Esercizio 9.6 — Strato limite di Blasius

3D. Nella figura accanto una lastra piana di corda c=30~cm, apertura b=75~cm e spessore trascurabile è investita da una corrente esterna d'aria ($\rho=1.225~kg/m^3,~\mu=1.76\times 10^{-5}~kg/(ms)$) uniforme in corda e variabile in apertura secondo la legge

$$U_e(z) = U_e(z)\mathbf{\hat{x}} = \overline{U}\left(\frac{z}{b}\right)^{2/3}\mathbf{\hat{x}}$$

con $\overline{U}=5~m/s$. Assumendo la corrente laminare, stazionaria e bidimensionale su ciascuna sezione z in apertura, e potendone approssimare lo strato limite attraverso la soluzione di Blasius, si richiede di:

- 2.1) calcolare la resistenza D della lastra ed il corrispondente momento all'incastro M_y ;
- 2.2) calcolare il rapporto di forma $H = \delta^*/\theta$. calcolare lo spessore di spostamento δ^* e di quantità di moto θ dello strato limite al bordo d'uscita della lamina con riferimento alla sezione di mezzeria.

Soluzione

Concetti. Soluzione di Blasius dello strato limite. Spessori di strato limite.

Svolgimento. Il problema viene risolto usando la soluzione in similitudine di Blasius dello strato limite.

$$(9.28)$$

- Per il calcolo della resistenza e del momento alla radice è necessario calcolare lo sforzo a parete sulla lamina piana $\tau_w(x,z)$. La resistenza è l'integrale di τ_w sulla superficie; il momento M_y è l'integrale di $z\tau_w(x,z)$ esteso alla superficie (viene fatta l'ipotesi che l'unica componente dello sforzo a parete sia diretta lungo x).
- Gli spessori di strato limite sono funzione di (x, z).

$$\delta^*(x,z) = \int_0^\infty \left[1 - \frac{u(x,y,z)}{U_e(x,z)} \right] dy, \qquad \theta(x,z) = \int_0^\infty \frac{u(x,y,z)}{U_e(x,z)} \left[1 - \frac{u(x,y,z)}{U_e(x,z)} \right] dy$$
(9.29)

Usando le relazioni dello strato limite di Blasius, si trova

$$\delta^* = \int_0^\infty (1 - g'(\eta(y))) dy = \delta(x) \int_0^\infty (1 - g'(\eta)) d\eta$$

$$\theta = \int_0^\infty g'(\eta) (1 - g'(\eta(y))) dy = \delta(x) \int_0^\infty g'(\eta) (1 - g'(\eta)) d\eta$$
(9.30)

Per lo spessore di spostamento si ha:

$$\delta^* = \delta(x) \int_0^\infty (1 - g'(\eta)) d\eta =$$

$$= \delta(x) [\eta - g(\eta)]|_0^\infty = \qquad (g(0) = 0)$$

$$= \delta(x) \lim_{\eta \to \infty} [\eta - g(\eta)] = \qquad (\lim_{\eta \to \infty} [\eta - g(\eta)] = 1.721)$$

$$= 1.721 \cdot \delta = \qquad (\delta = \sqrt{\nu x/U})$$

$$= 1.721 \sqrt{\frac{\nu x}{U(z)}}$$
(9.31)

Per lo spessore di quantità di moto:

$$\theta = \delta(x,z) \int_0^\infty g'(\eta)(1-g'(\eta))d\eta =$$

$$= \delta \int_0^\infty g'(\eta)d\eta - \delta \int_0^\infty g'^2(\eta)d\eta =$$

$$= \delta [g(\eta)]|_0^\infty - \delta \int_0^\infty g'^2(\eta)d\eta =$$

$$= \delta \lim_{\eta \to \infty} g(\eta) - \delta \int_0^\infty [(gg')' - gg'']d\eta =$$

$$= \delta \lim_{\eta \to \infty} g(\eta) - \delta [gg']|_0^\infty - \delta \int_0^\infty 2g'''d\eta =$$

$$= \delta \lim_{\eta \to \infty} g(\eta) - \delta \lim_{\eta \to \infty} g(\eta)g'(\eta) - 2\delta[g''(\eta)]|_0^\infty = (\lim_{\eta \to \infty} g'(\eta) = 1, \lim_{\eta \to \infty} g''(\eta) = 0)$$

$$= 2\delta(x,z)g''(0) =$$

$$= 0.664 \sqrt{\frac{\nu x}{U(z)}}$$

$$(9.32)$$

Il rapporto di forma vale quindi $H = \delta^*/\theta = 1.721/0.664$, cioè H = 2.59.

(a) Grafico di $g(\eta)$: per $\eta \to \infty$ g ha derivata uguale a 1; l'intersezione dell'asintoto con l'asse orizzontale avviene per g(0) = 1.721.

(b) Grafico di $g'(\eta)$: rappresenta il profilo adimensionale dela velocità. Per $\eta \to \infty$ $g'(\eta) \to 1$.

(c) Grafico di $g''(\eta)$: è legato alla derivata parziale $\partial u/\partial y$. Per determinare lo sforzo a parete è necessario trovare il valore di g''(0): g''(0) = 0.332