Solutions to homework 9:

- 1. Suppose $f: A \to A$ such that $f \circ f$ is bijective. Is f necessarily bijective?
 - If $f \circ f$ is injective, for $a_1, a_2 \in A$ where $a_1 \neq a_2, f(f(a_1)) \neq f(f(a_2))$.
 - This implies that $f(a_1) \neq f(a_2)$ for $a_1 \neq a_2$. Therefore, f is injective.
 - When $f \circ f$ is surjective. $\forall a \in A, \exists b \in A \text{ such that } f(f(b)) = a$.
 - This also means that $\forall a \in A$, there exists $f(b) \in A$ where f(f(b)) = a.
 - Thus, f is surjective and hence f is bijective.
- 2. Suppose that $f: A \to B$ is a surjection and $Y \subseteq B$. Show that

$$f(f^{-1}(Y)) = Y.$$

- Let $y \in f(f^{-1}(Y))$, because f is surjective $\exists x \in f^{-1}(Y)$ where f(x) = y.
- When $x \in f^{-1}(Y)$ then $f(x) \in Y$ so $y \in f(Y)$, therefore $f(f^{-1}(Y)) \subseteq Y$.
- Now let $y \in Y$, because f is surjective $\exists x \in f^{-1}(Y)$ such that f(x) = y is satisfied.
- When $x \in f^{-1}(Y), f(x) \in f(f^{-1}(Y))$ hence $Y \subseteq f(f^{-1}(Y))$.
- Therefore, $f(f^{-1}(Y)) = Y$.
- 3. Let $f: E \to F$ be a function. We recall that for any $A \subseteq E$, the image f(A) of A by f is defined as

$$f(A) = \{ f(x) : x \in A \}.$$

Show that f is surjective if and only if

$$\forall A \subseteq E, F - f(A) \subseteq f(E - A).$$

- Let f be surjective and let $y \in F f(A)$, then $\exists x \in E$ such that f(x) = y.
- As we know that $y \in F f(A)$ we can see that $x \notin A$ making $x \in E A$.
- Therefore, $f(x) = y \in f(E A)$. Hence $F f(A) \subseteq f(E A)$.
- Now let $F f(A) \subseteq f(E A)$. And let's choose $y \in F f(A)$.
- Thus y also satisfies $y \in f(E A)$, $\forall A \subseteq E$.
- This means that $\exists x \in E A \text{ such that } f(x) = y$.
- As we know that $\forall A \subseteq E, f$ becomes surjective.
- 4. (a) Prove that the function $g: \mathbb{R}^2 \to \mathbb{R}, g(x,y) = x^2 y^2$, is surjective.
 - (b) Find $g^{-1}(\{0\})$.
 - (c) Let $A := \{a \in \mathbb{R}, a \geq 0 \text{ and consider the function } h : A \to A, h(x) = x^4 + 3. \text{ Find } h^{-1}(\{c\}) \text{ for each } c \text{ in the codomain.}$

- (a)
 - For $\forall z \in \mathbb{R}$, choose $x, y \in \mathbb{R}$ such that $x^2 z \ge 0$ and $y = \sqrt{x^2 z}$.
 - Then $g(x,y) = g(x, \sqrt{x^2 z}) = x^2 (\sqrt{x^2 z})^2 = x^2 (x^2 z) = z$.
 - Hence, q is surjective.
- (b)
 - $-g^{-1}(\{0\})$ is the set that satisfies g(x,y)=0.
 - Hence we need to find $(x,y) \in \mathbb{R}^2$ where $x^2 y^2 = 0$.
 - $As x, y \in \mathbb{R},$

$$x^2 - y^2 = 0 (1)$$

$$x^2 = y^2 \tag{2}$$

$$x = \pm y \tag{3}$$

- Thus $g^{-1}(\{0\}) = \{(y,y), (-y,y)\} = \{(x,y) \in \mathbb{R}^2 : x = y \text{ or } x = -y\}.$
- (c)
 - We need to find a set X in A that contains x where $h(x) = x^4 + 3 = c$.

$$x^4 + 3 = c \tag{4}$$

$$x^4 = c - 3 \tag{5}$$

$$x^2 = \pm \sqrt{c - 3} \tag{6}$$

$$=\sqrt{c-3} \qquad (x^2 \ge 0) \tag{7}$$

- Case 1: c < 3, We know that $x \in \mathbb{R}$ hence c 3 > 0 needs to be satisfied.
- Therefore, when c < 3 then $h^{-1}(\{c\}) = \emptyset$.
- Case 2: c = 3, then $x^2 = 0$.
- Therefore x = 0 making $h^{-1}(\{c\}) = \{0\}.$
- Case 3: c > 3, then $x = \pm \sqrt[4]{c-3}$
- As we know that $x \in A, x > 0$ hence $x = 4\sqrt{c-3}$.
- Hence $h^{-1}(\{c\}) = \{4\sqrt{c-3}\}.$
- Thus when $c < 3, h^{-1}(\{c\}) = \emptyset$
- And when $c \ge 3$, $h^{-1}(\{c\}) = \{x \in \mathbb{R} : x = 4\sqrt{c-3}\}$
- 5. For a function $f: A \to B$ and subsets E and F of B, prove

$$f^{-1}(E - F) = f^{-1}(E) - f^{-1}(F).$$

- Let $x \in f^{-1}(E F)$, then $f(x) \in E F$. Meaning that $f(x) \in E$ and $f(x) \notin F$.
- Hence, $x \in f^{-1}(E)$ and $x \notin f^{-1}(F)$. Which means that $x \in f^{-1}(E) f^{-1}(F)$.
- Therefore, $f^{-1}(E F) \subseteq f^{-1}(E) f^{-1}(F)$.

- Now let $x \in f^{-1}(E) f^{-1}(F)$, Then we know that $x \in f^{-1}(E)$ and $x \notin f^{-1}(F)$.
- Thus, $f(x) \in E$ and $f(x) \notin F$ therefore $f(x) \in E F$.
- Showing that $x \in f^{-1}(E F)$, therefore $f^{-1}(E) f^{-1}(F) \subseteq f^{-1}(E F)$.
- To conclude, $f^{-1}(E F) = f^{-1}(E) f^{-1}(F)$.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2 + ax + b$, where $a, b \in \mathbb{R}$. Determine whether f is injective and/or surjective.
 - First, we can see that $f(x) = x^2 + ax + b = (x + \frac{a}{2})^2 + b \frac{a^2}{4}$.
 - Let's choose $y \in \mathbb{R}$ such that $y = b \frac{a^2}{4} + 1$ and f(x) = y.
 - Then

$$f(x) = y = b - \frac{a^2}{4} + 1 \tag{8}$$

$$\left(x + \frac{a}{2}\right)^2 + b - \frac{a^2}{4} = b - \frac{a^2}{4} + 1\tag{9}$$

$$(x + \frac{a}{2})^2 = 1\tag{10}$$

$$x = \pm 1 - \frac{a}{2} \tag{11}$$

- Hence as we know that $1 \frac{a}{2} \neq -1 \frac{a}{2}$ and $f(1 \frac{a}{2}) = f(-1 \frac{a}{2})$ is proves that f is not injective.
- Not let's choose $y = b \frac{a^2}{4} 1 \in \mathbb{R}$.
- Then

$$f(x) = y = b - \frac{a^2}{4} - 1 \tag{12}$$

$$\left(x + \frac{a}{2}\right)^2 + b - \frac{a^2}{4} = b - \frac{a^2}{4} - 1\tag{13}$$

$$(x + \frac{a}{2})^2 = -1\tag{14}$$

- We know that $x \in \mathbb{R}$, thus no x exists in \mathbb{R} that satisfies this relation.
- Hence for the chosen y no x exists such that f(x) = y.
- \bullet Therefore, f is not surjective.
- 7. For $n \in \mathbb{N}$, let $A = \{a_1, a_2, a_3, \dots, a_n\}$ be a fixed set and let F be the set of all functions $f: A \to \{0, 1\}$.
 - (a) What is |F|, the cardinality of F?
 - For each element of A we can choose between 0, 1, hence the cardinality of F is 2^n .

- (b) Let $g: F \to \mathcal{P}(A)$ be defined as $g(f) = \{a \in A : f(a) = 1\}$. We prove that the function is both surjective and injective.
 - Let $B \subseteq \mathcal{P}(A)$, then we know that $B \subseteq A$.
 - Thus, $f_B: A \to \{0,1\}$, defined such that if $x \in B$, f(x) = 1 and if $x \notin B$, f(x) = 0.
 - Therefore, f is well-defined and also we have $g(f_B) = B$, hence g is surjective.
 - Now let $f_1, f_2 \in F$ and assume that $g(f_1) = g(f_2)$, then $\{a \in A : f_1(a) = 1\} = \{a \in A : f_2(a) = 1\}$.
 - Let's call this set X, let $x \in A$ then either $x \in X$ or $x \notin X$.
 - When $x \in X$, we have by definition $f_1(x) = 1 = f_2(x)$. Then when $x \notin X$, $f_1(x) = 0 = f_2(x)$.
 - Thus $\forall x \in A$, we have $f_1(x) = f_2(x)$, hence $f_1 = f_2$.
 - Which implies that q is injective.
- 8. Determine all functions $f: \mathbb{N} \to \mathbb{N}$ that are injective and such that for all $n \in \mathbb{N}$ we have $f(n) \leq n$.
 - Let's start from n=1, as $f(n) \leq n$ thus $f(1) \leq 1$ and $f: \mathbb{N} \to \mathbb{N}$ therefore f(1)=1.
 - Then for f(2), $f(2) \le 2$ and we know that f is injective and f(1) = 1.
 - Thus f(2) = 2.
 - Therefore we can conclude that f(n) = n for all $n \in \mathbb{N}$ when $f(n) \leq n$ and f is injective.