Minimalpolynom und Jordan-Normalform

Jendrik Stelzner

26. Juli 2017

Wir fixieren einen Körper K. Wir zeigen im Folgenden die folgende Aussage:

Satz 1. Es sei $A \in M_n(K)$, so dass A über K eine Jordan-Normalform besitzt, d.h. das charakteristische Polynom von A zerfalle über K in Linearfaktoren:

$$p_A(t) = (-1)^n (t - \lambda_1)^{n_1} \cdots (t \lambda_r)^{n_r}$$

Dann ist das Minimalpolynom von A durch

$$m_A(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r}$$

gegeben, wobei $\lambda_1, \dots, \lambda_r$ die paarweise verschiedenen Eigenwerte von A sind, und für alle $i=1,\dots,n$ die Potenz m_i mit der Größe des größten Jordanblocks zum Eigenwert λ_i in der Jordannormalform von A übereinstimmt.

Insbesondere gelten $m_i \ge 1$ und $m_i \le n_i$ für alle i = 1, ..., r.

Beweis. Da das Minimalpolynom invariant unter Ähnlichkeit ist, können wir dabei o.B.d.A. davon ausgehen, dass *A* in Jordan-Normalform ist. Wir gehen nun schrittweise vor.

• Es sei zunächst A ein einzelner Jordanblock zum Eigenwert 0, d.h. es gelte

$$A = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{pmatrix} \in \mathcal{M}_n(K).$$

Dann gilt $A^n = 0$ aber $A^k \neq 0$ für alle k < n, weshalb $m_A(t) = t^n$ gilt.

• Es sei nun A ein einzelner Jordanblock zum Eigenwert $\lambda \in K$, d.h. es gelte

$$A = \begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda \end{pmatrix} \in \mathcal{M}_n(K).$$

Dann ist $A - \lambda I$ ein Jordanblock zum Eigenwert 0, weshalb $(A - \lambda I)^n = 0$ aber $(A - \lambda I)^k \neq 0$ für alle k < n gilt. Deshalb gilt $m_A(t) = (t - \lambda)^n$.

• Es sei nun A in Jordan-Normalform

$$A = \begin{pmatrix} J_{n_1}(\mu_1) & & \\ & \ddots & \\ & & J_{n_s}(\mu_s) \end{pmatrix} \in \mathcal{M}_n(K),$$

wobei für alle $n' \ge 1$ und $\mu \in K$ die Matrix $J_{n'}(\mu) \in M_{n'}(K)$ den Jordanblock von Größe $n' \times n'$ zum Eigenwerte μ bezeichnet, d.h.

$$J_{n'}(\mu) = \begin{pmatrix} \mu & 1 & & & \\ & \mu & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \mu \end{pmatrix} \in \mathcal{M}_{n'}(\mu).$$

Aus

$$A^{k} = \begin{pmatrix} J_{n_{1}}(\mu_{1})^{k} & & \\ & \ddots & \\ & & J_{n_{s}}(\mu_{s})^{k} \end{pmatrix} \quad \text{für alle } k \ge 0$$

erhalten wir allgemeiner, dass

$$p(A) = \begin{pmatrix} p(J_{n_1}(\mu_1)) & & \\ & \ddots & \\ & & p(J_{n_s}(\mu_s)) \end{pmatrix} \quad \text{für alle } p(t) \in K[t]$$

gilt. Inbesondere gilt deshalb für jedes $p(t) \in K[t]$, dass

$$p(A) = 0 \iff p(J_{n_i}(\mu_i)) = 0 \text{ für alle } i = 1, ..., s$$

 $\iff m_{J_{n_i}(\mu_i)}(t) \mid p(t) \text{ für alle } i = 1, ..., s.$

Wir haben bereits gezeigt, dass $m_{J_{n'}(\mu)}=(t-\mu)^{n'}$ für alle $n'\geq 1$ und $\mu\in K$ gilt. Deshalb gilt

$$p(A) = 0 \iff (t - \mu_i)^{n_i} \mid p(t) \text{ für alle } i = 1, \dots, s.$$
 (1)

Es seien $\lambda_1,\ldots,\lambda_r\in K$ die paarweise verschiedenen Eigenwerte von A, d.h. es gelte $\lambda_i\neq\lambda_j$ für alle $i\neq j$ und $\{\mu_1,\ldots,\mu_s\}=\{\lambda_1,\ldots,\lambda_r\}$, und für alle $i=1,\ldots,r$ sei

$$m_i = \max\{n_i | 1 \le j \le s \text{ mit } \mu_i = \lambda_i\},$$

d.h. m_i ist die Größe des größten Jordanblocks zum Eigenwert λ_i .

Dann ist $\tilde{m}_A(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r}$ das minimale normierte, vom Nullpolynom verschiedene Polynom mit $(t - \mu_i)^{n_i} \mid p(t)$ für alle $i = 1, \dots, s$. Nach (1) ist $\tilde{m}_A(t)$ somit das Minimalpolynom von A.