

# Audit Report OpenSearchAl

May 2024

Network ETH

Address 0x07EcdBf993Ed0925dd024C8FF1BD15871fcfee38

Audited by © cyberscope



# **Analysis**

CriticalMediumMinor / InformativePass

| Severity | Code | Description             | Status |
|----------|------|-------------------------|--------|
| •        | ST   | Stops Transactions      | Passed |
| •        | OTUT | Transfers User's Tokens | Passed |
| •        | ELFM | Exceeds Fees Limit      | Passed |
| •        | MT   | Mints Tokens            | Passed |
| •        | ВТ   | Burns Tokens            | Passed |
| •        | ВС   | Blacklists Addresses    | Passed |



## **Diagnostics**

CriticalMediumMinor / Informative

| Severity | Code | Description                                | Status     |
|----------|------|--------------------------------------------|------------|
| •        | PLPI | Potential Liquidity Provision Inadequacy   | Unresolved |
| •        | IDI  | Immutable Declaration Improvement          | Unresolved |
| •        | L02  | State Variables could be Declared Constant | Unresolved |
| •        | L09  | Dead Code Elimination                      | Unresolved |
| •        | L11  | Unnecessary Boolean equality               | Unresolved |



## **Table of Contents**

| Analysis                                         | 1  |
|--------------------------------------------------|----|
| Diagnostics                                      | 2  |
| Table of Contents                                | 3  |
| Review                                           | 4  |
| Audit Updates                                    | 4  |
| Source Files                                     | 4  |
| Findings Breakdown                               | 5  |
| PLPI - Potential Liquidity Provision Inadequacy  | 6  |
| Description                                      | 6  |
| Recommendation                                   | 6  |
| IDI - Immutable Declaration Improvement          | 8  |
| Description                                      | 8  |
| Recommendation                                   | 8  |
| L02 - State Variables could be Declared Constant | 9  |
| Description                                      | 9  |
| Recommendation                                   | 9  |
| L09 - Dead Code Elimination                      | 10 |
| Description                                      | 10 |
| Recommendation                                   | 10 |
| L11 - Unnecessary Boolean equality               | 12 |
| Description                                      | 12 |
| Recommendation                                   | 12 |
| Functions Analysis                               | 13 |
| Inheritance Graph                                | 14 |
| Flow Graph                                       | 15 |
| Summary                                          | 16 |
| Disclaimer                                       | 17 |
| About Cyberscope                                 | 18 |



## **Review**

| Contract Name     | OpenSearchAl                                                                |
|-------------------|-----------------------------------------------------------------------------|
| Compiler Version  | v0.8.17+commit.8df45f5f                                                     |
| Optimization      | 200 runs                                                                    |
| Explorer          | https://etherscan.io/address/0x07EcdBf993Ed0925dd024C8FF1<br>BD15871fcfee38 |
| Address           | 0x07EcdBf993Ed0925dd024C8FF1BD15871fcfee38                                  |
| Network           | ETH                                                                         |
| Symbol            | osAl                                                                        |
| Decimals          | 18                                                                          |
| Total Supply      | 1,000,000                                                                   |
| Badge Eligibility | Yes                                                                         |

## **Audit Updates**

#### **Source Files**

| Filename         | SHA256                                                               |
|------------------|----------------------------------------------------------------------|
| OpenSearchAl.sol | 7c169ef8298bbeb68650d76733b4f75fd36b05860fa9245c06eedd3a826<br>f9ddc |



# **Findings Breakdown**



| Sev | rerity              | Unresolved | Acknowledged | Resolved | Other |
|-----|---------------------|------------|--------------|----------|-------|
| •   | Critical            | 0          | 0            | 0        | 0     |
| •   | Medium              | 0          | 0            | 0        | 0     |
| •   | Minor / Informative | 5          | 0            | 0        | 0     |



#### **PLPI - Potential Liquidity Provision Inadequacy**

| Criticality | Minor / Informative   |
|-------------|-----------------------|
| Location    | OpenSearchAl.sol#L349 |
| Status      | Unresolved            |

#### Description

The contract operates under the assumption that liquidity is consistently provided to the pair between the contract's token and the native currency. However, there is a possibility that liquidity is provided to a different pair. This inadequacy in liquidity provision in the main pair could expose the contract to risks. Specifically, during eligible transactions, where the contract attempts to swap tokens with the main pair, a failure may occur if liquidity has been added to a pair other than the primary one. Consequently, transactions triggering the swap functionality will result in a revert.

#### Recommendation

The team is advised to implement a runtime mechanism to check if the pair has adequate liquidity provisions. This feature allows the contract to omit token swaps if the pair does not have adequate liquidity provisions, significantly minimizing the risk of potential failures.

Furthermore, the team could ensure the contract has the capability to switch its active pair in case liquidity is added to another pair.

Additionally, the contract could be designed to tolerate potential reverts from the swap functionality, especially when it is a part of the main transfer flow. This can be achieved by



executing the contract's token swaps in a non-reversible manner, thereby ensuring a more resilient and predictable operation.



#### **IDI - Immutable Declaration Improvement**

| Criticality | Minor / Informative               |
|-------------|-----------------------------------|
| Location    | OpenSearchAl.sol#L269,270,277,295 |
| Status      | Unresolved                        |

#### Description

The contract declares state variables that their value is initialized once in the constructor and are not modified afterwards. The <u>immutable</u> is a special declaration for this kind of state variables that saves gas when it is defined.

marketingWallet
stakingRevShareWallet
uniswapV2Pair
swapTokensAtAmount

#### Recommendation

By declaring a variable as immutable, the Solidity compiler is able to make certain optimizations. This can reduce the amount of storage and computation required by the contract, and make it more gas-efficient.



#### L02 - State Variables could be Declared Constant

| Criticality | Minor / Informative               |
|-------------|-----------------------------------|
| Location    | OpenSearchAl.sol#L249,250,253,258 |
| Status      | Unresolved                        |

#### Description

State variables can be declared as constant using the constant keyword. This means that the value of the state variable cannot be changed after it has been set. Additionally, the constant variables decrease gas consumption of the corresponding transaction.

#### Recommendation

Constant state variables can be useful when the contract wants to ensure that the value of a state variable cannot be changed by any function in the contract. This can be useful for storing values that are important to the contract's behavior, such as the contract's address or the maximum number of times a certain function can be called. The team is advised to add the constant keyword to state variables that never change.



#### L09 - Dead Code Elimination

| Criticality | Minor / Informative   |
|-------------|-----------------------|
| Location    | OpenSearchAl.sol#L190 |
| Status      | Unresolved            |

#### Description

In Solidity, dead code is code that is written in the contract, but is never executed or reached during normal contract execution. Dead code can occur for a variety of reasons, such as:

- Conditional statements that are always false.
- Functions that are never called.
- Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also increase the size of the contract and the cost of deploying and interacting with it.

```
function _burn(address account, uint256 amount) internal virtual {
    require(account != address(0), "ERC20: burn from the zero
address");

    _beforeTokenTransfer(account, address(0), amount);

    uint256 accountBalance = _balances[account];
...
}
_totalSupply -= amount;

emit Transfer(account, address(0), amount);

_afterTokenTransfer(account, address(0), amount);
}
```

#### Recommendation



To avoid creating dead code, it's important to carefully consider the logic and flow of the contract and to remove any code that is not needed or that is never executed. This can help improve the clarity and efficiency of the contract.



#### L11 - Unnecessary Boolean equality

| Criticality | Minor / Informative   |
|-------------|-----------------------|
| Location    | OpenSearchAl.sol#L388 |
| Status      | Unresolved            |

#### Description

Boolean equality is unnecessary when comparing two boolean values. This is because a boolean value is either true or false, and there is no need to compare two values that are already known to be either true or false.

it's important to be aware of the types of variables and expressions that are being used in the contract's code, as this can affect the contract's behavior and performance. The comparison to boolean constants is redundant. Boolean constants can be used directly and do not need to be compared to true or false.

```
_isExcludedFromMaxWalletLimit[from] == false &&
    __isExcludedFromMaxWalletLimit[to] == false &&
    to != uniswapV2Pair && from == uniswapV2Pair
```

#### Recommendation

Using the boolean value itself is clearer and more concise, and it is generally considered good practice to avoid unnecessary boolean equalities in Solidity code.



# **Functions Analysis**

| Contract     | Туре           | Bases             |            |           |
|--------------|----------------|-------------------|------------|-----------|
|              | Function Name  | Visibility        | Mutability | Modifiers |
|              |                |                   |            |           |
| OpenSearchAl | Implementation | ERC20,<br>Ownable |            |           |
|              |                | Public            | ✓          | ERC20     |
|              |                | External          | Payable    | -         |
|              | sendFees       | Internal          | 1          |           |
|              | reduceFee      | External          | ✓          | onlyOwner |
|              | enableTrading  | External          | ✓          | onlyOwner |
|              | _transfer      | Internal          | ✓          |           |



# **Inheritance Graph**





## Flow Graph





## **Summary**

OpenSearchAl contract implements a token mechanism. This audit investigates security issues, business logic concerns and potential improvements. OpenSearchAl is an interesting project that has a friendly and growing community. The Smart Contract analysis reported no compiler error or critical issues. The contract Owner can access some admin functions that can not be used in a malicious way to disturb the users' transactions. The fees are set at 5% for buy and sell transactions.

The contract's ownership has been renounced. The information regarding the transaction can be accessed through the following link:

https://etherscan.io/tx/0x463876c645a6f20ec9303885571c502259369ed48610b87c91592fdcc9a906bb



#### **Disclaimer**

The information provided in this report does not constitute investment, financial or trading advice and you should not treat any of the document's content as such. This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may copies be delivered to any other person other than the Company without Cyberscope's prior written consent. This report is not nor should be considered an "endorsement" or "disapproval" of any particular project or team. This report is not nor should be regarded as an indication of the economics or value of any "product" or "asset" created by any team or project that contracts Cyberscope to perform a security assessment. This document does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors' business, business model or legal compliance. This report should not be used in any way to make decisions around investment or involvement with any particular project. This report represents an extensive assessment process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk Cyberscope's position is that each company and individual are responsible for their own due diligence and continuous security Cyberscope's goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies and in no way claims any guarantee of security or functionality of the technology we agree to analyze. The assessment services provided by Cyberscope are subject to dependencies and are under continuing development. You agree that your access and/or use including but not limited to any services reports and materials will be at your sole risk on an as-is where-is and as-available basis Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could include false positives false negatives and other unpredictable results. The services may access and depend upon multiple layers of third parties.

## **About Cyberscope**

Cyberscope is a blockchain cybersecurity company that was founded with the vision to make web3.0 a safer place for investors and developers. Since its launch, it has worked with thousands of projects and is estimated to have secured tens of millions of investors' funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has built a high-profile network of clients and partners.



The Cyberscope team

https://www.cyberscope.io