Gestion d'un aéroport

Coloriage de graphes d'intervalles

Pourquoi un tel sujet?

1518ha!

(> 2100 terrains de foot)

Impact écologique, territorial, économique

Aéroport Hartsfield-Jackson, Atlanta (USA)

Présentation du problème

1. Modélisation

2. Théorie et implémentation

3. Analyse des résultats

Comment représenter l'activité d'un aéroport ?

Definition (Graphe d'intervalle)

Soit $I = I_1, \dots, I_n$ un ensemble d'intervalles.

Le graphe d'intervalles G = (V, E) correspondant est défini par:

- ightharpoonup V = I (sommets = intervalles)
- ▶ $\forall (\alpha, \beta) \in [|1, n|], (I_{\alpha}, I_{\beta}) \in E \iff I_{\alpha} \cap I_{\beta} \neq \emptyset$ (deux intervalles sont reliés dans le graphe si et seulement si leur intersection est non nulle)

Comment représenter l'activité d'un aéroport ?

Activité sur une journée de l'aéroport SXB

Comment représenter l'activité d'un aéroport ?

Théorie et implémentation

Comment colorier un graphe d'intervalles ?

Coloriage: algorithme glouton

- Définir un ordre de parcours O = v1,...,vn
- Appliquer l'algorithme glouton

- Important: on trie les sommets par ordre croissant d'arrivée
- complexité: O(|V|log|V|)
 (tri des sommets)

```
algorithm greedy_color(G,O);
begin
for v := v_1 to v_n do
give vertex v the smallest possible color;
end;
```


L'algorithme glouton est optimal sur les graphes d'intervalles

Idée de la preuve:

L'algorithme glouton est optimal sur les graphes d'intervalles

Idée de la preuve:

Résultat avec l'algorithme glouton

Ajouts de nouveaux avions

Problème:

On souhaite trouver des créneaux pour ajouter des vols au planning

Modélisation:

On cherche les intervalles à ajouter au graphe qui n'augmenteront pas le nombre chromatique

Méthode proposée

Recherche pour chacune des composantes connexes d'intervalles n'augmentant pas la coloration

Ne fonctionne que si l'intersection est non vide → pistes d'améliorations

Résultats de l'algorithme

Intervalles obtenus:

- 6h40 7h
- 20h20-20h25

Les résultats obtenus ne sont pas satisfaisants si on considère que l'avion doit passer 30 min au sol

Analyse de résultats

L'aéroport est-il "correctement dimensionné" ?

Prise en compte des retards

On regarde les retards entre 0 et 2h20 sur chaque vol

Résultats :

- Le nombre chromatique maximal est de 4
- Les vols à risques de surcharge sont les
 3, 4, 5, 6, 9, 10, 11, 12, 13, 17, 18 et 19
- Il n'y a surcharge qu'après un retard d'1h05 au minimum

Vue satellite de l'aéroport de Strasbourg

Merci

pour votre attention!