Дополнительное задание №2

Изучение команд сопроцессора FPU (x86)

Цель работы: познакомиться с архитектурой и системой команд математического сопроцессора FPU (floating point unit) процессоров семейства x86.

1 Краткие теоретические сведения

1.1 **Архитектура FPU**

Арифметический сопроцессор (FPU) расширяет сферы применения процессо-ра (CPU) на область математических расчетов, в которых требуется очень широкий диапазон и высокая точность представления чисел.

FPU имеет стековую организацию, удобную для организации вычислений. В FPU результат операции может часто заместить один или несколько исходных опе-рандов и может служить операндом следующей команды.

Рисунок 1 – Стек регистров процессора FPU

Стек регистров в FPU имеет кольцевую организацию. За правильное использование стека отвечает программист. В частности нужно помнить, что максимальное число данных, которое можно хранить в стеке одновременно равно 8 (восьми).

1.2 Команды FPU

Перечень команд FPU можно найти в книге:

Юров В.И. Assembler. Учебник для вузов / СПб.: Питер, 2003. – 637 с.

Особенность команд сопроцессора в том, что все они начинаются с буквы «f». Ниже приведен неполный перечень наиболее часто используемых команд FPU.

Название	Действие
finit	устанавливает во всех управляющих регистрах FPU значение по
	умолчанию
fld mem	помещает переменную mem в вершину стека FPU ST(0)
fst mem	копирует значение из вершины стека в переменную тет.
fstp mem	копирует значение из вершины стека в переменную тет, но далее
	выталкивает это значение из стека.
fxch	Меняет местами содержимого ST(0) и ST(1).

fadd	ST(0)=ST(0)+ST(1). Сохраняется только результат на вершине стека
fsub	ST(0)=ST(0)-ST(1). Сохраняется только результат на вершине стека
fmul	ST(0)=ST(0)*ST(1). Сохраняется только результат на вершине стека.
fdiv ST(0),ST(i)	ST(0)=ST(0)/ST(i). Сохраняется только результат на вершине стека.
fsqrt	Извлечение квадратного корня из ST(0).
fsin/fcos	Вычисление синуса/косинуса от аргумента хранящегося в ST(0).
	Полагается, что в ST(0) хранится радианная мера угла.
frndint	Округляет операнд, находящийся в ST(0), до ближайшего целого
	числа.
fscale	$ST(0) = ST(0) * 2^{RoundTowardZero ST(1)}$
fyl2x	$ST(0) = ST(1)*log_2 ST(0)$. Операнд в $ST(0)$ должен быть ненулевым
	положительным числом
f2xm1	$ST(0) = 2^{ST(0)} - 1$. Значение $ST(0)$ должно находится в диапазоне [-1;
	1].

Ниже приведён пример использования команд FPU:

```
void main () {
  float a,b,c;
  a = 1;
  b = 2;
  _asm{
    finit
    fld a
    fld b
    fadd
    fst c
}
printf("%3.2f + %3.2f = %3.2f \n",a,b,c);
getch();
}
```

Чтобы войти в режим отладки (Debug) и просмотреть содержимое регистров FPU необходимо:

- 1) поставить точку останова (F9) на строке finit
- 2) запустить программу в режиме отладки (F5)
- 3) открыть окно дизассемблера (Debug->Window->Disassembly)
- 4) открыть окно с регистрами процессора (Debug->Window->Registers)
- 5) далее программу можно выполнять в пошаговом режиме с помощью кла-виши F10.

1.3 Вычисление функции *х*^у

В системе команд FPU нет команды для вычисления функции x^y . В этом разделе дается совет, как используя имеющиеся команды вычислить эту функцию. Итак, нет команды, чтобы возвести произвольное число x в произвольную степень y, но есть команда для возведения 2-ки в заданную степень (f2xm1). Поэтому необходимо сделать следующий математический переход:

$$x^{y} = 2^{y * \log_{2} x} = 2^{a}$$
, где $a = y * \log_{2} x$

Далее мы сталкиваемся с той неприятностью, что f2xm1 работает только, когда степень в которую возводится двойка лежит в диапазоне от -1 до 1. Поэтому нам необходимо число представить в виде суммы целой и дробной части:

$$a = a_{\text{дробная часть}} + a_{\text{целая часть}}$$

Получить целую часть числа a можно командой frndint, тогда дробная часть числа легко вычисляется: $a_{\rm дробная\ часть} = a - a_{\rm целая\ часть}$.

Таким образом, мы приходим к следующему алгоритму вычисления функции $z = x^y$:

- 1. Вычислить $a = y * \log_2 x$ (команда fyl2x);
- 2. Найти $a_{\text{дробная часть}}$ и $a_{\text{целая часть}}$;
- 3. Вычислить $z_1 = 2^{a_{\text{дробная часть}}}$ (при помощи команды f2xm1)
- 4. Вычислить $z_2=2^{a_{\rm целая\, часть}}$ (при помощи функции fscale)
- 5. Вычислить $z = z_1 + z_2$.

2 Выполнение лабораторной работы

2.1 Задание на лабораторную работу

В данной лабораторной работе необходимо реализовать программу вычисления значения функции с использованием команд FPU двумя способами: на языке C++ и с помощью ассемблерной вставки. Значение функции необходимо определить для 10 значений аргумента функции, а результат отобразить в виде следующей форматированной таблицы:

Значение $x \mid R(x,y)$ ассемблер $\mid R(x,y) \mid C++ \mid P$ азность: R(x,y) ассемблер - $R(x,y) \mid C++ \mid R(x,y) \mid R($

$$R = \frac{\cos(y)}{x \cdot \log(x+1)} \cdot \sin(y) \cdot \sqrt{x^{y-1} - \exp(y) - tg\left(\frac{\sqrt{y}}{x}\right) - 2^{x-1}}$$

3 Результаты выполнения лабораторной работы

В результате выполнения данной лабораторной работы необходимо составить отчёт, содержащий следующие пункты:

- 1) Титульный лист
- 2) Цель лабораторной работы
- 3) Индивидуальное задание
- 4) Ход выполнения лабораторной работы (код программы)
- 5) Результаты выполнения лабораторной работы (скриншоты)
- 6) Выводы