## COM 5335 NETWORK SECURITY LECTURE 9 DIGITAL SIGNATURES

Scott CH Huang

#### Outline

- Introduction
- RSA signature scheme
- ElGamal signature scheme
- Rabin public-key signature scheme
- DSA signature scheme (optional)
- Rabin one-time signature
- Arbitrated signature schemes

### Digital Signature



#### Definitions

- Digital signature a data string which associates a message with some originating entity
- Digital signature generation algorithm a method for producing a digital signature
- Digital signature verification algorithm a method for verifying whether a digital signature is authentic
- Digital signature scheme consists of a signature generation algorithm and an associated verification algorithm

### Digital Signature

- Digital Signatures can provide
- Authentication
- Data Integrity
- Non-Repudiation
- Timestamping

#### Desirable Properties

- It should be efficient to compute by the signer
- It should be easy to verify by everybody
- It should be computationally infeasible for an attacker to forge the signature

### Types of Digital Signatures



#### Schemes w/ Appendix

- Requires the message as input to verification algorithm
- Rely on cryptographic hash functions rather than customized redundancy functions
- Schemes of this type
  - ElGamal, DSA, Schnorr etc.

### Schemes w/ Message Recovery

- The original message is not required as input to the verification algorithm
- The original message can be recovered from the signature itself
- Schemes of this type
  - RSA, Rabin, Nyberg-Rueppel

#### Breaking a Signature Scheme

- Total Break: private key is comprimised
- Selective forgery: adversary can create a valid signature on a preselected message
- Existential forgery: adversary can create a valid signature with no control over the message

#### Types of Attacks

- Key-only
  - adversary knows only the public key
- Message attacks
  - Known-message attack: adversary has signatures for a set of messages which are known to the adversary but not chosen by him
  - Chosen-message attack: adversary obtains valid signatures from a chosen list of his choice (non adaptive)
  - Adaptive chosen-message attack: adversary can use the signer as an oracle

#### RSA Signature Scheme

- Key generation n, p, q, e, d
- Sign
  - Compute  $m_r = R(m)$ , where R is an **invertible redundancy function** that maps a message into the signature space
  - Compute  $s = m_r^d \mod n$
  - The signature for m is s
- Verify
  - Obtain authentic public key (n, e)
  - Compute  $m_r = s^e \mod n$
  - Verify that  $m_r \in M_r$
  - $Recover m = R^{-1}(mr)$

- Attacks
  - Integer factorization
  - Homomorphic property
- Reblocking problem
  - If signatures are encrypted different modulus sizes can render the message unrecoverable
- Importance of the redundancy function
  - ISO/IEC 9796

- Performance (p, q are k-bit primes)
  - Signature  $O(k^3)$
  - Verification O(k²)
- Bandwidth
  - Bandwidth is determined by R. For example, ISO/IEC
     9796 maps k-bit messages to 2k-bit elements in MS for a 2k-bit signature (efficiency of ½)

#### ElGamal Signature Scheme

- Key generation: p,  $\alpha$ , a, y= $\alpha$ <sup>a</sup> mod p
- Signature Generation
  - Select random k,  $1 \le k \le p-1$ , gcd(k, p-1)=1
  - Compute  $r = \alpha^k \mod p$
  - Compute  $k^{-1} \mod (p-1)$
  - Compute  $s = k^{-1} * (h(m) ar) \mod (p-1)$ , where h is a oneway hash function.
  - Signature is (r,s)

- Signature Verification
  - Verify  $1 \le r \le p-1$
  - Compute  $v_1 = y^r r^s \mod p$
  - Compute h(m) and  $v_2 = \alpha h(m)$  mod p
  - Accept iff v<sub>1</sub>=v<sub>2</sub>

$$s \equiv k^{-1} \{h(m) - ar\} \pmod{p-1}$$
  
$$ks \equiv h(m) - ar \pmod{p-1}$$

$$\alpha^{h(m)} \equiv \alpha^{ar+ks} \equiv (\alpha^a)^r r^s \pmod{p}$$

- Security (based on DLP)
  - Index-calculus attack: p should be large
  - Pohlig-Hellman attack: p-1 should not be smooth
  - Weak generators: If  $p \equiv 1 \mod 4$ ,  $\alpha \mid p-1$ , DL can be broken for subgroup S of order  $\alpha$ . Forgeries are then possible

- In addition...
  - k must be unique for each message signed
    - $\bullet$  (s<sub>1</sub>-s<sub>2</sub>)k=(h(m<sub>1</sub>)-h(m<sub>2</sub>))mod (p-1)
  - An existential forgery attack can be mounted if a hash function is not used

- Performance
  - Signature Generation
    - One modular exponentiation
    - One Euclidean Algorithm
    - Both can be done offline
  - Verification
    - Three modular exponentiations
- Generalized ElGamal Signatures

# Rabin Public-Key Signature Scheme

- Signature:  $s = m^{1/2} \mod n$ 
  - Using any sqrt
- Verification:  $m = s^2 \mod n$
- About ¼ of the messages have sqrts.
- If a message doesn't have a sqrt, then it has to be slightly modified by doing proper padding.

#### Rabin Signature (cont'd)

- In practice, one might try to append a small amount of random bits and hope that it has a sqrt.
- On average, two such attempts would be enough.
- Such method has no guarantee of success, so a deterministic method would be preferable.

# Modified Rabin Signature Scheme

- To overcome this problem, a modified Rabin signature scheme is designed.
- It provides a deterministic method for associating messages with elements in the signing space such that computing s square root (or something close to it) is always possible.
- Details of modified Rabin signature scheme is beyond the scope of this course.

#### Rabin Signature Pros & Cons

- Advantage:
  - Verification is extremely fast
  - Cracking the signature scheme is provable as hard as doing factorization.
- Disadvantage: like Rabin encryption, one system can only generate signature for a single user.

#### DSA Signature

- DSA Algorithm: key generation
  - select a prime q of 160 bits
  - Choose 0≤t≤8, select  $2^{511+64t}$  <p<  $2^{512+64t}$  with q | p-1
  - Select g in  $Z_p^*$ , and  $\alpha = g^{(p-1)/q} \mod p$ ,  $\alpha \neq 1$  (ord( $\alpha$ )=q)
  - Select  $1 \le a \le q-1$ , compute  $y = \alpha^a \mod p$
  - public key (p,q,  $\alpha$ ,y), private key a

- DSA signature generation
  - Select a random integer k, 0 < k < q
  - Compute  $r=(\alpha^k \mod p) \mod q$
  - Compute k<sup>-1</sup> mod q
  - Compute  $s=k^{-1}*(h(m) + ar) \mod q$
  - Signature = (r, s)

- DSA signature verification
  - Verify 0<r<q and 0<s<q, if not, invalid</li>
  - Compute  $w = s^{-1} \mod q$
  - Compute  $u_1=w*h(m) \mod q$ ,  $u_2=r*w \mod q$
  - Compute  $v = (\alpha^{u_1}y^{u_2} \mod p) \mod q$
  - Valid iff v=r

```
h(m) \equiv -ar + ks \pmod{q}
wh(m) + arw \equiv k \pmod{q}
u_1 + au_2 \equiv k \pmod{q}
\alpha^{u_1} y^{u_2} \mod p \pmod{q} = \alpha^k \mod p \pmod{q}
```

- Security of DSA
  - two distinct DL problems:  $Z_p^*$ , cyclic subgroup order q
- Parameters:
  - $q\sim160$ bits, p 768 $\sim1$ Kb, p,q,  $\alpha$  can be system wide
- Probability of failure
  - $Pr[s=0]=(1/2)^{160}$

- Performance
  - Signature Generation
    - One modular exponentiation
    - Several 160-bit operations (if p is 768 bits)
    - The exponentiation can be pre-computed
  - Verification
    - Two modular exponentiations

# Nyberg-Rueppel Signature Scheme

- Can be regarded as an ElGamal signature scheme w/ message recovery
- Key generation:
  - Same as DSA but no constraints on the sizes of p,q
  - Select g in  $Z_p^*$ , and  $\alpha = g^{(p-1)/q} \mod p$ ,  $\alpha \neq 1$  (ord( $\alpha$ )=q)
  - Select, p,q w/q/(p-1},  $\alpha \in Z_p^*$ , (private key) a, y=  $\alpha^a$ .

# Nyberg-Rueppel Signature Scheme

- Sign message *m* 
  - Compute  $m_r = R(m)$ , where R is an invertable redundancy function
  - Select a random secret integer k s.t.  $1 \le k \le p-1$
  - Compute  $r \equiv \alpha^k$  (mod p),  $e \equiv m_r r$  (mod p), and  $s \equiv ae + k$  (mod q)
  - Signature is (e,s)
- Verify signature (*e,s*)
  - Obtain authentic public key (p,q,  $\alpha$ ,y)
  - Verify that 0 < e < p and  $0 \le s \le q$ . If not, reject.
  - Compute  $v = \alpha^s y^{-e}$  (mod p) and m = ve (mod p)
  - Recover  $m = R^{-1}(m_r)$