OPERATING SYSTEMS LECTURE – 1 INTRODUCTION

K.ARIVUSELVAN

Assistant Professor (Senior) – (SITE)

VIT University

Why Operating system?

A modern computer **CONSISTS** of:

- One or more processors
- Main memory
- Disks
- Printers
- Various input/output devices

Managing all these varied components requires a layer of software – the operating system

What is an Operating System?

An Operating System is a program that acts as an intermediary/interface between a user of a computer and the computer hardware

What is an operating system?

□Software that provides an elaborate illusion to applications

Important features of OS:

(1) ABSTRACTION:

☐ Hides details of different hardware configurations

(2) ARBITRATION:

☐ Manages access to shared hardware resources

OS Functions

(1) Concurrency:

☐ Give every application the illusion of having its own CPU!

Concurrency <<< . >>> HOW?

- ☐ The OS timeslices each application on a single CPU
 - Switches between applications extremely rapidly, i.e., 100 times/sec

OS Functions

(2) Virtual Memory:

- ☐ Give every application the illusion of having infinite memory
 - And, that it can access any memory address it likes!
 - In reality, RAM is split across multiple applications

RATE A AND SER AMERICA

OS Functions

(3) Multiprocessor support:

- Modern systems have multiple CPUs
- Can run multiple applications in parallel

(4) Filesystems:

- Real disks have a sector-based access model
- User applications see flat files arranged in a hierarchical namespace

(5) Security and protection:

 Prevent multiple apps from interfering with each other and with normal system operation

OS TYPES

(1) In the Beginning...

- There was no OS just libraries
- Computer only ran one program at a time, so no need for an OS

OS TYPES

(2) Simple batch systems

☐ (mid1950s – mid 1960s)

- ☐ Permanently resident OS in primary memory
- ☐ Loaded a single job from card reader, ran it, loaded next job...

Cons:

- Lack of interaction between user & Job
- CPU is Often Idle

IBM Model 701 (Early 1950's)

IBM 7094 (Early 1960's)

(2) Multi Programming System:

IDEA: Multiple Jobs reside in Main memory (CPU Switched between jobs)

Pros:

CPU, Memory, I/O Utilized effectively

(3) Time Sharing (Multi Tasking)

- Multiple users simultaneously access the system through terminals
- Processor's time is shared among multiple users
- The CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
- Each user have a impression that he has her own computer, but actually one computer is being shared among many users

Distributed Systems (Loosely Coupled)

- Distribute Computation among several processors
- Processors do not share memory or a clock;

Processors communicate with one another through communication lines

Pros:

- Resource sharing (Sharing files at remote sites)
- Load sharing

