Multivariate Regression

We'll be predicting the home sales price based on various characteristics of the home.
For most of our analysis, we can use the same commands as in the Univariate Regression, but notice
that the interpretation may be different.

```
> A = read.csv("HOME SALES.csv")
> names(A)
 [1] "ID"
                        "SALES PRICE"
                                            "FINISHED AREA"
                                                               "BEDROOMS"
                        "GARAGE SIZE" "YEAR BUILT"
 [5] "BATHROOMS"
                                                             "STYLE"
 [9] "LOT SIZE"
                        "AIR CONDITIONER" "POOL"
                                                                "OUALITY"
[13] "HIGHWAY"
> attach(A)
> reg = lm(SALES PRICE ~ FINISHED AREA + BEDROOMS + BATHROOMS +
GARAGE SIZE + YEAR BUILT )
> summary(reg)
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.962e+03 4.171e+02 -7.101 4.13e-12 ***
FINISHED AREA 1.276e-01 7.166e-03 17.806 < 2e-16 ***
BEDROOMS -1.255e+01 3.894e+00 -3.223 0.00135 **
BATHROOMS 1.042e+01 4.945e+00 2.107 0.03561 *
GARAGE_SIZE 2.724e+01 5.930e+00 4.593 5.49e-06 ***
YEAR_BUILT 1.480e+00 2.153e-01 6.872 1.83e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 71.26 on 516 degrees of freedom
Multiple R-squared: 0.7356, Adjusted R-squared: 0.7331
F-statistic: 287.1 on 5 and 516 DF, p-value: < 2.2e-16
```

What? A negative coefficient for the Bathrooms? A house with more bathrooms is cheaper? # Answer: yes, as long as the area of the house remains constant.

FINISHED_AREA <u>alone</u> explains 6655486. BEDROOMS explains an <u>additional</u> amount of 27613. Etc.

Residual plots

```
> par(mfrow=c(2,2))
```

> plot(reg)

Confidence intervals for the slopes.

> contint(reg,	, rever=0.90)	
	5 %	95 %
(Intercept)	-3649.4960341	-2274.7356492
FINISHED_AREA	0.1157872	0.1394038
BEDROOMS	-18.9655253	-6.1333354
BATHROOMS	2.2702046	18.5680623
GARAGE_SIZE	17.4654181	37.0078645
YEAR_BUILT	1.1248812	1.8345057

Confidence intervals for the slopes with Bonferroni adjustment (just 5 slopes; suppose we are not interested in the interval for the intercept).

```
> confint(reg, level = 1 - 0.10/5)
                          1 %
                                         99 %
(Intercept) -3935.5690391 -1988.6626442
FINISHED AREA 0.1108729 0.1443181
BEDROOMS -21.6357675 -3.4630932
BATHROOMS -1.1212061 21.9594731
GARAGE_SIZE 13.3988430 41.0744396
YEAR_BUILT 0.9772158 1.9821710
# Testing several slopes in one hypothesis.
# H_0: \beta_4 = 0 and \beta_5 = 0 vs H_1: either \beta_4 \neq 0 or \beta_5 \neq 0
# Consider a reduced model without these variables. Compare two models
# via a partial F-test.
> reg.reduced = lm(SALES PRICE ~ FINISHED AREA + BEDROOMS + BATHROOMS )
> anova(reg.reduced, reg)
Analysis of Variance Table
Model 1: SALES PRICE ~ FINISHED AREA + BEDROOMS + BATHROOMS
Model 2: SALES PRICE ~ FINISHED AREA + BEDROOMS + BATHROOMS + GARAGE SIZE
    YEAR BUILT
  Res.Df RSS Df Sum of Sq F Pr(>F)
1 518 3085103
     516 2620307 2 464796 45.765 < 2.2e-16 ***
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
```