

planetmath.org

Math for the people, by the people.

composition of forcing notions

Canonical name CompositionOfForcingNotions

Date of creation 2013-03-22 12:54:20 Last modified on 2013-03-22 12:54:20

Owner Henry (455) Last modified by Henry (455)

Numerical id 4

Author Henry (455)
Entry type Definition
Classification msc 03E35
Classification msc 03E40
Related topic Forcing

Suppose P is a forcing notion in \mathfrak{M} and \hat{Q} is some P-name such that $\Vdash_P \hat{Q}$ is a forcing notion.

Then take a set of P-names Q such that given a P name \tilde{Q} of Q, $\Vdash_P \tilde{Q} = \hat{Q}$ (that is, no matter which generic subset G of P we force with, the names in Q correspond precisely to the elements of $\hat{Q}[G]$). We can define

$$P*Q = \{\langle p, \hat{q} \rangle \mid p \in P, \hat{q} \in Q\}$$

We can define a partial order on P*Q such that $\langle p_1, \hat{q}_1 \rangle \leq \langle p_2, \hat{q}_2 \rangle$ iff $p_1 \leq_P p_2$ and $p_1 \Vdash \hat{q}_1 \leq_{\hat{Q}} \hat{q}_2$. (A note on interpretation: q_1 and q_2 are P names; this requires only that $\hat{q}_1 \leq \hat{q}_2$ in generic subsets contain p_1 , so in other generic subsets that fact could fail.)

Then $P * \hat{Q}$ is itself a forcing notion, and it can be shown that forcing by $P * \hat{Q}$ is equivalent to forcing first by P and then by $\hat{Q}[G]$.