sp</u>. Les complémentations des mutants SC510 Rif^T :: <u>Tn5Sp</u> par les plasmides sont indiquées (+)-entre 5 % et 100 % du niveau de la souche parentale, SC510

ŧ

Rif^r-, (_)-complémentation partielle, entre 0.5 à 5 % du niveau de SC510 Rif^r-, ou (-)-absence de complémentation, c'est à dire, moins de mille fois moins que SC510 Rif^r- positionnés juste au dessus des traits schématisant l'insert des plasmides et alignés avec les sites d'insertion des mutant correspondants. Au dessous de la cartographie des insertions des transposons Tn5 sur l'insert du plasmide pXL189 est représentée la complémentation (+), ou l'absence de complémentation (-) de ces plasmides mutants pour les mutants d'Agrobacterium tumefaciens G632 et G633. Sur la partie droite de la figure se trouve un tableau représentant la complémentation des mutants G622, G623 et G630 (Cameron et al., 1989) par différents plasmides; (+)-complémentation totale, 100 % du niveau de la souche parentale, C58C9 Rif^r-, (_)-complémentation partielle, entre 10 et 50 % du niveau de C58C9 Rif^r-, ou (-)-absence de complémentation-.

Les différents plasmides dont l'insert est représenté sont construits comme suit (les fragments sont excisés soit du pXL156 soit du pXL157): pXL618 correspond au fragment <u>EcoRI-BamHI</u> de 2.5 kb cloné aux mêmes sites de pKT230 (Bagdasarian et al., 1981);

pXL593 correspond au fragment $\underline{Bam}HI$ de 3.1 kb cloné au site $\underline{Bam}HI$ de 20 pKT230 (Bagdasarian et al., 1981);

pXL623 correspond au fragment <u>Bam</u>HI-<u>Xho</u>I de 1.9 kb cloné aux sites <u>Bam</u>HI-<u>Sal</u>I de pXL59 (Cameron et al., 1989);

pXL1909 correspond au fragment <u>Bam</u>HI-<u>Bam</u>HI-<u>Bam</u>HI de 8.4 kb cloné au site <u>Bam</u>HI de pKT230 (Bagdasarian et al., 1981);

le pXL221 correspond au fragment <u>EcoRI-Cla</u>I de 1.6 kb cloné aux mêmes site de pXL59 (le site <u>Cla</u>I dans lequel est cloné ce fragment est le site <u>Cla</u>I du multisite de pXL59 (Cameron et al., 1989);

*les pXL1908 et 1938 correspondent au même insert, fragment XhoI-BamHI-BamHI de 6.5 kb, auquel des linkers XbaI ont été ajoutés;

30 cet insert est cloné dans les deux orientations au site XbaI de pXL435 (Cameron et al., 1989); une flèche positionnée sur la figure indique la position du gène de résistance à la kanamycine vis à vis des extrémités de l'insert des deux plasmides;

pXL208 correspond au fragment <u>Bam</u>HI de 5.2 kb cloné au site <u>Bam</u>HI de 35 pKT230 (Bagdasarian et al., 1981);

pXL297 correspond au fragment <u>Eco</u>RI de 9.1 kb cloné au site <u>Eco</u>RI de pKT230 (Bagdasarian et al., 1981).

Les phases ouvertes (PO) définies par le séquençage du fragment (PO 22 à 30) sont représentées ainsi que les gènes <u>cob</u> correspondants; une flèche indique la polarité de la transcription.

5 E, <u>Eco</u>RI; B, <u>Bam</u>HI; Bg, <u>Bql</u>II; Cl, <u>Cla</u>I; Sau, <u>Sau</u>3AI; X, <u>Xho</u>I;

Figure 47: Séquences codantes de chacun des gènes du fragment de 13.4 kb, respectivement cob0, cobP et cobW, cobN et cob0 sont indiquées. La séquence des protéines COBQ, COBP, COBW, COBN et COBO codées par ces séquences figurent sous leur séquence codante respective cob0, cobP, cobW, cobN et cob0. La légende est identique à celle de la figure 15.

figure 48 : A-Séquence NH2-terminale de la SUMT de M. ivanovii et séquence des oligonucléotides 923 946, 947; -, signifie qu'à cette position, le résidu n'a pas pu être déterminé; pour l'oligonucléotide antisens les acides aminés indiqués au-dessus de la séquence correspondent aux anticodons présentés. B-présentation de l'amplification enzymatique d'un fragment interne au gène de structure de la SUMT de M. ivanovii avec les oligonuléotides 946 et 947.

- Figure 49 : Constrution de la forme réplicative recombinante pG10. Le fragment de 615 pb obtenu par amplification est digéré par HindIII et ECORI puis purifié comme cela est décrit. Ce fragment est ensuite mis à ligaturer avec la forme réplicative du phage M13mp19 digérée par les mêmes enzymes. Le clone recombinant est trouvé comme cela est décrit dans le texte.
- Figure 50: Autoradiographie d'un blot d'ADN génomique de M. ivanovii digéré par diverses enzymes, séparé par électrophorèse en gel d'agarose puis transféré sur membrane de Nylon comme cela est décrit précédemment. La membrane est hybridée avec la sonde pG10 comme cela est décrit précédemment. 1, HindIII-BglII; 2, KpnI-BglII; 3, EcoRI-BglII; 4, BglII-PstI. Les tailles des différents fragments qui hybrident avec la

WO 91/11518 PCT/FR91/00054

36

sonde sont représentés en kb.

Figure 51 : Séquence nucléotidique des deux brins du fragment de 955 pb de M. ivanovii. Le brin situé en haut est à lire de 5' vers 3' dans le sens gauche droite.

3

- Figure 52: Séquence codante du géne corà de M. ivanovii obtenue à partir de la séquence de 955 pb. La séquence primaire de la protéine CORA est aussi représentée. Les acides aminés sont représentés au-dessus de leur codon et le codon stop est figuré par une étoile. Les principales propriétés physiques de la protéine CORA de M. ivanovii, à savoir, la composition en acides aminés, en nombre et en pourcentage, le poids moléculaire, l'index de polarité, le point isoélectrique, la densité optique à 280 nm d'une solution à 1 mg/l de protéine purifiée. Le profil d'hydrophobicité de la protéine CORA de M. ivanovii; ce profil a été réalisé d'après le programme de Hopp et Woods (1981). Les valeurs positives correspondent à des régions de la protéine qui sont hydrophiles. Sont indiquées, la position des acides aminés en abscisse, et en ordonnée la valeur de l'index d'hydrophilicité; si cette valeur est positive, cela indique que dans cette région la protéine est hydrophile.
- 20 Figure 53 : Comparaison des séquences primaires des protéines COBA de P. denitrificans et CORA de M. ivanovii. Les protéines ont été alignées grâce au progamme de Kanehisa (1984). =, acides aminés identiques; -, acides aminés homologues d'après les critères définis précédemment (voir figure 22 et 23).
- 25 Figure 54 : Construction des plasmides pXL1832 et pXL1841.
 Les légendes décrites plaçées sur la figure permettent de suivre les les constructions.

Techniques générales de clonage, de biologie moléculaire et de biochimie.

15

20

25

30

35.

Les méthodes classiques de biologie moléculaire telles que la centrifugation d'ADN plasmidique en gradient de chlorure de césium-bromure d'éthidium, les digestions par des enzymes de restriction, l'électrophorèse sur gel, l'électroélution des fragments d'ADN à partir de gels d'agarose, la transformation dans E. coli, etc, sont décrites dans la littérature (Maniatis et al., 1982, Ausubel et al., 1987).

Les enzymes de restriction ont été fournies par New-England Biolabs (Biolabs), Bethesda Reseach Laboratories (BRL) ou Amersham Ltd (Amersham). Les oligonucléotides "linkers" ont été fournis par Biolabs. Pour les ligatures, les fragments d'ADN sont séparés selon leur taille sur des gels d'agarose 0.7 % ou acrylamide 8 %, purifiés par électroélution, extraits au phénol, précipités à l'éthanol puis incubés dans un tampon Tris-HCl pH 7.4 50 mM, MgCl2 10 mM, DTT 10 mM, ATP 2 mM, en présence d'ADN ligase du phage T4 (Biolabs). Si nécessaire, les fragments d'ADN ayant des extrémités 5' proéminentes sont déphosphorylés par un traitement à la phosphatase alcaline d'intestin de veau (CIP, Pharmacia) à 37°C pendant 30 mn dans le tampon suivant: glycine 100 mM, MgCl2 1 mM, ZnCl2 1 mM, pH 10.5. La même technique est utilisée pour la déphosphorylation des extrémités 3' proéminentes ou franches, mais le traitement est de 15 mn à 37°C puis de 15 mn à 56 °C. L'enzyme est inactivée par chauffage du mélange réactionnel à 68°C pendant 15 mn -en présence de SDS 1% et de NaCl 100 mM suivi d'une extraction au phénol-chloroforme et d'une précipitation à l'éthanol. Le remplissage des extrémités 5' proéminentes est effectué par le fragment de Klenow de l'ADN polymérase I d'E. coli (Biolabs). La réaction est effectuée à température ambiante pendant 30 mn dans un tampon Tris-HCl pH 7.2 50 mM, dNTPs 0.4 mM, MgSO4 10 mM, DTT 0.1 mM, BSA 50 mg/ml. Le remplissage des extrémités 3' proéminentes est effectué en présence de l'ADN polymérase du phage T4 (Biolabs) selon les recommandations du fabriquant. La digestion des extrémités proéminentes est effectuée par traitement limi-té à la nucléase S1 (BRL) selon les recommandations du fabriquant. Des oligonucléotides "linkers" sont ajoutés sur des extrémités de fragments d'ADN comme cela est déjà décrit (Maniatis et al, 1982). La

ŧ

mutagénèse in vitro par oligodéoxynucléotides est effectuée selon la méthode développée par Taylor et al., 1985, en utilisant le kit distribué par Amersham. Les ADN ligaturés sont utilisés pour 5 transformer la souche rendue compétente: E. coli △(lacIOPZYA)X74, galU, galK, strAr, hsdR) pour les plasmides ou E. coli TG1(Δ(lac proA,B), supE, thi, hsdD5/ F' traD36, proA+, B+, lacIq, pour les formes réplicatives de phages bactériophage M13. Les ADN plasmidiques sont purifiés suivant la 10 technique de Birnboim et Doly, 1979. Les minipréparations d'ADN plasmidique sont faites suivant le protocole de Klein et al., 1980. Les préparations d'ADN chromosomiques de bactéries gram-négatives sont réalisées comme cela a été déjà décrit (Cameron et al., 1989). Les sondes radioactives sont préparées par translation de coupure suivant 15 la méthode déjà détaillée (Rigby et al., 1977). Les hybridations entre des séquences d'ADN ainsi que l'immobilisation des acides nucléiques sur membranes de nitrocellulose sont effectuées comme cela a été décrit (Cameron et al., 1989). Lors de clonages pour lesquels il y a une faible probabilité de trouver le clone recombinant recherché, ceux-ci sont trouvé après hybridation sur filtre comme cela est déjà 20 décrit (Maniatis et al., 1982). La séquence nucléotidique de fragments d'ADN est réalisée par la méthode de terminaison de chaînes (Sanger et al., 1977). Dans le mélange réactionnel le dGTP est remplacé par le 7-déaza-dGTP, ceci afin d'éviter les compressions de bandes lors de l'électrophorèse sur gel d'acrylamide, provoquées par le pourcentage 25 en GC élevé de l'ADN. Les milieux de culture utilisés pour la partie bactériologique ont déjà été présentés (Maniatis et al., 1982). Les cultures en milieu PS4 sont réalisées comme cela est déjà décrit (Cameron et al., 1989); les souches de Pseudomonas denitrificans SC510 30 G2 Rifr sont cultivées en milieu PS4 comme suit: des Erlenmeyers de 250 ml contenant 25 ml de milieu PS4, avec si besoin l'antibiotique sélectif pour le plasmide porté par chaque souche, sont ensemencés avec une dilution au 1/100 de préculture saturée en milieu L (Miller 1972), avec, si besoin est, l'antibiotique sélectif pour le 35 plasmide porté par chaque souche; ces cultures sont incubées 6 jours à 30°C, puis les moûts sont analysés pour leur titre en cobalamines ou

30

bien l'activité enzymatique de certaines enzymes de la voie. Les souches d'Agrobacterium tumefaciens, Pseudompnas putida et de Rhizobium meliloti sont cultivées à 30°C, sauf spécifications, elles sont cultivées en milieu L. Les conjugaisons bactériennes sont réalisées comme cela est déjà décrit (Cameron et al., 1989). Les extraits de protéines totales sont réalisés comme cela est déjà décrit (Ausubel et al., 1987). Les électrophorèses (SDS-PAGE) d'analyse des protéines en gel d'acrylamide en conditions dénaturantes sont effectuées comme cela est déjà décrit (Ausubel et al., 1987). L'appareil PhastSystem (Pharmacia) utilisant le système de tampons 10 discontinus de Laemli (Laemli, 1970) est aussi utilisé; différents gels sont utilisés en fonction des poids moléculaires des protéines à analyser ainsi que leur pureté: PhastGel gradient 8-25 PhastGel Homogeneous 12.5 La coloration est effectuée soit au bleu de Coomassie à l'aide du PhastGel Blue R (Pharmacia), soit au nitrate d'argent en 15 utilisant le PhastGel silver Kit (Pharmacia) en se conformant aux instructions du fabriquant. Les séquences NH2-terminales des protéines sont déterminées par la technique de dégradation d'Edman en utilisant un séquenceur automatisé (Applied Biosystems modèle 407A) couplé à un 20 appareil CLHP pour l'identification dérivés phénylthiohydantoines.

EXEMPLE 1 - Isolement de fragments d'ADN de P.denitrificans contenant des gènes Cob

Cet exemple décrit l'isolement de fragments d'ADN de <u>Pseudomonas</u> <u>denitrificans</u> portant des genes Cob. Ces fragments ont été mis en évidence par des expériences de complémentation de mutants Cob d'<u>A.tumefaciens</u> et <u>P.putida</u> (Cameron et <u>al</u>., 1989).

Ces mutants Cob ont été obtenus par mutagénèse avec la N-méthyl-N'-nitro-N-nitrosoguanidine selon la technique de Miller (Miller et al., 1972), ou par insertions du transposon Tn5. De cette manière, des souches incapables de synthétiser les cobalamines ont été mises en évidence, et en particulier, le mutant cob G572 de P.putida, et les mutants Cob G159, G161, G164, G169, G171, G258, G609, G610, G611, G612, G613, G614, G615, G616, G620, G622, G623, G630, G632.

10

15

20

25

30

ŧ

G633, G634, G638, G642, G643, G2034, G2035, G2037, G2038, G2039, G2040, G2041, G2042 et G2043 de <u>A.tumefaciens</u>.

Parallèlement, une banque d'ADN génomique de <u>P.denitrificans</u> est réalisée dans un vecteur mobilisable à large spectre d'hôte, pXL59, par digestion, en présence d'enzymes de restriction, de 5 µg d'ADN (Cameron et al., 1989).

Par complémentation, plusieurs plasmides ont pu être isolés, permettant de complémenter les mutants cob de <u>P.putida</u> et d'<u>A.tumefacien</u>. Parmi ceux-ci on notera plus particulièrement les plasmides pXL151, pXL154, pXL156, pXL157 et pXL519.

Ces plasmides ont été isolés et des fragments d'ADN ont pu être excisés, purifiés et analysés par restriction. Ces fragments sont présentés sur les figures 6 et 44: Un fragment <u>ClaI-HindIII-HindIII-HindIII-HindIII</u> de 5,4 kb, un fragment <u>EcoRI-EcoRI</u> de 8,7 kb, un fragment SalI-SalI-SalI-SalI-BglI de 4,8 kb, un fragment SstI-SstI-BamHI de 3,9 kb et un fragment EcoRI-BglII-EcoRI-BglII de 13,4 kb.

EXEMPLE 2 - Séquençage des fragments d'ADN isolés

Cet exemple illustre le séquençage de fragments d'ADN portant des gènes cob de Pseudomonas denitrificans SC510.

2.1. Séquençage d'un fragment <u>Cla</u>I-<u>Hind</u>III-<u>Hind</u>III-<u>Hind</u>III de 5,4 kb

Ce fragment est contenu dans le plasmide pXL157 décrit dansl'exemple 1. Après excision, des sous fragments du fragment de 5,4 kb ont été clonés dans les phages M13mp18, ou M13mp19 (Norrander et al., 1983), ou M13tg130, ou M13tg131 (Kieny et al., 1983) dans les deux orientations. Des délétions ont été ensuite réalisées in vitro par la méthode de Henikoff (1987). Ces délétions ont ensuite été séquencées avec le "primer universel" comme amorce de synthèse des réactions de terminaison de chaîne. Le recouvrement entre ces différentes délétions a permis d'établir la séquence totale, sur les deux brins, du fragment de 5,4 kb (figure 7).— Ce fragment comprend 5378 pb. Sur la séquence décrite à la figure 7 figurent, avant le site

20

25

ClaI, trois sites de restriction (PstI, SalI et XbaI) qui sont apparus lors du clonage du fragment en question en vue du séquençage dans des multisites de clonage. Lorsque par la suite nous nous référerons, dans la présente invention, à la séquence de ce fragment ClaI-HindIII-HindIII, ce sera à la séquence présentée à la figure 7 où les 22 premières bases ne correspondent pas à de l'ADN de Pseudomonas denitrificans (ainsi toutes les positions de site de restriction ou de début de phase ouverte se réfèrent à la séquence présentée à la figure 7).

2.2 Séquence nucléotidique d'un fragment <u>Eco</u>RI-<u>Eco</u>RI de 8,7 kb

Ce fragment est porté par le pXL151 décrit dans l'exemple 1. Le site <u>Eco</u>RI ainsi que les 70 pb adjacentes situées à la droite de ce fragment proviennent du pXL59 qui est le vecteur qui a servi à construire le pXL151 par clonage d'un fragment <u>Sau</u>3AI de <u>Pseudomonas denitrificans</u> SC510. Après excision, des sous fragments du fragment de 8,7 kb ont été clonés dans les phages M13mp18, ou M13mp19 (Norrander et <u>al.</u>, 1983), ou M13tg130, ou M13tg131 dans les deux orientations (Kieny et <u>al.</u>, 1983). Des délétions ont été ensuite réalisées <u>in vitro</u> par la méthode de Henikoff (1987). Ces délétions ont ensuite été séquencées avec le "primer universel" comme amorce de synthèse des réactions de terminaison de chaîne. Le recouvrement entre ces différentes délétions a permis d'établir la séquence totale, sur les deux brins, du fragment de 8,7 kb (figure 8). Ce fragment comprend 8753 pb.

2.3. Séquençage d'un fragment SalI-SalI-SalI-SalI-BglI de 4,8 kb.

Ce fragment est contenu dans le plasmide pXL154 décrit dans l'exemple 1. Le protoque est identique à celui utilisé dans l'exemple 2.2. La séquence totale sur les deux brins du fragment de 4,8 kb est présentée sur la figure 32. Ce fragment contient 4749 pb.

3

麦

2.4. Séquence nucléotidique d'un fragment SstI-SstI-BamHI de 3,9 kb.

Ce fragment est inclus dans le plasmide pXL519 décrit dans l'exemple 1. Le protocole est identique à celui utilisé dans l'exemple 2.2. La séquence totale sur les deux brins du fragment de 3,9 kb est présentée sur la figure 33. Ce fragment contient 3855 pb.

2.5. Séquence nucléotidique d'un fragment EcoRI-BqlII-EcoRI-BqlII de 13.4 kb.

Ce fragment est contenu dans les plasmides pXL156 et pXL157 l0 décrits dans l'exemple 1. Le protocole utilisé est identique à celui de l'exemple 2.2. La séquence sur les deux brins du fragment de 13.15 kb est présentée sur la figure 43. Elle correspond à la séquence totale du fragment de 13.4 kb mis à part 250 pb, correspondant à un fragment EcoRI-SstI, se trouvant à l'extrémité gauche de celui-ci.

- A partir de ces séquences nucléotidiques, des cartes de restriction ont été obtenues pour les enzymes qui coupent le moins fréquemment (figures 6 et 44). Le pourcentage en bases GC de l'ADN de <u>Pseudomonas denitrificans</u> SC150 est relativement élevé (65,5 %) et se traduit par des compressions sur les gels de séquence. Pour éviter ces problèmes deux solutions sont apportées :
 - i) l'utilisation du 7-déaza-dGTP au lieu du dGTP dans les réactions de séquence pour diminuer les structures secondaires qui se forment pendant l'électrophorèse dans le gel de séquence et
 - ii) le séquençage des deux brins.
- 25 <u>EXEMPLE 3</u> Analyse de ces séquences nucléotidiques : détermination des phases ouvertes

Les séquences nucléotidiques des fragments <u>ClaI-Hind</u>III-<u>Hind</u>III-<u>Hind</u>III de 5,4 kb (figure 7), <u>EcoRI-Eco</u>RI de 8,7 kb (figure 8), SalI-SalI-SalI-SalI-BglI de 4,8 kb (figure 32),

30 SstI-SstI-BamHI de 3,9 kb (figure 33) et EcoRI-BglII-EcoRI-BglII de

13,4 kb (figure 43) permettent de définir des phases ouvertes. Comme il s'agit d'ADN à haut pourcentage en GC, les phases ouvertes sont nombreuses vu la faible fréquence de codons d'arrêt de traduction. Une étude de la probabilité des phases codantes d'après usage des codons en utilisant la méthode de Staden et MacLachlan (1982) est réalisée. Elle caractérise les phases ouvertes qui ont la meilleure probabilité d'être codantes par rapport aux autres phases du même brin d'ADN, cette probabilité est fonction de l'usage des codons de gènes déjà séquencés provenant des bactéries du genre <u>Pseudomonas</u>. De cette manière :

3.1. Cinq phases ouvertes sont caractérisées pour le fragment <u>ClaI-HindIII-HindIII de</u> 5,4 kb. Elles sont nommées phases 1 à 5 et leurs positions sur la séquence du fragment de 5,4 kb sont les suivantes (sur la séquence 5'→3' du site <u>Cla</u>I vers les sites <u>Hind</u>III):

15 <u>Tableau</u>: Phases ouvertes probables du fragment <u>Cla</u>I-<u>Hind</u>III-<u>Hind</u>III-<u>Hind</u>III de 5,4 kb. Les positions sur la séquence correspondent aux positions sur la séquence décrite à la figure 7 ; le brin codant est le brin 5'→3' correspondant au brin supérieur sur cette figure.

	Numéro de la phase	Codon de démarrage Codon de la stop traduction		Poids moléculaire en kD de la protéine codée	
	1	549	1011	15.5	
:	2	1141	1981	29.2	
	3	1980	3282	45.7	
	4	3281	4280	35.0	
i	5	4284	5253	34.1	

Les représentations des probabilités que ces phases ouvertes soient des phases codantes, avec parallèlement celles

15

20

25

હ

observées sur les autres phases (5 au total) sont portées sur la figure 9. Ces cinq phases sont codées par le même brin. Quatre d'entre elles (phases ouvertes 1 à 4) présentent les caractéristiques de phases codantes en couplage traductionnel (Normak et al., 1983), à savoir que le codon d'initiation de traduction de la phase x+1 chevauche le codon de terminaison traduction de la phase x ou bien que ceux-ci sont très proches.

3.2. Huit phases sont caractérisées pour le fragment <u>ECORI-ECORI</u> de 8,7 kb. Elles sont nommées phases 6 à 13 et leurs positions sur la séquence du fragment de 8,7 kb sont portées sur le tableau ci-dessous.

<u>Tableau</u>: Phases ouvertes probables du fragment <u>Eco</u>RI 8,7 kb. Les positions sur la séquence correspondent aux positions sur la séquence décrite sur la figure 8; sur cette figure, le brin codant est le brin supérieur sauf pour la phase 11.

Numéro de la phase de traduction	Codon de démarrage	Codon stop	Poids moléculaire en kD de la protéine codé
6	736	1519	28.9
7	1620	2997	46.7
. 8	3002	3632	22.0
9	3631	4366	25.8
10	4365	5127	27.1
11	5893	5110	. 28.0
12	5862	7101	42.9
13	7172	7931	26.8

Les représentations des probabilités de ces phases ouvertes, avec parallèlement celles observées sur les autres phases (6 phases au total) sont portées sur la figure 10. A l'exception de la

15

20

phase 11, ces phases sont codées par le même brin. Quatre d'entre elles (de 7 à 10) présentent les caractéristiques de phases codantes en couplage traductionnel (Normark et al., 1983), à savoir que le codon d'initiation de traduction de la phase x+1 chevauche le codon de terminaison de traduction de la phase x ou bien que ceux-ci sont très proches.

3.3. Quatre phases ouvertes sont caractérisées pour le fragment SalI-SalI-SalI-SalI-BglI de 4,8 kb. Elles sont nommées phases 14 à 17 et leurs positions sur la séquence du fragment de 4,8 kb sont les suivantes (sur la séquence 5'- 3' des sites SalI vers le site BglI):

<u>Tableau</u>: Phases ouvertes probables du fragment SalI-SalI-SalI-SalI-SalI-BglI de 4,8 kb. Les positions sur la séquence correspondent aux positions décrites sur la figure 32 où le brin supérieur est donné dans son orientation 5'- 3'. Les phases 15, 16 et 17 sont codéespar le brin supérieur au contraire de la phase 14

Numéro de la phase	Codon de démarrage de traduction	Codon stop	Poids moléculaire en kD de la protéine codée
14	660	379	10286
15	925	1440	18941
16	1512	2510	36983
17 .	2616	4511	70335
	į.		

Les représentations des probabilités que ces phases ouvertes soient codantes, avec parallèlement celles observées sur les autres phases (au total 4) sont portées sur la figure 34. Les phases 15, 16 et 17 sont codées par le même brin, la phase 14 par le brin complémentaire.

25

3.4. Quatre phases sont caractérisées pour le fragment SstI-SstI-BamHI de 3,9 kb. Elles sont nommées 18 à 21 et leurs positions sur la séquence du fragment de 3,9 kb sont portées sur le tableau ci-dessous.

Tableau: Phases ouvertes probables du fragment SstI-SstI-BamHI de 3,9 kb. Les positions sur la séquence correspondent aux positions décrites sur la figure 33 où la polarité du brin supérieur est 5'- 3'. Les phases 18 et 19 sont codées par le brin inférieur au contraire des phases 20 et 21.

10	Numéro de la phase	Codon de démarrage de traduction	Codon stop 1	Poids moléculaire en kD de la protéine codée	
	18	809	108	25148 ·	
15	. 19	1971	1063	30662	
	20	2099	3115·	34682	
	21	3344	3757	14802	

Les représentations des probabilités que ces phases ouvertes soient codantes, avec parallèlement celles observées sur les autres phases (au total 4) sont portées sur la figure 35. Les phases 19 et 20 sont transcrites de façon divergente.

3.5. Neuf phases ouvertes sont caractérisées pour le fragment <u>EcoRI-BqlII-EcoRI-BqlII</u> de 13.1 kb. Elles sont nommées phases 22 à 30 et leurs positions sur la séquence du fragment de 13,1 kb sont les suivantes (sur la séquence 5'- 3' du site <u>EcoRI vers le site BqlII</u>):

Tableau: Phases ouvertes probables du fragment EcoRI-BglII de 13.1 kb. Les positions sur la séquence correspondent aux positions

décrites sur la figure 43 où le brin supérieur est donné dans son orientation 5'-3'. Les phases 22, 23, 24, 25, 26, 27 et 29 sont codées par le brin supérieur au contraire des phases 28 et 30.

5	Numéro de la phase de traduction	Codon de démarrage	Codon	Poids moléculaire en kD de la protéine codée
	22	429	1884	51 982
	23	3364	3886	19442
10	24	3892	4954	38121
	25	5060	8885	138 055
	26	9034	9676	24 [°] 027
	27	9678	10101	14 990
	28	10835	10306	· 21 057
15	29	11656	12181	19 183
	30 .	13059.	12368	24 321

Les représentations des probabilités que les phases ouvertes 22, 23, 24, 25, et 26 soient codantes, avec parallèlement celles observées sur les autres phases (au total 5 phases) sont portées sur la figure 45. 20 Ces 5 phases sont codées par le même brin.

EXEMPLE 4 - Etudes génétiques sur les fragments d'ADN portant des gènes cob

Cet exemple montre la relation qui existe entre les différentes phases ouvertes identifiées précédemment et les gènes impliqués dans la biosynthèse des cobalamines et/ou des cobamides portés par ces mêmes fragments. Ces gènes sont identifiés par une étude génétique comme décrit ci-dessous.

4.1 - Etude génétique du fragment de 5,4 kb

10

15

20

25

30

Le plasmide pXL723 est le plasmide pRK290 (Ditta et <u>al</u>., 1980) contenant le fragment <u>Eco</u>RI-<u>Hind</u>III de 2264 pb, correspondant à la partie droite du fragment étudié, cloné au site <u>Eco</u>RI du pRK290 (figure 11). La construction des autres plasmides utilisés dans cette étude (pXL302, pXL1397, pXL545, pXL545Ω, pXL556 et pXL1500) est décrite dans la légende des figures 11 et 12.

Des insertions ont été obtenues sur le plasmide pXL723 en utilisant la technique de Bruijn et Lupski, 1984. Les insertions du transposon Tn5 sur le plasmide pXL723 ont été sélectionnées, puis cartographiées dans le fragment de 5,4 kb (figure 12). Le pXL723 complémente le mutant Cob G572 de Pseudomonas putida et le mutant Cob G634 d'Agrobacterium tumefaciens. Ces insertions se classent en deux groupes d'insertions inactivationnelles: soit celles qui ne permettent plus de complémenter le mutant Cob G572, soit celles qui abolissent la complémentation du mutant Cob G634 (figure 12). Les insertions qui inactivent la complémentation du mutant G572 sont cartographiées dans la phase ouverte 4 (il s'agit des insertions 15, 27, 68, 81 et 97); la phase ouverte 4 correspond donc à un gène cob. Celui-ci est nommé cobC. Les insertions qui inactivent la complémentation du mutant G634 sont cartographiées dans la phase 5 (ce sont les insertions 66 et 107, figure 12); la phase ouverte 5 correspond donc à un gène cob. Celui-ci est nommé <u>cobD</u>. Par ailleurs des insertions avec un transposon Tn<u>5</u>Sp^r ont été réalisées. Le transposon Tn5Spr a été construit au laboratoire en clonant au site <u>Bam</u>HI du transposon Tn<u>5</u> (Jorgensen et <u>al</u>., 1979) une cassette BamHI contenant le gène de résistance à la spectinomycine provenant du plasmide pHP45 Ω (Prentki et Krisch, 1984). Ces insertions ont été faites dans le chromosome de la souche de <u>Pseunomonas</u> <u>denitrificans</u> SBL27 Rif^r. La souche SBL27 est une souche Pseudomonas denitrificans dont SC510 dérive par plusieurs mutagénèses. SBL27 produit 10 fois moins de cobalamines que SC510 sur milieu PS4. Sur 10000 clones de la souche SBL27 Rifr, portant chacun une insertion du transposon, plus de 30 d'entre eux avaient perdu la capacité de synthétiser des cobalamines. Certains de ces clones possédaient une insertion dans le fragment étudié dans cet exemple. Ces insertions ont

15

20

25

30

35

été cartographiées par analyses de restriction selon la méthode de Southern (Southern, 1975). Les sites d'insertions du transposon chez ces différents mutants sont portés sur la figure 12. Une de ces insertions numérotée 2639 se trouve dans le gène cobC; cette insertion est complémentée par le plasmide pXL302 qui porte un fragment contenant le gène cobC (figure 12). Deux insertions, nommées 2636 et 2638, sont dans la phase ouverte 3. Ces mutants sont bloqués dans la biosynthèse des cobalamines, et ils sont complémentés par le plasmide pXL1397 qui ne contient que la phase ouverte 3, mais non complémentés par le plasmide pXL302 qui contient les gènes cobC et cobD (figure 12). Ces deux insertions sont donc dans un autre gène. A la phase ouverte 3 nous associons le gène cobB. Une insertion 2933 est placée dans la phase ouverte 2 ; elle est complémentée par le plasmide pXL1500 qui contient la phase ouverte 2 ; cette insertion est non complémentée par le plasmide pXL1397 qui contient le gène cobB et qui complémente les deux insertions dans cobB. Il s'agit donc ici d'une insertion dans un autre gène; à la phase ouverte 2 nous associons un gène nommé cobA.

Une cassette de résistance à la kanamycine provenant du plasmide pUC4K (Barany et al., 1985) a été introduite au site NotI du fragment <u>Cla</u>I (position 0 sur la séquence)-<u>Rsa</u>I (position 1686 sur la séquence) cloné dans un plasmide pUC8 (Viera et Messing, 1982) ; il s'agit du site NotI situé à la position 771 dans la phase 1 (voir la séquence sur la figure 7); deux insertions ont été retenues correspondant chacune à une orientation différente de la cassette de résistance. Ces fragments portant chacun une insertion de la cassette de résistance ont été clonés dans le plasmide pRK404 (Ditta et al.) pour donner les plasmides pXL1630 et 1631. Ces plasmides ont été introduits par transfert conjugatif dans la souche de <u>Pseudomonas</u> denitrificans SC510 Rif^r, puis par une série de cultures-dilutions en absence de l'antibiotique sélectif pour le plasmide (la tétracycline), des doubles recombinants ayant échangé le fragment plasmidique avec le fragment chromosomique et ayant perdu le plasmide ont été trouvés. Deux souches ont ainsi été caractérisées :

i) l'une est nommée SC510:1631 Rif^r, dans cette souche, la

WO 91/11518 PCT/FR91/00054

cassette de résistance à la kanamycine se trouve insérée, dans le chromosome au site <u>Not</u>I (se trouvant dans la phase 1); les polarités des transcriptions du gène de résistance à la kanamycine et celle de la phase ouverte 1 sont opposées,

ii) l'autre insertion est nommée SC510:1630 Rif^r; la cassette de résistance est insérée au même site, mais la transcription du gène de résistance à la même polarité que celle de phase ouverte 1 entière.

3

5

10

15

20

25

30

Ces deux souches ont toutes les deux un taux de synthèse de cobalamines au moins 100 fois inférieur à celui de SC510.

Le plasmide pXL545 Ω correspond au plasmide pXL545 dans lequel la cassette de résistance à la spectinomycine, du plasmide pHP45 Ω a été insérée au niveau du site BamHI. Ce plasmide (figure 12) qui contient le fragment <u>Cla</u>I-<u>Hind</u>III de 814 pb (où seule la phase ouverte 1 est entière) complémente seulement le mutant SC510:1630 Rifr. Ceci suffit à définir un nouveau gène puisque ce mutant est complémenté par un plasmide qui contient uniquement la phase ouverte 1 entière. La phase ouverte 1 correspond à un gène de la voie de biosynthèse des cobalamines et/ou des cobamides. Ce gène est nommé cobE. L'absence de complémentation du mutant SC510:1631 Rif r par le plasmide pXL545 Ω est peut être due au fait que les gènes cobA, cobB, cobC, cobD et cobE, ou une partie d'entre eux, appartiennent au même opéron et que l'insertion dans cobE qui conserve une transcription dans le sens de transcription de l'opéron peut être complémentée seulement par l'expression en trans du gène cobE. Au contraire le mutant SC510:1631 Rif' lui ne peut être complémenté que par un plasmide qui permet l'expression en trans des gènes cobA à cobE.

Le fragment <u>Cla</u>I-<u>Hind</u>III-<u>Hind</u>III de 5,4 kb contient donc cinq gènes <u>cob</u> nommés <u>cobA</u>, <u>cobB</u>, <u>cobC</u>, <u>cobD</u> et <u>cobE</u>.

4.2 - Etudes génétiques du fragment de 8,7 kb

Le plasmide pXL367 est le pRK290 (Ditta et <u>al</u>., 1980) contenant le fragment <u>EcoRI</u> de 8,7 kb cloné au site <u>EcoRI</u> (figure 13).

Des insertions du transposon Tn5 sur le plasmide pXL367

15

20

25

30

35

ont été sélectionnées en utilisant la technique déjà décrite (de Bruijn et Lupski, 1984). Les insertions dans le fragment de 8,7 kb ont été cartographiées. De la même manière des insertions du transposon Tn3lacZ ont été obtenues selon la méthode déjà décrite (Stachel et al., 1985) et cartographiées. 29 insertions du transposon Tn5 et 13 insertions du transposon Tn31ac2 ont ainsi été cartographiées. La position précise de ces insertions sur le fragment de 8,7 kb est portée à la figure 14. Des plasmides, portant chacun une seule insertion dans le fragment de 8,7 kb, ont été introduits par conjugatifs dans les mutants Cob d'Agrobacterium tumefaciens G164, G609, G610, G611, G612, G613, G614, G615, G616, G620, G638. Ces mutants sont tous complémentés par le pXL367. Les insertions qui ne permettent plus la complémentation des différents mutants ont été recherchées. Elles correspondent à une insertion dans le gène responsable de la complémentation du mutant correspondant. Les résultats des complémentations des différents mutants pour leur caractère de production de cobalamines (phénotype Cob) sont portés sur la figure 14. Si le mutant recombiné produit moins de trois fois moins de cobalamines que ne produit le même mutant avec le plasmide pXL367, il est considéré comme étant non complémenté. Sur les mutants étudiés, G164, G609, G610, G611, G612, G613, G614, G615, G616, G620, G638, on observe huit classes différentes d'insertions inactivationnelles de transposons conduisant à un phénotype muté. Ces classes caractérisent des insertions par l'absence de complémentation d'un ou plusieurs mutants par les plasmides pXL367 portant ces mêmes insertions. Chaque classe correspond donc à un gêne muté. On observe que les insertions appartenant à une même classe sont positionnées les unes à côté des autres. Huit classes d'insertions sont ainsi observées qui permettent de définir huit genes. Chaque classe d'insertions définit un fragment minimum qui doit être contenu dans le gène correspondant. La figure 14 démontre un parfait recoupement entre les régions délimitées par chaque classe, au niveau de la carte de restriction, et les phases ouvertes décrites ci-dessus (exemple 3). On constate en effet que, pour chaque classe d'insertions, les transposons sont toujours insérés dans une partie du fragment de 8,7 kb qui est contenue dans une seule

WO 91/11518 PCT/FR91/00054

52

phase ouverte. A chaque classe d'insertions, est donc associée une phase ouverte et une seule. Les phases ouvertes indiquées ci-dessus codent donc chacune pour une protéine impliquée dans la voie de biosynthèse des cobalamines et/ou des cobamides. Les phases ouvertes correspondent chacune à des gènes impliqués dans la biosynthèse des cobalamines et/ou des cobamides. Ces phases ouvertes sont appelées cobF, cobG, cobH, cobJ, cobJ, cobK, cobL et cobM pour les phases 6 à 13 respectivement. La position de ces gènes par rapport à la carte de restriction est représentée sur la figure 14.

4.3 - Etude génétique du fragment de 4,8 kb.

10

15

20

25

30

Le plasmide pXL1558 est le plasmide pRK290 (Ditta et al., 1980) contenant le fragment HindIII-HindIII de 12 kb du pXL154 (Cameron et al., 1989) cloné au site EcoRI du pRK290 (figure 36). La construction des autres plasmides utilisés dans cette étude (pXL233 et pXL843) est décrite dans la légende de la figure 36.

Des insertions Tn5Sp ont été obtenues sur le plasmide pXL1558. Tout d'abord une souche contenant un transposon Tn5Sp a été construite; ceci a été fait en transformant la souche C2110 (Stachel et al., 1985) à l'aide du plasmide pRK2013Tn5Sp (Blanche et al., 1989); le plasmide pRK2013Tn5Sp ayant une origine de réplication ColE1 ne se réplique pas dans la souche C2110 qui est polA-. Les colonies obtenues après transformation qui sont résistantes à la spectinomycine ont donc le transposon Tn5Sp dans leur chromosome; une colonie est ensuite réisolée, puis l'insertion du transposon est ensuite transduite à l'aide du phage P1 chez la souche MC1060 comme cela est décrit précédemment (Miller, 1972). La souche MC1060 Tn5Sp est transformée par le plasmide pXL1558; le plasmide pXL1558 est ensuite mobilisé par conjugaison à l'aide du pRK2013 chez C600 Rifr. Des conjugants résistants à la tétracycline (pour le plasmide pXL1558) et à la spectinomycine (pour le transposon) sont ensuite sélectionnés; de tels conjugants doivent contenir le plasmide pXL1558 dans lequel le transposon Tn5Sp s'est inséré. Des insertions portées sur le plasmide pXL1558, et plus préçisément dans le fragment de 12 kb sont ensuite

15

25

cartographiées par digestion de restriction; 23 insertions sont ainsi obtenues et cartographiées sur le fragment de 12 kb; la position de ces différentes insertions sur le fragment est présentée sur la figure 37. Ces 23 insertions ont été introduites sur le chromosome de la souche SC510 Rifr après transfert conjugatif du p-XL1558:: Tn5Sp, puis introduction du plasmide pR751. Le plasmide pR751 est un plasmide, résistant à la triméthoprime, du même groupe d'incompatibilité que le pXL1558 (incP, Thomas et Smith, 1987). Par culture non sélective pour le pXL1558 (absence de tétradycline) mais sélective pour le pR751 et le transposon (présence de triméthoprime et de spectinomycine) l'échange de la mutation portée par le pXL1558::Tn5Sp avec le chromosome ainsi que la ségrégation du pXL1558 sont obtenus par la technique d'échange de marqueur par double recombinaison homologue comme cela est déjà décrit (Schell et al., 1988). Les souches ainsi sélectionnées portent le transposon dans leur chromosome. La double recombinaison homologue est vérifiée par la méthode de Southern (Southern, 1975). De cette manière 23 souches SC510 Rifr::Tn5Sp dans le fragment de 12 kb ont été identifiées.

D'autre part une autre insertion Tn5Sp obtenue par mutagénèse au 20 hasard du transposon Tn5Sp dans la souche SBL27 Rifr (Blanche et al., 1989) a été cartographiée sur le fragment de 12 kb par analyse de restriction selon la méthode de Southern (Southern, 1975), voir figure 37; cette souche est nommée SBL27 Rifr::Tn5Sp 1480.

Le taux de synthèse de cobalamines est déterminé pour ces 24 souches cultivées en milieu PS4 selon le protocole déjà décrit (Cameron et al., 1989) et le phénotype Cob- est attribué aux souches produisant au moins 1000 fois moins (resp. 100) de vitamine B12 que la souche parente SC510 Rifr (resp.SBL27 Rifr), figure 37. Il est ainsi observé que 6 de ces insertions chromosomiques conduisent à un phénotype Cob-chez P. denitrificans; il s'agit des insertions 31.1, 41.3, 45, 55, 22.1 et 1480.

Trois plasmides pXL233, pXL837 (Cameron et al.) et pXL843 sont introduits par transferts conjugatifs dans trois souches présentant le phénotype Cob- soient SC510 Rifr::Tn5Sp 31.1,SC510 Rifr::Tn5Sp 45, SBL27 Rifr::Tn5Sp 1480. Ces trois mutants ont chacun un profil de

WO 91/11518 PCT/FR91/00054

complémentation différent pour la synthèse des cobalamines. En effet SBL27 Rifr::Tn5Sp 1480 est complémenté par le pXL837 et le pXL843 mais pas par le pXL233; le mutant SC510 Rifr::Tn5Sp 45 n'est complémenté que par le pXL843; le mutant SC510 Rifr::Tn5Sp 31.1 est complémenté par Le plasmide pXL843 ainsi que par le plasmide pXL233 (voir figure 37). Les données présentées permettent donc, d'après les résultats sur les complémentations des trois mutants, de conclure que les trois mutants sont différents et que pour chacun d'entre eux, le transposon Tn5Sp s'est inséré dans un gène cob différent.

5

20

25

30

D'autre part les plasmides pXL1558::Tn5Sp 41.3, pXL1558::Tn5Sp 45, et pXL1558::Tn5Sp 22.1 sont introduits par transferts conjugatifs dans la souche G2035 (Cameron et al., 1989) et ne la complémentent pas. Le plasmide pXL1558 complémente ce mutant au contraire du plasmide pXL1558::Tn5Sp 31.1.

Les données de phénotype et complémentation nous permettent de définir 3 classes d'insertions; chacune de ces classes est représentée par les insertions suivantes : 31.1, classe 1; 45, 41.3, 55 et 22.1, classe 2; 1480 classe 3.

Pour chaque classe d'insertions, les transposons sont toujours insérés dans une partie du fragment de 4,8 kb qui est contenue dans une seule phase ouverte (ORF14, ORF16 et ORF17, comme définies à l'exemple 3). A chaque classe d'insertions est associée une seule phase ouverte. Les phases ouvertes indiquées ci-dessus codent donc pour une protéine impliquée dans la voie de biosynthèse des cobalamines et/ou des cobinamides. Ces phases ouvertes sont appelées cobX, cobS et cobT pour les phases 14, 16 et 17. La position de ces gènes par rapport à la carte de restriction est représentée sur la figure 37. La phase ouverte 15 n'est pas un gène impliqué dans la biosynthèse du coenzyme B12.

4.4 - Etudes génétiques du fragment de 3,9 kb

Le plasmide pXL1557 est le plasmide pRK290 (Ditta et al., 1980) contenant le fragment HindIII-BamHI de 9 kb du pXL519 cloné au site EcoRI du pRK290 (figure 38). La construction des autres

20

30

35

plasmides utilisés dans cette étude (pXL1286, pXL1303, pXL1324) est décrite dans la légende de la figure 38. Par ailleurs, le fragment BglII-XhoI de 2 kb (positions sur la séquence présentée figure 33 251 et 2234) du plasmide pXL519 est cloné aux sites BamHI-SalI du plasmide pXL435 (Cameron et al) pour générer le plasmide pXL699.

Des insertions Tn5Sp ont été obtenues sur le plasmide pXL1557 selon la technique décrite dans l'exemple 4.3. Les insertions du transposon Tn5Sp sur le plasmide pXL1557, alors nommées pXL1557::Tn5Sp, ont été sélectionnées. Celles qui sont cartographiées dans le fragment de 9 kb (figure 39) ont été introduites sur le chromosome de la souche SC510 Rifr après transfert conjugatif du pXL1557::Tn5Sp et échange de marqueur par double recombinaison homologue comme cela est décrit en 4.3.

La double recombinaison homologue est vérifiée par la méthode de Southern (Southern, 1975). De cette manière 20 souches SC510 Rifr::Tn5Sp ont été identifiées.

D'autre part deux autres insertions Tn5Sp obtenues par mutagénèse au hasard du transposon Tn5Sp dans la souche SBL27 Rifr (Blanche et al., 1989) ont été cartographiées sur le fragment de 9 kb par analyse de restriction selon la méthode de Southern (Southern, 1975), voir sur la figure 39 les insertions 1003 et 1147.

Le taux de synthèse de cobalamines est déterminé pour ces 22 souches cultivées en milieu PS4 selon le protocole déjà décrit (Cameron et al., 1989) et le phénotype Cob- est attribué aux souches produisant 1000 fois moins (resp. 100) de vitamine B12 que la souche parente SC510 Rifr (resp.SBL27 Rifr), figure 39. Seules les 4 insertions 1, 1003, 23 et 1147 se traduisent par un phénotype Cob- chez P. denitrificans.

Quatre plasmides pXL699, pXL1286, pXL1303 et pXL1324 sont introduits par transferts conjugatifs dans les quatre souches présentant le phénotype Cob- soient SC510 Rifr::Tn5Sp 1, SBL27 Rifr::Tn5Sp 1003, SC510 Rifr::Tn5Sp 23 et SBL27 Rifr::Tn5Sp 1147. Le plasmide pXL699 complémente les deux premiers mutants (SC510 Rifr::Tn5Sp 1, SBL27 Rifr::Tn5Sp 1003) mais le plasmide pXL1303 ne les complémente pas; le plasmide pXL1324 complémente les deux autres mutants (SC510

B 11 1.

3

Rifr::Tn5Sp 23 et SBL27 Rifr::Tn5Sp 1147) mais le plasmide pXL1286 ne les complémente pas.

D'autre part le plasmide pXL1557::Tn5Sp 1, est introduit par transfert conjuguatif dans la souche G2040 et ne la complémente pas alors que les plasmides pXL1557, pXL1557::Tn5Sp 6A, pXL1557::Tn5Sp 54, pXL1557::Tn5Sp 48, pXL1557::Tn5Sp 21, pXL1557::Tn5Sp 8, pXL1557::Tn5Sp 23 aussi introduits par transferts conjugatifs, la complémentent (voir figure 39).

5

10

15

20

Les données de phénotype et complémentation permettent de définir 2 classes d'insertions. Pour chaque classe d'insertions, les transposons sont toujours insérés dans une partie du fragment de 3,9 kb qui est contenue dans une seule phase ouverte (ORF 19 et ORF20 comme définie à l'exemple 3).

A chaque classe d'insertions est associée une seule phase ouverte. Les phases ouvertes indiquées ci-dessus codent pour une protéine impliquée dans la voie de biosynthèse des cobalamines et/ou des cobinamides. Ces phases ouvertes sont appelées cobV et cobU pour les phases 19 et 20. Les phases 18 et 21 ne sont pas des gènes impliqués dans la voie de biosynthèse du coenzyme B12. La position de ces gènes par rapport à la carte de restriction est représentée sur la figure 39. Les insertions 48, 21 et 8 sont cartographiées entre les gènes cobU et cobV

4.5 - Etudes génétiques du fragment de 13,4 kb.

4.5.1. Etudes sur le fragment <a>EcoRI-BglII de 4327 pb.

Le plasmide pXL189 (Cameron et al., 1989), qui contient au moins un gène cob porte un insert de 3.1 kb qui excepté 300 pb correspond à un fragment EcoRI-ClaI de 4,26 kb (voir figure 45). Le pXL189 a été soumis à une mutagénèse au transposon Tn5, comme cela est décrit précédemment (De Bruijn et Lupski (1984). 13 insertions ont ainsi été cartographiées dans l'insert du pXL189 comme cela est présenté sur la figure 46. Ces 13 plasmides mutants ainsi que pXL189 ont été conjugués chez deux mutants d'A. tumefaciens, G632 et G633, qui sont des mutants complémentés par pXL189 (Cameron et al., 1989). Seule l'insertion 58 s'est avérée être une insertion inactivationnelle. Ce résultat montre

que les deux mutants G632 et G633 correspondent à une mutation dans un même gène et que d'autre part le seul gène de <u>P</u>. <u>denitrificans</u> qui puisse être responsable de leur complémentation correspond à la phase ouverte 26 (voir figure 46) puisque l'insertion 58 est cartographiée dans cette phase ouverte; de plus il s'agit de la seule insertion parmi les 13, qui est cartographiée dans cette phase ouverte. Un gène <u>cob</u>, nommé <u>cobO</u> est donc associé à la phase ouverte.

nommé cob0 est donc associé à la phase ouverte 26. Pour savoir si les quatre autres phases ouvertes (phases ouverte 27 à 30) identifiées sur ce fragment correspondent à des gènes cob, une 10 cassette de résistance à la spectinomycine, du plasmide pHP45 Ω (Prentki et Krisch, 1984) a été spécifiquement insérée dans chacun de ces gènes puis introduite dans le chromosome de P. denitrificans SC510 Rifr par recombinaison homologue de manière à obtenir des mutants d'insertions dans chacune de ces phases ouvertes. Pour ce faire, le 15 <u>Eco</u>RI-<u>Cla</u>I (positions respectives 8818 et 13082 sur la présentée sur la figure 43) a été utilisé. Ce fragment, qui porte les phases ouvertes 27 à 30, a été purifié à partir du pXL157 (Cameron et al., 1989); un linker EcoRI a été ajouté sur l'extrémité ClaI après que celle-ci ait été remplie par le fragment Klenow de l'ADN polymérase 20 d'<u>E</u>. <u>coli</u>. Ce fragment a ensuite été cloné dans le plasmide pUC13 (Viera et al., 1982) au site <u>Eco</u>RI. Le plasmide ainsi construit a été appelé pXL332. Des insertions de la cassette de résistance à la spectinomycine du plasmide pHP45n (Prentki et Krisch, 1984) ont été réalisées sur le pXL332. Ces insertions ont été faites séparément aux 25 sites SmaI (position 9868, phase ouverte 27), BamHI (position 10664, phase ouverte 28), <u>Cla</u>I (position 11687, phase ouverte 29) et <u>Nco</u>I (position 12474, phase ouverte 30) par digestions totales ou partielles du pXL332 avec les enzymes correspondantes puis, si cela est nécessaire, remplissage de ces extrémités avec le fragment de Klenow de 30 l'ADN polymérase d'E. coli, puis ligature avec le fragment de <u>Sma</u>I 2 kb du pHP45a (Prentki et Krisch, 1984) contenant un gène de résistance à la spectinomycine; ces insertions sont nommées respectivement Ω^2 , Ω^1 , ω3 et ω4 comme cela est présenté sur la figure 46. Les fragments <u>Eco</u>RI portant ces différentes insertions ont ensuite été clonés sur le pRK404 35 (Ditta et al., 1985) à l'un des deux sites <u>Eco</u>RI. Les 4 plasmides

WO 91/11518 PCT/FR91/00054

58

portant ces différentes insertions ont ensuite été introduits par conjugaison chez SC510 Rif^r, comme cela est décrit précédemment. Le plasmide pR751 (Thomas et Smith, 1987) a ensuite été introduit dans les transconjuguants. L'échange des mutations portées par les 4 différents 5 dérivés de pRK404 et le chromosome de SC510 Rif^E a pu être sélectionné comme cela est décrit (voir exemple 4.3). 4 souches ont ainsi été obtenues. Ces souches portent chacune une insertions de la cassette de résistance dans une des quatre phases ouvertes 27 à 30. Ces insertions ont été vérifiées par analyse de l'ADN génomique par Southern blot 10 (Southern, 1975). La production de cobalamines de ces différentes souches a été étudiée. Elles ont toutes montré un phénotype Cob+ par culture en milieu PS4. Ce résultat indique que ces phases ouvertes n'interviennent pas dans la biosynthèse du coenzyme B12. Toutefois il est possible qu'une ou plusieurs de ces phases codent pour des 15 protéines qui interviennent par exemple dans la transformation du coenzyme B12 en méthylcobalamine par exemple, c'est à dire la synthèse d'une autre cobalamine voir d'un autre corrinoïde.

4.5.2 Etude du fragment <u>Eco</u>RI-<u>Eco</u>RI de 9.1 kb. Différents plasmides sont utilisés dans cette étude;

20 le plasmide pXL1560 est le plasmide pRK290 (Ditta et al., 1980) contenant le fragment <u>EcoRI-EcoRI</u> de 9,1 kb kb du pXL156 (exemple 1) cloné au site <u>EcoRI</u> du pRK290 (voir figure 46). La construction des autres plasmides utilisés dans cette étude (pXL618, pXL593, pXL623, pXL1909, pXL1938, pXL1908, pXL221, pXL208, pXL297) est décrite dans la légende de la figure 45.

Des insertions Tn5Sp ont été obtenues sur le plasmide pXL1560.

La souche MC1060 Tn5Sp transformée par le plasmide pXL1560 a servi à obtenir des insertions du transposon Tn5Sp dans le fragment pXL1560; 27 insertions ont ainsi été obtenues et cartographiées sur le fragment de 9,1 kb; la position de ces différentes insertions sur le fragment est présentée sur la figure 4. Ces 27 insertions ont été introduites sur le chromosome de la souche SC510 Rif^r après transfert conjugatif des

pXL1560::Tn5Sp, puis introduction du plasmide pR751. Le plasmide pR751 est un plasmide, résistant à la triméthoprime, du même groupe d'incompatibilité que le pXL1560 (incP, Thomas et Smith, 1987). Par culture non sélective pour le pXL1560 (absence de tétracycline) mais sélective pour le pR751 et le transposon (présence de triméthoprime et de spectinomycine) l'échange de la mutation portée par le pXL1560::Tn5Sp avec le chromosome ainsi que la ségrégation du pXL1560 sont obtenus; cette technique d'échange de marqueur par double recombinaison homologue est équivalente à celle déjà décrite par Schell et al., 1988. Les souches ainsi sélectionnées portent le transposon dans leur chromosome.

La double recombinaison homologue est vérifiée par la méthode de Southern (Southern, 1975). De cette manière 27 souches SC510 Rif^r::Tn<u>5</u>Sp possédant chacune une insertion différente du transposon 15 Tn<u>5</u>Sp dans le fragment de 9.1 kb ont été identifiées.

Le taux de synthèse de cobalamines est déterminé pour ces 27 souches cultivées en milieu PS4, et le phénotype Cob est attribué aux souches produisant au moins 1000 fois moins de vitamine B12 que la souche parente SC510 Rif^r, figure 46. Il est ainsi observé que 18 de 20 ces insertions chromosomiques, sur les 27, conduisent à un phénotype Cob- chez P. denitrificans comme cela est montré sur la figure 46. Les insertions 19, 32, 24, 27, 37, 39, 26, 11 et 14 sont cartographiées dans la phase ouverte 22 (voir figure 46). Toutes ces insertions sont complémentées par le plasmide pXL618 qui ne contient que la phase 25 ouverte 22. Nous en déduisons que la phase ouverte 22 correspond à un gène cob que nous appelons cob0. Aucune insertion n'a été obtenue dans la phase ouverte 23; cependant le plasmide pXL623 qui ne contient que cette phase ouverte (voir figure 46), complémente deux mutants cob d'Agrobacterium tumefaciens, G642 et G2043 (Cameron et al., 1989). La 30 phase ouverte 23 correspond flonc à un gène cob nommé cobP. Les insertions 23, 13, 12, 30, 22, 40, 35, 10 et 17 qui sont cartographiées dans les phases ouvertes 24 et 25 entraînent un phénotype Cob- chez SC510 Rif^T. Il semble donc qu'il s'agisse de deux phases ouvertes dont le produit est impliqué dans la biosynthèse des cobalamines. Toutefois 35 on ne peut exclure que ces insertions aient des effets polaires sur les

gènes positionnés en 3' tels que <u>cob0</u>. Il convient donc d'étudier la complémentation de ces mutants afin de voir si leur phénotype Cob- ne résulte pas d'un effet polaire.

Les mutants Cob d'Agrobacterium tumefaciens G622, G623 et G630 5 complémentés par le pXL156 ont été étudiés. Ces mutants ne sont pas complémentés par le plasmide pXL189 (Cameron et al., 1989) qui contient cob0 comme seul gène cob. Au contraire ils sont complémentés par le plasmide pXL1908 qui contient cob0 et la phase ouverte 25 en plus des phases ouvertes 27 à 30 (voir figure 45). Ces dernières ne peuvent être 10 responsables de la complémentation de ces mutants puisque les protéines pour lesquelles elles codent n'interviennent pas dans la voie du coenzyme B12. Les complémentations observées ne peuvent donc être que le seul fait de la phase ouverte 25. De plus les mutants SC510 Rif^r Tn5Sp cartographiés dans cette même phase ouverte (il s'agit des 15 mutants 22, 40, 35, 10 et 17) sont complémentés par le plasmide pXL1908, voir figure 46, (portant cob0 et la phase 25) alors qu'au moins deux d'entre eux ne sont pas complémentés par le pXL189 qui ne contient que cob0 comme gène cob. Ces résultats montrent clairement que la phase ouverte 25 est un gène cob; ce gène cob est nommé cobn.

20 Les mutants SC510 Rif^r Tn5Sp 23, 13 et 12, qui ont le phénotype Cob-, sont cartographiés dans la phase ouverte 24. Ces mutants ne sont pas complémentés par le plasmide pXL623 qui ne contient que le gène cobP. Au contraire ces mutants sont complémentés par le plasmide pXL593 qui contient cobP et la phase ouverte 24 ce qui indique que la phase ouverte 24 est responsable de leur complémentation. La phase ouverte 24 est donc un gène cob qui est nommé cobW.

EXEMPLE 5 - Gènes et protéines.

5.1 - Fragment de 5,4 kb

Cinq gênes (<u>cobA</u>, <u>cobB</u>, <u>cobC</u>, <u>cobD</u> et <u>cobE</u>) sont donc

définis sur le fragment <u>ClaI-HindIII-HindIII-HindIII</u> de 5,4 kb. Ils

codent respectivement pour les protéines COB suivantes: COBA, COBB,

COBC, COBD et COBE. Les parties codantes des gênes (<u>cobA</u> à <u>cobE</u>) sont

10

décrites à la figure 15, ainsi que les séquences des protéines COBA à COBE. Des propriétés de chacune de ces protéines sont aussi présentées (composition en acides aminés, point isoéléctrique, index de polarité et profil d'hydrophilicité).

5.2 - Fragment de 8,7 kb

Huit gènes sont donc définis sur le fragment de 8,7 kb. Ces gènes <u>cobf</u> à <u>cobM</u>, codent respectivement pour les protéines COB suivantes : COBF, COBG, COBH, COBI, COBJ, COBK, COBL, COBM. Les parties codantes des gènes (<u>cobf</u> à <u>cobM</u>) sont décrites sur la figure 16, ainsi que les séquences des protéines COBF à COBM. Des propriétés de chacune de ces protéines sont aussi présentées (composition en acides aminés, poids moléculaire, point isoélectrique, index de polarité et profil d'hydrophilicité).

5.3 - Fragment de 4,8 kb

Trois gènes (cobX, cobS, cobT) sont définis sur le fragment SalI-SalI-SalI-SalI-BglI de 4,8 kb. Ils codent respectivement pour les protéines suivantes: COBX, COBS et COBT. Les parties codantes de ces gènes sont décrites sur la figure 40, ainsi que les séquences des protéines COBX, COBS et COBT. Arbitrairement, l'ATG a la position 1512 de cobS a été choisi comme codon d'initiation plutôt que celui situé à la position 1485 (voir figure 32). Des propriétés de chacune de ces protéines sont aussi représentées (composition en acides aminés, point isoélectrique, index de polarité et profil d'hydrophobicité). COBT présente une poche hydrophile correspondant aux acides aminés 214 à 305.

5.4 - Fragment de 3,9 kb

Deux gènes (cobU et cobV) sont définis sur le fragment SstI-SstI-BamHI de 3,9 kb. Ils codent respectivement pour les protéines suivantes: COBU et COBV. Les parties codantes de ces gènes WO 91/11518 PCT/FR91/00054

62

sont décrites sur la figure 41, ainsi que les séquences des protéines COBU à COBV. Des propriétés de chacune de ces protéines sont aussi représentées (composition en acides aminés, point isoélectrique, index de polarité et profil d'hydrophobicité).

5.5 - Fragment de 13,4 kb

5

25

30

Cinq gènes <u>cob</u> sont définis sur le fragment de 13.4 kb (<u>cob0</u>, <u>cobP</u>, <u>cobW</u>, <u>cobN</u> et <u>cobO</u> et <u>cobV</u>). Ils codent respectivement pour les protéines suivantes: COBQ, COBP, COBW, COBN et COBO. Les parties codantes de ces gènes (<u>cobQ</u>, <u>cobP</u>, <u>cobW</u>, <u>cobN</u> et <u>cobO</u>) sont décrites sur la figure 46, ainsi que les séquences des protéines COBQ, COBP, COBW, COBN et COBO. Des propriétés de chacune de ces protéines sont aussi représentées (composition en acides aminés, point isoélectrique, index de polarité et profil d'hydrophobicité).

D'après les profils d'hydrophilicité, qui ont été réalisés suivant les programmes de Hopp et Woods (1981), toutes les protéines COB, à l'exception de COBV, sont vraisemblablement des protéines solubles, par opposition à des protéines membranaires, puisque l'on constate l'absence de grands domaines hydrophobes. COBV est soit une protéine membranaire, puisque l'on constate 4 longs domaines hydrophobes (voir figure 41) soit une protéine cytoplasmique ayant d'importants domaines hydrophobes.

Pour toutes les séquences en acides aminés des protéines COB, il est indiqué comme premier acide aminé en position NH₂-terminale une méthionine. Il est entendu que celle-ci peut être excisée <u>in vivo</u> (Ben Bassat et Bauer, 1984). On sait que des règles concernant l'excision <u>in vivo</u> de la méthionine NH₂-terminale par la méthionine aminopeptidase ont été proposées (Hirel et al., 1989).

Par ailleurs, ces séquences protéiques ont été comparées aux protéines de Genpro, qui est une extraction protéique de Genbank (version 59) augmentée des parties codantes putatives supérieures à

15

20

200 acides aminés, suivant le programme de Kanehisa (1984). Aucune homologie significative n'a pu être mise en évidence avec les paramètres utilisés sur la version 59 de Genbank, sauf pour COET. En effet, la protéine COBT présente un "core d'acide aminés acides" entre les positions (en acides aminés) 224 et 293 (voir figure 40); dans cette portion de la protéine, plus d'un acide aminé sur 2 est un résidu acide glutamique ou aspartique; ce noyau d'acides aminés acides rend la protéine homologue sur cette région, suivant le programme de Kanehisa (1984), à d'autres protéines ayant elles aussi un tel noyau acide. Les protéines les plus homologues sont : la protéine GARP de Plasmodium falciparum (Triglia et al., 1988), la troponine T cardiaque du rat (Jin et Lin, 1989), la prothymosine humaine et de rat (Eschenfeld et Berger, 1986), une protéine du rat androgène-dépendante se liant à la spermine (Chang et al., 1987), les protéines "mid-size neurofilament subunit" humaine, de rat et de poulet (Myers et al., 1987, Levy et al., 1987, Zopf et al., 1987). La fonctionalité de ces noyaux riches en résidus acides n'est pas connue; cependant ce noyau acide devrait soit permettre la fixation de cation métalliques tels que le Co++, ce qui rendrait à la protéine COBT un rôle de métallothionéine à cobalt, ou bien permettre des interactions avec d'autres protéines.

EXEMPLE 6 - Etudes enzymatiques

- 6.1 Identification de protéines COB et de leurs gènes à partir d'activités enzymatiques
- Cet exemple décrit comment, à partir d'une protéine purifiée, après avoir établi sa séquence NH₂-terminale, il est possible de trouver le gène de structure correspondant parmi des gènes cob séquencés.
- 6.1.1. Identification de la protéine COBA codée par le 30 gène cobA

La purification de la SUMT de <u>Pseudomonas denitrificans</u> a

été décrite (F. Blanche et <u>al</u>., 1989). La séquence NH₂-terminale de la protéine ainsi purifiée a pu être réalisée selon la technique décrite ci-dessus. Les dix premiers acides aminés ont été identifiés :

1 2 3 4 5 6 7 8 9 10

Met Ile Asp Asp Leu Phe Ala Gly Leu Pro

10

15

20

25

30

La séquence NH₂-terminale de la protéine COBA (figure 15) correspond exactement à cette séquence. Le poids moléculaire de la SUMT purifiée estimé par électrophorèse PAGE-SDS à 12,5 % est de 30 000. La protéine COBA a un poids moléculaire déduit de sa séquence de 29 234 (figure 15). Les correspondances entre les séquences NH₂-terminales et les poids moléculaires indiquent clairement que la protéine COBA correspond à la SUMT. Le gène cobA est le gène de structure de la SUMT.

- 6.1.2. Identification de la protéine COBB codée par le gène CobB
- a) Dosage de l'activité acide cobyrinique a,c-diamide synthase

Cet exemple illustre le dosage d'une activité de la voie de biosynthèse des corrinoïdes qui n'a encore jamais été décrite. Il s'agit de l'acide cobyrinique <u>a,c</u>-diamide synthase (ACDAS) qui catalyse l'amidation de deux fonctions acides carboxyliques du noyau corrine ou descobaltocorrine aux positions <u>a</u> et <u>c</u> (figure 17). Le donneur de groupement NH₂ est la L-glutamine et la réaction consomme 1 molécule d'ATP par amidation de chaque fonction acide carboxylique. Le dosage qui est décrit ci-dessous s'applique à la réaction de diamidation de l'acide cobyrinique; avec quelques modifications (détection en CLHP à 330 nm en particulier) il s'applique à la réaction de diamidation de l'acide hydrogénobyrinique.

Le mélange d'incubation (250 μ l de tris-HCl 0,1 M pH 7,6) contenant ATP (1 mM), MgCl₂ (2,5 mM), glutamine (1 mM), acide cobyrinique (25 μ M) ou acide hydrogénobyrinique (5 μ M), cobyrinique a,c-diamide synthase (environ 1 unité d'activité) est incubé durant 1 heure à 30°C. A la fin de l'incubation, 125 μ l d'une solution aqueuse

10

15

20

25

30

de KCN (2,6 g/l) et 125 µl d'HCl 0,2 M sont ajoutés au mélange qui est ensuite chauffé à 80°C pendant 10 minutes puis centrifugé 5 minutes à 5 000 g. 50 µl du surnageant de centrifugation sont analysés en CLHP. Ils sont injectés sur une colonne Nucleosil 5-C₁₈ de 25 cm et élués avec un gradient de 0 à 100 % de tampon B dans A en 30 minutes ; tampon A : phosphate de potassium 0,1 M pH 6,5, 10 mM KCN; tampon B : phosphate de potassium 0,1 M pH 8, 10 mM KCN/acétonitrile (1/1). Les corrinoïdes sont détectés grâce à leur absorption UV à 371 nm. L'unité d'activité enzymatique est définie comme la quantité d'enzyme nécessaire pour synthétiser 1 nmole de groupements amides par heure dans les conditions décrites.

b) Purification de l'activité acide cobyrinique a,c-diamide synthase
 de <u>Pseudomonas denitrificans</u>

Cette expérience illustre comment une protéine de <u>Pseudomonas denitrificans</u> intervenant dans la voie de biosynthèse des cobalamines peut être purifiée.

A partir du dosage décrit à l'exemple 6.1.2 a), la purification de l'acide cobyrinique <u>a,c</u>-diamide synthase de <u>Pseudomonas denitrificans</u> est réalisée comme décrit ci-dessous.

Dans une expérience typique de purification, 7 g de cellules humides de la souche SC 510 Rifrdans laquelle on a introduit le plasmide pXL1500 (voir exemple 4.1. pour la description du pXL1500 ainsi que la figure 12) sont suspendues dans 30 ml de Tris-HCl 0,1 M pH 7,7 et soniquées durant 15 minutes à 4°C. L'extrait brut est ensuite récupéré par centrifugation 1 heure à 50 000 g puis 10 ml de cet extrait sont injectés sur une colonne de Mono Q HR 10/10 équilibrée avec le même tampon. Les protéines sont éluées avec un gradient linéaire de KCl (0 à 0,5 M). Les fractions contenant l'activité enzymatique sont negroupées et concentrées à 2,5 ml. Après dilution avec 1 ml de Tris-HCl 25 mM pH 7,7, les protéines sont fractionnées sur une Mono Q HR 5/5 en utilisant le gradient de KCl (0 à 0,5 M) précédent. Les fractions actives sont regroupées, 1 ml de Tris-HCl 0,1 M pH 7,7 contemant 1,7 M de sulfate d'ammonium est ajouté à l'échantillon qui est ensuite chromatographié sur une colonne de

10

25

Phényl-Superose (Pharmacia) avec un gradient décroissant de sulfate d'ammonium (1,0 M à 0 M). Les fractions contenant l'activité recherchée sont rassemblées et chromatographiées sur une colonne Bio-Gel HPHT (Bio-Rad) avec un gradient de phosphate de potassium (0 à 0,35 M).

Après cette étape, l'enzyme est pure à plus de 95 %. Elle ne présente aucune protéine contaminante en PAGE-SDS. La pureté de la protéine est confirmée par l'unicité de la séquence NH₂-terminale. Son poids moléculaire dans cette technique est de 45 000. Les différentes étapes de purification de l'ACDAS, avec leur facteur de purification et leur rendement sont portées sur le tableau ci-dessous.

Tableau : Purification de l'ACDAS

16	Etape de purification	vol (ml)	Protéines (mg)	Activité spé. (u/mg de protéines)	Rendement	Facteur de purification ¹
	Extrait brut	10	200	8.5	•	-
	MonoQ 10/10	12	15.1	108	96	12.7
	MonoQ 5/5	3	3.75	272	60	32
20	Phényl-Superose	1	0.865	850	43	100
	Bio-Gel HPHT	. 2	0.451	1320	. 35	155

¹ce facteur est calculé d'après l'augmentation de l'activité spécifique des fractions au cours de la purification.

c) Séquence NH₂-terminale de l'acide cobyrinique <u>a,c</u>-diamide synthase de <u>Pseudomonas denitrificans</u> et identification du gène de structure de <u>Pseudomonas denitrificans</u> codant pour cette activité

Cet exemple illustre comment la séquence NH₂-terminale d'une protéine qui intervient dans la voie de biosynthèse des cobalamines permet d'identifier le gène de structure qui code pour

10

15

25

30

cette protéine.

La séquence NH₂-terminale de l'acide cobyrinique <u>a.c</u>-diamide synthase de <u>Pseudomonas denitrificans</u> purifiée comme décrit à l'exemple 6.1.2 b) a été réalisée comme décrit précédemment.

15 résidus ont été identifiés :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ser Gly Leu Leu Ile Ala Ala Pro Ala Ser Gly Ser Gly Lys Thr

La séquence NH₂-terminale de la protéine COBB (figure 15) correspond exactement à cette séquence, si ce n'est que dans la séquence présentée sur la figure 15, une méthionine précède la séquence peptidique déterminée par séquençage direct. Il en résulte que la méthionine aminoterminale est certainement excisée in vivo par la méthionine aminopeptidase (Ben Bassat et Bauer, 1987). Le poids moléculaire de l'ACDAS purifiée estimé par électrophorèse PAGE-SDS à 12,5 % est de 45 000. La protéine COBB a un poids moléculaire déduit de sa séquence de 45 676 (figure 15). Les correspondances entre les séquences NH₂-terminales et les poids moléculaires indiquent clairement que la protéine COBB correspond à l'ACDAS. Le gène cobB est le gène de structure de l'ACDAS.

- 20 6.1.3. Identification de la protéine COBI codée par le gène CobI
 - a) Dosage d'une activité \underline{S} -adénosyl-L-méthionine:précorrine-2 méthyl-transférase

Cet exemple illustre le dosage d'une activité enzymatique de la voie de biosynthèse des corronoïdes qui n'a encore jamais été décrite. Il s'agit de la S-adénosyl-L-méthionine:-2 méthyltransférase (SP₂MT) qui catalyse le transfert d'un groupement méthyl de la S-adénosyl-L-méthionine (SAM) au précorrine-2 pour donner le précorrine-3 (figure 18). Les facteurs II et III, produits d'oxydation respectivement du précorrine-2 et du précorrine-3 ont déjà été purifiés à partir d'extraits cellulaires de <u>Propionibacterium shermanii</u> (Battersby et MacDonald, 1982, Scott et al., 1984); le

précorrine-2 et le précorrine-3 sont reconnus comme des intermédiaires présumés de biosynthèse du coenzyme B_{12} mais ils n'ont jamais été purifiés. Pour cette raison, l'activité correspondante n'a jamais été ni dosée, ni purifiée auparavant. Le substrat de la réaction enzymatique, précorrine-2, est une molécule très labile qu'il n'est pas possible de conserver car elle s'oxyde spontanément en présence de traces même infimes d'oxygène (Battersby et MacDonald, 1982). Le principe de ce test enzymatique repose donc sur la possibilité de générer extemporanément, à l'aide d'un extrait enzymatique de la souche SC510 Rif dans laquelle on a introduit le plasmide pXL1500, le précorrine-2 à partir du SAM et d'acide δ -aminolévulinique. L'incubation doit être effectuée en conditions de stricte anaérobie.

5

10

15

20

25

30

Les fractions contenant la SP₂MT sont incubées dans 1 ml de Tris-HCl 0,1 M pH 7,7 en présence de 5 mM DTT, 1 mM EDTA, 100 µM [methyl⁻³H]-SAM (1 μ Ci), 0,8 mM acide δ -aminolévulinique et 6 mg d'extrait enzymatique brut de la souche de <u>Pseudomonas denitrificans</u> SC510 Rifr pXL1500 pendant 3 heures à 30°C. La souche SC510 Rifr pXL1500 contient une forte activité SUMT (F. Blanche et al., 1989). Les composés tétrapyrroliques produits durant l'incubation sont fixés sur une colonne d'échangeur d'anions DEAE-Sephadex et estérifiés dans le méthanol à 5 % d'acide sulfurique en l'absence d'oxygène. Les dérivés diméthylés et triméthylés de l'uro'gen III sont ensuite séparés par chromatographie sur couche mince de silice en utilisant le dichlorométhane/méthanol (98,3/1,7) comme système éluant (F. Blanche et al., 1989). L'activité de la SP2MT est exprimée par le rapport de la quantité de dérivés triméthylés obtenus sur l'ensemble des dérivés (di- et tri-) méthylés produits ramenée, à la quantité de protéine. L'extrait de SC510 Rif pXL1500 introduit dans le test ne présente pas d'activité SP₂MT détectable dans les conditions de dosage (le ratio précorrine-3 produits sur précorrine-2 produits durant le test est inférieur à 0,05).

b) Purification de la <u>S</u>-adénosyl-L-méthionine:précorrine-2 méthyltransférase de <u>Pseudomonas denitrificans</u>

Cette expérience illustre comment une protéine de

15

20

25

30

35

<u>Pseudomonas denitrificans</u> intervenant dans la voie de biosynthèse de cobalamines peut être purifiée lorsqu'un dosage de l'activité en question existe.

La protéine est purifiée à partir de cellules de SC510 Rif contenant le plasmide pXL253. Il s'agit du plasmide pKT230 sur lequel a été inséré le fragment EcoRI de 8,7 kb (figure 13). Dans une expérience typique de purification, 50 g de cellules humides de la souche SC150 Riffdans laquelle a été introduit le plasmide pXL253 sont suspendues dans 250 ml de phosphate de potassium 0,1M pH 7,7, 5 mM DTT et soniquées durant 15 minutes à 4°C. Après centrifugation à 50 000 g durant 1 heure, le surnageant est passé à travers une colonne de de gel) DEAE-Sephadex (10 ml pour éliminer les composés tétrapyrroliques. Le pH de l'extrait brut ainsi obtenu est ajusté à pH 7,7 avec KOH 0,1 M. Les protéines précipitant entre 33 % et 45 % de saturation en sulfate d'ammonium sont collectées et dissoutes dans 40 ml de Tris-HCl 0,1M pH 7,7, 5 mM DTT. Cette solution est passée à travers une colonne de Sephadex G-25 éluée avec du Tris-HCl 10 mM pH 7,7, 5 mM DTT et les protéines collectées sont injectées sur une colonne de DEAE-Trisacryl-M. Les protéines sont éluées avec un gradient linéaire de 0 à 0,25 M KCl et les fractions contenant l'activité SP₂MT sont regroupées et passées une seconde fois à travers une colonne de Sephadex G-25 comme ci-dessus. La fraction protéique est injectée sur une colonne d'Ultrogel HA (IBF) équilibrée dans le Tris-HCl 10 mm pH 7,7, 5 mm DTT. Les protéines sont éluées avec un gradient linéaire de 0 à 50 mM de phosphate de potassium pH 7,8 contenant 5 mM DTT. Les fractions contenant l'activité recherchée sont regroupées et injectées sur une MonoQ HR 5/5 (Pharmacia) équilibrée avec du Tris-HCl 50 mM pH 7,7, 5 mM DTT. La SP_2MT est éluée avec un gradient linéaire (0 à 0,25 M) de KCl. A la sortie de l'étape MonoQ, l'électrophorèse en PAGE-SDS (12,5 %) avec coloration aux sels d'argent révèle que l'enzyme est pure à plus de 99 %. Ceci est confirmé par l'unicité de la séquence NH2-terminale de la protéine. Le poids moléculaire calculé à partir de l'électrophorèse en conditions dénaturantes (PAGE-SDS à 12,5 %) est de 26 500. Les étapes de purification de la SP₂MT avec leurs rendements, sont décrites dans le

tableau ci-dessous.

5

10

15

20

25

Tableau: Purification de la SP2MT

Etape de purification	Vol (ml)	Protéines (mg)	Facteur de purification 1
Extrait brut	300	6000	-
Précipitation (33-45 %)	40	1530	3.9
DEAE-Trisacryl-M	57	355	16.9
Ultrogel HA	30	71	85
MonoQ HR 5/5	12	33.5	179

¹ce facteur est calculé d'après le rendement en protéines.

c) Séquence NH₂-terminale de la SP₂MT et identification du gène de structure codant pour cette activité

Cet exemple illustre comment la séquence NH₂-terminale d'une protéine qui intervient dans la voie de biosynthèse permet d'identifier le gène de structure qui code pour cette protéine. Dans l'exemple présent, il s'agit du gène de structure de la SP₂MT.

La séquence NH₂-terminale de la protéine purifiée a été réalisée comme décrit précédemment. Les 15 premiers acides aminés ont été identifiés :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ser Gly Val Gly Val Gly Arg Leu Ile Gly Val Gly Thr Gly Pro

La séquence NH₂-terminale de la protéine COBI (figure 16) correspond exactement à cette séquence, si ce n'est que dans la séquence présentée sur la figure 16 une méthionine précède la séquence peptidique déduite de la séquence nucléotidique. Il en résulte que la méthionine aminoterminale est certainement excisée <u>in vivo</u> par la méthionine aminopeptidase (Ben Bassat et Bauer, 1987). Le poids

moléculaire de la SP₂MT purifiée estimé par électrophorèse PAGE-SDS à 12,5 % est de 26 500. La protéine COBI a un poids moléculaire déduit de sa séquence en acides aminés de 25 878 (figure 16). Les correspondances entre les séquences NH₂-terminales et les poids moléculaires indiquent clairement que la protéine COBI correspond à la SP₂MT. Le gène <u>cobI</u> est le gène de structure de la SP₂MT.

- 6.1.4. Identification de la protéine COBH codée par le gène cobH
- a) Dosage de l'activité precorrin-8x mutase.
- 10 Cet exemple illustre le dosage d'une activité enzymatique de la voie de biosynthèse des cobalamines qui n'a jusqu'à ce jour jamais été décrite. Il s'agit de la precorrin-8x mutase. Cette enzyme catalyse le transfert du groupement methyl de la position C-11 à la position C-12 lors de la transformation du precorrin-8x en acide hydrogénobyrinique (voir la nomenclature des carbones FIG. 19; PL. 68). Plus généralement, c'est l'enzyme catalysant le transfert du groupement méthyl de C-11 vers C-12, conduisant ainsi au noyau corrine. L'enzyme est ici appelée mutase, bien qu'il ne soit pas formellement démontré que le transfert du groupement méthyl soit intramoléculaire, même si cela est très vraissemblable.

L'activité enzymatique est mise en évidence par la transformation du precorrin-8x (5 µM) en acide hydrogénobyrinique au cours d'incubations en présence de fractions enzymatiques dans du Tris-HCl 0.1 M pH 7.7, 1 mM EDTA, à 30°C durant 1 h. En fin d'incubation, la réaction est stoppée par chauffage à 80°C durant 10 min et après centrifugation à 3000 x g durant 10 min, l'acide hydrogénobyrinique formé présent le surnageant est analysé par CLHP (Cf exemple 6.1.2.a).

- b) Purification de la precorrin-8x mutase.
- 30 La purification de la precorrin-8x mutase de Pseudomonas denitrificans

WO 91/11518 PCT/FR91/00054

72

est réalisée comme décrit çi-dessous.

Durant cette purification, toutes les solutions tampons sont ajustées à pH 7.7.

Dans une expérience typique de purification, 50 g de cellules de la 5 souche SC510 Rifr portant le plasmide pXL253 (plasmide pKT230 sur lequel a été cloné, au site EcoRI, le fragment de 8.7 kb, figure 13), obtenues après culture en milieu PS4, sont resuspendues dans 200 ml de tampon phosphate de potassium 0.1 M, et soniquées durant 12 centrifugation à 50 000 x g durant 1 heure, le min. surnageant est passé à travers une colonne de DEAE-Sephadex (10 ml de 10 pour éliminer les composés tetrapyrroliques. Le pH de la immédiatement ajusté à 7.7 avec une solution 1 M KOH. La fraction protéique précipitant entre 40 et 60% de saturation en sulfate d'ammonium est collectée par centrifugation et dissoute dans 15 50 ml de Tris-HCl 0.1 M. Cet échantillon est ensuite injecté sur une colonne d'Ultrogel AcA 54 (IBF, France) (volume de gel 1000 ml), et les protéines sont éluées à un débit de 60 ml/h avec du Tris-HCl 50 mM. Les fractions contenant l'activité sont regroupées injectées sur une colonne de DEAE-Trisacryl M (IBF, 20 équilibrée avec du Tris-HCl 50 mM, et les protéines sont éluées avec un gradient de 0 à 0.2 M KCl. Les fractions contenant la protéine à purifier sont regroupées, passées à travers une colonne de Sephadex G25 équilibrée en Tris-HCl 10 mM. La fraction protéique est injectée sur une colonne d'Ultrogel HA (IBF, France) équilibrée avec 25 du Tris-HCl 10 mM, et les protéines sont éluées avec un gradient de 0 à 0.1 M de phosphate de potassium, puis la fraction active est chromatographiée sur une colonne de Phenyl-Sepharose (Pharmacia) dans du phosphate de potassium 10 mM, éluée avec gradient de 0.65 à 0 M de sulfate d'ammonium. Les fractions 30 actives sont regroupées. La protéine ainsi obtenue est pure à plus de 95% (d'après les résultats d'électrophorèse PAGE-SDS à 12.5% et coloration aux sels d'argent). La pureté de la protéine est confirmée par l'unicité de la séquence N-terminale. Son poids moléculaire calculé à l'aide de cette technique est de 22 000. Les 35 étapes de purification de la precorrin-8x mutase avec

10

25

rendements de purification sont décrites sur le tableau çi-dessous.

tableau: Purification de la precorrin-8x mutase.

Etape de	Vol	Protéines (mg)	Facteur de purification!
Extrait brut	250	6000	-
Précipitation (40-60 %)	50	2350	2.6
Ultrogel ACA 54	70	655	9.2
DEAE-Trisacryl M	30	271 .	22
Ultrogel HA	22	93	65
Phényl Sépharose	12	31	194

1ce facteur est calculé d'après le rendement en protéines

c) Séquence NH_2 -terminale de la précorrin-8x mutase et identification de son gène de structure.

15 Cet exemple illustre comment la séquence NH₂-terminale d'une protéine qui intervient dans la voie de biosynthèse permet d'identifier le gène de structure qui code pour cette protéine.

La séquence NH_2 -terminale de cette protéine a été réalisée comme décrit précédemment. 15 résidus ont été identifiés :

20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pro Glu Tyr Asp Tyr Ile Arg Asp Gly Asn Ala Ile Tyr Glu Arg

La séquence NH₂-terminale de la protéine COBH (figure 16) correspond exactement à cette séquence, si ce n'est que dans la séquence présentée sur la figure 16 une méthionine précède la séquence peptidique déterminée par le séquençage décrit ci-dessus. Il en résulte que la méthionine aminoterminale est certainement excisée in vivo par la méthionine aminopeptidase (Ben Bassat et Bauer, 1987). Le

deuxième résidu étant une proline, cette excision est conforme aux règles déjà énoncées (Hirel et al., 1989). Le poids moléculaire de la precorrin-8x mutase purifiée estimé par électrophorèse PAGE-SDS à 12,5 % est de 22 000. La protéine COBH a un poids moléculaire déduit de sa séquence de 22 050 (figure 16). Les correspondances entre les séquences NH2-terminales et les poids moléculaires, de ces protéines, indiquent clairement que la protéine COBH correspond à la precorrin-8x mutase. cobh est le gène de structure de la precorrin-8x mutase.

₿.

d) Préparation, isolement et identification du precorrin-8x.

5

10 Dans une expérience typique de préparation du precorrin-8x, extrait enzymatique brut de la souche SC510 Rifr pXL253 (1000 mg de protéines) est incubé en anaérobiose durant 20 h de tampon Tris-HCl 0.1 M pH 7.7 avec 1000 nmol de dans 100 ml trimethylisobacteriochlorin préparé comme décrit précédemment 15 (Battersby et al., 1982), EDTA (1 mM), ATP (100 µmol), MqCl2 (250 μmol), NADH (50 μmol), NADPH (50 μmol), SAM (50 μmol) et acide hydrogénobyrinique (20 µmol). En fin d'incubation, le precorrin-8x est le produit tétrapyrrolique formé majoritaire. Il est isolé et purifié par CLHP sur une colonne µBondapak C18 (Waters) en utilisant 20 un gradient d'élution linéaire de 0 à 50% d'acétonitrile dans un tampon phosphate de potassium, pH 5,8. La masse du precorrin-8x (m/z =880) et la masse de son dérivé methyl ester (m/z = 978) indiquent qu'il s'agit d'un composé ayant la même formule brute que l'acide hydrogénobyrinique. Les caractéristiques UV/Visible et de 25 de l'acide fluorescence sont très différentes de celles que la molécule possède deux hydrogénobyrinique et indiquent séparés. chromophores La seule réaction enzymatique d'isomérisation entre precorrin-6x (Thibaut et al, 1990) et l'acide hydrogénobyrinique étant la migration du methyl de C-11 30 C-12, le precorrin-8x est le dernier intermédiaire avant l'acide hydrogénobyrinique et la réaction correspondante est la migration du méthyl de C-11 vers C-12, catalysée par la precorrin-8x mutase.

6.1.5. Identification de la protéine COBU codée par le

10

15

gène cobu

a) Dosage de l'activité

nicotinate-nucleotide:dimethylbenzimidazole phosphoribosyltransferase (figure 5, réaction 5). Cet exemple illustre le dosage d'une activité enzymatique directement liée à la voie de biosynthèse des cobalamines. s'agit đe la nicotinate-nucleotide:dimethylbenzimidazole phosphoribosyltransferase (NN:DMBI PRT) (EC 2.4.2.21). Les fractions contenant l'activité NN:DMBI PRT (environ 5 unités) sont incubées à 30°C durant 8 mn dans 500 µl de tampon glycine:NaOH 0.1 M pH 9.7 en présence de 1 mM NaMN (acide nicotinique mononucéotide) et 10 µM DMBI. La réaction est ensuite stoppée par chauffage à 80°C durant 10 mm, le mélange réactionnel est dilué par 4 volumes d'eau et 100 µl de cette solution sont injectés sur une colonne CLHP Nucleosil 5-C8 de 15 cm éluée avec un mélange 0.1 M phosphate de potassium pH 2.9:acétonitrile (93:7) à un débit de de 1 ml/min. Le α -ribazole 5'-phosphate est détecté et quantifié par fluorimétrie (excitation : 260 nm; émission >370 nm). L'unité d'activité enzymatique est définie comme la quantité d'enzyme nécessaire pour générer 1 nmol de α-ribazole 5'-phosphate par heure dans ces conditions.

20 b) Purification de l'activité NN:DMBI PRT de Pseudomonas denitrificans Cette expérience illustre comment une protéine de P. denitrificans intervenant dans la voie de biosynthèse des cobalamines peut être purifiée. A partir du dosage décrit dans l'exemple 6.1.5.a), la purification de la NM:DMBI PRT de Pseudomonas denitrificans est 25 réalisée comme décrit ci-desssous. Dans une expérience typique de purification on utilise 10 g de cellules humides de la souche SC510 Rifr dans laquelle le plasmide pXL1490B a été introduit comme cela est décrit précédemment. Le plasmide pXL1490B est décrit sur la figure 38; ce plasmide a été obtenu par clonage du fragment BamHI-SstI-SstI de 3.85 kb du pXL519 (voir figure 38). Ce plasmide porte donc les gènes 30 cobU et cobV de P. denitrificans. Les cellules cultivées en milieu PS4, supplémenté en lividomycine, comme cela est décrit précédemment, sont récoltées après 96 heures de culture en milieu PS4. Elles sont resuspendues dans 25 ml de tampon 0.1M Tris-HCl pH 7.2 et soniquées

durant 15 mn à 4°C. L'extrait brut est ensuite recupéré par centrifugation durant 1 h à 50 000 g puis passé à travers une colonne de DEAE-Trisacryl M (IBF, France) équilibrée avec le même tampon. 10 % de l'éluat (120 mg de protéines) est fractionné sur une colonne de Mon-o Q HR 10/10 en utilisant un gradient de KCl (de 0 à 0.6 M). Les fractions actives sont regroupées et concentrées à 2 ml par ultrafiltration puis après mélange avec un volume de tampon Tris-HCl 30 mM pH 7.2, l'échantillon est fractionné une seconde fois sur une Mono Q HR 5/5 comme précédemment. Les fractions actives sont regroupées puis l'échantillon est amené à une molarité de 1 M à l'aide de sulfate d'ammonium et chromatographié sur une colonne de Phényl-Superose HR 5/5 élué avec un gradient décroissant de sulfate d'ammonium (de 1 M à 0 M). Les fractions contenant l'activité recherchée sont rassemblées, concentrées par ultrafiltration, et chromatographiées sur une colonne de perméation de gel Bio-Sil 250, éluée avec du phosphate de sodium 20 mM-sulfate de sodium 50 mM pH 6.8.

5

10

15

20

Après cette étape, l'enzyme est pure à plus de 95 %. Elle ne présente aucune protéine contaminante en PAGE-SDS. Cette pureté est confirmée par l'unicité de la séquence NH2-terminale. Son poids moléculaire dans cette technique est de 35 000. Les différentes étapes de purification de la NN:DMBI PRT sont portées sur le tableau ci-dessous.

Tableau: Purification de la NN:DMBI PRT de P. denitrificans

20

25

Etape de purification	vol	Protéines (mg)	Activité spé. (u/mg de protéines)	Rendement	Facteur de purification ¹
Extrait brut	6,0	120	2650		-
MonoQ 10/10	6,0	12,07	13515	51,3	5,1
MonoQ 5/5	3,0	6,19	20140	39,2	7,6
Phényl-Superose	1,5	2,60	35510	29,0	13,4
Bio-Sil 250	1,2	1,92	39750	24,0	15,0

c) Séquence NH2-terminale de la NN:DMBI PRT de P. denitrificans et identification du gène de structure de Pseudomonas denitrificans codant pour cette activité. La séquence NH2-terminale de la NN:DMBI PRT de Pseudomonas denitrificans purifiée comme décrit dans l'exemple 6.1.5b) a été réalisée selon la technique décrite ci-dessus. Les 15 premiers résidus ont été identifiés :

La séquence NH2-terminale de la protéine COBU (figure 41) correspond à cette séquence, si ce n'est que dans la séquence présentée sur la figure 41, une méthionine précède le premier acide aminé de la séquence peptidique déterminée par séquençage direct. Il en résulte que la méthionine aminoterminale est certainement excisée in vivo par la méthionine aminopeptidase (Ben Bassat et Bauer, 1987). Le poids moléculaire de la N-transglycosidase purifiée estimé par électrophorèse PAGE-SDS à 12,5 % est de 35 000. La protéine COBU a un poids moléculaire déduit de sa séquence de 34 642 (figure 41). Les correspondances entre les séquences NH2-terminales et les poids moléculaires indiquent clairement que la protéine COBU correspond à la NN:DMBI PRT. Le gène cobU est le gène de structure de la NN:DMBI PRT.

WO 91/11518 PCT/FR91/00054

78

d)Spécificité de la NN:DBI PRT pour de DBI. Cet exemple illustre comment l'étude de la spécificité de la NN:DMBI PRT de P. denitrificans permet de faire biosynthétiser à P. denitrificans diverses cobamides en utilisant les propriétés catalytiques de la NN:DMBI PRT de P. denitrificans pour effectuer la synthèse de la base nucléotidique en question.

5

10

15

Le substrat de l'enzyme pour synthétiser des cobalamines est 5,6-diméthylbenzimidazole. Le benzimidazole le et 5-méthylbenzimidazole, respectivement, sont des substrats de réaction avec des vitesses de réaction de 157 % et de 92 respectivement, comparé au substrat (5,6-diméthylbenzimidazole), la concentration en NaMN étant fixée à 2 mM. La spécificité de la NN:DMBI PRT de P. denitrificans est donc faible pour les substrats à noyau benzimidazole. On peut donc utiliser la souche de P. denitrificans SC510 Rifr (Cameron et al., 1989), la cultiver en milieu PS4 où le 5,6-diméthylbenzimidazole est remplaçé par du benzimidazole ou du 5-diméthylbenzimidazole, respectivement, afin de faire synthétiser à la bactérie de la $Co\alpha$ -(benzimidazolyl)- $Co\beta$ -cyanocobamide,

20 $Co\alpha$ -(5-méthylbenzimidazolyl)- $Co\beta$ -cyanocobamide respectivement. Il est certain que d'autres cobamides pourraient être synthétisées de cette manière.

6.1.6. Identification de la protéine COBV codée par le gène CobV.

Cet exemple illustre comment le dosage d'une activité de la voie de biosynthèse du coenzyme B12 chez P. denitrificans, puis la purification partielle de cette activité peut permettre d'identifier le gène de structure de cette enzyme chez P. denitrificans.

a) dosage de l'activité GDP-cobinamide:α-ribazole (5'-phosphate) cobinamidephosphotransférase (ou cobalamine (5'-phosphate) synthase) Cet exemple illustre le dosage d'une activité directement liée à la voie de biosynthèse des cobalamines. Il s'agit de la cobalamine (5'-phosphate) synthase. Les fractions contenant l'activité (environ 5

15

20

25

30

35

à 10 unités) sont incubées à l'obscurité à 30°C dans 500 µl de tampon Tris-HCl 0.3 M pH 9.0 en présence de 1 mM EDTA, 12.5 mM MgCl2, 50 µM a-ribazole 5'-phosphate et 20 µM GDP-cobinamide [sous forme 5'-deoxy-5'-adénosyl (Ado) ou coenzyme]. Après 15 mn d'incubation, 500 µl de cyanure de potassium 20 mM sont ajoutés et la solution est chauffée à 80°C durant 10 mn. Après centrifugation pour éliminer le matériel précipité, la vitamine B12 5'-phosphate présente dans le surnageant est dosée comme cela est décrit à l'exemple 9. Une unité de cobalamine (5'-phosphate) synthase est définie comme la quantité d'enzyme nécessaire pour générer 1 nmol de cobalamine 5'-phosphate par h dans les conditions décrites ci-dessus.

L'Ado-GDP-cobinamide est obtenu par incubation de l'Ado-cobinamide phosphate (Blanche et al., 1989) avec un extrait de SC510 Rifr pXL623 dans les conditions du dosage de la cobinamide phosphate guanylyltransferase (voir 6.1.11.b). Le a-ribazole et le a-ribazole-5'-phosphate sont isolés à partir de cultures de SC510 Rifr et purifiés par CLHP dans les conditions du dosage décrit dans l'exemple 6.1.5a).

b) Purification partielle de la cobalamine (5'-phosphate) synthase. Cette expérience illustre comment une activité enzymatique de P. denitrificans intervenant dans la voie de biosynthèse des cobalamines de P. denitrificans peut être partiellement purifiée. A partir du ci-dessus, la purification de la cobalamine (5'-phosphate) synthase est réalisée. Pour ce faire, dans une expérience typique de purification, 10 g de cellules humides de la souche SC510 Rifr dans laquelle le plasmide pXL1490B a été introduit comme cela est décrit précédemment. Le plasmide pXL1490B est décrit sur la figure 38; ce plasmide correspond au fragment SstI-SstI-BamHI de 3.85 kb cloné dans le pKT230. Ce plasmide porte les gènes cobu et cobV de P. denitrificans. La présence de ce plasmide chez P. denitrificans SC510 Rifr conduit à une amplification de l'activité cobalamine (5'-phosphate) synthase d'un facteur 100 environ; il est donc probable que l'insert porté par le plasmide pXL1490B contient le gène de structure de cette enzyme; ce gène ne peut donc être que cobU ou cobV. Les cellules SC510 Rifr pXL1490B sont obtenues par culture en

10

15

milieu PS4 supplémenté avec de la lividomycine comme cela est décrit ci-dessus. Les cellules sont centrifugées puis resuspendues dans 25 ml de tampon Tris-HCl 0.1 M (pH 8.3)-1 mM EDTA (tampon A) et soniqués pendant 15 mn à 4°C. L'extrait brut est ensuite récupéré par centrifugation 1 h à 50 000 g et passé à travers une colonne de Sephadex G-25 équilibrée avec du tampon A. La fraction protéique est récupérée et injectée par fraction de 300 µl (7.5 mg de protéines) sur une colonne de Superose 12 HR 10/30 éluée dans du tampon A. La fraction exclue est récupérée, mélangée à un volume égal de tampon A-1.0 M sulfate d'ammonium et chromatographiée sur une colonne de Phényl-Supérose HR 5/5. Les protéines sont éluées avec un gradient décroissant de sulfate d'ammonium (de 0.5 M à 0 M) dans du tampon A, suivi d'un plateau à 0 M de sulfate d'ammonium dans le but d'éluer l'activité cobalamine (5'-phosphate) synthase. La purification partielle de cette enzyme est décrite dans le tableau ci-dessous, sur la base de 75 mg de protéines introduits au départ dans le processus de purification.

<u>Tableau</u>: Purification partielle de la cobalamine (5'-phosphate) synthase de P. denitrificans.

20	O Etape de purification (Protéines (mg)	ACLIVILÉ SPÉ. (u/mg de protéines)	Rendement	Facteur de purification ¹
	Extrait brut	3.0	75	325	-	-
	Superose 12HR	50.0	2.9	6 810	81	21
25	Phenyl-Superose	4.5	0.35	17 850	. 26	. 55

c) Spécificité de la cobalamine (5'-phosphate) synthase. Le Km pour le (Ado)GDP-cobinamide est de 0.9 µM. Toutefois, l'enzyme présente la même affinité et une vitesse de réaction pratiquement identiques pour la forme (CN, aq) du substrat. Le Km de l'enzyme pour le α-ribazole

15

5'-phosphate est de 2.7 μM environ. De plus, les préparations les plus pures de cobalamine (5'-phosphate) synthase catalysent la réaction du Ado-GDP-cobinamide avec le α-ribazole pour donner le coenzyme B12 et dans ces conditions aucune accumulation de cobalamine 5'-phosphate n'est observée. Le Km de l'enzyme pour le α-ribazole est de 7.8 μM. Des concentrations intracellulaires en œ-ribazole 5'-phosphate et en α-ribazole de 30 et de 700 μM respectivement, ont été mesurées par CLHP au cours de la production de cobalamines de SC510 Rifr en milieu PS4 dans les conditions de cultures décrites dans l'exemple 6.1.5a). Ceci montre que le coenzyme B12 peut être généré directement à partir du Ado-GDP-cobinamide par la cobalamine (5'-phosphate) synthase sans l'intervention d'une cobalamine 5'-phosphatase. L'absence d'accumulation ou la présence de traces de cobalamine 5'-phosphate dans les cultures de P. denitrificans SC510 Rifr confirme que le coenzyme B12 est produit par la réaction directe du Ado-GDP-cobinamide avec le α -ribazole in vivo.

Cette réaction directe a déjà été observée et décrite in vitro chez Propionibacterium shermanii (Ronzio et al., 1967; Renz, 1968). Comme le gène de structure de la cobalamine (5'-phosphate) synthase ne peut être que cobU ou cobV puisque l'amplification chez P. denitrificans d'un fragment portant ces deux gènes cob de P. denitrificans conduit à une augmentation par un facteur 100 de l'activité cobalamine (5'-phosphate) synthase et que le gène cobU est le gène de structure de la NN:DMBI PRT, cobV est donc le gène de structure de la cobalamine (5'-phosphate) synthase.

- 6.1.7. Identification de la protéine COBK codée par le gène cobK.
- a) dosage de l'activité precorrin-6x réductase.

Cet exemple illustre le dosage d'une activité enzymatique nouvelle 30 directement liée à la voie de biosynthèse des cobalamines. Il s'agit de la precorrin-6x réductase.

WO 91/11518

Les fractions contenant l'activité precorrin-6x réductase (environ 0.05 unités, U) sont incubées à 30 °C durant 60 min dans 250 μ l de tampon Tris-HCl 0.1 M pH 7.7 en présence de 1 mM EDTA, NADPH, 25 µM [methyl-3H]SAM (80 µCi/µmol), 4 µM precorrin-6x (Thibaut dihydroprecorrin-6x al., 1990), et 0.5 U de partiellement purifiée (voir préparation çi-dessous). La réaction est ensuite stoppée par chauffage à 80°C durant 5 min et, centrifugation à 5000 x g durant 5 min, le surnageant est injecté sur une colonne de .DEAE-Sephadex (contenant 200 µl de gel). La colonne 10 est ensuite lavée extensivement avec le tampon Tris-HCl, et les composés fixés sont élués avec 4 ml de 1 M HCl. La radioactivité dans cet éluat est comptée en scintillation liquide. L'unité d'activité enzymatique est définie comme la quantité d'enzyme nécessaire pour réduire 1 nmol de precorrin-6x par h dans ces conditions.

- 15 La dihydroprecorrin-6x methylase est partiellement purifiée à partir d'un extrait brut de SC510 Rifr pXL253, sur une colonne d'échange d'anions Mono Q HR 5/5 (Pharmacia). La colonne est éluée avec un gradient linéaire de 0 à 0.4 M de KCl dans du tampon 0.1 M Tris-HCl pH 7.7. L'activité enzymatique est éluée à 0.35 M KCl. Cette 20 activité est détectée et quantifiée grâce au test d'activité de la precorrin-6x reductase défini çi-dessus (en présence de 0.5 U de precorrin-6x reductase dans le milieu d'incubation). Après l'étape Mono Q, les fractions contenant de l'activité đe dihydroprecorrin-6x methylase sont totalement dépourvues 25 d'activité precorrin-6x réductase. L'unité d'activité méthylase est définie comme la quantité d'enzyme nécessaire pour transférer 1 nmol de groupements méthyls sur le dihydroprecorrin-6x par h dans les conditions décrites çi-dessus.
 - b) purification de l'activité precorrin-6x réductase.
- 30 A partir du dosage décrit ci-dessus, la purification de la precorrin-6x réductase de Pseudomonas denitrificans est réalisée comme décrit çi-dessous.

Dans une expérience typique de purification, 100 g de cellules humides

de la souche SC510 Rifr dans laquelle on a introduit le plasmide pXL253 (plasmide pKT230 sur lequel a été cloné, au site EcoRI, le fragment de 8.7 kb, figure 13) sont suspendues dans 200 ml de tampon Tris-HCl 0.1 M pH 7.7-1 mM EDTA (tampon A), et soniquées 5 durant 15 min à 4°C. L'extrait brut est ensuite récupéré centrifugation durant 1 h à 50 000 x g et passé en trois fois à travers une colonne de Sephadex G 25 équilibrée avec le tampon A. Les trois fractions exclues du gel sont poolées et ajustées à 1 l avec le tampon A. Les protéines précipitant entre 25 et 40% de saturation 10 en sulfate d'ammonium sont collectées par centrifugation et resuspendues dans 50 ml de tampon A et cette solution est désalée à travers une colonne de Sephadex G 25 equilibrée tampon B (25 mM Tris-HCl-500 μM DTT-15% glycérol). La solution de protéines est ensuite injectée à 2.5 ml/min sur une colonne de Q 15 Sepharose Fast Flow (Pharmacia) equilibrée avec du tampon B, et les protéines sont éluées avec un mélange tampon B-0.2 M KCL. fraction est désalée sur une colonne de Sephadex G 25 équilibré avec du tampon C (50 mM Tris-HCl-500 µM DTT-15% glycérol). La solution protéique est ensuite fractionnée (100 mg de protéines à chaque 20 chromatographie) sur une colonne Mono Q HR 10/10 (Pharmacia) à l'aide d'un gradient de 0 à 0.4 M KCL dans le tampon C, puis la fraction contenant l'activité est chromatographiée sur une colonne Phenyl-Superose HR 10/10 (Pharmacia) dans un gradient linéaire décroissant de sulfate d'ammonium (de 1 à 0 M). La fraction active est 25 désalée et la precorrin-6x réductase est repurifiée sur une colonne Mono Q HR 5/5. Elle est éluée dans le tampon 50 mM Tris-HCl pH 8.1-500 μM DTT-15% glycérol, avec un gradient de 0 à 0.2 M de KCL. parfaire la purification, la protéine est finalement chromatographiée sur une colonne Bio-Sil 250 (Bio-Rad) éluée avec 30 20 mM potassium phosphate-50 mM sodium sulfate, pH $6.8-500~\mu M$ DTT-15 % glycérol. Après cette étape, l'enzyme est pure à plus de 95%. Elle ne présente aucune protéine contaminante en PAGE-SDS, les protéines étant révélées au nitrate d'argent. Ce degré de pureté est confirmé par l'unicité de la séquence NH2-terminale. 35 moléculaire dans cette technique est de 31 000. Les différentes étapes

de purification de la precorrin-6x réductase, avec leur facteur de purification et leur rendement sont portées sur le tableau çi-dessous.

Tableau: Purification de la precorrin-6x reductase.

. 5	Etape de purification	-vol (ml)	Protéines (mg)	Activit <u>é sp</u> é. (u/mg de protéines)	 Rendement	Facteur de purification ¹
	Extrait brut	270	9600	0.535	•	-
10	S.A. 25 40%	100	4160	1.14	92	2.1
	Q Sepharose	150	1044	3.64	74	6.8
	Mono Q 10/10	55	67	24.5	32	46
	Phényl-superose	10	2.2	325	14 .	607
	Mono Q 5/5	2.5	0.082	5750	9.2	10750
15	Bio-sil 250	1.0	0.055	7650	8.2	14300

c) Séquence NH2-terminale et séquences partielles internes de la precorrin-6x réductase de Pseudomonas denitrificans et identification du gène de structure de Pseudomonas denitrificans codant pour cette activité.

20 La séquence NH2-terminale de la precorrin-6x réductase de Pseudomonas denitrificans purifiée comme décrit ci dessus a été déterminée comme décrit précédemment. Six résidus ont été identifiés:

Ala-Gly-Ser-Leu-Phe-Asp

De même, après digestion trypsique et séparation des fragment CLHP sur 25 une colonne de phase inverse C-18, trois séquences internes ont été obtenues:

Ile-Gly-Gly-Phe-Gly-Gly-Ala-Asp-Gly-Leu

Arg-Pro-Glu-Trp-Val-Pro-Leu-Pro-Gly-Asp-Arg

Val-Phe-Leu-Ala-Ile-Gly

La séquence NH2-terminale de la protéine COBK (figure 16) correspond exactement à la séquence NH2-terminale de la precorrin-6x ⁵ réductase, si ce n'est que dans la séquence présentée sur la figure 16, une méthionine précède la séquence peptidique déterminée par séquençage direct. Il en résulte que la méthionine aminoterminale est certainement excisée in vivo par la méthionine aminopeptidase (Ben Bassat et Bauer, 1987). De même, les trois séquences internes 10 correspondent aux troisséquences 60 à 69, 112 à 122, et 143 à 148 de la protéine COBK. Le poids moléculaire de la precorrin-6x réductase purifiée est estimé par électrophorèse PAGE-SDS à 31 000. La protéine COBK a un poids moléculaire déduit de sa séquence de 28 000 (figure 16): Les correspondances entre les 15 NH2-terminales, internes, et les poids moléculaires indiquent clairement que la protéine COBK correspond à la precorrin-6x réductase. Le gène cobK est le gène de structure de la precorrin-6x réductase.

- d) Réaction catalysée par la precorrin-6x réductase.
- 20 La réaction enzymatique de réduction du precorrin-6x NADPH-dépendante de façon stricte chez P. denitrificans. Le NADPH ne peut pas être remplaçé par le NADH. Lorsque l'enzyme purifiée (ou une fraction active en cours de purification, ou même un extrait enzymatique brut) est incubée dans les conditions du dosage de 25 l'activité , mais en l'absence de SAM et de dihydroprecorrin-6x méthylase, le produit de la réaction peut alors être purifié par CLHP dans le système décrit pour la purification du precorrin-6x (Cf exemple 6.1.4.d). Après désalage et estérification (méthanol sulfurique à atmosphère argon), l'ester correspondant a une 24h, m/z = 1008. Le produit de la réaction catalysée par la precorrin-6x reductase est donc le dihydroprecorrin-6x, appelé aussi

precorrin-6y.

- 6.1.8. Identification de la protéine COBQ codée par le gène CobQ.
- a) Dosage de l'activité cobyric acid synthase.
- 5 Cet exemple illustre le dosage d'une activité enzymatique de la voie de biosynthèse des cobalamines qui n'a jusqu'à ce jour jamais été décrite. Il s'agit de la cobyric acid synthase. Cette enzyme catalyse l'amidation des fonctions acides carboxyliques périphériques en positions b, d, e, et g sur le noyau corrine (voir FIG. 19; PL. 68). Le donneur de groupements NH2 est la L-glutamine et chaque réaction d'amidation s'accompagne de la consommation d'une molécule d'ATP.

La fraction à doser est incubée à l'obscurité à 30°C pendant 60 min dans 250 µl de tampon 0.1 M Tris hydrochloride pH 7.5 contenant 1 mM DTT, 1 mM EDTA, 1 mM ATP, 2.5 mM MgCl2, 1 mM glutamine, 10 µM los acide Ado-cobyrinique di- ou pentaamide. La réaction est stoppée en ajoutant 25 µl d'une solution aqueuse 0.1 M de cyanure de potassium. Après chauffage à 80°C durant 10 min et centrifugation à 3000 x g durant 10 min, les composés formés présents dans le surnageant sont analysés par CLHP. L'unité d'activité est définie comme la quantité d'enzyme necessaire pour générer 1 nmol de fonctions amides par h dans ces conditions.

Les acides 5'-deoxy-5'-adenosyl(Ado)-cobyriniques diamide et pentaamide sont isolés de cultures de la souche SC510 en milieu PS4, en utilisant la méthode dont le principe est décrit dans l'exemple 9.

25 b) Purification de la cobyric acid synthase.

A partir du dosage décrit à l'exemple 6.1.8 a), la purification de la cobyric acid synthase de Pseudomonas denitrificans est réalisée comme décrit çi-dessous.

Dans une expérience typique de purification, 6 g de cellules humides 30 de SC510 Rifr dans laquelle on a introduit le plasmide pXL618 (voir

exemple 4.5.2) sont soniqués dans 15 ml de tampon Tris-HCl 0.1 M DTT 1 mM, EDTA 1mM. Après centrifugation (50 000 x g durant 1 h), l'extrait est amené à 20% de glycerol (vol/vol). A 8.5 ml de l'extrait brut (203.5 mg de protéines) sont ajoutés 24 ml de 5 tampon Tris-HCl 10 mM, DTT 1 mM, glycerol 20%. La solution est injectée sur Mono Q HR 10/10 (Pharmacia) à 2 ml/min équilibrée avec du tampon Tris-HCl 50 mM pH 7.7, DTT 1 mM, glycérol 20%. Les protéines sont éluées avec un gradient linéaire de 0.5 M NaCl et les fractions actives regroupées et amenées à 1 mM EDTA. La solution est amenée 10 à 0.85 M en sulfate d'ammonium et injectée sur une colonne Phenyl-Superose HR 5/5 (Pharmacia), équilibrée dans le tampon Tris-HCl pH 7.7, DTT 1 mM, sulfate d'ammonium 0.85 M et les protéines sont éluées avec un gradient linéaire décroissant de 0.85 M à 0 M de sulfate d'ammonium. Les fractions sont immédiatement amenées à 20% de 15 glycérol. La fractionactive est concentré à 2.5 ml par ultrafiltration et chromatographiée sur une colonne PD 10 (Pharmacia) équilibrée et éluée avec du tampon Tris-HCl 50 mM pH 8.3, DTT 1 mM, glycérol 20% (vol/vol). La fraction protéique est recueillie et injectée sur une Mono Q HR 5/5 équilibrée avec le même tampon et les protéines 20 sont éluées avec un gradient linéaire de 0.5 M NaCl. chromatographie de perméation sur gel Bio-Sil 250 (Bio-Rad) milieu tampon Tris-HCl 50 mM pH 7.5, DTT 1 mM, glycérol 20%, NaCl 0.1 M permet finalement d'obtenir une protéine pure à plus de 97%. Elle ne présente aucune protéine contaminante en PAGE-SDS. Cette 25 pureté est confirmée par l'unicité de la séquence NH2-terminale. Son poids moléculaire dans cette technique est de 57 000. différentes étapes de purification de la cobyric acid synthase avec leur facteur de purification et leur rendement sont portées sur le tableau çi-dessous.

30 Tableau: Purification de la cobyric acid synthase.

	Etape de purification	vol	Protéines (mg)	Activité spé. U/mg a b A B	a Rendement	Facteur de purification ^a
,	Extrait brut	8.5	203	114 / 118		. -
	MonoQ 10/10	8.0	35.5	388 / 425	60	3.4
	Phényl-superose	8.0	3.23	1988 / 2021	28	17
	MonoQ 5/5	1.0	1.20	4549 / 4085	24	40
	Bio-Sil 250	0.75	0.88	4992 / N.D.	19	44

10 a/ Avec l'acide Ado-cobyrinique a,c-diamide comme substrat

b/ Avec l'acide Ado-cobyrinique pentaamide comme substrat

ND = Non Déterminé

Le très haut degré de pureté de la protéine purifiée ainsi que la constance du ratio des activités d'amidation des acides la cobyriniques diamide et pentaamide tout au long du procédé de purification de la protéine (voir tableau çi-dessus) indiquent sans ambiguité qu'une seule et même protéine est responsable des quatre activités d'amidation du noyau corrine aux positions b, d, e, et g.

- NH2-terminale đе la cobyric acid synthase Séquence 20 Pseudomonas denitrificans et identification du gène de structure de Pseudomonas denitrificans codant pour cette activité. synthase NH2-terminale de la cobyric acid La séquence Pseudomonas denitrificans a été déterminée comme décrit précédemment. Seize résidus ont été identifiés:
- 25 Thr-Arg-Arg-Ile-Met-Leu-Gln-Gly-Thr-Gly-Ser-Asp-Val-Gly-Lys-Ser

La séquence NH2-terminale de la protéine COBQ (figure 47) correspond exactement à cette séquence, si ce n'est que dans la séquence présentée sur la figure 47, une méthionine précède la séquence peptidique déterminée par séquençage direct. Il en résulte que la

méthionine aminoterminale est certainement excisée in vivo par la méthionine aminopeptidase (Ben Bassat et Bauer, 1987). Le poids moléculaire de la cobyric acid synthase purifiée est estimé par électrophorèse PAGE-SDS à 57 000. La protéine COBQ a un poids moléculaire déduit de sa séquence de 52 000 (figure 47). Les correspondances entre les séquences NH2-terminales et les poids moléculaires indiquent clairement que la protéine COBQ correspond à la cobyric acid synthase. Le gène cobQ est le gène de structure de la cobyric acid synthase.

- 6.1.9. Identification de la protéine COBO codée par le gène cobO.
 - a) dosage de l'activité cob(I)alamin adenosyltransferase (EC 2.5.1.17).

Cet exemple illustre le dosage d'une activité enzymatique directement liée à la voie de biosynthèse des cobalamines. Il s'agit de la cob(I)alamin adenosyltransferase (EC 2.5.1.17). Cette enzyme a été mise en évidence dans les cellules bactériennes (Ohta et al., 1976, Brady et al., 1962) et animales (Fenton et al. 1978). Elle a été purifié à partir de Clostridium tetanomorphum (Vitols et al., 1966).

Les fractions contenant l'activité cob(I)alamin 20 adenosyltransferase (environ 20 unités) sont incubées de façon anaérobie à 30°C durant 15 min à l'abri de la lumière dans 1 ml de tampon Tris/HCl 0.2 M pH 8.0 en présence de 5 mM DTT, 400 µM [8-14C] ATP (2.5 µCi/µmol) , 800 µM MnCl2, 50 µM hydroxocobalamine ou diaquacobinamide et 3 mg KBH4. La réaction est ensuite stoppée par chauffage à 80°C durant 10 min et, après centrifugation à 15000 x g durant 5 min, 200 µl de surnageant sont analysés par CLHP (Gimsing

L'unité d'activité enzymatique est définie comme la quantité d'enzyme nécessaire pour générer 1 nmol d'adénosylcorrinoide par min dans ces conditions.

b) Purification de l'activité cob(I)alamin adenosyltransferase.

et al., 1986, Jacobsen et al., 1986).

30

WO 91/11518 PCT/FR91/00054

A partir du dosage décrit à l'exemple 6.1.9 a), la purification de la cob(I)alamin adenosyltransferase de Pseudomonas denitrificans est réalisée comme décrit çi-dessous.

Dans une expérience typique de purification, 10 g de cellules humides de la souche SC510 Rifr dans laquelle le gène cob0 a été amplifié sont suspendues dans 20 ml de tampon Tris-HCl 0.2 M pH 8.0 et soniquées durant 40 min à 4°C. L'extrait brut est ensuite récupéré par centrifugation durant 1 h à 50 000 x g et dessalé sur colonnes PD10 (Pharmacia) équilibrées avec du tampon 50 mM Tris-HCl pH 8.0, 5 mM 10 DTT (tampon A). La solution protéique est ensuite fractionnée (280 mg de protéines à chaque chromatographie) sur une colonne Mono Q HR 10/10 (Pharmacia) à l'aide d'un gradient de 0 à 0.5 M KCL dans le tampon A, puis les fractions contenant l'activité sont poolées, concentrées par ultrafiltration et chromatographiées sur une colonne 15 de Phenyl-Superose HR 10/10 (Pharmacia) dans un gradient linéaire décroissant de sulfate d'ammonium (de 1,7 à 0 M), la colonne étant équilibrée dans le tampon 0.1 M Tris-HCl pH 8.0, 5 mM DTT. Pour parfaire la purification, la protéine est finalement chromatographiée, après concentration par ultrafiltration, sur une colonne Bio-Sil 250 20 (Bio-Rad) éluée avec le tampon 50 mM Tris-HCl pH 7.5, 0.1 M NaCl, 5 mM DTT.

Après cette étape, l'enzyme est pure à plus de 95%. Elle ne présente aucune protéine contaminante en PAGE-SDS. Son poids moléculaire dans cette technique est de 28 000. Ce degré de pureté est confirmé par l'unicité de la séquence NH2-terminale. Les différentes étapes de purification de la cob(I) alamin adenosyltransferase, avec leur facteur de purification et leur rendement sont portées sur le tableau ci-dessous pour les deux substrats suivants: diaquacobinamide (a) et hydroxocobalamine (b). Ces résultats démontrent l'absence de spécificité de cette enzyme pour la nature du substrat corrinoide. D'autre part, tous les corrinoides de la voie de biosynthèse entre l'acide cobyrinique diamide et la B12 ont été isolés (Blanche et al., résultats non publiés) sous leur forme native, et se sont révélés être sous forme coenzyme. Ceci démontre que le substrat naturel

de la cob(I)alamin adenosyltransferase est l'acide cobyrinique a,c-diamide.

Tableau: Purification de la cob(I)alamin adenosyltransferase.

5	Etape de purification	vol (ml)	Protéines (mg)	Activité spé. U/mg a b A B	a Rendement	Facteur de
	c Extrait brut	100	1400	5.4 / 3.4	· •	-
10	MonoQ 10/10	90	140	34.9 / 14.1	65	6.5
	·					
	Phényl-Superose	30	15.9	84.5 / 49.5	. 18	16
	Bio-Sil 250	6.5	2.9	182.4/ 88.7	7.0	34
,				: : : :		

c/ après dessalage sur PD10

c) Séquence NH2-terminale de la cob(I)alamin adenosyltransferase 15 de Pseudomonas denitrificans et identification du gène de structure de Pseudomonas denitrificans codant pour cette activité.

La séquence NH2-terminale de la cob(I)alamin adenosyltransferase de Pseudomonas denitrificans purifiée comme décrit à l'exemple 6.1.9 b) a été déterminée comme décrit précédemment. 13 résidus ont été 20 identifiés:

Ser-Asp-Glu-Thr-?-Val-Gly-Gly-Glu-Ala-Pro-Ala-Lys-Lys

La séquence NH2-terminale de la protéine COBO (figure 47) correspond exactement à la séquence NH2-terminale de la cob(I)alamin adenosyltransferase, si ce n'est que dans la séquence présentée sur la figure 47, une méthionine précède la séquence peptidique déterminée par séquençage direct. Il en résulte que la méthionine aminoterminale est certainement excisée in vivo par la

méthionine aminopeptidase (Ben Bassat et Bauer, 1987). Le poids moléculaire đе la cob(I)alamin adenosyltransferase purifiée est estimé par électrophorèse PAGE-SDS à 28 000. protéine COBO a un poids moléculaire déduit de sa séquence de 24 000 (figure 47). Les correspondances entre les séquences NH2-terminales et les poids moléculaires indiquent clairement que la protéine COBO correspond à la cob(I)alamin adenosyltransferase . Le gène cob0 est le gène de structure de la cob(I)alamin adenosyltransferase.

- 6.1.10. Identification de la protéine COBN codée par le gène 10 cobN.
 - a) Mise en évidence de l'activité de transformation de l'acide hydrogenobyrinique a,c-diamide en acide cobyrinique a,c-diamide.
- Cet exemple illustre la mise en évidence d'une activité enzymatique directement liée à la voie de biosynthèse des cobalamines qui n'a jusqu'à ce jour jamais été décrite. Il s'agit de l'activité de transformation de l'acide hydrogenobyrinique a,c-diamide en acide cobyrinique a,c-diamide.
 - Cette activité est mise en évidence, entre autres, par l'expérience typique suivante. Un extrait brut de la souche SC510 Rifr est obtenu par sonication de 10 g de cellules humides dans 20 ml de tampon Tris/HCl 0.2 M pH 8.0, puis élimination des débris cellulaires centrifugation durant 1 h à 50 000 x g. 1000 mg de protéines de cet extrait sont incubés 1 h à 30 °C avec de l'acide hydrogénobyrinique diamide marqué au carbone 14 (32 nmol; 50 µCi/µmol) dans 40 ml de tampon Tris/HCl 0.2 M pH 8.0 contenant 7 mM ATP, 200 µM CoCl2 . La réaction est arrêtée par addition de 7.5 ml KH2PO4 1M et 6 ml KCN 0.3 suivi du chauffage pendant 10 min à 80 *C. Après centrifugation à 15000 x g durant 15 min, l'analyse CLHP du surnageant montre: (1) la formation durant l'incubation de 19.2 nmol d'acide cobyrinique a,c-diamide ayant la même radioactivité spécifique que l'acide hydrogénobyrinique a,c-diamide de départ et (2) la disparition

d'une quantité correspondante de ce dernier. Pour confirmer qu'il s'agit bien d'acide cobyrinique a,c-diamide, le produit est purifié par CLHP puis estérifié dans du méthanol contenant 5% d'acide sulfurique (18h, 20°C). L'authenticité de l'ester pentaméthylique l'acide cobyrinique a,c-diamide produit est démontré par TLC (par rapport à un échantillon de référence) jet spectrométrie de masse. dans des conditions similaires d'incubation Notons radioactif marquage est introduit non pas dans l'acide hydrogénobyrinique a,c-diamide mais dans le cobalt (en utilisant 10 le cobalt 57), de l'acide cobyrinique a,c-diamide marqué au cobalt 57 est biosynthétisé et les mêmes conclusions ont pu être tirées. L'acide hydrogénobyrinique a, c-diamide marqué au carbone 14 est obtenu de la manière suivante: l'acide hydrogénobyrinique est biosynthétisé in vitro en utilisant le [methyl-14C]SAM puis transformé en acide 15 hydrogénobyrinique a,c-diamide et purifié par CLHP comme décrit à l'exemple 6.1.2.

Cette étude démontre que l'insertion du cobalt a lieu au niveau de l'acide hydrogénobyrinique a,c-diamide chez P.denitrificans. Dans les conditions décrites, l'acide hydrogénobyrinique n'est pas substrat de la chélation enzymatique par le cobalt.

b) Dosage et purification d'une protéine de la souche SC510 Rifr impliquée dans la transformation de l'acide hydrogenobyrinique a,c-diamide en acide cobyrinique a,c-diamide.

La fraction à doser (0.5 à 2 unités) est incubée pendant 60 min à 30

C avec 50 µl d'extrait brut de la souche SC510 Rifr obtenu comme décrit ci-dessus, 7 mM ATP, 200 µM CoCl2, 7 µM acide hydrogénobyrinique a,c-diamide marqué au carbone 14 (50 µCi/µmol) dans 400 µl de tampon Tris/HCL 0.1 M pH 8.0. La réaction est arrêtée par addition de 75 µl KH2PO4 1 M et 60 µl KCN 0.3 M, puis chauffage pendant 10 min à 80°C. Après centrifugation à 15000 x g durant 15 min, le surnageant est analysé par CLHP, pour quantifier l'acide cobyrinique a,c-diamide formé (Cf exemple 9). L'unité d'activité enzymatique est définie comme la quantité d'enzyme nécessaire pour

WO 91/11518 PCT/FR91/00054

94

générer 1 nmol d'acide cobyrinique a,c-diamide par h dans ces conditions. Dans ces conditions, il apparaît que les extraits de la souche SC510 Rifr dans laquelle on a introduit le plasmide pXL1909 (voir exemple 4.5.2) présentent une activité entre 20 et 50 fois plus élevée que les extraits de la souche SC510 Rifr. C'est sur cette base qu'est purifiée une protéine, seule responsable de cette amplification d'activité.

Dans une expérience typique de purification, 10 g de cellules humides de laquelle on a introduit le plasmide la souche SC510 Rifr dans pXL1909 sont suspendues dans 20 ml de tampon Tris/HCl 0.2 M pH 8.0 et soniquées durant 30 min à 4°C. L'extrait brut est ensuite récupéré par centrifugation durant 1 h à 50 000 x g et dessalé sur colonnes PD10 (Pharmacia) équilibrées avec du tampon 0.1 M Tris/HCl (tampon A). La solution protéique est ensuite fractionnée (213 mg de protéines à chaque chromatographie) sur une colonne Mono Q HR 10/10 (Pharmacia) à l'aide d'un gradient de 0 à 0.5 M KCL dans le tampon A, puis les fractions contenant l'activité sont poolées, concentrées par ultrafiltration, dessalées sur colonnes PD10 (Pharmacia) équilibrées Tris/HCl tampon 0.1 M рН 7.2 (tampon chromatographiées sur une colonne Mono Q HR 10/10 (Pharmacia) à l'aide d'un gradient de 0 à 0.5 M KCL dans le tampon B. Les fractions contenant l'activité sont poolées, concentrées par ultrafiltration, dessalées sur colonnes PD10 (Pharmacia) équilibrées avec В, et chromatographiées sur une colonne Mono Q HR 5/5 (Pharmacia) à l'aide d'un gradient de 0 à 0.5 M KCL dans le tampon B. Pour parfaire la purification, la protéine est finalement une colonne Bio-Sil 250 (Bio-Rad) éluée avec chromatographiée sur 20 mM potassium phosphate-50 mM sodium sulfate, pH 6.8. Après cette étape, l'enzyme est pure à plus de 95%. Elle ne présente aucune protéine contaminante en PAGE-SDS. Son poids moléculaire dans cette technique est de 135 000. Ce degré de pureté est confirmé par l'unicité de la séquence NH2-terminale. Les différentes étapes de

purification de la protéine de la souche SC510 Rifr impliquée dans la transformation de l'acide hydrogenobyrinique a,c-diamide en acide

20

25

30

cobyrinique a,c-diamide, avec leur facteur de purification et leur rendement sont portées sur le tableau ci-dessous.

Tableau: Purification d'une protéine de la souche SC510 Rifr impliquée dans la transformation de l'acide hydrogenobyrinique 5 a,c-diamide en acide cobyrinique a,c-diamide.

10	Etape de vol		Protéines (mg)	Activité spé. (u/mg de protéines)	Rendement	Facteur de purification ¹
	Extrait brut	31.5	1278	0.23	•	-
	MonoQ 10/10	44	79.2	2.4	64	10
	MonoQ 10/10	21	33.6	6.8	78	30
•	MonoQ 5/5	3	6.6	16.0	36	70
15	Bio-Sil 250	1.8	5.9	16.3	33	71

c) Séquence NH2-terminale de la protéine impliquée dans la transformation de l'acide hydrogenobyrinique a,c-diamide en acide cobyrinique a,c-diamide de Pseudomonas denitrificans et identification du gène de structure de Pseudomonas denitrificans codant pour cette activité.

La séquence NH2-terminale de cette protêine purifiée comme décrit à l'exemple 6.1.10b) a été déterminée comme décrit précédemment. Six résidus ont été identifiés:

His-Leu-Leu-Ala-Gln

La séquence NH2-terminale de la protéine COBN (figure 47) correspond exactement à la séquence NH2-terminale de la protéine purifiée, si ce n'est que dans la séquence présentée sur la figure 47, une méthionine précède la séquence peptidique déterminée par séquençage direct. Il en résulte que la méthionine aminoterminale

est certainement excisée in vivo par la méthionine aminopeptidase (Ben Bassat et Bauer, 1987). Le poids moléculaire de la protéine purifiée est estimé par électrophorèse PAGE-SDS à 135 000. La protéine COBN a un poids moléculaire déduit de sa séquence de 138 000 (figure 47). Les correspondances entre les séquences NH2-terminales et les poids moléculaires indiquent clairement que la protéine COBN correspond à la protéine impliquée dans la transformation de l'acide hydrogenobyrinique a,c-diamide en acide cobyrinique a,c-diamide. Le gène cobN est donc le gène de structure de cette protéine.

- 10 6.1.11. Identification de la protéine COBP codée par le gène CobP.
 - a) Dosage de l'activité cobinamide kinase.

Cet exemple illustre le dosage d'une activité enzymatique de la voie de biosynthèse des cobalamines qui n'a jusqu'à ce jour jamais été étudiée. Il s'agit de l'activité cobinamide kinase. Elle catalyse la phosphorylation ATP-dépendante du groupement hydroxyl du résidu (R)-1-amino-2-propanol du Ado-cobinamide pour générer le cobinamide phosphate.

La fraction à doser est incubée à l'obscurité à 30°C pendant 60 min 20 dans 500 µl de tampon 0.1 M Tris-HCl pH 8.8 contenant 1 mM EDTA, 1 mM ATP, 2.5 mM MgCl2, et 16 µM Ado-cobinamide (Blanche et al., 1989). La réaction est stoppée en ajoutant 500 µl d'une solution aqueuse 20 mM de cyanure de potassium. Après chauffage à 80°C durant 10 min et centrifugation à 5000 x g durant 10 min, le cobinamide phosphate formé présent dans le surnageant est dosé par CLHP (Cf exemple 9) en utilisant le gradient linéaire simplifié suivant: de 25% à 30% de B dans A en 15 min, puis 30% à 100% de B en 12 min, et 3 min à 100% de B.

L'unité d'activité est définie comme la quantité d'enzyme necessaire 30 pour générer 1 nmol de cobinamide phosphate à partir du cobinamide par h dans ces conditions.

b) Dosage de l'activité cobinamide phosphate guanylyltransferase.

Cet exemple illustre le dosage d'une activité enzymatique de la voie de biosynthèse des cobalamines qui n'a jusqu'à ce jour jamais été étudiée. Il s'agit de l'activité cobinamide phosphate guanylyltransferase. Elle catalyse l'addition de la partie GMP d'une molécule de GTP sur l'Ado-cobinamide phosphate, générant ainsi une molécule de GDP-cobinamide et libérant une molécule de pyrophosphate.

Cette activité est dosée dans les mêmes conditions que la cobinamide lo kinase si ce n'est que l'Ado-cobinamide phosphate (16 µM)(Blanche et al., 1989) et le GTP (2 mM) remplacent l'Ado-cobinamide et l'ATP respectivement, durant l'incubation.

L'unité d'activité est définie comme la quantité d'enzyme necessaire pour générer 1 nmol de GDP-cobinamide à partir du cobinamide phosphate par h dans ces conditions.

c) Purification de la cobinamide kinase.

A partir du dosage décrit à l'exemple 6.1.11a), la purification de la cobinamide kinase de Pseudomoñas denitrificans est réalisée comme décrit çi-dessous.

Dans une expérience typique de purification, 5 g de cellules humides de SC510 Rifr dans laquelle on a introduit le plasmide pXL623 (voir exemple 4.5.2) sont soniqués dans 20 ml de tampon Tris 0.1 M pH 7.6 (tampon A). Après centrifugation (50 000 x g durant 1 h) et dialyse 4 h contre le tampon A, 4.5 ml du rétentat sont injectés sur Mono Q HR 10/10 (Pharmacia), équilibrée avec le tampon A. Les protéines sont éluées avec un gradient linéaire de 0.4 M NaCl et les fractions actives regroupées sont passées à travers une colonne de PD-10 (Pharmacia) équilibrée dans du Tris-HCl 30 mM-phosphate de potassium 5 mM-chlorure de calcium 5 µM pH 7.6 (tampon B). La solution protéique est fractionnée sur une colonne Bio-Gel HPHT (Bio-Rad), equilibrée dans le tampon B et éluée avec un gradient de 5 à 350 mM de phosphate de

potassium. Les fractions actives sont regroupées et amenées à 500 mM en sulfate d'ammonium, puis fractionnées sur une Phényl-Superose HR 5/5 (Pharmacia), éluée avec un gradient décroissant de sulfate la fraction contenant l'activité est d'ammonium. sur une colonne Mono Q HR 5/5 dans le Tris-HCl à pH 7.3. repurifiée Après cette étape, la protéine est pure à plus de 97%. présente aucune protéine contaminante en PAGE-SDS. Cette pureté est confirmée par l'unicité de la séquence NH2-terminale. Son poids moléculaire dans cette technique est de 20 000. Les différentes étapes de purification de la cobinamide kinase avec leur facteur de purification et leur rendement sont portées sur le tableau A.

l'activité cobinamide kinase présentent fractions contenant aussi l'activité cobinamide phosphate guanylyltransferase. D'autre part, comme le montrent les résultats présentés dans le tableau çi-dessus, le 15 ratio de ces deux activités reste constant dans les fractions tout de la purification. Enfin, la protéine purifiée présente un très haut degré de pureté dépassant les 97%. L'ensemble de ces résultats indiquent donc sans ambiguité qu'une seule et même protéine est responsable des deux activités successives que sont cobinamide kinase et la cobinamide phosphate guanylyltransferase de voie dе biosynthèse des cobalamines chez Pseudomonas denitrificans.

cobinamide kinase-cobinamide d) Séguence NH2-terminale đе la guanylyltransferase de Pseudomonas denitrificans phosphate identification du gène de structure de Pseudomonas denitrificans codant 25 pour cette activité.

cobinamide NH2-terminale de la kinase-cobinamide phosphate guanylyltransferase de Pseudomonas denitrificans a été déterminée comme décrit précédemment. Dix résidus ont été identifiés:

25

30

La NH2-terminale de la protéine COBP (figure 47) correspond exactement à cette séquence, si ce n'est que dans la séquence présentée sur la figure 47, une méthionine précède la séquence peptidique déterminée par séquençage direct. Il en résulte que la méthionine aminoterminale est certainement excisée in vivo par la méthionine aminopeptidase (Ben Bassat et Bauer, 1987). moléculaire de la cobinamide kinase-cobinamide phosphate guanylyltransferase purifiée est estimé par électrophorèse PAGE-SDS La protéine COBP a un poids moléculaire déduit de sa à 20 000. 10 19 500 (figure 47). Les correspondances entre les séquence de séquences NH2-terminales et les poids moléculaires indiquent clairement que la protéine COBP correspond à la kinase-cobinamide phosphate guanylyltransferase. Le gène cobP est le gène de structure de la cobinamide kinase-cobinamide 15 guanylyltransferase.

6.2 - Détermination des propriétés de protéines COB par mesures d'intermédiaires de biosynthèse accumulés

1.2

Cet exemple illustre comment il est possible d'attribuer à une protéine COB de <u>Pseudomonas</u> <u>denitrificans</u> une activité enzymatique. Cette activité est attribuée d'après des données obtenues concernant les intermédiaires de biosynthèse accumulés chez le ou les mutants Cob bloqués dans l'étape en question. En effet si un mutant accumule un intermédiaire de biosynthèse, il est très probable que ce mutant est bloqué dans l'étape qui a pour substrat l'intermédiaire en question.

6.2.1. Propriétés des protéines COBC et COBD

Les mutants Cob G643 (<u>Agrobacterium tumefaciens</u>) et G572 (<u>Pseudomonas putida</u>) déjà décrits dans les exemples 1 et 4 sont bloqués dans l'étape correspondant à la protéine COBC. En effet ces deux mutants ne sont pas complémentés par les insertions inactivantes de transposons Tn5 qui se trouvent dans le gène <u>cobC</u>. Les deux souches G643 et G572, ainsi que les souches parentes non mutées [C58-C9 Rif^r et KT 2440 Rif^r (Cameron et <u>al</u>., 1989)] ont été cultivées en milieu

WO 91/11518 PCT/FR91/00054

5

10

15

20

25

30

35

100

PS4' pour les A.tumefaciens, et PS4'' pour les P.putida (PS4' et PS4'' correspondent à du milieu PS4 contenant respectivement 100 et 1000 fois moins de cobalt que le PS4 décrit précédemment) 3 jours comme cela est décrit ci-dessus. Du 57CoCl₂ a été ajouté aux cultures (2,5 $\mu Ci/0,1$ une culture de 25 ml). Les μm pour intracellulaires ont été isolés sous leur forme native et identifiés par leur comportement CLHP. Les souches parentes n'accumulent pas de corrinoïdes autres que du coenzyme B₁₂. Les deux mutants, G643 et G572, accumulent de l'acide cobyrique adénosylé dans des proportions respectives de 11 % et 6 %. Ces proportions en % sont calculées par rapport au niveau de coenzyme B₁₂ synthétisé par la souche parente. Outre l'acide cobyrique, le mutant G643 accumule de l'acide cobyrinique pentaamide dans une proportion de 2 %; l'acide cobyrinique pentaamide est l'intermédiaire qui précède l'acide cobyrique. L'étude de ces mutants fait ressortir qu'ils sont bloqués après l'acide cobyrique. Tous ces mutants Cob sont soit bloqués entre l'uro'gen III et le cobinamide, soit entre le cobinamide et les cobalamines. Les mutants G643 et G572 sont bloqués entre l'uro'gen III et le cobinamide. Or si ces mutants sont bloqués avant le cobinamide et accumulent tous les deux de l'acide cobyrique, les protéines pour lesquelles ils codent ne peuvent intervenir que dans l'étape enzymatique (appelée cobinamide synthase) qui catalyse l'amidation de l'acide cobyrique par un résidu aminopropanol pour donner cobinamide; elles peuvent aussi éventuellement intervenir dans la synthèse du substrat de la réaction qui apporte l'aminopropanol, si ce n'est l'aminopropanol lui-même. Le gène cobC code pour une protéine qui est soit la cobinamide synthase, soit une de ses sous-unités.

Le mutant Cob G634 d'<u>Agrobacterium tumefaciens</u> qui est bloqué dans l'étape correspondant au gène <u>cobD</u> a été analysé de la même manière. Ce mutant n'est pas complémenté par les insertions inactivationnelles dans le gène <u>cobD</u> (exemple 4.1). Le seul corrinoïde intracellulaire trouvé chez ce mutant est de l'acide cobyrique adénosylé. Comme les mutants précédents, ce mutant code pour une protéine intervenant dans la transformation de l'acide cobyrique en cobinamide ou bien éventuellement dans la synthèse de l'autre substrat

10

15

de la réaction.

Ces deux gènes différents (<u>cobC</u> et <u>cobD</u>) codent pour deux protéines qui interviennent dans la même étape.

6.2.2. Propriétés des protéines COBF à COBM

Les mutants d'Agrobacterium tumefaciens déjà décrits dont on connaît, d'après l'étude décrite à l'exemple 4.2, dans quels gènes chacun d'entre eux est bloqué, ont été étudiés. Ce sont les mutants : G612 (cobF), G615 (cobG), G616 (cobH), G613 (cobI), G611 (cobJ), G620 (cobK), G638 (cobL) et G609 (cobM) ; nous avons figuré entre parenthèses le gène de Psèudomonas denitrificans responsable de la complémentation de ces mutants (exemple 5) qui correspond donc au gène muté chez ce mutant. Ces mutants ont été cultivés en milieu PS4 comme cela est décrit précédemment avec du cobalt marqué. Après quatre jours d'incubation, les mutants ont été analysés pour leur contenu intracellulaire en corrinoïdes et descobaltocorrinoïdes (Cf exemples 6.1.2 et 9).

<u>Tableau</u>: Intermédiaires accumulés par des mutants d'<u>Agrobacterium tumefaciens</u> bloqués dans les gènes du fragment 8,7 kb de <u>Pseudomonas</u> denitrificans

20

25

•	'p Souches		ltocorrino Llulaires		Corrinoïdes intracellulaires en % des cobalamines	Gène muté
		HAB	НАВМ	HABD		
	C58-C9*	100	100	100	coenzyme B ₁₂ 100	-
5	G612	< 5	< 5	64	cobinamide 2,2 coenzyme B ₁₂ 34	cobF
	G615	< 5	< 5	84	coenzyme B ₁₂ 17	<u>cobG</u>
	G616	35	< 10	< 10	coenzyme B ₁₂ 13	соън
	G613	< 5	< 5	57	coenzyme B ₁₂ <1	<u>cobI</u>
	G611	< 5	< 5	65	coenzyme B ₁₂ <1	cobJ
10	G620	12	< 5	< 10	coenzyme B ₁₂ <1	<u>cobK</u>
	G638	< 5	< 5	47	coenzyme B ₁₂ <1	cobL
	G609	< 5	< 5	33	coenzyme B ₁₂ <1	cobM

HAB : acide hydrogénobyrinique

HABM : acide hydrogénobyrinique monoamide

HABD : acide hydrogénobyrinique diamide

* en fait il s'agit de la souche C58-C9 Rif Nal déjà décrite (Cameron et al., 1989)

¹les valeurs sont exprimées en % des mêmes intermédiaires accumulés chez la souche parente non mutée C58-C9 Rif^rNal^r.

Ces résultats montrent que tous les mutants n'accumulent aucun corrinoïde (à l'exception du mutant inactivé dans le gène cobF, G612, qui lui, accumule du cobinamide mais à un niveau faible équivalent à 2,2 % des cobalamines synthétisées par la souche non mutée). Toutefois, certains mutants (G612, G615 et G616) ont des niveaux de cobalamines qui représentent plus de 10 % du niveau de cobalamines de la souche parente. Il est probable que tous ces mutants sont bloqués au moins avant l'acide cobyrinique diamide. Tous ces mutants accumulent de l'acide hydrogénobyrinique et de l'acide hydrogénobyrinique diamide en quantités inférieures à la souche non

15

20

25

30

ils sont donc très probablement bloqués avant l'acide hydrogénobyrinique. Nous pouvons conclure que tous les gènes cobf à cobG codent pour des protéines qui interviennent avant l'acide hydrogénobyrinique. On sait que le mutant G613 est muté dans le gène cobI qui code pour la SP2MT, intervenant bien avant l'acide hydrogénobyrinique. Pour ce mutant, les résultats du présent exemple, concernant l'accumulation d'intermédiaires, sont en parfait accord avec l'étape inactivée chez ce mutant, à savoir que ce mutant n'accumule aucun intermédiaire après l'acide hydrogénobyrinique à un niveau supérieur à ce que l'on observe avec la souche non mutée. Ce résultat est pour les gènes cobf, cobJ, cobL et cobM cohérent avec ceux de l'exemple 6.4 où il est proposé que ces gènes codent pour des protéines qui catalysent des transferts de méthyl SAM dépendants et donc qui interviennent avant l'acide hydrogénobyrinique. A l'exception de <u>cobl</u> qui est le gène de structure de la SP₂MT ces gènes interviennent après le précorrine-3. En effet comme ce ne sont ni les gènes de structure de la SUMT et de la SP₂MT ils interviennent forcément après, c'est-à-dire après le précorrine-3 (tous les gènes cob décrits dans la présente invention interviennent entre l'uro'gen III et les cobalamines). Ces gènes cobF à cobH et cobJ à cobM codent pour des enzymes qui interviennent entre le précorrine-3 et l'acide hydrogénobyrinique.

6.2.3. Propriétés des protéines COBS et COBT

Le mutant G2035 décrit dans les exemples 1 et 4.3 est bloqué dans l'étape correspondant à la protéine COBS. Le mutant G2037 décrit dans l'exemple 1 est bloqué dans l'étape correspondant à la protéine COBT. Ces souches ainsi que la souche parente (Agrobacterium tumefaciens C58C9Rifr) sont cultivées en milieu PS4' (il s'agit du milieu PS4 où la concentration en chlorure de cobalt est 100 fois plus faible que dans le milieu PS4) en présence de cobalt radioactif 57CoCl2 pendant 3 jours, leur contenu intracellulaire en descobaltocorrinoïdes est analysé ainsi que le contenu en corrinoïdes, comme cela a déjà été décrit ci-dessus (Cf exemple 6.2.2). Les souches

10

15

20

25

30

et G2037 n'accumulent pas de corrinoïdes et de larges concentrations (supérieures à celles observées avec la souche parente) en acide hydrogénobyrinique et acide hydrogénobyrinique mono et diamide ne sont présentes qu'avec la souche G2035. Ce mutant est probablement bloqué dans une étape située après hydrogénobyrinique diamide et avant l'acide cobyrinique diamide. Par conséquent le gène cobS coderait pour une des enzymes impliquées dans la transformation de l'acide hydrogénobyrinique diamide en acide cobyrinique diamide; cette protéine peut donc intervenir soit dans l'insertion du cobalt, soit dans la réduction du cobalt de l'acide cobyrinique a,c-diamide non adénosylé. Par contre, le mutant G2037 serait bloqué dans une étape située en amont de l'acide hydrogénobyrinique. Le gène cobT coderait pour une protéine impliquée dans une étape enzymatique en amont de l'acide hydrogénobyrinique et en aval du précorrine-3 (d'autres gènes de structure codant pour les enzymes impliqués en aval du précorrine-3 ont déjà été identifiés). Une autre possibilité pour la protéine COBT est qu'elle intervienne, comme cela est proposé à l'exemple 5, comme protéine liant le cobalt, et/ou comme protéine qui interagit avec d'autre(s) protéine(s) par sa partie acide.

6.2.4. Propriétés de la protéine COBV

Les mutants G2039 et G2040 décrits dans les exemples 1 et 4.4 sont bloqués dans l'étape correspondant à la protéine COBV. Ces souches ainsi que la souche parente sont cultivées en milieu PS4' pendant 3 jours en présence de cobalt radioactif 57CoCl2, puis leur contenu intracellulaire en descobaltocorrinoïdes est analysé et le contenu en corrinoïdes est déterminé, comme cela est décrit dans l'exemple 9. Les souches G2039 et G2040 accumulent de l'acide cobyrique, du cobinamide, du cobinamide phophate et du GDP-cobinamide. Ces mutants sont probablement bloqués dans une étape enzymatique en aval de la GDP-cobinamide. Le gène cobV coderait pour une enzyme impliquée dans la transformation de la GDP-cobinamide en cobalamine, voir figure 5. Ce résultat est en parfait accord avec l'activité

10

15

20

25

30

cobalamin (5'-phosphate) synthase de la protéine COBV qui possède l'Ado-GDP-cobinamide comme substrat.

6.3 - Détermination de l'activité de protéines COB par études d'affinité vis-à-vis du SAM

Cet exemple illustre comment il est possible, à partir de protéines COB purifiées de <u>Pseudomonas denitrificans</u>, de mettre en évidence <u>in vitro</u> une activité de fixation du SAM. Si une protéine COB possède une telle activité, cela signifie que cette protéine COB est une méthyltransférase de la voie et qu'elle intervient dans un des transferts des huit groupements méthyl qui se produisent entre l'uro'gen III et l'acide cobyrinique.

6.3.1. Test d'affinité pour le SAM sur une protéine purifiée

Le test repose sur le principe suivant lequel les méthyltransférases de la voie de biosynthèse des cobalamines ont certainement un site de fixation du SAM. Ce site doit être mis en évidence par une affinité du SAM plus élevée que pour toute protéine qui ne fixe pas le SAM spécifiquement. Après incubation de la protéine à étudier en présence d'un excès de SAM radioactif, celle-ci est séparée du SAM libre par une chromatographie de perméation de gel. La radioactivité retrouvée dans la fraction du poids moléculaire de la protéine correspond au SAM fixé durant l'incubation. La chromatographie est effectuée à 2°C pour limiter au maximum la libération du SAM lié durant la séparation.

La protéine (environ 10 µg) est incubée durant 10 minutes à 30 °C dans 200 µl de Tris-HCl 0,1 M pH 7,7 avec 5 nmoles de [méthyl-3H]-SAM (1 µCi). Après incubation, 100 µl du mélange sont immédiatement injectés sur une colonne de TSK-125 (Bio-Rad) éluée à 1 ml/minute avec le mélange de sulfate de sodium 50 mM/dihydrogénophosphate de sodium 20 mM pH 6,8 préconisé par le distributeur de cette colonne. Des fractions de 0,5 ml sont collectées et comptées en scintillation liquide. Les temps de rétention de la protéine et du SAM sont obtenus directement d'après l'enregistrement

WO 91/11518. PCT/FR91/00054

106

de l'absorbance de l'éluat à 280 nm.

5

10

1-5

20

25

6.3.2. Etude <u>in vitro</u> de la fixation du SAM sur les protéines COBA et COBF de <u>Pseudomonas denitrificans</u>

a) Purification des protéines COBF et COBA

La protéine COBF de <u>Pseudomonas denitrificans</u> est purifiée comme cela est décrit ci-après. Dans une expérience typique de purification, 5 g de cellules humides de la souche SC150 Rif^rdans laquelle a été introduit le plasmide pXL1546 (voir ex.7.3) obtenues après culture en milieu PS4 sont resuspendues dans 30 ml de Tris-HCl 0,1 M pH 7,7 et soniquées durant 15 minutes à 4°C. L'extrait brut est ensuite récupéré par centrifugation 1 heure à 50 000 g et le surnageant est passé sur une colonne de DEAE-Sephadex (1 ml de gel) pour éliminer les composés tétrapyrroliques présents. 10 mg de protéines (0,7 ml) de cet extrait sont ensuite injectés sur une colonne de MonoQ HR 5/5 équilibrée avec le même tampon. Les protéines sont éluées avec un gradient linéaire de KCl (0 à 0,25 M). La protéine COBF est éluée avec 0,20 M de KCl. Elle est diluée deux fois avec du Tris-HCl 0,1 M pH 7,7 et purifiée une seconde fois sur une MonoQ HR 5/5. L'électrophorèse en PAGE-SDS avec révélation au bleu de Comassie est utilisée pour visualiser la protéine. Cette technique montre d'autre part que COBF est d'une pureté de 95 % environ après cette étape de purification. La séquence NH_2 -terminale de la protéine purifiée a été réalisée comme cela est décrit précédemment . Deux séquences NH2-terminales apparaissent en même temps sur chaque cycle de dégradation; ce sont les séquences suivantes dans les proportions indiquées :

Séquence 1 (34 % d'abondance)

1 2 3 4 5 6 7 8 9 10 11

Ala Glu Ala Gly Met Arg Lys Ile Leu Ile Ile

30 <u>Séquence 2</u> (66 % d'abondance)

1 2 3 4 5 6 7 8 9 10 11

Met Arg Lys Ile Leu Ile Ile Gly Ile Gly Ser

La séquence 1 correspond à la séquence NH₂-terminale de la protéine COBF qui est donnée sur la figure 16, si ce n'est que la

107

méthionine aminoterminale est excisée suivant des règles déjà énoncées (Hirel et al., 1989) par la méthionine aminopeptidase (Ben Bassat et Bauer, 1989). La séquence 2, présente en quantité la plus importante, correspond à la même protéine mais dont l'initiation de traduction se serait faite non pas au codon ATG d'initiation de la traduction que nous avions supposé, mais à celui situé 5 codons en aval sur la phase codante (figure 16). En effet les acides aminés de cette séquence sont exactement ceux que l'on trouve sur la séquence de la protéine COBF à partir de la deuxième méthionine (acide aminé n° 6) de cette séquence (figure 16). Dans ce cas la méthionine aminoterminale n'est pas excisée ce qui confirme les règles déjà énoncées (Hirel et al., 1989). Il y a chez la souche SC510 Rif portant le plasmide pXL1546, deux initiations de traduction, d'une part celle correspondant au codon méthionine positionné à la bonne distance, sur notre construction, de la séquence de Shine et Delgarno et d'autre part celle qui se fait au deuxième codon méthionine se trouvant sur la séquence du gène cobF présenté à la figure 16. De cela, il ressort que probablement la protéine COBF commence non pas à la méthionine indiquée sur la figure 16 mais à celle se trouvant 5 acides aminés plus loin.

De toute manière, ce résultat montre qu'il s'agit bien de la protéine COBF qui est exprimée et que celle-ci est exprimée avec une forme allongée de 4 acides aminés. Lors de la purification les deux formes protéiques sont purifiées. Dans cet exemple, nous appellerons protéine COBF purifiée le mélange de ces deux protéines purifiées.

La protéine COBA de <u>Pseudomonas deritrificans</u> est purifiée comme cela est décrit précédemment (Blanche et <u>al.</u>, 1989).

b) Fixation du SAM

10

15

20

25

30

La fixation du SAM sur ces deux protéines est étudiée comme cela est décrit précédemment à l'exemple 6.3.1.a). La sérum albumine bovine et la protéine COBH purifiée sont utilisées comme contrôles négatifs. Pour les protéines COBA et COBF on observe un pic de radioactivité à la sortie de la colonne de TSK-125 au temps de sortie de ces protéines (figure 20). Dans ce test, la protéine COBI

108

présente la même propriété de fixation du SAM. A l'opposé, il n'y a pas de tels pics de radioactivité avec la BSA et la protéine COBH. Ce test met en évidence la fixation <u>in vitro</u> du SAM sur les protéines COBA, COBI et COBF. Ces résultats montrent que COBA, COBI et COBF sont des SAM-méthyltransférases. Ce résultat est tout à fait en accord avec les activités de COBA et COBI puisqu'il s'agit respectivement de la SUMT et de la SP₂MT de <u>Pseudomonas denitrificans</u>. La protéine COBF est donc probablement une SAM méthyltransférase de la voie de biosynthèse des cobalamines. Ce test confirme que COBF est une méthyltransférase.

6.4 - Détermination de l'activité de protéines COB par études d'homologies de séquences

10

15

20

25

30

Cet exemple illustre comment par des comparaisons entre les séquences de diverses protéines COB de <u>Pseudomonas denitrificans</u> il est possible de trouver les protéines COB qui sont des SAM-méthyltransférases de la voie de biosynthèse des cobalamines.

Les protéines COBI et COBA sont toutes les deux des SAM méthyltransférases de la voie de biosynthèse. Ces deux protéines ont été comparées suivant le programme de Kanehisa, comparaison fait ressortir trois régions de forte homologie (figure 21). Dans chacune de ces régions il y a plus de 45 % d'homologie stricte entre les deux protéines. Trois régions de forte homologie entre COBA et CYSG sont également présentées (figure 22); ce sont les mêmes régions de COBA qui présentent une forte homologie avec COBI. Ces régions de fortes homologies entre COBA, CYSG et COBI présentent de l'homologie avec d'autres protéines COB. Il s'agit des protéines COBF, COBJ, COBL et COBM (figure 23). En ce qui concerne la région 1, les protéines COBF, COBL et COBM présentent des homologies significatives par rapport à toutes les protéines de Genpro, qui est une extraction protéique de Genbank (version 59) augmentée des parties codantes putatives supérieures à 200 acides aminés, suivant le programme de Kanehisa (1984). En ce qui concerne la région 2, les protéines COBJ, COBL et COBM présentent des homologies significatives par rapport à toutes les protéines de Genpro (version 59). En ce qui concerne la troisième région d'homologie, COBJ, COBL et COBM

15

présentent des homologies significatives par rapport à toutes les protéines de Genpro (version 59). Les comparaisons de séquences permettent donc de mettre en évidence que quatre protéines COBF, COBJ, COBL et COBM présentent des homologies significatives avec les régions conservées des séquences de trois types de méthyltransférases COBA, COBI et COBF. Les protéines COBG, COBH et COBK ne présentent pas d'homologies significatives avec les régions conservées méthylases. La protéine COBF ne présente d'homologie significative avec les autres protéines que dans la région 1. Ces homologies doivent correspondre probablement au fait que toutes ces protéines sont des méthyltransférases. Ce résultat recoupe les données biochimiques décrites sur COBF concernant la capacité qu'a cette protéine à lier le SAM in vitro (exemple 6.3). Ces homologies, d'une part, permettent de confirmer que COBF est une SAM méthyltransférase de la voie de biosynthèse des cobalamines et d'autre part mettent en évidence que COBJ, COBL et COBM pourraient être des SAM méthyltransférases de la voie de biosynthèse des cobalamines. Ces resultats montrent egalement l'homologie qui existe entre les protéines COB de P.denitrificans et les protéines isofonctionnelles d'autres microorganismes.

20 EXEMPLE 6(B) - Purification et clonage du gène de structure de la SUMT de Methanobacterium ivanovii.

Cet exemple illustre comment il possible d'obtenir, dans d'autres microorganismes, des enzymes COB et des gènes cob correspondants à ceux identifiés chez <u>P. denitrificans</u>.

25 6(B).1. Purification de la SUMT de Methanobacterium ivanovii.

Cet exemple décrit la purification de la SUMT de Methanobacterium ivanovii et l'étude de ses propriétés catalytiques.

La souche de <u>Methanobacterium ivanovii</u> DSM2611 est cultivée comme cela est décrit (Souillard et al., 1988). 12 g de cellules humides sont obtenus. Celles ci sont resuspendues dans 80 ml de tampon Tris/HCl 0.1 M pH 7.6 contenant 5 mM DTT et 1 mM EDTA et soniquées pendant 1h30 à 4 °C puis centrifugées durant 1h à 50 000 g. L'extrait est ensuite débarassé de composés tétrapyrroliques libres par passage à travers une petite

colonne de DEAE-Sephadex A25 montée dans le même tampon. Les protéines précipitant entre 55 et 75% de saturation en sulfate d'ammonium sont solubilisées dans un tampon Tris/HCl 0.1M pH 7.5, 0.5 mM DTT, 1.7 M sulfate d'ammonium et injectées sur une colonne de Phényl-Superose HR 5 10/10 (Pharmacia France/SA), éluée avec un gradient décroissant (de 1.7 M à 0 M en sulfate dammonium). Les fractions actives sont passées sur une colonne de Séphadex G-25 équilibrée avec du tampon Tris/HCl 0.1 M, pH 7.5, 0.5 mM DTT, glycérol 25% (tampon A) puis injectées sur une Mono Q HR 5/5 (Pharmacia France SA) équilibrée avec du tampon A et éluée avec 10 un gradient de KCl de 0 à 0.3 M; cette étape est répétée une seconde fois dans les mêmes conditions. Une chromotographie de perméation de gel sur Bio-Sil TSK-250 (BioRad France SA) de la fraction active de l'étape précédente permet d'obtenir une protéine homogène en PAGE-SDS et en RP-CLHP (C-18 µBondapak). Les différentes étapes de purification avec 15 leur rendement ainsi que leur facteur de purification sont décrites sur le tableau ci-dessous.

Comme il est montré dans ce tableau, le facteur de purification total est de plus de 4 500. Des propriétés de l'enzyme pure ont été étudiées selon des méthodes déjà décrites (Blanche et al., 1989). Cette 20 enzyme a bien une activité SUMT, c'est à dire, qu'elle catalyse bien le transfert de deux groupements méthyls, SAM-dépendant, en C-2 et en C-7 de l'uro'gen III. Le poids moléculaire de l'enzyme estimé par perméation de gel est de 60,000 +/- 1,500 tandis que par PAGE-SDS il est de 29,000 ce qui montre clairement qu'il s'agit d'une enzyme homodimérique. Dans 25 des conditions déjà décrites (Blanche et al.,1989) l'enzyme à un Km pour l'uro'gen III de 52 +/- 8 nM. De plus, cette enzyme ne présente pas d'inhibition par son substrat à des concentrations inférieures à 20 µM, alors que la SUMT de Pseudomonas denitrificans présente une inhibition par l'uro'gen III à une concentration supérieure à 2 µM (Blanche et al., 1989).

Tableau : Purification de la SUMT de M. ivanovii.

5	Etape de purification	vol	Protéines (mg)	Activité spé. (u/mg de protéines)	Rendement	Facteur de purification 1
	Extrait brut	92	731	0.337	-	-
	55-75% SA	7.1	153	1.215	76	3.6
	Phényl-superose	9.5	8.34	15.35	52	46
	MonoQ 5/5	1.0	0.252	422 ~	43	1252
10	Bio-Sil TSK	1.0	0.061	1537	38	4561
			Psu.			

1/ calculé d'après le rendement en protéines.

La Vmax de la SUMT de M. ivanovii a été déterminée. Celle-ci est de 1537 U/mg de protéines. Cette valeur est supérieure à celle trouvée pour la SUMT de P. denitrificans dèjà déterminée dans les conditions optimales de la réaction (compte tenu de son inhibition par l'uro'gen III), 489 U/mg de protéines (Blanche et al., 1989).

6(B).2. Clonage du gène de structure de la SUMT de M. ivanovii chez E. coli.

6(B).2.1. Clonage d'un fragment interne au gène de structure de la SUMT de M. ivanovii. Pour ce faire, on procède de la manière suivante : 200 picomoles de la SUMT de M. ivanovii sont utilisées pour le séquençage NH2-terminal de la protéine comme celà est décrit précédemment. En outre, un fragment peptidique obtenu par une digestion trypsique de la protéine est lui aussi soumis à un séquençage de sa partie NH2-terminale. Les séquences obtenues sont presentées sur la figure 48. Les oligonucléotides sens et antisens respectiment 946, 923 et 947 (voir figure 48) sont synthétisés comme cela est décrit précédemment; ces oligonucléotides contiennent à leur extremité 5' un site de restriction qui est soit EcoRI pour les oligonucléotides sens soit HindIII pour l'oligonucléotide antisens. Ces oligonucléotides sont utilisés pour une expérience d'amplification enzymatique de l'ADN (Saiki et al., 1988), comme cela est schématisé sur la figure 48.B.

ê,

L'ADN génomique de M. ivanovii est préparé de la manière suivante: 0.4 g de cellules de M. ivanovii (DSM 2611) sont lavées avec une solution 0.15 M NaCl. Les cellules sont ensuite incubées dans 4 ml d'une solution de sucrose 25 %, Tris/HCl 50 mM pH 8, lysozyme 40 mg puis 2 à 3 h à 50 °C après addition de 40 mg de protéinase K et de 5 ml d'une solution SDS 0.2 %, EDTA 0.1 M pH 8. L'ADN est ensuite extrait au phénol-chloroforme (50 %-50 %) 2 fois, puis 2 fois au chloroforme et ensuite précipité par l'isopropanol et repris dans 3 ml de TNE (Tris/HCl 10 mM pH 8, EDTA 1 mM, Na-Cl 100 mM).

10 L' Amplification enzymatique de l'ADN de M. ivanovii est effectuée suivant le protocole de Saiki et al., 1988, dans un volume de 0.1 ml avec 600 ng d'ADN génomique de M. ivanovii, en utilisant les amorces 946 et 947 (réaction 1) ou 923 et 947 (réaction 2). Le tampon utilisé pour cette réaction est MgCl2 1mM, KCl 50 mM, gélatine 0.001 % 15 et chaque dNTP à une concentration de 0.2 mM; pour chaque réaction d'amplification, 10 mg de chaque oligonucléotide sont utilisés ainsi que 2.5 unités de Tag DNA polymérase (Cetus Corporation). L'amplification est réalisée sur 30 cycles dans le Perkin-Elmer Cetus DNA Amplification system; au cours de chaque cycle, l'ADN est dénaturé 1 min à 95 °C, les 20 amorces oligonucléotidiques sont hybridées à l'ADN simple brin 2 min à 38 °C et les néobrins sont polymérisés pendant 3 min à 72 °C. Les produits d'amplification sont ensuite extraits au chloroforme et subissent ensuite une précipitation éthanolique; ils peuvent ensuite être visualisés après migration sur gel d'acrylamide puis être digérés 25 par les enzymes de restriction telles que EcoRI et HindIII.

Dans le cas de la réaction 1, deux fragments sont observés : à 615 pb ainsi qu'à 240 pb. En ce qui concerne la réaction 2, deux fragments sont aussi observés : à 630 et 170 pb. La totalité du produit d'une réaction d'amplification enzymatique entre les oligonucléotides 30 946-947 est séparée par migration sur gel d'acrylamide; le fragment de 615 pb est purifié comme cela est décrit précédemment. Ce fragment est ensuite digéré par EcoRI et HindIII afin de rendre les extrémités du fragment cohésives. Ce fragment est ensuite ligaturé avec de l'ADN de la forme réplicative du phage M13mp19. La ligature est transformée dans E. coli TG1. Six clones recombinants, contenant un insert de 615 pb, sont

analysés par séquençage avec le primer universel -20 (Pharmacia SA, France). Comme il est montré sur la figure 49, lorsque l'on séquence l'ADN simple brin des phages recombinants qui contiennent l'insert de 615 pb, il doit être observé, en aval du site EcoRI, une séquence non 5 dégénérée corrrespondant à celle de l'oligonucléotide 946 suivie, dans la même phase, par une séquence qui code pour les acides aminés LITLKAVNVLK?ADVVL (? signifie qu'à cette position, le résidu n'a pas pu être déterminé); cette séquence correspond à celle qui, dans la séquence NH2-terminale de la SUMT, suit les acides aminés correspondant à 10 l'oligonucléotide 946 (voir figure 48). Pour deux clones, il a effectivement été observé, après le site EcoRI, une séquence pouvant coder pour la région NH2-terminale de la SUMT de Methanobacterium ivanovii, celle-ci commençant par l'enchainement Pro-Gly-Asp-Pro-Glu-Leu sont les acides aminés codée par une séquence contenant 15 l'oligonucléotide 946. Cette observation montre que ces deux formes réplicatives recombinantes contiennent un insert qui correspond à un fragment interne au gène de structure de la SUMT de Methanobacterium ivanovii. La forme réplicative portant ce fragment interne au gène de structure de M. ivanovii est appelée pG10.

20 6(B).2.2. Clonage du gène de structure de la SUMT de Methanobacterium ivanovii.

L'ADN génomique de Methanobacterium ivanovii est digéré par plusieurs enzymes de restriction (digestions simples ou doubles). Après digestion, les fragments sont séparés par électrophorèse sur gel d'agarose, puis ils sont transférés sur une membrane de nylon comme cela est décrit précédemment. Après dénaturation des fragments ainsi transférés et préhybridation, on procède à une hybridation avec la forme réplicative pG10 comme sonde marquée au 32P comme cela est décrit précédemment. Il est ainsi trouvé qu'un fragment issu d'une digestion EcoRI-BgIII de 3.2 kb de Methanobacterium ivanovii hybride avec la sonde (voir Figure 50). 40 µg d'ADN génomique de M. ivanovii sont ensuite digérés par EcoRI et BgIII puis séparés par migration sur gel d'agarose. Les fragments ayant une taille comprise entre 3 et 3.5 kb sont électroélués comme cela est décrit précédemment. Les fragments ainsi

114

purifiés sont mis à ligaturer avec le vecteur pBKS+ (Stratagene Cloning Systems, La Jolla) digéré par BamHI-EcoRI. La ligature est transformée dans E. coli DH5 α (Gibco BRL). Les transformants sont sélectionnés sur milieu LB supplémenté avec de l'ampicilline et du X-gal. 800 colonies ⁵ blanches sont repiquées sur filtre; après croissance puis lyse des bactéries on procède à une hybridation sur colonies selon la technique de Grünstein et Hogness (1975). La sonde utlisée est la forme réplicative pG10 marquée au 32P. Un seul clone positif après ce test d'hybridation avec la sonde est trouvé. L'ADN plasmidique de ce clone 10 est appelé pXL1809 (voir figure 56). Une digestion de cet ADN par EcoRI-XbaI permet de visualiser, comme attendu, un insert de 3.2 kb. Le plasmide pXL1809 est séquencé sur les 2 brins par la technique de Chen et Seeburg (1985). Une séquence de 955 bases est obtenue (figure 51). Une analyse des phases ouvertes nous conduit à identifier une phase 15 ouverte de la base 34 (ATG) à la base 729 (TGA). Cette phase ouverte code pour une protéine dont la séquence est présentée sur la figure 52. Cette protéine à un poids moléculaire de 24 900 (voir figure 53) ce qui est proche du poids moléculaire de la protéine purifiée à partir de M. ivanovii. La séquence NH2-terminale de cette protéine est exactement 20 celle déterminée pour la SUMT de M. ivanovii purifiée (voir figure 48 et figure 52). Ces observations établissent sans ambiguité que le gène cloné et séquencé est bien le gène de structure de la SUMT de M. ivanovii. Comme cette activité est supposée intervenir dans la biosynthèse des corrinoïdes chez toutes les bactéries, ce gène est 25 désigné par gène corA et la protéine codée par ce même gène protéine CORA. Le profil d'hydrophobicité de la protéine CORA de M. ivanovii, réalisé à partir du programme de Hopp et Woods (1981) montre qu'il s'agit, comme cela est attendu, d'une protéine hydrophile, comme cela est présenté sur la figure 54. La protéine CORA de M. ivanovii montre un 30 degré d'homologie stricte de plus de 40 % vis à vis de COBA de P. denitrificans (figure 53). Cette homologie s'étend sur presque la totalité des deux protéines puisqu'elle concerne les résidus 3 à 227 de CORA de M. ivanovii et les résidus 17 à 251 de COBA de P. denitrificans. Cette homologie reflète les homologies structurales qu'il existe entre 35 deux protéines catalysant la même réaction. Ce sont les mêmes régions

15

20

qui sont les plus conservées entre CORA et COBA de P. denitrificans que celle qui sont conservées entre COBA de P. denitrificans et CYSG d'E. coli (figures 22).

EXEMPLE 7 - Expression de protéines COB

7.1 - Expression chez <u>Pseudomonas denitrificans</u>

Cet exemple illustre que l'amplification d'un gène de structure d'une protéine COB de <u>Pseudomonas denitrificans</u> chez <u>Pseudomonas denitrificans</u> conduit à l'amplification de l'activité de la protéine COB.

7.1.1 - Expression de la protéine COBA

Le plasmide pXL557 correspond au plasmide pXL59 dans lequel le fragment <u>BqlII-Eco</u>RV (respectivement aux positions 80 et 2394 sur la sequence de la figure 7) de 2,4 kb du fragment de 5,4 kb a été cloné. Ce fragment contient les gènes cobA et cobE.

Le plasmide pXL545 contient uniquement le gène <u>cobE</u>. Sa construction a été décrite dans l'exemple 4.1.

Ces deux plasmides ont été introduits par transfert conjugatif chez SC510 Rif^r. Les souches SC510 Rif^r, SC510 Rif^r pXL59, SC510 Rif^r pXL557 et SC510 Rif^r pXL545 ont été cultivées en milieu PS4. A 4 jours, les cultures ont été arrêtées et les activités SUMT ont été dosées suivant un protocole standard déjà décrit (F. Blanche et al., 1989). Les activités sont portées ci-dessous.

<u>Tableau</u> : Activité SUMT de SC510 Rif^r et de quelques unes de ses dérivées

Souche	SUMT dosée nmole/h/mg de protéines	
SC510 Rif ^r	0.05	
SC510 Rif pXL59	0.04	
SC510 Rif ^r pXL557	2.10	
SC510 Rif ^r pXL545	0.05	

5

10

15

٠20

25

30

Il ressort clairement de ces résultats que seul le plasmide pXL557 entraîne chez SC510 Rif une nette augmentation de l'activité SUMT (un facteur 50). Cette augementation résulte de l'amplification de coba et non de cobe puisque le plasmide pXL545, qui ne permet que l'amplification de cobe, ne provoque pas d'augmentation d'activité SUMT. Ce résultat confirme que coba est le gène de structure de la SUMT de Pseudomonas denitrificans. Ce résultat montre que l'on peut obtenir une amplification de l'activité SUMT chez Pseudomonas denitrificans par amplification du gène de structure de la SUMT de Pseudomonas denitrificans.

7.1.2 - Expression de la protéine COBI

Un fragment provenant du fragment d'ADN de 8,7 kb, contenant le gène de structure de la SP₂MT (cobI), est cloné sur un plasmide à large spectre d'hôte chez les bactéries gram-négatives, puis ce plasmide est ensuite introduit par conjugaison chez Pseudomonas denitrificans SC510 Rif^r. L'activité S-adénosyl-L-méthionine:précorrine-2 méthyltransférase de la souche est ensuite mesurée par rapport à celle de la souche portant le vecteur.

Le fragment <u>BamHI-BamHI-SstI-SstI</u> de 1,9 kb contenant les gènes <u>cobH</u> et <u>cobI</u> est purifié à partir du fragment de 8,7 kb. Des "linkers" <u>XbaI</u> et <u>EcoRI</u> sont placés respectivement aux extrémités <u>BamHI</u> et <u>SstI</u> après que celles-ci aient été remplies avec l'ADN polymérase du bactériophage T4. Le fragment est ensuite inséré entre les sites <u>XbaI</u> et <u>EcoRI</u> du plasmide à large spectre d'hôte pXL59. Il

porte la résistance à la kanamycine. Le plasmide ainsi obtenu est nommé le pXL1148 (figure 24).

Par ailleurs un plasmide voisin a été construit : le fragment BamHI-BamHI-SstI de 1,5 kb contenant seulement le gène cobH en entier et la partie 5' du gène cobI a été purifié à partir du fragment de 8,7 kb. Des "linkers" KbaI et EcoRI ont été ajoutés aux sites BamHI et SstI respectivement après que ceux-ci aient été remplis ou digérés avec l'ADN polymérase du phage T4. Ce fragment a ensuite été inséré entre les sites EcoRI et KbaI du pXL59 pour donner le plasmide pXL1149. Les plasmides pXL1148 et pXL1149 ne diffèrent que par la présence sur pXL1148 du fragment SstI-SstI de 0,3 kb qui contient l'extrémité 3' du gène cobI. pXL1148 possède le gène de structure entier de cobI au contraire de pXL1149. Les deux plasmides contiennent le gène cobH.

Ces deux plasmides ont été introduits par conjugaison chez SC510 Rif^r. Les souches SC510 Rif^r, SC510 Rif^r pXL59, SC510 Rif^r pXL1148 et SC510 Rif^r pXL1149 sont cultivées en milieu PS4. Après 4 jours de culture, les cellules sont récoltées et les activités SP₂MT sont dosées comme cela est décrit dans l'exemple 6.1.3 a).

Le résultat de ces dosages est porté ci-dessous avec les activités de SP_2MT définies comme à l'exemple 6.1.3 a).

 ${\tt Tableau}$: Activités ${\tt SP}_2{\tt MT}$ de diverses souches dérivées de ${\tt \underline{Pseudomonas}}$ denitrificans

Souche	Activité SP ₂ MT ¹ en %
SC510 Rif ^r	₹ < 5 ·
SC510 Rif ^r pXL59	< 5
SC510 Rif ^r pXL1148	,3 ≈ 3. 75
SC510 Rifr pXL1149	< 5

25

10

15

20

10

15

20

25

30

¹pour 500 µg d'extrait brut introduit dans le test.

L'activité est exprimée en % comme cela est défini à l'exemple 6.1.3 a).

Seul le plasmide pXL1148 apporte une augmentation sensible de l'activité SP2MT. Au contraire le plasmide pXL1149 ne donne pas de résultats différents de ceux observés avec les contrôles SC510 Rif et SC510 Rif pXL59. Le pXL1148 est le seul plasmide à contenir le gène cobI et il est le seul à amplifier l'activité SP2MT; ce résultat confirme que le gène de structure de la SP2MT de Pseudomonas denitrificans est le gène cobI. De plus, si les protéines totales de ces différentes souches sont séparées par électrophorèse en conditions dénaturantes (PAGE-SDS à 10 % d'acrylamide) on observe spécifiquement dans le cas du pXL1148 la présence d'une bande qui correspond à une protéine ayant un poids moléculaire de 25 000 environ (figure 25). Le poids moléculaire de cette protéine correspond à celui de la protéine COBI. Le plasmide pXL1148 permet d'obtenir chez Pseudomonas denitrificans la surproduction de la protéine COBI.

7.1.3 - Expression de COBF

L'expression est obtenue en positionnant en amont du gène <u>cobF</u> le promoteur <u>Ptrp</u> de <u>E.coli</u> et le site de fixation des ribosomes du gène <u>c</u>II du bactériophage lambda. L'expression ainsi obtenue est beaucoup plus élevée que celle observée par simple amplification génique grâce au même plasmide multicopie.

Le fragment <u>Eco</u>RI-<u>Bam</u>HI-<u>Bam</u>HI de 2 kb environ du pXL1496 (exemple 7.2.1) est purifié (figure 26). Ce fragment contient le promoteur <u>Ptrp</u> de <u>E.coli</u> et le site de fixation des ribosomes du gène <u>cII</u> du bactériophage lambda en amont du gène <u>cobF</u>. En aval du gène <u>cobF</u> se trouve le terminateur de l'opéron <u>rrnB</u> de <u>E.coli</u>. Ce fragment est cloné aux sites <u>Eco</u>RI-<u>Bam</u>HI du plasmide pKT230 pour donner le pXL1546 (figure 26). Le pKT230 est un plasmide du groupe d'incompatibilité Q qui se réplique chez presque toutes les bactéries gram-négatives (Bagdasarian et <u>al</u>., 1981); ce plasmide porte la résistance à la kanamycine. Le plasmide pXL1546 et pKT230 sont

10

15

20

25

30

introduits, par conjugaison, chez SC510 Rif^r. Les souches SC510 Rif^r, SC510 Rif^r pKT230 et SC510 Rif^r pXL1546 sont cultivées en milieu PS4 comme cela est décrit précédemment. Après quatre jours de culture, les protéines totales des différentes souches sont analysées en PAGE-SDS à 10 %. Comme cela est montré à la figure 27, on observe dans l'extrait de SC510 Rif^r pXL1546 une protéine d'un poids moléculaire de 32 000 environ qui est surexprimée; cette protéine co-migre avec la protéine qui est surexprimée par <u>E.coli</u> B pXL1496 (exemple 7.2.1). De plus cette protéine est spêcifiquement exprimée dans la souche SC510 Rif^r contenant le pXL1546 où elle représente au moins 20 % des protéines totales. Par contre on n'observe pas cette protéine dans les protéines totales des souches SC510 Rif^r et SC510 Rif^r pKT230. Cette protéine surexprimée est donc la protéine COBF.

7.1.4 - Expression de COBH

Cet exemple décrit l'amplification d'un fragment d'ADN de <u>Pseudomoas denitrificans</u> contenant le gène <u>cobH</u>. La protéine qui est codée par ce gène est purifiée; il s'agit de la protéine COBH. Le plasmide pXL1149, décrit à l'exemple 7.1.2, ne contient sur l'insert d'ADN provenant du fragment de 8,7 kb que le gène <u>cobH</u> en entier. Chez SC510 Rif^r, ce plasmide, contrairement au vecteur, entraîne la surexpression d'une protéine de poids moléculaire 22 000 (figure 25).

7.1.5 - Expression de COBV

Cet exemple décrit l'amplification de l'activité cobalamin (5'-phosphate) synthase par un plasmide ne portant que cobv (pXL699, voir figure 38) L'activité cobalamin (5'-phosphate) synthase est amplifiée chez SC877Rifr par le plasmide pXL699 d'un facteur 50 par rapport à la même souche avec le vecteur pXL435, pXL1303, pXL1324 ou pKT230. Ce plasmide ne contient sur son insert que cobv en entier plus les parties 5' terminales d'ORF18 et de cobv. Il est certain que dans une telle souche (SC877Rifr pXL699) la protéine COBV est surexprimée; cette surexpression est d'un facteur 50 par rapport à l'expression de la souche SC877Rifr.

120

7.1.6. Expression de la protéine CORA

Le fragment EcoRI-BamHI-BamHI de 1.5 kb du pXL1832 (voir exemple 7.2.4) contenant le promoteur Ptrp puis le RBS cII du bactériophage λ, le gène de structure de la SUMT de M. ivanovii et la 5 région terminatrice de l'opéron rrnB de E. coli est cloné aux sites EcoRI-BamHI du pKT230 (Bagdasarian et al., 1981). De cette manière, le plasmide pXL1841 est obtenu (voir figure 56). Ce plasmide est mobilisé chez P. denitrificans SC510 Rifr comme cela est décrit précédemment. Un transconjugant est étudié plus en détail. Cette souche est cultivée en milieu PS4 et l'activité SUMT des extraits bactériens est dosée en même temps que celle de la souche contrôle SC510 Rifr pXL435 (Cameron et al., 1989). Les activités de ces souches sont présentées ci-dessous.

Souche Activité spécifique SUMT en pmol/h/mg de protéines

15 SC510 RifrpXL435 50-100 SC510 RifrpXL1841 1700

25

Ce résultat montre clairement qu'il y a expression de l'activité SUMT de M. ivanovii chez P. denitrificans grâce au plasmide pXL1841 puisque l'activité SUMT de la souche SC510 Rifr pXL1841 est nettement supérieure 20 à celle de SC510 Rifr pXL435.

7.2 - Expression chez E.coli

Cet exemple illustre comment une protéine COB de Pseudomonas denitrificans peut être surproduite chez <u>E.coli</u>.

7.2.1 - Expression de COBF

La surproduction est obtenue en positionnant en amont du gène <u>cob</u> le promoteur <u>Ptrp</u> de <u>E.coli</u> et le site de fixation des ribosomes du gène <u>c</u>II du bactériophage lambda. Le fragment <u>Eco</u>RI-<u>Xho</u>I de 2250 pb du fragment <u>Eco</u>RI de 8,7 kb (aux positions respectives 0 et

15

20

25

30

35

2250 sur la sequence présentée à la figure 8) a été cloné dans le phage M13mp19 (Norrander et al., 1983) entre les sites EcoRI et SalI. Le plasmide ainsi construit est nommé pXL1405. Un site NdeI a été introduit par mutagénèse dirigée de manière à ce que les trois dernières bases (ATG) de ce site de restriction constituent le site d'initiation de traduction du gène cobF. Cela revient à modifier les trois bases qui précèdent l'ATG du gène cobF GAA (le G est à la position 733 sur la séquence présentée sur la figure 8) en CAT. Le fragment NdeI-SphI-SphI (figure 26) contenant le gène cobF est ensuite purifié; ce fragment de 1,5 kb est ensuite cloné entre les sites NdeI-SphI du plasmide pXL694 (Denèfle et al., 1987). Le plasmide ainsi construit est nommé pXL1496 (figure 26). Sur le fragment <u>Eco</u>RI-<u>Nde</u>I de 120 pb (qui provient du pXL694) qui précède le gène cobf sont présents des signaux de régulation de l'expression génétique de E.coli. Ces signaux sont constitués par la région [-40+1] du promoteur Ptrp de E.coli, puis par 73 pb qui contiennent le site de fixation des ribosomes du gène cII du bactériophage λ (Denèfle et al., 1987). En aval du gène cobF se trouvent les terminateurs de l'opéron rnB de E.coli (sur le fragment HindIII-BamHI). Le plasmide pXL1496 a été introduit par transformation dans la souche de E.coli (Monod et Wollman, 1947). L'expression du gène cobF a été étudiée comme cela est déjà décrit (Denèfle et <u>al</u>., 1987) dans des conditions où le promoteur Ptrp est soit réprimé (présence de tryptophane), soit non réprimé (absence de tryptophane). Le milieu où l'expression a été réalisée est du milieu minimum M9 (Miller, 1972) supplémenté par 0,4 % de glucose, 0,4 % de casaminoacides, 10 mM thiamine et 40 µg/ml de tryptophane dans le cas où l'on veut réprimer le promoteur Ptrp. La souche E.coli B pXL1496 a été cultivée à 37°C dans le milieu décrit ci-dessus avec 100 μg d'ampicilline. Comme il est montré sur la figure 28, l'absence de tryptophane entraîne l'expression d'une protéine d'un poids moléculaire de 32 000. En effet dans l'extrait de protéines totales de E.coli B pXL1496 analysé en PAGE-SDS (figure 28) on observe clairement une protéine d'un poids moléculaire de 32 000 qui représente entre 1 et 4 % des protéines totales. Cette protéine est présente en quantités nettement moins importantes dans l'extrait des protéines totales de

122

<u>E.coli</u> B pXL1496 cultivée dans les mêmes conditions, mais en présence de tryptophane. Le poids moléculaire de la protéine qui est exprimée dans ces conditions est proche du poids moléculaire de la protéine COBF déduit de la séquence en acides aminés de la protéine qui est 28 927 (figure 16). La protéine qui est ainsi exprimée chez <u>E.coli</u> est la protéine COBF.

7.2.2 - Expression de COBT

10

15

20

25

30

La surproduction est obtenue en fusionnant à l'extrémité 5' du gène cob le promoteur lac et les trois premiers codons de lacZ de E.coli.

Le site EcoRI situé à la position 2624 sur la séquence présentée sur la figure 32 du fragment de 4.8 kb contient le quatrième codon du gène cobT. Le fragment EcoRI-XbaI de 3,5 kb du pXL837 (voir figure 36) est cloné aux sites EcoRI et XbaI du pTZ18R ou pTZ19R (Pharmacia) pour générer les pXL1874 ou pXL1875 respectivement; ces deux plasmides différent par l'orientation du gène cobT tronqué vis à vis du promoteur de l'opéron lactose d'E. coli (Plac). Plac est en amont de cobT sur pXL1874 tandis que c'est le contraire sur le pXL1875. Le clonage aux sites EcoRI-XbaI du pTZ18R du fragment EcoRI-XbaI du pXL837 permet de réaliser une fusion de protéine entre les 4 premiers acides aminés de la β-galactosidase d'E. coli et le gène cobT à partir de son 4ème codon. L'expression de ce gène lacz' 'cobT est sous le controle des signaux d'expression de lacZ. Les plasmides pXL1874, pXL1875, pTZ18R sont introduits par transformation dans la souche de E.coli BL21. L'expression du gène cobT est étudié comme cela est déjà décrit (Maniatis et al., 1989).

Comme le montre la figure 42B, une protéine d'un poids moléculaire de 72 000 n'est exprimée qu'avec le pXL1874 et représente, dans l'extrait de protéines totales de BL21,pXL1874 analysé en PAGE-SDS, 1 à 4 % des protéines totales. Le poids moléculaire de la protéine qui est exprimée dans ces conditions est proche du poids moléculaire de la protéine COBT déduit de la séquence en acides aminés qui est de 70 335 sur la figure 40. Cette expérience montre clairement qu'à partir du site EcoRI situé sur le quatrième codon du gène cobT une phase ouverte

10

15

20

25

compatible avec celle trouvée pour le gène cobT peut être exprimée.

7.2.3 - Expression d'une protéine COBS tronquée.

Un site BamHI est situé au niveau du 45ème codon du gène COBS. Le fragment BamHI-BamHI de 1.2 kb contenant la partie 3' du gène cobS et des séquences en aval de ce gène est excisé du pXL843 pour être cloné au site BamHI du plasmide pET-3b (Rosenberg et al., 1987) pour générer le pXL1937. Le fragment BamHI est orienté de manière à ce que la partie tronquée du gène cobS soit fusionnée, en phase, avec les 12 premiers codons de la protéine majeure de capside du bactériophage T7 ou gène 10 (Rosenberg et al., -1987). Ce gène hybride est sous le controle du promoteur 410 du bactériophage T7. Le plasmide pXL1937 ainsi que le pET-3b sont introduits par transformation dans la E. coli BL21 pLysS (W. Studier, communication personnelle). Après réisolement sur milieu sélectif, les 2 souches sont cultivées en milieu liquide L jusqu'à une D0 610 nm de 1; à ce stade là le milieu est ajusté à une concentration en IPTG (isopropyl β -galactoside) de 1 mM afin d'induire l'expression de la polymérase du batériophage T7 (Rosenberg et al., 1987). La culture est ensuite incubée 3 h à 37°C, puis des lysats bactériens sont préparés. Les protéines totales des bactéries ainsi cultivées sont séparées par PAGE en conditions dénaturantes. Comme on le voit sur la figure 42A, il y a spécifiquement surexpression d'une protéine de 33 000 avec la culture BL21 pLysS pXL1937. Ce poids moléculaire est tout à fait compatible avec le poids moléculaire attendu pour la protéine fusion (33 kD). Cette expérience montre clairement qu'à partir du site BamHI situé au niveau du 45ème codon du gène cobS, une phase ouverte compatible avec celle trouvée pour le gène cobS peut être surexprimée.

7.2.4 Expression de la protéine CORA

Les oligonucléotides suivants ont été synthétisés comme cela est 30 décrit précédemment :

oligonucléotide 1277

124

5' GGC CGA ATT CAT ATG GTA GTT TAT TTA 3'

-----1 2 3 4 5 (1 à 5, 5

ECORI ----- premiers codons

NdeI de la SUMT de M.ivanovii)

5 oligonucléotide 1278

5' GGC CGA GCT CTA TTA CAT AAT T

SstI

(= séquence figurant sur la figure 51, positions 926 à 915 sur le brin 10 complémentaire du brin codant)

L'oligonucléotide 1277 possède les séquences de reconnaissance des enzymes de restriction EcoRI et NdeI. Les trois dernières bases du site NdeI (ATG), qui correspondent à un codon d'initiation de traduction, sont directement suivies par les codons 2 à 5 du gène de structure de la 15 SUMT de M. ivanovii tels qu'ils figurent dans la séquence présentée sur figure 52. L'oligonucléotide 1278 contient la séquence de reconnaissance de SstI, suivie directement de la séquence TATTACATAATT qui correspond à une séquence présente sur le fragment de 955 pb contenant le gène corA présenté sur la figure 51; cette séquence se 20 trouve à la position 926 à 915 (voir figure 51) sur le brin complémentaire du brin codant pour la protéine CORA. Les oligonucléotides 1277 et 1278 contiennent donc dans leur partie 3' des séquences correspondant respectivement au brin codant du gène corA et au brin complémentaire en aval de ce gène. Ces deux oligonucléotides 25 peuvent être utilisés pour réaliser une expérience d'amplification enzym-atique avec le plasmide pXL1809 comme matrice. Cette expérience permet d'obtenir un fragment de 910 pb contenant le gène corA de M. ivanovii possédant un site NdeI au niveau de l'ATG du gène corA et un site SstI à l'autre extrémité du fragment après la fin du gène corA. 30 L'amplification enzymatique est réalisée comme précédemment décrit pour l'amplification enzymatique faite sur l'ADN génomique de M. ivanovii, si ce n'est que la matrice est constituée par 10 ng d'ADN du plasmide pXL1809; les températures utilisées sont les mêmes, mais seulement 20

2

cycles d'amplification sont réalisés. Comme cela est précédemment décrit, les produits d'amplification sont digérés par NdeI et SstI avant d'être séparés par migration sur gel d'agarose. Comme attendu, un fragment d'une taille 910 pb est effectivement visualisé. Ce fragment 5 est purifié comme cela est déjà décrit. Ce fragment est cloné aux sites NdeI et SstI du pXL694 (Denèfle el al., 1987). Le plasmide résultant nommé pXL1832 est décrit sur la figure 56. Sur ce plasmide de la même manière que cela est décrit à l'exemple 7.2, le gène de struture de la SUMT de M. ivanovii est précédé par le sîte de fixation des ribosomes du 10 gène cII du bactériophage λ. En amont de ce RBS se trouve le promoteur Ptrp. Le plasmide pXL1832 est introduit dans E. coli B5548 qui est une souche de E. coli portant la mutation cysG44 (Cossart et Sanzey, 1982) par transformation. Les activités SUMT des souches E. coli B5548 pUC13 et E. coli B5548 pXL1832 sont dosées sur des extraits obtenus à partir 15 de cellules cultivées en milieu LB supplémenté en ampicilline. Le dosage de l'activité SUMT est réalisé comme cela a déjà été décrit (Blanche et al., 1989). Les résultats de ce dosage sont donnés ci-dessous.

Souche

Activité spécifique SUMT en pmol/h/mg de protéines

20 E. coliB5548 puc13

5.9

E. coli B5548 pXL1832

310

Les résultats présentés sur le tableau ci-dessus montrent clairement qu'il y a expression d'une activité SUMT chez la souche E. coli B5548 lorsque celle-ci contient une plasmide pXL1832 qui exprime la SUMT de M. 25 ivanovii. La SUMT de M. ivanovii peut donc être exprimée chez E. coli.

EXEMPLE 8 - Amplification de la production de cobalamines par les techniques d'ADN recombinant

8.1 - Amplification chez P.denitrificans

Cet exemple illustre comment une amélioration de la production de cobalamines est obtenue chez <u>Pseudomonas</u> <u>denitrificans</u>

10

15

20

25

30

SC510 Rif^r par amplification de gènes <u>cob</u> de <u>Pseudomonas denitrificans</u> SC510.

8.1.1 Amélioration de la production de cobalamines chez Pseudomonas denitrificans par levée d'une étape limitante dans la biosynthèse des cobalamines

Cet exemple illustre comment la productivité en cobalamines de souches de <u>Pseudomonas denitrificans</u> peut être améliorée par amplification de gènes <u>cob</u> de <u>Pseudomonas denitrificans</u>. Cette amélioration résulte de la levée d'une étape limitante de la voie de biosynthèse.

Le plasmide pXL367 est décrit à l'exemple 4.2 (figure 13). Ce plasmide correspond au pRK290 (Ditta et al., 1981) dans lequel le fragment EcoRI de 8,7 kb a été inséré. Ce plasmide pXL367 procure une amélioration de la biosynthèse de cobalamines chez la souche SC510 Rif^r. Les souches SC510 Rif^r, SC510 Rif^r pRK290 et SC510 Rif^r pXL367 sont cultivées en erlenmeyer dans du milieu PS4 suivant les conditions dans les protocoles expérimentaux. On observe amélioration du titre de production due à la présence du plasmide pXL367. En effet la souche SC510 Rif pXL367 produit 30 % de plus de cobalamines que les souches SC510 Rifr et SC510 Rifr pRK290. Cette amélioration n'est pas due à l'amplification de n'importe quels gènes de <u>Pseudomonas denitrificans</u> mais à l'amplification spécifique de gènes portés par le fragment EcoRI de 8,7 kb. En effet le plasmide pXL723 décrit sur la figure 11 ne donne aucune amélioration et le même titre de production est observé avec ce plasmide qu'avec les souches SC510 Rifr et SC510 Rifr pRK290.

8.1.2 Amélioration de la production de coenzyme B₁₂ chez <u>Pseudomonas denitrificans</u> par levée de deux étapes limitantes dans la biosynthèse des cobalamines

Cet exemple illustre comment la productivité en cobalamines de souches de <u>Pseudomonas denitrificans</u> peut être améliorée par amplification de gènes <u>cob</u> de <u>Pseudomonas denitrificans</u>.

Cette amélioration résulte de la levée de deux étapes limitantes de la

10

20

25

30

voie de biosynthèse.

Le fragment <u>ClaI-EcoRV</u> de 2,4 kb issu du fragment de 5,4 kb (contenant les gènes <u>cobA</u> et <u>cobE</u>) est cocloné avec le fragment <u>EcoRI</u> de 8,7 kb sur le plasmide à large spectre d'hôte pXL203. Le plasmide ainsi construit est appelé pXL525 (figure 29). Ce plasmide est introduit chez SC510 Rif^F par conjugaison. La souche SC510 Rif^F pXL525 produit 20 % de cobalamines de plus que SC510 Rif^F pXL367. L'amplification des gènes <u>cobA</u> et <u>cobE</u> permet de lever une nouvelle étape limitante chez SC510 Rif^F dans la biosynthèse des cobalamines. La souche SC510 Rif^F de <u>Pseudomonas denitrificans</u> est améliorée dans le présent exemple par la levée successive de deux étapes limitantes. Cet exemple montre que la <u>levée</u> de deux étapes limitantes dans la biosynthèse des cobalamines peut conduire à des améliorations supplémentaires de production.

8.2 - Amélioration de la productivité de cobalamines chez Agrobacterium tumefaciens

Cet exemple illustre l'amélioration de la production de cobalamines d'une souche productrice de cobalamines par l'amplification de gènes cob de Pseudomonas denitrificans SC510.

La souche utilisée est une souche de bactérie gram-négative ; il s'agit d'une souche d'<u>Agrobacterium</u> <u>tumefaciens</u>.

Les plasmides décrits dans les exemples 4.2 et 8.1, pXL367 et pXL525 ainsi que le vecteur pRK290 (Ditta et al., 1981) et le plasmide pXL368 (figure 29), sont introduits par transfert conjugatif chez la souche d'Agrobacterium tumefaciens C58-C9 Rif (Cameron et al., 1989). Les souches C58-C9 Rif , C58-C9 Rif pRK290, C58-C9 Rif pXL367, C58-C9 Rif pXL368 et C58-C9 Rif pXL525 sont cultivées en milieu PS4 à 30°C comme cela est décrit précédemment. Les cobalamines produites sont dosées comme cela est décrit précédemment. Les titres de productions sont portés sur le tableau ci-dessous.

<u>Tableau</u>: Titres de vitamine B_{12} produite par différentes souches d'<u>Agrobacterium tumefaciens</u> récombinantes.

128

Souche	Vitamine B ₁₂ en mg/l	
C58-C9 Rif ^r C58-C9 Rif ^r pRK290	0.4	
C58-C9 Rif ^r pXL367	0.8	
C58-C9 Rifr pXL368	0.8	

5

25

30

Comme il apparaît clairement sur le tableau ci-dessus, la 10 production de cobalamines est améliorée chez la souche d'Agrobacterium tumefaciens utilisée. Deux plasmides différents améliorent production de cobalamines de la souche d'Agrobacterium tumefaciens utilisée: pXL367 et pXL368. Ces plasmides contiennent respectivement le fragment EcoRI de 8,7 kb (gènes cobF à cobM) et le fragment 15 ClaI-EcoRV de 2,4 kb (gène cobE et cobA). Séparément, ils améliorent la production de cobalamines d'Agrobacterium tumefaciens C58-C9 Rif^r d'un facteur 2; ce résultat montre qu'il est possible d'améliorer la production de cobalamines d'une souche d'Agrobacterium tumefaciens en amplifiant des fragments portant des gènes cob de Pseudomonas denitrificans. Dans le cas présent on peut parler d'amélioration 20 hétérologue, c'est-à-dire d'amélioration de la production cobalamines d'une souche moyennant l'amplification de gènes cob d'une autre souche.

Les améliorations de production de cobalamines apportées par les différents fragments de <u>Pseudomonas denitrificans</u> contenant des gènes <u>cob</u> sont cumulables, c'est-à-dire qu'en mettant sur le même plasmide les deux fragments qui sont séparément clonés sur le pXL367 et le pXL368, on observe des améliorations additives. Le plasmide pXL525 apporte chez <u>Agrobacterium tumefaciens</u> C58-C9 Rif^r une amélioration de production supérieure à celle apportée par chacun des fragments clonés séparément sur le même vecteur.

10

8.3 - Amélioration de la productivité de cobalamines chez Rhizobium meliloti

Cet exemple décrit l'amélioration de la production de cobalamines d'une autre souche productrice de cobalamines.

Le plasmide décrit à l'exemple 8.2, pXL368, ainsi que le vecteur pRK290 (Ditta et al., 1981) sont introduits par transfert conjugatif chez la souche <u>Rhizobium meliloti</u> 102F34 Rif^r (Leong et al., 1982). Les transconjugants: 102F34 Rifr, 102F34 Rifr pRK290 et 102F34 Rif pxL368 sont cultivés en milieu PS4 à 30°C comme cela est décrit précédemment. Les cobalamines produites sont dosées comme cela est décrit précédemment. Les titres de productions sont portés sur le tableau ci-dessous.

Tableau : Titres des cobalamines produites par différentes souches de Rhizobium meliloti recombinantes

_		•
15	Souche	Vitamine B ₁₂ en mg/l
	102F34 Rif ^r	0.4
	102F34 Rif ^r pRK290	0.4
20	102F34 Rif ^r pXL368	0.8

Comme il apparaît clairement sur le tableau ci-dessus, la production de cobalamines est améliorée chez la souche de Rhizobium meliloti utilisée. Le plasmide pXL368 améliore la production de cobalamines de la souche de Rhizobium meliloti utilisée. Ce plasmide contient le fragment ClaI-EcoRV de 2,4 kb (gènes cobA et cobE); il améliore la production de cobalamines de Rhizobium meliloti 102F34 Rif^r d'un facteur 2. Ce résultat montre qu'il est possible d'améliorer la production de cobalamines d'une souche de Rhizobium meliloti en amplifiant des fragments portant des gènes cob de <u>Pseudomonas</u> denitrificans. Dans le cas présent on peut parler d'amélioration hétérologue, c'est-à-dire d'amélioration de la production de cobalamines d'une souche moyennant l'amplification de gènes cob d'une

25

30

autre souche.

10

15

20

25

30

EXEMPLE 9 - Dosage des corrinoïdes et des descobaltocorrinoïdes dans les moûts et les cellules de souches productrices de corrinoïdes

Cet exemple illustre comment il est possible d'identifier et de doser les différents corrinoïdes et descobaltocorrinoïdes produits par différentes souches productrices de cobalamines. Ce dosage permet entre autre de doser le coenzyme B₁₂.

Les moûts (ou les cellules seules) sont cyanurés comme cela a déjà été décrit (Renz, 1971). Après centrifugation, une aliquote du surnageant est passée à travers une colonne DEAE-Sephadex qui est ensuite lavée extensivement avec dihydrogenophosphate de potassium 1M. Les fractions recueillies sont regroupées et dessalées sur une cartouche Sep-Päk C-18 (Waters). Après évaporation et resuspension dans l'eau (100 µl à 1 ml suivant la quantité de corrinoïdes présents), les corrinoïdes sont identifiés et dosés par CLHP sur une colonne de Nucléosil C-18 (Macherey-Nagel). La colonne est éluée à 1 ml/mn avec un gradient d'acétonitrile (de 0 % à 100 %) dans du tampon phosphate de potassium 0,1 M contenant 10 mM de KCN.

Les corrinoïdes sont visualisés en détection U.V. à 371 nm et/ou par la détection spécifique du 57Co (si la culture a été effectuée en présence de 57CoCl2) à l'aide d'un détecteur Berthold LB 505. Ils sont donc identifiés et par comparaison de leur temps de rétention avec des étalons. De même, les descobaltocorrinoïdes (acide hydrogénobyrinique, acide hydrogénobyrinique monoamide et acide hydrogénobyrinique diamide) sont visualisés en détection U.V. à 330 nm. Par cette technique les intermédiaires suivants sont séparés: l'acide cobyrinique, l'acide cobyrinique monoamide. l'acide cobyrinique diamide, l'acide cobyrinique triamide, l'acide cobyrinique tétraamide, l'acide cobyrinique pentaamide, l'acide cobyrique, le cobinamide, le cobinamide phosphate, le GDP-cobinamide, la vitamine B₁₂-phosphate et la vitamine B₁₂. Les formes adénosylées de ces produits sont aussi séparées et dosées par cette technique. Pour ce

Ê

faire, l'étape initiale de cyanuration est supprimée et la colonne CLHP est éluée avec du tampon dépouryu de KCN. Nous donnons à la figure 31 les temps de rétention de différents étalons séparés par ce système et identifié à la sortie de la colonne par absorbance U.V.

Un échantillon de la souche SC510 Rif^R a été déposé le 30 janvier 1990 au Centraal Bureau voor Schimmelcultures à Baarn (Pays-Bas) où il a été enregistré sous la référence CBS 103.90.

REVENDICATIONS

1. Séquence d'ADN caractérisée en ce qu'elle code pour un polypeptide impliqué dans la biosynthèse des cobalamines et/ou des cobamides.

- 2. Séquence d'ADN selon la revendication 1 caractérisée en ce qu'elle est choisie parmi
- . les gènes cobA, cobB, cobC, cobD, cobE, cobF, cobG, cobH, cobI, cobJ, cobJ, cobK, cobL, cobM, cobN, cobO, cobP, cobQ, cobS, cobT, cobU, cobV, cobW, cobX, corA, présentés aux figures 15, 16, 40, 41, 47 et 52,
- 10 . les homologues de ces séquences résultant de la dégénérescence du code génétique,
 - . les séquences d'origine naturelle, synthétique ou recombinante, qui hybrident et/ou qui présentent des homologies significatives avec ces séquences d'ADN ou avec des fragments de celles-ci, et qui codent pour des polypeptides impliqués dans la biosynthèse des cobalamines et/ou des cobamides.
 - 3. Gène contenant une séquence d'ADN selon l'une des revendications précédentes.
- 4. ADN recombinant caractérisé en ce qu'il contient au moins une séquence d'ADN selon l'une des revendications 1 à 3.
 - 5. ADN recombinant selon la revendication 4 caractérisé en ce que lesdites séquences d'ADN sont placées sous le contrôle de signaux d'expression.
- 6. ADN recombinant selon la revendication 5 caractérisé en ce que les signaux d'expression peuvent être homologues ou hétérologues de la séquence d'ADN.
 - 7. ADN recombinant selon l'une des revendications 4 à 6 caractérisé en

ce qu'il fait partie d'un plasmide d'expression.

- 8. Plasmide caractérisé en ce qu'il contient au moins une séquence d'ADN codant pour un polypeptide impliqué dans la biosynthèse des cobalamines et/ou des cobamides, et des séquences permettant leur expression.
- 9. Plasmide selon la revendication 8 caractérisé en ce qu'il contient
- . un ADN recombinant selon l'une des revendications 4 à 7,
- . un système de réplication,
- . au moins un marqueur de sélection.
- 10 10. Plasmide selon la revendication 8 caractérisé en ce qu'il est choisi parmi
 - . le plasmide pXL1500 conténant les gènes cobA, cobB, cobC et cobE,
 - . les plasmides pXL723 et pXL302 contenant les gènes cobC et cobD,
 - . le plasmide pXL1397 contenant les gènes cobB et cobC,
- 15 . les plasmides pXL368 et pXL557 contenant les gènes cobA et cobE,
 - . les plasmides pXL545 et pXL545 α contenant le gène $\underline{cob}E$,
 - . les plasmides pXL367 et pXL253 contenant les gènes <u>cob</u>F, <u>cob</u>G, <u>cob</u>H, <u>cob</u>I, <u>cob</u>J, <u>cob</u>K, <u>cob</u>L, <u>cob</u>M,
 - . le plasmide pXL1148 contenant les gènes cobH et cobI,
- 20 . le plasmide pXL1149 contenant le gène cobH,
 - . les plasmides pXL1496 et pXL1546 contenant le gène cobF,
 - . le plasmide pXL525 contenant les gènes <u>cob</u>A, <u>cob</u>E et <u>cob</u>F à <u>cob</u>M, le plasmide pXL643 contenant les gènes <u>cob</u>X, <u>cob</u>S, et <u>cob</u>T, le plasmide pXL699 contenant le gène <u>cob</u>V, le plasmide pXL1324 contenant le gène <u>cob</u>U, les plasmides pXL618 et pXL623 contenant respectivement les gènes <u>cob</u>Q et <u>cob</u>P, le plasmide pXL593 contenant le gène <u>cob</u>P et <u>cob</u>W et le plasmide pXL1909 contenant les gènes <u>cob</u>P, <u>cob</u>W, <u>cob</u>N, et <u>cob</u>O.
- 11. Cellule dans laquelle a été introduite une séquence d'ADN selon l'une des revendications 1 à 7 ou un plasmide selon l'une des 30 revendications 8 à 10.
 - 12. Polypeptide caractérisé en ce qu'il est impliqué dans la

biosynthèse des cobalamines et/ou des cobamides.

- 13. Polypeptide selon la revendication 12 caractérisé en ce qu'il est codé par une séquence d'ADN selon l'une des revendications 1 à 7.
- 14. Polypeptide selon la revendication 12 caractérisé en ce qu'il intervient dans la transformation du précorrine-3 en 5'-déoxy 5'-adénosyl(Ado) acide cobyrinique a,c-diamide.
- 15. Polypeptide selon la revendication 14 caractérisé en ce qu'il contient tout ou partie des sequences peptidiques COBB, COBF, COBG, COBH, COBJ, COBK, COBL, COBM, COBN, COBO, COBS et COBT présentées aux figures 15, 16, 40 et 41.
 - 16. Polypeptide selon la revendication 14 caractérisé en ce qu'il catalyse le transfert d'un groupement méthyl aux positions C1, C5, C11, C15, ou C17 intervenant entre le précorrine-3 et l'acide cobyrinique a,c-diamide.
- 17. Polypeptide selon la revendication 16 caractérisé en ce qu'il contient tout ou partie des séquences peptidiques COBF, COBJ, COBL et COBM présentées à la figure 16.
 - 18. Polypeptide selon la revendication 12 caractérisé en ce qu'il intervient dans la transformation de l'acide cobyrique en cobinamide.
- 20 19. Polypeptide selon la revendication 18 caractérisé en ce qu'il contient tout ou partie des séquences peptidiques COBC et COBD présentées à la figure 15.
- 20. Polypeptide selon la revendication 12 caractérisé en ce qu'il possède une activité S-adénosyl-L-méthionine:précorrine-2 méthyl transférase (SP2MT).
 - 21. Polypeptide selon la revendication 20 caractérisé en ce qu'il

contient tout ou partie de la séquence peptidique COBI présentée à la figure 16.

- 22. Polypeptide selon la revendication 12 caractérisé en ce qu'il possède une activité acide cobyrinique et/ou hydrogénobyrinique a,c-diamide synthase.
- 23. Polypeptide selon la revendication 22 caractérisé en ce qu'il contient tout ou partie de la séquence peptidique COBB présentée à la figure 15.
- 24. Polypeptide selon la revendication 12 caractérisé en ce qu'il possède une activité precorrin-8x mutase.
 - 25. Polypeptide selon la revendication 24 caractérisé en ce qu'il contient tout ou partie de la séquence peptidique COBH présentée à la figure 16.
- 26. Polypeptide selon la revendication 12 caractérisé en ce qu'il contient tout ou partie de la séquence peptidique COBE présentée à la figure 15.
 - 27. Polypeptide selon la revendication 12 caractérisé en ce qu'il possède une activité nicotinate-nucléotide: dimethylbenzimidazole phosphoribosyltransferase.
- 28. Polypeptide selon la revendication 27 caractérisé en ce qu'il contient tout ou partie de la séquence peptidique COBU présentée à la figure 41.
 - 29. Polypeptide selon la revendication 12 caractérisé en ce qu'il possède une activité cobalamine-(5'-phosphate) synthase.
- 25 30. Polypeptide selon la revendication 29 caractérisé en ce qu'il contient tout ou partie de la séquence peptidique COBV présentée à la

figure 41.

- 31. Polypeptide selon la revendication 12 caractérisé en ce qu'il possède une activité cobyric acid synthase.
- 32. Polypeptide selon la revendication 31 caractérisé en ce qu'il contient tout ou partie de la séquence peptidique COBQ présentée à la figure 47.
 - 33. Polypeptide selon la revendication 12 caractérisé en ce qu'il possède une activité cob(I)alamin adénosyltransferase.
- 34. Polypeptide selon la revendication 33 caractérisé en ce qu'il contient tout ou partie de la séquence peptidique COBO présentée à la figure 47.
 - 35. Polypeptide selon la revendication 12 caractérisé en ce qu'il possède une activité précorrin-6x reductase.
- 36. Polypeptide selon la revendication 35 caractérisé en ce qu'il contient tout ou partie de la séquence peptidique COBK présentée à la figure 16.
 - 37. Polypeptide selon la revendication 12 caractérisé en ce qu'il intervient dans la transformation du cobinamide en GDP-cobinamide.
- 38. Polypeptide selon la revendication 37 caractérisé en ce qu'il 20 possède une activité cobinamide kinase et cobinamide phosphate guanylyltransferase.
 - 39. Polypeptide selon la revendication 38 caractérisé en ce qu'il contient tout ou partie de la séquence peptidique COBP présentée à la figure 47
- 25 40. Polypeptide selon la revendication 12 caractérisé en ce qu'il

contient tout ou partie des séquences peptidiques COBS, COBT et COBX présentées figure 40.

- 41. Polypeptide selon la revendication 13 caractérisé en ce qu'il est choisi parmi les protéines COBA, CORA, COBB, COBC, COBD, COBE, COBF, COBG, COBH, COBI, COBJ, COBK, COBL, COBM, COBN, COBO, COBP, COBQ, COBS, COBT, COBU, COBV, COBW et COBX présentées aux figures 15, 16, 40, 41, 47 et 52.
 - 42. Procédé de production des polypeptides selon les revendications 12 à 41 caractérisé en ce que
- 10 . on introduit dans une cellule hôte une séquence d'ADN selon les revendications 1 à 7, ou un plasmide selon les revendications 8 à 10 contenant une telle séquence.
 - on cultive cette cellule recombinante dans des conditions d'expression de ladite séquence, et
- 15 . on récupère les polypeptides produits.
 - 43. Procédé selon la revendication 42 caractérisé en ce que la cellule hôte peut être choisie parmi les procaryotes, les eucaryotes, les cellules animales ou végétales.
- 44. Procédé selon la revendication 43 caractérisé en ce que la cellule 20 hôte est une archaebactérie ou une eubactérie.
 - 45. Procédé selon la revendication 44 caractérisé en ce que la cellule hôte est <u>E.coli</u>, <u>Pseudomonas denitrificans</u>, <u>Rhizobium melitoti</u>, <u>Agrobacterium tumefaciens</u>, ou <u>Salmonella typhimurium</u>.
- 46. Procédé permettant d'augmenter la production de cobalamines et/ou de cobamides ou de leurs précurseurs caractérisé en ce que

::.

on introduit dans un microorganisme producteur de ces composés, ou potentiellement producteur de ces composés, une ou plusieurs séquences d'ADN codant pour un polypeptide impliqué dans la biosynthèse des cobalamines et/ou des cobamides,

₫.

- . on cultive le microorganisme ainsi obtenu dans des conditions de synthèse des cobalamines et/ou des cobamides et d'expression de ladite séquence,
- . on récupère les cobalamines et/ou les cobamides ou leurs précurseurs produits.
 - 47. Procédé selon la revendication 46 caractérisé en ce que l'on introduit dans le microorganisme une ou plusieurs séquences d'ADN selon l'une des revendications 4 à 7, ou un plasmide selon les revendications 8 à 10 contenant de telles séquences.
- 48. Procédé selon la revendication 47 caractérisé en ce que la séquence d'ADN introduite dans le microorganisme code pour un polypeptide catalysant une étape limitante de la biosynthèse des cobalamines et/ou des cobamides.
- 49. Procédé selon la revendication 47 caractérisé en ce que les séquences d'ADN introduites dans le microorganisme codent pour des polypeptides catalysant des étapes limitantes de la biosynthèse des cobalamines et/ou des cobamides.
- 50. Procédé selon l'une des revendications 46 à 49 caractérisé en ce que le microorganisme est choisi parmi <u>P. denitrificans</u>, <u>R. melitoti</u>, 20 A. tumefaciens.
 - 51. Procédé selon la revendication 50 caractérisé en ce que le microorganisme est <u>P. denitrificans</u>.
 - 52. Procédé selon la revendication 51 caractérisé en ce que le microorganisme est <u>P. denitrificans</u> SC510 RifR.
- 25 53. Procédé selon l'une des revendications 46 à 52 caractérisé en ce que l'on introduit dans le microorganisme un plasmide selon la revendication 10.

- 54. Procédé selon les revendications 46 à 53 caractérisé en ce que l'on introduit dans la souche <u>P. denitrificans</u> SC510 RifR le plasmide pXL525.
- 55. Procédé selon les revendications 46 à 54 caractérisé en ce que les cobalamines et/ou les cobamides produits sont récupérés par
 - . solubilisation,
 - . conversion en forme cyano, et
 - . purification.
- 56. Procédé selon les revendications 46 à 55 caractérisé en ce que la cobalamine est le coenzyme B12.
 - 57. Procédé selon les revendications 46 à 55 caractérisé en ce que le précurseur est choisi parmi les descobaltocorrinoïdes et les corrinoïdes.

40

Références bibliographiques.

Ausubel F. M., Brent R., Kinston R. E., Moore D. D., Smith J. A., Seidman J. G. and K. Struhl. 1987. Current protocols in molecular biology 1987-1988. John Willey and Sons, New York.

Bagdasarian, M., R. Lurz, B. Rückert, F. C. Franklin, M. M. Bagdasarian, J. Frey, and K. Timmis. 1981. Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host vector system for gene cloning

10 RSF1010-derived vectors, and a host vector system for g in Pseudomonas. Gene 16:237-247.

Barrère G, Geneste B., Sabatier A., 1981. Fabrication de la vitamine B12: l'amélioration d'un procédé. Pour la Science, 49, 56-64.

Battersby A. R., Fookes C. J. R., Matcham G. W. J., MacDonald E., 1980. Biosynthesis of the pigments of life: formation of the macrocycle. Nature, 285, 17-21.

Battersby, A. R., and E. MacDonald. 1982. Biosynthesis of the corrin macrocycle. p. 107-144. In D. Dolphin (ed.), B12, vol. 1. John Willey & Sons, Inc., New-York.

Beck., W.S. 1982. Biological and medical aspects of vitamin B12. p 1-30. In D. Dolphin (ed.), B12, vol. 1. John Willey & Sons, Inc., New-York.

Ben Bassat A., and K. Bauer. 1987. Amino-terminal processing of proteins. Nature, 326:315.

Blanche F., L. Debussche, D. Thibaut, J. Crouzet and B. Cameron. 1989. Purification and Characterisation of <u>S</u>-Adenosyl-L-Methionine:Uroporphyrinogen III methyltransferase from <u>Pseudomonas denitrificans</u>. J. Bacteriol., 171:4222-4231.

Brey R. N., Banner C. D. B., Wolf J. B., 1986. Cloning of Multiple Genes Involved with Cobalamin (Vitamin B12) Biosynthesis in Bacillus megaterium. J. Bacteriol., 167, 623-630.

Cameron B;, K. Briggs, S; Pridmore, G. Brefort and J. Crouzet, 1989. Cloning and analysis of genes involved in coenzyme B12 biosynthesis in <u>Pseudomonas denitrificans</u>. J. Bacteriol, 171, 547-557.

Casadaban, M. J., A. Martinez-Arias, S. T. Shapira and J. Chou. 1983. B-galactosidase gene fusion for analysing gene expression in Escherichia coli and Yeast. Methods Enzymol. 100, 293-308.

De Bruijn F. J. and J. R. Lupski. 1984. The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids-a review. Gene, 27, 131-149.

De Graff, J., J. H. Crosa, F. Heffron, and S. Falkow. 1978. Replication of the nonconjugative plasmid RSF1010 in Escherichia coli K-12. J. Bacteriol. 146, 117-122.

Denèfle P., S. Kovarik, J.-D. Guiton, T. Cartwright and J.-F. 60 Mayaux. 1987. Chemical synthesis fo a gene coding for human angiogenin, its expression in <u>Escherichia coli</u> and conversion of the product into its active form. Gene, 56, 61-70.

-141,-

Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X.-W., Finlay D. R., Guiney D. and D. R. Helinski. 1985. Plasmids related to the broad host range vector pRK290, useful for gene cloning and for monitoring gene expression. Plasmid, 13, 149-154.

Ditta, G., S. Stanfield, D. Corbin, and D. R. Helinski. 1980. Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene library of Rhizobium melitoti. Proc. Natl.

10 Acad. Sci. USA 77, 7347-7351.

Escalante-Semerena J. C. and J. R. Roth. 1987. Regulation of the cobalamin biosynthetic operons in <u>Salmonella typhimurium</u>. J. Bacteriol, 169, 225-2258.

Florent, J. 1986. Vitamins. pl15-158. In H.-J. Rehm and G. Reed (ed.), Biotechnology, vol.4, VCH Verlagsgesellschaft mbH, Weinheim.

Friedmann H. C. and L. M. Cagen. 1970. Microbial biosynthesis of B12-like compounds. Ann. Rev. Microbiol., 24, 159-208.

Friedmann H. C., 1968. Vitamin B12 biosynthesis. J. Biol. Chem., 243, 2065-2075.

Friedmann H. C., 1975. Biosynthesis of corrinoids. In Babior B. M., Cobalamin, 75-110, John Wiley and Sons, New York.

Henikoff S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene, 28, 351-359.

Hirel Ph-H, J.-M. Schmitter, P. Dessen and S. Blanquet. 1989. Extent of N-terminal methionine excision within <u>E. coli</u> proteins is governed by the side chain of the penultimate aminoacids. Proc. Natl. Acad. USA, sous presse.

Hopp T. P. and K. R. Woods. 1981. Prediction of protein antigenic determinants from amino acids sequences. Proc. Natl. Acad. Sci. USA, 78-3824-3828.

Huennekens F. M., Vitols K. S., Fujii K., Jacobsen D. W., 1982. Biosynthesis of cobalamin coenzyme. In Dolphin D., B12, vol. 1, 145-167, John Willey & Sons, New York.

Irion R., Ljungdahl L. G., 1965. Isolation of factor IIIm coenzyme and cobyric acid coenzyme plus other B12 factors from <u>Clostridium thermoaceticum</u>. Biochemistry, 4, 2780-2790.

Jeter R. M., Olivera B. M., Roth J. R., 1984. <u>Salmonella typhimurium</u> synthetises cobalamin (vitamin B12) de novo under anaerobic growth conditions. J. Bacteriol., 159, 206-213.

Jeter, R. M. and J. R. Roth. 1987. Cobalamin (Vitamin B12) 55 Biosynthetic Genes of <u>Salmonella typhimurium</u>. J. Bacteriol. 169, 3189-3198.

Jorgensen R. A., Rothstein S. J., Reznikoff W. R., 1979. A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Molec. Gen. Genet., 177, 65-62.

-142-

Kanangara C. G., S. P. Gough, P. Bruyant, J. K. Hoober, A. Kahn and D. von Wettstein. 1988. tRNAGlu as a cofactor in daminolevulinate biosynthesis: steps that regulate chlorphyll synthesis. Trends in Biochem. Sci., 139-143.

Kanehisa M. 1984. Use of statistical criteria for screening potential homologies in nucleic acids sequences. Nucleic Acids Res., 12:203-215.

Kieny M. P., R. Lathe and J. P. Lecocq. 1983. New versatile cloning vectors based on bacteriophage M13. Gene, 26, 91-99.

Krzycki J. and J. G. Zeikus. Quantification of corrinoids in methanogenic bacteria.1980. Curr. Microbiol., 3, 243-245.

- 15 L. Skatrud, A. J. Tietz, T. D. Ingolia, C. A. Cantwell, D. L. Fisher, J. L. Chapman and S. W. Queener. 1989. Use of recombinant DNA to improve production od cephalosporin C by <u>Cephalosporium acremonium</u>. Bio/Technology, 1989, 7, 477-485.
- 20 Laemli U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
- Leong S. A., Ditta G. S., Helinski D. R., 1982. Heme Biosynthesis in Rhizobium. Identification of a cloned gene coding for daminolevulinic acid synthetase from Rhizobium melitoti. J. Biol. Chem., 257, 8724-8730.
- Macdonald H. and J. Cole. Molecular cloning and fuctional analysis of the cysG and nirB genes of coli K12, Two closely-linked genes required for NADH-dependant reductase activity. submitted to publication.
- Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
 - Mazumder T. K., N. Nishio, M. Hayashi and S. Nagai. 1987. Production of corrinoids including vitamin by <u>Methanosarcina barkeri</u>. 1986. Biotechnol. Letters, 12, 843:848.
- Mazumder T. K., N. Nishio, S. Fukuzaki and S. Nagai. 1987. Production of Extracellular vitamin B12 compounds from methanol by Methanosarcina barkeri. Appl. Mcrobiol. Biotechnol., 26, 511-516.
- 45 Miller, J. H. 1972. Experiment in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New-York.
- Monod J. and E. Wollman. 1947. Inhibition de la croissance et de l'adaptation enzymatique chez les bactéries infectées par le 50 bactériophage. Ann. Inst Pasteur, 73, 937-956.
- Murphy M. J., Siegel L. M, Kamin H., Rosenthal D., 1973. Identification of a new class of heme prosthetic group: an irontetrahydroporphyrin (isobacteriochlorin type) with eigth carboxilic acid groups. J. Biol. Chem., 248, 2801-2814.
 - Murphy M. J., Siegel L. M., 1973. The basis for a new type of porphyrin-related prosthetic group common to both assimilatory and dissimilatory sulfite reductases. J. Biol. Chem., 248, 6911-6919.

5

- Nexo E., Olesen H., 1982. Intrinsic factor, transcobalamin and haptocorrin. In Dolphin D., B12, 57-85, John Willey & Sons, New York.
- Normark S., S. Bergtröm, T. Edlund, T. Grundström, B. Jaurin, F. Lindberg and O. Olsson. 1983. Overlapping genes. Ann. Rev. Genet., 17, 499-525.
- Norrander J., T. Kempe and J. Messing. 1983. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26, 101-106.
 - Noyes R., 1970. Vitamin Bl2 manufacture, 145-182, Noyes developpement S.A., Park Ridge, N. J., USA.
- Prentki P. and H. M. Krisch. 1984. <u>In vitro</u> insertional mutagenesis with a selectable DNA fragment. Gene, 29, 303-313.
- Renz P. 1970. Some intermediates in the biosynthesis of vitamin B_{12} . Methods in Enzymol., 18, 82-92.
 - Rigby P. W. J., Dieckmann M., Rhodes C., Berg P., 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol., 113,237.
- Roof D. M. and J. R. Roth. 1988. Ethanolamine utilization in Samonella typhimurium. J. Bacteriol., 170, 3855-3863.
- Sanger F., S. Nicklen and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci., 74, 5463-5468.
 - Saunders G., Tuite M. F., Holt G., 1986. Fungal cloning vectors. Trends Biotechnol., 4, 93-98.
- Scherer P., Höllriegel V., Krug C., Bokel M., Renz P., 1984. On the biosynthesis of 5-hydroxypenziumidazolylcobamide (vitamin B12-factor III) in Methanosarcina barkeri. Arch. Microbiol., 138, 354-359.
- Schneider Z., Friedmann H., 1972. Studies on enzymatic dephosphorylation of vitamin B12 5'-phosphate. Arch. Biochem. Biophys., 152, 488-495.
- 45 Scott A. I., N. E. Mackenzie, P. J. Santander, P. E. Fagerness, G. Muller, E. Schneider, R. Seldmeier, and G. Worner. 1984. Biosynthesis of vitamin B12-Timing of the methylation steps between uro'gen III and cobyrinic acid. Bioorg. Chem. 12:356-352.
- 50 Southern E., 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol., 98, 503-517.
- Stachel S. E., G. An, C. Flores and E. W. Nester. 1985. A Tn3lacz transposon for the random generation of b-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. Embo J., 4, 891-898.
- Staden R. and A. D. McLachlan. 1982. Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acid Res., 10, 141-156.

...(

-144-

Stupperich E., I. Steiner and H. J. Eisinger. 1987. Substitution of Coa-(5-Hydroxybenzimidazolyl)Cobamide (Factor III) by vitamin B12 in Methanobacterium thermoautotrophicum. J. Bacteriol., 169:3076-3081.

- Taylor J. W., J. Ott and F. Eckstein. 1985. The rapid generation of oligonucleotide-directed mutations at high frequency using phophorothicate-modified DNA. Nucl. Acid Res., 13, 8764-8765.
- 10 Viera J., Messing J., 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene, 19, 259-268.
- Wein-Hsiung L., L. Chi-Cheng and W. Chung-I. 1985. Evolution of DNA sequences. p 1-94. In R. J. MacIntyre (ed.), Molecular Evolutionary genentics. Plenum Press, New york and London.

5

- Latta, M., M. Philit, I. Maury, F. Soubrier, P. Denèfle and J.-F. Mayaux. 1990. Tryptophan promoter derivatives on multicopy plasmids: a comparative analysis of the expression potentials en Escherichia coli. DNA Cell Biol., 9, 129-137.
- Mayaux, J.-F., E. Cerbelaud, F. Soubrier, D. Faucher and D. Pétré. 1990. Purification, cloning and primary structure of an enantio-selective amidase from <u>Brevibacterium</u> sp. R312. Structural evidence for a genetic coupling with nitrile-hydratase. 1990. J. Bacteriol., 172, 6764-6773.
- Belyaev, S. S., R. Wolkin, W. R. Kenealy, M. J. De Niro, M. J. Epstein and J. G. Zeikus. 1983. Methanogenic bacteria from Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl. Environ. Microbiol., 45, 691-697.
- Saiki, R. K., D. H. Gelfand, S. Stoffel, S. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487-491.
- Souillard, N., M. Magot, O. Possot and L. Sibold. 1988. Nucleotide sequence of regions homologous to NifH (nitrogenase Fe protein) from the nitrogen fixing archaebacteria Methanococcus thermolithotrophicum and Methanobacterium ivanovi : evolutionary implications. J. Mol. Evol., 2, 65-76.
- Chen, E. L. and P. H. Seeburg. 1985. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA, 4, 165-170.
- Saiki R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis and H. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487-491.
- Grunstein M., Hogness D., 1975. Colony hybridisation: a method for the isolation of cloned DNAs that contains a specific gene. Proc. Natl. Acad. Sci. USA, 72, 3961-3971.
- Cossart, P. and B. Gicquel-Sanzey. 1982. Cloning and sequence of the crp gene of Escherichia coli K 12. Nucleic Accid Res., 10, 1363-1378.
- Viera, J. and J. Messing. 1987. Production of single stranded plasmid DNA. Meth. Enzymol., 153, 3-11.

- Barbieri P. G., Boretti A., Di Marco A., Migliacci A., and Spalla C. 1962. Further observations on the biosynthesis of vitamin B12 in Nocardia rugosa. Biochim. Biophys. Acta., 57, 599-600.
- Renz P. 1968. Reaktionfolge der enzymatischen synthese von vitamin B12 aus cobinamid bei Propionibacterium shermanii. Z. Physiol. Chem., 349, 979-981.
- Ronzio R. A., and Barker H. A. 1967. Enzimic synthesis of guanosine diphosphate cobinamide by extracts of propionic acid bacteria. Biochemistry, 6, 2344-2354.
- Thibaut D., Debussche L., and Blanche F. 1990. Biosynthesis of vitamin B12: Isolation of precorrin-6x, a metal-free precursor of the corrin macrocycle retaining five S-adenosylmethionine-derived peripheral methyl groups. Proc. Natl. Acad. Sci., 87, 8795-8799.
- Ohta H., and Beck W. S. 1976. Studies of the ribosome-associated vitamin B12s adenosylating enzyme of Lactobacillus leichmannii. Arch. Biochem. Biophys., 174, 713-725.

 Brady R. O., Castanera E. G., and Barker H. A. 1962. The
- Brady R. O., Castanera E. G., and Barker H. A. 1962. The enzymatic synthesis of cobamide coenzymes. J. Biol. Chem., 237, 2325-2332.

- Fenton W. A., and Rosenberg L. E. 1978. Mitochondrial metabolism of hydroxocobalamin: synthesis of adenosylcobalamin by intact rat liver mitochondria. Arch. Biochem. Biophys., 189, 441-447.
- Vitols E., Walker G. A., and Huennekens F. M. 1966. Enzymatic conversion of vitamin B12s to a cobamide coenzyme, a-(5,6-dimethyl-benzimidazolyl)deoxyadenosylcobamide (Adenosyl-B12). J. Biol. Chem., 241, 1455-1461.
- Gimsing P., and Beck W. S. 1986. Determination of cobalamins in biological material. Methods Enzymol., 123, 3-14.
- Jacobsen W. J., Green R., and Brown K. L. 1986. Analysis of cobalamin coenzymes and others corrinoids by high-performance liquid chromatography. Methods Enzymol., 123, 14-22.

Adenosylcobalamine $R = CH_2CONH_2$, $R' = CH_2CH_2CONH_2$.

FIGURE 1

FIGURE 2

uro'gen III

précorrine-1

précorrine-2

précorrine-3

FIGURE 3

FIGURE 5

FEUILLE DE REMPLACEMENT

				••	
	20 TCGACTCTAG AGCTGAGATC				
	80 TGGAAGGCGA ACCTTCCGCT		GGCGGGGACT		
	140 GCCTTGTGTC CGGAACACAG		GCGATTTGCA		
	200 CAGGTGTCGA GTCCACAGCT				
	260 CTGGATGGAG GACCTACCTC				
310 CGATACGGTA GCTATGCCAT	320 GGCGGATGAC CCGCCTACTG	330 GATCTTCCTC CTAGAAGGAG	340 AAACGCGACA TTTGCGCTGT	TGGCGATGGC	360 GCAATCCGGT CGTTAGGCCA
	380 TTCCGCGCTC AAGGCGCGAG			CGACGGCGTC	
	440 GCGTCCGGTG CGCAGGCCAC				
	500 GACGGATCGT CTGCCTAGCA			GGAGAACAAC	
	560 GCCATCGGGC CGGTAGCCCG		CACAGACGAC		GCCGGGCTGG
610 TGCTCGGGCT ACGAGCCCGA	620 CGGCTGCGAG GCCGACGCTC	CGTCGCACGC	CGGCCGAAGA	GGTGATCGCC	660 CTTGCCGAGC GAACGGCTCG
	CGATGCCGGT	GTTGCGCCCG	GCGATCTGCG	710 GCTGGTCGCC	720 TCGCTCGATG AGCGAGCTAC
	GGAGCCGGCG	ATCCTGGCGG	CCGCTGAGCA	TITCGCGGTT	780 CCGGCCGCGT GGCCGGCGCA
	CGCCACGCTC	GAAGCCGAAG	CTTCCCGGCT		840 TCCGAGATCG AGGCTCTAGC
	CACGGGTTGT	CATGGCGTTG		AGCGCTCGTC	900 GGCGCCGGTC CCGCGGCCAG
	GCTGATTGTG	CAGAAGATCO		TGCGACGGCC	960 GCACTTGCCG CGTGAACGGC

			0/1	37	
970	980	990	1000	1010	1020
				GGAGGCTGTC	TGATGCATTC
CCGGCCGCTG	GAACGCGCGG	CTTTTCGCGT	AGGTCCGCCG	CCTCCGACAG	ACTACGTAAG
1030	1040	1050	1060	1070	1080
TTATGTTGTT	GAATTGAATC			TCTCAAGTGG	
				AGAGTTCACC	
		,			
1090	1100	1110	1120	1130	1140
				ATACAGGTGG	
				TATGTCCACC	
,2211010100	000101000	HOUGGEROOD.	ACCOUNTY.	inidicance	C101C010C0
1150	1160	1170	1180	1190	1200
				AAGGTTCGGT	
TACTACCTCC	TECACADACE	CCCTAACCCC	CCCCACCATA	TTCCAAGCCA	CIGGCIGGIC
INCINGCIGO	IGGNGMMCG	GCCIAACGGC	COCONOCIII	TICCHAGCCA	GACCGACCAG
1210	1220	1220	1240	1250	1260
COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCGGCGAICC	CGGCCIGIIG	ACGCIGCAIG	CGGCCAATGC	GCTGCGCCAG
CCGCGGCCGG	GGCCGCTAGG	GCCGGACAAC	TGCGACGTAC	GCCGGTTACG	CGACGCGGTC
3.070	1000	1000	1000		
1270	1280		1300		1320
				GCCTGAAGCT	
CGCCTACACT	AGCACGTACT	ACGCGACCAG	TTGCTCCTAA	CGGACTTCGA	GCGCGCCGGC
			1000		
1330	1340		1360	1370	1380
GGCGCCGTGC	TGGAGTTTGC	GGGCAAGCGT	GGCGGCAAGC	CGTCGCCGAA	GCAGCGCGAC
CCGCGGCACG	ACCTCAAACG	CCCGTTCGCA	CCGCCGTTCG	GCAGCGGCTT	CGTCGCGCTG
1390	1400	1410	1420	1430	1,440
				GGGTGCTGCG	
TAGAGCGAAG	CGGAGCAGCT	TGAGCGCGCG	CGGCCGTTGG	CCCACGACGC	GGAGTTTCCG
1450	1460	1470	1480	1490	1500
				TGACGCTGGT	
CCGCTAGGGA	AGCAGAAGCC	AGCGCCACCG	CTCCTCCGCG	ACTGCGACCA	GCTTGTGGTC
		•			
1510	1520		1540		
GTGCCGTTCC	GAATCGTGCC	CGGCATCACC	GCCGGTATCG	GCGGGCTTGC	CTATGCCGGC
CACGGCAAGG	CTTAGCACGG	GCCGTAGTGG	CGGCCATAGC	CGCCCGAACG	GATACGGCCG
		•			
1570	1580	1590	1600	1610	1620
ATTCCCGTGA	CCCATCGCGA	GGTCAACCAC	GCGGTCACTT	TCCTGACTGG	CCATGATTCC
					GGTACTAAGG
			λ	•	
1630	1640	1650	1660	1670	1680
TCCGGCCTGG	TGCCGGATCG	CATCAACTGG	CAGGGCATCG	CCAGCGGCTC	GCCTGTCATC
					CGGACAGTAG
		J			
1690	1700	1710	1720	1730	1740
					TGCCGGCGGC
CAGTACATGT	ACCCCTACTT	TGTATAGCCG	CCCTACTCCC	CCTTCCACTA	ACGGCCGCCG
a.01.1411.01	10000111011	1011111000	0001701000	GOTIOGRAIN	ACGGCCGCCG
1750	1760	1770	1780	1790	1800
					GCAGGCGGTG
					CGTCCGCCAC
GCGNGCGGCC	100110000	GCGGMGCAG	VCGIIGCGGC	GC1GCGGCG1	CGICCGCCAC
1010		1020	4 0 4 0	1050	
1810		1830			1860
CIGGAAACGA	CCCTTGCGCG	* CCWCWCCCC	GATGITGCGG	COCCAGGGCT	GGAGCCGCCG
GACCTTTGCT	GCGAACGCGC	ACGTCTCCGG	CTACAACGCC	GCCGTCCCGA	CCTCGGCGGC
- 4				· ·	
1870			1900		1920
GCGATCGTCG	TCGTCGGCGA	GGTGGTGCGG	CTGCGCGCAG	CGCTCGACTG	GATCGGCGCG

		•	9/13/		
CGCTAGCAGC	AGCAGCCGCT	CCACCACGCC	GACGCGCGTC	GCGAGCTGAC	CTAGCCGCGC
1930	1940	1950	1960	1970	1980
		CGCCGACCCG			
CIGGACGGC	COMMICCARCO	COCCORCCCO	TICGCCCATIC	CCMXXCXCMC	CENTCCCCCCC
GACCTGCCCG	CGTTCGAACG	GCGGCTGGGC	AAGCGGTTAG	CGTAAGAGIC	CITGGGCCGI
	0000	0010	0000		2040
1990	2000	2010			2040
		GCACCCGCGT			
ACTCGCCTAA	CGACTAACGG	CGTGGGCGCA	GGCCGÄGGCC	GTTCTGCTGC	CACTGCGAGC
		•		• .	
2050	2060	2070	2080	2090	2100
		AGGCGCGGCG			GCGGGGCCGG
		TCCGCGCCGC			
CCGACIACGC	GCGGGACTIC	100000000	ACCGCIAGCG	0000000110	000000000
2110	2120	2130	21.40	21 50	2160
ACTATATCGA	TCCCGCTTTC	CACGCGGCAG	CGACCGGCGA	GCCCIGCIIC	MACIACGACC
TGATATAGCT	AGGGCGAAAG	GTGCGCCGTC	GCTGGCCGCT	CGGGACGAAG	TTGATGCTGG
2170	2180	2190	2200	2210	2220
CCTGGGCGAT	GCGCCCGGAA	CTGCTGCTTG	CCAATGCGTC	GCATGTGGCC	TCCGGCGGGC
		GACGACGAAC			
2230	2240	2250	2260	2270	2280
		ATGATGGGAC			
CGTGTAACTA	GCAGCTCCGC	TACTACCCTG	ACGIACIGCE	ACGACGGCTG	CCGAGCCCTT
		,	0000	0000	2242
2290					2340
		ACGCTGAACC			
GCGGTCGCCT	GGAGCGGCGC	TGCGACTTGG	AACGCCAGTA	AGACCACCAG	CTAACGCGGG
				:	
2350			2380		
GCATGTCCCA	GTCGGTTGCC	GCCCTCGTGC	GCGGCTATGC	GGATCATCGC	GACGATATCC
CGTACAGGGT	CAGCCAACGG	CGGGAGCACG	CGCCGATACG	CCTAGTAGCG	CTGCTATAGG
00111011000		••••	÷, .		
2410	2420	2430	2440	2450	2460
					ATGCTGCGCG
CCCACCAACC	CCACTACCAC	TTCTTCCACC	CGTCGCTAGC	CCTACTTAC	TACGACGCGC
CCCACCAACC	Caronio	1101100100	00100011100	001110111110	11.001.0000
2470	2480	2400	2500	2510	2520
					AGCGCATTGC
TACGCGAGCC	GITCCACGCG	TACGGACAGA	AGCCGCACGA	GGCCGTCCTG	TCGCGTAACG
				2570	
		2550	2560	2570	
					CTTGAGGGCT
TTGACGGCCT	CGCGGTAGAG	CCCGAGCACG	TCCGCCCGCT	TGTGAGTCGC	GAACTCCCGA
			,		
2590	2600	2610	2620	2630	2640
				TCTCGACGCC	ATCCGCCTGA
ACTACCTCCC	CCCCCCCCCCC	GCCCAGCTCC	GACGGACGCT	AGAGCTGCGG	TAGGCGGACT
				**	
2650	2660	2670	2680	2690	2700
					CGGCCGCTCG
AGCGCTGCTA	AAAGGGCGTC	. LALGGGGGG	. GCCGGCIACG	COLOGUAN	GCCGGCGAGC
0.71		0200	0740	0756	0760
2710					
					CACCTGCTTT
CAGTCGCGT	A GCGCCAGCG(C GCGCTATAGC	GGAAACGGAA	GACGATGCT	GTGGACGAAA
		•	. v	:	
2770	2780		2800		
ACGGCTGGCC	GCAAGGCGG	GCGGAGATTI			GACGAGGGC
TGCCGACCG	CGTTCCGCCC	CGCCTCTAAA	GGAAGAAGAC	CGGCGAGCG	CTGCTCCCCG
				-, 	
2830	2840	2850	2860	2870	2880
2030	2040	, 2000	, 2000	2010	. 2000

			40/	ixi	
CGGATGCGGC GCCTACGCCG			CGGGGGTTA	TCCGGAGCTG	
2890 AGCTGAGCGC TCGACTCGCG			GCATGCATTC		
2950 GCATCTTCGG CGTAGAAGCC					
3010 GCACACGCTA CGTGTGCGAT					GAGCGCAGGC
3070 GGCACCTCGG CCGTGGAGCC		3090 GTCGTGCCTG CAGCACGGAC		CTTCTTCGAT	
		3150 GCGACCATCG CGCTGGTAGC		GGCGGCCGAT	CGGCTGTTTG
3190 CGGTCAGCGA GCCAGTCGCT	3200 CGCCGCCGGC GCGGCGGCCG	3210 GAGGATCTCG CTCCTAGAGC	GCCAGGCGGG	CCTCCGGCGC	3240 GGCCCTGTCG CCGGGACAGC
		3270 ATCGACGTCG TAGCTGCAGC	CAGGTGCTGC	ATGAGCGCAC	EGATCGTTCA
3310 TGGTGGCGGC ACCACCGCCG	3320 ATCACCGAGG TAGTGGCTCC	3330 CCGCAGCGCG GGCGTCGCGC	CTATGGCGGC	CGGCCTGAAG	3360 ACTGGCTCGA TGACCGAGCT
		CATGCCCCGT	CGCGTTGCCC	GCGGTCCCTG	3420 AGCGCGCCTG TCGCGCGGAC
3430 GCACCGGCTG CGTGGCCGAC	3440 CCGGATCGGC GGCCTAGCCG	AGACGGTAGA	TGATGCGCGG	AGCGCCGCCG	3480 CCGACTACTA GGCTGATGAT
	GGCGTGCTGC	CTTTGCCGGT	CGGCCCGTGG	3530 CAGTCGGTGA GTCAGCCACT	3540 TCCAGCTCCT AGGTCGAGGA
3550 GCCACGTCTT CGGTGCAGAA	GCTCCGGCCA	ACAGGCACGT	3580 CGCGATTTTC CGCCTAAAA	, GGGCCGACCI	3600 ATGGCGAGTA TACCGCTCAT
	CTTGAAGCGG	CCGGCTTTGC		GTCGCGGATC	3660 CCGACGCGCT GGCTGCGCGA
	CATGGGCTTG		CAACCCCAA	AACCCGACCG	3720 GCCGCGCCTT CGGCGCGGAA
	GAGCTTCTG	CGATCGCCG	C AAGGCAGAA	GCGAGCGGC	3780 GACTGCTGCT CTGACGACGA

			11/1	54	
3790 GGTCGATGAG CCAGCTACTC	3800 GCCTTCGGCG CGGAAGCCGC	3810 ATCTTGAGCC TAGAACTCGG	3820 GCAACTGAGT	3830 GTCGCTGGTC	ACGCGTCAGG
3850 GCAAGGCAAC CGTTCCGTTG	3860 CTCATCGTCT GAGTAGCAGA	3870 TCCGCTCCTT AGGCGAGGAA	CGGCAAGTTC	TTCGGCCTTG	3900 CGGGCCTGCG GCCCGGACGC
3910 CCTCGGCTTC GGAGCCGAAG	3920 GTCGTTGCGA CAGCAACGCT	3930 CCGAGCCAGT GGCTCGGTCA	3940 GCTTGGATCC CGAACGTAGG	3950 TTTGCCGATT AAACGGCTAA	3960 GGCTCGGTCC CCGAGCCAGG
3970 CTGGGCTGTC GACCCGACAG	3980 TCCGGCCGG AGGCCGGGCC	CGTTGACGAT	4000 CTCGAAAGCG GAGCTTTCGC	CTGATGCAGG	4020 GCGATACGAA CGCTATGCTT
4030 GGCGATCGCG CCGCTAGCGC	4040 GCGGGCATCC CGCCCGTAGG	4050 TCGAGCGTCG AGCTCGCAGC	CGCCGGCCTC	GATGCGGCTC	4080 TCGATGGGC AGCTACCCG
4090 AGGGCTCAAC TCCCGAGTTG	4100 CGTATCGCC GCATAGCCGC	GCACGGGGCT	4120 ATTCGTGCTG TAAGCACGAC	GTCGAGCATC	CCAGGGCAGC
4150 TCTGCTGCAG AGACGACGTC	4160 GAGCGGCTCT CTCGCCGAGA	4170 GCGAGGCCCA CGCTCCGGGT	TATTCTCACG	CGCAAGTTCG	4200 ACTATGCCCC TGATACGGGG
4210 GACCTGGCTC CTGGACCGAG	4220 AGGGTCGGTC TCCCAGCCAG	4230 TTGCGCCTGA AACGCGGACT	4240 CGCGGCTGGT GCGCCGACCA	GACCGACGGC	TGGCGGACGC
4270 GCTTGCCCGC CGAACGGGCG	4280 ATGGAGCTCT TACCTCGAGA	4290 GAGGTGTCGG CTCCACAGCC	AGACGATCCT	4310 GCTCATTCTC CGAGTAAGAG	GCGCTGGCGC
4330 TGGTGATCGA ACCACTAGCT	4340 CCGCGTTGTC GGCGCAACAG	GGCGATCCGG	ACTGGCTCTG	GGCGCGCGTG	CCGCATCCGG
4390 TCGTGTTTTT AGCACAAAAA	4400 CGGCAAGGCC GCCGTTCCGG	ATCGGCTTTT	4420 TCGACGCGCG AGCTGCGCGC	GCTGAACCGG	4440 GAGGACCTCG CTCCTGGAGC
AGGATAGCGC	4460 GCGCAAATTT CGCGTTTAAA	CGTGGCGTCG	TCGCGATCCT	TTTGTTGCTT	4500 GGCATCAGCG CCGTAGTCGC
CCTGGTTCGG	4520 CCATCTGCTG GGTAGACGAC	CATCGCCTGT	TCGCCGTCCT	CGGACCGCTC	4560 GGCTTTCTGC CCGAAAGACG
4570 TCGAGGCGGT AGCTCCGCCA	4580 TCTGGTCGCG AGACCAGCGC	4590 GTCTTCCTGG CAGAAGGACC	CACAGAAGAG	CCTCGCCGAT	CACGTGCGTC
4630 GCGTGGCCGG CGCACCGGCC	4640 GGGCTTGCGA CCCGAACGCT	4650 CAGGGCGGGC GTCCCGCCCG	TGGAAGGCGG	GCGTGCCGCC	4680 GTGTCGATGA CACAGCTACT
TCGTTGGTCG	4700 CGATCCAAAG GCTAGGTTTC	ACGCTCGACG	AGCCGGCGGT	CTGCCGTGCC	GCGATCGAAA
		FI	GURE 7.5		
		. •		· · · · · · · · · · · · · · · · · · ·	

4750	4760	4770	4780	4790	4800
	GAATTTCTCC		TOCCOCCCCC	CONCORCO	
GCC11GCCGA	GRATITUTU	GACGGCG1CG	166666666	CIICIGGIAC	GCGGIIGCCG
CGGAACGGCT	CTTAAAGAGG	CTGCCGCAGC	ACCGCGGCCG	GAAGACCATG	CGCCAACGGC
			•	•	
4810	4820	4830	4840	4850	4860
CONTROCCE	GCTTCTTGCC				
000100000	0011011000	INCOMORTOC	1 CONTINUE COC	CGATICGATG	AT COOCUACA
CGGACGGCCC	CGAAGAACGG	ATGTTCTACG	ACTIGIGGCG	GCTAAGCTAC	TAGCCGGTGT
				•	
4870	4880	4890	4900	4910	4920
AGTCGCCGAA	ATATCTGCAC			ACTOCACCAT	CTCCCCAACC
TO COCCOUNT	TATAGACGTG	A A C C C C A C C C	CCACCCCCC	WC1 COUCCUT	CICGCCAACC
TOMOCOGCII	INTUGUCGIG	ANGCEGACCC	GGAGCCGGGC	IGAGCIGCIA	6AGC6GTTGG
			4.		
4930	4940	4950			
TGCCGGCAGC	GAGGCTCTCG	ATCCTTTTGA	TCTCAGCCGG	TGCGCTGATC	CATCGTGGCG
ACCCCCCTCG	CTCCGAGAGC	TACCAAAACT	AGAGTCGGCC	ACCCCACTAC	CTACCACCCC
inconcented	0100010100	TUCCHANICT	MGMGTCGGCC	ACGCGACIAG	GINGCACCGC
4000	5000	F81.0			
4990	5000	5010	5020	5030	5040
CCAGCGCCGC	CAAGGATGCG	CTGACCGTGG	CCCTTCGCGA	CCATGGCCTG	CACCGCTCGC
GGTCGCGGCG	GTTCCTACGC	GACTGGCACC	GGGAAGCGCT	GGTACCGGAC	GTGGCGAGCG
				001110000	0100000000
5050	5060	5070	E000		
					5100
CGAACTCCGG	CTGGCCGGAA	GCGGCCATGG	CCGGCGCGCT	CGATCTGCAG	CTTGCCGGTC
GCTTGAGGCC	GACCGGCCTT	CGCCGGTACC	GGCCGCGCGA	GCTAGACGTC	GAACGGCCAG
5110	5120	5130	5140	5150	5160
		3300003000	77.70 DT.40	2130	
CGCGGAICIA	TGGCGGCGTC	AAGGTCAGCG	AACCTATGAT	CAACGGTCCG	GGCCGAGCGG
GCGCCTAGAT	ACCGCCGCAG	TTCCAGTCGC	TTGGATACTA	GTTGCCAGGC	CCGGCTCGCC
			. نر		
5170	5180	5190	5200 [°]	5210	5220
TTGCAACAAG	CGAAGACATC	GACGCCGGTA	ውጥርር ጥርጥል ውጥ	TTATCCCCCC	
y y Compound	GCTTCTGTAG	CECCCCCAM	A A C CA CAMA A	TIMIGOCOCC	101NCOOLCA
MCGIIGIIC	GCTTCTGTAG	CIGCGGCCAI	MACGACATAA	AATACCGCGG	ACATGCCAGT
5230	5240			5270	5280
TGGCCGGGTT	TGTTCTTGCA	ATCGCAATGA	TTTGATCGCG	GAAGTTGACC	ጥጥርርር አጥጥልል
ACCECCCAA	ACAAGAACGT	TACCCTTACT	AAACTAGCGC	CUPTONACTIC	NACCCURA NOO
noocooon	NOWNGENICGI	INGCGIINCI	NUNCTURCEC	CIICHACIGG	MUCCIMALI
5290	5300				
GACTCTGCTT	TCCATATGTA	TTAAGATCGT	ATCATATTCG	ATCAGTTATT	CTCCTGGAAC
CTGAGACGAA	AGGTATACAT	AATTCTAGCA	TAGTATAAGC	TAGTCAATAA	GAGGACCTTG
					CAUCHACCI I G
5350	5360	E220	E200	5000	P.400
		5370			
GTTTGGTTCC	ACCGGTACGT	GTTCGTCTTC	CCGGAGAGAG	AAGCATGCGC	AAAAGCTT
CAAACCAAGG	TGGCCATGCA	CAAGCAGAAG	GGCCTCTCTC	TTCGTACGCG	TTTTCGAA

FIGURE 7.6

WO 91/11518 PCT/FR91/00054

			10/10	A .	
10	00	20	15/30	بر 50	60
10 GAATTCGCCA	20	30			
CTTAAGCGGT	CGCGGATGTA	CCGACTGGAG	TTCGTCAAGG	AGCACCGGGT	CITCITGCIC
70	80	90	100	110	120
GGCCGGCAGA					
CCGGCCGTCT	AAAAGGGAGC	GCCCGGACTC	ATAAAAGCGC	GCGAGCTGGA	CIGCGGCGAG
7.20	1.40	150	1.00	170	100
130	140	150	- 160	170	180
GACAAGGTGC					
CTGTTCCACG	CGCACCAGTA	AGAGCCGGTC	CTAGGGATAG	TGCCACTGCC	GGTCCGCGTA
,			,		•
190	200	210	220	230	240
GGGCTCTGCT					
CCCGAGACGA	AGTCGCAAGC	GGGGCCACAG	GCCTGCGGCG	GCAGCGACCA	GTTGTAGATG
250	260	270	. 280	.290	300
AAGGAACTGA					
TTCCTTGACT	TATGGCTAGA	GCCATAAGGC	GGCCGCGCAG	TGCCAAAAGA	GCTTTCGACC
310	320	330	340	350	360
				TAGAGCGCGG	
CGTTCCGTCC	CGCACGACGA	AAACTTGTCG	CACGACTGCC	ATCTCGCGCC	CTTGCACGCA
	•				
370	380	390	400	410	420
				CATCCGTGCG	
GTGTGGTCCC	AGTGCCAACC	CTTTTCAAGT	GCCTACGCTA	GTAGGCACGC	CAGTTGCTCC
430	440	450	. 460	470	
					GCGGCCTTCG
GGCTCGTAGG	GCAGCAGAAG	TACGAAACCC	CGAGGATACG	CGTCTTCTTC	CGCCGGAAGC
490	500	510		530	
					TCAGCCCATT
AGCTGGCGAG	CGCGGTAGAA	CAGGACTCCC	GTGGTGTAGG	CAGCGGCGAG	AGTCGGGTAA
				•	
550	560	570			
					AGCAAAGGCT
GGCCGAAAGA	GCCGACGGCC	GTAAAAAGGG	TCCGGTTACG	GAAGGAGCTT	TCGTTTCCGA
610	620	630			
TCGATCCGAT	CGACTGGCGG	CTGCCGGAAA	ATCCGGCTGC	GGACATCAAC	TGAAGGCTTG
AGCTAGGCTA	GCTGACCGCC	GACGGCCTTT	TAGGCCGACG	CCTGTAGTTG	ACTTCCGAAC
			4		
670	680				
GCGCGAATGA	CGGCTTTGTC	GTCGCCCTGA	GGTCTTGCCT	TGGCGGCGGC	GATCCGCCTA
CGCGCTTACT	GCCGAAACAG	CAGCGGGACT	CCAGAACGGA	ACCGCCGCCG	CTAGGCGGAT
				•	
730	740	750	760	770	[.] 780
AGACGCCCGA	ACGAAATGGC	GGAGGCGGGC	ATGCGCAAAA	TTCTGATCAT	CGGCATCGGT
					GCCGTAGCCA
			***		•
790	800	·810	820	830	840
		GACCGTGCAG	GCGATCAACG	CGCTGAACTG	CGCCGACGTG
					GCGGCTGCAC
	000110101	:			
850	860	870	880	890	900
					CCGCGACATC
					GGCGCTGTAG
Over the work	3010011000				,
910	920	930	940	950	960
					GCCCGTGCGG
					CGGGCACGCC
ADDODDODGA	,		. Coordange		. JUGGGGGGGG
		F:	IGURE: 8.1		
		• •			
				·	

			14/	151	
970 CGCACCGAAG GCGTGGCTTC	980 GCGTCAGCTA CGCAGTCGAT	990 TGACGGCAGC ACTGCCGTCG	1000 GTCGATGACT	1010	1020 GATCGCTGGG CTAGCGACCC
1030 ATTTACGAAG TAAATGCTTC	1040 CGCTTCTATC GCGAAGATAG	1050 GAAGGAGTTG CTTCCTCAAC	GGCGAAGAGG	GAACTGGCGC	1080 GTTTCTCGTC CAAAGAGCAG
1090 TGGGGCGACC ACCCCGCTGG	1100 CGATGCTCTA GCTACGAGAT	1110 TGACAGCACC ACTGTCGTGG	ATTCGCATCG	TCGAGCGGGT	CAAGGCACGC
1150 GGTGAGGTCG CCACTCCAGC	1160 CCTTCGCCTA GGAAGCGGAT	CGACGTCATT	1180 CCCGGGATCA GGGCCCTAGT	CCAGTCTGCA	GGCGCTTTGC
1210 GCCAGCCACC CGGTCGGTGG	1220 GCATTCCGCT CGTAAGGCGA	GAACCTCGTC	1240 GGCAAGCCGG CCGTTCGGCC	1250 TGGAGATCAC ACCTCTAGTG	1260 CACGGGGCGT GTGCCCCGCA
1270 CGGCTGCACG GCCGACGTGC	1280 AAAGCTTTCC TTTCGAAAGG	CGAGAAGAGC	1300 CAGACCTCGG GTCTGGAGCC	TCGTCATGCT	CGATGGCGAA
1330 CAGGCGTTTC GTCCGCAAAG	1340 AGCGGGTCGA TCGCCCAGCT	1350 GGACCCGGAG CCTGGGCCTC	GCGGAGATCT	ATTGGGGCGC	CTATCTCGGC
1390 ACGCGGGATG TGCGCCCTAC	1400 AGATCGTCAT TCTAGCAGTA	1410 TTCCGGCCGC AAGGCCGGCG	GTGGCTGAGG	TGAAGGACCG	1440 GATCCTTGAA CTAGGAACTT
1450 ACGCGGGCGG TGCGCCCGCC	1460 CGGCGCGCGC GCCGCGCGCG	1470 GAAGATGGGA CTTCTACCCT	TGGATCATGG	ACATCTATCT	CCTCCCCAAC
1510 GGCGCCGACT CCGCGGCTGA	1520 TCGACGAGTG AGCTGCTCAC	ACGGGGAGGG	1540 CCGATCTGCG GGCTAGACGC	TCGTGTTTGA	1560 TCTCACTCAA AGAGTGAGTT
1570 GGTTTGCGGC CCAAACGCCG	1580 TGTGTTATAG ACACAATATC	1590 CGTCTTAAGA GCAGAATTCT	GGCTTCTTCA	GGGAGGAGAA	CCTCAAGTGA
1630 TGACGGATTT ACTGCCTAAA	1640 GATGACCAGC CTACTGGTCG	1650 TGCGCCCTTC ACGCGGGAAG	CATTGACCGG	AGATGCCGGC	ACCETCECTT
1690 CGATGCGCCG GCTACGCGGC	1700 CGGCGCCTGC GCCGCGGACG	1710 CCGTCCTTGG GGCAGGAACC	CAGAGCCGAT	GCAGACCGGC	1740 GACGGCCTGC CTGCCGGACG
1750 TCGTGAGGGT AGCACTCCCA	1760 GAGGCCAACG CTCCGGTTGC	1770 GATGACAGCC CTACTGTCGG	TGACGCTGCC	GAAGGTCATT	GCCCTTGCCA
1810 CGGCTGCCGA GCCGACGGCT	1820 GCGCTTCGGC CGCGAAGCCG	1830 AATGGCATCA TTACCGTAGT	1840 TCGAGATTAC AGCTCTAATG	1850 CGCGCGCGGA GCGCGCGCCT	1860 AACCTGCAGC TTGGACGTCG
1870 TTCGCGGCCT	1880 GAGCGCGGCT	1890 TCGGTGCCAA		1910 GGCGATCGGC	1920 GATGCGGAGA

			151	151	
AAGCGCCGGA	CTCGCGCCGA	AGCCACGGTT	CCGACCGCGT	CCGCTAGCCG	CTACGCCTCT
1930 TCGCCATTGC AGCGGTAACG	1940 CGAGGGGCTC GCTCCCCGAG	GCGATCGAGG	1960 TGCCGCCCCT ACGGCGGGGA	GGCCGGCATC	1980 GACCCGGACG CTGGGCCTGC
1990	2000	2010	2020	AGCGTTGGAT	2040
AGATCGCCGA	TCCGCGGCCG	ATTGCCACTG	AGCTTCGTGA		GTGCGCCAGG
TCTAGCGGCT	AGGCGCCGGC	TAACGGTGAC	TCGAAGCACT		CACGCGGTCC
2050	2060	2070	TCGTCATCGA	2090	2100
TGCCGTTGAA	GCTTGCACCC	AAATTATCCG		TAGCGGTGGC	CGGTTTGGTC
ACGGCAACTT	CGAACGTGGG	TTTAATAGGC		ATCGCEACCG	GCCAAACCAG
2110	2120	2130	2140	GACTGTCGCG	2160
TCGGCGCTGT	CGTCGCCGAC	ATTCGCCTTC	AGGCGGTTTC		GGGGTGGCCT
AGCCGCGACA	GCAGCGGCTG	TAAGCGGAAG	TCCGCCAAAG		CCCCACCGGA
2170	2180	2190	AGGCATCGAG	2210	2220
GGGTGCTGTC	GCTTGGCGGC	ACGTCAACGA		CGTCGGGACG	TTGGCCGGCA
CCCACGACAG	CGAACCGCCG	TGCAGTTGCT		GCAGCCCTGC	AACCGGCCGT
2230	2240	2250	2260	GGCGAGCCTG	2280
ACGCGGTCGT	GCCGGCCTG	ATCACCATTC	TCGAGAAACT		GGCACGACGA
TGCGCCAGCA	CGGCCGGGAC	TAGTGGTAAG	AGCTCTTTGA		CCGTGCTGCT
2290	2300	2310	2320	CTGTCGCTGT	2340
TGCGCGGGCG	CGATCTGGAC	CCGTCGGAAA	TCCGCGCGCT		GAGACATCGT
ACGCGCCCGC	GCTAGACCTG	GGCAGCCTTT	AGGCGCGCGA		CTCTGTAGCA
2350	2360	2370	2380	2390	2400
CCGAACGCCC	GGCCGCTCCG	CGTTCGGCCG	CAATACCCGG	CATTCATGCG	CTGGGTAACG
GGCTTGCGGG	CCGGCGAGGC	GCAAGCCGGC	GTTATGGGCC	GTAAGTACGC	GACCCATTGC
2410	2420	2430	TTGCTCAGGT	2450	2460
CCGACACCGT	TCTCGGCCTC	GGTCTGGCCT		GGAGGCCGCC	GCGCTGGCAT
GGCTGTGGCA	AGAGCCGGAG	CCAGACCGGA		CCTCCGGCGG	CGCGACCGTA
2470	2480	2490	CCAATGCGAT	2510	2520
CCTACCTGCA	TCAGGTCCAG	GCGCTTGGCG		CCGGCTTGCG	CCCGGGCACG
GGATGGACGT	AGTCCAGGTC	CGCGAACCGC		GGCCGAACGC	GGGCCCGTGC
2530 CCTTCTTCGT GGAAGAAGCA	2540 CCTCGGCCTT GGAGCCGGAA	TGCCCCGAGA	2560 CCGCGGCTGT GGCGCCGACA	GGCGCAGAGC	2580 CTGGCAGCGT GACCGTCGCA
2590	2600	2610	CGCGCAATGC	2630	2640
CACACGGTTT	TCGCATTGCC	GAGCAGGATC		GATCGCCACC	TGCGCCGGCA
GTGTGCCAAA	AGCGTAACGG	CTCGTCCTAG		CTAGCGGTGG	ACGCGGCCGT
2650	2660	2670	2680	2690	CTCGTCGAGA
GCAAGGGTTG	CGCCTCGGCG	TGGATGGAAA	CCAAGGGCAT	GGCCGAGCGC	
CGTTCCCAAC	GCGGAGCCGC	ACCTACCTTT	GGTTCCCGTA	CCGGCTCGCG	
2710	2720	2730	2740	2750	2760
CGGCGCCGGA	ATTGCTCGAC	GGGTCGCTCA	CCGTGCATCT	CTCCGGCTGC	GCCAAGGGCT
GCCGCGGCCT	TAACGAGCTG	CCCAGCGAGT	GGCACGTAGA	GAGGCCGACG	CGGTTCCCGA
2770 GCGCCCGGCC CGCGGGCCGG	2780 GAAGCCGTCC CTTCGGCAGG	2790 GAACTGACGC CTTGACTGCG	2800 TTGTCGGTGC	2810 GCCATCAGGA CGGTAGTCCT	2820 TACGGGCTTG ATGCCCGAAC
2830	2840	2850	2860	2870	2880

			16/	151	
TCGTAAATGG AGCATTTACC	GGCTGCCAAT CCGACGGTTA	GGCTTGCCAA CCGAACGGTT	GCGCCTACAC	CGATGAGAAT	GGAATGGGAT CCTTACCCTA
2890 CCGCCTTGC GGCGGGAACG	2900 CCGGCTCGGC GGCCGAGCCG	2910 CGGCTGGTGC GCCGACCACG	2920 GGCAAAACAA CCGTTTTGTT	2930 AGACGCTGGC TCTGCGACCG	2940 GAATCGGCGC CTTAGCCGCG
2950 AGTCCTGTCT TCAGGACAGA	2960 TACACGGCTC ATGTGCCGAG	2970 GGAGCTGCGC CCTCGACGCG	2980 GCGTCTCGGC CGCAGAGCCG	2990 AGCGTTCGAA TCGCAAGCTT	3000 CAGGGATAGA GTCCCTATCT
3010 CATGCCTGAG GTACGGACTC	3020 TATGATTACA ATACTAATGT	3030 TTCGCGATGG AAGCGCTACC	CAACGCCATC	3050 TACGAGCGTT ATGCTCGCAA	3060 CCTTCGCCAT GGAAGCGGTA
3070 CATCCGCGCC GTAGGCGCGG	3080 GAGGCCGATC CTCCGGCTAG	3090 TGTCGCGCTT ACAGCGCGAA	CTCCGAAGAG	GAAGCGGATC	3120 TGGCTGTGCG ACCGACACGC
3130 CATGGTGCAC GTACCACGTG	3140 GCCTGCGGTT CGGACGCCAA	CCGTCGAGGC	3160 GACCAGGCAG CTGGTCCGTC	TTCGTGTTTT	3180 CTCCCGATTT GAGGGCTAAA
3190 CGTAAGCTCG GCATTCGAGC	3200 GCCCGTGCGG CGGGCACGCC	3210 CGCTGAAAGC GCGACTTTCG	3220 CGGTGCGCCG GCCACGCGGC	3230 ATCCTCTGCG TAGGAGACGC	3240 ATGCCGAGAT TACGGCTCTA
3250 GGTTGCGCAC CCAACGCGTG	3260 GGTGTCACCC CCACAGTGGG	3270 GCGCCCGTCT CGCGGGCAGA	GCCGGCCGGC	3290 AACGAGGTGA TTGCTCCACT	3300 TCTGCACGCT AGACGTGCGA
3310 GCGCGATCCT CGCGCTAGGA	3320 CGCACGCCCG GCGTGCGGGC	3330 CACTTGCGGC GTGAACGCCG	CGAGATCGGC	3350 AACACCCGCT TTGTGGGCGA	CCGCCGCAGC
3370 CCTGAAGCTC GGACTTCGAG	3380 TGGAGCGAGC ACCTCGCTCG	3390 GGCTGGCCGG CCGACCGGCC	TTCGGTGGTC	3410 GCGATCGGCA CGCTAGCCGT	3420 ACGCGCCGAC TGCGCGGCTG
3430 GGCGTTGTTC CCGCAACAAG	3440 TTCCTCTTGG AAGGAGAACC	3450 AAATGCTGCG TTTACGACGC	3460 CGACGCGCG GCTGCCGCGC	CCGAAGCCGG	3480 CGGCAATCCT GCCGTTAGGA
3490 CGGCATGCCC GCCGTACGGG	3500 GTCGGTTTCG CAGCCAAAGC	3510 TCGGTGCGGC AGCCACGCCG	GGAATCGAAG	GATGCGCTGG	CCGAGAACTC
3550	25.60		••		
CTATGGCGTT GATACCGCAA	3560 CCCTTCGCCA GGGAAGCGGT	3570 TCGTGCGCGG AGCACGCGCC	CCGCCTCGGC	3590 GGGAGTGCCA CCCTCACGGT	TGACGGCGGC
GATACCGCAA 3610 AGCGCTTAAC	CCCTTCGCCA	TCGTGCGCGG AGCACGCGCC 3630 GGCCGGGCCT	CCGCCTCGGC GGCGGAGCCG 3640 GTGAGCGGCG	GGGAGTGCCA CCCTCACGGT 3650 TCGGCGTGGG	TGACGGCGGC ACTGCCGCCG 3660 GCGCCTGATC
GATACCGCAA 3610 AGCGCTTAAC TCGCGAATTG 3670 GGTGTTGGGA	CCCTTCGCCA GGGAAGCGGT 3620 TCGCTCGCGA	TCGTGCGCGG AGCACGCGCC 3630 GGCCGGGCCT CCGGCCCGGA 3690 TGATCCGGAA	CCGCCTCGGC GGCGGAGCCG 3640 GTGAGCGGCG CACTCGCCGC	GGGAGTGCCA CCCTCACGGT 3650 TCGGCGTGGG AGCCGCACCC 3710 TCAAGGCGGT	TGACGGCGGC ACTGCCGCCG 3660 GCGCCTGATC CGCGGACTAG 3720 GAAGGCGCTC

				17/15/3830	
3790	3800 GTCTGCTGAA	3810	3820	3830	3840
CACCAGCTCC	CAGACGACTT	CGGGCTAGAA	CAGCTCGACG	GCGATATGAT	AGGCCACTGC
3850	3860	3870	3880	3890	3900
ACCGAAATCG	ACAAGGACGA	TGGCGCCTAC	AAGACCCAGA	TCACCGACTT	CTACAATGCG
TGGCTTTAGC	TGTTCCTGCT	ACCGCGGATG	TTCTGGGTCT	AGTGGCTGAA	GATGTTACGC
3910	3920	3930	3940	3950	3960
TCGGCCGAAG	CGGTAGCGGC	GCATCTTGCC	GCCGGGCGCA	CGGTCGCCGT	GCTCAGTGAA
AGCCGGCTTC	GCCATCGCCG	CGTAGAACGG	CGGCCCGCGT	GCCAGCGGCA	CGAGTCACTT
3970	3980	3990	4000	4010	4020
GGCGACCCGC	TGTTCTATGG	TTCCTACATG	CATCTGCATG	TGCGGCTCGC	CAATCGTTTC
CCGCTGGGCG	ACAAGATACC	AAGGATGTAC	GTAGACGTAC	ACGCCGAGCG	GTTAGCAAAG
4030	4040	4050	4060	4070	4080
CCGGTCGAGG	TGATCCCCGG	CATTACCGCC	ATGTCCGGCT	GTTGGTCGCT	TGCCGGCCTG
GGCCAGCTCC	ACTAGGGGCC	GTAATGGCGG	TACAGGCCGA	CAACCAGCGA	ACGGCCGGAC
4090	4100	4110	4120	4130	4140
CCGCTGGTGC	AGGGCGACGA	CGTGCTCTCG	GTGCTTCCGG	GCACCATGGC	CGAGGCCGAG
GGCGACCACG	TCCCGCTGCT	GCACGAGAGC	CACGAAGGCC	CGTGGTACCG	GCTCCGGCTC
4150		4170		4190	4200
CTCGGCCGCA	GGCTTGCGGA	TACCGAAGCC	GCCGTGATCA	TGAAGGTCGG	GCGCAATTTG
GAGCCGGCGT	CCGAACGCCT	ATGGCTTCGG	CGGCACTAGT	ACTTCCAGCC	CGCGTTAAAC
4210	4220	4230	4240	4250	4260
CCGAAGATCC	GTCGGGCGCT	CGCTGCCTCC	GGCCGTCTCG	ACCAGGCCGT	CTATGTCGAA
GGCTTCTAGG	CAGCCCGCGA	GCGACGGAGG	CCGGCAGAGC	TGGTCCGGCA	GATACAGCTT
			•	•	
4270	4280	4290	4300	4310	4320
CGCGGCACGA	TGAAGAACGC	4290 GGCGATGACG	GCTCTTGCGG	AAAAGGCCGA	4320 CGACGAGGCG
CGCGGCACGA	4280 TGAAGAACGC ACTTCTTGCG	GGCGATGACG	GCTCTTGCGG	AAAAGGCCGA	CGACGAGGCG
CGCGGCACGA GCGCCGTGCT 4330	TGAAGAACGC ACTTCTTGCG 4340	GGCGATGACG CCGCTACTGC 4350	GCTCTTGCGG CGAGAACGCC 4360	AAAAGGCCGA TTTTCCGGCT 4370	CGACGAGGCG GCTGCTCCGC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT	TGAAGAACGC ACTTCTTGCG	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT 4470 TACGGCTACT	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT 4470 TACGGCTACT	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT 4470 TACGGCTACT ATGCCGATGA	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGÁTAGA	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG 4510 CGGATCAGAT	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT 4470 TACGGCTACT ATGCCGATGA 4530 TCGGACAACC	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGÁTAGA 4540 GCGAGGAGCT	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC CGACCGGCTG	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG 4560 CAGGTCGCGC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG 4510 CGGATCAGAT	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT 4470 TACGGCTACT ATGCCGATGA 4530 TCGGACAACC	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGÁTAGA 4540 GCGAGGAGCT	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC CGACCGGCTG	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG 4560 CAGGTCGCGC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG 4510 CGGATCAGAT	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC GGCACAGCGG	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT TACGGCTACT ATGCCGATGA 4530 TCGGACAACC AGCCTGTTGG	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGÁTAGA 4540 GCGAGGAGCT CGCTCCTCGA	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC 4550 CGATCGGCCA GCTAGCCCGT	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG 4560 CAGGTCGCGC GTCCAGCCGC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG 4510 CGGATCAGAT GCCTAGTCTA	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC GGCACAGCGG	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT A470 TACGGCTACT ATGCCGATGA 4530 TCGGACAACC AGCCTGTTGG	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGATAGA 4540 GCGAGGAGCT CGCTCCTCGA	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC GCTGGCCGAC 4550 CGATCGGGCA GCTAGCCCGT	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG CAGGTCGCGC GTCCAGCCGC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG CGGATCAGAT GCCTAGTCTA 4570 TGACGCGGGC	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC GGCACAGCGG	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT TACGGCTACT ATGCCGATGA 4530 TCGGACAACC AGCCTGTTGG 4590 GTGAAGGTCT	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGÁTAGA 4540 GCGAGGAGCT CGCTCCTCGA	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC 4550 CGATCGGCCA GCTAGCCCGT GCTAGCCCGT 4610 CGGTGGCGAT	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG CAGGTCGCGC GTCCAGCGC GTCCAGCGCG CGCCGCGTGTCT
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG CGATCAGAT GCCTAGTCTA 4570 TGACGCGGGC ACTGCGCCG ACTGCGCCG	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC GGCACAGCGG 4580 TGCGGCAGGC ACGCCGTCCG	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT A470 TACGGCTACT ATGCCGATGA 4530 TCGGACAACC AGCCTGTTGG 4590 GTGAAGGTCT CACTTCCAGA	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGÁTAGA 4540 GCGAGGAGCT CGCTCCTCGA 4600 GCATGGTCTC CGTRCCAGAG 4660	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC 4550 CGATCGGCCA GCTAGCCCGT 4610 CGGTGGCCGAT GCCACCGCTA	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG CAGGTCGCGC GTCCAGCGC GTCCAGCGCG GTCCAGCAC 4620 CCCCGGTGTCT GGGCCACAGA
GCGGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG CGGATCAGAT GCCTAGTCTA GCCTAGTCTA 4570 TGACGCGGGC ACTGCGCCG ACTGCGCCG ACTGCGCCGGC ACTGCGCCCG	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC GGCACAGCGG 4580 TGCGGCAGGC ACGCCGTCCG	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT TACGGCTACT ATGCCGATGA 4530 TCGGACAACC AGCCTGTTGG 4590 GTGAAGGTCT CACTTCCAGA 4650 TGCGAGGCGA	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGÁTAGA 4540 GCGAGGAGCT CGCTCCTCGA 4600 GCATGGTCTC CGTRCCAGAG TCGACAGAG TCGACAAGGG	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC 4550 CGATCGGCCA GCTAGCCCGT 4610 CGGTGGCGAT GCCACCGCTA ACCGGCGGAA	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG CAGGTCGCGC GTCCAGCGC GTCCAGCGCG GTCCAGCAGA 4620 CCCGGTGTCT GGGCCACAGA 4680 TGGAAGTCGG
GCGGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG CGGATCAGAT GCCTAGTCTA GCCTAGTCTA 4570 TGACGCGGGC ACTGCGCCG ACTGCGCCG ACTGCGCCGGC ACTGCGCCCG	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC GGCACAGCGG 4580 TGCGGCAGGC ACGCCGTCCG	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT TACGGCTACT ATGCCGATGA 4530 TCGGACAACC AGCCTGTTGG 4590 GTGAAGGTCT CACTTCCAGA 4650 TGCGAGGCGA	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGÁTAGA 4540 GCGAGGAGCT CGCTCCTCGA 4600 GCATGGTCTC CGTRCCAGAG TCGACAGAG TCGACAAGGG	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC 4550 CGATCGGCCA GCTAGCCCGT 4610 CGGTGGCGAT GCCACCGCTA ACCGGCGGAA	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG CAGGTCGCGC GTCCAGCGC GTCCAGCGCG GTCCAGCAGA 4620 CCCGGTGTCT GGGCCACAGA 4680 TGGAAGTCGG
GCGGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG CGGATCAGAT GCCTAGTCTA 4570 TGACGCGGGC ACTGCGCCCG ACTGCGCCCG ACTGCGCCCG ACTGCGCCCG ACTGCGCCCG ACGGTACCGCCCG ACGGTACCGC	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC GGCACAGCGG 4580 TGCGGCAGGC ACGCCGTCCG ACGCCGTCCG 4640 GGCCGCCGTC CCGGCGGCAG	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT A470 TACGGCTACT ATGCCGATGA CGGACAACC AGCCTGTTGG 4590 GTGAAGGTCT CACTTCCAGA 4650 TGCGAGGCGA ACGCTCCGCT	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGATAGA 4540 GCGAGGAGCT CGCTCCTCGA 4600 GCATGGTCTC CGTRECAGAG TCGACAAGGG AGCTGTECCC 4720	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC 4550 CGATCGGCCA GCTAGCCGTA GCCACCGCTA 4610 CGGTGGCGAT GCCACCGCTA 4670 ACCGGCGGAA TGGCCGCCTT	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG CAGGTCGCGC GTCCAGCGC GTCCAGCGCG CGCCTCTCGGC 4620 CCCGGTGTCT GGGCCACAGA 4680 TGGAAGTCGG ACCTTCAGCC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG CGATCAGAT GCCTAGTCTA 4570 TGACGCGGGC ACTGCGCCCG ACTGCGCCCG 4630 TTGCCATGGC AACGGTACCG AACGGTACCG 4690 TTGAACTGGT	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC GGCACAGCGG 4580 TGCGGCAGGC ACGCCGTCCG ACGCCGTCCG ACGCCGTCCG ACGCCGTCCC GGACAGCCGCCCGTCCCCCCCCCC	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT A470 TACGGCTACT ATGCCGATGA CGGACAACC AGCCTGTTGG 4530 TCGGACAACC AGCCTGTTGG 4590 GTGAAGGTCT CACTTCCAGA A650 TGCGAGGCGA ACGCTCCGCT 4710 GGCGTGACCG	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGATAGA 4540 GCGAGGAGCT CGCTCCTCGA 4600 GCATGGTCTC CGTRECAGAG 4660 TCGACAAGGG AGCTGTTCCC CGACAAGGG AGCTGTTCCC CGATGCTCCCCCCCCCC	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC 4550 CGATCGGCCA GCTAGCCGT 4610 CGGTGGCGAT GCCACCGCTA 4670 ACCGGCGGAA TGGCCGCTT 4730 CGTTGCCGCC	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG CAGGTCGCGC GTCCAGCGCG GTCCAGCGCG 4620 CCCGGTGTCT GGGCCACAGA 4680 TGGAAGTCGG ACCTTCAGCC
CGCGGCACGA GCGCCGTGCT 4330 CCCTATTTCT GGGATAAAGA 4390 ATGTCGTCGG TACAGCAGCC 4450 TTGCGGCCGC AACGCCGGCG CGATCAGAT GCCTAGTCTA 4570 TGACGCGGGC ACTGCGCCCG ACTGCGCCCG 4630 TTGCCATGGC AACGGTACCG AACGGTACCG 4690 TTGAACTGGT	TGAAGAACGC ACTTCTTGCG 4340 CGCTGGTGCT GCGACCACGA 4400 TACCGGACCG ATGGCCTGGC 4460 TCAGGAGTTT AGTCCTCAAA 4520 CCGTGTCGCC GGCACAGCGG 4580 TGCGGCAGGC ACGCCGTCCG ACGCCGTCCG 4640 GGCCGCCGTC CCGGCGGCAG	GGCGATGACG CCGCTACTGC 4350 CGTTCCCGGC GCAAGGGCCG 4410 GGCAGCGCCA CCGTCGCGGT A470 TACGGCTACT ATGCCGATGA CGGACAACC AGCCTGTTGG 4530 TCGGACAACC AGCCTGTTGG 4590 GTGAAGGTCT CACTTCCAGA A650 TGCGAGGCGA ACGCTCCGCT 4710 GGCGTGACCG	GCTCTTGCGG CGAGAACGCC 4360 TGGAAGGACC ACCTTCCTGG 4420 AGCAGATGAC TCGTCTACTG 4480 TTCCCTATCT AAGGGATAGA 4540 GCGAGGAGCT CGCTCCTCGA 4600 GCATGGTCTC CGTRECAGAG 4660 TCGACAAGGG AGCTGTTCCC CGACAAGGG AGCTGTTCCC CGATGCTCCCCCCCCCC	AAAAGGCCGA TTTTCCGGCT 4370 GACCATGACC CTGGTACTGG 4430 GCCGGAAACG CGGCCTTTGC 4490 CGACCGGCTG GCTGGCCGAC 4550 CGATCGGCCA GCTAGCCGT 4610 CGGTGGCGAT GCCACCGCTA 4670 ACCGGCGGAA TGGCCGCTT 4730 CGTTGCCGCC	CGACGAGGCG GCTGCTCCGC 4380 GGTACGCTCT CCATGCGAGA 4440 GCGGAAGCCG CGCCTTCGGC 4500 AACCTCAGAC TTGGAGTCTG CAGGTCGCGC GTCCAGCGCG GTCCAGCGCG 4620 CCCGGTGTCT GGGCCACAGA 4680 TGGAAGTCGG ACCTTCAGCC

	4	18/15			
4800 CCCTGGGAAG GGGACCCTTC	4790 CAATCTGAAG	4780 CGCTTTCCGA	4770 TGTGCGATCT ACACGCTAGA	TCATGATTTC	CGCCGCTCGG
4860 CTCTACAATC GAGATGTTAG	CGTCATTGCC	AAGCGGGCTT		GCGTCTCAGG	
4920 CGCAGCGTTC GCGTCGCAAG	CGAGCTTCTG	490(GTGAGGCCTT CACTCCGGAA	TGGCAGCTCG	4880 GGCGCGGCCC CCGCGCCGGG	4870 CGATCAGCAA GCTAGTCGTT
4980 GAACGGATCG CTTGCCTAGC	GCGGCCGGAC	GTGCGGCCGG	4950 ATCTTCGGCC TAGAAGCCGG	CGTTCCGGTC	4930 TGCCGGCAAG ACGGCCGTTC
5040 TGCGTCATCA ACGCAGTAGT	CATGGCGACC	ACCGCGCCGA	5010 GCCGATGCCA CGGCTACGGT	5000 GCTCGGCGAG CGAGCCGCTC	4990 CGGTGATGCC GCCACTACGG
5100 GTCTACACAC CAGATGTGTG	ACCCGATCTC	GCGACGGCCA	5070 ATCGTCGAGC TAGCAGCTCG	5060 GGAGACGCGC CCTCTGCGCG	5050 TCGGCTCGCC AGCCGAGCGG
5160 TCGCAACTGC AGCGTTGACG	GAGTGCCTCG	CGATGCGGTT	5130 AGCCAGTGAG TCGGTCACTC	5120 TGCAGGGGCG ACGTCCCCGC	5110 CGCGCTTCTA GCGCGAAGAT
5220 ATGCCGAGCC TACGGCTCGG	GATCACCTCG	5200 GCTCGACCAT CGAGCTGGTA	GGCTTGCGCC	5180 CACGTCCGCG GTGCAGGCGC	5170 CGACCGTCGG GCTGGCAGCC
5280 GCGACGATCA CGCTGCTAGT	GCTGTTCTTG	CGCTGCCACC	CCGTAGGTGG	5240 GGCAATCTTG CCGTTAGAAC	5230 GGCGCGCTGC CCGCGCGACG
5340 GGACCGGTCG CCTGGCCAGC	TTCCGCAAAG	CTTCGTCGGC	AGCAACGCGG	5300 CCGACTCCTG GGCTGAGGAC	5290 CATCGATCTG GTAGCTAGAC
5400 ACGCTGCGGA TGCGACGCCT	CACCGGATCG	GCGGCGGCGT	GGCAGATTAA	5360 CTCCTGGTCG GAGGACCAGC	5350 CCAGGATCGC GGTCCTAGCG
5460 CCTATCGCCA GGATAGCGGT	5450 TTCCTGTCGA AAGGACAGCT	AGTGGAAAGC	GCGACCTCGA	5420 GTGCTGCGGC CACGACGCCG	5410 TGACGTAGCT ACTGCATCGA
5520 CTATCGACAG GATAGCTGTC	CTCGACAACG	5500 CGCTGACGGC GCGACTGCCG	TCACCGAGCG	GCGTCGCCGA	5470 GGAAGACGCG CCTTCTGCGC
5580 ATAAGCGCAA TATTCGCGTT	GCGGAGGGCG	5560 ATTCCGGTCG TAAGGCCAGC	AGGGGCACCC	GTCGCCAGGC	5530 CAGTCCAGCG GTCAGGTCGC
5640 AAGGGGTGCG TTCCCCACGC	5630 GCGTGCGGCA CGCACGCCGT	TGTGCGAAAT	TCCGCGGCGT	TTGCGCTGCG	5590 CGCCGGTTCT GCGGCCAAGA
5700 CCATCGGCGC	5690 ATGCGCCAGC				5650 TCGCATCGAC

	19/15/				
AGCGTAGCTG	GTCGTCGCGC	TACAAAAGCA	GTACGTGCTT	TACGCGGTCG	GGTAGCCGCG
	5720 GCCGATGCGC CGGCTACGCG			CGGGTCCGCG	
	5780 GGCGGTGTCG CCGCCACAGC				
	5840 GCCACCCAGA CGGTGGGTCT	ATCAGAATAC		CATGGCTGAC	GTGTCGAACA
	5900 CATAGTCTCC GTATCAGAGG	CCCTGGCTGA		TATCGGTGAG	
	5960 CGACGAGGCC GCTGCTCCGG		TCGCCGAAGC	GCCGGTCGTC	
6010 ATCGTCATCT TAGCAGTAGA	6020 GGAGCTCGCC CCTCGAGCGG	6030 GCCTCCCTCA CGGAGGGAGT	6040 TCACCGGCGA AGTGGCCGCT	6050 AGCGCACAAT TCGCGTGTTA	6060 TGGCTAAGCC ACCGATTCGG
6070 CCCTCGAACG GGGAGCTTGC	6080 CTCGGTCGTC GAGCCAGCAG	6090 GAGATCGTCG CTCTAGCAGC	CGCGTCGCGG	CAGCCCGGTG	GTGGTGCTTG
6130 CCTCGGGCGA GGAGCCCGCT	6140 CCCGTTCTTC GGGCAAGAAG	6150 TTCGGCGTCG AAGCCGCAGC	6160 GCGTGACGCT CGCACTGCGA	6170 GGCGCGCCGC CCGCGCGCG	ATCGCCTCGG
6190 CCGAAATACG GGCTTTATGC	6200 CACGCTTCCG GTGCGAAGGC	6210 GCGCCGTCGT CGCGGCAGCA	6220 CGATCAGTCT GCTAGTCAGA	TGCCGCCTCG	6240 CGCCTCGGCT GCGGAGCCGA
	6260 GGATGCGACG CCTACGCTGC	CTCGTCTCCG		GCCGCTGGAT	CTGGTGCGAC
6310 CGCATTTGCA GCGTAAACGT	TCCGGGGGCG	CGTGTGCTTA	CGCTCACGTC	GGACGGTGCG	6360 GGTCCGCGAG CCAGGCGCTC
6370 ACCTTGCCGA TGGAACGGCT	GCTTCTGGTT	TCAAGCGGCT	TCGGTCAGTC	GCGACTGACC	6420 GTGCTCGAAG CACGAGCTTC
	CGCCGGCGAA		CGCAGATCGC	CGCGCGCTTC	6480 ATGCTCGGCC TACGAGCCGG
6490				••	
TCGTGCATCC	TTTGAACGTC	TGCGCCATTG	AGGTGGCGGC	CGACGAGGGC	GCGCGCATCC
AGCACGTAGG	AAACTTGCAG	ACGCGGTAAC	TCCACCGCCG	GCTGCTCCCG	CGCGCGTAGG
6550 TGCCGCTTGC ACGGCGAACG	CGCCGGCCGC	GACGATGCGC	TGTTCGAACA	TGACGGGCAG	6600 ATCACCAAGC TAGTGGTTCG
6610	6620	6630	. 6640	6650	6660

	20/15/1					
	GGCGCTGACG CCGCGACTGC					
6670	6680	6690	6700	6710	6720	
	CGGCTCCGGC					
TGTAGCCGCC	GCCGAGGCCG	AGCTAGCCGT	AGCTTACCTA	CGAGCGGCTA	GGCTGGTACG	
6730	6740	6750	6760	6770	6780	
	CATCGAGGTT					
TCCGCTAGTG	GTAGCTCCAA	CTCGGCCTCG	CCCGTCGCGC	GTAGCCGGCG	TTGCGCTGCT	
6790	6800	6810	6820	6830	6840	
	GCCCGGGCTG					
ACAAGCCGCA	CGGGCCCGAC	TGCCAACAGC		CCCCCCCCC	GAACGGCCGG	
6850	6860	6870	6880	6890	6900	
	GGACGCGATC					
	CCTGCGCTAG				CAGTACCTTC	
6910	6920	6930	6940			
CAGCGATCGA	GGCGCTCAAG	TCAGGCGGAC	GGCTGGTTGC	CAACGCGGTG	ACGACGGACA	
	CCGCGAGTTC			. , , , , ,		
6970	***		7000			
TGGAAGCGGT	GCTGCTCGAT	CATCACGCGC	GGCTCGGCGG	TTCGCTGATC	CGCATCGATA	
	CGACGAGCTA		•			
7030		7050		7070	7080	
TCGCGCGTGC	AGGACCCATC	GGCGGCATGA	CCGGCTGGAA	GCCGGCCATG	CCGGTCACCC	
	TCCTGGGTAG	"	. 54			
7090		7110				
	GACGAAGGGC					
7150	CTGCTTCCCG			- 1.		
			7180			
CCTTCX CCCC	AAGAAAAAGA TTCTTTTTCT	MAGAGTAAÇC	AMACHCCCAM	CATTICATEG	GCGCCGGCCC	
		•				
7210			7240			
	GACCTGATCA CTGGACTAGT					
		7290			•	
					7320 CGGGCGCCCG	
GGAAATGCGG	CCGAGCTAGC	AGAGCGGCCT	CGACGACGCT	ATAACGGGCG	eccceceec	
7330	7340	7350	7360	7370	7380	
	ACGGCGCCGA					
	TGCCGCGGCT					
7390	7400	7410	7420	7430	7440	
	CTCGACGTGG					
					CCTCACGACA	
7450	7460	7470	7480	7490	7500	
GGCCGAACAG					CGCCGGGCGT	
					GCGGCCCGCA	
7510		7530		7550		
					CGGCCGTGGC	
					GCCGGCACCG	

				•	
			21	1151	
7570 CCAGAGCCTG GGTCTCGGAC	7580 GTGCTGACCC CACGACTGGG	GCGTTTCGGG	7600 CCGCGCCTCG	7610 CCGATGCCGA	ACTCAGAAAC
7630 GCTTTCCGCT CGAAAGGCGA	7640 TTCGGCGCTA AAGCCGCGAT	CGGGATCGAC	7660 GCTGGCAATC CGACCGTTAG	CACCTTGCGA	7680 TCCATGCGCT AGGTACGCGA
7690 TCAGCAGGTG AGTCGTCCAC	7700 GTCGAGGAAC CAGCTCCTTG	TGACGCCGCT	7720 CTACGGTGCC GATGCCACGG	GACTGCCCGG	7740 TCGCCATCGT AGCGGTAGCA
7750 CGTCAAGGCC GCAGTTCCGG	7760 TCCTGGCCGG AGGACCGGCC	7770 ACGAACGCGT TGCTTGCGCA	GGTGCGCGGC	7790 ACGCTCGGTG TGCGAGCCAC	7800 ACATCGCCGC TGTAGCGGCG
7810 CAAGGTGGCG GTTCCACCGC	7820 GAAGAGCCGA CTTCTCGGCT	TCGAGCGCAC	7840 GGCGCTGATC CCGCGACTAG	TTCGTCGGTC	7860 CGGGGCTCGA GCCCCGAGCT
7870 AGCCTCCGAT TCGGAGGCTA	7880 TTCCGTGAAA AAGGCACTTT	7890 GCTCGCTCTA CGAGCGAGAT	CGATCCCGCC	TATCAGCGGC	GCTTCAGAGG
7930 GCGCGGCGAA CGCGCCGCTT	7940 TAGGCCGCAC ATCCGGCGTG	TCCCTCGGGG	7960 GTCGGCCTAA CAGCCGGATT	GTTTCCCGCT	7980 GAGAGGGTTT CTCTCCCAAA
7990 TGAAACCTAT ACTTTGGATA	8000 TCTGCCGGTT AGACGGCCAA	8010 CTTCGCGCGG GAAGCGCGCC	CGGCCGCTGC	TTGAGCGGGA	CGCCGCGCTT
8050 TTCCTCGACG AAGGAGCTGC	8060 CGGTCGCGGT GCCAGCGCCA	AGAGCGCTGC	CTGTCCAAGC	8090 AGCATCAGCG TCGTAGTCGC	TCACCGGCGT
8110 GGTGGCGACG CCACCGCTGC	8120 ACGAAGACGA TGCTTCTGCT	TGATCAGGAT	TTCGTGGAAT	8150 ACCCAGCGGC TGGGTCGCCG	TCTGCAGCAC
8170 GGCAAAGCAG CCGTTTCGTC	8180 ATGATAGAGG TACTATCTCC	CGGCGCAGAT	CATCAGTACG	8210 CCGCCGCTGG GGCGGCGACC	8220 TCGCCAGCGT AGCGGTCGCA
8230 CGGTGCGTGC GCCACGCACG	8240 AGGCGCTCGT TCCGCGAGCA	8250 AGAAGCTGGT TCTTCGACCA	8260 GAACCGGAGC CTTGGCCTCG	8270 AAGCCGACGG TTCGGCTGCC	8280 AGCCGATCAG TCGGCTAGTC
8290 CGCCACTGCG GCGGTGACGC	8300 GCGCCGAGGA CGCGGCTCCT	8310 CGGTGAGCCC GCCACTCGGG	8320 GCAGACGAGA CGTCTGCTCT	8330 ACGGCTGCCC TGCCGACGGG	8340 AGACGGGAAG TCTGCCCTTC
8350 GTCGGTGAGG CAGCCACTCC	8360 TGGCTCATTC ACCGAGTAAG	8370 GATGATCTCC CTACTAGAGG	CCGCGCATCA	8390 GGAACTTGCC CCTTGAACGG	8400 GAAGGCGATC CTTCCGCTAG
8410 GACGAGACGA CTGCTCTGCT	8420 AGCCGATCAA TCGGCTAGTT	8430 AGCCACGATC TCGGTGCTAG	8440 AGGGCGGACT TCCCGCCTGA	8450 CGAAATAGAG GCTTTATCTC	8460 CGAGTTGGCC GCTCAACCGG
8470 GTGCGGATGC CACGCCTACG	8480 CGAAGGTCAA GCTTCCAGTT	8490 GAGCATCAGC CTCGTAGTCG	8500 ATGGCGTTGA TACCGCAACT	8510 TATAGAGCGT ATATCTCGCA	8520 GTCGAGGCCG CAGCTCCGGC

		* .			
8580	8570	8560	8550	8540	8530
AGCCATCGCC	AGAAGGCAAA	ACCATGCGAT	CGGTCCCCTC	CCTGGGCGCG	AGGATACGGT
TCGGTAGCGG	TCTTCCGTTT	TGGTACGCTA	GCCAGGGGAG	GGACCCGCGC	TCCTATGCCA
				0.500	
8640	8630	8620	8610	8600	8590
CATCATCCGA	TTGAAAGTTC	GACCAGATGA	AATCAGGATC	TGATCTGGGC	AGGCCGAGCA
GTAGTAGGCT	AACTTTCAAG	CTGGTCTACT	TTAGTCCTAG	ACTAGACCCG	TCCGGCTCGT
8700	8690	8680 [°]	8670	8660	8650
TCCTCGTTCT	GAGCCAGATG	TGACCGTATC	TCATAGCGCT	CAGGGCGGTC	ATATCTCCTT
AGGAGCAAGA	CTCGGTCTAC	ACTGGCATAG	AGTATCGCGA	GTCCCGCCAG	TATAGAGGAA
		· ·	•		
8760	8750	8740	8730	8720	8710
TTC	ATCCGGGGAA	TGCGGCCGCG	AGCAGGGACT	CACGTGGAAG	CCATGTCGAG
AAG	TAGGCCCCTT	ACGCCGGCGC	TCGTCCCTGA	GTGCACCTTC	GGTACAGCTC

FIGURE 8.10

FIGURE 9.1

FIGURE 9.2

. FIGURE 9.3

FIGURE 9.4

William L

FIGURE 9.5

28/15/

PHASE OUYERTE 6

A=ATG + STOP BC BRIN COMPLEMENTAIRE

FIGURE 10.1

. 29/15/

FIGURE 10.2

PL. 30/15/

PHASE OUYERTE 8

A=ATG * STOP BC BRIN COMPLEMENTAIRE

FIGURE 10.3

FEUILLE DE REMPLACEMENT

PL. 31/15/

PHASE OUYERTE 9

FIGURE 10.4

A=ATG + STOP BC BRIN COMPLEMENTAIRE

FIGURE 10.4

FEUILLE DE REMPLACEMENT

PL. 32/15/

PHASE OUVERTE 10

A=ATG * STOP BC BRIN COMPLEMENTAIRE

FIGURE 10.5

PL. 33 /151

SEQUENCE : 253TOT DE 5000 A 6000 LONGUEUR = 1001

PHASE OUYERTE 11

FIGURE 10.6

FEUILLE DE REMPLACEMENT

y i just

PL. 34/151

PHASE OUVERTE 12

A*ATG * STOP
BC BRIN COMPLEMENTAIRE

FIGURE 10.7

FEUILLE DE REMPLACEMENT

PL. 35/151.

PHASE OUVERTE 13

A=ATG * STOP BC BRIN COMPLEMENTAIRE

FIGURE 10.8

SC510 Rif^r G572, G643 G634 pXL545Ω pXL1500 pXL1397 pXL302 pXL723

FIGURE 12

FIGURE 13

FIGURE 14

```
GENE <u>coba</u> ET PROTEINE COBA
SEQUENCE DU FRAGMENT ClaI-HindIII-HindIII DE 5396 BP, DE 1141 A 1980
     {\tt MetIleAspAspLeuPheAlaGlyLeuProAlaLeuGluLysGlySerValTrpLeuValGlyAlaGlyProGly}
     1171 1181
                                     1161
                                                                                             1191
                                                                                                               1201
     {\tt AspProGlyLeuLeuThrLeuHisAlaAlaAsnAlaLeuArgGlnAlaAspValIleValHisAspAlaLeuValAlaAspAlaLeuValAlaAspAlaLeuValAlaAspAlaLeuValAlaAspAlaLeuValAlaAspAlaLeuValAlaAspAlaLeuValAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaAspAlaA
     GATCCCGGCCTGTTGACGCTGCATGCGGCCAATGCGCTGCCCAGGCGGATGTGATCGTGCATGATGCGCTGGTC
                                     1236
                                                       1246
                                                                          1256
                                                                                            1266
                                                                                                               1276
     {\tt AsnGluAspCysLeuLysLeuAlaArgProGlyAlaValLeuGluPheAlaGlyLysArgGlyGlyLysProSer}
     AACGAGGATTGCCTGAAGCTCGCGCGGCGGCGCGCGTGCTGGAGTTTGCGGGCAAGCGTGGCGAAGCCGTCG
                                                       1321
                                                                        1331
                                                                                            1341
                                                                                                            1351
     FroLysGlnArgAspIleSerLeuArgLeuValGluLeuAlaArgAlaGlyAsnArgValLeuArgLeuLysGly
     CCGAÁGCAGCGCGACATCTCGCTTCGCCTCGAACTCGCGCGCGCCGCAACCGGGTGCTGCGCCTCAÁAGGC
                  1376
                                     1386
                                                        1396
                                                                       -1406
                                                                                            1416
                                                                                                               1426
     GlyAspProPheValPheGlyArgGlyGlyGluGluAlaLeuThrLeuValGluHisGlnValProPheArgIle
     GGCGATCCCTTCGTCTCGGTCGCGGTGGCGAGGGGGCGCTGACGCTGGTCGAACACCAGGTGCCGTTCCGAATC
                                     1461
                                                                     * 1481
                                                       1471
                                                                                            1491
                                                                                                              1501
     ValProGlyIleThrAlaGlyIleGlyGlyLeuAlaTyrAlaGlyIleProValThrHisArgGluValAsnHis
     GTGCCCGGCATCACCGCCGGTATCGGCGGCTTGCCTATGCCGGCATTCCCGTGACCCATCGCGAGGTCAACCAC
1516
                                     1536
                                                                    1556
                                                       1546
                                                                                            1566
                                                                                                              1576
     AlaValThrPheLeuThrGlyHisAspSerSerGlyLeuValProAspArgIleAsnTrpGlnGlyIleAlaSer
     GCGGTCACTTTCCTGACTGGCCATGATTCCTCCGGCCTGGTGCCGGATCGCATCACTGGCAGGGCATCGCCAGC
1 1601 1611 1621 1631 1641 1651
     GlySerProValIleValMetTyrMetAlaMetLysHisIleGlyAlaIleThrAlaAsnLeuIleAlaGlyGly
     GGCTCGCCTGTCATCGTCATGTÂCATGGCGATGAÃACATATCGGCGGATCACCGCCAACCTCATTGCCGGCGGC
1666
                                                       1696
                                     1686
                                                                      1706 1716
     ArgSerProAspGluProValAlaPheValCysAsnAlaAlaThrProGlnGlnAlaValLeuGluThrThrLeu
     CGČTCGCCGGACGAACCGGTCGCCTTCGTCTGCAACGCCGCGACGCCGCAGCAGGCGGTGCTGGAAACGACGCTT
                  1751
                                                     1771 1781 1791
                                                                                                              1801
     AlaArgAlaGluAlaAspValAlaAlaAlaGlyLeuGluProProAlaIleValValValGlyGluValValArg
     1856
                  1826
                                     1836
                                                       1846
                                                                                            1866
                                                                                                              1876
     LeuArgAlaAlaLeuAspTrpIleGlyAlaLeuAspGlyArgLysLeuAlaAlaAspProPheAlaAsnArgIle
     CTGCGCGCAGCGCTCGACTGGATCGCCGCTGGACGGGCGCAAGCTTGCCGCCGACCCGTTCGCCAATCGCATT
                  1901
                                                       1921 1931
                                     1911
                                                                                            1941
                                                                                                              1951
     LeuArgAsnProAla***
     CTCAGGAACCCGGCATGA
1966
                  1976
                                     1986
                                                       1996
                                                                         2006
                                                                                            2016
                                                                                                              2026
```

FIGURE 15.1

••••				41/151					
NOM = COBA		PREMI	PREMIER RESIDU = 1						
			DERNI	ER RESIDU =					
				•	,				
			NOMBRE	% NOMB	POIDS	% POIDS			
-	B.111	_			•				
1	PHE	F	8	2.86	1176.56	4.02			
2	LEU	ŗ	31	11.07	3505.48	11.99			
3	ILE	I	16	5.71	1809.28	6.19			
4	MET	M	4	1.43	524.16	1.79			
5	VAL	V	. 27	9.64	2674.89	9.15			
6	SER	S	8	2.86	696.24	2.38			
7	· PRO	P	19	6.79	1843.95	6.31			
8	THR	T	10	3.57	1010.50	3.46			
9	ALA	A	41	14.64	2912.64	9.96			
10	TYR	Y	. 2	0.71	326.12	1.12			
11	*	*	0	0.00	0.00	0.00			
12	HIS	H	7	2.50	959.42	3.28			
13	GLN	Q	6	2.14	768.36	2.63			
14	ASN	N	. 9	3.21	1026.36	3.51			
15	LYS	K	8	2.86	1024.72	3.51			
16	ASP	D	15	5.36	1725.45	5.90			
17	GLU	E	13	4.64	1677.52	5.74			
18	CYS	С	2	0.71	206.02	0.70			
19	TRP	W	3	1.07	558.24	1.91			
20	ARG	R	19	6.79	2965.90	10.15			
21	GLY	G	32	11.43	1824.64	6.24			
22	-	-	0	0.00	0.00	0.00			
					5.00	0.00			
	RESIDU			= 280					
	POIDS	MOLEC	ULAIRE	= 29234					
	INDEX	DE PO	LARITE (%)	= 34					
	POINT	ISOEL	ECTRIQUE	= 7.5					
	DO 260	(1mg	/ml) = 0.	464 DO 280		0.652			

42/151

```
GENE CODB ET PROTEINE COBB
SEQUENCE DU FRAGMENT ClaI-HindIII-HindIII DE 5396 BP, DE 1980 A
                                                                       3281
  MetSerGlyLeuLeuIleAlaAlaProAlaSerGlySerGlyLysThrThrValThrLeuGlyLeuMetArgAla
  ATGAGCGGATTGCTGATTGCCGCACCCGCGTCCGGCTCCGGCAAGACGACGGTGACGCTCGGGCTGATGCGCGCC
         1990
1980
                   2000
                            2010
                                     2020
                                             2030
  LeuLysArgArgGlyValAlaIleAlaProGlyLysAlaGlyProAspTyrIleAspProAlaPheHisAlaAla
  CTGAAGAGGCGCGGCGTGGCGATCGCGCCCGGCAAGGCGGGCCGGACTATATCGATCCCGCTTTCCACGCGGCA
                   2075
                            2085
                                     2095
                                               2105
  AlaThrGlyGluProCysPheAsnTyrAspProTrpAlaMetArgProGluLeuLeuLeuAlaAsnAlaSerHis
  GCGACCGGCGAGCCCTGCTTCAACTACGACCCCTGGGCGATGCGCCCGGAACTGCTTGCCCAATGCGTCGCAT
                  2150
                            2160
                                               2180
                                     2170
  ValAlaSerGlyGlyArgThrLeuIleValGluAlaMetMetGlyLeuHisAspGlyAlaAlaAspGlySerGly
  GTGGCCTCCGGCGGCGCACATTGATCGTCGAGGCGATGATGGGACTGCATGACGGTGCTGCCGACGGCTCGGGĀ
                            2235
                                     2245
                                               2255
                                                        2265
  ThrProAlaAspLeuAlaAlaThrLeuAsnLeuAlaValIleLeuValValAspCysAlaArgMetSerGlnSer
  ACGCCAGCGGACCTCGCCGCACGCTGAACCTTGCGGTCATTCTGGTGGTCGATTGCGCCCGCATGTCCCAGTCG
                   2300
                            2310
                                     2320
                                               2330
                                                        2340
  ValAlaAlaLeuValArgGlyTyrAlaAspHisArgAspAspIleArgValValGlyValIleLeuAsnLysVal
  GTTGCCGCCCTCGTGCGGGCTĀTGCGGATCATCGCGACGATATCCGGGTGGTTGGCGTCATCCTCAACAĀGGTC
                            2385
                                     2395
                                               2405
                                                        2415
  GlySerAspArgHisGluMetMetLeuArgAspAlaLeuGlyLysValArgMetProValPheGlyValLeuArg
   ggcagcgatcggcatgaaatgatgctgcgcgatgcgctcggcaaggtgcgcatgcctgtcttcggcgtgctccgg
                            2460
                                     2470
                                               2480
                                                        2490
  GlnAspSerAlaLeuGlnLeuProGluArgHisLeuGlyLeuValGlnAlaGlyGluHisSerAlaLeuGluGly
  CAGGACAGCGCATTGCAACTGCCGGAGCGCCATCTCGGGCTCGTGCAGGCGGGGGGAACACTCAGCGCTTGAGGGC
                   2525
                            2535
                                     2545
                                               2555
  PhelleGluAlaAlaAlaAlaArgValGluAlaAlaCysAspLeuAspAlaIleArgLeuIleAlaThrIlePhe
  2580
                   2600
                            2610
                                      2620
                                               2630
  ProGlnValProAlaAlaAlaAspAlaGluArgLeuArgProLeuGlyGlnArgIleAlaValAlaArgAspIle
  2655
                   2675
                            2685
                                     2695
                                               2705
  AlaPheAlaPheCysTyrGluHisLeuLeuTyrGlyTrpArgGlnGlyGlyAlaGluIleSerPhePheSerPro
  GCCTTTGCCTTCTGCTACGAGCACCTGCTTTACGGCTGGCGGCAAGGCGGCGGGAGATTTCCTTCTCTCGCCG
2730
                   2750
                            2760
                                      2770
                                               2780
  LeuAlaAspGluGlyProAspAlaAlaAlaAspAlaValTyrLeuProGlyGlyTyrProGluLeuHisAlaGly
  CTCGCCGACGAGGGGCCGGATGCGGCAGCCGATGCCGTCTATCTTCCGGGGGGTTATCCGGAGCTGCATGCGGGG
2805
                   2825
                            2835
                                     2845
                                               2855
  GlnLeuSerAlaAlaAlaArgPheArgSerGlyMetHisSerAlaAlaGluArgGlyAlaArgIlePheGlyGlu
  CAGCTGAGCGCCGCCCGCATTCCGTTCCGGCATGCATTCCGCGGCGGAACGCGGCGCCCCCATCTTCGGCGAG
2880
         2890
                   2900
                            2910
                                     .2920
                                               2930
  CysGlyGlyTyrMetValLeuGlyGluGlyLeuValAlaAlaAspGlyThrArgTyrAspMetLeuGlyLeuLeu
  TGCGGCGGCTATATGGTGCTCGGCGAAGGGCTTGTCGCTGCCGATGGCACACGCTACGACATGCTCGGCCTGCTG
                   2975
                            2985
                                    2995
                                               3005
  ProLeuValThrSerPheAlaGluArgArgArgHisLeuGlyTyrArgArgValValProValAspAsnAlaPhe
  CCGCTCGTAACCAGTTTTGCCGAGCGCAGGCGGCACCTCGGCTATCGCCGGCGTCGTCGTCGACAACGCCTTC
3030
         3040
                   3050
                            3060
                                   3070
                                               3080
  {\tt PheAspGlyProMetThrAlaHisGluPheHisTyrAlaThrIleValAlaGluGlyAlaAlaAspArgLeuPhe}
  TTCGATGGACCCATGACGGCGCACGAATTCCACTATGCGACCATCGTCGCCGAAGGGGCGGCCGATCGGCTGTTT
                   3125
                            3135 3145
                                               3155
  AlaValSerAspAlaAlaGlyGluAspLeuGlyGlnAlaGlyLeuArgArgGlyProValAlaGlySerPheMet
  GCGGTCAGCGACGCCGGCGAGGATCTCGGCCAGGCGGGCCTCCGGCGCGCCCTGTCGCCGGTTCCTTCATG
3180
         3190
                   3200
                            3210
                                     3220
                                               3230
  HisLeuIleAspValAlaGlyAlaAla***
  CATCTGATCGACGTCGCAGGTGCTGCATGA
```

3305 ·

43/151

NOM = COBB			PREMIER RESIDU = 1				
			DERNII	ER RESIDU =	= 434		
			NOMBRE	% NOMB	POIDS	% POIDS	
1	PHE	F	17	3.92	2500.19	5.47	
2	LEU	L	· 45	10.37	5088.60	17.14	
2 3	ILE	I	17	3.92	1922.36	4.21	
4	MET	M	14	3.23	1834.56	4.02	
5	VAL	V	31	7,14	3071.17	6.72	
6	SER	S	19	4.38	1653.57	3.62	
7	PRO	P	21	4.84	2038.05	4.46	
8	THR	T	12	2.76	1212.60	2.65	
. 9	ALA	A	. 76	17.51	5399.04	11.82	
10	TYR	Y	11	2.53	1793.66	3.93	
11	*	*	0	0.00	0.00	0.00	
12	HIS	H	14	3.23	1918.84	4.20	
13	GLN	Q	9	2.07	1152.54	2.52	
14	ASN	N	5	1.15	570.20	1.25	
15	LYS	K	5	1.15	640.45	1.40	
16	ASP	D	28	6.45	3220.84	7.05	
17	GLU	E	21	4.84	2709.84	5.93	
18	CYS	С	5 2	1.15	515.05	1.13	
19	TRP	W		0.46	372.16	0.81	
20	ARG	R	34	7.83	5307.40	11.62	
21	GLY	G	48	11.06	2736.96	5.99	
22	-		. 0	0.00	0.00	0.00	
	RESID	us		= 4:	34	•	
	POIDS	MOLE	CULAIRE	= 456	76.		
	INDEX	DE E	POLARITE (%		34.		

INDEX DE POLARITE (%) = 34.

POINT ISOELECTRIQUE = 6.47

DO 260 (lmg/ml) = 0.351 DO 280 (lmg/ml) = 0.529

FIGURE 15.4

```
GENE CODC ET PROTEINE COBC
SEQUENCE DU FRAGMENT ClaI-HindIII-HindIII DE 5396 BP, DE 13281 A 4279
  MetSerAlaProIleValHisGlyGlyGlyIleThrGluAlaAlaAlaArgTyrGlyGlyArgProGluAspTrp
  3281
                  3301
                                    3321
                           3311
                                             3331
                                                       3341
  LeuAspLeuSerThrGlyIleAsnProCysProValAlaLeuProAlaValProGluArgAlaTrpHisArgLeu
  CTCGATCTGTCGACCGGCATCAATCCATGCCCCGTCGCCTTGCCCGGGGTCCCTGAGCGCGCCTGGCACCGGCTG
                                            3406
                  3376
                           3386
                                    3396
  ProAspArgGlnThrValAspAspAlaArgSerAlaAlaAlaAspTyrTyrArgThrAsnGlyValLeuProLeu
  CCGGATCGGCAGACGGTAGATGATGCGCGGAGCGCCGCCGACTACTACCGCACCAACGGCGTGCTGCCTTTG
                  3451
                           3461
                                    3471
                                             3481
                                                       3491
  ProValProGlyThrGlnSerValIleGlnLeuLeuProArgLeuAlaProAlaAsnArgHisValAlaIlePhe
  CCGGTGCCGGGCACCCAGTCGGTGATCCAGCTCCTGCCACGTCTTGCTCCGGCCAACAGGCACGTCGCGATTTTC
3506
         3516
                  3526
                           3536
                                    3546
                                             3556
                                                       3566
  GlyProThrTyrGlyGluTyrAlaArgValLeuGluAlaAlaGlyPheAlaValAspArgValAlaAspAlaAsp
  3611 3621
                  3601
                                             3631
                                                       3641
  AlaLeuThrAlaGluHisGlyLeuValIleValValAsnProAsnAsnProThrGlyArgAlaLeuAlaProAla
  GCGCTCACGGCCGAACATGGGCTTGTCATCGTCGTCAACCCCAACAACCCGACCGGCGCCCTTGGCGCCGCGC
  6 3666 3676 3686 3696 3706 3716 GluLeuLeuLeuLeuValAspGluAlaPheGlyAspLeu
  GAGCTTCTGGCGATCGCCGCAAGGCAGAGGCGAGCGGCGGACTGCTGCTGGTCGATGAGGCCTTCGGCGATCTT
1 3741 3751 3761 3781 3791
  GluProGlnLeuSerValAlaGlyHisAlaSerGlyGlnGlyAsnLeuIleValPheArgSerPheGlyLysPhe
  GAGCCGCAACTGAGTGTCGCTGGTCACGCGTCAGGGCAAGGCAACCTCATCGTCTTCCGCTCCTTCGGCAAGTTC
                                            3856
3806
         3816
                  3826
                           3836
                                    3846
  PheGlyLeuAlaGlyLeuArgLeuGlyPheValValAlaThrGluProValLeuAlaSerPheAlaAspTrpLeu
  TTCGGCCTTGCGGCCTCGGCTTCGTCGTTGCGACCGAGCCAGTGCTTGCATCCTTTGCCGATTGGCTC
                  3901
                           3911
                                    3921
                                             3931
  GlyProTrpAlaValSerGlyProAlaLeuThrIleSerLysAlaLeuMetGlnGlyAspThrLysAlaIleAla
  GGTCCCTGGGCTGTCTCCGGCCCGGCGTTGACGATCTCGAĀAGCGCTGATGCAGGGCGATACGAĀGGCGATCGCG
  6 3966 3976 3986 3996 4006 4016
AlaGlyIleLeuGluArgArgAlaGlyLeuAspAlaAfaLeuAspGlyAlaGlyLeuAsnArgIleGlyGlyThr
  GCGGGCATCCTCGAGCGTCGCGCCCGGCCTCGATGCGGCTCTCGATGGGGCAGGGCTCAACCGTATCGGCGCACG
         4041
                  4051
                           4061
                                   4071
                                         4081
                                                       4091
  GlyLeuPheValLeuValGluHisProArgAlaAlaLeuLeuGlnGluArgLeuCysGluAlaHisIleLeuThr
  GGGCTATTCGTGCTGGAGCATCCCAGGGCAGCTCTGCTGCAGGAGCGGCTCTGCGAGGCCCATATTCTCACG
4106
                  4126
                                    4146
                                          4156
         4116
                           4136
  ArgLysPheAspTyrAlaProThrTrpLeuArgValGlyLeuAlaProAspAlaAlaGlyAspArgArgLeuAla
  4201
                           4211
                                    4221
                                             4231
                                                       4241
  AspAlaLeuAlaArgMetGluLeu***
  GACGCGCTTGCCCGCATGGAGCTCTGA
4256
         4266
                  4276
                           4286
                                    4296
                                             4306
                                                       4316
```

45/151

NON	i = COB	С	PREMII DERNII	ER RESIDU : ER RESIDU :	= 1 = 333	
			NOMBRE	% NOMB	POIDS	% POIDS
1	PHE	F	11	3.30	1617.77	4.62
2 3 4 5 6 7 8	LEU	L	43	12.91	4862.44	13.90
3	ILE	I	13	3.90	1470.04	4.20
4	MET	M	3	0.90	393.12	1.12
5	·VAL	V	24	7.21	2377.68	6.79
6	SER	S	11	3.30	957.33	2.74
7	PRO	P	23	6.91	2232.15	
8	THR	T	. 14	4.20	1414.70	6.38 4.04
9	ALA	A	56	16.82	3978.24	11.37
10	TYR	Y	6	1.80	978.36	
11	*	*	ŏ	0.00	0.00	2.80
12	HIS	H	7	2.10	959.42	0.00
13	GLN	Q	8	2.40	1024.48	2.74
14	ASN	N	8	2.40	912.32	2.93
15	LYS	ĸ	5	1.50		2.61
16	ASP	Ď	19	5.71	640.45 2185.57	1.83
17	GLU	E	15	4.50		6.25
18	CYS	c	2	0.60	1935.60	5.53
19	TRP	W	5	1.50	206.02	0.59
20	ARG	R	25		930.40	2.66
21	GLY	Ğ	35	7.51	3902.50	11.15
22	_	_	0	10.51 0.00	1995.70	5.70
			· ·	0.00	0.00	0.00
	RESIDU	IS		= 33	33	
		_	CULAIRE	= 3499		
			OLARITE (%)		34.	
			LECTRIQUE	_	72	
	DO 260			670 DO 28		- 0.998
		. ,		V.V DU 20)	: U. 44X

PROFIL D'HYDROPHILICITE DE LA PROTEINE COBC DE 1 A 333

FIGURE 15.6

GENE cobd et proteine cobd

46/151

SEQUENCE DU FRAGMENT Clai-Hindili-Hindili DE 5396 BP, DE 4284 A 5252 ${\tt MetSerGluThrIleLeuLeuIleLeuAlaLeuAlaLeuValIleAspArgValValGlyAspProAspTrpLeu}$ GTGTCGGAGACGATCCTGCTCATTCTCGCGCTGGCGCTGGTGATCGACCGCGTTGTCGGCGATCCGGACTGGCTC TrpAlaArgValProHisProValValPhePheGlyLysAlaIleGlyPhePheAspAlaArgLeuAsnArgGlu TGGGCGCGCGTGCCGCATCCGGTCGTGTTTTTCGGCAAGGCCATCGGCTTTTTCGACGCGCGGCTGAACCGGGAG AspLeuGluAspSerAlaArgLysPheArgGlyValValAlaIleLeuLeuLeuGlyIleSerAlaTrpPhe GACCTCGAGGATAGCGCGCGAAATTTCGTGGCGTCGTCGCGATCCTTTTGTTGCTTGGCATCAGCGCCTGGTTC GlyHisLeuLeuHisArgLeuPheAlaValLeuGlyProLeuGlyPheLeuLeuGluAlaValLeuValAlaVal GGCCATCTGCTGCATCGCCTGTTCGCCGTCCTCGGACCGCTTCTGCTCGAGGCGGTTCTGGTCGCGGTC PheLeuAlaGlnLysSerLeuAlaAspHisValArgArgValAlaGlyGlyLeuArgGlnGlyGlyLeuGluGly GlyArgAlaAlaValSerMetIleValGlyArgAspProLysThrLeuAspGluProAlaValCysArgAlaAla GGGCGTGCCGCGTGTCGATGATCGTTGGTCGCGATCCAAAGACGCTCGACGAGCCGGCGGTCTGCCGTGCCGCG IleGluSerLeuAlaGluAsnPheSerAspGlyValValAlaProAlaPheTrpTyrAlaValAlaGlyLeuPro ATCGAAAGCCTTGCCGAGAATTTCTCCGACGCCGTCGTGCCGCCCTTCTGGTACGCGGTTGCCGGCCTGCCG GlyLeuLeuAlaTyrLysMetLeuAsnThrAlaAspSerMetIleGlyHisLysSerProLysTyrLeuHisPhe GGGCTTCTTGCCTACAAGATGCTGAACACCGCCGATTCGATGATCGGCCAAAGTCGCCCGAAATATCTGCACTTC GlyTrpAlaSerAlaArgLeuAspAspLeuAlaAsnLeuProAlaAlaArgLeuSerIleLeuLeuIleSerAla GECTGGGCCTCGGCCGACTCGACGATCTCGCCAACCTGCCGGCAGCGAGGCTCTCGATCCTTTTGATCTCAGCC GlyAlaLeuIleHisArgGlyAlaSerAlaAlaLysAspAlaLeuThrValAlaLeuArgAspHisGlyLeuHis GGTGCGCTGATCCATCGTGGCGCCAGCGCCCAAGGATGCGCTGACCGTGGCCCTTCGCGACCATGGCCTGCAC 4989 4999 5009 ArgSerProAsnSerGlyTrpProGluAlaAlaMetAlaGlyAlaLeuAspLeuGlnLeuAlaGlyProArgIle CGCTCGCCGAACTCCGGCTGGCCGGAAGCGGCCATGGCCGGCGCTCGATCTGCAGCTTGCCGGTCCGCGGATC TyrGlyGlyValLysValSerGluProMetIleAshGlyProGlyArgAlaValAlaThrSerGluAspIleAsp TÄTGGCGGCGTCAÄGGTCAGCGAACCTATGATCAACGGTCCGGGCCGÄGCGGTTGCAACAAGCGAAGACATCGAC AlaGlyIleAlaValPheTyrGlyAlaCysThrValMetAlaGlyPheValLeuAlaIleAlaMetIle*** GCCGGTATTGCTGTATTTTATGGCGCCTGTACGGTCATGGCCGGGTTTGTTCTTGCAATCGCAATGATTTGA

FIGURE 15.7

٠.

47/151

NOM = COBD		PREMIE DERNIE				
-			NOMBRE	F. NOMB	POIDS	% POIDS
1	PHE	F	14	4.33	2058.98	6.02
2	LEU	L	45	13.93	5088.60	14.89
3	ILE	I	18	5.57	2035.44	5.96
4	MET	M	8	2.48	1048.32	3.07
5 6	VAL	V	27 ·	8.36	2674.89	7.83
	·SER	S	17	5.26	1479.51	4.33
7	PRO	P	15	4.64	1455.75	4.26
8	THR	T	6	1.86	606.30	1.77
9	ALA	A	51	15.79	3623.04	10.60
10	TYR	Y	5	1.55	815.30	2.39
11	*	*	0	0.00	0.00	
12	HIS	H		2.79	1233.54	3.61
13	GLN	Q	3	0.93	384.18	1.12
14	ASN	N	9 3 6	1.86	684.24	2.00
15	LYS	ĸ	9	2.79	1152.81	3.37
16	ASP	D	18	5.57	2070.54	6.06
17	GLU	E	11	3.41	1419.44	4.15
18	CYS	С	2	0.62	206.02	0.60
19	TRP	W	6	1.86	1116.48	3.27
20	ARG	R	20	6.19	3122.00	9.14
21	GLY	G	33	10.22	1881.66	5.51
22	-	-	0	0.00	0.00	0.00
				::		
	RESID			=	323	
			CULAIRE	= 34	175.	
			OLARITE (%)	=	31.	
			LECTRIQUE	=	8.00	
	DO 26	0 (1mg	g/ml) = 0.	789 DO	280 (lmg/ml)	= 1.150

PROFIL D'HYDROPHILICITE DE LA PROTEINE COBD DE 1 A 323

. . 😾 . .

FIGURE 15.8

GENE cobe et proteine cobe

GCGGAGGCTGTCTGA

48/151

SEQUENCE DU FRAGMENT Clai-HindIII-HindIII-HindIII DE 5396 BP, DE 549 A 1010 MetProSerGlyGlnHisSerAlaGlnThrThrLysAlaGlyAlaGlyLeuValLeuGlyLeuGlyCysGluArg ATGCCATCGGGCCAACACTCTGCACAGACGACGAAGCAGGAGCCGGGCTGGTGCTGCGAGCGT ArgThrProAlaGluGluValIleAlaLeuAlaGluArgAlaLeuAlaAspAlaGlyValAlaProGlyAspLeu CGCACGCCGGCCGAAGAGGTGATCGCCCTTGCCGAGCGTGCCGCTGTTGCCGCGGCGATCTG ArgLeuValAlaSerLeuAspAlaArgAlaGluGluProAlaIleLeuAlaAlaAlaGlnHisPheAlaValPro CGGCTGGTCGCCTCGCTCGATGCTCGCGCCGAGGAGCCGGCGATCCTGGCGGCCGCTCAGCATTTCGCGGTTCCG AlaAlaPheTyrAspAlaAlaThrLeuGluAlaGluAlaSerArgLeuAlaAsnProSerGluIleValPheAla GCCGCGTTCTACGATGCCGCCACGCTCGAAGCCGAAGCTTCCCGGCTCGCCAACCCGTCCGAGATCGTCTTTGCC
784 794 804 814 824 834 TyrThrGlyCysHisGlyValAlaGluGlyAlaAlaLeuValGlyAlaGlyArgGluAlaValLeuIleValGln LysIleValSerAlaHisAlaThrAlaAlaLeuAlaGlyProAlaThrLeuArgAlaGluLysArgIleGlnAla AAGATCGTCTCCGCCCATGCGACGGCCGCCACTTGCCGGGCCGACCTTGCGCGCCAAAAGCGCATCCAGGCG AlaGluAlaVal***

FIGURE 15.9

49/151

1						
NOM	= COB	Ξ	PREMI	ER RESIDU =	1	
				ER RESIDU =		
				,		
			NOMBRE	& NOMB	POIDS	% POIDS
1	PHE	F	3	1.95	441.21	2.85
2	LEU	L	15	9.74	1696.20	10.96
3	ILE	I	6	3.90	678.48	4.38
4	MET	M	1	0.65	131.04	0.85
2 3 4 5 6	VAL	V	12	7.79	1188.84	7.68
6	SER	S	6	3.90	522.18	3.37
7	PRO	P	7 .	4.55	679.35	4.39
8	THR	T	7	4.55	707.35	4.57
9	ALA	A	. 41	26.62	2912.64	18.82
10	TYR	Y	2	1.30	326.12	2.11
11	*	*	0	0.00	0.00	0.00
12	HIS	H	4	2.60	548.24	3.54
13	GLN	Q	5 1 3	3.25	640.30	4.14
14	ASN	N	1	0.65	114.04	0.74
15	LYS	K		1.95	384.27	2.48
16	ASP	D	4	2.60	460.12	2.97
17	GLU	E	13	8,44	1677.52	10.84
18	CYS	С	2	1.30	206.02	1.33
19	TRP	W	0	0.00	0.00	0.00
20	ARG	R	9	5.84	1404.90	9.08
21	GLY	G	13	8.44	741.26	4.79
22	-	-	. 0	0.00	0.00	0.00
						· .
	RESIDU			= 15	_	
			CULAIRE	= 1547		
	TWDEX	DE PO	CLARITE (%)			
			LECTRIQUE	= 5.0		
	DO 260	, (πωζ	g/ml) = 0.	113 DO 280	0 (lmg/ml) =	0.154

GENE <u>cobf</u> ET PROTEINE COBF SEQUENCE DU FRAGMENT DE 8753 BP, DE 736 A 1521

				•			
MetAla	aGluAlaGl	yMetArgLysI	leLeuIleI	leGlyIleG1	ySerGlyAsn	ProGluHisMet	ThrValGln
ATGGC	GGAGGCGGG	CATGCGCAAAA	TTCTGATCA	TCGGCATCGG	TTCGGGCAAT	CCCGAACACATC	ACCGTGCAG
736	746	756	766	776	786	796	
AlaIle	eAsnAlaLe	uAsnCysAlaA	spValLeuP	helleProTh	rLvsGlvAla	LysLysThrGlu	LeuAlaGlu
GCGAT	CAACGCGCT	GAACTGCGCCG	ACGTGCTCT	TTATCCCGAC	CAAGGGAGCG	AAGAAGACCGAG	CTTCCCGAA
811	821	831	841	851	861	871	022000011
ValAr	gArgAspIl	eCysAlaArgT	vrValThrA	rqLvsAspSe	rAroThrVal	GluPheAlaVal	ProValara
GTGCG	CCGCGACAT	CTGCGCCCGCT	ACGTCACGC	GCAAGGACAG	CCGCACCGTC	GAGTTCGCGGT	CCCCTCCCC
886	896	906	916	926	936	946	eccesiecee
ArgThi			luSerVala	SDASDTmHi		AlaGlyIleTyr	Cluziate.
CGCAC	CGAAGGCGT	СУССТУТИРСО	CLACCEACE	PACPUACTOUS	CCCCCACAGC	GCTGGGATTTAC	GIUATALEU
961	971	981	991	1001	1011		GAAGUGCTT
			ファルアン・・ン ファ・エ	TOOT	TOTT	1021	
CTATC	CANCCACEE	CCCCCXXCXCC	TATHERTAN	Tabuerenva	TTTPGTYASP	ProMetLeuTyr	AspSerThr
1036	1046	1056	GWACIGGGG	CGTTTCTCGT	CIGGGGCGAC	CCGATGCTCTAT	GACAGCACC
			1066	1076	1086	1096	
TIENT	3TTEASTGT	uargvartysa	TaArgGIYG	TuvalAlaPh	eAlaTyrAsp	VallleProGly	IleThrSer
ALICG	JATUGTUGA	GUGGGTCAAGG	CACGCGGTG	AGGTCGCCTT	CGCCTACGAC	GTCATTCCCGGG	ATCACCAGT
1111	1121		1141	1151	1161	1171	•
LeuGII	nAlaLeuCy	SAlaSerHisA	rgIleProL	euAsnLeuVa	lGlyLysPro	ValGluIleThr	ThrGlyArg
CTGCA	GCCCTTTG	CGCCAGCCACC	GCATTCCGC	TGAACCTCGT	CGGCAAGCCG	GTGGAGATCACC	ACGGGGCGT
TT86	1196	1206	1216 ·	1226	1236	1246	
ArgLet	uHisGluSe	${ t rPheProGluL}$	ysSerGlnT	hrSerValVa	lMetLeuAsp	GlyGluGlnAla	PheGlnArg
CGGCT	GCACGAAAG	CTTTCCCGAGA	AGAGCCAGA	CCTCGGTCGT	CATGCTCGAT	GGCGAACAGGCG	TTTCAGCGG
1261	1271	1281	1291	1301	1311	1321	
ValGlı	uAspProGl	uAlaGluIleT	yrTrpGlyA	laTyrLeuGl	yThrArqAsp	GluIleValIle	SerGlvAra
GTCGA	GGACCCGGA	GGCGGAGATCT	ATTGGGGCG	CCTATCTCGG	CACGCGGGAT	GAGATCGTCATI	COCOCOCO
1336	1346	1356	1366	1376	1386	1396	
ValAla	aGluValLy	sAspArgIleL	euGluThrA	roAlaAlaAl	aArgAlaLvs	MetGlyTrpIle	MetAsnTle
GTGGC:	IGAGGTGAÃ	GGACCGGATCC	TTGAAACGC	CGCCCCCCC	CCCCCCVVC	ATGGGATGGATC	MECUSPITE
1411	1421	1431	1441	1451	(1461	1471	MIGGACAIC
TvrLe		sGlyAlaAspP			× 1401	T4 \T	
TATCT	CCTGCGCAA	GGGCGCCGACT	TCGACGAGT	GZ			
1486		1506	1516	Un.			
• •	- 400	1300	7070				

FIGURE 16.1

.

51/151

PRO	reine C	OBF		EMIER RESID RNIER RESID		
			NOMBRE	% NOMB	POIDS	% POIDS
1	PHE	F	. 7	2.68	1029.49	3.56
2	LEU	L	19	7.28	2148.52	7.43
2	ILE	I	21	8.05	2374.68	8.21
	MET	M	7	2.68	917.28	3.17
5	VAL	v	22	8.43	2179.54	7.53
4 5 6	SER	S	12	4.60	1044.36	3.61
7	PRO	P	9	3.45	873.45	3.02
8	THR	T	14	5.36	1414.70	4.89
9	ALA	A	27.	10.34	1918.08	6.63
10	TYR	Y	8	3.07	1304.48	4.51
11	*	*	Ō	0.00	0.00	0.00
12	HIS	H	4	1.53	548.24	1.90
13	GLN	Q	6	2.30	768.36	2.66
14	ASN	Ñ	4	1.53	456.16	1.58
15	LYS	K	12	4.60	1537.08	5.31
16	ASP	D	16	6.13	1840.48	6.36
17	GLU	E	23	8.81	2967.92	10.26
18	CYS	C	3	1.15	309.03	1.07
19	TRP	W	4	1.53	744.32	
20	ARG	R	21	8.05	3278.10	11.33
21	GLY	G	22	8.43	1254.44	4.34
	RESID	US		= 2	61 ·	
			CULAIRE	= 289		
					43.	
			LECTRIQUE		.70	
	DO 26				80 (lmg/ml)	= 1.097

GENE cobg ET PROTEINE COBG

```
SEQUENCE DU FRAGMENT DE 8753 BP, DE 1620 A 2999
     MetThrAspLeuMetThrSerCysAlaLeuProLeuThrGlyAspAlaGlyThrValAlaSerMetArgArgGly
     ATGACGGATTTGATGACCAGCTGCGCCCTTCCATTGACCGGAGATGCCGGCACCGTCGCTTCGATGCGCCGCGGC
1620
                1630
                                1640
                                               1650
                                                               1660
                                                                              1670
                                                                                              1680
    AlaCysProSerLeuAlaGluProMetGlnThrGlyAspGlyLeuLeuValArgValArgProThrAspAspSer
     GCCTGCCCGTCCTTGGCAGAGCCGATGCAGACCGGCGACGGCCTGCTCGTGAGGGTGAGGCCAACGGATGACAGC
                               1715
                                               1725
                                                              1735 1745
    LeuThrLeuProLysVallleAlaLeuAlaThrAlaAlaGluArgPheGlyAsnGlyIleIleGluIleThrAla
     CTGACGCTGCCGAAGGTCATTGCCCTTGCCACGGCTGCCGAGCGCTTCGGCAATGGCATCATCGAGATTACCGCG
                               1790
                                               1800
                                                              1810
                                                                              1820
                                                                                              1830
    ArgGlyAsnLeuGlnLeuArgGlyLeuSerAlaAlaSerValProArgLeuAlaGlnAlaIleGlyAspAlaGlu
     CGČGGÂAACCTGCAGCTTCGČGGCCTGAGCGCGGCTTCGGTGCCAAGGCTGGCGCAGCGATCGGČGATGCGGAG
                                                            1885
                               1865
                                               1875
                                                                              1895
                                                                                              1905
     IleAlaIleAlaGluGlyLeuAlaIleGluValProProLeuAlaGlyIleAspProAspGluIleAlaAspPro
    ATCGCCATTGCCGAGGGGCTCGCGATCGAGGTGCCGCCCCTGGCCGGCATCGACCCGGACGAGATCGCCGATCCG
                               1940
                                               1950
                                                           1960
                                                                              1970
                                                                                              1980
    ArgProlleAlaThrGluLeuArgGluAlaLeuAspValArgGlnValProLeuLysLeuAlaProLysLeuSer
    CGGCCGATTGCCACTGAGCTTCGTGAAGCGTTGGATGTGCGCCAGGTGCCGTTGAAGCTTGCACCCAAATTATCC
                                               2025
                                                               2035
                                                                              2045
    {\tt ValValIleAspSerGlyGlyArgPheGlyLeuGlyAlaValValAlaAspIleArgLeuGlnAlaValSerThr} \\
    GTCGTCATCGATAGCGGTGGCCGGTTTGGTCTCGGCGCTGTCGCCGACATTCGCCTTCAGGCGGTTTCGACT
2070
               2080
                               2090
                                               2100
                                                             2110
                                                                              2120
                                                                                              2130
    ValAlaGlyValAlaTrpValLeuSerLeuGlyGlyThrSerThrLysAlaSerSerValGlyThrLeuAlaGly
    GTCGCGGGGGTGGCCTGGGTGCTTGGCGGCACGTCAACGAAGGCATCGAGCGTCGGGACGTTGGCCGGC
                               2165
                                              2175
                                                        2185
                                                                              2195
    AsnAlaValValProAlaLeuIleThrIleLeuGluLysLeuAlaSerLeuGlyThrThrMetArgGlyArgAsp
    AACGCGGTCGTGCCGGCCCTGATCACCATTCTCGAGAAACTGGCGAGCCTGGGCACGACGATGCGCGGGCGCGAT
               2230
                                                        2260
                               2240
                                               2250
                                                                           2270
    LeuAspProSerGluIleArgAlaLeuCysArgCysGluThrSerSerGluArgProAlaAlaProArgSerAla
    CTGGACCCGTCGGAAATCCGCGCGCTCTGTCGCTGTGAGACATCGTCCGAACGCCCGGCCGCTCCGCGTTCGGCC
                               2315
                                               2325
                                                             2335
                                                                             2345
                                                                                             2355
    AlaIleProGlyIleHisAlaLeuGlyAsnAlaAspThrValLeuGlyLeuGlyLeuAlaPheAlaGlnValGlu
    GCAATACCCGGCATTCATGCGCTGGGTAACGCCGACACCGTTCTCGGCCTCGGTCTGGCCTTTGCTCAGGTGGAG
                               2390
                                               2400
                                                             2410
                                                                              2420
                                                                                             2430
    AlaAlaAlaLeuAlaSerTyrLeuHisGlnValGlnAlaLeuGlyAlaAsnAlaIleArgLeuAlaProGlyHis
    GCCGCCGCGCTGCATCCTACCTGCATCAGGTCCAGGCGCTTGGCGCCAATGCGATCCGGCTTGCGCCCGGGCAC
               2455
                               2465
                                               2475
                                                            2485
                                                                              2495
                                                                                             2505
    {\tt AlaPhePheValLeuGlyLeuCysProGluThrAlaAlaValAlaGlnSerLeuAlaAlaSerHisGlyPheArg}
    GCCTTCTTCGTCCTCGGCCTTTGCCCCGAGACCGCGCGTGTGGCGCAGAGCCTGGCAGCGTCACACGGTTTTCGC
                               2540
                                               2550
                                                              2560
                                                                              2570
                                                                                             2580
    IleAlaGluGlnAspProArgAsnAlaIleAlaThrCysAlaGlySerLysGlyCysAlaSerAlaTrpMetGlu
    2615
                                               2625
                                                              2635
                                                                              2645
                                                                                             2655
    {\tt ThrLysGlyMetAlaGluArgLeuValGluThrAlaProGluLeuLeuAspGlySerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuSerLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValHisLeuThrValH
    ACCAÁGGGCATGGCCGAGCGCCTCGTCGAGACGGCGCGGAATTGCTCGACGGGTCGCTCACCGTGCATCTCTCC
                               2690
                                               2700
                                                              2710
                                                                              2720
                                                                                             2730
    GlyCysAlaLysGlyCysAlaArgProLysProSerGluLeuThrLeuValGlyAlaProSerGlyTyrGlyLeu
    GGCTGCGCCAÂGGGCTGCGCCCGÁAGCCGTCCGAACTGACGCTTGTCGGTGCGCCATCAGGÁTÁCGGGCTT
                               2765
                                               2775
                                                             .2785
                                                                              2795
    ValValAsnGlyAlaAlaAsnGlyLeuProSerAlaTyrThrAspGluAsnGlyMetGlySerAlaLeuAlaArg
    GTCGTAAATGGGGCTGCCAATGGCTTGCCAAGCGCCTACACCGATGAGAATGGAATGGGATCCGCCCTTGCCCGG
                               2840
                                               2850
                                                            2860
                                                                              2870
    LeuGlyArgLeuValArgGlnAsnLysAspAlaGlyGluSerAlaGlnSerCysLeuThrArqLeuGlyAlaAla
    CTCGGCCGGCTGGTGCGCAAAACAAAGACGCTGGCGAATCGGCGCAGTCCTGTCTTACACGGCTCGGAGCTGCG
2895
               2905
                               2915
                                                           2935
                                               2925
                                                                             2945
                                                                                             2955
    ArgValSerAlaAlaPheGluGlnGly***
    CGCGTCTCGGCAGCGTTCGAACAGGGATAG
2970
               2980
                              2990
                                               3000
```

53/151

PRO	PROTEINE COBG PREMIER RESIDU = 1 DERNIER RESIDU = 459							
			NOMBRE	& NOMB	POIDS	% POIDS		
1	PHE	F	7	1.53	1029.49	2.21		
2	LEU	L	56	12.20	6332.48	13.57		
2 3 4	ILE	I	21	4.58	2374.68	5.09		
4	MET	M	8	1.74	1048.32	2.25		
5	VAL	v	31	6.75	3071.17	6.58		
5 6	. SER	S	32	6.97	2784.96	5.97		
7	PRO	P	26	5.66	2523.30	5.41		
8	THR	T	27	5.88	2728.35	5.85		
9	ALA	Ā	78	16.99	5541.12	11.88		
10	TYR	Y	. 3	0.65	489.18	1.05		
11	*	*	ō	0.00	0.00	0.00		
12	HIS	H	. 5	1.09	685.30	1.47		
13	GLN	Q	13	2.83	1664.78	3.57		
14	ASN	N	10	2.18	1140.40	2.44		
15	LYS	K	10	2.18	1280.90	2.75		
16	ASP	D	19	4.14	2185.57	4.68		
17	GLU	Ē	24	5.23	3096.96	6.64		
18	CYS	č	10	2.18	1030.10	2.21		
19	TRP	W	ž	0.44	372.16	0.80		
20	ARG	R	29	6.32	4526.90	9.70		
21	GLY	G	48	10.46	2736.96	5.87		
22	_	_	0	0.00	0.00	0.00		
			•	0.00	0.00	0.00		
	RESIDU	JS		=	459			
	POIDS	MOLEC	CULAIRE	= 46	661.			
			CLARITE (%) =	37.			
	POINT	ISOEI	ECTRIQUE	′ =	6.41			
	DO 260				280 (1mg/m1) =	. 0 315		

FIGURE 16.4

GENE <u>cobh</u> ET PROTEINE COBH SEQUENCE DU FRAGMENT DE 8753 BP, DE 3002 A 3634

 ${\tt MetProGluTyrAspTyrIleArgAspGlyAsnAlaIleTyrGluArgSerPheAlaIleIleArgAlaGluAla}$ ATGCCTGAGTATGATTACATTCGCGATGGCAACGCCATCTACGAGGCGTTCCTTCGCCATCATCCGCGCCGAGGCC ${\tt AspLeuSerArgPheSerGluGluGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaValArgMetValHisAlaCysGlySerValGluAlaAspLeuAlaAspL$ GATCTGTCGCGCTTCTCCGAAGAGGAAGCGGATCTGGCTGTGCGCATGCTGCACGCCTGCGGTTCCGTCGAGGCG ${\tt ThrArgGlnPheValPheSerProAspPheValSerSerAlaArgAlaAlaLeuLysAlaGlyAlaProIleLeu}$ ACCAGGCAGTTCGTGTTTTCTCCCGATTTCGTAAGCTCGGCCCGTGCGCGCTGAAAGCCGGTGCGCCGATCCTC CysAspAlaGluMetValAlaHisGlyValThrArgAlaArgLeuProAlaGlyAsnGluValIleCysThrLeu CGCGATCCTCGCACGCCCGCACTTGCGGCCAGATCGGCAACACCCGCTCCGCCGCAGCCCTGAAGCTCTGGAGC ${\tt GluArgLeuAlaGlySerValValAlaIleGlyAsnAlaProThrAlaLeuPhePheLeuLeuGluMetLeuArg}$ GAGCGĞCTGGCCGGTTCGGTGGTCGCGATCGCCAACGCGCGACGCCGTTGTTCTTCCTCTTGGAAATGCTGCGC ${\tt AspGlyAlaProLysProAlaAlaIleLeuGlyMetProValGlyPheValGlyAlaAlaGluSerLysAspAla}$ GACGGCGCCGAAGCCGGCGCAATCCTCGGCATGCCCGTCGGTTTCGTCGGTGCGCGGAATCGAAGGATGCG ${\tt LeuAlaGluAsnSerTyrGlyValProPheAlaIleValArgGlyArgLeuGlyGlySerAlaMetThrAlaAla}\\$ CTGGCCGAGAACTCCTATGGCGTTCCCTTCGCCATCGTGCGCGGCCCCTCGGCGGAGTGCCATGACGGCGGCA AlaLeuAsnSerLeuAlaArgProGlyLeu*** GCGCTTAACTCGCTCGCGAGGCCGGGCCTGTGA

FIGURE 16.5

Ċ.

					55/151	
PRO	TEINE (ОВН	PRI	MIER RESI	•	
	,			RNIER RESI		
			NOMBRE	% NOMB	POIDS	% POIDS
1	PHE	F	9	4.29	1323.63	6.00
2	LEU	L	20	9.52	2261.60	10.26
2 3 4	ILE	I	10	4.76	1130.80	5.13
4	MET	M	. 6	2.86	786.24	3.57
5	VAL	V	14	6.67	1386.98	6.29
6	. SER	S	14	6.67	1218.42	5.53
7	PRO	P	12	5.71	1164.60	5.28
8	THR	T	7	3.33	707.35	3.21
9	ALA	A	40	19.05	2841.60	12.89
10	TYR	Y	. 4	1.90	652.24	2.96
11	*	*	0	0.00	0.00	0.00
12	HIS	H	2	0.95	274.12	1.24
13	GLN	Q	1	0.48	128.06	0.58
14	ASN	N	6	2.86	684.24	3.10
15	LYS	K	4	1.90	512.36	2.32
16	ASP	D	9	4.29	1035.27	4.70
17	GLU	E	14	6.67	1806.56	8.19
18	CYS	С	3	1,43	309.03	1.40
19	TRP	W	1	0.48	. 186.08	0.84
20	ARG	R	17	8.10	2653.70	12.03
21	GLY	G	17	8.10	969.34	4.40
22	-	-	0	0.00	0.00	0.00
	RESID	JS		= · 2	10	
			CULAIRE	= 220		
	INDEX	DE P	OLARITE (%)		35.	
			LECTRIQUE		.22	
	DO 26					= 0.467

GENE cobi ET PROTEINE COBI SEQUENCE DU FRAGMENT DE 8753 BP, DE 3631 A 4368

Met	SerGlyValGly	/ValGlvArgI	euIleGlvV	alGlvThrGlv	ProGl vAso	ProGluTeuTer	ThrVallue
GTO	AGCGGCGTCGG	CGTGGGGCGCC	TGATCGGTG	TTGGGACCGG	CCCGGTGAT	CCGGAACTTTTC	ACCCTCAAC
3631	3641	3651	3661	3671	3681	3691	
Ala	ValLysAlaLe	GlyGlnAlaA	spValLeuA	laTvrPheAla	LvsAlaGlv	ArgSerGlvAsn	GlvArgAla
GCG	GTGAAGGCGCTC	CGGCAAGCCG	ATGTGCTTG	CCTATTTCGC	CAAGGCCGGG	CGAAGCGGTAAC	GCCCCCCC
3706	3716	3726	3736	3746	3756	3766	
Va]	.ValGluGlyLev	LeuLysProF	spLeuValG	luLeuProLeu	TVrTvrPro	ValThrThrGlu	IleAspLvs
GTG	GTCGAGGGTCTG	CTGAAGCCCC	ATCTTGTCG	AGCTGCCGCT?	TACTATCCG	GTGACGACCGAA	ATCGACAAG
3781	3791	3801	3811	3821	3831	3841	
Asp	AspGlyAlaTyr	LysThrGln	leThrAspP	heTyrAsnAla	SerAlaGlu	AlaValAlaAla	HisLeuAla
GAC	GATGGCGCCTAC	CAAGACCCAGA	TCACCGACT	TCTĀCAATGC	STCGGCCGAA	GCGGTAGCGGCG	CATCTTGCC
3856	3866	3876	3886	3896	. 3906	3916	
Ala	GlyArgThrVal	LAlaValLeuS	SerGluGlyA	spProLeuPhe	TvrGlvSer	TvrMetHisLev	HisValArg
GCC	GGGCGCACGGT	CGCCGTGCTC	AGTGAAGGCG	ACCCGCTGTT	CTATGGTTCC:	PACATGCATCTG	CATGTGCGG
3931	3941	3951	3961	3971	3981	3991	
Let	AlaAsnArgPhe	ProValGlu	/allleProG	lyTleThrAla	MetSerGly	CvsTrpSerLeu	AlaGlvLeu
CTC	CGCCAATCGTTTC	CCCGGTCGAG	STGATCCCCG	GCATTACCGC	CATGTCCGGC!	TGTTGGTCGCTT	CCCGCCTG
4006	4016	4026	4036	4046	4056	4066	
Pro	LeuValGlnGly	/AspAspValI	LeuSerValL	euProGlyTh	MetAlaGlu	AlaGluLeuGly	ArgArgLeu
CCG	CTGGTGCAGGG	CGACGACGTG	CTCTCGGTGC	TTCCGGGCAC	CATGGCCGAG	GCCGAGCTCGGC	CGCAGGCTT
4081	4091	4101	4111	4121	4131	4141	
Ala	AspThrGluAla	AlaValIleN	1etLysValG	lyArgAsnLe	ProLysIle	ArgArgAlaLeu	AlaAlaSer
GCC	GATACCGAAGC	CGCCGTGATC	ATGAAGGTCG	GGCGCAATTT	SCCGAAGATC	CGTCGGGCGCTC	GCTGCCTCC
4156	4166	4176	4186	`4196	4206	4216	•
Gl ₃	ArgLeuAspGl	nAlaValTyr\	/alGluArgG	lyThrMetLy:	sAsnAlaAla	MetThrAlaLeu	AlaGluLys
GGC	CCGTCTCGACCAC	GCCGTCTAT(STCGAACGCG	GCACGATGAA	SAACGCGGCG	ATGACGGCTCTI	GCGGAAAAG
4231	4241			4271	4281	4291	
Ala	AspAspGluAla	ProTyrPhes	SerLeuValL	euValProGly	/TrpLysAsp	ArgPro***	
GCC	CGACGACGAGGCC	SCCCTATTTC	rcgciggigc				
4306	4316	4326	4336	_% 4346	4356	4366	

FIGURE 16.7

PROTEINE COBI		MIER RESID NIER RESID % NOMB		% POIDS
1 PHE F	.	2 6 6		_
2 LEU L	5	2.04	735.35	2.84
3 ILE I	28	11.43	31.66.24	12.24
_	7.	2.86	791.56	3.06
	7	2.86	917.28	3.54
5 VAL V	25	10.20	2476.75	9.57
6 SER S	10	4.08	870.30	3.36
7 PRO P	14	5.71	1358.70	5.25
8 THR T	12	4.90	1212.60	4.69
9 ALA A	34	13.88	2415.36	9.33
10 TYR Y	9	3.67	1467.54	5.67
11 * *	0	0.00	0.00	0.00
12 HIS H	் 3	1.22	411.18	1.59
13 GLN Q	4	1.63	512.24	1.98
14 ASN N	. 5	2.04	570.20	2.20
15 LYS K	11	4.49	1408.99	5.44
16 ASP D	15	6.12	1725.45	
17 GLU E	13	5.31	1677.52	6.67
18 CYS C	1	0.41	103.01	6.48
19 TRP W	. 2	0.82	372.16	0.40
20 ARG R	14	5.71		1.44
21 GLY G	26	10.61	2185.40	8.44
22	0	0.00	1482.52	5.73
- "		0.00	0.00	0.00
RESIDUS POIDS MOLECUI INDEX DE POLA POINT ISOELEO DO 260 (1mg/m	RITE (%)	= 245 = 25878 = 36 = 6.1 512 DO 280	3. 5. 17	0.843

FIGURE 16.8

GENE cobj ET PROTEINE COBJ

58/151

SEQUENCE DU FRAGMENT DE 8753 BP, DE 4365 A 5129 ${\tt MetThrGlyThrLeuTyrValValGlyThrGlyProGlySerAlaLysGlnMetThrProGluThrAlaGluAlametThrClyThrLeuTyrValValGlyThrGlyProGlySerAlaLysGlnMetThrProGluThrAlaGluAlametThrClyThrLeuTyrValValGlyThrGlyProGlySerAlaLysGlnMetThrProGluThrAlaGluAlametThrClyThrLeuTyrValValGlyThrGlyProGlySerAlaLysGlnMetThrProGluThrAlaGluAlametThrClyThrClyThrClyProGlySerAlaLysGlnMetThrProGluThrAlaGluAlametThrClyThrClyThrClyProGlySerAlaLysGlnMetThrProGluThrAlaGluAlametThrClyThrClyProGlySerAlaLysGlnMetThrProGluThrAlaGluAlametThrClyThrClyThrClyProGlySerAlaLysGlnMetThrProGluThrAlaGluAlametThrClyThrC$ ATGACCGGTACGCTCTATGTCGTCGGTACCGGACCGGGCAGCGCCAAGCAGATGACGCCGGAAACGGCGGAAGCC ValAlaAlaAlaGlnGluPheTyrGlyTyrPheProTyrLeuAspArgLeuAsnLeuArgProAspGlnIleArg GTTGCGGCCGCTCAGGAGTTTTACGGCTACTTTCCCTATCTCGACCGGCTGAACCTCAGACCGGATCAGATCCGT 4500. ValAlaSerAspAsnArgGluGluLeuAspArgAlaGlnValAlaLeuThrArgAlaAlaAlaGlyValLysVal GTCGCCTCGGACAACCGCGAGGAGCTCGATCGGGCACAGGTCGCGCTGACGCGGGCTGCGGCAGGCGTGAAGGTC CysMetValSerGlyGlyAspProGlyValPheAlaMetAlaAlaAlaValCysGluAlaIleAspLysGlyPro TGCATGGTCTCCGGTGGCGATCCCGGTGTCTTTGCCATGGCGGCCGCCGTCTGCGAGGCGATCGACAAGGGACCG ${\tt AlaGluTrpLysSerValGluLeuValIleThrProGlyValThrAlaMetLeuAlaValAlaAlaArgIleGly}$ AlaProLeuGlyHisAspPheCysAlaIleSerLeuSerAspAsnLeuLysProTrpGluValIleThrArgArg GCGCCGCTCGGTCATGATTTCTGTGCGATCTCGCTTTCCGACAATCTGAAGCCCTGGGAAGTCATCACCCGGCGT . 4780 ${\tt LeuArgLeuAlaGluAlaGlyPheValIleAlaLeuTyrAsnProIleSerLysAlaArgProTrpGlnLeuAlaGluAlaGluAlaGlyPheValIleAlaLeuTyrAsnProIleSerLysAlaArgProTrpGlnLeuAlaGluAlaGluAlaGlyPheValIleAlaLeuTyrAsnProIleSerLysAlaArgProTrpGlnLeuAlaGluAlaGlyPheValIleAlaLeuTyrAsnProIleSerLysAlaArgProTrpGlnLeuAlaGlyPheValIleAlaLeuTyrAsnProIleSerLysAlaArgProTrpGlnLeuAlaGlyPheValIleAlaLeuTyrAsnProIleSerLysAlaArgProTrpGlnLeuAlaGlyPheValIleAlaG$ CTCAGGCTGGCGGCGGAAGCGGGCTTCGTCATTGCCCTCTACAATCCGATCAGCAAGGCGCGGCCCTGGCAGCTC GlyGluAlaPheGluLeuLeuArgSerValLeuProAlaSerValProValIlePheGlyArgAlaAlaGlyArg ${\tt ProAspGluArgIleAlaValMetProLeuGlyGluAlaAspAlaAsnArgAlaAspMetAlaThrCysValIleAlaAspAlaAspAlaAspMetAlaThrCysValIleAlaAspAlaA$ CCGGACGAACGGATCGCGGTGATGCCGCTCGGCGAGGCCGATGCCAACCGCGCCGACATGGCGACCTGCGTCATC IleGlySerProGluThrArgIleValGluArgAspGlyGlnProAspLeuValTyrThrProArgPheTyrAla ATCGGCTCGCCGGAGACGCGCATCGTCGAGCGCGACCCGATCTCGTCTACACACCGCGCTTCTATGCA GlvAlaSerGln*** GGGGCGAGCCAGTGA

FIGURE 16.9

				59	1151				
PRO	TEINE	COBJ	PREMIER RESIDU = 1						
				DERNIER RESIDU = 254					
			NOMBRE	% NOMB	POIDS	% POIDS			
1	PHE	T 11	•						
2	LEU	F	-8	3.15	1176.56	4.34			
3		L	20	7.87	2261.60	8.35			
4	ILE	I	13	5.12	1470.04	5.43			
4	MET	M	7	2.76	917.28	3.39			
5 6	VAL	V	23	9.06	2278.61	8.41			
6	SER	S	11	4.33	957.33	3.53			
7	PRO	P	18	7.09	1746.90	6.45			
8	THR	T	12	4.72	1212.60	4.48			
9	ALA	A	40	15.75	2841.60	10.49			
10	TYR	Y.	7	2.76	1141.42	4.21			
11	*	*	0	0.00	0.00	0.00			
12	HIS	H	1	0.39	137.06	0.51			
13	GLN	Q	7	2.76	896.42	3.31			
14	ASN	Ñ	5	1.97	570.20				
15	LYS	ĸ	6	2.36		2.11			
16	ASP	Ď	13	5.12	768.54	2.84			
17	GLU	Ē	16		1495.39	5.52			
18	CYS	č		6.30	2064.64	7.62			
· 19	TRP	W	4	1.57	412.04	1.52			
20	ARG	R	3	1.18	558.24	2.06			
21			19	7.48	2965.90	10.9 5			
	GLY	G.	21	8.27	1197.42	4.42			
22	-	-	0	0.00	0.00	0.00			
	RESID	110		054	•				
			ULAIRE	= 254					
				= 27088					
	POINT		LARITE (%)	= 35					
	DO 26	_	ECTRIQUE	= 5.4					
	200	o (mg	/ml) = 0.	575 DO 280	(lmg/ml) =	0.922			

FIGURE 16.10

1. A. B.

GENE cobk ET PROTEINE COBK

60/151

SEQUENCE DU FRAGMENT ECORI-ECORI DE 8753 PB DE 2861 A 3646 SUR LE BRIN COMPLEMENTAIRE

MAGSLFDTSAMEKPRILILGGTTEA ATGGCGGGTTCGCTGTTCGACACGTCAGCCATGGAAAAACCTCGTATTCTGATTCTGGGTGGCACCACCGAGGCA 2871 2881 2891 2901 2911 2921 RELARRLAED VIRYDTAISLAGRTAD 2956 2966 2976 2946 2986 2996 PRPQPVKTRIGGFGGADGLAHFVHD $\tt CCGCGGCCGGCCGGTCAAGACGCGCATCGGCGGCTTTGGCGGCGCCGATGGGCGCATTTCGTGCATGAC$ 3021 3031 3041 3051 3061 3071 ENIALLVDATHPFAARISHNAADAA 3096 3106 3116 3126 3136 3146 3156 QRTGVALIALRRPEWVPLPGDRWTA 3161 3171 3181 3191 3201 3211 3221 3231 V D S V V E A V S A L G D R R R R V F L A I G R $\mathbb Q$ GTCGATAGCGTTGTCGAGGCCGTCAGCGCGCTCGGTGATCGGCGACGCCGCGTCTTCCTGGCGATAGGTCGACAG 5 3246 3256 3266 3276 3286 3296 3306 E A F H F E V A P Q H S Y V I R S V D P V T P P L GAAGCTTTCCACTTCGAGGTCGCGCGCGCAGCACAGCTACGTCATCCGCAGCGTCGATCCGCTGACGCCGCCGCTT 3321 3331 3341 3351 3361 3371 3381 N L P D Q E A I L A T G P F A E A D E A A L L R S AATCTGCCCGACCAGGAGGCGATCCTGGCGACCGGTCCCTTTGCGGAAGCCGACGAAGCCGCGTTGCTCAGGAGT 3396 3406 3416 3426 3436 3446 RQIDVIVAKNSGGSATYGKIAAARR CGGCAGATCGATGTGATCGTCGCCAAGAACAGCGGTGGCAGCGCCACCTACGGCAAGATTGCCGCAGCGCGCGG 1 3471 3481 3491 3501 3511 3521 3531 LGIEVIMVERRKPADVPTVGSCDEA CTCGGCATCGAGGTGATCATGGTCGAGCGGCGCCAAGCCCGCGGACGTGCCGACGGTCGGCAGTTGCGACGAGGCA 3556 3566 3576 3586 LNRIAHWLAPA CTCAACCGCATCGCTCACTGGCTCGCCCCTGCATGA 3621 3631 3641

1.3

NOM = COBK PREMIER RESIDU = DERNIER RESIDU = NOMBRE % NOMB POIDS % POIDS PHE F 8 3.07 1176.55 4.19 2 LEU 22 8.43 2487.85 8.86 3 ILE I 6.13 16 1809:34 6.44 MET М 3 1.15 393.12 1.40 5 VAL V 21 2080.44 8.05 7.41 6 SER S 12 4.60 1044.38 3.72 7 P PRO 17 6.51 1649.90 5.88 8 T THR 13 4.98 1313.62 4.68 9 ALA Α 42 16.09 2983.56° 10.63 10 TYR Y 3 1.15 489.19 1.74 * 11 0 0.00 0.00 0.00 12 HIS H 7 959.41 2.68 3.42 13 768.35 GLN Q 6 2.30 2.74 1.92 14 ASN N 5 570.21 2.03 1.92 15 LYS K 5 640.47 2.28 16 ASP D 17 6.51 1955.46 6.96 5.75 17 GLU Ε 15 1935.64 6.89 C 18 CYS 1 0.38 103.01 0.37 19 TRP W 3 1.15 558.24 1.99 20 ARG R 26 9.96 4058.63 14.45 21 GLY G 19 7.28 1083.41 3.86 22 0 0.00 0.00 0.00 RESIDUS 261 Masse moleculaire (monoisotopique) = 28078.7988 Masse moleculaire (moyenne) =
INDEX DE POLARITE (%) = 40.61
POINT ISOELECTRIQUE = 7.54 28096.0195 40.61 DO 260 (lmg/ml) = 0.509 DO 280 (lmg/ml) = 0.721

PROFIL D'HYDROPHILICITE DE LA PROTEINE COBK DE 1 A 261

FIGURE 16.12

```
GENE cobl ET PROTEINE COBL
SEQUENCE DU FRAGMENT DE 8753 BP, DE 5862 A 7103
  MetAlaAspValSerAsnSerGluProAlaIleValSerProTrpLeuThrValIleGlyIleGlyGluAspGly
  ATGGCTGACGTGTCGAACAGCGAACCCGCCATAGTCTCCCCCTGGCTGACCGTCATCGGTATCGGTGAGGATGGT
5862
                           5892
                  5882
                                  5902
                                             5912
  ValAlaGlyLeuGlyAspGluAlaLysArgLeuIleAlaGluAlaProValValTyrGlyGlyHisArgHisLeu
  GTAGCGGGTCTCGGCGACGAGGCCAAGCGGCTGATCGCCGAAGCGCCGGTCGTCTACGGCGGCCATCGTCATCTG
                  5957
                           5967
                                    5977
                                            5987
                                                      5997
  GluLeuAlaAlaSerLeuIleThrGlyGluAlaHisAsnTrpLeuSerProLeuGluArgSerValValGluIle
  GAGCTCGCCGCCTCCCTCATCACCGGCGAAGCGCACÁATTGGCTAAGCCCCCTCGAACGCTCGGTCGTCGAGATC
6012
         6022
                  6032
                           6042
                                    6052
                                             60.62
                                                       6072
  ValAlaArgArgGlySerProValValValLeuAlaSerGlyAspProPhePhePheGlyValGlyValThrLeu
  GTCGCGCGTCGCGCAGCCCGGTGGTGGTGCTTGCCTCGGGCGACCCGTTCTTCTTCGGCGTCGCGTGACGCTG
         6097
                  6107
                           6117
                                    6127
                                             6137
                                                      6147
  AlaArgArgIleAlaSerAlaGluIleArgThrLeuProAlaProSerSerIleSerLeuAlaAlaSerArgLeu
  GCGCGCCGCATCGCCTCGGCCGAAATACGCACGCTTCCGGCGCCGTCGTCGATCAGTCTTGCCGCCTCGCGCCTC
         6172
                  6182
                           6192
                                   6202
                                             6212
                                                      6222
  GlyTrpAlaLeuGlnAspAlaThrLeuValSerValHisGlyArgProLeuAspLeuValArgProHisLeuHis
  GGCTGGGCGCTGCAGGATGCGACGCTCGTCTCCGTACATGGGCGGCCGCTGGATCTGGTGCGACCGCATTTGCAT
         6247
                . 6257
                           6267
                                    6277
                                             6287
                                                      6297
  {\tt ProGlyAlaArgValLeuThrLeuThrSerAspGlyAlaGlyProArgAspLeuAlaGluLeuLeuValSerSer}
  {\tt CCGGGGGCGCGTGTGCTTACGCTCACGTCGGACGTGCGGGTCCGCGAGCTTGCCGAGCTTCTGGTTTCAAGC}
6312
         6322
                  6332
                           6342
                                    6352
                                             6362
                                                      6372
  GlyPheGlyGlnSerArgLeuThrValLeuGluAlaLeuGlyGlyAlaGlyGluArgValThrThrGlnIleAla
  6407
                           6417..
                                  6427
                                            6437
                                                      6447
  AlaArgPheMetLeuGlyLeuValHisProLeuAsnValCysAlaIleGluValAlaAlaAspGluGlyAlaArg
  6492
                                   6502
                                             6512
                                                      6522
  IleLeuProLeuAlaAlaGlyArgAspAspAlaLeuPheGluHisAspGlyGlnIleThrLysArgGluValArg
  ATCCTGCCGCTTGCCGCCGGCCGACGATGCGCTGTTCGAACATGACGGGCAGATCACCAAGCGCGAGGTGCGG
6537
                  6557
                           6567
                                    6577
                                             6587
                                                      6597
  {\tt AlaLeuThrLeuSerAlaLeuAlaProArgLysGlyGluLeuLeuTrpAspIleGlyGlySerGlySerIle}
  GCGCTGACGCTGTCGGCACCGCGCAAGGGCGAACTGCTATGGGACATCGGCGGCGGCTCCGGCTCGATC
                  6632
                           6642
                                  6652
                                             6662
                                                      6672
  GlyIleGluTrpMetLeuAlaAspProThrMetGlnAlaIleThrIleGluValGluProGluArgAlaAlaArg
  GGCATCGAATGGATGCTCGCCGATCCGACCATGCAGGCGATCACCATCGAGGTTGAGCCGGAGCGGGCAGCGCGC
6687
                  6707
                           6717
                                   § 6727
                                            6737
                                                      6747
  {\tt IleGlyArgAsnAlaThrMetPheGlyValProGlyLeuThrValValGluGlyGluAlaProAlaAlaLeuAla}\\
  ATCGGCCGCAACGCGACGATGTTCGGCGTGCCCGGGCTGACGGTTGTCGAAGGCGAGGCGCGCGGCGCGCTTGCC
                  6782
                           6792
                                    6802
                                             6812
  6837
                  6857
                           6867
                                    6877
                                             6887
                                                      6897
  AlaLeuLysSerGlyGlyArgLeuValAlaAsnAlaValThrThrAspMetGluAlaValLeuLeuAspHisHis
  GCGCTCAAGTCAGGCGGACGGCTGGTTGCCAACGCGGTGACGACGGACATGGAAGCGGTGCTGGTCATCAC
                  6932
                           6942
                                    6952
                                            6962
                                                      6972
  AlaArgLeuGlyGlySerLeuIleArgIleAspIleAlaArgAlaGlyProIleGlyGlyMetThrGlyTrpLys
  GCGCGGCTCGGCGGTTCGCTGATCCGCATCGATATCGCGCGTGCAGGACCCATCGGCGCATGACCGGCTGGAAG
7 6997 7007 7017 7027 7037 7047
  ProAlaMetProValThrGlnTrpSerTrpThrLysGly***
```

CCGGCCATGCCGGTCACCCAATGGTCGTGGACGAAGGGCTAA

						63/15/
PRO	TEINE	COBL		MIER RESID		- 1 - 1
			DEF	WIER RESID	U = 413	
			MOMBBE	9 27010		•
			NOMBRE	% NOMB	POIDS	% POIDS
1	PHE	F	8	1.94	1176.56	2.74
2	LEU	L	47	11.38	5314.76	12.39
3	ILE	I	26	6.30	2940.08	6.85
4	MET	M	9	2.18	1179.36	2.75
5	VAL	v	34	8.23	3368.38	7.85
6	SER	Š	25	6.05	2175.75	5.07
7	· PRO	P	24	5.81	2329.20	5.43
8	THR	Ī	21	5.08	2122.05	4.95
9	ALA	Ā	56	13.56	3978.24	9.27
10	TYR	Ÿ	1.	0.24	163.06	
11	*	*	ō.	0.00	0.00	0.38
12	HIS	H	10	2.42	1270 60	0.00
13	GLN	Q	7		1370.60	3.19
14	ASN	Ŋ	5	1.69	896.42	2.09
15	LYS	K	6	1.21	570.20	1.33
16	ASP	D		1.45	768.54	1.79
17	GLU		19	4.60	2185.57	5.09
18	CYS	E C	27	6.54	3484.08	8.12
19	TRP	_	1	0.24	103.01	0.24
20	ARG	W	8	1.94	1488.64	3.47
		R	28	6.78	4370.80	10.19
21 22	GLY	G	51	12.35	2908.02	6.78
22	-	-	0	0.00	0.00	0:00
	RESID	10		= A1'		
			ממיא דווי	41,		
POIDS MOLECULAIRE = 42911. INDEX DE POLARITE (%) = 36.						
	POINT		LARITE (%) ECTRIQUE			
		130E1 0 (1mg		٥.	-	
	20 20	o (mile	f/ml) = 0.	754 DO 280	(lmg/ml)	= 1.064

FIGURE 16.14

GENE <u>cobm</u> ET PROTEINE COBM SEQUENCE DU FRAGMENT DE 8753 BP, DE 7172 A 7930

 ${\tt MetThrValHisPheIleGlyAlaGlyProGlyAlaAlaAspLeuIleThrValArgGlyArgAspLeuIleGlyAlaAlaAspLeuIleGlyAlaGlyProGlyAlaAlaAspLeuIleGlyAlaGlyProGlyAlaAlaAspLeuIleGlyAlaGlyProGlyAlaAlaAspLeuIleThrValArgGlyArgAspLeuIleGlyAlaGlyProGlyAlaAlaAspLeuIleThrValArgGlyArgAspLeuIleGlyAlaGlyProGlyAlaAlaAspLeuIleThrValArgGlyArgAspLeuIleGlyAlaGlyProGlyAlaAlaAspLeuIleThrValArgGlyArgAspLeuIleGlyAlaGlyProGlyAlaAlaAspLeuIleThrValArgGlyArgAspLeuIleGlyAlaGlyProGlyAlaAlaAspLeuIleThrValArgGlyArgAspLeuIleGlyAlaGlyArgAspLeuIleGlyAlaAspLeuIleG$ ATGACGGTACATTTCATCGGCGCCCGGGAGCCGCAGACCTGATCACGGTGCGTGGTCGCGACCTGATCGGG ${\tt ArgCysProValCysLeuTyrAlaGlySerIleValSerProGluLeuLeuArgTyrCysProProGlyAlaArg}$ CGCTGCCCGGTCTGCCTTTACGCCGGCTCGATCGTCTCGCCGGAGCTGCTGCGATATTGCCCGCGGGCGCCCGC 7267. · 😹 7297 IleValAspThrAlaProMetSerLeuAspGluIleGluAlaGluTyrValLysAlaGluAlaGluGlyLeuAsp ATTGTCGATACGGCGCGATGTCCCTCGACGAGATCGAGGCGGAGTATGTGAAGGCCGAAGCCGAAGGCTCGAC ${\tt ValAlaArgLeuHisSerGlyAspLeuSerValTrpSerAlaValAlaGluGlnIleArgArgLeuGluLysHis}$ GTGGCGCGCTTCATTCGGGCGACCTTTCGGTCTGGAGTGCTGTGGCCGAACAGATCCGCCGGCTCGAGAAGCAT ${\tt GlyIleAlaTyrThrMetThrProGlyValProSerPheAlaAlaAlaAlaSerAlaLeuGlyArgGluLeuThr}$ GGCATCGCCTATACGATGACGCCGGGCGTTCCTTCCTTTGCGGCGGCGCGCTTCAGCGCTCGGTCGCGAATTGACC IleProAlaValAlaGlnSerLeuValLeuThrArgValSerGlyArgAlaSerProMetProAsnSerGluThr ATTCCGGCCGTGGCCCAGAGCCTGGTGCCGACCCGCGTTTCGGGCCGCGCCCCGATGCCGAACTCAGAAACG LeuSerAlaPheGlyAlaThrGlySerThrLeuAlaIleHisLeuAlaIleHisAlaLeuGlnGlnValValGlu CTTTCCGCTTTCGGCGCTACGGGATCGACGCTGGCAATCCACCTTGCGATCCATGCGCTTCAGCAGGTGGTCGAG GluLeuThrProLeuTyrGlyAlaAspCysProValAlaIleValValLysAlaSerTrpProAspGluArgVal GAACTGACGCCGCTCTACGGTGCCGACTGCCCGGTCGCCATCGTCAAGGCCTCCTGGCCGGACGAACGCGTG GTGCGCGCACGCTCGGTGACATCGCCGCCAAGGTGGCGGAAGAGCCGATCGAGCGCACGGCGCTGATCTTCGTC ${\tt GlyProGlyLeuGluAlaSerAspPheArgGluSerSerLeuTyrAspProAlaTyrGlnArgArgPheArgGly}$ ArgGlyGlu CGCGGCGAA

FIGURE 16.15

. 5

			•		ہ
PROTEINE	COBM	PREMIER RESIDU	=	., 1	
		DERNIER RESIDU		253	3

			NOMBRE	% NOMB	POIDS	% POIDS
1	PHE	F	6	2.37	882.42	3.29
2	LEU	L	24	9.49	2713.92	10.11
3	ILE	I	15	5.93	1696.20	6.32
4	MET	M	4	1.58	524.16	1.95
5	VAL	V	22	8.70	2179.54	8.12
6	·SER	S	18	7.11	1566.54	5.84
7	PRO	P	17	6.72	1649.85	6.15
8	THR	T	13	5.14	1313.65	4.89
9	ALA	A	35	13.83	2486.40	9.26
10	TYR	Y	7	2.77	1141.42	4.25
11	*	*	0	0.00	0.00	0.00
12	HIS	H	5	1.98	685.30	2.55
13	GLN	Q	5	1.98	640.30	2.39
14	asn	N	1	0.40	114.04	0.42
15	LYS	K	4	1.58	512.36	1.91
16	ASP	D	11	4.35	1265.33	4.71
17	GLU	E	19	7.51	2451.76	9.13
18	CYS	C	4	1.58	412.04	1.53
19	TRP	W	2	0.79	372.16	1.39
20	ARG	R	19	7.51	2965.90	11.05
21	GLY	G	22	8.70	1254.44	4.67
22	-	-	0	0.00	0.00	0.00

RESIDUS = 253
POIDS MOLECULAIRE = 26846.
INDEX DE POLARITE (%) = 38.
POINT ISOELECTRIQUE = 5.58
DO 260 (lmg/ml) = 0.461 DO 280 (lmg/ml)

DO 260 (lmg/ml) = 0.461 DO 280 (lmg/ml) = 0.724

FIGURE 16.16

FIGURE 17

FIGURE 18

FIGURE 19

temps de rétention sur la colonne

FIGURE 20

COBA LPALEKGSVWL-VGAGPGDPGLLTLHAANALRQADVIVH
COBI VSGVGVGRL-IGVGTGPGDPELLTVKAVKALGQADVLAY
10 20 30 40

région 1

110 120 130 140 150 90 100 COBA LARAGNRVLRLKGGDPFVFGRGGEEALTLVEHQVPFRIVPGITAGIGGLAYAGIPVTHREVNHAVTFLTG COBI LA-AGRTVAVLSEGDPLFYGSYMHLHVRLANR-FPVEVIPGITAMSGCWSLAGLPLVQ-G-DDVLSVLPG 130 110 120 140 150 160 région 2 région 3

FIGURE 21

ALIGNEMENT ENTRE LES PROTEINES COBA DE PSEUDOMONAS DENITRIFICANS ET CYSG DE ESCHERICHIA COLI SEQUENCE COBA SEQUENCE CYSG ddlfaglpalekgsvwlvgagpgdpglltlhaanalroadvivhdalvnedclklarpgavlefagkrgg EQLINE-PLDHRGEVVLVGAGPGDAGLLTLKGLOOIOOADVVVYDRLVSDDIMNLVRRDADRVFVGKRAG 2 110 220 . KPSPKQRDISLRLVELARAGNRVLRLKGGDPFVFGRGGEEALTIVEHQVPFRIVPGITAGIGGLAYAGIP YHCVPQEEINQILLREAOKGKRVVRLKGGDPFIFGRGGEELETICNAGIPFSVVPGITAASGCSAYSGIP 180 VTHREWNHAVTFLTGHDSSGLVPDRINWQGIASGSPVIVMYMAMKHIGAITANLIAGGRSPDEPVAFVCN LTHRD||AQSVRLITGHLKTG-G-E-LDWENLAAEKQTLVFYMGINQAATIQQKLIEHGMPGEMPVAIVEN 370 380 AATPQQAVLETTLARAEADVAAAGLEPPAIVVVGEVVRLRAALDWIG - = =--== -- =- == == == == == == == GTAVTQRVIDGTLTQL-GELAQQ-MNSPSLIIIGRVVGLRDKLNWFS 430 440

SEQUENCE COBA DE 3 A 259 SEQUENCE CYSG DE 204 A 460

HOMOLOGIE STRICTE EN ACIDE AMINES: 41.6%

FIGURE 22

```
ロロドトレック
  ○ E O Z Ⅲ 】 O
  77704-
ماد د د های ح
OKXXECO
LMVIRER
XII XO C O C
  ᄗᆈᅜᄀ
                 ©E >EDE
   ·⊢⊢<del></del>⊑⊙⊢
                 して下日
                 RENDEDE
    ᅩᇎᇤᇰ
                 <u>ππ>πππ</u>Ξ
ο<u>οο</u>ο σ.ο<sub>ι</sub>ο
0 0 m m c 0 0
₽₽₽N₽¬€
пплкопо
                                           ᇰᇤᄱᄄᆫᆫ
م الم ما ما ما
                                        OO OLO E E
  o olox-o
                 ه و د او واو
                                        DIE OF BANK
  000600
                 0 0 0 0 0 0 0 0
                                        アソレビ系ロ内
      ᅟᇬᅴᄖ
                 EEN>EEE
G
  ၁ ၀ ၁ ၁ ၁
                 A XINE NEE
                                        Sじューロアド
  > > - E + -
               E COMPANIE
                                        ပစ္ပပ္စစ္သည္တ
  ᆜᄓᆜᇰᆜᇿ
                                        9 9 6 C C C
    ーコトコエ
                                           S - 10
ਜorx⊃or⊢
                                        C C C C C O
OPOEDDE
                 Y Z E S D S J
                 000000
x \propto x \propto x \propto m
  ட பெற்ப
                                         COBF (125-142) | U
COB ( (134-151) U | COBF (85-102) S | U
COBJ ( 110-127) | T
COBL ( 154-171) R | U
COBM ( 102-119) | T
CVSG(209-248)E
COBA(9-48)
COB I (1-40)
COBF (1-40)
COBJ (1-40)
COBJ (1-40)
COBJ (1-40)
                 CYSG (288-310)
                   COBA(88-110)
COB I (98-120)
COBF (60-83)
COBJ (68-80)
```


1 = 2 = 3 = 4 =

FIGURE 24

FIGURE 25

1 2 3

FIGURE 27

PL. 77 / 151

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE: 31

		•		· orlin	
-10	20	20		L. 81/151	
	ATGGTCAGGT	30	40	50	60
CACCTCCTCA	ATGGTCAGGT	1CAGGGTCTG	GIGACGCTGG	AGGACATTCT	GGAGGAGATC
04001901CA	TACCAGTCCA	AGICCCAGAC	CACTGCGACC	TCCTGTAAGA	CCTCCTCTAG
70	00			•	
	80	90	100	110	120
GICGGCGVIV	TCGCCGATGA	GCACGACCTC	GACATTCAGG	GCGTGCGCCA	GGAAGCCGAT
CAGCCGCTAT	AGCGGCTACT	CGTGCTGGAG	CTGTAAGŤCC	CGCACGCGGT	CCTTCGGCTA
		વ. 1	•		
130	140	150	160	170	180
GGCTCGATCG	TCGTCGATGG	CTCGGTGCCG	ATCCGCGATC	TCAACCGCGC	
CCGAGCTAGC	AGCAGCTL.CC	GAGCCACGGC	TAGGCGCTAG	AGTTGGCGCG	CGAGCTGACC
190	200	210	220	230	240
TCGCTGCCGG	ACGAGGAGGC	GACGACGGTG	GCCGGTCTGG	TCATCCACGA	COCCARCACO
AGCGACGGCC	TECTCCTCCG	CTGCTGCCAC	CGGCCAGACC	AGTAGGTGCT	CAGGTTCTCG
					-100110100
250	260	270	280	290	300
ATTCCGGAGG	AGCGCCAGGC	CTTCACCTTC	CACGGCAAAC	CCTTCATCAT	C1 = 01 1 0 0 0 0
TAAGGCCTCC	TCGCGGTCCG	GAAGTGGAAG	GTGCCGTTTG	CGAAGTAGCA	CTT CTT CCC
				AGING TUGCH	CIACIICGCC
310	320	330	340	350	360
GTGAAGAACC	GCATTACCAA	GCTGCGCATC	COTTCCCCCC	A A CA CCCMCO	-
CACTTCTTGG	CGTAATGGTT	CGACGCGTAG	GCAGCCCCC	TTCTCCCACC	TCCGCCGGCG
		-	-	1101000000	AGGCGGCCGC
370	380	390	400	410	400
TGATGGCCGC	GATTGCCTCT	ACCAGCGGGT	CCCCTCCCCC	410	420
ACTACCGGCG	CTAACGGAGA	TEGTEGECES	CCCCACCCC	GGGGCTGCCG	GCTCGACGGC
		200200000	GCCGAGCGGC	CCCCGACGGC	CGAGCTGCCG
430	440	450	460	470	400
GAGCGCATGC	AGGCCGGCGT	CGAGTTCTGG	רדיירא כירא רא	TCA DDCA DCC	480
CTCGCGTACG	TCCGGCCGCA	CCTCAACACC	CIICAGGAGA	1CATTGATGG	CGCGGTGGCG
,		GCICANGACC	GAAGICCICI	AGTAACTACC	GCGCCACCGC
490	500	510	520		
GGCGACACGG	CTCATGCCGG	CARAGGCGCT	ACDARCEDTA	CCCACCCCC	540
CCGCTGTGCC	GAGTACGGCC	GTTTCCGCGA	TOTATOURIA.	CCCTCCCCCC	TGTGGGACTC
			TOTTIGUIAL	ACG1000CG1	ACACCCTGAG
550	560	570	580	590	600
GCCGGTACCA	TCGAAGCCCG	GCTGATGGCC	GGTATGCTGA	でににつかっかってい	600
CGGCCATGGT	AGCTTCGGGC	CGACTACCGG	CCATACGACT	FCCDCTCTCGT	TOATGACCTC
		-,		NOCOMONG CM	MCINCIGGAG
610	620	630	640	650	660
GAGCCGTTCA	GGGTGGAAGG	CCTCGATCAG	Characharace	ATCCTOTOCO	MC1 CCC1 C1 T
CTCGGCAAGT	CCCACCTTCC	GGAGCTAGTC	GAAGAAAAGC	TACCACACCC	TOUCCONCUT
					MUTCHUIGIN
670	680	690	700	710	720
TCTTCCGTCC	CATTTTGCTG	TTTCCTTCCC	CCCCCCCCCC	B COMPA & CA & O	00000000
AGAAGGCAGG	GTAAAACGAC	AAACGAACCG	CGGGGGAGCG	TCAATTCTTC	GGCCATTAGC
					oocculing.
730	740	750	760	770	780
CTGGCACGGC	GGCGCAAAAT	GCCCGCACAA	AGCCAGCAAC	THE STATE OF THE S	CTC 3 3 TM CHA
GACCGTGCCG	CCGCGTTTTA	CGGGCGTGTT	TEGGTEGTTG	TARGECERAN	CACCAMITATI
				· ·	CUDI TWUGWY
790	800	810	820	830	840
GTTGTGACTC	CCGCCAAACC	CCATAATGAG	CGCCATGAGA	CTYCATTYAN	A NATA COMOCO
CAACACTGAG	GGCGGTTTGG	GGTATTACTC	GCGGTACTCT	CYCCLLY Y CLLL	MAINCITUGA
				anacimaii.	TIMIUMAGCT.
850	860	870	880	890	000
	ACCCGGCGCA	AGGTCGAGCC	GCAGCAGAGC		900
AGCGTAAGCT	TGGGCCCCCT	TCCACCTCCC	CCTCCTCTCC		COTCTGTCAG
				ひししししじじればら	GUAGACAGTC
910	920	930	940	APA	
TGGGACGGCT	GCGATCAGAA	GCCTCTCCTC	U#E 	950	960
ACCCTGCCGA	CCCAFCACAC	CCC CT CCCC	CCCCCC	TUGGTCGCAA	CGCCGAGGGG
ACCCTGCCGA	COCINGICIT		GCCCGGGC.	agccagcgtt	GCGGCTCCCC

		-	• • •	-1	
		.**	PL. 8	2/151	
97	98 0	0 0	0 000		
CAGTACTTC	A 1141"IT "IYICT	T CCACCACCA			
GTCATGAAG	T ACAAGACGA	A GCTCGTGCA	C TTCCTTATG	,	CAACITOIT
103	0 104	0 105	1060) 1070	300
TCCGGCCTC					
aggccggag	A GGCTGTCGC	T CCAGCGGGC	C TACCAGAAGG C ATGGTCTTCC	TTCCCTATCAC	CGGTCATCG
					GCCAGTAGC
109	0 110	0 111	1120	1120	1140
CCCACCTGG					
GGGTGGACC:	T GGCAGCCGC	A GTTGTTCTTY	GCCAAGAACG GCGGTTCTTGC	CCCCGACCCA	GICGCAGACG
			. 0001101100	. Cobbbc16661	CAGCGTCTGC
115	.160	0 1170	1180		
CGGTCTGGC:	T CTGCCGGCG	CCAGGCCCG	ATGCGCGATC	1190	1200
GCCAGACCG	A GACGGCCGC	GETTCEGGC	ATGUGUGATO TAUGUGUTAG	CCTTCGGCTT	TGTCAGCGAG
1210	1226) কুল	1240		
GCGCGGGCG					
CGCGCCCGCG	CTAGGCCAGG	AGGGCTCGG	CGCCAGCGCA CGCGTCGCGT	AGUTGAAGAC	GCTCGAGGCG
			GCGGTCGCGT	TCGACTTCTG	CGAGCTCCGC
1270	1280	1290	1300		
AMBBULTTC	· DDDCCCTTTCC	* TOMOPOS DOS			1320
TTCCGGAAGO	TTTGCGAACC	AGAGCCTCCC	ACCCCCACCA	CIGCCGACAT	CAAGGCGGCC
		,	AGCCGCTGGT	GACGGCTGTA	GTTCCGCCGG
1330	1340	1350	1360		•
TACAAGGACO					
ATGTTCCTGG	AGCAGTTCTT	CCTACTCCCC	GATGCCAATG	GCGGAGATAG	AGGATCGGAA
		COINCIGOGG	CTACGGTTAC	CGCCTCTATC	TCCTAGCCTT
1390	1400	2410			
GAGCGTTTTC	. Let let leterment	, ALLY CCCCOM • •	A 		1440
CTCGCAAAAG	CGCGCCAATA	DETCC CENTS	CAATTGTTAA	AACAGGCTGG	TTTCTGCTAA
		. NOICEGUATE	GITAACAATT	TTGTCCGACC	AAAGACGATT
1450	1460				
CAACCCGGAT	TAATACAGAA	CC) CTTTTTC			1500
GTTGGGCCTA	ATTATGTCTT	CETERARACE	AGGCGAATGC	GCGGGTGCCG	TCCGGTGGCC
		COTOWNYCO	TCCGCTTACG	CGCCCACGGC	AGGCCACCGG
1510	1520	1.530			
GCTCTGGAGA	CATGATGAGC	BECHTTCHES	8001 01 000		1560
CGAGACCTCT	GTACTACTCG	TTCTABCTCC	AGCTGTAAAG	CAACCTCCCC	GACACCACGA
		1101776100	AGCTGTAAAG	GTTGGAGGGG	CTGTGGTGCT
1570	1580	1 500		•	
TTTCCGTCCG	GCACCTTTTC		1600 CGGATTTGCG		
AAAGGCAGGC	CCTCCAAAAG	CCATABOTA	CCCMITTGCG	CGTTCCTGCC	TATTCGAAGG
	***************************************	OCCUPACION	CGGATTTGCG GCCTAAACGC	GCAAGGACGG	ATAAGCTTCC
1.630	7.640	4		•	
GCGACGCCTA	TGTCCCGGAT	CTCCXTCCC	ACTACCTCTT		1680
CGCTGCGGAT	y Cycececus	CICCUISCOS	ACTACCTCTT	CGACCGCGAA	ACGACGCTCG
		GUCCINGGÉC	TGATGGAGAA	GCTGGCGCTT	TGCTGCGAGC
1690					
CCATTCTCGC	AGGCTTCCCC	1710	1720	1730	1740
GGTAAGAGCG	TOCARCOC	CACAACCGAC	GCGTGATGGT	GTCGGGCTAT	CACGGCACCG
	2000000000	GIGITGGCTG	CGCACTACCA	Cagcccgata (GTGCCGTGGC
1750					
GCAAGTCCAC	# 100	1770.	1780.	1790	1800
CCTTCACCTC	CCTATALCOAG	CAGGICGCCG	CGCGCCTCAA	CTGGCCGTGC (GTGCGCGTCA
	GRININGCIC	GITTERGEGGE	GCGCGGAGTT	GACCGGCACG (CACGCGCAGT
1810		1.			
FULL TOTO	1820	1830	1840	1850	1860
TCCACCONTO	CCATGTCAGC	CGTATCGACC	TCGTCGGCAA		STCGTCAACC
- GOUGETAIC	GGTACAGTCG	GCATAGCTGG	AGCAGCCGTT (CCTGCGCTAG	AGCAGTTCC
		•			
1870	1880	1890	1900 -	1910	1920
MCCCCCC CCA	GGTCACCGAA	TICAAGGACG	~~~ ~~~~~~		
1 GUUGGAUGT	CCAGTGGCTT	walleride	GCATCUTGCC (CGTAGGACGG (ACCCGGATG	TCTCTTA
			,		

FIGURE 32.1

			02/15	١.	
1000			PL. 83 /15		
1000001001	CTTCGACGAA	1950 TACGATGCCG ATGCTACGEC	CCCCCCCC	CONC & TORNER	1980 GTCATCCAGC
		cornoasc	COGCOGGCCI	GCWGIACAMG	CAGTAGGTCG
1990	2000	2010	2020	2030	2040
GCGTGCTGGA					
CGCACGACCT	TAGGAGGCCG	GCGGACTGCG	ACCA COTTO	CUCCCCIGIC	WICCOICCEC
		2000.01000	ACGAGC1661	CICGGCACAG	TAGGCAGGCG
2050	2060	2070	2000	2000	01.00
ACCCGGCCTT		GCGACCGCCA	2000	2090	2100
TEGECCCCAN	0000010111	CCCACCGCCA	ALACCUTCEG	CCTCGGCGAC	ACGACCGGCC
1000CCGGAA	GGCGGALAAA	CGCTGGCGGT	TGTGGCAGCC	GGAGCCGCTG	TGCTGGCCGG
2110	2 20	01.00		•.	•
	2 20	2130	2140	2150	2160
TCIAICACGG	CACGCAGCAG	ATCAACCAGG	CGCAGATGGA	CCGCTGGTCG	ATCGTCACCA
AGATAGTGCC	GTGCGTCGTC	TAGTTGGTCC	GCGTCTACCT	GGCGACCAGC	TAGCAGTGGT
		** 17		;	
2170		2190	2200	2210	2220
CGCTGAACTA	CCTGCCGCAC	GACAAGGAAG	TOGACATOGE	CCCCCCCAAC	20227
GCGACTTGAT	GGACGGCGTG	CTGTTCCTTC	AGCTGTAGCA	COCCOCCANG	GI CANGGGCI
			, noctotingen	accepted 11C	LAGITCCCGA
2230	2240	2250	2250		
	C230	C) C) 000000		2270	. 2280
ACTOCCOCCE	CMMCCCCCC	GAGACCGTCT	CCAAGATGGT	ACGTGTCGCC	GACCTCACGC
WOI GOCGGCI	GITCCCGGCG	CTCTGGCAGA	GGTTCTACCA	TGCACAGCGG	CTGGAGTGCG
		, S.	2320		• • •
2290	2300	2310	2320	2330	2340
GCGCAGCCTT	CATCAATGGC	GATCTCTCGA	CTGTCATGAG	CCCGCGTACG	CECS BOS COR
CGCGTCGGAA	GTAGTTACCG	CTAGAGAGCT	GACAGTACTC	GGGCGCATGC	CAGTAGTGGA
		1.			and and a delay
2350		2370	2380	2390	2400
GGGCCGAGAA	CGCCCACATC	TTCGGCGACA	TECETTTEE	CTTCCCCC	2400
CCCGGCTCTT	GCGGGTGTAG	AAGCCGCTGT	3000111000	CIICCGCGIG	ACCITCCTCA
*************	0000010170	WOCCOCTO!	AGCGAMAGCG	GAAGGCGCAC	TGGAAGGAGT
2410	2420	2430	0.4.0	•••	
		2430	2440	2450	2460
TETTCACCCT	CCTCCTCCTCCTC	CGGCCGCTGG	TUGUUGAGUA	CTACCAGCGC	GCCTTCGGCA
1011040601	GCTCGACCTC	GCCCGCGACC	AGCGGCTCGT	GATGGTCGCG	CGGAAGCCGT
2470		2490	2500	2510	2520
TCGAGCTGAA	GGAATGCGCT	GCCAACATCG	TGCTCGAAGC	CACCCCCCC	TOTOL COCCO
AGCTCGACTT	CCTTACGCGA	CGGTTGTAGC	ACGAGCTTCG	GTGGCGGACT	AGGGTGCCGG
		₩.		•	
2530		2550	2560	2570	2580
TGCCGTCCCC	TTTGGGAGGG	CGGGTCATGA	CCCTCTCCCA	AACCCCAMCA	0000000
ACGGCAGGGG	AAACCCTCCC	GCCCAGTACT	CCCACACCCT	TATCCCCCT CT	CCCCCCACIG
			oomances:	TIGGCCIACI	GCGGGGTGAC
2590	2600	2610	2520	0.000	
GGGCGCCGTC	GCCTCTGCCT	GAAGAAGGAA	CTCTCTCTC C	2630	2640
CCCGCGCAG	CCCTCTCCCT	COMPONINGONA	CIGICGIGAG	CTCGAATTCG	AAGGCAAAGC
00000000000	COGNONCCOM	CITCTTCCTT	GACAGCACTC	GAGCTTAAGC	TTCCGTTTCG
2550	0.550		1		
2650		2670	2680	2690	2700
CAACCACGCG	CGAGAATGCT	GCGGAACCGT	TCAAGCGGGC	GCTTTCCGGC	TGCATCCGAT
GTTGGTGCGC	GCTCTTACGA	CGCCTTGGCA	AGTTCGCCCG	CGAAAGGCCG	ACGTAGGCTA
		**:			ormoork
2710	2720	2730	.2740	2750	2760
CGATCGCGGG	CGATGCCGAG	GTGGAAGTCG	CCTTCCCCAA	CCACCCCCC	2760
GCTAGCGCCC	CCTACCCCTC	CACCTTCAGC	CCTTCCCCC	CORRECTION	GGCATGACCG
		Chicol I Chic	gannacagit.	PC1CPCCCC	CCGTACTGGC
2770	2780	2200	200		·
	.415U	2790	2800	2810	2820
CCCMPCOCK1	CCCTCTGCCG	GAACTTTCCA	AGCGCCCGAC	CCTGCAGGAA	CTTGCCGTGA
COUTTGCGTA	GGCAGACGGC	CTTGAAAGGT	TCGCGGGCTG	GGACGTCCTT	GAACGGCACT
		•	•		
2830	2840	2850	2860	. 2870	2880
CCCGCGGGCT	CGGTGACAGC	ATEGEGETEE	GCAAGGCCTG	可なたらたれかたたた	0001 0001 00
GGGCGCCCGA	GCCACTGTCG	TACCGCGACG	CGTTCCGGAC	ATGCGTACGC	GCCTACCTCC

FIGURE 32 2

			· p u	84/151	
2890	2900	2910	2020	, 2020	2940
GCACCATGTC	GCCGCAAGGG	GCGGACGCCC	GCGCGATCTT	CGATGCGGTG	CACCACCOMO
CGTGGTACAG	CGGCGTTCCC	CGCCTGCGG	CGCGCTAGAA	GCTACGCCAC	CTCGTCCGAG
				•	
2950 GTGTCGACCG	2960		2980	2990	3000
CACACCACCC	CTACCCCACC	TIGCGCATGG	CGGGTGTCGC	CAAGAACCTC	AACGTCATGC
CACABCICCG	CIMOCCUAGO	AACGCGTACC	GCCCACAGCG	GTTCTTGGAG	TTGCAGTACG
3010	3020	3030	3040	3050	2060
			CAACCATCCA	3050	3060 GACGCGCCGC
AGCTTCTCTT	TATGCGGTTC	CCCTTAAACC	CTTCCTACCT	CCCCCTCCC	CTGCGCGGCG
		21 Sec.	OTTOCINGCI	COCOGICCOC	CIGCGCGCG
3070	30-0	3090	3100	3110	3120
TCGGCGAGGC	CGTAGCGC G	CTGGTGCGCG	AGAAGCTGAC	GGGCCAGAAG	CCCCCCCC
AGCCGCTCCG	GCATCGCGAC	GACCACGCGC	TCTTCGACTG	CCCGGTCTTC	GGCGGCGCA
					:
3130	3140	3150	3160	3170	3180
CIGCCCCTT	GGTGCTCGAC	CTCTGGCGCG	AGTTCATCGA	GGGCAAGGCT	GCCGGCGACA
GACGGCCG11	CCACGAGCTG	GAGACCGCGC	TCAAGTAGCT	CCCGTTCCGA	CGGCCGCTGT
3190	3200	3210	2000		
	GTCGTCGACG	3210	3220	3230	3240 GTTCGCGACA
AACTCGTGGA	CAGCAGCTGC	TACTTCTTCC	MCCACCCCA A	TGCCCGGGTC	GTTCGCGACA
		1101101100	TCGTCCGGWW	ALGGGCCCAG	CAAGCGCTGT
3250	3260	3270	3280	3290	3300
TGCTGACCTC	GATGGAAGTC	GCCGAGAAAT	ACCOTOACOA	CCACAACCAC	2222222
ACGACTGGAG	CTACCTTCAG	CGGCTCTTTA	TGCCACTGCT	GCTGTTGCTC	GGCCTGCTCG
	•	.; 4	· •	•	
3310	3320	3330	3340	3350	3360
AGGAAAGCGA	GACCGACGAA	GACCAGCCGC	GCAGCCAGGA	GCAGGACGAG	AACGCCAGCG
TCCTTTCGCT	CTGGCTGCTT	CIGGICGCCG	CGTCGGTCCT	CGTCCTGCTC	TTGCGGTCGC
3370	3380	3390	2400		1
	CGGCGACGAT	CCCCCACCCC	3400	3410	3420
TGCTCCTTCG	GCCGCTGCTA	CGGCGTGGGC	GGCTGCTCTT	CCAGGCTGCC	GAAGAGCAGA
			0001001011	GOICCONCOG	CITCICGICI
3430	3440	3450	3460	3470	3480
TGGAAGAAGG	CGAGATGGAC	GGCGCGGAGA	TCTCCGACGA	CCATCTCCAC	CACCAACCCC
ACCTTCTTCC	GCTCTACCTG	CCGCGCCTCT	AGAGGCTGCT	GCTAGAGGTC	CTGCTTCCGC
3490	3500	3510	3520	3530	. 3540
TECTCCTETC	CGAAACGCCC	GGCGAGGTCA	AGCGTCCGAA	CCAGCCCTTC	GCCGACTTCA
1001001010	GCTTTGCGGG	CCGCTCCAGT	TUGUAGGUTT	GGTCGGGAAG	CGGCTGAAGT
3550	3560	3570	3580	3500	2000
ACGAGAAGGT	CGACTACGCC	CHUMACACCC	CCC) CTTCC)	3590	3600
TGCTCTTCCA	GCTGATGCGG	CAGAAGTGGG	CGCTCAAGCT	GCTCTCCTAA	CCC1CCCAVC
	GCTGATGCGG	.:			0000000110
3610	3620	3630	3640	3550	2000
AGCTTTGCGA	CGAGGCCGAG	CTCGACCGGC	TGCGCGCCTT	CCTCGACAAG	CACCIMICCOC
TCGAAACGCT	GCTCCGGCTC	GAGCTGGCCG	ACGCGCGGAA	GGAGCTGTTC	GTCGAACGGG
3670		# T	•	٠	
	.3680	3690	3700	3710	3720
ATCTTCAAGG	CCCCCTCCCC	CCCDACCCA	ACCEGETECA	GCGCCGCCTG	ATGGCGCAGC
************	GCGCCAGCCG	GCGGAACGGT	100CCGACGT	CGCGGCGGAC	TACCGCGTCG
3730	3740	3750	3760	3770	2200
AGAACCGCTC	CTGGGAGTTC	GATCTCGAAG	AGGGGTATCT	CCATTCCCCC	3780
TCTTGGCGAG	GACCCTCAAG	CTAGAGCTTC	TCCCCATAGA	GCTAAGCCGC	GCCGA ACTOC
3790	3800	3810	3820	3830	3840
GCATCATCAT	CGATCCGATG	CAGCCGCTTT	CCTTCAAGCG	CCAAAAGCAC	ACCA A COMOCO
CGTAGTAGTA	GCTAGGCTAC	GTCGGCGAAA	GGAAGTTCGC	GCTTTTCCTG	TGGTTGAAGG

FIGURE 32.3

		è.	PL. 85/	まとし	
GCGATACCGT	CGTGACGCTG	3870 CTGATCGACA	ATTCCGGCTC	GATGCGCGC	3900
CGCTATGGCA	GCACTGCGAC	GACTAGCTGT	TAAGGCCGAG	CTACGCGCCG	GCAGGCTAGT
3910		3930	3940	3950	3960
GCCAACGGCG	CACCTGCGCC GTGGACGCGG	CTATAGGACC	GCGCGTGCGA	CGAGCGCTGC	GGCGTCAAGG CCGCAGTTCC
3970	3980	3990	4000	4010	4020
AGCTCTAGGA	CGGTTTTACC GCCAAAATGG	TGGTTCCGCA	CCTTCCCACC	CGTCAGTGCG	GAGAAGTGGC
4030	- 040	4050	4060	4070	4080
TGGCCGGCGG	CAAGCC: CAG	GCCCCGGGTC	GCCTCAACGA	CCTGCGACAC	ATCGTCTACA
	GTTCGGTGTC	.51.	•	··.	
4090	4100	4110	4120	4130	4140
TCAGACGGCT	CGCTCCGTGG GCGAGGCACC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CTCCCTTACA	CGGCCTGATG	ATGCGGGAAG
4150	4160			4190	
	GGAAAACATC	GACGGCGAGG	CGTTGATTTG	GGCGCATGAG	4200
CGGACGAGTT	CCTTTTGTAG	CTGCCGCTCC	GCAACTAAAC	CCGCGTACTC	GCCGACTACC
4210	4220	4230	4240	4250	4260
CGCGGCGCGA	ACAGCGGCGC	ATCCTGATGA	TGATTTCGGA	CGGCGCGCCG	GTCGACGACT
4270	TGTCGCCGCG		•		
	GGTCAATCCA	GCAAACTATC	4300	4310	4320
GCTGCGACAG	CCAGTTAGGT	CCTTTGATAG	ACCTCGCAGT	GGACGCGCGC	CAGTAGCTCG
4330	4340	4350	4360	4370·	4380
AGATCGAAAC TCTAGCTTTG	GCGCTCGCCG CGCGAGCGGC	GTGGAACTGC CACCTTGACG	TGGCGATCGG	TATCGGCCAC	GACGTGACGC
4390		*		: .	
	CCGTGCCGTC	ACCATCGTCG	4420	4430	4440
CGATGATAGC	GGCACGGCAG	TGGTAGCAGC	TACGGCTACT	CGAACGCCG	CGCTACTGGC
4450		4470	4480	4490	4500
AACAGCTGGC	CGCACTCTTC	GAGGACGAAA	GCCAGCGCCG	CGGTTCTTCG	CGTCTTCGCC
	GCGTGAGAAG	. 🌤	CGGTCGCGGC	GCCAAGAAGC	GCAGAAGCGG
4510	4520	4530	4540	4550	4560
CCCCCCCC	ATGCTTCCCC	CTTGGGGGGG	GTGGAACATC	GCCTCCGAGC	TGCCAATCGG
COCOGCCAC	TACGAAGGGG	GAMCCCCCGC	CACCITGIAG	CGGAGGCTCG	ACGGTTAGCC
4570				4610	4620
CACCTGCACG	CATCGCTGGC	GGCCGAAGTC	AATTTACGGA	CATAGITITA	CAGTCTACCA
	GTAGCGACCG			! "	GTCAGATGGT
4630		4650	4660	4670	4680
TCGATGGTAC	CGTGGCGGGC GCACCGCCCG	TCACTTTGAG AGTGAAACTC	CGCACGCCGC	CAGTAAGGGC	ATGCCCCCTG TACGGGGGAC
4690	4700	4710	4720	4730	4740
AAGGTACTTC	TCTTGATGCT	TGGCCGCGGT	CTCCTAGGCC	TTTTCCTCCT	GGCTTCGGCC
TTCCATGAAG	AGAACTACGA	ACCGGCGCCA	GAGGATCGGG	AAAAGGAGGA	CCGAAGCCGG
4750	4760	4770	4780		4800
TGCCCGGC					
ACGGGCCG					

FIGURE 32.4

		1	PL. 86/15/		
10 Gagctcatag Ctcgagtatc		OE TOATCGACTT	Cagnagren	50	MCCCCMCCMG
70 CCCTTGCTTC GGGAACGAAG		ACGACCGCGC	GCCGGGGCCG	110 ATGCCGGTCA TACGGCCAGT	CMCCCCCC CS
130 CGCAGCTCGT GCGTCGAGCA	140 CGGTACGCAT GCCATGC3TA	CTGCAGCATC	160 TCCAGCGTCG AGGTCGCAGC	DCDCCDDCCM	CARCOCCA CO
190 AGGCTCTGAT TCCGAGACTA	200 CGAGCTTGCC GCTCGAACGG	210 CTTGGCTGCG GAACCGACGC	ACCETTECEC	CCATCTTCCC	240 GCGGGTGATC CGCCCACTAG
250 GGGCCGATCG CCCGGCTAGC	260 AGATCTCCTG TCTAGAGGAC	270 AAGCATCACG TTCGTAGTGC	GGGGCTGCCT	CCCCCCCC	300 ATTGGCTGTC TAACCGACAG
310 ATGACCGTGA TACTGGCACT	320 CGATAAAGTT GCTATTTCAA	GAGGTTGGCC	GGGTCGAGGC	350 CGATCTTTTC GCTAGAAAAG	360 CGCATCTTCA GCGTAGAAGT
370	380	390	TOCACCACCA	410	420
TAGGTGAGCG	CGATGTTGCT	GGCGCCCGTA		TGCTGATGTC	CTTGCCGTCG
ATCCACTCGC	GCTACAACGA	CCGCGGCCAT		ACGACTACAG	GAACGGCAGC
430	440	450	460	470	480
ACCGTCGCAG	TGGTCTCGAA	ATGACCGTTC	AGCATCTTCT	GCAGCACCAC	TTCCTGCTGT
TGGCAGCGTC	ACCAGAGCTT	TACTGGCAAG	TCGTAGAAGA	CGTCGTGGTG	AAGGACGACA
490	500	510	520	530	540
CCCTCGCTGT	CAGTGATGAT	GGTGGCGCGG	CCGGGGATGA	GGCCGCCGAG	CAGGCGGTTA
GGGAGCGACA	GTCACTACTA	CCACCGCGCC	GGCCCCTACT	CCGGCCGCTC	GTCCGCCAAT
550	560	570	580	CCACCCCCAC	600
CCGAAGCCCT	CCAACTCGAA	GCGGTAGACA	TAGGCCGAGA		AACGACGAAG
GGCTTCGGGA	GGTTGAGCTT	CGCCATCTGT	ATCCGGCTCT		TTGCTGCTTC
610	620	630	640	650	660
AGCCAGATGG	CGATCTGACG	CAGGCCTTEG	CCGAAGCGGT	GGCGGCTCTG	CAGGATGCCG
TCGGTCTACC	GCTAGACTGC	GTCCGGAAGC	GGCTTCGCCA	GCGCCGAGAC	GTCCTACGGC
670	680	690	700	710	720
GCGCCGATCA	GCGTGGCGAT	GGCGCCGAGC	GAGACCAGTT	GCCCGAACTG	GTCATTGGCA
CGCGGCTAGT	CGCACCGCTA	CCGCGGCTCG	CTCTGGTCAA	CGGGCTTGAC	CAGTAACCGT
730	740	750	ATGATCAGCA	770	780
AGCCCCATGG	TGCGGCCGGT	GTCGTGGTTG		GGATGAGGCC	GATGGCCAGG
TCGGGGTACC	ACGCCGGCCA	CAGCACCAAC		CCTACTCCGG	CTACCGGTCC
790	800	810	820	830	ATTCCCCCCCCC
ATCGAGAGCA	GGATGGCAAG	ACGGGTCATG	CTTCGCCGCG	TTCCCTCGCC	
TAGCTCTCGT	CCTACCGTTC	TGCCCAGTAC	GAAGCGGCGC	AAGGGAGCGG	
850	860	870	880	890	900
GTCGGGTTTC	292922929	TTGCGTTCGA	CGGTCTCAAG	CCGTGCAGGC	AACGCGCTCA
CAGCCCAAAG	202929292	AACGCAAGCT	GCCAGAGTTC	GGCACGTCCG	TTGCGCGAGT
910	920	930	940	TCCGACTTCG	960
TGATCGCGCG	GCGTTCGGCA	TCGGPATAGA	GCGTCCAGCG		TCGCGGGTAC
ACTAGCGCGC	CGCAAGCCGT	AGCCATATCT	CGCAGGTCGC		AGCGCCCATG

FIGURE 33

` • • • • • · · · · · · · · · · · · · ·					
	•		L. 87/151	:	
970	980	990	1000	1010	1020
GGCCGCAGCC	GAAACAGTAG	CCGGTCTTGT	CATCGATCGA	ACAGACGAGA	ATGCAGGGAG
CCGGCGTCGG	CTTTGTCATC	GGCCAGAACA	GTAGCTAGCT	TGTCTGCTCT	TACGTCCCTC
				-010100101	1700100010
1030	1040	1050	1060	1070	1080
ATTCCATGGG	CGTGCTCAGT	TTTCCCTTGA	TATATCCATC	TTTCAAACCC	TCACCCCAAC
TAAGGTACCC	GCACGAGTCA	ABAGGGBACT	ATATACCTAC	DANCTURCOC	I CAGCGCAMG
			ututuaciuc	WWGIIIGGC	WOICECRITC
1090	1100	1110	1120	1130	1110
	ACGGCGATTT	CCCTCACTTC	CECCECCE	1130	1140
CCCTCCCTCC	TCCCCCTA A A	CCCACACATC	CIGCGICGCC	CCGATCGTGT	CGCCCGTTTG
CCGIGGCICG	TGCCGCTAAA	GCCAGICAAC	LACULA GUES	GGCTAGCACA	GCGGGCAAAC
1150	.9.60				
1150	1160	1170	,1180	1190	1200
TUGUUGATU	TTGCGCATCG	CCAGCCGAGC	GAAGCCCTTG	ACCGTGGCAA	GGAATGCGAC
AGGCGGCTAG	AACGCGTAGC	GGTCGGCTCG	CTTCGGGAAC	TGGCACCGTT	CCTTACGCTG
1210	1220	1230	1240	1250	1260
GAGCGCCGCG	ATGACGCCGA	GCGCCGGGAC	CTGCGCGAGA	TAGAAGAGCA	GCATTGCGAC
CTCGCGGCGC	TACTGCGGCT	CGCGGCCCTG	GACGCGCTCT	ATCTTCTCGT	CGTAACGCTG
	•	•	,		
1270	1280	1290	1300	. 1310	1320
AAGAAGTCCG	AAGGCAAGCG	CGAAGCGCGT	GGCCGCCGGT	TOCGGOTOGO	CACCCCACCC
TTCTTCAGGC	TTCCGTTCGC	GCTTCGCGCA	CCCCCCCCC	Pecces coc	CTCCCCTCCC
			00000000	, aggregater	GICGGCICCG
1330	1340	1350	1360	1270	
	CTGCTGCGCG	CCCCCCVVC		1370	1380
CCCCTCCGG	GACGACGCGC	CCCCCCCC	CCMCCMCCMC	IGCCAGACCA	TGGCGGCGCG
0000100000	ancancacac	GGCCGCCTTC	GCTGCTGGTC	ACGGTCTGGT	ACCGCCGCGC
1390	1400				
		1410	1420	1430	1440
PC1 GWPGCWC	GCTGCGCCAA	GGATCGCCAT	GGCGGCGCCC	AGCGGCGAAA	AGAGCGGCAG
CGACTCCGTG	CGACGCGGTT	CCTAGCGGTA	CCGCCGCGG	TCGCCGCTTT	TCTCGCCGTC
3.450			. 1861		
1450		1470	1480	1490	1500
GATCGAGGCG	AACGCCGAGA	CGCGCAGGCC	GAAGGAGAGG	ATGAGGGCGA	CGGCCGCATA
CTAGCTCCGC	TTGCGGCTCT	GCGCGTCCGG	CTTCCTCTCC	TACTCCCGCT	GCCGGCGTAT
			•		
1510		1530	1540	1550	. 1560
GGTGCCGATG	CGGCTGTCCT	TCATGATCGC	AAGCGCCGCT	TCGCGGTCGC	GACCGCCGCC
CCACGGCTAC	GCCGACAGGA	AGTACTAGCG	TTCGCGGCGA	AGCGCCAGCG	CTGGCGGCGG
1570		1590	1600	1610	1620
AAAGCCATCG	GCCGTGTCGC	CAAGCCCGTC	TTCGTGCAGT	GCGCCGGTGA	CAAGCGCCTG
TTTCGGTAGC	CGGCACAGCG	GTTCGGGCAG	AAGCACGTCA	CGCGGCCACT	GTTCGCGGAC
1630	1640	1650	1660	1670	1680
GATGGCGACG	ACGACAAAGG	CGGCAAAGAG	CGAGCTCACC	TECARCECCA	TGAGGGCCAT
CTACCGCTGC	TGCTGTTTCC	GCCGTTTCTC	CCTCCACTCC	ACCTOCCCC	ACTCCCCCTA
				W001000001	VCTCCCGGTV
1690	1700	1710	1720	1730	1740
	GCCGATGGCA	CTCCCATÉCC	CYCCCCCCC	7700007700	1740
CCCCTCCCC	CGGCTACCGT	CA CCCMA CCC	CAGGCCGGCG	AMCGGGAMGG	CGCGCACGGC
ccecieces	COOCIACCOI	CACGCTAGCG	GTCCGGCCGC	TIGCCCTTCC	GCGCGTGCCG
1750	1760	1 220	1780		
		1//0	1780	1790	1800
ACCOCT CARG	CGCCCGTCAT	MACCITCGAA	ATGACGCGCA	GGCATCGGGA	TGCGGCTGAG
TUCCGAGTT'C	GCGGGCAGTA		TACTGCGCGT	CCGTAGCCCT	ACGCCGACTC
1810		1830	1840	1850	1860
AAAGCCGATC	GACCGCGCCA	CATCGTCACA	GAAATCGCCA	ACGAAGCCCA	TEGCTCCTCC
TTTCGGCTAG	CTGGCGCGGT	GTAGCAGTGT	CTTTAGCGGT	TGCTTCGGGT	ACCGAGGAGG
			gi da il		
1870		1890	1900	1910	1920
AAGGTTGCGG	CCATTGACCC	GCCCCCTGCC	AAACTCGCCG	ACTGCGGCGA	CTCTCCCAAC
TTCCAACGCC	GGTAACTGGG	CCGGCGACGG	TTTGAGCGGC	TGACGCCGCT	CAGAGCGTTC
•					

		.•	:		
			PL. 88	151	
193	0 194	0 195) i980
CCGGGCGGG	C GCACCCGCG	A GEGERATOR	* ~ ~ ~ ~ ~ ~ ~ ~ ~		
GGCCCGCCC	G CGTGGGCGC	T CCCGGCGCG	r Greanance	TOTOCOLLEGE	TAGGCCGTCT
			- orannyou	1CIGGAAAG1	ATCCGGCAGA
199		201	2020	2030	
GCGACCGCT	C GCGGATCGA	- ACCCCCACC			
CGCTGGCGA	G CGCCTAGCT	TECCECTEC	CONTROCCO	AAATGTCGTT	GCCCGAATTI
			S GCIMACCGCG	TITACAGCAA	CGGGCTTAAA
205	0 2060	207/	`		
TCGGCGCCC	T CTATGAGGG	CGTAGATAG	2080		
AGCCGCGGG	A GATACTCCC	COTYGETYGE	COTTCACGAT	GATGCAAGGA	TTCCTCCCAT
	A GATACTCCC	GCVICIAICI	CGAAGTGCTA	CTACGTTCCT	' Aaggagggta
2110	3120				
GAGTGCCAG	: הפררדפררפי	THE STATE OF THE PARTY OF THE P			
CTCACGGTCC	CCGGACGGC	A A CONTRACTOR	TUGUGAATTG	TTGCGCAACC	TGCCGGGCCC
	CCGGACGGC	WITHCIAAA	AGCGCTTAAC	AACGCGTTGG	ACGGCCCGGG
GGATGCGGC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	2190	2200	2210	2220
CCTACCCCC	GCCCTCGTTG	CCGCGCGGGA	GCGGGACGCC	CAGCTGACGA	AGCCGCCGGG
OCINCOCCO]	CGGGAGCAAC	GCCCCCCT	, ceccelecee	GTCGACTGCT	TCGGCGGCCC
			•		
CCCCM000	2240	2250	-2260	2270	2280
	CGCCTCGAGG	AAATCGCCTT	CICCICCC		
GCGCGAGCCG	GCGGAGCTCC		LICELL COMING THE	CGGACCTGCC	CGTTCCGCGC
					0011000000
2290	2300	2310	2320	2330	2340
CC) CC) CESS	DOTODODDO DOKADDDODDO DOKADDDODDO	TOTO TO THE TOTO THE	MARK ALL		
CUACUAGTTG	GCCGGCGACC	ACCGCTAGAA	ACGGCCGTTG	GTGCCGCAGT	GGGCGGTCCC
		. ' 100			0000001000
2350	2360	2370	2380	2390	2400
GGTGACCCCG	TTCCCGTCAT	CCGTCACCGC	ACAGATGGTC	A	
CCACTGGGGC	AAGGGCAGTA	GGCAGTGGCG	TGTCTACCAG	CTCTTAAAAC	CCCCCCC CC
		. 75		OTOTIONNAC	GGCGGCCACC
2410	2420	2430	2440	2450	0460
CGCTGCGATC	AACCAGATCT	GCGTCAGCCA	CC1.CC#C000		
GCGACGCTAG	TTGGTCTAGA	CGCAGTCGGT	GCTGGAGCCC	GACTTCCACA	ACCRCCA COC
		. *	•	and I contain	MGC1GGAGCG
2470	2480	2490	2500	2510	2520
ACTCGAATAC	CCGACCGGTG	ATATCACCCA	553355555		2520
TGAGCTTATG	GGCTGGCCAC	TATAGTGGCT	CCTTCGGCGC	CACACCCCACC	CCGATTGCGC
				ananage166	CGCTAACGCG
2530		2550	2560	2570	0500
CGCGACCATG	GCCTTTGGCA	TECNECCON	mcccccc		
GCGCTGGTAC	CGGAAACCGT	ACCTCCGCTA	ACGGCCCCCC	TCCCTACAAC	TGTGCATCGG
				TOCCINGNAG	ACACGTAGCC
2590	<i>2</i> 600	2610	2620	2620	
CGAAATGGGC	ATCGGCAACA	CCACCARCCO			
GCTTTACCCG	TAGCCGTTGT	GGTGCTAGCG	CCGCCCCTAG	TTACACCCCC	TITATGGTGG
			SCOOCGCIAG	TINGNOCCEG .	AAATACCACC
2650	2660	2670	2600		
GTGCCGGCTT	CTTACCCAGC	Caccoodiac	CCCC1 CCCAG	GCCGAGGTGC	Tgaagcgcaa
	CTTACCCAGC	CHUCCHIL	GCCGAGGCTC	CCGCTCCACG	ACTTCGCGTT
2710	2720	2720			
GATCGCCGCG	GTCGAAAAGC	CCCTCCCCC	2740	2750	2760
CTAGGGGGG					
		GGGGGCGA	COTAGUGCTA (STGGACAGGC :	PAGGCGAGCT
2270	2780		4	•	
ACTGATGCCT	CCCCTCCCCC	2790	2800	2810	2820
TGACTACCCA	CGCCTCGGCG	GICGIGAGAT	CGCGGCCATG (CTGGCGCCA :	PCCTGGCCGC
- working	GCGGAGCCGC	LAGCACTOTA	GCGCCGGTAC (GACCGCGGT 1	AGGACCGGCG
			*** •		
2830	2840	2850	2860	2870	2880
CCCCCTCCAG	AAGGTACCTG TTCCATGGAC	TCATCATCGA			
GUGCAGGTC	TTCCATGGAC	agtagtagct: (GCCGATGCAC (GCTGGCGAC	CCCPFCCus
					CUMMULTA

FIGURE 33.2

		1 - 1
PL.	89/	151

			PL. 89/14	1.	
2890	2900	2910	2920	2930	2940
	GCCAACCCGT				
GGACTTCCGC	CGGTTGGGCA	GCCGGGAGCT	GGTAACGGAC	TAGCCGGTAC	AAAGCCCGCT
0050	0000	2970	2002	2222	. 2000
2950	2960 CTGCGCGCGA		2980	2990	3000
	GACGCGCGCT				
166000013	GACGCGCGC1	nociciican	9009110100	GGCGACGACC	GIGNOCCGIN
3010	3020	3030	3040	3050	3060
	GAAGGCACGG				
	CTTCCG: GCC				
3070	3080	3090	3100	3110	3120
	GGCATGGCGA				
AACGGTGTCG	CCGTACCGCT	GGAAACGGGT	CCGGCCGCAG	TCGTTGTTCC	TTATCACTTC
21.22	22.42	24.52	22.52	2.20	21.00
3130	3140	3150	3160	3170	3180
	GCTTTGCAGG CGAAACGTCC				
ANGGEEGGEE	CONVICTION	11000000	CCAAAGACAG	GIICCGGACA	GIGCCCGCGC
3190	3200	3210	3220	3230	3240
	GTGCCGGGCC	7.7.			
	CACGGCCCGG				
			100		
3250	3260	3270	3280	3290	3300
CGCGCCCTAG	CTATAGTCTT	GGGTGCCTGC	AACCGAGACC	GCCTTGCATT	CGCCTCAATC
GCGCGGGATC	GATATCAGAA	CCCACGGACG	TIGGCICIGG	CGGAACGTAA	GCGGAGTTAG
			22		
3310				3350	3360
	AGCAAGCACA				
TGCTACAGCT	TCGTTCGTGT	CAMAGIICGG	GACAGCTCTG	CITIACCIGC	GGTTCTTGTG
3370	3380	3390	3400	3410	3420
	ATTGGACAGA				
	TAACCTGTCT				
				:	,
3430	3440	3450	3460	3470	3480
	AGCTATTCGC				
ACGGCGACGC	TCGATAAGCG	AGCCGCCGCG	GTTCGCCGAC	TAGCCGCTCC	GACGGAAAGC
2400	2500	25.0	2500		25.42
3490		_,_,_			
	ATCGCCTTTG TAGCGGAAAC				
GOIGCICGAC	INGCGGMMC	GGCGGCIA	CINGCOMM	INGINGCAGO	COCOTIOGNA
3550	3560	3570	3580	3590	3600
					AGGCGATCAA
	CACCGCTACC				
	,				
3610	3620	3630	3640	3650	3660
					TGGGTAAGAA
GTGCCGTTAG	CTCCTTTAAC	AGCTAGCGCA	AAGAGGGCTT	TAGAGCCTTI	ACCCATTCTT
2620	2500	2500	2700		
3670					
					GTGTCTATGC
GCGGTTCCTA	GAGCCGAGGA	ADUDADUDA	GACGGACTAA	CAGCGGTTGC	CACAGATACG
3730	3740	3750	3760	3770	3780-
		,			CGGCGCCTTC
					GCCGCGGAAG
					- Josephannia
3790	3800	3810	3820	3830	3840
ACCCGATAAA	GCACATGCGG	ACGCAGCGGG	TTGCCCCCGG	GTACCGTGAC	GTCGTCGAAA
TGGGCTATTI	CGTGTACGCC	TGCGTCGCCC	AACGGGGGCC	CATGGCACTO	CAGCAGCTTT
	•		**		

FIGURE 33.3

PL. 90/157.

3890

3900

TCATCAGCCG GATCC AGTAGTCGGC CTAGG

3860

FIGURE 33.4

FIGURE 34.1

FIGURE 35

FIGURE 35.1

NOM = COBS	PREMI DERNI	ER RESIDU = ER RESIDU =	PL. 99 = 1 = 332	1151
	NOMBRE	% NOMB	POIDS	% POIDS
1 PHE F 2 LEU L 3 ILE I 4 MET M 5 VAL V 6 SER S 7 PRO P 8 THR T 9 ALA A 10 TYR Y 11 * * 12 HIS H 13 GLN Q 14 ASN N 15 LYS K 16 ASP D 17 GLU E 18 CYS C 19 TRP W 20 ARG R 21 GLY G 22 RESIDUS MASSE MOICE MASSE MOICE INDEX DE PO POINT ISOEL	ulaire (mo		ue) = 369	5.97 8.87 6.12 2.48 8.85 3.53 2.89 6.56 6.15 3.97 0.00 3.71 3.46 3.70 4.51 8.71 5.24 0.84 2.01 9.29 3.09 0.00
		611 DO 280		≃ 0.891

FEUILLE DE REMPLACEMENT

GENE <u>cobs</u> ET PROTEINE COBS SEQUENCE DU FRAGMENT <u>Sall-Sall-Sall-Sall-Bgl</u>I DE 4749 BP, DE 1512 A 2510

FIGURE 40.1

		1
PL.	101	1151

NOM = COBT			DDFM	TED BECTE			•
0001			DEDIN.	IER RESID			
			DERN.	IER RESID	V = 631		
			NOMBRE	NOMB	POI	DS	% POIDS
1	PHE	F	16	2.54	235	3.09	3.35
2 3	LEU	L	56	8.87	633	2.71	9.01
3	ILE	I	29	4.60	327	9.44	4.67
4 5 6	MET	M	18	2.85		8.73	3.36
5	VAL	V	31	4.91		1.12	4.37
6	SER	S	33	5.23		2.06	
7	PRO	P	24	3.80		9.27	4.09
8	THR	T	28	4.44	202	9.34	3.31
9	ALA	A	75	11.89	£02:	7.78	4.03
10	TYR	Y	8	1.27		4.51	7.58
11	*	*	.0	0.00			1.86
12	HIS	H	7	1.11		0.00 9.41	0.00
13	GLN	Q	29	4.60			1.36
14	ASN	N	22	3.49		3.70	5.28
15	LYS	ĸ	25	3.96	2508		3.57
16	ASP	D	49	7.77	3202		4.56
17	GLU	Ē	67	10.62	5636	3.32	8.02
1.8	CYS	ē	5	0.79	8645	2.85	12.30
19	TRP	w	6			.05	0.73
20	ARG	R	61	0.95	1116		1.59
21	GLY	"Ĝ	42	9.67	9522		13.55
22		_	0	6.66	2394		3.41
			U	0.00	C	0.00	0.00
	RESID	15			C22		
			culaire (m	070100+	631		
	Masse	mole		onoisotop	ordne) =		91.3984
	INDEX	שב שנו	•	oyenne)	= -	703	34.7656
	POINT	ISOFI	OLARITE (% LECTRIQUE		50.87		
	DO 26	11mm	a/m1) = 0	422 DO	5.10		
		4-711/	g/mz) ~ 0	.423 DO	280 (lmg/	ml) =	0.610
						•	

FIGURE 40.2

GENE <u>cobt</u> ET PROTEINE COBT SEQUENCE DU FRAGMENT <u>Sali-Sali-Sali-Sali-Bgl</u>i DE 4749 BP, DE 2616 A 4511

```
ValSerSerAsnSerLysAlaLysProThrThrArgGluAsnAlaAlaGluProPheLysArgAlaLeuSerGly
GTGAGCTCGAATTCGAAGGCAAAGCCAACCACGCGCGAGAATGCTGCGGAACCGTTCAAGCGGGCGCTTTCCGGC
              2635
                        2645
                                 2655
                                          2665
                                                    2675
CysIleArgSerIleAlaGlyAspAlaGluValGluValAlaPheAlaAsnGluArgProGlyMetThrGlyGlu
2700
               2710
                        2720
                                 2730
                                          2740
                                                   2750
ArgIleArgLeuProGluLeuSerLysArgProThrLeuGlnGluLeuAlaValThrArgGlyLeuGlyAspSer
CGCATCCGTCTGCCGGAACTTTCCAAGCGCCCGACCCTGCAGGAACTTGCCGTGACCCGCGGGCTCGGTGACAGC
                        2795
                                 2805
                                          2815
                                                   2825
MetAlaLeuArgLysAlaCysThrHisAlaArgIleGlnArgThrMetSerProGlnGlyAlaAspAlaArgAla
ATGGCGCTGCGCAAGGCCTGTACGCATGCGCGGATCCAGCGCACCATGTCGCCGCAAGGGGCGGACGCCCGCGCG
               2860
                        2870
                                 2880
                                          2890
                                                    2900
{\tt IlePheAspAlaValGluGlnAlaArgValGluAlaIleGlySerLeuArgMetAlaGlyValAlaLysAsnLeu}
ATCTTCGATGCGGTGGAGCAGGCTCGTGTCGAGGCGATCGGGTTGCGCATGGCGGGTGTCGCCAAGAACCTC
                        2945
                                 2955
                                          2965
AsnValMetLeuGluGluLysTyrAlaLysAlaAsnPheAlaThrIleGluArgGlnAlaAspAlaProLeuGly
AACGTCATGCTCGAAGAGAAATACGCCAAGGCGAATTTCGCAACGATCGAGCGCCAGGCGGACGCCGCTCGGC
     3000
               3010
                        3020
                                 3030
                                          3040
                                                   3050
                                                             3060
GluAlaValAlaLeuLeuValArgGluLysLeuThrGlyGlnLysProProAlaSerAlaGlyLysValLeuAsp
GAGGCCGTAGCGCTGCTGGTGCCGAGAAGCTGACGGCCAGAAGCCGCCGGCGTCTGCCGGCAAGGTGCTCGAC
              3085
                        3095
                                 3105
                                          3115
                                                   3125
{\tt LeuTrpArgGluPheIleGluGlyLysAlaAlaGlyAspIleGluHisLeuSerSerThrIleAsnAsnGlnGln}
CTCTGGCGCGAGTTCATCGAGGGCAAGGCTGCCGGCGACATTGAGCACCTGTCGTCGACGATCAACAACCAGCAG
              3160
                        3170
                                 3180
                                          3190
                                                   3200
{\tt AlaPheAlaArgValValArgAspMetLeuThrSerMetGluValAlaGluLysTyrGlyAspAspAspAsnGlu}
GCCTTTGCCCGGGTCGTTCGCGACATGCTGACCTCGATGGAAGTCGCCGAGAAATACGGTGACGACGACAACGAG
              3235
                        3245
                                 3255
                                          3265
                                                   3275
ProAspGluGlnGluSerGluThrAspGluAspGlnProArgSerGlnGluGlnAspGluAsnAlaSerAspGlu
3320
                              3330
                                          3340
                                                   3350
GluAlaGlyAspAspAlaAlaProAlaAspGluAsnGlnAlaAlaGluGluGlnMetGluGluGlyGluMetAsp
GAAGCCGGCGACGATGCCGCCGCCGACGAGAACCAGGCTGCCGAAGAGCAGATGGAAGAAGGCGAGATGGAC
                        3395
                                 3405
                                          3415
                                                   3425
GlyAlaGluIleSerAspAspAspLeuGlnAspGluGlyAspGluAspSerGluThrProGlyGluValLysArg
GGCGCGGAGATCTCCGACGATCTCCAGGACGAAGGCGACGAGGACAGCGAAACGCCCGGCGAGGTCAAGCGT
               3460
                        3470
                                 3480
                                          3490
                                                   3500·
{\tt ProAsnGlnProPheAlaAspPheAsnGluLysValAspTyrAlaValPheThrArgGluPheAspGluThrIle}
CCGAACCAGCCCTTCGCCGACTTCAACGAGAAGGTCGACTACGCCGTCTTCACCCGCGAGTTCGACGAGACGATT
               3535
                        3545
                                 3555
                                          3565
                                                   3575
AlaSerGluGluLeuCysAspGluAlaGluLeuAspArgLeuArgAlaPheLeuAspLysGlnLeuAlaHisLeu
GCCTCGGAAGAGCTTTGCGACGAGCCCGACCTCGACGGCTGCGCCCTTCCTCGACAAGCAGCTTGCCCATCTT
               3610
                        3620
                                 3630
                                          3640
                                                             3660
GlnGlyAlaValGlyArgLeuAlaAsnArgLeuGlnArgArgLeuMetAlaGlnGlnAsnArgSerTrpGluPhe
CAAGGCGCGGTCGGCCGCTTGCCAACCGGCTGCAGCGCCCTGATGGCGCAGCAGCAGCACCGCTCCTGGGAGTTC
                        3695
                                 3705
                                          3715
                                                   3725
{\tt AspLeuGluGluGlyTyrLeuAspSerAlaArgLeuGlnArgIleIleIleAspProMetGlnProLeuSerPhe}
GATCTCGAAGAGGGGTATCTCGATTCGGCGCGCTTCAGCGCATCATCATCGATCCGATGCAGCCGCTTTCCTTC
              3760
                        3770
                                 3780
                                          3790
                                                   3800
LysArgGluLysAspThrAsnPheArgAspThrValValThrLeuLeuIleAspAsnSerGlySerMetArgGly
3835
                        3845
                                 3855
                                          3865
                                                   3875
ArgProIleThrValAlaAlaThrCysAlaAspIleLeuAlaArgThrLeuGluArgCysGlyValLysValGlu
CGTCCGATCACGGTTGCCGCCACCTGCGCCGATATCCTGGCGCGCACGCTCGAGCGCTGCGGCGTCAAGGTCGAG
              3910
                                 3930
                        3920
                                          3940
                                                   3950
{\tt IleLeuGlyPheThrThrLysAlaTrpLysGlyGlyGlnSerArgGluLysTrpLeuAlaGlyGlyLysProGln}
3975
              3985
                        3995
                                4005
                                          4015
```

AlaProGlyArgLeuAsnAspLeuArgHisIleValTyrLysSerAlaAspAlaProTrpArgArgAlaArgArg GCCCCGGGTCGCCTCAACGACCTGCGACACATCGTCTACAAGTCTGCCGACGCTCCGTGGCGCCGGGCACGACGC 4070 -AATCTCGGCCTGATGATGCGGGAAGGCCTGCTCAAGGAAAACATCGACGGCGAGGCGTTGATTTGGGCGCATGAG ${\tt ArgLeuMetAlaArgArgGluGlnArgArgIleLeuMetMetIleSerAspGlyAlaProValAspAspSerThr}$ CGGCTGATGGCGCGCGCGAACAGCGGCGCATCCTGATGATGATTTCGGACGGCGCGCCGGTCGACGACTCGACG -4240 4250: ${\tt LeuSerValAsnProGlyAsnTyrLeuGluArgHisLeuArgAlaValIleGluGlnIleGluThrArgSerPro}$ CTGTCGGTCAATCCAGGAAACTATCTGGAGCGTCACCTGCGCGGTCATCGAGCAGATCGAAACGCGCTCGCCG ${\tt ValGluLeuLeuAlaIleGlyIleGlyHisAspValThrArgTyrTyrArgArgAlaValThrIleValAspAla}$ GTGGAACTGCTGGCGATCGGTATCGGCCACGACGTGACGCGTACTATCGCCGTGCCGTCACCATCGTCGATGCC ${\tt AspGluLeuAlaGlyAlaMetThrGluGlnLeuAlaAlaLeuPheGluAspGluSerGlnArgArgGlySerSer}$ GATGAGCTTGCCGGCGCGATGACCGAACAGCTGGCCGCACTCTTCGAGGACGAAAGCCAGCGCGCGGTTCTTCG ArgLeuArgArgAlaGly*** CGTCTTCGCCGCGCCGGGTGA

FIGURE 40.4

					PL.	PL. 104/11	
NOM = COBX			PREMI	ER RESIDU =	1	•	
				ER RESIDU -			
				•			
			NOMBRE	& NOMB	POIDS	* POIDS	
٦	PHE	P.	3	3.23	441.21	4 20	
1 2 3 4	LEU	Ĺ	8	8.60	904.67	4.29 8.80	
3	ILE	ī	5	5.38	565.42	5.50	
4	MET	M	ž	3.23	393.12	3.82	
	VAL	Ÿ	Š	5.38	495.34	4.82	
5 6	SER	Š	5	6.45	522.19	5.08	
7	PRO	P	5 3 5 6 6	6.45	582.32	5.66	
7 8	THR	Ī	5	5.38	505.24	4.92	
9	ALA	A	·10	10.75	710.37	6.91	
10	TYR	Y	0	0.00	0.00	0.00	
11	*	*	Ŏ	0.00	0.00	0.00	
12	HIS	H		7.53	959.41	9.33	
13	GLN	Q	7 2 2 3 3	2.15	256.12	2.49	
14	ASN	Ñ	2	2.15	228.09	2.22	
15	LYS	K	3	3.23	384.28	3.74	
16	ASP	D	3	3.23	345.08	3.36	
17	GLU	E	10	10.75	1290.43	12.55	
18	CYS	C	0	0.00	0.00	0.00	
19	TRP	W	1	1.08	186.08	1.81	
20	ARG	R	7	7.53	1092.71	10.63	
21	GLY	G	7	7.53	399.15	3.88	
22	-	-	0	0.00	0.00	0.00	
	RESID	10					
					13		
				onoisotopio		0279.2354	
			LARITE (%)	oyenne)		0285.6309	
			ECTRIQUE	, - 4	8.39 6.94		
	DO 26				0.94 10 (1ma/ml)	= 0.541	

FEUILLE DE REMDI ACEMENT

GENE <u>cobx</u> ET PROTEINE COBX

SEQUENCE DU FRAGMENT BglI-SalI-SalI-SalI-SalI DE 4749 BP, DE 4089 A 4370

MetSerLeuThrGluThrIleGluLysLysLeuIleGluAlaPheHisProGluArgLeuGluValIleAsnGlu ATGTCGCTCACCGAGACCATCGAAAAGAAGCTGATCGAGGCCTTCCACCCTGAACGGCTCGAGGTCATCAACGAG 4118 4128 4138 4148 ${\tt SerHisGlnHisThrGlyHisGlnProGlyPheAspGlyThrGlyGluSerHisMetArgValArgIleValSer}$ AGCCATCAGCATACCGGCCATCAGCCGGGGTTCGATGGTACCGGCGAGTCCCACATGCGGGTGCGTATCGTTTCT 4183 4193 4203 4213 SerAlaPheAlaGlyMetSerArgValAlaArgHisArgAïaIleAsnAspLeuLeuLysProGluLeuAspAla AGCGCCTTTGCCGGCATGAGCCGTGTCGCCCGCCACCGCGCCATCAATGATCTCCTGAAGCCAGAACTCGACGCC 4268 4278 4288; GlyLeuHisAlaLeuAlaValGluProAlaAlaProGlyGluProThrArgTrp** GGCCTGCATGCGCTCGAGCCGGCAGCCCCGGCGAGCCGACCCGCTGGTAG 4323 4333 4343 . 4353 4363

FIGURE 40.6

•

NOW	i = cobi	j		ER RESIDU =	1	106/151
			DERNI	ER RESIDU =	338	
			NOMBRE	% NOMB	POIDS	% POIDS
1	PHE	F	9	2.66	1323.62	3.82
2	LEU	L	36	10.65	4071.03	11.75
3	ILE	I	19	5.62	2148.60	6.20
4	MET	M	9	2.66	1179.36	3.40
5	VAL	V	21	6.21	2080.44	6.00
6	SER	S	13	3.85	1131.42	3.26
7	PRO	P	16	4.73	1552.84	4.48
8	THR	T	17	5.03	1717.81	4.96
9	ALA	A	· 61	18.05	4333.26	12.50
10	TYR	Y	3	0.89	489.19	1.41
11	*	*	Ō	0.00	0.00	0.00
12	HIS	H	8	2.37	1096.47	3.16
13	GLN	Q	6	1.78	768.35	2.22
14	ASN	N	9	2.66	1026.39	2.96
15	LYS	K	12	3.55	1537.14	4.43
16	ASP	D	13	3.85	1495.35	4.31
17	GLU	E	22	6.51	2838.94	8.19
18	CYS	С	5	1.48	515.05	1.49
19	TRP	W	3	0.89	558.24	1.61
20	ARG	R	16	4.73	2497.62	7.21
21	GLY	G	40	11.83	2280.86	6.58
22	-	-	0	0.00	0.00	0.00
				٧٠.	•	-
	RESID			= :33		
				onoisotopiq		659.9844
				oyenne)		681.9609
	INDEX		LARITE (%)		4.32	
	POINT		ECTRIQUE		6.21	:
	DO 260) (1mg	/ml) = 0.	416 DO 28	0 (1mg/ml)	- 0.584

FIGURE 41

FEUILLE DE REMPLACEMENT

GENE <u>cobu</u> ET PROTEINE COBU SEQUENCE DU FRAGMENT <u>Sst</u>I-<u>Sst</u>I-<u>Bam</u>HI DE 3855 BP, DE 2099 A 3115

FIGURE 41.2

NO	M = COB	v	PREMI DERNI	ER RESIDU = ER RESIDU =	_ : =	121 80
			NOMBRE	& NOMB	POIDS	% POIDS
123456789101121314156171892212	PHE LEU ILE MET VAL SER PRO THR ALA TYR HIS GLN ASN LYS ASP GLU CYS TRP ARG GLY - RESIDU	FLIMVSPTAY+ HQNKDECWRG-	18 39 13 10 23 18 12 10 63 3 6 2 5 10 7 3 2 19 36 0	5.96 12.91 4.30 3.31 7.62 5.96 3.97 3.31 20.86 0.99 0.09 1.99 0.66 3.32 0.99 0.66 3.32 0.99	2647.23 4410.28 1470.09 1310.41 2278.57 1566.58 1164.63 1010.48 4475.34 489.19 0.00 411.18 768.35 228.09 640.47 1150.27 903.30 309.03 372.16 2965.92 2052.77 0.00	8.64 14.39 4.80 4.28 7.44 5.11 3.80 3.30 14.61 1.60 0.00 1.34 2.51 0.74 2.09 3.75 2.95 1.01 1.21 9.68 6.70 0.00
	Masse Masse INDEX	molecu molecu DE POI ISOELE	laire (mo ARITE (%) CTRIQUE		e) = 306 = 306 .49 .97	42.3359 62.0820 0.479

FIGURE 41.3

FFMI I F RA LLAL.

GENE <u>coby</u> ET PROTEINE COBV

SEQUENCE DU FRAGMENT <u>Bam</u>HI-<u>Sst</u>I-<u>Sst</u>I DE 3855 BP, DE 1885 A 2793

MetLysGlyLeuGlyLysValCysAlaAlaLeuAlaGlyAlaProAlaArgLeuAlaArgLeuAlaAlaValGly ATGAAAGGTCTGGGAAAAGTGTGCGCGGCCCTCGCGGGTGCGCCCGGCCTGCGAGACTCGCCGCAGTCGGC GluPheGlySerGlyArgValAsnGlyArgAsnLeuGlyGlyAlaMetGlyPheValGlyAspPheCysAspAsp GAGTTTGGCAGCGGCCGGGTCAATGGCCGCAACCTTGGAGGAGCCATGGGCTTCGTTGGCGATTTCTGTGACGAT ValAlaArgSerIleGlyPheLeuSerArgIleProMetProAlaArgHisPheGluGlyTyrAspGlyArgLeu GTGGCGCGTCGATCGGCTTTCTCAGCCGCATCCCGATGCCTGCGCGTCATTTCGAAGGTTATGACGGCGCGTTG SerArgAlaValArgAlaPheProPheAlaGlyLeuAlaIleAlaLeuProSerAlaAlaValAlaMetAlaLeu AGCCGTGCCGTGCGCCTTCCCGTTCGCCGGCCTGGCGATCGCCATCGGCGGCCGTCGCCATGGCCCTC MetAlaLeuGlnValSerSerLeuPheAlaAlaPheValValValAlaIleGlnAlaLeuValThrGlyAlaLeu ATGGCGCTGCAGGTGAGCTCGCTCTTTGCCGCCTTTGTCGTCGCCATCCAGGCGCTTGTCACCGGCGCACTG ${ t HisGluAspGlyLeuGlyAspThrAlaAspGlyPheGlyGlyGlyArgAspArgGluAlaAlaLeuAlaIleMet}$ CACGAAGACGGGCTTGGCGACACGGCCGATGGCTTTGGCGGCGGTCGCGACCGCGAAGCGGCGCTTGCGATCATG LysAspSerArgIleGlyThrTyrAlaAlaValAlaLeuIleLeuSerPheGlyLeuArgValSerAlaPheAla AAGGACAGCCGCATCGGCACCTATGCGGCCGTCGCCCTCATCCTCCCTTCGGCCTGCGCGTCTCGGCGTTCGCC SerIleLeuProLeuPheSerProLeuGlyAlaAlaMetAlaIleLeuGlyAlaAlaCysLeuSerArgAlaAla TCGATCCTGCCGCTCTTTTCGCCGCTGGGCGCCCCCCATGGCGATCCTTGGCGCAGCGTGCCTCAGCCGCGCCCCC MetValTrpHisTrpSerSerLeuProProAlaArgSerSerGlyValAlaAlaSerAlaGlyGluProGluPro ATGGTCTGGCACTGGTCGTCGCCGCCGCGCGCAGCAGCGGCGTCGCGGCCTCGGCTGGCGAGCCGGAACCG AlaAlaThrArgPheAlaLeuAlaPheGlyLeuLeuValAlaMetLeuLeuPheTyrLeuAlaGlnValProAla GCGGCCACGCGCTTCGCGCTTCGGACTTCTTGTCGCAATGCTGCTCTTCTATCTCGCGCAGGTCCCGGCG LeuGlyValIleAlaAlaLeuValAlaPheLeuAlaThrValLysGlyPheAlaArgLeuAlaMetArgLysIle CTCGGCGTCATCGCGGCGCTCGCATTCCTTGCCACGGTCAAGGGCTTCGCTCGGCTGGCGATGCGCAAGATC GlyGlyGlnThrGlyAspThrIleGlyAlaThrGlnGlnLeuThrGluIleAlaValLeuGlyAlaLeuAlaLeu GGCGGACAAACGGGCGACACGATCGGGGGGGGCGACGCAACTGACCGAAATCGCCGTGCTCGGTGCCCTTGCGCTG ThrVal*** ACGGTTTGA

FIGURE 41.4

-

17.

PL. 110/15/

FIGURE 42

PL. 111/15/

				, 		
Sequence	Long	gueur = 1314	14 de	1 a 13144		
						-4
	10	20	. 30	40	50	60
GAGO	TCGAAG	GGGCTTCCGC	CCCGATCGCT	GGCGTTAGCC	GACGTTCGAC	GTGCGGATGA
CTCG	AGCTTC	CCCGAAGGCG	GGGCTAGCGA	CCGCAATCGG	CTGCAAGCTG	CACGCCTACT
	70	80	. 90	100	. 110	120
CGCC	GAGCGG	GCCGAAGGGC	GCGTCGACGA	CGAGGTTGCG	TACGCGCGAC	TGGCTGGACG
GCGG	CTCGCC	CGGCTTCCCG	CGCAGCTGCT	GCTCCAACGC	ATGCGCGCTG	ACCGACCTGC
	130	140	150	160	. 170	180
GAAC	CTTCGA	GTTCCAGGÇĢ	ATCTGAACGA	AATTGGGCTT	GCTGAAAATA	TACAGCATGG
CTT	GAAGCT	CAAGGTCCGC	TÄGACTTGCT	TTAACCCGAA	CGACTTTTAT	ATGTCGTACC
	190	200	210	220	230	240
ACAT	GAACCT	TGAGAGGCCG	GAGGCCTATC	CTCCGGGGGG	TGTTGCTATG	CCGCTGATAT
TGT	CTTGGA	ACTCTCCGGC	CTCCGGATAG.	GAGGCCCCCC	ACAACGATAC	GGCGACTATA
	250	260	270	280	290	300
AGGT		TOCAAAAAAT	TGAATGCCAA	ACTCGCCACG	CCATGTCGCA	TTCTGGCTAT
TCC	CACGCG	ACGTTTTTTA	ACTTACGGTT	TGAGCGGTGC	GGTACAGCGT	AAGACCGATA
	310	320	.330	340	350	360
CGGC	CGCGAC	ATTTTCGACA	AGCCTTGCGA	AAGCGCGAAA	CAATGCGTGA	AAGGGCTTTG
GCCC	GCGCTG	TAAAAGCTGT	ŢÇGGAACGCT	TTCGCGCTTT	GTTACGCACT	TTCCCGAAAC
	370	380	390	400	410	420
TCA	TTGCGG	CGAAATCGTG	TCGAAACAGA	CCTTTGCCGC	TGCCCGTTTC	AGTGTTACCG
AGTT	TAACGCC	GCTTTAGCAC	AGCTTTGTCT	GGAAACGGCG	ACGGGCAAAG	TCACAATGGC
	430	440	450	460	470	480
ATGO	CCGCAT	GACACGCAGG	ATCATGTTGC	AGGGAACCGG	CTCGGATGTC	GGAAAATCGG
TAC	CGCCGTA	CTGTGCGTCC	TAGTACAACG	TCCCTTGGCC	GAGCCTACAG	CCTTTTAGCC
	490	500	510	520	530	540
TAT	CGTGGC	GGGCTCTGC	CGGCTTGCCG	CCAATCAGGG	CCTGAAGGTC	CGGCCGTTCA
ATA	CCACCG	CCCCGAGACG	GCCGAACGGC	GGTTAGTCCC	GGACTTCCAG	GCCGGCAAGT
	550		570	580	590	600
AGC	GCAGAA	CATGTCGAAC	AACGCCGCCG	TTTCCGACGA	CGGCGGCGAG	ATCGGCCGCG
TCG	CGTCTT	GTACAGCTTG				TAGCCGGCGC
	610	620	630	640	650	660
CCCI	lateget	GCWGGCGCTG	واساحاساحاساخاتا	TUCCUSTLEST	GENTAL ALPARE	AACCCGGTGC
GCG	TACCGA	CGTCCGCGAC	ceececece	ACGGCAGCAG	CCACGTGTAC	TTGGGCCACG
	670		690	700	710	720
TCC	IGAAGCC	GCAGTCGGAC	GTGGGCAGCC	AGATCGTCGT	TCAGGGCAAG	GTCGCCGGGC
AGGI	ACTTCGG	CGTCAGCCTG	CACCCGTCGG	TCTAGCAGCA	AGTCCCGTTC	CAGCGGCCCG
	730		750	760	770	780
AGG	CAGGGG	GCGGGAATAT	CAGGCGCTCA	AGCCCAAGCT	GCTGGGCGCC	GTCATGGAGA
TCC	SGTCCCC	CGCCCTTATA	GTCCGCGAGT	TCGGGTTCGA	CGACCCGCGG	CAGTACCTCT
	790	800	810		830	840
GTT	ICGAACA	AATATCGGCC	GGTGCCGATC	TCGTGGTGGT	CGAAGGCGCC	GGCTCGCCGG
CAA	AGCTTGT	TTATAGCCGG	CCACGGCTAG	AGCACCACCA	GCTTCCGCGG	CCGAGCGGCC
	850				890	900
CCG	VAATCAA	CCTCAGGCCC	GGCGACATCG	CCAATATGGG	CTTTGCGACA	CGGGCCAATG
GGC:	ITTAGTT	GGAGTCCGGG	CCGCTGTAGC	GGTTATACCC	GAAACGCTGT	GCCCGGTTAC
	910	920	930	940	950	960

FIGURE 43

PL. 112/15/

			[14]		
TGCCGGTCGT ACGGCCAGCA	GCTGGTCGGC CGACCAGCCG	GACATCGACC CTGTAGCTGG	CCCCCCCA	GATCGCCTCG CTAGCGGAGC	CTGGTCGGCA GACCAGCCGT
970 CGCATGCGAT GCGTACGCTA	CCTGCCCGAG	990 GAAGACCGGC CTTCTGGCCG	1000 GCATGGTGAC CGTACCACTG	1010 CGGCTATCTC GCCGATAGAG	ATCAACAAGT
1030 TCCGCGGCGA	1040 CGTCACGCTG	£ ,	1060 GCATTGCTGC	1070	1080 TACACCGCCT
1090	1100	1110 CCGTGGCTGA	 1120	1130	1140
CCGGGACGAA	GCCGCAGCAC	GGCACCGACT	TCCGCCGCCG	TGCGGACGGC	CGCCTTCTAA
1150 CCGTCGTGCT GGCAGCACGA	1160 GGAGAAGCTG CCTCTTCGAC	ACGCGCGCGC TGCGCGCGCGC	1180 AGGGGCGGGC TCCCCGCCCG	1190 GCTGAAGGTT CGACTTCCAA	1200 GCCGTCCCGG CGGCAGGGCC
1210 TACTGTCGCG ATGACAGCGC	CATCGCCAAT	1230 TTCGACGACC AAGCTGCTGG	1240 TCGATCCGCT AGCTAGGCGA	CGCCGCCGAA	1260 CCGGAGATTG GGCCTCTAAC
1270 ATCTCGTCTT TAGAGCAGAA	CGTGCGGCCT	1290 GGCAGTCCCA CCGTCAGGGT	TTCCGGTCGA	CGCTGGCCTC	1320 GTCGTCATTC CAGCAGTAAG
1330 CCGGGTCGAA GGCCCAGCTT	ATCGACCATC	1350 GGCGACCTCA CCGCTGGAGT	1360 TCGATTTCCG AGCTAAAGGC	TECECARCE	1380 TGGGACCGTG
1390 ACCTCGAACG	1400 TCATGTGCGC	1410 CGGGGCGCC	1420 GGGTCATCGG	1430	1440
TGGAGCTTGC	AGTACACGCG	GCCCCGCCGG	CCCAGTAGCC	GTAGACGCCG	CCGATGGTCT
TGCTCGGCCG	GCGCGTCACC CGCGCAGTGG	GATCCGCTCG CTAGGCGAGC	GCATCGAGGG CGTAGCTCCC	CGGCGAACGT GCCGCTTGCA	GCGGTCGAGG CGCCAGCTCC
1510 GCCTCGGGCT CGGAGCCCGA	GCTCGAGGTC	1530 GAGACCGAGA CTCTGGCTCT	TGGCGCCGGA	AAAGACGGTG	CCCAACACCC
1570 GCGCCTGGTC CGCGGACCAG	GCTGGAGCAT	1590 GATGTGGTGC CTACACCACG	1600 TCGAAGGCTA AGCTTCCGAT	CGAAATCCAT	CTTCCCAACA
1630 CGCAAGGTGC		1650	1660	1.670	3.500
GCGTTCCACG	GGACTGTGGC	CGGCCGTCGG	TGCGCATCGA	CAATCGCGCC	GACGGGGGGG
GCGTTCCACG 1690 TTTCGGCCGA	1700 TGGCCGCGTG	GCCGCCAGCC 1710 ATGGGCACCT	TGCGCATCGA ACGCGTAGCT 1720 ACCTGCATGG	CAATCGCGCC GTTAGCGCGG 1730 GCTCTTCACC	GACGCGCCC CTGCCGCGGG 1740 AGCGACGCCT
1690 TTTCGGCCGA AAAGCCGGCT 1750 ATCGCGGCGC	1700 TGGCCGCGTG ACCGGCGCAC 1760 GCTGCTCAAG	CGGCCGTCGG GCCGGCAGCC 1710 ATGGGCACCT TACCCGTGGA 1770 AGTTTCGGCA	TGCGCATCGA ACGCGTAGCT 1720 ACCTGCATGG TGGACGTACC 1780 TCGAAGGCGG	CAATCGCGCC GTTAGCGCGG 1730 GCTCTTCACC CGAGAAGTGG 1790 CGCCAACAAC	GACGGCGCCC CTGCCGCGGG 1740 AGCGACGCCT TCGCTGCGGA 1800 TACCGCCAAT
1690 TTTCGGCCGA AAAGCCGGCT 1750 ATCGCGGCGC TAGCGCCGCG	1700 TGGCCGCGTG ACCGGCGCAC 1760 GCTGCTCAAG CGACGAGTTC	CGGCCGTCGG GCCGGCAGCC 1710 ATGGGCACCT TACCCGTGGA 1770 AGTTTCGGCA TCAAAGCCGT	TGCGCATCGA ACGCGTAGCT 1720 ACCTGCATGG TGGACGTACC 1780 TCGAAGGCGG AGCTTCCGCC	CAATCGCGCC GTTAGCGCGG 1730 GCTCTTCACC CGAGAAGTGG 1790 CGCCAACAAC GCGGTTGTTG	GACGGCGCCC CTGCCGCGGG 1740 AGCGACGCCT TCGCTGCGGA 1800 TACCGCCAAT ATGGCGGTTA
1690 TTTCGGCCGA AAAGCCGGCT 1750 ATCGCGGCGCG TAGCGCCGCG 1810 CGGTCGATGC	1700 TGGCCGCGCGCAC ACCGGCGCAC 1760 GCTGCTCAAG CGACGAGTTC 1820 GGCGCTCGAC CCGCGAGCTG	CGGCCGTCGG GCCGGCAGCC 1710 ATGGGCACCT TACCCGTGGA 1770 AGTTTCGGCA TCAAAGCCGT	TGCGCATCGA ACGCGTAGCT 1720 ACCTGCATGG TGGACGTACC 1780 TCGAAGGCGG AGCTTCCGCC 1840 ACGAACTGGA TGCTTGACCT	CAATCGCGCC GTTAGCGCGG 1730 GCTCTTCACC CGAGAAGTGG 1790 CGCCAACAAC GCGGTTGTTG 1850 GGCTGTGCTC CCGACACGAG	GACGGCGCCC CTGCCGCGGG 1740 AGCGACGCCT TCGCTGCGGA 1800 TACCGCCAAT ATGGCGGTTA 1860 GATCGTCGCT CTAGCAGCGA

Di	113	1	551	1
PL.	כנו		1 4 1	

	-	PL.	113 [[]]		
CCGACCTGCT	CAACGAGTCC	GTGATCCCTG	CGCCGTTGCC	AGTCGGTCGT	CCAGGCCATG
1930 GTCGGGCCCA CAGCCCGGGT	ACAGGAGCAA	CGAGCTTATC	1960 CGACGGAACT GCTGCCTTGA	1970 ACGCTGCGAC TGCGACGCTG	ATCGTGCTCC
1990 TCGCTTGCGG AGCGAACGCC	CTTCCCAGAC	2010 TTCCCGCGCG AAGGGCGCGC	2020 GCATCCAGGT CGTAGGTCCA	2030 TCATCAGGGC AGTAGTCCCG	2040 AATCCCCAGG TTAGGGGTCC
2050 CCGACGATCA GGCTGCTAGT	GGTCCGGCCA	GGCCGACTGC	CACAGATAGG	2090 CTGTCGCCAG GACAGCGGTC	ACCCGCGGCG
2110 ATGATGGCCA TACTACCGGT	CATTGGCGAA GTAACCGCTT	GGCATCGTTG	CGGGCCGAGA GCCCGGCTCT	2150 GAAATGCTGC CTTTACGACG	CCGCGTGAGC
2170 GTGCCGCTCG CACGGCGAGC	TGTGACGGTA	GGCGACGAGC	2200 AGATAGGCGC TCTATCCGCG	2210 AGAAGAGGTT TCTTCTCCAA	GACCACCAGC
2230 GCCCCAAGTC CGGGGTTCAG	CGGTCAGGGA	CAGGGCAAAG	2260 GGCTCTGGCG CCGAGACCGC	2270 GGACCGGATC CCTGGCCTAG	CATGAACTTC
2290 GCCCAGGCCG CGGGTCCGGC	TCCAAAGGAA	2310 GGCCAGCGCC CCGGTCGCGG	GGTACCAGTA	2330 GAATGAACGC CTTACTTGCG	CATCGCCATG
2350 CCGACCCGCG GGCTGGGCGC	CGCGGGTTCG	CGCCGTCCAG	2380 GCCAGAGCAA CGGTCTCGTT	2390 AGAAAATCAG TCTTTTAGTC	CATGTTGACG
2410 GAGGCGTCTT CTCCGCAGAA	CGAGGAAGTC	2430 GACGCTGTCG CTGCGACAGC	GCCATGAGGG	2450 ACACCGAGCC TGTGGCTCGG	2460 GATCGAAAGC CTAGCTTTCG
2470 GCGACAAGGA CGCTGTTCCT	GTTCGACCCC	2490 GAAATAGCCA CTTTATCGGT	AGGTTCAACA	2510 GGGAGACGAT CCCTCTGCTA	2520 GAGGACGACG CTCCTGCTGC
2530 CGGCGCAGGT GCCGCGTCCA	2540 CGGTATCCAC GCCATAGGTG	TCGAAAGGTT	CCCTTTCTGG	2570 CGAGATTCGC GCTCTAAGCG	CCTCGGCACT
2590 TTTTTTGGCG AAAAAACCGC	AGATTCGCCC	TCGGCACTTT	2620 GGCACAGGTG CCGTGTCCAC	TTAGCAGCAG	2640 TTTGCTATCC AAACGATAGG
2650 ATAGCACTAG TATCGTGATC	GTTTCGACAT	CGGTTCCGTT	CACACTGCCG	2690 TCGTGCCTGA AGCACGGACT	CCCCCGACAA
ATCGTCGCGT	GGCGCAACTC	GGCCGGGGAG	GCGTCGCATG	2750 CGTCGATTGA GCAGCTAACT	CTTTGGGCTG
2770 CCCGCTTCCT GGGCGAAGGA	AATCATCAGG	TGTTGGATGG	2800 TTCCCCCTTG AAGGGGGAAC	2810 TCGTGGCGAT AGCACCGCTA	CTGGGGGAAT
2830 AATTGGGAAT TTAACCCTTA	GTGACGGATG	2850 GACCCAAATC CTGGGTTTAG	GGGGATCCTT	ATCGCAGCCG	2880 ACCCCGCGAC TGGGGCGCTG

FIGURE 43.2

A 3 A 3

		· "',			
		.− PL	. 114/15/		
2890	2900	2910	้วถวก	2930	2040
TGTAGAACGG	TCAGGGTTCG	CCATCCCCAT	TOCTOCOCC	2930	2940 GTTGCATGGG
ACATOTTGCC	ACTCCCAACC	・このなりこれのこと	ACCACCCCCC	CIGICGGCCG	CAACGTACCC
	norcommec	GGINGCCCIN	ACCACOGCCC	GACAGCCGGC	CAACGTACCC
2950	2060	2970	2980	0000	
	ACCIPICCOCA	Z5/U	2980	2990	3000
CTTACCCCC	WGGI CGGGGW	TCAAGCCGGA	AAAGCCACTG	GCGTGGCATC	GTGATCAGCC
GIINGCCCCG	TCCAGCCCCT	AGTICGGCCT	TITCGGTGAC	CGCACCGTAG	CACTAGTCGG
2010	, 2000	***	9		
3010	3020	3030	3040	3050	3060
GGGTTTGGAC	GCCTCTTCTT	CTACGAATCG	TCCGCCTTTC	ACGATGTCCC	TCACAGCGCC
CCCAAACCTG	CGGAGAAGAA	GATGCTTAGC	AGGCGGAAAG	TGCTACAGGG	AGTGTCGCGG
		•	•	•	
3070	3080	3090	3100	3110	3120
CATGCGTCGG	AGACGACGCG	CARAGGTTCG	CTGTGGCACC	CCAAACACCC	CECENACETE
GTACGCAGCC	TCTGCTGCGC	GTTTCCAAGC	GACACCGTGG	CCTTTCTGCG	CCCCTTCCAC
•					OOCC11CCAC
3130	3140	3150	3160	3170	3180
AGGCGGGCCG	CTCGGGCCCT	GACATCGGAA	CCAACCCCAA	TARCCCCCAC	GCGATGTTCG
TCCGCCCGGC	GAGCCCGGGA	CLCLVCCCLA	GENACCCCAN	TUNGOCONG.	CCGATGITCG
	~.coooooa	OT OT UPOCCITY	GOVACGOCAN	ATTCCCGCTC	CGCTACAAGC
3190	3200	. 2210	2000		
	3200	3210	3220	3230	3240
GCCCGTGACG	CCGTGAGCCA	GGAGACCTGC	CATCCGGCAT	GGGCATTCÇG	CCCGAGGGGA
CGGGCACTGC	GGCACTCGGT	CCTCTGGACG	GTAGGCCGTA	CCCGTAAGGC	GGGCTCCCCT
•	**				
3250		3270	3280	3290	3300
CTTTTGTCTC	CAACGCCATC	ACGGAGGTTG	TTTTGGCTCG	CACAMCMINIM	C11C111CC
Gaaaacagag	GTTGCGGTAG	TGCCTCCAAC	AAAACCGAGC	GTCTACAAAA	GTTCTTCCCC
	•	•			0110110000
3310	3320	3330	3340	3350	3360
CCCGTGGCGC	GTCCGATGGC	TTTTGCCACC	GACGGCTGAT	TTGGGAATGT	TCACCCACCC
GGGCACCGCG	CAGGCTACCG	AAAACGGTGG	CTCCCCACTA	210000MIGI	TONGGCAGCC
			CIGCOGACIA	NUCCCITACA	ACICCGICGG
3370	3380	3300	3400	244.0	
	GTCTCAGCGC	CCCCCCCCCC	3400	3410	3420
TCCT2 CTCCT	CACACTOCOC	COCCCCCT	CIGGICCIIG	GCGGCGCCCG	TTCCGGCAAG
IGCINCICGI	CAGAGTCGCG	GCCCGCAC	GACCAGGAAC	CGCCGCGGGC	AAGGCCGTTC
2420	. 2440				
3430	3440	3450	. 3460	3470	3480
TCCAGCTTTT	CCGAGAGGCT	CGTCGAAGCG	TCCGGCTTCA	CCATGCATTA	TGTCGCCACG
AGGTCGAAAA	GGCTCTCCGA	GCAGCTTCGC	AGGCCGAAGT	GGTACGTAAT	ACAGCGGTGC
		· :			
3490	3500	3510	3520	3530	3540
GGCCGCGCCT	GGGACGACGA	AATGCGCGAG	CGCATCGACC	ATCACCGGAC	GCGCCGCGC
CCGGCGCGGA	CCCTGCTGCT	TTACGCGCTC	GCGTAGCTGG	TAGTGGCCTG	CCCCCCCC
					200000000
3550	3560	. 3570	3580	3590	3600
GAGGGCTGGA	CGACGCATGA	GGAGCCGCTC	GATCTCGTCG	GCATCCTCAG	かつころからころが
CTCCCGACCT	GCTGCGTACT	CCTCGGCGAG	CTAGAGCAGC	CCANCCACAC	WCCCWICCWI.
			OTHERIPCHEC	CGINGGMGIC	TGCGTAGCTA
3610	3620 ³	3630	3640	2650	0.000
	MUCTCCTCCTC	C200C2000C2	3040	3650	3660
GATCCCAGCC	WIGIGGICCI	CATCGACTGC	CIGACGCTAT	GGGTCACCAA	TCTCATGCTG
CTAGGGTCGG	INCHCCAGGA	CIMPLIGACE	GACTGCGATA	CCCAGTGGTT	AGAGTACGAC
2670	200				
3670	3680	3690	3700	3710	3720
GAAGAGCGCG	ACATGACGGC	GGAGTTCGCC	GCCCTTGTTG	CGTATCTGCC	CGAGGCGCGG
CTTCTCGCGC	TGTACTGCCG	CCTCAAGCGG	CGGGAACAAC	GCATAGACGG	GCTCCGCGCC
3730	3740	3750	3760	3770	3780
GCGCGCCTCG	TCTTTGTTTC	CAATGAGGTC	GGCCTCGGCA	TOCTOCOCA	CAACCCCAMC
CGCGCGGAGC	AGAAACAAAG	GTTACTCCAG	CCGGAGCCGT	ACCACCCCC	CHARCOCONTO
3790	3800	3810	3830	3830	2040
GCCCGCGAGT	TTCGCGACCA	TECCECCE	CHACACCACA	Accimentary.	3840
CGGGCGCTCA	AAGCGCTCCT	ACCCCCCCC	CARCINCINA	ACCULACOCA	CONTRACTOR
			-MOTOGICI.	AUCARCECCT	CITTAGGCGA

			100		
	3860	PL. 115/	(4)		
3850	3860	3870	3880	3890	3900
CTTCDDDTCD	TTGTCGCGGC AACAGCGCCG	CCGTTTGCCG	CTGAAAATGA	AGGGTTGATC	CATGACCACT
CIICAAAIGA	MANGEGEEG	GÉCANACOGE	GACTTTTACT	TCCCAACTAG	GTACTGGTGA
3910	3920	3930	3940	3950	3960
GCGAGAGCCA	ACCAGGGCAA	GATCCCGGCG	ACCGTCATCA	CCGGCTTCCT	2002000000
CGCTCTCGGT	TGGTCCCGTT	CTAGGGCCGC	TGGCAGTAGT	GGCCGAAGGA	92292929
		•			
3970	3980	3990	4000	4010	4020
AAGACGACGA	TGATCCGCAA	CCTGCTGCAG	AACGCCGACG	GCAAGCGCAT	CGGCCTGATC
TTCTGCTGCT	ACTAGGCGTT	GGACGACGTC	TTGCGGCTGC	CGTTCGCGTA	GCCGGACTAG
4030	4040	4050	40.00	4000	
	TCGGCGATCT	4050	4060	4070	4080
TAGTTGCTCA	AGCCGCTAGA	TOOCGICONC	CCCCATGICI	ACTOCCCCAC	CGGTGCCGAG
	1.000001/101	10000010010	CCGCINCNGN	ACTICCIONC	GCCACGGCTC
4090	4100	4110	4120	4130	4140
GCCTGCACCG	AGGACGACAT	CATCGAGCTC	ACCAATGGCT	GCATCTGCTG	CACCGTGGCT
CGGACGTGGC	TCCTGCTGTA	GTAGCTCGAG	TGGTTACCGA	CGTAGACGAC	GTGGCACCGA
	•	٠.	:		
4150		4170	4180	4190	4200
GACGATTTCA	TCCCGACCAT	GACGAAGCTG	CTCGAGCGTG	AAAACCGTCC	TGACCACATC
CTGCTAAAGT	AGGGCTGGTA	CTGCTTCGAC	GAGCTCGCAC	TTTTGGCAGG	ACTGGTGTAG
4210	4220	4230	4240	4050	
	CCTCGGGCCT	#23U	CACCCCCTCA	4250	4260
TAGTAGCTTT	GGAGCCCGGA	ACCCCACCCC	GTCGGCGACT	ACCCCCCAAA	CAACIGGCCG
			010000000		GIIGNCCGGC
4270	4280	4290	4300	4310	4320
GATATCCGCA	GCGAAGTGAC	CGTCGATGGC	GTCGTCACCG	TGGTCGACAG	CGCCGCCGTT
CTATAGGCGT	CGCTTCACTG	GCAGCTACCG	CAGCAGTGGC	ACCAGCTGTC	GCGGCGGCAA
4000		A Car	M .		
4330	4340	4350	4360	· 4370	4380
CCCCC CCC	GCTTTGCCGA	CGACCACGAC	AAGGTCGATG	CGCTGCGCGT	CGAGGACGAC
CGGCGACCGG	CGAAACGGCT	CGACCACGAC GCTGGTGCTG	AAGGTCGATG TTCCAGCTAC	GCGACGCGCA	CGAGGACGAC GCTCCTGCTG
CGGCGACCGG	CGAAACGGCT	GCTGGTGCTG	TTCCAGCTAC	GCGACGCGCA	GCTCCTGCTG
CGGCGACCGG 4390 AATCTCGATC	CGAAACGGCT 4400 ACGAAAGCCC	GCTGGTGCTG 4410 GATCGAGGAG	TTCCAGCTAC 4420 CTGTTCGAGG	GCGACGCGCA 4430 ATCAACTGAC	GCTCCTGCTG 4440 GGCTGCCGAT
CGGCGACCGG 4390 AATCTCGATC	CGAAACGGCT 4400 ACGAAAGCCC	GCTGGTGCTG 4410 GATCGAGGAG	TTCCAGCTAC 4420 CTGTTCGAGG	GCGACGCGCA 4430 ATCAACTGAC	GCTCCTGCTG 4440 GGCTGCCGAT
4390 AATCTCGATC TTAGAGCTAG	4400 ACGAAAGCCC TGCTTTCGGG	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA
4390 AATCTCGATC TTAGAGCTAG	4400 ACGAAAGCCC TGCTTTCGGG 4460	4410 GATCGAGGAG CTAGCTCCTC	4420 CTGTTCGAGG GACAAGCTCC	4430 ATCAACTGAC TAGTTGACTG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC	4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC	GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC	4400 ACGAAAGCCC TGCTTTCGGG 4460	GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG	4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGCTG
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG	4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGCTG
4390 AATCTCGATC TTAGAGCTAG CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT	4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGCTG 4560 CGGCGAAGTC
4390 AATCTCGATC TTAGAGCTAG CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT	4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCCACCAG GCGCGTGGTC	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 ECGCAAGCCC GGCGTTCGGG	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCACC TGCTACTAGC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGCTG
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA	4400 ACGARAGCCC TGCTTTCGGG 4460 TCARCARGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG	4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC ACGATGATCG TGCTACTAGC	4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG AGGCGAAAAA TCCGCTTTTT	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGCTG 4560 CGGCGAAGTC GCCGCTTCAG
4390 AATCTCGATC TTAGAGCTAG CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA	4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGCTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG
4390 AATCTCGATC TTAGAGCTAG CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA	4400 ACGARAGCCC TGCTTTCGGG 4460 TCARCARGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGCTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA CGGCGACGGT	4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG	4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT	4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGCTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTGGCGTTC
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA CGGCGACGGT	4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 ECGCAAGCCC GGCGTTCGGG CCTCGGTGTC GGAGCCACAG	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTGGCGTTC
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA CGGCGACGGT TCGCATCACG	CGAAACGCT 4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG CCTCGGTGTC GGAGCCACAG 4650 CGAGGCAGGT	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTCGCGTTC
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA CGGCGACGGT TCGCATCACG	4400 ACGAAAGCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG CCTCGGTGTC GGAGCCACAG 4650 CGAGGCAGGT GCTCCGTCCA	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTGGCGTTC 4680 GTTCGACAGC CAAGCTGTCG
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA GCCGCTGCCA CGGCGACGGT TCGCATCACG AGCGTACACG AGCGTACACG AGCGTACACG AGCGTACACG AGCGTACACG AGCGTAGTGC	4400 ACGAAAGCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG 4650 CGAGCCAGGT GCTCCGTCCA	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT 4730	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTGGCGTTC 4680 GTTCGACAGC CAAGCTGTCG
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 EAGGTGTCTT CTCCACAGAA CGGCGACGGT CGGCGACGGT A630 TCGCATCACG AGCGTAGTCG AGGTTAGCGACGT TCGCATCACG	CGAAACGCT 4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT 4700 AGCTCGGTTC	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG 4650 CGAGGCAGGT GCTCCGTCCA	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC 4720	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT 4730 TCATCGATCG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTGGCGTTC 4680 GTTCGACAGC CAAGCTGTCG 4740
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 EAGGTGTCTT CTCCACAGAA CGGCGACGGT CGGCGACGGT A630 TCGCATCACG AGCGTAGTCG AGGTTAGCGACGT TCGCATCACG	4400 ACGAAAGCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG 4650 CGAGGCAGGT GCTCCGTCCA	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC 4720	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT 4730 TCATCGATCG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTGGCGTTC 4680 GTTCGACAGC CAAGCTGTCG 4740
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 EAGGTGTCTT CTCCACAGAA CGGCGACGGT CGGCGACGGT A630 TCGCATCACG AGCGTAGTCG AGCGTAGTCG AGCGTAGTCG AAGCAGCAGC	4400 ACGAAACGCT 4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT 4700 AGCTCGGTTC TCGAGCCAAG	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG 4650 CGAGGCAGGT GCTCCGTCCA 4710 GATCGCCGAT	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC 4720 CCGGCCGCCT	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT 4730 TCATCGATCG AGTAGCTAGCC	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTCGACAGC CAAGCTGTCG 4740 CCTGAAGGGC GGACTTCCCG
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA CGGCGACGGT TCGCATCACG AGCGTAGTCACG AGCGTAGTCACG AGCGTAGTCACG AGCGTAGTCG AGGAGCAGCGC 4690 TTCGTCGTCGTCG AAGCAGCAGC	CGAAACGCT 4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT 4700 AGCTCGGTTC TCGAGCCAAG	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG 4650 CGAGGCAGGT GCTCCGTCCA 4710 GATCGCCGAT CTAGCGGCTA	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC 4720 CCGGCCGCCT GGCCGCCGCAA	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT 4730 TCATCGATCG AGTAGCTAGC	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG CAACCGCAAG GTTCGACAGC CAAGCTGTCG 4680 GTTCGACAGC CAAGCTGTCG 4740 CCTGAAGGGC GGACTTCCCG
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA CGGCGACGGT TCGCATCACG AGCGTAGTGC AGCGTAGTGC AAGCAGCAGC	CGAAACGCT 4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT 4700 AGCTCGGTTC TCGAGCCAAG	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG 4650 CGAGGCAGGT GCTCCGTCCA 4710 GATCGCCGAT CTAGCCGCTA	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCAG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC 4720 CCGGCCGCCT GGCCGCCGCAAA AAGGGTTTTG	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT 4730 TCATCGATCG AGTAGCTAGC	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG CAACCGCAAG GTTCGACAGC CAAGCTGTCG 4740 CCTGAAGGGC GGACTTCCCG 4800
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA CGGCGACGGT TCGCATCACG AGCGTAGTGC AGCGTAGTGC AAGCAGCAGC	CGAAACGCT 4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT 4700 AGCTCGGTTC TCGAGCCAAG	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG 4650 CGAGGCAGGT GCTCCGTCCA 4710 GATCGCCGAT CTAGCCGCTA	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCAG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC 4720 CCGGCCGCCT GGCCGCCGCAAA AAGGGTTTTG	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT 4730 TCATCGATCG AGTAGCTAGC	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG CAACCGCAAG GTTCGACAGC CAAGCTGTCG 4740 CCTGAAGGGC GGACTTCCCG 4800
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA CGGCGACGGT TCGCATCACG AGCGTAGTGC AAGCAGCAGC AAGCAGCAGC CTCATCACGC CTCATCACGC CTCATCACGC CTCGCATCACGC CATTCACGCGC CATTAGCGCGC	4400 ACGAAACGCT 4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT TCGAGCCAAG 4760 AGCACGACGT TCGTGCTGCA	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG 4650 CGAGCCAGGT GCTCCGTCCA 4710 GATCGCCGAT CTAGCCGCTA 4770 TCTGCGCGAG AGACGCGGAG	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC 4720 CCGGCCGCCT GGCCGCCGCT A780 AAGGGTTTTG TTCCCAAAAC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT TCATCGATCGC TCATCGATCG AGTAGCTAGC AGTAGCTAGC GTCTGCACGG GTCTGCACGG GTCTGCACGG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTGGCGTTC 4680 GTTCGACAGC CAAGCTGTCG 4740 CCTGAAGGGC GGACTTCCCG 4800 CGGCAAGCCG GCCGTTCGGC GCCGTTCGGC
4390 AATCTCGATC TTAGAGCTAG 4450 CTCATCGTTC GAGTAGCAAG 4510 GAGGTGTCTT CTCCACAGAA 4570 GCCGCTGCCA CGGCGACGGT TCGCATCACG AGCGTAGTGC AGCGTAGTGC AAGCAGCAGC	4400 ACGAAACGCT 4400 ACGAAAGCCC TGCTTTCGGG 4460 TCAACAAGAC AGTTGTTCTG 4520 CGCGCACCAG GCGCGTGGTC 4580 TCCTGCTTGG AGGACGAACC 4640 AGATGGAGCA TCTACCTCGT TCGAGCCAAG 4760 AGCACGACGT TCGTGCTGCA	GCTGGTGCTG 4410 GATCGAGGAG CTAGCTCCTC 4470 CGATCTGATC GCTAGACTAG 4530 CCGCAAGCCC GGCGTTCGGG 4590 CCTCGGTGTC GGAGCCACAG 4650 CGAGGCAGGT GCTCCGTCCA 4710 GATCGCCGAT CTAGCCGCTA 4770 TCTGCGCCTC AGACGCGGAG	TTCCAGCTAC 4420 CTGTTCGAGG GACAAGCTCC 4480 GATGCCTCCG CTACGGAGGC 4540 ACGATGATCG TGCTACTAGC 4600 GGCACGGAAA CCGTGCCTTT 4660 GAGGAGCACG CTCCTCGTGC 4720 CCGGCCGCCT GGCCGGCGAAA AAGGGTTTTG TTCCCAAAAC	GCGACGCGCA 4430 ATCAACTGAC TAGTTGACTG 4490 GCCTCAAGGC CGGAGTTCCG 4550 AGGCGAAAAA TCCGCTTTTT 4610 GCGATATCGC CGCTATAGCG ATCACGACGA TAGTGCTGCT TCATCGATCG AGTAGCTAGC AGTAGCTAGC GCGACGACGA TCATCGATCG TCATCGATCG AGTAGCTAGC GTCTGCACGG	GCTCCTGCTG 4440 GGCTGCCGAT CCGACGGCTA 4500 CGTGCGCGAC GCACGCGTG 4560 CGGCGAAGTC GCCGCTTCAG 4620 CAACCGCAAG GTTGGCGTTC 4680 GTTCGACAGC CAAGCTGTCG 4740 CCTGAAGGGC GGACTTCCCG 4800 CGGCAAGCCG GCCGTTCGGC GCCGTTCGGC

PL. 116/151

		PL. 1	16 / 1,5)		
ATGCGCCTCC TACGCGGAGG	TGATCCAGGC ACTAGGTCCG	GGTCGGCGCC CCAGECGCGG	CGCATCGACC	AATATTACGA TTATAATGCT	CCGCGCCTGG
4870 GGCGCTGGCG	AAAAGCGCGG	TACGCGCCTC	GTCGTCATCG	CCCTCCACCA	Chrycheche
		ATGCGCGGAG		CGGACGTGCT	GTACCTGCTC
GCGGCGGTGC	GCGCCGCGAT	4950 CACCGCGCTC	CTCTACATCC	4970	4980
CGCCGCCACG	CGCGGCGCTA	GTGGCGCGAG	CACATCTAGC	AAGAAACTTA	CTTTACTAGA
4990 AACGCATTGA		5010 TTCCGGATGG	5020	5030	5040
TIGCGTAACT	TTACTACGTC	AAGGCCTACC	TCTTGCGAAA	ATCGCAAAAG	CAAGCCTTAA
5050 GCCCCAACGG	5060 ACAAGACGAA	5070 TGCATCTGCT	5080	5090	5100
CGGGGTTGCC	TGTTCTGCTT	ACGTAGACGA	AGAGCGGGTC	TTTCCTTGCT	AGCGGCTGCC
5110 CAACGAGGCG	5120 ATCGACCTTG	5130 GGCAAACGCC	5140 GCCCATATC	5150	5160
GITGCTCCGC	TAGCTGGAAC	CCGTTTGCGG	CCGGCTATAG	GAAAAGGATA	GCCGGCGGCT
5170	5180	5190 CCGCGGCTCA	5200	5210	5220
GTGGCTCGAG	AGGAGCTAGC	GGCGCCGAGT	GCCGGCTGCG	CTGCCTCCGA	ACTCGGACGC
5230	5240 CTGATGACCC	5250 TGATGCACCC	5260	5270	5280
GTAGCGGTCG	GACTACTCGG	ACTACGTGGG	CTACAGCCAG	CTGTGAATGC	AGCTCGCGTG
5290	5300	5310	5320	5330	5340
CCGCGCAGTG	CGGTTCGACT	TEGTEGTEEG AGCAGCAGGE	CGGCGAGCCA	CCGCGGTCGA	ATTTCCGTTA . TAAAGGCAAT
5350	5360°	5370	5380	5390	5400
AGACGACCTT	CGGGACGTAC	CEGCTECCET	GTGGGTAGCA	AAGCTCTAGC	GCCAAGACGG
5410 GGGTGACGAC	5420 AAGCCGGATC	5430 CGGGGCTGGA	5440	5450	5460
CCCACTGCTG	TTCGGCCTAG	GCCCGACCT	CGGAAAGAGG	TGGCAGCGTC	GGCTGCTGGC
5470 CCAGCGCCTT	5480 TGGGCTTACT	5490 TCACCGAAGG	5500	5510	5520
GGTCGCGGAA	ACCCGAATGA	AGTGGCTTCC	GCCGAGCCTG	TTACGGCCCG	ACAAAGAGCT
	SCACTICATE A	5550 CAGGTGCGGA	5560	5570	5580
GATACGCCGG	CGTGACCAGT	GTCCACGCCT	CTTEGGCGTC	GGCCGTTTCG	GGGACAACTT
5590	5600	5610 GTGCTGGTGT	5620	5630	5640
CCGGCCGTAG	ACCACCGGCC	CACGACCACA	CTAGCCGCAG	TCGCTTACCG	TCAGGGAACA
5650	5660 ATGGTAGGGA	5670 GGCAGCCA	5680	5690	5700
AGICCCIGCC	TACCATCGCT	3.8	GCTTGGGGGC	acggtcggga Tgccagccct	TCTGCTTTTA AGACGAAAAT
5710	5720°	5730	5740	5750	5760
CCGCGCGCGAG	CACGICICAC	Cecicierec	CGGACACCTC	GCGCTGATCG CGCGACTAGC	ATGCGCTGGA TACGCGACCT
5770 GGCTGAAGGT	5780 GTGCGGGCAC	5790 TGCCGGTGTT	5800 TGTCTCAAGC	5810 CTCAAGGATG	5820 CCGTTTCCGT

CCGACTTCCA	CACGCCCGTG	PL. 1 ACGGCCACAA	17/11 ACAGAGTTCG	GAGTTCCTAC	GGCAAAGGCA
5830 CGGCACGCTG	CAGGCGATTT	5850 TTTCCGAGGC	CCCACCCGAC	GTCGTCATCA	5880 ACGCCACTGG
5890	5900	5910	5920	CACCACTACT 5930	E040
GAAACGCCAG	AGCAGCGGGC	CACGGCTGGC	AGTCGGCTGC	GTGCTGGAAT CACGACCTTA	CGACCGGTGC GCTGGCCACG
5950 GCCGGTGCTG CGGCCACGAC	CAGGTGATTT	5970 TCTCCGGCTC AGAGGCCGAG	GTCGCGGGC	5990 CAATGGGAAA GTTACCCTTT	CCTCCCCCC
6010 GGGGCTGATG CCCCGACTAC	6020 GCGCGCGACC CGCGCGCTGG	TCGCCATGAA	6040 CGTGGCACTC GCACCGTGAG	6050 CCCGAAGTCG GGGCTTCAGC	6060 ATGGCCGCAT TACCGGCGTA
6070 CCTTGCGCGC GGAACGCGCG	6080 GCCGTCTCCT CGGCAGAGGA	6090 TCAAGGCGGC AGTTCCGCCG	GTCGATCTAT	6110 GACGCCAAGG CTGCGGTTCC	6120 TGGAGGCCAA ACCTCCGGTT
6130	6140 CATGAGCCGC	6150	6160 GGTGCGCTTT	6170 GCCGCTGATC CGGCGACTAG	6180
6190 CTGGGCGAAC	6200 GTGCGCCGGG	6210 CAGAGCCCGC	6220 CGAGCGCCGT	6230	6240 TCATGGCCAA
6250	6260	GTCTCGGGCG	GCTCGCGGCA 6280	TAACGGTAGC	AGTACCGGTT
GATAGGCTTG	GCGCTGCCAG	GCCTCGGCAA CGGAGCCGTT	CGGTGTCGGG	CTCGACACGC GAGCTGTGCG	CCCCCCCO
6310 CGTCGAGGTG GCAGCTCCAC	6320 CTTAGCGCCA GAATCGCGGT	6330 TGGCGCGGGA ACCGCGCCCT	6340 AGGCTATGCG TCCGATACGC	6350 GTCGGTGAGG CAGCCACTCC	TTCCCCCC
6370 TGGCGACGCG ACCGCTGCGC	6380 CTGATCCGCT GACTAGGCGA	6390 TTCTGATGGC AAGACTACCG	CCCCCCCACC	6410 AATGCGGCGA TTACGCCGCT	6420 GCCATGACCG CGGTACTGGC
6430 TGAAATCCGC	6440 GAGCGTATTT	6450 CGCTGAACGA	6460 TTACAAAACG	6470	6480 CCCTTCC633
6490	6500	6510	6520	AAGAAGCTAA 6530	6540
TGTCTATTTC	CTACTTCAAC	GGCCAGCGAC	CECGCACGGC	GAGGCCGATC CTCCGGCTAG	CCTTTTTCCT GGAAAAAGGA
6550 CGATGGCGCC GCTACCGCGG	TTCGCGCTGC	CGCTCGCCCG	6580 CTTCGGCGAG GAAGCCGCTC	6590 GTGATCGTCG CACTAGCAGC	CCATCCAACC
6610 GGCGCGCGC CCGCGCGCGC	6620 TACAACATCG ATGTTGTAGC	ATCCGAAGGA	6640 AAGCTACCAT TTCGATGGTA	6650 TCCCCGGACC AGGGGCCTGG	TOTAL
6670 GCATGGCTAT CGTACCGATA	6680 CTCGCCTTCT GAGCGGAAGA	ACGCCTTCCT	GCGCCAGCAG	6710 TTCGGAGCGC AAGCCTCGCG	AGGCGATCGT
6730 CCACATGGGC GGTGTACCCG	AAGCACGGCA	ATCTCGAATG	GCTGCCGGC	6770 AAGGCGCTGG TTCCGCGACC	6780 CGCTGTCGGA GCGACAGCCT

PL.,118 //5/

			,		
TCATCGTCAA	ATCTATCCCT	GCTGCCGCAC	TCTTCGGGCC	6800 CCCGAAGCGA GGGCTTCGCT	AACCTGCTAT
TCGACCACCT	GCCGTCATCA	6880 CCGCACCAGC GGCGTGGTCG	AGGCCAAGCG	6860 GAAGGTACGC CTTCCATGCG	6850 CGATCCGGGC GCTAGGCCCG
AAGCGCTCGT	AAGGATCTGG	CGGCCCGCTC	6930 CCGAATCCTA GGCTTAGGAT	6920 TTGACGCGCG AACTGCGCGC	6910 GACCCCGCCC CTGGGGCGGG
7020 TCAGCCGCCA AGTCGGCGGT	CTCAGGCTGC	7000 TCCGCGCCGC AGGCGCGGCG	CCGGCGGTGA	6980 TACGACGCCG ATGCTGCGGC	6970 CGACGAATAT GCTGCTTATA
7080 ACAGGGGCGA TGTCCCCGCT	7070 GCAGGCATCG CGTCCGTAGC	7060 CGACAGCGAC GCTGTCGCTG	7050 ACATCGGCCT TGTAGCCGGA	7040 CTCGTGCGCG GAGCACGCGC	7030 GATCCTCGAT CTAGGAGCTA
AGGAAATGCA	TGCGACCTCA	CGCCTATCTC	7110 AAAAGCTCGA TTTTCGAGCT	7100 AAGGCGCTGG TTCCGCGACC	7090 CAGCGACGAC GTCGCTGCTG
TCACCCACCT	7190 GGGCGGTTGT CCCGCCAACA	TGCGCCGGAA	7170 TCTTCGGCGT AGAAGCCGCA	7160 GGCCTGCACA CCGGACGTGT	7150 GATCCGCGAC CTAGGCGCTG
AGAGCCTGCA	7250 GGCGGCGACC CCGCCGCTGG	TCTCGGCGAG	7230 TGCCCCGAGG ACGGGGCTCC	7220 CTGGCGCGCG GACCGCGCGC	7210 CACCGTAGCG GTGGCATCGC
7320 CGGCGGGGG GCCGCCCCC	7310 ATTCCCACCT TAAGGGTGGA	TGGGTTTGCT	7290 CGGGGCTGCG GCCCCGACGC	7280 GCAGCGGATG CGTCGCCTAC	7270 GCGGGCGATC CGCCCGCTAG
CCGACACCTG	TGCGTCATGT	7360 CCCGCTCGAC GGGCGAGCTG	AACCCTTCGA	7340 CGCGACGCCC GCGCTGCGGG	7330 CAACCCCGCA GTTGGGGCGT
GCACCGCCGG	GCCCCCTGGC	CCTCTCGGAC	TCCTCGCTGA	7400 AAACCGTCCA TTTGGCAGGT	7390 GACAGGCCCG CTGTCCGGGC
AACTICCCTTTC	CTCTCCCCTC	7480 CGCAAATCTC GCGTTTAGAG	AGTTGCTTGC	7460 GAGCGCATCG CTCGCGTAGC	7450 CGATACGGTC GCTATGCCAG
7560 GCCTGAAGCC CGGACTTCGG	ATCGAAACGC	7540 GCTCGGCGAA CGAGCCGCTT	CCCGCGCCGT	TGGGCCAACA	7510 CCCGGACCAC GGGCCTGGTG
TCAGCGGCCG	CTCACCGGTC	GACCGGCTTC	CEGCCGAGAT	7580 AACTCGGGTG TTGAGCCCAC	7570 GTCGATTTCA CAGCTAAAGT
7680 TGTTGCCGAC ACAACGGCTG	CGGCCGGATG	GACGCGCGC	CEGGCGCGCC	7640 CCCGGTCCAT GGGCCAGGTA	7630 CTTCGTCGCC GAAGCAGCGG
CTTACCACCT	7730 ACGCCGGCGG	CCCCGTCCCG	TCGACAGCCG	TTCTACTCGG	7690 GGGGCGCAAT CCCCGCGTTA

PL.	119	151
		, ,

7750	•	PL.	112/1/		
	7760	7770	. 7780	7790	. 7800
TGGCAAGAAA	TCGGCCGAGC	TTCTGATCCG	CCGCTACCTG	CAGGACCATG	GCGAATGGCC
ACCGTTCTTT	AGCCGGCTCG	AAGACTAGGC	GGCGATGGAC	GTCCTGGTAC	CGCTTACCGG
7810	· 7820	7830	7840	7850	7860
GTCCTCCTTT	GGCCTGACCG	CCTGGGGCAC	GGCGAACATG	CCCACCCCCC	GCGACGACAT
CAGGAGGAAA	CCGGACTGGC	GGACCCCGTG	CCGCTTGTAC	GCGTGGCCGC	CCCTCCTCTA
	•				
7870	7880	7890	7900	7910	7920
CGCCCAGGCC	CTGGCGCTGA	TCGGCGCCAA	GCCCACCTGG	GACATGGTCT	CTCCCCCCCT
GCGGGTCCGG	GACCGCGACT	AGCCGCGGTT	CGGGTGGACC	CTGTACCAGA	Cyccccccci
		ें कृष्टि के कि	,	01011104141	and code code
7930	7940	7950	7960	7970	7980
GATGGGCTAC	GAGATCGTGC	CGCTCGCAGT	רכזירפפררפר	CCACCCCTCC	ACCTCA CCTT
CTACCCGATG	CTCTAGCACG	GCGAGCGTCA	GGAGCCGGCG	CCTCCCCACC	TECACTECAA
•				GG1 GCGCNGC	16CACIGGAA
7990	8000	8010	8020	8030	8040
GCGCATTTCC	GGCTTCTTCC	GCGATGCCTT	CCCGGACCAG	ATCCCCCTCT	TOTAL
CGCGTAAAGG	CCGAAGAAGG	CGCTACGGAA	GGGCCTGGTC	TAGCGCGCICI	ACCTETTOCC
				11100000101	N00101100G
8050	8060	. ' 8070	8080	8090	8100
GATCCGCGCC	GTCGCGCTGG	AGGAAGACGA	TGCCGACAAC	ATCATCCCCC	CACCCATCCC
CTAGGCGCGG	CAGCGCGACC	TCCTTCTGCT	ACGGETGTTG	TACTAGCGGC	GTGCGTACGC
		- 1		200200000	GIGCGIACGC
8110	8120	8130	8140	8150	8160
GGCGGAAAGC	CGGCGGCTGG	AGGCCGAAGG	CGTGGAAGCC	GCCCFGCCCC	CCCCTCCCC
CCGCCTTTCG	GCCGCCGACC	TCCGGCTTCC	GCACCTTCGG	CCCCTCCCC	CCCCTCCCCC
			Juli-12003	000020000	GCGCAGCGCG
8170	8180	<i>p</i> 8190	8200	8210	8220
CTCCTACCGC	GTCTTTGGCG	CAAAGCCCGG	TGCCTATGGC	GCCGCCCTGC	ACCCCCTCAT
CICCIMCCOC	CAGAAACCCC	CHITCECCC	2000277	0000000100	WOOGGGT GET
GUCCUIGCG			AUGATAUT	Clad Talach Tra	
GAGGATGGCG	α.ω <i>.</i> ω.ουογ	9111099900	ACGGATACCG	CGGCGGGACG	TCCGCGACTA
8230		٠.			
8230	8240	· 8250	8260	8270	8280
8230 CGACGAGAAG	8240 GGCTGGGAAA	8250 CCAAAGCAGA	8260 TCTCGCCGAG	8270 GCCTATCTTA	8280 CCTGGGGCGC
8230 CGACGAGAAG	8240	8250 CCAAAGCAGA	8260 TCTCGCCGAG	8270 GCCTATCTTA	8280 CCTGGGGCGC
8230 CGACGAGAAG	8240 GGCTGGGAAA	8250 CCAAAGCAGA GGTTTCGTCT	8260 TCTCGCCGAG AGAGCGGCTC	8270 GCCTATCTTA CGGATAGAAT	8280 CCTGGGGCGC GGACCCCGCG
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG	8280 CCTGGGGCGC GGACCCCGCG 8340
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG	8280 CCTGGGGCGC GGACCCCGCG 8340
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG	8280 CCTGGGGCGC GGACCCCGCG 8340
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC CAGGCCGCCCCC 8360 GAGGCGGTGG CTCCGCCACC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC 8360 GAGGCGGTGG CTCCGCCACC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 6350 GCGCACGATA CGCGTGCTAT 8410 CGACGACTAC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC CTCCGCCACC 8420 TACCAGTTCG	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 6350 GCGCACGATA CGCGTGCTAT 8410 CGACGACTAC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC CTCCGCCACC 8420 TACCAGTTCG	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 6350 GCGCACGATA CGCGTGCTAT 8410 CGACGACTAC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC CTCCGCCACC 8420 TACCAGTTCG ATGGTCAAGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG	8270 GCCTATCITA CGGATAGART 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC CTCCGCCACC 8420 TACCAGTTCG ATGGTCAAGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG	8270 GCCTATCITA CGGATAGART 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC 8360 GAGGCGGTGG CTCCGCCACC TACCAGTTCG ATGGTCAAGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG	8270 GCCTATCITA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC 8360 GAGGCGGTGG CTCCGCCACC TACCAGTTCG ATGGTCAAGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG	8270 GCCTATCITA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG GGCAGGCCGC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC 8360 GAGGCGGTGG CTCCGCCACC TACCAGTTCG ATGGTCAAGC 8480 ATCTACCACA TAGATGGTGT	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG	8260 TCTCGCCGAG AGAGCGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG CCGTCCGCGAA GGCAGGCCTT	8270 GCCTATCITA CGGATAGAAT 8330 GATCITITCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG 8510 AAGCCTGTGA TTCGGACACT	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT 8520 TCCGGTCGCT AGGCCAGCGA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG 6470 CCGTCCGGCG GGCAGGCCGC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC 8360 GAGGCGGTGG CTCCGCCACC 8420 TACCAGTTCG ATGGTCAAGC 8480 ATCTACCACA TAGATGGTGT	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG	8260 TCTCGCCGAG AGAGCGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG CCGTCCGGAA GGCAGGCCTT	8270 GCCTATCITA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG AAGCCTGTGA TTCGGACACT	8280 CCTGGGGCGC GGACCCGCG 8340 AGGAGCGCCT TCCTCGCGGA AGGACCTGTC ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT AGCCGCCAGT AGGCCAGCGA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG GGCAGGCCGC 8530 CGAAGAAGAG	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC GAGGCGGTGG CTCCGCCACC TACCAGTTCG ATGGTCAAGC ATCTACCACA TAGATGGTGT TAGATGGTGT TAGATGGTGT ATCGCCCGCG	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG 8550 TGGTCCGGGC	8260 TCTCGCCGAG AGAGCGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG CCGTCCGGAA GGCAGGCCTT	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG AAGCCTGTGA TTCGGACACT	8280 CCTGGGGCGC GGACCCGCG 8340 AGGAGCGCCT TCCTCGCGGA AGGACCTGTC ACGAGCTGTC AGCCGCCAGT AGCCGCCAGT AGGCCGCCAGT AGGCCAGCGA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG GGCAGGCCGC 8530 CGAAGAAGAG	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC GAGGCGGTGG CTCCGCCACC TACCAGTTCG ATGGTCAAGC ATCTACCACA TAGATGGTGT TAGATGGTGT TAGATGGTGT ATCGCCCGCG	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG 8550 TGGTCCGGGC	8260 TCTCGCCGAG AGAGCGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG CCGTCCGGAA GGCAGGCCTT	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG AAGCCTGTGA TTCGGACACT	8280 CCTGGGGCGC GGACCCGCG 8340 AGGAGCGCCT TCCTCGCGGA AGGACCTGTC ACGAGCTGTC AGCCGCCAGT AGCCGCCAGT AGGCCGCCAGT AGGCCAGCGA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG CCGTCCGGCG GGCAGGCCGC 8530 CGAAGAAGAAGAG GCTTCTTCTC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCGC CCGCGCCGC 8360 GAGGCGGTGG CTCCGCCACC 8420 TACCAGTTCG ATGGTCAAGC ATCGACCACA TAGATGGTGT 8540 ATCTACCACA TAGATGGTGT TAGCCGCCGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG 8550 TGGTCCGGGC ACCAGGCCCG	8260 TCTCGCCGAG AGAGCGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG 8500 CCGTCCGGAA GGCAGGCCTT 8560 CCGCGCGCAGCGC	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG 8510 AAGCCTGTGA TTCGGACACT 7TCGGACACT TTAGGGTTCA	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT 8520 TCCGGTCGCT AGGCCAGCGA 8580 GGATCGATGC CCTAGCTACC
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG GGCAGGCCGC 8530 CGAAGAAGAG GCTTCTTCTC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGCGCG CCGCGGCCGC CCGCGCCGCCGC 8360 GAGGCGGTGG CTCCGCCACC 8420 TACCAGTTCG ATGGTCAAGC ATCTACCACA TAGATGGTGT ATCGCCGCGCGC TAGCCGGCGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG TGCTGGTAAG TGCTCGGCCGC ACCAGGCCCG	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG 8500 CCGTCCGGAA GGCAGGCCTT CCGCGTCGTC GGCGCAGCAG	8270 GCCTATCITA CGGATAGART 8330 GATCTITTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG AAGCCTGTGA TTCGGACACT TTAGGGTTCA	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA AGGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT 8520 TCCGGTCGCT AGGCCAGCT AGGCCAGCT AGGCCAGCT AGGCCAGCGA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG GGCAGGCCGC 8530 CGAAGAAGAG GCTTCTTCTC 8590 CGTCATGCGC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC GAGGCGGTGG CTCCGCCACC 8420 TACCAGTTCG ATGGTCAAGC 8480 ATCTACCACA TAGATGGTGT ATCGCCGCGC TAGCCGCCGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG 8550 TGGTCCGGGC ACCAGGCCCG 8610 AGGGCGCCCTT	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG GAGCGCTGCC CTCGCGACGG CCGTCCGGAA GGCAGGCCTT CCGCGCGCAGG CCGTCCGGAA GGCAGGCCTT CCGCGCACGG	8270 GCCTATCITA CGGATAGART 8330 GATCTITTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG AAGCCTGTGA TTCGGACACT TTAGGGTTCA 8630 GCCACGGTCC	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT AGGCCAGCGA 8520 TCCGGTCGCT AGGCCAGCGA 8580 GGATCGATGG CCTAGCTACC
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG GGCAGGCCGC 8530 CGAAGAAGAG GCTTCTTCTC 8590 CGTCATGCGC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC GAGGCGGTGG CTCCGCCACC 8420 TACCAGTTCG ATGGTCAAGC 8480 ATCTACCACA TAGATGGTGT ATCGCCGCGC TAGCCGCCGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG TGCTGGTAAG 8550 TGGTCCGGGC ACCAGGCCCG 8610 AGGGCGCCTT TCCCCCGGAA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG CCGTCCGGAA GGCAGGCCTT 8560 CCGCGTCGTC GGCGCAGCAG CCGAGCAGCAG	8270 GCCTATCITA CGGATAGART 8330 GATCTITTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG AAGCCTGTGA TTCGGACACT TTAGGGTTCA 8630 GCCACGGTCC	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT AGGCCAGCGA 8520 TCCGGTCGCT AGGCCAGCGA 8580 GGATCGATGG CCTAGCTACC
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG GGCAGACAGA CGCAGACAGACAGA CGCTGCTGCTCCGCCC GCCAGCCCCCCCCCC	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCGCGCGCGCGCGCGCGCGCG	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG 8550 TGGTCCGGGC ACCAGGCCCG 8610 AGGCCGCCTT TCCCGCGGAA	8260 TCTCGCCGAG AGAGCGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG CCGTCCGGAA GGCAGGCCTT 8560 CCGCGTCGTC GGCGCAGCAG 8620 CGAGATCGCT GCTCTAGCGA	8270 GCCTATCTTA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG AAGCCTGTGA TTCGGACACT TTAGGGTTCA 8630 GCCACGGTCG CGGTGCCAGC	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT AGCCGCCAGT CCGGTCGCT AGGCCAGCGA 6580 GGATCGATGG CCTAGCTACC 8640 ACTACATGTT TGATGTACAA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG GGCAGGCCGC 8530 CGAAGAAGAG GCTTCTTCTC 8590 CGTCATGCGC GCAGTACGCG	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCGC CCGCGGCCGC 8360 GAGGCGGTGG CTCCGCCACC TACCAGTTCG ATGGTCAAGC ATCGACCGCTAC 8480 ATCTACCACA TAGATGGTGT ATCGCCGCGC CACGGATACA GTGCCTATGT 8660	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG 8550 TGGTCCGGGC ACCAGGCCCG 8610 AGGGCGCCTT TCCCGCGGGAA	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG CCGTCCGGAA GGCAGGCCTT 8560 CCGTCCGGAA GGCAGCCTT CCGCGTCGTC GGCGCAGCAG 8620 CGAGATCGCT GCTCTAGCGA	8270 GCCTATCITA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG AAGCCTGTGA TTCGGACACT TTCGGACACT TTAGGGTTCA 8630 GCCACGGTCG CGGTGCCAGC	8280 CCTGGGGCGC GGACCCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT AGCCGCCAGT CCGGTCGCT AGGCCAGCGA 8580 GGATCGATGG CCTAGCTACC 8640 ACTACATGTT TGATGTACAA
8230 CGACGAGAAG GCTGCTCTTC 8290 CTATGCCTAT GATACGGATA 8350 GCGCACGATA CGCGTGCTAT 8410 CGACGACTAC GCTGCTGATG 8470 CCGTCCGGCG GGCAGGCCGC 8530 CGAAGAAGAG GCTTCTTCTC 8590 CGTCATGCGCG GCAGTACGCG GCAGTACGCG	8240 GGCTGGGAAA CCGACCCTTT 8300 GGCGCCGGCG CCGCGGCCGC GAGGCGGTGG CTCCGCCACC 8420 TACCAGTTCG ATGGTCAAGC 8480 ATCTACCACA TAGATGGTGT ATCGCCGCGC TAGCCGCCGC	8250 CCAAAGCAGA GGTTTCGTCT 8310 AGGAGGGCAA TCCTCCCGTT 8370 TGCAGAACCA ACGTCTTGGT 8430 AAGGCGGCAT TTCCGCCGTA 8490 ACGACCATTC TGCTGGTAAG 8550 TGGTCCGGGC ACCAGGCCCG 8610 AGGGCGCCTT TCCCGCGGAA 8670 GTGCGGTGCG	8260 TCTCGCCGAG AGAGCGGCTC 8320 GGCCGAGCGC CCGGCTCGCG 8380 GGACAACCGC CCTGTTGGCG 8440 GAGCGCTGCC CTCGCGACGG CCGTCCGGAA GGCAGCCTT 8560 CCGCGTCGTC GGCGCAGCAG CGAGATCGCT GCTCTAGCGA	8270 GCCTATCITA CGGATAGAAT 8330 GATCTTTTCG CTAGAAAAGC 8390 GAGCACGATC CTCGTGCTAG 8450 GCCGAACAGC CGGCTTGTCG AAGCCTGTGT TTCGGACACT TTCGGACACT TTAGGGTTCA 8630 GCCACGGTCG CGGTGCCAGC 8690 TTCGACCCC	8280 CCTGGGGCGC GGACCCGCG 8340 AGGAGCGCCT TCCTCGCGGA 8400 TGCTCGACAG ACGAGCTGTC 8460 TCGGCGGTCA AGCCGCCAGT AGCCGCCAGT AGGCCAGCGA CCTAGCTACC 8580 ACTACATGTT TGATGTACAA

		- PL.	120/15/		
8710	8720			0==0	
	6720	8/30	8740	8750	8760
GIICAIIGIC	GACGAGCGCG	TGGCTGACTT	CATGCGCGAC	AAGAACCCGG	CCGCCTTTGC
CAAGTAACAG	CTGCTCGCGC	ACCGACTGAA	GTACGCGCTG	TTCTTGGGCC	GGCGGAAACG
0000					
87.70		8790	. 8800	8810	8820
CGAGCTTGCC	GAACGCCTGC	TTGAAGCAAT	CGACCGCAAT	CTCTGGACGC	CGCGCTCGAA
GCTCGAACGG	CTTGCGGACG	AACTTCGTTA	GCTGGCGTTA	GAGACCTGCG	GCGCGAGCTT
					444444
8830	. 8840	8850	8860	8870	8880
TTCGGCGCGG	TTTGAACTTG	CCCCCATCCC	CACCCCACCA	ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CTICOCOCOCA
AAGCCGCCCC	AAACTTGAAC	ECCCTACCC	CACCCCCCCC	MCCCCCCC 11C	GIGCCGCAA
	mmerrane.	GOCCGIAGCC	GIGCCGICGI	TOGGCCLAAG	CACGGCCGTT
0000	0000				
8890	8900	B910	8920	8930	8940
TGAATAGAGC	GGTTCCGGGC	TGGCGGTTAT	CCGTCCGGAA	TTGCTTGGAA	ACAAAGACCT
ACTTATCTCG	CCAAGGCCCG	ACCGCCAATA	GGCAGGCCTT	AACGAACCTT	TGTTTCTGGA
		•	•		
8950		8970	8980	8990	9000
GGTTCCGTTT	CGCTGCTCAG	TGAAGTGCGA	AAAGGAACCG	AACCCCCACC	ACCCCCTCTC
CCAAGGCAAA	GCGACGAGTC	ACTICACCO	TATAL CAMPECC	THE COORSE	MCCCCCTCTG
		NOTICAL GOOD	1110011000	1106000160	TUUCGUAGAC
9010	9020	. 9030			
	3020	9030	9040	9050	9060
CCCATCCCGA	ACTTGAGAAC	TGAGGGAGTG	ATCATGAGCG	ACGAGACGAC	AGTAGGCGGC
GGGTAGGGCT	TGAACTCTTG	ACTCCCTCAC	TAGTACTCGC	TGCTCTGCTG	TCATCCGCCG
9070	9080	9090 ¹	9100	9110	9120
GAAGCCCCGG	CCGAGAAGGA	CGATGCCCGC	CACGCCATGA	AGATGGCGAA	CARCARCCCA
CTTCGGGGCC	GGCTCTTCCT	GCTACGGGG	GTGCGGTACT	TOTAL COCONS	
		0017000000	GIGCGGIACI	ICINCCOCII	CITCITCCGT
9130	9140	9150	01.60	03.70	
	ACATCATCC	2130	9160	9170	9180
CCTCCCCTTT	AGATCATGGC	GACGAAGACC	GACGAGAAGG	GTCTGATCAT	CGTCAACACC
COLOCOCITI	TCTAGTACCG	GIGCIICIGG	CTGCTCTTCC	CAGACTAGTA	GCAGTTGTGG
			i,		
9190		9210	9220	9230	9240
GGCAAAGGCA	AGGGCAAGTC	GACCGCCGGC	TTCGGCATGA	TCTTCCGCCA	TATCCCCCAC
CCGTTTCCGT	TCCCGTTCAG	CTGGCGGCCG	AAGCCGTACT	AGAAGGCGGT	ATAGCGGGTG
		F2.1			
9250	9260	9270	9280	9290	9300
	GCGCCGTCGT	GCAGTTCATC	AACCCTCCCA	TCCCNACCCC	9300
CCGTACGGGA	CCCCCCCCC	CCTCAACTAC	WOOD TOCON	TOGUNALUGG	CGAGCGCGAG
-	CGCGGCAGCA	CGICANGING	TICCLACGCI	ACCGTTGGCC	GCTCGCGCTC
9310	0220	0000	9340		
2310	3320	9330	9340	9350	9360
TIGHICGAGA	AGCATTTCGG	CGATGTCTGC	CAGTTCTACA	CGCTCGGCGA	GGGCTTCACC
AACTAGCTCT	TCGTAAAGCC	GCTACAGACG	GTCAAGATGT	GCGAGCCGCT	CCCGAAGTGG
			•		
9370	9380	9390	9400	9410	9420
TGGGAAACGC	AGGATCGCGC	CCGCGATGTT	GCGATGGCTG	AAAAGGCCTG	CCACAACCCC
ACCCTTTGCG	TECTAGEGEG	GGCGCTACAA	CCCTACCGAC	TTTTCCGGAC	CCACAMCCCC
			-	·	CCICIICCGC
9430	9440	9450	9460	0.470	0.400
	可ぐつごかい ひとしる	CCCCAACOCC	7400	9470	9480
TATO CARROLL CAR	TCCGTGACGA	GCGCAACICG	ATGGTGCTGC	TCGACGAGAT	CAACATTGCT
TICCTIGACT	AGGCACTGCT	CGCGTTGAGC	TACCACGACG	AGCTGCTCTA	GTTGTAACGA
			•		
9490	9500		9520	9530	9540
CTGCGCTACG	ACTACATCGA	CGTCGCCGAA	GTGGTGCGCT	TCCTGAAGGA	AGAAAAGCCG
GACGCGATGC	TGATGTAGCT	GCAGCGGCTT	CACCACGCGA	AGGACTTCCT	TCTTTTCGGC
9550	9560	0570	9580	9590	0000
	ATGTGGTGCT	CACCECCEC	BACCCCARAC	7770	9600
GTGTACTCCC	TACACCACGA	CIRCECCCCC	WALCOLOGISM CO.	AAGACCIGAT	UGAAGTCGCC
		210000000	TIGOGCITIC	TICIGGACIA	GCTTCAGCGG
9610.	9620	0.000			
		9630	9640	9650	9660
GALCICGICA	CTGAGATGGA	GETGATCAAG	CATCCGTTCC	GTTCCGGCAT	CAAGGCGCAG
CTAGAGCAGT	GACTCTACCT	CGACTAGTTC	GTAGGCAAGG	CAAGGCCGTA	GTTCCGCGTC
9670	9680	9690	9700	9710	9720
			DE 47 D		

			10.11.51		
СВЕССССТСС	A CONCORCA MC	PL.	121/15)		
GTCCCGCACC	AGTTCTGATG TCAAGACTAC	TCGGTCTCGA	GGCAGTTCTG	CCGCGACGAA	TCGGCCGCCT AGCCGGCGGA
9730	. 9740	9750	. 9760	9770	9780
TCGCTGCGCT	CACGGCGGTG	TTTGCCAAGG	TEGGGGTTGE	GCAGATCAAC	TO CONTINUE
AGCGACGCGA	GTGCCGCCAC	AAACGGTTCC	AGCCCCAACG	CGTCTAGTTG	AGGCTGAAGC
9790	•	١			
ひとりと	9800	9810	9820	9830	9840
GTTGCGACTA	CCGCACCGTC GGCGTGGCAG	CACTACCACA	CCCACCACCC	CGCCATCGTG	GCGGCGACAG
			COCACIMOCO	GCGGTAGCAC	CGCCGCTGTC
9850		9870	9880	9890	9900
GGCAGTGGCA	GAAGCCATCG	GAAATCCCGG	GCCGCACCTG	GCTGTTCCTG	GCGCTGTCAG
CCGTCACCGT	CTTCGGTAGC	CTTTAGGGCC	CGGCGTGGAC	CGACAAGGAC	CGCGACAGTC
9,910	9920	9930	9940	0050	2222
	TGGCGCTTCC	TGGCTTGCCT	ATTTCCCCC	. 9950 	9960
CCGAACGCTG	ACCGCGAAGG	ACCGAACGGA	TAAAGGCGCG	CCACTTCCAC	CCCCTCCCC
		e	•		CCGCTGCGGC
9970		9990	10000	10010	10020
CCCGCGTGGC	GCCGCTCGAC	AAGCTCTCGA	TCGTCATGGT	CGCGATCTTC	GGCGTGCTCT
GGGCGCACCG	CGGCGAGCTG	TTCGAGAGCT	AGCAGTACCA	GCGCTAGAAG	CCGCACGAGA
10030	10040	10050	10060	10070	10080
TCCTCGGTGA	AAAGCTCAAC	CTGATGAACT	CCCTCCCCCT	CCCCCCC NO.	5555555555
AGGAGCCACT	TTTCGAGTTG	GACTACTTGA	CCGAGCCGCA	GCGGAAGTAA	CGGCGGCCCC
10090			•		
	GGCGGTGTTT	TGAGCGCGCC		10130	10140
GCGACAACGA	CCGCCACAAA	ACTCGCGCGG	ACGAGACCAC	CCIGIICACI	CONTROL
	. 1 *				
10150	10160	10170	10180	10190	10200
CTCAATCAAT	CCGTAATCCC	GACACATGCA	CTCCTTCTCA	CCACCCCCAC	C3.CCC03.mcc
GAGIIAGIIA	GGCATTAGGG	CTGTGTACGT	CACCAACACT	GCTCGCCCTC	CTGCCGTACG
10210	10220	10230	10240	10250	10260
AGATTGAAGG	CAATTGGAGC	GAGCGCCTTC	CTGATCCGTC	GCCCCACCTC	CCCC3 CMMCC
TCTAACTTCC	GTTAACCTCG	CTCGCGGAAG	GACTAGGCAG	CCCGGTGCAG	CGCGTCAAGC
	10280		• • •		
GCAGACGCTG	GAAGCGTCGC	10290	10300	10310	10320
CGTCTGCGAC	CTTCGCAGCG	TOCCIONOGO	ACTOCCOACC	TTCAGACCCA	CCGGCGGACA
		••*			
10330	10340	10350	10360	10370	10380
CCCCACCAAT	AGGCACCGTA	GGCGTCGCCG	AAGACCTTGG	CGAGGTGGGT	TTCCTCCATG
GCGGACGITA	TCCGTGGCAT	CCGCAGCGGC	TTCTGGAACC	GCTCCACCCA	AAGGAGGTAC
10390	10400	10410	10420	10430	10440
CCCATCIGGI	AGGAAATCGA	GATCCAGGCG	CYCYCLCLCY	GCGCCACCCA	CARCAGORDO
GCCTAGACCA	TCCTTTAGCT	CTAGGTCCGC	CTCTCGCGGT	CGCGGTGGCT	CTACTGCAAC
	10460				
GGCACCGCCA	TCACCGTGCC	CATCACCCCC	10480	10490	10500
CCGTGGCGGT	AGTGGCACGG	CTAGTCGCGC	CACTGGTACG	CCACATAGAT	CGGGTTGCGC
			•		
10510	10520	10530	10540	10550	10560
GAGAAGGCAT	AGAGGCCTGA	GGTCACAAGC	CCCCCCTCCT	CCAPADATACS CC	Chronostan
CICITUCGTA	TCTCCGGACT	CCAGTGTTCG	CCGCGCAGGA	CGAAAAGTCC	CTACGGCTAG
10570	10580	10590	10600	10610	****
TICCAGGAAT	GACGCATCGC	CCATTCCCAC	ACCATICATOR	CCCCCCCCC	C1 C0 C0 C1 TC
AAGGTCCTTA	CTGCGTAGCG	GGTAACGCTG	TCGTAGCAGT	CGGGCGCGCG	CTCCCACTAC
		. 2			
10630	10640	10650	10660	10670	10680
AUGULAGGC	CGACGGCGTG	AMGGATGGGC	GTGTCGAGCG	CCGGGATCCG	GCCGAGGGCA

		DI	122/151		
TCGCGGTCCG	GCTGCCGCAC	TTCCTACCCG	CACAGCTCGC	GGCCCTAGGC	CGGCTCCCGT
10690	10700	10710	10720	10730	10740
GCATCGACGG	AGGCCGGGAG	CATGGCGACC	GCCAGCAGGT	CCATCACCAC	CCCTCCCACC
CGIAGCIGCC	TCCGGCCCTC	GTACCGCTGG	CGGTCGTCCA	CCTAGTGGTC	GCGACGCTGC
10750	10760	. 10770	10780	10790	10800
ATCAGGCGGA	AAAGCCTGCC	CGCAAACCCT	TCCGCATCGT	CGCCATAGGT	TACCACCACC
TAGTCCGCCT	TTTCGGACGG	GCGTTTGGGA	AGGCGTAGCA	GCGGTATCCA	ATCGTGCTGG
10810		10830	10840	10850	10860
GGCGAGCGGC	CGGATTGCAC	GCGGCGGAGG	ATTCCCCACCC	CCACCCOCCA	C3.3.00000.00
CCGCTCGCCG	GCCTAACGTG	CGCCGCCTCC	TAGCGGTCGC	GCTCGCACCT	GTTAGGGTGC
10870	10880	10890	10900	10910	10020
ACGAGCATCA	GGATGGTGGG	AAGGGTGGTG	GACATGGAAA	CCTCTCCACC	CACCTCACAA
TGCTCGTAGT	CCTACCACCC	TTCCCACCAC	CTGTACCTTT	GGAGACCTCG	CTCGACTGTT
		: :			
10930	10940	10950	10960	10970	10980
CTCTCTCTCC	CACGACGGGT GTGCTGCCCA	MECCECCE	TATGAGCGTC	TACCCGGCGA	AGCATTCTGA
	•				
10990	11000	11010	11020	11030	11040
TUACCTTGCA	ATCTCTAGTA	ACTAGAGGTT	CAAGCGTCGG	みたたからかたたにか	
AGTGGAACGT	TAGAGATCAT	TGATCTCCAA	GTTCGCAGCC	TGGACAGGCT	GAAAGCAGCA
11050	11060	11070	31080	11000	11100
GGTTACCGGA	TCTTATTGCC	AAGCGTTGGA	GGCTGTCATC	GTCGCCCCCC	CCCTCTCCC
CCAATGGCCT	AGAATAACGG	TTCGCAACCT	CCGACAGTAG	CAGCGGGGGC	GGCACAGCCT
11110	11120	11130	11140	11150	11160
	AATTCGTCTC	TTGACGCCTG	しかししかんしてか	CCVCCCVDDC	11160
TCCAGCCGTT	TTAAGCAGAG	AACTGCCGAC	GAGGAAGGCA	GCTCGCTAAC	GTATCCGTCC
	11180				
AGGCCGCACC	CATGTTAGAC	CGTCGACAGG	CTABATACCC	CTC N N CCTOC	11C11m1cmc
TCCGGCGTGG	GTACAATCTG	GCAGCTGTCC	GATTTATGCC	CACTTGGAAC	TTCTTATCAC
11230	11240	11250	11260	11270	11280
ACTCTCCACC	GGTTGGTGTC CCAACCACAG	GCATCGGTCT	TGCTGTTCTT	GTCATCAGGT	GTGGCGGGGC
	COMPCONONG	CGINGCENGA	ACGALAAGAA	CAGTAGTCCA	CACCGCCCCG
11290	11300	11310	11320	11330	11340
AGGCGCAAAC	CGTGAAGAGC	GGGGCGTCAC	になけてからない	AACCACCACC	3000303300
TCCGCGTTTG	GCACTTCTCG	CCCCGCAGTG	CTCGAGTTCT	TTGCTGCTGG	TGGGTCTTCC
11350	11360	11370	11380	. 11390	11400
CGAAACCGAA	AACTAAAACG	ACCCCCAACC	ANAGEGETTEC	CCATCAACCC	*********
GCTTTGGCTT	TTGATTTTGC	TECECETTCE	TTTCCCGACG	CCTACTTCGG	TTCCGGTTCC
11410	11420	11430	11440	11450	11460
CGCTCGCCGA	AGCGCGCCGT	CCACGGATTT	GCARGACGCG	CCACACCCAA	ECCA COMA DO
GCGAGCGGCT	TCGCGCGCCA	GGTGCCTAAA	CGTTCTGCGC	CCTCTCGCTT	ACGTCGATAC
11470	11480	11490	11500	11510	31 604
GCGCAGGTCC	GGTCGGAGAG	CAGTGCTCGT	GCTGGTCGAA	ATTCCCTCCC	11520 CCTCATCTTC
CGCGTCCAGG	CCAGCCTCTC	GTCACGAGCA	CGACCAGCTT	TAGGCCACGC	GGACTAGAAC
11530	11540	•	#		
GCATAACTGT	CAGGCGTTGA	CCCCCCCCCS	CCLACCECC	11570	11580
CGTATTGACA	GTCCGCAACT	GGCGGGCGCT	GGAAGCGCGC	CCGTCCCTTC	CCACCCACCC
	•	· •			SANCOLAGE
11590	11600	11610	11620	11630	11640
ACCUMCCOMO	GCCTGACGCG	ATAGAAATCA	CGGGTCGCCT	GGTTCGTTCT	GAAAGCTTGG
AGCTTCGCTG	CGGACTGCGC	LAICITIAGT	GUCUAGCGGA	CCAAGCAAGA	CTTTCGAACC
	7		•		

PL. 123/15/

	•		(. ,		
11650	11660	11670	33.000	11690	
CATTCCCTTT	RCCMCIMCON	12070	11000	11990	11700
GATIGGGTTT	AGGTGATGGA	AGCCGGCGTT	GAACGCAAAA	TAATGATCGA	TCTCGAGAAC
CTAACCCAAA	TCCACTACCT	TCGGCCGCAA	CTTGCGTTTT	ATTACTACCT	ACACCTCTTC
	•		***************************************	************	NOVOCICITO
11710	21220	11730			
	11/120	11/30	11740	11750	11760
AGCGCGCTCC	AGTTTGCAAC	CCGAGCACAC	GGCGAACAGA	みここごでみるこでみ	TO A COCOMOGO
TCGCGCGAGG	TCAAACGTTG	CCCTCCTCTC	CCCCTTCTCT	TOCCO MOON	100001000
		0001091919	ccccrrcrci	TUGUATTUAT	ACTGCCAGCC
				•	
	11780	11790	11800	11910	11820
CCCTATATCC	TTCATCCCAT	TOCOCOCOC	CACAMMonno	21010	11020
CCC1 #1 #1 CC	TTCATCCGAT	1000010000	GAGATIGITC	GAAGCGTGCC	CCATACGCCC
GGGATATAGC	AAGTAGGCTA	ACGCCACCGE	CTCTAACAAG	CTTCGCACGG	GGTATGCGGG
				-,	
11830	11840	11000			
21030	11040	11930	11860	11870	11880
GAAATGATCG	CCGCAGCGCT	GCTTCACGAT	ACGGTCGAAG	ATACCGACGC	GACCCTCCTC
CTTTACTAGC	GGCGTCGCGA	CGAAGTGCTA	TOCACCITIC	TATICCOMCCC	CWCCC7 CC7 C
			1000000110	TWIGGCIGCE	CIGCGACGAC
11890	11900	11910	11920	11930	11940
GAGATCAAGG	AAGCGTTCGG	CCCCAAGGTC	CCAACACTCC	THECHENCE	C3 CCC3 C3 FF3
CTCTACTTCC	TTCCCAACCC	CCCCMMCCAC	COMMONCING	1100010001	CACCGACATA
orerverice	TTCGCAAGCC	GREGITICLAG	CGTTGTGACC	AACGCACCGA	GTGGCTGTAT
	•	•			
11950	11960	11070	11980	11000	****
	######################################	TT7/U	11300	11990	12000
TOCACTOCGT	TCCACGGCAA	CCGACAGGTG	CGCAAGGAAC	TGGATCGCCA	GCACCTCGCA
aggtgaggca	AGGTGCCGTT	GGCTGTCCAC	GCGTTCCTTG	ACCTAGCGGT	CGTGGAGCGT
					0010010001
12010	12020	40000			
	12020	12030	12040	12050	12060
TCGGCGCCCG	CCGCGGCGAA	AACCGTCAAG	CTCGCCGACC	TCATCCACAA	TOCCATACCO
AGCCGCGGGC	GGCGCCGCTT	THEGE A CHINE	CACCCCCCCCC	1001000000	1GCGAIAGCG
		*100CW011C	GWRCGRC1GG	ACTAGCTGTT	ACGCTATCGC
		•			
12070	. 12080	12090	12100	12110	12120
ATCAAAGCCG	GCGATCCGAA	TTTCTCCAAA	CTCTTCCCCC	CCCXCXMCXX	******
TA COMPLECE	CCCTDCCCCTT	1110100000	919110900	CCGAGATGAA	ACGCTTGCTG
140111000	CGCTAGGCTT	AAAGACCITT	CACAAGCCGC	GGCTCTACTT	TGCGAACGAC
			_		
12130		12150	12160	12170	10100
GACCTCTTCC	GCGACGCCGA	CCACACCCOM		121/0	12180
0100101100	GCGACGGCGA	COMUNICICAT	CICGCAAAGG	CCCGTGCATT	AGCGCCGGAA
CICCAGAACC	CGCTGCCGCT	GCTCTGGGAA	GAGCGTTTCC	GGGCACGTAA	TCGCGGCCTT
		•			
12190	12200	12210	12220	10000	
TCACACTCCC	CCCCDDDAMC	12210	12220	12230	12240
IGNGAGIGCC	GCCGTTTATC	GGCAAGCATG	TCTGTGCCAT	GTCGACCCGG	TCAACCGGTC
ACTCTCACGG	CGGCAAATAG	CCGTTCGTAC	AGACACGGTA	CAGCTGGGGC	
					ACTTCCCCAC
12250		:		G10010000	AGTTGGCCAG
12230	12260	:			
		12270	12280	12200	12200
ATCCAAGATC	GCAGAACGGA	12270 CATGCATTTG	12280 CGGTTTTGCC	12290	12300
ATCCAAGATC TAGGTTCTAG	GCAGAACGGA	12270 CATGCATTTG	12280 CGGTTTTGCC	12290	12300
ATCCAAGATC TAGGTTCTAG	12260 GCAGAACGGA CGTCTTGCCT	12270 CATGCATTTG	12280 CGGTTTTGCC	12290	12300
IAGGITCIAG	GCAGAACGGA CGTCTTGCCT	12270 CATGCATTTG GTACGTAAAC	12280 CGGTTTTGCC GCCAAAACGG	12290 CGCCGGTGTG GCGGCCACAC	12300 GCCCAGCCAC CGGGTCGGTG
12310	GCAGAACGGA CGTCTTGCCT 12320	12270 CATGCATTTG GTACGTAAAC	12280 CGGTTTTGCC GCCAAAACGG	12290 CGCCGGTGTG GCGGCCACAC	12300 GCCCAGCCAC CGGGTCGGTG
12310	GCAGAACGGA CGTCTTGCCT 12320	12270 CATGCATTTG GTACGTAAAC	12280 CGGTTTTGCC GCCAAAACGG	12290 CGCCGGTGTG GCGGCCACAC	12300 GCCCAGCCAC CGGGTCGGTG
12310 GCCTCACAGG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA	12280 CGGTTTTGCC GCCAAAACGG 12340	12290 CGCCGGTGTG GCGGCCACAC	12300 GCCCAGCCAC CGGGTCGGTG
12310 GCCTCACAGG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA	12280 CGGTTTTGCC GCCAAAACGG 12340	12290 CGCCGGTGTG GCGGCCACAC	12300 GCCCAGCCAC CGGGTCGGTG
12310 GCCTCACAGG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGCGC
12310 GCCTCACAGG CGGAGTGTCC	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGCGC
12310 GCCTCACAGG CGGAGTGTCC	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGCG TGGCGCGGCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGCA	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGGCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGCA	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGGCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGCA	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGGCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGGCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT	12300 GCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGCG TGGCGCGGCG 12420 GCCGGATCGC CGGCCTAGCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATT	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGCGC GCCGGATCGC CGGCCTAGCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATT	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGCGC GCCGGATCGC CGGCCTAGCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATT	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGCGC GCCGGATCGC CGGCCTAGCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC 12450 CGAGCAGCGG GCTCGTCGCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGCG TGGCGCGCGC 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC 12450 CGAGCAGCGG GCTCGTCGCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGCG TGGCGCGGCG 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC 12450 CGAGCAGCGG GCTCGTCGCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGCG TGGCGCGGCG 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT 12500 CCGACCTGGG	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC 12450 CGAGCAGCGG GCTCGTCGCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGCG TGGCGCGGCG 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT 12500 CCGACCTGGG	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC 12450 CGAGCAGCGG GCTCGTCGCC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGCG TGGCGCGGCG 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT 12500 CCGACCTGGG GGCTGGACCC	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTCCC 12450 CGAGCAGCGG GCTCGTCGCC 12510 CGCCGAGGAA GCGGCTCCTT	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG 12520 CTGGCCGAGG GACCGGCTCC	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA 12530 CCCATCAACA GGGTAGTTGT	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGCG TGGCGCGGCG 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT 12500 CCGACCTGGG GGCTGGACCC	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTCCC 12450 CGAGCAGCGG GCTCGTCGCC 12510 CGCCGAGGAA GCGGCTCCTT	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG 12520 CTGGCCGAGG GACCGGCTCC	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA 12530 CCCATCAACA GGGTAGTTGT	12300 GCCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGGC TGGCGCGGGC 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG 12540 GGCCGACCTT CCGGCTGGAA
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG 12490 ATAGCGCGAG TATCGCGCTC	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT 12500 CCGACCTGGG GGCTGGACCC	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC 12450 CGAGCAGCGG GCTCGTCGCC 12510 CGCCGAGGAA GCGGCTCCTT	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG 12520 CTGGCCGAGG GACCGGCTCC	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA 12530 CCCATCACA GGGTAGTTGT	12300 GCCAGCCAC CGGGTCGGTG 12360 ACCGCGCCGC TGGCGCGCG 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG 12540 GGCCGACCTT CCGGCTGGAA
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG 12490 ATAGCGCGAG TATCGCGCTC	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT 12500 CCGACCTGGG GGCTGGACCC 12560 GCGCCGAAGA	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC 12450 CGAGCAGCGG GCTCGTCGCC 12510 GCCCGAGGAA GCGGCTCCTT 12570 AGAGGAAGAC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG CTGGCCGAGG GACCGGCTCC 12580 GCCGAAGCCG	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA 12530 CCCATCAACA GGGTAGTTGT	12300 GCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGGC TGGCGCGGCG 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG 12540 GGCCGACCTT CCGGCTGGAA
12310 GCCTCACAGG CGGAGTGTCC 12370 GCCTCAATGC CGGAGTTACG 12430 GAGCGCGATC CTCGCGCTAG 12490 ATAGCGCGAG TATCGCGCTC	GCAGAACGGA CGTCTTGCCT 12320 CTGCGCGGTT GACGCGCCAA 12380 CCCAGCCAGA GGGTCGGTCT 12440 GAGACGATGA CTCTGCTACT 12500 CCGACCTGGG GGCTGGACCC	12270 CATGCATTTG GTACGTAAAC 12330 GCGGCCGTTA CGCCGGCAAT 12390 TCCGCAAGGG AGGCGTTCCC 12450 CGAGCAGCGG GCTCGTCGCC 12510 GCCCGAGGAA GCGGCTCCTT 12570 AGAGGAAGAC	12280 CGGTTTTGCC GCCAAAACGG 12340 GGACAGCGCA CCTGTCGCGT 12400 ATGCGTCGGA TACGCAGCCT 12460 CTTGATGATC GAACTACTAG CTGGCCGAGG GACCGGCTCC 12580 GCCGAAGCCG	12290 CGCCGGTGTG GCGGCCACAC 12350 GAATTTGCCG CTTAAACGGC 12410 TCTGCGAGCA AGACGCTCGT 12470 TTGGCGCCCT AACCGCGGGA 12530 CCCATCAACA GGGTAGTTGT	12300 GCCAGCCAC CGGGTCGGTG 12360 ACCGCGCGGC TGGCGCGGCG 12420 GCCGGATCGC CGGCCTAGCG 12480 TGGCCATGGC ACCGGTACCG 12540 GGCCGACCTT CCGGCTGGAA

	12620	PL.	124/15/		
12610	12620	12630	12640	12650	12660
GAGGAACTTC	GTGTGCGCCG	TCGCCTTCAA	CACGCCGAAG	CCCCCCACCC	TARCGARGCC
CTCCTTGAAG	CACACGEGGC	AGCGGAAGTT	GTGCGGCTTC	GGCCGCTCCC	ATTGCTTCGG
12670		12690	12700	12710	12720
GAGCATGAAG	AACGAGCCGG	TGCCGGGGCC	GAAGACGCCG	TCATAAAAGC	CGATTAGCGG
CTCGTACTTC				AGTATTTTCG	
12730	12740	12750	12760	12770	12780
CACCAGTGTC	AGCGTGAAGA	CGAAGGGGGT	GACGCGGCTG	TGCTGGTCGA	CGTCGCCCAT
GTGGTCACAG	TCGCACTTCT	GCTTCCCCCA	CTGCGCCGAC	ACGACCAGCT	GCAGCGGGTA
12790	12800	12810	12820	12830	12840
GTTCGGCTTC	AGGCCGAAAT	AAAGCGCAAT	GGCGATCAGC	ACADACCCCA	CCATCCCCTT
CAAGCCGAAG	TCCGGCTTTA	TTTCGCGTTA	CCGCTAGTCG	TCITTCCCGT	CCTAGCGGAA
		•	•		
12850	12860	12870	12880	12890	12900
CAGCACGTCG	CCGGGAACGA	TGGTTGCGAG	CAGGGCGCCG	AGCACGGCGC	CGGCGGCCGA
GTCGTGCAGC	GGCCCTTGCT	ACCAACGCTC	GTCCCGCGGC	TCGTGCCGCG	GCCGCCGGCT
12910	12920	12930	12940	12950	12960
CATCAGCGCC	ATCGGCAGCT	GCTCTTTCAG	GTTCACGTGG	CCCCCCCCCC	CATAGGACAG
GTAGTCGCGG	TAGCCGTCGA	CGAGAAAGTC	CAAGTGCACC	GCCCCCCCC	GTATCCTGTC
		•		٠.	
12970		12990		13010	13020
CGTGGCCGAG	CCGGAGCCGA	AÇAATCCCTG	CAGCTTGTTG	GTGCCGAGCG	TCTGCAAGGG
GCACCGGCTC	GGCCTCGGCT	TGTTAGGGAC	GTCGAACAAC	CACGGCTCGC	AGACGTTCCC
13030	13040	13050	13060	13070	13080
CGGGATGCCC	GCAATGAGCA	TGGCCGGAAT	GGTGATCATG	CCACCGCCGC	CCCCCATCCA
GCCCTACGGG	CGTTACTCGT	ACCGGCCTTA	CCACTAGTAC	GGTGGCGGCG	GCCGCTAGCT
13090	13100	13110	·· 13120	13130	13140
ATCGATGAAG	CCTGCGATGA	AGGCGGCGAC	GAACAGGAAG	GCGAGCAGGT	GGAAGGCGAG
TAGCTACTTC	GGACGCTACT	TOCGCCGCTG	CTTGTCCTTC	CGCTCGTCCA	CCTTCCGCTC
ATCT					
TAGA			,		

Carte de :	restriction	de la	sequence	de 13144	bp			
ApaLI	642,				۵.			
ECORI	8818,		•		•			
HindIII	11633,		•	•				
MluI	7963,			•				
NdeI	10950,							
PvuII	12918,							
SfiI	3133,							
Spli	99,							
BglII	8248,	13139,			•			
KpnI	2315,	6300,					•	
NotI SmaI	5526, 1322,	7615, 9868,						
SspI	4843,	696B,						
XmnI	9313,	12091,	٠.		••			
AatII	1033,	9503,	12773,		,			
AflIII	550,	7963,	B634,		·			
BalI	2107,	6236,	12473,					
BamHI	2266	E 49 C	10664,					
BspMII	5002,	8494,	8914,					
ECORV	4263,	4605,	5137,					
NCOI	6318,	7786,	12474,		•			
NsiI	3467,	5064,	12266,					
PflMI	7870,	10718,						
XhoI	1512,	4171,	11692,					
ApaI	1928,	3138,	3386,	8551,				
Asuli	784,	5670,	8418,	11799,				
FspII	784,	5670,		11799,				
MaeI	1883,	2647,		11002,				
NruI	1827,	3794,		12419,	7			
SauI	852,	7001,	10284,	10517,				
BstEII	995,	3642,	8456,	10470,				
Eco47III	6954,	7209,		10731,				
SacI	5,	4109,		5169,	11315,			
StuI	204, 761,	4081,	8261, 3612,	9406, 6031,	10515,	9102,		
BstXI SacII	932,	2982, 1025,		3537,	6232, 5184,	12014,		
SphI	966,	2740,	5360,	8098,		10199,		
BclI	2992,	4016,		9164,	9623,	10978,	13053,	
RsaI	101,	1201,		2313,	4881,	6298,	6856,	
Tthlill	1821,	2424,		7361,	7904,	12227,	12697,	
PstI	613,	3989,	5832.	5952,	7260,	7782,	8211,	12992,
ClaI	1351,	3596,	4469,	4724,	5748,	6618,	8574,	11687,
	13082,	• •			d).			,
FspI	1363,	1551,	1653,	5219,	7841,	7982,	8342,	9760,
_	11971,		•		•	•	7	•
HinfI	1137,	2564,	2592,	3025,	5667,	5927,	6467,	6923,
	13079,						•	
StyI		. 3396,		6105,	6318,	7786,	9745,	10355,
	11389,	11395,		12468,	12474,			
DdeI	852,	1875,		3586,	6311,	7001,	7010,	7610,
	B956,	9020,	9611,	10284,	10517,			
Nsp7524I	554,	966,	2394,	2740,	5360,	7840,	8098,	8638,
	9246,	9553,		10199,	12210,	12264,		
PvuI	26,	1853,	2453,	4403,	4703,	4728,	5091,	5112,
3	5178,	6717,		9991,	12429,	13077,	0000	0044
AvaI	975,	1320,		1512,	3131,	3231,	3709,	3766,
Da===	4171,	4212,		1313,	9866,	11692,	11720,	44.44
BanII	. 5,	496,		1928,		3138,	3386,	4109,
Call	4694,	5169,		6282,	8551,	10296,	11315,	-
SalI	83, 7967,	1296,		4045,	4303,	5258,	6959,	7700,
		8627,		9198,	11182,	12221,	12766,	0240
XhoII	2266,	3920,			6943, 12378,	7020, 12398,	7140,	8248,
	10382,	10400,	10664,	11048,	12315,	TT332,	13139,	

. 126 /151

PHASE OUVERTE 23

FIGURE 45

FEUILLE DE REMPLACEMENT

PHASE OUVERTE 25

PHASE OUVERTE 24

1451

Sequence de 13144 pb de 429 a 1886 gène <u>cobQ</u>

```
M T R R I M L Q G T G S D, \psi^{\circ} G K S U L U A G L C R
     ATGACACGCAGGATCATGTTGCAGGGAACCGGCTCGGATGTCGGAAAATCGGTATTGGTGGCGGGGCTCTGCCGG
    439 449 459 469 479 489 499
L A A H Q G L K U R P F K P Q H N S H N A A U S D
     CTTGCCGCCAATCAGGGCCTGAAGGTCCGGCCGTTCAAGCCGCCAGAACATGTCGAACAACGCCGCCGTTTCCGAC
    514 524 534 544 554 564 574
D G G E I G R A Q H L Q A L A A R U P S S U H N N
     589 599 609 619 629 639 649
PULLKPQSDUGSQIUUQGKUAGQAR
 579
     CCGGTGCTCCTGRAGCCGCAGTCGGACGTGGGCAGGCCAGGTCGTCGTTCAGGGCAAGGTCGCCGGGCAGGCCAGG
    664 674 684 694 704 714 724
G R E Y Q R L K P K L L G R U N E S F E Q I S R G
     GGGCGGGARTATCAGGCGCTCAAGCCCAAGCTGCTGGGCGCCGTCATGGAGAGTTTCGAACAAATATCGGCCGGT
    739 749 759 769 779 789 799
RDLUUUEGRGSPAEINLRPGDIANM
     GCCGATCTCGTGGTCGAAGGCGCCGGCTCGCCGGCCGAAATCAACCTCAGGCCCGGCGACATCGCCAATATG
    814 824 834 844 854 864 874
G F R T R R N U P U U L U G D I D R G G U I A S L
     889 899 909 919 929 939 949
UGTHRILPEEDRRHUTGYLINKFRG
     GTCGGCACGCATGCGATCCTGCCCGAGGAAGACCGGCGCATGGTGACCGGCTATCTCATCAAGATCCGCGGC
    964 974 984 994 1004 1014 1024
DUTLFDDGIRRUNRYTGUPCFGUUP
     GRCGTCACGCTGTTCGACGACGCATTGCTGCCGTCAACCGCTACACCGGCTGGCCCTGCTTCGGCGTCGTGCCG
    1039 1049 1059 1069 1079 1089 1099
U L K A A A R L P A E D S U U L E K L T R G E G R
     TGGCTGAAGGCGGCGGCACGCCTGCCGGCGAAGATTCCGTCGTGGTGGAAGGCTGACGCGCGGCGAGGGGCGG
    1114 1124 1134 1144 1154 1164 1174
A L K U A U P U L S R I A N F D D L D P L A R E P
1104
     GCGCTGAAGGTTGCCGTCCCGGTACTGTCGCCCAATTTCGACGACCTCGATCCGCTCGCCGCCGAACCG
    1189 1199 1209 1219 1229 1239 1249
E I D L V F V R P G S P I P V D A G L V V I P G S
1179
     GAGATTGATCTCGTCTTCGTGCGGCCTGGCAGTCCCATTCCGGTCGACGCTCGTCGTCGTCATTCCCGGGTCG
    1264 1274 1284 1294 1304 1314 1324
KSTIGDLIDFRAQGUDRDLE, RHURR
     RRATCGRCCATCGGCGACCTCATCGATTTCCGTGCGCAAGGGTGGGACCGTGACCTCGARCGTCATGTGCGCCGG
    1339 1349 1359 1369 1379 1389 1399
G G R U I G I C G G Y Q H L G R R U T D P L G I E
1329
     1414 1424 1434 1444 1454 1464 1474
G G E R A U E G L G L L E U E T E N A P E K T U R
1404
     GGCGGCGAACGTGCGGTCGAGGGCCTCGGGCTGCTCGAGGTCGAGATGGCGCGCGGAAAAGACGGTGCGC
   1489 1499 1509: 1519 1529 1539 1549
H S R R U S L E H D U U L E G Y E I H L G K T Q G
1479
     ARCAGCCGCGCCTGGTCGCTGGAGCATGATGTGGTGCTCGAAGGCTACGAAAATCCATCTTGGCAAGACGCAAGGT
   1564 1574 1584 1594 1604 1614 1624
A D C G R P S U R I D N R A D G A L S A D G A U
     GCGGACTGTGGCCGGCCGTCGGTGCGCATCGACAATCGCCCCGACGGCCCCTTTCGGCCGATGGCCGCTGATG
    1639 1649 1659 1669 1679 1689 1699
G T Y L H G L F T S D A Y R G A L L K S F G I E G
1629
     1714 1724 1734 1744 1754 1764 1774
G A N N Y R Q S U D A A L D D U A N E L E A U L D
1704
     GGCGCCRACARCTACCGCCCARTCGGTCGATGCGGCGCTCGACGATGTCGCGRACGARCTGGAGGCTGTGCTCGAT
   1789 1799 1809
R R U L D E L L R H *
                                 1819
                                             1829
                                                       1839
    CGTCGCTGGCTGGACGAGTTGCTCAGGCACTAG .
1854
                 1874
```

131/15/

					1-22-7	
PROT	TEINE C	OBO	PREMIER	RESIDU =	1	
		4		ER RESIDU =	485	
:		UENNI	EU 459100 =	703		
			NOMBRE .	# Hone	POIDS	# POIDS
		K	110115112	# 110tib	FUIDS	* LAIRS
i	PHE	F	11	2.27	1617.75	3.11
2	LEU	L	50	10.31	5654.20	10.88
3	ILE	1	23	4.74	2600.93	5.01
2 3 4	HET	Ħ	10	2.06	1310.41	2.52
	UAL	Ü	50	10.31	4953.42	9.53
5 6	SER	Š	24	4.95	2088.77	1.02
7	PRO	P	23	4.74	2232.21	4.30
8	THR	Ť	15	3.09	1515.72	2.92
9	ALA	Ä	13 19	10.10		
10	TYR	Ÿ		1.65	3480.82	6.70
11	*	*	. 8 D		1304.51	2.51
12	HIS	H	7	0.00	0.00	0.00
				1.44	959.41	1.85
13	GLH	Q	15	3.09	1920.88	3.70
14	ASH	H	16	3.30	1824.69	3.51
15	LYS	K	15	3.09	1921.42	3.70
16	ASP	D	31	7.01	3910.92	7.53
17	GLU	E	28	5.77	3613.19	6.96
18	CYS	C	4	0.82	412.04	0.79
19	TRP	ш	6	1.24	. 1116.48	2.15
20	ARG	R	40	8.25	6244.04	12.02
21	GLY	G	57	11.75	3250.22	6.26
22	-	-	0	0.00	0.00	0.00
	850151					
	RESIDU			- 485		
	Пазз	e moi	eculaire (mo	no i sot op i que		950.1016
			culaire, (noy			982.3711
			OLARITE (X)		0.00	
	POINT		LECTRIQUE		5.16	•
	DO 20	50 (1:	ng/n!) = 0.	.558 DO 28	0 (lmg/ml) -	0.825

FIGURE 47.1

132/15/

Sequence de 13144 pb de 3364 a 3888 gène cobP

M S S L S A G P U L U L G G A R S G K S S F S E R ATGAGCAGTCTCAGCGCCGGGCCCGTGCTGGTCCTTGGCGGCGCCCGTTCCGGCAAGTCCAGCTTTTCCGAGAGG 3374 3384 3394 3404 3414 3424 3434 LUEASGFTHHYUATGRAUDDENRER CTCGTCGAAGCGTCCGGCTTCACCATGCATTATGTCGCCACGGGCCGCGCCTGGGACGACGAAATGCGCGAGCGC 3449 3459 3469 3479 3489 3499 3509 I D H H R T R R G E G W T T H E E P L D L U G I L ATCGACCATCACCGGACGCGCGGCGAGGGCTGGACGACGCATGAGGAGCCGCTCGATCTCGTCGGCATCCTC 3524 3534 3544 3554 3564 3574 3584 RRIDDPSHUULIDCLTLUUTNLNLE AGRCGCATCGATGATCCCAGCCATGTGGTCCTGATCGACTGCCTGACGCTATGGGTCACCAATCTCATGCTGGAA 3599 3609 3619 3629 3639 3649 3659 ERDHTREFRALURYLPERRARLUFU 3674 3684 3694 3704 3714 3724 3734 S N E U G L G I U P E N R N A R E F R O H A G R L 3749 3759 3769 3779 3789 3799 3809 H Q I U A E K S A E U Y F U A A G L P L K N K G * 3739 CACCAGATCGTTGCGGAGAAATCCGCTGAAGTTTACTTTGTCGCGGCCGGTTTGCCGCTGAAAATGAAGGGTTGA 3814 3824 3834 3844 3854 3864 3874

FIGURE 47.2

	_
133/	1-1
1777	151

PROTEINE COBP		OBP	PREMIER	RESIDU =	1	-
			DERNI	ER RESIDU	174	
	·		HOMBRE	ж нопв	POIDS	# POIDS
1	PHE	F	6	3.45	882.41	4.54
2	LEU	L	19	10.92	2148.60	
3	ILE	1	6	3.45	678.50	
4	MET	Ħ	7	4.02	917,28	4.10
5	UAL	U	16	9.20	1585.09	
6	SER	S	11	6.32	957.35	
7	PRO	P	6	3.45	582.32	
8	THR	T	8	4.60	808.38	
9	ALA	A	. 17	9.77	1207.63	
10	TYR	Y	3	1.72	489.19	
11	*	*	Ō	0.00	. 0.00	
12	HIS	Н	7	4.02	959.41	
13	GLH	Q	i	0.57	128.06	
14	ASN	Ĥ	3	1.72	312,13	
15	LYS	ĸ	4	2.30	512.38	
16	ASP	D	ġ	5.17	1035,24	
17	GLU	E	16	9.20	2064.68	
18	CYS	Ē	ĭ	0.57	103.01	
19	TAP	ŭ	3	1.72		
20	ARG	Ř	17	9.77	558.24	
21	GLY	6	14	8.05	2653.72	
22	-	_	Ŏ	0.00	798.30	
		_	U	0.00	0.00	0.00
	RESIDU	S		• 17	4	•
	Nasse	Bole	culaire (mo	noisotopiqu		19429.9473
	Masse		-	enne)		19442.2637
	INDEX		LARITE (%)	• 4	13.68	13-112-2031

 \mathcal{A}^{j}

FIGURE 47.3

Sequence de 13144 pb de 3892 a 4956 gène cabil

```
N T T A R A H Q G K I P A T U I T G F L G A G K T
     ATGRCCACTGCGAGGCCAACCAGGGCAAGATCCCGGCGCACCGTCATCACCGGCTTCCTCGGCGCCGGCAAGACG
    3902 3912 3922 3932 3942 3952 3962
T M I R N L L Q N A D G K R I G L I I N E F G D L
     ACGATGATCCGCAACCTGCTGCAGAACGCCGACGGCAAGCGCATCGGCCTGATCATCAACGAGTTCGGCGATCTT
    3977 3987 3997 4007 4017 4027 4037
6 U D G D U L K G C G R E R C T E D D I I E L T N
     GGCGTCGACGGCGATGTCTTGARGGGCTGCGGTGCCGAGGCCTGCACCGAGGACGACATCATCGAGCTCACCAAT
    4052 4062 4072 4082 4092 4102 4112
6 C I C C T U A D D F, I P T M T K L L E R E N R P
     GGCTGCATCTGCTGCACCGTGGCTGACGATTTCATCCCGACCATGACGAAGCTGCTCGAGCGTGAAAAACCGTCCT
    4127 4137 4147 4157 4167 4177 4187
D H I I E T S G L A L P Q P L I A A F N U P D
     GACCACATCATCATCGAAACCTCGGGCCTTGCCCTGCCGCAGCCGCTGATCGCCGCTTTCAACTGGCCGGATATC
   1202 1212 1222 1232 1242 1252 1262
R S E U T U D G U U T U U D S A A U A A G R F A D
     CGCAGCGAAGTGACCGTCGATGGCGTCGTCACCGTGGTCGACAGCGCCGCTTGCCGCTGGCCGCTTTGCCGAC
    4277 4287 4297 4307 4317 4327 4337
D H D K U D A L R U E D D H L D H E S P I E E L F
     GACCACGACARGGTCGATGCGCTGCGCGTCGAGGACGACAATCTCGATCACGAAAGCCCGATCGAGGAGCTGTTC
    4352 4362 4372 4382 4392 4402 4412
EDQLTAADLIULNKTDLIDASGLKA
     GAGGATCARCTGACGGCTGCCGATCTCATCGTTCTCAACAAGACCGATCTGATCGATGCCTCCGGCCTCAAGGCC
    1127 1137 1147 1457 1167 1477 1487
URDEUSSRTSREKPTNIEAKNGEUAA
     GTGCGCGRCGAGGTGTCTTCGCGCRCCAGCCGCARGCCCACGRTGRTCGRGGCGRRARACGGCGRRGTCGCCGCT
    4502 4512 4522 4532 4542 4552 4562
A I L G L G U G T E S D I R N R K S H H E N E H
     GCCATCCTGCTTGGCCTCGGTGTCGGCACGGAAAGCGATATCGCCAACCGCAAGTCGCATCACGAGATGGAGCAC
   4577 4587 4597 4607 4617 4627 4637
E A G E E H D H D E F; D S F U U E L G S I A D P A
     GRGGCAGGTGAGGAGCACGATCACGACGAGTTCGACAGCTTCGTCGAGCTCGGTTCGATCGCCGATCCGGCC
   4652 4662 4672 4682 4692 4702 4712
RFIDRLKGUIREHDULRLKGFRDUP
4642
     GCCTTCRTCGATCGCCTGRAGGGCGTRATCGCGGAGCACGACGTTCTGCGCCTCRAGGGTTTTGCAGACGTGCCC
   4727 4737 4747 4757 4767 4777 4787
G K P H R L L I Q A U G A R I D Q Y Y B R A H G A
     GGCAAGCCGATGCGCCTCCTGATCCAGGCGGTCGGCGCCCGCATCGACCAATATTACGACCGCGCCTGGGGCGCT
   1802 1812 1822 1832 1842 1852 1862
G E K R G T R L U U I G L H D H D E A A U R A A
     4877
                   4887
                             4897 4907 4917
                                                         4927
    TALV*
    ACCGCGCTCGTGTAG
4942
         4952
```

FIGURE 47.4

135/151

PRO'	TEINE (:0BH	PREMIER Derni	RESIDU = ER RESIDU =	1 354	•		
			HOMBRE	# HONB	POIDS	# POIDS		
1	PHE	F	10-	2.82	1470.68	3.86		
2	LEU	Ľ	32	9.04	3618.69	9.50		
2 3	ILE	ı	28	7.91	3166.35	8.31		
4	MET	Ħ	7	1.98	917.28	2.41		
5	UAL	U	28	7.91	2773.92	7.28		
4 5 6 7 8	SER	S	12	3.39	1044.38	2.74		
7	PRO	P	11	3.11	1067.58	2.80		
	THR	T	21	5.93	2122.00	5.57		
9	ALA	A	41	11.58	2912.52	7.64		
10	TYR	Y	2	0.56	326.13	0.86		
11	*	*	0	0.00	0.00	0.00		
12	HIS	H	10	2.82	1370.59	3.60		
13	GLN	Q	6	1.69	768.35	2.02		
14	ASH	N	11	3.11	1254.47	3.29		
15	LYS	K	15	4.24	1921.42	5.04		
16	ASP	D	36	10.17	4140.97	10.87		
17	GLU	Ε	27	7.63	3484.15	9.15		
18	CYS	C	5	1.41	515.05	1.35		
19	TRP	Ш	2	0.56	372.16	0.98		
20	ARG	R	20	5.65	3122.02	8.19		
21	GLY	G	30	8.47	1710.64	1.49		
22	•	-	0	0.00	0.00	0.00		

RESIDUS = 354

Masse moleculaire (monoisotapique) = 38097.4258

Masse moleculaire (moyenne) = 38121.1055

INDEX DE POLARITE (X) = 44.63

POINT ISOELECTRIQUE = 4.90

DO 260 (lmg/ml) = 0.268 DO 280 (lmg/ml) = 0.354

FIGURE 47.5

6485

6495

6505

136/151

Sequence de 13144 pb de 5060 a 8887 gène cobii M H L L A Q K G T I A D G N E A I D L G Q T P A ATGCATCTGCTTCTCGCCCAGARAGGAACGATCGCCGACGGCCAACGAGGCGATCGACCTTGGGCAAACGCCGGCC 5070 5080 5090 5100 5110 5120 5130 DILFLS A A D T E L S S I A A A H G R R D G G GATATCCTTTTCCTATCGGCCGCCGACACCGAGCTCTCCTCGATCGCCGCGGCTCACGGCCGACGCGACGGAGGC 5155 5165 5175 5185 5195 5220 5230 5240 5250 5260 5270 5280 R H A K L I U U R P L G G A S Y F R Y L L E A L H CGTCACGCCAAGCTGATCGTCCGGCCGCTCGGTGGCGCCAGCTATTTCCGTTATCTGCTGGAAGCCCTGCAT 5295 5305 5315 5325 5335 5345 5355 A A A V T H R F E I R V L P G D D K P D P G L E P GCGGCTGCCGTCACCCATCGTTTCGAGATCGCGGTTCTGCCGGGTGACGACAAGCCGGATCCGGGGCTGGAGCCT 5370 5380 5390: 5400 5410 5420 5430 F S T U A A D D R Q R L H A Y F T E G G S D N A G 5360 TTCTCCACCGTCGCAGCCGACGACCACCGCCTTTGGGCTTACTTCACCGARGGCGGCTCGGACAATGCCGGG 5445 5455 5465 5475 5485 5495 5505 L F L D Y A A A L U T G A E K P Q P A K P L L K A CTGTTTCTCGACTATGCGGCCGCACTGGTCACAGGTGCGGAGAAGCCGCAGCCGGCAAAGCCCCTGTTGAAGGCC 5520 5530 5540 5550 5560 5570 5580 G I II II P G A G U I G U S E II Q S L U Q G R H U A GGCATCTGGTGGCCGGGTGCTGGTGTGATCGGCGTCAGCGAATGGCAGTCCCTTGTTCAGGGACGGATGGTAGCG 5595 5605 5615 5625 5635 5645 5655 REGFEPPTUG CFYRALUQSGETRP 5585 RGGGAGGGATTCGARCCCCCGACGGTCGGGATCTGCTTTTACCGCGCGCTCGTGCAGAGTGGCGAGACACGGCCT 5680 5690 5700 5710 5720 5730 I D A L E A E G U R A L P U F U S S L K D 5660 UEAL GTGGAGGCGCTGATCGATGCGCTGGAGGCTGAAGGTGTGCGGGCACTGCCGGTGTTTGTCTCAAGCCTCAAGGAT 5745 5755 5765 5775 5785 5795 5805 A U S U G T L Q A I F S E A A P D U U M H A T G F GCCGTTTCCGTCGGCACGCTGCAGGCGATTTTTTCCGAGGCCGCCCCGACGTGGTGATGAACGCCACTGGCTTT 5820 5830 5840 5850 5860 5870 5880 5820 5830 5840 5850 5860 5870 5880 AUSSPGADRQPTULESTGAPULQU 5810 GCGGTCTCGTCGCCCGGTGCCGTCAGCCGACGGTGCTGGAATCGACCGGTGCGCCGGTGCTGCAGGTGATT 5895 5905 5915 5925 5935 5945 5955 F S G S S R A Q W E T S P Q G L N A R D L A N N U 5885 5970 5980 5990 6000 6010 6020 6030 A L P E U D G R I L B R A U S F K A A S I Y D A K GCRCTCCCGRAGTCGRTGGCCGCATCCTTGCGCGCGCCGTCTCCTTCRAGGCGGCGTCGRTCTATGRCGCCARG 6045 6055 6065 6075 6085 6095 6105 UEANIUGHEPLEGRURFAADLAUNU 6035 GTGGAGGCCAATATCGTCGGCCATGAGCCGCTCGAAGGCCGGGTGCGCTTTGCCGCTGATCTTGCCGTCAACTGG 6120 6130 6140 6150 6160 6170 6180 A N U R R A E P A E R R I A I U N A N Y P N R D G 6110 GCGAACGTGCGCCGGGCAGAGCCCCGAGCGCCGTATTGCCATCGTCATGGCCAACTATCCGAACCGCGACGGT 6195 6205 6215 6225 6235 6245 6255 R L G H G U G L D T P A G T U E U L S A M A R E G CGCCTCGGCAACGGTGTCGGGCTCGACGCCGGCCGGTACCGTCGAGGTGCTTAGCGCCATGGCGCGGGAAGGC TATGCGGTCGGTGAGGTTCCCGCCGATGGCGACGCGCTGATCCGCTTTCTGATGGCCGGGCCGACCAATGCGGCG 6345 6355 6365 6375 6385 6395 6405 S H D R E I R E R I S L H D V K T F F D S L P K Q 6335 AGCCATGACCGTGAAATCCGCGAGCGTATTTCGCTGAACGATTACAAAACGTTCTTCGATTCGCTTCCGAAACAG 6440 6450 6460 6470 6430 I K D E U A G R H G U P E A D P F F L D G A F A L ATARAGGATGAAGTTGCCGGTCGCTGGGGCCGTGCCGGAGGCCCGATTCCCTCTTTTTCCTCGATGGCGCCTTCGCGCTG

; ,

6525 6535 6545

6515

```
PLARFGEUTUGIQPARGYNIDPKES
     CCGCTCGCCCGCTTCGGCGAGGTGATCGTCGGCATCCAACCGGCGCCGCCTACAACATCGATCCGAAGGAAAGC
    6570 6580 6590 6600 6610 6620 6630
Y H S P D L U P P H G Y L A F Y A F L R Q Q F G
     TACCATTCCCCGGACCTCGTGCCGCCATGGCTATCTCGCCTTCTACGCCTTCCTGCGCCAGCAGCTCCGGAGCG
    6645 6655 6665 6675 6685 6695 6705
Q A I U H M G K H G H L E U L P G K A L A L S E T
     CAGGCGATCGTCCACATGGGCAAGCACGCGAATCTCGAATGGCTGCCGGCAAGGCGCTGGCGCTGTCGGAAACC
   6720 6730 6740 6750 6760 6770 6780
CYPERIFICPLPHIYPFIUNDPGEGT
     TGCTATCCCGAAGCGATCTTCGGGCCGCTGCCGCACATCTATCCCTTCATCGTCAACGATCCGGGCGAAGGTACG
    6795 6805 6815 6825 6835 6845 6855
QAKRRTSAULUBHLTPPLTRAESY
     6880 6890 6900 6910 6920 6930
EALUDEYYDAAGGDPRRLRL
6860
    PLKDL
     CCGCTCHAGGATCTGGAAGCGCTCGTCGACGAATATTACGACGCCGCCGCCGCGTGATCCGCCGCCCCCCAGGCTG
    6945 6955 6965 6975 6985 6995 7005
LSRQILDLURDIGLDSDAGIDRGDS
6935
     CTCAGCCGCCAGATCCTCGATCTCGCCCAACATCGGCCTCGACAGCGACGCCAGGCATCGACAGGGGCGACAGC
    7020 7030 7040 7050 7060 7070 7080
D D K A L E K L D A, Y L C D L K E H Q I R D G L
     GACGACAAGGCGCTGGAAAAGCTCGACGCCTATCTCTGCGACCTCAAGGAAATGCAGATCCGCGACGGCCTGCAC
    7095 7105 7115 7125 7135 7145 7155 I F G U A P E G R L L T D L T U A L A R U P R G L
     7170 7180 7190 7200 7210 7220 7230
G E G G D Q S L Q R A I A A D A G L R G F A I P
     7245 7255 7265 7275 7285 7295 7305
S A G G H P A R D A Q P F D P L D C U M S D T U T
7235
     TCGGCGGGGGGCAACCCGCACGCGACGCCAACCCTTCGACCCGCTCGACTCATGTCCGACACCTGGACA
   7320 7330 7340 7350 7360 7370 7380
G P K P S I L R D L S D A P H R T A G D T U E R
     GGCCCGAAACCGTCCATCCTCGCTGACCTCTCGGACGCCCCCTGGCGCCACCGCCGGCGATACGGTCGAGCGCATC
   7395 7405 7415 7425 7435 7445 7455
E L L R R H L U S G E L A C P D H U A H T R A U
     GAGTTGCTTGCCGCAAATCTCGTGTCGGGTGAACTGGCTTGCCCGGGACCACTGGGCCAACACCCGCGCCGTGCTC
7460
   7470 7480 7490 7500 7510 7520 7530 G E I E T R L K P S I S H S G A A E H T G F L T
    GGCGARATCGARACGCGCCTGAAGCCGTCGATTTCARACTCGGGTGCCGCCGAGATGACCGGCTTCCTCACCGGT
   7545 7555 7565 7575 7585 7595 7605
L S G R F U A P G P S G A P T R G R P D U L P T
    7620 7630 7640 7650 7660 7670 7680
R H F Y S U D S R A U P T P A A Y E L G K K S A E
    CGCAATTTCTACTCGGTCGACAGCCGCCGTGCCGACGCCGGCGCTTACGAGCTTGGCAAGAAATCGGCCGAG
   7695 7705 7715 7725 7735 7745 7755
L L I R R Y L Q D H G E U P S S F G L T A U G T A
7685
    CTTCTGATCCGCCGCTACCTGCAGGACCATGGCGAATGGCCGTCCTCCTTTGGCCTGACCGCCTGGGGCACGGCG
   7770 7780 7790 7890 7810 7820 7830
H H R T G G D D I A Q A L A L I G A K P T W D H
7760
    RACATGCGCACCGGCGGCGACGACATCGCCCAGGCCCTGGCGCTGATCGGCGCCAAGCCCACCTGGGACATGGTC
   7845 7855 7865 7875 7885 7895 7905
SRRUMGYEIUPLAULGRPRUDUTLA
    TCTCGCCGGGTGATGGGCTACGAGATCGTGCCGCTCGCAGTCCTCGGCCCCACGCGTCGACGTGACCTTGCGC
   7920 7930 7940 7950 7960 7970 7980
ISGFFRDAFPDQIALFDKAIRAUAL
    ATTTCCGGCTTCTTCCGCGATGCCTTCCCGGACCAGATCGCGCTCTTCGACAAGGCGATCCGCGCCGTCGCGCTG
                 8005
                         8015 8025
                                           8035
                                                    8045
   E E D D A D N N I A A R N A A E S R R L E A E G U
    8060
                 8080
                          8090
                                   8100
                                           8110
```

E A A E A A R A S Y R U F G A K P G A Y G A A L GRAGCCGCCGAGGCCGCGCGCCTCCTACCGCGTCTTTGGCGCARAGCCCGGTGCCTATGGCGCCGCCCTG 8145 8155 8165 8175 8185 8195 8205 Q A L I D E K G W E T; K A D L A E A Y L T W G A 8135 CAGGCGCTGATCGRCGAGAAGGGCTGGGAAACCAAAGCAGATCTCGCCGAGGCCTATCTTACCTGGGGCGCCTAT 8220 8230 8240 8250 8260 8270 8280 A Y G A G E E G K A E R D L F E E R L R T I E A 8210 GCCTATGGCGCCGGCGAGGGCAAGGCCGAGCGCGATCTTTTCGAGGAGCGCCTGCGCACGATAGAGGCGGTG 8295 8305 8315 8325 8335 8345 8355 U Q N Q D H R E H D L L D S D D Y Y Q F E G G M GTGCAGAACCAGGACAACCGCGAGCACGATCTGCTCGACAGCGACGACTACTACCAGTTCGAAGGCGGCATGAGC 8370 8380 8390 8400 8410 8420 8430 R R R E Q L G G H R P R I Y H N D H S R P E K P U 8360 GCTGCCGCCGAACAGCTCGGCGGTCACCGTCCGGCGATCTACCACCACCACCATTCCCGTCCGGAAAAGCCTGTG 8445 8455 8465 8475 8485 8495 8505 IRSLEEEIGRUURARUUNPKUIDGU ATCCGGTCGCTCGAAGAAGAACAACGCCGCGTGGTCCGGGCCCGCGTCGTCAATCCCAAGTGGATCGATGGCGTC 8520 8530 8540 8550 8560 8570 8580 NR H G Y K G R F E I A A T U D Y N F A F A A T 8510 ATGCGCCACGGATACAAGGGCGCCTTCGAGATCGCTGCCACGGTCGACTACATGTTCGCCTTTGCCGCGACCACG 8585 8605 8615 8625 8635 8645 GAURDHHFEAAYQAFIUDERUADF GGTGCGGTGCGCGRCCATCATTTCGAGGCCGCTTATCAGGCGTTCATTGTCGACGAGCGCGTGGCTGACTTCATG 8670 8680 8690 8700 8710 8720 8730 R D K N P A F A E L A E A L L E A I D R N L H T CGCGACAAGAACCCGGCCGCCTTTGCCGAGCTTGCCGAACGCCTGCTTGAAGCAATCGACCGCAATCTCTGGACG 8755 8765 8775 8785 8795 PR S H S A R F E L A G I G T A A T R L R A G N E CCGCGCTCGAATTCGGCGCGGTTTGAACTTGCCGGCATCGGCACCGGCAACCCGGCTTCGTGCCGGCAATGAA 8810 8820 8830 8840 . 8850 8860 TAG 8885

FIGURE 47.8

PROT	TEINE C	OBN		RESIDU ER RESIDU	139/15/1 = 1 1 = 1275	
		· ».	NOMBRE	# HOMB	POIDS	# POIDS
1	PHE	F	48	3.76	7059.28	5.12
2	LEU	L	121	9.49	13683.17	9.92
3	ILE	1	60	4.71	6785.04	4.92
4	MET	Ħ	. 24	1.88	3144.97	2.28
5	URL	Ü	82	6.43	8123.61	5.89
6	SER	Š	64	5.02	5570.05	4.04
7	PRO	P	76	5.96	7376.01	5,35
. 8	THR	T	53	4.16	5355.53	3.88
9	ALA	R	180	14.12	12786.68	9.27
10	TYR	Υ	35	2.75	5707 _{<} 22	4.14
11	*	*	. 0	0.00	0.00	0.00
12	HIS	H	24	1.88		2.38
13	GLN	Q	32	2.51	4097.87	2.97
14	ASH	Ň	30	2.35	3421.29	2.48
15	LYS	K	31	2.67	4355.23	3.16
16	ASP	D	90	7.06	10352.42	7.50
17	GLU	E	85	6.67	10968.62	7.95
18	CYS	C	5	0.39	515.05	0.37
19	TRP	u	18	1.41	3349.43	2.43
20	ARG	R	99	7.76	15454.01	
21	GLY	G	115	9.02	6557.47	4.75
22	-	-	0	0.00	0.00	0.00
	Masse	mole DE P ISOEL	culaire (moy DLARITE (%) .ECTRIQUE	onoisotop enne) =	= 13 40.08 5.42	7970.5000 8055.8594
	DO 20	30 (12	g/mi) = 0.	693 DO	280 (lag/al)	- 1.027

FIGURE 47.9

Sequence de 13144 pb 9034 a 9678 gène <u>cob0</u>

N S D E T T U G G E A P A E K D D A R H A N K N A **ATGRGCGACGACACTAGGCGGCGAAGCCCCGGCCGAGAAGGACGATGCCCGCCATGAAGATGGCG** 9011 9051 9061 9071 9081 9091 9101 K K K A A R E K I N A T K T D E K G L I I U H T RAGRAGARGGCAGCACGCGARAAGATCATGGCGACGAGAGACCGACGAGARGGGTCTGATCATCGTCAACACCGGC 9129 9139 9149 9159 K G K G K S T A G F G N I F R H I A H G N P C A U ARREGCRAGGGCARGTCGACCGCCGGCTTCGGCATGATCTTCCGCCATATCGCCCACGGCATGCCCTGCGCCGTC 9194 9204 9214 9224 9234 9244 U Q F I K G A H A T G E R E L I E K H F G D V C GTGCRGTTCATCARGGGTGCGATGGCAACCGGCGAGCGCGAGTTGATCGAGAAGCATTTCGGCGATGTCTGCCAG 9289 9279 9299 9309 FYTLGEGFTHE TODRARDUANAEKA TTCTACACGCTCGGCGAGGGCTTCACCTGGGAAACGCAGGATCGCCCCGCGATGTTGCGATGGCTGAAAAGGCC 9334 9354 9364 9374 9384 9394 HEKAKELIRDERNSHULLDEINIAL TGGGAGAAGGCGAAGGGAACTGATCGTGACGAGCGCAACTCGATGGTGCTGCTCGACGAGATCAACATTGCTCTG 9419 9429 9439 9449 9459 9469 9479 R V D V I D U A E U U R F L K E E K P H H T H U U 9409 CGCTACGACTACATCGACGTCGCCGAAGTGGTGCGCTTCCTGAAGGAAAAGCCGCACATGACGCATGTGGTG 9494 9504 9514 9524 9534 9544 9554 L T G R N A K E D L I E U A D L U T E N E L I K H CTCACCGGCCGCAACGCGAAAGAAGAACCTGATCGAAGCCGATCTCGCCGATCTCGTCACTGAGATGGAGCTGATCAAGCAT 9569 9579 9589 9599 9609 PFRSGIKAQ0GUEF* CCGTTCCGTTCCGGCATCAAGGCGCAGCAGGGCGTGGAGTTCTGA 9634 9644 9654 9664 9674

FIGURE 47.10

PROT	TEINE C	080	PREMIEF DERNI	RESIDU = ER RESIDU =	141/151 1 211	-
	•	¥.,	HOMBRE	# HOMB	POIDS	# POIDS
1	PHE	F	9	4.21	1323.62	5.51
2	LEU	L	12	5.61	1357.01	5.65
3	ILE	- 1	14	6.54	1583.18	6.59
4	HET	Ħ	11	5.14	1441.45	6:00
5	UAL	Ü	15	7.01	1486.03	6.19
5 6	SER	S	4	1.87	348.13	1.45
7	PRO	P	4	1.67	388.21	1.62
8	THR	T	13	6.07	1313.62	5.47
9	ALA	A	. 23	10.75	1633.85	6.80
10	TYR	Y	. 3	1.40	489.19	2.04
11	*	*	0	0.00	0.00	0.00
12	HIS	Н	7	3.27	959.41	4.00
13	GLH	Q	· 5	2.34	640.29	2.67
14	ASH	H	4	1.87	456.17	1.90
15	LYS	K	21	9.81	2689.99	11.20
16	RSP	D	13	6.07	1495.35	6.23
17	GLU	Ε	23	10.75	2967.98	12.36
18	CYS	C	2	0.93	206.02	0.86
19	TRP	Ц	2	0.93	372.16	1.55
20	ARG	R	12	5.61	1873.21	7.80
21	GLY	G	17	7.94	969.36	4.04
22	-	-	0	0.00	0.00	0.00
	RESIDU	ıc		= 214	1	
Masse moleculaire (monoisotopique) = 24012,2500						
Masse moleculaire (moyenne) = 24027.6973						
INDEX DE POLARITE (%) = 47.66						
POINT ISOELECTRIQUE = 6.94						
DO 260 (lmg/ml) = 0.443 DO 280 (lmg/ml) = 0.612						

Site d'hybridation du primer -20 de l'ADN sb du phage M13mp19

Séquence complémentaire de l'oligonucléotide sens 946

PL. 144 15

FIGURE 50

			•		
			• PLT 145	151	
10		30	. 40	50	60
CCATAATTCT	TTTATAATTT	AAACGGTGAA	CACATGGTAG	TTTATTTAGT	ACCTICCCCC
GGTATTAAGA	AAATTATAAA	TTTGCCACTT	GTGTACCATC	AAATAAATCA	TCCACGCCCA
70					
70		90	100	110	. 120
CCAGGAGAIC	CCGAACTTAT	CACTCTCAAA	GCTGTAAACG	TGTTAAAAAA	AGCGGATGTT
GGICCICIAG	GGCTTGAATA	GIGAGAGIIT	CGACATTTGC	ACAATTTTTT	TCGCCTACAA
130	140		- 4-		
		150	160	170	180
CATCACATACC	ACAAACCTGC	AAATGAAGAA	ATTITAAAGT	ATGCTGAAGG	TGCAAAACTA
CHIGHCHIGC	TGTTT: GACG	TITACTICIT	TAAAATTTCA	TACGACTTCC	ACGTTTTGAT
190	200	210	220	000	
	GAAAACAAGC	DCCD CDACDA	220	230	240
TATATACAGC	CTTTTGTTCG	TCCTCTACTA	PACCAMAICIC	WWWI CWWY	CAATACTCTT
		TOCTOTABLE	MIGITINGNO	TITIACITIA	GITATGAGAA
250	260	270	280	290	300
CTTGTTGAAG	AAGCAAAAGA	AAATGATTTA	CTACTACCCC	THANACCTOC	3 C3 CCCCCCCC
GAACAACTTC	TTCGTTTTCT	TTTACTAAAT	CATCATGCGG	DOCOTOR A	TCTCCCCAAA
		,			TCTGGGGMM
310	320	· 330	340	350	360
GTATTTGGAA	GAGGAGGCGA	GGAAATTCTG	GCCCTTGTAG	AAGAAGGAAT	ACMANANCY C
CATAAACCTT	CTCCTCCGCT	CCTTTAAGAC	CGGGAACATC	TTCTTCCTTA	ACTABAACTC
		"			
370	380	390	400	410	420
TTAGTTCCAG	GGGTAACTTC	TGCAATTGGA	GTTCCAACAA	CAATTGGGCT	TCCAGTTACT
AATCAAGGTC	CCCATTGAAG	ACGTTAACCT	CAAGGTTGTT	GTTAACCCGA	AGGTCAATGA
		•			
430	440	450	460	470	480
CATAGAGGTG	TTGCAACATC	GTTTACAGTT	GTTACAGGTC	ATGAAGACCC	AACAAAATGC
GIAICICCAC	AACGTTGTAG	CAAATGTCAA	CAATGTCCAG	TACTTCTGGG	TTGTTTTACG
490	500	E10	. 500		
	TAGGATGGCA	510	520	530	540
TTCTTTCTCC	TAGGATGGGA ATCCTACCCT	CITIMANGUA	GATACTATTG	TAATACTTAT	GGGTATTGGA
	MOOINCCCI	GUUNTIICGI	CIMICATMAC	ATTATGAATA	CCCATAACCT
550	560	570	580	590	600
AATTTAGCTG	AAAATACAGC	AGAAATTATG	AAACATAAAG	מממסירים ב	מטט
TTAAATCGAC	TTTTATGTCG	TCTTTAATAC	TTTGTATTTC	TAGGACTTTG	ACCTCAAACA
					NOOT CANACA
610	620	, 63 0	640	650	660
GTAATTGAAA	ATGGTACGAT	GGAAGGTCAA	AGGATAATAA	CGGGCACACT	CCAAAAMAMA
CATTAACTTT	TACCATGCTA	CCTTCCAGTT	TCCTATTATT	GCCCGTGTGA	CCTTTTATAT
		•			
670	680	690	700	710	720
GCTGGAAAGG	ATATTAAACC	TCCTGCTTTA	GTGGTATTGG	AAATGTTGTC	AATGTTTTTA
CGACCTTTCC	TATAATTTGG	AGGACGAAAT	CACCATAACC	TTTACAACAG	TTACAAAAAT
730	740	, 750	7.0	:	•
	74U	.750	760	770	780
	TCAAATCAGT	CCCACTACAT	TTAAGAAGGC	AATATCATGA	ATGGATTAGA
110111nO11	AGTTTAGTCA	CCGACTAGAT.	AATTCTTCCG	TTATAGTACT	TACCTAATCT
790	800	810	820		
	ATTGTTATAA	CANCACOTCC	OZU TCANACCCCT	830	840
TCCATTTTTT	TAACAATATT	CTTCTCCACC	TOWARGOCCE	MAAGACTCAG	TTGAAATGGT
	a - A-GITUTT		ACTITIC COR	TITCIGACIC	AACTTTACCA
850	860	870	880	890	000
AAAATCTTAT	GGAGCAGTTC	CAATTGTAAC	TCCTACAATT	GAACTCAAAG	900
TTTTAGAATA	CCTCGTCAAG	GTTAACATTG	AGGATGTTAA	CTTGACTORIG	TARCOTTOCO
					-WAGITICAG
910	920	930	940	950	960
agaagaagtg	TATAAAATTAT	GTAATATGAT	AAATGAACCT	TGATTCCCCT	יימיימיי יימיימיי
TCTTCTTCAC	TATTTTAATA	CATTATACTA	TTTACTTGGA	ACTAACCGGA	ATATA

PL. 146 // \(\) GENE COTA ET PROTEINE CORA (SUMT) DE METHANOBACTERIUM IVANOVII
SEQUENCE DU FRAGMENT DE 955 PB DE 34 A 729

MVVYLVGAGPGDPELITLKAVNVLK ATGGTAGTTTATTTAGTAGGTGCGGGTCCAGGAGATCCCGAACTTATCACTCTCAAAGCTGTAAACGTGTTAAAA 4 44 54 64 74 84 94 104 KADVVLYDKPANEEILKYAEGAKL AAAGCGGATGTTGTACTGTACGACAAACCTGCAAATGAAGAAATTTTAAAGTATGCTGAAGGTGCAAAACTAATA Y V G K Q A G H H Y K S Q N E I N T L L V E E A K 129 139 GAAAATGATTTAGTAGTACGCCTTAAAGGTGGAGACCCCTTTGTATTTGGAAGAGGAGGCGAGGAAATTCTGGCC 9 269 279 289 299 309 319 329 LVEEGIDFELVPGVTSAIGVPTTIG CTTGTAGAAGAAGGAATTGATTTTGAGTTAGTTCCAGGGGTAACTTCTGCAATTGGAGTTCCAACAACAATTGGG 1 344 354 364 374 384 394 404 LPVTHRGVATSFTVVTGHEDPTKCK CTTCCAGTTACTCATAGAGGTGTTGCAACATCGTTTACAGTTGTTACAGGTCATGAAGACCCAACAAAATGCAAG 9 419 429 439 449 459 469 479 KQVGWDFKADTIVILMGIGNLAEN AAACAGGTAGGATGGGACTTTAAAGCAGATACTATTGTAATACTTATGGGTATTGGAAATTTAGCTGAAAATACA 4 494 504 514 524 534 544 554 AEIMKHKDPETPVCVIENGTMEGQR GCAGAAATTATGAAACATAAAGATCCTGAAACTCCAGTTTGTGTAATTGAAAATGGTACGATGGAAGGTCAAAGG 9 569 579 589 599 609 619 629 IITGTLENIAGKDIKPPALVVLEML ATAATAACGGGCACACTGGAAAATATAGCTGGAAAGGATATTAAACCTCCTGCTTTAGTGGTATTGGAAATGTTG 644 654 664 674 684 S M F L K K * TCAATGTTTTTAAAGAAATGA 719 729 .

PROTEINE CORA

				. :	. T.	144/	151
			NOMBRE	% NOMB	-	POIDS	% POIDS
1	PHE	F	6	2.60		882.41	3.54
2	LEU	L	22	9.52		2487.85	9.99
3	ILE	I	17	7.36		1922.43	
4	MET	M	6	2.60		786.24	
5	VAL	V	26	11.26	•	2575.78	10.34
6	SER	S	4	1.73	٠.	348.13	1.40
7	PRO	P	12	5.19		1164.63	4.68
8	THR	T	16	6.93	٠.	1616.76	
9	ALA	A	16	6.93		1136.59	4.56
10	TYR	Y	5	2.16		815.32	
11	*	*	0	0.00	:	0.00	
12	HIS	H	· 5	2.16		685.29	2.75
13	GLN	Q	4	1.73		512,23	
14	ASN	N	9	3.90		1026.39	4.12
15	LYS	K	20	8.66	•	2561.90	
16	ASP	Ð.	11	4.76		1265.30	0.00
17	GLU	E	21	9.09		2709.89	
18	CYS	С	2	0.87	Ý	206,02	0.83
19	TRP	W	1	0.43		186.08	
20	ARG	R	4	1.73	*	624.40	
21	GLY	G	24	10.39	• :	1368.52	
22	-	-	0	0.00		0.00	0.00
	RESID	715		== .	231		•
			culaire (mo	noisotop		1 = 2	24900.1855
				yenne)	+4'rc		24915.9766
	INDEX		POLARITE (%)		40.		
	POINT		ELECTRIQUE	=	5.	45	
	DO 26					(lmg/ml)	= 0.462
			3				

FIGURE 52:1

PL. 148/151

CORA DE PREMIER RESIDU=1 DERNIER RESIDU=231

FIGURE 52.3

149/151

M. IVANOVII CORA 3 A 227
P. DENITRIFICANS COBA 17 A 251

40 50 20 30 60 VYLVGAGPGDPELITLKAVNVLKKADVVLYDKPANEEILKYAE-GAKLIYVGKQAGHHYKSQNEINTLLV VWLVGAGPGDPGLLTLHAANALRQADVIVHDALVNEDCLKLARPGAVLEFAGKRGGKPSPKQRDISLRLV 40 50 60 70 90 100 110 120 130 EEAKENDLVVRLKGGDPFVFGRGGEEILALVEEGIDFELVPGVTSAIGVPTTIGLPVTHRGVATSFTVVT ELARAGNRVLRLKGGDPFVFGRGGEEALTLVEHQVPFRIVPGITAGIGGLAYAGIPVTHREVNHAVTFLT 120 130 140 150 170 180 150 160 190 GHEDPTKCKKQVGWD-FKADT-IVIL-MGIGNLAENTAEIMKH-KDPETPVCVIENGTMEGORIITGTL-GHDSSGLVPDRINWQGIASGSPVIVMYMAMKHIGAITANLIAGGRSPDEPVAFVCNAATPQQAVLETTLA 160 170 180 190 200 210 210 220 --E-NIAGKDIKPPALVVL-EMLSM = --=- - ===- =- -RAEADVAAAGLEPPAIVVVGEVVRL 230 240 250

POURCENTAGE D'HOMOLOGIE STRICTE : 40.4

154/151

tableau: purification de la cobinamide kinase-cobinamide phosphate guanylyltransferase de Pseudononas denitrificans.

:			Cobin	Cobinamide kinase	Ö	Cobinamide phosphate guanylyltransferase	ratio des
Etape de purification	vol (ml)	protein (mg)	act spe 1 (U/mg de protein)	rendement (%)	facteur de purification	act. spe. 2 (U / mg de protein)	act. spe. 2/1
			ı				
Extrait brut ^a	<u>.4</u> .	120	16	٠,	•	214	13
Eluat Mono Q HR 10/10	9.0	8. 98	188	88	12	ı	•
eluat Hydroxyapatite;	2.0	4:55	325	77	20	3640	È
Eluat Phenyl-Superose	2.0	1.51	560	44	35	ı	•
Eluat Mono Q HR 5/5	3 O	3	786	27	40	11282	14

TABLEAU A

INTERNATIONAL SEARCH REPORT international Application No PCT/FR 91/00054 1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) According to International Patent Classification (IPC) or to both National Classification and IPC C 12 N 15/52 Int.Cl. C 07 K 15/04, C 12 P 19/42, C 12 N 9/00, C 12 N 1/21, //(C 12 P 19/42, C 12 R 1:38, 1:41, 1:01) II. FIELDS SEARCHED Minimum Documentation Searched Classification System Glassification Symbols Int.Cl.⁵ C 12 N, C 12 P, C 07 K Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT 10 Category • \ Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No. 13 Х Journal of Bacteriology, volume 171, No 1-42 1, January 1989, American Society for Microbiology, (Washington, DC, US) B. Cameron et al.: "Cloning and analysis of genes involved in coenzyme B12 biosynthesis in Pseudomonas denitrificans", pages 547-557 cited in the application Α Journal of Bacteriology, volume 171, No 8 August 1989, American Society for Microbiology, (Washington, DC, US), F. Blanche et al.: "Purification and characterization of S-adenosyl-Lmethionine: Uroporphyrinogen III methyltransferase from Pseudomonas denitrificans", pages 4222-4231 cited in the application Special categories of cited documents: 10 later document oublished after the international filling date or priority date and not in conflict with the application but cried to understand the principle or theory underlying the invention document defining the general state of the art which is not considered to be of perticular relevance. earlier document but published on or after the international filing date document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an unventive step. document which may throw doubts on priority claim(s) of which is cited to establish the publication date of anotherdocument of particular relevance: the claimed invention cannot De considered to involve an inventive step when the document is combined; with one or more other such documents, such citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or combination being obvious to a person skilled in the art document member of the same patent family document published prior to the international filling date but later than the priority date claimed IV. CERTIFICATION Date of the Actual Completion of the International Search Date of Mailing of this International Search Report 21 May 1991 (21.05.91) 17 July 1991 (17.07.91)

Signature of Authorized Officer

. . . .

Form PCT/ISA/210 (second sheet) (January 1985) -

European Patent Office.

international Searching Authority

	ENTS CONSIDERED TO SE RELEVANT (CONTINUED FROM THE SECOND SHIET	· ·
Category * [Citation of Document, with Indication, where appropriate, of the relevent passages	Relevant to Claim No
ļ		-
A·	Journal of Bacteriology, volume 169, No 7	
· · · i	July 1987, American Society for Microbiology, (Washington, DC, US) R.M. Jeter et al.: "Cobalamin (vitamin	
	B12) biosynthetic genes of Salmonella typhimurium", pages 3189-3198	
!	cited in the application	
A	Journal of Bacteriology, volume 167, No 2 August 1986, American Society for	
	Microbiology, (Washington, DC, US), R.N. Brey et al.: "Cloning of multiple genes involved with cobalamin (vitamin B12) biosynthesis in bacillus megate-	
	rium", pages 623-630 cited in the application	
-		
. A	WO, A, 8701391 (AMGEN) 12 March 1987	·
P,X	Journal of Bacteriology, volume 172, No 10 October 1990, American Society for Microbiology, (Washington, DC, US) J. Crouzet et al.: "Nucleotide sequence of a Pseudomonas denitrificans 5,4-kilobase DNA fragment containing five cob genes and identification of structural genes encoding S-adenosyl-L-methionine: Uroporphyrinogen III methyltransferase and cobyrinic acid a,c-diamide synthase", pages 5968-5979	
P,X	Journal of Bacteriology, volume 172, No 10, October 1990, American Society for Microbiology, (Washington, DC, US) J. Crouzet et al.: "Genetic and sequence analysis of an 8,7-kilobase Pseudomonas denitrificans fragment carrying eight genes involved in transformation	
	of precorrin-2 to cobyrinic acid", pages 5980-5990	

ANNEX TO THE INTERNATIONAL SEARCH REPORT

FR 9100054 SA 44527

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 03/07/91

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A- 8701391	12-03-87	AU-B- 599046 AU-A- 6229786 EP-A- 0236429	12-07-90 24-03-87 16-09-87
	•	JP-T- 1500081	19-01-89

RAPPORT DE RECHERCHE INTERNATIONALE Demande internationale N° PC

PCT/FR 91/00054

	EMENT DE L'INVENTION (si plusieurs symbolis de c	
Selon la cu	ssification internationale des brevets (CIB) ou à la fois se	tion la classification nationale et la CIB C 12 N 15/52,
CIB ⁵ :	C 07 K 15/04, C 12 P 19/42 //(C 12 P 19/42, C 12 R 1	2, C 12 N 9/00, C 12 N 1/21, :38, 1:41, 1:01)
II. DOMAI	NES SUR LESQUELS LA RECHERCHE À FORTÉ	
	Documentation min	nimale consultée *
Système d	e classification	Symboles de classification
		34.
. СІВ ⁵	C 12 N, C 12 P	, C 07 K
	Documentation consultée autre que la d où de tels documents font partie des dom	
III. DOCU	MENTS CONSIDÉRÉS COMME PERTINENTS 19	
Catégorie *	Identification des documents cités, ¹¹ ave des passages pertine	
·		
X	Journal of Bacteriology	, volume 171, no. 1-42
	1, janvier 1989, Ame	
	Microbiology, (Wash	
	B. Cameron et al.: ' sis of genes involve	
	biosynthesis in Pseu	Idomonas denitrifi-
	cans", pages 547-55	7
	cité dans la demande	
A	Journal of Bacteriology	, volume 171, no.
	8, août 1989, Americ	can Society for
	Microbiology, (Wash	
`	F. Blanche et algo characterization of	
		nyrinogen III methyl
	transferase from Pse	
	ficans", pages 4222	
:	cité dans la demande	
		·
	577	•/•
	:A. M	
* Catégo	ries spéciales de documents cités: 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	« T » document ultérieur publié postérieurement à la date de dépôt
. «A» do	cument définissant l'état général de la technique, non saidéré comme particulièrement pertinent	International ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre
«E» do	cument antérieur, mais publié à la daté de dépôt înterna-	le principe ou la théorie constituant la base de l'invention «X» document particulièrement pertinent: l'invention revendi-
i	nal ou après cette date cument pouvant jeter un doute sur une revendication de	quée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive
l pri	prité ou cité pour déterminer la date de publication d'une " re citation ou pour une raison spéciale (telle qu'indiquée)	«Y» document particulièrement partinent; l'invention reven-
«O» do	cument se référant à une divulgation orale, à un usage, à	diquée tre peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou
1	e exposition ou tous autres moyens cument publié avant la date de dépôt international, mais	plusieurs autres documents de même nature, cette combi- natson étant évidente pour une personne du métier.
po	stérieurement à la date de priorité revendiquée	< & > document qui fait partie de la même famille de brevets
<u> </u>	FICATION	
Date à laquachevée	uelle la recherche internationale a été effectivement	Date d'expédition du présent rapport de recherche internationale
	21 mai 1991	19 2. 07. 31
Administra	tion chargée de la recherche internationale	Signature de tonctionnaire autorisé
OF	FICE EUROPEEN DES BREVETS	Vatalie Welnberg

III. DOCUME	(SUITE DES RENSEIGNEMENTS INDIQUÉS SUR LA DEUXIÈME FEUILLE)					
Catégorie •	identification des documents cités, avec indication, si nécessaire, des passages pertinents	Nº des revendications visées				
A	Journal of Bacteriology, volume 169, no. 7, juillet 1987, American Society for Microbiology, (Washington, DC, US) R.M. Jeter et al.: "Cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium", pages 3189-3198 cité dans la demande					
Α	Journal of Bacteriology, volume 167, no. 2, août 1986, American Society for Microbiology, (Washington, DC, US), R.N. Brey et al.: "Cloning of multiple genes involved with cobalamin (vitamin B12) biosynthesis in bacillus megate- rium", pages 623-630 cité dans la demande					
A	WO, A, 8701391 (AMGEN) 12 mars 1987					
P,X	Journal of Bacteriology, volume 172, no. 10, octobre 1990, American Society for Microbiology, (Washington, DC, US) J. Crouzet et al.: "Nucleotide sequence of a Pseudomonas denitrificans 5,4-kilobase DNA fragment containing five cob genes and identification of structural genes encoding S-adenosyl-L-methionine: Uroporphyrinogen III methyltransferase and cobyrinic acid a,c-diamide synthase", pages 5968-5979	1-31				
P,X	Journal of Bacteriology, volume 172, no. 10, octobre 1990, American Society for Microbiology, (Washington, DC, US), J. Crouzet et al.: "Genetic and sequence analysis of an 8,7-kilobase Pseudomonas denitrificans fragment carrying eight genes involved in transformation of precorrin-2 to cobyrinic acid", pages 5980-5990	1-31				

ANNEX TO THE INTERNATIONAL SEARCH REPORT

FR 9100054

SA 44527

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 03/07/91

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document	Publication date	Patent family	Publication
cited in search report		member(s)	date
WO-A- 8701391	12-03-87	AU-B- 599046 AU-A- 6229786 EP-A- 0236429 JP-T- 1500081	12-07-90 24-03-87 16-09-87 19-01-89

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.