

Decimal	Binary	Octal	Hexadecimal
31			
	11101		
		23	
			1A

Decimal	Binary	Octal	Hexadecimal
31	11111	37	1F
29	11101	35	1D
19	10011	23	13
26	11010	32	1A

Exercise - 2's C conversions

- Answer:____

 1100011 is a 7-bit binary number in 2's complement notation. What is the decimal value?

- Answer:____

Exercise - 2's C conversions

Answer

- What is -20 expressed as an 8-bit binary number in 2's complement notation?
 - Answer: 11101100
- 1100011 is a 7-bit binary number in 2's complement notation. What is the decimal value?
 - Answer: <u>-29</u>

One's Complement subtraction

01010 (10)

-

00111 (7)

One's complement for subtrahend then add 01010

+

11000

100010

Neglect carry and add 1 00011 (+3)

Two's Complement subtraction 01010 (10)

-

00111 (7)

Two's complement for subtrahend then add

01010

+

11001

100011

Neglect carry 00011 (+3)

One's Complement subtraction

00111 (7)

_

01010 (10)

One's complement for subtrahend then add

00111

+

10101

11100

N0 carry and get one's complement again...put - -00011 (-3)

Two's Complement subtraction

00111 (7)

-

01010 (10)

Two's complement for subtrahend then add

00111

+

10110

11101

No carry Two's complement again

- 00011 (-3)

Ex 1: convert each of the following decimal to BCD code:

a) 35 b) 98 c) 170 d) 2469


```
Solution
```

a) 35 3 5

0011 0101

Then $35 \rightarrow 00110101$

b) 98 9 8

1001 1000

Then $98 \to 10011000$

Then $170 \rightarrow 000101110000$

d) 2469 2 4 6 9
0010 0100 0110 1001
Then $2469 \rightarrow 0010010001101001$

- Ex2 Convert each of the following BCD code decimal:
- a) 10000110 b) 001101010001
- c) 1001010001110000

Solution

- a) Start from right and group each four digits
 - 1000 0110
 - 8 6
 - Then $10000110 \rightarrow 86$

0011 0101 0001

2 F 1

c) 1001 0100

Δ

→ 9470

→ **351**

0111

7

0000

7

1 - use binary addition rules

2 - if the 4-bit sum is greater than 9 then it is not a BCD valid numberadd 6(0110) to the 4-bit sum.

Add the following BCD numbers

- a) 0011 + 0100
- b) 001000111 + 00010101
- c) 1001 + 0100
- d) 00010110 + 00010101
- e) 01100111 + 01010011

Solutions

a) $0011 \rightarrow 3$ + $0100 \rightarrow 4$

- $0111 \rightarrow 7$
- b) $00100011 \rightarrow 23$
 - + 00010101 → 1 5

 $00111000 \rightarrow 38$ (each number < 9)

Solutions

```
c) 1001 \rightarrow 9
+ 0100 \rightarrow 4
```

1101 \rightarrow 13 \rightarrow invalid BCD number > 9

+ $0110 \rightarrow Add 6 (0110)$

 $10011 \rightarrow 0001 \ 10011 \rightarrow 13 \ in \ BCD$

Solutions

```
d) 00010110 \rightarrow 16
```

+ 00010101
$$\rightarrow$$
 1 5 6+5 = 11 > 9

$$0010\underline{1011} \rightarrow 1011 > 9 \text{ then add } 6(0110)$$

+ 0110
$$\rightarrow$$
 Add 6 (0110)

$$00110001 \rightarrow 0011\ 00001 \rightarrow 31\ in\ BCD$$

Solutions

e)
$$01100111 \rightarrow 67$$

+ 01010011
$$\rightarrow$$
 5 3 6+5 = 11 > 9 & 7+3 > 9

$$1011 \ 1010 \rightarrow 1011 > 9 \text{ then add } 6(0110)$$

+ 0110 0110 \rightarrow Add 6 (0110) & 6(0110)

$$1\ 0010\ 0000\ \to\ 0001\ 0010\ 0000 \to 120$$

Binary to Gray Code

Convert the binary number 11000110 to Gray code Sol.

Binary
$$1+1+0+0+0+1+1+0$$

 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$
Gray $1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$

Shortcut

The first number will be the same...the second number in gray = first + second in binary...... the third in gray = second + third in binary and go on ...neglect carry.

Gray Code to binary

Convert the gray code number 10100101 to binary. Sol.

Shortcut

The first number will be the same...the second number in binary = first (binary) + second (gray).. the third in binary = second (binary)+ third (gray) and go on ...neglect carry.

OR		
1	x+1 = 1	
2	x+x'=1	
3	X+X=X	
4	$\mathbf{x} + 0 = \mathbf{x}$	
5	(x')' = x	
6	x+y=y+x	
7	x+(y+z) = (x+y)+z	
8	x.(y+z) = x.y+x.z	
9	(x+y)' = x'.y'	
10	x+(x,y) = x	

	AND		
1	x.1 = x		
2	$\mathbf{x} \cdot \mathbf{x}' = 0$		
3	$X \cdot X = X$		
4	x.0 = 0		
5	(x')' = x		
6	x.y = y.x		
7	x.(y.z) = (x.y).z		
8	$x+y\cdot z = (x+y)\cdot (x+z)$		
9	(x.y)' = x' + y'		
10	$x \cdot (x+y) = x$		

Note

$$XX'Y = 0$$

$$X'XYZ'ABCD = 0$$

$$X + x' = 1$$

$$Xy + (xy)' = 1$$

$$Xyz + (xyz)' = 1$$

$$F = AB + A(B+C) + B(B+C)$$

$$F = AB + A(B+C) + B(B+C)$$

$$AB + AB + AC + BB + BC$$

$$AB + AC + B (1 + C)$$

$$B + AB + AC$$

$$B(1 + A) + AC$$

$$= B + AC$$

$$\mathsf{F} = \left[\, A \, \overline{B} \, \left(C + B \, D \, \right) + \, \overline{A} \, \overline{B} \, \right] C$$

$$F = [A\overline{B}(C + BD) + \overline{A}\overline{B}]C$$

$$(A\overline{B}C + A\overline{B}BD + \overline{A}\overline{B})C$$

$$(A\overline{B}C + \overline{A}\overline{B})C$$

$$CA\overline{B}C + C\overline{A}\overline{B}$$

$$\overline{B}CA + \overline{B}C\overline{A}$$

$$\overline{B}C(A + \overline{A})$$

$$\overline{B}C$$

$$F = \overline{AB} + \overline{AC} + \overline{A}\overline{B}\overline{C}$$

$$\mathbf{F} = \overline{AB} + \overline{AC} + \overline{A}\overline{B}\overline{C}$$

$$\overline{A} + \overline{B} + \overline{A} + \overline{C} + \overline{A}\overline{B}\overline{C}$$

$$\overline{A} + \overline{B} + \overline{C} + \overline{A}\overline{B}\overline{C}$$

$$\overline{A} + \overline{B} + \overline{C} \left(\mathbf{1} + \overline{A}\overline{B} \right)$$

 $\overline{A} + \overline{B} + \overline{C}$

Ex 4

$$\mathsf{F} = \overline{A\,B + A\,C} + \overline{A}\,\overline{B}\,C$$

Ex 4

$$F = \overline{A} \, \overline{B} + \overline{A} \, \overline{C} + \overline{A} \, \overline{B} \, C$$

$$(\overline{A} \, \overline{B}) (\overline{A} \, \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$(\overline{A} + \overline{B}) (\overline{A} + \overline{C}) + \overline{A} \, \overline{B} \, C$$

$$\overline{A} \, \overline{A} + \overline{A} \, \overline{C} + \overline{A} \, \overline{B} + \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, C$$

$$\overline{A} (1 + \overline{B} + \overline{C} + \overline{B} \, C) + \overline{B} \, \overline{C}$$

$$\overline{A} + \overline{B} \, \overline{C}$$

Ex 5

$$F = \left[AB \left(C + \overline{BD} \right) + \overline{AB} \right] CD$$

$$F = \left[AB\left(C + \overline{BD}\right) + \overline{AB}\right] CD$$

$$\left[AB \left(C + \overline{B} + \overline{D} \right) + \overline{AB} \right] CD$$

$$\left[ABC + AB\overline{B} + AB\overline{D} + \overline{AB}\right]CD$$

$$ABCCD + ABCDD + \overline{AB}CD$$

$$ABCD + \overline{AB}CD$$

$$CD(AB + \overline{AB})$$

$$= CD$$

$$\mathbf{F} = \left[AB \left(C + \overline{BD} \right) + \overline{AB} \right] CD$$

$$[\overline{AB} + AB(C + \overline{B} + \overline{D})]CD$$

$$\left[\left(\,\overline{AB}\,+AB\right)\left(\,\overline{AB}+\left(\,C+\overline{B}\,+\overline{D}\,\,\right)\right)\,\right]CD$$

$$\left[\left(\,\overline{AB} + \left(\,C + \overline{B} + \overline{D}\,\,\right)\right)\,\right]CD$$

$$[\overline{AB} + C + \overline{B} + \overline{D}]CD$$

$$\left[\overline{A} + \overline{B} + C + \overline{B} + \overline{D}\right]CD$$

$$[\overline{A}CD + \overline{B}CD + CCD + \overline{B}CD + \overline{D}CD]$$

$$CD(1+A+B)$$

Thank you

