A graphical approach to sequentially rejective multiple test procedures

Martin Posch

Center for Medical Statistics, Informatics and Intelligent Systems

Medical University of Vienna

Joint work with Frank Bretz, Willi Maurer, Werner Brannath

 μ Toss, Berlin 2010

Sequentially rejective, weighted Bonferroni type tests

- Applied in clinical trials with multiple treatment arms, subgroups and endpoints
- Bonferroni-Holm Test, Fixed Sequence Test, Fallback Test, Gatekeeping Tests, ...
- Allow to map the difference in importance as well as the relationship between research questions onto the multiple test procedure.
- However: The testing procedure can be technical and often hard to communicate.

Parallell gatekeeping: Testing $\mathcal{F}_1 = \{H_1, H_2\}, \, \mathcal{F}_2 = \{H_3, H_4\}$

Rejection of hypotheses in the family $\mathcal{F}_2 = \{H_3, H_4\}$ is only of interest if at least one of the hypotheses in the family $\mathcal{F}_1 = \{H_1, H_2\}$ can be rejected

Parallel Gatekeeping (Dmitrienko, Offen & Westfall, 2003)

Table II. Decision matrix for the parallel Bonferroni gatekeeping procedure.

Intersection hypothesis	P-values for intersection hypotheses	Original hypotheses			
		H_1	H_2	H_3	H_4
H_{1111}	$p_{1111} = \min(p_1/0.9, p_2/0.1)$	<i>p</i> ₁₁₁₁	<i>p</i> ₁₁₁₁	<i>p</i> 1111	P1111
H_{1110}	$p_{1110} = \min(p_1/0.9, p_2/0.1)$	P ₁₁₁₀	P1110	P1110	0
H_{1101}	$p_{1101} = \min(p_1/0.9, p_2/0.1)$	P1101	P1101	0	p_{1101}
H_{1100}	$p_{1100} = \min(p_1/0.9, p_2/0.1)$	p_{1100}	p_{1100}	0	0
H_{1011}	$p_{1011} = \min(p_1/0.9, p_3/0.05, p_4/0.05)$	p_{1011}	0	p_{1011}	p_{1011}
H_{1010}	$p_{1010} = \min(p_1/0.9, p_3/0.1)$	p_{1010}	0	p_{1010}	0
H_{1001}	$p_{1001} = \min(p_1/0.9, p_4/0.1)$	p_{1001}	0	0	p_{1001}
H_{1000}	$p_{1000} = p_1$	p_{1000}	0	0	0
H_{0111}	$p_{0111} = \min(p_2/0.1, p_3/0.45, p_4/0.45)$	0	p_{0111}	p_{0111}	p_{0111}
H_{0110}	$p_{0110} = \min(p_2/0.1, p_3/0.9)$	0	P0110	P0110	0
H_{0101}	$p_{0101} = \min(p_2/0.1, p_4/0.9)$	0	P0101	0	p_{0101}
H_{0100}	$p_{0100} = p_2$	0	P0100	0	0
H_{0011}	$p_{0011} = \min(p_3/0.5, p_4/0.5)$	0	0	p_{0011}	p_{0011}
H_{0010}	$p_{0010} = p_3$	0	0	P0010	0
H_{0001}	$p_{0001} = p_4$	0	0	0	p_{0001}

Note: The table shows p-values associated with the intersection hypotheses. The adjusted p-values for the original hypotheses H_1 , H_2 , H_3 and H_4 are defined as the largest p-value in the corresponding column in the right-hand panel of the table (see equation (1)).

Heuristics

Notation

- $H_1, \ldots, H_m : m$ null hypotheses.
- p_1, \ldots, p_m : m elementary p-values
- $\alpha = (\alpha_1, \dots, \alpha_m)$: initial allocation of the type I error rate $\alpha = \sum_{i=1}^m \alpha_i$.

" α Reshuffling"

- **1** If a hypothesis H_i can be rejected at level α_i , reallocate its level to one of the other hypotheses (according to a prefixed rule)
- **2** Repeat the testing with the resulting α levels.
- 3 Go to step 1 until no hypothesis can be rejected anymore.

Does this lead to a FWE-controlling test?

Example: Bonferroni-Holm Test

$$\rho_{1} = 0.04$$

Example: Parallel Gatekeeping

► To the procedure of Dmitrienko et al. (2003)

$$(H_4)$$
 $p_4 = 0.04$

General Definition of the Multiple Test Procedure

General definition of the multiple test

- $\alpha = (\alpha_1, \dots, \alpha_m), \sum_{i=1}^m, \alpha_i = \alpha$, initial levels
- **G** = (g_{ij}) : $m \times m$ transition matrix g_{ij} with $0 \le g_{ij} \le 1$, $g_{ii} = 0$ and $\sum_{j=1}^{m} g_{ij} \le 1$ for all i = 1, ..., m.
- g_{ij} ... fraction of the level of H_i that is allocated to H_i .
- **G** and α determine the graph and the multiple test.

The Testing Procedure

Set $J = \{1, ..., m\}$.

- 1 Select a j such that $p_j \leq \alpha_j$. If no such j exists, stop, otherwise reject H_j .
- 2 Update the graph:

Go to step 1.

The Testing Procedure

Set $J = \{1, ..., m\}$.

- 1 Select a j such that $p_j \le \alpha_j$. If no such j exists, stop, otherwise reject H_j .
- 2 Update the graph:

Go to step 1.

The Testing Procedure

Set $J = \{1, ..., m\}$.

- 1 Select a j such that $p_j \le \alpha_j$. If no such j exists, stop, otherwise reject H_j .
- 2 Update the graph:

3 Go to step 1.

Control of the FWE

Theorem

The initial levels α , the transition matrix **G** and the algorithm define a unique multiple testing procedure controlling strongly the FWER at level α .

Proof:

- The graph and algorithm define weighted Bonferroni tests for all intersection hypotheses.
- The algorithm is a short cut for the resulting closed test.

Closed Testing with Weighted Bonferroni Tests

Closed Testing Procedure:

- **1** Define level α tests for all intersection hypotheses $H_J = \bigcap_{i \in J} H_i, J \subseteq \{1, \dots, m\}.$
- **2** Reject H_j , at multiple level α , if for all $J \subseteq \{1, ..., m\}$ that contain j the intersection hypotheses H_J can be rejected at level α .

Weighted Bonferroni Test.

- 1 For each $J \subseteq \{1, \dots, m\}$ define α_j^J such that $\sum_{j \in J} \alpha_j^J = \alpha$.
- **2** Reject H_J , if $p_j \leq \alpha_j^J$ for some $j \in J$.

Fixed Sequence Test

$$\alpha = (\alpha, 0, 0), \quad \mathbf{G} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Fallback Procedure (Wiens, 2003)

$$\alpha = (\alpha_1, \alpha_2, \alpha_3), \quad \mathbf{G} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Improved Fallback Procedure (Wiens & Dmitrienko, 2005)

$$\alpha = (\alpha_1, \alpha_2, \alpha_3), \quad \mathbf{G} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$

Yet another improved Fallback Procedure

$$\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \alpha_3), \quad \mathbf{G} = \left(\begin{array}{ccc} \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} - \epsilon & \mathbf{0} & \epsilon \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \end{array} \right)$$

Let $\epsilon \to 0$, see explanation below.

Shifting level between families of hypotheses (1)

Test strategy

- H₁, H₂ tested with Bonferroni-Holm
- H₃ tested (at level α) only if H₁ and H₂ are rejected

$$oldsymbol{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0
ight), \quad \mathbf{G} = \left(egin{array}{cccc} 0 & 1 - \epsilon & \epsilon \ 1 - \epsilon & 0 & \epsilon \ 0 & 0 & 0 \end{array}
ight)$$

$$\alpha = (\alpha, 0, 0), \quad \mathbf{G} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Parallel Gatekeeping (Dmitrienko, Offen & Westfall, 2003)

$$oldsymbol{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad {f G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}
ight)$$

Improved Parallel Gatekeeping (Hommel, Bretz & Maurer, 2007)

$$m{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad \mathbf{G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \\ \epsilon & 0 & 0 & 1 - \epsilon \\ 0 & \epsilon & 1 - \epsilon & 0 \end{array}
ight)$$

... and cannot be improved by adding additional edges?

A sufficient condition for completeness:

- the weights of outgoing edges sum to one at each node and
- every node is accessible from any of the other nodes

If $\alpha_i > 0$, i = 1, ..., m, this is also a necessary condition for completeness.

How general is the procedure?

Can all consonant closed test procedures using weighted Bonferroni Tests for the intersection hypotheses be constructed with the graphical procedure?

No:

- For the general procedure we can choose weights for 2^{m-1} intersection hypotheses.
- The graphical procedure is defined by $m^2 + m$ parameters.

Extensions

- Multiplicity adjusted confidence bounds (Guilbaud (2008) and Strassburger and Bretz (2008))
- Adjusted p-values

Assumptions:

- Test for $H_i: \theta_i \leq 0$ v.s. $H'_i: \theta_i > 0$
- Let $p_i(\mu)$ denote a p-value for $H_i(\mu)$: $\theta_i \leq \mu$.
- $p_i(\mu)$ is increasing in μ .
- $b_i(\gamma) = \inf\{\mu | p_i(\mu) > \gamma\}$ (local level γ confidence bound)
- $I \subseteq \{1, \dots, m\} \dots$ index set of rejected hypotheses H_i .

- If $I = \{1, ..., m\}$: $b_i^{adj} = \max\{0, b_i(\alpha_i)\}$
- Otherwise: $b_i^{adj} = \left\{ egin{array}{ll} 0 & ext{if } i \in I \\ b_i(lpha_i') & ext{otherwise.} \end{array}
 ight.$
- α'_i ... level of hypothesis H_i in the final graph.

Assumptions:

- Test for H_i : $\theta_i \leq 0$ v.s. H'_i : $\theta_i > 0$
- Let $p_i(\mu)$ denote a p-value for $H_i(\mu)$: $\theta_i \leq \mu$.
- $p_i(\mu)$ is increasing in μ .
- $b_i(\gamma) = \inf\{\mu | p_i(\mu) > \gamma\}$ (local level γ confidence bound)
- $I \subseteq \{1, \dots, m\} \dots$ index set of rejected hypotheses H_i .

- If $I = \{1, ..., m\}$: $b_i^{adj} = \max\{0, b_i(\alpha_i)\}$
- Otherwise: $b_i^{adj} = \left\{ egin{array}{ll} 0 & ext{if } i \in I \\ b_i(lpha_i') & ext{otherwise.} \end{array}
 ight.$
 - α'_i ... level of hypothesis H_i in the final graph...

Assumptions:

- Test for H_i : $\theta_i \leq 0$ v.s. H'_i : $\theta_i > 0$
- Let $p_i(\mu)$ denote a p-value for $H_i(\mu)$: $\theta_i \leq \mu$.
- $p_i(\mu)$ is increasing in μ .
- $b_i(\gamma) = \inf\{\mu | p_i(\mu) > \gamma\}$ (local level γ confidence bound)
- $I \subseteq \{1, \dots, m\}$... index set of rejected hypotheses H_i .

- If $I = \{1, ..., m\}$: $b_i^{adj} = \max\{0, b_i(\alpha_i)\}$.
- Otherwise: $b_i^{adj} = \left\{ egin{array}{ll} 0 & ext{if } i \in I \\ b_i(lpha_i') & ext{otherwise.} \end{array}
 ight.$
- α'_i ... level of hypothesis H_i in the final graph.

Assumptions:

- Test for H_i : $\theta_i \leq 0$ v.s. H'_i : $\theta_i > 0$
- Let $p_i(\mu)$ denote a p-value for $H_i(\mu)$: $\theta_i \leq \mu$.
- $p_i(\mu)$ is increasing in μ .
- $b_i(\gamma) = \inf\{\mu | p_i(\mu) > \gamma\}$ (local level γ confidence bound)
- $I \subseteq \{1, \dots, m\}$... index set of rejected hypotheses H_i .

- If $I = \{1, ..., m\}$: $b_i^{ao_j} = \max\{0, b_i(\alpha_i)\}$.
- Otherwise: $b_i^{adj} = \left\{ egin{array}{ll} 0 & ext{if } i \in I \\ b_i(lpha_i') & ext{otherwise.} \end{array}
 ight.$
 - α'_i ... level of hypothesis H_i in the final graph.

Assumptions:

- Test for H_i : $\theta_i \leq 0$ v.s. H'_i : $\theta_i > 0$
- Let $p_i(\mu)$ denote a p-value for $H_i(\mu)$: $\theta_i \leq \mu$.
- $p_i(\mu)$ is increasing in μ .
- $b_i(\gamma) = \inf\{\mu | p_i(\mu) > \gamma\}$ (local level γ confidence bound)
- $I \subseteq \{1, \dots, m\} \dots$ index set of rejected hypotheses H_i .

- If $I = \{1, ..., m\}$: $b_i^{aaj} = \max\{0, b_i(\alpha_i)\}$
- Otherwise: $b_i^{adj} = \left\{ egin{array}{ll} 0 & ext{if } i \in I \ b_i(lpha_i') & ext{otherwise.} \end{array}
 ight.$
 - α_i' ... level of hypothesis H_i in the final graph.

Assumptions:

- Test for H_i : $\theta_i \leq 0$ v.s. H'_i : $\theta_i > 0$
- Let $p_i(\mu)$ denote a p-value for $H_i(\mu)$: $\theta_i \leq \mu$.
- $p_i(\mu)$ is increasing in μ .
- $b_i(\gamma) = \inf\{\mu | p_i(\mu) > \gamma\}$ (local level γ confidence bound)
- $I \subseteq \{1, \dots, m\} \dots$ index set of rejected hypotheses H_i .

- If $I = \{1, ..., m\}$: $b_i^{aaj} = \max\{0, b_i(\alpha_i)\}$
- Otherwise: $b_i^{adj} = \left\{ egin{array}{ll} 0 & ext{if } i \in I \ b_i(lpha_i') & ext{otherwise.} \end{array}
 ight.$
 - α_i' ... level of hypothesis H_i in the final graph.

Assumptions:

- Test for H_i : $\theta_i \leq 0$ v.s. H'_i : $\theta_i > 0$
- Let $p_i(\mu)$ denote a p-value for $H_i(\mu)$: $\theta_i \leq \mu$.
- $p_i(\mu)$ is increasing in μ .
- $b_i(\gamma) = \inf\{\mu | p_i(\mu) > \gamma\}$ (local level γ confidence bound)
- $I \subseteq \{1, \dots, m\} \dots$ index set of rejected hypotheses H_i .

- If $I = \{1, ..., m\}$: $b_i^{adj} = \max\{0, b_i(\alpha_i)\}$.
- Otherwise: $b_i^{adj} = \left\{ egin{array}{ll} 0 & ext{if } i \in I \\ b_i(lpha_i') & ext{otherwise.} \end{array} \right.$
 - α'_i ... level of hypothesis H_i in the final graph.

Assumptions:

- Test for $H_i: \theta_i \leq 0$ v.s. $H'_i: \theta_i > 0$
- Let $p_i(\mu)$ denote a p-value for $H_i(\mu)$: $\theta_i \leq \mu$.
- $p_i(\mu)$ is increasing in μ .
- $b_i(\gamma) = \inf\{\mu | p_i(\mu) > \gamma\}$ (local level γ confidence bound)
- $I \subseteq \{1, \dots, m\} \dots$ index set of rejected hypotheses H_i .

- If $I = \{1, \ldots, m\}$: $b_i^{adj} = \max\{0, b_i(\alpha_i)\}$.
- Otherwise: $b_i^{adj} = \left\{ egin{array}{ll} 0 & ext{if } i \in I \\ b_i(lpha_i') & ext{otherwise.} \end{array}
 ight.$
 - α'_i ... level of hypothesis H_i in the final graph.

Let
$$\mathbf{w} = (w_1, ..., w_m) = (\alpha_1, ..., \alpha_m)/\alpha$$

 $J = \{1, ..., m\}$ and $p_{max} = 0$

- 1 Let $j = \operatorname{argmin}_{i \in J} p_i / w_i$

- 4 Update the graph:

Let
$$\mathbf{w} = (w_1, ..., w_m) = (\alpha_1, ..., \alpha_m)/\alpha$$

 $J = \{1, ..., m\}$ and $p_{max} = 0$

- 1 Let $j = \operatorname{argmin}_{i \in J} p_i / w_i$

- 4 Update the graph:

$$J
ightarrow J/\{j\}$$
 $w_\ell
ightarrow \left\{egin{array}{ll} w_\ell + w_j g_{j\ell}, & \ell \in J \ 0, & ext{otherwise} \end{array}
ight.$ $g_{\ell k}
ightarrow \left\{egin{array}{ll} rac{g_{\ell k} + g_{\ell j} g_{jk}}{1 - g_{\ell j} g_{j\ell}}, & \ell, k \in J, \ell
eq k \ 0, & ext{otherwise} \end{array}
ight.$

Let
$$\mathbf{w} = (w_1, \dots, w_m) = (\alpha_1, \dots, \alpha_m)/\alpha$$

 $J = \{1, \dots, m\}$ and $p_{\text{max}} = 0$

- 4 Update the graph:

$$J
ightarrow J/\{j\}$$
 $w_\ell
ightarrow \left\{egin{array}{ll} w_\ell + w_j g_{j\ell}, & \ell \in J \ 0, & ext{otherwise} \end{array}
ight.$ $g_{\ell k}
ightarrow \left\{egin{array}{ll} rac{g_{\ell k} + g_{\ell j} g_{jk}}{1 - g_{\ell j} g_{j\ell}}, & \ell, k \in J, \ell
eq k \ 0, & ext{otherwise} \end{array}
ight.$

Let
$$\mathbf{w} = (w_1, ..., w_m) = (\alpha_1, ..., \alpha_m)/\alpha$$

 $J = \{1, ..., m\}$ and $p_{max} = 0$

- 1 Let $j = \operatorname{argmin}_{i \in J} p_i / w_i$

- 4 Update the graph:

$$J
ightarrow J/\{j\} \ w_\ell
ightarrow \left\{egin{array}{ll} w_\ell + w_j g_{j\ell}, & \ell \in J \ 0, & ext{otherwise} \end{array}
ight. \ g_{\ell k}
ightarrow \left\{egin{array}{ll} rac{g_{\ell k} + g_{\ell j} g_{jk}}{1 - g_{\ell j} g_{j\ell}}, & \ell, k \in J, \ell
eq k \ 0, & ext{otherwise} \end{array}
ight.$$

Let
$$\mathbf{w} = (w_1, ..., w_m) = (\alpha_1, ..., \alpha_m)/\alpha$$

 $J = \{1, ..., m\}$ and $p_{\text{max}} = 0$

- 1 Let $j = \operatorname{argmin}_{i \in J} p_i / w_i$

- Update the graph:

$$J
ightarrow J/\{ rac{j}{l} \}$$
 $w_\ell
ightarrow \left\{egin{array}{l} w_\ell + w_j g_{j\ell}, & \ell \in J \ 0, & ext{otherwise} \end{array}
ight.$ $g_{\ell k}
ightarrow \left\{egin{array}{l} rac{g_{\ell k} + g_{\ell j} g_{jk}}{1 - g_{\ell j} g_{j\ell}}, & \ell, k \in J, \ell
eq k \ 0, & ext{otherwise} \end{array}
ight.$

$$p_1 = 0.02$$
 $p_2 = 0.01$ $p_3 = 0.06$

$$p_1 = 0.02$$
 $p_2 = 0.01$ $p_3 = 0.06$ $\frac{p_1}{w_1} = 0.036$ $\frac{p_2}{w_2} = 0.03$ $\frac{p_3}{w_3} = 0.36$

$$p_1 = 0.02$$
 $p_2 = 0.01$ $p_3 = 0.06$ $\frac{p_1}{w_1} = 0.036$ $p_2^{adj} = 0.03$ $\frac{p_3}{w_3} = 0.36$

$$p_1 = 0.02$$
 $p_2 = 0.01$ $p_3 = 0.06$ $\frac{p_1}{w_1} = 0.024$ $p_2^{adj} = 0.03$ $\frac{p_3}{w_3} = 0.36$

$$p_1 = 0.02$$
 $p_2 = 0.01$ $p_3 = 0.06$ $p_1^{adj} = 0.03$ $p_2^{adj} = 0.03$ $\frac{p_3}{w_3} = 0.36$

$$p_1 = 0.02$$
 $p_2 = 0.01$ $p_3 = 0.06$ $p_1^{adj} = 0.03$ $p_2^{adj} = 0.03$ $\frac{p_3}{w_3} = 0.06$

$$p_1 = 0.02$$
 $p_2 = 0.01$ $p_3 = 0.06$ $p_1^{adj} = 0.03$ $p_2^{adj} = 0.03$ $p_3^{adj} = 0.06$

- Two dose levels
- Three hierarchically ordered endpoints: annualized relapse rate, number of lesions in the brain, and disability progression.
- Six elementary hypotheses H_{ij} : $\theta_{ij} \le 0$ i = H(igh dose), L(ow dose) j = 1, 2, 3... endpoints

Strategy 1: Fixed Sequence Test

Strategy 2: Fixed Sequence Test per Dose

Strategy 3: More weight to the Primary Endpoints

Strategy 4 : Gatekeeper

- Combination (AB) and mono therapy (B) compared with comparator(A)
- Superiority and non-inferiority tests for primary and multiple secondary endpoints.
- Three elementary hypotheses and two families of hypotheses:
 - H₁: superiority of AB vs. A
 - H₂: non-inferiority of B vs. A
 - H₃: superiority of B vs. A
 - \mathcal{H}_4 : multiple secondary variables for AB vs. A
 - H₅: multiple secondary variables for B vs. A

Multiple Test Procedure

 $\alpha/2$

$$0 \left(\mathcal{H}_4 \right)$$

$$\alpha = \left(\frac{\alpha}{2}, \frac{\alpha}{2}, 0, 0, 0\right)$$

$$\mathbf{G} = \left(\begin{array}{ccccc} 0 & 3/4 & 0 & 1/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{array}\right)$$

Summary and Extensions

- Intuitive graphical procedure to construct multiple tests
- Easy to communicate the testing strategy
- Easy to implement in software
- Adjusted p-values available
- Multiplicity adjusted confidence intervals can be constructed based on Strassburger and Bretz (2008), Guilbaud (2008)
- Adjusted p-values
- Interpretation as Finite Markov Chain
- Similar approach published by Burman (2009)

Aesthetics...

Selected References

P. Bauer, W. Brannath, and M. Posch.

Multiple testing for identifying effective and safe treatments.

Biometrical Journal, 43:606-616, 2001.

F. Bretz, W. Maurer, W. Brannath, and M. Posch.

A graphical approach to sequentially rejective multiple test procedures.

Statistics in Medicine, 28:586-604, 2008.

A. Dmitrienko, W.W. Offen, and P.H. Westfall.

Gatekeeping strategies for clinical trials that do not require all primary effects to be significant.

Statistics in Medicine, 22:2387-2400, 2003.

O. Guilbaud.

Simultaneous confidence regions corresponding to holm's stepdown procedure and other closed-testing procedures.

Biometrical Journal, 50:678-692, 2008.

G. Hommel, F. Bretz, and W. Maurer.

Powerful short-cuts for multiple testing procedures with special reference to gatekeeping strategies.

Statistics in Medicine, 26:4063-4073, 2007.

K. Strassburger and F. Bretz.

Compatible simultaneous lower confidence bounds for the holm procedure and other bonferroni based closed tests.

Statistics in Medicine, 27:4914-4927, 2008.

