EVALUATION ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES

Université Paris-Saclay

UMD-BASED EXTENSION OF ADAGRAD-NORM AND APPLICATION TO GAMES

Let $d \ge 1$, $\mathcal{X} \subset \mathbb{R}^d$ a nonempty closed convex set, K > 0, $\| \cdot \|$ a norm on \mathbb{R}^d , h a regularizer with domain \mathcal{X} that is K-strongly convex for $\| \cdot \|$.

Let $\gamma > 0$. For $(u_t)_{t \ge 1}$ a sequence in \mathbb{R}^d , let $((x_t, y_t))_{t \ge 1}$ be a sequence of strict UMD iterates associated with regularizer h and dual increments $(\gamma_t u_t)_{t \ge 1}$, where

$$\gamma_t = rac{\gamma}{\sqrt{\sum_{s=1}^t \left\|u_s
ight\|_*^2}}, \quad t \geqslant 1,$$

with convention 0/0 = 0.

1) For $x \in \text{dom } h$ and $T \geqslant 1$, derive a guarante on the regret

$$\sum_{t=1}^{T} \langle u_t, x - x_t \rangle.$$

2) a) In the special cases of dual averaging (with a constant regularizer and dual increments $(\gamma_t u_t)_{t\geqslant 1}$) and online mirror descent (with a constant mirror map and dual increments $(\gamma_t u_t)_{t\geqslant 1}$), derive corresponding algorithms and guarantees.

- b) Write corollaries for dual averaging with Euclidean regularizer and mirror descent with Euclidean mirror map.
- c) For the entropic regularizer on the simplex, derive the corresponding algorithm and guarantee.
- 3) Apply to regret learning for finite two-player zero-sum games and derive guarantees. Perform numerical experiments to compare the convergence of the above algorithms (Euclidean DA, Euclidean MD, entropic regularizer) with RM, RM+, classical exponential weights, as well as *optimistic* counterparts of all previous algorithms.
- 4) Bonus. Apply to various optimization problems and derive guarantees.
- 5) Bonus. Also perform numerical experiments for extensive-form games using the counterfactual regret minimization approach.