Onboarding Julia on HLRS Laptop/Cluster

HLRS Laptops

Most of the course can be completed on the laptops.

- Equipped with NVIDIA GPU
- Jupyter + VS Code
 - jupyter lab
 - code
- Course materials
 - \$HOME/JuliaHLRS24

Let's start Jupyter!

- → cd JuliaHLRS24
- → jupyter lab
- → notebooks/Day1/1 julia fundamentals.ipynb

HLRS Training Cluster

The cluster training.hlrs.de has two types of nodes.

CPU nodes

- "skl"
- 2x Intel Skylake
- 40 cores total

GPU nodes

- "clx-ai"
- 2x Intel Cascade Lake
- 36 cores total
- 8x NVIDIA V100

Jobs are scheduled with PBS Pro.

- Submit a job:
 - qsub job_script.sh

- Check on your queued/running jobs:
 - qstat -nw

VS Code -> HLRS Cluster

Run VS Code on a cluster node via SSH.

Login node

- Works fine, just connect to
 - accountname@training.hlrs.de

Compute node

- At HLRS, possible but inconvenient
 - SetEnv PBS_JOBID=...
 - SSH ProxyJump

We will stay on Login nodes for the course.

To get Julia, load the necessary system modules.

- Modules on the HLRS training cluster
 - module use julia
 - module use nvidia/nvhpc # MPI+CUDA
 - module use compiler/nvidia # MPI+CUDA

• Outside of the course: If there is no (working) system module, use standard binaries provided by juliaup.

Comment: Julia depot is on the parallel file system.

- Julia depot = where Julia stores stuff
 - packages
 - binary dependencies
 - ...
- Environment variable: JULIA_DEPOT_PATH
- Why not \$HOME?
 - Quotas
 - Read-only from compute jobs (sometimes)

Julia VS Code integration via extension.

On the cluster, the extension requires a wrapper.

 Julia: Executable Path should point to a wrapper script, like this one:

```
#!/bin/bash
[...]
# Load modules
module load julia
module load nvidia/nvhpc
module load compiler/nvidia
# Act like Julia (i.e. pass on all arguments)
exec julia "${@}"
```

Let's do it!

→ exercises/Day1/1 cluster onboarding