Untyped Arithmetic Expressions (Types and Programming Languages)

Kwanghoon Choi

Software Languages and Systems Laboratory Chonnam National University

Week 3

A Plan

To talk rigorously about type systems, we need to start by dealing formally with basic aspects of programming languages.

In this chapter, a very small programming language of numbers and booleans for the introduction of several fundamental concepts:

- Abstract syntax,
- Inductive definitions and proofs,
- Evaluation (i.e. semantics), and
- Modeling of run-time errors.

After this chapter, more powerful programming languages will be introduced but with the same fundamental concepts.

3.1 Introduction

In the arithmetic programming language,

- boolean constants : true, false
- conditional expressions : if then else -
- numeric constants : 0, succ -, pred -
- Testing operation : iszero -

These forms are called *terms* and they can be summarized by the following grammar in *BNF* (*Backus-Naur Form*):

```
t ::= true | false | if t then t else t
| 0 | succ t | pred t | iszero t
```

cf. Expressions: terms, types, and kinds

3.1 Introduction

A program in the untyped arithmetic programming language is just a term built by the grammar.

- ▶ if false then 0 else succ 0
- ▶ iszero (pred (succ 0)) (cf. pred 1 is 0)

For notational simplicity, succ (succ (succ 0)) is written as 3.

The evaluation of terms (i.e., the execution of a program)

- ▶ "if false then 0 else succ 0" evaluates to "succ 0".
- "iszero (pred (succ 0))" evaluates to "true".

The results of evaluation are terms of a particularly simple form such as boolean constants or numbers. Such terms are called *values*.

3.1 Introduction

Note that the grammar permits to write some nonsensical terms such as "succ true" and "if 0 then then 0 else 0".

```
t ::= true | false | if t then t else t | 0 | succ t | pred t | iszero t
```

Later, these nonsensical terms will be excluded by a *type system*.

3.2 Syntax

In the arithmetic programming language, a set of terms S that are generated by the grammar can be computed as:

$$egin{array}{lcl} S_0 &=& \emptyset \ S_{i+1} &=& \{ ext{true}, ext{ false}, 0 \} \ && \cup \{ ext{succ } t_1, ext{ pred } t_1, ext{ iszero } t_1 \mid t_1 \in S_i \} \ && \cup \{ ext{if } t_1 ext{ then } t_2 ext{ else } t_3 \mid t_1, t_2, t_3 \in S_i \; \} \ S &=& \bigcup_i S_i \ \end{array}$$

Q.
$$S_3 =$$

Q. Show that the sets S_i are cumulative-that is, that for each i we have $S_i \subseteq S_{i+1}$.

3.3 Induction on Terms

Three inductive definitions of functions over the set of terms (P.29 \sim 30)

- Consts(t): the set of constants appearing in a term t
- ▶ size(t) : the size of a term t
- depth(t): the depth of a term t

cf. Inductive definitions (also called recursive definitions)

A way to define the elements in a set in terms of other elements in the set

3.3 Induction on Terms: *Consts*(t)

Consts(t): the set of constants appearing in a term t

```
\begin{array}{rcl} \textit{Consts}(\textit{true}) &=& \{\textit{true}\} \\ \textit{Consts}(\textit{false}) &=& \{\textit{false}\} \\ \textit{Consts}(0) &=& \{0\} \\ \textit{Consts}(\textit{succ}\ t_1) &=& \textit{Consts}(t_1) \\ \textit{Consts}(\textit{pred}\ t_1) &=& \textit{Consts}(t_1) \\ \textit{Consts}(\textit{iszero}\ t_1) &=& \textit{Consts}(t_1) \\ \textit{Consts}(\textit{if}\ t_1\ \textit{then}\ t_2\ \textit{else}\ t_3) &=& \textit{Consts}(t_1) \cup \textit{Consts}(t_2) \cup \textit{Consts}(t_3) \end{array}
```

3.3 Induction on Terms: *Consts*(t)

Consts(if false then 0 else succ 0)

```
= Consts(false) \cup Consts(0) \cup Consts(succ 0)
= \{false\} \cup \{0\} \cup Consts(0)
= \{false\} \cup \{0\} \cup \{0\}
= \{false, 0\}
```

```
Q. Consts(iszero (pred (succ 0))) =
```

3.3 Induction on Terms: size(t)

```
size(t): the size of a term t size(true) = 1
size(false) = 1
size(0) = 1
size(succ t_1) = size(t_1) + 1
size(pred t_1) = size(t_1) + 1
size(iszero t_1) = size(t_1) + 1
size(if t_1 then t_2 else t_3) = size(t_1) + size(t_2) + size(t_3) + 1
```

3.3 Induction on Terms: depth(t)

```
depth(t): the depth of a term t
              depth(true) = 1
              depth(false) = 1
                 depth(0) = 1
            depth(succ\ t_1) = depth(t_1) + 1
           depth(pred t_1) = depth(t_1) + 1
          depth(iszero t_1) = depth(t_1) + 1
depth(if t_1 then t_2 else t_3) = max(depth(t_1), depth(t_2), depth(t_3))
                               +1
```

3.3 Induction on Terms: Three induction principles

Recall that the principle of induction is useful for proving (countably) infinitely many cases.

Three variants of the principle of induction useful for proving over terms

- Induction on the depth of terms
- Induction on the size of terms
- Structural induction

The choice of one induction principle over another may lead to a simpler structure for the proof, but formally they are inter-derivable.

3.3 Induction on Terms: Induction on depth

Suppose P is a predicate on terms.

Informally, assume P is true over terms with depth $\leq d$, and then prove P over terms with depth d+1 using the assumption.

Formally, the principle of induction on the depth of terms:

If, for each term s, given P(r) for all r such that depth(r) < depth(s) we can show P(s), then P(s) holds for all s.

3.3 Induction on Terms: Induction on size

Suppose P is a predicate on terms.

Informally, assume P is true over terms with size $\leq sz$, and then prove P over terms with depth sz+1 using the assumption.

Formally, the principle of induction on the size of terms:

If, for each term s, given P(r) for all r such that size(r) < size(s) we can show P(s), then P(s) holds for all s.

3.3 Induction on Terms: Structural induction

Suppose P is a predicate on terms.

Informally, assume P is true over subterms, and then prove P over terms constructed with the subterm using the assumption.

Formally, the principle of structural induction ove terms:

If, for each term s, given P(r) for all (immediate) subterms r of s we can show P(s), then P(s) holds for all s.

3.3 Induction on Terms: Exercise

Lemma 3.3.3: The number of distinct constants in a term t is no greater than the size of t (i.e., $|Consts(t)| \le size(t)$).

Proof by induction on the depth of t.

Q. Which of the (normal) induction or the complete induction is necessary for this proof? Why?

3.4 Semantics Styles

In operational semantics, the meaning of a program is defined by a sequence of evaluation steps.

- Structural operational semantics (small-step semantics) by Gordon Plotkin
- ▶ Natural semantics (big-step semantics) by Gilles Kahn
- Communicating concurrent systems (CCS) by Robin Milner

In denotational semantics, the meaning of a program is defined by mathematical objects such as sets and relations. (cf. Dana Scott)

In axiomatic semantics, the meaning of a program is defined by logical rules. (cf. Tony Hoare and Robert W. Floyd)

Syntax

```
Terms t ::= v \mid \text{if } t \text{ then } t \text{ else } t
Values v ::= true \mid \text{false}
```

Evaluation

```
if true then t2 else t3 \rightarrow t2 (E-IFTrue)
if false then t2 else t3 \rightarrow t3 (E-IFFalse)
```

 $\frac{\texttt{c1} \to \texttt{c1}}{\texttt{if t1 then t2 else t3} \to \texttt{if t1' then t2 else t3}}$ (E-IF)

Note evaluation is defined by an evaluation relation \rightarrow

▶ $t \to t'$ saying "a term t evaluates to t' in one step". cf. Small-step operational semantics cf. $t \to t' \equiv (t, t') \in \to$

3.5 Evaluation: how to read evaluation rules

- (1) Axiom $\,$ if true then t2 else t3 $\,\to\,$ t2 (E-IFTrue)
 - ▶ The left term evaluates to the right term unconditionally.
- (2) Evaluation rule

$$t1 o t1$$
' if t1 then t2 else t3 o if t1' then t2 else t3 (E-IF)

- One thing above the horizontal line is called a condition or a premise.
- ▶ Another thing below it is called a conclusion.
- ► Sometimes, a side condition in (...) is present optionally.

- Q. What does the following term evaluate to?
 - ▶ if true then (if false then false else false) else true
- Q. Run the following term until there is no more step by the evaluation rules.
 - ▶ if (if false then false else false) then false else true.

(E-IFTrue) and (E-IFFalse) are called *computation rules* and (E-IF) is called as a *congruence rule*.

When a pair $(t,t') \in \to$, we say that "the evaluation statement (or judgment) $t \to t$ ' is *derivable*.

This can be justified by exhibiting a *derivation tree* whose leaves are (E-IFTrue) and (E-IFFalse) and whose internal nodes are (E-IF).

Q. Show that if t \to t1 and t \to t2 then t1 = t2. Proof by structural induction on the derivation of t \to t1.

The one-step evaluation relation shows how a term evaluates from one state to the next state.

A term t is in *normal form* if no evaluation rule applies to it.

Every value is in normal form. (But every normal form is not always a value.)

- In the boolean part of the arithmetic PL, if t is in normal form then t is a value. (Provable by structural induction on t)
- ▶ But in the arithmetic PL, there is a normal form which is not a value. E.g., succ true, iszero true, and so on.

The multi-step evaluation relation \to^* is the reflexive, transitive closure of one-step evaluation.

The semantics of (the boolean part) of the airthmetic PL is defined by constructing derivation trees

- ▶ One-step: A term t1 evalutes to another t2 if you derive t1 \rightarrow t2 by (E-IFTrue), (E-IFFalse), and (E-IF).
- Normal execution: A term t1 normally evaluates to a value if t1 \rightarrow^* v
- ▶ Runtime error: A term t1 will gets stuck at t2 if t1 \rightarrow * t2.

Thus the existence of a derivation tree constructed with (E-IFTrue), (E-IFFalse), and (E-IF) defines the semantics.

An extension of the definition of evaluation to arithmetic expressions.

Syntax

Evaluation

· · · (the same evaluation rules) · · · $t1 \rightarrow t1$ (E-Succ) succ $t1 \rightarrow succ t1$ (E-PredZero) pred $0 \rightarrow 0$ pred (succ nv) \rightarrow nv (E-PredSucc) $t1 \rightarrow t1$ (E-Pred) pred $t1 \rightarrow pred t1$ ' iszero $0 \rightarrow false$ (E-IsZeroZero) iszero (succ nv) \rightarrow true (E-IsZeroSucc)

$$\frac{\mathtt{t1}\to\mathtt{t1'}}{\mathtt{iszero}\ \mathtt{t1}\to\mathtt{iszero}\ \mathtt{t1'}} \qquad \mathsf{(E\text{-lsZero})}$$

Q. Evaluate "pred (succ (pred 0))".

A term is *stuck* if it is in normal form but not a value. "Stuckness" gives us a simple notion of *run-time error* for our simple conceptual computer.

Q. Show a term that will get stuck on the evaluation.

Summary: The arithmetic programming language

The syntax

```
Terms t ::= v \mid \text{if } t \text{ then } t \text{ else } t \mid 0 \mid \text{succ } t \mid \text{pred } t \mid \text{iszero } t Values v ::= true \mid \text{false } \mid nv Num. values nv ::= 0 \mid \text{succ } nv
```

Summary: The arithmetic PL (cont.)

The evaluation rules

if true then t2 else t3
$$\rightarrow$$
 t2 (E-IFTrue) if false then t2 else t3 \rightarrow t3 (E-IFFalse)
$$\frac{\text{t1} \rightarrow \text{t1'}}{\text{if t1 then t2 else t3} \rightarrow \text{if t1' then t2 else t3}} \qquad \text{(E-IF)}$$

$$\frac{\text{t1} \rightarrow \text{t1'}}{\text{succ t1} \rightarrow \text{succ t1'}} \qquad \text{(E-Succ)}$$
 pred $0 \rightarrow 0$ (E-PredZero) pred (succ nv) \rightarrow nv (E-PredSucc)
$$\frac{\text{t1} \rightarrow \text{t1'}}{\text{pred t1} \rightarrow \text{pred t1'}} \qquad \text{(E-Pred)}$$
 iszero $0 \rightarrow \text{false}$ (E-IsZeroZero) iszero (succ nv) \rightarrow true (E-IsZeroSucc)
$$\frac{\text{t1} \rightarrow \text{t1'}}{\text{iszero t1} \rightarrow \text{iszero t1'}} \qquad \text{(E-IsZero}$$

Summary: The arithmetic PL - Derivations

A derivation tree of height 3 defines the semantics for a single step "pred (succ (pred 0)) \rightarrow pred (succ 0)" using the three rules: (E-PredZero), (E-Succ), and (E-Pred).

$$\frac{\frac{}{\text{pred }0 \rightarrow 0} \text{ E-PREDZERO}}{\text{succ (pred 0)} \rightarrow \text{succ 0}} \frac{\text{E-Succ}}{\text{E-PRED}}$$

$$\frac{\text{pred (succ (pred 0))} \rightarrow \text{pred (succ 0)}}{\text{pred (succ 0)}} \frac{\text{E-PRED}}{\text{E-PRED}}$$

Summary: The arithmetic PL - Semantics

The semantics of the airthmetic PL by constructing derivation trees

- One-step: A term t1 evalutes to another t2 if you can derive t1 → t2 by the ten evaluation rules.
- Normal execution: A term t1 normally evaluates to a value if t1 \rightarrow^* v
- Runtime error: A term t1 will get stuck at t2 if t1 →* t2.

Thus the existence of a derivation tree constructed by the evaluation rules defines the semantics.

Summary: The arithmetic PL - Induction

Q. Show that if $t \to t1$ and $t \to t2$ then t1 = t2.

By the induction, we can prove the uniqueness property for all infinite number of derivation trees for $t \to t1$.

Proof by structural induction on the derivation of $t \rightarrow t1$.

- ▶ Base cases: The derivation trees of height 1.
- Inductive cases:
 - (1) Assume the property to show is true for all the derivation trees of height *k*.
 - (2) Then prove that the property is also true for all the derivation trees of height k + 1.