"Machine learning models can learn from existing data and predict habitability of an exoplanet with 99% accuracy".

Using Machine learning to look to habitable planets

INTRODUCTION

- Growing need to manage terabytes of astronomical data produced every night.[1]
- Machine learning provides
 efficient models to deal with
 large data sets.[2]
- Will assess these models' potential as habitability classifiers.

METHODS

- Worked on Habitable
 Exoplanet Catalog.[3]
- 2. Prepared data representing habitability [4], used **70% for training** & reserved **30% for final testing** of the model.
- 3. Importance given to features by each predictive model was determined.

RESULTS & DISCUSSION

Model	Accuracy
Neural Network	97.48%
Random forest	99.54%
Ada Boost	99.66%
XG Boost	99.89%

XG boost indicated that **Planet's radius** and **Solar insolation** are most importance when **determining** habitability of an exoplanet. The graph below highlights this relation.

Features chosen for the data used

Planetary features:	Stellar features:	Habitability features:
Mass (Earth Masses)	Mass (Solar Units)	Hab-zone inner radius (AU)
Radius (Earth Radii)	Radius (Solar Units)	Hab-zone outer radius (AU)
Period (Days)	Effective Temperature (K)	Habitability flag (0 or 1)
Semi-Major Axis (AU)	Star Luminosity (Solar units)	
Equilibrium Temperature (K)		
Solar Insolation(Earth Units)		

Connected Neural Network

Confusion Ma [[858 0] [1 15]] Classificati		XG boost report		
CIGSSITICAL	precision	recall	f1-score	support
(1.00	1.00	1.00	858
1	1.00	0.94	0.97	16
accuracy	1		1.00	874
macro avg	1.00	0.97	0.98	874
weighted ava	1.00	1.00	1.00	874

Accuracy: 99.89%

References:

[1] Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K. S. & Igel, C. Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy. *IEEE Intell. Syst.* **32**, 16–22 (2017).

[2] Basak, Suryoday, et al. Habitability Classification of Exoplanets: A Machine Learning Insight.

arXiv:1805.08810 [astro-ph.IM] (2018)

[3] PHL's catalog:

http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database

[4] Deeg, H. J. *Handbook of exoplanets* (Springer, 2018)

