Solution to Hw 9

We know that $\det(A-\lambda I)=0$ if λ is an eigenvalue of A.

If $\lambda=0$, then we would have $\det(A-0.I)=0$, hence $\det A=0$. This is impossible, since A is invertible.

Therefore, $\lambda \neq 0$.

To see why to is an eigenvalue of A-1, let V be an eigenvector of A corresponding to λ .

By definition of eigenvalue and eigenvector, $A\vec{v} = \lambda \vec{v}$

Multiply A-1 on both sides, we have A-1 (AV) = A-1 XV

Therefore, $\vec{V} = \lambda A^{-1} \vec{V}$,

 $(A^{-1}A)\overrightarrow{v} = \overrightarrow{v} \qquad \lambda A^{-1}\overrightarrow{v}$

So $A^{-1}\vec{V} = \vec{X}\vec{V}$. Hence \vec{X} is an eigenvalue of A^{-1} , and \vec{V} is its corresponding eigenvector.

Let A be an nxn matrix, each of whose rows has entry sum = S.

Since $A\vec{v} = s\vec{v}$ where $\vec{v} = []$, s is an eigenvalue of A, and

V This its corresponding eigenvector

This matrix is triangular. So $det(A-\lambda I_8) = (1-\lambda)^2 (4-\lambda)^4 (2-\lambda)^2$ product of entries on the main diagonal

The characteristic polynomial has 3 roots: $\lambda_1=1$, $\lambda_2=4$, $\lambda_3=2$.

When $\lambda_i=1$, the eigenspace is Nul $(A-I_8)$.

Here the boxes represent pivot positions.

Then dimension of eigenspace = dim Nul (A-I8) = 8-2 rank (A-I8) = 2

(alternatively, dim Norl (A-I8) = # of free variables # of pivot columns = # of non-pivot columns.)

When $\lambda_2 = 4$,

$$A-4\cdot I_8 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

So the eigenspace has dimension 8-6=2.

When $\lambda_3 = 2$,

4. Since $|A\overrightarrow{v}|$ converges to 0 as $n \to \infty$ for any nonzero \overrightarrow{v} , in particular $|A^n\overrightarrow{v}|$ must converge to 0 if \overrightarrow{v} is an eigenvector of A.

Let $\vec{V_i}$ be an eigenvector corresponding to λ_i .

Then $A^n \vec{\nabla}_i = A^{n-1} (A \vec{\nabla}_i) = A^{n-1} \lambda_i \vec{\nabla}_i = \lambda_i A^{n-1} \vec{\nabla}_i$ $= \lambda_i A^{n-2} A \vec{\nabla}_i = \lambda_i^2 A^{n-2} \vec{\nabla}_i$ $= --- = \lambda_i^n \vec{\nabla}_i$

So $|A^n \vec{v}_i| = |\lambda_i|^n |\vec{v}_i|$

Since $\vec{v}_1 \neq \vec{0}$, $|\vec{v}_1| \neq 0$. In order that $|A^n \vec{v}_1|$ converges to 0, we must have $\lim_{n \to \infty} |\lambda_1|^n = 0$.

This means $|\lambda_1| < 1$, so $-1 < \lambda_1 < 1$ (or $\lambda_1 \in (-1, 1)$).

Similarly, replace V, by Vz and A, by Az, we get -1< Az=1.

To show that all values between -1 and 1 works,

write $A = PDP^{-1}$ (A is diagonizable since we have 3 distinct eigenvalues).

Then $|A^n \vec{v}| = |PD^n P^{-1} \vec{v}| = |P\begin{bmatrix} \lambda_1^n & 0 & 0 \\ 0 & \lambda_2^n & 0 \\ 0 & 0 & \lambda_3^n \end{bmatrix} P^{-1} \vec{v} |$ for any $\vec{v} \neq \vec{0}$.

Now if & -1 < \lambda, \lambda_2, \lambda_3 < 1,

then the matrix $D^n = \begin{bmatrix} \lambda_i^n \circ \circ \\ \circ \lambda_i^n \circ \\ \circ \circ \lambda_i^n \end{bmatrix}$ converges to zero matrix as $n \to \infty$,

hence PDnp-1 v converges to zero vector.

Therefore, $\lim_{n\to\infty} |A^n\vec{v}| = 0$ if and only if $-1 < \lambda_1, \lambda_2, \lambda_3 < 1$

#5. a)
$$\det(PDP^{-1})$$

$$= (\det P)(\det D)(\det P^{-1})$$

$$= (\det P)(\det P^{-1}) \det D$$

$$= \det(PP^{-1}) \det D = \det \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix}$$

$$= \lambda_1 \lambda_2 - -\lambda_n$$

b). Write
$$\det(A - \lambda I_n) = c(\lambda - \lambda_1)(\lambda - \lambda_2) - - - (\lambda - \lambda_n)$$
. We first show $c = (-1)^n$:

$$det(A-X)=\begin{vmatrix} \alpha_{11}-\lambda & * & - & * \\ * & \alpha_{22}-\lambda & * \\ * & * \\ * & * \\ * & * & - & - & \alpha_{nn}-\lambda \end{vmatrix}$$

=
$$(a_{11}-\lambda)(a_{22}-\lambda)$$
 -- $(a_{nn}-\lambda)$ + $(polynomial of degree $\leq n-1)$
= $(-\lambda)^n$ + $(some other polynomial of degree $\leq n-1)$
= $(-1)^n \lambda^n$ + ----$$

This means the leading coefficient of $C(\lambda-\lambda_1) - -(\lambda-\lambda_n) = \det(A-\lambda I_n)$ must be $(-1)^n$. Therefore $C=(-1)^n$.

Now det
$$A = \det (A - 0 I_n) = (-1)^n (0 - \lambda_1) (0 - \lambda_2) - (0 - \lambda_n)$$

= $(-1)^n (-1)^n \lambda_1 - (0 - \lambda_n)$
= $\lambda_1 - (0 - \lambda_n)$