Title*

Marvin Lasserre $^{1[0000-1111-2222-3333]},$ Régis Lebrun $^{2[0000-1111-2222-3333]},$ and Pierre-Henri Wuillemin $^{1[0000-1111-2222-3333]}$

- ¹ Laboratoire d'Informatique de Paris 6, 4 place Jussieu, Paris, France lncs@lip6.com
- ² ABC Institute, Rupert-Karls-University Heidelberg, Heidelberg, Germany {abc,lncs}@uni-heidelberg.de

Abstract. The abstract should briefly summarize the contents of the paper in 150-250 words.

Keywords: Copulas · Copula Bayesian Networks · Learning.

1 Introduction

2 Copulas

Throughout the remainder of this article, we will denote by $\overline{\mathbb{R}}$ the extended set of real numbers defined as $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. Let $\chi = \{X_1, \dots, X_n\}$ be a set of n continuous random variables and $H(X_1, \dots, X_n) = \mathbb{P}(X_1 \leq x_1, \dots, X_n \leq x_n)$ a cumulative distributive function (CDF) over χ . We denote by lower case x_i a realization of a random variable. Recall that a CDF respects the following properties:

1. For every
$$\mathbf{x} \in \mathbf{I}^n$$
,
$$H(\mathbf{x}) = 0 \text{isequaltoa}_{\mathbf{i}}. \tag{1}$$

An n-dimensional copula is then a function C from the n-dimensional unit cube $\mathbf{I}^n = [0,1]^n$ to [0,1] which respects the two following properties:

1. The function C is grounded and n-increasing.

A copula function may also be seen as a distribution function and is consequently of main interest to draw sample from a known distribution law using Monte-Carlo methods. Moreover, copulas being distributions, we can define a copula density function

Theorem 1 (Sklar 1959). Let $H(x_1, ..., x_n)$ be any multivariate distribution over continuous random variables, there exists a copula function such that

$$H(x_1, \dots, x_n) = C(F(x_1), \dots, F(x_n)).$$
 (2)

Furthermore, if each $F(x_i)$ is continuous then C is unique.

 $^{^{\}star}$ Supported by organization x.

3 Copula Bayesian Networks

A copula bayesian networks (CBN), as defined by G. Elidan [?], is a triplet $(\mathcal{G}, \theta_C, \theta_F)$ where \mathcal{G} is directed acyclic graph (DAG), θ_C a set of copulas and θ_F a set of marginals. As in bayesian networks, a CBN encodes the conditional independencies of a multivariate probability distribution.