Huffman Coding

Hashmat Rohian CSE 6111

Motivation

To compress or not to compress, that is the question!

- reducing the <u>space</u> required to store files on disk or tape
- reducing the <u>time</u> to transmit large files.

Image Source : plus.maths.org/issue23/ features/data/data.jpg

Example:

• A file with 100K characters

Character	а	b	С	d	е	f
Frequency (in 1000s)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101

Can we do better ??

YES !!

- Use **variable-length** codes instead.
- Give <u>frequent</u> characters <u>short</u> codewords, and infrequent characters long codewords.

	а	b	С	d	е	f
Frequency (in 1000s)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length	0	101	100	111	1101	1100
coaewora						

PREFIX-FREE CODE:

• No codeword is also <u>prefix</u> of some other codeword.

No Ambiguity!!

Variable-length	0	101	100	111	1101	1100
codeword						

Representation:

The Huffman algorithm is represented as:

- binary tree
- each edge represents either
 - 0, "go to the left child"
 - 1, "go to the right child"
- each leaf corresponds a particular code.

- Cost of the tree
 - $B(T) = \sum f(c) d_T(c)$ where $c \in C$

Optimal Code

- Always a <u>full binary tree</u>
 - One leaf for each letter of the alphabet

Constructing a Huffman code

- Build the tree T in a <u>bottom-up</u> manner.
 - Begins with a set of |C| leaves
 - Upward |C| 1 "merging" operations

Greedy Choice?

• The two smallest nodes are chosen at each step.

The steps of Huffman's algorithm

Running Time Analysis

Q is implemented as a <u>binary min-heap</u>.

The merge operation is executed exactly |n| - 1 times. Each heap operation requires time $O(\log n)$.

= O(nlog n)

Huffman code

Huffman Coding Example

- Decoding
 - 1. Read compressed file & binary tree
 - 2. Use binary tree to decode file Follow path from root to leaf

Huffman Code Algorithm Overview

111001

- Induction on the number of code words
- The Huffman algorithm finds an optimal code for n = 1
- Suppose that the Huffman algorithm finds an optimal code for codes size n, now consider a code of size n + 1 . . .

Correctness proof

Greedy Choice Proof

Assume that f[a] < f[b] and f[x] < f[y]

Since f[x] and f[y] are the two lowest frequencies,

f[x] < f[a] and f[y] < f[b].

- T Tree constructed by Huffman
- X Any code tree
- Show C(T) <= C(X)
- T' and X' Trees from the greedy choice
- C(T') = C(T)
- C(X') <= C(X)
- T" and X" Trees with minimum cost leaves x and y removed

Finish the induction proof

•
$$C(X'') = C(X') - x - y$$

•
$$C(T'') = C(T') - x - y$$

$$\bullet$$
 C(T) = C(T')

$$\bullet$$
 = C(T'') + x + y

$$\bullet <= C(X'') + x + y$$

$$\bullet = C(X')$$

$$\bullet <= C(X)$$

X: Any tree, X': - modified,

X": Two smallest leaves removed

Challenges and how to tackle them?

Two passes over the data:

- One pass to collect <u>frequency</u> counts of the letters
- A second pass to <u>encode</u> and transmit the letters, based on the static tree structure.

Problems:

<u>Delay</u> (network communication, file compression applications)

Extra disk accesses slow down the algorithm.

We need one-pass methods, in which letters are encoded "on the fly".

Dynamic Huffman codes

Algorithm FGK

- The next letter of the message is encoded on the basis of a Huffman tree for the previous letters.
- Encoding length = (2S + t), where S is the encoding length by a static Huffman code, and t is the number of letters in the original message.

Sender and receiver

- start with the same initial tree
- use the same algorithm to modify the tree after each letter is processed and thus always have equivalent copies of it.

Sibling Property:

A binary tree with p leaves of nonnegative weight is a Huffman tree iff

- the p leaves have nonnegative weights w_1, \ldots, w_p , and the weight of each internal node is the sum of the weights of its children; and
- the nodes can be numbered in non-decreasing order by weight, so that nodes (2j 1) and 2j are siblings, for $1 \le j \le p 1$, and their common parent node is higher in the numbering.

Difficulty

Suppose that $\mathcal{M}_T = a_{i1}$, a_{i2} , ..., a_{it} , has already been processed.

 $a_{i(t+1)}$ is encoded and decoded using Huffman tree for \mathcal{M}_T .

How to modify this tree quickly in order to get a Huffman tree for $\mathcal{M}_{T+1?}$

Eg. Assume t = 32,

First phase

- Begin with the leaf of $a_{i(t+1)}$, as the current node.
- Repeatedly interchange the contents of the current node, including the subtree rooted there, with that of the <u>highest numbered node of the same weight</u>
- Make the parent of the latter node the new current node.
- Halt when the root is reached.

Eg. Assume t = 32, $a_{i(t+1)} = "b"$

Second phase

• We turn this tree into the desired Huffman tree for \mathcal{M}_{T+1} by incrementing the weights of $a_{i(t+1)}$'s leaf and its ancestors by 1

- Huffman savings are between 20% 90%
- Dynamic Huffman Coding optimal and efficient
- Optimal data compression achievable by a character code can <u>always be achieved</u> with a prefix code.
- Better compression possible (depends on data)
 - Using other approaches (e.g., pattern dictionary)

Conclusions

Thank you for your attention!

