Math 445 Number Theory

November 15, 2004

Sums of four squares.

For every $n \in \mathbb{N}$, there are $x, y, z, w \in \mathbb{Z}$ so that $x^2 + y^2 + z^2 + w^2 = n$.

Elements of the proof:

$$(x_1^2 + y_1^2 + z_1^2 + w_1^2)(x_2^2 + y_2^2 + z_2^2 + w_2^2) = (x_1x_2 + y_1y_2 + z_1z_2 + w_1w_2)^2 + (x_1y_2 - x_2y_1 + z_2w_1 - z_1w_2)^2 + (x_1z_2 - x_2z_1 + y_1w_2 - w_1y_2)^2 + (x_1w_2 - x_2w_1 + y_2z_1 - y_1z_2)^2$$

So we may focus on primes p. $p=2=1^2+1^2+0^2+0^2$, so focus on odd primes. Then Proposition: $0 \le x, y \le (p-1)/2$ and $x \ne y$ implies $x^2 \not\equiv y^2 \pmod{p}$. This is because $p|x^2-y^2=(x-y)(x+y)$ implies p|x-y and $-(p-1)/2 \le x-y \le (p-1)/2$ so x=y, or p|x+y and $0 \le x+y \le p-1$ so x+y=0 so x=y=0. Then

Proposition: For any a, x^2 and $a-y^2$, with $0 \le x, y \le (p-1)/2$ must have a value, mod p, in common. For otherwise, since x^2 and $a-y^2$ each take on (p+1)/2 different values, $x^2+y^2-a=x^2-(a-y^2)$ would take on p+1 different values, mod p. So in particular, $x^2+y^2\equiv -1 \pmod p$ has a solution.

Then $x^2 + y^2 + 1^2 + 0^2 = Mp$ for some M; with the restrictions on x, y above, we have M < p. Choose the smallest positive M with $Mp = x^2 + y^2 + z^2 + w^2$. We claim: M = 1 (so $p = x^2 + y^2 + z^2 + w^2$ is a sum of 4 squares).

First, M is odd, since if M is even, then $x^2 + y^2 + z^2 + w^2$ is even, so an even number of x, y, z, w are even. After renaming the variables to group them by parity, we have

$$\frac{M}{2}p = (\frac{x-y}{2})^2 + (\frac{x+y}{2})^2 + (\frac{z-w}{2})^2 + (\frac{z+w}{2})^2$$
 where each of the numbers on

the right are integers. If M>1 is odd, then choose $-\frac{M}{2} \leq x_1, y_1, z_1, w_1 \leq \frac{M}{2}$ with $x \equiv x_1 \pmod{M}$, etc. Then $x_1^2+y_1^2+z_1^2+w_1^2 \equiv x^2+y^2+z^2+w^2 \equiv 0 \pmod{M}$, so $x_1^2+y_1^2+z_1^2+w_1^2=NM$; since $|x_1|,|y_1|,|z_1|,|w_1|<\frac{M}{2}$, $x_1^2+y_1^2+z_1^2+w_1^2< M^2$, so N< M. Note also that N>0, since otherwise $x_1=y_1=z_1=w_1=0$, so M|x,y,z,w, so $M^2|x^2+y^2+z^2+w^2=Mp$, so p|M, contradicting M< p. Then

$$NM^{2}p = (x_{1}^{2} + y_{1}^{2} + z_{1}^{2} + w_{1}^{2})(x^{2} + y^{2} + z^{2} + w^{2}) = (x_{1}x + y_{1}y + z_{1}z + w_{1}w)^{2} + (x_{1}y - xy_{1} + zw_{1} - z_{1}w)^{2} + (x_{1}z - xz_{1} + y_{1}w - w_{1}y)^{2} + (x_{1}w - xw_{1} + yz_{1} - y_{1}z)^{2} = a^{2} + b^{2} + c^{2} + d^{2}$$

and we can check that, mod M,

$$a = x_1x + y_1y + z_1z + w_1w \equiv x^2 + y^2 + z^2 + w^2 \equiv 0,$$

$$b = x_1y - xy_1 + zw_1 - z_1w \equiv xy - xy + zw - zw \equiv 0,$$

$$c = x_1 z - x z_1 + y_1 w - w_1 y \equiv x z - x z + y w - y w \equiv 0,$$

and $d = x_1 w - x w_1 + y z_1 - y_1 z \equiv x w - x w + y z - y z \equiv 0$.

So a = MA, b = MB, c = MC, d = MD and $NM^2p = M^2(A^2 + B^2 + C^2 + D^2)$ so $A^2 + B^2 + C^2 + D^2 = Np$ with 0 < N < M, a contradiction. So M = 1, as desired.