GLocalX

From Local to Global Explanations of Black Box Al Models

Mattia Setzu, Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, Fosca Giannotti

Consiglio Nazionale delle Ricerche

Why explainability?

ML developers

Debug

Users

Act

Auditors

Verify

Local VS Global explanations

Local explanations

- require only a fraction of the data
- more easily acquired
- precise but potentially complex

E.g. LIME, LORE, SHAP, etc.

Global explanations

- require data
- more cumbersome to acquire
- loose but potentially simple

E.g. CART, CPAR, SBRL, etc.

A third way: Local to Global

Local explanations

- require only a fraction of the data
- more easily acquired
- precise but potentially complex

E.g. LIME, LORE, SHAP, etc.

Global explanations

- require data
- more cumbersome to acquire
- loose but potentially simple

E.g. CART, CPAR, SBRL, etc.

The Local to Global setting

Explain globally by explaining locally!

- explanation-driven
- inferring instead of learning
- black-box model as oracle

The Local to Global setting

Explain globally by explaining locally!

- explanation-driven
- inferring instead of learning
- black-box model as oracle

Our proposal, GLocalX

- iterative and hierarchical inference
- axis-parallel decision rules as explanations

What to merge?

Distance between explanations

- Linkage for sets of explanations
 - o min
 - o max
 - o full

How to merge?

Twofold merge operator

- o approximate union (⊕) for concordance, approximate difference (⊖) for discordance
- each premise is an axis-parallel polyhedron, e.g.
 premise age > 20 is polyhedron P_{age}: [20, +∞)

Join

From local to global via premise relaxation.

$$P_{i} \colon [a_{p}, b_{p}] + Q_{i} \colon [a_{Q}, b_{Q}]$$

$$[non-empty] \qquad P_{i}, Q_{i} \neq \emptyset$$

$$[empty] \qquad P_{i} = \emptyset \text{ XOR } Q_{i} = \emptyset$$

Cut

From global to local via premise specification.

P_i : $[a_p, b_p] - Q_i$: $[a_Q, b_Q]$						
[left]	[a _P , a _Q]					
[right]	[b _P , b _Q]					
[in-between]	[a _Q , a _P], [b _P , b _Q]					
[everything]	[a _{<} , a _P], [b _P , b _{>}]					

Cut

From global to local via premise specification.

Should we merge?

Not all merges are created equal!

- some are more global and less accurate
- some are less global and more accurate

BIC(E)

- model likelihood as explanation fidelity
- complexity as avg. #rules and avg. length

404: data not found

Data may be scarce for auditors and users

- density estimation of training data
- run GLocalX as is

Full algorithm

```
Algorithm 1 GLOCALX(\mathbb{E}, \alpha)
Input: \mathbb{E} explanation theories, \alpha filter threshold
Output: E explanation theory
 1: repeat
         \mathbb{Q} \leftarrow \text{SORT}(\mathbb{E})
                                                                > sort pairs of theories by similarity
         merged \leftarrow \texttt{False}
     X' \leftarrow \text{batch}(X)
         while \neg merged \land \mathbb{Q} \neq \emptyset do
       E_i, E_j \leftarrow POP(\mathbb{Q})
                                                                         > select most similar theories
       E_{i+j} \leftarrow \text{MERGE}(E_i, E_j, X')
                                                                                         > merge theories
             if \mathrm{BIC}(E_{i+j}) \leq \mathrm{BIC}(E_i \cup E_j) then

▷ verify improvement

            merged \leftarrow \texttt{True}
                   break
10:
         if merged then
                                                                                          D merge occurred
              \mathbb{E} \leftarrow \text{UPDATE}(E_i, E_j, E_{i+j})
                                                                                       D update hierarchy
13: until \mid E \mid > 1 \land merged
                                                                        D until the merge is successful
14: E \leftarrow \text{FILTER}(E, \alpha)
                                                                                    > Filter final theory
15: return E
```

Full algorithm: filtering

```
Algorithm 1 GLOCALX(\mathbb{E}, \alpha)
Input: \mathbb{E} explanation theories, \alpha filter threshold
Output: E explanation theory
 1: repeat
         \mathbb{Q} \leftarrow \text{SORT}(\mathbb{E})
                                                               > sort pairs of theories by similarity
         merged \leftarrow \texttt{False}
 4: X' \leftarrow \text{batch}(X)
         while \neg merged \land \mathbb{Q} \neq \emptyset do
      E_i, E_j \leftarrow POP(\mathbb{Q})
                                                                        > select most similar theories
       E_{i+j} \leftarrow \text{MERGE}(E_i, E_j, X')
                                                                                        > merge theories
            if \mathrm{BIC}(E_{i+j}) \leq \mathrm{BIC}(E_i \cup E_j) then

▷ verify improvement

           merged \leftarrow True
                  break
         if merged then
                                                                                        D merge occurred
              \mathbb{E} \leftarrow \text{UPDATE}(E_i, E_j, E_{i+j})
                                                                                      D update hierarchy
13: until \mid E \mid > 1 \land merged
                                                                       D until the merge is successful
14: E \leftarrow \text{FILTER}(E, \alpha)
                                                                                  > Filter final theory
15: return E
```


Validation

Setting

- 3 UCI datasets (~1k to ~50k records), 8 black boxes (DNN, RF, SVM)
- 1 real-world fraud detection dataset (from the Italian Ministry of Economics)
- Natively global models:
 - rule-based models (CPAR)
 - decision tree (pruned/not pruned)

Input size: how many rules do we need?

Acquiring local explanation can be costly, can we get away with using fewer local explanations?

How simple can we make our explanations?

The higher the filter, the less rules we output.

α-percentile	Fidelity	Size	Length
75	83.0 ± 3.6	31.0 ± 19.4	5.36 ± 2.41
90	84.7 ± 5.14	11.5 ± 6.4	5.43 ± 2.46
95	84.5 ± 5.48	6.625 ± 2.9	5.17 ± 2.59
99	84.0 ± 5.0	3.625 ± 2.6	5.97 ± 3.04

GLocalX VS natively global models

	Fidelity	Size	Length
GLocalX	85.1	8.5	4.28 ± 1.42
GLocalX*	83.5	9.5	4.79 ± 1.67
CPAR	86.6	91.6	3.06 ± 1.66
Decision Tree	87.5	1036.5	6.60 ± 1.86
Pruned Decision Tree	85.5	29.1	2.64 ± 0.73
Union	76.8	2660.2	4.14 ± 1.63

GLocalX

From Local to Global Explanations of Black Box Al Models

- Explaining globally by explaining locally
- Explanation cost: how many explanations do we really need?
- Local to Global vs Global explanation paradigm

