Floating Point – Error and Stability

CS370 - May 6, 2016

Who are you?

- 1. What area(s) of CS are you most interested in?
- 2. What aspect/topic of the course are you most interested in?
- 3. What are your career plans/hopes for after graduation?

Floating Point – Quick Recap

We approximated the real numbers with finite storage by limiting precision (# of digits, t) and range (exponent, p):

$$0.d_1d_2...d_t \times \beta^p$$

An FP system *F* guarantees that:

- $fl(x) = x(1 + \delta)$ for $x \in \mathbb{R}$ with $|\delta| \le E$.
- $a \oplus b = fl(a+b) = (a+b)(1+\delta)$ for $a, b \in F$ and $|\delta| \le E$.

These rules let us bound error in our calculations.

Error Bounds and Condition Number

Last time, we said that $(a \oplus b) \oplus c$ satisfies:

$$E_{rel} \le \frac{|a| + |b| + |c|}{|a+b+c|} (2E + E^2)$$

The term
$$\frac{|a|+|b|+|c|}{|a+b+c|}$$
 ...

- describes how the error E is magnified along the way.
- may be called a *condition number* for this calculation.

Cancellation Errors

When is
$$\frac{|a|+|b|+|c|}{|a+b+c|}$$
 large? When is it small?

Worst case magnification when denominator is small.

i.e., when
$$|a + b + c| \ll |a| + |b| + |c|$$
.

This occurs when quantities have differing signs and similar magnitudes, leading to cancellation.

Error Bound Example #1

a = 2000

b = -3.234

c = -2000

 $F = \{10, 4, -10, 10\}$

Consider $(a \oplus b) \oplus c$:

True result: -3.234 FP result: -3.000

Error bound:
$$E_{rel} \leq \frac{|a|+|b|+|c|}{|a+b+c|} (2E+E^2) \approx \frac{4003.234}{3.234} \cdot 2\left(\frac{1}{2}10^{-3}\right) \approx 1.238.$$

A rather weak bound; large potential relative error.

Error Bound Example #2

Consider $(a \oplus c) \oplus b$:

True result: -3.234 FP result: -3.234

$$a = 2000$$

 $b = -3.234$
 $c = -2000$
 $F = \{10, 4, -10, 10\}$

Observation #1: Re-ordering operations often changes the results.

Observation #2: Our error bound is the same as before.

The condition number only gives a worst-case bound.

Error Bound Example #3

Consider $(a \oplus b) \oplus c$ for a = -2000, b = -3.234, c = -2000: (i.e. all matching signs now).

True: -4003.234 Computed: -4003

Condition number: $\frac{|a|+|b|+|c|}{|a+b+c|} = \frac{4003.234}{4003.234} = 1.$

Error bound: $E_{rel} \le 1 \cdot (2E + E^2) \approx 2E = 10^{-3}$.

Observation: Avoiding cancellation gives better bounds on error.

Catastrophic Cancellation Error

Catastrophic cancellation occurs when subtracting numbers of the same magnitude, and the input numbers contain error.

e.g.,

All *significant* digits cancelled out; the result might have no correct digits whatsoever!

Benign Cancellation

However, if input quantities are known to be exact, we have our usual guarantee on floating point ops (addition, subtraction, etc.):

$$w \oplus z = fl(w+z) = (w+z)(1+\delta).$$

Round-off Errors We've Seen

Adding large and small numbers (very different magnitudes).

- Smaller digits get lost or "swamped"!
- Rule of thumb: Try to sum numbers of approximately same size.

Subtracting nearby numbers that contain error.

- Loss of accuracy due to catastrophic cancellation.
- Rule of thumb: Try to reformulate computations to avoid cancellation.

Taylor series example, revisited

So what's the reason we observed that

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

performs so much worse than

$$e^{-x} = \frac{1}{e^x} = \frac{1}{1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots}$$

as an algorithm to evaluate $e^{-5.5}$ in FP?

Latter avoids alternating signs in the sums which lead to cancellation.

A Visualized Example of Cancellation Error

Compare: $f(x) = \frac{1-\cos^2 x}{x^2}$ and $g(x) = \frac{\sin^2 x}{x^2}$ near x = 0. True solution approaches 1 as $x \to 0$.

MATLAB plot with IEEE double precision (i.e., $\approx 15-17$ decimal digits).

FP Error: A Geometric Application Example

Do two line segments intersect?

A useful *robust* test for this must consider round-off error!

Both false positives or false negatives can occur.

e.g. "Epsilon geometry" [Guibas et al. 1989]

Sources of Error

When solving a problem numerically, there are many possible error sources:

- Round-off error due to FP representation and arithmetic.
- Truncation error eg. truncating a Taylor series after n terms.
- Uncertainty/error in the input itself (e.g. from measurements).
- Error/approximation in our mathematical model of the "real" problem.

We will (continue to) focus largely on the first two.

Conditioning of Problems

Problems may be *ill-conditioned* or *well-conditioned*.

For problem P, with input I and output O, if a change to the input, ΔI , gives a "small" change in the output ΔO , P is well-conditioned. Otherwise, P is ill-conditioned.

This is a property of the problem, independent of any specific implementation (algorithm or hardware).

Conditioning is relative; there's a "sliding scale".

Stability of an *Algorithm*

If any initial error in the data is magnified by an algorithm, the algorithm is considered numerically unstable.

Can lead to meaningless results, for *seemingly* reasonable methods on reasonable problems.

Conditioning v.s. Stability

Conditioning of a problem:

How sensitive is the problem itself to errors/changes in input?

Stability of a numerical algorithm:

How sensitive is the algorithm to errors/changes in input?

Note that:

- 1. An algorithm can be unstable even for a well-conditioned problem!
- 2. An ill-conditioned problem limits how well we can expect an algorithm to perform.

Stability Analysis of an Algorithm

Consider the integration problem

$$I_n = \int_0^1 \frac{x^n}{x + \alpha} dx$$

for a given n where α is some fixed parameter.

The course notes gives a recursive algorithm, for $n \geq 0$:

$$I_0 = \log \frac{1+\alpha}{\alpha}$$
, $I_n = \frac{1}{n} - \alpha I_{n-1}$.

Stability Analysis of an Algorithm

Hence that recurrence algorithm is *unstable* for solving $I_n = \int_0^1 \frac{x^n}{x+\alpha} dx$ for values of $|\alpha| > 1$.

e.g. if you code up this recurrence in C / Matlab / etc.:

$$I_{100} = 6.64 \times 10^{-3} \text{ for } \alpha = 0.5$$
 Correct!

$$I_{100} = 2.1 \times 10^{22} \text{ for } \alpha = 2.0$$
 Wrong!

Summary of FP

- F is not $\mathbb{R}!$
- We can use **round-off error analysis** to bound the errors incurred by floating point operations.
- We can analyze whether initial errors grow or shrink to determine the **stability** of algorithms.

Further reading on FP [Optional]

"What Every Computer Scientist Should Know About Floating-Point Arithmetic", by David Goldberg, 1991.

Appendix D

What Every Computer Scientist Should Know About Floating-Point Arithmetic

Note – This appendix is an edited reprint of the paper *What Every Computer Scientist Should Know About Floating-Point Arithmetic*, by David Goldberg, published in the March, 1991 issue of Computing Surveys. Copyright 1991, Association for Computing Machinery, Inc., reprinted by permission.

Abstract

Floating-point arithmetic is considered an esoteric subject by many people. This is rather surprising because floating-point is ubiquitous in computer systems. Almost every language has a floating-point datatype; computers from PCs to supercomputers have floating-point accelerators; most compilers will be called upon to compile floating-point algorithms from time to time; and virtually every operating system must respond to floating-point exceptions such as overflow. This paper presents a tutorial on those aspects of floating-point that have a direct impact on designers of computer systems. It begins with background on floating-point representation and rounding error, continues with a discussion of the IEEE floating-point standard, and concludes with numerous examples of how computer builders can better support floating-point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organization]: General -- instruction set design; D.3.4 [Programming Languages]: Processors -- compilers, optimization; G.1.0 [Numerical Analysis]: General -- computer arithmetic, error analysis, numerical algorithms (Secondary)

D.2.1 [Software Engineering]: Requirements/Specifications -- languages; D.3.4 Programming Languages]: Formal Definitions and Theory -- semantics; D.4.1 Operating Systems]: Process Management -- synchronization.

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Denormalized number, exception, floating-point, floating-point standard, gradual underflow, guard digit, NaN, overflow, relative error, rounding error, rounding mode, ulp, underflow.

Neat Tool: "Herbie"

Some researchers developed a tool to automatically rearrange expressions to reduce FP error: http://herbie.uwplse.org/demo/

http://herbie.uwplse.org/demo/

Herbie web demo

See the main page for more info on Herbie.

Enter a formula below, hit Enter, and Herbie will try to improve it.

$$sqrt(x + 1) - sqrt(x)$$