ANALISIS PROBABILISTIK DAN RANDOMIZED ALGORITHMS

KULIAH ANALISIS ALGORITMA DAN KOMPLEKSITAS

RANDOMIZED ALGORITHMS VS ANALISIS PROBABILISTIK ALGORITMA

Randomized algorithms

- Algoritma yang melakukan keputusan random selama eksekusinya
- Contoh: Quicksort dengan random pivot
- Probabilistic analysis of algorithms (analisis probabilistik algoritma)
 - Menggunakan teori probabilitas untuk menganalisis behavior dari algoritma (randomized atau deterministik)
 - Contoh: menentukan probabilitas tumbukan (collision) pada hash function

RANDOMIZED ALGORITHM

- Sebagai tambahan pada input, algoritma menggunakan suatu sumber untuk bilangan pseudo random.
 - Pada saat dieksekusi, dilakukan pemilihan secara random sesuai bilangan random yang dibangkitkan.
- Behavior (output) bisa bervariasi meskipun algoritma bekerja pada input yang sama.
- Keuntungan:
 - Algoritma biasanya sederhana dan mudah diimplementasikan
 - Algoritma berjalan cepat dengan probabilitas tinggi, atau/dan
 - Algoritma menghasilkan output yang optimum dengan probabilitas tinggi.

TIPE RANDOMIZED ALGORITHMS

- Monte Carlo: randomized algorithm yang selalu dapat diselesaikan dalam waktu polinomial, tetapi mungkin mendapatkan hasil yang eror
 - Solovay–Strassen primality test: digunakan untuk mengetes apakah suatu bilangan merupakan bilangan prima.
 - Selalu menghasilkan true untuk bilangan prima.
 - Untuk bilangn komposit, menghasilkan jawaban false dengan probabilitas minimal ½ dan true dengan probabilitas maksimal ½.
 - Artinya, jawaban selalu benar, tetapi jawaban benar belum tentu → ½-correct false-biased algorithm.
- Las Vegas: randomized algorithm yang selalu mendapatkan hasil yang benar, tetapi running time-nya bervariasi.
 - Randomized QUICKSORT

MENGAPA PERLU RANDOMIZED ALGORITHMS?

- Banyak NP-hard problems yang mungkin mudah diselesaikan dengan "typical" inputs
- Salah satu pendekatan: menggunakan heuristics untuk meng-handle input yang tidak biasa
- Pendekatan lain: menggunakan randomization (input atau algoritma) untuk mereduksi kemungkinan terjadinya worst-case behavior

ANALISIS PROBABILISTIK

- Adalah penggunaan probabilitas dalam menganalisis masalah.
 - Probabilitas dapat digunakan untuk menganalisis running time algoritma.
- Syarat: diketahuinya, atau diasumsikannya, distribusi dari input.
- Langkah-langkah:
 - Menentukan/mengasumsikan distribusi probabilitas.
 - Menganalisis item yang bersangkutan berdasarkan distribusi probabilitasnya → menghitung rata-rata running time untuk semua input yang mungkin (average-case running time).

Isu:

- Performance dari input tertentu ada kemungkinan jauh lebih jelek.
- Jika distribusinya salah, analisis dapat mengakibatkan gambaran yang tidak benar.

MENGAPA PROBABILISTIC ANALYSIS OF ALGORITHMS?

- Jika algoritma melakukan keputusan random, maka performance tidak deterministik.
- Behavior dari algoritma deterministik juga bisa bervariasi antar input
- Probabilistic analysis juga memungkinkan estimasi batasan (bounds) pada behavior

HIRING PROBLEM

- Anda memerlukan pegawai baru.
- Anda memanfaatkan jasa agen penyedia tenaga kerja.
- Agen tersebut mengirimkan 1 kandidat setiap hari.
- Anda mewawancarai kandidat tersebut, kemudian memutuskan apakah akan mempekerjakannya atau tidak.
- Anda harus membayar fee ke agen setiap kali mewawancarai kandidat.
- Tetapi biaya lebih besar harus dikeluarkan untuk mempekerjakan kandidat.
- Anda berkomitmen untuk selalu mempekerjakan pegawai yang paling baik.
- Jadi diputuskan bahwa setelah mewawancarai kandidat, jika kandidat tersebut lebih baik daripada pekerja sekarang, maka Anda akan mengganti pekerja sekarang dengan kandidat itu.

ALGORITMA HIRING PROBLEM

Input

- Sederet n kandidat untuk suatu posisi tertentu.
- Masing-masing memiliki kualitas yang berbeda yang dapat ditentukan pada saat wawancara
- Algoritma: Hire(n)
 - best = 0
 - for i = 1 to n
 - Wawancara kandidat i.
 - Jika kandidat i lebih baik daripada best maka
 - hire(i)
 - best = i

Cost: biaya yang harus dikeluarkan dari mewawancarai dan mempekerjakan.

- Misal biaya untuk mewawancara setiap kandidat adalah c_i, biaya untuk mempekerjakan kandidat adalah c_h.
- Misalkan jumlah kandidat yang dipekerjakan: n.
- Maka total biaya yang dikeluarkan: O(nc_i + mc_h).

Worst-case:

- Setiap kandidat dipekerjakan → kapan terjadi?
- Best case?

ASUMSI DISTRIBUSI INPUT PADA HIRING PROBLEM

- Kandidat datang secara random.
- Kita dapat menentukan kandidat yang lebih baik di antara kandidat i dan kandidat i+1.
 - Kandidat dapat dirangking.
 - Terdapat n! kemungkinan rangking → rangking membentuk uniform random permutation, jadi masingmasing permutasi n! yang mungkin, dapat muncul dengan probabilitas yang sama.

RANDOMIZED ALGORITHMS UNTUK HIRING PROBLEM

- Kita tidak mengetahui apakah agen mengirimkan kandidat untuk diwawancarai secara random.
- Agar kita dapat lebih mengontrolnya:
 - Agen mengirimkan daftar n kandidatnya.
 - Setiap hari kita memilih secara random kandidat mana yang akan diwawancarai.
- Algoritma juga dikatakan randomized jika inputnya dihasilkan oleh random-number generator (pembangkit bilangan random).
 - RANDOM(a, b) menghasilkan bilangan random antara a dan b dengan probabilitas kemunculan masing-masing bilangan sama.
- Expected running time: running time dari randomized algorithm.

VARIABEL RANDOM INDIKATOR

- Variabel random indikator menyediakan metode untuk mengkonversi probabilitas dan ekspektasi.
- Misalkan diberikan sample space S dan kejadian A. variabel random indikator I{A} didefinisikan sebagai:

```
I{A} = 1 jika A terjadi,
0 jika A tidak terjadi.
```

- Contoh: melempar koin.
 - $S = \{H, T\}$
 - $Pr\{H\} = Pr\{T\} = \frac{1}{2}$
 - X_H = variabel random indikator yang berkaitan dengan munculnya H.
 - $X_H = I\{H\} = 1$ jika H terjadi, 0 jika T terjadi.
 - E[X_H] = ekspektasi jumlah munculnya head dalam 1 kali lemparan koin.
 - $E[X_H] = E[I\{H\}] = 1 Pr\{H\} + 0 Pr\{T\} = \frac{1}{2}$.

- Lemma: diberikan sample space S dan kejadian A pada S. Misalkan $X_{\Delta} = I\{A\}$, maka $E\{X_{\Delta}\} = Pr\{A\}$.
- Misalkan X_i adalah variabel random indikator yang berkaitan dengan kejadian lemparan koin ke-i dengan hasil head.
 - Jika X adalah variabel random yang menunjukkan jumlah total munculnya head dalam n lemparan koin:

$$X = \sum_{i=1 \text{ to n}} X_i$$
.

- Maka $E[X] = E[\sum_{i=1 \text{ to n}} X_i]$
- Untuk n pelemparan koin dengan munculnya head:
- $E[X] = E[\Sigma_{i=1 \text{ to n}} X_i] = \Sigma_i E[X_i] = \Sigma_i \frac{1}{2} = n/2$ (linearity of expectation)

MENGANALISIS HIRING PROBLEM

- Kita akan menghitung ekspektasi jumlah pegawai baru yang kita pekerjakan.
 - X_i: variabel random indikator yang berkaitan dengan kandidat ke-i dipekerjakan.
 - X_i = I{kandidat i dipekerjakan}
 - = 1, jika kandidat i dipekerjakan
 - 0, jika kandidat i tidak dipekerjakan.

$$X = X_1 + X_2 + \dots + X_n.$$

- E[X_i] = Pr{kandidat i dipekerjakan} = 1/i (karena kandidat datang secara random, probabilitas bahwa kandidat i paling baik adalah 1/i)
- $E[X] = E[\sum_{i=1 \text{ to } n} X_i] = \sum_{i=1 \text{ to } n} E[X_i] = \sum_{i=1 \text{ to } n} 1/i$ = $\ln n + O(1)$ (deret harmonik)
- Lemma: jika kandidat datang dengan urutan random, maka average case biaya total untuk mempekerjakan pada algoritma Hire adalah O(c_h In n).
 - Merupakan improvement dari worst case: O(c_hn).

ALGORITMA RANDOMIZED-HIRE

Masalah hiring:

- Diasumsikan bahwa kandidat datang dengan urutan random.
 - Algoritma deterministik.
 - Jumlah mempekerjakan pegawai tergantung pada input.
- Misalkan algoritma melakukan randomisasi terhadap permutasi dari kandidat, dan kemudian menentukan kandidat terbaik.
 - Algoritma randomized-hire:
 lakukan permutasi secara random terhadap daftar kandidat

best = 0for i = 1 to n

- Wawancara kandidat i.
- Jika kandidat i lebih baik daripada best maka
 - hire(i)
 - best = k
- Maka algoritma tersebut adalah randomized algorithm.
- Lemma: biaya hiring problem dengan algoritma randomized-hire adalah O(c_h ln n).

CONTOH: PERMUTASI ARRAY SECARA RANDOM

 Misalkan diberikan array yang memuat elemen 1 sampai n. Tujuan kita adalah menghasilkan permutasi dari array tersebut secara random.

- Metode: melakukan permutasi terhadap array.
 - Pada iterasi ke-i, dipilih elemen A[i] secara random di antara elemen ke A[i] dan A[n].
 - Algoritma:
 - Permutasi-langsung(A)
 - n = A.length
 - For i = 1 to n swap A[i] dengan A[random(i,n)]
 - Kompleksitas: O(n)

PENGGUNAAN RANDOMIZED ALGORITHM

- Polling
- Algoritma genetika

CATATAN

- Randomized algorithms bukan merupakan analisis probabilistik terhadap expected running time.
 - Randomized algorithm mengusahakan agar algoritma deterministik berubah menjadi randomized algorithm.
 - Sedangkan analisis probabilitas:
 - Mengasumsikan bahwa input berasal dari distribusi probabilitas.
 - Tujuannya adalah untuk menghitung expected running time dari algoritma.

KUIS

- Berikan contoh lain dari randomized algorithm yang berkaitan dengan permutasi array.
- Berikan contoh lain dari randomized algorithm yang Anda ketahui.
- Pada algoritma masalah hiring, jika diasumsikan bahwa calon pegawai datang secara random, tentukan probabilitas bahwa Anda mempekerjakan tepat dua pegawai.