EE247 Lecture 25

Administrative

-EE247 Final exam:

Date: Sat. Dec.13thTime: 5 to 8pm

Location: 203 MCL (same as class)

- · Closed course notes/books
- No calculators/cell phones/PDAs/computers
- Bring two 8x11 paper with your own notes
- Final exam covers the entire course material unless specified otherwise

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 1

EE247 Lecture 25

Oversampled ADCs (continued)

- -2^{nd} order $\Sigma\Delta$ modulator
 - Practical implementation
 - Effect of various building block nonidealities on the $\Sigma\Delta$ performance
 - · Integrator maximum signal handling capability
 - · Integrator finite DC gain
 - · Comparator hysteresis
 - · Integrator non-linearity
 - · Effect of KT/C noise
 - · Finite opamp bandwidth
 - Opamp slew limited settling Implementation example
- -Higher order $\Sigma\Delta$ modulators
 - Cascaded modulators (multi-stage)
 - Single-loop single-quantizer modulators with multi-order filtering in the forward path

EECS 247 Lecture 25

Oversampled ADCs

2^{nd} Order $\Sigma\Delta$ Modulator Example

- · Digital audio application
 - Signal bandwidth 20kHz
 - Desired resolution 16-bit

$$16 - bit \rightarrow 98 dB$$
 Dynamic Range $DR_{2nd \ order \Sigma\Delta} = -11.1dB + 50 \log M$ $M_{min} = 153$

 $M \rightarrow 256=2^8 (\rightarrow DR=109dB)$ two reasons:

- 1. Allow some margin so that thermal noise dominate & provides dithering to minimize level of in-band limit cycle oscillation
- 2. Choice of *M* power of $2 \rightarrow$ ease of digital filter implementation

 \rightarrow Sampling rate (2x20kHz + 5kHz)M = 12MHz (quite reasonable!)

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 3

Limit Cycle Tones in 1st Order & 2^{nd} Order $\Sigma\Delta$ Modulator

- Higher oversampling ratio
 → lower tones
- 2nd order tones much lower compared to 1st
- 2X increase in M decreases the tones by 6dB for 1st order loop and 12dB for 2nd order loop

Ref: B. P. Brandt, et al., "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.
 R. Gray, "Spectral analysis of quantization noise in a single-loop sigma-delta modulator with dc input," IEEE Trans. Commun., vol. 37, pp. 588-599, June 1989.

EECS 247 Lecture 25

Oversampled ADCs

$\Sigma\Delta$ Implementation Practical Design Considerations

- Internal node scaling & clipping
- Effect of finite opamp gain & linearity
- KT/C noise
- Opamp noise
- · Effect of comparator nonidealities
- Power dissipation considerations

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 5

Switched-Capacitor Implementation 2^{nd} Order $\Sigma\Delta$ Nodes Scaled for Maximum Dynamic Range

- Modification (gain of ½ in front of integrators) reduce & optimize required signal range at the integrator outputs \sim 1.7x input full-scale (Δ)
- Note: Non-idealities associated with 2nd integrator and quantizer when referred to the $\Sigma\Delta$ input is attenuated by 1st integrator high gain
 - → The only building block requiring low-noise and high accuracy is the 1st integrator

Ref: B.E. Boser and B.A. Wooley, "The Design of Sigma-Delta Modulation A/D Converters," IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

EECS 247 Lecture 25

Oversampled ADCs

Design Phase Simulations

- Design of oversampled ADCs requires simulation of extremely long data traces due to the oversampled nature of the system
- SPICE type simulators:
 - -Normally used to test for gross circuit errors only
 - -Too slow for detailed performance verification
- Typically, behavioral modeling is used in MATLAB-like environments
- Circuit non-idealities either computed or found by using SPICE at subcircuit level
- Non-idealities introduced in the behavioral model one-by-one first to fully understand the effect of each individually
- Next step is to add as many of the non-idealities simultaneously as possible to verify whether there are interaction among non-idealities

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 11

Example: Testing $\Sigma\Delta$ ADC

Note:

The Nyquist ADC tests such as INL and DNL test do not apply to $\Sigma\Delta$ modulator type ADCS

 $\Sigma\Delta$ testing is performed via SNDR as a function of input signal level

EECS 247 Lecture 25

Oversampled ADCs

2^{nd} Order $\Sigma\Delta$

Effect of 1st Integrator Maximum Signal Handling Capability on SNR

Effect of 1st Integrator maximum signal handling capability on converter SNR
 → No SNR loss for max. sig. handling >1.7∆

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 13

2^{nd} Order $\Sigma\Delta$

Effect of 2nd Integrator Maximum Signal Handling Capability on SNR

• Effect of 2nd Integrator maximum signal handling capability on SNR \rightarrow No SNR loss for max. sig. handling >1.7 Δ

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247 Lecture 25

Oversampled ADCs

$2^{\text{nd}} \ \text{Order} \ \Sigma \Delta$ Effect of Integrator Finite DC Gain

$$H(z)_{ideal} = \frac{Cs}{CI} \times \frac{z^{-1}}{1 - z^{-1}}$$

$$H(z)_{Finit DC Gain} = \frac{Cs}{CI} \times \frac{\left(\frac{a}{1 + a + \frac{Cs}{CI}}\right)^{z^{-1}}}{1 - \left(\frac{1 + a}{1 + a + \frac{Cs}{CI}}\right)^{z^{-1}}}$$

$$\to H(DC) = a$$

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 15

$$2^{nd}$$ Order $\Sigma\Delta$ Effect of Integrator Finite DC Gain

 Note: Quantization transfer function wrt output has integrator in the feedback path:

$$\begin{split} &\frac{Dout}{e_Q} = \frac{1}{I + H(\omega)} \\ &\rightarrow @\ DC\ for\ ideal\ integ:\ \frac{Dout}{e_Q} = 0 \\ &\rightarrow @\ DC\ for\ real\ integ:\ \frac{Dout}{e_Q} \approx \frac{1}{a} \end{split}$$

EECS 247 Lecture 25

Oversampled ADCs

$1^{st}~\&~2^{nd}~Order~\Sigma\Delta$ Effect of Integrator Finite DC Gain

- Low integrator DC gain → Increase in total in-band quantization noise
- Can be shown: If a > M (oversampling ratio) \rightarrow Insignificant degradation in SNR
- Normally DC gain designed to be >> M in order to suppress nonlinearities

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 17

$2^{nd} \ Order \ \Sigma \Delta$ Effect of Integrator Finite DC Gain

• Example: $a = 2M \rightarrow 0.4$ dB degradation in SNR $a = M \rightarrow 1.4$ dB degradation in SNR

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247 Lecture 25

Oversampled ADCs

$2^{nd}\ Order\ \Sigma\Delta$ Effect of Comparator Non-Idealities on $\Sigma\Delta$ Performance

1-bit A/D → Single comparator

- Speed must be adequate for the operating sampling rate
- Input referred offset- feedback loop & high DC intg. gain suppresses the effect
 - $\rightarrow \Sigma\Delta$ performance quite insensitive to comparator offset
- · Input referred comparator noise- same as offset
- · Hysteresis= Minimum overdrive required to change the output

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 19

2^{nd} Order $\Sigma\Delta$ Comparator Hysteresis

Hysteresis= Minimum overdrive required to change the output

1-bit A/D

EECS 247 Lecture 25

Oversampled ADCs

- \rightarrow Comparator hysteresis < $\Delta/25$ does not affect SNR
- \rightarrow E.g. Δ =1V, comparator hysteresis up to 40mV tolerable

Key Point: One of the main advantages of $\Sigma\Delta$ ADCS \Rightarrow Highly tolerant of comparator and in general building-block non-idealities

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 21

$2^{nd} \ Order \ \Sigma \Delta$ Effect of Integrator Nonlinearities

With non-linearity added:

$$v(kT+T) = u(kT) + \alpha_2 [u(kT)]^2 + \alpha_3 [u(kT)]^3 \dots + v(kT) + \beta_2 [v(kT)]^2 + \beta_3 [v(kT)]^3 + \dots$$

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247 Lecture 25

Oversampled ADCs

$2^{nd} \ Order \ \Sigma \Delta$ Effect of Integrator Nonlinearities (Single-Ended)

- · Simulation for single-ended topology
- Even order nonlinearities can be significantly attenuated by using differential circuit topologies

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 23

$$2^{nd}$$ Order $\Sigma\Delta$ Effect of Integrator Nonlinearities

- · Simulation for single-ended topology
- Odd order nonlinearities (3rd in this case)

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247 Lecture 25

Oversampled ADCs

$2^{nd} \ Order \ \Sigma \Delta$ Effect of Integrator Nonlinearities

- Odd order nonlinearities (usually 3rd) could case significant loss of SNR for high resolution oversampled ADCs
- Two significant source of non-linearities:
 - Non-linearities associated with opamp used to build integrators
 - Opamp open-loop non-linearities are suppressed by the loopgain since there is feedback around the opamp
 - Class A opamps tend to have lower open loop gain but more linear output versus input transfer characteristic
 - Class A/B opamps typically have higher open loop gain but non-linear transfer function. At times this type is preferred for $\Sigma\Delta$ AFE due to its superior slew rate compared to class A type
 - Integrator capacitor non-linearites
 - Poly-Sio2-Poly capacitors → non-linearity in the order of 10ppm/V
 - Metal-Sio2-Metal capacitors ~ 1ppm/V

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 25

$2^{nd} \ Order \ \Sigma \Delta$ Effect of Integrator KT/C noise

$$\overline{v_n^2} = \frac{2KT}{Cs}$$

$$\overline{v_n^2} / f = 2\frac{kT}{Cs} \times \frac{1}{fs/2} = 4\frac{kT}{Cs \times fs}$$

Total in-band noise:

$$\overline{v_n^2}_{input-referred} = 4 \frac{kT}{Cs \times fs} \times f_B$$

$$= \frac{2kT}{Cs \times M}$$

- For the example of digital audio with 16-bit (96dB) & M=256 (110dB SQNR)
 - $\rightarrow Cs = 1pF \rightarrow 7\mu Vrms$ noise
 - \rightarrow If V_{FS} =2 V_{p-p-d} then thermal noise @ -101dB \rightarrow degrades overall SNR by ~10dB
 - → Cs=1pF, Cl=2pF → much smaller capacitor area (~1/M) compared to Nyquist ADC
 - →Since thermal noise provides some level of dithering → better not choose much larger capacitors!

EECS 247 Lecture 25

Oversampled ADCs

$2^{nd} \; Order \; \Sigma \Delta \\ Effect \; of \; Finite \; Opamp \; Bandwidth$

Assumptions:

Opamp → does not slew
Opamp has only one pole → exponential settling

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 27

2^{nd} Order $\Sigma\Delta$ Effect of Finite Opamp Bandwidth

 $\rightarrow \Sigma\Delta$ does not require high opamp bandwidth $T/\tau > 2$ or $f_u > 2f_s$ adequate Note: Bandwidth requirements significantly more relaxed compared to Nyquist rate ADCs Ref. B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247 Lecture 25

Oversampled ADCs

2^{nd} Order $\Sigma\Delta$ Implementation Example: Digital Audio Application

- In Ref.: 5V supply, Δ = 4Vp-p-d, f_s=12.8MHz→ M=256 → theoretical quantization noise @-110dB
- Minimum capacitor values computed based on -104dB noise wrt maximum signal
 - \rightarrow Max. inband KT/C noise = $7\mu Vrms$ (thermal noise dominates \rightarrow provide dithering & reduce limit cycle oscillations)
 - $\rightarrow C1 = (2kT)/(M v_n^2) = 1pF$ C2 = 2C1

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 31

2^{nd} Order $\Sigma\Delta$ Implementation Example: Integrator Opamp

- Class A/B type opamp → High slew-rate
- S.C. common-mode feedback
- Input referred noise (both thermal and 1/f) important for high resolution performance
- Minimum required DC gain> Volume M=256, usually DC gain designed to be much higher to suppress nonlinearities (particularly, for class A/B amps)
- Minimum required slew rate of 1.2(∆.f_s) → 65V/usec
- Minimum opamp settling time constant → 1/2fs~30nsec

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991

EECS 247 Lecture 25

Oversampled ADCs

- Comparator → simple design
- Minimum acceptable hysteresis or offset (based on analysis) → ∆/25 ~ 160mV
- →Since offset requirement not stringent→ No preamp needed, basically a latch with reset

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 33

2^{nd} Order $\Sigma\Delta$ Implementation Example: Subcircuit Performance

Subcircuit Performance			Design Factor
Operational Amplifier DC gain Unity-gain frequency Slew rate Linear output range 6 V		minimum required DC Gain 48dB x8 (compensates non-linear open-loop gain) Unity-gain freq =2fs=25MHz x2 Slew rate = 65V/usec x5	
Sampling rate Integrator	12.8 MHz	Output range $1.7\Delta=6.8V!$	X0.9
Settling time constant Comparator Offset	7.25 risec	Settling time constant= 30nsec Comparator offset 160mV	x4

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247 Lecture 25

Oversampled ADCs

2^{nd} Order $\Sigma\Delta$ Implementation Example: Digital Audio Applications

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 35

$$2^{\rm nd}$$ Order $\Sigma\Delta$ Implementation Example: Digital Audio Applications

Measured Performance Summary

(Does Not Include Decimator)

98 dB (16 b)
94 dB
12.8 MHz
256
50 kHz
23 kHz
4 V
5 V
60 dB
13.8 mW
0.39 mm^2
1-μm CMOS

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247 Lecture 25

Oversampled ADCs

$$2^{\rm nd}$$ Order $\Sigma\Delta$ Implementation Example: Digital Audio Applications

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 37

$$2^{\rm nd}$$ Order $\Sigma\Delta$ Implementation Example: Digital Audio Applications

- ightarrow Measured & simulated spurious tones performance as a function of DC input signal
- → Sampling rate=12.8MHz, M=256

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247 Lecture 25

Oversampled ADCs

Sampling rate=12.8MHz, M=256

 \rightarrow Measured & simulated noise tone performance for near zero DC worst case input $\rightarrow 0.00088\Delta$

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 39

2^{nd} Order $\Sigma\Delta$ Implementation Example: Digital Audio Applications

- \rightarrow Measured & simulated worst-case noise tone @ DC input of 0.00088 Δ
- → Both indicate maximum tone @ 22.5kHz around -100dB level

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991

EECS 247 Lecture 25

Oversampled ADCs

Higher Order $\Sigma\Delta$ Modulator Dynamic Range $Y(z) = z^{-1}X(z) + (1-z^{-1})^L E(z)$, $L \to \Sigma\Delta$ order

$$Y(z) = z^{-1}X(z) + (1-z^{-1})^{L} E(z)$$
, $L \rightarrow \Sigma \Delta$ order

$$\overline{S_X} = \frac{1}{2} \left(\frac{\Delta}{2}\right)^2$$
 sinusoidal input, $STF = 1$

$$\overline{S_Q} = \frac{\pi^{2L}}{2L+1} \frac{1}{M^{2L+1}} \frac{\Delta^2}{12}$$

$$\frac{\overline{S_X}}{\overline{S_Q}} = \frac{3(2L+1)}{2\pi^{2L}} M^{2L+1}$$

$$DR = 10\log \left[\frac{3(2L+1)}{2\pi^{2L}} M^{2L+1} \right]$$

$$DR = 10 \log \left[\frac{3(2L+1)}{2\pi^{2L}} \right] + (2L+1) \times 10 \times \log M$$

2X increase in M \rightarrow (6L+3)dB or (L+0.5)-bit increase in DR

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 41

$\Sigma\!\Delta$ Modulator Dynamic Range As a Function of Modulator Order

• Potential stability issues for L >2

EECS 247 Lecture 25

Oversampled ADCs

Higher Order $\Sigma\Delta$ Modulators

- Extending $\Sigma\Delta$ Modulators to higher orders by adding integrators in the forward path (similar to 2nd order)
 - → Issues with stability
- Two different architectural approaches used to implement ΣΔ modulators with order >2
 - 1. Cascade of lower order modulators (multi-stage)
 - 2. Single-loop single-quantizer modulators with multi-order filtering in the forward path

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 43

Higher Order $\Sigma\Delta$ Modulators (1) Cascade of 2-Stages $\Sigma\Delta$ Modulators

- Main $\Sigma\Delta$ quantizes the signal
- The 1st stage quantization error is then quantized by the 2nd quantizer
- The quantized error is then subtracted from the results in the digital domain

EECS 247 Lecture 25

Oversampled ADCs

2^{nd} Order (1-1) Cascaded $\Sigma\Delta$ Modulators

$$\mathsf{Y}_1(z) = z^{-1}\mathsf{X}(z) + (1-z^{-1})\mathsf{E}_1(z)$$

$$Y_2(z) = z^{-1}E_1(z) + (1 - z^{-1})E_2(z)$$

$$Y(z) = z^{-1}Y_1(z) - (1 - z^{-1})Y_2(z)$$

$$=z^{-2}X(z)+z^{-1}(1-z^{-1})E_1(z)-z^{-1}(1-z^{-1})E_1(z)\\ -(1-z^{-1})^2E_2(z)$$

$$Y(z) = z^{-2}X(z) - (1 - z^{-1})^2E_2(z)$$

2nd order noise shaping

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 45

3^{rd} Order Cascaded $\Sigma\Delta$ Modulators (a) Cascade of 1-1-1 $\Sigma\Delta$ s

- Can implement 3rd order noise shaping with 1-1-1
- This is also called MASH (multi-stage noise shaping)

EECS 247 Lecture 25

Oversampled ADCs

3rd Order Cascaded $\Sigma\Delta$ Modulators (b) Cascade of 2-1 $\Sigma\Delta$ s

2nd order

ΣΔ

 e_1

Advantages of 2-1 cascade:

- · Low sensitivity to precision matching of analog/digital paths
- · Low spurious limit cycle tone levels
- · No potential instability

 $\mathsf{Y}_1(\mathsf{z}) = \mathsf{z}^{-2} \mathsf{X}(\mathsf{z}) + (1-\mathsf{z}^{-1})^2 \mathsf{E}_1(\mathsf{z})$ $\mathsf{Y}_2(\mathsf{z}) = \mathsf{z}^{-1}\mathsf{E}_1(\mathsf{z}) + (1-\mathsf{z}^{-1})\mathsf{E}_2(\mathsf{z})$

> $Y(z) = z^{-1}Y_1(z) - (1 - z^{-1})^2Y_2(z)$ $=z^{-3}X(z)+z^{-1}(1-z^{-1})^2E_1(z)-z^{-1}(1-z^{-1})^2E_1(z)$ $-(1-z^{-1})^3E_2(z)$

1st order

ΣΔ

3rd order noise shaping

$$Y(z) = z^{-3}X(z) - (1 - z^{-1})^3E_2(z)$$

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 47

Error Cancellation

 y_2

Sensitivity of Cascade of (1-1-1) $\Sigma\Delta$ Modulators to Matching of Analog & Digital Paths

EECS 247 Lecture 25

Oversampled ADCs

Sensitivity of Cascade of (2-1) $\Sigma\Delta$ Modulators to Matching Error

Main advantage of 2-1 cascade compared to 1-1-1 topology:

• Low sensitivity to matching of analog/digital paths (in excess of one order of magnitude less sensitive compared to (1-1-1)!)

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 49

Comparison of 2^{nd} order & Cascaded (2-1) $\Sigma\!\Delta$ Modulator

Digital Audio Application, $f_N = 50kHz$				
(Does not include Decimator)				
Reference	Brandt ,JSSC 4/91	Williams, JSSC 3/94		
Architecture	2 nd order	(2+1) Order		
Dynamic Range	98dB (16-bits)	104dB (17-bits)		
Peak SNDR	94dB	98dB		
Oversampling rate	256 (theoretical → SNR=109dB)	128 (theoretical → SNR=128dB)		
Differential input	4Vppd	8Vppd		
range	5V supply	5V supply		
Power Dissipation	13.8mW	47.2mW		
Active Area	0.39mm ² (1μ tech.)	5.2mm ² (1μ tech.)		

EECS 247 Lecture 25

Oversampled ADCs

Higher Order $\Sigma\Delta$ Modulators (1) Cascaded Modulators Summary

- Cascade two or more stable $\Sigma\!\Delta$ stages
- Quantization error of each stage is quantized by the succeeding stage and subtracted digitally
- Order of noise shaping equals sum of the orders of the stages
- Quantization noise cancellation depends on the precision of analog/digital signal paths
- Quantization noise further randomized → less limit cycle oscillation problems
- Typically, no potential instability

EECS 247 Lecture 25

Oversampled ADCs

$\begin{array}{c} \text{Higher Order } \Sigma\Delta \text{ Modulators} \\ \text{(2) Multi-Order Filter} \end{array}$

- Zeros of NTF (poles of H(z)) can be strategically positioned to suppress in-band noise spectrum
- Approach: Design NTF first and solve for H(z)

EECS 247 Lecture 25

Oversampled ADCs

© 2008 H.K. Page 53

Example: Modulator Specification

- · Example: Audio ADC

 - Sampling frequency f_s
 2.822 MHz
- The order L and oversampling ratio M are chosen based on
 - SQNR > 120dB

EECS 247 Lecture 25

Oversampled ADCs