Matematiska formler och uttryck som ska kunnas

Skalärprodukt

$$\boldsymbol{u}\cdot\boldsymbol{v}=u_1v_1+u_2v_2+...$$

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

Två vektorer, \boldsymbol{u} och v sägs vara ortogonala (vinkelräta) om $\boldsymbol{u} \cdot \boldsymbol{v} = 0$

Kryssprodukt

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta$$

Vektorn $\mathbf{w} = \mathbf{u} \times \mathbf{v}$ är vinkelrät mot planet som spänns upp av \mathbf{u} och v. Vektorerna u, v och w ordnas efter högerregeln och beräknas med hjälp av en determinant:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k} =$$

$$= (u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}$$

Normen av en vektor $||v|| = \sqrt{v \cdot v}$

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}$$

(Norm ersätts ofta med belopp $|\mathbf{u}|$ i \mathbb{R}^2 och \mathbb{R}^3)

För en enhetsvektor \boldsymbol{u} gäller $\|\boldsymbol{u}\| = 1$

Polära koordinater

Komplexa tal

$$i^2 = -1$$

$$z = a + bi$$

Konjugatet $\bar{z} = a - bi$

Identitetsmatrisen eller enhetsmatrisen (visas för n=3)

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Multiplikation

$$A^{-1}A = AA^{-1} = I_n$$

med invers

Transponatet av en matris, A^T , innebär att rader och kolumner byter Transponat

plats.

För transponering av en produkt av 2 matriser gäller $(AB)^T = B^T A^T$

Vid addition av $m \times n$ -matriserna A och B (m rader, n kolumner), bildas nya element som summan av motsvarande element i A och B: $a_{ij} + b_{ij}$

Matrismultiplikation

Produkten av $m \times p$ -matrisen A (m rader, radindex i, p kolumner) och $p \times n$ -matrisen B (p rader, n kolumner, kolumnindex j), ges av $m \times n$ -matrisen AB, där elementet ij består av summan:

$$\sum\nolimits_{k=1}^{p}a_{ik}b_{kj}$$

Vi multiplikation av matriser gäller i regel: $AB \neq BA$

Linjär transform

$$T(x) = Ax$$

Algebrans

För en $m \times n$ -matris A gäller: dim(NulA) + dim(ColA) = n

Fundamentalsats

Inverterbarhet För en inverterbar $n \times n$ -matris A gäller

 $det A \neq 0$

Ax = b har en unik lösning x för alla b i R^n

 $rref A = I_n$

rank A = n

 $Col A = R^n$

 $NulA = \{\mathbf{0}\}$

Kolumnvektorerna av A bildar en bas i R^n

Kolumnvektorerna av A spänner upp R^n

A's kolumnvektorer är linjärt oberoende

0 är inget egenvärde till A

Egenvärden

För en linjär transform T(x) = Ax från R^n till R^n finns en nollskild vektor v i R^n som kallas egenvektor om $Av = \lambda v$. λ är då ett reellt (eller imaginärt) egenvärde till ekvationen och v_1, v_2, \dots, v_n utgör en egenbas.

Karakteristiska ekvationen

 $det(A - \lambda I_n) = 0$

Dynamiska system

x(t+1) = Ax(t) och $x(t) = A^tx_0$ där x_0 är startvektorn.