PQ selon orfo 2015

Planificatrice-électricienne CFC

Planificateur-électricien CFC

Technique des systèmes électriques, incl. bases technologiques

Dossier des expertes et experts

90	Minutes	23	Exercices	18	Pages	57	Points
----	---------	----	-----------	----	-------	----	--------

Moyens auxiliaires autorisés :

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

Cotation - Les critères suivants permettent l'obtention de la totalité des points :

- Les formules et les calculs doivent figurer dans la solution.
- · Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Le nombre de réponses demandé est déterminant.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

Barème

6	5,5	5	4,5	4	3,5	3	2,5	2	1,5	1
57,0-54,5	54,0-48,5	48,0-43,0	42,5-37,5	37,0-31,5	31,0-26,0	25,5-20,0	19,5-14,5	14,0-9,0	8,5-3,0	2,5-0,0

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2022.

Créé par:

Groupe de travail PQ d'EIT.swiss pour la profession de planificatrice-électricienne CFC / Planificateur-électricien CFC

Editeur:

CSFO, département procédures de qualification, Berne

1. Grandeurs fondamentales N° d'objectif d'évaluation 5.4.1b

2

Une résistance de 60 Ω est connectée à une tension alternative de 230 V / 50 Hz. Calculer :

a) la tension de crête de l'alimentation.

$$\widehat{u} = \sqrt{2} \cdot U = \sqrt{2} \cdot 230V = \underline{325 \ V}$$

0,5

b) la valeur efficace du courant.

$$I = \frac{U}{R} = \frac{230 \text{ V}}{60 \Omega} = \underline{\frac{3,83 \text{ A}}{2000 \text{ A}}}$$

0,5

c) la durée de la période

$$T = \frac{1}{f} = \frac{1}{50 \text{ Hz}} = \underbrace{0,02 \text{ s} = 20 \text{ ms}}_{}$$

0,5

d) la vitesse angulaire.

$$\omega=2\pi\cdot f=6,28\cdot 50\ \frac{1}{s}=\underbrace{314\ \frac{1}{s}}$$

0,5

3

1

2. Système électrochimique N° d'objectif d'évaluation 5.3.7b

Une tension $U_1 = 8$ V est mesurée à une source de tension avec une charge consommant $I_1 = 25$ mA. A cette même source de tension, on mesure une tension $U_2 = 4$ V lorsque la charge consomme $I_2 = 50$ mA.

a) Dessiner la caractéristique de cette source de tension.

b) Quelle est la valeur de la tension à vide (FEM) ?

 $U_0 = 12 V$

c) Quelle est la valeur du courant de court-circuit ?

 $I_{cc} = 75 \text{ mA}$

d) Calculer la résistance interne ?

$$R_i = \frac{U_0}{I_K} = \frac{12 \text{ V}}{0,075 \text{ A}} = \underline{\frac{160 \text{ }\Omega}{}}$$

0,5

0,5

0,5

2

1

1

3. Transformateur N° d'objectif d'évaluation 5.2.8b

L'enroulement primaire d'un transformateur raccordé à une tension de 1 x 400 V fournit au circuit secondaire un courant de 6,8 A et une tension de 24 V. Calculer:

a) La puissance apparente au secondaire.

$$S = U_2 \cdot I_2 = 24 \ V \cdot 6, 8 \ V = \underline{163, 2 \ VA}$$

b) Le courant au primaire.

$$\frac{U_1}{U_2} = \frac{I_2}{I_1}$$

=>
$$I_1 = \frac{U_2 \cdot I_2}{U_1} = \frac{24 \text{ V} \cdot 6,8 \text{ V}}{400 \text{ V}} = \underline{0,408 \text{ A}}$$

Éclairage d'une salle de classe N° d'objectif d'évaluation 5.5.3b

Une salle de classe de 7,2 m x 13 m est équipée de 3 rails lumineux ayant chacun 8 lampes LED (33 W, 5580 lm par lampe). Le rendement d'éclairage est de 0,38.

Déterminer la valeur de l'éclairement moyen ?

$$A = l \cdot b = 7, 2 \text{ m} \cdot 13 \text{ m} = 93,60 \text{ m}^2$$

2

$$\Phi_N = \eta_B \cdot \Phi \cdot n = 0.38 \cdot 5580 \ lm \cdot 24 = 50889,60 \ lm$$

$$E_{m} = \frac{\Phi_{N}}{A} = \frac{50889,60 \text{ } lm}{93,60 \text{ } m^{2}} = \underline{\frac{543,7 \text{ } lx}{1}}$$

1

5. Dispositif de commutation N° d'objectif d'évaluation 5.5.2b

3

a) Nommer les parties A et B du relais dessiné ci-dessous.

0,5

A: Solution: contact (de commutation)

0,5

B: Solution: bobine

b) Cocher pour chaque affirmation si elle est juste ou fausse.

Affirmations sur le dispositif de commutation	Juste	Fausse
Le courant continu est plus facile à couper que le courant alternatif.		\boxtimes
Avec un contacteur électromécanique, le circuit de commande et le circuit de puissance sont isolés électriquement.	\boxtimes	
Un contacteur principal est activé via un circuit de puissance et commute ainsi le circuit de commande.		
Le système magnétique d'un contacteur est équipé d'anneaux de court-circuit afin qu'il ne tombe pas lors du passage par zéro en courant alternatif.		

0,5

0,5

0,5

0,5

2

1

1

2

6. Densité de courant N° d'objectif d'évaluation 3.2.4b

La densité de courant dans une bobine de relais ne doit pas dépasser 3,6 A / mm². Un courant d'excitation de 0,9 A circule dans cette bobine. Quel est le diamètre minimum du fil de l'enroulement ?

$$A = \frac{I}{J} = \frac{0.9 \text{ A}}{3.6 \frac{A}{\text{mm}^2}} = \underline{0.25 \text{ mm}^2}$$

$$d = \sqrt{\frac{4 \cdot A}{\pi}} = \sqrt{\frac{4 \cdot 0,25 \ mm^2}{\pi}} = \underline{0,564 \ mm}$$

7. Sources de tension N° d'objectif d'évaluation 5.3.7b

Cocher pour chaque affirmation si elle est juste ou fausse.

Affirmations sur les sources de tension	Juste	Fausse	
Le terme technique pour le liquide conducteur dans un élément galvanique est : électrode.			0,5
Lorsque la batterie n'est pas raccordée à un récepteur, on mesure à ses bornes la tension à vide (FEM).	\boxtimes		0,5
Pour une batterie, lorsque la résistance de charge diminue, la tension aux bornes de la batterie diminue aussi.	\boxtimes		0,5
Plus un matériau a un faible potentiel électrochimique, plus il est noble.		\boxtimes	0,5

Points
par
page:

3

8. Couplage mixte N° d'objectif d'évaluation 3.2.4b

Six résistances, de 3 k Ω chacune, sont connectées selon le schéma ci-dessous. Le courant I_2 vaut 0,05 A. Calculer la tension U appliquée à ce circuit.

$$R_{45} = \frac{R_4 \cdot R_5}{R_4 + R_5} = \frac{3 \text{ k}\Omega \cdot 3 \text{ k}\Omega}{3 \text{ k}\Omega + 3 \text{ k}\Omega} = \underline{1,5 \text{ k}\Omega}$$

$$R_{456} = R_{45} + R_6 = 1,5 \text{ k}\Omega + 3 \text{ k}\Omega = 4,5 \text{ k}\Omega$$

$$R_{3456} = \frac{R_3 \cdot R_{456}}{R_3 + R_{456}} = \frac{3 \text{ k}\Omega \cdot 4, 5 \text{ k}\Omega}{3 \text{ k}\Omega + 4, 5 \text{ k}\Omega} = \underline{1, 8 \text{ k}\Omega}$$

$$R_{23456} = R_2 + R_{3456} = 3 k\Omega + 1,8 k\Omega = 4,8 k\Omega$$

$$U = U_{23456} = R_{23456} \cdot I_2 = 4,8 \text{ k}\Omega \cdot 0,05 \text{ A} = \underline{\underline{240 \text{ V}}}$$

2

9. Magnétisme et champ électrique N° d'objectif d'évaluation 3.2.5b

Le schéma montre un aimant permanent et une bobine en coupe :

Points : Lignes de champ correctement tracées 0,5 pt. La direction de la ligne de champ est correcte 0,5 pt. Les pôles sont corrects 0,5 pt.

- a) Tracer les lignes de champ magnétique résultantes dans la bobine ainsi que leur sens.
- b) Indiquer les pôles magnétiques de la bobine. 0,5
- c) Qu'arrive-t-il à l'aimant permanent mobile lorsqu'il est proche de la bobine ?

L'aimant permanent est repoussé par la bobine.

10. Champ électrique N° d'objectif d'évaluation 3.2.5b

Tracer **au moins 6 lignes de champ électrique** entre les corps chargés ci-dessous et cocher le type de champ magnétique pour chacune des situations.

Ce champ est:

☐ Homogène

Non homogène

Ce champ est:

Momogène |

☐ Non homogène

0,5

0,5

0,5

2

0,5

0,5

3

0,5

1

0,5

11. Système triphasé N° d'objectif d'évaluation 5.3.4b

On connecte quatre consommateurs ohmiques sur le réseau 3 x 400 V / 230 V.

a) Calculer les courants dans les conducteurs polaires d'alimentation (I_{L1}, I_{L2}, I_{L3}) :

$$I_{L3} = \frac{U_{L3}}{R_3} = \frac{230 \, V}{27 \, \Omega} = \underbrace{8,52 \, A}_{=======}$$

b) On ajoute un consommateur triphasé équilibré sur le réseau. Les courants de lignes augmentent en raison du changement de charge.

Cocher l'affirmation correcte dans le tableau :

Affirmation sur les système triphasé	Augmente	Ne change pas	Diminue
Le courant dans le conducteur de neutre		\boxtimes	

4

1

1

1

1

12. Installations industrielles N° d'objectif d'évaluation 5.3.9b

Une entreprise commerciale consomme 27 kW de puissance active et 21 kvar de puissance réactive sur le réseau. Un chauffe-eau d'une puissance de 15 kW est ensuite enclenché.

Calculer le facteur de puissance :

a) Avant d'enclencher le chauffe-eau.

$$\tan \phi = \frac{Q}{P} = \frac{21 \text{ kvar}}{27 \text{ kW}} = \underline{0.7778}$$

b) Après l'enclenchement du chauffe-eau.

$$tan \; \phi = \frac{Q}{P_1 + P_2} = \frac{21 \; kvar}{27 \; kW + 15 \; kW} = \underline{0,5}$$

$$\phi=26,56^\circ=>\cos\phi=\underbrace{0,894}_{====}$$

13 Appareil frigorifique N° d'objectif d'évaluation 5.3.5b

Cocher pour chaque affirmation si elle est juste ou fausse.

Affirmation sur les appareils frigorifiques	Juste	Faux
En comprimant le liquide frigorigène, sa température augmente.		
Le tube capillaire est un tube court et épais.		
Le liquide frigorigène s'évapore à nouveau dans le condenseur.		\boxtimes
Lorsque le liquide frigorigène s'évapore, la chaleur est extraite de la chambre froide.	\boxtimes	

2

0,5

0,5

0,5

3

1

1

14. Résistances en alternatif N° d'objectif d'évaluation 3.2.7b

Une bobine ayant une inductance de 2 H et une résistance de 100 Ω est connectée au réseau 230 V / 50 Hz.

Un condensateur (C = 6 µF) est connecté en série avec cette bobine.

Calculer:

a) la réactance d'induction.

$$X_L = 2 \ \pi \cdot f \cdot L = 2 \pi \cdot 50 \ Hz \cdot 2 \ H = \underline{628 \ \Omega}$$

b) la réactance de capacité.

$$X_C = \frac{1}{2 \pi \cdot f \cdot C} = \frac{1}{2 \pi \cdot 50 \text{ Hz} \cdot 6 \cdot 10^{-6} \text{ F}} = \frac{531 \Omega}{2 \pi \cdot 50 \text{ Hz} \cdot 6 \cdot 10^{-6} \text{ F}}$$

PE_Pos_5_Techn_système_élec_incl_bases_techn_exp_PQ21

c) le courant dans le circuit.

$$Z = \sqrt{(R)^2 + (X_L - X_C)^2} = \sqrt{(100 \ \Omega)^2 + (628, 3 \ \Omega - 530, 5 \ \Omega)^2} = \underline{140 \ \Omega}$$

$$I = \frac{U}{Z} = \frac{230 \text{ V}}{140 \Omega} = \underline{\frac{1,64 \text{ A}}{}}$$

2

0,5

0,5

0,5

0,5

2

15. La loi d'Ohm N° d'objectif d'évaluation 3.2.3b

Cocher la seule affirmation correcte.

	Le courant			
Comment le courant varie-t-il lorsque	augmente	reste le même	diminue	
la tension totale est augmentée dans un circuit série?	\boxtimes			
une résistance est défectueuse dans un circuit parallèle?			\boxtimes	
une résistance est pontée (court-circuitée) dans un circuit série?	\boxtimes			
dans un circuit parallèle, deux résistances supplémentaires sont connectées en parallèle?	\boxtimes			

16. Installation photovoltaïque N° d'objectif d'évaluation 5.3.10b

Dessiner les connexions correctes pour le système photovoltaïque ci-dessous. Les 6 modules solaires installés fournissent chacun une tension de 24 VDC. L'onduleur est conçu pour une plage de tension de 60 V à 90 V. Tous les modules solaires doivent être connectés.

(Note pour les experts : 1 point pour chaque circuit correct avec 3 modules en série.)

2

0,5

2

17. Puissance et variation de la tension N° d'objectif d'évaluation 3.2.4b

Un radiateur électrique (230 V / 2,3 kW) est relié au réseau par deux enrouleurs ayant chacun une longueur de 25 mètres (Td 3 x 1 mm 2). En fonctionnement, on mesure une tension de 230 V à la prise murale.

Quelle est la puissance dissipée par le radiateur ?

$$R_{radiateur} = \frac{U^2}{P} = \frac{(230V)^2}{2300W} = \underline{23\,\Omega}$$

$$R_L = \frac{\rho \cdot l \cdot 2}{A} = \frac{0.0175\Omega mm^2 \cdot 2 \cdot 25m \cdot 2}{m \cdot 1mm^2} = \underline{1.75\Omega}$$

$$I' = \frac{U_{d\acute{e}but\ de\ ligne}}{R_{radiateur} + R_L} = \frac{230V}{23\Omega + 1.75\Omega} = \frac{9,3\ A}{23\Omega}$$

$$P' = I'^2 \cdot R_{radiateu} = (9, 3A)^2 \cdot 23\Omega = \underline{1,989 \text{ kW}}$$

(Note pour les experts : d'autres résolutions sont possibles)

18. Condensateur en DC N° d'objectif d'évaluation 3.2.7b

a) Combien de temps faut-il pour charger complètement le condensateur ?

$$\tau_{\textit{Charge}} = R_{\textit{Charge}} \cdot C = 1 k \Omega \, \cdot 10 \mu F = \underline{10ms} \, ; \quad t = 5 \cdot \tau_{\textit{Charge}} = 5 \, \cdot 10 ms = \underline{50ms}$$

b) Combien de temps faut-il pour décharger complètement le condensateur ?

$$\begin{split} \tau_{D\acute{e}charge} &= R_{D\acute{e}charge} \cdot C = (1k\Omega + \ 1k\Omega) \cdot 10\mu F = \underline{20ms} \\ t &= 5 \cdot \tau_{D\acute{e}charge} = 5 \, \cdot 20ms = \underline{100 \; ms} \end{split}$$

1 Points par page:

1

3

Circuits logiques N° d'objectif d'évaluation 5.5.4b 19.

Compléter la table de vérité de ce circuit logique.

Circuit logique:

Table de vérité:

l ₁	l ₂	l ₃	I 4	Ø
0	0	0	0	1
0	0	1	1	1
1	1	1	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1

0,5

0,5

0,5

0,5

0,5

0,5

3

20. Caractéristiques des moteurs N° d'objectif d'évaluation 5.2.6b

Cocher pour chaque affirmation si elle est juste ou fausse.

Affirmations sur les caractéristiques des moteurs	Juste	Fausse	
Un moteur convertit l'énergie électrique en énergie mécanique.			0,5
Un moteur à courant alternatif produit moins de puissance réactive qu'un chauffe-eau.		\boxtimes	0,5
Un moteur portant l'inscription 400 V / 230 V, 1,7 A / 3 A doit être couplé en triangle.		\boxtimes	0,5
La puissance active consommée est toujours inférieure à la puissance de sortie sur l'arbre.		\boxtimes	0,5
Un relais de protection moteur coupe directement le circuit de puissance du moteur.		\boxtimes	0,5
La puissance apparente d'un moteur peut être mesurée avec le wattmètre.			0,5

2

1

21. Conversion de fréquence N° d'objectif d'évaluation 5.5.3b

Le schéma de principe ci-dessous représente un convertisseur de fréquence avec un circuit intermédiaire.

a) Entourer le redresseur :

b) Dessiner un pont redresseur avec lissage :

Circuit redresseur en pont 0,5 pt et condensateur de lissage 0,5 pt

Points par

page:

3

22. Système triphasé N° d'objectif d'évaluation 5.4.4b

Un réseau triphasé à quatre fils (3 x 400 V / 230 V) a une charge déséquilibrée. Déterminer le courant dans le conducteur de neutre.

Échelle 1A ≙ 2 mm

 $I_N = 14,6 A$

Note pour les experts : I_1 1 pt, I_2 0,5 pt, I_3 1 pt, I_N 0,5 pt. Échelle des vecteurs

3

1

23. Moteur triphasé N° d'objectif d'évaluation 5.3.6b

a) Calculer la puissance active absorbée P_{abs} de ce moteur électrique :

Siem	ens AG
Type: T3A 132S-4	Nr. 230816
Moteur 3 ~	50 Hz
S1 100 % ED	△ Y 400/690 V
IP 54	52.8 / 30.4 A
Iso. – KI. F	30 kW
IE3 89.6 %	$\cos \varphi = 0.88$
PTC 155° C	1430 1/min.
)	C

$$P_{abs} = \sqrt{3} \cdot U \cdot I \cdot cos\varphi = \sqrt{3} \cdot 400V \cdot 52, 8A \cdot 0, 88 = 32'191 W = 32, 2 kW$$

b) Calculer le rendement de ce moteur.

$$\eta = \frac{P_{utile}}{P_{abs}} = \frac{30 \, kW}{32,2 \, kW} = \underline{0,932} \, ou \, \underline{93,2 \, \%}$$

c) Cocher la réponse correcte dans le tableau.

A quelle valeur de courant doit être règle le thermique de protection pour un démarrage direct ?								
Intensité du courant en ampère	91,35 A	52,8 A	74,66 A	30,4 A				
Solution		\boxtimes						

Points par page:

Page 18 de 18

1