

第二章 孔题课

2.1 已知场效应管的输出特性或转移如题图3.1所示。试判别其类型,并说明各管子在 $|U_{DS}| = 10V$ 时的饱和漏电流 I_{DSS} 、夹断电压 U_{GSoff} (或开启电压 U_{GSth})各为多少。

各种场效应管的转移特性曲线

第二章

模拟电子电路

解:

题图 3.1

N 沟耗尽型 MOSFET

 I_{DSS} =2mA, $U_{GSoff} = -3 \text{ V}$

P 沟结型 FET

 I_{DSS} =-3mA $U_{GSoff} = 3 \text{ V}$

N 沟增强型 MOSFET

 I_{DSS} 无意义, $U_{GS(\mathit{th})}$ = $1.5\,\mathrm{V}$

第二章

模拟电子电路

3.3 已知各 FET 各极电压如题图 3.3 所示,并设各管的 $U_{\it GSth} = 2V$ 。试分别判别其工作状

态(可变电阻区,恒流区,截止区或不能正常工作)。

D_O 3V

57	√	5V G		G -3V
	S 62V (a)	s 60V (b)	(c) S oΩΛ	(d)
	截止区	可变	电阻区	恒流区

	(美工) (A)	1 7 文电阻区	旦也に
P-FET	$u_{\rm GS} > u_{\rm GSoff} (u_{\rm GSth})$	$u_{\rm GS} < u_{\rm GSoff} (u_{\rm GSth})$ $u_{\rm GD} < u_{\rm GSoff} (u_{\rm GSth})$	$u_{\rm GS} < u_{\rm GSoff} (u_{\rm GSth})$ $u_{\rm GD} > u_{\rm GSoff} (u_{\rm GSth})$
N-FET	$u_{\rm GS} < u_{\rm GSoff} (u_{\rm GSth})$	$u_{\text{GS}} > u_{\text{GSoff}} (u_{\text{GSth}})$ $u_{\text{GD}} > u_{\text{GSoff}} (u_{\text{GSth}})$	$u_{\rm GS} > u_{\rm GSoff} (u_{\rm GSth})$ $u_{\rm GD} < u_{\rm GSoff} (u_{\rm GSth})$

3.3 已知各 FET 各极电压如题图 3.3 所示,并设各管的 $U_{GSth} = 2V$ 。试分别判别其工作状

态 (可变电阻区,恒流区,截止区或不能正常工作)。 $\left|U_{GSoff}\right|=2V$

解: (a) N 沟增强型 MOSFET, 因为 $U_{GS} = 3 \text{ V} > U_{GS(th)} = 2 \text{ V}$,

所以靠近源极的导电沟道已经形成,又因为 $U_{GD} = 2V = U_{GS(th)} = 2V$

所以靠近漏极的沟道刚好被预夹断,所以此FET处于恒流区。

(b)N 沟 耗 尽 型 MOSFET,因为 u_{CS} =5V> U_{CSoff} =-2V,所以靠近 源极的原来就存在的沟道未被夹断,又因为 $u_{CD}=0V>U_{CSoff}=-2V$, 所以靠近漏极的沟道未被预夹断,所以此FET处于可变电阻区。

(c) P 沟增强型 MOSFET,因为 u_{GS} =-5V< U_{GSth} =-2V, u_{GD} =0V> U_{GSth} =-2V, 所以此FET处于恒流区。

(d) N 沟 JFET, 因为 u_{GS} =-3V< U_{GSoff} =-2V, 所以此FET处于截止区。

2.5 解: (a) N沟道JFET

G极到B点的电位差为:

$$U_{\rm GQ} - U_{\rm B} = U_{\rm GSQ} + I_{\rm DQ} R_{\rm S},$$

即
$$0-U_{SS}=U_{GSQ}+I_{DQ}R_{S}$$

$$\begin{cases} U_{\text{GSQ}} = I_{\text{DQ}}R_{\text{S}} - U_{\text{SS}} \\ I_{DQ} = I_{DSS} (1 - \frac{U_{GSQ}}{U_{GSoff}})^2 \end{cases}$$
解得: $U_{\text{GSQ}} = -1.25\text{V}$, $I_{\text{DQ}} \approx 2.8\text{mA}$

$$U_{\rm DSQ} = U_{\rm A} - U_{\rm B} - I_{\rm DQ}(R_{\rm D} + R_{\rm S})$$

$$=U_{\rm DD}-U_{\rm SS}-I_{\rm DQ}(R_{\rm D}+R_{\rm S})\approx 5.93\,\rm V$$

(b) N沟道EMOSFET

$$\int U_{GSQ} = \frac{R_2}{R_1 + R_2} U_{DD} - I_{DQ} R_S$$

$$I_{DQ} = k \frac{W}{L} \left(U_{GSQ} - U_{GSth} \right)^2 \qquad \bigcup_{i=1}^{R_1} I_{i-1} I_{i-1}$$

解得: *U*_{GSQ}≈3.8V, *I*_{DQ}≈0.167mA

$$U_{DSQ} = U_{DD} - I_{DQ}(R_S + R_D) = 5.97V$$

2.10

己知
$$\left|U_{GS(off)}\right|=2$$
 V, $I_{DSS}=2$ mA, $g_m=1.2$ ms, $\left|\mathbf{U_A}\right|=80$ V

- (1) 试求该电路的静态漏极电流 I_{DO} 和栅源电压 U_{GSO} 。
- (2) 为保证 JFET 工作在恒流区,试问电源电压 U_{DD} 应取何值?
- (3) 画出低频小信号等效电路。
- (4) 试求器件的 r_{ds} 值,电路的 A_u 、 R_i 和 R_o 。

模拟电子电路

(1) T 为 N 沟 JFET,所以 $V_{GS(off)} = -2$ V,故可列出

$$\begin{cases} I_{DQ} = I_{DSS}(1 - \frac{U_{GSQ}}{U_{GS(off)}})^2 \\ U_{GSQ} = -I_{DQ} \cdot R_S \end{cases}$$

联立解上述方程,可得

$$\begin{cases} I_{DQ} = 0.764mA \\ I_{DQ} = 5.23mA($$
不合题意而舍去) $u_{GSQ} = -I_{DQ}R_{S} = -0.764V \end{cases}$

$$u_{\rm GSQ} = -I_{DQ}R_{s} = -0.764$$

(N沟 JFET, $I_{DSS} = 2 \text{ mA})$

(2) 为保证 JFET 工作在恒流区,则应满足
$$u_{\rm GSQ}$$
 =-0.764 $\rm V > U_{\rm GSoff}$ = -2 $\rm V_{\rm GDQ} < U_{\rm GSoff}$

因为
$$U_{DSQ} = U_{DD} - I_{DQ}(R_S + R_D)$$

$$u_{\text{GDQ}} = u_{\text{GSQ}} - u_{\text{DSQ}} = -I_{DQ}R_S$$
 - $(U_{DD} - I_{DQ}(R_S + R_D)) < U_{\text{GSoff}} = -2V$

所以 $U_{DD} > 1.23 + 0.764 \times 7 = 6.6$ (V)

(3) 低频小信号等效电路如图

(4)
$$r_{ds} = \frac{80}{0.764} \approx 105 k\Omega$$

 $A_u = -g_m \cdot R_D || R_L || r_{ds} = -1.236 \times 6 || 6 || 105 \approx -3.7$
 $R_i = R_G = 1M\Omega$
 $R_o = R_D // r_{ds} = 6 // 105 k\Omega \approx 6 k\Omega$

2.12

与p44页例2.5.1相同