Concept Drift and Sequential Data

Connections between multi-label and time-series learning

Jesse Read

02 December, 2016

Outline

- Review: Multi-label Learning
- 2 Label Dependence and Drift
- Temporal Dependence
- Connections to Sequential Data
- 5 Time-Series Data Mining: A quick overview
- 6 Unlabelled Instances
- Summary
- Appendix: Evaluation Metrics

Multi-labelled Data

$$\mathbf{y} = \{ \mathtt{sunset}, \mathtt{foliage} \}$$

$$\equiv [1, 0, 1, 0, 0, 0]$$

i.e., multiple labels per instance instead of a single label.

Multi-label Learning

The task of building a model to map *D* inputs to *L* outputs:

$$\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\} \bullet \text{dataset}$$

$$\mathbf{x}_i = [x_1^{(i)}, \dots, x_D^{(i)}] \bullet \text{instance, where } x_j \in \mathbb{R}$$

$$\mathbf{y}_i = [y_1^{(i)}, \dots, y_L^{(i)}] \bullet \text{label assignment } y_j \in \{0, 1\}$$

$$\mathbf{h} : \mathcal{X} \to \mathcal{Y} \bullet \text{multi-label model}$$

$$\hat{\mathbf{y}} = h(\tilde{\mathbf{x}}) \bullet \text{multi-label classification}$$

$$\epsilon = E(\hat{\mathbf{y}}, \mathbf{y}) \bullet \text{multi-label evaluation}$$

Multi-label Learning

 $\mathcal{L} = \{ ext{sunset}, ext{people}, ext{foliage}, ext{beach}, ext{urban}, ext{field} \} \ (L=6)$

$$\mathbf{x}_i =$$

$$egin{aligned} \hat{\mathbf{y}}_i &= h(\mathbf{x}_i) \ &= [1,0,1,0,0,0] \Leftrightarrow \{ exttt{sunset}, exttt{foliage} \} \ &\in \{0,1\}^6 \Leftrightarrow \hat{Y}_i \subseteq \mathcal{L} \end{aligned}$$

i.e., multiple labels per instance instead of a single label.

Single-label vs. Multi-label

Table: Single-label $Y \in \{0, 1\}$

X_1	X_2	X_3	X_4	X_5	Y
1	0.1	3	1	0	0
0	0.9	1	0	1	1
0	0.0	1	1	0	0
1	8.0	2	0	1	1
1	0.0	2	0	1	0
0	0.0	3	1	1	?

Table: Multi-label $Y \subseteq \{\lambda_1, \dots, \lambda_L\}$

X_1	X_2	X_3	X_4	X_5	Y
1	0.1	3	1	0	$\{\lambda_2,\lambda_3\}$
0	0.9	1	0	1	$\{\lambda_1\}$
0	0.0	1	1	0	$\{\lambda_2\}$
1	8.0	2	0	1	$\{\lambda_1,\lambda_4\}$
1	0.0	2	0	1	$\{\lambda_4\}$
0	0.0	3	1	1	?

Single-label vs. Multi-label

Table: Single-label $Y \in \{0, 1\}$

X_1	X_2	X_3	X_4	X_5	Y
1	0.1	3	1	0	0
0	0.9	1	0	1	1
0	0.0	1	1	0	0
1	8.0	2	0	1	1
1	0.0	2	0	1	0
0	0.0	3	1	1	?

Table: Multi-label $[Y_1, \ldots, Y_L] \in 2^L$

X_1	X_2	X_3	X_4	X_5	Y_1	Y_2	Y_3	Y_4
1	0.1	3	1	0	0	1	1	0
0	0.9	1	0	1	1	0	0	0
0	0.0	1	1	0	0	1	0	0
1	8.0	2	0	1	1	0	0	1
1	0.0	2	0	1	0	0	0	1
0	0.0	3	1	1	?	?	?	?

Binary Relevance (BR)

$$\hat{y}_j = h_j(\mathbf{x}) = \underset{y_j \in \{0,1\}}{\operatorname{argmax}} p(y_j | \mathbf{x}) \bullet \text{for each } j = 1, \dots, L$$

- recall: $y_j^{(i)} = 1$ if the *j*-th label is relevant to (associated with/assigned to) the *i*-th instance.
- independent *L* models (one for each label)
- the *j*-th model predicts the relevance of the *j*-th label
- but labels are not independent!

Two Alternatives

Meta Labels

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, p(\mathbf{y}|\mathbf{x})$$

 goal: reduce size of y (i.e., distinct combinations)

Classifier Chains

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \{0,1\}^L}{\operatorname{argmax}} p(y_1|\mathbf{x}) \prod_{j=2}^L p(y_j|\mathbf{x}, y_1, \dots, y_{j-1})$$
chain rule

• goal: reduce connectivity among Y_1, \ldots, Y_L

Two Alternatives

Meta Labels

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, p(\mathbf{y}|\mathbf{x})$$

 goal: reduce size of y (i.e., distinct combinations)

Classifier Chains

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \{0,1\}^L}{\operatorname{argmax}} p(y_1|\mathbf{x}) \prod_{j=2}^L p(y_j|\mathbf{x}, y_1, \dots, y_{j-1})$$
chain rule

• goal: reduce connectivity among Y_1, \ldots, Y_L

Outline

- Review: Multi-label Learning
- 2 Label Dependence and Drift
- Temporal Dependence
- Connections to Sequential Data
- 5 Time-Series Data Mining: A quick overview
- 6 Unlabelled Instances
- Summary
- 8 Appendix: Evaluation Metrics

Concept Drift

Figure: Single-labelled data and model at t = 1, ..., 50 (left) and t = 0, ..., 200 (center) and t = 150, ..., 200 (right). Concept-drift occurs over t = 50, ..., 150.

Concept Drift

Figure: Single-labelled data and model at t = 1, ..., 50 (left) and t = 0, ..., 200 (center) and t = 150, ..., 200 (right). Concept-drift occurs over t = 50, ..., 150.

- Model becomes invalid as the concept drifts
- Multi-label concept drift involves also the *label variables*.

Concept Drift

Time (in blocks of 100)

Figure: Label frequency / month over time (until about 2007)

Dealing with Concept Drift

Possible approaches to *detecting* and *responding to* concept drift:

- Just ignore it batch models must be replaced anyway, kNN and SGD adapt; in other cases can use weighted ensembles/fading factor
- Monitor a predictive performance statistic with a change detector, and reset models
- Monitor the distribution with a change detector, and reset/recalibrate models

(similar to single-labelled data, except more complex measurement)

Detection via Monitoring Accuracy

Figure: Accuracy through concept drift ($t = 50, \dots, 150$).

Label Correlation

Are labels Y_1 and Y_2 correlated (linearly dependent)? This can be quantified with, e.g., Pearson's correlation coefficient:

$$\rho_{Y_1, Y_2} = \frac{\mathsf{Cov}(Y_1, Y_2)}{\mathsf{Std}(Y_1)\mathsf{Std}(Y_2)} \tag{1}$$

$$= \frac{\mathbb{E}[(Y_1 - \mu_1)(Y_2 - \mu_2)]}{\sqrt{\mathbb{E}[(Y_1 - \mu_1)^2]}\sqrt{\mathbb{E}[(Y_2 - \mu_2)^2]}}$$
(2)

$$= \frac{\sum_{i=1}^{N} [(y_{i1} - \bar{y}_1)(y_{i2} - \bar{y}_2)]}{\sqrt{\sum_{i=1}^{N} [(y_{i1} - \bar{y}_1)^2] \sum_{i=1}^{N} [(y_{i2} - \bar{y}_2)^2]}}$$
(3)

Label Dependence

For more general dependence, one can consider the entropy-based mutual information:

$$I(Y_1, Y_2) = \sum_{y_1 \in \{0,1\}} \sum_{y_2 \in \{0,1\}} p(y_1, y_2) \log \left(\frac{p(y_1, y_2)}{p(y_1)p(y_2)} \right)$$

where $p(y_1, y_2)$ is the joint probability, and $p(y_1)$ is the marginal probability. Notice that in the case of independence, $p(y_1, y_2) = p(y_1)p(y_2)$ and thus $\log 1 = 0$. Where to get these probability distribution functions p? We use, for example,

$$p_{\mathbf{x}}(y_1 = 1, y_2 = 1) \approx f_1^{\mathsf{CC}}(\mathbf{x}) \cdot f_2^{\mathsf{CC}}(\mathbf{x}, 1)$$

$$p_{\mathbf{x}}(y_1 = 1)p_{\mathbf{x}}(y_2 = 1) \approx f_1^{\mathsf{BR}}(\mathbf{x}) \cdot f_2^{\mathsf{BR}}(\mathbf{x})$$

Detection via Monitoring Distribution

Recall the distribution of errors

This shape may change over time – and structures may need to be adjusted to cope (recall: changing structure may improve performance)

Multi-label Concept Drift

Consider the relative frequencies of labels Y_1 and Y_2 at time t,

$$\mathbf{C}_t = \frac{1}{t} \mathbf{Y}^\top \mathbf{Y} = \begin{bmatrix} \tilde{p}_1 & \tilde{p}_{1,2} \\ \tilde{p}_{2,1} & \tilde{p}_2 \end{bmatrix}$$

where $\tilde{p}_{1,2} > \tilde{p}_1 \tilde{p}_2$ indicates marginal dependence!

Possible drift (where $C_t \neq C_{t+1}$):

- p_1 increases (label Y_1 relatively more frequent)
- p_1 and p_2 both decrease (label cardinality decreasing)
- $p_{1,2}$ changes relative to p_1p_2 (change in marginal dependence relation between the labels)

Multi-label Concept Drift

And when conditioned on input x, we consider the relative frequencies/values of the errors, where, e.g., $E_{ij} = (y_i^{(i)} - \hat{y}_j^{(i)})^2$:

$$\mathbf{C}_t = rac{1}{t}\mathbf{E}^{ op}\mathbf{E} = egin{bmatrix} ilde{p}_1 & ilde{p}_{1,2} \ ilde{p}_{2,1} & ilde{p}_2 \end{bmatrix}$$

(if conditional independence, then $\tilde{p}_{1,2} \approx \tilde{p}_1 \cdot \tilde{p}_2$).

Possible drift (where $C_t \neq C_{t+1}$):

- p_1 increases (more errors on 1-th label)
- p_1 and p_2 both increase (more errors)
- $p_{1,2}$ changes relative to p_1, p_2 (change in conditional dependence relation)

Outline

- Review: Multi-label Learning
- 2 Label Dependence and Drift
- Temporal Dependence
- 4 Connections to Sequential Data
- 5 Time-Series Data Mining: A quick overview
- 6 Unlabelled Instances
- Summary
- Appendix: Evaluation Metrics

Data Streams

$$y_t = h(\mathbf{x}_t) + \epsilon_t$$

- $\mathbf{x}_t \sim p_{\theta}$, comes i.i.d. from distribution p
- θ (i.e., which defines the distribution) may change over time (concept drift: sudden, gradual, repetitively, ...)
- But the usual implicit assumption is made that

$$p(y_t|\mathbf{x}_t) = p(y_t|\mathbf{x}_t, y_{t-1}, \mathbf{x}_{t-1})$$

But should we make this assumption? Is there time dependence?

Temporal dependence

The auto-correlation function (basically Pearson's correlation coefficient of a variable with itself, lagged +1),

$$\rho_{Y_t, Y_{t+1}} = \frac{\operatorname{Cov}(Y_t, Y_{t+1})}{\operatorname{Std}(Y_t) \operatorname{Std}(Y_{t+1})} \tag{4}$$

$$= \frac{\sum_{t=1}^{T-1} [(y_t - \bar{y})(y_{t+1} - \bar{y})]}{\sqrt{\sum_{t=1}^{T-1} (y_t - \bar{y})^2 \sum_{t=2}^{T} (y_t - \bar{y})^2}}$$
(5)

$$\approx \frac{\sum_{t=1}^{T-1} [(y_t - \bar{y})(y_{t+1} - \bar{y})]}{\sum_{t=2}^{T} (y_t - \bar{y})^2}$$
 (6)

(NB: for large T, the difference in the mean of Y_1, \ldots, Y_{T-1} and of Y_2, \ldots, Y_T can be ignored, hence Eq. (6).)

Temporal dependence

The auto-correlation function (basically Pearson's correlation coefficient of a variable with itself, lagged +1),

$$\rho_{Y_t, Y_{t+1}} = \frac{\operatorname{Cov}(Y_t, Y_{t+1})}{\operatorname{Std}(Y_t) \operatorname{Std}(Y_{t+1})} \tag{4}$$

$$= \frac{\sum_{t=1}^{T-1} [(y_t - \bar{y})(y_{t+1} - \bar{y})]}{\sqrt{\sum_{t=1}^{T-1} (y_t - \bar{y})^2 \sum_{t=2}^{T} (y_t - \bar{y})^2}}$$
(5)

$$\approx \frac{\sum_{t=1}^{T-1} [(y_t - \bar{y})(y_{t+1} - \bar{y})]}{\sum_{t=2}^{T} (y_t - \bar{y})^2}$$
 (6)

(NB: for large T, the difference in the mean of Y_1, \ldots, Y_{T-1} and of Y_2, \ldots, Y_T can be ignored, hence Eq. (6).) We can generalise to $\rho(k)$ to consider the correlation from y_t and y_{t+k} for any $\log k$ (may even be negative).

Temporal dependence

Figure: Auto-correlation function on the Electricity dataset, for $k=1,2,\ldots,500$; source: Indré Žliobaitė arXiv:1301.3524v1, Jan 2015.

Outline

- Review: Multi-label Learning
- 2 Label Dependence and Drift
- Temporal Dependence
- Connections to Sequential Data
- 5 Time-Series Data Mining: A quick overview
- 6 Unlabelled Instances
- 7 Summary
- 8 Appendix: Evaluation Metrics

Streams with Time Dependence

At time t, we see instance x_t , and we wish to make a classification, (e.g., Naive Bayes)

$$\hat{y}_t = \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(y_t | x_t)$$
$$= \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(x_t | y_t) p(y_t)$$

- Not a problem, we maintain counts of $y_t = 1$ vs $y_t = 0$, and $x_t = v$, $y_t = k$ for all values of $v \in \mathcal{X}$, $k \in \mathcal{L}$
- At time t + 1 we get y_t ; we can now update counts with $(x_t, y_t)!$
- We can also measure $\epsilon_t = E(y_t \hat{y}_t)$, look for drift, etc.

Streams with Time Dependence

At time t, we see instance x_t , and we wish to make a classification, (e.g., Naive Bayes)

$$\hat{y}_t = \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(y_t | x_t)$$
$$= \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(x_t | y_t) p(y_t)$$

- Not a problem, we maintain counts of $y_t = 1$ vs $y_t = 0$, and $x_t = v$, $y_t = k$ for all values of $v \in \mathcal{X}$, $k \in \mathcal{L}$
- At time t + 1 we get y_t ; we can now update counts with $(x_t, y_t)!$
- We can also measure $\epsilon_t = E(y_t \hat{y}_t)$, look for drift, etc.

But what if the value at y_t affects the value at y_{t+1} (i.e., the stream exhibits *time* dependence)?

Hidden Markov Model

A generative approach,

$$\hat{y}_t = \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x})$$

$$= \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(\mathbf{x}|\mathbf{y}) p(\mathbf{y})$$

$$= \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(y_1) \prod_{t=2}^{T} p(x_t|y_t) p(y_t|y_{t-1})$$

recall:
$$\mathbf{y} = [y_1, \dots, y_T], \mathbf{x} = [x_1, \dots, x_T].$$

Maximum Entropy Markov Model (MEMM)

A discriminative approach,

$$\hat{y}_t = \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x})$$

$$= \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(y_1|x_1) \prod_{t=2}^{T} p(y_t|y_{t-1}, x_t)$$

[Linear Chain] Conditional Random Fields (CRFs)

$$\mathbf{\hat{y}} = \underset{\mathbf{y} \in \{0,1\}^T}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x}; \mathbf{w})$$

$$\approx \underset{\mathbf{y} \in \{0,1\}^T}{\operatorname{argmax}} \prod_{t=2}^T f_t(y_{t-1}, y_t, \mathbf{x})$$

Avoids the label bias / error propagation problem.

Time indices = label indices

- Labels indices can correspond to steps in time (or space)
- Many existing multi-label methodologies can be applied

Time indices = label indices

- Labels indices can correspond to steps in time (or space)
- Many existing multi-label methodologies can be applied

Some differences in sequential data:

- Time dependence (= label dependence!)
- Input observation may be different to each label
- Specific domain assumptions and features

From MEMM to CC

In an HMM, the filtering task / forward algorithm:

$$\hat{y}_t = \underset{y_t \in \{0,1\}}{\operatorname{argmax}} p(x_t|y_t) p(y_t|y_{t-1})$$

(assume that we have already y_{t-1} , therefore smoothing pass not necessary). We can model this as a discriminative classifier with a Max. Entropy Markov Model (MEMM):

$$\hat{y}_{t} = \underset{y_{t} \in \{0,1\}}{\operatorname{argmax}} p(y_{t} | x_{t}, y_{t-1})$$

$$= \underset{y_{t} \in \{0,1\}}{\operatorname{argmax}} \frac{1}{Z(y_{t-1}, x_{t})} \exp \left\{ \sum_{k} f_{k}(y_{t}, x_{t}, y_{t-1}) \right\}$$

$$y_{2} \xrightarrow{y_{3}} y_{4} \xrightarrow{y_{4}} y_{5} \xrightarrow{y_{2}} y_{3} \xrightarrow{y_{4}} y_{4} \xrightarrow{y_{5}} y_{4} \xrightarrow{y_{5}} y_{4} \xrightarrow{y_{5}} y_{5} \xrightarrow{y_{5}} y_{$$

From MEMM to CC

Now assume

- drop normalization constant,
- general input **x**, generic classifier h, and t := j, and that
- we *don't* have y_{t-1} and must input prediction \hat{y}_t . then,

$$\begin{split} \hat{y}_j &= h(\mathbf{x}, \hat{y}_{t-1}) \\ &= \underset{y_j \in \{0,1\}}{\operatorname{argmax}} f_j(y_j, \mathbf{x}, \hat{y}_{j-1}; \mathbf{w}_j) \\ &\approx \underset{y_j \in \{0,1\}}{\operatorname{argmax}} p(Y_j = y_j | X = \mathbf{x}, Y_{j-1} = \hat{y}_{j-1}) \end{split}$$

we obtain a singly-linked, greedy, classifier chain (CC)!

From CRF to PCC

$$\begin{aligned} \mathbf{\hat{y}}_{t} &= \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x}; \mathbf{w}) \\ &= \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} \exp \left\{ \sum_{k} w_{k} f_{k}(y_{t}, y_{t-1}, \mathbf{x}_{t}) \right\} \bullet \operatorname{CRF} \text{ inference} \\ &= \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} \prod_{t=1}^{T} \exp \left\{ w_{t} \cdot f_{t}(y_{t}, y_{t-1}, \mathbf{x}_{t}) \right\} \bullet e^{a+b} = e^{a} e^{b} \\ &= \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} \prod_{t=1}^{T} f_{t}(y_{t}, y_{t-1}, \mathbf{x}_{t}; \mathbf{w}_{t}) \bullet \operatorname{a generic fn} f \\ &= \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} f_{1}(y_{1}, \mathbf{x}) \prod_{j=2}^{L} f_{j}(y_{1}, \dots, y_{j-1}, \mathbf{x}) \bullet \operatorname{PCC} \\ &\approx \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} p(y_{1}|\mathbf{x}) \prod_{j=2}^{L} p(y_{j}|y_{1}, \dots, y_{j-1}, \mathbf{x}) \\ &\approx \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} p(y_{1}|\mathbf{x}) \prod_{j=2}^{L} p(y_{j}|y_{1}, \dots, y_{j-1}, \mathbf{x}) \end{aligned}$$

From CRF to PCC

• PCC is a flexible version of a CRF (wrt loss function, base classifier, ...)

Across Labels and Time

Each index is time, containing multiple labels:

$$\mathbf{y}_t = [y^{(1)}, \dots, y^{(L)}]$$

for *L* labels and time t = 1, ..., T.

Across Labels and Time

Route Estimation/Prediction

• Predict in time $t = 1, \dots$ for L travellers

Outline

- Review: Multi-label Learning
- 2 Label Dependence and Drift
- Temporal Dependence
- Connections to Sequential Data
- 5 Time-Series Data Mining: A quick overview
- 6 Unlabelled Instances
- 7 Summary
- Appendix: Evaluation Metrics

Time-Series Data Mining

Tasks in 'time series' mining.

- query by content
- anomaly detection
- motif discovery
- prediction (forecasting)
- clustering (whole series)
- classification (whole series)
- segmentation (e.g., change point detection)

It is all about the 'shape' of the data.

Outline

- Review: Multi-label Learning
- 2 Label Dependence and Drift
- Temporal Dependence
- Connections to Sequential Data
- 5 Time-Series Data Mining: A quick overview
- 6 Unlabelled Instances
- Summary
- Appendix: Evaluation Metrics

Unlabelled Instances

In many applications it is unrealistic to expect labels for every instance. What to do about this?

- Ignore instances with no label
- Use active learning to get good labels
- Use predicted labels (self-training)
- Use an unsupervised process for example clustering, latent-variable representations.

Unlabelled Instances

- Use an unsupervised process for example clustering, latent-variable representations.

 - $\mathbf{2} \ \mathbf{\hat{y}}_t = h(\mathbf{z}_t)$
 - **3** update \mathbf{g} with $(\mathbf{x}_t, \mathbf{z}_t)$
 - \bullet update h with $(\mathbf{z}_{t-1}, \mathbf{y}_{t-1})$ (*if* y_{t-1} is available)

Unlabelled Instances

• Use an unsupervised process for example clustering, latent-variable representations.

Example

- z-variables are learned from input \mathbf{x}_t only/primarily
- model $h: \mathcal{Z} \to Y$ updated when labels \mathbf{y}_t available

Outline

- Review: Multi-label Learning
- 2 Label Dependence and Drift
- Temporal Dependence
- 4 Connections to Sequential Data
- 5 Time-Series Data Mining: A quick overview
- 6 Unlabelled Instances
- Summary
- 8 Appendix: Evaluation Metrics

Summary

- Multi-label classification can be adapted to the data-stream environment
- This context incurs particular challenges: modelling label dependence is important, but this is difficult in a dynamic environment (concept drift)
- Temporal dependence may exist in data streams: dependence exists across time
- Strong parallels exist between multi-label learning (dependence among labels) and sequence learning (dependence across time) problems
- Possible applications exist to time series learning

Concept Drift and Sequential Data

Connections between multi-label and time-series learning

Jesse Read

02 December, 2016

Outline

- Review: Multi-label Learning
- 2 Label Dependence and Drift
- Temporal Dependence
- 4 Connections to Sequential Data
- 5 Time-Series Data Mining: A quick overview
- 6 Unlabelled Instances
- 7 Summary
- 8 Appendix: Evaluation Metrics

	$\mathbf{y}^{(i)}$	$\mathbf{\hat{y}}^{(i)}$
$\mathbf{\tilde{x}}^{(1)}$	$[1\ 0\ 1\ 0]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0\ 1\ 0\ 1]$
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[1\ 0\ 0\ 1]$
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	[0 1 0 0]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	[1 0 0 1]

HAMMING LOSS

$$= \frac{1}{NL} \sum_{i=1}^{N} \sum_{i=1}^{L} \mathbb{I}[\hat{y}_{j}^{(i)} \neq y_{j}^{(i)}]$$

= 0.20

	$\mathbf{y}^{(i)}$	$\mathbf{\hat{y}}^{(i)}$
$\mathbf{\tilde{x}}^{(1)}$	$[1\ 0\ 1\ 0]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0\ 1\ 0\ 1]$
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[1\ 0\ 0\ 1]$
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	[0 1 <mark>0</mark> 0]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	[1 0 0 1]

0/1 Loss

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(\hat{\mathbf{y}}^{(i)} \neq \mathbf{y}^{(i)})$$
$$= 0.60$$

Often used as **EXACT MATCH** (1-0/1 LOSS)

	$\mathbf{y}^{(i)}$	$\mathbf{\hat{y}}^{(i)}$
$\mathbf{\tilde{x}}^{(1)}$	$[1\ 0\ 1\ 0]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0\ 1\ 0\ 1]$
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[1\ 0\ 0\ 1]$
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	[0 1 <mark>0</mark> 0]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	[1 0 0 1]

JACCARD INDEX

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{|\hat{\mathbf{y}}^{(i)} \wedge \mathbf{y}^{(i)}|}{|\hat{\mathbf{y}}^{(i)} \vee \mathbf{y}^{(i)}|}$$
$$= \frac{1}{5} (\frac{1}{3} + 1 + 1 + \frac{1}{2} + \frac{1}{2})$$
$$= 0.67$$

We can evaluate posterior probabilities/confidences directly.

	$\mathbf{y}^{(i)}$	$[p(y_j \tilde{\mathbf{x}}^{(i)}])]_{j=1}^L$
$\mathbf{\tilde{x}}^{(1)}$	[1 0 1 0]	[0.9 0.0 0.4 0.6]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0.1\ 0.8\ 0.0\ 0.8]$
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[0.8\ 0.0\ 0.1\ 0.7]$
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	[0.1 0.7 <mark>0.1</mark> 0.2]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	[1.0 0.0 0.0 1.0]

LOG LOSS – like HAMMING LOSS, to encourage good 'confidence',

- $y_i = 1$, $h_i(\tilde{\mathbf{x}}) = 0.4$ incurs loss of $-\log(0.4) = 0.92$
- $y_i = 1$, $h_i(\tilde{\mathbf{x}}) = 0.1$ incurs loss of $-\log(0.1) = 2.30$

	$\mathbf{y}^{(i)}$	$[p(y_j \tilde{\mathbf{x}}^{(i)}])]_{j=1}^L$
$\mathbf{\tilde{x}}^{(1)}$	$[1\ 0\ 1\ 0]$	[0.9 0.0 0.4 0.6]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0.1\ 0.8\ 0.0\ 0.8]$
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[0.8\ 0.0\ 0.1\ 0.7]$
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	[0.1 0.7 0.1 0.2]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	[1.0 0.0 0.0 <mark>1.0</mark>]

RANKING LOSS – to encourage good ranking; evaluates the average fraction of label pairs miss-ordered for $\tilde{\mathbf{x}}$:

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{(i,k): v_i > v_k} \left(\mathbb{I}[r_i(j) < r_i(k)] + \frac{1}{2} \mathbb{I}[r_i(j) = r_i(k)] \right)$$

where $r_i(j) := \text{ranking of label } j \text{ for instance } \mathbf{\tilde{x}}^{(i)}$

	$\mathbf{y}^{(i)}$	$[p(y_j \tilde{\mathbf{x}}^{(i)}])]_{j=1}^L$
$\tilde{\mathbf{x}}^{(1)}$	$[1\ 0\ 1\ 0]$	[0.9 0.0 0.4 0.6]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0.1\ 0.8\ 0.0\ 0.8]$
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[0.8 \ 0.0 \ 0.1 \ 0.7]$
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	[0.1 0.7 <mark>0.1</mark> 0.2]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	[1.0 0.0 0.0 1.0]

RANKING LOSS – to encourage good ranking; evaluates the average fraction of label pairs miss-ordered for $\tilde{\mathbf{x}}$:

$$\frac{1}{5}(\frac{1}{4}+\frac{0}{4}+\frac{0}{4}+\frac{1.5}{4}+\frac{1}{4})$$

Other metrics used in the literature:

- ONE ERROR if top ranked label is not in set of true labels
- COVERAGE average "depth" to cover all true labels
- PRECISION
- RECALL
- macro-averaged F-MEASURE (ordinary averaging of a binary measure)
- micro-averaged F-MEASURE (labels as different instances of a 'global' label)
- PRECISION vs. RECALL curves

Example: 0/1 LOSS vs. HAMMING LOSS

	$\mathbf{y}^{(i)}$	$\mathbf{\hat{y}}^{(i)}$
$\tilde{\mathbf{x}}^{(1)}$	[1 0 1 0]	[1 0 0 1]
$\mathbf{\tilde{x}}^{(2)}$	$[1\ 0\ 0\ 1]$	$[1\ 0\ 0\ 1]$
$\mathbf{\tilde{x}}^{(3)}$	$[0\ 1\ 1\ 0]$	[0 1 0 0]
$\mathbf{\tilde{x}}^{(4)}$	$[1\ 0\ 0\ 0]$	[1 0 1 1]
$\mathbf{\tilde{x}}^{(5)}$	$[0\ 1\ 0\ 1]$	$[0\ 1\ 0\ 1]$

- HAM. LOSS 0.3
- 0/1 Loss 0.6

Example: 0/1 LOSS vs. HAMMING LOSS

	$\mathbf{y}^{(i)}$	$\mathbf{\hat{y}}^{(i)}$
$\mathbf{\tilde{x}}^{(1)}$	[1010]	[1 0 1 1]
$\mathbf{\tilde{x}}^{(2)}$	$[1\ 0\ 0\ 1]$	[1 1 0 1]
$\mathbf{\tilde{x}}^{(3)}$	$[0\ 1\ 1\ 0]$	[0 1 1 0]
$\mathbf{\tilde{x}}^{(4)}$	$[1\ 0\ 0\ 0]$	[1 0 1 0]
$\mathbf{\tilde{x}}^{(5)}$	[0 1 0 1]	[0 1 0 1]

Optimizing HAM. LOSS...

- HAM. LOSS 0.2
- 0/1 Loss 0.8

Example: 0/1 LOSS vs. HAMMING LOSS

	$\mathbf{y}^{(i)}$	$\mathbf{\hat{y}}^{(i)}$
$\tilde{\mathbf{x}}^{(1)}$	[1010]	[0 1 0 1]
$\mathbf{\tilde{x}}^{(2)}$	$[1\ 0\ 0\ 1]$	$[1\ 0\ 0\ 1]$
$\mathbf{\tilde{x}}^{(3)}$	$[0\ 1\ 1\ 0]$	[0 0 1 0]
$\mathbf{\tilde{x}}^{(4)}$	$[1\ 0\ 0\ 0]$	[0 1 1 1]
$\mathbf{\tilde{x}}^{(5)}$	[0 1 0 1]	[0 1 0 1]

Optimizing 0/1 Loss...

- HAM. LOSS **0.4**
- 0/1 Loss 0.4

Example: 0/1 Loss vs. Hamming loss

	$\mathbf{y}^{(i)}$	$\mathbf{\hat{v}}^{(i)}$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
$\mathbf{\tilde{x}}^{(2)}$	$[1\ 0\ 1\ 0]$	[0 1 0 1]
	$[1\ 0\ 0\ 1]$	$[1\ 0\ 0\ 1]$
$\tilde{\mathbf{x}}^{(3)}$	[0 1 1 0]	[0 0 1 0]
$\tilde{\mathbf{x}}^{(4)}$	$[1\ 0\ 0\ 0]$	[0 1 1 1]
$\mathbf{\tilde{x}}^{(5)}$	$[0\ 1\ 0\ 1]$	$[0\ 1\ 0\ 1]$

- HAMMING LOSS minimized by binary relevance
- 0/1 LOSS minimized by chain and label powerset methods
- Cannot minimize both at the same time!

For general evaluation, use multiple and contrasting evaluation measures!

Going from confidence to labels

Many methods output

- probabilistic information; or
- votes from an ensemble process

Example: Ensemble of 3 multi-label models

For some test instance $\tilde{\mathbf{x}}$...

	\hat{y}_1	\hat{y}_2	ŷ ₃	\hat{y}_4
$\mathbf{h}^1(\mathbf{ ilde{x}})$	1	0	1	0
$\mathbf{h}^2(\mathbf{\tilde{x}})$	0	1	1	0
$\mathbf{h}^3(\mathbf{\tilde{x}})$	1	0	1	0
J = m - 1		0.33	1.00	0.00
$\mathbf{\hat{y}} \in \{0,1\}^3$?	?	?	?

We may want to evaluate these directly (e.g., LOG LOSS); but we usually need to convert them to binary values (\hat{y}) .

Use a threshold of 0.5?

$$\hat{y}_j = \left\{ egin{array}{ll} 1, & \hat{p}_j(\mathbf{\widetilde{x}}) \geq 0.5 \\ 0, & ext{otherwise} \end{array}
ight.$$

Example with threshold of 0.5 $\hat{\mathbf{p}}(\mathbf{v}|\mathbf{\tilde{x}}^{(i)})$ $\hat{\mathbf{v}}^{(i)} := \mathbb{I}[\hat{\mathbf{p}}(\mathbf{v}|\mathbf{\tilde{x}}^{(i)}) > 0.5]$ $\mathbf{v}^{(i)}$ $\tilde{\mathbf{x}}^{(1)}$ $[1\ 0\ 1\ 0]$ $[0.9 \ 0.0 \ 0.4 \ 0.6]$ [1 0 **0** 1] $\tilde{\mathbf{x}}^{(2)}$ [0 1 0 1] [0.1 0.8 0.0 0.8] $[0\ 1\ 0\ 1]$ $\tilde{\mathbf{x}}^{(3)}$ [1 0 0 1] [0.8 0.0 0.1 0.7] $[1\ 0\ 0\ 1]$ $\tilde{\mathbf{x}}^{(4)}$ [0 1 1 0] [0.1 0.7 0.4 0.2] [0 1 0 0] $\mathbf{\tilde{x}}^{(5)}$ $[1\ 0\ 0\ 0]$ $[1.0 \ 0.0 \ 0.0 \ 1.0]$ $[1\ 0\ 0\ 1]$

... but would eliminate two errors with a threshold of 0.4!

Example with threshold of 0.5

	$\mathbf{y}^{(i)}$	$\hat{\mathbf{p}}(\mathbf{y} \mathbf{\tilde{x}}^{(i)})$	$\hat{\mathbf{y}}^{(i)} := \mathbb{I}[\hat{\mathbf{p}}(\mathbf{y} \mathbf{\tilde{x}}^{(i)}) \geq 0.5]$
$\mathbf{\tilde{x}}^{(1)}$	$[1\ 0\ 1\ 0]$	$[0.9 \ 0.0 \ 0.4 \ 0.6]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0.1\ 0.8\ 0.0\ 0.8]$	[0 1 0 1]
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[0.8 \ 0.0 \ 0.1 \ 0.7]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	$[0.1\ 0.7\ 0.4\ 0.2]$	[0 1 <mark>0</mark> 0]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	[1.0 0.0 0.0 1.0]	[1 0 0 1]

Possible thresholding strategies:

- Use *ad-hoc* threshold, e.g., 0.5
 - how to know which threshold to use?

Example with threshold of 0.5

	$\mathbf{y}^{(i)}$	$\hat{\mathbf{p}}(\mathbf{y} \mathbf{\tilde{x}}^{(i)})$	$\hat{\mathbf{y}}^{(i)} := \mathbb{I}[\hat{\mathbf{p}}(\mathbf{y} \mathbf{\tilde{x}}^{(i)}) \geq 0.5]$
$\mathbf{\tilde{x}}^{(1)}$	$[1\ 0\ 1\ 0]$	$[0.9 \ 0.0 \ 0.4 \ 0.6]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0.1\ 0.8\ 0.0\ 0.8]$	[0 1 0 1]
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[0.8 \ 0.0 \ 0.1 \ 0.7]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	$[0.1\ 0.7\ 0.4\ 0.2]$	[0 1 <mark>0</mark> 0]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	$[1.0 \ 0.0 \ 0.0 \ 1.0]$	[1 0 0 1]

Possible thresholding strategies:

- Select a threshold from an internal validation test, e.g., $\in \{0.1, 0.2, \dots, 0.9\}$
 - slow

Example with threshold of 0.5 $\hat{\mathbf{v}}^{(i)} := \mathbb{I}[\hat{\mathbf{p}}(\mathbf{v}|\mathbf{\tilde{x}}^{(i)}) > 0.5]$ $\mathbf{v}^{(i)}$ $\hat{\mathbf{p}}(\mathbf{v}|\mathbf{\tilde{x}}^{(i)})$ $\tilde{\mathbf{x}}^{(1)}$ $[1\ 0\ 1\ 0]$ $[0.9 \ 0.0 \ 0.4 \ 0.6]$ [1 0 **0** 1] $\mathbf{\tilde{x}}^{(2)}$ [0 1 0 1] [0.1 0.8 0.0 0.8] $[0\ 1\ 0\ 1]$ $\mathbf{\tilde{x}}^{(3)}$ [1 0 0 1] [0.8 0.0 0.1 0.7] [1 0 0 1] $\tilde{\mathbf{x}}^{(4)}$ $[0\ 1\ 1\ 0]$ $[0.1\ 0.7\ 0.4\ 0.2]$ [0 1 0 0]

Possible thresholding strategies:

[10000]

 $\mathbf{\tilde{x}}^{(5)}$

- Calibrate a threshold such that $LCARD(\mathbf{Y}) \approx LCARD(\hat{\mathbf{Y}})$
 - e.g., training data has label cardinality of 1.7;

[1.0 0.0 0.0 1.0]

• set a threshold *t* such that the label cardinality of the *test* data is as close as possible to 1.7

[1001]

Example with threshold of 0.5

	$\mathbf{y}^{(i)}$	$\hat{\mathbf{p}}(\mathbf{y} \mathbf{\tilde{x}}^{(i)})$	$\hat{\mathbf{y}}^{(i)} := \mathbb{I}[\hat{\mathbf{p}}(\mathbf{y} \mathbf{\tilde{x}}^{(i)}) \geq 0.5]$
$\mathbf{\tilde{x}}^{(1)}$	$[1\ 0\ 1\ 0]$	$[0.9 \ 0.0 \ 0.4 \ 0.6]$	[1 0 <mark>0 1</mark>]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0.1\ 0.8\ 0.0\ 0.8]$	[0 1 0 1]
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[0.8 \ 0.0 \ 0.1 \ 0.7]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	$[0.1\ 0.7\ 0.4\ 0.2]$	[0 1 0 0]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	[1.0 0.0 0.0 1.0]	[1 0 0 1]

Possible thresholding strategies:

- Calibrate L thresholds such that each $LCARD(\mathbf{\hat{Y}}_i) \approx LCARD(\mathbf{\hat{Y}}_i)$
 - e.g., the frequency of label $y_i = 1$ is 0.3,
 - set a threshold t_j such that $\hat{y}_j = 1$ with frequency as close as possible to 0.3

Example with threshold of 0.5

	$\mathbf{y}^{(i)}$	$\hat{\mathbf{p}}(\mathbf{y} \mathbf{\tilde{x}}^{(i)})$	$\mathbf{\hat{y}}^{(i)} := \mathbb{I}[\hat{\mathbf{p}}(\mathbf{y} \mathbf{\tilde{x}}^{(i)}) \geq 0.5]$
$\mathbf{\tilde{x}}^{(1)}$	$[1\ 0\ 1\ 0]$	$[0.9 \ 0.0 \ 0.4 \ 0.6]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(2)}$	$[0\ 1\ 0\ 1]$	$[0.1\ 0.8\ 0.0\ 0.8]$	[0 1 0 1]
$\mathbf{\tilde{x}}^{(3)}$	$[1\ 0\ 0\ 1]$	$[0.8 \ 0.0 \ 0.1 \ 0.7]$	[1 0 0 1]
$\mathbf{\tilde{x}}^{(4)}$	$[0\ 1\ 1\ 0]$	$[0.1\ 0.7\ 0.4\ 0.2]$	[0 1 <mark>0</mark> 0]
$\mathbf{\tilde{x}}^{(5)}$	$[1\ 0\ 0\ 0]$	$[1.0\ 0.0\ 0.0\ 1.0]$	[1 0 0 1]

Possible thresholding strategies:

- Calibrate L thresholds such that each $LCARD(\mathbf{Y}_j) \approx LCARD(\hat{\mathbf{Y}}_j)$
 - e.g., the frequency of label $y_i = 1$ is 0.3,
 - set a threshold t_j such that $\hat{y}_j = 1$ with frequency as close as possible to 0.3
 - ... but be careful **not to overfit!**