

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Representação do Conhecimento e Raciocínio

LICENCIATURA EM ENGENHARIA INFORMÁTICA
MESTRADO integrado EM ENGENHARIA INFORMÁTICA
Inteligência Artificial
2022/23

Representação do Conhecimento

- Conhecimento e Raciocínio;
- Lógica e Programação em Lógica;
- Regras de Produção;
- Programação Dirigida aos Padrões;
- Estruturas hierárquicas:
 - Redes semânticas;
 - o Frames;
- Scripts;
- Sistemas Baseados em Conhecimento.

Conhecimento e Raciocínio

- O que é conhecimento?
 - O conhecimento pode ser definido como informação sobre ambiente (que pode ser expressa na forma de proposições).
- O que é representação do conhecimento?
 - Símbolos usados para representar informação sobre ambiente (as proposições).
- O que é representação e raciocínio do conhecimento?
 - A manipulação de símbolos (que codificam proposições para produzir representações de novas proposições).

A questão de representar o conhecimento é uma questão fundamental na Inteligência Artificial: Como pode o conhecimento humano ser representado por uma linguagem de computador e de uma tal forma que os computadores possam usar esse conhecimento para raciocinar?

Conhecimento?

Exemplos

Source: https://www.guru99.com/information-vs-knowledge-difference.html

Agentes baseados em conhecimento (Knowledge-based Agents)

- Os humanos sabem "coisas", o que os ajuda a fazer "coisas"!
 - o Processos de raciocínio que operam em representações internas de conhecimento
- Lógica: uma classe geral de representações para apoiar agentes baseados em conhecimento
 - o Combinamos e recombinamos informações para atender a uma infinidade de finalidades
- Os agentes baseados em conhecimento podem aceitar novas tarefas na forma de objetivos explicitamente descritos;
 - o "Ouvir" ou aprender novos conhecimentos sobre o meio ambiente
 - o Adaptando-se às mudanças no ambiente, atualizando conhecimento relevante

Agentes baseados em conhecimento (Knowledge-based Agents)

```
function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t \leftarrow t + 1
return action
```

- TELL the KB what it perceives
- ASK the KB what action to perform
 - o Reasoning about the current state of the world, outcomes of possible actions, ...
- TELL the KB which action was performed in the world

Conhecimento vs. Implementação

- Um agente baseado em conhecimento pode ser descrito ao nível do conhecimento (KB)
 - Precisamos apenas especificar o que o agente sabe e quais são seus objetivos
 Exemplo:
 - Um automóvel autónomo tem como objetivo levar uma encomenda de Guimarães a Braga e sabe que deve usar uma das estradas que ligam as duas cidades.
 - o Podemos esperar que ele use uma das estradas porque sabe que com isso alcançará o seu objetivo!
- Abordagem declarativa para a construção do sistema: TELL (DIZER) ao agente o que ele precisa saber
- Implementação: estruturas de dados dentro da KB e algoritmos
 - Abordagem procedimental: codificar comportamentos diretamente como código de programa

O Mundo do Wumpus

O jogador deve apanhar o Ouro e regressar ao ponto de partida sem entrar em nenhuma célula com um poço ou com o Wumpus.

4	≶ Stench S		-Breeze	PIT
3	100 mg	Stench S Gold	PIT	Breeze
2	≶5555 Stench S		Breeze	
1	START	-Breeze	PIT	Breeze
	1	2	3	4

O Mundo do Wumpus

■ Perceções (sensores): Cheiro, Brisa, Brilho, Choque, Grito

Ações: Rodar à Direita, Rodar à Esquerda, Frente, Agarrar, Largar, Disparar

■ Objetivos: Apanhar o Ouro e regressar ao ponto de partida sem entrar em nenhuma célula com um poço ou

4

3

2

com o Wumpus

Ambiente:

o células adjacentes ao Wumpus têm "mau" cheiro

o células adjacentes aos poço têm brisa (vento)

o células com Ouro têm brilho

 Disparar uma seta mata o Wumpus se estivermos virados para ele (ie., na mesma direção)

Apenas uma seta disponível

 Agarrar pega no Ouro se ele estiver na mesma célula

Largar deixa o Ouro na célula atual

Caracterização do Mundo do Wumpus

- Deterministico?
 - O Sim! Resultado é especificado exatamente!
- Acessível? le parcialmente observável
 - Não! Só existe perceção local!
- Estático?
 - o Sim! Wumpus, Poços e Ouro não se movem!
- Discreto?
 - Claro que Sim!

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
ок			
1,1 A	2,1	3,1	4,1
	OF		
OK	OK		

Em (1,1) não sente nada, logo (1,2) e (2,1) são seguros

A = Agent

= Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

Move-se para (2,1) e sente vento (B – Breeze)

Vento em (2,1) significa poço em (3,1) ou (2,2)

Regressa ao único ponto seguro ainda não explorado (1,2) e sente cheiro.

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

1,4	2,4	3,4	4,4
^{1,3} w!	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

(1,1) era seguro e (2,1) não tinha cheiro logo o Wumpus está em (1,3) Em (1,2) não sente vento, logo o poço está em (3,1) e não há poço em (2,2).

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

1,4	2,4 P?	3,4	4,4
	7.		
^{1,3} w!	2,3 A S G B	3,3 _{P?}	4,3
1,2 s	2,2	3,2	4,2
V OK	V OK		
1,1	2.1	3,1	4,1
v	B V	P!	,
ok	ok		

Move-se para o único ponto seguro não explorado (2,2) Como em (2,2) não sente nada (2,3) e (3,2) são seguros Move-se para (2,3) e sente vento, cheiro e brilho – descobriu o OURO!

A = Agent

= Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

Todas as acções foram tomadas com consciência total das suas consequências.

De salientar que em cada passo o agente tira uma conclusão a partir das informações disponíveis, essa conclusão é garantida como correta se as informações disponíveis forem corretas.

Esta é uma propriedade fundamental do raciocínio lógico.

Representação, Raciocínio e Lógica

- Representação do conhecimento procura representar o conhecimento de forma a que seja manipulável pelo computador
- Lógicas são linguagens formais para representar informação de forma a que conclusões possam ser tiradas
- Sintaxe define as possíveis frases de uma linguagem
- Semântica define os factos do mundo a que as frases se referem (significado da frases)
- Por exemplo em linguagem aritmética:
 - o x+2 >y é uma frase; x2+y> não é!
 - o x+2>y é verdadeira se o número x+2 é maior do que o número y
 - o x+2>y é verdadeira num mundo em que x=5, y=3
 - o x+2>y é falsa num mundo em que x=0, y=3

Representação de Conhecimento

A Representação de Conhecimento procura responder questões tais como:

- o Como representar conhecimento?
- O Qual é a natureza do conhecimento e como o representamos?
- O Será que representamos esse conhecimento todos de igual forma?
- O Um esquema de representação deve lidar com um domínio específico ou deve ser de uso geral?
- Quão expressivo é um esquema de representação?
- O esquema deve ser declarativo ou processual?
- o Como devem os programas ditos "inteligentes" representar e usar esse conhecimento?
- O Seremos capazes de representar todo o tipo de conhecimento?

Características desejáveis, entre outras:

- Definir explicitamente os objetos e suas relações;
- Exibir as limitações e restrições (expressar a forma como um objeto ou relação os afeta).
- Transparente;
- Rápida;
- Computável.

- Adequação da representação
 - o capacidade de representar o conhecimento necessário;
- Adequação da inferência
 - o capacidade de manipular conhecimento e "produzir" novos conhecimentos;
- Eficiência da inferência
 - o capacidade de direcionar a inferência para direções produtivas;
 - o capacidade de responder com recursos limitados;
- Eficiência na aquisição de novo conhecimento
 - o capacidade de "adquirir" novo conhecimento;
 - De uma forma automática (se possível).

Bibliografia Recomendada

- Stuart Russell and Peter Norvig, Artificial Intelligence A Modern Approach, 4rd edition, ISBN: 978-0134610993, 2020.
- Ivan Bratko, PROLOG: Programming for Artificial Intelligence, 3rd Edition, Addison-Wesley Longman Publishing Co., Inc., 2000.

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Representação do Conhecimento e Raciocínio

LICENCIATURA EM ENGENHARIA INFORMÁTICA MESTRADO integrado EM ENGENHARIA INFORMÁTICA Inteligência Artificial 2022/23