$T := \min\{2t\lambda \mid |P_t \cap A_m| > 0\}$ be the first point in time that the elements of A_m appear in P_t of the 2-tournament EA with noisy function $f^n(x)$ and mutation rate χ/n . If there exist h_0, h_1, \dots, h_{m-1} and $\theta \in (0, 1/2]$, and where $\chi \in (0, \ln(1+2\theta\zeta))$ for

an arbitrary constant $\zeta \in (0, 1)$, such that, for an arbitrary constant $\xi \in (0, 1/16)$, (C1) for all $j \in [0..m-1]$, $Pr(y \in A_{>i+1} \mid z \in A_i) \ge h_i$,

Theorem 3 Let $(A_0, A_1,...,A_m)$ be a fitness partition of a finite state space \mathcal{X} . Let

(C2) for all
$$j \in [0..m-2]$$
, and all search points $x_1 \in A_{\geq j+1}$ and $x_2 \in A_{\leq j}$, it follows $\Pr(f^n(x_1) > f^n(x_2)) + \frac{1}{2}\Pr(f^n(x_1) = f^n(x_2)) \geq \frac{1}{2} + \theta$,

follows
$$\Pr(f^n(x_1) > f^n(x_2)) + \frac{1}{2}\Pr(f^n(x_1) = f^n(x_2)) \ge \frac{1}{2} + \theta$$
, C3) and the population size $\lambda \in \mathbb{N}$ satisfies

(C3) and the population size
$$\lambda \in \mathbb{N}$$
 satisfies

$$\lambda > \frac{4(1+o(1))}{a^{2}} \ln \left(\frac{128(m+1)}{a^{2}(1+o(1))} \right),$$

$$\lambda > \frac{4(1+o(1))}{\theta^2 \xi (1-\zeta)^4} \ln \left(\frac{128(m+1)}{\theta^2 \xi (1-\zeta)^4 \min\{h_j\}} \right),$$

$$\theta^2 \xi (1-\zeta)^4 \prod_{j=1}^{M} \left\{ \theta^2 \xi (1-\zeta)^4 \min\{h_j\} \right\},$$

then $E[T] < \frac{16(1+o(1))}{\theta^2 \xi(1-\zeta)^2} \sum_{j=0}^{m-1} \left(\lambda \ln \left(\frac{6}{\xi(1-\zeta)^2 h_j} \right) + \frac{1}{\xi(1-\zeta)^2 h_j} \right).$