

Framingham Heart Study

Problem: What risks and causes contribute to developing coronary heart disease, and are they good predictors in determining whether someone will develop this health condition?

-\\\-

Project Overview

- The goal of this project is to examine epidemiological data, specifically potential causes and risk factors that contribute to developing coronary heart disease throughout a ten-year span
- Within this project, the following factors are examined:
 - Sex
 - Age
 - Education
 - Whether someone currently smokes
 - Number of cigarettes smoked per day
 - Whether or not they are taking blood pressure medication
 - Presence of a stroke

- Presence of diabetes
- Glucose levels
- Total Cholesterol levels (mg/dL)
- Systolic Blood Pressure (mmHg)
- Diastolic Blood Pressure (mmHg)
- BMI (Body Mass Index)
- Heart Rate (beats/min)

Steps of Analysis

Data is explored to examine patterns, trends, and points of interest between categorical and numerical variables

Data Exploration

Data Preparation

 Data is standardized and encoded as preparation for models

- The following models are examined:
- K-Nearest Neighbours
- SVM Classification
- Logistic Regression
- Decision Tree
- Random Forest
- Ensemble Methods

Model Selection and Tuning

Comparison of Models and Results

 Performance of models is evaluated and compared

-\\\\-

Data Exploration

Correlations and Categorical Data Trends:

Data Exploration

-****\\\

Numerical Data Trends:

Data Preparation

The following steps were taken to prepare our data for our models:

- 1. For numerical data, replace missing values with the median, and standardize the data.
- 2. For categorical data, replace missing values with the most frequent value and use one-hot encoding to encode the data.
- 3. Created a second data set to balance the underrepresented class (i.e. having CHD)
- 4. Split the data into training and testing data for both a balanced and unbalanced version of our dataset.

-\\\-

Model Selection

The following models were explored and tested for accuracy in predicting CHD:

1. K-Nearest Neighbours

	Precision	Recall	F1-score
0	0.73	0.67	0.70
1	0.67	0.73	0.69

2. Logistic Regression

	Precision	Recall	F1-score
0	0.69	0.66	0.68
1	0.65	0.67	0.66

Model Selection

3. Decision Tree Classification using AdaBoost

	Precision	Recall	F1-score
0	0.99	0.88	0.93
1	0.88	0.99	0.93

4. Random Forest

	Precision	Recall	F1-score
0	0.97	0.90	0.93
1	0.90	0.97	0.93

-\\\\-

Model Selection

6. Ensembles (Hard Voting and Stacking)

	Precision	Recall	F1-score
0	0.98	0.95	0.97
1	0.95	0.98	0.96

Comparison of Models

The top performing models with the highest ROC scores are:

- Ada Boosted Decision Tree (area=0.94)
- Random Forest (area= 0.93)
- Stacking (area= 0.93)

-\\\-

Comparison of Models

		F1-score	Accuracy	
K-Nearest Neighbour	No CHD	0.70	600/	
	CHD	0.69	69%	
Logistic Regression	No CHD	0.68	670/	
	CHD	0.66	67%	
Decision Tree Classification using AdaBoost	No CHD	0.93	039/	
	CHD	0.93	93%	
Random Forest	No CHD	0.93	029/	
	CHD	0.93	93%	
Stacking	No CHD	0.97	97%	
	CHD	0.96	9170	

Conclusion

- The following models produced the most accurate results:
 - AdaBoosted Decision Tree Classification with 93% accuracy and 0.93 f1 score
 - Random Forest with 93% accuracy and 0.93 f1 score
 - Stacking with 97% accuracy and 0.96 f1 score

