

Introducción a Modelos Psicométricos Clase 5 La Teoría Clásica de los Tests: Aplicaciones

Iwin Leenen y Ramsés Vázquez-Lira

Facultad de Psicología, UNAM

Programa de Licenciatura y Posgrado en Psicología Semestre 2019–1

- 1 Métodos para estimar la puntuación verdadera
- 2 Estimar la confiabilidad de un test

- 1 Métodos para estimar la puntuación verdadera
 - La puntuación observada como estimador de la puntuación verdadera
 - Estimar la puntuación verdadera utilizando un modelo de regresión lineal
 - Derivar un intervalo de confianza para la puntuación verdadera
- 2 Estimar la confiabilidad de un test

La puntuación observada como estimador de la puntuación verdadera

- 1 Métodos para estimar la puntuación verdadera
 - La puntuación observada como estimador de la puntuación verdadera
 - Estimar la puntuación verdadera utilizando un modelo de regresión lineal
 - Derivar un intervalo de confianza para la puntuación verdadera
- 2 Estimar la confiabilidad de un test

La Teoría Clásica de los Tests para una Persona

		$X_{ih} = T_i + E_{ih}$			
Persona i					
h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
:	÷		:		:
∞					
8	37		37		0
σ^2	3		0		3

Estimar la puntuación verdadera

La puntuación observada como estimador de la puntuación verdadera

Estimar la puntuación verdadera, considerando la teoría clásica para una persona

■ De los supuestos de la teoría clasica de los tests, sigue que:

$$\mathscr{E}(X_i) = T_i$$

• A partir de este resultado es natural proponer X_i como estimador de T_i :

$$\widehat{T}_i \longleftarrow X_i$$

- Entonces, se puede derivar que:
 - *X_i* es un estimador insesgado:

$$\mathscr{E}(X_i-T_i)=0$$

La eficiencia del estimador Xi es

$$\mathscr{E}\left[(X_i-T_i)^2\right]$$

Estimar la puntuación verdadera

La puntuación observada como estimador de la puntuación verdadera

Estimar la puntuación verdadera, considerando la teoría clásica para una persona

■ De los supuestos de la teoría clasica de los tests, sigue que:

$$\mathscr{E}(X_i) = T_i$$

• A partir de este resultado es natural proponer X_i como estimador de T_i :

$$\widehat{T}_i \longleftarrow X_i$$

- Entonces, se puede derivar que:
 - *X_i* es un estimador insesgado:

$$\mathscr{E}(X_i-T_i)=0$$

La eficiencia del estimador Xi es

$$\mathscr{E}\Big[(X_i-T_i)^2$$

Estimar la puntuación verdadera

La puntuación observada como estimador de la puntuación verdadera

Estimar la puntuación verdadera, considerando la teoría clásica para una persona

De los supuestos de la teoría clasica de los tests, sigue que:

$$\mathcal{E}(X_i) = T_i$$

■ A partir de este resultado es natural proponer X_i como estimador de T_i :

$$\widehat{T}_i \longleftarrow X_i$$

- Entonces, se puede derivar que:
 - X_i es un estimador insesgado:

$$\mathscr{E}(X_i-T_i)=0$$

La eficiencia del estimador Xi es

$$\mathscr{E}\Big[(X_i-T_i)^2\Big]$$

Estimar la puntuación verdadera

La puntuación observada como estimador de la puntuación verdadera

Estimar la puntuación verdadera, considerando la teoría clásica para una persona

■ De los supuestos de la teoría clasica de los tests, sigue que:

$$\mathscr{E}(X_i) = T_i$$

■ A partir de este resultado es natural proponer X_i como estimador de T_i :

$$\widehat{T}_i \longleftarrow X_i$$

- Entonces, se puede derivar que:
 - X_i es un estimador insesgado:

$$\mathscr{E}(X_i-T_i)=0$$

• La eficiencia del estimador Xi es

$$\mathscr{E}\left[(X_i-T_i)^2\right]$$

Estimar la puntuación verdadera

La puntuación observada como estimador de la puntuación verdadera

Estimar la puntuación verdadera, considerando la teoría clásica para una persona

■ De los supuestos de la teoría clasica de los tests, sigue que:

$$\mathscr{E}(X_i) = T_i$$

■ A partir de este resultado es natural proponer X_i como estimador de T_i :

$$\widehat{T}_i \longleftarrow X_i$$

- Entonces, se puede derivar que:
 - X_i es un estimador insesgado:

$$\mathscr{E}(X_i-T_i)=0$$

• La eficiencia del estimador Xi es

$$\mathscr{E}\left[(X_i-T_i)^2\right] = \sigma_{X_i}^2$$

Estimar la puntuación verdadera

La puntuación observada como estimador de la puntuación verdadera

Estimar la puntuación verdadera, considerando la teoría clásica para una persona

■ De los supuestos de la teoría clasica de los tests, sigue que:

$$\mathscr{E}(X_i) = T_i$$

■ A partir de este resultado es natural proponer X_i como estimador de T_i :

$$\widehat{T}_i \longleftarrow X_i$$

- Entonces, se puede derivar que:
 - X_i es un estimador insesgado:

$$\mathscr{E}(X_i-T_i)=0$$

• La eficiencia del estimador Xi es

$$\mathscr{E}\left[(X_i - T_i)^2\right] = \sigma_{X_i}^2$$
$$= \sigma_{E_i}^2$$

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

- 1 Métodos para estimar la puntuación verdadera
 - La puntuación observada como estimador de la puntuación verdadera
 - Estimar la puntuación verdadera utilizando un modelo de regresión lineal
 - Derivar un intervalo de confianza para la puntuación verdadera
- 2 Estimar la confiabilidad de un test

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Regresión lineal simple

El modelo de regresión lineal simple in a nutshell

■ En un modelo de regresión lineal simple, se estima una variable criterio (Y) con base en una variable predictora (X), a través de una función lineal:

$$\widehat{Y} = aX + b$$

- Un objetivo primario de un análisis de regresión es obtener valores "óptimos" para las constantes a y b.
- Utilicemos el criterio de mínimos cuadrados para definir "óptimo":
 Esto quiere decir que se busquen los valores para a y b que minimicen

$$\mathscr{E}\left[(\widehat{Y}-Y)^2\right]$$

Regresión lineal simple

El modelo de regresión lineal simple in a nutshell

■ En un modelo de regresión lineal simple, se estima una variable criterio (Y) con base en una variable predictora (X), a través de una función lineal:

$$\widehat{Y} = aX + b$$

- Un objetivo primario de un análisis de regresión es obtener valores "óptimos" para las constantes a y b.
- Utilicemos el criterio de mínimos cuadrados para definir "óptimo":
 Esto quiere decir que se busquen los valores para a y b que minimice

$$\mathscr{E}\left[(\widehat{Y}-Y)^2\right]$$

Regresión lineal simple

El modelo de regresión lineal simple in a nutshell

■ En un modelo de regresión lineal simple, se estima una variable criterio (Y) con base en una variable predictora (X), a través de una función lineal:

$$\widehat{Y} = aX + b$$

- Un objetivo primario de un análisis de regresión es obtener valores "óptimos" para las constantes a y b.
- Utilicemos el criterio de mínimos cuadrados para definir "óptimo":
 Esto quiere decir que se busquen los valores para a y b que minimicen

$$\mathscr{E}\left[(\widehat{Y}-Y)^2\right]$$

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Regresión lineal simple

El modelo de regresión lineal simple in a nutshell

■ En un modelo de regresión lineal simple, se estima una variable criterio (Y) con base en una variable predictora (X), a través de una función lineal:

$$\widehat{Y} = aX + b$$

- Un objetivo primario de un análisis de regresión es obtener valores "óptimos" para las constantes a y b.
- Utilicemos el criterio de mínimos cuadrados para definir "óptimo":
 Esto quiere decir que se busquen los valores para a v.b que mínimicen

$$\mathscr{E}\Big[(\widehat{Y}-Y)^2\Big]$$

Regresión lineal simple

El modelo de regresión lineal simple in a nutshell

■ En un modelo de regresión lineal simple, se estima una variable criterio (Y) con base en una variable predictora (X), a través de una función lineal:

$$\widehat{Y} = aX + b$$

- Un objetivo primario de un análisis de regresión es obtener valores "óptimos" para las constantes a y b.
- Utilicemos el criterio de mínimos cuadrados para definir "óptimo":
 Esto quiere decir que se busquen los valores para a y b que minimicen:

$$\mathscr{E}\Big[(\widehat{Y}-Y)^2\Big]$$

Regresión lineal simple

El modelo de regresión lineal simple in a nutshell

■ En un modelo de regresión lineal simple, se estima una variable criterio (Y) con base en una variable predictora (X), a través de una función lineal:

$$\widehat{Y} = aX + b$$

- Un objetivo primario de un análisis de regresión es obtener valores "óptimos" para las constantes a y b.
- Utilicemos el criterio de mínimos cuadrados para definir "óptimo":
 Esto quiere decir que se busquen los valores para a y b que minimicen:

$$\mathscr{E}\Big[(aX+b-Y)^2\Big]$$

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Regresión lineal simple

El modelo de regresión lineal simple in a nutshell

 Con base en el criterio de mínimos cuadrados, se puede derivar matemáticamente las siguientes fórmulas para los valores "optimos" para a y b:

$$a = \frac{\sigma_{XY}}{\sigma_X^2}$$

$$b = \mathscr{E}(Y) - a\mathscr{E}(X)$$

Regresión lineal simple

El modelo de regresión lineal simple in a nutshell

 Con base en el criterio de mínimos cuadrados, se puede derivar matemáticamente las siguientes fórmulas para los valores "optimos" para a y b:

$$a = \frac{\sigma_{XY}}{\sigma_X^2}$$

$$b = \mathscr{E}(Y) - a\mathscr{E}(X)$$

Regresión lineal simple

El modelo de regresión lineal simple in a nutshell

 Con base en el criterio de mínimos cuadrados, se puede derivar matemáticamente las siguientes fórmulas para los valores "optimos" para a y b:

$$a = \frac{\sigma_{XY}}{\sigma_X^2}$$

$$b = \mathscr{E}(Y) - a\mathscr{E}(X)$$

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera *T* es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera T a través de la siguiente función lineal de la puntuación observada X:

$$\widehat{T} = aX + b$$

Los valores óptimos para a y b son:

$$a = \frac{\sigma_{XT}}{\sigma_X^2}$$
$$b = \mathcal{E}(T) - a\mathcal{E}(X)$$

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera T a través de la siguiente función lineal de la puntuación observada X:

$$\widehat{T} = aX + b$$

Los valores óptimos para a y b son:

$$a = \frac{\sigma_{XT}}{\sigma_X^2}$$
$$b = \mathcal{E}(T) - a\mathcal{E}(X)$$

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - ullet la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera T a través de la siguiente función lineal de la puntuación observada X:

$$\widehat{T} = aX + b$$

Los valores óptimos para a y b son

$$a = \frac{\sigma_{XT}}{\sigma_X^2}$$
$$b = \mathcal{E}(T) - a\mathcal{E}(X)$$

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera \mathcal{T} a través de la siguiente función lineal de la puntuación observada \mathcal{X} :

$$\widehat{T} = aX + b.$$

Los valores óptimos para a y b son

$$a = \frac{\sigma_{XT}}{\sigma_X^2}$$
$$b = \mathcal{E}(T) - a\mathcal{E}(X)$$

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera $\mathcal T$ a través de la siguiente función lineal de la puntuación observada $\mathcal X$:

$$\widehat{T} = aX + b.$$

Los valores óptimos para a y b son:

$$a = \frac{\sigma_{XT}}{\sigma_X^2}$$
$$b = \mathscr{E}(T) - a\mathscr{E}(X)$$

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera T a través de la siguiente función lineal de la puntuación observada X:

$$\widehat{T} = aX + b.$$

Los valores óptimos para a y b son:

$$a = \frac{\sigma_{T+E,T}}{\sigma_X^2}$$
$$b = \mathscr{E}(T) - a\mathscr{E}(X)$$

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera $\mathcal T$ a través de la siguiente función lineal de la puntuación observada $\mathcal X$:

$$\widehat{T} = aX + b.$$

■ Los valores óptimos para a y b son:

$$a = \frac{\sigma_{T,T} + \sigma_{E,T}}{\sigma_X^2}$$
$$b = \mathscr{E}(T) - a\mathscr{E}(X)$$

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera $\mathcal T$ a través de la siguiente función lineal de la puntuación observada $\mathcal X$:

$$\widehat{T} = aX + b.$$

Los valores óptimos para a y b son:

$$a = \frac{\sigma_T^2}{\sigma_X^2}$$
$$b = \mathscr{E}(T) - a\mathscr{E}(X)$$

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera $\mathcal T$ a través de la siguiente función lineal de la puntuación observada $\mathcal X$:

$$\widehat{T} = aX + b.$$

Los valores óptimos para a y b son:

$$a = \rho_{XX'}$$

 $b = \mathscr{E}(T) - a\mathscr{E}(X)$

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera $\mathcal T$ a través de la siguiente función lineal de la puntuación observada $\mathcal X$:

$$\widehat{T} = aX + b.$$

Los valores óptimos para a y b son:

$$a = \rho_{XX'}$$

 $b = \mathscr{E}(X) - a\mathscr{E}(X)$

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera $\mathcal T$ a través de la siguiente función lineal de la puntuación observada $\mathcal X$:

$$\widehat{T} = aX + b.$$

Los valores óptimos para a y b son:

$$a = \rho_{XX'}$$

$$b = \mathscr{E}(X) - \rho_{XX'} \mathscr{E}(X)$$

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

- Adoptamos el marco del modelo de la teoría clásica de los tests, considerado para una población de personas.
- Aplicamos un modelo de regresión lineal simple, donde
 - la puntuación verdadera T es la variable criterio;
 - la puntuación observada X es la variable predictora.

Es decir, estimamos la puntuación verdadera $\mathcal T$ a través de la siguiente función lineal de la puntuación observada $\mathcal X$:

$$\widehat{T} = aX + b.$$

Los valores óptimos para a y b son:

$$a = \rho_{XX'}$$

$$b = (1 - \rho_{XX'}) \mathscr{E}(X)$$

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

Resumiendo:

$$\widehat{T} = aX + b$$
.

donde:

$$a = \rho_{XX'}$$

$$b = (1 - \rho_{XX'}) \mathcal{E}(X)$$

lo cual resulta en

$$\widehat{T} = \rho_{XX'} X + (1 - \rho_{XX'}) \mathscr{E}(X)$$

■ $\rho_{XX'}$ < 1 \longrightarrow Regresión a la media

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

Resumiendo:

$$\widehat{T} = aX + b$$
,

donde:

$$a = \rho_{XX'}$$

$$b = (1 - \rho_{XX'}) \mathcal{E}(X)$$

lo cual resulta en:

$$\widehat{T} = \rho_{XX'} X + (1 - \rho_{XX'}) \mathscr{E}(X)$$

 $\rho_{XX'} < 1 \longrightarrow \text{Regresión a la media}$

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Estimar la puntuación verdadera, considerando la teoría clásica para una población de personas

Resumiendo:

$$\widehat{T} = aX + b$$
.

donde:

$$a = \rho_{XX'}$$

$$b = (1 - \rho_{XX'}) \mathcal{E}(X)$$

lo cual resulta en:

$$\widehat{T} = \rho_{XX'} X + (1 - \rho_{XX'}) \mathscr{E}(X)$$

■ $\rho_{XX'}$ < 1 \longrightarrow Regresión a la media

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Ejemplo

$$\mathcal{E}(X) = 100$$

$$\sigma_X = 15$$

$$\rho_{XX'} = .87$$

- Se aplicó la prueba a Juan Pedro y se observó una puntuación de 130. Entonces, ¿cuál sería la estimación de su puntuación verdadera?
- **Aplicamos** el modelo lineal a la puntuación observada de Juan Pedro (X_i) ;

$$\widehat{T}_i = \rho_{XX'} X_i + (1 - \rho_{XX'}) \mathcal{E}(X)$$
= .87 × 130 + (1 - .87) × 100
= 126.1

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Ejemplo

$$\mathcal{E}(X) = 100$$

$$\sigma_X = 15$$

$$\rho_{XX'} = .87$$

- Se aplicó la prueba a Juan Pedro y se observó una puntuación de 130. Entonces, ¿cuál sería la estimación de su puntuación verdadera?
- Aplicamos el modelo lineal a la puntuación observada de Juan Pedro (X_i) ;

$$\widehat{T}_i = \rho_{XX'} X_i + (1 - \rho_{XX'}) \mathcal{E}(X)$$
= .87 × 130 + (1 - .87) × 100
= 126.1

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Ejemplo

$$\mathcal{E}(X) = 100$$

$$\sigma_X = 15$$

$$\rho_{XX'} = .87$$

- Se aplicó la prueba a Juan Pedro y se observó una puntuación de 130. Entonces, ¿cuál sería la estimación de su puntuación verdadera?
- Aplicamos el modelo lineal a la puntuación observada de Juan Pedro (X_i) ;

$$\widehat{T}_i = \rho_{XX'} X_i + (1 - \rho_{XX'}) \mathscr{E}(X)$$

= .87 × 130 + (1 - .87) × 100
= 126.1

Estimar la puntuación verdadera utilizando un modelo de regresión lineal

Estimar la puntuación verdadera

Utilizando un modelo de regresión lineal

Ejemplo

$$\mathcal{E}(X) = 100$$

$$\sigma_X = 15$$

$$\rho_{XX'} = .87$$

- Se aplicó la prueba a Juan Pedro y se observó una puntuación de 130. Entonces, ¿cuál sería la estimación de su puntuación verdadera?
- Aplicamos el modelo lineal a la puntuación observada de Juan Pedro (X_i) ;

$$\widehat{T}_i = \rho_{XX'} X_i + (1 - \rho_{XX'}) \mathscr{E}(X)$$

= .87 × 130 + (1 - .87) × 100
= 126.1

Derivar un intervalo de confianza para la puntuación verdadera

Índice

- 1 Métodos para estimar la puntuación verdadera
 - La puntuación observada como estimador de la puntuación verdadera
 - Estimar la puntuación verdadera utilizando un modelo de regresión lineal
 - Derivar un intervalo de confianza para la puntuación verdadera
- 2 Estimar la confiabilidad de un test

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

- En general, es deseable acompañar la estimación puntual con información sobre la precisión de la estimación.
 - ⇒ Intervalo de confianza
- Para construir el intervalo de confianza para la puntuación verdadera *T_i*:
 - consideramos el modelo de la teoría clásica para una persona;
 - se extiende este modelo con un supuesto sobre la distribución exacta de la puntuación error E_i.

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

- En general, es deseable acompañar la estimación puntual con información sobre la precisión de la estimación.
 - ⇒ Intervalo de confianza
- Para construir el intervalo de confianza para la puntuación verdadera *T_i*:
 - consideramos el modelo de la teoría clásica para una persona;
 - se extiende este modelo con un supuesto sobre la distribución exacta de la puntuación error E_i.

Un intervalo de confianza para la puntuación verdadera

Ejemplo

Consideremos el siguiente caso:

- Se aplica un examen de 20 preguntas de opción múltiple sobre psicometría y la puntuación en el examen es el número de preguntas contestadas correctamente.
 - \Rightarrow La puntuación observada X_i de la persona i es un número entero entre 0 y 20
- Supongamos que la puntuación verdadera T_i de la persona i es igual a 15.2.
- ¿Qué implicaciones tiene sobre la puntuación error *E*¡?
 - \Rightarrow Puesto que $X_i = T_i + E_i$, los posibles valores para E_i son:

$$-15.2, -14.2, -13.2, \ldots, -0.2, +0.8, +1.8, \ldots, +4.8$$

Un intervalo de confianza para la puntuación verdadera

Ejemplo

Consideremos el siguiente caso:

- Se aplica un examen de 20 preguntas de opción múltiple sobre psicometría y la puntuación en el examen es el número de preguntas contestadas correctamente.
 - \Rightarrow La puntuación observada X_i de la persona i es un número entero entre 0 y 20.
- Supongamos que la puntuación verdadera T_i de la persona i es igual a 15.2.
- ¿Qué implicaciones tiene sobre la puntuación error *E*;?
 - \Rightarrow Puesto que $X_i = T_i + E_i$, los posibles valores para E_i son:

$$-15.2, -14.2, -13.2, \ldots, -0.2, +0.8, +1.8, \ldots, +4.8$$

Un intervalo de confianza para la puntuación verdadera

Ejemplo

Consideremos el siguiente caso:

- Se aplica un examen de 20 preguntas de opción múltiple sobre psicometría y la puntuación en el examen es el número de preguntas contestadas correctamente.
 - \Rightarrow La puntuación observada X_i de la persona i es un número entero entre 0 y 20.
- Supongamos que la puntuación verdadera T_i de la persona i es igual a 15.2.
- ¿Qué implicaciones tiene sobre la puntuación error *E*;?
 - \Rightarrow Puesto que $X_i = T_i + E_i$, los posibles valores para E_i son:

$$-15.2, -14.2, -13.2, \ldots, -0.2, +0.8, +1.8, \ldots, +4.8$$

Un intervalo de confianza para la puntuación verdadera

Ejemplo

Consideremos el siguiente caso:

- Se aplica un examen de 20 preguntas de opción múltiple sobre psicometría y la puntuación en el examen es el número de preguntas contestadas correctamente.
 - \Rightarrow La puntuación observada X_i de la persona i es un número entero entre 0 y 20.
- Supongamos que la puntuación verdadera T_i de la persona i es igual a 15.2.
- ¿Qué implicaciones tiene sobre la puntuación error E¡?
 - \Rightarrow Puesto que $X_i = T_i + E_i$, los posibles valores para E_i son:

$$-15.2, -14.2, -13.2, \ldots, -0.2, +0.8, +1.8, \ldots, +4.8$$

Un intervalo de confianza para la puntuación verdadera

Ejemplo

Consideremos el siguiente caso:

- Se aplica un examen de 20 preguntas de opción múltiple sobre psicometría y la puntuación en el examen es el número de preguntas contestadas correctamente.
 - \Rightarrow La puntuación observada X_i de la persona i es un número entero entre 0 y 20.
- Supongamos que la puntuación verdadera T_i de la persona i es igual a 15.2.
- ¿Qué implicaciones tiene sobre la puntuación error E¡?
 - \Rightarrow Puesto que $X_i = T_i + E_i$, los posibles valores para E_i son:

$$-15.2, -14.2, -13.2, \ldots, -0.2, +0.8, +1.8, \ldots, +4.8.$$

Un intervalo de confianza para la puntuación verdadera

Ejemplo

Consideremos el siguiente caso:

- Se aplica un examen de 20 preguntas de opción múltiple sobre psicometría y la puntuación en el examen es el número de preguntas contestadas correctamente.
 - \Rightarrow La puntuación observada X_i de la persona i es un número entero entre 0 y 20.
- Supongamos que la puntuación verdadera T_i de la persona i es igual a 15.2.
- ¿Qué implicaciones tiene sobre la puntuación error E¡?
 - \Rightarrow Puesto que $X_i = T_i + E_i$, los posibles valores para E_i son:

$$-15.2, -14.2, -13.2, \ldots, -0.2, +0.8, +1.8, \ldots, +4.8.$$

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

Ejemplo

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

Ejemplo

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

Sin embargo...

En la práctica, se suele hacer como supuesto adicional sobre E_i , que:

- es una variable continua:
- sigue una distribución normal:

- Es más general;
 Se puede suponer la misma distribución para E_i para cualquier persona
- Por facilidad:
- Suele resultar en buenas aproximaciones.

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

Sin embargo...

En la práctica, se suele hacer como supuesto adicional sobre E_i , que:

- es una variable continua;
- sigue una distribución normal:

- Es más general;
 Se puede suponer la misma distribución para E_I para cualquier persona I
- Por facilidad:
- Suele resultar en buenas aproximaciones.

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

Sin embargo...

En la práctica, se suele hacer como supuesto adicional sobre E_i , que:

- es una variable continua;
- sigue una distribución normal:

- Es más general;
 Se puede suponer la misma distribución para E_I para cualquier persona I
- Por facilidad
- Suele resultar en buenas aproximaciones

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

Sin embargo...

En la práctica, se suele hacer como supuesto adicional sobre E_i , que:

- es una variable continua;
- sigue una distribución normal:

- Es más general;
 Se puede suponer la misma distribución para E_i para cualquier persona i
- Por facilidad:
- Suele resultar en buenas aproximaciones.

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

Pr
$$(\mu - 1.96 \, \sigma) \leqslant X \leqslant \mu + 1.96 \, \sigma) = 0.95$$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

$$\Pr\left(T_i - 1.96 \, \sigma_{E_i} \quad \leqslant \quad X_i \quad \leqslant \quad T_i + 1.96 \, \sigma_{E_i} \quad \right) = 0.95$$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

$$Pr(15.2 - 1.96 \times 1.6 \le X_i \le 15.2 + 1.96 \times 1.6) = 0.95$$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

$$Pr($$
 12.064 $\leq X_i \leq$ 18.336 $) = 0.95$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

$$\Pr\left(\qquad T_i - 1.96 \,\sigma_{E_i} \qquad \leqslant \qquad X_i \qquad \leqslant \qquad T_i + 1.96 \,\sigma_{E_i} \qquad \right) = 0.95$$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N(0, \sigma_{E_i}^2)$, entonces sigue para la distribución de X_i :

Pr
$$\left(T_i - 1.96 \, \sigma_{E_i} \right) \leqslant X_i \leqslant T_i + 1.96 \, \sigma_{E_i} = 0.95$$

$$\iff \operatorname{Pr}\left(T_i - 1.96\,\sigma_{\!E_i} - X_i - T_i \leqslant X_i - X_i - T_i \leqslant T_i + 1.96\,\sigma_{\!E_i} - X_i - T_i\right) = 0.95$$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

$$\Pr\left(\qquad T_i - 1.96 \, \sigma_{E_i} \qquad \leqslant \qquad X_i \qquad \leqslant \qquad T_i + 1.96 \, \sigma_{E_i} \qquad \right) = 0.95$$

$$\iff \Pr\left(\qquad -1.96 \, \sigma_{E_i} - X_i \qquad \leqslant \qquad T_i \qquad \leqslant \qquad 1.96 \, \sigma_{E_i} - X_i \qquad \right) = 0.95$$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

$$\Pr\left(\qquad T_i - 1.96 \, \sigma_{E_i} \qquad \leqslant \qquad X_i \qquad \leqslant \qquad T_i + 1.96 \, \sigma_{E_i} \qquad \right) = 0.95$$

$$\iff \Pr\left(\qquad 1.96 \, \sigma_{E_i} + X_i \qquad \geqslant \qquad T_i \qquad \geqslant \qquad -1.96 \, \sigma_{E_i} + X_i \qquad \right) = 0.95$$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N(0, \sigma_{E_i}^2)$, entonces sigue para la distribución de X_i :

$$\Pr\left(\qquad T_i - 1.96 \, \sigma_{E_i} \qquad \leqslant \qquad X_i \qquad \leqslant \qquad T_i + 1.96 \, \sigma_{E_i} \qquad \right) = 0.95$$

$$\iff \Pr\left(\qquad X_i - 1.96 \, \sigma_{E_i} \qquad \leqslant \qquad T_i \qquad \leqslant \qquad X_i + 1.96 \, \sigma_{E_i} \qquad \right) = 0.95$$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

Pr
$$\left(T_i - 1.96 \, \sigma_{E_i} \right) \leq X_i \leq T_i + 1.96 \, \sigma_{E_i} \right) = 0.95$$

$$\iff$$
 Pr $\left(X_i - 1.96 \times 1.6 \right) \leqslant 15.2 \leqslant X_i + 1.96 \times 1.6 = 0.95$

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

■ Si $E_i \sim N\left(0, \sigma_{E_i}^2\right)$, entonces sigue para la distribución de X_i :

$$\Pr\left(\quad T_i - 1.96 \, \sigma_{E_i} \quad \leqslant \quad X_i \quad \leqslant \quad T_i + 1.96 \, \sigma_{E_i} \quad \right) = 0.95$$
 $\iff \Pr\left(\quad X_i - 3.136 \quad \leqslant \quad 15.2 \quad \leqslant \quad X_j + 3.136 \quad \right) = 0.95$

Métodos para estimar la puntuación verdadera

Derivar un intervalo de confianza para la puntuación verdadera

Un intervalo de confianza para la puntuación verdadera

Siguiendo con el ejemplo...

Un intervalo de confianza para la puntuación verdadera

Derivar el intervalo de confianza para T_i

A partir de:

$$\Pr\left(X_{i}-1.96\,\sigma_{E_{i}}\leqslant T_{i}\leqslant X_{i}+1.96\,\sigma_{E_{i}}\right)=0.95,$$

y una puntuación observada en una réplica concreta X_{ih} ,

se construye un intervalo de confianza de 95 %:

$$[X_{ih} - 1.96 \, \sigma_{E_i}, X_{ih} + 1.96 \, \sigma_{E_i}]$$

Fiemplo

- Suponiendo que $\sigma_{F_c} = 1.6$
- y una puntuación observada concreta de $X_{ih} = 16$
- se deriva del intervalo de confianza de 95 %:

Un intervalo de confianza para la puntuación verdadera

Derivar el intervalo de confianza para T_i

A partir de:

$$\Pr\left(X_{i} - 1.96 \,\sigma_{E_{i}} \leqslant T_{i} \leqslant X_{i} + 1.96 \,\sigma_{E_{i}}\right) = 0.95,$$

y una puntuación observada en una réplica concreta X_{ih} , se construye un intervalo de confianza de 95 %:

$$[X_{ih} - 1.96 \,\sigma_{E_i}, X_{ih} + 1.96 \,\sigma_{E_i}]$$
.

Eiemplo

- Suponiendo que $\sigma_{F_c} = 1.6$
- y una puntuación observada concreta de $X_{ih} = 16$
- se deriva del intervalo de confianza de 95 %:

Un intervalo de confianza para la puntuación verdadera

Derivar el intervalo de confianza para T_i

A partir de:

$$\Pr\left(X_{i}-1.96\,\sigma_{E_{i}}\leqslant\ T_{i}\leqslant\ X_{i}+1.96\,\sigma_{E_{i}}\right)=0.95,$$

y una puntuación observada en una réplica concreta X_{ih} , se construye un intervalo de confianza de 95 %:

$$[X_{ih} - 1.96 \,\sigma_{E_i}, X_{ih} + 1.96 \,\sigma_{E_i}]$$
.

Ejemplo

- Suponiendo que $\sigma_{E_i} = 1.6$
- y una puntuación observada concreta de X_{ih} = 16
- se deriva del intervalo de confianza de 95 %:

Un intervalo de confianza para la puntuación verdadera

Derivar el intervalo de confianza para T_i

A partir de:

$$\Pr\left(X_{i}-1.96\,\sigma_{E_{i}}\leqslant\ T_{i}\leqslant\ X_{i}+1.96\,\sigma_{E_{i}}\right)=0.95,$$

y una puntuación observada en una réplica concreta X_{ih} , se construye un intervalo de confianza de 95 %:

$$[X_{ih} - 1.96 \,\sigma_{E_i}, X_{ih} + 1.96 \,\sigma_{E_i}]$$
.

Ejemplo

- Suponiendo que $\sigma_{E_i} = 1.6$
- y una puntuación observada concreta de $X_{ih} = 16$
- se deriva del intervalo de confianza de 95 %:

Un intervalo de confianza para la puntuación verdadera

Derivar el intervalo de confianza para T_i

A partir de:

$$\Pr\left(X_{i}-1.96\,\sigma_{E_{i}}\leqslant\ T_{i}\leqslant\ X_{i}+1.96\,\sigma_{E_{i}}\right)=0.95,$$

y una puntuación observada en una réplica concreta X_{ih} , se construye un intervalo de confianza de 95 %:

$$\left[X_{ih}-1.96\,\sigma_{E_i},X_{ih}+1.96\,\sigma_{E_i}\right].$$

Ejemplo

- Suponiendo que $\sigma_{E_i} = 1.6$
- y una puntuación observada concreta de X_{ih} = 16
- se deriva del intervalo de confianza de 95 %:

$$[16 - 1.96 \times 1.6, 16 + 1.96 \times 1.6]$$

Un intervalo de confianza para la puntuación verdadera

Derivar el intervalo de confianza para T_i

A partir de:

$$\Pr\left(X_{i}-1.96\,\sigma_{E_{i}}\leqslant T_{i}\leqslant X_{i}+1.96\,\sigma_{E_{i}}\right)=0.95,$$

y una puntuación observada en una réplica concreta X_{ih} , se construye un intervalo de confianza de 95 %:

$$\left[X_{ih} - 1.96 \, \sigma_{E_i}, X_{ih} + 1.96 \, \sigma_{E_i} \right].$$

Ejemplo

- Suponiendo que $\sigma_{E_i} = 1.6$
- y una puntuación observada concreta de $X_{ih} = 16$
- se deriva del intervalo de confianza de 95 %:

[12.864,19.136]

Un intervalo de confianza para la puntuación verdadera

Consideraciones finales

 La explicación anterior ejemplificó el caso de construir un intervalo de confianza de 95 %:

 $\left[\textit{X}_{\textit{ih}} - 1.96\,\sigma_{\textit{E}_{\textit{i}}}, \textit{X}_{\textit{ih}} + 1.96\,\sigma_{\textit{E}_{\textit{i}}} \right].$

Si se desea un intervalo con otro nivel de confianza, se cambia 1.96 por:

$$90\% \longrightarrow 1.645$$

$$95\% \longrightarrow 1.960$$

$$99\% \longrightarrow 2.576$$

O generalmente, para un intervalo de nivel de confianza de $(1 - \alpha)$

$$(1-\alpha) \longrightarrow \xi_{1-\frac{\alpha}{2}}$$

donde ξ_r es el cuantil r de la distribución normal estandarizada.

Un intervalo de confianza para la puntuación verdadera

Consideraciones finales

 La explicación anterior ejemplificó el caso de construir un intervalo de confianza de 95 %;

 $\left[X_{ih} - 1.96 \, \sigma_{E_i}, X_{ih} + 1.96 \, \sigma_{E_i} \right].$

Si se desea un intervalo con otro nivel de confianza, se cambia 1.96 por:

$$\begin{array}{ccc} 90\,\% & \longrightarrow & 1.645 \\ 95\,\% & \longrightarrow & 1.960 \\ 99\,\% & \longrightarrow & 2.576 \end{array}$$

O generalmente, para un intervalo de nivel de confianza de $(1 - \alpha)$

$$(1-\alpha) \longrightarrow \xi_{1-\frac{\alpha}{2}}$$

donde ξ_r es el cuantil r de la distribución normal estandarizada.

Un intervalo de confianza para la puntuación verdadera

Consideraciones finales (continuación)

Para derivar el intervalo de confianza, se requiere (una estimación de) σ_{E_i} . Comúnmente, se obtiene σ_{E_i} a través de:

$$\sigma_E = \sigma_X \sqrt{1 - \rho_{XX'}}$$

y se supone que $\sigma_{E_i} = \sigma_E$ para cualquier persona i.

Índice

- 1 Métodos para estimar la puntuación verdadera
- 2 Estimar la confiabilidad de un test
 - El concepto de formas paralelas
 - Confiabilidad y la longitud de un test: La fórmula de Spearman-Brown
 - Métodos para estimar la confiabilidad de un test

Estimar la confiabilidad de un test

El concepto de formas paralelas

Índice

- 1 Métodos para estimar la puntuación verdadera
- 2 Estimar la confiabilidad de un test
 - El concepto de formas paralelas
 - Confiabilidad y la longitud de un test: La fórmula de Spearman-Brown
 - Métodos para estimar la confiabilidad de un test

Formas paralelas: Definición

Definición

Definición Se dice que las puntuaciones observadas X_1 y X_2 corresponden con formas paralelas de una medición si se cumplen las siguientes dos condiciones:

 Las puntuaciones verdaderas de todas las personas de la población es la misma en ambas formas.

Es decir, para cualquier persona i

$$T_{1i} = T_{2i}$$

La varianza de la puntuación error (en la población de personas) es la misma para ambas formas:

$$\sigma_{E_1}^2 = \sigma_{E_2}^2$$

Formas paralelas: Definición

Definición

Definición Se dice que las puntuaciones observadas X_1 y X_2 corresponden con formas paralelas de una medición si se cumplen las siguientes dos condiciones:

 Las puntuaciones verdaderas de todas las personas de la población es la misma en ambas formas.

Es decir, para cualquier persona i:

$$T_{1i} = T_{2i}$$

La varianza de la puntuación error (en la población de personas) es la misma para ambas formas:

$$\sigma_{E_1}^2 = \sigma_{E_2}^2$$

Formas paralelas: Definición

Definición

Definición Se dice que las puntuaciones observadas X_1 y X_2 corresponden con formas paralelas de una medición si se cumplen las siguientes dos condiciones:

 Las puntuaciones verdaderas de todas las personas de la población es la misma en ambas formas.

Es decir, para cualquier persona i:

$$T_{1i} = T_{2i}$$

La varianza de la puntuación error (en la población de personas) es la misma para ambas formas:

$$\sigma_{\!E_1}^2=\sigma_{\!E_2}^2$$

Formas paralelas: Ejemplo

Ejemplo formas paralelas

Forma 1

$$X_{1i} = T_{1i} + E_{1i}$$

Forma 2

$$X_{2i}=T_{2i}+E_{2i}$$

i	X_{2i}	=	T_{2i}	+	E_{2i}
1	36		38.2		-2.2
2	25		24.5		+0.5
3	40		39.8		+0.2
4	29		27.6		+1.4
5	33		33.0		+0.0
:	:		:		÷
∞					
E	34.1		34.1		0.0
σ^2	15.2		13.1		2.1

Formas paralelas: Implicaciones

Propiedades de formas paralelas

Si X_1 y X_2 corresponden con formas paralelas, entonces:

ambas formas tienen la misma media

$$\mathscr{E}(X_1) = \mathscr{E}(X_2)$$

ambas formas tienen la misma varianza

$$\sigma_{X_1}^2 = \sigma_{X_2}^2$$

ambas formas mantienen la misma covarianza con cualquier otra variable Z

$$\sigma_{X_1Z} = \sigma_{X_2Z}$$

$$\rho_{X_1 X_1'} = \rho_{X_2 X_2'}$$

Formas paralelas: Implicaciones

Propiedades de formas paralelas

Si X_1 y X_2 corresponden con formas paralelas, entonces:

ambas formas tienen la misma media

$$\mathscr{E}(X_1) = \mathscr{E}(X_2)$$

ambas formas tienen la misma varianza

$$\sigma_{X_1}^2 = \sigma_{X_2}^2$$

ambas formas mantienen la misma covarianza con cualquier otra variable Z

$$\sigma_{X_1Z} = \sigma_{X_2Z}$$

$$\rho_{X_1 X_1'} = \rho_{X_2 X_2'}$$

Formas paralelas: Implicaciones

Propiedades de formas paralelas

Si X_1 y X_2 corresponden con formas paralelas, entonces:

ambas formas tienen la misma media

$$\mathscr{E}(X_1) = \mathscr{E}(X_2)$$

ambas formas tienen la misma varianza

$$\sigma_{X_1}^2 = \sigma_{X_2}^2$$

ambas formas mantienen la misma covarianza con cualquier otra variable Z

$$\sigma_{X_1Z} = \sigma_{X_2Z}$$

$$\rho_{X_1 X_1'} = \rho_{X_2 X_2'}$$

Formas paralelas: Implicaciones

Propiedades de formas paralelas

Si X_1 y X_2 corresponden con formas paralelas, entonces:

ambas formas tienen la misma media

$$\mathscr{E}(X_1) = \mathscr{E}(X_2)$$

ambas formas tienen la misma varianza

$$\sigma_{X_1}^2 = \sigma_{X_2}^2$$

■ ambas formas mantienen la misma covarianza con cualquier otra variable Z

$$\sigma_{X_1Z} = \sigma_{X_2Z}$$

$$\rho_{X_1 X_1'} = \rho_{X_2 X_2'}$$

Formas paralelas: Implicaciones

Propiedades de formas paralelas

Si X_1 y X_2 corresponden con formas paralelas, entonces:

ambas formas tienen la misma media

$$\mathscr{E}(X_1) = \mathscr{E}(X_2)$$

ambas formas tienen la misma varianza

$$\sigma_{X_1}^2 \ = \ \sigma_{X_2}^2$$

■ ambas formas mantienen la misma covarianza con cualquier otra variable Z

$$\sigma_{X_1Z} = \sigma_{X_2Z}$$

$$\rho_{X_1 X_1'} \; = \; \rho_{X_2 X_2'}$$

Estimar la confiabilidad de un test

Confiabilidad y la longitud de un test: La fórmula de Spearman-Brown

Índice

- 1 Métodos para estimar la puntuación verdadera
- 2 Estimar la confiabilidad de un test
 - El concepto de formas paralelas
 - Confiabilidad y la longitud de un test: La fórmula de Spearman-Brown
 - Métodos para estimar la confiabilidad de un test

Estimar la confiabilidad de un test

Confiabilidad y la longitud de un test: La fórmula de Spearman-Brown

Fórmula de Spearman-Brown

Fórmula de Spearman-Brown

Supongamos que:

- \blacksquare tenemos *n* formas paralelas X_1, X_2, \dots, X_n para la medición de un constructo;
- la confiabilidad de cada forma paralela es igual a $\rho_{\chi\chi'}$.
- se construye un nuevo test ("el test alargado") sumando las puntuaciones observadas de las n formas paralelas;

$$X = X_1 + X_2 + \ldots + X_n$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \rho_{XX'}}{1 + (n-1) \rho_{XX'}}$$

Fórmula de Spearman-Brown

Fórmula de Spearman-Brown

Supongamos que:

- tenemos n formas paralelas X_1, X_2, \dots, X_n para la medición de un constructo;
- lacksquare la confiabilidad de cada forma paralela es igual a $ho_{\chi\chi'}$
- se construye un nuevo test ("el test alargado") sumando las puntuaciones observadas de las n formas paralelas;

$$X = X_1 + X_2 + \ldots + X_n$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 \, + \, (n-1) \, \rho_{XX'}}$$

Fórmula de Spearman-Brown

Fórmula de Spearman-Brown

Supongamos que:

- tenemos n formas paralelas X_1, X_2, \dots, X_n para la medición de un constructo;
- \blacksquare la confiabilidad de cada forma paralela es igual a $\rho_{\textit{XX}'}.$
- se construye un nuevo test ("el test alargado") sumando las puntuaciones observadas de las n formas paralelas;

$$X = X_1 + X_2 + \ldots + X_n$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

Fórmula de Spearman-Brown

Fórmula de Spearman-Brown

Supongamos que:

- tenemos n formas paralelas X_1, X_2, \ldots, X_n para la medición de un constructo;
- \blacksquare la confiabilidad de cada forma paralela es igual a $\rho_{\textit{XX}'}.$
- se construye un nuevo test ("el test alargado") sumando las puntuaciones observadas de las n formas paralelas;

$$X = X_1 + X_2 + \ldots + X_n$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

Fórmula de Spearman-Brown

Fórmula de Spearman-Brown

Supongamos que:

- tenemos n formas paralelas X_1, X_2, \ldots, X_n para la medición de un constructo;
- la confiabilidad de cada forma paralela es igual a $\rho_{XX'}$.
- se construye un nuevo test ("el test alargado") sumando las puntuaciones observadas de las n formas paralelas;

$$X = \sum_{k=1}^{n} X_k$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

Fórmula de Spearman-Brown

Fórmula de Spearman-Brown

Supongamos que:

- tenemos n formas paralelas X_1, X_2, \ldots, X_n para la medición de un constructo;
- la confiabilidad de cada forma paralela es igual a $\rho_{XX'}$.
- se construye un nuevo test ("el test alargado") sumando las puntuaciones observadas de las n formas paralelas;

$$X = \sum_{k=1}^{n} X_k$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

Fórmula de Spearman-Brown

$$\rho_{\chi\chi'}^{\text{alarg}} = \frac{n \, \rho_{\chi\chi'}}{1 \, + \, (n-1) \, \rho_{\chi\chi'}}$$

Fórmula de Spearman-Brown

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

Fórmula de Spearman-Brown

$$\rho_{XX'}^{\text{alarg}} = \frac{n \rho_{XX'}}{1 + (n-1) \rho_{XX'}}$$

Fórmula de Spearman-Brown: Aplicaciones

Usos de la fórmula de Spearman-Brown

Si se cumplen los supuestos que subyacen la fórmula de Spearman-Brown, puede utilizarse para responder las siguientes preguntas:

 ¿Qué confiabilidad obtendríamos si a un test inicial añadieramos cierto número de ítems paralelos?

Para responder esta pregunta, supongamos que:

- el número de ítems en el test inicial es m;
- se añaden q ítems paralelos.

Entonces, el test alargado tendría m + q ítems y el factor de alargamiento n sería:

$$n = \frac{m+c}{m}$$

y se aplica la fórmula de Spearman-Brown con este valor de n

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

Usos de la fórmula de Spearman-Brown

Si se cumplen los supuestos que subyacen la fórmula de Spearman-Brown, puede utilizarse para responder las siguientes preguntas:

 ¿Qué confiabilidad obtendríamos si a un test inicial añadieramos cierto número de ítems paralelos?

Para responder esta pregunta, supongamos que

- el número de ítems en el test inicial es m
- se añaden q ítems paralelos.

Entonces, el test alargado tendría m + q ítems y el factor de alargamiento n sería:

$$n = \frac{m+q}{m}$$

y se aplica la fórmula de Spearman-Brown con este valor de n

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

Fórmula de Spearman-Brown: Aplicaciones

Usos de la fórmula de Spearman-Brown

Si se cumplen los supuestos que subyacen la fórmula de Spearman-Brown, puede utilizarse para responder las siguientes preguntas:

 ¿Qué confiabilidad obtendríamos si a un test inicial añadieramos cierto número de ítems paralelos?

Para responder esta pregunta, supongamos que:

- el número de ítems en el test inicial es m;
- se añaden q ítems paralelos.

Entonces, el test alargado tendría m+q ítems y el factor de alargamiento n sería:

$$n = \frac{m+q}{m}$$

y se aplica la fórmula de Spearman-Brown con este valor de n

$$\rho_{XX'}^{\text{alarg}} = \frac{n \rho_{XX'}}{1 + (n-1) \rho_{XX'}}$$

Fórmula de Spearman-Brown: Aplicaciones

Usos de la fórmula de Spearman-Brown

Si se cumplen los supuestos que subyacen la fórmula de Spearman-Brown, puede utilizarse para responder las siguientes preguntas:

 ¿Qué confiabilidad obtendríamos si a un test inicial añadieramos cierto número de ítems paralelos?

Para responder esta pregunta, supongamos que:

- el número de ítems en el test inicial es m;
- se añaden q ítems paralelos.

Entonces, el test alargado tendría m + q ítems y el factor de alargamiento n sería:

$$n = \frac{m+q}{m}$$

y se aplica la fórmula de Spearman-Brown con este valor de n:

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 \, + \, (n-1) \, \rho_{XX'}}$$

Ejemplo

Consideremos el siguiente ejemplo

- Un test inicial consiste en 25 ítems y tiene una confiabilidad $(\rho_{XX'})$ de .80.
- Se añaden 15 ítems al test inicial.

Entonces, el test alargado tendrá:

• 25 + 15 = 40 ítems y el factor de alargamiento sería:

$$n = \frac{40}{25} = 1.6$$

alarg
$$XX' = \frac{n \rho_{XX'}}{1 + (n-1) \rho_{XX'}}$$

$$= \frac{1.6 \times .80}{1 + (1.6 - 1).80}$$

$$= .865.$$

Fórmula de Spearman-Brown: Aplicaciones

Ejemplo

Consideremos el siguiente ejemplo:

- Un test inicial consiste en 25 ítems y tiene una confiabilidad $(\rho_{XX'})$ de .80.
- Se añaden 15 ítems al test inicial.

Entonces, el test alargado tendrá

■ 25 + 15 = 40 ítems y el factor de alargamiento sería:

$$n = \frac{40}{25} = 1.6$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 \, + \, (n-1) \, \rho_{XX'}}$$

$$= \frac{1.6 \times .80}{1 + (1.6 - 1).80}$$

Ejemplo

Consideremos el siguiente ejemplo:

- Un test inicial consiste en 25 ítems y tiene una confiabilidad $(\rho_{XX'})$ de .80.
- Se añaden 15 ítems al test inicial.

Entonces, el test alargado tendrá:

■ 25 + 15 = 40 ítems y el factor de alargamiento sería:

$$n = \frac{40}{25} = 1.6$$

una confiabilidad de:

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

 $= \frac{1.6 \times .80}{1 + (1.6 - 1).80}$

Ejemplo

Consideremos el siguiente ejemplo:

- Un test inicial consiste en 25 ítems y tiene una confiabilidad $(\rho_{XX'})$ de .80.
- Se añaden 15 ítems al test inicial.

Entonces, el test alargado tendrá:

■ 25 + 15 = 40 ítems y el factor de alargamiento sería:

$$n = \frac{40}{25} = 1.6$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

$$= \frac{1.6 \times .80}{1 + (1.6 - 1).80}$$
= .865.

Ejemplo

Consideremos el siguiente ejemplo:

- Un test inicial consiste en 25 ítems y tiene una confiabilidad $(\rho_{XX'})$ de .80.
- Se añaden 15 ítems al test inicial.

Entonces, el test alargado tendrá:

■ 25 + 15 = 40 ítems y el factor de alargamiento sería:

$$n = \frac{40}{25} = 1.6$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n - 1) \, \rho_{XX'}}$$

$$= \frac{1.6 \times .80}{1 + (1.6 - 1).80}$$

Fórmula de Spearman-Brown: Aplicaciones

Ejemplo

Consideremos el siguiente ejemplo:

- Un test inicial consiste en 25 ítems y tiene una confiabilidad $(\rho_{XX'})$ de .80.
- Se añaden 15 ítems al test inicial.

Entonces, el test alargado tendrá:

■ 25 + 15 = 40 ítems y el factor de alargamiento sería:

$$n = \frac{40}{25} = 1.6$$

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

$$= \frac{1.6 \times .80}{1 + (1.6 - 1).80}$$

$$= .865.$$

Fórmula de Spearman-Brown: Aplicaciones

Usos de la fórmula de Spearman-Brown

Si se cumplen los supuestos que subyacen la fórmula de Spearman-Brown, puede utilizarse para responder las siguientes preguntas:

 ¿Cuántos números de ítems paralelos se requieren añadir al test para obtener una confiabilidad deseada de ρ^{alarg}_{VV}?

Para esta pregunta, se considera que:

$$\rho_{XX'}^{\text{alarg}} = \frac{n \, \rho_{XX'}}{1 + (n-1) \, \rho_{XX'}}$$

$$\iff n = \frac{\rho_{XX'}^{\text{alarg}} \left(1 - \rho_{XX'}\right)}{\rho_{XX'} \left(1 - \rho_{XX'}^{\text{alarg}}\right)}$$

Usos de la fórmula de Spearman-Brown

Si se cumplen los supuestos que subyacen la fórmula de Spearman-Brown, puede utilizarse para responder las siguientes preguntas:

2. ¿Cuántos números de ítems paralelos se requieren añadir al test para obtener una confiabilidad deseada de $\rho_{\chi \chi'}^{\rm alarg}$?

Para esta pregunta, se considera que

$$\rho_{XX'}^{\text{alarg}} = \frac{n \rho_{XX'}}{1 + (n - 1) \rho_{XX'}}$$

$$\iff n = \frac{\rho_{XX'}^{\text{alarg}} (1 - \rho_{XX'})}{\rho_{XX'} (1 - \rho_{XX'}^{\text{alarg}})}$$

Fórmula de Spearman-Brown: Aplicaciones

Usos de la fórmula de Spearman-Brown

Si se cumplen los supuestos que subyacen la fórmula de Spearman-Brown, puede utilizarse para responder las siguientes preguntas:

2. ¿Cuántos números de ítems paralelos se requieren añadir al test para obtener una confiabilidad deseada de $\rho_{\chi\chi'}^{alarg}$?

Para esta pregunta, se considera que:

$$\begin{array}{l} \rho_{XX'}^{\rm alarg} \; = \; \frac{n \; \rho_{XX'}}{1 \; + \; (n-1) \; \rho_{XX'}} \\ \\ \iff \; n \; = \; \frac{\rho_{XX'}^{\rm alarg} \; \left(1 - \rho_{XX'}\right)}{\rho_{XX'} \; \left(1 - \rho_{XX'}^{\rm alarg}\right)} \end{array}$$

Estimar la confiabilidad de un test

Confiabilidad y la longitud de un test: La fórmula de Spearman-Brown

Fórmula de Spearman-Brown: Aplicaciones

Ejemplo

Consideremos el siguiente ejemplo

- Tenemos un test inicial, que consiste en 25 ítems y tiene una confiabilidad $(\rho_{\chi\chi'})$ de .65.
- lacksquare Se desea tener una confiabilidad $\left(
 ho_{XX'}^{
 m alarg}
 ight)$ de .80

Entonces:

El factor de alargamiento será:

$$n = \frac{\rho_{XX'}^{\text{alarg}} (1 - \rho_{XX'})}{\rho_{XX'} (1 - \rho_{XX'}^{\text{alarg}})}$$
$$= \frac{.80 (1 - .65)}{.65 (1 - .80)} = 2.154$$

El test alargado debe tener 2.154 \times 25 = 53.85 items Es decir, se deben añadir 54 - 25 = 29 items. Estimar la confiabilidad de un test

Confiabilidad y la longitud de un test: La fórmula de Spearman-Brown

Fórmula de Spearman-Brown: Aplicaciones

Ejemplo

Consideremos el siguiente ejemplo:

- Tenemos un test inicial, que consiste en 25 ítems y tiene una confiabilidad (ρ_{χχ'}) de .65.
- Se desea tener una confiabilidad $\left(\rho_{XX'}^{\mathrm{alarg}} \right)$ de .80

Entonces:

El factor de alargamiento será:

$$n = \frac{\rho_{XX'}^{\text{alarg}} \left(1 - \rho_{XX'}\right)}{\rho_{XX'} \left(1 - \rho_{XX'}^{\text{alarg}}\right)}$$

$$=\frac{.80 (1 - .65)}{.65 (1 - .80)} = 2.154$$

■ El test alargado debe tener $2.154 \times 25 = 53.85$ items Es decir, se deben añadir 54 - 25 = 29 items.

Fórmula de Spearman-Brown: Aplicaciones

Ejemplo

Consideremos el siguiente ejemplo:

- Tenemos un test inicial, que consiste en 25 ítems y tiene una confiabilidad $(\rho_{\chi\chi'})$ de .65.
- Se desea tener una confiabilidad $\left(\rho_{XX'}^{\mathrm{alarg}} \right)$ de .80

Entonces:

El factor de alargamiento será:

$$n = \frac{\rho_{XX'}^{\text{alarg}} (1 - \rho_{XX'})}{\rho_{XX'} (1 - \rho_{XX'}^{\text{alarg}})}$$
$$= \frac{.80 (1 - .65)}{.65 (1 - .80)} = 2.156$$

■ El test alargado debe tener 2.154 × 25 = 53.85 items. Es decir, se deben añadir 54 - 25 = 29 ítems.

Fórmula de Spearman-Brown: Aplicaciones

Ejemplo

Consideremos el siguiente ejemplo:

- Tenemos un test inicial, que consiste en 25 ítems y tiene una confiabilidad $(\rho_{\chi\chi'})$ de .65.
- Se desea tener una confiabilidad $\left(\rho_{XX'}^{\mathrm{alarg}} \right)$ de .80

Entonces:

El factor de alargamiento será:

$$n = \frac{\rho_{XX'}^{\text{alarg}} (1 - \rho_{XX'})}{\rho_{XX'} (1 - \rho_{XX'}^{\text{alarg}})}$$
$$= \frac{.80 (1 - .65)}{.65 (1 - .80)} = 2.154$$

■ El test alargado debe tener 2.154 × 25 = 53.85 items. Es decir, se deben añadir 54 - 25 = 29 ítems.

Fórmula de Spearman-Brown: Aplicaciones

Ejemplo

Consideremos el siguiente ejemplo:

- Tenemos un test inicial, que consiste en 25 ítems y tiene una confiabilidad (ρ_{χχ'}) de .65.
- Se desea tener una confiabilidad $\left(\rho_{XX'}^{\mathrm{alarg}} \right)$ de .80

Entonces:

El factor de alargamiento será:

$$n = \frac{\rho_{XX'}^{\text{alarg}} (1 - \rho_{XX'})}{\rho_{XX'} (1 - \rho_{XX'}^{\text{alarg}})}$$
$$= \frac{.80 (1 - .65)}{.65 (1 - .80)} = 2.154$$

■ El test alargado debe tener 2.154 × 25 = 53.85 items. Es decir, se deben añadir 54 - 25 = 29 ítems.

Fórmula de Spearman-Brown: Aplicaciones

Ejemplo

Consideremos el siguiente ejemplo:

- Tenemos un test inicial, que consiste en 25 ítems y tiene una confiabilidad $(\rho_{\chi\chi'})$ de .65.
- Se desea tener una confiabilidad $\left(\rho_{XX'}^{\mathrm{alarg}} \right)$ de .80

Entonces:

■ El factor de alargamiento será:

$$n = \frac{\rho_{XX'}^{\text{alarg}} (1 - \rho_{XX'})}{\rho_{XX'} (1 - \rho_{XX'}^{\text{alarg}})}$$
$$= \frac{.80 (1 - .65)}{.65 (1 - .80)} = 2.154$$

■ El test alargado debe tener 2.154 \times 25 = 53.85 items. Es decir, se deben añadir 54 - 25 = 29 ítems.

Estimar la confiabilidad de un test

Métodos para estimar la confiabilidad de un test

Índice

- 1 Métodos para estimar la puntuación verdadera
- 2 Estimar la confiabilidad de un test
 - El concepto de formas paralelas
 - Confiabilidad y la longitud de un test: La fórmula de Spearman-Brown
 - Métodos para estimar la confiabilidad de un test