

대학 교과목 분석을 통한학과 추천 모델 연구

- 1 조 -

프로젝트 진행 목차

프로젝트 주제 선정 배경

프로젝트 분석 방향

프로젝트 분석 절차

결과 도출 및 평가

프로젝트 주제 선정 배경

대학 입시요강도 중요하지만 대학 재학중에 이수하게 될 학과별 커리큘럼에 대한 정보를 토대로 "실제로 어떤 교과목들이 자신이 원하는 대학학과와 연관되어 있을까?" 에 대한 의문에서 해당 주제를 선정하게 되었다.

기대 수요층

- 대학 입학 준비 고교생, 재수생
- 고등학교 3학년 담임 선생님

기대 효과

- 대입 준비 과정에서 학생들이 배우고 싶은 과 정과 연관성이 있는 학과들을 추천한다.
- 새롭게 개편된 학과의 수업, 신설 학과의 수 업들로 기존 학과와 유사한 학과를 확인할 수 있다.

프로젝트 분석 방향

1. 학과별 교과목 커리큘럼 분석

대학에 개설된 학과별 이수 교과목, 커리큘럼 데이터를 수집, 분석.

2. 최적 학과 Proposal

분석된 전공 교과목들을 토대로 가장 연관성이 있는 최적화된 학과를 추천 할 수 있다.

프로젝트 분석 절차

작업 환경 및 분석 도구

- 1. 작업 환경 : 코랩 구글
- 2. 분석도구 및 기술
 - Phython, Keras
 - KoNLPy
 - TensorFlow
 - Word Embedding
 - DNN

"대학 학과별 개설 교과목 (커리큘럼) 데이터 수집 "

• 관련학과

국어국문학과, 한국어문학과, 한국어학과, 한문학과, 미디어콘텐츠전공, 스토리텔링학과, 통상언어전공, 한국어교원학과, 한국어통번역전공

• 교과목

- ‡ 국어학 과목 : 국어학개론, 국어사, 국어방언학, 국어의미론, 국어문법론, 국어음운론, 국어학 연구, 한국어 형태론, 한국어 음성학, 한국어 어휘론, 한국어 정 책론, 한국어정보처리, 한국어발달사, 응용한국어학 등
- + 국문학 과목: 국문학개론, 한국현대문학사, 한국현대작가론, 한국고전문학사, 고전작품강독, 문학작품과 한국사, 현대시론, 현대비평론, 현대희곡론, 한국 근대문학의 형성, 한국한문학개론, 구비문학론, 근세시가론, 고전시가론, 고전소설론, 현대소설론 등

• 취득자격면허

국가자격: 박물관및미술관준학예사

민간자격: 논술지도사, 독서지도사, 아동독서지도사, 시니어독서지도사, 독서코칭전문가, 독서논술지도사 등

워크넷에서 운영하는 학과별 이수과목 데이터 이용

"대학학과별개설교과목(커리큘럼)데이터수집"

대분류	중분류	소분류	학과명	학과코드
교육계열	교육일반	교육학	평생교육컨설팅학부	U0301010007
03	0301	030101	평생교육학 · HRD연계전공	U0301010007
(계속)	특수교육	특수교육학	특수교육과(초등특수교육)	U0303010004
	0303	030301	특수교육과(중등특수교육)	U0303010004
			특수교육과(유아특수교육)	U0303010004
	중등교육 0305	언어교육 030501	글로벌영어교육학과	U0305010004
공학계열	건축	건축학	건축 · 도시계획학과	U0401020011
04	0401	040102	스마트시티건축학전공	U0401020011
			건축학과(4년제)	U0401020011
			해양건축 · 에너지자원공학부 (공간디자인전공, 건축방재공학전공)	U0401020011
			스마트시티건축공학과	U0401020011
	토목 · 도시	토목공학	사회환경공학과	U0402010020
	0402	040201	스마트건축토목공학부	U0402010020
			건설시스템안전공학과	U0402010020
			토목안전공학과	U0402010020
			물류 · 환경 · 도시인프라공학부(건설공학전공)	U0402010020
		도시공학 040202	도시융합시스템공학과	U0402020005
			스마트시티공학전공	U0402020005
			그린스마트시티학과	U0402020006
			스마트도시학부	U0402020006
			스마트도시건설전공	U0402020006
	교통 : 운송	지상교통공학	철도시스템학부 철도소프트웨어전공	U0403010003
	0403	040301	철도관체정보학과	U0403010003
		항공학	항공기계정비학과	U0403020007
		040302	스마트드론공학과	U0403020008
			항공운송학과	U0403020008
			드론융합전공	U0403020008
			항공우주및소프트웨어공학부	U0403020008
		해양공학	해양경찰학부(항해전공, 기관전공)	U0403030013
		040303	항해융합학부	U0403030013
			조선 · 해양개발공학부(해양공학전공)	U0403030013
			조선 · 해양개발공학부(조선해양시스템공학전공)	U0403030013
		1	미래산업융합학과	U0403030014

	공학계열	건축 0401	건축학 040102	건축 · 도시계획학과
	04			스마트시티건축학전공
ı				건축학과(4년제)
				해양건축 · 에너지자원공학부 (공간디자인전공, 건축방재공학전공)
ı				스마트시티건축공학과
ı		토목 · 도시	토 목공 학 040201	사회환경공학과
		0402		스마트건축토목공학부
				건설시스템안전공학과
				토목안전공학과
				물류 · 환경 · 도시인프라공학부(건설공학전공)
ı			도시공학 040202	도시융합시스템공학과
				스마트시티공학전공
				그린스마트시티학과
				스마트도시학부
				스마트도시건설전공
1				

한국교육개발원 2021 학과(전공) 분류 자료집 이용

" 대학 학과별 개설 교과목 (커리큘럼)을 웹 크롤링 진행 "

"웹 크롤링 후 커리큘럼 데이터 정제 "

- 엑셀로 변환
- 특수문자 처리
- 외국어, 숫자 처리
- csv 파일로 저장
- 5980쌍 제작

학과	전공수업
건축학과	건축학개론, 건축이론, 건축사, 건축설계, 건축구조의 이해, 주택계획,건축구조, 건축재료, 건축설비, 건축법규, 건축캐드,
건축설비공학과	건축개론, 건축제도, 동역학, 구조역학, 재료역학, 건축재료공학, 건축구조, 건축시공, 건축설비, 건설기술, 건설경영, 건축
조경학과	조경학원론, 조경사, 조토양학, 지형학, 서양조경문화사, 조경수목학, 조경계획방법론,조경구조공학, 조경적산학, 조경소자
토목공학과	공학수학, 수리학, 토질역학, 구조공학, 철근콘크리트공학, 토목시공학, 토목설계, 방재학개론, 재료역학, 토질역학, 지반환
도시공학과	도시계획, 도시발달사, 도시개발, 도시설계, 교통계획, 교통공학, 지역계획, 환경계획, 도시학개론, 도시디자인, 측량학, 토
지상교통공학과	교통류이론, 교통안전공학, 교통수요분석, 교통계획, 도로설계, 교통학개론, 계량분석, 공학수학.교통공학론, 교통통계학,
항공학과	항공무기체계, 헬리콥터정비, 항공열역학, 항공기구조물 수리실습, 가스터빈엔진일반 장탈작동, 항공기재료일반 공구실
해양공학과	선박유체역학, 조선해양공학계획, 기초구조동역학, 용접구조설계, 물리학, 해양플랜트개론, 전산선박제도, 공업역학, 재료
기계공학과	고체역학, 열역학, 동역학, 유체역학, 재료역학, 기계설계, 기계공작실습, 공학물리, 수학, 공학전산응용, 에너지공학, 열전
재료금속공학과	재료설계학, 재료선택 및 활용, 재료소성론, 재료기기분석, 재료설계학, 반도체공학, 디스플레이공학, 상평형, 나노재료, 스
자동차공학과	열역학, 동역학, 유체역학, 재료역학, 자동차재료, 전기전자공학, 자동차공학개론, 자동차구조실습, 공학수학, 정역학, 고
전기공학과	전기회로, 회로이론, 전자기학, 자동제어, 인공지능제어, 배전계통운용, 신호 및 시스템, 디지털회로, 제어공학, 전자기장,

계열	학과	전공수업
공학계열	건축학과	건축학개론
공학계열	건축학과	건축이론
공학계열	건축학과	건축사
공학계열	건축학과	건축설계
공학계열	건축학과	건축구조의 이해
공학계열	건축학과	주택계획
공학계열	건축학과	건축구조
공학계열	건축학과	건축재료
공학계열	건축학과	건축설비
공학계열	건축학과	건축법규
공학계열	건축학과	건축캐드
공학계열	건축학과	건축프로그래밍
공학계열	건축학과	도시개발
공학계열	건축학과	조경설계
공학계열	건축학과	생태건축
공학계열	건축학과	친환경건축
공학계열	건축학과	인테리어계획론

"데이터 가공, 전처리"

- mecab 으로 토큰화 진행
- 토큰화 처리: 텍스트 길이가 긴 경우 문장과 단어를 구분하는 방식

```
ן !pip install konlpy
    !bash <(curl -s https://raw.githubusercontent.com/konlpy/konlpy/master/scripts/mecab.sh)
    import os
    os.chdir('/tmp/')
    !curl -LO https://bitbucket.org/eunjeon/mecab-ko/downloads/mecab-0.996-ko-0.9.1.tar.gz
    !tar zxfv mecab-0.996-ko-0.9.1.tar.gz
    os.chdir('/tmp/mecab-0.996-ko-0.9.1')
    !./configure
    !make
    !make check
    !make install
    import os
    os.chdir('/tmp')
    !curl -LO https://bitbucket.org/eunjeon/mecab-ko-dic/downloads/mecab-ko-dic-2.0.1-20150920.
    !tar -zxvf mecab-ko-dic-2.0.1-20150920.tar.gz
    os.chdir('/tmp/mecab-ko-dic-2.0.1-20150920')
    !./autogen.sh
    !./configure
    # !sh -c 'echo "dicdir=/usr/local/lib/mecab/dic/mecab-ko-dic" > /usr/local/etc/mecabrc'
    !make install
    # install mecab-python
    import os
    os.chdir('/content')
  j from konlpy.tag import Mecab
    # Mecab으로 토큰화 진행
    tokenizer = Mecab()
```

"텍스트 벡터화 처리"

- 텍스트 데이터를 컴퓨터가 처리할 수 있게 수치화 변환함.
- X = 커리큘럼(전공과목) → 토큰화 처리
- → 토근와 서 - 워드 사전

```
def make_x(x_data):
       return tokenizer.morphs(x_data)
   data.iloc[:,2].apply(make_x)
                   [건축학개론]
                  [건축, 이론]
                     [건축사]
                  [건축, 설계]
            [건축, 구조, 의, 이해]
                [유럽, 연합, 론]
    5975
    5976
                [프랑스, 외교사]
    5977
                [프랑스, 문학사]
    5978
                  [프랑스, 시]
    5979
                 [프랑스, 소설]
    Name: 전공수업, Length: 5980, dtype:
    object
[ ] X_ = data.iloc[:,2].apply(make_x)
```

```
# 각각 토큰화한 리스트
                    [건축학개론]
                   [건축, 이론]
                      [건축사]
                   [건축, 설계]
            [건축, 구조, 의, 이해]
                ...
[유럽, 연합, 론]
                 [프랑스, 외교사]
    5977
                 [프랑스, 문학사]
                  [프랑스, 시]
                  [프랑스, 소설]
    Name: 전공수업, Length: 5980, dtype
    object
  ] X_word = [] # 모든 토큰들 (중복)
for i in X_:
     X_word.extend(i)
  ] X_word #X의 단어 사전
    ['건축학개론',
      '건축',
      '이론',
     '건축사'
      '건축',
      '설계',
     '건축'
[ ] len(X_word)
    15608
```

"텍스트 벡터화 처리"

- 텍스트 데이터를 컴퓨터가 처리할 수 있게 수치화 변환함.
- 만든 워드 사전에 벡터 값을 부여함

```
[ ] from keras.utils.np_utils import to_categorical
X 카테고리
[ ] X_word = { v:i for i,v in enumerate(np.unique(X_word))} # X 사전
[ ] X_word
    {'&': 0,
     '-': 1,
     '2': 2,
     'IT': 3,
     'UX': 4,
     '가곡': 6,
     '가공': 7,
     '가능': 8,
     '가론': 9,
     '가상': 10,
     '가상현실': 11,
     '가스': 12,
     '가요': 13,
     '가정': 14,
     '가정생활': 15,
     '가족': 16,
     '가족법': 17,
     '가창': 18,
     '각': 19,
     '각론': 20,
[ ] len(X_word)
    2209
```


"텍스트 벡터화 처리"

- 텍스트 데이터를 컴퓨터가 처리할 수 있게 수치화 변환함.
- 패딩: 입력 배열의 주위를 가상의 원소로 채우는 작업. 실제 입력 값은 아니기 때문에 패딩은 "0" 으로 채운다. 계산에 영향을 미치지 않으면서 입력과 출력 데이터의 크기를 동일하게 만들 수 있다

```
X패딩
   def make_label(x):
      x_list = []
      for i in x:
       x_list.append(X_word[i])
     return x_list
   X = X_apply(make_label)
[ ] from keras.preprocessing.sequence import pad_sequences
    maxlen = X.apply(len).max()
    X = pad_sequences(X,maxlen=maxlen)
[ ] X
                                             0,
                                                   60],
    array([[
                            0, ...,
                                             58, 1451],
                                              0, 59],
                            0, ...,
                                        0, 2017, 601],
                            0, ...,
                                        0, 2017, 1063],
                            0, ...,
                                        0, 2017, 992]], dtype=int32)
[ ] X.shape
    (5980, 13)
```


"텍스트 벡터화 처리"

 텍스트 데이터를 컴퓨터가 처리할 수 있게 수치화 변환함.

- y = 학과

y 원 핫 인코딩: 텍스트를 유의미한 숫자(벡터)로 바꾸는 가장 쉬운 방법이다. N개의 단어를 각각 N차원 의 벡터로 표현하는 방식이다. 단어에 해당되는 차원(인덱스)에 1을 넣고 나머지에는 0을 넣는다

```
[ ] data.학과
            건축학과
            건축학과
            건축학과
            건축학과
            건축학과
           프랑스학과
           프랑스학과
           프랑스학과
           프랑스학과
           프랑스학과
    Name: 학과, Length: 5980, dtype: object
[ ] y_ = data.학과
[ ] Y_
            건축학과
            건축학과
            건축학과
            건축학과
           프랑스학과
           프랑스학과
           프랑스학과
           프랑스학과
           프랑스학과
    Name: 학과, Length: 5980, dtype: object
```

```
[ ] y_word = { v:i for i,v in enumerate(np.unique(y_))}
[ ] y_word
    { '가정관리학과 ': 0,
     '간호학과': 1,
     '건축설비공학과': 2,
     '건축학과': 3,
     '게임공학과': 4,
     '경영학과': 5,
     '경제학과': 6,
     '경찰행정학과': 7,
     '경호학과': 8,
     '공학교육과': 10,
     '광고홍보학과': 11,
     '교육학과': 12,
     '국어국문학과': 13,
     '국제지역학과': 14,
     '국제학과': 15,
     '특수교육학과': 122,
     '패션디자인학과': 123,
     '프랑스어문학과': 124,
     '프랑스학과': 125,
     '한의학과': 126,
     '항공서비스과': 127,
     '항공학과': 128,
     '해양공학과': 129,
     '행정학과': 130,
     '호텔관광경영학과': 131,
     '화학공학과': 132,
     '화학과': 133,
     '환경공학과': 134}
[ ] len(y_word)
```

프로젝트 분석 절차 – 모델 구축 및 학습

"학습 데이터 구분 "

- 만들어진 데이터를 훈련데이터와 학습데이터 구분.

```
[ ] y_train
    array([[0., 0., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.],
           [0., 0., 1., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)
[ ] y_test
    array([[0., 0., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.],
           [0., 1., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.],
           [1., 0., 0., ..., 0., 0., 0.],
           [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)
[ ] X_train.shape, y_train.shape, X_test.shape, y_test.shape
    ((4485, 13), (4485, 135), (1495, 13), (1495, 135))
[ ] type(X_train)
    pandas.core.series.Series
```


"인공신경망구성"

- 텍스트 데이터의 연관어 분석

```
- 활성화 함수 : 소프트맥스
```

```
# 인공 신경망 구성
model = Sequential()
model.add( Embedding(2209, 8, input_length=13 ) ) # s_max =padded_x.shape[1]
model.add( Flatten() )
model.add( Dense(135, activation='softmax') )
model.summary()
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #	
embedding (Embedding)	(None, 13, 8)	17672	
flatten (Flatten)	(None, 104)	0	
dense (Dense)	(None, 135)	14175	

Total params: 31,847 Trainable params: 31,847 Non-trainable params: 0

프로젝트 분석 절차 – 모델 구축 및 학습

- "컴파일 및 학습"
- Early stopping callback 으로 과적합 방지
- 모델학습
- Accuracy → 62.6 %
- 모델평가
- -Accuracy → 29.6 %

```
2 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    1 model.fit(X_train,
            y_train,
            batch_size =20,
            epochs=200,
            validation_data=(X_test, y_test),
            callbacks = [early_stopping_callback] )
  Epoch 32/200
  225/225 [==========] - 1s 2ms/step - loss: 1.6644 - accuracy: 0.5960 - val_loss: 3.1142 - val_accuracy: 0.2936
  Epoch 33/200
  ------] - 1s 3ms/step - loss: 1.5924 - accuracy: 0.6076 - val_loss: 3.1172 - val_accuracy: 0.2923
  225/225 [===========] - 1s 3ms/step - loss: 1.4962 - accuracy: 0.6261 - val_loss: 3.1252 - val_accuracy: 0.2963
  <keras.callbacks.History at 0x7f845e7672d0>
35] 1#예측 ->
   2 model.evaluate(X_test, y_test)
  47/47 [========] - Os 2ms/step - loss: 3.1252 - accuracy: 0.2963
  [3.1252083778381348.0.2963210642337799]
```

- 단순한 신경망 구조
- 해결: Dense 추가

```
1 # model_deep2
2 # 인공 신경망 구성
3 model_deep2 = Sequential()
4 model_deep2.add( Embedding(2209, 8, input_length=13 ) )
5 model_deep2.add( Flatten() )
6 model_deep2.add( Dense(50, activation='relu') )
7 model_deep2.add( Dense(50, activation='relu') )
8 model_deep2.add( Dense(135, activation='softmax') )
9 model_deep2.summary()
```

Model: "sequential_3"

Layer (type)	Output Shape	Param #
embedding_3 (Embedding)	(None, 13, 8)	17672
flatten_3 (Flatten)	(None, 104)	0
dense_5 (Dense)	(None, 50)	5250
dense_6 (Dense)	(None, 50)	2550
dense_7 (Dense)	(None, 135)	6885

Total params: 32,357 Trainable params: 32,357 Non-trainable params: 0

[4.822968006134033, 0.016053510829806328]

- 모델 변경해결: LSTM
- 1 model2 = Sequential()
 2 model2.add(Embedding(2209, 8, input_length=13))
 3 model2.add(LSTM(13, activation='tanh')) # LSTM tanh사용 -1부터 1사이 시그모이드는 0~2
 4 model2.add(Dense(135, activation='softmax'))
 5 model2.summary()

1 z_word

- 부족한 데이터
- 적은 input 많은 output
- 해결: 데이터 추가
- 해결: 예측 output 줄이기
- 분류가 적은 '계열' 예측

['공학계열': 0, '교육계열': 1, '사회계열': 2, '예체능계열': 3, '의약계열': 4, '인문계열': 5, '자연계열': 6}

	계열	학과	전공수업	
0	공학계열	건축학과	건축학개론	
1	공학계열	건축학과	건축이론	
2	공학계열	건축학과	건축사	
3	공학계열	건축학과	건축설계	
4	공학계열	건축학과	건축구조의 이해	
•••				
5975	인문계열	프랑스학과	유럽연합론	
5976	인문계열	프랑스학과	프랑스 외교사	
5977	인문계열	프랑스학과	프랑스 문학사	
5978	인문계열	프랑스학과	프랑스 시	
5979	인문계열	프랑스학과	프랑스 소설	
5980 rows x 3 columns				

5980 rows × 3 columns


```
[140] 1 # 인공 신경망 구성
2 model = Sequential()
3 model.add( Embedding(2209, 8, input_length=13 ) )
4 model.add( Flatten() )
5 model.add( Dense(7, activation='softmax') )
```

[143] 1 model.summary()

Model: "sequential_16"

Layer (type)	Output Shape	Param #
embedding_16 (Embedding)	(None, 13, 8)	17672
flatten_14 (Flatten)	(None, 104)	0
dense_34 (Dense)	(None, 7)	735

Total params: 18,407
Trainable params: 18,407
Non-trainable params: 0

Non-trainable params: 0

1 model.evaluate(X_test, Z_test)

47/47 [=========================] - Os 2ms/step - loss: 0.9273 - accuracy: 0.7117 [0.9272875785827637, 0.7117056846618652]

학습정확도: Accuracy92%

평가정확도 :Accuracy71%

- 형태소 분석기
- 단어 길이가 너무 짧음
- 사전에 없는 복합어 형태가 많음
 - 정확한 의미단위의 형태소 분석 어려움
- 해결: 다른 형태소 분석기 사용
- 해결: 데이터 띄어쓰기 추가

```
['종교사']
['불교', '개론']
['불교', '윤리학']
['한국', '불', '교사']
['중국', '불', '교사']
['인도', '불', '교사']
```


예측할 학과의 수업 이름을 입력해 보세요!

2 財 🛅 🤻 🕕 👲 🗷 🗷 🤦 💆 🎞 💆

전공수업명 학과의 후보수 (1-135) 체크하기

프로젝트 구현 웹 -django

결과 도출 및 평가

이번 연구는 대학교 전공 교과목 커리큘럼을 토대로, 관련 교과목이 어떤 학과들과 가장 연관성이 있는지에 대한 연구를 진행하였다.

전공 교과목의 입력값(변수)를 더 많이 확보 한다면, Accuracy 값을 좀 더 높일 수 있으며 최적화된 학과 추천 모델을 구현할 수 있을 것이다.

맺음말...

데이터 확장성

대학교에 개설된 학과별 커리큘럼을 토대로 관련 교과목이 어떤 학과들과 가장 연관성이 있는지에 대한 연구를 진행하였다.

이러한 데이터를 기반으로 졸업 후 진로 데이터와 접목 시킨다면 좀 더 유의미한 학과 추천 모델을 제안할 수 있을 것이다.

시간적 제약

해당 프로젝트를 진행하면서 제한된 시간적 제약으로 보다 완성도 있는 프로젝트 결과물을 만들지 못한 부분에 대해 많은 아쉬움이 남는다.

하지만 프로젝트를 진행하면서 텍스트 마이닝에 대한 개념과 무한한 효용성에 대해서 알 수 있었던 좋은 기회였다.

참고문헌/ 자료

- * 인용 논문, 자료
- 1. 한국교육개발원 2021 학과(전공) 분류 자료집 이기준 & 오지연 & 이정환, 김은미, 구경아, 설가인, 이윤정, 오연서, 이경록
- 2. 교과 연계 진로 탐색을 위한 인공지능 기반 고교 선택교과 및 대학 학과 추천 시스템 백진헌 & 김하연 & 권기원 (2020.11)
- 3. 한국어의 내용분석을 위한 KrKwic 프로그램의 이해와 적용 박한우 & Loet Leydesdorff (2004,10)
- * 인용 웹사이트:

https://www.work.go.kr/consltJobCarpa/srch/schdpt/schdptSrch.do http://www.slideshare.net/hanpark http://www.slideshare.net/hanpark/krkwicnovember2006

감사합니다

대학 교과목 분석을 통한 학과 추천 모델 연구

- 1조 -