Semigroups

A package for semigroups and monoids 5.2.0

1 December 2022

James Mitchell

Marina Anagnostopoulou-Merkouri

Thomas Breuer

Stuart Burrell

Reinis Cirpons

Tom Conti-Leslie

Joe Edwards

Attila Egri-Nagy

Luke Elliott

Fernando Flores Brito

Nick Ham

Robert Hancock

Max Horn

Christopher Jefferson

Julius Jonusas

Chinmaya Nagpal

Olexandr Konovalov

Artemis Konstantinidi

Dima V. Pasechnik

Markus Pfeiffer

Christopher Russell

Jack Schmidt

Sergio Siccha

Finn Smith

Ben Spiers

Nicolas Thiéry

Maria Tsalakou

Murray Whyte

Wilf A. Wilson

Michael Young

James Mitchell

Email: jdm3@st-andrews.ac.uk Homepage: https://jdbm.me

Address: Mathematical Institute, North Haugh, St Andrews, Fife, KY16 9SS, Scotland

Marina Anagnostopoulou-Merkouri

Email: mam49@st-andrews.ac.uk

Homepage: https://github.com/marinaanagno

Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Thomas Breuer

Email: sam@math.rwth-aachen.de

Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer/

Stuart Burrell

Email: stuartburrell1994@gmail.com

Homepage: https://stuartburrell.github.io

Reinis Cirpons

Email: rc234@st-andrews.ac.uk Homepage: https://reinisc.id.lv/

Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Tom Conti-Leslie

Email: tom.contileslie@gmail.com
Homepage: https://tomcontileslie.com/

Joe Edwards

Email: je53@st-andrews.ac.uk

Homepage: https://github.com/Joseph-Edwards

Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Attila Egri-Nagy

Email: attila@egri-nagy.hu

Homepage: http://www.egri-nagy.hu

Luke Elliott

Email: le27@st-andrews.ac.uk

Homepage: https://le27.github.io/Luke-Elliott/

Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Fernando Flores Brito

Email: ffloresbrito@gmail.com

Homepage: https://github.com/ffloresbrito

Nick Ham

Email: nicholas.charles.ham@gmail.com Homepage: https://n-ham.github.io

Robert Hancock

Email: hancock@informatik.uni-heidelberg.de

Homepage: https://sites.google.com/view/robert-hancock/

Max Horn

Email: horn@mathematik.uni-kl.de Homepage: https://www.quendi.de/math

Address: Fachbereich Mathematik, TU Kaiserslautern, Gottlieb-Daimler-Straße 48, 67663 Kaiserslautern, Germany

Christopher Jefferson

Email: caj21@st-andrews.ac.uk

Homepage: https://caj.host.cs.st-andrews.ac.uk/ Address: Jack Cole Building, North Haugh, St Andrews, Fife, KY16 9SX, Scotland

Julius Jonusas

Email: j.jonusas@gmail.com

Homepage: http://julius.jonusas.work

Chinmaya Nagpal

Email: chinmaya1011@gmail.com

Address: Mathematical Institute, North Haugh, St Andrews, Fife, KY16 9SS, Scotland

Olexandr Konovalov

Email: obk1@st-andrews.ac.uk

Homepage: https://www.st-andrews.ac.uk/computer-science/people/obk1/

Address: Jack Cole Building, North Haugh, St Andrews, Fife, KY16 9SX, Scotland

Artemis Konstantinidi

Email: ak316@st-andrews.ac.uk

Address: Mathematical Institute, North Haugh, St Andrews, Fife, KY16 9SS, Scotland

Dima V. Pasechnik

Email: dmitrii.pasechnik@cs.ox.ac.uk

Homepage: http://users.ox.ac.uk/~coml0531/

Address: Pembroke College, St. Aldates, Oxford OX1 1DW,

England

Markus Pfeiffer

Email: markus.pfeiffer@morphism.de

Homepage: https://www.morphism.de/~markusp/

Jack Schmidt

Email: jack.schmidt@uky.edu

Homepage: https://www.ms.uky.edu/~jack/

Sergio Siccha

Email: sergio.siccha@gmail.com

Finn Smith

Email: fls3@st-andrews.ac.uk

Homepage: https://flsmith.github.io/

Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Ben Spiers

Email: bspiers972@outlook.com

Nicolas Thiéry

Email: nthiery@users.sf.net

Homepage: https://nicolas.thiery.name/

Maria Tsalakou

Email: mt200@st-andrews.ac.uk

Homepage: https://mariatsalakou.github.io/

Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Murray Whyte

Email: mw231@st-andrews.ac.uk

Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Wilf A. Wilson

Email: gap@wilf-wilson.net Homepage: https://wilf.me

Michael Young

Email: mct25@st-andrews.ac.uk

Homepage: https://mtorpey.github.io/

Address: Jack Cole Building, North Haugh, St Andrews, Fife,

KY16 9SX, Scotland

Abstract

The Semigroups package is a GAP package for semigroups, and monoids. There are particularly efficient methods for finitely presented semigroups and monoids, and for semigroups and monoids consisting of transformations, partial permutations, bipartitions, partitioned binary relations, subsemigroups of regular Rees 0-matrix semigroups, and matrices of various semirings including boolean matrices, matrices over finite fields, and certain tropical matrices. Semigroups contains efficient methods for creating semigroups, monoids, and inverse semigroups and monoids, calculating their Green's structure, ideals, size, elements, group of units, small generating sets, testing membership, finding the inverses of a regular element, factorizing elements over the generators, and so on. It is possible to test if a semigroup satisfies a particular property, such as if it is regular, simple, inverse, completely regular, and a large number of further properties. There are methods for finding presentations for a semigroup, the congruences of a semigroup, the maximal subsemigroups of a finite semigroup, smaller degree partial permutation representations, and the character tables of inverse semigroups. There are functions for producing pictures of the Green's structure of a semigroup, and for drawing graphical representations of certain types of elements.

Copyright

© by J. D. Mitchell et al.

Semigroups is free software; you can redistribute it and/or modify it, under the terms of the GNU General Public License, version 3 of the License, or (at your option) any later, version.

Acknowledgements

The authors of the Semigroups package would like to thank:

Manuel Delgado

who contributed to the function DotString (16.1.1).

Casey Donoven and Rhiannon Dougall

for their contribution to the development of the algorithms for maximal subsemigroups and smaller degree partial permutation representations.

James East

who contributed to the part of the package relating to bipartitions. We also thank the University of Western Sydney for their support of the development of this part of the package.

Zak Mesvan

who contributed to the code for graph inverse semigroups; see Section 7.10.

Yann Péresse and Yanhui Wang

who contributed to the attribute MunnSemigroup (7.2.1).

Jhevon Smith and Ben Steinberg

who contributed the function CharacterTableOfInverseSemigroup (11.14.10).

We would also like to acknowledge the support of: EPSRC grant number GR/S/56085/01; the Carnegie Trust for the Universities of Scotland for funding the PhD scholarships of Julius Jonušas and Wilf A. Wilson when

they worked on this project; the Engineering and Physical Sciences Research Council (EPSRC) for funding the PhD scholarships of F. Smith (EP/N509759/1) and M. Young (EP/M506631/1) when they worked on this project.

Contents

1	The	Semigroups package				
	1.1	Introduction				
	1.2	Overview				
2	Installing Semigroups 1					
	2.1	For those in a hurry				
	2.2	Compiling the kernel module				
	2.3	Rebuilding the documentation				
	2.4	Testing your installation				
	2.5	More information during a computation				
3	Bipa	artitions and blocks				
	3.1	The family and categories of bipartitions				
	3.2	Creating bipartitions				
	3.3	Changing the representation of a bipartition				
	3.4	Operators for bipartitions				
	3.5	Attributes for bipartitons				
	3.6	Creating blocks and their attributes				
	3.7	Actions on blocks				
	3.8	Semigroups of bipartitions				
4	Part	itioned binary relations (PBRs)				
	4.1	The family and categories of PBRs				
	4.2	Creating PBRs				
	4.3	Changing the representation of a PBR				
	4.4	Operators for PBRs				
	4.5	Attributes for PBRs				
	4.6	Semigroups of PBRs				
5	Mat	rices over semirings				
	5.1	Creating matrices over semirings				
	5.2	Operators for matrices over semirings				
	5.3	Boolean matrices				
	5.4	Matrices over finite fields				
	5.5	Matrices over the integers				
	5.6	Max-plus and min-plus matrices				

	5.7	Matrix semigroups	71
6	Semi	groups and monoids defined by generating sets	74
	6.1	Underlying algorithms	74
	6.2	Semigroups represented by generators	77
	6.3	Options when creating semigroups	77
	6.4	Subsemigroups and supersemigroups	79
	6.5	Changing the representation of a semigroup	82
	6.6	Random semigroups	90
7	Stan	dard examples	93
	7.1	Transformation semigroups	93
	7.2	Semigroups of partial permutations	96
	7.3		98
	7.4		05
	7.5		05
	7.6	• •	07
	7.7	C I	09
	7.8		10
	7.9		14
	7.10		18
			22
8	Stan	dard constructions 1	26
U	8.1		26
	8.2	8	27
	8.3	\mathcal{E} 1	29
	8.4		32
•			25
9	Ideal		.37
	9.1	E	37
	9.2	Attributes of ideals	38
10	Gree	n's relations 1	41
			41
	10.2	.	52
	10.3	Properties of Green's classes	53
	10.4	Attributes of Green's classes	55
11	Attri	butes and operations for semigroups 1	62
	11.1	Accessing the elements of a semigroup	62
			64
	11.3		64
	11.4	Properties of elements in a semigroup	64
		· ·	66
			69
			75
		•	77

	11.9 Idempotents	178
	11.10Maximal subsemigroups	181
		184
		189
		190
		191
		198
12	Properties of semigroups	200
	12.1 Arbitrary semigroups	200
		214
13	Congruences	22 1
	13.1 Semigroup congruence objects	221
	13.2 Creating congruences	223
		225
		229
	13.5 Comparing congruences	238
		239
		243
	- · · · · · · · · · · · · · · · · · · ·	246
		249
	Č	25(
14	Semigroup homomorphisms	252
	14.1 Homomorphisms of arbitrary semigroups	252
	14.2 Isomorphisms of arbitrary semigroups	256
		262
15	VI 8 I	267
	15.1 Changing representation for words and strings	
	13.1 Changing representation for words and strings	267
	15.2 Helper functions	267
	15.2 Helper functions	267 268
	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects	267 268 270
	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects	267 268 270 273
	15.2 Helper functions	267 268 270 273 276
	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object	267 268 270 273 276 279
	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object 15.8 Automatically simplifying an fp semigroup	267 268 270 273 276 279 281 282
16	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object 15.8 Automatically simplifying an fp semigroup Visualising semigroups and elements	267 268 270 273 276 279 281 282
16	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object 15.8 Automatically simplifying an fp semigroup Visualising semigroups and elements 16.1 dot pictures	267 268 270 273 276 279 281 282 286 286
16	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object 15.8 Automatically simplifying an fp semigroup Visualising semigroups and elements 16.1 dot pictures 16.2 tex output	267 268 270 273 276 279 281 282 286 286
16	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object 15.8 Automatically simplifying an fp semigroup Visualising semigroups and elements 16.1 dot pictures 16.2 tex output	267 268 270 273 276 279 281 282 286 286
	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object 15.8 Automatically simplifying an fp semigroup Visualising semigroups and elements 16.1 dot pictures 16.2 tex output 16.3 tikz pictures	267 268 270 273 276 281 282 286 286 288
	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object 15.8 Automatically simplifying an fp semigroup Visualising semigroups and elements 16.1 dot pictures 16.2 tex output 16.3 tikz pictures	267 268 270 273 276 280 280 280 280 280 280 280 280 280 280
	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object 15.8 Automatically simplifying an fp semigroup Visualising semigroups and elements 16.1 dot pictures 16.2 tex output 16.3 tikz pictures 10 17.1 Reading and writing elements to a file	267 268 270 273 276 279 281 282 286 288 289 292
	15.2 Helper functions 15.3 Creating Tietze transformation objects 15.4 Printing Tietze transformation objects 15.5 Changing Tietze transformation objects 15.6 Converting a Tietze transformation object into a fp semigroup 15.7 Automatically simplifying a Tietze transformation object 15.8 Automatically simplifying an fp semigroup Visualising semigroups and elements 16.1 dot pictures 16.2 tex output 16.3 tikz pictures 10 17.1 Reading and writing elements to a file	267 268 270 273 276 281 282 286 286 288 288 288

Semigroups	7
------------	---

18 Translations 18.1 Methods for translations	295 296
References	304
Index	305

Chapter 1

The Semigroups package

1.1 Introduction

This is the manual for the Semigroups package for GAP version 5.2.0. Semigroups 5.2.0 is a distant descendant of the Monoid package for GAP 3 by Goetz Pfeiffer, Steve A. Linton, Edmund F. Robertson, and Nik Ruskuc.

From Version 3.0.0, Semigroups includes a copy of the libsemigroups C++ library which contains implementations of the Froidure-Pin, Todd-Coxeter, and Knuth-Bendix algorithms (among others) that Semigroups utilises.

If you find a bug or an issue with the package, please visit the issue tracker.

1.2 Overview

This manual is organised as follows:

Part I: elements

the different types of elements that are introduced in Semigroups are described in Chapters 3, 4, and 5. These include Bipartition (3.2.1), PBR (4.2.1), and Matrix (5.1.5), which supplement those already defined in the GAP library, such as Transformation (Reference: Transformation for an image list) or PartialPerm (Reference: PartialPerm for a domain and image).

Part II: semigroups and monoids defined by generating sets

functions and operations for creating semigroups and monoids defined by generating sets (of the type described in Part I) are described in Chapter 6.

Part III: standard examples and constructions

standard examples of semigroups, such as FullBooleanMatMonoid (7.6.1) or UniformBlockBijectionMonoid (7.3.8), are described in Chapter 7, and standard constructions, such as DirectProduct (8.1.1) are given in Chapter 8.

Part IV: the structure of a semigroup or monoid

the functionality for determining various structural properties of a given semigroup or monoid are described in Chapters 9, 10, 11, and 12.

Part V: congruences, quotients, and homomorphisms

methods for creating and manipulating congruences and homomorphisms are described by Chapters 13 and 14.

Part VI: finitely presented semigroups and monoids

methods for finitely presented semigroups and monoids, in particular, for Tietze transformations can be found in Chapters 15.

Part VII: utilities and helper functions

functions for reading and writing semigroups and their elements, and for visualising semigroups, and some of their elements, can be found in Chapters 16 and 17.

Chapter 2

Installing Semigroups

2.1 For those in a hurry

In this section we give a brief description of how to start using Semigroups.

It is assumed that you have a working copy of GAP with version number 4.12.0 or higher. The most up-to-date version of GAP and instructions on how to install it can be obtained from the main GAP webpage https://www.gap-system.org.

The following is a summary of the steps that should lead to a successful installation of Semi-groups:

- ensure that the datastructures package version 0.2.5 or higher is available. datastructures must be compiled before Semigroups can be loaded.
- ensure that the Digraphs package version 1.5.0 or higher is available. Digraphs must be compiled before Semigroups can be loaded.
- ensure that the genss package version 1.6.5 or higher is available.
- ensure that the images package version 1.3.1 or higher is available.
- ensure that the IO package version 4.5.1 or higher is available. IO must be compiled before Semigroups can be loaded.
- ensure that the orb package version 4.8.2 or higher is available. orb and Semigroups both perform better if orb is compiled.
- download the package archive semigroups-5.2.0.tar.gz from the Semigroups package webpage.
- unzip and untar the file, this should create a directory called semigroups-5.2.0.
- locate your GAP directory, the one containing the directories lib, doc and so on. Move the directory semigroups-5.2.0.tar.gz into the pkg subdirectory of your GAP directory.
- from version 3.0.0, it is necessary to compile the Semigroups package. Semigroups uses the libsemigroups C++ library, which requires a compiler implementing the C++14 standard. Inside the pkg/semigroups-5.2.0 directory, in your terminal type

```
./configure && make
```

Further information about this step can be found in Section 2.2.

- start GAP in the usual way (i.e. type gap at the command line).
- type LoadPackage("semigroups");

PLEASE NOTE THAT from version 3.0.0: Semigroups can only be loaded if it has been compiled.

If you want to check that the package is working correctly, you should run some of the tests described in Section 2.4.

2.2 Compiling the kernel module

As of version 3.0.0, the Semigroups package has a kernel module written in C++ and this must be compiled. The kernel module contains the interface to the C++ library libsemigroups . It is not possible to use the Semigroups package without compiling it.

To compile the kernel component inside the pkg/semigroups-5.2.0.tar.gz directory, type

```
./configure && make
```

If you are using GCC to compile Semigroups, then version 5.0 or higher is required. Trying to compile Semigroups with an earlier version of GCC will result in an error at compile time. Semigroups only supports GCC version 5.0 or higher, and clang version 5.0 or higher.

If you installed the package in a pkg directory other than the standard pkg directory in your GAP installation, then you have to do two things. Firstly during compilation you have to use the option -with-gaproot=PATH of the configure script where PATH is a path to the main GAP root directory (if not given the default . . / . . is assumed).

If you installed GAP on several architectures, you must execute the configure/make step for each of the architectures. You can either do this immediately after configuring and compiling GAP itself on this architecture, or alternatively set the environment variable CONFIGNAME to the name of the configuration you used when compiling GAP before running ./configure. Note however that your compiler choice and flags (environment variables CC and CFLAGS) need to be chosen to match the setup of the original GAP compilation. For example you have to specify 32-bit or 64-bit mode correctly!

2.3 Rebuilding the documentation

The Semigroups package comes complete with pdf, html, and text versions of the documentation. However, you might find it necessary, at some point, to rebuild the documentation. To rebuild the documentation the GAPDoc and AutoDoc packages are required. To rebuild the documentation type:

```
gap makedoc.g
```

when you're inside the pkg/semigroups-5.2.0 directory.

2.4 Testing your installation

In this section we describe how to test that Semigroups is working as intended. To quickly test that Semigroups is installed correctly use SemigroupsTestInstall (2.4.1). For more extensive tests use SemigroupsTestStandard (2.4.2). Finally, for lengthy benchmarking tests use SemigroupsTestExtreme (2.4.3).

If something goes wrong, then please review the instructions in Section 2.1 and ensure that Semi-groups has been properly installed. If you continue having problems, please use the issue tracker to report the issues you are having.

2.4.1 SemigroupsTestInstall

▷ SemigroupsTestInstall()

(function)

Returns: true or false.

This function should be called with no argument to test your installation of Semigroups is working correctly. These tests should take no more than a few seconds to complete. To more comprehensively test that Semigroups is installed correctly use SemigroupsTestStandard (2.4.2).

2.4.2 SemigroupsTestStandard

▷ SemigroupsTestStandard()

(function)

Returns: A list indicating which tests passed and failed and the time take to run each file.

This function should be called with no argument to comprehensively test that Semigroups is working correctly. These tests should take no more than a few minutes to complete. To quickly test that Semigroups is installed correctly use SemigroupsTestInstall (2.4.1).

Each test file is run twice, once when the methods for IsActingSemigroup (6.1.2) are enabled and once when they are disabled.

2.4.3 SemigroupsTestExtreme

▷ SemigroupsTestExtreme()

(function)

Returns: A list indicating which tests passed and failed and the time take to run each file.

This function should be called with no argument to run some long-running tests, which could be used to benchmark Semigroups or test your hardware. These tests should take no more than around half an hour to complete. To quickly test that Semigroups is installed correctly use SemigroupsTestInstall (2.4.1), or to test all aspects of the package use SemigroupsTestStandard (2.4.2).

Each test file is run twice, once when the methods for semigroups satisfying IsActingSemigroup (6.1.2) are enabled and once when they are disabled.

2.4.4 SemigroupsTestAll

▷ SemigroupsTestAll()

(function)

Returns: true or false.

This function should be called with no argument to compile the Semigroups package's documentation, run the standard suite of tests, and run all the examples from the documentation to ensure that their output is correct. The value returned is true if all the tests succeed, and false otherwise. The whole process should take no more than a few minutes.

See SemigroupsTestStandard (2.4.2).

2.5 More information during a computation

2.5.1 InfoSemigroups

InfoSemigroups is the info class of the Semigroups package. The info level is initially set to 0 and no info messages are displayed. To increase the amount of information displayed during a computation increase the info level to 2 or 3. To stop all info messages from being displayed, set the info level to 0. See also (**Reference: Info Functions**) and SetInfoLevel (**Reference: InfoLevel**).

Chapter 3

Bipartitions and blocks

In this chapter we describe the functions in **Semigroups** for creating and manipulating bipartitions and semigroups of bipartitions. We begin by describing what these objects are.

A partition of a set X is a set of pairwise disjoint non-empty subsets of X whose union is X. A partition of X is the collection of equivalence classes of an equivalence relation on X, and vice versa.

Let
$$n \in \mathbb{N}$$
, let $\mathbf{n} = \{1, 2, ..., n\}$, and let $-\mathbf{n} = \{-1, -2, ..., -n\}$.

The *partition monoid* of degree n is the set of all partitions of $\mathbf{n} \cup \mathbf{n}$ with a multiplication we describe below. To avoid conflict with other uses of the word "partition" in GAP, and to reflect their definition, we have opted to refer to the elements of the partition monoid as *bipartitions* of degree n; we will do so from this point on.

Let x be any bipartition of degree n. Then x is a set of pairwise disjoint non-empty subsets of \mathbf{n} \cup - \mathbf{n} whose union is $\mathbf{n} \cup$ - \mathbf{n} ; these subsets are called the *blocks* of x. A block containing elements of both \mathbf{n} and - \mathbf{n} is called a *transverse block*. If i, $j \in \mathbf{n} \cup$ - \mathbf{n} belong to the same block of a bipartition x, then we write $(i, j) \in x$.

Let x and y be bipartitions of degree n. Their product x y can be described as follows. Define \mathbf{n} '= $\{1',2',\ldots,n'\}$. From x, create a partition x ' of the set $\mathbf{n} \cup \mathbf{n}$ ' by replacing each negative point -i in a block of x by the point i ', and create from y a partition y ' of the set \mathbf{n} ' \cup - \mathbf{n} by replacing each positive point i in a block of y by the point i '. Then define a relation on the set $\mathbf{n} \cup \mathbf{n}$ ' \cup - \mathbf{n} , where i and j are related if they are related in either x ' or y ', and let p be the transitive closure of this relation. Finally, define x y to be the bipartition of degree n defined by the restriction of the equivalence relation p to the set $\mathbf{n} \cup$ - \mathbf{n} .

Equivalently, the product x y is defined to be the bipartition where i, $j \in \mathbf{n} \cup \mathbf{n}$ (we assume without loss of generality that $i \geq j$) belong to the same block of x y if either:

- i = j,
- i, $j \in \mathbf{n}$ and $(i, j) \in x$, or
- $i, j \in -\mathbf{n}$ and $(i, j) \in y$;

or there exists $r \in \mathbb{N}$ and $k(1), k(2), \dots, k(r) \in \mathbf{n}$, and one of the following holds:

• r = 2s - 1 for some $s \ge 1$, $i \in \mathbf{n}$, $j \in -\mathbf{n}$ and

$$(i, -k(1)) \in x, (k(1), k(2)) \in y, (-k(2), -k(3)) \in x, \dots,$$

...,
$$(-k(2s-2), -k(2s-1)) \in x$$
, $(k(2s-1), j) \in y$;

• r = 2s for some $s \ge 1$, and either $i, j \in \mathbf{n}$, and

$$(i,-k(1))\in x,\ (k(1),k(2))\in y,\ (-k(2),-k(3))\in x,\ \dots,(k(2s-1),k(2s))\in y,\ (-k(2s),j)\in x,$$
 or $i,j\in -\mathbf{n}$, and

$$(i,k(1)) \in y, \ (-k(1),-k(2)) \in x, \ (k(2),k(3)) \in y, \ \dots, (-k(2s-1),-k(2s)) \in x, \ (k(2s),j) \in y.$$

This multiplication can be shown to be associative, and so the collection of all bipartitions of any particular degree is a monoid; the identity element of the partition monoid of degree n is the bipartition $\{\{i,-i\}:i\in\mathbf{n}\}$. A bipartition is a unit if and only if each block is of the form $\{i,-j\}$ for some $i,j\in\mathbf{n}$. Hence the group of units is isomorphic to the symmetric group on \mathbf{n} .

Let x be a bipartition of degree n. Then we define x^* to be the bipartition obtained from x by replacing i by -i and -i by i in every block of x for all $i \in \mathbf{n}$. It is routine to verify that if x and y are arbitrary bipartitions of equal degree, then

$$(x^*)^* = x$$
, $xx^*x = x$, $x^*xx^* = x^*$, $(xy)^* = y^*x^*$.

In this way, the partition monoid is a regular *-semigroup.

A bipartition x of degree n is called planar if there do not exist distinct blocks $A, U \in x$, along with $a, b \in A$ and $u, v \in U$, such that a < u < b < v. Define p to be the bipartition of degree n with blocks $\{\{i, -(i+1)\}: i \in \{1, \dots, n-1\}\}$ and $\{n, -1\}$. Note that p is a unit. A bipartition x of degree n is called annular if $x = p^i y p^j$ for some planar bipartition y of degree n, and some integers i and j.

From a graphical perspective, as on Page 873 in [HR05], a bipartition of degree n is planar if it can be represented as a graph without edges crossing inside of the rectangle formed by its vertices $\mathbf{n} \cup -\mathbf{n}$. Similarly, as shown in Figure 2 in [Aui12], a bipartition of degree n is annular if it can be represented as a graph without edges crossing inside an annulus.

3.1 The family and categories of bipartitions

3.1.1 IsBipartition

▷ IsBipartition(obj)

(Category)

Returns: true or false.

Every bipartition in GAP belongs to the category IsBipartition. Basic operations for bipartitions are RightBlocks (3.5.5), LeftBlocks (3.5.6), ExtRepOfObj (3.5.3), LeftProjection (3.2.4), RightProjection (3.2.5), StarOp (3.2.6), DegreeOfBipartition (3.5.1), RankOfBipartition (3.5.2), multiplication of two bipartitions of equal degree is via *.

3.1.2 IsBipartitionCollection

 \triangleright IsBipartitionCollection(obj)

(Category)

▷ IsBipartitionCollColl(obj)

(Category)

Returns: true or false.

Every collection of bipartitions belongs to the category IsBipartitionCollection. For example, bipartition semigroups belong to IsBipartitionCollection.

Every collection of collections of bipartitions belongs to IsBipartitionCollColl. For example, a list of bipartition semigroups belongs to IsBipartitionCollColl.

3.2 Creating bipartitions

There are several ways of creating bipartitions in GAP, which are described in this section. The maximum degree of a bipartition is set as 2 ^ 29 - 1. In reality, it is unlikely to be possible to create bipartitions of degrees as small as 2 ^ 24 because they require too much memory.

3.2.1 Bipartition

▷ Bipartition(blocks)

(function)

Returns: A bipartition.

Bipartition returns the bipartition x with equivalence classes *blocks*, which should be a list of duplicate-free lists whose union is [-n .. -1] union [1 .. n] for some positive integer n.

Bipartition returns an error if the argument does not define a bipartition.

```
gap> x := Bipartition([[1, -1], [2, 3, -3], [-2]]);
<br/>
<br/>
<br/>
dipartition: [ 1, -1 ], [ 2, 3, -3 ], [ -2 ]>
```

3.2.2 BipartitionByIntRep

▷ BipartitionByIntRep(list)

(operation)

Returns: A bipartition.

It is possible to create a bipartition using its internal representation. The argument list must be a list of positive integers not greater than n, of length 2 * n, and where i appears in the list only if i-1 occurs earlier in the list.

For example, the internal representation of the bipartition with blocks

```
[1, -1], [2, 3, -2], [-3]
```

has internal representation

```
[1, 2, 2, 1, 2, 3] Example
```

The internal representation indicates that the number 1 is in class 1, the number 2 is in class 2, the number 3 is in class 2, the number -1 is in class 1, the number -2 is in class 2, and -3 is in class 3. As another example, [1, 3, 2, 1] is not the internal representation of any bipartition since there is no 2 before the 3 in the second position.

In its first form BipartitionByIntRep verifies that the argument *list* is the internal representation of a bipartition.

See also IntRepOfBipartition (3.5.4).

```
Example _________

gap> BipartitionByIntRep([1, 2, 2, 1, 3, 4]);

<br/>
```

3.2.3 IdentityBipartition

▷ IdentityBipartition(n)

(operation)

Returns: The identity bipartition.

Returns the identity bipartition with degree n.

```
Example gap> IdentityBipartition(10);  
<block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ],  
[ 5, -5 ], [ 6, -6 ], [ 7, -7 ], [ 8, -8 ], [ 9, -9 ], [ 10, -10 ]>
```

3.2.4 LeftOne (for a bipartition)

```
\triangleright LeftOne(x) (attribute)

\triangleright LeftProjection(x) (attribute)
```

Returns: A bipartition.

The LeftProjection of a bipartition x is the bipartition x * Star(x). It is so-named, since the left and right blocks of the left projection equal the left blocks of x.

The left projection e of x is also a bipartition with the property that e * x = x. LeftOne and LeftProjection are synonymous.

3.2.5 RightOne (for a bipartition)

```
    ▷ RightOne(x) (attribute)
    ▷ RightProjection(x) (attribute)
    Returns: A bipartition.
```

The RightProjection of a bipartition x is the bipartition Star(x) * x. It is so-named, since the left and right blocks of the right projection equal the right blocks of x.

The right projection e of x is also a bipartition with the property that x * e = x. RightOne and RightProjection are synonymous.

3.2.6 StarOp (for a bipartition)

```
ightharpoonup StarOp(x) (operation)

ightharpoonup Star(x) (attribute)
```

Returns: A bipartition.

StarOp returns the unique bipartition g with the property that: x * g * x = x, RightBlocks(x) = LeftBlocks(g), and LeftBlocks(x) = RightBlocks(g). The star g can be obtained from x by changing the sign of every integer in the external representation of x.

3.2.7 RandomBipartition

```
▷ RandomBipartition([rs, ]n) (operation)
▷ RandomBlockBijection([rs, ]n) (operation)
```

Returns: A bipartition.

If n is a positive integer, then RandomBipartition returns a random bipartition of degree n, and RandomBlockBijection returns a random block bijection of degree n.

If the optional first argument rs is a random source, then this is used to generate the bipartition returned by RandomBipartition and RandomBlockBijection.

Note that neither of these functions has a uniform distribution.

3.3 Changing the representation of a bipartition

It is possible that a bipartition can be represented as another type of object, or that another type of GAP object can be represented as a bipartition. In this section, we describe the functions in the Semigroups package for changing the representation of bipartition, or for changing the representation of another type of object to that of a bipartition.

The operations AsPermutation (3.3.5), AsPartialPerm (3.3.4), AsTransformation (3.3.3) can be used to convert bipartitions into permutations, partial permutations, or transformations where appropriate.

3.3.1 AsBipartition

```
\triangleright AsBipartition(x[, n]) (operation)
```

Returns: A bipartition.

As Bipartition returns the bipartition, permutation, transformation, or partial permutation x, as a bipartition of degree n.

There are several possible arguments for AsBipartition:

permutations

If x is a permutation and n is a positive integer, then AsBipartition(x, n) returns the bipartition on [1 ... n] with classes $[i, i ^x]$ for all i = 1 ... n.

If no positive integer n is specified, then the largest moved point of x is used as the value for n; see LargestMovedPoint (Reference: LargestMovedPoint for a permutation).

transformations

If x is a transformation and n is a positive integer such that x is a transformation of $[1 \dots n]$, then AsTransformation returns the bipartition with classes $(i)f^{-1} \cup \{i\}$ for all i in the image of x

If the positive integer n is not specified, then the degree of x is used as the value for n.

partial permutations

If x is a partial permutation and n is a positive integer, then AsBipartition returns the bipartition with classes $[i, i \hat{x}]$ for i in $[1 \dots n]$. Thus the degree of the returned bipartition is the maximum of n and the values $i \hat{x}$ where i in $[1 \dots n]$.

If the optional argument n is not present, then the default value of the maximum of the largest moved point and the largest image of a moved point of x plus 1 is used.

bipartitions

If x is a bipartition and n is a non-negative integer, then AsBipartition returns a bipartition corresponding to x with degree n.

If n equals the degree of x, then x is returned. If n is less than the degree of x, then this function returns the bipartition obtained from x by removing the values exceeding n or less than -n from the blocks of x. If n is greater than the degree of x, then this function returns the bipartition with the same blocks as x and the singleton blocks i and -i for all i greater than the degree of x

pbrs If x is a pbr satisfying IsBipartitionPBR (4.5.8) and n is a non-negative integer, then AsBipartition returns the bipartition corresponding to x with degree n.

```
Example
gap> x := Transformation([3, 5, 3, 4, 1, 2]);;
gap> AsBipartition(x, 5);
<bipartition: [ 1, 3, -3 ], [ 2, -5 ], [ 4, -4 ], [ 5, -1 ], [ -2 ]>
gap> AsBipartition(x);
<bipartition: [ 1, 3, -3 ], [ 2, -5 ], [ 4, -4 ], [ 5, -1 ],
        [ 6, -2 ], [ -6 ]>
gap> AsBipartition(x, 10);
<bipartition: [ 1, 3, -3 ], [ 2, -5 ], [ 4, -4 ], [ 5, -1 ],
        [ 6, -2 ], [ 7, -7 ], [ 8, -8 ], [ 9, -9 ], [ 10, -10 ], [ -6 ]>
gap> AsBipartition((1, 3)(2, 4));
```

```
<block bijection: [ 1, -3 ], [ 2, -4 ], [ 3, -1 ], [ 4, -2 ]>
gap> AsBipartition((1, 3)(2, 4), 10);
<block bijection: [ 1, -3 ], [ 2, -4 ], [ 3, -1 ], [ 4, -2 ],</pre>
 [5, -5], [6, -6], [7, -7], [8, -8], [9, -9], [10, -10]>
gap> x := PartialPerm([1, 2, 3, 4, 5, 6], [6, 7, 1, 4, 3, 2]);;
gap> AsBipartition(x, 11);
<bipartition: [ 1, -6 ], [ 2, -7 ], [ 3, -1 ], [ 4, -4 ], [ 5, -3 ],</pre>
 [6, -2], [7], [8], [9], [10], [11], [-5], [-8],
 [ -9 ], [ -10 ], [ -11 ]>
gap> AsBipartition(x);
<bipartition: [ 1, -6 ], [ 2, -7 ], [ 3, -1 ], [ 4, -4 ], [ 5, -3 ],</pre>
 [6,-2],[7],[-5]>
gap> AsBipartition(Transformation([1, 1, 2]), 1);
<block bijection: [ 1, -1 ]>
gap> x := Bipartition([[1, 2, -2], [3], [4, 5, 6, -1],
                       [-3, -4, -5, -6]]);;
gap> AsBipartition(x, 0);
<empty bipartition>
gap> AsBipartition(x, 2);
<bipartition: [ 1, 2, -2 ], [ -1 ]>
gap> AsBipartition(x, 8);
<bipartition: [ 1, 2, -2 ], [ 3 ], [ 4, 5, 6, -1 ], [ 7 ], [ 8 ],</pre>
 [ -3, -4, -5, -6 ], [ -7 ], [ -8 ]>
gap> x := PBR(
> [[-1, 1, 2, 3, 4], [-1, 1, 2, 3, 4],
> [-1, 1, 2, 3, 4], [-1, 1, 2, 3, 4]],
> [[-1, 1, 2, 3, 4], [-2], [-3], [-4]]);;
gap> AsBipartition(x);
<bipartition: [ 1, 2, 3, 4, -1 ], [ -2 ], [ -3 ], [ -4 ]>
gap> AsBipartition(x, 2);
<bipartition: [ 1, 2, -1 ], [ -2 ]>
gap> AsBipartition(x, 4);
<bipartition: [ 1, 2, 3, 4, -1 ], [ -2 ], [ -3 ], [ -4 ]>
gap> AsBipartition(x, 5);
<bipartition: [ 1, 2, 3, 4, -1 ], [ 5 ], [ -2 ], [ -3 ], [ -4 ],</pre>
 [ -5 ]>
gap> AsBipartition(x, 0);
<empty bipartition>
```

3.3.2 AsBlockBijection

```
\triangleright AsBlockBijection(x[, n])
```

(operation)

Returns: A block bijection.

When the argument x is a partial perm and n is a positive integer which is greater than the maximum of the degree and codegree of x, this function returns a block bijection corresponding to x. This block bijection has the same non-singleton classes as g := AsBipartition(x, n) and one additional class which is the union the singleton classes of g.

If the optional second argument n is not present, then the maximum of the degree and codegree of x plus 1 is used by default. If the second argument n is not greater than this maximum, then an error is given.

This is the value at x of the embedding of the symmetric inverse monoid into the dual symmetric inverse monoid given in the FitzGerald-Leech Theorem [FL98].

When the argument x is a partial perm bipartition (see IsPartialPermBipartition (3.5.15)) then this operation returns AsBlockBijection(AsPartialPerm(x)[, n]).

```
Example
gap> x := PartialPerm([1, 2, 3, 6, 7, 10], [9, 5, 6, 1, 7, 8]);
[2,5][3,6,1,9][10,8](7)
gap> AsBipartition(x, 11);
<bipartition: [ 1, -9 ], [ 2, -5 ], [ 3, -6 ], [ 4 ], [ 5 ],</pre>
 [6, -1], [7, -7], [8], [9], [10, -8], [11], [-2],
 [ -3 ], [ -4 ], [ -10 ], [ -11 ]>
gap> AsBlockBijection(x, 10);
Error, the 2nd argument (a pos. int.) is less than or equal to the max\
imum of the degree and codegree of the 1st argument (a partial perm)
gap> AsBlockBijection(x, 11);
<block bijection: [ 1, -9 ], [ 2, -5 ], [ 3, -6 ],</pre>
 [4, 5, 8, 9, 11, -2, -3, -4, -10, -11], [6, -1], [7, -7],
 [ 10, -8 ]>
gap> x := Bipartition([[1, -3], [2], [3, -2], [-1]]);;
gap> IsPartialPermBipartition(x);
gap> AsBlockBijection(x);
<block bijection: [ 1, -3 ], [ 2, 4, -1, -4 ], [ 3, -2 ]>
```

3.3.3 AsTransformation (for a bipartition)

▷ AsTransformation(x)

(attribute)

Returns: A transformation.

When the argument x is a bipartition, that mathematically defines a transformation, this function returns that transformation. A bipartition x defines a transformation if and only if its right blocks are the image list of a permutation of [1 ... n] where n is the degree of x.

See IsTransBipartition (3.5.12).

3.3.4 AsPartialPerm (for a bipartition)

▷ AsPartialPerm(x)

(operation)

Returns: A partial perm.

When the argument x is a bipartition that mathematically defines a partial perm, this function returns that partial perm.

A bipartition x defines a partial perm if and only if its numbers of left and right blocks both equal its degree.

See IsPartialPermBipartition (3.5.15).

3.3.5 AsPermutation (for a bipartition)

```
▷ AsPermutation(x)
```

(attribute)

Returns: A permutation.

When the argument x is a bipartition that mathematically defines a permutation, this function returns that permutation.

A bipartition x defines a permutation if and only if its numbers of left, right, and transverse blocks all equal its degree.

See IsPermBipartition (3.5.14).

3.4 Operators for bipartitions

f * g

returns the composition of f and g when f and g are bipartitions.

f < g

returns true if the internal representation of f is lexicographically less than the internal representation of g and false if it is not.

f = g

returns true if the bipartition f equals the bipartition g and returns false if it does not.

3.4.1 PartialPermLegBipartition

```
    PartialPermLeqBipartition(x, y) (operation)
```

Returns: true or false.

If x and y are partial perm bipartitions, i.e. they satisfy IsPartialPermBipartition (3.5.15), then this function returns AsPartialPerm(x) < AsPartialPerm(y).

3.4.2 NaturalLeqPartialPermBipartition

The natural partial order \leq on an inverse semigroup S is defined by $s \leq t$ if there exists an idempotent e in S such that s = et. Hence if x and y are partial perm bipartitions, then $x \leq y$ if and only if AsPartialPerm(x) is a restriction of AsPartialPerm(y).

NaturalLeqPartialPermBipartition returns true if AsPartialPerm(x) is a restriction of AsPartialPerm(y) and false if it is not. Note that since this is a partial order and not a total order, it is possible that x and y are incomparable with respect to the natural partial order.

3.4.3 NaturalLeqBlockBijection

The natural partial order \leq on an inverse semigroup S is defined by $s \leq t$ if there exists an idempotent e in S such that s = et. Hence if x and y are block bijections, then $x \leq y$ if and only if x contains y.

NaturalLeqBlockBijection returns true if x is contained in y and false if it is not. Note that since this is a partial order and not a total order, it is possible that x and y are incomparable with respect to the natural partial order.

3.4.4 PermLeftQuoBipartition

If x and y are bipartitions with equal left and right blocks, then PermLeftQuoBipartition returns the permutation of the indices of the right blocks of x (and y) induced by Star(x) * y.

PermLeftQuoBipartition verifies that x and y have equal left and right blocks, and returns an error if they do not.

3.5 Attributes for bipartitons

In this section we describe various attributes that a bipartition can possess.

3.5.1 DegreeOfBipartition

```
    DegreeOfBipartition(x) (attribute)
    DegreeOfBipartitionCollection(x) (attribute)
    Returns: A positive integer.
```

The degree of a bipartition is, roughly speaking, the number of points where it is defined. More precisely, if x is a bipartition defined on 2 * n points, then the degree of x is n.

The degree of a collection *coll* of bipartitions of equal degree is just the degree of any (and every) bipartition in *coll*. The degree of collection of bipartitions of unequal degrees is not defined.

3.5.2 RankOfBipartition

```
    ▷ RankOfBipartition(x) (attribute)
    ▷ NrTransverseBlocks(x) (attribute)
    Returns: The rank of a bipartition.
```

When the argument is a bipartition x, RankOfBipartition returns the number of blocks of x containing both positive and negative entries, i.e. the number of transverse blocks of x.

NrTransverseBlocks is just a synonym for RankOfBipartition.

3.5.3 ExtRepOfObj (for a bipartition)

▷ ExtRepOfObj(x)

(operation)

Returns: A partition of [1 ... 2 * n].

If n is the degree of the bipartition x, then ExtRepOfObj returns the partition of [-n ... -1] union [1 ... n] corresponding to x as a sorted list of duplicate-free lists.

```
Example

gap> x := Bipartition([[1, 5, -3], [2, 4, -2, -4], [3, -1, -5]]);

<block bijection: [ 1, 5, -3 ], [ 2, 4, -2, -4 ], [ 3, -1, -5 ]>

gap> ExtRepOfObj(x);

[ [ 1, 5, -3 ], [ 2, 4, -2, -4 ], [ 3, -1, -5 ] ]
```

3.5.4 IntRepOfBipartition

▷ IntRepOfBipartition(x)

(attribute)

Returns: A list of positive integers.

If x is a bipartition with degree n, then IntRepOfBipartition returns the *internal representation* of x: a list of length 2 * n containing positive integers which correspond to the blocks of x.

If i is in $[1 \dots n]$, then list [i] refers to the point i; if i is in $[n + 1 \dots 2 * n]$, then list [i] refers to the point n - i (a negative point). Two points lie in the same block of the bipartition if and only if their entries in the list are equal.

See also BipartitionByIntRep (3.2.2).

```
Example

gap> x := Bipartition([[1, -3], [3, 4], [2, -1, -2], [-4]]);

<bipartition: [ 1, -3 ], [ 2, -1, -2 ], [ 3, 4 ], [ -4 ]>

gap> IntRepOfBipartition(x);
[ 1, 2, 3, 3, 2, 2, 1, 4 ]
```

3.5.5 RightBlocks

▷ RightBlocks(x)

(attribute)

Returns: The right blocks of a bipartition.

RightBlocks returns the right blocks of the bipartition x.

The *right blocks* of a bipartition x are just the intersections of the blocks of x with [-n ... -1] where n is the degree of x, the values in transverse blocks are positive, and the values in non-transverse blocks are negative.

The right blocks of a bipartition are GAP objects in their own right, and are not simply a list of blocks of x; see 3.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are \mathcal{L} -related in the partition monoid if and only if they have equal right blocks.

3.5.6 LeftBlocks

▷ LeftBlocks(x) (attribute)

Returns: The left blocks of a bipartition.

LeftBlocks returns the left blocks of the bipartition x.

The *left blocks* of a bipartition x are just the intersections of the blocks of x with [1..n] where n is the degree of x, the values in transverse blocks are positive, and the values in non-transverse blocks are negative.

The left blocks of a bipartition are GAP objects in their own right, and are not simply a list of blocks of x; see 3.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are \mathcal{R} -related in the partition monoid if and only if they have equal left blocks.

3.5.7 NrLeftBlocks

▷ NrLeftBlocks(x) (attribute)

Returns: A non-negative integer.

When the argument is a bipartition x, NrLeftBlocks returns the number of left blocks of x, i.e. the number of blocks of x intersecting [1 . . n] non-trivially.

3.5.8 NrRightBlocks

▷ NrRightBlocks(x)

(attribute)

Returns: A non-negative integer.

When the argument is a bipartition x, NrRightBlocks returns the number of right blocks of x, i.e. the number of blocks of x intersecting $[-n \ldots -1]$ non-trivially.

3.5.9 NrBlocks (for blocks)

```
▷ NrBlocks(blocks) (attribute)▷ NrBlocks(f) (attribute)
```

Returns: A positive integer.

If blocks is some blocks or f is a bipartition, then NrBlocks returns the number of blocks in blocks or f, respectively.

3.5.10 DomainOfBipartition

▷ DomainOfBipartition(x)

(attribute)

Returns: A list of positive integers.

If x is a bipartition, then DomainOfBipartition returns the domain of x. The *domain* of x consists of those numbers i in [1 ... n] such that i is contained in a transverse block of x, where n is the degree of x (see DegreeOfBipartition (3.5.1)).

3.5.11 CodomainOfBipartition

▷ CodomainOfBipartition(x)

(attribute)

Returns: A list of positive integers.

If x is a bipartition, then CodomainOfBipartition returns the codomain of x. The *codomain* of x consists of those numbers i in [-n ... -1] such that i is contained in a transverse block of x, where n is the degree of x (see DegreeOfBipartition (3.5.1)).

3.5.12 IsTransBipartition

▷ IsTransBipartition(x)

(property)

Returns: true or false.

If the bipartition x defines a transformation, then IsTransBipartition returns true, and if not, then false is returned.

A bipartition x defines a transformation if and only if the number of left blocks equals the number of transverse blocks and the number of right blocks equals the degree.

3.5.13 IsDualTransBipartition

▷ IsDualTransBipartition(x)

(property)

Returns: true or false.

If the star of the bipartition x defines a transformation, then IsDualTransBipartition returns true, and if not, then false is returned.

A bipartition is the dual of a transformation if and only if its number of right blocks equals its number of transverse blocks and its number of left blocks equals its degree.

3.5.14 IsPermBipartition

```
\triangleright IsPermBipartition(x) (property)
```

Returns: true or false.

If the bipartition x defines a permutation, then IsPermBipartition returns true, and if not, then false is returned.

A bipartition is a permutation if its numbers of left, right, and transverse blocks all equal its degree.

3.5.15 IsPartialPermBipartition

▷ IsPartialPermBipartition(x)

(property)

Returns: true or false.

If the bipartition x defines a partial permutation, then IsPartialPermBipartition returns true, and if not, then false is returned.

A bipartition x defines a partial permutation if and only if the numbers of left and right blocks of x equal the degree of x.

3.5.16 IsBlockBijection

```
▷ IsBlockBijection(x)
```

(property)

Returns: true or false.

If the bipartition x induces a bijection from the quotient of [1 ... n] by the blocks of f to the quotient of [-n ... -1] by the blocks of f, then IsBlockBijection return true, and if not, then it returns false.

A bipartition is a block bijection if and only if its number of blocks, left blocks and right blocks are equal.

```
false
gap> x := Bipartition([[1, 2, -3], [3, -1, -2], [4, -4], [5, -5]]);;
gap> IsBlockBijection(x);
true
```

3.5.17 IsUniformBlockBijection

▷ IsUniformBlockBijection(x)

(property)

Returns: true or false.

If the bipartition x is a block bijection where every block contains an equal number of positive and negative entries, then IsUniformBlockBijection returns true, and otherwise it returns false.

```
Example

gap> x := Bipartition([[1, 2, -3, -4], [3, -5], [4, -6],

> [5, -7], [6, -8], [7, -9], [8, -1], [9, -2]]);;

gap> IsBlockBijection(x);

true

gap> x := Bipartition([[1, 2, -3], [3, -1, -2], [4, -4],

> [5, -5]]);;

gap> IsUniformBlockBijection(x);

false
```

3.5.18 CanonicalBlocks

▷ CanonicalBlocks(blocks)

(attribute)

Returns: Blocks of a bipartition.

If *blocks* is the blocks of a bipartition, then the function CanonicalBlocks returns a canonical representative of *blocks*.

In particular, let C(n) be a largest class such that any element of C(n) is blocks of a bipartition of degree n and such that for every pair of elements x and y of C(n) the number of signed, and similarly unsigned, blocks of any given size in both x and y are the same. Then CanonicalBlocks returns a canonical representative of a class C(n) containing blocks where n is the degree of blocks.

```
Example

gap> B := BLOCKS_NC([[-1, -3], [2, 4, 7], [5, 6]]);

<blocks: [ 1, 3 ], [ 2*, 4*, 7* ], [ 5*, 6* ]>

gap> CanonicalBlocks(B);

<blocks: [ 1*, 2* ], [ 3*, 4*, 5* ], [ 6, 7 ]>
```

3.6 Creating blocks and their attributes

As described above the left and right blocks of a bipartition characterise Green's \mathscr{R} - and \mathscr{L} -relation of the partition monoid; see LeftBlocks (3.5.6) and RightBlocks (3.5.5). The left or right blocks of a bipartition are GAP objects in their own right.

In this section, we describe the functions in the Semigroups package for creating and manipulating the left or right blocks of a bipartition.

3.6.1 IsBlocks

 \triangleright IsBlocks(obj) (Category)

Returns: true or false.

Every blocks object in GAP belongs to the category IsBlocks. Basic operations for blocks are ExtRepOfObj (3.6.3), RankOfBlocks (3.6.4), DegreeOfBlocks (3.6.5), OnRightBlocks (3.7.1), and OnLeftBlocks (3.7.2).

3.6.2 BLOCKS_NC

▷ BLOCKS_NC(classes)

(function)

Returns: A blocks.

This function makes it possible to create a GAP object corresponding to the left or right blocks of a bipartition without reference to any bipartitions.

BLOCKS_NC returns the blocks with equivalence classes classes, which should be a list of duplicate-free lists consisting solely of positive or negative integers, where the union of the absolute values of the lists is [1 . . n] for some n. The blocks with positive entries correspond to transverse blocks and the classes with negative entries correspond to non-transverse blocks.

This method function does not check that its arguments are valid, and should be used with caution.

3.6.3 ExtRepOfObj (for a blocks)

▷ ExtRepOfObj(blocks)

(operation)

Returns: A list of integers.

If n is the degree of a bipartition with left or right blocks blocks, then ExtRepOfObj returns the partition corresponding to blocks as a sorted list of duplicate-free lists.

```
Example

gap> blocks := BLOCKS_NC([[1, 6], [2, 3, 7], [4, 5], [-8]]);;

gap> ExtRepOfObj(blocks);

[[1, 6], [2, 3, 7], [4, 5], [-8]]
```

3.6.4 RankOfBlocks

⊳ RankOfBlocks(blocks)

(attribute)

▷ NrTransverseBlocks(blocks)

(attribute)

Returns: A non-negative integer.

When the argument blocks is the left or right blocks of a bipartition, RankOfBlocks returns the number of blocks of blocks containing only positive entries, i.e. the number of transverse blocks in blocks.

NrTransverseBlocks is a synonym of RankOfBlocks in this context.

```
Example

gap> blocks := BLOCKS_NC([[-1, -2, -4, -6], [3, 10, 12], [5, 7],

> [8], [9], [-11]]);;

gap> RankOfBlocks(blocks);
4
```

3.6.5 DegreeOfBlocks

▷ DegreeOfBlocks(blocks)

(attribute)

Returns: A non-negative integer.

The degree of blocks is the number of points n where it is defined, i.e. the union of the blocks in blocks will be [1 . . n] after taking the absolute value of every element.

3.6.6 ProjectionFromBlocks

▷ ProjectionFromBlocks(blocks)

(attribute)

Returns: A bipartition.

When the argument blocks is the left or right blocks of a bipartition, this operation returns the unique bipartition whose left and right blocks are equal to blocks.

If blocks is the left blocks of a bipartition x, then this operation returns a bipartition equal to the left projection of x. The analogous statement holds when blocks is the right blocks of a bipartition.

```
Example

gap> x := Bipartition([[1], [2, -2, -3], [3], [-1]]);

<bipartition: [ 1 ], [ 2, -2, -3 ], [ 3 ], [ -1 ]>

gap> ProjectionFromBlocks(LeftBlocks(x));

<bipartition: [ 1 ], [ 2, -2 ], [ 3 ], [ -1 ], [ -3 ]>

gap> LeftProjection(x);

<bipartition: [ 1 ], [ 2, -2 ], [ 3 ], [ -1 ], [ -3 ]>

gap> ProjectionFromBlocks(RightBlocks(x));

<bipartition: [ 1 ], [ 2, 3, -2, -3 ], [ -1 ]>

gap> RightProjection(x);

<bipartition: [ 1 ], [ 2, 3, -2, -3 ], [ -1 ]>
```

3.7 Actions on blocks

Bipartitions act on left and right blocks in several ways, which are described in this section.

3.7.1 OnRightBlocks

```
▷ OnRightBlocks(blocks, x)
```

(operation)

Returns: The blocks of a bipartition.

On Right Blocks returns the right blocks of the product g * x where g is any bipartition whose right blocks are equal to blocks.

```
gap> OnRightBlocks(RightBlocks(y), x);
<blocks: [ 1, 2, 6 ], [ 3*, 4*, 5* ], [ 7, 8 ]>
```

3.7.2 OnLeftBlocks

▷ OnLeftBlocks(blocks, x)

(operation)

Returns: The blocks of a bipartition.

OnLeftBlocks returns the left blocks of the product x * y where y is any bipartition whose left blocks are equal to *blocks*.

3.8 Semigroups of bipartitions

Semigroups and monoids of bipartitions can be created in the usual way in GAP using the functions Semigroup (**Reference: Semigroup**) and Monoid (**Reference: Monoid**); see Chapter 6 for more details.

It is possible to create inverse semigroups and monoids of bipartitions using InverseSemigroup (**Reference: InverseSemigroup**) and InverseMonoid (**Reference: InverseMonoid**) when the argument is a collection of block bijections or partial perm bipartions; see IsBlockBijection (3.5.16) and IsPartialPermBipartition (3.5.15). Note that every bipartition semigroup in Semigroups is finite.

3.8.1 IsBipartitionSemigroup

```
▷ IsBipartitionSemigroup(S) (filter)

▷ IsBipartitionMonoid(S) (filter)

Returns: true or false.
```

A *bipartition semigroup* is simply a semigroup consisting of bipartitions. An object *obj* is a bipartition semigroup in GAP if it satisfies IsSemigroup (**Reference: IsSemigroup**) and IsBipartitionCollection (3.1.2).

A *bipartition monoid* is a monoid consisting of bipartitions. An object *obj* is a bipartition monoid in GAP if it satisfies IsMonoid (**Reference: IsMonoid**) and IsBipartitionCollection (3.1.2).

Note that it is possible for a bipartition semigroup to have a multiplicative neutral element (i.e. an identity element) but not to satisfy IsBipartitionMonoid. For example,

```
gap> x := Bipartition([
> [1, 4, -2], [2, 5, -6], [3, -7], [6, 7, -9], [8, 9, -1],
> [10, -5], [-3], [-4], [-8], [-10]]);;
gap> S := Semigroup(x, One(x));
<commutative bipartition monoid of degree 10 with 1 generator>
```

```
gap> IsMonoid(S);
true
gap> IsBipartitionMonoid(S);
gap> S := Semigroup([
> Bipartition([
    [1, -3], [2, -8], [3, 8, -1], [4, -4], [5, -5], [6, -6],
    [7, -7], [9, 10, -10], [-2], [-9]]),
> Bipartition([
    [1, -1], [2, -2], [3, -3], [4, -4], [5, -5], [6, -6],
    [7, -7], [8, -8], [9, 10, -10], [-9]]));;
gap> One(S);
fail
gap> MultiplicativeNeutralElement(S);
<bipartition: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ], [ 5, -5 ],</pre>
 [6, -6], [7, -7], [8, -8], [9, 10, -10], [-9]>
gap> IsMonoid(S);
false
```

In this example S cannot be converted into a monoid using AsMonoid (**Reference: AsMonoid**) since the One (**Reference: One**) of any element in S differs from the multiplicative neutral element.

For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

3.8.2 IsBlockBijectionSemigroup

```
▷ IsBlockBijectionSemigroup(S) (property)

▷ IsBlockBijectionMonoid(S) (filter)

Returns: true or false.
```

A *block bijection semigroup* is simply a semigroup consisting of block bijections. A *block bijection monoid* is a monoid consisting of block bijections.

An object in GAP is a block bijection monoid if it satisfies IsMonoid (**Reference: IsMonoid**) and IsBlockBijectionSemigroup.

See IsBlockBijection (3.5.16).

3.8.3 IsPartialPermBipartitionSemigroup

```
    ▷ IsPartialPermBipartitionSemigroup(S)
    ▷ IsPartialPermBipartitionMonoid(S)
    Returns: true or false.
```

A *partial perm bipartition semigroup* is simply a semigroup consisting of partial perm bipartitions. A *partial perm bipartition monoid* is a monoid consisting of partial perm bipartitions.

An object in GAP is a partial perm bipartition monoid if it satisfies IsMonoid (**Reference: Is-Monoid**) and IsPartialPermBipartitionSemigroup.

See IsPartialPermBipartition (3.5.15).

3.8.4 IsPermBipartitionGroup

A *perm bipartition group* is simply a semigroup consisting of perm bipartitions. See IsPermBipartition (3.5.14).

3.8.5 DegreeOfBipartitionSemigroup

ightharpoonup DegreeOfBipartitionSemigroup(S)

(attribute)

Returns: A non-negative integer.

The degree of a bipartition semigroup S is just the degree of any (and every) element of S.

```
gap> DegreeOfBipartitionSemigroup(JonesMonoid(8));
8
```

Chapter 4

Partitioned binary relations (PBRs)

In this chapter we describe the functions in Semigroups for creating and manipulating partitioned binary relations, henceforth referred to by their acronym PBRs. We begin by describing what these objects are.

PBRs were introduced in the paper [MM13] as, roughly speaking, the maximum generalization of bipartitions and related objects. Although, mathematically, bipartitions are a special type of PBR, in Semigroups bipartitions and PBRs are currently distinct types of objects. It is possible to change the representation from bipartition to PBR, and from PBR to bipartition, when appropriate; see Section 4.3 for more details. The reason for this distinct is largely historical, bipartition appeared in the literature, and in the Semigroups package, before PBRs.

4.1 The family and categories of PBRs

4.1.1 **IsPBR**

 \triangleright IsPBR(obj) (Category)

Returns: true or false.

Every PBR in GAP belongs to the category IsPBR. Basic operations for PBRs are DegreeOfPBR (4.5.2), ExtRepOfObj (4.5.3), PBRNumber (4.5.4), NumberPBR (4.5.4), StarOp (4.5.1), and multiplication of two PBRs of equal degree is via *.

4.1.2 IsPBRCollection

▷ IsPBRCollection(obj) (Category)

▷ IsPBRCollColl(obj) (Category)

Returns: true or false.

Every collection of PBRs belongs to the category IsPBRCollection. For example, PBR semi-groups belong to IsPBRCollection.

Every collection of collections of PBRs belongs to IsPBRCollColl. For example, a list of PBR semigroups belongs to IsPBRCollColl.

4.2 Creating PBRs

There are several ways of creating PBRs in GAP, which are described in this section.

4.2.1 PBR

▷ PBR(left, right) (operation)

Returns: A PBR.

The arguments left and right of this function should each be a list of length n whose entries are lists of integers in the ranges [-n .. -1] and [1 .. n] for some n greater than 0.

Given such an argument, PBR returns the PBR x where:

- for each i in the range [1 .. n] there is an edge from i to every j in left[i];
- for each i in the range [-n .. -1] there is an edge from i to every j in right [-i];

PBR returns an error if the argument does not define a PBR.

4.2.2 RandomPBR

▷ RandomPBR(n[, p])

(operation)

Returns: A PBR.

If n is a positive integer and p is an float between 0 and 1, then RandomPBR returns a random PBR of degree n where the probability of there being an edge from i to j is approximately p.

If the optional second argument is not present, then a random value p is used (chosen with uniform probability).

```
Example

gap> RandomPBR(6);

PBR(

[[-5, 1, 2, 3], [-6, -3, -1, 2, 5], [-5, -2, 2, 3, 5],
        [-6, -4, -1, 2, 3, 6], [-4, -1, 2, 4],
        [-5, -3, -1, 1, 2, 3, 5]],

[[-6, -4, -2, 1, 3, 5, 6], [-5, -2, 1, 2, 3, 5],
        [-6, -5, -2, 1, 5], [-6, -5, -3, -2, 1, 3, 4],
        [-6, -5, -4, -2, 3, 5], [-6, -4, -2, -1, 1, 2, 6]])
```

4.2.3 EmptyPBR

▷ EmptyPBR(n) (operation)

Returns: A PBR.

If n is a positive integer, then EmptyPBR returns the PBR of degree n with no edges.

```
gap> x := EmptyPBR(3);
PBR([ [ ], [ ] ], [ [ ], [ ] ])
gap> IsEmptyPBR(x);
true
```

4.2.4 IdentityPBR

▷ IdentityPBR(n) (operation)

Returns: A PBR.

If n is a positive integer, then IdentityPBR returns the identity PBR of degree n. This PBR has 2n edges: specifically, for each i in the ranges $[1 \ldots n]$ and $[-n \ldots -1]$, the identity PBR has an edge from i to -i.

```
gap> x := IdentityPBR(3);
PBR([[-1], [-2], [-3]], [[1], [2], [3]])
gap> IsIdentityPBR(x);
true
```

4.2.5 UniversalPBR

▷ UniversalPBR(n)

(operation)

Returns: A PBR.

If n is a positive integer, then UniversalPBR returns the PBR of degree n with $4 * n ^ 2$ edges, i.e. every possible edge.

```
gap> x := UniversalPBR(2);
PBR([ [ -2, -1, 1, 2 ], [ -2, -1, 1, 2 ] ],
        [ [ -2, -1, 1, 2 ], [ -2, -1, 1, 2 ] ])
gap> IsUniversalPBR(x);
true
```

4.3 Changing the representation of a PBR

It is possible that a PBR can be represented as another type of object, or that another type of GAP object can be represented as a PBR. In this section, we describe the functions in the Semigroups package for changing the representation of PBR, or for changing the representation of another type of object to that of a PBR.

The operations AsPermutation (4.3.4), AsPartialPerm (4.3.3), AsTransformation (4.3.2), AsBipartition (3.3.1), AsBooleanMat (5.3.2) can be used to convert PBRs into permutations, partial permutations, transformations, bipartitions, and boolean matrices where appropriate.

4.3.1 AsPBR

 \triangleright AsPBR(x[, n]) (operation)

Returns: A PBR.

AsPBR returns the boolean matrix, bipartition, transformation, partial permutation, or permutation x as a PBR of degree n.

There are several possible arguments for AsPBR:

bipartitions

If x is a bipartition and n is a positive integer, then AsPBR returns a PBR corresponding to x with degree n. The resulting PBR has an edge from i to j whenever i and j belong to the same block of x.

If the optional second argument n is not specified, then degree of the bipartition x is used by default.

boolean matrices

If x is a boolean matrix of even dimension 2 * m and n is a positive integer, then AsPBR returns a PBR corresponding to x with degree n. If the optional second argument n is not specified, then dimension of the boolean matrix x is used by default.

transformations, partial perms, permutations

If x is a transformation, partial perm, or permutation and n is a positive integer, then AsPBR is a synonym for AsPBR(AsBipartition(x, n)). If the optional second argument n is not specified, then AsPBR is a synonym for AsPBR(AsBipartition(x)). See AsBipartition (3.3.1) for more details.

```
_ Example .
gap> x := Bipartition([[1, 2, -1], [3, -2], [4, -3, -4]]);
<block bijection: [ 1, 2, -1 ], [ 3, -2 ], [ 4, -3, -4 ]>
gap> AsPBR(x, 2);
PBR([[-1, 1, 2], [-1, 1, 2]], [[-1, 1, 2], [-2]])
gap> AsPBR(x, 5);
PBR([[-1, 1, 2], [-1, 1, 2], [-2, 3], [-4, -3, 4], []],
  [[-1, 1, 2], [-2, 3], [-4, -3, 4], [-4, -3, 4], []])
gap> AsPBR(x);
PBR([[-1, 1, 2], [-1, 1, 2], [-2, 3], [-4, -3, 4]],
  [[-1, 1, 2], [-2, 3], [-4, -3, 4], [-4, -3, 4]])
gap> mat := Matrix(IsBooleanMat, [[1, 0, 0, 1],
                             [0, 1, 1, 0],
>
>
                             [1, 0, 1, 1],
                             [0, 0, 0, 1]]);;
gap> AsPBR(mat);
PBR([[-2, 1], [-1, 2]], [[-2, -1, 1], [-2]])
gap> AsPBR(mat, 2);
PBR([[1]], [[-1]])
gap> AsPBR(mat, 6);
PBR([[-2, 1], [-1, 2], []], [[-2, -1, 1], [-2], []])
gap> x := Transformation([2, 2, 1]);;
gap> AsPBR(x);
PBR([[-2],[-2],[-1]],[[3],[1,2],[]])
gap> AsPBR(x, 2);
PBR([[-2], [-2]], [[], [1, 2]])
gap> AsPBR(x, 4);
PBR([[-2], [-2], [-1], [-4]],
  [[3],[1,2],[],[4]])
gap> x := PartialPerm([4, 3]);
[1,4][2,3]
gap> AsPBR(x);
PBR([[-4],[-3],[],[]],[[],[]],[2],[1]])
gap> AsPBR(x, 2);
PBR([[],[]],[[]])
gap> AsPBR(x, 5);
PBR([[-4],[-3],[],[],[]],
  [[],[],[2],[1],[]])
gap> x := (1, 3)(2, 4);
```

```
(1,3)(2,4)
gap> AsPBR(x);
PBR([ [ -3, 1 ], [ -4, 2 ], [ -1, 3 ], [ -2, 4 ] ],
        [ [ -1, 3 ], [ -2, 4 ], [ -3, 1 ], [ -4, 2 ] ])
gap> AsPBR(x, 5);
PBR([ [ -3, 1 ], [ -4, 2 ], [ -1, 3 ], [ -2, 4 ], [ -5, 5 ] ],
        [ [ -1, 3 ], [ -2, 4 ], [ -3, 1 ], [ -4, 2 ], [ -5, 5 ] ])
```

4.3.2 AsTransformation (for a PBR)

▷ AsTransformation(x)

(attribute)

Returns: A transformation.

When the argument x is a PBR which satisfies IsTransformationPBR (4.5.9), then this attribute returns that transformation.

```
gap> x := PBR([[-3], [-3], [-2]], [[], [3], [1, 2]]);;
gap> IsTransformationPBR(x);
true
gap> AsTransformation(x);
Transformation( [ 3, 3, 2 ] )
gap> x := PBR([[1], [1, 2]], [[-2, -1], [-2, -1]]);;
gap> AsTransformation(x);
Error, the argument (a pbr) does not define a transformation
```

4.3.3 AsPartialPerm (for a PBR)

▷ AsPartialPerm(x)

(operation)

Returns: A partial perm.

When the argument x is a PBR which satisfies IsPartialPermPBR (4.5.11), then this function returns that partial perm.

4.3.4 AsPermutation (for a PBR)

▷ AsPermutation(x)

(attribute)

Returns: A permutation.

When the argument x is a PBR which satisfies IsPermPBR (4.5.12), then this attribute returns that permutation.

```
gap> AsPermutation(x);
(2,4,3)
```

4.4 Operators for PBRs

x * y

returns the product of x and y when x and y are PBRs.

x < y

returns true if the degree of x is less than the degree of y, or the degrees are equal and the out-neighbours of x (as a list of list of positive integers) is lexicographically less than the out-neighbours of y.

x = y

returns true if the PBR x equals the PBR y and returns false if it does not.

4.5 Attributes for PBRs

In this section we describe various attributes that a PBR can possess.

4.5.1 StarOp (for a PBR)

```
ightharpoonup StarOp(x) (operation)

ightharpoonup Star(x) (attribute)
```

Returns: A PBR.

StarOp returns the unique PBR y obtained by exchanging the positive and negative numbers in x (i.e. multiplying ExtRepOfObj (4.5.3) by -1 and swapping its first and second components).

```
Example

gap> x := PBR([[], [-1], []], [[-3, -2, 2, 3], [-2, 1], []]);;

gap> Star(x);

PBR([[-3, -2, 2, 3], [-1, 2], []], [[], [1], []])
```

4.5.2 DegreeOfPBR

```
▷ DegreeOfPBR(x) (attribute)
▷ DegreeOfPBRCollection(x) (attribute)
```

Returns: A positive integer.

The degree of a PBR is, roughly speaking, the number of points where it is defined. More precisely, if x is a PBR defined on 2 * n points, then the degree of x is n.

The degree of a collection *coll* of PBRs of equal degree is just the degree of any (and every) PBR in *coll*. The degree of collection of PBRs of unequal degrees is not defined.

```
3
gap> S := FullPBRMonoid(2);
<pbr monoid of degree 2 with 10 generators>
gap> DegreeOfPBRCollection(S);
2
```

4.5.3 ExtRepOfObj (for a PBR)

▷ ExtRepOfObj(x)

(operation)

Returns: A pair of lists of integers.

If n is the degree of the PBR x, then ExtRepOfObj returns the argument required by PBR (4.2.1) to create a PBR equal to x, i.e. PBR(ExtRepOfObj(x)) returns a PBR equal to x.

4.5.4 PBRNumber

```
▷ PBRNumber(m, n) (operation)
▷ NumberPBR(mat) (operation)
```

Returns: A PBR, or a positive integer.

These functions implement a bijection from the set of all PBRs of degree n and the numbers [1 . . 2 ^ (4 * n ^ 2)].

More precisely, if m and n are positive integers such that m is at most 2 $^{\circ}$ (4 * n $^{\circ}$ 2), then PBRNumber returns the mth PBR of degree n.

If mat is a PBR of degree n, then NumberPBR returns the number in $[1 \dots 2^{(4 \times n^{2})}]$ that corresponds to mat.

4.5.5 IsEmptyPBR

▷ IsEmptyPBR(x)

(property)

Returns: true or false.

A PBR is EMPTY if it has no edges. Is EmptyPBR returns true if the PBR x is empty and false if it is not.

```
gap> x := PBR([[]], [[]]);;
gap> IsEmptyPBR(x);
true
gap> x := PBR([[-2, 1], [2]], [[-1], [-2, 1]]);
PBR([ [ -2, 1 ], [ 2 ] ], [ [ -1 ], [ -2, 1 ] ])
```

```
gap> IsEmptyPBR(x);
false
```

4.5.6 IsIdentityPBR

▷ IsIdentityPBR(x)

(property)

Returns: true or false.

A PBR of degree n is the IDENTITY PBR of degree n if it is the identity of the full PBR monoid of degree n. The identity PBR of degree n has 2n edges. Specifically, for each i in the ranges [1 .. n] and [-n .. -1], the identity PBR has an edge from i to -i.

IsIdentityPBR returns true is the PBR x is an identity PBR and false if it is not.

```
gap> x := PBR([[-2], [-1]], [[1], [2]]);
PBR([ [ -2 ], [ -1 ] ], [ [ 1 ], [ 2 ] ])
gap> IsIdentityPBR(x);
false
gap> x := PBR([[-1]], [[1]]);
PBR([ [ -1 ] ], [ [ 1 ] ])
gap> IsIdentityPBR(x);
true
```

4.5.7 IsUniversalPBR

▷ IsUniversalPBR(x)

(property)

Returns: true or false.

A PBR of degree n is UNIVERSAL if it has 4 * n ^ 2 edges, i.e. every possible edge.

```
gap> x := PBR([[]], [[]]);
PBR([ [ ] ], [ [ ] ])
gap> IsUniversalPBR(x);
false
gap> x := PBR([[-2, 1], [2]], [[-1], [-2, 1]]);
PBR([ [ -2, 1 ], [ 2 ] ], [ [ -1 ], [ -2, 1 ] ])
gap> IsUniversalPBR(x);
false
gap> x := PBR([[-1, 1]], [[-1, 1]]);
PBR([ [ -1, 1 ] ], [ [ -1, 1 ] ])
gap> IsUniversalPBR(x);
true
```

4.5.8 IsBipartitionPBR

Returns: true or false.

If the PBR x defines a bipartition, then IsBipartitionPBR returns true, and if not, then it returns false.

A PBR x defines a bipartition if and only if when considered as a boolean matrix it is an equivalence.

If x satisfies IsBipartitionPBR and when considered as a bipartition it is a block bijection, then IsBlockBijectionPBR returns true.

4.5.9 IsTransformationPBR

▷ IsTransformationPBR(x)

(property)

Returns: true or false.

If the PBR x defines a transformation, then IsTransformationPBR returns true, and if not, then false is returned.

A PBR x defines a transformation if and only if it satisfies IsBipartitionPBR (4.5.8) and when it is considered as a bipartition it satisfies IsTransBipartition (3.5.12).

With this definition, AsPBR (4.3.1) and AsTransformation (4.3.2) define mutually inverse isomorphisms from the full transformation monoid of degree n to the submonoid of the full PBR monoid of degree n consisting of all the elements satisfying IsTransformationPBR.

```
gap> x := PBR([[-3], [-1], [-3]], [[2], [], [1, 3]]);
PBR([ [ -3 ], [ -1 ], [ -3 ] ], [ [ 2 ], [ ], [ 1, 3 ] ])
gap> IsTransformationPBR(x);
true
gap> x := AsTransformation(x);
Transformation( [ 3, 1, 3 ] )
gap> AsPBR(x) * AsPBR(x) = AsPBR(x ^ 2);
true
gap> Number(FullPBRMonoid(1), IsTransformationPBR);
1
gap> x := PBR([[-2, -1, 2], [-2, 1, 2]], [[-1, 1], [-2]]);
PBR([ [ -2, -1, 2 ], [ -2, 1, 2 ] ], [ [ -1, 1 ], [ -2 ] ])
gap> IsTransformationPBR(x);
false
```

4.5.10 IsDualTransformationPBR

▷ IsDualTransformationPBR(x)

(property)

Returns: true or false.

If the PBR x defines a dual transformation, then IsDualTransformationPBR returns true, and if not, then false is returned.

A PBR x defines a dual transformation if and only if Star(x) satisfies IsTransformationPBR (4.5.9).

4.5.11 IsPartialPermPBR

```
\triangleright IsPartialPermPBR(x) (property)
```

Returns: true or false.

If the PBR x defines a partial permutation, then IsPartialPermPBR returns true, and if not, then false is returned.

A PBR x defines a partial perm if and only if it satisfies IsBipartitionPBR (4.5.8) and and when it is considered as a bipartition it satisfies IsPartialPermBipartition (3.5.15).

With this definition, AsPBR (4.3.1) and AsPartialPerm (4.3.3) define mutually inverse isomorphisms from the symmetric inverse monoid of degree n to the submonoid of the full PBR monoid of degree n consisting of all the elements satisfying IsPartialPermPBR.

```
gap> x := PBR([[-1, 1], [2]], [[-1, 1], [-2]]);
PBR([ [ -1, 1 ], [ 2 ] ], [ [ -1, 1 ], [ -2 ] ])
gap> IsPartialPermPBR(x);
true
gap> x := PartialPerm([3, 1]);
[2,1,3]
gap> AsPBR(x) * AsPBR(x) = AsPBR(x ^ 2);
true
gap> Number(FullPBRMonoid(1), IsPartialPermPBR);
2
```

4.5.12 IsPermPBR

```
\triangleright IsPermPBR(x) (property)
```

Returns: true or false.

If the PBR x defines a permutation, then IsPermPBR returns true, and if not, then false is returned.

A PBR x defines a permutation if and only if it satisfies IsBipartitionPBR (4.5.8) and and when it is considered as a bipartition it satisfies IsPermBipartition (3.5.14).

With this definition, AsPBR (4.3.1) and AsPermutation (4.3.4) define mutually inverse isomorphisms from the symmetric group of degree n to the subgroup of the full PBR monoid of degree n

consisting of all the elements satisfying IsPermPBR (i.e. the GroupOfUnits (11.8.1) of the full PBR monoid of degree n).

```
gap> x := PBR([[-2, 1], [-4, 2], [-1, 3], [-3, 4]],
> [[-1, 3], [-2, 1], [-3, 4], [-4, 2]]);;
gap> IsPermPBR(x);
true
gap> x := (1, 5)(2, 4, 3);
(1,5)(2,4,3)
gap> y := (1, 4, 3)(2, 5);
(1,4,3)(2,5)
gap> AsPBR(x) * AsPBR(y) = AsPBR(x * y);
true
gap> Number(FullPBRMonoid(1), IsPermPBR);
1
```

4.6 Semigroups of PBRs

Semigroups and monoids of PBRs can be created in the usual way in GAP using the functions Semigroup (**Reference: Semigroup**) and Monoid (**Reference: Monoid**); see Chapter 6 for more details.

It is possible to create inverse semigroups and monoids of PBRs using InverseSemigroup (**Reference: InverseSemigroup**) and InverseMonoid (**Reference: InverseMonoid**) when the argument is a collection of PBRs satisfying IsBipartitionPBR (4.5.8) and when considered as bipartitions, the collection satisfies IsGeneratorsOfInverseSemigroup.

Note that every PBR semigroup in Semigroups is finite.

4.6.1 IsPBRSemigroup

```
▷ IsPBRSemigroup(S)

▷ IsPBRMonoid(S)

Returns: true or false.

(filter)
```

A *PBR semigroup* is simply a semigroup consisting of PBRs. An object obj is a PBR semigroup in GAP if it satisfies IsSemigroup (**Reference: IsSemigroup**) and IsPBRCollection (4.1.2).

A *PBR monoid* is a monoid consisting of PBRs. An object *obj* is a PBR monoid in GAP if it satisfies IsMonoid (**Reference: IsMonoid**) and IsPBRCollection (4.1.2).

Note that it is possible for a PBR semigroup to have a multiplicative neutral element (i.e. an identity element) but not to satisfy IsPBRMonoid. For example,

```
> [[-1, 3], [-2, 1], [-3, 2], [-4, 4, 5], [-5]]),
> PBR([[-2, 1], [-1, 2], [-3, 3], [-4, 4, 5], [-4, 4, 5]],
> [[-1, 2], [-2, 1], [-3, 3], [-4, 4, 5], [-5]]),
> PBR([[-1, 1, 3], [-2, 2], [-1, 1, 3], [-4, 4, 5], [-4, 4, 5]],
> [[-1, 1, 3], [-2, 2], [-3], [-4, 4, 5], [-5]])]);
<pbr/>
<pbr/>
cpbr semigroup of degree 5 with 3 generators>
gap> One(S);
fail
gap> MultiplicativeNeutralElement(S);
PBR([[-1, 1], [-2, 2], [-3, 3], [-4, 4, 5], [-4, 4, 5]],
        [[-1, 1], [-2, 2], [-3, 3], [-4, 4, 5], [-5]])
gap> IsPBRMonoid(S);
false
```

In this example S cannot be converted into a monoid using AsMonoid (**Reference: AsMonoid**) since the One (**Reference: One**) of any element in S differs from the multiplicative neutral element.

For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

4.6.2 DegreeOfPBRSemigroup

▷ DegreeOfPBRSemigroup(S)

(attribute)

Returns: A non-negative integer.

The degree of a PBR semigroup S is just the degree of any (and every) element of S.

Chapter 5

Matrices over semirings

In this chapter we describe the functionality in Semigroups for creating matrices over semirings. Only square matrices are currently supported. We use the term matrix to mean square matrix everywhere in this manual.

For reference, matrices over the following semirings are currently supported:

the Boolean semiring

the set
$$\{0,1\}$$
 where $0+0=0$, $0+1=1+1=1+0=1$, $1\cdot 0=0\cdot 0=0\cdot 1=0$, and $1\cdot 1=1$.

the max-plus semiring

the set of integers and negative infinity $\mathbb{Z} \cup \{-\infty\}$ with operations max and plus.

the min-plus semiring

the set of integers and infinity $\mathbb{Z} \cup \{\infty\}$ with operations min and plus;

tropical max-plus semirings

the set $\{-\infty, 0, 1, \dots, t\}$ for some threshold t with operations max and plus;

tropical min-plus semirings

the set $\{0, 1, \dots, t, \infty\}$ for some threshold t with operations min and plus;

the semiring $\mathbb{N}_{t,p}$

the semiring $\mathbb{N}_{t,p} = \{0, 1, \dots, t, t+1, \dots, t+p-1\}$ for some threshold t and period p under addition and multiplication modulo the congruence t = t + p;

the integers

the usual ring of integers;

finite fields

the finite fields $GF(q^d)$ for prime q and some positive integer d.

With the exception of matrices of finite fields, semigroups of matrices in Semigroups are of the second type described in Section 6.1. In other words, a version of the Froidure-Pin Algorithm [FP97] is used to compute semigroups of these types, i.e it is possible that all of the elements of such a semigroup are enumerated and stored in the memory of your computer.

5.1 Creating matrices over semirings

In this section we describe the two main operations for creating matrices over semirings in Semigroups, and the categories, attributes, and operations which apply to every matrix over one of the semirings given at the start of this chapter.

There are several special methods for boolean matrices, which can be found in Section 5.3. There are also several special methods for finite fields, which can be found in section 5.4.

5.1.1 IsMatrixOverSemiring

Every matrix over a semiring in Semigroups is a member of the category IsMatrixOverSemiring, which is a subcategory of IsMultiplicativeElementWithOne (Reference: IsMultiplicativeElementWithOne), IsAssociativeElement (Reference: IsAssociativeElement), and IsPositionalObjectRep; see (Reference: Representation).

Every matrix over a semiring in Semigroups is a square matrix.

Basic operations for matrices over semirings are: DimensionOfMatrixOverSemiring (5.1.3), TransposedMat (Reference: TransposedMat), and One (Reference: One).

5.1.2 IsMatrixOverSemiringCollection

```
▷ IsMatrixOverSemiringCollection(obj) (Category)

▷ IsMatrixOverSemiringCollColl(obj) (Category)

Returns: true or false.
```

Every collection of matrices over the same semiring belongs to the category IsMatrixOverSemiringCollection. For example, semigroups of matrices over a semiring belong to IsMatrixOverSemiringCollection.

Every collection of collections of matrices over the same semiring belongs to the category IsMatrixOverSemiringCollColl. For example, a list of semigroups of matrices over semirings belongs to IsMatrixOverSemiringCollColl.

5.1.3 DimensionOfMatrixOverSemiring

```
DimensionOfMatrixOverSemiring(mat) (attribute)
Returns: A positive integer.
```

If mat is a matrix over a semiring (i.e. belongs to the category IsMatrixOverSemiring (5.1.1)), then mat is a square n by n matrix. DimensionOfMatrixOverSemiring returns the dimension n of mat.

5.1.4 DimensionOfMatrixOverSemiringCollection

▷ DimensionOfMatrixOverSemiringCollection(coll)

(attribute)

Returns: A positive integer.

If *coll* is a collection of matrices over a semiring (i.e. belongs to the category IsMatrixOverSemiringCollection (5.1.2)), then the elements of *coll* are square n by n matrices. DimensionOfMatrixOverSemiringCollection returns the dimension n of these matrices.

5.1.5 Matrix (for a filter and a matrix)

```
▷ Matrix(filt, mat[, threshold[, period]])
▷ Matrix(semiring, mat) (operation)
```

Returns: A matrix over semiring.

This operation can be used to construct a matrix over a semiring in Semigroups.

In its first form, the first argument filt specifies the filter to be used to create the matrix, the second argument mat is a GAP matrix (i.e. a list of lists) compatible with filt, the third and fourth arguments threshold and period (if required) must be positive integers.

filt

This must be one of the filters given in Section 5.1.8.

This must be a list of n lists each of length n (i.e. a square matrix), consisting of elements belonging to the underlying semiring described by filt, and threshold and period if present. An error is given if mat is not compatible with the other arguments.

For example, if *filt* is IsMaxPlusMatrix, then the entries of *mat* must belong to the max-plus semiring, i.e. they must be integers or -∞.

The supported semirings are fully described at the start of this chapter.

threshold

If *filt* is any of IsTropicalMaxPlusMatrix (5.1.8), IsTropicalMinPlusMatrix (5.1.8), or IsNTPMatrix (5.1.8), then this argument specifies the threshold of the underlying semiring of the matrix being created.

period

If filt is IsNTPMatrix (5.1.8), then this argument specifies the period of the underlying semiring of the matrix being created.

In its second form, the arguments should be a semiring semiring and matrix mat with entries in semiring. Currently, the only supported semirings are finite fields of prime order, and the integers Integers (Reference: Integers).

The function BooleanMat (5.3.1) is provided for specifically creating boolean matrices.

```
_ Example
gap> Matrix(IsBooleanMat, [[1, 0, 0, 0],
                            [0, 0, 0, 0],
>
>
                            [1, 1, 1, 1],
                            [1, 0, 1, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1],
  [1, 0, 1, 1]])
gap> Matrix(IsMaxPlusMatrix, [[4, 0, -2],
                               [1, -3, 0],
                               [5, -1, -4]);
Matrix(IsMaxPlusMatrix, [[4, 0, -2], [1, -3, 0], [5, -1, -4]])
gap> Matrix(IsMinPlusMatrix, [[-1, infinity],
                               [1, -1]]);
Matrix(IsMinPlusMatrix, [[-1, infinity], [1, -1]])
gap> Matrix(IsTropicalMaxPlusMatrix, [[3, 2, 4],
                                       [3, 1, 1],
>
                                       [-infinity, 1, 1]],
            9);
Matrix(IsTropicalMaxPlusMatrix, [[3, 2, 4], [3, 1, 1],
  [-infinity, 1, 1]], 9)
gap> Matrix(IsTropicalMinPlusMatrix, [[1, 1, 1],
                                       [0, 3, 0],
>
                                       [1, 1, 3]],
            9);
Matrix(IsTropicalMinPlusMatrix, [[1, 1, 1], [0, 3, 0], [1, 1, 3]], 9)
gap> Matrix(IsNTPMatrix, [[0, 0, 0],
                           [2, 0, 1],
>
>
                           [2, 2, 2]],
            2, 1);
Matrix(IsNTPMatrix, [[0, 0, 0], [2, 0, 1], [2, 2, 2]], 2, 1)
gap> Matrix(Integers, [[-1, -2, 0],
                        [0, 3, -1],
                        [1, 0, -3]);
<3x3-matrix over Integers>
gap> Matrix(Integers, [[-1, -2, 0],
                        [0, 3, -1],
                       [1, 0, -3]]);
<3x3-matrix over Integers>
```

5.1.6 AsMatrix (for a filter and a matrix)

```
▷ AsMatrix(filt, mat) (operation)

▷ AsMatrix(filt, mat, threshold) (operation)

▷ AsMatrix(filt, mat, threshold, period) (operation)

Returns: A matrix.
```

This operation can be used to change the representation of certain matrices over semirings. If mat is a matrix over a semiring (in the category IsMatrixOverSemiring (5.1.1)), then AsMatrix returns a new matrix corresponding to mat of the type specified by the filter filt, and if applicable the arguments threshold and period. The dimension of the matrix mat is not changed by this operation.

The version of the operation with arguments filt and mat can be applied to:

• IsMinPlusMatrix (5.1.8) and a tropical min-plus matrix (i.e. convert a tropical min-plus matrix to a (non-tropical) min-plus matrix);

• IsMaxPlusMatrix (5.1.8) and a tropical max-plus matrix;

The version of the operation with arguments filt, mat, and threshold can be applied to:

- IsTropicalMinPlusMatrix (5.1.8), a tropical min-plus or min-plus matrix, and a value for the threshold of the resulting matrix.
- IsTropicalMaxPlusMatrix (5.1.8) and a tropical max-plus, or max-plus matrix, and a value for the threshold of the resulting matrix.

The version of the operation with arguments filt, mat, threshold, and period can be applied to IsNTPMatrix (5.1.8) and an ntp matrix, or integer matrix.

When converting matrices with negative entries to an ntp, tropical max-plus, or tropical min-plus matrix, the entry is replaced with its absolute value.

When converting non-tropical matrices to tropical matrices entries higher than the specified threshold are reduced to the threshold.

```
Example
gap> mat := Matrix(IsTropicalMinPlusMatrix, [[0, 1, 3],
                                              [1, 1, 6],
                                              [0, 4, 2]], 10);;
gap> AsMatrix(IsMinPlusMatrix, mat);
Matrix(IsMinPlusMatrix, [[0, 1, 3], [1, 1, 6], [0, 4, 2]])
gap> mat := Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
                                              [0, 1, 3],
                                              [4, 1, 0]], 10);;
gap> AsMatrix(IsMaxPlusMatrix, mat);
Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 3], [0, 1, 3],
  [4, 1, 0]]
gap> mat := Matrix(IsNTPMatrix, [[1, 2, 2],
                                 [0, 2, 0],
                                 [1, 3, 0]], 4, 5);;
gap> Matrix(Integers, mat);
<3x3-matrix over Integers>
gap> mat := Matrix(IsMinPlusMatrix, [[0, 1, 3], [1, 1, 6], [0, 4, 2]]);;
gap> mat := AsMatrix(IsTropicalMinPlusMatrix, mat, 2);
Matrix(IsTropicalMinPlusMatrix, [[0, 1, 2], [1, 1, 2], [0, 2, 2]], 2)
gap> mat := AsMatrix(IsTropicalMinPlusMatrix, mat, 1);
Matrix(IsTropicalMinPlusMatrix, [[0, 1, 1], [1, 1, 1], [0, 1, 1]], 1)
gap> mat := Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
                                              [0, 1, 3],
                                              [4, 1, 0]], 10);;
gap> AsMatrix(IsTropicalMaxPlusMatrix, mat, 4);
Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
  [0, 1, 3], [4, 1, 0]], 4)
gap> mat := Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 3],
                                      [0, 1, 3],
                                      [4, 1, 0]]);;
gap> AsMatrix(IsTropicalMaxPlusMatrix, mat, 10);
Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
  [0, 1, 3], [4, 1, 0]], 10)
```

5.1.7 RandomMatrix (for a filter and a matrix)

Returns: A matrix over semiring.

This operation can be used to construct a random matrix over a semiring in Semigroups. The usage of RandomMatrix is similar to that of Matrix (5.1.5).

In its first form, the first argument filt specifies the filter to be used to create the matrix, the second argument dim is dimension of the matrix, the third and fourth arguments threshold and period (if required) must be positive integers.

filt

This must be one of the filters given in Section 5.1.8.

dim This must be a positive integer.

threshold

If *filt* is any of IsTropicalMaxPlusMatrix (5.1.8), IsTropicalMinPlusMatrix (5.1.8), or IsNTPMatrix (5.1.8), then this argument specifies the threshold of the underlying semiring of the matrix being created.

period

If filt is IsNTPMatrix (5.1.8), then this argument specifies the period of the underlying semiring of the matrix being created.

In its second form, the arguments should be a semiring semiring and dimension dim. Currently, the only supported semirings are finite fields of prime order and the integers Integers (Reference: Integers).

```
gap> RandomMatrix(IsBooleanMat, 3);
Matrix(IsBooleanMat, [[1, 0, 0], [1, 0, 1], [1, 0, 1]])
gap> RandomMatrix(IsMaxPlusMatrix, 2);
Matrix(IsMaxPlusMatrix, [[1, -infinity], [1, 0]])
gap> RandomMatrix(IsMinPlusMatrix, 3);
Matrix(IsMinPlusMatrix, [[infinity, 2, infinity], [4, 0, -2], [1, -3, 0]])
gap> RandomMatrix(IsTropicalMaxPlusMatrix, 3, 5);
```

```
Matrix(IsTropicalMaxPlusMatrix, [[5, 1, 4], [1, -infinity, 1], [1, 0, 2]],
5)
gap> RandomMatrix(IsTropicalMinPlusMatrix, 3, 2);
Matrix(IsTropicalMinPlusMatrix, [[1, -infinity, -infinity], [1, 1, 1],
        [2, 2, 1]], 2)
gap> RandomMatrix(IsNTPMatrix, 3, 2, 5);
Matrix(IsNTPMatrix, [[1, 1, 1], [1, 1, 0], [3, 0, 1]], 2, 5)
gap> RandomMatrix(Integers, 2);
Matrix(Integers, [[1, 3], [0, 0]])
gap> RandomMatrix(Integers, 2);
Matrix(Integers, [[-1, 0], [0, -1]])
gap> RandomMatrix(GF(5), 1);
Matrix(GF(5), [[Z(5)^0]])
```

5.1.8 Matrix filters

```
▷ IsBooleanMat(obj)
                                                                                     (Category)
▷ IsMatrixOverFiniteField(obj)
                                                                                     (Category)
▷ IsMaxPlusMatrix(obj)
                                                                                     (Category)
▷ IsMinPlusMatrix(obj)
                                                                                     (Category)
▷ IsTropicalMatrix(obj)
                                                                                     (Category)
▷ IsTropicalMaxPlusMatrix(obj)
                                                                                     (Category)
▷ IsTropicalMinPlusMatrix(obj)
                                                                                     (Category)
▷ IsNTPMatrix(obj)
                                                                                     (Category)
▷ Integers(obj)
                                                                                     (Category)
```

Returns: true or false.

Every matrix over a semiring in Semigroups is a member of one of these categories, which are subcategory of IsMatrixOverSemiring (5.1.1).

 ${\tt IsTropicalMatrix} \quad is \quad a \quad supercategory \quad of \quad {\tt IsTropicalMaxPlusMatrix} \quad and \quad {\tt IsTropicalMinPlusMatrix}.$

Basic operations for matrices over semirings include: multiplication via *, DimensionOfMatrixOverSemiring (5.1.3), One (**Reference: One**), the underlying list of lists used to create the matrix can be accessed using AsList (5.1.10), the rows of mat can be accessed using mat[i] where i is between 1 and the dimension of the matrix, it also possible to loop over the rows of a matrix; for tropical matrices ThresholdTropicalMatrix (5.1.11); for ntp matrices ThresholdNTPMatrix (5.1.12) and PeriodNTPMatrix (5.1.12).

For matrices over finite fields see Section 5.4; for Boolean matrices more details can be found in Section 5.3.

5.1.9 Matrix collection filters

```
▷ IsMinPlusMatrixCollColl(obj)
                                                                                  (Category)
▷ IsTropicalMatrixCollection(obj)
                                                                                  (Category)
▷ IsTropicalMaxPlusMatrixCollection(obj)
                                                                                  (Category)

▷ IsTropicalMaxPlusMatrixCollColl(obj)

                                                                                  (Category)
▷ IsTropicalMinPlusMatrixCollection(obj)
                                                                                  (Category)
▷ IsTropicalMinPlusMatrixCollColl(obj)
                                                                                  (Category)
▷ IsNTPMatrixCollection(obj)
                                                                                  (Category)
▷ IsNTPMatrixCollColl(obj)
                                                                                  (Category)
```

Returns: true or false.

Every collection of matrices over the same semiring in Semigroups belongs to one of the categories above. For example, semigroups of boolean matrices belong to IsBooleanMatCollection.

Similarly, every collection of collections of matrices over the same semiring in Semigroups belongs to one of the categories above.

5.1.10 AsList

```
▷ AsList(mat)

▷ AsMutableList(mat)

(operation)
```

Returns: A list of lists.

If mat is a matrix over a semiring (in the category IsMatrixOverSemiring (5.1.1)), then AsList returns the underlying list of lists of semiring elements corresponding to mat. In this case, the returned list and all of its entries are immutable.

The operation AsMutableList returns a mutable copy of the underlying list of lists of the matrix over semiring mat.

```
_{-} Example _{-}
gap> mat := Matrix(IsNTPMatrix,
                   [[0, 1, 0], [1, 3, 1], [1, 0, 1]], 5, 6);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 3, 1], [1, 0, 1]], 5, 6)
gap> list := AsList(mat);
[[0, 1, 0], [1, 3, 1], [1, 0, 1]]
gap> IsMutable(list);
false
gap> IsMutable(list[1]);
false
gap> list := AsMutableList(mat);
[[0, 1, 0], [1, 3, 1], [1, 0, 1]]
gap> IsMutable(list);
true
gap> IsMutable(list[1]);
gap> mat = Matrix(IsNTPMatrix, AsList(mat), 5, 6);
true
```

5.1.11 ThresholdTropicalMatrix

▷ ThresholdTropicalMatrix(mat)

(attribute)

Returns: A positive integer.

If mat is a tropical matrix (i.e. belongs to the category IsTropicalMatrix (5.1.8)), then ThresholdTropicalMatrix returns the threshold (i.e. the largest integer) of the underlying semiring.

```
Example
gap> mat := Matrix(IsTropicalMaxPlusMatrix,
> [[0, 3, 0, 2],
> [1, 1, 1, 0],
> [-infinity, 1, -infinity, 1],
> [0, -infinity, 2, -infinity]], 10);
Matrix(IsTropicalMaxPlusMatrix, [[0, 3, 0, 2], [1, 1, 1, 0],
  [-infinity, 1, -infinity, 1], [0, -infinity, 2, -infinity]], 10)
gap> ThresholdTropicalMatrix(mat);
gap> mat := Matrix(IsTropicalMaxPlusMatrix,
> [[0, 3, 0, 2],
> [1, 1, 1, 0],
> [-infinity, 1, -infinity, 1],
> [0, -infinity, 2, -infinity]], 3);
Matrix(IsTropicalMaxPlusMatrix, [[0, 3, 0, 2], [1, 1, 1, 0],
  [-infinity, 1, -infinity, 1], [0, -infinity, 2, -infinity]], 3)
gap> ThresholdTropicalMatrix(mat);
```

5.1.12 ThresholdNTPMatrix

▷ ThresholdNTPMatrix(mat) (attribute)
▷ PeriodNTPMatrix(mat) (attribute)

Returns: A positive integer.

An NTP MATRIX is a matrix with entries in a semiring $\mathbb{N}_{t,p} = \{0, 1, \dots, t, t+1, \dots, t+p-1\}$ for some threshold t and period p under addition and multiplication modulo the congruence t = t + p.

If mat is a ntp matrix (i.e. belongs to the category IsNTPMatrix (5.1.8)), then ThresholdNTPMatrix and PeriodNTPMatrix return the threshold and period of the underlying semiring, respectively.

```
_ Example
gap> mat := Matrix(IsNTPMatrix, [[1, 1, 0],
                                  [2, 1, 0],
                                  [0, 1, 1]],
>
                   1, 2);
Matrix(IsNTPMatrix, [[1, 1, 0], [2, 1, 0], [0, 1, 1]], 1, 2)
gap> ThresholdNTPMatrix(mat);
gap> PeriodNTPMatrix(mat);
gap> mat := Matrix(IsNTPMatrix, [[2, 1, 3],
                                  [0, 5, 1],
>
                                  [4, 1, 0]],
                   3, 4);
Matrix(IsNTPMatrix, [[2, 1, 3], [0, 5, 1], [4, 1, 0]], 3, 4)
gap> ThresholdNTPMatrix(mat);
gap> PeriodNTPMatrix(mat);
```

5.2 Operators for matrices over semirings

mat1 * mat2

returns the product of the matrices mat1 and mat2 of equal dimension over the same semiring using the usual matrix multiplication with the operations + and * from the underlying semiring.

mat1 < mat2

returns true if when considered as a list of rows, the matrix mat1 is short-lex less than the matrix mat2, and false if this is not the case. This means that a matrix of lower dimension is less than a matrix of higher dimension.

mat1 = mat2

returns true if the matrix mat1 equals the matrix mat2 (i.e. the entries are equal and the underlying semirings are equal) and returns false if it does not.

5.3 Boolean matrices

In this section we describe the operations, properties, and attributes in Semigroups specifically for Boolean matrices. These include:

- NumberBooleanMat (5.3.6)
- Successors (5.3.5)
- IsRowTrimBooleanMat (5.3.9), IsColTrimBooleanMat (5.3.9), and IsTrimBooleanMat (5.3.9),
- CanonicalBooleanMat (5.3.8)
- IsSymmetricBooleanMat (5.3.10)
- IsAntiSymmetricBooleanMat (5.3.13)
- IsTransitiveBooleanMat (5.3.12)
- IsReflexiveBooleanMat (5.3.11)
- IsTotalBooleanMat (5.3.14)
- IsOntoBooleanMat (5.3.14)
- IsPartialOrderBooleanMat (5.3.15)
- IsEquivalenceBooleanMat (5.3.16)

5.3.1 BooleanMat

▷ BooleanMat(arg)

(function)

Returns: A boolean matrix.

BooleanMat returns the boolean matrix mat defined by its argument. The argument can be any of the following:

a matrix with entries 0 and/or 1

the argument arg is list of n lists of length n consisting of the values 0 and 1;

a matrix with entries true and/or false

the argument arg is list of n lists of length n consisting of the values true and false;

successors

the argument arg is list of n sublists of consisting of positive integers not greater than n. In this case, the entry j in the sublist in position i of arg indicates that the entry in position (i, j) of the created boolean matrix is true.

BooleanMat returns an error if the argument is not one of the above types.

```
gap> x := BooleanMat([[true, false], [true, true]]);
Matrix(IsBooleanMat, [[1, 0], [1, 1]])
gap> y := BooleanMat([[1, 0], [1, 1]]);
Matrix(IsBooleanMat, [[1, 0], [1, 1]])
gap> z := BooleanMat([[1], [1, 2]]);
Matrix(IsBooleanMat, [[1, 0], [1, 1]])
gap> x = y;
true
gap> y = z;
true
gap> Display(x);
1 0
1 1
```

5.3.2 AsBooleanMat

```
\triangleright AsBooleanMat(x[, n])
```

(operation)

Returns: A boolean matrix.

AsBooleanMat returns the pbr, bipartition, permutation, transformation, or partial permutation x, as a boolean matrix of dimension n.

There are several possible arguments for AsBooleanMat:

permutations

If x is a permutation and n is a positive integer, then AsBooleanMat(x, n) returns the boolean matrix mat of dimension n such that mat[i][j] = true if and only if $j = i ^x$.

If no positive integer n is specified, then the largest moved point of x is used as the value for n; see LargestMovedPoint (Reference: LargestMovedPoint for a permutation).

transformations

If x is a transformation and n is a positive integer such that x is a transformation of $[1 \ldots n]$, then AsTransformation returns the boolean matrix mat of dimension n such that mat [i] [j] = true if and only if $j = i ^x$.

If the positive integer n is not specified, then the degree of f is used as the value for n.

partial permutations

If x is a partial permutation and n is a positive integer such that i $\hat{x} <= n$ for all i in [1 ...

n], then AsBooleanMat returns the boolean matrix mat of dimension n such that mat[i][j] = true if and only if $j = i ^x$.

If the optional argument n is not present, then the default value of the maximum of degree and the codegree of x is used.

bipartitions

If x is a bipartition and n is any non-negative integer, then AsBooleanMat returns the boolean matrix mat of dimension n such that mat[i][j] = true if and only if i and j belong to the same block of x.

If the optional argument n is not present, then twice the degree of x is used by default.

pbrs If x is a pbr and n is any non-negative integer, then AsBooleanMat returns the boolean matrix mat of dimension n such that mat[i][j] = true if and only if i and j are related in x.

If the optional argument n is not present, then twice the degree of x is used by default.

```
_{-} Example _{-}
gap> Display(AsBooleanMat((1, 2), 5));
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
gap> Display(AsBooleanMat((1, 2)));
0 1
1 0
gap> x := Transformation([1, 3, 4, 1, 3]);;
gap> Display(AsBooleanMat(x));
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
gap> Display(AsBooleanMat(x, 4));
1 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0
gap> x := PartialPerm([1, 2, 3, 6, 8, 10],
                      [2, 6, 7, 9, 1, 5]);
[3,7][8,1,2,6,9][10,5]
gap> Display(AsBooleanMat(x));
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
gap> x := Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]);
```

```
gap> y := AsBooleanMat(x);
<10x10 boolean matrix>
gap> Display(y);
1 0 0 1 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 1
0 1 1 0 1 0 0 0 0 1
1 0 0 1 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0
1 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1 0
0 1 1 0 1 0 0 0 0 1
gap> IsEquivalenceBooleanMat(y);
true
gap> AsBooleanMat(x, 1);
Matrix(IsBooleanMat, [[1]])
gap> Display(AsBooleanMat(x, 1));
gap> Display(AsBooleanMat(x, 2));
1 0
0 1
gap> Display(AsBooleanMat(x, 3));
1 0 0
0 1 1
0 1 1
gap> Display(AsBooleanMat(x, 11));
1 0 0 1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 1 0
0 1 1 0 1 0 0 0 0 1 0
1 0 0 1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0
1 0 0 1 0 0 1 1 0 0 0
10010011000
0 0 0 0 0 1 0 0 1 0 0
0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
gap> x := PBR(
> [[-1, 1], [2, 3], [-3, 2, 3]],
> [[-1, 1, 2], [-3, -1, 1, 3], [-3, -1, 1, 2, 3]]);;
gap> AsBooleanMat(x);
Matrix(IsBooleanMat, [[1, 0, 0, 1, 0, 0], [0, 1, 1, 0, 0, 0],
  [0, 1, 1, 0, 0, 1], [1, 1, 0, 1, 0, 0], [1, 0, 1, 1, 0, 1],
  [1, 1, 1, 1, 0, 1]])
gap> Display(AsBooleanMat(x));
1 0 0 1 0 0
0 1 1 0 0 0
0 1 1 0 0 1
1 1 0 1 0 0
1 0 1 1 0 1
```

```
1 1 1 1 0 1
```

5.3.3 \in

```
▷ \in(mat1, mat2)
(operation)
```

Returns: true or false.

If mat1 and mat2 are boolean matrices, then mat1 in mat2 returns true if the binary relation defined by mat1 is a subset of that defined by mat2.

5.3.4 OnBlist

```
▷ OnBlist(blist, mat) (function)
```

Returns: A boolean list.

If blist is a boolean list of length n and mat is boolean matrices of dimension n, then OnBlist returns the product of blist (thought of as a row vector over the boolean semiring) and mat.

5.3.5 Successors

Returns: A list of lists of positive integers.

A row of a boolean matrix of dimension n can be thought of of as the characteristic function of a subset S of [1 .. n], i.e. i in S if and only if the ith component of the row equals 1. We refer to the subset S as the SUCCESSORS of the row.

If mat is a boolean matrix, then Successors returns the list of successors of the rows of mat.

5.3.6 BooleanMatNumber

```
▷ BooleanMatNumber(m, n) (operation)

▷ NumberBooleanMat(mat) (operation)
```

Returns: A boolean matrix, or a positive integer.

These functions implement a bijection from the set of all boolean matrices of dimension n and the numbers $[1 \dots 2^n (n^2)]$.

More precisely, if m and n are positive integers such that m is at most 2 n (n 2), then BooleanMatNumber returns the mth n by n boolean matrix.

If mat is an n by n boolean matrix, then NumberBooleanMat returns the number in $[1 \dots 2^n]$ that corresponds to mat.

5.3.7 BlistNumber

```
▷ BlistNumber(m, n) (function)

▷ NumberBlist(blist) (function)
```

Returns: A boolean list, or a positive integer.

These functions implement a bijection from the set of all boolean lists of length n and the numbers $[1 \dots 2 \hat{n}]$.

More precisely, if m and n are positive integers such that m is at most 2 $^{\circ}$ n, then BlistNumber returns the mth boolean list of length n.

If blist is a boolean list of length n, then NumberBlist returns the number in $[1 \dots 2 n]$ that corresponds to blist.

```
gap> blist := BlistList([1 .. 10], []);
[ false, false, false, false, false, false, false, false]
gap> NumberBlist(blist);
1
gap> blist := BlistList([1 .. 10], [10]);
[ false, false, false, false, false, false, false, false, true ]
gap> NumberBlist(blist);
2
gap> BlistNumber(1, 10);
[ false, false, false, false, false, false, false, false, false]
gap> BlistNumber(2, 10);
```

```
[ false, false, false, false, false, false, false, false, true]
```

5.3.8 CanonicalBooleanMat (for a perm group, perm group and boolean matrix)

```
▷ CanonicalBooleanMat(G, H, mat) (operation)
▷ CanonicalBooleanMat(G, mat) (operation)
▷ CanonicalBooleanMat(mat) (attribute)
```

Returns: A boolean matrix.

This operation returns a fixed representative of the orbit of the boolean matrix mat under the action of the permutation group G on its rows and the permutation group H on its columns.

In its second form, when only a single permutation group G is specified, G acts on the rows and columns of mat independently.

In its third form, when only a boolean matrix is specified, CanonicalBooleanMat returns a fixed representative of the orbit of mat under the action of the symmetric group on its rows, and, independently, on its columns. In other words, CanonicalBooleanMat returns a canonical boolean matrix equivalent to mat up to rearranging rows and columns. This version of CanonicalBooleanMat uses Digraphs and its interface with the bliss library for computing automorphism groups and canonical forms of graphs [JK07]. As a consequence, CanonicalBooleanMat with a single argument is significantly faster than the versions with 2 or 3 arguments.

```
Example
gap> mat := BooleanMat([[1, 1, 1, 0, 0, 0],
>
                        [0, 0, 0, 1, 0, 1],
>
                        [1, 0, 0, 1, 0, 1],
>
                        [0, 0, 0, 0, 0, 0],
>
                        [0, 1, 1, 1, 1, 1],
                        [0, 1, 1, 0, 1, 0]);
Matrix(IsBooleanMat, [[1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1],
  [1, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1],
  [0, 1, 1, 0, 1, 0]])
gap> CanonicalBooleanMat(mat);
Matrix(IsBooleanMat, [[0, 0, 0, 0, 0], [1, 1, 0, 0, 0],
  [0, 0, 1, 1, 1, 0], [1, 1, 0, 0, 1, 0], [0, 0, 1, 1, 0, 1],
  [1, 1, 1, 1, 0, 1]])
gap> Display(CanonicalBooleanMat(mat));
0 0 0 0 0 0
1 1 0 0 0 0
0 0 1 1 1 0
1 1 0 0 1 0
0 0 1 1 0 1
1 1 1 1 0 1
gap> Display(CanonicalBooleanMat(Group((1, 3)), mat));
0 1 1 0 0 1
0 0 1 0 0 1
1 1 0 1 0 0
0 0 0 0 0 0
1 0 1 1 1 1
1 0 0 1 1 0
gap> Display(CanonicalBooleanMat(Group((1, 3)), Group(()), mat));
1 1 1 0 0 0
```

5.3.9 IsRowTrimBooleanMat

```
▷ IsRowTrimBooleanMat(mat) (property)

▷ IsColTrimBooleanMat(mat) (property)

▷ IsTrimBooleanMat(mat) (property)
```

Returns: true or false.

A row or column of a boolean matrix of dimension n can be thought of of as the characteristic function of a subset S of [1 .. n], i.e. i in S if and only if the ith component of the row or column equals 1.

A boolean matrix is ROW TRIM if no subset induced by a row of mat is contained in the subset induced by any other row of mat. COLUMN TRIM is defined analogously. A boolean matrix is TRIM if it is both row and column trim.

```
_ Example .
gap> mat := BooleanMat([[0, 0, 1, 1],
                         [1, 0, 1, 0],
>
                         [1, 1, 0, 0],
                         [0, 1, 0, 1]]);;
gap> IsTrimBooleanMat(mat);
gap> mat := BooleanMat([[0, 1, 1, 0],
                         [0, 0, 1, 0],
>
                         [1, 0, 0, 1],
                         [1, 0, 1, 0]]);;
gap> IsRowTrimBooleanMat(mat);
false
gap> IsColTrimBooleanMat(mat);
false
```

5.3.10 IsSymmetricBooleanMat

▷ IsSymmetricBooleanMat(mat)

(property)

Returns: true or false.

A boolean matrix is SYMMETRIC if it is symmetric about the main diagonal, i.e. mat[i][j] = mat[j][i] for all i, j in the range [1 .. n] where n is the dimension of mat.

5.3.11 IsReflexiveBooleanMat

▷ IsReflexiveBooleanMat(mat)

(property)

Returns: true or false.

A boolean matrix is REFLEXIVE if every entry in the main diagonal is true, i.e. mat[i][i] = true for all i in the range [1 .. n] where n is the dimension of mat.

```
_{-} Example _{\cdot}
gap> mat := BooleanMat([[1, 0, 0, 0],
                         [1, 1, 0, 0],
>
>
                         [0, 1, 0, 1],
                         [1, 1, 1, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 0], [1, 1, 0, 0], [0, 1, 0, 1],
  [1, 1, 1, 1]])
gap> IsReflexiveBooleanMat(mat);
false
gap> mat := BooleanMat([[1, 1, 1, 0],
                         [1, 1, 1, 1],
                         [1, 1, 1, 1],
                         [0, 1, 1, 1]]);
Matrix(IsBooleanMat, [[1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 1],
  [0, 1, 1, 1]])
gap> IsReflexiveBooleanMat(mat);
true
```

5.3.12 IsTransitiveBooleanMat

▷ IsTransitiveBooleanMat(mat)

(property)

Returns: true or false.

A boolean matrix is TRANSITIVE if whenever mat[i][j] = true and mat[j][k] = true then mat[i][k] = true.

```
Matrix(IsBooleanMat, [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1],
      [1, 1, 1, 1]])
gap> IsTransitiveBooleanMat(x);
true
```

5.3.13 IsAntiSymmetricBooleanMat

▷ IsAntiSymmetricBooleanMat(mat)

(property)

Returns: true or false.

A boolean matrix is ANTI-SYMMETRIC if whenever mat[i][j] = true and mat[j][i] = true then i = j.

```
\_ Example \_
gap> x := BooleanMat([[1, 0, 0, 1],
                       [1, 0, 1, 1],
>
                       [1, 1, 1, 0],
                       [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 0],
  [0, 1, 1, 0]])
gap> IsAntiSymmetricBooleanMat(x);
false
gap> x := BooleanMat([[1, 0, 0, 1],
>
                       [1, 0, 1, 0],
>
                       [1, 0, 1, 0],
                       [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 0],
  [0, 1, 1, 0]])
gap> IsAntiSymmetricBooleanMat(x);
true
```

5.3.14 IsTotalBooleanMat

```
▷ IsTotalBooleanMat(mat) (property)

▷ IsOntoBooleanMat(mat) (property)
```

Returns: true or false.

A boolean matrix is TOTAL if there is at least one entry in every row is true. Similarly, a boolean matrix is ONTO if at least one entry in every column is true.

```
_ Example _
gap> x := BooleanMat([[1, 0, 0, 1],
                       [1, 0, 1, 1],
>
>
                       [1, 1, 1, 0],
                       [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 0],
  [0, 1, 1, 0]])
gap> IsTotalBooleanMat(x);
true
gap> IsOntoBooleanMat(x);
gap> x := BooleanMat([[1, 0, 0, 1],
                       [1, 0, 1, 0],
>
>
                       [0, 0, 0, 0],
```

5.3.15 IsPartialOrderBooleanMat

▷ IsPartialOrderBooleanMat(mat)

(property)

Returns: true or false.

A boolean matrix is a PARTIAL ORDER if it is reflexive, transitive, and anti-symmetric.

```
gap> Number(FullBooleanMatMonoid(3), IsPartialOrderBooleanMat);
19
```

5.3.16 IsEquivalenceBooleanMat

▷ IsEquivalenceBooleanMat(mat)

(property)

Returns: true or false.

A boolean matrix is an EQUIVALENCE if it is reflexive, transitive, and symmetric.

```
gap> Number(FullBooleanMatMonoid(3), IsEquivalenceBooleanMat);
5
gap> Bell(3);
5
```

5.3.17 IsTransformationBooleanMat

▷ IsTransformationBooleanMat(mat)

(property)

Returns: true or false.

A boolean matrix is a TRANSFORMATION if every row contains precisely one true value.

```
gap> Number(FullBooleanMatMonoid(3), IsTransformationBooleanMat);
27
```

5.4 Matrices over finite fields

In this section we describe some operations in Semigroups for matrices over finite fields that are required for such matrices to form semigroups satisfying IsActingSemigroup (6.1.2).

From v5.0.0, Semigroups uses the GAP library implementation of matrices over finite fields belonging to the category IsMatrixObj (**Reference: IsMatrixObj**) rather than the previous implementation in the Semigroups package. This means that from v5.0.0, matrices over a finite field no longer belong to the category IsMatrixOverSemiring (5.1.1).

The following methods are implemented in Semigroups for matrix objects over finite fields.

5.4.1 RowSpaceBasis (for a matrix over finite field)

If m is a matrix object over a finite field, then to compute the value of any of the above attributes, a canonical basis for the row space of m is computed along with an invertible matrix RowSpaceTransformation such that m * RowSpaceTransformation(m) = RowSpaceBasis(m). RowSpaceTransformationInv(m) is the inverse of RowSpaceTransformation(m).

```
Example

gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 1, 1], [1, 1, 1]]);

[ [ Z(2)^0, Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0, Z(2)^0 ],

        [ Z(2)^0, Z(2)^0, Z(2)^0 ] ]

gap> RowSpaceBasis(x);

<rowbasis of rank 3 over GF(2^2)>

gap> RowSpaceTransformation(x);

[ [ 0*Z(2), Z(2)^0, Z(2)^0 ], [ Z(2)^0, Z(2)^0 ],

        [ Z(2)^0, 0*Z(2), Z(2)^0 ] ]
```

5.4.2 RightInverse (for a matrix over finite field)

```
▷ RightInverse(m) (attribute)
▷ LeftInverse(m) (attribute)
```

Returns: A matrix over a finite field.

These attributes contain a semigroup left-inverse, and a semigroup right-inverse of the matrix *m* respectively.

```
gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 0, 0], [1, 1, 1]]);
[ [ Z(2)^0, Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2) ],
        [ Z(2)^0, Z(2)^0, Z(2)^0 ] ]
gap> LeftInverse(x);
[ [ Z(2)^0, Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2) ],
        [ Z(2)^0, 0*Z(2), Z(2)^0 ] ]
gap> Display(LeftInverse(x) * x);
1 1 .
. . .
. . .
. . 1
```

5.5 Matrices over the integers

In this section we describe operations in **Semigroups** specifically for integer matrices.

From v5.0.0, Semigroups uses the GAP library implementation of matrices over the intergers belonging to the category IsMatrixObj (**Reference: IsMatrixObj**) rather than the previous implementation in the Semigroups package. This means that from v5.0.0, matrices over the integers no longer belong to the category IsMatrixOverSemiring (5.1.1).

The following methods are implemented in **Semigroups** for matrix objects over the integers.

5.5.1 InverseOp (for an integer matrix)

▷ InverseOp(mat) (operation)

Returns: An integer matrix.

If mat is an integer matrix (i.e. belongs to the category Integers (5.1.8)) whose inverse (if it exists) is also an integer matrix, then InverseOp returns the inverse of mat.

An integer matrix has an integer matrix inverse if and only if it has determinant one.

5.5.2 IsTorsion (for an integer matrix)

▷ IsTorsion(mat)

Returns: true or false

If mat is an integer matrix (i.e. belongs to the category Integers (5.1.8)), then IsTorsion returns true if mat is torsion and false otherwise.

An integer matrix mat is torsion if and only if there exists an integer n such that mat to the power of n is equal to the identity matrix.

5.5.3 Order

> Order(mat) (attribute)

Returns: An integer or infinity.

If mat is an integer matrix, then InverseOp returns the order of mat. The order of mat is the smallest integer power of mat equal to the identity. If no such integer exists, the order is equal to infinity.

5.6 Max-plus and min-plus matrices

In this section we describe operations in Semigroups specifically for max-plus and min-plus matrices. These are in addition to those given elsewhere in this chapter for arbitrary matrices over semirings. These include:

- InverseOp (5.6.1)
- RadialEigenvector (5.6.2)
- SpectralRadius (5.6.3)
- UnweightedPrecedenceDigraph (5.6.4)

5.6.1 InverseOp

▷ InverseOp(mat) (operation)

Returns: A max-plus matrix.

If mat is an invertible max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8) and is a row permutation applied to the identity), then InverseOp returns the inverse of mat. This method is described in [Far09].

5.6.2 RadialEigenvector

▷ RadialEigenvector(mat)

(operation)

Returns: A vector.

If mat is a n by n max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then RadialEigenvector returns an eigenvector corresponding to the eigenvalue equal to the spectral radius of mat. This method is described in [Far09].

```
gap> RadialEigenvector(Matrix(IsMaxPlusMatrix, [[0, -3], [-2, -10]]));
[ 0, -2 ]
```

5.6.3 SpectralRadius

▷ SpectralRadius(mat)

(operation)

Returns: A rational number.

If mat is a max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then SpectralRadius returns the supremum of the set of eigenvalues of mat. This method is described in [BFCGOGJ92].

5.6.4 UnweightedPrecedenceDigraph

▷ UnweightedPrecedenceDigraph(mat)

(operation)

Returns: A digraph.

If mat is a max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then UnweightedPrecedenceDigraph returns the unweighted precedence digraph corresponding to mat.

For an n by n matrix mat, the unweighted precedence digraph is defined as the digraph with n vertices where vertex i is adjacent to vertex j if and only if mat [i] [j] is not equal to -infinity.

```
Example

gap> UnweightedPrecedenceDigraph(Matrix(IsMaxPlusMatrix, [[2, -2, 0],

> [-infinity, 10, -2], [-infinity, 2, 1]]));

<immutable digraph with 3 vertices, 7 edges>
```

5.7 Matrix semigroups

In this section we describe operations and attributes in Semigroups specifically for matrix semigroups. These are in addition to those given elsewhere in this chapter for arbitrary matrices over semirings. These include:

- IsXMatrixSemigroup (5.7.1)
- IsFinite (5.7.3)
- IsTorsion (5.7.4)
- NormalizeSemigroup (5.7.5)

Random matrix semigroups can be created by using the function RandomSemigroup (6.6.1). We can also create a matrix semigroup isomorphic to a given semigroup by using IsomorphismSemigroup (6.5.1) and AsSemigroup (6.5.3). These functions require a filter, and accept any of the filters in Section 5.7.1.

There are corresponding functions which can be used for matrix monoids: RandomMonoid (6.6.1), IsomorphismMonoid (6.5.2), and AsMonoid (6.5.4). These can be used with the filters in Section 5.7.2.

5.7.1 Matrix semigroup filters

```
▷ IsMatrixOverSemiringSemigroup(obj)
                                                                                  (Category)
▷ IsBooleanMatSemigroup(obj)
                                                                                  (Category)
▷ IsMatrixOverFiniteFieldSemigroup(obj)
                                                                                  (Category)
▷ IsMaxPlusMatrixSemigroup(obj)
                                                                                  (Category)
▷ IsMinPlusMatrixSemigroup(obj)
                                                                                  (Category)
▷ IsTropicalMatrixSemigroup(obj)
                                                                                  (Category)
▷ IsTropicalMaxPlusMatrixSemigroup(obj)
                                                                                  (Category)
▷ IsTropicalMinPlusMatrixSemigroup(obj)
                                                                                  (Category)
▷ IsNTPMatrixSemigroup(obj)
                                                                                  (Category)
▷ IsIntegerMatrixSemigroup(obj)
                                                                                  (Category)
   Returns: true or false.
```

The above are the currently supported types of matrix semigroups. For monoids see Section 5.7.2.

5.7.2 Matrix monoid filters

```
▷ IsMatrixOverSemiringMonoid(obj)
                                                                                   (Category)
▷ IsBooleanMatMonoid(obj)
                                                                                   (Category)
▷ IsMatrixOverFiniteFieldMonoid(obj)
                                                                                   (Category)
▷ IsMaxPlusMatrixMonoid(obj)
                                                                                   (Category)
▷ IsMinPlusMatrixMonoid(obj)
                                                                                   (Category)
▷ IsTropicalMatrixMonoid(obj)
                                                                                   (Category)
▷ IsTropicalMaxPlusMatrixMonoid(obj)
                                                                                   (Category)
▷ IsTropicalMinPlusMatrixMonoid(obj)
                                                                                   (Category)
▷ IsNTPMatrixMonoid(obj)
                                                                                   (Category)
▷ IsIntegerMatrixMonoid(obj)
                                                                                   (Category)
   Returns: true or false.
```

The above are the currently supported types of matrix monoids. They correspond to the matrix semigroup types in Section 5.7.1.

5.7.3 IsFinite

```
\triangleright IsFinite(S) (property)
```

Returns: true or false.

If S is a max-plus or min-plus matrix semigroup (i.e. belongs to the category IsMaxPlusMatrixSemigroup (5.7.1)), then IsFinite returns true if S is finite and false otherwise. This method is based on [Gau96] (max-plus) and [Sim78] (min-plus). For min-plus matrix semigroups, this method is only valid if each min-plus matrix in the semigroup contains only nonnegative integers. Note, this method is terminating and does not involve enumerating semigroups.

5.7.4 IsTorsion

 \triangleright IsTorsion(S) (attribute)

Returns: true or false.

If S is a max-plus matrix semigroup (i.e. belongs to the category IsMaxPlusMatrixSemigroup (5.7.1)), then IsTorsion returns true if S is torsion and false otherwise. This method is based on [Gau96] and draws on [Bur16], [BFCGOGJ92] and [Far09].

5.7.5 NormalizeSemigroup

▷ NormalizeSemigroup(S)

(operation)

Returns: A semigroup.

This method applies to max-plus matrix semigroups (i.e. those belonging to the category IsMaxPlusMatrixSemigroup (5.7.1)) that are finitely generated, such that the spectral radius of the matrix equal to the sum of the generators (with respect to the max-plus semiring) is zero. NormalizeSemigroup returns a semigroup of matrices all with strictly non-positive entries. Note that the output is isomorphic to a min-plus matrix semigroup. This method is based on [Gau96] and [Bur16].

Chapter 6

Semigroups and monoids defined by generating sets

In this chapter we describe the various ways that semigroups and monoids defined by generating sets can be created in Semigroups; where the generators are, for example, those elements described in earlier chapters of this manual.

6.1 Underlying algorithms

Computing the Green's structure of a semigroup or monoid is a fundamental step in almost every algorithm for semigroups. There are two fundamental algorithms in the Semigroups package for computing the Green's structure of a semigroup defined by a set of generators. In the next two subsections we briefly describe these two algorithms.

6.1.1 Acting semigroups

The first of the fundamental algorithms for computing a semigroup defined by a generating set is described in [EENMP19]. When applied to a semigroup or monoid with relatively large subgroups, or \mathscr{D} -classes, these are the most efficient methods in the Semigroups package. For example, the complexity of computing, say, the size of a transformation semigroup that happens to be a group, is the same as the complexity of the Schreier-Sims Algorithm (polynomial in the number of points acted on by the transformations) for a permutation group.

In theory, these algorithms can be applied to compute any subsemigroup of a regular semigroup; but so far in the Semigroups package they are only implemented for semigroups of: transformations (see (**Reference: Transformations**)), partial permutations (see (**Reference: Partial permutations**)), bipartitions (see Chapter 3), matrices over a finite field (see Section 5.4); subsemigroups of regular Rees 0-matrix semigroups over permutation groups (see Chapter (**Reference: Rees Matrix Semigroups**)), and subsemigroups of McAlister triples (see Section 8.4).

We refer to semigroups to which the algorithms in [EENMP19] can be applied as *acting semi-groups*, and such semigroups belong to the category IsActingSemigroup (6.1.2).

If you know *a priori* that the semigroup you want to compute is large and \mathcal{J} -trivial, then you can disable the special methods for acting semigroups when you create the semigroups; see Section 6.3 for more details.

It is harder for the acting semigroup algorithms to compute Green's \mathcal{L} - and \mathcal{H} -classes of a transformation semigroup and the methods used to compute with Green's \mathcal{R} - and \mathcal{D} -classes are the most efficient in Semigroups. Thus, if you are computing with a transformation semigroup, wherever possible, it is advisable to use the commands relating to Green's \mathcal{R} - or \mathcal{D} -classes rather than those relating to Green's \mathcal{L} - or \mathcal{H} -classes. No such difficulties are present when computing with the other types of acting semigroups in Semigroups.

There are methods in Semigroups for computing individual Green's classes of an acting semigroup without computing the entire data structure of the underlying semigroup; see GreensRClassOfElementNC (10.1.3). It is also possible to compute the \mathscr{R} -classes, the number of elements and test membership in a semigroup without computing all the elements; see, for example, GreensRClasses (10.1.4), RClassReps (10.1.5), IteratorOfRClasses (10.2.2), or NrRClasses (10.1.9). This may be useful if you want to study a very large semigroup where computing all the elements of the semigroup is not feasible.

6.1.2 IsActingSemigroup

Every acting semigroup, as defined in Section 6.1.1, belongs to this category.

```
gap> S := Semigroup(Transformation([1, 3, 2]));;
gap> IsActingSemigroup(S);
true
gap> CanUseFroidurePin(S);
true
gap> S := FreeSemigroup(3);;
gap> IsActingSemigroup(S);
false
```

6.1.3 The Froidure-Pin Algorithm

The second fundamental algorithm for computing finite semigroups is the Froidure-Pin Algorithm [FP97]. The Semigroups package contains two implementations of the Froidure-Pin Algorithm: one in the libsemigroups C++ library and the other within the Semigroups package kernel module.

Both implementations outperform the algorithms for acting semigroups when applied to semigroups with small (trivial) subgroups. This method is also used to determine the structure of a semigroup when the algorithms described in [EENMP19] do not apply. It is possible to specify which methods should be applied to a given semigroup; see Section 6.3.

A semigroup to which the Froidure-Pin Algorithm can be applied in Semigroups satisfy CanUseFroidurePin (6.1.4). Every acting semigroup in Semigroups satisfies CanUseFroidurePin (6.1.4) and the Froidure-Pin Algorithm is used to compute certain properties or attributes.

Currently, the libsemigroups implementation of the Froidure-Pin Algorithm can be applied to semigroups consisting of the following types of elements: transformations (see (**Reference: Transformations**)), partial permutations (see (**Reference: Partial permutations**)), bipartitions (see Chapter 3), partitioned binary relations (see Chapter 4) as defined in [MM13]; and matrices over the following semirings:

• the Boolean semiring $\{0,1\}$ where 0+0=0, 0+1=1+1=1+0=1, and $1\cdot 0=0\cdot 0=0\cdot 1=0$

- finite fields;
- the *max-plus semiring* of natural numbers and negative infinity $\mathbb{N} \cup \{-\infty\}$ with operations max and plus;
- the *min-plus semiring* of natural numbers and infinity $\mathbb{N} \cup \{\infty\}$ with operations min and plus;
- the *tropical max-plus semiring* $\{-\infty,0,1,\ldots,t\}$ for some threshold t with operations max and plus;
- the *tropical min-plus semiring* $\{0,1,\ldots,t,\infty\}$ for some threshold t with operations min and plus;
- the semiring $\mathbb{N}_{t,p} = \{0,1,\ldots,t,t+1,\ldots,t+p-1\}$ for some threshold t and period p under addition and multiplication modulo the congruence t=t+p.

(see Chapter 5).

The version of the Froidure-Pin Algorithm [FP97] written in C within the Semigroups package kernel module can be used to compute any other semigroup in GAP which satisfies CanUseGapFroidurePin (6.1.4). In theory, any finite semigroup can be computed using this algorithm. However, the condition that the semigroup has satisfies CanUseGapFroidurePin (6.1.4) is imposed to avoid this method being used when it is inappropriate. If implementing a new type of semigroup in GAP, then simply do

```
Example
InstallTrueMethod(CanUseGapFroidurePin,
MyNewSemigroupType);
```

to make your new semigroup type MyNewSemigroupType use this version of the Froidure-Pin Algorithm. To make this work efficiently it is necessary that a hash function is implemented for the elements of MyNewSemigroupType; more details will be included in a future edition of this manual.

Mostly due to the way that GAP handles memory, this implementation is approximately 4 times slower than the implementation in libsemigroups. This version of the Froidure-Pin Algorithm is included because it applies to a wider class of semigroups than those currently implemented in libsemigroups and it is more straightforward to extend the classes of semigroup to which it applies.

6.1.4 CanUseFroidurePin

```
▷ CanUseFroidurePin(obj) (property)

▷ CanUseGapFroidurePin(obj) (property)

▷ CanUseLibsemigroupsFroidurePin(obj) (property)

Returns: true or false.
```

Every semigroup satisfying CanUseFroidurePin is a valid input for the Froidure-Pin algorithm; see Section 6.1.3 for more details.

Basic operations for semigroups satisfying CanUseFroidurePin are: AsListCanonical (11.1.1), EnumeratorCanonical (11.1.1), IteratorCanonical (11.1.1), PositionCanonical (11.1.2), Enumerate (11.1.3), and IsEnumerated (11.1.4).

```
gap> S := Semigroup(Transformation([1, 3, 2]));;
gap> CanUseFroidurePin(S);
true
gap> S := FreeSemigroup(3);;
gap> CanUseFroidurePin(S);
false
```

6.2 Semigroups represented by generators

6.2.1 InverseMonoidByGenerators

▷ InverseMonoidByGenerators(coll[, opts]) (operation)
▷ InverseSemigroupByGenerators(coll[, opts]) (operation)

Returns: An inverse monoid or semigroup.

If *coll* is a collection satisfying IsGeneratorsOfInverseSemigroup, then InverseMonoidByGenerators and InverseSemigroupByGenerators return the inverse monoid and semigroup generated by *coll*, respectively.

If present, the optional second argument opts should be a record containing the values of the options for the semigroup being created, as described in Section 6.3.

6.3 Options when creating semigroups

When using any of the functions:

- InverseSemigroup (Reference: InverseSemigroup),
- InverseMonoid (Reference: InverseMonoid),
- Semigroup (Reference: Semigroup),
- Monoid (Reference: Monoid),
- $\bullet \ \, {\tt SemigroupByGenerators} \ \, (\textbf{Reference: SemigroupByGenerators}),$
- MonoidByGenerators (Reference: MonoidByGenerators),
- ClosureSemigroup (6.4.1),
- ClosureMonoid (6.4.1),
- ClosureInverseSemigroup (6.4.1),
- ClosureInverseMonoid (6.4.1),
- SemigroupIdeal (9.1.1)

a record can be given as an optional final argument. The components of this record specify the values of certain options for the semigroup being created. A list of these options and their default values is given below.

Assume that S is the semigroup created by one of the functions given above and that either: S is generated by a collection gens; or S is an ideal of such a semigroup.

acting

this component should be true or false. Roughly speaking, there are two types of methods in the Semigroups package: those for semigroups which have to be fully enumerated, and those for semigroups that do not; see Section 1.1. In order for a semigroup to use the latter methods in Semigroups it must satisfy IsActingSemigroup (6.1.2). By default any semigroup or monoid of transformations, partial permutations, Rees 0-matrix elements, or bipartitions satisfies IsActingSemigroup.

There are cases (such as when it is known *a priori* that the semigroup is \mathscr{D} -trivial), when it might be preferable to use the methods that involve fully enumerating a semigroup. In other words, it might be desirable to disable the more sophisticated methods for acting semigroups. If this is the case, then the value of this component can be set false when the semigroup is created. Following this none of the special methods for acting semigroup will be used to compute anything about the semigroup.

regular

this component should be true or false. If it is known *a priori* that the semigroup S being created is a regular semigroup, then this component can be set to true. In this case, S knows it is a regular semigroup and can take advantage of the methods for regular semigroups in Semigroups. It is usually much more efficient to compute with a regular semigroup that to compute with a non-regular semigroup.

If this option is set to true when the semigroup being defined is NOT regular, then the results might be unpredictable.

The default value for this option is false.

hashlen

this component should be a positive integer, which roughly specifies the lengths of the hash tables used internally by Semigroups. Semigroups uses hash tables in several fundamental methods. The lengths of these tables are a compromise between performance and memory usage; larger tables provide better performance for large computations but use more memory. Note that it is unlikely that you will need to specify this option unless you find that GAP runs out of memory unexpectedly or that the performance of Semigroups is poorer than expected. If you find that GAP runs out of memory unexpectedly, or you plan to do a large number of computations with relatively small semigroups (say with tens of thousands of elements), then you might consider setting hashlen to be less than the default value of 12517 for each of these semigroups. If you find that the performance of Semigroups is unexpectedly poor, or you plan to do a computation with a very large semigroup (say, more than 10 million elements), then you might consider setting hashlen to be greater than the default value of 12517.

You might find it useful to set the info level of the info class InfoOrb to 2 or higher since this will indicate when hash tables used by Semigroups are being grown; see SetInfoLevel (Reference: InfoLevel).

small

if this component is set to true, then Semigroups will compute a small subset of *gens* that generates S at the time that S is created. This will increase the amount of time required to create S substantially, but may decrease the amount of time required for subsequent calculations with S. If this component is set to false, then Semigroups will return the semigroup generated by *gens* without modifying *gens*. The default value for this component is false.

This option is ignored when passed to ClosureSemigroup (6.4.1) or ClosureInverseSemigroup (6.4.1).

cong_by_ker_trace_threshold

this should be a positive integer, which specifies a semigroup size. If S is a semigroup with inverse op, and S has a size greater than or equal to this threshold, then any congruence defined on it may use the "kernel and trace" method to perform calculations. If its size is less than the

threshold, then other methods will be used instead. The "kernel and trace" method has better complexity than the generic method, but has large overheads which make it a poor choice for small semigroups. The default value for this component is 10 ^ 5. See Section 13.7 for more information about the "kernel and trace" method.

The default values of the options described above are stored in a global variable named SEMIGROUPS.DefaultOptionsRec (6.3.1). If you want to change the default values of these options for a single GAP session, then you can simply redefine the value in GAP. For example, to change the option small from the default value of false use:

```
gap> SEMIGROUPS.DefaultOptionsRec.small := true;
true
```

If you want to change the default values of the options stored in SEMIGROUPS.DefaultOptionsRec (6.3.1) for all GAP sessions, then you can edit these values in the file semigroups-5.2.0/gap/options.g.

6.3.1 SEMIGROUPS.DefaultOptionsRec

```
▷ SEMIGROUPS.DefaultOptionsRec
```

(global variable)

This global variable is a record whose components contain the default values of certain options for semigroups. A description of these options is given above in Section 6.3.

The value of SEMIGROUPS.DefaultOptionsRec is defined in the file semigroups/gap/options.g.

6.4 Subsemigroups and supersemigroups

6.4.1 ClosureSemigroup

```
▷ ClosureSemigroup(S, coll[, opts]) (operation)
▷ ClosureMonoid(S, coll[, opts]) (operation)
▷ ClosureInverseSemigroup(S, coll[, opts]) (operation)
▷ ClosureInverseMonoid(S, coll[, opts]) (operation)
```

Returns: A semigroup, monoid, inverse semigroup, or inverse monoid.

These operations return the semigroup, monoid, inverse semigroup or inverse monoid generated by the argument S and the collection of elements coll after removing duplicates and elements from coll that are already in S. In most cases, the new semigroup knows at least as much information about its structure as was already known about that of S.

When X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid), InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: InverseMonoid), the argument S of the operation ClosureX must belong to the category IsX, and ClosureX(S, coll) returns an object in the category IsX such that

```
ClosureX(S, coll) = X(S, coll);
```

but may have fewer generators, if for example, coll contains a duplicates or elements already known to belong to S.

For example, the argument S of ClosureInverseSemigroup must be an inverse semigroup in the category IsInverseSemigroup (**Reference:** IsInverseSemigroup). ClosureInverseSemigroup(S, coll) returns an inverse semigroup which is equal to InverseSemigroup(S, coll).

If present, the optional third argument *opts* should be a record containing the values of the options for the semigroup being created as described in Section 6.3.

```
Example
gap> gens := [Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
              Transformation([3, 8, 1, 4, 5, 6, 7, 1]),
              Transformation([4, 3, 2, 7, 7, 6, 6, 5]),
>
              Transformation([7, 1, 7, 4, 2, 5, 6, 3])];;
gap> S := Monoid(gens[1]);;
gap> for x in gens do
       S := ClosureSemigroup(S, x);
     od;
gap> S;
<transformation monoid of degree 8 with 4 generators>
gap> Size(S);
233606
gap> S := Monoid(PartialPerm([1]));
<trivial partial perm group of rank 1 with 1 generator>
gap> T := ClosureMonoid(S, [PartialPerm([2 .. 5])]);
<partial perm monoid of rank 5 with 2 generators>
gap> One(T);
<identity partial perm on [ 1, 2, 3, 4, 5 ]>
gap> T := ClosureSemigroup(S, [PartialPerm([2 .. 5])]);
<partial perm semigroup of rank 4 with 2 generators>
gap> One(T);
fail
gap> ClosureInverseMonoid(DualSymmetricInverseMonoid(3),
                          DClass(DualSymmetricInverseMonoid(3),
                                 IdentityBipartition(3)));
<inverse block bijection monoid of degree 3 with 3 generators>
gap> S := InverseSemigroup(Bipartition([[1, -1, -3], [2, 3, -2]]),
                           Bipartition([[1, -3], [2, -2], [3, -1]]);;
gap> T := ClosureInverseSemigroup(S, DClass(PartitionMonoid(3),
> IdentityBipartition(3)));
<inverse block bijection semigroup of degree 3 with 3 generators>
gap> T := ClosureInverseSemigroup(T, [T.1, T.1, T.1]);
<inverse block bijection semigroup of degree 3 with 3 generators>
gap> S := InverseMonoid([
> PartialPerm([5, 9, 10, 0, 6, 3, 8, 4, 0]),
> PartialPerm([10, 7, 0, 8, 0, 0, 5, 9, 1])]);;
gap> x := PartialPerm([
> 5, 1, 7, 3, 10, 0, 2, 12, 0, 14, 11, 0, 16, 0, 0, 0, 0, 6, 9, 15]);
[4,3,7,2,1,5,10,14] [8,12] [13,16] [18,6] [19,9] [20,15] (11)
```

```
gap> S := ClosureInverseSemigroup(S, x);
<inverse partial perm semigroup of rank 19 with 4 generators>
gap> Size(S);
9744
gap> T := Idempotents(SymmetricInverseSemigroup(10));;
gap> S := ClosureInverseSemigroup(S, T);
<inverse partial perm semigroup of rank 19 with 14 generators>
```

6.4.2 Subsemigroup By Property (for a semigroup and function)

```
    ▷ SubsemigroupByProperty(S, func) (operation)
    ▷ SubsemigroupByProperty(S, func, limit) (operation)
    Returns: A semigroup.
```

SubsemigroupByProperty returns the subsemigroup of the semigroup *S* generated by those elements of *S* fulfilling *func* (which should be a function returning true or false).

If no elements of S fulfil func, then fail is returned.

If the optional third argument *limit* is present and a positive integer, then once the subsemigroup has at least *limit* elements the computation stops.

```
gap> func := function(x)
> local n;
> n := DegreeOfTransformation(x);
> return 1 ^ x <> 1 and ForAll([1 .. n], y -> y = 1 or y ^ x = y);
> end;
function( x ) ... end
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(3), func);
<transformation semigroup of size 2, degree 3 with 2 generators>
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(4), func);
<transformation semigroup of size 3, degree 4 with 3 generators>
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(5), func);
<transformation semigroup of size 4, degree 5 with 4 generators>
```

6.4.3 InverseSubsemigroupByProperty

▷ InverseSubsemigroupByProperty(S, func)

(operation)

Returns: An inverse semigroup.

InverseSubsemigroupByProperty returns the inverse subsemigroup of the inverse semigroup S generated by those elements of S fulfilling func (which should be a function returning true or false).

If no elements of S fulfil func, then fail is returned.

If the optional third argument *limit* is present and a positive integer, then once the subsemigroup has at least *limit* elements the computation stops.

```
gap> IsIsometry := function(f)
> local n, i, j, k, l;
> n := RankOfPartialPerm(f);
> for i in [1 .. n - 1] do
> k := DomainOfPartialPerm(f)[i];
> for j in [i + 1 .. n] do
```

```
> l := DomainOfPartialPerm(f)[j];
> if not AbsInt(k ^ f - l ^ f) = AbsInt(k - l) then
> return false;
> fi;
> od;
> od;
> od;
> return true;
> end;;
gap> S := InverseSubsemigroupByProperty(SymmetricInverseSemigroup(5),
> IsIsometry);;
gap> Size(S);
142
```

6.5 Changing the representation of a semigroup

The Semigroups package provides two convenient constructors IsomorphismSemigroup (6.5.1) and IsomorphismMonoid (6.5.2) for changing the representation of a given semigroup or monoid. These methods can be used to find an isomorphism from any semigroup to a semigroup of any other type, provided such an isomorphism exists.

Note that at present neither IsomorphismSemigroup (6.5.1) nor IsomorphismMonoid (6.5.2) can be used to determine whether two given semigroups, or monoids, are isomorphic.

Some methods for IsomorphismSemigroup (6.5.1) and IsomorphismMonoid (6.5.2) are based on methods for the GAP library operations:

- IsomorphismReesMatrixSemigroup (Reference: IsomorphismReesMatrixSemigroup),
- AntiIsomorphismTransformationSemigroup (Reference: AntiIsomorphismTransformationSemigroup),
- IsomorphismTransformationSemigroup (Reference: IsomorphismTransformationSemigroup) and IsomorphismTransformationMonoid (Reference: IsomorphismTransformationMonoid),
- IsomorphismPartialPermSemigroup (Reference: IsomorphismPartialPermSemigroup) and IsomorphismPartialPermMonoid (Reference: IsomorphismPartialPermMonoid),
- IsomorphismFpSemigroup (Reference: IsomorphismFpSemigroup) and IsomorphismFpMonoid.

The operation IsomorphismMonoid (6.5.2) can be used to return an isomorphism from a semi-group which is mathematically a monoid (but does not below to the category of monoids in GAP IsMonoid (**Reference: IsMonoid**)) into a monoid. This is the primary purpose of the operation IsomorphismMonoid (6.5.2). Either IsomorphismSemigroup (6.5.1) or IsomorphismMonoid (6.5.2) can be used to change the representation of a monoid, but only the latter is guaranteed to return an object in the category of monoids.

```
gap> AsMonoid(IsBooleanMatMonoid, S);
<monoid of 10x10 boolean matrices with 2 generators>
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
                    Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> AsSemigroup(IsBooleanMatSemigroup, S);
<semigroup of 10x10 boolean matrices with 2 generators>
gap> AsMonoid(IsBooleanMatMonoid, S);
<monoid of 8x8 boolean matrices with 2 generators>
gap> M := Monoid([
> Bipartition([[1, -3], [2, 3, 6], [4, 7, -6], [5, -8], [8, -4, -5],
               [-1], [-2], [-7]]),
> Bipartition([[1, 3, -6], [2, -8], [4, 8, -1], [5], [6, -3, -4],
               [7], [-2], [-5], [-7]]),
> Bipartition([[1, 2, 4, -3, -7, -8], [3, 5, 6, 8, -4, -6],
               [7, -1, -2, -5]])]);;
gap> AsMonoid(IsPBRMonoid, M);
<pbr monoid of size 163, degree 163 with 3 generators>
gap> AsSemigroup(IsPBRSemigroup, M);
<pbr semigroup of size 163, degree 8 with 4 generators>
```

There are some further methods in Semigroups for obtaining an isomorphism from a Rees matrix, or 0-matrix, semigroup to another such semigroup with particular properties; RMSNormalization (6.5.7) and RZMSNormalization (6.5.6).

6.5.1 IsomorphismSemigroup

```
▷ IsomorphismSemigroup(filt, S)
```

(operation)

Returns: An isomorphism of semigroups.

IsomorphismSemigroup can be used to find an isomorphism from a given semigroup to a semigroup of another type, provided such an isomorphism exists.

The first argument filt must be of the form IsXSemigroup, for example, IsTransformationSemigroup (**Reference: IsTransformationSemigroup**), IsFpSemigroup (**Reference: IsFpSemigroup**), and IsPBRSemigroup (4.6.1) are some possible values for filt. Note that filt should not be of the form IsXMonoid; see IsomorphismMonoid (6.5.2). The second argument S should be a semigroup.

IsomorphismSemigroup returns an isomorphism from S to a semigroup T of the type described by filt, if such an isomorphism exists. More precisely, if T is the range of the returned isomorphism, then filt (T) will return true. For example, if filt is IsTransformationSemigroup, then the range of the returned isomorphism will be a transformation semigroup.

An error is returned if there is no isomorphism from S to a semigroup satisfying filt. For example, there is no method for IsomorphismSemigroup when filt is, say, IsReesMatrixSemigroup (**Reference: IsReesMatrixSemigroup**) and when S is a non-simple semigroup. Similarly, there is no method when filt is IsPartialPermSemigroup (**Reference: IsPartialPermSemigroup**) and when S is a non-inverse semigroup.

In some cases, if no better method is installed, IsomorphismSemigroup returns an isomorphism found by composing an isomorphism from S to a transformation semigroup T, and an isomorphism from T to a semigroup of type filt.

Note that if the argument S belongs to the category of monoids IsMonoid (**Reference: Is-Monoid**), then IsomorphismSemigroup will often, but not always, return a monoid isomorphism.

```
Example
gap> S := Semigroup([
> Bipartition([
    [1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([
    [1, -4], [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]])]);
<bipartition semigroup of degree 6 with 2 generators>
gap> IsomorphismSemigroup(IsTransformationSemigroup, S);
<bipartition semigroup of size 11, degree 6 with 2 generators> ->
<transformation semigroup of size 11, degree 12 with 2 generators>
gap> IsomorphismSemigroup(IsBooleanMatSemigroup, S);
<bipartition semigroup of size 11, degree 6 with 2 generators> ->
<semigroup of size 11, 12x12 boolean matrices with 2 generators>
gap> IsomorphismSemigroup(IsFpSemigroup, S);
<bipartition semigroup of size 11, degree 6 with 2 generators> ->
<fp semigroup with 2 generators and 5 relations of length 27>
gap> S := InverseSemigroup([
> PartialPerm([1, 2, 3, 6, 8, 10],
              [2, 6, 7, 9, 1, 5]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],
              [3, 8, 1, 9, 4, 10, 5, 6])]);;
gap> IsomorphismSemigroup(IsBipartitionSemigroup, S);
<inverse partial perm semigroup of rank 10 with 2 generators> ->
<inverse bipartition semigroup of degree 10 with 2 generators>
gap> S := SymmetricInverseMonoid(4);
<symmetric inverse monoid of degree 4>
gap> IsomorphismSemigroup(IsBlockBijectionSemigroup, S);
<symmetric inverse monoid of degree 4> ->
<inverse block bijection monoid of degree 5 with 3 generators>
gap> Size(Range(last));
209
gap> S := Semigroup([
> PartialPerm([3, 1]), PartialPerm([1, 3, 4])]);;
gap> IsomorphismSemigroup(IsBlockBijectionSemigroup, S);
<partial perm semigroup of rank 3 with 2 generators> ->
<block bijection semigroup of degree 5 with 2 generators>
```

6.5.2 IsomorphismMonoid

```
▷ IsomorphismMonoid(filt, S)
```

(operation)

Returns: An isomorphism of monoids.

IsomorphismMonoid can be used to find an isomorphism from a given semigroup which is mathematically a monoid (but might not belong to the category of monoids in GAP) to a monoid, provided such an isomorphism exists.

argument of form The first filt must be the IsXMonoid, for example, IsTransformationMonoid (Reference: IsTransformationMonoid), IsFpMonoid (Reference: **IsFpMonoid**), and IsBipartitionMonoid (3.8.1) are some possible values for filt. Note that filt should not be of the form IsXSemigroup; see IsomorphismSemigroup (6.5.1). The second argument S should be a semigroup which is mathematically a monoid but which may or may not belong to the category IsMonoid (Reference: IsMonoid) of monoids in GAP, i.e. S must satisfy

IsMonoidAsSemigroup (12.1.13).

IsomorphismMonoid returns a monoid isomorphism from S to a semigroup T of the type described by filt, if such an isomorphism exists. In this context, a *monoid isomorphism* is a semigroup isomorphism that maps the MultiplicativeNeutralElement (**Reference: MultiplicativeNeutralElement**) of S to the One (**Reference: One**) of T. If T is the range of the returned isomorphism, then filt (T) will return true. For example, if filt is IsTransformationMonoid, then the range of the returned isomorphism will be a transformation monoid.

An error is returned if there is no isomorphism from S to a monoid satisfying filt. For example, there is no method for IsomorphismMonoid when filt is, say, IsReesZeroMatrixSemigroup (Reference: IsReesZeroMatrixSemigroup) and when S is a not 0-simple. Similarly, there is no method when filt is IsPartialPermMonoid (Reference: IsPartialPermMonoid) and when S is a non-inverse monoid.

In some cases, if no better method is installed, IsomorphismMonoid returns an isomorphism found by composing an isomorphism from S to a transformation monoid T, and an isomorphism from T to a monoid of type filt.

6.5.3 AsSemigroup

```
▷ AsSemigroup(filt, S) (operation)
Returns: A semigroup.
```

AsSemigroup(filt, S) is just shorthand for Range(IsomorphismSemigroup(filt, S)), when S is a semigroup; see IsomorphismSemigroup (6.5.1) for more details.

Note that if the argument S belongs to the category of monoids IsMonoid (**Reference: Is-Monoid**), then AsSemigroup will often, but not always, return a monoid. A monoid is not returned if there is not a good monoid isomorphism from S to a monoid of the required type, but there is a good semigroup isomorphism.

If it is not possible to convert the semigroup S to a semigroup of type filt, then an error is given.

6.5.4 AsMonoid

▷ AsMonoid([filt,]S)

(operation)

Returns: A monoid or fail.

AsMonoid(filt, S) is just shorthand for Range(IsomorphismMonoid(filt, S)), when S is a semigroup or monoid; see IsomorphismMonoid (6.5.2) for more details.

If the first argument filt is omitted and the semigroup S is mathematically a monoid which does not belong to the category of monoids in GAP, then AsMonoid returns a monoid (in the category of monoids) isomorphic to S and of the same type as S. If S is already in the category of monoids and the first argument filt is omitted, then S is returned.

If the first argument filt is omitted and the semigroup S is not a monoid, i.e. it does not satisfy IsMonoidAsSemigroup (12.1.13), then fail is returned.

```
Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
                    Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> AsMonoid(S);
<transformation monoid of degree 8 with 2 generators>
gap> AsSemigroup(IsBooleanMatSemigroup, S);
<semigroup of 10x10 boolean matrices with 2 generators>
gap> AsMonoid(IsBooleanMatMonoid, S);
<monoid of 8x8 boolean matrices with 2 generators>
gap> S := Monoid(Bipartition([[1, -1, -3], [2, 3], [-2]]),
                 Bipartition([[1, -1], [2, 3, -3], [-2]]));
<bipartition monoid of degree 3 with 2 generators>
gap> AsMonoid(IsTransformationMonoid, S);
<transformation monoid of size 3, degree 3 with 2 generators>
gap> AsMonoid(S);
<bipartition monoid of size 3, degree 3 with 2 generators>
```

6.5.5 IsomorphismPermGroup

 ${\scriptstyle \rhd} \ \, {\tt IsomorphismPermGroup}(S)$

(attribute)

Returns: An isomorphism.

If the semigroup S is mathematically a group, so that it satisfies IsGroupAsSemigroup (12.1.7), then IsomorphismPermGroup returns an isomorphism to a permutation group.

If S is not a group then an error is given.

See also IsomorphismPermGroup (Reference: IsomorphismPermGroup).

```
Example
gap> S := Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5]),
                    Transformation([3, 3, 8, 2, 5, 6, 4, 4]));;
gap> IsGroupAsSemigroup(S);
gap> iso := IsomorphismPermGroup(S);;
gap> Source(iso) = S and Range(iso) = Group([(5, 6, 8), (2, 3, 8, 4)]);
gap> StructureDescription(Range(IsomorphismPermGroup(S)));
"S6"
gap> S := Range(IsomorphismPartialPermSemigroup(SymmetricGroup(4)));
<partial perm group of size 24, rank 4 with 2 generators>
gap> Range(IsomorphismPermGroup(S));
Group([(1,2,3,4),(1,2)])
gap> G := GroupOfUnits(PartitionMonoid(4));
<block bijection group of degree 4 with 2 generators>
gap> StructureDescription(G);
"S4"
gap> iso := IsomorphismPermGroup(G);;
gap> RespectsMultiplication(iso);
gap> inv := InverseGeneralMapping(iso);;
gap> ForAll(G, x \rightarrow (x ^iso) ^inv = x);
gap> ForAll(G, x \rightarrow ForAll(G, y \rightarrow (x * y) ^ iso = x ^ iso * y ^ iso));
true
```

6.5.6 RZMSNormalization

▷ RZMSNormalization(R)

(attribute)

Returns: An isomorphism.

If R is a Rees 0-matrix semigroup $M^0[I,T,\Lambda;P]$ then RZMSNormalization returns an isomorphism from R to a normalized Rees 0-matrix semigroup $S=M^0[I,T,\Lambda;Q]$. The structure matrix Q is obtained by normalizing the matrix P (see Matrix (**Reference: Matrix**)) and has the following properties:

• The matrix Q is in block diagonal form, and the blocks are ordered by decreasing size along the leading diagonal (the size of a block is defined to be the number of rows it contains multiplied by the number of columns it contains).

If the index sets I and Λ are partitioned into k parts according to the RZMSConnectedComponents (11.13.2) of S, giving a disjoint union $I = I_1 \cup ... \cup I_k$ and $\Lambda = \Lambda_1 \cup ... \cup \Lambda_k$, then the rth block corresponds to the sub-matrix Q_r of Q defined by I_r and Λ_r .

• The first non-zero entry in a row occurs no sooner than the first non-zero entry in any previous row.

• The first non-zero entry in a column occurs no sooner than the first non-zero entry in any previous column.

• The previous two items imply that if the matrix *P* has any rows/columns consisting entirely of zeroes, then these will become the final rows/columns of *Q*.

Furthermore, if T is a group (i.e. a semigroup for which IsGroupAsSemigroup (12.1.7) returns true), then the non-zero entries of the structure matrix Q are chosen such that the following hold:

- The first non-zero entry of every row and every column is equal to the identity of T.
- For each r, let Q_r be the sub-matrix of Q defined by I_r and Λ_r (as above), and let T_r be the subsemigroup of T generated by the non-zero entries of Q_r . Then the idempotent generated subsemigroup of S is equal to:
 - $-\bigcup_{r=1}^k M^0[I_r, T_r, \Lambda_r, Q_r]$, where the zeroes of these Rees 0-matrix semigroups are all identified with the zero of S.

The normalization given by RZMSNormalization is based on Theorem 2 of [Gra68] and is sometimes called *Graham normal form*. Note that isomorphic Rees 0-matrix semigroups can have normalizations which are not equal.

```
_ Example
gap> R := ReesZeroMatrixSemigroup(Group(()),
> [[0, (), 0],
> [(), 0, 0],
> [0, 0, ()]]);
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> iso := RZMSNormalization(R);
<Rees 0-matrix semigroup 3x3 over Group(())> ->
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> S := Range(iso);
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> Matrix(S);
[[(), 0, 0], [0, (), 0], [0, 0, ()]]
gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(4),
> [[0, 0, 0, (1, 3, 2)],
> [(2, 3), 0, 0, 0],
> [0, 0, (1, 3), (1, 2)],
> [0, (4, 1, 2, 3), 0, 0]]);
<Rees 0-matrix semigroup 4x4 over Sym( [ 1 .. 4 ] )>
gap> S := Range(RZMSNormalization(R));
<Rees 0-matrix semigroup 4x4 over Sym([1..4])>
gap> Matrix(S);
[[(), (), 0, 0], [0, (), 0, 0], [0, 0, (), 0], [0, 0, 0, ()]
```

6.5.7 RMSNormalization

▷ RMSNormalization(R)

(attribute)

Returns: An isomorphism.

If R is a Rees matrix semigroup over a group G (i.e. a semigroup for which IsGroupAsSemigroup (12.1.7) returns true), then RMSNormalization returns an isomorphism from R to a *normalized* Rees matrix semigroup S over G.

The semigroup S is normalized in the sense that the first entry of each row and column of the Matrix (**Reference: Matrix**) of S is the identity element of G.

```
gap> R := ReesMatrixSemigroup(SymmetricGroup(4),
> [[(1, 2), (2, 4, 3), (2, 1, 4)],
> [(1, 3, 2), (1, 2)(3, 4), ()],
> [(2, 3), (1, 3, 2, 4), (2, 3)]]);
<Rees matrix semigroup 3x3 over Sym([1 .. 4])>
gap> iso := RMSNormalization(R);
<Rees matrix semigroup 3x3 over Sym([1 .. 4])> ->
<Rees matrix semigroup 3x3 over Sym([1 .. 4])> gap> S := Range(iso);
<Rees matrix semigroup 3x3 over Sym([1 .. 4])>
gap> Matrix(S);
[[(), (), ()], [(), (1,2), (1,4,2,3)], [(), (1,4,2,3), (2,4)]]
```

6.5.8 IsomorphismReesMatrixSemigroup (for a semigroup)

```
    ▷ IsomorphismReesMatrixSemigroup(S) (attribute)
    ▷ IsomorphismReesZeroMatrixSemigroup(S) (attribute)
    ▷ IsomorphismReesMatrixSemigroupOverPermGroup(S) (attribute)
    ▷ IsomorphismReesZeroMatrixSemigroupOverPermGroup(S) (attribute)
    Returns: An isomorphism.
```

If the semigroup S is finite and simple, then IsomorphismReesMatrixSemigroup returns an isomorphism to a Rees matrix semigroup over some group (usually a permutation group), and IsomorphismReesMatrixSemigroupOverPermGroup returns an isomorphism to a Rees matrix semigroup over a permutation group.

If S is finite and 0-simple, then IsomorphismReesZeroMatrixSemigroup returns an isomorphism to a Rees 0-matrix semigroup over some group (usually a permutation group), and IsomorphismReesZeroMatrixSemigroupOverPermGroup returns an isomorphism to a Rees 0-matrix semigroup over a permutation group.

See also InjectionPrincipalFactor (10.4.7).

6.5.9 AntiIsomorphismDualFpSemigroup

Returns: A finitely presented semigroup or monoid.

AntiIsomorphismDualFpSemigroup returns an anti-isomorphism (MappingByFunction (**Reference: MappingByFunction**)) from the finitely presented semigroup S to another finitely presented semigroup. The range finitely presented semigroup is obtained from S by reversing the relations of S.

AntiIsomorphismDualFpMonoid works analogously when *S* is a finitely presented monoid, and the range of the returned anti-isomorphism is a finitely presented monoid.

6.6 Random semigroups

6.6.1 RandomSemigroup

```
    ▷ RandomSemigroup(arg...)
    ▷ RandomMonoid(arg...)
    ▷ RandomInverseSemigroup(arg...)
    ▷ RandomInverseMonoid(arg...)
    (function)
    (function)
```

Returns: A semigroup.

The operations described in this section can be used to generate semigroups, in some sense, at random. There is no guarantee given about the distribution of these semigroups, and this is only intended as a means of generating semigroups for testing and other similar purposes.

Roughly speaking, the arguments of RandomSemigroup are a filter specifying the type of the semigroup to be returned, together with some further parameters that describe some attributes of the semigroup to be returned. For instance, we may want to specify the number of generators, and, say, the degree, or dimension, of the elements, where appropriate. The arguments of RandomMonoid, RandomInverseSemigroup, and RandomInverseMonoid are analogous.

If no arguments are specified, then they are all chosen at random, for a truly random experience.

The first argument, if present, should be a filter filter. For RandomSemigroup and RandomInverseSemigroup the filter must be of the form IsXSemigroup. For example, IsTransformationSemigroup (Reference: IsTransformationSemigroup), IsFpSemigroup

(**Reference: IsFpSemigroup**), and IsPBRSemigroup (4.6.1) are some possible values for *filter*. For RandomMonoid and RandomInverseMonoid the argument *filter* must be of the form IsXMonoid; such as IsBipartitionMonoid (3.8.1) or IsBooleanMatMonoid (5.7.2).

Suppose that the first argument filter is IsFpSemigroup (**Reference: IsFpSemigroup**). Then the only other arguments that can be specified is (and this argument is also optional):

number of generators

The second argument, if present, should be a positive integer m indicating the number of generators that the semigroup should have. If the second argument m is not specified, then a number is selected at random.

If *filter* is a filter such as IsTransformationSemigroup (**Reference: IsTransformationSemigroup**) or IsIntegerMatrixSemigroup (5.7.1), then a further argument can be specified:

degree / dimension

The third argument, if present, should be a positive integer n, which specifies the degree or dimension of the generators. For example, if the first argument filter is IsTransformationSemigroup, then the value of this argument is the degree of the transformations in the returned semigroup; or if filter is IsMatrixOverFiniteFieldSemigroup, then this argument is the dimension of the matrices in the returned semigroup.

If *filter* is IsTropicalMaxPlusMatrixSemigroup (5.7.1), for example, then a fourth argument can be given (or not!):

threshold

The fourth argument, if present, should be a positive integer t, which specifies the threshold of the semiring over which the matrices in the returned semigroup are defined.

You get the idea, the error messages are self-explanatory, and RandomSemigroup works for most of the type of semigroups defined in GAP.

RandomMonoid is similar to RandomSemigroup except it returns a monoid. Likewise, RandomInverseSemigroup and RandomInverseMonoid return inverse semigroups and monoids, respectively.

```
_ Example -
gap> RandomSemigroup();
<semigroup of 10x10 max-plus matrices with 12 generators>
gap> RandomMonoid(IsTransformationMonoid);
<transformation monoid of degree 9 with 7 generators>
gap> RandomMonoid(IsPartialPermMonoid, 2);
<partial perm monoid of rank 17 with 2 generators>
gap> RandomMonoid(IsPartialPermMonoid, 2, 3);
<partial perm monoid of rank 3 with 2 generators>
gap> RandomInverseSemigroup(IsTropicalMinPlusMatrixSemigroup);
<semigroup of 6x6 tropical min-plus matrices with 14 generators>
gap> RandomInverseSemigroup(IsTropicalMinPlusMatrixSemigroup, 1);
<semigroup of 6x6 tropical min-plus matrices with 14 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2);
<semigroup of 11x11 tropical min-plus matrices with 2 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2, 1);
<semigroup of 1x1 tropical min-plus matrices with 2 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2, 1, 3);
```

```
gap> last.1;
Matrix(IsTropicalMinPlusMatrix, [[infinity]], 3)
gap> RandomSemigroup(IsNTPMatrixSemigroup, 2, 1, 3, 4);
<semigroup of 1x1 ntp matrices with 2 generators>
gap> last.1;
Matrix(IsNTPMatrix, [[2]], 3, 4)
gap> RandomSemigroup(IsReesMatrixSemigroup, 2, 2);
<Rees matrix semigroup 2x2 over
  <permutation group of size 659 with 1 generator>>
gap> RandomSemigroup(IsReesZeroMatrixSemigroup, 2, 2, Group((1, 2), (3, 4)));
<Rees 0-matrix semigroup 2x2 over Group([ (1,2), (3,4) ])>
gap> RandomInverseMonoid(IsMatrixOverFiniteFieldMonoid, 2, 2);
<monoid of 3x3 matrices over GF(421^4) with 3 generators>
gap> RandomInverseMonoid(IsMatrixOverFiniteFieldMonoid, 2, 2, GF(7));
<monoid of 3x3 matrices over GF(7) with 2 generators>
gap> RandomSemigroup(IsBipartitionSemigroup, 5, 5);
<bipartition semigroup of degree 5 with 5 generators>
gap> RandomMonoid(IsBipartitionMonoid, 5, 5);
<bipartition monoid of degree 5 with 5 generators>
gap> RandomSemigroup(IsBooleanMatSemigroup);
<semigroup of 3x3 boolean matrices with 18 generators>
gap> RandomMonoid(IsBooleanMatMonoid);
<monoid of 11x11 boolean matrices with 19 generators>
```

Chapter 7

Standard examples

In this chapter we describe some standard families of examples of semigroups and monoids which are available in the Semigroups package.

7.1 Transformation semigroups

In this section, we describe the operations in Semigroups that can be used to create transformation semigroups belonging to several standard classes of example. See (**Reference: Transformations**) for more information about transformations.

7.1.1 CatalanMonoid

▷ CatalanMonoid(n)

(operation)

Returns: A transformation monoid.

If n is a positive integer, then this operation returns the Catalan monoid of degree n. The Catalan monoid is the semigroup of the order-preserving and order-decreasing transformations of $[1 \dots n]$ with the usual ordering.

The Catalan monoid is generated by the n-1 transformations f_i :

where i = 1, ..., n-1 and has size equal to the *n*th Catalan number.

```
gap> S := CatalanMonoid(6);
<transformation monoid of degree 6 with 5 generators>
gap> Size(S);
132
```

7.1.2 EndomorphismsPartition

▷ EndomorphismsPartition(list)

(operation)

Returns: A transformation monoid.

If *list* is a list of positive integers, then EndomorphismsPartition returns a monoid of endomorphisms preserving a partition of [1 ... Sum(*list*)] with a part of length *list*[i] for every i.

For example, if list = [1, 2, 3], then EndomorphismsPartition returns the monoid of endomorphisms of the partition [[1], [2, 3], [4, 5, 6]].

If f is a transformation of [1 ... n], then it is an ENDOMORPHISM of a partition P on [1 ... n] if (i, j) in P implies that $(i ^f, j ^f)$ is in P.

EndomorphismsPartition returns a monoid with a minimal size generating set, as described in [ABMS15].

```
gap> S := EndomorphismsPartition([3, 3, 3]);
<transformation semigroup of degree 9 with 4 generators>
gap> Size(S);
531441
```

7.1.3 PartialTransformationMonoid

▷ PartialTransformationMonoid(n)

(operation)

Returns: A transformation monoid.

If n is a positive integer, then this function returns a semigroup of transformations on n+1 points which is isomorphic to the semigroup consisting of all partial transformation on n points. This monoid has $(n + 1) \cap n$ elements.

```
gap> S := PartialTransformationMonoid(5);
<regular transformation monoid of degree 6 with 4 generators>
gap> Size(S);
7776
```

7.1.4 Singular Transformation Semigroup

▷ SingularTransformationSemigroup(n)

(operation)

▷ SingularTransformationMonoid(n)

(operation)

Returns: The semigroup of non-invertible transformations.

If n is a integer greater than 1, then this function returns the semigroup of non-invertible transformations, which is generated by the n(n-1) idempotents of degree n and rank n-1 and has $n^n-n!$ elements.

```
gap> S := SingularTransformationSemigroup(4);
<regular transformation semigroup ideal of degree 4 with 1 generator>
gap> Size(S);
232
```

7.1.5 Semigroups of order-preserving transformations

- ▷ OrderEndomorphisms(n) (operation)
- ▷ SingularOrderEndomorphisms(n) (operation)
- ▷ OrderAntiEndomorphisms(n) (operation)
- PartialOrderEndomorphisms(n) (operation)
- PartialOrderAntiEndomorphisms(n) (operation)

Returns: A semigroup of transformations related to a linear order.

OrderEndomorphisms(n)

OrderEndomorphisms (n) returns the monoid of transformations that preserve the usual order on $\{1,2,\ldots,n\}$, where n is a positive integer. OrderEndomorphisms (n) is generated by the n+1 transformations:

where i = 0, ..., n-1, and has $\binom{2n-1}{n-1}$ elements.

SingularOrderEndomorphisms(n)

SingularOrderEndomorphisms(n) returns the ideal of OrderEndomorphisms(n) consisting of the non-invertible elements, when n is at least 2. The only invertible element in OrderEndomorphisms(n) is the identity transformation. Therefore SingularOrderEndomorphisms(n) has $\binom{2n-1}{n-1}-1$ elements.

OrderAntiEndomorphisms(n)

OrderAntiEndomorphisms (n) returns the monoid of transformations that preserve or reverse the usual order on $\{1,2,\ldots,n\}$, where n is a positive integer. OrderAntiEndomorphisms (n) is generated by the generators of OrderEndomorphisms (n) along with the bijective transformation that reverses the order on $\{1,2,\ldots,n\}$. The monoid OrderAntiEndomorphisms (n) has $\binom{2n-1}{n-1}-n$ elements.

PartialOrderEndomorphisms(n)

PartialOrderEndomorphisms (n) returns a monoid of transformations on n+1 points that is isomorphic to the monoid consisting of all partial transformations that preserve the usual order on $\{1,2,\ldots,n\}$.

PartialOrderAntiEndomorphisms(n)

PartialAntiOrderEndomorphisms (n) returns a monoid of transformations on n+1 points that is isomorphic to the monoid consisting of all partial transformations that preserve or reverse the usual order on $\{1,2,\ldots,n\}$.

```
____ Example _
gap> S := OrderEndomorphisms(5);
<regular transformation monoid of degree 5 with 5 generators>
gap> IsIdempotentGenerated(S);
true
gap> Size(S) = Binomial(2 * 5 - 1, 5 - 1);
gap> Difference(S, SingularOrderEndomorphisms(5));
[ IdentityTransformation ]
gap> SingularOrderEndomorphisms(10);
<regular transformation semigroup ideal of degree 10 with 1 generator>
gap> T := OrderAntiEndomorphisms(4);
<regular transformation monoid of degree 4 with 5 generators>
gap> Transformation([4, 2, 2, 1]) in T;
gap> U := PartialOrderEndomorphisms(6);
<regular transformation monoid of degree 7 with 12 generators>
gap> V := PartialOrderAntiEndomorphisms(6);
<regular transformation monoid of degree 7 with 13 generators>
```

```
gap> IsSubsemigroup(V, U);
true
```

7.1.6 EndomorphismMonoid (for a digraph)

```
    ▷ EndomorphismMonoid(digraph) (attribute)
    ▷ EndomorphismMonoid(digraph, colors) (operation)
    Returns: A monoid.
```

An endomorphism of *digraph* is a homomorphism DigraphHomomorphism (**Digraphs: DigraphHomomorphism**) from *digraph* back to itself.

EndomorphismMonoid, called with a single argument, returns the monoid of all endomorphisms of digraph.

If the *colors* argument is specified, then it will return the monoid of endomorphisms which respect the given colouring. The colouring *colors* can be in one of two forms:

- A list of positive integers of size the number of vertices of digraph, where colors [i] is the colour of vertex i.
- A list of lists, such that colors [i] is a list of all vertices with colour i.

See also GeneratorsOfEndomorphismMonoid (**Digraphs:** GeneratorsOfEndomorphismMonoid). Note that the performance of EndomorphismMonoid may differ from that of GeneratorsOfEndomorphismMonoid (**Digraphs:** GeneratorsOfEndomorphismMonoid) since the former incrementally adds newly discovered endomorphisms to the monoid using ClosureMonoid (6.4.1).

```
gap> gr := Digraph(List([1 .. 3], x -> [1 .. 3]));;
gap> EndomorphismMonoid(gr);
<transformation monoid of degree 3 with 3 generators>
gap> gr := CompleteDigraph(3);;
gap> EndomorphismMonoid(gr);
<transformation group of size 6, degree 3 with 2 generators>
gap> S := EndomorphismMonoid(gr, [1, 2, 2]);;
gap> IsGroupAsSemigroup(S);
true
gap> Size(S);
2
gap> S := EndomorphismMonoid(gr, [[1], [2, 3]]);;
gap> S := EndomorphismMonoid(gr, [1, 2, 2]);;
gap> IsGroupAsSemigroup(S);
true
```

7.2 Semigroups of partial permutations

In this section, we describe the operations in Semigroups that can be used to create semigroups of partial permutations belonging to several standard classes of example. See (**Reference: Partial permutations**) for more information about partial permutations.

7.2.1 MunnSemigroup

▷ MunnSemigroup(S)

(attribute)

Returns: The Munn semigroup of a semilattice.

If S is a semilattice, then MunnSemigroup returns the inverse semigroup of partial permutations of isomorphisms of principal ideals of S; called the *Munn semigroup* of S.

This function was written jointly by J. D. Mitchell, Yann Péresse (St Andrews), Yanhui Wang (York).

7.2.2 RookMonoid

▷ RookMonoid(n) (operation)

Returns: An inverse monoid of partial permutations.

RookMonoid is a synonym for SymmetricInverseMonoid (Reference: SymmetricInverse-Monoid).

```
gap> S := RookMonoid(4);
  <symmetric inverse monoid of degree 4>
  gap> S = SymmetricInverseMonoid(4);
  true
```

7.2.3 Inverse monoids of order-preserving partial permutations

```
    ▷ POI(n)
    ▷ PODI(n)
    ▷ POPI(n)
    ▷ PORI(n)
    ▷ (operation)
    ▷ PORI(n)
```

Returns: An inverse monoid of partial permutations related to a linear order.

POI(n)

POI(n) returns the inverse monoid of partial permutations that preserve the usual order on $\{1, 2, ..., n\}$, where n is a positive integer. POI(n) is generated by the n partial permutations:

where i = 1, ..., n - 1, and has $\binom{2n}{n}$ elements.

PODI(n)

PODI(n) returns the inverse monoid of partial permutations that preserve or reverse the usual order on $\{1,2,\ldots,n\}$, where n is a positive integer. PODI(n) is generated by the generators of POI(n), along with the permutation that reverses the usual order on $\{1,2,\ldots,n\}$. PODI(n) has $\binom{2n}{n}-n^2-1$ elements.

POPI(n)

POPI(n) returns the inverse monoid of partial permutations that preserve the orientation of $\{1,2,\ldots,n\}$, where n is a positive integer. POPI(n) is generated by the partial permutations:

$$\left(\begin{array}{ccccc} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{array}\right), \qquad \left(\begin{array}{cccccc} 1 & 2 & \cdots & n-2 & n-1 & n \\ 1 & 2 & \cdots & n-2 & n & - \end{array}\right),$$

and has $1 + \frac{n}{2} \binom{2n}{n}$ elements.

PORI(n)

PORI(n) returns the inverse monoid of partial permutations that preserve or reverse the orientation of $\{1,2,\ldots,n\}$, where n is a positive integer. PORI(n) is generated by the generators of POPI(n), along with the permutation that reverses the usual order on $\{1,2,\ldots,n\}$. PORI(n) has $\frac{n}{2}\binom{2n}{n} - n(n+1)$ elements.

```
_____ Example __
gap> S := PORI(10);
<inverse partial perm monoid of rank 10 with 3 generators>
gap> S := POPI(10);
<inverse partial perm monoid of rank 10 with 2 generators>
gap> Size(S) = 1 + 5 * Binomial(20, 10);
true
gap> S := PODI(10);
<inverse partial perm monoid of rank 10 with 11 generators>
gap> S := POI(10);
<inverse partial perm monoid of rank 10 with 10 generators>
gap> Size(S) = Binomial(20, 10);
gap> IsSubsemigroup(PORI(10), PODI(10))
> and IsSubsemigroup(PORI(10), POPI(10))
> and IsSubsemigroup(PODI(10), POI(10))
> and IsSubsemigroup(POPI(10), POI(10));
true
```

7.3 Semigroups of bipartitions

In this section, we describe the operations in Semigroups that can be used to create bipartition semigroups belonging to several standard classes of example. See Chapter 3 for more information about bipartitions.

7.3.1 PartitionMonoid

```
    PartitionMonoid(n) (operation)
    RookPartitionMonoid(n) (operation)
```

▷ SingularPartitionMonoid(n)

(operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then this operation returns the partition monoid of degree n. The partition monoid of degree n is the monoid consisting of all the bipartitions of degree n.

SingularPartitionMonoid returns the ideal of the partition monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is positive.

If n is positive, then RookPartitionMonoid returns submonoid of the partition monoid of degree n + 1 consisting of those bipartitions with n + 1 and -n - 1 in the same block; see [HR05], [Gr006], and [Eas19].

```
gap> S := PartitionMonoid(4);
<regular bipartition *-monoid of size 4140, degree 4 with 4
  generators>
  gap> Size(S);
4140
  gap> T := SingularPartitionMonoid(4);
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
  gap> Size(S) - Size(T) = Factorial(4);
  true
  gap> S := RookPartitionMonoid(4);
<regular bipartition *-monoid of degree 5 with 5 generators>
  gap> Size(S);
21147
```

7.3.2 BrauerMonoid

```
▷ BrauerMonoid(n) (operation)

▷ PartialBrauerMonoid(n) (operation)

▷ SingularBrauerMonoid(n) (operation)
```

Returns: A bipartition monoid.

If n is a non-negative integer, then this operation returns the Brauer monoid of degree n. The Brauer monoid is the submonoid of the partition monoid consisiting of those bipartitions where the size of every block is 2.

PartialBrauerMonoid returns the partial Brauer monoid, which is the submonoid of the partition monoid consisting of those bipartitions where the size of every block is *at most* 2. The partial Brauer monoid contains the Brauer monoid as a submonoid.

SingularBrauerMonoid returns the ideal of the Brauer monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is at least 2.

```
true
gap> Size(S);
76
```

7.3.3 JonesMonoid

```
▷ JonesMonoid(n) (operation)
▷ TemperleyLiebMonoid(n) (operation)
▷ SingularJonesMonoid(n) (operation)
```

Returns: A bipartition monoid.

If n is a non-negative integer, then this operation returns the Jones monoid of degree n. The *Jones monoid* is the subsemigroup of the Brauer monoid consisting of those bipartitions that are planar; see PlanarPartitionMonoid (7.3.9). The Jones monoid is sometimes referred to as the TEMPERLEY-LIEB MONOID.

Singular Jones Monoid returns the ideal of the Jones monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is at least 2.

```
gap> S := JonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 3 generators>
gap> S = TemperleyLiebMonoid(4);
true
gap> SingularJonesMonoid(8);
<regular bipartition *-semigroup ideal of degree 8 with 1 generator>
```

7.3.4 Partial.JonesMonoid

▷ PartialJonesMonoid(n)

(operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then Partial Jones Monoid returns the partial Jones monoid of degree n. The partial Jones monoid is a subsemigroup of the partial Brauer monoid. An element of the partial Brauer monoid is contained in the partial Jones monoid if the partition that it defines is finer than the partition defined by some element of the Jones monoid. In other words, an element of the partial Jones monoid can be formed from some element x of the Jones monoid by replacing some blocks [a, b] of x by singleton blocks [a], [b].

Note that, in general, the partial Jones monoid of degree n is strictly contained in the Motzkin monoid of the same degree.

See PartialBrauerMonoid (7.3.2), JonesMonoid (7.3.3), and MotzkinMonoid (7.3.6).

```
323
gap> Size(S);
143
gap> Size(T);
14
```

7.3.5 Annular.JonesMonoid

▷ AnnularJonesMonoid(n)

(operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then Annular Jones Monoid returns the annular Jones monoid of degree n. The *annular Jones monoid* is the subsemigroup of the partition monoid consisting of all annular bipartitions whose blocks have size 2 (annular bipartitions are defined in Chapter 3). See BrauerMonoid (7.3.2).

```
gap> S := AnnularJonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 2 generators>
```

7.3.6 MotzkinMonoid

▷ MotzkinMonoid(n)

(operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then this operation returns the Motzkin monoid of degree n. The *Motzkin monoid* is the subsemigroup of the partial Brauer monoid consisting of those bipartitions that are planar (planar bipartitions are defined in Chapter 3).

Note that the Motzkin monoid of degree n contains the partial Jones monoid of degree n, but in general, these monoids are not equal; see Partial Jones Monoid (7.3.4).

7.3.7 DualSymmetricInverseSemigroup

```
▷ DualSymmetricInverseSemigroup(n) (operation)
▷ DualSymmetricInverseMonoid(n) (operation)
▷ SingularDualSymmetricInverseMonoid(n) (operation)
▷ PartialDualSymmetricInverseMonoid(n) (operation)
```

Returns: An inverse bipartition monoid.

If n is a positive integer, then the operations DualSymmetricInverseSemigroup and DualSymmetricInverseMonoid return the dual symmetric inverse monoid of degree n, which is the subsemigroup of the partition monoid consisting of the block bijections of degree n.

SingularDualSymmetricInverseMonoid returns the ideal of the dual symmetric inverse monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is at least 2.

PartialDualSymmetricInverseMonoid returns the submonoid of the dual symmetric inverse monoid of degree n + 1 consisting of those block bijections with n + 1 and -n - 1 in the same block; see [KM11] and [KMU15].

See IsBlockBijection (3.5.16).

```
gap> Number(PartitionMonoid(3), IsBlockBijection);
25
gap> S := DualSymmetricInverseSemigroup(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> Size(S);
25
gap> S := PartialDualSymmetricInverseMonoid(5);
<inverse block bijection monoid of degree 6 with 4 generators>
gap> Size(S);
29072
```

7.3.8 UniformBlockBijectionMonoid

```
    ▷ UniformBlockBijectionMonoid(n) (operation)
    ▷ FactorisableDualSymmetricInverseMonoid(n) (operation)
    ▷ SingularUniformBlockBijectionMonoid(n) (operation)
    ▷ PartialUniformBlockBijectionMonoid(n) (operation)
    ▷ SingularFactorisableDualSymmetricInverseMonoid(n) (operation)
    ▷ PlanarUniformBlockBijectionMonoid(n) (operation)
    ▷ SingularPlanarUniformBlockBijectionMonoid(n) (operation)
```

Returns: An inverse bipartition monoid.

If n is a positive integer, then this operation returns the uniform block bijection monoid of degree n. The *uniform block bijection monoid* is the submonoid of the partition monoid consisting of the block bijections of degree n where the number of positive integers in a block equals the number of negative integers in that block. The uniform block bijection monoid is also referred to as the *factorisable dual symmetric inverse monoid*.

SingularUniformBlockBijectionMonoid returns the ideal of the uniform block bijection monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is at least 2.

PlanarUniformBlockBijectionMonoid returns the submonoid of the uniform block bijection monoid consisting of the planar elements (i.e. those in the planar partition monoid, see PlanarPartitionMonoid (7.3.9)).

SingularPlanarUniformBlockBijectionMonoid returns the ideal of the planar uniform block bijection monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is at least 2

PartialUniformBlockBijectionMonoid returns the submonoid of the uniform block bijection monoid of degree n + 1 consisting of those uniform block bijection with n + 1 and -n - 1 in the same block.

See IsUniformBlockBijection (3.5.17).

```
Example
gap> S := UniformBlockBijectionMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> Size(PlanarUniformBlockBijectionMonoid(8));
gap> S := DualSymmetricInverseMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> IsFactorisableInverseMonoid(S);
false
gap> S := UniformBlockBijectionMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> IsFactorisableInverseMonoid(S);
true
gap> S := AsSemigroup(IsBipartitionSemigroup,
                      SymmetricInverseMonoid(5));
<inverse bipartition monoid of degree 5 with 3 generators>
gap> IsFactorisableInverseMonoid(S);
true
gap> S := PartialUniformBlockBijectionMonoid(5);
<inverse block bijection monoid of degree 6 with 4 generators>
gap> NrIdempotents(S);
203
gap> IsFactorisableInverseMonoid(S);
true
```

7.3.9 PlanarPartitionMonoid

```
    ▷ PlanarPartitionMonoid(n) (operation)
    ▷ SingularPlanarPartitionMonoid(n) (operation)
    Returns: A bipartition monoid.
```

If n is a positive integer, then this operation returns the planar partition monoid of degree n which is the monoid consisting of all the planar bipartitions of degree n (planar bipartitions are defined in Chapter 3).

SingularPlanarPartitionMonoid returns the ideal of the planar partition monoid consisting of the non-invertible elements (i.e. those not in the group of units).

7.3.10 ModularPartitionMonoid

```
    ▷ ModularPartitionMonoid(m, n) (operation)
    ▷ SingularModularPartitionMonoid(m, n) (operation)
    ▷ PlanarModularPartitionMonoid(m, n) (operation)
    ▷ SingularPlanarModularPartitionMonoid(m, n) (operation)
```

Returns: A bipartition monoid.

If m and n are positive integers, then this operation returns the modular-m partition monoid of degree n. The *modular-m partition monoid* is the submonoid of the partition monoid such that the numbers of positive and negative integers contained in each block are congruent mod m.

SingularModularPartitionMonoid returns the ideal of the modular partition monoid consisting of the non-invertible elements (i.e. those not in the group of units), when either m = n = 1 or m, n > 1.

PlanarModularPartitionMonoid returns the submonoid of the modular-m partition monoid consisting of the planar elements (i.e. those in the planar partition monoid, see PlanarPartitionMonoid (7.3.9)).

SingularPlanarModularPartitionMonoid returns the ideal of the planar modular partition monoid consisting of the non-invertible elements (i.e. those not in the group of units), when either m = n = 1 or m, n > 1.

```
Example -
gap> S := ModularPartitionMonoid(3, 6);
<regular bipartition *-monoid of degree 6 with 4 generators>
gap> Size(S);
36243
gap> S := SingularModularPartitionMonoid(1, 1);
<commutative inverse bipartition semigroup ideal of degree 1 with</pre>
  1 generator>
gap> Size(SingularModularPartitionMonoid(2, 4));
gap> S := PlanarModularPartitionMonoid(4, 9);
<regular bipartition *-monoid of degree 9 with 14 generators>
gap> Size(S);
1795
gap> S := SingularPlanarModularPartitionMonoid(3, 5);
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
gap> Size(SingularPlanarModularPartitionMonoid(1, 2));
13
```

7.3.11 ApsisMonoid

```
▷ ApsisMonoid(m, n) (operation)
▷ SingularApsisMonoid(m, n) (operation)
▷ CrossedApsisMonoid(m, n) (operation)
▷ SingularCrossedApsisMonoid(m, n) (operation)
```

Returns: A bipartition monoid.

If m and n are positive integers, then this operation returns the m-apsis monoid of degree n. The m-apsis monoid is the monoid of bipartitions generated when the diapses in generators of the Jones monoid are replaced with m-apses. Note that an m-apsis is a block that contains precisely m consecutive integers.

SingularApsisMonoid returns the ideal of the apsis monoid consisting of the non-invertible elements (i.e. those not in the group of units), when $m \le n$.

CrossedApsisGeneratedMonoid returns the semigroup generated by the symmetric group of degree n and the m-apsis monoid of degree n.

SingularCrossedApsisMonoid returns the ideal of the crossed apsis monoid consisting of the non-invertible elements (i.e. those not in the group of units), when $m \le n$.

```
gap> S := ApsisMonoid(3, 7);
<regular bipartition *-monoid of degree 7 with 5 generators>
gap> Size(S);
320
gap> T := SingularApsisMonoid(3, 7);
<regular bipartition *-semigroup ideal of degree 7 with 1 generator>
gap> Difference(S, T) = [One(S)];
true
gap> Size(CrossedApsisMonoid(2, 5));
945
gap> SingularCrossedApsisMonoid(4, 6);
<regular bipartition *-semigroup ideal of degree 6 with 1 generator>
```

7.4 Standard PBR semigroups

In this section, we describe the operations in Semigroups that can be used to create standard examples of semigroups of partitioned binary relations (PBRs). See Chapter 4 for more information about PBRs.

7.4.1 FullPBRMonoid

```
▷ FullPBRMonoid(n) (operation)
```

Returns: A PBR monoid.

If n is a positive integer not greater than 2, then this operation returns the monoid consisting of all of the partitioned binary relations (PBRs) of degree n; called the *full PBR monoid*. There are 2 ^ ((2 * n) ^ 2) PBRs of degree n. The full PBR monoid of degree n is currently too large to compute when n > 3.

The full PBR monoid is not regular in general.

```
gap> S := FullPBRMonoid(1);
<pbr monoid of degree 1 with 4 generators>
gap> S := FullPBRMonoid(2);
<pbr monoid of degree 2 with 10 generators>
```

7.5 Semigroups of matrices over a finite field

In this section, we describe the operations in Semigroups that can be used to create semigroups of matrices over a finite field that belonging to several standard classes of example. See the section 'Matrices over finite fields' for more information about matrices over a finite field.

7.5.1 FullMatrixMonoid

```
ightharpoonup FullMatrixMonoid(d, q) (operation)

ightharpoonup (operation)
```

```
\triangleright GLM(d, q) (operation)
```

Returns: A matrix monoid.

These operations return the full matrix monoid of d by d matrices over the field with q elements. The *full matrix monoid*, also known as the *general linear monoid*, with these parameters, is the monoid consisting of all d by d matrices with entries from the field GF(q). This monoid has $q \land (d \land 2)$ elements.

7.5.2 SpecialLinearMonoid

Returns: A matrix monoid.

These operations return the special linear monoid of d by d matrices over the field with q elements. The *special linear monoid* is the monoid consisting of all d by d matrices with entries from the field GF(q) that have determinant 0 or 1. In other words, the special linear monoid is formed from the general linear monoid of the same parameters by replacing its group of units (the general linear group) by the special linear group.

```
gap> S := SpecialLinearMonoid(2, 4);
<regular monoid of 2x2 matrices over GF(2^2) with 3 generators>
gap> S = SLM(2, 4);
true
gap> Size(S);
136
```

7.5.3 IsFullMatrixMonoid

```
ightharpoonup IsFullMatrixMonoid(S) (property)

ightharpoonup (property)
```

IsFullMatrixMonoid and IsGeneralLinearMonoid return true if the semigroup S was created using either of the commands FullMatrixMonoid (7.5.1) or GeneralLinearMonoid (7.5.1) and false otherwise.

```
gap> S := RandomSemigroup(IsTransformationSemigroup, 4, 4);;
gap> IsFullMatrixMonoid(S);
false
gap> S := GeneralLinearMonoid(3, 3);
<general linear monoid 3x3 over GF(3)>
gap> IsFullMatrixMonoid(S);
true
```

7.6 Semigroups of boolean matrices

In this section, we describe the operations in Semigroups that can be used to create semigroups of boolean matrices belonging to several standard classes of example. See the section 'Boolean matrices' for more information about boolean matrices.

7.6.1 FullBooleanMatMonoid

▷ FullBooleanMatMonoid(d)

(operation)

Returns: The monoid of all boolean matrices of dimension d.

If d is a positive integer less than or equal to 5, then this operation returns the full boolean matrix monoid of dimension d. The *full boolean matrix monoid of dimension* d is the monoid consisting of all d by d boolean matrices, and has $2 \, \hat{} (n \, \hat{} 2)$ matrices.

FullBooleanMatMonoid returns a monoid with a generating set that is minimal in size. These generating sets are pre-computed.

```
gap> S := FullBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 5 generators>
gap> Size(S);
512
```

7.6.2 RegularBooleanMatMonoid

▷ RegularBooleanMatMonoid(d)

(operation)

Returns: A monoid of boolean matrices.

If d is a positive integer, then RegularBooleanMatMonoid returns the monoid generated by the regular d by d boolean matrices. Note that this monoid is *not* regular in general. RegularBooleanMatMonoid(d) is generated by the four boolean matrices A, B, C, D, whose true entries are:

- A[i][i + 1] and A[n][1], for $i \in \{1, ..., n-1\}$;
- B[1][2], B[2][1], and B[i][i] for $i \in \{3, ..., n\}$;
- C[1][2] and C[i][i], for $i \in \{2, \dots, n-1\}$; and
- D[1][2], D[i][i], for $i \in \{2, ..., n\}$, and D[n][1].

This monoid has nearly 2 ^ (n ^ 2) elements.

```
gap> S := RegularBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 4 generators>
gap> Size(S);
506
```

7.6.3 ReflexiveBooleanMatMonoid

▷ ReflexiveBooleanMatMonoid(d)

(operation)

Returns: A monoid of boolean matrices.

If d is a positive integer less than or equal to 5, then this operation returns the monoid consisting of all reflexive d by d boolean matrices. A boolean matrix mat is *reflexive* if each entry of its leading diagonal is true, i.e. if mat[i] [i] is true for all $i \in \{1, ..., d\}$.

The generating sets for the monoids returned by ReflexiveBooleanMatMonoid are precomputed, and read from a file. Small generating sets are not known for $d \ge 6$.

```
gap> S := ReflexiveBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 8 generators>
gap> Size(S);
64
```

7.6.4 HallMonoid

ightharpoonup HallMonoid(d) (operation)

Returns: A monoid of boolean matrices.

If d is a positive integer less than or equal to 5, then this operation returns the monoid consisting Hall matrices of degree d. A *Hall matrix* is a boolean matrix in which every column and every row contains at least one true entry. Equivalently, a Hall matrix is a boolean matrix than contains a permutation.

A Hall matrix of dimension d corresponds to a solution to Hall's Marriage Problem, when there are two collection of d people. Thus the number of solutions to Hall's Marriage Problem in this instance is the number of elements of HallMonoid(d).

The operation HallMonoid returns a monoid with a generating set that is minimal in size. These generating sets are pre-computed, and a minimal generating set is not known for larger dimensions.

```
gap> S := HallMonoid(3);
<monoid of 3x3 boolean matrices with 4 generators>
gap> Size(S);
247
```

7.6.5 GossipMonoid

▷ GossipMonoid(d)

(operation)

Returns: A monoid of boolean matrices.

If d is a positive integer, then this operation returns the d by d gossip monoid. The gossip monoid is defined to be the monoid generated by the collection of all d by d boolean matrices that define an equivalence relation; see IsEquivalenceBooleanMat (5.3.16).

For $d \ge 2$, GossipMonoid(d) returns a monoid with $\binom{d}{2}$ generators. The generating set is the collection of boolean matrices that define an equivalence relation that has one equivalence class of size 2, and no other non-trivial equivalence classes. Note that this generating set is strictly contained within the collection of all equivalence relation boolean matrices.

The number of elements of GossipMonoid(d) is known for some small values of d — see [BDF15] for more information about the gossip monoid, and its size for $d \le 9$.

```
gap> S := GossipMonoid(3);
<monoid of 3x3 boolean matrices with 3 generators>
gap> Size(S);
11
```

7.6.6 TriangularBooleanMatMonoid

```
▷ TriangularBooleanMatMonoid(d) (operation)
▷ UnitriangularBooleanMatMonoid(d) (operation)
```

Returns: A monoid of boolean matrices.

If d is a positive integer, then TriangularBooleanMatMonoid returns the monoid consisting of the upper-triangular d by d boolean matrices. A boolean matrix is *upper-triangular* if the entry in row i, column j is false whenever i > j.

UnitriangularBooleanMatMonoid returns the subsemigroup of the TriangularBooleanMatMonoid that consists of reflexive upper-triangular boolean matrices; see ReflexiveBooleanMatMonoid (7.6.3).

```
Example
gap> S := TriangularBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 6 generators>
gap> Size(S);
64
gap> T := UnitriangularBooleanMatMonoid(4);
<monoid of 4x4 boolean matrices with 6 generators>
gap> Size(T);
64
```

7.7 Semigroups of matrices over a semiring

In this section, we describe the operations in Semigroups that can be used to create semigroups of matices over a semiring that belong to several standard classes of example. See Chapter 5 for more information about matrices over a semiring.

7.7.1 FullTropicalMaxPlusMonoid

(operation)

Returns: A monoid of tropical max plus matrices.

If d = 2 and t is a positive integer, then FullTropicalMaxPlusMonoid returns the monoid consisting of all d by d matrices with entries from the tropical max-plus semiring with threshold t. A small generating set for larger values of d is not currently known.

This monoid contains $(t + 2) ^ (d ^ 2)$ elements.

```
Example

gap> S := FullTropicalMaxPlusMonoid(2, 5);

<monoid of 2x2 tropical max-plus matrices with 24 generators>

gap> Size(S);

2401

gap> (5 + 2) ^ (2 ^ 2);

2401
```

7.7.2 FullTropicalMinPlusMonoid

(operation)

Returns: A monoid of tropical min plus matrices.

If d is equal to 2 or 3, and t is a positive integer, then FullTropicalMinPlusMonoid returns the monoid consisting of all d by d matrices with entries from the tropical min-plus semiring with threshold t. A small generating set for larger values of d is not currently known.

This monoid contains $(t + 2) ^ (d ^ 2)$ elements.

```
gap> S := FullTropicalMinPlusMonoid(2, 3);
<monoid of 2x2 tropical min-plus matrices with 7 generators>
gap> Size(S);
625
gap> (3 + 2) ^ (2 ^ 2);
625
```

7.8 Examples in various representations

In this section, we describe the functions in Semigroups that can be used to create standard semigroups in various representations. For all of these examples, the default representation is as a semigroup of transformations. In general, these functions do not return a representation of minimal degree.

7.8.1 TrivialSemigroup

A TRIVIAL semigroup is a semigroup with precisely one element. This function returns a trivial semigroup in the representation given by the filter *filter*, and (if possible) with the degree of the representation given by the non-negative integer *deg*.

The optional argument filt may be one of the following:

- IsTransformationSemigroup (the default, if filt is not specified),
- IsPartialPermSemigroup,
- IsBipartitionSemigroup,
- IsBlockBijectionSemigroup,
- IsPBRSemigroup,
- IsBooleanMatSemigroup.

If the optional argument deg is not specified, then the smallest possible degree will be used.

7.8.2 MonogenicSemigroup

▷ MonogenicSemigroup([filt,]m, r)

(function)

Returns: A monogenic semigroup with index m and period r.

If m and r are positive integers, then this function returns a monogenic semigroup S with index m and period r in the representation given by the filter filt.

The optional argument filt may be one of the following:

- IsTransformationSemigroup (the default, if filt is not specified),
- IsPartialPermSemigroup,
- IsBipartitionSemigroup,
- IsBlockBijectionSemigroup,
- IsPBRSemigroup,
- IsBooleanMatSemigroup.

The semigroup S is generated by a single element, f. S consists of the elements $f, f^2, \ldots, f^m, \ldots, f^{m+r-1}$. The minimal ideal of S consists of the elements f^m, \ldots, f^{m+r-1} and is isomorphic to the cyclic group of order r.

See IsMonogenicSemigroup (12.1.11) for more information about monogenic semigroups.

7.8.3 RectangularBand

▷ RectangularBand([filt,]m, n)

(function)

Returns: An m by n rectangular band.

If m and n are positive integers, then this function returns a semigroup isomorphic to an m by n rectangular band, in the representation given by the filter filt.

The optional argument filt may be one of the following:

- IsTransformationSemigroup (the default, if filt is not specified),
- IsBipartitionSemigroup,
- IsPBRSemigroup,

- IsBooleanMatSemigroup,
- IsReesMatrixSemigroup.

See IsRectangularBand (12.1.15) for more information about rectangular bands.

7.8.4 ZeroSemigroup

```
▷ ZeroSemigroup([filt, ]n)
```

(function)

Returns: A zero semigroup of order n.

If n is a positive integer, then this function returns a zero semigroup of order n in the representation given by the filter filt.

The optional argument filt may be one of the following:

- IsTransformationSemigroup (the default, if filt is not specified),
- IsPartialPermSemigroup,
- IsBipartitionSemigroup,
- IsBlockBijectionSemigroup,
- IsPBRSemigroup,
- IsBooleanMatSemigroup,
- IsReesZeroMatrixSemigroup (provided that n > 1).

See IsZeroSemigroup (12.1.27) for more information about zero semigroups.

```
gap> S := ZeroSemigroup(5);
  <commutative non-regular transformation semigroup of size 5, degree 5
   with 4 generators>
   gap> IsZeroSemigroup(S);
   true
   gap> S := ZeroSemigroup(IsPartialPermSemigroup, 15);
   <commutative non-regular partial perm semigroup of size 15, rank 14
   with 14 generators>
   gap> Size(S);
   15
   gap> z := MultiplicativeZero(S);
```

```
<empty partial perm>
gap> IsZeroSemigroup(S);
true
gap> ForAll(S, x -> ForAll(S, y -> x * y = z));
true
```

7.8.5 LeftZeroSemigroup

```
▷ LeftZeroSemigroup([filt, ]n) (function)
▷ RightZeroSemigroup([filt, ]n) (function)
```

Returns: A left zero (or right zero) semigroup of order n.

If n is a positive integer, then this function returns a left zero (or right zero, as appropriate) semi-group of order n in the representation given by the filter filt. If filt is not specified then the default representation is IsTransformationSemigroup.

The function LeftZeroSemigroup([filt,] n) simply calls RectangularBand([filt,] n, 1) and the function RightZeroSemigroup([filt,] n) simply calls RectangularBand([filt,] 1, n).

For more information about RectangularBand, including its permitted values of *filt*, see RectangularBand (7.8.3). See IsLeftZeroSemigroup (12.1.10) and IsRightZeroSemigroup (12.1.18) for more information about left zero and right zero semigroups.

7.8.6 BrandtSemigroup

```
▷ BrandtSemigroup([[filt, ]G, ]n)
```

(function)

Returns: An n by n Brandt semigroup over the group G.

If n is a positive integer, then this function returns an n by n Brandt semigroup over the group G in the representation given by the filter filt.

The optional argument filt can be any of the following:

- IsPartialPermSemigroup (the default, if filt is not specified),
- IsReesZeroMatrixSemigroup,
- IsTransformationSemigroup,
- IsBipartitionSemigroup,
- IsPBRSemigroup,

- IsBooleanMatSemigroup,
- IsNTPMatrixSemigroup,
- IsMaxPlusMatrixSemigroup,
- IsMinPlusMatrixSemigroup,
- IsTropicalMaxPlusMatrixSemigroup,
- IsTropicalMinPlusMatrixSemigroup,
- IsProjectiveMaxPlusMatrixSemigroup,
- IsIntegerMatrixSemigroup.

The optional argument G defaults to a trivial permutation group. If present G must be a permutation group, unless filt is IsReesZeroMatrixSemigroup when G may be any type of finite group.

See IsBrandtSemigroup (12.2.2) for more information about Brandt semigroups.

```
_ Example
gap> S := BrandtSemigroup(5);
<0-simple inverse partial perm semigroup of rank 5 with 4 generators>
gap> IsBrandtSemigroup(S);
gap> S := BrandtSemigroup(IsTransformationSemigroup, 15);
<0-simple transformation semigroup of degree 16 with 28 generators>
gap> Size(S);
226
gap> MultiplicativeZero(S);
16, 16, 16])
gap> S := BrandtSemigroup(Group((1, 2)), 3);
<0-simple inverse partial perm semigroup of rank 6 with 3 generators>
gap> S := BrandtSemigroup(IsTransformationSemigroup, Group((1, 2)), 3);
<0-simple transformation semigroup of degree 7 with 5 generators>
gap> S := BrandtSemigroup(IsReesZeroMatrixSemigroup,
                        DihedralGroup(4),
                        2);
<Rees 0-matrix semigroup 2x2 over <pc group of size 4 with</pre>
 2 generators>>
```

7.9 Free bands

This chapter describes the functions in Semigroups for dealing with free bands. This part of the manual and the functions described herein were originally written by Julius Jonušas, with later additions by Reinis Cirpons, Tom Conti-Leslie, and Murray Whyte

A semigroup B is a *free band* on a non-empty set X if B is a band with a map f from B to X such that for every band S and every map g from X to B there exists a unique homomorphism g' from B to S such that fg' = g. The free band on a set X is unique up to isomorphism. Moreover, by the universal property, every band can be expressed as a quotient of a free band.

For an alternative description of a free band. Suppose that X is a non-empty set and X^+ a free semigroup on X. Also suppose that b is the smallest congurance on X^+ containing the set

$$\{(w^2, w) : w \in X^+\}.$$

Then the free band on X is isomorphic to the quotient of X^+ by b. See Section 4.5 of [How95] for more information on free bands.

7.9.1 FreeBand (for a given rank)

Returns: A free band.

Returns a free band on rank generators, for a positive integer rank. If rank is not specified, the number of names is used. The resulting semigroup is always finite.

```
_ Example
gap> FreeBand(6);
<free band on the generators [ x1, x2, x3, x4, x5, x6 ]>
gap> FreeBand(6, "b");
<free band on the generators [ b1, b2, b3, b4, b5, b6 ]>
gap> FreeBand("a", "b", "c");
<free band on the generators [ a, b, c ]>
gap> FreeBand("a", "b", "c");
<free band on the generators [ a, b, c ]>
gap> S := FreeBand(["a", "b", "c"]);
<free band on the generators [ a, b, c ]>
gap> Size(S);
159
gap> gens := Generators(S);
[a, b, c]
gap> S.1 * S.2;
```

7.9.2 IsFreeBandCategory

 \triangleright IsFreeBandCategory

(Category)

IsFreeBandCategory is the category of semigroups created using FreeBand (7.9.1).

```
gap> IsFreeBandCategory(FreeBand(3));
true
gap> IsFreeBand(SymmetricGroup(6));
false
```

7.9.3 IsFreeBand (for a given semigroup)

 \triangleright IsFreeBand(S) (property)

Returns: true or false.

IsFreeBand returns true if the given semigroup S is a free band.

```
gap> IsFreeBand(FreeBand(3));
true
gap> IsFreeBand(SymmetricGroup(6));
false
gap> IsFreeBand(FullTransformationMonoid(7));
false
```

7.9.4 IsFreeBandElement

▷ IsFreeBandElement (Category)

IsFreeBandElement is a Category containing the elements of a free band.

```
gap> IsFreeBandElement(Generators(FreeBand(4))[1]);
true
gap> IsFreeBandElement(Transformation([1, 3, 4, 1]));
false
gap> IsFreeBandElement((1, 2, 3, 4));
false
```

7.9.5 IsFreeBandElementCollection

▷ IsFreeBandElementCollection

(Category)

collection of elements of a free belongs Every band to the category IsFreeBandElementCollection. For example, every free band belongs to IsFreeBandElementCollection.

7.9.6 IsFreeBandSubsemigroup

▷ IsFreeBandSubsemigroup

(filter)

 $\label{thm:continuous} Is Free Band Subsemigroup \qquad is \qquad a \qquad synonym \qquad for \qquad Is Semigroup \qquad and \\ Is Free Band Element Collection.$

```
gap> S := FreeBand(2);
<free band on the generators [ x1, x2 ]>
gap> x := S.1;
x1
gap> y := S.2;
x2
gap> new := Semigroup([x * y, x]);
<semigroup with 2 generators>
gap> IsFreeBand(new);
false
gap> IsFreeBandSubsemigroup(new);
true
```

7.9.7 ContentOfFreeBandElement

Returns: A list of integers

The content of a free band element x is the set of generators appearing in the word representing the element x of the free band.

The function ContentOfFreeBandElement returns the content of free band element x represented as a list of integers, where 1 represents the first generator, 2 the second generator, and so on.

The function ContentOfFreeBandElementCollection returns the least list C for the collection of free band elements *coll* such that the content of every element in *coll* is contained in C

7.9.8 EqualInFreeBand

```
\triangleright EqualInFreeBand(u, v) (operation)
```

This operation takes a pair u and v of lists of positive integers or strings, representing words in a free semigroup.

Where F is a free band over some alphabet containing the letters occurring in u and v, this operation returns true if u and v are equal in F, and false otherwise.

Note that this operation is for lists and strings, as opposed to FreeBandElement objects.

This is an implementation of an algorithm described by Jakub Radoszewski and Wojciech Rytter in [RR10].

```
gap> EqualInFreeBand("aa", "a");
true
gap> EqualInFreeBand("abcacba", "abcba");
true
gap> EqualInFreeBand("aab", "aac");
false
gap> EqualInFreeBand([1, 3, 3], [2]);
false
```

7.9.9 GreensDClassOfElement (for a free band and element)

```
\triangleright GreensDClassOfElement(S, x)
```

(operation)

Returns: A Green's *D*-class

Let S be a free band. Two elements of S are \mathcal{D} -related if and only if they have the same content i.e. the set of generators appearing in any factorization of the elements. Therefore, a \mathcal{D} -class of a free band element x is the set of elements of S which have the same content as x.

```
gap> S := FreeBand(3, "b");
<free band on the generators [ b1, b2, b3 ]>
gap> x := S.1 * S.2;
b1b2
gap> D := GreensDClassOfElement(S, x);
<Green's D-class: b1b2>
gap> IsGreensDClass(D);
true
```

7.9.10 Operators

The following operators are also included for free band elements:

u * v

returns the product of two free band elements u and v.

u = v

checks if two free band elements are equal.

u < v

compares the sizes of the internal representations of two free band elements.

7.10 Graph inverse semigroups

In this chapter we describe a class of semigroups arising from directed graphs.

The functionality in Semigroups for graph inverse semigroups was written jointly by Zak Mesyan (UCCS) and J. D. Mitchell (St Andrews). The functionality for graph inverse semigroup congruences was written by Marina Anagnostopoulou-Merkouri (St Andrews).

7.10.1 GraphInverseSemigroup

ightharpoonup GraphInverseSemigroup(E)

(operation)

Returns: A graph inverse semigroup.

If E is a digraph (i.e. it satisfies IsDigraph (**Digraphs: IsDigraph**)), then GraphInverseSemigroup returns the graph inverse semigroup G(E) where, roughly speaking, elements correspond to paths in the graph E.

Let us describe E as a digraph $E = (E^0, E^1, r, s)$, where E^0 is the set of vertices, E^1 is the set of edges, and r and s are functions $E^1 \to E^0$ giving the *range* and *source* of an edge, respectively. The *graph inverse semigroup* G(E) of E is the semigroup-with-zero generated by the sets E^0 and E^1 , together with a set of variables $\{e^{-1} \mid e \in E^1\}$, satisfying the following relations for all $v, w \in E^0$ and $e, f \in E^1$:

```
(V) vw = \delta_{v,w} \cdot v,
```

(E1)
$$s(e) \cdot e = e \cdot r(e) = e$$
,

(E2)
$$r(e) \cdot e^{-1} = e^{-1} \cdot s(e) = e^{-1}$$
,

(CK1)

$$e^{-1} \cdot f = \delta_{e,f} \cdot r(e).$$

(Here δ is the Kronecker delta.) We define $v^{-1} = v$ for each $v \in E^0$, and for any path $y = e_1 \dots e_n$ $(e_1 \dots e_n \in E^1)$ we let $y^{-1} = e_n^{-1} \dots e_1^{-1}$. With this notation, every nonzero element of G(E) can be written uniquely as xy^{-1} for some paths x, y in E, by the CK1 relation.

For a more complete description, see [MM16].

```
gap> gr := Digraph([[2, 5, 8, 10], [2, 3, 4, 5, 6, 8, 9, 10], [1],
                      [3, 5, 7, 8, 10], [2, 5, 7], [3, 6, 7, 9, 10],
                      [1, 4], [1, 5, 9], [1, 2, 7, 8], [3, 5]]);
<immutable digraph with 10 vertices, 37 edges>
gap> S := GraphInverseSemigroup(gr);
<infinite graph inverse semigroup with 10 vertices, 37 edges>
gap> GeneratorsOfInverseSemigroup(S);
[\ e\_1,\ e\_2,\ e\_3,\ e\_4,\ e\_5,\ e\_6,\ e\_7,\ e\_8,\ e\_9,\ e\_10,\ e\_11,\ e\_12,
  e_13, e_14, e_15, e_16, e_17, e_18, e_19, e_20, e_21, e_22, e_23,
  e_24, e_25, e_26, e_27, e_28, e_29, e_30, e_31, e_32, e_33, e_34,
  e\_35,\ e\_36,\ e\_37,\ v\_1,\ v\_2,\ v\_3,\ v\_4,\ v\_5,\ v\_6,\ v\_7,\ v\_8,\ v\_9,\ v\_10
gap> AssignGeneratorVariables(S);
gap> e_1 * e_1 ^ -1;
e_1e_1^-1
gap> e_1 ^ -1 * e_1 ^ -1;
gap > e_1 ^-1 * e_1;
v_2
```

7.10.2 Range (for a graph inverse semigroup element)

```
ightharpoonup Range(x) (attribute)

ightharpoonup Source(x) (attribute)
```

Returns: A graph inverse semigroup element.

If x is an element of a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroupElement (7.10.4)), then Range and Source give, respectively, the start and end vertices of x when viewed as a path in the digraph over which the semigroup is defined.

For a fuller description, see GraphInverseSemigroup (7.10.1).

```
gap> gr := Digraph([[], [1], [3]]);;
gap> S := GraphInverseSemigroup(gr);;
gap> e := S.1;
e_1
gap> Source(e);
v_2
gap> Range(e);
v_1
```

7.10.3 IsVertex (for a graph inverse semigroup element)

▷ IsVertex(x) (operation)

Returns: true or false.

If x is an element of a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroupElement (7.10.4)), then this attribute returns true if x corresponds to a vertex in the digraph over which the semigroup is defined, and false otherwise.

For a fuller description, see GraphInverseSemigroup (7.10.1).

```
gap> gr := Digraph([[], [1], [3]]);;
gap> S := GraphInverseSemigroup(gr);;
gap> e := S.1;
e_1
gap> IsVertex(e);
false
gap> v := S.3;
v_1
gap> IsVertex(v);
true
gap> z := v * e;
0
gap> IsVertex(z);
false
```

7.10.4 IsGraphInverseSemigroup

```
\triangleright IsGraphInverseSemigroup(x) (filter)
```

▷ IsGraphInverseSemigroupElement(x)
Returns: true or false.

The category IsGraphInverseSemigroup contains any semigroup defined over a digraph using the GraphInverseSemigroup (7.10.1) operation. The category IsGraphInverseSemigroupElement contains any element contained in such a semigroup.

```
gap> gr := Digraph([[], [1], [3]]);;
gap> S := GraphInverseSemigroup(gr);
<infinite graph inverse semigroup with 3 vertices, 2 edges>
gap> IsGraphInverseSemigroup(S);
true
gap> x := GeneratorsOfSemigroup(S)[1];
e_1
gap> IsGraphInverseSemigroupElement(x);
true
```

7.10.5 GraphOfGraphInverseSemigroup

▷ GraphOfGraphInverseSemigroup(S)

(attribute)

(filter)

Returns: A digraph.

If S is a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroup (7.10.4)), then this attribute returns the original digraph over which S was defined (most likely the argument given to GraphInverseSemigroup (7.10.1) to create S).

```
gap> gr := Digraph([[], [1], [3]]);
<immutable digraph with 3 vertices, 2 edges>
gap> S := GraphInverseSemigroup(gr);;
gap> GraphOfGraphInverseSemigroup(S);
<immutable digraph with 3 vertices, 2 edges>
```

7.10.6 IsGraphInverseSemigroupElementCollection

 ${\tt \vartriangleright IsGraphInverseSemigroupElementCollection}$

(Category)

Every collection of elements of a graph inverse semigroup belongs to the category IsGraphInverseSemigroupElementCollection. For example, every graph inverse semigroup belongs to IsGraphInverseSemigroupElementCollection.

7.10.7 IsGraphInverseSubsemigroup

▷ IsGraphInverseSubsemigroup

(filter)

IsGraphInverseSubsemigroup is a synonym for IsSemigroup and IsInverseSemigroup and IsGraphInverseSemigroupElementCollection.

See IsGraphInverseSemigroupElementCollection (7.10.6) and IsInverseSemigroup (Reference: IsInverseSemigroup).

7.10.8 VerticesOfGraphInverseSemigroup

▷ VerticesOfGraphInverseSemigroup(S)

(attribute)

Returns: A list.

If S is a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroup (7.10.4)), then this attribute returns the list of vertices of S.

```
Example
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
<inmutable digraph with 4 vertices, 5 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 5 edges>
gap> VerticesOfGraphInverseSemigroup(S);
[ v_1, v_2, v_3, v_4 ]
gap> D := ChainDigraph(12);
```

```
<immutable chain digraph with 12 vertices>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 12 vertices, 11 edges>
gap> VerticesOfGraphInverseSemigroup(S);
[ v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_10, v_11, v_12 ]
```

7.10.9 IndexOfVertexOfGraphInverseSemigroup

▷ IndexOfVertexOfGraphInverseSemigroup(v)

(attribute)

Returns: A positive integer.

If v is a vertex of a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroup (7.10.4)), then this attribute returns the index of this vertex in S.

```
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
<immutable digraph with 4 vertices, 5 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 5 edges>
gap> IndexOfVertexOfGraphInverseSemigroup(v_1);
1
gap> IndexOfVertexOfGraphInverseSemigroup(v_3);
3
```

7.11 Free inverse semigroups

This chapter describes the functions in Semigroups for dealing with free inverse semigroups. This part of the manual and the functions described herein were written by Julius Jonušas.

An inverse semigroup F is said to be *free* on a non-empty set X if there is a map f from F to X such that for every inverse semigroup S and a map g from X to S there exists a unique homomorphism g' from F to S such that fg' = g. Moreover, by this universal property, every inverse semigroup can be expressed as a quotient of a free inverse semigroup.

The internal representation of an element of a free inverse semigroup uses a Munn tree. A *Munn tree* is a directed tree with distinguished start and terminal vertices and where the edges are labeled by generators so that two edges labeled by the same generator are only incident to the same vertex if one of the edges is coming in and the other is leaving the vertex. For more information regarding free inverse semigroups and the Munn representations see Section 5.10 of [How95].

See also (Reference: Inverse semigroups and monoids), (Reference: Partial permutations) and (Reference: Free Groups, Monoids and Semigroups).

An element of a free inverse semigroup in **Semigroups** is displayed, by default, as a shortest word corresponding to the element. However, there might be more than one word of the minimum length. For example, if *x* and *y* are generators of a free inverse semigroups, then

$$xyy^{-1}xx^{-1}x^{-1} = xxx^{-1}yy^{-1}x^{-1}.$$

See MinimalWord (7.11.7). Therefore we provide a another method for printing elements of a free inverse semigroup: a unique canonical form. Suppose an element of a free inverse semigroup is given as a Munn tree. Let L be the set of words corresponding to the shortest paths from the start vertex to the leaves of the tree. Also let w be the word corresponding to the shortest path from the start vertex

to the terminal vertex. The word vv^{-1} is an idempotent for every v in L. The canonical form is given by multiplying these idempotents, in shortlex order, and then postmultiplying by w. For example, consider the word $xyy^{-1}xx^{-1}x^{-1}$ again. The words corresponding to the paths to the leaves are in this case xx and xy. And w is an empty word since start and terminal vertices are the same. Therefore, the canonical form is

$$xxx^{-1}x^{-1}xyy^{-1}x^{-1}$$
.

See CanonicalForm (7.11.6).

7.11.1 FreeInverseSemigroup (for a given rank)

Returns: A free inverse semigroup.

Returns a free inverse semigroup on rank generators, where rank is a positive integer. If rank is not specified, the number of names is used. If S is a free inverse semigroup, then the generators can be accessed by S.1, S.2 and so on.

```
gap> S := FreeInverseSemigroup(7);
<free inverse semigroup on the generators
[ x1, x2, x3, x4, x5, x6, x7 ]>
gap> S := FreeInverseSemigroup(7, "s");
<free inverse semigroup on the generators
[ s1, s2, s3, s4, s5, s6, s7 ]>
gap> S := FreeInverseSemigroup("a", "b", "c");
<free inverse semigroup on the generators [ a, b, c ]>
gap> S := FreeInverseSemigroup(["a", "b", "c"]);
<free inverse semigroup on the generators [ a, b, c ]>
gap> S.1;
a
gap> S.2;
b
```

7.11.2 IsFreeInverseSemigroupCategory

▷ IsFreeInverseSemigroupCategory(obj)

(Category)

Every free inverse semigroup in GAP created by FreeInverseSemigroup (7.11.1) belongs to the category IsFreeInverseSemigroup. Basic operations for a free inverse semigroup are: GeneratorsOfInverseSemigroup (Reference: GeneratorsOfInverseSemigroup) and GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup). Elements of a free inverse semigroup belong to the category IsFreeInverseSemigroupElement (7.11.4).

7.11.3 IsFreeInverseSemigroup

 \triangleright IsFreeInverseSemigroup(S)

(property)

Returns: true or false

Attempts to determine whether the given semigroup S is a free inverse semigroup.

7.11.4 IsFreeInverseSemigroupElement

▷ IsFreeInverseSemigroupElement

(Category)

Every element of a free inverse semigroup belongs to the category IsFreeInverseSemigroupElement.

7.11.5 IsFreeInverseSemigroupElementCollection

▷ IsFreeInverseSemigroupElementCollection

(Category)

Every collection of elements of a free inverse semigroup belongs to the category IsFreeInverseSemigroupElementCollection. For example, every free inverse semigroup belongs to IsFreeInverseSemigroupElementCollection.

7.11.6 CanonicalForm (for a free inverse semigroup element)

▷ CanonicalForm(w)

(attribute)

Returns: A string.

Every element of a free inverse semigroup has a unique canonical form. If w is such an element, then CanonicalForm returns the canonical form of w as a string.

```
gap> S := FreeInverseSemigroup(3);
<free inverse semigroup on the generators [ x1, x2, x3 ]>
gap> x := S.1; y := S.2;
x1
x2
gap> CanonicalForm(x ^ 3 * y ^ 3);
"x1x1x1x2x2x2x2^-1x2^-1x1^-1x1^-1x1^-1x1x1x1x2x2x2"
```

7.11.7 MinimalWord (for free inverse semigroup element)

▷ MinimalWord(w)

(attribute)

Returns: A string.

For an element w of a free inverse semigroup S, MinimalWord returns a word of minimal length equal to w in S as a string.

Note that there maybe more than one word of minimal length which is equal to w in S.

```
gap> S := FreeInverseSemigroup(3);
<free inverse semigroup on the generators [ x1, x2, x3 ]>
gap> x := S.1;
x1
gap> y := S.2;
x2
gap> MinimalWord(x ^ 3 * y ^ 3);
"x1*x1*x1*x2*x2*x2"
```

7.11.8 Displaying free inverse semigroup elements

There is a way to change how GAP displays free inverse semigroup elements using the user preference FreeInverseSemigroupElementDisplay. See UserPreference (**Reference: UserPreference**) for more information about user preferences.

There are two possible values for FreeInverseSemigroupElementDisplay:

minimal

With this option selected, GAP will display a shortest word corresponding to the free inverse semigroup element. However, this shortest word is not unique. This is a default setting.

canonical

With this option selected, GAP will display a free inverse semigroup element in the canonical form.

7.11.9 Operators for free inverse semigroup elements

```
w - 1 returns the semigroup inverse of the free inverse semigroup element w.
```

u * v returns the product of two free inverse semigroup elements u and v.

checks if two free inverse semigroup elements are equal, by comparing their canonical forms.

Chapter 8

Standard constructions

In this chapter we describe some standard ways of constructing semigroups and monoids from other semigroups that are available in the Semigroups package.

8.1 Products of semigroups

In this section, we describe the functions in **Semigroups** that can be used to create various products of semigroups.

8.1.1 DirectProduct

Returns: A transformation semigroup.

The function DirectProduct takes an arbitrary positive number of finite semigroups, and returns a semigroup that is isomorphic to their direct product.

If these finite semigroups are all partial perm semigroups, all bipartition semigroups, or all PBR semigroups, then DirectProduct returns a semigroup of the same type. Otherwise, DirectProduct returns a transformation semigroup.

The operation DirectProductOp is included for consistency with the GAP library (see DirectProductOp). It takes exactly two arguments, namely a non-empty list list of semigroups and one of these semigroups, S, and returns the same result as CallFuncList(DirectProduct, list).

If D is the direct product of a collection of semigroups, then an embedding of the ith factor into D can be accessed with the command Embedding(D, i), and a projection of D onto its ith factor can be accessed with the command Projection(D, i); see Embedding (Reference: Embedding) and Projection (Reference: Projection) for more information.

8.1.2 WreathProduct

▷ WreathProduct(M, S)

(operation)

Returns: A transformation semigroup.

If M is a transformation monoid (or a permutation group) of degree m, and S is a transformation semigroup (or permutation group) of degree s, the operation $\mathsf{WreathProduct}(M, S)$ returns the wreath product of M and S, in terms of an embedding in the full transformation monoid of degree m * s.

```
gap> T := FullTransformationMonoid(3);;
gap> C := Group((1, 3));;
gap> W := WreathProduct(T, C);;
gap> Size(W);
39366
gap> WW := WreathProduct(C, T);;
gap> Size(WW);
216
```

8.2 Dual semigroups

The *dual semigroup* of a semigroup S is the semigroup with the same underlying set of elements but with reversed multiplication; this is anti-isomorphic to S. In Semigroups a semigroup and its dual are represented with disjoint sets of elements.

8.2.1 DualSemigroup

▷ DualSemigroup(S)

(attribute)

Returns: The dual semigroup of the given semigroup.

The dual semigroup of a semigroup S is the semigroup with the same underlying set as S, but with multiplication reversed; this is anti-isomorphic to S. This attribute returns a semigroup isomorphic to the dual semigroup of S.

```
gap> S := Semigroup([Transformation([1, 4, 3, 2, 2]),
> Transformation([5, 4, 4, 1, 2])]);;
gap> D := DualSemigroup(S);
<dual semigroup of <transformation semigroup of degree 5 with 2
  generators>>
gap> Size(S) = Size(D);
```

```
true
gap> NrDClasses(S) = NrDClasses(D);
true
```

8.2.2 IsDualSemigroupRep

▷ IsDualSemigroupRep(sgrp)

(Category)

Returns: Returns true if *sgrp* lies in the category of dual semigroups.

Semigroups created using DualSemigroup (8.2.1) normally lie in this category. The exception is semigroups which are the dual of semigroups already lying in this category. That is, a semigroup lies in the category IsDualSemigroupRep if and only if the corresponding dual semigroup does not. Note that this is not a Representation in the GAP sense, and will likely be renamed in a future major release of the package.

```
_{-} Example _{-}
gap> S := Semigroup([Transformation([3, 5, 1, 1, 2]),
> Transformation([1, 2, 4, 4, 3])]);
<transformation semigroup of degree 5 with 2 generators>
gap> D := DualSemigroup(S);
<dual semigroup of <transformation semigroup of degree 5 with 2</pre>
generators>>
gap> IsDualSemigroupRep(D);
true
gap> R := DualSemigroup(D);
<transformation semigroup of degree 5 with 2 generators>
gap> IsDualSemigroupRep(R);
false
gap> R = S;
true
gap> T := Range(IsomorphismTransformationSemigroup(D));
<transformation semigroup of size 16, degree 17 with 2 generators>
gap> IsDualSemigroupRep(T);
false
gap> x := Representative(D);
<Transformation([3, 5, 1, 1, 2]) in the dual semigroup>
gap> V := Semigroup(x);
<dual semigroup of <commutative transformation semigroup of degree 5</pre>
 with 1 generator>>
gap> IsDualSemigroupRep(V);
true
```

8.2.3 IsDualSemigroupElement

▷ IsDualSemigroupElement(elt)

(Category)

Returns: Returns true if elt has the representation of a dual semigroup element.

Elements of a dual semigroup obtained using AntiIsomorphismDualSemigroup (8.2.4) normally lie in this category. The exception is elements obtained by applying the map AntiIsomorphismDualSemigroup (8.2.4) to elements already in this category. That is, the elements of a semigroup lie in the category IsDualSemigroupElement if and only if the elements of the corresponding dual semigroup do not.

```
gap> S := SingularPartitionMonoid(4);;
gap> D := DualSemigroup(S);;
gap> s := GeneratorsOfSemigroup(S)[1];;
gap> map := AntiIsomorphismDualSemigroup(S);;
gap> t := s ^ map;
<<block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, -4 ]>
    in the dual semigroup>
gap> IsDualSemigroupElement(t);
true
gap> inv := InverseGeneralMapping(map);;
gap> x := t ^ inv;
<block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, -4 ]>
gap> IsDualSemigroupElement(x);
false
```

8.2.4 AntiIsomorphismDualSemigroup

▷ AntiIsomorphismDualSemigroup(S)

(attribute)

Returns: An anti-isomorphism from S to the corresponding dual semigroup.

The dual semigroup of S mathematically has the same underlying set as S, but is represented with a different set of elements in Semigroups. This function returns a mapping which is an anti-isomorphism from S to its dual.

```
Example -
gap> S := PartitionMonoid(3);
<regular bipartition *-monoid of size 203, degree 3 with 4 generators>
gap> map := AntiIsomorphismDualSemigroup(S);
MappingByFunction( <regular bipartition *-monoid of size 203,
 degree 3 with 4 generators>, <dual semigroup of
<regular bipartition *-monoid of size 203, degree 3 with 4 generators>
>, function(x) ... end, function(x) ... end)
gap> inv := InverseGeneralMapping(map);;
gap> x := Bipartition([[1, -2], [2, -3], [3, -1]]);
<block bijection: [ 1, -2 ], [ 2, -3 ], [ 3, -1 ]>
gap> y := Bipartition([[1], [2, -2], [3, -3], [-1]]);
<bipartition: [ 1 ], [ 2, -2 ], [ 3, -3 ], [ -1 ]>
gap> (x ^map) * (y ^map) = (y * x) ^map;
true
gap> x ^ map;
<<br/>
</block bijection: [ 1, -2 ], [ 2, -3 ], [ 3, -1 ]>
  in the dual semigroup>
```

8.3 Strong semilattices of semigroups

In this section, we describe how Semigroups can be used to create and manipulate strong semilattices of semigroups (SSSs). Strong semilattices of semigroups are described, for example, in Section 4.1 of [How95]. They consist of a meet-semilattice Y along with a collection of semigroups S_a for each a in Y, and a collection of homomorphisms $f_{ab}: S_a \to S_b$ for each a and b in Y such that $a \ge b$.

The product of two elements $x \in S_a, y \in S_b$ is defined to lie in the semigroup S_c , corresponding to the meet c of $a, b \in Y$. The exact element of S_c equal to the product is obtained using the homomorphisms of the SSS: $xy = (xf_{ac})(yf_{bc})$.

8.3.1 StrongSemilatticeOfSemigroups

⊳ StrongSemilatticeOfSemigroups(D, L, H)

(operation)

Returns: A strong semilattice of semigroups.

If D is a digraph, L is a list of semigroups, and H is a list of lists of maps, then this function returns a corresponding IsStrongSemilatticeOfSemigroups object. The format of the arguments is not required to be exactly analogous to Howie's description above, but consistency amongst the arguments is required:

- D must be a digraph whose DigraphReflexiveTransitiveClosure (**Digraphs: DigraphReflexiveTransitiveClosure**) is a meet-semilattice. For example, Digraph([2, 3], [4], [4], []]) is valid and produces a semilattice where the meet of 2 and 3 is 1. See IsMeetSemilatticeDigraph (**Digraphs: IsMeetSemilatticeDigraph**).
- L must contain as many semigroups as there are vertices in D.
- H must be a list with as many elements as there are vertices in D. Each element of H must itself be a (possibly empty) list with as many entries as the corresponding vertex of D has outedges. The entries of each sublist must be the corresponding homomorphisms: for example, if D is entered as above, then H[1][2] must be the homomorphism f_31 , i.e. H[1][2] is an IsMapping object whose domain is a superset of L[3] and whose range is a subset of L[1].

Note that in the example above, the edge $1 \to 4$ is not entered as part of the argument D, but it is still an edge in the reflexive transitive closure of D. When creating the object, GAP creates the homomorphism f_{41} by composing the mappings along paths that lead from 4 to 1, and checks that composing along all possible paths produces the same result.

8.3.2 SSSE

 \triangleright SSSE(SSS, n, x)

Returns: An element of a strong semilattice of semigroups.

(operation)

If n is a vertex of the underlying semilattice of the strong semilattice of semigroups SSS, and if x is an element of the nth semigroup of SSS, then this function returns the element of SSS which lies in semigroup number n and which corresponds to the element x in that semigroup.

This function returns an IsSSSE (8.3.3) object. SSSEs from the same strong semilattice of semi-groups can be compared and multiplied.

```
gap> D := Digraph([[2, 3], [4], [4], []]);;
gap> S4 := FullTransformationMonoid(2);;
gap> S3 := FullTransformationMonoid(3);;
gap> pairs := [[Transformation([1, 2]), Transformation([2, 1])]];;
gap> cong := SemigroupCongruence(S4, pairs);;
gap> S2 := S4 / cong;;
gap> S1 := TrivialSemigroup();;
gap> L := [S1, S2, S3, S4];;
gap> idfn := t -> IdentityTransformation;;
```

```
gap> f21 := SemigroupHomomorphismByFunction(S2, S1, idfn);;
gap> f31 := SemigroupHomomorphismByFunction(S3, S1, idfn);;
gap> f42 := HomomorphismQuotientSemigroup(cong);;
gap> f43 := SemigroupHomomorphismByFunction(S4, S3, IdFunc);;
gap> H := [[f21, f31], [f42], [f43], []];;
gap> SSS := StrongSemilatticeOfSemigroups(D, L, H);
<strong semilattice of 4 semigroups>
gap> Size(SSS);
34
gap> x := SSSE(SSS, 3, Elements(S3)[10]);
SSSE(3, Transformation([2, 1, 1]))
gap> y := SSSE(SSS, 4, Elements(S4)[1]);
SSSE(4, Transformation([1, 1]))
gap> x * y;
SSSE(3, Transformation([1, 1, 1]))
```

8.3.3 IsSSSE

 \triangleright IsSSSE(obj) (filter)

Returns: true or false.

All elements of an SSS belong in the category IsSSSE (for "Strong Semilattice of Semigroups Element").

8.3.4 IsStrongSemilatticeOfSemigroups

▷ IsStrongSemilatticeOfSemigroups(obj)

(filter)

Returns: true or false.

Every Strong Semilattice of Semigroups in GAP belongs to the category IsStrongSemilatticeOfSemigroups. Basic operations in this category allow the user to recover the three essential elements of an SSS object: SemilatticeOfStrongSemilatticeOfSemigroups (8.3.5), SemigroupsOfStrongSemilatticeOfSemigroups (8.3.6), and HomomorphismsOfStrongSemilatticeOfSemigroups (8.3.7).

8.3.5 SemilatticeOfStrongSemilatticeOfSemigroups

▷ SemilatticeOfStrongSemilatticeOfSemigroups(SSS)

(attribute)

Returns: A meet-semilattice digraph.

If SSS is a strong semilattice of semigroups, this function returns the underlying semilattice structure as a digraph. Note that this may not be equal to the digraph passed as input when SSS was created: rather, it is the reflexive transitive closure of the input digraph.

8.3.6 SemigroupsOfStrongSemilatticeOfSemigroups

 ${\tt \triangleright} \ {\tt SemigroupsOfStrongSemilatticeOfSemigroups} ({\tt \it SSS})$

(attribute)

Returns: A list of semigroups.

If SSS is a strong semilattice of semigroups, this function returns the list of semigroups that make up SSS. The position of a semigroup in the list corresponds to the node of the semilattice where that semigroup lies.

8.3.7 HomomorphismsOfStrongSemilatticeOfSemigroups

→ HomomorphismsOfStrongSemilatticeOfSemigroups(SSS)

(attribute)

Returns: A list of lists of mappings.

If SSS is a strong semilattice of n semigroups, this function returns an $n \times n$ list where the (i, j)th entry of the list is the homomorphism f_{ji} , provided $i \le j$ in the semilattice. If this last condition is not true, then the entry is fail.

8.4 McAlister triple semigroups

In this section, we describe the functions in GAP for creating and computing with McAlister triple semigroups and their subsemigroups. This implementation is based on the section in Chapter 5 of [How95] but differs from the treatment in Howie by using right actions instead of left. Some definitions found in the documentation are changed for this reason.

The importance of the McAlister triple semigroups lies in the fact that they are exactly the E-unitary inverse semigroups, which are an important class in the study of inverse semigroups.

First we define E-unitary inverse semigroups. It is standard to denote the subsemigroup of a semigroup consisting of its idempotents by E. A semigroup S is said to be *E-unitary* if for all e in E and for all s in S:

- $es \in E$ implies $s \in E$,
- $se \in E$ implies $s \in E$.

For inverse semigroups these two conditions are equivalent. We are only interested in *E-unitary inverse semigroups*. Before defining McAlister triple semigroups we define a McAlister triple. A *McAlister triple* is a triple (G, X, Y) which consists of:

- a partial order X,
- a subset Y of X,
- a group G which acts on X, on the right, by order automorphisms. That means for all $A, B \in X$ and for all $g \in G$: $A \le B$ if and only if $Ag \le Bg$.

Furthermore, (G, X, Y) must satisfy the following four properties to be a McAlister triple:

- M1 Y is a subset of X which is a join-semilattice together with the restriction of the order relation of X to Y.
- **M2** Y is an order ideal of X. That is to say, for all $A \in X$ and for all $B \in Y$: if $A \leq B$, then $A \in Y$.
- M3 Every element of X is the image of some element in Y moved by an element of G. That is to say, for every $A \in X$, there exists some $B \in Y$ and there exists $g \in G$ such that A = Bg.
- **M4** Finally, for all $g \in G$, the intersection $\{yg : y \in Y\} \cap Y$ is non-empty.

We may define an E-unitary inverse semigroup using a McAlister triple. Given (G,X,Y) let M(G,X,Y) be the set of all pairs (A,g) in $Y \times G$ such that A acted on by the inverse of g is in Y together with multiplication defined by

$$(A,g)*(B,h) = (Join(A,Bg^-1),hg)$$

where Join is the natural join operation of the semilattice and Bg⁻¹ is B acted on by the inverse of g. With this operation, M(G,X,Y) is a semigroup which we call a *McAlister triple semigroup* over (G,X,Y). In fact every McAlister triple semigroup is an E-unitary inverse semigroup and every E-unitary inverse semigroup is isomorphic to some McAlister triple semigroup. Note that there need not be a unque McAlister triple semigroup for a particular McAlister triple because in general there is more than one way for a group to act on a partial order.

8.4.1 IsMcAlisterTripleSemigroup

▷ IsMcAlisterTripleSemigroup(S)

(filter)

Returns: true or false.

This function returns true if S is a McAlister triple semigroup. A *McAlister triple semigroup* is a special representation of an E-unitary inverse semigroup IsEUnitaryInverseSemigroup (12.2.3) created by McAlisterTripleSemigroup (8.4.2).

8.4.2 McAlisterTripleSemigroup

▷ McAlisterTripleSemigroup(G, X, Y[, act])

(operation)

Returns: A McAlister triple semigroup.

The following documentation covers the technical information needed to create McAlister triple semigroups in GAP, the underlying theory can be read in the introduction to Chapter 8.4.

In this implementation the partial order X of a McAlister triple is represented by a Digraph (**Digraphs: Digraph**) object X. The digraph represents a partial order in the sense that vertices are the elements of the partial order and the order relation is defined by $A \leq B$ if and only if there is an edge from B to A. The semilattice Y of the McAlister triple should be an induced subdigraph Y of X and the DigraphVertexLabels (**Digraphs: DigraphVertexLabels**) must correspond to the vertices of X on which Y is induced. That means that the following:

Y = InducedSubdigraph(X, DigraphVertexLabels(Y))

must return true. Herein if we say that a vertex A of X is 'in' Y then we mean there is a vertex of Y whose label is A. Alerternatively the user may choose to give the argument Y as the vertices of X on which Y is the induced subdigraph.

A McAlister triple semigroup is created from a quadruple (G, X, Y, act) where:

- G is a finite group.
- X is a digraph satisfying IsPartialOrderDigraph (Digraphs: IsPartialOrderDigraph).
- Y is a digraph satisfying IsJoinSemilatticeDigraph (**Digraphs: IsJoinSemilatticeDigraph**) which is an induced subdigraph of X satisfying the aforementioned labeling criteria. Furthermore the OutNeighbours (**Digraphs: OutNeighbours**) of each vertex of X which is in Y must contain only vertices which are in Y.
- act is a function which takes as its first argument a vertex of the digraph X, its second argument should be an element of G, and it must return a vertex of X. act must be a right action, meaning that act (A,gh)=act (act (A,g),h) holds for all A in X and g,h ∈ G. Furthermore the permutation representation of this action must be a subgroup of the automorphism group of X. That means we require the following to return true:

```
IsSubgroup(AutomorphismGroup(X), Image(ActionHomomorphism(G,
DigraphVertices(X), act));
```

Furthermore every vertex of X must be in the orbit of some vertex of X which is in Y. Finally, act must fix the vertex of X which is the minimal vertex of Y, i.e. the unique vertex of Y whose only out-neighbour is itself.

For user convienience, there are multiple versions of McAlisterTripleSemigroup. When the argument act is ommitted it is assumed to be OnPoints (**Reference: OnPoints**). Additionally, the semilattice argument Y may be replaced by a homogeneous list sub_ver of vertices of X. When sub_ver is provided, McAlisterTripleSemigroup is called with Y equalling InducedSubdigraph(X, sub_ver) with the appropriate labels.

```
Example
gap> x := Digraph([[1], [1, 2], [1, 2, 3], [1, 4], [1, 4, 5]]);
<immutable digraph with 5 vertices, 11 edges>
gap> y := InducedSubdigraph(x, [1, 4, 5]);
<immutable digraph with 3 vertices, 6 edges>
gap> DigraphVertexLabels(y);
[ 1, 4, 5 ]
gap> A := AutomorphismGroup(x);
Group([ (2,4)(3,5) ])
gap> S := McAlisterTripleSemigroup(A, x, y, OnPoints);
<McAlister triple semigroup over Group([ (2,4)(3,5) ])>
gap> T := McAlisterTripleSemigroup(A, x, y);
<McAlister triple semigroup over Group([ (2,4)(3,5) ])>
gap> S = T;
false
gap> IsIsomorphicSemigroup(S, T);
true
```

8.4.3 McAlisterTripleSemigroupGroup

▷ McAlisterTripleSemigroupGroup(S)

(attribute)

Returns: A group.

Returns the group used to create the McAlister triple semigroup S via McAlisterTripleSemigroup (8.4.2).

8.4.4 McAlisterTripleSemigroupPartialOrder

▷ McAlisterTripleSemigroupPartialOrder(S)

(attribute)

Returns: A partial order digraph.

Returns the IsPartialOrderDigraph (**Digraphs: IsPartialOrderDigraph**) used to create the McAlister triple semigroup S via McAlisterTripleSemigroup (8.4.2).

8.4.5 McAlisterTripleSemigroupSemilattice

▷ McAlisterTripleSemigroupSemilattice(S)

(attribute)

Returns: A join-semilattice digraph.

Returns the IsJoinSemilatticeDigraph (**Digraphs: IsJoinSemilatticeDigraph**) used to create the McAlister triple semigroup *S* via McAlisterTripleSemigroup (8.4.2).

8.4.6 McAlisterTripleSemigroupAction

▷ McAlisterTripleSemigroupAction(S)

(attribute)

Returns: A function.

Returns the action used to create the McAlister triple semigroup S via McAlisterTripleSemigroup (8.4.2).

8.4.7 IsMcAlisterTripleSemigroupElement

```
▷ IsMcAlisterTripleSemigroupElement(x) (filter)

▷ IsMTSE(x) (filter)
```

Returns: true or false.

Returns true if x is an element of a McAlister triple semigroup; in particular, this returns true if x has been created by McAlisterTripleSemigroupElement (8.4.8). The functions IsMTSE and IsMcAlisterTripleSemigroupElement are synonyms. The mathematical description of these objects can be found in the introduction to Chapter 8.4.

8.4.8 McAlisterTripleSemigroupElement

```
ightharpoonup McAlisterTripleSemigroupElement(S, A, g) (operation)

ightharpoonup MTSE(S, A, g) (operation)
```

Returns: A McAlister triple semigroup element.

Returns the *McAlister triple semigroup element* of the McAlister triple semigroup S which corresponds to a label A of a vertex from the McAlisterTripleSemigroupSemilattice (8.4.5) of S and a group element g of the McAlisterTripleSemigroupGroup (8.4.3) of S. The pair (A,g) only represents an element of S if the following holds: A acted on by the inverse of g (via McAlisterTripleSemigroupAction (8.4.6)) is a vertex of the join-semilattice of S.

The functions MTSE and McAlisterTripleSemigroupElement are synonyms.

```
_ Example .
gap> x := Digraph([[1], [1, 2], [1, 2, 3], [1, 4], [1, 4, 5]]);
<immutable digraph with 5 vertices, 11 edges>
gap> y := InducedSubdigraph(x, [1, 2, 3]);
<immutable digraph with 3 vertices, 6 edges>
gap> A := AutomorphismGroup(x);
Group([ (2,4)(3,5) ])
gap> S := McAlisterTripleSemigroup(A, x, y, OnPoints);
<McAlister triple semigroup over Group([ (2,4)(3,5) ])>
gap> T := McAlisterTripleSemigroup(A, x, y);
<McAlister triple semigroup over Group([ (2,4)(3,5) ])>
gap> S = T;
false
gap> IsIsomorphicSemigroup(S, T);
gap> a := MTSE(S, 1, (2, 4)(3, 5));
(1, (2,4)(3,5))
gap> b := MTSE(S, 2, ());
(2, ())
gap> a * a;
(1, ())
gap> IsMTSE(a * a);
```

```
true
gap> a = MTSE(T, 1, (2, 4)(3, 5));
false
gap> a * b;
(1, (2,4)(3,5))
```

Chapter 9

Ideals

In this chapter we describe the various ways that an ideal of a semigroup can be created and manipulated in Semigroups.

We write *ideal* to mean two-sided ideal everywhere in this chapter.

The methods in the Semigroups package apply to any ideal of a semigroup that is created using the function SemigroupIdeal (9.1.1) or SemigroupIdealByGenerators. Anything that can be calculated for a semigroup defined by a generating set can also be found for an ideal. This works particularly well for regular ideals, since such an ideal can be represented using a similar data structure to that used to represent a semigroup defined by a generating set but without the necessity to find a generating set for the ideal. Many methods for non-regular ideals rely on first finding a generating set for the ideal, which can be costly (but not nearly as costly as an exhaustive enumeration of the elements of the ideal). We plan to improve the functionality of Semigroups for non-regular ideals in the future.

9.1 Creating ideals

9.1.1 SemigroupIdeal

```
▷ SemigroupIdeal(S, obj1, obj2, ..., .)
Returns: An ideal of a semigroup.
```

If obj1, obj2, ... are (any combination) of elements of the semigroup S or collections of elements of S (including subsemigroups and ideals of S), then SemigroupIdeal returns the 2-sided ideal of the semigroup S generated by the union of obj1, obj2, ...

The Parent (**Reference: Parent**) of the ideal returned by this function is S.

9.1.2 Ideals (for a semigroup)

 \triangleright Ideals(S) (attribute)

Returns: An list of ideals.

If S is a finite non-empty semigroup, then this attribute returns a list of the non-empty two-sided ideals of S.

The ideals are returned in no particular order, and each ideal uses the minimum possible number of generators (see GeneratorsOfSemigroupIdeal (9.2.1)).

9.2 Attributes of ideals

9.2.1 GeneratorsOfSemigroupIdeal

▷ GeneratorsOfSemigroupIdeal(I)

(attribute)

Returns: The generators of an ideal of a semigroup.

This function returns the generators of the two-sided ideal I, which were used to defined I when it was created.

If I is an ideal of a semigroup, then I is defined to be the least 2-sided ideal of a semigroup S containing a set J of elements of S. The set J is said to *generate* I.

The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general, equal to that ideal. Use GeneratorsOfSemigroup (**Reference: GeneratorsOfSemigroup**) to obtain a semigroup generating set for an ideal, but beware that this can be very costly.

```
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 4, -1], [-2, -4], [-3]]),
> Bipartition([[1, 2, 3, -3], [4], [-1], [-2, -4]]),
> Bipartition([[1, 3, -2], [2, 4], [-1, -3, -4]]),
> Bipartition([[1], [2, 3, 4], [-1, -3, -4], [-2]]),
> Bipartition([[1], [2, 4, -2], [3, -4], [-1], [-3]]));;
gap> I := SemigroupIdeal(S, S.1 * S.2 * S.5);;
gap> GeneratorsOfSemigroupIdeal(I);
[ <bipartition: [ 1, 2, 3, 4, -4 ], [ -1 ], [ -2 ], [ -3 ]> ]
```

```
gap> I = Semigroup(GeneratorsOfSemigroupIdeal(I));
false
```

9.2.2 MinimalIdealGeneratingSet

▷ MinimalIdealGeneratingSet(I)

(attribute)

Returns: A minimal set ideal generators of an ideal.

This function returns a minimal set of elements of the parent of the semigroup ideal I required to generate I as an ideal.

The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general, equal to that ideal. Use GeneratorsOfSemigroup (**Reference: GeneratorsOfSemigroup**) to obtain a semigroup generating set for an ideal, but beware that this can be very costly.

```
gap> S := Monoid([
> Bipartition([[1, 2, 3, -2], [4], [-1, -4], [-3]]),
> Bipartition([[1, 4, -2, -4], [2, -1, -3], [3]])]);;
gap> I := SemigroupIdeal(S, S);;
gap> MinimalIdealGeneratingSet(I);
[ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ]> ]
```

9.2.3 SupersemigroupOfIdeal

▷ SupersemigroupOfIdeal(I)

(attribute)

Returns: An ideal of a semigroup.

The Parent (**Reference: Parent**) of an ideal is the semigroup in which the ideal was created, i.e. the first argument of SemigroupIdeal (9.1.1) or SemigroupIdealByGenerators. This function returns the semigroup containing the generators of the semigroup (i.e. GeneratorsOfSemigroup (**Reference: GeneratorsOfSemigroup**)) which are used to compute the ideal.

For a regular semigroup ideal, SupersemigroupOfIdeal will always be the top most semigroup used to create any of the predecessors of the current ideal. For example, if S is a semigroup, I is a regular ideal of S, and J is an ideal of I, then Parent(J) is I and SupersemigroupOfIdeal(J) is S. This is to avoid computing a generating set for I, in this example, which is expensive and unnecessary since I is regular (in which case the Green's relations of I are just restrictions of the Green's relations on S).

If S is a semigroup, I is a non-regular ideal of S, J is an ideal of I, then SupersemigroupOfIdeal(J) is I, since we currently have to use GeneratorsOfSemigroup(I) to compute anything about I other than its size and membership.

```
gap> S := FullTransformationSemigroup(8);
<full transformation monoid of degree 8>
gap> x := Transformation([2, 6, 7, 2, 6, 1, 1, 5]);;
gap> D := DClass(S, x);
<Green's D-class: Transformation([2, 6, 7, 2, 6, 1, 1, 5])>
gap> R := PrincipalFactor(D);
<Rees O-matrix semigroup 1050x56 over Group([(2,8,7,4,3), (3,4)])>
gap> S := Semigroup(List([1 .. 10], x -> Random(R)));
<subsemigroup of 1050x56 Rees O-matrix semigroup with 10 generators>
```

```
gap> I := SemigroupIdeal(S, MultiplicativeZero(S));
<regular Rees O-matrix semigroup ideal with 1 generator>
gap> SupersemigroupOfIdeal(I);
<subsemigroup of 1050x56 Rees O-matrix semigroup with 10 generators>
gap> J := SemigroupIdeal(I, Representative(MinimalDClass(S)));
<regular Rees O-matrix semigroup ideal with 1 generator>
gap> Parent(J) = I;
true
gap> SupersemigroupOfIdeal(J) = I;
false
```

Chapter 10

Green's relations

In this chapter we describe the functions in Semigroups for computing Green's classes and related properties of semigroups.

10.1 Creating Green's classes and representatives

In this section, we describe the methods in the Semigroups package for creating Green's classes.

10.1.1 XClassOfYClass

Returns: A Green's class.

XClassOfYClass returns the X-class containing the Y-class class where X and Y should be replaced by an appropriate choice of D, H, L, and R.

Note that if it is not known to GAP whether or not the representative of class is an element of the semigroup containing class, then no attempt is made to check this.

The same result can be produced using:

```
Example ______ Example _____ First(GreensXClasses(S), x -> Representative(x) in class);
```

but this might be substantially slower. Note that XClassOfYClass is also likely to be faster than

```
GreensXClassOfElement(S, Representative(class));
```

DClass can also be used as a synonym for DClassOfHClass, DClassOfLClass, and DClassOfRClass; LClass as a synonym for LClassOfHClass; and RClass as a synonym for RClassOfHClass. See also GreensDClassOfElement (Reference: GreensDClassOfElement) and GreensDClassOfElementNC (10.1.3).

```
Transformation([3, 2, 1]),
                    Transformation([1, 3, 1]));;
gap> R := GreensRClassOfElement(S, Transformation([3, 2, 1]));
<Green's R-class: Transformation([3, 2, 1])>
gap> DClassOfRClass(R);
<Green's D-class: Transformation([3, 2, 1])>
gap> IsGreensDClass(DClassOfRClass(R));
gap> S := InverseSemigroup(
> PartialPerm([2, 6, 7, 0, 0, 9, 0, 1, 0, 5]),
> PartialPerm([3, 8, 1, 9, 0, 4, 10, 5, 0, 6]));
<inverse partial perm semigroup of rank 10 with 2 generators>
gap> x := S.1;
[3,7][8,1,2,6,9][10,5]
gap> H := HClass(S, x);
<Green's H-class: [3,7][8,1,2,6,9][10,5]>
gap> R := RClassOfHClass(H);
<Green's R-class: [3,7][8,1,2,6,9][10,5]>
gap> L := LClass(H);;
gap> L = LClass(S, PartialPerm([1, 2, 0, 0, 5, 6, 7, 0, 9]));
gap> DClass(R) = DClass(L);
true
gap> DClass(H) = DClass(L);
true
```

10.1.2 GreensXClassOfElement

```
▷ GreensDClassOfElement(X, f)
                                                                                                    (operation)
\triangleright DClass(X, f)
                                                                                                    (operation)
▷ GreensHClassOfElement(X, f)
                                                                                                    (operation)
▷ GreensHClassOfElement(R, i, j)
                                                                                                    (operation)
\triangleright HClass(X, f)
                                                                                                    (operation)
\triangleright HClass(R, i, j)
                                                                                                    (operation)
▷ GreensLClassOfElement(X, f)
                                                                                                    (operation)
▷ LClass(X, f)
                                                                                                    (operation)
▷ GreensRClassOfElement(X, f)
                                                                                                    (operation)
\triangleright RClass(X, f)
                                                                                                    (operation)
```

Returns: A Green's class.

These functions produce essentially the same output as the GAP library functions with the same names; see GreensDClassOfElement (Reference: GreensDClassOfElement). The main difference is that these functions can be applied to a wider class of objects:

GreensDClassOfElement and DClass

X must be a semigroup.

GreensHClassOfElement and HClass

X can be a semigroup, \mathscr{R} -class, \mathscr{L} -class, or \mathscr{D} -class. If R is a IxJ Rees matrix semigroup or a Rees 0-matrix semigroup, and i and j are integers of the corresponding index sets, then GreensHClassOfElement returns the \mathscr{H} -class in row i and column j.

GreensLClassOfElement and LClass

X can be a semigroup or \mathcal{D} -class.

GreensRClassOfElement and RClass

X can be a semigroup or \mathcal{D} -class.

Note that GreensXClassOfElement and XClass are synonyms and have identical output. The shorter command is provided for the sake of convenience.

10.1.3 GreensXClassOfElementNC

```
▷ GreensDClassOfElementNC(X, f)
                                                                                            (operation)
▷ DClassNC(X, f)
                                                                                            (operation)

▷ GreensHClassOfElementNC(X, f)

                                                                                            (operation)

▷ HClassNC(X, f)

                                                                                            (operation)
▷ GreensLClassOfElementNC(X, f)
                                                                                            (operation)
\triangleright LClassNC(X, f)
                                                                                            (operation)

▷ GreensRClassOfElementNC(X, f)

                                                                                            (operation)
▷ RClassNC(X, f)
                                                                                            (operation)
```

Returns: A Green's class.

These functions are essentially the same as GreensDClassOfElement (10.1.2) except that no effort is made to verify if f is an element of X. More precisely, GreensXClassOfElementNC and XClassNC first check if f has already been shown to be an element of X. If it is not known to GAP if f is an element of X, then no further attempt to verify this is made.

Note that GreensXClassOfElementNC and XClassNC are synonyms and have identical output. The shorter command is provided for the sake of convenience.

It can be quicker to compute the class of an element using GreensRClassOfElementNC, say, than using GreensRClassOfElement if it is known $a\ priori$ that f is an element of X. On the other hand, if f is not an element of X, then the results of this computation are unpredictable.

For example, if

in the semigroup X of order-preserving mappings on 20 points, then

```
GreensRClassOfElementNC(X, x);
```

returns an answer relatively quickly, whereas

```
GreensRClassOfElement(X, x)
```

can take a signficant amount of time to return a value.

See also GreensRClassOfElement (Reference: GreensRClassOfElement) and RClassOfHClass (10.1.1).

```
gap> S := RandomSemigroup(IsTransformationSemigroup, 2, 1000);;
gap> x := [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1];;
gap> x := EvaluateWord(Generators(S), x);;
gap> R := GreensRClassOfElementNC(S, x);;
```

```
gap> Size(R);
1
gap> L := GreensLClassOfElementNC(S, x);;
gap> Size(L);
1
gap> x := PartialPerm([2, 3, 4, 5, 0, 0, 6, 8, 10, 11]);;
gap> L := LClass(POI(11), x);
<Green's L-class: [1,2,3,4,5][7,6][9,10,11](8)>
gap> Size(L);
165
```

10.1.4 GreensXClasses

```
▷ GreensDClasses(obj)
                                                                                 (method)
▷ DClasses(obj)
                                                                                 (method)
▷ GreensHClasses(obj)
                                                                                 (method)
(method)
▷ GreensJClasses(obj)
                                                                                 (method)
▷ JClasses(obj)
                                                                                 (method)
▷ GreensLClasses(obj)
                                                                                 (method)
▷ LClasses(obj)
                                                                                 (method)
▷ GreensRClasses(obj)
                                                                                 (method)
▷ RClasses(obj)
                                                                                 (method)
```

Returns: A list of Green's classes.

These functions produce essentially the same output as the GAP library functions with the same names; see GreensDClasses (**Reference: GreensDClasses**). The main difference is that these functions can be applied to a wider class of objects:

GreensDClasses and DClasses

X should be a semigroup.

GreensHClasses and HClasses

X can be a semigroup, \mathscr{R} -class, \mathscr{L} -class, or \mathscr{D} -class.

GreensLClasses and LClasses

X can be a semigroup or \mathcal{D} -class.

GreensRClasses and RClasses

X can be a semigroup or \mathcal{D} -class.

Note that GreensXClasses and XClasses are synonyms and have identical output. The shorter command is provided for the sake of convenience.

See also DClassReps (10.1.5), IteratorOfDClassReps (10.2.1), IteratorOfDClasses (10.2.2), and NrDClasses (10.1.9).

```
<Green's D-class: Transformation( [ 4, 4, 4, 4 ] )> ]
gap> GreensRClasses(S);
[ <Green's R-class: Transformation([3, 4, 4, 4])>,
  <Green's R-class: Transformation([4, 3, 1, 2])>,
  <Green's R-class: Transformation([4, 4, 4, 4])>,
  <Green's R-class: Transformation([4, 4, 3, 4])>,
  <Green's R-class: Transformation([4, 3, 4, 4])>,
  <Green's R-class: Transformation([4, 4, 4, 3])>]
gap> D := GreensDClasses(S)[1];
<Green's D-class: Transformation([3, 4, 4, 4])>
gap> GreensLClasses(D);
[ <Green's L-class: Transformation([3, 4, 4, 4])>,
  <Green's L-class: Transformation([1, 2, 2, 2])>]
gap> GreensRClasses(D);
[ <Green's R-class: Transformation([3, 4, 4, 4])>,
  <Green's R-class: Transformation([4, 4, 3, 4])>,
 <Green's R-class: Transformation([4, 3, 4, 4])>,
  <Green's R-class: Transformation([4, 4, 4, 3])>]
gap> R := GreensRClasses(D)[1];
<Green's R-class: Transformation([3, 4, 4, 4])>
gap> GreensHClasses(R);
[ <Green's H-class: Transformation([3, 4, 4, 4])>,
  <Green's H-class: Transformation([1, 2, 2, 2])>]
gap> S := InverseSemigroup([
> PartialPerm([2, 4, 1]), PartialPerm([3, 0, 4, 1])]);;
gap> GreensDClasses(S);
[ <Green's D-class: <identity partial perm on [ 1, 2, 4 ]>>,
  <Green's D-class: <identity partial perm on [ 1, 3, 4 ]>>,
  <Green's D-class: <identity partial perm on [ 1, 3 ]>>,
  <Green's D-class: <identity partial perm on [ 4 ]>>,
  <Green's D-class: <empty partial perm>> ]
gap> GreensLClasses(S);
[ <Green's L-class: <identity partial perm on [ 1, 2, 4 ]>>,
  <Green's L-class: [4,2,1,3]>,
  <Green's L-class: <identity partial perm on [ 1, 3, 4 ]>>,
  <Green's L-class: <identity partial perm on [ 1, 3 ]>>,
  <Green's L-class: [3,1,2]>, <Green's L-class: [1,4][3,2]>,
  <Green's L-class: [1,3,4]>, <Green's L-class: [3,1,4]>,
  <Green's L-class: [1,2](3)>,
  <Green's L-class: <identity partial perm on [ 4 ]>>,
 <Green's L-class: [4,1]>, <Green's L-class: [4,3]>,
  <Green's L-class: [4,2]>, <Green's L-class: <empty partial perm>> ]
gap> D := GreensDClasses(S)[3];
<Green's D-class: <identity partial perm on [ 1, 3 ]>>
gap> GreensLClasses(D);
[ <Green's L-class: <identity partial perm on [ 1, 3 ]>>,
  <Green's L-class: [3,1,2]>, <Green's L-class: [1,4][3,2]>,
  <Green's L-class: [1,3,4]>, <Green's L-class: [3,1,4]>,
  <Green's L-class: [1,2](3)> ]
gap> GreensRClasses(D);
[ <Green's R-class: <identity partial perm on [ 1, 3 ]>>,
  <Green's R-class: [2,1,3]>, <Green's R-class: [2,3][4,1]>,
```

```
<Green's R-class: [4,3,1]>, <Green's R-class: [4,1,3]>,
<Green's R-class: [2,1](3)> ]
```

10.1.5 XClassReps

Returns: A list of representatives.

XClassReps returns a list of the representatives of the Green's classes of obj, which can be a semigroup, \mathcal{D} -, \mathcal{L} -, or \mathcal{R} -class where appropriate.

The same output can be obtained by calling, for example:

```
List(GreensXClasses(obj), Representative);
```

Note that if the Green's classes themselves are not required, then XClassReps will return an answer more quickly than the above, since the Green's class objects are not created.

See also GreensDClasses (10.1.4), IteratorOfDClassReps (10.2.1), IteratorOfDClasses (10.2.2), and NrDClasses (10.1.9).

```
Example
gap> S := Semigroup(Transformation([3, 4, 4, 4]),
                   Transformation([4, 3, 1, 2]));;
gap> DClassReps(S);
[Transformation([3, 4, 4, 4]), Transformation([4, 3, 1, 2]),
 Transformation([4, 4, 4, 4])]
gap> LClassReps(S);
[ Transformation([3, 4, 4, 4]), Transformation([1, 2, 2, 2]),
  Transformation([4, 3, 1, 2]), Transformation([4, 4, 4, 4]),
 Transformation([2, 2, 2, 2]), Transformation([3, 3, 3, 3]),
 Transformation([1, 1, 1, 1])]
gap> D := GreensDClasses(S)[1];
<Green's D-class: Transformation([3, 4, 4, 4])>
gap> LClassReps(D);
[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 1, 2, 2, 2 ] ) ]
gap> RClassReps(D);
[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 4, 4, 3, 4 ] ),
  Transformation([4, 3, 4, 4]), Transformation([4, 4, 4, 3])]
gap> R := GreensRClasses(D)[1];;
gap> HClassReps(R);
[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 1, 2, 2, 2 ] ) ]
gap> S := SymmetricInverseSemigroup(6);;
gap> e := InverseSemigroup(Idempotents(S));;
gap> M := MunnSemigroup(e);;
gap> L := LClassNC(M, PartialPerm([51, 63], [51, 47]));;
gap> HClassReps(L);
[ <identity partial perm on [ 47, 51 ]>, [27,47](51), [50,47](51),
  [64,47](51), [63,47](51), [59,47](51)
```

10.1.6 MinimalDClass

ightharpoonup MinimalDClass(S) (attribute)

Returns: The minimal \mathcal{D} -class of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment. MinimalDClass returns the \mathscr{D} -class corresponding to the minimal ideal of the semigroup S. Equivalently, MinimalDClass returns the minimal \mathscr{D} -class with respect to the partial order of \mathscr{D} -classes.

It is significantly easier to find the minimal \mathcal{D} -class of a semigroup, than to find its \mathcal{D} -classes.

See also PartialOrderOfDClasses (10.1.10), IsGreensLessThanOrEqual (**Reference: IsGreensLessThanOrEqual**), MinimalIdeal (11.7.1) and RepresentativeOfMinimalIdeal (11.7.2).

```
Example

gap> D := MinimalDClass(JonesMonoid(8));

<Green's D-class: <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, 6 ],

[ 7, 8 ], [ -1, -2 ], [ -3, -4 ], [ -5, -6 ], [ -7, -8 ]>>

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 5, 7, 8, 9], [2, 6, 9, 1, 5, 3, 8]),

> PartialPerm([1, 3, 4, 5, 7, 8, 9], [9, 4, 10, 5, 6, 7, 1]));;

gap> MinimalDClass(S);

<Green's D-class: <empty partial perm>>
```

10.1.7 MaximalXClasses

```
ightharpoonup MaximalDClasses(S) (attribute)

ightharpoonup MaximalLClasses(S) (attribute)

ightharpoonup MaximalRClasses(S) (attribute)
```

Returns: The maximal \mathcal{D} , \mathcal{L} , or \mathcal{R} -classes of a semigroup.

Let X be one of Green's \mathcal{D} -, \mathcal{L} -, or \mathcal{R} -relations. Then Maximal XClasses returns the maximal Green's X-classes with respect to the partial order of X-classes.

See also PartialOrderOfDClasses (10.1.10), IsGreensLessThanOrEqual (**Reference: Is-GreensLessThanOrEqual**), and MinimalDClass (10.1.6).

10.1.8 NrRegularDClasses

```
    ▷ NrRegularDClasses(S) (attribute)
    ▷ RegularDClasses(S) (attribute)
```

Returns: A positive integer, or a list.

NrRegularDClasses returns the number of regular \mathcal{D} -classes of the semigroup S.

RegularDClasses returns a list of the regular \mathcal{D} -classes of the semigroup S.

See also IsRegularGreensClass (10.3.2) and IsRegularDClass (Reference: IsRegularD-Class).

10.1.9 NrXClasses

Returns: A positive integer.

NrXClasses returns the number of Green's classes in obj where obj can be a semigroup, \mathcal{D} -, \mathcal{L} -, or \mathcal{R} -class where appropriate. If the actual Green's classes are not required, then it is more efficient to use

```
NrHClasses(obj)
```

than

```
Length(HClasses(obj))
```

since the Green's classes themselves are not created when NrXClasses is called.

See also GreensRClasses (10.1.4), GreensRClasses (**Reference: GreensRClasses**), IteratorOfRClasses (10.2.2), and

```
gap> S := Semigroup(
> Transformation([1, 2, 5, 4, 3, 8, 7, 6]),
> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
> Transformation([5, 2, 3, 6, 3, 4, 7, 4]));;
gap> x := Transformation([2, 5, 4, 7, 4, 3, 6, 3]);;
gap> R := RClass(S, x);
<Green's R-class: Transformation([2, 5, 4, 7, 4, 3, 6, 3])>
gap> NrHClasses(R);
```

```
12
gap> D := DClass(R);
<Green's D-class: Transformation( [ 2, 5, 4, 7, 4, 3, 6, 3 ] )>
gap> NrHClasses(D);
72
gap> L := LClass(S, x);
<Green's L-class: Transformation( [ 2, 5, 4, 7, 4, 3, 6, 3 ] )>
gap> NrHClasses(L);
6
gap> NrHClasses(S);
1555
gap> S := Semigroup(Transformation([4, 6, 5, 2, 1, 3]),
                    Transformation([6, 3, 2, 5, 4, 1]),
                    Transformation([1, 2, 4, 3, 5, 6]),
>
                    Transformation([3, 5, 6, 1, 2, 3]),
>
>
                    Transformation([5, 3, 6, 6, 6, 2]),
>
                    Transformation([2, 3, 2, 6, 4, 6]),
>
                    Transformation([2, 1, 2, 2, 2, 4]),
                    Transformation([4, 4, 1, 2, 1, 2]));;
gap> NrRClasses(S);
150
gap> Size(S);
6342
gap> x := Transformation([1, 3, 3, 1, 3, 5]);;
gap> D := DClass(S, x);
<Green's D-class: Transformation([1, 3, 3, 1, 3, 5])>
gap> NrRClasses(D);
gap> S := SymmetricInverseSemigroup(10);;
gap> NrDClasses(S); NrRClasses(S); NrHClasses(S); NrLClasses(S);
11
1024
184756
1024
gap> S := POPI(10);;
gap> NrDClasses(S);
gap> NrRClasses(S);
1024
```

10.1.10 PartialOrderOfXClasses

Returns: A digraph.

Let X be one of Green's \mathcal{D} -, \mathcal{L} -, or \mathcal{R} -relations. Then PartialOrderOfXClasses returns a digraph D where OutNeighbours(D) [i] contains every j such that GreensXClasses(S) [j] is immediately less than GreensXClasses(S) [i] in the partial order of X-classes of \mathcal{S} . The reflexive transitive closure of the digraph D is the partial order of X-classes of \mathcal{S} (in the sense of the Digraphs package).

The partial order on the X-classes is defined as follows.

Green's \mathcal{D} -relation:

 $x \le y$ if and only if S^1xS^1 is a subset of S^1yS^1 .

Green's \mathcal{L} -relation:

 $x \le y$ if and only if S^1x is a subset of S^1y .

Green's \mathcal{R} -relation:

 $x \le y$ if and only if xS^1 is a subset of yS^1 .

See also GreensDClasses (10.1.4), GreensDClasses (**Reference: GreensDClasses**), IsGreensLessThanOrEqual (**Reference: IsGreensLessThanOrEqual**), and $\$ (10.3.1).

```
Example -
gap> S := Semigroup(Transformation([2, 4, 1, 2]),
                    Transformation([3, 3, 4, 1]));;
gap> PartialOrderOfDClasses(S);
<immutable digraph with 4 vertices, 3 edges>
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[1],
                             GreensDClasses(S)[2]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[2],
                             GreensDClasses(S)[1]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[3],
                             GreensDClasses(S)[1]);
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3], [1, 3, 4]),
> PartialPerm([1, 3, 5], [5, 1, 3]));;
gap> Size(S);
gap> PartialOrderOfDClasses(S);
<immutable digraph with 5 vertices, 4 edges>
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[1],
                             GreensDClasses(S)[2]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[5],
                             GreensDClasses(S)[2]);
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[3],
                             GreensDClasses(S)[4]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[4],
                             GreensDClasses(S)[3]);
true
```

10.1.11 LengthOfLongestDClassChain

Returns: A non-negative integer.

(attribute)

If S is a semigroup, then LengthOfLongestDClassChain returns the length of the longest chain in the partial order defined by PartialOrderOfDClasses(S). See PartialOrderOfDClasses (10.1.10).

The partial order on the \mathscr{D} -classes is defined by $x \leq y$ if and only if S^1xS^1 is a subset of S^1yS^1 . A *chain* of \mathscr{D} -classes is a collection of n \mathscr{D} -classes $D_1, D_2, \ldots D_n$ such that $D_1 < D_2 < \cdots < D_n$. The *length* of such a chain is n - 1.

```
gap> S := TrivialSemigroup();;
gap> LengthOfLongestDClassChain(S);
0
gap> T := ZeroSemigroup(5);;
gap> LengthOfLongestDClassChain(T);
1
gap> U := MonogenicSemigroup(14, 7);;
gap> LengthOfLongestDClassChain(U);
13
gap> V := FullTransformationMonoid(6);
<full transformation monoid of degree 6>
gap> LengthOfLongestDClassChain(V);
```

10.1.12 IsGreensDGreaterThanFunc

▷ IsGreensDGreaterThanFunc(S)

(attribute)

Returns: A function.

IsGreensDGreaterThanFunc(S) returns a function func such that for any two elements x and y of S, func(x, y) return true if the \mathcal{D} -class of x in S is greater than or equal to the \mathcal{D} -class of y in S under the usual ordering of Green's \mathcal{D} -classes of a semigroup.

```
Example .
gap> S := Semigroup(Transformation([1, 3, 4, 1, 3]),
                   Transformation([2, 4, 1, 5, 5]),
>
                   Transformation([2, 5, 3, 5, 3]),
                   Transformation([5, 5, 1, 1, 3]));;
gap> reps := ShallowCopy(AsSet(DClassReps(S)));
[ Transformation( [ 1, 1, 1, 1, 1 ] ),
 Transformation([1, 3, 1, 3, 3]),
 Transformation([1, 3, 4, 1, 3]),
 Transformation([2, 4, 1, 5, 5])]
gap> Sort(reps, IsGreensDGreaterThanFunc(S));
gap> reps;
[ Transformation( [ 2, 4, 1, 5, 5 ] ),
 Transformation([1, 3, 4, 1, 3]),
 Transformation([1, 3, 1, 3, 3]),
 Transformation([1, 1, 1, 1, 1])]
gap> IsGreensLessThanOrEqual(DClass(S, reps[2]),
                            DClass(S, reps[1]));
true
gap> S := DualSymmetricInverseMonoid(4);;
gap> IsGreensDGreaterThanFunc(S)(S.1, S.3);
gap> IsGreensDGreaterThanFunc(S)(S.3, S.1);
```

10.2 Iterators and enumerators of classes and representatives

In this section, we describe the methods in the Semigroups package for incrementally determining Green's classes or their representatives.

10.2.1 IteratorOfXClassReps

```
    ▷ IteratorOfDClassReps(S) (operation)
    ▷ IteratorOfHClassReps(S) (operation)
    ▷ IteratorOfLClassReps(S) (operation)
    Returns: An iterator.
```

Returns an iterator of the representatives of the Green's classes contained in the semigroup *S*. See (**Reference: Iterators**) for more information on iterators.

See also GreensRClasses (Reference: GreensRClasses), GreensRClasses (10.1.4), and IteratorOfRClasses (10.2.2).

10.2.2 IteratorOfXClasses

```
▷ IteratorOfDClasses(S) (operation)

▷ IteratorOfRClasses(S) (operation)

Returns: An iterator.
```

Returns an iterator of the Green's classes in the semigroup S. See (**Reference: Iterators**) for more information on iterators.

This function is useful if you are, for example, looking for an \mathcal{R} -class of a semigroup with a particular property but do not necessarily want to compute all of the \mathcal{R} -classes.

See also GreensRClasses (10.1.4), GreensRClasses (**Reference: GreensRClasses**), and NrRClasses (10.1.9).

The transformation semigroup in the example below has 25147892 elements but it only takes a fraction of a second to find a non-trivial \mathscr{R} -class. The inverse semigroup of partial permutations in the example below has size 158122047816 but it only takes a fraction of a second to find an \mathscr{R} -class with more than 1000 elements.

```
Example

gap> gens := [Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 1]),

Transformation([3, 2, 8, 8, 4, 4, 8, 6, 5, 7]),

Transformation([4, 10, 6, 6, 1, 2, 4, 10, 9, 7]),

Transformation([6, 2, 2, 4, 9, 9, 5, 10, 1, 8]),

Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2]),

Transformation([6, 8, 1, 10, 6, 4, 9, 1, 9, 4]),

Transformation([8, 6, 2, 3, 3, 4, 8, 6, 2, 9]),

Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),
```

```
Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),
              Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 10])];;
gap> S := Semigroup(gens);;
gap> iter := IteratorOfRClasses(S);
<iterator>
gap> for R in iter do
    if Size(R) > 1 then
      break;
>
    fi;
> od;
gap> R;
<Green's R-class: Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2])>
gap> Size(R);
21600
gap> S := InverseSemigroup(
  PartialPerm([1, 2, 3, 4, 5, 6, 7, 10, 11, 19, 20],
               [19, 4, 11, 15, 3, 20, 1, 14, 8, 13, 17]),
>
   PartialPerm([1, 2, 3, 4, 6, 7, 8, 14, 15, 16, 17],
>
               [15, 14, 20, 19, 4, 5, 1, 13, 11, 10, 3]),
   PartialPerm([1, 2, 4, 6, 7, 8, 9, 10, 14, 15, 18],
>
               [7, 2, 17, 10, 1, 19, 9, 3, 11, 16, 18]),
   PartialPerm([1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16],
>
               [8, 3, 18, 1, 4, 13, 12, 7, 19, 20, 2, 11]),
>
   PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 16, 17, 20]
>
               [7, 17, 13, 4, 6, 9, 18, 10, 11, 19, 5, 2, 8]),
>
   PartialPerm([1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18],
>
               [10, 20, 11, 7, 13, 8, 4, 9, 2, 18, 17, 6, 15]),
>
  PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 17, 18],
>
               [10, 20, 18, 1, 14, 16, 9, 5, 15, 4, 8, 12, 19, 11]),
   PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 19, 20],
>
               [13, 6, 1, 2, 11, 7, 16, 18, 9, 10, 4, 14, 15, 5, 17]),
>
  PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 20],
               [5, 3, 12, 9, 20, 15, 8, 16, 13, 1, 17, 11, 14, 10, 2]),
>
  PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19, 20],
               [8, 3, 9, 20, 2, 12, 14, 15, 4, 18, 13, 1, 17, 19, 5]));;
gap> iter := IteratorOfRClasses(S);
<iterator>
gap> repeat
   R := NextIterator(iter);
> until Size(R) > 1000;
gap> R;
<Green's R-class: [8,19,14][11,4][13,15,5][17,20]>
gap> Size(R);
10020240
```

10.3 Properties of Green's classes

In this section, we describe the properties and operators of Green's classes that are available in the Semigroups package

10.3.1 Less than for Green's classes

The Green's class *left-expr* is less than or equal to *right-expr* if they belong to the same semigroup and the representative of *left-expr* is less than the representative of *right-expr* under <; see also Representative (**Reference: Representative**).

Please note that this is not the usual order on the Green's classes of a semigroup as defined in (Reference: Green's Relations). See also IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual).

```
Example .
gap> S := FullTransformationSemigroup(4);;
gap> A := GreensRClassOfElement(S, Transformation([2, 1, 3, 1]));
<Green's R-class: Transformation([2, 1, 3, 1])>
gap> B := GreensRClassOfElement(S, Transformation([1, 2, 3, 4]));
<Green's R-class: IdentityTransformation>
gap> A < B;
false
gap> B < A;
true
gap> IsGreensLessThanOrEqual(A, B);
true
gap> IsGreensLessThanOrEqual(B, A);
gap> S := SymmetricInverseSemigroup(4);;
gap> A := GreensJClassOfElement(S, PartialPerm([1, 3, 4]));;
gap> B := GreensJClassOfElement(S, PartialPerm([3, 1]));;
gap> A < B;</pre>
true
gap> B < A;
false
gap> IsGreensLessThanOrEqual(A, B);
gap> IsGreensLessThanOrEqual(B, A);
true
```

10.3.2 IsRegularGreensClass

This function returns true if *class* is a regular Green's class and false if it is not. See also IsRegularDClass (**Reference: IsRegularDClass**), IsGroupHClass (**Reference: IsGroupHClass**), GroupHClassOfGreensDClass (**Reference: GroupHClassOfGreensDClass**), GroupHClass (10.4.1), NrIdempotents (11.9.2), Idempotents (11.9.1), and IsRegularSemigroupElement (**Reference: IsRegularSemigroupElement**).

The function IsRegularDClass produces the same output as the GAP library functions with the same name; see IsRegularDClass (Reference: IsRegularDClass).

```
gap> f := Transformation([1, 1, 10, 8, 8, 8, 1, 1, 10, 8]);;
gap> R := RClass(S, f);;
gap> IsRegularGreensClass(R);
gap> S := Monoid(Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
                 Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2]));;
gap> f := Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2]);;
gap> R := RClass(S, f);;
gap> IsRegularGreensClass(R);
false
gap> NrIdempotents(R);
gap> S := Semigroup(Transformation([2, 1, 3, 1]),
                    Transformation([3, 1, 2, 1]),
                    Transformation([4, 2, 3, 3]));;
>
gap> f := Transformation([4, 2, 3, 3]);;
gap> L := GreensLClassOfElement(S, f);;
gap> IsRegularGreensClass(L);
gap> R := GreensRClassOfElement(S, f);;
gap> IsRegularGreensClass(R);
false
gap> g := Transformation([4, 4, 4, 4]);;
gap> IsRegularSemigroupElement(S, g);
true
gap> IsRegularGreensClass(LClass(S, g));
true
gap> IsRegularGreensClass(RClass(S, g));
true
gap> IsRegularDClass(DClass(S, g));
true
gap> DClass(S, g) = RClass(S, g);
false
```

10.3.3 IsGreensClassNC

▷ IsGreensClassNC(class)

(property)

Returns: true or false.

A Green's class class of a semigroup S satisfies IsGreensClassNC if it was not known to GAP that the representative of class was an element of S at the point that class was created.

10.4 Attributes of Green's classes

In this section, we describe the attributes of Green's classes that are available in the Semigroups package

10.4.1 GroupHClass

▷ GroupHClass(class)

(attribute)

Returns: A group \mathcal{H} -class of the \mathcal{D} -class class if it is regular and fail if it is not.

GroupHClass is a synonym for GroupHClassOfGreensDClass (Reference: GroupHClassOfGreensDClass).

See also IsGroupHClass (**Reference: IsGroupHClass**), IsRegularDClass (**Reference: IsRegularDClass**), IsRegularGreensClass (10.3.2), and IsRegularSemigroup (12.1.17).

```
Example
gap> S := Semigroup(Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
                    Transformation([3, 8, 1, 4, 5, 6, 7, 1]));;
gap> IsRegularSemigroup(S);
false
gap> iter := IteratorOfDClasses(S);;
gap> repeat D := NextIterator(iter); until IsRegularDClass(D);
<Green's D-class: Transformation( [ 6, 1, 1, 6, 1, 2, 2, 6 ] )>
gap> NrIdempotents(D);
gap> NrRClasses(D);
gap> NrLClasses(D);
gap> GroupHClass(D);
<Green's H-class: Transformation([1, 2, 2, 1, 2, 6, 6, 1])>
gap> GroupHClassOfGreensDClass(D);
<Green's H-class: Transformation([1, 2, 2, 1, 2, 6, 6, 1])>
gap> StructureDescription(GroupHClass(D));
"S3"
gap> repeat D := NextIterator(iter); until not IsRegularDClass(D);
<Green's D-class: Transformation( [ 7, 5, 2, 2, 6, 1, 1, 2 ] )>
gap> IsRegularDClass(D);
false
gap> GroupHClass(D);
fail
gap> S := InverseSemigroup(
> PartialPerm([2, 1, 6, 0, 3]), PartialPerm([3, 5, 2, 0, 0, 6]));;
gap> x := PartialPerm([1 .. 3], [6, 3, 1]);;
gap> First(DClasses(S), x -> not IsTrivial(GroupHClass(x)));
<Green's D-class: <identity partial perm on [ 1, 2 ]>>
gap> StructureDescription(GroupHClass(last));
"C2"
```

10.4.2 SchutzenbergerGroup

▷ SchutzenbergerGroup(class)

(attribute)

Returns: A group.

SchutzenbergerGroup returns the generalized Schutzenberger group (defined below) of the \mathcal{R} -, \mathcal{D} -, \mathcal{L} -, or \mathcal{H} -class class.

If f is an element of a semigroup of transformations or partial permutations and im(f) denotes the image of f, then the *generalized Schutzenberger group* of im(f) is the permutation group

$$\{g|_{im(f)}: im(f*g) = im(f)\}.$$

The generalized Schutzenberger group of the kernel ker(f) of a transformation f or the domain dom(f) of a partial permutation f is defined analogously.

The generalized Schutzenberger group of a Green's class is then defined as follows.

\mathcal{R} -class

The generalized Schutzenberger group of the image or range of the representative of the \mathcal{R} -class.

$\mathscr{L} ext{-class}$

The generalized Schutzenberger group of the kernel or domain of the representative of the \mathscr{L} -class

\mathcal{H} -class

The intersection of the generalized Schutzenberger groups of the \mathscr{R} - and \mathscr{L} -class containing the \mathscr{H} -class.

\mathscr{D} -class

The intersection of the generalized Schutzenberger groups of the \mathscr{R} - and \mathscr{L} -class containing the representative of the \mathscr{D} -class.

The output of this attribute is difficult to describe for other types of semigroup. However, a general description is given in [EENMP19].

```
Example
gap> S := Semigroup(Transformation([4, 4, 3, 5, 3]),
                   Transformation([5, 1, 1, 4, 1]),
                   Transformation([5, 5, 4, 4, 5]));;
gap> f := Transformation([5, 5, 4, 4, 5]);;
gap> SchutzenbergerGroup(RClass(S, f));
Group([ (4,5) ])
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 7],
              [9, 2, 4, 8]),
> PartialPerm([1, 2, 6, 7, 8, 9, 10],
             [6, 8, 4, 5, 9, 1, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 9],
             [7, 4, 1, 6, 9, 5, 2, 3]));;
gap> List(DClasses(S), SchutzenbergerGroup);
[ Group(()), Group(()), Group(()), Group(()), Group([ (4,9) ]),
 Group(()), Group(()), Group([ (5,8,6), (5,8) ]), Group(()),
 Group(()), Group(()), Group(()), Group(()),
 Group([(1,7,5,6,9,3)]), Group([(1,6)(3,5)]), Group(()),
  Group(()), Group(()), Group(()), Group(()), Group(())
```

10.4.3 StructureDescriptionSchutzenbergerGroups

▷ StructureDescriptionSchutzenbergerGroups(S)

(attribute)

Returns: Distinct structure descriptions of the Schutzenberger groups of a semigroup.

StructureDescriptionSchutzenbergerGroups returns the distinct values of StructureDescription (**Reference: StructureDescription**) when it is applied to the Schutzenberger groups of the \mathcal{R} -classes of the semigroup S.

```
Example
gap> S := Semigroup([
> PartialPerm([1, 2, 3], [2, 5, 4]),
> PartialPerm([1, 2, 3], [4, 1, 2]),
> PartialPerm([1, 2, 3], [5, 2, 3]),
> PartialPerm([1, 2, 4, 5], [2, 1, 4, 3]),
> PartialPerm([1, 2, 5], [2, 3, 5]),
 PartialPerm([1, 2, 3, 5], [2, 3, 5, 4]),
 PartialPerm([1, 2, 3, 5], [4, 2, 5, 1]),
> PartialPerm([1, 2, 3, 5], [5, 2, 4, 3]),
> PartialPerm([1, 2, 5], [5, 4, 3])]);;
gap> StructureDescriptionSchutzenbergerGroups(S);
[ "1", "C2", "S3" ]
gap> S := Monoid(
> Bipartition([[1, 2, 5, -1, -2], [3, 4, -3, -5], [-4]]),
> Bipartition([[1, 2, -2], [3, -1], [4], [5], [-3, -4], [-5]]),
> Bipartition([[1], [2, 3, -5], [4, -3], [5, -2], [-1, -4]]));
<bipartition monoid of degree 5 with 3 generators>
gap> StructureDescriptionSchutzenbergerGroups(S);
[ "1", "C2" ]
```

10.4.4 StructureDescriptionMaximalSubgroups

▷ StructureDescriptionMaximalSubgroups(S)

(attribute)

Returns: Distinct structure descriptions of the maximal subgroups of a semigroup.

StructureDescriptionMaximalSubgroups returns the distinct values of StructureDescription (**Reference: StructureDescription**) when it is applied to the maximal subgroups of the semigroup S.

```
Example
gap> S := DualSymmetricInverseSemigroup(6);
<inverse block bijection monoid of degree 6 with 3 generators>
gap> StructureDescriptionMaximalSubgroups(S);
[ "1", "C2", "S3", "S4", "S5", "S6"]
gap> S := Semigroup(
  PartialPerm([1, 3, 4, 5, 8],
               [8, 3, 9, 4, 5]),
  PartialPerm([1, 2, 3, 4, 8],
               [10, 4, 1, 9, 6]),
  PartialPerm([1, 2, 3, 4, 5, 6, 7, 10],
               [4, 1, 6, 7, 5, 3, 2, 10]),
  PartialPerm([1, 2, 3, 4, 6, 8, 10],
               [4, 9, 10, 3, 1, 5, 2]));;
gap> StructureDescriptionMaximalSubgroups(S);
[ "1", "C2", "C3", "C4" ]
```

10.4.5 MultiplicativeNeutralElement (for an H-class)

▷ MultiplicativeNeutralElement(H)

(method)

Returns: A semigroup element or fail.

If the \mathcal{H} -class H of a semigroup S is a subgroup of S, then MultiplicativeNeutralElement returns the identity of H. If H is not a subgroup of S, then fail is returned.

10.4.6 StructureDescription (for an H-class)

▷ StructureDescription(class)

(attribute)

Returns: A string or fail.

StructureDescription returns the value of StructureDescription (**Reference: Structure-Description**) when it is applied to a group isomorphic to the group \mathcal{H} -class class. If class is not a group \mathcal{H} -class, then fail is returned.

10.4.7 InjectionPrincipalFactor

Returns: A injective mapping.

If the \mathscr{D} -class D is a subsemigroup of a semigroup S, then the *principal factor* of D is just D itself. If D is not a subsemigroup of S, then the principal factor of D is the semigroup with elements D and a new element O with multiplication of $x, y \in D$ defined by:

$$xy = \begin{cases} x * y \text{ (in } S) & \text{if } x * y \in D \\ 0 & \text{if } xy \notin D. \end{cases}$$

InjectionPrincipalFactor returns an injective function from the \mathcal{D} -class D to a Rees (0-)matrix semigroup, which contains the principal factor of D as a subsemigroup.

If *D* is a subsemigroup of its parent semigroup, then the function returned by InjectionPrincipalFactor or IsomorphismReesMatrixSemigroup is an isomorphism from *D* to a Rees matrix semigroup; see ReesMatrixSemigroup (**Reference: ReesMatrixSemigroup**).

If D is not a semigroup, then the function returned by InjectionPrincipalFactor is an injective function from D to a Rees 0-matrix semigroup isomorphic to the principal factor of

D; see ReesZeroMatrixSemigroup (**Reference: ReesZeroMatrixSemigroup**). In this case, IsomorphismReesMatrixSemigroup and IsomorphismReesZeroMatrixSemigroup returns an error.

InjectionNormalizedPrincipalFactor returns the composition of InjectionPrincipalFactor with RZMSNormalization (6.5.6) or RMSNormalization (6.5.7) as appropriate.

See also PrincipalFactor (10.4.8).

```
Example -
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 6, 8, 10],
              [2, 6, 7, 9, 1, 5]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],
              [3, 8, 1, 9, 4, 10, 5, 6]));;
gap> x := PartialPerm([1, 2, 5, 6, 7, 9],
                      [1, 2, 5, 6, 7, 9]);;
gap> D := GreensDClassOfElement(S, x);
<Green's D-class: <identity partial perm on [ 1, 2, 5, 6, 7, 9 ]>>
gap> R := Range(InjectionPrincipalFactor(D));
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> MatrixOfReesZeroMatrixSemigroup(R);
[[(), 0, 0], [0, (), 0], [0, 0, ()]]
gap> Size(R);
10
gap> Size(D);
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -3, -5], [4], [5, -2], [-1, -4]]),
> Bipartition([[1, 3, 5], [2, 4, -3], [-1, -2, -4, -5]]),
> Bipartition([[1, 5, -2, -4], [2, 3, 4, -1, -5], [-3]]),
> Bipartition([[1, 5, -1, -2, -3], [2, 4, -4], [3, -5]]));;
gap> D := GreensDClassOfElement(S,
> Bipartition([[1, 5, -2, -4], [2, 3, 4, -1, -5], [-3]]));
<Green's D-class: <bipartition: [ 1, 5, -2, -4 ], [ 2, 3, 4, -1, -5 ]</pre>
   , [ -3 ]>>
gap> InjectionNormalizedPrincipalFactor(D);
MappingByFunction( <Green's D-class: <bipartition: [ 1, 5, -2, -4 ],
  [ 2, 3, 4, -1, -5 ], [ -3 ]>>, <Rees matrix semigroup 1x1 over
  Group([(1,2)])>, function(x)...end, function(x)...end)
```

10.4.8 PrincipalFactor

Returns: A Rees (0-)matrix semigroup.

If D is a \mathscr{D} -class of semigroup, then PrincipalFactor(D) is just shorthand for Range(InjectionPrincipalFactor(D)), and NormalizedPrincipalFactor(D) is shorthand for Range(InjectionNormalizedPrincipalFactor(D)).

See InjectionPrincipalFactor (10.4.7) and InjectionNormalizedPrincipalFactor (10.4.7) for more details.

```
_ Example .
gap> S := Semigroup([PartialPerm([1, 2, 3], [1, 3, 4]),
> PartialPerm([1, 2, 3], [2, 5, 3]),
> PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
> PartialPerm([1, 3, 5], [5, 1, 3])]);;
gap> PrincipalFactor(MinimalDClass(S));
<Rees matrix semigroup 1x1 over Group(())>
gap> MultiplicativeZero(S);
<empty partial perm>
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 4, 5, -1, -3], [-2, -5], [-4]]),
> Bipartition([[1, -5], [2, 3, 4, 5, -1, -3], [-2, -4]]),
> Bipartition([[1, 5, -4], [2, 4, -1, -5], [3, -2, -3]]));;
gap> D := MinimalDClass(S);
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -3 ],</pre>
  [ -2, -5 ], [ -4 ]>>
gap> NormalizedPrincipalFactor(D);
<Rees matrix semigroup 1x5 over Group(())>
```

Chapter 11

Attributes and operations for semigroups

In this chapter we decribe the methods that are available in Semigroups for determining the attributes of a semigroup, and the operations which can be applied to a semigroup.

11.1 Accessing the elements of a semigroup

11.1.1 AsListCanonical

```
ightharpoonup AsListCanonical(S) (attribute)

ightharpoonup EnumeratorCanonical(S) (attribute)

ightharpoonup IteratorCanonical(S) (operation)
```

Returns: A list, enumerator, or iterator.

When the argument S is a semigroup satisfying CanUseFroidurePin (6.1.4), AsListCanonical returns a list of the elements of S in the order they are enumerated by the Froidure-Pin Algorithm. This is the same as the order used to index the elements of S in RightCayleyDigraph (11.2.1) and LeftCayleyDigraph (11.2.1).

EnumeratorCanonical and IteratorCanonical return an enumerator and an iterator where the elements are ordered in the same way as AsListCanonical. Using EnumeratorCanonical or IteratorCanonical will often use less memory than AsListCanonical, but may have slightly worse performance if the elements of the semigroup are looped over repeatedly. EnumeratorCanonical returns the same list as AsListCanonical if AsListCanonical has ever been called for S.

If S is an acting semigroup, then the value returned by AsList may not equal the value returned by AsListCanonical. AsListCanonical exists so that there is a method for obtaining the elements of S in the particular order used by RightCayleyDigraph (11.2.1) and LeftCayleyDigraph (11.2.1). See also PositionCanonical (11.1.2).

11.1.2 PositionCanonical

 \triangleright PositionCanonical(S, x)

(operation)

Returns: A positive integer or fail.

When the argument S is a semigroup satisfying CanUseFroidurePin (6.1.4) and x is an element of S, PositionCanonical returns the position of x in AsListCanonical(S) or equivalently the position of x in EnumeratorCanonical(S).

See also AsListCanonical (11.1.1) and EnumeratorCanonical (11.1.1).

```
Example
gap> S := FullTropicalMaxPlusMonoid(2, 3);
<monoid of 2x2 tropical max-plus matrices with 13 generators>
gap> x := Matrix(IsTropicalMaxPlusMatrix, [[1, 3], [2, 1]], 3);
Matrix(IsTropicalMaxPlusMatrix, [[1, 3], [2, 1]], 3)
gap> PositionCanonical(S, x);
234
gap> EnumeratorCanonical(S)[234] = x;
true
```

11.1.3 Enumerate

▷ Enumerate(S[, limit])

(operation)

Returns: A semigroup (the argument).

If S is a semigroup with representation CanUseFroidurePin (6.1.4) and limit is a positive integer, then this operation can be used to enumerate at least limit elements of S, or Size(S) elements if this is less than limit, using the Froidure-Pin Algorithm.

If the optional second argument *limit* is not given, then the semigroup is enumerated until all of its elements have been found.

```
gap> S := FullTransformationMonoid(7);
<full transformation monoid of degree 7>
gap> Enumerate(S, 1000);
<full transformation monoid of degree 7>
```

11.1.4 IsEnumerated

▷ IsEnumerated(S) (operation)

Returns: true or false.

If S is a semigroup with representation CanUseFroidurePin (6.1.4), then this operation returns true if the Froidure-Pin Algorithm has been run to completion (i.e. all of the elements of S have been found) and false if S has not been fully enumerated.

11.2 Cayley graphs

11.2.1 RightCayleyDigraph

```
    ▷ RightCayleyDigraph(S) (attribute)
    ▷ LeftCayleyDigraph(S) (attribute)
    Returns: A digraph.
```

When the argument S is a semigroup satisfying CanUseFroidurePin (6.1.4), RightCayleyDigraph returns the right Cayley graph of S, as a Digraph (**Digraphs: Digraph**) digraph where vertex OutNeighbours(digraph)[i][j] is PositionCanonical(S, AsListCanonical(S)[i] * GeneratorsOfSemigroup(S)[j]). The digraph returned by LeftCayleyDigraph is defined analogously.

The digraph returned by this attribute belongs to the category IsCayleyDigraph (**Digraphs:** IsCayleyDigraph), the semigroup S and the generators used to create the digraph can be recovered from the digraph using SemigroupOfCayleyDigraph (**Digraphs:** SemigroupOfCayleyDigraph) and GeneratorsOfCayleyDigraph (**Digraphs:** GeneratorsOfCayleyDigraph).

```
Example
gap> S := FullTransformationMonoid(2);
<full transformation monoid of degree 2>
gap> RightCayleyDigraph(S);
<immutable multidigraph with 4 vertices, 12 edges>
gap> LeftCayleyDigraph(S);
<immutable multidigraph with 4 vertices, 12 edges>
```

11.3 Random elements of a semigroup

11.3.1 Random (for a semigroup)

ightharpoons Random(S) (method)

Returns: A random element.

This function returns a random element of the semigroup S. If the elements of S have been calculated, then one of these is chosen randomly. Otherwise, if the data structure for S is known, then a random element of a randomly chosen \mathcal{R} -class is returned. If the data structure for S has not been calculated, then a short product (at most 2 * Length(GeneratorsOfSemigroup(S))) of generators is returned.

11.4 Properties of elements in a semigroup

11.4.1 IndexPeriodOfSemigroupElement

▷ IndexPeriodOfSemigroupElement(x)

(operation)

Returns: A list of two positive integers.

If x is a semigroup element, then IndexPeriodOfSemigroupElement(x) returns the pair [m, r], where m and r are the least positive integers such that $x^m = x^m$. The number m is known as the *index* of x, and the number is known as the *period* of x.

```
gap> x := Transformation([2, 6, 3, 5, 6, 1]);;
gap> IndexPeriodOfSemigroupElement(x);
[ 2, 3 ]
gap> m := IndexPeriodOfSemigroupElement(x)[1];;
gap> r := IndexPeriodOfSemigroupElement(x)[2];;
gap> x ^ (m + r) = x ^ m;
true
gap> x := PartialPerm([0, 2, 3, 0, 5]);
<identity partial perm on [ 2, 3, 5 ]>
gap> IsIdempotent(x);
true
gap> IndexPeriodOfSemigroupElement(x);
[ 1, 1 ]
```

11.4.2 SmallestIdempotentPower

▷ SmallestIdempotentPower(x)

(attribute)

Returns: A positive integer.

If x is a semigroup element, then SmallestIdempotentPower(x) returns the least positive integer n such that x^n is an idempotent. The smallest idempotent power of x is the least multiple of the period of x that is greater than or equal to the index of x; see IndexPeriodOfSemigroupElement (11.4.1).

```
Example -
gap> x := Transformation([4, 1, 4, 5, 1]);
Transformation([4, 1, 4, 5, 1])
gap> SmallestIdempotentPower(x);
gap> ForAll([1 .. 2], i -> not IsIdempotent(x ^ i));
true
gap> IsIdempotent(x ^ 3);
true
gap> x := Bipartition([[1, 2, -3, -4], [3, -5], [4, -1], [5, -2]]);
<block bijection: [ 1, 2, -3, -4 ], [ 3, -5 ], [ 4, -1 ], [ 5, -2 ]>
gap> SmallestIdempotentPower(x);
gap> ForAll([1 .. 3], i -> not IsIdempotent(x ^ i));
true
gap> x := PartialPerm([]);
<empty partial perm>
gap> SmallestIdempotentPower(x);
gap> IsIdempotent(x);
true
```

11.5 Expressing semigroup elements as words in generators

It is possible to express an element of a semigroup as a word in the generators of that semigroup. This section describes how to accomplish this in Semigroups.

11.5.1 EvaluateWord

```
▷ EvaluateWord(gens, w)
```

(operation)

Returns: A semigroup element.

The argument gens should be a collection of generators of a semigroup and the argument w should be a list of positive integers less than or equal to the length of gens. This operation evaluates the word w in the generators gens. More precisely, EvaluateWord(gens, w) returns the equivalent of:

```
Product(List(w, i -> gens[i]));
```

see also Factorization (11.5.2).

for elements of a semigroup

When gens is a list of elements of a semigroup and w is a list of positive integers less than or equal to the length of gens, this operation returns the product gens [w[1]] * gens[w[2]] * ... * gens[w[n]] when the length of w is n.

for elements of an inverse semigroup

When gens is a list of elements with a semigroup inverse and w is a list of non-zero integers whose absolute value does not exceed the length of gens, this operation returns the product gens[AbsInt(w[1])] ^ SignInt(w[1]) * . . . * gens[AbsInt(w[n])] ^ SignInt(w[n]) where n is the length of w.

Note that EvaluateWord(gens, []) returns One(gens) if gens belongs to the category IsMultiplicativeElementWithOne (Reference: IsMultiplicativeElementWithOne).

```
Example
gap> gens := [
> Transformation([2, 4, 4, 6, 8, 8, 6, 6]),
> Transformation([2, 7, 4, 1, 4, 6, 5, 2]),
> Transformation([3, 6, 2, 4, 2, 2, 2, 8]),
> Transformation([4, 3, 6, 4, 2, 1, 2, 6]),
> Transformation([4, 5, 1, 3, 8, 5, 8, 2])];;
gap> S := Semigroup(gens);;
gap> x := Transformation([1, 4, 6, 1, 7, 2, 7, 6]);;
gap> word := Factorization(S, x);
[4, 2]
gap> EvaluateWord(gens, word);
Transformation([1, 4, 6, 1, 7, 2, 7, 6])
gap> S := SymmetricInverseMonoid(10);;
gap> x := PartialPerm([2, 6, 7, 0, 0, 9, 0, 1, 0, 5]);
[3,7] [8,1,2,6,9] [10,5]
gap> word := Factorization(S, x);
2, -3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2]
gap> EvaluateWord(GeneratorsOfSemigroup(S), word);
[3,7][8,1,2,6,9][10,5]
```

11.5.2 Factorization

```
\triangleright Factorization(S, x)
```

(operation)

Returns: A word in the generators.

for semigroups

When S is a semigroup and x belongs to S, Factorization return a word in the generators of S that is equal to x. In this case, a word is a list of positive integers where an entry i corresponds to GeneratorsOfSemigroups(S)[i]. More specifically,

for inverse semigroups

When S is an inverse semigroup and x belongs to S, Factorization return a word in the generators of S that is equal to x. In this case, a word is a list of non-zero integers where an entry i corresponds to GeneratorsOfSemigroup(S)[i] and -i corresponds to GeneratorsOfSemigroup(S)[i] $^-$ -1. As in the previous case,

```
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, x)) = x;
```

Note that Factorization does not always return a word of minimum length; see MinimalFactorization (11.5.3).

See also EvaluateWord (11.5.1) and GeneratorsOfSemigroup (Reference: GeneratorsOf-Semigroup).

```
_{-} Example _{-}
gap> gens := [Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 8]),
              Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 2])];;
gap> S := Semigroup(gens);;
gap> x := Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 7]);;
gap> word := Factorization(S, x);
[2, 2, 1, 2]
gap> EvaluateWord(gens, word);
Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 7])
gap> S := SymmetricInverseMonoid(8);
<symmetric inverse monoid of degree 8>
gap> x := PartialPerm([1, 2, 3, 4, 5, 8], [7, 1, 4, 3, 2, 6]);
[5,2,1,7][8,6](3,4)
gap> word := Factorization(S, x);
[-2, -2, -2, -2, -2, -2, 2, 4, 4, 2, 3, 2, -3, -2, -2, 3, 2, -3, -2,
  -2, 4, -3, -4, 2, 2, 3, -2, -3, 4, -3, -4, 2, 2, 3, -2, -3, 2, 2,
  3, -2, -3, 2, 2, 3, -2, -3, 4, -3, -4, 3, 2, -3, -2, -2, 3, 2, -3,
  -2, -2, 4, 3, -4, 3, 2, -3, -2, -2, 3, 2, -3, -2, -2, 3, 2, 2, 3,
  2, 2, 2, 2]
gap> EvaluateWord(GeneratorsOfSemigroup(S), word);
[5,2,1,7][8,6](3,4)
gap> S := DualSymmetricInverseMonoid(6);;
gap> x := S.1 * S.2 * S.3 * S.2 * S.1;
<block bijection: [ 1, 6, -4 ], [ 2, -2, -3 ], [ 3, -5 ], [ 4, -6 ],</pre>
[5, -1]>
gap> word := Factorization(S, x);
[-2, -2, -2, -2, -2, 4, 2]
```

```
gap> EvaluateWord(GeneratorsOfSemigroup(S), word);
<block bijection: [ 1, 6, -4 ], [ 2, -2, -3 ], [ 3, -5 ], [ 4, -6 ],
    [ 5, -1 ]>
```

11.5.3 MinimalFactorization

```
\triangleright MinimalFactorization(S, x)
```

(operation)

Returns: A minimal word in the generators.

This operation returns a minimal length word in the generators of the semigroup S that equals the element x. In this case, a word is a list of positive integers where an entry i corresponds to GeneratorsOfSemigroups(S)[i]. More specifically,

```
EvaluateWord(GeneratorsOfSemigroup(S), MinimalFactorization(S, x)) = x;
```

MinimalFactorization involves exhaustively enumerating S until the element x is found, and so MinimalFactorization may be less efficient than Factorization (11.5.2) for some semigroups.

Unlike Factorization (11.5.2) this operation does not distinguish between semigroups and inverse semigroups. See also EvaluateWord (11.5.1) and GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup).

```
Example

gap> S := Semigroup(Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 8]),

Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 2]));

<transformation semigroup of degree 10 with 2 generators>
gap> x := Transformation([8, 8, 2, 2, 9, 2, 8, 8, 9, 9]);

Transformation([8, 8, 2, 2, 9, 2, 8, 8, 9, 9]))

gap> Factorization(S, x);
[1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1]

gap> MinimalFactorization(S, x);
[1, 2, 1, 1, 1, 1, 2, 2, 1]
```

11.5.4 NonTrivialFactorization

 \triangleright NonTrivialFactorization(S, x)

(operation)

Returns: A non-trivial word in the generators, or fail.

When S is a semigroup and x belongs to S, this operation returns a non-trivial word in the generators of the semigroup S that equals x, if one exists. The definition of a word in the generators is the same as given in Factorization (11.5.2) for semigroups and inverse semigroups. A word is non-trivial if it has length two or more.

If no non-trivial word for x exists, then x is an indecomposable element of S and this operation returns fail; see IndecomposableElements (11.6.6).

When x does not belong to GeneratorsOfSemigroup(S), any factorization of x is non-trivial. In this case, NonTrivialFactorization returns the same word as Factorization (11.5.2).

See also EvaluateWord (11.5.1) and GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup).

```
Example

gap> x := Transformation([5, 4, 2, 1, 3]);;

gap> y := Transformation([4, 4, 2, 4, 1]);;

gap> S := Semigroup([x, y]);
```

```
<transformation semigroup of degree 5 with 2 generators>
gap> NonTrivialFactorization(S, x * y);
[1,2]
gap> Factorization(S, x);
[1]
gap> NonTrivialFactorization(S, x);
[ 1, 1, 1, 1, 1, 1]
gap> Factorization(S, y);
[2]
gap> NonTrivialFactorization(S, y);
[2, 1, 1, 1, 1, 1]
gap> z := PartialPerm([2]);;
gap> S := Semigroup(z);
<commutative partial perm semigroup of rank 1 with 1 generator>
gap> NonTrivialFactorization(S, z);
fail
```

11.6 Generating sets

11.6.1 Generators

 \triangleright Generators (S) (attribute)

Returns: A list of generators.

Generators returns a generating set that can be used to define the semigroup S. The generators of a monoid or inverse semigroup S, say, can be defined in several ways, for example, including or excluding the identity element, including or not the inverses of the generators. Generators uses the definition that returns the least number of generators. If no generating set for S is known, then GeneratorsOfSemigroup is used by default.

for a group

Generators(S) is a synonym for GeneratorsOfGroup (Reference: GeneratorsOfGroup).

for an ideal of semigroup

Generators(S) is a synonym for GeneratorsOfSemigroupIdeal (9.2.1).

for a semigroup

Generators(S) is a synonym for GeneratorsOfSemigroup (**Reference: GeneratorsOf-Semigroup**).

for a monoid

Generators (S) is a synonym for Generators Of Monoid (Reference: Generators Of-Monoid).

for an inverse semigroup

Generators (S) is a synonym for Generators Of Inverse Semigroup (Reference: Generators Of Inverse Semigroup).

for an inverse monoid

Generators(S) is a synonym for GeneratorsOfInverseMonoid (Reference: GeneratorsOfInverseMonoid).

```
Example
gap> M := Monoid([
> Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]);;
gap> GeneratorsOfSemigroup(M);
[ IdentityTransformation,
  Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
  Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]
gap> GeneratorsOfMonoid(M);
[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 9 ] ),
  Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]
gap> Generators(M);
[ Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
  Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]
gap> S := Semigroup(Generators(M));;
gap> Generators(S);
[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 9 ] ),
  Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]
gap> GeneratorsOfSemigroup(S);
[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 9 ] ),
  Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]
```

11.6.2 SmallGeneratingSet

```
 \begin{tabular}{lll} $\triangleright$ SmallGeneratingSet(coll) & (attribute) \\ $\triangleright$ SmallSemigroupGeneratingSet(coll) & (attribute) \\ $\triangleright$ SmallInverseSemigroupGeneratingSet(coll) & (attribute) \\ $\triangleright$ SmallInverseMonoidGeneratingSet(coll) & (attribute) \\ $\triangleright$ SmallInverseMonoidGeneratingSet(coll) & (attribute) \\ \end{tabular}
```

Returns: A small generating set for a semigroup.

The attributes SmallXGeneratingSet return a relatively small generating subset of the collection of elements *coll*, which can also be a semigroup. The returned value of SmallXGeneratingSet, where applicable, has the property that

```
X(SmallXGeneratingSet(coll)) = X(coll);
```

where X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid), InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: InverseMonoid).

If the number of generators for S is already relatively small, then these functions will often return the original generating set. These functions may return different results in different GAP sessions.

SmallGeneratingSet returns the smallest of the returned values of SmallXGeneratingSet which is applicable to coll; see Generators (11.6.1).

As neither irredundancy, nor minimal length are proven, these functions usually return an answer much more quickly than IrredundantGeneratingSubset (11.6.3). These functions can be used whenever a small generating set is desired which does not necessarily needs to be minimal.

```
gap> S := Semigroup([
> Transformation([1, 2, 3, 2, 4]),
```

```
> Transformation([1, 5, 4, 3, 2]),
> Transformation([2, 1, 4, 2, 2]),
> Transformation([2, 4, 4, 2, 1]),
> Transformation([3, 1, 4, 3, 2]),
> Transformation([3, 2, 3, 4, 1]),
> Transformation([4, 4, 3, 3, 5]),
> Transformation([5, 1, 5, 5, 3]),
> Transformation([5, 4, 3, 5, 2]),
> Transformation([5, 5, 4, 5, 5])]);;
gap> SmallGeneratingSet(S);
[ Transformation( [ 1, 5, 4, 3, 2 ] ), Transformation( [ 3, 2, 3, 4, 1 ] ),
  Transformation([5, 4, 3, 5, 2]), Transformation([1, 2, 3, 2, 4]),
  Transformation([4, 4, 3, 3, 5])]
gap> S := RandomInverseMonoid(IsPartialPermMonoid, 10000, 10);;
gap> SmallGeneratingSet(S);
[[1 ... 10] \rightarrow [3, 2, 4, 5, 6, 1, 7, 10, 9, 8],
  [1 ... 10] \rightarrow [5, 10, 8, 9, 3, 2, 4, 7, 6, 1],
  [1, 3, 4, 5, 6, 7, 8, 9, 10] -> [1, 6, 4, 8, 2, 10, 7, 3, 9]]
gap> M := MathieuGroup(24);;
gap> mat := List([1 .. 1000], x -> Random(M));;
gap> Append(mat, [1 .. 1000] * 0);
gap> mat := List([1 .. 138], x -> List([1 .. 57], x -> Random(mat)));;
gap> R := ReesZeroMatrixSemigroup(M, mat);;
gap> U := Semigroup(List([1 .. 200], x -> Random(R)));
<subsemigroup of 57x138 Rees 0-matrix semigroup with 100 generators>
gap> Length(SmallGeneratingSet(U));
gap> S := RandomSemigroup(IsBipartitionSemigroup, 100, 4);
<bipartition semigroup of degree 4 with 96 generators>
gap> Length(SmallGeneratingSet(S));
```

11.6.3 IrredundantGeneratingSubset

▷ IrredundantGeneratingSubset(coll)

(operation)

Returns: A list of irredundant generators.

If *coll* is a collection of elements of a semigroup, then this function returns a subset U of *coll* such that no element of U is generated by the other elements of U.

```
Transformation([3, 5, 5, 1, 2, 4]),
  Transformation([5, 1, 4, 6, 2, 3]),
  Transformation([5, 4, 6, 3, 1, 3]),
  Transformation([6, 5, 1, 3, 3, 4])]
gap> S := RandomInverseMonoid(IsPartialPermMonoid, 1000, 10);
<inverse partial perm monoid of degree 10 with 1000 generators>
gap> SmallGeneratingSet(S);
[[1 .. 10] \rightarrow [6, 5, 1, 9, 8, 3, 10, 4, 7, 2],
  [1 ... 10] \rightarrow [1, 4, 6, 2, 8, 5, 7, 10, 3, 9],
  [1, 2, 3, 4, 6, 7, 8, 9] \rightarrow [7, 5, 10, 1, 8, 4, 9, 6]
  [1 ... 9] \rightarrow [4, 3, 5, 7, 10, 9, 1, 6, 8]
gap> IrredundantGeneratingSubset(last);
[[1 ... 9] \rightarrow [4, 3, 5, 7, 10, 9, 1, 6, 8],
  [1 ... 10] \rightarrow [1, 4, 6, 2, 8, 5, 7, 10, 3, 9],
  [1 ... 10] \rightarrow [6, 5, 1, 9, 8, 3, 10, 4, 7, 2]
gap> S := RandomSemigroup(IsBipartitionSemigroup, 1000, 4);
<bipartition semigroup of degree 4 with 749 generators>
gap> SmallGeneratingSet(S);
[ <bipartition: [1, -3], [2, -2], [3, -1], [4, -4]>,
  <bipartition: [ 1, 3, -2 ], [ 2, -1, -3 ], [ 4, -4 ]>,
  <bipartition: [ 1, -4 ], [ 2, 4, -1, -3 ], [ 3, -2 ]>,
  <bipartition: [ 1, -1, -3 ], [ 2, -4 ], [ 3, 4, -2 ]>,
  <bipartition: [ 1, -2, -4 ], [ 2 ], [ 3, -3 ], [ 4, -1 ]>,
  <bipartition: [ 1, -2 ], [ 2, -1, -3 ], [ 3, 4, -4 ]>,
  <bipartition: [ 1, 3, -1 ], [ 2, -3 ], [ 4, -2, -4 ]>,
  <bipartition: [ 1, -1 ], [ 2, 4, -4 ], [ 3, -2, -3 ]>,
  <bipartition: [ 1, 3, -1 ], [ 2, -2 ], [ 4, -3, -4 ]>,
  <bipartition: [ 1, 2, -2 ], [ 3, -1, -4 ], [ 4, -3 ]>,
  <bipartition: [ 1, -2, -3 ], [ 2, -4 ], [ 3 ], [ 4, -1 ]>,
  <bipartition: [ 1, -1 ], [ 2, 4, -3 ], [ 3, -2 ], [ -4 ]>,
  <bipartition: [ 1, -3 ], [ 2, -1 ], [ 3, 4, -4 ], [ -2 ]>,
  <bipartition: [ 1, 2, -4 ], [ 3, -1 ], [ 4, -2 ], [ -3 ]>,
  <bipartition: [ 1, -3 ], [ 2, -4 ], [ 3, -1, -2 ], [ 4 ]> ]
gap> IrredundantGeneratingSubset(last);
[ <bipartition: [ 1, 2, -4 ], [ 3, -1 ], [ 4, -2 ], [ -3 ]>,
  <bipartition: [ 1, 3, -1 ], [ 2, -2 ], [ 4, -3, -4 ]>,
  <bipartition: [ 1, 3, -2 ], [ 2, -1, -3 ], [ 4, -4 ]>,
  <bipartition: [ 1, -1 ], [ 2, 4, -3 ], [ 3, -2 ], [ -4 ]>,
  <bipartition: [ 1, -3 ], [ 2, -1 ], [ 3, 4, -4 ], [ -2 ]>,
  <bipartition: [ 1, -3 ], [ 2, -2 ], [ 3, -1 ], [ 4, -4 ]>,
  <bipartition: [ 1, -3 ], [ 2, -4 ], [ 3, -1, -2 ], [ 4 ]>,
  <bipartition: [ 1, -2, -3 ], [ 2, -4 ], [ 3 ], [ 4, -1 ]>,
  <bipartition: [ 1, -2, -4 ], [ 2 ], [ 3, -3 ], [ 4, -1 ]> ]
```

11.6.4 MinimalSemigroupGeneratingSet

```
    ▷ MinimalSemigroupGeneratingSet(S)
    ▷ MinimalMonoidGeneratingSet(S)
    ▷ MinimalInverseSemigroupGeneratingSet(S)
    ▷ MinimalInverseMonoidGeneratingSet(S)
    ○ Returns: A minimal generating set for a semigroup.
```

The attribute MinimalXGeneratingSet returns a minimal generating set for the semigroup S, with respect to length. The returned value of MinimalXGeneratingSet, where applicable, is a minimal-length list of elements of S with the property that

```
X(MinimalXGeneratingSet(S)) = S;
```

where X is one of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid), InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: InverseMonoid).

For many types of semigroup, it is not currently possible to find a MinimalXGeneratingSet with the Semigroups package.

See also SmallGeneratingSet (11.6.2) and IrredundantGeneratingSubset (11.6.3).

```
_{-} Example
gap> S := MonogenicSemigroup(3, 6);;
gap> MinimalSemigroupGeneratingSet(S);
[ Transformation( [ 2, 3, 4, 5, 6, 1, 6, 7, 8 ] ) ]
gap> S := FullTransformationMonoid(4);;
gap> MinimalSemigroupGeneratingSet(S);
[Transformation([1, 4, 2, 3]), Transformation([4, 3, 1, 2]),
  Transformation([1, 2, 3, 1])]
gap> S := Monoid([
> PartialPerm([2, 3, 4, 5, 1, 0, 6, 7]),
> PartialPerm([3, 4, 5, 1, 2, 0, 0, 6])]);
<partial perm monoid of rank 8 with 2 generators>
gap> IsMonogenicMonoid(S);
true
gap> MinimalMonoidGeneratingSet(S);
[ [8,7,6](1,2,3,4,5) ]
```

11.6.5 GeneratorsSmallest (for a semigroup)

▷ GeneratorsSmallest(S)

(attribute)

Returns: A set of elements.

For a semigroup S, GeneratorsSmallest returns the lexicographically least set of elements X such that X generates S as a semigroup, and such that X is lexicographically ordered and has the property that each X[i] is not generated by X[1], X[2], ..., X[i-1].

It can be difficult to find the set of generators X, and it might contain a substantial proportion of the elements of S.

Two semigroups have the same set of elements if and only if their smallest generating sets are equal. However, due to the complexity of determining the GeneratorsSmallest, this is not the method used by the Semigroups package when comparing semigroups.

```
[ Transformation([1, 1, 1, 1]), Transformation([1, 1, 1, 2]),
  Transformation([1, 1, 1, 3]), Transformation([1, 1, 1]),
 Transformation([1, 1, 2, 1]), Transformation([1, 1, 2, 2]),
 Transformation([1, 1, 3, 1]), Transformation([1, 1, 3, 3]),
 Transformation([1, 1]), Transformation([1, 1, 4, 1]),
 Transformation([1, 2, 1, 1]), Transformation([1, 2, 2, 1]),
  IdentityTransformation, Transformation([1, 3, 1, 1]),
 Transformation([1, 3, 4, 1]), Transformation([2, 1, 1, 2]),
 Transformation([2, 2, 2]), Transformation([2, 4, 1, 2]),
 Transformation([3, 3, 3]), Transformation([3, 3, 4, 1])]
gap> T := Semigroup(Bipartition([[1, 2, 3], [4, -1], [-2], [-3], [-4]]),
                   Bipartition([[1, -3, -4], [2, 3, 4, -2], [-1]]),
                   Bipartition([[1, 2, 3, 4, -2], [-1, -4], [-3]]),
                   Bipartition([[1, 2, 3, 4], [-1], [-2], [-3, -4]]),
>
                   Bipartition([[1, 2, -1, -2], [3, 4, -3], [-4]]));
<bipartition semigroup of degree 4 with 5 generators>
gap> GeneratorsSmallest(T);
[ <bipartition: [ 1, 2, 3, 4, -1, -2, -3 ], [ -4 ]>,
  <bipartition: [ 1, 2, 3, 4, -1, -2 ], [ -3 ], [ -4 ]>,
  <bipartition: [ 1, 2, 3, 4, -1 ], [ -2 ], [ -3 ], [ -4 ]>,
  <bipartition: [ 1, 2, 3, 4, -2, -3, -4 ], [ -1 ]>,
  <bipartition: [ 1, 2, 3, 4, -2 ], [ -1, -4 ], [ -3 ]>,
  <bipartition: [ 1, 2, 3, 4, -2 ], [ -1 ], [ -3, -4 ]>,
  <bipartition: [ 1, 2, 3, 4, -3 ], [ -1, -2 ], [ -4 ]>,
  <bipartition: [ 1, 2, 3, 4 ], [ -1, -2, -3 ], [ -4 ]>,
  <bipartition: [ 1, 2, 3, 4, -3, -4 ], [ -1 ], [ -2 ]>,
  <bipartition: [ 1, 2, 3 ], [ 4, -1, -2, -3 ], [ -4 ]>,
  <bipartition: [ 1, 2, -1, -2 ], [ 3, 4, -3 ], [ -4 ]>,
  <bipartition: [ 1, -3 ], [ 2, 3, 4, -1, -2 ], [ -4 ]>,
  <bipartition: [ 1, -3, -4 ], [ 2, 3, 4, -2 ], [ -1 ]> ]
```

11.6.6 IndecomposableElements

▷ IndecomposableElements(S)

(attribute)

Returns: A list of elements.

If S is a semigroup, then this attribute returns the set of elements of S that are not decomposable. A element of S is *decomposable* if it can be written as the product of two elements in S. An element of S is *indecomposable* if it is not decomposable.

See also IsSurjectiveSemigroup (12.1.6).

Note that any generating set for S contains each indecomposable element of S. Thus IndecomposableElements(S) is a subset of GeneratorsOfSemigroup(S).

```
gap> S := Semigroup([
> Transformation([1, 1, 2, 3]),
> Transformation([1, 1, 1, 2])]);
<transformation semigroup of degree 4 with 2 generators>
gap> x := IndecomposableElements(S);
[ Transformation( [ 1, 1, 2, 3 ] ) ]
gap> IsSubset(GeneratorsOfSemigroup(S), x);
true
gap> T := FullTransformationMonoid(10);
```

11.7 Minimal ideals and multiplicative zeros

In this section we describe the attributes of a semigroup that can be found using the Semigroups package.

11.7.1 MinimalIdeal

```
ightharpoonup MinimalIdeal(S) (attribute)
```

Returns: The minimal ideal of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment.

It is significantly easier to find the minimal \mathcal{D} -class of a semigroup, than to find its \mathcal{D} -classes.

See also RepresentativeOfMinimalIdeal (11.7.2), PartialOrderOfDClasses (10.1.10), IsGreensLessThanOrEqual (**Reference: IsGreensLessThanOrEqual**), and MinimalDClass (10.1.6).

```
\_ Example \_
gap> S := Semigroup(
> Transformation([3, 4, 1, 3, 6, 3, 4, 6, 10, 1]),
> Transformation([8, 2, 3, 8, 4, 1, 3, 4, 9, 7]));;
gap> MinimalIdeal(S);
<simple transformation semigroup ideal of degree 10 with 1 generator>
gap> Elements(MinimalIdeal(S));
[ Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1] ),
 Transformation([3, 3, 3, 3, 3, 3, 3, 3, 3]),
 Transformation([4, 4, 4, 4, 4, 4, 4, 4, 4, 4]),
 Transformation([6, 6, 6, 6, 6, 6, 6, 6, 6]),
 Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 8])]
gap> x := Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 8]);;
gap> D := DClass(S, x);;
gap> ForAll(GreensDClasses(S), x -> IsGreensLessThanOrEqual(D, x));
true
gap> MinimalIdeal(POI(10));
<partial perm group of rank 0>
gap> MinimalIdeal(BrauerMonoid(6));
<simple bipartition *-semigroup ideal of degree 6 with 1 generator>
```

11.7.2 RepresentativeOfMinimalIdeal

```
▷ RepresentativeOfMinimalIdeal(S)
```

(attribute)

(attribute)

Returns: An element of the minimal ideal of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment.

This method returns a representative element of the minimal ideal of S without having to create the minimal ideal itself. In general, beyond being a member of the minimal ideal, the returned element is not guaranteed to have any special properties. However, the element will coincide with the zero element of S if one exists.

This method works particularly well if S is a semigroup of transformations or partial permutations. See also MinimalIdeal (11.7.1) and MinimalDClass (10.1.6).

```
_ Example
gap> S := SymmetricInverseSemigroup(10);;
gap> RepresentativeOfMinimalIdeal(S);
<empty partial perm>
gap> B := Semigroup([
> Bipartition([[1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([[1, -1], [2], [3], [4, -3], [5, 6, -5, -6],
    [-2, -4]])]);;
gap> RepresentativeOfMinimalIdeal(B);
<bipartition: [ 1, 2 ], [ 3, 6 ], [ 4, 5 ], [ -1, -5, -6 ],</pre>
 [ -2, -4 ], [ -3 ]>
gap> S := Semigroup(Transformation([5, 1, 6, 2, 2, 4]),
                    Transformation([3, 5, 5, 1, 6, 2]));;
gap> RepresentativeOfMinimalDClass(S);
Transformation([5, 6, 6, 3, 3, 5])
gap> MinimalDClass(S);
<Green's D-class: Transformation([5, 6, 6, 3, 3, 5])>
```

11.7.3 MultiplicativeZero

▷ MultiplicativeZero(S)

(attribute)

Returns: The zero element of a semigroup.

MultiplicativeZero returns the zero element of the semigroup S if it exists and fail if it does not. See also MultiplicativeZero (**Reference: MultiplicativeZero**).

```
Example -
gap> S := Semigroup(Transformation([1, 4, 2, 6, 6, 5, 2]),
                    Transformation([1, 6, 3, 6, 2, 1, 6]));;
gap> MultiplicativeZero(S);
Transformation([1, 1, 1, 1, 1, 1, 1])
gap> S := Semigroup(Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
                    Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
                    Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
                    Transformation([8, 8, 5, 1, 7, 5, 2, 8]));;
gap> MultiplicativeZero(S);
gap> S := InverseSemigroup(
> PartialPerm([1, 3, 4], [5, 3, 1]),
> PartialPerm([1, 2, 3, 4], [4, 3, 1, 2]),
> PartialPerm([1, 3, 4, 5], [2, 4, 5, 3]));;
gap> MultiplicativeZero(S);
<empty partial perm>
```

11.7.4 UnderlyingSemigroupOfSemigroupWithAdjoinedZero

▷ UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S)

(attribute)

Returns: A semigroup, or fail.

If S is a semigroup for which the property IsSemigroupWithAdjoinedZero (12.1.20) is true, (i.e. S has a MultiplicativeZero (11.7.3) and the set $S \setminus \{0\}$ is a subsemigroup of S), then this method returns the semigroup $S \setminus \{0\}$.

Otherwise, if S is a semigroup for which the property IsSemigroupWithAdjoinedZero (12.1.20) is false, then this method returns fail.

```
_ Example .
gap> S := Semigroup([
> Transformation([2, 3, 4, 5, 1, 6]),
> Transformation([2, 1, 3, 4, 5, 6]),
> Transformation([6, 6, 6, 6, 6, 6])]);
<transformation semigroup of degree 6 with 3 generators>
gap> MultiplicativeZero(S);
Transformation([6, 6, 6, 6, 6, 6])
gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
<transformation semigroup of degree 5 with 2 generators>
gap> IsGroupAsSemigroup(G);
true
gap> IsZeroGroup(S);
gap> S := SymmetricInverseMonoid(6);;
gap> MultiplicativeZero(S);
<empty partial perm>
gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
fail
```

11.8 Group of units and identity elements

11.8.1 GroupOfUnits

▷ GroupOfUnits(S)

(attribute)

Returns: The group of units of a semigroup or fail.

GroupOfUnits returns the group of units of the semigroup S as a subsemigroup of S if it exists and returns fail if it does not. Use IsomorphismPermGroup (6.5.5) if you require a permutation representation of the group of units.

If a semigroup S has an identity e, then the *group of units* of S is the set of those e in e such that there exists e in e where e is the e-class of the identity of e.

See also GreensHClassOfElement (Reference: GreensHClassOfElement), IsMonoidAsSemigroup (12.1.13), and MultiplicativeNeutralElement (Reference: MultiplicativeNeutralElement).

```
Example
gap> S := Semigroup(
> Transformation([1, 2, 5, 4, 3, 8, 7, 6]),
> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
> Transformation([5, 2, 3, 6, 3, 4, 7, 4]));;
gap> Size(S);
5304
gap> StructureDescription(GroupOfUnits(S));
"C2 x S4"
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
              [2, 4, 5, 3, 6, 7, 10, 9, 8, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 10],
              [8, 2, 3, 1, 4, 5, 10, 6, 9]));;
gap> StructureDescription(GroupOfUnits(S));
"C8"
gap> S := InverseSemigroup(
> PartialPerm([1, 3, 4], [4, 3, 5]),
> PartialPerm([1, 2, 3, 5], [3, 1, 5, 2]));;
gap> GroupOfUnits(S);
fail
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, -1], [2, 3, -2, -3]]),
> Bipartition([[1, -2], [2, -3], [3, -1]]),
> Bipartition([[1], [2, 3, -2], [-1, -3]]));;
gap> StructureDescription(GroupOfUnits(S));
"C3"
```

11.9 Idempotents

11.9.1 Idempotents

▷ Idempotents(obj[, n])

(attribute)

Returns: A list of idempotents.

The argument obj should be a semigroup, \mathcal{D} -class, \mathcal{H} -class, \mathcal{L} -class, or \mathcal{R} -class.

If the optional second argument n is present and obj is a semigroup, then a list of the idempotents in obj of rank n is returned. If you are only interested in the idempotents of a given rank, then the second version of the function will probably be faster. However, if the optional second argument is present, then nothing is stored in obj and so every time the function is called the computation must be repeated.

This functions produce essentially the same output as the GAP library function with the same name; see Idempotents (**Reference: Idempotents**). The main difference is that this function can be applied to a wider class of objects as described above.

See also IsRegularDClass (**Reference: IsRegularDClass**), IsRegularGreensClass (10.3.2) IsGroupHClass (**Reference: IsGroupHClass**), NrIdempotents (11.9.2), and GroupHClass (10.4.1).

```
_ Example _
gap> S := Semigroup(Transformation([2, 3, 4, 1]),
                   Transformation([3, 3, 1, 1]));;
gap> Idempotents(S, 1);
gap> AsSet(Idempotents(S, 2));
[ Transformation([1, 1, 3, 3]), Transformation([1, 3, 3, 1]),
  Transformation([2, 2, 4, 4]), Transformation([4, 2, 2, 4])]
gap> AsSet(Idempotents(S));
[ Transformation([ 1, 1, 3, 3 ] ), IdentityTransformation,
 Transformation([1, 3, 3, 1]), Transformation([2, 2, 4, 4]),
 Transformation([4, 2, 2, 4])]
gap> x := Transformation([2, 2, 4, 4]);;
gap> R := GreensRClassOfElement(S, x);;
gap> Idempotents(R);
[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 2, 2, 4, 4 ] ) ]
gap> x := Transformation([4, 2, 2, 4]);;
gap> L := GreensLClassOfElement(S, x);;
gap> AsSet(Idempotents(L));
[Transformation([2, 2, 4, 4]), Transformation([4, 2, 2, 4])]
gap> D := DClassOfLClass(L);;
gap> AsSet(Idempotents(D));
[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3, 3, 1 ] ),
  Transformation([2, 2, 4, 4]), Transformation([4, 2, 2, 4])]
gap> L := GreensLClassOfElement(S, Transformation([3, 1, 1, 3]));;
gap> AsSet(Idempotents(L));
[Transformation([1, 1, 3, 3]), Transformation([1, 3, 3, 1])]
gap> H := GroupHClass(D);
<Green's H-class: Transformation([1, 1, 3, 3])>
gap> Idempotents(H);
[ Transformation([1, 1, 3, 3])]
gap> S := InverseSemigroup(
> PartialPerm([10, 6, 3, 4, 9, 0, 1]),
> PartialPerm([6, 10, 7, 4, 8, 2, 9, 1]));;
gap> Idempotents(S, 1);
[ <identity partial perm on [ 4 ]> ]
gap> Idempotents(S, 0);
[ ]
```

11.9.2 NrIdempotents

```
▷ NrIdempotents(obj)
```

(attribute)

Returns: A positive integer.

This function returns the number of idempotents in *obj* where *obj* can be a semigroup, \mathcal{D} -, \mathcal{L} -, \mathcal{H} -, or \mathcal{R} -class. If the actual idempotents are not required, then it is more efficient to use

NrIdempotents(obj) than Length(Idempotents(obj)) since the idempotents themselves are not created when NrIdempotents is called.

See also Idempotents (**Reference: Idempotents**) and Idempotents (11.9.1), IsRegularDClass (**Reference: IsRegularDClass**), IsRegularGreensClass (10.3.2) IsGroupHClass (**Reference: IsGroupHClass**), and GroupHClass (10.4.1).

```
_ Example .
gap> S := Semigroup(Transformation([2, 3, 4, 1]),
                    Transformation([3, 3, 1, 1]));;
gap> NrIdempotents(S);
gap> f := Transformation([2, 2, 4, 4]);;
gap> R := GreensRClassOfElement(S, f);;
gap> NrIdempotents(R);
gap> f := Transformation([4, 2, 2, 4]);;
gap> L := GreensLClassOfElement(S, f);;
gap> NrIdempotents(L);
gap> D := DClassOfLClass(L);;
gap> NrIdempotents(D);
gap> L := GreensLClassOfElement(S, Transformation([3, 1, 1, 3]));;
gap> NrIdempotents(L);
gap> H := GroupHClass(D);;
gap> NrIdempotents(H);
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 5, 7, 9, 10],
               [6, 7, 2, 9, 1, 5, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 9, 10],
              [8, 1, 9, 4, 10, 5, 6, 7]));;
gap> NrIdempotents(S);
gap> f := PartialPerm([2, 3, 7, 9, 10],
                      [7, 2, 1, 5, 3]);;
gap> D := DClassNC(S, f);;
gap> NrIdempotents(D);
```

11.9.3 IdempotentGeneratedSubsemigroup

▷ IdempotentGeneratedSubsemigroup(S)

(attribute)

Returns: A semigroup.

IdempotentGeneratedSubsemigroup returns the subsemigroup of the semigroup S generated by the idempotents of S.

See also Idempotents (11.9.1) and SmallGeneratingSet (11.6.2).

```
Transformation([1, 2, 3, 4, 5, 1]),
                    Transformation([1, 2, 3, 4, 5, 5]),
                    Transformation([1, 2, 3, 4, 6, 5]),
                    Transformation([1, 2, 3, 5, 4]),
                    Transformation([1, 2, 3, 7, 4, 5, 7]),
                    Transformation([1, 2, 4, 8, 8, 3, 8, 7]),
                    Transformation([1, 2, 8, 4, 5, 6, 7, 8]),
                    Transformation([7, 7, 7, 4, 5, 6, 1]));;
gap> IdempotentGeneratedSubsemigroup(S) =
> Monoid(Transformation([1, 1]),
>
         Transformation([1, 2, 1]),
         Transformation([1, 2, 2]),
>
         Transformation([1, 2, 3, 1]),
>
         Transformation([1, 2, 3, 2]),
>
         Transformation([1, 2, 3, 4, 1]),
         Transformation([1, 2, 3, 4, 2]),
>
         Transformation([1, 2, 3, 4, 4]),
>
         Transformation([1, 2, 3, 4, 5, 1]),
>
         Transformation([1, 2, 3, 4, 5, 2]),
         Transformation([1, 2, 3, 4, 5, 5]),
>
         Transformation([1, 2, 3, 4, 5, 7, 7]),
         Transformation([1, 2, 3, 4, 7, 6, 7]),
         Transformation([1, 2, 3, 6, 5, 6]),
         Transformation([1, 2, 3, 7, 5, 6, 7]),
>
         Transformation([1, 2, 8, 4, 5, 6, 7, 8]),
         Transformation([2, 2]));
gap> S := SymmetricInverseSemigroup(5);
<symmetric inverse monoid of degree 5>
gap> IdempotentGeneratedSubsemigroup(S);
<inverse partial perm monoid of rank 5 with 5 generators>
gap> S := DualSymmetricInverseSemigroup(5);
<inverse block bijection monoid of degree 5 with 3 generators>
gap> IdempotentGeneratedSubsemigroup(S);
<inverse block bijection monoid of degree 5 with 10 generators>
gap> IsSemilattice(last);
true
```

11.10 Maximal subsemigroups

The Semigroups package provides methods to calculate the maximal subsemigroups of a finite semigroup, subject to various conditions. A *maximal subsemigroup* of a semigroup is a proper subsemigroup that is contained in no other proper subsemigroup of the semigroup.

When computing the maximal subsemigroups of a regular Rees (0-)matrix semigroup over a group, additional functionality is available. As described in [GGR68], a maximal subsemigroup of a finite regular Rees (0-)matrix semigroup over a group is one of 6 possible types. Using the Semi-groups package, it is possible to search for only those maximal subsemigroups of certain types.

A maximal subsemigroup of such a Rees (0-)matrix semigroup R over a group G is either:

1. {0};

- 2. formed by removing 0;
- 3. formed by removing a column (a non-zero \mathcal{L} -class);
- 4. formed by removing a row (a non-zero \mathcal{R} -class);
- 5. formed by removing a set of both rows and columns;
- 6. isomorphic to a Rees (0-)matrix semigroup of the same dimensions over a maximal subgroup of G (in particular, the maximal subsemigroup intersects every \mathcal{H} -class of R).

Note that if R is a Rees matrix semigroup then it has no maximal subsemigroups of types 1, 2, or 5. Only types 3, 4, and 6 are relevant to a Rees matrix semigroup.

11.10.1 MaximalSubsemigroups (for a finite semigroup)

▷ MaximalSubsemigroups(S)

(attribute)

▷ MaximalSubsemigroups(S, opts)

(operation)

Returns: The maximal subsemigroups of *S*.

If S is a finite semigroup, then the attribute MaximalSubsemigroups returns a list of the non-empty maximal subsemigroups of S. The methods used by MaximalSubsemigroups are based on [GGR68], and are described in [DMW18].

It is computationally expensive to search for the maximal subsemigroups of a semigroup, and so computations involving MaximalSubsemigroups may be very lengthy. A substantial amount of information on the progress of MaximalSubsemigroups is provided through the info class InfoSemigroups (2.5.1), with increasingly detailed information given at levels 1, 2, and 3.

The behaviour of MaximalSubsemigroups can be altered via the second argument *opts*, which should be a record. The optional components of *opts* are:

gens (a boolean)

If opts.gens is false or unspecified, then the maximal subsemigroups themselves are returned and not just generating sets for these subsemigroups.

It can be more computationally expensive to return the generating sets for the maximal subsemigroups, than to return the maximal subsemigroups themselves.

contain (a list)

If opts.contain is duplicate-free list of elements of S, then MaximalSubsemigroups will search for the maximal subsemigroups of S which contain those elements.

D (a \mathscr{D} -class)

For a maximal subsemigroup M of a finite semigroup S, there exists a unique \mathcal{D} -class which contains the complement of M in S. In other words, the elements of S which M lacks are contained in a unique \mathcal{D} -class.

If opts. D is a \mathscr{D} -class of S, then MaximalSubsemigroups will search exclusively for those maximal subsemigroups of S whose complement is contained in opts. D.

types (a list)

This option is relevant only if S is a regular Rees (0-)matrix semigroup over a group.

As described at the start of this subsection, 11.10, a maximal subsemigroup of a regular Rees (0-)matrix semigroup over a group is one of 6 possible types.

If S is a regular Rees (0-)matrix semigroup over a group and opts.types is a subset of [1 . . 6], then MaximalSubsemigroups will search for those maximal subsemigroups of S of the types enumerated by opts.types.

The default value for this option is [1 .. 6] (i.e. no restriction).

```
Example
gap> S := FullTransformationSemigroup(3);
<full transformation monoid of degree 3>
gap> MaximalSubsemigroups(S);
[ <transformation semigroup of degree 3 with 7 generators>,
  <transformation monoid of degree 3 with 5 generators> ]
gap> MaximalSubsemigroups(S,
> rec(gens := true, D := DClass(S, Transformation([2, 2, 3]))));
[ [ Transformation( [ 1, 1, 1 ] ), Transformation( [ 3, 3, 3 ] ),
      Transformation([2, 2, 2]), IdentityTransformation,
      Transformation([2, 3, 1]), Transformation([2, 1])]]
gap> MaximalSubsemigroups(S,
> rec(contain := [Transformation([2, 3, 1])]));
[ <transformation semigroup of degree 3 with 7 generators>,
  <transformation monoid of degree 3 with 5 generators> ]
gap> R := PrincipalFactor(
> DClass(FullTransformationMonoid(4), Transformation([2, 2])));
<Rees 0-matrix semigroup 6x4 over Group([ (2,3,4), (2,4) ])>
gap> MaximalSubsemigroups(R, rec(types := [5],
   contain := [RMSElement(R, 1, (), 1),
               RMSElement(R, 1, (2, 3), 2)]));
[ <subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>,
  <subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>,
  <subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>,
  <subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators> ]
```

11.10.2 NrMaximalSubsemigroups

▷ NrMaximalSubsemigroups(S)

(attribute)

Returns: The number of maximal subsemigroups of *S*.

If S is a finite semigroup, then NrMaximalSubsemigroups returns the number of non-empty maximal subsemigroups of S. The methods used by MaximalSubsemigroups are based on [GGR68], and are described in [DMW18].

It can be significantly faster to find the number of maximal subsemigroups of a semigroup than to find the maximal subsemigroups themselves.

Unless the maximal subsemigroups of S are already known, the command NrMaximalSubsemigroups(S) simply calls the command MaximalSubsemigroups(S, rec(number := true)).

For more information about searching for maximal subsemigroups of a finite semigroup in the Semigroups package, and for information about the options available to alter the search, see

MaximalSubsemigroups (11.10.1). By supplying the additional option opts.number := true, the number of maximal subsemigroups will be returned rather than the subsemigroups themselves.

```
gap> S := FullTransformationSemigroup(3);
<full transformation monoid of degree 3>
gap> NrMaximalSubsemigroups(S);
5
gap> S := RectangularBand(3, 4);;
gap> NrMaximalSubsemigroups(S);
7
gap> R := PrincipalFactor(
> DClass(FullTransformationMonoid(4), Transformation([2, 2])));
<Rees 0-matrix semigroup 6x4 over Group([ (2,3,4), (2,4) ])>
gap> MaximalSubsemigroups(R, rec(number := true, types := [3, 4]));
10
```

11.10.3 IsMaximalSubsemigroup

 \triangleright IsMaximalSubsemigroup(S, T)

(operation)

Returns: true or false.

If S and T are semigroups, then IsMaximalSubsemigroup returns true if and only if T is a maximal subsemigroup of S.

A maximal subsemigroup of S is a proper subsemigroup of S which is contained in no other proper subsemigroup of S.

```
\_ Example \_
gap> S := ZeroSemigroup(2);;
gap> IsMaximalSubsemigroup(S, Semigroup(MultiplicativeZero(S)));
true
gap> S := FullTransformationSemigroup(4);
<full transformation monoid of degree 4>
gap> T := Semigroup(Transformation([3, 4, 1, 2]),
                    Transformation([1, 4, 2, 3]),
                    Transformation([2, 1, 1, 3]));
<transformation semigroup of degree 4 with 3 generators>
gap> IsMaximalSubsemigroup(S, T);
true
gap> R := Semigroup(Transformation([3, 4, 1, 2]),
                    Transformation([1, 4, 2, 2]),
                    Transformation([2, 1, 1, 3]));
<transformation semigroup of degree 4 with 3 generators>
gap> IsMaximalSubsemigroup(S, R);
false
```

11.11 Attributes of transformations and transformation semigroups

11.11.1 ComponentRepsOfTransformationSemigroup

▷ ComponentRepsOfTransformationSemigroup(S)

(attribute)

Returns: The representatives of components of a transformation semigroup.

This function returns the representatives of the components of the action of the transformation semigroup S on the set of positive integers not greater than the degree of S.

The representatives are the least set of points such that every point can be reached from some representative under the action of S.

```
gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;
gap> ComponentRepsOfTransformationSemigroup(S);
[ 2, 3, 8 ]
```

11.11.2 ComponentsOfTransformationSemigroup

▷ ComponentsOfTransformationSemigroup(S)

(attribute)

Returns: The components of a transformation semigroup.

This function returns the components of the action of the transformation semigroup S on the set of positive integers not greater than the degree of S; the components of S partition this set.

```
gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;
gap> ComponentsOfTransformationSemigroup(S);
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ] ]
```

11.11.3 CyclesOfTransformationSemigroup

▷ CyclesOfTransformationSemigroup(S)

(attribute)

Returns: The cycles of a transformation semigroup.

This function returns the cycles, or strongly connected components, of the action of the transformation semigroup S on the set of positive integers not greater than the degree of S.

```
gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;
gap> CyclesOfTransformationSemigroup(S);
[ [ 1, 11, 12, 5, 4, 6, 10, 7, 9 ], [ 2 ], [ 3 ], [ 8 ] ]
```

11.11.4 DigraphOfAction (for a transformation semigroup, list, and action)

 \triangleright DigraphOfAction(S, list, act)

(operation)

Returns: A digraph, or fail.

If S is a transformation semigroup and list is list such that S acts on the items in list via the function act, then DigraphOfAction returns a digraph representing the action of S on the items in list and any further items output by act (list[i], S.j).

If act (list [i], S.j) is the k-th item in list, then in the output digraph there is an edge from the vertex i to the vertex k labelled by j.

The values in *list* and the additional values generated are stored in the vertex labels of the output digraph; see DigraphVertexLabels (**Digraphs: DigraphVertexLabels**), and the edge labels are stored in the DigraphEdgeLabels (**Digraphs: DigraphEdgeLabels**)

The digraph returned by DigraphOfAction has no multiple edges; see IsMultiDigraph (**Digraphs: IsMultiDigraph**).

```
Example -
gap> S := Semigroup(Transformation([2, 4, 3, 4, 7, 1, 6]),
                  Transformation([3, 3, 2, 3, 5, 1, 5]));
<transformation semigroup of degree 7 with 2 generators>
gap> list := Concatenation(List([1 .. 7], x -> [x]),
                         Combinations([1 .. 7], 2));
[[1],[2],[3],[4],[5],[6],[7],[1,2],
  [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 3],
  [2, 4], [2, 5], [2, 6], [2, 7], [3, 4], [3, 5],
  [3, 6], [3, 7], [4, 5], [4, 6], [4, 7], [5, 6],
  [5,7],[6,7]]
gap> D := DigraphOfAction(S, list, OnSets);
<immutable digraph with 28 vertices, 54 edges>
gap> OnSets([2, 5], S.1);
[4, 7]
gap> Position(DigraphVertexLabels(D), [2, 5]);
gap> DigraphVertexLabel(D, 25);
[4, 7]
gap> DigraphEdgeLabel(D, 16, 25);
```

11.11.5 DigraphOfActionOnPoints (for a transformation semigroup)

```
    ▷ DigraphOfActionOnPoints(S)
    ▷ DigraphOfActionOnPoints(S, n)
    Returns: A digraph.
```

If S is a transformation semigroup and n is a non-negative integer, then DigraphOfActionOnPoints(S, n) returns a digraph representing the OnPoints (**Reference: OnPoints**) action of S on the set [1 ... n].

If the optional argument n is not specified, then by default the degree of S will be chosen for n; see DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup).

The digraph returned by DigraphOfActionOnPoints has n vertices, where the vertex i corresponds to the point i. For each point i in $[1 \dots n]$, and for each generator f in GeneratorsOfSemigroup(S), there is an edge from the vertex i to the vertex i \hat{f} . See GeneratorsOfSemigroup (**Reference: GeneratorsOfSemigroup**) for further information.

```
gap> DigraphOfActionOnPoints(S, 5);
<immutable digraph with 5 vertices, 8 edges>
```

11.11.6 FixedPointsOfTransformationSemigroup (for a transformation semigroup)

▷ FixedPointsOfTransformationSemigroup(S)

(attribute)

Returns: A set of positive integers.

If S is a transformation semigroup, then FixedPointsOfTransformationSemigroup(S) returns the set of points i in [1 ... DegreeOfTransformationSemigroup(S)] such that i $^{\circ}$ f = i for all f in S.

```
gap> f := Transformation([1, 4, 2, 4, 3, 7, 7]);
Transformation( [ 1, 4, 2, 4, 3, 7, 7 ] )
gap> S := Semigroup(f);
<commutative transformation semigroup of degree 7 with 1 generator>
gap> FixedPointsOfTransformationSemigroup(S);
[ 1, 4, 7 ]
```

11.11.7 IsTransitive (for a transformation semigroup and a set)

```
\triangleright IsTransitive(S[, X]) (property) \triangleright IsTransitive(S[, n])
```

Returns: true or false.

A transformation semigroup S is *transitive* or *strongly connected* on the set X if for every i, j in X there is an element s in S such that $i \cap s = j$.

If the optional second argument is a positive integer n, then IsTransitive returns true if S is transitive on [1 ... n], and false if it is not.

If the optional second argument is not provided, then the degree of S is used by default; see DegreeOfTransformationSemigroup (**Reference: DegreeOfTransformationSemigroup**).

11.11.8 SmallestElementSemigroup

```
\triangleright SmallestElementSemigroup(S)
```

(attribute)

▷ LargestElementSemigroup(S)

(attribute)

Returns: A transformation.

These attributes return the smallest and largest element of the transformation semigroup S, respectively. Smallest means the first element in the sorted set of elements of S and largest means the last element in the set of elements.

It is not necessary to find the elements of the semigroup to determine the smallest or largest element, and this function has considerable better performance than the equivalent Elements(S)[1] and Elements(S)[Size(S)].

```
gap> S := Monoid(
> Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),
> Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7]));
<transformation monoid of degree 11 with 2 generators>
gap> SmallestElementSemigroup(S);
IdentityTransformation
gap> LargestElementSemigroup(S);
Transformation([11, 11, 10, 10, 7, 6, 5, 6, 2, 2, 4])
```

11.11.9 Canonical Transformation

```
▷ CanonicalTransformation(trans[, n])

Returns: A transformation.

(function)
```

If trans is a transformation, and n is a non-negative integer such that the restriction of trans to [1 ... n] defines a transformation of [1 ... n], then CanonicalTransformation returns a canonical representative of the transformation trans restricted to [1 ... n].

More specifically, let C(n) be a class of transformations of degree n such that AsDigraph returns isomorphic digraphs for every pair of element elements in C(n). Recall that for a transformation trans and integer n the function AsDigraph returns a digraph with n vertices and an edge with source x and range x^trans for every x in [1 .. n]. See AsDigraph (**Digraphs: AsDigraph for a binary relation**). Then CanonicalTransformation returns a canonical representative of the class C(n) that contains trans.

```
Example

gap> x := Transformation([5, 1, 4, 1, 1]);

Transformation([5, 1, 4, 1, 1])

gap> y := Transformation([3, 3, 2, 3, 1]);

Transformation([3, 3, 2, 3, 1])

gap> CanonicalTransformation(x);

Transformation([3, 5, 2, 2, 2])

gap> CanonicalTransformation(y);

Transformation([3, 5, 2, 2, 2])
```

11.11.10 IsConnectedTransformationSemigroup (for a transformation semigroup)

A transformation semigroup S is connected if the digraph returned by the function DigraphOfActionOnPoints is connected. See IsConnectedDigraph (**Digraphs:** IsConnectedDigraph) and DigraphOfActionOnPoints (11.11.5). The function IsConnectedTransformationSemigroup returns true if the semigroup S is connected and false otherwise.

```
gap> S := Semigroup([
> Transformation([2, 4, 3, 4]),
> Transformation([3, 3, 2, 3, 3])]);
<transformation semigroup of degree 5 with 2 generators>
gap> IsConnectedTransformationSemigroup(S);
true
```

11.12 Attributes of partial perm semigroups

11.12.1 ComponentRepsOfPartialPermSemigroup

▷ ComponentRepsOfPartialPermSemigroup(S)

(attribute)

Returns: The representatives of components of a partial perm semigroup.

This function returns the representatives of the components of the action of the partial perm semi-group S on the set of positive integers where it is defined.

The representatives are the least set of points such that every point can be reached from some representative under the action of S.

11.12.2 ComponentsOfPartialPermSemigroup

▷ ComponentsOfPartialPermSemigroup(S)

(attribute)

Returns: The components of a partial perm semigroup.

This function returns the components of the action of the partial perm semigroup S on the set of positive integers where it is defined; the components of S partition this set.

11.12.3 CyclesOfPartialPerm

▷ CyclesOfPartialPerm(x)

(attribute)

Returns: The cycles of a partial perm.

This function returns the cycles, or strongly connected components, of the action of the partial perm x on the set of positive integers where it is defined.

```
Example

gap> x := PartialPerm([3, 1, 4, 2, 5, 0, 0, 6, 0, 7]);

[8,6][10,7](1,3,4,2)(5)

gap> CyclesOfPartialPerm(x);

[[5], [1, 3, 4, 2]]
```

11.12.4 CyclesOfPartialPermSemigroup

▷ CyclesOfPartialPermSemigroup(S)

(attribute)

Returns: The cycles of a partial perm semigroup.

This function returns the cycles, or strongly connected components, of the action of the partial perm semigroup S on the set of positive integers where it is defined.

11.13 Attributes of Rees (0-)matrix semigroups

11.13.1 RZMSDigraph

▷ RZMSDigraph(R)

(attribute)

Returns: A digraph.

If R is an n by m Rees 0-matrix semigroup $M^0[I,T,\Lambda;P]$ (so that $I=\{1,2,\ldots,n\}$ and $\Lambda=\{1,2,\ldots,m\}$) then RZMSDigraph returns a symmetric bipartite digraph with n+m vertices. An index $i\in I$ corresponds to the vertex i and an index $j\in\Lambda$ corresponds to the vertex j+n.

Two vertices v and w in RZMSDigraph(R) are adjacent if and only if $v \in I$, $w - n \in \Lambda$, and P[w - n][v] $\neq 0$.

This digraph is commonly called the *Graham-Houghton graph* of R.

11.13.2 RZMSConnectedComponents

▷ RZMSConnectedComponents(R)

(attribute)

Returns: The connected components of a Rees 0-matrix semigroup.

If R is an n by m Rees 0-matrix semigroup $M^0[I, T, \Lambda; P]$ (so that $I = \{1, 2, ..., n\}$ and $\Lambda = \{1, 2, ..., m\}$) then RZMSConnectedComponents returns the connected components of R.

Connectedness is an equivalence relation on the indices of R: the equivalence classes of the relation are called the *connected components* of R, and two indices in $I \cup \Lambda$ are connected if and only if their corresponding vertices in RZMSDigraph(R) are connected (see RZMSDigraph (11.13.1)). If R has R connected components, then RZMSConnectedComponents will return a list of pairs:

```
[ [ I_1, \Lambda_1 ], ..., [ I_k, \Lambda_k ] ]
```

where $I = I_1 \sqcup \cdots \sqcup I_k$, $\Lambda = \Lambda_1 \sqcup \cdots \sqcup \Lambda_k$, and for each l the set $I_l \cup \Lambda_l$ is a connected component of R. Note that at most one of I_l and Λ_l is possibly empty. The ordering of the connected components in the result in unspecified.

```
Example

gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(5),

> [[(), 0, (1, 3), (4, 5), 0],

> [0, (), 0, 0, (1, 3, 4, 5)],

> [0, 0, (1, 5)(2, 3), 0, 0],

> [0, (2, 3)(1, 4), 0, 0, 0]]);

<Rees 0-matrix semigroup 5x4 over Sym([1 .. 5])>

gap> RZMSConnectedComponents(R);

[[1, 3, 4], [1, 3], [[2, 5], [2, 4]]]
```

11.14 Attributes of inverse semigroups

11.14.1 NaturalLeqInverseSemigroup

▷ NaturalLeqInverseSemigroup(S)

(attribute)

Returns: An function.

NaturalLeqInverseSemigroup returns a function that, when given two elements x, y of the inverse semigroup S, returns true if x is less than or equal to y in the natural partial order on S.

11.14.2 JoinIrreducibleDClasses

 \triangleright JoinIrreducibleDClasses(S)

(attribute)

Returns: A list of \mathscr{D} -classes.

JoinIrreducibleDClasses returns a list of the join irreducible \mathcal{D} -classes of the inverse semigroup of partial permutations, block bijections or partial permutation bipartitions \mathcal{S} .

A join irreducible \mathscr{D} -class is a \mathscr{D} -class containing only join irreducible elements. See IsJoinIrreducible (12.2.7). If a \mathscr{D} -class contains one join irreducible element, then all of the elements in the \mathscr{D} -class are join irreducible.

```
_ Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> JoinIrreducibleDClasses(S);
[ <Green's D-class: <identity partial perm on [ 2 ]>> ]
gap> T := InverseSemigroup([
    PartialPerm([1, 2, 4, 3]),
    PartialPerm([1]),
   PartialPerm([0, 2])]);
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> JoinIrreducibleDClasses(T);
[ <Green's D-class: <identity partial perm on [ 1, 2, 3, 4 ]>>,
  <Green's D-class: <identity partial perm on [ 1 ]>>,
  <Green's D-class: <identity partial perm on [ 2 ]>> ]
gap> D := DualSymmetricInverseSemigroup(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> JoinIrreducibleDClasses(D);
[ <Green's D-class: <block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ]>> ]
```

11.14.3 MajorantClosure

 \triangleright MajorantClosure(S, T)

(operation)

Returns: A majorantly closed list of elements.

MajorantClosure returns a majorantly closed subset of an inverse semigroup of partial permutations, block bijections or partial permutation bipartitions, S, as a list. See IsMajorantlyClosed (12.2.8).

The result contains all elements of *S* which are greater than or equal to any element of *T* (with respect to the natural partial order NaturalLeqPartialPerm (**Reference: NaturalLeqPartialPerm**)). In particular, the result is a superset of *T*.

Note that T can be a subset of S or a subsemigroup of S.

```
Example
gap> S := SymmetricInverseSemigroup(4);
<symmetric inverse monoid of degree 4>
gap> T := [PartialPerm([1, 0, 3, 0])];
[ <identity partial perm on [ 1, 3 ]> ]
gap> U := MajorantClosure(S, T);
[ <identity partial perm on [ 1, 3 ]>,
  <identity partial perm on [ 1, 2, 3 ]>, [2,4](1)(3), [4,2](1)(3),
  <identity partial perm on [ 1, 3, 4 ]>,
  <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3) ]
gap> B := InverseSemigroup([
> Bipartition([[1, -2], [2, -1], [3, -3], [4, 5, -4, -5]]),
> Bipartition([[1, -3], [2, -4], [3, -2], [4, -1], [5, -5]])]);;
gap> T := [Bipartition([[1, -2], [2, 3, 5, -1, -3, -5], [4, -4]]),
> Bipartition([[1, -4], [2, 3, 5, -1, -3, -5], [4, -2]])];;
gap> IsMajorantlyClosed(B, T);
gap> MajorantClosure(B, T);
[ <block bijection: [ 1, -2 ], [ 2, 3, 5, -1, -3, -5 ], [ 4, -4 ]>,
  <block bijection: [ 1, -4 ], [ 2, 3, 5, -1, -3, -5 ], [ 4, -2 ]>,
  <block bijection: [ 1, -2 ], [ 2, 5, -1, -5 ], [ 3, -3 ], [ 4, -4 ]>
```

11.14.4 Minorants

▷ Minorants(S, f) (operation)

Returns: A list of elements.

Minorants takes an element f from an inverse semigroup of partial permutations, block bijections or partial permutation bipartitions S, and returns a list of the minorants of f in S.

A *minorant* of f is an element of S which is strictly less than f in the natural partial order of S. See NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm).

11.14.5 PrimitiveIdempotents

▷ PrimitiveIdempotents(S)

(attribute)

Returns: A list of elements.

An idempotent in an inverse semigroup S is *primitive* if it is non-zero and minimal with respect to the NaturalPartialOrder (**Reference: NaturalPartialOrder**) on S. PrimitiveIdempotents returns the list of primitive idempotents in the inverse semigroup S.

11.14.6 RightCosetsOfInverseSemigroup

ightharpoonup RightCosetsOfInverseSemigroup(S, T)

(operation)

Returns: A list of lists of elements.

RightCosetsOfInverseSemigroup takes a majorantly closed inverse subsemigroup T of an inverse semigroup of partial permutations, block bijections or partial permutation bipartitions S. See IsMajorantlyClosed (12.2.8). The result is a list of the right cosets of T in S.

For $s \in S$, the right coset \overline{Ts} is defined if and only if $ss^{-1} \in T$, in which case it is defined to be the majorant closure of the set Ts. See MajorantClosure (11.14.3). Distinct cosets are disjoint but do not necessarily partition S.

11.14.7 SameMinorantsSubgroup

▷ SameMinorantsSubgroup(H)

(attribute)

Returns: A list of elements of the group \mathcal{H} -class H.

Given a group \mathcal{H} -class H in an inverse semigroup of partial permutations, block bijections or partial permutation bipartitions S, SameMinorantsSubgroup returns a list of the elements of H which have the same strict minorants as the identity element of H. A *strict minorant* of x in H is an element of S which is less than x (with respect to the natural partial order), but is not equal to x.

The returned list of elements of H describe a subgroup of H.

```
[ <identity partial perm on [ 1, 2, 3 ]>, (1)(2,3), (1,2)(3),
  (1,2,3), (1,3,2), (1,3)(2)
gap> SameMinorantsSubgroup(H);
[ <identity partial perm on [ 1, 2, 3 ]> ]
gap> T := InverseSemigroup(
> PartialPerm([1, 2, 3, 4], [1, 2, 4, 3]),
> PartialPerm([1], [1]), PartialPerm([2], [2]));
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> Elements(T);
[ <empty partial perm>, <identity partial perm on [ 1 ]>,
  <identity partial perm on [ 2 ]>,
  <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2)(3,4) ]
gap> x := GroupHClass(DClass(T, PartialPerm([1, 2, 3, 4])));
<Green's H-class: <identity partial perm on [ 1, 2, 3, 4 ]>>
gap> Elements(x);
[ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2)(3,4) ]
gap> AsSet(SameMinorantsSubgroup(x));
[ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2)(3,4) ]
```

11.14.8 SmallerDegreePartialPermRepresentation

▷ SmallerDegreePartialPermRepresentation(S)

(attribute)

Returns: An isomorphism.

SmallerDegreePartialPermRepresentation attempts to find an isomorphism from the inverse semigroup S to an inverse semigroup of partial permutations with small degree. If S is already a partial permutation semigroup, and the function cannot reduce the degree, the identity mapping is returned.

There is no guarantee that the smallest possible degree representation is returned. For more information see [Sch92].

```
_ Example -
gap> S := InverseSemigroup(PartialPerm([2, 1, 4, 3, 6, 5, 8, 7]));
<partial perm group of rank 8 with 1 generator>
gap> Elements(S);
[ <identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 8 ]>,
  (1,2)(3,4)(5,6)(7,8)
gap> iso := SmallerDegreePartialPermRepresentation(S);;
gap> Source(iso) = S;
gap> R := Range(iso);
<partial perm group of rank 2 with 1 generator>
gap> Elements(R);
[ <identity partial perm on [ 1, 2 ]>, (1,2) ]
gap> S := DualSymmetricInverseMonoid(5);;
gap> T := Range(IsomorphismPartialPermSemigroup(S));
<inverse partial perm monoid of size 6721, rank 6721 with 3</pre>
 generators>
gap> SmallerDegreePartialPermRepresentation(T);
<inverse partial perm monoid of size 6721, rank 6721 with 3</pre>
  generators> -> <inverse partial perm monoid of rank 30 with 3
  generators>
```

11.14.9 VagnerPrestonRepresentation

▷ VagnerPrestonRepresentation(S)

(attribute)

Returns: An isomorphism to an inverse semigroup of partial permutations.

VagnerPrestonRepresentation returns an isomorphism from an inverse semigroup S where the elements of S have a unique semigroup inverse accessible via Inverse (**Reference: inverse**), to the inverse semigroup of partial permutations T of degree equal to the size of S, which is obtained using the Vagner-Preston Representation Theorem.

More precisely, if $f:S\to T$ is the isomorphism returned by VagnerPrestonRepresentation(S) and x is in S, then f(x) is the partial permutation with domain Sx^{-1} and range $Sx^{-1}x$ defined by $f(x):sx^{-1}\mapsto sx^{-1}x$.

In many cases, it is possible to find a smaller degree representation than that provided by VagnerPrestonRepresentation using IsomorphismPartialPermSemigroup (**Reference: IsomorphismPartialPermSemigroup**) or SmallerDegreePartialPermRepresentation (11.14.8).

```
Example
gap> S := SymmetricInverseSemigroup(2);
<symmetric inverse monoid of degree 2>
gap> Size(S);
gap> iso := VagnerPrestonRepresentation(S);
<symmetric inverse monoid of degree 2> ->
<inverse partial perm monoid of rank 7 with 2 generators>
gap> RespectsMultiplication(iso);
gap> inv := InverseGeneralMapping(iso);;
gap> ForAll(S, x \rightarrow (x ^iso) ^inv = x);
gap> V := InverseSemigroup(
> Bipartition([[1, -4], [2, -1], [3, -5], [4], [5], [-2], [-3]]),
> Bipartition([[1, -5], [2, -1], [3, -3], [4], [5], [-2], [-4]]),
> Bipartition([[1, -2], [2, -4], [3, -5], [4, -1], [5, -3]]));
<inverse bipartition semigroup of degree 5 with 3 generators>
gap> IsInverseSemigroup(V);
true
gap> VagnerPrestonRepresentation(V);
<inverse bipartition semigroup of size 394, degree 5 with 3</pre>
  generators> -> <inverse partial perm semigroup of rank 394 with 5
  generators>
```

11.14.10 CharacterTableOfInverseSemigroup

▷ CharacterTableOfInverseSemigroup(S)

(attribute

Returns: The character table of the inverse semigroup S and a list of conjugacy class representatives of S.

Returns a list with two entries: the first entry being the character table of the inverse semigroup S as a matrix, while the second entry is a list of conjugacy class representatives of S.

The order of the columns in the character table matrix follows the order of the conjugacy class representatives list. The conjugacy representatives are grouped by \mathcal{D} -class and then sorted by rank. Also, as is typical of character tables, the rows of the matrix correspond to the irreducible characters and the columns correspond to the conjugacy classes.

This function was contributed by Jhevon Smith and Ben Steinberg.

```
_ Example .
gap> S := InverseMonoid([
   PartialPerm([1, 2], [3, 1]),
> PartialPerm([1, 2, 3], [1, 3, 4]),
 PartialPerm([1, 2, 3], [2, 4, 1]),
> PartialPerm([1, 3, 4], [3, 4, 1])]);;
gap> CharacterTableOfInverseSemigroup(S);
[[[1,0,0,0,0,0,0],[3,1,1,1,0,0,0,0],
      [ 3, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
      [3, 1, E(3)^2, E(3), 0, 0, 0, 0], [6, 3, 0, 0, 1, -1, 0, 0],
      [6, 3, 0, 0, 1, 1, 0, 0], [4, 3, 0, 0, 2, 0, 1, 0],
      [ 1, 1, 1, 1, 1, 1, 1, 1] ],
  [ <identity partial perm on [ 1, 2, 3, 4 ]>,
      <identity partial perm on [ 1, 3, 4 ]>, (1,3,4), (1,4,3),
      <identity partial perm on [ 1, 3 ]>, (1,3),
      <identity partial perm on [ 3 ]>, <empty partial perm> ] ]
gap> S := SymmetricInverseMonoid(4);;
gap> CharacterTableOfInverseSemigroup(S);
[[[1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0],
      [3, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0],
      [2, 0, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0],
      [3, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0],
      [ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
      [4, -2, 1, 0, 0, 1, -1, 1, 0, 0, 0, 0],
      [ 8, 0, -1, 0, 0, 2, 0, -1, 0, 0, 0, 0 ],
      [4, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0],
      [6, 0, 0, -2, 0, 3, -1, 0, 1, -1, 0, 0],
      [6, 2, 0, 2, 0, 3, 1, 0, 1, 1, 0, 0],
      [4, 2, 1, 0, 0, 3, 1, 0, 2, 0, 1, 0],
      [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ],
  [ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2)(3,4),
      (1)(2,3,4), (1,2)(3,4), (1,2,3,4),
     <identity partial perm on [ 1, 2, 3 ]>, (1)(2,3), (1,2,3),
      <identity partial perm on [ 2, 3 ]>, (2,3),
      <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
```

11.14.11 EUnitaryInverseCover

▷ EUnitaryInverseCover(S)

(attribute)

Returns: A homomorphism between semigroups.

If the argument S is an inverse semigroup then this function returns a finite E-unitary inverse cover of S. A finite E-unitary cover of S is a surjective idempotent separating homomorphism from a finite semigroup satisfying IsEUnitaryInverseSemigroup (12.2.3) to S. A semigroup homomorphism is said to be idempotent separating if no two idempotents are mapped to the same element of the image.

```
<inverse partial perm semigroup of rank 2 with 2 generators>
gap> IsEUnitaryInverseSemigroup(Source(cov));
true
gap> S = Range(cov);
true
```

11.15 Nambooripad partial order

11.15.1 NambooripadLeqRegularSemigroup

▷ NambooripadLeqRegularSemigroup(S)

(attribute)

Returns: A function.

NambooripadLeqRegularSemigroup returns a function that, when given two elements x, y of the regular semigroup S, returns true if x is less than or equal to y in the Nambooripad partial order on S. See also NambooripadPartialOrder (11.15.2).

```
Example
gap> S := BrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 3 generators>
gap> IsRegularSemigroup(S);
true
gap> Size(S);
15
gap> NambooripadPartialOrder(S);
[1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9],
  [1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9],
  [1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9]]
gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[3], Elements(S)[9]);
false
gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[2], Elements(S)[15]);
true
```

11.15.2 NambooripadPartialOrder

 \triangleright NambooripadPartialOrder(S)

(attribute)

Returns: The Nambooripad partial order on a regular semigroup.

The Nambooripad partial order \leq on a regular semigroup S is defined by $s \leq t$ if the principal right ideal of S generated by s is contained in the principal right ideal of S generated by s and there is an idempotent s in the s-class of s such that s-et. The Nambooripad partial order coincides with the natural partial order when considering inverse semigroups NaturalPartialOrder (Reference: NaturalPartialOrder).

NambooripadPartialOrder returns the Nambooripad partial order on the regular semigroup S as a list of sets of positive integers where entry i in NaturalPartialOrder(S) is the set of positions in Elements(S) of elements which are less than Elements(S)[i]. See also NambooripadLeqRegularSemigroup (11.15.1).

```
gap> S := BrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 3 generators>
gap> IsRegularSemigroup(S);
```

```
true
gap> Size(S);
15
gap> NambooripadPartialOrder(S);
[[ ], [ ], [ ], [ ], [ ], [ ], [ ],
        [1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
        [1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
        [1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
        [1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]]
gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[3], Elements(S)[9]);
false
gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[2], Elements(S)[15]);
true
```

Chapter 12

Properties of semigroups

In this chapter we decribe the methods that are available in Semigroups for determining various properties of a semigroup or monoid.

12.1 Arbitrary semigroups

In this section we describe the properties of an arbitrary semigroup or monoid that can be determined using the Semigroups package.

12.1.1 IsBand

```
\triangleright IsBand(S) (property)
```

Returns: true or false.

IsBand returns true if every element of the semigroup S is an idempotent and false if it is not. An inverse semigroup is band if and only if it is a semilattice; see IsSemilattice (12.1.21).

```
_ Example
gap> S := Semigroup(
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 1]),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 3]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 4]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 7]));;
gap> IsBand(S);
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 8, 9], [5, 8, 7, 6, 9, 1]),
> PartialPerm([1, 3, 4, 7, 8, 9, 10], [2, 3, 8, 7, 10, 6, 1]));;
gap> IsBand(S);
false
gap> IsBand(IdempotentGeneratedSubsemigroup(S));
gap> S := PartitionMonoid(4);
<regular bipartition *-monoid of size 4140, degree 4 with 4
 generators>
gap> M := MinimalIdeal(S);
<simple bipartition *-semigroup ideal of degree 4 with 1 generator>
```

```
gap> IsBand(M);
true
```

12.1.2 IsBlockGroup

 \triangleright IsBlockGroup(S) (property)

Returns: true or false.

IsBlockGroup returns true if the semigroup S is a block group and false if it is not.

A semigroup S is a *block group* if every \mathcal{L} -class and every \mathcal{R} -class of S contains at most one idempotent. Every semigroup of partial permutations is a block group.

```
Example
gap> S := Semigroup(Transformation([5, 6, 7, 3, 1, 4, 2, 8]),
                    Transformation([3, 6, 8, 5, 7, 4, 2, 8]));;
gap> IsBlockGroup(S);
true
gap> S := Semigroup(
> Transformation([2, 1, 10, 4, 5, 9, 7, 4, 8, 4]),
> Transformation([10, 7, 5, 6, 1, 3, 9, 7, 10, 2]));;
gap> IsBlockGroup(S);
false
gap> S := Semigroup(PartialPerm([1, 2], [5, 4]),
                    PartialPerm([1, 2, 3], [1, 2, 5]),
>
                    PartialPerm([1, 2, 3], [2, 1, 5]),
                    PartialPerm([1, 3, 4], [3, 1, 2]),
>
                    PartialPerm([1, 3, 4, 5], [5, 4, 3, 2]));;
gap> T := AsSemigroup(IsBlockBijectionSemigroup, S);
<br/>
<br/>
<br/>
dock bijection semigroup of degree 6 with 5 generators>
gap> IsBlockGroup(T);
gap> IsBlockGroup(AsSemigroup(IsBipartitionSemigroup, S));
true
gap> S := Semigroup(
> Bipartition([[1, -2], [2, -3], [3, -4], [4, -1]]),
> Bipartition([[1, -2], [2, -1], [3, -3], [4, -4]]),
> Bipartition([[1, 2, -3], [3, -1, -2], [4, -4]]),
> Bipartition([[1, -1], [2, -2], [3, -3], [4, -4]]));;
gap> IsBlockGroup(S);
true
```

12.1.3 IsCommutativeSemigroup

▷ IsCommutativeSemigroup(S)

(property)

Returns: true or false.

IsCommutativeSemigroup returns true if the semigroup S is commutative and false if it is not. The function IsCommutative (**Reference: IsCommutative**) can also be used to test if a semigroup is commutative.

A semigroup S is commutative if x * y = y * x for all x, y in S.

12.1.4 IsCompletelyRegularSemigroup

▷ IsCompletelyRegularSemigroup(S)

(property)

Returns: true or false.

Is Completely Regular Semigroup returns true if every element of the semigroup S is contained in a subgroup of S.

An inverse semigroup is completely regular if and only if it is a Clifford semigroup; see IsCliffordSemigroup (12.2.1).

```
Example -
gap> S := Semigroup(Transformation([1, 2, 4, 3, 6, 5, 4]),
                    Transformation([1, 2, 5, 6, 3, 4, 5]),
                    Transformation([2, 1, 2, 2, 2, 2, 2]));;
gap> IsCompletelyRegularSemigroup(S);
true
gap> IsInverseSemigroup(S);
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsCompletelyRegularSemigroup(T);
true
gap> IsCliffordSemigroup(T);
true
gap> S := Semigroup(
> Bipartition([[1, 3, -4], [2, 4, -1, -2], [-3]]),
> Bipartition([[1, -1], [2, 3, 4, -3], [-2, -4]]));;
gap> IsCompletelyRegularSemigroup(S);
false
```

12.1.5 IsCongruenceFreeSemigroup

▷ IsCongruenceFreeSemigroup(S)

(property)

Returns: true or false.

Is Congruence Free Semigroup returns true if the semigroup S is a congruence-free semigroup and false if it is not.

A semigroup S is *congruence-free* if it has no non-trivial proper congruences.

A semigroup with zero is congruence-free if and only if it is isomorphic to a regular Rees 0-matrix semigroup R whose underlying semigroup is the trivial group, no two rows of the matrix of R are identical, and no two columns are identical; see Theorem 3.7.1 in [How95].

A semigroup without zero is congruence-free if and only if it is a simple group or has order 2; see Theorem 3.7.2 in [How95].

12.1.6 IsSurjectiveSemigroup

 \triangleright IsSurjectiveSemigroup(S)

(property)

Returns: true or false.

A semigroup is *surjective* if each of its elements can be written as a product of two elements in the semigroup. Is Surjective Semigroup(S) returns true if the semigroup S is surjective, and false if it is not.

See also IndecomposableElements (11.6.6).

Note that every monoid, and every regular semigroup, is surjective.

```
Example
gap> S := FullTransformationMonoid(100);
<full transformation monoid of degree 100>
gap> IsSurjectiveSemigroup(S);
true
gap> F := FreeSemigroup(3);;
gap> P := F / [[F.1, F.2 * F.1], [F.3 ^{\circ} 3, F.3]];
<fp semigroup with 3 generators and 2 relations of length 10>
gap> IsSurjectiveSemigroup(P);
false
gap> I := SingularTransformationMonoid(5);
<regular transformation semigroup ideal of degree 5 with 1 generator>
gap> IsSurjectiveSemigroup(I);
gap> M := MonogenicSemigroup(IsBipartitionSemigroup, 3, 2);
<commutative non-regular block bijection semigroup of size 4,</pre>
 degree 6 with 1 generator>
gap> IsSurjectiveSemigroup(M);
false
```

12.1.7 IsGroupAsSemigroup

▷ IsGroupAsSemigroup(S)

(property)

Returns: true or false.

IsGroupAsSemigroup returns true if and only if the semigroup S is mathematically a group.

12.1.8 IsIdempotentGenerated

Returns: true or false.

IsIdempotentGenerated and IsSemiband return true if the semigroup S is generated by its idempotents and false if it is not. See also Idempotents (11.9.1) and IdempotentGeneratedSubsemigroup (11.9.3).

An inverse semigroup is idempotent-generated if and only if it is a semilattice; see IsSemilattice (12.1.21).

The terms semiband and idempotent-generated are synonymous in this context.

```
gap> S := SingularTransformationSemigroup(4);
<regular transformation semigroup ideal of degree 4 with 1 generator>
gap> IsIdempotentGenerated(S);
true
gap> S := SingularBrauerMonoid(5);
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
gap> IsIdempotentGenerated(S);
true
```

12.1.9 IsLeftSimple

```
> IsLeftSimple(S) (property)

> IsRightSimple(S) (property)

Returns: true or false.
```

IsLeftSimple and IsRightSimple returns true if the semigroup S has only one \mathscr{L} -class or one \mathscr{R} -class, respectively, and returns false if it has more than one.

An inverse semigroup is left simple if and only if it is right simple if and only if it is a group; see IsGroupAsSemigroup (12.1.7).

```
Example
gap> S := Semigroup(Transformation([6, 7, 9, 6, 8, 9, 8, 7, 6]),
                    Transformation([6, 8, 9, 6, 8, 8, 7, 9, 6]),
>
                    Transformation([6, 8, 9, 7, 8, 8, 7, 9, 6]),
>
>
                    Transformation([6, 9, 8, 6, 7, 9, 7, 8, 6]),
>
                    Transformation([6, 9, 9, 6, 8, 8, 7, 9, 6]),
                    Transformation([6, 9, 9, 7, 8, 8, 6, 9, 7]),
>
                    Transformation([7, 8, 8, 7, 9, 9, 7, 8, 6]),
>
>
                    Transformation([7, 9, 9, 7, 6, 9, 6, 8, 7]),
>
                    Transformation([8, 7, 6, 9, 8, 6, 8, 7, 9]),
>
                    Transformation([9, 6, 6, 7, 8, 8, 7, 6, 9]),
>
                    Transformation([9, 6, 6, 7, 9, 6, 9, 8, 7]),
>
                    Transformation([9, 6, 7, 9, 6, 6, 9, 7, 8]),
>
                    Transformation([9, 6, 8, 7, 9, 6, 9, 8, 7]),
                    Transformation([9, 7, 6, 8, 7, 7, 9, 6, 8]),
>
                    Transformation([9, 7, 7, 8, 9, 6, 9, 7, 8]),
>
                    Transformation([9, 8, 8, 9, 6, 7, 6, 8, 9]));;
gap> IsRightSimple(S);
false
gap> IsLeftSimple(S);
true
gap> IsGroupAsSemigroup(S);
false
gap> NrRClasses(S);
16
gap> S := BrauerMonoid(6);;
gap> S := Semigroup(RClass(S, Random(MinimalDClass(S))));;
gap> IsLeftSimple(S);
false
gap> IsRightSimple(S);
true
```

12.1.10 IsLeftZeroSemigroup

▷ IsLeftZeroSemigroup(S)

(property)

Returns: true or false.

IsLeftZeroSemigroup returns true if the semigroup S is a left zero semigroup and false if it is not.

A semigroup is a *left zero semigroup* if x*y=x for all x,y. An inverse semigroup is a left zero semigroup if and only if it is trivial.

12.1.11 IsMonogenicSemigroup

▷ IsMonogenicSemigroup(S)

(property)

Returns: true or false.

Is Monogenic Semigroup returns true if the semigroup S is monogenic and it returns false if it is not.

A semigroup is *monogenic* if it is generated by a single element. See also IsMonogenicMonoid (12.1.12), IsMonogenicInverseSemigroup (12.2.9), and IsMonogenicInverseMonoid (12.2.10).

```
___ Example -
gap> S := Semigroup(
> Transformation(
> [2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10]),
> Transformation(
> [2, 2, 2, 8, 11, 15, 11, 10, 2, 10, 11, 2, 10, 4, 7]),
> Transformation(
> [2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10]),
> Transformation(
> [2, 2, 12, 7, 8, 14, 8, 11, 2, 11, 10, 2, 11, 15, 4]));;
gap> IsMonogenicSemigroup(S);
true
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -2, -5, -7, -9],
               [-1, -10], [-3, -4, -6, -8]]),
> Bipartition([[1, 4, 7, 8, -2], [2, 3, 5, 10, -5],
                [6, 9, -7, -9], [-1, -10], [-3, -4, -6, -8]]));;
gap> IsMonogenicSemigroup(S);
true
gap> S := FullTransformationSemigroup(5);;
gap> IsMonogenicSemigroup(S);
false
```

12.1.12 IsMonogenicMonoid

▷ IsMonogenicMonoid(S)

(property)

Returns: true or false.

Is Monogenic Monoid returns true if the monoid S is a monogenic monoid and it returns false if it is not.

A monoid is *monogenic* if it is generated as a monoid by a single element. See also IsMonogenicSemigroup (12.1.11) and IsMonogenicInverseMonoid (12.2.10).

```
gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := Monoid(x, x ^ 2, x ^ 3);;
gap> IsMonogenicSemigroup(S);
false
gap> IsMonogenicMonoid(S);
true
gap> S := FullTransformationMonoid(5);;
gap> IsMonogenicMonoid(S);
```

12.1.13 IsMonoidAsSemigroup

```
▷ IsMonoidAsSemigroup(S)
```

(property)

Returns: true or false.

IsMonoidAsSemigroup returns true if and only if the semigroup S is mathematically a monoid, i.e. if and only if it contains a MultiplicativeNeutralElement (**Reference: MultiplicativeNeutralElement**).

It is possible that a semigroup which satisfies IsMonoidAsSemigroup is not in the GAP category IsMonoid (**Reference: IsMonoid**). This is possible if the MultiplicativeNeutralElement (**Reference: MultiplicativeNeutralElement**) of S is not equal to the One (**Reference: One**) of any element in S. Therefore a semigroup satisfying IsMonoidAsSemigroup may not possess the attributes of a monoid (such as, GeneratorsOfMonoid) (**Reference: GeneratorsOfMonoid**)).

See also One (Reference: One), IsInverseMonoid (Reference: IsInverseMonoid) and IsomorphismTransformationMonoid (Reference: IsomorphismTransformationMonoid).

```
Example .
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
                    Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> IsMonoidAsSemigroup(S);
true
gap> IsMonoid(S);
false
gap> MultiplicativeNeutralElement(S);
Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 9])
gap> T := AsSemigroup(IsBipartitionSemigroup, S);;
gap> IsMonoidAsSemigroup(T);
true
gap> IsMonoid(T);
false
gap> One(T);
fail
gap> S := Monoid(Transformation([8, 2, 8, 9, 10, 6, 2, 8, 7, 8]),
                 Transformation([9, 2, 6, 3, 6, 4, 5, 5, 3, 2]));;
gap> IsMonoidAsSemigroup(S);
true
```

12.1.14 IsOrthodoxSemigroup

▷ IsOrthodoxSemigroup(S)

(property)

Returns: true or false.

IsOrthodoxSemigroup returns true if the semigroup S is orthodox and false if it is not.

A semigroup is *orthodox* if it is regular and its idempotent elements form a subsemigroup. Every inverse semigroup is also an orthodox semigroup.

See also IsRegularSemigroup (12.1.17) and IsRegularSemigroup (**Reference: IsRegularSemigroup**).

```
Example

gap> S := Semigroup(Transformation([1, 1, 1, 4, 5, 4]),

Transformation([1, 2, 3, 1, 1, 2]),

Transformation([1, 2, 3, 1, 1, 3]),

Transformation([5, 5, 5, 5, 5]));;

gap> IsOrthodoxSemigroup(S);
```

```
true
gap> S := DualSymmetricInverseMonoid(5);;
gap> S := Semigroup(GeneratorsOfSemigroup(S));;
gap> IsOrthodoxSemigroup(S);
true
```

12.1.15 IsRectangularBand

▷ IsRectangularBand(S)

(property)

Returns: true or false.

IsRectangularBand returns true if the semigroup S is a rectangular band and false if it is not. A semigroup S is a rectangular band if for all x, y, z in S we have that $x^2 = x$ and xyz = xz.

Equivalently, S is a *rectangular band* if S is isomorphic to a semigroup of the form $I \times \Lambda$ with multiplication $(i, \lambda)(j, \mu) = (i, \mu)$. In this case, S is called an $|I| \times |\Lambda|$ *rectangular band*.

An inverse semigroup is a rectangular band if and only if it is a group.

```
gap> S := Semigroup(
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 1]),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 3]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 4]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 7]));;
gap> IsRectangularBand(S);
true
gap> IsRectangularBand(MinimalIdeal(PartitionMonoid(4)));
true
```

12.1.16 IsRectangularGroup

 \triangleright IsRectangularGroup(S)

(property)

Returns: true or false.

A semigroup is *rectangular group* if it is the direct product of a group and a rectangular band. Or equivalently, if it is orthodox and simple.

```
gap> G := AsSemigroup(IsTransformationSemigroup, MathieuGroup(11));
<transformation group of size 7920, degree 11 with 2 generators>
gap> R := RectangularBand(3, 2);
<regular transformation semigroup of size 6, degree 6 with 3
generators>
gap> S := DirectProduct(G, R);;
gap> IsRectangularGroup(R);
true
gap> IsRectangularGroup(G);
true
gap> IsRectangularGroup(S);
true
gap> IsRectangularGroup(JonesMonoid(3));
false
```

12.1.17 IsRegularSemigroup

▷ IsRegularSemigroup(S)

(property)

Returns: true or false.

IsRegularSemigroup returns true if the semigroup S is regular and false if it is not.

A semigroup S is *regular* if for all x in S there exists y in S such that x * y * x = x. Every inverse semigroup is regular, and a semigroup of partial permutations is regular if and only if it is an inverse semigroup.

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (10.3.2), and IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

```
gap> IsRegularSemigroup(FullTransformationSemigroup(5));
true
gap> IsRegularSemigroup(JonesMonoid(5));
true
```

12.1.18 IsRightZeroSemigroup

▷ IsRightZeroSemigroup(S)

(property)

Returns: true or false.

IsRightZeroSemigroup returns true if the S is a right zero semigroup and false if it is not.

A semigroup S is a *right zero semigroup* if x * y = y for all x, y in S. An inverse semigroup is a right zero semigroup if and only if it is trivial.

12.1.19 IsXTrivial

Returns: true or false.

IsXTrivial returns true if Green's \mathcal{R} -relation, \mathcal{L} -relation, \mathcal{L} -relation, \mathcal{D} -relation, respectively, on the semigroup S is trivial and false if it is not. These properties can also be applied to a Green's class instead of a semigroup where applicable.

For inverse semigroups, the properties of being \mathscr{R} -trivial, \mathscr{L} -trivial, \mathscr{D} -trivial, and a semilattice are equivalent; see IsSemilattice (12.1.21).

A semigroup is *aperiodic* if its contains no non-trivial subgroups (equivalently, all of its group \mathcal{H} -classes are trivial). A finite semigroup is aperiodic if and only if it is \mathcal{H} -trivial.

Combinatorial is a synonym for aperiodic in this context.

```
gap> S := Semigroup(
> Transformation([1, 5, 1, 3, 7, 10, 6, 2, 7, 10]),
> Transformation([4, 4, 5, 6, 7, 7, 7, 4, 3, 10]));;
gap> IsHTrivial(S);
true
gap> Size(S);
108
gap> IsRTrivial(S);
false
gap> IsLTrivial(S);
```

12.1.20 IsSemigroupWithAdjoinedZero

▷ IsSemigroupWithAdjoinedZero(S)

(property)

Returns: true or false.

IsSemigroupWithAdjoinedZero returns true if the semigroup S can be expressed as the disjoint union of subsemigroups $S \setminus \{0\}$ and $\{0\}$ (where 0 is the MultiplicativeZero (11.7.3) of S).

If this is not the case, then either S lacks a multiplicative zero, or the set $S \setminus \{0\}$ is not a subsemigroup of S, and so IsSemigroupWithAdjoinedZero returns false.

12.1.21 IsSemilattice

▷ IsSemilattice(S)

(property)

Returns: true or false.

IsSemilattice returns true if the semigroup S is a semilattice and false if it is not.

A semigroup is a *semilattice* if it is commutative and every element is an idempotent. The idempotents of an inverse semigroup form a semilattice.

```
<transformation semigroup of degree 7 with 32 generators>
gap> IsSemilattice(A);
true
gap> S := FactorisableDualSymmetricInverseMonoid(5);;
gap> S := IdempotentGeneratedSubsemigroup(S);;
gap> IsSemilattice(S);
true
```

12.1.22 IsSimpleSemigroup

```
▷ IsSimpleSemigroup(S) (property)

▷ IsCompletelySimpleSemigroup(S) (property)

Returns: true or false.
```

IsSimpleSemigroup returns true if the semigroup S is simple and false if it is not.

A semigroup is *simple* if it has no proper 2-sided ideals. A semigroup is *completely simple* if it is simple and possesses minimal left and right ideals. A finite semigroup is simple if and only if it is completely simple. An inverse semigroup is simple if and only if it is a group.

```
gap> S := Semigroup(
> Transformation([2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 2]),
> Transformation([1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 3]),
> Transformation([1, 7, 3, 9, 5, 11, 7, 1, 9, 3, 11, 5, 5]),
> Transformation([7, 7, 9, 9, 11, 11, 1, 1, 3, 3, 5, 5, 7]));;
gap> IsSimpleSemigroup(S);
true
gap> IsCompletelySimpleSemigroup(S);
true
gap> IsSimpleSemigroup(MinimalIdeal(BrauerMonoid(6)));
true
gap> R := Range(IsomorphismReesMatrixSemigroup(
> MinimalIdeal(BrauerMonoid(6))));
<Rees matrix semigroup 15x15 over Group(())>
```

12.1.23 IsSynchronizingSemigroup (for a transformation semigroup)

```
▷ IsSynchronizingSemigroup(S)

Returns: true or false.

(property)
```

For a positive integer n, IsSynchronizingSemigroup returns true if the semigroup of transformations S contains a transformation with constant value on [1 ... n] where n is the degree of the semigroup. See also ConstantTransformation (**Reference: ConstantTransformation**).

Note that the semigroup consisting of the identity transformation is the unique transformation semigroup with degree 0. In this special case, the function IsSynchronizingSemigroup will return false.

```
gap> S := Semigroup(
> Transformation([1, 1, 8, 7, 6, 6, 4, 1, 8, 9]),
> Transformation([5, 8, 7, 6, 10, 8, 7, 6, 9, 7]));;
gap> IsSynchronizingSemigroup(S);
true
```

```
gap> S := Semigroup(
> Transformation([3, 8, 1, 1, 9, 9, 8, 7, 9, 6]),
> Transformation([7, 6, 8, 7, 5, 6, 8, 7, 8, 9]));;
gap> IsSynchronizingSemigroup(S);
false
gap> Representative(MinimalIdeal(S));
Transformation([8, 7, 7, 8, 8, 7, 8, 8, 8])
```

12.1.24 IsUnitRegularMonoid

ightharpoonup IsUnitRegularMonoid(S)

(property)

Returns: true if the semigroup S is unit regular and false if it is not.

A monoid is *unit regular* if and only if for every >x in S there exists an element y in the group of units of S such that x*y*x=x.

```
gap> IsUnitRegularMonoid(FullTransformationMonoid(3));
true
```

12.1.25 IsZeroGroup

▷ IsZeroGroup(S)

(property)

Returns: true or false.

IsZeroGroup returns true if the semigroup S is a zero group and false if it is not.

A semigroup S is a *zero group* if there exists an element z in S such that S without z is a group and x*z=z*x=z for all x in S. Every zero group is an inverse semigroup.

12.1.26 IsZeroRectangularBand

▷ IsZeroRectangularBand(S)

(property)

Returns: true or false.

Is ZeroRectangularBand returns true if the semigroup S is a zero rectangular band and false if it is not.

A semigroup is a *0-rectangular band* if it is 0-simple and \mathscr{H} -trivial; see also IsZeroSimpleSemigroup (12.1.28) and IsHTrivial (12.1.19). An inverse semigroup is a 0-rectangular band if and only if it is a 0-group; see IsZeroGroup (12.1.25).

```
gap> S := Semigroup(
> Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1, 13,
```

12.1.27 IsZeroSemigroup

▷ IsZeroSemigroup(S)

(property)

Returns: true or false.

IsZeroSemigroup returns true if the semigroup S is a zero semigroup and false if it is not.

A semigroup S is a zero semigroup if there exists an element z in S such that x*y=z for all x, y in S. An inverse semigroup is a zero semigroup if and only if it is trivial.

```
gap> S := Semigroup(
> Transformation([4, 7, 6, 3, 1, 5, 3, 6, 5, 9]),
> Transformation([5, 3, 5, 1, 9, 3, 8, 7, 4, 3]));;
gap> IsZeroSemigroup(S);
false
gap> S := Semigroup(
> Transformation([7, 8, 8, 8, 5, 8, 8, 8]),
> Transformation([8, 8, 8, 8, 5, 7, 8, 8]),
> Transformation([8, 7, 8, 8, 5, 8, 8, 8]),
> Transformation([8, 7, 8, 8, 5, 8, 8, 8]),
> Transformation([8, 8, 7, 5, 8, 8, 8]),
> Transformation([8, 8, 7, 8, 5, 8, 8, 8]));;
gap> IsZeroSemigroup(S);
true
gap> MultiplicativeZero(S);
Transformation([ 8, 8, 8, 8, 5, 8, 8, 8 ] )
```

12.1.28 IsZeroSimpleSemigroup

▷ IsZeroSimpleSemigroup(S)

(property)

Returns: true or false.

 ${\tt IsZeroSimpleSemigroup}\ returns\ {\tt true}\ if\ the\ semigroup\ {\tt S}\ is\ 0\text{-simple}\ and\ {\tt false}\ if\ it\ is\ not.$

A semigroup is a *0-simple* if it has no two-sided ideals other than itself and the set containing the zero element; see also MultiplicativeZero (11.7.3). An inverse semigroup is 0-simple if and only if it is a Brandt semigroup; see IsBrandtSemigroup (12.2.2).

```
gap> S := Semigroup(
> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 5, 17,
```

```
17, 17, 17, 17, 17]),
>
  >
              17, 17, 17, 17, 17]),
  17, 17, 17, 17, 17]),
  Transformation([1, 17, 17, 5, 17, 17, 17, 17, 17, 17, 17, 17,
              17, 17, 17, 17, 17]));;
gap> IsZeroSimpleSemigroup(S);
true
gap> S := Semigroup(
> Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
> Transformation([2, 3, 4, 5, 6, 8, 7, 1, 2, 2]));;
gap> IsZeroSimpleSemigroup(S);
false
```

12.1.29 IsSelfDualSemigroup

▷ IsSelfDualSemigroup(S)

(property)

Returns: true or false.

Returns true if the semigroup S is self dual and false otherwise.

A semigroup is *self dual* if it is isomorphic to its dual, that is, the semigroup T with multiplication * defined by x*y=yx where yx denotes the product in S.

```
gap> F := FreeSemigroup("a", "b");

<free semigroup on the generators [ a, b ]>
gap> AssignGeneratorVariables(F);
gap> R := [[a ^ 3, a], [b ^ 2, b], [(a * b) ^ 2, a]];
[ [ a^3, a ], [ b^2, b ], [ (a*b)^2, a ] ]
gap> S := F / R;

<fp semigroup with 2 generators and 3 relations of length 14>
gap> IsSelfDualSemigroup(S);
false
gap> IsSelfDualSemigroup(FreeBand(3));
true
gap> S := DualSymmetricInverseMonoid(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> IsSelfDualSemigroup(S);
true
```

12.2 Inverse semigroups

In this section we describe the properties of an inverse semigroup or monoid that can be determined using the Semigroups package.

12.2.1 IsCliffordSemigroup

▷ IsCliffordSemigroup(S)
Returns: true or false.

(property)

IsCliffordSemigroup returns true if the semigroup *S* is regular and its idempotents are central, and false if it is not.

12.2.2 IsBrandtSemigroup

▷ IsBrandtSemigroup(S)

(property)

Returns: true or false.

IsBrandtSemigroup return true if the semigroup S is a finite 0-simple inverse semigroup, and false if it is not. See also IsZeroSimpleSemigroup (12.1.28) and IsInverseSemigroup (Reference: IsInverseSemigroup).

```
_ Example
gap> S := Semigroup(
> Transformation([2, 8, 8, 8, 8, 8, 8, 8]),
> Transformation([5, 8, 8, 8, 8, 8, 8, 8]),
> Transformation([8, 3, 8, 8, 8, 8, 8, 8]),
> Transformation([8, 6, 8, 8, 8, 8, 8, 8]),
> Transformation([8, 8, 1, 8, 8, 8, 8, 8]),
> Transformation([8, 8, 8, 1, 8, 8, 8, 8]),
> Transformation([8, 8, 8, 8, 4, 8, 8, 8]),
> Transformation([8, 8, 8, 8, 8, 7, 8, 8]),
> Transformation([8, 8, 8, 8, 8, 8, 2, 8]));;
gap> IsBrandtSemigroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsBrandtSemigroup(T);
true
gap> S := DualSymmetricInverseMonoid(4);;
gap> D := DClass(S,
                 Bipartition([[1, 2, 3, -1, -2, -3], [4, -4]]));;
gap> R := InjectionPrincipalFactor(D);;
gap> S := Semigroup(PreImages(R, GeneratorsOfSemigroup(Range(R))));;
gap> IsBrandtSemigroup(S);
true
```

12.2.3 IsEUnitaryInverseSemigroup

ightarrow IsEUnitaryInverseSemigroup(S)

(property)

Returns: true or false.

As described in Section 5.9 of [How95], an inverse semigroup S with semilattice of idempotents E is E-unitary if for

```
s \in S and e \in E: es \in E \Rightarrow s \in E.
```

Equivalently, S is E-unitary if E is closed in the natural partial order (see Proposition 5.9.1 in [How95]):

```
for s \in S and e \in E: e \le s \Rightarrow s \in E.
```

This condition is equivalent to E being majorantly closed in S. See IdempotentGeneratedSubsemigroup (11.9.3) and IsMajorantlyClosed (12.2.8). Hence an inverse semigroup of partial permutations, block bijections or partial permutation bipartitions is E-unitary if and only if the idempotent semilattice is majorantly closed.

```
- Example
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4], [2, 3, 1, 6]),
> PartialPerm([1, 2, 3, 5], [3, 2, 1, 6]));;
gap> IsEUnitaryInverseSemigroup(S);
true
gap> e := IdempotentGeneratedSubsemigroup(S);;
gap> ForAll(Difference(S, e), x -> not ForAny(e, y -> y * x in e));
gap> T := InverseSemigroup([
> PartialPerm([1, 3, 4, 6, 8], [2, 5, 10, 7, 9]),
> PartialPerm([1, 2, 3, 5, 6, 7, 8], [5, 8, 9, 2, 10, 1, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 9], [9, 8, 4, 1, 6, 7, 2])]);;
gap> IsEUnitaryInverseSemigroup(T);
false
gap> U := InverseSemigroup([
> PartialPerm([1, 2, 3, 4, 5], [2, 3, 4, 5, 1]),
> PartialPerm([1, 2, 3, 4, 5], [2, 1, 3, 4, 5])]);;
gap> IsEUnitaryInverseSemigroup(U);
true
gap> IsGroupAsSemigroup(U);
true
gap> StructureDescription(U);
"55"
```

12.2.4 IsFInverseSemigroup

```
▷ IsFInverseSemigroup(S)
```

(property)

Returns: true or false.

This functions determines whether a given semigroup is an F-inverse semigroup. An F-inverse semigroup is a semigroup which satisfies IsEUnitaryInverseSemigroup (12.2.3) as well as being isomorphic to some McAlisterTripleSemigroup (8.4.2) where the McAlisterTripleSemigroupPartialOrder (8.4.4) satisfies IsJoinSemilatticeDigraph (**Digraphs: IsJoinSemilatticeDigraph**). McAlister triple semigroups are a representation of E-unitary inverse semigroups and more can be read about them in Chapter 8.4.

```
Example

gap> S := InverseMonoid([PartialPermNC([1, 2], [1, 2]),

> PartialPermNC([1, 2, 3], [1, 2, 3]),

> PartialPermNC([1, 2, 4], [1, 2, 4]),
```

```
> PartialPermNC([1, 2], [2, 1]), PartialPermNC([1, 2, 3], [2, 1, 3]),
> PartialPermNC([1, 2, 4], [2, 1, 4])]);;
gap> IsEUnitaryInverseSemigroup(S);
true
gap> IsFInverseSemigroup(S);
false
gap> IsFInverseSemigroup(IdempotentGeneratedSubsemigroup(S));
true
```

12.2.5 IsFInverseMonoid

▷ IsFInverseMonoid(S)

(property)

Returns: true or false.

This function determines whether a given semigroup is an F-inverse monoid. A semigroup is an F-inverse monoid when it satisfies IsMonoid (**Reference: IsMonoid**) and IsFInverseSemigroup (12.2.4).

12.2.6 IsFactorisableInverseMonoid

▷ IsFactorisableInverseMonoid(S)

(property)

Returns: true or false.

An inverse monoid is *factorisable* if every element is the product of an element of the group of units and an idempotent; see also GroupOfUnits (11.8.1) and Idempotents (11.9.1). Hence an inverse semigroup of partial permutations is factorisable if and only if each of its generators is the restriction of some element in the group of units.

12.2.7 IsJoinIrreducible

 \triangleright IsJoinIrreducible(S, x)

(operation)

Returns: true or false.

Is JoinIrreducible determines whether an element x of an inverse semigroup S of partial permutations, block bijections or partial permutation bipartitions is join irreducible.

An element x is *join irreducible* when it is not the least upper bound (with respect to the natural partial order NaturalLeqPartialPerm (**Reference: NaturalLeqPartialPerm**)) of any subset of S not containing x.

```
_ Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> x := PartialPerm([1, 2, 3]);
<identity partial perm on [ 1, 2, 3 ]>
gap> IsJoinIrreducible(S, x);
false
gap> T := InverseSemigroup([
> PartialPerm([1, 2, 4, 3]),
> PartialPerm([1]),
> PartialPerm([0, 2])]);
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> y := PartialPerm([1, 2, 3, 4]);
<identity partial perm on [ 1, 2, 3, 4 ]>
gap> IsJoinIrreducible(T, y);
true
gap> B := InverseSemigroup([
  Bipartition([
     [1, -5], [2, -2], [3, 5, 6, 7, -1, -4, -6, -7], [4, -3]]),
  Bipartition([
     [1, -1], [2, -3], [3, -4], [4, 5, 7, -2, -6, -7], [6, -5]]),
  Bipartition([
     [1, -2], [2, -4], [3, -6], [4, -1], [5, 7, -3, -7], [6, -5]]),
   Bipartition([
     [1, -5], [2, -1], [3, -6], [4, 5, 7, -2, -4, -7], [6, -3]])]);
<inverse block bijection semigroup of degree 7 with 4 generators>
gap> x := Bipartition([
    [1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7], [4, -1]]);
<block bijection: [ 1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7 ],</pre>
 [ 4, -1 ]>
gap> IsJoinIrreducible(B, x);
true
gap> IsJoinIrreducible(B, B.1);
false
```

12.2.8 IsMajorantlyClosed

 \triangleright IsMajorantlyClosed(S, T)

(operation)

Returns: true or false.

IsMajorantlyClosed determines whether the subset T of the inverse semigroup of partial permutations, block bijections or partial permutation bipartitions S is majorantly closed in S. See also MajorantClosure (11.14.3).

We say that T is *majorantly closed* in S if it contains all elements of S which are greater than or equal to any element of T, with respect to the natural partial order. See NaturalLeqPartialPerm (**Reference: NaturalLeqPartialPerm**).

Note that T can be a subset of S or a subsemigroup of S.

```
gap> S := SymmetricInverseSemigroup(2);
<symmetric inverse monoid of degree 2>
gap> T := [Elements(S)[2]];
[ <identity partial perm on [ 1 ]> ]
```

12.2.9 IsMonogenicInverseSemigroup

▷ IsMonogenicInverseSemigroup(S)

(property)

Returns: true or false.

Is Monogenic Inverse Semigroup returns true if the semigroup S is a monogenic inverse semigroup and it returns false if it is not.

A inverse semigroup is *monogenic* if it is generated as an inverse semigroup by a single element. See also IsMonogenicSemigroup (12.1.11) and IsMonogenicInverseMonoid (12.2.10).

```
gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := InverseSemigroup(x, x ^ 2, x ^ 3);;
gap> IsMonogenicSemigroup(S);
false
gap> IsMonogenicInverseSemigroup(S);
true
gap> x := RandomBlockBijection(100);;
gap> S := InverseSemigroup(x, x ^ 2, x ^ 20);;
gap> IsMonogenicInverseSemigroup(S);
true
gap> S := SymmetricInverseSemigroup(5);;
gap> IsMonogenicInverseSemigroup(S);
false
```

12.2.10 IsMonogenicInverseMonoid

▷ IsMonogenicInverseMonoid(S)

(property)

Returns: true or false.

Is Monogenic Inverse Monoid returns true if the monoid S is a monogenic inverse monoid and it returns false if it is not.

A inverse monoid is *monogenic* if it is generated as an inverse monoid by a single element. See also IsMonogenicInverseSemigroup (12.2.9) and IsMonogenicMonoid (12.1.12).

```
gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := InverseMonoid(x, x ^ 2, x ^ 3);;
```

```
gap> IsMonogenicMonoid(S);
false
gap> IsMonogenicInverseSemigroup(S);
false
gap> IsMonogenicInverseMonoid(S);
true
gap> x := RandomBlockBijection(100);;
gap> S := InverseMonoid(x, x ^ 2, x ^ 20);;
gap> IsMonogenicInverseMonoid(S);
true
gap> S := SymmetricInverseMonoid(5);;
gap> IsMonogenicInverseMonoid(S);
```

Chapter 13

Congruences

Congruences in Semigroups can be described in several different ways:

- Generating pairs the minimal congruence which contains these pairs
- Rees congruences the congruence specified by a given ideal
- Universal congruences the unique congruence with only one class
- Linked triples only for simple or 0-simple semigroups (see below)
- Kernel and trace only for inverse semigroups
- Word graph only for congruences created via IteratorOfLeftCongruences (13.4.13) or IteratorOfRightCongruences (13.4.13)
- Wang pairs only for graph inverse semigroup

The operation SemigroupCongruence (13.2.1) can be used to create any of these, interpreting the arguments in a smart way. The usual way of specifying a congruence will be by giving a set of generating pairs, but a user with an ideal could instead create a Rees congruence or universal congruence.

If a congruence is specified by generating pairs on a simple, 0-simple, or inverse semigroup, then the congruence may be converted automatically to one of the last two items in the above list, to reduce the complexity of any calculations to be performed. The user need not manually specify, or even be aware of, the congruence's linked triple or kernel and trace.

We can also create left congruences and right congruences, using the LeftSemigroupCongruence (13.2.2) and RightSemigroupCongruence (13.2.3) functions.

Please note that congruence objects made in GAP before loading the Semigroups package may not behave correctly after Semigroups is loaded. If Semigroups is loaded at the beginning of the session, or before any congruence work is done, then the objects should behave correctly.

13.1 Semigroup congruence objects

13.1.1 IsSemigroupCongruence

▷ IsSemigroupCongruence(obj)

(property)

A semigroup congruence cong is an equivalence relation on a semigroup S which respects left and right multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (ax,bx) and (xa,xb) are both in cong.

The simplest way of creating a congruence in Semigroups is by a set of *generating pairs*. See SemigroupCongruence (13.2.1).

13.1.2 IsLeftSemigroupCongruence

```
▷ IsLeftSemigroupCongruence(obj) (property)
```

A left semigroup congruence cong is an equivalence relation on a semigroup S which respects left multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (xa,xb) is also in cong.

The simplest way of creating a left congruence in Semigroups is by a set of *generating pairs*. See LeftSemigroupCongruence (13.2.2).

```
_ Example .
gap> S := Semigroup([
    Transformation([2, 1, 1, 2, 1]),
>
    Transformation([3, 4, 3, 4, 4]),
   Transformation([3, 4, 3, 4, 3]),
   Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
               Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
               Transformation([3, 4, 3, 4, 3])];;
gap> cong := LeftSemigroupCongruence(S, [pair1, pair2]);
<left semigroup congruence over <transformation semigroup of degree 5</pre>
with 4 generators> with 2 generating pairs>
gap> IsLeftSemigroupCongruence(cong);
true
```

13.1.3 IsRightSemigroupCongruence

```
▷ IsRightSemigroupCongruence(obj)
```

(property)

A right semigroup congruence cong is an equivalence relation on a semigroup S which respects right multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (ax,bx) is also in cong.

The simplest way of creating a right congruence in Semigroups is by a set of *generating pairs*. See RightSemigroupCongruence (13.2.3).

```
gap> S := Semigroup([

> Transformation([2, 1, 1, 2, 1]),

> Transformation([3, 4, 3, 4, 4]),

> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),

> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),

> Transformation([3, 4, 3, 4, 3])];;
gap> RightSemigroupCongruence(S, [pair1, pair2]);

<right semigroup congruence over <transformation semigroup of degree 5 with 4 generators> with 2 generating pairs>
gap> IsRightSemigroupCongruence(cong);
true
```

13.2 Creating congruences

13.2.1 SemigroupCongruence

▷ SemigroupCongruence(S, pairs)

(function)

Returns: A semigroup congruence.

This function returns a semigroup congruence over the semigroup S.

If *pairs* is a list of lists of size 2 with elements from S, then this function will return the semigroup congruence defined by these generating pairs. The individual pairs may instead be given as separate arguments.

```
Example -
gap> S := Semigroup([
    Transformation([2, 1, 1, 2, 1]),
    Transformation([3, 4, 3, 4, 4]),
   Transformation([3, 4, 3, 4, 3]),
   Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
               Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
               Transformation([3, 4, 3, 4, 3])];;
gap> SemigroupCongruence(S, [pair1, pair2]);
<semigroup congruence over <simple transformation semigroup of</pre>
 degree 5 with 4 generators> with linked triple (2,4,1)>
gap> SemigroupCongruence(S, pair1, pair2);
<semigroup congruence over <simple transformation semigroup of</pre>
 degree 5 with 4 generators> with linked triple (2,4,1)>
```

13.2.2 LeftSemigroupCongruence

▷ LeftSemigroupCongruence(S, pairs)

(function)

Returns: A left semigroup congruence.

This function returns a left semigroup congruence over the semigroup S.

If pairs is a list of lists of size 2 with elements from S, then this function will return the least left semigroup congruence on S which contains these generating pairs. The individual pairs may instead be given as separate arguments.

```
\_ Example \_
gap> S := Semigroup([
    Transformation([2, 1, 1, 2, 1]),
    Transformation([3, 4, 3, 4, 4]),
>
    Transformation([3, 4, 3, 4, 3]),
    Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
               Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
               Transformation([3, 4, 3, 4, 3])];;
gap> LeftSemigroupCongruence(S, [pair1, pair2]);
<left semigroup congruence over <transformation semigroup of degree 5</pre>
 with 4 generators> with 2 generating pairs>
gap> LeftSemigroupCongruence(S, pair1, pair2);
<left semigroup congruence over <transformation semigroup of degree 5</li>
 with 4 generators> with 2 generating pairs>
```

13.2.3 RightSemigroupCongruence

▷ RightSemigroupCongruence(S, pairs)

(function)

Returns: A right semigroup congruence.

This function returns a right semigroup congruence over the semigroup S.

If pairs is a list of lists of size 2 with elements from S, then this function will return the least right semigroup congruence on S which contains these generating pairs. The individual pairs may instead be given as separate arguments.

```
_{-} Example _{-}
gap> S := Semigroup([
   Transformation([2, 1, 1, 2, 1]),
   Transformation([3, 4, 3, 4, 4]),
   Transformation([3, 4, 3, 4, 3]),
    Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
               Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
               Transformation([3, 4, 3, 4, 3])];;
gap> RightSemigroupCongruence(S, [pair1, pair2]);
<ri>dright semigroup congruence over <transformation semigroup of</td>
 degree 5 with 4 generators> with 2 generating pairs>
gap> RightSemigroupCongruence(S, pair1, pair2);
<ri>dright semigroup congruence over <transformation semigroup of</td>
 degree 5 with 4 generators> with 2 generating pairs>
```

13.3 Congruence classes

The main operations and attributes for congruences in the GAP library are:

- EquivalenceClasses (Reference: EquivalenceClasses attribute)
- NrEquivalenceClasses
- EquivalenceClassOfElement (Reference: EquivalenceClassOfElement)

13.3.1 IsCongruenceClass

```
\triangleright IsCongruenceClass(obj) (category)
```

This category contains any object which is an equivalence class of a semigroup congruence (see IsSemigroupCongruence (13.1.1)). An object will only be in this category if the relation is known to be a semigroup congruence when the congruence class is created.

13.3.2 IsLeftCongruenceClass

```
▷ IsLeftCongruenceClass(obj) (category)
```

This category contains any object which is an equivalence class of a left semigroup congruence (see IsLeftSemigroupCongruence (13.1.2)). An object will only be in this category if the relation is known to be a left semigroup congruence when the class is created.

13.3.3 IsRightCongruenceClass

```
▷ IsRightCongruenceClass(obj)
```

(category)

This category contains any object which is an equivalence class of a right semigroup congruence (see IsRightSemigroupCongruence (13.1.3)). An object will only be in this category if the relation is known to be a right semigroup congruence when the class is created.

13.3.4 NonTrivialEquivalenceClasses

▷ NonTrivialEquivalenceClasses(eq)

(attribute)

Returns: A list of equivalence classes.

If eq is an equivalence relation, then this attribute returns a list of all equivalence classes of eq which contain more than one element.

```
_ Example
gap> S := Monoid([Transformation([1, 2, 2]),
                 Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S, [Transformation([1, 2, 1]),
                                    Transformation([2, 1, 2])]);;
gap> classes := NonTrivialEquivalenceClasses(cong);;
gap> Set(classes);
[ <2-sided congruence class of Transformation([1, 2, 2])>,
  <2-sided congruence class of Transformation([3, 1, 3])>,
  <2-sided congruence class of Transformation([3, 1, 1])>,
  <2-sided congruence class of Transformation([2, 1, 2])>,
  <2-sided congruence class of Transformation([3, 3, 3])>]
gap> cong := RightSemigroupCongruence(S, [Transformation([1, 2, 1]),
                                         Transformation([2, 1, 2])]);;
gap> classes := NonTrivialEquivalenceClasses(cong);;
gap> Set(classes);
[ <right congruence class of Transformation([3, 1, 3])>,
  <right congruence class of Transformation([2, 1, 2])>]
```

13.3.5 EquivalenceRelationLookup (for an equivalence relation over a finite semi-group)

(attribute)

Returns: A list.

This attribute describes the equivalence relation equiv, defined over a finite semigroup, as a list of positive integers of length the size of the finite semigroup over which equiv is defined.

Each position in the list corresponds to an element of the semigroup (in a consistent canonical order) and the integer at that position is a unique identifier for that element's equivalence class under equiv. Two elements of the semigroup on which the equivalence is defined are related in the equivalence if and only if they have the same number at their respective positions in the lookup.

Note that the order in which numbers appear in the list is non-deterministic, and two equivalence relations describing the same mathematical relation might therefore have different lookups. Note also that the maximum value of the list may not be the number of classes of equiv, and that any integer might not be included. However, see EquivalenceRelationCanonicalLookup (13.3.6).

See also EquivalenceRelationPartition (Reference: EquivalenceRelationPartition).

13.3.6 EquivalenceRelationCanonicalLookup (for an equivalence relation over a finite semigroup)

▷ EquivalenceRelationCanonicalLookup(equiv)

(attribute)

Returns: A list.

This attribute describes the equivalence relation equiv, defined over a finite semigroup, as a list of positive integers of length the size of the semigroup.

Each position in the list corresponds to an element of the semigroup (in a consistent canonical order as defined by PositionCanonical (11.1.2)) and the integer at that position is a unique identifier for that element's equivalence class under equiv. The value of EquivalenceRelationCanonicalLookup has the property that the first appearance of the value i is strictly later than the first appearance of i-1, and that all entries in the list will be from the range [1 . . NrEquivalenceClasses(equiv)]. As such, two equivalence relations on a given semigroup are equal if and only if their canonical lookups are equal.

Two elements of the semigroup on which the equivalence relation is defined are related in the equivalence relation if and only if they have the same number at their respective positions in the lookup.

See also EquivalenceRelationLookup (13.3.5) and EquivalenceRelationPartition (Reference: EquivalenceRelationPartition).

```
gap> S := Monoid([

> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S,

> [Transformation([1, 2, 1]), Transformation([2, 1, 2])]);;
gap> EquivalenceRelationCanonicalLookup(cong);
[ 1, 2, 3, 4, 5, 6, 2, 3, 6, 4, 5, 6 ]
```

13.3.7 EquivalenceRelationCanonicalPartition

(attribute)

Returns: A list of lists.

This attribute returns a list of lists of elements of the underlying set of the semigroup congruence cong. These lists are precisely the nontrivial equivalence classes of cong. The order in which the classes appear is deterministic, and the order of the elements inside each class is also deterministic. Hence, two congruence objects have the same EquivalenceRelationCanonicalPartition if and only if they describe the same relation.

See also EquivalenceRelationPartition (**Reference: EquivalenceRelationPartition**), a similar attribute which does not have canonical ordering, but which is likely to be faster.

13.3.8 OnLeftCongruenceClasses

▷ OnLeftCongruenceClasses(class, elm)

(operation)

Returns: A left congruence class.

If class is an equivalence class of the left semigroup congruence cong on the semigroup S, and elm is an element of S, then this operation returns the equivalence class of cong containing the element elm * x, where x is any element of class. The result is well-defined by the definition of a left congruence.

See IsLeftSemigroupCongruence (13.1.2) and IsLeftCongruenceClass (13.3.2).

```
Example -
gap> S := Semigroup([
   Transformation([2, 1, 1, 2, 1]),
   Transformation([3, 4, 3, 4, 4]),
   Transformation([3, 4, 3, 4, 3]),
   Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
              Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
               Transformation([3, 4, 3, 4, 3])];;
gap> cong := LeftSemigroupCongruence(S, [pair1, pair2]);
<left semigroup congruence over <transformation semigroup of degree 5</pre>
with 4 generators> with 2 generating pairs>
gap> x := Transformation([3, 4, 3, 4, 3]);;
gap> class := EquivalenceClassOfElement(cong, x);
<left congruence class of Transformation([3, 4, 3, 4, 3])>
gap> elm := Transformation([1, 2, 2, 1, 2]);;
gap> OnLeftCongruenceClasses(class, elm);
<left congruence class of Transformation([3, 4, 4, 3, 4])>
```

13.3.9 OnRightCongruenceClasses

▷ OnRightCongruenceClasses(class, elm)

(operation)

Returns: A right congruence class.

If class is an equivalence class of the right semigroup congruence cong on the semigroup S, and elm is an element of S, then this operation returns the equivalence class of cong containing the element x * elm, where x is any element of class. The result is well-defined by the definition of a right congruence.

See IsRightSemigroupCongruence (13.1.3) and IsRightCongruenceClass (13.3.3).

```
Example
gap> S := Semigroup([
    Transformation([2, 1, 1, 2, 1]),
    Transformation([3, 4, 3, 4, 4]),
   Transformation([3, 4, 3, 4, 3]),
   Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
               Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
               Transformation([3, 4, 3, 4, 3])];;
gap> cong := RightSemigroupCongruence(S, [pair1, pair2]);
<ri>dright semigroup congruence over <transformation semigroup of</ri>
 degree 5 with 4 generators> with 2 generating pairs>
gap> x := Transformation([3, 4, 3, 4, 3]);;
gap> class := EquivalenceClassOfElement(cong, x);
<right congruence class of Transformation([3, 4, 3, 4, 3])>
gap> elm := Transformation([1, 2, 2, 1, 2]);;
gap> OnRightCongruenceClasses(class, elm);
<right congruence class of Transformation( [ 2, 1, 2, 1, 2 ] )>
```

13.4 Finding the congruences of a semigroup

13.4.1 CongruencesOfSemigroup (for a semigroup)

Returns: The congruences of a semigroup.

This attribute gives a list of the left, right, or 2-sided congruences of the semigroup S.

If restriction is specified and is a collection of elements from S, then the result will only include congruences generated by pairs of elements from restriction. Otherwise, all congruences will be calculated.

See also LatticeOfCongruences (13.4.5).

```
gap> Length(congs);
4

gap> Set(congs, NrEquivalenceClasses);
[ 1, 5, 9, 25 ]
gap> pos := Position(congs, UniversalSemigroupCongruence(S));;
gap> congs[pos];
<universal semigroup congruence over
<Rees O-matrix semigroup 2x2 over Sym( [ 1 .. 3 ] )>>
```

13.4.2 MinimalCongruencesOfSemigroup (for a semigroup)

```
      ▷ MinimalCongruencesOfSemigroup(S)
      (attribute)

      ▷ MinimalLeftCongruencesOfSemigroup(S)
      (attribute)

      ▷ MinimalRightCongruencesOfSemigroup(S)
      (attribute)

      ▷ MinimalCongruencesOfSemigroup(S, restriction)
      (operation)

      ▷ MinimalRightCongruencesOfSemigroup(S, restriction)
      (operation)

      ▷ MinimalRightCongruencesOfSemigroup(S, restriction)
      (operation)
```

Returns: The congruences of a semigroup.

If S is a semigroup, then the attribute MinimalCongruencesOfSemigroup gives a list of all the congruences on S which are *minimal*. A congruence is minimal iff it is non-trivial and contains no other congruences as subrelations (apart from the trivial congruence).

MinimalLeftCongruencesOfSemigroup and MinimalRightCongruencesOfSemigroup do the same thing, but for left congruences and right congruences respectively. Note that any congruence is also a left congruence, but that a minimal congruence may not be a minimal left congruence.

If restriction is specified and is a collection of elements from S, then the result will only include congruences generated by pairs of elements from restriction. Otherwise, all congruences will be calculated.

See also CongruencesOfSemigroup (13.4.1) and PrincipalCongruencesOfSemigroup (13.4.3).

13.4.3 PrincipalCongruencesOfSemigroup (for a semigroup)

```
    ▷ PrincipalCongruencesOfSemigroup(S)
    ▷ PrincipalLeftCongruencesOfSemigroup(S)
    (attribute)
```

```
▷ PrincipalRightCongruencesOfSemigroup(S) (attribute)
▷ PrincipalCongruencesOfSemigroup(S, restriction) (operation)
▷ PrincipalLeftCongruencesOfSemigroup(S, restriction) (operation)
▷ PrincipalRightCongruencesOfSemigroup(S, restriction) (operation)

Returns: A list.
```

If S is a semigroup, then the attribute PrincipalCongruencesOfSemigroup gives a list of all the congruences on S which are *principal*. A congruence is principal if and only if it is non-trivial and can be defined by a single generating pair.

PrincipalLeftCongruencesOfSemigroup and PrincipalRightCongruencesOfSemigroup do the same thing, but for left congruences and right congruences respectively. Note that any congruence is a left congruence and a right congruence, but that a principal congruence may not be a principal left congruence or a principal right congruence.

If restriction is specified and is a collection of elements from S, then the result will only include congruences generated by pairs of elements from restriction. Otherwise, all congruences will be calculated.

See also CongruencesOfSemigroup (13.4.1) and MinimalCongruencesOfSemigroup (13.4.2).

```
Example
gap> S := Semigroup(Transformation([1, 3, 2]),

> Transformation([3, 1, 3]));;
gap> congs := PrincipalCongruencesOfSemigroup(S);
[ <2-sided semigroup congruence over <transformation semigroup of
    degree 3 with 2 generators> with 1 generating pairs>,
    <2-sided semigroup congruence over <transformation semigroup of
    degree 3 with 2 generators> with 1 generating pairs>,
    <2-sided semigroup congruence over <transformation semigroup of
    degree 3 with 2 generators> with 1 generating pairs>,
    <2-sided semigroup congruence over <transformation semigroup of
    degree 3 with 2 generators> with 1 generating pairs>,
    <2-sided semigroup congruence over <transformation semigroup of
    degree 3 with 2 generators> with 1 generating pairs>,
```

13.4.4 IsCongruencePoset

▷ IsCongruencePoset(poset)

(Category)

Returns: true or false.

This category contains all congruence posets. A *congruence poset* is a partially ordered set of congruences over a specific semigroup, where the ordering is defined by containment according to IsSubrelation (13.5.1): given two congruences cong1 and cong2, we say that cong1 < cong2 if and only if cong1 is a subrelation (a refinement) of cong2. The congruences in a congruence poset can be left, right, or two-sided.

A congruence poset is a digraph (see IsDigraph (**Digraphs: IsDigraph**)) with a vertex for each congruence, and an edge from vertex i to vertex j if and only if the congruence numbered i is a subrelation of the congruence numbered j. The list of congruences can be obtained using CongruencesOfPoset (13.4.7).

Congruence posets can be created using PosetOfCongruences (13.4.9), JoinSemilatticeOfCongruences (13.4.10), and LatticeOfCongruences (13.4.5).

```
gap> S := SymmetricInverseMonoid(2);;
gap> poset := LatticeOfCongruences(S);
```

13.4.5 LatticeOfCongruences (for a semigroup)

```
    ▷ LatticeOfCongruences(S)
    ▷ LatticeOfLeftCongruences(S)
    ▷ LatticeOfRightCongruences(S)
    ▷ LatticeOfCongruences(S, restriction)
    ▷ LatticeOfLeftCongruences(S, restriction)
    ▷ LatticeOfLeftCongruences(S, restriction)
    ▷ LatticeOfRightCongruences(S, restriction)
    ▷ LatticeOfRightCongruences(S, restriction)
    ○ LatticeOfRightCongruences(S, restriction)
    ○ Returns: A list of lists.
```

If S is a semigroup, then LatticeOfCongruences gives a congruence poset object containing all the congruences of S and information about how they are contained in each other. See IsCongruencePoset (13.4.4) for more details.

 ${\tt LatticeOfLeftCongruences} \ and \ {\tt LatticeOfRightCongruences} \ do \ the \ same \ thing \ for \ left \ and \ right \ congruences \ respectively.$

If restriction is specified and is a collection of elements from S, then the result will only include congruences generated by pairs of elements from restriction. Otherwise, all congruences will be calculated.

See CongruencesOfSemigroup (13.4.1).

```
gap> S := OrderEndomorphisms(2);;
gap> LatticeOfCongruences(S);
<lattice of 3 two-sided congruences over <regular transformation
  monoid of size 3, degree 2 with 2 generators>>
gap> LatticeOfLeftCongruences(S);
<lattice of 3 left congruences over <regular transformation monoid
  of size 3, degree 2 with 2 generators>>
gap> LatticeOfRightCongruences(S);
<lattice of 5 right congruences over <regular transformation monoid
  of size 3, degree 2 with 2 generators>>
gap> OutNeighbours(LatticeOfRightCongruences(S));
[[1, 2, 3, 4, 5], [2], [2, 3], [2, 4], [2, 5]]
```

13.4.6 PosetOfPrincipalCongruences (for a semigroup)

```
    ▷ PosetOfPrincipalCongruences(S)
    ▷ PosetOfPrincipalLeftCongruences(S)
    ▷ PosetOfPrincipalRightCongruences(S)
    ▷ PosetOfPrincipalCongruences(S, restriction)
    ▷ PosetOfPrincipalLeftCongruences(S, restriction)
    ▷ PosetOfPrincipalLeftCongruences(S, restriction)
    ▷ PosetOfPrincipalRightCongruences(S, restriction)
    ▷ PosetOfPrincipalRightCongruences(S, restriction)
```

Returns: A congruence poset.

If S is a semigroup, then PosetOfPrincipalCongruences returns a congruence poset object which contains all the principal congruences of S, ordered by containment according to IsSubrelation (13.5.1). A congruence is *principal* if it can be defined by a single generating pair. PosetOfPrincipalLeftCongruences and PosetOfPrincipalRightCongruences do the same thing for left and right congruences respectively.

If restriction is specified and is a collection of elements from S, then the result will only include principal congruences generated by pairs of elements from restriction. Otherwise, all principal congruences will be calculated.

See also LatticeOfCongruences (13.4.5) and PrincipalCongruencesOfSemigroup (13.4.3).

```
_ Example
gap> S := Semigroup(Transformation([1, 3, 1]),
                    Transformation([2, 3, 3]));;
gap> PosetOfPrincipalLeftCongruences(S);
<poset of 12 left congruences over <transformation semigroup</pre>
of size 11, degree 3 with 2 generators>>
gap> PosetOfPrincipalCongruences(S);
<lattice of 3 two-sided congruences over <transformation semigroup</pre>
 of size 11, degree 3 with 2 generators>>
gap> restriction := [Transformation([3, 2, 3]),
                     Transformation([3, 1, 3]),
>
                     Transformation([2, 2, 2])];;
gap> poset := PosetOfPrincipalRightCongruences(S,
> Combinations(restriction, 2));
<poset of 3 right congruences over <transformation semigroup</pre>
 of size 11, degree 3 with 2 generators>>
```

13.4.7 CongruencesOfPoset

▷ CongruencesOfPoset(poset)
Returns: A list.

(attribute)

If poset is a congruence poset object, then this attribute returns a list of all the congruence objects in the poset (these may be left, right, or two-sided). The order of this list corresponds to the order of the entries in the poset.

See also LatticeOfCongruences (13.4.5) and CongruencesOfSemigroup (13.4.1).

```
_ Example _
gap> S := OrderEndomorphisms(2);;
gap> latt := LatticeOfRightCongruences(S);
<lattice of 5 right congruences over <regular transformation monoid</pre>
of size 3, degree 2 with 2 generators>>
gap> CongruencesOfPoset(latt);
[ <right semigroup congruence over <regular transformation monoid
     of size 3, degree 2 with 2 generators> with 0 generating pairs>,
  <ri>right semigroup congruence over <regular transformation monoid</ti>
     of size 3, degree 2 with 2 generators> with 2 generating pairs>,
  <ri>dright semigroup congruence over <regular transformation monoid</td>
     of size 3, degree 2 with 2 generators> with 1 generating pairs>,
  <ri>dright semigroup congruence over <regular transformation monoid</td>
     of size 3, degree 2 with 2 generators> with 1 generating pairs>,
  <ri>right semigroup congruence over <regular transformation monoid</td>
     of size 3, degree 2 with 2 generators> with 1 generating pairs> ]
```

13.4.8 UnderlyingSemigroupOfCongruencePoset

▷ UnderlyingSemigroupOfCongruencePoset(poset)

(attribute)

Returns: A semigroup.

If poset is a congruence poset object, then this attribute returns the semigroup on which all its congruences are defined.

```
gap> S := OrderEndomorphisms(2);
<regular transformation monoid of degree 2 with 2 generators>
gap> latt := LatticeOfRightCongruences(S);
<lattice of 5 right congruences over <regular transformation monoid
  of size 3, degree 2 with 2 generators>>
gap> UnderlyingSemigroupOfCongruencePoset(latt) = S;
true
```

13.4.9 PosetOfCongruences

▷ PosetOfCongruences(coll)

(operation)

Returns: A congruence poset.

If *coll* is a list or collection of semigroup congruences (which may be left, right, or two-sided) then this operation returns the congruence poset formed by these congruences partially ordered by containment.

This operation does not create any new congruences or take any joins. However, see JoinSemilatticeOfCongruences (13.4.10). See also IsCongruencePoset (13.4.4) and LatticeOfCongruences (13.4.5).

```
gap> S := OrderEndomorphisms(2);;
gap> pair1 := [Transformation([1, 1]), IdentityTransformation];;
```

13.4.10 JoinSemilatticeOfCongruences (for a list or collection and a function)

```
    ▶ JoinSemilatticeOfCongruences(coll, join_func) (operation)
    ▶ JoinSemilatticeOfCongruences(poset, join_func) (operation)
    Returns: A congruence poset.
```

If coll is a list or collection of semigroup congruences (which may be left, right, or two-sided) and join_func is a function for taking the join of two of the congruences (such as JoinSemigroupCongruences (13.5.4)) then this operation returns the congruence poset formed by these congruences partially ordered by containment, along with all their joins.

Alternatively, a congruence poset poset can be specified; in this case, the congruences contained in poset will be used in place of coll, and information already known about their containments will be used.

See also IsCongruencePoset (13.4.4) and PosetOfCongruences (13.4.9).

13.4.11 MinimalCongruences (for a list or collection)

```
    ▷ MinimalCongruences(coll)
    ▷ MinimalCongruences(poset)
    Returns: A list.
```

If *coll* is a list or collection of semigroup congruences (which may be left, right, or two-sided) then this attribute returns a list of all the congruences from *coll* which do not contain any of the others as subrelations.

Alternatively, a congruence poset poset can be specified; in this case, the congruences contained in poset will be used in place of coll, and information already known about their containments will be used.

This function should not be confused with MinimalCongruencesOfSemigroup (13.4.2). See also IsCongruencePoset (13.4.4) and PosetOfCongruences (13.4.9).

```
Example
gap> S := SymmetricInverseMonoid(2);;
gap> pair1 := [PartialPerm([1], [1]), PartialPerm([2], [1])];;
gap> pair2 := [PartialPerm([1], [1]), PartialPerm([1, 2], [1, 2])];;
gap> pair3 := [PartialPerm([1, 2], [1, 2]),
               PartialPerm([1, 2], [2, 1])];;
gap> coll := [RightSemigroupCongruence(S, pair1),
              RightSemigroupCongruence(S, pair2),
              RightSemigroupCongruence(S, pair3)];;
gap> MinimalCongruences(PosetOfCongruences(coll));
[ <right semigroup congruence over <symmetric inverse monoid of degree\
 2> with 1 generating pairs>,
  <ri>dright semigroup congruence over <symmetric inverse monoid of degree
 2> with 1 generating pairs> ]
gap> poset := LatticeOfCongruences(S);
<lattice of 4 two-sided congruences over</pre>
 <symmetric inverse monoid of degree 2>>
gap> MinimalCongruences(poset);
[ <2-sided semigroup congruence over <symmetric inverse monoid of degr\
ee 2> with 0 generating pairs> ]
```

13.4.12 NumberOfRightCongruences (for a semigroup, positive integer, and list or collection)

```
▷ NumberOfRightCongruences(S, n, extra) (operation)
▷ NumberOfLeftCongruences(S, n, extra) (operation)
▷ NumberOfRightCongruences(S, n) (operation)
▷ NumberOfLeftCongruences(S, n) (operation)
▷ NumberOfRightCongruences(S) (attribute)
▷ NumberOfLeftCongruences(S) (operation)
```

NumberOfRightCongruences returns the number of right congruences of the semigroup S with at most n classes that contain the pairs in extra; NumberOfLeftCongruences is defined dually for left congruences rather than right congruences.

Returns: A non-negative integer.

If the optional third argument extra is not present, then NumberOfRightCongruences returns the number of right congruences of S with at most n classes.

If the optional second argument n is not present, then NumberOfRightCongruences returns the number of right congruences of S.

Note that the 2 and 3 argument variants of this function can be applied to infinite semigroups, but the 1 argument variant cannot.

If the lattice of right or left congruences of S is known, then that is used by NumberOfRightCongruences. If this lattice is not known, then Sim's low index congruence algorithm is used.

See IteratorOfRightCongruences (13.4.13) to actually obtain the congruences counted by this function.

```
gap> S := PartitionMonoid(2);
<regular bipartition *-monoid of size 15, degree 2 with 3 generators>
```

```
gap> NumberOfRightCongruences(S, 10);
86
gap> NumberOfLeftCongruences(S, 10);
86
gap> NumberOfRightCongruences(S, Size(S), [[S.1, S.2], [S.1, S.3]]);
1
gap> NumberOfLeftCongruences(S, Size(S), [[S.1, S.2], [S.1, S.3]]);
1
```

13.4.13 IteratorOfRightCongruences (for a semigroup, positive integer, and list or collection)

```
▷ IteratorOfRightCongruences(S, n, extra) (operation)
▷ IteratorOfLeftCongruences(S, n, extra) (operation)
▷ IteratorOfRightCongruences(S, n) (operation)
▷ IteratorOfLeftCongruences(S, n) (operation)
▷ IteratorOfRightCongruences(S) (attribute)
▷ IteratorOfLeftCongruences(S) (operation)
```

Returns: An iterator.

IteratorOfRightCongruences returns an iterator where calling NextIterator (**Reference:** NextIterator) returns the next right congruence of the semigroup S with at most n classes that contain the pairs in extra; IteratorOfLeftCongruences is defined dually for left congruences rather than right congruences.

If the optional third argument extra is not present, then IteratorOfRightCongruences uses an empty list by default.

If the optional second argument n is not present, then IteratorOfRightCongruences uses Size(S) by default.

Note that the 2 and 3 argument variants of this function can be applied to infinite semigroups, but the 1 argument variant cannot.

If the lattice of right or left congruences of S is known, then that is used by IteratorOfRightCongruences. If this lattice is not known, then Sim's low index congruence algorithm is used.

```
Example .
gap> F := FreeMonoidAndAssignGeneratorVars("a", "b");
<free monoid on the generators [ a, b ]>
gap> R := [[a ^3, a], [b ^2, b], [(a * b) ^2, a]];
[ [ a^3, a ], [ b^2, b ], [ (a*b)^2, a ] ]
gap> S := F / R;
<fp monoid with 2 generators and 3 relations of length 14>
gap> NumberOfRightCongruences(S);
gap> it := IteratorOfRightCongruences(S);
<iterator>
gap> OutNeighbours(WordGraph(NextIterator(it)));
[[1, 1]]
gap> OutNeighbours(WordGraph(NextIterator(it)));
[[2, 1], [2, 2]]
gap> OutNeighbours(WordGraph(NextIterator(it)));
[[2,2],[2,2]]
```

```
gap> OutNeighbours(WordGraph(NextIterator(it)));
[ [ 2, 3 ], [ 2, 2 ], [ 2, 3 ] ]
gap> OutNeighbours(WordGraph(NextIterator(it)));
[ [ 2, 3 ], [ 2, 2 ], [ 3, 3 ] ]
gap> OutNeighbours(WordGraph(NextIterator(it)));
[ [ 2, 3 ], [ 2, 2 ], [ 4, 3 ], [ 4, 4 ] ]
gap> NextIterator(it);
fail
```

13.5 Comparing congruences

13.5.1 IsSubrelation

▷ IsSubrelation(cong1, cong2)

(operation)

Returns: True or false.

If cong1 and cong2 are congruences over the same semigroup, then this operation returns whether cong2 is a refinement of cong1, i.e. whether every pair in cong2 is contained in cong1.

13.5.2 IsSuperrelation

▷ IsSuperrelation(cong1, cong2)

(operation)

Returns: True or false.

If cong1 and cong2 are congruences over the same semigroup, then this operation returns whether cong1 is a refinement of cong2, i.e. whether every pair in cong1 is contained in cong2.

See IsSubrelation (13.5.1).

13.5.3 MeetSemigroupCongruences

Returns: A semigroup congruence.

This operation returns the *meet* of the two semigroup congruences c1 and c2 – that is, the largest semigroup congruence contained in both c1 and c2.

13.5.4 JoinSemigroupCongruences

```
    ▷ JoinSemigroupCongruences(c1, c2) (operation)
    ▷ JoinLeftSemigroupCongruences(c1, c2) (operation)
    ▷ JoinRightSemigroupCongruences(c1, c2) (operation)
```

Returns: A semigroup congruence.

This operation returns the *join* of the two semigroup congruences c1 and c2 – that is, the smallest semigroup congruence containing all the relations in both c1 and c2.

```
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(), (1, 3, 2)], [(1, 2), 0]]);;

gap> cong1 := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),

> RMSElement(S, 1, (), 1)]);;

gap> cong2 := SemigroupCongruence(S, []);;

gap> JoinSemigroupCongruences(cong1, cong2);

<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1..3])> with linked triple (3,2,2)>
```

13.6 Congruences on Rees matrix semigroups

This section describes the implementation of congruences of simple and 0-simple semigroups in the Semigroups package, and the functions associated with them. This code and this part of the manual were written by Michael Young. Most of the theorems used in this chapter are from Section 3.5 of [How95].

By the Rees Theorem, any 0-simple semigroup *S* is isomorphic to a *Rees 0-matrix semigroup* (see (**Reference: Rees Matrix Semigroups**)) over a group, with a regular sandwich matrix. That is,

$$S \cong \mathcal{M}^0[G;I,\Lambda;P],$$

where G is a group, Λ and I are non-empty sets, and P is regular in the sense that it has no rows or columns consisting solely of zeroes.

The congruences of a Rees 0-matrix semigroup are in 1-1 correspondence with the *linked triple*, which is a triple of the form [N, S, T] where:

- N is a normal subgroup of the underlying group G,
- S is an equivalence relation on the columns of P,
- T is an equivalence relation on the rows of P,

satisfying the following conditions:

- a pair of S-related columns must contain zeroes in precisely the same rows,
- a pair of T-related rows must contain zeroes in precisely the same columns,
- if i and j are S-related, k and 1 are T-related and the matrix entries $p_{k,i}, p_{k,j}, p_{l,i}, p_{l,j} \neq 0$, then $q_{k,l,i,j} \in N$, where

$$q_{k,l,i,j} = p_{k,i} p_{l,i}^{-1} p_{l,j} p_{k,i}^{-1}.$$

By Theorem 3.5.9 in [How95], for any finite 0-simple Rees 0-matrix semigroup, there is a bijection between its non-universal congruences and its linked triples. In this way, we can internally represent any congruence of such a semigroup by storing its associated linked triple instead of a set of generating pairs, and thus perform many calculations on it more efficiently.

If a congruence is defined by a linked triple (N, S, T), then a single class of that congruence can be defined by a triple (Nx, i / S, k / S), where Nx is a right coset of N, i / S is the equivalence class of i in S, and k / S is the equivalence class of k in K. Thus we can internally represent any class of such a congruence as a triple simply consisting of a right coset and two positive integers.

An analogous condition exists for finite simple Rees matrix semigroups without zero.

13.6.1 IsRMSCongruenceByLinkedTriple

```
    ▷ IsRMSCongruenceByLinkedTriple(obj) (category)
    ▷ IsRZMSCongruenceByLinkedTriple(obj) (category)
    Returns: true or false.
```

These categories describe a type of semigroup congruence over a Rees matrix or 0-matrix semigroup. Externally, an object of this type may be used in the same way as any other object in the category IsSemigroupCongruence (**Reference: IsSemigroupCongruence**) but it is represented internally by its *linked triple*, and certain functions may take advantage of this information to reduce computation times.

An object of this type may be constructed with RMSCongruenceByLinkedTriple or RZMSCongruenceByLinkedTriple, or this representation may be selected automatically by SemigroupCongruence (13.2.1).

13.6.2 RMSCongruenceByLinkedTriple

```
▷ RMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)
▷ RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)
```

Returns: A Rees matrix or 0-matrix semigroup congruence by linked triple.

This function returns a semigroup congruence over the Rees matrix or 0-matrix semigroup S corresponding to the linked triple (N, colBlocks, rowBlocks). The argument N should be a normal subgroup of the underlying semigroup of S; colBlocks should be a partition of the columns of the matrix of S; and rowBlocks should be a partition of the rows of the matrix of S. For example, if the matrix has 5 rows, then a possibility for rowBlocks might be [[1, 3], [2, 5], [4]].

If the arguments describe a valid linked triple on *S*, then an object in the category IsRZMSCongruenceByLinkedTriple is returned. This object can be used like any other semigroup congruence in GAP.

If the arguments describe a triple which is not *linked* in the sense described above, then this function returns an error.

13.6.3 IsRMSCongruenceClassByLinkedTriple

```
    ▷ IsRMSCongruenceClassByLinkedTriple(obj) (category)
    ▷ IsRZMSCongruenceClassByLinkedTriple(obj) (category)
    Returns: true or false.
```

These categories contain the congruence classes of a semigroup congruence of the categories IsRMSCongruenceByLinkedTriple (13.6.1) and IsRZMSCongruenceByLinkedTriple (13.6.1) respectively.

An object of one of these types may be used in the same way as any other object in the category IsCongruenceClass (13.3.1), but the class is represented internally by information related to the congruence's *linked triple*, and certain functions may take advantage of this information to reduce computation times.

```
gap> IsRZMSCongruenceClassByLinkedTriple(classes[1]);
true
```

13.6.4 RMSCongruenceClassByLinkedTriple

- ▷ RMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)
- ▷ RZMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation) **Returns:** A Rees matrix or 0-matrix semigroup congruence class by linked triple.

This operation returns one congruence class of the congruence cong, as defined by the other three parameters.

The argument *cong* must be a Rees matrix or 0-matrix semigroup congruence by linked triple. If the linked triple consists of the three parameters N, colBlocks and rowBlocks, then nCoset must be a right coset of N, colClass must be a positive integer corresponding to a position in the list colBlocks, and rowClass must be a positive integer corresponding to a position in the list rowBlocks.

arguments valid. IsRMSCongruenceClassByLinkedTriple the are an IsRZMSCongruenceClassByLinkedTriple object is returned, which can be used like any other equivalence class in GAP. Otherwise, an error is returned.

```
Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
             [0, (), 0, 0, (3, 5), 0],
>
             [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> class := RZMSCongruenceClassByLinkedTriple(cong,
> RightCoset(N, (1, 5)), 2, 3);
<2-sided congruence class of (2,(3,4),3)>
```

13.6.5 **IsLinkedTriple**

```
▷ IsLinkedTriple(S, N, colBlocks, rowBlocks)
   Returns: true or false.
```

(operation)

This operation returns true if and only if the arguments (N, colBlocks, rowBlocks) describe a linked triple of the Rees matrix or 0-matrix semigroup S, as described above.

```
Example .
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
             [0, (), 0, 0, (3, 5), 0],
             [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> \mathbb{N} := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> IsLinkedTriple(S, N, colBlocks, rowBlocks);
true
```

13.6.6 AsSemigroupCongruenceByGeneratingPairs

▷ AsSemigroupCongruenceByGeneratingPairs(cong)

(operation)

Returns: A semigroup congruence.

This operation takes *cong*, a semigroup congruence, and returns the same congruence relation, but described by GAP's default method of defining semigroup congruences: a set of generating pairs for the congruence.

13.7 Congruences on inverse semigroups

This section describes the implementation of congruences of inverse semigroups in the Semigroups package, and the functions associated with them. This code and this part of the manual were written by Michael Young. Most of the theorems used in this chapter are from Section 5.3 of [How95].

The congruences of an inverse semigroup are in 1-1 correspondence with its *congruence pairs*. A congruence pair is a pair (\mathbb{N}, t) such that:

- N is a normal subsemigroup of S that is, a self-conjugate subsemigroup which contains all the idempotents of S,
- t is a normal congruence on E, the subsemigroup of all idempotents in S that is, a congruence on E such that if (e, f) is a pair in t, then the pair $(a^{-1}ea, a^{-1}fa)$ is also in t,

satisfying the following conditions:

- If $ae \in N$ and $(e, a^{-1}a) \in t$, then $a \in N$,
- If $a \in N$, then $(aa^{-1}, a^{-1}a) \in t$.

By Theorem 5.3.3 in [How95], for any inverse semigroup, there is a bijection between its congruences and its congruence pairs. In this way, we can internally represent any congruence of such a semigroup by storing its associated congruence pair instead of a set of generating pairs, and thus perform many calculations on it more efficiently.

If we have a congruence C with congruence pair (N, t), it turns out that N is its *kernel* (that is, the set of all elements congruent to an idempotent) and that t is its *trace* (that is, the restriction of C to the idempotents). Hence, we refer to a congruence stored in this format as a "congruence by kernel and trace".

See cong_by_ker_trace_threshold in Section 6.3 for details on when this method is used.

13.7.1 IsInverseSemigroupCongruenceByKernelTrace

▷ IsInverseSemigroupCongruenceByKernelTrace(cong) (Category)
Returns: true or false.

This category contains any inverse semigroup congruence *cong* which is represented internally by its kernel and trace. The SemigroupCongruence (13.2.1) function may create an object of this category if its first argument *S* is an inverse semigroup and has sufficiently large size. It can be treated like any other semigroup congruence object.

See [How95] Section 5.3 for more details. See also InverseSemigroupCongruenceByKernelTrace (13.7.2).

13.7.2 InverseSemigroupCongruenceByKernelTrace

▷ InverseSemigroupCongruenceByKernelTrace(S, kernel, traceBlocks) (function)
Returns: An inverse semigroup congruence by kernel and trace.

If S is an inverse semigroup, kernel is a subsemigroup of S, traceBlocks is a list of lists describing a congruence on the idempotents of S, and (kernel, trace) describes a valid congruence pair for S (see [How95] Section 5.3) then this function returns the semigroup congruence defined by that congruence pair.

See also KernelOfSemigroupCongruence (13.7.4) and TraceOfSemigroupCongruence (13.7.5).

```
_ Example _
gap> S := InverseSemigroup([
   PartialPerm([2, 3]), PartialPerm([2, 0, 3])]);;
gap> kernel := InverseSemigroup([
   PartialPerm([1, 0, 3]), PartialPerm([0, 2, 3]),
   PartialPerm([1, 2]), PartialPerm([3]),
   PartialPerm([2])]);;
gap> trace := [
> [PartialPerm([0, 2, 3])],
> [PartialPerm([1, 2])],
  [PartialPerm([1, 0, 3])],
  [PartialPerm([0, 0, 3]), PartialPerm([0, 2]),
   PartialPerm([1]), PartialPerm([], [])]];;
gap> cong := InverseSemigroupCongruenceByKernelTrace(S, kernel, trace);
<semigroup congruence over <inverse partial perm semigroup of rank 3</pre>
 with 2 generators> with congruence pair (13,4)>
```

13.7.3 AsInverseSemigroupCongruenceByKernelTrace

▶ AsInverseSemigroupCongruenceByKernelTrace(cong)
 Returns: An inverse semigroup congruence by kernel and trace.

If *cong* is a semigroup congruence over an inverse semigroup, then this attribute returns an object which describes the same congruence, but with an internal representation defined by that congruence's kernel and trace.

See [How95] section 5.3 for more details.

13.7.4 KernelOfSemigroupCongruence

▷ KernelOfSemigroupCongruence(cong)

(attribute)

Returns: An inverse semigroup.

If *cong* is a congruence over a semigroup with inverse op, then this attribute returns the *kernel* of that congruence; that is, the inverse subsemigroup consisting of all elements which are related to an idempotent by *cong*.

13.7.5 TraceOfSemigroupCongruence

▷ TraceOfSemigroupCongruence(cong)

(attribute)

Returns: A list of lists.

If *cong* is an inverse semigroup congruence by kernel and trace, then this attribute returns the restriction of *cong* to the idempotents of the semigroup. This is in block form: each idempotent will appear in precisely one list, and two idempotents will be in the same list if and only if they are related by *cong*.

13.7.6 IsInverseSemigroupCongruenceClassByKernelTrace

 $\quad \qquad \triangleright \ \, \texttt{IsInverseSemigroupCongruenceClassByKernelTrace}(\textit{obj}) \\$

(Category)

Returns: true or false.

This category contains any congruence class which belongs to a congruence which is represented internally by its kernel and trace. See InverseSemigroupCongruenceByKernelTrace (13.7.2).

See [How95] Section 5.3 for more details.

13.7.7 MinimumGroupCongruence

▷ MinimumGroupCongruence(S)

(attribute)

Returns: An inverse semigroup congruence by kernel and trace.

If S is an inverse semigroup, then this function returns the least congruence on S whose quotient is a group.

```
gap> S := InverseSemigroup([
> PartialPerm([5, 2, 0, 0, 1, 4]),
> PartialPerm([1, 4, 6, 3, 5, 0, 2])]);;
gap> cong := MinimumGroupCongruence(S);
<semigroup congruence over <inverse partial perm semigroup
  of size 101, rank 7 with 2 generators> with congruence pair (59,1)>
gap> IsGroupAsSemigroup(S / cong);
true
```

13.8 Congruences on graph inverse semigroups

13.8.1 IsCongruenceByWangPair

▷ IsCongruenceByWangPair(cong)

(property)

A congruence by Wang pair cong is a congruence of a graph inverse semigroup S which is expressed in terms of two sets H and W of vertices of the corresponding graph of S. The set H must be a hereditary subset (closed under reachability) and all vertices in W must have all but one of their out-neighbours in W. For more information on Wang pairs see [Wan19] and [AMM21].

```
Example
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
<immutable digraph with 4 vertices, 5 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 5 edges>
gap> cong := CongruenceByWangPair(S, [3, 4], []);
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
gap> IsCongruenceByWangPair(cong);
gap> cong := CongruenceByWangPair(S, [4], [2]);
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
gap> IsCongruenceByWangPair(cong);
gap> e_1 := S.1;
e_1
gap> e_3 := S.3;
e_3
gap> cong := SemigroupCongruence(S, [[e_1, e_3]]);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\</pre>
h 4 vertices, 5 edges> with 1 generating pairs>
gap> IsCongruenceByWangPair(cong);
false
```

13.8.2 CongruenceByWangPair

▷ CongruenceByWangPair(S, H, W)

(function)

Returns: A semigroup congruence.

This function returns a semigroup congruence over the graph inverse semigroup S in the form of a Wang pair.

If S is a finite graph inverse semigroup H and W are two lists of vertices in the graph of S representing a valid hereditary subset and a W-set respectively, then this function will return the semigroup congruence defined by this Wang pair. For the definition of Wang pair IsCongruenceByWangPair (13.8.1).

```
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
  <immutable digraph with 4 vertices, 5 edges>
  gap> S := GraphInverseSemigroup(D);
  <finite graph inverse semigroup with 4 vertices, 5 edges>
  gap> cong := CongruenceByWangPair(S, [3, 4], []);
  <graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
  gap> cong := CongruenceByWangPair(S, [4], [2]);
  <graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
  gap> cong := CongruenceByWangPair(S, [3, 4], []);
  <graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
```

13.8.3 AsCongruenceByWangPair

▷ AsCongruenceByWangPair(cong)

(operation)

Returns: A congruence by Wang pair.

This operation takes cong, a finite graph inverse semigroup congruence, and returns an object representing the same congruence, but described as a congruence by Wang pairs: a pair of sets H and W of the corresponding graph of S that are a hereditary subset and a W-set of the graph of S respectively. For more information about Wang pairs see [Wan19] and [AMM21].

```
_ Example
gap> D := Digraph([[2, 3], [3], [4], []]);
<immutable digraph with 4 vertices, 4 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 4 edges>
gap> CongruenceByWangPair(S, [4], [2]);
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\</pre>
h 4 vertices, 4 edges> with 2 generating pairs>
gap> AsCongruenceByWangPair(cong);
<graph inverse semigroup congruence with H = [4] and W = [2]
gap> CongruenceByWangPair(S, [3, 4], [1]);
<graph inverse semigroup congruence with H = [3, 4] and W = [1]
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\</pre>
h 4 vertices, 4 edges> with 3 generating pairs>
gap> AsCongruenceByWangPair(cong);
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ 1 ]>
```

13.8.4 GeneratingCongruencesOfLattice

▷ GeneratingCongruencesOfLattice(S)

(operation)

Returns: A semigroup.

This operation takes a finite graph inverse semigroup S and returns a minimal generating set for the lattice of congruences of S, as described in [AMM21]. This operation works only if the corresponding digraph of the graph inverse semigroup is simple. If there are multiple edges, an error is returned.

```
Example
gap> D := Digraph([[2, 3], [3], [4], []]);
<immutable digraph with 4 vertices, 4 edges>
gap> S := GraphInverseSemigroup(D);
<firite graph inverse semigroup with 4 vertices, 4 edges>
gap> CongruenceByWangPair(S, [4], [2]);
<graph inverse semigroup congruence with H = [4] and W = [2]
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\</pre>
h 4 vertices, 4 edges> with 2 generating pairs>
gap> AsCongruenceByWangPair(cong);
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]
gap> CongruenceByWangPair(S, [3, 4], [1]);
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ 1 ]>
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\</pre>
```

```
h 4 vertices, 4 edges> with 3 generating pairs>
gap> AsCongruenceByWangPair(cong);
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ 1 ]>
```

13.9 Rees congruences

A Rees congruence is defined by a semigroup ideal. It is a congruence on a semigroup S which has one congruence class equal to a semigroup ideal I of S, and every other congruence class being a singleton.

13.9.1 SemigroupIdealOfReesCongruence

 ${\tt \triangleright} \ {\tt SemigroupIdealOfReesCongruence} ({\it cong})$

(attribute)

Returns: A semigroup ideal.

If *cong* is a rees congruence (see IsReesCongruence (**Reference: IsReesCongruence**)) then this attribute returns the two-sided ideal that was used to define it, i.e. "the ideal of elements in the only non-trivial congruence class of *cong*.

13.9.2 IsReesCongruenceClass

▷ IsReesCongruenceClass(obj)

(category)

Returns: true or false.

This category describes a congruence class of a Rees congruence. A congruence class of a Rees congruence either contains all the elements of an ideal, or is a singleton (see IsReesCongruence (Reference: IsReesCongruence)).

An object of this type may be used in the same way as any other congruence class object.

```
gap> S := Semigroup(
> Transformation([2, 3, 4, 3, 1, 1]),
> Transformation([6, 4, 4, 4, 6, 1]));;
gap> I := SemigroupIdeal(S,
> Transformation([4, 4, 4, 4, 4, 2]),
> Transformation([3, 3, 3, 3, 3, 2]));;
gap> cong := ReesCongruenceOfSemigroupIdeal(I);;
gap> classes := EquivalenceClasses(cong);;
gap> IsReesCongruenceClass(classes[1]);
true
```

13.10 Universal congruences

The linked triples of a completely 0-simple Rees 0-matrix semigroup describe only its non-universal congruences. In any one of these, the zero element of the semigroup is related only to itself. However, for any semigroup S the universal relation $S \times S$ is a congruence; called the *universal congruence*. The universal congruence on a semigroup has its own unique representation.

Since many things we want to calculate about congruences are trivial in the case of the universal congruence, this package contains a category specifically designed for it, IsUniversalSemigroupCongruence. We also define IsUniversalSemigroupCongruenceClass, which represents the single congruence class of the universal congruence.

13.10.1 IsUniversalSemigroupCongruence

▷ IsUniversalSemigroupCongruence(obj)

(property)

Returns: true or false.

This property describes a type of semigroup congruence, which must refer to the *universal semi-group congruence* $S \times S$. Externally, an object of this type may be used in the same way as any other object in the category IsSemigroupCongruence (**Reference: IsSemigroupCongruence**).

An object of this type may be constructed with UniversalSemigroupCongruence or this representation may be selected automatically as an alternative to an IsRZMSCongruenceByLinkedTriple object (since the universal congruence cannot be represented by a linked triple).

```
gap> S := Semigroup([Transformation([3, 2, 3])]);;
gap> U := UniversalSemigroupCongruence(S);;
gap> IsUniversalSemigroupCongruence(U);
true
```

13.10.2 IsUniversalSemigroupCongruenceClass

 ${\tt \triangleright} \ \, {\tt IsUniversalSemigroupCongruenceClass}(obj)\\$

(category)

Returns: true or false.

This category describes a class of the universal semigroup congruence (see IsUniversalSemigroupCongruence (13.10.1)). A universal semigroup congruence by definition has precisely one congruence class, which contains all of the elements of the semigroup in question.

```
gap> S := Semigroup([Transformation([3, 2, 3])]);;
gap> U := UniversalSemigroupCongruence(S);;
gap> classes := EquivalenceClasses(U);;
gap> IsUniversalSemigroupCongruenceClass(classes[1]);
true
```

13.10.3 UniversalSemigroupCongruence

▷ UniversalSemigroupCongruence(S)

(operation)

Returns: A universal semigroup congruence.

This operation returns the universal semigroup congruence for the semigroup S. It can be used in the same way as any other semigroup congruence object.

Chapter 14

Semigroup homomorphisms

In this chapter we describe the various ways to define a homomorphism from a semigroup to another semigroup.

14.1 Homomorphisms of arbitrary semigroups

14.1.1 SemigroupHomomorphismByImages (for two semigroups and two lists)

```
    ▷ SemigroupHomomorphismByImages(S, T, gens, imgs)
    ▷ SemigroupHomomorphismByImages(S, T, imgs)
    ▷ SemigroupHomomorphismByImages(S, T)
    ▷ SemigroupHomomorphismByImages(S, gens, imgs)
    ○ Returns: A semigroup homomorphism, or fail.
```

SemigroupHomomorphismByImages attempts to construct a homomorphism from the semigroup S to the semigroup T by mapping the i-th element of gens to the i-th element of imgs. If this mapping corresponds to a homomorphism, the homomorphism is returned, and if not, then fail is returned. Similarly, if gens does not generate S, fail is returned.

If omitted, the arguments gens and imgs default to the generators of S and T respectively. See GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup).

If T is not given, then it defaults to the semigroup generated by *imgs*, resulting in the mapping being surjective.

```
Example

gap> S := FullTransformationMonoid(3);;

gap> gens := GeneratorsOfSemigroup(S);;

gap> J := FullTransformationMonoid(4);;

gap> imgs := ListWithIdenticalEntries(4,

> ConstantTransformation(3, 1));;

gap> hom := SemigroupHomomorphismByImages(S, J, gens, imgs);

<full transformation monoid of degree 3> ->

<full transformation monoid of degree 4>
```

14.1.2 SemigroupHomomorphismByFunctionNC

```
    ▷ SemigroupHomomorphismByFunctionNC(S, T, fun)
    ▷ SemigroupHomomorphismByFunction(S, T, fun)
    Returns: A semigroup homomorphism or fail.
```

SemigroupHomomorphismByFunctionNC returns a semigroup homomorphism with source S and range T, such that each element S is mapped to the element S, where S is a GAP function.

The function SemigroupHomomorphismByFunctionNC performs no checks on whether the function actually gives a homomorphism, and so it is possible for this operation to return a mapping from *S* to *T* that is not a homomorphism.

The function SemigroupHomomorphismByFunction checks that the mapping from S to T defined by fun satisfies RespectsMultiplication (Reference: RespectsMultiplication), which can be expensive. If RespectsMultiplication (Reference: RespectsMultiplication) does not hold, then fail is returned.

The following methods relate to semigroup homomorphisms by images or by function:

```
• Range (Reference: range),
```

- Image (Reference: Image),
- Images (Reference: Images),
- ImageElm (Reference: ImageElm),
- PreImage (Reference: PreImage),
- PreImages (Reference: PreImages),
- PreImagesRepresentative (Reference: PreImagesRepresentative),
- PreImagesRange (Reference: PreImagesRange),
- PreImagesElm (Reference: PreImagesElm),
- PreImagesSet (Reference: PreImagesSet),
- IsSurjective (Reference: IsSurjective),
- IsInjective (Reference: IsInjective),
- IsBijective (Reference: IsBijective),
- Source (Reference: Source),
- Range (Reference: range),
- ImagesSource (Reference: ImagesSource),
- KernelOfSemigroupHomomorphism (14.1.7).

14.1.3 IsSemigroupHomomorphismByImages

▷ IsSemigroupHomomorphismByImages(hom)

(filter)

Returns: true or false.

IsSemigroupHomomorphismByImages returns true if *hom* is a semigroup homomorphism by images and false if it is not. A semigroup homomorphism is a mapping from a semigroup S to a semigroup T that respects multiplication. This representation describes semigroup homomorphisms internally by the generators of S and their images in T. See SemigroupHomomorphismByImages (14.1.1).

```
gap> S := FullTransformationMonoid(3);;
gap> gens := GeneratorsOfSemigroup(S);;
gap> T := FullTransformationMonoid(4);;
gap> imgs := ListWithIdenticalEntries(4, ConstantTransformation(3, 1));;
gap> hom := SemigroupHomomorphismByImages(S, T, gens, imgs);
<full transformation monoid of degree 3> ->
<full transformation monoid of degree 4>
gap> IsSemigroupHomomorphismByImages(hom);
true
```

14.1.4 IsSemigroupHomomorphismByFunction

▷ IsSemigroupHomomorphismByFunction(hom)

(filter)

Returns: true or false.

IsSemigroupHomomorphismByFunction returns true if hom was created using SemigroupHomomorphismByFunction (14.1.2) and false if it was not. Note that this filter may return true even if the underlying GAP function does not define a homomorphism. A semigroup homomorphism is a mapping from a semigroup S to a semigroup T that respects multiplication. This representation describes semigroup homomorphisms internally using a GAP function mapping elements of S to their images in T.

14.1.5 AsSemigroupHomomorphismByImages (for a semigroup homomorphism by function)

▷ AsSemigroupHomomorphismByImages(hom)

(operation)

Returns: A semigroup homomorphism, or fail.

AsSemigroupHomomorphismByImages takes hom, a semigroup homomorphism, and returns the same mapping but represented internally using the generators of Source(hom) and their images in Range(hom). If hom not a semigroup homomorphism, then fail is returned. For example, this could

happen if hom was created using SemigroupIsomorphismByFunction (14.2.9) and a function which does not give a homomorphism.

14.1.6 AsSemigroupHomomorphismByFunction (for a semigroup homomorphism by images)

▷ AsSemigroupHomomorphismByFunction(hom)

(operation)

Returns: A semigroup homomorphism.

AsSemigroupHomomorphismByFunction takes *hom*, a semigroup homomorphism, and returns the same mapping but described by a GAP function mapping elements of Source(*hom*) to their images in Range(*hom*).

```
gap> T := TrivialSemigroup();;
gap> S := GLM(2, 2);;
gap> gens := GeneratorsOfSemigroup(S);;
gap> imgs := ListX(gens, x -> IdentityTransformation);;
gap> hom := SemigroupHomomorphismByImages(S, T, gens, imgs);;
gap> hom := AsSemigroupHomomorphismByFunction(hom);
<general linear monoid 2x2 over GF(2)> ->
<trivial transformation group of degree 0 with 1 generator>
```

14.1.7 KernelOfSemigroupHomomorphism

▷ KernelOfSemigroupHomomorphism(hom)

(attribute)

Returns: A semigroup congruence.

KernelOfSemigroupHomomorphism returns the kernel of the semigroup homomorphism hom. The kernel of a semigroup homomorphism hom is a semigroup congruence relating pairs of elements in Source(hom) mapping to the same element under hom.

14.2 Isomorphisms of arbitrary semigroups

14.2.1 IsIsomorphicSemigroup

```
\triangleright IsIsomorphicSemigroup(S, T)
```

(operation)

Returns: true or false.

If S and T are semigroups, then this operation attempts to determine whether S and T are isomorphic semigroups by using the operation IsomorphismSemigroups (14.2.6). If IsomorphismSemigroups (S, T) returns an isomorphism, then IsIsomorphicSemigroup (S, T) returns true, while if IsomorphismSemigroups (S, T) returns fail, then IsIsomorphicSemigroup (S, T) returns false.

Note that in some cases, at present, there is no method for determining whether S is isomorphic to T, even if it is obvious to the user whether or not S and T are isomorphic. There are plans to improve this in the future.

14.2.2 SmallestMultiplicationTable

 ${\scriptstyle \rhd} \ {\tt SmallestMultiplicationTable}({\it S})$

(attribute)

Returns: The lex-least multiplication table of a semigroup.

This function returns the lex-least multiplication table of a semigroup isomorphic to the semigroup S. SmallestMultiplicationTable returns the lex-least multiplication of any semigroup isomorphic to S. Due to the high complexity of computing the smallest multiplication table of a semigroup, this function only performs well for semigroups with at most approximately 50 elements.

SmallestMultiplicationTable is based on the function IdSmallSemigroup (**Smallsemi: IdSmallSemigroup**) by Andreas Distler.

From Version 3.3.0 of Semigroups this attribute is computed using MinimalImage (**images:** MinimalImage) from the the images package. See also: CanonicalMultiplicationTable (14.2.3).

```
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, 2, 3, -1], [-2], [-3]]),
> Bipartition([[1, 2, 3], [-1], [-2, -3]]),
> Bipartition([[1, 2, -1], [3, -2], [-3]]));;
gap> Size(S);
8
gap> SmallestMultiplicationTable(S);
[[1, 1, 3, 4, 5, 6, 7, 8], [1, 1, 3, 4, 5, 6, 7, 8],
        [1, 1, 3, 4, 5, 6, 7, 8], [1, 3, 3, 4, 5, 6, 7, 8],
        [5, 5, 6, 7, 5, 6, 7, 8], [5, 5, 6, 7, 5, 6, 7, 8],
        [5, 6, 6, 7, 5, 6, 7, 8], [5, 6, 6, 7, 5, 6, 7, 8]]
```

14.2.3 Canonical Multiplication Table

▷ CanonicalMultiplicationTable(S)

(attribute)

Returns: A canonical multiplication table (up to isomorphism) of a semigroup.

This function returns a multiplication table of a semigroup isomorphic to the semigroup *S*. CanonicalMultiplicationTable returns a multiplication that is canonical, in the sense that if two semigroups *S* and *T* are isomorphic, then the return values of CanonicalMultiplicationTable are equal.

CanonicalMultiplicationTable uses the machinery for canonical labelling of vertex coloured digraphs in bliss via BlissCanonicalLabelling (**Digraphs: BlissCanonicalLabelling for a digraph and a list**).

The multiplication table returned by this function is the result of OnMultiplicationTable(MultiplicationTable(S), CanonicalMultiplicationTablePerm(S));

Note that the performance of CanonicalMultiplicationTable is vastly superior to that of SmallestMultiplicationTable.

See also: CanonicalMultiplicationTablePerm (14.2.4) and OnMultiplicationTable (14.2.5).

```
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, 2, 3, -1], [-2], [-3]]),
> Bipartition([[1, 2, 3], [-1], [-2, -3]]),
> Bipartition([[1, 2, -1], [3, -2], [-3]]));;
gap> Size(S);
8

gap> CanonicalMultiplicationTable(S);
[[ 1, 2, 2, 8, 1, 2, 7, 8 ], [ 1, 2, 2, 8, 1, 2, 7, 8 ],
       [ 1, 2, 6, 4, 5, 6, 7, 8 ], [ 1, 2, 5, 4, 5, 6, 7, 8 ],
       [ 1, 2, 6, 4, 5, 6, 7, 8 ], [ 1, 2, 6, 4, 5, 6, 7, 8 ],
       [ 1, 2, 1, 8, 1, 2, 7, 8 ], [ 1, 2, 1, 8, 1, 2, 7, 8 ]]
```

14.2.4 Canonical Multiplication Table Perm

▷ CanonicalMultiplicationTablePerm(S)

(attribute)

Returns: A permutation.

This function returns a permutation p such that OnMultiplicationTable(MultiplicationTable(S), p); equals CanonicalMultiplicationTable(S).

See CanonicalMultiplicationTable (14.2.3) for more details.

CanonicalMultiplicationTablePerm uses the machinery for canonical labelling of vertex coloured digraphs in bliss via BlissCanonicalLabelling (**Digraphs: BlissCanonicalLabelling for a digraph and a list**).

```
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, 2, 3, -1], [-2], [-3]]),
> Bipartition([[1, 2, 3], [-1], [-2, -3]]),
> Bipartition([[1, 2, -1], [3, -2], [-3]]));;
gap> Size(S);
```

```
8
gap> CanonicalMultiplicationTablePerm(S);
(1,5,8,3,6,7,2,4)
```

14.2.5 OnMultiplicationTable

▷ OnMultiplicationTable(table, p)

(operation)

Returns: A multiplication table.

If table is a multiplication table of a semigroup and the second argument p is a permutation of [1 ... Length(table)], then this operation returns a multiplication table of a semigroup isomorphic to that defined by table where the elements [1 .. Length(table)] are relabelled according to p.

14.2.6 IsomorphismSemigroups

 \triangleright IsomorphismSemigroups(S, T)

(operation)

Returns: An isomorphism, or fail.

This operation attempts to find an isomorphism from the semigroup S to the semigroup T. If it finds one, then it is returned, and if not, then fail is returned.

IsomorphismSemigroups uses the machinery for finding isomorphisms between vertex coloured digraphs in bliss via IsomorphismDigraphs (**Digraphs: IsomorphismDigraphs for digraphs and homogeneous lists**) using digraphs constructed from the multiplication tables of *S* and *T*.

Note that finding an isomorphism between two semigroups is difficult, and may not be possible for semigroups whose size exceeds a few hundred elements. On the other hand, IsomorphismSemigroups may be able deduce that *S* and *T* are not isomorphic by finding that some of their semigroup-theoretic properties differ.

```
Example

gap> S := RectangularBand(IsTransformationSemigroup, 4, 5);

<regular transformation semigroup of size 20, degree 9 with 5

generators>

gap> T := RectangularBand(IsBipartitionSemigroup, 4, 5);

<regular bipartition semigroup of size 20, degree 3 with 5 generators>

gap> IsomorphismSemigroups(S, T) <> fail;

true
```

```
gap> D := DClass(FullTransformationMonoid(5),
                 Transformation([1, 2, 3, 4, 1]));;
gap> S := PrincipalFactor(D);;
gap> StructureDescription(UnderlyingSemigroup(S));
"S4"
gap> S;
<Rees 0-matrix semigroup 10x5 over S4>
gap> D := DClass(PartitionMonoid(5),
> Bipartition([[1], [2, -2], [3, -3], [4, -4], [5, -5], [-1]]));;
gap> T := PrincipalFactor(D);;
gap> StructureDescription(UnderlyingSemigroup(T));
"S4"
gap> T;
<Rees 0-matrix semigroup 15x15 over S4>
gap> IsomorphismSemigroups(S, T);
gap> I := SemigroupIdeal(FullTransformationMonoid(5),
                         Transformation([1, 1, 2, 3, 4]));;
gap> T := PrincipalFactor(DClass(I, I.1));;
gap> StructureDescription(UnderlyingSemigroup(T));
"S4"
gap> T;
<Rees 0-matrix semigroup 10x5 over S4>
gap> IsomorphismSemigroups(S, T) <> fail;
true
```

14.2.7 AutomorphismGroup (for a semigroup)

▷ AutomorphismGroup(S)

(operation)

Returns: A group.

This operation returns the group of automorphisms of the semigroup S. AutomorphismGroup uses bliss via AutomorphismGroup (**Digraphs: AutomorphismGroup for a digraph and a homogeneous list**) using a vertex coloured digraph constructed from the multiplication table of S. Consequently, this method is only really feasible for semigroups whose size does not exceed a few hundred elements.

```
Example
gap> S := RectangularBand(IsTransformationSemigroup, 4, 5);
<regular transformation semigroup of size 20, degree 9 with 5
generators>
gap> StructureDescription(AutomorphismGroup(S));
"S4 x S5"
```

14.2.8 SemigroupIsomorphismByImages (for two semigroups and two lists)

```
    ▷ SemigroupIsomorphismByImages(S, T, gens, imgs)
    ▷ SemigroupIsomorphismByImages(S, T, imgs)
    ▷ SemigroupIsomorphismByImages(S, T)
    ▷ SemigroupIsomorphismByImages(S, gens, imgs)
    ○ Returns: A semigroup isomorphism, or fail.
```

SemigroupIsomorphismByImages attempts to construct a isomorphism from the semigroup S to the semigroup T, by mapping the i-th element of gens to the i-th element of imgs. If this mapping corresponds to an isomorphism, the isomorphism is returned, and if not, then fail is returned. An isomorphism is a bijective homomorphism. See also SemigroupHomomorphismByImages (14.1.1).

```
gap> S := Semigroup([
> Matrix(IsNTPMatrix, [[0, 1, 2], [4, 3, 0], [0, 2, 0]], 9, 4),
> Matrix(IsNTPMatrix, [[1, 1, 0], [4, 1, 1], [0, 0, 0]], 9, 4)]);;
gap> T := AsSemigroup(IsTransformationSemigroup, S);;
gap> iso := SemigroupIsomorphismByImages(S, T);
<semigroup of size 46, 3x3 ntp matrices with 2 generators> ->
<transformation semigroup of size 46, degree 47 with 2 generators>
```

14.2.9 SemigroupIsomorphismByFunctionNC

```
    SemigroupIsomorphismByFunctionNC(S, T, fun, invFun) (operation)
    SemigroupIsomorphismByFunction(S, T, fun, invFun) (operation)
    Returns: A semigroup isomorphism or fail.
```

SemigroupIsomorphismByFunctionNC returns a semigroup isomorphism with source S and range T, such that each element s in S is mapped to the element fun(s), where fun is a GAP function, and invFun its inverse, mapping fun(s) back to s.

The function SemigroupIsomorphismByFunctionNC performs no checks on whether the function actually gives an isomorphism, and so it is possible for this operation to return a mapping from S to T that is not a homomorphism, or not a bijection, or where the return value of InverseGeneralMapping (**Reference: InverseGeneralMapping**) is not the inverse of the returned function.

The function SemigroupIsomorphismByFunction checks that: the mapping from S to T defined by fun satisfies RespectsMultiplication (**Reference: RespectsMultiplication**); that the function from T to S defined by invFun satisfies RespectsMultiplication (**Reference: RespectsMultiplication**); and that these functions are mutual inverses. This can be expensive. If any of these checks fails, then fail is returned.

```
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 3, 2);;
gap> T := MonogenicSemigroup(IsBipartitionSemigroup, 3, 2);;
gap> map := x -> T.1 ^ Length(Factorization(S, x));;
gap> inv := x -> S.1 ^ Length(Factorization(T, x));;
gap> iso := SemigroupIsomorphismByFunction(S, T, map, inv);
<commutative non-regular transformation semigroup of size 4, degree 5
   with 1 generator> -> <commutative non-regular block bijection
   semigroup of size 4, degree 6 with 1 generator>
```

14.2.10 IsSemigroupIsomorphismByFunction

```
▷ IsSemigroupIsomorphismByFunction(iso)

Returns: true or false.

(filter)
```

IsSemigroupIsomorphismByFunction returns true if hom satisfies IsSemigroupHomomorphismByFunction (14.1.4) and IsBijective (**Reference: IsBijective**), and false if does not. Note that this filter may return true even if the underlying GAP

function does not define a homomorphism. A semigroup isomorphism is a mapping from a semigroup S to a semigroup T that respects multiplication. This representation describes semigroup isomorphisms internally by using a GAP function mapping elements of S to their images in T. See SemigroupIsomorphismByFunction (14.2.9).

```
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 3, 2);;
gap> T := MonogenicSemigroup(IsBipartitionSemigroup, 3, 2);;
gap> map := x -> T.1 ^ Length(Factorization(S, x));;
gap> inv := x -> S.1 ^ Length(Factorization(T, x));;
gap> iso := SemigroupIsomorphismByFunction(S, T, map, inv);
<commutative non-regular transformation semigroup of size 4, degree 5
   with 1 generator> -> <commutative non-regular block bijection
   semigroup of size 4, degree 6 with 1 generator>
gap> IsSemigroupIsomorphismByFunction(iso);
true
```

14.2.11 AsSemigroupIsomorphismByFunction (for a semigroup homomorphism by images)

▷ AsSemigroupIsomorphismByFunction(hom)

(operation)

Returns: A semigroup isomorphism, or fail.

AsSemigroupIsomorphismByFunction takes a semigroup homomorphism *hom* and returns a semigroup isomorphism represented using GAP functions for the isomorphism and its inverse. If *hom* is not bijective, then fail is returned.

```
gap> S := FullTransformationMonoid(3);;
gap> gens := GeneratorsOfSemigroup(S);;
gap> imgs := ListWithIdenticalEntries(4, ConstantTransformation(3, 1));;
gap> hom := SemigroupHomomorphismByImages(S, S, gens, gens);;
gap> AsSemigroupIsomorphismByFunction(hom);
<full transformation monoid of degree 3> ->
<full transformation monoid of degree 3>
```

14.2.12 SmallerDegreeTransformationRepresentation

▷ SmallerDegreeTransformationRepresentation(S)

(attribute)

Returns: An isomorphism to a transformation semigroup.

This function attempts to find a small degree transformation representation of the semigroup S. The implementation attempts to find a right congruence of S that S acts on (the equivalence classes of) faithfully.

If S is not a finitely presented semigroup, then the returned isomorphism is the composition of an isomorphism to a finitely presented semigroup and an isomorphism from that finitely presented semigroup to a transformation semigroup.

The runtime of this function depends on the presentation for *S* that is either given explicitly or computed by the Semigroups package, but it is difficult to predict what properties of the presentation lead to a shorter runtime. This is unlikely to terminate in a reasonable amount of time for semigroups with more than approx. 10000 elements, but might also not terminate quickly for smaller semigroups depending on the presentation used.

```
_ Example
gap> S := BrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 3 generators>
gap> IsomorphismTransformationSemigroup(S);
<regular bipartition *-monoid of size 15, degree 3 with 3 generators>
-> <transformation monoid of size 15, degree 15 with 3 generators>
gap> SmallerDegreeTransformationRepresentation(S);
CompositionMapping(
<fp semigroup with 4 generators and 20 relations of length 81> ->
<transformation monoid of degree 7 with 3 generators>,
<regular bipartition *-monoid of size 15, degree 3 with 3 generators>
-> <fp semigroup with 4 generators and 20 relations of length 81> )
gap> S := JonesMonoid(5);
<regular bipartition *-monoid of degree 5 with 4 generators>
gap> Size(S);
gap> SmallerDegreeTransformationRepresentation(S);
CompositionMapping(
<fp semigroup with 5 generators and 28 relations of length 120> ->
<transformation monoid of degree 10 with 4 generators>,
<regular bipartition *-monoid of size 42, degree 5 with 4 generators>
-> <fp semigroup with 5 generators and 28 relations of length 120> )
```

14.2.13 MinimalFaithfulTransformationDegree

▷ MinimalFaithfulTransformationDegree(S)

(attribute)

Returns: A positive integer.

This function returns the minimal degree of a faithful transformation representation of the semi-group S. This is currently only implemented for a very small number of types of semigroups.

```
gap> S := RightZeroSemigroup(10);
<transformation semigroup of degree 7 with 10 generators>
gap> MinimalFaithfulTransformationDegree(S);
7
```

14.3 Isomorphisms of Rees (0-)matrix semigroups

An isomorphism between two regular finite Rees (0-)matrix semigroups whose underlying semigroups are groups can be described by a triple defined in terms of the matrices and underlying groups of the semigroups. For a full description of the theory involved, see Section 3.4 of [How95].

An isomorphism described in this way can be constructed using RMSIsoByTriple (14.3.2) or RZMSIsoByTriple (14.3.2), and will satisfy the filter IsRMSIsoByTriple (14.3.1) or IsRZMSIsoByTriple (14.3.1).

14.3.1 IsRMSIsoByTriple

```
▷ IsRMSIsoByTriple

▷ IsRZMSIsoByTriple

(Category)

(Category)

(Category)

(Category)

(Category)

(Category)
```

The isomorphisms between finite Rees matrix or 0-matrix semigroups S and T over groups G and H, respectively, specified by a triple consisting of:

- 1. an isomorphism of the underlying graph of S to the underlying graph of of T
- 2. an isomorphism from G to H
- 3. a function from Rows(S) union Columns(S) to H

belong to the categories IsRMSIsoByTriple and IsRZMSIsoByTriple. Basic operators for such isomorphism are given in 14.3.7, and basic operations are: Range (**Reference: range**), Source (**Reference: Source**), ELM_LIST (14.3.3), CompositionMapping (**Reference: CompositionMapping**), ImagesElm (14.3.5), ImagesRepresentative (14.3.5), InverseGeneralMapping (**Reference: InverseGeneralMapping**), PreImagesRepresentative (**Reference: PreImagesRepresentative**), IsOne (**Reference: IsOne**).

14.3.2 RMSIsoByTriple

Returns: An isomorphism.

If R1 and R2 are isomorphic regular Rees 0-matrix semigroups whose underlying semigroups are groups then RZMSIsoByTriple returns the isomorphism between R1 and R2 defined by triple, which should be a list consisting of the following:

- triple[1] should be a permutation describing an isomorphism from the graph of R1 to the graph of R2, i.e. it should satisfy OnDigraphs(RZMSDigraph(R1), triple[1]) = RZMSDigraph(R2).
- triple [2] should be an isomorphism from the underlying group of R1 to the underlying group of R2 (see UnderlyingSemigroup (Reference: UnderlyingSemigroup for a Rees 0-matrix semigroup)).
- triple [3] should be a list of elements from the underlying group of R2. If the Matrix (**Reference: Matrix**) of R1 has m columns and n rows, then the list should have length m+n, where the first m entries should correspond to the columns of R1's matrix, and the last n entries should correspond to the rows. These column and row entries should correspond to the u_i and v_{λ} elements in Theorem 3.4.1 of [How95].

If *triple* describes a valid isomorphism from *R1* to *R2* then this will return an object in the category IsRZMSIsoByTriple (14.3.1); otherwise an error will be returned.

If R1 and R2 are instead Rees matrix semigroups (without zero) then RMSIsoByTriple should be used instead. This operation is used in the same way, but it should be noted that since an RMS's graph is a complete bipartite graph, triple[1] can be any permutation on [1 ... m + n], so long as no point in [1 ... m] is mapped to a point in [m + 1 ... m + n].

```
gap> g := SymmetricGroup(3);;
gap> mat := [[0, 0, (1, 3)], [(1, 2, 3), (), (2, 3)], [0, 0, ()]];;
gap> R := ReesZeroMatrixSemigroup(g, mat);;
gap> id := IdentityMapping(g);;
```

```
gap> g_elms_list := [(), (), (), (), (), ()];;
gap> RZMSIsoByTriple(R, R, [(), id, g_elms_list]);
((), IdentityMapping( SymmetricGroup( [ 1 .. 3 ] ) ),
[ (), (), (), (), () ])
```

14.3.3 ELM_LIST (for IsRMSIsoByTriple)

```
▷ ELM_LIST(map, pos)
```

(operation)

Returns: A component of an isomorphism of Rees (0-)matrix semigroups by triple.

ELM_LIST(map, i) returns the ith component of the Rees (0-)matrix semigroup isomorphism by triple map when i = 1, 2, 3.

The components of an isomorphism of Rees (0-)matrix semigroups by triple are:

- 1. An isomorphism of the underlying graphs of the source and range of map, respectively.
- 2. An isomorphism of the underlying groups of the source and range of map, respectively.
- 3. An function from the union of the rows and columns of the source of map to the underlying group of the range of map.

14.3.4 CompositionMapping2 (for IsRMSIsoByTriple)

```
▷ CompositionMapping2(map1, map2) (operation)
▷ CompositionMapping2(map1, map2) (operation)
```

Returns: A Rees (0-)matrix semigroup by triple.

If map1 and map2 are isomorphisms of Rees matrix or 0-matrix semigroups specified by triples and the range of map2 is contained in the source of map1, then CompositionMapping2(map1, map2) returns the isomorphism from Source(map2) to Range(map1) specified by the triple with components:

```
    map1 [1] * map2 [1]
    map1 [2] * map2 [2]
```

3. the componentwise product of map1[1] * map2[3] and map1[3] * map2[2].

```
[ (1,2,3,4) ] ), [ (), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4)] gap> CompositionMapping2(G.2, G.3); ((2,4)(3,5)(8,10)(9,11), GroupHomomorphismByImages(Group([(1,2,3,4)]), Group([(1,2,3,4)]), [(1,2,3,4)], [(1,2,3,4)]), [(1,2,3,4)], (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4), (1,3)(2,
```

14.3.5 ImagesElm (for IsRMSIsoByTriple)

```
▷ ImagesElm(map, pt)
```

(operation)

▷ ImagesRepresentative(map, pt)

(operation)

Returns: An element of a Rees (0-)matrix semigroup or a list containing such an element.

If map is an isomorphism of Rees matrix or 0-matrix semigroups specified by a triple and pt is an element of the source of map, then ImagesRepresentative(map, pt) = pt ^ map returns the image of pt under map.

The image of pt under map of Range (map) is the element with components:

```
    pt[1] ^ map[1]
    (pt[1] ^ map[3]) * (pt[2] ^ map[2]) * (pt[3] ^ map[3]) ^ -1
    pt[3] ^ map[1].
```

ImagesElm(map, pt) simply returns [ImagesRepresentative(map, pt)].

14.3.6 CanonicalReesZeroMatrixSemigroup

```
ightharpoonup CanonicalReesZeroMatrixSemigroup(S)
```

(attribute)

▷ CanonicalReesMatrixSemigroup(S)

(attribute)

Returns: A Rees zero matrix semigroup.

If S is a Rees 0-matrix semigroup then CanonicalReesZeroMatrixSemigroup returns an isomorphic Rees 0-matrix semigroup T with the same UnderlyingSemigroup (**Reference: UnderlyingSemigroup for a Rees 0-matrix semigroup**) as S but the Matrix (**Reference: Matrix**) of T has

been canonicalized. The output T is canonical in the sense that for any two inputs which are isomorphic Rees zero matrix semigroups the output of this function is the same.

CanonicalReesMatrixSemigroup works the same but for Rees matrix semigroups.

```
Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(), ()]]);;
gap> T := CanonicalReesZeroMatrixSemigroup(S);
<Rees 0-matrix semigroup 2x2 over Sym([1 .. 3])>
gap> Matrix(S);
[[(), (1,3,2)], [(), ()]]
gap> Matrix(T);
[[(), ()], [(), (1,2,3)]]
```

14.3.7 Operators for isomorphisms of Rees (0-)matrix semigroups

```
map[i]
```

map [i] returns the *i*th component of the Rees (0-)matrix semigroup isomorphism by triple map when i = 1, 2, 3; see ELM_LIST (14.3.3).

map1 * map2

returns the composition of map2 and map1; see CompositionMapping2 (14.3.4).

map1 < map2

returns true if map1 is lexicographically less than map2.

map1 = map2

returns true if the Rees (0-)matrix semigroup isomorphisms by triple map1 and map2 have equal source and range, and are equal as functions, and false otherwise.

It is possible for map1 and map2 to be equal but to have distinct components.

pt ^ map

returns the image of the element pt of the source of map under the isomorphism map; see ImagesElm (14.3.5).

Chapter 15

Finitely presented semigroups and Tietze transformations

In this chapter we describe the functions implemented in Semigroups that extend the features available in GAP for dealing with finitely presented semigroups and monoids.

Section 15.1 (written by Maria Tsalakou and Murray Whyte) and Section 15.2 (written by Luke Elliott) demonstrate a number of helper functions that allow the user to convert between different representations of words and relations.

In the later sections, written and implemented by Ben Spiers and Tom Conti-Leslie, we describe how to change the relations of a finitely presented semigroup either manually or automatically using Tietze transformations (which is abbreviated to STZ.

15.1 Changing representation for words and strings

This section contains various methods for dealing with words, which for these purposes are lists of positive integers.

15.1.1 WordToString (for a string and a list)

```
▷ WordToString(A, w)
```

(operation)

Returns: A string.

Returns the word w, in the form of a string of letters of the alphabet A. The alphabet is given as a string containing its members.

```
Example gap> WordToString("abcd", [4, 2, 3, 1, 1, 4, 2, 3]); "dbcaadbc"
```

15.1.2 RandomWord (for two integers)

▷ RandomWord(1, n)

(operation)

Returns: A word.

Returns a random word of length 1 over n letters.

```
gap> RandomWord(8, 5);
[ 2, 4, 3, 4, 5, 3, 3, 2 ]
```

(operation)

```
gap> RandomWord(8, 5);
[ 3, 3, 5, 5, 5, 4, 4, 5 ]
gap> RandomWord(8, 4);
[ 1, 4, 1, 1, 3, 3, 4, 4 ]
```

15.1.3 StandardiseWord

▷ StandardiseWord(w) (operation)
▷ StandardizeWord(w) (operation)

Returns: A list of positive integers.

This function takes a word w, consisting of n distinct positive integers and returns a word s where the characters of s correspond to those of w in order of first appearence.

The word w is changed in-place into word s.

```
gap> w := [3, 1, 2];
[ 3, 1, 2 ]
gap> StandardiseWord(w);
[ 1, 2, 3 ]
gap> w;
[ 1, 2, 3 ]
gap> w := [4, 2, 10, 2];
[ 4, 2, 10, 2 ]
gap> StandardiseWord(w);
[ 1, 2, 3, 2 ]
```

15.1.4 StringToWord (for a string)

▷ StringToWord(s)

Returns: A list of positive integers.

This function takes a string s, consisting of n distinct positive integers and returns a word w (i.e. a list of positive integers) over the alphabet $[1 \dots n]$. The positive integers of w correspond to the characters of s, in order of first appearence.

```
gap> w := "abac";
"abac"
gap> StringToWord(w);
[ 1, 2, 1, 3 ]
gap> w := "ccala";
"ccala"
gap> StringToWord(w);
[ 1, 1, 2, 3, 2 ]
gap> w := "a1b5";
"a1b5"
gap> StringToWord(w);
[ 1, 2, 3, 4 ]
```

15.2 Helper functions

This section describes operations implemented in Semigroups that are designed to interact with standard GAP methods for creating finitely presented semigroups and monoids (see (Reference: Finitely Presented Semigroups and Monoids)).

15.2.1 ParseRelations

▷ ParseRelations(gens, rels)

(operation)

Returns: A list of pairs of semigroup or monoid elements.

ParseRelations converts a string describing relations for a semigroup or monoid to the list of pairs of semigroup or monoid elements it represents. Any white space given is ignored. The output list is then compatible with other GAP functions. In the below examples we see free semigroups and monoids being directly quotiented by the output of the ParseRelations function.

The argument *gens* must be a list of generators for a free semigroup, each being a single alphabet letter (in upper or lower case). The argument *rels* must be string that lists the equalities desired.

To take a quotient of a free monoid, it is necessary to use GeneratorsOfMonoid (**Reference:** GeneratorsOfMonoid) as the 1st argument to ParseRelations and the identity may appear as 1 in the specified relations.

```
Example -
gap> f := FreeSemigroup("x", "y", "z");;
gap> AssignGeneratorVariables(f);
gap> ParseRelations([x, y, z], " x=(y^2z)^2x, y=xxx, z=y^3");
[ [ x, (y^2*z)^2*x ], [ y, x^3 ], [ z, y^3 ] ]
gap> r := ParseRelations([x, y, z], " x=(y^2z)^2x, y=xxx=z, z=y^3");
[[x, (y^2*z)^2*x], [y, x^3], [x^3, z], [z, y^3]]
gap> f / r;
<fp semigroup with 3 generators and 4 relations of length 23>
gap> f2 := FreeSemigroup("a");
<free semigroup on the generators [ a ]>
gap> f2 / ParseRelations(GeneratorsOfSemigroup(f2), "a = a^2");
<fp semigroup with 1 generator and 1 relation of length 4>
gap> FreeMonoidAndAssignGeneratorVars("a", "b")
 / ParseRelations([a, b], "a^2=1,b^3=1,(ab)^3=1");
<fp monoid with 2 generators and 3 relations of length 13>
```

15.2.2 ElementOfFpSemigroup

▷ ElementOfFpSemigroup(S, word)

(operation)

Returns: An element of the fp semigroup *S*.

When S is a finitely presented semigroup and word is an associative word in the associated free semigroup (see IsAssocWord (**Reference: IsAssocWord**)), this returns the fp semigroup element with representative word.

This function is just a short form of the GAP library implementation of ElementOfFpSemigroup (**Reference: ElementOfFpSemigroup**) which does not require retrieving an element family.

```
gap> f := FreeSemigroup("x", "y");;
gap> AssignGeneratorVariables(f);
gap> s := f / [[x * x, x], [y * y, y]];
<fp semigroup with 2 generators and 2 relations of length 8>
gap> a := ElementOfFpSemigroup(s, x * y);
```

```
x*y
gap> b := ElementOfFpSemigroup(s, x * y * y);
x*y^2
gap> a in s;
true
gap> a = b;
true
```

15.2.3 ElementOfFpMonoid

▷ ElementOfFpMonoid(M, word)

(operation)

Returns: An element of the fp monoid M.

When M is a finitely presented monoid and word is an associative word in the associated free monoid (see IsAssocWord (**Reference: IsAssocWord**)), this returns the fp monoid element with representative word.

This is analogous to ElementOfFpSemigroup (15.2.2).

15.2.4 FreeMonoidAndAssignGeneratorVars

```
    ▷ FreeMonoidAndAssignGeneratorVars(arg...) (function)
    ▷ FreeSemigroupAndAssignGeneratorVars(arg...) (function)
    Returns: A free semigroup or monoid.
```

FreeMonoidAndAssignGeneratorVars is synonym with:

```
FreeMonoid(arg...);
AssignGeneratorVariables(last);
```

These functions exist so that the String method for a finitely presented semigroup or monoid to be valid GAP input which can be used to reconstruct the semigroup or monoid.

```
gap> F := FreeSemigroupAndAssignGeneratorVars("x", "y");;
gap> IsBound(x);
true
gap> IsBound(y);
true
```

15.3 Creating Tietze transformation objects

It is possible to use GAP to create finitely presented semigroups without the Semigroups package, by creating a free semigroup, then quotienting by a list of relations. This is described in the reference manual ((Reference: Finitely Presented Semigroups and Monoids)).

However, finitely presented semigroups do not allow for their relations to be simplified, so in the following sections, we describe how to create and modify the semigroup Tietze (IsStzPresentation (15.3.2)) object associated with an fp semigroup. This object can be automatically simplified, or the user can manually apply Tietze transformations to add or remove relations or generators in the presentation.

This object is analogous to PresentationFpGroup (**Reference: PresentationFpGroup**) implemented for fp groups in the main GAP distribution ((**Reference: Presentations and Tietze Transformations**)), but its features are semigroup-specific. Most of the functions used to create, view and manipulate semigroup Tietze objects are prefixed with STZ.

15.3.1 StzPresentation

▷ StzPresentation(S)

(operation)

Returns: A semigroup Tietze (Stz) object.

If s is an fp semigroup (IsFpSemigroup (Reference: IsFpSemigroup)), then this function returns a modifiable object representing the generators and relations of s.

```
gap> F := FreeSemigroup("a", "b", "c");;
gap> AssignGeneratorVariables(F);;
gap> S := F / [[a * b, c], [b * c, a], [c * a, b]];
<fp semigroup with 3 generators and 3 relations of length 12>
gap> stz := StzPresentation(S);
<fp semigroup presentation with 3 generators and 3 relations
with length 12>
```

15.3.2 IsStzPresentation

▷ IsStzPresentation(stz)

(filter)

Returns: true or false.

Every semigroup Tietze object is an element of the category IsStzPresentation. Internally, each Stz object contains a list of generators (each represented as a string) and a list of relations (each represented as a pair of LetterRep words, see LetterRepAssocWord (**Reference: LetterRepAssocWord**)). These generator and relation lists can be modified using Tietze transformations (15.5).

When a IsStzPresentation object stz is created from an fp semigroup s using stz := StzPresentation(s), the generators and relations of stz are initially equal to the generators and relations of s. However, as the Stz object stz is modified, these lists may change, and their current state can be viewed using GeneratorsOfStzPresentation (15.3.3) and RelationsOfStzPresentation (15.3.4).

```
gap> F := FreeSemigroup("a", "b", "c");;
gap> AssignGeneratorVariables(F);;
gap> S := F / [[a * b, c], [b * c, a], [c * a, b]];
<fp semigroup with 3 generators and 3 relations of length 12>
gap> stz := StzPresentation(S);
<fp semigroup presentation with 3 generators and 3 relations
  with length 12>
gap> IsStzPresentation(stz);
true
```

15.3.3 GeneratorsOfStzPresentation

 ${\scriptstyle \rhd} \ {\tt GeneratorsOfStzPresentation}(\textit{stz}) \\$

(attribute)

Returns: A list of strings.

If stz is an StzPresentation (15.3.1) object, then GeneratorsOfStzPresentation will return (as strings) the generators of the fp semigroup that the presentation was created from. In the StzPresentation (15.3.1) object, it is only necessary to know how many generators there are, but for the purposes of representing generators and relations of the presentation object and building a new fp semigroup from the object, the strings representing the generators are stored.

As Tietze transformations are performed on stz, the generators will change, but the labels will remain as close to the original labels as possible, so that if a generator in the fp semigroup obtained from the presentation is the same as a generator in the original fp semigroup, then they should have the same label.

15.3.4 RelationsOfStzPresentation

▷ RelationsOfStzPresentation(stz)

(attribute)

Returns: A list of pairs of words in LetterRep (LetterRepAssocWord (**Reference: Letter-RepAssocWord**)) form.

If stz is an StzPresentation (15.3.1) object, then RelationsOfStzPresentation will return in letter rep form the current relations of the presentation object. When the presentation object is first created, these will be the LetterRep forms of the relations of the fp semigroup object that is used to create stz. As Tietze transformations are performed on the presentation object, the relations returned by this function will change to reflect the transformations.

15.3.5 UnreducedFpSemigroup (for a presentation)

▷ UnreducedFpSemigroup(stz)

(attribute)

Returns: An fp semigroup.

If stz is an StzPresentation (15.3.1) object, then UnreducedFpSemigroup will return the fp semigroup that was used to create stz using StzPresentation (15.3.1).

15.3.6 Length

▷ Length(stz) (operation)

Returns: A non-negative integer.

If stz is an StzPresentation (15.3.1) object, then the Length of the object is defined as the number of generators plus the lengths of each word in each relation of stz.

15.4 Printing Tietze transformation objects

Since the relations are stored as flat lists of numbers, there are several methods installed to print the presentations in more user-friendly forms.

All printing methods in this section are displayed as information (Info (**Reference: Info**)) in the class InfoFpSemigroup at level 1. Setting SetInfoLevevl(InfoFpSemigroup, 0) will suppress the messages, while any higher number will display them.

15.4.1 StzPrintRelations

```
\triangleright StzPrintRelations(stz[, list]) (operation)
```

If stz is an StzPresentation (15.3.1) object and list is a list of positive integers, then StzPrintRelations prints for each i in list the ith relation to the console in terms of the stored labels for the generators (that is, as words over the alphabet consisting of the generators of stz).

If list is not specified then StzPrintRelations prints all relations of stz in order.

```
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [ a, b, c ]>
```

15.4.2 StzPrintRelation

```
▷ StzPrintRelation(stz, int)
```

(operation)

If stz is an StzPresentation (15.3.1) object, then StzPrintRelation calls StzPrintRelations with parameters stz and [int].

15.4.3 StzPrintGenerators

```
▷ StzPrintGenerators(stz[, list])
```

(operation)

If stz is an StzPresentation (15.3.1) object and list is a list of positive integers, then StzPrintGenerators for each i in list the ith generator and the number of occurrences of that generator in the relations is printed to the screen.

If list is not specified then StzPrintGenerators prints all generators of stz in order.

```
#I 1. a 1 occurrences
#I 2. b 17 occurrences
gap> StzPrintGenerators(stz);
#I 1. a 1 occurrences
#I 2. b 17 occurrences
#I 3. c 1 occurrences
```

15.4.4 StzPrintPresentation

```
▷ StzPrintPresentation(stz)
```

(operation)

If stz is an StzPresentation (15.3.1) object, then StzPrintPresentation prints a comprehensive overview of stz, including the generators and number of occurrences of each generator in the relations, the relations as words over the generators, and the forward and backward maps that indicate how the unreduced semigroup maps to the semigroup currently described by stz.

```
_{-} Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [ a, b, c ]>
gap> T := F / [[F.1, F.2 ^5 * F.3],
              [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];
<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 3 relations</pre>
 with length 22>
gap> StzPrintPresentation(stz);
#I Current generators:
#I 1. a 1 occurrences
#I 2. b 17 occurrences
#I 3. c 1 occurrences
#I Current relations:
\#I 1. a = b^5*c
\#I 2. b^6 = b^3
\#I 3. b^2 = b
#I
#I
   There are 3 generators and 3 relations of total length 22.
#I
#I
   Generators of original fp semigroup expressed as
#I
   combinations of generators in current presentation:
#I 1. a = a
\#I 2. b = b
\#I 3. c = c
#I
#I Generators of current presentation expressed as
   combinations of generators of original fp semigroup:
   1. a = a
#I
\#I 2. b = b
\#I 3. c = c
```

15.5 Changing Tietze transformation objects

Fundamentally, there are four different changes that can be made to a presentation without changing the algebraic structure of the fp semigroup that can be derived from it. These four changes are called Tietze transformations, and they are primarily implemented in this section as operations on an StzPresentation object that will throw errors if the conditions have not been met to perform the Tietze transformation.

However, the checks required in order to ensure that a Tietze transformation is valid sometimes require verifying equality of two words in an fp semigroup (for example, to ensure that a relation we are adding to the list of relations can be derived from the relations already present). Since these checks sometimes do not terminate, a second implementation of Tietze transformations assumes good faith and does not perform any checks to see whether the requested Tietze transformation actually maintains the structure of the semigroup. This latter type should be used at the user's discretion. If only the first type are used, the presentation will always give a semigroup isomorphic to the one used to create the object, but if instead one is not changing the presentation with the intention of maintaining algebraic structure, these no-check functions are available for use.

The four Tietze transformations on a presentation are adding a relation, removing a relation, adding a generator, and removing a generator, with particular conditions on what can be added/removed in order to maintain structure. More details on each transformation and its arguments and conditions is given in each entry below. In addition to the four elementary transformations, there is an additional function StzSubstituteRelation which applies multiple Tietze transformations in sequence.

15.5.1 StzAddRelation

```
▷ StzAddRelation(stz, pair)
```

(operation)

If stz is an StzPresentation (15.3.1) object and pair is a list containing two LetterRep words over the generators of stz, then StzAddRelation will perform a Tietze transformation of the first type and add a new relation to stz. This only happens if the new relation that would be formed from pair can be constructed from the other existing relations; that is, if we can perform elementary operations using the existing relations of stz to convert pair [1] into pair [2].

If, instead, pair is a list containing two elements of the fp semigroup S that was used to create stz, and the two words are equal in that semigroup, then this function will add the LetterRep of these words as a new relation to stz.

```
gap> pair2 := [[1, 1], [3]];
[[ 1, 1 ], [ 3 ] ]
gap> StzAddRelation(stz, pair2);
Error, StzAddRelation: second argument <pair> must list two
words that are equal in the presentation <stz>
```

15.5.2 StzRemoveRelation

```
▷ StzRemoveRelation(stz, index)
```

(operation)

If stz is an StzPresentation (15.3.1) object and index is a positive integer less than or equal to the number of relations of stz, then StzRemoveRelation will perform a Tietze transformation of the second type and remove the indexth relation of stz if that relation is such that one side of it can be obtained from the other by a sequence of elementary operations using only the other relations of stz.

15.5.3 StzAddGenerator

```
▷ StzAddGenerator(stz, word[, name])
```

(operation)

If stz is an StzPresentation (15.3.1) object and word is a LetterRep word over the generators of stz, then StzAddGenerator will perform a Tietze transformation which adds a new generator to stz and a new relation of the form newgenerator = word.

If, instead, word is a word over the fp semigroup S that was used to create stz, then this function will add the new generator and a new relation with the new generator equal to the LetterRep of this word as a new relation to stz.

A new name for the generator is chosen and added automatically based on the names of the existing generators to GeneratorsOfStzPresentation (15.3.3) if the argument name is not included. If it is, and if name is a string that is not equal to an existing generator, then the string added to the list of generators will be name instead.

```
Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [ a, b, c ]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
```

15.5.4 StzRemoveGenerator

```
▷ StzRemoveGenerator(stz, gen/genname[, index]) (operation)
```

If stz is an StzPresentation (15.3.1) object and gen is a positive integer less than or equal to the number of generators of stz, then StzRemoveGenerator will perform a Tietze transformation which removes the genth generator of stz.

The argument stz must contain a relation of the form gen = word or word = gen, where word contains no occurrences of the generator gen being removed. The generator is then removed from the presentation by replacing every instance of gen with a copy of word.

If the second argument is a string genname rather than a positive integer gen, then the function searches the generators of stz for a generator with the same name and attempts to remove the generator if the same conditions as above are met.

If the argument *index* is included and is a positive integer less than or equal to the number of relations, then rather than searching the relations for the first to satisfy the necessary conditions, the function checks the *index*th relation to see if it satisfies those conditions, and applies the Tietze transformation by removing this relation.

15.5.5 StzSubstituteRelation

```
▷ StzSubstituteRelation(stz, index, side) (operation)
```

If stz is an StzPresentation (15.3.1) object and index is a positive integer less than or equal to the number of relations of stz and side is either 1 or 2, then StzRemoveGenerator will perform a sequence of Tietze transformations in order to replace, for the indexth relation (say [u, v]), to replace all instances of the sideth word of the relation in all other relations by the other side (so, for

side=1, all instances of u in all other relations of stz are replaced by v). This requires two Tietze transformations per relation containing u, one to add a new redundant relation with each u replaced by v, and another to remove the original (now redundant) relation.

15.6 Converting a Tietze transformation object into a fp semigroup

Semigroup Tietze transformation objects (IsStzPresentation (15.3.2)) are not actual fp semigroups in the sense of IsFpSemigroup (**Reference: IsFpSemigroup**). This is because their generators and relations can be modified (see section 15.5). However, an StzPresentation (15.3.1) can be converted back into an actual finitely presented semigroup using the methods described in this section.

The intended use of semigroup Tietze objects is as follows: given an fp semigroup S, create a modifiable presentation using stz := StzPresentation(S), apply Tietze transformations to it (perhaps in order to simplify the presentation), then generate a new fp semigroup T given by stz which is isomorphic to S, but has a simpler presentation. Once T is obtained, it may be of interest to map elements of S over to T, where they may be represented by different combinations of generators. The isomorphism achieving this is described in this section (see StzIsomorphism (15.6.3)).

15.6.1 TietzeForwardMap

▷ TietzeForwardMap(stz)

(attribute)

Returns: A list of lists of positive integers.

If stz is an StzPresentation (15.3.1) object, then TietzeForwardMap returns a list of lists of positive integers. There is an element of this list for every generator of the unreduced semigroup of the presentation (see UnreducedFpSemigroup (15.3.5)) that indicates the word (in LetterRep form) in the semigroup object currently defined by the presentation that the generator maps to.

This mapping is updated as the presentation object is transformed. It begins as a list of the form [[1], [2], [3], . . . , [n]] where n is the number of generators of the unreduced semigroup.

```
gap> F := FreeSemigroup("a", "b", "c");

<free semigroup on the generators [ a, b, c ]>
gap> S := F / [[F.1, F.3 ^ 3], [F.2 ^ 2, F.3 ^ 2]];

<fp semigroup with 3 generators and 2 relations of length 11>
```

```
gap> stz := StzPresentation(S);
<fp semigroup presentation with 3 generators and 2 relations
  with length 11>
gap> StzRemoveGenerator(stz, 1);
gap> TietzeForwardMap(stz);
[ [ 2, 2, 2 ], [ 1 ], [ 2 ] ]
```

15.6.2 TietzeBackwardMap

▷ TietzeBackwardMap(stz)

(attribute)

Returns: A list of lists of positive integers.

If stz is an StzPresentation (15.3.1) object, then TietzeBackwardMap returns a list of lists of positive integers. There is an element of this list for every generator of the semigroup that the presentation currently defines that indicates the word (in LetterRep form) in the unreduced semigroup of the presentation (see UnreducedFpSemigroup (15.3.5)) that the generator maps to.

This mapping is updated as the presentation object is transformed. It begins as a list of the form [[1], [2], [3], . . . , [n]] where n is the number of generators of the unreduced semigroup.

15.6.3 StzIsomorphism

▷ StzIsomorphism(stz)

(operation)

Returns: A mapping object.

If stz is an StzPresentation (15.3.1) object, then StzIsomorphism returns a mapping object that maps the unreduced semigroup of the presentation (see UnreducedFpSemigroup (15.3.5)) to an FpSemigroup object that is defined by the generators and relations of the semigroup presentation at the moment this function is ran.

If a StzIsomorphism is generated from stz, and the presentation stz is further modified afterwards (for example by applying more Tietze transformations or StzSimplifyOnce (15.7.1) to stz), then running StzIsomorphism(stz) a second time will produce a different result consistent with the new generators and relations of stz.

This mapping is built from the TietzeForwardMap (15.6.1) and TietzeBackwardMap (15.6.2) attributes from the presentation object, since if we know how to map the generators of the respective semigroups, then we know how to map any element of that semigroup.

This function is the primary way to obtain the simplified semigroup from the presentation object, by applying Range to the mapping that this function returns.

```
gap> F := FreeSemigroup("a", "b", "c");

<free semigroup on the generators [ a, b, c ]>
gap> S := F / [[F.1, F.3 ^ 3], [F.2 ^ 2, F.3 ^ 2]];

<fp semigroup with 3 generators and 2 relations of length 11>
gap> stz := StzPresentation(S);

<fp semigroup presentation with 3 generators and 2 relations
  with length 11>
gap> StzRemoveGenerator(stz, "a");
gap> map := StzIsomorphism(stz);

<fp semigroup with 3 generators and 2 relations of length 11> ->

<fp semigroup with 2 generators and 1 relation of length 6>
gap> S.1 ^ map;
c^3
```

15.7 Automatically simplifying a Tietze transformation object

It is possible to create a presentation object from an fp semigroup object and attempt to manually reduce it by applying Tietze transformations. However, there may be many different reductions that can be applied, so StzSimplifyOnce can be used to automatically check a number of different possible reductions and apply the best one. Then, StzSimplifyPresentation repeatedly applies StzSimplifyOnce to the presentation object until it fails to reduce the presentation any further. The metric with respect to which the IsStzPresentation object is reduced is Length (15.3.6).

15.7.1 StzSimplifyOnce

```
▷ StzSimplifyOnce(stz) (operation)

Returns: true or false.
```

If stz is an StzPresentation (15.3.1) object, then StzSimplifyOnce will check the possible reductions in length for a number of different possible Tietze transformations, and apply the choice which gives the least length. If a valid transformation was found then the function returns true, and if no transformation was performed because none would lead to a reduction in length, then the function returns false.

There are four different possible transformations that StzSimplifyOnce may apply. The function searches for redundant generators and checks if removing them would reduce the overall length of the presentation, it checks whether substituting one side of each relation throughout the rest of the relations would reduce the length, it checks whether there are any trivial relations (of the form w = w for some word w) or any duplicated relations (relations which are formed from precisely the same words as another relation), and it checks whether any frequently occurring subwords in the relations can be replaced with a new generator to reduce the length. For more details, see 15.5

At InfoLevel 2 (which is the default value, and which can be set using SetInfoLevel(InfoFpSemigroup, 2)), the precise transformations performed are printed to the screen.

```
<fp semigroup with 3 generators and 2 relations of length 19>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 2 relations
  with length 19>
gap> StzSimplifyOnce(stz);
#I <Removing redundant generator a using relation : 1. a = b^5*c>
true
gap> stz;
<fp semigroup presentation with 2 generators and 1 relation
  with length 11>
```

15.7.2 StzSimplifyPresentation

```
▷ StzSimplifyPresentation(stz)
```

(operation)

If stz is an StzPresentation object, then StzSimplifyPresentation will repeatedly apply the best of a few possible reductions to stz until it can no longer reduce the length of the presentation.

15.8 Automatically simplifying an fp semigroup

It may be the case that, rather than working with a Tietze transformation object, we want to start with an fp semigroup object and obtain the most simplified version of that fp semigroup that StzSimplifyPresentation can produce. In this case, SimplifyFpSemigroup can be applied to obtain a mapping from its argument to a reduced fp semigroup. If the mapping is not of interest, SimplifiedFpSemigroup can be used to directly obtain a new fp semigroup isomorphic to the first with reduced relations and generators (the mapping is stored as an attribute of the output). With these functions, the user never has to consider precisely what Tietze transformations to perform, and never has to worry about using the StzPresentation object or its associated operations. They can start with an fp semigroup and obtain a simplified fp semigroup.

15.8.1 SimplifyFpSemigroup

```
▷ SimplifyFpSemigroup(S)
```

(operation)

Returns: A mapping object.

If S is a finitely presented semigroup, then SimplifyFpSemigroup will return a mapping object which will map S to a finitely presented semigroup which has had its presentation simplified.

SimplifyFpSemigroup creates an StzPresentation object stz from S, which is then reduced using Tietze transformations until the presentation cannot be reduced in length any further.

SimplifyFpSemigroup applies the function StzSimplifyPresentation (15.7.2) to stz, which repeatedly checks whether a number of different possible transformations will cause a reduction in length, and if so applies the best one. This loop continues until no transformations cause any reductions, in which case the mapping is returned. The newly reduced FpSemigroup can be accessed either by taking the range of the mapping or calling SimplifiedFpSemigroup, which first runs SimplifyFpSemigroup and then returns the range of the mapping with the mapping held as an attribute.

For more information on how the mapping is created and used, go to 15.6.

```
Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [ a, b, c ]>
gap> T := F / [[F.1, F.2 ^5 * F.3],
               [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup on the generators [ a, b, c ]>
gap> map := SimplifyFpSemigroup(T);;
#I Applying StzSimplifyPresentation...
#I
   StzSimplifyPresentation is verbose by default. Use SetInfoLevel(InfoFpSemigroup, 1) to hide
    output while maintaining ability to use StzPrintRelations, StzPrintGenerators, etc.
#I
   Current: <fp semigroup presentation with 3 generators and 2 relations with length 19>
#I
    <Removing redundant generator a using relation : 1. a = b^5*c>
#I
   Current: <fp semigroup presentation with 2 generators and 1 relation with length 11>
   <Creating new generator to replace instances of word: b^3>
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 10>
gap> IsMapping(map);
true
gap> T.1;
gap> T.1 ^ map;
gap> RelationsOfFpSemigroup(Range(map));
[ [ b<sup>3</sup>, d ], [ d<sup>2</sup>, d ] ]
```

15.8.2 SimplifiedFpSemigroup

 ${\scriptstyle \rhd} \ {\tt SimplifiedFpSemigroup}({\it S})$

(operation)

Returns: A finitely presented semigroup.

If S is an fp semigroup object (IsFpSemigroup (**Reference: IsFpSemigroup**)), then SimplifiedFpSemigroup will return an FpSemigroup object T which is isomorphic to S which has been reduced to minimise its length. SimplifiedFpSemigroup applies SimplifyFpSemigroup (15.8.1) and assigns the Range of the isomorphism object which is returned to T, adding the isomorphism to T as an attribute. In this way, while T is a completely new FpSemigroup object, words in S can be mapped to T using the map obtained from the attribute FpTietzeIsomorphism (15.8.4).

For more information on the mapping between the semigroups and how it is created, see 15.6.

```
gap> F := FreeSemigroup("a", "b", "c");;
gap> S := F / [[F.1 ^ 4, F.1], [F.1, F.1 ^ 44], [F.1 ^ 8, F.2 * F.3]];;
gap> T := SimplifiedFpSemigroup(S);;
#I Applying StzSimplifyPresentation...
```

```
StzSimplifyPresentation is verbose by default. Use SetInfoLevel(InfoFpSemigroup, 1) to hide
#I output while maintaining ability to use StzPrintRelations, StzPrintGenerators, etc.
#I Current: <fp semigroup presentation with 3 generators and 3 relations with length 63>
   <Replacing all instances in other relations of relation: 1. a^4 = a^5
   Current: <fp semigroup presentation with 3 generators and 3 relations with length 24>
#I
    <Replacing all instances in other relations of relation: 1. a^4 = a^5
   Current: <fp semigroup presentation with 3 generators and 3 relations with length 18>
   <Replacing all instances in other relations of relation: 1. a^4 = a^5
   Current: <fp semigroup presentation with 3 generators and 3 relations with length 15>
   <Replacing all instances in other relations of relation: 3. a = a^2>
#I Current: <fp semigroup presentation with 3 generators and 3 relations with length 12>
   <Removing duplicate relation: 1. a = a^2>
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 9>
   <Removing redundant generator a using relation : 2. a = b*c>
#I Current: <fp semigroup presentation with 2 generators and 1 relation with length 8>
gap> map := FpTietzeIsomorphism(T);;
gap> S.1 ^ map;
h*c
gap > S.1 ^ map = T.1 * T.2;
gap> invmap := InverseGeneralMapping(map);;
gap> T.1 ^ invmap = S.2;
true
gap> T.1 = S.2;
false
```

15.8.3 UnreducedFpSemigroup (for a semigroup)

▷ UnreducedFpSemigroup(S)

(attribute)

Returns: T, an fp semigroup object.

If S is an fp semigroup object that has been obtained through calling SimplifiedFpSemigroup (15.8.2) on some fp semigroup T then UnreducedFpSemigroup returns the original semigroup object before simplification. These are unrelated semigroup objects, except that S will have a FpTietzeIsomorphism (15.8.4) attribute that returns an isomorphic mapping from T to S.

If SimplifyFpSemigroup (15.8.1) has been called on an fp semigroup T, then UnreducedFpSemigroup can be used on the Range of the resultant mapping to obtain the domain.

```
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 10>
<fp semigroup on the generators [ b, c, d ]>
gap> UnreducedFpSemigroup(S) = T;
true
```

15.8.4 FpTietzeIsomorphism

▷ FpTietzeIsomorphism(S)

(attribute)

Returns: A mapping object.

If S is an fp semigroup object that has been obtained through calling SimplifiedFpSemigroup (15.8.2) on some fp semigroup T, then FpTietzeIsomorphism returns an isomorphism from T to S. Simplification produces an fp semigroup isomorphic to the original fp semigroup, and these two fp semigroup objects can interact with each other through the mapping given by this function.

```
_ Example _
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [ a, b, c ]>
gap> T := F / [[F.1, F.2 ^5 * F.3],
               [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup on the generators [ a, b, c ]>
gap> S := SimplifiedFpSemigroup(T);
#I Applying StzSimplifyPresentation...
#I StzSimplifyPresentation is verbose by default. Use SetInfoLevel(InfoFpSemigroup, 1) to hide
#I output while maintaining ability to use StzPrintRelations, StzPrintGenerators, etc.
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 19>
\#I <Removing redundant generator a using relation : 1. a = b^5*c>
#I Current: <fp semigroup presentation with 2 generators and 1 relation with length 11>
#I <Creating new generator to replace instances of word: b^3>
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 10>
<fp semigroup on the generators [ b, c, d ]>
gap> T.2;
gap> S.1;
gap > T.2 = S.1;
gap> map := FpTietzeIsomorphism(S);;
gap> T.2 ^ map = S.1;
true
```

Chapter 16

Visualising semigroups and elements

There are two operations TikzString (16.3.1) and DotString (16.1.1) in Semigroups for creating LATEX and dot (also known as GraphViz) format pictures of the Green's class structure of a semigroup and for visualising certain types of elements of a semigroup. There is also a function Splash (**Digraphs: Splash**) for automatically processing the output of TikzString (16.3.1) and DotString (16.1.1) and opening the resulting pdf file.

16.1 dot pictures

In this section, we describe the operations in Semigroups for creating pictures in dot format.

The operations described in this section return strings, which can be written to a file using the function FileString (GAPDoc: FileString) or viewed using Splash (Digraphs: Splash).

16.1.1 DotString

▷ DotString(S[, options])

(operation)

Returns: A string.

If the argument S is a semigroup, and the optional second argument *options* is a record, then this operation produces a graphical representation of the partial order of the \mathcal{D} -classes of the semigroup S together with the eggbox diagram of each \mathcal{D} -class. The output is in dot format (also known as GraphViz) format. For details about this file format, and information about how to display or edit this format see https://www.graphviz.org.

The string returned by DotString can be written to a file using the command FileString (GAPDoc: FileString).

The \mathscr{D} -classes are shown as eggbox diagrams with \mathscr{L} -classes as rows and \mathscr{R} -classes as columns; group \mathscr{H} -classes are shaded gray and contain an asterisk. The \mathscr{L} -classes and \mathscr{R} -classes within a \mathscr{D} -class are arranged to correspond to the normalization of the principal factor given by NormalizedPrincipalFactor (10.4.8). The \mathscr{D} -classes are numbered according to their index in GreensDClasses(S), so that an i appears next to the eggbox diagram of GreensDClasses(S)[i]. A line from one \mathscr{D} -class to another indicates that the higher \mathscr{D} -class is greater than the lower one in the \mathscr{D} -order on S.

If the optional second argument options is present, it can be used to specify some options for output.

number

if options. number is false, then the \mathcal{D} -classes in the diagram are not numbered according to their index in the list of \mathcal{D} -classes of S. The default value for this option is true.

maximal

if *options*.maximal is true, then the structure description of the group \mathscr{H} -classes is displayed; see StructureDescription (**Reference: StructureDescription**). Setting this attribute to true can adversely affect the performance of DotString. The default value for this option is false.

normal

if options.normal is false, then the \mathcal{L} - and \mathcal{R} -classes within each \mathcal{D} -class arranged to correspond to PrincipalFactor (10.4.8). If options.normal is true, they are instead arranged to correspond to NormalizedPrincipalFactor (10.4.8). Setting this attribute to false may improve the performance of DotString as it avoids the computation of InjectionNormalizedPrincipalFactor (10.4.7). The default value for this option is true.

```
Example -
gap> S := FullTransformationMonoid(3);
<full transformation monoid of degree 3>
gap> DotString(S);
"//dot\ndigraph DClasses {\nnode [shape=plaintext]\nedge [color=blac\
k,arrowhead=none]\n1 [shape=box style=invisible label=<\n<TABLE BORDE\
R=\"0\" CELLBORDER=\"1\" CELLPADDING=\"10\" CELLSPACING=\"0\" PORT=\"\
1\">\n<TR BORDER=\"0\"><TD COLSPAN=\"1\" BORDER = \"0\" > 1</TD></TR>\
<TR><TD BGCOLOR=\"gray\">*</TD></TR>\n</TABLE>>];\n2 [shape=box style\
=invisible label=<\n<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLPADDING=\
\"10\" CELLSPACING=\"0\" PORT=\"2\">\n<TR BORDER=\"0\"><TD COLSPAN=\"\
3\" BORDER = \"0\" > 2</TD></TR><TD BGCOLOR=\"gray\">*</TD><TD BG\
R=\"gray\">*</TD><TD BGCOLOR=\"white\"></TD><TD BGCOLOR=\"gray\">*</T\
\label{localize} D></TR>\n<TR><TD \ BGCOLOR=\\"white\"></TD><TD \ BGCOLOR=\\"gray\">*</TD><T\\
D BGCOLOR=\"gray\">*</TD></TR>\n</TABLE>>];\n3 [shape=box style=invis\
ible label=<\n<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLPADDING=\"10\"\
   CELLSPACING=\"0\" PORT=\"3\">\n<TR BORDER=\"0\"><TD COLSPAN=\"1\" BO\
 \texttt{RDER} = \texttt{"0}" > 3</\texttt{TD}></\texttt{TR}><\texttt{TD} \ \texttt{BGCOLOR}=\texttt{"gray}">*</\texttt{TD}></\texttt{TR}><\texttt{N} \ \texttt{TR}><\texttt{N} \ \texttt{TR}><\texttt{N} \ \texttt{TD} \ \texttt{TD} \ \texttt{TR}><\texttt{N} \ \texttt{TD} \ \texttt{TR}><\texttt{N} \ \texttt{TD} \ \texttt{TR}><\texttt{N} \ \texttt{TD} \ \texttt{TD} \ \texttt{TR}><\texttt{N} \ \texttt{TD} \ \texttt{
\label{total bound} \begin{tabular}{ll} $\tt BGCOLOR=\"gray\">*</TD></TR>\ $\tt BGCOLOR=\"gray\">*</TD></TR>\ $\tt BGCOLOR=\"gray\">*</TD></TR>\ $\tt BGCOLOR=\"gray\">*</TD></TR>
\n</TABLE>>]; \n1 -> 2\n2 -> 3\n }"
gap> FileString("t3.dot", DotString(S));
1040
```

16.1.2 DotString (for a Cayley digraph)

▷ DotString(digraph)

(operation)

Returns: A string.

If digraph is a Digraph (**Digraphs: Digraph**) in the category IsCayleyDigraph (**Digraphs: IsCayleyDigraph**), then DotString returns a graphical representation of digraph. The output is in dot format (also known as GraphViz) format. For details about this file format, and information about how to display or edit this format see https://www.graphviz.org.

The string returned by DotString can be written to a file using the command FileString (GAPDoc: FileString).

See also DotLeftCayleyDigraph (16.1.4) and TikzLeftCayleyDigraph (16.3.2).

16.1.3 DotSemilatticeOfIdempotents

```
\triangleright DotSemilatticeOfIdempotents(S)
```

(attribute)

Returns: A string.

This function produces a graphical representation of the semilattice of the idempotents of an inverse semigroup S where the elements of S have a unique semigroup inverse accessible via Inverse (**Reference: inverse**). The idempotents are grouped by the \mathcal{D} -class they belong to.

The output is in dot format (also known as GraphViz) format. For details about this file format, and information about how to display or edit this format see https://www.graphviz.org.

```
Example

gap> S := DualSymmetricInverseMonoid(4);

<inverse block bijection monoid of degree 4 with 3 generators>

gap> DotSemilatticeOfIdempotents(S);

"//dot\ngraph graphname {\n node [shape=point]\nranksep=2;\nsubgraph \

cluster_1{\n15 \n}\nsubgraph cluster_2{\n5 11 14 12 13 8 \n}\nsubgraph\\

cluster_3{\n2 10 6 3 4 9 7 \n}\nsubgraph cluster_4{\n1 \n}\n2 -- 1\n3\\

-- 1\n4 -- 1\n5 -- 2\n5 -- 3\n5 -- 4\n6 -- 1\n7 -- 1\n8 -- 2\n8 -- 6\\

\n8 -- 7\n9 -- 1\n10 -- 1\n11 -- 2\n11 -- 9\n11 -- 10\n12 -- 3\n12 -- \\

6\n12 -- 9\n13 -- 3\n13 -- 7\n13 -- 10\n14 -- 4\n14 -- 6\n14 -- 10\n15\\

-- 5\n15 -- 8\n15 -- 11\n15 -- 12\n15 -- 13\n15 -- 14\n }"
```

16.1.4 DotLeftCayleyDigraph

```
\triangleright DotLeftCayleyDigraph(S)
```

(operation)

▷ DotRightCayleyDigraph(S)

(operation)

Returns: A string.

If S is a semigroup satisfying CanUseFroidurePin (6.1.4), then DotLeftCayleyDigraph is simply short for DotString(LeftCayleyDigraph(S)).

DotRightCayleyDigraph can be used to produce a dot string for the right Cayley graph of S. See DotString (16.1.1) for more details, and see also TikzLeftCayleyDigraph (16.3.2).

```
gap> DotLeftCayleyDigraph(Semigroup(IdentityTransformation));
"//dot\ndigraph hgn{\nnode [shape=circle]\n1 [label=\"a\"]\n1 -> 1\n}\
\n"
gap> DotRightCayleyDigraph(Semigroup(IdentityTransformation));
"//dot\ndigraph hgn{\nnode [shape=circle]\n1 [label=\"a\"]\n1 -> 1\n}\
\n"
```

16.2 tex output

In this section, we describe the operations in Semigroups for creating LAT_EX representations of GAP objects. For pictures of GAP objects please see Section 16.3.

16.2.1 TexString

```
▷ TexString(f[, n])
(operation)
```

Returns: A string.

This function produces a string containing LaTeX code for the transformation f. If the optional paramater n is used, then this is taken to be the degree of the transformation f, if the parameter n is not given, then DegreeOfTransformation (**Reference: DegreeOfTransformation**) is used by default. If n is less than the degree of f, then an error is given.

```
Example

gap> TexString(Transformation([6, 2, 4, 3, 6, 4]));

"\begin{pmatrix}\n 1 & 2 & 3 & 4 & 5 & 6 \\\\n 6 & 2 & 4 & 3 & 6 &\\

4\n\end{pmatrix}\"

gap> TexString(Transformation([1, 2, 1, 3]), 5);

"\begin{pmatrix}\n 1 & 2 & 3 & 4 & 5 \\\\n 1 & 2 & 1 & 3 & 5 \n\\end{pmatrix}\"
```

16.3 tikz pictures

In this section, we describe the operations in Semigroups for creating pictures in tikz format.

The functions described in this section return a string, which can be written to a file using the function FileString (GAPDoc: FileString) or viewed using Splash (Digraphs: Splash).

16.3.1 TikzString

```
▷ TikzString(obj[, options])

Returns: A string.

(operation)
```

This function produces a graphical representation of the object obj using the tikz package for LATEX. More precisely, this operation outputs a string containing a minimal LATEX document which can be compiled using LATEX to produce a picture of obj.

Currently the following types of objects are supported:

blocks

If *obj* is the left or right blocks of a bipartition, then TikzString returns a graphical representation of these blocks; see Section 3.6.

bipartitions

If obj is a bipartition, then TikzString returns a graphical representation of obj.

If the optional second argument *options* is a record with the component colors set to true, then the blocks of f will be colored using the standard tikz colors. Due to the limited number of colors available in tikz this option only works when the degree of obj is less than 20. See Chapter 3 for more details about bipartitions.

pbrs If *obj* is a PBR (4.2.1), then TikzString returns a graphical representation *obj*; see Chapter 4.

Cayley graphs

If obj is a Digraph (**Digraphs: Digraph**) in the category IsCayleyDigraph (**Digraphs: Is-CayleyDigraph**), then TikzString returns a picture of obj. No attempt is made whatsoever to

produce a sensible picture of the digraph obj, in fact, the vertices are all given the same coordinates. Human intervention is required to produce a meaningful picture from the value returned by this method. It is intended to make the task of drawing such a Cayley graph more straightforward by providing everything except the final layout of the graph. Please use DotString (16.1.1) if you want an automatically laid out diagram of the digraph obj.

```
Example
gap> x := Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]);;
gap> TikzString(RightBlocks(x));
t}\n\\begin{tikzpicture}\n \\draw[ultra thick](5,2)circle(.115);\n \
\d(1.8,5) \ node \ [top] {{$1$}};\n \fill(4,2)circle(.125);\n \d(4,2)circle(.125);\n \d(4
aw(1.8,4) \ node \ [top] \ \{\{\$2\$\}\}; \\ n \ \ \fill(3,2)circle(.125); \\ n \ \ \ \ \
\d(1.8,2) \ node \ [top] \ {{$4$}};\n \ \fill(1,2) \ circle(.125);\n \ \d
raw(1.8,1) node [top] {{$5$}};\n\n \\draw (5,2.125) .. controls (5,2\
.8) and (2,2.8) ... (2,2.125); \n \\draw (4,2.125) ... controls (4,2.6)\
 and (3,2.6) .. (3,2.125); \n\\end{tikzpicture}\n\n\\end{document}"
gap> x := Bipartition([[1, 5], [2, 4, -3, -5], [3, -1, -2], [-4]]);;
gap> TikzString(x);
"%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\
t\n\ wertices and labels\n \\
fill(1,2)circle(.125);\n \draw(0.95, 2.2) node [above] {{ $1$}};\n \draw(0.95, 2.2) node [above] }
 \fill(5,2) circle(.125); \n \draw(4.95, 2.2) node [above] {{ $5$}}; \
\n %lines\n \\draw(1,1.875) .. controls (1,1.1) and (5,1.1) .. (5\
,1.875); \n\ %block #2\n %vertices and labels\n \fill(2,2)circle(\
.125); \n \\draw(1.95, 2.2) node [above] \{\{ \$2\$\}\}; \n \\fill(4,2)circ\
le(.125);\n \draw(3.95, 2.2) node [above] {{ $4$}};\n \fill(3,0)c
ircle(.125); \n \draw(3, -0.2) node [below] {{ $-3$}}; \n \fill(5,0)
)circle(.125); \n \ \\draw(5, -0.2) node [below] {{ $-5$}}; \n\n \%lines\
\down(3,0.125) .. controls (3,0.7) and (5,0.7) .. (5,0.125); \n \\dr\
aw(2,2)--(3,0);\n\n %block #3\n %vertices and labels\n \\fill(3,2)\
circle(.125); \n \draw(2.95, 2.2) node [above] {{ $3$}}; \n \fill(1\
0,0) circle(.125); \n\\draw(1, -0.2) node [below] {{ $-1$}}; \n\\fill\
(2,0) circle(.125);\n\\draw(2, -0.2) node [below] {{ $-2$}};\n\n\\l
ines\n \draw(1,0.125) .. controls (1,0.6) and (2,0.6) .. (2,0.125);\
ill(4,0)circle(.125);\n \draw(4, -0.2) node [below] {{ $-4$}};\n\n
%lines\n\\end{tikzpicture}\n\n\\end{document}"
gap> TikzString(UniversalPBR(2));
"%latex\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{docume\
nt}\n\\usetikzlibrary{arrows}\n\\usetikzlibrary{arrows.meta}\n\\newco\
mmand{\arc}{\draw[semithick, -{>[width = 1.5mm, length = 2.5mm]}]}
\n\begin{tikzpicture}[\n vertex/.style={circle, draw, fill=black, i\
nner sep =0.04cm},\n ghost/.style={circle, draw = none, inner sep = \
0.14cm},\n botloop/.style={min distance = 8mm, out = -70, in = -110}\
,\n toploop/.style={min distance = 8mm, out = 70, in = 110}]\n\n % \
vertices and labels\n \\foreach \\i in \{1, ..., 2\} \{\n
                                                                                      \\node [vert\
ex] at (\frac{1.5}{3}, 3) {};\n
                                          \\node [ghost] (\\i) at (\\i/1.5, 3) {};\
\n }\n \) \
                                                                    \\node [vertex] at (\\i/\
1.5, 0) {};\n
                          % arcs from vertex 1\n \ (1) to (-2); \n \\arc (1) to (-1); \n \
```

16.3.2 TikzLeftCayleyDigraph

▷ TikzLeftCayleyDigraph(S)
▷ TikzRightCayleyDigraph(S)

(operation)

(operation)

Returns: A string.

If S is a semigroup satisfying CanUseFroidurePin (6.1.4), then TikzLeftCayleyDigraph is simply short for TikzString(LeftCayleyDigraph(S)).

TikzRightCayleyDigraph can be used to produce a tikz string for the right Cayley graph of *S*. See TikzString (16.3.1) for more details, and see also DotLeftCayleyDigraph (16.1.4).

```
Example
gap> TikzLeftCayleyDigraph(Semigroup(IdentityTransformation));
"\begin{tikzpicture}[scale=1, auto, \n vertex/.style={c\
ircle, draw, thick, fill=white, minimum size=0.65cm},\n \
edge/.style={arrows={-angle 90}, thick},\n loop/.style={\
min distance=5mm,looseness=5,arrows={-angle 90},thick}]\n\
\n % Vertices . . .\n \\node [vertex] (a) at (0, 0) {};\
node {a}\ (a);\n\\ell ti\
->] (a) edge [loop]\n
kzpicture}"
gap> TikzRightCayleyDigraph(Semigroup(IdentityTransformation));
"\\begin{tikzpicture}[scale=1, auto, \n vertex/.style={c\
ircle, draw, thick, fill=white, minimum size=0.65cm},\n \
edge/.style={arrows={-angle 90}, thick},\n loop/.style={\
min distance=5mm,looseness=5,arrows={-angle 90},thick}]\n\
\n % Vertices . . .\n \\node [vertex] (a) at (0, 0) {};\
\n \ \n \ \n \ \ Edges . . .\n \\path[\
->] (a) edge [loop]\n
                            node {a}\ (a);\n\\ell ti\
kzpicture}"
```

Chapter 17

10

17.1 Reading and writing elements to a file

The functions ReadGenerators (17.1.1) and WriteGenerators (17.1.2) can be used to read or write, respectively, elements of a semigroup to a file.

17.1.1 ReadGenerators

```
ightharpoonup ReadGenerators(filename[, nr]) (function)
```

Returns: A list of lists of semigroup elements.

If filename is an IO package file object or is the name of a file created using WriteGenerators (17.1.2), then ReadGenerators returns the contents of this file as a list of lists of elements of a semigroup.

If the optional second argument nr is present, then ReadGenerators returns the elements stored in the nrth line of filename.

17.1.2 WriteGenerators

```
▷ WriteGenerators(filename, list[, append][, function])

Returns: IO_OK or IO_ERROR.

(function)
```

This function provides a method for writing collections of elements of a semigroup to a file. The resulting file can be further compressed using gzip or xz.

The argument list should be a list of lists of elements, or semigroups.

The argument filename should be a string containing the name of a file or an IO package file object where the entries in list will be written; see IO_File (IO: IO_File mode) and IO_CompressedFile (IO: IO_CompressedFile).

If the optional third argument append is not present or is given and equals "w", then the previous content of the file is deleted and overwritten. If the third argument is "a", then list is appended to the file.

If any element of *list* is a semigroup, then the generators of that semigroup are written to *filename*. More specifically, the list returned by GeneratorsOfSemigroup (**Reference: GeneratorsOfSemigroup**) is written to the file.

This function returns IO_OK (IO: IO_OK) if everything went well or IO_ERROR (IO: IO_Error) if something went wrong.

The file produced by WriteGenerators can be read using ReadGenerators (17.1.1).

From Version 3.0.0 onwards the Semigroups package used the IO package pickling functionality; see (**IO: Pickling and unpickling**) for more details. This approach is used because it is more general and more robust than the methods used by earlier versions of Semigroups, although the performance is somewhat worse, and the resulting files are somewhat larger.

17.1.3 IteratorFromGeneratorsFile

▷ IteratorFromGeneratorsFile(filename)

(function)

Returns: An iterator.

If filename is a file or a string containing the name of a file created using WriteGenerators (17.1.2), then IteratorFromGeneratorsFile returns an iterator iter such that NextIterator(iter) returns the next collection of generators stored in the file filename.

This function is a convenient way of, for example, looping over a collection of generators in a file without loading every object in the file into memory. This might be useful if the file contains more information than there is available memory.

If you want to get an iterator for a file written using WriteGenerators from a version of Semi-groups before version 3.0.0, then you can use IteratorFromOldGeneratorsFile.

17.2 Reading and writing multiplication tables to a file

The functions ReadMultiplicationTable (17.2.1) and WriteMultiplicationTable (17.2.2) can be used to read or write, respectively, multiplication tables to a file.

17.2.1 ReadMultiplicationTable

```
▷ ReadMultiplicationTable(filename[, nr])
```

(function)

Returns: A list of multiplication tables.

If filename is a file or is the name of a file created using WriteMultiplicationTable (17.2.2), then ReadMultiplicationTable returns the contents of this file as a list of multiplication tables.

If the optional second argument nr is present, then ReadMultiplicationTable returns the mutiplication table stored in the nrth line of filename.

```
Example

gap> file := Concatenation(SEMIGROUPS.PackageDir,

> "/data/tst/tables.gz");;

gap> tab := ReadMultiplicationTable(file, 12);

[[ 1, 1, 3, 4, 5, 6, 7, 8, 9, 6], [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

[ 3, 3, 1, 5, 4, 7, 6, 9, 8, 7], [ 4, 4, 9, 6, 3, 8, 5, 1, 7, 8],

[ 5, 5, 8, 7, 1, 9, 4, 3, 6, 9], [ 6, 6, 7, 8, 9, 1, 3, 4, 5, 1],

[ 7, 7, 6, 9, 8, 3, 1, 5, 4, 3], [ 8, 8, 5, 1, 7, 4, 9, 6, 3, 4],

[ 9, 9, 4, 3, 6, 5, 8, 7, 1, 5], [ 6, 10, 7, 8, 9, 1, 3, 4, 5, 2]

]
```

17.2.2 WriteMultiplicationTable

▷ WriteMultiplicationTable(filename, list[, append])

(function)

Returns: IO_OK or IO_ERROR.

This function provides a method for writing collections of multiplication tables to a file. The resulting file can be further compressed using gzip or xz. This function applies to square arrays with a maximum of 255 rows where the entries are integers from [1, 2, ..., n] (where n is the number of rows in the array.

The argument list should be a list of multiplication tables.

The argument filename should be a file or a string containing the name of a file where the entries in list will be written or an IO package file object; see IO_File (IO: IO_File mode) and IO_CompressedFile (IO: IO_CompressedFile).

If the optional third argument *append* is not present or is given and equals "w", then the previous content of the file is deleted and overwritten. If the third argument is given and equals "a" then list is appended to the file. This function returns IO_OK (IO: IO_OK) if everything went well or IO_ERROR (IO: IO_Error) if something went wrong.

The multiplication tables saved in *filename* can be recovered from the file using ReadMultiplicationTable (17.2.1).

17.2.3 IteratorFromMultiplicationTableFile

▷ IteratorFromMultiplicationTableFile(filename)

(function)

Returns: An iterator.

If filename is a file or a string containing the name of a file created using WriteMultiplicationTable (17.2.2), then IteratorFromMultiplicationTableFile returns an iterator iter such that NextIterator(iter) returns the next multiplication table stored in the file filename.

This function is a convenient way of, for example, looping over a collection of multiplication tables in a file without loading every object in the file into memory. This might be useful if the file contains more information than there is available memory.

Chapter 18

Translations

In this chapter we describe the functionality in Semigroups for working with translations of semigroups. The notation used (as well as a number of results) is based on [Pet70]. Translations are of interest mainly due to their role in ideal extensions. A description of this role can also be found in [Pet70]. The implementation of translations in this package is only applicable to finite semigroups satisfying CanUseFroidurePin (6.1.4).

For a semigroup S, a transformation λ of S (written on the left) is a left translation if for all s,t in S, $\lambda(s)t = \lambda(st)$. A right translation ρ (written on the right) is defined dually.

The set L of left translations of S is a semigroup under composition of functions, as is the set R of right translations. The associativity of S guarantees that left [right] multiplication by any element S of S represents a left [right] translation; this is the *inner* left [right] translation λ_S [ρ_S]. The inner left [right] translations form an ideal in L [R].

A left translation λ and right translation ρ are *linked* if for all s, t in S, $s\lambda(t) = (s)\rho t$. A pair of linked translations is called a *bitranslation*. The set of all bitranslations forms a semigroup H called the *translational hull* of S where the operation is componentwise. If the components are inner translations corresponding to multiplication by the same element, then the bitranslation is *inner*. The inner bitranslations form an ideal of the translational hull.

Translations of a normalized Rees matrix semigroup T (see RMSNormalization (6.5.7)) over a group G can be represented through certain tuples, which can be computed very efficiently compared to arbitrary translations. For left translations these tuples consist of a function from the row indices of T to G and a transformation on the row indices of T; the same is true of right translations and columns. More specifically, given a normalised Rees matrix semigroup S over a group G with sandwich matrix P, rows I and columns I, the left translations are characterised by pairs (θ, χ) where θ is a function from I to G and χ is a transformation of I. The left translation λ defined by (θ, χ) acts on S via

$$\lambda((i,a,\mu)) = ((i)\chi,(i)\theta \cdot a,\mu),$$

where $i \in I$, $a \in G$, and $\mu \in J$ Dually, right translations ρ are characterised by pairs (ω, ψ) where ω is a function from J to G and ψ is a transformation of J, with action given by

$$((i,a,\mu))\rho = (i,a\cdot(\mu)\psi,(\mu)\psi).$$

Similarly, bitranslations (λ, ρ) of S can be characterised by triples (g, χ, ψ) such that $g \in G$, χ and ψ are transformations of I, J respectively, and

$$p_{\mu,(i)\chi} \cdot g \cdot p_{(1)\psi,i} = p_{\mu,(1)\chi} \cdot g \cdot p_{(mu)\psi,i}$$

The action of λ on S is then given by

$$\lambda((i,a,\mu)) = ((i)\chi, b \cdot p_{(1)\psi,i} \cdot a, \mu),$$

and of ρ on S by

$$((i,a,\mu))\rho = (i,a \cdot p_{\mu,(1)\chi} \cdot b,(\mu)\psi).$$

Further details may be found in [CP77].

18.1 Methods for translations

18.1.1 IsXTranslation

```
▷ IsSemigroupTranslation(arg)

▷ IsLeftTranslation(arg)

▷ IsRightTranslation(arg)

(filter)

(filter)
```

Returns: true or false

All, and only, left [right] translations belong to IsLeftTranslation [IsRightTranslation]. These are both subcategories of IsSemigroupTranslation, which itself is a subcategory of IsAssociativeElement.

```
gap> S := RectangularBand(3, 4);;
gap> 1 := Representative(LeftTranslations(S));;
gap> IsSemigroupTranslation(1);
true
gap> IsLeftTranslation(1);
true
gap> IsRightTranslation(1);
false
gap> 1 = One(LeftTranslations(S));
true
gap> 1 * 1 = 1;
true
```

18.1.2 IsBitranslation (for IsAssociativeElement and IsMultiplicativeElementWithOne)

▷ IsBitranslation(arg)

(filter)

Returns: true or false

All, and only, bitranslations belong to IsBitranslation. This is a subcategory of IsAssociativeElement (Reference: IsAssociativeElement).

```
gap> 1 := OneOp(Representative(L));;
gap> r := OneOp(Representative(R));;
gap> H := TranslationalHull(S);;
gap> x := Bitranslation(H, 1, r);;
gap> IsBitranslation(x);
true
gap> IsSemigroupTranslation(x);
false
```

18.1.3 IsXTranslationCollection

```
 > IsSemigroupTranslationCollection(obj)  (filter)  > IsLeftTranslationCollection(obj)  (filter)  > IsRightTranslationCollection(obj)  (filter)  > IsBitranslationCollection(obj)  (filter)
```

Returns: true or false

Every collection of left-, right-, or bi-translations belongs to the respective category IsXTranslationCollection (18.1.3).

18.1.4 XPartOfBitranslation

```
▷ LeftPartOfBitranslation(h) (function)
▷ RightPartOfBitranslation(arg) (function)
```

Returns: a left or right translation

For a Bitranslation h consisting of a linked pair (l,r), of left and right translations, LeftPartOfBitranslation(b) returns the left translation 1, and RightPartOfBitranslation(b) returns the right translation r.

18.1.5 XTranslation

```
    ▷ LeftTranslation(T, x[, y]) (operation)
    ▷ RightTranslation(arg1, arg2) (operation)
    Returns: a left or right translation
```

For the semigroup T of left or right translations of a semigroup S and x one of:

- a mapping on the underlying semigroup; note that in this case only the values of the mapping on the UnderlyingRepresentatives of *T* are checked and used, so mappings which do not define translations can be used to create translations if they are valid on that subset of S;
- a list of indices representing the images of the UnderlyingRepresentatives of *T*, where the ordering is that of PositionCanonical (11.1.2) on *S*;
- (for LeftTranslation) a list of length Length(Rows(S)) containing elements of UnderlyingSemigroup(S); in this case S must be a normalised Rees matrix semigroup and y must be a Transformation of Rows(S);
- (for RightTranslation) a list of length Length(Columns(S)) containing elements of UnderlyingSemigroup(S); in this case S must be a normalised Rees matrix semigroup and y must be a Transformation of Columns(S);

LeftTranslation and RightTranslation return the corresponding translations.

```
gap> S := RectangularBand(3, 4);;
gap> L := LeftTranslations(S);;
gap> s := AsList(S)[1];;
gap> map := MappingByFunction(S, S, x -> s * x);;
gap> 1 := LeftTranslation(L, map);
<left translation on <regular transformation semigroup of size 12,
   degree 8 with 4 generators>>
gap> s ^ 1;
Transformation([ 1, 2, 1, 1, 5, 5, 5, 5 ] )
```

18.1.6 Bitranslation (for IsBitranslationsSemigroup, IsLeftTranslation, IsRightTranslation)

```
\triangleright Bitranslation(H, I, r) (operation)
```

Returns: a bitranslation

If H is a translational hull over a semigroup S, and 1 and r are linked left and right translations respectively over S, then this function returns the bitranslation (1,r). If 1 and r are not linked, then an error is produced.

18.1.7 UnderlyingSemigroup

```
    ▷ UnderlyingSemigroup(S)
    ▷ UnderlyingSemigroup(arg)
    Returns: a semigroup
```

Given a semigroup of translations or bitranslations, returns the semigroup on which these translations act.

18.1.8 XTranslationsSemigroupOfFamily

```
    ▷ LeftTranslationsSemigroupOfFamily(fam) (attribute)
    ▷ RightTranslationsSemigroupOfFamily(arg) (attribute)
    ▷ TranslationalHullOfFamily(arg) (attribute)
```

Returns: the semigroup of left or right translations, or the translational hull

Given a family fam of left-, right- or bi-translations, returns the translations semigroup or translational hull to which they belong.

```
gap> S := RectangularBand(3, 3);;
gap> L := LeftTranslations(S);;
gap> l := Representative(L);;
gap> LeftTranslationsSemigroupOfFamily(FamilyObj(1)) = L;
true
gap> H := TranslationalHull(S);;
gap> h := Representative(H);;
gap> TranslationalHullOfFamily(FamilyObj(h)) = H;
true
```

18.1.9 TypeXTranslationSemigroupElements

```
    ▷ TypeLeftTranslationsSemigroupElements(arg)
    ▷ TypeRightTranslationsSemigroupElements(arg)
    ▷ TypeBitranslations(arg)
    (attribute)
    Returns: a type
```

Given a (bi)translations semigroup, returns the type of the elements that it contains.

18.1.10 XTranslations

```
ightharpoonup LeftTranslations(S) (attribute)

ightharpoonup RightTranslations(arg) (attribute)
```

Returns: the semigroup of left or right translations

Given a finite semigroup S satisfying CanUseFroidurePin (6.1.4), returns the semigroup of all left or right translations of S.

```
gap> S := Semigroup([Transformation([1, 4, 3, 3, 6, 5]),

> Transformation([3, 4, 1, 1, 4, 2])]);;
gap> L := LeftTranslations(S);

<the semigroup of left translations of <transformation semigroup of degree 6 with 2 generators>>
gap> Size(L);
361
```

18.1.11 TranslationalHull (for IsSemigroup and CanUseFroidurePin and IsFinite)

```
▶ TranslationalHull(S)
Returns: the translational hull
```

(attribute)

Given a finite semigroup S satisfying CanUseFroidurePin (6.1.4), returns the translational hull of S.

18.1.12 NrXTranslations

Returns: the number of left-, right-, or bi-translations

Given a finite semigroup S satisfying CanUseFroidurePin (6.1.4), returns the number of left-, right-, or bi-translations of S. This is typically more efficient than calling Size(LeftTranslations(S)), as the [bi]translations may not be produced.

18.1.13 InnerXTranslations

```
▷ InnerLeftTranslations(S)

▷ InnerRightTranslations(arg)

(attribute)
```

Returns: the monoid of inner left or right translations

For a finite semigroup S satisfying CanUseFroidurePin (6.1.4), InnerLeftTranslations(S) returns the inner left translations of S (i.e. the translations defined by left multiplication by a fixed element of S), and InnerRightTranslations(S) returns the inner right translations of S (i.e. the translations defined by right multiplication by a fixed element of S).

```
gap> S := Semigroup([Transformation([1, 4, 3, 3, 6, 5]),

> Transformation([3, 4, 1, 1, 4, 2])]);;
gap> I := InnerLeftTranslations(S);
<left translations semigroup over <transformation semigroup
  of size 22, degree 6 with 2 generators>>
gap> Size(I) <= Size(S);
true</pre>
```

18.1.14 InnerTranslationalHull (for IsSemigroup and CanUseFroidurePin and IsFinite)

```
▷ InnerTranslationalHull(S)
```

(attribute)

Returns: the inner translational hull

Given a finite semigroup S satisfying CanUseFroidurePin (6.1.4), returns the inner translational hull of S, i.e. the bitranslations whose left and right translation components are inner translations defined by left and right multiplication by the same fixed element of S.

```
<semigroup of bitranslations over <transformation semigroup
  of size 22, degree 6 with 2 generators>>
gap> L := LeftTranslations(S);;
gap> R := RightTranslations(S);;
gap> H := TranslationalHull(S);;
gap> inners := [];;
gap> for s in S do
  > 1 := LeftTranslation(L, MappingByFunction(S, S, x -> s * x));
  > r := RightTranslation(R, MappingByFunction(S, S, x -> x * s));
  > AddSet(inners, Bitranslation(H, 1, r));
  > od;
gap> Set(I) = inners;
true
```

18.1.15 Underlying Representatives (for IsTranslationsSemigroup)

▷ UnderlyingRepresentatives(T)

(attribute)

Returns: a set of representatives

For efficiency, we typically store translations on a semigroup S as their actions on a small subset of S. For left translations, this is a set of representatives of the maximal \mathscr{R} -classes of S; dually for right translations we use representatives of the maximal \mathscr{L} -classes. You can use UnderlyingRepresentatives to access these representatives.

18.1.16 ImageSetOfTranslation (for IsSemigroupTranslation)

 \triangleright ImageSetOfTranslation(t)

(operation)

Returns: a set of elements

Given a left or right translation t on a semigroup S, returns the set of elements of S lying in the image of t.

References

- [ABMS15] J. Araújo, W. Bentz, J. D. Mitchell, and C. Schneider. The rank of the semigroup of transformations stabilising a partition of a finite set. *Math. Proc. Camb. Phil. Soc.*, 159:339 353, 2015. 94
- [AMM21] M. Anagnostopoulou-Merkouri and J. D. Mitchell. Properties of congruence lattices of finite graph inverse semigroups. 2021. 247, 248
- [Aui12] K. Auinger. Krohn–Rhodes complexity of Brauer type semigroups. *Portugaliae Mathematica*, 69(4):341–360, 2012. 15
- [BDF15] A. E. Brouwer, J. Draisma, and B. J. Frenk. Lossy gossip and composition of metrics. *Discrete & Computational Geometry*, 53(4):890–913, 2015. 108
- [BFCGOGJ92] Q. J. P. Baccelli F. Cohen G. Olsder G. J. Synchronisation and Linearity: An Algebra for Discrete Event Systems. Wiley, 1992. 71, 73
- [Bur16] S. A. Burrell. The Order Problem for Natural and Tropical Matrix Semigroups. MMath project, University of St Andrews, United Kingdom, 2016. 73
- [CP77] A. H. Clifford and M. Petrich. Some classes of completely regular semigroups. *Journal of Algebra*, 46(2):462–480, 1977. 296
- [DMW18] C. Donoven, J. D. Mitchell, and W. A. Wilson. Computing maximal subsemigroups of a finite semigroup. *Journal of Algebra*, 505:559–596, July 2018. 182, 183
- [Eas19] J. East. Presentations for rook partition monoids and algebras and their singular ideals. *J. Pure and Applied Algebra*, 223:1097–1122, March 2019. 99
- [EENMP19] J. East, A. Egri-Nagy, J. D. Mitchell, and Y. Péresse. Computing finite semigroups. *J. Symbolic Computation*, 92:110 – 155, 2019. 74, 75, 157
- [Far09] K. G. Farlow. Max-Plus Algebra. Master's thesis, Virginia Polytechnic Institute and State University, United States, 2009. 70, 73
- [FL98] D. G. Fitzgerald and J. Leech. Dual symmetric inverse monoids and representation theory. *J. Austral. Math. Soc. A*, 64:345–67, 1998. 21
- [FP97] V. Froidure and J.-E. Pin. Algorithms for computing finite semigroups. In *Foundations of computational mathematics (Rio de Janeiro, 1997)*, page 112–126. Springer, Berlin, 1997. 48, 75, 76

- [Gau96] S. Gaubert. On the Burnside problem for Semigroups of Matrices over the (max, +) Algebra. *Semigroup Forum*, 5:271–292, 1996. 72, 73
- [GGR68] N. Graham, R. Graham, and J. Rhodes. Maximal subsemigroups of finite semigroups. *J. Combinatorial Theory*, 4:203–209, 1968. 181, 182, 183
- [Gra68] R. Graham. On finite 0-simple semigroups and graph theory. *Mathematical systems theory*, 2(4):325–339, 1968. 88
- [Gro06] C. Grood. The rook partition algebra. *J. Combin. Theory Ser. A*, 113(2):325–351, 2006. 99
- [How95] J. M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York, 1995. Oxford Science Publications. 115, 122, 129, 132, 203, 216, 239, 240, 243, 244, 245, 246, 262, 263
- [HR05] T. Halverson and A. Ram. Partition algebras. *European Journal of Combinatorics*, 26(6):869–921, 2005. 15, 99
- [JK07] T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large and sparse graphs. In D. Applegate, G. S. Brodal, D. Panario, and R. Sedgewick, editors, *Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithms and Combinatorics*, page 135–149. SIAM, 2007. 63
- [KM11] G. Kudryavtseva and V. Maltcev. Two generalisations of the symmetric inverse semi-groups. *Publ. Math. Debrecen*, 78(2):253–282, 2011. 102
- [KMU15] G. Kudryavtseva, V. Maltcev, and A. Umar. Presentation for the partial dual symmetric inverse monoid. *Comm. Algebra*, 43(4):1621–1639, 2015. 102
- [MM13] P. Martin and V. Mazorchuk. Partitioned binary relations. *Mathematica Scandinavica*, 113:30–52, 2013. 36, 75
- [MM16] Z. Mesyan and J. D. Mitchell. The structure of a graph inverse semigroup. *Semigroup Forum*, 93(1):111–130, March 2016. 119
- [Pet70] M. Petrich. The translational hull in semigroups and rings. *Semigroup Forum*, 1(1):283–360, 1970. 295
- [RR10] J. Radoszewski and W. Rytter. Efficient testing of equivalence of words in a free idempotent semigroup. *SOFSEM 2010: Theory and Practice of Computer Science*, pages 663–671, 2010. 117
- [Sch92] B. M. Schein. The minimal degree of a finite inverse semigroup. *Trans. Amer. Math. Soc.*, 333(2):877–888, 1992. 195
- [Sim78] I. Simon. Limited subsets of a free monoid. In *Proceedings of the 19th Annual Symposium on Foundations of Computer Science*, SFCS '78, page 143–150, Washington, DC, USA, 1978. IEEE Computer Society. 72

[Wan19] Z.-P. Wang. Congruences on graph inverse semigroups. *Journal of Algebra*, 534:51–64, sep 2019. 247, 248

Index

* (for PBRs), 41	AsMutableList, 55
* (for Rees (0-)matrix semigroup isomor-	AsPartialPerm
phisms by triples), 266	for a bipartition, 21
* (for bipartitions), 22	for a PBR, 40
* (for matrices over a semiring), 57	AsPBR, 38
< (for PBRs), 41	AsPermutation
< (for Rees (0-)matrix semigroup isomorphisms	for a bipartition, 22
by triples), 266	for a PBR, 40
< (for bipartitions), 22	AsSemigroup, 85
< (for matrices over a semiring), 57	AsSemigroupCongruenceByGenerating-
= (for Rees (0-)matrix semigroup isomor-	Pairs, 243
phisms by triples), 266	AsSemigroupHomomorphismByFunction
= (for PBRs), 41	for a semigroup homomorphism by images,
= (for bipartitions), 22	255
= (for matrices over a semiring), 57	AsSemigroupHomomorphismByImages
\in, 61	for a semigroup homomorphism by function,
\<	254
for Green's classes, 154	AsSemigroupIsomorphismByFunction
^ (for Rees (0-)matrix semigroup isomor-	for a semigroup homomorphism by images,
phisms by triples), 266	261
	AsTransformation
Annular Jones Monoid, 101	for a bipartition, 21
AntiIsomorphismDualFpMonoid, 90	for a PBR, 40
AntiIsomorphismDualFpSemigroup, 90	AutomorphismGroup
AntiIsomorphismDualSemigroup, 129	for a semigroup, 259
ApsisMonoid, 104	
AsBipartition, 19	Bipartition, 16
AsBlockBijection, 20	BipartitionByIntRep, 16
AsBooleanMat, 58	Bitranslation
AsCongruenceByWangPair, 248	for IsBitranslationsSemigroup, IsLeftTrans-
AsInverseSemigroupCongruenceByKernel-	lation, IsRightTranslation, 298
Trace, 244	BlistNumber, 62
AsList, 55	BLOCKS_NC, 31
AsListCanonical, 162	BooleanMat, 57
AsMatrix	BooleanMatNumber, 62
for a filter and a matrix, 51	BrandtSemigroup, 113
for a filter, matrix, and threshold, 51	BrauerMonoid, 99
for a filter, matrix, threshold, and period, 51	a : 101 1 20
AsMonoid, 86	CanonicalBlocks, 30

CanonicalBooleanMat, 63	DClassOfHClass, 141
for a perm group and boolean matrix, 63	DClassOfLClass, 141
for a perm group, perm group and boolean	DClassOfRClass, 141
matrix, 63	DClassReps, 146
CanonicalForm	DegreeOfBipartition, 24
for a free inverse semigroup element, 124	DegreeOfBipartitionCollection, 24
CanonicalMultiplicationTable, 257	DegreeOfBipartitionSemigroup, 35
CanonicalMultiplicationTablePerm, 257	DegreeOfBlocks, 32
CanonicalReesMatrixSemigroup, 265	DegreeOfPBR, 41
CanonicalReesZeroMatrixSemigroup, 265	DegreeOfPBRCollection, 41
CanonicalTransformation, 188	DegreeOfPBRSemigroup, 47
CanUseFroidurePin, 76	DigraphOfAction
CanUseGapFroidurePin, 76	for a transformation semigroup, list, and ac-
CanUseLibsemigroupsFroidurePin, 76	tion, 185
CatalanMonoid, 93	DigraphOfActionOnPoints
CharacterTableOfInverseSemigroup, 196	for a transformation semigroup, 186
ClosureInverseMonoid, 79	for a transformation semigroup and an inte-
ClosureInverseSemigroup, 79	ger, 186
ClosureMonoid, 79	DimensionOfMatrixOverSemiring, 49
ClosureSemigroup, 79	DimensionOfMatrixOverSemiring-
CodomainOfBipartition, 27	Collection, 50
${\tt Component Reps Of Partial Perm Semigroup},$	DirectProduct, 126
189	DirectProductOp, 126
${\tt Component Reps Of Transformation-}$	DomainOfBipartition, 27
Semigroup, 184	DotLeftCayleyDigraph, 288
ComponentsOfPartialPermSemigroup, 189	DotRightCayleyDigraph, 288
${\tt ComponentsOfTransformationSemigroup},$	DotSemilatticeOfIdempotents, 288
185	DotString, 286
CompositionMapping2	for a Cayley digraph, 287
for IsRMSIsoByTriple, 264	DualSemigroup, 127
for IsRZMSIsoByTriple, 264	DualSymmetricInverseMonoid, 101
CongruenceByWangPair, 247	DualSymmetricInverseSemigroup, 101
CongruencesOfPoset, 233	250
CongruencesOfSemigroup	ElementOfFpMonoid, 270
for a semigroup, 229	ElementOfFpSemigroup, 269
for a semigroup and a multiplicative element	ELM_LIST (for Rees (0-)matrix semigroup iso-
collection, 229	morphisms by triples), 266
ContentOfFreeBandElement, 117	ELM_LIST
ContentOfFreeBandElementCollection, 117	for IsRMSIsoByTriple, 264
CrossedApsisMonoid, 104	EmptyPBR, 37
CyclesOfPartialPerm, 189	EndomorphismMonoid
CyclesOfPartialPermSemigroup, 190	for a digraph, 96
CyclesOfTransformationSemigroup, 185	for a digraph and vertex coloring, 96
140	EndomorphismsPartition, 93
DClass, 142	Enumerate, 163
DClasses, 144	EnumeratorCanonical, 162
DClassNC, 143	EqualInFreeBand, 117

EquivalenceRelationCanonicalLookup	GraphInverseSemigroup, 118
for an equivalence relation over a finite semi-	GraphOfGraphInverseSemigroup, 120
group, 227	GreensDClasses, 144
EquivalenceRelationCanonicalPartition,	GreensDClassOfElement, 142
228	for a free band and element, 118
EquivalenceRelationLookup	GreensDClassOfElementNC, 143
for an equivalence relation over a finite semi-	GreensHClasses, 144
group, 226	GreensHClassOfElement, 142
EUnitaryInverseCover, 197	for a Rees matrix semigroup, 142
EvaluateWord, 166	GreensHClassOfElementNC, 143
ExtRepOfObj	GreensJClasses, 144
for a bipartition, 25	GreensLClasses, 144
for a blocks, 31	GreensLClassOfElement, 142
for a PBR, 42	GreensLClassOfElementNC, 143
	GreensRClasses, 144
FactorisableDualSymmetricInverse-	GreensRClassOfElement, 142
Monoid, 102	GreensRClassOfElementNC, 143
Factorization, 167	GroupHClass, 155
FixedPointsOfTransformationSemigroup	GroupOfUnits, 177
for a transformation semigroup, 187	-
FpTietzeIsomorphism, 285	HallMonoid, 108
FreeBand	HClass, 142
for a given rank, 115	for a Rees matrix semigroup, 142
for a list of names, 115	HClasses, 144
for various names, 115	HClassNC, 143
FreeInverseSemigroup	HClassReps, 146
for a given rank, 123	HomomorphismsOfStrongSemilatticeOf-
for a list of names, 123	Semigroups, 132
for various names, 123	T.J J.
FreeMonoidAndAssignGeneratorVars, 270	Ideals
${\tt FreeSemigroupAndAssignGeneratorVars},$	for a semigroup, 138
270	IdempotentGeneratedSubsemigroup, 180
FullBooleanMatMonoid, 107	Idempotents, 178
FullMatrixMonoid, 105	IdentityBipartition, 16
FullPBRMonoid, 105	IdentityPBR, 38
FullTropicalMaxPlusMonoid, 109	ImagesElm
FullTropicalMinPlusMonoid, 109	for IsRMSIsoByTriple, 265
C	ImageSetOfTranslation
GeneralLinearMonoid, 105	for IsSemigroupTranslation, 301
GeneratingCongruencesOfLattice, 248	ImagesRepresentative
Generators, 169	for IsRMSIsoByTriple, 265
GeneratorsOfSemigroupIdeal, 138	IndecomposableElements, 174
GeneratorsOfStzPresentation, 271	IndexOfVertexOfGraphInverseSemigroup,
GeneratorsSmallest	122
for a semigroup, 173	IndexPeriodOfSemigroupElement, 165
GLM, 106	InfoSemigroups, 13
GossipMonoid, 108	InjectionNormalizedPrincipalFactor, 159

InjectionPrincipalFactor, 159	IsCliffordSemigroup, 214
InnerLeftTranslations	IsColTrimBooleanMat,64
for IsSemigroup and CanUseFroidurePin and	IsCombinatorialSemigroup, 209
IsFinite, 300	IsCommutativeSemigroup, 201
InnerRightTranslations	IsCompletelyRegularSemigroup, 202
for IsSemigroup and CanUseFroidurePin and	IsCompletelySimpleSemigroup, 211
IsFinite, 300	IsCongruenceByWangPair, 246
InnerTranslationalHull	IsCongruenceClass, 225
for IsSemigroup and CanUseFroidurePin and	IsCongruenceFreeSemigroup, 202
IsFinite, 300	IsCongruencePoset, 231
Integers, 54	IsConnectedTransformationSemigroup
IntRepOfBipartition, 25	for a transformation semigroup, 188
InverseMonoidByGenerators, 77	IsDTrivial, 209
InverseOp, 70	IsDualSemigroupElement, 128
for an integer matrix, 69	IsDualSemigroupRep, 128
InverseSemigroupByGenerators, 77	IsDualTransBipartition, 28
InverseSemigroupCongruenceByKernel-	IsDualTransformationPBR, 44
Trace, 244	IsEmptyPBR, 42
InverseSubsemigroupByProperty, 81	IsEnumerated, 164
IrredundantGeneratingSubset, 171	IsEquivalenceBooleanMat,67
IsActingSemigroup, 75	IsEUnitaryInverseSemigroup, 215
IsAntiSymmetricBooleanMat,66	IsFactorisableInverseMonoid, 217
IsAperiodicSemigroup, 209	IsFinite, 72
IsBand, 200	IsFInverseMonoid, 217
IsBipartition, 15	IsFInverseSemigroup, 216
IsBipartitionCollColl, 15	IsFreeBand
IsBipartitionCollection, 15	for a given semigroup, 115
IsBipartitionMonoid, 33	IsFreeBandCategory, 115
IsBipartitionPBR, 43	IsFreeBandElement, 116
IsBipartitionSemigroup, 33	IsFreeBandElementCollection, 116
IsBitranslation	IsFreeBandSubsemigroup, 116
for IsAssociativeElement and IsMultiplica-	IsFreeInverseSemigroup, 123
tiveElementWithOne, 296	<pre>IsFreeInverseSemigroupCategory, 123</pre>
IsBitranslationCollection, 297	IsFreeInverseSemigroupElement, 124
IsBlockBijection, 29	IsFreeInverseSemigroupElement-
IsBlockBijectionMonoid, 34	Collection, 124
IsBlockBijectionPBR, 43	IsFullMatrixMonoid, 106
IsBlockBijectionSemigroup, 34	IsGeneralLinearMonoid, 106
IsBlockGroup, 201	IsGraphInverseSemigroup, 120
IsBlocks, 31	IsGraphInverseSemigroupElement, 120
IsBooleanMat, 54	IsGraphInverseSemigroupElement-
IsBooleanMatCollColl, 54	Collection, 121
IsBooleanMatCollection, 54	IsGraphInverseSubsemigroup, 121
IsBooleanMatMonoid,72	IsGreensClassNC, 155
IsBooleanMatSemigroup, 72	IsGreensDGreaterThanFunc, 151
IsBrandtSemigroup, 215	IsGroupAsSemigroup, 203

IsHTrivial, 209	IsMonogenicMonoid, 206
IsIdempotentGenerated, 204	IsMonogenicSemigroup, 206
IsIdentityPBR, 43	IsMonoidAsSemigroup, 207
IsIntegerMatrixMonoid, 72	IsMTSE, 135
IsIntegerMatrixSemigroup, 72	IsNTPMatrix, 54
IsInverseSemigroupCongruenceByKernel-	IsNTPMatrixCollColl, 55
Trace, 243	IsNTPMatrixCollection, 55
IsInverseSemigroupCongruenceClassBy-	IsNTPMatrixMonoid, 72
KernelTrace, 246	IsNTPMatrixSemigroup, 72
IsIsomorphicSemigroup, 256	IsomorphismMonoid, 84
IsJoinIrreducible, 217	IsomorphismPermGroup, 86
IsLeftCongruenceClass, 225	IsomorphismReesMatrixSemigroup
IsLeftSemigroupCongruence, 222	for a D-class, 159
IsLeftSimple, 204	for a semigroup, 89
IsLeftTranslation	IsomorphismReesMatrixSemigroupOver-
for IsSemigroupTranslation, 296	PermGroup, 89
IsLeftTranslationCollection, 297	IsomorphismReesZeroMatrixSemigroup, 89
IsLeftZeroSemigroup, 205	IsomorphismReesZeroMatrixSemigroup-
IsLinkedTriple, 242	OverPermGroup, 89
IsLTrivial, 209	IsomorphismSemigroup, 83
IsMajorantlyClosed, 218	IsomorphismSemigroups, 258
IsMatrixOverFiniteField, 54	IsOntoBooleanMat,66
<pre>IsMatrixOverFiniteFieldCollColl, 54</pre>	IsOrthodoxSemigroup, 207
<pre>IsMatrixOverFiniteFieldCollection, 54</pre>	IsPartialOrderBooleanMat, 67
<pre>IsMatrixOverFiniteFieldMonoid, 72</pre>	IsPartialPermBipartition, 29
<pre>IsMatrixOverFiniteFieldSemigroup, 72</pre>	IsPartialPermBipartitionMonoid, 34
IsMatrixOverSemiring, 49	IsPartialPermBipartitionSemigroup, 34
<pre>IsMatrixOverSemiringCollColl, 49</pre>	IsPartialPermPBR, 45
IsMatrixOverSemiringCollection, 49	IsPBR, 36
<pre>IsMatrixOverSemiringMonoid, 72</pre>	IsPBRCollColl, 36
IsMatrixOverSemiringSemigroup, 72	IsPBRCollection, 36
IsMaximalSubsemigroup, 184	IsPBRMonoid, 46
IsMaxPlusMatrix, 54	IsPBRSemigroup, 46
<pre>IsMaxPlusMatrixCollColl, 54</pre>	IsPermBipartition, 29
IsMaxPlusMatrixCollection, 54	IsPermBipartitionGroup, 34
IsMaxPlusMatrixMonoid, 72	IsPermPBR, 45
IsMaxPlusMatrixSemigroup, 72	IsRectangularBand, 208
IsMcAlisterTripleSemigroup, 133	IsRectangularGroup, 208
IsMcAlisterTripleSemigroupElement, 135	IsReesCongruenceClass, 249
IsMinPlusMatrix, 54	IsReflexiveBooleanMat,65
<pre>IsMinPlusMatrixCollColl, 55</pre>	IsRegularGreensClass, 154
IsMinPlusMatrixCollection, 54	IsRegularSemigroup, 209
IsMinPlusMatrixMonoid, 72	IsRightCongruenceClass, 226
IsMinPlusMatrixSemigroup, 72	IsRightSemigroupCongruence, 223
IsMonogenicInverseMonoid, 219	IsRightSimple, 204
IsMonogenicInverseSemigroup, 219	IsRightTranslation

for IsSemigroupTranslation, 296	IsTropicalMatrix, 54
IsRightTranslationCollection, 297	IsTropicalMatrixCollection, 55
IsRightZeroSemigroup, 209	IsTropicalMatrixMonoid, 72
IsRMSCongruenceByLinkedTriple, 240	IsTropicalMatrixSemigroup, 72
IsRMSCongruenceClassByLinkedTriple, 241	IsTropicalMaxPlusMatrix, 54
IsRMSIsoByTriple, 262	IsTropicalMaxPlusMatrixCollColl, 55
IsRowTrimBooleanMat, 64	IsTropicalMaxPlusMatrixCollection, 55
IsRTrivial, 209	IsTropicalMaxPlusMatrixMonoid, 72
IsRZMSCongruenceByLinkedTriple, 240	IsTropicalMaxPlusMatrixSemigroup, 72
IsRZMSCongruenceClassByLinkedTriple,	IsTropicalMinPlusMatrix, 54
241	IsTropicalMinPlusMatrixCollColl, 55
IsRZMSIsoByTriple, 262	IsTropicalMinPlusMatrixCollection, 55
IsSelfDualSemigroup, 214	IsTropicalMinPlusMatrixMonoid, 72
IsSemiband, 204	IsTropicalMinPlusMatrixSemigroup, 72
IsSemigroupCongruence, 221	IsUniformBlockBijection, 30
IsSemigroupHomomorphismByFunction, 254	IsUnitRegularMonoid, 212
IsSemigroupHomomorphismByImages, 254	IsUniversalPBR, 43
IsSemigroupIsomorphismByFunction, 260	IsUniversalSemigroupCongruence, 250
IsSemigroupTranslation	IsUniversalSemigroupCongruenceClass,
for IsAssociativeElement and IsMultiplica-	250
tiveElementWithOne, 296	IsVertex
IsSemigroupTranslationCollection, 297	for a graph inverse semigroup element, 120
IsSemigroupWithAdjoinedZero, 210	IsZeroGroup, 212
IsSemilattice, 210	IsZeroRectangularBand, 212
IsSimpleSemigroup, 211	IsZeroSemigroup, 213
IsSSSE, 131	IsZeroSimpleSemigroup, 213
IsStrongSemilatticeOfSemigroups, 131	IteratorCanonical, 162
IsStzPresentation, 271	IteratorFromGeneratorsFile, 293
IsSubrelation, 238	$Iterator {\tt From Multiplication Table File},$
IsSuperrelation, 238	294
IsSurjectiveSemigroup, 203	IteratorOfDClasses, 152
IsSymmetricBooleanMat,64	IteratorOfDClassReps, 152
IsSynchronizingSemigroup	IteratorOfHClassReps, 152
for a transformation semigroup, 211	IteratorOfLClassReps, 152
IsTorsion, 73	IteratorOfLeftCongruences
for an integer matrix, 69	for a semigroup, 237
IsTotalBooleanMat, 66	for a semigroup, and a positive integer, 237
IsTransBipartition, 28	for a semigroup, positive integer, and list or
IsTransformationBooleanMat, 67	collection, 237
IsTransformationPBR, 44	IteratorOfRClasses, 152
IsTransitive	IteratorOfRightCongruences
for a transformation semigroup and a pos int,	for a semigroup, 237
187	for a semigroup, and a positive integer, 237
for a transformation semigroup and a set, 187	for a semigroup, positive integer, and list or
IsTransitiveBooleanMat, 65	collection, 237
IsTrimBooleanMat,64	TG1 144
	JClasses, 144

JoinIrreducibleDClasses, 191	for IsSemigroup and CanUseFroidurePin and
JoinLeftSemigroupCongruences, 239	IsFinite, 299
JoinRightSemigroupCongruences, 239	${\tt LeftTranslationsSemigroupOfFamily}$
JoinSemigroupCongruences, 239	for IsFamily, 298
JoinSemilatticeOfCongruences	LeftZeroSemigroup, 113
for a congruence poset and a function, 235	Length, 273
for a list or collection and a function, 235	LengthOfLongestDClassChain, 150
JonesMonoid, 100	
	MajorantClosure, 192
KernelOfSemigroupCongruence, 245	Matrix
KernelOfSemigroupHomomorphism, 255	for a filter and a matrix, 50
107	for a semiring and a matrix, 50
LargestElementSemigroup, 187	MaximalDClasses, 147
LatticeOfCongruences	MaximalLClasses, 147
for a semigroup, 232	MaximalRClasses, 147
for a semigroup and a multiplicative element	MaximalSubsemigroups
collection, 232	for a finite semigroup, 182
LatticeOfLeftCongruences	for a finite semigroup and a record, 182
for a semigroup, 232	McAlisterTripleSemigroup, 133
for a semigroup and a multiplicative element	McAlisterTripleSemigroupAction, 135
collection, 232	McAlisterTripleSemigroupElement, 135
LatticeOfRightCongruences	McAlisterTripleSemigroupGroup, 134
for a semigroup, 232	${\tt McAlisterTripleSemigroupPartialOrder},$
for a semigroup and a multiplicative element	134
collection, 232	McAlisterTripleSemigroupSemilattice,
LClass, 142	134
LClasses, 144	MeetLeftSemigroupCongruences, 239
LClassNC, 143	MeetRightSemigroupCongruences, 239
LClassOfHClass, 141	MeetSemigroupCongruences, 239
LClassReps, 146	MinimalCongruences
LeftBlocks, 26	for a congruence poset, 235
LeftCayleyDigraph, 164	for a list or collection, 235
LeftCongruencesOfSemigroup	MinimalCongruencesOfSemigroup
for a semigroup, 229	for a semigroup, 230
for a semigroup and a multiplicative element	for a semigroup and a multiplicative element
collection, 229	collection, 230
LeftInverse	MinimalDClass, 147
for a matrix over finite field, 68	MinimalFactorization, 168
LeftOne	MinimalFaithfulTransformationDegree,
for a bipartition, 17	262
LeftPartOfBitranslation, 297	MinimalIdeal, 175
LeftProjection, 17	MinimalIdealGeneratingSet, 139
LeftSemigroupCongruence, 224	MinimalInverseMonoidGeneratingSet, 172
LeftTranslation	MinimalInverseSemigroupGeneratingSet,
for IsLeftTranslationsSemigroup, IsGen-	172
eralMapping, 297	MinimalLeftCongruencesOfSemigroup
LeftTranslations	for a semigroup, 230

for a semigroup and a multiplicative element	NrRightBlocks, 26
collection, 230	NrRightTranslations
MinimalMonoidGeneratingSet, 172	for IsSemigroup and CanUseFroidurePin and
MinimalRightCongruencesOfSemigroup	IsFinite, 300
for a semigroup, 230	NrTransverseBlocks
for a semigroup and a multiplicative element	for a bipartition, 24
collection, 230	for blocks, 31
MinimalSemigroupGeneratingSet, 172	NumberBlist, 62
MinimalWord	NumberBooleanMat, 62
for free inverse semigroup element, 124	NumberOfLeftCongruences
MinimumGroupCongruence, 246	for a semigroup, 236
Minorants, 193	for a semigroup, and a positive integer, 236
ModularPartitionMonoid, 104	for a semigroup, positive integer, and list or
MonogenicSemigroup, 111	collection, 236
MotzkinMonoid, 101	NumberOfRightCongruences
MTSE, 135	for a semigroup, 236
MultiplicativeNeutralElement	for a semigroup, and a positive integer, 236
for an H-class, 158	for a semigroup, positive integer, and list or
MultiplicativeZero, 176	collection, 236
MunnSemigroup, 97	NumberPBR, 42
NambooripadLeqRegularSemigroup, 198	OnBlist, 61
NambooripadPartialOrder, 198	OnLeftBlocks, 33
NaturalLeqBlockBijection, 23	OnLeftCongruenceClasses, 228
NaturalLeqInverseSemigroup, 191	OnMultiplicationTable, 258
NaturalLeqPartialPermBipartition, 23	OnRightBlocks, 32
NonTrivialEquivalenceClasses, 226	OnRightCongruenceClasses, 229
NonTrivialFactorization, 168	Order, 69
NormalizedPrincipalFactor, 160	OrderAntiEndomorphisms, 94
NormalizeSemigroup, 73	OrderEndomorphisms
NrBitranslations	monoid of order preserving transformations,
for IsSemigroup and CanUseFroidurePin and IsFinite, 300	94
NrBlocks	ParseRelations, 269
for a bipartition, 27	PartialBrauerMonoid, 99
for blocks, 27	PartialDualSymmetricInverseMonoid, 101
NrDClasses, 148	PartialJonesMonoid, 100
NrHClasses, 148	PartialOrderAntiEndomorphisms, 94
NrIdempotents, 179	PartialOrderEndomorphisms, 94
NrLClasses, 148	PartialOrderOfDClasses, 149
NrLeftBlocks, 26	PartialOrderOfLClasses, 149
NrLeftTranslations	PartialOrderOfRClasses, 149
for IsSemigroup and CanUseFroidurePin and	PartialPermLeqBipartition, 23
IsFinite, 300	PartialTransformationMonoid, 94
NrMaximalSubsemigroups, 183	PartialUniformBlockBijectionMonoid, 102
NrRClasses, 148	PartitionMonoid, 98
NrRegularDClasses, 148	PBR, 37

PBRNumber, 42	RadialEigenvector, 70
PeriodNTPMatrix, 56	Random
PermLeftQuoBipartition, 23	for a semigroup, 164
PlanarModularPartitionMonoid, 104	RandomBipartition, 18
PlanarPartitionMonoid, 103	RandomBlockBijection, 18
PlanarUniformBlockBijectionMonoid, 102	RandomInverseMonoid, 90
PODI	RandomInverseSemigroup, 90
monoid of order preserving or reversing par-	RandomMatrix
tial perms, 97	for a filter and a matrix, 53
POI	for a semiring and a matrix, 53
monoid of order preserving partial perms, 97	RandomMonoid, 90
POPI	RandomPBR, 37
monoid of orientation preserving partial	RandomSemigroup, 90
perms, 97	RandomWord
PORI	for two integers, 267
monoid of orientation preserving or reversing	Range
partial perms, 97	for a graph inverse semigroup element, 119
PosetOfCongruences, 234	RankOfBipartition, 24
PosetOfPrincipalCongruences	RankOfBlocks, 31
for a semigroup, 233	RClass, 142
for a semigroup and a multiplicative element	RClasses, 144
collection, 233	RClassNC, 143
PosetOfPrincipalLeftCongruences	RClassOfHClass, 141
for a semigroup, 233	RClassReps, 146
for a semigroup and a multiplicative element	ReadGenerators, 292
collection, 233	ReadMultiplicationTable, 293
PosetOfPrincipalRightCongruences	RectangularBand, 111
for a semigroup, 233	ReflexiveBooleanMatMonoid, 107
for a semigroup and a multiplicative element	RegularBooleanMatMonoid, 107
collection, 233	RegularDClasses, 148
PositionCanonical, 163	RelationsOfStzPresentation, 272
PrimitiveIdempotents, 193	RepresentativeOfMinimalDClass, 176
PrincipalCongruencesOfSemigroup	RepresentativeOfMinimalIdeal, 176
for a semigroup, 230	RightBlocks, 25
for a semigroup and a multiplicative element	RightCayleyDigraph, 164
collection, 231	RightCongruencesOfSemigroup
PrincipalFactor, 160	for a semigroup, 229
PrincipalLeftCongruencesOfSemigroup	for a semigroup and a multiplicative element
for a semigroup, 230	collection, 229
for a semigroup and a multiplicative element	RightCosetsOfInverseSemigroup, 194
collection, 231	RightInverse
PrincipalRightCongruencesOfSemigroup	for a matrix over finite field, 68
for a semigroup, 231	RightOne
for a semigroup and a multiplicative element	for a bipartition, 17
collection, 231	RightPartOfBitranslation, 297
ProjectionFromBlocks, 32	RightProjection, 17

RightSemigroupCongruence, 224	for two semigroups and two lists, 259
RightTranslation	Semigroups package overview, 8
for IsRightTranslationsSemigroup, IsGen-	SEMIGROUPS.DefaultOptionsRec, 79
eralMapping, 297	SemigroupsOfStrongSemilatticeOf-
RightTranslations	Semigroups, 131
for IsSemigroup and CanUseFroidurePin and	SemigroupsTestAll, 12
IsFinite, 299	SemigroupsTestExtreme, 12
RightTranslationsSemigroupOfFamily	SemigroupsTestInstall, 12
for IsFamily, 298	SemigroupsTestStandard, 12
RightZeroSemigroup, 113	SemilatticeOfStrongSemilatticeOf-
RMSCongruenceByLinkedTriple, 241	Semigroups, 131
RMSCongruenceClassByLinkedTriple, 242	SimplifiedFpSemigroup, 283
RMSIsoByTriple, 263	SimplifyFpSemigroup, 282
RMSNormalization, 88	SingularApsisMonoid, 104
RookMonoid, 97	SingularBrauerMonoid, 99
RookPartitionMonoid, 98	SingularCrossedApsisMonoid, 104
RowSpaceBasis	SingularDualSymmetricInverseMonoid, 101
for a matrix over finite field, 68	SingularFactorisableDualSymmetric-
RowSpaceTransformation	InverseMonoid, 102
for a matrix over finite field, 68	SingularJonesMonoid, 100
${\tt RowSpaceTransformationInv}$	SingularModularPartitionMonoid, 104
for a matrix over finite field, 68	SingularOrderEndomorphisms, 94
RZMSCongruenceByLinkedTriple, 241	SingularPartitionMonoid, 99
RZMSCongruenceClassByLinkedTriple, 242	${\tt SingularPlanarModularPartitionMonoid},$
RZMSConnectedComponents, 190	104
RZMSDigraph, 190	SingularPlanarPartitionMonoid, 103
RZMSIsoByTriple, 263	SingularPlanarUniformBlockBijection-
RZMSNormalization, 87	Monoid, 102
CompMin organic Columns 104	SingularTransformationMonoid, 94
SameMinorantsSubgroup, 194	SingularTransformationSemigroup, 94
SchutzenbergerGroup, 156 SemigroupCongruence, 223	SingularUniformBlockBijectionMonoid,
SemigroupHomomorphismByFunction, 252	102
SemigroupHomomorphismByFunctionNC, 252	SLM, 106
SemigroupHomomorphismByImages	SmallerDegreePartialPerm-
	Representation, 195
for a semigroup and two lists, 252 for two semigroups, 252	SmallerDegreeTransformation-
	Representation, 261
for two semigroups and a list, 252 for two semigroups and two lists, 252	SmallestElementSemigroup, 187
SemigroupIdeal, 137	SmallestIdempotentPower, 165
SemigroupIdealOfReesCongruence, 249	SmallestMultiplicationTable, 256
SemigroupIsomorphismByFunction, 260	SmallGeneratingSet, 170
· · · · · · · · · · · · · · · · · · ·	SmallInverseMonoidGeneratingSet, 170
SemigroupIsomorphismByFunctionNC, 260 SemigroupIsomorphismByImages	SmallInverseSemigroupGeneratingSet, 170
for a semigroup and two list, 259	SmallMonoidGeneratingSet, 170
for two semigroups, 259	SmallSemigroupGeneratingSet, 170
for two semigroups, 259	Source
-01 t 0 0011110110 unu u 110t, 207	

for a graph inverse semigroup element, 119	TikzLeftCayleyDigraph, 291
SpecialLinearMonoid, 106	TikzRightCayleyDigraph, 291
SpectralRadius, 71	TikzString, 289
SSSE, 130	TraceOfSemigroupCongruence, 245
StandardiseWord, 268	TranslationalHull
StandardizeWord, 268	for IsSemigroup and CanUseFroidurePin and
Star	IsFinite, 299
for a bipartition, 18	TranslationalHullOfFamily
for a PBR, 41	for IsFamily, 298
StarOp	TriangularBooleanMatMonoid, 109
for a bipartition, 18	TrivialSemigroup, 110
for a PBR, 41	TypeBitranslations
StringToWord	for IsBitranslationsSemigroup, 299
for a string, 268	TypeLeftTranslationsSemigroupElements
StrongSemilatticeOfSemigroups, 130	for IsLeftTranslationsSemigroup, 299
StructureDescription	TypeRightTranslationsSemigroupElements
for an H-class, 159	for IsRightTranslationsSemigroup, 299
StructureDescriptionMaximalSubgroups,	
158	UnderlyingRepresentatives
StructureDescriptionSchutzenberger-	for IsTranslationsSemigroup, 301
Groups, 157	UnderlyingSemigroup
StzAddGenerator, 277	for IsBitranslationsSemigroup, 298
StzAddRelation, 276	for IsTranslationsSemigroup, 298
StzIsomorphism, 280	${\tt Underlying Semigroup Of Congruence Poset},$
StzPresentation, 271	234
StzPrintGenerators, 274	UnderlyingSemigroupOfSemigroupWith-
StzPrintPresentation, 275	AdjoinedZero, 177
StzPrintRelation, 274	UniformBlockBijectionMonoid, 102
StzPrintRelations, 273	UnitriangularBooleanMatMonoid, 109
StzRemoveGenerator, 278	UniversalPBR, 38
StzRemoveRelation, 277	UniversalSemigroupCongruence, 250
StzSimplifyOnce, 281	UnreducedFpSemigroup
StzSimplifyPresentation, 282	for a presentation, 272
StzSubstituteRelation, 278	for a semigroup, 284
SubsemigroupByProperty	UnweightedPrecedenceDigraph, 71
for a semigroup and function, 81	Variable Description 106
for a semigroup, function, and limit on the	VagnerPrestonRepresentation, 196
size of the subsemigroup, 81	VerticesOfGraphInverseSemigroup, 121
Successors, 61	WordToString
SupersemigroupOfIdeal, 139	for a string and a list, 267
	WreathProduct, 127
TemperleyLiebMonoid, 100	WriteGenerators, 292
TexString, 289	WriteMultiplicationTable, 294
ThresholdNTPMatrix, 56	
ThresholdTropicalMatrix, 55	ZeroSemigroup, 112
TietzeBackwardMap, 280	
TietzeForwardMap, 279	