

Algorithm Theory, Tutorial 1

Johannes Kalmbach

University of Freiburg

johannes.kalmbach@gmail.com

November 2019

General Hints

- Contact tutor (johannes.kalmbach@gmail.com) for questions concerning corrections etc.
- Contact forum (daphne.informatik.uni-freiburg.de) for everything else
- Suggestion: Submit in groups of two (better for understandable algorithms)
- Submit readable solutions (LaTeX as pdf, CLEAN handwriting (+) good scan if necessary))
- Spend enough time on exercise sheets and writeup (you and I have to understand your submission).

Algorithm Writeups

- Pseudocode, limit to important aspects
- Reader must be able to understand and implement it.
- E.g "Split Array A in two evenly-sized halves L and R"

Exercise 1

Compute the convolution of the vectors $\underline{a} = (5, 8, -2, 3)$ and b = (-9, 4, -1) using the algorithm for polynomial multiplication from the lecture. Document all computation steps for evaluation, point-wise multiplication and interpolation.

- Basically: Calculate $p \cdot x$ where $p(x) = 3x^3 2x^2 + 8x^7 + 5$ and $q(x) = -9x^2 + 4x 1$
- Strategy: efficiently evaluate p, \overline{q} at the **8-th!!!** roots of unity using FFT.
- Perform pointwise multiplication
- Compute the inverse FFT to obtain result coefficients.

Complex numbers and roots of unity

$$w_{8}^{1} = \cos(\frac{\pi}{4}) + i \cdot \sin(\frac{\pi}{4})$$

$$= \frac{1}{\sqrt{2}} + i \cdot 8 \frac{1}{\sqrt{2}} = \frac{2}{2} + i \cdot \frac{\sqrt{2}}{2}$$

$$= e^{i\frac{\pi}{4}}$$

$$\chi = e^{i\theta} + (3+4i)$$
not really useful

Complex numbers and roots of unity

Complex numbers and roots of unity

• Evaluate $p(x) = 5 + 8x - 2x^2 + 3x^3$ at the 8-th roots of unity $(\omega_8^0 \dots \omega_8^7)$

$$p(x) = 5 + 8x - 2x^{2} + 3x^{3}$$

$$= \underbrace{(5 - 2x^{2})}_{p_{1}(x^{2})} + x \cdot \underbrace{(8 + 3x^{2})}_{p_{2}(x^{2})}$$

- with $p_1(x) = 5 2x$, $p_2(x) = 8 + 3x$
- We only have to evaluate p_1, p_2 for $\{\omega_4^0 \dots \omega_4^3\} = \{1, i, -1, -i\}$

	X	1	i	-1	-i
ρ,	5 - 2x	3	5 - 2i	7	5 + 2i
P_2	8 + 3x	11	8 + 3i	5	8 - 3i

•
$$p(x) = p_1(x^2) + x \cdot p_2(x^2)$$

Х	$\omega_4^0 = 1$	$\omega_4^1 = i$	$\omega_4^2 = -1$	$\omega_4^3 = -i$
$p_1(x)$	3	5 - 2i	7	5 + 2i
$p_2(x)$	11	8 + 3i	5	8 - 3i

•
$$\omega_8^0 = 1, (\omega_8^0)^2 = \omega_4^0 \Rightarrow p(\omega_8^0) = (3+11) = 14$$

•
$$\omega_8^1 = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$
, $(\omega_8^1)^2 = \omega_4^1 \Rightarrow p(\omega_8^1) = (5-2i) + (\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i) \cdot (8+3i) = 5 + \frac{5}{\sqrt{2}} - 2i + \frac{11}{\sqrt{2}}i$

•
$$\omega_8^2 = i, (\omega_8^2)^2 = \omega_4^2 \Rightarrow p(\omega_8^2) = 7 + 5i$$

•
$$\omega_8^3 = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, (\omega_8^1)^2 = \omega_4^3 \Rightarrow p(\omega_8^3) = 5 - \frac{5}{\sqrt{2}} + 2i + \frac{11}{\sqrt{2}}i$$

•
$$\omega_8^4 = -1, p(\omega_8^4) = -8$$

•
$$\omega_8^5 = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$
, $p(\omega_8^5) = 5 - \frac{5}{\sqrt{2}} - 2i - \frac{11}{\sqrt{2}}i$

•
$$\omega_8^6 = -i, p(\omega_8^6) = 7 - 5i$$

•
$$\omega_8^7 = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$
, $p(\omega_8^7) = 5 + \frac{5}{\sqrt{2}} + 2i - \frac{11}{\sqrt{2}}i$

- Perform similar evaluation for q(x) (omitted here)
- then do pointwise multiplication

X	p(x)	q(x)	$p(x) \cdot q(x)$	
ω_8^0	14	-6	-84	
ω_8^1	$5 + \frac{5+11i}{\sqrt{2}} - 2i$	$-9 - i + (2 + 2i)\sqrt{2}$	$(-59+45i)-(3+46i)\sqrt{2}$	
ω_8^2	7 + 5i	-8 + 4i	-76 - 12i	
ω_8^3	$5 + \frac{-5+11i}{\sqrt{2}} + 2i$	$-9+i+(-2+2i)\sqrt{2}$	$(-59-45i)+(3-46i)\sqrt{2}$	
ω_8^4	-8	-14	112	
ω_8^5	$5 + o \frac{-5 - 11i}{\sqrt{2}} - 2i$	$-9-i+(-2-2i)\sqrt{2}$	$(-59+45i)+(3+46i)\sqrt{2}$	
ω_8^6	7 – 5 <i>i</i>	-8 - 4i	-76 + 12i	
ω_8^7	$5 + \frac{5-11i}{\sqrt{2}} + 2i$	$-9+i+(2-2i)\sqrt{2}$	$(-59-45i)-(3-46i)\sqrt{2}$	

- For the interpolation step we use the Inverse DFT from the lecture:
 - Given evaluations $y_k = p(\omega_n^k)$ for a polynomial with degree $\leq n-1$ we can compute the coefficients a_k of the polynomial p by

$$a_k = \frac{1}{n} \sum_{j=0}^{n-1} y_j \cdot (\omega_n^{-k})^j$$

- This is equivalent to evaluating a polynome with the coefficients y_k at the n-th roots of unity (with proper rearrangement), so we can again use FFT.
- Final result:

$$-3x^5 + 14x^4 - 43x^3 + 45x^2 - 52x - 45$$

13 / 24

Exercise 2, Greedy Scheduling

Error on sheet

Given n jobs of lengths $t_1 \ldots, t_n$ with **one deadline** $d \ge 0$, we want to schedule these jobs such that the **average lateness** is minimized. That is, for each job i we want to find a start and finishing time $0 \le s(i) \le f(i)$ with $f(i) - s(i) = t_i$ such that the intervals [s(i), f(i)] are pairwise non-overlapping and the average over all $L(i) = \max\{0, f(i) - d\}$ is minimal (overlapping of start- and endpoints is allowed).

Describe a greedy algorithm for this problem and prove that it computes an optimal solution.

Minimizing

Milimizing

- Maximizing the Average lateness is the same as maximizing the sum of lateness
- After the deadline, at each point in time our penalty gets bigger if we have more unfinished jobs.
- Thus we want as many jobs as possible to finish early.
- This gives us the idea of scheduling the shortest jobs first.
- THIS INTUITION IS NOT A PROOF

Algorithm

- Sort Jobs by ascending length, Schedule them non-overlapping in this order.
- For proof always use exchange argument (anything else is always fishy or wrong)
- Assume that ALG is the greedy solution and O is an optimal solution with inversions (wrt to the sorting by time).
- This means we have a longer job scheduled immediately before a shorter job in OPT.
- Need to show, that switching them does not increase (average/total) lateness.
- This implies that the greedy solution is optimal

18 / 24

Matroids

- We are given a directed weighted graph G = (V, E)
- $w: E \to \mathbb{R}^+$ defines (positive) weights of the edges
- $b: V \to N$ that defines some indegree bound for each node.
- Find subset $F' \subseteq E$ of maximum total weight such that every node $u \in V$ has indegree $\leq b(u)$ in graph G' = (V, E').
- Show that the set of feasible solutions form a matroid and thus, this problem can be solved by using the greedy algorithm for matroids.

- Need to show: $M := \{ E' \subseteq E | \forall v \in V : indeg_{E'}(v) \leq b(u) \}$ is a matroid.
- Important: *M* consists of sets of **Edges**.
- Need to show:
 - ∅ ∈ M
 - $B \in M, A \subset B \Rightarrow A \in M$
 - $A \in M, B \in M, |A| < |B| \Rightarrow \exists x \in B \setminus A : A \cup \{x\} \in M$

$$\emptyset \in M$$

$$E' = \emptyset = \forall v : indeg_{\emptyset} = 0 \le b(v)$$

$B \in M, A \subset B \Rightarrow A \in M$

$$\forall v : \text{indeg}_{B}(v) \leq b(v)$$
 $\text{indeg}_{A}(v) \leq \text{indeg}_{B}(v)$

 \Rightarrow indeg_A(v) \leq b(v)

$$A \subseteq B$$

$A, B \in M, |A| < |B| \Rightarrow \exists x \in B \setminus A : A \cup \{x\} \in M$

$$|A| < |B|$$

$$\Rightarrow \exists v : indeg_A < indeg_B < b(v)$$

$$\Rightarrow \exists (x,v) \in B \mid A$$

$$\xrightarrow{inconing \ at \ v}$$

$$\Rightarrow A \cup \{(x,v)\} \in M \qquad (only \ v \ has in degree + 1 \ which is find because of other node's in degrees slay the same$$