Andy Klise's Speedcubing Guide for Lefties!

Algorithms by Dan Harris and Erik Akkersdijk

First 2 Layers

You must solve the cross first. It can be done in 6 moves or less ~82% of the time and ≤7 moves 99.95% of the time These are just optimal example solves; F2L should be solved intuitively.

Easy Cases (1-4)

Reposition Edge (5-8)

U' (L' U L) Use (L F' L'F) if no U face edges are oriented properly on final slot

y (L U L') Note - this image is blue and red because a cube rotation is required y U (L U' L')

Use (F' L F L') if no U face edges are oriented properly on final slot

Note – this image is green and red because no cube rotation is required

 $y (U' L U L') U^2 (L U' L')$

 $y U' (L U^2 L') U^2 (L U' L')$

Note - (y U') and (d') are interchangeable

d' (L U L') U^2 (L U' L')

 $d' (L U^2 L') U^2 (L U' L')$

y (L U L' U')(**L** U L')

(L' U L U')(L' U L)

L F L' U' (L' U L) F'

U (F U' **F'**) Ù' (L' U Ĺ)

U' (L' U **L**) y' U (R U' R') U' (L' U **L**) U (F U' F') Note - (y' U) and (d) are interchangeable

y (L U' L' U)(L U' L') $(\mathbf{L'} \cup \mathbf{L}) \cup (\mathbf{F'} \cup \mathbf{F'})$

(L' U' L U)(**L'** U' L)

Edge in Place, Corner in U face (31-36)

Corner in Place, Edge in U Face (25-30)

y' U (R U' **R'**) d['] (L' U L)

(L' U L U)(L' U L U')(**L'** U' L)

(L' U L) y U' (L U' L') (L' U L U')(F U' F')

(U L' U' L) y (U' L U L')

Edge and Corner in Place (37-42)

 \dot{U}^2 (L' U L) \dot{U} (**F** U F')

 $(U L' U L) U^2 (L' U L)$ $\hat{y}' \cup (R' \cup \hat{R}) \cup (R' \cup R')$

U' (L' U' L) U² (**L'** U' L)

d' (L U' **L'**) U² (L U' L')

 $\hat{y}' \hat{U}^2 (R U' R') \hat{U}' (\hat{F}' U' F)$

Reposition Edge and Flip Corner (9-14)

y U' (L U L' U)(L U L') $y^2 U (R' U) d (\mathbf{R} U R')$

 $U(L'U^2L) y U'(LUL')$

y U' (L U' L' U)(L U L')

 $(U L' U' L) U^2 (L' U L)$

 $U (L' U^2 L) U^2 (L' U L)$

U (L' U' L U')(L' U' L)

U (L' U L U')(L' U' L)

 $y (L U^2 L') U' (L U L')$

 $y U^2 (L U L' U)(L U' L')$

 $\hat{L} U^2 L^2 U' \hat{L}^2 U' L'$

 $y U' (L U^2 L') d (L' U' L)$

 $(L' \cup L \cup U')(L' \cup L) \cup U^2 (L' \cup L) *$

Solved Pair

 $(L' \cup L) \cup (L' \cup L) \cup (L' \cup L)$ $y' (R U R') U^2 (R U' R' U) (R U R')$

(L' U L U') y (L U L' U)(**L** U L') $y' (R U R' U')(R U' R') U^2 (F' U' F)$

(L' U L U') d' (L U L' U)(L U' L') $(L' U' L U)(L' U L) U^2 (F U F')$

Split Pair by Going Over (15-18)

 $(L' U^2 L) U (L' U' L)$

d' (L U' L' U)(L U L')

y (L U' L' U) y' U (L' U' L) $(L' U' L) U^2 (L' U L U') (L' U L) *$ y' (R U' R') U² y' (**L'** U' L)

Color Codina Green = L' U' L U Family Blue = L' U' L U' L' U^2 L Family Orange = L' F L F' Family

Pair Made on Side (19-22)

U' (L' **U**² L) U' (L' U L)

 $U^{2} (L' U' L U')(L' U L)$

Warning! The Color Scheme is R/L mirrored! Use at your own risk!

Credits

Dan Harris - http://www.cubestation.co.uk/ Erik Akkersdijk - http://www.erikku.110mb.com Nathan Christie - http://my.fit.edu/~dchristi/cube/ Joël van Noort - http://solvethecube.110mb.com/ Conrad Rider - http://cube.crider.co.uk/ Ivan Kapicic for lefty translation and everyone else

Warning! The Color Scheme is R/L mirrored! Use at your own risk!

(L' U' L U) U (L' U' L U)(**L'**U' L) $U^2 L^2 U^2 (L U L' U) L^2$

y (L U L' U') U' (L U L' U')(**L** U L') $\hat{y} \hat{U}^2 L^2 U^2 (\hat{L}' U' \hat{L} U') L^2$ F' U' (R U L F')(R U R')

Orient Last Layer (Two Look) Step 1

Bonus

F' U' (L' U L) F $y^2 f' (\dot{L'} U' L \dot{U}) f$ Probability = 1/2

Move to Second Look Probability = 1/8

Orient Last Layer (Two Look) Step 2

All Edges Oriented Correctly

 \mathbb{R}^2

r'/Rw'

М

(LUL'ULU²L') y' (L' U² L U L' U L)

Probability = 4/27

 $(L'U'LU')(L'ULU')(L'U^2L)$ $y' L' U^2 L (U L' U' L)(U L' U L)$

Probability = 2/27

(L F')(L' B)(L F)(L' B') y^2 x' D' (L' U' L) D (L' U L) x x (L U' L') D (L U L') D' Probability = 4/27

Solved

Notation

r/Rw

Probability = 1/27

Warning! The Color Scheme is R/L mirrored! Use at your own risk!

X

Double Spins

Permute Last Laver

* - indicates a faster alg. If this is included, then the previous alg is easier to learn

Permutations of Edges or Corners Only

x' F' (L' U L U')(D' L)(D' U)(L U' L') D² (L U L' U) L' U' (L' U L U') L' U' L² U L (U²) * y' (M² U M') U² M² U² (M' U' M²)

Z - Probability = 1/36

 $x (L U' L) D^2 (L' U L)(D^2 L^2)$ Aa - Probability = 1/18

x' (L' U L) D' (L' U' L) D (L' U' L) D' (L' U L) D L^{2} U' L y' (L' U L U')*3 y L' U L^{2} * $x' (L' U' L) D' (L' U' L) u^{2} (L U' L') D' (L U L')$

E -Probability = 1/36

 $y(L^2 U)(L U L' U')(L' U')(L' U L') *$

Ua - Probability = 1/18

 $(M^2 U M^2) U^2 (M^2 U M^2)$ $(L M^2 L') U (L M^2 L') U^2 (L M^2 L') U (L M^2 L')$

 \mathbf{H} - Probability = 1/72

 $x (L^2 D^2)(L' U' L) D^2 (L' U L')$

Ab - Probability = 1/18

Solved

Probability = 1/72

Swap One Set of Adjacent Corners $(R' U^2)(R U^2)(R' F)(R U R' U')(R' F' R^2 U')$

V - Probability = 1/18

Na - Probability = 1/72

Swap One Set of Corners Diagonally

 $[(R'U)L'U^2(RU')L]*2U$

(L U' L U) y' (L F)(L2 U)(L U' L F')(L' F')

z' (L U' L) D' (L^2 U L')(U' D)(L D' L^2 U L' D) *

(L U' L U) x² y (L Ú' L U) r' (L' U L U') L' U'

$(L U^2)(L' U^2)(L F')(L' U' L U)(L F L^2 U)$

Rb - Probability = 1/18

 $(R U')(L' U)(R' U^2)(L U')(L' U^2) L$ $(L' U' L F)(L' U' L U)(L F')(L^2 U)(L U) *$

Jb - Probability = 1/18

(L U' L' U) L2 y (L U L' U') y' x (L' U' L U) L2 B y' (L U F)(L' U' L U)(L F')(L² U)(L U L' U') L U' L' * y² (L U² L) d (L F)(L² U L U')(L F')(L' U) F'

F - Probability = 1/18

F' (L' U)(L U L' U')(L F)(L' U' L U)(L F' L' F) $F' L' U' (\hat{L} U^2 L) (R \hat{U} L' \hat{U}) (R' \hat{U}^2) (L^2 \hat{F})$

 \mathbf{Y} - Probability = 1/18

[(L U') R U² (L' U) R']*2 U' (L U' L' U)(L F U)(F' L' Ū')(L F' L F)(L' U L') *

Nb - Probability = 1/72

$(R^2 u)(R' U R' U')(R u') R^2 y (L' U L)$ $y^2 (L^2 u)(L' U L' U')(L u') L^2 y' (L' U L) *$

Gc - Probability = 1/18

(R U R') y' (R² u')(R U' R' U)(R' u) R² y² (L U L')(U' D)(L² U')(L U' L' U)(L' U) L² D' U * (R U R') y (L² u')(L U' L' U)(L' u) L²

Gb - Probability = 1/18

